From 343e46f600b2624d70ba99ad81715fb1500d36d3 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 29 Mar 2018 10:51:55 +0300 Subject: [PATCH 001/144] Implement first version of the algorithm --- gensim/models/nmf.py | 205 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 205 insertions(+) create mode 100644 gensim/models/nmf.py diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py new file mode 100644 index 0000000000..3e24952789 --- /dev/null +++ b/gensim/models/nmf.py @@ -0,0 +1,205 @@ +from itertools import chain + +import numpy as np +from scipy.stats import halfnorm + + +def _thresh(X, lambda1, vmax): + res = np.abs(X) - lambda1 + np.maximum(res, 0.0, out=res) + res *= np.sign(X) + np.clip(res, -vmax, vmax, out=res) + return res + + +def _mrdivide(B, A): + """Solve xB = A + """ + if len(B.shape) == 2 and B.shape[0] == B.shape[1]: + return np.linalg.solve(B.T, A.T).T + else: + return np.linalg.lstsq(A.T, B.T, rcond=None)[0].T + + +def _transform(W): + newW = W.copy() + np.maximum(newW, 0, out=newW) + sumsq = np.sqrt(np.sum(W**2, axis=0)) + np.maximum(sumsq, 1, out=sumsq) + return _mrdivide(newW, np.diag(sumsq)) + + +def _solveproj(v, W, lambda1, kappa=1, h=None, r=None, v_max=None, max_iter=1e9): + m, n = W.shape + v = v.T + if v_max is None: + v_max = v.max() + if len(v.shape) == 2: + batch_size = v.shape[1] + rshape = (m, batch_size) + hshape = (n, batch_size) + else: + rshape = m, + hshape = n, + if h is None or h.shape != hshape: + h = np.zeros(hshape) + + if r is None or r.shape != rshape: + r = np.zeros(rshape) + + eta = kappa / np.linalg.norm(W, 'fro')**2 + + iters = 0 + + while True: + iters += 1 + # Solve for h + htmp = h + h = h - eta * np.dot(W.T, np.dot(W, h) + r - v) + np.maximum(h, 0.0, out=h) + + # Solve for r + rtmp = r + r = _thresh(v - np.dot(W, h), lambda1, v_max) + + # Stop conditions + stoph = np.linalg.norm(h - htmp, 2) + stopr = np.linalg.norm(r - rtmp, 2) + stop = max(stoph, stopr) / m + if stop < 1e-5 or iters > max_iter: + break + + return h, r + + +class NMF: + """Online Non-Negative Matrix Factorization. + + Attributes + ---------- + _W : matrix + + """ + def __init__(self, n_components, lambda_=1., kappa=1.): + """ + + Parameters + ---------- + n_components : int + Number of components in resulting matrices. + lambda_ : float + kappa : float + """ + self.n_features = None + self.n_components = n_components + self.lambda_ = lambda_ + self.kappa = kappa + self._H = [] + self.R = None + self.is_fitted = False + + def _setup(self, X): + self.h, self.r = None, None + if isinstance(X, np.ndarray): + n_samples, n_features = X.shape + avg = np.sqrt(X.mean() / n_features) + else: + x = next(X) + n_features = len(x) + avg = np.sqrt(x.mean() / n_features) + X = chain([x], X) + + self.n_features = n_features + + self._W = np.abs(avg * halfnorm.rvs(size=(self.n_features, self.n_components)) / + np.sqrt(self.n_components)) + + self.A = np.zeros((self.n_components, self.n_components)) + self.B = np.zeros((self.n_features, self.n_components)) + return X + + def fit(self, X, batch_size=None): + """ + + Parameters + ---------- + X : matrix or iterator + Matrix to factorize. + batch_size : int or None + If None than batch_size equals 1 sample. + """ + if self.n_features is None: + X = self._setup(X) + + prod = np.outer + if batch_size is not None: + if isinstance(X, np.ndarray): + raise ValueError + else: + prod = np.dot + length = X.shape[0] + n_batches = max(length // batch_size, 1) + X = np.array_split(X, n_batches, axis=0) + if isinstance(X, np.ndarray): + X = iter(X) + r, h = self.r, self.h + for v in X: + h, r = _solveproj(v, self._W, self.lambda_, self.kappa, r=r, h=h) + self._H.append(h) + if self.R is not None: + self.R.append(r) + + self.A += prod(h, h.T) + self.B += prod((v.T - r), h.T) + self._solve_W() + self.r = r + self.h = h + + self.is_fitted = True + + def _solve_W(self): + eta = self.kappa / np.linalg.norm(self.A, 'fro') + n = 0 + lasttwo = np.zeros(2) + while n <= 2 or (np.abs( + (lasttwo[1] - lasttwo[0]) / lasttwo[0]) > 1e-5 and n < 1e9): + self._W -= eta * (np.dot(self._W, self.A) - self.B) + self._W = _transform(self._W) + n += 1 + lasttwo[0] = lasttwo[1] + lasttwo[1] = 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) - \ + np.trace(self._W.T.dot(self.B)) + + def transform(self, X, return_R=False): + H = [] + if return_R: + R = [] + + num = None + W = self._W + lambda_ = self.lambda_ + kappa = self.kappa + if isinstance(X, np.ndarray): + num = X.shape[0] + X = iter(X) + for v in X: + h, r = _solveproj(v, W, lambda_, kappa, v_max=np.inf) + H.append(h.copy()) + if return_R: + R.append(r.copy()) + + H = np.stack(H, axis=-1) + if return_R: + return H, np.stack(R, axis=-1) + else: + return H + + def get_factor_matrices(self): + if len(self._H) > 0: + if len(self._H[0].shape) == 1: + H = np.stack(self._H, axis=-1) + else: + H = np.concatenate(self._H, axis=1) + return self._W, H + else: + return self._W, 0 From 3171be33ebbb90aa402984c34f6ee1ab239e2b52 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 30 Mar 2018 15:19:02 +0300 Subject: [PATCH 002/144] Fix variable names --- gensim/models/nmf.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 3e24952789..0dd9c39096 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -4,11 +4,11 @@ from scipy.stats import halfnorm -def _thresh(X, lambda1, vmax): - res = np.abs(X) - lambda1 +def _thresh(X, lambda_, v_max): + res = np.abs(X) - lambda_ np.maximum(res, 0.0, out=res) res *= np.sign(X) - np.clip(res, -vmax, vmax, out=res) + np.clip(res, -v_max, v_max, out=res) return res @@ -29,7 +29,7 @@ def _transform(W): return _mrdivide(newW, np.diag(sumsq)) -def _solveproj(v, W, lambda1, kappa=1, h=None, r=None, v_max=None, max_iter=1e9): +def _solveproj(v, W, lambda_, kappa=1, h=None, r=None, v_max=None, max_iter=1e9): m, n = W.shape v = v.T if v_max is None: @@ -60,7 +60,7 @@ def _solveproj(v, W, lambda1, kappa=1, h=None, r=None, v_max=None, max_iter=1e9) # Solve for r rtmp = r - r = _thresh(v - np.dot(W, h), lambda1, v_max) + r = _thresh(v - np.dot(W, h), lambda_, v_max) # Stop conditions stoph = np.linalg.norm(h - htmp, 2) From bd325bc9a050386631ad300f0f180f8d2989ca65 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 2 Apr 2018 04:10:22 +0300 Subject: [PATCH 003/144] Add support for streaming corpora --- gensim/models/nmf.py | 184 ++++++++++++++++++++----------------------- 1 file changed, 86 insertions(+), 98 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 0dd9c39096..d6b5a1334a 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -4,75 +4,7 @@ from scipy.stats import halfnorm -def _thresh(X, lambda_, v_max): - res = np.abs(X) - lambda_ - np.maximum(res, 0.0, out=res) - res *= np.sign(X) - np.clip(res, -v_max, v_max, out=res) - return res - - -def _mrdivide(B, A): - """Solve xB = A - """ - if len(B.shape) == 2 and B.shape[0] == B.shape[1]: - return np.linalg.solve(B.T, A.T).T - else: - return np.linalg.lstsq(A.T, B.T, rcond=None)[0].T - - -def _transform(W): - newW = W.copy() - np.maximum(newW, 0, out=newW) - sumsq = np.sqrt(np.sum(W**2, axis=0)) - np.maximum(sumsq, 1, out=sumsq) - return _mrdivide(newW, np.diag(sumsq)) - - -def _solveproj(v, W, lambda_, kappa=1, h=None, r=None, v_max=None, max_iter=1e9): - m, n = W.shape - v = v.T - if v_max is None: - v_max = v.max() - if len(v.shape) == 2: - batch_size = v.shape[1] - rshape = (m, batch_size) - hshape = (n, batch_size) - else: - rshape = m, - hshape = n, - if h is None or h.shape != hshape: - h = np.zeros(hshape) - - if r is None or r.shape != rshape: - r = np.zeros(rshape) - - eta = kappa / np.linalg.norm(W, 'fro')**2 - - iters = 0 - - while True: - iters += 1 - # Solve for h - htmp = h - h = h - eta * np.dot(W.T, np.dot(W, h) + r - v) - np.maximum(h, 0.0, out=h) - - # Solve for r - rtmp = r - r = _thresh(v - np.dot(W, h), lambda_, v_max) - - # Stop conditions - stoph = np.linalg.norm(h - htmp, 2) - stopr = np.linalg.norm(r - rtmp, 2) - stop = max(stoph, stopr) / m - if stop < 1e-5 or iters > max_iter: - break - - return h, r - - -class NMF: +class NMF(object): """Online Non-Negative Matrix Factorization. Attributes @@ -80,6 +12,7 @@ class NMF: _W : matrix """ + def __init__(self, n_components, lambda_=1., kappa=1.): """ @@ -100,14 +33,11 @@ def __init__(self, n_components, lambda_=1., kappa=1.): def _setup(self, X): self.h, self.r = None, None - if isinstance(X, np.ndarray): - n_samples, n_features = X.shape - avg = np.sqrt(X.mean() / n_features) - else: - x = next(X) - n_features = len(x) - avg = np.sqrt(x.mean() / n_features) - X = chain([x], X) + X_ = iter(X) + x = next(X_) + n_features = len(x) + avg = np.sqrt(x.mean() / n_features) + X = chain([x], X_) self.n_features = n_features @@ -133,63 +63,55 @@ def fit(self, X, batch_size=None): prod = np.outer if batch_size is not None: - if isinstance(X, np.ndarray): - raise ValueError - else: - prod = np.dot - length = X.shape[0] - n_batches = max(length // batch_size, 1) - X = np.array_split(X, n_batches, axis=0) - if isinstance(X, np.ndarray): - X = iter(X) + prod = np.dot + length = X.shape[0] + n_batches = max(length // batch_size, 1) + X = np.array_split(X, n_batches, axis=0) r, h = self.r, self.h for v in X: - h, r = _solveproj(v, self._W, self.lambda_, self.kappa, r=r, h=h) + h, r = self._solveproj(v, self._W, self.lambda_, self.kappa, r=r, h=h) self._H.append(h) if self.R is not None: self.R.append(r) self.A += prod(h, h.T) self.B += prod((v.T - r), h.T) - self._solve_W() + self._solve_w() self.r = r self.h = h self.is_fitted = True - def _solve_W(self): + def _solve_w(self): eta = self.kappa / np.linalg.norm(self.A, 'fro') n = 0 lasttwo = np.zeros(2) while n <= 2 or (np.abs( (lasttwo[1] - lasttwo[0]) / lasttwo[0]) > 1e-5 and n < 1e9): self._W -= eta * (np.dot(self._W, self.A) - self.B) - self._W = _transform(self._W) + self._W = self._transform(self._W) n += 1 lasttwo[0] = lasttwo[1] lasttwo[1] = 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) - \ np.trace(self._W.T.dot(self.B)) - def transform(self, X, return_R=False): + def transform(self, X, return_r=False): H = [] - if return_R: + if return_r: R = [] num = None W = self._W lambda_ = self.lambda_ kappa = self.kappa - if isinstance(X, np.ndarray): - num = X.shape[0] - X = iter(X) for v in X: - h, r = _solveproj(v, W, lambda_, kappa, v_max=np.inf) + h, r = self._solveproj(v, W, lambda_, kappa, v_max=np.inf) H.append(h.copy()) - if return_R: + if return_r: R.append(r.copy()) H = np.stack(H, axis=-1) - if return_R: + if return_r: return H, np.stack(R, axis=-1) else: return H @@ -203,3 +125,69 @@ def get_factor_matrices(self): return self._W, H else: return self._W, 0 + + @staticmethod + def _thresh(X, lambda_, v_max): + res = np.abs(X) - lambda_ + np.maximum(res, 0.0, out=res) + res *= np.sign(X) + np.clip(res, -v_max, v_max, out=res) + return res + + @staticmethod + def _mrdivide(B, A): + """Solve xB = A + """ + if len(B.shape) == 2 and B.shape[0] == B.shape[1]: + return np.linalg.solve(B.T, A.T).T + else: + return np.linalg.lstsq(A.T, B.T, rcond=None)[0].T + + def _transform(self, W): + newW = W.copy() + np.maximum(newW, 0, out=newW) + sumsq = np.sqrt(np.sum(W ** 2, axis=0)) + np.maximum(sumsq, 1, out=sumsq) + return self._mrdivide(newW, np.diag(sumsq)) + + def _solveproj(self, v, W, lambda_, kappa=1, h=None, r=None, v_max=None, max_iter=1e9): + m, n = W.shape + v = v.T + if v_max is None: + v_max = v.max() + if len(v.shape) == 2: + batch_size = v.shape[1] + rshape = (m, batch_size) + hshape = (n, batch_size) + else: + rshape = m, + hshape = n, + if h is None or h.shape != hshape: + h = np.zeros(hshape) + + if r is None or r.shape != rshape: + r = np.zeros(rshape) + + eta = kappa / np.linalg.norm(W, 'fro') ** 2 + + iters = 0 + + while True: + iters += 1 + # Solve for h + htmp = h + h = h - eta * np.dot(W.T, np.dot(W, h) + r - v) + np.maximum(h, 0.0, out=h) + + # Solve for r + rtmp = r + r = self._thresh(v - np.dot(W, h), lambda_, v_max) + + # Stop conditions + stoph = np.linalg.norm(h - htmp, 2) + stopr = np.linalg.norm(r - rtmp, 2) + stop = max(stoph, stopr) / m + if stop < 1e-5 or iters > max_iter: + break + + return h, r From 19b3ba4d093d75a2a742a579da61d3632f6a906f Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 2 Apr 2018 06:34:53 +0300 Subject: [PATCH 004/144] Add benchmark --- docs/notebooks/nmf_benchmark.ipynb | 168 +++++++++++++++++++++++++++++ 1 file changed, 168 insertions(+) create mode 100644 docs/notebooks/nmf_benchmark.ipynb diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb new file mode 100644 index 0000000000..99f03f33d0 --- /dev/null +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -0,0 +1,168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparison between sklearn's and gensim's implementations of NMF" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from gensim.models.nmf import NMF as GensimNmf\n", + "from gensim.parsing.preprocessing import preprocess_documents\n", + "from sklearn.decomposition.nmf import NMF as SklearnNmf\n", + "from sklearn.datasets import fetch_20newsgroups\n", + "from sklearn.feature_extraction.text import CountVectorizer\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "vectorizer = CountVectorizer()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "bow_matrix = vectorizer.fit_transform(fetch_20newsgroups().data)\n", + "bow_matrix = bow_matrix.todense()[:100]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sklearn NMF" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 54.4 s, sys: 38 s, total: 1min 32s\n", + "Wall time: 1min 29s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9))\n", + "\n", + "W = sklearn_nmf.fit_transform(bow_matrix)\n", + "H = sklearn_nmf.components_" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "184.40183405328017" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(bow_matrix - W.dot(H), 'fro')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gensim NMF" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 2min 7s, sys: 8.22 s, total: 2min 15s\n", + "Wall time: 2min 5s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "gensim_nmf = GensimNmf(n_components=5)\n", + "\n", + "n_samples = np.array(bow_matrix).shape[0]\n", + "\n", + "gensim_nmf.fit(np.array(bow_matrix))\n", + "W, H = gensim_nmf.get_factor_matrices()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "353.4495647218574" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(bow_matrix - W.dot(H), 'fro')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 9e5239986a92403a48f4ad2ee5c43e4b30c3626e Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sun, 15 Apr 2018 21:52:44 +0300 Subject: [PATCH 005/144] Fix bugs, introduce batches, add images to the benchmark notebook --- docs/notebooks/nmf_benchmark.ipynb | 443 ++++++++++++++++++++++++++++- docs/notebooks/stars_scaled.jpg | Bin 0 -> 17558 bytes gensim/models/nmf.py | 135 +++++---- 3 files changed, 514 insertions(+), 64 deletions(-) create mode 100644 docs/notebooks/stars_scaled.jpg diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 99f03f33d0..4b9dcb2e19 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -22,6 +22,13 @@ "from matplotlib import pyplot as plt" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 20newsgroups" + ] + }, { "cell_type": "code", "execution_count": 2, @@ -57,8 +64,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 54.4 s, sys: 38 s, total: 1min 32s\n", - "Wall time: 1min 29s\n" + "CPU times: user 1min 6s, sys: 2.62 s, total: 1min 8s\n", + "Wall time: 1min 26s\n" ] } ], @@ -79,7 +86,7 @@ { "data": { "text/plain": [ - "184.40183405328017" + "184.4018340532723" ] }, "execution_count": 5, @@ -98,6 +105,13 @@ "## Gensim NMF" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Batch size = 1:" + ] + }, { "cell_type": "code", "execution_count": 6, @@ -107,41 +121,448 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 2min 7s, sys: 8.22 s, total: 2min 15s\n", - "Wall time: 2min 5s\n" + "Loss (no outliers): 0.038950696557992305\tLoss (with outliers): 0.038950696557992305\n", + "Loss (no outliers): 12.374291063883145\tLoss (with outliers): 12.374291063883145\n", + "Loss (no outliers): 5.156770519329132\tLoss (with outliers): 5.156770519329132\n", + "Loss (no outliers): 11.101843628855159\tLoss (with outliers): 11.101843628855159\n", + "Loss (no outliers): 8.05571876763995\tLoss (with outliers): 8.05571876763995\n", + "Loss (no outliers): 20.937706770574415\tLoss (with outliers): 20.937706770574415\n", + "Loss (no outliers): 9.203281161099605\tLoss (with outliers): 9.203281161099605\n", + "Loss (no outliers): 34.42102791639135\tLoss (with outliers): 34.42102791639135\n", + "Loss (no outliers): 7.452668767959762\tLoss (with outliers): 7.452668767959762\n", + "Loss (no outliers): 17.234370934787727\tLoss (with outliers): 17.234370934787727\n", + "Loss (no outliers): 9.469031763907571\tLoss (with outliers): 9.469031763907571\n", + "Loss (no outliers): 35.79605592661074\tLoss (with outliers): 35.79605592661074\n", + "Loss (no outliers): 9.930695094547113\tLoss (with outliers): 9.930695094547113\n", + "Loss (no outliers): 23.855288672906674\tLoss (with outliers): 23.855288672906674\n", + "Loss (no outliers): 16.001417025149202\tLoss (with outliers): 16.001417025149202\n", + "Loss (no outliers): 9.55008601559361\tLoss (with outliers): 9.55008601559361\n", + "Loss (no outliers): 13.841356680002415\tLoss (with outliers): 13.841356680002415\n", + "Loss (no outliers): 40.85065510536875\tLoss (with outliers): 40.85065510536875\n", + "Loss (no outliers): 12.744652326027799\tLoss (with outliers): 12.744652326027799\n", + "Loss (no outliers): 10.468451179150998\tLoss (with outliers): 10.468451179150998\n", + "Loss (no outliers): 9.5111665456581\tLoss (with outliers): 9.5111665456581\n", + "Loss (no outliers): 12.413725782917547\tLoss (with outliers): 12.413725782917547\n", + "Loss (no outliers): 18.459567068009346\tLoss (with outliers): 18.459567068009346\n", + "Loss (no outliers): 12.0280406120951\tLoss (with outliers): 12.0280406120951\n", + "Loss (no outliers): 7.495418633222251\tLoss (with outliers): 7.495418633222251\n", + "Loss (no outliers): 12.178799686127398\tLoss (with outliers): 12.178799686127398\n", + "Loss (no outliers): 26.09490848553246\tLoss (with outliers): 26.09490848553246\n", + "Loss (no outliers): 7.382669029738084\tLoss (with outliers): 7.382669029738084\n", + "Loss (no outliers): 20.18784940399544\tLoss (with outliers): 20.18784940399544\n", + "Loss (no outliers): 8.195858194007734\tLoss (with outliers): 8.195858194007734\n", + "Loss (no outliers): 19.073453244241126\tLoss (with outliers): 19.073453244241126\n", + "Loss (no outliers): 11.015916035391722\tLoss (with outliers): 11.015916035391722\n", + "Loss (no outliers): 6.117928220800243\tLoss (with outliers): 6.117928220800243\n", + "Loss (no outliers): 24.481227357299467\tLoss (with outliers): 24.481227357299467\n", + "Loss (no outliers): 8.079370229134362\tLoss (with outliers): 8.079370229134362\n", + "Loss (no outliers): 11.075806135107728\tLoss (with outliers): 11.075806135107728\n", + "Loss (no outliers): 9.425534564232073\tLoss (with outliers): 9.425534564232073\n", + "Loss (no outliers): 19.333868563719932\tLoss (with outliers): 19.333868563719932\n", + "Loss (no outliers): 12.822741250276753\tLoss (with outliers): 12.822741250276753\n", + "Loss (no outliers): 30.37861173995577\tLoss (with outliers): 30.37861173995577\n", + "Loss (no outliers): 12.512208273719633\tLoss (with outliers): 12.512208273719633\n", + "Loss (no outliers): 7.567533810002475\tLoss (with outliers): 7.567533810002475\n", + "Loss (no outliers): 7.06470567104734\tLoss (with outliers): 7.06470567104734\n", + "Loss (no outliers): 32.290943231864574\tLoss (with outliers): 32.290943231864574\n", + "Loss (no outliers): 15.053705449922923\tLoss (with outliers): 15.053705449922923\n", + "Loss (no outliers): 8.317901684857246\tLoss (with outliers): 8.317901684857246\n", + "Loss (no outliers): 6.416813778667191\tLoss (with outliers): 6.416813778667191\n", + "Loss (no outliers): 15.64553528400279\tLoss (with outliers): 15.64553528400279\n", + "Loss (no outliers): 9.243535219647907\tLoss (with outliers): 9.243535219647907\n", + "Loss (no outliers): 12.334114487784525\tLoss (with outliers): 12.334114487784525\n", + "Loss (no outliers): 12.449352795482557\tLoss (with outliers): 12.449352795482557\n", + "Loss (no outliers): 13.07237485060571\tLoss (with outliers): 13.07237485060571\n", + "Loss (no outliers): 8.62853400143313\tLoss (with outliers): 8.62853400143313\n", + "Loss (no outliers): 15.022484950792576\tLoss (with outliers): 15.022484950792576\n", + "Loss (no outliers): 24.20316004567587\tLoss (with outliers): 24.20316004567587\n", + "Loss (no outliers): 10.926948214171357\tLoss (with outliers): 10.926948214171357\n", + "Loss (no outliers): 21.04953591162799\tLoss (with outliers): 21.04953591162799\n", + "Loss (no outliers): 8.105861676083574\tLoss (with outliers): 8.105861676083574\n", + "Loss (no outliers): 8.991843019929233\tLoss (with outliers): 8.991843019929233\n", + "Loss (no outliers): 79.39682275013223\tLoss (with outliers): 79.39682275013223\n", + "Loss (no outliers): 10.356438700988457\tLoss (with outliers): 10.356438700988457\n", + "Loss (no outliers): 12.470667599682885\tLoss (with outliers): 12.470667599682885\n", + "Loss (no outliers): 10.097102365790596\tLoss (with outliers): 10.097102365790596\n", + "Loss (no outliers): 6.242469380938351\tLoss (with outliers): 6.242469380938351\n", + "Loss (no outliers): 9.267549639922377\tLoss (with outliers): 9.267549639922377\n", + "Loss (no outliers): 25.806582648056143\tLoss (with outliers): 25.806582648056143\n", + "Loss (no outliers): 14.691700011540236\tLoss (with outliers): 14.691700011540236\n", + "Loss (no outliers): 17.462453816250207\tLoss (with outliers): 17.462453816250207\n", + "Loss (no outliers): 26.80918366647814\tLoss (with outliers): 26.80918366647814\n", + "Loss (no outliers): 13.605811890579686\tLoss (with outliers): 13.605811890579686\n", + "Loss (no outliers): 93.04839048139912\tLoss (with outliers): 93.04839048139912\n", + "Loss (no outliers): 18.547493239355923\tLoss (with outliers): 18.547493239355923\n", + "Loss (no outliers): 11.40921862343962\tLoss (with outliers): 11.40921862343962\n", + "Loss (no outliers): 12.004889733544003\tLoss (with outliers): 12.004889733544003\n", + "Loss (no outliers): 15.672229862000012\tLoss (with outliers): 15.672229862000012\n", + "Loss (no outliers): 10.7351376205454\tLoss (with outliers): 10.7351376205454\n", + "Loss (no outliers): 15.280082804718022\tLoss (with outliers): 15.280082804718022\n", + "Loss (no outliers): 13.34125963177601\tLoss (with outliers): 13.34125963177601\n", + "Loss (no outliers): 8.31837844576086\tLoss (with outliers): 8.31837844576086\n", + "Loss (no outliers): 16.439200214070663\tLoss (with outliers): 16.439200214070663\n", + "Loss (no outliers): 44.56586798594561\tLoss (with outliers): 44.56586798594561\n", + "Loss (no outliers): 13.148496990162915\tLoss (with outliers): 13.148496990162915\n", + "Loss (no outliers): 29.46655498207862\tLoss (with outliers): 29.46655498207862\n", + "Loss (no outliers): 10.16015553528117\tLoss (with outliers): 10.16015553528117\n", + "Loss (no outliers): 12.54050298154768\tLoss (with outliers): 12.54050298154768\n", + "Loss (no outliers): 12.180236965016617\tLoss (with outliers): 12.180236965016617\n", + "Loss (no outliers): 19.632289551790386\tLoss (with outliers): 19.632289551790386\n", + "Loss (no outliers): 13.660937279688838\tLoss (with outliers): 13.660937279688838\n", + "Loss (no outliers): 13.264757151870135\tLoss (with outliers): 13.264757151870135\n", + "Loss (no outliers): 5.580371878343957\tLoss (with outliers): 5.580371878343957\n", + "Loss (no outliers): 11.29326706617692\tLoss (with outliers): 11.29326706617692\n", + "Loss (no outliers): 22.816690860393603\tLoss (with outliers): 22.816690860393603\n", + "Loss (no outliers): 10.29782214343046\tLoss (with outliers): 10.29782214343046\n", + "Loss (no outliers): 25.793446317733512\tLoss (with outliers): 25.793446317733512\n", + "Loss (no outliers): 8.654298239344161\tLoss (with outliers): 8.654298239344161\n", + "Loss (no outliers): 10.21094842006212\tLoss (with outliers): 10.21094842006212\n", + "Loss (no outliers): 37.70098456901404\tLoss (with outliers): 37.70098456901404\n", + "Loss (no outliers): 9.598370318193728\tLoss (with outliers): 9.598370318193728\n", + "Loss (no outliers): 9.705844803190418\tLoss (with outliers): 9.705844803190418\n", + "Loss (no outliers): 9.343334233031726\tLoss (with outliers): 9.343334233031726\n", + "CPU times: user 36.2 s, sys: 23 s, total: 59.2 s\n", + "Wall time: 45.1 s\n" ] } ], "source": [ "%%time\n", "\n", - "gensim_nmf = GensimNmf(n_components=5)\n", + "gensim_nmf = GensimNmf(n_components=5, lambda_=10000, kappa=1.)\n", "\n", "n_samples = np.array(bow_matrix).shape[0]\n", "\n", "gensim_nmf.fit(np.array(bow_matrix))\n", - "W, H = gensim_nmf.get_factor_matrices()" + "W, H = gensim_nmf.get_factor_matrices()\n", + "H = gensim_nmf.transform(np.array(bow_matrix))" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "353.4495647218574" + "439.7319206635389" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "np.linalg.norm(bow_matrix - W.dot(H), 'fro')" + "np.linalg.norm(bow_matrix.T - W.dot(H), 'fro')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Batch size = 10" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss (no outliers): 50.345374071810774\tLoss (with outliers): 50.345374071810774\n", + "Loss (no outliers): 77.12037088692298\tLoss (with outliers): 77.12037088692298\n", + "Loss (no outliers): 49.35898441808472\tLoss (with outliers): 49.35898441808472\n", + "Loss (no outliers): 57.737151111560266\tLoss (with outliers): 57.737151111560266\n", + "Loss (no outliers): 39.81658588550212\tLoss (with outliers): 39.81658588550212\n", + "Loss (no outliers): 56.47023038205962\tLoss (with outliers): 56.47023038205962\n", + "Loss (no outliers): 47.951189976276545\tLoss (with outliers): 47.951189976276545\n", + "Loss (no outliers): 52.93036062308141\tLoss (with outliers): 52.93036062308141\n", + "Loss (no outliers): 60.82805880767195\tLoss (with outliers): 60.82805880767195\n", + "Loss (no outliers): 47.751924123962816\tLoss (with outliers): 47.751924123962816\n", + "CPU times: user 1min 33s, sys: 14.7 s, total: 1min 48s\n", + "Wall time: 1min 58s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "gensim_nmf = GensimNmf(n_components=5, lambda_=10000, kappa=1.)\n", + "\n", + "n_samples = np.array(bow_matrix).shape[0]\n", + "\n", + "gensim_nmf.fit(np.array(bow_matrix), batch_size=10)\n", + "W, H = gensim_nmf.get_factor_matrices()\n", + "H = gensim_nmf.transform(np.array(bow_matrix))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "235.55946506838575" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(bow_matrix.T - W.dot(H), 'fro')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the personal experience I can say that the higher number of passes and shuffle of the trainset significantly improves performance.\n", + "\n", + "Then, of course, you should perform hyperparameter tuning." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Image of stars\n", + "### (For the sake of visualization of performance on sparse trainset)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from PIL import Image\n", + "img = Image.open('stars_scaled.jpg').convert('L')\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(183, 256)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "img_matrix = np.uint8(img.getdata()).reshape(img.size[::-1])\n", + "img_matrix.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sklearn NMF" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 572 ms, sys: 153 ms, total: 725 ms\n", + "Wall time: 882 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "sklearn_nmf = SklearnNmf(n_components=10, tol=1e-5, max_iter=int(1e9))\n", + "\n", + "W = sklearn_nmf.fit_transform(img_matrix)\n", + "H = sklearn_nmf.components_" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image.fromarray(np.uint8(W.dot(H)), 'L')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gensim NMF" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss (no outliers): 6847.244327624558\tLoss (with outliers): 6711.622125561542\n", + "Loss (no outliers): 4356.246832173107\tLoss (with outliers): 4319.148378487362\n", + "Loss (no outliers): 3816.763966395636\tLoss (with outliers): 3801.7012657135415\n", + "Loss (no outliers): 3783.0229750875146\tLoss (with outliers): 3776.92928281768\n", + "Loss (no outliers): 3538.6024345874425\tLoss (with outliers): 3534.493496826403\n", + "Loss (no outliers): 3493.1545028663386\tLoss (with outliers): 3494.5782004996395\n", + "Loss (no outliers): 3527.266991690135\tLoss (with outliers): 3530.389212896685\n", + "Loss (no outliers): 3532.976701348588\tLoss (with outliers): 3540.374126706496\n", + "Loss (no outliers): 3338.930054172826\tLoss (with outliers): 3340.5861231094664\n", + "Loss (no outliers): 3272.141047105983\tLoss (with outliers): 3275.781551396264\n", + "Loss (no outliers): 3448.207329027923\tLoss (with outliers): 3453.2536403398108\n", + "Loss (no outliers): 3267.5239311568457\tLoss (with outliers): 3272.506192900864\n", + "Loss (no outliers): 3331.8821100413943\tLoss (with outliers): 3337.9119031766822\n", + "Loss (no outliers): 3266.9536910604515\tLoss (with outliers): 3270.029625972191\n", + "Loss (no outliers): 3337.1160557256408\tLoss (with outliers): 3342.1074449994894\n", + "Loss (no outliers): 3311.979105735641\tLoss (with outliers): 3314.97170241174\n", + "Loss (no outliers): 3200.555995936755\tLoss (with outliers): 3201.7738917514953\n", + "Loss (no outliers): 3369.379920355404\tLoss (with outliers): 3375.275282326241\n", + "Loss (no outliers): 1575.6670968351984\tLoss (with outliers): 1575.8578834612426\n", + "CPU times: user 31.9 s, sys: 199 ms, total: 32.1 s\n", + "Wall time: 39.4 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "import itertools\n", + "\n", + "passes = 10\n", + "\n", + "gensim_nmf = GensimNmf(n_components=10, lambda_=1000., kappa=1.)\n", + "\n", + "np.random.seed(42)\n", + "\n", + "trainset = itertools.chain.from_iterable(\n", + " img_matrix[np.random.choice(img_matrix.shape[0], img_matrix.shape[0], replace=False)] for _ in range(passes)\n", + ")\n", + "\n", + "gensim_nmf.fit(trainset, batch_size=100)" ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "W, _ = gensim_nmf.get_factor_matrices()\n", + "H, R = gensim_nmf.transform(img_matrix, return_r=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reconstructed matrix:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABVM0lEQVR4nF39244kSZIkChIxi6ia+SXyUl3VPTNnFjgv+/9fsw8H2H1YYHa6u7o6M8PdzUxFhJn2QUQtso8DhYyKcDdXlQtfiIiZ+a22REJISuYbhlenQiR8K9Ws1P3lDR/33+7HeDRpSKDZ5j5uSYIwQDR6IU1HCKmtQLWQoDLCMsAxBMKqwsYQKdq+HYGAQJBwGwBZqrmLKDBue3opY7gXiBxQH6FQG0NA6QkY6cj9swksASC6MkUluDksyewBykrZX/KhHEFzjgQZo5AkKKyv9QcSJCCFkJkpAhAkABRFEkgZeP4ESBppIgFLECQJEf/1S1IqJRDzO0AABNeHgsT8ZSnBqBEjhlmVDIGMkUqNCIGZCYA0AOsdCNh89ufnADSRSULS3D1zERKFAtCFECRRGUhQUAKEIQttjDE6bvevNkZKIEGrVgzYMpCUAEFQEprfACVNAxCgDGSCMZcxAaUEJRLZkmsxTKEAgTAIAoRkFwyKkCgRAc0FiEgBGBIMFNMyE4wAlAOQyCqBpMzgCQZIdYkkrNhaACuZa10EiJmIVAgBkKYi79577zqOYyQLBrYDLMWLKT0OkSBSEiWggNUqWwIeMMks3agALMAUSaYB7l1Qap07QhocIJkwBy3hhDm8OGlWlPM7RVGpPHeJJFmKmaQMQQknQNuj0YxgcQrMFG1LiGaeMhI0WCnVoZGAIFOCIdlAzgWQNEjSYkSHmyts6zKvpXiGjQwiIQmyNAC0UqvxAV7umZHmmKc9SbMIygw0KzVDGaIhRIE2EkGSpjSYA04Q5l7M3GqGkBCRSaUMWg9Jc7iXTAiQJHMj4deBNDN42UqCOQQraSx124b08YgEs2wXMI8RQBJIWibRlx3IlJTIMUYKZQcTpMnKtVSPKCP7UIYEUKA6IcmQwW0fLXqHgeC0H2We7GkWKEAhcyYZJJCEZJAU64SSLNteEWZ7DCGY0UdGCMhUkKSjFnBPIGWiRlJIwkhTKcay7SXBPgYgbFut14t7/P2zdfQs206GHqZp96YdmufSYKU6JAYyRTpBmpFe920rY9T2kJKAYACeVsYNVvaeQuJpB7WOqxUNgLYMldPAXJZs2kOQMLC6Wd0v14vC/BJdCmZvY4zh3SPTQEPFVsELhJApcn6GyIKOWp31stcwPponkPWy1ZeXbRuPcAezXF5hA7euBCTQiPUshFmplciIICDQTWmVgdFRYGqDNK3fCKXgSio45PtrD/l6HcxT7nMN3GReTUlLd+tJmJkth2KOUm0HLsW5Xy4vF4aXazRhMI+jj969tJFBwlFZHKJSgJEgzUuK7DG3E1A/kkPcXbm97vvb+2U/vsaDQ71sF1ofTpLSdErnZsz9NlkSgM0LObwg1VtW1xgxfZnW98NLkghFWr3eQwdFkjBRSff5jm607XoPGLPujGEoZnH+Rpe5VaEUZynFzdzqNiAYI0OQPM0xt3ljdakYaXIHYVutQ1ATqIBl9LwHxa1uzHq9XN5/ue6315t6RJTrK7yN4svTk4A9T6N53RKJbgQFczdahRAZoDFkBhE/AgkXoVDK9tfbCAMpgIQlSUcCZjSWujnglnXjIc9iNM6AiCYrVoW9FFxe9pdLgW2vvYkd+SittyJqWMJYuFn1zOIk4Q64SilIxZiRCWlUH0S17WK5vV+uv/zT6/Xj73f0YBbOr+WMSPsRuZBea02JvS+DbCQFKQMwsyF7+tBpgZUpGEdinaRcZ0AziCJAM5/RibllrfAwM67AZa4WaUTdir28Xl+vBb6/9wY0xm0/2nHI2CPoLLZ7tYzt5g7UIJBuhBDD3VeI1VonCasWtRYDvdZixRwqvcl6i9Q6xgZMjwvAvNQqpdwAS7qDRErIgGDsWQK5XAAIUJIQiIz+6JHTz5Mmw4wRBbPiScLgxbIWuZsbBYoUaQZzK+S2lfry+vJ+ddTLexxgQ2zl0UoJJIfTudml1DKi7lXAFkZDMQBQCCYImeptGItoDmrw65rj9ug9QZS7gf3Wc+4QSCLzPAFW3Isy3QgazYNQT0FpEtEjA6HTcVDITEFIjcfHrY9YsQthK1wgaG5CBs3dzH2QNEBaEfg8AXRzL/vl8vr6Yrlfv0UDDw6DF/CIASYKa9nrXkbf9pJAHQTTkJnIEDxN6TmOEUKkJMTReB+X1/bHZ+sJlGjA6Km5AXCfATwFo3mp1TKx9U1blFoSRCxPZe4K5jwBAEGTFBIgIfqtx0wJQJIGzpSJtV5iYKubSrWsVV5gJmHmEetOmpVS6v7y8vr2anF5+aYGHhiUF+AxBikrrPW67Vvv9bKJ2AbJLBmZzDzduTISlASYEIpbbo98BIpdRokujBGSRFrQCDxPgNdaLFNupMnmnRrCfP1aoEyclwe0VIQkUMjx6EhB60E4j8JaVcBYtFVTrVkEWAYpWpI2vZe7l3q5vrz99Ma4vP6MRt7ZjbWeC+DFtvpyuW6j1c/vBC7DzLKMoWSGKJjNJMg8QJgJGkfXltZDZrWWpkS0aQLMZNNuQoTRS91qIq3nwN5LdcIQMJR9v14vxxUx7f/MZ1xDSppZCtHCAJqv4ILUdBjG7IcKB2Fr0+de2bpIM7z1Wrft+vL6/tO3aK9vP+MgK3sGGXnpg1S41W2/vFxG2/+4JLBVIG1GJLYDVmqN/WLDSznK5jRljv5QRbnfpEIrOQJjaGYGhlpKOisRKKXul0ultPteP7db3f1OKkAajHTLCCFhImDwIidpMJNh3FlRLN3SvciZAOi2XfYXPtILZOYJBSAqE0YZaO6lVi9127bt+vr69vae7eX1zRqtsscAR1yOJkDGWkv1gqzuDrhnmikj06SVVGZGD1cqU2To8fm98uvlYPGdKAYK4gx2QHMz0swAMzMz9wR3jFF6cQOoIKCIGBlH0wQH/nR5CSpEhbzAfZjNaErTBpR9v36rLYnS3cqwM4QQLH8YgPk/ejEz+uZuXsw2qLhPb7wMi5FQZmaelphASspOKoKDfr+1sR3ZRkqR4/HlSNllr7tFMZhAg0wi6TZddRma7yQTvOTlcC9OAEgDq/t8gAREA00JEokAaUxDBhJOWabNKwCIXvbLy0/XITTeRYOUmiiJCEhQZkYgQtMzSXIjcuIcfKYcAJ0CoEyt19dK3jIlGidOocyku1ERmRHjuFPa3q+v+6WqlCjrN81sEtPKM5OIMTps5Ljfbx/+YDIFwMmt1uJu7us30zMoKTJJcxIhRRe820iJUobS6WW7vv2ayfzUaB3dNHIGUwbT2nnoBI4yAVSDgUYzPP9VgGTIjEGOgyOS6jF67zYi02CW0AzABDODcrQYQCYy8PLrt8vlglK4zZWnoDBQKdAtMxhjDHqL9vl5+47wYSEAxXwvW/Hi7gMAKZbowjyHXpwZAuJQYfOhHAMLZjTfL9/+YuT4+0d+ttJq/YyEMgEDjDbPuJGSMkZGhl0OhOeMFiTliIgISjlitKhxv/72kZB/9aPdlV00ugfPM6QMKfp9RNaZt5af/vnXl+0yClFY+gQAE0xN+IpKRsTo8COOzz++PtNeeskUZObFi5Ewm94NtBQ1F8DMgUgghsCegQAJgUHBvO4vxdm/W9y/Stu328TH7Ak6zss8r8IYYwyYchgYiYzMiIjIDCaiZfSjxO34ugOyR3/0xxA0r+hcr7kAyRhthM17A7t8+/llay8lcljkDOc5b+REJFd0nymdcTJSgACa7/u2eX3JnmcWMONoAbRqPbjW/rRw6/MyM8bDyX4/+ggM9xCoBCghfzyxMjMjIlOjDRZLekMbY4yIzMwkIzIzEqSbL3htIqWCbWz0Wlg3ha71gQJFPt9sPO7UUGlBayMiIZCa0TsV04XMi6jpwXWih2TZr/vm21t+Za5YSzONpGC1sFtwvtiJM0MEMqO1xx8Sxm9fR+Q8o+TC9rSM5fpdOXMrjkdnjGAc7H0uwLrcmSl40X55bF3pP3AV+UuGla3YdikFr+Uz4KKUCQrI2+94vH4d5RHB3iMSSSLnm0B97kNk9IhMJYBp5+aBKLU6/aV5aga+gjRzX7BsaaQo5Dhff56vGO1eSo6u+P6ft36iiZNcMIgi18kLixi99TbGLdHZBvhg/7rdH0cfI0YoXUEjTKV6GcKZ1wKA7cPopXLbtgteHS1CmRghptR/j4/X9/sf5chAROY8AWPhzRpnFG09MifYvdwSUoAVM9m+mRESNJ6Q/vzHCa0988oToc/BR/F2HKH7VxNpRpNNHybq6bYQYcNt9NZaf/Qy3Bvw4Lg/Ho/WR0SEQkICpcIu29YB9yhmLgHiDoMVR6lm9uphTQIUQxAUH4/P18f4LD1jYp/QjCm0csl1wkIZ00bMi4kUzPfXt73m7lEV87o4TiTFyuVV9xYzDDttwPxPZvR+PO63UDvaSMoscpEkbkGZTcsqRUSM3kdku+1R7dBagONoPSIiIwCZKLNSiuX5YwCA8uZfVvcal5ftUt7NPj77yDQNEUI+7o/hjBLT9EwLfNqA+cRSxgDzpIaUeWIfoFGJ4hM/0WkF5xWYCQV4fvP5JSgzRuu3W2D0SOH5eWcmPE13MgaGsx/H4/G4fY7qPKSHja/b/X4cvY8xMgjCURKazMKPz4NYbKGw9Fo3qz7d1NwvRY9hF+8lV7i0IlLN5HY5A2UGMxdcotNAaAWccOdyhGmnC8OJ+IJ/ugN/OgGN96+vcbqUHz8179c8abDMiMHeWjsety/VgkN5MG73++NofcSIHDM3W07q3IXnQ9gZn/tWqxUnlEomzWHoD9e2ZQn82PLTb2ltK5RJzFPxdGrLPmcy8vTd6z2eYYcgJf7rAy2ajJmj9z6wQITz22faAgA5qbVAhI0xl8DzwEM6GK313qcnjCCBQIbmLf6Bzs2n1484YK5rpshMBTJGj61blj+fUv7Jc09LMHpCOWJdgYhJ5dFIRaTZgkKe53hiBTaDEPzfvvRcPP3p76bz4PKA5KS8BtKQD/PLp398RAkcysa8fz0ej/vjaG2eALOowzjj6Zh41PMEnGfMSrFiihEiYmRijEhEioX/dQUyJjK2jnynQRoj5v8fmRRo5u7QQK32hDJ1UgQ0L8XNZvBw3vF5s+atGjr3fzoOm2RE8QnrAwr2NKR7pG/58f1ut7UAx/1oj+N+jD6RaYPV5jZixvh6ml2WGagDYt0utjmih8hIzahVGfDCH+f/vIh4MuYZw4Ac65YtwM9mDqpF7K+lO3PRBUWX1BDiXNk/seRa0OAJATqKK2msHpyZBQQphqlbedzr/RZMHIpu2R5Ha0frMSKDTKP1nt4jMnOSpucDcXo1ZZ63MlNEikYuJ3eSrn+6pT/+iJWMnYCppJWzZkakBiOe/7Z+VoRmfho/IugfH895FTWZopXMIqGkFtRAihNkjuHDezsejwZzHMpOtRULRmTmxFojoBHTRT0vlyZIkMyIGDFs/oSIzAxaZFKRWU5aBwDSnu5s3ozJN2v5K0Weeeg4btKBr/uJpy81xVz10Qa9rtvIyTec50AZiyqZB82cLM40x+ZpEJQ4MQLE6O1R7o9hgaYczN5a7631GKEgk7B2d/Pbo/VgZEqEAMajS9FDgG0t7PvtmLYsU6AihRhH/HkBnveH9Pmn5QCma6Qitf6c/RCa7sefzBky1tKNniycmoHzDvzwMxlrRWySOcayGcy5uwxSdESsk5cxem/tGEz1zKB666P3PnIsdphs7vRH6z0ZivM35jGEHJaAf/a0z/sxMmc2ICBTyF6iPKNn8Xkrl3F/kka0UrPLzzh9eDsc6jp6LkB9uW8JyNF7j4gU6Jq3bfFN4uRQT4dKIEPsMpkzJymugYkdwDRstMOPVkiN1KDGmGc55rUmkzHS+hgxhQPnbmbvETEswXaIPFrkRD1O9wjlsAKb5P5JDXJCghJgEyAkXBrBOFmzzNEPEj35mLeDC8tFTQAarcdECXxe+5noSTyXSdCkH1IpTtvKwGTaQZiWT84Yh7UuAkMaUzKU094Jgiw5hrG3HiETaJ6igHj0oejzTdrg16OFuF5+nuqMwcIzVZsJK0naJNdgC5oxCNbZz+/MIUM3Rhz3nstomLFUSgpTz77URDO0TRoMEz2TUlO1RLNiaZYwEgYl50FcoYBmdtofePQ0YlAJTSxAT52VmRWfxJLBisQxIiXEV3R2Wnpvh+/29TiSLuRMUFJCdlkpizOZ+2huoFXDpHFLcTcWk+d9PNKmKk6BQ8NMEW3MuNhYCrcX2xEHkNET0srNTWP+SfOcGN2rCMiKx7n0U4BgIt2cU6lkUo7DsvVwMQ2BXFFgSqAtNQQx8RG6iBo3RgBx0zDK0oxmu917pJliSbRkmxWnihYmIYKAmdF89yQgswVGG0qyZaeZgKFUZndj9JECRDOru13eChQfXeiCgSwKMB2CPdNBpsSM6YtJSlPSN7NJE73W6tZ79qFEpDB6Ly5kYUeOHpGRyyEv5zzFSSi1OBAtLIE4EA4xaRC7PwKnL08QITHCUGbw+7wFNLjvHk6m0eWb2cWyZlcVpgxKiUwrZnnMcBy0sl387adq6LxFDtLhVhS0XtHm51MCkEyLFFFoZsoZ/dIEuBOsl8tevd3zOMZAIhU9soBplsqY2bkk0qaYz0pB8eK5baiw/jmogDpEikkqmaWF+dwDCdMZSsai5aIBE03mrH4tbaeFw8Iubi/WajyiBDEkHAIiDVbUEyoSrWyXd//5L/umRu8TlKYVBmk7bjPwWdHC8y6AtJxpQMoEq8Vkl7fXl0s5PuL2eWB63pEmCG7L3UxXbe4Lod03fxmmfLnyIm//OJgzJk6QgkXQLAKTBIJmZC5KYjk/cPIgAt19K7rQwsXBWrhZrNhMSwUJKJPrHBKile1av/3lsunx1XxwCdoQtOCkXP4UbhAGurOUwkx6EXxL+bab/Pr+/n6tdxvqGSNz5ThadkJPBJZTVGFlv+x2OaC8XuwFte/OpWmCgHnpnpqsGbTa8iHwHwswfZCWM6RZnsSConEcbYQiQHvGilinRwTNa90u1y1VS4TGMINldvPH5gP+p3BpMealsFSzTPMqlj1kdS/p1+vL9aVqp5lBA2kTkkEmMzKWD5hxN2FmZdui1CGYgb6xuJ6KjRWNcsL4KwE/kRuILJGJKf81MTLCVrAHATGwdx245fg4YliAaSXmx0PJ+WPTtpuzXOXvx37c9KCxp5oXsRgMoJ2QwnTNCvXDRKi6lXoB7P2tqlzfv72/1D1un1u0ISgx0phQ4T1zxAgqU6FEMsnW8nJrXw1hCXPEvYHuk1qZ7s1mtoWgIlkL6zFj+mB5AjHImSMKcC9O0qRQQKGevR8ajJjItc2fjpPbJt2L17K/Zn15cc0csyEeZZsKTgq0pwRYMikzZ/xgpVj95vBfvu3w6+vb+7Vsd5VSTIGAtYhBKXmbPACZwshQMgR/4PI1HoNhASslj24ifJHXc58ipKRSUypeWkwbgII/fZ1o0AyFaAlNvyUQCaSm3I/2A347sxqjke5UKVG8FHO4luzr/Owfv0RLaUUKTi++XQrr2/tOu15frldrxSdGi6BGQEgUPCKlDKOAgJQciYidj62ljeHMTEVM+2+YtIQmxickpMgl6Zx3KMuPRJ2n9MVKUSGzIEwOOlxym8KRE7WZ1mzZdtK9lO1yfcm+b1l8EpkJgDq5YRJPOd0PCJQ09+KlVtbLdadfX17eLp7Xoxa3qbzNoCmRiAwockXKgLjoiFNUwVKqbAFT005Bi+eeufr5/XNhxHkCns+l+TxVG5kbw+TMipLwpd/403FZiQcBmJVtv76+vUe/1Cj2Y8cJ82ciONdtrgA5BbETQjE3My+Vvu3Xl6uPfS9G5kAH+zIFHJFQpAtg+hnY0NzcZSjFtnqRnUkb9GSzOB8pJSmfryKy8P/2Wk8MERkz5cjAhPEkmgU9zXPujOXaRlCZMSIlK6XWrXuBUzS6WVGxUEBALszYi0MJwszda9n3jfV6vdIu+1aKudO8eCkq4JCdBl1PDu1HVpczNkZGKBgC6aRVz4WwTH1zgLRM0AsnFQOQpaSWKuz8FclIZmKUiKFm2TE0uZEYhhi1ek5owEROQjly8HG71dE/7/dby7LvcQkhRh54QB5aKgYCTtjyDPRaX95e9ssvu1//8pcrsJVS1B6P1lokXCougrmwtIlPcOHJ8yJkjB5CxijZH4pQktJGc6am+GL0IcKUyi5ebe2DlTpvxVS126z5SDEDMwoZJZPOskc0jpDluJSSjIkOT52slNl1v3+h94/Px1fLsl/bRekmDcb0A0pM5XFxuNGA4rCyvb6/XS7ftvry808vioIc4/j4vD0eI2nA7j1jbs8PvO689mmwbd8uFUk3AoosroClvNAJiUkCy+QCGokEzQ3wWmzdy2lPksMQD5QWOiIfd8kF3qDHiDGpMZg7E6lTHAREjONWvm+6tf7H7fEY8LqjyBTKlskZDWIlcDSa08yq0+p2vb5ery9bfb1cL+rsj9Hvv/3x/euhkYTXUmxqHDPW5QSZOhk1qzaT6RxQSyY9OOPTCbCdUK9O8lJnGASg6LRLZ3w7ZAcVQwd0NNETuEm3rkCkKUFzmAh72g9FjKPXakcf99a7aObOzIQ0FBYey2ZyQcRCKhEslhLczL26uULRRvv6uj+OjhRBL+4BYFGYT3uaIhQAYeOekQx6qX3k0Rd6T4slK1IwpamBneDPxN+RxT2hkxLNyQXF8D6yG8ZADxk6MgIrMp6wd5InsDFvYbN7rdHj6CNEqzu27sxZCPKkBwBIC1aY0jQa6aV6rbUWl4ciHvfHcfRhU3RgNmUPIxc9wXlcCSgAoKkx08JcR1Oe2l1aWtLmBVjLL9JY7MLHFGihXLfGHMdAAmmTOtMoLbK7RsADhjEXQGkQ66lqSBqNNmxkjs5V2NNG72ncXl/b/eYpKoDU2hOlIkB4rcONoMNm7Y9PuDKjt7w/Hr31MwXjcmsTZjwZJ53cnZKjKcGEZz1CAyZaAj61mSlFKOFuUCm1vmz/3P/tq0Ubw8rKr2ZctID6YORQDEQioEA+DTCfgcdyJAtNUEb2djA0NeKcxvfp9/9kvMRCejF/akEgKdMUERqjtzgeR+sRUzhoZpOKOf2f/Zm/WC5/otfMMfi8J6ezP//iJCBjWOtDNE+wmDspy9PNKpGBGEPDEcGABkKKGdIDT0KTZ0S4Fo3NHkq16CN5QnYz9OcZN59PTdJi5SCnEiDr8YCOfruN29ftcbTBtZSn+f7TUs4X+kFpp8BM2BjQSlJPr3Hu1do1dy+1YgtEZqK8cTAeS+KGlWTGiFAGIg2ZhlhJM03yHRl5GvWSRASBDGZ0s/nmSvj1j1HLgJE+uTSaWxJGN6/b9nlmBdEOZwH7MXa0/vXZH/dH70PKMciWQSWUyMS5+evNl/JoyeESEUFY8SABsyRIFeZIOm1zoF6u+89vfxuvvz3a110qr/uw/vWIXPAmQLMeJ2BACwIOCErZlqNcWzCRPlHDIMznzZylFQNKSKzvl7ZvA1YtuRUqxTKzKci8Xu8hMCVEP2iVeT/6jh63x2g9p15fUPa1NXoyv+TzeJ/GgLkOYgJeahBEKTlttAthxnKtlvX17e2ff/nruNTv9+hQ2a/hbRSewWZCqW59TBYCOZQYUASgWiP82iPTBBLmrilEUMJi9Lpw1TT6S3U3shTbuLkp0uoIwtxYtuvLh3Ld64geER2JgRH31kckEmaEoKGFpysTU3O8UCmdWOaKjMkcEeZlS4LYykjMyrqEVdbrZlle3n/+299+6cdn4H4nS9nSVN0SnFYwmdFtdAUQQXYFErMupL6P2H76HKdZ4fRh1Mz8JL9wLzba0aq9Gre6+3WvYRfG6N3rPUOsBZfXn799csDSyIwYmdF6j90iDg1Uxm2rxsMytORfnGYIpJXEgFZiACNqyWVNxu5+ubDk4TsyBMIvXh7+ovrtUkde3//63/9b/Xy9XEYtjhI5deJT3bCsR8bIBRc/j7cIf/lptMu7AYkwwqe6wSbwRiP3a9G2qR+3929//Sn2x227bGWwKtvDS+1kmkW2XaYcyqT34Y88uh0tNVzZTWXb87PvmdWbAgo88SwA9BKLxZwGVla2DsFtr9hc27XWXrYyvqb+omwYvmt7uWy9eXl9/6kD2dvRWpQ/Wvr4OuIkeQWMFmMkYgYdCU4xJMxffhqf+9WIKVS1yAyf4WRCSLlv5eWljPbdt63sl/vbdS8+sox8+KRwYNZH7zEUMVyApZfc9riPGI8KRc3q9aiXvXnVyMyIZe9nWZVZSSTyiXsK2/6wRC0vdVSPUl62Vq74YoQEh9fql6jFN91vl8fXH//413/719++vt9aln8UWbZ7R54gA6KFRVJBKrl4NAng9jKql8ypagUQI4uzAOxksfJyfdm+/bz1z377/R//cXvj5e21bCFv+iosdEuWLZN0M0QzZQSKOrzce3XbDXih7y99yxceBcaIPoppoSAEzUvkqT+ZDm7bfWKTQKlH8eu1jV+OjgglwcvF6i8P28qW48s/fsP/9f/5+O12PDqtfEcSUzzIRV38F82ETbgLStHKtojLakilXY+vpHNDgvRaL9fr6/7rX18f//Gfv33++791a3t92a5CeWCzdLk5t0sPWvFChWSRlPnRxqMPFjkdtl3f257XqJuKTBqVApRTg2NWxwCgRY2ZlevrJyXkyICb2/bi9n98/yrmIuvrX/ZH/fmPsfES8Vlu3/P//f9qrYe4WXnEsgEgjbMiDIYFoxvLki4pSdKdMNC8eI9R3uwLgjlmIcD19f39ff/5L9/uh/ePP37P16Ow7C/JaojH5mmklW0SsEaFEJKXGCM0Bogw+lZfv/3cXnTtW0lzE8RVBIoTRFv4HQDCa7m8XpBhlKxsh7Hs2P7q/1qsALa//vrW9ne7WZaS/Rjj8Z//ppR822rB0gOdQq9n1LhM42IfKBNVdphflJGKkYHeUyAdNtfP9svL/vr2qs2RE/Lfri+vskLG46tEsdTkH7e98IxhB+uI7MdANbmJZbtet355FDdjzPI7nIHjwmzXX1DMoBSIhCXS3Ot2uVrZq1MBKKSMoJWCl9ysXK4vKwnOYOG6WiKRPHU7XAnlumWlMH2IXgZpGjkrCyyPDksnoOilJY/efIzjMWheqva+73sttNJZi69WArIJhHqpJk8yM5UYfSAsLe9xf7TecyKbirHo3AWt0mgLvZ7HlRnRG4YwRS6llFK6bo+R/QCYn78fXzs/s/re3GwGWAI01CcgMo2LBCPkNBmNEF3uxemXi/e8D9lykjlmojpWXcAMxwO9916Ou26PAOHc9m2rPhtZzGgJImIxJLRSgiIyYjS0xnQOy0fc7/ejxRgpU0aETijgVN/OjN4nKUUIs5nJkt7M9Pl2bxFDBB6f/Wt7udnuZqAmdjkfmqVMnhAQE2YWci/mmWRaUbGtlPr+Xo5WHkOPR/bPHxrQ6R4ykKGM5v7d46a83H87hL5Z2Qp6isYvft3ujBZi9MjRbn4Eau2TkMtxoCdHHmH5US/M376nfd17iQQ5Jbc00jBLk7D6ipA0nxtoMHNa9mj6xCO37199Mlj9Ho/8+DKO272N9rG3x9l0hsUttBYAMneolAKLuQAo3Gu9/PLrdnsAR97uIz9ibcMSeWaGYmSMHvzgUXvb2/evHg8rMMSBg8Yv3r5uiJ7p2UaMduMRLJtGThFJwxAiezBqKdE+/qBu945IulFPJc46giLNSmDW7XCqjwgRo48WH+NIfn31GSf0+zjy82aIr3uL9t3vxzOxLMVHrpTK0qwoSy3wkbSwylr2fXv99Z+3j9sxpOOIuOWJuKwkVVOxkt3t5uHIfXwdqWOCHSNJw51H6xlDMIQU42E9UbZIm811FpKbAh7ly/B1L9aGaLaF5Ka0ianCZxcWk9dxYt7PDDkVPUfc8pDfjpiihGjqeBxm1npo3Gtv1CpPKV4PQCaASfOiKJvTStLom9fterl8+8u/7NePz6OzHwOPXIiQzVDsuQbJcVSR2uLraO0WiswYISvqHDEiEjAGoOg9xLr3YfMSDKQhMCi1fLjdG0aybLul3KuFrMBSHKWUGlEJ28ZMyAzmFqI0qCBDh3r6vaUZJVMgrHVfzXL6I2NaESNmG50p0qCZecqrmZWg06tvZb9e33/927Xuv33d8nh0PCJWccpJrC8PlZatJRA1PuO44e5Hz2JDRUxiioTpi6tLur28JVoK5jZ5eKaEHtV4HLRMM9eGiEITBaYIL2bmTngtIN0307bVqWtnppzR1NOOLhoT0IAUgSnMyf7IMcWUoJW6uZAOTRtQUnUz98NYeqllK7i8/PS3//lyuf79j+9qx9AjTz19LoT3lBEQ7RihUeLmmW3GU8qAY1hm9EjRMibyN8S6FzMtrRAcE7/v9oCOhwExEbgJ6jJEiTF72gCEzyw4OcmhuQ+DFh0xEq1rsoAxJLYePuWLB8ZpxqByynemdZmUnZlbTuaBmmThViAqo2U28aQ7p/JDmVPUNcqdNdCLjp1lYpLRW/eIG/J+tBhpypFDsn5Ld//8HDIUBazsbCxpJKLzGAMWLrLYqtldASuWzguZY0yQWvnyMQIgkPB6iVJSOcYsRkb2EW0Mk38cx7BDvorekSqdEZzd5DIwRkRvVrIHMtAKkA9+//vb9e//8dvXoYzMoM3AeYESGWPKyAOMhhxIRBiU/TFK9jasxJG6t56ZiCn76eoZ93LvQRjNvGjjlUUDBkdKQWSG6F4KZTrRdVt3T+ir2Am4s0cCBkaPmBJf5llKklQk0/vx2XoiupbbY2YZ6lPhGszEaDEafdQeiBQiFQi7YPvt9398HJNan5o3M67asoxpVCbmutQ8omW37tnHMM+mbFPQPvJ5Z7I/hlZ9QamqJpaMBN3cfYZONPNSDBJsVmuYTbZbinmPxXl2ASMDyFg49w+AY0LUiqNNeG0xVCRKj3Hi4koM5oC8ZAsQKYsc0Xre/PPrP26tnKlSCmacJ0k5ciXMUgzLhLlZ8YPRR/YRMEXm0TNTGCeSCyC76Cy+X0otvPjFLEeECIMpkTmSZu6glrpLNpcZSvbZ94Ocfox0tyQmsK3Vl2TBfAwxx62PRDwXBkCJiPWNTGUwAyqJEQAljojhx7jZ4/HRBkxAmk2h34k+5zhrrBSgh4nuXrwSKY0RSWZkG6mUxlzuJMgMmXmp2162ymsRLUZrqchMpIXYrGAMQEIkAAWo6BESxtmwBIqZpFZvFIIBJJf4f9oLhgTcRg8N+bMqCmV23zoRasVqypY59RSRGWzjYOv3ED0h+erihFP0seD7nHxdDrfi22Z7RqYwRsowcoxETuhosRWkyFLK/vJSt81eqtF6v99nT8iAJWyYWYY0690ABSGOzFnqLYpTegqSVtwEJCgmHQDPh+KAIIsRGlo9VSih4Ex8z8tylsxh4txIMZQcfeRKNLy4NJUOK3l8imVW0O77dX+xEb0PJDRkHHNtdWbak2CCTX3dS912f9vc0JtrMGfdcTCHZ0aEYlakr0K8UEhcm4VJNIpeL+UxZvdFZayCVEhEkpJ05Agtsc90hIUzx6LIxWhNykVMkzKRU1EZEfBSkFFYywzNfUGpkyc6KVvz+vLzt+u7b73VI9tDOcRVJvgU4wA0M4PVul1eXrd9rz9dHDwOi6aeJFMpBTKjDw0g8lxhaLLzEiCTzMwLWOu3ej8gmWEqmGa8Nn8AU6WciGdBGYGiPFXH64OBP5HQMS3oOJgJL4S5UGrpoYTxmQ3MhQBnoY5se3n92cdxPzA6ojd6y9l2UCmZZpGQkXCvdb9c9/2yfXup0OORD4ujiwpmZhCYcj2ERMvnDslOcB4kvZD79rr/HhEJCpHFz6oDUUgQHKtgaV82gCzIJ9rM0xgsGeqKdqUJNfiU+wCl1sOSMCdJ5uorA6AU0QCvr9++/dV5+xp+NOPoKkciZ8i9NHLTgy0beNkv18u3tz1z3+Ne4uhW1Cb9i1mHxZMFkjTbF0ILE6GXot14vfxy+T1TAwgMVHtmSH+KowSJF1/6dRZ7Yiv8wTjRT0EFTmspgF5LhbRt22OIKnMBqGdRICB6rfvLT7/+/M+FX3uU+8hWh8qYbVpM1MK2YcXN6rZfrm/fLteX61/f98z7Le81HqMamli3Wvda3WCUcmoXueBwWmKWWlgpqvTt8nbdZ/s9g8md+tNbnGd8EooLDlAxm+QaloB8+g2DImkz5s5TPtFbROsG81IU00qcKhlImTED/d4eR+/96+v7Pz6Pz9ujhxlNKZoJghHmhlKK+bZfrq/ffrle365/fXuBvj7jq7S9lQwUuNftun3WDpwqnx+FWElRQkCjxSBN+Uf7vB+p0JSWpJgw6M8rgFmqeXLdZZKr0PzsPDd7mbRcUkQAUDS69agjguaQwhUElwgDNPN0GrN97Gnxv+6//a97b8cx4F5SQRkF0BareGJ85u6lOEFXKbWUUrfSk65VTk8CiXUbcCoTsJJaKpoPgf0ol+/3DiVpVreJYJJOgk//Sy8wLF6BxU5Ro9a5OmuFkmYxr4WZUSlGM460TFkhM7UxbPYRmrmRe7q5IW7frfS/P37795aKIaulZnLIsPIIc08zczMzK15qrbWYb+hb3cZWt2KyCrMye0omIMVK2mb0MWEcAGQGQmJ3Xj57GJXOsm8up5DubgQiEqZIc595DKZc5nTmAMmzCGcl+7NZMDmreJCdCBXR9pI9Gq6PARlygqpwB5Sgsd9LefzWfv9tyDWSK4MgmUa4pRcfdtpac18bbfDVfAA5IzRaqeshT/bufMbTV5mZuZAZnf0RKkjQ7OWqrLIw+F6c4zhaToZxPgrgXqycfTHmp876dZ3F6Dl9DZFEJtedi0wWiYPbbNl1Pthq/SDFAeDxe/v9j0Cl5Ll6JZzed1mNKcXOjDHGaAcL0frZJCUk5Clfpp2QL569T2ehPUUnwFQgET1hVJq8epB0qNRLrWxaRdtcNR+cfcsmXn36GGLhNXNFzCdtYDwVLpppOIAUNMbkKpKzyjhyqB/mGKr7MSIymJA0fCAjl2QGmSlP0MiMMdpxB9i3nl23r8/7/XEcs+7O3Eqt+56lpHqfEqO5LwytHrh+VuuvapK0FG0cnqvaP4eSbcKvTidotaYghYrVgDKTOckmzp5gM7bxsxcElVpK22ntHUWZpdiMHmfR08zeDnOX9Vk5h5yKf/ap6FoBSCSUpJOR0dvjFiOr7f2O2+375+N2f/QQQHfbL9eXFx+RObpsns9MangCljQVp1UboOC0TAgZLDkkOkh4tQJbfBLNKq8VbSTdWAqEjLGO8CqBeHY4oE24eQnbtTJxWLWUdEXJH7kEjRMfduesVZiQKWZPx5UEzAI5mqeUhEf0dtwiUWxvG+73z9vj0drIszqI9BLwiGX21sGfDVsIUylmG6lZgHHaCatlwJ3ppV6s8mazuNnddr4k7y1RbDJo0R9Y9PC8Got6PsVxMJK5RGo8GwwLVqOOmF4KBH0ZaXNKKGWYL+ABP2KP2TDSSpFhldPHaKSPEtH1uN8ej6P1MQaHlG4PttlPewxxnYBVPcaZ1819NS3eiCYZrUyzSlndbWNEM0BWq7+Un1TKETJ6ubJxHLMjj51CMpxSQK3AuDAxaITBioFWHTK7ss7k+8dxIWBlE73Wi7Yt0s6AFc8FFumlGM9cIqO79ziUA4/7ox1t9BjBIebgnUc/esYYYxJ4KcFmOnjGReapmC3F50kkrRYNcwG6vPhmiqMHYPu2/bT9it1vfZBetrpZ9yP0xLgFzhY3OaFuIpXESKNbyncqp0bC6CXsTO8JKAsheCG2l/ej9LuP2Xg1zlY3SFiwAC4hLDgiHvforfPYiuN4fP9+/7o/2gh0yZg17q11jbEuqnIpu6Ul3ATdrCQltxzhXmK1KjSJtFrpdPdCqF6u119f/olX2OORQtmv4Z0fplMOIgKjjyluTWBM3TUHzVgyyx6jy5joeYSbJXK2PMhJRWaM4Vauv950vLQJYues45mFLwhtiS0gG8rEaI+uUB6bm1r7+Lrfj2OMYFcQ3dvj8RjoPeN0RKBjIpkmKId8TPl+9cPlZRspHTUyh4yWPRvvXW7S/vr69ref/tn/fox49FbK9ZtKw++HQkuWCTJGzl73aUgqQTCNLBf17eUrRleaNX1NjdbyPxxME5WR2/b66/8R1YPH0YiYMK2vSDYlWJ08hmWOR4V6DNsJ9f71uN/jyEAOdaahjnEE28icLyzCONWRnH5ZZQynub1666i+e8+8bRYQ3KzhSPYxzKT99dtPf/vrf6v7967H0Ud5/Qn1iL3Onh+c4cGPHmBP4k0ArV7E7XobfWSvnvlR18WeqcNAcnp21pef/9tDbP3xxdWSDqTPRstk3fbdJ+woRFR5qqshNfq93w91TpTNIh7jh/2EncTkymUIIBPBAZjXq281vOyG0b/iEhgoLMfx1UHyUoXr+0+//PV//I+L//3Q7RFZymYV1Q1mzFXaNQWonKbQphOQaKdaJtDUsigjy0pOCIGzy3CgH3udHQTcZ8Iz4yUAmP2QXy6Xa9Usi42Rj2AfLTaFYhx57+g+CCAUibHN33IWi524xel+MzCvx0QNlv3OZiXUAQrx1eClyCDz6qVudb++te/3OgpyNpZJLs2hiARLnGbbIJhbJnw2lhggTciEIjgyYaIjsaRUAKDs989HGzgbwE4kImmsLNfy7brtr2igFG1kHyWzZyoU0bJ3jmnAkpmpvTw7sfCE8wTSc1WwzsKDpeKePW5y8VUgUzGSCowB9H7cvv9+3b/j+u2W4yg+e+bbGQKsHS199T6iJ+leIuSGSQDNsD45gzKRRp+MhRJps2Xc7fP2aHk2+lpPTfOd20+Xn6+Vr32AyBgRbXhkz5GhiKE2ODCzh8wchkLMpquT0VgZBe0EMiKANGiMDOmZyigRIBxjpCXmdJLMdjxu0cubtWz3Qp2J38pp5gfMQl9mxqxKYcSsoxtokZgSmnDkKoAtQdJTSlH9ng/u+7//5+ftjz+O1kbMgplMN6v+8tPbX168v94ekcnRe/CA9z587htaWsyykn62Gph4GpeibWFQtFxlEz0MjgjZvY0xO9UROZsUkUk3mx18xhjH/ev7fve3PdS/yiyp+JFk2uzAWs4cWbYsnABlSH7MJAQ2p6nkjJRAc5/trJg9jFv9xx9f7ev7GBGrv4xEq5f6/tef/vZin+8fnwOzRezo5jEGBKWSkUrm9C8kub3ss9gFE7PJWXBojpiYgEIMIo+wx4hgGxNBViaTyUTx2UBJY/TxsdvW/RVW9L1gpHKdagKYXRomZDL1ecvODpvwYg7SqkxEJ2d5CM1FWpktFwnFuH389sfHbbRHxrMNoUQv+/7+y1/+9gp/2xwQFVJmgJE/DiIxi3/NKOfL+4s3Gh2pHqkRAoxeZp0fpqKRQg5GKhiRgtmTGtOsj8ykIkZ8blb500t1G6U02ri30KwdhNEMcKsGpqa0F6TVQbilRI1i5sCQWBiRpNE9zevOrci2uvno7WP/fjsA0m01oppgRN0u19e3N33thZI0IhUxZp8qTmrV/ewEl5AYMUZzhxgas4/0KRhaxSs0o83saha9g9xmSaSQ7uWljkfmMLWbd48v38svW728jdLk5WixmnPPvvyzScFkVJ2dABWDcaIGoJPKtA3HQicWsOMmK9vF2Mfjdnt0KhYCMwtl17XSaXG0iNlMIkNT/LowemnyEmRrvTUrcKRmf3AIsNk9TrM+t8wRDmfCQfnV+xzWYdXL29YQVGq0Y7R74np7WE8r5WtL/7ofPSLFJQ3PHEfkKUaPlcJ7MJBMJWCbW3R8i/tEwdDHItskWK2J6K21Lo2VKk4dV0a/4/PfW3vhb7/fejAppK2yqTP5TAqYsahIs3EboRwI5upzDEDKMY9VMavFJyhxVjYR5V1iMZqVl+v2Vu+mIcx2zxo4fi/bOG6P8rEdfr/NIg2jglNI1HQChcvxzoB3ihKN9WW/x23/y/FHTaYQPQF4Gsmyve28z/KVyAWpAEiSAdzl/Y/fL377+8cxFBTT1mHgeniaESZDmmi15D1lSIFLori8/qAgsm6+b8iGKCm0BQjsv7ReWGll++mXy7fy3fOzQxqtaCjz71+WCpWvVu24t5E5sbUFAsQPAJJPZ1DSCIJ1f/3l9bOx/MvX/y6NwKzgtI0EbXv59W17fC5Ea5vyW81FnKLCzzF2P76OPnLQqDJxPrM+4QSYmQwmelrZNw+z2TEBC7lebY8k0LBd68vriNsRiNCQMo3Y//nz9ihXs3r5639//6X+ux2PptTB7RiK/f5F27ZajhjsbaQkK8v2a9XhAdKsfIYImFtJwFj293/66feHLv+P3/+vwywNITOvL60Ws5ef/+Xn8tu95QgSZaLOiYy0VSp3H9nKaD1DJ7mRyID3FcfO8SWemuhC9ok6JsSVmp32hDBc3vZvPx3DfGgMHKKZm97+5z9+v+3vbvvr//h//vq3+v/l18eRiDE2Rutod2zvLy/ly53R+1CK7qs8FjmeSPEJjoEwr5nyNN/ffk7/fPsr6iyJQ5JWLrYVt5ef/vZre/ktMrLKitMEBMcYxlCOHH/Ybdtx65ELKs4gMYg+50fSa41QGYBoXo5jZkbBnJ06bR0rkTBe3i6//PrZm3o22h0qpXi+/osudbu6Xd//6X/+879s9vv/vn5l5OjguN81Rl7z8lJGBiOeXfgWO6qcjD/PNRDcaO4WSWW243EcI+6PkQuVWX5+isbSSq11rzWelKspOVXNY3Sj4LDNZ8m6y1eIO8OtZ8fxiVDH6H8ihJ5EF2lptOKXy+Xl0lA3Qx06JGehsrURMWS9H/f7PR4tRAdy9KPfH9576nJ/Kev3ncTACV3Zyu84M3DQqtEQkoaU0VsfMY6WOTthz7ZuQaSO++d2H0LQuTy7PM+GpGdBVppvdeKvcclhHIIXYKIGOaa4RjEnfp6u8czNJydMM7etvH/b314696g2BtoUiY32eWuz58g47rcDj6PNlsqjPfpQRkQfkcVgXEpRLFE7eDZpt4W5TAyCpiFTK8DMgjRmW69znBYVGbh9fmy3FtMBKiKV8PTRA0iHkbVcarEyAfhIOh1cUyAEJbqYCYxEMkHz5AyoZgXDtIZmhqlh3LZixUvJmfqgh3I8Pm8tZi38cbsfuD+O1qXIvHsbkVZ932otZ9ovAkOw5Y10xpgLBkfRCUVT0W7f8fF4+H/80ca0Gjko/348LK09PreDZb+QLBFjBJSKXCNJFT1jIK01wJSZYeqTegsJSJMnIdcc/APBZAaXpdlSi+EZNXd92q720b4e2RGjdRtCqv3+cYx+GBN//Fsf9X/9x1cL5iIUKUnRvkqBwSbsjTn7Eqsgg0zaBMHlTs+kjEhDdvsox73f8O9fPVZ7PhDtqwek8fgsh13295YWLY/WY05+EqhQ47jh4aU8guaZUnSdrSRnEfjJeQlgRmdvSmgsdUSeiAiRUVK6YUP/jK+OnI2EklIe//h+jHY3G/nb5euz/NvfP/rES9xZVB5tDOlenuw3gXjGIiszOlvA2RpYYcYQFP0Ltza6/v1x9GSuBei3MQS1+4fDL/7eknkMKBMzvjYlxT46ZKM02YS4syNPWhKCTLPpRk5lcdcY0uTiFg1FAUwyEQTuubF/6RjGogNSGjKP/7g/OmEsHbr+w3//j++PMaeqDgAZMZJsRcnFlc4xKIKtvBOkiUaDajUNGMuUqWY88tFTNnobU7tCCXGEZAb1XjerL3UUbZ3EhEHnwhKr+keKMI+cuea58mszSE6MxaGp68lT3ahlqLSsc+rWNvSb9Sw+u4YkSY7Po0dLg/cc9WJfH7ceUJDRmfAQlUeWM0kTmZJh6YsBg+hJT4e8WkpWNl8C2aER6dFm0+0pklEOcQ6oq6+M7efeNz5adSMXvnEGlpMPSgkjASWDk+V8vr/RKobMZ9n86ZFX0RBPS7XQEF28V7DUV95KT5kl1focZBxJlAfbvc3pypbJWC1MepRJP8+64ZzNdHgqJeigwZE2axK2S3EyenIEUzvvmX9qkp9DOQ9Pedvx8mtvm3/diRh9pZZ4Zj2WtvR8OHlzevGnjZd5meSmpiQOBDxhtrrhzHIpLbaYxmK8XP/Cr1vPNO/I+xhhIhNHmnMcbWBCSDFH36UoloyllpgKBixXO7tcmUAzzUaWYtm8ZKZxXvuN7czgzlsEZUYE93d7/6c4Nt+/Pr9c0UcMpSunkk6cRcnLsS8U2mrxJR5LqFoOSDGvvYEyBzzObhQgzeBUcdRa6wZ7ffsn/+OrxaBiRMvQGgvd6RxjDEjBjKCf1hIlIDD05Fz+FGrhZDyeyeBKFdIm/h3jx0QKnt15iFVAE7G0bXxC4zPZmkIkW9nGGXyeB+GZhD2fwFI4C4p0qpgW7DkVd5ExjUkulRO5uu6IYCiZjJiST5HBDB8xZjM1BTi7nWc+w08mkjqbEFndvGPocB+3Fn1qqdHvbbVTQk60bt4m9K//fODja4zd78fno8Mr03JM2zo33jiHvz07slGj9TzxXhrCimhlNuswAGse2VRDzJB79SGJctwa7LjT/uPj0TJAB0+ib3nVhFlNJcw4xjlbpEzYKTHV4vaMMzXRUgITJzNDNnM+uvqaVhTtJPDPlqlzTF22L7tp+xy5Wxvfv44hMzgmgY1J6J7U8Do+IJEj5smGmxEJF+UprJ5t67SQZK5LrKQCGoceCRuN9v3RQ7GqWeaZylVoCjPnmJWnWqOKVM44ZkYheTahmfFtAplBZuSIkGA4AmON2cwxKd/ZTwwLyswYd/Wa/jK0MeJxP2aJ8fJ0mtIoZ86X/YFvBFe3tRl0jBmQrtppGGQTGeZKh6WnX4keTYwh3lrknIgwo8VTXPVcdSAx50iQnDrBhR1Sq8H+unorHpaAnAp8dFNPLqpbGifpsRoezSIpRdMw2SM4ZzT3SNJgk9aeSby5IWm+hhiBkBSrG8AUo0xyYqqwnuQSlgJketXZJ8/I4iYp8MAAyzJL60Wg00R7KTmExXfOlSla37K+cV3C2RNk5rdB62BohIEa4vna00QslWWS7nP6GnIkg312LJ0teaYzX/fdYD7lNHz2B/uT+sToZivqHWuw+7qXM0nCMnU5u3KJ1mf/rARH6imuwQ/RAwGs4XWAGDGnVFPF8Kz/e16xVZRzHg5KaalUiAjZGbOFTmhqWrVSaIYkMaBkBH0+5Vhi9fWLpjwRca4IAdEoGhygOd0RKWXmGJmyif3N7GAanengcp4mS+Zs1yhLzMlNK2OYHsa43tLWNswmuADmkOI8O0Kts58wjnWukyshEoRczMdM8udfzz5RyGAOgaD7VJ9GWohzGuTTnxrdrJZqFmDQYkJcU9u/jM8AySkDIkGD29CKM/Dn8o5z7YGJlEvGdRKQC9CYR5VzfOHsBR1ChPvuFFSKiMCCk9fLPBHHuSTn4A2sIS4EbApoTM9EgnN9cXr6mI0FLCCBfFZrm3u51N3ZAcoX6jwvUj5lTuTMx8VJAUB5dsEU/iwaFc5gSlhDpE7vsk7MunWeFFcdmShxuxZCWUoagLD44ZTApcefD6PZ1HlFH8vdTQDrZBRBh8ymoZ7TLUOWIjX4Z8tutOLb9XItfGi2owJE2VLpric8dWfrBlsZs97hx8bjXCbDwtBnuxdMEnmGsvn8AXNniLMpWxpJ2142KrMUOQisySda2caz/dm8IEOpdShlswU7kJRpallhJtHKSIpmPrubBYgS5JlhTBSnluvb62vlLUPhmBqzmHj0SaLwzJzmnffaRP7JWq3XNwAG81XKKJ1tnxOYuPpzpUqJyNmCkzC6yvX9QkWUkgU5DfL6zARhxXIOCp5Ns8tUgz0duU+nPocpkaQjzWdDAy6TM5tMnBj22lTzul3e375tKI/HoCPWep/H74dj/fFl1XIKDHOVDJ1PIRnMXC4LKkOEzaJIPQ+MOCXyPL1BiiOwvV09Y5RcDBt+5AE86Yl1a0loEmJKTvs6hQCnr8wlZeas412BqMkxa/dmN8uYIX30djer+DrG0wXODNSw7PoqyVup4jRxTys5V+lcshV9ukSonMJDSAnxbOIpZXBEzrQASRoQD5giSs/EjPLOD5/mBIRgOYWd87qKxSAENIPBP5WfzRhmDtw1K7QM1nSCZczR59N5JtES3ltFu495eiwXTqKpUbYl1uGM5iSNdqZcK286NceYjXmdVUNzpFhXJua8RC1FIRfhtQZAJ0lB9+8PCiotiXOmps6pqsjZa+AJ980BeMsKhqbgcS70fPoJ5s1BcRpQDLgKc7bhosknKpRqkWitWBxD520XAM3NP2ORKdeemxJ9wiZa4sDnT8y7ZQbOviIZXFM7V9TwjDSkWaY3UzZk9BvcZCyRRKzZqKdqHniuxIy+kAQzyVWBiOm4f/iNlXaRJtgK4yzIZVtpmnZaQjI6OBwxXRgtYZozlowSaWewelblzUyKq0x6HoWz/tvM3OGMWA8823Wb0rR03LMgIw3mnpYyY6bG4YRZ0TMSPrGQH7pm/IhOQABGzuwX8+Da2SqX8+TXTCO8uIbivNkkwaIy+9pqpttT40UQaQysziLnnaa7BcWYbRKnImlmWiupSa15pXSvl4JNZjHnl9kMKZglNWuZzOt2qR3hXnMkOMO8hJFW7Nz4uQBz40/7gRUhgWAdC5yb+cKfQ+0wCowR0XnM+vZMpnlO40IjGPPPwgDkysJaCxmjd6h7BgCjlqgUa2PWep1NtGfe9szszL2U/W3LGsLQqnko6CPGOLA6rimAar0nfcYOSauGWV9ZSqZkK4TiaWt+mOd1OeAVs8mpzYuPZ3C3EDGQHmljHhbRZBZdElDoqJhdBpQYnqBtsred1lu7K4/S22SQAsyZ7c/LxdPPrIv5TN7n29dtu/5ty3psn03IpIMvX3loFgecn1LMCSv7pkTqHOuasq3wTyHPc2rxf4m5JkTsm+ZMmKf7+fGNPFNIArHyOpL0Nc/TrKBizNZ2K9RlQblezVpxZKLaAUVxnhn8NPQ2zdmUTKwOxIuyMJq7122/vu2x32MwEUknL6OMWRxyxl+0UrvJy6bWcSZ4kMTiPwLGNTZ3Yknni3LVDJWrHi6OdVu57su6tgQMdVf6Y+JxUtrMOB3c9je8PIDp+GlmddveUf/y6va43z2Dm98GToCDE/RZMyv13BuS0/yaADOvZbter+9/u47rl/OeisHN7edycIqpF4gOK/tLNlzfXjRGg/tzOGUp1RBajYR8ngfjTCfnEJckWZzlHfcNMZuW/OmITEtMwFmvGcVlBmUCbjuLaOJ+ecWrj5hNDNz3/e2y/6LtL9/c7p+fjMHdPyPkBSGD5IRmnLlk26cR4NNYm5WtbteX15/++trfPpQl1Qf34r/oQ4q2olsBtHp9HXfs1/f8uhtsWnBI+0spSJwTydcYhh+b+5zDJbD4SR3jvzzKn0phipOJTEoyK77FDNoER+2z5dWk4wHbcPn2c7HdPWPown0MbZWRppjZM86i1mX2Zka9IufZ9ahu+/X15/f27l+3TJXBi5f3x344z2E503+U6oZSt9yqoZSS2UORybK7kHAgQXenZMWSp0bIKPd6vbr/i32Vc0j0uvfnaeC6KOY80+lavdZ3/xhkom4XXWJ7kIRp1SS4Xd5+3liEFqGrvcraVhuDyEkRgnCLKXmdeWn8uf0HrbqXuu2vb8d7XPcWotnu5eVSnVASNmt1oTlNgOWSPueSWZ+9ylnMn4kVAbOUF4Mf5xUAi1/e3wteLxuRaSlbqfBq3bJasU3wiyEKbtulctt7JYAQEjFnFZM2x3aM5mOkMgSnX6/55i+9bu3W071nJk1GliGzvoqFTm84rylAZYzeHvWoj6P1wBjWI47WW48Y7gbNERNj9DbQe19sRT2nbUdBnNJqQLNckzar70imAWkRDy9vX22zMkUwjMnxYNKCkw8AaU6jg3V7uV6N37RbplJzLsGKe+nupZRqpRi97tnI/eUaj8h9a5+tf5/j5SmDuVjmnlGgyaZlm1YojTSa2RxT47C9EGtkpJkX1+x4g2W15mBizMoD0mRWNEdYniE2JQXsGeokGBJltUXSrIBpsBEEYCuH0uxpZ15sKnj3y9v1BXhpG3JoVsvPsQQgyLpt+7775XKtLnGYt9f9OJTXrV2Oh4ofnYY0uYvVMnPi4ZDl6RdmiFtq3S8Xf+nX60iG1Ujus6U13aaUWBK8TPGtkCNlUEuBLLX044j+RCMSQqRKKiVbkjRyHNzvRyu9hTHqnBO3UpMfGA5XFoDotOiB+ttvI5VpJVfbqcm/T1VLKdW9lOLFXXWUIdQdm6KUSYwklWfd5ml1zwAVAGahn1mpchiAHDOcm6zYSgInB2hugDIUvQ2iZS9OstQyR41N0/UkOjXh6rkA87ddPx+zgyrJhdYD4MB5WIBn4OxuipEYkXNmwujqsxCNAudrE9mPUY92HG6H3e+PDIvj1o7W+pwqCSnTx59Ag5UvahIYEziOMWLECR0wNeagaFs5Bw2l1Fo8FH1VQ0nmlbStlpCt6QK0UibyWI2XgCiEnDIFsNFqbaSzp6nsNiLsMv4IUTAr29W+/cutIIb57tEfhvJ10CRzZI/a+4gEwFJBI0LHV7F6+/j88Py4HP/66Lhux114hO3O7GPWo4RnAmZyI2atJGYa5KuWodr+9voWgy1LTUTPjCivOgKFIurbX//nT2w31xzLy0x5rebl289l9gQ/7xRhBlTqMn1xqFgWdaDOarIEMmD1sh2jlV+OGwIErdSLv//lMnDcUF9x+3wM27ejI0ZlRGM9+ogQZV5IQAPje7rfPj4+vf+29X+9d+61Nd9EKzaL+KOT8hn6pntw1fSsaFGK0VsLptda0izkwP3R+4jy3lp6MVi5/vrP/+On9pE5+urGlLBSrV7evxX9iaa0FTybhYvJ1OS0EADHpNSEtFKvb9dbs/rL/R+5mCujed1c1W1/ZZgirc0hEcxoPPrU1NHMIWW05EeY3z+/blt75Gwhu/hlM2b47KFqXoU1pflpACZunzH64bfPN2NG5mBv4R3jdvTI+u32aHU3eH3/yz/99aff37/u/VBP0IIyM6/79VpWYjmNyqx6QyOOsZB6afalwdElcxlW4wczLwukQMboD//87fab/mjVc9v2YVarrhhmIIK9rznlnAYueugrzB632330I0ZrGTn6sCHQYmiMyNmCGIDMAMzJUUtcnpkxeiuPj4uN/Hw8HjyG6SE8RqzRCuB0ixgtpGBfZW0Czd0Ls8yuaFOjEYRNBmXGXNPITiJi9CHUVEmn4kBvMfjbo49Zb5uj+f2P+w1tsB3CnnupL5upH8pEoI/4IcCe86bThrHdb48+jhg90kb2YQJoGfRM2ibfCjlYTG4jEBNjkK25DjHaR7GWv33/6jaA4xg4hqT+cfQcjfCAZ33937/dhoW0OgKYuZuOj5JpK+MEAlN7EMAYNkslZ9FkCiPAnUQMKh/9CJn91tYCZA6Y//644RC8eX3bbPeXfIzj1npAmj0vZyFaiSaLkRbGfrQ2Rs/RB6AxxrwHgruZqoXXYlasuNx7ssWY8qrVNkKRjw9Lfd5aFKv2GI2zMOL76JJMVmJ0vPz99zvqTEZPTxDjxnL27SaJwGx0pKlYBAtZOHUpGYmyFcYYgexwcsf30VdrqwTV70eseu7Ly9iuvqu1xx/3xxHTN02XmTFgzUskgox2NETPEZrSwBWSWd2d2GsvpZip1DIX4NFHxIgUzZ00Qu3uRUcPWXm1YbNLO8ctu0km02hdlz8+okhatIVRkeJtlNNVplHSmhA77UKak8WkiAmflK1Y7x1iz3SjtSn4X7jLHA1m5mV/r3l5s8LxuMGptjKPZ1Yb0ByOxRitYe6qeS6g2Ey27Qhsm0p1N9WtqBQX1xsMzWJPKbNZaRyilcu73xxjyAgNJTGbwXXVfjtgmTobok6jGq2A5lx4HGAUTQYUFK1qp+kiETSvXpwVYgeV8D9RWbbw2Wp+efv26x6v30jP++eg+hipEXN6sJmZu1Mx8jBEHJ15mBKz+nLqcZJWjsyIY3QvJXqvKKWnPVqP7BkyKy4Cw+uxsTSRZXstm6m1FdhSOGdEZaSyKdDGxBzhlV6LlZbpmIL31d2WBBeoSwl51rw7zK3m8AEzGmB1H6siLjnbFxLmVi5v3/Z4+RlwFf7RHsVwlrNCQNxZzFzanMwxYpEHZy3wYgYNoYiR0gCrMmtpsqP30NAyK7SBiJAVN7LuL3X3aURgHjmpkErfX7YRHUHFGLM69v6QXy6lREic6iiSOHV5A65QDlGebczJ8HRu2d3kpEnyAp6sLFMjxkDQbHt5v4y3X5A1zV4fW/XT0yYEjoZC281L+YGBpWbxdWp1K7HRWzruVjzSy1aylJ7lPvpqomExwkpGklZrMXLbX+vunAGEuc7M0Ot+qa1FZCrGEARlj+EtL0WAMUnQZ92eUc501AQ91ofMo2HF9hy1y5SZuS8VM058xqqk4tvl+v6aP/01x6Zt/+14fJgSkcklMQyQ6hYYZI5IU4hm24XdZG40hmo1ZYwDZrMCJWvpKvfoc3qX+bBOJr1s43J5bKLX120rNoYR0MhZ8keEeKv31gcH2khx1qApc/Ry7gC4TL+WECUzuao1IjFn9VkpbuayKXnRCJ0MQabGgTH7Q/v+qm8/RavoY69uhifRMHOnJEKIJwVWjPL9wua5aPCcc3447+/Ue2AII+JsMDW7Q3K08IPNE4I7MuZk3SemxkjAx9FHUHg2G4aUMaz4DxJqSo44FQ4r2iZoqtWZTstA7yNnnaDQj/vptAAlxjH7m/b77Xa16KNLrUcmaJoELoEljF/hGEiXWTGW8vriEVOtMluAmsxds0giTGEx09TJFWhObER/mH31z5Bv5WP7ehwjg0I2Lvlb4ijdW088O1RPik3RVWi0pRHHQhDtR+bN2anINoalQxkRGYneExh9zMlX4CwKiMkhtsf9drXtorGpj1lfP4HEk+6dqffMy6Z7NAynHh9rgpJS1mOsZD4EWsryhK5mRLk4mbmT3ZGtPbKNU6YTC+GZOIT3AOnijPpm/qOMsloSLTpIP+gnV1jkjHHqZoMDo7mOFj0RoUnaLhXj5NMh0IjR7t+dPRC7fdweLWYhpIt2toGdVHiHYkQmlKbhGvfPTMx5HLRjpGb+kKIyEJgnYCKyycjMITQSX+0r5NTf628ftyMmvLlQvhOpAGi2Av/Vf0nJAiz1MvIsb57R3JrEqdQUsgvqPfPoGYvwybHO0+wcAVCz1FzjXtCVebHbcfSgF6nMIskJpC/yXhEj1uSRxGitC5DBaMik50SeAEw3NFeEMzvJGCMZ4ECv9aPBo1/8Pz9ux4DRUc/rPhXvJhg9ZzbW81QazqKp1RZ4UTM8McQJw5Aou3NYZlr+KHFeTPX0nlAyx5Prj1Dvke4RT5knT0ZdUoKRSpWF3oDQbPgwOZr1MCQNS+x26nj1ZGWkzGHiUN72B2DuN38cRxuc9kWLweTU/ZycJ5+8B5LFPG3pbzlV2kviYzBz0FloL2/leOTE1CfXNAs4XYTwVNc9qT+zuYtWSpQ11PI0P36q8EIB9pE6+ZVFCS997vog/iAsp+leNgwAqKSSTDTrhRpjqPfewylhDuabnScWfLIu3wo+BDcVmzVjPEU+No+xZExz0K2aX9+qc4yZgi4DOc3FwmbWYAK6F3O3Uxdn7qWUUoo7PNb3cLV8mRZsNkYzamHGwNQHwN1LenFO1HllrOSUQZ3JvhYwkDnbFFKzKu5McM+vJWOyZxqwOCMUK31+1Dz9bukGY2gCM1ZUfXv/ZdvqOObM2NRy0ciTpForC5ILpuj0lhiMBGhegpwK0DkNGQseLX3eDJ9adp4dh5JI0FjqFo4RIH02z0uuIUhzEuvczsyMAW/lYUcfJ68GcLYwxcmoWA1bzl3QlFG4B3gqOUlOYB8pN3mRF2z1+tOve7V79qFoXbPZI5CByVabtDiKUgqR/fGddm+wXno8+kiaYfGscydWpamVJ409+V8j0tzcTYQVmTmmYOC89zgVN5y5MDQjstFgxHd7DOUcinpas2U0KHD2V8QPCwcUL2M5MswzrLqZw9Pptqe7Xy7vv/ztUvnVe29xtPXpQrSTKaS5mZVipfhAHBxZ7MvLUUd+PXqfvep0tinGMpb04qRstgxwL2Uj5MWKTZ2BJp+WqTnVIMFIuC0N7GkUkb0PktSHd1EaMQYz08+tnr82iyRhGDW1coSV7TISMImAmXlR3b2CYWZW5dyurz//8/98fdm+jvv9q2Xv4OwkgTCAq5pjXsoMHGC/b9qpy+Uoqfv9ccwCa0WSLLOztCTadj0a4EYHi79sY2MmjUQM9CHOOHE2pFwFHJh6scncTsLYotWe4GjDb2MMIWMJP0GmkFPVoCLNUilCq3ltuVx7KCwFCu5V2q610Aa9W0Xh/vrtn/77//l+8f/8+iPbA33MauuExmJaHRSd2+YobBk97n7N8dZrBVok3I3WCRmspjlBZcDK5k+rmqbZBNXcjQMii9w808zP6s7Tr09oq9hJzkVmUtmb52rWMLkom3MmDGYIwKqZS2QR3AEAxatrqanOL0KI5Fk4Jdh2uV5fNkNER6SQs2sP/DS1ikVYVjyUnbkjhpcMWYwB86LZ/FWYglYStHq5XptNv5RQi7uYaW7GjLRuPOEGrRMgCIZTSMvVQNKtGJTobGZE4ciVcqy7fsJsZR8FCeNURSjJQjM/ZaJP28k/Lcb5nzxDZZ5AOk/0bJFSmKiCTrvAP+ddwpN4Wz40Ekc72pwUPi+08myZ/yR0fzyFnp/3DG9n3Ric4Q2QAWZETOjrKdObucrM9gQa3AtmE1GplDobxD6VTbOex0FPc9hk8motxZ7imGdmi+dvMTi9GCucsAkiFHcTabMJ/HqYGW1M/vm07SQIs5mXzbHkaeFpp/ZijlOb0ZLOlZkq5me1FgBSRkOeju5HIHgqJi0NyFIqIqCIRJnzWTKVSGVEanQmMlbRHO24f/7j//f2r3//fu+R5y83YA4N1iwvNJiVzVBVApYYHejHcHGM1v3o6Qs8EEuZrRJyZtWTqDAg00SDF3cLTnyqjcg5g/pctHlUBcwxO8sRyUStooU1x2Zh/OvNZwI0AkaWsiGSGDHw/wdoDUF1ptVpWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image.fromarray(np.uint8(W.dot(H).T[-img_matrix.shape[0]:]), 'L')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Residuals:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAAARElEQVR4nO3BMQEAAADCoPVPbQlPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBmt7cAAScmPL0AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image.fromarray(np.uint8(R.T), 'L')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/docs/notebooks/stars_scaled.jpg b/docs/notebooks/stars_scaled.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7dccaf3e04c22bd460a55fbf6e300c0d0527ca4d GIT binary patch literal 17558 zcmb5UWl$aA)+Ky!C%C%@cXto&ejs>ocMI+g=iu({9^5s!LvVKwl8<|5=B@AF)a>qG z{d9MARqto*z1Cj;R{s3~pvg&plLkOQKmcSv55T{5fCK;v67oOiXFz|RFz_%i(9kf5 zaB#5j$cV_uNQg*CD5w}{D5&VDNJwZnXy}+&*x1;}UvTkou<$Uju(AI05(uczXP{va zU|@it{-5JtKL8yb&A5CH%XF#q}5{|OjKC}>zX2mt)& zD&BwY{{O9g-URWv{BI3_3^H-^2H}latveG!`3tVu1Z#oZZVQ;z3 z*A-eZ6FqOv3`>aa4N*J+)f%9(?3DI>BdR86~U>F+)*VY}M?p zt;#%3E}eN3EIrF^a+n`3?XW!H+;!VrY;k`pV<}YA$ikHkG;@`k&MDY>Igl0Ru2kdC zmKVz~`~s&UhcbsFxqcCtk&_b)>XAO1snQKHt>LSo&9W$-H@uukCC3d(v}(?s={Wg) zYK^OQqLn_Op&9sN)uHdtwR|`i3eB3mq9WKQdW#6$)wtoq4s6S?XVdWeap+PeShk~5 z*|FsHS{fuk)hnt3=RSo{1lba|!+1qg)xx%!XU) z7Hf!#J4`3i%VFZ>6HxIU)5%)@0|e(=PoxX*!_*HZtiievBP@r570}Mu#}D$8Dy~5xK)*$dy`3>3*9KY1_`}DVG{YpjRU)8QRaeykqn4gR?K~ zf9BZNC_?YX3p(H+kmwwH`73daBPMgy;f-jE+sH-M=;xj84GpxNk|vv`mn^6mZXo#+ zNLNJ}YQa}?e4B3Unp~3z9iERF*T{8*9Cx)<`$5w1mr9DX+tYcdv(8fV9^xc7IOf!u zisJTu!&HZhgs8l-qW>|+IW4tHjv(n3^|eZ3Y>8`<37f0PoxB_3N0~yrd~bt}6{=+c zn{#o0*`F>UID)_uP3z{NjoOUCn7=#(YXFdgCgt(Cmo9IN4S!>SzSX?#9}$*<&cpJx zGW(5hxcr<4*|<2N;g~u)TLgz5Q5i9%rfExuPI_&J*(&0kJwwXtNzFNnKI#NDn(W(R z)g5>hwI-H85|8P+>H2fjHDgpQL@Op*zoq=~AJVUjgz#}nF?C8%T~FA`BttCv zPZLHYkGr^&!SK;aQD-_fn5E;mwk?T{I6N9F3oDItMNQU)S{ySq;tUa|lL@%0QooP4 zF{m5uDBPG-E$}?ev2Xg1{oe|vIyW-y4xGCiMYF0;FZopB}3l~n(p zfm2;_<>!q2c2laN5|kd)>}0;mkRy0zz?oU&XtFcs#vMwg#RWNzcCoLJae{e8XFsBt zimq{bep|yQ>gf>6c;Aj8Q+{Va3RNgU;I#r0MakA!$0-J!66SRw>oO3NsSdLqPO)2H z%hh0WXXR&+O7CXE@;@20b5bYNs0c?-HLLiL2`xkCX@p>sT7@xT(5zuc%75!d3O1Xg z9G@ayEF;>6%`b;5@xa%h&lyhlFA(3$s0Jc0^U&mGnl#*6L#d&(hpCPKx?5!M0)L$| zicXNOEkP@kJ1G|XS@D;WgOZT{ZX4}YXQKnZIW2NG4+x~UPFjV7Zcgi){uYsS zBQTTdJIbLi7AlfYkf&tBHJYPVy1qZ^k}GND!rfyUts-cgT$Z?0$&&w)=M7#nXIFVu zT?*|WIt!$?zBK*?YkNeH6NY!%k~N_*pME{EW>ri+NRlx0hs{RY+pQ$4WrlrRLP0=6!vJ8>G0-rv$g$bTDA*~*s5m|W7XEV`0tPaZ?QSYoV|V5h zwL*|!J|G~)a74H~GDsU`jF^#-1as?73-onriz8<-D7l!xB}G227ePVWDg~SMM`)?q@Og`8jWM+GJ(lM)}J-rZ-zG(KT3tcBs-Ph-p+dnW!?) zdU6K(lIcXZz6Jbhbx&VQ@f=)^S@?v{?YGPfDlLtwo%>C?1)j+x?F0{ zD3A%aY~dU0NF=#Ds{7_Fa6lrXVik}bn`t?B2Yii6@1ZW&Ac|GALN#{^=;@`pU`eRy z$L*-HPE_R{W}eVxB4}PBAv@4}mTaw)=M;>0vK9QwojhVgJ$6~FqGsb-coFP|U#B6` zm~V|CHE75{A#p$mJ$+j3_B0aV zNP335f!u0G$_|*Lti=-Fv=hh%*9BjYM5)6P;Gj|uqL@W5VyNGytC`0Jz@(5aRrWz@jFuQM#5p< zm95c+7mPMH&>ag066q>e1*H+jXhx6##l+y~W1hLM`lI%g4-Rr@l8# zkRa)}Jr5Q%43Ded7^Vc_i_=y-y&F1D{lf!n~8ERV+4cU@Nmj53E$2$>%Li+BMnQ zVMgOJ%gI-@bR2I9<e()vg1S%ir85@Xm($i?-3?!s5DnReSl-p$_}$bNdi zzR?F`4U{#=c`d7FTG3g(T2&YuWL##8T6s6$Rhk9(kt~rVU*Z87sHLf7gf{8|S^zAl zzHbTANo7YUJU|w03}ZX-QRgJ}^=NWUtjr@p1j;(ZUxW=u=Gp@E=@Tp9j5nWaw`mzs zkt=5%+H#-w+tbKy9^dM$zw@IDhF%9t8T7mo=qEJGh~2jA9){Q?Tw9xtQenD?3I~~o z&$GO-%ChCH(zL(6B66M(L~&5ct#2oNC7-=1#9M2Fgbo4k9Z28|ravskK9#us)jP=4 z!z^r3+lZ5r69^gxZkCuXlfbNFj{cqL&U96_uAJqtC0&!#kcBl1)`b^KC47A`l4{nD z{oJVQ93$dzb!ks+(|vx!?VL0dsRy0t?brk8qDo(M;|63ecMB@|!x|>cRsJ>`yej>g zTJ5RfRV%O8<}uJ*=d+992#@R`s#n|&VhB=hc3GT=BZc0kFF}PK8@6r#hR0l^ejCTm z2E9?8axC4_l<0mm-xedEixyY@eMk3|*Vs}Cf7PDvtp6t3$}r=!YBGe zSghjoJq)fiuSKNl^4~Y+LaC9oXv|Z!{^}x{eC{vPp6gx3i5jP}en!tlc(PNvEf88D zM?XCEtlybX{w0EtT*}~ew8Tue5jm7U#bZfQqS>CwtyU&zHhfuGVx?;>YK5x+Q-y_@ z{n-Cl-;fo#&wP_dFxzu~1@&_hwusDn`w8z?YBAZU_18*MD3t>E8s*jEkyMwDp?X`+ z?;B4}m!^b6CovM)(ryIRRT4{eK)Co7(lZ}sSs`m~7tlPfD%wiAI}c4gouYf(7>mSz z)^F-h=JZMA0Fa-Y>3_m-8gBxiGNc*>Z%|Hh`JinAP2a&DKHolCjez`{{)EKK1_!}h}mH`sjE zPxpk_B81O>&y0)mz^F})Jepcz$E;9xZ#Ff0WoSJPqaXcNybFtp%MfFIB~izD7no>@ zUAkB=KtD}OtgB<)0IJI*oOKnqIB(Ip*d3y<9unrKY~fi_Hm#rpGuieuu*(!1%NEK} zAK&Zg{2e#iqVp$GJ<{o<-qETjj#a0%`w>#9@S!YDtS$4WJYLeY(o1(|sl(AfMN4H7 zBd8Ob@{LQTaNs(o?IiNfHCm{D!o)ll%?j7{ zBmV=mRmZ&zeDeYqG39zSI5kGo68|uwrZ*{Nkc{IVL8RN02=%7X_40{Dq=otDRwAHmj#R*aRG~!!R+30aOZx|~8T7^Iml;j#nf(W# z;$1z`CnPNR%eZA&WWzFB+rT333QSD>VU=5QuDUDVA&>AyYHusn1_i-Frp*MmxI5#_ zvoT4Afv`mAS=&{W2{q(*4qa{Uj8vo$nnySWTX&Vh>rhNOR+*mP!(1FEIf~Bia)`-U zZJWtdqFJFOPAI{a!*%PTTYFFNWSXKRqks%*xGSRZB_@ixra>zzpXPcq zqA~UC?jPVYWvTv~vj552{~_`aXy}mSWNa8>6soMoPEg|i%~;6)WUO3CJZbOMGA@pR z6;7F4$W8}lWB!fp2f|Pd@C(JWc_WeS4f}`>+YpDu@9-}VNKP64A{gcP4E%yRY26A2 zHBD@;?87Ea*75fxCif~&SS$s{vK@P>()_rz#KhBlsvx=emz9oCYj*9z@|!lf`~kur zN)r#`Pb%XZ=J%>nKV;gCFoz$xhNq$g=%Yw~4;rWul4$tEZ{w_mjMp>cupNts9iJbM z8P2+`&c>&1)MpBi7}3)?nd4CRb;KALtZo=3G#1(_4bD)G&WGO~PwY}(3PjPJG8?GT zmD{)nP&2T;r<#*+ak_GTed?>orKmEJ7U}+CAgI&C9phXg=wa%XkK;xAh1?w8dN54u z-13$kqj{q3R&6&n#hy){K=#KsZJJ~KHx!;_xcGVr@iqGJ4c>vq)njGx-NkH@XYvDI zu=EfXMOY09t%FR$TUylqk}_4oAn#xWE@8nXURZ_x29-wB&`jHqp-5mlxuuPGi>&^*bdC5BAz8Z$=+Z*Y8WJdT;}q-&)v?U#C53u_yTt1^JzubvtX}qja|26B5Z` zU3=Bgpw({P9Ybp-3H0I%qc1Yq>>3u84fE6~l;Munfuqtv{3UVbd#=(Mx=J^DF6~B5 zpfnE^H)2KT_!Bx_(my~^ndcLZ!YcoOjZwX_FWard_v8LAcJw?5S+|m!r=8iDA2>HV zXR|*1G)@qCouct*QZ$R5< zwu)=9jSOVcY&$!3cq#s{V&bsMKWoA=%@}$O+QH0^*6i)AMKl#9#Rn=KRcb;>up8JT zLz`?P;~c6oeYnmmTP2t^$IlKHu87S;+Kb(%vDofQO&01B5l7iVQCYvQ7Ur^!r)cmS zH_8jl7QS@&mTHQior(e%oeCk{>uY@#Q+$XMl|VEeC1bO#ms-8n!6r^|)GFDGala_* zX(rlv)ZjK}u2kYhe{hskQ)8?Vb@+nngU{FrVWfGUDNl!eO7Dy6cIjFS)zo zdc%Ohc-{^CGZ?ntr6!^^*vY5%`#Zd3*0PpQjh5iZ_sJg&n>bnhLvW+LX9E=3L(+81 z7D8oV$ubr^D#H}*gRGe|TdUA_t>JBRVjgAZb^YOpWPmea<9`6UIQ)GLTEL&>K(FOE z*sW9fTlnL(7!CoQ5niB6xU%ckPiT{qj<2ulL4|tXE=+|Xm29;?YtnSaCc%^T7flyy zh9XTjL`Icgl;$U>M2#vvi*Na@uB-CIGP?`~SidG~1XO_^?&2Z`@aA_aL@4SGUJ33F zloVNSEU!H9ZJO0vGYb_Jl`k69#H25}^sQ(OYED_?Y|f$bElNMe%cth4kkb9S*Jjn) zY+D2h4VHysY+}F4wB&QP-M7NFu3ONV)H^<}ku4`v>W41dH5?7DPvOm*-C#m1F2G2< zo_GAsF6ihWz#P0csB~o5uh}J(*63Kw3gbb2uL*-&QEhEm{VI2 z+cR%HdKvxHsuaY7x2n)8Ef(s6R6O+T6;b+gWLS13V>UR-SK*e2!E$GFpye$bK`6pd zNY7oj_5nSJ!z(l81dl~Jz`f!uPs5+<1BZX#qmJ`Cu&YS`4??7cYZ!#HR@~a6_u~b@7>AMEZ>2iaDG4s!Vj?; zJ~Q#k9Ov(o#of(#uw`{d%en`X7C)h!AkaB z>ngt4KLGhmPiU7Qat~$GCeA5S{)|*?Xw4n8^;uzu2fwh5eFA`UBmnx2^D2Q|`p=Sg zcJXI-2<2QB2Ut+Y8Y6r(=%!vi<_9*M{b1;*=tCAhOXY%!6EUX@9Nb;jbiP7N&Wy$6 z9f?o4lg>WBveS_VwrLJOo)x@&!&`Hy$vqY!2>b=Q>`g=KXf)(mjuET_N zEo-%DH_GfBQKyHu28sF<_KY19i`;3hIAy)eV=jh5v z4G-{jJr`k(e2#+Ql%P5ZjlHUkupxcRqslp#~tk4|w)*$xf#iPkJb4zBy$4#Io`GC}7&S|*Nk_N-hRnE6*j*3bryYM~p z{Sjq8Wg92J{Xf73NnzCVI8jQ!7T+BD?FK638uJ+uOp3q$c^#?WqOvT0c8X$n9?Gw8 zxybrA+WwaR0J!F{ZH$<-<}9t~nu7DaV;1Sf&HNsSeALD^)I%Ys=r&Y`JTmiKoCfmp z&*5J{?n=Ff9aV8qN(N@2DCR;V2!5D2LkL`aN|O*%-BI2VVZHY}rk2fmkfAo^mxf8Ly-9(-&LYs(%2oQDz79MV3ytpBmS{ z%b^>&$?yzVygTXZ4DCjn4%?}|MTQp$(T8Vgw+dI3@0T@vp>eps&nvsG3!HyY6U9@A=^HS2ed*!> zf?g?(`lhp2fRrUEQ~c7wYBu+Zo&isb!xXGguI_a?!W>jsw=wh4BE!zj!waNet~ykWM%dpw40HRJa)EFNun-STA@a_o1)0S5w+cF66T zWAkQ5q;!)0jEAsWmTmg9Uj`c*+FWz312Dcjpkw}8^;4g;h^e-2QHYNquk((a?_j%b zKp>ml)29s5g6MX-l^ks#=bUv+6qlRSSURzHjZ#%}jhR%ZMB0}$xxGR6c2 zwdUkf*;P_b;m8C_o2xK#Y+5v`3A1@!V3)S5HL1d{=#$+gxzt_b%8(D2BHNhz>5V=0xkJmg&w$OaM{xYxXc4U4i+^lCHVwm;S===*kNM zI#Sg+4tEEt`Zt=cDH(HlrwSoN|=mU0gs41Yv zX2gVDH-$q32?mrDIDG5#`f0Iy?Dm?tbjEbGK~_19m@*tLya%ZK$sfT9blPBIZ^tFI zvUBPs*s&m`2*``6LyUnHiCpX-W2BgkHL-1_8WIiBtI|}M{+(Ddn2V2DO7w|@y)U<5`l$l2kA25dfG7@}M9s|q*Aff}uE!Xt7>bN#Tnw|s`deFqAn^Zr@_ZjKWO8wDr#wH{NS zxA`h?F;m`BGCloh2*frRUjtgZ`z>l>?zJAFuPhdo0$V8fh`k}{VrT<+OvAjPg zhnjl6pLLGqM1Hzh4|iY5g8D@XWa{}3z-;Li_f2mW3e{+aD4@r8=iQvcdCQrbaiIzo^GIGze)PaH>G z@3S6ypmd5|wBIy3;jEG{P2M^QE$#VWcB|2zzN5u#XzX(A^_vy_@pp8Y`lSBx4Or9h(i;>me~<693EJT0L-}A z5s~2gcv65r1*Cv2b1^x7Mn8i@#>4dq79OOX46F;s^Nt-Jz@lg7mbZ7Pw#%~x_lKU| z;`YO>7}$(*a{J(Av`}&NE$jjksPi0C{GKfF#k0CywUtc;Rp0){b9MyRzi~_zdyg;R z3VSm=r8HMPtpoxlS7n(i=6PN11A3%VI4ebJSpdeA44f}qr02kbjP1gJfuN!3T$skG z?yMoDVgPCZ1QX$y)9kF>Z@DN?B~t8fK~_H5e}G<Ew;EG-~1}4qmM#ZtkWR6kmm} zahX2fm1PhlSbQ)_G}lkqVeZ9KwNuBdPoqMr+4A!4ahiM^vPSlO2ZvLJzCg2i7*%0X zYu2?Q$h1XYn-+hO3W)F^$2yV6u@E}wchzL9Lch8d50k*(utErf7;vDU9Hh-J^mq1 zct_RE95P^W^Q3NE#E}UV@(KQuCarhpg!Bc9)$Y1+|*%@04D{ zLh-`X6se;uykRnCjlb{cyOzh9Ol=F9?;0DQf2N!VBW%=Pl0VV1s* z@BY3ESju)aAzS{qe~own$EzcRTrhIole)E?Y9!*ize<)WK&X=xH5-y<<|CHIVR_c+dXVSWr#h&rNwp^>U> zAiDaYp&XNQFO0QJSGfHmgm0s5`OBMY7b^lNlI8)I&Y~)1 z-f8ZA2bj=D_f@%r4z|IuXz8Rr$|ve0lCTw$FStUVY3ruPH?O#X`RhyLM295QCH^OG z!P_$~W1~iVU1B?O+zWB@ZxGHRtflb_=esu3CMnUK^L?(+O7Vz|%#dkWDN^{i1eNFI zbpP$|BTZ`K){maXW=_cR@?sH1X@6FMB~+-)9$(S2b_{2B(H%@dcb2^AJol@9JE5w( zD2?X?G^?%SoDsWy`2g7YQ`QO535FI^cpbhP)5znAVlx?1Wx89rtKbMloucn|C|`e` zKe#~8ESg*-l#zt^#nfB^pR0@ycUU%1J5!A!I)9^~yVtS_NUgKGuo=U-5LYZ{r8s=^ zdQ@VtL`E{^NPu9J!Zmji8nlZ5hk#oo02H6nCzEy4hv9)oEH0cR+IPWFr-QxYT)I@g zF@n^1Dk^)tQP&9x6oK^V?@dkgU&|N!+h@LIbiKp}A>X>4(rx0PnBbc|M^*l<#2w^} zmT`flj?th@v)WHNxLeRMN_)cIy>@S8=EXb9kLpVFq;3`4&7#Hpj`=^bj2Qd zdW{TT{C$zN(H#PLSSay&gU%FbE__oiF+@tWprAfG*mAQ%%DQ^{BDG1W11Bj;qL>KN z_s}Z<{s-t3M>`12YZ=t*d-~fps{bx+08r-#ao}qj*pv8}XmKI(3f|zN7S|nmz`ODW z{n34sHpo{`#bm5EZ`Ly@yPa@uZ4)%yTe(s#LIW{9?2d#aRt~GGNY}tINhm6+cGUec z`7Y?%RX@4TBueMp@@w!ovGoi4GkuqQiroRFf()8fd)KflrP~@Uhj@ET?i}^P6%XZd z`WZw0_^&CRfTEibm%g||8K@VqV?E)skd!}ODl(05Bg`3@D*i;-Zte*>^@_RsP@Oj@ zH3wrwPH*m%_(u(dxl#Kl*wF`!c{O(++H2?q*3{VDL?^_+G!f|Mb|aoDmavtK7sr28 z{;P{sE%x>{7;bh7cLbN5%rt;n7lDlu?jj|e*(=Fbuz5XQ7bR;xI)z^O} zr)~NWHo@o=^AVhMABTlMEr``?yaMbnrXy2di)!GdgMAevOeg#U%6*zxdQu>v8?%Sg zKUDw5T-Upo`~#HUU@wj_z47?XkA9TPr3_&!45^qCgyS${bZan z99|kjYoDPl@GkHP48${D_W8b82pUZgsnz%il1dUN)`r1N7;n1g#58&!-VP{Vx_U(M zMzhZs_17I9@~oUhk)rQSmYC38t+Vmut70k%8eQfTP-+m>catLX`-(B74)&N!#QEBe z$Mr04dAgXgNe2cl(CfP3)S={1Q(pB}^MaZGP}=238|zohePl`C-NB`dqV!ewPtJc| zZ(lqB>O?Ky_SgOSGQvqb~yd|gfrL6LGf^Xl0tMb%SFMY?tt0un7WBo+TI~Bp_ z3VUZyBtBo&Y=Xmm(CPkUgFg;eZ97SmKG z50`yd%FS@ZP{w@z7(M-Mm+;L!>6_ba!qnQ`n){9}2|UG*pE604OBp3=a^%C{#A}Ug z$xE@meEzOlQaNhc;BBQqbzoc6pSY~Va4ntwdTIO~EAsHDx70nkE$bwu1-z`k`qzNH zJ=4p1?2cZ5(V13(lCd71;_Wm6r%}_CwCY#TD|_HwOA_nPy{Z_{0a^na3ERbJ^xPUF zt}a9acD1WMFso!&e*<^Lzc*mGuxt>)S0QkzP_fcyrgZV48835jQ_<>oS!SqsS6EC) zYuHUgh}BC;5l9@VkWL6o|qDMYG zUbD_9LV;zx>KLF!Dz^H#{vNtd>n@~2FHz7Z0bDJqKiufOi3vfH>;z?XKG}!yB31uW+VXS~@U+zl(fMQj_9Z8|O5Bg<9yY^MC}UU+JDD413un zQRmWZR!3@jDG7yf1QHDrKuv8hKM_pK7~_;*ky^;6lJru;W&NvQSn~H-8V79>_w|Yp zUQk^oe5C<;DLQ-zn@zKz8(im|cRgiUzKO><&pfX84uTZFgy=80KVe3nQBoK$X3!7n z3(ynat4D4~PgYbY@$H5^E)vK5YLU=5_V)93i;gUBq96H-Ixe!FmBI*P-!Cj@mm7-= z1Q6yMt{J@z3s>>J(5hUE3VpY<{fnEt&@gZA2ev?ub^Dd>)3OdN;C7JjgOW@2ixW1q&Zd9?mc&pucmsCR~{ln!CHY zudFUz4gQLTfY@i)<*-zl`|T{l?fJIuAHV+(fbpngmt5F-6NG0-hVMkFnIRj8b_LRX zuBRw|qrxMKhJw1-CtERm`vRlBd53cFB`bKclhQ)?Up% zvmTjehq-heMJ8I)C z(Wr=pv-rUYGOIBOk479Jw6p+UyE6H^aA2m$EeGS(j1Tv?63qVvN1OuxizELTj-tIJ z8p=+96Yk#IwmWY|R>@ZxEo@CYi4r_};3r_W85zBnibXNQ{+`4{$Rq`g>i zwP*#@!`Wsxq?3I?$D8IgWNat@x!LLdBW+}!COu$H8p_9MpM|3Y1gqS7OWL!OQ-2(n z)izkmz9n&J3>XT3HS@51zJ*ntYHBn^Fl<%qxwx`z-1(i7q1@Hw@bb|17G_{ue;d#c zu)EZcO0h?+FD)65^M#Omk}B5>6AzY@H{AS&br>jLH_&4w2~39%_e$7jHH(?3Vr6YG zJL~seaytd|qdX4mG2B86*!#e`Q7R^EaEP04BR&7h=I%Eq4BHy*s9tC6;bSXqLn&kp zA&wU|y;TrO(*Dr9MNYFqrLDHi2ov+>1I*V=jJcmMqX)lahR2xb&cxB`k`5*H93^6PdXmqUJcs%&@b>=$p`K(oc7^Y6w)t@`RB372N~>tUJ`kVyMUIInaAeq^;Q zCX;t(UmJ3Y-=FQbHgv*5NOkmMP64KZ#)fhy!Yung`?F%6t`Z+t2we`LT}ET4>}C>B z-6v=bfHSunt3E5&n@%>bo|#dHS>RucCM)}Xq^iO2TK3?iy)oN(9owwuUYq13Bg@7C z5cfYoG**Op1M5vVUv|{d{ugGv4?pD0zAr1eU|jPwTgi3*n$CN-^PPjaHxr|YO0AKE zwLbI}78RIua(1HE9z)R)C7H(aufr&hGdH6SNf9v$Pe~|V9%HQdbGJ~UNoK(UL z(w6fu^Pes|=M1)EUEB<)0T-=m9~;l@_B~KWQP$fAcewtbe3m~q7 z@2BA?Lt_N$Jd~Mw=w{mzTi;UP>c>bu5(MMk#GL$*7W`zLd18WvnGL)yifq3mZ4Kv@ zVHSQ(5}DZdv9Yg5If1<5OK5_P z!{2POgW?M?<4?bET8VNSvs*o_Z_dPx78@kJdZV{@w8ah7IRjSNAsm#ud*6F%<7LTa zDk>BIW9p^(ueb^I>FoWFtM`BUkpGIC|J63H(RObBN83c}6zBP|_Ur0H+bo)TP^-N+ z{SsR&=N=PD;fJLfS5%kel$R9O$-pPCgAF(+#x=SDw@NO0I5KscGgSxl5$J5!!D-(h zSFr`|kRy7FLYZy{sQ&RoX}j=i^oyt)Wk{Rr4Pp(XMRE#Svika~8se zsoVjl9=-+|KU2!Z^UzE|@I`;O2UBpydO2Qps&m;2l>JiG+Y&R`ol&3L#F9lnB0Mbo zdvfZqPx3jm@)+_lK(!q;uAOJu>2gtx(mZGY;tnS4YrhNp-iOf^V6>Xu$l(EIX_?Pv zj?pM!|B)M5aRG#AOOxdzp;YzS1uT+P10^&Nk#WKAwb@Yjqc(Q$sv%X@ikdyRf-TaJ z_1`ZpBDD@qP{V00*^bSSgF^a>XRyzWTV#-1#R=wU`i5t|+0H@OEZ(!QWo)u#bhx>^ zIEopMzdme_u;EUiy#RY+rRQR@X^JzF0^L<0?lXPDQnbJb>$P~Sf^&P8r0k$a1Aak~ zwsMXtICy8HTaaDmN;BMsJ;p44vE~#F;OPWG?;0;) zk)!7_#6*Cl>Ux=etxt3Xk^G?9qT!kIYw$ph|3+e_Q-8zppOEqLz?;Tlr$>VyhG!8?)hcu> z0S0pYwX&d6zXzC)pb^fJl$LIjr0K5815!K>SkQayf*R-6!~N^NNri@?ljASP3E8?P zzYY#*4|`+!szxi#c<$L5{ULh>w!#&d%qqDiL}5`p{Js(myY!XA>h2cR)IGJgblpHZ zKjOPKv2^mEwR!J@ze5x!XFVNw?$GLG&i?`8RA~9gVq`D#krN|q8Rm0qiWv=pA>%%Q zd)QRf2c^nUFO_D##AbBf6Wa{Y(7}zP%#B;;Ix~WdW#k_~b;qlL$Qy}mqTPy+mM7$* z-~Vv1tn3_0QD{P8$o(HcQUySFX`sVaVMPC3AZjY85zn%z56K9M! zB@~86@r$=g{)ysC_OKlQpi;M4eQ+O5zu5b8%{wryPB2@9L_t&UVD7p@IYN1^19b)K zEjGSKa`vJNO*yQKY<!W=*W?ZsGjInAow5%%`$HmJvtRy zO)JNx4G@g{EO<+U@F4c|)}CXKDFjD9Bxk`nuyC@AIt&bkxJtaG8(le1R1%VfTGtJ> z@FQtb5H%1Y-)^`|Y(G99%Np<7(5K~G_A(V-t?>KU?JwDqyS&Q0O1C6oA_u`t3*W>W z++W<*|D9;}q7#=ccVmHuv9CPC%Ma~s(7$>D4%Hmt!Zb=%-enJ#{Z+DQIyy=+*e?=u zN)f~sL?PZ+c#BfcI84#tfn~H<<_$7crg`%_ZCqBkgr5!#1*=dAoO9LN#1h!X zRXOe52ca;y_d$pl_ak#8%gymfxE`ojNpV;I07hv}bDH{pyk5ZAxctxu$Au2;tu1n$ zR@1!)8&)qsn;pe$kx4?xaWkRsS~{9$A2}{8r%}~~-^RY^T}eoarWPDHKTcR9Ar$sw zOefgA#*cs6TBB$JL6@sl))hjgCG_N|dKg(2_TO9BY_|tVVcy31^QbthqDmgxQ*c6- zi5xBBUD8yXOIkl4q$f8FY+?JoysPUN>D*Lm9^Us=>Gs<<(V6ALul9GC37gs+R7f+b z=yde3RkIWOwZ>#YkKMcM$LehNw;!`+*Dm&8C|4FIt*>EUpLVf^7@;CI`JhP{QkMy7 z(7ZISu}9*7z2Azb0n&=<#+%ZCv$3}jV}yYl`>ow>*s%@_Z@m*2sqfTBDWno;_fYfi zqHH&Mp2x&{*Xg@ zOW|U>WZH~Fzis_@zd|A!D&=0n0xgl{d?U5-pAH`N;;hIeAj28I`G@2O)5q|Yg`n=3ylf4B)cBD8Sa?b- zV{XviwJ>viLYvjLq%7g)9AprAj+Lr~HPZEjZiCVIQjSvM4eqo{b%#iN+ck)4Mb%Wn zJ(nx63H9gsrG!U9PsdHRtdj0D;{pTa_k^6)`{!>`nl5AAjX(#$9$`A*479JWnChH` z@r?DrxgX(=m-t7&%)6JjNZM`vz&6Y_gytVWaHu2tvUfw@b{@hB)wnt{dNfOFSZ0SD5g75-2T-6l_@+)dl8IHlisW@9r;H?wfTES?5cS8NZXdA$y_b z!cZ|48APTrq^{c5F@8x`5Y-Q@C9()!H}B3&ZEr8KmVZO#i+X|S?+&O(ChWu(=5@4C z5gg5vn&JK+k#RvQWS*(HCg^WBWUF+X-})GGf#*G#b;H2)1F0b0Ho zZmzsvwL`Y*&QZ`WM-ptC_PC3Pr62pO#ruWj_zjQJ0xKf#AI#W(yF#mPkL zkI^3Z1L2l;H~1!sNJuTOArgQE$c5ds)^;1HTcLpCHiQA9*=2l>SFrFyAmJb|i=#wymD zDhMv$M5g{b2A#ICT>7ah77?5$$_}T~Ll7Cas^`k~5ruYPQa=A)gy%DEV zzlLhU%TG%PxC^CQ(w*9@$i5gX4vR1aN>R2RI_<&8h8P%fzq-F=kPUFoeSD`NRVQa9 z1dq^zx?kw9*7nLO5=muo6H*5|bx|VWE81Y!uD3Ov{!jqxH;fV2t_Pb!obpX#rui%> z-0-%l{9?jXv4m` zr;b1?BMLmbX|D553q>kAUf88V0au99dV`O=GIk8H?`tjwc6uj2cI#OjBc5P{`3)rx`y^3 zo#duFaJ?T)_ygiDjEj{&oF+q;qHsAHXfd>h z{CO-msVWP}as7fGwkiNdb`E>@9n!M;CfXm@bt%kHXs3VxAvR=jiQawY_a+E7;-Qo0 zS@5nyr`FV1(`pcU%RD5RW|KiOw>Z>>!Hr8z>a*m6Xd3$vgEb@dqSqrDGOqy9k{>Dfg> zuFqb>+&F(Va;mX{Rg8^vnoo$*SJ7MUB3Zh`##YOq)9o3)cBc7psm8*_1Eu?m?HmJc zQccXaLD+ec=<7L7d@o@WQp?GLV{&;6tRwSCSmDVS6VDjTcJH$aZ z#@*H)WpCd}?!?SsH?*j#tk%c({P6(NG<1XRnE`0iFf~fpKiFFI?49@L(VZBI5sZAD z@t5k#dU~y4{t>BTzLoMoy$78TNDB?;R~GVVOV$cY< zi3U0fIKct)Ju~V`eetdDIH~Iq3}G)qk_A=UR^P||zW_A@%KVHDa$SyvX=TW57unm- z+;+*?=`>p|c)4G@2>}&EK?QW;5RJSrbBCGEJ;wh4Co#~62tAo;U9t6T`2`?=Ejl0( z2rP&AyLqf&&H^T}r?-#a=1@4+#RN-b{CvlzQCh0ocd2R30-pm3?6`8gZ1jW0639;1 ziSyv~l!SFw4_lp;+zhep!|?V3QomeHCuZ}V#7b-K%{=@PrLg1njf8q3ELN)ix|GIa zs~2g-eVAj{xa6>(y;oDkh3e8i+se-ba6p_f-g7^c(i-%#Fc zA*-KYI6s(%2CWzO81m3ixgX-#lhz=>0kCx5<5D0ELdX=qK+MXl3foN@!Oo>R_vfst zC>Tp_V<)TB>B}!Ip0@{1W^fFRv6?6b(aO35 z=tY3m4nec!PoHA6i@h%ovE#_iw$k);Mk|4%xJ`_0C?Zut=2i7rD-@XXamfI0{B9!t z#aB5fD-L5Vb z8x9>`^(o^!d2vR{Oxi*bY&4VJKYUZf e9R~Y<_6vCA{{V)?D_ihpo}XZVSyq>$ng7`Wly= max_iter: + if stop < 1e-5: break return h, r From c54fc924c3cf52b8bd5e6f5a9fc128388e2e90e9 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sun, 22 Apr 2018 17:03:04 +0300 Subject: [PATCH 006/144] Update notebook --- docs/notebooks/nmf_benchmark.ipynb | 378 +++++++++++------------------ 1 file changed, 137 insertions(+), 241 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 4b9dcb2e19..6d1e86b4dd 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -13,13 +13,20 @@ "metadata": {}, "outputs": [], "source": [ - "from gensim.models.nmf import NMF as GensimNmf\n", + "%load_ext line_profiler\n", + "\n", + "from gensim.models.nmf import Nmf as GensimNmf\n", "from gensim.parsing.preprocessing import preprocess_documents\n", + "from gensim import matutils\n", "from sklearn.decomposition.nmf import NMF as SklearnNmf\n", + "import sklearn.decomposition.nmf\n", "from sklearn.datasets import fetch_20newsgroups\n", "from sklearn.feature_extraction.text import CountVectorizer\n", "import numpy as np\n", - "from matplotlib import pyplot as plt" + "from matplotlib import pyplot as plt\n", + "\n", + "import logging\n", + "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)" ] }, { @@ -35,17 +42,44 @@ "metadata": {}, "outputs": [], "source": [ - "vectorizer = CountVectorizer()" + "from gensim.parsing.preprocessing import preprocess_documents\n", + "\n", + "documents = preprocess_documents(fetch_20newsgroups().data[:1000])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-04-22 16:56:15,042 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-04-22 16:56:15,285 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n" + ] + } + ], + "source": [ + "from gensim.corpora import Dictionary\n", + "\n", + "dictionary = Dictionary(documents)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, "outputs": [], "source": [ - "bow_matrix = vectorizer.fit_transform(fetch_20newsgroups().data)\n", - "bow_matrix = bow_matrix.todense()[:100]" + "corpus = [\n", + " dictionary.doc2bow(document)\n", + " for document\n", + " in documents\n", + "]\n", + "\n", + "bow_matrix = matutils.corpus2dense(corpus, len(dictionary), len(corpus))" ] }, { @@ -57,22 +91,23 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1min 6s, sys: 2.62 s, total: 1min 8s\n", - "Wall time: 1min 26s\n" + "CPU times: user 6 s, sys: 3.64 s, total: 9.63 s\n", + "Wall time: 5.47 s\n" ] } ], "source": [ "%%time\n", + "# %%prun\n", "\n", - "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9))\n", + "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", "\n", "W = sklearn_nmf.fit_transform(bow_matrix)\n", "H = sklearn_nmf.components_" @@ -80,16 +115,25 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# %lprun -f sklearn.decomposition.nmf._fit_coordinate_descent sklearn_nmf.fit_transform(bow_matrix)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "184.4018340532723" + "554.6444386890174" ] }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -105,200 +149,64 @@ "## Gensim NMF" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Batch size = 1:" - ] - }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, + "execution_count": 8, + "metadata": { + "scrolled": true + }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-04-22 16:56:36,217 : INFO : Loss (no outliers): 172.39495291355695\tLoss (with outliers): 172.39495291355695\n", + "2018-04-22 16:56:43,876 : INFO : Loss (no outliers): 389.3105355433292\tLoss (with outliers): 389.3105355433292\n", + "2018-04-22 16:56:48,380 : INFO : Loss (no outliers): 145.9595486163495\tLoss (with outliers): 145.9595486163495\n", + "2018-04-22 16:56:51,592 : INFO : Loss (no outliers): 151.99480174778157\tLoss (with outliers): 151.99480174778157\n", + "2018-04-22 16:56:54,430 : INFO : Loss (no outliers): 177.2928353871849\tLoss (with outliers): 177.2928353871849\n", + "2018-04-22 16:56:58,282 : INFO : Loss (no outliers): 188.18409794869066\tLoss (with outliers): 188.18409794869066\n", + "2018-04-22 16:57:02,207 : INFO : Loss (no outliers): 160.50397978534247\tLoss (with outliers): 160.50397978534247\n", + "2018-04-22 16:57:05,956 : INFO : Loss (no outliers): 237.7479754187301\tLoss (with outliers): 237.7479754187301\n", + "2018-04-22 16:57:07,425 : INFO : Loss (no outliers): 148.60375147751577\tLoss (with outliers): 148.60375147751577\n", + "2018-04-22 16:57:09,058 : INFO : Loss (no outliers): 219.84094739723508\tLoss (with outliers): 219.84094739723508\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Loss (no outliers): 0.038950696557992305\tLoss (with outliers): 0.038950696557992305\n", - "Loss (no outliers): 12.374291063883145\tLoss (with outliers): 12.374291063883145\n", - "Loss (no outliers): 5.156770519329132\tLoss (with outliers): 5.156770519329132\n", - "Loss (no outliers): 11.101843628855159\tLoss (with outliers): 11.101843628855159\n", - "Loss (no outliers): 8.05571876763995\tLoss (with outliers): 8.05571876763995\n", - "Loss (no outliers): 20.937706770574415\tLoss (with outliers): 20.937706770574415\n", - "Loss (no outliers): 9.203281161099605\tLoss (with outliers): 9.203281161099605\n", - "Loss (no outliers): 34.42102791639135\tLoss (with outliers): 34.42102791639135\n", - "Loss (no outliers): 7.452668767959762\tLoss (with outliers): 7.452668767959762\n", - "Loss (no outliers): 17.234370934787727\tLoss (with outliers): 17.234370934787727\n", - "Loss (no outliers): 9.469031763907571\tLoss (with outliers): 9.469031763907571\n", - "Loss (no outliers): 35.79605592661074\tLoss (with outliers): 35.79605592661074\n", - "Loss (no outliers): 9.930695094547113\tLoss (with outliers): 9.930695094547113\n", - "Loss (no outliers): 23.855288672906674\tLoss (with outliers): 23.855288672906674\n", - "Loss (no outliers): 16.001417025149202\tLoss (with outliers): 16.001417025149202\n", - "Loss (no outliers): 9.55008601559361\tLoss (with outliers): 9.55008601559361\n", - "Loss (no outliers): 13.841356680002415\tLoss (with outliers): 13.841356680002415\n", - "Loss (no outliers): 40.85065510536875\tLoss (with outliers): 40.85065510536875\n", - "Loss (no outliers): 12.744652326027799\tLoss (with outliers): 12.744652326027799\n", - "Loss (no outliers): 10.468451179150998\tLoss (with outliers): 10.468451179150998\n", - "Loss (no outliers): 9.5111665456581\tLoss (with outliers): 9.5111665456581\n", - "Loss (no outliers): 12.413725782917547\tLoss (with outliers): 12.413725782917547\n", - "Loss (no outliers): 18.459567068009346\tLoss (with outliers): 18.459567068009346\n", - "Loss (no outliers): 12.0280406120951\tLoss (with outliers): 12.0280406120951\n", - "Loss (no outliers): 7.495418633222251\tLoss (with outliers): 7.495418633222251\n", - "Loss (no outliers): 12.178799686127398\tLoss (with outliers): 12.178799686127398\n", - "Loss (no outliers): 26.09490848553246\tLoss (with outliers): 26.09490848553246\n", - "Loss (no outliers): 7.382669029738084\tLoss (with outliers): 7.382669029738084\n", - "Loss (no outliers): 20.18784940399544\tLoss (with outliers): 20.18784940399544\n", - "Loss (no outliers): 8.195858194007734\tLoss (with outliers): 8.195858194007734\n", - "Loss (no outliers): 19.073453244241126\tLoss (with outliers): 19.073453244241126\n", - "Loss (no outliers): 11.015916035391722\tLoss (with outliers): 11.015916035391722\n", - "Loss (no outliers): 6.117928220800243\tLoss (with outliers): 6.117928220800243\n", - "Loss (no outliers): 24.481227357299467\tLoss (with outliers): 24.481227357299467\n", - "Loss (no outliers): 8.079370229134362\tLoss (with outliers): 8.079370229134362\n", - "Loss (no outliers): 11.075806135107728\tLoss (with outliers): 11.075806135107728\n", - "Loss (no outliers): 9.425534564232073\tLoss (with outliers): 9.425534564232073\n", - "Loss (no outliers): 19.333868563719932\tLoss (with outliers): 19.333868563719932\n", - "Loss (no outliers): 12.822741250276753\tLoss (with outliers): 12.822741250276753\n", - "Loss (no outliers): 30.37861173995577\tLoss (with outliers): 30.37861173995577\n", - "Loss (no outliers): 12.512208273719633\tLoss (with outliers): 12.512208273719633\n", - "Loss (no outliers): 7.567533810002475\tLoss (with outliers): 7.567533810002475\n", - "Loss (no outliers): 7.06470567104734\tLoss (with outliers): 7.06470567104734\n", - "Loss (no outliers): 32.290943231864574\tLoss (with outliers): 32.290943231864574\n", - "Loss (no outliers): 15.053705449922923\tLoss (with outliers): 15.053705449922923\n", - "Loss (no outliers): 8.317901684857246\tLoss (with outliers): 8.317901684857246\n", - "Loss (no outliers): 6.416813778667191\tLoss (with outliers): 6.416813778667191\n", - "Loss (no outliers): 15.64553528400279\tLoss (with outliers): 15.64553528400279\n", - "Loss (no outliers): 9.243535219647907\tLoss (with outliers): 9.243535219647907\n", - "Loss (no outliers): 12.334114487784525\tLoss (with outliers): 12.334114487784525\n", - "Loss (no outliers): 12.449352795482557\tLoss (with outliers): 12.449352795482557\n", - "Loss (no outliers): 13.07237485060571\tLoss (with outliers): 13.07237485060571\n", - "Loss (no outliers): 8.62853400143313\tLoss (with outliers): 8.62853400143313\n", - "Loss (no outliers): 15.022484950792576\tLoss (with outliers): 15.022484950792576\n", - "Loss (no outliers): 24.20316004567587\tLoss (with outliers): 24.20316004567587\n", - "Loss (no outliers): 10.926948214171357\tLoss (with outliers): 10.926948214171357\n", - "Loss (no outliers): 21.04953591162799\tLoss (with outliers): 21.04953591162799\n", - "Loss (no outliers): 8.105861676083574\tLoss (with outliers): 8.105861676083574\n", - "Loss (no outliers): 8.991843019929233\tLoss (with outliers): 8.991843019929233\n", - "Loss (no outliers): 79.39682275013223\tLoss (with outliers): 79.39682275013223\n", - "Loss (no outliers): 10.356438700988457\tLoss (with outliers): 10.356438700988457\n", - "Loss (no outliers): 12.470667599682885\tLoss (with outliers): 12.470667599682885\n", - "Loss (no outliers): 10.097102365790596\tLoss (with outliers): 10.097102365790596\n", - "Loss (no outliers): 6.242469380938351\tLoss (with outliers): 6.242469380938351\n", - "Loss (no outliers): 9.267549639922377\tLoss (with outliers): 9.267549639922377\n", - "Loss (no outliers): 25.806582648056143\tLoss (with outliers): 25.806582648056143\n", - "Loss (no outliers): 14.691700011540236\tLoss (with outliers): 14.691700011540236\n", - "Loss (no outliers): 17.462453816250207\tLoss (with outliers): 17.462453816250207\n", - "Loss (no outliers): 26.80918366647814\tLoss (with outliers): 26.80918366647814\n", - "Loss (no outliers): 13.605811890579686\tLoss (with outliers): 13.605811890579686\n", - "Loss (no outliers): 93.04839048139912\tLoss (with outliers): 93.04839048139912\n", - "Loss (no outliers): 18.547493239355923\tLoss (with outliers): 18.547493239355923\n", - "Loss (no outliers): 11.40921862343962\tLoss (with outliers): 11.40921862343962\n", - "Loss (no outliers): 12.004889733544003\tLoss (with outliers): 12.004889733544003\n", - "Loss (no outliers): 15.672229862000012\tLoss (with outliers): 15.672229862000012\n", - "Loss (no outliers): 10.7351376205454\tLoss (with outliers): 10.7351376205454\n", - "Loss (no outliers): 15.280082804718022\tLoss (with outliers): 15.280082804718022\n", - "Loss (no outliers): 13.34125963177601\tLoss (with outliers): 13.34125963177601\n", - "Loss (no outliers): 8.31837844576086\tLoss (with outliers): 8.31837844576086\n", - "Loss (no outliers): 16.439200214070663\tLoss (with outliers): 16.439200214070663\n", - "Loss (no outliers): 44.56586798594561\tLoss (with outliers): 44.56586798594561\n", - "Loss (no outliers): 13.148496990162915\tLoss (with outliers): 13.148496990162915\n", - "Loss (no outliers): 29.46655498207862\tLoss (with outliers): 29.46655498207862\n", - "Loss (no outliers): 10.16015553528117\tLoss (with outliers): 10.16015553528117\n", - "Loss (no outliers): 12.54050298154768\tLoss (with outliers): 12.54050298154768\n", - "Loss (no outliers): 12.180236965016617\tLoss (with outliers): 12.180236965016617\n", - "Loss (no outliers): 19.632289551790386\tLoss (with outliers): 19.632289551790386\n", - "Loss (no outliers): 13.660937279688838\tLoss (with outliers): 13.660937279688838\n", - "Loss (no outliers): 13.264757151870135\tLoss (with outliers): 13.264757151870135\n", - "Loss (no outliers): 5.580371878343957\tLoss (with outliers): 5.580371878343957\n", - "Loss (no outliers): 11.29326706617692\tLoss (with outliers): 11.29326706617692\n", - "Loss (no outliers): 22.816690860393603\tLoss (with outliers): 22.816690860393603\n", - "Loss (no outliers): 10.29782214343046\tLoss (with outliers): 10.29782214343046\n", - "Loss (no outliers): 25.793446317733512\tLoss (with outliers): 25.793446317733512\n", - "Loss (no outliers): 8.654298239344161\tLoss (with outliers): 8.654298239344161\n", - "Loss (no outliers): 10.21094842006212\tLoss (with outliers): 10.21094842006212\n", - "Loss (no outliers): 37.70098456901404\tLoss (with outliers): 37.70098456901404\n", - "Loss (no outliers): 9.598370318193728\tLoss (with outliers): 9.598370318193728\n", - "Loss (no outliers): 9.705844803190418\tLoss (with outliers): 9.705844803190418\n", - "Loss (no outliers): 9.343334233031726\tLoss (with outliers): 9.343334233031726\n", - "CPU times: user 36.2 s, sys: 23 s, total: 59.2 s\n", - "Wall time: 45.1 s\n" + "CPU times: user 55.8 s, sys: 1min 2s, total: 1min 58s\n", + "Wall time: 36.7 s\n" ] } ], "source": [ "%%time\n", + "# %%prun\n", "\n", - "gensim_nmf = GensimNmf(n_components=5, lambda_=10000, kappa=1.)\n", - "\n", - "n_samples = np.array(bow_matrix).shape[0]\n", + "np.random.seed(42)\n", "\n", - "gensim_nmf.fit(np.array(bow_matrix))\n", - "W, H = gensim_nmf.get_factor_matrices()\n", - "H = gensim_nmf.transform(np.array(bow_matrix))" + "gensim_nmf = GensimNmf(corpus, chunksize=len(corpus) / 10, num_topics=5, id2word=dictionary, lambda_=1000., kappa=1.)" ] }, { "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "439.7319206635389" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.norm(bow_matrix.T - W.dot(H), 'fro')" - ] - }, - { - "cell_type": "markdown", + "execution_count": 9, "metadata": {}, + "outputs": [], "source": [ - "### Batch size = 10" + "# %lprun -f GensimNmf._solveproj GensimNmf(corpus, chunksize=len(corpus), num_topics=5, id2word=dictionary, lambda_=1000., kappa=1.)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss (no outliers): 50.345374071810774\tLoss (with outliers): 50.345374071810774\n", - "Loss (no outliers): 77.12037088692298\tLoss (with outliers): 77.12037088692298\n", - "Loss (no outliers): 49.35898441808472\tLoss (with outliers): 49.35898441808472\n", - "Loss (no outliers): 57.737151111560266\tLoss (with outliers): 57.737151111560266\n", - "Loss (no outliers): 39.81658588550212\tLoss (with outliers): 39.81658588550212\n", - "Loss (no outliers): 56.47023038205962\tLoss (with outliers): 56.47023038205962\n", - "Loss (no outliers): 47.951189976276545\tLoss (with outliers): 47.951189976276545\n", - "Loss (no outliers): 52.93036062308141\tLoss (with outliers): 52.93036062308141\n", - "Loss (no outliers): 60.82805880767195\tLoss (with outliers): 60.82805880767195\n", - "Loss (no outliers): 47.751924123962816\tLoss (with outliers): 47.751924123962816\n", - "CPU times: user 1min 33s, sys: 14.7 s, total: 1min 48s\n", - "Wall time: 1min 58s\n" - ] - } - ], + "outputs": [], "source": [ - "%%time\n", - "\n", - "gensim_nmf = GensimNmf(n_components=5, lambda_=10000, kappa=1.)\n", - "\n", - "n_samples = np.array(bow_matrix).shape[0]\n", - "\n", - "gensim_nmf.fit(np.array(bow_matrix), batch_size=10)\n", - "W, H = gensim_nmf.get_factor_matrices()\n", - "H = gensim_nmf.transform(np.array(bow_matrix))" + "W, _ = gensim_nmf.get_factor_matrices()\n", + "H, R = gensim_nmf.transform(corpus, return_r=True)" ] }, { @@ -309,7 +217,7 @@ { "data": { "text/plain": [ - "235.55946506838575" + "678.6977129611604" ] }, "execution_count": 11, @@ -318,7 +226,7 @@ } ], "source": [ - "np.linalg.norm(bow_matrix.T - W.dot(H), 'fro')" + "np.linalg.norm(matutils.corpus2dense(corpus, len(dictionary), len(documents)) - W.dot(H), 'fro')" ] }, { @@ -340,17 +248,17 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -363,7 +271,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -372,7 +280,7 @@ "(183, 256)" ] }, - "execution_count": 17, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -391,15 +299,15 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 572 ms, sys: 153 ms, total: 725 ms\n", - "Wall time: 882 ms\n" + "CPU times: user 227 ms, sys: 224 ms, total: 452 ms\n", + "Wall time: 253 ms\n" ] } ], @@ -414,17 +322,17 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 19, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -442,34 +350,28 @@ }, { "cell_type": "code", - "execution_count": 38, - "metadata": {}, + "execution_count": 43, + "metadata": { + "scrolled": true + }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-04-22 17:02:33,972 : INFO : Loss (no outliers): 4649.176186445958\tLoss (with outliers): 4649.176186445958\n", + "2018-04-22 17:02:34,794 : INFO : Loss (no outliers): 2545.831439439685\tLoss (with outliers): 2545.831439439685\n", + "2018-04-22 17:02:35,144 : INFO : Loss (no outliers): 2157.622569525167\tLoss (with outliers): 2157.622569525167\n", + "2018-04-22 17:02:35,348 : INFO : Loss (no outliers): 2111.146762974082\tLoss (with outliers): 2111.146762974082\n", + "2018-04-22 17:02:35,464 : INFO : Loss (no outliers): 1428.3477896008337\tLoss (with outliers): 1428.3477896008337\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Loss (no outliers): 6847.244327624558\tLoss (with outliers): 6711.622125561542\n", - "Loss (no outliers): 4356.246832173107\tLoss (with outliers): 4319.148378487362\n", - "Loss (no outliers): 3816.763966395636\tLoss (with outliers): 3801.7012657135415\n", - "Loss (no outliers): 3783.0229750875146\tLoss (with outliers): 3776.92928281768\n", - "Loss (no outliers): 3538.6024345874425\tLoss (with outliers): 3534.493496826403\n", - "Loss (no outliers): 3493.1545028663386\tLoss (with outliers): 3494.5782004996395\n", - "Loss (no outliers): 3527.266991690135\tLoss (with outliers): 3530.389212896685\n", - "Loss (no outliers): 3532.976701348588\tLoss (with outliers): 3540.374126706496\n", - "Loss (no outliers): 3338.930054172826\tLoss (with outliers): 3340.5861231094664\n", - "Loss (no outliers): 3272.141047105983\tLoss (with outliers): 3275.781551396264\n", - "Loss (no outliers): 3448.207329027923\tLoss (with outliers): 3453.2536403398108\n", - "Loss (no outliers): 3267.5239311568457\tLoss (with outliers): 3272.506192900864\n", - "Loss (no outliers): 3331.8821100413943\tLoss (with outliers): 3337.9119031766822\n", - "Loss (no outliers): 3266.9536910604515\tLoss (with outliers): 3270.029625972191\n", - "Loss (no outliers): 3337.1160557256408\tLoss (with outliers): 3342.1074449994894\n", - "Loss (no outliers): 3311.979105735641\tLoss (with outliers): 3314.97170241174\n", - "Loss (no outliers): 3200.555995936755\tLoss (with outliers): 3201.7738917514953\n", - "Loss (no outliers): 3369.379920355404\tLoss (with outliers): 3375.275282326241\n", - "Loss (no outliers): 1575.6670968351984\tLoss (with outliers): 1575.8578834612426\n", - "CPU times: user 31.9 s, sys: 199 ms, total: 32.1 s\n", - "Wall time: 39.4 s\n" + "CPU times: user 1.62 s, sys: 2.4 ms, total: 1.62 s\n", + "Wall time: 1.62 s\n" ] } ], @@ -478,27 +380,28 @@ "\n", "import itertools\n", "\n", - "passes = 10\n", - "\n", - "gensim_nmf = GensimNmf(n_components=10, lambda_=1000., kappa=1.)\n", - "\n", "np.random.seed(42)\n", "\n", - "trainset = itertools.chain.from_iterable(\n", - " img_matrix[np.random.choice(img_matrix.shape[0], img_matrix.shape[0], replace=False)] for _ in range(passes)\n", - ")\n", + "img_corpus = matutils.Dense2Corpus(img_matrix[np.random.choice(img_matrix.shape[0], img_matrix.shape[0], replace=False)].T)\n", "\n", - "gensim_nmf.fit(trainset, batch_size=100)" + "gensim_nmf = GensimNmf(\n", + " img_corpus,\n", + " chunksize=40,\n", + " num_topics=10,\n", + " id2word={k: k for k in range(img_matrix.shape[1])},\n", + " lambda_=1000.,\n", + " kappa=1.\n", + ")" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "W, _ = gensim_nmf.get_factor_matrices()\n", - "H, R = gensim_nmf.transform(img_matrix, return_r=True)" + "H, R = gensim_nmf.transform(matutils.Dense2Corpus(img_matrix.T), return_r=True)" ] }, { @@ -510,23 +413,23 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABVM0lEQVR4nF39244kSZIkChIxi6ia+SXyUl3VPTNnFjgv+/9fsw8H2H1YYHa6u7o6M8PdzUxFhJn2QUQtso8DhYyKcDdXlQtfiIiZ+a22REJISuYbhlenQiR8K9Ws1P3lDR/33+7HeDRpSKDZ5j5uSYIwQDR6IU1HCKmtQLWQoDLCMsAxBMKqwsYQKdq+HYGAQJBwGwBZqrmLKDBue3opY7gXiBxQH6FQG0NA6QkY6cj9swksASC6MkUluDksyewBykrZX/KhHEFzjgQZo5AkKKyv9QcSJCCFkJkpAhAkABRFEkgZeP4ESBppIgFLECQJEf/1S1IqJRDzO0AABNeHgsT8ZSnBqBEjhlmVDIGMkUqNCIGZCYA0AOsdCNh89ufnADSRSULS3D1zERKFAtCFECRRGUhQUAKEIQttjDE6bvevNkZKIEGrVgzYMpCUAEFQEprfACVNAxCgDGSCMZcxAaUEJRLZkmsxTKEAgTAIAoRkFwyKkCgRAc0FiEgBGBIMFNMyE4wAlAOQyCqBpMzgCQZIdYkkrNhaACuZa10EiJmIVAgBkKYi79577zqOYyQLBrYDLMWLKT0OkSBSEiWggNUqWwIeMMks3agALMAUSaYB7l1Qap07QhocIJkwBy3hhDm8OGlWlPM7RVGpPHeJJFmKmaQMQQknQNuj0YxgcQrMFG1LiGaeMhI0WCnVoZGAIFOCIdlAzgWQNEjSYkSHmyts6zKvpXiGjQwiIQmyNAC0UqvxAV7umZHmmKc9SbMIygw0KzVDGaIhRIE2EkGSpjSYA04Q5l7M3GqGkBCRSaUMWg9Jc7iXTAiQJHMj4deBNDN42UqCOQQraSx124b08YgEs2wXMI8RQBJIWibRlx3IlJTIMUYKZQcTpMnKtVSPKCP7UIYEUKA6IcmQwW0fLXqHgeC0H2We7GkWKEAhcyYZJJCEZJAU64SSLNteEWZ7DCGY0UdGCMhUkKSjFnBPIGWiRlJIwkhTKcay7SXBPgYgbFut14t7/P2zdfQs206GHqZp96YdmufSYKU6JAYyRTpBmpFe920rY9T2kJKAYACeVsYNVvaeQuJpB7WOqxUNgLYMldPAXJZs2kOQMLC6Wd0v14vC/BJdCmZvY4zh3SPTQEPFVsELhJApcn6GyIKOWp31stcwPponkPWy1ZeXbRuPcAezXF5hA7euBCTQiPUshFmplciIICDQTWmVgdFRYGqDNK3fCKXgSio45PtrD/l6HcxT7nMN3GReTUlLd+tJmJkth2KOUm0HLsW5Xy4vF4aXazRhMI+jj969tJFBwlFZHKJSgJEgzUuK7DG3E1A/kkPcXbm97vvb+2U/vsaDQ71sF1ofTpLSdErnZsz9NlkSgM0LObwg1VtW1xgxfZnW98NLkghFWr3eQwdFkjBRSff5jm607XoPGLPujGEoZnH+Rpe5VaEUZynFzdzqNiAYI0OQPM0xt3ljdakYaXIHYVutQ1ATqIBl9LwHxa1uzHq9XN5/ue6315t6RJTrK7yN4svTk4A9T6N53RKJbgQFczdahRAZoDFkBhE/AgkXoVDK9tfbCAMpgIQlSUcCZjSWujnglnXjIc9iNM6AiCYrVoW9FFxe9pdLgW2vvYkd+SittyJqWMJYuFn1zOIk4Q64SilIxZiRCWlUH0S17WK5vV+uv/zT6/Xj73f0YBbOr+WMSPsRuZBea02JvS+DbCQFKQMwsyF7+tBpgZUpGEdinaRcZ0AziCJAM5/RibllrfAwM67AZa4WaUTdir28Xl+vBb6/9wY0xm0/2nHI2CPoLLZ7tYzt5g7UIJBuhBDD3VeI1VonCasWtRYDvdZixRwqvcl6i9Q6xgZMjwvAvNQqpdwAS7qDRErIgGDsWQK5XAAIUJIQiIz+6JHTz5Mmw4wRBbPiScLgxbIWuZsbBYoUaQZzK+S2lfry+vJ+ddTLexxgQ2zl0UoJJIfTudml1DKi7lXAFkZDMQBQCCYImeptGItoDmrw65rj9ug9QZS7gf3Wc+4QSCLzPAFW3Isy3QgazYNQT0FpEtEjA6HTcVDITEFIjcfHrY9YsQthK1wgaG5CBs3dzH2QNEBaEfg8AXRzL/vl8vr6Yrlfv0UDDw6DF/CIASYKa9nrXkbf9pJAHQTTkJnIEDxN6TmOEUKkJMTReB+X1/bHZ+sJlGjA6Km5AXCfATwFo3mp1TKx9U1blFoSRCxPZe4K5jwBAEGTFBIgIfqtx0wJQJIGzpSJtV5iYKubSrWsVV5gJmHmEetOmpVS6v7y8vr2anF5+aYGHhiUF+AxBikrrPW67Vvv9bKJ2AbJLBmZzDzduTISlASYEIpbbo98BIpdRokujBGSRFrQCDxPgNdaLFNupMnmnRrCfP1aoEyclwe0VIQkUMjx6EhB60E4j8JaVcBYtFVTrVkEWAYpWpI2vZe7l3q5vrz99Ma4vP6MRt7ZjbWeC+DFtvpyuW6j1c/vBC7DzLKMoWSGKJjNJMg8QJgJGkfXltZDZrWWpkS0aQLMZNNuQoTRS91qIq3nwN5LdcIQMJR9v14vxxUx7f/MZ1xDSppZCtHCAJqv4ILUdBjG7IcKB2Fr0+de2bpIM7z1Wrft+vL6/tO3aK9vP+MgK3sGGXnpg1S41W2/vFxG2/+4JLBVIG1GJLYDVmqN/WLDSznK5jRljv5QRbnfpEIrOQJjaGYGhlpKOisRKKXul0ultPteP7db3f1OKkAajHTLCCFhImDwIidpMJNh3FlRLN3SvciZAOi2XfYXPtILZOYJBSAqE0YZaO6lVi9127bt+vr69vae7eX1zRqtsscAR1yOJkDGWkv1gqzuDrhnmikj06SVVGZGD1cqU2To8fm98uvlYPGdKAYK4gx2QHMz0swAMzMz9wR3jFF6cQOoIKCIGBlH0wQH/nR5CSpEhbzAfZjNaErTBpR9v36rLYnS3cqwM4QQLH8YgPk/ejEz+uZuXsw2qLhPb7wMi5FQZmaelphASspOKoKDfr+1sR3ZRkqR4/HlSNllr7tFMZhAg0wi6TZddRma7yQTvOTlcC9OAEgDq/t8gAREA00JEokAaUxDBhJOWabNKwCIXvbLy0/XITTeRYOUmiiJCEhQZkYgQtMzSXIjcuIcfKYcAJ0CoEyt19dK3jIlGidOocyku1ERmRHjuFPa3q+v+6WqlCjrN81sEtPKM5OIMTps5Ljfbx/+YDIFwMmt1uJu7us30zMoKTJJcxIhRRe820iJUobS6WW7vv2ayfzUaB3dNHIGUwbT2nnoBI4yAVSDgUYzPP9VgGTIjEGOgyOS6jF67zYi02CW0AzABDODcrQYQCYy8PLrt8vlglK4zZWnoDBQKdAtMxhjDHqL9vl5+47wYSEAxXwvW/Hi7gMAKZbowjyHXpwZAuJQYfOhHAMLZjTfL9/+YuT4+0d+ttJq/YyEMgEDjDbPuJGSMkZGhl0OhOeMFiTliIgISjlitKhxv/72kZB/9aPdlV00ugfPM6QMKfp9RNaZt5af/vnXl+0yClFY+gQAE0xN+IpKRsTo8COOzz++PtNeeskUZObFi5Ewm94NtBQ1F8DMgUgghsCegQAJgUHBvO4vxdm/W9y/Stu328TH7Ak6zss8r8IYYwyYchgYiYzMiIjIDCaiZfSjxO34ugOyR3/0xxA0r+hcr7kAyRhthM17A7t8+/llay8lcljkDOc5b+REJFd0nymdcTJSgACa7/u2eX3JnmcWMONoAbRqPbjW/rRw6/MyM8bDyX4/+ggM9xCoBCghfzyxMjMjIlOjDRZLekMbY4yIzMwkIzIzEqSbL3htIqWCbWz0Wlg3ha71gQJFPt9sPO7UUGlBayMiIZCa0TsV04XMi6jpwXWih2TZr/vm21t+Za5YSzONpGC1sFtwvtiJM0MEMqO1xx8Sxm9fR+Q8o+TC9rSM5fpdOXMrjkdnjGAc7H0uwLrcmSl40X55bF3pP3AV+UuGla3YdikFr+Uz4KKUCQrI2+94vH4d5RHB3iMSSSLnm0B97kNk9IhMJYBp5+aBKLU6/aV5aga+gjRzX7BsaaQo5Dhff56vGO1eSo6u+P6ft36iiZNcMIgi18kLixi99TbGLdHZBvhg/7rdH0cfI0YoXUEjTKV6GcKZ1wKA7cPopXLbtgteHS1CmRghptR/j4/X9/sf5chAROY8AWPhzRpnFG09MifYvdwSUoAVM9m+mRESNJ6Q/vzHCa0988oToc/BR/F2HKH7VxNpRpNNHybq6bYQYcNt9NZaf/Qy3Bvw4Lg/Ho/WR0SEQkICpcIu29YB9yhmLgHiDoMVR6lm9uphTQIUQxAUH4/P18f4LD1jYp/QjCm0csl1wkIZ00bMi4kUzPfXt73m7lEV87o4TiTFyuVV9xYzDDttwPxPZvR+PO63UDvaSMoscpEkbkGZTcsqRUSM3kdku+1R7dBagONoPSIiIwCZKLNSiuX5YwCA8uZfVvcal5ftUt7NPj77yDQNEUI+7o/hjBLT9EwLfNqA+cRSxgDzpIaUeWIfoFGJ4hM/0WkF5xWYCQV4fvP5JSgzRuu3W2D0SOH5eWcmPE13MgaGsx/H4/G4fY7qPKSHja/b/X4cvY8xMgjCURKazMKPz4NYbKGw9Fo3qz7d1NwvRY9hF+8lV7i0IlLN5HY5A2UGMxdcotNAaAWccOdyhGmnC8OJ+IJ/ugN/OgGN96+vcbqUHz8179c8abDMiMHeWjsety/VgkN5MG73++NofcSIHDM3W07q3IXnQ9gZn/tWqxUnlEomzWHoD9e2ZQn82PLTb2ltK5RJzFPxdGrLPmcy8vTd6z2eYYcgJf7rAy2ajJmj9z6wQITz22faAgA5qbVAhI0xl8DzwEM6GK313qcnjCCBQIbmLf6Bzs2n1484YK5rpshMBTJGj61blj+fUv7Jc09LMHpCOWJdgYhJ5dFIRaTZgkKe53hiBTaDEPzfvvRcPP3p76bz4PKA5KS8BtKQD/PLp398RAkcysa8fz0ej/vjaG2eALOowzjj6Zh41PMEnGfMSrFiihEiYmRijEhEioX/dQUyJjK2jnynQRoj5v8fmRRo5u7QQK32hDJ1UgQ0L8XNZvBw3vF5s+atGjr3fzoOm2RE8QnrAwr2NKR7pG/58f1ut7UAx/1oj+N+jD6RaYPV5jZixvh6ml2WGagDYt0utjmih8hIzahVGfDCH+f/vIh4MuYZw4Ac65YtwM9mDqpF7K+lO3PRBUWX1BDiXNk/seRa0OAJATqKK2msHpyZBQQphqlbedzr/RZMHIpu2R5Ha0frMSKDTKP1nt4jMnOSpucDcXo1ZZ63MlNEikYuJ3eSrn+6pT/+iJWMnYCppJWzZkakBiOe/7Z+VoRmfho/IugfH895FTWZopXMIqGkFtRAihNkjuHDezsejwZzHMpOtRULRmTmxFojoBHTRT0vlyZIkMyIGDFs/oSIzAxaZFKRWU5aBwDSnu5s3ozJN2v5K0Weeeg4btKBr/uJpy81xVz10Qa9rtvIyTec50AZiyqZB82cLM40x+ZpEJQ4MQLE6O1R7o9hgaYczN5a7631GKEgk7B2d/Pbo/VgZEqEAMajS9FDgG0t7PvtmLYsU6AihRhH/HkBnveH9Pmn5QCma6Qitf6c/RCa7sefzBky1tKNniycmoHzDvzwMxlrRWySOcayGcy5uwxSdESsk5cxem/tGEz1zKB666P3PnIsdphs7vRH6z0ZivM35jGEHJaAf/a0z/sxMmc2ICBTyF6iPKNn8Xkrl3F/kka0UrPLzzh9eDsc6jp6LkB9uW8JyNF7j4gU6Jq3bfFN4uRQT4dKIEPsMpkzJymugYkdwDRstMOPVkiN1KDGmGc55rUmkzHS+hgxhQPnbmbvETEswXaIPFrkRD1O9wjlsAKb5P5JDXJCghJgEyAkXBrBOFmzzNEPEj35mLeDC8tFTQAarcdECXxe+5noSTyXSdCkH1IpTtvKwGTaQZiWT84Yh7UuAkMaUzKU094Jgiw5hrG3HiETaJ6igHj0oejzTdrg16OFuF5+nuqMwcIzVZsJK0naJNdgC5oxCNbZz+/MIUM3Rhz3nstomLFUSgpTz77URDO0TRoMEz2TUlO1RLNiaZYwEgYl50FcoYBmdtofePQ0YlAJTSxAT52VmRWfxJLBisQxIiXEV3R2Wnpvh+/29TiSLuRMUFJCdlkpizOZ+2huoFXDpHFLcTcWk+d9PNKmKk6BQ8NMEW3MuNhYCrcX2xEHkNET0srNTWP+SfOcGN2rCMiKx7n0U4BgIt2cU6lkUo7DsvVwMQ2BXFFgSqAtNQQx8RG6iBo3RgBx0zDK0oxmu917pJliSbRkmxWnihYmIYKAmdF89yQgswVGG0qyZaeZgKFUZndj9JECRDOru13eChQfXeiCgSwKMB2CPdNBpsSM6YtJSlPSN7NJE73W6tZ79qFEpDB6Ly5kYUeOHpGRyyEv5zzFSSi1OBAtLIE4EA4xaRC7PwKnL08QITHCUGbw+7wFNLjvHk6m0eWb2cWyZlcVpgxKiUwrZnnMcBy0sl387adq6LxFDtLhVhS0XtHm51MCkEyLFFFoZsoZ/dIEuBOsl8tevd3zOMZAIhU9soBplsqY2bkk0qaYz0pB8eK5baiw/jmogDpEikkqmaWF+dwDCdMZSsai5aIBE03mrH4tbaeFw8Iubi/WajyiBDEkHAIiDVbUEyoSrWyXd//5L/umRu8TlKYVBmk7bjPwWdHC8y6AtJxpQMoEq8Vkl7fXl0s5PuL2eWB63pEmCG7L3UxXbe4Lod03fxmmfLnyIm//OJgzJk6QgkXQLAKTBIJmZC5KYjk/cPIgAt19K7rQwsXBWrhZrNhMSwUJKJPrHBKile1av/3lsunx1XxwCdoQtOCkXP4UbhAGurOUwkx6EXxL+bab/Pr+/n6tdxvqGSNz5ThadkJPBJZTVGFlv+x2OaC8XuwFte/OpWmCgHnpnpqsGbTa8iHwHwswfZCWM6RZnsSConEcbYQiQHvGilinRwTNa90u1y1VS4TGMINldvPH5gP+p3BpMealsFSzTPMqlj1kdS/p1+vL9aVqp5lBA2kTkkEmMzKWD5hxN2FmZdui1CGYgb6xuJ6KjRWNcsL4KwE/kRuILJGJKf81MTLCVrAHATGwdx245fg4YliAaSXmx0PJ+WPTtpuzXOXvx37c9KCxp5oXsRgMoJ2QwnTNCvXDRKi6lXoB7P2tqlzfv72/1D1un1u0ISgx0phQ4T1zxAgqU6FEMsnW8nJrXw1hCXPEvYHuk1qZ7s1mtoWgIlkL6zFj+mB5AjHImSMKcC9O0qRQQKGevR8ajJjItc2fjpPbJt2L17K/Zn15cc0csyEeZZsKTgq0pwRYMikzZ/xgpVj95vBfvu3w6+vb+7Vsd5VSTIGAtYhBKXmbPACZwshQMgR/4PI1HoNhASslj24ifJHXc58ipKRSUypeWkwbgII/fZ1o0AyFaAlNvyUQCaSm3I/2A347sxqjke5UKVG8FHO4luzr/Owfv0RLaUUKTi++XQrr2/tOu15frldrxSdGi6BGQEgUPCKlDKOAgJQciYidj62ljeHMTEVM+2+YtIQmxickpMgl6Zx3KMuPRJ2n9MVKUSGzIEwOOlxym8KRE7WZ1mzZdtK9lO1yfcm+b1l8EpkJgDq5YRJPOd0PCJQ09+KlVtbLdadfX17eLp7Xoxa3qbzNoCmRiAwockXKgLjoiFNUwVKqbAFT005Bi+eeufr5/XNhxHkCns+l+TxVG5kbw+TMipLwpd/403FZiQcBmJVtv76+vUe/1Cj2Y8cJ82ciONdtrgA5BbETQjE3My+Vvu3Xl6uPfS9G5kAH+zIFHJFQpAtg+hnY0NzcZSjFtnqRnUkb9GSzOB8pJSmfryKy8P/2Wk8MERkz5cjAhPEkmgU9zXPujOXaRlCZMSIlK6XWrXuBUzS6WVGxUEBALszYi0MJwszda9n3jfV6vdIu+1aKudO8eCkq4JCdBl1PDu1HVpczNkZGKBgC6aRVz4WwTH1zgLRM0AsnFQOQpaSWKuz8FclIZmKUiKFm2TE0uZEYhhi1ek5owEROQjly8HG71dE/7/dby7LvcQkhRh54QB5aKgYCTtjyDPRaX95e9ssvu1//8pcrsJVS1B6P1lokXCougrmwtIlPcOHJ8yJkjB5CxijZH4pQktJGc6am+GL0IcKUyi5ebe2DlTpvxVS126z5SDEDMwoZJZPOskc0jpDluJSSjIkOT52slNl1v3+h94/Px1fLsl/bRekmDcb0A0pM5XFxuNGA4rCyvb6/XS7ftvry808vioIc4/j4vD0eI2nA7j1jbs8PvO689mmwbd8uFUk3AoosroClvNAJiUkCy+QCGokEzQ3wWmzdy2lPksMQD5QWOiIfd8kF3qDHiDGpMZg7E6lTHAREjONWvm+6tf7H7fEY8LqjyBTKlskZDWIlcDSa08yq0+p2vb5ery9bfb1cL+rsj9Hvv/3x/euhkYTXUmxqHDPW5QSZOhk1qzaT6RxQSyY9OOPTCbCdUK9O8lJnGASg6LRLZ3w7ZAcVQwd0NNETuEm3rkCkKUFzmAh72g9FjKPXakcf99a7aObOzIQ0FBYey2ZyQcRCKhEslhLczL26uULRRvv6uj+OjhRBL+4BYFGYT3uaIhQAYeOekQx6qX3k0Rd6T4slK1IwpamBneDPxN+RxT2hkxLNyQXF8D6yG8ZADxk6MgIrMp6wd5InsDFvYbN7rdHj6CNEqzu27sxZCPKkBwBIC1aY0jQa6aV6rbUWl4ciHvfHcfRhU3RgNmUPIxc9wXlcCSgAoKkx08JcR1Oe2l1aWtLmBVjLL9JY7MLHFGihXLfGHMdAAmmTOtMoLbK7RsADhjEXQGkQ66lqSBqNNmxkjs5V2NNG72ncXl/b/eYpKoDU2hOlIkB4rcONoMNm7Y9PuDKjt7w/Hr31MwXjcmsTZjwZJ53cnZKjKcGEZz1CAyZaAj61mSlFKOFuUCm1vmz/3P/tq0Ubw8rKr2ZctID6YORQDEQioEA+DTCfgcdyJAtNUEb2djA0NeKcxvfp9/9kvMRCejF/akEgKdMUERqjtzgeR+sRUzhoZpOKOf2f/Zm/WC5/otfMMfi8J6ezP//iJCBjWOtDNE+wmDspy9PNKpGBGEPDEcGABkKKGdIDT0KTZ0S4Fo3NHkq16CN5QnYz9OcZN59PTdJi5SCnEiDr8YCOfruN29ftcbTBtZSn+f7TUs4X+kFpp8BM2BjQSlJPr3Hu1do1dy+1YgtEZqK8cTAeS+KGlWTGiFAGIg2ZhlhJM03yHRl5GvWSRASBDGZ0s/nmSvj1j1HLgJE+uTSaWxJGN6/b9nlmBdEOZwH7MXa0/vXZH/dH70PKMciWQSWUyMS5+evNl/JoyeESEUFY8SABsyRIFeZIOm1zoF6u+89vfxuvvz3a110qr/uw/vWIXPAmQLMeJ2BACwIOCErZlqNcWzCRPlHDIMznzZylFQNKSKzvl7ZvA1YtuRUqxTKzKci8Xu8hMCVEP2iVeT/6jh63x2g9p15fUPa1NXoyv+TzeJ/GgLkOYgJeahBEKTlttAthxnKtlvX17e2ff/nruNTv9+hQ2a/hbRSewWZCqW59TBYCOZQYUASgWiP82iPTBBLmrilEUMJi9Lpw1TT6S3U3shTbuLkp0uoIwtxYtuvLh3Ld64geER2JgRH31kckEmaEoKGFpysTU3O8UCmdWOaKjMkcEeZlS4LYykjMyrqEVdbrZlle3n/+299+6cdn4H4nS9nSVN0SnFYwmdFtdAUQQXYFErMupL6P2H76HKdZ4fRh1Mz8JL9wLzba0aq9Gre6+3WvYRfG6N3rPUOsBZfXn799csDSyIwYmdF6j90iDg1Uxm2rxsMytORfnGYIpJXEgFZiACNqyWVNxu5+ubDk4TsyBMIvXh7+ovrtUkde3//63/9b/Xy9XEYtjhI5deJT3bCsR8bIBRc/j7cIf/lptMu7AYkwwqe6wSbwRiP3a9G2qR+3929//Sn2x227bGWwKtvDS+1kmkW2XaYcyqT34Y88uh0tNVzZTWXb87PvmdWbAgo88SwA9BKLxZwGVla2DsFtr9hc27XWXrYyvqb+omwYvmt7uWy9eXl9/6kD2dvRWpQ/Wvr4OuIkeQWMFmMkYgYdCU4xJMxffhqf+9WIKVS1yAyf4WRCSLlv5eWljPbdt63sl/vbdS8+sox8+KRwYNZH7zEUMVyApZfc9riPGI8KRc3q9aiXvXnVyMyIZe9nWZVZSSTyiXsK2/6wRC0vdVSPUl62Vq74YoQEh9fql6jFN91vl8fXH//413/719++vt9aln8UWbZ7R54gA6KFRVJBKrl4NAng9jKql8ypagUQI4uzAOxksfJyfdm+/bz1z377/R//cXvj5e21bCFv+iosdEuWLZN0M0QzZQSKOrzce3XbDXih7y99yxceBcaIPoppoSAEzUvkqT+ZDm7bfWKTQKlH8eu1jV+OjgglwcvF6i8P28qW48s/fsP/9f/5+O12PDqtfEcSUzzIRV38F82ETbgLStHKtojLakilXY+vpHNDgvRaL9fr6/7rX18f//Gfv33++791a3t92a5CeWCzdLk5t0sPWvFChWSRlPnRxqMPFjkdtl3f257XqJuKTBqVApRTg2NWxwCgRY2ZlevrJyXkyICb2/bi9n98/yrmIuvrX/ZH/fmPsfES8Vlu3/P//f9qrYe4WXnEsgEgjbMiDIYFoxvLki4pSdKdMNC8eI9R3uwLgjlmIcD19f39ff/5L9/uh/ePP37P16Ow7C/JaojH5mmklW0SsEaFEJKXGCM0Bogw+lZfv/3cXnTtW0lzE8RVBIoTRFv4HQDCa7m8XpBhlKxsh7Hs2P7q/1qsALa//vrW9ne7WZaS/Rjj8Z//ppR822rB0gOdQq9n1LhM42IfKBNVdphflJGKkYHeUyAdNtfP9svL/vr2qs2RE/Lfri+vskLG46tEsdTkH7e98IxhB+uI7MdANbmJZbtet355FDdjzPI7nIHjwmzXX1DMoBSIhCXS3Ot2uVrZq1MBKKSMoJWCl9ysXK4vKwnOYOG6WiKRPHU7XAnlumWlMH2IXgZpGjkrCyyPDksnoOilJY/efIzjMWheqva+73sttNJZi69WArIJhHqpJk8yM5UYfSAsLe9xf7TecyKbirHo3AWt0mgLvZ7HlRnRG4YwRS6llFK6bo+R/QCYn78fXzs/s/re3GwGWAI01CcgMo2LBCPkNBmNEF3uxemXi/e8D9lykjlmojpWXcAMxwO9916Ou26PAOHc9m2rPhtZzGgJImIxJLRSgiIyYjS0xnQOy0fc7/ejxRgpU0aETijgVN/OjN4nKUUIs5nJkt7M9Pl2bxFDBB6f/Wt7udnuZqAmdjkfmqVMnhAQE2YWci/mmWRaUbGtlPr+Xo5WHkOPR/bPHxrQ6R4ykKGM5v7d46a83H87hL5Z2Qp6isYvft3ujBZi9MjRbn4Eau2TkMtxoCdHHmH5US/M376nfd17iQQ5Jbc00jBLk7D6ipA0nxtoMHNa9mj6xCO37199Mlj9Ho/8+DKO272N9rG3x9l0hsUttBYAMneolAKLuQAo3Gu9/PLrdnsAR97uIz9ibcMSeWaGYmSMHvzgUXvb2/evHg8rMMSBg8Yv3r5uiJ7p2UaMduMRLJtGThFJwxAiezBqKdE+/qBu945IulFPJc46giLNSmDW7XCqjwgRo48WH+NIfn31GSf0+zjy82aIr3uL9t3vxzOxLMVHrpTK0qwoSy3wkbSwylr2fXv99Z+3j9sxpOOIuOWJuKwkVVOxkt3t5uHIfXwdqWOCHSNJw51H6xlDMIQU42E9UbZIm811FpKbAh7ly/B1L9aGaLaF5Ka0ianCZxcWk9dxYt7PDDkVPUfc8pDfjpiihGjqeBxm1npo3Gtv1CpPKV4PQCaASfOiKJvTStLom9fterl8+8u/7NePz6OzHwOPXIiQzVDsuQbJcVSR2uLraO0WiswYISvqHDEiEjAGoOg9xLr3YfMSDKQhMCi1fLjdG0aybLul3KuFrMBSHKWUGlEJ28ZMyAzmFqI0qCBDh3r6vaUZJVMgrHVfzXL6I2NaESNmG50p0qCZecqrmZWg06tvZb9e33/927Xuv33d8nh0PCJWccpJrC8PlZatJRA1PuO44e5Hz2JDRUxiioTpi6tLur28JVoK5jZ5eKaEHtV4HLRMM9eGiEITBaYIL2bmTngtIN0307bVqWtnppzR1NOOLhoT0IAUgSnMyf7IMcWUoJW6uZAOTRtQUnUz98NYeqllK7i8/PS3//lyuf79j+9qx9AjTz19LoT3lBEQ7RihUeLmmW3GU8qAY1hm9EjRMibyN8S6FzMtrRAcE7/v9oCOhwExEbgJ6jJEiTF72gCEzyw4OcmhuQ+DFh0xEq1rsoAxJLYePuWLB8ZpxqByynemdZmUnZlbTuaBmmThViAqo2U28aQ7p/JDmVPUNcqdNdCLjp1lYpLRW/eIG/J+tBhpypFDsn5Ld//8HDIUBazsbCxpJKLzGAMWLrLYqtldASuWzguZY0yQWvnyMQIgkPB6iVJSOcYsRkb2EW0Mk38cx7BDvorekSqdEZzd5DIwRkRvVrIHMtAKkA9+//vb9e//8dvXoYzMoM3AeYESGWPKyAOMhhxIRBiU/TFK9jasxJG6t56ZiCn76eoZ93LvQRjNvGjjlUUDBkdKQWSG6F4KZTrRdVt3T+ir2Am4s0cCBkaPmBJf5llKklQk0/vx2XoiupbbY2YZ6lPhGszEaDEafdQeiBQiFQi7YPvt9398HJNan5o3M67asoxpVCbmutQ8omW37tnHMM+mbFPQPvJ5Z7I/hlZ9QamqJpaMBN3cfYZONPNSDBJsVmuYTbZbinmPxXl2ASMDyFg49w+AY0LUiqNNeG0xVCRKj3Hi4koM5oC8ZAsQKYsc0Xre/PPrP26tnKlSCmacJ0k5ciXMUgzLhLlZ8YPRR/YRMEXm0TNTGCeSCyC76Cy+X0otvPjFLEeECIMpkTmSZu6glrpLNpcZSvbZ94Ocfox0tyQmsK3Vl2TBfAwxx62PRDwXBkCJiPWNTGUwAyqJEQAljojhx7jZ4/HRBkxAmk2h34k+5zhrrBSgh4nuXrwSKY0RSWZkG6mUxlzuJMgMmXmp2162ymsRLUZrqchMpIXYrGAMQEIkAAWo6BESxtmwBIqZpFZvFIIBJJf4f9oLhgTcRg8N+bMqCmV23zoRasVqypY59RSRGWzjYOv3ED0h+erihFP0seD7nHxdDrfi22Z7RqYwRsowcoxETuhosRWkyFLK/vJSt81eqtF6v99nT8iAJWyYWYY0690ABSGOzFnqLYpTegqSVtwEJCgmHQDPh+KAIIsRGlo9VSih4Ex8z8tylsxh4txIMZQcfeRKNLy4NJUOK3l8imVW0O77dX+xEb0PJDRkHHNtdWbak2CCTX3dS912f9vc0JtrMGfdcTCHZ0aEYlakr0K8UEhcm4VJNIpeL+UxZvdFZayCVEhEkpJ05Agtsc90hIUzx6LIxWhNykVMkzKRU1EZEfBSkFFYywzNfUGpkyc6KVvz+vLzt+u7b73VI9tDOcRVJvgU4wA0M4PVul1eXrd9rz9dHDwOi6aeJFMpBTKjDw0g8lxhaLLzEiCTzMwLWOu3ej8gmWEqmGa8Nn8AU6WciGdBGYGiPFXH64OBP5HQMS3oOJgJL4S5UGrpoYTxmQ3MhQBnoY5se3n92cdxPzA6ojd6y9l2UCmZZpGQkXCvdb9c9/2yfXup0OORD4ujiwpmZhCYcj2ERMvnDslOcB4kvZD79rr/HhEJCpHFz6oDUUgQHKtgaV82gCzIJ9rM0xgsGeqKdqUJNfiU+wCl1sOSMCdJ5uorA6AU0QCvr9++/dV5+xp+NOPoKkciZ8i9NHLTgy0beNkv18u3tz1z3+Ne4uhW1Cb9i1mHxZMFkjTbF0ILE6GXot14vfxy+T1TAwgMVHtmSH+KowSJF1/6dRZ7Yiv8wTjRT0EFTmspgF5LhbRt22OIKnMBqGdRICB6rfvLT7/+/M+FX3uU+8hWh8qYbVpM1MK2YcXN6rZfrm/fLteX61/f98z7Le81HqMamli3Wvda3WCUcmoXueBwWmKWWlgpqvTt8nbdZ/s9g8md+tNbnGd8EooLDlAxm+QaloB8+g2DImkz5s5TPtFbROsG81IU00qcKhlImTED/d4eR+/96+v7Pz6Pz9ujhxlNKZoJghHmhlKK+bZfrq/ffrle365/fXuBvj7jq7S9lQwUuNftun3WDpwqnx+FWElRQkCjxSBN+Uf7vB+p0JSWpJgw6M8rgFmqeXLdZZKr0PzsPDd7mbRcUkQAUDS69agjguaQwhUElwgDNPN0GrN97Gnxv+6//a97b8cx4F5SQRkF0BareGJ85u6lOEFXKbWUUrfSk65VTk8CiXUbcCoTsJJaKpoPgf0ol+/3DiVpVreJYJJOgk//Sy8wLF6BxU5Ro9a5OmuFkmYxr4WZUSlGM460TFkhM7UxbPYRmrmRe7q5IW7frfS/P37795aKIaulZnLIsPIIc08zczMzK15qrbWYb+hb3cZWt2KyCrMye0omIMVK2mb0MWEcAGQGQmJ3Xj57GJXOsm8up5DubgQiEqZIc595DKZc5nTmAMmzCGcl+7NZMDmreJCdCBXR9pI9Gq6PARlygqpwB5Sgsd9LefzWfv9tyDWSK4MgmUa4pRcfdtpac18bbfDVfAA5IzRaqeshT/bufMbTV5mZuZAZnf0RKkjQ7OWqrLIw+F6c4zhaToZxPgrgXqycfTHmp876dZ3F6Dl9DZFEJtedi0wWiYPbbNl1Pthq/SDFAeDxe/v9j0Cl5Ll6JZzed1mNKcXOjDHGaAcL0frZJCUk5Clfpp2QL569T2ehPUUnwFQgET1hVJq8epB0qNRLrWxaRdtcNR+cfcsmXn36GGLhNXNFzCdtYDwVLpppOIAUNMbkKpKzyjhyqB/mGKr7MSIymJA0fCAjl2QGmSlP0MiMMdpxB9i3nl23r8/7/XEcs+7O3Eqt+56lpHqfEqO5LwytHrh+VuuvapK0FG0cnqvaP4eSbcKvTidotaYghYrVgDKTOckmzp5gM7bxsxcElVpK22ntHUWZpdiMHmfR08zeDnOX9Vk5h5yKf/ap6FoBSCSUpJOR0dvjFiOr7f2O2+375+N2f/QQQHfbL9eXFx+RObpsns9MangCljQVp1UboOC0TAgZLDkkOkh4tQJbfBLNKq8VbSTdWAqEjLGO8CqBeHY4oE24eQnbtTJxWLWUdEXJH7kEjRMfduesVZiQKWZPx5UEzAI5mqeUhEf0dtwiUWxvG+73z9vj0drIszqI9BLwiGX21sGfDVsIUylmG6lZgHHaCatlwJ3ppV6s8mazuNnddr4k7y1RbDJo0R9Y9PC8Got6PsVxMJK5RGo8GwwLVqOOmF4KBH0ZaXNKKGWYL+ABP2KP2TDSSpFhldPHaKSPEtH1uN8ej6P1MQaHlG4PttlPewxxnYBVPcaZ1819NS3eiCYZrUyzSlndbWNEM0BWq7+Un1TKETJ6ubJxHLMjj51CMpxSQK3AuDAxaITBioFWHTK7ss7k+8dxIWBlE73Wi7Yt0s6AFc8FFumlGM9cIqO79ziUA4/7ox1t9BjBIebgnUc/esYYYxJ4KcFmOnjGReapmC3F50kkrRYNcwG6vPhmiqMHYPu2/bT9it1vfZBetrpZ9yP0xLgFzhY3OaFuIpXESKNbyncqp0bC6CXsTO8JKAsheCG2l/ej9LuP2Xg1zlY3SFiwAC4hLDgiHvforfPYiuN4fP9+/7o/2gh0yZg17q11jbEuqnIpu6Ul3ATdrCQltxzhXmK1KjSJtFrpdPdCqF6u119f/olX2OORQtmv4Z0fplMOIgKjjyluTWBM3TUHzVgyyx6jy5joeYSbJXK2PMhJRWaM4Vauv950vLQJYues45mFLwhtiS0gG8rEaI+uUB6bm1r7+Lrfj2OMYFcQ3dvj8RjoPeN0RKBjIpkmKId8TPl+9cPlZRspHTUyh4yWPRvvXW7S/vr69ref/tn/fox49FbK9ZtKw++HQkuWCTJGzl73aUgqQTCNLBf17eUrRleaNX1NjdbyPxxME5WR2/b66/8R1YPH0YiYMK2vSDYlWJ08hmWOR4V6DNsJ9f71uN/jyEAOdaahjnEE28icLyzCONWRnH5ZZQynub1666i+e8+8bRYQ3KzhSPYxzKT99dtPf/vrf6v7967H0Ud5/Qn1iL3Onh+c4cGPHmBP4k0ArV7E7XobfWSvnvlR18WeqcNAcnp21pef/9tDbP3xxdWSDqTPRstk3fbdJ+woRFR5qqshNfq93w91TpTNIh7jh/2EncTkymUIIBPBAZjXq281vOyG0b/iEhgoLMfx1UHyUoXr+0+//PV//I+L//3Q7RFZymYV1Q1mzFXaNQWonKbQphOQaKdaJtDUsigjy0pOCIGzy3CgH3udHQTcZ8Iz4yUAmP2QXy6Xa9Usi42Rj2AfLTaFYhx57+g+CCAUibHN33IWi524xel+MzCvx0QNlv3OZiXUAQrx1eClyCDz6qVudb++te/3OgpyNpZJLs2hiARLnGbbIJhbJnw2lhggTciEIjgyYaIjsaRUAKDs989HGzgbwE4kImmsLNfy7brtr2igFG1kHyWzZyoU0bJ3jmnAkpmpvTw7sfCE8wTSc1WwzsKDpeKePW5y8VUgUzGSCowB9H7cvv9+3b/j+u2W4yg+e+bbGQKsHS199T6iJ+leIuSGSQDNsD45gzKRRp+MhRJps2Xc7fP2aHk2+lpPTfOd20+Xn6+Vr32AyBgRbXhkz5GhiKE2ODCzh8wchkLMpquT0VgZBe0EMiKANGiMDOmZyigRIBxjpCXmdJLMdjxu0cubtWz3Qp2J38pp5gfMQl9mxqxKYcSsoxtokZgSmnDkKoAtQdJTSlH9ng/u+7//5+ftjz+O1kbMgplMN6v+8tPbX168v94ekcnRe/CA9z587htaWsyykn62Gph4GpeibWFQtFxlEz0MjgjZvY0xO9UROZsUkUk3mx18xhjH/ev7fve3PdS/yiyp+JFk2uzAWs4cWbYsnABlSH7MJAQ2p6nkjJRAc5/trJg9jFv9xx9f7ev7GBGrv4xEq5f6/tef/vZin+8fnwOzRezo5jEGBKWSkUrm9C8kub3ss9gFE7PJWXBojpiYgEIMIo+wx4hgGxNBViaTyUTx2UBJY/TxsdvW/RVW9L1gpHKdagKYXRomZDL1ecvODpvwYg7SqkxEJ2d5CM1FWpktFwnFuH389sfHbbRHxrMNoUQv+/7+y1/+9gp/2xwQFVJmgJE/DiIxi3/NKOfL+4s3Gh2pHqkRAoxeZp0fpqKRQg5GKhiRgtmTGtOsj8ykIkZ8blb500t1G6U02ri30KwdhNEMcKsGpqa0F6TVQbilRI1i5sCQWBiRpNE9zevOrci2uvno7WP/fjsA0m01oppgRN0u19e3N33thZI0IhUxZp8qTmrV/ewEl5AYMUZzhxgas4/0KRhaxSs0o83saha9g9xmSaSQ7uWljkfmMLWbd48v38svW728jdLk5WixmnPPvvyzScFkVJ2dABWDcaIGoJPKtA3HQicWsOMmK9vF2Mfjdnt0KhYCMwtl17XSaXG0iNlMIkNT/LowemnyEmRrvTUrcKRmf3AIsNk9TrM+t8wRDmfCQfnV+xzWYdXL29YQVGq0Y7R74np7WE8r5WtL/7ofPSLFJQ3PHEfkKUaPlcJ7MJBMJWCbW3R8i/tEwdDHItskWK2J6K21Lo2VKk4dV0a/4/PfW3vhb7/fejAppK2yqTP5TAqYsahIs3EboRwI5upzDEDKMY9VMavFJyhxVjYR5V1iMZqVl+v2Vu+mIcx2zxo4fi/bOG6P8rEdfr/NIg2jglNI1HQChcvxzoB3ihKN9WW/x23/y/FHTaYQPQF4Gsmyve28z/KVyAWpAEiSAdzl/Y/fL377+8cxFBTT1mHgeniaESZDmmi15D1lSIFLori8/qAgsm6+b8iGKCm0BQjsv7ReWGll++mXy7fy3fOzQxqtaCjz71+WCpWvVu24t5E5sbUFAsQPAJJPZ1DSCIJ1f/3l9bOx/MvX/y6NwKzgtI0EbXv59W17fC5Ea5vyW81FnKLCzzF2P76OPnLQqDJxPrM+4QSYmQwmelrZNw+z2TEBC7lebY8k0LBd68vriNsRiNCQMo3Y//nz9ihXs3r5639//6X+ux2PptTB7RiK/f5F27ZajhjsbaQkK8v2a9XhAdKsfIYImFtJwFj293/66feHLv+P3/+vwywNITOvL60Ws5ef/+Xn8tu95QgSZaLOiYy0VSp3H9nKaD1DJ7mRyID3FcfO8SWemuhC9ok6JsSVmp32hDBc3vZvPx3DfGgMHKKZm97+5z9+v+3vbvvr//h//vq3+v/l18eRiDE2Rutod2zvLy/ly53R+1CK7qs8FjmeSPEJjoEwr5nyNN/ffk7/fPsr6iyJQ5JWLrYVt5ef/vZre/ktMrLKitMEBMcYxlCOHH/Ybdtx65ELKs4gMYg+50fSa41QGYBoXo5jZkbBnJ06bR0rkTBe3i6//PrZm3o22h0qpXi+/osudbu6Xd//6X/+879s9vv/vn5l5OjguN81Rl7z8lJGBiOeXfgWO6qcjD/PNRDcaO4WSWW243EcI+6PkQuVWX5+isbSSq11rzWelKspOVXNY3Sj4LDNZ8m6y1eIO8OtZ8fxiVDH6H8ihJ5EF2lptOKXy+Xl0lA3Qx06JGehsrURMWS9H/f7PR4tRAdy9KPfH9576nJ/Kev3ncTACV3Zyu84M3DQqtEQkoaU0VsfMY6WOTthz7ZuQaSO++d2H0LQuTy7PM+GpGdBVppvdeKvcclhHIIXYKIGOaa4RjEnfp6u8czNJydMM7etvH/b314696g2BtoUiY32eWuz58g47rcDj6PNlsqjPfpQRkQfkcVgXEpRLFE7eDZpt4W5TAyCpiFTK8DMgjRmW69znBYVGbh9fmy3FtMBKiKV8PTRA0iHkbVcarEyAfhIOh1cUyAEJbqYCYxEMkHz5AyoZgXDtIZmhqlh3LZixUvJmfqgh3I8Pm8tZi38cbsfuD+O1qXIvHsbkVZ932otZ9ovAkOw5Y10xpgLBkfRCUVT0W7f8fF4+H/80ca0Gjko/348LK09PreDZb+QLBFjBJSKXCNJFT1jIK01wJSZYeqTegsJSJMnIdcc/APBZAaXpdlSi+EZNXd92q720b4e2RGjdRtCqv3+cYx+GBN//Fsf9X/9x1cL5iIUKUnRvkqBwSbsjTn7Eqsgg0zaBMHlTs+kjEhDdvsox73f8O9fPVZ7PhDtqwek8fgsh13295YWLY/WY05+EqhQ47jh4aU8guaZUnSdrSRnEfjJeQlgRmdvSmgsdUSeiAiRUVK6YUP/jK+OnI2EklIe//h+jHY3G/nb5euz/NvfP/rES9xZVB5tDOlenuw3gXjGIiszOlvA2RpYYcYQFP0Ltza6/v1x9GSuBei3MQS1+4fDL/7eknkMKBMzvjYlxT46ZKM02YS4syNPWhKCTLPpRk5lcdcY0uTiFg1FAUwyEQTuubF/6RjGogNSGjKP/7g/OmEsHbr+w3//j++PMaeqDgAZMZJsRcnFlc4xKIKtvBOkiUaDajUNGMuUqWY88tFTNnobU7tCCXGEZAb1XjerL3UUbZ3EhEHnwhKr+keKMI+cuea58mszSE6MxaGp68lT3ahlqLSsc+rWNvSb9Sw+u4YkSY7Po0dLg/cc9WJfH7ceUJDRmfAQlUeWM0kTmZJh6YsBg+hJT4e8WkpWNl8C2aER6dFm0+0pklEOcQ6oq6+M7efeNz5adSMXvnEGlpMPSgkjASWDk+V8vr/RKobMZ9n86ZFX0RBPS7XQEF28V7DUV95KT5kl1focZBxJlAfbvc3pypbJWC1MepRJP8+64ZzNdHgqJeigwZE2axK2S3EyenIEUzvvmX9qkp9DOQ9Pedvx8mtvm3/diRh9pZZ4Zj2WtvR8OHlzevGnjZd5meSmpiQOBDxhtrrhzHIpLbaYxmK8XP/Cr1vPNO/I+xhhIhNHmnMcbWBCSDFH36UoloyllpgKBixXO7tcmUAzzUaWYtm8ZKZxXvuN7czgzlsEZUYE93d7/6c4Nt+/Pr9c0UcMpSunkk6cRcnLsS8U2mrxJR5LqFoOSDGvvYEyBzzObhQgzeBUcdRa6wZ7ffsn/+OrxaBiRMvQGgvd6RxjDEjBjKCf1hIlIDD05Fz+FGrhZDyeyeBKFdIm/h3jx0QKnt15iFVAE7G0bXxC4zPZmkIkW9nGGXyeB+GZhD2fwFI4C4p0qpgW7DkVd5ExjUkulRO5uu6IYCiZjJiST5HBDB8xZjM1BTi7nWc+w08mkjqbEFndvGPocB+3Fn1qqdHvbbVTQk60bt4m9K//fODja4zd78fno8Mr03JM2zo33jiHvz07slGj9TzxXhrCimhlNuswAGse2VRDzJB79SGJctwa7LjT/uPj0TJAB0+ib3nVhFlNJcw4xjlbpEzYKTHV4vaMMzXRUgITJzNDNnM+uvqaVhTtJPDPlqlzTF22L7tp+xy5Wxvfv44hMzgmgY1J6J7U8Do+IJEj5smGmxEJF+UprJ5t67SQZK5LrKQCGoceCRuN9v3RQ7GqWeaZylVoCjPnmJWnWqOKVM44ZkYheTahmfFtAplBZuSIkGA4AmON2cwxKd/ZTwwLyswYd/Wa/jK0MeJxP2aJ8fJ0mtIoZ86X/YFvBFe3tRl0jBmQrtppGGQTGeZKh6WnX4keTYwh3lrknIgwo8VTXPVcdSAx50iQnDrBhR1Sq8H+unorHpaAnAp8dFNPLqpbGifpsRoezSIpRdMw2SM4ZzT3SNJgk9aeSby5IWm+hhiBkBSrG8AUo0xyYqqwnuQSlgJketXZJ8/I4iYp8MAAyzJL60Wg00R7KTmExXfOlSla37K+cV3C2RNk5rdB62BohIEa4vna00QslWWS7nP6GnIkg312LJ0teaYzX/fdYD7lNHz2B/uT+sToZivqHWuw+7qXM0nCMnU5u3KJ1mf/rARH6imuwQ/RAwGs4XWAGDGnVFPF8Kz/e16xVZRzHg5KaalUiAjZGbOFTmhqWrVSaIYkMaBkBH0+5Vhi9fWLpjwRca4IAdEoGhygOd0RKWXmGJmyif3N7GAanengcp4mS+Zs1yhLzMlNK2OYHsa43tLWNswmuADmkOI8O0Kts58wjnWukyshEoRczMdM8udfzz5RyGAOgaD7VJ9GWohzGuTTnxrdrJZqFmDQYkJcU9u/jM8AySkDIkGD29CKM/Dn8o5z7YGJlEvGdRKQC9CYR5VzfOHsBR1ChPvuFFSKiMCCk9fLPBHHuSTn4A2sIS4EbApoTM9EgnN9cXr6mI0FLCCBfFZrm3u51N3ZAcoX6jwvUj5lTuTMx8VJAUB5dsEU/iwaFc5gSlhDpE7vsk7MunWeFFcdmShxuxZCWUoagLD44ZTApcefD6PZ1HlFH8vdTQDrZBRBh8ymoZ7TLUOWIjX4Z8tutOLb9XItfGi2owJE2VLpric8dWfrBlsZs97hx8bjXCbDwtBnuxdMEnmGsvn8AXNniLMpWxpJ2142KrMUOQisySda2caz/dm8IEOpdShlswU7kJRpallhJtHKSIpmPrubBYgS5JlhTBSnluvb62vlLUPhmBqzmHj0SaLwzJzmnffaRP7JWq3XNwAG81XKKJ1tnxOYuPpzpUqJyNmCkzC6yvX9QkWUkgU5DfL6zARhxXIOCp5Ns8tUgz0duU+nPocpkaQjzWdDAy6TM5tMnBj22lTzul3e375tKI/HoCPWep/H74dj/fFl1XIKDHOVDJ1PIRnMXC4LKkOEzaJIPQ+MOCXyPL1BiiOwvV09Y5RcDBt+5AE86Yl1a0loEmJKTvs6hQCnr8wlZeas412BqMkxa/dmN8uYIX30djer+DrG0wXODNSw7PoqyVup4jRxTys5V+lcshV9ukSonMJDSAnxbOIpZXBEzrQASRoQD5giSs/EjPLOD5/mBIRgOYWd87qKxSAENIPBP5WfzRhmDtw1K7QM1nSCZczR59N5JtES3ltFu495eiwXTqKpUbYl1uGM5iSNdqZcK286NceYjXmdVUNzpFhXJua8RC1FIRfhtQZAJ0lB9+8PCiotiXOmps6pqsjZa+AJ980BeMsKhqbgcS70fPoJ5s1BcRpQDLgKc7bhosknKpRqkWitWBxD520XAM3NP2ORKdeemxJ9wiZa4sDnT8y7ZQbOviIZXFM7V9TwjDSkWaY3UzZk9BvcZCyRRKzZqKdqHniuxIy+kAQzyVWBiOm4f/iNlXaRJtgK4yzIZVtpmnZaQjI6OBwxXRgtYZozlowSaWewelblzUyKq0x6HoWz/tvM3OGMWA8823Wb0rR03LMgIw3mnpYyY6bG4YRZ0TMSPrGQH7pm/IhOQABGzuwX8+Da2SqX8+TXTCO8uIbivNkkwaIy+9pqpttT40UQaQysziLnnaa7BcWYbRKnImlmWiupSa15pXSvl4JNZjHnl9kMKZglNWuZzOt2qR3hXnMkOMO8hJFW7Nz4uQBz40/7gRUhgWAdC5yb+cKfQ+0wCowR0XnM+vZMpnlO40IjGPPPwgDkysJaCxmjd6h7BgCjlqgUa2PWep1NtGfe9szszL2U/W3LGsLQqnko6CPGOLA6rimAar0nfcYOSauGWV9ZSqZkK4TiaWt+mOd1OeAVs8mpzYuPZ3C3EDGQHmljHhbRZBZdElDoqJhdBpQYnqBtsred1lu7K4/S22SQAsyZ7c/LxdPPrIv5TN7n29dtu/5ty3psn03IpIMvX3loFgecn1LMCSv7pkTqHOuasq3wTyHPc2rxf4m5JkTsm+ZMmKf7+fGNPFNIArHyOpL0Nc/TrKBizNZ2K9RlQblezVpxZKLaAUVxnhn8NPQ2zdmUTKwOxIuyMJq7122/vu2x32MwEUknL6OMWRxyxl+0UrvJy6bWcSZ4kMTiPwLGNTZ3Yknni3LVDJWrHi6OdVu57su6tgQMdVf6Y+JxUtrMOB3c9je8PIDp+GlmddveUf/y6va43z2Dm98GToCDE/RZMyv13BuS0/yaADOvZbter+9/u47rl/OeisHN7edycIqpF4gOK/tLNlzfXjRGg/tzOGUp1RBajYR8ngfjTCfnEJckWZzlHfcNMZuW/OmITEtMwFmvGcVlBmUCbjuLaOJ+ecWrj5hNDNz3/e2y/6LtL9/c7p+fjMHdPyPkBSGD5IRmnLlk26cR4NNYm5WtbteX15/++trfPpQl1Qf34r/oQ4q2olsBtHp9HXfs1/f8uhtsWnBI+0spSJwTydcYhh+b+5zDJbD4SR3jvzzKn0phipOJTEoyK77FDNoER+2z5dWk4wHbcPn2c7HdPWPown0MbZWRppjZM86i1mX2Zka9IufZ9ahu+/X15/f27l+3TJXBi5f3x344z2E503+U6oZSt9yqoZSS2UORybK7kHAgQXenZMWSp0bIKPd6vbr/i32Vc0j0uvfnaeC6KOY80+lavdZ3/xhkom4XXWJ7kIRp1SS4Xd5+3liEFqGrvcraVhuDyEkRgnCLKXmdeWn8uf0HrbqXuu2vb8d7XPcWotnu5eVSnVASNmt1oTlNgOWSPueSWZ+9ylnMn4kVAbOUF4Mf5xUAi1/e3wteLxuRaSlbqfBq3bJasU3wiyEKbtulctt7JYAQEjFnFZM2x3aM5mOkMgSnX6/55i+9bu3W071nJk1GliGzvoqFTm84rylAZYzeHvWoj6P1wBjWI47WW48Y7gbNERNj9DbQe19sRT2nbUdBnNJqQLNckzar70imAWkRDy9vX22zMkUwjMnxYNKCkw8AaU6jg3V7uV6N37RbplJzLsGKe+nupZRqpRi97tnI/eUaj8h9a5+tf5/j5SmDuVjmnlGgyaZlm1YojTSa2RxT47C9EGtkpJkX1+x4g2W15mBizMoD0mRWNEdYniE2JQXsGeokGBJltUXSrIBpsBEEYCuH0uxpZ15sKnj3y9v1BXhpG3JoVsvPsQQgyLpt+7775XKtLnGYt9f9OJTXrV2Oh4ofnYY0uYvVMnPi4ZDl6RdmiFtq3S8Xf+nX60iG1Ujus6U13aaUWBK8TPGtkCNlUEuBLLX044j+RCMSQqRKKiVbkjRyHNzvRyu9hTHqnBO3UpMfGA5XFoDotOiB+ttvI5VpJVfbqcm/T1VLKdW9lOLFXXWUIdQdm6KUSYwklWfd5ml1zwAVAGahn1mpchiAHDOcm6zYSgInB2hugDIUvQ2iZS9OstQyR41N0/UkOjXh6rkA87ddPx+zgyrJhdYD4MB5WIBn4OxuipEYkXNmwujqsxCNAudrE9mPUY92HG6H3e+PDIvj1o7W+pwqCSnTx59Ag5UvahIYEziOMWLECR0wNeagaFs5Bw2l1Fo8FH1VQ0nmlbStlpCt6QK0UibyWI2XgCiEnDIFsNFqbaSzp6nsNiLsMv4IUTAr29W+/cutIIb57tEfhvJ10CRzZI/a+4gEwFJBI0LHV7F6+/j88Py4HP/66Lhux114hO3O7GPWo4RnAmZyI2atJGYa5KuWodr+9voWgy1LTUTPjCivOgKFIurbX//nT2w31xzLy0x5rebl289l9gQ/7xRhBlTqMn1xqFgWdaDOarIEMmD1sh2jlV+OGwIErdSLv//lMnDcUF9x+3wM27ejI0ZlRGM9+ogQZV5IQAPje7rfPj4+vf+29X+9d+61Nd9EKzaL+KOT8hn6pntw1fSsaFGK0VsLptda0izkwP3R+4jy3lp6MVi5/vrP/+On9pE5+urGlLBSrV7evxX9iaa0FTybhYvJ1OS0EADHpNSEtFKvb9dbs/rL/R+5mCujed1c1W1/ZZgirc0hEcxoPPrU1NHMIWW05EeY3z+/blt75Gwhu/hlM2b47KFqXoU1pflpACZunzH64bfPN2NG5mBv4R3jdvTI+u32aHU3eH3/yz/99aff37/u/VBP0IIyM6/79VpWYjmNyqx6QyOOsZB6afalwdElcxlW4wczLwukQMboD//87fab/mjVc9v2YVarrhhmIIK9rznlnAYueugrzB632330I0ZrGTn6sCHQYmiMyNmCGIDMAMzJUUtcnpkxeiuPj4uN/Hw8HjyG6SE8RqzRCuB0ixgtpGBfZW0Czd0Ls8yuaFOjEYRNBmXGXNPITiJi9CHUVEmn4kBvMfjbo49Zb5uj+f2P+w1tsB3CnnupL5upH8pEoI/4IcCe86bThrHdb48+jhg90kb2YQJoGfRM2ibfCjlYTG4jEBNjkK25DjHaR7GWv33/6jaA4xg4hqT+cfQcjfCAZ33937/dhoW0OgKYuZuOj5JpK+MEAlN7EMAYNkslZ9FkCiPAnUQMKh/9CJn91tYCZA6Y//644RC8eX3bbPeXfIzj1npAmj0vZyFaiSaLkRbGfrQ2Rs/RB6AxxrwHgruZqoXXYlasuNx7ssWY8qrVNkKRjw9Lfd5aFKv2GI2zMOL76JJMVmJ0vPz99zvqTEZPTxDjxnL27SaJwGx0pKlYBAtZOHUpGYmyFcYYgexwcsf30VdrqwTV70eseu7Ly9iuvqu1xx/3xxHTN02XmTFgzUskgox2NETPEZrSwBWSWd2d2GsvpZip1DIX4NFHxIgUzZ00Qu3uRUcPWXm1YbNLO8ctu0km02hdlz8+okhatIVRkeJtlNNVplHSmhA77UKak8WkiAmflK1Y7x1iz3SjtSn4X7jLHA1m5mV/r3l5s8LxuMGptjKPZ1Yb0ByOxRitYe6qeS6g2Ey27Qhsm0p1N9WtqBQX1xsMzWJPKbNZaRyilcu73xxjyAgNJTGbwXXVfjtgmTobok6jGq2A5lx4HGAUTQYUFK1qp+kiETSvXpwVYgeV8D9RWbbw2Wp+efv26x6v30jP++eg+hipEXN6sJmZu1Mx8jBEHJ15mBKz+nLqcZJWjsyIY3QvJXqvKKWnPVqP7BkyKy4Cw+uxsTSRZXstm6m1FdhSOGdEZaSyKdDGxBzhlV6LlZbpmIL31d2WBBeoSwl51rw7zK3m8AEzGmB1H6siLjnbFxLmVi5v3/Z4+RlwFf7RHsVwlrNCQNxZzFzanMwxYpEHZy3wYgYNoYiR0gCrMmtpsqP30NAyK7SBiJAVN7LuL3X3aURgHjmpkErfX7YRHUHFGLM69v6QXy6lREic6iiSOHV5A65QDlGebczJ8HRu2d3kpEnyAp6sLFMjxkDQbHt5v4y3X5A1zV4fW/XT0yYEjoZC281L+YGBpWbxdWp1K7HRWzruVjzSy1aylJ7lPvpqomExwkpGklZrMXLbX+vunAGEuc7M0Ot+qa1FZCrGEARlj+EtL0WAMUnQZ92eUc501AQ91ofMo2HF9hy1y5SZuS8VM058xqqk4tvl+v6aP/01x6Zt/+14fJgSkcklMQyQ6hYYZI5IU4hm24XdZG40hmo1ZYwDZrMCJWvpKvfoc3qX+bBOJr1s43J5bKLX120rNoYR0MhZ8keEeKv31gcH2khx1qApc/Ry7gC4TL+WECUzuao1IjFn9VkpbuayKXnRCJ0MQabGgTH7Q/v+qm8/RavoY69uhifRMHOnJEKIJwVWjPL9wua5aPCcc3447+/Ue2AII+JsMDW7Q3K08IPNE4I7MuZk3SemxkjAx9FHUHg2G4aUMaz4DxJqSo44FQ4r2iZoqtWZTstA7yNnnaDQj/vptAAlxjH7m/b77Xa16KNLrUcmaJoELoEljF/hGEiXWTGW8vriEVOtMluAmsxds0giTGEx09TJFWhObER/mH31z5Bv5WP7ehwjg0I2Lvlb4ijdW088O1RPik3RVWi0pRHHQhDtR+bN2anINoalQxkRGYneExh9zMlX4CwKiMkhtsf9drXtorGpj1lfP4HEk+6dqffMy6Z7NAynHh9rgpJS1mOsZD4EWsryhK5mRLk4mbmT3ZGtPbKNU6YTC+GZOIT3AOnijPpm/qOMsloSLTpIP+gnV1jkjHHqZoMDo7mOFj0RoUnaLhXj5NMh0IjR7t+dPRC7fdweLWYhpIt2toGdVHiHYkQmlKbhGvfPTMx5HLRjpGb+kKIyEJgnYCKyycjMITQSX+0r5NTf628ftyMmvLlQvhOpAGi2Av/Vf0nJAiz1MvIsb57R3JrEqdQUsgvqPfPoGYvwybHO0+wcAVCz1FzjXtCVebHbcfSgF6nMIskJpC/yXhEj1uSRxGitC5DBaMik50SeAEw3NFeEMzvJGCMZ4ECv9aPBo1/8Pz9ux4DRUc/rPhXvJhg9ZzbW81QazqKp1RZ4UTM8McQJw5Aou3NYZlr+KHFeTPX0nlAyx5Prj1Dvke4RT5knT0ZdUoKRSpWF3oDQbPgwOZr1MCQNS+x26nj1ZGWkzGHiUN72B2DuN38cRxuc9kWLweTU/ZycJ5+8B5LFPG3pbzlV2kviYzBz0FloL2/leOTE1CfXNAs4XYTwVNc9qT+zuYtWSpQ11PI0P36q8EIB9pE6+ZVFCS997vog/iAsp+leNgwAqKSSTDTrhRpjqPfewylhDuabnScWfLIu3wo+BDcVmzVjPEU+No+xZExz0K2aX9+qc4yZgi4DOc3FwmbWYAK6F3O3Uxdn7qWUUoo7PNb3cLV8mRZsNkYzamHGwNQHwN1LenFO1HllrOSUQZ3JvhYwkDnbFFKzKu5McM+vJWOyZxqwOCMUK31+1Dz9bukGY2gCM1ZUfXv/ZdvqOObM2NRy0ciTpForC5ILpuj0lhiMBGhegpwK0DkNGQseLX3eDJ9adp4dh5JI0FjqFo4RIH02z0uuIUhzEuvczsyMAW/lYUcfJ68GcLYwxcmoWA1bzl3QlFG4B3gqOUlOYB8pN3mRF2z1+tOve7V79qFoXbPZI5CByVabtDiKUgqR/fGddm+wXno8+kiaYfGscydWpamVJ409+V8j0tzcTYQVmTmmYOC89zgVN5y5MDQjstFgxHd7DOUcinpas2U0KHD2V8QPCwcUL2M5MswzrLqZw9Pptqe7Xy7vv/ztUvnVe29xtPXpQrSTKaS5mZVipfhAHBxZ7MvLUUd+PXqfvep0tinGMpb04qRstgxwL2Uj5MWKTZ2BJp+WqTnVIMFIuC0N7GkUkb0PktSHd1EaMQYz08+tnr82iyRhGDW1coSV7TISMImAmXlR3b2CYWZW5dyurz//8/98fdm+jvv9q2Xv4OwkgTCAq5pjXsoMHGC/b9qpy+Uoqfv9ccwCa0WSLLOztCTadj0a4EYHi79sY2MmjUQM9CHOOHE2pFwFHJh6scncTsLYotWe4GjDb2MMIWMJP0GmkFPVoCLNUilCq3ltuVx7KCwFCu5V2q610Aa9W0Xh/vrtn/77//l+8f/8+iPbA33MauuExmJaHRSd2+YobBk97n7N8dZrBVok3I3WCRmspjlBZcDK5k+rmqbZBNXcjQMii9w808zP6s7Tr09oq9hJzkVmUtmb52rWMLkom3MmDGYIwKqZS2QR3AEAxatrqanOL0KI5Fk4Jdh2uV5fNkNER6SQs2sP/DS1ikVYVjyUnbkjhpcMWYwB86LZ/FWYglYStHq5XptNv5RQi7uYaW7GjLRuPOEGrRMgCIZTSMvVQNKtGJTobGZE4ciVcqy7fsJsZR8FCeNURSjJQjM/ZaJP28k/Lcb5nzxDZZ5AOk/0bJFSmKiCTrvAP+ddwpN4Wz40Ekc72pwUPi+08myZ/yR0fzyFnp/3DG9n3Ric4Q2QAWZETOjrKdObucrM9gQa3AtmE1GplDobxD6VTbOex0FPc9hk8motxZ7imGdmi+dvMTi9GCucsAkiFHcTabMJ/HqYGW1M/vm07SQIs5mXzbHkaeFpp/ZijlOb0ZLOlZkq5me1FgBSRkOeju5HIHgqJi0NyFIqIqCIRJnzWTKVSGVEanQmMlbRHO24f/7j//f2r3//fu+R5y83YA4N1iwvNJiVzVBVApYYHejHcHGM1v3o6Qs8EEuZrRJyZtWTqDAg00SDF3cLTnyqjcg5g/pctHlUBcwxO8sRyUStooU1x2Zh/OvNZwI0AkaWsiGSGDHw/wdoDUF1ptVpWQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUKElEQVR4nF3925IkSZIsBjKLqJq5R2RmVff0DM4BdgECEWjf9v9/ZWmXsA8L4My59ExVZUaEu5mqCO+DqEVWn5zpumWGu5le5MLMIsJ/mikATIGAv25nojXLMNe2w9V9f711P95+e3uex4wIKb0hRDCRAE0BASDaHR+Nk526ndPdScwwnNSUmWD8amDq45lEvt7+2PoxIYmEtQMAYIT3jQTatkEGc7ARApDKGZnHzKDf50y+6EzFxExlhkiTJFCAASThUgruJhh8Yx7qCJp7zmj4x1+ZAkHQCCoAGSMFAIIkAQDBzx8gRIIABYOZjEYnIKw/RdZPEBKERDKV9TskBIoA14dy/U+AGDElgg5OIgGmMjIVkUlmKiyQuR6J66s+vxrrc2kACSGBSaWSuR6ojXo9SiCAgSF4GJJEhAynt3NzGx9vzzFmZAoGb1p7DtU3OoIkEiTdoRgz0pxECprIBA1IThKpyIRw6FSOBFM0AhRJkICShBgECEuY1r6mMpSZEmJkRJ6aMHqqfovi9WhGwIx00oiUmPW8QFqttLHNkCBw7VjgDBgpkewdRpofJPM8RmZtHMwM68daYr+dH2FIGi1p1rplQkYzJ2nmzJxnCBCQ5qQ8CEnTzCAKRFpCSYeRIgAD6udhDvM6NaIEtuMZECKTBJ3mmEnGSRobZDTJTCk3czdzIBIAxRYjZHDSjK6WACURgkgExlSdJ5hSRtARgjJEJASYWe+yZCrQA9sdRzaFOZEEzP2E0poREkjAiFCuxTdPzImgMc1IkAnkOrLmACARpNPoxuZyDwUFKZG2a4JJgSbS3LsdQR8TIGlpJGgNgebNu3s3PAMJJvpUwOGEmZHNzBCxdgc0Q0IgKZQlSSLOBBJ0iKB7833XSE4NMwkRgkkglJTJjAm6W4RSdIDQzKSRNN96KmbUUaWbWRuCuVnW2gvIpGjubq15b/IWERSUMQK0xkgSghqt9Zv7JGiQFAqDSDc36623tvW96/3MkSK8wdBbg5wOa24GKNf705tBnxbM6QwzGUSRxiSo1nzbYQkKdKltg/AAhEwTW++RojcnE2kkSQmgk9a2ew/MAxIAtj7CPRKikZAEUKB5c996t95979nbzAlBGc9AM4ycBqTl5rZt94anFGVGLQ0irbX03re2b9vLJnvmGQjcSbL3TXBzWGutYdhl3613+2k/2xaNYdRMgjQvM4XLWaWCRgEAIssqSIpgstne/BwB0JYVphnN+nbfU+OBFAC17QxzJ+hGc7l72ZbevO17b9vu99ts28wJKCMeQ46waWTKc3d2V+Sn5SfNUDdvOa8cj5FHwmhpXwzGfdtTTgRa3xv8mJmWgmj+08PBDE6ZuRlEkkSdAWmZa6PVozOzDKygDIit3bobWDtrzBTMaOat7YmtKURBrbdh3qKOh2TmSpLm7q213rat3W/Te9MAlDHT0s+WEgk5zGmIiCzvAdLlyOVNISkjwnLQ4J7tzlN+326RpkC2tjUivK4A2Np1Agh6j2Y0CzMRMFt7iXonGI1maV7WDstqKE30bdtdAanckIXJzOh9u92lrYXnWgA3rxsAk8xNoLG11vq+7/12619eD98jB6Wc085scQowSM22RgcSpHFdAXOJImlmZjTmRGYz2pb9FSf85XabaTmO2TKMqXUFZH33zytgbZub0TkpQaTZsouZaVrGOpWRUiaUFIQMKsjMQGRKEJCsy01j224vmZ0AJMAay62vQIR1hmmte++3/XZ72b5+PfyWOgnFmP0YPHaRBqnPrdNzfh55EfU2UloyMxiYoaQT5tx29mGkGZo00IYFx1hPSuvbpw0A22abw2DIWgCu858pJZGWUsQ8Z72AIKEWwECGH2fMIEhSkWkA6P12izClUoBoSsxIyUhdO0Fz89b6dru/vG7fvp3+mhqU4pz2OGLfEjAI3bbNLBRmphVCZU6kJTITRotkzMgOgjTrdMU8ewgk1J7TEHMia4v6ZqwA0tm2zTYXZWWwKqyUUpiTQU2bgZmnnVlncC3PsCDPs7UxMkUBNGSkSYK1bZuscNWg1iCdEjJoWSa2zq67e9v2/b7d75t/FYYlxjmm8ek9Ugag+213GxmtKbw5nEyFpFQgDJBbnjPSpGRAQp4xNyWyzYwWE5AqwCLb7d7rcAO0/jJurSHPbYjGvilrjRXBCQTmDOU8ZsBUN4KqeC1jeM+ZAEWD6oLSbLu/vI659fSZnfry9bc+QVcmASKV7mattd7c9/vr65ft6ze1X4Fp0vkc6jqt7aKbuMfXl26Hsefx7IyoSBqioJhGBNnmDIBAJq2Z5YxwWW8km2pzUdvkffd6FZj7tvu9MXNrLnN6z2lGIJlpWbsdSs0EE6SVZ0ugYsaWUUGuSFeAJK3v99cxbl1B7Z6vr3tTmivKdbFCwPIAdQX2r9/Q/mIKk47HOHl+9I3J5mm3fP2y2eM8/UTK9gkmV2KTTASljjGCWUfLN2tEpkTzdKu4B5VBGa333gQD1Hzbb2NvgsbTZExuMW1mwGBmBsrKGbIyjPqcJMtBpbVyjkEzNEgAa28BN9Kx9bn15gHz2n8AhNJSIGnee+/btt/UboawFGX7sW29q6n1tC3v907tex45ky4RzMiwSTWAZnIjneZe6adZ5Wveunq0FivDFWH0vveusq++3e7tpTmIvIk41WeghSp5QRm3+luFkQQ9aUw60aJtwYQiaWwtrX71bdvAZjSxb2pbc4cbDDBVZmysK9D7drvdbvvtrvZinJ7pbPfztm9HNvU92LXfGqI5vbnLJRBmIj/jGRLK5Rad3lpzs+bw1nJaM9XZSIK1syY6lOZuruaN3HYBQDQZzHL5qpW7q9ZgnaOK+cwIhzcmIckM5lbLRTczzwr+Ws/e3E1mdYwuSICwCjLWL5gbYfXTZlZBpYGu1huGu7XZplxCMv/0+p9Bzc9fKzavj2//CG6sTV3/UN9Cujsoy8+P1YV1fB78umC5bGCakFm5W62MuVfeRxrN3M0B9i17czOZ1+aDPxEXVvRsNFYMJUPt0HpImszQvKE11/oNELQ/Per1/vVTXL788wBbm1EPn2IlxjGSBqUCY86hE/jx+zvMhzCDmSqY4Qq1JSGFBffMCogmgeQcR6oOk1R5jiC0JtSBULCOhnlYglf+XHkeSKN77/teNsBDCPbe3M2NFGCCOd0u4y8VZACBy6GrQKJaL2utmRF0uZu5tVF5uAVAMZVzCKTEsDHH0CG9/fEj3dAQk5Ei1+PXIqxXg+rt6wwAUhxzZi1RUnNGSFKkoBjHM6eyxY/2OE5JKUevI2D2eVpIemuty90Ag9zd1/IrZ9rIR5/8+Hjk4/l4zGMm02Zk2Nr02qYMzFx4nvHz+iJGgxFSZq14jjHHOuDm5/O09lB8//17mPcdmJyxzr5RhQFBlUArK0iqfze4ZUFXQJoiZ2Zmxhwx55zzjKFpetue52CmkiYsG1LxXGbMMeecEanBigPGGPVfYiJkNjs3frx/xMfxeMQxCzisd8W1AIqBEZkr2vHGvoc7kdGS1w4CQs4REhaEGXOceSrGGMmJNhmWkFvrG09ARk+4CKEry7TIaJYJIUdkgU2VJStTqTHO53EeY84Rk/rYjxGGhGiurOS5NkWZc47zsOcH/IGcJh2P8+PxPEfMCBBh42nTBz0i5owxP88fzZusbYa9tz3yy96A5DwRqcxUZsK8le25/qKYF/JmyhhzaiBCECMykfXJfd8hQeZSCFDQFagL7K35nFlIu1aSrFxWQjHHcRzHnHNMEo/7DDABa61HwLEub9YZGOO044H+oahI8Hw8zjFnZIISx8FogTZyzhEzlOWUSO8u792x3XZlblvLVM5hUSskidbazMuwC2TOkZcVhuYY7kNZoQIyoRREb96SZfgAkkm0JA0pT+9bOzICeZ2tT+eRypznsz3PMzJTld6psHGYZZk/KJkRMcd59NajkZ0Zk8J5nD/e3h/HOcY0SpjDAHRNW0lXJfYSaT5p3tg3dyY2UtOOjzieZ0aXNyjZ/uQEBdNcRrE2a8yRUxmq26SKgcqNmeq0SgZLuIEugbS29RhQORUsfI3Xssc8j/MMLIesXJceSmWUbaIQFtPmeR6thZttHjOYGMf5/vE4zjEjRCQzMmGbn90LScBCg1ioSmvW9+3mOpk+E/PkzMwMMMK8tz+9PkjNqc9/Vc7pOZUV4quuAMHW+5YNDFiZlblOgJQO3/ZtjlEYCdf/sOCyMizHGKHMJDVHiIRIugcXhAxpGcGzdTX38DkSwjjPj8dxzjkjZErMecJ797Zy6UW5ALTWorW22X6/v256P6cxcw6PlJTMTLP+j8yQlg1YxzYipoeWKV/3pv6+MAytO35do38IPvAzrvn5Bcp5+lmmtq4FKs++dg0SBWWGzTnG4S3dbHKOYGKM8/F4nmUFTKk5yAYgYtl+6ueXQVIiosikGTOJ00ZExqSNJugfF4AZ8+dbKOe0nMgskPh6/0VjXS++mDFeMUeFb/9dLPq5gBlz+DlDa7kyPo0QFqICScgIszlOcw/CJ2oB5hgfz+MYI+a0RCom2a3Zn55umZ0FLVQs0eWAFMRpMzIjqDlJtH98UGXUpqrQzQxlgVUXZI3l51cMVBHzJOwnIbfcWMHbV8hxvSAy5pg/T0DGOrcWEXNW/CcomRkZc3iTm8vHSAhzjPMcEZGZMqUyI0NXgFtfqE9sjaS5mfdNzVjfF5mZSiKjwf67E6Bp+XM1YkzYwPIs1xGoj137TzO4GVUJGEWYe3NbjyB84tMF12WMQ+ecfzoBFVFqBbIAlLLAJMbZBLSYfs5xJoQ5x9vzeY6Rc9IQzCG2DvsHYw5eob6Zmbe+3/W++I+TI0IxTXN6wz8sAJknAssOS/MMcUAVGyAzVdxQaw7SChinVfIHmgwu79ve3YgVFn8+FqVkjvM5zyhvSyKnaG6AubcQbDmcxCTs4JzDn1vbP84zIUSM9+M8zzNj0hDQMdV2LlyD17sLRjM3M2/ebl++4P2DyIl8FEA2zNya/3SDRb8rphblBiJjghMKXW6gdsibWywM+hONv5ItM2vNvUXBjJ9rwOUIcp55RgXUxuIiWiNs23f4+vMJSpkxp6AW02OcZyIZOT7OeY6hCDhCmmlz6jqdlyEuinKygmHzBlNmhOLkjMwMac7p7ecJWPc7tc4ipYxMXiHcOqFSxelSmtb3rjxvGbEFGmsRbtcCXH8yMzAz68PK6NSXRsxYaGkGgxm0OUVkZqOOMyFkjjHmjFAmqIBCMSMypSwTivU0KkeVKyXJzMhAzBYVBygiMtt1TD/dmyiaF5esDFb4hwv0liBZjjEiI8K0AsWohSKInCPZhGlKCMaf8EEFAooozKt4J7Uuo91ve59EhmQmk5SRU+WNc4xTEjLnMWLMqQwkUjJje7zN92NEpCH+hFIgY56Y6H0b+P7+cZwDOWxE5rQwwnL+d3FAIZo0p1BoDnLtHaSUTIJgGCMCESlkyAKYCSRhNESMZCcQ0gXxfOJ9ypyKzMJgTW7O3t3Rbvd7TGqeoTmWmEHJoEmpOGedgBhzzjmVQSGlaTy8nR/HmCFjABcuTCgmRRntqT/eHs9zIt1mZk6jAZyjcXmoT2DzHwATsjKTgE3Sio+L8WycZ3BmEgmaQZHKhBSa48hzRhYY8ZOyySV9UTJTWXF1ZmZOZjCBjABihiJkCYFhALNedEpiZmSCdb6pRAXXz3jOEDJ52QEphgcHRDvch96eY6YARWYqw2TTFI0mXQhf7ZKDzSHImrnBae4JDskyQSHHGTZHIjJICWZEIUqkJfLMmYkSKUFmxY6h9hRalJlA97qekSJi+syf7FC53YRAicoZWbFJZJZFpoCUFMNsHCNUYisrrYUyFCCLkTj0/hwjJOSMSCpEEmHNkCCK1yjuyGGtUUhrToNIuACfeeVI83TESKSycsQQQtd50dScIeozJivxSYUCKtSeJsK2ht5mQaCodbisOWubU4JJVJY+p8xZzFAKoIlmRBzjTIB+nX9AGcMGFcY5z6PhWeEX6ZFZNxxpbL4eSAKMZuaA92ZQevPS4JgAxXMoypENGmIIUoCpNBBR+KUjEdMkWFrLIGWWkvuYFe6XTXQX2F42bx40mrO87Of1K0csIbkwldRnLFIGmUaJzWWYChgYhIGKREIxGcowxLCHc2ZGUqbITFuSLqK1KD2OVspLJ9veNyjMEATNO4kcYhDJFBShnMLl6FIk6d6t9SAUcKBnNERQtDNWFF3eZEJKUGb7fl4RrKWZAY0JgrIyghlAkBNsl2vLGRkzMki4AgaU1zV6C0wqhASUk6E0MklzphSiXIwQKFJJsDUpS6ZUmDLc2W/7nTlaTBJmvpshbBbnIyojUaFMXdaSPrDfbdtmyzjZwS2yI4KyxhH0S4YDxUrZvd/uzzSzEnWYO9hcbgyQwVRCiQQnGLyi0ciIWXm5C2YMSKITxpBTJzNsIZTFUoFm5eEAIlNUkEqQza/8TqQBNKft9/svzKMfjxDc2s2JsBlmjCirhMx1b0A3wNm4v7b7dn7EKe6wPfKGOS1tC8GaYpmZWjU39f319WOUgWke3rfgrXEeNmAIRkxbp4YM+6Smf8qIdpzeaWmZRlnj1GRiBJS6sjeiDhVXno1MFGQEGFaOtOiLoki9bftXn75xKGGVo+cV7glaJEahwSQN1tjt/qW/7A87Oci6pJLA/vIx5C2n9PnzNLra/vrlO+QSWm/Deze77TabnaQmcugT4VoiNOmK80jSNri7wSxloDVC9Bifor8V5BHmrvUfKrSlUOvScMXQomUlZ0jBPEFFhEWZ+ozniZi5LBV5LUIdIDO3vm+3HqHZym1h6JydtrVGullCBNLqJ7zIt6JqzD1ba/T9ZlPNABGRK8PR51dd8fTKJGFlThagUm8hGohp8IhKrYzurhAplmGDVtjDBkWo8A0JnBW3Wu+gI0ZYhkXEzHkO5sxM0frinrg0lTRvG7bt/qW13izTQuKQZnrbv75pRopWAU3JIp2h58Pe33mmGei+v96Cv3yx+d6e0jwwObWOPaWivZWpzJlgAJb5pDLpBCbZeQCJE94sprVDc4U2Jb4kYOYiix9PY84WmVEBHk0gRDr77df9ebx+5BzGQDvPM2bKMBNpjn4dxhLxwntvm718/fKrfeycjEiFnqmp2HE3IQuxUvBcbIUFYczTEvS+3fzl20vY33718/f2EfF0TR0xM4UMGBCs6BrKSBa4zVM5pzXBojF4wBwTdGB5JAjhinRkgHJwhICIBXK0OlaXRUemAdb215vtt04lGJxznDEAL/YH9PhTAkGYmXtj324vlny6EaBdKap1KLMwO11hJ8zCQNM0WZ2g2+tL2Ldf/TkbYmgmmmWlA5OpWoBUmrKC40wykmNaEBStIgQkSiPxad6USHGpdRArpyjwoNV+cAm1AZi3vr/8cu8/vv7RW5BOD7dc+EVd+CuDqANm3lrbuL+8fjO2870FiFQDoN73e+PKKIVPLbckWt+YC01w3273yfvXvp1NcyDCo9flV5JCrju0yAiA7ASohMEI82YT5osb4MV788oPF0ga4mKrQKEtlnUhKSXh2F++/O317e2XP/YzjMaW4SVDlVhpKlY6v/Dn1vvOl2+//hOtHRuhidAMTQn95U8RahEwAGlp7f7SCUlVpGBGbPdbf/Scg5oztnQD4FEwgQmohDTNzM3vdLgVLCX3xqR3cgWRysoJYUu38AlNfC4J0SrbA3/aM/O237994cuXe29uBrZmC29coY/Z0rSvBMi9tc7t/vKVA29bMxmWkITe792WVvjnAxQz5U1xOYW+318OvH67P9+3iBMxx+jRnISKgy0tcZq0CHrrhJCBrASIxHXwC5rip9LgJ2R/vel6kjY/d7JOgdG87S9fv+b9Ze9GRSmBkBSdIGH7l+ejLQjTQFrx8wYzZubxePDcGjyU87T3t3/7bzORmWKWr4GUI9nvr7cO6/v29dvX+z/9y68H/qf/2/79gecZRsFbcxqJIAirmG5pIOqwlj/O1HLLZCbyeUC0m9nKwhQpCppgWIqG9rkeDZ8ufUEBZmZt2/e99+5mUklKrH0Cf+Z9OsnEJT1Y6GtvvfI6STQ0xJAyc85gywGsdMMgb67by7dfvn5J9m1/+fJ1u7++bvzl6z5v6hpeSkEzydKWeEzMlS1V3tatcwtZBwx7v2mndfRTmbDApQMoWGpZ+vwTT0OyXaxHXQkiY/jz/ft//v797+O30i5EnCNhypLx0No+WagVYamYRovmH3/Yxt+e74dgfXMMm6cpjx+TblssD0DBKG9NzZXba6Bv++uX+7a13qzF8/2Rj+fj/f2cz5KgZgpZpr0ycGQWbvgwUdbMtZDkbpHyVmUbPcyusK90DBd78xlK0dos4quiVrUMGd5/v//v2/v/8e//+v3tUII+zhHle5KAbS/5bq6UEpYBQybTHW8f/BG/fYjW7w3jlJvm499HJQDF1FwAc2A+founYG273W7bfd/vNJ/j+9v48fj4/sc5xyOjlAXKiShoSgmmklOZv/GMHMOmSKSf5nwmRkEFbY82AYW4tMxX9EfiUkdmW5mqys9AoYHn2x//6h//7cdvj+dQgDbnVEpLYWHtdppJWHlk5f9y1zHsqbdDtL51tJCZ8vk9LmPEXPigoLQc7zYq9di3vvXWm3k83x/n4/3j/e2MOJEXFpsXxlw5BpiQ3jFSsxBGyMJeMLJejvRepU3Kqu7T9fL8E4uFtltExFxcGIQMOx/v/26P78+3Y0wFyJipTNCk0mm5N4MiySYpAwK8KeWDzyFY3292+nmGNB9T0CpOI5l0JgnF8Y7nNIDNoML5jnh7fzwfj8fjOCNnAVWGKrESeAH0lRc+VQ9vABCc3nUYp1wyM5N7mSiuyjo6vdE2t8hQZkgtl9R/uUVAihjnB49nnpGVa1zhx8U6lHVZzF+FZDIMevPpI8rXc+m2Yvx0QVj5SLGrmjPLrtZxTDF0Huc5xphjRuYCaE1pnzzTT6emibJKy6UFgVU3c9n0T7+Llblcz1UPKLbW5HNqacskIFkLcMQ5I5AFIXyyByQzL2X6pdciMDHh7uljpqrop00jFKOc358WYSHPS49SOOMcxzMIvH08ns/jOMaIgk8rg86LZ5KwNMlFWeUny0hkZq67RiKTi7n6mRbTaNbdC422UPvlbnk83qYYJWkhlHE0jmBErojxT2w3HfM5ZW455GbT83PxFExkec39lvuP5xzB2vJCOs2QdCeakogRQUZiPIPZ0rnz8cfb8TjOkRmKnBGAsOjgSnjxCU3ECkhxYa9TIsmbmowRbLmMf8oIs8Ztd77uN8tzjucxsv3lpeH9xzzrVbPS3Iis4wsYg7RkgUsUzTE+pqx5SuZ0gy2VbWutoIDsW99esMfbYNxeTkPUbkgGWPNG50FkRDTEzENdE4fh5sf7o5JnVyAjQsalmPq5ABd7Ua6dn8rSKbinf0FkdoU5CckSlAHemt2+Gr69fm3xPI+3j2e2/aVToweWpkFKxHjCxqMdM8tE6KpBEkBjhmjeMsTGpTOEGPNEhweM3vp2k++9Jyjv4pThWgBvzRxTOS1BEwwZ0w4Yph3vjzjHmBExY4XM68nWwb94SGD+tF/FCUiSrG3IiGYlPTXSLGmAN/d+83x5/brNfraIjHbr3bZWVVFc/G2eFpxPP2fCEVXz4VmRD4w5l7TpOtyZshXkdLcN6N9eti25bTv1+st96vk8ZyYCXpgbe8PJTLatlYmP8QjH4POYMGvuVNTXruyprNjny5fBo8mcRjCR5u6tO19/bTjP1qJBCsDcaZ65bdZfftG83W/bGZqtNbZWhPD6SBRFlhmMopkaIy/b5VX/oxJO5bp/BAQa3Vvv++6zEe3L7k7zvpt9+8uMeCMtK5yDGWne28iY4VhV7wFnQpxCM1pIDAeQhRckRch42byKJ67onWRIlZU17a97ezzcHp4yAtYsrc/oG7b9ZcIdn7ha+3iXPd6OmQlYxSmZmp88m5mt8nI3bwC6WWMoR6LkVjABqsI7s83bbWv9i7N7fJnHxJdfcp7jw6wi85RGJBLziOhHcwu+q/XsNEA8ZzRUiSGSANaTVOGqiWLhy1rHHuZ9c50R/f7Ff4CztXaTjI6ioLcXHm7HuXlA8zje48PP5zg+zpnt+THsfDznqr2sC5ZTzEAk2fwMg2CCtalanmNGBDkzA1np9sbst9t++2bxbe/cHx/n9zHT2/aXfzF9dNmZYyYl5clgI+NUnNExBW39bPvTST+ZRvUZTR+kAamo650mXofuil4Bwtr2sgUHvZk1mm6vX769vdn8zWCk2f7L9uz68XjxY+/9Md5P6ThjnoJafP+wOGcysmSLBDURyIygsbXibkwCMgC5ZcAUwSJqYZ5mu53b/b7dfkX+7d4G3/7gbyfR9vtf/8cXvvfBZ5xHnhKQAtGbBmJaxuxPSQyBZv3c7IbZqR3vh8sipsJbrioaKBd6CbEYZrbbl9s5Qoqzwdq4f/vbP33/w87fnulU8ss/f33czuavxpf76wdnPMdzKtWaNTzfTTNRZTr6E2AsAGatW0XiAhATgEDYViFM2pL02d1yf3npL39R/vNL+xh85G/P3u9b+/KXr3b//bZlKJwAbYaRveWATc8YMWTmyIA1pbVXzJ1x1x/NYc0MsqYgFsWFHAZSKogI1u9fXx+PoUQmzbK//vrPzeyx99GZ07/87W/Pl7cxX/To7dYt8nE8A2Tz1iwOxySweghUTAlCiXCwdfuMfE1JZOIkOc+w0KywLFcV/7bdXjG/3Rpn1zxPdt+//OV/+Gv7449/fTCpw1btMWxrmmAGYg4lzSIT3nHe0K29xPEynEYzKaIea4WQxZoXRp6XoE9QUIB595df/vYfu8EaoZwjJzDTAIdvt9dumeN4BGnGaKvMZFE2VqDqUhKIKpNtWgHRiuCjoOlEypBookYiZ6RAZWSY0dzbtt9evnz769b/8vWHIqYvaqyYFCw9Q4gRExHWQs+bxTLtkmSZIcVcMLBJApsi66WTQpwf9ozHCIuUzPt+f/36eJOnpo7HsB+/xe9f8PZ47a3vdyeqsJfkRIO759p75cJPlipoQTutm+R+wt0F5IxzAbyUdtr25QiMREZC08YzNFqCHbfb/X5//fbr7n/9y/cc83SL9f5S7ZBBmvSYSLr3pmOOUyoQnVf1i1KJVeJM+nY+UBk+AOR46oHndIugs99aa82pzAyMGfn84/j76/4+1F/2+05IBkAJjWjPlQ7qCqupapShStCGsd+CojN8K4VYLHxfZHb6L//h7bd5uB+PBvy7P61l7D9Otna7bU3zfHL6rfsUQKQyKZ0fh+1U1XnJckbCPZzzyN8d5/tHvk8olCRdyhLWpEDe/ulHVNsfGIyKIx1DNxsmpO3z7bf733/LtxmBZGe+P34/7g+pvTQ7H89zKZ1TiPYWV26x4NNCYVXJsfIQb69okNnJ3RQjRFNc8dg9+bf/7e/HH6d5UvM4/XzzzJd/O9rW91vH8ePvuB9nq6ohKiNliccfg3dXMpMSmZmU5E3HQeB2nh/vBxCZRudUKYLCBPPX//t/ez4CRsHQOFMITP8az5Ec2t7/y/zx+7/zGKHE3o1PPTXV0G7I7z8+ntIUkRLQHmiKK8wkDQ5YL1kPzDitv/zqd0zwXb3l1ID7VZVDe5n2L/+Pl3/9floLUccPH9+Z+PKYvr9u2+7z4w8/ZuyNWQXPCpj0/C6/NZ5BONUcAVKKtBwztKUe53RH0JtZUPKCbEj/+j/z385kLcANVTyS/uX8e7oP3D7+2+Pf3364hQRrL36c5xHndrP+5aH3t8cDdxjKh7YP81UJWSlrSWTcoWBIHLx/+ev2yqeGho8540NmS2wA45dn/x//n7f/1397pgXPPd58SIlv3Pr91+6NeT7+GOTLZlLCoAgj9BztL19v9v5xyiSzmKQkZ7P5dshbs2Q3pnXBTw+2YvrZtl//t/g/PzKL2r/jiKAF7K/vGXPL9vpfzt/s+eyvIcBffvXf3z/O0751v/9F8f3t8YF71XxBbF2GRrKiStINbOaZcHWH+f5yf3n54s/z9khlVq6HyBK7+jny3/+//9ePM3lKjhazurPA4qNtzYm/89s9zz/+/vvb4xiBDtIoQuND7RkgWNw1PRDHGMc5AMLCRjOPIrAE343ZCMPxX/8YonufIk3WbONM/XgkMc83e7r7OXCcM6k4Wva7Ux7HH/ieH3AHXCY0S7T7QMJJFYzuzR3dfU56opv5/f7l12/f2uP9jyNPRcoWF1Am+GPyv/6//+uPEBKao/fDepr3yfnOvrnR8NzH+f3v35/PY0x1hNJk7nFsfSatgg4TkMSBEQmYg5oFyo+0qQKkiwl6/z///giRHVNm6fJGG3o7jVQ8eTYhgs/jHCmoPYPOjAft8dCYMIiFxblai6rdWcBq6+7cuo8JT3Zze9n3/fW142xO5RWTFDxB5TPw7/+/748ZNExrZTnhoM9T+2hmitGfzx///j7Pc8w0oxSpwHE2fsAShpQ19R2Up2Bi84RyuhYenGIJySnm8ffvIwUZFJhxTk0h7I+YzlPvI3rkmMrjHFNj2Jhz0DxmfgxqCkiEUczIVkURKwsoJhZhzASTSmDg8Z2jPb6/P47zHBGgNU0trG2k3v7+caQgShm2WFPFPHKejXaew5/H29sjx6hQqbp0KDVGVDMWpxu23QibIlk2KiNW7mMwwEEYBIzvH1Ni6YXiUgfrSNEUZ4JiJBmRVKZFSoTm+ZhRKr1VLwyyjTmUWgsgmmYQyjkxZYQnR/rzj3a8//7+PM4ZAVhbXVQoRebz+zFXjq4ouRWkyJkxjR6Sn4/3Y6zanVXibZRiykqI5ta43TrBEUGX18cJNLVYVrd4HSGfQyUWEBVJry+fotnUlFWzDnIR4gs1Uk4I7mHS1cCO7TinJFidAOVMMDNnCHDJ/LRj/rHZOP54nHNGCtbvI64Chcwcj1GVhamckgKZMhqVA+Cch43jeRxZnfCW9FMUlTRzNt+6N7+9iMBxzFWknSrB7RKcqy0bAJ1VkzwTQOiCuSXfLBXQlCLYqig2rSgtZXzWFRTmiToBsWTLIJBAiBIiVN3anPTDG3M8RlEwtLbJLohQyjgKPaYyp6gw0qz5TK/XODnP8xihjMAsyGnxPSRo3vpmW7u/GJEOphIxORMGBKKk1VoQegI8I1OaymQsup8gbfeRSs1q9CMtdQhSSCBGqsWMiigLQmyRmUuGpotJDlvygpkMkKcZFefV7cf6XQ/LcgPKHFVXVnG5ETJz703npCIjJjHHPJecO4UlrQaro5v37bb73l+/NireZWHVeEjK6lN00QKL14wYoVQpJCcvXFy03TxTVvUTNCyF1ZXfJBk2L3k2QaldPCl+av8q79RP7zSNVchQsKv32zASXCUFn6ChAJrLWrvd966cdp5TitQ8c84qvchatbq3JMnWt/3m9+3rL50aHIgS+hfYHMhry3BxN6MkKskLzaxWAba/+PuCKrVEKdVPCUufA0vGwjcKTF9KgWW6PmU89WRSohrpGSzBIhuj314Op2mx5UQuDwW6WZPf9i9fXnbsw5+P82NGRsxPFFJSWeFSlrhZ3+/3F3/df/3LbvPwwUnMc7FnSMTkohaLJWLVCghpUrUrawaD9Ze/tDeFzCJBuJMqz7m4N9YxqPaUImhoF6yCpSRd3OPKipeiCgaHmZlDgu8vH16auuojWLJhXg0ERGvby4tp0lOW4xxzWGSsgtx1ZcHmTUbftvvLq3+5ffvLzcYT73FMY6W7ynUZIkRgCUyUwtoZfGqmjNa2F++WQEzRgs4F3dfr1oslzGilpybY8mLuP8lEUVh9RsqIRsVOpLUOCW2/d7cioWBZ7TeK4zQzh23765dfvjinbfBzXmGcFtJ29bgway2tbsCLv7788pcXOz/0PRhT1afuU7yilENaN+h65JL0EO4NSd9fvvntUdQxq2RSID+bg6kURSv1hyBDK26XyyYVCWbexYAFDFJFvaS7t87M7Pcvt2ZXR716cdHM1FpvO+zl9duvf/3mGK2rnakQ3Fmn1a6GQTRrfYOh7/eXL9/819d/+Y+vfrz3N3aDn6cg20IkA+VYBRG6Ot7U6TZrgPeGZNvvv7TblpJotHabblLCufQJWDiHkFHKGKHZ4ryEKhuAAHqvMpAFv1X0O1XdMkJ2f+lNAjzpsdKoKt+geSLO4xynPZ7847ePtyNS5s60UjZUFw+nt7btcGwvr19++bX95fVv//LFxxv/QEPa8zkbbJsgq4TuJ5dROoU6BakUIjmR9Gxv/XFMChSt3WYbEmOu/S5xkcGcIS6pQSORqGi7uP6rdAjJKrJd0gwhIyZgiFidwRIEkQn7pKgzI/WMZm3Yv33o9z8eb5HjakCwxN9XWF+cTuktmhtJuHvp27A0Bj+FBgll3SCua7BAHWSES7RT/7a9PcNlhbuxdHV5NQy9vtTJJb0USi2+9lmXWIJmqzfgT+ONAGMQzRK+tZZKWtH8xhWIrFgg8LG/hf3+Pn//8Txgq56IuFLI5QFLLm7e+7a1bb/tuyFvt633Wg9zF1IyqijYMrbFCdSBTuWKeBNw/Ng+ztXbE97gNJSn4DL7lxhDi/RnW4b74sIBGc3bLJho3VYSrkhMgGqy7XZ7RgZgdAOsujyZvP5OjefH5O8/xu/vZ7QeoPlPccayKbX1Dvfe+9b3/fZyM+btth9b92bmxkZJdKDN1J+stRY1W0WnRvOZqZE/9sexBKX0rYq/Ips1xzlSq99u+VeQRmtL9PopPkIpmyMikdQF/eDSHhV6LC4Z3mXYL66u4EbmHGA1vJm0rAhzOVle3iYzI8CMOefQ0Y4Hjc/jrD45ug4faYB5qpp2rcB3aQBJwcyaF1cbVTt3BRzLT7hvDmnWtbjOKwA3a8405dVpW2XUYlSXFlqxnp+oaXmk4+0x5lUfLElJpBARE8Mzjb0fYlYAm7m6QK+ojd5kCShjnAM2zueje8PY2p18/P23P97fH8eYkciSQnQG4XPla8XF0FTl6iTJXM2spuUl9sn5nNW6SCFZpc1Gp1lDCaSrHYgjI8blbw0pZYwZkSxuEqt7+cWfU+fHodI1VKOv1UtdygCHNI3jZKNPfobXulJQQ+/ISUE5x2TD8dzdPA/DDXz+2+/fPz4ej7NaEBFOo8X0ubJ6pSyTQJJWnbHNjGWqJy+XBMWRJVVSqTiaBGMzQzMGVZF527tpjEp+dJGuOWZUk4s6dcsW1AIY4gh4aU/qA6UyvErmLIY9xbZNq0ahtQJX8G++vIFihifmmE9zTLcOHr9/rzYx1SWmGjp7ml9UhSAaTGT1oSXo5laR4VypAcyQM1HaMjczWUhyenf11sBIzUy0l1vD8cioIGs9a0YWTr/iTZRDqQYRJaB2ZyplrTm93CpWVZeRZt5vry17G+WzPkVWJadgQxWulQVmzjz5fG/Q+f48jlF97IFZFZ4as7YELGi5ksMscUddbIBEVPODJtFQXb0TamZesk6j96b7vhvnjGMG2+uXDR92zmW8Kq/N1QUso6piSGOuA2FuEFsnpUBrx8B2Dnkuqyiz5vS+v/KMtzGTDhgJK71FZkpOqrqdSUY2ShHjmInzufqHKZOcqSQRzzhHTIlEgq1dK1f1tDRrQbJEXuboAszARkAtm3tLIgCDt033ly9dY5w+prXXb3du+EBGJqsIFMpRMAFidX3np20lDXEI5qZJlqB8yeSYAI2WBsA3tTc3SBEyWlT/DRSFS2gCYQFXhGYyp4alzseP98c4nuecKUYqYeYjzjkvCQclVbHkVVCsK8ydJedqGWIOoFqZmLmXxI2wvuH166+3PM6nPYe1l2+vZvOPnMbKwEBplcet/9OKlC9Rvc4HZ7qJdCegmMkI5VUsPWRpbfd5627MiDTaRWUDMG9EmhSMCszHYM44mDmeH+/POc4xZwrM4sznHLO6Z1eB15W219pPnlGym+JL6bRUHFxDDBSnx3mKRrBvuH/59SWfjzYz2F6/fnEd+0CrguxSX42se7vg2YqSQCfYO883PuFlblLIedKiUMJl5fbXr7/+k+b8MPNRlZxXa+LCwAxhsyr5cx7nI3m2D7OcY5zPUxEhKqREQMaYoSuOFCJILvUpQSGnkobmd06Z93v4DJxZ4NuYmEolGmV2u+nlyy9f53vD48lsL9++tfzYD7iZra5p0lwAGQG7WGiauYO9aT55mmq2AUhkeDXbWBXviba//vpPluNNmY/VuefSqoveNi44IU3IGWNwOsA8Z8wxqHOuuvyK/zNixS4SkbLqv1oFK6qWdma+7TwT3rYhZR4yVyY045jZaHTAt1vev/766+wdH48nmm/3dtuah9mVspf+dsWLWuF3/Z2gUXm6SIPJXKsRpqoeE4weRD+n2NWMivM8Ti3Q0m0tJaPwPkVkzDgPNFMgjokcp+EIyyAiJdp1ftZlxCeMpxULfh4uFfw7z2OOBDf7+Z/Dy1GL1vrtdcw8997Y7GePyp+/6nD9TFywumSt340/KzTXny/gUau0cylbsVKtK41dK3zFVMpSMUTMgWROxTmpOYwzmWnI/EQvLhXL1fvwT5W7P/8hlsYHBQZ+4n3XN648z9xVeWc2c/fV8vbzba+wp6poRdLtqjRhShn2GRZ+hojr9iCVEXOcYzhW50Ndu3X9bUnkdS1QRkCIoTjCOGdjdfPhhW/WD+r6jn9Y/LpJi0JS6GoNfmUxn092LQfNvKl5zRgZ5xHVoXLVRV/qOyQv7O6TX0mCZjHYgUyFogDP9fm1QlOa0+6b7/pP//rvv70dOSbtQmSqywd/ZjpUVjdWxMwKd6+bSBoEttYaBMF+5usV99jyUpqFFhmQ5o6RGVn4YwrxeWUqh1KM8xnnjIzIdrx3/3ieRVvJahRErR3dFp4aaSkVgxpRsA6khFbWhuWcchIGAo8ft33Xb3/8eH8MzBrrc2VnvTfPK/ImpZgzAMyZEZke1V+1KikJ2+79jClNobLSpWViqsStBKRYTJIjMyL+wehCCqs2kGbEPB8feZxTdLXz+dGeZ0T1UqXbn+o7rKlmI+lKny/BOriyj1Vy9aeTVil1jPOZOGd81jOUxQLNtl7Zay2AZfiMFJAX/F9fTrnLaLbd94hcCxCKzLiyd/kCNJUjuYqDaxhVxc2k6Ias6Rbu5uYR43hijISZtccb/MfHOT+X7PP1Vwb4ifheou2KZZChkDhXpugCHRfVhTjev+98nAvH4GqhsSpvraIcknBIOSOViOoyiUhWf3Ut3Ovq9HpdjctWsVqmmZlhHjMzJ2BuvNxuAbfe+maKooDn+Rwf2+/S4/l8DFk7H+aP42qMsHqJ1Yat0G6hUrjCEFXL7WIBUoClCa6waslD7y0xj0faOT7bGXPde4VirIu0mmdKEalAuY+Lj7lOWxrPHFJmFBYT+Wne6pOttW6nGLE6oawemFzwh3X3rucRghCHj+fHm+F5PI8Ja8+3tPfHWCeguhNdZrfARDGFKlNbx6p527jU2gKNFDqLHzL5tm+nzkc/7aMEAZIWtqpMpR8zcmrGkiUNjnMirAbJVUqZWF8JGugHFfPzE/Dpk1eG6vftY8TCPjO4+jw4zd0M+/1+0x/fjxnJ82GzeUuc43wGWnty2OOjskFYXKBAfXqCP51PJbKC2FrfEarzQgNc3O30HkLP/fVl/xjx8IOPkWtwmV2QsJLzZEiIARCRHHYeITmru6LVmLz6agoBzuk5R53qTBXFgKt4Jrl9ebHnKG2CGJ4wwJqZ99bMXn/59QX/he/HcSLHEUYE5hwHrbeRpx3PEZJkq/J6RVZ/QnppfpWwEd77ds8j6VWiSpjZbu/eTNpie/l259txPozHTFwO8OKDRQQgeAZAiJgx50RFfFqOwRxGUJ7V/sVXLcMVftCI8oIG7y9/+Wbvo9g+Qauhfyf7tvXmv/zzf/gGn+YKRGScBiAjY9vubY7JcczK9g26YixARFWGCkJ6UatGM9+322to+Mx0uJo87O7me0L38fLrX74YYkRS1iAahVgS2asFj8wr93JiKudqAieBZp4Bz0ZBBgAlkC/ssRBtgtVsXTT4/uVvf9Ufp6QBC8rcGd42aLvvW9/+6X/6X/7K/IDFyYQQA0Yl1O5f23jC5hxiCmZ/rq2u1Ls2aYXyNKPRt77d5qMeWOZNbnZ377uoL+eXv/7zN8zHORPhbPBOxHlUQV2BzrOhN80UEYmIcQbZK1GA+RZGj84pVR4wu5SzSnWj1Cd1lipda/e//svxX95n4oQR09vWpvc9Zt9v+377y3/8X//Zfvz9yKcTiqmJEyazl7a3x7tYMuzqSnCdMnzG/7ZiAIfDXY2+NW8lcpEEa0mg5SIW4f32+rIbBfZ22b5YBUNEWrVgbDVzEVM5x0iie+VuwYxpjKtDAYqeNsdnPSpZgLUcvmG/vf76tx9f3uQU9ExqUpWc0rzv95dv//TP9uvr/cOEeSAm46TTN3lv55Hlxqsj0s+QhsRPjwCYuxzucNHNWn6GPcUPVUWQMiISxohJuqH6vynnSsSWeQUAeC346mayGl9KExzTFM7CxcsYg6sLRaUfNANqSIXdX758++Xb64uMExkRmIoQOgSY9227ffnVv9w2J3LK4sSUNWuOtrfV4GrtOfCnLJBXjF+hD0vmzn+Mlz4dhjIzZ5zHeZzHec6kO2fmHFOrjEC0q3MXCTq91GlWkoVaKkxgDCrpYtaQwUXkXEv+85IavFnvvbXWWk80wdJyBlJqS9JM/ay/zciesXA+0ryhgVqJT8af3x9gYdAG+Lr9zQXNw9Dm44jznIakte3Q48zxjBnP8/H9rh/Dbt43zjEpVP+xKsy4WrDMY8iSqJRK1fW04uMcY5KYScsomCFOlMKGEGAbS6mLEIc/f/zbf4p//eNj1swzWZTuy3vW8Dz/P+6/2//+n/94HxAVKToJxfnxu7eiHZfd/3N7oLIBKkS30dPh1inkPDA03882z4mW1m4fH+NjajyRGjnev/OJbet9tzhH30Zmpk5aYXqamULkXLsinaj20gGKxtKGcF1/UmJOTSWUhMD2EkeJRBLwSGz/1/O//PbhCkKlIwAyJhJUQsPiX/H/+c/fP7KpZUSwKYGI7xxttZsrdi/AP92AikWKza95iK0zUvMpnfmcLQ8lZo0WekzFYdDU+fEDE7tv++55nLQWEaGVFuVqU5yK0r8rEUOqKXX1lSkxLYvcJgXlqZo3WbqIlgqKKZFh4+P3//zx+9txA7vCWH3rcp6REWPkiY8/XvCvfz+OkQGNDLNZiq750S7W5xNJuSjsKxmiGdmKAe6NnIgz59DIqRPZJNu64UhF6fvn88MMfdtv9x7bkWgZMTOxalAvSWZ1hKyqd1aQiyu1qxgcgJKWYE6FL3qJtD0hpQFyATk+/pjvzzCTaTQiM5mqcX8pz/F46/jto5TuGpHZqkzE4mhpf3rhP+Feq/1QwpoZN5gIu+2Yh0lxBmY2Bkn67etHY6z+GkGk0M3v95cvmx7Ptp8z50iRzGSutFKCNUBTYAGfAGq+SMELNNWl4cq9LVdk5v0lP6ISRHNvkTmOifaCs6uOQKDmW2SwCcc4Te/TV//MjNWoVoZolxojDbAoPVzBoDU8AmYIBkU3v904+AzqNEm0MI70+fGInEJNGTTS+pdt/3Z/eb3H2/uMiXkeWUObiU/nWp2ePk+e0YyaWM5OgDQzVDIsFEJQkrf5POMSTpo7pAg06+3lNTBTrTSOp6VlYuO7CA11dp1RDW+plHIyWkWVAgzVd+HK+OmmdMBqso6Zm7edll2GkwCNyThgH+fvR5Z9LymI96+311/v++vrbP79j/l8PB46RqTWSJpyrTkXAI2ViLjrSH1GxZnIFDzJDBpqASCdfxwjl0qIMAQUdOf28ms8Po4TTFPOZDo9un5IIVin54FSQ1dn/slZg5cr4aiLQC4FZGEhFW9qIb+L5y6+3DPJYM4Y1dk7lcuhZ3VGnxGRNVZotSKsfSv/vCJ7LUngBX9cbWS1ul9mkgnThTtDGvPy7J+gqtJWM5mMJTFc1MFoQxmik4pZAw0mYhYN2HhFOsKCbEuOJrcqXnS3zTdQrjiA+ThmDABCUGlSzMa6courO97d99vH1u93vT/+/e05a7Q4Fy544QhYnbBXtBU1QH7hJuWcjT/bJ4SqwgzVL6xeL+dEnOFDaXY+nvn7+5hzLqE5iiTIzBRZ7QVrh2aUNUB1q/0Z9JKsyaoyo8ElN1rvREh5pOIYcT12QpmIY868aHXTxHy4b/1w3+94HL//+JjnObVurWwxGYJWH+kVUdfBUVwUoiRyTY5b3mFVaTAWDlt9AefUMZG0o4/88YgZEVRKlAkYiNXhAlL9JK5JGolW+EqJD8sXXnHAJe5UVfDPTOVQjJElMqvXSMyzFQZdSY9Ao1p70LaN53h7f0SMawFW07eytOvFcdE9gU8yCgWLg1frktqYilfKWZd3yNBMnK4kmh/59szV9b4QHGnyyluwEFyWzBqk0H5yOlzl6FlMAIJEAhnGAq9TImJGchmOTwJtmQ/jKu2Emp3mW8OIxxEpa1gt5St5QgZo1syAKcGAn+xX4XBX+L+aGXNB5RKwOjpWhs6SBAMFLc6q6Ac+dVRKaoFMdjmfJbajofnVoWrdzVzBD7AKlRWZnAAiQCojE6EFSFEBHWOW+3C6SbDiy8luihxTkWu8l6AaVVREM81MWOLZUkW2ikdKhfxJD3HpdZchrt63SILKaRKRSBzOwJQS1pBc0sdUTGBRsdUbzy7QS8nmdhllAbomo7ITaRECk6vBzBXHra5KiwstHU1JdjrdlILiNExjFXvAP6t2oCr0YTV28WaaRa9ZgQVoRuoThllKNJbG8TM8ZI0JJxxRE8cMVGUKVXRtWC0fIJbmtzI+ASkYvRI9AY0gajbqxYldOWkFhssJkoyfTnspL9afHquzoAmwKh6oadsZM9Ytv8BFgFS1g8waoYnFfC+V7tTFyF3Ne7TUNZ8harHhQA3cBm3xIdMAXGT+J7ZbcH/BbYVeVE+A+jc2u+BnfMpP109zoQ9LKUGomlKvAITrIn0aZEjKaoqONBqN86zOdmT16VlJcc3xTNDdIKMIU4ayGmRclOtlx+qFPtGJ+mv5xjIDa/fWKGsQpovRrzfiRfWywjdbCIRo7Wfty5IArDz0cz5AikGmlxPldTJYeqU/4ye8dmnFVN5K31BIin0+g8zc6AHvruoCAlMkSwbOn6dlvYBdL/y5t+In0UazOgq5XlYmU5E6VxBXcX15DxJ0t5Jw0psZGbrGK11db+sZ6ofrNbNytvX+BGnVGwrXzaF51pmAIKO3PqklUa5Wm3VxzLwZG9k2qyIQg+cwway80ScyXz+xLOSKVgisGkLQ6dYcCFhU8g/KyjbXw15rZbnk2tXKqma40LyRxtIQV/E0RSzhGnOVggCge9IWwXk91XpIVtdab5uyelaXOytMkLT4066uK+Aw835rMTM9jW4uyI0GfgYgi0Hmp1NbcSQKhTRzh7XWIJNRYIboyZIkFY+Ca9/LKWqpSkxZXqjRDPaJBGm9HN1UgzCBRQddPQXXs9R+rChNLMFQErJyXteph8yurpXLgFwnAWa2AiNem1StBq8YoyxVuQHTn7R6ulbziscuvBSLLL/owfVan+HVFbGYqkcp2hQ5I3/Wl1JAmuqOLDMjwj3dXAUwQiq+RGzAfjvPXLdABOkwb73fX8xGpvWp1rdnNeyrOJQAllmJiGQNEVmkx0p0AXidwRUaJVXN8Xyf84LM1yKQ5MZB0cCzLlO9kBlyIWnWLGgzqvl7ZsjR5iQyl+rhuvbISeQlGy35tWWZAZW2fFGFkHAqJsAr0gUhRQ4f43ik0EwXZb+8S1ouXcRSE2GNrQCg5J9auVSM/NMA1u/kmSkwLQFmeIW5GIhZVfirB1tg5ZxYoEoNabzaYqcgtFIIr6vyGUNywfwAFy1sn9WhpF8QdTHHY6hGH5uAkolCUs5R7RAV8jZHjfmBETU+ABlR7cgqR7s+kyA+HVkdaq0HulLmEzXu07zmhxDgLNS9Nm6N2bp8eWvd5zkRWZNolo8gW2/6VIQCXItPYyPCYt1ylWbbam6QrjCZP10srUHeJWSIYGYs4pzwJpl5XszrYu1d1jaPwWlYNgRmThi9wjvxCmfKiazeplJWB0d68/TWu5kRR8g0RGTRkFbnnqRZ33c/uJSVK/EBQWu9qRiXuFRcK/krS7TEuUrVrKEVKwmX6VmxgcgJ5vwcUAoBhjZzAnMGtraGmhVi5N1ss3Z7cc0TFulbPiLULIcKn6mz/nnur4EOV6AGQQahtbZvZIKtJBhgGKIIKl05Rgpt1JTLz+KhdZxbXccrXFgfLi2+isukgrZjWF4pxJU46/L6SrkQo7qarvihIabIpLfbl2PETIJubH1rdpv95Uuz+fTniH6b7yPUuGQTl/GuQ8OqEUR5gYSkVS9gfesvd2rKxxDTRE47RqzMpdwoU9ZzriCsVA91O1pvWmjTtTvXBa70FldIUl0ZWT2Ji5tdB+ITVCaNde9sDb82W4aC1rZ0ktXX1d2bbdb3W/eBI2B9NzeTt8/2rboCLlx+mfbzW0v9Yuat9/1OTNhh4qQAWCRWCl8/bn2/74iVw9bCluP1rXle7rJaPa4QeAXOtIZICWx7er/Em7rG31xhMMzlfWcoE41MzaDvpzvMvW0v3359f04GQHe2vm/t6+hfft3auU35ud/dqUR10TeCklVrmeXrzGm2hKCFEbs332637etXw5A/n2KcAE9vW3Q7QvM6Bd73F80JTpkv+IpGsG2tlmotiK20ex28Mnw1Tnx/1bNn9rocn4EFDGot0ghvW7ZcpoQm7l9jB6z1tn/9y9/6x4kp0Z19v+3tdey//m1rx3bK7P7l6ATMzRZFTRKrZzpY0SvtipD3qFDbt9vL7Zdv1KHeOnl00UbzZ+gwaUWuJNl6b82sJ00WyznQ2tbYYOU1KnTTnyqEeLklmfXb4W261+24FGMVvjWAoQ4gY9QSON1uXw9nBpSW/nI0oiJYtr7f/eZf/vK3W3v4I619+eV520be7vko23upMi5J5KWqK0WEr0DW+367f/mKQOyyRm8CfT+PHOMMlqSE1NPPbYTSrFqy1YgqVOWC0dan0wwAq83QCotQVdHuL1/Hjx7RpCBdn9FJC9y+ng9Bre+5Vd87UO7t5Zfjnpmt+f7y7a9x31bPbcF8a7f29a//w91/xPdg+/rr436LvL/m2TUjPyXFkYDISajR4sQEaDumBHrf+n5/edHMuLHdyCbYvD+PqFmUMoCOkGqgUScwZyQXzSZ6c9AgWa4yXuniAiotMpo3dH+5b91t3YstR36eAFycva4pTID13n3bem8TxXO5mVVMbZWPm7m3zbdt26e9vNqXw/jrl5iP6SVZk6qmCEuDUeDExd+VSAQVs11ib3o1vK/H7NDnAE6uzFgrN18AM9jYaGuEIVZvHqrgwPJgog+538aYrWy8+0sglkdtSrq7Etb6bGGeabB93/rXb2/NSGve+v5y39yjQvnet1t/Ga9ff/nS/PiONv76Lx//hBf756/Z35/nOWdESmYWWs7bzNaLVZoF0lDjbW6aM3Zx57nhNLttezZ3v63XrXaX7m7N0jCTtgVokvetofpKlEGzgqNongv9qC4GIL03q/o7Wr9X9rOgrqoBl7fWGhuDLu9b733fWk2Ra9vty4+tuUswg7fWt1t7+fqXr609f5efv/7T/de593/+FtE/Hm2MGDPlxZSmaKoDNAtacNZok9a3fb+/ambc6TcO0un3vQ8346bzs9rFe7M1dwVKzAnzugLnlFUutjzuioiuZLJYRPfznBFzNoVgbV75BI6InJJ/hi7rqOaM9x9vb+9Tfnrcf/x4HOe41IClzdbFSZhZa9uG7eU17sfZEtWWI9MTiYzVMntBIpnfJ3zFBJVAWho13JzQOOaYM7Iaf0mJ3EAi50wNnueY4IA3mEW0kln8hAILh1v8CUUppQg/nmvmvUDCvBX8isyMwUZW08+k6E4ihefbx/MZolnefv/tx8dxTitZTMzRxny8/0B7+3g+z/H8eJxz2jjyPM8rRyx4qrobSEjDIpdioll1mZnzPE4KppzTRuLUE8c5ZqTFtYltv7/cHw15zuQQFs1Oc/PGSwPLap66tr0ByfxZPkyM4qJFiUP3fiYzqlM20uye9C32yWmttzlP4DzDGgVTjMfbx1UNa8wxTjvO9v33YT/+/u/fjzHi+Z9+H/7xqv/2cc4cM1cB44JSzPtqMWugYHC35tZNYmbbNuc8RTuViuOcM4WcYDczevv1P/wv3/4vsyOekXQJNWqivX77tX3iriTALHPr9mqaPg7BwGomMopWE4B8+t4wmaWSbxxoLzn6i+U4D99af/94Tty/vx0D8H7M4/H2/pxzNlL0OcbB54M/vs/8/e//9v08fzyP//R24vebfQ+GjVRJsLNme4mtuWhm6UkYWMr/rWXkOM33fTil+CEqxnGOSOVp9NZ7a/e//c//69f4GP48FbQk6GjN+svrl/aTC9QFulUjLMFXQgkQyDEzqs7D3Pp9BhlAS7IzxS2ntdaBaHvfBmPwfByz+p3kPD+e4yr/Vs5x8vn09x9z/v79/X3O0c/nmHxmm6qcwUlLrMIdWWtY5xQrQi2nEGMeT9t9j4yp80OOcx5jpmhm7H3fev/y13/+ly9/f32JWXLQmpDp3vZ9b3nFy8A6cRQSMKTNgSJCEpYzr9VYXugqVyGUOWecz7fn28jnvllr20Z0a3sqNQTNo9p/SUgLm4PHYW+/PfT28Txy8jHGDNiYH3LZTHnNVfiEIxNJRCiVpalDxnyC2/F8st/GeR5TZyrzmWWqLuyBRrNPeuEnUFhv/A9CyQzzNWnjJGHXuM0pZEyZd9syUxNTcUzPeiBqgI8Yz7fjETHgBPpL8stLPnqOmcYcxzmvSiRvzhyPg+9/PPE8jnNOP86IYCojg4yrVsFYmZH3zeCcMyMjZ8BJKGO2zBy0eD/engm1nPVnQpkjlJljm8PsvP+fv709R8pW8wRK0vn+e7uizprDyLbE4YAbrHjXgIBItmbqUaqPoSHDTCY85iQ/lMf7eWQEnmb+cjP7y1/ufBuPxyEgxihuVG7mzsxj2ON92BhjjNnOMzIIzqpsAVUVY8UimfnW3GzMnDl1jEoTNVuTkOPjfNNzwvtrvo/VzyKnqJzDx9A4vt9++/3tnJnXaVCS83j3dtV0gyRkzWJixcnWygnMavfA3sk+j5mIYyLgltWaMsLzlI1jBBKZif3mu/36t9G/n38YkJjHWD3X3FvrlvEMtbduOs/ziGwjVQLgehwjXUI5KnfavW3OOXLkCDKqnqDmZ2AGjCPNt3uch1KKwuYkJoXjfPzYj+OcUrn/LGAD82kNP9/fmPQSl5rRW2/V76daQIW31lobOkOcF9KCKm2FElLAIZj3/atv9/bLP+V2fzJTp8ZxrvIhkoRiILL1TpzHeaZ8Jq250a2mVdN65lqA5rTeb2bD0oIx5soOiprLGsUBa7dtvhmF1bIOIMMSUxlbZs0O50/sRhlHW9aAC+ZJwATK6c3tGuVgALLR+tYsvNXYr+pHQ/PmrOoNwUn4/vL1L2370r784vv2mMc5IsZjzBTSFBScMWdMoQnj/TEViIQ3N5BpzEXjSLIUpxsRMBunRg6NGQUsa5ifT0zvnpGyfp+OnJmxijNIs95tDUyUZgqYKSve3WO268zVL134kNHMkUwaUjAxYbTWsrn5NFfKDKRozVkHtkodfX/58sW31/760jn9Ze+NmucMSSZFtaTPjIS3zHmMQLBaaEOfuFwhkwYLGJ05wu0cGhk6TjmAAKad56HYmksCvNFKylJJE41ufev7vrUTCmVELjNfXSPR7LMw0EgiCgTORKM0e9IRAZqbuXlvGu7Nf2J11cJFghITctC3l6+/tP6137/dNvXv974HJxeKohSmEXDFPCY0IkvCLYKIgekW6UifI7DYBrejD+c4MTPxGPBmmTmTfQybbi5L8+1lbkZ6a0txVAbU+95bThAREGr6YyStp9pKlwtA1sV4rz3ILMk6TBmgtc3V3L1pSkqtmuViNoBwb2b99vLlL/vt29Z/ff3abu/fHyQfy1YAyoSLzpLuKGaCdN693W6Onof5pIfa0owzBePocDtPzpSdE6u+R9Zaj3N64syG9hrdKOvNyCpUSs35ZNJjzMwIIkNAzgnS2miLflpv/Ek01qIoE0RMCSejwZpnM2udsegcAJeM4ApbCNp2e/26ty9f+2NujcqYuMbuSlFCTJHTsYa7GK33+90PLTf4uawq/QosWHNNgEykVvfgiOAcozFA77dwQsxQruHjpBQj4dXSNpiZADODwJxoiT/ViWGBISTh3sLWgFO0GnKdoYiUtV4jP7iYSxbvXP09NMc428zQsR3HcZ7jPI7qilGcjKrtEzy15LVuDbbtrzcfXsgvM6sX5AUOQmvcKn7ClQQy5ohTO3jSn88jjnNMnYfNGe0nSVdDG5cOc+2ZCAWb6c9WZ32D1PDJx5t3dDRnySIj4nkcmRU5k2b9Ja62x1U1dD7fU23vzY9zBlvfpoyrkWkRkSyalZExhYkm9n5s9v3EE5iw1SbmUm9dkXoB/7c1BJjVHnXacA5TPH/EGWDWgNZqBWW2fB6M2CYUAtxXS001WukRJFnmVZinScyVGsA6O5oj5njYeZzn/BgVOWf1uu59QAKyOlSN59sfz8fYtsfb+OP9Y7LtUZWHucSqvN7NIjNSJhOaPxrfpk1D1Qut0LG4cWXZbyVlnSkkLGDjNJzRAsNIZvzxcc6UWX4S5Es8BpJW9UGiWa7opdJhAajBlNeBqzNX/2ydGwzKeRDzOSZDBLCGfEi2eJI6o8rxfBtndv94ybfHx5D3PgLV5heQUG2rM5ORCEFKMBngpUio5k2mi90BFLCoovLSRdUe0lKj4cC0nGPkH+/PAwGaOQKglKFEkLDiWCcBrsWdbAv7/omeVju+cgvFY4G+sVom13iteu8rvdJnn4+wC1yVIphP5+WTSydatlVXqoOwschIwCUkMu2i6vkzS1t5XF5X9Pr25LSJGNmByWa+53mOydrvRaMtH22Xjqwuz2pEhXa9Nhe4XDmIIHNSLngz73stnLvc/uGxKtooDjBrXevo0Yze2PxqHLNeCRf5VK0GFrOoi4OUlJY1xEAXM/MzhV275PEzdjNbXUC5esGQVwXa5xN+Lhmx+ox/WrvmS13DT8axVE/yZokm9K623Uos/dlp50+9MX9+s5lZQ/rn1PdiCT7btJT1LkHakm75sua8zl6V56KEhKt9sK7X+Pn/VjVPV2bxiY9m/gkH+Llin4vH9Rf7DH9a1/XpIE3mDpkJ6Y1kF/bO2/3u8TxGKGJGtZtmYQsENJcKqmQeCWZO1wkF/HmMSPOF3ygp83kdhDU0jLBU8V51lUg6UTzKEjBev/l5HYAiqISMjElMHqTrGBEETWalKVDMetI6WosXrjWH0HoBPWsxa56uO5G2IbOB9+Zfv7z4eHtD5jnnmKmkaZkOZQymSMDdvTONcT6DiLk/+jkfI7PKSeoVvepeqpFcK8SvKENbqm5r6d3UUjIG4mqQfRGGS7FKujJTMSdGckJzRn6cMfzyyYCAWVoRlFKpKH5baaHUemD1nai5Pa07ezcmuyKduLft11+++NPnOCPGHBFVW3TZwjw5RVJ0927DMI7HEMaxPbbIxzFijDlDlcF5fp5N+caiLykzM5+o+Yiy7umptAWFrwW4znTRV2ycIWlOnM6piBj6OHOkrekEAqDJIAGlgoF0XaQajEDzVn4nim9tvW3ou59BpnU33bb73/752/Z+n/Oc84wZ8k4lRBoJ5jSlgtCw2f1jQ8o6+/OjnV1xvn94nEsqSLBdwmInvZs3wqn0jdutYWRMhBSMnMnmSwVeKmiBSMOllGgzMhVjpMgIb+2G94EIRCgEzwQUiBoXIqBQdIBKKzSzbYkAaQyQprb1nfvdx2nblLvl1/3rf/wf/7J/3z+ej6GMyMqOeFkvwDyqsA10S8UJb+jv731u1JyT0oL0Qfa67gSNty+/yVkwCiFNfE7ydMDA7oiszmlcdV00eZMS5ltkeAOgVTA8Jw6ZMuOqOwdQeOoKc4VQoRckXcm2SlHqIBaRSwJZU85pMGvb7X6L182tatwTs7iz5adyRTKSePKhfE409LfnTZOKx8eOQV/yjjI1FOmm/XYrPRiIGVMPxIw0yoHEgIddJdXLk/H6KwA66d7YYZauJEJIwiNzpOqmAzWEkKUd+1yWcsyG1rqFpEVz//QY/EwRq49eMVGxKrSdrCTCcMmsVwgESRmzBo4AVWoDKSM/semKapA6zwNOGSLMpZhYLZCuP7nMRbmcXGU91xcqlTHnOIZZWkxjAjLnRdev90CV/qSWEt1hu/ZGWIbahojMhJag37yhdQesA908+rbdXl5v59Z8jSYmF7RqoNfAAqLEo95KCWBmvZ9mZkrzkopiUdsrLEkystpeyiAYvZmM14jkVMLd3UOOvDQLtR5FY9MWNTnoaRGlmF+od+1cMb5FMa3zZ2zmNzwbxZlqcLKK1yGkYtpkpHXCMadFHtq+/3tuv//9+8dztXbNLAn35VNZTSTodrvp1g0Z1JSxBoC0iImZTErC/NSO02u8rsCag6FKKwh4b/opoLVP3HY10csKD9NbtRq8AkGkzKu6DFCNcFlID5bqzNzMWrd7zVHh/x87LzmeWBebdQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 40, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Image.fromarray(np.uint8(W.dot(H).T[-img_matrix.shape[0]:]), 'L')" + "Image.fromarray(np.uint8(W.dot(H).T), 'L')" ] }, { @@ -538,17 +441,17 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAAARElEQVR4nO3BMQEAAADCoPVPbQlPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBmt7cAAScmPL0AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 41, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -556,13 +459,6 @@ "source": [ "Image.fromarray(np.uint8(R.T), 'L')" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -581,7 +477,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.5" } }, "nbformat": 4, From 6dc9d3e0cfb31887bbdb86818566fb25a660ed38 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sun, 22 Apr 2018 17:04:13 +0300 Subject: [PATCH 007/144] Improve model 1. Improved performance ~4x 2. LDA-like API 3. BOW compatibility --- gensim/models/nmf.py | 152 +++++++++++++++++++++++-------------------- 1 file changed, 80 insertions(+), 72 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 19e1532241..4fb17dbe08 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -1,10 +1,15 @@ -from itertools import chain - import numpy as np +import logging from scipy.stats import halfnorm +from gensim import utils +from gensim import matutils +from gensim import interfaces +from gensim.models import basemodel + +logger = logging.getLogger('gensim.models.nmf') -class NMF(object): +class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """Online Non-Negative Matrix Factorization. Attributes @@ -16,32 +21,39 @@ class NMF(object): """ - def __init__(self, corpus=None, n_components=100, lambda_=1., - kappa=1., store_r=False, v_max=None): + def __init__(self, corpus=None, num_topics=100, id2word=None, + chunksize=2000, passes=1, lambda_=1., + kappa=1., store_r=False, max_iter=1e9): """ Parameters ---------- - n_components : int + num_topics : int Number of components in resulting matrices. lambda_ : float kappa : float """ self.n_features = None - self.n_components = n_components + self.num_topics = num_topics + self.id2word = id2word + self.chunksize = chunksize + self.passes = passes self._lambda_ = lambda_ self._kappa = kappa self._H = [] - self.v_max = v_max + self.v_max = None + self.max_iter = max_iter if store_r: self._R = [] else: self._R = None + if corpus is not None: + self.update(corpus, chunksize) + @property def A(self): return self._A / len(self._H) - # return self._A @A.setter def A(self, value): @@ -50,73 +62,68 @@ def A(self, value): @property def B(self): return self._B / len(self._H) - # return self._B @B.setter def B(self, value): self._B = value + def get_topics(self): + raise NotImplementedError + + def __getitem__(self, vec): + raise NotImplementedError + def _setup(self, X): - self.h, self.r = None, None - X_ = iter(X) - x = next(X_) - m = len(x) - avg = np.sqrt(x.mean() / m) - X = chain([x], X_) + self._h, self._r = None, None + x = next(iter(X)) + x_asarray = matutils.corpus2dense([x], len(self.id2word), 1)[:, 0] + m = len(x_asarray) + avg = np.sqrt(x_asarray.mean() / m) - self.n_features = len(x) + self.n_features = len(x_asarray) - self._W = np.abs(avg * halfnorm.rvs(size=(self.n_features, self.n_components)) / - np.sqrt(self.n_components)) + self._W = np.abs(avg * halfnorm.rvs(size=(self.n_features, self.num_topics)) / + np.sqrt(self.num_topics)) - self.A = np.zeros((self.n_components, self.n_components)) - self.B = np.zeros((self.n_features, self.n_components)) + self.A = np.zeros((self.num_topics, self.num_topics)) + self.B = np.zeros((self.n_features, self.num_topics)) return X - def fit(self, X, batch_size=None): + def update(self, corpus, chunks_as_numpy=False): """ Parameters ---------- - X : matrix or iterator + corpus : matrix or iterator Matrix to factorize. - batch_size : int or None - If None than batch_size equals 1 sample. """ + if self.n_features is None: - X = self._setup(X) - - prod = np.outer - - if batch_size is not None: - from itertools import zip_longest - - def grouper(iterable, n): - args = [iter(iterable)] * n - return zip_longest(*args) - - prod = np.dot - X = (np.array([e for e in batch if e is not None]) for batch in grouper(X, batch_size)) - - r, h = self.r, self.h - for v in X: - h, r = self._solveproj(v, self._W, r=r, h=h) - self._H.append(h) - if self._R is not None: - self._R.append(r) - - self.A += prod(h, h.T) - self.B += prod((v.T - r), h.T) - self._solve_w() - print( - 'Loss (no outliers): {}\tLoss (with outliers): {}' - .format( - np.linalg.norm(v.T - self._W.dot(h)), - np.linalg.norm(v.T - self._W.dot(h) - r) + corpus = self._setup(corpus) + + r, h = self._r, self._h + + for _ in range(self.passes): + for chunk in utils.grouper(corpus, self.chunksize, as_numpy=chunks_as_numpy): + v = matutils.corpus2dense(chunk, len(self.id2word), len(chunk)).T + h, r = self._solveproj(v, self._W, r=r, h=h, v_max=self.v_max) + self._H.append(h) + if self._R is not None: + self._R.append(r) + + self.A += np.dot(h, h.T) + self.B += np.dot((v.T - r), h.T) + self._solve_w() + logger.info( + 'Loss (no outliers): {}\tLoss (with outliers): {}' + .format( + np.linalg.norm(v.T - self._W.dot(h)), + np.linalg.norm(v.T - self._W.dot(h) - r) + ) ) - ) - self.r = r - self.h = h + + self._r = r + self._h = h def _solve_w(self): eta = self._kappa / np.linalg.norm(self.A, 'fro') @@ -125,21 +132,21 @@ def _solve_w(self): while n <= 2 or (np.abs( (lasttwo[1] - lasttwo[0]) / lasttwo[0]) > 1e-5 and n < 1e9): self._W -= eta * (np.dot(self._W, self.A) - self.B) - self._W = self._transform(self._W) + self._W = self.__transform(self._W) n += 1 lasttwo[0] = lasttwo[1] lasttwo[1] = 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) - \ np.trace(self._W.T.dot(self.B)) - def transform(self, X, return_r=False, max_iter=1e9): + def transform(self, corpus, return_r=False): H = [] if return_r: R = [] - num = None W = self._W - for v in X: - h, r = self._solveproj(v, W, v_max=np.inf, max_iter=max_iter) + for chunk in corpus: + v = matutils.corpus2dense([chunk], len(self.id2word), 1).T[0] + h, r = self._solveproj(v, W, v_max=np.inf) H.append(h.copy()) if return_r: R.append(r.copy()) @@ -162,23 +169,21 @@ def get_factor_matrices(self): return self._W, 0 @staticmethod - def _thresh(X, lambda1, vmax): + def __thresh(X, lambda1, vmax): res = np.abs(X) - lambda1 np.maximum(res, 0.0, out=res) res *= np.sign(X) np.clip(res, -vmax, vmax, out=res) return res - return X - - def _transform(self, W): + def __transform(self, W): W_ = W.copy() np.clip(W_, 0, self.v_max, out=W_) sumsq = np.linalg.norm(W_, axis=0) np.maximum(sumsq, 1, out=sumsq) return W_ / sumsq - def _solveproj(self, v, W, h=None, r=None, max_iter=1e9, v_max=None): + def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape v = v.T if v_max is not None: @@ -202,20 +207,23 @@ def _solveproj(self, v, W, h=None, r=None, max_iter=1e9, v_max=None): eta = self._kappa / np.linalg.norm(W, 'fro') ** 2 - for _ in range(int(max_iter)): + for _ in range(int(self.max_iter)): + error = v - np.dot(W, h) + # Solve for h h_ = h - h = h - eta * np.dot(-W.T, v - np.dot(W, h) - r) + h = h - eta * np.dot(-W.T, error - r) np.maximum(h, 0.0, out=h) # Solve for r r_ = r - r = self._thresh(v - np.dot(W, h), self._lambda_, self.v_max) + r = self.__thresh(error, self._lambda_, self.v_max) # Stop conditions stoph = np.linalg.norm(h - h_, 2) - stopr = np.linalg.norm(r - r_, 2) - stop = max(stoph, stopr) / m + # stopr = np.linalg.norm(r - r_, 2) + # stop = max(stoph, stopr) / m + stop = stoph / m if stop < 1e-5: break From 5f4b3d3b02f98ade00114d29a74e84f2e5fe8aa2 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 23 Apr 2018 05:40:09 +0300 Subject: [PATCH 008/144] Add show topics, change API --- docs/notebooks/nmf_benchmark.ipynb | 165 +++++++++++++++-------------- 1 file changed, 83 insertions(+), 82 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 6d1e86b4dd..a01dca9842 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -14,7 +14,6 @@ "outputs": [], "source": [ "%load_ext line_profiler\n", - "\n", "from gensim.models.nmf import Nmf as GensimNmf\n", "from gensim.parsing.preprocessing import preprocess_documents\n", "from gensim import matutils\n", @@ -38,26 +37,26 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "from gensim.parsing.preprocessing import preprocess_documents\n", "\n", - "documents = preprocess_documents(fetch_20newsgroups().data[:1000])" + "documents = preprocess_documents(fetch_20newsgroups().data[:100])" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-04-22 16:56:15,042 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-04-22 16:56:15,285 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n" + "2018-04-23 05:38:42,334 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-04-23 05:38:42,353 : INFO : built Dictionary(4357 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 100 documents (total 14240 corpus positions)\n" ] } ], @@ -69,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -91,15 +90,15 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 6 s, sys: 3.64 s, total: 9.63 s\n", - "Wall time: 5.47 s\n" + "CPU times: user 270 ms, sys: 340 ms, total: 610 ms\n", + "Wall time: 197 ms\n" ] } ], @@ -115,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -124,16 +123,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "554.6444386890174" + "144.36518804676317" ] }, - "execution_count": 7, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -151,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 31, "metadata": { "scrolled": true }, @@ -160,24 +159,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-04-22 16:56:36,217 : INFO : Loss (no outliers): 172.39495291355695\tLoss (with outliers): 172.39495291355695\n", - "2018-04-22 16:56:43,876 : INFO : Loss (no outliers): 389.3105355433292\tLoss (with outliers): 389.3105355433292\n", - "2018-04-22 16:56:48,380 : INFO : Loss (no outliers): 145.9595486163495\tLoss (with outliers): 145.9595486163495\n", - "2018-04-22 16:56:51,592 : INFO : Loss (no outliers): 151.99480174778157\tLoss (with outliers): 151.99480174778157\n", - "2018-04-22 16:56:54,430 : INFO : Loss (no outliers): 177.2928353871849\tLoss (with outliers): 177.2928353871849\n", - "2018-04-22 16:56:58,282 : INFO : Loss (no outliers): 188.18409794869066\tLoss (with outliers): 188.18409794869066\n", - "2018-04-22 16:57:02,207 : INFO : Loss (no outliers): 160.50397978534247\tLoss (with outliers): 160.50397978534247\n", - "2018-04-22 16:57:05,956 : INFO : Loss (no outliers): 237.7479754187301\tLoss (with outliers): 237.7479754187301\n", - "2018-04-22 16:57:07,425 : INFO : Loss (no outliers): 148.60375147751577\tLoss (with outliers): 148.60375147751577\n", - "2018-04-22 16:57:09,058 : INFO : Loss (no outliers): 219.84094739723508\tLoss (with outliers): 219.84094739723508\n" + "2018-04-23 05:38:44,984 : INFO : Loss (no outliers): 172.38983686111413\tLoss (with outliers): 172.38983686111413\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 55.8 s, sys: 1min 2s, total: 1min 58s\n", - "Wall time: 36.7 s\n" + "CPU times: user 1.55 s, sys: 1.89 s, total: 3.44 s\n", + "Wall time: 961 ms\n" ] } ], @@ -187,12 +177,20 @@ "\n", "np.random.seed(42)\n", "\n", - "gensim_nmf = GensimNmf(corpus, chunksize=len(corpus) / 10, num_topics=5, id2word=dictionary, lambda_=1000., kappa=1.)" + "gensim_nmf = GensimNmf(\n", + " corpus,\n", + " chunksize=len(corpus),\n", + " num_topics=5,\n", + " id2word=dictionary,\n", + " lambda_=1000.,\n", + " kappa=1.,\n", + " normalize=False\n", + ")" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -201,26 +199,26 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ - "W, _ = gensim_nmf.get_factor_matrices()\n", - "H, R = gensim_nmf.transform(corpus, return_r=True)" + "W = gensim_nmf.get_topics().T\n", + "H = np.hstack(gensim_nmf[bow] for bow in corpus)" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "678.6977129611604" + "154.25266942061842" ] }, - "execution_count": 11, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -229,6 +227,35 @@ "np.linalg.norm(matutils.corpus2dense(corpus, len(dictionary), len(documents)) - W.dot(H), 'fro')" ] }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.243*\"armenian\" + 0.111*\"russian\" + 0.095*\"peopl\" + 0.071*\"genocid\" + 0.070*\"turkish\" + 0.070*\"jew\" + 0.067*\"armi\" + 0.061*\"ottoman\" + 0.059*\"post\" + 0.057*\"turk\"'),\n", + " (1,\n", + " '0.070*\"year\" + 0.051*\"insur\" + 0.046*\"car\" + 0.042*\"edu\" + 0.034*\"rate\" + 0.030*\"live\" + 0.029*\"state\" + 0.028*\"subject\" + 0.028*\"line\" + 0.024*\"think\"'),\n", + " (2,\n", + " '0.106*\"orbit\" + 0.071*\"space\" + 0.056*\"launch\" + 0.051*\"mission\" + 0.046*\"probe\" + 0.038*\"shuttl\" + 0.037*\"option\" + 0.035*\"titan\" + 0.034*\"earth\" + 0.028*\"power\"'),\n", + " (3,\n", + " '0.027*\"reserv\" + 0.022*\"center\" + 0.021*\"close\" + 0.018*\"naval\" + 0.017*\"dai\" + 0.016*\"inform\" + 0.014*\"time\" + 0.013*\"includ\" + 0.013*\"marin\" + 0.012*\"corp\"'),\n", + " (4,\n", + " '0.048*\"scsi\" + 0.039*\"probe\" + 0.029*\"titan\" + 0.029*\"us\" + 0.028*\"earth\" + 0.026*\"observ\" + 0.023*\"edu\" + 0.023*\"launch\" + 0.021*\"atmospher\" + 0.019*\"satellit\"')]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gensim_nmf.show_topics()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -255,7 +282,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "execution_count": 12, @@ -306,8 +333,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 227 ms, sys: 224 ms, total: 452 ms\n", - "Wall time: 253 ms\n" + "CPU times: user 252 ms, sys: 252 ms, total: 504 ms\n", + "Wall time: 247 ms\n" ] } ], @@ -329,7 +356,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "execution_count": 15, @@ -350,7 +377,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 16, "metadata": { "scrolled": true }, @@ -359,19 +386,19 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-04-22 17:02:33,972 : INFO : Loss (no outliers): 4649.176186445958\tLoss (with outliers): 4649.176186445958\n", - "2018-04-22 17:02:34,794 : INFO : Loss (no outliers): 2545.831439439685\tLoss (with outliers): 2545.831439439685\n", - "2018-04-22 17:02:35,144 : INFO : Loss (no outliers): 2157.622569525167\tLoss (with outliers): 2157.622569525167\n", - "2018-04-22 17:02:35,348 : INFO : Loss (no outliers): 2111.146762974082\tLoss (with outliers): 2111.146762974082\n", - "2018-04-22 17:02:35,464 : INFO : Loss (no outliers): 1428.3477896008337\tLoss (with outliers): 1428.3477896008337\n" + "2018-04-23 04:48:55,768 : INFO : Loss (no outliers): 4649.176186445958\tLoss (with outliers): 4649.176186445958\n", + "2018-04-23 04:48:56,545 : INFO : Loss (no outliers): 2545.831439439685\tLoss (with outliers): 2545.831439439685\n", + "2018-04-23 04:48:56,860 : INFO : Loss (no outliers): 2157.622569525167\tLoss (with outliers): 2157.622569525167\n", + "2018-04-23 04:48:57,051 : INFO : Loss (no outliers): 2111.146762974082\tLoss (with outliers): 2111.146762974082\n", + "2018-04-23 04:48:57,170 : INFO : Loss (no outliers): 1428.3477896008337\tLoss (with outliers): 1428.3477896008337\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.62 s, sys: 2.4 ms, total: 1.62 s\n", - "Wall time: 1.62 s\n" + "CPU times: user 1.6 s, sys: 116 ms, total: 1.72 s\n", + "Wall time: 1.57 s\n" ] } ], @@ -388,20 +415,22 @@ " img_corpus,\n", " chunksize=40,\n", " num_topics=10,\n", + " passes=1,\n", " id2word={k: k for k in range(img_matrix.shape[1])},\n", " lambda_=1000.,\n", - " kappa=1.\n", + " kappa=1.,\n", + " normalize=False\n", ")" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ - "W, _ = gensim_nmf.get_factor_matrices()\n", - "H, R = gensim_nmf.transform(matutils.Dense2Corpus(img_matrix.T), return_r=True)" + "W = gensim_nmf.get_topics().T\n", + "H = np.hstack(gensim_nmf[bow] for bow in matutils.Dense2Corpus(img_matrix.T))" ] }, { @@ -413,17 +442,17 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUKElEQVR4nF3925IkSZIsBjKLqJq5R2RmVff0DM4BdgECEWjf9v9/ZWmXsA8L4My59ExVZUaEu5mqCO+DqEVWn5zpumWGu5le5MLMIsJ/mikATIGAv25nojXLMNe2w9V9f711P95+e3uex4wIKb0hRDCRAE0BASDaHR+Nk526ndPdScwwnNSUmWD8amDq45lEvt7+2PoxIYmEtQMAYIT3jQTatkEGc7ARApDKGZnHzKDf50y+6EzFxExlhkiTJFCAASThUgruJhh8Yx7qCJp7zmj4x1+ZAkHQCCoAGSMFAIIkAQDBzx8gRIIABYOZjEYnIKw/RdZPEBKERDKV9TskBIoA14dy/U+AGDElgg5OIgGmMjIVkUlmKiyQuR6J66s+vxrrc2kACSGBSaWSuR6ojXo9SiCAgSF4GJJEhAynt3NzGx9vzzFmZAoGb1p7DtU3OoIkEiTdoRgz0pxECprIBA1IThKpyIRw6FSOBFM0AhRJkICShBgECEuY1r6mMpSZEmJkRJ6aMHqqfovi9WhGwIx00oiUmPW8QFqttLHNkCBw7VjgDBgpkewdRpofJPM8RmZtHMwM68daYr+dH2FIGi1p1rplQkYzJ2nmzJxnCBCQ5qQ8CEnTzCAKRFpCSYeRIgAD6udhDvM6NaIEtuMZECKTBJ3mmEnGSRobZDTJTCk3czdzIBIAxRYjZHDSjK6WACURgkgExlSdJ5hSRtARgjJEJASYWe+yZCrQA9sdRzaFOZEEzP2E0poREkjAiFCuxTdPzImgMc1IkAnkOrLmACARpNPoxuZyDwUFKZG2a4JJgSbS3LsdQR8TIGlpJGgNgebNu3s3PAMJJvpUwOGEmZHNzBCxdgc0Q0IgKZQlSSLOBBJ0iKB7833XSE4NMwkRgkkglJTJjAm6W4RSdIDQzKSRNN96KmbUUaWbWRuCuVnW2gvIpGjubq15b/IWERSUMQK0xkgSghqt9Zv7JGiQFAqDSDc36623tvW96/3MkSK8wdBbg5wOa24GKNf705tBnxbM6QwzGUSRxiSo1nzbYQkKdKltg/AAhEwTW++RojcnE2kkSQmgk9a2ew/MAxIAtj7CPRKikZAEUKB5c996t95979nbzAlBGc9AM4ycBqTl5rZt94anFGVGLQ0irbX03re2b9vLJnvmGQjcSbL3TXBzWGutYdhl3613+2k/2xaNYdRMgjQvM4XLWaWCRgEAIssqSIpgstne/BwB0JYVphnN+nbfU+OBFAC17QxzJ+hGc7l72ZbevO17b9vu99ts28wJKCMeQ46waWTKc3d2V+Sn5SfNUDdvOa8cj5FHwmhpXwzGfdtTTgRa3xv8mJmWgmj+08PBDE6ZuRlEkkSdAWmZa6PVozOzDKygDIit3bobWDtrzBTMaOat7YmtKURBrbdh3qKOh2TmSpLm7q213rat3W/Te9MAlDHT0s+WEgk5zGmIiCzvAdLlyOVNISkjwnLQ4J7tzlN+326RpkC2tjUivK4A2Np1Agh6j2Y0CzMRMFt7iXonGI1maV7WDstqKE30bdtdAanckIXJzOh9u92lrYXnWgA3rxsAk8xNoLG11vq+7/12619eD98jB6Wc085scQowSM22RgcSpHFdAXOJImlmZjTmRGYz2pb9FSf85XabaTmO2TKMqXUFZH33zytgbZub0TkpQaTZsouZaVrGOpWRUiaUFIQMKsjMQGRKEJCsy01j224vmZ0AJMAay62vQIR1hmmte++3/XZ72b5+PfyWOgnFmP0YPHaRBqnPrdNzfh55EfU2UloyMxiYoaQT5tx29mGkGZo00IYFx1hPSuvbpw0A22abw2DIWgCu858pJZGWUsQ8Z72AIKEWwECGH2fMIEhSkWkA6P12izClUoBoSsxIyUhdO0Fz89b6dru/vG7fvp3+mhqU4pz2OGLfEjAI3bbNLBRmphVCZU6kJTITRotkzMgOgjTrdMU8ewgk1J7TEHMia4v6ZqwA0tm2zTYXZWWwKqyUUpiTQU2bgZmnnVlncC3PsCDPs7UxMkUBNGSkSYK1bZuscNWg1iCdEjJoWSa2zq67e9v2/b7d75t/FYYlxjmm8ek9Ugag+213GxmtKbw5nEyFpFQgDJBbnjPSpGRAQp4xNyWyzYwWE5AqwCLb7d7rcAO0/jJurSHPbYjGvilrjRXBCQTmDOU8ZsBUN4KqeC1jeM+ZAEWD6oLSbLu/vI659fSZnfry9bc+QVcmASKV7mattd7c9/vr65ft6ze1X4Fp0vkc6jqt7aKbuMfXl26Hsefx7IyoSBqioJhGBNnmDIBAJq2Z5YxwWW8km2pzUdvkffd6FZj7tvu9MXNrLnN6z2lGIJlpWbsdSs0EE6SVZ0ugYsaWUUGuSFeAJK3v99cxbl1B7Z6vr3tTmivKdbFCwPIAdQX2r9/Q/mIKk47HOHl+9I3J5mm3fP2y2eM8/UTK9gkmV2KTTASljjGCWUfLN2tEpkTzdKu4B5VBGa333gQD1Hzbb2NvgsbTZExuMW1mwGBmBsrKGbIyjPqcJMtBpbVyjkEzNEgAa28BN9Kx9bn15gHz2n8AhNJSIGnee+/btt/UboawFGX7sW29q6n1tC3v907tex45ky4RzMiwSTWAZnIjneZe6adZ5Wveunq0FivDFWH0vveusq++3e7tpTmIvIk41WeghSp5QRm3+luFkQQ9aUw60aJtwYQiaWwtrX71bdvAZjSxb2pbc4cbDDBVZmysK9D7drvdbvvtrvZinJ7pbPfztm9HNvU92LXfGqI5vbnLJRBmIj/jGRLK5Rad3lpzs+bw1nJaM9XZSIK1syY6lOZuruaN3HYBQDQZzHL5qpW7q9ZgnaOK+cwIhzcmIckM5lbLRTczzwr+Ws/e3E1mdYwuSICwCjLWL5gbYfXTZlZBpYGu1huGu7XZplxCMv/0+p9Bzc9fKzavj2//CG6sTV3/UN9Cujsoy8+P1YV1fB78umC5bGCakFm5W62MuVfeRxrN3M0B9i17czOZ1+aDPxEXVvRsNFYMJUPt0HpImszQvKE11/oNELQ/Per1/vVTXL788wBbm1EPn2IlxjGSBqUCY86hE/jx+zvMhzCDmSqY4Qq1JSGFBffMCogmgeQcR6oOk1R5jiC0JtSBULCOhnlYglf+XHkeSKN77/teNsBDCPbe3M2NFGCCOd0u4y8VZACBy6GrQKJaL2utmRF0uZu5tVF5uAVAMZVzCKTEsDHH0CG9/fEj3dAQk5Ei1+PXIqxXg+rt6wwAUhxzZi1RUnNGSFKkoBjHM6eyxY/2OE5JKUevI2D2eVpIemuty90Ag9zd1/IrZ9rIR5/8+Hjk4/l4zGMm02Zk2Nr02qYMzFx4nvHz+iJGgxFSZq14jjHHOuDm5/O09lB8//17mPcdmJyxzr5RhQFBlUArK0iqfze4ZUFXQJoiZ2Zmxhwx55zzjKFpetue52CmkiYsG1LxXGbMMeecEanBigPGGPVfYiJkNjs3frx/xMfxeMQxCzisd8W1AIqBEZkr2vHGvoc7kdGS1w4CQs4REhaEGXOceSrGGMmJNhmWkFvrG09ARk+4CKEry7TIaJYJIUdkgU2VJStTqTHO53EeY84Rk/rYjxGGhGiurOS5NkWZc47zsOcH/IGcJh2P8+PxPEfMCBBh42nTBz0i5owxP88fzZusbYa9tz3yy96A5DwRqcxUZsK8le25/qKYF/JmyhhzaiBCECMykfXJfd8hQeZSCFDQFagL7K35nFlIu1aSrFxWQjHHcRzHnHNMEo/7DDABa61HwLEub9YZGOO044H+oahI8Hw8zjFnZIISx8FogTZyzhEzlOWUSO8u792x3XZlblvLVM5hUSskidbazMuwC2TOkZcVhuYY7kNZoQIyoRREb96SZfgAkkm0JA0pT+9bOzICeZ2tT+eRypznsz3PMzJTld6psHGYZZk/KJkRMcd59NajkZ0Zk8J5nD/e3h/HOcY0SpjDAHRNW0lXJfYSaT5p3tg3dyY2UtOOjzieZ0aXNyjZ/uQEBdNcRrE2a8yRUxmq26SKgcqNmeq0SgZLuIEugbS29RhQORUsfI3Xssc8j/MMLIesXJceSmWUbaIQFtPmeR6thZttHjOYGMf5/vE4zjEjRCQzMmGbn90LScBCg1ioSmvW9+3mOpk+E/PkzMwMMMK8tz+9PkjNqc9/Vc7pOZUV4quuAMHW+5YNDFiZlblOgJQO3/ZtjlEYCdf/sOCyMizHGKHMJDVHiIRIugcXhAxpGcGzdTX38DkSwjjPj8dxzjkjZErMecJ797Zy6UW5ALTWorW22X6/v256P6cxcw6PlJTMTLP+j8yQlg1YxzYipoeWKV/3pv6+MAytO35do38IPvAzrvn5Bcp5+lmmtq4FKs++dg0SBWWGzTnG4S3dbHKOYGKM8/F4nmUFTKk5yAYgYtl+6ueXQVIiosikGTOJ00ZExqSNJugfF4AZ8+dbKOe0nMgskPh6/0VjXS++mDFeMUeFb/9dLPq5gBlz+DlDa7kyPo0QFqICScgIszlOcw/CJ2oB5hgfz+MYI+a0RCom2a3Zn55umZ0FLVQs0eWAFMRpMzIjqDlJtH98UGXUpqrQzQxlgVUXZI3l51cMVBHzJOwnIbfcWMHbV8hxvSAy5pg/T0DGOrcWEXNW/CcomRkZc3iTm8vHSAhzjPMcEZGZMqUyI0NXgFtfqE9sjaS5mfdNzVjfF5mZSiKjwf67E6Bp+XM1YkzYwPIs1xGoj137TzO4GVUJGEWYe3NbjyB84tMF12WMQ+ecfzoBFVFqBbIAlLLAJMbZBLSYfs5xJoQ5x9vzeY6Rc9IQzCG2DvsHYw5eob6Zmbe+3/W++I+TI0IxTXN6wz8sAJknAssOS/MMcUAVGyAzVdxQaw7SChinVfIHmgwu79ve3YgVFn8+FqVkjvM5zyhvSyKnaG6AubcQbDmcxCTs4JzDn1vbP84zIUSM9+M8zzNj0hDQMdV2LlyD17sLRjM3M2/ebl++4P2DyIl8FEA2zNya/3SDRb8rphblBiJjghMKXW6gdsibWywM+hONv5ItM2vNvUXBjJ9rwOUIcp55RgXUxuIiWiNs23f4+vMJSpkxp6AW02OcZyIZOT7OeY6hCDhCmmlz6jqdlyEuinKygmHzBlNmhOLkjMwMac7p7ecJWPc7tc4ipYxMXiHcOqFSxelSmtb3rjxvGbEFGmsRbtcCXH8yMzAz68PK6NSXRsxYaGkGgxm0OUVkZqOOMyFkjjHmjFAmqIBCMSMypSwTivU0KkeVKyXJzMhAzBYVBygiMtt1TD/dmyiaF5esDFb4hwv0liBZjjEiI8K0AsWohSKInCPZhGlKCMaf8EEFAooozKt4J7Uuo91ve59EhmQmk5SRU+WNc4xTEjLnMWLMqQwkUjJje7zN92NEpCH+hFIgY56Y6H0b+P7+cZwDOWxE5rQwwnL+d3FAIZo0p1BoDnLtHaSUTIJgGCMCESlkyAKYCSRhNESMZCcQ0gXxfOJ9ypyKzMJgTW7O3t3Rbvd7TGqeoTmWmEHJoEmpOGedgBhzzjmVQSGlaTy8nR/HmCFjABcuTCgmRRntqT/eHs9zIt1mZk6jAZyjcXmoT2DzHwATsjKTgE3Sio+L8WycZ3BmEgmaQZHKhBSa48hzRhYY8ZOyySV9UTJTWXF1ZmZOZjCBjABihiJkCYFhALNedEpiZmSCdb6pRAXXz3jOEDJ52QEphgcHRDvch96eY6YARWYqw2TTFI0mXQhf7ZKDzSHImrnBae4JDskyQSHHGTZHIjJICWZEIUqkJfLMmYkSKUFmxY6h9hRalJlA97qekSJi+syf7FC53YRAicoZWbFJZJZFpoCUFMNsHCNUYisrrYUyFCCLkTj0/hwjJOSMSCpEEmHNkCCK1yjuyGGtUUhrToNIuACfeeVI83TESKSycsQQQtd50dScIeozJivxSYUCKtSeJsK2ht5mQaCodbisOWubU4JJVJY+p8xZzFAKoIlmRBzjTIB+nX9AGcMGFcY5z6PhWeEX6ZFZNxxpbL4eSAKMZuaA92ZQevPS4JgAxXMoypENGmIIUoCpNBBR+KUjEdMkWFrLIGWWkvuYFe6XTXQX2F42bx40mrO87Of1K0csIbkwldRnLFIGmUaJzWWYChgYhIGKREIxGcowxLCHc2ZGUqbITFuSLqK1KD2OVspLJ9veNyjMEATNO4kcYhDJFBShnMLl6FIk6d6t9SAUcKBnNERQtDNWFF3eZEJKUGb7fl4RrKWZAY0JgrIyghlAkBNsl2vLGRkzMki4AgaU1zV6C0wqhASUk6E0MklzphSiXIwQKFJJsDUpS6ZUmDLc2W/7nTlaTBJmvpshbBbnIyojUaFMXdaSPrDfbdtmyzjZwS2yI4KyxhH0S4YDxUrZvd/uzzSzEnWYO9hcbgyQwVRCiQQnGLyi0ciIWXm5C2YMSKITxpBTJzNsIZTFUoFm5eEAIlNUkEqQza/8TqQBNKft9/svzKMfjxDc2s2JsBlmjCirhMx1b0A3wNm4v7b7dn7EKe6wPfKGOS1tC8GaYpmZWjU39f319WOUgWke3rfgrXEeNmAIRkxbp4YM+6Smf8qIdpzeaWmZRlnj1GRiBJS6sjeiDhVXno1MFGQEGFaOtOiLoki9bftXn75xKGGVo+cV7glaJEahwSQN1tjt/qW/7A87Oci6pJLA/vIx5C2n9PnzNLra/vrlO+QSWm/Deze77TabnaQmcugT4VoiNOmK80jSNri7wSxloDVC9Bifor8V5BHmrvUfKrSlUOvScMXQomUlZ0jBPEFFhEWZ+ozniZi5LBV5LUIdIDO3vm+3HqHZym1h6JydtrVGullCBNLqJ7zIt6JqzD1ba/T9ZlPNABGRK8PR51dd8fTKJGFlThagUm8hGohp8IhKrYzurhAplmGDVtjDBkWo8A0JnBW3Wu+gI0ZYhkXEzHkO5sxM0frinrg0lTRvG7bt/qW13izTQuKQZnrbv75pRopWAU3JIp2h58Pe33mmGei+v96Cv3yx+d6e0jwwObWOPaWivZWpzJlgAJb5pDLpBCbZeQCJE94sprVDc4U2Jb4kYOYiix9PY84WmVEBHk0gRDr77df9ebx+5BzGQDvPM2bKMBNpjn4dxhLxwntvm718/fKrfeycjEiFnqmp2HE3IQuxUvBcbIUFYczTEvS+3fzl20vY33718/f2EfF0TR0xM4UMGBCs6BrKSBa4zVM5pzXBojF4wBwTdGB5JAjhinRkgHJwhICIBXK0OlaXRUemAdb215vtt04lGJxznDEAL/YH9PhTAkGYmXtj324vlny6EaBdKap1KLMwO11hJ8zCQNM0WZ2g2+tL2Ldf/TkbYmgmmmWlA5OpWoBUmrKC40wykmNaEBStIgQkSiPxad6USHGpdRArpyjwoNV+cAm1AZi3vr/8cu8/vv7RW5BOD7dc+EVd+CuDqANm3lrbuL+8fjO2870FiFQDoN73e+PKKIVPLbckWt+YC01w3273yfvXvp1NcyDCo9flV5JCrju0yAiA7ASohMEI82YT5osb4MV788oPF0ga4mKrQKEtlnUhKSXh2F++/O317e2XP/YzjMaW4SVDlVhpKlY6v/Dn1vvOl2+//hOtHRuhidAMTQn95U8RahEwAGlp7f7SCUlVpGBGbPdbf/Scg5oztnQD4FEwgQmohDTNzM3vdLgVLCX3xqR3cgWRysoJYUu38AlNfC4J0SrbA3/aM/O237994cuXe29uBrZmC29coY/Z0rSvBMi9tc7t/vKVA29bMxmWkITe792WVvjnAxQz5U1xOYW+318OvH67P9+3iBMxx+jRnISKgy0tcZq0CHrrhJCBrASIxHXwC5rip9LgJ2R/vel6kjY/d7JOgdG87S9fv+b9Ze9GRSmBkBSdIGH7l+ejLQjTQFrx8wYzZubxePDcGjyU87T3t3/7bzORmWKWr4GUI9nvr7cO6/v29dvX+z/9y68H/qf/2/79gecZRsFbcxqJIAirmG5pIOqwlj/O1HLLZCbyeUC0m9nKwhQpCppgWIqG9rkeDZ8ufUEBZmZt2/e99+5mUklKrH0Cf+Z9OsnEJT1Y6GtvvfI6STQ0xJAyc85gywGsdMMgb67by7dfvn5J9m1/+fJ1u7++bvzl6z5v6hpeSkEzydKWeEzMlS1V3tatcwtZBwx7v2mndfRTmbDApQMoWGpZ+vwTT0OyXaxHXQkiY/jz/ft//v797+O30i5EnCNhypLx0No+WagVYamYRovmH3/Yxt+e74dgfXMMm6cpjx+TblssD0DBKG9NzZXba6Bv++uX+7a13qzF8/2Rj+fj/f2cz5KgZgpZpr0ycGQWbvgwUdbMtZDkbpHyVmUbPcyusK90DBd78xlK0dos4quiVrUMGd5/v//v2/v/8e//+v3tUII+zhHle5KAbS/5bq6UEpYBQybTHW8f/BG/fYjW7w3jlJvm499HJQDF1FwAc2A+founYG273W7bfd/vNJ/j+9v48fj4/sc5xyOjlAXKiShoSgmmklOZv/GMHMOmSKSf5nwmRkEFbY82AYW4tMxX9EfiUkdmW5mqys9AoYHn2x//6h//7cdvj+dQgDbnVEpLYWHtdppJWHlk5f9y1zHsqbdDtL51tJCZ8vk9LmPEXPigoLQc7zYq9di3vvXWm3k83x/n4/3j/e2MOJEXFpsXxlw5BpiQ3jFSsxBGyMJeMLJejvRepU3Kqu7T9fL8E4uFtltExFxcGIQMOx/v/26P78+3Y0wFyJipTNCk0mm5N4MiySYpAwK8KeWDzyFY3292+nmGNB9T0CpOI5l0JgnF8Y7nNIDNoML5jnh7fzwfj8fjOCNnAVWGKrESeAH0lRc+VQ9vABCc3nUYp1wyM5N7mSiuyjo6vdE2t8hQZkgtl9R/uUVAihjnB49nnpGVa1zhx8U6lHVZzF+FZDIMevPpI8rXc+m2Yvx0QVj5SLGrmjPLrtZxTDF0Huc5xphjRuYCaE1pnzzTT6emibJKy6UFgVU3c9n0T7+Llblcz1UPKLbW5HNqacskIFkLcMQ5I5AFIXyyByQzL2X6pdciMDHh7uljpqrop00jFKOc358WYSHPS49SOOMcxzMIvH08ns/jOMaIgk8rg86LZ5KwNMlFWeUny0hkZq67RiKTi7n6mRbTaNbdC422UPvlbnk83qYYJWkhlHE0jmBErojxT2w3HfM5ZW455GbT83PxFExkec39lvuP5xzB2vJCOs2QdCeakogRQUZiPIPZ0rnz8cfb8TjOkRmKnBGAsOjgSnjxCU3ECkhxYa9TIsmbmowRbLmMf8oIs8Ztd77uN8tzjucxsv3lpeH9xzzrVbPS3Iis4wsYg7RkgUsUzTE+pqx5SuZ0gy2VbWutoIDsW99esMfbYNxeTkPUbkgGWPNG50FkRDTEzENdE4fh5sf7o5JnVyAjQsalmPq5ABd7Ua6dn8rSKbinf0FkdoU5CckSlAHemt2+Gr69fm3xPI+3j2e2/aVToweWpkFKxHjCxqMdM8tE6KpBEkBjhmjeMsTGpTOEGPNEhweM3vp2k++9Jyjv4pThWgBvzRxTOS1BEwwZ0w4Yph3vjzjHmBExY4XM68nWwb94SGD+tF/FCUiSrG3IiGYlPTXSLGmAN/d+83x5/brNfraIjHbr3bZWVVFc/G2eFpxPP2fCEVXz4VmRD4w5l7TpOtyZshXkdLcN6N9eti25bTv1+st96vk8ZyYCXpgbe8PJTLatlYmP8QjH4POYMGvuVNTXruyprNjny5fBo8mcRjCR5u6tO19/bTjP1qJBCsDcaZ65bdZfftG83W/bGZqtNbZWhPD6SBRFlhmMopkaIy/b5VX/oxJO5bp/BAQa3Vvv++6zEe3L7k7zvpt9+8uMeCMtK5yDGWne28iY4VhV7wFnQpxCM1pIDAeQhRckRch42byKJ67onWRIlZU17a97ezzcHp4yAtYsrc/oG7b9ZcIdn7ha+3iXPd6OmQlYxSmZmp88m5mt8nI3bwC6WWMoR6LkVjABqsI7s83bbWv9i7N7fJnHxJdfcp7jw6wi85RGJBLziOhHcwu+q/XsNEA8ZzRUiSGSANaTVOGqiWLhy1rHHuZ9c50R/f7Ff4CztXaTjI6ioLcXHm7HuXlA8zje48PP5zg+zpnt+THsfDznqr2sC5ZTzEAk2fwMg2CCtalanmNGBDkzA1np9sbst9t++2bxbe/cHx/n9zHT2/aXfzF9dNmZYyYl5clgI+NUnNExBW39bPvTST+ZRvUZTR+kAamo650mXofuil4Bwtr2sgUHvZk1mm6vX769vdn8zWCk2f7L9uz68XjxY+/9Md5P6ThjnoJafP+wOGcysmSLBDURyIygsbXibkwCMgC5ZcAUwSJqYZ5mu53b/b7dfkX+7d4G3/7gbyfR9vtf/8cXvvfBZ5xHnhKQAtGbBmJaxuxPSQyBZv3c7IbZqR3vh8sipsJbrioaKBd6CbEYZrbbl9s5Qoqzwdq4f/vbP33/w87fnulU8ss/f33czuavxpf76wdnPMdzKtWaNTzfTTNRZTr6E2AsAGatW0XiAhATgEDYViFM2pL02d1yf3npL39R/vNL+xh85G/P3u9b+/KXr3b//bZlKJwAbYaRveWATc8YMWTmyIA1pbVXzJ1x1x/NYc0MsqYgFsWFHAZSKogI1u9fXx+PoUQmzbK//vrPzeyx99GZ07/87W/Pl7cxX/To7dYt8nE8A2Tz1iwOxySweghUTAlCiXCwdfuMfE1JZOIkOc+w0KywLFcV/7bdXjG/3Rpn1zxPdt+//OV/+Gv7449/fTCpw1btMWxrmmAGYg4lzSIT3nHe0K29xPEynEYzKaIea4WQxZoXRp6XoE9QUIB595df/vYfu8EaoZwjJzDTAIdvt9dumeN4BGnGaKvMZFE2VqDqUhKIKpNtWgHRiuCjoOlEypBookYiZ6RAZWSY0dzbtt9evnz769b/8vWHIqYvaqyYFCw9Q4gRExHWQs+bxTLtkmSZIcVcMLBJApsi66WTQpwf9ozHCIuUzPt+f/36eJOnpo7HsB+/xe9f8PZ47a3vdyeqsJfkRIO759p75cJPlipoQTutm+R+wt0F5IxzAbyUdtr25QiMREZC08YzNFqCHbfb/X5//fbr7n/9y/cc83SL9f5S7ZBBmvSYSLr3pmOOUyoQnVf1i1KJVeJM+nY+UBk+AOR46oHndIugs99aa82pzAyMGfn84/j76/4+1F/2+05IBkAJjWjPlQ7qCqupapShStCGsd+CojN8K4VYLHxfZHb6L//h7bd5uB+PBvy7P61l7D9Otna7bU3zfHL6rfsUQKQyKZ0fh+1U1XnJckbCPZzzyN8d5/tHvk8olCRdyhLWpEDe/ulHVNsfGIyKIx1DNxsmpO3z7bf733/LtxmBZGe+P34/7g+pvTQ7H89zKZ1TiPYWV26x4NNCYVXJsfIQb69okNnJ3RQjRFNc8dg9+bf/7e/HH6d5UvM4/XzzzJd/O9rW91vH8ePvuB9nq6ohKiNliccfg3dXMpMSmZmU5E3HQeB2nh/vBxCZRudUKYLCBPPX//t/ez4CRsHQOFMITP8az5Ec2t7/y/zx+7/zGKHE3o1PPTXV0G7I7z8+ntIUkRLQHmiKK8wkDQ5YL1kPzDitv/zqd0zwXb3l1ID7VZVDe5n2L/+Pl3/9floLUccPH9+Z+PKYvr9u2+7z4w8/ZuyNWQXPCpj0/C6/NZ5BONUcAVKKtBwztKUe53RH0JtZUPKCbEj/+j/z385kLcANVTyS/uX8e7oP3D7+2+Pf3364hQRrL36c5xHndrP+5aH3t8cDdxjKh7YP81UJWSlrSWTcoWBIHLx/+ev2yqeGho8540NmS2wA45dn/x//n7f/1397pgXPPd58SIlv3Pr91+6NeT7+GOTLZlLCoAgj9BztL19v9v5xyiSzmKQkZ7P5dshbs2Q3pnXBTw+2YvrZtl//t/g/PzKL2r/jiKAF7K/vGXPL9vpfzt/s+eyvIcBffvXf3z/O0751v/9F8f3t8YF71XxBbF2GRrKiStINbOaZcHWH+f5yf3n54s/z9khlVq6HyBK7+jny3/+//9ePM3lKjhazurPA4qNtzYm/89s9zz/+/vvb4xiBDtIoQuND7RkgWNw1PRDHGMc5AMLCRjOPIrAE343ZCMPxX/8YonufIk3WbONM/XgkMc83e7r7OXCcM6k4Wva7Ux7HH/ieH3AHXCY0S7T7QMJJFYzuzR3dfU56opv5/f7l12/f2uP9jyNPRcoWF1Am+GPyv/6//+uPEBKao/fDepr3yfnOvrnR8NzH+f3v35/PY0x1hNJk7nFsfSatgg4TkMSBEQmYg5oFyo+0qQKkiwl6/z///giRHVNm6fJGG3o7jVQ8eTYhgs/jHCmoPYPOjAft8dCYMIiFxblai6rdWcBq6+7cuo8JT3Zze9n3/fW142xO5RWTFDxB5TPw7/+/748ZNExrZTnhoM9T+2hmitGfzx///j7Pc8w0oxSpwHE2fsAShpQ19R2Up2Bi84RyuhYenGIJySnm8ffvIwUZFJhxTk0h7I+YzlPvI3rkmMrjHFNj2Jhz0DxmfgxqCkiEUczIVkURKwsoJhZhzASTSmDg8Z2jPb6/P47zHBGgNU0trG2k3v7+caQgShm2WFPFPHKejXaew5/H29sjx6hQqbp0KDVGVDMWpxu23QibIlk2KiNW7mMwwEEYBIzvH1Ni6YXiUgfrSNEUZ4JiJBmRVKZFSoTm+ZhRKr1VLwyyjTmUWgsgmmYQyjkxZYQnR/rzj3a8//7+PM4ZAVhbXVQoRebz+zFXjq4ouRWkyJkxjR6Sn4/3Y6zanVXibZRiykqI5ta43TrBEUGX18cJNLVYVrd4HSGfQyUWEBVJry+fotnUlFWzDnIR4gs1Uk4I7mHS1cCO7TinJFidAOVMMDNnCHDJ/LRj/rHZOP54nHNGCtbvI64Chcwcj1GVhamckgKZMhqVA+Cch43jeRxZnfCW9FMUlTRzNt+6N7+9iMBxzFWknSrB7RKcqy0bAJ1VkzwTQOiCuSXfLBXQlCLYqig2rSgtZXzWFRTmiToBsWTLIJBAiBIiVN3anPTDG3M8RlEwtLbJLohQyjgKPaYyp6gw0qz5TK/XODnP8xihjMAsyGnxPSRo3vpmW7u/GJEOphIxORMGBKKk1VoQegI8I1OaymQsup8gbfeRSs1q9CMtdQhSSCBGqsWMiigLQmyRmUuGpotJDlvygpkMkKcZFefV7cf6XQ/LcgPKHFVXVnG5ETJz703npCIjJjHHPJecO4UlrQaro5v37bb73l+/NireZWHVeEjK6lN00QKL14wYoVQpJCcvXFy03TxTVvUTNCyF1ZXfJBk2L3k2QaldPCl+av8q79RP7zSNVchQsKv32zASXCUFn6ChAJrLWrvd966cdp5TitQ8c84qvchatbq3JMnWt/3m9+3rL50aHIgS+hfYHMhry3BxN6MkKskLzaxWAba/+PuCKrVEKdVPCUufA0vGwjcKTF9KgWW6PmU89WRSohrpGSzBIhuj314Op2mx5UQuDwW6WZPf9i9fXnbsw5+P82NGRsxPFFJSWeFSlrhZ3+/3F3/df/3LbvPwwUnMc7FnSMTkohaLJWLVCghpUrUrawaD9Ze/tDeFzCJBuJMqz7m4N9YxqPaUImhoF6yCpSRd3OPKipeiCgaHmZlDgu8vH16auuojWLJhXg0ERGvby4tp0lOW4xxzWGSsgtx1ZcHmTUbftvvLq3+5ffvLzcYT73FMY6W7ynUZIkRgCUyUwtoZfGqmjNa2F++WQEzRgs4F3dfr1oslzGilpybY8mLuP8lEUVh9RsqIRsVOpLUOCW2/d7cioWBZ7TeK4zQzh23765dfvjinbfBzXmGcFtJ29bgway2tbsCLv7788pcXOz/0PRhT1afuU7yilENaN+h65JL0EO4NSd9fvvntUdQxq2RSID+bg6kURSv1hyBDK26XyyYVCWbexYAFDFJFvaS7t87M7Pcvt2ZXR716cdHM1FpvO+zl9duvf/3mGK2rnakQ3Fmn1a6GQTRrfYOh7/eXL9/819d/+Y+vfrz3N3aDn6cg20IkA+VYBRG6Ot7U6TZrgPeGZNvvv7TblpJotHabblLCufQJWDiHkFHKGKHZ4ryEKhuAAHqvMpAFv1X0O1XdMkJ2f+lNAjzpsdKoKt+geSLO4xynPZ7847ePtyNS5s60UjZUFw+nt7btcGwvr19++bX95fVv//LFxxv/QEPa8zkbbJsgq4TuJ5dROoU6BakUIjmR9Gxv/XFMChSt3WYbEmOu/S5xkcGcIS6pQSORqGi7uP6rdAjJKrJd0gwhIyZgiFidwRIEkQn7pKgzI/WMZm3Yv33o9z8eb5HjakCwxN9XWF+cTuktmhtJuHvp27A0Bj+FBgll3SCua7BAHWSES7RT/7a9PcNlhbuxdHV5NQy9vtTJJb0USi2+9lmXWIJmqzfgT+ONAGMQzRK+tZZKWtH8xhWIrFgg8LG/hf3+Pn//8Txgq56IuFLI5QFLLm7e+7a1bb/tuyFvt633Wg9zF1IyqijYMrbFCdSBTuWKeBNw/Ng+ztXbE97gNJSn4DL7lxhDi/RnW4b74sIBGc3bLJho3VYSrkhMgGqy7XZ7RgZgdAOsujyZvP5OjefH5O8/xu/vZ7QeoPlPccayKbX1Dvfe+9b3/fZyM+btth9b92bmxkZJdKDN1J+stRY1W0WnRvOZqZE/9sexBKX0rYq/Ips1xzlSq99u+VeQRmtL9PopPkIpmyMikdQF/eDSHhV6LC4Z3mXYL66u4EbmHGA1vJm0rAhzOVle3iYzI8CMOefQ0Y4Hjc/jrD45ug4faYB5qpp2rcB3aQBJwcyaF1cbVTt3BRzLT7hvDmnWtbjOKwA3a8405dVpW2XUYlSXFlqxnp+oaXmk4+0x5lUfLElJpBARE8Mzjb0fYlYAm7m6QK+ojd5kCShjnAM2zueje8PY2p18/P23P97fH8eYkciSQnQG4XPla8XF0FTl6iTJXM2spuUl9sn5nNW6SCFZpc1Gp1lDCaSrHYgjI8blbw0pZYwZkSxuEqt7+cWfU+fHodI1VKOv1UtdygCHNI3jZKNPfobXulJQQ+/ISUE5x2TD8dzdPA/DDXz+2+/fPz4ej7NaEBFOo8X0ubJ6pSyTQJJWnbHNjGWqJy+XBMWRJVVSqTiaBGMzQzMGVZF527tpjEp+dJGuOWZUk4s6dcsW1AIY4gh4aU/qA6UyvErmLIY9xbZNq0ahtQJX8G++vIFihifmmE9zTLcOHr9/rzYx1SWmGjp7ml9UhSAaTGT1oSXo5laR4VypAcyQM1HaMjczWUhyenf11sBIzUy0l1vD8cioIGs9a0YWTr/iTZRDqQYRJaB2ZyplrTm93CpWVZeRZt5vry17G+WzPkVWJadgQxWulQVmzjz5fG/Q+f48jlF97IFZFZ4as7YELGi5ksMscUddbIBEVPODJtFQXb0TamZesk6j96b7vhvnjGMG2+uXDR92zmW8Kq/N1QUso6piSGOuA2FuEFsnpUBrx8B2Dnkuqyiz5vS+v/KMtzGTDhgJK71FZkpOqrqdSUY2ShHjmInzufqHKZOcqSQRzzhHTIlEgq1dK1f1tDRrQbJEXuboAszARkAtm3tLIgCDt033ly9dY5w+prXXb3du+EBGJqsIFMpRMAFidX3np20lDXEI5qZJlqB8yeSYAI2WBsA3tTc3SBEyWlT/DRSFS2gCYQFXhGYyp4alzseP98c4nuecKUYqYeYjzjkvCQclVbHkVVCsK8ydJedqGWIOoFqZmLmXxI2wvuH166+3PM6nPYe1l2+vZvOPnMbKwEBplcet/9OKlC9Rvc4HZ7qJdCegmMkI5VUsPWRpbfd5627MiDTaRWUDMG9EmhSMCszHYM44mDmeH+/POc4xZwrM4sznHLO6Z1eB15W219pPnlGym+JL6bRUHFxDDBSnx3mKRrBvuH/59SWfjzYz2F6/fnEd+0CrguxSX42se7vg2YqSQCfYO883PuFlblLIedKiUMJl5fbXr7/+k+b8MPNRlZxXa+LCwAxhsyr5cx7nI3m2D7OcY5zPUxEhKqREQMaYoSuOFCJILvUpQSGnkobmd06Z93v4DJxZ4NuYmEolGmV2u+nlyy9f53vD48lsL9++tfzYD7iZra5p0lwAGQG7WGiauYO9aT55mmq2AUhkeDXbWBXviba//vpPluNNmY/VuefSqoveNi44IU3IGWNwOsA8Z8wxqHOuuvyK/zNixS4SkbLqv1oFK6qWdma+7TwT3rYhZR4yVyY045jZaHTAt1vev/766+wdH48nmm/3dtuah9mVspf+dsWLWuF3/Z2gUXm6SIPJXKsRpqoeE4weRD+n2NWMivM8Ti3Q0m0tJaPwPkVkzDgPNFMgjokcp+EIyyAiJdp1ftZlxCeMpxULfh4uFfw7z2OOBDf7+Z/Dy1GL1vrtdcw8997Y7GePyp+/6nD9TFywumSt340/KzTXny/gUau0cylbsVKtK41dK3zFVMpSMUTMgWROxTmpOYwzmWnI/EQvLhXL1fvwT5W7P/8hlsYHBQZ+4n3XN648z9xVeWc2c/fV8vbzba+wp6poRdLtqjRhShn2GRZ+hojr9iCVEXOcYzhW50Ndu3X9bUnkdS1QRkCIoTjCOGdjdfPhhW/WD+r6jn9Y/LpJi0JS6GoNfmUxn092LQfNvKl5zRgZ5xHVoXLVRV/qOyQv7O6TX0mCZjHYgUyFogDP9fm1QlOa0+6b7/pP//rvv70dOSbtQmSqywd/ZjpUVjdWxMwKd6+bSBoEttYaBMF+5usV99jyUpqFFhmQ5o6RGVn4YwrxeWUqh1KM8xnnjIzIdrx3/3ieRVvJahRErR3dFp4aaSkVgxpRsA6khFbWhuWcchIGAo8ft33Xb3/8eH8MzBrrc2VnvTfPK/ImpZgzAMyZEZke1V+1KikJ2+79jClNobLSpWViqsStBKRYTJIjMyL+wehCCqs2kGbEPB8feZxTdLXz+dGeZ0T1UqXbn+o7rKlmI+lKny/BOriyj1Vy9aeTVil1jPOZOGd81jOUxQLNtl7Zay2AZfiMFJAX/F9fTrnLaLbd94hcCxCKzLiyd/kCNJUjuYqDaxhVxc2k6Ias6Rbu5uYR43hijISZtccb/MfHOT+X7PP1Vwb4ifheou2KZZChkDhXpugCHRfVhTjev+98nAvH4GqhsSpvraIcknBIOSOViOoyiUhWf3Ut3Ovq9HpdjctWsVqmmZlhHjMzJ2BuvNxuAbfe+maKooDn+Rwf2+/S4/l8DFk7H+aP42qMsHqJ1Yat0G6hUrjCEFXL7WIBUoClCa6waslD7y0xj0faOT7bGXPde4VirIu0mmdKEalAuY+Lj7lOWxrPHFJmFBYT+Wne6pOttW6nGLE6oawemFzwh3X3rucRghCHj+fHm+F5PI8Ja8+3tPfHWCeguhNdZrfARDGFKlNbx6p527jU2gKNFDqLHzL5tm+nzkc/7aMEAZIWtqpMpR8zcmrGkiUNjnMirAbJVUqZWF8JGugHFfPzE/Dpk1eG6vftY8TCPjO4+jw4zd0M+/1+0x/fjxnJ82GzeUuc43wGWnty2OOjskFYXKBAfXqCP51PJbKC2FrfEarzQgNc3O30HkLP/fVl/xjx8IOPkWtwmV2QsJLzZEiIARCRHHYeITmru6LVmLz6agoBzuk5R53qTBXFgKt4Jrl9ebHnKG2CGJ4wwJqZ99bMXn/59QX/he/HcSLHEUYE5hwHrbeRpx3PEZJkq/J6RVZ/QnppfpWwEd77ds8j6VWiSpjZbu/eTNpie/l259txPozHTFwO8OKDRQQgeAZAiJgx50RFfFqOwRxGUJ7V/sVXLcMVftCI8oIG7y9/+Wbvo9g+Qauhfyf7tvXmv/zzf/gGn+YKRGScBiAjY9vubY7JcczK9g26YixARFWGCkJ6UatGM9+322to+Mx0uJo87O7me0L38fLrX74YYkRS1iAahVgS2asFj8wr93JiKudqAieBZp4Bz0ZBBgAlkC/ssRBtgtVsXTT4/uVvf9Ufp6QBC8rcGd42aLvvW9/+6X/6X/7K/IDFyYQQA0Yl1O5f23jC5hxiCmZ/rq2u1Ls2aYXyNKPRt77d5qMeWOZNbnZ377uoL+eXv/7zN8zHORPhbPBOxHlUQV2BzrOhN80UEYmIcQbZK1GA+RZGj84pVR4wu5SzSnWj1Cd1lipda/e//svxX95n4oQR09vWpvc9Zt9v+377y3/8X//Zfvz9yKcTiqmJEyazl7a3x7tYMuzqSnCdMnzG/7ZiAIfDXY2+NW8lcpEEa0mg5SIW4f32+rIbBfZ22b5YBUNEWrVgbDVzEVM5x0iie+VuwYxpjKtDAYqeNsdnPSpZgLUcvmG/vf76tx9f3uQU9ExqUpWc0rzv95dv//TP9uvr/cOEeSAm46TTN3lv55Hlxqsj0s+QhsRPjwCYuxzucNHNWn6GPcUPVUWQMiISxohJuqH6vynnSsSWeQUAeC346mayGl9KExzTFM7CxcsYg6sLRaUfNANqSIXdX758++Xb64uMExkRmIoQOgSY9227ffnVv9w2J3LK4sSUNWuOtrfV4GrtOfCnLJBXjF+hD0vmzn+Mlz4dhjIzZ5zHeZzHec6kO2fmHFOrjEC0q3MXCTq91GlWkoVaKkxgDCrpYtaQwUXkXEv+85IavFnvvbXWWk80wdJyBlJqS9JM/ay/zciesXA+0ryhgVqJT8af3x9gYdAG+Lr9zQXNw9Dm44jznIakte3Q48zxjBnP8/H9rh/Dbt43zjEpVP+xKsy4WrDMY8iSqJRK1fW04uMcY5KYScsomCFOlMKGEGAbS6mLEIc/f/zbf4p//eNj1swzWZTuy3vW8Dz/P+6/2//+n/94HxAVKToJxfnxu7eiHZfd/3N7oLIBKkS30dPh1inkPDA03882z4mW1m4fH+NjajyRGjnev/OJbet9tzhH30Zmpk5aYXqamULkXLsinaj20gGKxtKGcF1/UmJOTSWUhMD2EkeJRBLwSGz/1/O//PbhCkKlIwAyJhJUQsPiX/H/+c/fP7KpZUSwKYGI7xxttZsrdi/AP92AikWKza95iK0zUvMpnfmcLQ8lZo0WekzFYdDU+fEDE7tv++55nLQWEaGVFuVqU5yK0r8rEUOqKXX1lSkxLYvcJgXlqZo3WbqIlgqKKZFh4+P3//zx+9txA7vCWH3rcp6REWPkiY8/XvCvfz+OkQGNDLNZiq750S7W5xNJuSjsKxmiGdmKAe6NnIgz59DIqRPZJNu64UhF6fvn88MMfdtv9x7bkWgZMTOxalAvSWZ1hKyqd1aQiyu1qxgcgJKWYE6FL3qJtD0hpQFyATk+/pjvzzCTaTQiM5mqcX8pz/F46/jto5TuGpHZqkzE4mhpf3rhP+Feq/1QwpoZN5gIu+2Yh0lxBmY2Bkn67etHY6z+GkGk0M3v95cvmx7Ptp8z50iRzGSutFKCNUBTYAGfAGq+SMELNNWl4cq9LVdk5v0lP6ISRHNvkTmOifaCs6uOQKDmW2SwCcc4Te/TV//MjNWoVoZolxojDbAoPVzBoDU8AmYIBkU3v904+AzqNEm0MI70+fGInEJNGTTS+pdt/3Z/eb3H2/uMiXkeWUObiU/nWp2ePk+e0YyaWM5OgDQzVDIsFEJQkrf5POMSTpo7pAg06+3lNTBTrTSOp6VlYuO7CA11dp1RDW+plHIyWkWVAgzVd+HK+OmmdMBqso6Zm7edll2GkwCNyThgH+fvR5Z9LymI96+311/v++vrbP79j/l8PB46RqTWSJpyrTkXAI2ViLjrSH1GxZnIFDzJDBpqASCdfxwjl0qIMAQUdOf28ms8Po4TTFPOZDo9un5IIVin54FSQ1dn/slZg5cr4aiLQC4FZGEhFW9qIb+L5y6+3DPJYM4Y1dk7lcuhZ3VGnxGRNVZotSKsfSv/vCJ7LUngBX9cbWS1ul9mkgnThTtDGvPy7J+gqtJWM5mMJTFc1MFoQxmik4pZAw0mYhYN2HhFOsKCbEuOJrcqXnS3zTdQrjiA+ThmDABCUGlSzMa6courO97d99vH1u93vT/+/e05a7Q4Fy544QhYnbBXtBU1QH7hJuWcjT/bJ4SqwgzVL6xeL+dEnOFDaXY+nvn7+5hzLqE5iiTIzBRZ7QVrh2aUNUB1q/0Z9JKsyaoyo8ElN1rvREh5pOIYcT12QpmIY868aHXTxHy4b/1w3+94HL//+JjnObVurWwxGYJWH+kVUdfBUVwUoiRyTY5b3mFVaTAWDlt9AefUMZG0o4/88YgZEVRKlAkYiNXhAlL9JK5JGolW+EqJD8sXXnHAJe5UVfDPTOVQjJElMqvXSMyzFQZdSY9Ao1p70LaN53h7f0SMawFW07eytOvFcdE9gU8yCgWLg1frktqYilfKWZd3yNBMnK4kmh/59szV9b4QHGnyyluwEFyWzBqk0H5yOlzl6FlMAIJEAhnGAq9TImJGchmOTwJtmQ/jKu2Emp3mW8OIxxEpa1gt5St5QgZo1syAKcGAn+xX4XBX+L+aGXNB5RKwOjpWhs6SBAMFLc6q6Ac+dVRKaoFMdjmfJbajofnVoWrdzVzBD7AKlRWZnAAiQCojE6EFSFEBHWOW+3C6SbDiy8luihxTkWu8l6AaVVREM81MWOLZUkW2ikdKhfxJD3HpdZchrt63SILKaRKRSBzOwJQS1pBc0sdUTGBRsdUbzy7QS8nmdhllAbomo7ITaRECk6vBzBXHra5KiwstHU1JdjrdlILiNExjFXvAP6t2oCr0YTV28WaaRa9ZgQVoRuoThllKNJbG8TM8ZI0JJxxRE8cMVGUKVXRtWC0fIJbmtzI+ASkYvRI9AY0gajbqxYldOWkFhssJkoyfTnspL9afHquzoAmwKh6oadsZM9Ytv8BFgFS1g8waoYnFfC+V7tTFyF3Ne7TUNZ8harHhQA3cBm3xIdMAXGT+J7ZbcH/BbYVeVE+A+jc2u+BnfMpP109zoQ9LKUGomlKvAITrIn0aZEjKaoqONBqN86zOdmT16VlJcc3xTNDdIKMIU4ayGmRclOtlx+qFPtGJ+mv5xjIDa/fWKGsQpovRrzfiRfWywjdbCIRo7Wfty5IArDz0cz5AikGmlxPldTJYeqU/4ye8dmnFVN5K31BIin0+g8zc6AHvruoCAlMkSwbOn6dlvYBdL/y5t+In0UazOgq5XlYmU5E6VxBXcX15DxJ0t5Jw0psZGbrGK11db+sZ6ofrNbNytvX+BGnVGwrXzaF51pmAIKO3PqklUa5Wm3VxzLwZG9k2qyIQg+cwway80ScyXz+xLOSKVgisGkLQ6dYcCFhU8g/KyjbXw15rZbnk2tXKqma40LyRxtIQV/E0RSzhGnOVggCge9IWwXk91XpIVtdab5uyelaXOytMkLT4066uK+Aw835rMTM9jW4uyI0GfgYgi0Hmp1NbcSQKhTRzh7XWIJNRYIboyZIkFY+Ca9/LKWqpSkxZXqjRDPaJBGm9HN1UgzCBRQddPQXXs9R+rChNLMFQErJyXteph8yurpXLgFwnAWa2AiNem1StBq8YoyxVuQHTn7R6ulbziscuvBSLLL/owfVan+HVFbGYqkcp2hQ5I3/Wl1JAmuqOLDMjwj3dXAUwQiq+RGzAfjvPXLdABOkwb73fX8xGpvWp1rdnNeyrOJQAllmJiGQNEVmkx0p0AXidwRUaJVXN8Xyf84LM1yKQ5MZB0cCzLlO9kBlyIWnWLGgzqvl7ZsjR5iQyl+rhuvbISeQlGy35tWWZAZW2fFGFkHAqJsAr0gUhRQ4f43ik0EwXZb+8S1ouXcRSE2GNrQCg5J9auVSM/NMA1u/kmSkwLQFmeIW5GIhZVfirB1tg5ZxYoEoNabzaYqcgtFIIr6vyGUNywfwAFy1sn9WhpF8QdTHHY6hGH5uAkolCUs5R7RAV8jZHjfmBETU+ABlR7cgqR7s+kyA+HVkdaq0HulLmEzXu07zmhxDgLNS9Nm6N2bp8eWvd5zkRWZNolo8gW2/6VIQCXItPYyPCYt1ylWbbam6QrjCZP10srUHeJWSIYGYs4pzwJpl5XszrYu1d1jaPwWlYNgRmThi9wjvxCmfKiazeplJWB0d68/TWu5kRR8g0RGTRkFbnnqRZ33c/uJSVK/EBQWu9qRiXuFRcK/krS7TEuUrVrKEVKwmX6VmxgcgJ5vwcUAoBhjZzAnMGtraGmhVi5N1ss3Z7cc0TFulbPiLULIcKn6mz/nnur4EOV6AGQQahtbZvZIKtJBhgGKIIKl05Rgpt1JTLz+KhdZxbXccrXFgfLi2+isukgrZjWF4pxJU46/L6SrkQo7qarvihIabIpLfbl2PETIJubH1rdpv95Uuz+fTniH6b7yPUuGQTl/GuQ8OqEUR5gYSkVS9gfesvd2rKxxDTRE47RqzMpdwoU9ZzriCsVA91O1pvWmjTtTvXBa70FldIUl0ZWT2Ji5tdB+ITVCaNde9sDb82W4aC1rZ0ktXX1d2bbdb3W/eBI2B9NzeTt8/2rboCLlx+mfbzW0v9Yuat9/1OTNhh4qQAWCRWCl8/bn2/74iVw9bCluP1rXle7rJaPa4QeAXOtIZICWx7er/Em7rG31xhMMzlfWcoE41MzaDvpzvMvW0v3359f04GQHe2vm/t6+hfft3auU35ud/dqUR10TeCklVrmeXrzGm2hKCFEbs332637etXw5A/n2KcAE9vW3Q7QvM6Bd73F80JTpkv+IpGsG2tlmotiK20ex28Mnw1Tnx/1bNn9rocn4EFDGot0ghvW7ZcpoQm7l9jB6z1tn/9y9/6x4kp0Z19v+3tdey//m1rx3bK7P7l6ATMzRZFTRKrZzpY0SvtipD3qFDbt9vL7Zdv1KHeOnl00UbzZ+gwaUWuJNl6b82sJ00WyznQ2tbYYOU1KnTTnyqEeLklmfXb4W261+24FGMVvjWAoQ4gY9QSON1uXw9nBpSW/nI0oiJYtr7f/eZf/vK3W3v4I619+eV520be7vko23upMi5J5KWqK0WEr0DW+367f/mKQOyyRm8CfT+PHOMMlqSE1NPPbYTSrFqy1YgqVOWC0dan0wwAq83QCotQVdHuL1/Hjx7RpCBdn9FJC9y+ng9Bre+5Vd87UO7t5Zfjnpmt+f7y7a9x31bPbcF8a7f29a//w91/xPdg+/rr436LvL/m2TUjPyXFkYDISajR4sQEaDumBHrf+n5/edHMuLHdyCbYvD+PqFmUMoCOkGqgUScwZyQXzSZ6c9AgWa4yXuniAiotMpo3dH+5b91t3YstR36eAFycva4pTID13n3bem8TxXO5mVVMbZWPm7m3zbdt26e9vNqXw/jrl5iP6SVZk6qmCEuDUeDExd+VSAQVs11ib3o1vK/H7NDnAE6uzFgrN18AM9jYaGuEIVZvHqrgwPJgog+538aYrWy8+0sglkdtSrq7Etb6bGGeabB93/rXb2/NSGve+v5y39yjQvnet1t/Ga9ff/nS/PiONv76Lx//hBf756/Z35/nOWdESmYWWs7bzNaLVZoF0lDjbW6aM3Zx57nhNLttezZ3v63XrXaX7m7N0jCTtgVokvetofpKlEGzgqNongv9qC4GIL03q/o7Wr9X9rOgrqoBl7fWGhuDLu9b733fWk2Ra9vty4+tuUswg7fWt1t7+fqXr609f5efv/7T/de593/+FtE/Hm2MGDPlxZSmaKoDNAtacNZok9a3fb+/ambc6TcO0un3vQ8346bzs9rFe7M1dwVKzAnzugLnlFUutjzuioiuZLJYRPfznBFzNoVgbV75BI6InJJ/hi7rqOaM9x9vb+9Tfnrcf/x4HOe41IClzdbFSZhZa9uG7eU17sfZEtWWI9MTiYzVMntBIpnfJ3zFBJVAWho13JzQOOaYM7Iaf0mJ3EAi50wNnueY4IA3mEW0kln8hAILh1v8CUUppQg/nmvmvUDCvBX8isyMwUZW08+k6E4ihefbx/MZolnefv/tx8dxTitZTMzRxny8/0B7+3g+z/H8eJxz2jjyPM8rRyx4qrobSEjDIpdioll1mZnzPE4KppzTRuLUE8c5ZqTFtYltv7/cHw15zuQQFs1Oc/PGSwPLap66tr0ByfxZPkyM4qJFiUP3fiYzqlM20uye9C32yWmttzlP4DzDGgVTjMfbx1UNa8wxTjvO9v33YT/+/u/fjzHi+Z9+H/7xqv/2cc4cM1cB44JSzPtqMWugYHC35tZNYmbbNuc8RTuViuOcM4WcYDczevv1P/wv3/4vsyOekXQJNWqivX77tX3iriTALHPr9mqaPg7BwGomMopWE4B8+t4wmaWSbxxoLzn6i+U4D99af/94Tty/vx0D8H7M4/H2/pxzNlL0OcbB54M/vs/8/e//9v08fzyP//R24vebfQ+GjVRJsLNme4mtuWhm6UkYWMr/rWXkOM33fTil+CEqxnGOSOVp9NZ7a/e//c//69f4GP48FbQk6GjN+svrl/aTC9QFulUjLMFXQgkQyDEzqs7D3Pp9BhlAS7IzxS2ntdaBaHvfBmPwfByz+p3kPD+e4yr/Vs5x8vn09x9z/v79/X3O0c/nmHxmm6qcwUlLrMIdWWtY5xQrQi2nEGMeT9t9j4yp80OOcx5jpmhm7H3fev/y13/+ly9/f32JWXLQmpDp3vZ9b3nFy8A6cRQSMKTNgSJCEpYzr9VYXugqVyGUOWecz7fn28jnvllr20Z0a3sqNQTNo9p/SUgLm4PHYW+/PfT28Txy8jHGDNiYH3LZTHnNVfiEIxNJRCiVpalDxnyC2/F8st/GeR5TZyrzmWWqLuyBRrNPeuEnUFhv/A9CyQzzNWnjJGHXuM0pZEyZd9syUxNTcUzPeiBqgI8Yz7fjETHgBPpL8stLPnqOmcYcxzmvSiRvzhyPg+9/PPE8jnNOP86IYCojg4yrVsFYmZH3zeCcMyMjZ8BJKGO2zBy0eD/engm1nPVnQpkjlJljm8PsvP+fv709R8pW8wRK0vn+e7uizprDyLbE4YAbrHjXgIBItmbqUaqPoSHDTCY85iQ/lMf7eWQEnmb+cjP7y1/ufBuPxyEgxihuVG7mzsxj2ON92BhjjNnOMzIIzqpsAVUVY8UimfnW3GzMnDl1jEoTNVuTkOPjfNNzwvtrvo/VzyKnqJzDx9A4vt9++/3tnJnXaVCS83j3dtV0gyRkzWJixcnWygnMavfA3sk+j5mIYyLgltWaMsLzlI1jBBKZif3mu/36t9G/n38YkJjHWD3X3FvrlvEMtbduOs/ziGwjVQLgehwjXUI5KnfavW3OOXLkCDKqnqDmZ2AGjCPNt3uch1KKwuYkJoXjfPzYj+OcUrn/LGAD82kNP9/fmPQSl5rRW2/V76daQIW31lobOkOcF9KCKm2FElLAIZj3/atv9/bLP+V2fzJTp8ZxrvIhkoRiILL1TpzHeaZ8Jq250a2mVdN65lqA5rTeb2bD0oIx5soOiprLGsUBa7dtvhmF1bIOIMMSUxlbZs0O50/sRhlHW9aAC+ZJwATK6c3tGuVgALLR+tYsvNXYr+pHQ/PmrOoNwUn4/vL1L2370r784vv2mMc5IsZjzBTSFBScMWdMoQnj/TEViIQ3N5BpzEXjSLIUpxsRMBunRg6NGQUsa5ifT0zvnpGyfp+OnJmxijNIs95tDUyUZgqYKSve3WO268zVL134kNHMkUwaUjAxYbTWsrn5NFfKDKRozVkHtkodfX/58sW31/760jn9Ze+NmucMSSZFtaTPjIS3zHmMQLBaaEOfuFwhkwYLGJ05wu0cGhk6TjmAAKad56HYmksCvNFKylJJE41ufev7vrUTCmVELjNfXSPR7LMw0EgiCgTORKM0e9IRAZqbuXlvGu7Nf2J11cJFghITctC3l6+/tP6137/dNvXv974HJxeKohSmEXDFPCY0IkvCLYKIgekW6UifI7DYBrejD+c4MTPxGPBmmTmTfQybbi5L8+1lbkZ6a0txVAbU+95bThAREGr6YyStp9pKlwtA1sV4rz3ILMk6TBmgtc3V3L1pSkqtmuViNoBwb2b99vLlL/vt29Z/ff3abu/fHyQfy1YAyoSLzpLuKGaCdN693W6Onof5pIfa0owzBePocDtPzpSdE6u+R9Zaj3N64syG9hrdKOvNyCpUSs35ZNJjzMwIIkNAzgnS2miLflpv/Ek01qIoE0RMCSejwZpnM2udsegcAJeM4ApbCNp2e/26ty9f+2NujcqYuMbuSlFCTJHTsYa7GK33+90PLTf4uawq/QosWHNNgEykVvfgiOAcozFA77dwQsxQruHjpBQj4dXSNpiZADODwJxoiT/ViWGBISTh3sLWgFO0GnKdoYiUtV4jP7iYSxbvXP09NMc428zQsR3HcZ7jPI7qilGcjKrtEzy15LVuDbbtrzcfXsgvM6sX5AUOQmvcKn7ClQQy5ohTO3jSn88jjnNMnYfNGe0nSVdDG5cOc+2ZCAWb6c9WZ32D1PDJx5t3dDRnySIj4nkcmRU5k2b9Ja62x1U1dD7fU23vzY9zBlvfpoyrkWkRkSyalZExhYkm9n5s9v3EE5iw1SbmUm9dkXoB/7c1BJjVHnXacA5TPH/EGWDWgNZqBWW2fB6M2CYUAtxXS001WukRJFnmVZinScyVGsA6O5oj5njYeZzn/BgVOWf1uu59QAKyOlSN59sfz8fYtsfb+OP9Y7LtUZWHucSqvN7NIjNSJhOaPxrfpk1D1Qut0LG4cWXZbyVlnSkkLGDjNJzRAsNIZvzxcc6UWX4S5Es8BpJW9UGiWa7opdJhAajBlNeBqzNX/2ydGwzKeRDzOSZDBLCGfEi2eJI6o8rxfBtndv94ybfHx5D3PgLV5heQUG2rM5ORCEFKMBngpUio5k2mi90BFLCoovLSRdUe0lKj4cC0nGPkH+/PAwGaOQKglKFEkLDiWCcBrsWdbAv7/omeVju+cgvFY4G+sVom13iteu8rvdJnn4+wC1yVIphP5+WTSydatlVXqoOwschIwCUkMu2i6vkzS1t5XF5X9Pr25LSJGNmByWa+53mOydrvRaMtH22Xjqwuz2pEhXa9Nhe4XDmIIHNSLngz73stnLvc/uGxKtooDjBrXevo0Yze2PxqHLNeCRf5VK0GFrOoi4OUlJY1xEAXM/MzhV275PEzdjNbXUC5esGQVwXa5xN+Lhmx+ox/WrvmS13DT8axVE/yZokm9K623Uos/dlp50+9MX9+s5lZQ/rn1PdiCT7btJT1LkHakm75sua8zl6V56KEhKt9sK7X+Pn/VjVPV2bxiY9m/gkH+Llin4vH9Rf7DH9a1/XpIE3mDpkJ6Y1kF/bO2/3u8TxGKGJGtZtmYQsENJcKqmQeCWZO1wkF/HmMSPOF3ygp83kdhDU0jLBU8V51lUg6UTzKEjBev/l5HYAiqISMjElMHqTrGBEETWalKVDMetI6WosXrjWH0HoBPWsxa56uO5G2IbOB9+Zfv7z4eHtD5jnnmKmkaZkOZQymSMDdvTONcT6DiLk/+jkfI7PKSeoVvepeqpFcK8SvKENbqm5r6d3UUjIG4mqQfRGGS7FKujJTMSdGckJzRn6cMfzyyYCAWVoRlFKpKH5baaHUemD1nai5Pa07ezcmuyKduLft11+++NPnOCPGHBFVW3TZwjw5RVJ0927DMI7HEMaxPbbIxzFijDlDlcF5fp5N+caiLykzM5+o+Yiy7umptAWFrwW4znTRV2ycIWlOnM6piBj6OHOkrekEAqDJIAGlgoF0XaQajEDzVn4nim9tvW3ou59BpnU33bb73/752/Z+n/Oc84wZ8k4lRBoJ5jSlgtCw2f1jQ8o6+/OjnV1xvn94nEsqSLBdwmInvZs3wqn0jdutYWRMhBSMnMnmSwVeKmiBSMOllGgzMhVjpMgIb+2G94EIRCgEzwQUiBoXIqBQdIBKKzSzbYkAaQyQprb1nfvdx2nblLvl1/3rf/wf/7J/3z+ej6GMyMqOeFkvwDyqsA10S8UJb+jv731u1JyT0oL0Qfa67gSNty+/yVkwCiFNfE7ydMDA7oiszmlcdV00eZMS5ltkeAOgVTA8Jw6ZMuOqOwdQeOoKc4VQoRckXcm2SlHqIBaRSwJZU85pMGvb7X6L182tatwTs7iz5adyRTKSePKhfE409LfnTZOKx8eOQV/yjjI1FOmm/XYrPRiIGVMPxIw0yoHEgIddJdXLk/H6KwA66d7YYZauJEJIwiNzpOqmAzWEkKUd+1yWcsyG1rqFpEVz//QY/EwRq49eMVGxKrSdrCTCcMmsVwgESRmzBo4AVWoDKSM/semKapA6zwNOGSLMpZhYLZCuP7nMRbmcXGU91xcqlTHnOIZZWkxjAjLnRdev90CV/qSWEt1hu/ZGWIbahojMhJag37yhdQesA908+rbdXl5v59Z8jSYmF7RqoNfAAqLEo95KCWBmvZ9mZkrzkopiUdsrLEkystpeyiAYvZmM14jkVMLd3UOOvDQLtR5FY9MWNTnoaRGlmF+od+1cMb5FMa3zZ2zmNzwbxZlqcLKK1yGkYtpkpHXCMadFHtq+/3tuv//9+8dztXbNLAn35VNZTSTodrvp1g0Z1JSxBoC0iImZTErC/NSO02u8rsCag6FKKwh4b/opoLVP3HY10csKD9NbtRq8AkGkzKu6DFCNcFlID5bqzNzMWrd7zVHh/x87LzmeWBebdQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 45, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -431,34 +460,6 @@ "source": [ "Image.fromarray(np.uint8(W.dot(H).T), 'L')" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Residuals:" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAAARElEQVR4nO3BMQEAAADCoPVPbQlPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBmt7cAAScmPL0AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image.fromarray(np.uint8(R.T), 'L')" - ] } ], "metadata": { From 52fc95620e5012c18ed69318a25c4741b85a04be Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 23 Apr 2018 05:40:35 +0300 Subject: [PATCH 009/144] Add more LDA-like API --- gensim/models/nmf.py | 128 +++++++++++++++++++++++++++++-------------- 1 file changed, 87 insertions(+), 41 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 4fb17dbe08..29b3df561e 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -21,9 +21,18 @@ class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """ - def __init__(self, corpus=None, num_topics=100, id2word=None, - chunksize=2000, passes=1, lambda_=1., - kappa=1., store_r=False, max_iter=1e9): + def __init__(self, + corpus=None, + num_topics=100, + id2word=None, + chunksize=2000, + passes=1, + lambda_=1., + kappa=1., + store_r=False, + max_iter=1e9, + normalize=True + ): """ Parameters @@ -43,6 +52,7 @@ def __init__(self, corpus=None, num_topics=100, id2word=None, self._H = [] self.v_max = None self.max_iter = max_iter + self.normalize = normalize if store_r: self._R = [] else: @@ -68,26 +78,84 @@ def B(self, value): self._B = value def get_topics(self): - raise NotImplementedError + if self.normalize: + return (self._W / np.sum(self._W, axis=0)).T - def __getitem__(self, vec): - raise NotImplementedError + return self._W.T - def _setup(self, X): + def __getitem__(self, bow, eps=None): + return self.get_document_topics(bow, eps) + + def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): + """ + Args: + num_topics (int): show results for first `num_topics` topics. + Unlike LSA, there is no natural ordering between the topics in LDA. + The returned `num_topics <= self.num_topics` subset of all topics is + therefore arbitrary and may change between two LDA training runs. + num_words (int): include top `num_words` with highest probabilities in topic. + log (bool): If True, log output in addition to returning it. + formatted (bool): If True, format topics as strings, otherwise return them as + `(word, probability)` 2-tuples. + Returns: + list: `num_words` most significant words for `num_topics` number of topics + (10 words for top 10 topics, by default). + """ + # TODO: maybe count sparsity in some other way + sparsity = np.count_nonzero(self._W, axis=0) + + if num_topics < 0 or num_topics >= self.num_topics: + num_topics = self.num_topics + chosen_topics = range(num_topics) + else: + num_topics = min(num_topics, self.num_topics) + + sorted_topics = list(matutils.argsort(sparsity)) + chosen_topics = sorted_topics[:num_topics // 2] + sorted_topics[-num_topics // 2:] + + shown = [] + + topic = self.get_topics() + for i in chosen_topics: + topic_ = topic[i] + bestn = matutils.argsort(topic_, num_words, reverse=True) + topic_ = [(self.id2word[id], topic_[id]) for id in bestn] + if formatted: + topic_ = ' + '.join(['%.3f*"%s"' % (v, k) for k, v in topic_]) + + shown.append((i, topic_)) + if log: + logger.info("topic #%i (%.3f): %s", i,sparsity[i], topic_) + + return shown + + def get_document_topics(self, bow, minimum_probability=None): + v = matutils.corpus2dense([bow], len(self.id2word), 1).T + h, _ = self._solveproj(v, self._W, v_max=np.inf) + + if self.normalize: + h = h / np.sum(h) + + if minimum_probability is not None: + h[h < minimum_probability] = 0 + + return h + + def _setup(self, corpus): self._h, self._r = None, None - x = next(iter(X)) - x_asarray = matutils.corpus2dense([x], len(self.id2word), 1)[:, 0] - m = len(x_asarray) - avg = np.sqrt(x_asarray.mean() / m) + first_doc = next(iter(corpus)) + first_doc = matutils.corpus2dense([first_doc], len(self.id2word), 1)[:, 0] + m = len(first_doc) + avg = np.sqrt(first_doc.mean() / m) - self.n_features = len(x_asarray) + self.n_features = len(first_doc) self._W = np.abs(avg * halfnorm.rvs(size=(self.n_features, self.num_topics)) / np.sqrt(self.num_topics)) self.A = np.zeros((self.num_topics, self.num_topics)) self.B = np.zeros((self.n_features, self.num_topics)) - return X + return corpus def update(self, corpus, chunks_as_numpy=False): """ @@ -96,6 +164,7 @@ def update(self, corpus, chunks_as_numpy=False): ---------- corpus : matrix or iterator Matrix to factorize. + chunks_as_numpy: bool """ if self.n_features is None: @@ -138,25 +207,6 @@ def _solve_w(self): lasttwo[1] = 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) - \ np.trace(self._W.T.dot(self.B)) - def transform(self, corpus, return_r=False): - H = [] - if return_r: - R = [] - - W = self._W - for chunk in corpus: - v = matutils.corpus2dense([chunk], len(self.id2word), 1).T[0] - h, r = self._solveproj(v, W, v_max=np.inf) - H.append(h.copy()) - if return_r: - R.append(r.copy()) - - H = np.stack(H, axis=-1) - if return_r: - return H, np.stack(R, axis=-1) - else: - return H - def get_factor_matrices(self): if len(self._H) > 0: if len(self._H[0].shape) == 1: @@ -190,15 +240,11 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): self.v_max = v_max elif self.v_max is None: self.v_max = v.max() - # else: - # self.v_max = np.max((self.v_max, v.max())) - if len(v.shape) == 2: - batch_size = v.shape[1] - rshape = (m, batch_size) - hshape = (n, batch_size) - else: - rshape = m, - hshape = n, + + batch_size = v.shape[1] + rshape = (m, batch_size) + hshape = (n, batch_size) + if h is None or h.shape != hshape: h = np.zeros(hshape) From ddebcf0e64717451ac57110e1c4f893b8442d30c Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 23 Apr 2018 05:49:32 +0300 Subject: [PATCH 010/144] Fix logger name --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 29b3df561e..b3e1542433 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -6,7 +6,7 @@ from gensim import interfaces from gensim.models import basemodel -logger = logging.getLogger('gensim.models.nmf') +logger = logging.getLogger(__name__) class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): From 6d0a1b386592ae578820d08552802b16f111756a Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 23 Apr 2018 06:19:05 +0300 Subject: [PATCH 011/144] Add more LDA API --- gensim/models/nmf.py | 54 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 54 insertions(+) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index b3e1542433..a5214d1f4a 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -129,6 +129,60 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): return shown + def show_topic(self, topicid, topn=10): + """ + Args: + topn (int): Only return 2-tuples for the topn most probable words + (ignore the rest). + + Returns: + list: of `(word, probability)` 2-tuples for the most probable + words in topic `topicid`. + """ + return [(self.id2word[id], value) for id, value in self.get_topic_terms(topicid, topn)] + + def get_topic_terms(self, topicid, topn=10): + """ + Args: + topn (int): Only return 2-tuples for the topn most probable words + (ignore the rest). + + Returns: + list: `(word_id, probability)` 2-tuples for the most probable words + in topic with id `topicid`. + """ + topic = self.get_topics()[topicid] + bestn = matutils.argsort(topic, topn, reverse=True) + return [(idx, topic[idx]) for idx in bestn] + + def get_term_topics(self, word_id, minimum_probability=None): + """ + Args: + word_id (int): ID of the word to get topic probabilities for. + minimum_probability (float): Only include topic probabilities above this + value (None by default). If set to None, use 1e-8 to prevent including 0s. + Returns: + list: The most likely topics for the given word. Each topic is represented + as a tuple of `(topic_id, term_probability)`. + """ + if minimum_probability is None: + minimum_probability = 1e-8 + + # if user enters word instead of id in vocab, change to get id + if isinstance(word_id, str): + word_id = self.id2word.doc2bow([word_id])[0][0] + + values = [] + for topic_id in range(0, self.num_topics): + word_coef = self._W[word_id, topic_id] + + if self.normalize: + word_coef /= np.sum(word_coef) + if word_coef >= minimum_probability: + values.append((topic_id, word_coef)) + + return values + def get_document_topics(self, bow, minimum_probability=None): v = matutils.corpus2dense([bow], len(self.id2word), 1).T h, _ = self._solveproj(v, self._W, v_max=np.inf) From cf430fcfbe9365617bb12e52358c592048b1d3d2 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 23 Apr 2018 06:23:24 +0300 Subject: [PATCH 012/144] Remove redundant method --- gensim/models/nmf.py | 11 ----------- 1 file changed, 11 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index a5214d1f4a..f7114f7a70 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -261,17 +261,6 @@ def _solve_w(self): lasttwo[1] = 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) - \ np.trace(self._W.T.dot(self.B)) - def get_factor_matrices(self): - if len(self._H) > 0: - if len(self._H[0].shape) == 1: - H = np.stack(self._H, axis=-1) - else: - H = np.concatenate(self._H, axis=1) - - return self._W, H - else: - return self._W, 0 - @staticmethod def __thresh(X, lambda1, vmax): res = np.abs(X) - lambda1 From df5a6e9cedb806fd6fb4ab6e3a8a08760821fd9a Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 23 Apr 2018 07:22:40 +0300 Subject: [PATCH 013/144] Remove commented out lines --- gensim/models/nmf.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index f7114f7a70..1608623c56 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -305,13 +305,10 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): np.maximum(h, 0.0, out=h) # Solve for r - r_ = r r = self.__thresh(error, self._lambda_, self.v_max) # Stop conditions stoph = np.linalg.norm(h - h_, 2) - # stopr = np.linalg.norm(r - r_, 2) - # stop = max(stoph, stopr) / m stop = stoph / m if stop < 1e-5: break From 25080b4d17765431e5d26329b1a673a6257cd4ee Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 23 Apr 2018 10:38:28 +0300 Subject: [PATCH 014/144] Fix flakes --- gensim/models/nmf.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 1608623c56..90f1649727 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -125,7 +125,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): shown.append((i, topic_)) if log: - logger.info("topic #%i (%.3f): %s", i,sparsity[i], topic_) + logger.info("topic #%i (%.3f): %s", i, sparsity[i], topic_) return shown @@ -239,7 +239,7 @@ def update(self, corpus, chunks_as_numpy=False): self._solve_w() logger.info( 'Loss (no outliers): {}\tLoss (with outliers): {}' - .format( + .format( np.linalg.norm(v.T - self._W.dot(h)), np.linalg.norm(v.T - self._W.dot(h) - r) ) From 83b1a6b209905c6707331f6b18c54810ea084203 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 2 May 2018 20:57:50 +0300 Subject: [PATCH 015/144] Cythonize --- gensim/models/__init__.py | 1 + gensim/models/nmf.py | 22 +++++++++++----------- gensim/models/nmf_pgd.pyx | 38 ++++++++++++++++++++++++++++++++++++++ setup.py | 5 ++++- 4 files changed, 54 insertions(+), 12 deletions(-) create mode 100644 gensim/models/nmf_pgd.pyx diff --git a/gensim/models/__init__.py b/gensim/models/__init__.py index 4114724027..3dd3a8b362 100644 --- a/gensim/models/__init__.py +++ b/gensim/models/__init__.py @@ -8,6 +8,7 @@ from .hdpmodel import HdpModel # noqa:F401 from .ldamodel import LdaModel # noqa:F401 from .lsimodel import LsiModel # noqa:F401 +from .nmf import Nmf #noqa:F401 from .tfidfmodel import TfidfModel # noqa:F401 from .rpmodel import RpModel # noqa:F401 from .logentropy_model import LogEntropyModel # noqa:F401 diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 90f1649727..59894acd33 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -5,6 +5,7 @@ from gensim import matutils from gensim import interfaces from gensim.models import basemodel +from gensim.models.nmf_pgd import solve_h, solve_r logger = logging.getLogger(__name__) @@ -30,7 +31,7 @@ def __init__(self, lambda_=1., kappa=1., store_r=False, - max_iter=1e9, + max_iter=int(1e9), normalize=True ): """ @@ -296,21 +297,20 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): eta = self._kappa / np.linalg.norm(W, 'fro') ** 2 - for _ in range(int(self.max_iter)): - error = v - np.dot(W, h) + Wt = W.T - # Solve for h - h_ = h - h = h - eta * np.dot(-W.T, error - r) - np.maximum(h, 0.0, out=h) + for _ in range(self.max_iter): + violation = 0 + + r_actual = v - np.dot(W, h) + + violation += solve_h(h, Wt, r - r_actual, eta) # Solve for r - r = self.__thresh(error, self._lambda_, self.v_max) + r = self.__thresh(r_actual, self._lambda_, self.v_max) # Stop conditions - stoph = np.linalg.norm(h - h_, 2) - stop = stoph / m - if stop < 1e-5: + if violation / m < 1e-5: break return h, r diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx new file mode 100644 index 0000000000..8ff097b6de --- /dev/null +++ b/gensim/models/nmf_pgd.pyx @@ -0,0 +1,38 @@ +# cython: cdivision=True +# cython: boundscheck=False +# cython: wraparound=False + +# Author: Timofey Yefimov + +cimport cython +from libc.math cimport sqrt + +def solve_h(double[:, :] h, double[:, :] Wt, double[:, :] r_diff, double eta): + cdef Py_ssize_t n_components = Wt.shape[0] + cdef Py_ssize_t n_features = Wt.shape[1] + cdef Py_ssize_t n_samples = h.shape[1] + cdef double violation = 0 + cdef double grad, projected_grad + cdef Py_ssize_t sample_idx, component_idx, feature_idx + + with nogil: + for sample_idx in range(n_samples): + for component_idx in range(n_components): + + grad = 0 + + for feature_idx in range(n_features): + grad += Wt[component_idx, feature_idx] * r_diff[feature_idx, sample_idx] + + grad *= eta + + projected_grad = min(0, grad) if h[component_idx, sample_idx] == 0 else grad + + violation += projected_grad ** 2 + + h[component_idx, sample_idx] = max(h[component_idx, sample_idx] - grad, 0) + + return sqrt(violation) + +def solve_r(): + pass \ No newline at end of file diff --git a/setup.py b/setup.py index 132eb925c5..7331c6a2e7 100644 --- a/setup.py +++ b/setup.py @@ -265,6 +265,9 @@ def finalize_options(self): include_dirs=[model_dir]), Extension('gensim._matutils', sources=['./gensim/_matutils.c']), + Extension('gensim.models.nmf_pgd', + sources=['./gensim/models/nmf_pgd.c'], + include_dirs=[model_dir]) ], cmdclass=cmdclass, packages=find_packages(), @@ -274,7 +277,7 @@ def finalize_options(self): url='http://radimrehurek.com/gensim', download_url='http://pypi.python.org/pypi/gensim', - + license='LGPLv2.1', keywords='Singular Value Decomposition, SVD, Latent Semantic Indexing, ' From 7f27f52eee2ea4830208e18455d8022b3aa88b21 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 22 May 2018 14:19:27 +0300 Subject: [PATCH 016/144] Dramatically improve performance --- gensim/models/nmf.py | 36 +++++++++++++----------- gensim/models/nmf_pgd.pyx | 59 ++++++++++++++++++++++++++------------- 2 files changed, 60 insertions(+), 35 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 59894acd33..a6e6392070 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -9,6 +9,7 @@ logger = logging.getLogger(__name__) +import time class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """Online Non-Negative Matrix Factorization. @@ -32,7 +33,8 @@ def __init__(self, kappa=1., store_r=False, max_iter=int(1e9), - normalize=True + normalize=True, + random_state=None ): """ @@ -251,22 +253,25 @@ def update(self, corpus, chunks_as_numpy=False): def _solve_w(self): eta = self._kappa / np.linalg.norm(self.A, 'fro') - n = 0 lasttwo = np.zeros(2) - while n <= 2 or (np.abs( - (lasttwo[1] - lasttwo[0]) / lasttwo[0]) > 1e-5 and n < 1e9): + + for n in range(int(1e9)): + if n >= 2 and np.abs((lasttwo[1] - lasttwo[0])) < 1e-5 * np.abs(lasttwo[0]): + break + self._W -= eta * (np.dot(self._W, self.A) - self.B) self._W = self.__transform(self._W) - n += 1 lasttwo[0] = lasttwo[1] - lasttwo[1] = 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) - \ - np.trace(self._W.T.dot(self.B)) + lasttwo[1] = ( + 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) + - np.trace(self._W.T.dot(self.B)) + ) @staticmethod - def __thresh(X, lambda1, vmax): - res = np.abs(X) - lambda1 + def __solve_r(r_actual, lambda_, vmax): + res = np.abs(r_actual) - lambda_ np.maximum(res, 0.0, out=res) - res *= np.sign(X) + res *= np.sign(r_actual) np.clip(res, -vmax, vmax, out=res) return res @@ -295,19 +300,18 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): if r is None or r.shape != rshape: r = np.zeros(rshape) - eta = self._kappa / np.linalg.norm(W, 'fro') ** 2 - Wt = W.T + WtW = Wt.dot(W) - for _ in range(self.max_iter): + for iter_number in range(self.max_iter): violation = 0 r_actual = v - np.dot(W, h) + Wt_v_minus_r = Wt.dot(v - r) - violation += solve_h(h, Wt, r - r_actual, eta) + violation += solve_h(h, Wt_v_minus_r, WtW, self._kappa) - # Solve for r - r = self.__thresh(r_actual, self._lambda_, self.v_max) + violation += solve_r(r, r_actual, self._lambda_, self.v_max) # Stop conditions if violation / m < 1e-5: diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 8ff097b6de..71a1ec2483 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -1,38 +1,59 @@ +# Author: Timofey Yefimov + # cython: cdivision=True # cython: boundscheck=False # cython: wraparound=False - -# Author: Timofey Yefimov +# cython: linetrace=False cimport cython -from libc.math cimport sqrt +from libc.math cimport sqrt, fabs, fmin, fmax, copysign -def solve_h(double[:, :] h, double[:, :] Wt, double[:, :] r_diff, double eta): - cdef Py_ssize_t n_components = Wt.shape[0] - cdef Py_ssize_t n_features = Wt.shape[1] +def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + cdef Py_ssize_t n_components = h.shape[0] cdef Py_ssize_t n_samples = h.shape[1] cdef double violation = 0 - cdef double grad, projected_grad - cdef Py_ssize_t sample_idx, component_idx, feature_idx + cdef double grad, projected_grad, hessian + cdef Py_ssize_t sample_idx, component_idx_1, component_idx_2 with nogil: - for sample_idx in range(n_samples): - for component_idx in range(n_components): - - grad = 0 + for component_idx_1 in range(n_components): + for sample_idx in range(n_samples): - for feature_idx in range(n_features): - grad += Wt[component_idx, feature_idx] * r_diff[feature_idx, sample_idx] + grad = -Wt_v_minus_r[component_idx_1, sample_idx] - grad *= eta + for component_idx_2 in range(n_components): + grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] - projected_grad = min(0, grad) if h[component_idx, sample_idx] == 0 else grad + projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad violation += projected_grad ** 2 - h[component_idx, sample_idx] = max(h[component_idx, sample_idx] - grad, 0) + hessian = WtW[component_idx_1, component_idx_1] + + h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad * kappa / hessian, 0.) return sqrt(violation) -def solve_r(): - pass \ No newline at end of file +def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_max): + cdef Py_ssize_t n_features = r.shape[0] + cdef Py_ssize_t n_samples = r.shape[1] + cdef double violation = 0 + cdef double r_new_element + + with nogil: + for sample_idx in range(n_samples): + for feature_idx in range(n_features): + if r[feature_idx, sample_idx] == 0: + continue + + r_new_element = fabs(r_actual[feature_idx, sample_idx]) - lambda_ + r_new_element = fmax(r_new_element, 0) + r_new_element = copysign(r_new_element, r_actual[feature_idx, sample_idx]) + r_new_element = fmax(r_new_element, -v_max) + r_new_element = fmin(r_new_element, v_max) + + violation += (r[feature_idx, sample_idx] - r_new_element)**2 + + r[feature_idx, sample_idx] = r_new_element + + return sqrt(violation) From 405e12fd3fe4d4632c9b6f04dca5f62318f45290 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sat, 2 Jun 2018 20:28:27 +0300 Subject: [PATCH 017/144] Add parameters, improve accuracy and speed --- gensim/models/nmf.py | 149 ++++++++++++++++++++++++-------------- gensim/models/nmf_pgd.pyx | 10 --- 2 files changed, 93 insertions(+), 66 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index a6e6392070..ab26dad4e5 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -11,39 +11,48 @@ import time + class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """Online Non-Negative Matrix Factorization. - - Attributes - ---------- - _W : dictionary matrix - _H : loadings matrix - _lambda: weight of outliers regularizer - _kappa: step size coefficient - """ - def __init__(self, - corpus=None, - num_topics=100, - id2word=None, - chunksize=2000, - passes=1, - lambda_=1., - kappa=1., - store_r=False, - max_iter=int(1e9), - normalize=True, - random_state=None - ): + def __init__( + self, + corpus=None, + num_topics=100, + id2word=None, + chunksize=2000, + passes=1, + lambda_=1., + kappa=1., + store_r=False, + w_max_iter=200, + w_stop_condition=1e-4, + h_r_max_iter=50, + h_r_stop_condition=1e-3, + normalize=True, + ): """ Parameters ---------- + corpus : Corpus + Training corpus num_topics : int Number of components in resulting matrices. + id2word: Dict[int, str] + Token id to word mapping + chunksize: int + Number of documents in a chunk + passes: int + Number of full passes over the training corpus lambda_ : float + Weight of the residuals regularizer kappa : float + Optimization step size + store_r : bool + Whether to save residuals during training + normalize """ self.n_features = None self.num_topics = num_topics @@ -52,9 +61,12 @@ def __init__(self, self.passes = passes self._lambda_ = lambda_ self._kappa = kappa + self._w_max_iter = w_max_iter + self._w_stop_condition = w_stop_condition + self._h_r_max_iter = h_r_max_iter + self._h_r_stop_condition = h_r_stop_condition self._H = [] self.v_max = None - self.max_iter = max_iter self.normalize = normalize if store_r: self._R = [] @@ -114,7 +126,9 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): num_topics = min(num_topics, self.num_topics) sorted_topics = list(matutils.argsort(sparsity)) - chosen_topics = sorted_topics[:num_topics // 2] + sorted_topics[-num_topics // 2:] + chosen_topics = ( + sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2 :] + ) shown = [] @@ -124,7 +138,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): bestn = matutils.argsort(topic_, num_words, reverse=True) topic_ = [(self.id2word[id], topic_[id]) for id in bestn] if formatted: - topic_ = ' + '.join(['%.3f*"%s"' % (v, k) for k, v in topic_]) + topic_ = " + ".join(['%.3f*"%s"' % (v, k) for k, v in topic_]) shown.append((i, topic_)) if log: @@ -142,7 +156,10 @@ def show_topic(self, topicid, topn=10): list: of `(word, probability)` 2-tuples for the most probable words in topic `topicid`. """ - return [(self.id2word[id], value) for id, value in self.get_topic_terms(topicid, topn)] + return [ + (self.id2word[id], value) + for id, value in self.get_topic_terms(topicid, topn) + ] def get_topic_terms(self, topicid, topn=10): """ @@ -207,8 +224,11 @@ def _setup(self, corpus): self.n_features = len(first_doc) - self._W = np.abs(avg * halfnorm.rvs(size=(self.n_features, self.num_topics)) / - np.sqrt(self.num_topics)) + self._W = np.abs( + avg + * halfnorm.rvs(size=(self.n_features, self.num_topics)) + / np.sqrt(self.num_topics) + ) self.A = np.zeros((self.num_topics, self.num_topics)) self.B = np.zeros((self.n_features, self.num_topics)) @@ -230,7 +250,9 @@ def update(self, corpus, chunks_as_numpy=False): r, h = self._r, self._h for _ in range(self.passes): - for chunk in utils.grouper(corpus, self.chunksize, as_numpy=chunks_as_numpy): + for chunk in utils.grouper( + corpus, self.chunksize, as_numpy=chunks_as_numpy + ): v = matutils.corpus2dense(chunk, len(self.id2word), len(chunk)).T h, r = self._solveproj(v, self._W, r=r, h=h, v_max=self.v_max) self._H.append(h) @@ -239,40 +261,48 @@ def update(self, corpus, chunks_as_numpy=False): self.A += np.dot(h, h.T) self.B += np.dot((v.T - r), h.T) - self._solve_w() + self._solve_w(v.T, h, r) logger.info( - 'Loss (no outliers): {}\tLoss (with outliers): {}' - .format( + "Loss (no outliers): {}\tLoss (with outliers): {}".format( np.linalg.norm(v.T - self._W.dot(h)), - np.linalg.norm(v.T - self._W.dot(h) - r) + np.linalg.norm(v.T - self._W.dot(h) - r), ) ) self._r = r self._h = h - def _solve_w(self): - eta = self._kappa / np.linalg.norm(self.A, 'fro') - lasttwo = np.zeros(2) - - for n in range(int(1e9)): - if n >= 2 and np.abs((lasttwo[1] - lasttwo[0])) < 1e-5 * np.abs(lasttwo[0]): - break + def _solve_w(self, v, h, r): + eta = self._kappa / np.linalg.norm(self.A, "fro") + error = None + for n in range(self._w_max_iter): self._W -= eta * (np.dot(self._W, self.A) - self.B) self._W = self.__transform(self._W) - lasttwo[0] = lasttwo[1] - lasttwo[1] = ( - 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) - - np.trace(self._W.T.dot(self.B)) - ) + + error_ = self.__w_error() + + if error and np.abs(error_ - error) < np.abs( + error * self._w_stop_condition + ): + break + + error = error_ + + def __w_error(self): + return 0.5 * np.trace(self._W.T.dot(self._W.dot(self.A) - self.B)) + + def __h_r_error(self, v, h, r): + return 0.5 * np.linalg.norm( + v - self._W.dot(h) - r, "fro" + ) ** 2 + self._lambda_ * np.linalg.norm(r, 1) @staticmethod - def __solve_r(r_actual, lambda_, vmax): + def __solve_r(r_actual, lambda_, v_max): res = np.abs(r_actual) - lambda_ np.maximum(res, 0.0, out=res) res *= np.sign(r_actual) - np.clip(res, -vmax, vmax, out=res) + np.clip(res, -v_max, v_max, out=res) return res def __transform(self, W): @@ -300,21 +330,28 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): if r is None or r.shape != rshape: r = np.zeros(rshape) - Wt = W.T - WtW = Wt.dot(W) + WtW = W.T.dot(W) - for iter_number in range(self.max_iter): - violation = 0 + # eta = self._kappa / np.linalg.norm(W, 'fro') ** 2 - r_actual = v - np.dot(W, h) - Wt_v_minus_r = Wt.dot(v - r) + error = None - violation += solve_h(h, Wt_v_minus_r, WtW, self._kappa) + for iter_number in range(self._h_r_max_iter): + Wt_v_minus_r = W.T.dot(v - r) - violation += solve_r(r, r_actual, self._lambda_, self.v_max) + solve_h(h, Wt_v_minus_r, WtW, self._kappa) - # Stop conditions - if violation / m < 1e-5: + r_actual = v - W.dot(h) + + solve_r(r, r_actual, self._lambda_, self.v_max) + + error_ = self.__h_r_error(v, h, r) + + if error and np.abs(error - error_) < np.abs( + error * self._h_r_stop_condition + ): break + error = error_ + return h, r diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 71a1ec2483..15e812db8d 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -24,16 +24,10 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou for component_idx_2 in range(n_components): grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] - projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad - - violation += projected_grad ** 2 - hessian = WtW[component_idx_1, component_idx_1] h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad * kappa / hessian, 0.) - return sqrt(violation) - def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_max): cdef Py_ssize_t n_features = r.shape[0] cdef Py_ssize_t n_samples = r.shape[1] @@ -52,8 +46,4 @@ def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_ r_new_element = fmax(r_new_element, -v_max) r_new_element = fmin(r_new_element, v_max) - violation += (r[feature_idx, sample_idx] - r_new_element)**2 - r[feature_idx, sample_idx] = r_new_element - - return sqrt(violation) From 7b45b23fbf4514be84ec3d775347d7eb83a41754 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 5 Jun 2018 12:36:59 +0300 Subject: [PATCH 018/144] Remove redundant W copying --- docs/notebooks/nmf-wikipedia.ipynb | 852 +++++++++++++++++++++++++++++ docs/notebooks/nmf_benchmark.ipynb | 189 ++++--- gensim/models/nmf.py | 11 +- 3 files changed, 979 insertions(+), 73 deletions(-) create mode 100644 docs/notebooks/nmf-wikipedia.ipynb diff --git a/docs/notebooks/nmf-wikipedia.ipynb b/docs/notebooks/nmf-wikipedia.ipynb new file mode 100644 index 0000000000..1da0dc1a0b --- /dev/null +++ b/docs/notebooks/nmf-wikipedia.ipynb @@ -0,0 +1,852 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from gensim.corpora import WikiCorpus\n", + "from gensim.models import Nmf, LdaModel\n", + "import gensim.downloader as api\n", + "from gensim.parsing.preprocessing import preprocess_documents\n", + "\n", + "import logging\n", + "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Section title: Introduction\n", + "Section text: \n", + "\n", + "\n", + "\n", + "\n", + "'''Anarchism''' is a political philosophy that advocates self-governed societies based on voluntary institutions. These are often described as stateless societies, although several authors have defined them more specifically as institutions based on non-hierarchical free associations. Anarchism holds the state to be undesirable, unnecessary and harmful.\n", + "\n", + "While anti-statism is central, anarchism specifically entails opposing authority or hierarchical organisation in the conduct of all human relations, including—but not limited to—the state system. Anarchism is usually considered a far-left ideology and much of anarchist economics and anarchist legal philosophy reflects anti-authoritarian interpretations of communism, collectivism, syndicalism, mutualism or participatory economics.\n", + "\n", + "Anarchism does not offer a fixed body of doctrine from a single particular world view, instead fluxing and flowing as a philosophy. Many types and traditions of anarchism exist, not all of which are mutually exclusive. Anarchist schools of thought can differ fundamentally, supporting anything from extreme individualism to complete collectivism. Strains of anarchism have often been divided into the categories of social and individualist anarchism or similar dual classifications.\n", + "\n", + "Section title: Etymology and terminology\n", + "Section text: \n", + "\n", + "The word ''anarchism'' is composed from the word ''anarchy'' and the suffix ''-ism'', themselves derived respectively from the Greek , i.e. ''anarchy'' (from , ''anarchos'', meaning \"one without rulers\"; from the privative prefix ἀν- (''an-'', i.e. \"without\") and , ''archos'', i.e. \"leader\", \"ruler\"; (cf. ''archon'' or , ''arkhē'', i.e. \"authority\", \"sovereignty\", \"realm\", \"magistracy\")) and the suffix or (''-ismos'', ''-isma'', from the verbal infinitive suffix -ίζειν, ''-izein''). The first known use of this word was in 1539. Various factions within the French Revolution labelled opponents as anarchists (as Robespierre did the Hébertists) although few shared many views of later anarchists. There would be many revolutionaries of the early nineteenth century who contributed to the anarchist doctrines of the next generation, such as William Godwin and Wilhelm Weitling, but they did not use the word ''anarchist'' or ''anarchism'' in describing themselves or their beliefs.\n", + "\n", + "The first political philosopher to call himself an anarchist was Pierre-Joseph Proudhon, marking the formal birth of anarchism in the mid-nineteenth century. Since the 1890s, and beginning in France, the term \"libertarianism\" has often been used as a synonym for anarchism and was used almost exclusively in this sense until the 1950s in the United States; its use as a synonym is still common outside the United States. On the other hand, some use libertarianism to refer to individualistic free-market philosophy only, referring to free-market anarchism as libertarian anarchism.\n", + "\n", + "Section title: History\n", + "Section text: \n", + "\n", + "===Origins===\n", + "Woodcut from a Diggers document by William Everard\n", + "\n", + "The earliest anarchist themes can be found in the 6th century BC among the works of Taoist philosopher Laozi and in later centuries by Zhuangzi and Bao Jingyan. Zhuangzi's philosophy has been described by various sources as anarchist. Zhuangzi wrote: \"A petty thief is put in jail. A great brigand becomes a ruler of a Nation\". Diogenes of Sinope and the Cynics, as well as their contemporary Zeno of Citium, the founder of Stoicism, also introduced similar topics. Jesus is sometimes considered the first anarchist in the Christian anarchist tradition. Georges Lechartier wrote: \"The true founder of anarchy was Jesus Christ and ... the first anarchist society was that of the apostles\". In early Islamic history, some manifestations of anarchic thought are found during the Islamic civil war over the Caliphate, where the Kharijites insisted that the imamate is a right for each individual within the Islamic society.\n", + "\n", + "The French renaissance political philosopher Étienne de La Boétie wrote in his most famous work the ''Discourse on Voluntary Servitude'' what some historians consider an important anarchist precedent. The radical Protestant Christian Gerrard Winstanley and his group the Diggers are cited by various authors as proposing anarchist social measures in the 17th century in England. The term \"anarchist\" first entered the English language in 1642, during the English Civil War, as a term of abuse, used by Royalists against their Roundhead opponents. By the time of the French Revolution some, such as the ''Enragés'', began to use the term positively, in opposition to Jacobin centralisation of power, seeing \"revolutionary government\" as oxymoronic. By the turn of the 19th century, the English word \"anarchism\" had lost its initial negative connotation.\n", + "\n", + "Modern anarchism emerged from the secular or religious thought of the Enlightenment, particularly Jean-Jacques Rousseau's arguments for the moral centrality of freedom.\n", + "\n", + "As part of the political turmoil of the 1790s in the wake of the French Revolution, William Godwin developed the first expression of modern anarchist thought. Godwin was, according to Peter Kropotkin, \"the first to formulate the political and economical conceptions of anarchism, even though he did not give that name to the ideas developed in his work\", while Godwin attached his anarchist ideas to an early Edmund Burke.\n", + "\n", + "William Godwin, \"the first to formulate the political and economical conceptions of anarchism, even though he did not give that name to the ideas developed in his work\".\n", + "Godwin is generally regarded as the founder of the school of thought known as 'philosophical anarchism'. He argued in ''Political Justice'' (1793) that government has an inherently malevolent influence on society, and that it perpetuates dependency and ignorance. He thought that the spread of the use of reason to the masses would eventually cause government to wither away as an unnecessary force. Although he did not accord the state with moral legitimacy, he was against the use of revolutionary tactics for removing the government from power. Rather, he advocated for its replacement through a process of peaceful evolution.\n", + "\n", + "His aversion to the imposition of a rules-based society led him to denounce, as a manifestation of the people's 'mental enslavement', the foundations of law, property rights and even the institution of marriage. He considered the basic foundations of society as constraining the natural development of individuals to use their powers of reasoning to arrive at a mutually beneficial method of social organisation. In each case, government and its institutions are shown to constrain the development of our capacity to live wholly in accordance with the full and free exercise of private judgement.\n", + "\n", + "The French Pierre-Joseph Proudhon is regarded as the first ''self-proclaimed'' anarchist, a label he adopted in his groundbreaking work, ''What is Property?'', published in 1840. It is for this reason that some claim Proudhon as the founder of modern anarchist theory. He developed the theory of spontaneous order in society, where organisation emerges without a central coordinator imposing its own idea of order against the wills of individuals acting in their own interests. His famous quote on the matter is \"Liberty is the mother, not the daughter, of order\". In ''What is Property?'' Proudhon answers with the famous accusation \"Property is theft.\" In this work, he opposed the institution of decreed \"property\" (''propriété''), where owners have complete rights to \"use and abuse\" their property as they wish. He contrasted this with what he called \"possession,\" or limited ownership of resources and goods only while in more or less continuous use. Later, however, Proudhon added that \"Property is Liberty\" and argued that it was a bulwark against state power. His opposition to the state, organised religion, and certain capitalist practices inspired subsequent anarchists, and made him one of the leading social thinkers of his time.\n", + "\n", + "The anarcho-communist Joseph Déjacque was the first person to describe himself as \"libertarian\". Unlike Pierre-Joseph Proudhon, he argued that, \"it is not the product of his or her labour that the worker has a right to, but to the satisfaction of his or her needs, whatever may be their nature.\" In 1844 in Germany the post-hegelian philosopher Max Stirner published the book, ''The Ego and Its Own'', which would later be considered an influential early text of individualist anarchism. French anarchists active in the 1848 Revolution included Anselme Bellegarrigue, Ernest Coeurderoy, Joseph Déjacque and Pierre Joseph Proudhon.\n", + "\n", + "\n", + "===First International and the Paris Commune===\n", + "\n", + "Anarchist Mikhail Bakunin opposed the Marxist aim of dictatorship of the proletariat in favour of universal rebellion, and allied himself with the federalists in the First International before his expulsion by the Marxists.\n", + "\n", + "In Europe, harsh reaction followed the revolutions of 1848, during which ten countries had experienced brief or long-term social upheaval as groups carried out nationalist uprisings. After most of these attempts at systematic change ended in failure, conservative elements took advantage of the divided groups of socialists, anarchists, liberals, and nationalists, to prevent further revolt. In Spain Ramón de la Sagra established the anarchist journal ''El Porvenir'' in La Coruña in 1845 which was inspired by Proudhon´s ideas. The Catalan politician Francesc Pi i Margall became the principal translator of Proudhon's works into Spanish and later briefly became president of Spain in 1873 while being the leader of the Democratic Republican Federal Party. According to George Woodcock \"These translations were to have a profound and lasting effect on the development of Spanish anarchism after 1870, but before that time Proudhonian ideas, as interpreted by Pi, already provided much of the inspiration for the federalist movement which sprang up in the early 1860's.\" According to the ''Encyclopædia Britannica'' \"During the Spanish revolution of 1873, Pi y Margall attempted to establish a decentralised, or \"cantonalist,\" political system on Proudhonian lines.\"\n", + "\n", + "In 1864 the International Workingmen's Association (sometimes called the \"First International\") united diverse revolutionary currents including French followers of Proudhon, Blanquists, Philadelphes, English trade unionists, socialists and social democrats. Due to its links to active workers' movements, the International became a significant organisation. Karl Marx became a leading figure in the International and a member of its General Council. Proudhon's followers, the mutualists, opposed Marx's state socialism, advocating political abstentionism and small property holdings. Woodcock also reports that the American individualist anarchists Lysander Spooner and William B. Greene had been members of the First International. In 1868, following their unsuccessful participation in the League of Peace and Freedom (LPF), Russian revolutionary Mikhail Bakunin and his collectivist anarchist associates joined the First International (which had decided not to get involved with the LPF). They allied themselves with the federalist socialist sections of the International, who advocated the revolutionary overthrow of the state and the collectivisation of property.\n", + "\n", + "At first, the collectivists worked with the Marxists to push the First International in a more revolutionary socialist direction. Subsequently, the International became polarised into two camps, with Marx and Bakunin as their respective figureheads. Mikhail Bakunin characterised Marx's ideas as centralist and predicted that, if a Marxist party came to power, its leaders would simply take the place of the ruling class they had fought against. Anarchist historian George Woodcock reports that \"The annual Congress of the International had not taken place in 1870 owing to the outbreak of the Paris Commune, and in 1871 the General Council called only a special conference in London. One delegate was able to attend from Spain and none from Italy, while a technical excuse – that they had split away from the Fédération Romande – was used to avoid inviting Bakunin's Swiss supporters. Thus only a tiny minority of anarchists was present, and the General Council's resolutions passed almost unanimously. Most of them were clearly directed against Bakunin and his followers.\" In 1872, the conflict climaxed with a final split between the two groups at the Hague Congress, where Bakunin and James Guillaume were expelled from the International and its headquarters were transferred to New York. In response, the federalist sections formed their own International at the St. Imier Congress, adopting a revolutionary anarchist programme.\n", + "\n", + "The Paris Commune was a government that briefly ruled Paris from 18 March (more formally, from 28 March) to 28 May 1871. The Commune was the result of an uprising in Paris after France was defeated in the Franco-Prussian War. Anarchists participated actively in the establishment of the Paris Commune. They included Louise Michel, the Reclus brothers, and Eugene Varlin (the latter murdered in the repression afterwards). As for the reforms initiated by the Commune, such as the re-opening of workplaces as co-operatives, anarchists can see their ideas of associated labour beginning to be realised ... Moreover, the Commune's ideas on federation obviously reflected the influence of Proudhon on French radical ideas. Indeed, the Commune's vision of a communal France based on a federation of delegates bound by imperative mandates issued by their electors and subject to recall at any moment echoes Bakunin's and Proudhon's ideas (Proudhon, like Bakunin, had argued in favour of the \"implementation of the binding mandate\" in 1848 ... and for federation of communes). Thus both economically and politically the Paris Commune was heavily influenced by anarchist ideas. George Woodcock states:\n", + "\n", + "\n", + "===Organised labour===\n", + "\n", + "The anti-authoritarian sections of the First International were the precursors of the anarcho-syndicalists, seeking to \"replace the privilege and authority of the State\" with the \"free and spontaneous organization of labour.\" In 1886, the Federation of Organized Trades and Labor Unions (FOTLU) of the United States and Canada unanimously set 1 May 1886, as the date by which the eight-hour work day would become standard.\n", + "A sympathetic engraving by Walter Crane of the executed \"Anarchists of Chicago\" after the Haymarket affair. The Haymarket affair is generally considered the most significant event for the origin of international May Day observances.\n", + "In response, unions across the United States prepared a general strike in support of the event. On 3 May, in Chicago, a fight broke out when strikebreakers attempted to cross the picket line, and two workers died when police opened fire upon the crowd. The next day, 4 May, anarchists staged a rally at Chicago's Haymarket Square. A bomb was thrown by an unknown party near the conclusion of the rally, killing an officer. In the ensuing panic, police opened fire on the crowd and each other. Seven police officers and at least four workers were killed. Eight anarchists directly and indirectly related to the organisers of the rally were arrested and charged with the murder of the deceased officer. The men became international political celebrities among the labour movement. Four of the men were executed and a fifth committed suicide prior to his own execution. The incident became known as the Haymarket affair, and was a setback for the labour movement and the struggle for the eight-hour day. In 1890 a second attempt, this time international in scope, to organise for the eight-hour day was made. The event also had the secondary purpose of memorialising workers killed as a result of the Haymarket affair. Although it had initially been conceived as a once-off event, by the following year the celebration of International Workers' Day on May Day had become firmly established as an international worker's holiday.\n", + "\n", + "In 1907, the International Anarchist Congress of Amsterdam gathered delegates from 14 different countries, among which important figures of the anarchist movement, including Errico Malatesta, Pierre Monatte, Luigi Fabbri, Benoît Broutchoux, Emma Goldman, Rudolf Rocker, and Christiaan Cornelissen. Various themes were treated during the Congress, in particular concerning the organisation of the anarchist movement, popular education issues, the general strike or antimilitarism. A central debate concerned the relation between anarchism and syndicalism (or trade unionism). Malatesta and Monatte were in particular disagreement themselves on this issue, as the latter thought that syndicalism was revolutionary and would create the conditions of a social revolution, while Malatesta did not consider syndicalism by itself sufficient. He thought that the trade-union movement was reformist and even conservative, citing as essentially bourgeois and anti-worker the phenomenon of professional union officials. Malatesta warned that the syndicalists aims were in perpetuating syndicalism itself, whereas anarchists must always have anarchy as their end and consequently refrain from committing to any particular method of achieving it.\n", + "\n", + "The Spanish Workers Federation in 1881 was the first major anarcho-syndicalist movement; anarchist trade union federations were of special importance in Spain. The most successful was the Confederación Nacional del Trabajo (National Confederation of Labour: CNT), founded in 1910. Before the 1940s, the CNT was the major force in Spanish working class politics, attracting 1.58 million members at one point and playing a major role in the Spanish Civil War. The CNT was affiliated with the International Workers Association, a federation of anarcho-syndicalist trade unions founded in 1922, with delegates representing two million workers from 15 countries in Europe and Latin America. In Latin America in particular \"The anarchists quickly became active in organising craft and industrial workers throughout South and Central America, and until the early 1920s most of the trade unions in Mexico, Brazil, Peru, Chile, and Argentina were anarcho-syndicalist in general outlook; the prestige of the Spanish C.N.T. as a revolutionary organisation was undoubtedly to a great extent responsible for this situation. The largest and most militant of these organisations was the Federación Obrera Regional Argentina ... it grew quickly to a membership of nearly a quarter of a million, which dwarfed the rival socialdemocratic unions.\"\n", + "\n", + "\n", + "===Propaganda of the deed and illegalism===\n", + "\n", + "Italian-American anarchist Luigi Galleani. His followers, known as Galleanists, carried out a series of bombings and assassination attempts from 1914 to 1932 in what they saw as attacks on 'tyrants' and 'enemies of the people'\n", + "Some anarchists, such as Johann Most, advocated publicising violent acts of retaliation against counter-revolutionaries because \"we preach not only action in and for itself, but also action as propaganda.\" Scholars such as Beverly Gage contend that this was not advocacy of mass murder, but targeted killings of members of the ruling class at times when such actions might garner sympathy from the population, such as during periods of heightened government repression or labor conflicts where workers were killed. However, Most himself once boasted that \"the existing system will be quickest and most radically overthrown by the annihilation of its exponents. Therefore, massacres of the enemies of the people must be set in motion.\" Most is best known for a pamphlet published in 1885: ''The Science of Revolutionary Warfare'', a how-to manual on the subject of making explosives, based on knowledge he acquired while working at an explosives plant in New Jersey.\n", + "\n", + "By the 1880s, people inside and outside the anarchist movement began to use the slogan, \"propaganda of the deed\" to refer to individual bombings, regicides, and tyrannicides. From 1905 onwards, the Russian counterparts of these anti-syndicalist anarchist-communists become partisans of economic terrorism and illegal 'expropriations'.\" Illegalism as a practice emerged and within it \"The acts of the anarchist bombers and assassins (\"propaganda by the deed\") and the anarchist burglars (\"individual reappropriation\") expressed their desperation and their personal, violent rejection of an intolerable society. Moreover, they were clearly meant to be ''exemplary'' invitations to revolt.\". France's Bonnot Gang was the most famous group to embrace illegalism.\n", + "\n", + "However, as soon as 1887, important figures in the anarchist movement distanced themselves from such individual acts. Peter Kropotkin thus wrote that year in ''Le Révolté'' that \"a structure based on centuries of history cannot be destroyed with a few kilos of dynamite\". A variety of anarchists advocated the abandonment of these sorts of tactics in favour of collective revolutionary action, for example through the trade union movement. The anarcho-syndicalist, Fernand Pelloutier, argued in 1895 for renewed anarchist involvement in the labour movement on the basis that anarchism could do very well without \"the individual dynamiter.\"\n", + "\n", + "State repression (including the infamous 1894 French ''lois scélérates'') of the anarchist and labour movements following the few successful bombings and assassinations may have contributed to the abandonment of these kinds of tactics, although reciprocally state repression, in the first place, may have played a role in these isolated acts. The dismemberment of the French socialist movement, into many groups and, following the suppression of the 1871 Paris Commune, the execution and exile of many ''communards'' to penal colonies, favoured individualist political expression and acts.\n", + "\n", + "Numerous heads of state were assassinated between 1881 and 1914 by members of the anarchist movement, including Tsar Alexander II of Russia, President Sadi Carnot of France, Empress Elisabeth of Austria, King Umberto I of Italy, President William McKinley of the United States, King Carlos I of Portugal and King George I of Greece. McKinley's assassin Leon Czolgosz claimed to have been influenced by anarchist and feminist Emma Goldman.\n", + "\n", + "===Russian Revolution and other uprisings of the 1910s===\n", + "\n", + "Nestor Makhno with members of the anarchist Revolutionary Insurrectionary Army of Ukraine\n", + "Anarchists participated alongside the Bolsheviks in both February and October revolutions, and were initially enthusiastic about the Bolshevik revolution. However, following a political falling out with the Bolsheviks by the anarchists and other left-wing opposition, the conflict culminated in the 1921 Kronstadt rebellion, which the new government repressed. Anarchists in central Russia were either imprisoned, driven underground or joined the victorious Bolsheviks; the anarchists from Petrograd and Moscow fled to Ukraine. There, in the Free Territory, they fought in the civil war against the Whites (a grouping of monarchists and other opponents of the October Revolution) and then the Bolsheviks as part of the Revolutionary Insurrectionary Army of Ukraine led by Nestor Makhno, who established an anarchist society in the region for a number of months.\n", + "\n", + "Expelled American anarchists Emma Goldman and Alexander Berkman were among those agitating in response to Bolshevik policy and the suppression of the Kronstadt uprising, before they left Russia. Both wrote accounts of their experiences in Russia, criticising the amount of control the Bolsheviks exercised. For them, Bakunin's predictions about the consequences of Marxist rule that the rulers of the new \"socialist\" Marxist state would become a new elite had proved all too true.\n", + "\n", + "The victory of the Bolsheviks in the October Revolution and the resulting Russian Civil War did serious damage to anarchist movements internationally. Many workers and activists saw Bolshevik success as setting an example; Communist parties grew at the expense of anarchism and other socialist movements. In France and the United States, for example, members of the major syndicalist movements of the CGT and IWW left the organisations and joined the Communist International.\n", + "\n", + "The revolutionary wave of 1917–23 saw the active participation of anarchists in varying degrees of protagonism. In the German uprising known as the German Revolution of 1918–1919 which established the Bavarian Soviet Republic the anarchists Gustav Landauer, Silvio Gesell and Erich Mühsam had important leadership positions within the revolutionary councilist structures. In the Italian events known as the ''biennio rosso'' the anarcho-syndicalist trade union Unione Sindacale Italiana \"grew to 800,000 members and the influence of the Italian Anarchist Union (20,000 members plus ''Umanita Nova'', its daily paper) grew accordingly ... Anarchists were the first to suggest occupying workplaces. In the Mexican Revolution the Mexican Liberal Party was established and during the early 1910s it led a series of military offensives leading to the conquest and occupation of certain towns and districts in Baja California with the leadership of anarcho-communist Ricardo Flores Magón.\n", + "\n", + "In Paris, the Dielo Truda group of Russian anarchist exiles, which included Nestor Makhno, concluded that anarchists needed to develop new forms of organisation in response to the structures of Bolshevism. Their 1926 manifesto, called the ''Organisational Platform of the General Union of Anarchists (Draft)'', was supported. Platformist groups active today include the Workers Solidarity Movement in Ireland and the North Eastern Federation of Anarchist Communists of North America. Synthesis anarchism emerged as an organisational alternative to platformism that tries to join anarchists of different tendencies under the principles of anarchism without adjectives. In the 1920s this form found as its main proponents Volin and Sebastien Faure. It is the main principle behind the anarchist federations grouped around the contemporary global International of Anarchist Federations.\n", + "\n", + "===Conflicts with European fascist regimes===\n", + "\n", + "\n", + "\n", + "In the 1920s and 1930s, the rise of fascism in Europe transformed anarchism's conflict with the state. Italy saw the first struggles between anarchists and fascists. Italian anarchists played a key role in the anti-fascist organisation ''Arditi del Popolo'', which was strongest in areas with anarchist traditions, and achieved some success in their activism, such as repelling Blackshirts in the anarchist stronghold of Parma in August 1922. The veteran Italian anarchist, Luigi Fabbri, was one of the first critical theorists of fascism, describing it as \"the preventive counter-revolution.\" In France, where the far right leagues came close to insurrection in the February 1934 riots, anarchists divided over a united front policy.\n", + "\n", + "Anarchists in France and Italy were active in the Resistance during World War II. In Germany the anarchist Erich Mühsam was arrested on charges unknown in the early morning hours of 28 February 1933, within a few hours after the Reichstag fire in Berlin. Joseph Goebbels, the Nazi propaganda minister, labelled him as one of \"those Jewish subversives.\" Over the next seventeen months, he would be imprisoned in the concentration camps at Sonnenburg, Brandenburg and finally, Oranienburg. On 2 February 1934, Mühsam was transferred to the concentration camp at Oranienburg when finally on the night of 9 July 1934, Mühsam was tortured and murdered by the guards, his battered corpse found hanging in a latrine the next morning.\n", + "\n", + "===Spanish Revolution===\n", + "\n", + "In Spain, the national anarcho-syndicalist trade union Confederación Nacional del Trabajo initially refused to join a popular front electoral alliance, and abstention by CNT supporters led to a right wing election victory. But in 1936, the CNT changed its policy and anarchist votes helped bring the popular front back to power. Months later, conservative members of the military, with the support of minority extreme-right parties, responded with an attempted coup, causing the Spanish Civil War (1936–1939). In response to the army rebellion, an anarchist-inspired movement of peasants and workers, supported by armed militias, took control of Barcelona and of large areas of rural Spain where they collectivised the land. But even before the fascist victory in 1939, the anarchists were losing ground in a bitter struggle with the Stalinists, who controlled much of the distribution of military aid to the Republican cause from the Soviet Union. According to Noam Chomsky, \"the communists were mainly responsible for the destruction of the Spanish anarchists. Not just in Catalonia—the communist armies mainly destroyed the collectives elsewhere. The communists basically acted as the police force of the security system of the Republic and were very much opposed to the anarchists, partially because Stalin still hoped at that time to have some kind of pact with Western countries against Hitler. That, of course, failed and Stalin withdrew the support to the Republic. They even withdrew the Spanish gold reserves.\" The events known as the Spanish Revolution was a workers' social revolution that began during the outbreak of the Spanish Civil War in 1936 and resulted in the widespread implementation of anarchist and more broadly libertarian socialist organisational principles throughout various portions of the country for two to three years, primarily Catalonia, Aragon, Andalusia, and parts of the Levante. Much of Spain's economy was put under worker control; in anarchist strongholds like Catalonia, the figure was as high as 75%, but lower in areas with heavy Communist Party of Spain influence, as the Soviet-allied party actively resisted attempts at collectivisation enactment. Factories were run through worker committees, agrarian areas became collectivised and run as libertarian communes. Anarchist historian Sam Dolgoff estimated that about eight million people participated directly or at least indirectly in the Spanish Revolution, which he claimed \"came closer to realising the ideal of the free stateless society on a vast scale than any other revolution in history.\" Spanish Communist Party-led troops suppressed the collectives and persecuted both dissident Marxists and anarchists. The prominent Italian anarchist Camillo Berneri, who volunteered to fight against Franco was killed instead in Spain by gunmen associated with the Spanish Communist Party. The city of Madrid was turned over to the francoist forces by the last non-francoist mayor of the city, the anarchist Melchor Rodríguez García.\n", + "\n", + "===Post-war years===\n", + "\n", + "\n", + "Anarchism sought to reorganise itself after the war and in this context the organisational debate between synthesis anarchism and platformism took importance once again especially in the anarchist movements of Italy and France. The Mexican Anarchist Federation was established in 1945 after the Anarchist Federation of the Centre united with the Anarchist Federation of the Federal District. In the early 1940s, the Antifascist International Solidarity and the Federation of Anarchist Groups of Cuba merged into the large national organisation Asociación Libertaria de Cuba (Cuban Libertarian Association). From 1944 to 1947, the Bulgarian Anarchist Communist Federation reemerged as part of a factory and workplace committee movement, but was repressed by the new Communist regime. In 1945 in France the Fédération Anarchiste and the anarchosyndicalist trade union Confédération nationale du travail was established in the next year while the also synthesist Federazione Anarchica Italiana was founded in Italy. Korean anarchists formed the League of Free Social Constructors in September 1945 and in 1946 the Japanese Anarchist Federation was founded. An International Anarchist Congress with delegates from across Europe was held in Paris in May 1948. After World War II, an appeal in the ''Fraye Arbeter Shtime'' detailing the plight of German anarchists and called for Americans to support them. By February 1946, the sending of aid parcels to anarchists in Germany was a large-scale operation. The Federation of Libertarian Socialists was founded in Germany in 1947 and Rudolf Rocker wrote for its organ, ''Die Freie Gesellschaft'', which survived until 1953. In 1956 the Uruguayan Anarchist Federation was founded. In 1955 the Anarcho-Communist Federation of Argentina renamed itself as the Argentine Libertarian Federation. The Syndicalist Workers' Federation was a syndicalist group in active in post-war Britain, and one of Solidarity Federation's earliest predecessors. It was formed in 1950 by members of the dissolved Anarchist Federation of Britain. Unlike the AFB, which was influenced by anarcho-syndicalist ideas but ultimately not syndicalist itself, the SWF decided to pursue a more definitely syndicalist, worker-centred strategy from the outset.\n", + "\n", + "Anarchism continued to influence important literary and intellectual personalities of the time, such as Albert Camus, Herbert Read, Paul Goodman, Dwight Macdonald, Allen Ginsberg, George Woodcock, Leopold Kohr, Julian Beck, John Cage and the French Surrealist group led by André Breton, which now openly embraced anarchism and collaborated in the Fédération Anarchiste.\n", + "\n", + "Anarcho-pacifism became influential in the Anti-nuclear movement and anti war movements of the time as can be seen in the activism and writings of the English anarchist member of Campaign for Nuclear Disarmament Alex Comfort or the similar activism of the American catholic anarcho-pacifists Ammon Hennacy and Dorothy Day. Anarcho-pacifism became a \"basis for a critique of militarism on both sides of the Cold War.\" The resurgence of anarchist ideas during this period is well documented in Robert Graham's Anarchism: A Documentary History of Libertarian Ideas, ''Volume Two: The Emergence of the New Anarchism (1939–1977)''.\n", + "\n", + "===Contemporary anarchism===\n", + "\n", + "squat near Parc Güell, overlooking Barcelona. Squatting was a prominent part of the emergence of renewed anarchist movement from the counterculture of the 1960s and 1970s. On the roof: \"Occupy and Resist\" A surge of popular interest in anarchism occurred in western nations during the 1960s and 1970s. Anarchism was influential in the Counterculture of the 1960s and anarchists actively participated in the late sixties students and workers revolts. In 1968 in Carrara, Italy the International of Anarchist Federations was founded during an international anarchist conference held there in 1968 by the three existing European federations of France (the Fédération Anarchiste), the Federazione Anarchica Italiana of Italy and the Iberian Anarchist Federation as well as the Bulgarian federation in French exile.\n", + "\n", + "In the United Kingdom in the 1970s this was associated with the punk rock movement, as exemplified by bands such as Crass and the Sex Pistols. The housing and employment crisis in most of Western Europe led to the formation of communes and squatter movements like that of Barcelona, Spain. In Denmark, squatters occupied a disused military base and declared the Freetown Christiania, an autonomous haven in central Copenhagen. Since the revival of anarchism in the mid-20th century, a number of new movements and schools of thought emerged. Although feminist tendencies have always been a part of the anarchist movement in the form of anarcha-feminism, they returned with vigour during the second wave of feminism in the 1960s. Anarchist anthropologist David Graeber and anarchist historian Andrej Grubacic have posited a rupture between generations of anarchism, with those \"who often still have not shaken the sectarian habits\" of the 19th century contrasted with the younger activists who are \"much more informed, among other elements, by indigenous, feminist, ecological and cultural-critical ideas\", and who by the turn of the 21st century formed \"by far the majority\" of anarchists.\n", + "\n", + "Around the turn of the 21st century, anarchism grew in popularity and influence as part of the anti-war, anti-capitalist, and anti-globalisation movements. Anarchists became known for their involvement in protests against the meetings of the World Trade Organization (WTO), Group of Eight, and the World Economic Forum. Some anarchist factions at these protests engaged in rioting, property destruction, and violent confrontations with police. These actions were precipitated by ad hoc, leaderless, anonymous cadres known as ''black blocs''; other organisational tactics pioneered in this time include security culture, affinity groups and the use of decentralised technologies such as the internet. A significant event of this period was the confrontations at WTO conference in Seattle in 1999. According to anarchist scholar Simon Critchley, \"contemporary anarchism can be seen as a powerful critique of the pseudo-libertarianism of contemporary neo-liberalism ... One might say that contemporary anarchism is about responsibility, whether sexual, ecological or socio-economic; it flows from an experience of conscience about the manifold ways in which the West ravages the rest; it is an ethical outrage at the yawning inequality, impoverishment and disenfranchisment that is so palpable locally and globally.\"\n", + "\n", + "International anarchist federations in existence include the International of Anarchist Federations, the International Workers' Association, and International Libertarian Solidarity.\n", + "The largest organised anarchist movement today is in Spain, in the form of the Confederación General del Trabajo (CGT) and the CNT. CGT membership was estimated at around 100,000 for 2003.\n", + "\n", + "Section title: Anarchist schools of thought\n", + "Section text: \n", + "Portrait of philosopher Pierre-Joseph Proudhon (1809–1865) by Gustave Courbet. Proudhon was the primary proponent of anarchist mutualism, and influenced many later individualist anarchist and social anarchist thinkers.\n", + "Anarchist schools of thought had been generally grouped in two main historical traditions, individualist anarchism and social anarchism, which have some different origins, values and evolution. The individualist wing of anarchism emphasises negative liberty, i.e. opposition to state or social control over the individual, while those in the social wing emphasise positive liberty to achieve one's potential and argue that humans have needs that society ought to fulfil, \"recognising equality of entitlement\". In a chronological and theoretical sense, there are classical – those created throughout the 19th century – and post-classical anarchist schools – those created since the mid-20th century and after.\n", + "\n", + "Beyond the specific factions of anarchist thought is philosophical anarchism, which embodies the theoretical stance that the state lacks moral legitimacy without accepting the imperative of revolution to eliminate it. A component especially of individualist anarchism philosophical anarchism may accept the existence of a minimal state as unfortunate, and usually temporary, \"necessary evil\" but argue that citizens do not have a moral obligation to obey the state when its laws conflict with individual autonomy. One reaction against sectarianism within the anarchist milieu was \"anarchism without adjectives\", a call for toleration first adopted by Fernando Tarrida del Mármol in 1889 in response to the \"bitter debates\" of anarchist theory at the time. In abandoning the hyphenated anarchisms (i.e. collectivist-, communist-, mutualist– and individualist-anarchism), it sought to emphasise the anti-authoritarian beliefs common to all anarchist schools of thought.\n", + "\n", + "===Classical anarchist schools of thought===\n", + "\n", + "====Mutualism====\n", + "\n", + "Mutualism began in 18th-century English and French labour movements before taking an anarchist form associated with Pierre-Joseph Proudhon in France and others in the United States. Proudhon proposed spontaneous order, whereby organisation emerges without central authority, a \"positive anarchy\" where order arises when everybody does \"what he wishes and only what he wishes\" and where \"business transactions alone produce the social order.\" Proudhon distinguished between ideal political possibilities and practical governance. For this reason, much in contrast to some of his theoretical statements concerning ultimate spontaneous self-governance, Proudhon was heavily involved in French parliamentary politics and allied himself not with anarchist but socialist factions of workers' movements and, in addition to advocating state-protected charters for worker-owned cooperatives, promoted certain nationalisation schemes during his life of public service.\n", + "\n", + "Mutualist anarchism is concerned with reciprocity, free association, voluntary contract, federation, and credit and currency reform. According to the American mutualist William Batchelder Greene, each worker in the mutualist system would receive \"just and exact pay for his work; services equivalent in cost being exchangeable for services equivalent in cost, without profit or discount.\" Mutualism has been retrospectively characterised as ideologically situated between individualist and collectivist forms of anarchism.''Blackwell Encyclopaedia of Political Thought'', Blackwell Publishing 1991 , p. 11. Proudhon first characterised his goal as a \"third form of society, the synthesis of communism and property.\"\n", + "\n", + "====Individualist anarchism====\n", + "\n", + "Individualist anarchism refers to several traditions of thought within the anarchist movement that emphasise the individual and their will over any kinds of external determinants such as groups, society, traditions, and ideological systems. Individualist anarchism is not a single philosophy but refers to a group of individualistic philosophies that sometimes are in conflict.\n", + "\n", + "In 1793, William Godwin, who has often been cited as the first anarchist, wrote ''Political Justice'', which some consider the first expression of anarchism. Godwin, a philosophical anarchist, from a rationalist and utilitarian basis opposed revolutionary action and saw a minimal state as a present \"necessary evil\" that would become increasingly irrelevant and powerless by the gradual spread of knowledge. Godwin advocated individualism, proposing that all cooperation in labour be eliminated on the premise that this would be most conducive with the general good.\n", + "19th-century philosopher Max Stirner, usually considered a prominent early individualist anarchist (sketch by Friedrich Engels).\n", + "An influential form of individualist anarchism, called \"egoism,\" or egoist anarchism, was expounded by one of the earliest and best-known proponents of individualist anarchism, the German Max Stirner. Stirner's ''The Ego and Its Own'', published in 1844, is a founding text of the philosophy. According to Stirner, the only limitation on the rights of individuals is their power to obtain what they desire, without regard for God, state, or morality. To Stirner, rights were ''spooks'' in the mind, and he held that society does not exist but \"the individuals are its reality\". Stirner advocated self-assertion and foresaw unions of egoists, non-systematic associations continually renewed by all parties' support through an act of will, which Stirner proposed as a form of organisation in place of the state. Egoist anarchists argue that egoism will foster genuine and spontaneous union between individuals. \"Egoism\" has inspired many interpretations of Stirner's philosophy. It was re-discovered and promoted by German philosophical anarchist and homosexual activist John Henry Mackay.\n", + "\n", + "Josiah Warren is widely regarded as the first American anarchist, and the four-page weekly paper he edited during 1833, ''The Peaceful Revolutionist'', was the first anarchist periodical published. For American anarchist historian Eunice Minette Schuster \"It is apparent ... that Proudhonian Anarchism was to be found in the United States at least as early as 1848 and that it was not conscious of its affinity to the Individualist Anarchism of Josiah Warren and Stephen Pearl Andrews ... William B. Greene presented this Proudhonian Mutualism in its purest and most systematic form.\". Henry David Thoreau (1817–1862) was an important early influence in individualist anarchist thought in the United States and Europe. Thoreau was an American author, poet, naturalist, tax resister, development critic, surveyor, historian, philosopher, and leading transcendentalist. He is best known for his books ''Walden'', a reflection upon simple living in natural surroundings, and his essay, ''Civil Disobedience'', an argument for individual resistance to civil government in moral opposition to an unjust state. Later Benjamin Tucker fused Stirner's egoism with the economics of Warren and Proudhon in his eclectic influential publication ''Liberty''.\n", + "\n", + "From these early influences individualist anarchism in different countries attracted a small but diverse following of bohemian artists and intellectuals, free love and birth control advocates (see Anarchism and issues related to love and sex), individualist naturists nudists (see anarcho-naturism), freethought and anti-clerical activists as well as young anarchist outlaws in what became known as illegalism and individual reclamation (see European individualist anarchism and individualist anarchism in France). These authors and activists included Oscar Wilde, Emile Armand, Han Ryner, Henri Zisly, Renzo Novatore, Miguel Gimenez Igualada, Adolf Brand and Lev Chernyi among others.\n", + "\n", + "====Social anarchism====\n", + "\n", + "Social anarchism calls for a system with common ownership of means of production and democratic control of all organisations, without any government authority or coercion. It is the largest school of thought in anarchism. Social anarchism rejects private property, seeing it as a source of social inequality (while retaining respect for personal property), and emphasises cooperation and mutual aid.\n", + "\n", + "=====Collectivist anarchism=====\n", + "\n", + "Collectivist anarchism, also referred to as \"revolutionary socialism\" or a form of such, is a revolutionary form of anarchism, commonly associated with Mikhail Bakunin and Johann Most. Collectivist anarchists oppose all private ownership of the means of production, instead advocating that ownership be collectivised. This was to be achieved through violent revolution, first starting with a small cohesive group through acts of violence, or ''propaganda by the deed'', which would inspire the workers as a whole to revolt and forcibly collectivise the means of production.\n", + "\n", + "However, collectivisation was not to be extended to the distribution of income, as workers would be paid according to time worked, rather than receiving goods being distributed \"according to need\" as in anarcho-communism. This position was criticised by anarchist communists as effectively \"upholding the wages system\". Collectivist anarchism arose contemporaneously with Marxism but opposed the Marxist dictatorship of the proletariat, despite the stated Marxist goal of a collectivist stateless society. Anarchist, communist and collectivist ideas are not mutually exclusive; although the collectivist anarchists advocated compensation for labour, some held out the possibility of a post-revolutionary transition to a communist system of distribution according to need.\n", + "\n", + "=====Anarcho-communism=====\n", + "\n", + "\n", + "Anarchist communism (also known as anarcho-communism, libertarian communism and occasionally as free communism) is a theory of anarchism that advocates abolition of the state, markets, money, private property (while retaining respect for personal property), and capitalism in favour of common ownership of the means of production, direct democracy and a horizontal network of voluntary associations and workers' councils with production and consumption based on the guiding principle: \"from each according to his ability, to each according to his need\".\n", + "\n", + "Russian theorist Peter Kropotkin (1842–1921), who was influential in the development of anarchist communism\n", + "\n", + "Some forms of anarchist communism such as insurrectionary anarchism are strongly influenced by egoism and radical individualism, believing anarcho-communism is the best social system for the realisation of individual freedom. Most anarcho-communists view anarcho-communism as a way of reconciling the opposition between the individual and society.\n", + "\n", + "Anarcho-communism developed out of radical socialist currents after the French revolution but was first formulated as such in the Italian section of the First International. The theoretical work of Peter Kropotkin took importance later as it expanded and developed pro-organisationalist and insurrectionary anti-organisationalist sections. To date, the best known examples of an anarchist communist society (i.e., established around the ideas as they exist today and achieving worldwide attention and knowledge in the historical canon), are the anarchist territories during the Spanish Revolution and the Free Territory during the Russian Revolution. Through the efforts and influence of the Spanish Anarchists during the Spanish Revolution within the Spanish Civil War, starting in 1936 anarchist communism existed in most of Aragon, parts of the Levante and Andalusia, as well as in the stronghold of Anarchist Catalonia before being crushed by the combined forces of the regime that won the war, Hitler, Mussolini, Spanish Communist Party repression (backed by the USSR) as well as economic and armaments blockades from the capitalist countries and the Spanish Republic itself. During the Russian Revolution, anarchists such as Nestor Makhno worked to create and defend – through the Revolutionary Insurrectionary Army of Ukraine – anarchist communism in the Free Territory of the Ukraine from 1919 before being conquered by the Bolsheviks in 1921.\n", + "\n", + "=====Anarcho-syndicalism=====\n", + "\n", + "May day demonstration of Spanish anarcho-syndicalist trade union CNT in Bilbao, Basque Country in 2010Anarcho-syndicalism is a branch of anarchism that focuses on the labour movement. Anarcho-syndicalists view labour unions as a potential force for revolutionary social change, replacing capitalism and the state with a new society democratically self-managed by workers. The basic principles of anarcho-syndicalism are: Workers' solidarity, Direct action and Workers' self-management\n", + "Anarcho-syndicalists believe that only direct action – that is, action concentrated on directly attaining a goal, as opposed to indirect action, such as electing a representative to a government position – will allow workers to liberate themselves. Moreover, anarcho-syndicalists believe that workers' organisations (the organisations that struggle against the wage system, which, in anarcho-syndicalist theory, will eventually form the basis of a new society) should be self-managing. They should not have bosses or \"business agents\"; rather, the workers should be able to make all the decisions that affect them themselves. Rudolf Rocker was one of the most popular voices in the anarcho-syndicalist movement. He outlined a view of the origins of the movement, what it sought, and why it was important to the future of labour in his 1938 pamphlet ''Anarcho-Syndicalism''. The International Workers Association is an international anarcho-syndicalist federation of various labour unions from different countries. The Spanish Confederación Nacional del Trabajo played and still plays a major role in the Spanish labour movement. It was also an important force in the Spanish Civil War.\n", + "\n", + "===Post-classical schools of thought===\n", + "\n", + "Lawrence Jarach (left) and John Zerzan (right), two prominent contemporary anarchist authors. Zerzan is known as prominent voice within anarcho-primitivism, while Jarach is a noted advocate of post-left anarchy.\n", + "Anarchism continues to generate many philosophies and movements, at times eclectic, drawing upon various sources, and syncretic, combining disparate concepts to create new philosophical approaches.\n", + "\n", + "Green anarchism (or eco-anarchism) is a school of thought within anarchism that emphasises environmental issues, with an important precedent in anarcho-naturism, and whose main contemporary currents are anarcho-primitivism and social ecology. Writing from a green anarchist perspective, John Zerzan attributes the ills of today's social degradation to technology and the birth of agricultural civilization. While Layla AbdelRahim argues that \"the shift in human consciousness was also a shift in human subsistence strategies, whereby some human animals reinvented their narrative to center murder and predation and thereby institutionalize violence\". Thus, according to her, civilization was the result of the human development of technologies and grammar for predatory economics. Language and literacy, she claims, are some of these technologies.\n", + "\n", + "Anarcha-feminism (also called anarchist feminism and anarcho-feminism) combines anarchism with feminism. It generally views patriarchy as a manifestation of involuntary coercive hierarchy that should be replaced by decentralised free association. Anarcha-feminists believe that the struggle against patriarchy is an essential part of class struggle, and the anarchist struggle against the state. In essence, the philosophy sees anarchist struggle as a necessary component of feminist struggle and vice versa. L. Susan Brown claims that \"as anarchism is a political philosophy that opposes all relationships of power, it is inherently feminist\". Anarcha-feminism began with the late 19th-century writings of early feminist anarchists such as Emma Goldman and Voltairine de Cleyre.\n", + "\n", + "Anarcho-pacifism is a tendency that rejects violence in the struggle for social change (see non-violence). It developed \"mostly in the Netherlands, Britain, and the United States, before and during the Second World War\". Christian anarchism is a movement in political theology that combines anarchism and Christianity. Its main proponents included Leo Tolstoy, Dorothy Day, Ammon Hennacy, and Jacques Ellul.\n", + "\n", + "Platformism is a tendency within the wider anarchist movement based on the organisational theories in the tradition of Dielo Truda's ''Organisational Platform of the General Union of Anarchists (Draft)''. The document was based on the experiences of Russian anarchists in the 1917 October Revolution, which led eventually to the victory of the Bolsheviks over the anarchists and other groups. The ''Platform'' attempted to address and explain the anarchist movement's failures during the Russian Revolution.\n", + "\n", + "Synthesis anarchism is a form of anarchism that tries to join anarchists of different tendencies under the principles of anarchism without adjectives. In the 1920s, this form found as its main proponents the anarcho-communists Voline and Sébastien Faure. It is the main principle behind the anarchist federations grouped around the contemporary global International of Anarchist Federations.\n", + "\n", + "Post-left anarchy is a recent current in anarchist thought that promotes a critique of anarchism's relationship to traditional Left-wing politics. Some post-leftists seek to escape the confines of ideology in general also presenting a critique of organisations and morality. Influenced by the work of Max Stirner and by the Marxist Situationist International, post-left anarchy is marked by a focus on social insurrection and a rejection of leftist social organisation.\n", + "\n", + "Insurrectionary anarchism is a revolutionary theory, practice, and tendency within the anarchist movement which emphasises insurrection within anarchist practice. It is critical of formal organisations such as labour unions and federations that are based on a political programme and periodic congresses. Instead, insurrectionary anarchists advocate informal organisation and small affinity group based organisation. Insurrectionary anarchists put value in attack, permanent class conflict, and a refusal to negotiate or compromise with class enemies.\n", + "\n", + "Post-anarchism is a theoretical move towards a synthesis of classical anarchist theory and poststructuralist thought, drawing from diverse ideas including post-modernism, autonomist marxism, post-left anarchy, Situationist International, and postcolonialism.\n", + "\n", + "Left-wing market anarchism strongly affirm the classical liberal ideas of self-ownership and free markets, while maintaining that, taken to their logical conclusions, these ideas support strongly anti-corporatist, anti-hierarchical, pro-labour positions and anti-capitalism in economics and anti-imperialism in foreign policy.\n", + "\n", + "Anarcho-capitalism advocates the elimination of the state in favour of self-ownership in a free market. Anarcho-capitalism developed from radical anti-state libertarianism and individualist anarchism, drawing from Austrian School economics, study of law and economics, and public choice theory. There is a strong current within anarchism which believes that anarcho-capitalism cannot be considered a part of the anarchist movement, due to the fact that anarchism has historically been an anti-capitalist movement and for definitional reasons which see anarchism as incompatible with capitalist forms.\n", + "\n", + "\n", + "Section title: Internal issues and debates\n", + "Section text: \n", + "consistent with anarchist values is a controversial subject among anarchists.\n", + "\n", + "Anarchism is a philosophy that embodies many diverse attitudes, tendencies and schools of thought; as such, disagreement over questions of values, ideology and tactics is common. The compatibility of capitalism, nationalism, and religion with anarchism is widely disputed. Similarly, anarchism enjoys complex relationships with ideologies such as Marxism, communism, collectivism, syndicalism/trade unionism, and capitalism. Anarchists may be motivated by humanism, divine authority, enlightened self-interest, veganism or any number of alternative ethical doctrines.\n", + "\n", + "Phenomena such as civilisation, technology (e.g. within anarcho-primitivism), and the democratic process may be sharply criticised within some anarchist tendencies and simultaneously lauded in others.\n", + "\n", + "On a tactical level, while propaganda of the deed was a tactic used by anarchists in the 19th century (e.g. the Nihilist movement), some contemporary anarchists espouse alternative direct action methods such as nonviolence, counter-economics and anti-state cryptography to bring about an anarchist society. About the scope of an anarchist society, some anarchists advocate a global one, while others do so by local ones. The diversity in anarchism has led to widely different use of identical terms among different anarchist traditions, which has led to many definitional concerns in anarchist theory.\n", + "\n", + "\n", + "Section title: Topics of interest\n", + "Section text: Intersecting and overlapping between various schools of thought, certain topics of interest and internal disputes have proven perennial within anarchist theory.\n", + "\n", + "===Free love===\n", + "\n", + "French individualist anarchist Emile Armand (1872–1962), who propounded the virtues of free love in the Parisian anarchist milieu of the early 20th century\n", + "An important current within anarchism is free love. Free love advocates sometimes traced their roots back to Josiah Warren and to experimental communities, viewed sexual freedom as a clear, direct expression of an individual's sovereignty. Free love particularly stressed women's rights since most sexual laws discriminated against women: for example, marriage laws and anti-birth control measures. The most important American free love journal was ''Lucifer the Lightbearer'' (1883–1907) edited by Moses Harman and Lois Waisbrooker, but also there existed Ezra Heywood and Angela Heywood's ''The Word'' (1872–1890, 1892–1893). ''Free Society'' (1895–1897 as ''The Firebrand''; 1897–1904 as ''Free Society'') was a major anarchist newspaper in the United States at the end of the 19th and beginning of the 20th centuries. The publication advocated free love and women's rights, and critiqued \"Comstockery\" – censorship of sexual information. Also M. E. Lazarus was an important American individualist anarchist who promoted free love.\n", + "\n", + "In New York City's Greenwich Village, bohemian feminists and socialists advocated self-realisation and pleasure for women (and also men) in the here and now. They encouraged playing with sexual roles and sexuality, and the openly bisexual radical Edna St. Vincent Millay and the lesbian anarchist Margaret Anderson were prominent among them. Discussion groups organised by the Villagers were frequented by Emma Goldman, among others. Magnus Hirschfeld noted in 1923 that Goldman \"has campaigned boldly and steadfastly for individual rights, and especially for those deprived of their rights. Thus it came about that she was the first and only woman, indeed the first and only American, to take up the defence of homosexual love before the general public.\" In fact, before Goldman, heterosexual anarchist Robert Reitzel (1849–1898) spoke positively of homosexuality from the beginning of the 1890s in his Detroit-based German language journal ''Der arme Teufel'' (English: The Poor Devil). In Argentina anarcha-feminist Virginia Bolten published the newspaper called '''' (English: The Woman's Voice), which was published nine times in Rosario between 8 January 1896 and 1 January 1897, and was revived, briefly, in 1901.\n", + "\n", + "In Europe the main propagandist of free love within individualist anarchism was Emile Armand. He proposed the concept of ''la camaraderie amoureuse'' to speak of free love as the possibility of voluntary sexual encounter between consenting adults. He was also a consistent proponent of polyamory. In Germany the stirnerists Adolf Brand and John Henry Mackay were pioneering campaigners for the acceptance of male bisexuality and homosexuality. Mujeres Libres was an anarchist women's organisation in Spain that aimed to empower working class women. It was founded in 1936 by Lucía Sánchez Saornil, Mercedes Comaposada and Amparo Poch y Gascón and had approximately 30,000 members. The organisation was based on the idea of a \"double struggle\" for women's liberation and social revolution and argued that the two objectives were equally important and should be pursued in parallel. In order to gain mutual support, they created networks of women anarchists. Lucía Sánchez Saornil was a main founder of the Spanish anarcha-feminist federation Mujeres Libres who was open about her lesbianism. She was published in a variety of literary journals where working under a male pen name, she was able to explore lesbian themes at a time when homosexuality was criminalised and subject to censorship and punishment.\n", + "\n", + "More recently, the British anarcho-pacifist Alex Comfort gained notoriety during the sexual revolution for writing the bestseller sex manual ''The Joy of Sex''. The issue of free love has a dedicated treatment in the work of French anarcho-hedonist philosopher Michel Onfray in such works as ''Théorie du corps amoureux : pour une érotique solaire'' (2000) and ''L'invention du plaisir : fragments cyréaniques'' (2002).\n", + "\n", + "===Libertarian education and freethought===\n", + "\n", + "Francesc Ferrer i Guàrdia, Catalan anarchist pedagogue and free-thinker For English anarchist William Godwin education was \"the main means by which change would be achieved.\" Godwin saw that the main goal of education should be the promotion of happiness. For Godwin education had to have \"A respect for the child's autonomy which precluded any form of coercion,\" \"A pedagogy that respected this and sought to build on the child's own motivation and initiatives,\" and \"A concern about the child's capacity to resist an ideology transmitted through the school.\" In his ''Political Justice'' he criticises state sponsored schooling \"on account of its obvious alliance with national government\". Early American anarchist Josiah Warren advanced alternative education experiences in the libertarian communities he established. Max Stirner wrote in 1842 a long essay on education called ''The False Principle of our Education''. In it Stirner names his educational principle \"personalist,\" explaining that self-understanding consists in hourly self-creation. Education for him is to create \"free men, sovereign characters,\" by which he means \"eternal characters ... who are therefore eternal because they form themselves each moment\".\n", + "\n", + "In the United States \"freethought was a basically anti-christian, anti-clerical movement, whose purpose was to make the individual politically and spiritually free to decide for himself on religious matters. A number of contributors to ''Liberty'' (anarchist publication) were prominent figures in both freethought and anarchism. The individualist anarchist George MacDonald was a co-editor of ''Freethought'' and, for a time, ''The Truth Seeker''. E.C. Walker was co-editor of the excellent free-thought / free love journal ''Lucifer, the Light-Bearer''\". \"Many of the anarchists were ardent freethinkers; reprints from freethought papers such as ''Lucifer, the Light-Bearer'', ''Freethought'' and ''The Truth Seeker'' appeared in ''Liberty''... The church was viewed as a common ally of the state and as a repressive force in and of itself\".\n", + "\n", + "In 1901, Catalan anarchist and free-thinker Francesc Ferrer i Guàrdia established \"modern\" or progressive schools in Barcelona in defiance of an educational system controlled by the Catholic Church. The schools' stated goal was to \"educate the working class in a rational, secular and non-coercive setting\". Fiercely anti-clerical, Ferrer believed in \"freedom in education\", education free from the authority of church and state. Murray Bookchin wrote: \"This period 1890s was the heyday of libertarian schools and pedagogical projects in all areas of the country where Anarchists exercised some degree of influence. Perhaps the best-known effort in this field was Francisco Ferrer's Modern School (Escuela Moderna), a project which exercised a considerable influence on Catalan education and on experimental techniques of teaching generally.\" La Escuela Moderna, and Ferrer's ideas generally, formed the inspiration for a series of ''Modern Schools'' in the United States, Cuba, South America and London. The first of these was started in New York City in 1911. It also inspired the Italian newspaper ''Università popolare'', founded in 1901. Russian christian anarchist Leo Tolstoy established a school for peasant children on his estate. Tolstoy's educational experiments were short-lived due to harassment by the Tsarist secret police. Tolstoy established a conceptual difference between education and culture. He thought that \"Education is the tendency of one man to make another just like himself ... Education is culture under restraint, culture is free. Education is when the teaching is forced upon the pupil, and when then instruction is exclusive, that is when only those subjects are taught which the educator regards as necessary\". For him \"without compulsion, education was transformed into culture\".\n", + "\n", + "A more recent libertarian tradition on education is that of unschooling and the free school in which child-led activity replaces pedagogic approaches. Experiments in Germany led to A. S. Neill founding what became Summerhill School in 1921. Summerhill is often cited as an example of anarchism in practice. However, although Summerhill and other free schools are radically libertarian, they differ in principle from those of Ferrer by not advocating an overtly political class struggle-approach.\n", + "In addition to organising schools according to libertarian principles, anarchists have also questioned the concept of schooling per se. The term deschooling was popularised by Ivan Illich, who argued that the school as an institution is dysfunctional for self-determined learning and serves the creation of a consumer society instead.\n", + "\n", + "Section title: Criticisms\n", + "Section text: \n", + "Criticisms of anarchism include moral criticisms and pragmatic criticisms. Anarchism is often evaluated as unfeasible or utopian by its critics.\n", + "\n", + "Section title: See also\n", + "Section text: * Anarchism by country\n", + "\n", + "Section title: References\n", + "Section text: \n", + "\n", + "Section title: Further reading\n", + "Section text: * Barclay, Harold, ''People Without Government: An Anthropology of Anarchy'' (2nd ed.), Left Bank Books, 1990 \n", + "* Blumenfeld, Jacob; Bottici, Chiara; Critchley, Simon, eds., ''The Anarchist Turn'', Pluto Press. 19 March 2013. \n", + "* Carter, April, ''The Political Theory of Anarchism'', Harper & Row. 1971. \n", + "* Federici, Silvia, '' Caliban and the Witch: Women, the Body, and Primitive Accumulation'', Autonomedia, 2004. . \n", + "* Gordon, Uri, ''Anarchy Alive!'', London: Pluto Press, 2007.\n", + "* Graeber, David. ''Fragments of an Anarchist Anthropology'', Chicago: Prickly Paradigm Press, 2004\n", + "* Graham, Robert, ed., ''Anarchism: A Documentary History of Libertarian Ideas''.\n", + "** ''Volume One: From Anarchy to Anarchism (300CE to 1939)'', Black Rose Books, Montréal and London 2005. .\n", + "** ''Volume Two: The Anarchist Current (1939–2006)'', Black Rose Books, Montréal 2007. .\n", + "* Guérin, Daniel, ''Anarchism: From Theory to Practice'', Monthly Review Press. 1970. \n", + "* Harper, Clifford, ''Anarchy: A Graphic Guide'', (Camden Press, 1987): An overview, updating Woodcock's classic, and illustrated throughout by Harper's woodcut-style artwork.\n", + "* Le Guin, Ursula, ''The Dispossessed'', New York : Harper & Row, 1974. (first edition, hardcover)\n", + "* McKay, Iain, ed., ''An Anarchist FAQ''.\n", + "** ''Volume I'', AK Press, Oakland/Edinburgh 2008; 558 pages, .\n", + "** ''Volume II'', AK Press, Oakland/Edinburgh 2012; 550 Pages, \n", + "* McLaughlin, Paul, ''Anarchism and Authority: A Philosophical Introduction to Classical Anarchism'', AshGate. 2007. \n", + "* Marshall, Peter, ''Demanding the Impossible: A History of Anarchism'', PM Press. 2010. \n", + "* Nettlau, Max, ''Anarchy through the times'', Gordon Press. 1979. \n", + "* \n", + "* Scott, James C., ''Two Cheers for Anarchism: Six Easy Pieces on Autonomy, Dignity, and Meaningful Work and Play'', Princeton, NJ: Princeton University Press, 2012. .\n", + "*\n", + "* Woodcock, George, ''Anarchism: A History of Libertarian Ideas and Movements'' (Penguin Books, 1962). . .\n", + "* Woodcock, George, ed., ''The Anarchist Reader'' (Fontana/Collins 1977; ): An anthology of writings from anarchist thinkers and activists including Proudhon, Kropotkin, Bakunin, Malatesta, Bookchin, Goldman, and many others.\n", + "\n", + "Section title: External links\n", + "Section text: \n", + "* \n", + "* \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "source": [ + "data = api.load(\"wiki-english-20171001\")\n", + "for article in data:\n", + " for section_title, section_text in zip(article['section_titles'], article['section_texts']):\n", + " print(\"Section title: %s\" % section_title)\n", + " print(\"Section text: %s\" % section_text)\n", + " break" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import itertools\n", + "\n", + "ARTICLES_COUNT = 10000\n", + "\n", + "wiki_articles = preprocess_documents(\n", + " \" \".join(\" \".join(section)\n", + " for section\n", + " in zip(article['section_titles'], article['section_texts'])\n", + " )\n", + " for article\n", + " in itertools.islice(data, ARTICLES_COUNT)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-06-02 20:45:10,808 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-06-02 20:45:28,612 : INFO : built Dictionary(399748 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...) from 10000 documents (total 17815678 corpus positions)\n", + "2018-06-02 20:45:29,275 : INFO : discarding 336501 tokens: [('abdelrahim', 2), ('abstention', 3), ('amoureus', 3), ('amoureux', 1), ('amparo', 3), ('anarchica', 3), ('anarchosyndicalist', 2), ('arbet', 2), ('archo', 1), ('arditi', 4)]...\n", + "2018-06-02 20:45:29,276 : INFO : keeping 63247 tokens which were in no less than 5 and no more than 5000 (=50.0%) documents\n", + "2018-06-02 20:45:29,474 : INFO : resulting dictionary: Dictionary(63247 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" + ] + } + ], + "source": [ + "from gensim.corpora import Dictionary\n", + "\n", + "dictionary = Dictionary(wiki_articles)\n", + "dictionary.filter_extremes()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "corpus = [\n", + " dictionary.doc2bow(article)\n", + " for article\n", + " in wiki_articles\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-06-02 20:46:12,291 : INFO : Loss (no outliers): 7337.937955083741\tLoss (with outliers): 7337.937955083741\n", + "2018-06-02 20:46:49,539 : INFO : Loss (no outliers): 7465.065080292521\tLoss (with outliers): 7465.065080292521\n", + "2018-06-02 20:47:32,027 : INFO : Loss (no outliers): 7242.137297523558\tLoss (with outliers): 7242.137297523558\n", + "2018-06-02 20:48:15,605 : INFO : Loss (no outliers): 7773.646682256459\tLoss (with outliers): 7773.646682256459\n", + "2018-06-02 20:48:52,218 : INFO : Loss (no outliers): 7251.947542415921\tLoss (with outliers): 7251.947542415921\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 5min 14s, sys: 2min 19s, total: 7min 33s\n", + "Wall time: 3min 10s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "PASSES=1\n", + "\n", + "gensim_nmf = Nmf(\n", + " corpus,\n", + " chunksize=2000,\n", + " passes=PASSES,\n", + " num_topics=20,\n", + " id2word=dictionary,\n", + " lambda_=1000,\n", + " kappa=1.,\n", + " normalize=False\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.057*\"life\" + 0.047*\"book\" + 0.046*\"centuri\" + 0.033*\"god\" + 0.033*\"publish\" + 0.030*\"women\" + 0.030*\"human\" + 0.029*\"studi\" + 0.027*\"write\" + 0.027*\"london\"'),\n", + " (1,\n", + " '0.105*\"war\" + 0.100*\"govern\" + 0.091*\"countri\" + 0.068*\"parti\" + 0.066*\"forc\" + 0.057*\"polit\" + 0.056*\"union\" + 0.055*\"soviet\" + 0.051*\"mexico\" + 0.049*\"econom\"'),\n", + " (2,\n", + " '0.169*\"univers\" + 0.152*\"island\" + 0.136*\"school\" + 0.090*\"colleg\" + 0.078*\"student\" + 0.077*\"educ\" + 0.073*\"open\" + 0.071*\"servic\" + 0.069*\"librari\" + 0.067*\"public\"'),\n", + " (3,\n", + " '0.713*\"film\" + 0.135*\"award\" + 0.114*\"best\" + 0.104*\"brando\" + 0.103*\"star\" + 0.103*\"scorses\" + 0.099*\"director\" + 0.084*\"actor\" + 0.083*\"movi\" + 0.080*\"role\"'),\n", + " (4,\n", + " '0.647*\"music\" + 0.214*\"band\" + 0.206*\"plai\" + 0.203*\"instrument\" + 0.156*\"perform\" + 0.145*\"jazz\" + 0.142*\"open\" + 0.140*\"record\" + 0.135*\"mandolin\" + 0.125*\"sound\"'),\n", + " (5,\n", + " '0.770*\"citi\" + 0.171*\"area\" + 0.155*\"mexico\" + 0.152*\"kansa\" + 0.122*\"popul\" + 0.121*\"london\" + 0.109*\"river\" + 0.108*\"district\" + 0.107*\"liverpool\" + 0.099*\"largest\"'),\n", + " (6,\n", + " '0.346*\"open\" + 0.298*\"champion\" + 0.254*\"card\" + 0.251*\"player\" + 0.190*\"doubl\" + 0.181*\"winner\" + 0.177*\"wimbledon\" + 0.170*\"titl\" + 0.165*\"grand\" + 0.164*\"slam\"'),\n", + " (7,\n", + " '0.326*\"empir\" + 0.306*\"centuri\" + 0.247*\"king\" + 0.201*\"kingdom\" + 0.197*\"roman\" + 0.175*\"law\" + 0.156*\"rule\" + 0.154*\"europ\" + 0.134*\"emperor\" + 0.127*\"power\"'),\n", + " (8,\n", + " '0.720*\"american\" + 0.272*\"english\" + 0.238*\"politician\" + 0.229*\"player\" + 0.156*\"author\" + 0.153*\"footbal\" + 0.136*\"singer\" + 0.125*\"french\" + 0.124*\"actor\" + 0.114*\"german\"'),\n", + " (9,\n", + " '0.696*\"brown\" + 0.541*\"game\" + 0.133*\"bear\" + 0.127*\"parti\" + 0.112*\"releas\" + 0.108*\"jame\" + 0.090*\"nfl\" + 0.065*\"black\" + 0.063*\"record\" + 0.061*\"elect\"'),\n", + " (10,\n", + " '0.803*\"languag\" + 0.240*\"word\" + 0.136*\"english\" + 0.135*\"latin\" + 0.113*\"german\" + 0.109*\"mean\" + 0.105*\"linguist\" + 0.096*\"exampl\" + 0.091*\"dialect\" + 0.078*\"noun\"'),\n", + " (11,\n", + " '0.723*\"church\" + 0.417*\"methodist\" + 0.186*\"christian\" + 0.125*\"orthodox\" + 0.125*\"god\" + 0.095*\"method\" + 0.090*\"cathol\" + 0.090*\"holi\" + 0.089*\"council\" + 0.087*\"john\"'),\n", + " (12,\n", + " '0.580*\"island\" + 0.319*\"river\" + 0.318*\"lake\" + 0.175*\"water\" + 0.168*\"american\" + 0.121*\"north\" + 0.117*\"popul\" + 0.114*\"speci\" + 0.109*\"south\" + 0.103*\"area\"'),\n", + " (13,\n", + " '0.421*\"air\" + 0.363*\"forc\" + 0.247*\"aircraft\" + 0.226*\"engin\" + 0.191*\"oper\" + 0.164*\"militari\" + 0.156*\"war\" + 0.154*\"design\" + 0.121*\"command\" + 0.113*\"armi\"'),\n", + " (14,\n", + " '0.444*\"art\" + 0.401*\"paint\" + 0.321*\"jpg\" + 0.260*\"file\" + 0.258*\"color\" + 0.231*\"imag\" + 0.162*\"artist\" + 0.158*\"light\" + 0.130*\"centuri\" + 0.113*\"modern\"'),\n", + " (15,\n", + " '0.473*\"game\" + 0.371*\"team\" + 0.326*\"season\" + 0.255*\"leagu\" + 0.225*\"player\" + 0.215*\"plai\" + 0.157*\"win\" + 0.136*\"club\" + 0.121*\"won\" + 0.111*\"final\"'),\n", + " (16,\n", + " '0.308*\"album\" + 0.211*\"releas\" + 0.179*\"band\" + 0.151*\"record\" + 0.136*\"song\" + 0.119*\"tour\" + 0.116*\"rock\" + 0.108*\"seri\" + 0.102*\"perform\" + 0.100*\"loi\"'),\n", + " (17,\n", + " '0.128*\"theori\" + 0.119*\"function\" + 0.102*\"exampl\" + 0.099*\"light\" + 0.085*\"field\" + 0.082*\"product\" + 0.079*\"space\" + 0.078*\"valu\" + 0.075*\"cell\" + 0.073*\"measur\"'),\n", + " (18,\n", + " '0.790*\"music\" + 0.226*\"born\" + 0.126*\"mtv\" + 0.112*\"film\" + 0.101*\"countri\" + 0.096*\"song\" + 0.092*\"perform\" + 0.083*\"compos\" + 0.073*\"video\" + 0.072*\"relat\"'),\n", + " (19,\n", + " '0.336*\"french\" + 0.295*\"loui\" + 0.275*\"franc\" + 0.239*\"open\" + 0.233*\"war\" + 0.220*\"king\" + 0.204*\"champion\" + 0.183*\"born\" + 0.146*\"grand\" + 0.130*\"titl\"')]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gensim_nmf.show_topics(20)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-06-02 20:48:52,359 : INFO : using symmetric alpha at 0.05\n", + "2018-06-02 20:48:52,361 : INFO : using symmetric eta at 0.05\n", + "2018-06-02 20:48:52,391 : INFO : using serial LDA version on this node\n", + "2018-06-02 20:48:52,634 : INFO : running online (multi-pass) LDA training, 20 topics, 5 passes over the supplied corpus of 10000 documents, updating model once every 2000 documents, evaluating perplexity every 10000 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-06-02 20:48:52,636 : INFO : PROGRESS: pass 0, at document #2000/10000\n", + "2018-06-02 20:48:59,748 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:48:59,962 : INFO : topic #17 (0.050): 0.003*\"american\" + 0.003*\"citi\" + 0.002*\"book\" + 0.002*\"centuri\" + 0.002*\"space\" + 0.002*\"apollo\" + 0.002*\"countri\" + 0.002*\"land\" + 0.002*\"game\" + 0.002*\"oper\"\n", + "2018-06-02 20:48:59,965 : INFO : topic #3 (0.050): 0.003*\"citi\" + 0.002*\"centuri\" + 0.002*\"war\" + 0.002*\"american\" + 0.002*\"book\" + 0.002*\"plai\" + 0.002*\"game\" + 0.002*\"produc\" + 0.001*\"black\" + 0.001*\"countri\"\n", + "2018-06-02 20:48:59,968 : INFO : topic #14 (0.050): 0.003*\"american\" + 0.003*\"citi\" + 0.002*\"church\" + 0.002*\"countri\" + 0.002*\"player\" + 0.002*\"languag\" + 0.002*\"war\" + 0.002*\"area\" + 0.002*\"english\" + 0.002*\"govern\"\n", + "2018-06-02 20:48:59,970 : INFO : topic #2 (0.050): 0.003*\"citi\" + 0.003*\"american\" + 0.002*\"film\" + 0.002*\"centuri\" + 0.002*\"seri\" + 0.002*\"countri\" + 0.002*\"design\" + 0.002*\"product\" + 0.002*\"list\" + 0.002*\"war\"\n", + "2018-06-02 20:48:59,974 : INFO : topic #1 (0.050): 0.005*\"american\" + 0.003*\"acid\" + 0.002*\"centuri\" + 0.002*\"war\" + 0.002*\"south\" + 0.002*\"english\" + 0.002*\"govern\" + 0.002*\"area\" + 0.002*\"british\" + 0.002*\"john\"\n", + "2018-06-02 20:48:59,978 : INFO : topic diff=5.671532, rho=1.000000\n", + "2018-06-02 20:48:59,980 : INFO : PROGRESS: pass 0, at document #4000/10000\n", + "2018-06-02 20:49:07,364 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:49:07,580 : INFO : topic #18 (0.050): 0.005*\"film\" + 0.004*\"plai\" + 0.003*\"record\" + 0.003*\"album\" + 0.003*\"team\" + 0.003*\"season\" + 0.003*\"music\" + 0.003*\"game\" + 0.003*\"band\" + 0.003*\"american\"\n", + "2018-06-02 20:49:07,583 : INFO : topic #9 (0.050): 0.005*\"air\" + 0.005*\"engin\" + 0.004*\"aircraft\" + 0.004*\"forc\" + 0.004*\"oper\" + 0.004*\"design\" + 0.003*\"control\" + 0.003*\"color\" + 0.002*\"product\" + 0.002*\"produc\"\n", + "2018-06-02 20:49:07,586 : INFO : topic #15 (0.050): 0.005*\"languag\" + 0.004*\"exampl\" + 0.003*\"program\" + 0.003*\"univers\" + 0.003*\"function\" + 0.003*\"object\" + 0.003*\"comput\" + 0.003*\"data\" + 0.003*\"theori\" + 0.002*\"law\"\n", + "2018-06-02 20:49:07,589 : INFO : topic #4 (0.050): 0.007*\"function\" + 0.003*\"plant\" + 0.003*\"exampl\" + 0.003*\"cell\" + 0.003*\"deriv\" + 0.003*\"electron\" + 0.002*\"case\" + 0.002*\"languag\" + 0.002*\"speci\" + 0.002*\"water\"\n", + "2018-06-02 20:49:07,591 : INFO : topic #19 (0.050): 0.004*\"star\" + 0.004*\"citi\" + 0.003*\"american\" + 0.003*\"british\" + 0.003*\"univers\" + 0.002*\"area\" + 0.002*\"south\" + 0.002*\"north\" + 0.002*\"govern\" + 0.002*\"war\"\n", + "2018-06-02 20:49:07,595 : INFO : topic diff=2.827430, rho=0.707107\n", + "2018-06-02 20:49:07,600 : INFO : PROGRESS: pass 0, at document #6000/10000\n", + "2018-06-02 20:49:14,794 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:49:15,016 : INFO : topic #9 (0.050): 0.008*\"air\" + 0.007*\"engin\" + 0.006*\"aircraft\" + 0.005*\"forc\" + 0.005*\"oper\" + 0.005*\"design\" + 0.004*\"control\" + 0.003*\"power\" + 0.003*\"product\" + 0.003*\"electron\"\n", + "2018-06-02 20:49:15,019 : INFO : topic #2 (0.050): 0.007*\"citi\" + 0.004*\"countri\" + 0.004*\"river\" + 0.004*\"servic\" + 0.004*\"govern\" + 0.003*\"compani\" + 0.003*\"bank\" + 0.003*\"area\" + 0.003*\"intern\" + 0.003*\"war\"\n", + "2018-06-02 20:49:15,022 : INFO : topic #13 (0.050): 0.010*\"island\" + 0.006*\"war\" + 0.004*\"british\" + 0.003*\"govern\" + 0.003*\"centuri\" + 0.003*\"roman\" + 0.002*\"armi\" + 0.002*\"polit\" + 0.002*\"forc\" + 0.002*\"militari\"\n", + "2018-06-02 20:49:15,025 : INFO : topic #7 (0.050): 0.004*\"food\" + 0.003*\"citi\" + 0.003*\"centuri\" + 0.003*\"jpg\" + 0.003*\"water\" + 0.003*\"area\" + 0.003*\"produc\" + 0.002*\"product\" + 0.002*\"art\" + 0.002*\"file\"\n", + "2018-06-02 20:49:15,028 : INFO : topic #3 (0.050): 0.007*\"music\" + 0.004*\"instrument\" + 0.004*\"plai\" + 0.004*\"bass\" + 0.003*\"guitar\" + 0.003*\"centuri\" + 0.003*\"string\" + 0.003*\"sound\" + 0.003*\"perform\" + 0.002*\"tradit\"\n", + "2018-06-02 20:49:15,033 : INFO : topic diff=2.033462, rho=0.577350\n", + "2018-06-02 20:49:15,038 : INFO : PROGRESS: pass 0, at document #8000/10000\n", + "2018-06-02 20:49:22,698 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:49:22,923 : INFO : topic #16 (0.050): 0.008*\"relat\" + 0.007*\"german\" + 0.006*\"game\" + 0.006*\"war\" + 0.006*\"countri\" + 0.006*\"player\" + 0.005*\"embassi\" + 0.004*\"germani\" + 0.004*\"foreign\" + 0.004*\"citi\"\n", + "2018-06-02 20:49:22,925 : INFO : topic #8 (0.050): 0.012*\"film\" + 0.006*\"stori\" + 0.004*\"novel\" + 0.004*\"publish\" + 0.004*\"fiction\" + 0.004*\"seri\" + 0.003*\"book\" + 0.003*\"john\" + 0.003*\"life\" + 0.003*\"charact\"\n", + "2018-06-02 20:49:22,928 : INFO : topic #19 (0.050): 0.005*\"island\" + 0.004*\"star\" + 0.004*\"earth\" + 0.004*\"citi\" + 0.003*\"area\" + 0.003*\"univers\" + 0.003*\"south\" + 0.003*\"counti\" + 0.003*\"north\" + 0.002*\"climat\"\n", + "2018-06-02 20:49:22,931 : INFO : topic #18 (0.050): 0.008*\"film\" + 0.006*\"plai\" + 0.005*\"record\" + 0.005*\"music\" + 0.005*\"album\" + 0.004*\"award\" + 0.004*\"releas\" + 0.004*\"song\" + 0.004*\"perform\" + 0.003*\"season\"\n", + "2018-06-02 20:49:22,934 : INFO : topic #10 (0.050): 0.004*\"diseas\" + 0.004*\"caus\" + 0.004*\"effect\" + 0.004*\"drug\" + 0.003*\"cell\" + 0.003*\"hors\" + 0.003*\"human\" + 0.003*\"increas\" + 0.003*\"medic\" + 0.003*\"treatment\"\n", + "2018-06-02 20:49:22,938 : INFO : topic diff=1.707723, rho=0.500000\n", + "2018-06-02 20:49:41,744 : INFO : -8.635 per-word bound, 397.4 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", + "2018-06-02 20:49:41,745 : INFO : PROGRESS: pass 0, at document #10000/10000\n", + "2018-06-02 20:49:48,671 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:49:48,893 : INFO : topic #6 (0.050): 0.021*\"languag\" + 0.010*\"popul\" + 0.006*\"english\" + 0.005*\"word\" + 0.004*\"arab\" + 0.004*\"region\" + 0.004*\"latin\" + 0.004*\"centuri\" + 0.004*\"dialect\" + 0.004*\"lebanon\"\n", + "2018-06-02 20:49:48,896 : INFO : topic #1 (0.050): 0.010*\"acid\" + 0.008*\"metal\" + 0.008*\"cell\" + 0.007*\"protein\" + 0.006*\"bond\" + 0.006*\"chemic\" + 0.005*\"molecul\" + 0.005*\"atom\" + 0.005*\"element\" + 0.005*\"structur\"\n", + "2018-06-02 20:49:48,898 : INFO : topic #16 (0.050): 0.008*\"relat\" + 0.007*\"countri\" + 0.006*\"war\" + 0.006*\"german\" + 0.006*\"embassi\" + 0.005*\"game\" + 0.005*\"player\" + 0.004*\"soviet\" + 0.004*\"citi\" + 0.004*\"republ\"\n", + "2018-06-02 20:49:48,901 : INFO : topic #8 (0.050): 0.012*\"film\" + 0.006*\"stori\" + 0.005*\"novel\" + 0.004*\"publish\" + 0.004*\"book\" + 0.004*\"seri\" + 0.004*\"fiction\" + 0.004*\"charact\" + 0.003*\"life\" + 0.003*\"king\"\n", + "2018-06-02 20:49:48,904 : INFO : topic #0 (0.050): 0.006*\"god\" + 0.004*\"book\" + 0.004*\"christian\" + 0.004*\"centuri\" + 0.004*\"life\" + 0.003*\"univers\" + 0.003*\"jewish\" + 0.003*\"human\" + 0.003*\"studi\" + 0.003*\"tradit\"\n", + "2018-06-02 20:49:48,908 : INFO : topic diff=1.408409, rho=0.447214\n", + "2018-06-02 20:49:48,910 : INFO : PROGRESS: pass 1, at document #2000/10000\n", + "2018-06-02 20:49:55,678 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:49:55,903 : INFO : topic #0 (0.050): 0.007*\"god\" + 0.006*\"book\" + 0.005*\"centuri\" + 0.004*\"christian\" + 0.004*\"life\" + 0.003*\"univers\" + 0.003*\"human\" + 0.003*\"jewish\" + 0.003*\"studi\" + 0.003*\"philosophi\"\n", + "2018-06-02 20:49:55,905 : INFO : topic #17 (0.050): 0.012*\"space\" + 0.011*\"game\" + 0.011*\"apollo\" + 0.007*\"moon\" + 0.007*\"lunar\" + 0.006*\"mission\" + 0.005*\"dna\" + 0.005*\"tree\" + 0.004*\"orbit\" + 0.004*\"launch\"\n", + "2018-06-02 20:49:55,907 : INFO : topic #9 (0.050): 0.007*\"air\" + 0.007*\"design\" + 0.007*\"oper\" + 0.006*\"engin\" + 0.006*\"aircraft\" + 0.005*\"forc\" + 0.004*\"control\" + 0.004*\"power\" + 0.003*\"system\" + 0.003*\"product\"\n", + "2018-06-02 20:49:55,909 : INFO : topic #19 (0.050): 0.007*\"island\" + 0.005*\"star\" + 0.005*\"area\" + 0.004*\"lake\" + 0.004*\"sea\" + 0.004*\"north\" + 0.004*\"south\" + 0.004*\"river\" + 0.004*\"citi\" + 0.004*\"earth\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-06-02 20:49:55,911 : INFO : topic #7 (0.050): 0.007*\"art\" + 0.007*\"jpg\" + 0.006*\"paint\" + 0.006*\"file\" + 0.005*\"food\" + 0.004*\"blue\" + 0.004*\"centuri\" + 0.003*\"product\" + 0.003*\"water\" + 0.003*\"produc\"\n", + "2018-06-02 20:49:55,915 : INFO : topic diff=1.105198, rho=0.377964\n", + "2018-06-02 20:49:55,917 : INFO : PROGRESS: pass 1, at document #4000/10000\n", + "2018-06-02 20:50:02,697 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:50:02,920 : INFO : topic #5 (0.050): 0.009*\"centuri\" + 0.005*\"empir\" + 0.004*\"king\" + 0.004*\"citi\" + 0.004*\"china\" + 0.003*\"period\" + 0.003*\"dynasti\" + 0.003*\"chines\" + 0.003*\"muslim\" + 0.003*\"greek\"\n", + "2018-06-02 20:50:02,922 : INFO : topic #18 (0.050): 0.007*\"plai\" + 0.007*\"film\" + 0.006*\"record\" + 0.005*\"game\" + 0.005*\"season\" + 0.005*\"album\" + 0.005*\"team\" + 0.005*\"music\" + 0.005*\"award\" + 0.004*\"seri\"\n", + "2018-06-02 20:50:02,924 : INFO : topic #2 (0.050): 0.011*\"citi\" + 0.006*\"countri\" + 0.005*\"govern\" + 0.005*\"servic\" + 0.005*\"compani\" + 0.005*\"area\" + 0.004*\"intern\" + 0.004*\"river\" + 0.004*\"industri\" + 0.004*\"econom\"\n", + "2018-06-02 20:50:02,930 : INFO : topic #4 (0.050): 0.009*\"function\" + 0.006*\"point\" + 0.005*\"field\" + 0.005*\"energi\" + 0.005*\"space\" + 0.005*\"equat\" + 0.005*\"exampl\" + 0.005*\"measur\" + 0.004*\"mass\" + 0.004*\"particl\"\n", + "2018-06-02 20:50:02,932 : INFO : topic #11 (0.050): 0.020*\"parti\" + 0.009*\"elect\" + 0.009*\"govern\" + 0.007*\"polit\" + 0.005*\"member\" + 0.005*\"german\" + 0.005*\"liber\" + 0.004*\"germani\" + 0.004*\"minist\" + 0.004*\"countri\"\n", + "2018-06-02 20:50:02,936 : INFO : topic diff=1.049597, rho=0.377964\n", + "2018-06-02 20:50:02,938 : INFO : PROGRESS: pass 1, at document #6000/10000\n", + "2018-06-02 20:50:09,792 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:50:10,030 : INFO : topic #10 (0.050): 0.006*\"effect\" + 0.005*\"caus\" + 0.005*\"diseas\" + 0.005*\"human\" + 0.004*\"drug\" + 0.004*\"medic\" + 0.004*\"treatment\" + 0.004*\"increas\" + 0.004*\"bodi\" + 0.003*\"anim\"\n", + "2018-06-02 20:50:10,032 : INFO : topic #14 (0.050): 0.019*\"church\" + 0.008*\"school\" + 0.008*\"law\" + 0.007*\"univers\" + 0.007*\"council\" + 0.006*\"colleg\" + 0.006*\"court\" + 0.005*\"educ\" + 0.005*\"cathol\" + 0.004*\"bishop\"\n", + "2018-06-02 20:50:10,034 : INFO : topic #4 (0.050): 0.009*\"function\" + 0.008*\"field\" + 0.007*\"equat\" + 0.006*\"energi\" + 0.006*\"point\" + 0.005*\"space\" + 0.005*\"particl\" + 0.005*\"exampl\" + 0.005*\"theori\" + 0.004*\"measur\"\n", + "2018-06-02 20:50:10,036 : INFO : topic #8 (0.050): 0.018*\"film\" + 0.007*\"stori\" + 0.005*\"book\" + 0.005*\"charact\" + 0.005*\"publish\" + 0.005*\"seri\" + 0.005*\"novel\" + 0.004*\"fiction\" + 0.003*\"life\" + 0.003*\"edit\"\n", + "2018-06-02 20:50:10,039 : INFO : topic #9 (0.050): 0.009*\"engin\" + 0.009*\"air\" + 0.008*\"design\" + 0.007*\"oper\" + 0.007*\"aircraft\" + 0.005*\"forc\" + 0.005*\"control\" + 0.004*\"power\" + 0.003*\"system\" + 0.003*\"devic\"\n", + "2018-06-02 20:50:10,043 : INFO : topic diff=0.947570, rho=0.377964\n", + "2018-06-02 20:50:10,045 : INFO : PROGRESS: pass 1, at document #8000/10000\n", + "2018-06-02 20:50:17,271 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:50:17,490 : INFO : topic #17 (0.050): 0.028*\"game\" + 0.012*\"space\" + 0.009*\"dna\" + 0.006*\"moon\" + 0.006*\"gene\" + 0.005*\"tree\" + 0.004*\"apollo\" + 0.004*\"genom\" + 0.004*\"mission\" + 0.004*\"orbit\"\n", + "2018-06-02 20:50:17,492 : INFO : topic #11 (0.050): 0.017*\"parti\" + 0.012*\"elect\" + 0.011*\"govern\" + 0.009*\"polit\" + 0.007*\"member\" + 0.007*\"german\" + 0.007*\"germani\" + 0.006*\"minist\" + 0.005*\"european\" + 0.005*\"vote\"\n", + "2018-06-02 20:50:17,495 : INFO : topic #7 (0.050): 0.010*\"jpg\" + 0.009*\"paint\" + 0.008*\"art\" + 0.007*\"file\" + 0.007*\"food\" + 0.006*\"color\" + 0.004*\"centuri\" + 0.004*\"museum\" + 0.003*\"product\" + 0.003*\"water\"\n", + "2018-06-02 20:50:17,498 : INFO : topic #18 (0.050): 0.007*\"plai\" + 0.007*\"film\" + 0.006*\"record\" + 0.005*\"award\" + 0.005*\"album\" + 0.005*\"music\" + 0.005*\"season\" + 0.005*\"game\" + 0.005*\"team\" + 0.004*\"releas\"\n", + "2018-06-02 20:50:17,501 : INFO : topic #15 (0.050): 0.006*\"exampl\" + 0.005*\"theori\" + 0.005*\"inform\" + 0.005*\"program\" + 0.005*\"data\" + 0.005*\"languag\" + 0.005*\"function\" + 0.004*\"code\" + 0.004*\"valu\" + 0.004*\"scienc\"\n", + "2018-06-02 20:50:17,505 : INFO : topic diff=0.889594, rho=0.377964\n", + "2018-06-02 20:50:36,453 : INFO : -8.416 per-word bound, 341.5 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", + "2018-06-02 20:50:36,454 : INFO : PROGRESS: pass 1, at document #10000/10000\n", + "2018-06-02 20:50:43,110 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:50:43,328 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"theori\" + 0.005*\"program\" + 0.005*\"languag\" + 0.005*\"function\" + 0.005*\"inform\" + 0.005*\"data\" + 0.005*\"valu\" + 0.004*\"mathemat\" + 0.004*\"code\"\n", + "2018-06-02 20:50:43,330 : INFO : topic #11 (0.050): 0.019*\"parti\" + 0.012*\"elect\" + 0.012*\"govern\" + 0.009*\"polit\" + 0.007*\"member\" + 0.006*\"german\" + 0.006*\"minist\" + 0.006*\"germani\" + 0.005*\"presid\" + 0.005*\"vote\"\n", + "2018-06-02 20:50:43,333 : INFO : topic #0 (0.050): 0.007*\"god\" + 0.006*\"book\" + 0.005*\"christian\" + 0.005*\"centuri\" + 0.004*\"life\" + 0.004*\"univers\" + 0.004*\"jewish\" + 0.004*\"human\" + 0.003*\"philosophi\" + 0.003*\"studi\"\n", + "2018-06-02 20:50:43,336 : INFO : topic #12 (0.050): 0.033*\"american\" + 0.011*\"english\" + 0.009*\"politician\" + 0.009*\"player\" + 0.007*\"author\" + 0.007*\"french\" + 0.006*\"footbal\" + 0.006*\"presid\" + 0.005*\"singer\" + 0.005*\"actor\"\n", + "2018-06-02 20:50:43,339 : INFO : topic #9 (0.050): 0.008*\"engin\" + 0.008*\"air\" + 0.008*\"design\" + 0.007*\"oper\" + 0.005*\"aircraft\" + 0.005*\"forc\" + 0.005*\"power\" + 0.004*\"control\" + 0.003*\"devic\" + 0.003*\"servic\"\n", + "2018-06-02 20:50:43,343 : INFO : topic diff=0.766872, rho=0.377964\n", + "2018-06-02 20:50:43,347 : INFO : PROGRESS: pass 2, at document #2000/10000\n", + "2018-06-02 20:50:49,947 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:50:50,175 : INFO : topic #10 (0.050): 0.006*\"effect\" + 0.005*\"caus\" + 0.005*\"diseas\" + 0.005*\"human\" + 0.004*\"bodi\" + 0.004*\"treatment\" + 0.004*\"medic\" + 0.004*\"anim\" + 0.004*\"studi\" + 0.004*\"increas\"\n", + "2018-06-02 20:50:50,177 : INFO : topic #6 (0.050): 0.030*\"languag\" + 0.010*\"popul\" + 0.010*\"word\" + 0.009*\"english\" + 0.007*\"arab\" + 0.006*\"dialect\" + 0.005*\"latin\" + 0.005*\"vowel\" + 0.004*\"centuri\" + 0.004*\"letter\"\n", + "2018-06-02 20:50:50,179 : INFO : topic #4 (0.050): 0.008*\"function\" + 0.007*\"field\" + 0.006*\"measur\" + 0.006*\"space\" + 0.006*\"point\" + 0.006*\"energi\" + 0.005*\"theori\" + 0.005*\"equat\" + 0.005*\"light\" + 0.005*\"mass\"\n", + "2018-06-02 20:50:50,182 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"program\" + 0.006*\"languag\" + 0.005*\"theori\" + 0.005*\"function\" + 0.005*\"data\" + 0.005*\"valu\" + 0.004*\"inform\" + 0.004*\"code\" + 0.004*\"comput\"\n", + "2018-06-02 20:50:50,184 : INFO : topic #5 (0.050): 0.009*\"centuri\" + 0.007*\"empir\" + 0.005*\"citi\" + 0.005*\"king\" + 0.005*\"muslim\" + 0.005*\"islam\" + 0.004*\"india\" + 0.004*\"greek\" + 0.004*\"period\" + 0.003*\"kingdom\"\n", + "2018-06-02 20:50:50,187 : INFO : topic diff=0.635099, rho=0.353553\n", + "2018-06-02 20:50:50,189 : INFO : PROGRESS: pass 2, at document #4000/10000\n", + "2018-06-02 20:50:56,864 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:50:57,083 : INFO : topic #6 (0.050): 0.032*\"languag\" + 0.011*\"word\" + 0.010*\"popul\" + 0.010*\"english\" + 0.006*\"dialect\" + 0.006*\"arab\" + 0.005*\"latin\" + 0.005*\"vowel\" + 0.005*\"letter\" + 0.005*\"centuri\"\n", + "2018-06-02 20:50:57,086 : INFO : topic #1 (0.050): 0.011*\"acid\" + 0.010*\"cell\" + 0.009*\"carbon\" + 0.009*\"chemic\" + 0.008*\"metal\" + 0.008*\"atom\" + 0.007*\"reaction\" + 0.007*\"element\" + 0.006*\"water\" + 0.006*\"bond\"\n", + "2018-06-02 20:50:57,088 : INFO : topic #19 (0.050): 0.011*\"island\" + 0.007*\"river\" + 0.006*\"area\" + 0.006*\"north\" + 0.006*\"sea\" + 0.005*\"water\" + 0.005*\"star\" + 0.005*\"south\" + 0.005*\"lake\" + 0.004*\"speci\"\n", + "2018-06-02 20:50:57,090 : INFO : topic #17 (0.050): 0.036*\"game\" + 0.010*\"apollo\" + 0.010*\"space\" + 0.009*\"dna\" + 0.009*\"player\" + 0.008*\"moon\" + 0.007*\"tree\" + 0.006*\"lunar\" + 0.006*\"mission\" + 0.006*\"christma\"\n", + "2018-06-02 20:50:57,092 : INFO : topic #16 (0.050): 0.012*\"countri\" + 0.010*\"relat\" + 0.008*\"soviet\" + 0.008*\"embassi\" + 0.007*\"republ\" + 0.007*\"war\" + 0.005*\"german\" + 0.005*\"union\" + 0.005*\"foreign\" + 0.005*\"intern\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-06-02 20:50:57,096 : INFO : topic diff=0.577383, rho=0.353553\n", + "2018-06-02 20:50:57,097 : INFO : PROGRESS: pass 2, at document #6000/10000\n", + "2018-06-02 20:51:03,678 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:51:03,897 : INFO : topic #19 (0.050): 0.013*\"island\" + 0.007*\"river\" + 0.006*\"area\" + 0.006*\"water\" + 0.006*\"sea\" + 0.005*\"north\" + 0.005*\"lake\" + 0.005*\"star\" + 0.005*\"south\" + 0.005*\"speci\"\n", + "2018-06-02 20:51:03,899 : INFO : topic #17 (0.050): 0.039*\"game\" + 0.012*\"dna\" + 0.011*\"player\" + 0.010*\"space\" + 0.009*\"moon\" + 0.007*\"apollo\" + 0.006*\"christma\" + 0.006*\"gene\" + 0.006*\"tree\" + 0.006*\"mission\"\n", + "2018-06-02 20:51:03,901 : INFO : topic #2 (0.050): 0.013*\"citi\" + 0.007*\"countri\" + 0.006*\"govern\" + 0.006*\"servic\" + 0.006*\"compani\" + 0.005*\"area\" + 0.005*\"econom\" + 0.005*\"intern\" + 0.005*\"industri\" + 0.005*\"bank\"\n", + "2018-06-02 20:51:03,904 : INFO : topic #9 (0.050): 0.010*\"engin\" + 0.009*\"air\" + 0.008*\"design\" + 0.008*\"oper\" + 0.007*\"aircraft\" + 0.005*\"forc\" + 0.005*\"control\" + 0.005*\"power\" + 0.004*\"servic\" + 0.004*\"devic\"\n", + "2018-06-02 20:51:03,907 : INFO : topic #1 (0.050): 0.011*\"acid\" + 0.010*\"cell\" + 0.008*\"carbon\" + 0.008*\"chemic\" + 0.007*\"metal\" + 0.007*\"reaction\" + 0.007*\"atom\" + 0.006*\"element\" + 0.006*\"water\" + 0.006*\"produc\"\n", + "2018-06-02 20:51:03,911 : INFO : topic diff=0.501128, rho=0.353553\n", + "2018-06-02 20:51:03,913 : INFO : PROGRESS: pass 2, at document #8000/10000\n", + "2018-06-02 20:51:11,116 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:51:11,329 : INFO : topic #12 (0.050): 0.040*\"american\" + 0.013*\"english\" + 0.010*\"politician\" + 0.010*\"player\" + 0.009*\"author\" + 0.007*\"footbal\" + 0.007*\"french\" + 0.006*\"singer\" + 0.006*\"john\" + 0.006*\"actor\"\n", + "2018-06-02 20:51:11,331 : INFO : topic #11 (0.050): 0.016*\"parti\" + 0.013*\"govern\" + 0.012*\"elect\" + 0.010*\"polit\" + 0.008*\"member\" + 0.007*\"presid\" + 0.006*\"minist\" + 0.006*\"german\" + 0.006*\"germani\" + 0.005*\"power\"\n", + "2018-06-02 20:51:11,333 : INFO : topic #7 (0.050): 0.011*\"jpg\" + 0.011*\"art\" + 0.010*\"paint\" + 0.009*\"file\" + 0.007*\"color\" + 0.007*\"food\" + 0.005*\"museum\" + 0.005*\"centuri\" + 0.004*\"artist\" + 0.003*\"product\"\n", + "2018-06-02 20:51:11,337 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"inform\" + 0.006*\"data\" + 0.006*\"program\" + 0.005*\"theori\" + 0.005*\"languag\" + 0.005*\"code\" + 0.005*\"function\" + 0.004*\"valu\" + 0.004*\"comput\"\n", + "2018-06-02 20:51:11,339 : INFO : topic #2 (0.050): 0.013*\"citi\" + 0.007*\"countri\" + 0.006*\"govern\" + 0.006*\"compani\" + 0.006*\"servic\" + 0.005*\"industri\" + 0.005*\"intern\" + 0.005*\"area\" + 0.005*\"econom\" + 0.005*\"bank\"\n", + "2018-06-02 20:51:11,342 : INFO : topic diff=0.470330, rho=0.353553\n", + "2018-06-02 20:51:29,890 : INFO : -8.363 per-word bound, 329.3 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", + "2018-06-02 20:51:29,891 : INFO : PROGRESS: pass 2, at document #10000/10000\n", + "2018-06-02 20:51:36,528 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:51:36,746 : INFO : topic #11 (0.050): 0.017*\"parti\" + 0.013*\"govern\" + 0.012*\"elect\" + 0.011*\"polit\" + 0.008*\"member\" + 0.008*\"presid\" + 0.006*\"minist\" + 0.005*\"german\" + 0.005*\"power\" + 0.005*\"germani\"\n", + "2018-06-02 20:51:36,747 : INFO : topic #8 (0.050): 0.017*\"film\" + 0.008*\"stori\" + 0.007*\"book\" + 0.007*\"publish\" + 0.006*\"novel\" + 0.006*\"charact\" + 0.005*\"seri\" + 0.005*\"life\" + 0.005*\"fiction\" + 0.003*\"edit\"\n", + "2018-06-02 20:51:36,749 : INFO : topic #16 (0.050): 0.013*\"countri\" + 0.010*\"relat\" + 0.008*\"soviet\" + 0.007*\"embassi\" + 0.007*\"war\" + 0.006*\"republ\" + 0.006*\"foreign\" + 0.006*\"poland\" + 0.005*\"intern\" + 0.005*\"russian\"\n", + "2018-06-02 20:51:36,752 : INFO : topic #9 (0.050): 0.009*\"engin\" + 0.008*\"air\" + 0.008*\"design\" + 0.008*\"oper\" + 0.006*\"aircraft\" + 0.005*\"power\" + 0.005*\"control\" + 0.005*\"forc\" + 0.004*\"servic\" + 0.003*\"devic\"\n", + "2018-06-02 20:51:36,755 : INFO : topic #6 (0.050): 0.034*\"languag\" + 0.012*\"word\" + 0.011*\"popul\" + 0.011*\"english\" + 0.007*\"latin\" + 0.005*\"dialect\" + 0.005*\"german\" + 0.005*\"vowel\" + 0.005*\"arab\" + 0.005*\"letter\"\n", + "2018-06-02 20:51:36,759 : INFO : topic diff=0.392164, rho=0.353553\n", + "2018-06-02 20:51:36,762 : INFO : PROGRESS: pass 3, at document #2000/10000\n", + "2018-06-02 20:51:43,213 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:51:43,429 : INFO : topic #7 (0.050): 0.013*\"art\" + 0.011*\"jpg\" + 0.010*\"file\" + 0.008*\"paint\" + 0.006*\"food\" + 0.006*\"color\" + 0.005*\"museum\" + 0.005*\"centuri\" + 0.004*\"artist\" + 0.004*\"blue\"\n", + "2018-06-02 20:51:43,431 : INFO : topic #5 (0.050): 0.010*\"centuri\" + 0.007*\"empir\" + 0.006*\"islam\" + 0.006*\"india\" + 0.005*\"muslim\" + 0.005*\"citi\" + 0.005*\"king\" + 0.005*\"greek\" + 0.004*\"arab\" + 0.004*\"period\"\n", + "2018-06-02 20:51:43,433 : INFO : topic #16 (0.050): 0.013*\"countri\" + 0.010*\"relat\" + 0.009*\"soviet\" + 0.007*\"embassi\" + 0.007*\"war\" + 0.006*\"republ\" + 0.006*\"russia\" + 0.005*\"russian\" + 0.005*\"german\" + 0.005*\"foreign\"\n", + "2018-06-02 20:51:43,436 : INFO : topic #18 (0.050): 0.008*\"plai\" + 0.007*\"record\" + 0.007*\"team\" + 0.006*\"game\" + 0.006*\"album\" + 0.006*\"season\" + 0.005*\"award\" + 0.005*\"music\" + 0.005*\"leagu\" + 0.005*\"releas\"\n", + "2018-06-02 20:51:43,439 : INFO : topic #3 (0.050): 0.025*\"music\" + 0.008*\"plai\" + 0.008*\"instrument\" + 0.006*\"compos\" + 0.006*\"perform\" + 0.006*\"style\" + 0.005*\"string\" + 0.005*\"bass\" + 0.005*\"sound\" + 0.005*\"guitar\"\n", + "2018-06-02 20:51:43,442 : INFO : topic diff=0.335519, rho=0.333333\n", + "2018-06-02 20:51:43,444 : INFO : PROGRESS: pass 3, at document #4000/10000\n", + "2018-06-02 20:51:50,178 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:51:50,397 : INFO : topic #17 (0.050): 0.041*\"game\" + 0.015*\"player\" + 0.010*\"apollo\" + 0.009*\"dna\" + 0.009*\"moon\" + 0.008*\"space\" + 0.006*\"lunar\" + 0.006*\"calendar\" + 0.006*\"mission\" + 0.006*\"tree\"\n", + "2018-06-02 20:51:50,400 : INFO : topic #9 (0.050): 0.009*\"engin\" + 0.009*\"design\" + 0.008*\"air\" + 0.008*\"oper\" + 0.006*\"aircraft\" + 0.005*\"control\" + 0.005*\"power\" + 0.005*\"forc\" + 0.004*\"devic\" + 0.004*\"servic\"\n", + "2018-06-02 20:51:50,403 : INFO : topic #3 (0.050): 0.025*\"music\" + 0.008*\"instrument\" + 0.008*\"plai\" + 0.006*\"style\" + 0.006*\"danc\" + 0.006*\"compos\" + 0.006*\"perform\" + 0.005*\"sound\" + 0.005*\"string\" + 0.005*\"guitar\"\n", + "2018-06-02 20:51:50,406 : INFO : topic #10 (0.050): 0.006*\"effect\" + 0.006*\"diseas\" + 0.006*\"caus\" + 0.005*\"human\" + 0.005*\"anim\" + 0.005*\"bodi\" + 0.004*\"treatment\" + 0.004*\"medic\" + 0.004*\"studi\" + 0.004*\"drug\"\n", + "2018-06-02 20:51:50,409 : INFO : topic #0 (0.050): 0.008*\"god\" + 0.007*\"book\" + 0.006*\"christian\" + 0.005*\"centuri\" + 0.004*\"life\" + 0.004*\"human\" + 0.004*\"univers\" + 0.004*\"view\" + 0.003*\"philosophi\" + 0.003*\"believ\"\n", + "2018-06-02 20:51:50,413 : INFO : topic diff=0.311042, rho=0.333333\n", + "2018-06-02 20:51:50,415 : INFO : PROGRESS: pass 3, at document #6000/10000\n", + "2018-06-02 20:51:56,996 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:51:57,213 : INFO : topic #12 (0.050): 0.042*\"american\" + 0.014*\"english\" + 0.010*\"player\" + 0.010*\"politician\" + 0.009*\"born\" + 0.009*\"author\" + 0.008*\"french\" + 0.008*\"footbal\" + 0.007*\"singer\" + 0.006*\"actor\"\n", + "2018-06-02 20:51:57,215 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"program\" + 0.006*\"data\" + 0.006*\"languag\" + 0.005*\"function\" + 0.005*\"theori\" + 0.005*\"inform\" + 0.005*\"comput\" + 0.005*\"code\" + 0.005*\"valu\"\n", + "2018-06-02 20:51:57,217 : INFO : topic #11 (0.050): 0.017*\"parti\" + 0.014*\"govern\" + 0.012*\"elect\" + 0.011*\"polit\" + 0.009*\"presid\" + 0.008*\"member\" + 0.006*\"minist\" + 0.005*\"vote\" + 0.005*\"power\" + 0.005*\"right\"\n", + "2018-06-02 20:51:57,221 : INFO : topic #9 (0.050): 0.010*\"engin\" + 0.010*\"air\" + 0.008*\"design\" + 0.008*\"oper\" + 0.007*\"aircraft\" + 0.005*\"forc\" + 0.005*\"control\" + 0.005*\"power\" + 0.004*\"servic\" + 0.004*\"devic\"\n", + "2018-06-02 20:51:57,223 : INFO : topic #19 (0.050): 0.015*\"island\" + 0.008*\"river\" + 0.007*\"area\" + 0.006*\"water\" + 0.006*\"sea\" + 0.006*\"north\" + 0.006*\"lake\" + 0.005*\"south\" + 0.005*\"speci\" + 0.004*\"star\"\n", + "2018-06-02 20:51:57,228 : INFO : topic diff=0.278801, rho=0.333333\n", + "2018-06-02 20:51:57,230 : INFO : PROGRESS: pass 3, at document #8000/10000\n", + "2018-06-02 20:52:04,170 : INFO : merging changes from 2000 documents into a model of 10000 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-06-02 20:52:04,387 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"inform\" + 0.006*\"data\" + 0.006*\"program\" + 0.005*\"code\" + 0.005*\"languag\" + 0.005*\"function\" + 0.005*\"theori\" + 0.005*\"comput\" + 0.005*\"valu\"\n", + "2018-06-02 20:52:04,389 : INFO : topic #16 (0.050): 0.014*\"countri\" + 0.012*\"relat\" + 0.009*\"soviet\" + 0.008*\"embassi\" + 0.007*\"war\" + 0.007*\"republ\" + 0.007*\"foreign\" + 0.006*\"german\" + 0.006*\"germani\" + 0.006*\"intern\"\n", + "2018-06-02 20:52:04,391 : INFO : topic #8 (0.050): 0.018*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.007*\"publish\" + 0.005*\"charact\" + 0.005*\"novel\" + 0.005*\"seri\" + 0.005*\"life\" + 0.005*\"fiction\" + 0.003*\"award\"\n", + "2018-06-02 20:52:04,394 : INFO : topic #7 (0.050): 0.012*\"jpg\" + 0.012*\"art\" + 0.010*\"paint\" + 0.010*\"file\" + 0.008*\"color\" + 0.007*\"food\" + 0.005*\"museum\" + 0.005*\"centuri\" + 0.004*\"artist\" + 0.004*\"design\"\n", + "2018-06-02 20:52:04,397 : INFO : topic #9 (0.050): 0.010*\"engin\" + 0.009*\"air\" + 0.009*\"oper\" + 0.008*\"design\" + 0.006*\"aircraft\" + 0.005*\"power\" + 0.005*\"control\" + 0.005*\"forc\" + 0.004*\"servic\" + 0.004*\"devic\"\n", + "2018-06-02 20:52:04,401 : INFO : topic diff=0.273119, rho=0.333333\n", + "2018-06-02 20:52:23,032 : INFO : -8.340 per-word bound, 323.9 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", + "2018-06-02 20:52:23,033 : INFO : PROGRESS: pass 3, at document #10000/10000\n", + "2018-06-02 20:52:29,508 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:52:29,726 : INFO : topic #0 (0.050): 0.008*\"god\" + 0.006*\"book\" + 0.005*\"christian\" + 0.005*\"centuri\" + 0.005*\"life\" + 0.004*\"univers\" + 0.004*\"philosophi\" + 0.004*\"human\" + 0.004*\"jewish\" + 0.003*\"studi\"\n", + "2018-06-02 20:52:29,728 : INFO : topic #13 (0.050): 0.012*\"war\" + 0.007*\"armi\" + 0.007*\"king\" + 0.007*\"forc\" + 0.006*\"british\" + 0.005*\"militari\" + 0.005*\"battl\" + 0.005*\"roman\" + 0.004*\"french\" + 0.004*\"command\"\n", + "2018-06-02 20:52:29,731 : INFO : topic #8 (0.050): 0.018*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.006*\"publish\" + 0.006*\"charact\" + 0.005*\"novel\" + 0.005*\"seri\" + 0.005*\"life\" + 0.004*\"fiction\" + 0.004*\"award\"\n", + "2018-06-02 20:52:29,733 : INFO : topic #19 (0.050): 0.019*\"island\" + 0.009*\"river\" + 0.008*\"lake\" + 0.007*\"area\" + 0.007*\"water\" + 0.006*\"sea\" + 0.006*\"north\" + 0.005*\"south\" + 0.004*\"speci\" + 0.004*\"land\"\n", + "2018-06-02 20:52:29,735 : INFO : topic #17 (0.050): 0.039*\"game\" + 0.015*\"player\" + 0.012*\"moon\" + 0.009*\"space\" + 0.009*\"dna\" + 0.008*\"calendar\" + 0.008*\"mar\" + 0.007*\"earth\" + 0.006*\"card\" + 0.006*\"orbit\"\n", + "2018-06-02 20:52:29,738 : INFO : topic diff=0.226472, rho=0.333333\n", + "2018-06-02 20:52:29,741 : INFO : PROGRESS: pass 4, at document #2000/10000\n", + "2018-06-02 20:52:36,158 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:52:36,375 : INFO : topic #11 (0.050): 0.016*\"parti\" + 0.014*\"govern\" + 0.012*\"elect\" + 0.010*\"polit\" + 0.009*\"presid\" + 0.007*\"member\" + 0.006*\"minist\" + 0.005*\"vote\" + 0.005*\"right\" + 0.005*\"support\"\n", + "2018-06-02 20:52:36,377 : INFO : topic #9 (0.050): 0.009*\"air\" + 0.008*\"design\" + 0.008*\"oper\" + 0.008*\"engin\" + 0.007*\"aircraft\" + 0.005*\"power\" + 0.005*\"forc\" + 0.005*\"control\" + 0.004*\"servic\" + 0.004*\"devic\"\n", + "2018-06-02 20:52:36,380 : INFO : topic #10 (0.050): 0.006*\"effect\" + 0.006*\"human\" + 0.005*\"caus\" + 0.005*\"anim\" + 0.005*\"diseas\" + 0.005*\"bodi\" + 0.005*\"studi\" + 0.004*\"medic\" + 0.004*\"treatment\" + 0.004*\"speci\"\n", + "2018-06-02 20:52:36,383 : INFO : topic #17 (0.050): 0.036*\"game\" + 0.014*\"player\" + 0.013*\"apollo\" + 0.011*\"moon\" + 0.009*\"space\" + 0.009*\"lunar\" + 0.008*\"mission\" + 0.008*\"earth\" + 0.007*\"orbit\" + 0.007*\"dna\"\n", + "2018-06-02 20:52:36,385 : INFO : topic #7 (0.050): 0.013*\"art\" + 0.012*\"jpg\" + 0.010*\"file\" + 0.009*\"paint\" + 0.006*\"color\" + 0.006*\"food\" + 0.006*\"museum\" + 0.005*\"centuri\" + 0.004*\"artist\" + 0.004*\"design\"\n", + "2018-06-02 20:52:36,389 : INFO : topic diff=0.207358, rho=0.316228\n", + "2018-06-02 20:52:36,391 : INFO : PROGRESS: pass 4, at document #4000/10000\n", + "2018-06-02 20:52:42,833 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:52:43,045 : INFO : topic #2 (0.050): 0.016*\"citi\" + 0.008*\"countri\" + 0.007*\"govern\" + 0.006*\"compani\" + 0.006*\"servic\" + 0.006*\"area\" + 0.005*\"industri\" + 0.005*\"econom\" + 0.005*\"intern\" + 0.005*\"popul\"\n", + "2018-06-02 20:52:43,047 : INFO : topic #5 (0.050): 0.010*\"centuri\" + 0.008*\"empir\" + 0.006*\"china\" + 0.006*\"india\" + 0.006*\"chines\" + 0.006*\"citi\" + 0.005*\"islam\" + 0.005*\"greek\" + 0.005*\"muslim\" + 0.004*\"period\"\n", + "2018-06-02 20:52:43,050 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.007*\"program\" + 0.007*\"data\" + 0.006*\"languag\" + 0.006*\"comput\" + 0.006*\"code\" + 0.005*\"inform\" + 0.005*\"function\" + 0.005*\"theori\" + 0.005*\"system\"\n", + "2018-06-02 20:52:43,053 : INFO : topic #13 (0.050): 0.012*\"war\" + 0.008*\"armi\" + 0.007*\"king\" + 0.007*\"forc\" + 0.006*\"british\" + 0.006*\"battl\" + 0.005*\"militari\" + 0.005*\"roman\" + 0.004*\"french\" + 0.004*\"command\"\n", + "2018-06-02 20:52:43,056 : INFO : topic #8 (0.050): 0.019*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.006*\"publish\" + 0.006*\"charact\" + 0.006*\"seri\" + 0.005*\"novel\" + 0.005*\"life\" + 0.004*\"fiction\" + 0.004*\"award\"\n", + "2018-06-02 20:52:43,060 : INFO : topic diff=0.197221, rho=0.316228\n", + "2018-06-02 20:52:43,063 : INFO : PROGRESS: pass 4, at document #6000/10000\n", + "2018-06-02 20:52:49,511 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:52:49,727 : INFO : topic #6 (0.050): 0.036*\"languag\" + 0.013*\"word\" + 0.012*\"english\" + 0.010*\"popul\" + 0.008*\"german\" + 0.006*\"dialect\" + 0.006*\"letter\" + 0.006*\"latin\" + 0.006*\"french\" + 0.005*\"vowel\"\n", + "2018-06-02 20:52:49,729 : INFO : topic #5 (0.050): 0.010*\"centuri\" + 0.009*\"empir\" + 0.007*\"greek\" + 0.006*\"india\" + 0.006*\"islam\" + 0.006*\"china\" + 0.006*\"chines\" + 0.005*\"muslim\" + 0.005*\"citi\" + 0.005*\"egypt\"\n", + "2018-06-02 20:52:49,731 : INFO : topic #7 (0.050): 0.012*\"jpg\" + 0.011*\"art\" + 0.010*\"file\" + 0.008*\"paint\" + 0.008*\"color\" + 0.006*\"food\" + 0.006*\"museum\" + 0.006*\"centuri\" + 0.004*\"design\" + 0.004*\"artist\"\n", + "2018-06-02 20:52:49,733 : INFO : topic #10 (0.050): 0.007*\"human\" + 0.006*\"effect\" + 0.006*\"caus\" + 0.005*\"diseas\" + 0.005*\"anim\" + 0.005*\"speci\" + 0.005*\"studi\" + 0.005*\"bodi\" + 0.004*\"medic\" + 0.004*\"drug\"\n", + "2018-06-02 20:52:49,736 : INFO : topic #16 (0.050): 0.016*\"countri\" + 0.013*\"relat\" + 0.009*\"embassi\" + 0.009*\"soviet\" + 0.008*\"republ\" + 0.007*\"war\" + 0.007*\"foreign\" + 0.007*\"germani\" + 0.006*\"russia\" + 0.006*\"german\"\n", + "2018-06-02 20:52:49,739 : INFO : topic diff=0.184708, rho=0.316228\n", + "2018-06-02 20:52:49,742 : INFO : PROGRESS: pass 4, at document #8000/10000\n", + "2018-06-02 20:52:56,712 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:52:56,943 : INFO : topic #16 (0.050): 0.015*\"countri\" + 0.012*\"relat\" + 0.009*\"soviet\" + 0.009*\"embassi\" + 0.008*\"war\" + 0.007*\"republ\" + 0.007*\"foreign\" + 0.007*\"germani\" + 0.007*\"german\" + 0.006*\"russia\"\n", + "2018-06-02 20:52:56,945 : INFO : topic #3 (0.050): 0.026*\"music\" + 0.009*\"plai\" + 0.008*\"instrument\" + 0.007*\"perform\" + 0.007*\"guitar\" + 0.007*\"compos\" + 0.006*\"danc\" + 0.006*\"sound\" + 0.006*\"style\" + 0.006*\"song\"\n", + "2018-06-02 20:52:56,948 : INFO : topic #5 (0.050): 0.010*\"centuri\" + 0.009*\"india\" + 0.009*\"empir\" + 0.007*\"islam\" + 0.006*\"muslim\" + 0.006*\"greek\" + 0.005*\"citi\" + 0.005*\"china\" + 0.005*\"indian\" + 0.005*\"arab\"\n", + "2018-06-02 20:52:56,951 : INFO : topic #4 (0.050): 0.009*\"function\" + 0.008*\"field\" + 0.007*\"space\" + 0.007*\"point\" + 0.007*\"theori\" + 0.006*\"measur\" + 0.006*\"equat\" + 0.005*\"energi\" + 0.005*\"exampl\" + 0.005*\"light\"\n", + "2018-06-02 20:52:56,954 : INFO : topic #9 (0.050): 0.010*\"engin\" + 0.009*\"air\" + 0.009*\"oper\" + 0.008*\"design\" + 0.007*\"aircraft\" + 0.005*\"power\" + 0.005*\"control\" + 0.005*\"forc\" + 0.004*\"servic\" + 0.004*\"devic\"\n", + "2018-06-02 20:52:56,958 : INFO : topic diff=0.188661, rho=0.316228\n", + "2018-06-02 20:53:15,556 : INFO : -8.327 per-word bound, 321.1 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", + "2018-06-02 20:53:15,557 : INFO : PROGRESS: pass 4, at document #10000/10000\n", + "2018-06-02 20:53:22,034 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", + "2018-06-02 20:53:22,254 : INFO : topic #8 (0.050): 0.019*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.006*\"publish\" + 0.006*\"charact\" + 0.005*\"seri\" + 0.005*\"novel\" + 0.005*\"life\" + 0.004*\"fiction\" + 0.004*\"award\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-06-02 20:53:22,258 : INFO : topic #17 (0.050): 0.040*\"game\" + 0.016*\"player\" + 0.012*\"moon\" + 0.009*\"space\" + 0.009*\"calendar\" + 0.009*\"dna\" + 0.008*\"mar\" + 0.008*\"earth\" + 0.008*\"card\" + 0.007*\"month\"\n", + "2018-06-02 20:53:22,260 : INFO : topic #12 (0.050): 0.046*\"american\" + 0.016*\"english\" + 0.012*\"politician\" + 0.012*\"player\" + 0.010*\"author\" + 0.009*\"footbal\" + 0.009*\"french\" + 0.008*\"singer\" + 0.007*\"actor\" + 0.007*\"canadian\"\n", + "2018-06-02 20:53:22,262 : INFO : topic #11 (0.050): 0.015*\"parti\" + 0.014*\"govern\" + 0.012*\"elect\" + 0.011*\"polit\" + 0.009*\"presid\" + 0.008*\"member\" + 0.006*\"minist\" + 0.006*\"right\" + 0.005*\"power\" + 0.005*\"support\"\n", + "2018-06-02 20:53:22,265 : INFO : topic #14 (0.050): 0.016*\"church\" + 0.014*\"univers\" + 0.012*\"school\" + 0.011*\"law\" + 0.009*\"colleg\" + 0.008*\"court\" + 0.007*\"educ\" + 0.006*\"student\" + 0.005*\"council\" + 0.005*\"institut\"\n", + "2018-06-02 20:53:22,268 : INFO : topic diff=0.155145, rho=0.316228\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7min 31s, sys: 9min 48s, total: 17min 19s\n", + "Wall time: 4min 29s\n" + ] + } + ], + "source": [ + "%%time\n", + "# %%prun\n", + "\n", + "lda = LdaModel(\n", + " corpus,\n", + " chunksize=2000,\n", + " passes=5,\n", + " num_topics=20,\n", + " id2word=dictionary,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.008*\"god\" + 0.006*\"book\" + 0.005*\"christian\" + 0.005*\"centuri\" + 0.005*\"life\" + 0.004*\"univers\" + 0.004*\"philosophi\" + 0.004*\"human\" + 0.004*\"jewish\" + 0.003*\"theori\"'),\n", + " (1,\n", + " '0.009*\"cell\" + 0.009*\"acid\" + 0.008*\"metal\" + 0.008*\"chemic\" + 0.007*\"water\" + 0.007*\"atom\" + 0.007*\"carbon\" + 0.006*\"process\" + 0.006*\"produc\" + 0.006*\"protein\"'),\n", + " (2,\n", + " '0.016*\"citi\" + 0.008*\"countri\" + 0.006*\"govern\" + 0.006*\"compani\" + 0.006*\"servic\" + 0.006*\"industri\" + 0.006*\"area\" + 0.006*\"econom\" + 0.005*\"intern\" + 0.005*\"trade\"'),\n", + " (3,\n", + " '0.031*\"music\" + 0.009*\"instrument\" + 0.009*\"plai\" + 0.007*\"perform\" + 0.007*\"compos\" + 0.006*\"guitar\" + 0.006*\"sound\" + 0.006*\"song\" + 0.006*\"style\" + 0.006*\"danc\"'),\n", + " (4,\n", + " '0.008*\"field\" + 0.008*\"function\" + 0.007*\"theori\" + 0.007*\"space\" + 0.007*\"measur\" + 0.007*\"point\" + 0.006*\"light\" + 0.006*\"equat\" + 0.005*\"exampl\" + 0.005*\"energi\"'),\n", + " (5,\n", + " '0.010*\"centuri\" + 0.008*\"empir\" + 0.008*\"india\" + 0.007*\"islam\" + 0.006*\"muslim\" + 0.005*\"citi\" + 0.005*\"chines\" + 0.005*\"china\" + 0.005*\"greek\" + 0.005*\"arab\"'),\n", + " (6,\n", + " '0.037*\"languag\" + 0.013*\"word\" + 0.012*\"english\" + 0.011*\"popul\" + 0.007*\"latin\" + 0.006*\"german\" + 0.006*\"dialect\" + 0.005*\"letter\" + 0.005*\"vowel\" + 0.005*\"mean\"'),\n", + " (7,\n", + " '0.013*\"art\" + 0.011*\"jpg\" + 0.010*\"file\" + 0.009*\"paint\" + 0.007*\"color\" + 0.006*\"food\" + 0.006*\"museum\" + 0.006*\"centuri\" + 0.004*\"artist\" + 0.004*\"design\"'),\n", + " (8,\n", + " '0.019*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.006*\"publish\" + 0.006*\"charact\" + 0.005*\"seri\" + 0.005*\"novel\" + 0.005*\"life\" + 0.004*\"fiction\" + 0.004*\"award\"'),\n", + " (9,\n", + " '0.010*\"engin\" + 0.009*\"air\" + 0.009*\"design\" + 0.008*\"oper\" + 0.006*\"aircraft\" + 0.005*\"power\" + 0.005*\"forc\" + 0.005*\"control\" + 0.004*\"servic\" + 0.004*\"devic\"'),\n", + " (10,\n", + " '0.007*\"human\" + 0.006*\"effect\" + 0.005*\"caus\" + 0.005*\"diseas\" + 0.005*\"anim\" + 0.005*\"studi\" + 0.005*\"bodi\" + 0.005*\"medic\" + 0.004*\"speci\" + 0.004*\"treatment\"'),\n", + " (11,\n", + " '0.015*\"parti\" + 0.014*\"govern\" + 0.012*\"elect\" + 0.011*\"polit\" + 0.009*\"presid\" + 0.008*\"member\" + 0.006*\"minist\" + 0.006*\"right\" + 0.005*\"power\" + 0.005*\"support\"'),\n", + " (12,\n", + " '0.046*\"american\" + 0.016*\"english\" + 0.012*\"politician\" + 0.012*\"player\" + 0.010*\"author\" + 0.009*\"footbal\" + 0.009*\"french\" + 0.008*\"singer\" + 0.007*\"actor\" + 0.007*\"canadian\"'),\n", + " (13,\n", + " '0.012*\"war\" + 0.008*\"king\" + 0.007*\"armi\" + 0.007*\"forc\" + 0.006*\"british\" + 0.005*\"battl\" + 0.005*\"militari\" + 0.005*\"roman\" + 0.004*\"french\" + 0.004*\"command\"'),\n", + " (14,\n", + " '0.016*\"church\" + 0.014*\"univers\" + 0.012*\"school\" + 0.011*\"law\" + 0.009*\"colleg\" + 0.008*\"court\" + 0.007*\"educ\" + 0.006*\"student\" + 0.005*\"council\" + 0.005*\"institut\"'),\n", + " (15,\n", + " '0.007*\"exampl\" + 0.007*\"program\" + 0.006*\"data\" + 0.006*\"inform\" + 0.006*\"code\" + 0.005*\"languag\" + 0.005*\"function\" + 0.005*\"valu\" + 0.004*\"comput\" + 0.004*\"theori\"'),\n", + " (16,\n", + " '0.015*\"countri\" + 0.012*\"relat\" + 0.009*\"soviet\" + 0.008*\"embassi\" + 0.008*\"republ\" + 0.007*\"war\" + 0.007*\"russian\" + 0.007*\"foreign\" + 0.006*\"german\" + 0.006*\"poland\"'),\n", + " (17,\n", + " '0.040*\"game\" + 0.016*\"player\" + 0.012*\"moon\" + 0.009*\"space\" + 0.009*\"calendar\" + 0.009*\"dna\" + 0.008*\"mar\" + 0.008*\"earth\" + 0.008*\"card\" + 0.007*\"month\"'),\n", + " (18,\n", + " '0.009*\"plai\" + 0.008*\"team\" + 0.008*\"record\" + 0.007*\"album\" + 0.007*\"game\" + 0.006*\"season\" + 0.005*\"releas\" + 0.005*\"award\" + 0.005*\"leagu\" + 0.005*\"band\"'),\n", + " (19,\n", + " '0.020*\"island\" + 0.010*\"river\" + 0.008*\"lake\" + 0.007*\"area\" + 0.007*\"water\" + 0.006*\"sea\" + 0.006*\"north\" + 0.006*\"south\" + 0.005*\"land\" + 0.005*\"mountain\"')]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lda.show_topics(20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index a01dca9842..830a0d46d5 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -9,9 +9,18 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The line_profiler extension is already loaded. To reload it, use:\n", + " %reload_ext line_profiler\n" + ] + } + ], "source": [ "%load_ext line_profiler\n", "from gensim.models.nmf import Nmf as GensimNmf\n", @@ -37,38 +46,43 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "from gensim.parsing.preprocessing import preprocess_documents\n", "\n", - "documents = preprocess_documents(fetch_20newsgroups().data[:100])" + "documents = preprocess_documents(fetch_20newsgroups().data[:1000])" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-04-23 05:38:42,334 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-04-23 05:38:42,353 : INFO : built Dictionary(4357 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 100 documents (total 14240 corpus positions)\n" + "2018-06-03 15:46:51,379 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-06-03 15:46:51,576 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n", + "2018-06-03 15:46:51,605 : INFO : discarding 14411 tokens: [('bricklin', 2), ('bumper', 4), ('edu', 661), ('funki', 4), ('lerxst', 2), ('line', 989), ('organ', 952), ('rac', 1), ('subject', 1000), ('tellm', 2)]...\n", + "2018-06-03 15:46:51,606 : INFO : keeping 3211 tokens which were in no less than 5 and no more than 500 (=50.0%) documents\n", + "2018-06-03 15:46:51,614 : INFO : resulting dictionary: Dictionary(3211 unique tokens: ['addit', 'bodi', 'brought', 'call', 'car']...)\n" ] } ], "source": [ "from gensim.corpora import Dictionary\n", "\n", - "dictionary = Dictionary(documents)" + "dictionary = Dictionary(documents)\n", + "\n", + "dictionary.filter_extremes()" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -90,15 +104,15 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 270 ms, sys: 340 ms, total: 610 ms\n", - "Wall time: 197 ms\n" + "CPU times: user 1.45 s, sys: 891 ms, total: 2.34 s\n", + "Wall time: 1.29 s\n" ] } ], @@ -114,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -123,16 +137,16 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "144.36518804676317" + "482.0895496423899" ] }, - "execution_count": 30, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -150,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 29, "metadata": { "scrolled": true }, @@ -159,15 +173,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-04-23 05:38:44,984 : INFO : Loss (no outliers): 172.38983686111413\tLoss (with outliers): 172.38983686111413\n" + "2018-06-03 15:46:54,131 : INFO : Loss (no outliers): 625.9286431543794\tLoss (with outliers): 625.9286431543794\n", + "2018-06-03 15:46:55,025 : INFO : Loss (no outliers): 520.2123565007096\tLoss (with outliers): 520.2123565007096\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.55 s, sys: 1.89 s, total: 3.44 s\n", - "Wall time: 961 ms\n" + "CPU times: user 2.38 s, sys: 2.21 s, total: 4.59 s\n", + "Wall time: 1.78 s\n" ] } ], @@ -175,31 +190,32 @@ "%%time\n", "# %%prun\n", "\n", - "np.random.seed(42)\n", + "PASSES = 2\n", "\n", "gensim_nmf = GensimNmf(\n", " corpus,\n", " chunksize=len(corpus),\n", " num_topics=5,\n", " id2word=dictionary,\n", - " lambda_=1000.,\n", + " lambda_=1000,\n", " kappa=1.,\n", + " passes=PASSES,\n", " normalize=False\n", ")" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ - "# %lprun -f GensimNmf._solveproj GensimNmf(corpus, chunksize=len(corpus), num_topics=5, id2word=dictionary, lambda_=1000., kappa=1.)" + "# %lprun -f GensimNmf._solve_w GensimNmf(corpus, chunksize=len(corpus), num_topics=5, id2word=dictionary, lambda_=1., kappa=1.)" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -209,16 +225,16 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "154.25266942061842" + "498.12465073357987" ] }, - "execution_count": 34, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -229,25 +245,25 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.243*\"armenian\" + 0.111*\"russian\" + 0.095*\"peopl\" + 0.071*\"genocid\" + 0.070*\"turkish\" + 0.070*\"jew\" + 0.067*\"armi\" + 0.061*\"ottoman\" + 0.059*\"post\" + 0.057*\"turk\"'),\n", + " '0.077*\"jesu\" + 0.060*\"peopl\" + 0.042*\"matthew\" + 0.038*\"said\" + 0.030*\"dai\" + 0.028*\"come\" + 0.024*\"christian\" + 0.024*\"know\" + 0.024*\"sai\" + 0.022*\"time\"'),\n", " (1,\n", - " '0.070*\"year\" + 0.051*\"insur\" + 0.046*\"car\" + 0.042*\"edu\" + 0.034*\"rate\" + 0.030*\"live\" + 0.029*\"state\" + 0.028*\"subject\" + 0.028*\"line\" + 0.024*\"think\"'),\n", + " '0.039*\"argument\" + 0.025*\"jesu\" + 0.023*\"exampl\" + 0.023*\"conclus\" + 0.022*\"true\" + 0.019*\"premis\" + 0.017*\"gener\" + 0.015*\"question\" + 0.015*\"like\" + 0.014*\"occur\"'),\n", " (2,\n", - " '0.106*\"orbit\" + 0.071*\"space\" + 0.056*\"launch\" + 0.051*\"mission\" + 0.046*\"probe\" + 0.038*\"shuttl\" + 0.037*\"option\" + 0.035*\"titan\" + 0.034*\"earth\" + 0.028*\"power\"'),\n", + " '0.206*\"max\" + 0.005*\"space\" + 0.005*\"nasa\" + 0.004*\"umd\" + 0.004*\"mission\" + 0.004*\"armenian\" + 0.004*\"orbit\" + 0.003*\"applic\" + 0.003*\"father\" + 0.003*\"shuttl\"'),\n", " (3,\n", - " '0.027*\"reserv\" + 0.022*\"center\" + 0.021*\"close\" + 0.018*\"naval\" + 0.017*\"dai\" + 0.016*\"inform\" + 0.014*\"time\" + 0.013*\"includ\" + 0.013*\"marin\" + 0.012*\"corp\"'),\n", + " '0.058*\"health\" + 0.056*\"max\" + 0.033*\"us\" + 0.026*\"report\" + 0.022*\"public\" + 0.022*\"state\" + 0.021*\"diseas\" + 0.020*\"infect\" + 0.019*\"user\" + 0.019*\"ag\"'),\n", " (4,\n", - " '0.048*\"scsi\" + 0.039*\"probe\" + 0.029*\"titan\" + 0.029*\"us\" + 0.028*\"earth\" + 0.026*\"observ\" + 0.023*\"edu\" + 0.023*\"launch\" + 0.021*\"atmospher\" + 0.019*\"satellit\"')]" + " '0.181*\"armenian\" + 0.093*\"good\" + 0.066*\"turkish\" + 0.064*\"post\" + 0.064*\"russian\" + 0.055*\"genocid\" + 0.051*\"excel\" + 0.047*\"com\" + 0.045*\"articl\" + 0.045*\"turk\"')]" ] }, - "execution_count": 35, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -256,6 +272,41 @@ "gensim_nmf.show_topics()" ] }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['dfo', 'vttoulu', 'tko', 'vtt', 'foxvog', 'dougla', 'subject', 'reword', 'second', 'amend', 'idea', 'organ', 'vtt', 'line', 'articl', 'cdt', 'stratu', 'com', 'tavar', 'write', 'articl', 'dfo', 'vttoulu', 'tko', 'vtt', 'foxvog', 'dougla', 'write', 'articl', 'cdt', 'stratu', 'com', 'tavar', 'write', 'articl', 'jrutledg', 'ulowel', 'edu', 'john', 'lawrenc', 'rutledg', 'write', 'massiv', 'destruct', 'power', 'modern', 'weapon', 'make', 'cost', 'accident', 'crimial', 'usag', 'weapon', 'great', 'weapon', 'mass', 'destruct', 'need', 'control', 'govern', 'individu', 'access', 'result', 'needless', 'death', 'million', 'make', 'right', 'peopl', 'bear', 'modern', 'weapon', 'non', 'exist', 'thank', 'state', 'come', 'needless', 'disagre', 'count', 'believ', 'individu', 'right', 'weapon', 'mass', 'destruct', 'hard', 'believ', 'support', 'neighbor', 'right', 'nuclear', 'weapon', 'biolog', 'weapon', 'nerv', 'ga', 'properti', 'agre', 'keep', 'weapon', 'mass', 'destruct', 'hand', 'individu', 'hope', 'sign', 'blank', 'check', 'cours', 'term', 'rigidli', 'defin', 'doug', 'foxvog', 'sai', 'weapon', 'mass', 'destruct', 'mean', 'cbw', 'nuke', 'sarah', 'bradi', 'sai', 'weapon', 'mass', 'destruct', 'mean', 'street', 'sweeper', 'shotgun', 'semi', 'automat', 'sk', 'rifl', 'doubt', 'us', 'term', 'quot', 'allegedli', 'john', 'lawrenc', 'rutledg', 'sai', 'weapon', 'mass', 'destruct', 'immedi', 'follow', 'thousand', 'peopl', 'kill', 'year', 'handgun', 'number', 'easili', 'reduc', 'put', 'reason', 'restrict', 'rutledg', 'mean', 'term', 'read', 'articl', 'present', 'argument', 'weapon', 'mass', 'destruct', 'commonli', 'understood', 'switch', 'topic', 'point', 'evid', 'weapon', 'allow', 'later', 'analysi', 'given', 'understand', 'consid', 'class', 'cdt', 'rocket', 'stratu', 'com', 'believ', 'speak', 'compani', 'cdt', 'vo', 'stratu', 'com', 'write', 'todai', 'special', 'investor', 'packet', 'doug', 'foxvog', 'dougla', 'foxvog', 'vtt']\n" + ] + }, + { + "data": { + "text/plain": [ + "array([[17.4492155 ],\n", + " [10.47633717],\n", + " [ 0. ],\n", + " [ 5.74474046],\n", + " [ 4.91181848]])" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DOC_IDX = 5\n", + "\n", + "print(documents[DOC_IDX])\n", + "\n", + "gensim_nmf.get_document_topics(corpus[DOC_IDX])" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -275,17 +326,17 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -298,7 +349,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -307,7 +358,7 @@ "(183, 256)" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -326,15 +377,15 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 252 ms, sys: 252 ms, total: 504 ms\n", - "Wall time: 247 ms\n" + "CPU times: user 198 ms, sys: 241 ms, total: 439 ms\n", + "Wall time: 183 ms\n" ] } ], @@ -349,17 +400,17 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 15, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -377,7 +428,18 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "np.random.seed(42)\n", + "\n", + "img_corpus = matutils.Dense2Corpus(img_matrix[np.random.choice(img_matrix.shape[0], img_matrix.shape[0], replace=False)].T)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, "metadata": { "scrolled": true }, @@ -386,19 +448,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-04-23 04:48:55,768 : INFO : Loss (no outliers): 4649.176186445958\tLoss (with outliers): 4649.176186445958\n", - "2018-04-23 04:48:56,545 : INFO : Loss (no outliers): 2545.831439439685\tLoss (with outliers): 2545.831439439685\n", - "2018-04-23 04:48:56,860 : INFO : Loss (no outliers): 2157.622569525167\tLoss (with outliers): 2157.622569525167\n", - "2018-04-23 04:48:57,051 : INFO : Loss (no outliers): 2111.146762974082\tLoss (with outliers): 2111.146762974082\n", - "2018-04-23 04:48:57,170 : INFO : Loss (no outliers): 1428.3477896008337\tLoss (with outliers): 1428.3477896008337\n" + "2018-06-02 20:40:19,571 : INFO : Loss (no outliers): 9092.939650164284\tLoss (with outliers): 9092.939650164284\n", + "2018-06-02 20:40:19,766 : INFO : Loss (no outliers): 5796.750747142226\tLoss (with outliers): 5796.750747142226\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.6 s, sys: 116 ms, total: 1.72 s\n", - "Wall time: 1.57 s\n" + "CPU times: user 401 ms, sys: 311 ms, total: 712 ms\n", + "Wall time: 312 ms\n" ] } ], @@ -407,25 +466,21 @@ "\n", "import itertools\n", "\n", - "np.random.seed(42)\n", - "\n", - "img_corpus = matutils.Dense2Corpus(img_matrix[np.random.choice(img_matrix.shape[0], img_matrix.shape[0], replace=False)].T)\n", - "\n", "gensim_nmf = GensimNmf(\n", " img_corpus,\n", - " chunksize=40,\n", + " chunksize=len(corpus),\n", " num_topics=10,\n", - " passes=1,\n", + " passes=2,\n", " id2word={k: k for k in range(img_matrix.shape[1])},\n", - " lambda_=1000.,\n", - " kappa=1.,\n", + " lambda_=1000,\n", + " kappa=1,\n", " normalize=False\n", ")" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -442,17 +497,17 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUKElEQVR4nF3925IkSZIsBjKLqJq5R2RmVff0DM4BdgECEWjf9v9/ZWmXsA8L4My59ExVZUaEu5mqCO+DqEVWn5zpumWGu5le5MLMIsJ/mikATIGAv25nojXLMNe2w9V9f711P95+e3uex4wIKb0hRDCRAE0BASDaHR+Nk526ndPdScwwnNSUmWD8amDq45lEvt7+2PoxIYmEtQMAYIT3jQTatkEGc7ARApDKGZnHzKDf50y+6EzFxExlhkiTJFCAASThUgruJhh8Yx7qCJp7zmj4x1+ZAkHQCCoAGSMFAIIkAQDBzx8gRIIABYOZjEYnIKw/RdZPEBKERDKV9TskBIoA14dy/U+AGDElgg5OIgGmMjIVkUlmKiyQuR6J66s+vxrrc2kACSGBSaWSuR6ojXo9SiCAgSF4GJJEhAynt3NzGx9vzzFmZAoGb1p7DtU3OoIkEiTdoRgz0pxECprIBA1IThKpyIRw6FSOBFM0AhRJkICShBgECEuY1r6mMpSZEmJkRJ6aMHqqfovi9WhGwIx00oiUmPW8QFqttLHNkCBw7VjgDBgpkewdRpofJPM8RmZtHMwM68daYr+dH2FIGi1p1rplQkYzJ2nmzJxnCBCQ5qQ8CEnTzCAKRFpCSYeRIgAD6udhDvM6NaIEtuMZECKTBJ3mmEnGSRobZDTJTCk3czdzIBIAxRYjZHDSjK6WACURgkgExlSdJ5hSRtARgjJEJASYWe+yZCrQA9sdRzaFOZEEzP2E0poREkjAiFCuxTdPzImgMc1IkAnkOrLmACARpNPoxuZyDwUFKZG2a4JJgSbS3LsdQR8TIGlpJGgNgebNu3s3PAMJJvpUwOGEmZHNzBCxdgc0Q0IgKZQlSSLOBBJ0iKB7833XSE4NMwkRgkkglJTJjAm6W4RSdIDQzKSRNN96KmbUUaWbWRuCuVnW2gvIpGjubq15b/IWERSUMQK0xkgSghqt9Zv7JGiQFAqDSDc36623tvW96/3MkSK8wdBbg5wOa24GKNf705tBnxbM6QwzGUSRxiSo1nzbYQkKdKltg/AAhEwTW++RojcnE2kkSQmgk9a2ew/MAxIAtj7CPRKikZAEUKB5c996t95979nbzAlBGc9AM4ycBqTl5rZt94anFGVGLQ0irbX03re2b9vLJnvmGQjcSbL3TXBzWGutYdhl3613+2k/2xaNYdRMgjQvM4XLWaWCRgEAIssqSIpgstne/BwB0JYVphnN+nbfU+OBFAC17QxzJ+hGc7l72ZbevO17b9vu99ts28wJKCMeQ46waWTKc3d2V+Sn5SfNUDdvOa8cj5FHwmhpXwzGfdtTTgRa3xv8mJmWgmj+08PBDE6ZuRlEkkSdAWmZa6PVozOzDKygDIit3bobWDtrzBTMaOat7YmtKURBrbdh3qKOh2TmSpLm7q213rat3W/Te9MAlDHT0s+WEgk5zGmIiCzvAdLlyOVNISkjwnLQ4J7tzlN+326RpkC2tjUivK4A2Np1Agh6j2Y0CzMRMFt7iXonGI1maV7WDstqKE30bdtdAanckIXJzOh9u92lrYXnWgA3rxsAk8xNoLG11vq+7/12619eD98jB6Wc085scQowSM22RgcSpHFdAXOJImlmZjTmRGYz2pb9FSf85XabaTmO2TKMqXUFZH33zytgbZub0TkpQaTZsouZaVrGOpWRUiaUFIQMKsjMQGRKEJCsy01j224vmZ0AJMAay62vQIR1hmmte++3/XZ72b5+PfyWOgnFmP0YPHaRBqnPrdNzfh55EfU2UloyMxiYoaQT5tx29mGkGZo00IYFx1hPSuvbpw0A22abw2DIWgCu858pJZGWUsQ8Z72AIKEWwECGH2fMIEhSkWkA6P12izClUoBoSsxIyUhdO0Fz89b6dru/vG7fvp3+mhqU4pz2OGLfEjAI3bbNLBRmphVCZU6kJTITRotkzMgOgjTrdMU8ewgk1J7TEHMia4v6ZqwA0tm2zTYXZWWwKqyUUpiTQU2bgZmnnVlncC3PsCDPs7UxMkUBNGSkSYK1bZuscNWg1iCdEjJoWSa2zq67e9v2/b7d75t/FYYlxjmm8ek9Ugag+213GxmtKbw5nEyFpFQgDJBbnjPSpGRAQp4xNyWyzYwWE5AqwCLb7d7rcAO0/jJurSHPbYjGvilrjRXBCQTmDOU8ZsBUN4KqeC1jeM+ZAEWD6oLSbLu/vI659fSZnfry9bc+QVcmASKV7mattd7c9/vr65ft6ze1X4Fp0vkc6jqt7aKbuMfXl26Hsefx7IyoSBqioJhGBNnmDIBAJq2Z5YxwWW8km2pzUdvkffd6FZj7tvu9MXNrLnN6z2lGIJlpWbsdSs0EE6SVZ0ugYsaWUUGuSFeAJK3v99cxbl1B7Z6vr3tTmivKdbFCwPIAdQX2r9/Q/mIKk47HOHl+9I3J5mm3fP2y2eM8/UTK9gkmV2KTTASljjGCWUfLN2tEpkTzdKu4B5VBGa333gQD1Hzbb2NvgsbTZExuMW1mwGBmBsrKGbIyjPqcJMtBpbVyjkEzNEgAa28BN9Kx9bn15gHz2n8AhNJSIGnee+/btt/UboawFGX7sW29q6n1tC3v907tex45ky4RzMiwSTWAZnIjneZe6adZ5Wveunq0FivDFWH0vveusq++3e7tpTmIvIk41WeghSp5QRm3+luFkQQ9aUw60aJtwYQiaWwtrX71bdvAZjSxb2pbc4cbDDBVZmysK9D7drvdbvvtrvZinJ7pbPfztm9HNvU92LXfGqI5vbnLJRBmIj/jGRLK5Rad3lpzs+bw1nJaM9XZSIK1syY6lOZuruaN3HYBQDQZzHL5qpW7q9ZgnaOK+cwIhzcmIckM5lbLRTczzwr+Ws/e3E1mdYwuSICwCjLWL5gbYfXTZlZBpYGu1huGu7XZplxCMv/0+p9Bzc9fKzavj2//CG6sTV3/UN9Cujsoy8+P1YV1fB78umC5bGCakFm5W62MuVfeRxrN3M0B9i17czOZ1+aDPxEXVvRsNFYMJUPt0HpImszQvKE11/oNELQ/Per1/vVTXL788wBbm1EPn2IlxjGSBqUCY86hE/jx+zvMhzCDmSqY4Qq1JSGFBffMCogmgeQcR6oOk1R5jiC0JtSBULCOhnlYglf+XHkeSKN77/teNsBDCPbe3M2NFGCCOd0u4y8VZACBy6GrQKJaL2utmRF0uZu5tVF5uAVAMZVzCKTEsDHH0CG9/fEj3dAQk5Ei1+PXIqxXg+rt6wwAUhxzZi1RUnNGSFKkoBjHM6eyxY/2OE5JKUevI2D2eVpIemuty90Ag9zd1/IrZ9rIR5/8+Hjk4/l4zGMm02Zk2Nr02qYMzFx4nvHz+iJGgxFSZq14jjHHOuDm5/O09lB8//17mPcdmJyxzr5RhQFBlUArK0iqfze4ZUFXQJoiZ2Zmxhwx55zzjKFpetue52CmkiYsG1LxXGbMMeecEanBigPGGPVfYiJkNjs3frx/xMfxeMQxCzisd8W1AIqBEZkr2vHGvoc7kdGS1w4CQs4REhaEGXOceSrGGMmJNhmWkFvrG09ARk+4CKEry7TIaJYJIUdkgU2VJStTqTHO53EeY84Rk/rYjxGGhGiurOS5NkWZc47zsOcH/IGcJh2P8+PxPEfMCBBh42nTBz0i5owxP88fzZusbYa9tz3yy96A5DwRqcxUZsK8le25/qKYF/JmyhhzaiBCECMykfXJfd8hQeZSCFDQFagL7K35nFlIu1aSrFxWQjHHcRzHnHNMEo/7DDABa61HwLEub9YZGOO044H+oahI8Hw8zjFnZIISx8FogTZyzhEzlOWUSO8u792x3XZlblvLVM5hUSskidbazMuwC2TOkZcVhuYY7kNZoQIyoRREb96SZfgAkkm0JA0pT+9bOzICeZ2tT+eRypznsz3PMzJTld6psHGYZZk/KJkRMcd59NajkZ0Zk8J5nD/e3h/HOcY0SpjDAHRNW0lXJfYSaT5p3tg3dyY2UtOOjzieZ0aXNyjZ/uQEBdNcRrE2a8yRUxmq26SKgcqNmeq0SgZLuIEugbS29RhQORUsfI3Xssc8j/MMLIesXJceSmWUbaIQFtPmeR6thZttHjOYGMf5/vE4zjEjRCQzMmGbn90LScBCg1ioSmvW9+3mOpk+E/PkzMwMMMK8tz+9PkjNqc9/Vc7pOZUV4quuAMHW+5YNDFiZlblOgJQO3/ZtjlEYCdf/sOCyMizHGKHMJDVHiIRIugcXhAxpGcGzdTX38DkSwjjPj8dxzjkjZErMecJ797Zy6UW5ALTWorW22X6/v256P6cxcw6PlJTMTLP+j8yQlg1YxzYipoeWKV/3pv6+MAytO35do38IPvAzrvn5Bcp5+lmmtq4FKs++dg0SBWWGzTnG4S3dbHKOYGKM8/F4nmUFTKk5yAYgYtl+6ueXQVIiosikGTOJ00ZExqSNJugfF4AZ8+dbKOe0nMgskPh6/0VjXS++mDFeMUeFb/9dLPq5gBlz+DlDa7kyPo0QFqICScgIszlOcw/CJ2oB5hgfz+MYI+a0RCom2a3Zn55umZ0FLVQs0eWAFMRpMzIjqDlJtH98UGXUpqrQzQxlgVUXZI3l51cMVBHzJOwnIbfcWMHbV8hxvSAy5pg/T0DGOrcWEXNW/CcomRkZc3iTm8vHSAhzjPMcEZGZMqUyI0NXgFtfqE9sjaS5mfdNzVjfF5mZSiKjwf67E6Bp+XM1YkzYwPIs1xGoj137TzO4GVUJGEWYe3NbjyB84tMF12WMQ+ecfzoBFVFqBbIAlLLAJMbZBLSYfs5xJoQ5x9vzeY6Rc9IQzCG2DvsHYw5eob6Zmbe+3/W++I+TI0IxTXN6wz8sAJknAssOS/MMcUAVGyAzVdxQaw7SChinVfIHmgwu79ve3YgVFn8+FqVkjvM5zyhvSyKnaG6AubcQbDmcxCTs4JzDn1vbP84zIUSM9+M8zzNj0hDQMdV2LlyD17sLRjM3M2/ebl++4P2DyIl8FEA2zNya/3SDRb8rphblBiJjghMKXW6gdsibWywM+hONv5ItM2vNvUXBjJ9rwOUIcp55RgXUxuIiWiNs23f4+vMJSpkxp6AW02OcZyIZOT7OeY6hCDhCmmlz6jqdlyEuinKygmHzBlNmhOLkjMwMac7p7ecJWPc7tc4ipYxMXiHcOqFSxelSmtb3rjxvGbEFGmsRbtcCXH8yMzAz68PK6NSXRsxYaGkGgxm0OUVkZqOOMyFkjjHmjFAmqIBCMSMypSwTivU0KkeVKyXJzMhAzBYVBygiMtt1TD/dmyiaF5esDFb4hwv0liBZjjEiI8K0AsWohSKInCPZhGlKCMaf8EEFAooozKt4J7Uuo91ve59EhmQmk5SRU+WNc4xTEjLnMWLMqQwkUjJje7zN92NEpCH+hFIgY56Y6H0b+P7+cZwDOWxE5rQwwnL+d3FAIZo0p1BoDnLtHaSUTIJgGCMCESlkyAKYCSRhNESMZCcQ0gXxfOJ9ypyKzMJgTW7O3t3Rbvd7TGqeoTmWmEHJoEmpOGedgBhzzjmVQSGlaTy8nR/HmCFjABcuTCgmRRntqT/eHs9zIt1mZk6jAZyjcXmoT2DzHwATsjKTgE3Sio+L8WycZ3BmEgmaQZHKhBSa48hzRhYY8ZOyySV9UTJTWXF1ZmZOZjCBjABihiJkCYFhALNedEpiZmSCdb6pRAXXz3jOEDJ52QEphgcHRDvch96eY6YARWYqw2TTFI0mXQhf7ZKDzSHImrnBae4JDskyQSHHGTZHIjJICWZEIUqkJfLMmYkSKUFmxY6h9hRalJlA97qekSJi+syf7FC53YRAicoZWbFJZJZFpoCUFMNsHCNUYisrrYUyFCCLkTj0/hwjJOSMSCpEEmHNkCCK1yjuyGGtUUhrToNIuACfeeVI83TESKSycsQQQtd50dScIeozJivxSYUCKtSeJsK2ht5mQaCodbisOWubU4JJVJY+p8xZzFAKoIlmRBzjTIB+nX9AGcMGFcY5z6PhWeEX6ZFZNxxpbL4eSAKMZuaA92ZQevPS4JgAxXMoypENGmIIUoCpNBBR+KUjEdMkWFrLIGWWkvuYFe6XTXQX2F42bx40mrO87Of1K0csIbkwldRnLFIGmUaJzWWYChgYhIGKREIxGcowxLCHc2ZGUqbITFuSLqK1KD2OVspLJ9veNyjMEATNO4kcYhDJFBShnMLl6FIk6d6t9SAUcKBnNERQtDNWFF3eZEJKUGb7fl4RrKWZAY0JgrIyghlAkBNsl2vLGRkzMki4AgaU1zV6C0wqhASUk6E0MklzphSiXIwQKFJJsDUpS6ZUmDLc2W/7nTlaTBJmvpshbBbnIyojUaFMXdaSPrDfbdtmyzjZwS2yI4KyxhH0S4YDxUrZvd/uzzSzEnWYO9hcbgyQwVRCiQQnGLyi0ciIWXm5C2YMSKITxpBTJzNsIZTFUoFm5eEAIlNUkEqQza/8TqQBNKft9/svzKMfjxDc2s2JsBlmjCirhMx1b0A3wNm4v7b7dn7EKe6wPfKGOS1tC8GaYpmZWjU39f319WOUgWke3rfgrXEeNmAIRkxbp4YM+6Smf8qIdpzeaWmZRlnj1GRiBJS6sjeiDhVXno1MFGQEGFaOtOiLoki9bftXn75xKGGVo+cV7glaJEahwSQN1tjt/qW/7A87Oci6pJLA/vIx5C2n9PnzNLra/vrlO+QSWm/Deze77TabnaQmcugT4VoiNOmK80jSNri7wSxloDVC9Bifor8V5BHmrvUfKrSlUOvScMXQomUlZ0jBPEFFhEWZ+ozniZi5LBV5LUIdIDO3vm+3HqHZym1h6JydtrVGullCBNLqJ7zIt6JqzD1ba/T9ZlPNABGRK8PR51dd8fTKJGFlThagUm8hGohp8IhKrYzurhAplmGDVtjDBkWo8A0JnBW3Wu+gI0ZYhkXEzHkO5sxM0frinrg0lTRvG7bt/qW13izTQuKQZnrbv75pRopWAU3JIp2h58Pe33mmGei+v96Cv3yx+d6e0jwwObWOPaWivZWpzJlgAJb5pDLpBCbZeQCJE94sprVDc4U2Jb4kYOYiix9PY84WmVEBHk0gRDr77df9ebx+5BzGQDvPM2bKMBNpjn4dxhLxwntvm718/fKrfeycjEiFnqmp2HE3IQuxUvBcbIUFYczTEvS+3fzl20vY33718/f2EfF0TR0xM4UMGBCs6BrKSBa4zVM5pzXBojF4wBwTdGB5JAjhinRkgHJwhICIBXK0OlaXRUemAdb215vtt04lGJxznDEAL/YH9PhTAkGYmXtj324vlny6EaBdKap1KLMwO11hJ8zCQNM0WZ2g2+tL2Ldf/TkbYmgmmmWlA5OpWoBUmrKC40wykmNaEBStIgQkSiPxad6USHGpdRArpyjwoNV+cAm1AZi3vr/8cu8/vv7RW5BOD7dc+EVd+CuDqANm3lrbuL+8fjO2870FiFQDoN73e+PKKIVPLbckWt+YC01w3273yfvXvp1NcyDCo9flV5JCrju0yAiA7ASohMEI82YT5osb4MV788oPF0ga4mKrQKEtlnUhKSXh2F++/O317e2XP/YzjMaW4SVDlVhpKlY6v/Dn1vvOl2+//hOtHRuhidAMTQn95U8RahEwAGlp7f7SCUlVpGBGbPdbf/Scg5oztnQD4FEwgQmohDTNzM3vdLgVLCX3xqR3cgWRysoJYUu38AlNfC4J0SrbA3/aM/O237994cuXe29uBrZmC29coY/Z0rSvBMi9tc7t/vKVA29bMxmWkITe792WVvjnAxQz5U1xOYW+318OvH67P9+3iBMxx+jRnISKgy0tcZq0CHrrhJCBrASIxHXwC5rip9LgJ2R/vel6kjY/d7JOgdG87S9fv+b9Ze9GRSmBkBSdIGH7l+ejLQjTQFrx8wYzZubxePDcGjyU87T3t3/7bzORmWKWr4GUI9nvr7cO6/v29dvX+z/9y68H/qf/2/79gecZRsFbcxqJIAirmG5pIOqwlj/O1HLLZCbyeUC0m9nKwhQpCppgWIqG9rkeDZ8ufUEBZmZt2/e99+5mUklKrH0Cf+Z9OsnEJT1Y6GtvvfI6STQ0xJAyc85gywGsdMMgb67by7dfvn5J9m1/+fJ1u7++bvzl6z5v6hpeSkEzydKWeEzMlS1V3tatcwtZBwx7v2mndfRTmbDApQMoWGpZ+vwTT0OyXaxHXQkiY/jz/ft//v797+O30i5EnCNhypLx0No+WagVYamYRovmH3/Yxt+e74dgfXMMm6cpjx+TblssD0DBKG9NzZXba6Bv++uX+7a13qzF8/2Rj+fj/f2cz5KgZgpZpr0ycGQWbvgwUdbMtZDkbpHyVmUbPcyusK90DBd78xlK0dos4quiVrUMGd5/v//v2/v/8e//+v3tUII+zhHle5KAbS/5bq6UEpYBQybTHW8f/BG/fYjW7w3jlJvm499HJQDF1FwAc2A+founYG273W7bfd/vNJ/j+9v48fj4/sc5xyOjlAXKiShoSgmmklOZv/GMHMOmSKSf5nwmRkEFbY82AYW4tMxX9EfiUkdmW5mqys9AoYHn2x//6h//7cdvj+dQgDbnVEpLYWHtdppJWHlk5f9y1zHsqbdDtL51tJCZ8vk9LmPEXPigoLQc7zYq9di3vvXWm3k83x/n4/3j/e2MOJEXFpsXxlw5BpiQ3jFSsxBGyMJeMLJejvRepU3Kqu7T9fL8E4uFtltExFxcGIQMOx/v/26P78+3Y0wFyJipTNCk0mm5N4MiySYpAwK8KeWDzyFY3292+nmGNB9T0CpOI5l0JgnF8Y7nNIDNoML5jnh7fzwfj8fjOCNnAVWGKrESeAH0lRc+VQ9vABCc3nUYp1wyM5N7mSiuyjo6vdE2t8hQZkgtl9R/uUVAihjnB49nnpGVa1zhx8U6lHVZzF+FZDIMevPpI8rXc+m2Yvx0QVj5SLGrmjPLrtZxTDF0Huc5xphjRuYCaE1pnzzTT6emibJKy6UFgVU3c9n0T7+Llblcz1UPKLbW5HNqacskIFkLcMQ5I5AFIXyyByQzL2X6pdciMDHh7uljpqrop00jFKOc358WYSHPS49SOOMcxzMIvH08ns/jOMaIgk8rg86LZ5KwNMlFWeUny0hkZq67RiKTi7n6mRbTaNbdC422UPvlbnk83qYYJWkhlHE0jmBErojxT2w3HfM5ZW455GbT83PxFExkec39lvuP5xzB2vJCOs2QdCeakogRQUZiPIPZ0rnz8cfb8TjOkRmKnBGAsOjgSnjxCU3ECkhxYa9TIsmbmowRbLmMf8oIs8Ztd77uN8tzjucxsv3lpeH9xzzrVbPS3Iis4wsYg7RkgUsUzTE+pqx5SuZ0gy2VbWutoIDsW99esMfbYNxeTkPUbkgGWPNG50FkRDTEzENdE4fh5sf7o5JnVyAjQsalmPq5ABd7Ua6dn8rSKbinf0FkdoU5CckSlAHemt2+Gr69fm3xPI+3j2e2/aVToweWpkFKxHjCxqMdM8tE6KpBEkBjhmjeMsTGpTOEGPNEhweM3vp2k++9Jyjv4pThWgBvzRxTOS1BEwwZ0w4Yph3vjzjHmBExY4XM68nWwb94SGD+tF/FCUiSrG3IiGYlPTXSLGmAN/d+83x5/brNfraIjHbr3bZWVVFc/G2eFpxPP2fCEVXz4VmRD4w5l7TpOtyZshXkdLcN6N9eti25bTv1+st96vk8ZyYCXpgbe8PJTLatlYmP8QjH4POYMGvuVNTXruyprNjny5fBo8mcRjCR5u6tO19/bTjP1qJBCsDcaZ65bdZfftG83W/bGZqtNbZWhPD6SBRFlhmMopkaIy/b5VX/oxJO5bp/BAQa3Vvv++6zEe3L7k7zvpt9+8uMeCMtK5yDGWne28iY4VhV7wFnQpxCM1pIDAeQhRckRch42byKJ67onWRIlZU17a97ezzcHp4yAtYsrc/oG7b9ZcIdn7ha+3iXPd6OmQlYxSmZmp88m5mt8nI3bwC6WWMoR6LkVjABqsI7s83bbWv9i7N7fJnHxJdfcp7jw6wi85RGJBLziOhHcwu+q/XsNEA8ZzRUiSGSANaTVOGqiWLhy1rHHuZ9c50R/f7Ff4CztXaTjI6ioLcXHm7HuXlA8zje48PP5zg+zpnt+THsfDznqr2sC5ZTzEAk2fwMg2CCtalanmNGBDkzA1np9sbst9t++2bxbe/cHx/n9zHT2/aXfzF9dNmZYyYl5clgI+NUnNExBW39bPvTST+ZRvUZTR+kAamo650mXofuil4Bwtr2sgUHvZk1mm6vX769vdn8zWCk2f7L9uz68XjxY+/9Md5P6ThjnoJafP+wOGcysmSLBDURyIygsbXibkwCMgC5ZcAUwSJqYZ5mu53b/b7dfkX+7d4G3/7gbyfR9vtf/8cXvvfBZ5xHnhKQAtGbBmJaxuxPSQyBZv3c7IbZqR3vh8sipsJbrioaKBd6CbEYZrbbl9s5Qoqzwdq4f/vbP33/w87fnulU8ss/f33czuavxpf76wdnPMdzKtWaNTzfTTNRZTr6E2AsAGatW0XiAhATgEDYViFM2pL02d1yf3npL39R/vNL+xh85G/P3u9b+/KXr3b//bZlKJwAbYaRveWATc8YMWTmyIA1pbVXzJ1x1x/NYc0MsqYgFsWFHAZSKogI1u9fXx+PoUQmzbK//vrPzeyx99GZ07/87W/Pl7cxX/To7dYt8nE8A2Tz1iwOxySweghUTAlCiXCwdfuMfE1JZOIkOc+w0KywLFcV/7bdXjG/3Rpn1zxPdt+//OV/+Gv7449/fTCpw1btMWxrmmAGYg4lzSIT3nHe0K29xPEynEYzKaIea4WQxZoXRp6XoE9QUIB595df/vYfu8EaoZwjJzDTAIdvt9dumeN4BGnGaKvMZFE2VqDqUhKIKpNtWgHRiuCjoOlEypBookYiZ6RAZWSY0dzbtt9evnz769b/8vWHIqYvaqyYFCw9Q4gRExHWQs+bxTLtkmSZIcVcMLBJApsi66WTQpwf9ozHCIuUzPt+f/36eJOnpo7HsB+/xe9f8PZ47a3vdyeqsJfkRIO759p75cJPlipoQTutm+R+wt0F5IxzAbyUdtr25QiMREZC08YzNFqCHbfb/X5//fbr7n/9y/cc83SL9f5S7ZBBmvSYSLr3pmOOUyoQnVf1i1KJVeJM+nY+UBk+AOR46oHndIugs99aa82pzAyMGfn84/j76/4+1F/2+05IBkAJjWjPlQ7qCqupapShStCGsd+CojN8K4VYLHxfZHb6L//h7bd5uB+PBvy7P61l7D9Otna7bU3zfHL6rfsUQKQyKZ0fh+1U1XnJckbCPZzzyN8d5/tHvk8olCRdyhLWpEDe/ulHVNsfGIyKIx1DNxsmpO3z7bf733/LtxmBZGe+P34/7g+pvTQ7H89zKZ1TiPYWV26x4NNCYVXJsfIQb69okNnJ3RQjRFNc8dg9+bf/7e/HH6d5UvM4/XzzzJd/O9rW91vH8ePvuB9nq6ohKiNliccfg3dXMpMSmZmU5E3HQeB2nh/vBxCZRudUKYLCBPPX//t/ez4CRsHQOFMITP8az5Ec2t7/y/zx+7/zGKHE3o1PPTXV0G7I7z8+ntIUkRLQHmiKK8wkDQ5YL1kPzDitv/zqd0zwXb3l1ID7VZVDe5n2L/+Pl3/9floLUccPH9+Z+PKYvr9u2+7z4w8/ZuyNWQXPCpj0/C6/NZ5BONUcAVKKtBwztKUe53RH0JtZUPKCbEj/+j/z385kLcANVTyS/uX8e7oP3D7+2+Pf3364hQRrL36c5xHndrP+5aH3t8cDdxjKh7YP81UJWSlrSWTcoWBIHLx/+ev2yqeGho8540NmS2wA45dn/x//n7f/1397pgXPPd58SIlv3Pr91+6NeT7+GOTLZlLCoAgj9BztL19v9v5xyiSzmKQkZ7P5dshbs2Q3pnXBTw+2YvrZtl//t/g/PzKL2r/jiKAF7K/vGXPL9vpfzt/s+eyvIcBffvXf3z/O0751v/9F8f3t8YF71XxBbF2GRrKiStINbOaZcHWH+f5yf3n54s/z9khlVq6HyBK7+jny3/+//9ePM3lKjhazurPA4qNtzYm/89s9zz/+/vvb4xiBDtIoQuND7RkgWNw1PRDHGMc5AMLCRjOPIrAE343ZCMPxX/8YonufIk3WbONM/XgkMc83e7r7OXCcM6k4Wva7Ux7HH/ieH3AHXCY0S7T7QMJJFYzuzR3dfU56opv5/f7l12/f2uP9jyNPRcoWF1Am+GPyv/6//+uPEBKao/fDepr3yfnOvrnR8NzH+f3v35/PY0x1hNJk7nFsfSatgg4TkMSBEQmYg5oFyo+0qQKkiwl6/z///giRHVNm6fJGG3o7jVQ8eTYhgs/jHCmoPYPOjAft8dCYMIiFxblai6rdWcBq6+7cuo8JT3Zze9n3/fW142xO5RWTFDxB5TPw7/+/748ZNExrZTnhoM9T+2hmitGfzx///j7Pc8w0oxSpwHE2fsAShpQ19R2Up2Bi84RyuhYenGIJySnm8ffvIwUZFJhxTk0h7I+YzlPvI3rkmMrjHFNj2Jhz0DxmfgxqCkiEUczIVkURKwsoJhZhzASTSmDg8Z2jPb6/P47zHBGgNU0trG2k3v7+caQgShm2WFPFPHKejXaew5/H29sjx6hQqbp0KDVGVDMWpxu23QibIlk2KiNW7mMwwEEYBIzvH1Ni6YXiUgfrSNEUZ4JiJBmRVKZFSoTm+ZhRKr1VLwyyjTmUWgsgmmYQyjkxZYQnR/rzj3a8//7+PM4ZAVhbXVQoRebz+zFXjq4ouRWkyJkxjR6Sn4/3Y6zanVXibZRiykqI5ta43TrBEUGX18cJNLVYVrd4HSGfQyUWEBVJry+fotnUlFWzDnIR4gs1Uk4I7mHS1cCO7TinJFidAOVMMDNnCHDJ/LRj/rHZOP54nHNGCtbvI64Chcwcj1GVhamckgKZMhqVA+Cch43jeRxZnfCW9FMUlTRzNt+6N7+9iMBxzFWknSrB7RKcqy0bAJ1VkzwTQOiCuSXfLBXQlCLYqig2rSgtZXzWFRTmiToBsWTLIJBAiBIiVN3anPTDG3M8RlEwtLbJLohQyjgKPaYyp6gw0qz5TK/XODnP8xihjMAsyGnxPSRo3vpmW7u/GJEOphIxORMGBKKk1VoQegI8I1OaymQsup8gbfeRSs1q9CMtdQhSSCBGqsWMiigLQmyRmUuGpotJDlvygpkMkKcZFefV7cf6XQ/LcgPKHFVXVnG5ETJz703npCIjJjHHPJecO4UlrQaro5v37bb73l+/NireZWHVeEjK6lN00QKL14wYoVQpJCcvXFy03TxTVvUTNCyF1ZXfJBk2L3k2QaldPCl+av8q79RP7zSNVchQsKv32zASXCUFn6ChAJrLWrvd966cdp5TitQ8c84qvchatbq3JMnWt/3m9+3rL50aHIgS+hfYHMhry3BxN6MkKskLzaxWAba/+PuCKrVEKdVPCUufA0vGwjcKTF9KgWW6PmU89WRSohrpGSzBIhuj314Op2mx5UQuDwW6WZPf9i9fXnbsw5+P82NGRsxPFFJSWeFSlrhZ3+/3F3/df/3LbvPwwUnMc7FnSMTkohaLJWLVCghpUrUrawaD9Ze/tDeFzCJBuJMqz7m4N9YxqPaUImhoF6yCpSRd3OPKipeiCgaHmZlDgu8vH16auuojWLJhXg0ERGvby4tp0lOW4xxzWGSsgtx1ZcHmTUbftvvLq3+5ffvLzcYT73FMY6W7ynUZIkRgCUyUwtoZfGqmjNa2F++WQEzRgs4F3dfr1oslzGilpybY8mLuP8lEUVh9RsqIRsVOpLUOCW2/d7cioWBZ7TeK4zQzh23765dfvjinbfBzXmGcFtJ29bgway2tbsCLv7788pcXOz/0PRhT1afuU7yilENaN+h65JL0EO4NSd9fvvntUdQxq2RSID+bg6kURSv1hyBDK26XyyYVCWbexYAFDFJFvaS7t87M7Pcvt2ZXR716cdHM1FpvO+zl9duvf/3mGK2rnakQ3Fmn1a6GQTRrfYOh7/eXL9/819d/+Y+vfrz3N3aDn6cg20IkA+VYBRG6Ot7U6TZrgPeGZNvvv7TblpJotHabblLCufQJWDiHkFHKGKHZ4ryEKhuAAHqvMpAFv1X0O1XdMkJ2f+lNAjzpsdKoKt+geSLO4xynPZ7847ePtyNS5s60UjZUFw+nt7btcGwvr19++bX95fVv//LFxxv/QEPa8zkbbJsgq4TuJ5dROoU6BakUIjmR9Gxv/XFMChSt3WYbEmOu/S5xkcGcIS6pQSORqGi7uP6rdAjJKrJd0gwhIyZgiFidwRIEkQn7pKgzI/WMZm3Yv33o9z8eb5HjakCwxN9XWF+cTuktmhtJuHvp27A0Bj+FBgll3SCua7BAHWSES7RT/7a9PcNlhbuxdHV5NQy9vtTJJb0USi2+9lmXWIJmqzfgT+ONAGMQzRK+tZZKWtH8xhWIrFgg8LG/hf3+Pn//8Txgq56IuFLI5QFLLm7e+7a1bb/tuyFvt633Wg9zF1IyqijYMrbFCdSBTuWKeBNw/Ng+ztXbE97gNJSn4DL7lxhDi/RnW4b74sIBGc3bLJho3VYSrkhMgGqy7XZ7RgZgdAOsujyZvP5OjefH5O8/xu/vZ7QeoPlPccayKbX1Dvfe+9b3/fZyM+btth9b92bmxkZJdKDN1J+stRY1W0WnRvOZqZE/9sexBKX0rYq/Ips1xzlSq99u+VeQRmtL9PopPkIpmyMikdQF/eDSHhV6LC4Z3mXYL66u4EbmHGA1vJm0rAhzOVle3iYzI8CMOefQ0Y4Hjc/jrD45ug4faYB5qpp2rcB3aQBJwcyaF1cbVTt3BRzLT7hvDmnWtbjOKwA3a8405dVpW2XUYlSXFlqxnp+oaXmk4+0x5lUfLElJpBARE8Mzjb0fYlYAm7m6QK+ojd5kCShjnAM2zueje8PY2p18/P23P97fH8eYkciSQnQG4XPla8XF0FTl6iTJXM2spuUl9sn5nNW6SCFZpc1Gp1lDCaSrHYgjI8blbw0pZYwZkSxuEqt7+cWfU+fHodI1VKOv1UtdygCHNI3jZKNPfobXulJQQ+/ISUE5x2TD8dzdPA/DDXz+2+/fPz4ej7NaEBFOo8X0ubJ6pSyTQJJWnbHNjGWqJy+XBMWRJVVSqTiaBGMzQzMGVZF527tpjEp+dJGuOWZUk4s6dcsW1AIY4gh4aU/qA6UyvErmLIY9xbZNq0ahtQJX8G++vIFihifmmE9zTLcOHr9/rzYx1SWmGjp7ml9UhSAaTGT1oSXo5laR4VypAcyQM1HaMjczWUhyenf11sBIzUy0l1vD8cioIGs9a0YWTr/iTZRDqQYRJaB2ZyplrTm93CpWVZeRZt5vry17G+WzPkVWJadgQxWulQVmzjz5fG/Q+f48jlF97IFZFZ4as7YELGi5ksMscUddbIBEVPODJtFQXb0TamZesk6j96b7vhvnjGMG2+uXDR92zmW8Kq/N1QUso6piSGOuA2FuEFsnpUBrx8B2Dnkuqyiz5vS+v/KMtzGTDhgJK71FZkpOqrqdSUY2ShHjmInzufqHKZOcqSQRzzhHTIlEgq1dK1f1tDRrQbJEXuboAszARkAtm3tLIgCDt033ly9dY5w+prXXb3du+EBGJqsIFMpRMAFidX3np20lDXEI5qZJlqB8yeSYAI2WBsA3tTc3SBEyWlT/DRSFS2gCYQFXhGYyp4alzseP98c4nuecKUYqYeYjzjkvCQclVbHkVVCsK8ydJedqGWIOoFqZmLmXxI2wvuH166+3PM6nPYe1l2+vZvOPnMbKwEBplcet/9OKlC9Rvc4HZ7qJdCegmMkI5VUsPWRpbfd5627MiDTaRWUDMG9EmhSMCszHYM44mDmeH+/POc4xZwrM4sznHLO6Z1eB15W219pPnlGym+JL6bRUHFxDDBSnx3mKRrBvuH/59SWfjzYz2F6/fnEd+0CrguxSX42se7vg2YqSQCfYO883PuFlblLIedKiUMJl5fbXr7/+k+b8MPNRlZxXa+LCwAxhsyr5cx7nI3m2D7OcY5zPUxEhKqREQMaYoSuOFCJILvUpQSGnkobmd06Z93v4DJxZ4NuYmEolGmV2u+nlyy9f53vD48lsL9++tfzYD7iZra5p0lwAGQG7WGiauYO9aT55mmq2AUhkeDXbWBXviba//vpPluNNmY/VuefSqoveNi44IU3IGWNwOsA8Z8wxqHOuuvyK/zNixS4SkbLqv1oFK6qWdma+7TwT3rYhZR4yVyY045jZaHTAt1vev/766+wdH48nmm/3dtuah9mVspf+dsWLWuF3/Z2gUXm6SIPJXKsRpqoeE4weRD+n2NWMivM8Ti3Q0m0tJaPwPkVkzDgPNFMgjokcp+EIyyAiJdp1ftZlxCeMpxULfh4uFfw7z2OOBDf7+Z/Dy1GL1vrtdcw8997Y7GePyp+/6nD9TFywumSt340/KzTXny/gUau0cylbsVKtK41dK3zFVMpSMUTMgWROxTmpOYwzmWnI/EQvLhXL1fvwT5W7P/8hlsYHBQZ+4n3XN648z9xVeWc2c/fV8vbzba+wp6poRdLtqjRhShn2GRZ+hojr9iCVEXOcYzhW50Ndu3X9bUnkdS1QRkCIoTjCOGdjdfPhhW/WD+r6jn9Y/LpJi0JS6GoNfmUxn092LQfNvKl5zRgZ5xHVoXLVRV/qOyQv7O6TX0mCZjHYgUyFogDP9fm1QlOa0+6b7/pP//rvv70dOSbtQmSqywd/ZjpUVjdWxMwKd6+bSBoEttYaBMF+5usV99jyUpqFFhmQ5o6RGVn4YwrxeWUqh1KM8xnnjIzIdrx3/3ieRVvJahRErR3dFp4aaSkVgxpRsA6khFbWhuWcchIGAo8ft33Xb3/8eH8MzBrrc2VnvTfPK/ImpZgzAMyZEZke1V+1KikJ2+79jClNobLSpWViqsStBKRYTJIjMyL+wehCCqs2kGbEPB8feZxTdLXz+dGeZ0T1UqXbn+o7rKlmI+lKny/BOriyj1Vy9aeTVil1jPOZOGd81jOUxQLNtl7Zay2AZfiMFJAX/F9fTrnLaLbd94hcCxCKzLiyd/kCNJUjuYqDaxhVxc2k6Ias6Rbu5uYR43hijISZtccb/MfHOT+X7PP1Vwb4ifheou2KZZChkDhXpugCHRfVhTjev+98nAvH4GqhsSpvraIcknBIOSOViOoyiUhWf3Ut3Ovq9HpdjctWsVqmmZlhHjMzJ2BuvNxuAbfe+maKooDn+Rwf2+/S4/l8DFk7H+aP42qMsHqJ1Yat0G6hUrjCEFXL7WIBUoClCa6waslD7y0xj0faOT7bGXPde4VirIu0mmdKEalAuY+Lj7lOWxrPHFJmFBYT+Wne6pOttW6nGLE6oawemFzwh3X3rucRghCHj+fHm+F5PI8Ja8+3tPfHWCeguhNdZrfARDGFKlNbx6p527jU2gKNFDqLHzL5tm+nzkc/7aMEAZIWtqpMpR8zcmrGkiUNjnMirAbJVUqZWF8JGugHFfPzE/Dpk1eG6vftY8TCPjO4+jw4zd0M+/1+0x/fjxnJ82GzeUuc43wGWnty2OOjskFYXKBAfXqCP51PJbKC2FrfEarzQgNc3O30HkLP/fVl/xjx8IOPkWtwmV2QsJLzZEiIARCRHHYeITmru6LVmLz6agoBzuk5R53qTBXFgKt4Jrl9ebHnKG2CGJ4wwJqZ99bMXn/59QX/he/HcSLHEUYE5hwHrbeRpx3PEZJkq/J6RVZ/QnppfpWwEd77ds8j6VWiSpjZbu/eTNpie/l259txPozHTFwO8OKDRQQgeAZAiJgx50RFfFqOwRxGUJ7V/sVXLcMVftCI8oIG7y9/+Wbvo9g+Qauhfyf7tvXmv/zzf/gGn+YKRGScBiAjY9vubY7JcczK9g26YixARFWGCkJ6UatGM9+322to+Mx0uJo87O7me0L38fLrX74YYkRS1iAahVgS2asFj8wr93JiKudqAieBZp4Bz0ZBBgAlkC/ssRBtgtVsXTT4/uVvf9Ufp6QBC8rcGd42aLvvW9/+6X/6X/7K/IDFyYQQA0Yl1O5f23jC5hxiCmZ/rq2u1Ls2aYXyNKPRt77d5qMeWOZNbnZ377uoL+eXv/7zN8zHORPhbPBOxHlUQV2BzrOhN80UEYmIcQbZK1GA+RZGj84pVR4wu5SzSnWj1Cd1lipda/e//svxX95n4oQR09vWpvc9Zt9v+377y3/8X//Zfvz9yKcTiqmJEyazl7a3x7tYMuzqSnCdMnzG/7ZiAIfDXY2+NW8lcpEEa0mg5SIW4f32+rIbBfZ22b5YBUNEWrVgbDVzEVM5x0iie+VuwYxpjKtDAYqeNsdnPSpZgLUcvmG/vf76tx9f3uQU9ExqUpWc0rzv95dv//TP9uvr/cOEeSAm46TTN3lv55Hlxqsj0s+QhsRPjwCYuxzucNHNWn6GPcUPVUWQMiISxohJuqH6vynnSsSWeQUAeC346mayGl9KExzTFM7CxcsYg6sLRaUfNANqSIXdX758++Xb64uMExkRmIoQOgSY9227ffnVv9w2J3LK4sSUNWuOtrfV4GrtOfCnLJBXjF+hD0vmzn+Mlz4dhjIzZ5zHeZzHec6kO2fmHFOrjEC0q3MXCTq91GlWkoVaKkxgDCrpYtaQwUXkXEv+85IavFnvvbXWWk80wdJyBlJqS9JM/ay/zciesXA+0ryhgVqJT8af3x9gYdAG+Lr9zQXNw9Dm44jznIakte3Q48zxjBnP8/H9rh/Dbt43zjEpVP+xKsy4WrDMY8iSqJRK1fW04uMcY5KYScsomCFOlMKGEGAbS6mLEIc/f/zbf4p//eNj1swzWZTuy3vW8Dz/P+6/2//+n/94HxAVKToJxfnxu7eiHZfd/3N7oLIBKkS30dPh1inkPDA03882z4mW1m4fH+NjajyRGjnev/OJbet9tzhH30Zmpk5aYXqamULkXLsinaj20gGKxtKGcF1/UmJOTSWUhMD2EkeJRBLwSGz/1/O//PbhCkKlIwAyJhJUQsPiX/H/+c/fP7KpZUSwKYGI7xxttZsrdi/AP92AikWKza95iK0zUvMpnfmcLQ8lZo0WekzFYdDU+fEDE7tv++55nLQWEaGVFuVqU5yK0r8rEUOqKXX1lSkxLYvcJgXlqZo3WbqIlgqKKZFh4+P3//zx+9txA7vCWH3rcp6REWPkiY8/XvCvfz+OkQGNDLNZiq750S7W5xNJuSjsKxmiGdmKAe6NnIgz59DIqRPZJNu64UhF6fvn88MMfdtv9x7bkWgZMTOxalAvSWZ1hKyqd1aQiyu1qxgcgJKWYE6FL3qJtD0hpQFyATk+/pjvzzCTaTQiM5mqcX8pz/F46/jto5TuGpHZqkzE4mhpf3rhP+Feq/1QwpoZN5gIu+2Yh0lxBmY2Bkn67etHY6z+GkGk0M3v95cvmx7Ptp8z50iRzGSutFKCNUBTYAGfAGq+SMELNNWl4cq9LVdk5v0lP6ISRHNvkTmOifaCs6uOQKDmW2SwCcc4Te/TV//MjNWoVoZolxojDbAoPVzBoDU8AmYIBkU3v904+AzqNEm0MI70+fGInEJNGTTS+pdt/3Z/eb3H2/uMiXkeWUObiU/nWp2ePk+e0YyaWM5OgDQzVDIsFEJQkrf5POMSTpo7pAg06+3lNTBTrTSOp6VlYuO7CA11dp1RDW+plHIyWkWVAgzVd+HK+OmmdMBqso6Zm7edll2GkwCNyThgH+fvR5Z9LymI96+311/v++vrbP79j/l8PB46RqTWSJpyrTkXAI2ViLjrSH1GxZnIFDzJDBpqASCdfxwjl0qIMAQUdOf28ms8Po4TTFPOZDo9un5IIVin54FSQ1dn/slZg5cr4aiLQC4FZGEhFW9qIb+L5y6+3DPJYM4Y1dk7lcuhZ3VGnxGRNVZotSKsfSv/vCJ7LUngBX9cbWS1ul9mkgnThTtDGvPy7J+gqtJWM5mMJTFc1MFoQxmik4pZAw0mYhYN2HhFOsKCbEuOJrcqXnS3zTdQrjiA+ThmDABCUGlSzMa6courO97d99vH1u93vT/+/e05a7Q4Fy544QhYnbBXtBU1QH7hJuWcjT/bJ4SqwgzVL6xeL+dEnOFDaXY+nvn7+5hzLqE5iiTIzBRZ7QVrh2aUNUB1q/0Z9JKsyaoyo8ElN1rvREh5pOIYcT12QpmIY868aHXTxHy4b/1w3+94HL//+JjnObVurWwxGYJWH+kVUdfBUVwUoiRyTY5b3mFVaTAWDlt9AefUMZG0o4/88YgZEVRKlAkYiNXhAlL9JK5JGolW+EqJD8sXXnHAJe5UVfDPTOVQjJElMqvXSMyzFQZdSY9Ao1p70LaN53h7f0SMawFW07eytOvFcdE9gU8yCgWLg1frktqYilfKWZd3yNBMnK4kmh/59szV9b4QHGnyyluwEFyWzBqk0H5yOlzl6FlMAIJEAhnGAq9TImJGchmOTwJtmQ/jKu2Emp3mW8OIxxEpa1gt5St5QgZo1syAKcGAn+xX4XBX+L+aGXNB5RKwOjpWhs6SBAMFLc6q6Ac+dVRKaoFMdjmfJbajofnVoWrdzVzBD7AKlRWZnAAiQCojE6EFSFEBHWOW+3C6SbDiy8luihxTkWu8l6AaVVREM81MWOLZUkW2ikdKhfxJD3HpdZchrt63SILKaRKRSBzOwJQS1pBc0sdUTGBRsdUbzy7QS8nmdhllAbomo7ITaRECk6vBzBXHra5KiwstHU1JdjrdlILiNExjFXvAP6t2oCr0YTV28WaaRa9ZgQVoRuoThllKNJbG8TM8ZI0JJxxRE8cMVGUKVXRtWC0fIJbmtzI+ASkYvRI9AY0gajbqxYldOWkFhssJkoyfTnspL9afHquzoAmwKh6oadsZM9Ytv8BFgFS1g8waoYnFfC+V7tTFyF3Ne7TUNZ8harHhQA3cBm3xIdMAXGT+J7ZbcH/BbYVeVE+A+jc2u+BnfMpP109zoQ9LKUGomlKvAITrIn0aZEjKaoqONBqN86zOdmT16VlJcc3xTNDdIKMIU4ayGmRclOtlx+qFPtGJ+mv5xjIDa/fWKGsQpovRrzfiRfWywjdbCIRo7Wfty5IArDz0cz5AikGmlxPldTJYeqU/4ye8dmnFVN5K31BIin0+g8zc6AHvruoCAlMkSwbOn6dlvYBdL/y5t+In0UazOgq5XlYmU5E6VxBXcX15DxJ0t5Jw0psZGbrGK11db+sZ6ofrNbNytvX+BGnVGwrXzaF51pmAIKO3PqklUa5Wm3VxzLwZG9k2qyIQg+cwway80ScyXz+xLOSKVgisGkLQ6dYcCFhU8g/KyjbXw15rZbnk2tXKqma40LyRxtIQV/E0RSzhGnOVggCge9IWwXk91XpIVtdab5uyelaXOytMkLT4066uK+Aw835rMTM9jW4uyI0GfgYgi0Hmp1NbcSQKhTRzh7XWIJNRYIboyZIkFY+Ca9/LKWqpSkxZXqjRDPaJBGm9HN1UgzCBRQddPQXXs9R+rChNLMFQErJyXteph8yurpXLgFwnAWa2AiNem1StBq8YoyxVuQHTn7R6ulbziscuvBSLLL/owfVan+HVFbGYqkcp2hQ5I3/Wl1JAmuqOLDMjwj3dXAUwQiq+RGzAfjvPXLdABOkwb73fX8xGpvWp1rdnNeyrOJQAllmJiGQNEVmkx0p0AXidwRUaJVXN8Xyf84LM1yKQ5MZB0cCzLlO9kBlyIWnWLGgzqvl7ZsjR5iQyl+rhuvbISeQlGy35tWWZAZW2fFGFkHAqJsAr0gUhRQ4f43ik0EwXZb+8S1ouXcRSE2GNrQCg5J9auVSM/NMA1u/kmSkwLQFmeIW5GIhZVfirB1tg5ZxYoEoNabzaYqcgtFIIr6vyGUNywfwAFy1sn9WhpF8QdTHHY6hGH5uAkolCUs5R7RAV8jZHjfmBETU+ABlR7cgqR7s+kyA+HVkdaq0HulLmEzXu07zmhxDgLNS9Nm6N2bp8eWvd5zkRWZNolo8gW2/6VIQCXItPYyPCYt1ylWbbam6QrjCZP10srUHeJWSIYGYs4pzwJpl5XszrYu1d1jaPwWlYNgRmThi9wjvxCmfKiazeplJWB0d68/TWu5kRR8g0RGTRkFbnnqRZ33c/uJSVK/EBQWu9qRiXuFRcK/krS7TEuUrVrKEVKwmX6VmxgcgJ5vwcUAoBhjZzAnMGtraGmhVi5N1ss3Z7cc0TFulbPiLULIcKn6mz/nnur4EOV6AGQQahtbZvZIKtJBhgGKIIKl05Rgpt1JTLz+KhdZxbXccrXFgfLi2+isukgrZjWF4pxJU46/L6SrkQo7qarvihIabIpLfbl2PETIJubH1rdpv95Uuz+fTniH6b7yPUuGQTl/GuQ8OqEUR5gYSkVS9gfesvd2rKxxDTRE47RqzMpdwoU9ZzriCsVA91O1pvWmjTtTvXBa70FldIUl0ZWT2Ji5tdB+ITVCaNde9sDb82W4aC1rZ0ktXX1d2bbdb3W/eBI2B9NzeTt8/2rboCLlx+mfbzW0v9Yuat9/1OTNhh4qQAWCRWCl8/bn2/74iVw9bCluP1rXle7rJaPa4QeAXOtIZICWx7er/Em7rG31xhMMzlfWcoE41MzaDvpzvMvW0v3359f04GQHe2vm/t6+hfft3auU35ud/dqUR10TeCklVrmeXrzGm2hKCFEbs332637etXw5A/n2KcAE9vW3Q7QvM6Bd73F80JTpkv+IpGsG2tlmotiK20ex28Mnw1Tnx/1bNn9rocn4EFDGot0ghvW7ZcpoQm7l9jB6z1tn/9y9/6x4kp0Z19v+3tdey//m1rx3bK7P7l6ATMzRZFTRKrZzpY0SvtipD3qFDbt9vL7Zdv1KHeOnl00UbzZ+gwaUWuJNl6b82sJ00WyznQ2tbYYOU1KnTTnyqEeLklmfXb4W261+24FGMVvjWAoQ4gY9QSON1uXw9nBpSW/nI0oiJYtr7f/eZf/vK3W3v4I619+eV520be7vko23upMi5J5KWqK0WEr0DW+367f/mKQOyyRm8CfT+PHOMMlqSE1NPPbYTSrFqy1YgqVOWC0dan0wwAq83QCotQVdHuL1/Hjx7RpCBdn9FJC9y+ng9Bre+5Vd87UO7t5Zfjnpmt+f7y7a9x31bPbcF8a7f29a//w91/xPdg+/rr436LvL/m2TUjPyXFkYDISajR4sQEaDumBHrf+n5/edHMuLHdyCbYvD+PqFmUMoCOkGqgUScwZyQXzSZ6c9AgWa4yXuniAiotMpo3dH+5b91t3YstR36eAFycva4pTID13n3bem8TxXO5mVVMbZWPm7m3zbdt26e9vNqXw/jrl5iP6SVZk6qmCEuDUeDExd+VSAQVs11ib3o1vK/H7NDnAE6uzFgrN18AM9jYaGuEIVZvHqrgwPJgog+538aYrWy8+0sglkdtSrq7Etb6bGGeabB93/rXb2/NSGve+v5y39yjQvnet1t/Ga9ff/nS/PiONv76Lx//hBf756/Z35/nOWdESmYWWs7bzNaLVZoF0lDjbW6aM3Zx57nhNLttezZ3v63XrXaX7m7N0jCTtgVokvetofpKlEGzgqNongv9qC4GIL03q/o7Wr9X9rOgrqoBl7fWGhuDLu9b733fWk2Ra9vty4+tuUswg7fWt1t7+fqXr609f5efv/7T/de593/+FtE/Hm2MGDPlxZSmaKoDNAtacNZok9a3fb+/ambc6TcO0un3vQ8346bzs9rFe7M1dwVKzAnzugLnlFUutjzuioiuZLJYRPfznBFzNoVgbV75BI6InJJ/hi7rqOaM9x9vb+9Tfnrcf/x4HOe41IClzdbFSZhZa9uG7eU17sfZEtWWI9MTiYzVMntBIpnfJ3zFBJVAWho13JzQOOaYM7Iaf0mJ3EAi50wNnueY4IA3mEW0kln8hAILh1v8CUUppQg/nmvmvUDCvBX8isyMwUZW08+k6E4ihefbx/MZolnefv/tx8dxTitZTMzRxny8/0B7+3g+z/H8eJxz2jjyPM8rRyx4qrobSEjDIpdioll1mZnzPE4KppzTRuLUE8c5ZqTFtYltv7/cHw15zuQQFs1Oc/PGSwPLap66tr0ByfxZPkyM4qJFiUP3fiYzqlM20uye9C32yWmttzlP4DzDGgVTjMfbx1UNa8wxTjvO9v33YT/+/u/fjzHi+Z9+H/7xqv/2cc4cM1cB44JSzPtqMWugYHC35tZNYmbbNuc8RTuViuOcM4WcYDczevv1P/wv3/4vsyOekXQJNWqivX77tX3iriTALHPr9mqaPg7BwGomMopWE4B8+t4wmaWSbxxoLzn6i+U4D99af/94Tty/vx0D8H7M4/H2/pxzNlL0OcbB54M/vs/8/e//9v08fzyP//R24vebfQ+GjVRJsLNme4mtuWhm6UkYWMr/rWXkOM33fTil+CEqxnGOSOVp9NZ7a/e//c//69f4GP48FbQk6GjN+svrl/aTC9QFulUjLMFXQgkQyDEzqs7D3Pp9BhlAS7IzxS2ntdaBaHvfBmPwfByz+p3kPD+e4yr/Vs5x8vn09x9z/v79/X3O0c/nmHxmm6qcwUlLrMIdWWtY5xQrQi2nEGMeT9t9j4yp80OOcx5jpmhm7H3fev/y13/+ly9/f32JWXLQmpDp3vZ9b3nFy8A6cRQSMKTNgSJCEpYzr9VYXugqVyGUOWecz7fn28jnvllr20Z0a3sqNQTNo9p/SUgLm4PHYW+/PfT28Txy8jHGDNiYH3LZTHnNVfiEIxNJRCiVpalDxnyC2/F8st/GeR5TZyrzmWWqLuyBRrNPeuEnUFhv/A9CyQzzNWnjJGHXuM0pZEyZd9syUxNTcUzPeiBqgI8Yz7fjETHgBPpL8stLPnqOmcYcxzmvSiRvzhyPg+9/PPE8jnNOP86IYCojg4yrVsFYmZH3zeCcMyMjZ8BJKGO2zBy0eD/engm1nPVnQpkjlJljm8PsvP+fv709R8pW8wRK0vn+e7uizprDyLbE4YAbrHjXgIBItmbqUaqPoSHDTCY85iQ/lMf7eWQEnmb+cjP7y1/ufBuPxyEgxihuVG7mzsxj2ON92BhjjNnOMzIIzqpsAVUVY8UimfnW3GzMnDl1jEoTNVuTkOPjfNNzwvtrvo/VzyKnqJzDx9A4vt9++/3tnJnXaVCS83j3dtV0gyRkzWJixcnWygnMavfA3sk+j5mIYyLgltWaMsLzlI1jBBKZif3mu/36t9G/n38YkJjHWD3X3FvrlvEMtbduOs/ziGwjVQLgehwjXUI5KnfavW3OOXLkCDKqnqDmZ2AGjCPNt3uch1KKwuYkJoXjfPzYj+OcUrn/LGAD82kNP9/fmPQSl5rRW2/V76daQIW31lobOkOcF9KCKm2FElLAIZj3/atv9/bLP+V2fzJTp8ZxrvIhkoRiILL1TpzHeaZ8Jq250a2mVdN65lqA5rTeb2bD0oIx5soOiprLGsUBa7dtvhmF1bIOIMMSUxlbZs0O50/sRhlHW9aAC+ZJwATK6c3tGuVgALLR+tYsvNXYr+pHQ/PmrOoNwUn4/vL1L2370r784vv2mMc5IsZjzBTSFBScMWdMoQnj/TEViIQ3N5BpzEXjSLIUpxsRMBunRg6NGQUsa5ifT0zvnpGyfp+OnJmxijNIs95tDUyUZgqYKSve3WO268zVL134kNHMkUwaUjAxYbTWsrn5NFfKDKRozVkHtkodfX/58sW31/760jn9Ze+NmucMSSZFtaTPjIS3zHmMQLBaaEOfuFwhkwYLGJ05wu0cGhk6TjmAAKad56HYmksCvNFKylJJE41ufev7vrUTCmVELjNfXSPR7LMw0EgiCgTORKM0e9IRAZqbuXlvGu7Nf2J11cJFghITctC3l6+/tP6137/dNvXv974HJxeKohSmEXDFPCY0IkvCLYKIgekW6UifI7DYBrejD+c4MTPxGPBmmTmTfQybbi5L8+1lbkZ6a0txVAbU+95bThAREGr6YyStp9pKlwtA1sV4rz3ILMk6TBmgtc3V3L1pSkqtmuViNoBwb2b99vLlL/vt29Z/ff3abu/fHyQfy1YAyoSLzpLuKGaCdN693W6Onof5pIfa0owzBePocDtPzpSdE6u+R9Zaj3N64syG9hrdKOvNyCpUSs35ZNJjzMwIIkNAzgnS2miLflpv/Ek01qIoE0RMCSejwZpnM2udsegcAJeM4ApbCNp2e/26ty9f+2NujcqYuMbuSlFCTJHTsYa7GK33+90PLTf4uawq/QosWHNNgEykVvfgiOAcozFA77dwQsxQruHjpBQj4dXSNpiZADODwJxoiT/ViWGBISTh3sLWgFO0GnKdoYiUtV4jP7iYSxbvXP09NMc428zQsR3HcZ7jPI7qilGcjKrtEzy15LVuDbbtrzcfXsgvM6sX5AUOQmvcKn7ClQQy5ohTO3jSn88jjnNMnYfNGe0nSVdDG5cOc+2ZCAWb6c9WZ32D1PDJx5t3dDRnySIj4nkcmRU5k2b9Ja62x1U1dD7fU23vzY9zBlvfpoyrkWkRkSyalZExhYkm9n5s9v3EE5iw1SbmUm9dkXoB/7c1BJjVHnXacA5TPH/EGWDWgNZqBWW2fB6M2CYUAtxXS001WukRJFnmVZinScyVGsA6O5oj5njYeZzn/BgVOWf1uu59QAKyOlSN59sfz8fYtsfb+OP9Y7LtUZWHucSqvN7NIjNSJhOaPxrfpk1D1Qut0LG4cWXZbyVlnSkkLGDjNJzRAsNIZvzxcc6UWX4S5Es8BpJW9UGiWa7opdJhAajBlNeBqzNX/2ydGwzKeRDzOSZDBLCGfEi2eJI6o8rxfBtndv94ybfHx5D3PgLV5heQUG2rM5ORCEFKMBngpUio5k2mi90BFLCoovLSRdUe0lKj4cC0nGPkH+/PAwGaOQKglKFEkLDiWCcBrsWdbAv7/omeVju+cgvFY4G+sVom13iteu8rvdJnn4+wC1yVIphP5+WTSydatlVXqoOwschIwCUkMu2i6vkzS1t5XF5X9Pr25LSJGNmByWa+53mOydrvRaMtH22Xjqwuz2pEhXa9Nhe4XDmIIHNSLngz73stnLvc/uGxKtooDjBrXevo0Yze2PxqHLNeCRf5VK0GFrOoi4OUlJY1xEAXM/MzhV275PEzdjNbXUC5esGQVwXa5xN+Lhmx+ox/WrvmS13DT8axVE/yZokm9K623Uos/dlp50+9MX9+s5lZQ/rn1PdiCT7btJT1LkHakm75sua8zl6V56KEhKt9sK7X+Pn/VjVPV2bxiY9m/gkH+Llin4vH9Rf7DH9a1/XpIE3mDpkJ6Y1kF/bO2/3u8TxGKGJGtZtmYQsENJcKqmQeCWZO1wkF/HmMSPOF3ygp83kdhDU0jLBU8V51lUg6UTzKEjBev/l5HYAiqISMjElMHqTrGBEETWalKVDMetI6WosXrjWH0HoBPWsxa56uO5G2IbOB9+Zfv7z4eHtD5jnnmKmkaZkOZQymSMDdvTONcT6DiLk/+jkfI7PKSeoVvepeqpFcK8SvKENbqm5r6d3UUjIG4mqQfRGGS7FKujJTMSdGckJzRn6cMfzyyYCAWVoRlFKpKH5baaHUemD1nai5Pa07ezcmuyKduLft11+++NPnOCPGHBFVW3TZwjw5RVJ0927DMI7HEMaxPbbIxzFijDlDlcF5fp5N+caiLykzM5+o+Yiy7umptAWFrwW4znTRV2ycIWlOnM6piBj6OHOkrekEAqDJIAGlgoF0XaQajEDzVn4nim9tvW3ou59BpnU33bb73/752/Z+n/Oc84wZ8k4lRBoJ5jSlgtCw2f1jQ8o6+/OjnV1xvn94nEsqSLBdwmInvZs3wqn0jdutYWRMhBSMnMnmSwVeKmiBSMOllGgzMhVjpMgIb+2G94EIRCgEzwQUiBoXIqBQdIBKKzSzbYkAaQyQprb1nfvdx2nblLvl1/3rf/wf/7J/3z+ej6GMyMqOeFkvwDyqsA10S8UJb+jv731u1JyT0oL0Qfa67gSNty+/yVkwCiFNfE7ydMDA7oiszmlcdV00eZMS5ltkeAOgVTA8Jw6ZMuOqOwdQeOoKc4VQoRckXcm2SlHqIBaRSwJZU85pMGvb7X6L182tatwTs7iz5adyRTKSePKhfE409LfnTZOKx8eOQV/yjjI1FOmm/XYrPRiIGVMPxIw0yoHEgIddJdXLk/H6KwA66d7YYZauJEJIwiNzpOqmAzWEkKUd+1yWcsyG1rqFpEVz//QY/EwRq49eMVGxKrSdrCTCcMmsVwgESRmzBo4AVWoDKSM/semKapA6zwNOGSLMpZhYLZCuP7nMRbmcXGU91xcqlTHnOIZZWkxjAjLnRdev90CV/qSWEt1hu/ZGWIbahojMhJag37yhdQesA908+rbdXl5v59Z8jSYmF7RqoNfAAqLEo95KCWBmvZ9mZkrzkopiUdsrLEkystpeyiAYvZmM14jkVMLd3UOOvDQLtR5FY9MWNTnoaRGlmF+od+1cMb5FMa3zZ2zmNzwbxZlqcLKK1yGkYtpkpHXCMadFHtq+/3tuv//9+8dztXbNLAn35VNZTSTodrvp1g0Z1JSxBoC0iImZTErC/NSO02u8rsCag6FKKwh4b/opoLVP3HY10csKD9NbtRq8AkGkzKu6DFCNcFlID5bqzNzMWrd7zVHh/x87LzmeWBebdQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABN6klEQVR4nI29XXMsSY4s5g5EZBV5unv240pa6UGm//+/ZCaZ7t3Z6T6HrMoA4HpAZJGjJ3FtzzTJYlVmZATC4e5A8PeMFMgCALozSySNRtLcHGCtSAgcyCqkwDlIQ+ZKUQJJA2kgCiAKJdCdKKlEQJBEGGHuQ4jsb2mWIs1E9EdSIFiC9eeMOSTQKaJUkZUZq6pEGsXhZipESLBCZWWGIBbN3FC0EkDAzIxFZdFBFUnlAEl8fWn/KwqACiQA0kQRwH6tihSrBKB/cf2GAGEQSHOKKgpEQYV+T6kECQDx7S0B7ZGCKAmFsiSEUoFGkaWKqqzMqgIhggVAgiSQJiuSVgDI/gVK+64KlKQqgpBAqxopSaD63gtWBYH9fCQJoLJKBYpVBQEESYIkCJAQCmBx35BAEBWE+uWg+md9c4WsPQRuBdAIEtZvC4ICSAk9ghIpiQWpqm9XAoq6PjSztCdaXqPbD4YmQdcwi7iuGwQwqn/UTwegIACi2L8ogDCaEiAEykgbwwDtTwArRUGkgWbmVEmgkftRq6p6kcmGG2TqWWCFAigKZP9DEL0YbMy538VcJRGUAJoC19iKIN0CQmE/H5IiKbiDPo1UlSSaEiXtT6Erxx5LY+m1CERoT231iAi1p68IMz+OUVUJk+B9j0z26PoYlpEqogdABKr2QqT5gFSvpVQSYFYgWaL1JHBANHej0Qj5UJaKIpNSoap6UpmZ+RinoSdzz3eSAwUf5sf9cFOuWFl9G0V2vBnoAQAA02uG9LTeX5CgKqFoBoAGH/P+NjMi7MzCyBDo9Yoj9IGECgkBqv0vSJqRPksyUy/3slKvGsD6qQJU0UAjZMPdCT8qqsTKyMyEV6oEkG4+/JjnB55lJfSUSnOKNg+fbz/e5tD5eD7OzACsQJrDYAdjUKRIc5UI0qpDFQHS3FmlMkCgOSCSPubtfmSsZRoJh+oVy0jzcQzCwnYso4ooijSa+Zy3MvG6UrOes+gVpj1P6DbmnNPnMXyQ46YzVVScERkrM0slksN9jtvxUJWQBEUQNB8qmzef77/9OGY9x3DPiIRK5Bgk7cY1jIBEk0CAbrknQi/BwcjKXlk+hf24MswGOhBFlaRUscfNYilhc0g9dXCFCjMz9zloYO0XD2ePA8wMhZ6d5j58zON23G5zTOe868yS1flca53PMzLRAzDcrFKlV8in8WtNx/nAw2udKzlsJJXlNicBjsphAqSNA2B+hU6SZmNMI0Md4syBKACVsTjMUFlVyus2uWf5nu/V79uhwQTrL3JAOVQkQPeeeANmVxSk+XTzMcaYx+2Yh3PeNbPkOfwczqwSRJEwM5YUmbU3LZgbe01LqQcXTcoS6EZD1PA5e7utYegtdE9gp7FjmtF8HAc79vVFUj0DoBLdhgT0jrZDT48dBBM9pezIJhlKZmZuPsZhylEpgTZGv3ePXIc12piDPuZxe3t/ux+H+7xrZcHz8/E8n15AJCCQY5rqiuC9mdEdoEAaURkqygCam8qxaozjQKooG9roRwJEM9tDYTQf87gZuWEJbYAd0KoyaTBIqiyocQAESEkQgqFUVVVXmAWMRnMfk1rWU83MrTYI0gtimPsw9+O4v//48Xbchx/vWiF4fHw+np+WAL3xxjyoWCBIaeMjiUDSJCGXRwpu7u4D5VL6mIcMhbSR6I/dwMSN+0Eazec8rKq8t2CzfvpCZWYBUFZmFnfownegR0/tPfYFTAiauU+WXcDEDL2/Q4YNpkjzYT7mcdzffrzf7nPcfmAtYazjOB6us4rZT3selijACOyp0ANQBKuQTCxoTtF6AKJ6xyFhHFEC6XZtn7YxAmnmPqZlqQRWuQ+4p1SCV1WiMjM3Hn4hryKsKgtsoLQxGHuDE8zMCwTMKRtjGJTYQKhXnjVYMdJ3IDju71wheVRB+ZxjqDGjHbdR56GMBAtLgFgN4YQKlkCC3hEYQuXpBUeZ3Gzginl7jrqZQJFm5mMeLkCkFca86YxR6gBpDrcX7AX37pm9x6MjzoVZKTaIovmYE5rusIKP+zgzIEJFE1DsKOu+L+B2v78ft7ffbSXKT9FQ520FvOPl7f3QeVYUxixfWb35kEmidx66QMF8zMZ3jVKNo2LswGUbU5pfsdjcfR7HUC9Nac6jhiez8e4YDH/NZLLTiaoinRRAm1QqVSAawoN9U6w5HCbacYy5SmCDOEoEGGZDNB/zdn9/f3u/3d//ZitZ9oQZa91WssxI+ttvN5xnPaN8lj1XqiIL9OTeeQdKgkCfh7Q3JbcanIpBXXnDnvd2LQHSfcyRWbMkDfchd6+6hoduJMjXJO8oiOu93K3Q4YMAtXe4MSZquEEyH3O4pxoaXVnQBZnHmMft9vb2frv/+M0imTajVOtxe06VGc38/vaGOco+T5gKjEplXXDWjGYwyWhjjKmiem5ZDZs5By/cixdW3WNkZqMHIFOSxjzqiEoVenToxn23oLF2Zkj2nPMxrRpX0YqFXjjuY0JzjBLMj2NMd8HUqdQLguzVP4/b7X6/v73/8EgLjjMqnsc8TqU7nfP+/s7nTPtcNiTS0pFXGm+9VksYGD7moWS5mbmbDZs5BolGHx0rdpq7k0aamZu5p8nd3NxN+7df0H+nkwShK5BJMB9WG2WY7JWCWW/6BsB9DHc3g6nD/yYk+nXf0m4jDaZ+QP1lNHP6GAfByHmI2vlC8yu8wI0I9Lo1WT8vXDFvvO6F+nZXfT98Bfc9QfRiT/hPL37FwdefvIYTLyDM1/t+7Rm8RoWvz+P1EL5lZCTNyr59iyut/6ev1/vhdVevq9vz89vPSRAje6PeBMN+AMQeaTTsqVIlY9XzXJuL4r6chmONdUTQRKggKeNk5YWTXul2g4WqLMnFpc4lYDCHAej01t3cx+yvY85pSLqNMdyHm5GdaDLWA+czH8/H49Sv5zMqV9ZXLNrYpdj3ucOCOWVGoNGsVGrkXplZIiFlRqyl5+PxeK6ox9SMPz+D4BhzzjHpbmadgxgtYVLpRUFFPPSFAqkmM66fuGUkPDjP3rpg7jKj9vJQVkeCOecYblT25W/GQCqwlLRT50Prrz8/nvHxWKUslZl1ampGY0lDRuWJNJib+zAMjjlH5+J9F0SlV5VAr2RGrFXneT6fa9Vn+XM9HuXmNJ/Dr1nQ/J9Z0ZoxJVMgkHmhK8ioRqabIRlzJqqKwQ0Y95Lox5GZuUbVhaWrkusUENngqyQpjaV4FtZTtc7nIx+Ps5AybVKNRjOag7OcFUAMbZRHtzFvg7q2sT07r2W95wX7w/Dt4fXL1CzRF/VG0vKi1rAjwevxv2LSBY1oZq/t98XUXVFQKqkqMyLWcjtPnKdQ61wrIrKqCiyqas/u6xp4ZXav5da0dS88VFbnKKRVgQP4/75a1/1BqmJdPFMTTtCVPG2cj//fX5vMrM2sNjT89g4bK6tZqI49PQJu6+RaglZERDQCLxqKVcUr4/p+Mfsir+fW11solsqkIotVNfZwXX96JZaCUJUZek24pjcu6rUyuKndr+3i2hD/6RHsOL8vqO+pQyIJaacSXxfOJuHSItb5fHyOQqwknksY6+evXx+fj3OtSCOtGEuWqcrXk/66f6hMr4EusZCqSGWsosjIsZ8pd1KqzV1KgirXyBV9n4RSMNiGs07BhicsLyq/xFY+lM3BXlTza001dbQC53lGhsilzCywubPrarDnSq7nc4i5yvRchRF//fz18Xiu6L+ibLms4HXlHTvwm026mRvvP6YctmAilKiSMlaZzKqa4zDBxX5AuDZSAJXLU7R+kKpqaGU+7/fBtHk83CwyJRSU5mb0ObnOzKDvxwBYFVBFq8ys81k//3pEpBgYz1UwE8yIgjvN6XP4cCMqVsRZS6bHqhrx6+fH5+dzZVWiSBmRBpigCmWR3PzrgI1xOH/729288pHKFmgEoFbSDfEY+9Fck+8Kc+r7z2zCa0+ITi2vrT+vINgSBgSx5TRX1Des9FpVTaUEznyeKzIBBbJzeCM6FyTJ5qky4zyfrvKRrEdUeXz8+vx8PM4VESoQZiiHMbKqVAW0qvOCP2Y+3LKsqcuwykLGIs0Z5ysGNKxHvXQkoSrDLKIp+A6ie1GbEaqCkfCqSyRq8DyGl5fV1+aPHZsllar6LftjKnvc/mntsmNF5jofg5XmIT2i0vPj4/F4PM8VkcoeAOnisRqHbZDnr+xrTk8rlVR7/8gM0jRK4wt8923XtQkU9wBk5d4GS19Y1aRNNZhZXpshAJj5SK/iXvx7i+sgrWsv2gEPZU0pFgHmtb8AlpaZsdZpKjeZHpFluW8/M1MJEpVWr724b2Vz+n1n5j6PkYjKjq2ZKmZuanpsKWy/w1YxCKmYdMKis8G9NfcMMBpVedFXeWUL6O/nSE+7gIBJFwaXpKzMtScVVC1wXDrZZvR6aflyBxDnYfZcekSl5fPzPJ/P57kiL4FYwHzhF7aox/7cTquP+0xGUJURrEzKaGZK1LAtfln/ZaquXUDMs9Ky1Jerikb75jbmPCtruDknMgXfK2PYPO4HQuUgBJY6YvT8YmZknhW1R76za7PO1vRKzSstfFlEHHOQx1s9I9NqPc5Y64xcWQnCFZMtJpJ0bz6SNJuVHa/ffvy41S/ViVznYqZYKDPLYRp+TfprCfSzMoJQJax0bTDVwlBHFusVQdLDSBic8EH3Mefwppd7ZrxyyJ7rmRHaW2tfLmyMgtmEX3KgkUBVFKgc0hH1yExWPFdGRFZkJQxiMYZQ12WxdkpnMrKls3HkcKIyIqCSKUEzhde4IvQrBnVSoN4Siqj+r03uXjt+ZmallfYEAtQBr6HetSVfb4ivXaaqVa1rY5Au2CGpKNVOYTMtaDBUQmKdmUHFWhkZqapMCjJFRrQuUhcF/UJ+VZmxYmV0FpGF6sSDEEM5vDMB5SWit7ZmziaaOzqUWsgRyGTEeep5rkBkISKb5SXdQFSuOlf/UGilHC+AXRkrQ1mv/Yak+yi6DSt338wQqErLLS1H1ZmVUJ6REVmKqiRlpCirX49zZeuMnVrVUikD9nHgvOXnnz9/fZ7nSqpgRCGY5msMZRW15Xvo2s2c6LExWFG1n1S7UCKWzshQVCGzU0AnfciMivynAcA1TYq0yliVDRU7SzKzcQya2yz5GCKJLJGqQngpMlN1qgLKlRmRUmYVW3MiUJ/PyCJspxKoDECVOB8/9Tzy8evXx2OdWdy2AhEJy9HPh3hRGi/YggLa+qHq6SEKRVRmnLVW5B6AEpSN89D7WePnK/DjNTEhqFKqK5fqV1QyAbXdBTCgCkQJNHciSqxQJZTZgmRlVZFCAkGygVUWOnmFlIAyCg9HnPn8eJ4Rma1AWa/LrByv4Pf/Sete+P2CikKDmgIZ68yVmfU1ABtMAkgAKzLrMhp1PLnCYFVi3//Xz7+4K7OdzgpFJpVpygIrVdkUU2VKqSpDofrxnWe0/2FfiypBZJjc6vQ6H8/zjKzWazc+W4xhZrUJ7W98HNnslpkRXpkJA52tEYlPs1QunFGqa7I3JhYgRRWMRu2hZZkurFG13xwwyqydIDCjobWWC5WVyDKnoqqQTZVUVe5J1Pun2XCWaNM9pShkCqogtUjL5e6Vq2dlkbl1GpRQYyCTRENV2uZTL/7RbBhdQgCCs1SQiidZUNRKtY3IQLJFFUgFaxMCqgkmVCfaZgWVN0wjzWQmmE8rI0cTtyKA7D3DVGkVmQ6RVW2Tq1L1JowWUgFhGEahVlqskphmqgDiJE3KbEC2fXtVgkk1DsRW0r/yEJq5w0wb9SDDQMlNlUhVhqOo7DSwQDMHzY1IgChsXUBZydqETAeCSkKkEWbDRBNtTC8Hh7uZlQCckcwsR8ItziQJt9UIOCOheq0ZHxRghE8wn0HuvU6qREXP+R5/SkjQKrPAgMaBdXFarbDSYObuNKsibfihZaSVzCHKSgIr2cERhGhjkDaNij3LQfq04pdnjZeHowoEne6HJ030cRtlxDGG0bMIfZ4BRlUFZq1zkeT0MzKEyCiDAJqXjzEPU6WZzRstPk+0/nsBESlhsBRYZhKLUEWkbADjphYDGz4bDYK5j0HzTPi8+U1PI52ag7KKStrIaognE8rMJ+mHEadEKNkPuFSbC94GIAKAwU2DY95GysQx7zMduM3ptEyiaCFbokQ/KpKkH16SCZaCsWh2eI23ebubytPt9ma2xqPy2WYDmjkEFY2GfMkbpDX1o3bY7AC8AUDbg9xpjtZupobRWpZpeEl3FIW8FApzJ8dwdsrs/SluTGO7snh9OF5inbsPwGRj3kY5cD+m06OoSpl4YkrzuFUInWMVUFDVRrk+csw5D6+cNnjc6Jw5/CuEWRsBDFamvnMTabId64dtEX9v87jA2aWxsBH7BqvXdneJPp2H/vMO8kLUKrzcM1/M82vz3wi7/9i2jdjNUVS5p1rKMvfmjy+taItGF/krqViqKquyDakbtm3x53WN4nWlVhdLOda2+AiiDG1d8zFdIFRFhHSWFCnF0AmJzqrCVkC0UxfzMQdvJOvjqQXTYonuKJgsVmQZeoeWqABMAbMBc/c57H6b022FGW6/fp282cjeA1KAFZ+RWcyCqg1lsXyZH1Z41MC8+ajH+szhWtAgqeYZaZMRHY2d5q6RlQpqPHOj0nb1QDQf9/vhmUNRChkgVynySUNayqYji0pJhHod2Zjz7WZZqGV0SCElzeY4xX7zJp0SoBwSpgLmTp+3cbsdb/fbfehxAhoo5c1HyhRrLZXgiqoSU1IiQIInPgvDypZmcc6J1K9MmoFTVWieTJRllkwGiJt/rRLG1qWubA2kmc/7YXGOsJRKYZwewQpQMHGMPQM6GaR7e+vHcbfIBEinsqQ0s3GrIim/7FJt5ZZAG1H7E4/b29v72/1t5PiUcgw3OgYceZ5rqUqmlAqoRpQiDUuZMpMHKrHmITCqSMg8qxp4Q4RtYq8Xcl5U/1j48rj26jYft7dpS7NVRohj4FyV2SZKt0Flcue9sOEtZY7j5vGESD9KQa+yMW5vmSSZJdXFjdBo83i7I+FzzHm7H28/fnt/e/cTqqTTzAxDlhHniqqSdQoBtZcGsE1USmxlWqRAuxxfVLVJWmx7NowoVZnHpWmM0zsL4FYVaO7j/mPQaoYbKIlzcpy5UAVK7iMzEkhVsei9BHyM4z7OLAhuknHGGmPe3s4giVFSW/ab+7V5e3vHKp9zjNt9vv32+2/vP/iZkWd0ZDZPVuTjGcqSqZqTcEooGIRCFgt+0Y4oownZLvcKVl2JTHuPlSXSKjqDwVid5VxaANFe4IE63bcIrXk38uHc9KF7ZhRQnSXbGNvdetymhRTTKJHTls/b/f3h1wxoOQt7nI/7ezJt+BjzNo639x8/fgMeD6sc7kaDGbXOx0rF5SPCJpLqpd/gJYWLEMxRcMo9lZtx2QKouVJVl3seAMYr98PlGjCzMQdyDHfr6erTMpxgkyb0izLCxQvb9nQdOErLWzZwtdNqgGxnConOvS6+emZ7d46b39/ef/z4gXo8AzjnGIMaadwq3yXKXYR/g9dLe7p2xyY7rWi1TZ/fWO+XL+NL5MXYI9rZ0DaGmI+Bvl5usWOsjRgA8Ns77/W8fdBjzhoj3ducO2TmY8zXAPAlIFyvH70Hjjl93m73t3et22GVcww3tet3swd7FISLgu5bvrZ2sOlndhZb5Ga09grvj60NkV95eFsPvkJgC5OxhEivkkgBufJccQmaUJmPBKAykkpTC525sDl7SitXJHydjxUwdiDbbgKaGVUZWbWlVsR5PufUuSIyL+9zgeOoy1y+qWQDTAZr8r/M3M1lRZgZeufrai3bS+DKd0uAgfSdHRHjaDsGJTY1VGnx/JxcGa192WB84HmeucdSkZiTBItFIgNs0fd8rPP5PM9nSFox4nSV4yNBrucZUV0BBWVauf/Cr1VOjzj9eH4MVtrnc+VOeVUlDR7uS6G9CwAykvKLvWv9QZJggKEiIlGIKA5qqzqQqEqIbuS4+Cp0vUCTYjtfUVUuWKRvIhCohRWbxaTQpPK2TFFKq1JVRqw8V2RklBCBKFicYyXI2K7aS2UqZqxzrXZ9rMH1fAwze56rNsvbZIKbe5V32Ya0zaQvEP6Ncb8mcBc4VAm0suaKe7nW5a7i1jgxbpqBzWF3mKmK81F+hkU2e6MorRUFK5iBknHAhEqYVVWmpXz502ydazUf6DB3ouJcCSJW1K6cY7MC5AOfyelZlcvW+XDJ13NVxIrczA+d0amnbd3iCvnYlUcqFhJZsNKWMJunMHg1Udb+aIgmk9ksLpaqMNres/OgK0OpTNUmH4li07ivWIqvdIkX8VmoquhB21CngScqq0BdNLiuvKjVhdqzJzMjlp++1qq1IrJHoK48Sptg1faj7unQ1OK3XOd7iAftu/B6RU5zp1ehSA3HGMhXJtjKRSz4WoisApjqRSk0D28GwNzgkDZUSFOYn2YRkdUwLi9Q2opQ0/XApSOrKiNLVq3CrnOYytfHZ8bz83mea5VFolWJqk3iQUUVVUAH0Fat6qprK6qfNTrL7Dm8Jdr+0RhTIjOTNd4AOy8XCAQVwp4Wliufa0lG2hmKSpgBGBjDzVhOZqQhCpWAQbJCVRV8+pwjcH6s7TJSK6zmVe0VdauKUyfcBapirNMRp8XHZ67nr4/P84xEBg3bSkPUlZXXrtxA9SVfRkSSKnBUAkYOOwKVGyi1P9Anb/OGx3mutSLHG8zcNk5rylBxMjwz10pBlrVWmyOM4qC7u0MTSku25ajt+Z6tgvu83e73ped4nCsLqooukfEgzOk0j4pVp1GgGUrKZRXIz2es57YAUGV090bGuNSLi4OvvSyaDxfNOnDP2pzruAeSZe1vbgvmzd/udz4ez+fTLMZdyMwwvRYWxcrhJV/t8yidjxRoNofKHRScmFwsWBlKRBKgF2wMM4wxb+9n6r69+5dj04yguw04WXnack6VKjhcFQbWc+u+UiXRSNELoG2mo8VPAiUSBhnb2EOSRtEPesjccBwMosCxrRM+jzf/7e3O4WSVMKxsDPcqK9BcKbJSaZJlioJlrSjAbd7e9eBcJqX31vEKhGCXoYwfb7dZxHj/7bFI8xlamYVzVZb7gI0xbjaJKId3wqHCYlWYqlbI7J6xCIVCT6yozNSOI/3wL3jTM7sourwTiOP2t3t8LnqVk83rjvs8z1UYx7yP9x+HiFKIY1wid4NpY7RhtItOesOuShA0n29/K9SRSsUwMbYRmCrIhkqcb3/8/uNWGXj7ncPc50qsqLLHY0W09MDmCPe+LakSCELJUmbydrexIoOpLFasFZnYdsDm2BOXGK32r5sgCyuY//jbH/XnAzjPLuyD+e33H4+fz+SY8zbffljVIFQZ4xkdAkui6NbrYBc6g1CCuZOkef8jH2tUBeDmXAoZ2j7SPiE/3v/2b3+7Px+/npXrDPkxyMjS8evn43xGwS4YQ7Yno2Kd5qg1hlEKadzv9+PjXIaKhXxWnlHJbaqleWuHm6rkS4HXcoDmb7/9u8+flXVmnGeJPH7793/5CVtNXZjlyljPc0WMX4/PqrUqWAaMgXK1cYskYSwgNmk+3/4tftZYz6SuCjK3rGoieRzz9uOP/+U//tv9z//nr18/H/+55G7zNiTotz///uuDn7EhhDndAEG52OQxzN2AtMHbv//reWat9YxQWLdjMKBQKpojkP+ESBoRKk+NMY4fv/+v78d/xuOJ8zyrbM7f/tv/8R//HX//sNG7+OMj/vrHr+fKGo9fP9MqkVYUx7Hp7AJhNLqHYGgPyrj9vqZ7PIJAAk7Kj5Tc3OZxfz9+/PGv//P/9h+3//tn/Vwf//0c97fb7f0AjP96FLGedWWuZu67Vk4Z3opFuRvHfPvX//hfzj/PWrXCOpkZkDESVcYxhOxVqZLBSEnWyvOY8/b29q//+szT/sH4XNDEePuX//jf59+f2e+jevyVP//6tUoaZhsgNUa6JihwxdVLNCDN/eBoB3pnlW1J7+odd/cxj9v7b7/fP37cDo1Oc4/jBpL32zGHmxVsl6y49XWbubdGO22Y2zxu9x+/nW+32zHHyL3oUd7hX9sZB8C4VbauPSzRzM19Hm/v9xvXdDcjxnF7+/H7H3/ej8kBjTGPOeD9Z6Md75e38It7fykl38UCHzIzfKMmr91zK6s+5rzdb8ccTeebD58TMB5z+GYEcFEo7DoZMze3rhI0xxjjuL/5be6yiBf7sT3HzYJ8s7hvGfUCv2Y+brdjlvfUkGeWrHk7g9x8uDeqKIwOd5ee0b0qSq80i7t7SEs7tc7eo69ZsbFtu2wzc53Pz18/18cjqq5C3Eqy0La261Y6d2gWGqpqzZmSVxrPx6+f67FS8JnbMyS1bFcNm7Z994qmu9NF31Tl+vx8nCu2Hgwozs9fn2dKghLrjEi1H3VoVyf1EJSagbnMg+ZjwqaTEAbz1zpjgV2OAVLtDGJ7f0748fO/3u32nz+XgOnzfpv90jrPSJFedHfbyvLVZSKX0USFm2el//mfI36txPxxv0UKFYAMnqhK+jAqt/lMRiPRNRoyg6rW40//+bGeUTCDDHV+/P3975+rBquU9GdkcVCVI7aLsTOGcCMqy5opJc2mGcdAVRHPv6/PZ5UZYTAKJQP9qJUAgCjpOP+8/fX3nyvMxnE4asGson5+PM7stzQqCyugMqOSSNJkDqNr+Br2s/6fvz7T3sbHGZUKQCyTlN2aILxjA0XrXhMlRxEK2Mc//q+P//73OB+r6BK1Pv7z/zz/8V8fMRBV9Tw/PxQYhoqxur5o76QZNEnuhWtx0nzcDq5YkY//sX6dSy7IWj4HRT8ihMo4RcI+/n48Hr/OIoZTtVi0XJ9//XqcsVeWoqRQr1igEsZib+gVWX/Xz/qvx2f4/W6f5+K20UNdl2cdTS8XOwHzUhukKoBfsH/8/WflZ5NYqvOn6s/PPxcGz1yBYz0RRQdrxBViBEBZRlE2Gh8a3czG7X7nc0E6Yz2XyVyi9T5uos/21mbQjHx+jKioShvTTZUGj7M+zzNe/Vsqq3IHQxFFXIuKVOkXTn3Ugt1/6KIyXo9JsOHWeS4AY5OnBUORquQTfPz1KZ3RREfhUfURp0Yh8rHq2a4JA2uUXULrjgEmybZG0uH5uL+/mT9VK1acFTSU6O7ovhE+29+YpLHi82NoUoDfDmMV+yE0IdThX9Imm7qHiHaug57lzHgiLX28/d7UgUEoE4QMaRxPd4CuKzb6iJKjy90qVOfHk4za9ZNZcf5CB6uMM4xFwp1Zo/6JLtHLEI9XeejWCti+iio5vkqjXry72pZpqojBnEKO9gZLqLWa7H01QWqGeO/A2joOiWJVilXAiE5yLxX9nyygF+3DZn2M3H2YLuHvedKyaWihxEwOjVRkrKDJ2GaksXmm161oU0v69mFVqfwy0u0r+vZV+vabqmIlhMwkMwGoWc6qrkP7fgf9NyYJRZLdcYgJMBldJJaVm/cQsqTa7UK0eaxXLS9f7oQq4avpFDZmqZfxW12iI41sh8G2MejKtTcsqEqJsSZjRcSKzItP1tYdN9uFV0YiJdvFewqWNQoZm+RrQ2pWZW0bYTf1Kl415vYyJmYPQMSKSgjdriqzYJFZuX2YZEEYKwSEUfByQ1bafh4olMhiMqPbkJEFWoFVow13mzXmzi4vzrgLxTIjGJdF8zUha9f8dynNa0WoCghAxlOgqoYs1tpe5a5pqSqpm15Y7Rt+ga/r2SXifD7Pcy3lprm7GpPRVXPUFoabeC10vzNQiCx1+UvBmkYhK0OZ/ZvubpbV/RH0qtr+xqheTtFSV9pd4vRrmVwj8TWdAVG8pli77YutcFzu0NcKwvXB1964jbraBHCVdSXvNdNKWxV9PQbtl+9ruPJiba54/7TZk35W+3F/vW50YR2+Ec0Eza8fFmVZmWqW+lvA6AppVYcAXpxbE3eVECPUqnxxu9WbZ1dz5G3IxJbyje6DZpaQQDZXvp7neZ7Rl51AN+1hRO5WLRLbwdxNtDolBGFZTXBCTaXSuvVLRl0GN4hV41rCfR39NMy8pzihsqo4ac91rlhR1d4MfovOGdlGMR9jlz3LAER5ERgzWCvOc2XGtni3R625pPaLO8ec5m4Rq8u4VVhPfD5XRn3VZDfH2zpj04IAEMpkNlncK2GledtYWhJkwsWHVlubi4CRleNwWJa0TVO5PRJEV8tARSEDfQdVIsxcpk4hZFCetSGuu2+mFkYDIiT5WKrMdUZVKTtx6WXPrl0Z45ju8zaHO+NczcJVlfh8nJkrX3NPKmDHxQYunR5mdhcOy65sUJRB2628jVIyPJCCu3lLzlU5hiMjc1PtaoXVB1EwlbKIkgutVrXk40dW0ViEul9SK74+hssEcUwfVp6hEnhWVe10UEKXyVmRPgTamMftGH67H9Md6/HMjCCqVDyfK2tlXPXGkADr7yniEmzt6sQDSLDtYSW89gPpevaA1Op/ZVaWNMYcuRbzBQO6hRQRdS3QEoa1dthI/Lidy8xZgryLBy931Whz+O1tHiN4+sq0uUTbOVdXJpDuTB+3SWHM436/Tb/9uB1u9SBjoSiVGDjPyKiIfPH2oFd3uASQ6hqPxrw0D9BsVgk2WDLwFd1eyfgxh2VGnhDHmGU7Jm0A1Iydup2KIMiqUClJBtHMR5ZsMPdPcOF4dxcl2jxut+MEnlkb23yVEUnatnQzt6L7OG736ff3221YsGRQdiFpqoNnZFz6JfZ7bCX3uuS+kC5XbhsOSZMzr96N+x+azWN6BGEkxhiybhODF/rd7V1te0KaxbTdSquXeskHsyTfpi1u7z4o0I/7/X6bsAUPzCHW5jNQsKK5u5XbcCd9zuM4Dr/f77fBUCSl8lEmeHmaDJaNzr6GAF1+wAaCu/DAxxhl8pEC3ZEY6Xtf3TeB7hA23ICssnHcavfJKaD7tJjbIOSW3ffR3Id1c1frFTSz4MMyJYfMJNC73QUSsPH+4+39/sRMPxfGgSrKd95d3SLI5PM4VDxu97f3t8Pff7/fB5cLpxtOoaRRmaCY9rLDXICXNOt920C3sgH6cWSa/AiAPlgYTEBWaNpygHSbt9tYBkaWxgX7X+CHNJ8HwWpTPQD6cKmpooLB2lbzSkhMTR6N230qJboP96ZbaXaMqoLyWgN7KnbXRKK51Nt4/+3tbdqa4PkwW6WURkV8TeHXB/L1nS6YI5T4al3a/MolIn37W77Wwv7pyFVrvUR9XAYuIt3cOuX3bZfa9SKZKSWIrFRXARDtenJXCYrzIZ1Pfn48szx3qfTWdXv7sd4GN2660iOa+xg1M3yEFxw0LxPNvnI00nYFztXS2C6XtgRSFXW1H7GsL8P2VcG3DL7WuVZkjfDVdoyrKVzTqgallzsh9OM0YqvS3dYEYFZ1QkDSxphzHrOUVRVP6Xza52NtX1STui/wXF1SYW57KXfnqHnMrHMZUbfIKA26l6fM/Kq+3vfbuoU2TWxWvDo/E1dVorRbML+S1aKgWpDFahdG1/VsNL9NBNLV1qnTouEIdhLRL6viAIzWnpvdW6v5zcYXy6Vx8lyrBFtRas/3l4pVba3J5FX807fH3qSHD3eWyaeXn+hKmr2XNRfV9jxBQPcA7PZGXSnTHmmayRr27RHQS5TbpeBjmr1Ih35RMddzWGS3zjY6M7FiZXUXT2ViUA6HiZd0KKliZUZnMDPGwvlcVWt9hlSxonYrnc1eBx96yBiZucj1NETo3HB7tx7gMLrTvUS8XGKNWGAwWYm2s2gDLRVAVoIh2mB1tVl/aJg1ywnb0WgcOHf6tCODCnn69B4AmXFwnZUV2YkbleGDckQ3ma0ysFDhZ5eJZVhEjsC5zkzaZ5YqoyS3KhhQglYm48FBj8gljk/VOS3OTF1cRgl+m0b5SLFbJ7MgEg6AMDUTeK1zWFYKFUWE0QcTHXd6GLoFig/Eph3Gb5Fr2UVNQVAWlcdQKdrVMmr9XB3pKHMw87ghBxUgmVlGUxppmS28cxVYFZXnCpxVu8mLmYpmpIoBpJ/j4MiqyLGQ4WPgjKyK7CcOHr/9OIZFZrpCKjEzzIEuxcUIOdvGbk4bUSFWlCnpt3sg1+bcCKXRb/Z2exckZZrGfcV5ZYjaMC2qlIIitwtpPRbaOwt6W91Zg4s9Kk00UbBIuHU0H7dMVFCdA8Ze6d1tbvcqkK3yrrztxIk27VyVZ1OImSiO45hDELpiX9zifV/rxSvurZVE1aVz0cfNkspSdlMbwcZh9/u7tBW1QZ+3yBDSLnYCqgoIWlkgqnm9hh6ikcONxgFXFkVzqRIBuiVJmM/59v5bxNMBdZiwvVfSzGguo7XRduOarotlFs+V8Xw8nysiyFzn44xYGWW4ZkBiExxXWdLLMsoexUruRoBlXl4a3eJHbmZjHgez+niAMQy7dLwtbbX1vhI8QlB5KmoDF+ueHLdhAwcGEkx3JaqYYKCM9DHe3n77/Y84Pw8zwizavEVzd5kPn3RkpFNjdPPw63ZOnSvW4+fHGRkpW3zY8zzPyDRlQ4kq9ZbcXCa71SBt+PSUbNyqsr1cQ44agClhXesw5u3t3c3HNJtriOOY8xw7ApQ1rur6vAQqzdW1MkYbkLkPNxkdjhTLhprr80hqmMPv77//9se/nutgVcROAF8PaddgVyYQFpkRy8oww7RUZ6z1/PxYlZVlS0PneZ4RSeQVp3cmVBvetC9QGWErkjbrBMcwmtcg4bAkDNyafTfHr3Mlh8zndM9dPqfajG/PAsFocR1ZsHVZMyR8NIPXy69kYlgZZERx3t9++/25EI/n87md+5trJYqNq3ffgqrMxSLKmWfminOdj8+sqgqPYK71eEZUl+Re7DWABKiNCWmEonsL0M0uhrqyIkJntkuaJOnDZ665jNCATVvPM8OKrL0V1lbhCexjKdBozSGYOTOH09hFOKC6ro0JHgAS88cf//rfns+p5/l8Kmt3g3QzE2k+jEVsHUaViwUVGZ9nrHWu5zoLBdlMMqoirpxAF3kNoiTXbtVog0Rkrki3o0ZbqiVlnM8zI2m3rtUcY97udyd5rljDfGCMXRzRn7BLU3ajPfWwYCfYl7a1W6V3BWZfVzGbK4SN437/Yb7ubQuxK9pdLgezy5Kws9QLdaoq+wyB6s7Ilxc9m/tpbqshHVAb5HeaySvXoXOXWragpatnyS7sGGNOxTncyJEWuSm3Fzf8T+aLnYn1cEpdJ1XbT72rsr4llNL2CpzP8+zqiY3f+MWIdzPIC51UpkGZQUT+s/zQlX+7q+I1ADst3vawqwmDLkC7ZQVJhUuO2h+rDb9j+Vrt3x9p/nX7rze/vrj97fq6vdc49KXZBcH2xe0RyFjnecZFZ0pfGgAuReEa01IVytKIb737rgfBTdHYq7yPu90Dtq/hiyjRrkjY9099FUfhArqdzmbuBlmjruqUPc33Z+j17uiOYN/HuLofzqUL7L9TWwDVJpV1Ps/n8xrnV6JxJd07KPYH9GCmkfX1uL/Emp7M+rqLa2A6G8RuxXpFWW39o59SbdvwK/XelR1bqbXxOVY+ntsr+f3Rt0PkNd06oEApk0mIk3bGKkZmiSZW696VsT5/HlV1nr/+8efPj+daEV1j2uTjVbVhRhNZsZ6Jioh20qxogoIX2Qiaj+sQkz2bLxd8d2Dowaftcrg8K1KFsnWuzAK9Cd0CY536YN3y8TxD9PEMz2cTAi8x7CKdYJcCckWHVDGRBFTdWh+7pRcszC2hSovnx6jKOD/++vPX44y8xEOpu024O2uKEIZBtQqqSkfLqLV7LBh8yA6nOK4+P72k62rsR3XbWFAFH5tKXZUpUspOQQcHSw5CysDTkLVWwg8bscsWtKWaTfLugkEjC403uBdZe9L2OtRl3aOZbFAtSMXz4Wb1/Ph4PM9eBNw+LJOPOeZg7gEY1qewbC7jCgAE6ByDPgc5Dm2PWWWlsjuQgYTcOVhipty9F2PTQLW3S7oZLXT5SStiGQq06WOEVa7d2xjduAmgWX3PkZuLKSVKLBZAVXYPqf6M4S4/gEVJiueApOfHx8fjXFUSeN0eBNg4fHecNHPbJ3F1K5mXiC8zVQEGQ9a1Qqv3tM58nAX3Mb3EM+VjlJt1qxmIRFfI0g4fz6hQWYHu3VkzZT5H6WqbehHuHfV2OxhCu1rvKkbaYqoSXVKzMdIYy6ei42DGaWZ4PLZb73J7vqhN+mxjDdgEV6c1G1L0LJfIEFNOvuI0S9k9dLajgCTHqGJB08fWE0qSqdB6Lnwco7CUSROGNxqtpNs4+zC5Imvj2les6RYZ18wB0Fbvff2lknmBky3PNE9oNubNDPkUzucZLzOHADEpOAIDoXOlCoB7hqFgGbB8nhHag4YtbRJZV0tb1OZlmokrkiUejRYso9RLABwkQTf3cb9P/Pr8bMl+YaGypWFpLLFWpMYuP2lv5c4y8doLWm4hTGbmftzHubIXn9sqlbKwCHM/7j9mgXVidZMxgXaVjCUIZDFNj9Vqvbv7sAWLKNSKLOUuiTduxSqFbp7U6X4TWlKYSFjxGGdlVVYD5hLImwSfHPe3tx/vtv78y1tLbOUV6D5kI4SKFDy/b4Gv+988NHd9uRncfMz7j+PDVLdYhRsVKUJKo41xvP24x1m7N2OXj9mF4wTaWLlEndGP1Ue6fMkKqxS9wknZ8NEdPSjA+oiofU6DNwe5hbwx3++fyEpWbkhC83sF5jHuf/z+L3/84Md/HizjWdz0dneCwMiSsmTObZa8LDovUNAHAvQG2YziPN5+vxtC93wk7lZnylKl4ebz9v77j8fHubIjcNvBvmCcjdk22egB0ChzcsmE5047RQN8jskAYVbJkVZJtKPS3FjqVhVOH7fff7iiu3oApIzm9yCO+/H7v//7//Rvv+sf96EgGIC14EX4ccuxIne5R0ez7EC0ASCw/ehtKB+Hd0Eyx6BSpKo1A5E02PT7/Y9/+bf3fzzrfHRln01PcvnVwYLmqKvAeZ8YVcYolp4BmtHGmEgbPgW0UdtmqmIjH7pvBwX76KJ5ez8fblAmDDCbsPF+Skabb3/82//0N767Pj8yi6XmtVGaAkasAMDrEJhLbdT1ny9I/BqgJiJUGVWq2qjWYc7hPnwehyOenx9FitbldjYqq5t58MoKxRKa6q7KAiyTpjKYD4Lmtr3xpDu8j/Dq3tZsZ7TRnWPO27Ht+LjSTZoTqhLN5+3N8uPtGEZIxdSCrOCgj4bIl7Cxoxa1T8q5MkgayH6iUBdHmDURtf/SQRqUJz5vb3VGSbadPlV2VdRuK5G7F9oEkrnLW/feXmIp1mlNZOlKRUmDp3AlBaRp0Dim/fj9j99/X+dTw5+WK6R8wuuM3PGL7kRfQdcjW7SaP28YaNUau8uEXnHwlRh/JcdQElfnV24wiP2EaDSTcp3PJ7tzX6upudP55i1IwmwMIa0P5SGv8e/m2pC6as1s12FeSPyVlfY37S9vimvO4aNccV7NXWxTKFJVltVuKlpZpMoAo/tsjC3snqJXyo291YIX79yj0pJSnvZxrI/Ps561Up3xPSusymg4n5/dBeHKDnc/e0mgYLFWKApd/ZvdXI6Rkp2N3xrmZQAIUGxYtFRZQNS1sXamZ1qPX3/Vz4/nuWrbeCRUrhU4B24//3zzk//47//187GyFQomUSB+UcNh6GIN4IV4Nhp/Qa1OywgfJinj/PDn54pamaXnykw8M0h3g9bzwbRxHxzIqHWRtw1tVHFGCMnNvu4wZ4LBvlgJdeuDBMCULBWoKKH7p+/CljTB/YPj+efPzzN2NYtBqTojuE78+ofV5w/9/B//478+nins81FAaX1UjWFSlXZXa1xEVYNhsn0k/RtZH+0HiHk8zlXIKD7ijMJqqlfQ03xVcgxzLEZ+X0OAKphorz8JWZGg+zS5H6+e2wVYIbrun23zo6LalMjc1yTBECft49fjkTJ6WREoKB+5+zZ8/NdvNzz++uvPj7W9RuzO4PqMGqOkvA6B4WuJcc94dlHWZclohg1CntG9DYWzUlJ0vgRg+UNWHG6jKLkLorVES0K5txixe/cRMDenzCnm5pWwz+psMqa6KdxFjbF4ITYmc8Hscy2h9uFEDqpWFcIy8vHzvybPz89HFw0B3dkSypU1BlRkSmirly4isI2cveV0HovhoyvWK5qbbyNh8UKMuNJGTvjho04/id4Jc3cwIkHz7vJom/To06DMJYvOQii6QFoBpKh9fpNdstgrPnXoVBXMhvk1aNU9slV65nMOxnmugMkF+DBTNbM5bkLZalnonwLtZoDZe6Bo4Jzedu2qLBq6mKlTmvrSuKrymHa8+6yHm3QlSxDMQMg5KCTNN+owM0+ZAWtHPIBWCaK6WEINADZcaSDHdtnMo/s2+ZhjyLmYaOesoEIF5UZlCLuDrI9htfnSMYBs7w9xNRTS9tI2idzpKodszlGJgrKQ7qxIUbXRQZOT21nkfrzNW3pVrJR2McPm5eCDotGH9Yozo1mZkcqrNS5UKapkBKpkw4TK2j3OZUaam495G2ZB53EcE5AxpMVKwpJYqoTRSvQpXIfNoYmlGnWRyNf++k+s8BWTd4JwkcvNyb0OoHklDtpUdlYoFroVYLXhoe+J396Hm2ss9mEG0j7GdXsDqsR9CvvLpY+9W+n7hX5HKrj+tJWK3V6157TU86LS2jxDaTxQ1b3K8Z0T2YQ1OggT0uritNhObaL9ha80Ry/VqhY/lp3LZ52fz+eKFx8gokhLgWKxz7hVkbStHq3oe93lRDsGg91Uqk1b1z6tkkwA3LyeQqyn4/MRSK0q7XqSdgZchH37ziupzEpTjSeqNuHU8/96pJcC0OVpEsUgKiNDfSembd+01+PoQKA4g+dpQ3mu6BjxChC0okhBtN2gAiT72CBmbNPPXoQvQZHWQbrDf33xVSScQ6dQaYbnClxqwHUa7MuEVKVUu3NUVeWqcTbPus9Z03abXLNMfWJte2bZZVORHaVZyNKOHBCEAoUEmEX40xyNPQXWa6HpSqzE3l+buFd32qhLw9r/eakDfMGzr+2mOmtTGQfOQi6jIhLbJQWh7TStdu723FVimnYJUo28zizfG9m3MHAt0v75a13uCyN5mRMu8IBLIpSIzK4Q1S5P2euzi/8apVufqFGdBHX3m122dk0qXtZKvr76m2/cXcGqOwyq+1jqiiN4yWhX8Gj8XFvNJDS2CaZfw1dwITqaWJGq7l9CoJRXK8aeEP0opLZ+XWNRAErYoVYAirXLVRpUdFBq+k07HedrOvEy3FEveN6HR/S77RN+uodKn3K6Cm4g4ksIhBpTXyZFKLnpX1yJT+0BwDXrLwR4RdXalgYIhUpTixw7Wdp6x+b0+1jIbvTYFNpXMUoxLxlVr/Pd9hsTGxPay77Hnm07FPWlGHgJcbaRAogqS9KQQjaB/s1DcSmMJFv7VzeC7XIrqKDxxVbvFfBacjumgSCr+80l26a02ZKXjCyR3bE6AaO3cGe1e06C0nWCUQNM5058e5b38zLuVo9oWAq1JLhd/NvsBl39fLGBax8Qoxb2N1N/dVDb68fMyjbZigtGdq8l/tO8f22vFz/x7Xltg+MrMuNbO1aaWdBUAsu6v8+FGXDdwn6L7TZS1Y4IvHYeXrtwJ84X/mgs/CKoXnHplayaXdiN0i5I7EVp/Sfu7pm4Outd0w/uHLy0377tazuzPdF5sQLqoAUZuvlDJw3a2fswl41OX8Hq0Lst2OxOEV/jbmPOoQjt2LRnoDkdy/JqC/ZiInq2vZ7M/gmNzq019hI17ro623Ptym3HnL4WmoDcR/KYkT7HMGx0TeG6Slwe3GtLuLKdAiCj+WA1RCPAAm34SD9aYSUh9elnLYpZ17NdV27ux23iXLshGve89MEBLmaDtraB7Ymg1wy6Kv037UezcQwJLA3S4qsQE31ODGDzdhsPKpDXubBGc9q8zfEVAEBavpY+v+bFty+9Jjy7OWxntnSf4xxHxjYkdnLQTZb7UPU+m7TFbhvzdhOtCsirH5hwHdp0ndNGwq65rsvJyVdCaMZhoNu8HSUxMGjr7P7ie7Bbz/Bx3KeQ594MiwWD0eftNqxXz7WyvnSw64F9owWbyv3GkH0DARfc3eMLM46mtzbrp+tWLlTzNaJXGtYv3KH36ld5fQPwKyjsJ7Gf8yt0c/c66dh5rV5gY8O+9J3jb6JnXNCq64XsYhok7OyN10oSvPZqTtTeZ7CRdpLFaA2fNgCazU2Fw+BX6rTfTME+kY9fQyEYo7bgummrq0lEH33FLSJcg2ak08cxB6qcHEZLWvXuA+5Fy8pYiBR9y/BNGhpyYcSVIGAHvQvRXeFwPw/suoeesN3QcNNLarG8z5vRZa0ltYt8uc/8rWYjyeSJRPTFVUklKmXF1BndG3GTIHvQGnf1TNu5GrsunFaV2AyF2FaMDTl0HeYaxosv3XI+2RVROTZm6IfQ1T/Y4UbXhieos2g6lvTVkH+rwiB2BxA6zIfHJkxoHcXQTX43ci5mhpC9/10Gon3ui0DSScZ2OL3UGjN8lb9gL2Whk+wmCqz9BqXuM6Bt+LSSOMp2R6AG0qU0IIahw0tHgj6EZwePvePzGhsOG9rG4i8H03797g4D2JjDMxLuV0siEvDsxUruwjuwDNxtDMAuWR0q9Lme4HXiLbY67bZRwjaJddmhj3EcAxmUDWeKoSqKqbqiJc3G9D55JDcQ3KHermN3O5yzXhasL5TBLrW3rkLel9Th6MpUsNF8H00/RqJrjF+0BmDVhcfXTq7dBXlnVK1ioTZP0fir9O0jSPpryl1D7vRx3G7OcJMdzigotfI6hHaHyAqsc4U6i9g7TO+h5JcD70J4L0GIL2VY9MKgSdn7EL/NgC5K3HyXGgiKPgfCMlEkW0Xb72hjTofgRmQf38sXF9y9pnEdyaDLoEC695TeE9nch2sct/e3gThXjWNwYafpr5y2h8pHthjQrPOe3j7msN2ouAtPi6/kAXu9vAYAcFrb5Jqq76vu23J3t8GEQPMiizaGNsVLorvCgdaG3cNZPQBBsoosM7dRXtg9VewFeWkkzM1rd+65oIwPjTFv98llVuM2zFdWutF0WTv2jc4mJvDKp83YRyNe+ym3cL5RZncsMjMnCZTN1GEm2T6paDeb6mlmPuY5BpySjZlWZeM2ESsWiyTcesmY08e83Z3FYYZYa3mIWbJhM826VaHBNiW35XkfcwB5HXxHG2MeU/P+/sdvB8/PZ823ybPPJLi8W93ximPeZlWWqBIvidpsHMcYewD6CNvtMt8UdDens+5gfgTu7qW4IMWFX6zbuQ73gcWS+zCvsON+x3ouszCafOMAM/M5bzcnOIdhnaeZlUWmuc8NZCjDqLqmgBk55jEhdqlmz+p5O+r29vu//HHY4/ao48e0J+hdftOovOePj3nLjCGrsL2xkLQx5zCri3X74gGun3Sc6fOnXBjuNcqs6wTxmgHYhdNeppY9HG4+J5B9BhTlZbYtM2Y+phM8hm3mo0UIN5eZagNCboBKso+/GuEqGL71yK1xHG9vN7NS3d4Os/szYrjHjjhXsBzD3XrxvhIeMx9z7FW6geOupnNH0vZZSGYOkx3Puvuo0AnsU8YsrzTUBJnZuNsoO26auex2/92e83weIXoN37mxEVCuNJvjPmRUiRoJ8/u8hc61LUxHoFq0KFBdb/M9EQad3PUfo3zqdru5fS5EPc4UTEKV01BxPnSuos+K3qnEKtf5GWPTO/yK/SR8Xrzs/kS/CLDKqh0C9xZwbZbmPrp8bngZaj9cmKPYOXQjdLy20g6XZi7OSs63+ZZ4novt48YsNNMH4CL69EWSNUuZGYuKTGWYYns+SXYr0ms3uBLbr//pX405ur54EyQ9p31wb7cNe7n/CyzBhqx7BwkCbZAc87jlvOuk0o5bTg0/3u/dessSZiM7a3enjeP+PlzjfpsFgaM4y+L2frzn+Hg+EVVKRxXEyu7HjMs3cNlu6eYj9yYXI2TuPgj2WgWhgow0ztvbrRNv0NzaA+w23t6P4V0ltIN/V4fRp+2zQq1dSA74TpRgoksr1cqEGY3juN3j9iYDgscRQxxjjjTzzRCMWiUU3Wlj3t8Pk7+9zTSajeIhi/tvt9+S43NoZfZpdhASohmwhUrbtGrLgpNzzuPt7kzouB/Tjrnk5l6CJQWDmR23t3tlVpf6dmC04fN4uw3ooi5B8vIyYLvE2f3lCkKtMHmdVaBbm1a591X6cXt7zLfMPh8nsipiRn6cmbLkZX24duXbjzcL3Maku/uVLowx+/C3K7luJyhpxk2pmG8GmmZmYxSNNg6v40waTRlxrryONd6estuPP95R68yVkQnC6Bx+vP32Y/irjho7IYG4fJyVKBhNxooAxspZaNefTXZuKtGttA8cJNZ5hvlYUBVS8Twz+5ip3b2dJN3n/f0Hn+l81YBGrfBTt/r8/PzEMxKJUrVeYj0DCDO9jAZbuXV3P27M2xNdz1cRbaxVgQ4z+ri9//bjPD+p7jNN2vBxjNvbb7+PGU0Vb/6kldeo+Wy/tpuMKchm4JKtyeGt3JRgVgWZT4nx+bFycJwqDeSK81yRmlZdEtxi0Dhu77/9Dj8Nl40pIj7PEwPxn38+HnxEeYEooLoDMRprOroLE0FztzFrHvf7b7/LuWy+3XwNvqqZOj6Z+bz/+OOP8/nLEMpe1sOP+7j/+Nu/jOvh79h4ybfNraNZ26acE1mlaOdMd4JsimZnbPtZNv2SqMo8uyl4Ie1bGcyLxykQX/U6vDKKKwcHv4QhQPVtG9hB+arPOnXGWjoxnue5VuS3d7ySVXSp4matrs+y0W95cby6+JCtjF6gBBJLUd405X7rTlL6Xqq611gvpRKUERFZVayXALvfNCMW1kkR57kiIpldd7+HY4/WNz6qBb+XhIPrfSzO52PqPNeZjxyP57n2eTAvGOnD3Zofu6b6fuSqHG2fa4K+crP0qNh2mk6NdNFC4D7SBk6IXgWYpfI87eTHGSWQfuSqfRZNF1fxMmSQpOL5cy48ToJ4PCNWlMVj1SDy43EGUng1jeXFpe/nUtcTVObJsPN8frit53nar8N+PSP6Obej0mzM4/5+n5095nZTo5iBdT5+jtytynpUdwaN3SDOzDn6xCYbpkm/JuKsZ2aXpSML8fRa+DzPSlnGPoh4OBhE7kS5di+LsOfneHLloClirRVl63kmqfj5GYtRgkwlqEjrPr7XJO63KaZlWJWkOP18rkQVYD60nuitzVafFfRr4vaPX4+E06pKsKqC522eIyLq4jcls0Y3StHUGQ6NOxl6Ny+ckXk+XVlCVLXBZj2wnmnrqRB8yCCQNwxfJ9CUg64HE74eMIrHMEq5zlW+ns8zbcWfK/uoOJqyrtVqZse8TfeIsl16BlCi+ZxWzFUwc/px3EY8CCkEK7id8zOfP29//fpI3jIRKpRVyXLi18iIEsk+B8+MDZVL5ppzTh80FNJvCz+mh/CsM5oksEjJWojK8Yxa4QGsZcMA87ex/OyuBbHxRQvT+VxJPwSnkOdzla/HJ06b61d2w3VwVnQm7G5jjNvtfnx+rmdlRZXQ3UB4HPf3w5yCzTEw78/K9asHQE4NeCKfP4/nGZi3LEMkUVBaHWnjihW4mObdagbgRls0E9IO4nbzOJdRbfElatcsSEkoozqLM58mu93ex4IDhA0zRaslzaJn8MiNCy7QjURuI6OZjSNMdNhOIH3MY40yAH3Y3WbLzb2zRY4xWMct6pgju9lck9JlVK4oH0fOuurkgQxgDNbLdIGr44xazc0wgm4Gc5iBfthwo2dHZ2MnZLaPEzdwCON2G3cNf3u/jyE3n7DxNCuuFKBCIQ0UqlKZRXO4ZmLaQAgg3YZNumBVVFquM1Xx8XGeqZ7AUizS7Xx8aNzjXKjNAWscNyBQouRwt25s30ndznkgVCYxpiH32VT7/3TthJIq29NaBSYru0rURzcC8VFXOZiuL5Dse/7x/ma2cov+lzp+TTjuBgIp0AHXLA5zzboICV3uExIFRvTR29WaczutDRnr9MI6F9aiZUaoGk6YCHhZ967ajQW7CYT1ETVGjSM9M3NnAH0LW4uAKgmqUihnYjmrYO4lOgmOEmCIRJ9/UZVpAsfkOH777Xc8nszzURhPns/V1ZxSWWNUM4dsJBwDUZzmfWiRimEWj4TVrrW343y7fXyeS0JBBndL6/N/u4kBJButJkINKGhdQtH1+1XxzBDd3FtOMcO4p/Jc3c4ArzS7FVOpxYcSSpFt4oS5K2HmlPKqNt0F1eqSFz8m3v7l/Y/icw33C/4Rtgsx+qiDrESpay0I53BDd/X6OgMU26Sm5YsRmdccJTNpiPN80sfjM2nTVRkpjeldT2bOUkZljGhwYcNqzmkVUWnQcIpdqquNjrZc3KjDVCxr2v7ayOiC3J1VwtWh54Ud+5qH3e73I69TIvo3egXb/SfVrYKM9PRhwzkGk6ymnF/ixD5wu75qELcaW5WZa5RWJDPCqrtQb6bGfCB7+KtqCzNm45iexoRB48WS7CCALQHqcoYTLLCQactQK0swbY/bP0noxD4n9Vq4GSva//5N0FKhKlFWMO/7khl9wId3YUerGkYTbUvXUmV3d76ekXarwefnLW08P8qAWvX5eHLVJUU3WOgPlWwXunalsxWlGq/opdfcVy+z/Wxro9+QXs0dardpfY2dWB10UbKMCFdErIhOCMSs67jFfnAsFeI0QJUqs7WWp/HxeBXyevZZ65cGf6UsuP5fxWJWhpsiVLEGtCK47bbiiwfbN1iXR+i6YWk8pVwr6hse3q8pqToA92UWT0Q9zzMyC4SYX1bZAsra6J25nh9pidujPn89znjlWP0krZIrimWZvCq7GJF043N1Jgv0k3LDPiVseylti4NSMfs8AH+ar8/iWo+pv36eWGu9bge5zXypnnklAOmZUSnVONUUwk5+dgE7L6cbkWqvbhZYpkesVBUKLW3bVR3WlTEFKWM9xeK59Px8RnWmpStUlFUuFIux2MypwTLKiuj734ZBwxh5ORYMldstcR0Clm2l06THs3A+59DH50JmdN5Y+34KKIl9+mSJS9d5ljUKV8uKLUTucKWrdXrPg6Z4YPV1Vvs1uzqqvSLTXp6WQUPnGcRm3bU9JVva1zZ2obtDbfX1en2Tk7uHTV2I1fbC3IkhsMyTVs+iKhzPs4mbK+ndqKa7Jr+MJVuUl+oKgleY2g7Cl1a5ZUTbZoXLaPk99Im0XWF/+VuuLWwrQYIKZftMGV4oR+hqKeFrD7qYFRIm2JxMoN2e11mX2KHx2lwyRa/sA5gQmSagPZsgNp+x47JthHONMTherivs5P/aC3ERH2Zmmwh5+RD7AdUl234zDHIXmRhB0n2M2vtIx43q3wEqlijf0GtvjdiuXAcH5bf7Cqm2qm/Yxy/4NUhAVYVRyoKxEpEF0Twldm+Ty5YK0lzepQ49HCyM5Itp0mvLwatgkWwKESmlsiqqNkq6wjLYB022qN3ZTRVydadPGwaWqO6/an3SXmXXPncRj3bB2U7CQHNykOP9/TyrTe5XICzJxp6m7JNNCOcqIWGIJSNhJl0OyG1eoZlZ52/1JQWMk1mV2PUCFwy2Ptz5OmzFB1GpUlbUq4Eju3kj0Qxhy3V0M1SAK84wVZ9mwyHfhR+92KpPkNrs115pJuugBR+gk/M41J0IsVFMt1B1s9r7cP9xWaaYMmS+qne6nqt352vvgypStvaNVo7FdnJdVCNoovtGrtdCwxfxV7tokWl93qJViYY2wA6QXaDEWOVVmWSxuk4hq8raEdMWz+2qYJ9majSoKqGGzKp4Ps8VvS9SVCELcnz1peG3SPXFUMqyywN2MzRuW2No5ZnVZWAklWNZF4B8sYggx+gYdZ3K3XNjr5WiofdubWOyAIPRhvvo90oVbMAKVWYFZZcobYMKCMHMp6uPCKBZ0YcZ1bW0DdoyuM4VuaPjPqsCapHBrrDJPpm2gxzBSimTbEcACPQByGAqsttEsl3dGwle4Y9At2b1V8bxkj8vGvglTO4zRvbYcbdqq91QCt9QVX3HjNBlQrExxg44Pqw4pg1WENqRS6qMjKh9n7Z3Ie6SmEv/796GdJP3NpsXy10vZyV2jKmu4ECjfWi8toBr44L2MQ7aGzdKGexKKZNtnuVKnYQtrEhMAFXsE+CbLVY1YkvtY2b2J1yAoJN7CCxUeqD6IBuWbCkR61y56anWsApIvvh3mPkwDvVjM+w5mT3lXi9rhHN16LkWj4ixiYcXHXA9OHT7krIiquraK6rqn0aMfIUXFvtY0B14K1MpdZVUvfS3K9UGdvO9ah2zDyfqz4Fam33ldQKgfRzK1rwFdTyBGQtdjm5dlr5xz+tKhX1gyFWRgxdMGq+iB7yyjg18vp1BtRWWTex8Qzqv32ojBu8lsDfafnImah/f9QJI/zSI7b7mcHeWkRJZpMl2q8tXOnQFKV6lQEIxRaCSKQipCzjh1SLx22dekGBTitDQteN/vzJeUxQqEmneGdaVj3OHX0Gv02w2tOrLIgVmVkISEkilXsV52+v2jUPQ68a2Y6cRfCVattmx7roAVhVQfdImSwRzlyS0EeoqotL3GxMsr4o6AaIV9P8CaunzEU5NW/EAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index ab26dad4e5..6c0058c842 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -278,7 +278,7 @@ def _solve_w(self, v, h, r): for n in range(self._w_max_iter): self._W -= eta * (np.dot(self._W, self.A) - self.B) - self._W = self.__transform(self._W) + self.__transform() error_ = self.__w_error() @@ -305,12 +305,11 @@ def __solve_r(r_actual, lambda_, v_max): np.clip(res, -v_max, v_max, out=res) return res - def __transform(self, W): - W_ = W.copy() - np.clip(W_, 0, self.v_max, out=W_) - sumsq = np.linalg.norm(W_, axis=0) + def __transform(self): + np.clip(self._W, 0, self.v_max, out=self._W) + sumsq = np.linalg.norm(self._W, axis=0) np.maximum(sumsq, 1, out=sumsq) - return W_ / sumsq + self._W /= sumsq def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape From a154a6ed92c0d795fd82ee77a859f90659ffbe67 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Tue, 5 Jun 2018 13:09:51 +0300 Subject: [PATCH 019/144] Fix random seed again --- docs/notebooks/nmf_benchmark.ipynb | 241 +++++++++-------------------- 1 file changed, 77 insertions(+), 164 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 830a0d46d5..c0f5898759 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -46,9 +46,20 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading 20news dataset. This may take a few minutes.\n", + "2018-06-05 13:03:04,253 : INFO : Downloading 20news dataset. This may take a few minutes.\n", + "Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)\n", + "2018-06-05 13:03:04,255 : INFO : Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)\n" + ] + } + ], "source": [ "from gensim.parsing.preprocessing import preprocess_documents\n", "\n", @@ -57,18 +68,18 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-06-03 15:46:51,379 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-06-03 15:46:51,576 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n", - "2018-06-03 15:46:51,605 : INFO : discarding 14411 tokens: [('bricklin', 2), ('bumper', 4), ('edu', 661), ('funki', 4), ('lerxst', 2), ('line', 989), ('organ', 952), ('rac', 1), ('subject', 1000), ('tellm', 2)]...\n", - "2018-06-03 15:46:51,606 : INFO : keeping 3211 tokens which were in no less than 5 and no more than 500 (=50.0%) documents\n", - "2018-06-03 15:46:51,614 : INFO : resulting dictionary: Dictionary(3211 unique tokens: ['addit', 'bodi', 'brought', 'call', 'car']...)\n" + "2018-06-05 13:03:26,753 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-06-05 13:03:26,886 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n", + "2018-06-05 13:03:26,906 : INFO : discarding 14411 tokens: [('bricklin', 2), ('bumper', 4), ('edu', 661), ('funki', 4), ('lerxst', 2), ('line', 989), ('organ', 952), ('rac', 1), ('subject', 1000), ('tellm', 2)]...\n", + "2018-06-05 13:03:26,907 : INFO : keeping 3211 tokens which were in no less than 5 and no more than 500 (=50.0%) documents\n", + "2018-06-05 13:03:26,912 : INFO : resulting dictionary: Dictionary(3211 unique tokens: ['addit', 'bodi', 'brought', 'call', 'car']...)\n" ] } ], @@ -82,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -104,15 +115,15 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.45 s, sys: 891 ms, total: 2.34 s\n", - "Wall time: 1.29 s\n" + "CPU times: user 875 ms, sys: 385 ms, total: 1.26 s\n", + "Wall time: 711 ms\n" ] } ], @@ -128,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -137,7 +148,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -146,7 +157,7 @@ "482.0895496423899" ] }, - "execution_count": 28, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -164,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 45, "metadata": { "scrolled": true }, @@ -173,16 +184,17 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-06-03 15:46:54,131 : INFO : Loss (no outliers): 625.9286431543794\tLoss (with outliers): 625.9286431543794\n", - "2018-06-03 15:46:55,025 : INFO : Loss (no outliers): 520.2123565007096\tLoss (with outliers): 520.2123565007096\n" + "2018-06-05 13:08:47,801 : INFO : Loss (no outliers): 593.2289895825425\tLoss (with outliers): 593.2289895825425\n", + "2018-06-05 13:08:48,289 : INFO : Loss (no outliers): 502.92121729493823\tLoss (with outliers): 502.92121729493823\n", + "2018-06-05 13:08:48,805 : INFO : Loss (no outliers): 486.88611940507246\tLoss (with outliers): 486.88611940507246\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 2.38 s, sys: 2.21 s, total: 4.59 s\n", - "Wall time: 1.78 s\n" + "CPU times: user 2.47 s, sys: 1.82 s, total: 4.29 s\n", + "Wall time: 1.49 s\n" ] } ], @@ -190,7 +202,9 @@ "%%time\n", "# %%prun\n", "\n", - "PASSES = 2\n", + "PASSES = 3\n", + "\n", + "np.random.seed(42)\n", "\n", "gensim_nmf = GensimNmf(\n", " corpus,\n", @@ -206,7 +220,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -215,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -225,16 +239,16 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "498.12465073357987" + "484.3090246375028" ] }, - "execution_count": 33, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -245,25 +259,25 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.077*\"jesu\" + 0.060*\"peopl\" + 0.042*\"matthew\" + 0.038*\"said\" + 0.030*\"dai\" + 0.028*\"come\" + 0.024*\"christian\" + 0.024*\"know\" + 0.024*\"sai\" + 0.022*\"time\"'),\n", + " '0.117*\"jesu\" + 0.065*\"matthew\" + 0.035*\"peopl\" + 0.033*\"christian\" + 0.031*\"prophet\" + 0.029*\"dai\" + 0.028*\"said\" + 0.027*\"messiah\" + 0.024*\"come\" + 0.023*\"king\"'),\n", " (1,\n", - " '0.039*\"argument\" + 0.025*\"jesu\" + 0.023*\"exampl\" + 0.023*\"conclus\" + 0.022*\"true\" + 0.019*\"premis\" + 0.017*\"gener\" + 0.015*\"question\" + 0.015*\"like\" + 0.014*\"occur\"'),\n", + " '0.049*\"armenian\" + 0.030*\"peopl\" + 0.018*\"turkish\" + 0.016*\"post\" + 0.015*\"russian\" + 0.014*\"genocid\" + 0.013*\"time\" + 0.013*\"year\" + 0.012*\"com\" + 0.012*\"articl\"'),\n", " (2,\n", - " '0.206*\"max\" + 0.005*\"space\" + 0.005*\"nasa\" + 0.004*\"umd\" + 0.004*\"mission\" + 0.004*\"armenian\" + 0.004*\"orbit\" + 0.003*\"applic\" + 0.003*\"father\" + 0.003*\"shuttl\"'),\n", + " '0.359*\"max\" + 0.007*\"umd\" + 0.005*\"hst\" + 0.002*\"gee\" + 0.001*\"distribut\" + 0.001*\"univers\" + 0.001*\"repli\" + 0.001*\"usa\" + 0.001*\"keyword\" + 0.001*\"net\"'),\n", " (3,\n", - " '0.058*\"health\" + 0.056*\"max\" + 0.033*\"us\" + 0.026*\"report\" + 0.022*\"public\" + 0.022*\"state\" + 0.021*\"diseas\" + 0.020*\"infect\" + 0.019*\"user\" + 0.019*\"ag\"'),\n", + " '0.083*\"health\" + 0.060*\"us\" + 0.041*\"year\" + 0.038*\"report\" + 0.035*\"state\" + 0.033*\"diseas\" + 0.032*\"case\" + 0.031*\"public\" + 0.030*\"ag\" + 0.030*\"person\"'),\n", " (4,\n", - " '0.181*\"armenian\" + 0.093*\"good\" + 0.066*\"turkish\" + 0.064*\"post\" + 0.064*\"russian\" + 0.055*\"genocid\" + 0.051*\"excel\" + 0.047*\"com\" + 0.045*\"articl\" + 0.045*\"turk\"')]" + " '0.105*\"argument\" + 0.064*\"conclus\" + 0.056*\"exampl\" + 0.052*\"premis\" + 0.051*\"true\" + 0.034*\"occur\" + 0.032*\"logic\" + 0.031*\"fals\" + 0.029*\"form\" + 0.028*\"assert\"')]" ] }, - "execution_count": 34, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -272,41 +286,6 @@ "gensim_nmf.show_topics()" ] }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['dfo', 'vttoulu', 'tko', 'vtt', 'foxvog', 'dougla', 'subject', 'reword', 'second', 'amend', 'idea', 'organ', 'vtt', 'line', 'articl', 'cdt', 'stratu', 'com', 'tavar', 'write', 'articl', 'dfo', 'vttoulu', 'tko', 'vtt', 'foxvog', 'dougla', 'write', 'articl', 'cdt', 'stratu', 'com', 'tavar', 'write', 'articl', 'jrutledg', 'ulowel', 'edu', 'john', 'lawrenc', 'rutledg', 'write', 'massiv', 'destruct', 'power', 'modern', 'weapon', 'make', 'cost', 'accident', 'crimial', 'usag', 'weapon', 'great', 'weapon', 'mass', 'destruct', 'need', 'control', 'govern', 'individu', 'access', 'result', 'needless', 'death', 'million', 'make', 'right', 'peopl', 'bear', 'modern', 'weapon', 'non', 'exist', 'thank', 'state', 'come', 'needless', 'disagre', 'count', 'believ', 'individu', 'right', 'weapon', 'mass', 'destruct', 'hard', 'believ', 'support', 'neighbor', 'right', 'nuclear', 'weapon', 'biolog', 'weapon', 'nerv', 'ga', 'properti', 'agre', 'keep', 'weapon', 'mass', 'destruct', 'hand', 'individu', 'hope', 'sign', 'blank', 'check', 'cours', 'term', 'rigidli', 'defin', 'doug', 'foxvog', 'sai', 'weapon', 'mass', 'destruct', 'mean', 'cbw', 'nuke', 'sarah', 'bradi', 'sai', 'weapon', 'mass', 'destruct', 'mean', 'street', 'sweeper', 'shotgun', 'semi', 'automat', 'sk', 'rifl', 'doubt', 'us', 'term', 'quot', 'allegedli', 'john', 'lawrenc', 'rutledg', 'sai', 'weapon', 'mass', 'destruct', 'immedi', 'follow', 'thousand', 'peopl', 'kill', 'year', 'handgun', 'number', 'easili', 'reduc', 'put', 'reason', 'restrict', 'rutledg', 'mean', 'term', 'read', 'articl', 'present', 'argument', 'weapon', 'mass', 'destruct', 'commonli', 'understood', 'switch', 'topic', 'point', 'evid', 'weapon', 'allow', 'later', 'analysi', 'given', 'understand', 'consid', 'class', 'cdt', 'rocket', 'stratu', 'com', 'believ', 'speak', 'compani', 'cdt', 'vo', 'stratu', 'com', 'write', 'todai', 'special', 'investor', 'packet', 'doug', 'foxvog', 'dougla', 'foxvog', 'vtt']\n" - ] - }, - { - "data": { - "text/plain": [ - "array([[17.4492155 ],\n", - " [10.47633717],\n", - " [ 0. ],\n", - " [ 5.74474046],\n", - " [ 4.91181848]])" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DOC_IDX = 5\n", - "\n", - "print(documents[DOC_IDX])\n", - "\n", - "gensim_nmf.get_document_topics(corpus[DOC_IDX])" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -326,19 +305,19 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" + "ename": "ModuleNotFoundError", + "evalue": "No module named 'PIL'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mPIL\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'stars_scaled.jpg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'L'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mimg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'PIL'" + ] } ], "source": [ @@ -349,20 +328,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(183, 256)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "img_matrix = np.uint8(img.getdata()).reshape(img.size[::-1])\n", "img_matrix.shape" @@ -377,18 +345,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 198 ms, sys: 241 ms, total: 439 ms\n", - "Wall time: 183 ms\n" - ] - } - ], + "outputs": [], "source": [ "%%time\n", "\n", @@ -400,21 +359,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Image.fromarray(np.uint8(W.dot(H)), 'L')" ] @@ -428,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -439,28 +386,11 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-06-02 20:40:19,571 : INFO : Loss (no outliers): 9092.939650164284\tLoss (with outliers): 9092.939650164284\n", - "2018-06-02 20:40:19,766 : INFO : Loss (no outliers): 5796.750747142226\tLoss (with outliers): 5796.750747142226\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 401 ms, sys: 311 ms, total: 712 ms\n", - "Wall time: 312 ms\n" - ] - } - ], + "outputs": [], "source": [ "%%time\n", "\n", @@ -480,7 +410,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -497,24 +427,19 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABN6klEQVR4nI29XXMsSY4s5g5EZBV5unv240pa6UGm//+/ZCaZ7t3Z6T6HrMoA4HpAZJGjJ3FtzzTJYlVmZATC4e5A8PeMFMgCALozSySNRtLcHGCtSAgcyCqkwDlIQ+ZKUQJJA2kgCiAKJdCdKKlEQJBEGGHuQ4jsb2mWIs1E9EdSIFiC9eeMOSTQKaJUkZUZq6pEGsXhZipESLBCZWWGIBbN3FC0EkDAzIxFZdFBFUnlAEl8fWn/KwqACiQA0kQRwH6tihSrBKB/cf2GAGEQSHOKKgpEQYV+T6kECQDx7S0B7ZGCKAmFsiSEUoFGkaWKqqzMqgIhggVAgiSQJiuSVgDI/gVK+64KlKQqgpBAqxopSaD63gtWBYH9fCQJoLJKBYpVBQEESYIkCJAQCmBx35BAEBWE+uWg+md9c4WsPQRuBdAIEtZvC4ICSAk9ghIpiQWpqm9XAoq6PjSztCdaXqPbD4YmQdcwi7iuGwQwqn/UTwegIACi2L8ogDCaEiAEykgbwwDtTwArRUGkgWbmVEmgkftRq6p6kcmGG2TqWWCFAigKZP9DEL0YbMy538VcJRGUAJoC19iKIN0CQmE/H5IiKbiDPo1UlSSaEiXtT6Erxx5LY+m1CERoT231iAi1p68IMz+OUVUJk+B9j0z26PoYlpEqogdABKr2QqT5gFSvpVQSYFYgWaL1JHBANHej0Qj5UJaKIpNSoap6UpmZ+RinoSdzz3eSAwUf5sf9cFOuWFl9G0V2vBnoAQAA02uG9LTeX5CgKqFoBoAGH/P+NjMi7MzCyBDo9Yoj9IGECgkBqv0vSJqRPksyUy/3slKvGsD6qQJU0UAjZMPdCT8qqsTKyMyEV6oEkG4+/JjnB55lJfSUSnOKNg+fbz/e5tD5eD7OzACsQJrDYAdjUKRIc5UI0qpDFQHS3FmlMkCgOSCSPubtfmSsZRoJh+oVy0jzcQzCwnYso4ooijSa+Zy3MvG6UrOes+gVpj1P6DbmnNPnMXyQ46YzVVScERkrM0slksN9jtvxUJWQBEUQNB8qmzef77/9OGY9x3DPiIRK5Bgk7cY1jIBEk0CAbrknQi/BwcjKXlk+hf24MswGOhBFlaRUscfNYilhc0g9dXCFCjMz9zloYO0XD2ePA8wMhZ6d5j58zON23G5zTOe868yS1flca53PMzLRAzDcrFKlV8in8WtNx/nAw2udKzlsJJXlNicBjsphAqSNA2B+hU6SZmNMI0Md4syBKACVsTjMUFlVyus2uWf5nu/V79uhwQTrL3JAOVQkQPeeeANmVxSk+XTzMcaYx+2Yh3PeNbPkOfwczqwSRJEwM5YUmbU3LZgbe01LqQcXTcoS6EZD1PA5e7utYegtdE9gp7FjmtF8HAc79vVFUj0DoBLdhgT0jrZDT48dBBM9pezIJhlKZmZuPsZhylEpgTZGv3ePXIc12piDPuZxe3t/ux+H+7xrZcHz8/E8n15AJCCQY5rqiuC9mdEdoEAaURkqygCam8qxaozjQKooG9roRwJEM9tDYTQf87gZuWEJbYAd0KoyaTBIqiyocQAESEkQgqFUVVVXmAWMRnMfk1rWU83MrTYI0gtimPsw9+O4v//48Xbchx/vWiF4fHw+np+WAL3xxjyoWCBIaeMjiUDSJCGXRwpu7u4D5VL6mIcMhbSR6I/dwMSN+0Eazec8rKq8t2CzfvpCZWYBUFZmFnfownegR0/tPfYFTAiauU+WXcDEDL2/Q4YNpkjzYT7mcdzffrzf7nPcfmAtYazjOB6us4rZT3selijACOyp0ANQBKuQTCxoTtF6AKJ6xyFhHFEC6XZtn7YxAmnmPqZlqQRWuQ+4p1SCV1WiMjM3Hn4hryKsKgtsoLQxGHuDE8zMCwTMKRtjGJTYQKhXnjVYMdJ3IDju71wheVRB+ZxjqDGjHbdR56GMBAtLgFgN4YQKlkCC3hEYQuXpBUeZ3Gzginl7jrqZQJFm5mMeLkCkFca86YxR6gBpDrcX7AX37pm9x6MjzoVZKTaIovmYE5rusIKP+zgzIEJFE1DsKOu+L+B2v78ft7ffbSXKT9FQ520FvOPl7f3QeVYUxixfWb35kEmidx66QMF8zMZ3jVKNo2LswGUbU5pfsdjcfR7HUC9Nac6jhiez8e4YDH/NZLLTiaoinRRAm1QqVSAawoN9U6w5HCbacYy5SmCDOEoEGGZDNB/zdn9/f3u/3d//ZitZ9oQZa91WssxI+ttvN5xnPaN8lj1XqiIL9OTeeQdKgkCfh7Q3JbcanIpBXXnDnvd2LQHSfcyRWbMkDfchd6+6hoduJMjXJO8oiOu93K3Q4YMAtXe4MSZquEEyH3O4pxoaXVnQBZnHmMft9vb2frv/+M0imTajVOtxe06VGc38/vaGOco+T5gKjEplXXDWjGYwyWhjjKmiem5ZDZs5By/cixdW3WNkZqMHIFOSxjzqiEoVenToxn23oLF2Zkj2nPMxrRpX0YqFXjjuY0JzjBLMj2NMd8HUqdQLguzVP4/b7X6/v73/8EgLjjMqnsc8TqU7nfP+/s7nTPtcNiTS0pFXGm+9VksYGD7moWS5mbmbDZs5BolGHx0rdpq7k0aamZu5p8nd3NxN+7df0H+nkwShK5BJMB9WG2WY7JWCWW/6BsB9DHc3g6nD/yYk+nXf0m4jDaZ+QP1lNHP6GAfByHmI2vlC8yu8wI0I9Lo1WT8vXDFvvO6F+nZXfT98Bfc9QfRiT/hPL37FwdefvIYTLyDM1/t+7Rm8RoWvz+P1EL5lZCTNyr59iyut/6ev1/vhdVevq9vz89vPSRAje6PeBMN+AMQeaTTsqVIlY9XzXJuL4r6chmONdUTQRKggKeNk5YWTXul2g4WqLMnFpc4lYDCHAej01t3cx+yvY85pSLqNMdyHm5GdaDLWA+czH8/H49Sv5zMqV9ZXLNrYpdj3ucOCOWVGoNGsVGrkXplZIiFlRqyl5+PxeK6ox9SMPz+D4BhzzjHpbmadgxgtYVLpRUFFPPSFAqkmM66fuGUkPDjP3rpg7jKj9vJQVkeCOecYblT25W/GQCqwlLRT50Prrz8/nvHxWKUslZl1ampGY0lDRuWJNJib+zAMjjlH5+J9F0SlV5VAr2RGrFXneT6fa9Vn+XM9HuXmNJ/Dr1nQ/J9Z0ZoxJVMgkHmhK8ioRqabIRlzJqqKwQ0Y95Lox5GZuUbVhaWrkusUENngqyQpjaV4FtZTtc7nIx+Ps5AybVKNRjOag7OcFUAMbZRHtzFvg7q2sT07r2W95wX7w/Dt4fXL1CzRF/VG0vKi1rAjwevxv2LSBY1oZq/t98XUXVFQKqkqMyLWcjtPnKdQ61wrIrKqCiyqas/u6xp4ZXav5da0dS88VFbnKKRVgQP4/75a1/1BqmJdPFMTTtCVPG2cj//fX5vMrM2sNjT89g4bK6tZqI49PQJu6+RaglZERDQCLxqKVcUr4/p+Mfsir+fW11solsqkIotVNfZwXX96JZaCUJUZek24pjcu6rUyuKndr+3i2hD/6RHsOL8vqO+pQyIJaacSXxfOJuHSItb5fHyOQqwknksY6+evXx+fj3OtSCOtGEuWqcrXk/66f6hMr4EusZCqSGWsosjIsZ8pd1KqzV1KgirXyBV9n4RSMNiGs07BhicsLyq/xFY+lM3BXlTza001dbQC53lGhsilzCywubPrarDnSq7nc4i5yvRchRF//fz18Xiu6L+ibLms4HXlHTvwm026mRvvP6YctmAilKiSMlaZzKqa4zDBxX5AuDZSAJXLU7R+kKpqaGU+7/fBtHk83CwyJRSU5mb0ObnOzKDvxwBYFVBFq8ys81k//3pEpBgYz1UwE8yIgjvN6XP4cCMqVsRZS6bHqhrx6+fH5+dzZVWiSBmRBpigCmWR3PzrgI1xOH/729288pHKFmgEoFbSDfEY+9Fck+8Kc+r7z2zCa0+ITi2vrT+vINgSBgSx5TRX1Des9FpVTaUEznyeKzIBBbJzeCM6FyTJ5qky4zyfrvKRrEdUeXz8+vx8PM4VESoQZiiHMbKqVAW0qvOCP2Y+3LKsqcuwykLGIs0Z5ysGNKxHvXQkoSrDLKIp+A6ie1GbEaqCkfCqSyRq8DyGl5fV1+aPHZsllar6LftjKnvc/mntsmNF5jofg5XmIT2i0vPj4/F4PM8VkcoeAOnisRqHbZDnr+xrTk8rlVR7/8gM0jRK4wt8923XtQkU9wBk5d4GS19Y1aRNNZhZXpshAJj5SK/iXvx7i+sgrWsv2gEPZU0pFgHmtb8AlpaZsdZpKjeZHpFluW8/M1MJEpVWr724b2Vz+n1n5j6PkYjKjq2ZKmZuanpsKWy/w1YxCKmYdMKis8G9NfcMMBpVedFXeWUL6O/nSE+7gIBJFwaXpKzMtScVVC1wXDrZZvR6aflyBxDnYfZcekSl5fPzPJ/P57kiL4FYwHzhF7aox/7cTquP+0xGUJURrEzKaGZK1LAtfln/ZaquXUDMs9Ky1Jerikb75jbmPCtruDknMgXfK2PYPO4HQuUgBJY6YvT8YmZknhW1R76za7PO1vRKzSstfFlEHHOQx1s9I9NqPc5Y64xcWQnCFZMtJpJ0bz6SNJuVHa/ffvy41S/ViVznYqZYKDPLYRp+TfprCfSzMoJQJax0bTDVwlBHFusVQdLDSBic8EH3Mefwppd7ZrxyyJ7rmRHaW2tfLmyMgtmEX3KgkUBVFKgc0hH1yExWPFdGRFZkJQxiMYZQ12WxdkpnMrKls3HkcKIyIqCSKUEzhde4IvQrBnVSoN4Siqj+r03uXjt+ZmallfYEAtQBr6HetSVfb4ivXaaqVa1rY5Au2CGpKNVOYTMtaDBUQmKdmUHFWhkZqapMCjJFRrQuUhcF/UJ+VZmxYmV0FpGF6sSDEEM5vDMB5SWit7ZmziaaOzqUWsgRyGTEeep5rkBkISKb5SXdQFSuOlf/UGilHC+AXRkrQ1mv/Yak+yi6DSt338wQqErLLS1H1ZmVUJ6REVmKqiRlpCirX49zZeuMnVrVUikD9nHgvOXnnz9/fZ7nSqpgRCGY5msMZRW15Xvo2s2c6LExWFG1n1S7UCKWzshQVCGzU0AnfciMivynAcA1TYq0yliVDRU7SzKzcQya2yz5GCKJLJGqQngpMlN1qgLKlRmRUmYVW3MiUJ/PyCJspxKoDECVOB8/9Tzy8evXx2OdWdy2AhEJy9HPh3hRGi/YggLa+qHq6SEKRVRmnLVW5B6AEpSN89D7WePnK/DjNTEhqFKqK5fqV1QyAbXdBTCgCkQJNHciSqxQJZTZgmRlVZFCAkGygVUWOnmFlIAyCg9HnPn8eJ4Rma1AWa/LrByv4Pf/Sete+P2CikKDmgIZ68yVmfU1ABtMAkgAKzLrMhp1PLnCYFVi3//Xz7+4K7OdzgpFJpVpygIrVdkUU2VKqSpDofrxnWe0/2FfiypBZJjc6vQ6H8/zjKzWazc+W4xhZrUJ7W98HNnslpkRXpkJA52tEYlPs1QunFGqa7I3JhYgRRWMRu2hZZkurFG13xwwyqydIDCjobWWC5WVyDKnoqqQTZVUVe5J1Pun2XCWaNM9pShkCqogtUjL5e6Vq2dlkbl1GpRQYyCTRENV2uZTL/7RbBhdQgCCs1SQiidZUNRKtY3IQLJFFUgFaxMCqgkmVCfaZgWVN0wjzWQmmE8rI0cTtyKA7D3DVGkVmQ6RVW2Tq1L1JowWUgFhGEahVlqskphmqgDiJE3KbEC2fXtVgkk1DsRW0r/yEJq5w0wb9SDDQMlNlUhVhqOo7DSwQDMHzY1IgChsXUBZydqETAeCSkKkEWbDRBNtTC8Hh7uZlQCckcwsR8ItziQJt9UIOCOheq0ZHxRghE8wn0HuvU6qREXP+R5/SkjQKrPAgMaBdXFarbDSYObuNKsibfihZaSVzCHKSgIr2cERhGhjkDaNij3LQfq04pdnjZeHowoEne6HJ030cRtlxDGG0bMIfZ4BRlUFZq1zkeT0MzKEyCiDAJqXjzEPU6WZzRstPk+0/nsBESlhsBRYZhKLUEWkbADjphYDGz4bDYK5j0HzTPi8+U1PI52ag7KKStrIaognE8rMJ+mHEadEKNkPuFSbC94GIAKAwU2DY95GysQx7zMduM3ptEyiaCFbokQ/KpKkH16SCZaCsWh2eI23ebubytPt9ma2xqPy2WYDmjkEFY2GfMkbpDX1o3bY7AC8AUDbg9xpjtZupobRWpZpeEl3FIW8FApzJ8dwdsrs/SluTGO7snh9OF5inbsPwGRj3kY5cD+m06OoSpl4YkrzuFUInWMVUFDVRrk+csw5D6+cNnjc6Jw5/CuEWRsBDFamvnMTabId64dtEX9v87jA2aWxsBH7BqvXdneJPp2H/vMO8kLUKrzcM1/M82vz3wi7/9i2jdjNUVS5p1rKMvfmjy+taItGF/krqViqKquyDakbtm3x53WN4nWlVhdLOda2+AiiDG1d8zFdIFRFhHSWFCnF0AmJzqrCVkC0UxfzMQdvJOvjqQXTYonuKJgsVmQZeoeWqABMAbMBc/c57H6b022FGW6/fp282cjeA1KAFZ+RWcyCqg1lsXyZH1Z41MC8+ajH+szhWtAgqeYZaZMRHY2d5q6RlQpqPHOj0nb1QDQf9/vhmUNRChkgVynySUNayqYji0pJhHod2Zjz7WZZqGV0SCElzeY4xX7zJp0SoBwSpgLmTp+3cbsdb/fbfehxAhoo5c1HyhRrLZXgiqoSU1IiQIInPgvDypZmcc6J1K9MmoFTVWieTJRllkwGiJt/rRLG1qWubA2kmc/7YXGOsJRKYZwewQpQMHGMPQM6GaR7e+vHcbfIBEinsqQ0s3GrIim/7FJt5ZZAG1H7E4/b29v72/1t5PiUcgw3OgYceZ5rqUqmlAqoRpQiDUuZMpMHKrHmITCqSMg8qxp4Q4RtYq8Xcl5U/1j48rj26jYft7dpS7NVRohj4FyV2SZKt0Flcue9sOEtZY7j5vGESD9KQa+yMW5vmSSZJdXFjdBo83i7I+FzzHm7H28/fnt/e/cTqqTTzAxDlhHniqqSdQoBtZcGsE1USmxlWqRAuxxfVLVJWmx7NowoVZnHpWmM0zsL4FYVaO7j/mPQaoYbKIlzcpy5UAVK7iMzEkhVsei9BHyM4z7OLAhuknHGGmPe3s4giVFSW/ab+7V5e3vHKp9zjNt9vv32+2/vP/iZkWd0ZDZPVuTjGcqSqZqTcEooGIRCFgt+0Y4oownZLvcKVl2JTHuPlSXSKjqDwVid5VxaANFe4IE63bcIrXk38uHc9KF7ZhRQnSXbGNvdetymhRTTKJHTls/b/f3h1wxoOQt7nI/7ezJt+BjzNo639x8/fgMeD6sc7kaDGbXOx0rF5SPCJpLqpd/gJYWLEMxRcMo9lZtx2QKouVJVl3seAMYr98PlGjCzMQdyDHfr6erTMpxgkyb0izLCxQvb9nQdOErLWzZwtdNqgGxnConOvS6+emZ7d46b39/ef/z4gXo8AzjnGIMaadwq3yXKXYR/g9dLe7p2xyY7rWi1TZ/fWO+XL+NL5MXYI9rZ0DaGmI+Bvl5usWOsjRgA8Ns77/W8fdBjzhoj3ducO2TmY8zXAPAlIFyvH70Hjjl93m73t3et22GVcww3tet3swd7FISLgu5bvrZ2sOlndhZb5Ga09grvj60NkV95eFsPvkJgC5OxhEivkkgBufJccQmaUJmPBKAykkpTC525sDl7SitXJHydjxUwdiDbbgKaGVUZWbWlVsR5PufUuSIyL+9zgeOoy1y+qWQDTAZr8r/M3M1lRZgZeufrai3bS+DKd0uAgfSdHRHjaDsGJTY1VGnx/JxcGa192WB84HmeucdSkZiTBItFIgNs0fd8rPP5PM9nSFox4nSV4yNBrucZUV0BBWVauf/Cr1VOjzj9eH4MVtrnc+VOeVUlDR7uS6G9CwAykvKLvWv9QZJggKEiIlGIKA5qqzqQqEqIbuS4+Cp0vUCTYjtfUVUuWKRvIhCohRWbxaTQpPK2TFFKq1JVRqw8V2RklBCBKFicYyXI2K7aS2UqZqxzrXZ9rMH1fAwze56rNsvbZIKbe5V32Ya0zaQvEP6Ncb8mcBc4VAm0suaKe7nW5a7i1jgxbpqBzWF3mKmK81F+hkU2e6MorRUFK5iBknHAhEqYVVWmpXz502ydazUf6DB3ouJcCSJW1K6cY7MC5AOfyelZlcvW+XDJ13NVxIrczA+d0amnbd3iCvnYlUcqFhJZsNKWMJunMHg1Udb+aIgmk9ksLpaqMNres/OgK0OpTNUmH4li07ivWIqvdIkX8VmoquhB21CngScqq0BdNLiuvKjVhdqzJzMjlp++1qq1IrJHoK48Sptg1faj7unQ1OK3XOd7iAftu/B6RU5zp1ehSA3HGMhXJtjKRSz4WoisApjqRSk0D28GwNzgkDZUSFOYn2YRkdUwLi9Q2opQ0/XApSOrKiNLVq3CrnOYytfHZ8bz83mea5VFolWJqk3iQUUVVUAH0Fat6qprK6qfNTrL7Dm8Jdr+0RhTIjOTNd4AOy8XCAQVwp4Wliufa0lG2hmKSpgBGBjDzVhOZqQhCpWAQbJCVRV8+pwjcH6s7TJSK6zmVe0VdauKUyfcBapirNMRp8XHZ67nr4/P84xEBg3bSkPUlZXXrtxA9SVfRkSSKnBUAkYOOwKVGyi1P9Anb/OGx3mutSLHG8zcNk5rylBxMjwz10pBlrVWmyOM4qC7u0MTSku25ajt+Z6tgvu83e73ped4nCsLqooukfEgzOk0j4pVp1GgGUrKZRXIz2es57YAUGV090bGuNSLi4OvvSyaDxfNOnDP2pzruAeSZe1vbgvmzd/udz4ez+fTLMZdyMwwvRYWxcrhJV/t8yidjxRoNofKHRScmFwsWBlKRBKgF2wMM4wxb+9n6r69+5dj04yguw04WXnack6VKjhcFQbWc+u+UiXRSNELoG2mo8VPAiUSBhnb2EOSRtEPesjccBwMosCxrRM+jzf/7e3O4WSVMKxsDPcqK9BcKbJSaZJlioJlrSjAbd7e9eBcJqX31vEKhGCXoYwfb7dZxHj/7bFI8xlamYVzVZb7gI0xbjaJKId3wqHCYlWYqlbI7J6xCIVCT6yozNSOI/3wL3jTM7sourwTiOP2t3t8LnqVk83rjvs8z1UYx7yP9x+HiFKIY1wid4NpY7RhtItOesOuShA0n29/K9SRSsUwMbYRmCrIhkqcb3/8/uNWGXj7ncPc50qsqLLHY0W09MDmCPe+LakSCELJUmbydrexIoOpLFasFZnYdsDm2BOXGK32r5sgCyuY//jbH/XnAzjPLuyD+e33H4+fz+SY8zbffljVIFQZ4xkdAkui6NbrYBc6g1CCuZOkef8jH2tUBeDmXAoZ2j7SPiE/3v/2b3+7Px+/npXrDPkxyMjS8evn43xGwS4YQ7Yno2Kd5qg1hlEKadzv9+PjXIaKhXxWnlHJbaqleWuHm6rkS4HXcoDmb7/9u8+flXVmnGeJPH7793/5CVtNXZjlyljPc0WMX4/PqrUqWAaMgXK1cYskYSwgNmk+3/4tftZYz6SuCjK3rGoieRzz9uOP/+U//tv9z//nr18/H/+55G7zNiTotz///uuDn7EhhDndAEG52OQxzN2AtMHbv//reWat9YxQWLdjMKBQKpojkP+ESBoRKk+NMY4fv/+v78d/xuOJ8zyrbM7f/tv/8R//HX//sNG7+OMj/vrHr+fKGo9fP9MqkVYUx7Hp7AJhNLqHYGgPyrj9vqZ7PIJAAk7Kj5Tc3OZxfz9+/PGv//P/9h+3//tn/Vwf//0c97fb7f0AjP96FLGedWWuZu67Vk4Z3opFuRvHfPvX//hfzj/PWrXCOpkZkDESVcYxhOxVqZLBSEnWyvOY8/b29q//+szT/sH4XNDEePuX//jf59+f2e+jevyVP//6tUoaZhsgNUa6JihwxdVLNCDN/eBoB3pnlW1J7+odd/cxj9v7b7/fP37cDo1Oc4/jBpL32zGHmxVsl6y49XWbubdGO22Y2zxu9x+/nW+32zHHyL3oUd7hX9sZB8C4VbauPSzRzM19Hm/v9xvXdDcjxnF7+/H7H3/ej8kBjTGPOeD9Z6Md75e38It7fykl38UCHzIzfKMmr91zK6s+5rzdb8ccTeebD58TMB5z+GYEcFEo7DoZMze3rhI0xxjjuL/5be6yiBf7sT3HzYJ8s7hvGfUCv2Y+brdjlvfUkGeWrHk7g9x8uDeqKIwOd5ee0b0qSq80i7t7SEs7tc7eo69ZsbFtu2wzc53Pz18/18cjqq5C3Eqy0La261Y6d2gWGqpqzZmSVxrPx6+f67FS8JnbMyS1bFcNm7Z994qmu9NF31Tl+vx8nCu2Hgwozs9fn2dKghLrjEi1H3VoVyf1EJSagbnMg+ZjwqaTEAbz1zpjgV2OAVLtDGJ7f0748fO/3u32nz+XgOnzfpv90jrPSJFedHfbyvLVZSKX0USFm2el//mfI36txPxxv0UKFYAMnqhK+jAqt/lMRiPRNRoyg6rW40//+bGeUTCDDHV+/P3975+rBquU9GdkcVCVI7aLsTOGcCMqy5opJc2mGcdAVRHPv6/PZ5UZYTAKJQP9qJUAgCjpOP+8/fX3nyvMxnE4asGson5+PM7stzQqCyugMqOSSNJkDqNr+Br2s/6fvz7T3sbHGZUKQCyTlN2aILxjA0XrXhMlRxEK2Mc//q+P//73OB+r6BK1Pv7z/zz/8V8fMRBV9Tw/PxQYhoqxur5o76QZNEnuhWtx0nzcDq5YkY//sX6dSy7IWj4HRT8ihMo4RcI+/n48Hr/OIoZTtVi0XJ9//XqcsVeWoqRQr1igEsZib+gVWX/Xz/qvx2f4/W6f5+K20UNdl2cdTS8XOwHzUhukKoBfsH/8/WflZ5NYqvOn6s/PPxcGz1yBYz0RRQdrxBViBEBZRlE2Gh8a3czG7X7nc0E6Yz2XyVyi9T5uos/21mbQjHx+jKioShvTTZUGj7M+zzNe/Vsqq3IHQxFFXIuKVOkXTn3Ugt1/6KIyXo9JsOHWeS4AY5OnBUORquQTfPz1KZ3RREfhUfURp0Yh8rHq2a4JA2uUXULrjgEmybZG0uH5uL+/mT9VK1acFTSU6O7ovhE+29+YpLHi82NoUoDfDmMV+yE0IdThX9Imm7qHiHaug57lzHgiLX28/d7UgUEoE4QMaRxPd4CuKzb6iJKjy90qVOfHk4za9ZNZcf5CB6uMM4xFwp1Zo/6JLtHLEI9XeejWCti+iio5vkqjXry72pZpqojBnEKO9gZLqLWa7H01QWqGeO/A2joOiWJVilXAiE5yLxX9nyygF+3DZn2M3H2YLuHvedKyaWihxEwOjVRkrKDJ2GaksXmm161oU0v69mFVqfwy0u0r+vZV+vabqmIlhMwkMwGoWc6qrkP7fgf9NyYJRZLdcYgJMBldJJaVm/cQsqTa7UK0eaxXLS9f7oQq4avpFDZmqZfxW12iI41sh8G2MejKtTcsqEqJsSZjRcSKzItP1tYdN9uFV0YiJdvFewqWNQoZm+RrQ2pWZW0bYTf1Kl415vYyJmYPQMSKSgjdriqzYJFZuX2YZEEYKwSEUfByQ1bafh4olMhiMqPbkJEFWoFVow13mzXmzi4vzrgLxTIjGJdF8zUha9f8dynNa0WoCghAxlOgqoYs1tpe5a5pqSqpm15Y7Rt+ga/r2SXifD7Pcy3lprm7GpPRVXPUFoabeC10vzNQiCx1+UvBmkYhK0OZ/ZvubpbV/RH0qtr+xqheTtFSV9pd4vRrmVwj8TWdAVG8pli77YutcFzu0NcKwvXB1964jbraBHCVdSXvNdNKWxV9PQbtl+9ruPJiba54/7TZk35W+3F/vW50YR2+Ec0Eza8fFmVZmWqW+lvA6AppVYcAXpxbE3eVECPUqnxxu9WbZ1dz5G3IxJbyje6DZpaQQDZXvp7neZ7Rl51AN+1hRO5WLRLbwdxNtDolBGFZTXBCTaXSuvVLRl0GN4hV41rCfR39NMy8pzihsqo4ac91rlhR1d4MfovOGdlGMR9jlz3LAER5ERgzWCvOc2XGtni3R625pPaLO8ec5m4Rq8u4VVhPfD5XRn3VZDfH2zpj04IAEMpkNlncK2GledtYWhJkwsWHVlubi4CRleNwWJa0TVO5PRJEV8tARSEDfQdVIsxcpk4hZFCetSGuu2+mFkYDIiT5WKrMdUZVKTtx6WXPrl0Z45ju8zaHO+NczcJVlfh8nJkrX3NPKmDHxQYunR5mdhcOy65sUJRB2628jVIyPJCCu3lLzlU5hiMjc1PtaoXVB1EwlbKIkgutVrXk40dW0ViEul9SK74+hssEcUwfVp6hEnhWVe10UEKXyVmRPgTamMftGH67H9Md6/HMjCCqVDyfK2tlXPXGkADr7yniEmzt6sQDSLDtYSW89gPpevaA1Op/ZVaWNMYcuRbzBQO6hRQRdS3QEoa1dthI/Lidy8xZgryLBy931Whz+O1tHiN4+sq0uUTbOVdXJpDuTB+3SWHM436/Tb/9uB1u9SBjoSiVGDjPyKiIfPH2oFd3uASQ6hqPxrw0D9BsVgk2WDLwFd1eyfgxh2VGnhDHmGU7Jm0A1Iydup2KIMiqUClJBtHMR5ZsMPdPcOF4dxcl2jxut+MEnlkb23yVEUnatnQzt6L7OG736ff3221YsGRQdiFpqoNnZFz6JfZ7bCX3uuS+kC5XbhsOSZMzr96N+x+azWN6BGEkxhiybhODF/rd7V1te0KaxbTdSquXeskHsyTfpi1u7z4o0I/7/X6bsAUPzCHW5jNQsKK5u5XbcCd9zuM4Dr/f77fBUCSl8lEmeHmaDJaNzr6GAF1+wAaCu/DAxxhl8pEC3ZEY6Xtf3TeB7hA23ICssnHcavfJKaD7tJjbIOSW3ffR3Id1c1frFTSz4MMyJYfMJNC73QUSsPH+4+39/sRMPxfGgSrKd95d3SLI5PM4VDxu97f3t8Pff7/fB5cLpxtOoaRRmaCY9rLDXICXNOt920C3sgH6cWSa/AiAPlgYTEBWaNpygHSbt9tYBkaWxgX7X+CHNJ8HwWpTPQD6cKmpooLB2lbzSkhMTR6N230qJboP96ZbaXaMqoLyWgN7KnbXRKK51Nt4/+3tbdqa4PkwW6WURkV8TeHXB/L1nS6YI5T4al3a/MolIn37W77Wwv7pyFVrvUR9XAYuIt3cOuX3bZfa9SKZKSWIrFRXARDtenJXCYrzIZ1Pfn48szx3qfTWdXv7sd4GN2660iOa+xg1M3yEFxw0LxPNvnI00nYFztXS2C6XtgRSFXW1H7GsL8P2VcG3DL7WuVZkjfDVdoyrKVzTqgallzsh9OM0YqvS3dYEYFZ1QkDSxphzHrOUVRVP6Xza52NtX1STui/wXF1SYW57KXfnqHnMrHMZUbfIKA26l6fM/Kq+3vfbuoU2TWxWvDo/E1dVorRbML+S1aKgWpDFahdG1/VsNL9NBNLV1qnTouEIdhLRL6viAIzWnpvdW6v5zcYXy6Vx8lyrBFtRas/3l4pVba3J5FX807fH3qSHD3eWyaeXn+hKmr2XNRfV9jxBQPcA7PZGXSnTHmmayRr27RHQS5TbpeBjmr1Ih35RMddzWGS3zjY6M7FiZXUXT2ViUA6HiZd0KKliZUZnMDPGwvlcVWt9hlSxonYrnc1eBx96yBiZucj1NETo3HB7tx7gMLrTvUS8XGKNWGAwWYm2s2gDLRVAVoIh2mB1tVl/aJg1ywnb0WgcOHf6tCODCnn69B4AmXFwnZUV2YkbleGDckQ3ma0ysFDhZ5eJZVhEjsC5zkzaZ5YqoyS3KhhQglYm48FBj8gljk/VOS3OTF1cRgl+m0b5SLFbJ7MgEg6AMDUTeK1zWFYKFUWE0QcTHXd6GLoFig/Eph3Gb5Fr2UVNQVAWlcdQKdrVMmr9XB3pKHMw87ghBxUgmVlGUxppmS28cxVYFZXnCpxVu8mLmYpmpIoBpJ/j4MiqyLGQ4WPgjKyK7CcOHr/9OIZFZrpCKjEzzIEuxcUIOdvGbk4bUSFWlCnpt3sg1+bcCKXRb/Z2exckZZrGfcV5ZYjaMC2qlIIitwtpPRbaOwt6W91Zg4s9Kk00UbBIuHU0H7dMVFCdA8Ze6d1tbvcqkK3yrrztxIk27VyVZ1OImSiO45hDELpiX9zifV/rxSvurZVE1aVz0cfNkspSdlMbwcZh9/u7tBW1QZ+3yBDSLnYCqgoIWlkgqnm9hh6ikcONxgFXFkVzqRIBuiVJmM/59v5bxNMBdZiwvVfSzGguo7XRduOarotlFs+V8Xw8nysiyFzn44xYGWW4ZkBiExxXWdLLMsoexUruRoBlXl4a3eJHbmZjHgez+niAMQy7dLwtbbX1vhI8QlB5KmoDF+ueHLdhAwcGEkx3JaqYYKCM9DHe3n77/Y84Pw8zwizavEVzd5kPn3RkpFNjdPPw63ZOnSvW4+fHGRkpW3zY8zzPyDRlQ4kq9ZbcXCa71SBt+PSUbNyqsr1cQ44agClhXesw5u3t3c3HNJtriOOY8xw7ApQ1rur6vAQqzdW1MkYbkLkPNxkdjhTLhprr80hqmMPv77//9se/nutgVcROAF8PaddgVyYQFpkRy8oww7RUZ6z1/PxYlZVlS0PneZ4RSeQVp3cmVBvetC9QGWErkjbrBMcwmtcg4bAkDNyafTfHr3Mlh8zndM9dPqfajG/PAsFocR1ZsHVZMyR8NIPXy69kYlgZZERx3t9++/25EI/n87md+5trJYqNq3ffgqrMxSLKmWfminOdj8+sqgqPYK71eEZUl+Re7DWABKiNCWmEonsL0M0uhrqyIkJntkuaJOnDZ665jNCATVvPM8OKrL0V1lbhCexjKdBozSGYOTOH09hFOKC6ro0JHgAS88cf//rfns+p5/l8Kmt3g3QzE2k+jEVsHUaViwUVGZ9nrHWu5zoLBdlMMqoirpxAF3kNoiTXbtVog0Rkrki3o0ZbqiVlnM8zI2m3rtUcY97udyd5rljDfGCMXRzRn7BLU3ajPfWwYCfYl7a1W6V3BWZfVzGbK4SN437/Yb7ubQuxK9pdLgezy5Kws9QLdaoq+wyB6s7Ilxc9m/tpbqshHVAb5HeaySvXoXOXWragpatnyS7sGGNOxTncyJEWuSm3Fzf8T+aLnYn1cEpdJ1XbT72rsr4llNL2CpzP8+zqiY3f+MWIdzPIC51UpkGZQUT+s/zQlX+7q+I1ADst3vawqwmDLkC7ZQVJhUuO2h+rDb9j+Vrt3x9p/nX7rze/vrj97fq6vdc49KXZBcH2xe0RyFjnecZFZ0pfGgAuReEa01IVytKIb737rgfBTdHYq7yPu90Dtq/hiyjRrkjY9099FUfhArqdzmbuBlmjruqUPc33Z+j17uiOYN/HuLofzqUL7L9TWwDVJpV1Ps/n8xrnV6JxJd07KPYH9GCmkfX1uL/Emp7M+rqLa2A6G8RuxXpFWW39o59SbdvwK/XelR1bqbXxOVY+ntsr+f3Rt0PkNd06oEApk0mIk3bGKkZmiSZW696VsT5/HlV1nr/+8efPj+daEV1j2uTjVbVhRhNZsZ6Jioh20qxogoIX2Qiaj+sQkz2bLxd8d2Dowaftcrg8K1KFsnWuzAK9Cd0CY536YN3y8TxD9PEMz2cTAi8x7CKdYJcCckWHVDGRBFTdWh+7pRcszC2hSovnx6jKOD/++vPX44y8xEOpu024O2uKEIZBtQqqSkfLqLV7LBh8yA6nOK4+P72k62rsR3XbWFAFH5tKXZUpUspOQQcHSw5CysDTkLVWwg8bscsWtKWaTfLugkEjC403uBdZe9L2OtRl3aOZbFAtSMXz4Wb1/Ph4PM9eBNw+LJOPOeZg7gEY1qewbC7jCgAE6ByDPgc5Dm2PWWWlsjuQgYTcOVhipty9F2PTQLW3S7oZLXT5SStiGQq06WOEVa7d2xjduAmgWX3PkZuLKSVKLBZAVXYPqf6M4S4/gEVJiueApOfHx8fjXFUSeN0eBNg4fHecNHPbJ3F1K5mXiC8zVQEGQ9a1Qqv3tM58nAX3Mb3EM+VjlJt1qxmIRFfI0g4fz6hQWYHu3VkzZT5H6WqbehHuHfV2OxhCu1rvKkbaYqoSXVKzMdIYy6ei42DGaWZ4PLZb73J7vqhN+mxjDdgEV6c1G1L0LJfIEFNOvuI0S9k9dLajgCTHqGJB08fWE0qSqdB6Lnwco7CUSROGNxqtpNs4+zC5Imvj2les6RYZ18wB0Fbvff2lknmBky3PNE9oNubNDPkUzucZLzOHADEpOAIDoXOlCoB7hqFgGbB8nhHag4YtbRJZV0tb1OZlmokrkiUejRYso9RLABwkQTf3cb9P/Pr8bMl+YaGypWFpLLFWpMYuP2lv5c4y8doLWm4hTGbmftzHubIXn9sqlbKwCHM/7j9mgXVidZMxgXaVjCUIZDFNj9Vqvbv7sAWLKNSKLOUuiTduxSqFbp7U6X4TWlKYSFjxGGdlVVYD5hLImwSfHPe3tx/vtv78y1tLbOUV6D5kI4SKFDy/b4Gv+988NHd9uRncfMz7j+PDVLdYhRsVKUJKo41xvP24x1m7N2OXj9mF4wTaWLlEndGP1Ue6fMkKqxS9wknZ8NEdPSjA+oiofU6DNwe5hbwx3++fyEpWbkhC83sF5jHuf/z+L3/84Md/HizjWdz0dneCwMiSsmTObZa8LDovUNAHAvQG2YziPN5+vxtC93wk7lZnylKl4ebz9v77j8fHubIjcNvBvmCcjdk22egB0ChzcsmE5047RQN8jskAYVbJkVZJtKPS3FjqVhVOH7fff7iiu3oApIzm9yCO+/H7v//7//Rvv+sf96EgGIC14EX4ccuxIne5R0ez7EC0ASCw/ehtKB+Hd0Eyx6BSpKo1A5E02PT7/Y9/+bf3fzzrfHRln01PcvnVwYLmqKvAeZ8YVcYolp4BmtHGmEgbPgW0UdtmqmIjH7pvBwX76KJ5ez8fblAmDDCbsPF+Skabb3/82//0N767Pj8yi6XmtVGaAkasAMDrEJhLbdT1ny9I/BqgJiJUGVWq2qjWYc7hPnwehyOenx9FitbldjYqq5t58MoKxRKa6q7KAiyTpjKYD4Lmtr3xpDu8j/Dq3tZsZ7TRnWPO27Ht+LjSTZoTqhLN5+3N8uPtGEZIxdSCrOCgj4bIl7Cxoxa1T8q5MkgayH6iUBdHmDURtf/SQRqUJz5vb3VGSbadPlV2VdRuK5G7F9oEkrnLW/feXmIp1mlNZOlKRUmDp3AlBaRp0Dim/fj9j99/X+dTw5+WK6R8wuuM3PGL7kRfQdcjW7SaP28YaNUau8uEXnHwlRh/JcdQElfnV24wiP2EaDSTcp3PJ7tzX6upudP55i1IwmwMIa0P5SGv8e/m2pC6as1s12FeSPyVlfY37S9vimvO4aNccV7NXWxTKFJVltVuKlpZpMoAo/tsjC3snqJXyo291YIX79yj0pJSnvZxrI/Ps561Up3xPSusymg4n5/dBeHKDnc/e0mgYLFWKApd/ZvdXI6Rkp2N3xrmZQAIUGxYtFRZQNS1sXamZ1qPX3/Vz4/nuWrbeCRUrhU4B24//3zzk//47//187GyFQomUSB+UcNh6GIN4IV4Nhp/Qa1OywgfJinj/PDn54pamaXnykw8M0h3g9bzwbRxHxzIqHWRtw1tVHFGCMnNvu4wZ4LBvlgJdeuDBMCULBWoKKH7p+/CljTB/YPj+efPzzN2NYtBqTojuE78+ofV5w/9/B//478+nins81FAaX1UjWFSlXZXa1xEVYNhsn0k/RtZH+0HiHk8zlXIKD7ijMJqqlfQ03xVcgxzLEZ+X0OAKphorz8JWZGg+zS5H6+e2wVYIbrun23zo6LalMjc1yTBECft49fjkTJ6WREoKB+5+zZ8/NdvNzz++uvPj7W9RuzO4PqMGqOkvA6B4WuJcc94dlHWZclohg1CntG9DYWzUlJ0vgRg+UNWHG6jKLkLorVES0K5txixe/cRMDenzCnm5pWwz+psMqa6KdxFjbF4ITYmc8Hscy2h9uFEDqpWFcIy8vHzvybPz89HFw0B3dkSypU1BlRkSmirly4isI2cveV0HovhoyvWK5qbbyNh8UKMuNJGTvjho04/id4Jc3cwIkHz7vJom/To06DMJYvOQii6QFoBpKh9fpNdstgrPnXoVBXMhvk1aNU9slV65nMOxnmugMkF+DBTNbM5bkLZalnonwLtZoDZe6Bo4Jzedu2qLBq6mKlTmvrSuKrymHa8+6yHm3QlSxDMQMg5KCTNN+owM0+ZAWtHPIBWCaK6WEINADZcaSDHdtnMo/s2+ZhjyLmYaOesoEIF5UZlCLuDrI9htfnSMYBs7w9xNRTS9tI2idzpKodszlGJgrKQ7qxIUbXRQZOT21nkfrzNW3pVrJR2McPm5eCDotGH9Yozo1mZkcqrNS5UKapkBKpkw4TK2j3OZUaam495G2ZB53EcE5AxpMVKwpJYqoTRSvQpXIfNoYmlGnWRyNf++k+s8BWTd4JwkcvNyb0OoHklDtpUdlYoFroVYLXhoe+J396Hm2ss9mEG0j7GdXsDqsR9CvvLpY+9W+n7hX5HKrj+tJWK3V6157TU86LS2jxDaTxQ1b3K8Z0T2YQ1OggT0uritNhObaL9ha80Ry/VqhY/lp3LZ52fz+eKFx8gokhLgWKxz7hVkbStHq3oe93lRDsGg91Uqk1b1z6tkkwA3LyeQqyn4/MRSK0q7XqSdgZchH37ziupzEpTjSeqNuHU8/96pJcC0OVpEsUgKiNDfSembd+01+PoQKA4g+dpQ3mu6BjxChC0okhBtN2gAiT72CBmbNPPXoQvQZHWQbrDf33xVSScQ6dQaYbnClxqwHUa7MuEVKVUu3NUVeWqcTbPus9Z03abXLNMfWJte2bZZVORHaVZyNKOHBCEAoUEmEX40xyNPQXWa6HpSqzE3l+buFd32qhLw9r/eakDfMGzr+2mOmtTGQfOQi6jIhLbJQWh7TStdu723FVimnYJUo28zizfG9m3MHAt0v75a13uCyN5mRMu8IBLIpSIzK4Q1S5P2euzi/8apVufqFGdBHX3m122dk0qXtZKvr76m2/cXcGqOwyq+1jqiiN4yWhX8Gj8XFvNJDS2CaZfw1dwITqaWJGq7l9CoJRXK8aeEP0opLZ+XWNRAErYoVYAirXLVRpUdFBq+k07HedrOvEy3FEveN6HR/S77RN+uodKn3K6Cm4g4ksIhBpTXyZFKLnpX1yJT+0BwDXrLwR4RdXalgYIhUpTixw7Wdp6x+b0+1jIbvTYFNpXMUoxLxlVr/Pd9hsTGxPay77Hnm07FPWlGHgJcbaRAogqS9KQQjaB/s1DcSmMJFv7VzeC7XIrqKDxxVbvFfBacjumgSCr+80l26a02ZKXjCyR3bE6AaO3cGe1e06C0nWCUQNM5058e5b38zLuVo9oWAq1JLhd/NvsBl39fLGBax8Qoxb2N1N/dVDb68fMyjbZigtGdq8l/tO8f22vFz/x7Xltg+MrMuNbO1aaWdBUAsu6v8+FGXDdwn6L7TZS1Y4IvHYeXrtwJ84X/mgs/CKoXnHplayaXdiN0i5I7EVp/Sfu7pm4Outd0w/uHLy0377tazuzPdF5sQLqoAUZuvlDJw3a2fswl41OX8Hq0Lst2OxOEV/jbmPOoQjt2LRnoDkdy/JqC/ZiInq2vZ7M/gmNzq019hI17ro623Ptym3HnL4WmoDcR/KYkT7HMGx0TeG6Slwe3GtLuLKdAiCj+WA1RCPAAm34SD9aYSUh9elnLYpZ17NdV27ux23iXLshGve89MEBLmaDtraB7Ymg1wy6Kv037UezcQwJLA3S4qsQE31ODGDzdhsPKpDXubBGc9q8zfEVAEBavpY+v+bFty+9Jjy7OWxntnSf4xxHxjYkdnLQTZb7UPU+m7TFbhvzdhOtCsirH5hwHdp0ndNGwq65rsvJyVdCaMZhoNu8HSUxMGjr7P7ie7Bbz/Bx3KeQ594MiwWD0eftNqxXz7WyvnSw64F9owWbyv3GkH0DARfc3eMLM46mtzbrp+tWLlTzNaJXGtYv3KH36ld5fQPwKyjsJ7Gf8yt0c/c66dh5rV5gY8O+9J3jb6JnXNCq64XsYhok7OyN10oSvPZqTtTeZ7CRdpLFaA2fNgCazU2Fw+BX6rTfTME+kY9fQyEYo7bgummrq0lEH33FLSJcg2ak08cxB6qcHEZLWvXuA+5Fy8pYiBR9y/BNGhpyYcSVIGAHvQvRXeFwPw/suoeesN3QcNNLarG8z5vRZa0ltYt8uc/8rWYjyeSJRPTFVUklKmXF1BndG3GTIHvQGnf1TNu5GrsunFaV2AyF2FaMDTl0HeYaxosv3XI+2RVROTZm6IfQ1T/Y4UbXhieos2g6lvTVkH+rwiB2BxA6zIfHJkxoHcXQTX43ci5mhpC9/10Gon3ui0DSScZ2OL3UGjN8lb9gL2Whk+wmCqz9BqXuM6Bt+LSSOMp2R6AG0qU0IIahw0tHgj6EZwePvePzGhsOG9rG4i8H03797g4D2JjDMxLuV0siEvDsxUruwjuwDNxtDMAuWR0q9Lme4HXiLbY67bZRwjaJddmhj3EcAxmUDWeKoSqKqbqiJc3G9D55JDcQ3KHermN3O5yzXhasL5TBLrW3rkLel9Th6MpUsNF8H00/RqJrjF+0BmDVhcfXTq7dBXlnVK1ioTZP0fir9O0jSPpryl1D7vRx3G7OcJMdzigotfI6hHaHyAqsc4U6i9g7TO+h5JcD70J4L0GIL2VY9MKgSdn7EL/NgC5K3HyXGgiKPgfCMlEkW0Xb72hjTofgRmQf38sXF9y9pnEdyaDLoEC695TeE9nch2sct/e3gThXjWNwYafpr5y2h8pHthjQrPOe3j7msN2ouAtPi6/kAXu9vAYAcFrb5Jqq76vu23J3t8GEQPMiizaGNsVLorvCgdaG3cNZPQBBsoosM7dRXtg9VewFeWkkzM1rd+65oIwPjTFv98llVuM2zFdWutF0WTv2jc4mJvDKp83YRyNe+ym3cL5RZncsMjMnCZTN1GEm2T6paDeb6mlmPuY5BpySjZlWZeM2ESsWiyTcesmY08e83Z3FYYZYa3mIWbJhM826VaHBNiW35XkfcwB5HXxHG2MeU/P+/sdvB8/PZ823ybPPJLi8W93ximPeZlWWqBIvidpsHMcYewD6CNvtMt8UdDens+5gfgTu7qW4IMWFX6zbuQ73gcWS+zCvsON+x3ouszCafOMAM/M5bzcnOIdhnaeZlUWmuc8NZCjDqLqmgBk55jEhdqlmz+p5O+r29vu//HHY4/ao48e0J+hdftOovOePj3nLjCGrsL2xkLQx5zCri3X74gGun3Sc6fOnXBjuNcqs6wTxmgHYhdNeppY9HG4+J5B9BhTlZbYtM2Y+phM8hm3mo0UIN5eZagNCboBKso+/GuEqGL71yK1xHG9vN7NS3d4Os/szYrjHjjhXsBzD3XrxvhIeMx9z7FW6geOupnNH0vZZSGYOkx3Puvuo0AnsU8YsrzTUBJnZuNsoO26auex2/92e83weIXoN37mxEVCuNJvjPmRUiRoJ8/u8hc61LUxHoFq0KFBdb/M9EQad3PUfo3zqdru5fS5EPc4UTEKV01BxPnSuos+K3qnEKtf5GWPTO/yK/SR8Xrzs/kS/CLDKqh0C9xZwbZbmPrp8bngZaj9cmKPYOXQjdLy20g6XZi7OSs63+ZZ4novt48YsNNMH4CL69EWSNUuZGYuKTGWYYns+SXYr0ms3uBLbr//pX405ur54EyQ9p31wb7cNe7n/CyzBhqx7BwkCbZAc87jlvOuk0o5bTg0/3u/dessSZiM7a3enjeP+PlzjfpsFgaM4y+L2frzn+Hg+EVVKRxXEyu7HjMs3cNlu6eYj9yYXI2TuPgj2WgWhgow0ztvbrRNv0NzaA+w23t6P4V0ltIN/V4fRp+2zQq1dSA74TpRgoksr1cqEGY3juN3j9iYDgscRQxxjjjTzzRCMWiUU3Wlj3t8Pk7+9zTSajeIhi/tvt9+S43NoZfZpdhASohmwhUrbtGrLgpNzzuPt7kzouB/Tjrnk5l6CJQWDmR23t3tlVpf6dmC04fN4uw3ooi5B8vIyYLvE2f3lCkKtMHmdVaBbm1a591X6cXt7zLfMPh8nsipiRn6cmbLkZX24duXbjzcL3Maku/uVLowx+/C3K7luJyhpxk2pmG8GmmZmYxSNNg6v40waTRlxrryONd6estuPP95R68yVkQnC6Bx+vP32Y/irjho7IYG4fJyVKBhNxooAxspZaNefTXZuKtGttA8cJNZ5hvlYUBVS8Twz+5ip3b2dJN3n/f0Hn+l81YBGrfBTt/r8/PzEMxKJUrVeYj0DCDO9jAZbuXV3P27M2xNdz1cRbaxVgQ4z+ri9//bjPD+p7jNN2vBxjNvbb7+PGU0Vb/6kldeo+Wy/tpuMKchm4JKtyeGt3JRgVgWZT4nx+bFycJwqDeSK81yRmlZdEtxi0Dhu77/9Dj8Nl40pIj7PEwPxn38+HnxEeYEooLoDMRprOroLE0FztzFrHvf7b7/LuWy+3XwNvqqZOj6Z+bz/+OOP8/nLEMpe1sOP+7j/+Nu/jOvh79h4ybfNraNZ26acE1mlaOdMd4JsimZnbPtZNv2SqMo8uyl4Ie1bGcyLxykQX/U6vDKKKwcHv4QhQPVtG9hB+arPOnXGWjoxnue5VuS3d7ySVXSp4matrs+y0W95cby6+JCtjF6gBBJLUd405X7rTlL6Xqq611gvpRKUERFZVayXALvfNCMW1kkR57kiIpldd7+HY4/WNz6qBb+XhIPrfSzO52PqPNeZjxyP57n2eTAvGOnD3Zofu6b6fuSqHG2fa4K+crP0qNh2mk6NdNFC4D7SBk6IXgWYpfI87eTHGSWQfuSqfRZNF1fxMmSQpOL5cy48ToJ4PCNWlMVj1SDy43EGUng1jeXFpe/nUtcTVObJsPN8frit53nar8N+PSP6Obej0mzM4/5+n5095nZTo5iBdT5+jtytynpUdwaN3SDOzDn6xCYbpkm/JuKsZ2aXpSML8fRa+DzPSlnGPoh4OBhE7kS5di+LsOfneHLloClirRVl63kmqfj5GYtRgkwlqEjrPr7XJO63KaZlWJWkOP18rkQVYD60nuitzVafFfRr4vaPX4+E06pKsKqC522eIyLq4jcls0Y3StHUGQ6NOxl6Ny+ckXk+XVlCVLXBZj2wnmnrqRB8yCCQNwxfJ9CUg64HE74eMIrHMEq5zlW+ns8zbcWfK/uoOJqyrtVqZse8TfeIsl16BlCi+ZxWzFUwc/px3EY8CCkEK7id8zOfP29//fpI3jIRKpRVyXLi18iIEsk+B8+MDZVL5ppzTh80FNJvCz+mh/CsM5oksEjJWojK8Yxa4QGsZcMA87ex/OyuBbHxRQvT+VxJPwSnkOdzla/HJ06b61d2w3VwVnQm7G5jjNvtfnx+rmdlRZXQ3UB4HPf3w5yCzTEw78/K9asHQE4NeCKfP4/nGZi3LEMkUVBaHWnjihW4mObdagbgRls0E9IO4nbzOJdRbfElatcsSEkoozqLM58mu93ex4IDhA0zRaslzaJn8MiNCy7QjURuI6OZjSNMdNhOIH3MY40yAH3Y3WbLzb2zRY4xWMct6pgju9lck9JlVK4oH0fOuurkgQxgDNbLdIGr44xazc0wgm4Gc5iBfthwo2dHZ2MnZLaPEzdwCON2G3cNf3u/jyE3n7DxNCuuFKBCIQ0UqlKZRXO4ZmLaQAgg3YZNumBVVFquM1Xx8XGeqZ7AUizS7Xx8aNzjXKjNAWscNyBQouRwt25s30ndznkgVCYxpiH32VT7/3TthJIq29NaBSYru0rURzcC8VFXOZiuL5Dse/7x/ma2cov+lzp+TTjuBgIp0AHXLA5zzboICV3uExIFRvTR29WaczutDRnr9MI6F9aiZUaoGk6YCHhZ967ajQW7CYT1ETVGjSM9M3NnAH0LW4uAKgmqUihnYjmrYO4lOgmOEmCIRJ9/UZVpAsfkOH777Xc8nszzURhPns/V1ZxSWWNUM4dsJBwDUZzmfWiRimEWj4TVrrW343y7fXyeS0JBBndL6/N/u4kBJButJkINKGhdQtH1+1XxzBDd3FtOMcO4p/Jc3c4ArzS7FVOpxYcSSpFt4oS5K2HmlPKqNt0F1eqSFz8m3v7l/Y/icw33C/4Rtgsx+qiDrESpay0I53BDd/X6OgMU26Sm5YsRmdccJTNpiPN80sfjM2nTVRkpjeldT2bOUkZljGhwYcNqzmkVUWnQcIpdqquNjrZc3KjDVCxr2v7ayOiC3J1VwtWh54Ud+5qH3e73I69TIvo3egXb/SfVrYKM9PRhwzkGk6ymnF/ixD5wu75qELcaW5WZa5RWJDPCqrtQb6bGfCB7+KtqCzNm45iexoRB48WS7CCALQHqcoYTLLCQactQK0swbY/bP0noxD4n9Vq4GSva//5N0FKhKlFWMO/7khl9wId3YUerGkYTbUvXUmV3d76ekXarwefnLW08P8qAWvX5eHLVJUU3WOgPlWwXunalsxWlGq/opdfcVy+z/Wxro9+QXs0dardpfY2dWB10UbKMCFdErIhOCMSs67jFfnAsFeI0QJUqs7WWp/HxeBXyevZZ65cGf6UsuP5fxWJWhpsiVLEGtCK47bbiiwfbN1iXR+i6YWk8pVwr6hse3q8pqToA92UWT0Q9zzMyC4SYX1bZAsra6J25nh9pidujPn89znjlWP0krZIrimWZvCq7GJF043N1Jgv0k3LDPiVseylti4NSMfs8AH+ar8/iWo+pv36eWGu9bge5zXypnnklAOmZUSnVONUUwk5+dgE7L6cbkWqvbhZYpkesVBUKLW3bVR3WlTEFKWM9xeK59Px8RnWmpStUlFUuFIux2MypwTLKiuj734ZBwxh5ORYMldstcR0Clm2l06THs3A+59DH50JmdN5Y+34KKIl9+mSJS9d5ljUKV8uKLUTucKWrdXrPg6Z4YPV1Vvs1uzqqvSLTXp6WQUPnGcRm3bU9JVva1zZ2obtDbfX1en2Tk7uHTV2I1fbC3IkhsMyTVs+iKhzPs4mbK+ndqKa7Jr+MJVuUl+oKgleY2g7Cl1a5ZUTbZoXLaPk99Im0XWF/+VuuLWwrQYIKZftMGV4oR+hqKeFrD7qYFRIm2JxMoN2e11mX2KHx2lwyRa/sA5gQmSagPZsgNp+x47JthHONMTherivs5P/aC3ERH2Zmmwh5+RD7AdUl234zDHIXmRhB0n2M2vtIx43q3wEqlijf0GtvjdiuXAcH5bf7Cqm2qm/Yxy/4NUhAVYVRyoKxEpEF0Twldm+Ty5YK0lzepQ49HCyM5Itp0mvLwatgkWwKESmlsiqqNkq6wjLYB022qN3ZTRVydadPGwaWqO6/an3SXmXXPncRj3bB2U7CQHNykOP9/TyrTe5XICzJxp6m7JNNCOcqIWGIJSNhJl0OyG1eoZlZ52/1JQWMk1mV2PUCFwy2Ptz5OmzFB1GpUlbUq4Eju3kj0Qxhy3V0M1SAK84wVZ9mwyHfhR+92KpPkNrs115pJuugBR+gk/M41J0IsVFMt1B1s9r7cP9xWaaYMmS+qne6nqt352vvgypStvaNVo7FdnJdVCNoovtGrtdCwxfxV7tokWl93qJViYY2wA6QXaDEWOVVmWSxuk4hq8raEdMWz+2qYJ9majSoKqGGzKp4Ps8VvS9SVCELcnz1peG3SPXFUMqyywN2MzRuW2No5ZnVZWAklWNZF4B8sYggx+gYdZ3K3XNjr5WiofdubWOyAIPRhvvo90oVbMAKVWYFZZcobYMKCMHMp6uPCKBZ0YcZ1bW0DdoyuM4VuaPjPqsCapHBrrDJPpm2gxzBSimTbEcACPQByGAqsttEsl3dGwle4Y9At2b1V8bxkj8vGvglTO4zRvbYcbdqq91QCt9QVX3HjNBlQrExxg44Pqw4pg1WENqRS6qMjKh9n7Z3Ie6SmEv/796GdJP3NpsXy10vZyV2jKmu4ECjfWi8toBr44L2MQ7aGzdKGexKKZNtnuVKnYQtrEhMAFXsE+CbLVY1YkvtY2b2J1yAoJN7CCxUeqD6IBuWbCkR61y56anWsApIvvh3mPkwDvVjM+w5mT3lXi9rhHN16LkWj4ixiYcXHXA9OHT7krIiquraK6rqn0aMfIUXFvtY0B14K1MpdZVUvfS3K9UGdvO9ah2zDyfqz4Fam33ldQKgfRzK1rwFdTyBGQtdjm5dlr5xz+tKhX1gyFWRgxdMGq+iB7yyjg18vp1BtRWWTex8Qzqv32ojBu8lsDfafnImah/f9QJI/zSI7b7mcHeWkRJZpMl2q8tXOnQFKV6lQEIxRaCSKQipCzjh1SLx22dekGBTitDQteN/vzJeUxQqEmneGdaVj3OHX0Gv02w2tOrLIgVmVkISEkilXsV52+v2jUPQ68a2Y6cRfCVattmx7roAVhVQfdImSwRzlyS0EeoqotL3GxMsr4o6AaIV9P8CaunzEU5NW/EAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Image.fromarray(np.uint8(W.dot(H).T), 'L')" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -522,18 +447,6 @@ "display_name": "Python 3", "language": "python", "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" } }, "nbformat": 4, From e82628de5ece8d113f5c085a695fd5c122b5303e Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 12 Jun 2018 15:54:29 +0300 Subject: [PATCH 020/144] Optimize E/M step --- gensim/models/nmf.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 6c0058c842..c4c571ba5d 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -276,10 +276,13 @@ def _solve_w(self, v, h, r): eta = self._kappa / np.linalg.norm(self.A, "fro") error = None - for n in range(self._w_max_iter): + for iter_number in range(self._w_max_iter): self._W -= eta * (np.dot(self._W, self.A) - self.B) self.__transform() + if iter_number == self._w_max_iter - 1: + break + error_ = self.__w_error() if error and np.abs(error_ - error) < np.abs( @@ -344,6 +347,9 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): solve_r(r, r_actual, self._lambda_, self.v_max) + if iter_number == self._h_r_max_iter - 1: + break + error_ = self.__h_r_error(v, h, r) if error and np.abs(error - error_) < np.abs( From 1ca33f8162187f262a11a37108c5cc05798aadec Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 13 Jun 2018 12:59:04 +0300 Subject: [PATCH 021/144] Add an eval_every option, use softmax for normalization --- gensim/models/nmf.py | 43 ++++++++++++++++++++++++++++++------------- 1 file changed, 30 insertions(+), 13 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index c4c571ba5d..686d7f3303 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -30,6 +30,7 @@ def __init__( w_stop_condition=1e-4, h_r_max_iter=50, h_r_stop_condition=1e-3, + eval_every=10, normalize=True, ): """ @@ -67,6 +68,7 @@ def __init__( self._h_r_stop_condition = h_r_stop_condition self._H = [] self.v_max = None + self.eval_every = eval_every self.normalize = normalize if store_r: self._R = [] @@ -93,9 +95,6 @@ def B(self, value): self._B = value def get_topics(self): - if self.normalize: - return (self._W / np.sum(self._W, axis=0)).T - return self._W.T def __getitem__(self, bow, eps=None): @@ -175,6 +174,11 @@ def get_topic_terms(self, topicid, topn=10): bestn = matutils.argsort(topic, topn, reverse=True) return [(idx, topic[idx]) for idx in bestn] + @staticmethod + def __softmax(matrix, axis): + exp_matrix = np.exp(matrix) + return exp_matrix / exp_matrix.sum(axis=axis) + def get_term_topics(self, word_id, minimum_probability=None): """ Args: @@ -193,11 +197,10 @@ def get_term_topics(self, word_id, minimum_probability=None): word_id = self.id2word.doc2bow([word_id])[0][0] values = [] + for topic_id in range(0, self.num_topics): word_coef = self._W[word_id, topic_id] - if self.normalize: - word_coef /= np.sum(word_coef) if word_coef >= minimum_probability: values.append((topic_id, word_coef)) @@ -205,10 +208,9 @@ def get_term_topics(self, word_id, minimum_probability=None): def get_document_topics(self, bow, minimum_probability=None): v = matutils.corpus2dense([bow], len(self.id2word), 1).T - h, _ = self._solveproj(v, self._W, v_max=np.inf) - if self.normalize: - h = h / np.sum(h) + v = self.__softmax(v) + h, _ = self._solveproj(v, self._W, v_max=np.inf) if minimum_probability is not None: h[h < minimum_probability] = 0 @@ -249,11 +251,15 @@ def update(self, corpus, chunks_as_numpy=False): r, h = self._r, self._h + chunk_idx = 0 + for _ in range(self.passes): for chunk in utils.grouper( corpus, self.chunksize, as_numpy=chunks_as_numpy ): v = matutils.corpus2dense(chunk, len(self.id2word), len(chunk)).T + if self.normalize: + v = self.__softmax(v) h, r = self._solveproj(v, self._W, r=r, h=h, v_max=self.v_max) self._H.append(h) if self._R is not None: @@ -262,12 +268,16 @@ def update(self, corpus, chunks_as_numpy=False): self.A += np.dot(h, h.T) self.B += np.dot((v.T - r), h.T) self._solve_w(v.T, h, r) - logger.info( - "Loss (no outliers): {}\tLoss (with outliers): {}".format( - np.linalg.norm(v.T - self._W.dot(h)), - np.linalg.norm(v.T - self._W.dot(h) - r), + + if chunk_idx % self.eval_every == 0: + logger.info( + "Loss (no outliers): {}\tLoss (with outliers): {}".format( + np.linalg.norm(v.T - self._W.dot(h)), + np.linalg.norm(v.T - self._W.dot(h) - r), + ) ) - ) + + chunk_idx += 1 self._r = r self._h = h @@ -292,6 +302,9 @@ def _solve_w(self, v, h, r): error = error_ + if self.normalize: + self._W = self.__softmax(self._W, axis=1) + def __w_error(self): return 0.5 * np.trace(self._W.T.dot(self._W.dot(self.A) - self.B)) @@ -359,4 +372,8 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): error = error_ + if self.normalize: + h = self.__softmax(h, axis=0) + r = self.__softmax(r, axis=0) + return h, r From f19e6ce43b0252d541e658a9e8caee9dcbebf1b1 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 13 Jun 2018 14:29:06 +0300 Subject: [PATCH 022/144] Fixes --- gensim/models/nmf.py | 37 ++++++++++++++++--------------------- 1 file changed, 16 insertions(+), 21 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 686d7f3303..4fc7fc4ba3 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -31,6 +31,7 @@ def __init__( h_r_max_iter=50, h_r_stop_condition=1e-3, eval_every=10, + v_max=None, normalize=True, ): """ @@ -67,7 +68,7 @@ def __init__( self._h_r_max_iter = h_r_max_iter self._h_r_stop_condition = h_r_stop_condition self._H = [] - self.v_max = None + self.v_max = v_max self.eval_every = eval_every self.normalize = normalize if store_r: @@ -95,6 +96,9 @@ def B(self, value): self._B = value def get_topics(self): + # if self.normalize: + # return self.__softmax(self._W.T, axis=1) + return self._W.T def __getitem__(self, bow, eps=None): @@ -176,7 +180,7 @@ def get_topic_terms(self, topicid, topn=10): @staticmethod def __softmax(matrix, axis): - exp_matrix = np.exp(matrix) + exp_matrix = np.exp(matrix - matrix.max(axis=axis)) return exp_matrix / exp_matrix.sum(axis=axis) def get_term_topics(self, word_id, minimum_probability=None): @@ -207,11 +211,12 @@ def get_term_topics(self, word_id, minimum_probability=None): return values def get_document_topics(self, bow, minimum_probability=None): - v = matutils.corpus2dense([bow], len(self.id2word), 1).T - if self.normalize: - v = self.__softmax(v) + v = matutils.corpus2dense([bow], len(self.id2word), 1) h, _ = self._solveproj(v, self._W, v_max=np.inf) + if self.normalize: + h = self.__softmax(h, axis=0) + if minimum_probability is not None: h[h < minimum_probability] = 0 @@ -257,23 +262,21 @@ def update(self, corpus, chunks_as_numpy=False): for chunk in utils.grouper( corpus, self.chunksize, as_numpy=chunks_as_numpy ): - v = matutils.corpus2dense(chunk, len(self.id2word), len(chunk)).T - if self.normalize: - v = self.__softmax(v) + v = matutils.corpus2dense(chunk, len(self.id2word), len(chunk)) h, r = self._solveproj(v, self._W, r=r, h=h, v_max=self.v_max) self._H.append(h) if self._R is not None: self._R.append(r) self.A += np.dot(h, h.T) - self.B += np.dot((v.T - r), h.T) - self._solve_w(v.T, h, r) + self.B += np.dot((v - r), h.T) + self._solve_w() if chunk_idx % self.eval_every == 0: logger.info( "Loss (no outliers): {}\tLoss (with outliers): {}".format( - np.linalg.norm(v.T - self._W.dot(h)), - np.linalg.norm(v.T - self._W.dot(h) - r), + np.linalg.norm(v - self._W.dot(h)), + np.linalg.norm(v - self._W.dot(h) - r), ) ) @@ -282,7 +285,7 @@ def update(self, corpus, chunks_as_numpy=False): self._r = r self._h = h - def _solve_w(self, v, h, r): + def _solve_w(self): eta = self._kappa / np.linalg.norm(self.A, "fro") error = None @@ -302,9 +305,6 @@ def _solve_w(self, v, h, r): error = error_ - if self.normalize: - self._W = self.__softmax(self._W, axis=1) - def __w_error(self): return 0.5 * np.trace(self._W.T.dot(self._W.dot(self.A) - self.B)) @@ -329,7 +329,6 @@ def __transform(self): def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape - v = v.T if v_max is not None: self.v_max = v_max elif self.v_max is None: @@ -372,8 +371,4 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): error = error_ - if self.normalize: - h = self.__softmax(h, axis=0) - r = self.__softmax(r, axis=0) - return h, r From 583cb15fa98fee04254d6bab0d6fbc1e8255293d Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 13 Jun 2018 14:29:25 +0300 Subject: [PATCH 023/144] Improve notebook examples a bit --- docs/notebooks/nmf_benchmark.ipynb | 225 ++++++++++++++++++----------- 1 file changed, 138 insertions(+), 87 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index c0f5898759..c1092aa9b4 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -9,18 +9,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The line_profiler extension is already loaded. To reload it, use:\n", - " %reload_ext line_profiler\n" - ] - } - ], + "outputs": [], "source": [ "%load_ext line_profiler\n", "from gensim.models.nmf import Nmf as GensimNmf\n", @@ -46,20 +37,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Downloading 20news dataset. This may take a few minutes.\n", - "2018-06-05 13:03:04,253 : INFO : Downloading 20news dataset. This may take a few minutes.\n", - "Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)\n", - "2018-06-05 13:03:04,255 : INFO : Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)\n" - ] - } - ], + "outputs": [], "source": [ "from gensim.parsing.preprocessing import preprocess_documents\n", "\n", @@ -68,18 +48,18 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-06-05 13:03:26,753 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-06-05 13:03:26,886 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n", - "2018-06-05 13:03:26,906 : INFO : discarding 14411 tokens: [('bricklin', 2), ('bumper', 4), ('edu', 661), ('funki', 4), ('lerxst', 2), ('line', 989), ('organ', 952), ('rac', 1), ('subject', 1000), ('tellm', 2)]...\n", - "2018-06-05 13:03:26,907 : INFO : keeping 3211 tokens which were in no less than 5 and no more than 500 (=50.0%) documents\n", - "2018-06-05 13:03:26,912 : INFO : resulting dictionary: Dictionary(3211 unique tokens: ['addit', 'bodi', 'brought', 'call', 'car']...)\n" + "2018-06-13 14:18:46,100 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-06-13 14:18:46,293 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n", + "2018-06-13 14:18:46,321 : INFO : discarding 14411 tokens: [('bricklin', 2), ('bumper', 4), ('edu', 661), ('funki', 4), ('lerxst', 2), ('line', 989), ('organ', 952), ('rac', 1), ('subject', 1000), ('tellm', 2)]...\n", + "2018-06-13 14:18:46,323 : INFO : keeping 3211 tokens which were in no less than 5 and no more than 500 (=50.0%) documents\n", + "2018-06-13 14:18:46,330 : INFO : resulting dictionary: Dictionary(3211 unique tokens: ['addit', 'bodi', 'brought', 'call', 'car']...)\n" ] } ], @@ -93,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -103,7 +83,8 @@ " in documents\n", "]\n", "\n", - "bow_matrix = matutils.corpus2dense(corpus, len(dictionary), len(corpus))" + "bow_matrix = matutils.corpus2dense(corpus, len(dictionary), len(documents))\n", + "proba_bow_matrix = bow_matrix / bow_matrix.sum(axis=0)" ] }, { @@ -115,15 +96,15 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 875 ms, sys: 385 ms, total: 1.26 s\n", - "Wall time: 711 ms\n" + "CPU times: user 1.7 s, sys: 890 ms, total: 2.59 s\n", + "Wall time: 1.45 s\n" ] } ], @@ -133,13 +114,13 @@ "\n", "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", "\n", - "W = sklearn_nmf.fit_transform(bow_matrix)\n", + "W = sklearn_nmf.fit_transform(proba_bow_matrix)\n", "H = sklearn_nmf.components_" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -148,22 +129,22 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "482.0895496423899" + "5.419692286693165" ] }, - "execution_count": 10, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "np.linalg.norm(bow_matrix - W.dot(H), 'fro')" + "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, { @@ -175,7 +156,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 8, "metadata": { "scrolled": true }, @@ -184,17 +165,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-06-05 13:08:47,801 : INFO : Loss (no outliers): 593.2289895825425\tLoss (with outliers): 593.2289895825425\n", - "2018-06-05 13:08:48,289 : INFO : Loss (no outliers): 502.92121729493823\tLoss (with outliers): 502.92121729493823\n", - "2018-06-05 13:08:48,805 : INFO : Loss (no outliers): 486.88611940507246\tLoss (with outliers): 486.88611940507246\n" + "2018-06-13 14:18:49,027 : INFO : Loss (no outliers): 593.2289895825425\tLoss (with outliers): 593.2289895825425\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 2.47 s, sys: 1.82 s, total: 4.29 s\n", - "Wall time: 1.49 s\n" + "CPU times: user 2.24 s, sys: 2.21 s, total: 4.44 s\n", + "Wall time: 1.6 s\n" ] } ], @@ -202,7 +181,7 @@ "%%time\n", "# %%prun\n", "\n", - "PASSES = 3\n", + "PASSES = 2\n", "\n", "np.random.seed(42)\n", "\n", @@ -211,16 +190,16 @@ " chunksize=len(corpus),\n", " num_topics=5,\n", " id2word=dictionary,\n", - " lambda_=1000,\n", " kappa=1.,\n", " passes=PASSES,\n", - " normalize=False\n", + " eval_every=10,\n", + " normalize=True\n", ")" ] }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -229,7 +208,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -239,45 +218,45 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "484.3090246375028" + "6.357256256235999" ] }, - "execution_count": 48, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "np.linalg.norm(matutils.corpus2dense(corpus, len(dictionary), len(documents)) - W.dot(H), 'fro')" + "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.117*\"jesu\" + 0.065*\"matthew\" + 0.035*\"peopl\" + 0.033*\"christian\" + 0.031*\"prophet\" + 0.029*\"dai\" + 0.028*\"said\" + 0.027*\"messiah\" + 0.024*\"come\" + 0.023*\"king\"'),\n", + " '0.101*\"jesu\" + 0.055*\"matthew\" + 0.042*\"peopl\" + 0.039*\"christian\" + 0.026*\"prophet\" + 0.024*\"dai\" + 0.023*\"messiah\" + 0.023*\"said\" + 0.019*\"god\" + 0.018*\"fulfil\"'),\n", " (1,\n", - " '0.049*\"armenian\" + 0.030*\"peopl\" + 0.018*\"turkish\" + 0.016*\"post\" + 0.015*\"russian\" + 0.014*\"genocid\" + 0.013*\"time\" + 0.013*\"year\" + 0.012*\"com\" + 0.012*\"articl\"'),\n", + " '0.043*\"armenian\" + 0.028*\"peopl\" + 0.016*\"post\" + 0.016*\"year\" + 0.016*\"com\" + 0.015*\"time\" + 0.015*\"turkish\" + 0.014*\"state\" + 0.013*\"nasa\" + 0.013*\"space\"'),\n", " (2,\n", - " '0.359*\"max\" + 0.007*\"umd\" + 0.005*\"hst\" + 0.002*\"gee\" + 0.001*\"distribut\" + 0.001*\"univers\" + 0.001*\"repli\" + 0.001*\"usa\" + 0.001*\"keyword\" + 0.001*\"net\"'),\n", + " '0.359*\"max\" + 0.007*\"umd\" + 0.005*\"hst\" + 0.004*\"armenian\" + 0.003*\"health\" + 0.002*\"father\" + 0.002*\"us\" + 0.002*\"gee\" + 0.002*\"state\" + 0.002*\"public\"'),\n", " (3,\n", - " '0.083*\"health\" + 0.060*\"us\" + 0.041*\"year\" + 0.038*\"report\" + 0.035*\"state\" + 0.033*\"diseas\" + 0.032*\"case\" + 0.031*\"public\" + 0.030*\"ag\" + 0.030*\"person\"'),\n", + " '0.055*\"health\" + 0.049*\"jesu\" + 0.046*\"us\" + 0.034*\"year\" + 0.034*\"like\" + 0.032*\"know\" + 0.029*\"matthew\" + 0.028*\"david\" + 0.027*\"case\" + 0.027*\"diseas\"'),\n", " (4,\n", - " '0.105*\"argument\" + 0.064*\"conclus\" + 0.056*\"exampl\" + 0.052*\"premis\" + 0.051*\"true\" + 0.034*\"occur\" + 0.032*\"logic\" + 0.031*\"fals\" + 0.029*\"form\" + 0.028*\"assert\"')]" + " '0.099*\"argument\" + 0.060*\"conclus\" + 0.054*\"exampl\" + 0.049*\"true\" + 0.048*\"premis\" + 0.037*\"good\" + 0.031*\"occur\" + 0.030*\"logic\" + 0.029*\"fals\" + 0.027*\"form\"')]" ] }, - "execution_count": 49, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -305,19 +284,19 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 14, "metadata": {}, "outputs": [ { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'PIL'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mPIL\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'stars_scaled.jpg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'L'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mimg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'PIL'" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -328,9 +307,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(183, 256)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "img_matrix = np.uint8(img.getdata()).reshape(img.size[::-1])\n", "img_matrix.shape" @@ -345,9 +335,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 209 ms, sys: 180 ms, total: 390 ms\n", + "Wall time: 156 ms\n" + ] + } + ], "source": [ "%%time\n", "\n", @@ -359,9 +358,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "Image.fromarray(np.uint8(W.dot(H)), 'L')" ] @@ -375,7 +386,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -386,11 +397,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-06-13 14:26:59,636 : INFO : Loss (no outliers): 4665.057356152667\tLoss (with outliers): 4665.057356152667\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 164 ms, sys: 4.42 ms, total: 169 ms\n", + "Wall time: 166 ms\n" + ] + } + ], "source": [ "%%time\n", "\n", @@ -398,9 +425,9 @@ "\n", "gensim_nmf = GensimNmf(\n", " img_corpus,\n", - " chunksize=len(corpus),\n", + " chunksize=40,\n", " num_topics=10,\n", - " passes=2,\n", + " passes=1,\n", " id2word={k: k for k in range(img_matrix.shape[1])},\n", " lambda_=1000,\n", " kappa=1,\n", @@ -410,7 +437,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 77, "metadata": {}, "outputs": [], "source": [ @@ -427,9 +454,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 78, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUI0lEQVR4nF39YZMkyY0sCKoCZu4RmVnV3eRwZlae7K7Iyf3/3/RWTlZ2Z8gh2V2VGeFuBuh9gHlWvSmhDKfZlZHh5mYwQFWh4L/OlABkAkB73U+pbYYksW3Z4La97s3Pb//4eI5jREYK7pAoJpCgKZCEyP6SH84TjbqNQThpSmowA26C2ReCycczCb3evm3tMSCkEeaHSJCgt06C7I00ti42IkRKmjPynJG0e8S0Nz4zx4kRGRJAhyRSgIEkYYxMtc1grrZ5PtAxAOOc0QCAwvqjaQlAIgAoM2EZKQiAAAmQhAQEwD5/EARYf0CQlECQAGimBAUCQAYS2lQ/YQykCJCQpM/Pql9FiiAzhYZaAGBGKiLCEJkJEaifpQUAkgmCEAFBhqSuX2eyZiIIIlNzZhuZEgQlAGByCnOSSbC3dBrb2Zzx8f0Yc0SmCJqvNSAgWlIGgUTIaB2EZiSA9UZNqlUWpxEIAQmdCEoShCQk1qoRUBLA+uaZYgoBAkKElCklRmbkwSHRk6j1EwQDUQtOkkZAMicgZeQMEAmA1rIpU/UHABA8EjRCBLct3Ux+gMzjOTKmEiJpDgBJwhPtNp9pSDpN1q11ZOZMCXT6vjXLOY6oFyU5s00zJeJUPRQEgUqQdDjYnAZZM5JoLempeiSZ0JgyKZRQGA1pM7LNBGBONncFOUNGozVSIGFu9JfxGCJNYi0BQEi5FmDmCLAOhdFmc6QQCcwpZAAEjd5AARQNaB5kU5oZBLdOngOxDpWE+g8ECpjuxDYHA5pBZUUffe79dYZAwNxIYtuG+dQ6URLoLsHqqTYaEc+ow/C51wGa4ObNW2v1693Mf53/hMw9EzMSDWbMEAWIkJRZyyWZN7llznMEfJBEGghr5jtOkYQJxHEEWg5QgJL0licIC0AZ53tCIYl0A9IA3MYTygQsoPrmJA2AURQUtdB00nl7OdhHToIywsZEI0GYgPu9uXF8n5z1G6dymBEwwMy3vfVtM6VSpLVf3Zi2b3nqOdJaI5hMsU40eYVDAO3G7mEycgWq+p5m3pVJURTMRcIBkqLBW+/TLWkJsxQgZB10EjCa83V8rHvj8xfW72QdYFqjmfmt0Zxfvjy4nXmSlJs9PeST9Rf5+qU7ccaHrh1whVIC7q3fer/trkSmG/u/d0Xay20cYUdaI0n9L19jbUPR9hfsPR45PWWArTgmKSciLS2pirGI2umQMoioyFrPZAJRYdqyNtnbw2UEf/6NIAHSjA7zTpr1W3M2/vLbN70c8TADusNb4DgBl5H29U8b83kK1kcGRYewHkgZTEBTRL8R++a3/0+PM/h2f34/P2JYo5FJYkXQyBWsBbHtY9tiHmbX9Qaxtu5EpIJZTwZKiSuaZTD0eWJJA4RMEEYkMSz3vt698grevMIAra4ZkvRmcG4vZ+xpww3Yem+TzCA8zcxfvuwYgZTRCIGmIGkCpGQkkDOA1hpfX/z1f7S//3PY20ub0jitNaMBxisIsIKVAKDfz9s+R7N6WRWiuILaj5AjAEpJSZHIAESDG2TX37HKmFhZBl52h69/SasLq3YAaDS4O2DWts218e3XOb+0CXfgtn2ERMVgT1prr7/e8nmunwNFE4288g6JQGbyddvsy1f/5X9v//n3YV9etylXqCWvAypA3nyu7yyw7X3fbeteb4krrEOfi1RbHimFlBUqkmFjZhIpIIEQlbnyHVrbPG6NK2S0Fnmd2c9kCmZmMN9ue8PNfvktxm+PsblDt+1Bn1RObknrfn+9hWzlfVcwUTIBiYRSkSP4KvO2tftbu3dZ783MkNlCZIRUG8C2dsY6kaK33ptaM9Yb50rYIBpyZYYJQkJU8iKAwzhnRFoASIBJ5Uo0yLbd29xsnTn2fjLFugjwGb/MnO7b7dbthV9/mfNPj9Hdqb1/F4Yipragd9+2LQ4K5Io5EJRkAkgTlEKMgSGs9QUUMyNhRtUCZK7fbHv/qL8G0cybt2i9Gc28zibr9XNtW0khpLSSY2blBxJJrxsA9YCCkbS+v/ThRrGluL32UyGrpyZAw7oW3Vrr295e7eXlnF+34eZUb28zntF7VzN69+4uxIQxzR0wGpFAoO7kmKbnx4mvz+bnGedHO84TRz/OCSGbGyi56vz5tvUBGAGg7ffzdWuKAZt3z84cZNaiXmEbQq6NsF6BKmWr/6RWlDSp0tK+75u/7C1J0bf79hEMB64gSpoEmpt732639uJfvub89RitFuD3GZwRQzvgu3/5ZZ9z79vG7HNC7jBISpBi5Z45J2Xurbf93m+bsG29z9ZcjSSz7kKA1jdf2Thobevbjv3czsY+00mv5I/mgNLMrrqjkgiBWuFCAC2rfCHongLNoL7dbsdt70mIbb/v2wn4lQpq/Tfd3Xvfbrf+6m+1AGbO7P52jpxjdGyg7+3+ch/H/TZORGsuuMOFvCKqmbncnd5b65vvt773YO+9x74Na7ZCkwkybK8vvz9BJwB2R3Pa9jJluVnQIpikwbadQ2nuTCSqeCZdMKaQNMiMJGwdajORTjO+fP3zy9PocMn69nb757P2veiiYGbm7t66b9u23faXdm93vW7TaQzw/nLMR2ubmsO660QMtNsZ3DIkp3kCJMzkrblIayLGMbqb/f/6X38/LOL7wP1Lm63VzccUZLZ//fr3h6yRIvdmW2uyrbUnbJtq4TjHZLLfQKWxBQE4BMKsCR4TADeFA4AjKVApJehm1r7+9pcvH+5dScC4vXSXqsLqUyTN3Nxb31rf+367v2z3/sJX5d2lc8bLeYzhfcvexWZ6jjyza8RQQ6YsaTKS7uneXTBzGA5TTov/2f7z99PHPKN94THayr5ggtzay+ve0hqZTkdAKfO5gxpNe1BupoA3phLyOvyrcukplwnGlmlZwdIEZkJS5dD3t19/vdF7pBFg27u5olaQ682Z0Whm9RjdZN4Mm8+gwlt3gQZrSed8Uqe6Rcy+c+RAWJWV5jQ3UxJuDSdjnBx3/49/jn5Eor+0GE0J5udN3O5vbZ0JkvPMqdG6kxbG7OwY5hD7XmmWJyxwgSDOYEWCFUWupJo0F+ik9/vbb3/e/wE3V0ff3365dYLJoHkuFIUk6O5u3rZtb2rb1igfwTna1hvgbdIJw/hOHtl6nAA2hpJeIdAM5p1ZEVVHDDZ8nPaP/4rWnrxtr5tG+xAopUJAyF7feCaTlHF831vyeb+///1hGT4RB89Tzf3+xpbB6Vm1R92CmamZhTqE0jxnpYpJupIkve9f/vVf738dKTTP9uVf//x/bUgTQFpHZWSEgr1vt/3l7ddfX+7by8uvXcTEB+3AeLRGHG6Qz49393mg23zPiEwFWiZq47dt12E9QMTTzwO6/QefH2l8bb/0XzrQJkhVrVhwQo5gADC056MnH+T3f34w8s5NMoE0ax0t4VlpBZSWVGRGBiRWspyHVnGbqTO1UK52vz9jznNmfDR7fzuOceYkzDOUVuWctOrO1rdt823fNhhPvHdv3StfyJma5xze5wOYcyoz4pxnZwqgWd1Tq4Jjns9EAvMMsiPRd6rJbMUoJRnjHCNkAg3t8dEnH5r//Md3pH7tL6SZwUTkZ96FAqiqqs8ZnnLSDG0lAQIiFUCmlDnnXElYjAefj+dMMWspqYVkKecc4Hk+n8+HGR7cH2x2xvvH4/F4HufIMUxSG5gNkUy2DXmChhQJkcYFcGQmKWVEQW80Wu+9mVtvV/ZcD5PzjHocQpwDsOE4jgPCtFX5Csis8qeynELuVqJcCaegCo2CeJXGkqQY53lGFrqqmOMCo34Ac6qFoo3zPJ5PYwLbZP/4mB8fH4/ncYyhOU3JGZq0FKv8XJnuqsDqI1GF+Cfy9lnYKJJoZsZcRYQyxwhdBYVSmYhYJXLMA9mOSae5cwA0awyHJ9EkKWFkY3ePBc8WZvsJ9Eqa43g8jnNGFBy/sFPSVtZAQZ8pXMYc45D5Y8o59Hg+j+McM1Qvqp0KUEIcH9+l9zmPAiNBI81bU26byTSIcIBOQXQzZMw4m5TMvFY+zmNe6wMoM3JOCwFU4IHoR7hbla617Wnmk2yKKnhhrbtSYp1EraWvBc44n+/7t/fHcc4q1c8xR6bEZCKTEKhAZmbGHOfxZJwq6Dns+f3j4/GsHQApeWCGAObz++8TR8aIKJyi4oih9b0ZwxLhScIoARljHMLRUmR+YqI5z0pu60VkJjJmFqQTQ4mRK2NXKlUZcxtkz/pwz7b3NkYGGHD+VOMVmD3P58fHcY45M8UcxzlHIEgYq4BNJi2lawUQgyQCSj8+Ph6P5zkmIiQET064e4s4nyeGMjICsoJjzZzYd3Ybj5HZamMqmWEZ0xDNQSJZsP11BOqkZx2BjKp9Ak9FnDDRrMFhhiqpnUSLzABoalvf5E6QMiY++Y516sfxfB7nnLH4CF3o0RUtSGUWWp8ZcxqidcuRiT6O8zzHjCw0eeq0CYchj48/Dlzwc9WWNG/NbLv5ziM5ww30Fk3obkDMPFtBwQvcoGImPitzJWsvXiiDMhKZkqKWR1ecqUvhonSUixH5DLE/wtwcx/M55gq1ipla+R/rgrlCYjDmHOd5KNwsY2RiG4/n8zjPMRVT0NS0yQnwHHNOXj9b4U7XFsbkmBGZa8EFZcxxZp5NAvNaNeQcKgRLEJEkMpifD3BF8whUHEKKJEgT6RAd7maGnLKAGcDCCFZwjxjH4xiRkkTkOGZmKJm06xLkyqpiznF0n82BGTOD53w8Ho/nOQYiUkhFBsP08z678LoKo4udaz7Wts4MwYIZk5kNrEJ+fceYyR/vMklkxk8fjR9L8ROVd3GC9f+Y+YX4FtrKnxZQMccYuegS5lzk7MqesGg6ywxajOFny3AzzZmJOZ/HcZ5jBiIEBsMyq/D66c9//8J0c+N/+1eQUmgGwoopE5jjvBg9ARkSYiq0wJ8LGZQSmQUN0cwAmEiDaPLWezO7TsHPuL+kjPNpz7HgD+Q4Quve46IzK7eKAIc/xezNxtzmzESfx/F+fDyOgRxyBKYFImn43AH8sRe4QNa2OY9zrqsLIMyMSInNCGbdaiDzYHEygERFJmJk6Kd73AgzCRlc+aqTxk7zBlln3/d9NLO0hNkPNHVlZefze36csW6pPHzmtYdsbRlSUhSIN+JozbZHm1OJFsf5PB7vj8kc6YwclmrdGovrW2f0ItcI0Ny3+3aex1xPCYJu7sgk2wpWC0XW8IVcQWlICmGIT0Lk2lKQMi3XU3DVnkawobXWvHYcPxPEH0sQ4+BzhCCR1BgJkKK5N8gIyetKzLB5JqM5z7QZKXiM8zmezzOYU7KIaYn4rDNqB6wTzGtHwLyl8cdD1PoonGh19+A6hteB59r1BuXP5+Y6PKFIaUVH/bdz97lU+l/O3IpKMXzEwtahnPm//PBnIM8kY7pM6ZT5CAkeY5xjzAjW+cxEZkRe6ern91nHqa6BiMjMTOXnlafMmEa2IJh53Z+KKZLeHBlmQEKJVBE3Kz0NMc8c04YmIzApMFUAhjlycKakFJKSucXnV8uY48AxZkigG2KKRoN56x0wV4RLRgOUOWUKx5TNtQDzmOeYawE0IxPj+MiPEeL14pVVluQ0T5JEn98/juMMJDkCPBUwDKJFyQYWqo1MkN62jjy9VWGa18vUdY8Qc57BqckMTBOZMDM3M1oIM6VkkQbWTn5GgcyYJ84RmYCZW9UPbt76vgGt5ZhUAquYy6ASos2UYDnmmDMiGSFZkX/D3ufzLGgq68QlTVTQziCQ4fPbxzjHhMg5QSpEDKAlgSsPus5IxgQyQP+R3gAL94YUgx6RCCUzEcrUUE6G0cPT4gxdghmVdKe25qpwcp2SBGun1FdIqpnmtBVd6aQbIWZAiQQvNUdSCS0+I2Ng5GcNWL8qGcycJpgpLR7nWNVHlCaCzRNqn/UhVoFTN3lVU0uk0LesDF0igcyYZ8xEYJ0pAlHfiqmczCjQjjTAvVlSkhmBhKZFFGBoXrUP+bn2qwy8dg9BJJnySAlRcIIkpbSqOOU8c4TqG5Myg9UiBGeCiMk4zohS5mQCgYRbaC3AWrgC8pzm7jC4mwiYFykck1nfLyaUIxEKSAoImoCUrOzTQnTS1tMZaMwl8VFOTpEOa71h956J5iuXWhAGCGZy3dVgS1cq4TljxsyMkrWRbqAzlLRmMBiLZNCVwlIKc+SMzEgwMgNUUoQhm6dAXaIuI1vAe2uQFUrr7tzBzDktAzOEnBkxhFQKUjqJqJTIREXWJazKDFtvGdIkDCDcQPMWEmkewXXSALDqEPsknTJDkNGm0kBXxowIlaiHBGhNQCbp+1ZEKKIwGzMpkVB4rScyBSqUMmqV7M2LjFGKMBrgHX7rDZgmiaS1JrM55rSMHDETiIgpICUKgiVEb93dIzITLQXIYEbr25yMXEmOkIMheiaSdhxRwcvMty3QXBGctRhVIdDMwOZmFjPOyExFZMLWZRuVSG3NNPOMlaJbMcOGTAL0Rc/WolxADdla5hXfYYYM6+r7vkHDcibo7Ju7jeN0ywiOBC1iTtFUtJ/JIWtta63NmEFuISLN3GjbbossrUslTglmgOjbY6TohDdvt/tAbxmTp8AphDRrmydac7c55ghJmJFBqqC/SrrN95YjMBATdfIqklS5bRJFyhgQGsybAWTr8SPumButJ/r9foMOG+ckG7Zb63aaRcuYh2NYV2TIbDE6pCy87/fW25xjmt0mgaR1M9vuzAXUXekVHMoptE0hePNsvfe3lxN7jzn4TPFIcVKSDJgADR4RMwpllAhzDm9MmRG+v25xTD9yRCW8V20tENY+NR1E6dw2b71b45JtsFLJTBi873cIzkzStFJr2sX4WYuhJW4pUZMZWuu33tvZjKKXPEFJ4eIfgap2FMYGN4n7rSfcumvr2/72dvDe4zxhIWQI6RKUTqVlVfGRC30Qimx0l4xU2/Y9ZDOytEw0L6FP0b6eJrnJPDPp1lorxCRTixcoJCNUQpuiqxMWkYxm4xyhzBmZQhsrMVwENGkwc/fmvg5f5hRQj5CJSr4hIGVJgTD51vusImDb+rbfnC/bdNOcKZPMPgmmyqEyfypIAJWYwPNTvlXX+EpefqpDCdBy1SyrUFIigi2iniFFZTJTJOjdprnmkFm43DnOkFIxI+V7DK5fWKVVOlvb9n2ny4l0Yo4Ee6P315mKKbCqPCKYCg3luR0HNwJmfnv5+nXg631+fKCfMSN0woEUVqYvjjFHEPTMTNA2nTg5YU5064gx58RMOml+nw8CSHpl1RkiOWdOCtHSnIE2Vh4WACYp0Q2+v9r52J45wzDtNOMcgSMVMyd4j6dByEUU0Oi+9W273+2k5YyM+Xyk6NsubPYjFQ4c9FHZKmzbHIJ72+73ty9/+XXyt9fx7Xdsz3HMKVNTKUxmIs52jGPOJEwZCIHQmWTAjOrKLWd8pM2ounRbSKOcipGZSmNBsyFksBQwmbzgHYZnkEZr3dOcUEqDQUNEaEgZmW5bd+LSVwsgDW7ubTPibK5PeixSsIIPC6UrZb1VQHZ3CqT1fb+/vH0N/vZ2MjTo6sxs7iFbNRwj5ojQxSBJKcwAE3QpTUPSCc8E4EWGXH9iIFUqpsxEYGbAzNkWJ7CkoARo5m27ubZtay6kY7FMubJFtq35BTDJzG3RybDNTfuxN7L1Lc3Mdr9tLJC3+LSEBJMVxWgUzXzbb/fXL1/FX97O8cxbYnSGhk+XZ0H3yKzcn5BgLNxm0VCAcpo1PmVc+rRK8eBmUOlsP0s7KItCZ7NL934x0/X8d8d+626EJZvV7ckszNL6hbCVussanM23/XZrjtkdoGIkzVrztu+bDuSSSZoM0JLB7c1grbW+bbfby5fg1y/HeWjA8+mB7lU2VxgzKy0HzArqpFfGr1oJdxIoVad5axusShcj6J/QdyiZkFXN065K6LMerHL45tl7c1sCImNSVfdlir1/7gCS5g6nt7btt+Y49ydEZAbTKbb7vuNghgGW9Q4oymh9aw4zb3273V7evgR//XqMp055PObEaJFApJbsSSu79vWlDUowxYAYk2wIL5Gde9tklX/QCtY00sEJgimITLJdGMw6A6K1bX/95be2fb8/bs/KotyNHIrqSpHf9u6WBIGk4lAz72zebtsR3aQcUQE0TB/vf//H+R0zzRjBJS0EaNvbL/dttG3bXt6+fP31T/+S/LdfHuMjPiYOT79IOCWgTHDx0BEJo9FX4wnIVMyYtnEI8wTQNzsj8xJpGACF5JgyABaVFrFdIB+AqoJZL6SNbevNPWWl2mmzWDGoZHRauZ2UkTTSW2+tjVy8DtL2GBERc4ywbZy1YQCRZr3766//9i//mc/+tu9ffnt7vb+8wn55s9s+mlchhmv3EwvhxKKca5dv2N0tAQZsV/due/c9p8IicjGUCCOrEocQTFHISsysZWDlp1WJBuc4n4+P9nigePiJYWZuYxTBDuUsBO7CyVJKJlNx6sgx5syIyNYWvRuytjOuS4Mwt9Z927ft5RXe3LxZzuNh7Xw+ns9xPI/jHDGm5oXnLSSvIvlqsVBBqRQRYFczt9atD0TBgRdEDLoppWoXWpwEKNDa1AqBF6os4/Pj+zd//54fz+epcyZEuh/n4lDrcrsQ/8LwA4Fx7M/xxHFGRGQoZyRjjnNMDZtRKkKtJGzqfP7h74/Dm/T8APaP7+5/zI/3j/k8ns9z5Jxa6McPIUIhILBMxDgsZoQBSBgFo03a+hlc0icAC0j63MKLi5HUduPKtApCCCeP9z/u7f17fDyOU+eMSMBbxLry3ejmW0exxlRGTI08n63x5OOMVO/thv5UQuOYoYxcauNcZAoV53d7DBG2mbLY5wfeP57jOI/jHDFHXoxeZAax2BgU3AgcNifSIQaMgtMnLNAS7u5wB5T4LFuWpLy5IzMyEmz3bpjnkYqVbkgxx/PDP56sWjQIADlW1DAv9douhGScKWWYLJ7NGgePkcmt33IKcxjyjMyRipLMUSAdChzvfz/++S7O5DzsNscZ+D4/Pp7jHGNERHUd0IFiLKuzY+UtkHJiztLvT1kiLP2YPqKbuZnLmyRPSJNuBrPm3XJrm8U5xjFSjaz2wp9xy4wYOWPGwhmX+J6foH1cophVqEBJZUZMTkQUBFHX9g9Q9LMWBWjiEk/VKSq0+DQ+9TzOMcacEVEIHC72schH6GoFqGBoRqjKKy22oWqdT+4SqxYHYTQ3mrvBgyTQ2uZADtmCW1HkzcMfZ5ExF119IYcklYViQIUvKIMyns0bJ44R4d6JEaMFESOVyqtA49UopJxPG0GkkHOM83gY/Pz4/jGex3GOETGXEGaJ9HEJWVQ7QJOpn9JbKRDQRbUJtIKcoRUASWumbdt9UopItNd7w9OmRR0UQcHx/G52fMxn5PopfS47zY0B2G4YmY2RIjKSPAgxeJyRvr9u2/PkqZSmdYFpoKeMaW5bkkA8NeRG68yY50c3TX/889tZKpDIqVAS5uSP/VNtQRKVg1o8ZqaCSldChpsmrTe0VAYW5EW69ba/WbzsL+386A8lor3cOxjPCiwFTMc83mnnY45IwBb5roJ1aG4IyVoTFK2dU63adIYRTJ4hcHu5vzyf830Oud2bhmaIFpXIeRdsCtPkW/fWjYrx7JbDHt8/zudxjohILemXk9V6BRhEeoZQlx/NuXhlQ6RJbP7CAe07uzSXXI3mxra1+1fM1/sXP5wYI9G2e0eenpj8PM/zPIzzyIi85EL8PMM0QwrWG5TszQkpQdggxLQ5KLXb65fePrZnZE5YFaGgGZN070HLRExYa+YdKN5cA4/3j/M8znPMmRNRAlNeAYgoXGPFIoJmpc39pO7k3omUkebKz46wKhD6DeP++tY2xextqt32jtE9ZBd7nsh5gPMo+YdH5VAJMQGaGRP01hFZheFNYx3EAIXm6vu+vwB779J+24AxjxGyKZLw1g2ewQx4c9IE5TjMk3o+x5iZSzlnSMKbGSrzhpH0reIsFjCIJEbSIiXAen+xGXG/Yyuu3alpvbFtt/b2NZ/3l9fe5hj7mdFWt8OKkoseygymklXoE7YWwJJehMf1Emjm7RYhM9GsNN6N28vtdku8fcWR9zdB5ylYUrG6gz6FdkU3igiLQAJRjIeZC3Ci4DSHVfZqNFiHmakaJ70RambTunFrJ3tr3XwUkA7B6YbJ5ub73rZ9eB0JczNHe6Th4zEjBCuA6/PZqJDSDCYT00uB3EjMIZ3BkQFH2788J7qFt20zN/Xd+2tjsH857+e8fQ3ExyMwJ2iCmHEICqF0eeZ/sHlskgM8Z2QmaSbBlHUrRwxNE0gG3OMHL6802bYfB3bFW0tsrZk3wJQCrXNDsyCE3qn5eDzO59nOj/fHhLE9HsJxHLMKh+U5sK7ZmCkztg5H6gwmCSLn8xkxyJHKxvb25+8DN87b632zzfO2Nfn7t98DZ24dv/0FPP/4p32MMZWZRmKArjQhg6dFePdtO55G30akT/aU+xEOMANxchYTa6LoLyIoGSDEILe9N+YLxm4bb2zbvh3Htj8NBjr9tqWdz9g2I84/Ptj/Sc0xp5u1GBNjzFAChaRcBwHKmdlA39ERGaFgvZYIsymLRJr7l7/0d73weXt92fzueOvtI//4cAHZ+/aX/7P5+de7+vEcygmZ8mQrBFc50zL75mMojLslraeaWW8I58xQarY4czZl9X+8XphsRuY07/2u51SczaJ19tuX18ezb+d7dllr+5fXtO//HPsG4xbH9LPAIaO3HCfnLGCswiXN3BsZHibS0hoaGHYpcECwFxMKwe3+5ej9zri9vG7+6vild36c30R66769/ebt+fy+9QxdKtuiW0FDcJokNHFGGgweu9Adm+VsYMwArMUALc0EWtu7p8oqgCR9f/3Cj/BS7DjM+k3qvTfvaNv28qdfZP/Qc9+SunWbSZnTWvNqiouISyCxEtOYnMFMwZx9w4YZTyvxmHKep82ZiiKl2stLZ7WFu7em3swsZ5oZ2/by67/etqfNP9TI84wr7bYqMghlwAyJRrjtMhmtce54ooeaW8U+sTgOs/724XPtgSr2cibUCtHf2F++/Nq8eber0TfDBPYdhrspgmFulhAblVyI7UIHEwCTMXNmgk7fsEnmVuyOYtiBOSrJlyJaRz5NcwzGgXganzBzenNv28vXX+7P+fG3adLj2kYg3aiktTJsSI0TcNvFYgGKXKdf6clFrpFo9626tWfVyPP5x/k8gg6A1vz29uUrsrkzY845Uo/Dj2+x3ZrbLgmaMDCdrdnCza4ku6DrMChtXUje2ZXy8uJA4swzM6FMhCHSO+LhHEcPc47OfO7eHM2M1m+v//J2jD++HozsRqs6yhyGDHqfhdYrMeBhwOkjcxmFXPKUH0UJQL93ZMbiNJF5/PGII8lMA9p2e/v6S45GN+XUsDm+vXc98cLu/QYRTISUgLVYumMtrWYpNebanavF92qEspKWj3nGQhYRkeeYMYc3PKwReYI5na2jG5ubZlb+Alz1FlXCrEASJUlmMow+CExFIqafBzAUGYlg6rMz5fPPpeHNU46JlaWVBYoyNObAkbTxwB9bSz/OLhvnTMVQpkJCO45DP0EnXNzrZ+orScFZWZEXCJYaUbJC5DEVz6NAk6OFNTvdpJkEvNvWcH7/PY5/fnsUzPXZkHIuzwUbGZAzOZ0+nT41gQg+D+LUmDOYsZCh2qBHdRhUy54VRETC+sZkxnx879/fLT+eI0e6wuJjbOjn4RbjeRwZj0LyoLZynlVrVaChQMEIOLcNtxffceRR1KQBKooWKLA2x8iKnIOMMSfBiKuAzuP9WxzfP0oin7JL2APIvLoeFGAgk+EHe1jAFD4CFhmRFx6+YgBVPRJ0iuxMoaQp67TEPB7b48k4ZiCTXN3dOedAzlDm1esgtCUsWuw43VBiI6H6S+4vvH/tdzznEaFQkpehDVgdpzHmhbmJiAzBxoiQoQ8fx8d7Hu/PY8wZCTaaKCkJth7l8pNkohSBHDmD1zMbvXUjWmuyJvWEWWP1ibdMcOMEzKzU/AwLG+dzex6MkWmfikxRGVNYy5nVOqKGlf6tJXYnikwqaZPtm+377WY+9o5W9FhemDCImTi/vY9UJuYwHyOYND2m5JqK/K/9cTv+8fdv35+Px4hsBOACYLjdBLfleFWmB4NHIkgmnoPVrlH2M0oXWoKm54AJtmXK7lbGP1zkW07qW473b8iPcyqEANOMQJxUOt1grSyqhNZ6Odxk0dfm7mjdkCyPkv2V96+vr/b8+HY+U2VQc92/peWa7x9TUmgOV0x5sHEgciCZ+r09+/Htv37/dj6fZyQ003YpTLC2+D6lSUJIA5YKM888T2TkOQZt5pL2AJTOjzMzaS04fXOBSEgzc3LiTHIcz3fE4wwFLWXFqMawVG/bqZ1GIZFoS2NDJAha32ho3Rh0FSvqfbvdPA/3Sh4I0Bc5IZM0nufMSE/SQwc4uTFb5iAm+NGjPb7//fePOMdMODI5EjLh6U+2CCrCAJoSwYEhTYmRCAnmKZqIZqKljBxTK5nMeep90mSRD53giObGyOcTOTMhDRPyMKcjm5x/nwfsfJrRgWjPc6gE6uvaywQDVhYMMD0a/nm++/P9+/MYpQEzm8UVSznF+Tw+eypS0pw2OTWnGZDhPPh8//37M+c5o7T3SsmBmFcWRhr7BtoGT88Sa6yC2z81TiAtSZ0T5FLc/BBJB0FKEcYZ50HNeREBqaRpnpmOkYExs6zg2M6Zkq4FQOYUM7tr2Z+1tDP7Zufxz/eifERzy/yUdStqDUESQSkSYalUhtLM28Dx8XGOnJlSwNfqgTlWo4Cbm29bp23isi0CTSZC5kCpZ1crHlIwCQFS1Z5cWXqJ4KEAZ3yq9H9A3jnX/ZOwJeRtR+SVZpUodwSjmllMKdhhH9/RGPE8UqlMWbuNuVgyKhHHGfWLyGSB5jIz602pacwcHx+PMzMiNa3slBK0DJAG4+be+u0mess4babF4pDWFW2SrFx6KvkAoDBA8wLLCHijKdNsRgy/pIFLzkvFoLyyHnoJC9iiSuuVCWZohnG6IwMRWZpnGYQZJfICfVPm8vqTEMf43IfF/UpoRjWLyACOOZ/P51BmJKZ5VRHppcanm2/N+3a/k+Z5AIjqAlCBcROMIrZWrNcRmeJsSk2qWE+UR0VkaNV3FxVWGlmCoryErL7sPtRorK7igs8jI5GiUaAikiWeqke1Oipt12JHjYDinAJW4xuINIGtWTZE5hl6H3GcY0rL2kkrx19qbPNt677fXl4cbtMpK45ZiZSYgSXwXAQB55hIQYaQwASYKlUpkCHmzJQDEC9lSZQGKiC4O3L1RzZzIuqtcTmq0dw7OT1nESyRiz0qsMi8T4MtSAGVmF3PslwC+n1r0WScU/M44iiiSwI0/VLbWGUdfd82v9/eXh1mZy5lsao1S6ywpM8FIDjLmwfFD1xHnd7NE1BOSLb4VCIzJVOKkEn01pBlgYFm7iU8gIFilmy3d+PsSbJE6SWvyGZERNtuYwn4llFKRXEz6y3AaNvr/ctLj6739+PbQGncPxuUM6tNi96aCd76ftvay8uXL43UmZqstg6WCVbOZGSW9htaTjUXT8RFecm93179YHlYlXsZVS1emWWqhFSauTebiICk1rdWtpu5rKEqNfYqrD6J6arJBcBk3ruV1EdmP5F3tGJR3Nt2f91nm6dXtC3pPPCj0nLAzN3SWt/v+97uL6+vHYA/p0lyQ3WMVG9ITF0LsHq/EkwhkWVqpesUEoYWCVkPw6rvlwKIAsy875uNMagAWusNijLCqUBSmJjJfQk1CZaSPGtNvG3NDCZPmYfKTog099YMZO/7y9vX2+gjgwfRXFWy/ai7aIC5N6e11vfb3l5eXr90QO0IB3DEEl2oZGCrFlyFGn7UcGTVDDDztrmX8pCSOxxCebNciasIs9Z3o5S0VGu9IWc1WCz+2qz1zXn2UZr6sg6q5g8y4dvt0WY1Zbh7mhfG5q3vPeCx769vv/x6H30g/XTsA6s6hKx8eGmsDsv0vt3ut3v78vbrbxuQj4nT3QZKlEaSQaUl83radTuSBqvOFDNTKXu2oNgjpNbL+rU2IRbebzDrfTNIGWlo296Becjy0uCS1va72bmdVmdWCsgSuZwH7XbfZpnXuQ8Fqk+9b9vWDMqcY8ac5/z4xz8e37KPMadUQpTaqDKnzPrWom377fV23758/e1PHYb3icObjXK+SIBwZvXvXK/y2gJeTnhRHoQye7ZjZizGZJ8uSnGx/Kr+lVIBGqTI1GWhUXusPpw0bx4rBizX03r0SaNl4nNX1fpgBYAC8EL57nvcDn3/6+/Hu93PM0YJVj5/y8oZ7FP5RqMZ0dh7i2b2w2/yh9/llXyiUiQIUKZVGUMk9L09pya9mm6q8+4yR6g84pLMXw+wnC8ujKmaKq1tu6v1ZsDVb25W6RTdU2bGC5yq/jczt7717uJEhPs+t0N//PWPeex9zE9TMS1og2bp/Xb/oJdv1ta3fW+4GV4+MMZoLoPRkuWNvL76D80DQLZP1QUEZcwjhuqGI1j+nYrq4FpJXIF+uVRDYDN3LLhTeTl/uXef7uWdl1kaBAFBGCh4s2qFKjxzHVVzdxqomfRHjmP+/e/fYuZtDE1Twn5INWifqk7z8jnb9t1x87ztOs/WipXgcm+rVH/dJFUVlxNGrqoMRma2doAVbowuA6EYq7m8xNIk3ZuHl9SnLenJ2pJgRYc5YkyLpQXESpRR5JEyRIPLqg8mTZlIRMyTk2POQD+I43x8PEL9jJ93Ps27rXbN0ROmzJxznMfz4YJ/XPKQTKm8QZf0tyTm9c+l7FlcTkkpU8oWgxY/HL95Ib0/ds11L5PmnmixPGAXUesWypjn047BKRAw6bLaWutfue91HiuzkeU8vSFwnBEcw3COElCdM8qmaAWL1rmkSOMIIMd4JsK50fPpH7//cTwez+quFQ0EZe7rTSshRZISre640k0QSgaz3EeEjLnMKWwJc647GBmhSNHM0X6EAwCieybn8XA/nzFFg3HZIpJcSGieCaeV1S4BIoPkSYDBc1Rvx1WFZhTLTy4Kfd+XA+d85miuGEMKU5Pp3R7/+OM8ns8zUqLBZBaKnBcal6mMWfYW1FLm17+CAinKDA6yGrWS5uuUqtparP64JKD1rWs2M1x8PxJxPmDjMceyT7GSklfRSTPNpLsrA60cXAUSJyQm5mDK2nYDe/NEDhhaQdiEufdNUT1vA/IuADlxsMnkePz+7TzPx/Ms1oA0Q9mSAmKW30YFFKbMlpV+FZZBycybIBhozkyHy1hh1Lx1a9u2e6nXwbbfNmg0lR13CRpjHGCcOUcIWcaon7vEzEygt65JNrolhPRUTIpCytz67fXL9nxubSLOEM0yKstkqQwcA0623pVtg5tiHJ6Mx/vHMc/nc2QsJ28TIkIJoToPsrxcYEtIaCS19jsB956Z1fIIpstopeeFkd7a/vLamvlJie3lbQPmd4UHWW2VGYOJPGfOUPUIkKRi3RBuIH3riDk3a57lnx2xrDjo7LfXr789juf9MVNBN/MYQS6zIHN3As3Nth1zu6WbaZ5NMT4+HkeM5zkia5ebCyPn8mAvxd2s0mheTk5uiVkiJLBvuzjTXb36m1trxBiZYda21l/efukf3p4UWru93JDPHljWY6UrjZNZCr6qMz77RUopCprtG6bZzm4kgq6JUpO0bub7y9fftu+3fTuZE6undcFmC3uIGGE7m89kBOTIFuf58f48MI5nZFCgpQuYMVYk/pQBF7UzE6C3jXPMKTWdstZcLrrLjYbI1julkCXJtm33169bKwlKtP1+w7H5QojKPiyjUguri4Q/Qn7d4JoW5g1NakYkI0DNmARMfW/e/Pb2q9vr5sRUM9KKClFlVqTLUhEd5ul9JhRnejweH4/zyXg8M8IEeroTR1ygU6UvUbM9KuaRMREZyuVv7U0zxYI9L3BgREgSzXy/v+w5xkkoW2sdzc2SBJCRC1/66d7TxVBX8VUyqoswvdxpKqPEgmmtbbeXiNvWq+KtzLFSthxDMlbsXF/JLhudjMgMy8yMSIiZ0YhznrqYYomWgSspqkQ5M8Fy5aSZy0N1+0lXD7ZAc2/b1rfttp29mSKiaTmQFva3mjnW47uVN3WuixYGtmYkMhQBLRuRiKqYVPxMyvr28uUr/bffPmaOwTC3jIRRiYlT25XUKmbHKrnNvEJEWQBmGGRKpls5+VeUC6Qu0xcYu1dF6IRw286AIWPMGGckMpK2RsAY2G17ubV932/z0SzniJYZlQjhUkN+rkCpMqDSo10McnGAycyiHAuXArD0miqe9DyP4zhnREasVqEsdLv+emJxpBkREalJA2POiAy7MrPP/I1XNWjlr3FtSFQrqF05ckFBMVejBX76GF7rzMvEApBaRqzCYJXaV763qgdc9RNBGJY4u+D1Woul4K0+PS65YFbXx1xq189aC+tmXyAH6mXPkSIcijEjogQLV0ROq3qOVwG2CsH6aiU1ciITglt1Gy8gSKu5uzXHDCWSc06N87BSHu3RSgN88eM01sV3ER1c2TihZaxhdjUx/azhZvkKr9wvczzev33//u39eYxIEoHrDJustVa2aeLa7jNlSEWMstZa/7kegwKdtKW8X21elViRoDVTyiSnZ3560a3rJs28+6GQYDGn5pwjQO83U3u+Bz6OMubAMhWrDV3Vc+nhAYbDQRCJ8WToFM+RYM0ngSnLHxgEML//F87H+19/f3+esVStkmAqWMelVETAjq5sf3xPNJhbPJ/HyIGc+Wn4DnhrEJweQ2XcUaEQJK03VseqvFQczHnknJqnJpSie993J+eEWetd5+N7zJmgb2iPNvk4yppkscyr4oJZC3OolJuzbLdAxTwReSTPmcIsGNWS5gtcBvL5u+bx8ftzxtVFi8pbK5RscSpzTtCfCu7fpRr3cp5naBZqX0ikWdv3nAanx5nCiMjif0Ca7zfz1gigZSRaUnFqBuaJCSS8+7bvnTYn3favtyPH4QBrBM8c5Ixqn7+mjWhVPeZqvtRjBK0RlAE5ETbBiEAZ99SWNFzgjebTfXw8R/x0fV/4vRm3MUpknjE9xnFIE2bMcU4t46YKWCb3vp/W0NinhcDJrJRGdPPb3b25ZnLLOdSCUCilCNSsCzMzbz2N7nZ7uSUy0s3dm1qbp2zE0klakig5KqxMBUUU9qjWOsF0pSakgGU1UlbCzvSWCcLdm8UTnI/HXGBMVsvwUn2YL4xKzDktx/MplD3lHAFmKrnGNQhizJlZl7yiDHsqFhCkksZmI7lhIttEKlY6V3/Jve8vu2YoRH7kw5LZx0zrtrWctIgSDBXrcN1qyEBIjIzMNYXhE14wfjITJlDwrB1gsNY6FeOIc36aja2c+sqx4lMFlxEZcwoGujQjwCx6GWJQAIcNySDOsgeImquVIJNzJJoVfHdtttqyAmBwV9vvr9t4EhnUQ4ehecYUvPU2Jzjqyqyn/kGD1Htj2bIQilH0LyA6ryhLY1iyxwnQ1LJv+y3mEPMYdZR1pf9JIpFTzxzVfZk5mXaclVUiIwJEsYLXZcxTJwPNx3xGYCoWLIG6/Jo6u+ecijPHrPE3lTeZmTdur7986edj+kzoicPgNgsVZ8upao4qtJA/Ia5YtqcLyMl5sIYnkbYx0NLS4Gx5wrZZQavH9vJ6f8QUdc4iTJJLbKAls8MR1RMJQFNnG5CBBlWTSt19hkqvFEjLDPOoaLWyagEBZrhuvnk+IzI0Zop5zQXy5r3b7bc/f7XzY2YOxGGD8BaLomrV8LZoNtDtYuAWeFq6tBLRBOiZpFt74aEWYgu3LZu4W9npbHN/fX3VOWIwyuNdgi0fGZrD9h0l+ysaNTMj61m42vohgG5gEpQ7vOesyVshyrLAQqMykW3j/vb0PMbCgBcaYsbet6311z/9+y94/nHGGYoP1AK427b3vfE6oADLZh0/mkjWWSBonswpKrvTrd2Y2QeisfEe78m7W+sib+f96y9f4kMhi4R5tgQzLaO2eUmdBNLgaM2yTAyX01Im5RJNZXeS5Y5u9TJ0wbQ0E8wyada2l1//fP4V8xRQYi8zmJnZtt1u+/71f/s//pTnd3VMjW1HEuatee7bvSmSscSbxpzI5QWJwtFZF5c3KZVl3kTJeRkCe3vJ78kX837TsFd/++3XX4/f80SfaU4TpkVyzhBJZJ6CCUYajZozgtM0pUrTjZbphWJKE9NCE+fziqbCGtwhVolt7f7rv3zsXvxr4e09HEb3vt1f7r/92//xl/z+t9PjEPZtzJjhNGffX1skGVnb07jGCRYCVxnwGqDimSzjTJonWqnKgYTvJ2hbsPi5sd3ffvl975Hd4T6e5xzIbBlTZoZUAF1JVbtPhHIGFQnCqlEwoyRRCA0OpqKN46p/RNW8hio8Wtv2l1//9MfL5u5eoxwnlYnZjNb2l7fXX//l3+dvb9+iUzmBoEWChtZvzUhLI0Wtw3fZgeNHyb0OCJftxMLI1j/UP7tVLz5J82bIcjFmZM3FLDUzVsrkkDe0zRBU0rFUyPj0Oamxf6Fg0BQRS1a9ziaX92lNI7ndX+/7vgdQcp8iVIByl7a23V/zvjWvfguuBroe/XZv17PUlU67LtAVZlfNKUj0Jm/RjFIGq2Krnqa8uAooMuc4I2LmVLpiOZ6u0E0a2sbOcLuiPVjCd1z97VX5rmykkGrzXoMRl0i1EkVaK6CbYL+9uiIzorAdqVZyzjGO48SMpdKoSolmxm3b20lajRIFFCwd2ucX47rGDZLD4Y3MnDM+8Jw4pnImj5mh92ecDw07xuOP5g906SY2nuTZMnLW52aIGYSSY8QkpEixyGOrAVkQykwOAI1uhMHcjXG5aBkrT1Ei53j8/lf7r48hg+kMCAoGlOIhEBFv+x/4n//5+/fHOcezPc/MHnNvyHO2J8mIsnf+LEIr1rAcAKlcY19kJDPhU+94Rp6pDHFEZr6f83DIxzze9z7s5Y7Nmuv4zpofiYLSIoRJV/DMJIhMiUrVJMY1cOozFQFAZdnHxs/4xDoqQOZ8fvtr/O3b4whvmHVjZyILNQT17Pov/c+//v485sxxnCPzYx7d9b7/o50gy0EfV5q7NGeFBZCWotVxd3eTYsxJPvOMlAs8MlLvI0/SkvPxh2lwc/a++WwxI7CsY6BEagSbAnVhU4Ki1tud8ck+URILqgoqKhJVvSZSWZeECdT5/W/HH49wb7syZlpmuQ6mxhw54vjjlf/xt+c454zxPMcMjsMt3/utDRbbgCv9uXbZJWQzW/6oTnkzhpAxDGd5q6Nm1eUxc9IaZ4zjOOD37r7fbfQ5RpQAt+C+AvYViLq06yqRaDSnJWt4MMBcKFuhbqiydGGx9ZJiNXE9v+XHGTTfcJjZxdsnmEC3Zxw7/vE+IjJyckwmphuztY+Wa4+VxuCzc6LCPijAJGvW1KDeLTjKIDRzucTBZFCsHhwaaa1vfPH28sbnOzJgJCOw9D5JTAkyIkvzQzPRrXeWhWaR4lqjYDNkUo2x9AsLBD5RUmTEFN3a7Y1jGpNhV1TNFOaBEx9HKGLOiBk0hBkRM9osoShKA0gT4wq+JEzwBpnT2ahbtzhOQXFiKpEIX9tmBLJ+UpHq+/bW25df8PFtHEeiqrNPjrJCjLHakZk0T2u2dZtSGkwWtFhCygJBV9O6SkK8Xhi8tY7UHLKt7y+/4ZzGxCClhEUCIz4Od34EAYVmRtbwVsB9tlgq40vkIMbn8xOWKL9o0JrjttlMS2jOKkYBlT2OzgTSoMQ8x/nWb69b++VXNPx+20ZECy3ugSzjK8AXZAmr1NW9mZusBCFLtVasLEVrUqQpSzVS54TevGFonmx8ub/+io8DiiiFHQKQzuNdop9stJg5KJHhZmRmNq1UZ4lXfybLVzTUz9utqI3MeoVJWdbIzVzTHZMY5zlsTmoMnPOHEU594uWQ9CPM/xR+r3xgEV+4lFUrO/gZKtcVpwTFNBd/2Mfp+qAUMcaIZBsGemTBJMs3y5TN66P56TOBdnmTGeRCc/PWaTAoBuaIiXFh00JmPLkU5zWRwPgN2LaPZv984+Pjr//4/jyOOWuuzpqpoyJhYHkl1BJkYWcoUSqfyLJMKmpy5SSfyIoImTEjmNMe09Odkr4/nkeMmsLDhKaeODNM00SPT0MXafkILU/fulRqe6paML36s93B3okkkFNjRpSLDOrtZIzlv1/FnBIfYGsP8uXO4/jj9/dxnLG0snWEy99EokWF3CySDJwTa4y6ImvBlvH0dSjqnQtZOYoyItJkyGE58/15njEuYW4KOFF2NFkEGmSqSQbldQAu0XFt80/nVV2ok4K+7momNc+In4duQDF4aQyVoSSegtsHse2c8+PjWHSHtHQyV42RxjVa4tLsc1R2x6zKHEvfKkm5yMRrjGfRxMGMKGMOy/OR7885Ii5KG1BOrBa5BPKHU/r6064Kc20t1EYQSjNPglAGWaIaZNR8nB8x4kfixmUNzpiHMYhxMucxYoWL2uyBFHteT1DyvSq84+oFrRupbgxRVrEYMK9fZWtcM1GUHzQB46TpcebqcqhrdCHcyjX+jKaYcJJEKthwJZ1aBe4FOGFNQBfpqsnBJMrTGQYtOonI9EW8Le9Q5TDDJJpDOSJVvMG6XmFkbSEzc9TrX7wcvQqBQqGuSJNr11gsOKwcmJLJEFgPBzsd1JgFU9gnaBsQyCreUGoyCDADjWjSJ8wAQGssDS9ABBDq3tVnOVMDcS4uFcuXfB2qusJqvFxUUFioYu16RGH+IMhmK/DW4Hm/MGm7Nuq6EyCiGhRWoMqsTxRSlEoVHgarKdzr85c6W1Wzp/iDVqwLohzZaxd+3kkSUKtQl3DUBgLKDFE/Qnm9lbx8/knGkmaZG82W4khYpiufWH5hTmUrWM7oIGJZJq5CDJ+NECsTIMEye/r5FNMugyFIixBYD/gZoy4LslLCFt+0nIHIZgDyxwyMVQVocYQqHrrcB3UxurVJP1PSWHuNxRWoToWzhgixpH4rnABYUwMsi9UFWf2HK6/+bOT+wWwbVnFW+coSP4qfp7B2rXGZrla9hM87kzQtVfL6q9dgovKEqTd+3TC1GYifd8vnl1/v42rT+tzZ1Xm7eOxrCjENJdYCaKb4tGQrUCZgbc3rMRXEVeTp+oz6v5UGrvd1JVSVm9VT/5gM3xhrbkC1gVbg/YQ2llSd/DTcFd3aIgPrI/+bIHm9giX9gqrtGZfSAJd0Rp+1w/VRFRBqgAmUNW0CV9LtRoMB3qzYEpPXBrDrPlqfuj55tTEYf9Y7cN3kbqUXYWdEDXn/GdSur0hT8iI/zcpbA3SvOUMVpAsdLLye1w8WPk3SprUscYjww1ztQihE1oTbnw7DBSnRaB5WWnQjrEAeeG8hTVWHZD0FrzT1mgJZyB7Mza0oPNZKmZW3+o8FsBiZ1dLJz9dX38dc10vjdWAF89ZoPwnBrov954/Iz0/6we+C4uUH82O1r3QfLLNta/P6t/W7r30LyHCpL2Si1bzisn7Qj5Fznx+MYvxW5rBOt1aGtOLBj6BxxVjwJ4rjyp7qrfKCP5qiAJGrI0nVoXflxljDOmuuNrhsH5byJalG+paRoHkTk5Y0tibQrIdE781Y0hNdNlkrwRoBIcIkXLB4rSrE8OI4tZoYzdxn5QfWag7XAivXJrGbz5FRhHSfAZuz7nBaYflwgnYoV85C89YmAF2SocqA1x1wbaLKkrGQ2xKg4OJmdQmsPsNGBao507yNQbTuEvBjts56G1SxgIhIZMsRFchlNQB4JQDr169y4ApNP2oCpa3h51TGLGWAWF9VnyqpurRLxZVIodFBAS0/My6uSGtrXo2uAFrH2CNHFmNsptVuTwrGUKVwEl1w0pCg4EoozwDN+zhnHSnLaSQU9K3VgEyY0wCa8yqefxStqxbUGpICQKN4rKVZNTM3zfnBCKUSM6sslerKtbZt7eCU4rMKSUsiMxuuqP/JdlTABZKXBIwgfblHUIABpiXi0Jq43SRvispLTYOQufzaQ14hnOt3GGHyfmsxpyB50yTMnZbx0/VaNYYtw3DWTEYAskqkXe7drTXPYy4HGIpXn89V8m23m1Ms3xheiZzRvTVdaUWtbXU1KA34kY5CJNv1P5RLo1QgAlRO5VPMyKnVZZoJsGWGBMo6O06uEjwNzdDSby8t50lLtT2eq8c/Iqvy/BHDYeVxz5V5X7GuOvz2Xo7gZoiZUlAKhVR2uEZyRvQzMitrLM8RIpG0dh0Mrde7OsSSEFdRXK3urBY15MUgf0b+lfuQlpmBa8MSfcQUZKDvb8cYWlcmfXNs2V+/dJ0PP2du93hEiI6hUrbactLnlQrbKpcYK1ElzVrbtpcbMZNnGAYlThd4zQkV0yqQuicNyXIiMK+3zVYJbj1OBYoVhwGQaVdzujmlTPspQ71KUkKkieZp1+0vQWy+KDp6v8lt6XAFNFfP/f626YkhRL8NZ6kHrr91HT6Uh4QTwJKuJinK3FvrfX+5EyOACZkJRm+zpviIqJ721vcOUIZkkwCa1U2KZj9tNV4Z8dpsXqxAkmK/TUKJn5Oxpdg1g8FlrVdnk8gkEtwOAebdty+//sv3c56luaHZ7nrJ+y//suujp5/j9cv45wS2nWk1GtpSLGwOaJ3sWFWAQW5KyJv3rd9evrwxjwmeTAnouYlhnNVRzFqAvi9qw/pMidWDlGJb6Ds+74oVBqGKSa5JQey3J/mZSqztT4CieSVn3lfXe0U6tJfTE9Y2v71+/ZP98ZGpyqf95nrN11//5a7vflo7X3859hPabxacmSl6CmIDBWybc1MWa2RMOKaydd9v2/3rn37B/HgSzpkEN+xTkSGWCwqNbtYaaLaZ/HamRGvlqKSWeaFHRRILKLGXZN5kHkSmaJsrY5qXnGppsBIFSLTVFpkKlZQ9xfbyYCJTzmkvx1LlShI21w1f/vTvr/kHH+7+5bfH/ZD2ux1F4BozC5gDYS64lnGWByQzwb33fX/58qffdBptAmggb7o/niWGvZAm2YzQujU29pZwy4x5cmuWqgwMZo1DpDmcXZJ5dYc0gvztL+ODSbN5FYxYaS/MaCS89ehAfPZ5vvw67gKs++3165/zZZsARIY3NH/hL3/+H1/Gi97N2i+/3V4ewP3VnlKbpnXlZeWyKRIRIowRNXYQtOq2vN1kp7oMmwV5y7dj8HlY4pJkIeFt5PSZ4fN8f4pkzIiEtb18GGFpRjOJ7nTrlc+lUvRG95fXm5ceol76YqhpmaU5gNHd6AkDrVnj29f37qg2+f229+YhA03extY695e3r+d8ew20t6/t9eF4fcND2coeptJGCRhP2MGFAjFhrmRpDSPHY1dMmLESuBZ927K5OZOiGBUJ8nzaUHAep+iFv3hrzbphxmo/lSIYDlohvXUfU2nOXx6Hz2xVzeWEG1IyG4DSQcGMRY816/f7vv3v/9/+Vx8zkPDt7X1zkqJofWvb/ZVffv31K/r43bbxl3///tt88i+/5KAGqgHjushQY6dqthKYzIScUiRbs3ZDZL+nlM0s9vP1MfjuXja+tenY+kEgFRwjemuMGTnhvVl1cK8U7UfmC1tjKNa/8q2bmcyRtDVeDFL10FVq561aTOjWt/2+f/ntn/d3Aua+vXz9vjc3JmXmve+3F7z9+udf4O9fJ8fXX/31u+zlNe/ns8Xw/NG7wsWgFXd5GU3TzFvv2+3++gWT82WGku7j5q/vz9mcZgtAAul9627umWZlmQos5f6RRCZCl+wENDbfmbOaUyCUQiGC1WdLuKTBuvMjC3WEt943RUZEIs93v//n3/75Laba8JoXPoNpCUVERDDlHjFHzHNEZkWp/fbsOURZ2oVJlXtLWdQQBNZER7h/Yuup1fKXOc7H43mMcLEI9MWYlYL6nCPNmWUkmW1WG64SJpjXCO3Wd6ZxlO0VEtJ4z+3u6ZozCTBjpcIL5DK2flNGaArm8S69/F//z7dDos/58Y//+K/vx6wpvO22NYsjf//r//39+Nv//V9/PI6/3R/fj9mOh4u+cTI/J/4uDKU3OGNoIrnIU5JUjucHkSa/me1nMuP9+/vHMSUws0xtWt/uT2Mwpuack2bNN7D99i+tJ8tlpWAM86ymGyKXfYxMAOZH9tcGi3kOkVsOuQ1LwQwSu2h9WjWTOj8eQ7//v3/7GKKl5uOPv/3j/UyBbL2/vdx31/H7f769nf/469+/HwN+/OP3cB7tHx/PM2ak67JtSu8evm1tb8fHrDx97QhJOY9H226dA5v334fFGB/PKZholrJG7l//9X/80mKeSsqhMO+vfXd/+cu/tg56ZGSpTWBlTCeQkzM/wV/mM72JfhqQaV3MZjClvOUEWparpGB92zKeIT1OawkKOj/+8cdzhgia996cOR65ba/z93/+/j7maMcf38Jx+h/PcWhMMdOXVgvuaeZt6+kX6F0JxRwcfLzvdrtNkmRGjCOeY4ImMwq+md/+9Jd/+/X57UBMy9Zk1ve3/cXbl3/919ZgZiErLO6CfzNhF35UPEYcYgM9LTMnuzKbJ0W1lgE46jp0+Xa7zYdb6pjmywPz8e39mOWTTm9O5fmcrX+L79++P2ae2/kYmU/acUaBep9IJeg+zdjaNj0uKBaAlNMGnh/Zb61aa5VxnucxQ7Sywe2bt/vr119+ed23IRJmDd622/21ta9ff2kV5Kv6WYxEJpg0IeLSZAGaVVvTyJpN9MkLoNy6Yo7zPAPyxWRl2QxkiHM8jrk4ovoVMcb0vufHx+MRyjY+PsJi8H0ocaTKLCqr/Ky6azVp1osRlDGnTZ4Hj9s4RwQzZozzrAaQ6gZbT7ZaqRb0tXACd7cWq3gvLMvc8hLqr7uxHAQ0x9ZvcmIO5JQwM/uwat8IxkMtImJMixGnTwnzmOsW1TzeH2cASqNZa0TOM6Utn8fzKZ02RyRjMKJuO6BygaoyjL7dX+96yrUoG6QyQjnHM5nnHHa7+btIjDlnZPH5mMPtKeH7f/zj23ueEYYRARtj0qVo08RctyVg7jFVI6ZXje/0lEzR9jdraM/5zDEJafL0QdQE8He8jnPMcfRQjC/91vly9y1nTHBiPo4QKaa5NzfkGHMeTWPGwXwgjikO6Aj6GmidWcP+zNxg+/3tNd+zCcVCQ9AMEjnFcbJtv7wdc39/uoBIKeSaSXPTx/fjj//3vz4+mFMqzdXZBixzNOBKgQiatRbnRZGCMFpLMwMVfnvrm8yPbksPsgDJAngXsJRQgjeX+LpvrzHOM4A53sfI0l143zaZ5nmkTEE7He8zRhA5c6azvDGW6YXJWh9o+8vbl3GLlp9APFFs4pjMZv329bfzaPzd42q5kyKZwJl4ub0/x+maUibkQba27be9VSdkKaEM5r6GYIMwmdHdbAqm9P2+3TRza80/q2eQdoFlWrp6u718mQ12u7vn8fE4lRGPmMW4uLlbIOd4nielts3G5zXGNwCYOcO9BCFucHeX19dtbrTqZFmVpQL0Bli/vWxv8XSmkIsCIWneBvSzt2IRJa337Xa7XUZK1c9a9XMpI2EGNXoH1Y1i36w3Nae5XdEPoHmvdv6c56Q3l91ev+at27bft/n444+PGSMrqQKhnGcGH+PxfDyR2G7Z7ZyA0fJqXmGxy4LMwGvMREW3TzZGiDEGTyrZrT2fh6xhaVEuStmsbQfifJ4hfiqziMywOY6PNnP9WgmqCVPlQRpWUzrDcoqgaXzPieM4g2vMbQ0fs44hATGfmebWfLvdeLu17e3Vj3dG2LlHzFr/HIJ78jGHrKksENVcsNZppZLmmhJd0HMeOXW893z8/v0ckb5MFEIxTndjsjWX/y3tOY6RdAOpC0Do+zvyeD8S3qIAMIU9Ye2p+Xu7bAcAUBFj9SWRVe4hZosJY2t5fo/B5/NM83ICEavUxalw5XgCLvPt9eub2Wu//faGj29xnNgycvBMQBWDwTMn+7pphN4z3K37CGSwjG2DS5p1Rorf+djev8WYUKzuZcQYDWmZUj7517HhPCK9jHWZaW7u95cPegebzMc1y1onzY8c9xZlWVcof0pVFWG1N1rBnXS25pyZhBLeq1rP0vh2evFLw7qZc7vd37btl23/l1/17Y9xTkbOk2Zrl02YODS8vLhVfdne+n1zeQ4HwGQ/C7+3ktiPI87HWX0UvITXc06bdmYzhz667k1LL7iYIIHWMSf1kV6ukIKScUrWYuwVVGWr7lwV8Cf/bblqT5qz2uh0yZ4/I4sVDKwMsDp1Wt9fvuzbL7/J9Hrbemvya7RECqeJU2nr9UMwT7bWN++RaRehB5SWImXKOcLOuZRsvFyVag7BHGeXH2d/KTtefhIrRfpngMeyXFp31RBsKs+Wl/ZhJXQVzOn19ChXEQPIOCeHjcc5m3vlaLiEJoSlEEYn6aRgzb3X9AiWgZHZFKSZMUkm2K1nIghx25O9325tWmAxxG5AXbKBlkpAc1oWHiIgCeVwd45onHFyPKn3stz9fPi60jSP2coIYkHZM4N8PrzlCpf1cpNiUhOTaKtNTVrrONFhc8zgmLHWcmkZMpGhDJPgPufo1YNS7gihMl6AoBL0kyqlFZmJgM9UDER7/8gHFfLpNpZbZoQoyEIhly7aCzUFt2zjB0Y08gVHuddKqfjE8KWcCZTvYmXjqSTm9LaYnfpuWYeymHGtDt1qq1dOZEub50ysnuD60QxkSgotH28/Pr6F2rb1OX//44/3x/Mcc47ITEsxo5gNn8kEIxEYSLkx28czTyqlKS89ulAeF7CaQaUaKAoQiBzu5EHGGKaIxm8fj2OuGQJKSjlHKjkzvMjT2h1BApbWLtiFWvw3uTREVjvGaL1tbKbMMxnnzEuBVRlZxifiYhKUeR7vKW9Nz/j+/v05JWnNTy/gsU7ooGltaJcgG5xjrq7x69NLNJ0ilsOBLumGgOQgEwejtckY0/jH+3nmrChebzKGVnMXWH0rACrUK9mWGG5hTViV0rUAJpnB20aHmJm4MpWLwV3snVaSRWiNTMicYyiWfiAu4FWfAjYZqahO0qn6J8WnCoU/fScBUkaCeZWn6xfGDORJUw5SfOFxjpmZF4xxsdFXJlj/YzmZFUlXvi7kj7+7KDK6AS6Zk9tmpowww+W5s4wTiusuprjUjDIrj8hmras3L+FCZI0Fqc++KHkm1rTAqySpJ/vUB13YxxWn166od7AG7ZF097l0cHU5MFYbEGlujkTW/HStpoVriRY3yDWQklaDJQjBq6O/9fTtZpaT4Vwk9U8SqU+1WN2bVxrO8ttYOi5bBD+oa6Ry6Vk/dxF/oNIrDVn/VM2aWvqupSwq1Y6ZyGJT+UMZ9okXElw2gj+W8/ObLlYXzaFSJxEEzcwTDiLZSHRo29hvL4b5xKxWxHKlXp8mZVYesPhrKcdxmD8N3fHxOJPWmuY0WYIws3WtAObTfkg6gTARdUXQ3ZOg0lRCiwbCHDJDn0pwGXlDqZFtImKcHGtOpbFMnhPznHNE1Rf1qkvvU8lL22YI8Evb6O5AMzLpFBt02/z19cXjoCYzIpS65PKsnv/Vfms0cxAYz48cjjwfPI73I2lFHJgJ8LXhRaD1J0qcWG2e4jXP1rDcgMEF2F87BT+skr36LGZwZk5R6vw4VGpxkxcVOcelrEmB8HTQE1ayzLbREjBLweCid0fvbkEv18J733795a2d32fMREQ5tq7zRqJs/mkgzH3TaRjHIw/P+Xy3Md6fY84ZMQt2WhPja/v02/e8gCdnawPuYm0/0CSi+tOAyhiKu60y2GGOSGhOG7QAM4yPs2woSlAoJeaRWp/Ems9bQ0yrhG87K0XIhEFofevcbs2CVtadL/3+5z996Y/+OM85M1Qd5kUnwwBNrGZvgi3SItCGt3F+3Dzi+XjE+ZHjTMsUy/qK1bvQbkX5r5NtVetWgNPVw/vDir+iDy9lhjUgUJ0MspCmgx+zBoxd/RbIURMfkCFpMsxkPQ8jLMV2pwdAiwkD0fb9httLt0mPECzfttf/7d9+3b7fH3Mec13Na/uzjmAuVQhpDSCnncn78/F89NQ8RsZQxHqOXvuTIrHdq9u/XoYwoDJnBD1Q2lFctb1lhU9aze2ibYbTWiotawy2JZ/pmjMI1ZwOIKdggqCk0sQG6+leN14zs5X94ArbWBO7clG+fb/d9rh3s6uxfcZKJgBh3d6CMsach/I5rWF/PvbTpTwPRJhbpXErqoNszW8vd0eksTY4nkDptLxmKSa4hu/WIb5uyQvWMXNvajKmWUAxUIiJEgjJJUIRdRlkhb1ChdeXR2u9ZEP5Y06BVgBaXZ0oE8lqPC+jbrpAuJGGXJMXWV+9SrRJSvE0FzCGxWQMrbR71WkZms/nY1r5AzYjWXdo3X3/7eq6svpPR+tCuqeNeA6zYKRBzkBjubOYrMq5yvMruEo0h++5OQFK7caozCmreHZv6Fsn3eeEPLe+v7593fXH1pwrVy4NRC3A/FxTkOXUqgw3IFMm2AxkXj02NDeTmYpRbUZjtsZsnq0bq7FDZq5ViVd29blJV46IlSsAS7dWzRmTabSsSGEl86225XK/A0hv3u75YRRCaFjqQ61dnBGaAxgZMaHUqePx3s7v788xl9lINbhcjPWVl4HEUs7Wtc7qfYzkp8F5HZyykwRQQ4dqVFrV1NdTYukjFnVfUrZKFJfqGcuKKRNYg4B59SXVh9g1H4E0rtqdpJFubFbFxP8fHKBL+VxfowkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "Image.fromarray(np.uint8(W.dot(H).T), 'L')" ] @@ -447,6 +486,18 @@ "display_name": "Python 3", "language": "python", "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" } }, "nbformat": 4, From fe0ab0aa11ee842e009167231a9cb948efb5e67b Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 13 Jun 2018 14:33:57 +0300 Subject: [PATCH 024/144] Fix eval_every --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 4fc7fc4ba3..9d56d7aa89 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -256,7 +256,7 @@ def update(self, corpus, chunks_as_numpy=False): r, h = self._r, self._h - chunk_idx = 0 + chunk_idx = 1 for _ in range(self.passes): for chunk in utils.grouper( From 8e647a1edf90df436531dbc317e79e77fc34d6b9 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sat, 16 Jun 2018 17:58:39 +0300 Subject: [PATCH 025/144] Return outliers --- gensim/models/nmf_pgd.pyx | 3 --- 1 file changed, 3 deletions(-) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 15e812db8d..fbaf73b6e2 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -37,9 +37,6 @@ def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_ with nogil: for sample_idx in range(n_samples): for feature_idx in range(n_features): - if r[feature_idx, sample_idx] == 0: - continue - r_new_element = fabs(r_actual[feature_idx, sample_idx]) - lambda_ r_new_element = fmax(r_new_element, 0) r_new_element = copysign(r_new_element, r_actual[feature_idx, sample_idx]) From 89cc8039fd285b82440d73f770f1d26eedd15fa9 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sat, 16 Jun 2018 19:44:11 +0300 Subject: [PATCH 026/144] Optimizations --- gensim/models/nmf.py | 66 ++++++++++++++++++++++++-------------------- 1 file changed, 36 insertions(+), 30 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 9d56d7aa89..601fd093c2 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -9,8 +9,6 @@ logger = logging.getLogger(__name__) -import time - class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """Online Non-Negative Matrix Factorization. @@ -25,6 +23,7 @@ def __init__( passes=1, lambda_=1., kappa=1., + use_r=False, store_r=False, w_max_iter=200, w_stop_condition=1e-4, @@ -56,6 +55,8 @@ def __init__( Whether to save residuals during training normalize """ + self._w_error = None + self._h_r_error = None self.n_features = None self.num_topics = num_topics self.id2word = id2word @@ -63,6 +64,7 @@ def __init__( self.passes = passes self._lambda_ = lambda_ self._kappa = kappa + self.use_r = use_r self._w_max_iter = w_max_iter self._w_stop_condition = w_stop_condition self._h_r_max_iter = h_r_max_iter @@ -96,13 +98,13 @@ def B(self, value): self._B = value def get_topics(self): - # if self.normalize: - # return self.__softmax(self._W.T, axis=1) + if self.normalize: + return self._W.T / self._W.T.sum(axis=1).reshape(-1, 1) return self._W.T def __getitem__(self, bow, eps=None): - return self.get_document_topics(bow, eps) + return self.get_document_topics(bow, eps)[0] def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): """ @@ -178,11 +180,6 @@ def get_topic_terms(self, topicid, topn=10): bestn = matutils.argsort(topic, topn, reverse=True) return [(idx, topic[idx]) for idx in bestn] - @staticmethod - def __softmax(matrix, axis): - exp_matrix = np.exp(matrix - matrix.max(axis=axis)) - return exp_matrix / exp_matrix.sum(axis=axis) - def get_term_topics(self, word_id, minimum_probability=None): """ Args: @@ -212,15 +209,15 @@ def get_term_topics(self, word_id, minimum_probability=None): def get_document_topics(self, bow, minimum_probability=None): v = matutils.corpus2dense([bow], len(self.id2word), 1) - h, _ = self._solveproj(v, self._W, v_max=np.inf) + h, r = self._solveproj(v, self._W, v_max=np.inf) if self.normalize: - h = self.__softmax(h, axis=0) + h /= h.sum(axis=0) if minimum_probability is not None: h[h < minimum_probability] = 0 - return h + return h, r def _setup(self, corpus): self._h, self._r = None, None @@ -282,28 +279,36 @@ def update(self, corpus, chunks_as_numpy=False): chunk_idx += 1 + logger.info( + "Loss (no outliers): {}\tLoss (with outliers): {}".format( + np.linalg.norm(v - self._W.dot(h)), + np.linalg.norm(v - self._W.dot(h) - r), + ) + ) + self._r = r self._h = h def _solve_w(self): eta = self._kappa / np.linalg.norm(self.A, "fro") - error = None + + if not self._w_error: + self._w_error = self.__w_error() for iter_number in range(self._w_max_iter): + # logger.info("w_error: %s" % self._w_error) + self._W -= eta * (np.dot(self._W, self.A) - self.B) self.__transform() - if iter_number == self._w_max_iter - 1: - break - error_ = self.__w_error() - if error and np.abs(error_ - error) < np.abs( - error * self._w_stop_condition + if np.abs(error_ - self._w_error) < np.abs( + self._w_error * self._w_stop_condition ): break - error = error_ + self._w_error = error_ def __w_error(self): return 0.5 * np.trace(self._W.T.dot(self._W.dot(self.A) - self.B)) @@ -348,27 +353,28 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): # eta = self._kappa / np.linalg.norm(W, 'fro') ** 2 - error = None + if not self._h_r_error: + self._h_r_error = self.__h_r_error(v, h, r) for iter_number in range(self._h_r_max_iter): + # logger.info("h_r_error: %s" % self._h_r_error) + Wt_v_minus_r = W.T.dot(v - r) solve_h(h, Wt_v_minus_r, WtW, self._kappa) - r_actual = v - W.dot(h) - - solve_r(r, r_actual, self._lambda_, self.v_max) - - if iter_number == self._h_r_max_iter - 1: - break + if self.use_r: + r_actual = v - W.dot(h) + solve_r(r, r_actual, self._lambda_, self.v_max) error_ = self.__h_r_error(v, h, r) - if error and np.abs(error - error_) < np.abs( - error * self._h_r_stop_condition + if np.abs(self._h_r_error - error_) < np.abs( + self._h_r_error * self._h_r_stop_condition ): break - error = error_ + self._h_r_error = error_ + return h, r From bbd3099836b6381241e4ba1479781ace784b70cc Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sat, 16 Jun 2018 20:07:17 +0300 Subject: [PATCH 027/144] Experimenting with loss --- gensim/models/nmf.py | 29 +++++++++++------------------ 1 file changed, 11 insertions(+), 18 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 601fd093c2..774ba4dfe4 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -251,8 +251,6 @@ def update(self, corpus, chunks_as_numpy=False): if self.n_features is None: corpus = self._setup(corpus) - r, h = self._r, self._h - chunk_idx = 1 for _ in range(self.passes): @@ -260,14 +258,15 @@ def update(self, corpus, chunks_as_numpy=False): corpus, self.chunksize, as_numpy=chunks_as_numpy ): v = matutils.corpus2dense(chunk, len(self.id2word), len(chunk)) - h, r = self._solveproj(v, self._W, r=r, h=h, v_max=self.v_max) + self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) + h, r = self._h, self._r self._H.append(h) if self._R is not None: self._R.append(r) self.A += np.dot(h, h.T) self.B += np.dot((v - r), h.T) - self._solve_w() + self._solve_w(v) if chunk_idx % self.eval_every == 0: logger.info( @@ -286,22 +285,19 @@ def update(self, corpus, chunks_as_numpy=False): ) ) - self._r = r - self._h = h - - def _solve_w(self): + def _solve_w(self, v): eta = self._kappa / np.linalg.norm(self.A, "fro") if not self._w_error: - self._w_error = self.__w_error() + self._w_error = self.__error(v, self._h, self._r) for iter_number in range(self._w_max_iter): - # logger.info("w_error: %s" % self._w_error) + logger.info("w_error: %s" % self._w_error) self._W -= eta * (np.dot(self._W, self.A) - self.B) self.__transform() - error_ = self.__w_error() + error_ = self.__error(v, self._h, self._r) if np.abs(error_ - self._w_error) < np.abs( self._w_error * self._w_stop_condition @@ -310,10 +306,7 @@ def _solve_w(self): self._w_error = error_ - def __w_error(self): - return 0.5 * np.trace(self._W.T.dot(self._W.dot(self.A) - self.B)) - - def __h_r_error(self, v, h, r): + def __error(self, v, h, r): return 0.5 * np.linalg.norm( v - self._W.dot(h) - r, "fro" ) ** 2 + self._lambda_ * np.linalg.norm(r, 1) @@ -354,10 +347,10 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): # eta = self._kappa / np.linalg.norm(W, 'fro') ** 2 if not self._h_r_error: - self._h_r_error = self.__h_r_error(v, h, r) + self._h_r_error = self.__error(v, h, r) for iter_number in range(self._h_r_max_iter): - # logger.info("h_r_error: %s" % self._h_r_error) + logger.info("h_r_error: %s" % self._h_r_error) Wt_v_minus_r = W.T.dot(v - r) @@ -367,7 +360,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): r_actual = v - W.dot(h) solve_r(r, r_actual, self._lambda_, self.v_max) - error_ = self.__h_r_error(v, h, r) + error_ = self.__error(v, h, r) if np.abs(self._h_r_error - error_) < np.abs( self._h_r_error * self._h_r_stop_condition From 936e6297606847333d1c87d9d7dd985fee0ad018 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 14 Aug 2018 14:13:11 +0300 Subject: [PATCH 028/144] Fix PEP8 --- gensim/models/__init__.py | 1 - gensim/models/nmf.py | 3 +-- 2 files changed, 1 insertion(+), 3 deletions(-) diff --git a/gensim/models/__init__.py b/gensim/models/__init__.py index 3dd3a8b362..4114724027 100644 --- a/gensim/models/__init__.py +++ b/gensim/models/__init__.py @@ -8,7 +8,6 @@ from .hdpmodel import HdpModel # noqa:F401 from .ldamodel import LdaModel # noqa:F401 from .lsimodel import LsiModel # noqa:F401 -from .nmf import Nmf #noqa:F401 from .tfidfmodel import TfidfModel # noqa:F401 from .rpmodel import RpModel # noqa:F401 from .logentropy_model import LogEntropyModel # noqa:F401 diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 774ba4dfe4..43f2b59e66 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -132,7 +132,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): sorted_topics = list(matutils.argsort(sparsity)) chosen_topics = ( - sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2 :] + sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2:] ) shown = [] @@ -369,5 +369,4 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): self._h_r_error = error_ - return h, r From 1c3a064e6a95d20a9df053a37ff7b4f556832f8a Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 14 Aug 2018 15:58:02 +0300 Subject: [PATCH 029/144] Return nmf import --- gensim/models/__init__.py | 1 + 1 file changed, 1 insertion(+) diff --git a/gensim/models/__init__.py b/gensim/models/__init__.py index 4114724027..84516653e5 100644 --- a/gensim/models/__init__.py +++ b/gensim/models/__init__.py @@ -8,6 +8,7 @@ from .hdpmodel import HdpModel # noqa:F401 from .ldamodel import LdaModel # noqa:F401 from .lsimodel import LsiModel # noqa:F401 +from .nmf import Nmf # noqa:F401 from .tfidfmodel import TfidfModel # noqa:F401 from .rpmodel import RpModel # noqa:F401 from .logentropy_model import LogEntropyModel # noqa:F401 From ce4b7eea25b20f415a28a9fef5561b64da67d643 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 20 Aug 2018 21:48:22 +0300 Subject: [PATCH 030/144] Revert "Return nmf import" This reverts commit 1c3a064 --- gensim/models/__init__.py | 1 - 1 file changed, 1 deletion(-) diff --git a/gensim/models/__init__.py b/gensim/models/__init__.py index 84516653e5..4114724027 100644 --- a/gensim/models/__init__.py +++ b/gensim/models/__init__.py @@ -8,7 +8,6 @@ from .hdpmodel import HdpModel # noqa:F401 from .ldamodel import LdaModel # noqa:F401 from .lsimodel import LsiModel # noqa:F401 -from .nmf import Nmf # noqa:F401 from .tfidfmodel import TfidfModel # noqa:F401 from .rpmodel import RpModel # noqa:F401 from .logentropy_model import LogEntropyModel # noqa:F401 From f8de1d9ffbd80b97f4ea09d62b331d0a378bbad0 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 27 Aug 2018 22:41:18 +0300 Subject: [PATCH 031/144] Fix --- gensim/models/nmf.py | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 43f2b59e66..2f9d5d3826 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -104,7 +104,7 @@ def get_topics(self): return self._W.T def __getitem__(self, bow, eps=None): - return self.get_document_topics(bow, eps)[0] + return self.get_document_topics(bow, eps) def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): """ @@ -209,15 +209,17 @@ def get_term_topics(self, word_id, minimum_probability=None): def get_document_topics(self, bow, minimum_probability=None): v = matutils.corpus2dense([bow], len(self.id2word), 1) - h, r = self._solveproj(v, self._W, v_max=np.inf) + h, _ = self._solveproj(v, self._W, v_max=np.inf) if self.normalize: h /= h.sum(axis=0) - if minimum_probability is not None: - h[h < minimum_probability] = 0 - - return h, r + return [ + (idx, proba) + for idx, proba + in enumerate(h[:, 0]) + if not minimum_probability or proba > minimum_probability + ] def _setup(self, corpus): self._h, self._r = None, None From d159779e3f506ab2b7bcd41cc4dd1677fed4fe6b Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 27 Aug 2018 23:52:20 +0300 Subject: [PATCH 032/144] Fix minimum_probability & info -> debug logs --- gensim/models/nmf.py | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 2f9d5d3826..95f9d7d682 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -23,6 +23,7 @@ def __init__( passes=1, lambda_=1., kappa=1., + minimum_probability=0.01, use_r=False, store_r=False, w_max_iter=200, @@ -64,6 +65,7 @@ def __init__( self.passes = passes self._lambda_ = lambda_ self._kappa = kappa + self.minimum_probability = minimum_probability self.use_r = use_r self._w_max_iter = w_max_iter self._w_stop_condition = w_stop_condition @@ -191,7 +193,8 @@ def get_term_topics(self, word_id, minimum_probability=None): as a tuple of `(topic_id, term_probability)`. """ if minimum_probability is None: - minimum_probability = 1e-8 + minimum_probability = self.minimum_probability + minimum_probability = max(minimum_probability, 1e-8) # if user enters word instead of id in vocab, change to get id if isinstance(word_id, str): @@ -214,6 +217,10 @@ def get_document_topics(self, bow, minimum_probability=None): if self.normalize: h /= h.sum(axis=0) + if minimum_probability is None: + minimum_probability = self.minimum_probability + minimum_probability = max(minimum_probability, 1e-8) + return [ (idx, proba) for idx, proba @@ -294,7 +301,7 @@ def _solve_w(self, v): self._w_error = self.__error(v, self._h, self._r) for iter_number in range(self._w_max_iter): - logger.info("w_error: %s" % self._w_error) + logger.debug("w_error: %s" % self._w_error) self._W -= eta * (np.dot(self._W, self.A) - self.B) self.__transform() @@ -352,7 +359,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): self._h_r_error = self.__error(v, h, r) for iter_number in range(self._h_r_max_iter): - logger.info("h_r_error: %s" % self._h_r_error) + logger.debug("h_r_error: %s" % self._h_r_error) Wt_v_minus_r = W.T.dot(v - r) From 3dcdedc5a997dcded4b44b2ea62ded5d22b31e66 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Mon, 27 Aug 2018 23:54:13 +0300 Subject: [PATCH 033/144] Compute metrics --- docs/notebooks/nmf_benchmark.ipynb | 4587 +++++++++++++++++++++++++++- 1 file changed, 4512 insertions(+), 75 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index c1092aa9b4..38634ffb1f 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -14,7 +14,12 @@ "outputs": [], "source": [ "%load_ext line_profiler\n", + "%load_ext autoreload\n", + "\n", + "%autoreload 2\n", + "\n", "from gensim.models.nmf import Nmf as GensimNmf\n", + "from gensim.models import CoherenceModel, LdaModel\n", "from gensim.parsing.preprocessing import preprocess_documents\n", "from gensim import matutils\n", "from sklearn.decomposition.nmf import NMF as SklearnNmf\n", @@ -55,11 +60,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-06-13 14:18:46,100 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-06-13 14:18:46,293 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n", - "2018-06-13 14:18:46,321 : INFO : discarding 14411 tokens: [('bricklin', 2), ('bumper', 4), ('edu', 661), ('funki', 4), ('lerxst', 2), ('line', 989), ('organ', 952), ('rac', 1), ('subject', 1000), ('tellm', 2)]...\n", - "2018-06-13 14:18:46,323 : INFO : keeping 3211 tokens which were in no less than 5 and no more than 500 (=50.0%) documents\n", - "2018-06-13 14:18:46,330 : INFO : resulting dictionary: Dictionary(3211 unique tokens: ['addit', 'bodi', 'brought', 'call', 'car']...)\n" + "2018-08-27 21:58:39,992 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-08-27 21:58:40,232 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n", + "2018-08-27 21:58:40,262 : INFO : discarding 14411 tokens: [('bricklin', 2), ('bumper', 4), ('edu', 661), ('funki', 4), ('lerxst', 2), ('line', 989), ('organ', 952), ('rac', 1), ('subject', 1000), ('tellm', 2)]...\n", + "2018-08-27 21:58:40,263 : INFO : keeping 3211 tokens which were in no less than 5 and no more than 500 (=50.0%) documents\n", + "2018-08-27 21:58:40,275 : INFO : resulting dictionary: Dictionary(3211 unique tokens: ['addit', 'bodi', 'brought', 'call', 'car']...)\n" ] } ], @@ -103,14 +108,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.7 s, sys: 890 ms, total: 2.59 s\n", - "Wall time: 1.45 s\n" + "CPU times: user 4.18 s, sys: 1.59 s, total: 5.77 s\n", + "Wall time: 1.68 s\n" ] } ], "source": [ "%%time\n", - "# %%prun\n", "\n", "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", "\n", @@ -122,23 +126,14 @@ "cell_type": "code", "execution_count": 6, "metadata": {}, - "outputs": [], - "source": [ - "# %lprun -f sklearn.decomposition.nmf._fit_coordinate_descent sklearn_nmf.fit_transform(bow_matrix)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5.419692286693165" + "5.4196922866931585" ] }, - "execution_count": 7, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -147,6 +142,22 @@ "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "training_params = dict(\n", + " corpus=corpus,\n", + " num_topics=5,\n", + " id2word=dictionary,\n", + " passes=5,\n", + " eval_every=10,\n", + " minimum_probability=0\n", + ")" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -156,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 62, "metadata": { "scrolled": true }, @@ -165,98 +176,3243 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-06-13 14:18:49,027 : INFO : Loss (no outliers): 593.2289895825425\tLoss (with outliers): 593.2289895825425\n" + "2018-08-27 23:26:31,349 : INFO : h_r_error: 225977.5\n", + "2018-08-27 23:26:31,452 : INFO : h_r_error: 221992.53713113835\n", + "2018-08-27 23:26:31,571 : INFO : h_r_error: 221285.49541543392\n", + "2018-08-27 23:26:31,759 : INFO : w_error: 221075.77007477023\n", + "2018-08-27 23:26:31,854 : INFO : w_error: 191005.38242945526\n", + "2018-08-27 23:26:31,949 : INFO : w_error: 183765.66879017078\n", + "2018-08-27 23:26:32,046 : INFO : w_error: 180425.77156255016\n", + "2018-08-27 23:26:32,151 : INFO : w_error: 178840.1919094708\n", + "2018-08-27 23:26:32,261 : INFO : w_error: 178033.61304943197\n", + "2018-08-27 23:26:32,372 : INFO : w_error: 177582.7125470111\n", + "2018-08-27 23:26:32,487 : INFO : w_error: 177299.19369733552\n", + "2018-08-27 23:26:32,591 : INFO : w_error: 177100.1820181257\n", + "2018-08-27 23:26:32,696 : INFO : w_error: 176950.44069854\n", + "2018-08-27 23:26:32,801 : INFO : w_error: 176829.47586924737\n", + "2018-08-27 23:26:32,907 : INFO : w_error: 176728.64394216385\n", + "2018-08-27 23:26:33,005 : INFO : w_error: 176643.19544533442\n", + "2018-08-27 23:26:33,108 : INFO : w_error: 176568.95563689206\n", + "2018-08-27 23:26:33,213 : INFO : w_error: 176503.51054727935\n", + "2018-08-27 23:26:33,308 : INFO : w_error: 176445.0858784338\n", + "2018-08-27 23:26:33,418 : INFO : w_error: 176392.86738604083\n", + "2018-08-27 23:26:33,507 : INFO : w_error: 176346.27678428206\n", + "2018-08-27 23:26:33,643 : INFO : w_error: 176304.93668558824\n", + "2018-08-27 23:26:33,827 : INFO : w_error: 176268.6551007885\n", + "2018-08-27 23:26:34,002 : INFO : w_error: 176236.68600996066\n", + "2018-08-27 23:26:34,126 : INFO : w_error: 176208.1876423015\n", + "2018-08-27 23:26:34,245 : INFO : w_error: 176182.77822834405\n", + "2018-08-27 23:26:34,351 : INFO : w_error: 176159.91631249918\n", + "2018-08-27 23:26:34,457 : INFO : w_error: 176139.28705783037\n", + "2018-08-27 23:26:34,566 : INFO : w_error: 176120.67241022378\n", + "2018-08-27 23:26:34,824 : INFO : Loss (no outliers): 593.4708935397649\tLoss (with outliers): 593.4708935397649\n", + "2018-08-27 23:26:35,092 : INFO : h_r_error: 221285.49541543392\n", + "2018-08-27 23:26:35,174 : INFO : h_r_error: 134668.44747636523\n", + "2018-08-27 23:26:35,290 : INFO : h_r_error: 134243.85481805645\n", + "2018-08-27 23:26:35,401 : INFO : w_error: 176120.67241022378\n", + "2018-08-27 23:26:35,450 : INFO : w_error: 130602.17690394624\n", + "2018-08-27 23:26:35,536 : INFO : w_error: 129122.34045036927\n", + "2018-08-27 23:26:35,604 : INFO : w_error: 128375.1922021372\n", + "2018-08-27 23:26:35,666 : INFO : w_error: 127935.50166093382\n", + "2018-08-27 23:26:35,738 : INFO : w_error: 127645.09005992772\n", + "2018-08-27 23:26:35,832 : INFO : w_error: 127437.82850883597\n", + "2018-08-27 23:26:35,916 : INFO : w_error: 127281.6622119358\n", + "2018-08-27 23:26:36,004 : INFO : w_error: 127159.12208793241\n", + "2018-08-27 23:26:36,103 : INFO : w_error: 127061.36042423805\n", + "2018-08-27 23:26:36,208 : INFO : w_error: 126983.91756641294\n", + "2018-08-27 23:26:36,310 : INFO : w_error: 126920.8061546888\n", + "2018-08-27 23:26:36,384 : INFO : w_error: 126867.58016174499\n", + "2018-08-27 23:26:36,466 : INFO : w_error: 126822.64904986117\n", + "2018-08-27 23:26:36,524 : INFO : w_error: 126784.07034069528\n", + "2018-08-27 23:26:36,618 : INFO : w_error: 126751.75825505899\n", + "2018-08-27 23:26:36,712 : INFO : w_error: 126725.44093657262\n", + "2018-08-27 23:26:36,781 : INFO : w_error: 126702.84269135389\n", + "2018-08-27 23:26:36,895 : INFO : w_error: 126683.47119200326\n", + "2018-08-27 23:26:36,959 : INFO : w_error: 126666.47322225885\n", + "2018-08-27 23:26:37,041 : INFO : w_error: 126651.68676004956\n", + "2018-08-27 23:26:37,127 : INFO : w_error: 126638.63822356597\n", + "2018-08-27 23:26:37,313 : INFO : Loss (no outliers): 503.24307027427653\tLoss (with outliers): 503.24307027427653\n", + "2018-08-27 23:26:37,682 : INFO : h_r_error: 134243.85481805645\n", + "2018-08-27 23:26:37,765 : INFO : h_r_error: 122748.03686550938\n", + "2018-08-27 23:26:37,883 : INFO : h_r_error: 122379.84801357766\n", + "2018-08-27 23:26:38,023 : INFO : w_error: 126638.63822356597\n", + "2018-08-27 23:26:38,120 : INFO : w_error: 121204.47741295848\n", + "2018-08-27 23:26:38,222 : INFO : w_error: 120506.309844032\n", + "2018-08-27 23:26:38,311 : INFO : w_error: 120029.03586490356\n", + "2018-08-27 23:26:38,419 : INFO : w_error: 119685.02469551303\n", + "2018-08-27 23:26:38,528 : INFO : w_error: 119430.32158499636\n", + "2018-08-27 23:26:38,638 : INFO : w_error: 119238.67619626863\n", + "2018-08-27 23:26:38,721 : INFO : w_error: 119092.77570635594\n", + "2018-08-27 23:26:38,816 : INFO : w_error: 118980.69490979031\n", + "2018-08-27 23:26:38,910 : INFO : w_error: 118893.92791613033\n", + "2018-08-27 23:26:39,004 : INFO : w_error: 118826.28762225393\n", + "2018-08-27 23:26:39,107 : INFO : w_error: 118773.27813003631\n", + "2018-08-27 23:26:39,220 : INFO : w_error: 118731.47583956436\n", + "2018-08-27 23:26:39,369 : INFO : w_error: 118698.32511829764\n", + "2018-08-27 23:26:39,458 : INFO : w_error: 118671.8977965439\n", + "2018-08-27 23:26:39,561 : INFO : w_error: 118650.72583258919\n", + "2018-08-27 23:26:39,777 : INFO : w_error: 118633.68111878053\n", + "2018-08-27 23:26:39,954 : INFO : w_error: 118619.89476763643\n", + "2018-08-27 23:26:40,298 : INFO : Loss (no outliers): 487.0496841836712\tLoss (with outliers): 487.0496841836712\n", + "2018-08-27 23:26:40,614 : INFO : h_r_error: 122379.84801357766\n", + "2018-08-27 23:26:40,699 : INFO : h_r_error: 117450.7232788214\n", + "2018-08-27 23:26:40,786 : INFO : w_error: 118619.89476763643\n", + "2018-08-27 23:26:40,868 : INFO : w_error: 117086.60535081809\n", + "2018-08-27 23:26:40,969 : INFO : w_error: 116929.40508211422\n", + "2018-08-27 23:26:41,024 : INFO : w_error: 116839.06343252347\n", + "2018-08-27 23:26:41,096 : INFO : w_error: 116782.97830325444\n", + "2018-08-27 23:26:41,184 : INFO : w_error: 116746.72593979233\n", + "2018-08-27 23:26:41,243 : INFO : w_error: 116722.66685579048\n", + "2018-08-27 23:26:41,295 : INFO : w_error: 116706.37894445767\n", + "2018-08-27 23:26:41,467 : INFO : Loss (no outliers): 483.1048946916104\tLoss (with outliers): 483.1048946916104\n", + "2018-08-27 23:26:41,755 : INFO : h_r_error: 117450.7232788214\n", + "2018-08-27 23:26:41,931 : INFO : h_r_error: 116583.51938511344\n", + "2018-08-27 23:26:42,159 : INFO : w_error: 116706.37894445767\n", + "2018-08-27 23:26:42,297 : INFO : w_error: 116481.10358618775\n", + "2018-08-27 23:26:42,427 : INFO : w_error: 116442.16037968562\n", + "2018-08-27 23:26:42,521 : INFO : w_error: 116423.6541318054\n", + "2018-08-27 23:26:42,766 : INFO : Loss (no outliers): 482.5212571595307\tLoss (with outliers): 482.5212571595307\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 2.24 s, sys: 2.21 s, total: 4.44 s\n", - "Wall time: 1.6 s\n" + "CPU times: user 13.4 s, sys: 18.1 s, total: 31.5 s\n", + "Wall time: 11.7 s\n" ] } ], "source": [ "%%time\n", - "# %%prun\n", "\n", - "PASSES = 2\n", + "np.random.seed(42)\n", + "\n", + "gensim_nmf = GensimNmf(**training_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:29:25,583 : INFO : using symmetric alpha at 0.2\n", + "2018-08-27 23:29:25,584 : INFO : using symmetric eta at 0.2\n", + "2018-08-27 23:29:25,588 : INFO : using serial LDA version on this node\n", + "2018-08-27 23:29:25,591 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 1000 documents, updating model once every 1000 documents, evaluating perplexity every 1000 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-08-27 23:29:25,592 : WARNING : too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy\n", + "2018-08-27 23:29:26,702 : INFO : -8.721 per-word bound, 422.1 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", + "2018-08-27 23:29:26,702 : INFO : PROGRESS: pass 0, at document #1000/1000\n", + "2018-08-27 23:29:27,508 : INFO : topic #0 (0.200): 0.009*\"articl\" + 0.007*\"com\" + 0.006*\"window\" + 0.006*\"univers\" + 0.006*\"post\" + 0.005*\"time\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"know\" + 0.005*\"new\"\n", + "2018-08-27 23:29:27,509 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"articl\" + 0.006*\"like\" + 0.006*\"post\" + 0.005*\"good\" + 0.005*\"peopl\" + 0.004*\"think\" + 0.004*\"us\" + 0.004*\"know\" + 0.004*\"univers\"\n", + "2018-08-27 23:29:27,510 : INFO : topic #2 (0.200): 0.010*\"com\" + 0.007*\"post\" + 0.007*\"peopl\" + 0.006*\"univers\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"articl\" + 0.005*\"host\" + 0.005*\"think\" + 0.004*\"time\"\n", + "2018-08-27 23:29:27,511 : INFO : topic #3 (0.200): 0.017*\"max\" + 0.008*\"articl\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"jesu\" + 0.005*\"like\" + 0.005*\"state\" + 0.005*\"know\" + 0.005*\"post\" + 0.004*\"think\"\n", + "2018-08-27 23:29:27,512 : INFO : topic #4 (0.200): 0.010*\"com\" + 0.008*\"post\" + 0.006*\"nntp\" + 0.006*\"articl\" + 0.005*\"host\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"year\" + 0.005*\"new\"\n", + "2018-08-27 23:29:27,513 : INFO : topic diff=0.936720, rho=1.000000\n", + "2018-08-27 23:29:28,564 : INFO : -7.710 per-word bound, 209.4 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", + "2018-08-27 23:29:28,565 : INFO : PROGRESS: pass 1, at document #1000/1000\n", + "2018-08-27 23:29:29,417 : INFO : topic #0 (0.200): 0.008*\"articl\" + 0.008*\"window\" + 0.007*\"com\" + 0.007*\"univers\" + 0.006*\"post\" + 0.006*\"like\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"new\"\n", + "2018-08-27 23:29:29,418 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.008*\"articl\" + 0.006*\"good\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"post\" + 0.005*\"us\" + 0.004*\"know\" + 0.004*\"univers\" + 0.004*\"believ\"\n", + "2018-08-27 23:29:29,419 : INFO : topic #2 (0.200): 0.010*\"com\" + 0.008*\"post\" + 0.008*\"peopl\" + 0.006*\"know\" + 0.006*\"univers\" + 0.006*\"articl\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\" + 0.005*\"nntp\"\n", + "2018-08-27 23:29:29,421 : INFO : topic #3 (0.200): 0.016*\"max\" + 0.007*\"jesu\" + 0.007*\"peopl\" + 0.007*\"articl\" + 0.005*\"state\" + 0.005*\"com\" + 0.005*\"know\" + 0.005*\"think\" + 0.004*\"like\" + 0.004*\"sai\"\n", + "2018-08-27 23:29:29,422 : INFO : topic #4 (0.200): 0.012*\"com\" + 0.008*\"post\" + 0.007*\"nntp\" + 0.006*\"articl\" + 0.006*\"host\" + 0.005*\"year\" + 0.005*\"new\" + 0.004*\"game\" + 0.004*\"time\" + 0.004*\"know\"\n", + "2018-08-27 23:29:29,424 : INFO : topic diff=0.335424, rho=0.577350\n", + "2018-08-27 23:29:30,496 : INFO : -7.622 per-word bound, 197.0 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", + "2018-08-27 23:29:30,497 : INFO : PROGRESS: pass 2, at document #1000/1000\n", + "2018-08-27 23:29:31,172 : INFO : topic #0 (0.200): 0.009*\"window\" + 0.008*\"articl\" + 0.008*\"com\" + 0.007*\"univers\" + 0.007*\"post\" + 0.006*\"like\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"file\" + 0.005*\"think\"\n", + "2018-08-27 23:29:31,173 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"articl\" + 0.007*\"good\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"us\" + 0.005*\"post\" + 0.004*\"believ\" + 0.004*\"nasa\" + 0.004*\"univers\"\n", + "2018-08-27 23:29:31,174 : INFO : topic #2 (0.200): 0.011*\"com\" + 0.008*\"post\" + 0.008*\"peopl\" + 0.006*\"know\" + 0.006*\"articl\" + 0.005*\"univers\" + 0.005*\"armenian\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\"\n", + "2018-08-27 23:29:31,177 : INFO : topic #3 (0.200): 0.015*\"max\" + 0.008*\"peopl\" + 0.008*\"jesu\" + 0.006*\"articl\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"know\" + 0.005*\"christian\" + 0.004*\"like\" + 0.004*\"com\"\n", + "2018-08-27 23:29:31,178 : INFO : topic #4 (0.200): 0.013*\"com\" + 0.009*\"post\" + 0.007*\"articl\" + 0.007*\"nntp\" + 0.006*\"host\" + 0.006*\"year\" + 0.006*\"new\" + 0.006*\"game\" + 0.004*\"like\" + 0.004*\"univers\"\n", + "2018-08-27 23:29:31,179 : INFO : topic diff=0.282598, rho=0.500000\n", + "2018-08-27 23:29:32,365 : INFO : -7.571 per-word bound, 190.2 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", + "2018-08-27 23:29:32,368 : INFO : PROGRESS: pass 3, at document #1000/1000\n", + "2018-08-27 23:29:33,348 : INFO : topic #0 (0.200): 0.010*\"window\" + 0.008*\"com\" + 0.007*\"articl\" + 0.007*\"univers\" + 0.007*\"post\" + 0.006*\"like\" + 0.006*\"file\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"us\"\n", + "2018-08-27 23:29:33,349 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"articl\" + 0.007*\"good\" + 0.006*\"like\" + 0.006*\"us\" + 0.005*\"peopl\" + 0.005*\"nasa\" + 0.005*\"post\" + 0.004*\"believ\" + 0.004*\"univers\"\n", + "2018-08-27 23:29:33,350 : INFO : topic #2 (0.200): 0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"post\" + 0.007*\"articl\" + 0.007*\"armenian\" + 0.006*\"know\" + 0.005*\"univers\" + 0.005*\"car\" + 0.005*\"like\" + 0.005*\"think\"\n", + "2018-08-27 23:29:33,351 : INFO : topic #3 (0.200): 0.015*\"max\" + 0.008*\"peopl\" + 0.008*\"jesu\" + 0.006*\"articl\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"christian\" + 0.005*\"know\" + 0.005*\"god\" + 0.004*\"like\"\n", + "2018-08-27 23:29:33,353 : INFO : topic #4 (0.200): 0.013*\"com\" + 0.009*\"post\" + 0.007*\"articl\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"year\" + 0.006*\"game\" + 0.006*\"new\" + 0.005*\"plai\" + 0.005*\"univers\"\n", + "2018-08-27 23:29:33,354 : INFO : topic diff=0.242909, rho=0.447214\n", + "2018-08-27 23:29:34,515 : INFO : -7.537 per-word bound, 185.7 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", + "2018-08-27 23:29:34,516 : INFO : PROGRESS: pass 4, at document #1000/1000\n", + "2018-08-27 23:29:35,163 : INFO : topic #0 (0.200): 0.010*\"window\" + 0.008*\"com\" + 0.008*\"univers\" + 0.007*\"articl\" + 0.007*\"post\" + 0.006*\"file\" + 0.006*\"like\" + 0.006*\"us\" + 0.006*\"know\" + 0.005*\"time\"\n", + "2018-08-27 23:29:35,164 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"articl\" + 0.007*\"good\" + 0.006*\"like\" + 0.006*\"us\" + 0.006*\"nasa\" + 0.005*\"peopl\" + 0.004*\"post\" + 0.004*\"univers\" + 0.004*\"believ\"\n", + "2018-08-27 23:29:35,166 : INFO : topic #2 (0.200): 0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"post\" + 0.008*\"armenian\" + 0.007*\"articl\" + 0.006*\"know\" + 0.005*\"car\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"time\"\n", + "2018-08-27 23:29:35,167 : INFO : topic #3 (0.200): 0.014*\"max\" + 0.009*\"peopl\" + 0.008*\"jesu\" + 0.006*\"christian\" + 0.006*\"state\" + 0.006*\"think\" + 0.006*\"articl\" + 0.005*\"god\" + 0.005*\"know\" + 0.004*\"like\"\n", + "2018-08-27 23:29:35,167 : INFO : topic #4 (0.200): 0.013*\"com\" + 0.009*\"post\" + 0.007*\"articl\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.007*\"game\" + 0.007*\"year\" + 0.006*\"new\" + 0.005*\"team\" + 0.005*\"plai\"\n", + "2018-08-27 23:29:35,168 : INFO : topic diff=0.211755, rho=0.408248\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 9.59 s, sys: 0 ns, total: 9.59 s\n", + "Wall time: 9.59 s\n" + ] + } + ], + "source": [ + "%%time\n", "\n", "np.random.seed(42)\n", "\n", - "gensim_nmf = GensimNmf(\n", - " corpus,\n", - " chunksize=len(corpus),\n", - " num_topics=5,\n", - " id2word=dictionary,\n", - " kappa=1.,\n", - " passes=PASSES,\n", - " eval_every=10,\n", - " normalize=True\n", - ")" + "lda = LdaModel(**training_params)" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 65, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:29:48,650 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + ] + }, + { + "data": { + "text/plain": [ + "-2.1572860157511426" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gensim_cm = CoherenceModel(\n", + " model=gensim_nmf,\n", + " corpus=corpus,\n", + " coherence='u_mass'\n", + ")\n", + "\n", + "gensim_cm.get_coherence()" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:29:49,502 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + ] + }, + { + "data": { + "text/plain": [ + "-1.6429322091255478" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# %lprun -f GensimNmf._solve_w GensimNmf(corpus, chunksize=len(corpus), num_topics=5, id2word=dictionary, lambda_=1., kappa=1.)" + "lda_cm = CoherenceModel(\n", + " model=lda,\n", + " corpus=corpus,\n", + " coherence='u_mass'\n", + ")\n", + "\n", + "lda_cm.get_coherence()" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ - "W = gensim_nmf.get_topics().T\n", - "H = np.hstack(gensim_nmf[bow] for bow in corpus)" + "def perplexity(model, corpus):\n", + " W = gensim_nmf.get_topics().T\n", + "\n", + " H = np.zeros((W.shape[1], len(corpus)))\n", + " for bow_id, bow in enumerate(corpus):\n", + " for topic_id, proba in model[bow]:\n", + " H[topic_id, bow_id] = proba\n", + " \n", + " dense_corpus = matutils.corpus2dense(corpus, W.shape[0])\n", + " \n", + " return np.exp(-(np.log(W.dot(H), where=W.dot(H)>0) * dense_corpus).sum() / dense_corpus.sum())" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:03,036 : INFO : h_r_error: 98.15428401565417\n", + "2018-08-27 23:45:03,042 : INFO : h_r_error: 34.204954619573016\n", + "2018-08-27 23:45:03,047 : INFO : h_r_error: 34.148179145306976\n", + "2018-08-27 23:45:03,052 : INFO : h_r_error: 34.148179145306976\n", + "2018-08-27 23:45:03,056 : INFO : h_r_error: 55.15774665060254\n", + "2018-08-27 23:45:03,060 : INFO : h_r_error: 55.09247751204706\n", + "2018-08-27 23:45:03,064 : INFO : h_r_error: 55.09247751204706\n", + "2018-08-27 23:45:03,089 : INFO : h_r_error: 98.50135185634834\n", + "2018-08-27 23:45:03,094 : INFO : h_r_error: 98.15428401565417\n", + "2018-08-27 23:45:03,102 : INFO : h_r_error: 98.15428401565417\n", + "2018-08-27 23:45:03,105 : INFO : h_r_error: 41.28375617822966\n", + "2018-08-27 23:45:03,109 : INFO : h_r_error: 41.18009326469662\n", + "2018-08-27 23:45:03,113 : INFO : h_r_error: 41.18009326469662\n", + "2018-08-27 23:45:03,119 : INFO : h_r_error: 55.258363251443434\n", + "2018-08-27 23:45:03,123 : INFO : h_r_error: 55.16669694155178\n", + "2018-08-27 23:45:03,129 : INFO : h_r_error: 55.16669694155178\n", + "2018-08-27 23:45:03,134 : INFO : h_r_error: 254.62330943806725\n", + "2018-08-27 23:45:03,135 : INFO : h_r_error: 253.59269137615445\n", + "2018-08-27 23:45:03,148 : INFO : h_r_error: 253.59269137615445\n", + "2018-08-27 23:45:03,162 : INFO : h_r_error: 28.114883571929564\n", + "2018-08-27 23:45:03,169 : INFO : h_r_error: 28.08641270690183\n", + "2018-08-27 23:45:03,173 : INFO : h_r_error: 28.08641270690183\n", + "2018-08-27 23:45:03,178 : INFO : h_r_error: 634.8155517837707\n", + "2018-08-27 23:45:03,186 : INFO : h_r_error: 633.9052984715589\n", + "2018-08-27 23:45:03,190 : INFO : h_r_error: 633.9052984715589\n", + "2018-08-27 23:45:03,218 : INFO : h_r_error: 13.92031878223961\n", + "2018-08-27 23:45:03,243 : INFO : h_r_error: 13.92031878223961\n", + "2018-08-27 23:45:03,254 : INFO : h_r_error: 107.4740163348578\n", + "2018-08-27 23:45:03,261 : INFO : h_r_error: 107.4740163348578\n", + "2018-08-27 23:45:03,269 : INFO : h_r_error: 25.336386566921398\n", + "2018-08-27 23:45:03,273 : INFO : h_r_error: 25.336386566921398\n", + "2018-08-27 23:45:03,278 : INFO : h_r_error: 369.08642183400974\n", + "2018-08-27 23:45:03,282 : INFO : h_r_error: 367.29338529600983\n", + "2018-08-27 23:45:03,303 : INFO : h_r_error: 367.29338529600983\n", + "2018-08-27 23:45:03,316 : INFO : h_r_error: 21.298101091474145\n", + "2018-08-27 23:45:03,323 : INFO : h_r_error: 21.298101091474145\n", + "2018-08-27 23:45:03,330 : INFO : h_r_error: 723.263233098592\n", + "2018-08-27 23:45:03,336 : INFO : h_r_error: 720.4732673539327\n", + "2018-08-27 23:45:03,353 : INFO : h_r_error: 720.4732673539327\n", + "2018-08-27 23:45:03,355 : INFO : h_r_error: 66.92476783559007\n", + "2018-08-27 23:45:03,364 : INFO : h_r_error: 66.77488642793911\n", + "2018-08-27 23:45:03,369 : INFO : h_r_error: 66.77488642793911\n", + "2018-08-27 23:45:03,373 : INFO : h_r_error: 35.81300437411144\n", + "2018-08-27 23:45:03,381 : INFO : h_r_error: 35.72239824682979\n", + "2018-08-27 23:45:03,393 : INFO : h_r_error: 35.72239824682979\n", + "2018-08-27 23:45:03,399 : INFO : h_r_error: 27.30382826997013\n", + "2018-08-27 23:45:03,404 : INFO : h_r_error: 27.245166159257213\n", + "2018-08-27 23:45:03,412 : INFO : h_r_error: 27.245166159257213\n", + "2018-08-27 23:45:03,417 : INFO : h_r_error: 1089.031819599677\n", + "2018-08-27 23:45:03,421 : INFO : h_r_error: 1080.1741795115413\n", + "2018-08-27 23:45:03,423 : INFO : h_r_error: 1080.1741795115413\n", + "2018-08-27 23:45:03,426 : INFO : h_r_error: 27.06848290715404\n", + "2018-08-27 23:45:03,435 : INFO : h_r_error: 27.03072827756033\n", + "2018-08-27 23:45:03,438 : INFO : h_r_error: 27.03072827756033\n", + "2018-08-27 23:45:03,440 : INFO : h_r_error: 75.62843727715398\n", + "2018-08-27 23:45:03,442 : INFO : h_r_error: 75.54489454907348\n", + "2018-08-27 23:45:03,444 : INFO : h_r_error: 75.54489454907348\n", + "2018-08-27 23:45:03,446 : INFO : h_r_error: 40.32300459493736\n", + "2018-08-27 23:45:03,447 : INFO : h_r_error: 40.25162844714504\n", + "2018-08-27 23:45:03,453 : INFO : h_r_error: 40.25162844714504\n", + "2018-08-27 23:45:03,455 : INFO : h_r_error: 84.32718757998609\n", + "2018-08-27 23:45:03,457 : INFO : h_r_error: 84.32718757998609\n", + "2018-08-27 23:45:03,463 : INFO : h_r_error: 85.71828068168608\n", + "2018-08-27 23:45:03,465 : INFO : h_r_error: 85.53890189503564\n", + "2018-08-27 23:45:03,467 : INFO : h_r_error: 85.53890189503564\n", + "2018-08-27 23:45:03,470 : INFO : h_r_error: 67.4142273360869\n", + "2018-08-27 23:45:03,475 : INFO : h_r_error: 67.32118213529535\n", + "2018-08-27 23:45:03,478 : INFO : h_r_error: 67.32118213529535\n", + "2018-08-27 23:45:03,480 : INFO : h_r_error: 31.25000233598416\n", + "2018-08-27 23:45:03,483 : INFO : h_r_error: 31.25000233598416\n", + "2018-08-27 23:45:03,492 : INFO : h_r_error: 56.8338077084426\n", + "2018-08-27 23:45:03,494 : INFO : h_r_error: 56.772246364015324\n", + "2018-08-27 23:45:03,497 : INFO : h_r_error: 56.772246364015324\n", + "2018-08-27 23:45:03,509 : INFO : h_r_error: 259.72432252768965\n", + "2018-08-27 23:45:03,519 : INFO : h_r_error: 259.38094647229104\n", + "2018-08-27 23:45:03,526 : INFO : h_r_error: 259.38094647229104\n", + "2018-08-27 23:45:03,532 : INFO : h_r_error: 14.422827887958059\n", + "2018-08-27 23:45:03,536 : INFO : h_r_error: 14.422827887958059\n", + "2018-08-27 23:45:03,569 : INFO : h_r_error: 105.47799808545689\n", + "2018-08-27 23:45:03,571 : INFO : h_r_error: 104.94913267589405\n", + "2018-08-27 23:45:03,574 : INFO : h_r_error: 104.94913267589405\n", + "2018-08-27 23:45:03,576 : INFO : h_r_error: 34.63479914288447\n", + "2018-08-27 23:45:03,586 : INFO : h_r_error: 34.55691560041526\n", + "2018-08-27 23:45:03,588 : INFO : h_r_error: 34.55691560041526\n", + "2018-08-27 23:45:03,592 : INFO : h_r_error: 119.99611693250311\n", + "2018-08-27 23:45:03,602 : INFO : h_r_error: 119.63467561020623\n", + "2018-08-27 23:45:03,605 : INFO : h_r_error: 119.63467561020623\n", + "2018-08-27 23:45:03,607 : INFO : h_r_error: 49.83126882991489\n", + "2018-08-27 23:45:03,610 : INFO : h_r_error: 49.83126882991489\n", + "2018-08-27 23:45:03,612 : INFO : h_r_error: 9.76226367692149\n", + "2018-08-27 23:45:03,620 : INFO : h_r_error: 9.738892924732756\n", + "2018-08-27 23:45:03,630 : INFO : h_r_error: 9.738892924732756\n", + "2018-08-27 23:45:03,632 : INFO : h_r_error: 224.4182414187348\n", + "2018-08-27 23:45:03,634 : INFO : h_r_error: 223.7474362335428\n", + "2018-08-27 23:45:03,643 : INFO : h_r_error: 223.7474362335428\n", + "2018-08-27 23:45:03,646 : INFO : h_r_error: 28.683419390418482\n", + "2018-08-27 23:45:03,650 : INFO : h_r_error: 28.65243124438808\n", + "2018-08-27 23:45:03,653 : INFO : h_r_error: 28.65243124438808\n", + "2018-08-27 23:45:03,655 : INFO : h_r_error: 48.41001934106339\n", + "2018-08-27 23:45:03,662 : INFO : h_r_error: 48.31202184301711\n", + "2018-08-27 23:45:03,665 : INFO : h_r_error: 48.31202184301711\n", + "2018-08-27 23:45:03,667 : INFO : h_r_error: 22.15681955446293\n", + "2018-08-27 23:45:03,670 : INFO : h_r_error: 22.15681955446293\n", + "2018-08-27 23:45:03,673 : INFO : h_r_error: 157.83546590958633\n", + "2018-08-27 23:45:03,674 : INFO : h_r_error: 156.87768648707092\n", + "2018-08-27 23:45:03,677 : INFO : h_r_error: 156.87768648707092\n", + "2018-08-27 23:45:03,679 : INFO : h_r_error: 116.9645678274264\n", + "2018-08-27 23:45:03,681 : INFO : h_r_error: 116.72161027612525\n", + "2018-08-27 23:45:03,683 : INFO : h_r_error: 116.72161027612525\n", + "2018-08-27 23:45:03,686 : INFO : h_r_error: 462.9884856492414\n", + "2018-08-27 23:45:03,687 : INFO : h_r_error: 460.62787520565314\n", + "2018-08-27 23:45:03,689 : INFO : h_r_error: 460.62787520565314\n", + "2018-08-27 23:45:03,693 : INFO : h_r_error: 67.19767456574434\n", + "2018-08-27 23:45:03,719 : INFO : h_r_error: 66.8517427988593\n", + "2018-08-27 23:45:03,723 : INFO : h_r_error: 66.8517427988593\n", + "2018-08-27 23:45:03,725 : INFO : h_r_error: 18.806977626732554\n", + "2018-08-27 23:45:03,727 : INFO : h_r_error: 18.746970667314233\n", + "2018-08-27 23:45:03,733 : INFO : h_r_error: 18.746970667314233\n", + "2018-08-27 23:45:03,735 : INFO : h_r_error: 24.160786949145805\n", + "2018-08-27 23:45:03,737 : INFO : h_r_error: 24.129561764862178\n", + "2018-08-27 23:45:03,739 : INFO : h_r_error: 24.129561764862178\n", + "2018-08-27 23:45:03,741 : INFO : h_r_error: 105.42426643899223\n", + "2018-08-27 23:45:03,743 : INFO : h_r_error: 105.22670278426455\n", + "2018-08-27 23:45:03,745 : INFO : h_r_error: 105.22670278426455\n", + "2018-08-27 23:45:03,747 : INFO : h_r_error: 41.68439640754756\n", + "2018-08-27 23:45:03,748 : INFO : h_r_error: 41.56737508087305\n", + "2018-08-27 23:45:03,750 : INFO : h_r_error: 41.56737508087305\n", + "2018-08-27 23:45:03,752 : INFO : h_r_error: 16.48326813042852\n", + "2018-08-27 23:45:03,754 : INFO : h_r_error: 16.45469683086559\n", + "2018-08-27 23:45:03,756 : INFO : h_r_error: 16.45469683086559\n", + "2018-08-27 23:45:03,759 : INFO : h_r_error: 10.451582580485452\n", + "2018-08-27 23:45:03,763 : INFO : h_r_error: 10.451582580485452\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:03,765 : INFO : h_r_error: 69.25859673718531\n", + "2018-08-27 23:45:03,769 : INFO : h_r_error: 69.07631486664287\n", + "2018-08-27 23:45:03,772 : INFO : h_r_error: 69.07631486664287\n", + "2018-08-27 23:45:03,782 : INFO : h_r_error: 22.063284645279\n", + "2018-08-27 23:45:03,785 : INFO : h_r_error: 22.02693299183024\n", + "2018-08-27 23:45:03,787 : INFO : h_r_error: 22.02693299183024\n", + "2018-08-27 23:45:03,789 : INFO : h_r_error: 41.53473479257632\n", + "2018-08-27 23:45:03,792 : INFO : h_r_error: 41.45689474805954\n", + "2018-08-27 23:45:03,794 : INFO : h_r_error: 41.45689474805954\n", + "2018-08-27 23:45:03,796 : INFO : h_r_error: 94.75813969743993\n", + "2018-08-27 23:45:03,799 : INFO : h_r_error: 94.63834747986454\n", + "2018-08-27 23:45:03,801 : INFO : h_r_error: 94.63834747986454\n", + "2018-08-27 23:45:03,803 : INFO : h_r_error: 53.54044869001222\n", + "2018-08-27 23:45:03,805 : INFO : h_r_error: 53.247721498899615\n", + "2018-08-27 23:45:03,808 : INFO : h_r_error: 53.247721498899615\n", + "2018-08-27 23:45:03,812 : INFO : h_r_error: 16.42071107666247\n", + "2018-08-27 23:45:03,814 : INFO : h_r_error: 16.42071107666247\n", + "2018-08-27 23:45:03,816 : INFO : h_r_error: 68.10823637946707\n", + "2018-08-27 23:45:03,818 : INFO : h_r_error: 67.63432001885045\n", + "2018-08-27 23:45:03,827 : INFO : h_r_error: 67.63432001885045\n", + "2018-08-27 23:45:03,830 : INFO : h_r_error: 138.72102103842104\n", + "2018-08-27 23:45:03,832 : INFO : h_r_error: 135.30020556228877\n", + "2018-08-27 23:45:03,836 : INFO : h_r_error: 135.30020556228877\n", + "2018-08-27 23:45:03,848 : INFO : h_r_error: 66.39064010841798\n", + "2018-08-27 23:45:03,850 : INFO : h_r_error: 66.19692116161163\n", + "2018-08-27 23:45:03,865 : INFO : h_r_error: 66.19692116161163\n", + "2018-08-27 23:45:03,869 : INFO : h_r_error: 146.23683009593697\n", + "2018-08-27 23:45:03,872 : INFO : h_r_error: 145.80455804151757\n", + "2018-08-27 23:45:03,876 : INFO : h_r_error: 145.80455804151757\n", + "2018-08-27 23:45:03,878 : INFO : h_r_error: 21.28853401916447\n", + "2018-08-27 23:45:03,886 : INFO : h_r_error: 21.28853401916447\n", + "2018-08-27 23:45:03,893 : INFO : h_r_error: 26.682483324832297\n", + "2018-08-27 23:45:03,896 : INFO : h_r_error: 26.655190998302693\n", + "2018-08-27 23:45:03,898 : INFO : h_r_error: 26.655190998302693\n", + "2018-08-27 23:45:03,906 : INFO : h_r_error: 1783.7396651979955\n", + "2018-08-27 23:45:03,908 : INFO : h_r_error: 1776.8024049463345\n", + "2018-08-27 23:45:03,910 : INFO : h_r_error: 1776.8024049463345\n", + "2018-08-27 23:45:03,911 : INFO : h_r_error: 15.389283026113409\n", + "2018-08-27 23:45:03,913 : INFO : h_r_error: 15.389283026113409\n", + "2018-08-27 23:45:03,915 : INFO : h_r_error: 63.89256807716552\n", + "2018-08-27 23:45:03,916 : INFO : h_r_error: 63.72484235121019\n", + "2018-08-27 23:45:03,918 : INFO : h_r_error: 63.72484235121019\n", + "2018-08-27 23:45:03,920 : INFO : h_r_error: 25.75798194581931\n", + "2018-08-27 23:45:03,922 : INFO : h_r_error: 25.75798194581931\n", + "2018-08-27 23:45:03,924 : INFO : h_r_error: 11.352782151357102\n", + "2018-08-27 23:45:03,926 : INFO : h_r_error: 11.337957828150717\n", + "2018-08-27 23:45:03,928 : INFO : h_r_error: 11.337957828150717\n", + "2018-08-27 23:45:03,930 : INFO : h_r_error: 27.31687104306191\n", + "2018-08-27 23:45:03,932 : INFO : h_r_error: 27.31687104306191\n", + "2018-08-27 23:45:03,934 : INFO : h_r_error: 116.94426949743652\n", + "2018-08-27 23:45:03,936 : INFO : h_r_error: 116.51604650248514\n", + "2018-08-27 23:45:03,937 : INFO : h_r_error: 116.51604650248514\n", + "2018-08-27 23:45:03,939 : INFO : h_r_error: 45.32052562385578\n", + "2018-08-27 23:45:03,941 : INFO : h_r_error: 45.21813921543335\n", + "2018-08-27 23:45:03,943 : INFO : h_r_error: 45.21813921543335\n", + "2018-08-27 23:45:03,944 : INFO : h_r_error: 56.95216330056915\n", + "2018-08-27 23:45:03,962 : INFO : h_r_error: 56.83345970317447\n", + "2018-08-27 23:45:03,965 : INFO : h_r_error: 56.83345970317447\n", + "2018-08-27 23:45:03,982 : INFO : h_r_error: 247.75609825170673\n", + "2018-08-27 23:45:03,987 : INFO : h_r_error: 245.83581092434727\n", + "2018-08-27 23:45:03,989 : INFO : h_r_error: 245.83581092434727\n", + "2018-08-27 23:45:03,990 : INFO : h_r_error: 37.475607734730076\n", + "2018-08-27 23:45:03,997 : INFO : h_r_error: 37.431228325794166\n", + "2018-08-27 23:45:04,001 : INFO : h_r_error: 37.431228325794166\n", + "2018-08-27 23:45:04,006 : INFO : h_r_error: 1646.3340782956302\n", + "2018-08-27 23:45:04,009 : INFO : h_r_error: 1445.8144300429672\n", + "2018-08-27 23:45:04,018 : INFO : h_r_error: 1445.8144300429672\n", + "2018-08-27 23:45:04,027 : INFO : h_r_error: 86.43122628293193\n", + "2018-08-27 23:45:04,030 : INFO : h_r_error: 86.12450662001353\n", + "2018-08-27 23:45:04,032 : INFO : h_r_error: 86.12450662001353\n", + "2018-08-27 23:45:04,036 : INFO : h_r_error: 112.62966737374258\n", + "2018-08-27 23:45:04,048 : INFO : h_r_error: 112.35537696125392\n", + "2018-08-27 23:45:04,051 : INFO : h_r_error: 112.35537696125392\n", + "2018-08-27 23:45:04,053 : INFO : h_r_error: 38.56035638403277\n", + "2018-08-27 23:45:04,058 : INFO : h_r_error: 38.47353673647504\n", + "2018-08-27 23:45:04,061 : INFO : h_r_error: 38.47353673647504\n", + "2018-08-27 23:45:04,067 : INFO : h_r_error: 81.49695060095077\n", + "2018-08-27 23:45:04,072 : INFO : h_r_error: 81.49695060095077\n", + "2018-08-27 23:45:04,073 : INFO : h_r_error: 37.09521472468781\n", + "2018-08-27 23:45:04,077 : INFO : h_r_error: 37.05503345467284\n", + "2018-08-27 23:45:04,080 : INFO : h_r_error: 37.05503345467284\n", + "2018-08-27 23:45:04,082 : INFO : h_r_error: 113.3910134995221\n", + "2018-08-27 23:45:04,086 : INFO : h_r_error: 113.2614250346524\n", + "2018-08-27 23:45:04,090 : INFO : h_r_error: 113.2614250346524\n", + "2018-08-27 23:45:04,094 : INFO : h_r_error: 52.971338936000365\n", + "2018-08-27 23:45:04,096 : INFO : h_r_error: 52.850034034210665\n", + "2018-08-27 23:45:04,098 : INFO : h_r_error: 52.850034034210665\n", + "2018-08-27 23:45:04,101 : INFO : h_r_error: 27.549590555797742\n", + "2018-08-27 23:45:04,102 : INFO : h_r_error: 27.512543613090983\n", + "2018-08-27 23:45:04,104 : INFO : h_r_error: 27.512543613090983\n", + "2018-08-27 23:45:04,106 : INFO : h_r_error: 71.14745146314269\n", + "2018-08-27 23:45:04,115 : INFO : h_r_error: 71.14745146314269\n", + "2018-08-27 23:45:04,121 : INFO : h_r_error: 327.3492358793578\n", + "2018-08-27 23:45:04,132 : INFO : h_r_error: 325.80168878580093\n", + "2018-08-27 23:45:04,159 : INFO : h_r_error: 325.80168878580093\n", + "2018-08-27 23:45:04,161 : INFO : h_r_error: 128.81395990239957\n", + "2018-08-27 23:45:04,163 : INFO : h_r_error: 128.34433834833825\n", + "2018-08-27 23:45:04,167 : INFO : h_r_error: 128.34433834833825\n", + "2018-08-27 23:45:04,184 : INFO : h_r_error: 300.83860359521066\n", + "2018-08-27 23:45:04,186 : INFO : h_r_error: 299.9644126089286\n", + "2018-08-27 23:45:04,188 : INFO : h_r_error: 299.9644126089286\n", + "2018-08-27 23:45:04,190 : INFO : h_r_error: 36.66604285811444\n", + "2018-08-27 23:45:04,205 : INFO : h_r_error: 36.59594958016433\n", + "2018-08-27 23:45:04,207 : INFO : h_r_error: 36.59594958016433\n", + "2018-08-27 23:45:04,211 : INFO : h_r_error: 44.558517290403564\n", + "2018-08-27 23:45:04,234 : INFO : h_r_error: 44.47029461938762\n", + "2018-08-27 23:45:04,236 : INFO : h_r_error: 44.47029461938762\n", + "2018-08-27 23:45:04,240 : INFO : h_r_error: 76.58089256606557\n", + "2018-08-27 23:45:04,244 : INFO : h_r_error: 76.49701416157038\n", + "2018-08-27 23:45:04,253 : INFO : h_r_error: 76.49701416157038\n", + "2018-08-27 23:45:04,260 : INFO : h_r_error: 110.02909109197478\n", + "2018-08-27 23:45:04,266 : INFO : h_r_error: 109.62299456006828\n", + "2018-08-27 23:45:04,272 : INFO : h_r_error: 109.62299456006828\n", + "2018-08-27 23:45:04,275 : INFO : h_r_error: 95.30927990250139\n", + "2018-08-27 23:45:04,277 : INFO : h_r_error: 95.07007702627003\n", + "2018-08-27 23:45:04,280 : INFO : h_r_error: 95.07007702627003\n", + "2018-08-27 23:45:04,288 : INFO : h_r_error: 46.511382971724544\n", + "2018-08-27 23:45:04,291 : INFO : h_r_error: 46.511382971724544\n", + "2018-08-27 23:45:04,295 : INFO : h_r_error: 8.708326097244038\n", + "2018-08-27 23:45:04,303 : INFO : h_r_error: 8.680697033603716\n", + "2018-08-27 23:45:04,306 : INFO : h_r_error: 8.680697033603716\n", + "2018-08-27 23:45:04,308 : INFO : h_r_error: 18.09845068156573\n", + "2018-08-27 23:45:04,310 : INFO : h_r_error: 18.063181886399903\n", + "2018-08-27 23:45:04,318 : INFO : h_r_error: 18.063181886399903\n", + "2018-08-27 23:45:04,320 : INFO : h_r_error: 100.33083746461689\n", + "2018-08-27 23:45:04,322 : INFO : h_r_error: 99.32946040028433\n", + "2018-08-27 23:45:04,325 : INFO : h_r_error: 99.32946040028433\n", + "2018-08-27 23:45:04,327 : INFO : h_r_error: 45.93307787490926\n", + "2018-08-27 23:45:04,330 : INFO : h_r_error: 45.83755607447074\n", + "2018-08-27 23:45:04,336 : INFO : h_r_error: 45.83755607447074\n", + "2018-08-27 23:45:04,342 : INFO : h_r_error: 172.99392927580686\n", + "2018-08-27 23:45:04,345 : INFO : h_r_error: 172.55845431899172\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:04,350 : INFO : h_r_error: 172.55845431899172\n", + "2018-08-27 23:45:04,361 : INFO : h_r_error: 25.884914833774886\n", + "2018-08-27 23:45:04,368 : INFO : h_r_error: 25.822460180952838\n", + "2018-08-27 23:45:04,371 : INFO : h_r_error: 25.822460180952838\n", + "2018-08-27 23:45:04,375 : INFO : h_r_error: 38.76063887209145\n", + "2018-08-27 23:45:04,378 : INFO : h_r_error: 38.76063887209145\n", + "2018-08-27 23:45:04,379 : INFO : h_r_error: 326.07969479087296\n", + "2018-08-27 23:45:04,382 : INFO : h_r_error: 325.3908992600763\n", + "2018-08-27 23:45:04,384 : INFO : h_r_error: 325.3908992600763\n", + "2018-08-27 23:45:04,386 : INFO : h_r_error: 35.91784836580319\n", + "2018-08-27 23:45:04,388 : INFO : h_r_error: 35.807358439079145\n", + "2018-08-27 23:45:04,391 : INFO : h_r_error: 35.807358439079145\n", + "2018-08-27 23:45:04,394 : INFO : h_r_error: 19.13148079768309\n", + "2018-08-27 23:45:04,396 : INFO : h_r_error: 19.106338684559624\n", + "2018-08-27 23:45:04,398 : INFO : h_r_error: 19.106338684559624\n", + "2018-08-27 23:45:04,401 : INFO : h_r_error: 30.54882445898526\n", + "2018-08-27 23:45:04,403 : INFO : h_r_error: 30.477952769601643\n", + "2018-08-27 23:45:04,407 : INFO : h_r_error: 30.477952769601643\n", + "2018-08-27 23:45:04,409 : INFO : h_r_error: 118.11783188301177\n", + "2018-08-27 23:45:04,411 : INFO : h_r_error: 117.95749163935196\n", + "2018-08-27 23:45:04,414 : INFO : h_r_error: 117.95749163935196\n", + "2018-08-27 23:45:04,416 : INFO : h_r_error: 112.68984570289032\n", + "2018-08-27 23:45:04,418 : INFO : h_r_error: 112.39058618319598\n", + "2018-08-27 23:45:04,420 : INFO : h_r_error: 112.39058618319598\n", + "2018-08-27 23:45:04,434 : INFO : h_r_error: 67.63161564112114\n", + "2018-08-27 23:45:04,437 : INFO : h_r_error: 67.38818054462419\n", + "2018-08-27 23:45:04,439 : INFO : h_r_error: 67.38818054462419\n", + "2018-08-27 23:45:04,443 : INFO : h_r_error: 9.875720892583283\n", + "2018-08-27 23:45:04,447 : INFO : h_r_error: 9.875720892583283\n", + "2018-08-27 23:45:04,453 : INFO : h_r_error: 40.23718588228616\n", + "2018-08-27 23:45:04,457 : INFO : h_r_error: 40.12951778704642\n", + "2018-08-27 23:45:04,458 : INFO : h_r_error: 40.12951778704642\n", + "2018-08-27 23:45:04,463 : INFO : h_r_error: 341.7530962911671\n", + "2018-08-27 23:45:04,464 : INFO : h_r_error: 341.0137229649033\n", + "2018-08-27 23:45:04,465 : INFO : h_r_error: 341.0137229649033\n", + "2018-08-27 23:45:04,469 : INFO : h_r_error: 15.20696520524891\n", + "2018-08-27 23:45:04,470 : INFO : h_r_error: 15.180914790066174\n", + "2018-08-27 23:45:04,472 : INFO : h_r_error: 15.180914790066174\n", + "2018-08-27 23:45:04,477 : INFO : h_r_error: 91.88770548102734\n", + "2018-08-27 23:45:04,479 : INFO : h_r_error: 91.7498654626676\n", + "2018-08-27 23:45:04,485 : INFO : h_r_error: 91.7498654626676\n", + "2018-08-27 23:45:04,492 : INFO : h_r_error: 7.99380833962436\n", + "2018-08-27 23:45:04,495 : INFO : h_r_error: 7.99380833962436\n", + "2018-08-27 23:45:04,497 : INFO : h_r_error: 47.93056236196947\n", + "2018-08-27 23:45:04,498 : INFO : h_r_error: 47.84428774849964\n", + "2018-08-27 23:45:04,499 : INFO : h_r_error: 47.84428774849964\n", + "2018-08-27 23:45:04,506 : INFO : h_r_error: 52.90813075228478\n", + "2018-08-27 23:45:04,508 : INFO : h_r_error: 52.81428442296331\n", + "2018-08-27 23:45:04,511 : INFO : h_r_error: 52.81428442296331\n", + "2018-08-27 23:45:04,516 : INFO : h_r_error: 68.10073234335286\n", + "2018-08-27 23:45:04,526 : INFO : h_r_error: 67.97576427175636\n", + "2018-08-27 23:45:04,529 : INFO : h_r_error: 67.97576427175636\n", + "2018-08-27 23:45:04,533 : INFO : h_r_error: 75.36719552736331\n", + "2018-08-27 23:45:04,543 : INFO : h_r_error: 75.27193793652492\n", + "2018-08-27 23:45:04,546 : INFO : h_r_error: 75.27193793652492\n", + "2018-08-27 23:45:04,548 : INFO : h_r_error: 28.530087674928073\n", + "2018-08-27 23:45:04,550 : INFO : h_r_error: 28.50034946673951\n", + "2018-08-27 23:45:04,552 : INFO : h_r_error: 28.50034946673951\n", + "2018-08-27 23:45:04,553 : INFO : h_r_error: 24.485778716713398\n", + "2018-08-27 23:45:04,555 : INFO : h_r_error: 24.40205609899557\n", + "2018-08-27 23:45:04,558 : INFO : h_r_error: 24.40205609899557\n", + "2018-08-27 23:45:04,560 : INFO : h_r_error: 71.76258960905648\n", + "2018-08-27 23:45:04,562 : INFO : h_r_error: 71.63809389069475\n", + "2018-08-27 23:45:04,563 : INFO : h_r_error: 71.63809389069475\n", + "2018-08-27 23:45:04,565 : INFO : h_r_error: 32.94452045893797\n", + "2018-08-27 23:45:04,566 : INFO : h_r_error: 32.84996027645773\n", + "2018-08-27 23:45:04,567 : INFO : h_r_error: 32.84996027645773\n", + "2018-08-27 23:45:04,568 : INFO : h_r_error: 51.747013522414\n", + "2018-08-27 23:45:04,570 : INFO : h_r_error: 51.621934447503435\n", + "2018-08-27 23:45:04,571 : INFO : h_r_error: 51.621934447503435\n", + "2018-08-27 23:45:04,572 : INFO : h_r_error: 43.221893858403526\n", + "2018-08-27 23:45:04,573 : INFO : h_r_error: 43.15357558195317\n", + "2018-08-27 23:45:04,575 : INFO : h_r_error: 43.15357558195317\n", + "2018-08-27 23:45:04,576 : INFO : h_r_error: 24.834453425716553\n", + "2018-08-27 23:45:04,578 : INFO : h_r_error: 24.780902969780268\n", + "2018-08-27 23:45:04,580 : INFO : h_r_error: 24.780902969780268\n", + "2018-08-27 23:45:04,582 : INFO : h_r_error: 103.18698575019215\n", + "2018-08-27 23:45:04,583 : INFO : h_r_error: 102.89563512414941\n", + "2018-08-27 23:45:04,585 : INFO : h_r_error: 102.89563512414941\n", + "2018-08-27 23:45:04,586 : INFO : h_r_error: 111.41180910967762\n", + "2018-08-27 23:45:04,590 : INFO : h_r_error: 111.11629448016784\n", + "2018-08-27 23:45:04,591 : INFO : h_r_error: 111.11629448016784\n", + "2018-08-27 23:45:04,593 : INFO : h_r_error: 74.02070282429735\n", + "2018-08-27 23:45:04,594 : INFO : h_r_error: 73.86203655847076\n", + "2018-08-27 23:45:04,595 : INFO : h_r_error: 73.86203655847076\n", + "2018-08-27 23:45:04,597 : INFO : h_r_error: 41.66190527662034\n", + "2018-08-27 23:45:04,598 : INFO : h_r_error: 41.66190527662034\n", + "2018-08-27 23:45:04,599 : INFO : h_r_error: 43.77664102207761\n", + "2018-08-27 23:45:04,600 : INFO : h_r_error: 43.68946419973811\n", + "2018-08-27 23:45:04,602 : INFO : h_r_error: 43.68946419973811\n", + "2018-08-27 23:45:04,611 : INFO : h_r_error: 46.47502187937036\n", + "2018-08-27 23:45:04,615 : INFO : h_r_error: 46.37603081449998\n", + "2018-08-27 23:45:04,620 : INFO : h_r_error: 46.37603081449998\n", + "2018-08-27 23:45:04,622 : INFO : h_r_error: 36.51671895744207\n", + "2018-08-27 23:45:04,623 : INFO : h_r_error: 36.47358311957819\n", + "2018-08-27 23:45:04,624 : INFO : h_r_error: 36.47358311957819\n", + "2018-08-27 23:45:04,626 : INFO : h_r_error: 119.22053198745213\n", + "2018-08-27 23:45:04,627 : INFO : h_r_error: 118.78585463410356\n", + "2018-08-27 23:45:04,628 : INFO : h_r_error: 118.78585463410356\n", + "2018-08-27 23:45:04,629 : INFO : h_r_error: 12.36947455298395\n", + "2018-08-27 23:45:04,632 : INFO : h_r_error: 12.36947455298395\n", + "2018-08-27 23:45:04,633 : INFO : h_r_error: 98.74868687267168\n", + "2018-08-27 23:45:04,634 : INFO : h_r_error: 98.42389495726586\n", + "2018-08-27 23:45:04,643 : INFO : h_r_error: 98.42389495726586\n", + "2018-08-27 23:45:04,647 : INFO : h_r_error: 17.196508354325065\n", + "2018-08-27 23:45:04,654 : INFO : h_r_error: 17.172894654714554\n", + "2018-08-27 23:45:04,657 : INFO : h_r_error: 17.172894654714554\n", + "2018-08-27 23:45:04,659 : INFO : h_r_error: 45.02793287033883\n", + "2018-08-27 23:45:04,664 : INFO : h_r_error: 44.950495265114895\n", + "2018-08-27 23:45:04,674 : INFO : h_r_error: 44.950495265114895\n", + "2018-08-27 23:45:04,676 : INFO : h_r_error: 16.784091558592557\n", + "2018-08-27 23:45:04,677 : INFO : h_r_error: 16.76516342252006\n", + "2018-08-27 23:45:04,678 : INFO : h_r_error: 16.76516342252006\n", + "2018-08-27 23:45:04,687 : INFO : h_r_error: 272.29622434411266\n", + "2018-08-27 23:45:04,688 : INFO : h_r_error: 263.14701041124584\n", + "2018-08-27 23:45:04,690 : INFO : h_r_error: 263.14701041124584\n", + "2018-08-27 23:45:04,691 : INFO : h_r_error: 48.589308955920636\n", + "2018-08-27 23:45:04,693 : INFO : h_r_error: 48.51935331735766\n", + "2018-08-27 23:45:04,702 : INFO : h_r_error: 48.51935331735766\n", + "2018-08-27 23:45:04,704 : INFO : h_r_error: 60.59585536276832\n", + "2018-08-27 23:45:04,730 : INFO : h_r_error: 60.44344276513254\n", + "2018-08-27 23:45:04,731 : INFO : h_r_error: 60.44344276513254\n", + "2018-08-27 23:45:04,739 : INFO : h_r_error: 146.68709034649353\n", + "2018-08-27 23:45:04,743 : INFO : h_r_error: 146.2627454097848\n", + "2018-08-27 23:45:04,745 : INFO : h_r_error: 146.2627454097848\n", + "2018-08-27 23:45:04,746 : INFO : h_r_error: 29.81028764637969\n", + "2018-08-27 23:45:04,750 : INFO : h_r_error: 29.81028764637969\n", + "2018-08-27 23:45:04,761 : INFO : h_r_error: 31.12910097266583\n", + "2018-08-27 23:45:04,763 : INFO : h_r_error: 31.12910097266583\n", + "2018-08-27 23:45:04,772 : INFO : h_r_error: 56.43612105578995\n", + "2018-08-27 23:45:04,773 : INFO : h_r_error: 56.32484957580539\n", + "2018-08-27 23:45:04,777 : INFO : h_r_error: 56.32484957580539\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:04,778 : INFO : h_r_error: 51.557964045313064\n", + "2018-08-27 23:45:04,781 : INFO : h_r_error: 51.50323473393472\n", + "2018-08-27 23:45:04,785 : INFO : h_r_error: 51.50323473393472\n", + "2018-08-27 23:45:04,786 : INFO : h_r_error: 375.5958407200147\n", + "2018-08-27 23:45:04,794 : INFO : h_r_error: 375.5958407200147\n", + "2018-08-27 23:45:04,804 : INFO : h_r_error: 59.30199953901197\n", + "2018-08-27 23:45:04,806 : INFO : h_r_error: 59.19505862613608\n", + "2018-08-27 23:45:04,808 : INFO : h_r_error: 59.19505862613608\n", + "2018-08-27 23:45:04,810 : INFO : h_r_error: 81.09605110179356\n", + "2018-08-27 23:45:04,814 : INFO : h_r_error: 80.92624684791024\n", + "2018-08-27 23:45:04,821 : INFO : h_r_error: 80.92624684791024\n", + "2018-08-27 23:45:04,823 : INFO : h_r_error: 0.12451997498887594\n", + "2018-08-27 23:45:04,826 : INFO : h_r_error: 0.06254923862768746\n", + "2018-08-27 23:45:04,836 : INFO : h_r_error: 0.06254923862768746\n", + "2018-08-27 23:45:04,842 : INFO : h_r_error: 279.7162441491524\n", + "2018-08-27 23:45:04,844 : INFO : h_r_error: 278.5133132996239\n", + "2018-08-27 23:45:04,847 : INFO : h_r_error: 278.5133132996239\n", + "2018-08-27 23:45:04,850 : INFO : h_r_error: 10.405242457216737\n", + "2018-08-27 23:45:04,851 : INFO : h_r_error: 10.405242457216737\n", + "2018-08-27 23:45:04,857 : INFO : h_r_error: 224.58381043575807\n", + "2018-08-27 23:45:04,859 : INFO : h_r_error: 223.58493832198027\n", + "2018-08-27 23:45:04,860 : INFO : h_r_error: 223.58493832198027\n", + "2018-08-27 23:45:04,862 : INFO : h_r_error: 36.14347291234895\n", + "2018-08-27 23:45:04,864 : INFO : h_r_error: 36.14347291234895\n", + "2018-08-27 23:45:04,873 : INFO : h_r_error: 47.783598369161034\n", + "2018-08-27 23:45:04,875 : INFO : h_r_error: 47.71929316902629\n", + "2018-08-27 23:45:04,876 : INFO : h_r_error: 47.71929316902629\n", + "2018-08-27 23:45:04,878 : INFO : h_r_error: 26.10486254927454\n", + "2018-08-27 23:45:04,879 : INFO : h_r_error: 26.072146034937298\n", + "2018-08-27 23:45:04,880 : INFO : h_r_error: 26.072146034937298\n", + "2018-08-27 23:45:04,882 : INFO : h_r_error: 45.881043812466565\n", + "2018-08-27 23:45:04,883 : INFO : h_r_error: 45.831982063353784\n", + "2018-08-27 23:45:04,885 : INFO : h_r_error: 45.831982063353784\n", + "2018-08-27 23:45:04,886 : INFO : h_r_error: 356.48380941681353\n", + "2018-08-27 23:45:04,887 : INFO : h_r_error: 355.3059212794506\n", + "2018-08-27 23:45:04,889 : INFO : h_r_error: 355.3059212794506\n", + "2018-08-27 23:45:04,891 : INFO : h_r_error: 1074.803474477057\n", + "2018-08-27 23:45:04,892 : INFO : h_r_error: 1068.767359403698\n", + "2018-08-27 23:45:04,894 : INFO : h_r_error: 1068.767359403698\n", + "2018-08-27 23:45:04,895 : INFO : h_r_error: 82.42340322907675\n", + "2018-08-27 23:45:04,897 : INFO : h_r_error: 82.29465170089688\n", + "2018-08-27 23:45:04,906 : INFO : h_r_error: 82.29465170089688\n", + "2018-08-27 23:45:04,907 : INFO : h_r_error: 53.00924611909265\n", + "2018-08-27 23:45:04,909 : INFO : h_r_error: 52.93667009857036\n", + "2018-08-27 23:45:04,914 : INFO : h_r_error: 52.93667009857036\n", + "2018-08-27 23:45:04,917 : INFO : h_r_error: 132.22686472608305\n", + "2018-08-27 23:45:04,936 : INFO : h_r_error: 131.59627959677712\n", + "2018-08-27 23:45:04,939 : INFO : h_r_error: 131.59627959677712\n", + "2018-08-27 23:45:04,944 : INFO : h_r_error: 399.1276938223757\n", + "2018-08-27 23:45:04,953 : INFO : h_r_error: 398.4450206660284\n", + "2018-08-27 23:45:04,954 : INFO : h_r_error: 398.4450206660284\n", + "2018-08-27 23:45:04,955 : INFO : h_r_error: 103.18692392501183\n", + "2018-08-27 23:45:04,956 : INFO : h_r_error: 102.80063043957189\n", + "2018-08-27 23:45:04,966 : INFO : h_r_error: 102.80063043957189\n", + "2018-08-27 23:45:04,968 : INFO : h_r_error: 176.77693904767978\n", + "2018-08-27 23:45:04,969 : INFO : h_r_error: 176.1113230283505\n", + "2018-08-27 23:45:04,971 : INFO : h_r_error: 176.1113230283505\n", + "2018-08-27 23:45:04,972 : INFO : h_r_error: 62.67866573688081\n", + "2018-08-27 23:45:04,974 : INFO : h_r_error: 62.67866573688081\n", + "2018-08-27 23:45:04,975 : INFO : h_r_error: 81.00776489280221\n", + "2018-08-27 23:45:04,977 : INFO : h_r_error: 80.69656354740044\n", + "2018-08-27 23:45:04,980 : INFO : h_r_error: 80.69656354740044\n", + "2018-08-27 23:45:04,982 : INFO : h_r_error: 66.44726657326723\n", + "2018-08-27 23:45:04,984 : INFO : h_r_error: 66.44726657326723\n", + "2018-08-27 23:45:04,986 : INFO : h_r_error: 103.02284615407633\n", + "2018-08-27 23:45:04,987 : INFO : h_r_error: 102.79756994528293\n", + "2018-08-27 23:45:04,988 : INFO : h_r_error: 102.79756994528293\n", + "2018-08-27 23:45:04,990 : INFO : h_r_error: 10.37893414622033\n", + "2018-08-27 23:45:04,992 : INFO : h_r_error: 10.37893414622033\n", + "2018-08-27 23:45:04,994 : INFO : h_r_error: 3.9828215207795665\n", + "2018-08-27 23:45:04,996 : INFO : h_r_error: 3.9828215207795665\n", + "2018-08-27 23:45:04,997 : INFO : h_r_error: 23.669494910214613\n", + "2018-08-27 23:45:04,998 : INFO : h_r_error: 23.645524541075627\n", + "2018-08-27 23:45:05,000 : INFO : h_r_error: 23.645524541075627\n", + "2018-08-27 23:45:05,002 : INFO : h_r_error: 12.97097850992599\n", + "2018-08-27 23:45:05,004 : INFO : h_r_error: 12.97097850992599\n", + "2018-08-27 23:45:05,006 : INFO : h_r_error: 103.68148104279378\n", + "2018-08-27 23:45:05,007 : INFO : h_r_error: 103.49815298700966\n", + "2018-08-27 23:45:05,009 : INFO : h_r_error: 103.49815298700966\n", + "2018-08-27 23:45:05,012 : INFO : h_r_error: 8.971282393689249\n", + "2018-08-27 23:45:05,017 : INFO : h_r_error: 8.971282393689249\n", + "2018-08-27 23:45:05,018 : INFO : h_r_error: 126.697844983246\n", + "2018-08-27 23:45:05,020 : INFO : h_r_error: 126.41887876084479\n", + "2018-08-27 23:45:05,025 : INFO : h_r_error: 126.41887876084479\n", + "2018-08-27 23:45:05,035 : INFO : h_r_error: 43.986960192180156\n", + "2018-08-27 23:45:05,036 : INFO : h_r_error: 43.85019636108341\n", + "2018-08-27 23:45:05,039 : INFO : h_r_error: 43.85019636108341\n", + "2018-08-27 23:45:05,040 : INFO : h_r_error: 33.317511927040705\n", + "2018-08-27 23:45:05,066 : INFO : h_r_error: 33.246013926504126\n", + "2018-08-27 23:45:05,074 : INFO : h_r_error: 33.246013926504126\n", + "2018-08-27 23:45:05,083 : INFO : h_r_error: 24.354967487992816\n", + "2018-08-27 23:45:05,093 : INFO : h_r_error: 24.354967487992816\n", + "2018-08-27 23:45:05,095 : INFO : h_r_error: 16.730628210879885\n", + "2018-08-27 23:45:05,096 : INFO : h_r_error: 16.711269803718004\n", + "2018-08-27 23:45:05,098 : INFO : h_r_error: 16.711269803718004\n", + "2018-08-27 23:45:05,099 : INFO : h_r_error: 17.70236723598152\n", + "2018-08-27 23:45:05,101 : INFO : h_r_error: 17.678321231502917\n", + "2018-08-27 23:45:05,102 : INFO : h_r_error: 17.678321231502917\n", + "2018-08-27 23:45:05,104 : INFO : h_r_error: 10.89898638235731\n", + "2018-08-27 23:45:05,106 : INFO : h_r_error: 10.89898638235731\n", + "2018-08-27 23:45:05,108 : INFO : h_r_error: 50.66017612593839\n", + "2018-08-27 23:45:05,109 : INFO : h_r_error: 50.56449274032813\n", + "2018-08-27 23:45:05,111 : INFO : h_r_error: 50.56449274032813\n", + "2018-08-27 23:45:05,113 : INFO : h_r_error: 58.31406063764488\n", + "2018-08-27 23:45:05,114 : INFO : h_r_error: 58.240077879598275\n", + "2018-08-27 23:45:05,116 : INFO : h_r_error: 58.240077879598275\n", + "2018-08-27 23:45:05,118 : INFO : h_r_error: 41.39476214434248\n", + "2018-08-27 23:45:05,119 : INFO : h_r_error: 41.39476214434248\n", + "2018-08-27 23:45:05,121 : INFO : h_r_error: 76.90360055926796\n", + "2018-08-27 23:45:05,122 : INFO : h_r_error: 76.61224711725603\n", + "2018-08-27 23:45:05,125 : INFO : h_r_error: 76.61224711725603\n", + "2018-08-27 23:45:05,126 : INFO : h_r_error: 32.47432604339973\n", + "2018-08-27 23:45:05,131 : INFO : h_r_error: 32.43147144777044\n", + "2018-08-27 23:45:05,134 : INFO : h_r_error: 32.43147144777044\n", + "2018-08-27 23:45:05,136 : INFO : h_r_error: 163.7460587798575\n", + "2018-08-27 23:45:05,138 : INFO : h_r_error: 162.85590589126474\n", + "2018-08-27 23:45:05,140 : INFO : h_r_error: 162.85590589126474\n", + "2018-08-27 23:45:05,142 : INFO : h_r_error: 213.55862231776482\n", + "2018-08-27 23:45:05,148 : INFO : h_r_error: 212.83196910132526\n", + "2018-08-27 23:45:05,149 : INFO : h_r_error: 212.83196910132526\n", + "2018-08-27 23:45:05,156 : INFO : h_r_error: 493.4243588171964\n", + "2018-08-27 23:45:05,157 : INFO : h_r_error: 493.4243588171964\n", + "2018-08-27 23:45:05,158 : INFO : h_r_error: 28.617555551648177\n", + "2018-08-27 23:45:05,160 : INFO : h_r_error: 28.574325881772648\n", + "2018-08-27 23:45:05,172 : INFO : h_r_error: 28.574325881772648\n", + "2018-08-27 23:45:05,173 : INFO : h_r_error: 37.33773258040522\n", + "2018-08-27 23:45:05,178 : INFO : h_r_error: 37.24902019477671\n", + "2018-08-27 23:45:05,179 : INFO : h_r_error: 37.24902019477671\n", + "2018-08-27 23:45:05,181 : INFO : h_r_error: 143.9899535667374\n", + "2018-08-27 23:45:05,186 : INFO : h_r_error: 143.6984408698545\n", + "2018-08-27 23:45:05,187 : INFO : h_r_error: 143.6984408698545\n", + "2018-08-27 23:45:05,189 : INFO : h_r_error: 80.77961475352456\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:05,194 : INFO : h_r_error: 80.40671792920304\n", + "2018-08-27 23:45:05,202 : INFO : h_r_error: 80.40671792920304\n", + "2018-08-27 23:45:05,204 : INFO : h_r_error: 100.25368008543657\n", + "2018-08-27 23:45:05,205 : INFO : h_r_error: 100.00731675409415\n", + "2018-08-27 23:45:05,211 : INFO : h_r_error: 100.00731675409415\n", + "2018-08-27 23:45:05,218 : INFO : h_r_error: 89.08353563367831\n", + "2018-08-27 23:45:05,225 : INFO : h_r_error: 88.88437664497803\n", + "2018-08-27 23:45:05,228 : INFO : h_r_error: 88.88437664497803\n", + "2018-08-27 23:45:05,231 : INFO : h_r_error: 39.624592449996385\n", + "2018-08-27 23:45:05,235 : INFO : h_r_error: 39.624592449996385\n", + "2018-08-27 23:45:05,242 : INFO : h_r_error: 76.1784936796049\n", + "2018-08-27 23:45:05,243 : INFO : h_r_error: 76.10054579189001\n", + "2018-08-27 23:45:05,245 : INFO : h_r_error: 76.10054579189001\n", + "2018-08-27 23:45:05,247 : INFO : h_r_error: 32.19508197934453\n", + "2018-08-27 23:45:05,249 : INFO : h_r_error: 32.11345417491875\n", + "2018-08-27 23:45:05,256 : INFO : h_r_error: 32.11345417491875\n", + "2018-08-27 23:45:05,257 : INFO : h_r_error: 12.717907643205596\n", + "2018-08-27 23:45:05,258 : INFO : h_r_error: 12.695655970406433\n", + "2018-08-27 23:45:05,269 : INFO : h_r_error: 12.695655970406433\n", + "2018-08-27 23:45:05,270 : INFO : h_r_error: 29.97696616689878\n", + "2018-08-27 23:45:05,271 : INFO : h_r_error: 29.945933181501676\n", + "2018-08-27 23:45:05,280 : INFO : h_r_error: 29.945933181501676\n", + "2018-08-27 23:45:05,282 : INFO : h_r_error: 222.6956719365073\n", + "2018-08-27 23:45:05,283 : INFO : h_r_error: 222.1902767933728\n", + "2018-08-27 23:45:05,285 : INFO : h_r_error: 222.1902767933728\n", + "2018-08-27 23:45:05,292 : INFO : h_r_error: 164.9383914208657\n", + "2018-08-27 23:45:05,294 : INFO : h_r_error: 164.50976760192614\n", + "2018-08-27 23:45:05,295 : INFO : h_r_error: 164.50976760192614\n", + "2018-08-27 23:45:05,297 : INFO : h_r_error: 209.30751789177947\n", + "2018-08-27 23:45:05,298 : INFO : h_r_error: 208.55062685449153\n", + "2018-08-27 23:45:05,306 : INFO : h_r_error: 208.55062685449153\n", + "2018-08-27 23:45:05,307 : INFO : h_r_error: 29.811920388692\n", + "2018-08-27 23:45:05,309 : INFO : h_r_error: 29.811920388692\n", + "2018-08-27 23:45:05,310 : INFO : h_r_error: 55.36831813557419\n", + "2018-08-27 23:45:05,312 : INFO : h_r_error: 55.175614373539524\n", + "2018-08-27 23:45:05,319 : INFO : h_r_error: 55.175614373539524\n", + "2018-08-27 23:45:05,320 : INFO : h_r_error: 22.66210474653694\n", + "2018-08-27 23:45:05,322 : INFO : h_r_error: 22.630805268842845\n", + "2018-08-27 23:45:05,323 : INFO : h_r_error: 22.630805268842845\n", + "2018-08-27 23:45:05,325 : INFO : h_r_error: 54.8787759548081\n", + "2018-08-27 23:45:05,332 : INFO : h_r_error: 54.782878134989666\n", + "2018-08-27 23:45:05,334 : INFO : h_r_error: 54.782878134989666\n", + "2018-08-27 23:45:05,335 : INFO : h_r_error: 473.98292303443696\n", + "2018-08-27 23:45:05,337 : INFO : h_r_error: 470.7806186597125\n", + "2018-08-27 23:45:05,338 : INFO : h_r_error: 470.7806186597125\n", + "2018-08-27 23:45:05,339 : INFO : h_r_error: 57.637429120961514\n", + "2018-08-27 23:45:05,341 : INFO : h_r_error: 57.637429120961514\n", + "2018-08-27 23:45:05,342 : INFO : h_r_error: 54.84098978549135\n", + "2018-08-27 23:45:05,343 : INFO : h_r_error: 54.731050621007924\n", + "2018-08-27 23:45:05,345 : INFO : h_r_error: 54.731050621007924\n", + "2018-08-27 23:45:05,347 : INFO : h_r_error: 34.344488940552374\n", + "2018-08-27 23:45:05,348 : INFO : h_r_error: 34.29309024651082\n", + "2018-08-27 23:45:05,349 : INFO : h_r_error: 34.29309024651082\n", + "2018-08-27 23:45:05,351 : INFO : h_r_error: 33.804835588294424\n", + "2018-08-27 23:45:05,352 : INFO : h_r_error: 33.73875495160515\n", + "2018-08-27 23:45:05,354 : INFO : h_r_error: 33.73875495160515\n", + "2018-08-27 23:45:05,355 : INFO : h_r_error: 334.8471101952096\n", + "2018-08-27 23:45:05,356 : INFO : h_r_error: 333.4181890224117\n", + "2018-08-27 23:45:05,358 : INFO : h_r_error: 333.4181890224117\n", + "2018-08-27 23:45:05,360 : INFO : h_r_error: 251.2026365727504\n", + "2018-08-27 23:45:05,361 : INFO : h_r_error: 249.787142683179\n", + "2018-08-27 23:45:05,363 : INFO : h_r_error: 249.787142683179\n", + "2018-08-27 23:45:05,364 : INFO : h_r_error: 717.6439187745607\n", + "2018-08-27 23:45:05,365 : INFO : h_r_error: 711.0269421933101\n", + "2018-08-27 23:45:05,367 : INFO : h_r_error: 711.0269421933101\n", + "2018-08-27 23:45:05,381 : INFO : h_r_error: 17.2685946367622\n", + "2018-08-27 23:45:05,382 : INFO : h_r_error: 17.213188799073407\n", + "2018-08-27 23:45:05,394 : INFO : h_r_error: 17.213188799073407\n", + "2018-08-27 23:45:05,397 : INFO : h_r_error: 63.310041850300706\n", + "2018-08-27 23:45:05,400 : INFO : h_r_error: 63.12396766516307\n", + "2018-08-27 23:45:05,403 : INFO : h_r_error: 63.12396766516307\n", + "2018-08-27 23:45:05,411 : INFO : h_r_error: 67.25255047569941\n", + "2018-08-27 23:45:05,412 : INFO : h_r_error: 67.0718101677796\n", + "2018-08-27 23:45:05,416 : INFO : h_r_error: 67.0718101677796\n", + "2018-08-27 23:45:05,418 : INFO : h_r_error: 96.82509977203402\n", + "2018-08-27 23:45:05,427 : INFO : h_r_error: 96.59575685673157\n", + "2018-08-27 23:45:05,429 : INFO : h_r_error: 96.59575685673157\n", + "2018-08-27 23:45:05,430 : INFO : h_r_error: 57.28442535649926\n", + "2018-08-27 23:45:05,432 : INFO : h_r_error: 57.03749537621\n", + "2018-08-27 23:45:05,434 : INFO : h_r_error: 57.03749537621\n", + "2018-08-27 23:45:05,436 : INFO : h_r_error: 33.198609754389466\n", + "2018-08-27 23:45:05,438 : INFO : h_r_error: 33.198609754389466\n", + "2018-08-27 23:45:05,439 : INFO : h_r_error: 92.21154391171746\n", + "2018-08-27 23:45:05,441 : INFO : h_r_error: 92.0492262955964\n", + "2018-08-27 23:45:05,442 : INFO : h_r_error: 92.0492262955964\n", + "2018-08-27 23:45:05,446 : INFO : h_r_error: 39.62187123027486\n", + "2018-08-27 23:45:05,448 : INFO : h_r_error: 39.55070540124188\n", + "2018-08-27 23:45:05,450 : INFO : h_r_error: 39.55070540124188\n", + "2018-08-27 23:45:05,452 : INFO : h_r_error: 57.54645991343302\n", + "2018-08-27 23:45:05,454 : INFO : h_r_error: 57.43757789157815\n", + "2018-08-27 23:45:05,456 : INFO : h_r_error: 57.43757789157815\n", + "2018-08-27 23:45:05,457 : INFO : h_r_error: 90.71075170436812\n", + "2018-08-27 23:45:05,460 : INFO : h_r_error: 90.52866396591806\n", + "2018-08-27 23:45:05,462 : INFO : h_r_error: 90.52866396591806\n", + "2018-08-27 23:45:05,463 : INFO : h_r_error: 180.35779487769042\n", + "2018-08-27 23:45:05,464 : INFO : h_r_error: 179.40878182281148\n", + "2018-08-27 23:45:05,466 : INFO : h_r_error: 179.40878182281148\n", + "2018-08-27 23:45:05,468 : INFO : h_r_error: 7.83801583349308\n", + "2018-08-27 23:45:05,470 : INFO : h_r_error: 7.823401539630104\n", + "2018-08-27 23:45:05,472 : INFO : h_r_error: 7.823401539630104\n", + "2018-08-27 23:45:05,476 : INFO : h_r_error: 9.254828368607908\n", + "2018-08-27 23:45:05,478 : INFO : h_r_error: 9.229768831769041\n", + "2018-08-27 23:45:05,486 : INFO : h_r_error: 9.229768831769041\n", + "2018-08-27 23:45:05,488 : INFO : h_r_error: 18.356779344878174\n", + "2018-08-27 23:45:05,489 : INFO : h_r_error: 18.356779344878174\n", + "2018-08-27 23:45:05,492 : INFO : h_r_error: 104.7231933687518\n", + "2018-08-27 23:45:05,500 : INFO : h_r_error: 104.38175449266039\n", + "2018-08-27 23:45:05,509 : INFO : h_r_error: 104.38175449266039\n", + "2018-08-27 23:45:05,510 : INFO : h_r_error: 120.76535674867081\n", + "2018-08-27 23:45:05,512 : INFO : h_r_error: 120.5730804932121\n", + "2018-08-27 23:45:05,514 : INFO : h_r_error: 120.5730804932121\n", + "2018-08-27 23:45:05,516 : INFO : h_r_error: 100.59423021905452\n", + "2018-08-27 23:45:05,517 : INFO : h_r_error: 100.00259981939946\n", + "2018-08-27 23:45:05,522 : INFO : h_r_error: 100.00259981939946\n", + "2018-08-27 23:45:05,523 : INFO : h_r_error: 316.14325970501403\n", + "2018-08-27 23:45:05,525 : INFO : h_r_error: 314.1222320708036\n", + "2018-08-27 23:45:05,530 : INFO : h_r_error: 314.1222320708036\n", + "2018-08-27 23:45:05,531 : INFO : h_r_error: 24.28278183255654\n", + "2018-08-27 23:45:05,533 : INFO : h_r_error: 24.255520461317907\n", + "2018-08-27 23:45:05,543 : INFO : h_r_error: 24.255520461317907\n", + "2018-08-27 23:45:05,546 : INFO : h_r_error: 91.39859512611878\n", + "2018-08-27 23:45:05,552 : INFO : h_r_error: 91.1551775182913\n", + "2018-08-27 23:45:05,555 : INFO : h_r_error: 91.1551775182913\n", + "2018-08-27 23:45:05,570 : INFO : h_r_error: 83.12974545878362\n", + "2018-08-27 23:45:05,571 : INFO : h_r_error: 83.01485925917494\n", + "2018-08-27 23:45:05,580 : INFO : h_r_error: 83.01485925917494\n", + "2018-08-27 23:45:05,584 : INFO : h_r_error: 80.5123655769513\n", + "2018-08-27 23:45:05,586 : INFO : h_r_error: 80.42955992255149\n", + "2018-08-27 23:45:05,588 : INFO : h_r_error: 80.42955992255149\n", + "2018-08-27 23:45:05,590 : INFO : h_r_error: 74.49280914592435\n", + "2018-08-27 23:45:05,591 : INFO : h_r_error: 74.4046343702391\n", + "2018-08-27 23:45:05,594 : INFO : h_r_error: 74.4046343702391\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:05,596 : INFO : h_r_error: 16.83022865186834\n", + "2018-08-27 23:45:05,600 : INFO : h_r_error: 16.83022865186834\n", + "2018-08-27 23:45:05,602 : INFO : h_r_error: 76.90450482825301\n", + "2018-08-27 23:45:05,612 : INFO : h_r_error: 76.76267688860051\n", + "2018-08-27 23:45:05,614 : INFO : h_r_error: 76.76267688860051\n", + "2018-08-27 23:45:05,617 : INFO : h_r_error: 26.055473328561543\n", + "2018-08-27 23:45:05,619 : INFO : h_r_error: 26.020126327410722\n", + "2018-08-27 23:45:05,624 : INFO : h_r_error: 26.020126327410722\n", + "2018-08-27 23:45:05,626 : INFO : h_r_error: 15.114050406012161\n", + "2018-08-27 23:45:05,628 : INFO : h_r_error: 15.096934745237116\n", + "2018-08-27 23:45:05,633 : INFO : h_r_error: 15.096934745237116\n", + "2018-08-27 23:45:05,640 : INFO : h_r_error: 25.979249064709784\n", + "2018-08-27 23:45:05,644 : INFO : h_r_error: 25.979249064709784\n", + "2018-08-27 23:45:05,645 : INFO : h_r_error: 29.8061847244872\n", + "2018-08-27 23:45:05,648 : INFO : h_r_error: 29.8061847244872\n", + "2018-08-27 23:45:05,650 : INFO : h_r_error: 52.84119446390539\n", + "2018-08-27 23:45:05,652 : INFO : h_r_error: 52.7801514797472\n", + "2018-08-27 23:45:05,654 : INFO : h_r_error: 52.7801514797472\n", + "2018-08-27 23:45:05,661 : INFO : h_r_error: 33.94928756332722\n", + "2018-08-27 23:45:05,663 : INFO : h_r_error: 33.94928756332722\n", + "2018-08-27 23:45:05,672 : INFO : h_r_error: 20.354985913833314\n", + "2018-08-27 23:45:05,674 : INFO : h_r_error: 20.354985913833314\n", + "2018-08-27 23:45:05,675 : INFO : h_r_error: 23.64560299091939\n", + "2018-08-27 23:45:05,677 : INFO : h_r_error: 23.62124568144335\n", + "2018-08-27 23:45:05,679 : INFO : h_r_error: 23.62124568144335\n", + "2018-08-27 23:45:05,680 : INFO : h_r_error: 37.16725674913654\n", + "2018-08-27 23:45:05,683 : INFO : h_r_error: 37.16725674913654\n", + "2018-08-27 23:45:05,689 : INFO : h_r_error: 64.97198348046334\n", + "2018-08-27 23:45:05,691 : INFO : h_r_error: 64.87983425584318\n", + "2018-08-27 23:45:05,692 : INFO : h_r_error: 64.87983425584318\n", + "2018-08-27 23:45:05,727 : INFO : h_r_error: 99.06825850649193\n", + "2018-08-27 23:45:05,728 : INFO : h_r_error: 98.72474555302786\n", + "2018-08-27 23:45:05,734 : INFO : h_r_error: 98.72474555302786\n", + "2018-08-27 23:45:05,747 : INFO : h_r_error: 179.04503907397066\n", + "2018-08-27 23:45:05,748 : INFO : h_r_error: 178.57702725569155\n", + "2018-08-27 23:45:05,758 : INFO : h_r_error: 178.57702725569155\n", + "2018-08-27 23:45:05,759 : INFO : h_r_error: 335.35421500504293\n", + "2018-08-27 23:45:05,762 : INFO : h_r_error: 333.8530751744872\n", + "2018-08-27 23:45:05,765 : INFO : h_r_error: 333.8530751744872\n", + "2018-08-27 23:45:05,796 : INFO : h_r_error: 47.2536783283022\n", + "2018-08-27 23:45:05,802 : INFO : h_r_error: 47.190449825684354\n", + "2018-08-27 23:45:05,805 : INFO : h_r_error: 47.190449825684354\n", + "2018-08-27 23:45:05,812 : INFO : h_r_error: 14.968815337313723\n", + "2018-08-27 23:45:05,813 : INFO : h_r_error: 14.968815337313723\n", + "2018-08-27 23:45:05,820 : INFO : h_r_error: 112.52057260382836\n", + "2018-08-27 23:45:05,821 : INFO : h_r_error: 112.38726877697576\n", + "2018-08-27 23:45:05,823 : INFO : h_r_error: 112.38726877697576\n", + "2018-08-27 23:45:05,825 : INFO : h_r_error: 32.395637388083166\n", + "2018-08-27 23:45:05,829 : INFO : h_r_error: 32.36262920454868\n", + "2018-08-27 23:45:05,836 : INFO : h_r_error: 32.36262920454868\n", + "2018-08-27 23:45:05,837 : INFO : h_r_error: 187.32958768431712\n", + "2018-08-27 23:45:05,838 : INFO : h_r_error: 185.69505549419995\n", + "2018-08-27 23:45:05,840 : INFO : h_r_error: 185.69505549419995\n", + "2018-08-27 23:45:05,842 : INFO : h_r_error: 74.93787242619476\n", + "2018-08-27 23:45:05,861 : INFO : h_r_error: 74.5932102756425\n", + "2018-08-27 23:45:05,866 : INFO : h_r_error: 74.5932102756425\n", + "2018-08-27 23:45:05,874 : INFO : h_r_error: 132.4055732421054\n", + "2018-08-27 23:45:05,875 : INFO : h_r_error: 132.1276966294472\n", + "2018-08-27 23:45:05,877 : INFO : h_r_error: 132.1276966294472\n", + "2018-08-27 23:45:05,879 : INFO : h_r_error: 46.97965418138645\n", + "2018-08-27 23:45:05,882 : INFO : h_r_error: 46.7933300267057\n", + "2018-08-27 23:45:05,894 : INFO : h_r_error: 46.7933300267057\n", + "2018-08-27 23:45:05,902 : INFO : h_r_error: 27.980124491600225\n", + "2018-08-27 23:45:05,911 : INFO : h_r_error: 27.924251103102566\n", + "2018-08-27 23:45:05,913 : INFO : h_r_error: 27.924251103102566\n", + "2018-08-27 23:45:05,915 : INFO : h_r_error: 178.47627018627526\n", + "2018-08-27 23:45:05,926 : INFO : h_r_error: 177.96137325159953\n", + "2018-08-27 23:45:05,928 : INFO : h_r_error: 177.96137325159953\n", + "2018-08-27 23:45:05,929 : INFO : h_r_error: 205.78640880959267\n", + "2018-08-27 23:45:05,931 : INFO : h_r_error: 205.51640533362584\n", + "2018-08-27 23:45:05,932 : INFO : h_r_error: 205.51640533362584\n", + "2018-08-27 23:45:05,936 : INFO : h_r_error: 165.72778645180028\n", + "2018-08-27 23:45:05,946 : INFO : h_r_error: 164.4519068718957\n", + "2018-08-27 23:45:05,948 : INFO : h_r_error: 164.4519068718957\n", + "2018-08-27 23:45:05,949 : INFO : h_r_error: 105.37569941129567\n", + "2018-08-27 23:45:05,950 : INFO : h_r_error: 104.86209218871038\n", + "2018-08-27 23:45:05,953 : INFO : h_r_error: 104.86209218871038\n", + "2018-08-27 23:45:05,954 : INFO : h_r_error: 186.76346833795128\n", + "2018-08-27 23:45:05,960 : INFO : h_r_error: 186.41293000306027\n", + "2018-08-27 23:45:05,961 : INFO : h_r_error: 186.41293000306027\n", + "2018-08-27 23:45:05,963 : INFO : h_r_error: 32.10089708965288\n", + "2018-08-27 23:45:05,964 : INFO : h_r_error: 31.99742808386358\n", + "2018-08-27 23:45:05,968 : INFO : h_r_error: 31.99742808386358\n", + "2018-08-27 23:45:05,970 : INFO : h_r_error: 63.02336627000323\n", + "2018-08-27 23:45:05,975 : INFO : h_r_error: 62.931981535390825\n", + "2018-08-27 23:45:05,984 : INFO : h_r_error: 62.931981535390825\n", + "2018-08-27 23:45:05,985 : INFO : h_r_error: 4.445971501313922\n", + "2018-08-27 23:45:05,987 : INFO : h_r_error: 4.445971501313922\n", + "2018-08-27 23:45:05,988 : INFO : h_r_error: 95.66312450298761\n", + "2018-08-27 23:45:05,989 : INFO : h_r_error: 95.4790415852222\n", + "2018-08-27 23:45:05,992 : INFO : h_r_error: 95.4790415852222\n", + "2018-08-27 23:45:05,999 : INFO : h_r_error: 191.28919082958342\n", + "2018-08-27 23:45:06,001 : INFO : h_r_error: 190.95753988365064\n", + "2018-08-27 23:45:06,003 : INFO : h_r_error: 190.95753988365064\n", + "2018-08-27 23:45:06,004 : INFO : h_r_error: 52.844820841763486\n", + "2018-08-27 23:45:06,005 : INFO : h_r_error: 52.791762190290086\n", + "2018-08-27 23:45:06,026 : INFO : h_r_error: 52.791762190290086\n", + "2018-08-27 23:45:06,029 : INFO : h_r_error: 37.00212969231467\n", + "2018-08-27 23:45:06,038 : INFO : h_r_error: 36.956456446589925\n", + "2018-08-27 23:45:06,041 : INFO : h_r_error: 36.956456446589925\n", + "2018-08-27 23:45:06,044 : INFO : h_r_error: 34.313255425376816\n", + "2018-08-27 23:45:06,046 : INFO : h_r_error: 34.313255425376816\n", + "2018-08-27 23:45:06,054 : INFO : h_r_error: 31.021435341026695\n", + "2018-08-27 23:45:06,056 : INFO : h_r_error: 30.973497244400335\n", + "2018-08-27 23:45:06,058 : INFO : h_r_error: 30.973497244400335\n", + "2018-08-27 23:45:06,061 : INFO : h_r_error: 77.02730881152762\n", + "2018-08-27 23:45:06,065 : INFO : h_r_error: 76.78731001494567\n", + "2018-08-27 23:45:06,068 : INFO : h_r_error: 76.78731001494567\n", + "2018-08-27 23:45:06,072 : INFO : h_r_error: 11.384129605615914\n", + "2018-08-27 23:45:06,077 : INFO : h_r_error: 11.384129605615914\n", + "2018-08-27 23:45:06,082 : INFO : h_r_error: 27.958567403030553\n", + "2018-08-27 23:45:06,086 : INFO : h_r_error: 27.910555959090008\n", + "2018-08-27 23:45:06,094 : INFO : h_r_error: 27.910555959090008\n", + "2018-08-27 23:45:06,100 : INFO : h_r_error: 64.67914457066533\n", + "2018-08-27 23:45:06,102 : INFO : h_r_error: 64.51811744127323\n", + "2018-08-27 23:45:06,104 : INFO : h_r_error: 64.51811744127323\n", + "2018-08-27 23:45:06,107 : INFO : h_r_error: 63.392112641950625\n", + "2018-08-27 23:45:06,110 : INFO : h_r_error: 63.280753817876544\n", + "2018-08-27 23:45:06,116 : INFO : h_r_error: 63.280753817876544\n", + "2018-08-27 23:45:06,118 : INFO : h_r_error: 56.04585759813135\n", + "2018-08-27 23:45:06,120 : INFO : h_r_error: 55.9557400064021\n", + "2018-08-27 23:45:06,124 : INFO : h_r_error: 55.9557400064021\n", + "2018-08-27 23:45:06,126 : INFO : h_r_error: 32.452653989076516\n", + "2018-08-27 23:45:06,131 : INFO : h_r_error: 32.417606966286314\n", + "2018-08-27 23:45:06,135 : INFO : h_r_error: 32.417606966286314\n", + "2018-08-27 23:45:06,137 : INFO : h_r_error: 87.75269609562916\n", + "2018-08-27 23:45:06,140 : INFO : h_r_error: 87.75269609562916\n", + "2018-08-27 23:45:06,142 : INFO : h_r_error: 20.8121550517316\n", + "2018-08-27 23:45:06,145 : INFO : h_r_error: 20.8121550517316\n", + "2018-08-27 23:45:06,148 : INFO : h_r_error: 19.842191887603086\n", + "2018-08-27 23:45:06,152 : INFO : h_r_error: 19.782324395469708\n", + "2018-08-27 23:45:06,156 : INFO : h_r_error: 19.782324395469708\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:06,164 : INFO : h_r_error: 50.440106981337415\n", + "2018-08-27 23:45:06,166 : INFO : h_r_error: 50.254724132608246\n", + "2018-08-27 23:45:06,172 : INFO : h_r_error: 50.254724132608246\n", + "2018-08-27 23:45:06,174 : INFO : h_r_error: 19.340362349877598\n", + "2018-08-27 23:45:06,178 : INFO : h_r_error: 19.340362349877598\n", + "2018-08-27 23:45:06,186 : INFO : h_r_error: 27.70996952427579\n", + "2018-08-27 23:45:06,188 : INFO : h_r_error: 27.6464740101641\n", + "2018-08-27 23:45:06,195 : INFO : h_r_error: 27.6464740101641\n", + "2018-08-27 23:45:06,202 : INFO : h_r_error: 39.34625996403188\n", + "2018-08-27 23:45:06,205 : INFO : h_r_error: 39.34625996403188\n", + "2018-08-27 23:45:06,208 : INFO : h_r_error: 33.10212029224958\n", + "2018-08-27 23:45:06,211 : INFO : h_r_error: 32.99430139672799\n", + "2018-08-27 23:45:06,214 : INFO : h_r_error: 32.99430139672799\n", + "2018-08-27 23:45:06,216 : INFO : h_r_error: 46.07887389967507\n", + "2018-08-27 23:45:06,218 : INFO : h_r_error: 46.01851588024032\n", + "2018-08-27 23:45:06,221 : INFO : h_r_error: 46.01851588024032\n", + "2018-08-27 23:45:06,226 : INFO : h_r_error: 77.33002810440445\n", + "2018-08-27 23:45:06,234 : INFO : h_r_error: 76.32402666389694\n", + "2018-08-27 23:45:06,236 : INFO : h_r_error: 76.32402666389694\n", + "2018-08-27 23:45:06,238 : INFO : h_r_error: 22.879081050323666\n", + "2018-08-27 23:45:06,242 : INFO : h_r_error: 22.879081050323666\n", + "2018-08-27 23:45:06,250 : INFO : h_r_error: 27.057964873081623\n", + "2018-08-27 23:45:06,252 : INFO : h_r_error: 26.994707692536693\n", + "2018-08-27 23:45:06,254 : INFO : h_r_error: 26.994707692536693\n", + "2018-08-27 23:45:06,262 : INFO : h_r_error: 14.789998148651417\n", + "2018-08-27 23:45:06,266 : INFO : h_r_error: 14.773387842484002\n", + "2018-08-27 23:45:06,269 : INFO : h_r_error: 14.773387842484002\n", + "2018-08-27 23:45:06,272 : INFO : h_r_error: 55.17214755726749\n", + "2018-08-27 23:45:06,274 : INFO : h_r_error: 55.04697279357498\n", + "2018-08-27 23:45:06,276 : INFO : h_r_error: 55.04697279357498\n", + "2018-08-27 23:45:06,279 : INFO : h_r_error: 26.31828241396979\n", + "2018-08-27 23:45:06,282 : INFO : h_r_error: 26.264123206310984\n", + "2018-08-27 23:45:06,284 : INFO : h_r_error: 26.264123206310984\n", + "2018-08-27 23:45:06,289 : INFO : h_r_error: 103.36830288020141\n", + "2018-08-27 23:45:06,292 : INFO : h_r_error: 103.01090882770022\n", + "2018-08-27 23:45:06,294 : INFO : h_r_error: 103.01090882770022\n", + "2018-08-27 23:45:06,297 : INFO : h_r_error: 172.58741339995723\n", + "2018-08-27 23:45:06,299 : INFO : h_r_error: 171.40755882869837\n", + "2018-08-27 23:45:06,302 : INFO : h_r_error: 171.40755882869837\n", + "2018-08-27 23:45:06,305 : INFO : h_r_error: 13.118586292852434\n", + "2018-08-27 23:45:06,307 : INFO : h_r_error: 13.087253172761736\n", + "2018-08-27 23:45:06,308 : INFO : h_r_error: 13.087253172761736\n", + "2018-08-27 23:45:06,309 : INFO : h_r_error: 73.29408715111408\n", + "2018-08-27 23:45:06,311 : INFO : h_r_error: 73.08672529892424\n", + "2018-08-27 23:45:06,313 : INFO : h_r_error: 73.08672529892424\n", + "2018-08-27 23:45:06,315 : INFO : h_r_error: 11.897102719871445\n", + "2018-08-27 23:45:06,316 : INFO : h_r_error: 11.897102719871445\n", + "2018-08-27 23:45:06,318 : INFO : h_r_error: 199.44797539388057\n", + "2018-08-27 23:45:06,320 : INFO : h_r_error: 198.69494813376937\n", + "2018-08-27 23:45:06,322 : INFO : h_r_error: 198.69494813376937\n", + "2018-08-27 23:45:06,353 : INFO : h_r_error: 92.07381390075307\n", + "2018-08-27 23:45:06,358 : INFO : h_r_error: 91.68274898852272\n", + "2018-08-27 23:45:06,366 : INFO : h_r_error: 91.68274898852272\n", + "2018-08-27 23:45:06,369 : INFO : h_r_error: 60.689621476048984\n", + "2018-08-27 23:45:06,372 : INFO : h_r_error: 60.463064839282694\n", + "2018-08-27 23:45:06,384 : INFO : h_r_error: 60.463064839282694\n", + "2018-08-27 23:45:06,387 : INFO : h_r_error: 10.474448582792583\n", + "2018-08-27 23:45:06,391 : INFO : h_r_error: 10.474448582792583\n", + "2018-08-27 23:45:06,393 : INFO : h_r_error: 751.8429857324684\n", + "2018-08-27 23:45:06,399 : INFO : h_r_error: 749.3390062923108\n", + "2018-08-27 23:45:06,404 : INFO : h_r_error: 749.3390062923108\n", + "2018-08-27 23:45:06,407 : INFO : h_r_error: 40.02965753359087\n", + "2018-08-27 23:45:06,409 : INFO : h_r_error: 40.02965753359087\n", + "2018-08-27 23:45:06,412 : INFO : h_r_error: 39.009650463506205\n", + "2018-08-27 23:45:06,414 : INFO : h_r_error: 38.96155458501223\n", + "2018-08-27 23:45:06,417 : INFO : h_r_error: 38.96155458501223\n", + "2018-08-27 23:45:06,419 : INFO : h_r_error: 24.659700505079286\n", + "2018-08-27 23:45:06,422 : INFO : h_r_error: 24.62929739821578\n", + "2018-08-27 23:45:06,423 : INFO : h_r_error: 24.62929739821578\n", + "2018-08-27 23:45:06,425 : INFO : h_r_error: 42.351114332354484\n", + "2018-08-27 23:45:06,427 : INFO : h_r_error: 42.30641092293544\n", + "2018-08-27 23:45:06,429 : INFO : h_r_error: 42.30641092293544\n", + "2018-08-27 23:45:06,431 : INFO : h_r_error: 34.86845654141187\n", + "2018-08-27 23:45:06,432 : INFO : h_r_error: 34.8314296489811\n", + "2018-08-27 23:45:06,434 : INFO : h_r_error: 34.8314296489811\n", + "2018-08-27 23:45:06,437 : INFO : h_r_error: 64.8052758326794\n", + "2018-08-27 23:45:06,438 : INFO : h_r_error: 64.7001121450428\n", + "2018-08-27 23:45:06,440 : INFO : h_r_error: 64.7001121450428\n", + "2018-08-27 23:45:06,441 : INFO : h_r_error: 42.13088494764802\n", + "2018-08-27 23:45:06,443 : INFO : h_r_error: 42.049247850633336\n", + "2018-08-27 23:45:06,444 : INFO : h_r_error: 42.049247850633336\n", + "2018-08-27 23:45:06,446 : INFO : h_r_error: 59.571785864921225\n", + "2018-08-27 23:45:06,448 : INFO : h_r_error: 59.35547008584172\n", + "2018-08-27 23:45:06,449 : INFO : h_r_error: 59.35547008584172\n", + "2018-08-27 23:45:06,451 : INFO : h_r_error: 6.97856595143224\n", + "2018-08-27 23:45:06,453 : INFO : h_r_error: 6.97856595143224\n", + "2018-08-27 23:45:06,454 : INFO : h_r_error: 33.520833048507825\n", + "2018-08-27 23:45:06,456 : INFO : h_r_error: 33.48032048688657\n", + "2018-08-27 23:45:06,458 : INFO : h_r_error: 33.48032048688657\n", + "2018-08-27 23:45:06,459 : INFO : h_r_error: 60.35500803276588\n", + "2018-08-27 23:45:06,460 : INFO : h_r_error: 60.218161229514884\n", + "2018-08-27 23:45:06,462 : INFO : h_r_error: 60.218161229514884\n", + "2018-08-27 23:45:06,463 : INFO : h_r_error: 56.0592452616819\n", + "2018-08-27 23:45:06,465 : INFO : h_r_error: 55.87927663290314\n", + "2018-08-27 23:45:06,466 : INFO : h_r_error: 55.87927663290314\n", + "2018-08-27 23:45:06,467 : INFO : h_r_error: 15.88925002860464\n", + "2018-08-27 23:45:06,469 : INFO : h_r_error: 15.88925002860464\n", + "2018-08-27 23:45:06,470 : INFO : h_r_error: 31.80249673729911\n", + "2018-08-27 23:45:06,471 : INFO : h_r_error: 31.73792925836081\n", + "2018-08-27 23:45:06,473 : INFO : h_r_error: 31.73792925836081\n", + "2018-08-27 23:45:06,474 : INFO : h_r_error: 19.172901877639877\n", + "2018-08-27 23:45:06,476 : INFO : h_r_error: 19.146327038051968\n", + "2018-08-27 23:45:06,477 : INFO : h_r_error: 19.146327038051968\n", + "2018-08-27 23:45:06,478 : INFO : h_r_error: 50.16015510522851\n", + "2018-08-27 23:45:06,480 : INFO : h_r_error: 50.016215163453005\n", + "2018-08-27 23:45:06,481 : INFO : h_r_error: 50.016215163453005\n", + "2018-08-27 23:45:06,483 : INFO : h_r_error: 36.42899740673386\n", + "2018-08-27 23:45:06,484 : INFO : h_r_error: 36.36427611082331\n", + "2018-08-27 23:45:06,486 : INFO : h_r_error: 36.36427611082331\n", + "2018-08-27 23:45:06,487 : INFO : h_r_error: 18.141566134596253\n", + "2018-08-27 23:45:06,488 : INFO : h_r_error: 18.11984143221243\n", + "2018-08-27 23:45:06,490 : INFO : h_r_error: 18.11984143221243\n", + "2018-08-27 23:45:06,491 : INFO : h_r_error: 121.71320558428074\n", + "2018-08-27 23:45:06,493 : INFO : h_r_error: 121.41939166686831\n", + "2018-08-27 23:45:06,494 : INFO : h_r_error: 121.41939166686831\n", + "2018-08-27 23:45:06,496 : INFO : h_r_error: 20.096484401115458\n", + "2018-08-27 23:45:06,497 : INFO : h_r_error: 20.076316152456446\n", + "2018-08-27 23:45:06,498 : INFO : h_r_error: 20.076316152456446\n", + "2018-08-27 23:45:06,500 : INFO : h_r_error: 23.3483845678367\n", + "2018-08-27 23:45:06,502 : INFO : h_r_error: 23.3483845678367\n", + "2018-08-27 23:45:06,503 : INFO : h_r_error: 187.32763290400055\n", + "2018-08-27 23:45:06,504 : INFO : h_r_error: 186.7252945689972\n", + "2018-08-27 23:45:06,506 : INFO : h_r_error: 186.7252945689972\n", + "2018-08-27 23:45:06,508 : INFO : h_r_error: 34.170138517341954\n", + "2018-08-27 23:45:06,509 : INFO : h_r_error: 34.06182035179449\n", + "2018-08-27 23:45:06,511 : INFO : h_r_error: 34.06182035179449\n", + "2018-08-27 23:45:06,512 : INFO : h_r_error: 58.79001197043649\n", + "2018-08-27 23:45:06,514 : INFO : h_r_error: 58.685649119268305\n", + "2018-08-27 23:45:06,515 : INFO : h_r_error: 58.685649119268305\n", + "2018-08-27 23:45:06,517 : INFO : h_r_error: 30.497685224301343\n", + "2018-08-27 23:45:06,518 : INFO : h_r_error: 30.440191807581403\n", + "2018-08-27 23:45:06,519 : INFO : h_r_error: 30.440191807581403\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:06,521 : INFO : h_r_error: 48.870374115562875\n", + "2018-08-27 23:45:06,523 : INFO : h_r_error: 48.80457665707309\n", + "2018-08-27 23:45:06,524 : INFO : h_r_error: 48.80457665707309\n", + "2018-08-27 23:45:06,525 : INFO : h_r_error: 35.74502855493133\n", + "2018-08-27 23:45:06,527 : INFO : h_r_error: 35.57787192915626\n", + "2018-08-27 23:45:06,529 : INFO : h_r_error: 35.57787192915626\n", + "2018-08-27 23:45:06,530 : INFO : h_r_error: 48.18625849017527\n", + "2018-08-27 23:45:06,532 : INFO : h_r_error: 48.04901727078026\n", + "2018-08-27 23:45:06,533 : INFO : h_r_error: 48.04901727078026\n", + "2018-08-27 23:45:06,535 : INFO : h_r_error: 52.86837858909793\n", + "2018-08-27 23:45:06,537 : INFO : h_r_error: 52.86837858909793\n", + "2018-08-27 23:45:06,538 : INFO : h_r_error: 20.257427128731027\n", + "2018-08-27 23:45:06,540 : INFO : h_r_error: 20.257427128731027\n", + "2018-08-27 23:45:06,541 : INFO : h_r_error: 65.57066210251112\n", + "2018-08-27 23:45:06,542 : INFO : h_r_error: 65.57066210251112\n", + "2018-08-27 23:45:06,544 : INFO : h_r_error: 10.480831776998496\n", + "2018-08-27 23:45:06,545 : INFO : h_r_error: 10.480831776998496\n", + "2018-08-27 23:45:06,547 : INFO : h_r_error: 16.274183215626298\n", + "2018-08-27 23:45:06,548 : INFO : h_r_error: 16.274183215626298\n", + "2018-08-27 23:45:06,549 : INFO : h_r_error: 70.35438306975556\n", + "2018-08-27 23:45:06,551 : INFO : h_r_error: 70.35438306975556\n", + "2018-08-27 23:45:06,552 : INFO : h_r_error: 34.35981494593926\n", + "2018-08-27 23:45:06,562 : INFO : h_r_error: 34.313182735315976\n", + "2018-08-27 23:45:06,563 : INFO : h_r_error: 34.313182735315976\n", + "2018-08-27 23:45:06,565 : INFO : h_r_error: 86.09141225117234\n", + "2018-08-27 23:45:06,569 : INFO : h_r_error: 85.8620640839902\n", + "2018-08-27 23:45:06,571 : INFO : h_r_error: 85.8620640839902\n", + "2018-08-27 23:45:06,578 : INFO : h_r_error: 10.302173518640718\n", + "2018-08-27 23:45:06,580 : INFO : h_r_error: 10.28532212328511\n", + "2018-08-27 23:45:06,581 : INFO : h_r_error: 10.28532212328511\n", + "2018-08-27 23:45:06,584 : INFO : h_r_error: 51.856711582095706\n", + "2018-08-27 23:45:06,585 : INFO : h_r_error: 51.74513327943563\n", + "2018-08-27 23:45:06,592 : INFO : h_r_error: 51.74513327943563\n", + "2018-08-27 23:45:06,593 : INFO : h_r_error: 56.993447396144255\n", + "2018-08-27 23:45:06,595 : INFO : h_r_error: 56.90006026957895\n", + "2018-08-27 23:45:06,597 : INFO : h_r_error: 56.90006026957895\n", + "2018-08-27 23:45:06,632 : INFO : h_r_error: 149.68983759911333\n", + "2018-08-27 23:45:06,636 : INFO : h_r_error: 149.34962422287484\n", + "2018-08-27 23:45:06,641 : INFO : h_r_error: 149.34962422287484\n", + "2018-08-27 23:45:06,643 : INFO : h_r_error: 83.95969400786704\n", + "2018-08-27 23:45:06,648 : INFO : h_r_error: 83.64329507091456\n", + "2018-08-27 23:45:06,650 : INFO : h_r_error: 83.64329507091456\n", + "2018-08-27 23:45:06,652 : INFO : h_r_error: 39.67731035478707\n", + "2018-08-27 23:45:06,665 : INFO : h_r_error: 39.61648109099629\n", + "2018-08-27 23:45:06,670 : INFO : h_r_error: 39.61648109099629\n", + "2018-08-27 23:45:06,673 : INFO : h_r_error: 302.374156880696\n", + "2018-08-27 23:45:06,676 : INFO : h_r_error: 301.75716347675416\n", + "2018-08-27 23:45:06,679 : INFO : h_r_error: 301.75716347675416\n", + "2018-08-27 23:45:06,684 : INFO : h_r_error: 27.485364922825124\n", + "2018-08-27 23:45:06,686 : INFO : h_r_error: 27.44219782588137\n", + "2018-08-27 23:45:06,688 : INFO : h_r_error: 27.44219782588137\n", + "2018-08-27 23:45:06,689 : INFO : h_r_error: 28.22365214592648\n", + "2018-08-27 23:45:06,694 : INFO : h_r_error: 28.22365214592648\n", + "2018-08-27 23:45:06,696 : INFO : h_r_error: 31.654916269183314\n", + "2018-08-27 23:45:06,701 : INFO : h_r_error: 31.591500055375132\n", + "2018-08-27 23:45:06,703 : INFO : h_r_error: 31.591500055375132\n", + "2018-08-27 23:45:06,705 : INFO : h_r_error: 36.738093269773806\n", + "2018-08-27 23:45:06,707 : INFO : h_r_error: 36.738093269773806\n", + "2018-08-27 23:45:06,708 : INFO : h_r_error: 82.67288211492406\n", + "2018-08-27 23:45:06,710 : INFO : h_r_error: 82.38750869434931\n", + "2018-08-27 23:45:06,712 : INFO : h_r_error: 82.38750869434931\n", + "2018-08-27 23:45:06,714 : INFO : h_r_error: 67.63506802978425\n", + "2018-08-27 23:45:06,715 : INFO : h_r_error: 67.52835846982184\n", + "2018-08-27 23:45:06,717 : INFO : h_r_error: 67.52835846982184\n", + "2018-08-27 23:45:06,719 : INFO : h_r_error: 37.377458519749325\n", + "2018-08-27 23:45:06,720 : INFO : h_r_error: 37.27747537099155\n", + "2018-08-27 23:45:06,722 : INFO : h_r_error: 37.27747537099155\n", + "2018-08-27 23:45:06,723 : INFO : h_r_error: 16.401439944064325\n", + "2018-08-27 23:45:06,725 : INFO : h_r_error: 16.401439944064325\n", + "2018-08-27 23:45:06,727 : INFO : h_r_error: 38.786643808415924\n", + "2018-08-27 23:45:06,729 : INFO : h_r_error: 38.73382391252616\n", + "2018-08-27 23:45:06,731 : INFO : h_r_error: 38.73382391252616\n", + "2018-08-27 23:45:06,732 : INFO : h_r_error: 39.77904427651398\n", + "2018-08-27 23:45:06,734 : INFO : h_r_error: 39.71032595660934\n", + "2018-08-27 23:45:06,736 : INFO : h_r_error: 39.71032595660934\n", + "2018-08-27 23:45:06,737 : INFO : h_r_error: 58.024893517691424\n", + "2018-08-27 23:45:06,739 : INFO : h_r_error: 57.9430248866659\n", + "2018-08-27 23:45:06,741 : INFO : h_r_error: 57.9430248866659\n", + "2018-08-27 23:45:06,743 : INFO : h_r_error: 113.102723664204\n", + "2018-08-27 23:45:06,745 : INFO : h_r_error: 112.81086533627527\n", + "2018-08-27 23:45:06,747 : INFO : h_r_error: 112.81086533627527\n", + "2018-08-27 23:45:06,748 : INFO : h_r_error: 166.23502262182325\n", + "2018-08-27 23:45:06,756 : INFO : h_r_error: 165.50733596637235\n", + "2018-08-27 23:45:06,757 : INFO : h_r_error: 165.50733596637235\n", + "2018-08-27 23:45:06,763 : INFO : h_r_error: 17.336000029676168\n", + "2018-08-27 23:45:06,765 : INFO : h_r_error: 17.336000029676168\n", + "2018-08-27 23:45:06,767 : INFO : h_r_error: 179.87060913866378\n", + "2018-08-27 23:45:06,768 : INFO : h_r_error: 179.27672090163784\n", + "2018-08-27 23:45:06,772 : INFO : h_r_error: 179.27672090163784\n", + "2018-08-27 23:45:06,774 : INFO : h_r_error: 69.06484831004774\n", + "2018-08-27 23:45:06,780 : INFO : h_r_error: 68.95660505484838\n", + "2018-08-27 23:45:06,782 : INFO : h_r_error: 68.95660505484838\n", + "2018-08-27 23:45:06,783 : INFO : h_r_error: 24.933852847424284\n", + "2018-08-27 23:45:06,788 : INFO : h_r_error: 24.889969624477303\n", + "2018-08-27 23:45:06,789 : INFO : h_r_error: 24.889969624477303\n", + "2018-08-27 23:45:06,796 : INFO : h_r_error: 43.69636421468876\n", + "2018-08-27 23:45:06,797 : INFO : h_r_error: 43.626010581896004\n", + "2018-08-27 23:45:06,799 : INFO : h_r_error: 43.626010581896004\n", + "2018-08-27 23:45:06,804 : INFO : h_r_error: 159.33475265556075\n", + "2018-08-27 23:45:06,805 : INFO : h_r_error: 159.0585973531915\n", + "2018-08-27 23:45:06,807 : INFO : h_r_error: 159.0585973531915\n", + "2018-08-27 23:45:06,812 : INFO : h_r_error: 2420.798294211933\n", + "2018-08-27 23:45:06,813 : INFO : h_r_error: 2418.046195467786\n", + "2018-08-27 23:45:06,815 : INFO : h_r_error: 2418.046195467786\n", + "2018-08-27 23:45:06,820 : INFO : h_r_error: 220.0952758715873\n", + "2018-08-27 23:45:06,821 : INFO : h_r_error: 219.7210020978575\n", + "2018-08-27 23:45:06,822 : INFO : h_r_error: 219.7210020978575\n", + "2018-08-27 23:45:06,828 : INFO : h_r_error: 35.31629731482669\n", + "2018-08-27 23:45:06,829 : INFO : h_r_error: 35.27746129509434\n", + "2018-08-27 23:45:06,831 : INFO : h_r_error: 35.27746129509434\n", + "2018-08-27 23:45:06,833 : INFO : h_r_error: 72.86787847818513\n", + "2018-08-27 23:45:06,836 : INFO : h_r_error: 72.67936663469393\n", + "2018-08-27 23:45:06,838 : INFO : h_r_error: 72.67936663469393\n", + "2018-08-27 23:45:06,841 : INFO : h_r_error: 8.840196157407089\n", + "2018-08-27 23:45:06,843 : INFO : h_r_error: 8.828589647530992\n", + "2018-08-27 23:45:06,844 : INFO : h_r_error: 8.828589647530992\n", + "2018-08-27 23:45:06,850 : INFO : h_r_error: 6.446625288380513\n", + "2018-08-27 23:45:06,851 : INFO : h_r_error: 6.446625288380513\n", + "2018-08-27 23:45:06,853 : INFO : h_r_error: 196.70626576210694\n", + "2018-08-27 23:45:06,858 : INFO : h_r_error: 196.0559774687957\n", + "2018-08-27 23:45:06,859 : INFO : h_r_error: 196.0559774687957\n", + "2018-08-27 23:45:06,865 : INFO : h_r_error: 420.01662482736725\n", + "2018-08-27 23:45:06,867 : INFO : h_r_error: 419.5296284289973\n", + "2018-08-27 23:45:06,868 : INFO : h_r_error: 419.5296284289973\n", + "2018-08-27 23:45:06,870 : INFO : h_r_error: 91.8577766049088\n", + "2018-08-27 23:45:06,871 : INFO : h_r_error: 91.48988970111745\n", + "2018-08-27 23:45:06,873 : INFO : h_r_error: 91.48988970111745\n", + "2018-08-27 23:45:06,875 : INFO : h_r_error: 18.86905734520775\n", + "2018-08-27 23:45:06,877 : INFO : h_r_error: 18.86905734520775\n", + "2018-08-27 23:45:06,878 : INFO : h_r_error: 48.52785670109704\n", + "2018-08-27 23:45:06,880 : INFO : h_r_error: 48.38646507627017\n", + "2018-08-27 23:45:06,883 : INFO : h_r_error: 48.38646507627017\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:06,884 : INFO : h_r_error: 44.17078675617944\n", + "2018-08-27 23:45:06,886 : INFO : h_r_error: 44.039771212550974\n", + "2018-08-27 23:45:06,888 : INFO : h_r_error: 44.039771212550974\n", + "2018-08-27 23:45:06,890 : INFO : h_r_error: 213.9284918964127\n", + "2018-08-27 23:45:06,891 : INFO : h_r_error: 208.51058417211948\n", + "2018-08-27 23:45:06,893 : INFO : h_r_error: 208.51058417211948\n", + "2018-08-27 23:45:06,895 : INFO : h_r_error: 29.174511718818835\n", + "2018-08-27 23:45:06,898 : INFO : h_r_error: 29.174511718818835\n", + "2018-08-27 23:45:06,900 : INFO : h_r_error: 28.84894596136431\n", + "2018-08-27 23:45:06,901 : INFO : h_r_error: 28.814036561553365\n", + "2018-08-27 23:45:06,903 : INFO : h_r_error: 28.814036561553365\n", + "2018-08-27 23:45:06,904 : INFO : h_r_error: 47.65804740525725\n", + "2018-08-27 23:45:06,906 : INFO : h_r_error: 47.5779877472347\n", + "2018-08-27 23:45:06,908 : INFO : h_r_error: 47.5779877472347\n", + "2018-08-27 23:45:06,909 : INFO : h_r_error: 135.9279038949289\n", + "2018-08-27 23:45:06,911 : INFO : h_r_error: 135.6096671792661\n", + "2018-08-27 23:45:06,914 : INFO : h_r_error: 135.6096671792661\n", + "2018-08-27 23:45:06,916 : INFO : h_r_error: 46.666044527211824\n", + "2018-08-27 23:45:06,918 : INFO : h_r_error: 46.53018630273528\n", + "2018-08-27 23:45:06,919 : INFO : h_r_error: 46.53018630273528\n", + "2018-08-27 23:45:06,922 : INFO : h_r_error: 56.16669166194399\n", + "2018-08-27 23:45:06,923 : INFO : h_r_error: 56.075986909679045\n", + "2018-08-27 23:45:06,925 : INFO : h_r_error: 56.075986909679045\n", + "2018-08-27 23:45:06,926 : INFO : h_r_error: 181.5870722792497\n", + "2018-08-27 23:45:06,929 : INFO : h_r_error: 181.08323932419881\n", + "2018-08-27 23:45:06,931 : INFO : h_r_error: 181.08323932419881\n", + "2018-08-27 23:45:06,932 : INFO : h_r_error: 67.65777242278115\n", + "2018-08-27 23:45:06,934 : INFO : h_r_error: 67.5036042075808\n", + "2018-08-27 23:45:06,936 : INFO : h_r_error: 67.5036042075808\n", + "2018-08-27 23:45:06,938 : INFO : h_r_error: 118.7762114125263\n", + "2018-08-27 23:45:06,939 : INFO : h_r_error: 118.57952389342697\n", + "2018-08-27 23:45:06,941 : INFO : h_r_error: 118.57952389342697\n", + "2018-08-27 23:45:06,943 : INFO : h_r_error: 56.2550610286387\n", + "2018-08-27 23:45:06,945 : INFO : h_r_error: 56.17293940990067\n", + "2018-08-27 23:45:06,952 : INFO : h_r_error: 56.17293940990067\n", + "2018-08-27 23:45:06,960 : INFO : h_r_error: 113.64587975388629\n", + "2018-08-27 23:45:06,961 : INFO : h_r_error: 113.51290671188859\n", + "2018-08-27 23:45:06,963 : INFO : h_r_error: 113.51290671188859\n", + "2018-08-27 23:45:06,964 : INFO : h_r_error: 64.56179076672522\n", + "2018-08-27 23:45:06,966 : INFO : h_r_error: 64.46763057613119\n", + "2018-08-27 23:45:06,978 : INFO : h_r_error: 64.46763057613119\n", + "2018-08-27 23:45:06,979 : INFO : h_r_error: 45.46532453631538\n", + "2018-08-27 23:45:06,980 : INFO : h_r_error: 45.331374498719725\n", + "2018-08-27 23:45:06,982 : INFO : h_r_error: 45.331374498719725\n", + "2018-08-27 23:45:06,983 : INFO : h_r_error: 24.743945719629945\n", + "2018-08-27 23:45:06,996 : INFO : h_r_error: 24.743945719629945\n", + "2018-08-27 23:45:06,998 : INFO : h_r_error: 102.0603228986559\n", + "2018-08-27 23:45:07,009 : INFO : h_r_error: 101.89256597046132\n", + "2018-08-27 23:45:07,013 : INFO : h_r_error: 101.89256597046132\n", + "2018-08-27 23:45:07,017 : INFO : h_r_error: 44.51801859812947\n", + "2018-08-27 23:45:07,023 : INFO : h_r_error: 44.51801859812947\n", + "2018-08-27 23:45:07,029 : INFO : h_r_error: 43.82185718499035\n", + "2018-08-27 23:45:07,033 : INFO : h_r_error: 43.763949617779915\n", + "2018-08-27 23:45:07,036 : INFO : h_r_error: 43.763949617779915\n", + "2018-08-27 23:45:07,045 : INFO : h_r_error: 22.512671332379455\n", + "2018-08-27 23:45:07,046 : INFO : h_r_error: 22.480274982798786\n", + "2018-08-27 23:45:07,048 : INFO : h_r_error: 22.480274982798786\n", + "2018-08-27 23:45:07,056 : INFO : h_r_error: 8.998769112665686\n", + "2018-08-27 23:45:07,059 : INFO : h_r_error: 8.998769112665686\n", + "2018-08-27 23:45:07,061 : INFO : h_r_error: 69.25775026514857\n", + "2018-08-27 23:45:07,066 : INFO : h_r_error: 68.89454072168655\n", + "2018-08-27 23:45:07,071 : INFO : h_r_error: 68.89454072168655\n", + "2018-08-27 23:45:07,078 : INFO : h_r_error: 15.16887850359868\n", + "2018-08-27 23:45:07,080 : INFO : h_r_error: 15.133968966055873\n", + "2018-08-27 23:45:07,081 : INFO : h_r_error: 15.133968966055873\n", + "2018-08-27 23:45:07,083 : INFO : h_r_error: 9.47709001078825\n", + "2018-08-27 23:45:07,085 : INFO : h_r_error: 9.47709001078825\n", + "2018-08-27 23:45:07,086 : INFO : h_r_error: 62.94862991760564\n", + "2018-08-27 23:45:07,091 : INFO : h_r_error: 62.877607704999825\n", + "2018-08-27 23:45:07,093 : INFO : h_r_error: 62.877607704999825\n", + "2018-08-27 23:45:07,095 : INFO : h_r_error: 49.85209725222772\n", + "2018-08-27 23:45:07,103 : INFO : h_r_error: 49.76737611875927\n", + "2018-08-27 23:45:07,105 : INFO : h_r_error: 49.76737611875927\n", + "2018-08-27 23:45:07,108 : INFO : h_r_error: 65.13068459351398\n", + "2018-08-27 23:45:07,112 : INFO : h_r_error: 65.13068459351398\n", + "2018-08-27 23:45:07,116 : INFO : h_r_error: 79.9606775010255\n", + "2018-08-27 23:45:07,128 : INFO : h_r_error: 79.77202041367141\n", + "2018-08-27 23:45:07,130 : INFO : h_r_error: 79.77202041367141\n", + "2018-08-27 23:45:07,131 : INFO : h_r_error: 34.20213997453504\n", + "2018-08-27 23:45:07,145 : INFO : h_r_error: 34.20213997453504\n", + "2018-08-27 23:45:07,153 : INFO : h_r_error: 27.55865327260531\n", + "2018-08-27 23:45:07,155 : INFO : h_r_error: 27.51805497756257\n", + "2018-08-27 23:45:07,157 : INFO : h_r_error: 27.51805497756257\n", + "2018-08-27 23:45:07,158 : INFO : h_r_error: 41.25794018548675\n", + "2018-08-27 23:45:07,167 : INFO : h_r_error: 41.25794018548675\n", + "2018-08-27 23:45:07,178 : INFO : h_r_error: 27.468005725788768\n", + "2018-08-27 23:45:07,180 : INFO : h_r_error: 27.417843143763072\n", + "2018-08-27 23:45:07,181 : INFO : h_r_error: 27.417843143763072\n", + "2018-08-27 23:45:07,183 : INFO : h_r_error: 23.120598696621663\n", + "2018-08-27 23:45:07,184 : INFO : h_r_error: 23.08625936908043\n", + "2018-08-27 23:45:07,199 : INFO : h_r_error: 23.08625936908043\n", + "2018-08-27 23:45:07,202 : INFO : h_r_error: 110.12274374102111\n", + "2018-08-27 23:45:07,203 : INFO : h_r_error: 109.77761514956003\n", + "2018-08-27 23:45:07,206 : INFO : h_r_error: 109.77761514956003\n", + "2018-08-27 23:45:07,210 : INFO : h_r_error: 160.275059075259\n", + "2018-08-27 23:45:07,211 : INFO : h_r_error: 160.06147980806432\n", + "2018-08-27 23:45:07,219 : INFO : h_r_error: 160.06147980806432\n", + "2018-08-27 23:45:07,226 : INFO : h_r_error: 39.10040147438931\n", + "2018-08-27 23:45:07,227 : INFO : h_r_error: 38.947123013307845\n", + "2018-08-27 23:45:07,229 : INFO : h_r_error: 38.947123013307845\n", + "2018-08-27 23:45:07,232 : INFO : h_r_error: 46.85122706587456\n", + "2018-08-27 23:45:07,234 : INFO : h_r_error: 46.85122706587456\n", + "2018-08-27 23:45:07,236 : INFO : h_r_error: 57.57020077585629\n", + "2018-08-27 23:45:07,246 : INFO : h_r_error: 57.360564476471055\n", + "2018-08-27 23:45:07,247 : INFO : h_r_error: 57.360564476471055\n", + "2018-08-27 23:45:07,249 : INFO : h_r_error: 46.34264214831657\n", + "2018-08-27 23:45:07,251 : INFO : h_r_error: 46.25487282521659\n", + "2018-08-27 23:45:07,253 : INFO : h_r_error: 46.25487282521659\n", + "2018-08-27 23:45:07,257 : INFO : h_r_error: 40.879168020051125\n", + "2018-08-27 23:45:07,264 : INFO : h_r_error: 40.879168020051125\n", + "2018-08-27 23:45:07,265 : INFO : h_r_error: 61.04066585328603\n", + "2018-08-27 23:45:07,266 : INFO : h_r_error: 60.88392741526868\n", + "2018-08-27 23:45:07,281 : INFO : h_r_error: 60.88392741526868\n", + "2018-08-27 23:45:07,282 : INFO : h_r_error: 24.15487660977726\n", + "2018-08-27 23:45:07,284 : INFO : h_r_error: 24.126709324004295\n", + "2018-08-27 23:45:07,287 : INFO : h_r_error: 24.126709324004295\n", + "2018-08-27 23:45:07,293 : INFO : h_r_error: 34.235749500009966\n", + "2018-08-27 23:45:07,294 : INFO : h_r_error: 34.18250813450372\n", + "2018-08-27 23:45:07,296 : INFO : h_r_error: 34.18250813450372\n", + "2018-08-27 23:45:07,304 : INFO : h_r_error: 14.56163068122642\n", + "2018-08-27 23:45:07,306 : INFO : h_r_error: 14.542174814915631\n", + "2018-08-27 23:45:07,307 : INFO : h_r_error: 14.542174814915631\n", + "2018-08-27 23:45:07,313 : INFO : h_r_error: 74.7723958476036\n", + "2018-08-27 23:45:07,314 : INFO : h_r_error: 74.6338065041174\n", + "2018-08-27 23:45:07,316 : INFO : h_r_error: 74.6338065041174\n", + "2018-08-27 23:45:07,327 : INFO : h_r_error: 207.74678119057324\n", + "2018-08-27 23:45:07,329 : INFO : h_r_error: 206.93391529872324\n", + "2018-08-27 23:45:07,337 : INFO : h_r_error: 206.93391529872324\n", + "2018-08-27 23:45:07,338 : INFO : h_r_error: 57.084976557478974\n", + "2018-08-27 23:45:07,340 : INFO : h_r_error: 56.92681765110663\n", + "2018-08-27 23:45:07,341 : INFO : h_r_error: 56.92681765110663\n", + "2018-08-27 23:45:07,346 : INFO : h_r_error: 10.960875108494276\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:07,347 : INFO : h_r_error: 10.960875108494276\n", + "2018-08-27 23:45:07,349 : INFO : h_r_error: 20.30603870171832\n", + "2018-08-27 23:45:07,355 : INFO : h_r_error: 20.30603870171832\n", + "2018-08-27 23:45:07,359 : INFO : h_r_error: 14.418812106181255\n", + "2018-08-27 23:45:07,361 : INFO : h_r_error: 14.418812106181255\n", + "2018-08-27 23:45:07,368 : INFO : h_r_error: 173.28984849383568\n", + "2018-08-27 23:45:07,369 : INFO : h_r_error: 172.98807336926097\n", + "2018-08-27 23:45:07,371 : INFO : h_r_error: 172.98807336926097\n", + "2018-08-27 23:45:07,372 : INFO : h_r_error: 4.969974345154891\n", + "2018-08-27 23:45:07,379 : INFO : h_r_error: 4.969974345154891\n", + "2018-08-27 23:45:07,381 : INFO : h_r_error: 26.30796703135781\n", + "2018-08-27 23:45:07,383 : INFO : h_r_error: 26.30796703135781\n", + "2018-08-27 23:45:07,384 : INFO : h_r_error: 16.759315011255314\n", + "2018-08-27 23:45:07,386 : INFO : h_r_error: 16.737119025489264\n", + "2018-08-27 23:45:07,397 : INFO : h_r_error: 16.737119025489264\n", + "2018-08-27 23:45:07,398 : INFO : h_r_error: 20.784612862563282\n", + "2018-08-27 23:45:07,400 : INFO : h_r_error: 20.784612862563282\n", + "2018-08-27 23:45:07,401 : INFO : h_r_error: 301.08739503419486\n", + "2018-08-27 23:45:07,403 : INFO : h_r_error: 298.9008861129262\n", + "2018-08-27 23:45:07,404 : INFO : h_r_error: 298.9008861129262\n", + "2018-08-27 23:45:07,413 : INFO : h_r_error: 63.18466397561379\n", + "2018-08-27 23:45:07,415 : INFO : h_r_error: 63.12146627768031\n", + "2018-08-27 23:45:07,417 : INFO : h_r_error: 63.12146627768031\n", + "2018-08-27 23:45:07,418 : INFO : h_r_error: 79.75506281951373\n", + "2018-08-27 23:45:07,419 : INFO : h_r_error: 79.45321529018582\n", + "2018-08-27 23:45:07,423 : INFO : h_r_error: 79.45321529018582\n", + "2018-08-27 23:45:07,425 : INFO : h_r_error: 31.767386902189067\n", + "2018-08-27 23:45:07,429 : INFO : h_r_error: 31.712378517381644\n", + "2018-08-27 23:45:07,430 : INFO : h_r_error: 31.712378517381644\n", + "2018-08-27 23:45:07,431 : INFO : h_r_error: 81.55750694966784\n", + "2018-08-27 23:45:07,438 : INFO : h_r_error: 81.40859231828726\n", + "2018-08-27 23:45:07,444 : INFO : h_r_error: 81.40859231828726\n", + "2018-08-27 23:45:07,449 : INFO : h_r_error: 56.24077346078402\n", + "2018-08-27 23:45:07,453 : INFO : h_r_error: 56.24077346078402\n", + "2018-08-27 23:45:07,454 : INFO : h_r_error: 30.133853480071064\n", + "2018-08-27 23:45:07,456 : INFO : h_r_error: 30.133853480071064\n", + "2018-08-27 23:45:07,459 : INFO : h_r_error: 27.83854208189859\n", + "2018-08-27 23:45:07,461 : INFO : h_r_error: 27.83854208189859\n", + "2018-08-27 23:45:07,467 : INFO : h_r_error: 28.643306594159174\n", + "2018-08-27 23:45:07,468 : INFO : h_r_error: 28.60043526441\n", + "2018-08-27 23:45:07,470 : INFO : h_r_error: 28.60043526441\n", + "2018-08-27 23:45:07,471 : INFO : h_r_error: 223.1674844071655\n", + "2018-08-27 23:45:07,473 : INFO : h_r_error: 223.1674844071655\n", + "2018-08-27 23:45:07,474 : INFO : h_r_error: 46.421389936981974\n", + "2018-08-27 23:45:07,477 : INFO : h_r_error: 46.421389936981974\n", + "2018-08-27 23:45:07,478 : INFO : h_r_error: 117.52689067122377\n", + "2018-08-27 23:45:07,480 : INFO : h_r_error: 117.01761302207252\n", + "2018-08-27 23:45:07,482 : INFO : h_r_error: 117.01761302207252\n", + "2018-08-27 23:45:07,484 : INFO : h_r_error: 59.91286922554071\n", + "2018-08-27 23:45:07,486 : INFO : h_r_error: 59.67223713369467\n", + "2018-08-27 23:45:07,488 : INFO : h_r_error: 59.67223713369467\n", + "2018-08-27 23:45:07,490 : INFO : h_r_error: 91.99972717090418\n", + "2018-08-27 23:45:07,492 : INFO : h_r_error: 91.86326724276977\n", + "2018-08-27 23:45:07,494 : INFO : h_r_error: 91.86326724276977\n", + "2018-08-27 23:45:07,496 : INFO : h_r_error: 231.1375630001957\n", + "2018-08-27 23:45:07,497 : INFO : h_r_error: 230.76692326591333\n", + "2018-08-27 23:45:07,500 : INFO : h_r_error: 230.76692326591333\n", + "2018-08-27 23:45:07,502 : INFO : h_r_error: 274.57262143441017\n", + "2018-08-27 23:45:07,503 : INFO : h_r_error: 273.40190526872635\n", + "2018-08-27 23:45:07,505 : INFO : h_r_error: 273.40190526872635\n", + "2018-08-27 23:45:07,506 : INFO : h_r_error: 15.705096051961759\n", + "2018-08-27 23:45:07,509 : INFO : h_r_error: 15.705096051961759\n", + "2018-08-27 23:45:07,510 : INFO : h_r_error: 9.783993207872445\n", + "2018-08-27 23:45:07,511 : INFO : h_r_error: 9.768983325629815\n", + "2018-08-27 23:45:07,519 : INFO : h_r_error: 9.768983325629815\n", + "2018-08-27 23:45:07,522 : INFO : h_r_error: 86.51534475042685\n", + "2018-08-27 23:45:07,529 : INFO : h_r_error: 86.15090160241465\n", + "2018-08-27 23:45:07,531 : INFO : h_r_error: 86.15090160241465\n", + "2018-08-27 23:45:07,532 : INFO : h_r_error: 33.10442147903539\n", + "2018-08-27 23:45:07,534 : INFO : h_r_error: 33.036490488794335\n", + "2018-08-27 23:45:07,535 : INFO : h_r_error: 33.036490488794335\n", + "2018-08-27 23:45:07,546 : INFO : h_r_error: 71.52475009181276\n", + "2018-08-27 23:45:07,547 : INFO : h_r_error: 71.43503175743416\n", + "2018-08-27 23:45:07,549 : INFO : h_r_error: 71.43503175743416\n", + "2018-08-27 23:45:07,550 : INFO : h_r_error: 129.56428319728883\n", + "2018-08-27 23:45:07,551 : INFO : h_r_error: 129.14150427736635\n", + "2018-08-27 23:45:07,554 : INFO : h_r_error: 129.14150427736635\n", + "2018-08-27 23:45:07,562 : INFO : h_r_error: 118.44354109837646\n", + "2018-08-27 23:45:07,563 : INFO : h_r_error: 118.07051368741197\n", + "2018-08-27 23:45:07,565 : INFO : h_r_error: 118.07051368741197\n", + "2018-08-27 23:45:07,566 : INFO : h_r_error: 155.47964168605242\n", + "2018-08-27 23:45:07,569 : INFO : h_r_error: 155.1310807555003\n", + "2018-08-27 23:45:07,578 : INFO : h_r_error: 155.1310807555003\n", + "2018-08-27 23:45:07,586 : INFO : h_r_error: 34.35426410107545\n", + "2018-08-27 23:45:07,588 : INFO : h_r_error: 34.29201105613925\n", + "2018-08-27 23:45:07,589 : INFO : h_r_error: 34.29201105613925\n", + "2018-08-27 23:45:07,591 : INFO : h_r_error: 43.793223535221\n", + "2018-08-27 23:45:07,592 : INFO : h_r_error: 43.63152150823803\n", + "2018-08-27 23:45:07,595 : INFO : h_r_error: 43.63152150823803\n", + "2018-08-27 23:45:07,598 : INFO : h_r_error: 492.2807355307142\n", + "2018-08-27 23:45:07,602 : INFO : h_r_error: 490.3629101034975\n", + "2018-08-27 23:45:07,613 : INFO : h_r_error: 490.3629101034975\n", + "2018-08-27 23:45:07,615 : INFO : h_r_error: 23.464051788692718\n", + "2018-08-27 23:45:07,616 : INFO : h_r_error: 23.428625847559633\n", + "2018-08-27 23:45:07,618 : INFO : h_r_error: 23.428625847559633\n", + "2018-08-27 23:45:07,627 : INFO : h_r_error: 47.390838450769316\n", + "2018-08-27 23:45:07,629 : INFO : h_r_error: 47.27213800413487\n", + "2018-08-27 23:45:07,631 : INFO : h_r_error: 47.27213800413487\n", + "2018-08-27 23:45:07,633 : INFO : h_r_error: 40.289043251789295\n", + "2018-08-27 23:45:07,644 : INFO : h_r_error: 40.230154586861445\n", + "2018-08-27 23:45:07,649 : INFO : h_r_error: 40.230154586861445\n", + "2018-08-27 23:45:07,655 : INFO : h_r_error: 8.924063654504225\n", + "2018-08-27 23:45:07,658 : INFO : h_r_error: 8.924063654504225\n", + "2018-08-27 23:45:07,660 : INFO : h_r_error: 76.73235469677111\n", + "2018-08-27 23:45:07,661 : INFO : h_r_error: 76.61030794388782\n", + "2018-08-27 23:45:07,663 : INFO : h_r_error: 76.61030794388782\n", + "2018-08-27 23:45:07,665 : INFO : h_r_error: 36.818484596863875\n", + "2018-08-27 23:45:07,667 : INFO : h_r_error: 36.818484596863875\n", + "2018-08-27 23:45:07,668 : INFO : h_r_error: 12.462578774535528\n", + "2018-08-27 23:45:07,680 : INFO : h_r_error: 12.462578774535528\n", + "2018-08-27 23:45:07,681 : INFO : h_r_error: 107.4018004300934\n", + "2018-08-27 23:45:07,683 : INFO : h_r_error: 107.11972575487609\n", + "2018-08-27 23:45:07,685 : INFO : h_r_error: 107.11972575487609\n", + "2018-08-27 23:45:07,693 : INFO : h_r_error: 553.0691248972288\n", + "2018-08-27 23:45:07,694 : INFO : h_r_error: 549.9305519681172\n", + "2018-08-27 23:45:07,696 : INFO : h_r_error: 549.9305519681172\n", + "2018-08-27 23:45:07,697 : INFO : h_r_error: 91.45791602671335\n", + "2018-08-27 23:45:07,706 : INFO : h_r_error: 91.0930514710431\n", + "2018-08-27 23:45:07,707 : INFO : h_r_error: 91.0930514710431\n", + "2018-08-27 23:45:07,709 : INFO : h_r_error: 42.3243657430045\n", + "2018-08-27 23:45:07,710 : INFO : h_r_error: 42.267860342985166\n", + "2018-08-27 23:45:07,711 : INFO : h_r_error: 42.267860342985166\n", + "2018-08-27 23:45:07,713 : INFO : h_r_error: 72.30347605934432\n", + "2018-08-27 23:45:07,714 : INFO : h_r_error: 72.19810451302104\n", + "2018-08-27 23:45:07,716 : INFO : h_r_error: 72.19810451302104\n", + "2018-08-27 23:45:07,717 : INFO : h_r_error: 405.56180395845075\n", + "2018-08-27 23:45:07,719 : INFO : h_r_error: 404.52752182965276\n", + "2018-08-27 23:45:07,721 : INFO : h_r_error: 404.52752182965276\n", + "2018-08-27 23:45:07,722 : INFO : h_r_error: 84.3791828002585\n", + "2018-08-27 23:45:07,723 : INFO : h_r_error: 84.3791828002585\n", + "2018-08-27 23:45:07,725 : INFO : h_r_error: 158.5476686831362\n", + "2018-08-27 23:45:07,726 : INFO : h_r_error: 158.37195275428323\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:07,728 : INFO : h_r_error: 158.37195275428323\n", + "2018-08-27 23:45:07,729 : INFO : h_r_error: 40.38739650927441\n", + "2018-08-27 23:45:07,733 : INFO : h_r_error: 40.38739650927441\n", + "2018-08-27 23:45:07,746 : INFO : h_r_error: 59.42316719875138\n", + "2018-08-27 23:45:07,747 : INFO : h_r_error: 59.359176731568546\n", + "2018-08-27 23:45:07,750 : INFO : h_r_error: 59.359176731568546\n", + "2018-08-27 23:45:07,768 : INFO : h_r_error: 77.95379990476026\n", + "2018-08-27 23:45:07,770 : INFO : h_r_error: 77.95379990476026\n", + "2018-08-27 23:45:07,779 : INFO : h_r_error: 118.23252018671822\n", + "2018-08-27 23:45:07,781 : INFO : h_r_error: 118.23252018671822\n", + "2018-08-27 23:45:07,782 : INFO : h_r_error: 25.88307418156134\n", + "2018-08-27 23:45:07,784 : INFO : h_r_error: 25.88307418156134\n", + "2018-08-27 23:45:07,785 : INFO : h_r_error: 45.941393512918324\n", + "2018-08-27 23:45:07,787 : INFO : h_r_error: 45.860389244768996\n", + "2018-08-27 23:45:07,796 : INFO : h_r_error: 45.860389244768996\n", + "2018-08-27 23:45:07,798 : INFO : h_r_error: 41.33847123777973\n", + "2018-08-27 23:45:07,800 : INFO : h_r_error: 41.33847123777973\n", + "2018-08-27 23:45:07,801 : INFO : h_r_error: 34.36280445572315\n", + "2018-08-27 23:45:07,804 : INFO : h_r_error: 34.36280445572315\n", + "2018-08-27 23:45:07,813 : INFO : h_r_error: 106.30477439058306\n", + "2018-08-27 23:45:07,815 : INFO : h_r_error: 106.17808424582456\n", + "2018-08-27 23:45:07,818 : INFO : h_r_error: 106.17808424582456\n", + "2018-08-27 23:45:07,828 : INFO : h_r_error: 66.62401138109526\n", + "2018-08-27 23:45:07,829 : INFO : h_r_error: 66.4983414444939\n", + "2018-08-27 23:45:07,831 : INFO : h_r_error: 66.4983414444939\n", + "2018-08-27 23:45:07,833 : INFO : h_r_error: 213.27811874487628\n", + "2018-08-27 23:45:07,834 : INFO : h_r_error: 212.83347635723285\n", + "2018-08-27 23:45:07,845 : INFO : h_r_error: 212.83347635723285\n", + "2018-08-27 23:45:07,846 : INFO : h_r_error: 68.01033334371328\n", + "2018-08-27 23:45:07,848 : INFO : h_r_error: 67.89900818076562\n", + "2018-08-27 23:45:07,850 : INFO : h_r_error: 67.89900818076562\n", + "2018-08-27 23:45:07,851 : INFO : h_r_error: 214.95388180524034\n", + "2018-08-27 23:45:07,853 : INFO : h_r_error: 214.68446616175572\n", + "2018-08-27 23:45:07,860 : INFO : h_r_error: 214.68446616175572\n", + "2018-08-27 23:45:07,863 : INFO : h_r_error: 124.70896659262749\n", + "2018-08-27 23:45:07,865 : INFO : h_r_error: 124.48994158252837\n", + "2018-08-27 23:45:07,869 : INFO : h_r_error: 124.48994158252837\n", + "2018-08-27 23:45:07,872 : INFO : h_r_error: 20.349591640020137\n", + "2018-08-27 23:45:07,874 : INFO : h_r_error: 20.349591640020137\n", + "2018-08-27 23:45:07,876 : INFO : h_r_error: 31.105191171295296\n", + "2018-08-27 23:45:07,877 : INFO : h_r_error: 31.07257124543254\n", + "2018-08-27 23:45:07,879 : INFO : h_r_error: 31.07257124543254\n", + "2018-08-27 23:45:07,881 : INFO : h_r_error: 46.53247790368735\n", + "2018-08-27 23:45:07,883 : INFO : h_r_error: 46.372667028407974\n", + "2018-08-27 23:45:07,885 : INFO : h_r_error: 46.372667028407974\n", + "2018-08-27 23:45:07,886 : INFO : h_r_error: 774.0942306304406\n", + "2018-08-27 23:45:07,888 : INFO : h_r_error: 198.07342369908116\n", + "2018-08-27 23:45:07,889 : INFO : h_r_error: 198.07342369908116\n", + "2018-08-27 23:45:07,891 : INFO : h_r_error: 70.22132205532495\n", + "2018-08-27 23:45:07,892 : INFO : h_r_error: 70.1010387568506\n", + "2018-08-27 23:45:07,894 : INFO : h_r_error: 70.1010387568506\n", + "2018-08-27 23:45:07,896 : INFO : h_r_error: 4.976334492376447\n", + "2018-08-27 23:45:07,897 : INFO : h_r_error: 4.976334492376447\n", + "2018-08-27 23:45:07,899 : INFO : h_r_error: 313.5457847276373\n", + "2018-08-27 23:45:07,900 : INFO : h_r_error: 312.7451798548867\n", + "2018-08-27 23:45:07,902 : INFO : h_r_error: 312.7451798548867\n", + "2018-08-27 23:45:07,903 : INFO : h_r_error: 46.3131820820149\n", + "2018-08-27 23:45:07,904 : INFO : h_r_error: 46.16746946330054\n", + "2018-08-27 23:45:07,906 : INFO : h_r_error: 46.16746946330054\n", + "2018-08-27 23:45:07,907 : INFO : h_r_error: 29.98735335731704\n", + "2018-08-27 23:45:07,909 : INFO : h_r_error: 29.901510240885838\n", + "2018-08-27 23:45:07,910 : INFO : h_r_error: 29.901510240885838\n", + "2018-08-27 23:45:07,912 : INFO : h_r_error: 21.15132621693016\n", + "2018-08-27 23:45:07,914 : INFO : h_r_error: 21.12894462198613\n", + "2018-08-27 23:45:07,916 : INFO : h_r_error: 21.12894462198613\n", + "2018-08-27 23:45:07,918 : INFO : h_r_error: 18.445594708543357\n", + "2018-08-27 23:45:07,920 : INFO : h_r_error: 18.445594708543357\n", + "2018-08-27 23:45:07,922 : INFO : h_r_error: 41.73836948928994\n", + "2018-08-27 23:45:07,923 : INFO : h_r_error: 41.6786404303316\n", + "2018-08-27 23:45:07,925 : INFO : h_r_error: 41.6786404303316\n", + "2018-08-27 23:45:07,927 : INFO : h_r_error: 11.800209372947045\n", + "2018-08-27 23:45:07,928 : INFO : h_r_error: 11.782745940126324\n", + "2018-08-27 23:45:07,930 : INFO : h_r_error: 11.782745940126324\n", + "2018-08-27 23:45:07,932 : INFO : h_r_error: 26.471996524755863\n", + "2018-08-27 23:45:07,942 : INFO : h_r_error: 26.41649976187709\n", + "2018-08-27 23:45:07,944 : INFO : h_r_error: 26.41649976187709\n", + "2018-08-27 23:45:07,949 : INFO : h_r_error: 180.45769674194872\n", + "2018-08-27 23:45:07,960 : INFO : h_r_error: 180.45769674194872\n", + "2018-08-27 23:45:07,961 : INFO : h_r_error: 1184.8803880905928\n", + "2018-08-27 23:45:07,963 : INFO : h_r_error: 1173.3705714438288\n", + "2018-08-27 23:45:07,965 : INFO : h_r_error: 1173.3705714438288\n", + "2018-08-27 23:45:07,966 : INFO : h_r_error: 32.86401052687213\n", + "2018-08-27 23:45:07,976 : INFO : h_r_error: 32.81678381713495\n", + "2018-08-27 23:45:07,977 : INFO : h_r_error: 32.81678381713495\n", + "2018-08-27 23:45:07,979 : INFO : h_r_error: 75.75425269430248\n", + "2018-08-27 23:45:07,981 : INFO : h_r_error: 75.48888861267424\n", + "2018-08-27 23:45:07,982 : INFO : h_r_error: 75.48888861267424\n", + "2018-08-27 23:45:07,993 : INFO : h_r_error: 30.844687976177237\n", + "2018-08-27 23:45:07,994 : INFO : h_r_error: 30.844687976177237\n", + "2018-08-27 23:45:07,996 : INFO : h_r_error: 179.3448293244765\n", + "2018-08-27 23:45:07,998 : INFO : h_r_error: 178.17381756108776\n", + "2018-08-27 23:45:08,001 : INFO : h_r_error: 178.17381756108776\n", + "2018-08-27 23:45:08,009 : INFO : h_r_error: 20.185442526823103\n", + "2018-08-27 23:45:08,011 : INFO : h_r_error: 20.15819366669765\n", + "2018-08-27 23:45:08,014 : INFO : h_r_error: 20.15819366669765\n", + "2018-08-27 23:45:08,016 : INFO : h_r_error: 204.22723943173978\n", + "2018-08-27 23:45:08,026 : INFO : h_r_error: 203.60310072767507\n", + "2018-08-27 23:45:08,029 : INFO : h_r_error: 203.60310072767507\n", + "2018-08-27 23:45:08,032 : INFO : h_r_error: 141.09968925269305\n", + "2018-08-27 23:45:08,033 : INFO : h_r_error: 140.7308469552629\n", + "2018-08-27 23:45:08,035 : INFO : h_r_error: 140.7308469552629\n", + "2018-08-27 23:45:08,043 : INFO : h_r_error: 64.56773916756812\n", + "2018-08-27 23:45:08,045 : INFO : h_r_error: 64.56773916756812\n", + "2018-08-27 23:45:08,046 : INFO : h_r_error: 199.5848737712613\n", + "2018-08-27 23:45:08,048 : INFO : h_r_error: 198.36979652297686\n", + "2018-08-27 23:45:08,049 : INFO : h_r_error: 198.36979652297686\n", + "2018-08-27 23:45:08,062 : INFO : h_r_error: 28.747975828376237\n", + "2018-08-27 23:45:08,064 : INFO : h_r_error: 28.747975828376237\n", + "2018-08-27 23:45:08,066 : INFO : h_r_error: 1888.9378535425774\n", + "2018-08-27 23:45:08,067 : INFO : h_r_error: 1862.596477932895\n", + "2018-08-27 23:45:08,077 : INFO : h_r_error: 1862.596477932895\n", + "2018-08-27 23:45:08,078 : INFO : h_r_error: 27.841572389618694\n", + "2018-08-27 23:45:08,080 : INFO : h_r_error: 27.841572389618694\n", + "2018-08-27 23:45:08,082 : INFO : h_r_error: 161.07297193056823\n", + "2018-08-27 23:45:08,084 : INFO : h_r_error: 160.53033001322282\n", + "2018-08-27 23:45:08,096 : INFO : h_r_error: 160.53033001322282\n", + "2018-08-27 23:45:08,098 : INFO : h_r_error: 58.102910503874966\n", + "2018-08-27 23:45:08,101 : INFO : h_r_error: 57.92916161149458\n", + "2018-08-27 23:45:08,109 : INFO : h_r_error: 57.92916161149458\n", + "2018-08-27 23:45:08,111 : INFO : h_r_error: 23.30588407286115\n", + "2018-08-27 23:45:08,114 : INFO : h_r_error: 23.30588407286115\n", + "2018-08-27 23:45:08,115 : INFO : h_r_error: 43.53934738745382\n", + "2018-08-27 23:45:08,117 : INFO : h_r_error: 43.53934738745382\n", + "2018-08-27 23:45:08,118 : INFO : h_r_error: 29.813808897210446\n", + "2018-08-27 23:45:08,120 : INFO : h_r_error: 29.70056894109565\n", + "2018-08-27 23:45:08,122 : INFO : h_r_error: 29.70056894109565\n", + "2018-08-27 23:45:08,124 : INFO : h_r_error: 124.9185708980844\n", + "2018-08-27 23:45:08,127 : INFO : h_r_error: 124.54380724706292\n", + "2018-08-27 23:45:08,129 : INFO : h_r_error: 124.54380724706292\n", + "2018-08-27 23:45:08,132 : INFO : h_r_error: 19.580684176003505\n", + "2018-08-27 23:45:08,134 : INFO : h_r_error: 19.547389703046125\n", + "2018-08-27 23:45:08,137 : INFO : h_r_error: 19.547389703046125\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:08,140 : INFO : h_r_error: 502.6872839186179\n", + "2018-08-27 23:45:08,142 : INFO : h_r_error: 497.5350447373528\n", + "2018-08-27 23:45:08,144 : INFO : h_r_error: 497.5350447373528\n", + "2018-08-27 23:45:08,147 : INFO : h_r_error: 82.2205372739174\n", + "2018-08-27 23:45:08,150 : INFO : h_r_error: 82.09579936407765\n", + "2018-08-27 23:45:08,155 : INFO : h_r_error: 82.09579936407765\n", + "2018-08-27 23:45:08,158 : INFO : h_r_error: 366.208574378532\n", + "2018-08-27 23:45:08,160 : INFO : h_r_error: 365.51900168356025\n", + "2018-08-27 23:45:08,162 : INFO : h_r_error: 365.51900168356025\n", + "2018-08-27 23:45:08,165 : INFO : h_r_error: 65.73062245409207\n", + "2018-08-27 23:45:08,168 : INFO : h_r_error: 65.6287930641892\n", + "2018-08-27 23:45:08,170 : INFO : h_r_error: 65.6287930641892\n", + "2018-08-27 23:45:08,178 : INFO : h_r_error: 247.04895087780181\n", + "2018-08-27 23:45:08,182 : INFO : h_r_error: 246.02424396933856\n", + "2018-08-27 23:45:08,185 : INFO : h_r_error: 246.02424396933856\n", + "2018-08-27 23:45:08,190 : INFO : h_r_error: 331.02211616833677\n", + "2018-08-27 23:45:08,213 : INFO : h_r_error: 330.36411722851176\n", + "2018-08-27 23:45:08,215 : INFO : h_r_error: 330.36411722851176\n", + "2018-08-27 23:45:08,217 : INFO : h_r_error: 329.10079555558264\n", + "2018-08-27 23:45:08,226 : INFO : h_r_error: 328.1465889378783\n", + "2018-08-27 23:45:08,228 : INFO : h_r_error: 328.1465889378783\n", + "2018-08-27 23:45:08,242 : INFO : h_r_error: 15.89737512753085\n", + "2018-08-27 23:45:08,244 : INFO : h_r_error: 15.89737512753085\n", + "2018-08-27 23:45:08,246 : INFO : h_r_error: 123.9753605551698\n", + "2018-08-27 23:45:08,247 : INFO : h_r_error: 123.68634808852292\n", + "2018-08-27 23:45:08,249 : INFO : h_r_error: 123.68634808852292\n", + "2018-08-27 23:45:08,250 : INFO : h_r_error: 35.442016723358826\n", + "2018-08-27 23:45:08,259 : INFO : h_r_error: 35.29506649853743\n", + "2018-08-27 23:45:08,261 : INFO : h_r_error: 35.29506649853743\n", + "2018-08-27 23:45:08,263 : INFO : h_r_error: 111.7032849759673\n", + "2018-08-27 23:45:08,264 : INFO : h_r_error: 111.3202732221199\n", + "2018-08-27 23:45:08,266 : INFO : h_r_error: 111.3202732221199\n", + "2018-08-27 23:45:08,268 : INFO : h_r_error: 63.689116939887825\n", + "2018-08-27 23:45:08,278 : INFO : h_r_error: 63.52317092740833\n", + "2018-08-27 23:45:08,280 : INFO : h_r_error: 63.52317092740833\n", + "2018-08-27 23:45:08,282 : INFO : h_r_error: 41.4827374766661\n", + "2018-08-27 23:45:08,285 : INFO : h_r_error: 41.394990830651096\n", + "2018-08-27 23:45:08,289 : INFO : h_r_error: 41.394990830651096\n", + "2018-08-27 23:45:08,291 : INFO : h_r_error: 54.74878061450797\n", + "2018-08-27 23:45:08,292 : INFO : h_r_error: 54.6545818485676\n", + "2018-08-27 23:45:08,299 : INFO : h_r_error: 54.6545818485676\n", + "2018-08-27 23:45:08,301 : INFO : h_r_error: 14.825648302555102\n", + "2018-08-27 23:45:08,303 : INFO : h_r_error: 14.825648302555102\n", + "2018-08-27 23:45:08,305 : INFO : h_r_error: 31.529639597467817\n", + "2018-08-27 23:45:08,312 : INFO : h_r_error: 31.486608350910135\n", + "2018-08-27 23:45:08,314 : INFO : h_r_error: 31.486608350910135\n", + "2018-08-27 23:45:08,315 : INFO : h_r_error: 45.66469382284119\n", + "2018-08-27 23:45:08,317 : INFO : h_r_error: 45.59755392490864\n", + "2018-08-27 23:45:08,319 : INFO : h_r_error: 45.59755392490864\n", + "2018-08-27 23:45:08,326 : INFO : h_r_error: 40.763545240389135\n", + "2018-08-27 23:45:08,327 : INFO : h_r_error: 40.67618402177974\n", + "2018-08-27 23:45:08,329 : INFO : h_r_error: 40.67618402177974\n", + "2018-08-27 23:45:08,331 : INFO : h_r_error: 37.16831877848398\n", + "2018-08-27 23:45:08,342 : INFO : h_r_error: 37.09642139509022\n", + "2018-08-27 23:45:08,344 : INFO : h_r_error: 37.09642139509022\n", + "2018-08-27 23:45:08,346 : INFO : h_r_error: 52.12541319977978\n", + "2018-08-27 23:45:08,350 : INFO : h_r_error: 51.99433680384548\n", + "2018-08-27 23:45:08,352 : INFO : h_r_error: 51.99433680384548\n", + "2018-08-27 23:45:08,354 : INFO : h_r_error: 6.979708421280952\n", + "2018-08-27 23:45:08,363 : INFO : h_r_error: 6.979708421280952\n", + "2018-08-27 23:45:08,364 : INFO : h_r_error: 20.612044167378826\n", + "2018-08-27 23:45:08,366 : INFO : h_r_error: 20.583899232578943\n", + "2018-08-27 23:45:08,369 : INFO : h_r_error: 20.583899232578943\n", + "2018-08-27 23:45:08,370 : INFO : h_r_error: 2891.087129385072\n", + "2018-08-27 23:45:08,380 : INFO : h_r_error: 2865.8386970743227\n", + "2018-08-27 23:45:08,382 : INFO : h_r_error: 2865.8386970743227\n", + "2018-08-27 23:45:08,386 : INFO : h_r_error: 15.421006276409857\n", + "2018-08-27 23:45:08,390 : INFO : h_r_error: 15.421006276409857\n", + "2018-08-27 23:45:08,399 : INFO : h_r_error: 47.190353920627274\n", + "2018-08-27 23:45:08,401 : INFO : h_r_error: 47.114915576860135\n", + "2018-08-27 23:45:08,406 : INFO : h_r_error: 47.114915576860135\n", + "2018-08-27 23:45:08,416 : INFO : h_r_error: 26.746348655723043\n", + "2018-08-27 23:45:08,418 : INFO : h_r_error: 26.746348655723043\n", + "2018-08-27 23:45:08,419 : INFO : h_r_error: 24.62906573298586\n", + "2018-08-27 23:45:08,421 : INFO : h_r_error: 24.62906573298586\n", + "2018-08-27 23:45:08,423 : INFO : h_r_error: 49.597105240415644\n", + "2018-08-27 23:45:08,433 : INFO : h_r_error: 49.51729290186569\n", + "2018-08-27 23:45:08,434 : INFO : h_r_error: 49.51729290186569\n", + "2018-08-27 23:45:08,436 : INFO : h_r_error: 100.15808013157181\n", + "2018-08-27 23:45:08,438 : INFO : h_r_error: 99.34522756905781\n", + "2018-08-27 23:45:08,439 : INFO : h_r_error: 99.34522756905781\n", + "2018-08-27 23:45:08,450 : INFO : h_r_error: 132.43308651921384\n", + "2018-08-27 23:45:08,451 : INFO : h_r_error: 132.22112305684678\n", + "2018-08-27 23:45:08,453 : INFO : h_r_error: 132.22112305684678\n", + "2018-08-27 23:45:08,454 : INFO : h_r_error: 19.105867334968245\n", + "2018-08-27 23:45:08,456 : INFO : h_r_error: 19.07464669354223\n", + "2018-08-27 23:45:08,458 : INFO : h_r_error: 19.07464669354223\n", + "2018-08-27 23:45:08,461 : INFO : h_r_error: 161.34995583832696\n", + "2018-08-27 23:45:08,470 : INFO : h_r_error: 160.58038715755862\n", + "2018-08-27 23:45:08,472 : INFO : h_r_error: 160.58038715755862\n", + "2018-08-27 23:45:08,473 : INFO : h_r_error: 192.88303575771803\n", + "2018-08-27 23:45:08,474 : INFO : h_r_error: 192.4237618285328\n", + "2018-08-27 23:45:08,477 : INFO : h_r_error: 192.4237618285328\n", + "2018-08-27 23:45:08,486 : INFO : h_r_error: 67.08760936638457\n", + "2018-08-27 23:45:08,490 : INFO : h_r_error: 66.9905719772389\n", + "2018-08-27 23:45:08,493 : INFO : h_r_error: 66.9905719772389\n", + "2018-08-27 23:45:08,494 : INFO : h_r_error: 133.26461736881822\n", + "2018-08-27 23:45:08,500 : INFO : h_r_error: 132.31017199505808\n", + "2018-08-27 23:45:08,503 : INFO : h_r_error: 132.31017199505808\n", + "2018-08-27 23:45:08,508 : INFO : h_r_error: 48.205487230843\n", + "2018-08-27 23:45:08,510 : INFO : h_r_error: 48.06909159340345\n", + "2018-08-27 23:45:08,514 : INFO : h_r_error: 48.06909159340345\n", + "2018-08-27 23:45:08,519 : INFO : h_r_error: 77.42775963463052\n", + "2018-08-27 23:45:08,521 : INFO : h_r_error: 77.23713618871562\n", + "2018-08-27 23:45:08,547 : INFO : h_r_error: 77.23713618871562\n", + "2018-08-27 23:45:08,556 : INFO : h_r_error: 83.1830846139817\n", + "2018-08-27 23:45:08,562 : INFO : h_r_error: 82.79165002747119\n", + "2018-08-27 23:45:08,574 : INFO : h_r_error: 82.79165002747119\n", + "2018-08-27 23:45:08,575 : INFO : h_r_error: 87.0173218892558\n", + "2018-08-27 23:45:08,577 : INFO : h_r_error: 86.85228641128822\n", + "2018-08-27 23:45:08,581 : INFO : h_r_error: 86.85228641128822\n", + "2018-08-27 23:45:08,583 : INFO : h_r_error: 78.66669629395851\n", + "2018-08-27 23:45:08,585 : INFO : h_r_error: 78.52027350487224\n", + "2018-08-27 23:45:08,587 : INFO : h_r_error: 78.52027350487224\n", + "2018-08-27 23:45:08,589 : INFO : h_r_error: 53.385320741181765\n", + "2018-08-27 23:45:08,597 : INFO : h_r_error: 53.18585784283141\n", + "2018-08-27 23:45:08,601 : INFO : h_r_error: 53.18585784283141\n", + "2018-08-27 23:45:08,623 : INFO : h_r_error: 58.56895694621605\n", + "2018-08-27 23:45:08,657 : INFO : h_r_error: 58.56895694621605\n", + "2018-08-27 23:45:08,672 : INFO : h_r_error: 207.12960939450303\n", + "2018-08-27 23:45:08,676 : INFO : h_r_error: 207.12960939450303\n", + "2018-08-27 23:45:08,689 : INFO : h_r_error: 506.5058148890812\n", + "2018-08-27 23:45:08,706 : INFO : h_r_error: 504.6918232878942\n", + "2018-08-27 23:45:08,721 : INFO : h_r_error: 504.6918232878942\n", + "2018-08-27 23:45:08,724 : INFO : h_r_error: 27.990377107722225\n", + "2018-08-27 23:45:08,758 : INFO : h_r_error: 27.94035427277272\n", + "2018-08-27 23:45:08,768 : INFO : h_r_error: 27.94035427277272\n", + "2018-08-27 23:45:08,773 : INFO : h_r_error: 29.688591471080397\n", + "2018-08-27 23:45:08,786 : INFO : h_r_error: 29.656440235140774\n", + "2018-08-27 23:45:08,791 : INFO : h_r_error: 29.656440235140774\n", + "2018-08-27 23:45:08,793 : INFO : h_r_error: 54.30262613904614\n", + "2018-08-27 23:45:08,795 : INFO : h_r_error: 54.20588507641205\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:08,797 : INFO : h_r_error: 54.20588507641205\n", + "2018-08-27 23:45:08,808 : INFO : h_r_error: 25.239972619118518\n", + "2018-08-27 23:45:08,812 : INFO : h_r_error: 25.239972619118518\n", + "2018-08-27 23:45:08,814 : INFO : h_r_error: 779.1560778667736\n", + "2018-08-27 23:45:08,816 : INFO : h_r_error: 751.8088675662666\n", + "2018-08-27 23:45:08,819 : INFO : h_r_error: 751.8088675662666\n", + "2018-08-27 23:45:08,821 : INFO : h_r_error: 293.49057327736494\n", + "2018-08-27 23:45:08,823 : INFO : h_r_error: 292.2370697339675\n", + "2018-08-27 23:45:08,825 : INFO : h_r_error: 292.2370697339675\n", + "2018-08-27 23:45:08,835 : INFO : h_r_error: 37.18396834043754\n", + "2018-08-27 23:45:08,858 : INFO : h_r_error: 37.06869871444631\n", + "2018-08-27 23:45:08,860 : INFO : h_r_error: 37.06869871444631\n", + "2018-08-27 23:45:08,862 : INFO : h_r_error: 15.394499804641221\n", + "2018-08-27 23:45:08,866 : INFO : h_r_error: 15.346255030161108\n", + "2018-08-27 23:45:08,880 : INFO : h_r_error: 15.346255030161108\n", + "2018-08-27 23:45:08,884 : INFO : h_r_error: 64.70430837598282\n", + "2018-08-27 23:45:08,888 : INFO : h_r_error: 64.5100164294243\n", + "2018-08-27 23:45:08,891 : INFO : h_r_error: 64.5100164294243\n", + "2018-08-27 23:45:08,893 : INFO : h_r_error: 49.137231411174085\n", + "2018-08-27 23:45:08,895 : INFO : h_r_error: 49.08009792086358\n", + "2018-08-27 23:45:08,903 : INFO : h_r_error: 49.08009792086358\n", + "2018-08-27 23:45:08,905 : INFO : h_r_error: 65.42631673176713\n", + "2018-08-27 23:45:08,907 : INFO : h_r_error: 65.20699787610023\n", + "2018-08-27 23:45:08,910 : INFO : h_r_error: 65.20699787610023\n", + "2018-08-27 23:45:08,912 : INFO : h_r_error: 87.74052466545629\n", + "2018-08-27 23:45:08,914 : INFO : h_r_error: 87.52407289017123\n", + "2018-08-27 23:45:08,926 : INFO : h_r_error: 87.52407289017123\n", + "2018-08-27 23:45:08,929 : INFO : h_r_error: 73.66205367414582\n", + "2018-08-27 23:45:08,932 : INFO : h_r_error: 73.49252900611022\n", + "2018-08-27 23:45:08,934 : INFO : h_r_error: 73.49252900611022\n", + "2018-08-27 23:45:08,938 : INFO : h_r_error: 79.632015098119\n", + "2018-08-27 23:45:08,940 : INFO : h_r_error: 79.4897593765634\n", + "2018-08-27 23:45:08,942 : INFO : h_r_error: 79.4897593765634\n", + "2018-08-27 23:45:08,952 : INFO : h_r_error: 61.52226425846136\n", + "2018-08-27 23:45:08,955 : INFO : h_r_error: 61.35600924807711\n", + "2018-08-27 23:45:08,957 : INFO : h_r_error: 61.35600924807711\n", + "2018-08-27 23:45:08,959 : INFO : h_r_error: 124.29545757102723\n", + "2018-08-27 23:45:08,961 : INFO : h_r_error: 123.73694815195189\n", + "2018-08-27 23:45:08,965 : INFO : h_r_error: 123.73694815195189\n", + "2018-08-27 23:45:08,969 : INFO : h_r_error: 753.4403594756869\n", + "2018-08-27 23:45:08,972 : INFO : h_r_error: 753.4403594756869\n", + "2018-08-27 23:45:08,977 : INFO : h_r_error: 77.17184421078932\n", + "2018-08-27 23:45:08,979 : INFO : h_r_error: 76.91822063470413\n", + "2018-08-27 23:45:08,983 : INFO : h_r_error: 76.91822063470413\n", + "2018-08-27 23:45:08,986 : INFO : h_r_error: 75.70457828766254\n", + "2018-08-27 23:45:08,989 : INFO : h_r_error: 75.70457828766254\n", + "2018-08-27 23:45:08,992 : INFO : h_r_error: 32.983762862397164\n", + "2018-08-27 23:45:08,995 : INFO : h_r_error: 32.89554938462277\n", + "2018-08-27 23:45:09,000 : INFO : h_r_error: 32.89554938462277\n", + "2018-08-27 23:45:09,002 : INFO : h_r_error: 197.19430913700427\n", + "2018-08-27 23:45:09,004 : INFO : h_r_error: 195.59073716206308\n", + "2018-08-27 23:45:09,007 : INFO : h_r_error: 195.59073716206308\n", + "2018-08-27 23:45:09,014 : INFO : h_r_error: 15.613863212474792\n", + "2018-08-27 23:45:09,016 : INFO : h_r_error: 15.579676252877245\n", + "2018-08-27 23:45:09,018 : INFO : h_r_error: 15.579676252877245\n", + "2018-08-27 23:45:09,022 : INFO : h_r_error: 21.102085358646303\n", + "2018-08-27 23:45:09,026 : INFO : h_r_error: 21.069609592248437\n", + "2018-08-27 23:45:09,028 : INFO : h_r_error: 21.069609592248437\n", + "2018-08-27 23:45:09,030 : INFO : h_r_error: 221.91224528253392\n", + "2018-08-27 23:45:09,035 : INFO : h_r_error: 221.00817679630939\n", + "2018-08-27 23:45:09,044 : INFO : h_r_error: 221.00817679630939\n", + "2018-08-27 23:45:09,046 : INFO : h_r_error: 373.1352342594502\n", + "2018-08-27 23:45:09,047 : INFO : h_r_error: 370.51660575962063\n", + "2018-08-27 23:45:09,049 : INFO : h_r_error: 370.51660575962063\n", + "2018-08-27 23:45:09,050 : INFO : h_r_error: 30.936082076807946\n", + "2018-08-27 23:45:09,052 : INFO : h_r_error: 30.864708068586058\n", + "2018-08-27 23:45:09,057 : INFO : h_r_error: 30.864708068586058\n", + "2018-08-27 23:45:09,058 : INFO : h_r_error: 60.86338673360841\n", + "2018-08-27 23:45:09,062 : INFO : h_r_error: 60.74007437378558\n", + "2018-08-27 23:45:09,064 : INFO : h_r_error: 60.74007437378558\n", + "2018-08-27 23:45:09,070 : INFO : h_r_error: 15.463274944541759\n", + "2018-08-27 23:45:09,071 : INFO : h_r_error: 15.463274944541759\n", + "2018-08-27 23:45:09,073 : INFO : h_r_error: 57.05247336411262\n", + "2018-08-27 23:45:09,074 : INFO : h_r_error: 56.8574655693063\n", + "2018-08-27 23:45:09,081 : INFO : h_r_error: 56.8574655693063\n", + "2018-08-27 23:45:09,082 : INFO : h_r_error: 17.855341320833066\n", + "2018-08-27 23:45:09,084 : INFO : h_r_error: 17.855341320833066\n", + "2018-08-27 23:45:09,096 : INFO : h_r_error: 63.82622798138708\n", + "2018-08-27 23:45:09,098 : INFO : h_r_error: 63.47293311976175\n", + "2018-08-27 23:45:09,107 : INFO : h_r_error: 63.47293311976175\n", + "2018-08-27 23:45:09,110 : INFO : h_r_error: 35.498230407756786\n", + "2018-08-27 23:45:09,111 : INFO : h_r_error: 35.42046298820186\n", + "2018-08-27 23:45:09,112 : INFO : h_r_error: 35.42046298820186\n", + "2018-08-27 23:45:09,122 : INFO : h_r_error: 42.34843557314823\n", + "2018-08-27 23:45:09,124 : INFO : h_r_error: 42.34843557314823\n", + "2018-08-27 23:45:09,128 : INFO : h_r_error: 16.823941640783804\n", + "2018-08-27 23:45:09,130 : INFO : h_r_error: 16.823941640783804\n", + "2018-08-27 23:45:09,139 : INFO : h_r_error: 33.527079508715566\n", + "2018-08-27 23:45:09,141 : INFO : h_r_error: 33.492670827357486\n", + "2018-08-27 23:45:09,143 : INFO : h_r_error: 33.492670827357486\n", + "2018-08-27 23:45:09,144 : INFO : h_r_error: 36.03782359738761\n", + "2018-08-27 23:45:09,148 : INFO : h_r_error: 36.03782359738761\n", + "2018-08-27 23:45:09,156 : INFO : h_r_error: 59.306932740109836\n", + "2018-08-27 23:45:09,157 : INFO : h_r_error: 59.11246855846727\n", + "2018-08-27 23:45:09,159 : INFO : h_r_error: 59.11246855846727\n", + "2018-08-27 23:45:09,160 : INFO : h_r_error: 44.0961909626002\n", + "2018-08-27 23:45:09,162 : INFO : h_r_error: 44.0961909626002\n", + "2018-08-27 23:45:09,163 : INFO : h_r_error: 52.03242714051914\n", + "2018-08-27 23:45:09,173 : INFO : h_r_error: 52.03242714051914\n", + "2018-08-27 23:45:09,177 : INFO : h_r_error: 41.15500076902318\n", + "2018-08-27 23:45:09,178 : INFO : h_r_error: 41.0891998484138\n", + "2018-08-27 23:45:09,188 : INFO : h_r_error: 41.0891998484138\n", + "2018-08-27 23:45:09,190 : INFO : h_r_error: 53.95501218739077\n", + "2018-08-27 23:45:09,193 : INFO : h_r_error: 53.85384306253256\n", + "2018-08-27 23:45:09,196 : INFO : h_r_error: 53.85384306253256\n", + "2018-08-27 23:45:09,210 : INFO : h_r_error: 44.25196835690499\n", + "2018-08-27 23:45:09,212 : INFO : h_r_error: 44.18091618264452\n", + "2018-08-27 23:45:09,215 : INFO : h_r_error: 44.18091618264452\n", + "2018-08-27 23:45:09,220 : INFO : h_r_error: 48.36973614933072\n", + "2018-08-27 23:45:09,224 : INFO : h_r_error: 48.31598846729365\n", + "2018-08-27 23:45:09,233 : INFO : h_r_error: 48.31598846729365\n", + "2018-08-27 23:45:09,236 : INFO : h_r_error: 38.019127456186986\n", + "2018-08-27 23:45:09,239 : INFO : h_r_error: 38.019127456186986\n", + "2018-08-27 23:45:09,242 : INFO : h_r_error: 89.09006619959138\n", + "2018-08-27 23:45:09,249 : INFO : h_r_error: 88.78066072231002\n", + "2018-08-27 23:45:09,256 : INFO : h_r_error: 88.78066072231002\n", + "2018-08-27 23:45:09,260 : INFO : h_r_error: 80.914309066781\n", + "2018-08-27 23:45:09,269 : INFO : h_r_error: 80.72578536402622\n", + "2018-08-27 23:45:09,272 : INFO : h_r_error: 80.72578536402622\n", + "2018-08-27 23:45:09,275 : INFO : h_r_error: 26.263483184077426\n", + "2018-08-27 23:45:09,278 : INFO : h_r_error: 26.263483184077426\n", + "2018-08-27 23:45:09,281 : INFO : h_r_error: 756.6001196676131\n", + "2018-08-27 23:45:09,284 : INFO : h_r_error: 750.6974573627347\n", + "2018-08-27 23:45:09,288 : INFO : h_r_error: 750.6974573627347\n", + "2018-08-27 23:45:09,291 : INFO : h_r_error: 138.1378530603809\n", + "2018-08-27 23:45:09,292 : INFO : h_r_error: 137.83204859692037\n", + "2018-08-27 23:45:09,295 : INFO : h_r_error: 137.83204859692037\n", + "2018-08-27 23:45:09,298 : INFO : h_r_error: 15.362190413034693\n", + "2018-08-27 23:45:09,301 : INFO : h_r_error: 15.362190413034693\n", + "2018-08-27 23:45:09,303 : INFO : h_r_error: 37.64946810568944\n", + "2018-08-27 23:45:09,305 : INFO : h_r_error: 37.54065951702669\n", + "2018-08-27 23:45:09,307 : INFO : h_r_error: 37.54065951702669\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:09,309 : INFO : h_r_error: 90.72532178722821\n", + "2018-08-27 23:45:09,312 : INFO : h_r_error: 90.61667122330805\n", + "2018-08-27 23:45:09,320 : INFO : h_r_error: 90.61667122330805\n", + "2018-08-27 23:45:09,322 : INFO : h_r_error: 32.473202718187586\n", + "2018-08-27 23:45:09,324 : INFO : h_r_error: 32.43099032072294\n", + "2018-08-27 23:45:09,333 : INFO : h_r_error: 32.43099032072294\n", + "2018-08-27 23:45:09,335 : INFO : h_r_error: 55.26154019629022\n", + "2018-08-27 23:45:09,338 : INFO : h_r_error: 55.26154019629022\n", + "2018-08-27 23:45:09,340 : INFO : h_r_error: 103.75728803890173\n", + "2018-08-27 23:45:09,342 : INFO : h_r_error: 103.25373949633641\n", + "2018-08-27 23:45:09,345 : INFO : h_r_error: 103.25373949633641\n", + "2018-08-27 23:45:09,347 : INFO : h_r_error: 14.427678979980671\n", + "2018-08-27 23:45:09,350 : INFO : h_r_error: 14.427678979980671\n", + "2018-08-27 23:45:09,352 : INFO : h_r_error: 37.026167019192364\n", + "2018-08-27 23:45:09,354 : INFO : h_r_error: 36.92301663711912\n", + "2018-08-27 23:45:09,357 : INFO : h_r_error: 36.92301663711912\n", + "2018-08-27 23:45:09,359 : INFO : h_r_error: 13.422687216073953\n", + "2018-08-27 23:45:09,361 : INFO : h_r_error: 13.422687216073953\n", + "2018-08-27 23:45:09,363 : INFO : h_r_error: 79.11819620072004\n", + "2018-08-27 23:45:09,365 : INFO : h_r_error: 78.98484721256735\n", + "2018-08-27 23:45:09,367 : INFO : h_r_error: 78.98484721256735\n", + "2018-08-27 23:45:09,369 : INFO : h_r_error: 18.221981267745008\n", + "2018-08-27 23:45:09,371 : INFO : h_r_error: 18.20091666778991\n", + "2018-08-27 23:45:09,374 : INFO : h_r_error: 18.20091666778991\n", + "2018-08-27 23:45:09,375 : INFO : h_r_error: 79.01212265880551\n", + "2018-08-27 23:45:09,376 : INFO : h_r_error: 78.64109829090482\n", + "2018-08-27 23:45:09,378 : INFO : h_r_error: 78.64109829090482\n", + "2018-08-27 23:45:09,387 : INFO : h_r_error: 192.966249204322\n", + "2018-08-27 23:45:09,388 : INFO : h_r_error: 192.63859444118157\n", + "2018-08-27 23:45:09,390 : INFO : h_r_error: 192.63859444118157\n", + "2018-08-27 23:45:09,398 : INFO : h_r_error: 44.78381545620494\n", + "2018-08-27 23:45:09,406 : INFO : h_r_error: 44.78381545620494\n", + "2018-08-27 23:45:09,408 : INFO : h_r_error: 80.87697737412006\n", + "2018-08-27 23:45:09,409 : INFO : h_r_error: 80.71965663793887\n", + "2018-08-27 23:45:09,411 : INFO : h_r_error: 80.71965663793887\n", + "2018-08-27 23:45:09,421 : INFO : h_r_error: 159.15397541779313\n", + "2018-08-27 23:45:09,431 : INFO : h_r_error: 158.50678105407889\n", + "2018-08-27 23:45:09,435 : INFO : h_r_error: 158.50678105407889\n", + "2018-08-27 23:45:09,438 : INFO : h_r_error: 33.20823743187659\n", + "2018-08-27 23:45:09,446 : INFO : h_r_error: 33.20823743187659\n", + "2018-08-27 23:45:09,448 : INFO : h_r_error: 25.326673633670637\n", + "2018-08-27 23:45:09,451 : INFO : h_r_error: 25.326673633670637\n", + "2018-08-27 23:45:09,459 : INFO : h_r_error: 275.38804344387586\n", + "2018-08-27 23:45:09,462 : INFO : h_r_error: 274.6386810870009\n", + "2018-08-27 23:45:09,465 : INFO : h_r_error: 274.6386810870009\n", + "2018-08-27 23:45:09,472 : INFO : h_r_error: 30.01591631148193\n", + "2018-08-27 23:45:09,475 : INFO : h_r_error: 29.970873486098807\n", + "2018-08-27 23:45:09,477 : INFO : h_r_error: 29.970873486098807\n", + "2018-08-27 23:45:09,486 : INFO : h_r_error: 27.100610701451707\n", + "2018-08-27 23:45:09,489 : INFO : h_r_error: 27.061825739930494\n", + "2018-08-27 23:45:09,492 : INFO : h_r_error: 27.061825739930494\n", + "2018-08-27 23:45:09,499 : INFO : h_r_error: 85.11027604120332\n", + "2018-08-27 23:45:09,502 : INFO : h_r_error: 84.8514391547941\n", + "2018-08-27 23:45:09,504 : INFO : h_r_error: 84.8514391547941\n", + "2018-08-27 23:45:09,512 : INFO : h_r_error: 20.89078671734081\n", + "2018-08-27 23:45:09,516 : INFO : h_r_error: 20.89078671734081\n", + "2018-08-27 23:45:09,518 : INFO : h_r_error: 44.20773118744926\n", + "2018-08-27 23:45:09,526 : INFO : h_r_error: 44.12865861054452\n", + "2018-08-27 23:45:09,528 : INFO : h_r_error: 44.12865861054452\n", + "2018-08-27 23:45:09,530 : INFO : h_r_error: 11.874354665209003\n", + "2018-08-27 23:45:09,544 : INFO : h_r_error: 11.874354665209003\n", + "2018-08-27 23:45:09,546 : INFO : h_r_error: 55.45258634368921\n", + "2018-08-27 23:45:09,548 : INFO : h_r_error: 55.0821107158972\n", + "2018-08-27 23:45:09,577 : INFO : h_r_error: 55.0821107158972\n", + "2018-08-27 23:45:09,580 : INFO : h_r_error: 243.44415610511624\n", + "2018-08-27 23:45:09,585 : INFO : h_r_error: 242.4713266783093\n", + "2018-08-27 23:45:09,595 : INFO : h_r_error: 242.4713266783093\n", + "2018-08-27 23:45:09,597 : INFO : h_r_error: 183.49916453963428\n", + "2018-08-27 23:45:09,600 : INFO : h_r_error: 183.49916453963428\n", + "2018-08-27 23:45:09,606 : INFO : h_r_error: 1137.239701235682\n", + "2018-08-27 23:45:09,619 : INFO : h_r_error: 1131.815977407663\n", + "2018-08-27 23:45:09,622 : INFO : h_r_error: 1131.815977407663\n", + "2018-08-27 23:45:09,624 : INFO : h_r_error: 64.09189611739133\n", + "2018-08-27 23:45:09,626 : INFO : h_r_error: 64.01821281460904\n", + "2018-08-27 23:45:09,636 : INFO : h_r_error: 64.01821281460904\n", + "2018-08-27 23:45:09,639 : INFO : h_r_error: 25.01979526047071\n", + "2018-08-27 23:45:09,641 : INFO : h_r_error: 24.96810761054339\n", + "2018-08-27 23:45:09,650 : INFO : h_r_error: 24.96810761054339\n", + "2018-08-27 23:45:09,652 : INFO : h_r_error: 211.4564615590532\n", + "2018-08-27 23:45:09,654 : INFO : h_r_error: 209.16728726463998\n", + "2018-08-27 23:45:09,663 : INFO : h_r_error: 209.16728726463998\n", + "2018-08-27 23:45:09,666 : INFO : h_r_error: 32.42512449585816\n", + "2018-08-27 23:45:09,668 : INFO : h_r_error: 32.32324874689018\n", + "2018-08-27 23:45:09,676 : INFO : h_r_error: 32.32324874689018\n", + "2018-08-27 23:45:09,678 : INFO : h_r_error: 369.2838379519635\n", + "2018-08-27 23:45:09,680 : INFO : h_r_error: 366.4661222760027\n", + "2018-08-27 23:45:09,690 : INFO : h_r_error: 366.4661222760027\n", + "2018-08-27 23:45:09,692 : INFO : h_r_error: 148.51414302563995\n", + "2018-08-27 23:45:09,694 : INFO : h_r_error: 148.51414302563995\n", + "2018-08-27 23:45:09,702 : INFO : h_r_error: 49.720738110309306\n", + "2018-08-27 23:45:09,705 : INFO : h_r_error: 49.658382868252055\n", + "2018-08-27 23:45:09,708 : INFO : h_r_error: 49.658382868252055\n", + "2018-08-27 23:45:09,711 : INFO : h_r_error: 81.28308513825392\n", + "2018-08-27 23:45:09,717 : INFO : h_r_error: 81.01741629020096\n", + "2018-08-27 23:45:09,723 : INFO : h_r_error: 81.01741629020096\n", + "2018-08-27 23:45:09,729 : INFO : h_r_error: 10.489660220055333\n", + "2018-08-27 23:45:09,733 : INFO : h_r_error: 10.489660220055333\n", + "2018-08-27 23:45:09,740 : INFO : h_r_error: 17.73476658816214\n", + "2018-08-27 23:45:09,744 : INFO : h_r_error: 17.73476658816214\n", + "2018-08-27 23:45:09,753 : INFO : h_r_error: 49.74147073295508\n", + "2018-08-27 23:45:09,757 : INFO : h_r_error: 49.55132230048628\n", + "2018-08-27 23:45:09,760 : INFO : h_r_error: 49.55132230048628\n", + "2018-08-27 23:45:09,769 : INFO : h_r_error: 1313.3914386296585\n", + "2018-08-27 23:45:09,774 : INFO : h_r_error: 1301.053979159957\n", + "2018-08-27 23:45:09,783 : INFO : h_r_error: 1301.053979159957\n", + "2018-08-27 23:45:09,786 : INFO : h_r_error: 78.06655225266941\n", + "2018-08-27 23:45:09,788 : INFO : h_r_error: 77.85666877905578\n", + "2018-08-27 23:45:09,796 : INFO : h_r_error: 77.85666877905578\n", + "2018-08-27 23:45:09,800 : INFO : h_r_error: 233.76052500480293\n", + "2018-08-27 23:45:09,808 : INFO : h_r_error: 228.4489568657454\n", + "2018-08-27 23:45:09,811 : INFO : h_r_error: 228.4489568657454\n", + "2018-08-27 23:45:09,819 : INFO : h_r_error: 264.05498408083804\n", + "2018-08-27 23:45:09,822 : INFO : h_r_error: 263.3149843567885\n", + "2018-08-27 23:45:09,825 : INFO : h_r_error: 263.3149843567885\n", + "2018-08-27 23:45:09,832 : INFO : h_r_error: 15.354953935721626\n", + "2018-08-27 23:45:09,835 : INFO : h_r_error: 15.354953935721626\n", + "2018-08-27 23:45:09,837 : INFO : h_r_error: 52.03321662813771\n", + "2018-08-27 23:45:09,839 : INFO : h_r_error: 51.93657055658818\n", + "2018-08-27 23:45:09,848 : INFO : h_r_error: 51.93657055658818\n", + "2018-08-27 23:45:09,850 : INFO : h_r_error: 144.34528440909045\n", + "2018-08-27 23:45:09,859 : INFO : h_r_error: 144.10238414773016\n", + "2018-08-27 23:45:09,863 : INFO : h_r_error: 144.10238414773016\n", + "2018-08-27 23:45:09,865 : INFO : h_r_error: 67.38067550975245\n", + "2018-08-27 23:45:09,872 : INFO : h_r_error: 67.29752286914739\n", + "2018-08-27 23:45:09,876 : INFO : h_r_error: 67.29752286914739\n", + "2018-08-27 23:45:09,886 : INFO : h_r_error: 204.60635550453622\n", + "2018-08-27 23:45:09,888 : INFO : h_r_error: 204.00640431429917\n", + "2018-08-27 23:45:09,892 : INFO : h_r_error: 204.00640431429917\n", + "2018-08-27 23:45:09,895 : INFO : h_r_error: 79.01802290447688\n", + "2018-08-27 23:45:09,902 : INFO : h_r_error: 79.01802290447688\n", + "2018-08-27 23:45:09,919 : INFO : h_r_error: 53.85500726024805\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:09,929 : INFO : h_r_error: 53.85500726024805\n", + "2018-08-27 23:45:09,937 : INFO : h_r_error: 131.7840283928187\n", + "2018-08-27 23:45:09,943 : INFO : h_r_error: 131.37100202071076\n", + "2018-08-27 23:45:09,946 : INFO : h_r_error: 131.37100202071076\n", + "2018-08-27 23:45:09,949 : INFO : h_r_error: 84.53023850255838\n", + "2018-08-27 23:45:09,951 : INFO : h_r_error: 84.29000882473328\n", + "2018-08-27 23:45:09,954 : INFO : h_r_error: 84.29000882473328\n", + "2018-08-27 23:45:09,957 : INFO : h_r_error: 40.02804697059197\n", + "2018-08-27 23:45:09,959 : INFO : h_r_error: 39.98781253201647\n", + "2018-08-27 23:45:09,962 : INFO : h_r_error: 39.98781253201647\n", + "2018-08-27 23:45:09,965 : INFO : h_r_error: 351.2919620615984\n", + "2018-08-27 23:45:09,967 : INFO : h_r_error: 347.7451589124805\n", + "2018-08-27 23:45:09,975 : INFO : h_r_error: 347.7451589124805\n", + "2018-08-27 23:45:09,987 : INFO : h_r_error: 85.80607509073015\n", + "2018-08-27 23:45:09,990 : INFO : h_r_error: 85.38998726416797\n", + "2018-08-27 23:45:09,992 : INFO : h_r_error: 85.38998726416797\n", + "2018-08-27 23:45:09,999 : INFO : h_r_error: 71.8506176158133\n", + "2018-08-27 23:45:10,010 : INFO : h_r_error: 71.8506176158133\n", + "2018-08-27 23:45:10,012 : INFO : h_r_error: 84.7880846151498\n", + "2018-08-27 23:45:10,016 : INFO : h_r_error: 84.4465956020451\n", + "2018-08-27 23:45:10,032 : INFO : h_r_error: 84.4465956020451\n", + "2018-08-27 23:45:10,034 : INFO : h_r_error: 552.0900980698696\n", + "2018-08-27 23:45:10,039 : INFO : h_r_error: 550.4021430510097\n", + "2018-08-27 23:45:10,041 : INFO : h_r_error: 550.4021430510097\n", + "2018-08-27 23:45:10,048 : INFO : h_r_error: 9.462562407786047\n", + "2018-08-27 23:45:10,056 : INFO : h_r_error: 9.462562407786047\n", + "2018-08-27 23:45:10,059 : INFO : h_r_error: 13.425582881723411\n", + "2018-08-27 23:45:10,066 : INFO : h_r_error: 13.425582881723411\n", + "2018-08-27 23:45:10,069 : INFO : h_r_error: 30.98371582187662\n", + "2018-08-27 23:45:10,072 : INFO : h_r_error: 30.936061353891404\n", + "2018-08-27 23:45:10,093 : INFO : h_r_error: 30.936061353891404\n", + "2018-08-27 23:45:10,105 : INFO : h_r_error: 27.129277269843804\n", + "2018-08-27 23:45:10,108 : INFO : h_r_error: 27.129277269843804\n", + "2018-08-27 23:45:10,115 : INFO : h_r_error: 34.60531279601902\n", + "2018-08-27 23:45:10,117 : INFO : h_r_error: 34.60531279601902\n", + "2018-08-27 23:45:10,123 : INFO : h_r_error: 9.433786505561919\n", + "2018-08-27 23:45:10,132 : INFO : h_r_error: 9.433786505561919\n", + "2018-08-27 23:45:10,138 : INFO : h_r_error: 12.269334683977174\n", + "2018-08-27 23:45:10,147 : INFO : h_r_error: 12.269334683977174\n", + "2018-08-27 23:45:10,164 : INFO : h_r_error: 129.0405686236369\n", + "2018-08-27 23:45:10,173 : INFO : h_r_error: 128.7908816254431\n", + "2018-08-27 23:45:10,176 : INFO : h_r_error: 128.7908816254431\n", + "2018-08-27 23:45:10,180 : INFO : h_r_error: 31.223844816070372\n", + "2018-08-27 23:45:10,183 : INFO : h_r_error: 31.223844816070372\n", + "2018-08-27 23:45:10,185 : INFO : h_r_error: 138.69284722530034\n", + "2018-08-27 23:45:10,186 : INFO : h_r_error: 138.1438392034598\n", + "2018-08-27 23:45:10,190 : INFO : h_r_error: 138.1438392034598\n", + "2018-08-27 23:45:10,199 : INFO : h_r_error: 268.77288870072624\n", + "2018-08-27 23:45:10,203 : INFO : h_r_error: 268.32446848833223\n", + "2018-08-27 23:45:10,210 : INFO : h_r_error: 268.32446848833223\n", + "2018-08-27 23:45:10,218 : INFO : h_r_error: 35.919460372219525\n", + "2018-08-27 23:45:10,220 : INFO : h_r_error: 35.802395958739574\n", + "2018-08-27 23:45:10,223 : INFO : h_r_error: 35.802395958739574\n", + "2018-08-27 23:45:10,226 : INFO : h_r_error: 32.75939045812501\n", + "2018-08-27 23:45:10,229 : INFO : h_r_error: 32.49016441528598\n", + "2018-08-27 23:45:10,240 : INFO : h_r_error: 32.49016441528598\n", + "2018-08-27 23:45:10,243 : INFO : h_r_error: 64.43185723657623\n", + "2018-08-27 23:45:10,245 : INFO : h_r_error: 64.285522030977\n", + "2018-08-27 23:45:10,247 : INFO : h_r_error: 64.285522030977\n", + "2018-08-27 23:45:10,254 : INFO : h_r_error: 98.25565375018076\n", + "2018-08-27 23:45:10,259 : INFO : h_r_error: 97.9806221372769\n", + "2018-08-27 23:45:10,263 : INFO : h_r_error: 97.9806221372769\n", + "2018-08-27 23:45:10,271 : INFO : h_r_error: 31.499335035458028\n", + "2018-08-27 23:45:10,274 : INFO : h_r_error: 31.360250533963363\n", + "2018-08-27 23:45:10,277 : INFO : h_r_error: 31.360250533963363\n", + "2018-08-27 23:45:10,283 : INFO : h_r_error: 133.23664841854372\n", + "2018-08-27 23:45:10,285 : INFO : h_r_error: 132.98555283633544\n", + "2018-08-27 23:45:10,289 : INFO : h_r_error: 132.98555283633544\n", + "2018-08-27 23:45:10,292 : INFO : h_r_error: 262.60602761507937\n", + "2018-08-27 23:45:10,303 : INFO : h_r_error: 261.40885921732774\n", + "2018-08-27 23:45:10,307 : INFO : h_r_error: 261.40885921732774\n", + "2018-08-27 23:45:10,311 : INFO : h_r_error: 85.61348550909437\n", + "2018-08-27 23:45:10,313 : INFO : h_r_error: 85.46781031449201\n", + "2018-08-27 23:45:10,319 : INFO : h_r_error: 85.46781031449201\n", + "2018-08-27 23:45:10,324 : INFO : h_r_error: 82.01722149458661\n", + "2018-08-27 23:45:10,326 : INFO : h_r_error: 81.89150749778378\n", + "2018-08-27 23:45:10,331 : INFO : h_r_error: 81.89150749778378\n", + "2018-08-27 23:45:10,336 : INFO : h_r_error: 86.73958031849567\n", + "2018-08-27 23:45:10,342 : INFO : h_r_error: 86.49706612675365\n", + "2018-08-27 23:45:10,346 : INFO : h_r_error: 86.49706612675365\n", + "2018-08-27 23:45:10,352 : INFO : h_r_error: 61.28373358326729\n", + "2018-08-27 23:45:10,354 : INFO : h_r_error: 61.144142239509286\n", + "2018-08-27 23:45:10,368 : INFO : h_r_error: 61.144142239509286\n", + "2018-08-27 23:45:10,371 : INFO : h_r_error: 34.6073753792893\n", + "2018-08-27 23:45:10,374 : INFO : h_r_error: 34.52884817285492\n", + "2018-08-27 23:45:10,378 : INFO : h_r_error: 34.52884817285492\n", + "2018-08-27 23:45:10,381 : INFO : h_r_error: 12.438992065046062\n", + "2018-08-27 23:45:10,385 : INFO : h_r_error: 12.438992065046062\n", + "2018-08-27 23:45:10,392 : INFO : h_r_error: 27.264662198734758\n", + "2018-08-27 23:45:10,394 : INFO : h_r_error: 27.264662198734758\n", + "2018-08-27 23:45:10,397 : INFO : h_r_error: 1309.6956148886263\n", + "2018-08-27 23:45:10,405 : INFO : h_r_error: 1302.1957924180474\n", + "2018-08-27 23:45:10,408 : INFO : h_r_error: 1302.1957924180474\n", + "2018-08-27 23:45:10,410 : INFO : h_r_error: 18.8413035542282\n", + "2018-08-27 23:45:10,414 : INFO : h_r_error: 18.81418430257025\n", + "2018-08-27 23:45:10,420 : INFO : h_r_error: 18.81418430257025\n", + "2018-08-27 23:45:10,423 : INFO : h_r_error: 415.26850871239236\n", + "2018-08-27 23:45:10,430 : INFO : h_r_error: 414.0867524652071\n", + "2018-08-27 23:45:10,438 : INFO : h_r_error: 414.0867524652071\n", + "2018-08-27 23:45:10,440 : INFO : h_r_error: 77.69124220540704\n", + "2018-08-27 23:45:10,444 : INFO : h_r_error: 77.59511840319354\n", + "2018-08-27 23:45:10,452 : INFO : h_r_error: 77.59511840319354\n", + "2018-08-27 23:45:10,454 : INFO : h_r_error: 51.20603346879964\n", + "2018-08-27 23:45:10,456 : INFO : h_r_error: 51.14052682673531\n", + "2018-08-27 23:45:10,465 : INFO : h_r_error: 51.14052682673531\n", + "2018-08-27 23:45:10,470 : INFO : h_r_error: 351.2270536750511\n", + "2018-08-27 23:45:10,476 : INFO : h_r_error: 350.2090490927045\n", + "2018-08-27 23:45:10,479 : INFO : h_r_error: 350.2090490927045\n", + "2018-08-27 23:45:10,481 : INFO : h_r_error: 185.53643444505425\n", + "2018-08-27 23:45:10,484 : INFO : h_r_error: 185.53643444505425\n", + "2018-08-27 23:45:10,489 : INFO : h_r_error: 659.3238783506164\n", + "2018-08-27 23:45:10,492 : INFO : h_r_error: 657.6361206675075\n", + "2018-08-27 23:45:10,497 : INFO : h_r_error: 657.6361206675075\n", + "2018-08-27 23:45:10,506 : INFO : h_r_error: 18.672257584623008\n", + "2018-08-27 23:45:10,509 : INFO : h_r_error: 18.642374731815746\n", + "2018-08-27 23:45:10,511 : INFO : h_r_error: 18.642374731815746\n", + "2018-08-27 23:45:10,514 : INFO : h_r_error: 175.71399370354834\n", + "2018-08-27 23:45:10,522 : INFO : h_r_error: 175.42814183586435\n", + "2018-08-27 23:45:10,525 : INFO : h_r_error: 175.42814183586435\n", + "2018-08-27 23:45:10,528 : INFO : h_r_error: 46.016614963127715\n", + "2018-08-27 23:45:10,530 : INFO : h_r_error: 45.888293579474826\n", + "2018-08-27 23:45:10,533 : INFO : h_r_error: 45.888293579474826\n", + "2018-08-27 23:45:10,536 : INFO : h_r_error: 62.11022979288852\n", + "2018-08-27 23:45:10,542 : INFO : h_r_error: 61.981174049559534\n", + "2018-08-27 23:45:10,545 : INFO : h_r_error: 61.981174049559534\n", + "2018-08-27 23:45:10,554 : INFO : h_r_error: 85.19106806808192\n", + "2018-08-27 23:45:10,556 : INFO : h_r_error: 84.79763893385412\n", + "2018-08-27 23:45:10,558 : INFO : h_r_error: 84.79763893385412\n", + "2018-08-27 23:45:10,561 : INFO : h_r_error: 12.768182005762013\n", + "2018-08-27 23:45:10,570 : INFO : h_r_error: 12.747134659429635\n", + "2018-08-27 23:45:10,580 : INFO : h_r_error: 12.747134659429635\n", + "2018-08-27 23:45:10,588 : INFO : h_r_error: 41.81074539785168\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:10,595 : INFO : h_r_error: 41.71689134406895\n", + "2018-08-27 23:45:10,608 : INFO : h_r_error: 41.71689134406895\n", + "2018-08-27 23:45:10,614 : INFO : h_r_error: 108.03321989463547\n", + "2018-08-27 23:45:10,621 : INFO : h_r_error: 107.84606871061298\n", + "2018-08-27 23:45:10,626 : INFO : h_r_error: 107.84606871061298\n", + "2018-08-27 23:45:10,629 : INFO : h_r_error: 112.68078163239812\n", + "2018-08-27 23:45:10,633 : INFO : h_r_error: 112.182702555122\n", + "2018-08-27 23:45:10,643 : INFO : h_r_error: 112.182702555122\n", + "2018-08-27 23:45:10,645 : INFO : h_r_error: 10.891440732753185\n", + "2018-08-27 23:45:10,648 : INFO : h_r_error: 10.880070013624625\n", + "2018-08-27 23:45:10,650 : INFO : h_r_error: 10.880070013624625\n", + "2018-08-27 23:45:10,656 : INFO : h_r_error: 137.15990057875675\n", + "2018-08-27 23:45:10,662 : INFO : h_r_error: 136.66579590761867\n", + "2018-08-27 23:45:10,665 : INFO : h_r_error: 136.66579590761867\n", + "2018-08-27 23:45:10,668 : INFO : h_r_error: 51.14945240147144\n", + "2018-08-27 23:45:10,675 : INFO : h_r_error: 50.94589800612068\n", + "2018-08-27 23:45:10,677 : INFO : h_r_error: 50.94589800612068\n", + "2018-08-27 23:45:10,680 : INFO : h_r_error: 28.07548690593866\n", + "2018-08-27 23:45:10,683 : INFO : h_r_error: 28.043570982448475\n", + "2018-08-27 23:45:10,686 : INFO : h_r_error: 28.043570982448475\n", + "2018-08-27 23:45:10,692 : INFO : h_r_error: 16.229166348370203\n", + "2018-08-27 23:45:10,696 : INFO : h_r_error: 16.229166348370203\n", + "2018-08-27 23:45:10,702 : INFO : h_r_error: 25.070613504407554\n", + "2018-08-27 23:45:10,704 : INFO : h_r_error: 25.026654665871238\n", + "2018-08-27 23:45:10,710 : INFO : h_r_error: 25.026654665871238\n", + "2018-08-27 23:45:10,712 : INFO : h_r_error: 351.3239391902058\n", + "2018-08-27 23:45:10,714 : INFO : h_r_error: 349.24155751440594\n", + "2018-08-27 23:45:10,718 : INFO : h_r_error: 349.24155751440594\n", + "2018-08-27 23:45:10,725 : INFO : h_r_error: 369.1166041491549\n", + "2018-08-27 23:45:10,728 : INFO : h_r_error: 367.8028531640634\n", + "2018-08-27 23:45:10,732 : INFO : h_r_error: 367.8028531640634\n", + "2018-08-27 23:45:10,756 : INFO : h_r_error: 82.44546265856535\n", + "2018-08-27 23:45:10,761 : INFO : h_r_error: 82.25623152800664\n", + "2018-08-27 23:45:10,770 : INFO : h_r_error: 82.25623152800664\n", + "2018-08-27 23:45:10,772 : INFO : h_r_error: 60.53961337252454\n", + "2018-08-27 23:45:10,775 : INFO : h_r_error: 60.53961337252454\n", + "2018-08-27 23:45:10,780 : INFO : h_r_error: 98.81547891012593\n", + "2018-08-27 23:45:10,782 : INFO : h_r_error: 98.22456023844445\n", + "2018-08-27 23:45:10,786 : INFO : h_r_error: 98.22456023844445\n", + "2018-08-27 23:45:10,796 : INFO : h_r_error: 104.49632969427316\n", + "2018-08-27 23:45:10,798 : INFO : h_r_error: 104.1692201443283\n", + "2018-08-27 23:45:10,801 : INFO : h_r_error: 104.1692201443283\n", + "2018-08-27 23:45:10,804 : INFO : h_r_error: 287.35209457621767\n", + "2018-08-27 23:45:10,812 : INFO : h_r_error: 283.6714140296512\n", + "2018-08-27 23:45:10,815 : INFO : h_r_error: 283.6714140296512\n", + "2018-08-27 23:45:10,819 : INFO : h_r_error: 66.20612302686573\n", + "2018-08-27 23:45:10,825 : INFO : h_r_error: 66.03074073368457\n", + "2018-08-27 23:45:10,828 : INFO : h_r_error: 66.03074073368457\n", + "2018-08-27 23:45:10,830 : INFO : h_r_error: 409.08098979869794\n", + "2018-08-27 23:45:10,836 : INFO : h_r_error: 407.32189407842174\n", + "2018-08-27 23:45:10,838 : INFO : h_r_error: 407.32189407842174\n", + "2018-08-27 23:45:10,844 : INFO : h_r_error: 245.54578559013385\n", + "2018-08-27 23:45:10,847 : INFO : h_r_error: 244.51946924403012\n", + "2018-08-27 23:45:10,849 : INFO : h_r_error: 244.51946924403012\n", + "2018-08-27 23:45:10,852 : INFO : h_r_error: 67.38643970290559\n", + "2018-08-27 23:45:10,856 : INFO : h_r_error: 67.25304849461244\n", + "2018-08-27 23:45:10,862 : INFO : h_r_error: 67.25304849461244\n", + "2018-08-27 23:45:10,866 : INFO : h_r_error: 403.9324655600927\n", + "2018-08-27 23:45:10,869 : INFO : h_r_error: 397.48997408984536\n", + "2018-08-27 23:45:10,871 : INFO : h_r_error: 397.48997408984536\n", + "2018-08-27 23:45:10,874 : INFO : h_r_error: 168.7049182073785\n", + "2018-08-27 23:45:10,877 : INFO : h_r_error: 168.42552086383373\n", + "2018-08-27 23:45:10,879 : INFO : h_r_error: 168.42552086383373\n", + "2018-08-27 23:45:10,882 : INFO : h_r_error: 64.86823791196655\n", + "2018-08-27 23:45:10,890 : INFO : h_r_error: 64.86823791196655\n", + "2018-08-27 23:45:10,892 : INFO : h_r_error: 19.290314111380322\n", + "2018-08-27 23:45:10,894 : INFO : h_r_error: 19.290314111380322\n", + "2018-08-27 23:45:10,898 : INFO : h_r_error: 13.864914444258329\n", + "2018-08-27 23:45:10,901 : INFO : h_r_error: 13.864914444258329\n", + "2018-08-27 23:45:10,903 : INFO : h_r_error: 118.51357172279829\n", + "2018-08-27 23:45:10,906 : INFO : h_r_error: 118.51357172279829\n", + "2018-08-27 23:45:10,908 : INFO : h_r_error: 265.9270314917215\n", + "2018-08-27 23:45:10,911 : INFO : h_r_error: 265.367837594869\n", + "2018-08-27 23:45:10,914 : INFO : h_r_error: 265.367837594869\n", + "2018-08-27 23:45:10,917 : INFO : h_r_error: 104.66317257217972\n", + "2018-08-27 23:45:10,919 : INFO : h_r_error: 104.53169248228863\n", + "2018-08-27 23:45:10,922 : INFO : h_r_error: 104.53169248228863\n", + "2018-08-27 23:45:10,925 : INFO : h_r_error: 456.79520406781415\n", + "2018-08-27 23:45:10,927 : INFO : h_r_error: 453.61103765303193\n", + "2018-08-27 23:45:10,930 : INFO : h_r_error: 453.61103765303193\n", + "2018-08-27 23:45:10,933 : INFO : h_r_error: 119.57244883406415\n", + "2018-08-27 23:45:10,935 : INFO : h_r_error: 119.19481874419725\n", + "2018-08-27 23:45:10,937 : INFO : h_r_error: 119.19481874419725\n", + "2018-08-27 23:45:10,939 : INFO : h_r_error: 22.630684987091755\n", + "2018-08-27 23:45:10,940 : INFO : h_r_error: 22.588652264230134\n", + "2018-08-27 23:45:10,942 : INFO : h_r_error: 22.588652264230134\n", + "2018-08-27 23:45:10,944 : INFO : h_r_error: 208.84816540225015\n", + "2018-08-27 23:45:10,945 : INFO : h_r_error: 208.3731791023213\n", + "2018-08-27 23:45:10,948 : INFO : h_r_error: 208.3731791023213\n", + "2018-08-27 23:45:10,950 : INFO : h_r_error: 24.2639292148433\n", + "2018-08-27 23:45:10,951 : INFO : h_r_error: 24.2639292148433\n", + "2018-08-27 23:45:10,953 : INFO : h_r_error: 260.2256037639817\n", + "2018-08-27 23:45:10,955 : INFO : h_r_error: 259.16661875388826\n", + "2018-08-27 23:45:10,956 : INFO : h_r_error: 259.16661875388826\n", + "2018-08-27 23:45:10,958 : INFO : h_r_error: 112.97037019692492\n", + "2018-08-27 23:45:10,960 : INFO : h_r_error: 112.23912218261431\n", + "2018-08-27 23:45:10,962 : INFO : h_r_error: 112.23912218261431\n", + "2018-08-27 23:45:10,963 : INFO : h_r_error: 26.1589247317773\n", + "2018-08-27 23:45:10,977 : INFO : h_r_error: 25.855314257262606\n", + "2018-08-27 23:45:10,979 : INFO : h_r_error: 25.855314257262606\n", + "2018-08-27 23:45:10,982 : INFO : h_r_error: 648.0809854652865\n", + "2018-08-27 23:45:10,989 : INFO : h_r_error: 180.50293446636184\n", + "2018-08-27 23:45:10,991 : INFO : h_r_error: 180.50293446636184\n", + "2018-08-27 23:45:10,992 : INFO : h_r_error: 488.01945234950824\n", + "2018-08-27 23:45:10,994 : INFO : h_r_error: 486.8855190688143\n", + "2018-08-27 23:45:10,995 : INFO : h_r_error: 486.8855190688143\n", + "2018-08-27 23:45:10,998 : INFO : h_r_error: 37.8974603126764\n", + "2018-08-27 23:45:11,014 : INFO : h_r_error: 37.8974603126764\n", + "2018-08-27 23:45:11,019 : INFO : h_r_error: 95.90300751943926\n", + "2018-08-27 23:45:11,021 : INFO : h_r_error: 95.67825992379743\n", + "2018-08-27 23:45:11,025 : INFO : h_r_error: 95.67825992379743\n", + "2018-08-27 23:45:11,028 : INFO : h_r_error: 19.40764452391585\n", + "2018-08-27 23:45:11,033 : INFO : h_r_error: 19.40764452391585\n", + "2018-08-27 23:45:11,035 : INFO : h_r_error: 9.418681500595497\n", + "2018-08-27 23:45:11,043 : INFO : h_r_error: 9.418681500595497\n", + "2018-08-27 23:45:11,046 : INFO : h_r_error: 102.24197370328547\n", + "2018-08-27 23:45:11,048 : INFO : h_r_error: 101.92402272666\n", + "2018-08-27 23:45:11,056 : INFO : h_r_error: 101.92402272666\n", + "2018-08-27 23:45:11,059 : INFO : h_r_error: 45.755407650308456\n", + "2018-08-27 23:45:11,066 : INFO : h_r_error: 45.53759076607281\n", + "2018-08-27 23:45:11,068 : INFO : h_r_error: 45.53759076607281\n", + "2018-08-27 23:45:11,073 : INFO : h_r_error: 39.464877539208956\n", + "2018-08-27 23:45:11,075 : INFO : h_r_error: 39.37806593641647\n", + "2018-08-27 23:45:11,078 : INFO : h_r_error: 39.37806593641647\n", + "2018-08-27 23:45:11,081 : INFO : h_r_error: 255.33772138426625\n", + "2018-08-27 23:45:11,083 : INFO : h_r_error: 254.10078751968277\n", + "2018-08-27 23:45:11,088 : INFO : h_r_error: 254.10078751968277\n", + "2018-08-27 23:45:11,090 : INFO : h_r_error: 295.1214818544699\n", + "2018-08-27 23:45:11,093 : INFO : h_r_error: 293.4317534057286\n", + "2018-08-27 23:45:11,095 : INFO : h_r_error: 293.4317534057286\n", + "2018-08-27 23:45:11,098 : INFO : h_r_error: 54.923881889119976\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:11,101 : INFO : h_r_error: 54.791163939138166\n", + "2018-08-27 23:45:11,105 : INFO : h_r_error: 54.791163939138166\n", + "2018-08-27 23:45:11,107 : INFO : h_r_error: 71.28003141174423\n", + "2018-08-27 23:45:11,109 : INFO : h_r_error: 71.28003141174423\n", + "2018-08-27 23:45:11,111 : INFO : h_r_error: 278.7892511784869\n", + "2018-08-27 23:45:11,113 : INFO : h_r_error: 277.8740514173475\n", + "2018-08-27 23:45:11,116 : INFO : h_r_error: 277.8740514173475\n", + "2018-08-27 23:45:11,149 : INFO : h_r_error: 38.33404340328102\n", + "2018-08-27 23:45:11,154 : INFO : h_r_error: 37.94848644040294\n", + "2018-08-27 23:45:11,157 : INFO : h_r_error: 37.94848644040294\n", + "2018-08-27 23:45:11,160 : INFO : h_r_error: 87.53207584347362\n", + "2018-08-27 23:45:11,162 : INFO : h_r_error: 87.42255108756697\n", + "2018-08-27 23:45:11,165 : INFO : h_r_error: 87.42255108756697\n", + "2018-08-27 23:45:11,168 : INFO : h_r_error: 219.70159995282586\n", + "2018-08-27 23:45:11,174 : INFO : h_r_error: 218.47045457251707\n", + "2018-08-27 23:45:11,182 : INFO : h_r_error: 218.47045457251707\n", + "2018-08-27 23:45:11,186 : INFO : h_r_error: 14.428201876243515\n", + "2018-08-27 23:45:11,189 : INFO : h_r_error: 14.428201876243515\n", + "2018-08-27 23:45:11,196 : INFO : h_r_error: 39.254160148759645\n", + "2018-08-27 23:45:11,199 : INFO : h_r_error: 39.1041129543303\n", + "2018-08-27 23:45:11,210 : INFO : h_r_error: 39.1041129543303\n", + "2018-08-27 23:45:11,213 : INFO : h_r_error: 94.66335321868873\n", + "2018-08-27 23:45:11,216 : INFO : h_r_error: 94.52275763053788\n", + "2018-08-27 23:45:11,220 : INFO : h_r_error: 94.52275763053788\n", + "2018-08-27 23:45:11,226 : INFO : h_r_error: 564.0748528850772\n", + "2018-08-27 23:45:11,230 : INFO : h_r_error: 562.8339942911747\n", + "2018-08-27 23:45:11,234 : INFO : h_r_error: 562.8339942911747\n", + "2018-08-27 23:45:11,239 : INFO : h_r_error: 205.93125145695493\n", + "2018-08-27 23:45:11,243 : INFO : h_r_error: 205.27442064489406\n", + "2018-08-27 23:45:11,250 : INFO : h_r_error: 205.27442064489406\n", + "2018-08-27 23:45:11,253 : INFO : h_r_error: 45.6443729334338\n", + "2018-08-27 23:45:11,258 : INFO : h_r_error: 45.6443729334338\n", + "2018-08-27 23:45:11,266 : INFO : h_r_error: 69.42984940771086\n", + "2018-08-27 23:45:11,274 : INFO : h_r_error: 69.28065270476472\n", + "2018-08-27 23:45:11,278 : INFO : h_r_error: 69.28065270476472\n", + "2018-08-27 23:45:11,282 : INFO : h_r_error: 43.66355414804304\n", + "2018-08-27 23:45:11,296 : INFO : h_r_error: 43.66355414804304\n", + "2018-08-27 23:45:11,301 : INFO : h_r_error: 22.111224121555498\n", + "2018-08-27 23:45:11,304 : INFO : h_r_error: 22.08820948787055\n", + "2018-08-27 23:45:11,313 : INFO : h_r_error: 22.08820948787055\n", + "2018-08-27 23:45:11,317 : INFO : h_r_error: 27.56607858679807\n", + "2018-08-27 23:45:11,319 : INFO : h_r_error: 27.518316220238837\n", + "2018-08-27 23:45:11,330 : INFO : h_r_error: 27.518316220238837\n", + "2018-08-27 23:45:11,333 : INFO : h_r_error: 79.75041260898342\n", + "2018-08-27 23:45:11,336 : INFO : h_r_error: 79.75041260898342\n", + "2018-08-27 23:45:11,346 : INFO : h_r_error: 35.12507828848979\n", + "2018-08-27 23:45:11,349 : INFO : h_r_error: 35.04445966312926\n", + "2018-08-27 23:45:11,352 : INFO : h_r_error: 35.04445966312926\n", + "2018-08-27 23:45:11,362 : INFO : h_r_error: 102.50123354911078\n", + "2018-08-27 23:45:11,365 : INFO : h_r_error: 102.27389628547344\n", + "2018-08-27 23:45:11,368 : INFO : h_r_error: 102.27389628547344\n", + "2018-08-27 23:45:11,370 : INFO : h_r_error: 16.70942788830671\n", + "2018-08-27 23:45:11,377 : INFO : h_r_error: 16.690766978580196\n", + "2018-08-27 23:45:11,380 : INFO : h_r_error: 16.690766978580196\n", + "2018-08-27 23:45:11,386 : INFO : h_r_error: 73.35940631465135\n", + "2018-08-27 23:45:11,388 : INFO : h_r_error: 73.18078935009495\n", + "2018-08-27 23:45:11,393 : INFO : h_r_error: 73.18078935009495\n", + "2018-08-27 23:45:11,397 : INFO : h_r_error: 3377.3713877647\n", + "2018-08-27 23:45:11,402 : INFO : h_r_error: 3369.57536266718\n", + "2018-08-27 23:45:11,405 : INFO : h_r_error: 3369.57536266718\n", + "2018-08-27 23:45:11,434 : INFO : h_r_error: 195.13298996869358\n", + "2018-08-27 23:45:11,436 : INFO : h_r_error: 193.6004861352703\n", + "2018-08-27 23:45:11,440 : INFO : h_r_error: 193.6004861352703\n", + "2018-08-27 23:45:11,446 : INFO : h_r_error: 194.58340327465726\n", + "2018-08-27 23:45:11,449 : INFO : h_r_error: 194.22229388005115\n", + "2018-08-27 23:45:11,453 : INFO : h_r_error: 194.22229388005115\n", + "2018-08-27 23:45:11,460 : INFO : h_r_error: 21.394691609099844\n", + "2018-08-27 23:45:11,463 : INFO : h_r_error: 21.394691609099844\n", + "2018-08-27 23:45:11,464 : INFO : h_r_error: 420.2861114973524\n", + "2018-08-27 23:45:11,468 : INFO : h_r_error: 410.80387678082377\n", + "2018-08-27 23:45:11,476 : INFO : h_r_error: 410.80387678082377\n", + "2018-08-27 23:45:11,478 : INFO : h_r_error: 103.27085055289409\n", + "2018-08-27 23:45:11,480 : INFO : h_r_error: 103.04931323868942\n", + "2018-08-27 23:45:11,483 : INFO : h_r_error: 103.04931323868942\n", + "2018-08-27 23:45:11,487 : INFO : h_r_error: 43.184329106061824\n", + "2018-08-27 23:45:11,492 : INFO : h_r_error: 43.034332048868244\n", + "2018-08-27 23:45:11,494 : INFO : h_r_error: 43.034332048868244\n", + "2018-08-27 23:45:11,500 : INFO : h_r_error: 27.31213980597482\n", + "2018-08-27 23:45:11,502 : INFO : h_r_error: 27.31213980597482\n", + "2018-08-27 23:45:11,507 : INFO : h_r_error: 9.335757077966775\n", + "2018-08-27 23:45:11,509 : INFO : h_r_error: 9.322373548656776\n", + "2018-08-27 23:45:11,516 : INFO : h_r_error: 9.322373548656776\n", + "2018-08-27 23:45:11,518 : INFO : h_r_error: 19.929993447472587\n", + "2018-08-27 23:45:11,520 : INFO : h_r_error: 19.929993447472587\n", + "2018-08-27 23:45:11,523 : INFO : h_r_error: 78.12475640047118\n", + "2018-08-27 23:45:11,526 : INFO : h_r_error: 77.8449492499782\n", + "2018-08-27 23:45:11,528 : INFO : h_r_error: 77.8449492499782\n", + "2018-08-27 23:45:11,530 : INFO : h_r_error: 25.538032275891148\n", + "2018-08-27 23:45:11,536 : INFO : h_r_error: 25.503870433862584\n", + "2018-08-27 23:45:11,539 : INFO : h_r_error: 25.503870433862584\n", + "2018-08-27 23:45:11,541 : INFO : h_r_error: 43.01221349387062\n", + "2018-08-27 23:45:11,546 : INFO : h_r_error: 43.01221349387062\n", + "2018-08-27 23:45:11,551 : INFO : h_r_error: 61.71511660366473\n", + "2018-08-27 23:45:11,554 : INFO : h_r_error: 61.61156089303084\n", + "2018-08-27 23:45:11,556 : INFO : h_r_error: 61.61156089303084\n", + "2018-08-27 23:45:11,562 : INFO : h_r_error: 42.43642196110965\n", + "2018-08-27 23:45:11,564 : INFO : h_r_error: 42.43642196110965\n", + "2018-08-27 23:45:11,570 : INFO : h_r_error: 20.185543539656596\n", + "2018-08-27 23:45:11,572 : INFO : h_r_error: 20.159701108344134\n", + "2018-08-27 23:45:11,578 : INFO : h_r_error: 20.159701108344134\n", + "2018-08-27 23:45:11,581 : INFO : h_r_error: 88.18567593092318\n", + "2018-08-27 23:45:11,584 : INFO : h_r_error: 88.00321757843925\n", + "2018-08-27 23:45:11,586 : INFO : h_r_error: 88.00321757843925\n", + "2018-08-27 23:45:11,589 : INFO : h_r_error: 319.50080148676034\n", + "2018-08-27 23:45:11,591 : INFO : h_r_error: 316.36933610385717\n", + "2018-08-27 23:45:11,597 : INFO : h_r_error: 316.36933610385717\n", + "2018-08-27 23:45:11,599 : INFO : h_r_error: 2.9927432769317885\n", + "2018-08-27 23:45:11,601 : INFO : h_r_error: 2.9927432769317885\n", + "2018-08-27 23:45:11,609 : INFO : h_r_error: 115.58449850657578\n", + "2018-08-27 23:45:11,611 : INFO : h_r_error: 115.3723074964942\n", + "2018-08-27 23:45:11,614 : INFO : h_r_error: 115.3723074964942\n", + "2018-08-27 23:45:11,616 : INFO : h_r_error: 142.42691813154966\n", + "2018-08-27 23:45:11,626 : INFO : h_r_error: 141.52811319200882\n", + "2018-08-27 23:45:11,628 : INFO : h_r_error: 141.52811319200882\n", + "2018-08-27 23:45:11,630 : INFO : h_r_error: 31.648703728603316\n", + "2018-08-27 23:45:11,632 : INFO : h_r_error: 31.562697173524654\n", + "2018-08-27 23:45:11,634 : INFO : h_r_error: 31.562697173524654\n", + "2018-08-27 23:45:11,639 : INFO : h_r_error: 51.78611436906381\n", + "2018-08-27 23:45:11,643 : INFO : h_r_error: 51.71814603217257\n", + "2018-08-27 23:45:11,645 : INFO : h_r_error: 51.71814603217257\n", + "2018-08-27 23:45:11,653 : INFO : h_r_error: 125.108085807401\n", + "2018-08-27 23:45:11,659 : INFO : h_r_error: 124.90552578689774\n", + "2018-08-27 23:45:11,664 : INFO : h_r_error: 124.90552578689774\n", + "2018-08-27 23:45:11,673 : INFO : h_r_error: 135.55236150867495\n", + "2018-08-27 23:45:11,679 : INFO : h_r_error: 134.870646209497\n", + "2018-08-27 23:45:11,688 : INFO : h_r_error: 134.870646209497\n", + "2018-08-27 23:45:11,691 : INFO : h_r_error: 22.374556591188806\n", + "2018-08-27 23:45:11,694 : INFO : h_r_error: 22.328784981313994\n", + "2018-08-27 23:45:11,700 : INFO : h_r_error: 22.328784981313994\n", + "2018-08-27 23:45:11,704 : INFO : h_r_error: 39.40185111415704\n", + "2018-08-27 23:45:11,709 : INFO : h_r_error: 39.34952151029273\n", + "2018-08-27 23:45:11,713 : INFO : h_r_error: 39.34952151029273\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:11,719 : INFO : h_r_error: 45.401771414252345\n", + "2018-08-27 23:45:11,721 : INFO : h_r_error: 45.401771414252345\n", + "2018-08-27 23:45:11,726 : INFO : h_r_error: 30.074611573855023\n", + "2018-08-27 23:45:11,731 : INFO : h_r_error: 30.035124149185776\n", + "2018-08-27 23:45:11,734 : INFO : h_r_error: 30.035124149185776\n", + "2018-08-27 23:45:11,736 : INFO : h_r_error: 212.84477695033883\n", + "2018-08-27 23:45:11,741 : INFO : h_r_error: 212.28267152956136\n", + "2018-08-27 23:45:11,745 : INFO : h_r_error: 212.28267152956136\n", + "2018-08-27 23:45:11,746 : INFO : h_r_error: 220.1495256469164\n", + "2018-08-27 23:45:11,750 : INFO : h_r_error: 219.46351890529186\n", + "2018-08-27 23:45:11,752 : INFO : h_r_error: 219.46351890529186\n", + "2018-08-27 23:45:11,754 : INFO : h_r_error: 109.64399896023605\n", + "2018-08-27 23:45:11,757 : INFO : h_r_error: 109.42629761648602\n", + "2018-08-27 23:45:11,759 : INFO : h_r_error: 109.42629761648602\n", + "2018-08-27 23:45:11,761 : INFO : h_r_error: 24.713960627006085\n", + "2018-08-27 23:45:11,763 : INFO : h_r_error: 24.663537385833518\n", + "2018-08-27 23:45:11,765 : INFO : h_r_error: 24.663537385833518\n", + "2018-08-27 23:45:11,767 : INFO : h_r_error: 27.334481118306257\n", + "2018-08-27 23:45:11,769 : INFO : h_r_error: 27.334481118306257\n", + "2018-08-27 23:45:11,771 : INFO : h_r_error: 27.079407548940164\n", + "2018-08-27 23:45:11,774 : INFO : h_r_error: 27.043633370903652\n", + "2018-08-27 23:45:11,776 : INFO : h_r_error: 27.043633370903652\n", + "2018-08-27 23:45:11,778 : INFO : h_r_error: 318.61830954418764\n", + "2018-08-27 23:45:11,780 : INFO : h_r_error: 317.0583707110081\n", + "2018-08-27 23:45:11,782 : INFO : h_r_error: 317.0583707110081\n", + "2018-08-27 23:45:11,783 : INFO : h_r_error: 200.9494059884595\n", + "2018-08-27 23:45:11,785 : INFO : h_r_error: 199.09391981746398\n", + "2018-08-27 23:45:11,786 : INFO : h_r_error: 199.09391981746398\n", + "2018-08-27 23:45:11,788 : INFO : h_r_error: 67.63956423839724\n", + "2018-08-27 23:45:11,789 : INFO : h_r_error: 67.43884912409563\n", + "2018-08-27 23:45:11,791 : INFO : h_r_error: 67.43884912409563\n", + "2018-08-27 23:45:11,792 : INFO : h_r_error: 979.5355383301658\n", + "2018-08-27 23:45:11,793 : INFO : h_r_error: 977.843869418661\n", + "2018-08-27 23:45:11,795 : INFO : h_r_error: 977.843869418661\n", + "2018-08-27 23:45:11,796 : INFO : h_r_error: 65.54331821190507\n", + "2018-08-27 23:45:11,798 : INFO : h_r_error: 65.46786317071306\n", + "2018-08-27 23:45:11,799 : INFO : h_r_error: 65.46786317071306\n", + "2018-08-27 23:45:11,800 : INFO : h_r_error: 13.93747684259868\n", + "2018-08-27 23:45:11,802 : INFO : h_r_error: 13.93747684259868\n", + "2018-08-27 23:45:11,804 : INFO : h_r_error: 13.93747684259868\n", + "2018-08-27 23:45:11,805 : INFO : h_r_error: 63.13809573146082\n", + "2018-08-27 23:45:11,807 : INFO : h_r_error: 63.13809573146082\n", + "2018-08-27 23:45:11,808 : INFO : h_r_error: 101.42727612480007\n", + "2018-08-27 23:45:11,809 : INFO : h_r_error: 101.30163583323908\n", + "2018-08-27 23:45:11,811 : INFO : h_r_error: 101.30163583323908\n", + "2018-08-27 23:45:11,812 : INFO : h_r_error: 15.619739595290737\n", + "2018-08-27 23:45:11,813 : INFO : h_r_error: 15.586235965382263\n", + "2018-08-27 23:45:11,815 : INFO : h_r_error: 15.586235965382263\n", + "2018-08-27 23:45:11,816 : INFO : h_r_error: 44.05263547550892\n", + "2018-08-27 23:45:11,817 : INFO : h_r_error: 43.935971266435445\n", + "2018-08-27 23:45:11,819 : INFO : h_r_error: 43.935971266435445\n", + "2018-08-27 23:45:11,820 : INFO : h_r_error: 61.443819761944404\n", + "2018-08-27 23:45:11,821 : INFO : h_r_error: 61.308264442241736\n", + "2018-08-27 23:45:11,823 : INFO : h_r_error: 61.308264442241736\n", + "2018-08-27 23:45:11,824 : INFO : h_r_error: 64.77163471136676\n", + "2018-08-27 23:45:11,825 : INFO : h_r_error: 64.67862088738569\n", + "2018-08-27 23:45:11,826 : INFO : h_r_error: 64.67862088738569\n", + "2018-08-27 23:45:11,828 : INFO : h_r_error: 137.5184967129021\n", + "2018-08-27 23:45:11,829 : INFO : h_r_error: 137.19530653057123\n", + "2018-08-27 23:45:11,831 : INFO : h_r_error: 137.19530653057123\n", + "2018-08-27 23:45:11,832 : INFO : h_r_error: 43.280706082123054\n", + "2018-08-27 23:45:11,836 : INFO : h_r_error: 43.21345949344759\n", + "2018-08-27 23:45:11,846 : INFO : h_r_error: 43.21345949344759\n", + "2018-08-27 23:45:11,849 : INFO : h_r_error: 214.79591485272337\n", + "2018-08-27 23:45:11,851 : INFO : h_r_error: 205.51493128321812\n", + "2018-08-27 23:45:11,853 : INFO : h_r_error: 205.51493128321812\n", + "2018-08-27 23:45:11,855 : INFO : h_r_error: 56.96276325648226\n", + "2018-08-27 23:45:11,866 : INFO : h_r_error: 56.56497988123869\n", + "2018-08-27 23:45:11,867 : INFO : h_r_error: 56.56497988123869\n", + "2018-08-27 23:45:11,869 : INFO : h_r_error: 21.783031315676922\n", + "2018-08-27 23:45:11,873 : INFO : h_r_error: 21.783031315676922\n", + "2018-08-27 23:45:11,874 : INFO : h_r_error: 59.14652819080889\n", + "2018-08-27 23:45:11,877 : INFO : h_r_error: 59.06082721777681\n", + "2018-08-27 23:45:11,878 : INFO : h_r_error: 59.06082721777681\n", + "2018-08-27 23:45:11,881 : INFO : h_r_error: 74.22121261116645\n", + "2018-08-27 23:45:11,883 : INFO : h_r_error: 74.05067919934247\n", + "2018-08-27 23:45:11,884 : INFO : h_r_error: 74.05067919934247\n", + "2018-08-27 23:45:11,886 : INFO : h_r_error: 38.531746025242384\n", + "2018-08-27 23:45:11,898 : INFO : h_r_error: 38.531746025242384\n", + "2018-08-27 23:45:11,900 : INFO : h_r_error: 57.62205396280413\n", + "2018-08-27 23:45:11,901 : INFO : h_r_error: 57.5041515716967\n", + "2018-08-27 23:45:11,906 : INFO : h_r_error: 57.5041515716967\n", + "2018-08-27 23:45:11,908 : INFO : h_r_error: 111.72834042204755\n", + "2018-08-27 23:45:11,917 : INFO : h_r_error: 111.38805178498411\n", + "2018-08-27 23:45:11,919 : INFO : h_r_error: 111.38805178498411\n", + "2018-08-27 23:45:11,923 : INFO : h_r_error: 23.73956099558545\n", + "2018-08-27 23:45:11,926 : INFO : h_r_error: 23.73956099558545\n", + "2018-08-27 23:45:11,930 : INFO : h_r_error: 14.230440279408615\n", + "2018-08-27 23:45:11,931 : INFO : h_r_error: 14.205037571711062\n", + "2018-08-27 23:45:11,933 : INFO : h_r_error: 14.205037571711062\n", + "2018-08-27 23:45:11,936 : INFO : h_r_error: 49.711644790970226\n", + "2018-08-27 23:45:11,937 : INFO : h_r_error: 49.63861597720887\n", + "2018-08-27 23:45:11,939 : INFO : h_r_error: 49.63861597720887\n", + "2018-08-27 23:45:11,949 : INFO : h_r_error: 25.040767131532018\n", + "2018-08-27 23:45:11,950 : INFO : h_r_error: 25.0119423980994\n", + "2018-08-27 23:45:11,952 : INFO : h_r_error: 25.0119423980994\n", + "2018-08-27 23:45:11,954 : INFO : h_r_error: 34.30015890634604\n", + "2018-08-27 23:45:11,955 : INFO : h_r_error: 34.255574496689576\n", + "2018-08-27 23:45:11,957 : INFO : h_r_error: 34.255574496689576\n", + "2018-08-27 23:45:11,958 : INFO : h_r_error: 137.96207129684282\n", + "2018-08-27 23:45:11,960 : INFO : h_r_error: 137.18877680411754\n", + "2018-08-27 23:45:11,961 : INFO : h_r_error: 137.18877680411754\n", + "2018-08-27 23:45:11,963 : INFO : h_r_error: 58.39701811018821\n", + "2018-08-27 23:45:11,965 : INFO : h_r_error: 58.259764632979746\n", + "2018-08-27 23:45:11,969 : INFO : h_r_error: 58.259764632979746\n", + "2018-08-27 23:45:11,971 : INFO : h_r_error: 9.408486412523626\n", + "2018-08-27 23:45:11,973 : INFO : h_r_error: 9.408486412523626\n", + "2018-08-27 23:45:11,974 : INFO : h_r_error: 90.18287275611605\n", + "2018-08-27 23:45:11,976 : INFO : h_r_error: 89.93647791973042\n", + "2018-08-27 23:45:11,978 : INFO : h_r_error: 89.93647791973042\n", + "2018-08-27 23:45:11,979 : INFO : h_r_error: 28.260466920853883\n", + "2018-08-27 23:45:11,980 : INFO : h_r_error: 28.19797195576139\n", + "2018-08-27 23:45:11,981 : INFO : h_r_error: 28.19797195576139\n", + "2018-08-27 23:45:11,984 : INFO : h_r_error: 26.0951363493579\n", + "2018-08-27 23:45:11,986 : INFO : h_r_error: 26.022950436986505\n", + "2018-08-27 23:45:11,989 : INFO : h_r_error: 26.022950436986505\n", + "2018-08-27 23:45:11,992 : INFO : h_r_error: 60.131149534697535\n", + "2018-08-27 23:45:11,993 : INFO : h_r_error: 59.99753402609404\n", + "2018-08-27 23:45:11,995 : INFO : h_r_error: 59.99753402609404\n", + "2018-08-27 23:45:11,996 : INFO : h_r_error: 58.389173694669026\n", + "2018-08-27 23:45:11,997 : INFO : h_r_error: 58.22923959895184\n", + "2018-08-27 23:45:11,999 : INFO : h_r_error: 58.22923959895184\n", + "2018-08-27 23:45:12,001 : INFO : h_r_error: 605.630128916287\n", + "2018-08-27 23:45:12,014 : INFO : h_r_error: 600.19066373739\n", + "2018-08-27 23:45:12,018 : INFO : h_r_error: 600.19066373739\n", + "2018-08-27 23:45:12,020 : INFO : h_r_error: 28.13122616847215\n", + "2018-08-27 23:45:12,039 : INFO : h_r_error: 28.102623617434922\n", + "2018-08-27 23:45:12,052 : INFO : h_r_error: 28.102623617434922\n", + "2018-08-27 23:45:12,053 : INFO : h_r_error: 103.53689740200376\n", + "2018-08-27 23:45:12,054 : INFO : h_r_error: 103.24342459119137\n", + "2018-08-27 23:45:12,056 : INFO : h_r_error: 103.24342459119137\n", + "2018-08-27 23:45:12,057 : INFO : h_r_error: 22.668222383732715\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:12,067 : INFO : h_r_error: 22.637724257834467\n", + "2018-08-27 23:45:12,069 : INFO : h_r_error: 22.637724257834467\n", + "2018-08-27 23:45:12,070 : INFO : h_r_error: 39.71471153241762\n", + "2018-08-27 23:45:12,072 : INFO : h_r_error: 39.64931448273663\n", + "2018-08-27 23:45:12,073 : INFO : h_r_error: 39.64931448273663\n", + "2018-08-27 23:45:12,076 : INFO : h_r_error: 64.93648605789367\n", + "2018-08-27 23:45:12,078 : INFO : h_r_error: 64.44710543890649\n", + "2018-08-27 23:45:12,082 : INFO : h_r_error: 64.44710543890649\n", + "2018-08-27 23:45:12,083 : INFO : h_r_error: 112.21119587544713\n", + "2018-08-27 23:45:12,091 : INFO : h_r_error: 111.97552549702522\n", + "2018-08-27 23:45:12,094 : INFO : h_r_error: 111.97552549702522\n", + "2018-08-27 23:45:12,098 : INFO : h_r_error: 56.77863023203744\n", + "2018-08-27 23:45:12,101 : INFO : h_r_error: 56.71698210531082\n", + "2018-08-27 23:45:12,103 : INFO : h_r_error: 56.71698210531082\n", + "2018-08-27 23:45:12,118 : INFO : h_r_error: 75.79728742391968\n", + "2018-08-27 23:45:12,123 : INFO : h_r_error: 75.68720556114886\n", + "2018-08-27 23:45:12,127 : INFO : h_r_error: 75.68720556114886\n", + "2018-08-27 23:45:12,133 : INFO : h_r_error: 11.433896280418624\n", + "2018-08-27 23:45:12,134 : INFO : h_r_error: 11.433896280418624\n", + "2018-08-27 23:45:12,141 : INFO : h_r_error: 23.341048964934522\n", + "2018-08-27 23:45:12,147 : INFO : h_r_error: 23.341048964934522\n", + "2018-08-27 23:45:12,153 : INFO : h_r_error: 41.194038328044876\n", + "2018-08-27 23:45:12,155 : INFO : h_r_error: 41.0558741711433\n", + "2018-08-27 23:45:12,158 : INFO : h_r_error: 41.0558741711433\n", + "2018-08-27 23:45:12,160 : INFO : h_r_error: 159.2338951896059\n", + "2018-08-27 23:45:12,163 : INFO : h_r_error: 158.23257606168306\n", + "2018-08-27 23:45:12,165 : INFO : h_r_error: 158.23257606168306\n", + "2018-08-27 23:45:12,168 : INFO : h_r_error: 93.28561730866006\n", + "2018-08-27 23:45:12,169 : INFO : h_r_error: 93.12709951729516\n", + "2018-08-27 23:45:12,171 : INFO : h_r_error: 93.12709951729516\n", + "2018-08-27 23:45:12,172 : INFO : h_r_error: 45.20116215669265\n", + "2018-08-27 23:45:12,173 : INFO : h_r_error: 45.10354801484517\n", + "2018-08-27 23:45:12,175 : INFO : h_r_error: 45.10354801484517\n", + "2018-08-27 23:45:12,176 : INFO : h_r_error: 47.78647736746028\n", + "2018-08-27 23:45:12,178 : INFO : h_r_error: 47.70093576281362\n", + "2018-08-27 23:45:12,179 : INFO : h_r_error: 47.70093576281362\n", + "2018-08-27 23:45:12,181 : INFO : h_r_error: 45.80364318252843\n", + "2018-08-27 23:45:12,182 : INFO : h_r_error: 45.7211067153947\n", + "2018-08-27 23:45:12,184 : INFO : h_r_error: 45.7211067153947\n", + "2018-08-27 23:45:12,185 : INFO : h_r_error: 15.428423750706921\n", + "2018-08-27 23:45:12,187 : INFO : h_r_error: 15.428423750706921\n", + "2018-08-27 23:45:12,188 : INFO : h_r_error: 204.67800135525277\n", + "2018-08-27 23:45:12,190 : INFO : h_r_error: 204.67800135525277\n", + "2018-08-27 23:45:12,191 : INFO : h_r_error: 40.59548529017948\n", + "2018-08-27 23:45:12,195 : INFO : h_r_error: 40.59548529017948\n", + "2018-08-27 23:45:12,197 : INFO : h_r_error: 29.674754112252423\n", + "2018-08-27 23:45:12,198 : INFO : h_r_error: 29.64181207806481\n", + "2018-08-27 23:45:12,200 : INFO : h_r_error: 29.64181207806481\n", + "2018-08-27 23:45:12,202 : INFO : h_r_error: 18.40309853071615\n", + "2018-08-27 23:45:12,203 : INFO : h_r_error: 18.40309853071615\n", + "2018-08-27 23:45:12,204 : INFO : h_r_error: 47.65932653104299\n", + "2018-08-27 23:45:12,206 : INFO : h_r_error: 47.56648904405267\n", + "2018-08-27 23:45:12,207 : INFO : h_r_error: 47.56648904405267\n", + "2018-08-27 23:45:12,208 : INFO : h_r_error: 43.72687176126012\n", + "2018-08-27 23:45:12,209 : INFO : h_r_error: 43.5965485644507\n", + "2018-08-27 23:45:12,211 : INFO : h_r_error: 43.5965485644507\n", + "2018-08-27 23:45:12,212 : INFO : h_r_error: 280.8345986138184\n", + "2018-08-27 23:45:12,213 : INFO : h_r_error: 279.64238978039043\n", + "2018-08-27 23:45:12,215 : INFO : h_r_error: 279.64238978039043\n", + "2018-08-27 23:45:12,217 : INFO : h_r_error: 71.6955198863703\n", + "2018-08-27 23:45:12,218 : INFO : h_r_error: 71.4072262158863\n", + "2018-08-27 23:45:12,220 : INFO : h_r_error: 71.4072262158863\n", + "2018-08-27 23:45:12,221 : INFO : h_r_error: 45.78670677495082\n", + "2018-08-27 23:45:12,223 : INFO : h_r_error: 45.78670677495082\n", + "2018-08-27 23:45:12,224 : INFO : h_r_error: 10.344759986580959\n", + "2018-08-27 23:45:12,225 : INFO : h_r_error: 10.331425344735353\n", + "2018-08-27 23:45:12,233 : INFO : h_r_error: 10.331425344735353\n", + "2018-08-27 23:45:12,235 : INFO : h_r_error: 46.38656148795832\n", + "2018-08-27 23:45:12,236 : INFO : h_r_error: 46.29585949054209\n", + "2018-08-27 23:45:12,242 : INFO : h_r_error: 46.29585949054209\n", + "2018-08-27 23:45:12,243 : INFO : h_r_error: 19.462862479644727\n", + "2018-08-27 23:45:12,245 : INFO : h_r_error: 19.462862479644727\n", + "2018-08-27 23:45:12,246 : INFO : h_r_error: 246.63456905101643\n", + "2018-08-27 23:45:12,250 : INFO : h_r_error: 245.76059823346594\n", + "2018-08-27 23:45:12,251 : INFO : h_r_error: 245.76059823346594\n", + "2018-08-27 23:45:12,253 : INFO : h_r_error: 47.12034903800152\n", + "2018-08-27 23:45:12,259 : INFO : h_r_error: 47.12034903800152\n", + "2018-08-27 23:45:12,260 : INFO : h_r_error: 70.59127466483832\n", + "2018-08-27 23:45:12,261 : INFO : h_r_error: 70.32584466413628\n", + "2018-08-27 23:45:12,276 : INFO : h_r_error: 70.32584466413628\n", + "2018-08-27 23:45:12,277 : INFO : h_r_error: 37.9753562866596\n", + "2018-08-27 23:45:12,279 : INFO : h_r_error: 37.821867665892576\n", + "2018-08-27 23:45:12,280 : INFO : h_r_error: 37.821867665892576\n", + "2018-08-27 23:45:12,282 : INFO : h_r_error: 59.92765397058203\n", + "2018-08-27 23:45:12,283 : INFO : h_r_error: 59.92765397058203\n", + "2018-08-27 23:45:12,286 : INFO : h_r_error: 149.71122481568545\n", + "2018-08-27 23:45:12,287 : INFO : h_r_error: 148.08873118748795\n", + "2018-08-27 23:45:12,298 : INFO : h_r_error: 148.08873118748795\n", + "2018-08-27 23:45:12,302 : INFO : h_r_error: 136.43769725197595\n", + "2018-08-27 23:45:12,304 : INFO : h_r_error: 136.0962581323235\n", + "2018-08-27 23:45:12,309 : INFO : h_r_error: 136.0962581323235\n", + "2018-08-27 23:45:12,311 : INFO : h_r_error: 59.876810054938844\n", + "2018-08-27 23:45:12,312 : INFO : h_r_error: 59.47783070339084\n", + "2018-08-27 23:45:12,313 : INFO : h_r_error: 59.47783070339084\n", + "2018-08-27 23:45:12,316 : INFO : h_r_error: 44.871468819638615\n", + "2018-08-27 23:45:12,317 : INFO : h_r_error: 44.795133490135136\n", + "2018-08-27 23:45:12,319 : INFO : h_r_error: 44.795133490135136\n", + "2018-08-27 23:45:12,329 : INFO : h_r_error: 67.77054830645982\n", + "2018-08-27 23:45:12,331 : INFO : h_r_error: 67.62015398829648\n", + "2018-08-27 23:45:12,336 : INFO : h_r_error: 67.62015398829648\n", + "2018-08-27 23:45:12,338 : INFO : h_r_error: 184.77800892983262\n", + "2018-08-27 23:45:12,340 : INFO : h_r_error: 184.12901353917502\n", + "2018-08-27 23:45:12,353 : INFO : h_r_error: 184.12901353917502\n", + "2018-08-27 23:45:12,355 : INFO : h_r_error: 58.90128875199442\n", + "2018-08-27 23:45:12,357 : INFO : h_r_error: 58.671287496278865\n", + "2018-08-27 23:45:12,359 : INFO : h_r_error: 58.671287496278865\n", + "2018-08-27 23:45:12,361 : INFO : h_r_error: 27.63362981089581\n", + "2018-08-27 23:45:12,362 : INFO : h_r_error: 27.602129164669865\n", + "2018-08-27 23:45:12,370 : INFO : h_r_error: 27.602129164669865\n", + "2018-08-27 23:45:12,371 : INFO : h_r_error: 97.09416222208802\n", + "2018-08-27 23:45:12,372 : INFO : h_r_error: 96.83344897115484\n", + "2018-08-27 23:45:12,374 : INFO : h_r_error: 96.83344897115484\n", + "2018-08-27 23:45:12,382 : INFO : h_r_error: 12.968626755658699\n", + "2018-08-27 23:45:12,386 : INFO : h_r_error: 12.968626755658699\n", + "2018-08-27 23:45:12,388 : INFO : h_r_error: 312.6249461648036\n", + "2018-08-27 23:45:12,389 : INFO : h_r_error: 300.1325683427208\n", + "2018-08-27 23:45:12,403 : INFO : h_r_error: 300.1325683427208\n", + "2018-08-27 23:45:12,404 : INFO : h_r_error: 75.07067453256492\n", + "2018-08-27 23:45:12,415 : INFO : h_r_error: 74.94021451309234\n", + "2018-08-27 23:45:12,417 : INFO : h_r_error: 74.94021451309234\n", + "2018-08-27 23:45:12,419 : INFO : h_r_error: 82.22343683128211\n", + "2018-08-27 23:45:12,428 : INFO : h_r_error: 81.64722144299918\n", + "2018-08-27 23:45:12,431 : INFO : h_r_error: 81.64722144299918\n", + "2018-08-27 23:45:12,438 : INFO : h_r_error: 40.34970908644456\n", + "2018-08-27 23:45:12,440 : INFO : h_r_error: 40.281482793025404\n", + "2018-08-27 23:45:12,442 : INFO : h_r_error: 40.281482793025404\n", + "2018-08-27 23:45:12,445 : INFO : h_r_error: 17.74089797092359\n", + "2018-08-27 23:45:12,448 : INFO : h_r_error: 17.719983890690486\n", + "2018-08-27 23:45:12,450 : INFO : h_r_error: 17.719983890690486\n", + "2018-08-27 23:45:12,452 : INFO : h_r_error: 45.84963271423913\n", + "2018-08-27 23:45:12,457 : INFO : h_r_error: 45.84963271423913\n", + "2018-08-27 23:45:12,459 : INFO : h_r_error: 44.735092451158074\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:12,461 : INFO : h_r_error: 44.638226592924106\n", + "2018-08-27 23:45:12,463 : INFO : h_r_error: 44.638226592924106\n", + "2018-08-27 23:45:12,468 : INFO : h_r_error: 20.69517608393178\n", + "2018-08-27 23:45:12,470 : INFO : h_r_error: 20.69517608393178\n", + "2018-08-27 23:45:12,483 : INFO : h_r_error: 93.70213151604975\n", + "2018-08-27 23:45:12,486 : INFO : h_r_error: 93.30059304693143\n", + "2018-08-27 23:45:12,488 : INFO : h_r_error: 93.30059304693143\n", + "2018-08-27 23:45:12,490 : INFO : h_r_error: 241.76633083233696\n", + "2018-08-27 23:45:12,492 : INFO : h_r_error: 241.0544865439136\n", + "2018-08-27 23:45:12,494 : INFO : h_r_error: 241.0544865439136\n", + "2018-08-27 23:45:12,496 : INFO : h_r_error: 56.82635177627597\n", + "2018-08-27 23:45:12,498 : INFO : h_r_error: 56.76902177918991\n", + "2018-08-27 23:45:12,500 : INFO : h_r_error: 56.76902177918991\n", + "2018-08-27 23:45:12,502 : INFO : h_r_error: 54.65904731872984\n", + "2018-08-27 23:45:12,504 : INFO : h_r_error: 54.56969666726361\n", + "2018-08-27 23:45:12,506 : INFO : h_r_error: 54.56969666726361\n", + "2018-08-27 23:45:12,508 : INFO : h_r_error: 42.302614987115454\n", + "2018-08-27 23:45:12,510 : INFO : h_r_error: 42.16774141160706\n", + "2018-08-27 23:45:12,512 : INFO : h_r_error: 42.16774141160706\n", + "2018-08-27 23:45:12,514 : INFO : h_r_error: 40.61409474223361\n", + "2018-08-27 23:45:12,517 : INFO : h_r_error: 40.61409474223361\n", + "2018-08-27 23:45:12,519 : INFO : h_r_error: 35.06801374957791\n", + "2018-08-27 23:45:12,521 : INFO : h_r_error: 35.013576434272295\n", + "2018-08-27 23:45:12,524 : INFO : h_r_error: 35.013576434272295\n", + "2018-08-27 23:45:12,526 : INFO : h_r_error: 63.41449317706166\n", + "2018-08-27 23:45:12,528 : INFO : h_r_error: 63.41449317706166\n", + "2018-08-27 23:45:12,529 : INFO : h_r_error: 37.09421152566816\n", + "2018-08-27 23:45:12,530 : INFO : h_r_error: 37.02151165862781\n", + "2018-08-27 23:45:12,532 : INFO : h_r_error: 37.02151165862781\n", + "2018-08-27 23:45:12,533 : INFO : h_r_error: 56.18631365772794\n", + "2018-08-27 23:45:12,534 : INFO : h_r_error: 56.05889238847562\n", + "2018-08-27 23:45:12,535 : INFO : h_r_error: 56.05889238847562\n", + "2018-08-27 23:45:12,537 : INFO : h_r_error: 15.295701334976597\n", + "2018-08-27 23:45:12,538 : INFO : h_r_error: 15.277302054741293\n", + "2018-08-27 23:45:12,548 : INFO : h_r_error: 15.277302054741293\n", + "2018-08-27 23:45:12,552 : INFO : h_r_error: 46.03078188674534\n", + "2018-08-27 23:45:12,572 : INFO : h_r_error: 45.95742853333613\n", + "2018-08-27 23:45:12,580 : INFO : h_r_error: 45.95742853333613\n", + "2018-08-27 23:45:12,584 : INFO : h_r_error: 31.598982331188484\n", + "2018-08-27 23:45:12,586 : INFO : h_r_error: 31.564366241758233\n", + "2018-08-27 23:45:12,617 : INFO : h_r_error: 31.564366241758233\n", + "2018-08-27 23:45:12,619 : INFO : h_r_error: 1888.382502093524\n", + "2018-08-27 23:45:12,623 : INFO : h_r_error: 1842.176870785874\n", + "2018-08-27 23:45:12,625 : INFO : h_r_error: 1842.176870785874\n", + "2018-08-27 23:45:12,627 : INFO : h_r_error: 170.57565112700496\n", + "2018-08-27 23:45:12,630 : INFO : h_r_error: 170.18344429794539\n", + "2018-08-27 23:45:12,640 : INFO : h_r_error: 170.18344429794539\n", + "2018-08-27 23:45:12,649 : INFO : h_r_error: 53.17957559256321\n", + "2018-08-27 23:45:12,654 : INFO : h_r_error: 53.03798759780327\n", + "2018-08-27 23:45:12,659 : INFO : h_r_error: 53.03798759780327\n", + "2018-08-27 23:45:12,662 : INFO : h_r_error: 31.189791348888352\n", + "2018-08-27 23:45:12,665 : INFO : h_r_error: 31.10724910854178\n", + "2018-08-27 23:45:12,669 : INFO : h_r_error: 31.10724910854178\n", + "2018-08-27 23:45:12,671 : INFO : h_r_error: 588.5114618554002\n", + "2018-08-27 23:45:12,684 : INFO : h_r_error: 586.3048863597767\n", + "2018-08-27 23:45:12,687 : INFO : h_r_error: 586.3048863597767\n", + "2018-08-27 23:45:12,689 : INFO : h_r_error: 203.89829430365066\n", + "2018-08-27 23:45:12,709 : INFO : h_r_error: 203.89829430365066\n", + "2018-08-27 23:45:12,714 : INFO : h_r_error: 35.28681580686938\n", + "2018-08-27 23:45:12,721 : INFO : h_r_error: 35.19450212224506\n", + "2018-08-27 23:45:12,730 : INFO : h_r_error: 35.19450212224506\n", + "2018-08-27 23:45:12,733 : INFO : h_r_error: 44.14461841047571\n", + "2018-08-27 23:45:12,738 : INFO : h_r_error: 43.98843907066369\n", + "2018-08-27 23:45:12,749 : INFO : h_r_error: 43.98843907066369\n", + "2018-08-27 23:45:12,752 : INFO : h_r_error: 82.43591392108955\n", + "2018-08-27 23:45:12,754 : INFO : h_r_error: 82.34229165430735\n", + "2018-08-27 23:45:12,756 : INFO : h_r_error: 82.34229165430735\n", + "2018-08-27 23:45:12,762 : INFO : h_r_error: 191.0820388370301\n", + "2018-08-27 23:45:12,767 : INFO : h_r_error: 185.70723283645697\n", + "2018-08-27 23:45:12,778 : INFO : h_r_error: 185.70723283645697\n", + "2018-08-27 23:45:12,786 : INFO : h_r_error: 7.467358303204303\n", + "2018-08-27 23:45:12,789 : INFO : h_r_error: 7.467358303204303\n", + "2018-08-27 23:45:12,802 : INFO : h_r_error: 18.036509857521523\n", + "2018-08-27 23:45:12,805 : INFO : h_r_error: 17.993850899898533\n", + "2018-08-27 23:45:12,807 : INFO : h_r_error: 17.993850899898533\n", + "2018-08-27 23:45:12,819 : INFO : h_r_error: 77.93045939974137\n", + "2018-08-27 23:45:12,821 : INFO : h_r_error: 77.74309427692478\n", + "2018-08-27 23:45:12,830 : INFO : h_r_error: 77.74309427692478\n", + "2018-08-27 23:45:12,835 : INFO : h_r_error: 18.151106198779352\n", + "2018-08-27 23:45:12,852 : INFO : h_r_error: 18.12339025213752\n", + "2018-08-27 23:45:12,866 : INFO : h_r_error: 18.12339025213752\n", + "2018-08-27 23:45:12,868 : INFO : h_r_error: 38.923782355761034\n", + "2018-08-27 23:45:12,870 : INFO : h_r_error: 38.83797195229983\n", + "2018-08-27 23:45:12,882 : INFO : h_r_error: 38.83797195229983\n", + "2018-08-27 23:45:12,885 : INFO : h_r_error: 93.23634209916854\n", + "2018-08-27 23:45:12,888 : INFO : h_r_error: 92.9534675575086\n", + "2018-08-27 23:45:12,890 : INFO : h_r_error: 92.9534675575086\n", + "2018-08-27 23:45:12,893 : INFO : h_r_error: 77.58931988490703\n", + "2018-08-27 23:45:12,903 : INFO : h_r_error: 77.42320596577764\n", + "2018-08-27 23:45:12,907 : INFO : h_r_error: 77.42320596577764\n", + "2018-08-27 23:45:12,910 : INFO : h_r_error: 96.73305215734892\n", + "2018-08-27 23:45:12,915 : INFO : h_r_error: 96.42248143880181\n", + "2018-08-27 23:45:12,920 : INFO : h_r_error: 96.42248143880181\n", + "2018-08-27 23:45:12,923 : INFO : h_r_error: 56.809106904279844\n", + "2018-08-27 23:45:12,927 : INFO : h_r_error: 56.74667280573048\n", + "2018-08-27 23:45:12,929 : INFO : h_r_error: 56.74667280573048\n", + "2018-08-27 23:45:12,931 : INFO : h_r_error: 43.53751061283945\n", + "2018-08-27 23:45:12,933 : INFO : h_r_error: 43.46390154369594\n", + "2018-08-27 23:45:12,943 : INFO : h_r_error: 43.46390154369594\n", + "2018-08-27 23:45:12,945 : INFO : h_r_error: 112.59553814812534\n", + "2018-08-27 23:45:12,950 : INFO : h_r_error: 112.59553814812534\n", + "2018-08-27 23:45:12,953 : INFO : h_r_error: 18.331306201723798\n", + "2018-08-27 23:45:12,960 : INFO : h_r_error: 18.331306201723798\n", + "2018-08-27 23:45:12,962 : INFO : h_r_error: 99.24451860987494\n", + "2018-08-27 23:45:12,964 : INFO : h_r_error: 98.83173189834856\n", + "2018-08-27 23:45:12,967 : INFO : h_r_error: 98.83173189834856\n", + "2018-08-27 23:45:12,976 : INFO : h_r_error: 47.44230281438525\n", + "2018-08-27 23:45:12,979 : INFO : h_r_error: 47.34918937472068\n", + "2018-08-27 23:45:12,992 : INFO : h_r_error: 47.34918937472068\n", + "2018-08-27 23:45:12,995 : INFO : h_r_error: 98.97111722658234\n", + "2018-08-27 23:45:13,002 : INFO : h_r_error: 98.69537483133738\n", + "2018-08-27 23:45:13,006 : INFO : h_r_error: 98.69537483133738\n", + "2018-08-27 23:45:13,008 : INFO : h_r_error: 54.852304657556445\n", + "2018-08-27 23:45:13,016 : INFO : h_r_error: 54.852304657556445\n", + "2018-08-27 23:45:13,018 : INFO : h_r_error: 34.171152136130466\n", + "2018-08-27 23:45:13,020 : INFO : h_r_error: 34.1047484690895\n", + "2018-08-27 23:45:13,023 : INFO : h_r_error: 34.1047484690895\n", + "2018-08-27 23:45:13,029 : INFO : h_r_error: 10.970589002858159\n", + "2018-08-27 23:45:13,032 : INFO : h_r_error: 10.970589002858159\n", + "2018-08-27 23:45:13,042 : INFO : h_r_error: 167.4061307117357\n", + "2018-08-27 23:45:13,045 : INFO : h_r_error: 166.8897050244586\n", + "2018-08-27 23:45:13,049 : INFO : h_r_error: 166.8897050244586\n", + "2018-08-27 23:45:13,056 : INFO : h_r_error: 28.84430944530899\n", + "2018-08-27 23:45:13,061 : INFO : h_r_error: 28.77653939364175\n", + "2018-08-27 23:45:13,069 : INFO : h_r_error: 28.77653939364175\n", + "2018-08-27 23:45:13,072 : INFO : h_r_error: 930.550953587178\n", + "2018-08-27 23:45:13,075 : INFO : h_r_error: 930.550953587178\n", + "2018-08-27 23:45:13,082 : INFO : h_r_error: 106.94680752572665\n", + "2018-08-27 23:45:13,085 : INFO : h_r_error: 106.16087076689391\n", + "2018-08-27 23:45:13,096 : INFO : h_r_error: 106.16087076689391\n", + "2018-08-27 23:45:13,099 : INFO : h_r_error: 37.53530334092092\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:13,103 : INFO : h_r_error: 37.53530334092092\n", + "2018-08-27 23:45:13,110 : INFO : h_r_error: 397.7909854957582\n", + "2018-08-27 23:45:13,117 : INFO : h_r_error: 397.7909854957582\n", + "2018-08-27 23:45:13,126 : INFO : h_r_error: 726.262166413542\n", + "2018-08-27 23:45:13,129 : INFO : h_r_error: 722.4899345118284\n", + "2018-08-27 23:45:13,133 : INFO : h_r_error: 722.4899345118284\n", + "2018-08-27 23:45:13,137 : INFO : h_r_error: 141.11286419801348\n", + "2018-08-27 23:45:13,145 : INFO : h_r_error: 140.73422130944556\n", + "2018-08-27 23:45:13,148 : INFO : h_r_error: 140.73422130944556\n", + "2018-08-27 23:45:13,159 : INFO : h_r_error: 444.83067175048154\n", + "2018-08-27 23:45:13,161 : INFO : h_r_error: 440.1682270712009\n", + "2018-08-27 23:45:13,164 : INFO : h_r_error: 440.1682270712009\n", + "2018-08-27 23:45:13,166 : INFO : h_r_error: 27.626672428993928\n", + "2018-08-27 23:45:13,169 : INFO : h_r_error: 27.5832983392481\n", + "2018-08-27 23:45:13,180 : INFO : h_r_error: 27.5832983392481\n", + "2018-08-27 23:45:13,183 : INFO : h_r_error: 109.22340313130226\n", + "2018-08-27 23:45:13,185 : INFO : h_r_error: 109.09057199855393\n", + "2018-08-27 23:45:13,188 : INFO : h_r_error: 109.09057199855393\n", + "2018-08-27 23:45:13,193 : INFO : h_r_error: 88.37222241992028\n", + "2018-08-27 23:45:13,196 : INFO : h_r_error: 88.2595243179797\n", + "2018-08-27 23:45:13,200 : INFO : h_r_error: 88.2595243179797\n", + "2018-08-27 23:45:13,202 : INFO : h_r_error: 119.52799535025494\n", + "2018-08-27 23:45:13,210 : INFO : h_r_error: 119.27898189987657\n", + "2018-08-27 23:45:13,214 : INFO : h_r_error: 119.27898189987657\n", + "2018-08-27 23:45:13,223 : INFO : h_r_error: 173.47044535078976\n", + "2018-08-27 23:45:13,226 : INFO : h_r_error: 172.73144225355435\n", + "2018-08-27 23:45:13,228 : INFO : h_r_error: 172.73144225355435\n", + "2018-08-27 23:45:13,232 : INFO : h_r_error: 111.08915321509407\n", + "2018-08-27 23:45:13,237 : INFO : h_r_error: 110.6049924733988\n", + "2018-08-27 23:45:13,240 : INFO : h_r_error: 110.6049924733988\n", + "2018-08-27 23:45:13,244 : INFO : h_r_error: 17.06898539332425\n", + "2018-08-27 23:45:13,250 : INFO : h_r_error: 17.036735441475695\n", + "2018-08-27 23:45:13,259 : INFO : h_r_error: 17.036735441475695\n", + "2018-08-27 23:45:13,269 : INFO : h_r_error: 79.08808251127273\n", + "2018-08-27 23:45:13,272 : INFO : h_r_error: 78.83068583799286\n", + "2018-08-27 23:45:13,274 : INFO : h_r_error: 78.83068583799286\n", + "2018-08-27 23:45:13,277 : INFO : h_r_error: 66.33231585518573\n", + "2018-08-27 23:45:13,286 : INFO : h_r_error: 66.24011477410166\n", + "2018-08-27 23:45:13,289 : INFO : h_r_error: 66.24011477410166\n", + "2018-08-27 23:45:13,291 : INFO : h_r_error: 42.05735092307161\n", + "2018-08-27 23:45:13,293 : INFO : h_r_error: 42.05735092307161\n", + "2018-08-27 23:45:13,299 : INFO : h_r_error: 47.02237351952087\n", + "2018-08-27 23:45:13,301 : INFO : h_r_error: 46.88906508561372\n", + "2018-08-27 23:45:13,304 : INFO : h_r_error: 46.88906508561372\n", + "2018-08-27 23:45:13,312 : INFO : h_r_error: 66.6281622090688\n", + "2018-08-27 23:45:13,315 : INFO : h_r_error: 66.43592352224717\n", + "2018-08-27 23:45:13,317 : INFO : h_r_error: 66.43592352224717\n", + "2018-08-27 23:45:13,319 : INFO : h_r_error: 71.91663622065518\n", + "2018-08-27 23:45:13,329 : INFO : h_r_error: 71.7387915458513\n", + "2018-08-27 23:45:13,332 : INFO : h_r_error: 71.7387915458513\n", + "2018-08-27 23:45:13,334 : INFO : h_r_error: 21.33432458395946\n", + "2018-08-27 23:45:13,338 : INFO : h_r_error: 21.33432458395946\n", + "2018-08-27 23:45:13,346 : INFO : h_r_error: 67.48930546910239\n", + "2018-08-27 23:45:13,349 : INFO : h_r_error: 67.38480427539871\n", + "2018-08-27 23:45:13,353 : INFO : h_r_error: 67.38480427539871\n", + "2018-08-27 23:45:13,364 : INFO : h_r_error: 20.214505148851188\n", + "2018-08-27 23:45:13,371 : INFO : h_r_error: 20.18801208243566\n", + "2018-08-27 23:45:13,376 : INFO : h_r_error: 20.18801208243566\n", + "2018-08-27 23:45:13,378 : INFO : h_r_error: 47.920433926654965\n", + "2018-08-27 23:45:13,382 : INFO : h_r_error: 47.752958231223985\n", + "2018-08-27 23:45:13,393 : INFO : h_r_error: 47.752958231223985\n", + "2018-08-27 23:45:13,396 : INFO : h_r_error: 49.24016670951457\n", + "2018-08-27 23:45:13,398 : INFO : h_r_error: 49.153608083476904\n", + "2018-08-27 23:45:13,406 : INFO : h_r_error: 49.153608083476904\n", + "2018-08-27 23:45:13,408 : INFO : h_r_error: 8.851464630782392\n", + "2018-08-27 23:45:13,410 : INFO : h_r_error: 8.841955217501157\n", + "2018-08-27 23:45:13,419 : INFO : h_r_error: 8.841955217501157\n", + "2018-08-27 23:45:13,422 : INFO : h_r_error: 40.905583478564424\n", + "2018-08-27 23:45:13,424 : INFO : h_r_error: 40.86001172549085\n", + "2018-08-27 23:45:13,433 : INFO : h_r_error: 40.86001172549085\n", + "2018-08-27 23:45:13,435 : INFO : h_r_error: 7.798304833014612\n", + "2018-08-27 23:45:13,438 : INFO : h_r_error: 7.787301946537544\n", + "2018-08-27 23:45:13,446 : INFO : h_r_error: 7.787301946537544\n", + "2018-08-27 23:45:13,449 : INFO : h_r_error: 15.353021003416512\n", + "2018-08-27 23:45:13,451 : INFO : h_r_error: 15.353021003416512\n", + "2018-08-27 23:45:13,460 : INFO : h_r_error: 9.894754051036047\n", + "2018-08-27 23:45:13,463 : INFO : h_r_error: 9.894754051036047\n", + "2018-08-27 23:45:13,466 : INFO : h_r_error: 39.61504809278037\n", + "2018-08-27 23:45:13,469 : INFO : h_r_error: 39.54710369681954\n", + "2018-08-27 23:45:13,479 : INFO : h_r_error: 39.54710369681954\n", + "2018-08-27 23:45:13,482 : INFO : h_r_error: 111.93653495293171\n", + "2018-08-27 23:45:13,485 : INFO : h_r_error: 111.55528429288242\n", + "2018-08-27 23:45:13,496 : INFO : h_r_error: 111.55528429288242\n", + "2018-08-27 23:45:13,506 : INFO : h_r_error: 1239.5730679234991\n", + "2018-08-27 23:45:13,508 : INFO : h_r_error: 1191.8872405993523\n", + "2018-08-27 23:45:13,513 : INFO : h_r_error: 1191.8872405993523\n", + "2018-08-27 23:45:13,522 : INFO : h_r_error: 29.71492865789174\n", + "2018-08-27 23:45:13,525 : INFO : h_r_error: 29.633178419792813\n", + "2018-08-27 23:45:13,527 : INFO : h_r_error: 29.633178419792813\n", + "2018-08-27 23:45:13,529 : INFO : h_r_error: 144.70907456770988\n", + "2018-08-27 23:45:13,539 : INFO : h_r_error: 144.36253906360503\n", + "2018-08-27 23:45:13,542 : INFO : h_r_error: 144.36253906360503\n", + "2018-08-27 23:45:13,545 : INFO : h_r_error: 1172.5412689705738\n", + "2018-08-27 23:45:13,548 : INFO : h_r_error: 1163.9648885563288\n", + "2018-08-27 23:45:13,552 : INFO : h_r_error: 1163.9648885563288\n", + "2018-08-27 23:45:13,556 : INFO : h_r_error: 8.483311253392532\n", + "2018-08-27 23:45:13,561 : INFO : h_r_error: 8.483311253392532\n", + "2018-08-27 23:45:13,568 : INFO : h_r_error: 199.64917116075725\n", + "2018-08-27 23:45:13,571 : INFO : h_r_error: 199.64917116075725\n", + "2018-08-27 23:45:13,573 : INFO : h_r_error: 28.96563354498746\n", + "2018-08-27 23:45:13,578 : INFO : h_r_error: 28.96563354498746\n", + "2018-08-27 23:45:13,582 : INFO : h_r_error: 38.406919269800454\n", + "2018-08-27 23:45:13,587 : INFO : h_r_error: 38.354620938710404\n", + "2018-08-27 23:45:13,589 : INFO : h_r_error: 38.354620938710404\n", + "2018-08-27 23:45:13,592 : INFO : h_r_error: 40.43725295650745\n", + "2018-08-27 23:45:13,596 : INFO : h_r_error: 40.356347116907656\n", + "2018-08-27 23:45:13,618 : INFO : h_r_error: 40.356347116907656\n", + "2018-08-27 23:45:13,621 : INFO : h_r_error: 51.5497771181147\n", + "2018-08-27 23:45:13,623 : INFO : h_r_error: 51.43842166161657\n", + "2018-08-27 23:45:13,632 : INFO : h_r_error: 51.43842166161657\n", + "2018-08-27 23:45:13,634 : INFO : h_r_error: 66.59572559732041\n", + "2018-08-27 23:45:13,636 : INFO : h_r_error: 66.45136045673901\n", + "2018-08-27 23:45:13,640 : INFO : h_r_error: 66.45136045673901\n", + "2018-08-27 23:45:13,642 : INFO : h_r_error: 21.511953512967573\n", + "2018-08-27 23:45:13,645 : INFO : h_r_error: 21.468918075792566\n", + "2018-08-27 23:45:13,680 : INFO : h_r_error: 21.468918075792566\n", + "2018-08-27 23:45:13,686 : INFO : h_r_error: 36.167184507918904\n", + "2018-08-27 23:45:13,690 : INFO : h_r_error: 36.088510934008994\n", + "2018-08-27 23:45:13,697 : INFO : h_r_error: 36.088510934008994\n", + "2018-08-27 23:45:13,699 : INFO : h_r_error: 15.978496420830874\n", + "2018-08-27 23:45:13,702 : INFO : h_r_error: 15.936454138255073\n", + "2018-08-27 23:45:13,710 : INFO : h_r_error: 15.936454138255073\n", + "2018-08-27 23:45:13,712 : INFO : h_r_error: 11.437562796602723\n", + "2018-08-27 23:45:13,718 : INFO : h_r_error: 11.437562796602723\n", + "2018-08-27 23:45:13,720 : INFO : h_r_error: 56.39639997426265\n", + "2018-08-27 23:45:13,722 : INFO : h_r_error: 56.13567542207467\n", + "2018-08-27 23:45:13,725 : INFO : h_r_error: 56.13567542207467\n", + "2018-08-27 23:45:13,729 : INFO : h_r_error: 66.47178494214911\n", + "2018-08-27 23:45:13,731 : INFO : h_r_error: 66.37163421298497\n", + "2018-08-27 23:45:13,734 : INFO : h_r_error: 66.37163421298497\n", + "2018-08-27 23:45:13,749 : INFO : h_r_error: 42.552796259224856\n", + "2018-08-27 23:45:13,753 : INFO : h_r_error: 42.552796259224856\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-27 23:45:13,756 : INFO : h_r_error: 234.0641450272416\n", + "2018-08-27 23:45:13,762 : INFO : h_r_error: 232.44871362638105\n" + ] + }, + { + "data": { + "text/plain": [ + "1866.0309623695234" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "perplexity(gensim_nmf, corpus)" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6.357256256235999" + "10804.581608113718" ] }, - "execution_count": 11, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" + "perplexity(lda, corpus)" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.101*\"jesu\" + 0.055*\"matthew\" + 0.042*\"peopl\" + 0.039*\"christian\" + 0.026*\"prophet\" + 0.024*\"dai\" + 0.023*\"messiah\" + 0.023*\"said\" + 0.019*\"god\" + 0.018*\"fulfil\"'),\n", + " '0.038*\"jesu\" + 0.021*\"matthew\" + 0.011*\"peopl\" + 0.010*\"dai\" + 0.010*\"christian\" + 0.010*\"prophet\" + 0.010*\"said\" + 0.009*\"messiah\" + 0.008*\"come\" + 0.008*\"david\"'),\n", " (1,\n", - " '0.043*\"armenian\" + 0.028*\"peopl\" + 0.016*\"post\" + 0.016*\"year\" + 0.016*\"com\" + 0.015*\"time\" + 0.015*\"turkish\" + 0.014*\"state\" + 0.013*\"nasa\" + 0.013*\"space\"'),\n", + " '0.021*\"armenian\" + 0.012*\"peopl\" + 0.007*\"turkish\" + 0.006*\"post\" + 0.006*\"russian\" + 0.006*\"genocid\" + 0.005*\"turk\" + 0.005*\"articl\" + 0.005*\"time\" + 0.004*\"year\"'),\n", " (2,\n", - " '0.359*\"max\" + 0.007*\"umd\" + 0.005*\"hst\" + 0.004*\"armenian\" + 0.003*\"health\" + 0.002*\"father\" + 0.002*\"us\" + 0.002*\"gee\" + 0.002*\"state\" + 0.002*\"public\"'),\n", + " '0.916*\"max\" + 0.018*\"umd\" + 0.013*\"hst\" + 0.005*\"gee\" + 0.003*\"univers\" + 0.003*\"end\" + 0.003*\"distribut\" + 0.003*\"keyword\" + 0.003*\"repli\" + 0.003*\"usa\"'),\n", " (3,\n", - " '0.055*\"health\" + 0.049*\"jesu\" + 0.046*\"us\" + 0.034*\"year\" + 0.034*\"like\" + 0.032*\"know\" + 0.029*\"matthew\" + 0.028*\"david\" + 0.027*\"case\" + 0.027*\"diseas\"'),\n", + " '0.026*\"health\" + 0.017*\"us\" + 0.011*\"report\" + 0.011*\"state\" + 0.011*\"year\" + 0.010*\"public\" + 0.009*\"user\" + 0.009*\"diseas\" + 0.009*\"person\" + 0.009*\"infect\"'),\n", " (4,\n", - " '0.099*\"argument\" + 0.060*\"conclus\" + 0.054*\"exampl\" + 0.049*\"true\" + 0.048*\"premis\" + 0.037*\"good\" + 0.031*\"occur\" + 0.030*\"logic\" + 0.029*\"fals\" + 0.027*\"form\"')]" + " '0.037*\"argument\" + 0.023*\"conclus\" + 0.020*\"exampl\" + 0.019*\"premis\" + 0.018*\"true\" + 0.012*\"occur\" + 0.011*\"logic\" + 0.011*\"fals\" + 0.010*\"form\" + 0.010*\"assert\"')]" ] }, - "execution_count": 13, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } @@ -265,6 +3421,54 @@ "gensim_nmf.show_topics()" ] }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.010*\"window\" + 0.008*\"com\" + 0.008*\"univers\" + 0.007*\"articl\" + 0.007*\"post\" + 0.006*\"file\" + 0.006*\"like\" + 0.006*\"us\" + 0.006*\"know\" + 0.005*\"time\"'),\n", + " (1,\n", + " '0.010*\"com\" + 0.008*\"articl\" + 0.007*\"good\" + 0.006*\"like\" + 0.006*\"us\" + 0.006*\"nasa\" + 0.005*\"peopl\" + 0.004*\"post\" + 0.004*\"univers\" + 0.004*\"believ\"'),\n", + " (2,\n", + " '0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"post\" + 0.008*\"armenian\" + 0.007*\"articl\" + 0.006*\"know\" + 0.005*\"car\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"time\"'),\n", + " (3,\n", + " '0.014*\"max\" + 0.009*\"peopl\" + 0.008*\"jesu\" + 0.006*\"christian\" + 0.006*\"state\" + 0.006*\"think\" + 0.006*\"articl\" + 0.005*\"god\" + 0.005*\"know\" + 0.004*\"like\"'),\n", + " (4,\n", + " '0.013*\"com\" + 0.009*\"post\" + 0.007*\"articl\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.007*\"game\" + 0.007*\"year\" + 0.006*\"new\" + 0.005*\"team\" + 0.005*\"plai\"')]" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lda.show_topics()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# W = gensim_nmf.get_topics().T\n", + "# H = np.hstack(np.array(gensim_nmf[bow])[:, 1:] for bow in corpus)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "# np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -284,17 +3488,17 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 14, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -307,7 +3511,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -316,7 +3520,7 @@ "(183, 256)" ] }, - "execution_count": 15, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -335,15 +3539,15 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 209 ms, sys: 180 ms, total: 390 ms\n", - "Wall time: 156 ms\n" + "CPU times: user 374 ms, sys: 560 ms, total: 934 ms\n", + "Wall time: 262 ms\n" ] } ], @@ -358,17 +3562,17 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 17, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -386,7 +3590,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -397,7 +3601,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 22, "metadata": { "scrolled": true }, @@ -406,15 +3610,272 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-06-13 14:26:59,636 : INFO : Loss (no outliers): 4665.057356152667\tLoss (with outliers): 4665.057356152667\n" + "2018-08-20 22:15:22,726 : INFO : h_r_error: 17211892.5\n", + "2018-08-20 22:15:22,729 : INFO : h_r_error: 12284515.111163257\n", + "2018-08-20 22:15:22,731 : INFO : h_r_error: 11201387.638214733\n", + "2018-08-20 22:15:22,734 : INFO : h_r_error: 10815579.549704548\n", + "2018-08-20 22:15:22,738 : INFO : h_r_error: 10646539.06006998\n", + "2018-08-20 22:15:22,747 : INFO : h_r_error: 10558409.831047071\n", + "2018-08-20 22:15:22,755 : INFO : h_r_error: 10507775.272428757\n", + "2018-08-20 22:15:22,757 : INFO : h_r_error: 10475469.606854783\n", + "2018-08-20 22:15:22,759 : INFO : h_r_error: 10453925.335400445\n", + "2018-08-20 22:15:22,762 : INFO : h_r_error: 10439939.102116534\n", + "2018-08-20 22:15:22,784 : INFO : w_error: 10430366.610691467\n", + "2018-08-20 22:15:22,788 : INFO : w_error: 11466405.186009312\n", + "2018-08-20 22:15:22,791 : INFO : w_error: 10938537.274967317\n", + "2018-08-20 22:15:22,793 : INFO : w_error: 10835183.946454465\n", + "2018-08-20 22:15:22,799 : INFO : w_error: 10808896.588521175\n", + "2018-08-20 22:15:22,803 : INFO : w_error: 10800700.69189361\n", + "2018-08-20 22:15:22,813 : INFO : w_error: 10797625.389554728\n", + "2018-08-20 22:15:22,822 : INFO : w_error: 10796326.877290638\n", + "2018-08-20 22:15:22,887 : INFO : h_r_error: 10439939.102116534\n", + "2018-08-20 22:15:22,892 : INFO : h_r_error: 5219717.607766112\n", + "2018-08-20 22:15:22,903 : INFO : h_r_error: 4876433.68440713\n", + "2018-08-20 22:15:22,912 : INFO : h_r_error: 4716452.5126186535\n", + "2018-08-20 22:15:22,919 : INFO : h_r_error: 4646689.620867923\n", + "2018-08-20 22:15:22,924 : INFO : h_r_error: 4608559.674039051\n", + "2018-08-20 22:15:22,930 : INFO : h_r_error: 4584190.709493502\n", + "2018-08-20 22:15:22,938 : INFO : h_r_error: 4572961.429340482\n", + "2018-08-20 22:15:22,946 : INFO : h_r_error: 4565401.692201527\n", + "2018-08-20 22:15:22,950 : INFO : h_r_error: 4559558.680005681\n", + "2018-08-20 22:15:22,967 : INFO : w_error: 10796326.877290638\n", + "2018-08-20 22:15:22,975 : INFO : w_error: 3930758.885860101\n", + "2018-08-20 22:15:22,981 : INFO : w_error: 3677458.2627771287\n", + "2018-08-20 22:15:22,987 : INFO : w_error: 3533600.150892006\n", + "2018-08-20 22:15:22,997 : INFO : w_error: 3445283.399413136\n", + "2018-08-20 22:15:23,021 : INFO : w_error: 3387724.0695435745\n", + "2018-08-20 22:15:23,027 : INFO : w_error: 3348095.1397870793\n", + "2018-08-20 22:15:23,038 : INFO : w_error: 3319186.5294471537\n", + "2018-08-20 22:15:23,043 : INFO : w_error: 3297270.6048084307\n", + "2018-08-20 22:15:23,051 : INFO : w_error: 3280135.5493962015\n", + "2018-08-20 22:15:23,058 : INFO : w_error: 3266430.893683863\n", + "2018-08-20 22:15:23,063 : INFO : w_error: 3255269.075502726\n", + "2018-08-20 22:15:23,072 : INFO : w_error: 3246056.4386206362\n", + "2018-08-20 22:15:23,077 : INFO : w_error: 3238390.701615569\n", + "2018-08-20 22:15:23,082 : INFO : w_error: 3231955.0349307293\n", + "2018-08-20 22:15:23,102 : INFO : w_error: 3226518.9403491775\n", + "2018-08-20 22:15:23,111 : INFO : w_error: 3221892.863625709\n", + "2018-08-20 22:15:23,119 : INFO : w_error: 3217939.686304069\n", + "2018-08-20 22:15:23,140 : INFO : w_error: 3214547.861387841\n", + "2018-08-20 22:15:23,147 : INFO : w_error: 3211625.5540026743\n", + "2018-08-20 22:15:23,153 : INFO : w_error: 3209100.973817354\n", + "2018-08-20 22:15:23,162 : INFO : w_error: 3206909.4902177462\n", + "2018-08-20 22:15:23,170 : INFO : w_error: 3205002.806936681\n", + "2018-08-20 22:15:23,175 : INFO : w_error: 3203339.106714502\n", + "2018-08-20 22:15:23,191 : INFO : w_error: 3201884.296535962\n", + "2018-08-20 22:15:23,200 : INFO : w_error: 3200609.651616765\n", + "2018-08-20 22:15:23,204 : INFO : w_error: 3199490.8536888813\n", + "2018-08-20 22:15:23,210 : INFO : w_error: 3198507.2616635645\n", + "2018-08-20 22:15:23,217 : INFO : w_error: 3197641.816993364\n", + "2018-08-20 22:15:23,220 : INFO : w_error: 3196878.7555294256\n", + "2018-08-20 22:15:23,222 : INFO : w_error: 3196205.0327337375\n", + "2018-08-20 22:15:23,225 : INFO : w_error: 3195609.4184782924\n", + "2018-08-20 22:15:23,229 : INFO : w_error: 3195082.3236335893\n", + "2018-08-20 22:15:23,239 : INFO : w_error: 3194615.5831228425\n", + "2018-08-20 22:15:23,246 : INFO : w_error: 3194201.5683043436\n", + "2018-08-20 22:15:23,252 : INFO : w_error: 3193834.8146398743\n", + "2018-08-20 22:15:23,254 : INFO : w_error: 3193508.7771292524\n", + "2018-08-20 22:15:23,347 : INFO : h_r_error: 4559558.680005681\n", + "2018-08-20 22:15:23,364 : INFO : h_r_error: 4177748.0244537\n", + "2018-08-20 22:15:23,376 : INFO : h_r_error: 3628705.265115735\n", + "2018-08-20 22:15:23,379 : INFO : h_r_error: 3462026.1148307407\n", + "2018-08-20 22:15:23,380 : INFO : h_r_error: 3401243.761839247\n", + "2018-08-20 22:15:23,384 : INFO : h_r_error: 3374010.723758998\n", + "2018-08-20 22:15:23,387 : INFO : h_r_error: 3359732.557542593\n", + "2018-08-20 22:15:23,389 : INFO : h_r_error: 3352317.7179698027\n", + "2018-08-20 22:15:23,394 : INFO : h_r_error: 3348280.3675716706\n", + "2018-08-20 22:15:23,397 : INFO : w_error: 3193508.7771292524\n", + "2018-08-20 22:15:23,405 : INFO : w_error: 3035675.9706508047\n", + "2018-08-20 22:15:23,414 : INFO : w_error: 2869288.8789675366\n", + "2018-08-20 22:15:23,417 : INFO : w_error: 2764186.2959779585\n", + "2018-08-20 22:15:23,426 : INFO : w_error: 2693213.432438592\n", + "2018-08-20 22:15:23,429 : INFO : w_error: 2643268.1644628057\n", + "2018-08-20 22:15:23,435 : INFO : w_error: 2606976.7410476464\n", + "2018-08-20 22:15:23,438 : INFO : w_error: 2579925.699628573\n", + "2018-08-20 22:15:23,441 : INFO : w_error: 2559341.912315733\n", + "2018-08-20 22:15:23,445 : INFO : w_error: 2543405.243066019\n", + "2018-08-20 22:15:23,450 : INFO : w_error: 2530852.4896410117\n", + "2018-08-20 22:15:23,453 : INFO : w_error: 2520776.369602926\n", + "2018-08-20 22:15:23,458 : INFO : w_error: 2512659.270346705\n", + "2018-08-20 22:15:23,463 : INFO : w_error: 2505998.37537577\n", + "2018-08-20 22:15:23,468 : INFO : w_error: 2500465.83441612\n", + "2018-08-20 22:15:23,471 : INFO : w_error: 2495824.830527703\n", + "2018-08-20 22:15:23,476 : INFO : w_error: 2491898.009297832\n", + "2018-08-20 22:15:23,485 : INFO : w_error: 2488567.934214808\n", + "2018-08-20 22:15:23,487 : INFO : w_error: 2485706.556587448\n", + "2018-08-20 22:15:23,492 : INFO : w_error: 2483219.241524508\n", + "2018-08-20 22:15:23,498 : INFO : w_error: 2481038.43800671\n", + "2018-08-20 22:15:23,505 : INFO : w_error: 2479120.047007517\n", + "2018-08-20 22:15:23,507 : INFO : w_error: 2477421.760689254\n", + "2018-08-20 22:15:23,512 : INFO : w_error: 2475910.438868984\n", + "2018-08-20 22:15:23,517 : INFO : w_error: 2474556.023699714\n", + "2018-08-20 22:15:23,524 : INFO : w_error: 2473336.203138627\n", + "2018-08-20 22:15:23,534 : INFO : w_error: 2472234.09824528\n", + "2018-08-20 22:15:23,537 : INFO : w_error: 2471233.9127539126\n", + "2018-08-20 22:15:23,539 : INFO : w_error: 2470324.4109078967\n", + "2018-08-20 22:15:23,545 : INFO : w_error: 2469496.304810781\n", + "2018-08-20 22:15:23,548 : INFO : w_error: 2468738.397048462\n", + "2018-08-20 22:15:23,554 : INFO : w_error: 2468042.8434290714\n", + "2018-08-20 22:15:23,556 : INFO : w_error: 2467403.1448129206\n", + "2018-08-20 22:15:23,583 : INFO : w_error: 2466814.194397469\n", + "2018-08-20 22:15:23,586 : INFO : w_error: 2466270.9455591654\n", + "2018-08-20 22:15:23,593 : INFO : w_error: 2465770.2129656817\n", + "2018-08-20 22:15:23,596 : INFO : w_error: 2465305.808378511\n", + "2018-08-20 22:15:23,603 : INFO : w_error: 2464874.412077462\n", + "2018-08-20 22:15:23,607 : INFO : w_error: 2464473.0854899157\n", + "2018-08-20 22:15:23,610 : INFO : w_error: 2464099.220703231\n", + "2018-08-20 22:15:23,616 : INFO : w_error: 2463750.4974501343\n", + "2018-08-20 22:15:23,620 : INFO : w_error: 2463424.9738803557\n", + "2018-08-20 22:15:23,624 : INFO : w_error: 2463120.930349401\n", + "2018-08-20 22:15:23,627 : INFO : w_error: 2462836.387742595\n", + "2018-08-20 22:15:23,630 : INFO : w_error: 2462570.2390546994\n", + "2018-08-20 22:15:23,635 : INFO : w_error: 2462320.878029416\n", + "2018-08-20 22:15:23,703 : INFO : h_r_error: 3348280.3675716706\n", + "2018-08-20 22:15:23,705 : INFO : h_r_error: 4253706.044704209\n", + "2018-08-20 22:15:23,709 : INFO : h_r_error: 3619969.593220182\n", + "2018-08-20 22:15:23,714 : INFO : h_r_error: 3503684.15961777\n", + "2018-08-20 22:15:23,719 : INFO : h_r_error: 3470696.317669814\n", + "2018-08-20 22:15:23,723 : INFO : h_r_error: 3459238.1820447627\n", + "2018-08-20 22:15:23,727 : INFO : h_r_error: 3454845.2734097256\n", + "2018-08-20 22:15:23,731 : INFO : w_error: 2462320.878029416\n", + "2018-08-20 22:15:23,735 : INFO : w_error: 2866194.263650794\n", + "2018-08-20 22:15:23,740 : INFO : w_error: 2676748.594518999\n", + "2018-08-20 22:15:23,745 : INFO : w_error: 2574223.0662252144\n", + "2018-08-20 22:15:23,749 : INFO : w_error: 2506119.5762679265\n", + "2018-08-20 22:15:23,759 : INFO : w_error: 2456743.2571549844\n", + "2018-08-20 22:15:23,764 : INFO : w_error: 2419389.81180092\n", + "2018-08-20 22:15:23,768 : INFO : w_error: 2390167.633219041\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:23,774 : INFO : w_error: 2366899.5684030103\n", + "2018-08-20 22:15:23,780 : INFO : w_error: 2347964.180692087\n", + "2018-08-20 22:15:23,787 : INFO : w_error: 2332331.149509242\n", + "2018-08-20 22:15:23,791 : INFO : w_error: 2319290.024670701\n", + "2018-08-20 22:15:23,794 : INFO : w_error: 2308301.644607859\n", + "2018-08-20 22:15:23,811 : INFO : w_error: 2298998.176426708\n", + "2018-08-20 22:15:23,814 : INFO : w_error: 2291054.8383098356\n", + "2018-08-20 22:15:23,818 : INFO : w_error: 2284233.8267418565\n", + "2018-08-20 22:15:23,821 : INFO : w_error: 2278346.4815429775\n", + "2018-08-20 22:15:23,823 : INFO : w_error: 2273239.326070163\n", + "2018-08-20 22:15:23,824 : INFO : w_error: 2268800.1953844256\n", + "2018-08-20 22:15:23,826 : INFO : w_error: 2264918.837606525\n", + "2018-08-20 22:15:23,828 : INFO : w_error: 2261511.2618650706\n", + "2018-08-20 22:15:23,830 : INFO : w_error: 2258510.001427239\n", + "2018-08-20 22:15:23,831 : INFO : w_error: 2255858.510132532\n", + "2018-08-20 22:15:23,833 : INFO : w_error: 2253518.01968442\n", + "2018-08-20 22:15:23,834 : INFO : w_error: 2251442.662145877\n", + "2018-08-20 22:15:23,861 : INFO : w_error: 2249597.3768979134\n", + "2018-08-20 22:15:23,863 : INFO : w_error: 2247952.8598014205\n", + "2018-08-20 22:15:23,866 : INFO : w_error: 2246485.5245242286\n", + "2018-08-20 22:15:23,875 : INFO : w_error: 2245172.528538167\n", + "2018-08-20 22:15:23,878 : INFO : w_error: 2243996.834264229\n", + "2018-08-20 22:15:23,880 : INFO : w_error: 2242941.92831139\n", + "2018-08-20 22:15:23,890 : INFO : w_error: 2241993.1507367296\n", + "2018-08-20 22:15:23,892 : INFO : w_error: 2241138.981282724\n", + "2018-08-20 22:15:23,894 : INFO : w_error: 2240372.9035035283\n", + "2018-08-20 22:15:23,898 : INFO : w_error: 2239682.3493660195\n", + "2018-08-20 22:15:23,901 : INFO : w_error: 2239058.568720074\n", + "2018-08-20 22:15:23,903 : INFO : w_error: 2238494.4270380144\n", + "2018-08-20 22:15:23,905 : INFO : w_error: 2237984.220099477\n", + "2018-08-20 22:15:23,907 : INFO : w_error: 2237520.9884815286\n", + "2018-08-20 22:15:23,909 : INFO : w_error: 2237101.4608067865\n", + "2018-08-20 22:15:23,913 : INFO : w_error: 2236722.197668247\n", + "2018-08-20 22:15:23,917 : INFO : w_error: 2236378.2100734715\n", + "2018-08-20 22:15:23,919 : INFO : w_error: 2236065.4883022504\n", + "2018-08-20 22:15:23,921 : INFO : w_error: 2235780.7662224914\n", + "2018-08-20 22:15:23,928 : INFO : w_error: 2235521.2506842595\n", + "2018-08-20 22:15:23,934 : INFO : w_error: 2235284.50782033\n", + "2018-08-20 22:15:24,015 : INFO : h_r_error: 3454845.2734097256\n", + "2018-08-20 22:15:24,022 : INFO : h_r_error: 2904795.303667716\n", + "2018-08-20 22:15:24,027 : INFO : h_r_error: 1815403.6929314781\n", + "2018-08-20 22:15:24,032 : INFO : h_r_error: 1671979.8610838044\n", + "2018-08-20 22:15:24,036 : INFO : h_r_error: 1646880.9983210769\n", + "2018-08-20 22:15:24,040 : INFO : h_r_error: 1641779.1711565189\n", + "2018-08-20 22:15:24,044 : INFO : w_error: 2235284.50782033\n", + "2018-08-20 22:15:24,051 : INFO : w_error: 1409895.717238072\n", + "2018-08-20 22:15:24,054 : INFO : w_error: 1302982.9901564536\n", + "2018-08-20 22:15:24,056 : INFO : w_error: 1241643.1836578501\n", + "2018-08-20 22:15:24,058 : INFO : w_error: 1202010.8537802538\n", + "2018-08-20 22:15:24,060 : INFO : w_error: 1174256.300835889\n", + "2018-08-20 22:15:24,062 : INFO : w_error: 1153846.4792943266\n", + "2018-08-20 22:15:24,069 : INFO : w_error: 1138188.0072938434\n", + "2018-08-20 22:15:24,071 : INFO : w_error: 1125814.6795108886\n", + "2018-08-20 22:15:24,073 : INFO : w_error: 1115797.5567339717\n", + "2018-08-20 22:15:24,085 : INFO : w_error: 1107544.5916628074\n", + "2018-08-20 22:15:24,093 : INFO : w_error: 1100632.5763251274\n", + "2018-08-20 22:15:24,095 : INFO : w_error: 1094768.0463676567\n", + "2018-08-20 22:15:24,098 : INFO : w_error: 1089733.3497174797\n", + "2018-08-20 22:15:24,100 : INFO : w_error: 1085368.0977918073\n", + "2018-08-20 22:15:24,103 : INFO : w_error: 1081553.7274452301\n", + "2018-08-20 22:15:24,105 : INFO : w_error: 1078197.974529183\n", + "2018-08-20 22:15:24,107 : INFO : w_error: 1075221.1960310491\n", + "2018-08-20 22:15:24,110 : INFO : w_error: 1072567.0519346807\n", + "2018-08-20 22:15:24,112 : INFO : w_error: 1070184.5128907093\n", + "2018-08-20 22:15:24,115 : INFO : w_error: 1068036.0176788152\n", + "2018-08-20 22:15:24,119 : INFO : w_error: 1066090.4127692194\n", + "2018-08-20 22:15:24,127 : INFO : w_error: 1064327.6259531814\n", + "2018-08-20 22:15:24,131 : INFO : w_error: 1062721.1800760324\n", + "2018-08-20 22:15:24,134 : INFO : w_error: 1061253.957796574\n", + "2018-08-20 22:15:24,138 : INFO : w_error: 1059907.3810685019\n", + "2018-08-20 22:15:24,140 : INFO : w_error: 1058667.3010715283\n", + "2018-08-20 22:15:24,143 : INFO : w_error: 1057522.661485047\n", + "2018-08-20 22:15:24,146 : INFO : w_error: 1056463.766328158\n", + "2018-08-20 22:15:24,148 : INFO : w_error: 1055481.284770791\n", + "2018-08-20 22:15:24,156 : INFO : w_error: 1054567.852474613\n", + "2018-08-20 22:15:24,159 : INFO : w_error: 1053717.0477835708\n", + "2018-08-20 22:15:24,162 : INFO : w_error: 1052923.1639589816\n", + "2018-08-20 22:15:24,164 : INFO : w_error: 1052181.239545011\n", + "2018-08-20 22:15:24,168 : INFO : w_error: 1051486.7537766937\n", + "2018-08-20 22:15:24,171 : INFO : w_error: 1050835.5528771807\n", + "2018-08-20 22:15:24,179 : INFO : w_error: 1050224.2841197972\n", + "2018-08-20 22:15:24,183 : INFO : w_error: 1049649.9491698176\n", + "2018-08-20 22:15:24,186 : INFO : w_error: 1049109.5181107703\n", + "2018-08-20 22:15:24,189 : INFO : w_error: 1048600.1347902017\n", + "2018-08-20 22:15:24,192 : INFO : w_error: 1048119.4565463454\n", + "2018-08-20 22:15:24,196 : INFO : w_error: 1047665.3804627837\n", + "2018-08-20 22:15:24,204 : INFO : w_error: 1047235.9988371491\n", + "2018-08-20 22:15:24,207 : INFO : w_error: 1046832.1737272177\n", + "2018-08-20 22:15:24,211 : INFO : w_error: 1046452.970740819\n", + "2018-08-20 22:15:24,219 : INFO : w_error: 1046094.0422380052\n", + "2018-08-20 22:15:24,222 : INFO : w_error: 1045753.8434798977\n", + "2018-08-20 22:15:24,226 : INFO : w_error: 1045431.0670550654\n", + "2018-08-20 22:15:24,228 : INFO : w_error: 1045125.6449549346\n", + "2018-08-20 22:15:24,235 : INFO : w_error: 1044835.281707322\n", + "2018-08-20 22:15:24,238 : INFO : w_error: 1044559.003901511\n", + "2018-08-20 22:15:24,241 : INFO : w_error: 1044295.9426706597\n", + "2018-08-20 22:15:24,244 : INFO : w_error: 1044045.9285662061\n", + "2018-08-20 22:15:24,248 : INFO : w_error: 1043808.7970637546\n", + "2018-08-20 22:15:24,251 : INFO : w_error: 1043582.7109886903\n", + "2018-08-20 22:15:24,254 : INFO : w_error: 1043366.9643033193\n", + "2018-08-20 22:15:24,263 : INFO : w_error: 1043160.9585288618\n", + "2018-08-20 22:15:24,266 : INFO : w_error: 1042964.1438447876\n", + "2018-08-20 22:15:24,269 : INFO : w_error: 1042776.0120289348\n", + "2018-08-20 22:15:24,272 : INFO : w_error: 1042596.091452744\n", + "2018-08-20 22:15:24,276 : INFO : w_error: 1042423.9432487075\n", + "2018-08-20 22:15:24,279 : INFO : w_error: 1042259.1581987607\n", + "2018-08-20 22:15:24,285 : INFO : w_error: 1042101.5438366913\n", + "2018-08-20 22:15:24,288 : INFO : w_error: 1041950.5711721119\n", + "2018-08-20 22:15:24,290 : INFO : w_error: 1041805.8915701783\n", + "2018-08-20 22:15:24,293 : INFO : w_error: 1041667.1853462582\n", + "2018-08-20 22:15:24,298 : INFO : w_error: 1041534.1552983838\n", + "2018-08-20 22:15:24,303 : INFO : w_error: 1041406.5861844597\n", + "2018-08-20 22:15:24,306 : INFO : w_error: 1041284.254338951\n", + "2018-08-20 22:15:24,309 : INFO : w_error: 1041166.8169666711\n", + "2018-08-20 22:15:24,312 : INFO : w_error: 1041054.0409667041\n", + "2018-08-20 22:15:24,316 : INFO : w_error: 1040945.70739374\n", + "2018-08-20 22:15:24,322 : INFO : Loss (no outliers): 1442.803948351552\tLoss (with outliers): 1442.803948351552\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 164 ms, sys: 4.42 ms, total: 169 ms\n", - "Wall time: 166 ms\n" + "CPU times: user 1.3 s, sys: 1.91 s, total: 3.22 s\n", + "Wall time: 1.63 s\n" ] } ], @@ -437,9 +3898,985 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:24,333 : INFO : h_r_error: 1641779.1711565189\n", + "2018-08-20 22:15:24,335 : INFO : h_r_error: 118028.68383364937\n", + "2018-08-20 22:15:24,337 : INFO : h_r_error: 105616.73503369163\n", + "2018-08-20 22:15:24,339 : INFO : h_r_error: 105376.48023111676\n", + "2018-08-20 22:15:24,344 : INFO : h_r_error: 105376.48023111676\n", + "2018-08-20 22:15:24,345 : INFO : h_r_error: 88296.81129174746\n", + "2018-08-20 22:15:24,347 : INFO : h_r_error: 75598.49700209008\n", + "2018-08-20 22:15:24,350 : INFO : h_r_error: 75202.00810070324\n", + "2018-08-20 22:15:24,352 : INFO : h_r_error: 75202.00810070324\n", + "2018-08-20 22:15:24,353 : INFO : h_r_error: 40896.39022296863\n", + "2018-08-20 22:15:24,354 : INFO : h_r_error: 32494.67090191547\n", + "2018-08-20 22:15:24,356 : INFO : h_r_error: 32239.868252556797\n", + "2018-08-20 22:15:24,366 : INFO : h_r_error: 32239.868252556797\n", + "2018-08-20 22:15:24,368 : INFO : h_r_error: 44930.159607806534\n", + "2018-08-20 22:15:24,370 : INFO : h_r_error: 36557.7492240496\n", + "2018-08-20 22:15:24,371 : INFO : h_r_error: 35312.9484972738\n", + "2018-08-20 22:15:24,373 : INFO : h_r_error: 35184.5687269612\n", + "2018-08-20 22:15:24,380 : INFO : h_r_error: 35184.5687269612\n", + "2018-08-20 22:15:24,383 : INFO : h_r_error: 55889.096964695964\n", + "2018-08-20 22:15:24,386 : INFO : h_r_error: 45781.767631924326\n", + "2018-08-20 22:15:24,387 : INFO : h_r_error: 44138.99627893232\n", + "2018-08-20 22:15:24,388 : INFO : h_r_error: 43952.375976439565\n", + "2018-08-20 22:15:24,390 : INFO : h_r_error: 43952.375976439565\n", + "2018-08-20 22:15:24,391 : INFO : h_r_error: 78794.06131625794\n", + "2018-08-20 22:15:24,393 : INFO : h_r_error: 67664.25272873385\n", + "2018-08-20 22:15:24,394 : INFO : h_r_error: 65282.3178957933\n", + "2018-08-20 22:15:24,395 : INFO : h_r_error: 65014.955716781675\n", + "2018-08-20 22:15:24,397 : INFO : h_r_error: 65014.955716781675\n", + "2018-08-20 22:15:24,398 : INFO : h_r_error: 115824.20033686075\n", + "2018-08-20 22:15:24,399 : INFO : h_r_error: 97829.78400236492\n", + "2018-08-20 22:15:24,400 : INFO : h_r_error: 94585.44160249463\n", + "2018-08-20 22:15:24,402 : INFO : h_r_error: 94376.15747523532\n", + "2018-08-20 22:15:24,403 : INFO : h_r_error: 94376.15747523532\n", + "2018-08-20 22:15:24,405 : INFO : h_r_error: 114744.06992294117\n", + "2018-08-20 22:15:24,406 : INFO : h_r_error: 89437.25014346528\n", + "2018-08-20 22:15:24,408 : INFO : h_r_error: 85408.47209298614\n", + "2018-08-20 22:15:24,409 : INFO : h_r_error: 85172.43982700528\n", + "2018-08-20 22:15:24,411 : INFO : h_r_error: 85172.43982700528\n", + "2018-08-20 22:15:24,413 : INFO : h_r_error: 129231.1344055495\n", + "2018-08-20 22:15:24,414 : INFO : h_r_error: 95296.99614410217\n", + "2018-08-20 22:15:24,415 : INFO : h_r_error: 90493.41027642736\n", + "2018-08-20 22:15:24,417 : INFO : h_r_error: 90223.42598619989\n", + "2018-08-20 22:15:24,418 : INFO : h_r_error: 90223.42598619989\n", + "2018-08-20 22:15:24,420 : INFO : h_r_error: 181731.42136797323\n", + "2018-08-20 22:15:24,421 : INFO : h_r_error: 138104.21628540446\n", + "2018-08-20 22:15:24,422 : INFO : h_r_error: 132501.6357796059\n", + "2018-08-20 22:15:24,424 : INFO : h_r_error: 132152.80413014264\n", + "2018-08-20 22:15:24,426 : INFO : h_r_error: 132152.80413014264\n", + "2018-08-20 22:15:24,427 : INFO : h_r_error: 192166.82022383242\n", + "2018-08-20 22:15:24,428 : INFO : h_r_error: 148475.97120526063\n", + "2018-08-20 22:15:24,429 : INFO : h_r_error: 142884.97822597128\n", + "2018-08-20 22:15:24,430 : INFO : h_r_error: 142515.8680913862\n", + "2018-08-20 22:15:24,446 : INFO : h_r_error: 142515.8680913862\n", + "2018-08-20 22:15:24,448 : INFO : h_r_error: 160074.94464316766\n", + "2018-08-20 22:15:24,449 : INFO : h_r_error: 118917.36421921203\n", + "2018-08-20 22:15:24,451 : INFO : h_r_error: 113071.95801308611\n", + "2018-08-20 22:15:24,452 : INFO : h_r_error: 112649.3520833024\n", + "2018-08-20 22:15:24,455 : INFO : h_r_error: 112649.3520833024\n", + "2018-08-20 22:15:24,456 : INFO : h_r_error: 109774.25286602361\n", + "2018-08-20 22:15:24,458 : INFO : h_r_error: 70630.6630087\n", + "2018-08-20 22:15:24,459 : INFO : h_r_error: 65862.60865989806\n", + "2018-08-20 22:15:24,461 : INFO : h_r_error: 65236.19068167282\n", + "2018-08-20 22:15:24,463 : INFO : h_r_error: 65236.19068167282\n", + "2018-08-20 22:15:24,465 : INFO : h_r_error: 97716.73332566798\n", + "2018-08-20 22:15:24,466 : INFO : h_r_error: 45699.60910087229\n", + "2018-08-20 22:15:24,469 : INFO : h_r_error: 39362.1075187331\n", + "2018-08-20 22:15:24,473 : INFO : h_r_error: 38607.62156919656\n", + "2018-08-20 22:15:24,475 : INFO : h_r_error: 38542.879127641194\n", + "2018-08-20 22:15:24,480 : INFO : h_r_error: 38542.879127641194\n", + "2018-08-20 22:15:24,482 : INFO : h_r_error: 108334.77768707108\n", + "2018-08-20 22:15:24,483 : INFO : h_r_error: 45414.682916660764\n", + "2018-08-20 22:15:24,485 : INFO : h_r_error: 37024.4176799266\n", + "2018-08-20 22:15:24,487 : INFO : h_r_error: 36458.157875334204\n", + "2018-08-20 22:15:24,489 : INFO : h_r_error: 36421.29482582344\n", + "2018-08-20 22:15:24,491 : INFO : h_r_error: 36421.29482582344\n", + "2018-08-20 22:15:24,493 : INFO : h_r_error: 136592.18547993482\n", + "2018-08-20 22:15:24,495 : INFO : h_r_error: 77617.26173564204\n", + "2018-08-20 22:15:24,497 : INFO : h_r_error: 68748.33469269038\n", + "2018-08-20 22:15:24,499 : INFO : h_r_error: 68271.3071049404\n", + "2018-08-20 22:15:24,503 : INFO : h_r_error: 68271.3071049404\n", + "2018-08-20 22:15:24,507 : INFO : h_r_error: 164620.9918105678\n", + "2018-08-20 22:15:24,509 : INFO : h_r_error: 107083.22841187923\n", + "2018-08-20 22:15:24,510 : INFO : h_r_error: 100170.32759387848\n", + "2018-08-20 22:15:24,511 : INFO : h_r_error: 99456.89058438297\n", + "2018-08-20 22:15:24,514 : INFO : h_r_error: 99456.89058438297\n", + "2018-08-20 22:15:24,515 : INFO : h_r_error: 166146.2986450904\n", + "2018-08-20 22:15:24,517 : INFO : h_r_error: 111973.73165621341\n", + "2018-08-20 22:15:24,519 : INFO : h_r_error: 107003.97112908355\n", + "2018-08-20 22:15:24,520 : INFO : h_r_error: 106511.38556261087\n", + "2018-08-20 22:15:24,522 : INFO : h_r_error: 106511.38556261087\n", + "2018-08-20 22:15:24,524 : INFO : h_r_error: 133504.83113404203\n", + "2018-08-20 22:15:24,525 : INFO : h_r_error: 83253.38023127089\n", + "2018-08-20 22:15:24,527 : INFO : h_r_error: 80084.52684233678\n", + "2018-08-20 22:15:24,529 : INFO : h_r_error: 79823.1245934147\n", + "2018-08-20 22:15:24,532 : INFO : h_r_error: 79823.1245934147\n", + "2018-08-20 22:15:24,534 : INFO : h_r_error: 90889.69640460412\n", + "2018-08-20 22:15:24,536 : INFO : h_r_error: 46853.105489898364\n", + "2018-08-20 22:15:24,537 : INFO : h_r_error: 45133.70200421212\n", + "2018-08-20 22:15:24,540 : INFO : h_r_error: 45133.70200421212\n", + "2018-08-20 22:15:24,541 : INFO : h_r_error: 84327.47728746234\n", + "2018-08-20 22:15:24,543 : INFO : h_r_error: 48406.07253927901\n", + "2018-08-20 22:15:24,545 : INFO : h_r_error: 47435.009425067314\n", + "2018-08-20 22:15:24,547 : INFO : h_r_error: 47435.009425067314\n", + "2018-08-20 22:15:24,551 : INFO : h_r_error: 82409.89836879147\n", + "2018-08-20 22:15:24,554 : INFO : h_r_error: 52766.03488097161\n", + "2018-08-20 22:15:24,555 : INFO : h_r_error: 51394.05480640483\n", + "2018-08-20 22:15:24,556 : INFO : h_r_error: 51304.428858608226\n", + "2018-08-20 22:15:24,558 : INFO : h_r_error: 51304.428858608226\n", + "2018-08-20 22:15:24,560 : INFO : h_r_error: 106935.22488025115\n", + "2018-08-20 22:15:24,562 : INFO : h_r_error: 80237.15440778974\n", + "2018-08-20 22:15:24,576 : INFO : h_r_error: 79209.7234310819\n", + "2018-08-20 22:15:24,580 : INFO : h_r_error: 79209.7234310819\n", + "2018-08-20 22:15:24,582 : INFO : h_r_error: 136751.76043962757\n", + "2018-08-20 22:15:24,586 : INFO : h_r_error: 111108.69335643484\n", + "2018-08-20 22:15:24,589 : INFO : h_r_error: 110470.36624680427\n", + "2018-08-20 22:15:24,595 : INFO : h_r_error: 110470.36624680427\n", + "2018-08-20 22:15:24,599 : INFO : h_r_error: 132718.3075324984\n", + "2018-08-20 22:15:24,603 : INFO : h_r_error: 109060.80819403294\n", + "2018-08-20 22:15:24,607 : INFO : h_r_error: 108828.29185697387\n", + "2018-08-20 22:15:24,612 : INFO : h_r_error: 108828.29185697387\n", + "2018-08-20 22:15:24,613 : INFO : h_r_error: 130349.3102692345\n", + "2018-08-20 22:15:24,615 : INFO : h_r_error: 106333.5621825021\n", + "2018-08-20 22:15:24,616 : INFO : h_r_error: 106021.90676445854\n", + "2018-08-20 22:15:24,618 : INFO : h_r_error: 106021.90676445854\n", + "2018-08-20 22:15:24,619 : INFO : h_r_error: 153480.24107840055\n", + "2018-08-20 22:15:24,620 : INFO : h_r_error: 129031.03040291351\n", + "2018-08-20 22:15:24,621 : INFO : h_r_error: 128846.01926523249\n", + "2018-08-20 22:15:24,622 : INFO : h_r_error: 128846.01926523249\n", + "2018-08-20 22:15:24,638 : INFO : h_r_error: 141576.1910210185\n", + "2018-08-20 22:15:24,640 : INFO : h_r_error: 119978.94995744752\n", + "2018-08-20 22:15:24,645 : INFO : h_r_error: 119825.8687034397\n", + "2018-08-20 22:15:24,654 : INFO : h_r_error: 119825.8687034397\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:24,658 : INFO : h_r_error: 134685.80489629053\n", + "2018-08-20 22:15:24,661 : INFO : h_r_error: 113538.95669792594\n", + "2018-08-20 22:15:24,665 : INFO : h_r_error: 113353.41144229252\n", + "2018-08-20 22:15:24,669 : INFO : h_r_error: 113353.41144229252\n", + "2018-08-20 22:15:24,671 : INFO : h_r_error: 122345.42442740352\n", + "2018-08-20 22:15:24,672 : INFO : h_r_error: 101206.04117840753\n", + "2018-08-20 22:15:24,673 : INFO : h_r_error: 100993.62587045786\n", + "2018-08-20 22:15:24,674 : INFO : h_r_error: 100993.62587045786\n", + "2018-08-20 22:15:24,676 : INFO : h_r_error: 116266.06525752878\n", + "2018-08-20 22:15:24,677 : INFO : h_r_error: 96812.1429100881\n", + "2018-08-20 22:15:24,683 : INFO : h_r_error: 96671.85729303533\n", + "2018-08-20 22:15:24,686 : INFO : h_r_error: 96671.85729303533\n", + "2018-08-20 22:15:24,687 : INFO : h_r_error: 124976.11247413699\n", + "2018-08-20 22:15:24,689 : INFO : h_r_error: 105696.72347766797\n", + "2018-08-20 22:15:24,690 : INFO : h_r_error: 105516.7395837665\n", + "2018-08-20 22:15:24,691 : INFO : h_r_error: 105516.7395837665\n", + "2018-08-20 22:15:24,693 : INFO : h_r_error: 146470.2640249488\n", + "2018-08-20 22:15:24,694 : INFO : h_r_error: 127731.6923564533\n", + "2018-08-20 22:15:24,695 : INFO : h_r_error: 127533.0140907293\n", + "2018-08-20 22:15:24,696 : INFO : h_r_error: 127533.0140907293\n", + "2018-08-20 22:15:24,698 : INFO : h_r_error: 116516.53968187683\n", + "2018-08-20 22:15:24,729 : INFO : h_r_error: 98550.36989787972\n", + "2018-08-20 22:15:24,731 : INFO : h_r_error: 98348.73507292234\n", + "2018-08-20 22:15:24,734 : INFO : h_r_error: 98348.73507292234\n", + "2018-08-20 22:15:24,736 : INFO : h_r_error: 83893.40980768634\n", + "2018-08-20 22:15:24,738 : INFO : h_r_error: 70661.46051854167\n", + "2018-08-20 22:15:24,743 : INFO : h_r_error: 70518.89065328502\n", + "2018-08-20 22:15:24,746 : INFO : h_r_error: 70518.89065328502\n", + "2018-08-20 22:15:24,747 : INFO : h_r_error: 84886.38848637952\n", + "2018-08-20 22:15:24,749 : INFO : h_r_error: 75403.0417830475\n", + "2018-08-20 22:15:24,752 : INFO : h_r_error: 75308.00746994432\n", + "2018-08-20 22:15:24,754 : INFO : h_r_error: 75308.00746994432\n", + "2018-08-20 22:15:24,761 : INFO : h_r_error: 85316.80762722554\n", + "2018-08-20 22:15:24,765 : INFO : h_r_error: 77251.27417314934\n", + "2018-08-20 22:15:24,773 : INFO : h_r_error: 77143.82662566137\n", + "2018-08-20 22:15:24,779 : INFO : h_r_error: 77143.82662566137\n", + "2018-08-20 22:15:24,783 : INFO : h_r_error: 73553.39387109454\n", + "2018-08-20 22:15:24,788 : INFO : h_r_error: 66152.79219166574\n", + "2018-08-20 22:15:24,792 : INFO : h_r_error: 65835.47220932409\n", + "2018-08-20 22:15:24,795 : INFO : h_r_error: 65835.47220932409\n", + "2018-08-20 22:15:24,796 : INFO : h_r_error: 50775.99401955186\n", + "2018-08-20 22:15:24,803 : INFO : h_r_error: 43830.36067690958\n", + "2018-08-20 22:15:24,805 : INFO : h_r_error: 43195.603195800686\n", + "2018-08-20 22:15:24,807 : INFO : h_r_error: 43103.14299130767\n", + "2018-08-20 22:15:24,810 : INFO : h_r_error: 43103.14299130767\n", + "2018-08-20 22:15:24,818 : INFO : h_r_error: 63341.13752266902\n", + "2018-08-20 22:15:24,822 : INFO : h_r_error: 53924.846649871244\n", + "2018-08-20 22:15:24,824 : INFO : h_r_error: 52977.50569965488\n", + "2018-08-20 22:15:24,827 : INFO : h_r_error: 52861.032501429065\n", + "2018-08-20 22:15:24,829 : INFO : h_r_error: 52861.032501429065\n", + "2018-08-20 22:15:24,830 : INFO : h_r_error: 82441.4874200672\n", + "2018-08-20 22:15:24,832 : INFO : h_r_error: 70092.19085069446\n", + "2018-08-20 22:15:24,833 : INFO : h_r_error: 68857.66881113088\n", + "2018-08-20 22:15:24,835 : INFO : h_r_error: 68719.78360373998\n", + "2018-08-20 22:15:24,837 : INFO : h_r_error: 68719.78360373998\n", + "2018-08-20 22:15:24,839 : INFO : h_r_error: 116068.82475570982\n", + "2018-08-20 22:15:24,841 : INFO : h_r_error: 98936.2974353597\n", + "2018-08-20 22:15:24,844 : INFO : h_r_error: 97280.67673289865\n", + "2018-08-20 22:15:24,846 : INFO : h_r_error: 97074.42498967852\n", + "2018-08-20 22:15:24,849 : INFO : h_r_error: 97074.42498967852\n", + "2018-08-20 22:15:24,851 : INFO : h_r_error: 193771.07280092753\n", + "2018-08-20 22:15:24,853 : INFO : h_r_error: 167714.14690177588\n", + "2018-08-20 22:15:24,855 : INFO : h_r_error: 165261.32276745175\n", + "2018-08-20 22:15:24,857 : INFO : h_r_error: 165026.16476628813\n", + "2018-08-20 22:15:24,860 : INFO : h_r_error: 165026.16476628813\n", + "2018-08-20 22:15:24,862 : INFO : h_r_error: 216721.62053218845\n", + "2018-08-20 22:15:24,867 : INFO : h_r_error: 183723.35667939033\n", + "2018-08-20 22:15:24,868 : INFO : h_r_error: 180291.11958318867\n", + "2018-08-20 22:15:24,871 : INFO : h_r_error: 179885.7411508071\n", + "2018-08-20 22:15:24,875 : INFO : h_r_error: 179885.7411508071\n", + "2018-08-20 22:15:24,877 : INFO : h_r_error: 177050.13720251067\n", + "2018-08-20 22:15:24,880 : INFO : h_r_error: 143961.610710226\n", + "2018-08-20 22:15:24,882 : INFO : h_r_error: 139724.63504639387\n", + "2018-08-20 22:15:24,884 : INFO : h_r_error: 139082.44374033014\n", + "2018-08-20 22:15:24,886 : INFO : h_r_error: 139082.44374033014\n", + "2018-08-20 22:15:24,888 : INFO : h_r_error: 147607.24267108657\n", + "2018-08-20 22:15:24,890 : INFO : h_r_error: 120018.73888155147\n", + "2018-08-20 22:15:24,892 : INFO : h_r_error: 116287.06398890018\n", + "2018-08-20 22:15:24,894 : INFO : h_r_error: 115522.0139159181\n", + "2018-08-20 22:15:24,896 : INFO : h_r_error: 115334.43041489228\n", + "2018-08-20 22:15:24,899 : INFO : h_r_error: 115334.43041489228\n", + "2018-08-20 22:15:24,901 : INFO : h_r_error: 118365.81663670983\n", + "2018-08-20 22:15:24,902 : INFO : h_r_error: 93132.88915954153\n", + "2018-08-20 22:15:24,903 : INFO : h_r_error: 89122.17715497369\n", + "2018-08-20 22:15:24,905 : INFO : h_r_error: 88231.49030112062\n", + "2018-08-20 22:15:24,906 : INFO : h_r_error: 88057.2036447887\n", + "2018-08-20 22:15:24,908 : INFO : h_r_error: 88057.2036447887\n", + "2018-08-20 22:15:24,910 : INFO : h_r_error: 112031.45144655604\n", + "2018-08-20 22:15:24,913 : INFO : h_r_error: 85282.34307749954\n", + "2018-08-20 22:15:24,917 : INFO : h_r_error: 81608.4108547704\n", + "2018-08-20 22:15:24,920 : INFO : h_r_error: 81068.52518153662\n", + "2018-08-20 22:15:24,922 : INFO : h_r_error: 81068.52518153662\n", + "2018-08-20 22:15:24,924 : INFO : h_r_error: 113120.94754019415\n", + "2018-08-20 22:15:24,926 : INFO : h_r_error: 77189.01208482559\n", + "2018-08-20 22:15:24,927 : INFO : h_r_error: 73025.66214248759\n", + "2018-08-20 22:15:24,929 : INFO : h_r_error: 72376.99859107213\n", + "2018-08-20 22:15:24,931 : INFO : h_r_error: 72280.48483968731\n", + "2018-08-20 22:15:24,934 : INFO : h_r_error: 72280.48483968731\n", + "2018-08-20 22:15:24,936 : INFO : h_r_error: 110118.08448968553\n", + "2018-08-20 22:15:24,947 : INFO : h_r_error: 63147.328257194524\n", + "2018-08-20 22:15:24,956 : INFO : h_r_error: 57647.812476420404\n", + "2018-08-20 22:15:24,958 : INFO : h_r_error: 56870.72573548426\n", + "2018-08-20 22:15:24,960 : INFO : h_r_error: 56778.257092080545\n", + "2018-08-20 22:15:24,963 : INFO : h_r_error: 56778.257092080545\n", + "2018-08-20 22:15:24,965 : INFO : h_r_error: 105876.5962159224\n", + "2018-08-20 22:15:24,967 : INFO : h_r_error: 51779.48545739382\n", + "2018-08-20 22:15:24,969 : INFO : h_r_error: 45563.46975869903\n", + "2018-08-20 22:15:24,970 : INFO : h_r_error: 44990.10718859484\n", + "2018-08-20 22:15:24,973 : INFO : h_r_error: 44990.10718859484\n", + "2018-08-20 22:15:24,975 : INFO : h_r_error: 81356.83817164302\n", + "2018-08-20 22:15:24,977 : INFO : h_r_error: 30402.09748446639\n", + "2018-08-20 22:15:24,978 : INFO : h_r_error: 27546.96495755806\n", + "2018-08-20 22:15:24,980 : INFO : h_r_error: 27213.517074651434\n", + "2018-08-20 22:15:24,981 : INFO : h_r_error: 27181.21158620719\n", + "2018-08-20 22:15:24,983 : INFO : h_r_error: 27181.21158620719\n", + "2018-08-20 22:15:24,985 : INFO : h_r_error: 84928.95919387031\n", + "2018-08-20 22:15:24,987 : INFO : h_r_error: 32417.693628730725\n", + "2018-08-20 22:15:24,988 : INFO : h_r_error: 29007.221465319304\n", + "2018-08-20 22:15:24,990 : INFO : h_r_error: 28741.252041050557\n", + "2018-08-20 22:15:24,992 : INFO : h_r_error: 28741.252041050557\n", + "2018-08-20 22:15:24,994 : INFO : h_r_error: 93950.90077407988\n", + "2018-08-20 22:15:24,998 : INFO : h_r_error: 56249.61615828003\n", + "2018-08-20 22:15:25,000 : INFO : h_r_error: 52924.363341441735\n", + "2018-08-20 22:15:25,002 : INFO : h_r_error: 52751.541989180885\n", + "2018-08-20 22:15:25,004 : INFO : h_r_error: 52751.541989180885\n", + "2018-08-20 22:15:25,005 : INFO : h_r_error: 75506.66154775783\n", + "2018-08-20 22:15:25,006 : INFO : h_r_error: 57242.30005666704\n", + "2018-08-20 22:15:25,007 : INFO : h_r_error: 55345.64041769668\n", + "2018-08-20 22:15:25,008 : INFO : h_r_error: 55186.16186036283\n", + "2018-08-20 22:15:25,010 : INFO : h_r_error: 55186.16186036283\n", + "2018-08-20 22:15:25,012 : INFO : h_r_error: 55186.16186036283\n", + "2018-08-20 22:15:25,013 : INFO : h_r_error: 65626.41064582833\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:25,015 : INFO : h_r_error: 58344.200783367785\n", + "2018-08-20 22:15:25,020 : INFO : h_r_error: 56997.1979143896\n", + "2018-08-20 22:15:25,023 : INFO : h_r_error: 56864.86772938072\n", + "2018-08-20 22:15:25,025 : INFO : h_r_error: 56864.86772938072\n", + "2018-08-20 22:15:25,031 : INFO : h_r_error: 55804.84516396389\n", + "2018-08-20 22:15:25,032 : INFO : h_r_error: 49720.76312800324\n", + "2018-08-20 22:15:25,034 : INFO : h_r_error: 48669.3293093283\n", + "2018-08-20 22:15:25,036 : INFO : h_r_error: 48566.79973146436\n", + "2018-08-20 22:15:25,039 : INFO : h_r_error: 48566.79973146436\n", + "2018-08-20 22:15:25,042 : INFO : h_r_error: 50232.78247908833\n", + "2018-08-20 22:15:25,045 : INFO : h_r_error: 43460.18499959944\n", + "2018-08-20 22:15:25,047 : INFO : h_r_error: 42583.76639804095\n", + "2018-08-20 22:15:25,049 : INFO : h_r_error: 42583.76639804095\n", + "2018-08-20 22:15:25,051 : INFO : h_r_error: 70689.83802178742\n", + "2018-08-20 22:15:25,053 : INFO : h_r_error: 54799.329874802635\n", + "2018-08-20 22:15:25,057 : INFO : h_r_error: 53914.8316747843\n", + "2018-08-20 22:15:25,059 : INFO : h_r_error: 53848.05269206547\n", + "2018-08-20 22:15:25,062 : INFO : h_r_error: 53848.05269206547\n", + "2018-08-20 22:15:25,064 : INFO : h_r_error: 108449.9769402526\n", + "2018-08-20 22:15:25,065 : INFO : h_r_error: 75225.82220714819\n", + "2018-08-20 22:15:25,067 : INFO : h_r_error: 72609.7918222791\n", + "2018-08-20 22:15:25,069 : INFO : h_r_error: 72378.78725369519\n", + "2018-08-20 22:15:25,073 : INFO : h_r_error: 72378.78725369519\n", + "2018-08-20 22:15:25,075 : INFO : h_r_error: 127164.30656219537\n", + "2018-08-20 22:15:25,077 : INFO : h_r_error: 84579.9832644276\n", + "2018-08-20 22:15:25,079 : INFO : h_r_error: 80803.72888974627\n", + "2018-08-20 22:15:25,083 : INFO : h_r_error: 80503.5077458557\n", + "2018-08-20 22:15:25,086 : INFO : h_r_error: 80503.5077458557\n", + "2018-08-20 22:15:25,088 : INFO : h_r_error: 174296.9674397971\n", + "2018-08-20 22:15:25,091 : INFO : h_r_error: 115868.15218188912\n", + "2018-08-20 22:15:25,094 : INFO : h_r_error: 107516.90754969341\n", + "2018-08-20 22:15:25,096 : INFO : h_r_error: 106698.60961349803\n", + "2018-08-20 22:15:25,099 : INFO : h_r_error: 106698.60961349803\n", + "2018-08-20 22:15:25,101 : INFO : h_r_error: 188764.71900915547\n", + "2018-08-20 22:15:25,103 : INFO : h_r_error: 120666.83609976483\n", + "2018-08-20 22:15:25,105 : INFO : h_r_error: 109728.74724218929\n", + "2018-08-20 22:15:25,107 : INFO : h_r_error: 108173.7827542977\n", + "2018-08-20 22:15:25,110 : INFO : h_r_error: 108003.53821445782\n", + "2018-08-20 22:15:25,112 : INFO : h_r_error: 108003.53821445782\n", + "2018-08-20 22:15:25,115 : INFO : h_r_error: 182992.56219648672\n", + "2018-08-20 22:15:25,117 : INFO : h_r_error: 122929.88482513907\n", + "2018-08-20 22:15:25,118 : INFO : h_r_error: 110308.97418968279\n", + "2018-08-20 22:15:25,120 : INFO : h_r_error: 108628.82457256186\n", + "2018-08-20 22:15:25,122 : INFO : h_r_error: 108461.95196544233\n", + "2018-08-20 22:15:25,125 : INFO : h_r_error: 108461.95196544233\n", + "2018-08-20 22:15:25,128 : INFO : h_r_error: 205178.2828927736\n", + "2018-08-20 22:15:25,129 : INFO : h_r_error: 140432.38605897967\n", + "2018-08-20 22:15:25,131 : INFO : h_r_error: 125174.444634394\n", + "2018-08-20 22:15:25,132 : INFO : h_r_error: 122620.12145656205\n", + "2018-08-20 22:15:25,134 : INFO : h_r_error: 122338.49688463559\n", + "2018-08-20 22:15:25,175 : INFO : h_r_error: 122338.49688463559\n", + "2018-08-20 22:15:25,176 : INFO : h_r_error: 237457.227950885\n", + "2018-08-20 22:15:25,178 : INFO : h_r_error: 145906.50129498472\n", + "2018-08-20 22:15:25,184 : INFO : h_r_error: 131773.8442483685\n", + "2018-08-20 22:15:25,191 : INFO : h_r_error: 128797.05540441698\n", + "2018-08-20 22:15:25,196 : INFO : h_r_error: 128424.53309311552\n", + "2018-08-20 22:15:25,202 : INFO : h_r_error: 128424.53309311552\n", + "2018-08-20 22:15:25,206 : INFO : h_r_error: 275412.50869024196\n", + "2018-08-20 22:15:25,207 : INFO : h_r_error: 157717.62339863132\n", + "2018-08-20 22:15:25,208 : INFO : h_r_error: 141486.70261398956\n", + "2018-08-20 22:15:25,213 : INFO : h_r_error: 139232.8703803961\n", + "2018-08-20 22:15:25,215 : INFO : h_r_error: 138984.25764109177\n", + "2018-08-20 22:15:25,219 : INFO : h_r_error: 138984.25764109177\n", + "2018-08-20 22:15:25,222 : INFO : h_r_error: 300650.3506786036\n", + "2018-08-20 22:15:25,223 : INFO : h_r_error: 152930.16348874537\n", + "2018-08-20 22:15:25,224 : INFO : h_r_error: 133210.48458463038\n", + "2018-08-20 22:15:25,226 : INFO : h_r_error: 131243.98671354743\n", + "2018-08-20 22:15:25,228 : INFO : h_r_error: 131243.98671354743\n", + "2018-08-20 22:15:25,229 : INFO : h_r_error: 272716.1610946117\n", + "2018-08-20 22:15:25,230 : INFO : h_r_error: 107439.07817534365\n", + "2018-08-20 22:15:25,231 : INFO : h_r_error: 86009.70672732047\n", + "2018-08-20 22:15:25,232 : INFO : h_r_error: 83692.29377563702\n", + "2018-08-20 22:15:25,233 : INFO : h_r_error: 83581.00674929329\n", + "2018-08-20 22:15:25,234 : INFO : h_r_error: 83581.00674929329\n", + "2018-08-20 22:15:25,236 : INFO : h_r_error: 254441.12230500238\n", + "2018-08-20 22:15:25,237 : INFO : h_r_error: 72013.57418846728\n", + "2018-08-20 22:15:25,238 : INFO : h_r_error: 48278.794818697526\n", + "2018-08-20 22:15:25,239 : INFO : h_r_error: 45514.994923329155\n", + "2018-08-20 22:15:25,240 : INFO : h_r_error: 45241.60017170514\n", + "2018-08-20 22:15:25,241 : INFO : h_r_error: 45179.15646442517\n", + "2018-08-20 22:15:25,243 : INFO : h_r_error: 45179.15646442517\n", + "2018-08-20 22:15:25,244 : INFO : h_r_error: 209933.23754358318\n", + "2018-08-20 22:15:25,245 : INFO : h_r_error: 41462.79385360789\n", + "2018-08-20 22:15:25,246 : INFO : h_r_error: 17256.968824554147\n", + "2018-08-20 22:15:25,247 : INFO : h_r_error: 14469.27786394224\n", + "2018-08-20 22:15:25,249 : INFO : h_r_error: 14277.901689417691\n", + "2018-08-20 22:15:25,250 : INFO : h_r_error: 14223.800438013002\n", + "2018-08-20 22:15:25,252 : INFO : h_r_error: 14223.800438013002\n", + "2018-08-20 22:15:25,258 : INFO : h_r_error: 176449.76277944492\n", + "2018-08-20 22:15:25,260 : INFO : h_r_error: 40292.9864638591\n", + "2018-08-20 22:15:25,265 : INFO : h_r_error: 17918.368196309668\n", + "2018-08-20 22:15:25,267 : INFO : h_r_error: 15750.866831518895\n", + "2018-08-20 22:15:25,268 : INFO : h_r_error: 15653.663346471416\n", + "2018-08-20 22:15:25,270 : INFO : h_r_error: 15653.663346471416\n", + "2018-08-20 22:15:25,272 : INFO : h_r_error: 164832.90258332962\n", + "2018-08-20 22:15:25,273 : INFO : h_r_error: 48424.8934538084\n", + "2018-08-20 22:15:25,274 : INFO : h_r_error: 27926.21987864753\n", + "2018-08-20 22:15:25,277 : INFO : h_r_error: 25891.390224328195\n", + "2018-08-20 22:15:25,278 : INFO : h_r_error: 25771.69994539886\n", + "2018-08-20 22:15:25,287 : INFO : h_r_error: 25771.69994539886\n", + "2018-08-20 22:15:25,288 : INFO : h_r_error: 191912.09950543175\n", + "2018-08-20 22:15:25,290 : INFO : h_r_error: 83090.77071204718\n", + "2018-08-20 22:15:25,292 : INFO : h_r_error: 64829.64668925761\n", + "2018-08-20 22:15:25,293 : INFO : h_r_error: 62052.54176189226\n", + "2018-08-20 22:15:25,295 : INFO : h_r_error: 61519.16586221018\n", + "2018-08-20 22:15:25,296 : INFO : h_r_error: 61519.16586221018\n", + "2018-08-20 22:15:25,297 : INFO : h_r_error: 169908.2691991225\n", + "2018-08-20 22:15:25,298 : INFO : h_r_error: 82613.65835938942\n", + "2018-08-20 22:15:25,299 : INFO : h_r_error: 65795.5031022393\n", + "2018-08-20 22:15:25,300 : INFO : h_r_error: 63315.871900203485\n", + "2018-08-20 22:15:25,301 : INFO : h_r_error: 62680.183691267695\n", + "2018-08-20 22:15:25,302 : INFO : h_r_error: 62433.146777739734\n", + "2018-08-20 22:15:25,303 : INFO : h_r_error: 62361.1412724006\n", + "2018-08-20 22:15:25,305 : INFO : h_r_error: 62361.1412724006\n", + "2018-08-20 22:15:25,306 : INFO : h_r_error: 175890.65408062979\n", + "2018-08-20 22:15:25,307 : INFO : h_r_error: 100326.13910647832\n", + "2018-08-20 22:15:25,308 : INFO : h_r_error: 83816.92879282839\n", + "2018-08-20 22:15:25,309 : INFO : h_r_error: 80521.84957427568\n", + "2018-08-20 22:15:25,310 : INFO : h_r_error: 80348.23286437501\n", + "2018-08-20 22:15:25,312 : INFO : h_r_error: 80348.23286437501\n", + "2018-08-20 22:15:25,313 : INFO : h_r_error: 139159.32181461973\n", + "2018-08-20 22:15:25,314 : INFO : h_r_error: 81428.8231076188\n", + "2018-08-20 22:15:25,316 : INFO : h_r_error: 69224.97642667429\n", + "2018-08-20 22:15:25,317 : INFO : h_r_error: 67175.86485018545\n", + "2018-08-20 22:15:25,319 : INFO : h_r_error: 66967.7538071723\n", + "2018-08-20 22:15:25,321 : INFO : h_r_error: 66967.7538071723\n", + "2018-08-20 22:15:25,322 : INFO : h_r_error: 117301.19850489953\n", + "2018-08-20 22:15:25,323 : INFO : h_r_error: 75610.89667328351\n", + "2018-08-20 22:15:25,338 : INFO : h_r_error: 66713.5978221731\n", + "2018-08-20 22:15:25,340 : INFO : h_r_error: 65738.56677856592\n", + "2018-08-20 22:15:25,342 : INFO : h_r_error: 65631.24459072924\n", + "2018-08-20 22:15:25,354 : INFO : h_r_error: 65631.24459072924\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:25,356 : INFO : h_r_error: 123923.46378028487\n", + "2018-08-20 22:15:25,357 : INFO : h_r_error: 91401.7915719367\n", + "2018-08-20 22:15:25,359 : INFO : h_r_error: 85191.39582673303\n", + "2018-08-20 22:15:25,361 : INFO : h_r_error: 84532.90616743342\n", + "2018-08-20 22:15:25,364 : INFO : h_r_error: 84532.90616743342\n", + "2018-08-20 22:15:25,365 : INFO : h_r_error: 111957.92974291708\n", + "2018-08-20 22:15:25,367 : INFO : h_r_error: 90673.10717043538\n", + "2018-08-20 22:15:25,368 : INFO : h_r_error: 86795.48708018255\n", + "2018-08-20 22:15:25,370 : INFO : h_r_error: 86359.0193082306\n", + "2018-08-20 22:15:25,372 : INFO : h_r_error: 86359.0193082306\n", + "2018-08-20 22:15:25,374 : INFO : h_r_error: 78116.94232451699\n", + "2018-08-20 22:15:25,389 : INFO : h_r_error: 64864.185952766085\n", + "2018-08-20 22:15:25,403 : INFO : h_r_error: 62627.20138398043\n", + "2018-08-20 22:15:25,406 : INFO : h_r_error: 62387.88488623845\n", + "2018-08-20 22:15:25,417 : INFO : h_r_error: 62387.88488623845\n", + "2018-08-20 22:15:25,418 : INFO : h_r_error: 49500.7753928332\n", + "2018-08-20 22:15:25,419 : INFO : h_r_error: 42087.7938861251\n", + "2018-08-20 22:15:25,420 : INFO : h_r_error: 40919.547444569056\n", + "2018-08-20 22:15:25,422 : INFO : h_r_error: 40797.118344441675\n", + "2018-08-20 22:15:25,423 : INFO : h_r_error: 40797.118344441675\n", + "2018-08-20 22:15:25,425 : INFO : h_r_error: 33133.46717145053\n", + "2018-08-20 22:15:25,427 : INFO : h_r_error: 28187.64325842917\n", + "2018-08-20 22:15:25,428 : INFO : h_r_error: 27457.524480600925\n", + "2018-08-20 22:15:25,431 : INFO : h_r_error: 27363.275532166514\n", + "2018-08-20 22:15:25,435 : INFO : h_r_error: 27363.275532166514\n", + "2018-08-20 22:15:25,437 : INFO : h_r_error: 36510.654255069974\n", + "2018-08-20 22:15:25,439 : INFO : h_r_error: 31872.903080009222\n", + "2018-08-20 22:15:25,440 : INFO : h_r_error: 31217.98548164642\n", + "2018-08-20 22:15:25,441 : INFO : h_r_error: 31085.040361192147\n", + "2018-08-20 22:15:25,443 : INFO : h_r_error: 31085.040361192147\n", + "2018-08-20 22:15:25,451 : INFO : h_r_error: 32717.539038069233\n", + "2018-08-20 22:15:25,453 : INFO : h_r_error: 29045.52539605171\n", + "2018-08-20 22:15:25,455 : INFO : h_r_error: 28541.895937532478\n", + "2018-08-20 22:15:25,456 : INFO : h_r_error: 28461.38852698747\n", + "2018-08-20 22:15:25,458 : INFO : h_r_error: 28461.38852698747\n", + "2018-08-20 22:15:25,461 : INFO : h_r_error: 39530.97336392132\n", + "2018-08-20 22:15:25,463 : INFO : h_r_error: 34691.260614155886\n", + "2018-08-20 22:15:25,466 : INFO : h_r_error: 34552.31704531897\n", + "2018-08-20 22:15:25,471 : INFO : h_r_error: 34552.31704531897\n", + "2018-08-20 22:15:25,473 : INFO : h_r_error: 51147.598069400025\n", + "2018-08-20 22:15:25,474 : INFO : h_r_error: 45291.99255837201\n", + "2018-08-20 22:15:25,475 : INFO : h_r_error: 45214.75981765208\n", + "2018-08-20 22:15:25,477 : INFO : h_r_error: 45214.75981765208\n", + "2018-08-20 22:15:25,478 : INFO : h_r_error: 46016.409572444805\n", + "2018-08-20 22:15:25,479 : INFO : h_r_error: 42227.240327538966\n", + "2018-08-20 22:15:25,480 : INFO : h_r_error: 42073.032303607266\n", + "2018-08-20 22:15:25,482 : INFO : h_r_error: 42073.032303607266\n", + "2018-08-20 22:15:25,483 : INFO : h_r_error: 27327.849983908094\n", + "2018-08-20 22:15:25,484 : INFO : h_r_error: 24777.228358306573\n", + "2018-08-20 22:15:25,485 : INFO : h_r_error: 24678.74334174119\n", + "2018-08-20 22:15:25,487 : INFO : h_r_error: 24678.74334174119\n", + "2018-08-20 22:15:25,489 : INFO : h_r_error: 28624.20791140836\n", + "2018-08-20 22:15:25,490 : INFO : h_r_error: 27007.89226208855\n", + "2018-08-20 22:15:25,491 : INFO : h_r_error: 26876.018329480405\n", + "2018-08-20 22:15:25,493 : INFO : h_r_error: 26876.018329480405\n", + "2018-08-20 22:15:25,495 : INFO : h_r_error: 47763.61557444882\n", + "2018-08-20 22:15:25,496 : INFO : h_r_error: 46266.525376300975\n", + "2018-08-20 22:15:25,497 : INFO : h_r_error: 46150.63200927735\n", + "2018-08-20 22:15:25,502 : INFO : h_r_error: 46150.63200927735\n", + "2018-08-20 22:15:25,508 : INFO : h_r_error: 44637.420943173915\n", + "2018-08-20 22:15:25,511 : INFO : h_r_error: 43081.22221036457\n", + "2018-08-20 22:15:25,514 : INFO : h_r_error: 43027.272112547\n", + "2018-08-20 22:15:25,517 : INFO : h_r_error: 43027.272112547\n", + "2018-08-20 22:15:25,521 : INFO : h_r_error: 34197.1970988031\n", + "2018-08-20 22:15:25,523 : INFO : h_r_error: 32315.875508897345\n", + "2018-08-20 22:15:25,524 : INFO : h_r_error: 32232.402902709637\n", + "2018-08-20 22:15:25,526 : INFO : h_r_error: 32232.402902709637\n", + "2018-08-20 22:15:25,527 : INFO : h_r_error: 70710.40068384536\n", + "2018-08-20 22:15:25,528 : INFO : h_r_error: 66320.87213896835\n", + "2018-08-20 22:15:25,530 : INFO : h_r_error: 66030.65492802096\n", + "2018-08-20 22:15:25,531 : INFO : h_r_error: 66030.65492802096\n", + "2018-08-20 22:15:25,532 : INFO : h_r_error: 105979.34962699868\n", + "2018-08-20 22:15:25,533 : INFO : h_r_error: 98450.75207245885\n", + "2018-08-20 22:15:25,534 : INFO : h_r_error: 98016.97785205963\n", + "2018-08-20 22:15:25,536 : INFO : h_r_error: 98016.97785205963\n", + "2018-08-20 22:15:25,537 : INFO : h_r_error: 129788.72803970131\n", + "2018-08-20 22:15:25,538 : INFO : h_r_error: 115670.68870158785\n", + "2018-08-20 22:15:25,539 : INFO : h_r_error: 114852.65676091662\n", + "2018-08-20 22:15:25,543 : INFO : h_r_error: 114852.65676091662\n", + "2018-08-20 22:15:25,548 : INFO : h_r_error: 191581.60964479294\n", + "2018-08-20 22:15:25,551 : INFO : h_r_error: 166679.56805275375\n", + "2018-08-20 22:15:25,552 : INFO : h_r_error: 164422.30428484583\n", + "2018-08-20 22:15:25,553 : INFO : h_r_error: 164252.21597441917\n", + "2018-08-20 22:15:25,555 : INFO : h_r_error: 164252.21597441917\n", + "2018-08-20 22:15:25,556 : INFO : h_r_error: 169298.78806069307\n", + "2018-08-20 22:15:25,558 : INFO : h_r_error: 134116.76721492808\n", + "2018-08-20 22:15:25,559 : INFO : h_r_error: 130643.93672028101\n", + "2018-08-20 22:15:25,561 : INFO : h_r_error: 130325.27402663218\n", + "2018-08-20 22:15:25,567 : INFO : h_r_error: 130325.27402663218\n", + "2018-08-20 22:15:25,570 : INFO : h_r_error: 129358.04990250216\n", + "2018-08-20 22:15:25,571 : INFO : h_r_error: 85641.97969093166\n", + "2018-08-20 22:15:25,573 : INFO : h_r_error: 80836.42049500016\n", + "2018-08-20 22:15:25,574 : INFO : h_r_error: 80486.27356277718\n", + "2018-08-20 22:15:25,576 : INFO : h_r_error: 80486.27356277718\n", + "2018-08-20 22:15:25,578 : INFO : h_r_error: 132531.56364256528\n", + "2018-08-20 22:15:25,579 : INFO : h_r_error: 74126.80733985627\n", + "2018-08-20 22:15:25,580 : INFO : h_r_error: 67086.79041257549\n", + "2018-08-20 22:15:25,581 : INFO : h_r_error: 66678.55813885953\n", + "2018-08-20 22:15:25,583 : INFO : h_r_error: 66678.55813885953\n", + "2018-08-20 22:15:25,584 : INFO : h_r_error: 133703.17505022846\n", + "2018-08-20 22:15:25,590 : INFO : h_r_error: 59914.01632175076\n", + "2018-08-20 22:15:25,593 : INFO : h_r_error: 51397.657582639105\n", + "2018-08-20 22:15:25,595 : INFO : h_r_error: 50837.980834824186\n", + "2018-08-20 22:15:25,598 : INFO : h_r_error: 50774.91197243039\n", + "2018-08-20 22:15:25,607 : INFO : h_r_error: 50774.91197243039\n", + "2018-08-20 22:15:25,612 : INFO : h_r_error: 109490.15716808783\n", + "2018-08-20 22:15:25,614 : INFO : h_r_error: 30568.832146996563\n", + "2018-08-20 22:15:25,615 : INFO : h_r_error: 22869.001662211296\n", + "2018-08-20 22:15:25,617 : INFO : h_r_error: 22525.15024264768\n", + "2018-08-20 22:15:25,620 : INFO : h_r_error: 22433.24745937775\n", + "2018-08-20 22:15:25,623 : INFO : h_r_error: 22409.331483770882\n", + "2018-08-20 22:15:25,625 : INFO : h_r_error: 22409.331483770882\n", + "2018-08-20 22:15:25,626 : INFO : h_r_error: 108240.89575392664\n", + "2018-08-20 22:15:25,628 : INFO : h_r_error: 27445.072240102305\n", + "2018-08-20 22:15:25,629 : INFO : h_r_error: 19796.62179594789\n", + "2018-08-20 22:15:25,630 : INFO : h_r_error: 19498.064804576392\n", + "2018-08-20 22:15:25,630 : INFO : h_r_error: 19420.473673215376\n", + "2018-08-20 22:15:25,632 : INFO : h_r_error: 19420.473673215376\n", + "2018-08-20 22:15:25,633 : INFO : h_r_error: 123079.47395167682\n", + "2018-08-20 22:15:25,634 : INFO : h_r_error: 39846.8436024557\n", + "2018-08-20 22:15:25,635 : INFO : h_r_error: 32839.06177875537\n", + "2018-08-20 22:15:25,637 : INFO : h_r_error: 32558.16857171215\n", + "2018-08-20 22:15:25,638 : INFO : h_r_error: 32469.203239033526\n", + "2018-08-20 22:15:25,640 : INFO : h_r_error: 32469.203239033526\n", + "2018-08-20 22:15:25,641 : INFO : h_r_error: 117859.05084752497\n", + "2018-08-20 22:15:25,642 : INFO : h_r_error: 41915.78317479446\n", + "2018-08-20 22:15:25,644 : INFO : h_r_error: 36438.94043937608\n", + "2018-08-20 22:15:25,645 : INFO : h_r_error: 35911.77701625004\n", + "2018-08-20 22:15:25,647 : INFO : h_r_error: 35706.468029702366\n", + "2018-08-20 22:15:25,649 : INFO : h_r_error: 35706.468029702366\n", + "2018-08-20 22:15:25,650 : INFO : h_r_error: 123474.67107920357\n", + "2018-08-20 22:15:25,658 : INFO : h_r_error: 53669.768012712586\n", + "2018-08-20 22:15:25,661 : INFO : h_r_error: 48567.784931206465\n", + "2018-08-20 22:15:25,664 : INFO : h_r_error: 48154.9212966142\n", + "2018-08-20 22:15:25,666 : INFO : h_r_error: 47988.29822300928\n", + "2018-08-20 22:15:25,669 : INFO : h_r_error: 47936.77092657334\n", + "2018-08-20 22:15:25,673 : INFO : h_r_error: 47936.77092657334\n", + "2018-08-20 22:15:25,675 : INFO : h_r_error: 151207.18006761468\n", + "2018-08-20 22:15:25,676 : INFO : h_r_error: 88235.71146256049\n", + "2018-08-20 22:15:25,678 : INFO : h_r_error: 84277.38424942065\n", + "2018-08-20 22:15:25,679 : INFO : h_r_error: 83899.85690983165\n", + "2018-08-20 22:15:25,680 : INFO : h_r_error: 83751.41595126623\n", + "2018-08-20 22:15:25,682 : INFO : h_r_error: 83751.41595126623\n", + "2018-08-20 22:15:25,683 : INFO : h_r_error: 167269.31497447164\n", + "2018-08-20 22:15:25,684 : INFO : h_r_error: 113582.2386863772\n", + "2018-08-20 22:15:25,685 : INFO : h_r_error: 110085.49161310388\n", + "2018-08-20 22:15:25,686 : INFO : h_r_error: 109782.77676110268\n", + "2018-08-20 22:15:25,687 : INFO : h_r_error: 109663.78283456886\n", + "2018-08-20 22:15:25,689 : INFO : h_r_error: 109663.78283456886\n", + "2018-08-20 22:15:25,690 : INFO : h_r_error: 157753.94573886512\n", + "2018-08-20 22:15:25,691 : INFO : h_r_error: 109400.55521635251\n", + "2018-08-20 22:15:25,692 : INFO : h_r_error: 106008.96079804211\n", + "2018-08-20 22:15:25,693 : INFO : h_r_error: 105728.251929925\n", + "2018-08-20 22:15:25,695 : INFO : h_r_error: 105728.251929925\n", + "2018-08-20 22:15:25,696 : INFO : h_r_error: 112759.45896297898\n", + "2018-08-20 22:15:25,697 : INFO : h_r_error: 72052.2044476772\n", + "2018-08-20 22:15:25,698 : INFO : h_r_error: 68415.34243474793\n", + "2018-08-20 22:15:25,699 : INFO : h_r_error: 68209.29331201482\n", + "2018-08-20 22:15:25,701 : INFO : h_r_error: 68209.29331201482\n", + "2018-08-20 22:15:25,711 : INFO : h_r_error: 91114.10750748111\n", + "2018-08-20 22:15:25,713 : INFO : h_r_error: 55697.261271592106\n", + "2018-08-20 22:15:25,716 : INFO : h_r_error: 51122.896399245685\n", + "2018-08-20 22:15:25,717 : INFO : h_r_error: 50771.213410520046\n", + "2018-08-20 22:15:25,721 : INFO : h_r_error: 50685.706279457336\n", + "2018-08-20 22:15:25,724 : INFO : h_r_error: 50685.706279457336\n", + "2018-08-20 22:15:25,725 : INFO : h_r_error: 120533.10241786917\n", + "2018-08-20 22:15:25,727 : INFO : h_r_error: 85840.68793886981\n", + "2018-08-20 22:15:25,728 : INFO : h_r_error: 81085.6932420261\n", + "2018-08-20 22:15:25,729 : INFO : h_r_error: 80618.2449916983\n", + "2018-08-20 22:15:25,731 : INFO : h_r_error: 80618.2449916983\n", + "2018-08-20 22:15:25,733 : INFO : h_r_error: 144346.3875923771\n", + "2018-08-20 22:15:25,734 : INFO : h_r_error: 104051.51661938874\n", + "2018-08-20 22:15:25,735 : INFO : h_r_error: 98387.68309223754\n", + "2018-08-20 22:15:25,736 : INFO : h_r_error: 97738.32758740771\n", + "2018-08-20 22:15:25,738 : INFO : h_r_error: 97738.32758740771\n", + "2018-08-20 22:15:25,739 : INFO : h_r_error: 145594.31678220004\n", + "2018-08-20 22:15:25,740 : INFO : h_r_error: 98721.32836014092\n", + "2018-08-20 22:15:25,741 : INFO : h_r_error: 93324.51688015206\n", + "2018-08-20 22:15:25,742 : INFO : h_r_error: 92520.57319065594\n", + "2018-08-20 22:15:25,744 : INFO : h_r_error: 92520.57319065594\n", + "2018-08-20 22:15:25,746 : INFO : h_r_error: 102650.24369218039\n", + "2018-08-20 22:15:25,747 : INFO : h_r_error: 48669.42225203629\n", + "2018-08-20 22:15:25,750 : INFO : h_r_error: 45178.66059215797\n", + "2018-08-20 22:15:25,751 : INFO : h_r_error: 44778.850508414784\n", + "2018-08-20 22:15:25,762 : INFO : h_r_error: 44778.850508414784\n", + "2018-08-20 22:15:25,765 : INFO : h_r_error: 95042.43849410885\n", + "2018-08-20 22:15:25,766 : INFO : h_r_error: 32548.73505120907\n", + "2018-08-20 22:15:25,767 : INFO : h_r_error: 30347.04943881905\n", + "2018-08-20 22:15:25,769 : INFO : h_r_error: 29957.108359922466\n", + "2018-08-20 22:15:25,770 : INFO : h_r_error: 29913.8437520984\n", + "2018-08-20 22:15:25,772 : INFO : h_r_error: 29913.8437520984\n", + "2018-08-20 22:15:25,774 : INFO : h_r_error: 100337.72340120646\n", + "2018-08-20 22:15:25,775 : INFO : h_r_error: 38042.32645009931\n", + "2018-08-20 22:15:25,776 : INFO : h_r_error: 35150.77154243809\n", + "2018-08-20 22:15:25,779 : INFO : h_r_error: 34969.334772222064\n", + "2018-08-20 22:15:25,784 : INFO : h_r_error: 34969.334772222064\n", + "2018-08-20 22:15:25,788 : INFO : h_r_error: 83514.52007176694\n", + "2018-08-20 22:15:25,789 : INFO : h_r_error: 38908.94580453252\n", + "2018-08-20 22:15:25,791 : INFO : h_r_error: 36604.933153747384\n", + "2018-08-20 22:15:25,792 : INFO : h_r_error: 36143.1596455028\n", + "2018-08-20 22:15:25,794 : INFO : h_r_error: 36074.38352930394\n", + "2018-08-20 22:15:25,796 : INFO : h_r_error: 36074.38352930394\n", + "2018-08-20 22:15:25,797 : INFO : h_r_error: 86384.23941232702\n", + "2018-08-20 22:15:25,799 : INFO : h_r_error: 54522.63022871282\n", + "2018-08-20 22:15:25,800 : INFO : h_r_error: 52269.22838283751\n", + "2018-08-20 22:15:25,801 : INFO : h_r_error: 51784.41198322365\n", + "2018-08-20 22:15:25,802 : INFO : h_r_error: 51694.78405021233\n", + "2018-08-20 22:15:25,803 : INFO : h_r_error: 51694.78405021233\n", + "2018-08-20 22:15:25,805 : INFO : h_r_error: 59934.5201301244\n", + "2018-08-20 22:15:25,806 : INFO : h_r_error: 38003.956341161625\n", + "2018-08-20 22:15:25,807 : INFO : h_r_error: 35824.68084150275\n", + "2018-08-20 22:15:25,809 : INFO : h_r_error: 35416.27744903075\n", + "2018-08-20 22:15:25,811 : INFO : h_r_error: 35350.79590335559\n", + "2018-08-20 22:15:25,813 : INFO : h_r_error: 35350.79590335559\n", + "2018-08-20 22:15:25,814 : INFO : h_r_error: 52773.46998561132\n", + "2018-08-20 22:15:25,816 : INFO : h_r_error: 34438.140590869916\n", + "2018-08-20 22:15:25,818 : INFO : h_r_error: 32127.70173508694\n", + "2018-08-20 22:15:25,820 : INFO : h_r_error: 31801.275101390467\n", + "2018-08-20 22:15:25,821 : INFO : h_r_error: 31763.039930469866\n", + "2018-08-20 22:15:25,823 : INFO : h_r_error: 31763.039930469866\n", + "2018-08-20 22:15:25,825 : INFO : h_r_error: 89658.92124894459\n", + "2018-08-20 22:15:25,827 : INFO : h_r_error: 69134.68778135825\n", + "2018-08-20 22:15:25,829 : INFO : h_r_error: 66797.29744618708\n", + "2018-08-20 22:15:25,831 : INFO : h_r_error: 66608.52339570905\n", + "2018-08-20 22:15:25,832 : INFO : h_r_error: 66608.52339570905\n", + "2018-08-20 22:15:25,843 : INFO : h_r_error: 84060.26038757557\n", + "2018-08-20 22:15:25,848 : INFO : h_r_error: 62823.13539430651\n", + "2018-08-20 22:15:25,849 : INFO : h_r_error: 60924.35270401313\n", + "2018-08-20 22:15:25,852 : INFO : h_r_error: 60672.5727604889\n", + "2018-08-20 22:15:25,856 : INFO : h_r_error: 60672.5727604889\n", + "2018-08-20 22:15:25,857 : INFO : h_r_error: 82400.69532648215\n", + "2018-08-20 22:15:25,858 : INFO : h_r_error: 62296.81077464238\n", + "2018-08-20 22:15:25,860 : INFO : h_r_error: 60300.12575851453\n", + "2018-08-20 22:15:25,861 : INFO : h_r_error: 60033.39538330248\n", + "2018-08-20 22:15:25,863 : INFO : h_r_error: 60033.39538330248\n", + "2018-08-20 22:15:25,864 : INFO : h_r_error: 77801.37356392771\n", + "2018-08-20 22:15:25,865 : INFO : h_r_error: 58931.06891529856\n", + "2018-08-20 22:15:25,866 : INFO : h_r_error: 57270.16822998984\n", + "2018-08-20 22:15:25,867 : INFO : h_r_error: 57140.20891464639\n", + "2018-08-20 22:15:25,869 : INFO : h_r_error: 57140.20891464639\n", + "2018-08-20 22:15:25,870 : INFO : h_r_error: 75958.60475923998\n", + "2018-08-20 22:15:25,871 : INFO : h_r_error: 61089.03212278704\n", + "2018-08-20 22:15:25,872 : INFO : h_r_error: 59996.78681582652\n", + "2018-08-20 22:15:25,873 : INFO : h_r_error: 59932.34782600625\n", + "2018-08-20 22:15:25,875 : INFO : h_r_error: 59932.34782600625\n", + "2018-08-20 22:15:25,876 : INFO : h_r_error: 76836.89003462985\n", + "2018-08-20 22:15:25,877 : INFO : h_r_error: 65865.27153834907\n", + "2018-08-20 22:15:25,878 : INFO : h_r_error: 64995.8870329025\n", + "2018-08-20 22:15:25,879 : INFO : h_r_error: 64918.239951684365\n", + "2018-08-20 22:15:25,881 : INFO : h_r_error: 64918.239951684365\n", + "2018-08-20 22:15:25,882 : INFO : h_r_error: 48980.581814778896\n", + "2018-08-20 22:15:25,883 : INFO : h_r_error: 41808.449457535935\n", + "2018-08-20 22:15:25,885 : INFO : h_r_error: 41252.6125794878\n", + "2018-08-20 22:15:25,886 : INFO : h_r_error: 41189.66801287636\n", + "2018-08-20 22:15:25,887 : INFO : h_r_error: 41189.66801287636\n", + "2018-08-20 22:15:25,889 : INFO : h_r_error: 40785.75997818555\n", + "2018-08-20 22:15:25,890 : INFO : h_r_error: 34891.36854438516\n", + "2018-08-20 22:15:25,892 : INFO : h_r_error: 33600.54177970833\n", + "2018-08-20 22:15:25,901 : INFO : h_r_error: 33323.966042387816\n", + "2018-08-20 22:15:25,902 : INFO : h_r_error: 33280.73672451113\n", + "2018-08-20 22:15:25,904 : INFO : h_r_error: 33280.73672451113\n", + "2018-08-20 22:15:25,905 : INFO : h_r_error: 26454.37120000968\n", + "2018-08-20 22:15:25,907 : INFO : h_r_error: 21540.39479576784\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:25,908 : INFO : h_r_error: 20608.810430887163\n", + "2018-08-20 22:15:25,910 : INFO : h_r_error: 20433.54257729559\n", + "2018-08-20 22:15:25,911 : INFO : h_r_error: 20400.741509122505\n", + "2018-08-20 22:15:25,913 : INFO : h_r_error: 20400.741509122505\n", + "2018-08-20 22:15:25,916 : INFO : h_r_error: 28200.31679054761\n", + "2018-08-20 22:15:25,919 : INFO : h_r_error: 23300.098733814248\n", + "2018-08-20 22:15:25,929 : INFO : h_r_error: 22137.1510942318\n", + "2018-08-20 22:15:25,931 : INFO : h_r_error: 21810.085864093246\n", + "2018-08-20 22:15:25,932 : INFO : h_r_error: 21775.213278946343\n", + "2018-08-20 22:15:25,934 : INFO : h_r_error: 21775.213278946343\n", + "2018-08-20 22:15:25,935 : INFO : h_r_error: 15260.366709589653\n", + "2018-08-20 22:15:25,936 : INFO : h_r_error: 11872.08315938859\n", + "2018-08-20 22:15:25,937 : INFO : h_r_error: 10908.905597899073\n", + "2018-08-20 22:15:25,938 : INFO : h_r_error: 10684.630020773682\n", + "2018-08-20 22:15:25,939 : INFO : h_r_error: 10651.271246929588\n", + "2018-08-20 22:15:25,941 : INFO : h_r_error: 10651.271246929588\n", + "2018-08-20 22:15:25,942 : INFO : h_r_error: 21032.87159613912\n", + "2018-08-20 22:15:25,944 : INFO : h_r_error: 16982.111213920845\n", + "2018-08-20 22:15:25,945 : INFO : h_r_error: 15866.510855147071\n", + "2018-08-20 22:15:25,953 : INFO : h_r_error: 15662.38695739796\n", + "2018-08-20 22:15:25,968 : INFO : h_r_error: 15638.966745766626\n", + "2018-08-20 22:15:25,970 : INFO : h_r_error: 15638.966745766626\n", + "2018-08-20 22:15:25,972 : INFO : h_r_error: 35159.7164846516\n", + "2018-08-20 22:15:25,973 : INFO : h_r_error: 29103.083952578443\n", + "2018-08-20 22:15:25,974 : INFO : h_r_error: 27679.57023556275\n", + "2018-08-20 22:15:25,975 : INFO : h_r_error: 27554.425552082583\n", + "2018-08-20 22:15:25,978 : INFO : h_r_error: 27554.425552082583\n", + "2018-08-20 22:15:25,981 : INFO : h_r_error: 66821.6687468943\n", + "2018-08-20 22:15:25,983 : INFO : h_r_error: 57882.03046952179\n", + "2018-08-20 22:15:25,986 : INFO : h_r_error: 56709.66844688913\n", + "2018-08-20 22:15:25,988 : INFO : h_r_error: 56615.34344199158\n", + "2018-08-20 22:15:25,990 : INFO : h_r_error: 56615.34344199158\n", + "2018-08-20 22:15:25,991 : INFO : h_r_error: 102536.44589819173\n", + "2018-08-20 22:15:25,992 : INFO : h_r_error: 89790.53104875541\n", + "2018-08-20 22:15:25,993 : INFO : h_r_error: 88797.37168870388\n", + "2018-08-20 22:15:25,995 : INFO : h_r_error: 88797.37168870388\n", + "2018-08-20 22:15:25,996 : INFO : h_r_error: 94256.0865083771\n", + "2018-08-20 22:15:25,997 : INFO : h_r_error: 81796.94144023153\n", + "2018-08-20 22:15:26,012 : INFO : h_r_error: 79914.31899253973\n", + "2018-08-20 22:15:26,026 : INFO : h_r_error: 79801.96367959536\n", + "2018-08-20 22:15:26,028 : INFO : h_r_error: 79801.96367959536\n", + "2018-08-20 22:15:26,030 : INFO : h_r_error: 103681.66251015848\n", + "2018-08-20 22:15:26,032 : INFO : h_r_error: 91149.66390562967\n", + "2018-08-20 22:15:26,034 : INFO : h_r_error: 88039.71971343001\n", + "2018-08-20 22:15:26,037 : INFO : h_r_error: 87725.90055568086\n", + "2018-08-20 22:15:26,040 : INFO : h_r_error: 87725.90055568086\n", + "2018-08-20 22:15:26,046 : INFO : h_r_error: 56004.11426043542\n", + "2018-08-20 22:15:26,050 : INFO : h_r_error: 47197.703146981876\n", + "2018-08-20 22:15:26,052 : INFO : h_r_error: 44837.80243648732\n", + "2018-08-20 22:15:26,053 : INFO : h_r_error: 44443.57942939128\n", + "2018-08-20 22:15:26,055 : INFO : h_r_error: 44374.80930404322\n", + "2018-08-20 22:15:26,057 : INFO : h_r_error: 44374.80930404322\n", + "2018-08-20 22:15:26,058 : INFO : h_r_error: 43292.4267967832\n", + "2018-08-20 22:15:26,059 : INFO : h_r_error: 35378.8097280495\n", + "2018-08-20 22:15:26,061 : INFO : h_r_error: 34196.54479859938\n", + "2018-08-20 22:15:26,062 : INFO : h_r_error: 33921.22257936816\n", + "2018-08-20 22:15:26,069 : INFO : h_r_error: 33882.99653972745\n", + "2018-08-20 22:15:26,072 : INFO : h_r_error: 33882.99653972745\n", + "2018-08-20 22:15:26,073 : INFO : h_r_error: 83106.68092031234\n", + "2018-08-20 22:15:26,074 : INFO : h_r_error: 72006.9979466662\n", + "2018-08-20 22:15:26,075 : INFO : h_r_error: 70987.0810195443\n", + "2018-08-20 22:15:26,077 : INFO : h_r_error: 70703.88128074924\n", + "2018-08-20 22:15:26,079 : INFO : h_r_error: 70703.88128074924\n", + "2018-08-20 22:15:26,080 : INFO : h_r_error: 34056.68769062177\n", + "2018-08-20 22:15:26,082 : INFO : h_r_error: 22340.518976325024\n", + "2018-08-20 22:15:26,085 : INFO : h_r_error: 21202.2807999469\n", + "2018-08-20 22:15:26,092 : INFO : h_r_error: 21018.168130075122\n", + "2018-08-20 22:15:26,094 : INFO : h_r_error: 20985.179625872217\n", + "2018-08-20 22:15:26,104 : INFO : h_r_error: 20985.179625872217\n", + "2018-08-20 22:15:26,107 : INFO : h_r_error: 47079.4827339218\n", + "2018-08-20 22:15:26,108 : INFO : h_r_error: 28040.444823154972\n", + "2018-08-20 22:15:26,111 : INFO : h_r_error: 26012.050369414745\n", + "2018-08-20 22:15:26,112 : INFO : h_r_error: 25778.668392323463\n", + "2018-08-20 22:15:26,114 : INFO : h_r_error: 25752.543285183405\n", + "2018-08-20 22:15:26,118 : INFO : h_r_error: 25752.543285183405\n", + "2018-08-20 22:15:26,120 : INFO : h_r_error: 53830.62087925428\n", + "2018-08-20 22:15:26,122 : INFO : h_r_error: 28056.31895396446\n", + "2018-08-20 22:15:26,125 : INFO : h_r_error: 25538.969559838195\n", + "2018-08-20 22:15:26,130 : INFO : h_r_error: 25231.784702255714\n", + "2018-08-20 22:15:26,135 : INFO : h_r_error: 25231.784702255714\n", + "2018-08-20 22:15:26,137 : INFO : h_r_error: 98623.57824868678\n", + "2018-08-20 22:15:26,138 : INFO : h_r_error: 56869.718676174605\n", + "2018-08-20 22:15:26,139 : INFO : h_r_error: 52575.08611645739\n", + "2018-08-20 22:15:26,140 : INFO : h_r_error: 52194.0055934277\n", + "2018-08-20 22:15:26,142 : INFO : h_r_error: 52194.0055934277\n", + "2018-08-20 22:15:26,144 : INFO : h_r_error: 151046.2615779934\n", + "2018-08-20 22:15:26,146 : INFO : h_r_error: 85671.1807956229\n", + "2018-08-20 22:15:26,157 : INFO : h_r_error: 78721.59964559798\n", + "2018-08-20 22:15:26,158 : INFO : h_r_error: 78253.8217480222\n", + "2018-08-20 22:15:26,161 : INFO : h_r_error: 78253.8217480222\n", + "2018-08-20 22:15:26,163 : INFO : h_r_error: 170143.0368298679\n", + "2018-08-20 22:15:26,164 : INFO : h_r_error: 88169.30243474309\n", + "2018-08-20 22:15:26,165 : INFO : h_r_error: 81485.62257891156\n", + "2018-08-20 22:15:26,167 : INFO : h_r_error: 81043.05017860854\n", + "2018-08-20 22:15:26,168 : INFO : h_r_error: 81043.05017860854\n", + "2018-08-20 22:15:26,170 : INFO : h_r_error: 193290.35730186303\n", + "2018-08-20 22:15:26,171 : INFO : h_r_error: 92326.29391460496\n", + "2018-08-20 22:15:26,173 : INFO : h_r_error: 85478.74125628427\n", + "2018-08-20 22:15:26,174 : INFO : h_r_error: 84863.23013863043\n", + "2018-08-20 22:15:26,175 : INFO : h_r_error: 84863.23013863043\n", + "2018-08-20 22:15:26,177 : INFO : h_r_error: 143000.39477505267\n", + "2018-08-20 22:15:26,180 : INFO : h_r_error: 47690.38239901879\n", + "2018-08-20 22:15:26,181 : INFO : h_r_error: 42535.89066549057\n", + "2018-08-20 22:15:26,183 : INFO : h_r_error: 42191.861043280165\n", + "2018-08-20 22:15:26,185 : INFO : h_r_error: 42191.861043280165\n", + "2018-08-20 22:15:26,196 : INFO : h_r_error: 142675.06428208412\n", + "2018-08-20 22:15:26,199 : INFO : h_r_error: 48176.866217790404\n", + "2018-08-20 22:15:26,200 : INFO : h_r_error: 40416.058453941805\n", + "2018-08-20 22:15:26,201 : INFO : h_r_error: 40017.15421775054\n", + "2018-08-20 22:15:26,204 : INFO : h_r_error: 40017.15421775054\n", + "2018-08-20 22:15:26,206 : INFO : h_r_error: 167788.56160431716\n", + "2018-08-20 22:15:26,207 : INFO : h_r_error: 65451.04391470968\n", + "2018-08-20 22:15:26,208 : INFO : h_r_error: 58775.61705137578\n", + "2018-08-20 22:15:26,210 : INFO : h_r_error: 58166.916215643076\n", + "2018-08-20 22:15:26,213 : INFO : h_r_error: 58166.916215643076\n", + "2018-08-20 22:15:26,216 : INFO : h_r_error: 144878.72484764503\n", + "2018-08-20 22:15:26,218 : INFO : h_r_error: 47990.718678389516\n", + "2018-08-20 22:15:26,220 : INFO : h_r_error: 42459.08584400939\n", + "2018-08-20 22:15:26,221 : INFO : h_r_error: 42374.837127099265\n", + "2018-08-20 22:15:26,223 : INFO : h_r_error: 42374.837127099265\n", + "2018-08-20 22:15:26,225 : INFO : h_r_error: 147093.6388017975\n", + "2018-08-20 22:15:26,226 : INFO : h_r_error: 61741.05478800946\n", + "2018-08-20 22:15:26,227 : INFO : h_r_error: 56000.0869573749\n", + "2018-08-20 22:15:26,229 : INFO : h_r_error: 55724.81891032926\n", + "2018-08-20 22:15:26,230 : INFO : h_r_error: 55724.81891032926\n", + "2018-08-20 22:15:26,231 : INFO : h_r_error: 177070.46954423655\n", + "2018-08-20 22:15:26,232 : INFO : h_r_error: 86813.13608230506\n", + "2018-08-20 22:15:26,234 : INFO : h_r_error: 80750.06541413112\n", + "2018-08-20 22:15:26,235 : INFO : h_r_error: 80108.79492326386\n", + "2018-08-20 22:15:26,236 : INFO : h_r_error: 80018.0835706642\n", + "2018-08-20 22:15:26,238 : INFO : h_r_error: 80018.0835706642\n", + "2018-08-20 22:15:26,248 : INFO : h_r_error: 191498.891043512\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:26,250 : INFO : h_r_error: 89193.15992567304\n", + "2018-08-20 22:15:26,251 : INFO : h_r_error: 82326.7193949022\n", + "2018-08-20 22:15:26,253 : INFO : h_r_error: 81654.10188430984\n", + "2018-08-20 22:15:26,254 : INFO : h_r_error: 81550.8364588384\n", + "2018-08-20 22:15:26,256 : INFO : h_r_error: 81550.8364588384\n", + "2018-08-20 22:15:26,258 : INFO : h_r_error: 195202.30314943343\n", + "2018-08-20 22:15:26,259 : INFO : h_r_error: 87377.33791727532\n", + "2018-08-20 22:15:26,261 : INFO : h_r_error: 80672.67496760779\n", + "2018-08-20 22:15:26,262 : INFO : h_r_error: 80479.76631168138\n", + "2018-08-20 22:15:26,268 : INFO : h_r_error: 80479.76631168138\n", + "2018-08-20 22:15:26,271 : INFO : h_r_error: 144824.23872960033\n", + "2018-08-20 22:15:26,272 : INFO : h_r_error: 55900.50694270172\n", + "2018-08-20 22:15:26,273 : INFO : h_r_error: 50456.945266342926\n", + "2018-08-20 22:15:26,275 : INFO : h_r_error: 50209.455574301464\n", + "2018-08-20 22:15:26,277 : INFO : h_r_error: 50209.455574301464\n", + "2018-08-20 22:15:26,278 : INFO : h_r_error: 120497.96569875091\n", + "2018-08-20 22:15:26,279 : INFO : h_r_error: 54942.81832456545\n", + "2018-08-20 22:15:26,280 : INFO : h_r_error: 51139.536326477886\n", + "2018-08-20 22:15:26,282 : INFO : h_r_error: 50931.89498627135\n", + "2018-08-20 22:15:26,283 : INFO : h_r_error: 50931.89498627135\n", + "2018-08-20 22:15:26,284 : INFO : h_r_error: 118560.7658767246\n", + "2018-08-20 22:15:26,286 : INFO : h_r_error: 66209.35306663823\n", + "2018-08-20 22:15:26,287 : INFO : h_r_error: 63672.851013482956\n", + "2018-08-20 22:15:26,288 : INFO : h_r_error: 63532.512372798665\n", + "2018-08-20 22:15:26,290 : INFO : h_r_error: 63532.512372798665\n", + "2018-08-20 22:15:26,299 : INFO : h_r_error: 145281.10256636093\n", + "2018-08-20 22:15:26,301 : INFO : h_r_error: 99879.7345641714\n", + "2018-08-20 22:15:26,303 : INFO : h_r_error: 98089.94579477502\n", + "2018-08-20 22:15:26,305 : INFO : h_r_error: 98089.94579477502\n", + "2018-08-20 22:15:26,306 : INFO : h_r_error: 165137.3997750682\n", + "2018-08-20 22:15:26,308 : INFO : h_r_error: 121745.46955607059\n", + "2018-08-20 22:15:26,309 : INFO : h_r_error: 120148.35468973644\n", + "2018-08-20 22:15:26,312 : INFO : h_r_error: 120148.35468973644\n", + "2018-08-20 22:15:26,316 : INFO : h_r_error: 158538.77643486226\n", + "2018-08-20 22:15:26,320 : INFO : h_r_error: 117514.12100067486\n", + "2018-08-20 22:15:26,322 : INFO : h_r_error: 115814.83388310859\n", + "2018-08-20 22:15:26,324 : INFO : h_r_error: 115814.83388310859\n", + "2018-08-20 22:15:26,325 : INFO : h_r_error: 136038.15608420633\n", + "2018-08-20 22:15:26,326 : INFO : h_r_error: 96742.83001877212\n", + "2018-08-20 22:15:26,328 : INFO : h_r_error: 94559.96804935293\n", + "2018-08-20 22:15:26,329 : INFO : h_r_error: 94383.14616395722\n", + "2018-08-20 22:15:26,331 : INFO : h_r_error: 94383.14616395722\n", + "2018-08-20 22:15:26,332 : INFO : h_r_error: 101367.71763481224\n", + "2018-08-20 22:15:26,334 : INFO : h_r_error: 62548.2325397448\n", + "2018-08-20 22:15:26,335 : INFO : h_r_error: 59882.78131770487\n", + "2018-08-20 22:15:26,336 : INFO : h_r_error: 59454.59463196322\n", + "2018-08-20 22:15:26,337 : INFO : h_r_error: 59378.02619761801\n", + "2018-08-20 22:15:26,339 : INFO : h_r_error: 59378.02619761801\n", + "2018-08-20 22:15:26,341 : INFO : h_r_error: 95865.50790628867\n", + "2018-08-20 22:15:26,342 : INFO : h_r_error: 62378.63362038054\n", + "2018-08-20 22:15:26,343 : INFO : h_r_error: 59242.72783463293\n", + "2018-08-20 22:15:26,344 : INFO : h_r_error: 58609.456228255316\n", + "2018-08-20 22:15:26,345 : INFO : h_r_error: 58496.34350233016\n", + "2018-08-20 22:15:26,347 : INFO : h_r_error: 58496.34350233016\n", + "2018-08-20 22:15:26,348 : INFO : h_r_error: 90515.55027129139\n", + "2018-08-20 22:15:26,349 : INFO : h_r_error: 58018.099802026285\n", + "2018-08-20 22:15:26,360 : INFO : h_r_error: 55105.19055132983\n", + "2018-08-20 22:15:26,362 : INFO : h_r_error: 54665.30390811013\n", + "2018-08-20 22:15:26,365 : INFO : h_r_error: 54665.30390811013\n", + "2018-08-20 22:15:26,367 : INFO : h_r_error: 83134.14281795638\n", + "2018-08-20 22:15:26,369 : INFO : h_r_error: 55442.09864068202\n", + "2018-08-20 22:15:26,371 : INFO : h_r_error: 52963.28200871138\n", + "2018-08-20 22:15:26,373 : INFO : h_r_error: 52586.908681102745\n", + "2018-08-20 22:15:26,387 : INFO : h_r_error: 52586.908681102745\n", + "2018-08-20 22:15:26,389 : INFO : h_r_error: 73598.27979210831\n", + "2018-08-20 22:15:26,391 : INFO : h_r_error: 45715.61157809627\n", + "2018-08-20 22:15:26,392 : INFO : h_r_error: 41437.58248913924\n", + "2018-08-20 22:15:26,395 : INFO : h_r_error: 40707.77290896303\n", + "2018-08-20 22:15:26,398 : INFO : h_r_error: 40609.36114776876\n", + "2018-08-20 22:15:26,413 : INFO : h_r_error: 40609.36114776876\n", + "2018-08-20 22:15:26,417 : INFO : h_r_error: 59503.97001493072\n", + "2018-08-20 22:15:26,422 : INFO : h_r_error: 33432.097819146526\n", + "2018-08-20 22:15:26,425 : INFO : h_r_error: 29486.32651237871\n", + "2018-08-20 22:15:26,427 : INFO : h_r_error: 28926.026181920453\n", + "2018-08-20 22:15:26,430 : INFO : h_r_error: 28926.026181920453\n", + "2018-08-20 22:15:26,432 : INFO : h_r_error: 50217.117754469546\n", + "2018-08-20 22:15:26,434 : INFO : h_r_error: 27138.614025112507\n", + "2018-08-20 22:15:26,436 : INFO : h_r_error: 24091.11630445048\n", + "2018-08-20 22:15:26,441 : INFO : h_r_error: 23798.914970480397\n", + "2018-08-20 22:15:26,445 : INFO : h_r_error: 23798.914970480397\n", + "2018-08-20 22:15:26,450 : INFO : h_r_error: 46011.29451609649\n", + "2018-08-20 22:15:26,455 : INFO : h_r_error: 23339.291405321692\n", + "2018-08-20 22:15:26,458 : INFO : h_r_error: 21141.855440357434\n", + "2018-08-20 22:15:26,460 : INFO : h_r_error: 20948.160112459424\n", + "2018-08-20 22:15:26,463 : INFO : h_r_error: 20948.160112459424\n", + "2018-08-20 22:15:26,465 : INFO : h_r_error: 56099.969883942176\n", + "2018-08-20 22:15:26,467 : INFO : h_r_error: 31558.214159141873\n", + "2018-08-20 22:15:26,469 : INFO : h_r_error: 29543.03148778048\n", + "2018-08-20 22:15:26,471 : INFO : h_r_error: 29371.947464451052\n", + "2018-08-20 22:15:26,473 : INFO : h_r_error: 29371.947464451052\n", + "2018-08-20 22:15:26,475 : INFO : h_r_error: 72350.54561082687\n", + "2018-08-20 22:15:26,477 : INFO : h_r_error: 45607.577200019216\n", + "2018-08-20 22:15:26,480 : INFO : h_r_error: 42697.75965676168\n", + "2018-08-20 22:15:26,482 : INFO : h_r_error: 42435.09532013215\n", + "2018-08-20 22:15:26,485 : INFO : h_r_error: 42435.09532013215\n", + "2018-08-20 22:15:26,486 : INFO : h_r_error: 81673.58262360246\n", + "2018-08-20 22:15:26,487 : INFO : h_r_error: 55028.966308308285\n", + "2018-08-20 22:15:26,488 : INFO : h_r_error: 50879.5437727653\n", + "2018-08-20 22:15:26,492 : INFO : h_r_error: 50430.705456493\n", + "2018-08-20 22:15:26,496 : INFO : h_r_error: 50430.705456493\n", + "2018-08-20 22:15:26,503 : INFO : h_r_error: 85259.06957006888\n", + "2018-08-20 22:15:26,506 : INFO : h_r_error: 56417.15576227808\n", + "2018-08-20 22:15:26,507 : INFO : h_r_error: 51950.01266205731\n", + "2018-08-20 22:15:26,509 : INFO : h_r_error: 51427.891558767784\n", + "2018-08-20 22:15:26,512 : INFO : h_r_error: 51427.891558767784\n", + "2018-08-20 22:15:26,514 : INFO : h_r_error: 87542.85171726909\n", + "2018-08-20 22:15:26,516 : INFO : h_r_error: 54471.47858022249\n", + "2018-08-20 22:15:26,519 : INFO : h_r_error: 51692.16694423167\n", + "2018-08-20 22:15:26,520 : INFO : h_r_error: 51314.94085991872\n", + "2018-08-20 22:15:26,525 : INFO : h_r_error: 51314.94085991872\n", + "2018-08-20 22:15:26,527 : INFO : h_r_error: 74989.53473624078\n", + "2018-08-20 22:15:26,530 : INFO : h_r_error: 40437.67511528515\n", + "2018-08-20 22:15:26,532 : INFO : h_r_error: 38660.661040941544\n", + "2018-08-20 22:15:26,534 : INFO : h_r_error: 38179.70126096432\n", + "2018-08-20 22:15:26,539 : INFO : h_r_error: 38065.50275211432\n", + "2018-08-20 22:15:26,543 : INFO : h_r_error: 38065.50275211432\n", + "2018-08-20 22:15:26,545 : INFO : h_r_error: 108828.80093509772\n", + "2018-08-20 22:15:26,547 : INFO : h_r_error: 60212.67760110461\n", + "2018-08-20 22:15:26,549 : INFO : h_r_error: 57812.19815738934\n", + "2018-08-20 22:15:26,551 : INFO : h_r_error: 57190.44665422103\n", + "2018-08-20 22:15:26,555 : INFO : h_r_error: 57021.325789113616\n", + "2018-08-20 22:15:26,557 : INFO : h_r_error: 57021.325789113616\n", + "2018-08-20 22:15:26,559 : INFO : h_r_error: 78817.5512140593\n", + "2018-08-20 22:15:26,561 : INFO : h_r_error: 27383.623063646068\n", + "2018-08-20 22:15:26,563 : INFO : h_r_error: 24613.083436085217\n", + "2018-08-20 22:15:26,565 : INFO : h_r_error: 24366.273428677887\n", + "2018-08-20 22:15:26,566 : INFO : h_r_error: 24324.814654375365\n", + "2018-08-20 22:15:26,569 : INFO : h_r_error: 24324.814654375365\n", + "2018-08-20 22:15:26,571 : INFO : h_r_error: 72411.94794136818\n", + "2018-08-20 22:15:26,573 : INFO : h_r_error: 21870.11709181413\n", + "2018-08-20 22:15:26,577 : INFO : h_r_error: 19136.87592728228\n", + "2018-08-20 22:15:26,580 : INFO : h_r_error: 18959.722842143907\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:26,582 : INFO : h_r_error: 18959.722842143907\n", + "2018-08-20 22:15:26,583 : INFO : h_r_error: 83876.31226742358\n", + "2018-08-20 22:15:26,584 : INFO : h_r_error: 27066.441250717817\n", + "2018-08-20 22:15:26,586 : INFO : h_r_error: 23671.276967366928\n", + "2018-08-20 22:15:26,587 : INFO : h_r_error: 23588.035853516478\n", + "2018-08-20 22:15:26,590 : INFO : h_r_error: 23588.035853516478\n", + "2018-08-20 22:15:26,591 : INFO : h_r_error: 87851.09522030315\n", + "2018-08-20 22:15:26,593 : INFO : h_r_error: 36557.55519906569\n", + "2018-08-20 22:15:26,596 : INFO : h_r_error: 32920.158554937225\n", + "2018-08-20 22:15:26,605 : INFO : h_r_error: 32884.0633641823\n" + ] + } + ], "source": [ "W = gensim_nmf.get_topics().T\n", "H = np.hstack(gensim_nmf[bow] for bow in matutils.Dense2Corpus(img_matrix.T))" @@ -454,17 +4891,17 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUI0lEQVR4nF39YZMkyY0sCKoCZu4RmVnV3eRwZlae7K7Iyf3/3/RWTlZ2Z8gh2V2VGeFuBuh9gHlWvSmhDKfZlZHh5mYwQFWh4L/OlABkAkB73U+pbYYksW3Z4La97s3Pb//4eI5jREYK7pAoJpCgKZCEyP6SH84TjbqNQThpSmowA26C2ReCycczCb3evm3tMSCkEeaHSJCgt06C7I00ti42IkRKmjPynJG0e8S0Nz4zx4kRGRJAhyRSgIEkYYxMtc1grrZ5PtAxAOOc0QCAwvqjaQlAIgAoM2EZKQiAAAmQhAQEwD5/EARYf0CQlECQAGimBAUCQAYS2lQ/YQykCJCQpM/Pql9FiiAzhYZaAGBGKiLCEJkJEaifpQUAkgmCEAFBhqSuX2eyZiIIIlNzZhuZEgQlAGByCnOSSbC3dBrb2Zzx8f0Yc0SmCJqvNSAgWlIGgUTIaB2EZiSA9UZNqlUWpxEIAQmdCEoShCQk1qoRUBLA+uaZYgoBAkKElCklRmbkwSHRk6j1EwQDUQtOkkZAMicgZeQMEAmA1rIpU/UHABA8EjRCBLct3Ux+gMzjOTKmEiJpDgBJwhPtNp9pSDpN1q11ZOZMCXT6vjXLOY6oFyU5s00zJeJUPRQEgUqQdDjYnAZZM5JoLempeiSZ0JgyKZRQGA1pM7LNBGBONncFOUNGozVSIGFu9JfxGCJNYi0BQEi5FmDmCLAOhdFmc6QQCcwpZAAEjd5AARQNaB5kU5oZBLdOngOxDpWE+g8ECpjuxDYHA5pBZUUffe79dYZAwNxIYtuG+dQ6URLoLsHqqTYaEc+ow/C51wGa4ObNW2v1693Mf53/hMw9EzMSDWbMEAWIkJRZyyWZN7llznMEfJBEGghr5jtOkYQJxHEEWg5QgJL0licIC0AZ53tCIYl0A9IA3MYTygQsoPrmJA2AURQUtdB00nl7OdhHToIywsZEI0GYgPu9uXF8n5z1G6dymBEwwMy3vfVtM6VSpLVf3Zi2b3nqOdJaI5hMsU40eYVDAO3G7mEycgWq+p5m3pVJURTMRcIBkqLBW+/TLWkJsxQgZB10EjCa83V8rHvj8xfW72QdYFqjmfmt0Zxfvjy4nXmSlJs9PeST9Rf5+qU7ccaHrh1whVIC7q3fer/trkSmG/u/d0Xay20cYUdaI0n9L19jbUPR9hfsPR45PWWArTgmKSciLS2pirGI2umQMoioyFrPZAJRYdqyNtnbw2UEf/6NIAHSjA7zTpr1W3M2/vLbN70c8TADusNb4DgBl5H29U8b83kK1kcGRYewHkgZTEBTRL8R++a3/0+PM/h2f34/P2JYo5FJYkXQyBWsBbHtY9tiHmbX9Qaxtu5EpIJZTwZKiSuaZTD0eWJJA4RMEEYkMSz3vt698grevMIAra4ZkvRmcG4vZ+xpww3Yem+TzCA8zcxfvuwYgZTRCIGmIGkCpGQkkDOA1hpfX/z1f7S//3PY20ub0jitNaMBxisIsIKVAKDfz9s+R7N6WRWiuILaj5AjAEpJSZHIAESDG2TX37HKmFhZBl52h69/SasLq3YAaDS4O2DWts218e3XOb+0CXfgtn2ERMVgT1prr7/e8nmunwNFE4288g6JQGbyddvsy1f/5X9v//n3YV9etylXqCWvAypA3nyu7yyw7X3fbeteb4krrEOfi1RbHimFlBUqkmFjZhIpIIEQlbnyHVrbPG6NK2S0Fnmd2c9kCmZmMN9ue8PNfvktxm+PsblDt+1Bn1RObknrfn+9hWzlfVcwUTIBiYRSkSP4KvO2tftbu3dZ783MkNlCZIRUG8C2dsY6kaK33ptaM9Yb50rYIBpyZYYJQkJU8iKAwzhnRFoASIBJ5Uo0yLbd29xsnTn2fjLFugjwGb/MnO7b7dbthV9/mfNPj9Hdqb1/F4Yipragd9+2LQ4K5Io5EJRkAkgTlEKMgSGs9QUUMyNhRtUCZK7fbHv/qL8G0cybt2i9Gc28zibr9XNtW0khpLSSY2blBxJJrxsA9YCCkbS+v/ThRrGluL32UyGrpyZAw7oW3Vrr295e7eXlnF+34eZUb28zntF7VzN69+4uxIQxzR0wGpFAoO7kmKbnx4mvz+bnGedHO84TRz/OCSGbGyi56vz5tvUBGAGg7ffzdWuKAZt3z84cZNaiXmEbQq6NsF6BKmWr/6RWlDSp0tK+75u/7C1J0bf79hEMB64gSpoEmpt732639uJfvub89RitFuD3GZwRQzvgu3/5ZZ9z79vG7HNC7jBISpBi5Z45J2Xurbf93m+bsG29z9ZcjSSz7kKA1jdf2Thobevbjv3czsY+00mv5I/mgNLMrrqjkgiBWuFCAC2rfCHongLNoL7dbsdt70mIbb/v2wn4lQpq/Tfd3Xvfbrf+6m+1AGbO7P52jpxjdGyg7+3+ch/H/TZORGsuuMOFvCKqmbncnd5b65vvt773YO+9x74Na7ZCkwkybK8vvz9BJwB2R3Pa9jJluVnQIpikwbadQ2nuTCSqeCZdMKaQNMiMJGwdajORTjO+fP3zy9PocMn69nb757P2veiiYGbm7t66b9u23faXdm93vW7TaQzw/nLMR2ubmsO660QMtNsZ3DIkp3kCJMzkrblIayLGMbqb/f/6X38/LOL7wP1Lm63VzccUZLZ//fr3h6yRIvdmW2uyrbUnbJtq4TjHZLLfQKWxBQE4BMKsCR4TADeFA4AjKVApJehm1r7+9pcvH+5dScC4vXSXqsLqUyTN3Nxb31rf+367v2z3/sJX5d2lc8bLeYzhfcvexWZ6jjyza8RQQ6YsaTKS7uneXTBzGA5TTov/2f7z99PHPKN94THayr5ggtzay+ve0hqZTkdAKfO5gxpNe1BupoA3phLyOvyrcukplwnGlmlZwdIEZkJS5dD3t19/vdF7pBFg27u5olaQ682Z0Whm9RjdZN4Mm8+gwlt3gQZrSed8Uqe6Rcy+c+RAWJWV5jQ3UxJuDSdjnBx3/49/jn5Eor+0GE0J5udN3O5vbZ0JkvPMqdG6kxbG7OwY5hD7XmmWJyxwgSDOYEWCFUWupJo0F+ik9/vbb3/e/wE3V0ff3365dYLJoHkuFIUk6O5u3rZtb2rb1igfwTna1hvgbdIJw/hOHtl6nAA2hpJeIdAM5p1ZEVVHDDZ8nPaP/4rWnrxtr5tG+xAopUJAyF7feCaTlHF831vyeb+///1hGT4RB89Tzf3+xpbB6Vm1R92CmamZhTqE0jxnpYpJupIkve9f/vVf738dKTTP9uVf//x/bUgTQFpHZWSEgr1vt/3l7ddfX+7by8uvXcTEB+3AeLRGHG6Qz49393mg23zPiEwFWiZq47dt12E9QMTTzwO6/QefH2l8bb/0XzrQJkhVrVhwQo5gADC056MnH+T3f34w8s5NMoE0ax0t4VlpBZSWVGRGBiRWspyHVnGbqTO1UK52vz9jznNmfDR7fzuOceYkzDOUVuWctOrO1rdt823fNhhPvHdv3StfyJma5xze5wOYcyoz4pxnZwqgWd1Tq4Jjns9EAvMMsiPRd6rJbMUoJRnjHCNkAg3t8dEnH5r//Md3pH7tL6SZwUTkZ96FAqiqqs8ZnnLSDG0lAQIiFUCmlDnnXElYjAefj+dMMWspqYVkKecc4Hk+n8+HGR7cH2x2xvvH4/F4HufIMUxSG5gNkUy2DXmChhQJkcYFcGQmKWVEQW80Wu+9mVtvV/ZcD5PzjHocQpwDsOE4jgPCtFX5Csis8qeynELuVqJcCaegCo2CeJXGkqQY53lGFrqqmOMCo34Ac6qFoo3zPJ5PYwLbZP/4mB8fH4/ncYyhOU3JGZq0FKv8XJnuqsDqI1GF+Cfy9lnYKJJoZsZcRYQyxwhdBYVSmYhYJXLMA9mOSae5cwA0awyHJ9EkKWFkY3ePBc8WZvsJ9Eqa43g8jnNGFBy/sFPSVtZAQZ8pXMYc45D5Y8o59Hg+j+McM1Qvqp0KUEIcH9+l9zmPAiNBI81bU26byTSIcIBOQXQzZMw4m5TMvFY+zmNe6wMoM3JOCwFU4IHoR7hbla617Wnmk2yKKnhhrbtSYp1EraWvBc44n+/7t/fHcc4q1c8xR6bEZCKTEKhAZmbGHOfxZJwq6Dns+f3j4/GsHQApeWCGAObz++8TR8aIKJyi4oih9b0ZwxLhScIoARljHMLRUmR+YqI5z0pu60VkJjJmFqQTQ4mRK2NXKlUZcxtkz/pwz7b3NkYGGHD+VOMVmD3P58fHcY45M8UcxzlHIEgYq4BNJi2lawUQgyQCSj8+Ph6P5zkmIiQET064e4s4nyeGMjICsoJjzZzYd3Ybj5HZamMqmWEZ0xDNQSJZsP11BOqkZx2BjKp9Ak9FnDDRrMFhhiqpnUSLzABoalvf5E6QMiY++Y516sfxfB7nnLH4CF3o0RUtSGUWWp8ZcxqidcuRiT6O8zzHjCw0eeq0CYchj48/Dlzwc9WWNG/NbLv5ziM5ww30Fk3obkDMPFtBwQvcoGImPitzJWsvXiiDMhKZkqKWR1ecqUvhonSUixH5DLE/wtwcx/M55gq1ipla+R/rgrlCYjDmHOd5KNwsY2RiG4/n8zjPMRVT0NS0yQnwHHNOXj9b4U7XFsbkmBGZa8EFZcxxZp5NAvNaNeQcKgRLEJEkMpifD3BF8whUHEKKJEgT6RAd7maGnLKAGcDCCFZwjxjH4xiRkkTkOGZmKJm06xLkyqpiznF0n82BGTOD53w8Ho/nOQYiUkhFBsP08z678LoKo4udaz7Wts4MwYIZk5kNrEJ+fceYyR/vMklkxk8fjR9L8ROVd3GC9f+Y+YX4FtrKnxZQMccYuegS5lzk7MqesGg6ywxajOFny3AzzZmJOZ/HcZ5jBiIEBsMyq/D66c9//8J0c+N/+1eQUmgGwoopE5jjvBg9ARkSYiq0wJ8LGZQSmQUN0cwAmEiDaPLWezO7TsHPuL+kjPNpz7HgD+Q4Quve46IzK7eKAIc/xezNxtzmzESfx/F+fDyOgRxyBKYFImn43AH8sRe4QNa2OY9zrqsLIMyMSInNCGbdaiDzYHEygERFJmJk6Kd73AgzCRlc+aqTxk7zBlln3/d9NLO0hNkPNHVlZefze36csW6pPHzmtYdsbRlSUhSIN+JozbZHm1OJFsf5PB7vj8kc6YwclmrdGovrW2f0ItcI0Ny3+3aex1xPCYJu7sgk2wpWC0XW8IVcQWlICmGIT0Lk2lKQMi3XU3DVnkawobXWvHYcPxPEH0sQ4+BzhCCR1BgJkKK5N8gIyetKzLB5JqM5z7QZKXiM8zmezzOYU7KIaYn4rDNqB6wTzGtHwLyl8cdD1PoonGh19+A6hteB59r1BuXP5+Y6PKFIaUVH/bdz97lU+l/O3IpKMXzEwtahnPm//PBnIM8kY7pM6ZT5CAkeY5xjzAjW+cxEZkRe6ern91nHqa6BiMjMTOXnlafMmEa2IJh53Z+KKZLeHBlmQEKJVBE3Kz0NMc8c04YmIzApMFUAhjlycKakFJKSucXnV8uY48AxZkigG2KKRoN56x0wV4RLRgOUOWUKx5TNtQDzmOeYawE0IxPj+MiPEeL14pVVluQ0T5JEn98/juMMJDkCPBUwDKJFyQYWqo1MkN62jjy9VWGa18vUdY8Qc57BqckMTBOZMDM3M1oIM6VkkQbWTn5GgcyYJ84RmYCZW9UPbt76vgGt5ZhUAquYy6ASos2UYDnmmDMiGSFZkX/D3ufzLGgq68QlTVTQziCQ4fPbxzjHhMg5QSpEDKAlgSsPus5IxgQyQP+R3gAL94YUgx6RCCUzEcrUUE6G0cPT4gxdghmVdKe25qpwcp2SBGun1FdIqpnmtBVd6aQbIWZAiQQvNUdSCS0+I2Ng5GcNWL8qGcycJpgpLR7nWNVHlCaCzRNqn/UhVoFTN3lVU0uk0LesDF0igcyYZ8xEYJ0pAlHfiqmczCjQjjTAvVlSkhmBhKZFFGBoXrUP+bn2qwy8dg9BJJnySAlRcIIkpbSqOOU8c4TqG5Myg9UiBGeCiMk4zohS5mQCgYRbaC3AWrgC8pzm7jC4mwiYFykck1nfLyaUIxEKSAoImoCUrOzTQnTS1tMZaMwl8VFOTpEOa71h956J5iuXWhAGCGZy3dVgS1cq4TljxsyMkrWRbqAzlLRmMBiLZNCVwlIKc+SMzEgwMgNUUoQhm6dAXaIuI1vAe2uQFUrr7tzBzDktAzOEnBkxhFQKUjqJqJTIREXWJazKDFtvGdIkDCDcQPMWEmkewXXSALDqEPsknTJDkNGm0kBXxowIlaiHBGhNQCbp+1ZEKKIwGzMpkVB4rScyBSqUMmqV7M2LjFGKMBrgHX7rDZgmiaS1JrM55rSMHDETiIgpICUKgiVEb93dIzITLQXIYEbr25yMXEmOkIMheiaSdhxRwcvMty3QXBGctRhVIdDMwOZmFjPOyExFZMLWZRuVSG3NNPOMlaJbMcOGTAL0Rc/WolxADdla5hXfYYYM6+r7vkHDcibo7Ju7jeN0ywiOBC1iTtFUtJ/JIWtta63NmEFuISLN3GjbbossrUslTglmgOjbY6TohDdvt/tAbxmTp8AphDRrmydac7c55ghJmJFBqqC/SrrN95YjMBATdfIqklS5bRJFyhgQGsybAWTr8SPumButJ/r9foMOG+ckG7Zb63aaRcuYh2NYV2TIbDE6pCy87/fW25xjmt0mgaR1M9vuzAXUXekVHMoptE0hePNsvfe3lxN7jzn4TPFIcVKSDJgADR4RMwpllAhzDm9MmRG+v25xTD9yRCW8V20tENY+NR1E6dw2b71b45JtsFLJTBi873cIzkzStFJr2sX4WYuhJW4pUZMZWuu33tvZjKKXPEFJ4eIfgap2FMYGN4n7rSfcumvr2/72dvDe4zxhIWQI6RKUTqVlVfGRC30Qimx0l4xU2/Y9ZDOytEw0L6FP0b6eJrnJPDPp1lorxCRTixcoJCNUQpuiqxMWkYxm4xyhzBmZQhsrMVwENGkwc/fmvg5f5hRQj5CJSr4hIGVJgTD51vusImDb+rbfnC/bdNOcKZPMPgmmyqEyfypIAJWYwPNTvlXX+EpefqpDCdBy1SyrUFIigi2iniFFZTJTJOjdprnmkFm43DnOkFIxI+V7DK5fWKVVOlvb9n2ny4l0Yo4Ee6P315mKKbCqPCKYCg3luR0HNwJmfnv5+nXg631+fKCfMSN0woEUVqYvjjFHEPTMTNA2nTg5YU5064gx58RMOml+nw8CSHpl1RkiOWdOCtHSnIE2Vh4WACYp0Q2+v9r52J45wzDtNOMcgSMVMyd4j6dByEUU0Oi+9W273+2k5YyM+Xyk6NsubPYjFQ4c9FHZKmzbHIJ72+73ty9/+XXyt9fx7Xdsz3HMKVNTKUxmIs52jGPOJEwZCIHQmWTAjOrKLWd8pM2ounRbSKOcipGZSmNBsyFksBQwmbzgHYZnkEZr3dOcUEqDQUNEaEgZmW5bd+LSVwsgDW7ubTPibK5PeixSsIIPC6UrZb1VQHZ3CqT1fb+/vH0N/vZ2MjTo6sxs7iFbNRwj5ojQxSBJKcwAE3QpTUPSCc8E4EWGXH9iIFUqpsxEYGbAzNkWJ7CkoARo5m27ubZtay6kY7FMubJFtq35BTDJzG3RybDNTfuxN7L1Lc3Mdr9tLJC3+LSEBJMVxWgUzXzbb/fXL1/FX97O8cxbYnSGhk+XZ0H3yKzcn5BgLNxm0VCAcpo1PmVc+rRK8eBmUOlsP0s7KItCZ7NL934x0/X8d8d+626EJZvV7ckszNL6hbCVussanM23/XZrjtkdoGIkzVrztu+bDuSSSZoM0JLB7c1grbW+bbfby5fg1y/HeWjA8+mB7lU2VxgzKy0HzArqpFfGr1oJdxIoVad5axusShcj6J/QdyiZkFXN065K6LMerHL45tl7c1sCImNSVfdlir1/7gCS5g6nt7btt+Y49ydEZAbTKbb7vuNghgGW9Q4oymh9aw4zb3273V7evgR//XqMp055PObEaJFApJbsSSu79vWlDUowxYAYk2wIL5Gde9tklX/QCtY00sEJgimITLJdGMw6A6K1bX/95be2fb8/bs/KotyNHIrqSpHf9u6WBIGk4lAz72zebtsR3aQcUQE0TB/vf//H+R0zzRjBJS0EaNvbL/dttG3bXt6+fP31T/+S/LdfHuMjPiYOT79IOCWgTHDx0BEJo9FX4wnIVMyYtnEI8wTQNzsj8xJpGACF5JgyABaVFrFdIB+AqoJZL6SNbevNPWWl2mmzWDGoZHRauZ2UkTTSW2+tjVy8DtL2GBERc4ywbZy1YQCRZr3766//9i//mc/+tu9ffnt7vb+8wn55s9s+mlchhmv3EwvhxKKca5dv2N0tAQZsV/due/c9p8IicjGUCCOrEocQTFHISsysZWDlp1WJBuc4n4+P9nigePiJYWZuYxTBDuUsBO7CyVJKJlNx6sgx5syIyNYWvRuytjOuS4Mwt9Z927ft5RXe3LxZzuNh7Xw+ns9xPI/jHDGm5oXnLSSvIvlqsVBBqRQRYFczt9atD0TBgRdEDLoppWoXWpwEKNDa1AqBF6os4/Pj+zd//54fz+epcyZEuh/n4lDrcrsQ/8LwA4Fx7M/xxHFGRGQoZyRjjnNMDZtRKkKtJGzqfP7h74/Dm/T8APaP7+5/zI/3j/k8ns9z5Jxa6McPIUIhILBMxDgsZoQBSBgFo03a+hlc0icAC0j63MKLi5HUduPKtApCCCeP9z/u7f17fDyOU+eMSMBbxLry3ejmW0exxlRGTI08n63x5OOMVO/thv5UQuOYoYxcauNcZAoV53d7DBG2mbLY5wfeP57jOI/jHDFHXoxeZAax2BgU3AgcNifSIQaMgtMnLNAS7u5wB5T4LFuWpLy5IzMyEmz3bpjnkYqVbkgxx/PDP56sWjQIADlW1DAv9douhGScKWWYLJ7NGgePkcmt33IKcxjyjMyRipLMUSAdChzvfz/++S7O5DzsNscZ+D4/Pp7jHGNERHUd0IFiLKuzY+UtkHJiztLvT1kiLP2YPqKbuZnLmyRPSJNuBrPm3XJrm8U5xjFSjaz2wp9xy4wYOWPGwhmX+J6foH1cophVqEBJZUZMTkQUBFHX9g9Q9LMWBWjiEk/VKSq0+DQ+9TzOMcacEVEIHC72schH6GoFqGBoRqjKKy22oWqdT+4SqxYHYTQ3mrvBgyTQ2uZADtmCW1HkzcMfZ5ExF119IYcklYViQIUvKIMyns0bJ44R4d6JEaMFESOVyqtA49UopJxPG0GkkHOM83gY/Pz4/jGex3GOETGXEGaJ9HEJWVQ7QJOpn9JbKRDQRbUJtIKcoRUASWumbdt9UopItNd7w9OmRR0UQcHx/G52fMxn5PopfS47zY0B2G4YmY2RIjKSPAgxeJyRvr9u2/PkqZSmdYFpoKeMaW5bkkA8NeRG68yY50c3TX/889tZKpDIqVAS5uSP/VNtQRKVg1o8ZqaCSldChpsmrTe0VAYW5EW69ba/WbzsL+386A8lor3cOxjPCiwFTMc83mnnY45IwBb5roJ1aG4IyVoTFK2dU63adIYRTJ4hcHu5vzyf830Oud2bhmaIFpXIeRdsCtPkW/fWjYrx7JbDHt8/zudxjohILemXk9V6BRhEeoZQlx/NuXhlQ6RJbP7CAe07uzSXXI3mxra1+1fM1/sXP5wYI9G2e0eenpj8PM/zPIzzyIi85EL8PMM0QwrWG5TszQkpQdggxLQ5KLXb65fePrZnZE5YFaGgGZN070HLRExYa+YdKN5cA4/3j/M8znPMmRNRAlNeAYgoXGPFIoJmpc39pO7k3omUkebKz46wKhD6DeP++tY2xextqt32jtE9ZBd7nsh5gPMo+YdH5VAJMQGaGRP01hFZheFNYx3EAIXm6vu+vwB779J+24AxjxGyKZLw1g2ewQx4c9IE5TjMk3o+x5iZSzlnSMKbGSrzhpH0reIsFjCIJEbSIiXAen+xGXG/Yyuu3alpvbFtt/b2NZ/3l9fe5hj7mdFWt8OKkoseygymklXoE7YWwJJehMf1Emjm7RYhM9GsNN6N28vtdku8fcWR9zdB5ylYUrG6gz6FdkU3igiLQAJRjIeZC3Ci4DSHVfZqNFiHmakaJ70RambTunFrJ3tr3XwUkA7B6YbJ5ub73rZ9eB0JczNHe6Th4zEjBCuA6/PZqJDSDCYT00uB3EjMIZ3BkQFH2788J7qFt20zN/Xd+2tjsH857+e8fQ3ExyMwJ2iCmHEICqF0eeZ/sHlskgM8Z2QmaSbBlHUrRwxNE0gG3OMHL6802bYfB3bFW0tsrZk3wJQCrXNDsyCE3qn5eDzO59nOj/fHhLE9HsJxHLMKh+U5sK7ZmCkztg5H6gwmCSLn8xkxyJHKxvb25+8DN87b632zzfO2Nfn7t98DZ24dv/0FPP/4p32MMZWZRmKArjQhg6dFePdtO55G30akT/aU+xEOMANxchYTa6LoLyIoGSDEILe9N+YLxm4bb2zbvh3Htj8NBjr9tqWdz9g2I84/Ptj/Sc0xp5u1GBNjzFAChaRcBwHKmdlA39ERGaFgvZYIsymLRJr7l7/0d73weXt92fzueOvtI//4cAHZ+/aX/7P5+de7+vEcygmZ8mQrBFc50zL75mMojLslraeaWW8I58xQarY4czZl9X+8XphsRuY07/2u51SczaJ19tuX18ezb+d7dllr+5fXtO//HPsG4xbH9LPAIaO3HCfnLGCswiXN3BsZHibS0hoaGHYpcECwFxMKwe3+5ej9zri9vG7+6vild36c30R66769/ebt+fy+9QxdKtuiW0FDcJokNHFGGgweu9Adm+VsYMwArMUALc0EWtu7p8oqgCR9f/3Cj/BS7DjM+k3qvTfvaNv28qdfZP/Qc9+SunWbSZnTWvNqiouISyCxEtOYnMFMwZx9w4YZTyvxmHKep82ZiiKl2stLZ7WFu7em3swsZ5oZ2/by67/etqfNP9TI84wr7bYqMghlwAyJRrjtMhmtce54ooeaW8U+sTgOs/724XPtgSr2cibUCtHf2F++/Nq8eber0TfDBPYdhrspgmFulhAblVyI7UIHEwCTMXNmgk7fsEnmVuyOYtiBOSrJlyJaRz5NcwzGgXganzBzenNv28vXX+7P+fG3adLj2kYg3aiktTJsSI0TcNvFYgGKXKdf6clFrpFo9626tWfVyPP5x/k8gg6A1vz29uUrsrkzY845Uo/Dj2+x3ZrbLgmaMDCdrdnCza4ku6DrMChtXUje2ZXy8uJA4swzM6FMhCHSO+LhHEcPc47OfO7eHM2M1m+v//J2jD++HozsRqs6yhyGDHqfhdYrMeBhwOkjcxmFXPKUH0UJQL93ZMbiNJF5/PGII8lMA9p2e/v6S45GN+XUsDm+vXc98cLu/QYRTISUgLVYumMtrWYpNebanavF92qEspKWj3nGQhYRkeeYMYc3PKwReYI5na2jG5ubZlb+Alz1FlXCrEASJUlmMow+CExFIqafBzAUGYlg6rMz5fPPpeHNU46JlaWVBYoyNObAkbTxwB9bSz/OLhvnTMVQpkJCO45DP0EnXNzrZ+orScFZWZEXCJYaUbJC5DEVz6NAk6OFNTvdpJkEvNvWcH7/PY5/fnsUzPXZkHIuzwUbGZAzOZ0+nT41gQg+D+LUmDOYsZCh2qBHdRhUy54VRETC+sZkxnx879/fLT+eI0e6wuJjbOjn4RbjeRwZj0LyoLZynlVrVaChQMEIOLcNtxffceRR1KQBKooWKLA2x8iKnIOMMSfBiKuAzuP9WxzfP0oin7JL2APIvLoeFGAgk+EHe1jAFD4CFhmRFx6+YgBVPRJ0iuxMoaQp67TEPB7b48k4ZiCTXN3dOedAzlDm1esgtCUsWuw43VBiI6H6S+4vvH/tdzznEaFQkpehDVgdpzHmhbmJiAzBxoiQoQ8fx8d7Hu/PY8wZCTaaKCkJth7l8pNkohSBHDmD1zMbvXUjWmuyJvWEWWP1ibdMcOMEzKzU/AwLG+dzex6MkWmfikxRGVNYy5nVOqKGlf6tJXYnikwqaZPtm+377WY+9o5W9FhemDCImTi/vY9UJuYwHyOYND2m5JqK/K/9cTv+8fdv35+Px4hsBOACYLjdBLfleFWmB4NHIkgmnoPVrlH2M0oXWoKm54AJtmXK7lbGP1zkW07qW473b8iPcyqEANOMQJxUOt1grSyqhNZ6Odxk0dfm7mjdkCyPkv2V96+vr/b8+HY+U2VQc92/peWa7x9TUmgOV0x5sHEgciCZ+r09+/Htv37/dj6fZyQ003YpTLC2+D6lSUJIA5YKM888T2TkOQZt5pL2AJTOjzMzaS04fXOBSEgzc3LiTHIcz3fE4wwFLWXFqMawVG/bqZ1GIZFoS2NDJAha32ho3Rh0FSvqfbvdPA/3Sh4I0Bc5IZM0nufMSE/SQwc4uTFb5iAm+NGjPb7//fePOMdMODI5EjLh6U+2CCrCAJoSwYEhTYmRCAnmKZqIZqKljBxTK5nMeep90mSRD53giObGyOcTOTMhDRPyMKcjm5x/nwfsfJrRgWjPc6gE6uvaywQDVhYMMD0a/nm++/P9+/MYpQEzm8UVSznF+Tw+eypS0pw2OTWnGZDhPPh8//37M+c5o7T3SsmBmFcWRhr7BtoGT88Sa6yC2z81TiAtSZ0T5FLc/BBJB0FKEcYZ50HNeREBqaRpnpmOkYExs6zg2M6Zkq4FQOYUM7tr2Z+1tDP7Zufxz/eifERzy/yUdStqDUESQSkSYalUhtLM28Dx8XGOnJlSwNfqgTlWo4Cbm29bp23isi0CTSZC5kCpZ1crHlIwCQFS1Z5cWXqJ4KEAZ3yq9H9A3jnX/ZOwJeRtR+SVZpUodwSjmllMKdhhH9/RGPE8UqlMWbuNuVgyKhHHGfWLyGSB5jIz602pacwcHx+PMzMiNa3slBK0DJAG4+be+u0mess4babF4pDWFW2SrFx6KvkAoDBA8wLLCHijKdNsRgy/pIFLzkvFoLyyHnoJC9iiSuuVCWZohnG6IwMRWZpnGYQZJfICfVPm8vqTEMf43IfF/UpoRjWLyACOOZ/P51BmJKZ5VRHppcanm2/N+3a/k+Z5AIjqAlCBcROMIrZWrNcRmeJsSk2qWE+UR0VkaNV3FxVWGlmCoryErL7sPtRorK7igs8jI5GiUaAikiWeqke1Oipt12JHjYDinAJW4xuINIGtWTZE5hl6H3GcY0rL2kkrx19qbPNt677fXl4cbtMpK45ZiZSYgSXwXAQB55hIQYaQwASYKlUpkCHmzJQDEC9lSZQGKiC4O3L1RzZzIuqtcTmq0dw7OT1nESyRiz0qsMi8T4MtSAGVmF3PslwC+n1r0WScU/M44iiiSwI0/VLbWGUdfd82v9/eXh1mZy5lsao1S6ywpM8FIDjLmwfFD1xHnd7NE1BOSLb4VCIzJVOKkEn01pBlgYFm7iU8gIFilmy3d+PsSbJE6SWvyGZERNtuYwn4llFKRXEz6y3AaNvr/ctLj6739+PbQGncPxuUM6tNi96aCd76ftvay8uXL43UmZqstg6WCVbOZGSW9htaTjUXT8RFecm93179YHlYlXsZVS1emWWqhFSauTebiICk1rdWtpu5rKEqNfYqrD6J6arJBcBk3ruV1EdmP5F3tGJR3Nt2f91nm6dXtC3pPPCj0nLAzN3SWt/v+97uL6+vHYA/p0lyQ3WMVG9ITF0LsHq/EkwhkWVqpesUEoYWCVkPw6rvlwKIAsy875uNMagAWusNijLCqUBSmJjJfQk1CZaSPGtNvG3NDCZPmYfKTog099YMZO/7y9vX2+gjgwfRXFWy/ai7aIC5N6e11vfb3l5eXr90QO0IB3DEEl2oZGCrFlyFGn7UcGTVDDDztrmX8pCSOxxCebNciasIs9Z3o5S0VGu9IWc1WCz+2qz1zXn2UZr6sg6q5g8y4dvt0WY1Zbh7mhfG5q3vPeCx769vv/x6H30g/XTsA6s6hKx8eGmsDsv0vt3ut3v78vbrbxuQj4nT3QZKlEaSQaUl83radTuSBqvOFDNTKXu2oNgjpNbL+rU2IRbebzDrfTNIGWlo296Becjy0uCS1va72bmdVmdWCsgSuZwH7XbfZpnXuQ8Fqk+9b9vWDMqcY8ac5/z4xz8e37KPMadUQpTaqDKnzPrWom377fV23758/e1PHYb3icObjXK+SIBwZvXvXK/y2gJeTnhRHoQye7ZjZizGZJ8uSnGx/Kr+lVIBGqTI1GWhUXusPpw0bx4rBizX03r0SaNl4nNX1fpgBYAC8EL57nvcDn3/6+/Hu93PM0YJVj5/y8oZ7FP5RqMZ0dh7i2b2w2/yh9/llXyiUiQIUKZVGUMk9L09pya9mm6q8+4yR6g84pLMXw+wnC8ujKmaKq1tu6v1ZsDVb25W6RTdU2bGC5yq/jczt7717uJEhPs+t0N//PWPeex9zE9TMS1og2bp/Xb/oJdv1ta3fW+4GV4+MMZoLoPRkuWNvL76D80DQLZP1QUEZcwjhuqGI1j+nYrq4FpJXIF+uVRDYDN3LLhTeTl/uXef7uWdl1kaBAFBGCh4s2qFKjxzHVVzdxqomfRHjmP+/e/fYuZtDE1Twn5INWifqk7z8jnb9t1x87ztOs/WipXgcm+rVH/dJFUVlxNGrqoMRma2doAVbowuA6EYq7m8xNIk3ZuHl9SnLenJ2pJgRYc5YkyLpQXESpRR5JEyRIPLqg8mTZlIRMyTk2POQD+I43x8PEL9jJ93Ps27rXbN0ROmzJxznMfz4YJ/XPKQTKm8QZf0tyTm9c+l7FlcTkkpU8oWgxY/HL95Ib0/ds11L5PmnmixPGAXUesWypjn047BKRAw6bLaWutfue91HiuzkeU8vSFwnBEcw3COElCdM8qmaAWL1rmkSOMIIMd4JsK50fPpH7//cTwez+quFQ0EZe7rTSshRZISre640k0QSgaz3EeEjLnMKWwJc647GBmhSNHM0X6EAwCieybn8XA/nzFFg3HZIpJcSGieCaeV1S4BIoPkSYDBc1Rvx1WFZhTLTy4Kfd+XA+d85miuGEMKU5Pp3R7/+OM8ns8zUqLBZBaKnBcal6mMWfYW1FLm17+CAinKDA6yGrWS5uuUqtparP64JKD1rWs2M1x8PxJxPmDjMceyT7GSklfRSTPNpLsrA60cXAUSJyQm5mDK2nYDe/NEDhhaQdiEufdNUT1vA/IuADlxsMnkePz+7TzPx/Ms1oA0Q9mSAmKW30YFFKbMlpV+FZZBycybIBhozkyHy1hh1Lx1a9u2e6nXwbbfNmg0lR13CRpjHGCcOUcIWcaon7vEzEygt65JNrolhPRUTIpCytz67fXL9nxubSLOEM0yKstkqQwcA0623pVtg5tiHJ6Mx/vHMc/nc2QsJ28TIkIJoToPsrxcYEtIaCS19jsB956Z1fIIpstopeeFkd7a/vLamvlJie3lbQPmd4UHWW2VGYOJPGfOUPUIkKRi3RBuIH3riDk3a57lnx2xrDjo7LfXr789juf9MVNBN/MYQS6zIHN3As3Nth1zu6WbaZ5NMT4+HkeM5zkia5ebCyPn8mAvxd2s0mheTk5uiVkiJLBvuzjTXb36m1trxBiZYda21l/efukf3p4UWru93JDPHljWY6UrjZNZCr6qMz77RUopCprtG6bZzm4kgq6JUpO0bub7y9fftu+3fTuZE6undcFmC3uIGGE7m89kBOTIFuf58f48MI5nZFCgpQuYMVYk/pQBF7UzE6C3jXPMKTWdstZcLrrLjYbI1julkCXJtm33169bKwlKtP1+w7H5QojKPiyjUguri4Q/Qn7d4JoW5g1NakYkI0DNmARMfW/e/Pb2q9vr5sRUM9KKClFlVqTLUhEd5ul9JhRnejweH4/zyXg8M8IEeroTR1ygU6UvUbM9KuaRMREZyuVv7U0zxYI9L3BgREgSzXy/v+w5xkkoW2sdzc2SBJCRC1/66d7TxVBX8VUyqoswvdxpKqPEgmmtbbeXiNvWq+KtzLFSthxDMlbsXF/JLhudjMgMy8yMSIiZ0YhznrqYYomWgSspqkQ5M8Fy5aSZy0N1+0lXD7ZAc2/b1rfttp29mSKiaTmQFva3mjnW47uVN3WuixYGtmYkMhQBLRuRiKqYVPxMyvr28uUr/bffPmaOwTC3jIRRiYlT25XUKmbHKrnNvEJEWQBmGGRKpls5+VeUC6Qu0xcYu1dF6IRw286AIWPMGGckMpK2RsAY2G17ubV932/z0SzniJYZlQjhUkN+rkCpMqDSo10McnGAycyiHAuXArD0miqe9DyP4zhnREasVqEsdLv+emJxpBkREalJA2POiAy7MrPP/I1XNWjlr3FtSFQrqF05ckFBMVejBX76GF7rzMvEApBaRqzCYJXaV763qgdc9RNBGJY4u+D1Woul4K0+PS65YFbXx1xq189aC+tmXyAH6mXPkSIcijEjogQLV0ROq3qOVwG2CsH6aiU1ciITglt1Gy8gSKu5uzXHDCWSc06N87BSHu3RSgN88eM01sV3ER1c2TihZaxhdjUx/azhZvkKr9wvczzev33//u39eYxIEoHrDJustVa2aeLa7jNlSEWMstZa/7kegwKdtKW8X21elViRoDVTyiSnZ3560a3rJs28+6GQYDGn5pwjQO83U3u+Bz6OMubAMhWrDV3Vc+nhAYbDQRCJ8WToFM+RYM0ngSnLHxgEML//F87H+19/f3+esVStkmAqWMelVETAjq5sf3xPNJhbPJ/HyIGc+Wn4DnhrEJweQ2XcUaEQJK03VseqvFQczHnknJqnJpSie993J+eEWetd5+N7zJmgb2iPNvk4yppkscyr4oJZC3OolJuzbLdAxTwReSTPmcIsGNWS5gtcBvL5u+bx8ftzxtVFi8pbK5RscSpzTtCfCu7fpRr3cp5naBZqX0ikWdv3nAanx5nCiMjif0Ca7zfz1gigZSRaUnFqBuaJCSS8+7bvnTYn3favtyPH4QBrBM8c5Ixqn7+mjWhVPeZqvtRjBK0RlAE5ETbBiEAZ99SWNFzgjebTfXw8R/x0fV/4vRm3MUpknjE9xnFIE2bMcU4t46YKWCb3vp/W0NinhcDJrJRGdPPb3b25ZnLLOdSCUCilCNSsCzMzbz2N7nZ7uSUy0s3dm1qbp2zE0klakig5KqxMBUUU9qjWOsF0pSakgGU1UlbCzvSWCcLdm8UTnI/HXGBMVsvwUn2YL4xKzDktx/MplD3lHAFmKrnGNQhizJlZl7yiDHsqFhCkksZmI7lhIttEKlY6V3/Jve8vu2YoRH7kw5LZx0zrtrWctIgSDBXrcN1qyEBIjIzMNYXhE14wfjITJlDwrB1gsNY6FeOIc36aja2c+sqx4lMFlxEZcwoGujQjwCx6GWJQAIcNySDOsgeImquVIJNzJJoVfHdtttqyAmBwV9vvr9t4EhnUQ4ehecYUvPU2Jzjqyqyn/kGD1Htj2bIQilH0LyA6ryhLY1iyxwnQ1LJv+y3mEPMYdZR1pf9JIpFTzxzVfZk5mXaclVUiIwJEsYLXZcxTJwPNx3xGYCoWLIG6/Jo6u+ecijPHrPE3lTeZmTdur7986edj+kzoicPgNgsVZ8upao4qtJA/Ia5YtqcLyMl5sIYnkbYx0NLS4Gx5wrZZQavH9vJ6f8QUdc4iTJJLbKAls8MR1RMJQFNnG5CBBlWTSt19hkqvFEjLDPOoaLWyagEBZrhuvnk+IzI0Zop5zQXy5r3b7bc/f7XzY2YOxGGD8BaLomrV8LZoNtDtYuAWeFq6tBLRBOiZpFt74aEWYgu3LZu4W9npbHN/fX3VOWIwyuNdgi0fGZrD9h0l+ysaNTMj61m42vohgG5gEpQ7vOesyVshyrLAQqMykW3j/vb0PMbCgBcaYsbet6311z/9+y94/nHGGYoP1AK427b3vfE6oADLZh0/mkjWWSBonswpKrvTrd2Y2QeisfEe78m7W+sib+f96y9f4kMhi4R5tgQzLaO2eUmdBNLgaM2yTAyX01Im5RJNZXeS5Y5u9TJ0wbQ0E8wyada2l1//fP4V8xRQYi8zmJnZtt1u+/71f/s//pTnd3VMjW1HEuatee7bvSmSscSbxpzI5QWJwtFZF5c3KZVl3kTJeRkCe3vJ78kX837TsFd/++3XX4/f80SfaU4TpkVyzhBJZJ6CCUYajZozgtM0pUrTjZbphWJKE9NCE+fziqbCGtwhVolt7f7rv3zsXvxr4e09HEb3vt1f7r/92//xl/z+t9PjEPZtzJjhNGffX1skGVnb07jGCRYCVxnwGqDimSzjTJonWqnKgYTvJ2hbsPi5sd3ffvl975Hd4T6e5xzIbBlTZoZUAF1JVbtPhHIGFQnCqlEwoyRRCA0OpqKN46p/RNW8hio8Wtv2l1//9MfL5u5eoxwnlYnZjNb2l7fXX//l3+dvb9+iUzmBoEWChtZvzUhLI0Wtw3fZgeNHyb0OCJftxMLI1j/UP7tVLz5J82bIcjFmZM3FLDUzVsrkkDe0zRBU0rFUyPj0Oamxf6Fg0BQRS1a9ziaX92lNI7ndX+/7vgdQcp8iVIByl7a23V/zvjWvfguuBroe/XZv17PUlU67LtAVZlfNKUj0Jm/RjFIGq2Krnqa8uAooMuc4I2LmVLpiOZ6u0E0a2sbOcLuiPVjCd1z97VX5rmykkGrzXoMRl0i1EkVaK6CbYL+9uiIzorAdqVZyzjGO48SMpdKoSolmxm3b20lajRIFFCwd2ucX47rGDZLD4Y3MnDM+8Jw4pnImj5mh92ecDw07xuOP5g906SY2nuTZMnLW52aIGYSSY8QkpEixyGOrAVkQykwOAI1uhMHcjXG5aBkrT1Ei53j8/lf7r48hg+kMCAoGlOIhEBFv+x/4n//5+/fHOcezPc/MHnNvyHO2J8mIsnf+LEIr1rAcAKlcY19kJDPhU+94Rp6pDHFEZr6f83DIxzze9z7s5Y7Nmuv4zpofiYLSIoRJV/DMJIhMiUrVJMY1cOozFQFAZdnHxs/4xDoqQOZ8fvtr/O3b4whvmHVjZyILNQT17Pov/c+//v485sxxnCPzYx7d9b7/o50gy0EfV5q7NGeFBZCWotVxd3eTYsxJPvOMlAs8MlLvI0/SkvPxh2lwc/a++WwxI7CsY6BEagSbAnVhU4Ki1tud8ck+URILqgoqKhJVvSZSWZeECdT5/W/HH49wb7syZlpmuQ6mxhw54vjjlf/xt+c454zxPMcMjsMt3/utDRbbgCv9uXbZJWQzW/6oTnkzhpAxDGd5q6Nm1eUxc9IaZ4zjOOD37r7fbfQ5RpQAt+C+AvYViLq06yqRaDSnJWt4MMBcKFuhbqiydGGx9ZJiNXE9v+XHGTTfcJjZxdsnmEC3Zxw7/vE+IjJyckwmphuztY+Wa4+VxuCzc6LCPijAJGvW1KDeLTjKIDRzucTBZFCsHhwaaa1vfPH28sbnOzJgJCOw9D5JTAkyIkvzQzPRrXeWhWaR4lqjYDNkUo2x9AsLBD5RUmTEFN3a7Y1jGpNhV1TNFOaBEx9HKGLOiBk0hBkRM9osoShKA0gT4wq+JEzwBpnT2ahbtzhOQXFiKpEIX9tmBLJ+UpHq+/bW25df8PFtHEeiqrNPjrJCjLHakZk0T2u2dZtSGkwWtFhCygJBV9O6SkK8Xhi8tY7UHLKt7y+/4ZzGxCClhEUCIz4Od34EAYVmRtbwVsB9tlgq40vkIMbn8xOWKL9o0JrjttlMS2jOKkYBlT2OzgTSoMQ8x/nWb69b++VXNPx+20ZECy3ugSzjK8AXZAmr1NW9mZusBCFLtVasLEVrUqQpSzVS54TevGFonmx8ub/+io8DiiiFHQKQzuNdop9stJg5KJHhZmRmNq1UZ4lXfybLVzTUz9utqI3MeoVJWdbIzVzTHZMY5zlsTmoMnPOHEU594uWQ9CPM/xR+r3xgEV+4lFUrO/gZKtcVpwTFNBd/2Mfp+qAUMcaIZBsGemTBJMs3y5TN66P56TOBdnmTGeRCc/PWaTAoBuaIiXFh00JmPLkU5zWRwPgN2LaPZv984+Pjr//4/jyOOWuuzpqpoyJhYHkl1BJkYWcoUSqfyLJMKmpy5SSfyIoImTEjmNMe09Odkr4/nkeMmsLDhKaeODNM00SPT0MXafkILU/fulRqe6paML36s93B3okkkFNjRpSLDOrtZIzlv1/FnBIfYGsP8uXO4/jj9/dxnLG0snWEy99EokWF3CySDJwTa4y6ImvBlvH0dSjqnQtZOYoyItJkyGE58/15njEuYW4KOFF2NFkEGmSqSQbldQAu0XFt80/nVV2ok4K+7momNc+In4duQDF4aQyVoSSegtsHse2c8+PjWHSHtHQyV42RxjVa4tLsc1R2x6zKHEvfKkm5yMRrjGfRxMGMKGMOy/OR7885Ii5KG1BOrBa5BPKHU/r6064Kc20t1EYQSjNPglAGWaIaZNR8nB8x4kfixmUNzpiHMYhxMucxYoWL2uyBFHteT1DyvSq84+oFrRupbgxRVrEYMK9fZWtcM1GUHzQB46TpcebqcqhrdCHcyjX+jKaYcJJEKthwJZ1aBe4FOGFNQBfpqsnBJMrTGQYtOonI9EW8Le9Q5TDDJJpDOSJVvMG6XmFkbSEzc9TrX7wcvQqBQqGuSJNr11gsOKwcmJLJEFgPBzsd1JgFU9gnaBsQyCreUGoyCDADjWjSJ8wAQGssDS9ABBDq3tVnOVMDcS4uFcuXfB2qusJqvFxUUFioYu16RGH+IMhmK/DW4Hm/MGm7Nuq6EyCiGhRWoMqsTxRSlEoVHgarKdzr85c6W1Wzp/iDVqwLohzZaxd+3kkSUKtQl3DUBgLKDFE/Qnm9lbx8/knGkmaZG82W4khYpiufWH5hTmUrWM7oIGJZJq5CDJ+NECsTIMEye/r5FNMugyFIixBYD/gZoy4LslLCFt+0nIHIZgDyxwyMVQVocYQqHrrcB3UxurVJP1PSWHuNxRWoToWzhgixpH4rnABYUwMsi9UFWf2HK6/+bOT+wWwbVnFW+coSP4qfp7B2rXGZrla9hM87kzQtVfL6q9dgovKEqTd+3TC1GYifd8vnl1/v42rT+tzZ1Xm7eOxrCjENJdYCaKb4tGQrUCZgbc3rMRXEVeTp+oz6v5UGrvd1JVSVm9VT/5gM3xhrbkC1gVbg/YQ2llSd/DTcFd3aIgPrI/+bIHm9giX9gqrtGZfSAJd0Rp+1w/VRFRBqgAmUNW0CV9LtRoMB3qzYEpPXBrDrPlqfuj55tTEYf9Y7cN3kbqUXYWdEDXn/GdSur0hT8iI/zcpbA3SvOUMVpAsdLLye1w8WPk3SprUscYjww1ztQihE1oTbnw7DBSnRaB5WWnQjrEAeeG8hTVWHZD0FrzT1mgJZyB7Mza0oPNZKmZW3+o8FsBiZ1dLJz9dX38dc10vjdWAF89ZoPwnBrov954/Iz0/6we+C4uUH82O1r3QfLLNta/P6t/W7r30LyHCpL2Si1bzisn7Qj5Fznx+MYvxW5rBOt1aGtOLBj6BxxVjwJ4rjyp7qrfKCP5qiAJGrI0nVoXflxljDOmuuNrhsH5byJalG+paRoHkTk5Y0tibQrIdE781Y0hNdNlkrwRoBIcIkXLB4rSrE8OI4tZoYzdxn5QfWag7XAivXJrGbz5FRhHSfAZuz7nBaYflwgnYoV85C89YmAF2SocqA1x1wbaLKkrGQ2xKg4OJmdQmsPsNGBao507yNQbTuEvBjts56G1SxgIhIZMsRFchlNQB4JQDr169y4ApNP2oCpa3h51TGLGWAWF9VnyqpurRLxZVIodFBAS0/My6uSGtrXo2uAFrH2CNHFmNsptVuTwrGUKVwEl1w0pCg4EoozwDN+zhnHSnLaSQU9K3VgEyY0wCa8yqefxStqxbUGpICQKN4rKVZNTM3zfnBCKUSM6sslerKtbZt7eCU4rMKSUsiMxuuqP/JdlTABZKXBIwgfblHUIABpiXi0Jq43SRvispLTYOQufzaQ14hnOt3GGHyfmsxpyB50yTMnZbx0/VaNYYtw3DWTEYAskqkXe7drTXPYy4HGIpXn89V8m23m1Ms3xheiZzRvTVdaUWtbXU1KA34kY5CJNv1P5RLo1QgAlRO5VPMyKnVZZoJsGWGBMo6O06uEjwNzdDSby8t50lLtT2eq8c/Iqvy/BHDYeVxz5V5X7GuOvz2Xo7gZoiZUlAKhVR2uEZyRvQzMitrLM8RIpG0dh0Mrde7OsSSEFdRXK3urBY15MUgf0b+lfuQlpmBa8MSfcQUZKDvb8cYWlcmfXNs2V+/dJ0PP2du93hEiI6hUrbactLnlQrbKpcYK1ElzVrbtpcbMZNnGAYlThd4zQkV0yqQuicNyXIiMK+3zVYJbj1OBYoVhwGQaVdzujmlTPspQ71KUkKkieZp1+0vQWy+KDp6v8lt6XAFNFfP/f626YkhRL8NZ6kHrr91HT6Uh4QTwJKuJinK3FvrfX+5EyOACZkJRm+zpviIqJ721vcOUIZkkwCa1U2KZj9tNV4Z8dpsXqxAkmK/TUKJn5Oxpdg1g8FlrVdnk8gkEtwOAebdty+//sv3c56luaHZ7nrJ+y//suujp5/j9cv45wS2nWk1GtpSLGwOaJ3sWFWAQW5KyJv3rd9evrwxjwmeTAnouYlhnNVRzFqAvi9qw/pMidWDlGJb6Ds+74oVBqGKSa5JQey3J/mZSqztT4CieSVn3lfXe0U6tJfTE9Y2v71+/ZP98ZGpyqf95nrN11//5a7vflo7X3859hPabxacmSl6CmIDBWybc1MWa2RMOKaydd9v2/3rn37B/HgSzpkEN+xTkSGWCwqNbtYaaLaZ/HamRGvlqKSWeaFHRRILKLGXZN5kHkSmaJsrY5qXnGppsBIFSLTVFpkKlZQ9xfbyYCJTzmkvx1LlShI21w1f/vTvr/kHH+7+5bfH/ZD2ux1F4BozC5gDYS64lnGWByQzwb33fX/58qffdBptAmggb7o/niWGvZAm2YzQujU29pZwy4x5cmuWqgwMZo1DpDmcXZJ5dYc0gvztL+ODSbN5FYxYaS/MaCS89ehAfPZ5vvw67gKs++3165/zZZsARIY3NH/hL3/+H1/Gi97N2i+/3V4ewP3VnlKbpnXlZeWyKRIRIowRNXYQtOq2vN1kp7oMmwV5y7dj8HlY4pJkIeFt5PSZ4fN8f4pkzIiEtb18GGFpRjOJ7nTrlc+lUvRG95fXm5ceol76YqhpmaU5gNHd6AkDrVnj29f37qg2+f229+YhA03extY695e3r+d8ew20t6/t9eF4fcND2coeptJGCRhP2MGFAjFhrmRpDSPHY1dMmLESuBZ927K5OZOiGBUJ8nzaUHAep+iFv3hrzbphxmo/lSIYDlohvXUfU2nOXx6Hz2xVzeWEG1IyG4DSQcGMRY816/f7vv3v/9/+Vx8zkPDt7X1zkqJofWvb/ZVffv31K/r43bbxl3///tt88i+/5KAGqgHjushQY6dqthKYzIScUiRbs3ZDZL+nlM0s9vP1MfjuXja+tenY+kEgFRwjemuMGTnhvVl1cK8U7UfmC1tjKNa/8q2bmcyRtDVeDFL10FVq561aTOjWt/2+f/ntn/d3Aua+vXz9vjc3JmXmve+3F7z9+udf4O9fJ8fXX/31u+zlNe/ns8Xw/NG7wsWgFXd5GU3TzFvv2+3++gWT82WGku7j5q/vz9mcZgtAAul9627umWZlmQos5f6RRCZCl+wENDbfmbOaUyCUQiGC1WdLuKTBuvMjC3WEt943RUZEIs93v//n3/75Laba8JoXPoNpCUVERDDlHjFHzHNEZkWp/fbsOURZ2oVJlXtLWdQQBNZER7h/Yuup1fKXOc7H43mMcLEI9MWYlYL6nCPNmWUkmW1WG64SJpjXCO3Wd6ZxlO0VEtJ4z+3u6ZozCTBjpcIL5DK2flNGaArm8S69/F//z7dDos/58Y//+K/vx6wpvO22NYsjf//r//39+Nv//V9/PI6/3R/fj9mOh4u+cTI/J/4uDKU3OGNoIrnIU5JUjucHkSa/me1nMuP9+/vHMSUws0xtWt/uT2Mwpuack2bNN7D99i+tJ8tlpWAM86ymGyKXfYxMAOZH9tcGi3kOkVsOuQ1LwQwSu2h9WjWTOj8eQ7//v3/7GKKl5uOPv/3j/UyBbL2/vdx31/H7f769nf/469+/HwN+/OP3cB7tHx/PM2ak67JtSu8evm1tb8fHrDx97QhJOY9H226dA5v334fFGB/PKZholrJG7l//9X/80mKeSsqhMO+vfXd/+cu/tg56ZGSpTWBlTCeQkzM/wV/mM72JfhqQaV3MZjClvOUEWparpGB92zKeIT1OawkKOj/+8cdzhgia996cOR65ba/z93/+/j7maMcf38Jx+h/PcWhMMdOXVgvuaeZt6+kX6F0JxRwcfLzvdrtNkmRGjCOeY4ImMwq+md/+9Jd/+/X57UBMy9Zk1ve3/cXbl3/919ZgZiErLO6CfzNhF35UPEYcYgM9LTMnuzKbJ0W1lgE46jp0+Xa7zYdb6pjmywPz8e39mOWTTm9O5fmcrX+L79++P2ae2/kYmU/acUaBep9IJeg+zdjaNj0uKBaAlNMGnh/Zb61aa5VxnucxQ7Sywe2bt/vr119+ed23IRJmDd622/21ta9ff2kV5Kv6WYxEJpg0IeLSZAGaVVvTyJpN9MkLoNy6Yo7zPAPyxWRl2QxkiHM8jrk4ovoVMcb0vufHx+MRyjY+PsJi8H0ocaTKLCqr/Ky6azVp1osRlDGnTZ4Hj9s4RwQzZozzrAaQ6gZbT7ZaqRb0tXACd7cWq3gvLMvc8hLqr7uxHAQ0x9ZvcmIO5JQwM/uwat8IxkMtImJMixGnTwnzmOsW1TzeH2cASqNZa0TOM6Utn8fzKZ02RyRjMKJuO6BygaoyjL7dX+96yrUoG6QyQjnHM5nnHHa7+btIjDlnZPH5mMPtKeH7f/zj23ueEYYRARtj0qVo08RctyVg7jFVI6ZXje/0lEzR9jdraM/5zDEJafL0QdQE8He8jnPMcfRQjC/91vly9y1nTHBiPo4QKaa5NzfkGHMeTWPGwXwgjikO6Aj6GmidWcP+zNxg+/3tNd+zCcVCQ9AMEjnFcbJtv7wdc39/uoBIKeSaSXPTx/fjj//3vz4+mFMqzdXZBixzNOBKgQiatRbnRZGCMFpLMwMVfnvrm8yPbksPsgDJAngXsJRQgjeX+LpvrzHOM4A53sfI0l143zaZ5nmkTEE7He8zRhA5c6azvDGW6YXJWh9o+8vbl3GLlp9APFFs4pjMZv329bfzaPzd42q5kyKZwJl4ub0/x+maUibkQba27be9VSdkKaEM5r6GYIMwmdHdbAqm9P2+3TRza80/q2eQdoFlWrp6u718mQ12u7vn8fE4lRGPmMW4uLlbIOd4nielts3G5zXGNwCYOcO9BCFucHeX19dtbrTqZFmVpQL0Bli/vWxv8XSmkIsCIWneBvSzt2IRJa337Xa7XUZK1c9a9XMpI2EGNXoH1Y1i36w3Nae5XdEPoHmvdv6c56Q3l91ev+at27bft/n444+PGSMrqQKhnGcGH+PxfDyR2G7Z7ZyA0fJqXmGxy4LMwGvMREW3TzZGiDEGTyrZrT2fh6xhaVEuStmsbQfifJ4hfiqziMywOY6PNnP9WgmqCVPlQRpWUzrDcoqgaXzPieM4g2vMbQ0fs44hATGfmebWfLvdeLu17e3Vj3dG2LlHzFr/HIJ78jGHrKksENVcsNZppZLmmhJd0HMeOXW893z8/v0ckb5MFEIxTndjsjWX/y3tOY6RdAOpC0Do+zvyeD8S3qIAMIU9Ye2p+Xu7bAcAUBFj9SWRVe4hZosJY2t5fo/B5/NM83ICEavUxalw5XgCLvPt9eub2Wu//faGj29xnNgycvBMQBWDwTMn+7pphN4z3K37CGSwjG2DS5p1Rorf+djev8WYUKzuZcQYDWmZUj7517HhPCK9jHWZaW7u95cPegebzMc1y1onzY8c9xZlWVcof0pVFWG1N1rBnXS25pyZhBLeq1rP0vh2evFLw7qZc7vd37btl23/l1/17Y9xTkbOk2Zrl02YODS8vLhVfdne+n1zeQ4HwGQ/C7+3ktiPI87HWX0UvITXc06bdmYzhz667k1LL7iYIIHWMSf1kV6ukIKScUrWYuwVVGWr7lwV8Cf/bblqT5qz2uh0yZ4/I4sVDKwMsDp1Wt9fvuzbL7/J9Hrbemvya7RECqeJU2nr9UMwT7bWN++RaRehB5SWImXKOcLOuZRsvFyVag7BHGeXH2d/KTtefhIrRfpngMeyXFp31RBsKs+Wl/ZhJXQVzOn19ChXEQPIOCeHjcc5m3vlaLiEJoSlEEYn6aRgzb3X9AiWgZHZFKSZMUkm2K1nIghx25O9325tWmAxxG5AXbKBlkpAc1oWHiIgCeVwd45onHFyPKn3stz9fPi60jSP2coIYkHZM4N8PrzlCpf1cpNiUhOTaKtNTVrrONFhc8zgmLHWcmkZMpGhDJPgPufo1YNS7gihMl6AoBL0kyqlFZmJgM9UDER7/8gHFfLpNpZbZoQoyEIhly7aCzUFt2zjB0Y08gVHuddKqfjE8KWcCZTvYmXjqSTm9LaYnfpuWYeymHGtDt1qq1dOZEub50ysnuD60QxkSgotH28/Pr6F2rb1OX//44/3x/Mcc47ITEsxo5gNn8kEIxEYSLkx28czTyqlKS89ulAeF7CaQaUaKAoQiBzu5EHGGKaIxm8fj2OuGQJKSjlHKjkzvMjT2h1BApbWLtiFWvw3uTREVjvGaL1tbKbMMxnnzEuBVRlZxifiYhKUeR7vKW9Nz/j+/v05JWnNTy/gsU7ooGltaJcgG5xjrq7x69NLNJ0ilsOBLumGgOQgEwejtckY0/jH+3nmrChebzKGVnMXWH0rACrUK9mWGG5hTViV0rUAJpnB20aHmJm4MpWLwV3snVaSRWiNTMicYyiWfiAu4FWfAjYZqahO0qn6J8WnCoU/fScBUkaCeZWn6xfGDORJUw5SfOFxjpmZF4xxsdFXJlj/YzmZFUlXvi7kj7+7KDK6AS6Zk9tmpowww+W5s4wTiusuprjUjDIrj8hmras3L+FCZI0Fqc++KHkm1rTAqySpJ/vUB13YxxWn166od7AG7ZF097l0cHU5MFYbEGlujkTW/HStpoVriRY3yDWQklaDJQjBq6O/9fTtZpaT4Vwk9U8SqU+1WN2bVxrO8ttYOi5bBD+oa6Ry6Vk/dxF/oNIrDVn/VM2aWvqupSwq1Y6ZyGJT+UMZ9okXElw2gj+W8/ObLlYXzaFSJxEEzcwTDiLZSHRo29hvL4b5xKxWxHKlXp8mZVYesPhrKcdxmD8N3fHxOJPWmuY0WYIws3WtAObTfkg6gTARdUXQ3ZOg0lRCiwbCHDJDn0pwGXlDqZFtImKcHGtOpbFMnhPznHNE1Rf1qkvvU8lL22YI8Evb6O5AMzLpFBt02/z19cXjoCYzIpS65PKsnv/Vfms0cxAYz48cjjwfPI73I2lFHJgJ8LXhRaD1J0qcWG2e4jXP1rDcgMEF2F87BT+skr36LGZwZk5R6vw4VGpxkxcVOcelrEmB8HTQE1ayzLbREjBLweCid0fvbkEv18J733795a2d32fMREQ5tq7zRqJs/mkgzH3TaRjHIw/P+Xy3Md6fY84ZMQt2WhPja/v02/e8gCdnawPuYm0/0CSi+tOAyhiKu60y2GGOSGhOG7QAM4yPs2woSlAoJeaRWp/Ems9bQ0yrhG87K0XIhEFofevcbs2CVtadL/3+5z996Y/+OM85M1Qd5kUnwwBNrGZvgi3SItCGt3F+3Dzi+XjE+ZHjTMsUy/qK1bvQbkX5r5NtVetWgNPVw/vDir+iDy9lhjUgUJ0MspCmgx+zBoxd/RbIURMfkCFpMsxkPQ8jLMV2pwdAiwkD0fb9httLt0mPECzfttf/7d9+3b7fH3Mec13Na/uzjmAuVQhpDSCnncn78/F89NQ8RsZQxHqOXvuTIrHdq9u/XoYwoDJnBD1Q2lFctb1lhU9aze2ibYbTWiotawy2JZ/pmjMI1ZwOIKdggqCk0sQG6+leN14zs5X94ArbWBO7clG+fb/d9rh3s6uxfcZKJgBh3d6CMsach/I5rWF/PvbTpTwPRJhbpXErqoNszW8vd0eksTY4nkDptLxmKSa4hu/WIb5uyQvWMXNvajKmWUAxUIiJEgjJJUIRdRlkhb1ChdeXR2u9ZEP5Y06BVgBaXZ0oE8lqPC+jbrpAuJGGXJMXWV+9SrRJSvE0FzCGxWQMrbR71WkZms/nY1r5AzYjWXdo3X3/7eq6svpPR+tCuqeNeA6zYKRBzkBjubOYrMq5yvMruEo0h++5OQFK7caozCmreHZv6Fsn3eeEPLe+v7593fXH1pwrVy4NRC3A/FxTkOXUqgw3IFMm2AxkXj02NDeTmYpRbUZjtsZsnq0bq7FDZq5ViVd29blJV46IlSsAS7dWzRmTabSsSGEl86225XK/A0hv3u75YRRCaFjqQ61dnBGaAxgZMaHUqePx3s7v788xl9lINbhcjPWVl4HEUs7Wtc7qfYzkp8F5HZyykwRQQ4dqVFrV1NdTYukjFnVfUrZKFJfqGcuKKRNYg4B59SXVh9g1H4E0rtqdpJFubFbFxP8fHKBL+VxfowkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUWElEQVR4nF39754cOZIkCIqoAmbuEfyTWVU9vbN7N/e7e/+3uBfYF9hPezvTMz1dlUwywt0MUJX7oLAga1lVrEwy3M0MBihURUQF/EumUqAEAP319gg1J0RDayT6fv+0NT4f//jxnHPGnEh1VwqA5NJ+H+8zCRj6PR7GyUbeR7g1UkrThE4BUuNnp+X5eASNr9u3vT0GKJG0dgpGUHLfGkV3WnOzBrgxAWRkJv39MRN2jxnc45kpMWR5TtGbzUhYmnmCNLackTLvoKcJOLkr3ZvnmA0AANbvUkwBIOt/AoDMFGgEIEmAKAkSQF2fpQEgjWZGI0mQ+OU/AkBBCoEZua7LTH38dd0JCYBIypIWCtoUHUwASmWyz4gEIjJMAEzr+wB+fA1+3h/dRCfqtkQASkCZ2WamJBASgYgxAhk1AuYgZhujOcbx/TlmRIZAM5eE+hhyhmBIGpAJ0Iypc6aFr1GcUAgUktOMuabPZJCZpJK0ZIpJAFCmTJKMEtcrqQHITOYICTkzUyMTdElRk1iJ1PVWaTRzb6RSlsgkCDFqtAxsEQmhlgDB4JggIRm5bXLmPJ9mzOMYGTMlkDSrAQiaRAJyAWIOc+tmmUMGMzOQ5jZjWgIQkATpZpR0zPxlvqFejZGgkwZ4d5Bwl3kKBGAUaz5Kde9upGGEmKxfRjOJpoCZmZs7EQmR4panpYGEkbSWmRAoCSBzYsy6EmmuNOZICbATQk4JoNG7IAZFisgEm9IaJXrb3MfAJJIpwglBKYGmVLARfU7G1IxaVEyIRK0+pwHNZUTbNgTVWrrXWIlKKUFDIgXCurubHgGRFIk085aiJdDM3Pu2OWbMJOCf9MNSNKSZgc0IKIWEBArKWFGAoMstNM8UfLRasEZv3Ha05CQpKM8RMEmqx0w3zUwHMhISxUgB9E4QbO5bDAQEATTQ65EgIT0JICm4+3bXpLYtrI8ZNa81R8BJIwhwu/funjxyJlJCik4H0Uhr7s23+8vG5zhPAf5pcw+1niE6vLmARMU0kN6MWrORbbfdJxQQWjjJSJDutu1AkkymRBJsCZoAk7dtixFyAIIgiVLWxAZa31rcx1NWy9AN9EmYUZYijQ60ltba/vqqk9hvw7dzDoAyYdjEzJBBgt1e9615xFvKau3XkibM5K233vbXTzc+zueRYvttz5zqew7R6c1JRqQkADJvvMKp2f5y3tswBMQ+uyGmYOsiViu15jcQCaWkBHJa0q2vXQvItZ9YI2p8Pp3vFcDpfRq8TXiTDHJ3GtlbeG/3z1/zyXx5fdp+zoOEHHzayTMsXQnjy+dbR84V+GqZGMBry5Jino+wsBZ03v7TCzS07fMZgNCaG+eMDAISee2IBNhuuDefJ13WWjOsPS2prA2LFZ0FZEKpRJrCptiwAwpmsIIzSWsMkTTt3WGmtaGghdBcYZC5wcjWYN76y6cQYr8nNjFIoNlbMzNXrFW6vbx4HDFD0Hr7JExUEpJSMQzTbDPrG1//9vr+HNr3QyOUaq05CdBSAGj+MQNo21337uMwwJo3z3pkAgQNoBu1Nroabai2ENFsAzSRgERLAuZOg7e+xX13GAnQm0vuCW9Rn3M4rTeyb7fXL1OIT19N9z6dBLo9OGGC5Aq43z692IhfMgCCJl6ZAAAopmx35X6zz397/fZ+ar/1tBnIlgnLrNEDbNuuESDZtrl3bftzqnYXubRien1AylRCQkiQpLSUEGm5tj3WXWjtymjb7R63RlTUt8aKnbWvVq5i5g5rfbu9RDK+/u56PeeDhLqdHU/AmE2TzfZ9NzDryakVdlbSpnUfSeOdtGZ9v3WzpNEcCLURZISQkgTrm31kVNb2uW/atq4EYQaZCUIykwmkUlFJDRJQ1hBQjDQQ8o908WNQ6X2/zW6qC9JcGYhAWGYmKhjRHN77drsrPT5/MX0+450mNXt4WCaVTYZu++3GdNJk5IqBWXkeAE8mFQm7wcwb+9ZMM9jmFAG1h8BEY+VRbN1+LoG+z9uW+9Md8NYaYFYvfBpDCBsZmbV7AqoZkUllQCe4WVakMKupCYDemhoz62W7STMyMBmZQioogZbm3m4vOX3eX6UvZzSzVLM/dSimIpvI3u6fXohGc3gLrzUQciAgGZGsRC0Is8a+dY7neeTxlhbjbKfSZM5KyeluHy/Lbp/x5dbHo6XhlneXeTKUmYMMKPqMrOoAufafhEKJRCQdRlpYooJD6zjSrHW9bOYMGnnbm800A5GpFWbNeof37f71bwE/P/9GfT2zOZWbf8v3yJEzN03b+2//+ll/vPXWHGFhQGMyISSVZjSjUmrayNfP9vv/cv//3Z6nkHN6zNmoekegQNAb+ZFHb/fz5ZZ7dyd77y6ZKStzXb/j5/SGCH1MHxDmzdOEBNNrvcvT+7bxZW/IoNP2vaWTkK3Exgxu3ru8b/unL/Ow/ulL5pcj0Sy0+8u4zTxiZhd9316//pb6dNu7NOkAXKAsVwQkjUnQ+k7eXuzTX16+3B/T92xwKhsr71ENhG+3GgFzc8PU8IHeR2pkyGCeNBitEVBN4opvVXJJIFCBQDBFplJJmCmkAH27vX45e++I7p32+rofDqMgGggjQVLw5sZ5wDd/ub3iy8juFtH4aX7Kc4uIjua37jmVaLd7MG0SaAASPwsDmM0Ec3icBx//eHx/jkCqtT6bN6+sqUoua7eXzQWyNbfNhIxs99dk0gFa48yk6I2CYGsvXyVNE6Rr+zGzZlfJSPNUImh2e/n05ejeEtLuur9sg2aWQTOR7qwytG2t2Txav+H1DvsaujtySp/jmW+7MjaT7W5xaGbbbxNpJ0CD0gDRTGZmcApCjJzng2//sf35OIKh1rc5rLXrFRIw8/3Wm2hwb+YaGpx2+5w+m7nI5siE0Z1ZIyCltQhIpKUsV05Nom82DTUmvo1MTaPvt5fXRnMDcGtxf9neDc5M0QRyZW/ZnIjn95uZN9t8F5opzxH77X4crXW2JtuIZ+Ixue2mRAdI01xJjYxGOiOg8dgGjf2/tf/4/pBG2HYfplZlrGAQrGbAmuXG+YjHOP2WQwaPcDkmDQZrTMlhtKQ1RBWTgGVICgNdsJypGqe+YzKHt3Z7+fR5e2ebNLv3+frpRod7DsFEKGmBOFsz5Pzunz+xN259d9ws8/l+3M7X8631ibaLG+KH4fFUvyFTlatlGlAIA8k0I6Djx55jYJr9tz+G94Z+u3dnU21glUHItp0KpuAyPt6Qdt7v+Xw7YotEymu6uFtAqro8MxMJIiIjghBJpDzPRyYg9wYSGWdrvt0///Y43A0yst1eNgDwhVUgky3lR9shzXe2L/3lZe/7l04w9G72Kc5n6xnwJtsi3sDjQN/mNDeCMpJZ/0eSQTdI5wPSiZj4x/fctPN2ex3ONqvKNGHBXDkDBBiKyDQfbu/fvz2im7smIkUzs5qvgKCcIQGJyLxAKDE1H3MU9BOpmOd0SkqRyHE+MzWc37fHcUpKmbdK5t2auxlpZt5a733r29YhCz16b80BGqFAzvEk7Pl49vfn2zGOU5CPmTLQuPYpKqdaSjXItYPVBhnNLaEMAKovnDFBEBY+T8EP6O3H98f0fWsIzVxVkEEJ8wxkFMSX0NrxAZpZg5QJIJgROTJMmXPOOWfEjJEn/cftPCeVEgEJtlLazGRERP0w7TgEBh7neZ7nMeaMmSJ4CODxdvj78/2I5ynKUomPfXqhdtlnKGky+oZtf8Ftc1M2ZfJnKZlzXHAloIykYtpMSZkZTKZIb70xJYJmMrgSriRhAMysvjEU1xdnYauSNM/z8XgeY84xjfb+fswq2+iOqJqjUEtTxpzj6I/e4t1TFnj8eLw/nueYMUMUcFBqYQ0xx4g5V+5N0LzJvZttO9vIbW8pKcIkRSYzU7S2cqCqWKE5de0JQEaaptcMj0rwUjT21jEFg5nLYAY2DZKSy1uzORN2AccUFFUnKDPmeTyPEXOOSfLxHAHLhHlrABw0Y5WUmZnzPPqzt9yZQvLx9niv4YtpQOpkqgs+c84RMyQCBsKseXprbn33LcK2Nglk8CN/EWltzoCwYA7mOGLtYoJiCDaouRDdRBUr5mZapY/qlbFpmiMr1fMjp2Ihgai9DVWg5Tge/f39mKnCoc/4gKOMpFUEpeYE5tmej02MvgMhBp9vjz9/vD2OY45JIXOY4NavrLTSuqREmlW0als35TRPhMYR56EzzHOnEq1W6Vq4zLGWgARkTIExOXNBv1DNe9Kzik+SZj7JljAHZPC+tRy4lpIWb7DKZcU4ns8zFmjNjFxZdGbRBQQIiwhgjPF8dFj2YZpi4nh/vL29P88xZ5BIZMrom7Gbm8wqG18BwGje0LfWPR8TYamYyJDmVMxJtvYzlQcAxRoAQoVp2jRGqhgJJCSytd7SRQPNITMjWpAmS0fbbj1OS3ygDICU1wyY43w+zxEZMZM4njMcCZi5m2gys9oPLTNinoc5p1pMIXk81hKICBIRg2lmvR+ZETFDWYuONPdsrXVu+37vac+YFLOwBwhSNvrHACxAaa4kCgCUociYleZAFQMgCVn8RIW1wh8KGOKa6j+/Fh8zEwBSMc9+jsgqG1DbIhe+ZteLQGYAc47zPGjoyRxC2vF8Pp7HeY6Yk0BwmmyYYUQUnABBhESpqnNGRFhGRERKVXZHYI6RGR8DUDeZMT9IpiIeGIbIhergl1e6Hhy/bjirTjR30sSLb/k5HFLGPNt5xvVdMfOafqictLDJjADnaOfTheyhHEJyPI73x/MYI+ckkIiQahUJIC3FVZz98ove0leNNi0ymcGYQ1L7px/E4gYLVVJGoZoXZnyNLn5egBetY/r4QzNjwUOA6pk+giCUMccoGFoAMmp3YGZERBXlIjODYTHHOGkMWNQAHM/jOMeMjGQiELGqMlaIqmH8mH4kzaxte3bPWtd1aaUyBf7TAJAa7dq7BcVUcmLVFlIiLU0XGrwGoBgKU710S/PW3dYY1lu9UCYoc55PPI95jUrO1Pqyol9BUWJGQDzNHphx9jHnKaSN43h/Pp/HyDkppCalSK4kMy9gGGtJGc3Nt9td7+8TkjAtUqoZsOr6jwUAxMn4eS8x0jjDRwiEriVPdzfxI9SaGayR5lK62rbfHl7wBi6Mp+aBoBzH+zweY9WMiJE0N4O5uxdwRiZyWqaAxNievd32cUriHOfjOB/PqZh0RgakKd+8Jhp14SA09zRzb95vnz7p7ccgEuEWmYjJeZo3/t+XwLQszJuEMlIMrRkAKWuNWrvI8itlWmEMNDPz5u7uH/HCVEj6KnTHqWOEAMKq+nNvRtu2HVFbawBcWRNPxGwtxnlKYozzOMcxJiIARIaJs3apSixqXgJcCRUBsDXUHEFOj0xE2Jxz0trPgL2m6IoBFYkTSKa0iNuPdZz5gWT/0+fXX9dMWX/yMwbU3pMTMz5w9YUES6hSkioGLhgQaRyQMqk1APM8x5gRyGAwMwORkbFo1l+jdLJw+lWuZm3kmZn1CDHDrP2k0wQIGSpQGgv3LpRzPXo9dMo05pyMSCpzZcpAAoQp5gh6FxKJIrQ/WDtlzqExQgLplNFba2jw/b5vSWQAtqiPzOCEYrYc44TEiHGMmCMQQTEyKB2PH/l+jMg06SOzB5ExDWGt9RPf3h7PcyLIGZIPyYTW28cLvNYoQFoTIFsw77XP4yLbYJjnDERkSSIEzCSy1kFMJnuJbhJXdnuRRpkTEanCndLo6r03tv3lPkXNETJT6UGQGRV95hxCWsSYM2bUAFhGUDifP+bbMWfKUCkmVGR5TIoy4qFvP47nOZHkCGmaxJS3BrJu7WPn5C/rmoS5YbO82GhAOY6wOQIzg1JSEKYUpDCTJ+OcURHCCm3ntcF/LKC1hjIzc0Jigook5kzNkAlKJziLEVWkVn1U7ymllYnFPJ/5LK3Btd8iOYdNAkk+yVM/nueIXFdnZnCSPpsJH4lDAaMmc9PHDofmzVMaKaZgUMaUzRn8CASEophhk3KapmBpoISLcF0luqBgPQxgVrnbGpeIJCJSUSvPmAFjujI9QhArn1sp3tqYcp4ex8/cglXYZihBCvaUDr0955gJcWbKcgpGTLYq/FDToKASmTuAtNrszGkp+QgyRSCHO2Jkpau18BTFRxqUI31OEWwo/kd0MjLXJCsdEUjb27m1AYMZldNTJn2IlqBMYMIyLVoRmBmxJlCmiaS5AI2YoiPqMaJqq2kTSoPiPBoeZ86ZKHwKDIEKsFnBgRRRohlv8tYMSHNPgq17ChnPUxmIVM4RiJlIpUwLAgTNaE2JCJPohCsTMiZgPmY9v1EAzQjzl+2xeZPRjaoNYc3DyqulZFDF860KRqt4V92vGkRNBp1mWWqNtTIslElq0htGKANiKlKWEIgAmpc+rPg4ADJn23oHYiEarXdQEUKGJSOkiMqZS5FlNAPY2matB6FIh/WMhkgk/UyZGVnTPSdW3ev7fq59ayVAMLNCD6xqExZlTnoxvxFZ23gmBFOQSCkA0T1SgYoMVKZSEokpOlKXCE1BYbIY1GYV+FfMg2SN2217oc4WIwBrbSOVY0YwM5SQMkpKJHlRvoBZv/m+nZYjYOa3yI4IJFsOuodVaaBQ1l7j/XZ/inSYmaW7k61hDDlAIZFESXAIL2FY5trUFQY4Br0EGzQaMzWJmbnygBREi0wYQeYigCoQSUGgOQWJlGBWxKRt99tvls9+vM+Et76RCrRGZRoSxsKCCkYxdxB02z/1l+29DRM26/fQjjERtp0Bc49cl0+DYETbX1/fplw09xZt24N7t3HgJBhSjsLBVrF85SISRJHmO07bap5Y0F1Tg3pe6DTq5z6gIl07OQEhCRpaYbG/JnK0tt2+tGk3n0hawarKSk9rd6uMjxeKAHM2u3/aX7vboRPUqkuSaLciDpdEM4GgOTz79vp6e6YD1nqztnXj/eajoYMaiQA0V0lpl0xSS4sGEp3mzU3MMLJ57UPDrsTroxalGygtBWEWBRMysCkzBUOuGmymGcDe6a0KjMyUEvMY0iykl8aKnbWqQ27WrO/7zc8t3STFSJjOYRCL8kfJESNJtFLHuTtJl7k39NaM+621NIKpAMykQGEbqfpDZcZV0tIAWpfNlbwIsIKrRZJUkbf07kLKjN44A0RxeLQm1QZbO2htr/B+2/y9M+YkRM8ZOWISkRnpvq/1jCXHoXvbsN3unxzuMdLSwfnkmG7tZTuBGesjkwZMQcnj6Y93DRhord1fb8Gvn/3Y7KGcTI2p9dzgBGpe1QAAGRiJg2CgSRhmDQdTOgNuQrspY8kzjJAilVIqg8hMMAG1zJiVOFAihmjwfv9tfzxeH4hpOcF5jjwpq6AGNB0FPyUoTnXvbcfLp8+/WbvZ4TEzhEOYsW1fX7sjswr9QBRj45YpMofS3ft+99cv9+C//O7Pf/jbjMOH/NSEhAwQqBwEknLCMCVBh5RJVyIaGx5G4whzCNseRyCRMNp0KdJY4LYiS7pJLrHSVUdColnbbq83u9+7AVqAcJZSNQmBrZgkLLyLNHdn326vDD67m+AJJkGa70agUCVVlgrWHCRzVvbpre8vL9M+f2nbMM2Jk5kWmZmMCUJrANa9UEoja2Y2AUkrdh650k//CPklBY0UYTmRhjUAYDPjB4pMCjBv/Xb/+rJ9//Jnb0kTXWEJlhCp9Fgl7KpF4Obe2sb99fNXox97C6QLMWmxb/fXzbVQdCxUrXgItm3VPAS9b5vx9rr50zUHh6daKSe0mDdAyRLrAyJR0sWkVEwIGq0XsSdYgRYlHbtquaWKxwrSRGsrQS2MXzTzvr98+uun25+//dHbpNy6hkEoAXuyCpkLSAbp3nvf7fW3v/zNrB03ZyYSMzgzuX3eu5h1TWopC81l/f7ygUgZaAb2+80fPWPYPEM9lLU8eSFLVXHLaDS/We0AAujuTcneaXKyWi+47hAoWRoEDQOphXuwXcN0lYI0877dPn/Cy+utNydk7s5fsFaal6CnxrAU+a3bfnv57Gfe9z6SFrCksbX9deulsjcVT8aFLcB8ldA07/v9bvby5ba9bxEnTo/oMRpK2L6KNSFNShppZLNaEHnJ3UUYBZpJ3rKg6iXDxprlWHL7WvLtgxgthSKNZm1/eX2d+21rbtCi2QnU64Dtn+05fwIkIV/FI91I5JwKb1JgBPH259//HYEFxFzEgVJst5etw/Z9f3398vKXf/1y2P/jf9u+Pfw8cRjoVsJhGfEL+oacdAK0VkzyUkdGmpsCc07IDPeVexf6rIw5CAthDRcAoP1Kqq2My2it9+7u9qEIozVdkgPz3q26VGpFSjAjvTVzo9WoM71pSBkxJ9FyXLORhHnvtr98/vr5e3K/ba+fv+yvr59v9tuXNm7cFM2q4cJWKoxFxWHB5kYzb9a4SbaJpp2b7Y6urqW4+3jNoPkC4TIhfsR8Y5uhK1RKooLzfPz487/ev//78ff354EMi3NMWS4JFNm20y0/ZmUi5xHub/+A2d/fvz8TbM2yMTwU5490wxYrdwFhTHe37sj9dXK77a+fX7Zt2zfb8nx/6v35+P72zOeIvLabRLLqg1IAQsl4GCBr5msL0OYj1aIWZquZnrI1GLUgVJvCWvDtjJA+JLYtAwd+/GP/P7Yf/9frv/3548RM+hxDkVLpWKzfRzNDApQphThg6a4/v/vb+OM9ab5beJiZ4v3vs7ZBgKsvRMog5vMfeibgbdv3ftv3u3nP4/vb/P7++PbHkeehrBFGhoK1nxkK3UfoDx6piCruJ4Z3e6YWGOVbuOXHHlJwb82m1EUBZzsUurYG+C6LM7nvk49/377/eJ8aImdkpbCQjNuX/7x/n2eGUmoYsDyDw+efn/5nS387Gvvtk8UzMZP5/Ie6IlVYu4FmOhXZ5/OPPDvs9fOnv/319tuX/+f/ttkX/P0fe1qM4zlmWueWyKcwRs7KpZNABGiJ+I4ZMxKrdcz7v7THO2YC9H7/bX6LUASYuaBCWinRRK/dXO3VpIgoJl8zaMw8H92OaSmQPhOwxTelCMb73/88ouS8MFJKmhKRc2TYeZ4hOzv2iNOBjAhFKpOkUoLDYaacx+N5YHu6f8v9+SN+NPtk3//rfz/+/PH88Tgjj4jzzByYY0bk2ogqlRpMnZjZmlAyYyifEaTgEjXe5hSgagQwmmTO3iwJZ0bEzFT7AH2vMlGZc54PPp85qrBec2flcb/8+ol1W3D6gDXPNuKDFicp5fj5b9d2u3QMUQTR+ppMKXKcY4wx5pgh0fyqhSv5AQt8Lw5tVgZxQdd1uz950Z+cK6rDxZzefRT8V8/c3E0zhFwKRSQzzgM8jhjxywBct02sFrDC36xGAIBG0hztnJkCaa1PoxAjr4FjyUZJl5HQGKGqtmOOcTyCwo+3x/P5PI5xVg9UXfMq5VcNfskpFze1MgtkZspW+F8Z88deUDOgbY2Am+Zpg4H29dZwPN9mzGp5AKGcp3GG5ap8L5yukgnnfEx4sxygeYSQhfhbTgGRoZRve+zv55yREZHJWj5GwbrtIpLImTIqMZ/hatm44+3b9+P9eYyIZIYiU+Zrpq0k4spAqxbjTzZc1dbHLRPMkfSSXiIFEtaabZ+2o7Vb03E8n8ep9vVT5/v3OExIVcUFKLB0QosmWHGysgCOx5A1T4Dup8OrH8Bbay4zR3V82elH0Pb7UUpp0ZAUrfsOYJCZmc4InZqYOBybH2+Pc2SKBikUmQuq+sl5X7XLxYGgUGYzTsEdfFEkWoY1BSnmTCNpfbPbp95u99c9Ho/Hj7eW7fayE6NFCcwlpGWMwzjOnFE55pqFLLmDIadozRVAM7dC4MRJY1OLFGneb2zP3iIh85TS0kwkk946hChBDglQGXM85TrteH+M8zxHRC4hVoXri/u7wC5AiBWHdAWy6n70Lovq0RF04UOEebN+2/jy8uUWvdmcma23Zq35Ii3qS2Ic4DxTkhmopTyvSoZEDCVgSaa5mW8/Y6Po2IB+39tu/XjJFrevt4hznDPhkUyaeUcyEtNUDDGAAU5Hs/OcKZi5ItnByUp1aiDMKJljouBdkM1Y4LEDgLdu/RM1ZtuPBoTYSE3vG7aXm336G/3+8rJHzLO5oXFJJQCsN3xFbDPRzTUDYFUJStIITUVRVEXgbvWavW+72T4TbLe9d/r9E3q8/n6LeDzsTDlHrWJLmmUVMqmYkAwuR7YEzMUZFpGNbJFm5lnlnZkJ1qVYdY5a85oWrVHN1TZuN+N5ep9G0Og0yXvHdrvZ/TUPN0rKSEHtx+F8vB9jpmCrVs2MwRms7uTKPQS6WxPcrHEqRiIyRXi7n2e2Aj+sNdrm2+d76/DPuY9x/3qL2SjMVYYo8BBbhJATQ8Q7mysNojRHIlOQZWYqMkMKQbTVlEK2+Fnpmhm43cfhm/Fu7+rZmzvQ9pOkYE2m4W7YOhHP5/f393ePt8fj/Ui090yM81EYEXPVVdMYgZwTYqREKABHgZNxzMyTnJnZaPunQ3Oj+u1l577PfWvcx0MTid5uv/1raPzx97+/j5FpkdLMB1tDZkbQBgO++bGdu9O3UHQza80tMjOUGTNYHByEBNr9GFWFQYizedvaAewMoHGft9f99ni0fj7CmW7cfbScebuTnj9+oPWM5xhngm28n4g5peouB5CWGdXcPafEERCgUHoMwIwRck0xI0nH/uV56s6xv77ueNnnp5s/7f3bM2hB3/72X9yPf7/Zn8/niFMSU4NutpDJAB8NPgMy6xa97eZIbceUBY1Iyf2MWNYNbC94ZiUySrFv/XZvMzxHOttmL5+/fPrx3vw84AFv++f76M8/x+s92ez5FHnmqUz31uL5kJRX6+GiOK2RaczqkLRcI6AJOES4W3GdMkN/QY+7ve+vn/f83Odvd/82z+8zrLFZe/1L68f88eepkF8x37SQGGWonWoIRoQ7reNmTmDnIWZWl2CDFTwpEW0/XZDgAJTNtk+f/Xm2qdN362r76xew+22bW9D3179+je0Pe7zuw2gZgXxmgPRtbzkOrRr7AhagjGBWIrZUxKpyg5XAPmnzTJuZENlu6VbQ+Jb7ft52390lWG/7/uVv/3nfn3r/PiieHoISSrhBQYMiT0sPBIZ5Nm0yV4vY61uNC8xbBJ7RfH9WMlzBaVEXbDCx9R33z7/9buYs4tMB5DSB/dbMXgyp+cy5yH9eifla35SQE2BOm1ViVFf46oaCNJ9B5JBFCpkpM+p05YzMZMbMbN2b+t5vt9fPv7/uz7f/eHnPGasvt1Awm4FOQhGeTFl4tzNvJZyjLRD14gJWvQbQuiEjJDBTmOf7t3EcpUUwb9pfXj/P00I5eeaI5PvbNr/PFzb2W63zGATzbL/K5YuEZlKKgcXGVBJkAGU1AxQ5AQUtxJmSzJGHYxwHNeaczuytdWz7fru9fPr0+/3xx+eX2zxHMVQ1BAZNuXPJkGPKtkzPPc6UhUqtT2WmMtYA1EzstlhSUyZiwM44mEqC5thfXj8dbzylnCMsAz/+2P1Q0LltBMjMSSDMGsxXKbjy6/pvFUAN6D2zm1Mx1NOXjcvqbgVVfHXO9Ha892Dnox2YiELxjJjHaKN0uotSTYNypiTUI2QMC4XFPJFNTdiO4eeYnrUZ5lyiko/EL5VCiDAyTx04W+R0RoRynMdx6jjO059h8zjz79td/hyNubLG0iIIjeY/nx8oCxxDJosKaBvtpXeL+WO0aBISa+2lQGRK9XTg+UR75mENmY844ac5H3/+e94f/3h7Hsd5jJSX/DFn0PYyqoEyNMMtw5gNFLcz8H5MO3iOMRWMaivIJHOteVp5CAiQqnJRZgTOHxv/+KbzcY6cKSZj2pnt+dYxxvfnFOdYEuXmfS7xF0DBGg1ujKAnzLC9ZP/ycvNx/McbxoyUSP1SJwFAVjQ8n8Q5RzOCJ1OREfN8+ztv79/eHs9zzCm26hDImWLvo3S2S4QetCOfMDFm2hmrmZwgYHBTNYJWj4axTxFN5S+zOrjnHHb8cHz7rnHOpW2fqQzFOFIRIwNuy7FJzVuv6FJ9C73D4A0z2ILN2F95/+vn1/Z8lw2bpcWiEbEqsrVJpIhxeDszGmk2uYjI8f6H3d7/fH+cY4wgt2AtAYHbnuZGu7SSGWk6i7zWDJEGbzLOFi5zsSXMemvuoN2PhG05EkZjqYVjzna+Mb//UJxRShhkKAMWA6kIJVk+FUo10YSSThQxBIM7JHNYN2vdttv93h17TzOT1VvQ1WOSiuOYmZgaRo8Bk1s8UnIo2uh87O/f/vjxdhznTJlYHKVgfT9tWU8VhUfMfDJlSeVzlKqmNM+CW6kuqRkg3VokbIcnWi0ECBlD+nMcbz+Qxwgt6q27gfNUpokoeXlhgqInSEQtiZQ3tE6S3dsd3V+x37/8to0/vh8Kq24Mt6LTyzoqzxGZJRjs8XTKW54e4WbM/FNHf//+jz/f5hmK2eYRdsswQuaaGcZqXa0OPk1kGi3mOVvr48yRbUxNPEk0s+TzfUZESTd861skZ0yOmOSJI858f3s+gOeYFqaYhiqjksD+tSm8NUSZqGQBH0vLaNVl1A1gi1bqnb7f7hu7+4IkYT+tdpRSzBk56VLazMMRvimaBmnyoTn97e3bn88cY6zEYkamEWM+YZNekrS2n4QHpdS0zJmrpY+rTl0UDj9CODIZes7AjMk+n86I1jX8OQ5aVBeJDeWwrTV4RpvPMRe5CUW0c0ylymkKpZ8D6JFAWgh5IP6w2ccf3x9HvWp6Q2QtAGbofH9GComMOD3ETCBtjoTcOM5hj/cfjzMXPFbsYBLI6lo1Nlpj3xthoao9JktPTFouXUuxelIcs/huQUqzMnHCDJEZQ5LlHNYykkJWT0ZxY4niE3VhvO2YJaiMXPmQBSLbDExYBPyIRzy/tfz+x9vzPIcyzXrh7IAyMs/3MxZcmrPuyyLPGME0Y2Ta8/39HJlS5ggBVlMpRuGE7mab9b2TNmNilvsI2BwusxYJwUq4OxXVb6GZguSbx5whFluQIdCj8FxBohIqjT8N7Y7ZIHouVPiIgGCo1kCq/lmRCVo/5WPE+/dbw/v78xwzkGC7zbig4gyN95/82ixFUCZFRADEnA+ej+dzJpiZvzQlMYME3X1rtrftDtLO45RPr8251iTcgTJJMTMgnkMQVB2t8NqSkPLNDk2ymlZVwoDUBf0rphJOIsVFkLaRNRS5vB+ghMyqr/Q5wjSnvW/OY8xZKKz1/SKsgZTiuLoMpIBDTnMzDRkSmUnN5zlmghEFZZeul0ubbq112/rtxQl4tb5kIDHOnDOUM/PSOKRSOCJU0n5pntV7aEbrN5uZBLPg3co7LzIOslTYeJzzEhqBrV7lB3KPqteLN5gYwzKD4zCOynYA2nbXk7aYlMpqP95qZatm3TWmVVuCMs4xZwKVzlGX44I5ad63fffb9vqpkfkAY01eacyMVM7M1XiYQCJHpFBIVQ4ilQlS9N0fmUSUo5pdpC+knODME+ecjyO02rqJdnX24IMkh0ATLZljVi2ayQpJDiXadp/VEbNMchbbvqRpoLftdmtA+DwzFTNjROZP2J2RVjZaTsL7tt/9vn/+2oHwM0dGEpA0pFlpTK4O64RQ5meLJ4ihBGmgW3/xH6tDE4TZJSwBoAApws84M5eOkWRbUACv11l3WBLozKjVYV5uDM2ROfvt9fDqBBBM5qzeR8vSqfC2ffr0esN9tPMxbJTb0kctI32kN82dsL7d7y/+ev/6l405+okTOY0gMlOBjMwIUVAuZXtc+yAAZdLM01q//cV/KFC9K2wyE5bNlJSkgGAEZFyILhoMLGqLq9DCos4ARaSSGXC4WlteH+328sO9QiZJYPVsr8gGmO+3Ty+GYY8QYzwOBLKaaiipektKHCa0vt3uL/768vX3nXHyx8QcRWsrJ7J0bXNlXUI1TxiEdIhKpRUv0vbXtj1C0AR9PYWWSGo1dpggA51IyQxtWXZizWFLiqSDSi8/NipLWmDed4tAv71sboIxqqck8tLykjSx314//fbF7PQ39uM854mkMhdTx6v2ttZC8Lbtt7u/fvr6+x3ziW9Dc4Rb2qK+Cqvnyj51KZy4NJCe8uaQtf3Tb+32HqmMdMgclNUwrIaVQAk7Sk4hGlo1VWjRTCazpLVuAbnShKKMilfZbozI7eXzvVkplUhDQ0C27L9sk728fvn9b18NR9/5eI5oLlhRg7C8DOjMWt9TaPvt5fVz+/3zv/znF8zH/h3NZOPMCW4DJBzIpBNTLM4saZDRWRSd9wZZv7/+3l6+FzcL8y08YKAbKuRgkV9EcJldonkR/IBUEhyR9G2aJqrAWn6AiJkEUzN5u2+NCVrSMucyITK5mfeU5nkeD3t7+J9/PN8HWFWMFvJKk8HprW17QNvt5fXLb+33z3/9Ty+Mh/+hxrTzSIJbddFBYSphjK63VUTxgsssIJvq37fHCIie7v02W1QgQUpr8ZGEo7mhuiCbObm6rnWJzS7wrzoOIms3mbKcFDRHsGop1oK0RR+XKivz0Df6wf/xzj//PL+P1dFOLuJhzd6awKK5mbfmRbC6ubuZLTyGC3SgqjkSVTMCSJmEEC3FNIA29D+3789py6dtedzEaqldhYQRDnchLSk0LJ2XBJXrBUF6lhTnn2ZAMgbljGBzy6UAxzITrZydZokcz/d98B9v+v5jPNmsiUYlr+fHgjTMDHBvrW9t2/Z9p/F+38e+nc2VlKcEGbIaQ/QRoS/xVLkWlhcWp75t76cgGsy9V5tJ5EdoX3qGS18BCW095qV7BWSkeV7eoeuDsEwgCLQm67d9Q5aRbelUUW3KZmYO4zzeRv7xI78/5ujLq7AiCXW9CtK8uWDeWt/6vt9ebtbsftvP3lrzdKopJTfALZbnxjUELLFPlouFRyCnfuzPAaZBoDW4AQg0mGHOMjuCqbqWlhns2gC09ufKIrJEyktlSCF5CatIywjRVvv0yp+XmGA1BOY4+tDjEe/PCLa45lg9upnKKEEZuXC8ifM8HrBWBimrI6AGSg6mpySVVsk+1tDavcyscu5njuAy/ChUthhLt0Ws02AyVZKYgDU3KySq5pQhJcWYlYwZildY/gT1EnW+LQVfDddqgkTEdMEigeZHR60gRWQ1OlTuZnDHTEIZ4xxm83zub71x7v1mfvz7P769vT2e54xc9kLekZDPkq9odWOrRBFLPrCa/mdZlUBSziMiE1kGQJiV+pmZnH6127P1ZpxTUdDikknNM3Im2YqOS4CWXH4Q1Hg/EiYJpR1FikpExhRPFdRBowdJlKceJFk5P7eG5WgzfDRhHMe7u07nRj/+/o9vj7dHdQLDGiZz82FWeGzV8klCpFn6ahLXpAmYWFIyoiBBwqzMmZoEGNvWhqM3RmZEqt125zjKGVcAGVDGiJxJIKD8EGgUPUJjnGnN1M4UfdjH0oECqwLJhG+ZRAYX9ZrLmZR9Qyx/pxHmmjMOd85unXb+8e3H4/F8nBEpnUmZwbzyHxBVaIv0UkwLmW7mVEiYheq4QGgmXaCyk8SIpW2GbW3fmJlzhNrrfePTJ6vSy+p2zRmKIJBaf4SVewt0aibdmEo4T1vhs0ppi0JNvd8+tWzOy0Lqg3mBwEZkkEqlXGBODXtsDTx/PJ7PY4wZEaZR61hzjjlrAFQ9w0wt+w1Qy9KwPLBJNk2aQjUA0UhDKimab1u+bK83xJzHOdQ+fbrx3Q6ELg1uSSRqyS6NfQFT1VRDoxJ1dELQ+XR5XF3ShSm50/vtlbf4cXrUlHSp+t+gaqPUQGtN7o2+kYgYTxePx3GOMhALabUN+nOec2Z+xACBKVpFStJ7wxTSAIM3btUyjopfbG4NQECkb7te719ecI7TzNhev96txfco3+ZqdVWMZXFb5GAJFa89wRgHYG6aZKdXZwakZIK5HtjajeOtt/KT/fCUqlyLDmgojpyNhhkRFiNPSuP9+9tzHMeIiBVezTHmGaOKftVzrRAbAZnYMjNDOm31wklglCAWcjcrr05j2+/5+vn3T3mcDxFs90+vjmMbnFG2cnWHqr6tvMShhguWNdN42JluoqFpgbQz9ZFwDLlt98/3+XgZS216la4rGa92T0X5U0SOyWjzYRnjeLwfMY5zRhAFeXWd84yIGgAiL0Yqyk4ePHOULztNLJmJ8ix3YcWYIs4hM9C2LV8+//Y5Hg8+T6LdP322+b6d8MsEbr3p8kVFRXsAZTJJ9MbxZs9qt7JiqyBFuecyjJFot9evf0XE0+zH4MLuFq0BWmumsNRMUJrnPJKnv5vFnGM8T8Q5Cv1JJNGQkVcL6IrxwFVZAMiphJn5jVPW+y1sTszM4i5HjkSijFJve9xfv36extyM0e6fv/h825q8rHiwsM2a1StvrHLUrDmwdWlwujkcbFmGqMpgFLgCZvr+6be/uc7vM0KhwNUwRIL01ims7RPM1JwIgyyOmXGepnMyAutYCKAwL9Plw3CpYWFWdisArXm7YQTNm4zIM+skEMx4Dpibi7Rty/unr78N99y7q7Xt1vbNPX4mVh+NZ8trFqwYZyQpo3K4KqeiC0BML/QdSmamcYykNTmQ43keE6XXWikgaQwoEaRlZuQ4MSyD8xjIcTqOsAwiCplSZl5hSFjyxaoHazosvrYI0ox5HmOI7FcLbUJpigxF0tp2u7dzPrfe0MyrNebXCXYVLBd8YaUFuIoDXJb5tatVKfEBP2aWJ1TWNpLKiAkzgGtRVYJb8QCZysgYMObEfE5qDnEmMg0pqMCLj4uXMhofIOZHKl9vTldyumyi9OHiVH9TEdo9vWw7G69DcT4uwKurr56+iLM6S6UYlrX3fFiEadEsJVxL5XLCNI0x5yzHlI9b/hA2A7+M8YdMBz//4SfORlzfvrIJFG7BC9GvCjkIRZQVg5T8qG0ukFkfQ/BRSbRxPP0453KmuN7MRwTAigC1Ic666bBuUKp8V385mqgANA6pvzRs+j//69//8eMZcYGtWmA4l9dQElJmjAgJMcq+rd43SYMBYGutAyxgTgKQvKxHF6CfVGIQVNIb45oygpBp1qr7bSW1czyfc1Rq2I735m+PMWc1XRijyiQCdJOvDbek8ylgLki/HqHqNujSGEZJm8bjz713/f3b97fn+OXNVeNtMys/oyC6IuIcozQTMePq6wbdzElYv23n3GtwWA3QXJ0H8iryyTmryR2OYHm+X2iiuZfDufVmrbfI8XzPc4Ro3s5nt+Oc5a8Ea/bRUwmUvZ9Yep5/WidmNafy8l4r2GbhnVSM4xE6i4gtGKvQerrtW/clBJexrFMD4GXyVKvFALMSxb30iFApSyIjNWpiKuUlIC776IUYqBq8roiW3hLArJ+DlON87jpn0h3t+SP9+2PMWNjrpbr5+bi8zt2QrcbPWnAToWQdPAU4wowyI90debx/33hVzQb3ddhG5W+cUf2AdGbmKAfqmZkBZRLBrAVrUkaF4Kv65zpOhhWfSW/dpo0IoY6tyUvKLRKOThqOIVA5nxZvbQ88j+OY9HY8YI9j1kyu6mTFIZS7iMAsj5yF66SRsIVHFgIL0JF0Jg30mmWPsHOuAwhAuywey3/lOszIkGXapiibr1gGXhYV1dPEI05kVjkcRZZ8zEWS3vutHSGyohgvCGoB9ey9bfhRazHHiOf+gzjP4whZO96mvT3GrEfJsI+sldcJZqw3cW13glX5WXMWdJnQOc1hcLVt3w6dj97t/SwOqyhKIS0VOQ6LnIq5KveT5xGqDpqMhcZ+xGElbJ7UnCkRmcp1asTCogzs992OkdV4oOBUrrzF3Ay3+8uN/c9nzMA8WzybJ8c8j6C3Jw4+3s+plGi/eCGvEeCVEJY0ToDoZh2xnJxohjltt8OaCT37/WXnMR7W7DETdJinLWiVCcbJzMRcphAcdhyp9FoDXFrKtdKUnLTpOUep1vPiF6t+l6Vs+/SCtzNw4Xflz9zMvLXm9vr1t09s8PMQNOd8FDEwT3hvZzqP5yyTlOo4p5Y/zNWORMF8ub+AsN76riOLCzJ3juRuP7yntM395fNd8Ty9cQrmIjyJsvUGkwowterGIGYbp5BgpfwiUQb3pEwElTBOfHC41yZuyjRn215++4IfQyq8DzUtvBva1nvvn//lX79SJ59ITGWOJ+RSRu8vbU7jWTO1Wmw+AkB5Daw2tSwjYdYhBG27K6d7psHReQTvbm1Labfb57+8KoYURm+YIHyZDpEljBUF/yAkZ+YUZE5JIo1BepqBslyG7AW4WllRrAFgdVG3/dPf/qpvJ8QpDwNhoPtObPt+2/ff/9f/118t3vmmqQQwje4mcLt/bscQYo7iRWwBYNcSEH/plPLKGA2+ed/L/lSgcffn4N297WK8nC+//fVrHG/HNENnCzjaiGAojUAwZjY4MyRYGHKeJyAzZpbBMASDUxSL+WHTeRQ4MoXGq7cBAmj95a//+vy3N6XNIqnNPb3fkH2/vbzc//Kf/z//at//Y9p4aipnzOdojeRrv7fnIwrxTS7TiZ/xdSWNCRFmjiYjOr2bdWJBRrROAj1BT9Lg2/31ZTMm4JvliJBm7fFlBKCcUFrEwts1z4OQs8VMaDTMYRb20wwomslsdW+tp7ZqF7DNbvdPv//Ln5/eqhXxQORAZmWO3rbb6+tv//Kf7a9fvh8NmrRxMEfbrDX0WxvnxOWoYIs2uQZgIf+Fp7vL5DW7aJ4r9VWxtTSrFZQpmJsiZJ1SxjnTowzzLX+eYlRuC5dxD0v+rUxMYE6zSUft+FJex5msKiqrfnGSvvX7y6evX7+83rKMF2WaiCSmZ1mibPfPv9v/97Y1SoEeQ+l1CFDfm34+8of09ypz1niwbOs8TZe2/qfcIRcvoFWDxYw5Zlx25Jkxz/DwduUmAJaZnpuTiqCZmS4VUBWTynXu58dkLDiMtKjdbhFsrW/7vpWNq9MlS2ZOyjHLR1S5xNx11/Tgz/fMlqsjFAAUvzw9l2FwebsZSTc4wIxTw+P9iHFMZNjIUL6fGs+cOfJ8+94ObObWfPZpQJnEFiCYQmS40ua0BJWJUU3CqwaCFtsowMASMk8uz/AqQ5VRImAxcjy+/Vv827fHGXDMSh6ozDOSVGrmp/u3//1//x//+P6MpFWT9gBtfHM1Oj/We7k+XjBg9W2DpOjWstHZmJZxJpDvI+IMITxT0vvI+VRo5nj/7qO90uktzuHA/NhXJUFRjHpEiVYSYVVqlD3eB5GYoLBwhbPOAtNVa+gylOA0cPuvj//+/ZjyXeeq4JGxUM4cD8//zv/jv/39x/uZMY8RQs6EjT8x2sILynVrLewlE7CqiGh1OqfRWkcKecYYesbUKSExI1LvM8cBccTxtjHt3p3e8jnqaJdFDEplUls6nmtFXMeewhCleYGWiq1SdCQ5V+ZXn5AqH2fGTPn+9sfbCXrTc1U8CnEtwIPj7RX/9j/eHs+nhmIOchKieTwbudKb9ei0XEJgJ2SiW8IaHc3YOiOYMY/QyMRUHYIq6AjFafRUnM+tN785fMt2jmP8KtyrAJICMkELEIoV37DsHVZEWsWJBHBc8VOo/q5cFIsUEfbH+facbr6pGUu2dumLghHx3PXt23mMmYGIoNWYu462QCVLgpZGlpRDolNpgrWkdxqb2X7jGEOGkZhJCwqig0QElGhGQrQ722tD2/PtwJwGi7prsE5uzXKRtSuoVkRzcOhjCS6dJ0rDKfxMkZcnVcGMbhlzjLS2bS8vej4LAynngxIBH4Z3vT1mebJLYS0iARuuBjoAGUrAS1r5hIk0yRJcuDi92+2V43lMw5iQnFnH6SmVI6XpplDMwL6//NbR7vHtcf5wVMfTxQ58rOUrEotLqM4s3UXpVa8mKQmI8tpMJmmxqHYB5t5maJxhtt+//KYfbxll9Vln5AJzvs8HdQ5FRIgL21Aimke7XBa0jEoXHbbQi9obhiU8O327macnNHKVsgClOVNDkuAp5oxs9y+/7+ov07Zvm6nwtvU8l3m3lm3FBb4tKqvy4SXQIbCqBJjTFKVqjA+VDM07pTgE77fPv+llO1llfS2yzGFvT4ZIKwHpOvyjjHXZsrDlK0r9kgj+RAUv4FVadHuh1JmJD+JEHypIZc6IOUwoRBTF11wJ9j8hnzXqqeudL+R2waP69QMLUKiKSCVTvLKPaUoWBv0RWiEpyYgIYOpKNTJSnJojxJhsV1zBJZLh0kqU+JRwR28bOZvmkxzPY+YpoMjZZM7xEd4ypeB4b39/vD9d/Z4/nn+8j1LGoTBcfmxmoNvAFdQVmtV9pQ94eG1EAKqbNaI2wMLtZFLMiTFkQ2k549Qf72do5gIzJHIwhVgYLCAwkQhJyMm26IRyybiQJuLKjwije9+qle4Q5jFmzrptKm2J/tcAZiphD+vPx2nyGx7Ht/dj5i8wLa5AwI8UHIvRiMsKtypyfWDmBfQBmYsU+5gVGRMzZFNJxRz6/hizsPG6SnIiVh/kh/kVsIJIoq3YtNKn0pxgPV9tNCwmZKYyBuI8M2cFbwFpq8t0vaZUxjxoj+1B+YZj/nhbvjofPKsDF9gkkKmPumrZ0dTErylTfSIAL5oZqMPmcQWoOasPjTmOAz+OWUvzmtY5i2KtQwjLqHdFOFJoa1H93KAraZWYNIejSHirFtapnDNZT5T1Uzl/7mQlExm0cZxEaxjxOCMBg2Ep0wTQM5f7RSXKH5l4cYaliyXYTKGkJa4eatZlf4Yq6y1LC51TKhspGNdSYjUekDSjHGlNY8jWWSNCw89wpJUBwEgDWUZFZsQIQJEg6zDtj/cHURnXyW5u5mVgY9NOsllGnpMSq0mmhGgGLrvDZlqzYdmWwyvAlQ6u8G9AAV7cUn78DhRPOTOrazCQgYkFCFViq9JFSIggQuJR3mmLbWbzD+oIhaiXgrNTsmpNyuKvFFH17yU85CqqlAAdpHVrzJASp9k0NkUqrmO8FvuVC9Ch6O4Z191W0WFWVjtYXdxLdHApv9cwVOMV5ajWoOWukcWTCTQgl93SElhWt/O6E/PVupGskxAVH5tS/THGFbEqReWSdizZDAorEUGmpq+epsQ6wdummZtnzMjS8PDi3sEiD0DRjc1rYK2CNDGxIgCvOUwue1ZdleoHL5msiqA2y1iNNVyV75rXybzyTRF1FKatmo9sRoLrlIgrROvqoyTq9NakEUgs8WRF52sdlseKoBr0wjTd0mTzKH/9cjniNXBmVufxePklFtMWS6a1csQPkrLA1J+b58fyu0K01UBJClVFcSH6XKH30nGSMJZD2Wq1s2ZmCNg6XKd6537yvmvYyDS/SrFfIOOaB7WnCD9PEql/87ZUdix1ycfNmznhYa3XQb0iTVMr0q0A/nED68sXWP1PqWP1CxgkGWWrnrcykV/DtyaNXTJlU5o3yyoYrZkbWScT/HpJ8oqJEGuRx4f/7KUVWh3oy13CzJXIK6bSWhtFHIjNrjdKkNbcYPS2uTLBNHq6IFsiiH8GplgMfQ12uSNq4UFmdG9Qojq9ArSLwbtSxnU3uiIX6d5NqWTSm1kpb3FBoLVgO5UWsRABiaVgJ68b4yVjX+FF8LYpMaVMIa9zQQXaLLD54w6MZnD4dmsxU0mjW53tThPjmu8LGllaz49qemUJVmfUe3MgqiHDALpY2ij9OoSrcfjjHtah6LZOnPyYMOISBToX2HnpRX7+BP7p189crQ5OLm6x4nxBl+Z52bEKH4/BS9B/3eZC+kvVfJWEa3X/DNAftMV6MP3f7uUnls1r8fz6A1wJrn0IYloWOPVrqop1hBcjL3lyvWpDBU/iQ6xAI8xyhSoK7qlerlPbnjlS3gOt9SOv/mRkpUEl7JRUSRqACpRWA7B6OVHnFV0zQFCVbpJyWVyJBoO8ZrNAqo2LgQVRuytgTpnPZAwolClnGwKLef1wzAGgINYBDUtFLykXd1rik0shnFd9kxkQys4cAfiYxyPE5b5zMasoIJSWiEDJiWAFbcEsZXnF/PphrunxT+B1bVYSklnQQQpLjMSPVtk1d5bWuerxErXgQqHbVWKurOaKAY1I5vzoz7k2MFKA/yRniaqcCuiGKmJWVMqoxsOc8L6PMVfjCsvatjwsi2HPWBY+lYrrl6m9kiRb9flqhK0dwF1Wp5cQMz/SzSnNCKwNjKS3zc9RQMnayEFQ1lrTEiLUurz6+aybwkIrIFdNv3olJRCGJY0CaUhag9oGqRQ0dWDM5YusX+q+uiMzmqxtbdYKqq9ewMGVM4I1SFzkLJlaoEDtOtY9vLdmbqYjiKyTCqvfE6uT1Yx9v/nzOeNSka1ai9a2JnJJYnnFGVZOllQdswcl4F5bzUdGf61IISXHBGNGaCZU6ZDRGTMQc5JoabiSYPfm7NHvL65x0qd8y4dSZpyrPXTlNlhxLYsSWvP4WiRp3tq+EYI1gtEAhlcrWcU7kGCk+jlnsj7JKxZXMUTyUt5ddTPqyC4jzBRK0babhSsA4NIoXbiFKkF2ZZyrh67Iy34qE0p6v722Mdd7Fezm3GN7/dx4PuwY2ff5Y2Y2IrKazNbkskylsaY3MyF+1GIg2Lf9850awXMSw0SG8xwRvCo2ApS1kMwgNo2oujVBWMu81jMvrGBV7qR5NkuFQGs9m6+fvRhKXcnNL7BNNbsVvnUd+EfztqWbag6RbI5u27Y39zyE2XdrHmhNdmV5EmHdcyjNQGcdWmdVW6q0Udb6/vqJeY6F6QKgu9nlpg3CRO+3vQjutA3vZQWVCbPWfq3szLC6ZirbNWfzlBJm/aaza1o1GS5IZmX3JiPlbUNU1LG0TLRbbHKa+fby9S8/jjmhSBq83xpe5+3Lb709fTptv7sjy2OXNKGJILy3VMIcbGTtDyaRloA3821/ef39K+J5qg3XMWoGeB1SoUoYiyOmIbuF32IGqleL8DUAyw7BKv581Fy+xd5CSVrb7zh7nl4isp9RAKvEAMy7xkp5TALbPXqGubf99fNX/njWvDa0fu/5Ol++/qVv73Y22v21dSe9Z2kD0DBBtts2FbQGdlpaknQlzULw5rbdX77+7S8c3x+y6eqnaLMlTEN1IB0EpOhdlto9+qcZMWZJacDWzCu/4S8JEtf+4Q53mJFm7TZLXXvRZ1fqJUTCmWsbnHZNC/b7QWXmDOzYuq1CwNX6reser1//svcbng3+6cvj9jyx73mg4gyyEtti+QNGpzG5PIfAst7Y7y9ff8cRQo5WPkujPw7MOecFcqbGWTb1tKxZDRnCAPPWWIfFmoy+atbKMqxOJZBvbr2/fonvfXiDMmQX3FDHXRickLdtOgOEili+fT77EM36/vLpt7xtWVm/+tZ2vs7Pv/+nu//Aw9E+/7a/PGa8vObJ+dEcCM1nRCpGMKoRCiktZwSz7n3bt9bU93Q7Nvkp2diPqcMrgK6gb61HBgIT3+f7GYs08r63e9JSM1sa3ZwoMwQlqTyYRm5ufXt5/U7Am9KcXevgZNIyretKH9xakIC7d7x+emvFsJv1W3ciQOsWlRxjv336BL29jPBPX/rrk/z6KU4va26ZtDq9hJlUb9ScmBDNyure3Ijxoyke0d2d3pWWW3cHYO0CrwhB59sDk4NzDLEx0Bt6783oVofXJqUyU5FZ7eU1B4H0Fq/vD8zZBHO/64gK9TQhJ90g79s8wlwkrPfmn758MwXMwLbdb93NIAN822/37dP49OXra+vjB/r4y396/2ve+Z8+h/14HJGRM5ACy/Vghfw6EUfVJklSbK1ZuyEyb+DGSAyz2+2O9y3UcwRWM4V3Xx5gyDBvlslU324tE0vhUXnDgq51BbpSNFiMi5Mh6bc59bMWK7GsvG+zs5lksN7N29aNoPXW9vvry+YeTKPBW9tu9/765fdPvT3/CD+//u3t67H7377k7P0Rc0YpF60OO4fV9MqraValgmx92/f7J0zEndZNwEHe9z26O/ayS4dIa1t3oyNtHZaHoCRr7W2agRqharCkSHjTR1f2z18LOE34Vuc1SQnPwPSV1y8AXjKC+v7n2+N5QrPp7f0Yc84ozH2O87Qzs8DMumDfbr59+aIfMWNoCWZXRZC/IJYAoMBlfFE8WmWICRiSc57vb2+PwzbEFDLEqP5ZCAPHOXRlwjrOlqmV3mCxl0XKXPmQrkuM+dErYTT3VamTVpugypnGCPeCUOdzCKCUOY/354jM2stjjIPPeP/xLf3bn2/vz/P9x+MYEeehMeM6kfWXoecyy7vq4dqDlTHH+XxQiRhn2GE4dfhxzqgUYEnOby8v90dvWWzBKmdqXTXjBcKS5CXRDSs9NEs/IRJThDkpk03tfiYzjUw5krwl2GdTT+tbG2cIMWXeReQ8nj/ejxlpgMSMOewcP779/bA///6P78cQHv/2bbTnq/79/XloDJXNWGJpt73ZSn5XlmbmZlbt6m3bm84DqUMz5+OcU6ICXg39/bf/5b98/r9aO/Pk7G5TctLMP3/5rbWFsRegkRfQ+EJMm4eKhjIYzuIXISAf3l1hETSRDcPaa577p27jOH1r/e39Pfj2/e2cQbZzHI8fb8eYASppOefg8Wzf/xz5x//8+/fzfDuO//rjxN/v9j00bZTEOEMrmTH3BfOYKMjMzc16y8hxcr/vpyE1/0xyzuc5U9KoQ523dvtP/+X//SmP+TgjWXI7p7m1l9dP10lTq7qoNglz31xsOFcpIUFlhZQAzOh71qlxprSGMNtz+obphnZr28mYOB/HDIGuHMfbY0QkTUrGnIPns/34c57f/vzxNsbw8X4MIdqBQhbq96ipKbr/quNfFRyMc8zjwZvvMyPyeFOzs47gJWhsve/b9vqXf/nX1/94/RFBKy9FOZt7u91uZaW1tCcqJkiclCktxjq9I4CYAcGsspzr18JRNTHieHw/3kYcW+/e++bs1raYyiOV4zjnx8JWzoHn+fjxj4d+PI4jRh7njEDMeIqymfQoa1ddQN8VhFcNKmXGARvn8bTt1o/ziBzKoUMzLne7AmCNzA947yfUTFJqNcUWBhFsnCkQJwlpJckTyDlh3n3LkFJTOsMzEil5TMN7zuf38zHnTEZEf4V9esn3NkYkIsbzmCmly7z1xtDz4NufB57neY7w54jS30dCFqLq/C7rNfH3jTTOmdX7V65yijBlnMD8cfw4BG455lDMMTMwTOVOMYzH/f/8jx+PY87rsDokYOf7H+3KKUBSaY0ZEHDSTGaEyUrUlmytsceZoRgTU6mpOvsxpPfM549xxMiQ1G73bn/9y03fj/fHk8p5XmeYmLk7Mp7Tn+/D5hxjhMZZbU4zFKX+WK/dvE7x2lozGyNnhM5IGghFEkQceTQ9p/nm+X2kpOo9p3LOMeNtPP/c//HH4ywX+UhSmgYe762tC9WEFnsdlFKXdhkIzwwhg33z1odNESMggQklQQXzkM1nhAJxtn6/7/f2298Ovz//wJwR4yiTXHLNgLDJx1unznGemW0k6qgAXLC6A6B5a2Zuftt25xhx5pCNCStfVDNjzvk0H2m+WRyHInNGxgXAwp7n4/v2POdQPfvK+KR5vDVd8lPSKDMvXKGZteZJEC2GKRW9923vJw4xy+u/NjVrY+UQKZeD5v319vq5f/lr9P2BcYxRS2A1JZDIORHwrYHncZ5Ii6Q1L2a/sKAGycy9mbvbtt/dTkum5cykica615hGtqT1+xZ/EpE5Q1JSaUoykNkilcrVumIlIFCO9lH8G23ZhYBkM7aO4OrzAjWbW791zpa+GMxCG1ofC2QDjQn2++vX25ff+qevdHs73t7eFefjGJHIZAzRMueMgLXUfHtMgyLMyjfXRFX2oUqJiv9Lup1HnjF1nEEXpuinj2PM1j1CsO1lNuRZxqUr1Hnr5qvtTRHJOsRcCjBjNlxAUmWWH3T2Io0TVt2cTBDm5m61Ka/eVaO3ZkSZtzkbbL+9vt5eXrf7zecT933rbohc+GEoZKlEwJ8tch4jkUyt47WNC5yWlGBkkHSLkW7nkSMDx6jDJkRDOzunmhVr70uPDSsE2+net9637ufMgrnLiyUTQEqNi2esZ87BYmJE7tLpCccY6cv4qbVsZnVcNUDRROut3ldMygS2++vn2+cv2/1z5/A/9r6P3szqfDpFIAxkZs4zFGNeCTdAZGiWiqSc+ykaAOfWh9txaKb4UJrTxEyMMWw6XRSt3aKRlahTlIxmrXnfNl8CibJLzcyohtCmn4lF4Q2+yOGC5QOwOUXEFNm2jtO9T0SNn1RdU6XlDjeXe9/vXz79/tdb/3x74e37P37MaM4SR6FUfTBHinTFmAkabd/8toEn64jkKC+vlCwTxrGZ2/FEJOxkWhXiYjsbzmGB02T9NTcjzJ0I2AxBqTwRT5uBUCYQRdaMhPk22wch8Gu19bMroqi7JMJE89bCzbyVKdVPQLXUv1Xskebb/fXzrb284Efs3a3WVgFNKLMRmDAt67Abkmib33adxJAoKj4YqatQ++UGV92WZTQ/bTgTYLulXwXi4nwlKcqpgoGLnhNKmFlCyfW9+qC6VjgyWYU5Y5NBipgYkYK3n7zj+lTda32mjtkck3gc50igxLs/HyCLPUwtHN3YwL2/bJpdmRlJwitWiYCWmGrd+8/MUBHzzFMbOf14PN71HHNGSIB5DWJmMW5LhKuPRxWU0ezD5ndpE7i4zku4ZOZdXc1Nyok5Yx7PY9YqrrdfR0+UoVoCyHk83vbdU49jJPt+IzDNPga/kPeMqYicCYUDpz+7fgSfQMLKBxRZ7GcCSpTlRsGVi6BSZmRYTE7N+fyhEQK9gZN5MWnXZK3TDAJaPB2lbDVPsBp7AZV5qUBfx2TSOjsbkPNofj7OU4/lBSalK4M+lKjDolI2j8d3RWx+v59/vL9PtBsySF+puOrVA5KHNCqdUnC43tImmfRcx9ReFFbGpM0or3HXcngCvSnGtIkwAMpvj3NKVjpiCso5rxYyrZPSV/FDaKqtKmDpES5gjBfassrjTkvlPIzjOabmJY0RgIw6H5pKSyegebxhZud+jx/Px0TrH92OWuxjVR9pIUSSQTI8rjzEltudLS6NoDTJmUxR9EwBWa6XI0bTwTDFnPr2dpzMaqsrDV1MJQIsD5sC1K6lOKNV8F9ZQNE6Atcub5Y0g/lGzOrmWagMfo2ctsikdSgNlqBcbFfDB65DQiouMUvaFT7AlDFAX5j3Bxy7mK3rWpI+ZLwXgSzBpsYIF8IP813HOSb1061kLe6oEx5XDKznFZBoVlQ5L7jRrKiZLNEO4U3ed2qSdTLFT03NVQ5fO8KCz2onaCY3lM/UR2BGdQNjcZF2sSjX19V0/0lPQr+M9Mc/kSzFSpIfB0L+Up8Dvw7ALwKgn8jHRZ6jxKpXQVRRbwkvOxMutIa+7dR5bZj/9DVFAnld2sxbptlHRK3A460h3Vbb4U9+lTCvJ1mA3NK6EKJRfsV+/vPzk/BZvYwrffn5eFVSFreBJYb9NdNdU+djBgBt9UxZrJrQTKADSaO5gXvDfr+bHiMmIucs9fF6R/Woxd0jU0JazvNwbZZn2vMc8WE7aC6WS6/XPLQFdF10+yLzliqOBkdMLRk7E2T5Jfs61VEQ3EOOUPgwuI4ZH043C+Ct3N/M2MzMLAabvLT3aq0K2yXNsNIwNmOyM2XArfnr64vH9vaIUIwxQ+UjpKUvze40gGitbZHU+XyLJxD94ed8zGvKXBO96H+R3PbnOiC95mCKday7ucmcKHqOLB+5JUhEaRtJZ3nRJAYV1jSm3k9kZiAvfFcZSSWSWfrJ6gctC7BU62aZJfQzCt6bs2/uSeM5Ter77S+fP/lzy3FmzjkiMn4aShCSNQ+R7G27j0md7KN7zO3ZZj7GslIEkOn18gMA6bf7j1mLsU7FlegGQVZljaL8WyTA5ppiZnUAGdgUZ8b4MW0604Z04DGtzlGOlaEyTKlUTGdwYg4P6zmq9lHz6mODEgYrtKLvLsHSukv7y6d/+evX/v5HjHPEmDNkrQoVGEhl0jIDpunq4621nLZtt/Noe1M8H0/EE3OunqC+8pIkbbs3IuGOtGbb7kpgYtYMmyj5m1b1eB38JfNat22khJyDKOJ4dDyj2ThPQtZKRh2IUClYw4cOMQSUG5eybRl1HEXNwrb1jbdb06DnkCM/v/7+v/7rX7bvr9/f32OWR1aKFz5PgNtwq6K17aRhqMd4eTy3c6cCZvTq/LC0bBVtJJjtL16Cp1X9j7LthGiNuZzh0xZcvZI60vfpAbMNOWDMaibCxINIOlVkuNkVHXU14y0T4AKHZUo1w4ewnFeohCJO08xq8m7b7b7Hy2amiMgMhV3urWscVBGFz2Mc8jOf09/fzpxpiDk3d/M+S15pRgOQdG+tdebKqqZmvhfkO8NF01h9HZlMpeVVTYjriBJKNNo6lhjKIdDhRhMSYVfRU3lX4dlrX7gAneZG46xKbeHuiz26lIVaUHad/7nyGZokwuwSIQvKXxvZmFBwOurUes25tNa6SsIInOc5kYLlNIMyV5F5XfPnvl8zhBdvt0i7jJjzPE+mTPJ8Ct66x8phP1KA8qWpt2yw5t22zYQMtQavXpLyH6mNoJnBmk066a31bdt6d7v4gAWg1PvM5VdDurN1lY7EvM/s3kzyNNTRXgtCqi2jJpcZIHOmG9xt3TO9NcukAZYlf19ZTiVtJcAwul89/vVoVDUmmKkknlyd/7xSD9LoaFtsnUKkWqUNUlkQlzlyJrsBPQPS+Xj7ts3+/X/++X6MMaMwy9V+UpvXOemisfvrjbcGQqkAmYNKceTJuY6gR6R+4tCXZLFgYDN5Myim984EisxcwqsVcATEmOu8CYdiwZhgCWqM+bOhgx9Ctpr1ApzObYu9QSna/x9gC2VgMTbu+QAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 78, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -497,7 +4934,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.6" } }, "nbformat": 4, From f11f2e20ed6b92d9550c0640d29b41ddac8daa6f Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 13:16:20 +0300 Subject: [PATCH 034/144] Count error on-the-fly --- gensim/models/nmf_pgd.pyx | 14 +++++++++++++- 1 file changed, 13 insertions(+), 1 deletion(-) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index fbaf73b6e2..3d825791c9 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -26,7 +26,15 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou hessian = WtW[component_idx_1, component_idx_1] - h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad * kappa / hessian, 0.) + grad *= kappa / hessian + + projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + + violation += projected_grad ** 2 + + h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + + return sqrt(violation) def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_max): cdef Py_ssize_t n_features = r.shape[0] @@ -43,4 +51,8 @@ def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_ r_new_element = fmax(r_new_element, -v_max) r_new_element = fmin(r_new_element, v_max) + violation += (r[feature_idx, sample_idx] - r_new_element) ** 2 + r[feature_idx, sample_idx] = r_new_element + + return sqrt(violation) From 82165410586cf11cb56c727b6210bf8a406db6fb Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 13:17:05 +0300 Subject: [PATCH 035/144] Speed optimizations, changed error functions --- gensim/models/nmf.py | 47 ++++++++++++++++++++++---------------------- 1 file changed, 24 insertions(+), 23 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 95f9d7d682..ca3269f265 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -57,7 +57,6 @@ def __init__( normalize """ self._w_error = None - self._h_r_error = None self.n_features = None self.num_topics = num_topics self.id2word = id2word @@ -275,7 +274,7 @@ def update(self, corpus, chunks_as_numpy=False): self.A += np.dot(h, h.T) self.B += np.dot((v - r), h.T) - self._solve_w(v) + self._solve_w() if chunk_idx % self.eval_every == 0: logger.info( @@ -294,11 +293,17 @@ def update(self, corpus, chunks_as_numpy=False): ) ) - def _solve_w(self, v): + def _solve_w(self): + def error(): + return ( + 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) + - np.trace(self._W.T.dot(self.B)) + ) + eta = self._kappa / np.linalg.norm(self.A, "fro") if not self._w_error: - self._w_error = self.__error(v, self._h, self._r) + self._w_error = error() for iter_number in range(self._w_max_iter): logger.debug("w_error: %s" % self._w_error) @@ -306,20 +311,13 @@ def _solve_w(self, v): self._W -= eta * (np.dot(self._W, self.A) - self.B) self.__transform() - error_ = self.__error(v, self._h, self._r) + error_ = error() - if np.abs(error_ - self._w_error) < np.abs( - self._w_error * self._w_stop_condition - ): + if np.abs((error_ - self._w_error) / self._w_error) < self._w_stop_condition: break self._w_error = error_ - def __error(self, v, h, r): - return 0.5 * np.linalg.norm( - v - self._W.dot(h) - r, "fro" - ) ** 2 + self._lambda_ * np.linalg.norm(r, 1) - @staticmethod def __solve_r(r_actual, lambda_, v_max): res = np.abs(r_actual) - lambda_ @@ -355,27 +353,30 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): # eta = self._kappa / np.linalg.norm(W, 'fro') ** 2 - if not self._h_r_error: - self._h_r_error = self.__error(v, h, r) + _h_r_error = None for iter_number in range(self._h_r_max_iter): - logger.debug("h_r_error: %s" % self._h_r_error) + logger.debug("h_r_error: %s" % _h_r_error) + + error_ = 0 Wt_v_minus_r = W.T.dot(v - r) - solve_h(h, Wt_v_minus_r, WtW, self._kappa) + error_ += solve_h(h, Wt_v_minus_r, WtW, self._kappa) if self.use_r: r_actual = v - W.dot(h) - solve_r(r, r_actual, self._lambda_, self.v_max) + error_ += solve_r(r, r_actual, self._lambda_, self.v_max) - error_ = self.__error(v, h, r) + error_ /= m - if np.abs(self._h_r_error - error_) < np.abs( - self._h_r_error * self._h_r_stop_condition - ): + if not _h_r_error: + _h_r_error = error_ + continue + + if np.abs(_h_r_error - error_) < self._h_r_stop_condition: break - self._h_r_error = error_ + _h_r_error = error_ return h, r From ee3a7c70ffe04aeb996819e508e1c4f1f86b8759 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 13:17:26 +0300 Subject: [PATCH 036/144] Beat LDA --- docs/notebooks/nmf_benchmark.ipynb | 3344 ++-------------------------- 1 file changed, 233 insertions(+), 3111 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 38634ffb1f..d8a12b90b1 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Comparison between sklearn's and gensim's implementations of NMF" + "# Gensim NMF vs other models" ] }, { @@ -48,7 +48,7 @@ "source": [ "from gensim.parsing.preprocessing import preprocess_documents\n", "\n", - "documents = preprocess_documents(fetch_20newsgroups().data[:1000])" + "documents = preprocess_documents(fetch_20newsgroups().data[:3000])" ] }, { @@ -60,11 +60,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-27 21:58:39,992 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-08-27 21:58:40,232 : INFO : built Dictionary(17622 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 1000 documents (total 136081 corpus positions)\n", - "2018-08-27 21:58:40,262 : INFO : discarding 14411 tokens: [('bricklin', 2), ('bumper', 4), ('edu', 661), ('funki', 4), ('lerxst', 2), ('line', 989), ('organ', 952), ('rac', 1), ('subject', 1000), ('tellm', 2)]...\n", - "2018-08-27 21:58:40,263 : INFO : keeping 3211 tokens which were in no less than 5 and no more than 500 (=50.0%) documents\n", - "2018-08-27 21:58:40,275 : INFO : resulting dictionary: Dictionary(3211 unique tokens: ['addit', 'bodi', 'brought', 'call', 'car']...)\n" + "2018-08-28 13:14:37,238 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-08-28 13:14:37,818 : INFO : built Dictionary(33228 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 3000 documents (total 412672 corpus positions)\n", + "2018-08-28 13:14:37,895 : INFO : discarding 26411 tokens: [('bricklin', 3), ('edu', 1951), ('lerxst', 2), ('line', 2964), ('organ', 2871), ('post', 1535), ('rac', 2), ('subject', 3000), ('tellm', 2), ('attain', 4)]...\n", + "2018-08-28 13:14:37,897 : INFO : keeping 6817 tokens which were in no less than 5 and no more than 1500 (=50.0%) documents\n", + "2018-08-28 13:14:37,915 : INFO : resulting dictionary: Dictionary(6817 unique tokens: ['addit', 'bodi', 'brought', 'bumper', 'call']...)\n" ] } ], @@ -108,8 +108,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 4.18 s, sys: 1.59 s, total: 5.77 s\n", - "Wall time: 1.68 s\n" + "CPU times: user 33 s, sys: 7.22 s, total: 40.2 s\n", + "Wall time: 12.6 s\n" ] } ], @@ -130,7 +130,7 @@ { "data": { "text/plain": [ - "5.4196922866931585" + "8.999726758761664" ] }, "execution_count": 6, @@ -142,14 +142,22 @@ "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gensim NMF vs Gensim LDA" + ] + }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "training_params = dict(\n", " corpus=corpus,\n", + " chunksize=1000,\n", " num_topics=5,\n", " id2word=dictionary,\n", " passes=5,\n", @@ -162,12 +170,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Gensim NMF" + "### Training time" ] }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 8, "metadata": { "scrolled": true }, @@ -176,110 +184,20 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-27 23:26:31,349 : INFO : h_r_error: 225977.5\n", - "2018-08-27 23:26:31,452 : INFO : h_r_error: 221992.53713113835\n", - "2018-08-27 23:26:31,571 : INFO : h_r_error: 221285.49541543392\n", - "2018-08-27 23:26:31,759 : INFO : w_error: 221075.77007477023\n", - "2018-08-27 23:26:31,854 : INFO : w_error: 191005.38242945526\n", - "2018-08-27 23:26:31,949 : INFO : w_error: 183765.66879017078\n", - "2018-08-27 23:26:32,046 : INFO : w_error: 180425.77156255016\n", - "2018-08-27 23:26:32,151 : INFO : w_error: 178840.1919094708\n", - "2018-08-27 23:26:32,261 : INFO : w_error: 178033.61304943197\n", - "2018-08-27 23:26:32,372 : INFO : w_error: 177582.7125470111\n", - "2018-08-27 23:26:32,487 : INFO : w_error: 177299.19369733552\n", - "2018-08-27 23:26:32,591 : INFO : w_error: 177100.1820181257\n", - "2018-08-27 23:26:32,696 : INFO : w_error: 176950.44069854\n", - "2018-08-27 23:26:32,801 : INFO : w_error: 176829.47586924737\n", - "2018-08-27 23:26:32,907 : INFO : w_error: 176728.64394216385\n", - "2018-08-27 23:26:33,005 : INFO : w_error: 176643.19544533442\n", - "2018-08-27 23:26:33,108 : INFO : w_error: 176568.95563689206\n", - "2018-08-27 23:26:33,213 : INFO : w_error: 176503.51054727935\n", - "2018-08-27 23:26:33,308 : INFO : w_error: 176445.0858784338\n", - "2018-08-27 23:26:33,418 : INFO : w_error: 176392.86738604083\n", - "2018-08-27 23:26:33,507 : INFO : w_error: 176346.27678428206\n", - "2018-08-27 23:26:33,643 : INFO : w_error: 176304.93668558824\n", - "2018-08-27 23:26:33,827 : INFO : w_error: 176268.6551007885\n", - "2018-08-27 23:26:34,002 : INFO : w_error: 176236.68600996066\n", - "2018-08-27 23:26:34,126 : INFO : w_error: 176208.1876423015\n", - "2018-08-27 23:26:34,245 : INFO : w_error: 176182.77822834405\n", - "2018-08-27 23:26:34,351 : INFO : w_error: 176159.91631249918\n", - "2018-08-27 23:26:34,457 : INFO : w_error: 176139.28705783037\n", - "2018-08-27 23:26:34,566 : INFO : w_error: 176120.67241022378\n", - "2018-08-27 23:26:34,824 : INFO : Loss (no outliers): 593.4708935397649\tLoss (with outliers): 593.4708935397649\n", - "2018-08-27 23:26:35,092 : INFO : h_r_error: 221285.49541543392\n", - "2018-08-27 23:26:35,174 : INFO : h_r_error: 134668.44747636523\n", - "2018-08-27 23:26:35,290 : INFO : h_r_error: 134243.85481805645\n", - "2018-08-27 23:26:35,401 : INFO : w_error: 176120.67241022378\n", - "2018-08-27 23:26:35,450 : INFO : w_error: 130602.17690394624\n", - "2018-08-27 23:26:35,536 : INFO : w_error: 129122.34045036927\n", - "2018-08-27 23:26:35,604 : INFO : w_error: 128375.1922021372\n", - "2018-08-27 23:26:35,666 : INFO : w_error: 127935.50166093382\n", - "2018-08-27 23:26:35,738 : INFO : w_error: 127645.09005992772\n", - "2018-08-27 23:26:35,832 : INFO : w_error: 127437.82850883597\n", - "2018-08-27 23:26:35,916 : INFO : w_error: 127281.6622119358\n", - "2018-08-27 23:26:36,004 : INFO : w_error: 127159.12208793241\n", - "2018-08-27 23:26:36,103 : INFO : w_error: 127061.36042423805\n", - "2018-08-27 23:26:36,208 : INFO : w_error: 126983.91756641294\n", - "2018-08-27 23:26:36,310 : INFO : w_error: 126920.8061546888\n", - "2018-08-27 23:26:36,384 : INFO : w_error: 126867.58016174499\n", - "2018-08-27 23:26:36,466 : INFO : w_error: 126822.64904986117\n", - "2018-08-27 23:26:36,524 : INFO : w_error: 126784.07034069528\n", - "2018-08-27 23:26:36,618 : INFO : w_error: 126751.75825505899\n", - "2018-08-27 23:26:36,712 : INFO : w_error: 126725.44093657262\n", - "2018-08-27 23:26:36,781 : INFO : w_error: 126702.84269135389\n", - "2018-08-27 23:26:36,895 : INFO : w_error: 126683.47119200326\n", - "2018-08-27 23:26:36,959 : INFO : w_error: 126666.47322225885\n", - "2018-08-27 23:26:37,041 : INFO : w_error: 126651.68676004956\n", - "2018-08-27 23:26:37,127 : INFO : w_error: 126638.63822356597\n", - "2018-08-27 23:26:37,313 : INFO : Loss (no outliers): 503.24307027427653\tLoss (with outliers): 503.24307027427653\n", - "2018-08-27 23:26:37,682 : INFO : h_r_error: 134243.85481805645\n", - "2018-08-27 23:26:37,765 : INFO : h_r_error: 122748.03686550938\n", - "2018-08-27 23:26:37,883 : INFO : h_r_error: 122379.84801357766\n", - "2018-08-27 23:26:38,023 : INFO : w_error: 126638.63822356597\n", - "2018-08-27 23:26:38,120 : INFO : w_error: 121204.47741295848\n", - "2018-08-27 23:26:38,222 : INFO : w_error: 120506.309844032\n", - "2018-08-27 23:26:38,311 : INFO : w_error: 120029.03586490356\n", - "2018-08-27 23:26:38,419 : INFO : w_error: 119685.02469551303\n", - "2018-08-27 23:26:38,528 : INFO : w_error: 119430.32158499636\n", - "2018-08-27 23:26:38,638 : INFO : w_error: 119238.67619626863\n", - "2018-08-27 23:26:38,721 : INFO : w_error: 119092.77570635594\n", - "2018-08-27 23:26:38,816 : INFO : w_error: 118980.69490979031\n", - "2018-08-27 23:26:38,910 : INFO : w_error: 118893.92791613033\n", - "2018-08-27 23:26:39,004 : INFO : w_error: 118826.28762225393\n", - "2018-08-27 23:26:39,107 : INFO : w_error: 118773.27813003631\n", - "2018-08-27 23:26:39,220 : INFO : w_error: 118731.47583956436\n", - "2018-08-27 23:26:39,369 : INFO : w_error: 118698.32511829764\n", - "2018-08-27 23:26:39,458 : INFO : w_error: 118671.8977965439\n", - "2018-08-27 23:26:39,561 : INFO : w_error: 118650.72583258919\n", - "2018-08-27 23:26:39,777 : INFO : w_error: 118633.68111878053\n", - "2018-08-27 23:26:39,954 : INFO : w_error: 118619.89476763643\n", - "2018-08-27 23:26:40,298 : INFO : Loss (no outliers): 487.0496841836712\tLoss (with outliers): 487.0496841836712\n", - "2018-08-27 23:26:40,614 : INFO : h_r_error: 122379.84801357766\n", - "2018-08-27 23:26:40,699 : INFO : h_r_error: 117450.7232788214\n", - "2018-08-27 23:26:40,786 : INFO : w_error: 118619.89476763643\n", - "2018-08-27 23:26:40,868 : INFO : w_error: 117086.60535081809\n", - "2018-08-27 23:26:40,969 : INFO : w_error: 116929.40508211422\n", - "2018-08-27 23:26:41,024 : INFO : w_error: 116839.06343252347\n", - "2018-08-27 23:26:41,096 : INFO : w_error: 116782.97830325444\n", - "2018-08-27 23:26:41,184 : INFO : w_error: 116746.72593979233\n", - "2018-08-27 23:26:41,243 : INFO : w_error: 116722.66685579048\n", - "2018-08-27 23:26:41,295 : INFO : w_error: 116706.37894445767\n", - "2018-08-27 23:26:41,467 : INFO : Loss (no outliers): 483.1048946916104\tLoss (with outliers): 483.1048946916104\n", - "2018-08-27 23:26:41,755 : INFO : h_r_error: 117450.7232788214\n", - "2018-08-27 23:26:41,931 : INFO : h_r_error: 116583.51938511344\n", - "2018-08-27 23:26:42,159 : INFO : w_error: 116706.37894445767\n", - "2018-08-27 23:26:42,297 : INFO : w_error: 116481.10358618775\n", - "2018-08-27 23:26:42,427 : INFO : w_error: 116442.16037968562\n", - "2018-08-27 23:26:42,521 : INFO : w_error: 116423.6541318054\n", - "2018-08-27 23:26:42,766 : INFO : Loss (no outliers): 482.5212571595307\tLoss (with outliers): 482.5212571595307\n" + "2018-08-28 13:14:55,779 : INFO : Loss (no outliers): 571.9953309314792\tLoss (with outliers): 571.9953309314792\n", + "2018-08-28 13:14:58,619 : INFO : Loss (no outliers): 553.622398952605\tLoss (with outliers): 553.622398952605\n", + "2018-08-28 13:15:00,841 : INFO : Loss (no outliers): 551.2262280048596\tLoss (with outliers): 551.2262280048596\n", + "2018-08-28 13:15:01,947 : INFO : Loss (no outliers): 562.7352175359472\tLoss (with outliers): 562.7352175359472\n", + "2018-08-28 13:15:03,665 : INFO : Loss (no outliers): 550.0473747816856\tLoss (with outliers): 550.0473747816856\n", + "2018-08-28 13:15:05,927 : INFO : Loss (no outliers): 549.2175014887133\tLoss (with outliers): 549.2175014887133\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 13.4 s, sys: 18.1 s, total: 31.5 s\n", - "Wall time: 11.7 s\n" + "CPU times: user 18.6 s, sys: 18.8 s, total: 37.4 s\n", + "Wall time: 14 s\n" ] } ], @@ -293,66 +211,164 @@ }, { "cell_type": "code", - "execution_count": 64, - "metadata": {}, + "execution_count": 9, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-27 23:29:25,583 : INFO : using symmetric alpha at 0.2\n", - "2018-08-27 23:29:25,584 : INFO : using symmetric eta at 0.2\n", - "2018-08-27 23:29:25,588 : INFO : using serial LDA version on this node\n", - "2018-08-27 23:29:25,591 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 1000 documents, updating model once every 1000 documents, evaluating perplexity every 1000 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-08-27 23:29:25,592 : WARNING : too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy\n", - "2018-08-27 23:29:26,702 : INFO : -8.721 per-word bound, 422.1 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", - "2018-08-27 23:29:26,702 : INFO : PROGRESS: pass 0, at document #1000/1000\n", - "2018-08-27 23:29:27,508 : INFO : topic #0 (0.200): 0.009*\"articl\" + 0.007*\"com\" + 0.006*\"window\" + 0.006*\"univers\" + 0.006*\"post\" + 0.005*\"time\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"know\" + 0.005*\"new\"\n", - "2018-08-27 23:29:27,509 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"articl\" + 0.006*\"like\" + 0.006*\"post\" + 0.005*\"good\" + 0.005*\"peopl\" + 0.004*\"think\" + 0.004*\"us\" + 0.004*\"know\" + 0.004*\"univers\"\n", - "2018-08-27 23:29:27,510 : INFO : topic #2 (0.200): 0.010*\"com\" + 0.007*\"post\" + 0.007*\"peopl\" + 0.006*\"univers\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"articl\" + 0.005*\"host\" + 0.005*\"think\" + 0.004*\"time\"\n", - "2018-08-27 23:29:27,511 : INFO : topic #3 (0.200): 0.017*\"max\" + 0.008*\"articl\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"jesu\" + 0.005*\"like\" + 0.005*\"state\" + 0.005*\"know\" + 0.005*\"post\" + 0.004*\"think\"\n", - "2018-08-27 23:29:27,512 : INFO : topic #4 (0.200): 0.010*\"com\" + 0.008*\"post\" + 0.006*\"nntp\" + 0.006*\"articl\" + 0.005*\"host\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"year\" + 0.005*\"new\"\n", - "2018-08-27 23:29:27,513 : INFO : topic diff=0.936720, rho=1.000000\n", - "2018-08-27 23:29:28,564 : INFO : -7.710 per-word bound, 209.4 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", - "2018-08-27 23:29:28,565 : INFO : PROGRESS: pass 1, at document #1000/1000\n", - "2018-08-27 23:29:29,417 : INFO : topic #0 (0.200): 0.008*\"articl\" + 0.008*\"window\" + 0.007*\"com\" + 0.007*\"univers\" + 0.006*\"post\" + 0.006*\"like\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"new\"\n", - "2018-08-27 23:29:29,418 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.008*\"articl\" + 0.006*\"good\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"post\" + 0.005*\"us\" + 0.004*\"know\" + 0.004*\"univers\" + 0.004*\"believ\"\n", - "2018-08-27 23:29:29,419 : INFO : topic #2 (0.200): 0.010*\"com\" + 0.008*\"post\" + 0.008*\"peopl\" + 0.006*\"know\" + 0.006*\"univers\" + 0.006*\"articl\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\" + 0.005*\"nntp\"\n", - "2018-08-27 23:29:29,421 : INFO : topic #3 (0.200): 0.016*\"max\" + 0.007*\"jesu\" + 0.007*\"peopl\" + 0.007*\"articl\" + 0.005*\"state\" + 0.005*\"com\" + 0.005*\"know\" + 0.005*\"think\" + 0.004*\"like\" + 0.004*\"sai\"\n", - "2018-08-27 23:29:29,422 : INFO : topic #4 (0.200): 0.012*\"com\" + 0.008*\"post\" + 0.007*\"nntp\" + 0.006*\"articl\" + 0.006*\"host\" + 0.005*\"year\" + 0.005*\"new\" + 0.004*\"game\" + 0.004*\"time\" + 0.004*\"know\"\n", - "2018-08-27 23:29:29,424 : INFO : topic diff=0.335424, rho=0.577350\n", - "2018-08-27 23:29:30,496 : INFO : -7.622 per-word bound, 197.0 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", - "2018-08-27 23:29:30,497 : INFO : PROGRESS: pass 2, at document #1000/1000\n", - "2018-08-27 23:29:31,172 : INFO : topic #0 (0.200): 0.009*\"window\" + 0.008*\"articl\" + 0.008*\"com\" + 0.007*\"univers\" + 0.007*\"post\" + 0.006*\"like\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"file\" + 0.005*\"think\"\n", - "2018-08-27 23:29:31,173 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"articl\" + 0.007*\"good\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"us\" + 0.005*\"post\" + 0.004*\"believ\" + 0.004*\"nasa\" + 0.004*\"univers\"\n", - "2018-08-27 23:29:31,174 : INFO : topic #2 (0.200): 0.011*\"com\" + 0.008*\"post\" + 0.008*\"peopl\" + 0.006*\"know\" + 0.006*\"articl\" + 0.005*\"univers\" + 0.005*\"armenian\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\"\n", - "2018-08-27 23:29:31,177 : INFO : topic #3 (0.200): 0.015*\"max\" + 0.008*\"peopl\" + 0.008*\"jesu\" + 0.006*\"articl\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"know\" + 0.005*\"christian\" + 0.004*\"like\" + 0.004*\"com\"\n", - "2018-08-27 23:29:31,178 : INFO : topic #4 (0.200): 0.013*\"com\" + 0.009*\"post\" + 0.007*\"articl\" + 0.007*\"nntp\" + 0.006*\"host\" + 0.006*\"year\" + 0.006*\"new\" + 0.006*\"game\" + 0.004*\"like\" + 0.004*\"univers\"\n", - "2018-08-27 23:29:31,179 : INFO : topic diff=0.282598, rho=0.500000\n", - "2018-08-27 23:29:32,365 : INFO : -7.571 per-word bound, 190.2 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", - "2018-08-27 23:29:32,368 : INFO : PROGRESS: pass 3, at document #1000/1000\n", - "2018-08-27 23:29:33,348 : INFO : topic #0 (0.200): 0.010*\"window\" + 0.008*\"com\" + 0.007*\"articl\" + 0.007*\"univers\" + 0.007*\"post\" + 0.006*\"like\" + 0.006*\"file\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"us\"\n", - "2018-08-27 23:29:33,349 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"articl\" + 0.007*\"good\" + 0.006*\"like\" + 0.006*\"us\" + 0.005*\"peopl\" + 0.005*\"nasa\" + 0.005*\"post\" + 0.004*\"believ\" + 0.004*\"univers\"\n", - "2018-08-27 23:29:33,350 : INFO : topic #2 (0.200): 0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"post\" + 0.007*\"articl\" + 0.007*\"armenian\" + 0.006*\"know\" + 0.005*\"univers\" + 0.005*\"car\" + 0.005*\"like\" + 0.005*\"think\"\n", - "2018-08-27 23:29:33,351 : INFO : topic #3 (0.200): 0.015*\"max\" + 0.008*\"peopl\" + 0.008*\"jesu\" + 0.006*\"articl\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"christian\" + 0.005*\"know\" + 0.005*\"god\" + 0.004*\"like\"\n", - "2018-08-27 23:29:33,353 : INFO : topic #4 (0.200): 0.013*\"com\" + 0.009*\"post\" + 0.007*\"articl\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"year\" + 0.006*\"game\" + 0.006*\"new\" + 0.005*\"plai\" + 0.005*\"univers\"\n", - "2018-08-27 23:29:33,354 : INFO : topic diff=0.242909, rho=0.447214\n", - "2018-08-27 23:29:34,515 : INFO : -7.537 per-word bound, 185.7 perplexity estimate based on a held-out corpus of 1000 documents with 99435 words\n", - "2018-08-27 23:29:34,516 : INFO : PROGRESS: pass 4, at document #1000/1000\n", - "2018-08-27 23:29:35,163 : INFO : topic #0 (0.200): 0.010*\"window\" + 0.008*\"com\" + 0.008*\"univers\" + 0.007*\"articl\" + 0.007*\"post\" + 0.006*\"file\" + 0.006*\"like\" + 0.006*\"us\" + 0.006*\"know\" + 0.005*\"time\"\n", - "2018-08-27 23:29:35,164 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"articl\" + 0.007*\"good\" + 0.006*\"like\" + 0.006*\"us\" + 0.006*\"nasa\" + 0.005*\"peopl\" + 0.004*\"post\" + 0.004*\"univers\" + 0.004*\"believ\"\n", - "2018-08-27 23:29:35,166 : INFO : topic #2 (0.200): 0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"post\" + 0.008*\"armenian\" + 0.007*\"articl\" + 0.006*\"know\" + 0.005*\"car\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"time\"\n", - "2018-08-27 23:29:35,167 : INFO : topic #3 (0.200): 0.014*\"max\" + 0.009*\"peopl\" + 0.008*\"jesu\" + 0.006*\"christian\" + 0.006*\"state\" + 0.006*\"think\" + 0.006*\"articl\" + 0.005*\"god\" + 0.005*\"know\" + 0.004*\"like\"\n", - "2018-08-27 23:29:35,167 : INFO : topic #4 (0.200): 0.013*\"com\" + 0.009*\"post\" + 0.007*\"articl\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.007*\"game\" + 0.007*\"year\" + 0.006*\"new\" + 0.005*\"team\" + 0.005*\"plai\"\n", - "2018-08-27 23:29:35,168 : INFO : topic diff=0.211755, rho=0.408248\n" + "2018-08-28 13:15:05,987 : INFO : using symmetric alpha at 0.2\n", + "2018-08-28 13:15:05,991 : INFO : using symmetric eta at 0.2\n", + "2018-08-28 13:15:05,997 : INFO : using serial LDA version on this node\n", + "2018-08-28 13:15:06,009 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 3000 documents, updating model once every 1000 documents, evaluating perplexity every 3000 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-08-28 13:15:06,012 : INFO : PROGRESS: pass 0, at document #1000/3000\n", + "2018-08-28 13:15:07,053 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:07,062 : INFO : topic #0 (0.200): 0.016*\"max\" + 0.006*\"com\" + 0.006*\"articl\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"good\" + 0.004*\"nntp\" + 0.003*\"think\" + 0.003*\"host\" + 0.003*\"know\"\n", + "2018-08-28 13:15:07,063 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.007*\"articl\" + 0.006*\"know\" + 0.006*\"peopl\" + 0.004*\"univers\" + 0.004*\"like\" + 0.004*\"us\" + 0.004*\"god\" + 0.004*\"host\" + 0.004*\"nntp\"\n", + "2018-08-28 13:15:07,065 : INFO : topic #2 (0.200): 0.006*\"articl\" + 0.005*\"com\" + 0.005*\"like\" + 0.005*\"time\" + 0.005*\"peopl\" + 0.005*\"new\" + 0.005*\"univers\" + 0.004*\"know\" + 0.004*\"host\" + 0.004*\"nntp\"\n", + "2018-08-28 13:15:07,066 : INFO : topic #3 (0.200): 0.010*\"com\" + 0.007*\"articl\" + 0.006*\"like\" + 0.006*\"peopl\" + 0.005*\"think\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"nntp\" + 0.004*\"know\"\n", + "2018-08-28 13:15:07,067 : INFO : topic #4 (0.200): 0.008*\"com\" + 0.006*\"peopl\" + 0.006*\"articl\" + 0.005*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"state\" + 0.004*\"like\" + 0.004*\"wai\" + 0.003*\"us\"\n", + "2018-08-28 13:15:07,068 : INFO : topic diff=1.659544, rho=1.000000\n", + "2018-08-28 13:15:07,069 : INFO : PROGRESS: pass 0, at document #2000/3000\n", + "2018-08-28 13:15:08,124 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:08,130 : INFO : topic #0 (0.200): 0.015*\"max\" + 0.007*\"com\" + 0.005*\"univers\" + 0.005*\"articl\" + 0.004*\"like\" + 0.004*\"window\" + 0.004*\"program\" + 0.004*\"nntp\" + 0.004*\"us\" + 0.004*\"problem\"\n", + "2018-08-28 13:15:08,132 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"articl\" + 0.006*\"know\" + 0.005*\"us\" + 0.005*\"peopl\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"univers\" + 0.004*\"nntp\" + 0.004*\"god\"\n", + "2018-08-28 13:15:08,134 : INFO : topic #2 (0.200): 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"peopl\" + 0.005*\"com\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"host\"\n", + "2018-08-28 13:15:08,135 : INFO : topic #3 (0.200): 0.011*\"com\" + 0.008*\"articl\" + 0.006*\"like\" + 0.006*\"peopl\" + 0.005*\"univers\" + 0.005*\"new\" + 0.004*\"nntp\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"host\"\n", + "2018-08-28 13:15:08,136 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.007*\"com\" + 0.005*\"articl\" + 0.005*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"wai\" + 0.004*\"like\" + 0.004*\"armenian\" + 0.004*\"state\"\n", + "2018-08-28 13:15:08,138 : INFO : topic diff=0.847163, rho=0.707107\n", + "2018-08-28 13:15:09,499 : INFO : -8.125 per-word bound, 279.1 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", + "2018-08-28 13:15:09,499 : INFO : PROGRESS: pass 0, at document #3000/3000\n", + "2018-08-28 13:15:10,626 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:10,633 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.007*\"window\" + 0.007*\"kei\" + 0.006*\"com\" + 0.006*\"file\" + 0.006*\"us\" + 0.005*\"univers\" + 0.005*\"program\" + 0.005*\"like\" + 0.004*\"problem\"\n", + "2018-08-28 13:15:10,634 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"articl\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.004*\"univers\" + 0.004*\"work\"\n", + "2018-08-28 13:15:10,635 : INFO : topic #2 (0.200): 0.006*\"articl\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"like\" + 0.005*\"think\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"game\" + 0.004*\"host\"\n", + "2018-08-28 13:15:10,637 : INFO : topic #3 (0.200): 0.011*\"com\" + 0.009*\"articl\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"think\" + 0.005*\"new\" + 0.004*\"time\"\n", + "2018-08-28 13:15:10,638 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.005*\"com\" + 0.005*\"articl\" + 0.004*\"think\" + 0.004*\"state\" + 0.004*\"know\" + 0.004*\"right\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"univers\"\n", + "2018-08-28 13:15:10,640 : INFO : topic diff=0.570486, rho=0.577350\n", + "2018-08-28 13:15:10,641 : INFO : PROGRESS: pass 1, at document #1000/3000\n", + "2018-08-28 13:15:11,478 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:11,485 : INFO : topic #0 (0.200): 0.015*\"max\" + 0.008*\"window\" + 0.006*\"com\" + 0.006*\"file\" + 0.006*\"us\" + 0.006*\"kei\" + 0.005*\"univers\" + 0.005*\"program\" + 0.005*\"problem\" + 0.005*\"like\"\n", + "2018-08-28 13:15:11,487 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"articl\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"god\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"like\" + 0.004*\"work\"\n", + "2018-08-28 13:15:11,488 : INFO : topic #2 (0.200): 0.006*\"articl\" + 0.005*\"think\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"game\" + 0.005*\"new\" + 0.005*\"know\" + 0.005*\"peopl\" + 0.004*\"time\" + 0.004*\"year\"\n", + "2018-08-28 13:15:11,490 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.009*\"articl\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"host\" + 0.005*\"new\" + 0.005*\"car\"\n", + "2018-08-28 13:15:11,491 : INFO : topic #4 (0.200): 0.008*\"peopl\" + 0.005*\"armenian\" + 0.005*\"state\" + 0.005*\"com\" + 0.005*\"articl\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"right\" + 0.004*\"year\"\n", + "2018-08-28 13:15:11,492 : INFO : topic diff=0.426826, rho=0.447214\n", + "2018-08-28 13:15:11,494 : INFO : PROGRESS: pass 1, at document #2000/3000\n", + "2018-08-28 13:15:12,645 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:12,652 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.008*\"window\" + 0.007*\"file\" + 0.007*\"com\" + 0.006*\"us\" + 0.006*\"program\" + 0.005*\"kei\" + 0.005*\"univers\" + 0.005*\"problem\" + 0.004*\"version\"\n", + "2018-08-28 13:15:12,653 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.007*\"articl\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"univers\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"god\"\n", + "2018-08-28 13:15:12,656 : INFO : topic #2 (0.200): 0.006*\"game\" + 0.006*\"think\" + 0.006*\"articl\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"christian\" + 0.005*\"know\" + 0.005*\"team\" + 0.005*\"new\" + 0.005*\"plai\"\n", + "2018-08-28 13:15:12,657 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.010*\"articl\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"new\" + 0.005*\"think\" + 0.005*\"car\"\n", + "2018-08-28 13:15:12,659 : INFO : topic #4 (0.200): 0.009*\"peopl\" + 0.005*\"armenian\" + 0.005*\"know\" + 0.005*\"state\" + 0.004*\"articl\" + 0.004*\"right\" + 0.004*\"think\" + 0.004*\"com\" + 0.004*\"time\" + 0.004*\"govern\"\n", + "2018-08-28 13:15:12,666 : INFO : topic diff=0.415606, rho=0.447214\n", + "2018-08-28 13:15:14,015 : INFO : -7.910 per-word bound, 240.6 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", + "2018-08-28 13:15:14,016 : INFO : PROGRESS: pass 1, at document #3000/3000\n", + "2018-08-28 13:15:14,762 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:14,769 : INFO : topic #0 (0.200): 0.012*\"max\" + 0.009*\"window\" + 0.008*\"file\" + 0.007*\"us\" + 0.007*\"kei\" + 0.006*\"com\" + 0.006*\"program\" + 0.005*\"univers\" + 0.004*\"problem\" + 0.004*\"host\"\n", + "2018-08-28 13:15:14,770 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.007*\"articl\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"new\"\n", + "2018-08-28 13:15:14,772 : INFO : topic #2 (0.200): 0.007*\"god\" + 0.007*\"game\" + 0.006*\"think\" + 0.006*\"christian\" + 0.006*\"articl\" + 0.006*\"univers\" + 0.006*\"like\" + 0.005*\"plai\" + 0.005*\"new\" + 0.005*\"know\"\n", + "2018-08-28 13:15:14,773 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.010*\"articl\" + 0.007*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"car\" + 0.005*\"univers\" + 0.005*\"peopl\" + 0.005*\"think\" + 0.005*\"new\"\n", + "2018-08-28 13:15:14,775 : INFO : topic #4 (0.200): 0.009*\"peopl\" + 0.005*\"state\" + 0.005*\"right\" + 0.004*\"think\" + 0.004*\"govern\" + 0.004*\"articl\" + 0.004*\"jew\" + 0.004*\"armenian\" + 0.004*\"know\" + 0.004*\"com\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-28 13:15:14,776 : INFO : topic diff=0.389880, rho=0.447214\n", + "2018-08-28 13:15:14,777 : INFO : PROGRESS: pass 2, at document #1000/3000\n", + "2018-08-28 13:15:15,539 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:15,545 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.010*\"window\" + 0.007*\"file\" + 0.007*\"us\" + 0.006*\"com\" + 0.006*\"kei\" + 0.006*\"program\" + 0.005*\"univers\" + 0.005*\"problem\" + 0.004*\"host\"\n", + "2018-08-28 13:15:15,547 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.008*\"articl\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"need\"\n", + "2018-08-28 13:15:15,548 : INFO : topic #2 (0.200): 0.008*\"god\" + 0.007*\"christian\" + 0.006*\"think\" + 0.006*\"game\" + 0.006*\"articl\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"believ\" + 0.005*\"plai\"\n", + "2018-08-28 13:15:15,550 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.010*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"think\" + 0.005*\"peopl\" + 0.005*\"time\"\n", + "2018-08-28 13:15:15,551 : INFO : topic #4 (0.200): 0.009*\"peopl\" + 0.006*\"armenian\" + 0.005*\"state\" + 0.004*\"articl\" + 0.004*\"right\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"govern\" + 0.004*\"time\" + 0.004*\"jew\"\n", + "2018-08-28 13:15:15,557 : INFO : topic diff=0.349646, rho=0.408248\n", + "2018-08-28 13:15:15,560 : INFO : PROGRESS: pass 2, at document #2000/3000\n", + "2018-08-28 13:15:16,425 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:16,431 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.009*\"window\" + 0.008*\"file\" + 0.007*\"us\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"kei\" + 0.005*\"univers\" + 0.005*\"version\" + 0.005*\"problem\"\n", + "2018-08-28 13:15:16,433 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.007*\"articl\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"scsi\"\n", + "2018-08-28 13:15:16,434 : INFO : topic #2 (0.200): 0.008*\"god\" + 0.007*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.005*\"team\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"like\"\n", + "2018-08-28 13:15:16,436 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.005*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"think\" + 0.005*\"peopl\" + 0.005*\"new\"\n", + "2018-08-28 13:15:16,437 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.005*\"armenian\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"govern\" + 0.004*\"know\" + 0.004*\"articl\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"like\"\n", + "2018-08-28 13:15:16,438 : INFO : topic diff=0.335500, rho=0.408248\n", + "2018-08-28 13:15:17,669 : INFO : -7.848 per-word bound, 230.4 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", + "2018-08-28 13:15:17,669 : INFO : PROGRESS: pass 2, at document #3000/3000\n", + "2018-08-28 13:15:18,393 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:18,399 : INFO : topic #0 (0.200): 0.012*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.007*\"kei\" + 0.006*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.004*\"problem\" + 0.004*\"work\"\n", + "2018-08-28 13:15:18,400 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.007*\"articl\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"new\"\n", + "2018-08-28 13:15:18,402 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.008*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.005*\"univers\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"know\"\n", + "2018-08-28 13:15:18,404 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"think\" + 0.005*\"peopl\" + 0.004*\"new\"\n", + "2018-08-28 13:15:18,407 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.005*\"right\" + 0.005*\"govern\" + 0.005*\"state\" + 0.004*\"jew\" + 0.004*\"armenian\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"know\" + 0.004*\"time\"\n", + "2018-08-28 13:15:18,408 : INFO : topic diff=0.307183, rho=0.408248\n", + "2018-08-28 13:15:18,410 : INFO : PROGRESS: pass 3, at document #1000/3000\n", + "2018-08-28 13:15:19,327 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:19,334 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.006*\"kei\" + 0.006*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.005*\"problem\" + 0.004*\"host\"\n", + "2018-08-28 13:15:19,336 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.008*\"articl\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"new\"\n", + "2018-08-28 13:15:19,337 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.008*\"christian\" + 0.007*\"think\" + 0.007*\"game\" + 0.006*\"articl\" + 0.005*\"jesu\" + 0.005*\"believ\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"like\"\n", + "2018-08-28 13:15:19,339 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.005*\"time\" + 0.005*\"peopl\"\n", + "2018-08-28 13:15:19,340 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.006*\"armenian\" + 0.005*\"state\" + 0.005*\"govern\" + 0.005*\"right\" + 0.004*\"articl\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"jew\" + 0.004*\"time\"\n", + "2018-08-28 13:15:19,341 : INFO : topic diff=0.277336, rho=0.377964\n", + "2018-08-28 13:15:19,342 : INFO : PROGRESS: pass 3, at document #2000/3000\n", + "2018-08-28 13:15:20,041 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:20,048 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"kei\" + 0.005*\"univers\" + 0.005*\"version\" + 0.004*\"do\"\n", + "2018-08-28 13:15:20,050 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.008*\"articl\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.005*\"scsi\" + 0.004*\"work\"\n", + "2018-08-28 13:15:20,051 : INFO : topic #2 (0.200): 0.009*\"god\" + 0.008*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.005*\"know\" + 0.005*\"team\" + 0.005*\"year\" + 0.005*\"univers\"\n", + "2018-08-28 13:15:20,053 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"peopl\"\n", + "2018-08-28 13:15:20,055 : INFO : topic #4 (0.200): 0.011*\"peopl\" + 0.005*\"armenian\" + 0.005*\"govern\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"time\" + 0.004*\"law\"\n", + "2018-08-28 13:15:20,057 : INFO : topic diff=0.265566, rho=0.377964\n", + "2018-08-28 13:15:21,109 : INFO : -7.819 per-word bound, 225.8 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", + "2018-08-28 13:15:21,110 : INFO : PROGRESS: pass 3, at document #3000/3000\n", + "2018-08-28 13:15:21,729 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:21,735 : INFO : topic #0 (0.200): 0.012*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.007*\"kei\" + 0.007*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.004*\"problem\" + 0.004*\"mail\"\n", + "2018-08-28 13:15:21,736 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"articl\" + 0.007*\"univers\" + 0.005*\"know\" + 0.005*\"drive\" + 0.005*\"us\" + 0.005*\"like\" + 0.005*\"work\"\n", + "2018-08-28 13:15:21,737 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.008*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.005*\"believ\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"like\"\n", + "2018-08-28 13:15:21,738 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"peopl\"\n", + "2018-08-28 13:15:21,739 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.005*\"govern\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"armenian\" + 0.004*\"jew\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"know\" + 0.004*\"law\"\n", + "2018-08-28 13:15:21,740 : INFO : topic diff=0.241522, rho=0.377964\n", + "2018-08-28 13:15:21,741 : INFO : PROGRESS: pass 4, at document #1000/3000\n", + "2018-08-28 13:15:22,490 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:22,500 : INFO : topic #0 (0.200): 0.014*\"max\" + 0.011*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.006*\"kei\" + 0.006*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.005*\"problem\" + 0.004*\"mail\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-28 13:15:22,503 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.008*\"articl\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.005*\"drive\" + 0.004*\"new\"\n", + "2018-08-28 13:15:22,506 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.008*\"christian\" + 0.007*\"think\" + 0.007*\"game\" + 0.006*\"jesu\" + 0.006*\"articl\" + 0.005*\"believ\" + 0.005*\"know\" + 0.005*\"plai\" + 0.005*\"univers\"\n", + "2018-08-28 13:15:22,508 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.005*\"time\" + 0.004*\"peopl\"\n", + "2018-08-28 13:15:22,509 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.006*\"armenian\" + 0.005*\"state\" + 0.005*\"govern\" + 0.005*\"right\" + 0.004*\"articl\" + 0.004*\"jew\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"time\"\n", + "2018-08-28 13:15:22,510 : INFO : topic diff=0.224455, rho=0.353553\n", + "2018-08-28 13:15:22,512 : INFO : PROGRESS: pass 4, at document #2000/3000\n", + "2018-08-28 13:15:23,236 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:23,242 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"kei\" + 0.005*\"version\" + 0.005*\"univers\" + 0.005*\"do\"\n", + "2018-08-28 13:15:23,243 : INFO : topic #1 (0.200): 0.018*\"com\" + 0.008*\"nntp\" + 0.008*\"host\" + 0.008*\"articl\" + 0.007*\"univers\" + 0.005*\"know\" + 0.005*\"drive\" + 0.005*\"us\" + 0.005*\"scsi\" + 0.005*\"like\"\n", + "2018-08-28 13:15:23,245 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.009*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.006*\"know\" + 0.005*\"year\" + 0.005*\"team\" + 0.005*\"univers\"\n", + "2018-08-28 13:15:23,247 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.005*\"time\" + 0.004*\"new\"\n", + "2018-08-28 13:15:23,248 : INFO : topic #4 (0.200): 0.011*\"peopl\" + 0.006*\"govern\" + 0.005*\"armenian\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"know\" + 0.004*\"law\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"time\"\n", + "2018-08-28 13:15:23,250 : INFO : topic diff=0.217025, rho=0.353553\n", + "2018-08-28 13:15:24,412 : INFO : -7.802 per-word bound, 223.2 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", + "2018-08-28 13:15:24,414 : INFO : PROGRESS: pass 4, at document #3000/3000\n", + "2018-08-28 13:15:25,049 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", + "2018-08-28 13:15:25,056 : INFO : topic #0 (0.200): 0.012*\"max\" + 0.011*\"window\" + 0.009*\"file\" + 0.008*\"us\" + 0.007*\"kei\" + 0.007*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.004*\"mail\" + 0.004*\"version\"\n", + "2018-08-28 13:15:25,057 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"articl\" + 0.007*\"univers\" + 0.006*\"drive\" + 0.005*\"know\" + 0.005*\"card\" + 0.005*\"like\" + 0.005*\"us\"\n", + "2018-08-28 13:15:25,058 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.006*\"believ\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"year\"\n", + "2018-08-28 13:15:25,061 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"thing\"\n", + "2018-08-28 13:15:25,063 : INFO : topic #4 (0.200): 0.011*\"peopl\" + 0.006*\"govern\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"armenian\" + 0.005*\"jew\" + 0.004*\"law\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"know\"\n", + "2018-08-28 13:15:25,064 : INFO : topic diff=0.196557, rho=0.353553\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 9.59 s, sys: 0 ns, total: 9.59 s\n", - "Wall time: 9.59 s\n" + "CPU times: user 18.8 s, sys: 158 ms, total: 19 s\n", + "Wall time: 19.1 s\n" ] } ], @@ -361,78 +377,96 @@ "\n", "np.random.seed(42)\n", "\n", - "lda = LdaModel(**training_params)" + "gensim_lda = LdaModel(**training_params)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Coherence" ] }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-27 23:29:48,650 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2018-08-28 13:15:29,891 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-08-28 13:15:29,927 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n", + "2018-08-28 13:15:29,964 : INFO : CorpusAccumulator accumulated stats from 3000 documents\n" ] }, { "data": { "text/plain": [ - "-2.1572860157511426" + "-1.8015688322676469" ] }, - "execution_count": 65, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "gensim_cm = CoherenceModel(\n", + "gensim_nmf_cm = CoherenceModel(\n", " model=gensim_nmf,\n", " corpus=corpus,\n", " coherence='u_mass'\n", ")\n", "\n", - "gensim_cm.get_coherence()" + "gensim_nmf_cm.get_coherence()" ] }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-27 23:29:49,502 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2018-08-28 13:15:30,771 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-08-28 13:15:30,800 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n", + "2018-08-28 13:15:30,831 : INFO : CorpusAccumulator accumulated stats from 3000 documents\n" ] }, { "data": { "text/plain": [ - "-1.6429322091255478" + "-1.7170102353622116" ] }, - "execution_count": 66, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "lda_cm = CoherenceModel(\n", - " model=lda,\n", + "gensim_lda_cm = CoherenceModel(\n", + " model=gensim_lda,\n", " corpus=corpus,\n", " coherence='u_mass'\n", ")\n", "\n", - "lda_cm.get_coherence()" + "gensim_lda_cm.get_coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Perplexity" ] }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -451,2919 +485,16 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 13, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:03,036 : INFO : h_r_error: 98.15428401565417\n", - "2018-08-27 23:45:03,042 : INFO : h_r_error: 34.204954619573016\n", - "2018-08-27 23:45:03,047 : INFO : h_r_error: 34.148179145306976\n", - "2018-08-27 23:45:03,052 : INFO : h_r_error: 34.148179145306976\n", - "2018-08-27 23:45:03,056 : INFO : h_r_error: 55.15774665060254\n", - "2018-08-27 23:45:03,060 : INFO : h_r_error: 55.09247751204706\n", - "2018-08-27 23:45:03,064 : INFO : h_r_error: 55.09247751204706\n", - "2018-08-27 23:45:03,089 : INFO : h_r_error: 98.50135185634834\n", - "2018-08-27 23:45:03,094 : INFO : h_r_error: 98.15428401565417\n", - "2018-08-27 23:45:03,102 : INFO : h_r_error: 98.15428401565417\n", - "2018-08-27 23:45:03,105 : INFO : h_r_error: 41.28375617822966\n", - "2018-08-27 23:45:03,109 : INFO : h_r_error: 41.18009326469662\n", - "2018-08-27 23:45:03,113 : INFO : h_r_error: 41.18009326469662\n", - "2018-08-27 23:45:03,119 : INFO : h_r_error: 55.258363251443434\n", - "2018-08-27 23:45:03,123 : INFO : h_r_error: 55.16669694155178\n", - "2018-08-27 23:45:03,129 : INFO : h_r_error: 55.16669694155178\n", - "2018-08-27 23:45:03,134 : INFO : h_r_error: 254.62330943806725\n", - "2018-08-27 23:45:03,135 : INFO : h_r_error: 253.59269137615445\n", - "2018-08-27 23:45:03,148 : INFO : h_r_error: 253.59269137615445\n", - "2018-08-27 23:45:03,162 : INFO : h_r_error: 28.114883571929564\n", - "2018-08-27 23:45:03,169 : INFO : h_r_error: 28.08641270690183\n", - "2018-08-27 23:45:03,173 : INFO : h_r_error: 28.08641270690183\n", - "2018-08-27 23:45:03,178 : INFO : h_r_error: 634.8155517837707\n", - "2018-08-27 23:45:03,186 : INFO : h_r_error: 633.9052984715589\n", - "2018-08-27 23:45:03,190 : INFO : h_r_error: 633.9052984715589\n", - "2018-08-27 23:45:03,218 : INFO : h_r_error: 13.92031878223961\n", - "2018-08-27 23:45:03,243 : INFO : h_r_error: 13.92031878223961\n", - "2018-08-27 23:45:03,254 : INFO : h_r_error: 107.4740163348578\n", - "2018-08-27 23:45:03,261 : INFO : h_r_error: 107.4740163348578\n", - "2018-08-27 23:45:03,269 : INFO : h_r_error: 25.336386566921398\n", - "2018-08-27 23:45:03,273 : INFO : h_r_error: 25.336386566921398\n", - "2018-08-27 23:45:03,278 : INFO : h_r_error: 369.08642183400974\n", - "2018-08-27 23:45:03,282 : INFO : h_r_error: 367.29338529600983\n", - "2018-08-27 23:45:03,303 : INFO : h_r_error: 367.29338529600983\n", - "2018-08-27 23:45:03,316 : INFO : h_r_error: 21.298101091474145\n", - "2018-08-27 23:45:03,323 : INFO : h_r_error: 21.298101091474145\n", - "2018-08-27 23:45:03,330 : INFO : h_r_error: 723.263233098592\n", - "2018-08-27 23:45:03,336 : INFO : h_r_error: 720.4732673539327\n", - "2018-08-27 23:45:03,353 : INFO : h_r_error: 720.4732673539327\n", - "2018-08-27 23:45:03,355 : INFO : h_r_error: 66.92476783559007\n", - "2018-08-27 23:45:03,364 : INFO : h_r_error: 66.77488642793911\n", - "2018-08-27 23:45:03,369 : INFO : h_r_error: 66.77488642793911\n", - "2018-08-27 23:45:03,373 : INFO : h_r_error: 35.81300437411144\n", - "2018-08-27 23:45:03,381 : INFO : h_r_error: 35.72239824682979\n", - "2018-08-27 23:45:03,393 : INFO : h_r_error: 35.72239824682979\n", - "2018-08-27 23:45:03,399 : INFO : h_r_error: 27.30382826997013\n", - "2018-08-27 23:45:03,404 : INFO : h_r_error: 27.245166159257213\n", - "2018-08-27 23:45:03,412 : INFO : h_r_error: 27.245166159257213\n", - "2018-08-27 23:45:03,417 : INFO : h_r_error: 1089.031819599677\n", - "2018-08-27 23:45:03,421 : INFO : h_r_error: 1080.1741795115413\n", - "2018-08-27 23:45:03,423 : INFO : h_r_error: 1080.1741795115413\n", - "2018-08-27 23:45:03,426 : INFO : h_r_error: 27.06848290715404\n", - "2018-08-27 23:45:03,435 : INFO : h_r_error: 27.03072827756033\n", - "2018-08-27 23:45:03,438 : INFO : h_r_error: 27.03072827756033\n", - "2018-08-27 23:45:03,440 : INFO : h_r_error: 75.62843727715398\n", - "2018-08-27 23:45:03,442 : INFO : h_r_error: 75.54489454907348\n", - "2018-08-27 23:45:03,444 : INFO : h_r_error: 75.54489454907348\n", - "2018-08-27 23:45:03,446 : INFO : h_r_error: 40.32300459493736\n", - "2018-08-27 23:45:03,447 : INFO : h_r_error: 40.25162844714504\n", - "2018-08-27 23:45:03,453 : INFO : h_r_error: 40.25162844714504\n", - "2018-08-27 23:45:03,455 : INFO : h_r_error: 84.32718757998609\n", - "2018-08-27 23:45:03,457 : INFO : h_r_error: 84.32718757998609\n", - "2018-08-27 23:45:03,463 : INFO : h_r_error: 85.71828068168608\n", - "2018-08-27 23:45:03,465 : INFO : h_r_error: 85.53890189503564\n", - "2018-08-27 23:45:03,467 : INFO : h_r_error: 85.53890189503564\n", - "2018-08-27 23:45:03,470 : INFO : h_r_error: 67.4142273360869\n", - "2018-08-27 23:45:03,475 : INFO : h_r_error: 67.32118213529535\n", - "2018-08-27 23:45:03,478 : INFO : h_r_error: 67.32118213529535\n", - "2018-08-27 23:45:03,480 : INFO : h_r_error: 31.25000233598416\n", - "2018-08-27 23:45:03,483 : INFO : h_r_error: 31.25000233598416\n", - "2018-08-27 23:45:03,492 : INFO : h_r_error: 56.8338077084426\n", - "2018-08-27 23:45:03,494 : INFO : h_r_error: 56.772246364015324\n", - "2018-08-27 23:45:03,497 : INFO : h_r_error: 56.772246364015324\n", - "2018-08-27 23:45:03,509 : INFO : h_r_error: 259.72432252768965\n", - "2018-08-27 23:45:03,519 : INFO : h_r_error: 259.38094647229104\n", - "2018-08-27 23:45:03,526 : INFO : h_r_error: 259.38094647229104\n", - "2018-08-27 23:45:03,532 : INFO : h_r_error: 14.422827887958059\n", - "2018-08-27 23:45:03,536 : INFO : h_r_error: 14.422827887958059\n", - "2018-08-27 23:45:03,569 : INFO : h_r_error: 105.47799808545689\n", - "2018-08-27 23:45:03,571 : INFO : h_r_error: 104.94913267589405\n", - "2018-08-27 23:45:03,574 : INFO : h_r_error: 104.94913267589405\n", - "2018-08-27 23:45:03,576 : INFO : h_r_error: 34.63479914288447\n", - "2018-08-27 23:45:03,586 : INFO : h_r_error: 34.55691560041526\n", - "2018-08-27 23:45:03,588 : INFO : h_r_error: 34.55691560041526\n", - "2018-08-27 23:45:03,592 : INFO : h_r_error: 119.99611693250311\n", - "2018-08-27 23:45:03,602 : INFO : h_r_error: 119.63467561020623\n", - "2018-08-27 23:45:03,605 : INFO : h_r_error: 119.63467561020623\n", - "2018-08-27 23:45:03,607 : INFO : h_r_error: 49.83126882991489\n", - "2018-08-27 23:45:03,610 : INFO : h_r_error: 49.83126882991489\n", - "2018-08-27 23:45:03,612 : INFO : h_r_error: 9.76226367692149\n", - "2018-08-27 23:45:03,620 : INFO : h_r_error: 9.738892924732756\n", - "2018-08-27 23:45:03,630 : INFO : h_r_error: 9.738892924732756\n", - "2018-08-27 23:45:03,632 : INFO : h_r_error: 224.4182414187348\n", - "2018-08-27 23:45:03,634 : INFO : h_r_error: 223.7474362335428\n", - "2018-08-27 23:45:03,643 : INFO : h_r_error: 223.7474362335428\n", - "2018-08-27 23:45:03,646 : INFO : h_r_error: 28.683419390418482\n", - "2018-08-27 23:45:03,650 : INFO : h_r_error: 28.65243124438808\n", - "2018-08-27 23:45:03,653 : INFO : h_r_error: 28.65243124438808\n", - "2018-08-27 23:45:03,655 : INFO : h_r_error: 48.41001934106339\n", - "2018-08-27 23:45:03,662 : INFO : h_r_error: 48.31202184301711\n", - "2018-08-27 23:45:03,665 : INFO : h_r_error: 48.31202184301711\n", - "2018-08-27 23:45:03,667 : INFO : h_r_error: 22.15681955446293\n", - "2018-08-27 23:45:03,670 : INFO : h_r_error: 22.15681955446293\n", - "2018-08-27 23:45:03,673 : INFO : h_r_error: 157.83546590958633\n", - "2018-08-27 23:45:03,674 : INFO : h_r_error: 156.87768648707092\n", - "2018-08-27 23:45:03,677 : INFO : h_r_error: 156.87768648707092\n", - "2018-08-27 23:45:03,679 : INFO : h_r_error: 116.9645678274264\n", - "2018-08-27 23:45:03,681 : INFO : h_r_error: 116.72161027612525\n", - "2018-08-27 23:45:03,683 : INFO : h_r_error: 116.72161027612525\n", - "2018-08-27 23:45:03,686 : INFO : h_r_error: 462.9884856492414\n", - "2018-08-27 23:45:03,687 : INFO : h_r_error: 460.62787520565314\n", - "2018-08-27 23:45:03,689 : INFO : h_r_error: 460.62787520565314\n", - "2018-08-27 23:45:03,693 : INFO : h_r_error: 67.19767456574434\n", - "2018-08-27 23:45:03,719 : INFO : h_r_error: 66.8517427988593\n", - "2018-08-27 23:45:03,723 : INFO : h_r_error: 66.8517427988593\n", - "2018-08-27 23:45:03,725 : INFO : h_r_error: 18.806977626732554\n", - "2018-08-27 23:45:03,727 : INFO : h_r_error: 18.746970667314233\n", - "2018-08-27 23:45:03,733 : INFO : h_r_error: 18.746970667314233\n", - "2018-08-27 23:45:03,735 : INFO : h_r_error: 24.160786949145805\n", - "2018-08-27 23:45:03,737 : INFO : h_r_error: 24.129561764862178\n", - "2018-08-27 23:45:03,739 : INFO : h_r_error: 24.129561764862178\n", - "2018-08-27 23:45:03,741 : INFO : h_r_error: 105.42426643899223\n", - "2018-08-27 23:45:03,743 : INFO : h_r_error: 105.22670278426455\n", - "2018-08-27 23:45:03,745 : INFO : h_r_error: 105.22670278426455\n", - "2018-08-27 23:45:03,747 : INFO : h_r_error: 41.68439640754756\n", - "2018-08-27 23:45:03,748 : INFO : h_r_error: 41.56737508087305\n", - "2018-08-27 23:45:03,750 : INFO : h_r_error: 41.56737508087305\n", - "2018-08-27 23:45:03,752 : INFO : h_r_error: 16.48326813042852\n", - "2018-08-27 23:45:03,754 : INFO : h_r_error: 16.45469683086559\n", - "2018-08-27 23:45:03,756 : INFO : h_r_error: 16.45469683086559\n", - "2018-08-27 23:45:03,759 : INFO : h_r_error: 10.451582580485452\n", - "2018-08-27 23:45:03,763 : INFO : h_r_error: 10.451582580485452\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:03,765 : INFO : h_r_error: 69.25859673718531\n", - "2018-08-27 23:45:03,769 : INFO : h_r_error: 69.07631486664287\n", - "2018-08-27 23:45:03,772 : INFO : h_r_error: 69.07631486664287\n", - "2018-08-27 23:45:03,782 : INFO : h_r_error: 22.063284645279\n", - "2018-08-27 23:45:03,785 : INFO : h_r_error: 22.02693299183024\n", - "2018-08-27 23:45:03,787 : INFO : h_r_error: 22.02693299183024\n", - "2018-08-27 23:45:03,789 : INFO : h_r_error: 41.53473479257632\n", - "2018-08-27 23:45:03,792 : INFO : h_r_error: 41.45689474805954\n", - "2018-08-27 23:45:03,794 : INFO : h_r_error: 41.45689474805954\n", - "2018-08-27 23:45:03,796 : INFO : h_r_error: 94.75813969743993\n", - "2018-08-27 23:45:03,799 : INFO : h_r_error: 94.63834747986454\n", - "2018-08-27 23:45:03,801 : INFO : h_r_error: 94.63834747986454\n", - "2018-08-27 23:45:03,803 : INFO : h_r_error: 53.54044869001222\n", - "2018-08-27 23:45:03,805 : INFO : h_r_error: 53.247721498899615\n", - "2018-08-27 23:45:03,808 : INFO : h_r_error: 53.247721498899615\n", - "2018-08-27 23:45:03,812 : INFO : h_r_error: 16.42071107666247\n", - "2018-08-27 23:45:03,814 : INFO : h_r_error: 16.42071107666247\n", - "2018-08-27 23:45:03,816 : INFO : h_r_error: 68.10823637946707\n", - "2018-08-27 23:45:03,818 : INFO : h_r_error: 67.63432001885045\n", - "2018-08-27 23:45:03,827 : INFO : h_r_error: 67.63432001885045\n", - "2018-08-27 23:45:03,830 : INFO : h_r_error: 138.72102103842104\n", - "2018-08-27 23:45:03,832 : INFO : h_r_error: 135.30020556228877\n", - "2018-08-27 23:45:03,836 : INFO : h_r_error: 135.30020556228877\n", - "2018-08-27 23:45:03,848 : INFO : h_r_error: 66.39064010841798\n", - "2018-08-27 23:45:03,850 : INFO : h_r_error: 66.19692116161163\n", - "2018-08-27 23:45:03,865 : INFO : h_r_error: 66.19692116161163\n", - "2018-08-27 23:45:03,869 : INFO : h_r_error: 146.23683009593697\n", - "2018-08-27 23:45:03,872 : INFO : h_r_error: 145.80455804151757\n", - "2018-08-27 23:45:03,876 : INFO : h_r_error: 145.80455804151757\n", - "2018-08-27 23:45:03,878 : INFO : h_r_error: 21.28853401916447\n", - "2018-08-27 23:45:03,886 : INFO : h_r_error: 21.28853401916447\n", - "2018-08-27 23:45:03,893 : INFO : h_r_error: 26.682483324832297\n", - "2018-08-27 23:45:03,896 : INFO : h_r_error: 26.655190998302693\n", - "2018-08-27 23:45:03,898 : INFO : h_r_error: 26.655190998302693\n", - "2018-08-27 23:45:03,906 : INFO : h_r_error: 1783.7396651979955\n", - "2018-08-27 23:45:03,908 : INFO : h_r_error: 1776.8024049463345\n", - "2018-08-27 23:45:03,910 : INFO : h_r_error: 1776.8024049463345\n", - "2018-08-27 23:45:03,911 : INFO : h_r_error: 15.389283026113409\n", - "2018-08-27 23:45:03,913 : INFO : h_r_error: 15.389283026113409\n", - "2018-08-27 23:45:03,915 : INFO : h_r_error: 63.89256807716552\n", - "2018-08-27 23:45:03,916 : INFO : h_r_error: 63.72484235121019\n", - "2018-08-27 23:45:03,918 : INFO : h_r_error: 63.72484235121019\n", - "2018-08-27 23:45:03,920 : INFO : h_r_error: 25.75798194581931\n", - "2018-08-27 23:45:03,922 : INFO : h_r_error: 25.75798194581931\n", - "2018-08-27 23:45:03,924 : INFO : h_r_error: 11.352782151357102\n", - "2018-08-27 23:45:03,926 : INFO : h_r_error: 11.337957828150717\n", - "2018-08-27 23:45:03,928 : INFO : h_r_error: 11.337957828150717\n", - "2018-08-27 23:45:03,930 : INFO : h_r_error: 27.31687104306191\n", - "2018-08-27 23:45:03,932 : INFO : h_r_error: 27.31687104306191\n", - "2018-08-27 23:45:03,934 : INFO : h_r_error: 116.94426949743652\n", - "2018-08-27 23:45:03,936 : INFO : h_r_error: 116.51604650248514\n", - "2018-08-27 23:45:03,937 : INFO : h_r_error: 116.51604650248514\n", - "2018-08-27 23:45:03,939 : INFO : h_r_error: 45.32052562385578\n", - "2018-08-27 23:45:03,941 : INFO : h_r_error: 45.21813921543335\n", - "2018-08-27 23:45:03,943 : INFO : h_r_error: 45.21813921543335\n", - "2018-08-27 23:45:03,944 : INFO : h_r_error: 56.95216330056915\n", - "2018-08-27 23:45:03,962 : INFO : h_r_error: 56.83345970317447\n", - "2018-08-27 23:45:03,965 : INFO : h_r_error: 56.83345970317447\n", - "2018-08-27 23:45:03,982 : INFO : h_r_error: 247.75609825170673\n", - "2018-08-27 23:45:03,987 : INFO : h_r_error: 245.83581092434727\n", - "2018-08-27 23:45:03,989 : INFO : h_r_error: 245.83581092434727\n", - "2018-08-27 23:45:03,990 : INFO : h_r_error: 37.475607734730076\n", - "2018-08-27 23:45:03,997 : INFO : h_r_error: 37.431228325794166\n", - "2018-08-27 23:45:04,001 : INFO : h_r_error: 37.431228325794166\n", - "2018-08-27 23:45:04,006 : INFO : h_r_error: 1646.3340782956302\n", - "2018-08-27 23:45:04,009 : INFO : h_r_error: 1445.8144300429672\n", - "2018-08-27 23:45:04,018 : INFO : h_r_error: 1445.8144300429672\n", - "2018-08-27 23:45:04,027 : INFO : h_r_error: 86.43122628293193\n", - "2018-08-27 23:45:04,030 : INFO : h_r_error: 86.12450662001353\n", - "2018-08-27 23:45:04,032 : INFO : h_r_error: 86.12450662001353\n", - "2018-08-27 23:45:04,036 : INFO : h_r_error: 112.62966737374258\n", - "2018-08-27 23:45:04,048 : INFO : h_r_error: 112.35537696125392\n", - "2018-08-27 23:45:04,051 : INFO : h_r_error: 112.35537696125392\n", - "2018-08-27 23:45:04,053 : INFO : h_r_error: 38.56035638403277\n", - "2018-08-27 23:45:04,058 : INFO : h_r_error: 38.47353673647504\n", - "2018-08-27 23:45:04,061 : INFO : h_r_error: 38.47353673647504\n", - "2018-08-27 23:45:04,067 : INFO : h_r_error: 81.49695060095077\n", - "2018-08-27 23:45:04,072 : INFO : h_r_error: 81.49695060095077\n", - "2018-08-27 23:45:04,073 : INFO : h_r_error: 37.09521472468781\n", - "2018-08-27 23:45:04,077 : INFO : h_r_error: 37.05503345467284\n", - "2018-08-27 23:45:04,080 : INFO : h_r_error: 37.05503345467284\n", - "2018-08-27 23:45:04,082 : INFO : h_r_error: 113.3910134995221\n", - "2018-08-27 23:45:04,086 : INFO : h_r_error: 113.2614250346524\n", - "2018-08-27 23:45:04,090 : INFO : h_r_error: 113.2614250346524\n", - "2018-08-27 23:45:04,094 : INFO : h_r_error: 52.971338936000365\n", - "2018-08-27 23:45:04,096 : INFO : h_r_error: 52.850034034210665\n", - "2018-08-27 23:45:04,098 : INFO : h_r_error: 52.850034034210665\n", - "2018-08-27 23:45:04,101 : INFO : h_r_error: 27.549590555797742\n", - "2018-08-27 23:45:04,102 : INFO : h_r_error: 27.512543613090983\n", - "2018-08-27 23:45:04,104 : INFO : h_r_error: 27.512543613090983\n", - "2018-08-27 23:45:04,106 : INFO : h_r_error: 71.14745146314269\n", - "2018-08-27 23:45:04,115 : INFO : h_r_error: 71.14745146314269\n", - "2018-08-27 23:45:04,121 : INFO : h_r_error: 327.3492358793578\n", - "2018-08-27 23:45:04,132 : INFO : h_r_error: 325.80168878580093\n", - "2018-08-27 23:45:04,159 : INFO : h_r_error: 325.80168878580093\n", - "2018-08-27 23:45:04,161 : INFO : h_r_error: 128.81395990239957\n", - "2018-08-27 23:45:04,163 : INFO : h_r_error: 128.34433834833825\n", - "2018-08-27 23:45:04,167 : INFO : h_r_error: 128.34433834833825\n", - "2018-08-27 23:45:04,184 : INFO : h_r_error: 300.83860359521066\n", - "2018-08-27 23:45:04,186 : INFO : h_r_error: 299.9644126089286\n", - "2018-08-27 23:45:04,188 : INFO : h_r_error: 299.9644126089286\n", - "2018-08-27 23:45:04,190 : INFO : h_r_error: 36.66604285811444\n", - "2018-08-27 23:45:04,205 : INFO : h_r_error: 36.59594958016433\n", - "2018-08-27 23:45:04,207 : INFO : h_r_error: 36.59594958016433\n", - "2018-08-27 23:45:04,211 : INFO : h_r_error: 44.558517290403564\n", - "2018-08-27 23:45:04,234 : INFO : h_r_error: 44.47029461938762\n", - "2018-08-27 23:45:04,236 : INFO : h_r_error: 44.47029461938762\n", - "2018-08-27 23:45:04,240 : INFO : h_r_error: 76.58089256606557\n", - "2018-08-27 23:45:04,244 : INFO : h_r_error: 76.49701416157038\n", - "2018-08-27 23:45:04,253 : INFO : h_r_error: 76.49701416157038\n", - "2018-08-27 23:45:04,260 : INFO : h_r_error: 110.02909109197478\n", - "2018-08-27 23:45:04,266 : INFO : h_r_error: 109.62299456006828\n", - "2018-08-27 23:45:04,272 : INFO : h_r_error: 109.62299456006828\n", - "2018-08-27 23:45:04,275 : INFO : h_r_error: 95.30927990250139\n", - "2018-08-27 23:45:04,277 : INFO : h_r_error: 95.07007702627003\n", - "2018-08-27 23:45:04,280 : INFO : h_r_error: 95.07007702627003\n", - "2018-08-27 23:45:04,288 : INFO : h_r_error: 46.511382971724544\n", - "2018-08-27 23:45:04,291 : INFO : h_r_error: 46.511382971724544\n", - "2018-08-27 23:45:04,295 : INFO : h_r_error: 8.708326097244038\n", - "2018-08-27 23:45:04,303 : INFO : h_r_error: 8.680697033603716\n", - "2018-08-27 23:45:04,306 : INFO : h_r_error: 8.680697033603716\n", - "2018-08-27 23:45:04,308 : INFO : h_r_error: 18.09845068156573\n", - "2018-08-27 23:45:04,310 : INFO : h_r_error: 18.063181886399903\n", - "2018-08-27 23:45:04,318 : INFO : h_r_error: 18.063181886399903\n", - "2018-08-27 23:45:04,320 : INFO : h_r_error: 100.33083746461689\n", - "2018-08-27 23:45:04,322 : INFO : h_r_error: 99.32946040028433\n", - "2018-08-27 23:45:04,325 : INFO : h_r_error: 99.32946040028433\n", - "2018-08-27 23:45:04,327 : INFO : h_r_error: 45.93307787490926\n", - "2018-08-27 23:45:04,330 : INFO : h_r_error: 45.83755607447074\n", - "2018-08-27 23:45:04,336 : INFO : h_r_error: 45.83755607447074\n", - "2018-08-27 23:45:04,342 : INFO : h_r_error: 172.99392927580686\n", - "2018-08-27 23:45:04,345 : INFO : h_r_error: 172.55845431899172\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:04,350 : INFO : h_r_error: 172.55845431899172\n", - "2018-08-27 23:45:04,361 : INFO : h_r_error: 25.884914833774886\n", - "2018-08-27 23:45:04,368 : INFO : h_r_error: 25.822460180952838\n", - "2018-08-27 23:45:04,371 : INFO : h_r_error: 25.822460180952838\n", - "2018-08-27 23:45:04,375 : INFO : h_r_error: 38.76063887209145\n", - "2018-08-27 23:45:04,378 : INFO : h_r_error: 38.76063887209145\n", - "2018-08-27 23:45:04,379 : INFO : h_r_error: 326.07969479087296\n", - "2018-08-27 23:45:04,382 : INFO : h_r_error: 325.3908992600763\n", - "2018-08-27 23:45:04,384 : INFO : h_r_error: 325.3908992600763\n", - "2018-08-27 23:45:04,386 : INFO : h_r_error: 35.91784836580319\n", - "2018-08-27 23:45:04,388 : INFO : h_r_error: 35.807358439079145\n", - "2018-08-27 23:45:04,391 : INFO : h_r_error: 35.807358439079145\n", - "2018-08-27 23:45:04,394 : INFO : h_r_error: 19.13148079768309\n", - "2018-08-27 23:45:04,396 : INFO : h_r_error: 19.106338684559624\n", - "2018-08-27 23:45:04,398 : INFO : h_r_error: 19.106338684559624\n", - "2018-08-27 23:45:04,401 : INFO : h_r_error: 30.54882445898526\n", - "2018-08-27 23:45:04,403 : INFO : h_r_error: 30.477952769601643\n", - "2018-08-27 23:45:04,407 : INFO : h_r_error: 30.477952769601643\n", - "2018-08-27 23:45:04,409 : INFO : h_r_error: 118.11783188301177\n", - "2018-08-27 23:45:04,411 : INFO : h_r_error: 117.95749163935196\n", - "2018-08-27 23:45:04,414 : INFO : h_r_error: 117.95749163935196\n", - "2018-08-27 23:45:04,416 : INFO : h_r_error: 112.68984570289032\n", - "2018-08-27 23:45:04,418 : INFO : h_r_error: 112.39058618319598\n", - "2018-08-27 23:45:04,420 : INFO : h_r_error: 112.39058618319598\n", - "2018-08-27 23:45:04,434 : INFO : h_r_error: 67.63161564112114\n", - "2018-08-27 23:45:04,437 : INFO : h_r_error: 67.38818054462419\n", - "2018-08-27 23:45:04,439 : INFO : h_r_error: 67.38818054462419\n", - "2018-08-27 23:45:04,443 : INFO : h_r_error: 9.875720892583283\n", - "2018-08-27 23:45:04,447 : INFO : h_r_error: 9.875720892583283\n", - "2018-08-27 23:45:04,453 : INFO : h_r_error: 40.23718588228616\n", - "2018-08-27 23:45:04,457 : INFO : h_r_error: 40.12951778704642\n", - "2018-08-27 23:45:04,458 : INFO : h_r_error: 40.12951778704642\n", - "2018-08-27 23:45:04,463 : INFO : h_r_error: 341.7530962911671\n", - "2018-08-27 23:45:04,464 : INFO : h_r_error: 341.0137229649033\n", - "2018-08-27 23:45:04,465 : INFO : h_r_error: 341.0137229649033\n", - "2018-08-27 23:45:04,469 : INFO : h_r_error: 15.20696520524891\n", - "2018-08-27 23:45:04,470 : INFO : h_r_error: 15.180914790066174\n", - "2018-08-27 23:45:04,472 : INFO : h_r_error: 15.180914790066174\n", - "2018-08-27 23:45:04,477 : INFO : h_r_error: 91.88770548102734\n", - "2018-08-27 23:45:04,479 : INFO : h_r_error: 91.7498654626676\n", - "2018-08-27 23:45:04,485 : INFO : h_r_error: 91.7498654626676\n", - "2018-08-27 23:45:04,492 : INFO : h_r_error: 7.99380833962436\n", - "2018-08-27 23:45:04,495 : INFO : h_r_error: 7.99380833962436\n", - "2018-08-27 23:45:04,497 : INFO : h_r_error: 47.93056236196947\n", - "2018-08-27 23:45:04,498 : INFO : h_r_error: 47.84428774849964\n", - "2018-08-27 23:45:04,499 : INFO : h_r_error: 47.84428774849964\n", - "2018-08-27 23:45:04,506 : INFO : h_r_error: 52.90813075228478\n", - "2018-08-27 23:45:04,508 : INFO : h_r_error: 52.81428442296331\n", - "2018-08-27 23:45:04,511 : INFO : h_r_error: 52.81428442296331\n", - "2018-08-27 23:45:04,516 : INFO : h_r_error: 68.10073234335286\n", - "2018-08-27 23:45:04,526 : INFO : h_r_error: 67.97576427175636\n", - "2018-08-27 23:45:04,529 : INFO : h_r_error: 67.97576427175636\n", - "2018-08-27 23:45:04,533 : INFO : h_r_error: 75.36719552736331\n", - "2018-08-27 23:45:04,543 : INFO : h_r_error: 75.27193793652492\n", - "2018-08-27 23:45:04,546 : INFO : h_r_error: 75.27193793652492\n", - "2018-08-27 23:45:04,548 : INFO : h_r_error: 28.530087674928073\n", - "2018-08-27 23:45:04,550 : INFO : h_r_error: 28.50034946673951\n", - "2018-08-27 23:45:04,552 : INFO : h_r_error: 28.50034946673951\n", - "2018-08-27 23:45:04,553 : INFO : h_r_error: 24.485778716713398\n", - "2018-08-27 23:45:04,555 : INFO : h_r_error: 24.40205609899557\n", - "2018-08-27 23:45:04,558 : INFO : h_r_error: 24.40205609899557\n", - "2018-08-27 23:45:04,560 : INFO : h_r_error: 71.76258960905648\n", - "2018-08-27 23:45:04,562 : INFO : h_r_error: 71.63809389069475\n", - "2018-08-27 23:45:04,563 : INFO : h_r_error: 71.63809389069475\n", - "2018-08-27 23:45:04,565 : INFO : h_r_error: 32.94452045893797\n", - "2018-08-27 23:45:04,566 : INFO : h_r_error: 32.84996027645773\n", - "2018-08-27 23:45:04,567 : INFO : h_r_error: 32.84996027645773\n", - "2018-08-27 23:45:04,568 : INFO : h_r_error: 51.747013522414\n", - "2018-08-27 23:45:04,570 : INFO : h_r_error: 51.621934447503435\n", - "2018-08-27 23:45:04,571 : INFO : h_r_error: 51.621934447503435\n", - "2018-08-27 23:45:04,572 : INFO : h_r_error: 43.221893858403526\n", - "2018-08-27 23:45:04,573 : INFO : h_r_error: 43.15357558195317\n", - "2018-08-27 23:45:04,575 : INFO : h_r_error: 43.15357558195317\n", - "2018-08-27 23:45:04,576 : INFO : h_r_error: 24.834453425716553\n", - "2018-08-27 23:45:04,578 : INFO : h_r_error: 24.780902969780268\n", - "2018-08-27 23:45:04,580 : INFO : h_r_error: 24.780902969780268\n", - "2018-08-27 23:45:04,582 : INFO : h_r_error: 103.18698575019215\n", - "2018-08-27 23:45:04,583 : INFO : h_r_error: 102.89563512414941\n", - "2018-08-27 23:45:04,585 : INFO : h_r_error: 102.89563512414941\n", - "2018-08-27 23:45:04,586 : INFO : h_r_error: 111.41180910967762\n", - "2018-08-27 23:45:04,590 : INFO : h_r_error: 111.11629448016784\n", - "2018-08-27 23:45:04,591 : INFO : h_r_error: 111.11629448016784\n", - "2018-08-27 23:45:04,593 : INFO : h_r_error: 74.02070282429735\n", - "2018-08-27 23:45:04,594 : INFO : h_r_error: 73.86203655847076\n", - "2018-08-27 23:45:04,595 : INFO : h_r_error: 73.86203655847076\n", - "2018-08-27 23:45:04,597 : INFO : h_r_error: 41.66190527662034\n", - "2018-08-27 23:45:04,598 : INFO : h_r_error: 41.66190527662034\n", - "2018-08-27 23:45:04,599 : INFO : h_r_error: 43.77664102207761\n", - "2018-08-27 23:45:04,600 : INFO : h_r_error: 43.68946419973811\n", - "2018-08-27 23:45:04,602 : INFO : h_r_error: 43.68946419973811\n", - "2018-08-27 23:45:04,611 : INFO : h_r_error: 46.47502187937036\n", - "2018-08-27 23:45:04,615 : INFO : h_r_error: 46.37603081449998\n", - "2018-08-27 23:45:04,620 : INFO : h_r_error: 46.37603081449998\n", - "2018-08-27 23:45:04,622 : INFO : h_r_error: 36.51671895744207\n", - "2018-08-27 23:45:04,623 : INFO : h_r_error: 36.47358311957819\n", - "2018-08-27 23:45:04,624 : INFO : h_r_error: 36.47358311957819\n", - "2018-08-27 23:45:04,626 : INFO : h_r_error: 119.22053198745213\n", - "2018-08-27 23:45:04,627 : INFO : h_r_error: 118.78585463410356\n", - "2018-08-27 23:45:04,628 : INFO : h_r_error: 118.78585463410356\n", - "2018-08-27 23:45:04,629 : INFO : h_r_error: 12.36947455298395\n", - "2018-08-27 23:45:04,632 : INFO : h_r_error: 12.36947455298395\n", - "2018-08-27 23:45:04,633 : INFO : h_r_error: 98.74868687267168\n", - "2018-08-27 23:45:04,634 : INFO : h_r_error: 98.42389495726586\n", - "2018-08-27 23:45:04,643 : INFO : h_r_error: 98.42389495726586\n", - "2018-08-27 23:45:04,647 : INFO : h_r_error: 17.196508354325065\n", - "2018-08-27 23:45:04,654 : INFO : h_r_error: 17.172894654714554\n", - "2018-08-27 23:45:04,657 : INFO : h_r_error: 17.172894654714554\n", - "2018-08-27 23:45:04,659 : INFO : h_r_error: 45.02793287033883\n", - "2018-08-27 23:45:04,664 : INFO : h_r_error: 44.950495265114895\n", - "2018-08-27 23:45:04,674 : INFO : h_r_error: 44.950495265114895\n", - "2018-08-27 23:45:04,676 : INFO : h_r_error: 16.784091558592557\n", - "2018-08-27 23:45:04,677 : INFO : h_r_error: 16.76516342252006\n", - "2018-08-27 23:45:04,678 : INFO : h_r_error: 16.76516342252006\n", - "2018-08-27 23:45:04,687 : INFO : h_r_error: 272.29622434411266\n", - "2018-08-27 23:45:04,688 : INFO : h_r_error: 263.14701041124584\n", - "2018-08-27 23:45:04,690 : INFO : h_r_error: 263.14701041124584\n", - "2018-08-27 23:45:04,691 : INFO : h_r_error: 48.589308955920636\n", - "2018-08-27 23:45:04,693 : INFO : h_r_error: 48.51935331735766\n", - "2018-08-27 23:45:04,702 : INFO : h_r_error: 48.51935331735766\n", - "2018-08-27 23:45:04,704 : INFO : h_r_error: 60.59585536276832\n", - "2018-08-27 23:45:04,730 : INFO : h_r_error: 60.44344276513254\n", - "2018-08-27 23:45:04,731 : INFO : h_r_error: 60.44344276513254\n", - "2018-08-27 23:45:04,739 : INFO : h_r_error: 146.68709034649353\n", - "2018-08-27 23:45:04,743 : INFO : h_r_error: 146.2627454097848\n", - "2018-08-27 23:45:04,745 : INFO : h_r_error: 146.2627454097848\n", - "2018-08-27 23:45:04,746 : INFO : h_r_error: 29.81028764637969\n", - "2018-08-27 23:45:04,750 : INFO : h_r_error: 29.81028764637969\n", - "2018-08-27 23:45:04,761 : INFO : h_r_error: 31.12910097266583\n", - "2018-08-27 23:45:04,763 : INFO : h_r_error: 31.12910097266583\n", - "2018-08-27 23:45:04,772 : INFO : h_r_error: 56.43612105578995\n", - "2018-08-27 23:45:04,773 : INFO : h_r_error: 56.32484957580539\n", - "2018-08-27 23:45:04,777 : INFO : h_r_error: 56.32484957580539\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:04,778 : INFO : h_r_error: 51.557964045313064\n", - "2018-08-27 23:45:04,781 : INFO : h_r_error: 51.50323473393472\n", - "2018-08-27 23:45:04,785 : INFO : h_r_error: 51.50323473393472\n", - "2018-08-27 23:45:04,786 : INFO : h_r_error: 375.5958407200147\n", - "2018-08-27 23:45:04,794 : INFO : h_r_error: 375.5958407200147\n", - "2018-08-27 23:45:04,804 : INFO : h_r_error: 59.30199953901197\n", - "2018-08-27 23:45:04,806 : INFO : h_r_error: 59.19505862613608\n", - "2018-08-27 23:45:04,808 : INFO : h_r_error: 59.19505862613608\n", - "2018-08-27 23:45:04,810 : INFO : h_r_error: 81.09605110179356\n", - "2018-08-27 23:45:04,814 : INFO : h_r_error: 80.92624684791024\n", - "2018-08-27 23:45:04,821 : INFO : h_r_error: 80.92624684791024\n", - "2018-08-27 23:45:04,823 : INFO : h_r_error: 0.12451997498887594\n", - "2018-08-27 23:45:04,826 : INFO : h_r_error: 0.06254923862768746\n", - "2018-08-27 23:45:04,836 : INFO : h_r_error: 0.06254923862768746\n", - "2018-08-27 23:45:04,842 : INFO : h_r_error: 279.7162441491524\n", - "2018-08-27 23:45:04,844 : INFO : h_r_error: 278.5133132996239\n", - "2018-08-27 23:45:04,847 : INFO : h_r_error: 278.5133132996239\n", - "2018-08-27 23:45:04,850 : INFO : h_r_error: 10.405242457216737\n", - "2018-08-27 23:45:04,851 : INFO : h_r_error: 10.405242457216737\n", - "2018-08-27 23:45:04,857 : INFO : h_r_error: 224.58381043575807\n", - "2018-08-27 23:45:04,859 : INFO : h_r_error: 223.58493832198027\n", - "2018-08-27 23:45:04,860 : INFO : h_r_error: 223.58493832198027\n", - "2018-08-27 23:45:04,862 : INFO : h_r_error: 36.14347291234895\n", - "2018-08-27 23:45:04,864 : INFO : h_r_error: 36.14347291234895\n", - "2018-08-27 23:45:04,873 : INFO : h_r_error: 47.783598369161034\n", - "2018-08-27 23:45:04,875 : INFO : h_r_error: 47.71929316902629\n", - "2018-08-27 23:45:04,876 : INFO : h_r_error: 47.71929316902629\n", - "2018-08-27 23:45:04,878 : INFO : h_r_error: 26.10486254927454\n", - "2018-08-27 23:45:04,879 : INFO : h_r_error: 26.072146034937298\n", - "2018-08-27 23:45:04,880 : INFO : h_r_error: 26.072146034937298\n", - "2018-08-27 23:45:04,882 : INFO : h_r_error: 45.881043812466565\n", - "2018-08-27 23:45:04,883 : INFO : h_r_error: 45.831982063353784\n", - "2018-08-27 23:45:04,885 : INFO : h_r_error: 45.831982063353784\n", - "2018-08-27 23:45:04,886 : INFO : h_r_error: 356.48380941681353\n", - "2018-08-27 23:45:04,887 : INFO : h_r_error: 355.3059212794506\n", - "2018-08-27 23:45:04,889 : INFO : h_r_error: 355.3059212794506\n", - "2018-08-27 23:45:04,891 : INFO : h_r_error: 1074.803474477057\n", - "2018-08-27 23:45:04,892 : INFO : h_r_error: 1068.767359403698\n", - "2018-08-27 23:45:04,894 : INFO : h_r_error: 1068.767359403698\n", - "2018-08-27 23:45:04,895 : INFO : h_r_error: 82.42340322907675\n", - "2018-08-27 23:45:04,897 : INFO : h_r_error: 82.29465170089688\n", - "2018-08-27 23:45:04,906 : INFO : h_r_error: 82.29465170089688\n", - "2018-08-27 23:45:04,907 : INFO : h_r_error: 53.00924611909265\n", - "2018-08-27 23:45:04,909 : INFO : h_r_error: 52.93667009857036\n", - "2018-08-27 23:45:04,914 : INFO : h_r_error: 52.93667009857036\n", - "2018-08-27 23:45:04,917 : INFO : h_r_error: 132.22686472608305\n", - "2018-08-27 23:45:04,936 : INFO : h_r_error: 131.59627959677712\n", - "2018-08-27 23:45:04,939 : INFO : h_r_error: 131.59627959677712\n", - "2018-08-27 23:45:04,944 : INFO : h_r_error: 399.1276938223757\n", - "2018-08-27 23:45:04,953 : INFO : h_r_error: 398.4450206660284\n", - "2018-08-27 23:45:04,954 : INFO : h_r_error: 398.4450206660284\n", - "2018-08-27 23:45:04,955 : INFO : h_r_error: 103.18692392501183\n", - "2018-08-27 23:45:04,956 : INFO : h_r_error: 102.80063043957189\n", - "2018-08-27 23:45:04,966 : INFO : h_r_error: 102.80063043957189\n", - "2018-08-27 23:45:04,968 : INFO : h_r_error: 176.77693904767978\n", - "2018-08-27 23:45:04,969 : INFO : h_r_error: 176.1113230283505\n", - "2018-08-27 23:45:04,971 : INFO : h_r_error: 176.1113230283505\n", - "2018-08-27 23:45:04,972 : INFO : h_r_error: 62.67866573688081\n", - "2018-08-27 23:45:04,974 : INFO : h_r_error: 62.67866573688081\n", - "2018-08-27 23:45:04,975 : INFO : h_r_error: 81.00776489280221\n", - "2018-08-27 23:45:04,977 : INFO : h_r_error: 80.69656354740044\n", - "2018-08-27 23:45:04,980 : INFO : h_r_error: 80.69656354740044\n", - "2018-08-27 23:45:04,982 : INFO : h_r_error: 66.44726657326723\n", - "2018-08-27 23:45:04,984 : INFO : h_r_error: 66.44726657326723\n", - "2018-08-27 23:45:04,986 : INFO : h_r_error: 103.02284615407633\n", - "2018-08-27 23:45:04,987 : INFO : h_r_error: 102.79756994528293\n", - "2018-08-27 23:45:04,988 : INFO : h_r_error: 102.79756994528293\n", - "2018-08-27 23:45:04,990 : INFO : h_r_error: 10.37893414622033\n", - "2018-08-27 23:45:04,992 : INFO : h_r_error: 10.37893414622033\n", - "2018-08-27 23:45:04,994 : INFO : h_r_error: 3.9828215207795665\n", - "2018-08-27 23:45:04,996 : INFO : h_r_error: 3.9828215207795665\n", - "2018-08-27 23:45:04,997 : INFO : h_r_error: 23.669494910214613\n", - "2018-08-27 23:45:04,998 : INFO : h_r_error: 23.645524541075627\n", - "2018-08-27 23:45:05,000 : INFO : h_r_error: 23.645524541075627\n", - "2018-08-27 23:45:05,002 : INFO : h_r_error: 12.97097850992599\n", - "2018-08-27 23:45:05,004 : INFO : h_r_error: 12.97097850992599\n", - "2018-08-27 23:45:05,006 : INFO : h_r_error: 103.68148104279378\n", - "2018-08-27 23:45:05,007 : INFO : h_r_error: 103.49815298700966\n", - "2018-08-27 23:45:05,009 : INFO : h_r_error: 103.49815298700966\n", - "2018-08-27 23:45:05,012 : INFO : h_r_error: 8.971282393689249\n", - "2018-08-27 23:45:05,017 : INFO : h_r_error: 8.971282393689249\n", - "2018-08-27 23:45:05,018 : INFO : h_r_error: 126.697844983246\n", - "2018-08-27 23:45:05,020 : INFO : h_r_error: 126.41887876084479\n", - "2018-08-27 23:45:05,025 : INFO : h_r_error: 126.41887876084479\n", - "2018-08-27 23:45:05,035 : INFO : h_r_error: 43.986960192180156\n", - "2018-08-27 23:45:05,036 : INFO : h_r_error: 43.85019636108341\n", - "2018-08-27 23:45:05,039 : INFO : h_r_error: 43.85019636108341\n", - "2018-08-27 23:45:05,040 : INFO : h_r_error: 33.317511927040705\n", - "2018-08-27 23:45:05,066 : INFO : h_r_error: 33.246013926504126\n", - "2018-08-27 23:45:05,074 : INFO : h_r_error: 33.246013926504126\n", - "2018-08-27 23:45:05,083 : INFO : h_r_error: 24.354967487992816\n", - "2018-08-27 23:45:05,093 : INFO : h_r_error: 24.354967487992816\n", - "2018-08-27 23:45:05,095 : INFO : h_r_error: 16.730628210879885\n", - "2018-08-27 23:45:05,096 : INFO : h_r_error: 16.711269803718004\n", - "2018-08-27 23:45:05,098 : INFO : h_r_error: 16.711269803718004\n", - "2018-08-27 23:45:05,099 : INFO : h_r_error: 17.70236723598152\n", - "2018-08-27 23:45:05,101 : INFO : h_r_error: 17.678321231502917\n", - "2018-08-27 23:45:05,102 : INFO : h_r_error: 17.678321231502917\n", - "2018-08-27 23:45:05,104 : INFO : h_r_error: 10.89898638235731\n", - "2018-08-27 23:45:05,106 : INFO : h_r_error: 10.89898638235731\n", - "2018-08-27 23:45:05,108 : INFO : h_r_error: 50.66017612593839\n", - "2018-08-27 23:45:05,109 : INFO : h_r_error: 50.56449274032813\n", - "2018-08-27 23:45:05,111 : INFO : h_r_error: 50.56449274032813\n", - "2018-08-27 23:45:05,113 : INFO : h_r_error: 58.31406063764488\n", - "2018-08-27 23:45:05,114 : INFO : h_r_error: 58.240077879598275\n", - "2018-08-27 23:45:05,116 : INFO : h_r_error: 58.240077879598275\n", - "2018-08-27 23:45:05,118 : INFO : h_r_error: 41.39476214434248\n", - "2018-08-27 23:45:05,119 : INFO : h_r_error: 41.39476214434248\n", - "2018-08-27 23:45:05,121 : INFO : h_r_error: 76.90360055926796\n", - "2018-08-27 23:45:05,122 : INFO : h_r_error: 76.61224711725603\n", - "2018-08-27 23:45:05,125 : INFO : h_r_error: 76.61224711725603\n", - "2018-08-27 23:45:05,126 : INFO : h_r_error: 32.47432604339973\n", - "2018-08-27 23:45:05,131 : INFO : h_r_error: 32.43147144777044\n", - "2018-08-27 23:45:05,134 : INFO : h_r_error: 32.43147144777044\n", - "2018-08-27 23:45:05,136 : INFO : h_r_error: 163.7460587798575\n", - "2018-08-27 23:45:05,138 : INFO : h_r_error: 162.85590589126474\n", - "2018-08-27 23:45:05,140 : INFO : h_r_error: 162.85590589126474\n", - "2018-08-27 23:45:05,142 : INFO : h_r_error: 213.55862231776482\n", - "2018-08-27 23:45:05,148 : INFO : h_r_error: 212.83196910132526\n", - "2018-08-27 23:45:05,149 : INFO : h_r_error: 212.83196910132526\n", - "2018-08-27 23:45:05,156 : INFO : h_r_error: 493.4243588171964\n", - "2018-08-27 23:45:05,157 : INFO : h_r_error: 493.4243588171964\n", - "2018-08-27 23:45:05,158 : INFO : h_r_error: 28.617555551648177\n", - "2018-08-27 23:45:05,160 : INFO : h_r_error: 28.574325881772648\n", - "2018-08-27 23:45:05,172 : INFO : h_r_error: 28.574325881772648\n", - "2018-08-27 23:45:05,173 : INFO : h_r_error: 37.33773258040522\n", - "2018-08-27 23:45:05,178 : INFO : h_r_error: 37.24902019477671\n", - "2018-08-27 23:45:05,179 : INFO : h_r_error: 37.24902019477671\n", - "2018-08-27 23:45:05,181 : INFO : h_r_error: 143.9899535667374\n", - "2018-08-27 23:45:05,186 : INFO : h_r_error: 143.6984408698545\n", - "2018-08-27 23:45:05,187 : INFO : h_r_error: 143.6984408698545\n", - "2018-08-27 23:45:05,189 : INFO : h_r_error: 80.77961475352456\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:05,194 : INFO : h_r_error: 80.40671792920304\n", - "2018-08-27 23:45:05,202 : INFO : h_r_error: 80.40671792920304\n", - "2018-08-27 23:45:05,204 : INFO : h_r_error: 100.25368008543657\n", - "2018-08-27 23:45:05,205 : INFO : h_r_error: 100.00731675409415\n", - "2018-08-27 23:45:05,211 : INFO : h_r_error: 100.00731675409415\n", - "2018-08-27 23:45:05,218 : INFO : h_r_error: 89.08353563367831\n", - "2018-08-27 23:45:05,225 : INFO : h_r_error: 88.88437664497803\n", - "2018-08-27 23:45:05,228 : INFO : h_r_error: 88.88437664497803\n", - "2018-08-27 23:45:05,231 : INFO : h_r_error: 39.624592449996385\n", - "2018-08-27 23:45:05,235 : INFO : h_r_error: 39.624592449996385\n", - "2018-08-27 23:45:05,242 : INFO : h_r_error: 76.1784936796049\n", - "2018-08-27 23:45:05,243 : INFO : h_r_error: 76.10054579189001\n", - "2018-08-27 23:45:05,245 : INFO : h_r_error: 76.10054579189001\n", - "2018-08-27 23:45:05,247 : INFO : h_r_error: 32.19508197934453\n", - "2018-08-27 23:45:05,249 : INFO : h_r_error: 32.11345417491875\n", - "2018-08-27 23:45:05,256 : INFO : h_r_error: 32.11345417491875\n", - "2018-08-27 23:45:05,257 : INFO : h_r_error: 12.717907643205596\n", - "2018-08-27 23:45:05,258 : INFO : h_r_error: 12.695655970406433\n", - "2018-08-27 23:45:05,269 : INFO : h_r_error: 12.695655970406433\n", - "2018-08-27 23:45:05,270 : INFO : h_r_error: 29.97696616689878\n", - "2018-08-27 23:45:05,271 : INFO : h_r_error: 29.945933181501676\n", - "2018-08-27 23:45:05,280 : INFO : h_r_error: 29.945933181501676\n", - "2018-08-27 23:45:05,282 : INFO : h_r_error: 222.6956719365073\n", - "2018-08-27 23:45:05,283 : INFO : h_r_error: 222.1902767933728\n", - "2018-08-27 23:45:05,285 : INFO : h_r_error: 222.1902767933728\n", - "2018-08-27 23:45:05,292 : INFO : h_r_error: 164.9383914208657\n", - "2018-08-27 23:45:05,294 : INFO : h_r_error: 164.50976760192614\n", - "2018-08-27 23:45:05,295 : INFO : h_r_error: 164.50976760192614\n", - "2018-08-27 23:45:05,297 : INFO : h_r_error: 209.30751789177947\n", - "2018-08-27 23:45:05,298 : INFO : h_r_error: 208.55062685449153\n", - "2018-08-27 23:45:05,306 : INFO : h_r_error: 208.55062685449153\n", - "2018-08-27 23:45:05,307 : INFO : h_r_error: 29.811920388692\n", - "2018-08-27 23:45:05,309 : INFO : h_r_error: 29.811920388692\n", - "2018-08-27 23:45:05,310 : INFO : h_r_error: 55.36831813557419\n", - "2018-08-27 23:45:05,312 : INFO : h_r_error: 55.175614373539524\n", - "2018-08-27 23:45:05,319 : INFO : h_r_error: 55.175614373539524\n", - "2018-08-27 23:45:05,320 : INFO : h_r_error: 22.66210474653694\n", - "2018-08-27 23:45:05,322 : INFO : h_r_error: 22.630805268842845\n", - "2018-08-27 23:45:05,323 : INFO : h_r_error: 22.630805268842845\n", - "2018-08-27 23:45:05,325 : INFO : h_r_error: 54.8787759548081\n", - "2018-08-27 23:45:05,332 : INFO : h_r_error: 54.782878134989666\n", - "2018-08-27 23:45:05,334 : INFO : h_r_error: 54.782878134989666\n", - "2018-08-27 23:45:05,335 : INFO : h_r_error: 473.98292303443696\n", - "2018-08-27 23:45:05,337 : INFO : h_r_error: 470.7806186597125\n", - "2018-08-27 23:45:05,338 : INFO : h_r_error: 470.7806186597125\n", - "2018-08-27 23:45:05,339 : INFO : h_r_error: 57.637429120961514\n", - "2018-08-27 23:45:05,341 : INFO : h_r_error: 57.637429120961514\n", - "2018-08-27 23:45:05,342 : INFO : h_r_error: 54.84098978549135\n", - "2018-08-27 23:45:05,343 : INFO : h_r_error: 54.731050621007924\n", - "2018-08-27 23:45:05,345 : INFO : h_r_error: 54.731050621007924\n", - "2018-08-27 23:45:05,347 : INFO : h_r_error: 34.344488940552374\n", - "2018-08-27 23:45:05,348 : INFO : h_r_error: 34.29309024651082\n", - "2018-08-27 23:45:05,349 : INFO : h_r_error: 34.29309024651082\n", - "2018-08-27 23:45:05,351 : INFO : h_r_error: 33.804835588294424\n", - "2018-08-27 23:45:05,352 : INFO : h_r_error: 33.73875495160515\n", - "2018-08-27 23:45:05,354 : INFO : h_r_error: 33.73875495160515\n", - "2018-08-27 23:45:05,355 : INFO : h_r_error: 334.8471101952096\n", - "2018-08-27 23:45:05,356 : INFO : h_r_error: 333.4181890224117\n", - "2018-08-27 23:45:05,358 : INFO : h_r_error: 333.4181890224117\n", - "2018-08-27 23:45:05,360 : INFO : h_r_error: 251.2026365727504\n", - "2018-08-27 23:45:05,361 : INFO : h_r_error: 249.787142683179\n", - "2018-08-27 23:45:05,363 : INFO : h_r_error: 249.787142683179\n", - "2018-08-27 23:45:05,364 : INFO : h_r_error: 717.6439187745607\n", - "2018-08-27 23:45:05,365 : INFO : h_r_error: 711.0269421933101\n", - "2018-08-27 23:45:05,367 : INFO : h_r_error: 711.0269421933101\n", - "2018-08-27 23:45:05,381 : INFO : h_r_error: 17.2685946367622\n", - "2018-08-27 23:45:05,382 : INFO : h_r_error: 17.213188799073407\n", - "2018-08-27 23:45:05,394 : INFO : h_r_error: 17.213188799073407\n", - "2018-08-27 23:45:05,397 : INFO : h_r_error: 63.310041850300706\n", - "2018-08-27 23:45:05,400 : INFO : h_r_error: 63.12396766516307\n", - "2018-08-27 23:45:05,403 : INFO : h_r_error: 63.12396766516307\n", - "2018-08-27 23:45:05,411 : INFO : h_r_error: 67.25255047569941\n", - "2018-08-27 23:45:05,412 : INFO : h_r_error: 67.0718101677796\n", - "2018-08-27 23:45:05,416 : INFO : h_r_error: 67.0718101677796\n", - "2018-08-27 23:45:05,418 : INFO : h_r_error: 96.82509977203402\n", - "2018-08-27 23:45:05,427 : INFO : h_r_error: 96.59575685673157\n", - "2018-08-27 23:45:05,429 : INFO : h_r_error: 96.59575685673157\n", - "2018-08-27 23:45:05,430 : INFO : h_r_error: 57.28442535649926\n", - "2018-08-27 23:45:05,432 : INFO : h_r_error: 57.03749537621\n", - "2018-08-27 23:45:05,434 : INFO : h_r_error: 57.03749537621\n", - "2018-08-27 23:45:05,436 : INFO : h_r_error: 33.198609754389466\n", - "2018-08-27 23:45:05,438 : INFO : h_r_error: 33.198609754389466\n", - "2018-08-27 23:45:05,439 : INFO : h_r_error: 92.21154391171746\n", - "2018-08-27 23:45:05,441 : INFO : h_r_error: 92.0492262955964\n", - "2018-08-27 23:45:05,442 : INFO : h_r_error: 92.0492262955964\n", - "2018-08-27 23:45:05,446 : INFO : h_r_error: 39.62187123027486\n", - "2018-08-27 23:45:05,448 : INFO : h_r_error: 39.55070540124188\n", - "2018-08-27 23:45:05,450 : INFO : h_r_error: 39.55070540124188\n", - "2018-08-27 23:45:05,452 : INFO : h_r_error: 57.54645991343302\n", - "2018-08-27 23:45:05,454 : INFO : h_r_error: 57.43757789157815\n", - "2018-08-27 23:45:05,456 : INFO : h_r_error: 57.43757789157815\n", - "2018-08-27 23:45:05,457 : INFO : h_r_error: 90.71075170436812\n", - "2018-08-27 23:45:05,460 : INFO : h_r_error: 90.52866396591806\n", - "2018-08-27 23:45:05,462 : INFO : h_r_error: 90.52866396591806\n", - "2018-08-27 23:45:05,463 : INFO : h_r_error: 180.35779487769042\n", - "2018-08-27 23:45:05,464 : INFO : h_r_error: 179.40878182281148\n", - "2018-08-27 23:45:05,466 : INFO : h_r_error: 179.40878182281148\n", - "2018-08-27 23:45:05,468 : INFO : h_r_error: 7.83801583349308\n", - "2018-08-27 23:45:05,470 : INFO : h_r_error: 7.823401539630104\n", - "2018-08-27 23:45:05,472 : INFO : h_r_error: 7.823401539630104\n", - "2018-08-27 23:45:05,476 : INFO : h_r_error: 9.254828368607908\n", - "2018-08-27 23:45:05,478 : INFO : h_r_error: 9.229768831769041\n", - "2018-08-27 23:45:05,486 : INFO : h_r_error: 9.229768831769041\n", - "2018-08-27 23:45:05,488 : INFO : h_r_error: 18.356779344878174\n", - "2018-08-27 23:45:05,489 : INFO : h_r_error: 18.356779344878174\n", - "2018-08-27 23:45:05,492 : INFO : h_r_error: 104.7231933687518\n", - "2018-08-27 23:45:05,500 : INFO : h_r_error: 104.38175449266039\n", - "2018-08-27 23:45:05,509 : INFO : h_r_error: 104.38175449266039\n", - "2018-08-27 23:45:05,510 : INFO : h_r_error: 120.76535674867081\n", - "2018-08-27 23:45:05,512 : INFO : h_r_error: 120.5730804932121\n", - "2018-08-27 23:45:05,514 : INFO : h_r_error: 120.5730804932121\n", - "2018-08-27 23:45:05,516 : INFO : h_r_error: 100.59423021905452\n", - "2018-08-27 23:45:05,517 : INFO : h_r_error: 100.00259981939946\n", - "2018-08-27 23:45:05,522 : INFO : h_r_error: 100.00259981939946\n", - "2018-08-27 23:45:05,523 : INFO : h_r_error: 316.14325970501403\n", - "2018-08-27 23:45:05,525 : INFO : h_r_error: 314.1222320708036\n", - "2018-08-27 23:45:05,530 : INFO : h_r_error: 314.1222320708036\n", - "2018-08-27 23:45:05,531 : INFO : h_r_error: 24.28278183255654\n", - "2018-08-27 23:45:05,533 : INFO : h_r_error: 24.255520461317907\n", - "2018-08-27 23:45:05,543 : INFO : h_r_error: 24.255520461317907\n", - "2018-08-27 23:45:05,546 : INFO : h_r_error: 91.39859512611878\n", - "2018-08-27 23:45:05,552 : INFO : h_r_error: 91.1551775182913\n", - "2018-08-27 23:45:05,555 : INFO : h_r_error: 91.1551775182913\n", - "2018-08-27 23:45:05,570 : INFO : h_r_error: 83.12974545878362\n", - "2018-08-27 23:45:05,571 : INFO : h_r_error: 83.01485925917494\n", - "2018-08-27 23:45:05,580 : INFO : h_r_error: 83.01485925917494\n", - "2018-08-27 23:45:05,584 : INFO : h_r_error: 80.5123655769513\n", - "2018-08-27 23:45:05,586 : INFO : h_r_error: 80.42955992255149\n", - "2018-08-27 23:45:05,588 : INFO : h_r_error: 80.42955992255149\n", - "2018-08-27 23:45:05,590 : INFO : h_r_error: 74.49280914592435\n", - "2018-08-27 23:45:05,591 : INFO : h_r_error: 74.4046343702391\n", - "2018-08-27 23:45:05,594 : INFO : h_r_error: 74.4046343702391\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:05,596 : INFO : h_r_error: 16.83022865186834\n", - "2018-08-27 23:45:05,600 : INFO : h_r_error: 16.83022865186834\n", - "2018-08-27 23:45:05,602 : INFO : h_r_error: 76.90450482825301\n", - "2018-08-27 23:45:05,612 : INFO : h_r_error: 76.76267688860051\n", - "2018-08-27 23:45:05,614 : INFO : h_r_error: 76.76267688860051\n", - "2018-08-27 23:45:05,617 : INFO : h_r_error: 26.055473328561543\n", - "2018-08-27 23:45:05,619 : INFO : h_r_error: 26.020126327410722\n", - "2018-08-27 23:45:05,624 : INFO : h_r_error: 26.020126327410722\n", - "2018-08-27 23:45:05,626 : INFO : h_r_error: 15.114050406012161\n", - "2018-08-27 23:45:05,628 : INFO : h_r_error: 15.096934745237116\n", - "2018-08-27 23:45:05,633 : INFO : h_r_error: 15.096934745237116\n", - "2018-08-27 23:45:05,640 : INFO : h_r_error: 25.979249064709784\n", - "2018-08-27 23:45:05,644 : INFO : h_r_error: 25.979249064709784\n", - "2018-08-27 23:45:05,645 : INFO : h_r_error: 29.8061847244872\n", - "2018-08-27 23:45:05,648 : INFO : h_r_error: 29.8061847244872\n", - "2018-08-27 23:45:05,650 : INFO : h_r_error: 52.84119446390539\n", - "2018-08-27 23:45:05,652 : INFO : h_r_error: 52.7801514797472\n", - "2018-08-27 23:45:05,654 : INFO : h_r_error: 52.7801514797472\n", - "2018-08-27 23:45:05,661 : INFO : h_r_error: 33.94928756332722\n", - "2018-08-27 23:45:05,663 : INFO : h_r_error: 33.94928756332722\n", - "2018-08-27 23:45:05,672 : INFO : h_r_error: 20.354985913833314\n", - "2018-08-27 23:45:05,674 : INFO : h_r_error: 20.354985913833314\n", - "2018-08-27 23:45:05,675 : INFO : h_r_error: 23.64560299091939\n", - "2018-08-27 23:45:05,677 : INFO : h_r_error: 23.62124568144335\n", - "2018-08-27 23:45:05,679 : INFO : h_r_error: 23.62124568144335\n", - "2018-08-27 23:45:05,680 : INFO : h_r_error: 37.16725674913654\n", - "2018-08-27 23:45:05,683 : INFO : h_r_error: 37.16725674913654\n", - "2018-08-27 23:45:05,689 : INFO : h_r_error: 64.97198348046334\n", - "2018-08-27 23:45:05,691 : INFO : h_r_error: 64.87983425584318\n", - "2018-08-27 23:45:05,692 : INFO : h_r_error: 64.87983425584318\n", - "2018-08-27 23:45:05,727 : INFO : h_r_error: 99.06825850649193\n", - "2018-08-27 23:45:05,728 : INFO : h_r_error: 98.72474555302786\n", - "2018-08-27 23:45:05,734 : INFO : h_r_error: 98.72474555302786\n", - "2018-08-27 23:45:05,747 : INFO : h_r_error: 179.04503907397066\n", - "2018-08-27 23:45:05,748 : INFO : h_r_error: 178.57702725569155\n", - "2018-08-27 23:45:05,758 : INFO : h_r_error: 178.57702725569155\n", - "2018-08-27 23:45:05,759 : INFO : h_r_error: 335.35421500504293\n", - "2018-08-27 23:45:05,762 : INFO : h_r_error: 333.8530751744872\n", - "2018-08-27 23:45:05,765 : INFO : h_r_error: 333.8530751744872\n", - "2018-08-27 23:45:05,796 : INFO : h_r_error: 47.2536783283022\n", - "2018-08-27 23:45:05,802 : INFO : h_r_error: 47.190449825684354\n", - "2018-08-27 23:45:05,805 : INFO : h_r_error: 47.190449825684354\n", - "2018-08-27 23:45:05,812 : INFO : h_r_error: 14.968815337313723\n", - "2018-08-27 23:45:05,813 : INFO : h_r_error: 14.968815337313723\n", - "2018-08-27 23:45:05,820 : INFO : h_r_error: 112.52057260382836\n", - "2018-08-27 23:45:05,821 : INFO : h_r_error: 112.38726877697576\n", - "2018-08-27 23:45:05,823 : INFO : h_r_error: 112.38726877697576\n", - "2018-08-27 23:45:05,825 : INFO : h_r_error: 32.395637388083166\n", - "2018-08-27 23:45:05,829 : INFO : h_r_error: 32.36262920454868\n", - "2018-08-27 23:45:05,836 : INFO : h_r_error: 32.36262920454868\n", - "2018-08-27 23:45:05,837 : INFO : h_r_error: 187.32958768431712\n", - "2018-08-27 23:45:05,838 : INFO : h_r_error: 185.69505549419995\n", - "2018-08-27 23:45:05,840 : INFO : h_r_error: 185.69505549419995\n", - "2018-08-27 23:45:05,842 : INFO : h_r_error: 74.93787242619476\n", - "2018-08-27 23:45:05,861 : INFO : h_r_error: 74.5932102756425\n", - "2018-08-27 23:45:05,866 : INFO : h_r_error: 74.5932102756425\n", - "2018-08-27 23:45:05,874 : INFO : h_r_error: 132.4055732421054\n", - "2018-08-27 23:45:05,875 : INFO : h_r_error: 132.1276966294472\n", - "2018-08-27 23:45:05,877 : INFO : h_r_error: 132.1276966294472\n", - "2018-08-27 23:45:05,879 : INFO : h_r_error: 46.97965418138645\n", - "2018-08-27 23:45:05,882 : INFO : h_r_error: 46.7933300267057\n", - "2018-08-27 23:45:05,894 : INFO : h_r_error: 46.7933300267057\n", - "2018-08-27 23:45:05,902 : INFO : h_r_error: 27.980124491600225\n", - "2018-08-27 23:45:05,911 : INFO : h_r_error: 27.924251103102566\n", - "2018-08-27 23:45:05,913 : INFO : h_r_error: 27.924251103102566\n", - "2018-08-27 23:45:05,915 : INFO : h_r_error: 178.47627018627526\n", - "2018-08-27 23:45:05,926 : INFO : h_r_error: 177.96137325159953\n", - "2018-08-27 23:45:05,928 : INFO : h_r_error: 177.96137325159953\n", - "2018-08-27 23:45:05,929 : INFO : h_r_error: 205.78640880959267\n", - "2018-08-27 23:45:05,931 : INFO : h_r_error: 205.51640533362584\n", - "2018-08-27 23:45:05,932 : INFO : h_r_error: 205.51640533362584\n", - "2018-08-27 23:45:05,936 : INFO : h_r_error: 165.72778645180028\n", - "2018-08-27 23:45:05,946 : INFO : h_r_error: 164.4519068718957\n", - "2018-08-27 23:45:05,948 : INFO : h_r_error: 164.4519068718957\n", - "2018-08-27 23:45:05,949 : INFO : h_r_error: 105.37569941129567\n", - "2018-08-27 23:45:05,950 : INFO : h_r_error: 104.86209218871038\n", - "2018-08-27 23:45:05,953 : INFO : h_r_error: 104.86209218871038\n", - "2018-08-27 23:45:05,954 : INFO : h_r_error: 186.76346833795128\n", - "2018-08-27 23:45:05,960 : INFO : h_r_error: 186.41293000306027\n", - "2018-08-27 23:45:05,961 : INFO : h_r_error: 186.41293000306027\n", - "2018-08-27 23:45:05,963 : INFO : h_r_error: 32.10089708965288\n", - "2018-08-27 23:45:05,964 : INFO : h_r_error: 31.99742808386358\n", - "2018-08-27 23:45:05,968 : INFO : h_r_error: 31.99742808386358\n", - "2018-08-27 23:45:05,970 : INFO : h_r_error: 63.02336627000323\n", - "2018-08-27 23:45:05,975 : INFO : h_r_error: 62.931981535390825\n", - "2018-08-27 23:45:05,984 : INFO : h_r_error: 62.931981535390825\n", - "2018-08-27 23:45:05,985 : INFO : h_r_error: 4.445971501313922\n", - "2018-08-27 23:45:05,987 : INFO : h_r_error: 4.445971501313922\n", - "2018-08-27 23:45:05,988 : INFO : h_r_error: 95.66312450298761\n", - "2018-08-27 23:45:05,989 : INFO : h_r_error: 95.4790415852222\n", - "2018-08-27 23:45:05,992 : INFO : h_r_error: 95.4790415852222\n", - "2018-08-27 23:45:05,999 : INFO : h_r_error: 191.28919082958342\n", - "2018-08-27 23:45:06,001 : INFO : h_r_error: 190.95753988365064\n", - "2018-08-27 23:45:06,003 : INFO : h_r_error: 190.95753988365064\n", - "2018-08-27 23:45:06,004 : INFO : h_r_error: 52.844820841763486\n", - "2018-08-27 23:45:06,005 : INFO : h_r_error: 52.791762190290086\n", - "2018-08-27 23:45:06,026 : INFO : h_r_error: 52.791762190290086\n", - "2018-08-27 23:45:06,029 : INFO : h_r_error: 37.00212969231467\n", - "2018-08-27 23:45:06,038 : INFO : h_r_error: 36.956456446589925\n", - "2018-08-27 23:45:06,041 : INFO : h_r_error: 36.956456446589925\n", - "2018-08-27 23:45:06,044 : INFO : h_r_error: 34.313255425376816\n", - "2018-08-27 23:45:06,046 : INFO : h_r_error: 34.313255425376816\n", - "2018-08-27 23:45:06,054 : INFO : h_r_error: 31.021435341026695\n", - "2018-08-27 23:45:06,056 : INFO : h_r_error: 30.973497244400335\n", - "2018-08-27 23:45:06,058 : INFO : h_r_error: 30.973497244400335\n", - "2018-08-27 23:45:06,061 : INFO : h_r_error: 77.02730881152762\n", - "2018-08-27 23:45:06,065 : INFO : h_r_error: 76.78731001494567\n", - "2018-08-27 23:45:06,068 : INFO : h_r_error: 76.78731001494567\n", - "2018-08-27 23:45:06,072 : INFO : h_r_error: 11.384129605615914\n", - "2018-08-27 23:45:06,077 : INFO : h_r_error: 11.384129605615914\n", - "2018-08-27 23:45:06,082 : INFO : h_r_error: 27.958567403030553\n", - "2018-08-27 23:45:06,086 : INFO : h_r_error: 27.910555959090008\n", - "2018-08-27 23:45:06,094 : INFO : h_r_error: 27.910555959090008\n", - "2018-08-27 23:45:06,100 : INFO : h_r_error: 64.67914457066533\n", - "2018-08-27 23:45:06,102 : INFO : h_r_error: 64.51811744127323\n", - "2018-08-27 23:45:06,104 : INFO : h_r_error: 64.51811744127323\n", - "2018-08-27 23:45:06,107 : INFO : h_r_error: 63.392112641950625\n", - "2018-08-27 23:45:06,110 : INFO : h_r_error: 63.280753817876544\n", - "2018-08-27 23:45:06,116 : INFO : h_r_error: 63.280753817876544\n", - "2018-08-27 23:45:06,118 : INFO : h_r_error: 56.04585759813135\n", - "2018-08-27 23:45:06,120 : INFO : h_r_error: 55.9557400064021\n", - "2018-08-27 23:45:06,124 : INFO : h_r_error: 55.9557400064021\n", - "2018-08-27 23:45:06,126 : INFO : h_r_error: 32.452653989076516\n", - "2018-08-27 23:45:06,131 : INFO : h_r_error: 32.417606966286314\n", - "2018-08-27 23:45:06,135 : INFO : h_r_error: 32.417606966286314\n", - "2018-08-27 23:45:06,137 : INFO : h_r_error: 87.75269609562916\n", - "2018-08-27 23:45:06,140 : INFO : h_r_error: 87.75269609562916\n", - "2018-08-27 23:45:06,142 : INFO : h_r_error: 20.8121550517316\n", - "2018-08-27 23:45:06,145 : INFO : h_r_error: 20.8121550517316\n", - "2018-08-27 23:45:06,148 : INFO : h_r_error: 19.842191887603086\n", - "2018-08-27 23:45:06,152 : INFO : h_r_error: 19.782324395469708\n", - "2018-08-27 23:45:06,156 : INFO : h_r_error: 19.782324395469708\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:06,164 : INFO : h_r_error: 50.440106981337415\n", - "2018-08-27 23:45:06,166 : INFO : h_r_error: 50.254724132608246\n", - "2018-08-27 23:45:06,172 : INFO : h_r_error: 50.254724132608246\n", - "2018-08-27 23:45:06,174 : INFO : h_r_error: 19.340362349877598\n", - "2018-08-27 23:45:06,178 : INFO : h_r_error: 19.340362349877598\n", - "2018-08-27 23:45:06,186 : INFO : h_r_error: 27.70996952427579\n", - "2018-08-27 23:45:06,188 : INFO : h_r_error: 27.6464740101641\n", - "2018-08-27 23:45:06,195 : INFO : h_r_error: 27.6464740101641\n", - "2018-08-27 23:45:06,202 : INFO : h_r_error: 39.34625996403188\n", - "2018-08-27 23:45:06,205 : INFO : h_r_error: 39.34625996403188\n", - "2018-08-27 23:45:06,208 : INFO : h_r_error: 33.10212029224958\n", - "2018-08-27 23:45:06,211 : INFO : h_r_error: 32.99430139672799\n", - "2018-08-27 23:45:06,214 : INFO : h_r_error: 32.99430139672799\n", - "2018-08-27 23:45:06,216 : INFO : h_r_error: 46.07887389967507\n", - "2018-08-27 23:45:06,218 : INFO : h_r_error: 46.01851588024032\n", - "2018-08-27 23:45:06,221 : INFO : h_r_error: 46.01851588024032\n", - "2018-08-27 23:45:06,226 : INFO : h_r_error: 77.33002810440445\n", - "2018-08-27 23:45:06,234 : INFO : h_r_error: 76.32402666389694\n", - "2018-08-27 23:45:06,236 : INFO : h_r_error: 76.32402666389694\n", - "2018-08-27 23:45:06,238 : INFO : h_r_error: 22.879081050323666\n", - "2018-08-27 23:45:06,242 : INFO : h_r_error: 22.879081050323666\n", - "2018-08-27 23:45:06,250 : INFO : h_r_error: 27.057964873081623\n", - "2018-08-27 23:45:06,252 : INFO : h_r_error: 26.994707692536693\n", - "2018-08-27 23:45:06,254 : INFO : h_r_error: 26.994707692536693\n", - "2018-08-27 23:45:06,262 : INFO : h_r_error: 14.789998148651417\n", - "2018-08-27 23:45:06,266 : INFO : h_r_error: 14.773387842484002\n", - "2018-08-27 23:45:06,269 : INFO : h_r_error: 14.773387842484002\n", - "2018-08-27 23:45:06,272 : INFO : h_r_error: 55.17214755726749\n", - "2018-08-27 23:45:06,274 : INFO : h_r_error: 55.04697279357498\n", - "2018-08-27 23:45:06,276 : INFO : h_r_error: 55.04697279357498\n", - "2018-08-27 23:45:06,279 : INFO : h_r_error: 26.31828241396979\n", - "2018-08-27 23:45:06,282 : INFO : h_r_error: 26.264123206310984\n", - "2018-08-27 23:45:06,284 : INFO : h_r_error: 26.264123206310984\n", - "2018-08-27 23:45:06,289 : INFO : h_r_error: 103.36830288020141\n", - "2018-08-27 23:45:06,292 : INFO : h_r_error: 103.01090882770022\n", - "2018-08-27 23:45:06,294 : INFO : h_r_error: 103.01090882770022\n", - "2018-08-27 23:45:06,297 : INFO : h_r_error: 172.58741339995723\n", - "2018-08-27 23:45:06,299 : INFO : h_r_error: 171.40755882869837\n", - "2018-08-27 23:45:06,302 : INFO : h_r_error: 171.40755882869837\n", - "2018-08-27 23:45:06,305 : INFO : h_r_error: 13.118586292852434\n", - "2018-08-27 23:45:06,307 : INFO : h_r_error: 13.087253172761736\n", - "2018-08-27 23:45:06,308 : INFO : h_r_error: 13.087253172761736\n", - "2018-08-27 23:45:06,309 : INFO : h_r_error: 73.29408715111408\n", - "2018-08-27 23:45:06,311 : INFO : h_r_error: 73.08672529892424\n", - "2018-08-27 23:45:06,313 : INFO : h_r_error: 73.08672529892424\n", - "2018-08-27 23:45:06,315 : INFO : h_r_error: 11.897102719871445\n", - "2018-08-27 23:45:06,316 : INFO : h_r_error: 11.897102719871445\n", - "2018-08-27 23:45:06,318 : INFO : h_r_error: 199.44797539388057\n", - "2018-08-27 23:45:06,320 : INFO : h_r_error: 198.69494813376937\n", - "2018-08-27 23:45:06,322 : INFO : h_r_error: 198.69494813376937\n", - "2018-08-27 23:45:06,353 : INFO : h_r_error: 92.07381390075307\n", - "2018-08-27 23:45:06,358 : INFO : h_r_error: 91.68274898852272\n", - "2018-08-27 23:45:06,366 : INFO : h_r_error: 91.68274898852272\n", - "2018-08-27 23:45:06,369 : INFO : h_r_error: 60.689621476048984\n", - "2018-08-27 23:45:06,372 : INFO : h_r_error: 60.463064839282694\n", - "2018-08-27 23:45:06,384 : INFO : h_r_error: 60.463064839282694\n", - "2018-08-27 23:45:06,387 : INFO : h_r_error: 10.474448582792583\n", - "2018-08-27 23:45:06,391 : INFO : h_r_error: 10.474448582792583\n", - "2018-08-27 23:45:06,393 : INFO : h_r_error: 751.8429857324684\n", - "2018-08-27 23:45:06,399 : INFO : h_r_error: 749.3390062923108\n", - "2018-08-27 23:45:06,404 : INFO : h_r_error: 749.3390062923108\n", - "2018-08-27 23:45:06,407 : INFO : h_r_error: 40.02965753359087\n", - "2018-08-27 23:45:06,409 : INFO : h_r_error: 40.02965753359087\n", - "2018-08-27 23:45:06,412 : INFO : h_r_error: 39.009650463506205\n", - "2018-08-27 23:45:06,414 : INFO : h_r_error: 38.96155458501223\n", - "2018-08-27 23:45:06,417 : INFO : h_r_error: 38.96155458501223\n", - "2018-08-27 23:45:06,419 : INFO : h_r_error: 24.659700505079286\n", - "2018-08-27 23:45:06,422 : INFO : h_r_error: 24.62929739821578\n", - "2018-08-27 23:45:06,423 : INFO : h_r_error: 24.62929739821578\n", - "2018-08-27 23:45:06,425 : INFO : h_r_error: 42.351114332354484\n", - "2018-08-27 23:45:06,427 : INFO : h_r_error: 42.30641092293544\n", - "2018-08-27 23:45:06,429 : INFO : h_r_error: 42.30641092293544\n", - "2018-08-27 23:45:06,431 : INFO : h_r_error: 34.86845654141187\n", - "2018-08-27 23:45:06,432 : INFO : h_r_error: 34.8314296489811\n", - "2018-08-27 23:45:06,434 : INFO : h_r_error: 34.8314296489811\n", - "2018-08-27 23:45:06,437 : INFO : h_r_error: 64.8052758326794\n", - "2018-08-27 23:45:06,438 : INFO : h_r_error: 64.7001121450428\n", - "2018-08-27 23:45:06,440 : INFO : h_r_error: 64.7001121450428\n", - "2018-08-27 23:45:06,441 : INFO : h_r_error: 42.13088494764802\n", - "2018-08-27 23:45:06,443 : INFO : h_r_error: 42.049247850633336\n", - "2018-08-27 23:45:06,444 : INFO : h_r_error: 42.049247850633336\n", - "2018-08-27 23:45:06,446 : INFO : h_r_error: 59.571785864921225\n", - "2018-08-27 23:45:06,448 : INFO : h_r_error: 59.35547008584172\n", - "2018-08-27 23:45:06,449 : INFO : h_r_error: 59.35547008584172\n", - "2018-08-27 23:45:06,451 : INFO : h_r_error: 6.97856595143224\n", - "2018-08-27 23:45:06,453 : INFO : h_r_error: 6.97856595143224\n", - "2018-08-27 23:45:06,454 : INFO : h_r_error: 33.520833048507825\n", - "2018-08-27 23:45:06,456 : INFO : h_r_error: 33.48032048688657\n", - "2018-08-27 23:45:06,458 : INFO : h_r_error: 33.48032048688657\n", - "2018-08-27 23:45:06,459 : INFO : h_r_error: 60.35500803276588\n", - "2018-08-27 23:45:06,460 : INFO : h_r_error: 60.218161229514884\n", - "2018-08-27 23:45:06,462 : INFO : h_r_error: 60.218161229514884\n", - "2018-08-27 23:45:06,463 : INFO : h_r_error: 56.0592452616819\n", - "2018-08-27 23:45:06,465 : INFO : h_r_error: 55.87927663290314\n", - "2018-08-27 23:45:06,466 : INFO : h_r_error: 55.87927663290314\n", - "2018-08-27 23:45:06,467 : INFO : h_r_error: 15.88925002860464\n", - "2018-08-27 23:45:06,469 : INFO : h_r_error: 15.88925002860464\n", - "2018-08-27 23:45:06,470 : INFO : h_r_error: 31.80249673729911\n", - "2018-08-27 23:45:06,471 : INFO : h_r_error: 31.73792925836081\n", - "2018-08-27 23:45:06,473 : INFO : h_r_error: 31.73792925836081\n", - "2018-08-27 23:45:06,474 : INFO : h_r_error: 19.172901877639877\n", - "2018-08-27 23:45:06,476 : INFO : h_r_error: 19.146327038051968\n", - "2018-08-27 23:45:06,477 : INFO : h_r_error: 19.146327038051968\n", - "2018-08-27 23:45:06,478 : INFO : h_r_error: 50.16015510522851\n", - "2018-08-27 23:45:06,480 : INFO : h_r_error: 50.016215163453005\n", - "2018-08-27 23:45:06,481 : INFO : h_r_error: 50.016215163453005\n", - "2018-08-27 23:45:06,483 : INFO : h_r_error: 36.42899740673386\n", - "2018-08-27 23:45:06,484 : INFO : h_r_error: 36.36427611082331\n", - "2018-08-27 23:45:06,486 : INFO : h_r_error: 36.36427611082331\n", - "2018-08-27 23:45:06,487 : INFO : h_r_error: 18.141566134596253\n", - "2018-08-27 23:45:06,488 : INFO : h_r_error: 18.11984143221243\n", - "2018-08-27 23:45:06,490 : INFO : h_r_error: 18.11984143221243\n", - "2018-08-27 23:45:06,491 : INFO : h_r_error: 121.71320558428074\n", - "2018-08-27 23:45:06,493 : INFO : h_r_error: 121.41939166686831\n", - "2018-08-27 23:45:06,494 : INFO : h_r_error: 121.41939166686831\n", - "2018-08-27 23:45:06,496 : INFO : h_r_error: 20.096484401115458\n", - "2018-08-27 23:45:06,497 : INFO : h_r_error: 20.076316152456446\n", - "2018-08-27 23:45:06,498 : INFO : h_r_error: 20.076316152456446\n", - "2018-08-27 23:45:06,500 : INFO : h_r_error: 23.3483845678367\n", - "2018-08-27 23:45:06,502 : INFO : h_r_error: 23.3483845678367\n", - "2018-08-27 23:45:06,503 : INFO : h_r_error: 187.32763290400055\n", - "2018-08-27 23:45:06,504 : INFO : h_r_error: 186.7252945689972\n", - "2018-08-27 23:45:06,506 : INFO : h_r_error: 186.7252945689972\n", - "2018-08-27 23:45:06,508 : INFO : h_r_error: 34.170138517341954\n", - "2018-08-27 23:45:06,509 : INFO : h_r_error: 34.06182035179449\n", - "2018-08-27 23:45:06,511 : INFO : h_r_error: 34.06182035179449\n", - "2018-08-27 23:45:06,512 : INFO : h_r_error: 58.79001197043649\n", - "2018-08-27 23:45:06,514 : INFO : h_r_error: 58.685649119268305\n", - "2018-08-27 23:45:06,515 : INFO : h_r_error: 58.685649119268305\n", - "2018-08-27 23:45:06,517 : INFO : h_r_error: 30.497685224301343\n", - "2018-08-27 23:45:06,518 : INFO : h_r_error: 30.440191807581403\n", - "2018-08-27 23:45:06,519 : INFO : h_r_error: 30.440191807581403\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:06,521 : INFO : h_r_error: 48.870374115562875\n", - "2018-08-27 23:45:06,523 : INFO : h_r_error: 48.80457665707309\n", - "2018-08-27 23:45:06,524 : INFO : h_r_error: 48.80457665707309\n", - "2018-08-27 23:45:06,525 : INFO : h_r_error: 35.74502855493133\n", - "2018-08-27 23:45:06,527 : INFO : h_r_error: 35.57787192915626\n", - "2018-08-27 23:45:06,529 : INFO : h_r_error: 35.57787192915626\n", - "2018-08-27 23:45:06,530 : INFO : h_r_error: 48.18625849017527\n", - "2018-08-27 23:45:06,532 : INFO : h_r_error: 48.04901727078026\n", - "2018-08-27 23:45:06,533 : INFO : h_r_error: 48.04901727078026\n", - "2018-08-27 23:45:06,535 : INFO : h_r_error: 52.86837858909793\n", - "2018-08-27 23:45:06,537 : INFO : h_r_error: 52.86837858909793\n", - "2018-08-27 23:45:06,538 : INFO : h_r_error: 20.257427128731027\n", - "2018-08-27 23:45:06,540 : INFO : h_r_error: 20.257427128731027\n", - "2018-08-27 23:45:06,541 : INFO : h_r_error: 65.57066210251112\n", - "2018-08-27 23:45:06,542 : INFO : h_r_error: 65.57066210251112\n", - "2018-08-27 23:45:06,544 : INFO : h_r_error: 10.480831776998496\n", - "2018-08-27 23:45:06,545 : INFO : h_r_error: 10.480831776998496\n", - "2018-08-27 23:45:06,547 : INFO : h_r_error: 16.274183215626298\n", - "2018-08-27 23:45:06,548 : INFO : h_r_error: 16.274183215626298\n", - "2018-08-27 23:45:06,549 : INFO : h_r_error: 70.35438306975556\n", - "2018-08-27 23:45:06,551 : INFO : h_r_error: 70.35438306975556\n", - "2018-08-27 23:45:06,552 : INFO : h_r_error: 34.35981494593926\n", - "2018-08-27 23:45:06,562 : INFO : h_r_error: 34.313182735315976\n", - "2018-08-27 23:45:06,563 : INFO : h_r_error: 34.313182735315976\n", - "2018-08-27 23:45:06,565 : INFO : h_r_error: 86.09141225117234\n", - "2018-08-27 23:45:06,569 : INFO : h_r_error: 85.8620640839902\n", - "2018-08-27 23:45:06,571 : INFO : h_r_error: 85.8620640839902\n", - "2018-08-27 23:45:06,578 : INFO : h_r_error: 10.302173518640718\n", - "2018-08-27 23:45:06,580 : INFO : h_r_error: 10.28532212328511\n", - "2018-08-27 23:45:06,581 : INFO : h_r_error: 10.28532212328511\n", - "2018-08-27 23:45:06,584 : INFO : h_r_error: 51.856711582095706\n", - "2018-08-27 23:45:06,585 : INFO : h_r_error: 51.74513327943563\n", - "2018-08-27 23:45:06,592 : INFO : h_r_error: 51.74513327943563\n", - "2018-08-27 23:45:06,593 : INFO : h_r_error: 56.993447396144255\n", - "2018-08-27 23:45:06,595 : INFO : h_r_error: 56.90006026957895\n", - "2018-08-27 23:45:06,597 : INFO : h_r_error: 56.90006026957895\n", - "2018-08-27 23:45:06,632 : INFO : h_r_error: 149.68983759911333\n", - "2018-08-27 23:45:06,636 : INFO : h_r_error: 149.34962422287484\n", - "2018-08-27 23:45:06,641 : INFO : h_r_error: 149.34962422287484\n", - "2018-08-27 23:45:06,643 : INFO : h_r_error: 83.95969400786704\n", - "2018-08-27 23:45:06,648 : INFO : h_r_error: 83.64329507091456\n", - "2018-08-27 23:45:06,650 : INFO : h_r_error: 83.64329507091456\n", - "2018-08-27 23:45:06,652 : INFO : h_r_error: 39.67731035478707\n", - "2018-08-27 23:45:06,665 : INFO : h_r_error: 39.61648109099629\n", - "2018-08-27 23:45:06,670 : INFO : h_r_error: 39.61648109099629\n", - "2018-08-27 23:45:06,673 : INFO : h_r_error: 302.374156880696\n", - "2018-08-27 23:45:06,676 : INFO : h_r_error: 301.75716347675416\n", - "2018-08-27 23:45:06,679 : INFO : h_r_error: 301.75716347675416\n", - "2018-08-27 23:45:06,684 : INFO : h_r_error: 27.485364922825124\n", - "2018-08-27 23:45:06,686 : INFO : h_r_error: 27.44219782588137\n", - "2018-08-27 23:45:06,688 : INFO : h_r_error: 27.44219782588137\n", - "2018-08-27 23:45:06,689 : INFO : h_r_error: 28.22365214592648\n", - "2018-08-27 23:45:06,694 : INFO : h_r_error: 28.22365214592648\n", - "2018-08-27 23:45:06,696 : INFO : h_r_error: 31.654916269183314\n", - "2018-08-27 23:45:06,701 : INFO : h_r_error: 31.591500055375132\n", - "2018-08-27 23:45:06,703 : INFO : h_r_error: 31.591500055375132\n", - "2018-08-27 23:45:06,705 : INFO : h_r_error: 36.738093269773806\n", - "2018-08-27 23:45:06,707 : INFO : h_r_error: 36.738093269773806\n", - "2018-08-27 23:45:06,708 : INFO : h_r_error: 82.67288211492406\n", - "2018-08-27 23:45:06,710 : INFO : h_r_error: 82.38750869434931\n", - "2018-08-27 23:45:06,712 : INFO : h_r_error: 82.38750869434931\n", - "2018-08-27 23:45:06,714 : INFO : h_r_error: 67.63506802978425\n", - "2018-08-27 23:45:06,715 : INFO : h_r_error: 67.52835846982184\n", - "2018-08-27 23:45:06,717 : INFO : h_r_error: 67.52835846982184\n", - "2018-08-27 23:45:06,719 : INFO : h_r_error: 37.377458519749325\n", - "2018-08-27 23:45:06,720 : INFO : h_r_error: 37.27747537099155\n", - "2018-08-27 23:45:06,722 : INFO : h_r_error: 37.27747537099155\n", - "2018-08-27 23:45:06,723 : INFO : h_r_error: 16.401439944064325\n", - "2018-08-27 23:45:06,725 : INFO : h_r_error: 16.401439944064325\n", - "2018-08-27 23:45:06,727 : INFO : h_r_error: 38.786643808415924\n", - "2018-08-27 23:45:06,729 : INFO : h_r_error: 38.73382391252616\n", - "2018-08-27 23:45:06,731 : INFO : h_r_error: 38.73382391252616\n", - "2018-08-27 23:45:06,732 : INFO : h_r_error: 39.77904427651398\n", - "2018-08-27 23:45:06,734 : INFO : h_r_error: 39.71032595660934\n", - "2018-08-27 23:45:06,736 : INFO : h_r_error: 39.71032595660934\n", - "2018-08-27 23:45:06,737 : INFO : h_r_error: 58.024893517691424\n", - "2018-08-27 23:45:06,739 : INFO : h_r_error: 57.9430248866659\n", - "2018-08-27 23:45:06,741 : INFO : h_r_error: 57.9430248866659\n", - "2018-08-27 23:45:06,743 : INFO : h_r_error: 113.102723664204\n", - "2018-08-27 23:45:06,745 : INFO : h_r_error: 112.81086533627527\n", - "2018-08-27 23:45:06,747 : INFO : h_r_error: 112.81086533627527\n", - "2018-08-27 23:45:06,748 : INFO : h_r_error: 166.23502262182325\n", - "2018-08-27 23:45:06,756 : INFO : h_r_error: 165.50733596637235\n", - "2018-08-27 23:45:06,757 : INFO : h_r_error: 165.50733596637235\n", - "2018-08-27 23:45:06,763 : INFO : h_r_error: 17.336000029676168\n", - "2018-08-27 23:45:06,765 : INFO : h_r_error: 17.336000029676168\n", - "2018-08-27 23:45:06,767 : INFO : h_r_error: 179.87060913866378\n", - "2018-08-27 23:45:06,768 : INFO : h_r_error: 179.27672090163784\n", - "2018-08-27 23:45:06,772 : INFO : h_r_error: 179.27672090163784\n", - "2018-08-27 23:45:06,774 : INFO : h_r_error: 69.06484831004774\n", - "2018-08-27 23:45:06,780 : INFO : h_r_error: 68.95660505484838\n", - "2018-08-27 23:45:06,782 : INFO : h_r_error: 68.95660505484838\n", - "2018-08-27 23:45:06,783 : INFO : h_r_error: 24.933852847424284\n", - "2018-08-27 23:45:06,788 : INFO : h_r_error: 24.889969624477303\n", - "2018-08-27 23:45:06,789 : INFO : h_r_error: 24.889969624477303\n", - "2018-08-27 23:45:06,796 : INFO : h_r_error: 43.69636421468876\n", - "2018-08-27 23:45:06,797 : INFO : h_r_error: 43.626010581896004\n", - "2018-08-27 23:45:06,799 : INFO : h_r_error: 43.626010581896004\n", - "2018-08-27 23:45:06,804 : INFO : h_r_error: 159.33475265556075\n", - "2018-08-27 23:45:06,805 : INFO : h_r_error: 159.0585973531915\n", - "2018-08-27 23:45:06,807 : INFO : h_r_error: 159.0585973531915\n", - "2018-08-27 23:45:06,812 : INFO : h_r_error: 2420.798294211933\n", - "2018-08-27 23:45:06,813 : INFO : h_r_error: 2418.046195467786\n", - "2018-08-27 23:45:06,815 : INFO : h_r_error: 2418.046195467786\n", - "2018-08-27 23:45:06,820 : INFO : h_r_error: 220.0952758715873\n", - "2018-08-27 23:45:06,821 : INFO : h_r_error: 219.7210020978575\n", - "2018-08-27 23:45:06,822 : INFO : h_r_error: 219.7210020978575\n", - "2018-08-27 23:45:06,828 : INFO : h_r_error: 35.31629731482669\n", - "2018-08-27 23:45:06,829 : INFO : h_r_error: 35.27746129509434\n", - "2018-08-27 23:45:06,831 : INFO : h_r_error: 35.27746129509434\n", - "2018-08-27 23:45:06,833 : INFO : h_r_error: 72.86787847818513\n", - "2018-08-27 23:45:06,836 : INFO : h_r_error: 72.67936663469393\n", - "2018-08-27 23:45:06,838 : INFO : h_r_error: 72.67936663469393\n", - "2018-08-27 23:45:06,841 : INFO : h_r_error: 8.840196157407089\n", - "2018-08-27 23:45:06,843 : INFO : h_r_error: 8.828589647530992\n", - "2018-08-27 23:45:06,844 : INFO : h_r_error: 8.828589647530992\n", - "2018-08-27 23:45:06,850 : INFO : h_r_error: 6.446625288380513\n", - "2018-08-27 23:45:06,851 : INFO : h_r_error: 6.446625288380513\n", - "2018-08-27 23:45:06,853 : INFO : h_r_error: 196.70626576210694\n", - "2018-08-27 23:45:06,858 : INFO : h_r_error: 196.0559774687957\n", - "2018-08-27 23:45:06,859 : INFO : h_r_error: 196.0559774687957\n", - "2018-08-27 23:45:06,865 : INFO : h_r_error: 420.01662482736725\n", - "2018-08-27 23:45:06,867 : INFO : h_r_error: 419.5296284289973\n", - "2018-08-27 23:45:06,868 : INFO : h_r_error: 419.5296284289973\n", - "2018-08-27 23:45:06,870 : INFO : h_r_error: 91.8577766049088\n", - "2018-08-27 23:45:06,871 : INFO : h_r_error: 91.48988970111745\n", - "2018-08-27 23:45:06,873 : INFO : h_r_error: 91.48988970111745\n", - "2018-08-27 23:45:06,875 : INFO : h_r_error: 18.86905734520775\n", - "2018-08-27 23:45:06,877 : INFO : h_r_error: 18.86905734520775\n", - "2018-08-27 23:45:06,878 : INFO : h_r_error: 48.52785670109704\n", - "2018-08-27 23:45:06,880 : INFO : h_r_error: 48.38646507627017\n", - "2018-08-27 23:45:06,883 : INFO : h_r_error: 48.38646507627017\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:06,884 : INFO : h_r_error: 44.17078675617944\n", - "2018-08-27 23:45:06,886 : INFO : h_r_error: 44.039771212550974\n", - "2018-08-27 23:45:06,888 : INFO : h_r_error: 44.039771212550974\n", - "2018-08-27 23:45:06,890 : INFO : h_r_error: 213.9284918964127\n", - "2018-08-27 23:45:06,891 : INFO : h_r_error: 208.51058417211948\n", - "2018-08-27 23:45:06,893 : INFO : h_r_error: 208.51058417211948\n", - "2018-08-27 23:45:06,895 : INFO : h_r_error: 29.174511718818835\n", - "2018-08-27 23:45:06,898 : INFO : h_r_error: 29.174511718818835\n", - "2018-08-27 23:45:06,900 : INFO : h_r_error: 28.84894596136431\n", - "2018-08-27 23:45:06,901 : INFO : h_r_error: 28.814036561553365\n", - "2018-08-27 23:45:06,903 : INFO : h_r_error: 28.814036561553365\n", - "2018-08-27 23:45:06,904 : INFO : h_r_error: 47.65804740525725\n", - "2018-08-27 23:45:06,906 : INFO : h_r_error: 47.5779877472347\n", - "2018-08-27 23:45:06,908 : INFO : h_r_error: 47.5779877472347\n", - "2018-08-27 23:45:06,909 : INFO : h_r_error: 135.9279038949289\n", - "2018-08-27 23:45:06,911 : INFO : h_r_error: 135.6096671792661\n", - "2018-08-27 23:45:06,914 : INFO : h_r_error: 135.6096671792661\n", - "2018-08-27 23:45:06,916 : INFO : h_r_error: 46.666044527211824\n", - "2018-08-27 23:45:06,918 : INFO : h_r_error: 46.53018630273528\n", - "2018-08-27 23:45:06,919 : INFO : h_r_error: 46.53018630273528\n", - "2018-08-27 23:45:06,922 : INFO : h_r_error: 56.16669166194399\n", - "2018-08-27 23:45:06,923 : INFO : h_r_error: 56.075986909679045\n", - "2018-08-27 23:45:06,925 : INFO : h_r_error: 56.075986909679045\n", - "2018-08-27 23:45:06,926 : INFO : h_r_error: 181.5870722792497\n", - "2018-08-27 23:45:06,929 : INFO : h_r_error: 181.08323932419881\n", - "2018-08-27 23:45:06,931 : INFO : h_r_error: 181.08323932419881\n", - "2018-08-27 23:45:06,932 : INFO : h_r_error: 67.65777242278115\n", - "2018-08-27 23:45:06,934 : INFO : h_r_error: 67.5036042075808\n", - "2018-08-27 23:45:06,936 : INFO : h_r_error: 67.5036042075808\n", - "2018-08-27 23:45:06,938 : INFO : h_r_error: 118.7762114125263\n", - "2018-08-27 23:45:06,939 : INFO : h_r_error: 118.57952389342697\n", - "2018-08-27 23:45:06,941 : INFO : h_r_error: 118.57952389342697\n", - "2018-08-27 23:45:06,943 : INFO : h_r_error: 56.2550610286387\n", - "2018-08-27 23:45:06,945 : INFO : h_r_error: 56.17293940990067\n", - "2018-08-27 23:45:06,952 : INFO : h_r_error: 56.17293940990067\n", - "2018-08-27 23:45:06,960 : INFO : h_r_error: 113.64587975388629\n", - "2018-08-27 23:45:06,961 : INFO : h_r_error: 113.51290671188859\n", - "2018-08-27 23:45:06,963 : INFO : h_r_error: 113.51290671188859\n", - "2018-08-27 23:45:06,964 : INFO : h_r_error: 64.56179076672522\n", - "2018-08-27 23:45:06,966 : INFO : h_r_error: 64.46763057613119\n", - "2018-08-27 23:45:06,978 : INFO : h_r_error: 64.46763057613119\n", - "2018-08-27 23:45:06,979 : INFO : h_r_error: 45.46532453631538\n", - "2018-08-27 23:45:06,980 : INFO : h_r_error: 45.331374498719725\n", - "2018-08-27 23:45:06,982 : INFO : h_r_error: 45.331374498719725\n", - "2018-08-27 23:45:06,983 : INFO : h_r_error: 24.743945719629945\n", - "2018-08-27 23:45:06,996 : INFO : h_r_error: 24.743945719629945\n", - "2018-08-27 23:45:06,998 : INFO : h_r_error: 102.0603228986559\n", - "2018-08-27 23:45:07,009 : INFO : h_r_error: 101.89256597046132\n", - "2018-08-27 23:45:07,013 : INFO : h_r_error: 101.89256597046132\n", - "2018-08-27 23:45:07,017 : INFO : h_r_error: 44.51801859812947\n", - "2018-08-27 23:45:07,023 : INFO : h_r_error: 44.51801859812947\n", - "2018-08-27 23:45:07,029 : INFO : h_r_error: 43.82185718499035\n", - "2018-08-27 23:45:07,033 : INFO : h_r_error: 43.763949617779915\n", - "2018-08-27 23:45:07,036 : INFO : h_r_error: 43.763949617779915\n", - "2018-08-27 23:45:07,045 : INFO : h_r_error: 22.512671332379455\n", - "2018-08-27 23:45:07,046 : INFO : h_r_error: 22.480274982798786\n", - "2018-08-27 23:45:07,048 : INFO : h_r_error: 22.480274982798786\n", - "2018-08-27 23:45:07,056 : INFO : h_r_error: 8.998769112665686\n", - "2018-08-27 23:45:07,059 : INFO : h_r_error: 8.998769112665686\n", - "2018-08-27 23:45:07,061 : INFO : h_r_error: 69.25775026514857\n", - "2018-08-27 23:45:07,066 : INFO : h_r_error: 68.89454072168655\n", - "2018-08-27 23:45:07,071 : INFO : h_r_error: 68.89454072168655\n", - "2018-08-27 23:45:07,078 : INFO : h_r_error: 15.16887850359868\n", - "2018-08-27 23:45:07,080 : INFO : h_r_error: 15.133968966055873\n", - "2018-08-27 23:45:07,081 : INFO : h_r_error: 15.133968966055873\n", - "2018-08-27 23:45:07,083 : INFO : h_r_error: 9.47709001078825\n", - "2018-08-27 23:45:07,085 : INFO : h_r_error: 9.47709001078825\n", - "2018-08-27 23:45:07,086 : INFO : h_r_error: 62.94862991760564\n", - "2018-08-27 23:45:07,091 : INFO : h_r_error: 62.877607704999825\n", - "2018-08-27 23:45:07,093 : INFO : h_r_error: 62.877607704999825\n", - "2018-08-27 23:45:07,095 : INFO : h_r_error: 49.85209725222772\n", - "2018-08-27 23:45:07,103 : INFO : h_r_error: 49.76737611875927\n", - "2018-08-27 23:45:07,105 : INFO : h_r_error: 49.76737611875927\n", - "2018-08-27 23:45:07,108 : INFO : h_r_error: 65.13068459351398\n", - "2018-08-27 23:45:07,112 : INFO : h_r_error: 65.13068459351398\n", - "2018-08-27 23:45:07,116 : INFO : h_r_error: 79.9606775010255\n", - "2018-08-27 23:45:07,128 : INFO : h_r_error: 79.77202041367141\n", - "2018-08-27 23:45:07,130 : INFO : h_r_error: 79.77202041367141\n", - "2018-08-27 23:45:07,131 : INFO : h_r_error: 34.20213997453504\n", - "2018-08-27 23:45:07,145 : INFO : h_r_error: 34.20213997453504\n", - "2018-08-27 23:45:07,153 : INFO : h_r_error: 27.55865327260531\n", - "2018-08-27 23:45:07,155 : INFO : h_r_error: 27.51805497756257\n", - "2018-08-27 23:45:07,157 : INFO : h_r_error: 27.51805497756257\n", - "2018-08-27 23:45:07,158 : INFO : h_r_error: 41.25794018548675\n", - "2018-08-27 23:45:07,167 : INFO : h_r_error: 41.25794018548675\n", - "2018-08-27 23:45:07,178 : INFO : h_r_error: 27.468005725788768\n", - "2018-08-27 23:45:07,180 : INFO : h_r_error: 27.417843143763072\n", - "2018-08-27 23:45:07,181 : INFO : h_r_error: 27.417843143763072\n", - "2018-08-27 23:45:07,183 : INFO : h_r_error: 23.120598696621663\n", - "2018-08-27 23:45:07,184 : INFO : h_r_error: 23.08625936908043\n", - "2018-08-27 23:45:07,199 : INFO : h_r_error: 23.08625936908043\n", - "2018-08-27 23:45:07,202 : INFO : h_r_error: 110.12274374102111\n", - "2018-08-27 23:45:07,203 : INFO : h_r_error: 109.77761514956003\n", - "2018-08-27 23:45:07,206 : INFO : h_r_error: 109.77761514956003\n", - "2018-08-27 23:45:07,210 : INFO : h_r_error: 160.275059075259\n", - "2018-08-27 23:45:07,211 : INFO : h_r_error: 160.06147980806432\n", - "2018-08-27 23:45:07,219 : INFO : h_r_error: 160.06147980806432\n", - "2018-08-27 23:45:07,226 : INFO : h_r_error: 39.10040147438931\n", - "2018-08-27 23:45:07,227 : INFO : h_r_error: 38.947123013307845\n", - "2018-08-27 23:45:07,229 : INFO : h_r_error: 38.947123013307845\n", - "2018-08-27 23:45:07,232 : INFO : h_r_error: 46.85122706587456\n", - "2018-08-27 23:45:07,234 : INFO : h_r_error: 46.85122706587456\n", - "2018-08-27 23:45:07,236 : INFO : h_r_error: 57.57020077585629\n", - "2018-08-27 23:45:07,246 : INFO : h_r_error: 57.360564476471055\n", - "2018-08-27 23:45:07,247 : INFO : h_r_error: 57.360564476471055\n", - "2018-08-27 23:45:07,249 : INFO : h_r_error: 46.34264214831657\n", - "2018-08-27 23:45:07,251 : INFO : h_r_error: 46.25487282521659\n", - "2018-08-27 23:45:07,253 : INFO : h_r_error: 46.25487282521659\n", - "2018-08-27 23:45:07,257 : INFO : h_r_error: 40.879168020051125\n", - "2018-08-27 23:45:07,264 : INFO : h_r_error: 40.879168020051125\n", - "2018-08-27 23:45:07,265 : INFO : h_r_error: 61.04066585328603\n", - "2018-08-27 23:45:07,266 : INFO : h_r_error: 60.88392741526868\n", - "2018-08-27 23:45:07,281 : INFO : h_r_error: 60.88392741526868\n", - "2018-08-27 23:45:07,282 : INFO : h_r_error: 24.15487660977726\n", - "2018-08-27 23:45:07,284 : INFO : h_r_error: 24.126709324004295\n", - "2018-08-27 23:45:07,287 : INFO : h_r_error: 24.126709324004295\n", - "2018-08-27 23:45:07,293 : INFO : h_r_error: 34.235749500009966\n", - "2018-08-27 23:45:07,294 : INFO : h_r_error: 34.18250813450372\n", - "2018-08-27 23:45:07,296 : INFO : h_r_error: 34.18250813450372\n", - "2018-08-27 23:45:07,304 : INFO : h_r_error: 14.56163068122642\n", - "2018-08-27 23:45:07,306 : INFO : h_r_error: 14.542174814915631\n", - "2018-08-27 23:45:07,307 : INFO : h_r_error: 14.542174814915631\n", - "2018-08-27 23:45:07,313 : INFO : h_r_error: 74.7723958476036\n", - "2018-08-27 23:45:07,314 : INFO : h_r_error: 74.6338065041174\n", - "2018-08-27 23:45:07,316 : INFO : h_r_error: 74.6338065041174\n", - "2018-08-27 23:45:07,327 : INFO : h_r_error: 207.74678119057324\n", - "2018-08-27 23:45:07,329 : INFO : h_r_error: 206.93391529872324\n", - "2018-08-27 23:45:07,337 : INFO : h_r_error: 206.93391529872324\n", - "2018-08-27 23:45:07,338 : INFO : h_r_error: 57.084976557478974\n", - "2018-08-27 23:45:07,340 : INFO : h_r_error: 56.92681765110663\n", - "2018-08-27 23:45:07,341 : INFO : h_r_error: 56.92681765110663\n", - "2018-08-27 23:45:07,346 : INFO : h_r_error: 10.960875108494276\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:07,347 : INFO : h_r_error: 10.960875108494276\n", - "2018-08-27 23:45:07,349 : INFO : h_r_error: 20.30603870171832\n", - "2018-08-27 23:45:07,355 : INFO : h_r_error: 20.30603870171832\n", - "2018-08-27 23:45:07,359 : INFO : h_r_error: 14.418812106181255\n", - "2018-08-27 23:45:07,361 : INFO : h_r_error: 14.418812106181255\n", - "2018-08-27 23:45:07,368 : INFO : h_r_error: 173.28984849383568\n", - "2018-08-27 23:45:07,369 : INFO : h_r_error: 172.98807336926097\n", - "2018-08-27 23:45:07,371 : INFO : h_r_error: 172.98807336926097\n", - "2018-08-27 23:45:07,372 : INFO : h_r_error: 4.969974345154891\n", - "2018-08-27 23:45:07,379 : INFO : h_r_error: 4.969974345154891\n", - "2018-08-27 23:45:07,381 : INFO : h_r_error: 26.30796703135781\n", - "2018-08-27 23:45:07,383 : INFO : h_r_error: 26.30796703135781\n", - "2018-08-27 23:45:07,384 : INFO : h_r_error: 16.759315011255314\n", - "2018-08-27 23:45:07,386 : INFO : h_r_error: 16.737119025489264\n", - "2018-08-27 23:45:07,397 : INFO : h_r_error: 16.737119025489264\n", - "2018-08-27 23:45:07,398 : INFO : h_r_error: 20.784612862563282\n", - "2018-08-27 23:45:07,400 : INFO : h_r_error: 20.784612862563282\n", - "2018-08-27 23:45:07,401 : INFO : h_r_error: 301.08739503419486\n", - "2018-08-27 23:45:07,403 : INFO : h_r_error: 298.9008861129262\n", - "2018-08-27 23:45:07,404 : INFO : h_r_error: 298.9008861129262\n", - "2018-08-27 23:45:07,413 : INFO : h_r_error: 63.18466397561379\n", - "2018-08-27 23:45:07,415 : INFO : h_r_error: 63.12146627768031\n", - "2018-08-27 23:45:07,417 : INFO : h_r_error: 63.12146627768031\n", - "2018-08-27 23:45:07,418 : INFO : h_r_error: 79.75506281951373\n", - "2018-08-27 23:45:07,419 : INFO : h_r_error: 79.45321529018582\n", - "2018-08-27 23:45:07,423 : INFO : h_r_error: 79.45321529018582\n", - "2018-08-27 23:45:07,425 : INFO : h_r_error: 31.767386902189067\n", - "2018-08-27 23:45:07,429 : INFO : h_r_error: 31.712378517381644\n", - "2018-08-27 23:45:07,430 : INFO : h_r_error: 31.712378517381644\n", - "2018-08-27 23:45:07,431 : INFO : h_r_error: 81.55750694966784\n", - "2018-08-27 23:45:07,438 : INFO : h_r_error: 81.40859231828726\n", - "2018-08-27 23:45:07,444 : INFO : h_r_error: 81.40859231828726\n", - "2018-08-27 23:45:07,449 : INFO : h_r_error: 56.24077346078402\n", - "2018-08-27 23:45:07,453 : INFO : h_r_error: 56.24077346078402\n", - "2018-08-27 23:45:07,454 : INFO : h_r_error: 30.133853480071064\n", - "2018-08-27 23:45:07,456 : INFO : h_r_error: 30.133853480071064\n", - "2018-08-27 23:45:07,459 : INFO : h_r_error: 27.83854208189859\n", - "2018-08-27 23:45:07,461 : INFO : h_r_error: 27.83854208189859\n", - "2018-08-27 23:45:07,467 : INFO : h_r_error: 28.643306594159174\n", - "2018-08-27 23:45:07,468 : INFO : h_r_error: 28.60043526441\n", - "2018-08-27 23:45:07,470 : INFO : h_r_error: 28.60043526441\n", - "2018-08-27 23:45:07,471 : INFO : h_r_error: 223.1674844071655\n", - "2018-08-27 23:45:07,473 : INFO : h_r_error: 223.1674844071655\n", - "2018-08-27 23:45:07,474 : INFO : h_r_error: 46.421389936981974\n", - "2018-08-27 23:45:07,477 : INFO : h_r_error: 46.421389936981974\n", - "2018-08-27 23:45:07,478 : INFO : h_r_error: 117.52689067122377\n", - "2018-08-27 23:45:07,480 : INFO : h_r_error: 117.01761302207252\n", - "2018-08-27 23:45:07,482 : INFO : h_r_error: 117.01761302207252\n", - "2018-08-27 23:45:07,484 : INFO : h_r_error: 59.91286922554071\n", - "2018-08-27 23:45:07,486 : INFO : h_r_error: 59.67223713369467\n", - "2018-08-27 23:45:07,488 : INFO : h_r_error: 59.67223713369467\n", - "2018-08-27 23:45:07,490 : INFO : h_r_error: 91.99972717090418\n", - "2018-08-27 23:45:07,492 : INFO : h_r_error: 91.86326724276977\n", - "2018-08-27 23:45:07,494 : INFO : h_r_error: 91.86326724276977\n", - "2018-08-27 23:45:07,496 : INFO : h_r_error: 231.1375630001957\n", - "2018-08-27 23:45:07,497 : INFO : h_r_error: 230.76692326591333\n", - "2018-08-27 23:45:07,500 : INFO : h_r_error: 230.76692326591333\n", - "2018-08-27 23:45:07,502 : INFO : h_r_error: 274.57262143441017\n", - "2018-08-27 23:45:07,503 : INFO : h_r_error: 273.40190526872635\n", - "2018-08-27 23:45:07,505 : INFO : h_r_error: 273.40190526872635\n", - "2018-08-27 23:45:07,506 : INFO : h_r_error: 15.705096051961759\n", - "2018-08-27 23:45:07,509 : INFO : h_r_error: 15.705096051961759\n", - "2018-08-27 23:45:07,510 : INFO : h_r_error: 9.783993207872445\n", - "2018-08-27 23:45:07,511 : INFO : h_r_error: 9.768983325629815\n", - "2018-08-27 23:45:07,519 : INFO : h_r_error: 9.768983325629815\n", - "2018-08-27 23:45:07,522 : INFO : h_r_error: 86.51534475042685\n", - "2018-08-27 23:45:07,529 : INFO : h_r_error: 86.15090160241465\n", - "2018-08-27 23:45:07,531 : INFO : h_r_error: 86.15090160241465\n", - "2018-08-27 23:45:07,532 : INFO : h_r_error: 33.10442147903539\n", - "2018-08-27 23:45:07,534 : INFO : h_r_error: 33.036490488794335\n", - "2018-08-27 23:45:07,535 : INFO : h_r_error: 33.036490488794335\n", - "2018-08-27 23:45:07,546 : INFO : h_r_error: 71.52475009181276\n", - "2018-08-27 23:45:07,547 : INFO : h_r_error: 71.43503175743416\n", - "2018-08-27 23:45:07,549 : INFO : h_r_error: 71.43503175743416\n", - "2018-08-27 23:45:07,550 : INFO : h_r_error: 129.56428319728883\n", - "2018-08-27 23:45:07,551 : INFO : h_r_error: 129.14150427736635\n", - "2018-08-27 23:45:07,554 : INFO : h_r_error: 129.14150427736635\n", - "2018-08-27 23:45:07,562 : INFO : h_r_error: 118.44354109837646\n", - "2018-08-27 23:45:07,563 : INFO : h_r_error: 118.07051368741197\n", - "2018-08-27 23:45:07,565 : INFO : h_r_error: 118.07051368741197\n", - "2018-08-27 23:45:07,566 : INFO : h_r_error: 155.47964168605242\n", - "2018-08-27 23:45:07,569 : INFO : h_r_error: 155.1310807555003\n", - "2018-08-27 23:45:07,578 : INFO : h_r_error: 155.1310807555003\n", - "2018-08-27 23:45:07,586 : INFO : h_r_error: 34.35426410107545\n", - "2018-08-27 23:45:07,588 : INFO : h_r_error: 34.29201105613925\n", - "2018-08-27 23:45:07,589 : INFO : h_r_error: 34.29201105613925\n", - "2018-08-27 23:45:07,591 : INFO : h_r_error: 43.793223535221\n", - "2018-08-27 23:45:07,592 : INFO : h_r_error: 43.63152150823803\n", - "2018-08-27 23:45:07,595 : INFO : h_r_error: 43.63152150823803\n", - "2018-08-27 23:45:07,598 : INFO : h_r_error: 492.2807355307142\n", - "2018-08-27 23:45:07,602 : INFO : h_r_error: 490.3629101034975\n", - "2018-08-27 23:45:07,613 : INFO : h_r_error: 490.3629101034975\n", - "2018-08-27 23:45:07,615 : INFO : h_r_error: 23.464051788692718\n", - "2018-08-27 23:45:07,616 : INFO : h_r_error: 23.428625847559633\n", - "2018-08-27 23:45:07,618 : INFO : h_r_error: 23.428625847559633\n", - "2018-08-27 23:45:07,627 : INFO : h_r_error: 47.390838450769316\n", - "2018-08-27 23:45:07,629 : INFO : h_r_error: 47.27213800413487\n", - "2018-08-27 23:45:07,631 : INFO : h_r_error: 47.27213800413487\n", - "2018-08-27 23:45:07,633 : INFO : h_r_error: 40.289043251789295\n", - "2018-08-27 23:45:07,644 : INFO : h_r_error: 40.230154586861445\n", - "2018-08-27 23:45:07,649 : INFO : h_r_error: 40.230154586861445\n", - "2018-08-27 23:45:07,655 : INFO : h_r_error: 8.924063654504225\n", - "2018-08-27 23:45:07,658 : INFO : h_r_error: 8.924063654504225\n", - "2018-08-27 23:45:07,660 : INFO : h_r_error: 76.73235469677111\n", - "2018-08-27 23:45:07,661 : INFO : h_r_error: 76.61030794388782\n", - "2018-08-27 23:45:07,663 : INFO : h_r_error: 76.61030794388782\n", - "2018-08-27 23:45:07,665 : INFO : h_r_error: 36.818484596863875\n", - "2018-08-27 23:45:07,667 : INFO : h_r_error: 36.818484596863875\n", - "2018-08-27 23:45:07,668 : INFO : h_r_error: 12.462578774535528\n", - "2018-08-27 23:45:07,680 : INFO : h_r_error: 12.462578774535528\n", - "2018-08-27 23:45:07,681 : INFO : h_r_error: 107.4018004300934\n", - "2018-08-27 23:45:07,683 : INFO : h_r_error: 107.11972575487609\n", - "2018-08-27 23:45:07,685 : INFO : h_r_error: 107.11972575487609\n", - "2018-08-27 23:45:07,693 : INFO : h_r_error: 553.0691248972288\n", - "2018-08-27 23:45:07,694 : INFO : h_r_error: 549.9305519681172\n", - "2018-08-27 23:45:07,696 : INFO : h_r_error: 549.9305519681172\n", - "2018-08-27 23:45:07,697 : INFO : h_r_error: 91.45791602671335\n", - "2018-08-27 23:45:07,706 : INFO : h_r_error: 91.0930514710431\n", - "2018-08-27 23:45:07,707 : INFO : h_r_error: 91.0930514710431\n", - "2018-08-27 23:45:07,709 : INFO : h_r_error: 42.3243657430045\n", - "2018-08-27 23:45:07,710 : INFO : h_r_error: 42.267860342985166\n", - "2018-08-27 23:45:07,711 : INFO : h_r_error: 42.267860342985166\n", - "2018-08-27 23:45:07,713 : INFO : h_r_error: 72.30347605934432\n", - "2018-08-27 23:45:07,714 : INFO : h_r_error: 72.19810451302104\n", - "2018-08-27 23:45:07,716 : INFO : h_r_error: 72.19810451302104\n", - "2018-08-27 23:45:07,717 : INFO : h_r_error: 405.56180395845075\n", - "2018-08-27 23:45:07,719 : INFO : h_r_error: 404.52752182965276\n", - "2018-08-27 23:45:07,721 : INFO : h_r_error: 404.52752182965276\n", - "2018-08-27 23:45:07,722 : INFO : h_r_error: 84.3791828002585\n", - "2018-08-27 23:45:07,723 : INFO : h_r_error: 84.3791828002585\n", - "2018-08-27 23:45:07,725 : INFO : h_r_error: 158.5476686831362\n", - "2018-08-27 23:45:07,726 : INFO : h_r_error: 158.37195275428323\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:07,728 : INFO : h_r_error: 158.37195275428323\n", - "2018-08-27 23:45:07,729 : INFO : h_r_error: 40.38739650927441\n", - "2018-08-27 23:45:07,733 : INFO : h_r_error: 40.38739650927441\n", - "2018-08-27 23:45:07,746 : INFO : h_r_error: 59.42316719875138\n", - "2018-08-27 23:45:07,747 : INFO : h_r_error: 59.359176731568546\n", - "2018-08-27 23:45:07,750 : INFO : h_r_error: 59.359176731568546\n", - "2018-08-27 23:45:07,768 : INFO : h_r_error: 77.95379990476026\n", - "2018-08-27 23:45:07,770 : INFO : h_r_error: 77.95379990476026\n", - "2018-08-27 23:45:07,779 : INFO : h_r_error: 118.23252018671822\n", - "2018-08-27 23:45:07,781 : INFO : h_r_error: 118.23252018671822\n", - "2018-08-27 23:45:07,782 : INFO : h_r_error: 25.88307418156134\n", - "2018-08-27 23:45:07,784 : INFO : h_r_error: 25.88307418156134\n", - "2018-08-27 23:45:07,785 : INFO : h_r_error: 45.941393512918324\n", - "2018-08-27 23:45:07,787 : INFO : h_r_error: 45.860389244768996\n", - "2018-08-27 23:45:07,796 : INFO : h_r_error: 45.860389244768996\n", - "2018-08-27 23:45:07,798 : INFO : h_r_error: 41.33847123777973\n", - "2018-08-27 23:45:07,800 : INFO : h_r_error: 41.33847123777973\n", - "2018-08-27 23:45:07,801 : INFO : h_r_error: 34.36280445572315\n", - "2018-08-27 23:45:07,804 : INFO : h_r_error: 34.36280445572315\n", - "2018-08-27 23:45:07,813 : INFO : h_r_error: 106.30477439058306\n", - "2018-08-27 23:45:07,815 : INFO : h_r_error: 106.17808424582456\n", - "2018-08-27 23:45:07,818 : INFO : h_r_error: 106.17808424582456\n", - "2018-08-27 23:45:07,828 : INFO : h_r_error: 66.62401138109526\n", - "2018-08-27 23:45:07,829 : INFO : h_r_error: 66.4983414444939\n", - "2018-08-27 23:45:07,831 : INFO : h_r_error: 66.4983414444939\n", - "2018-08-27 23:45:07,833 : INFO : h_r_error: 213.27811874487628\n", - "2018-08-27 23:45:07,834 : INFO : h_r_error: 212.83347635723285\n", - "2018-08-27 23:45:07,845 : INFO : h_r_error: 212.83347635723285\n", - "2018-08-27 23:45:07,846 : INFO : h_r_error: 68.01033334371328\n", - "2018-08-27 23:45:07,848 : INFO : h_r_error: 67.89900818076562\n", - "2018-08-27 23:45:07,850 : INFO : h_r_error: 67.89900818076562\n", - "2018-08-27 23:45:07,851 : INFO : h_r_error: 214.95388180524034\n", - "2018-08-27 23:45:07,853 : INFO : h_r_error: 214.68446616175572\n", - "2018-08-27 23:45:07,860 : INFO : h_r_error: 214.68446616175572\n", - "2018-08-27 23:45:07,863 : INFO : h_r_error: 124.70896659262749\n", - "2018-08-27 23:45:07,865 : INFO : h_r_error: 124.48994158252837\n", - "2018-08-27 23:45:07,869 : INFO : h_r_error: 124.48994158252837\n", - "2018-08-27 23:45:07,872 : INFO : h_r_error: 20.349591640020137\n", - "2018-08-27 23:45:07,874 : INFO : h_r_error: 20.349591640020137\n", - "2018-08-27 23:45:07,876 : INFO : h_r_error: 31.105191171295296\n", - "2018-08-27 23:45:07,877 : INFO : h_r_error: 31.07257124543254\n", - "2018-08-27 23:45:07,879 : INFO : h_r_error: 31.07257124543254\n", - "2018-08-27 23:45:07,881 : INFO : h_r_error: 46.53247790368735\n", - "2018-08-27 23:45:07,883 : INFO : h_r_error: 46.372667028407974\n", - "2018-08-27 23:45:07,885 : INFO : h_r_error: 46.372667028407974\n", - "2018-08-27 23:45:07,886 : INFO : h_r_error: 774.0942306304406\n", - "2018-08-27 23:45:07,888 : INFO : h_r_error: 198.07342369908116\n", - "2018-08-27 23:45:07,889 : INFO : h_r_error: 198.07342369908116\n", - "2018-08-27 23:45:07,891 : INFO : h_r_error: 70.22132205532495\n", - "2018-08-27 23:45:07,892 : INFO : h_r_error: 70.1010387568506\n", - "2018-08-27 23:45:07,894 : INFO : h_r_error: 70.1010387568506\n", - "2018-08-27 23:45:07,896 : INFO : h_r_error: 4.976334492376447\n", - "2018-08-27 23:45:07,897 : INFO : h_r_error: 4.976334492376447\n", - "2018-08-27 23:45:07,899 : INFO : h_r_error: 313.5457847276373\n", - "2018-08-27 23:45:07,900 : INFO : h_r_error: 312.7451798548867\n", - "2018-08-27 23:45:07,902 : INFO : h_r_error: 312.7451798548867\n", - "2018-08-27 23:45:07,903 : INFO : h_r_error: 46.3131820820149\n", - "2018-08-27 23:45:07,904 : INFO : h_r_error: 46.16746946330054\n", - "2018-08-27 23:45:07,906 : INFO : h_r_error: 46.16746946330054\n", - "2018-08-27 23:45:07,907 : INFO : h_r_error: 29.98735335731704\n", - "2018-08-27 23:45:07,909 : INFO : h_r_error: 29.901510240885838\n", - "2018-08-27 23:45:07,910 : INFO : h_r_error: 29.901510240885838\n", - "2018-08-27 23:45:07,912 : INFO : h_r_error: 21.15132621693016\n", - "2018-08-27 23:45:07,914 : INFO : h_r_error: 21.12894462198613\n", - "2018-08-27 23:45:07,916 : INFO : h_r_error: 21.12894462198613\n", - "2018-08-27 23:45:07,918 : INFO : h_r_error: 18.445594708543357\n", - "2018-08-27 23:45:07,920 : INFO : h_r_error: 18.445594708543357\n", - "2018-08-27 23:45:07,922 : INFO : h_r_error: 41.73836948928994\n", - "2018-08-27 23:45:07,923 : INFO : h_r_error: 41.6786404303316\n", - "2018-08-27 23:45:07,925 : INFO : h_r_error: 41.6786404303316\n", - "2018-08-27 23:45:07,927 : INFO : h_r_error: 11.800209372947045\n", - "2018-08-27 23:45:07,928 : INFO : h_r_error: 11.782745940126324\n", - "2018-08-27 23:45:07,930 : INFO : h_r_error: 11.782745940126324\n", - "2018-08-27 23:45:07,932 : INFO : h_r_error: 26.471996524755863\n", - "2018-08-27 23:45:07,942 : INFO : h_r_error: 26.41649976187709\n", - "2018-08-27 23:45:07,944 : INFO : h_r_error: 26.41649976187709\n", - "2018-08-27 23:45:07,949 : INFO : h_r_error: 180.45769674194872\n", - "2018-08-27 23:45:07,960 : INFO : h_r_error: 180.45769674194872\n", - "2018-08-27 23:45:07,961 : INFO : h_r_error: 1184.8803880905928\n", - "2018-08-27 23:45:07,963 : INFO : h_r_error: 1173.3705714438288\n", - "2018-08-27 23:45:07,965 : INFO : h_r_error: 1173.3705714438288\n", - "2018-08-27 23:45:07,966 : INFO : h_r_error: 32.86401052687213\n", - "2018-08-27 23:45:07,976 : INFO : h_r_error: 32.81678381713495\n", - "2018-08-27 23:45:07,977 : INFO : h_r_error: 32.81678381713495\n", - "2018-08-27 23:45:07,979 : INFO : h_r_error: 75.75425269430248\n", - "2018-08-27 23:45:07,981 : INFO : h_r_error: 75.48888861267424\n", - "2018-08-27 23:45:07,982 : INFO : h_r_error: 75.48888861267424\n", - "2018-08-27 23:45:07,993 : INFO : h_r_error: 30.844687976177237\n", - "2018-08-27 23:45:07,994 : INFO : h_r_error: 30.844687976177237\n", - "2018-08-27 23:45:07,996 : INFO : h_r_error: 179.3448293244765\n", - "2018-08-27 23:45:07,998 : INFO : h_r_error: 178.17381756108776\n", - "2018-08-27 23:45:08,001 : INFO : h_r_error: 178.17381756108776\n", - "2018-08-27 23:45:08,009 : INFO : h_r_error: 20.185442526823103\n", - "2018-08-27 23:45:08,011 : INFO : h_r_error: 20.15819366669765\n", - "2018-08-27 23:45:08,014 : INFO : h_r_error: 20.15819366669765\n", - "2018-08-27 23:45:08,016 : INFO : h_r_error: 204.22723943173978\n", - "2018-08-27 23:45:08,026 : INFO : h_r_error: 203.60310072767507\n", - "2018-08-27 23:45:08,029 : INFO : h_r_error: 203.60310072767507\n", - "2018-08-27 23:45:08,032 : INFO : h_r_error: 141.09968925269305\n", - "2018-08-27 23:45:08,033 : INFO : h_r_error: 140.7308469552629\n", - "2018-08-27 23:45:08,035 : INFO : h_r_error: 140.7308469552629\n", - "2018-08-27 23:45:08,043 : INFO : h_r_error: 64.56773916756812\n", - "2018-08-27 23:45:08,045 : INFO : h_r_error: 64.56773916756812\n", - "2018-08-27 23:45:08,046 : INFO : h_r_error: 199.5848737712613\n", - "2018-08-27 23:45:08,048 : INFO : h_r_error: 198.36979652297686\n", - "2018-08-27 23:45:08,049 : INFO : h_r_error: 198.36979652297686\n", - "2018-08-27 23:45:08,062 : INFO : h_r_error: 28.747975828376237\n", - "2018-08-27 23:45:08,064 : INFO : h_r_error: 28.747975828376237\n", - "2018-08-27 23:45:08,066 : INFO : h_r_error: 1888.9378535425774\n", - "2018-08-27 23:45:08,067 : INFO : h_r_error: 1862.596477932895\n", - "2018-08-27 23:45:08,077 : INFO : h_r_error: 1862.596477932895\n", - "2018-08-27 23:45:08,078 : INFO : h_r_error: 27.841572389618694\n", - "2018-08-27 23:45:08,080 : INFO : h_r_error: 27.841572389618694\n", - "2018-08-27 23:45:08,082 : INFO : h_r_error: 161.07297193056823\n", - "2018-08-27 23:45:08,084 : INFO : h_r_error: 160.53033001322282\n", - "2018-08-27 23:45:08,096 : INFO : h_r_error: 160.53033001322282\n", - "2018-08-27 23:45:08,098 : INFO : h_r_error: 58.102910503874966\n", - "2018-08-27 23:45:08,101 : INFO : h_r_error: 57.92916161149458\n", - "2018-08-27 23:45:08,109 : INFO : h_r_error: 57.92916161149458\n", - "2018-08-27 23:45:08,111 : INFO : h_r_error: 23.30588407286115\n", - "2018-08-27 23:45:08,114 : INFO : h_r_error: 23.30588407286115\n", - "2018-08-27 23:45:08,115 : INFO : h_r_error: 43.53934738745382\n", - "2018-08-27 23:45:08,117 : INFO : h_r_error: 43.53934738745382\n", - "2018-08-27 23:45:08,118 : INFO : h_r_error: 29.813808897210446\n", - "2018-08-27 23:45:08,120 : INFO : h_r_error: 29.70056894109565\n", - "2018-08-27 23:45:08,122 : INFO : h_r_error: 29.70056894109565\n", - "2018-08-27 23:45:08,124 : INFO : h_r_error: 124.9185708980844\n", - "2018-08-27 23:45:08,127 : INFO : h_r_error: 124.54380724706292\n", - "2018-08-27 23:45:08,129 : INFO : h_r_error: 124.54380724706292\n", - "2018-08-27 23:45:08,132 : INFO : h_r_error: 19.580684176003505\n", - "2018-08-27 23:45:08,134 : INFO : h_r_error: 19.547389703046125\n", - "2018-08-27 23:45:08,137 : INFO : h_r_error: 19.547389703046125\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:08,140 : INFO : h_r_error: 502.6872839186179\n", - "2018-08-27 23:45:08,142 : INFO : h_r_error: 497.5350447373528\n", - "2018-08-27 23:45:08,144 : INFO : h_r_error: 497.5350447373528\n", - "2018-08-27 23:45:08,147 : INFO : h_r_error: 82.2205372739174\n", - "2018-08-27 23:45:08,150 : INFO : h_r_error: 82.09579936407765\n", - "2018-08-27 23:45:08,155 : INFO : h_r_error: 82.09579936407765\n", - "2018-08-27 23:45:08,158 : INFO : h_r_error: 366.208574378532\n", - "2018-08-27 23:45:08,160 : INFO : h_r_error: 365.51900168356025\n", - "2018-08-27 23:45:08,162 : INFO : h_r_error: 365.51900168356025\n", - "2018-08-27 23:45:08,165 : INFO : h_r_error: 65.73062245409207\n", - "2018-08-27 23:45:08,168 : INFO : h_r_error: 65.6287930641892\n", - "2018-08-27 23:45:08,170 : INFO : h_r_error: 65.6287930641892\n", - "2018-08-27 23:45:08,178 : INFO : h_r_error: 247.04895087780181\n", - "2018-08-27 23:45:08,182 : INFO : h_r_error: 246.02424396933856\n", - "2018-08-27 23:45:08,185 : INFO : h_r_error: 246.02424396933856\n", - "2018-08-27 23:45:08,190 : INFO : h_r_error: 331.02211616833677\n", - "2018-08-27 23:45:08,213 : INFO : h_r_error: 330.36411722851176\n", - "2018-08-27 23:45:08,215 : INFO : h_r_error: 330.36411722851176\n", - "2018-08-27 23:45:08,217 : INFO : h_r_error: 329.10079555558264\n", - "2018-08-27 23:45:08,226 : INFO : h_r_error: 328.1465889378783\n", - "2018-08-27 23:45:08,228 : INFO : h_r_error: 328.1465889378783\n", - "2018-08-27 23:45:08,242 : INFO : h_r_error: 15.89737512753085\n", - "2018-08-27 23:45:08,244 : INFO : h_r_error: 15.89737512753085\n", - "2018-08-27 23:45:08,246 : INFO : h_r_error: 123.9753605551698\n", - "2018-08-27 23:45:08,247 : INFO : h_r_error: 123.68634808852292\n", - "2018-08-27 23:45:08,249 : INFO : h_r_error: 123.68634808852292\n", - "2018-08-27 23:45:08,250 : INFO : h_r_error: 35.442016723358826\n", - "2018-08-27 23:45:08,259 : INFO : h_r_error: 35.29506649853743\n", - "2018-08-27 23:45:08,261 : INFO : h_r_error: 35.29506649853743\n", - "2018-08-27 23:45:08,263 : INFO : h_r_error: 111.7032849759673\n", - "2018-08-27 23:45:08,264 : INFO : h_r_error: 111.3202732221199\n", - "2018-08-27 23:45:08,266 : INFO : h_r_error: 111.3202732221199\n", - "2018-08-27 23:45:08,268 : INFO : h_r_error: 63.689116939887825\n", - "2018-08-27 23:45:08,278 : INFO : h_r_error: 63.52317092740833\n", - "2018-08-27 23:45:08,280 : INFO : h_r_error: 63.52317092740833\n", - "2018-08-27 23:45:08,282 : INFO : h_r_error: 41.4827374766661\n", - "2018-08-27 23:45:08,285 : INFO : h_r_error: 41.394990830651096\n", - "2018-08-27 23:45:08,289 : INFO : h_r_error: 41.394990830651096\n", - "2018-08-27 23:45:08,291 : INFO : h_r_error: 54.74878061450797\n", - "2018-08-27 23:45:08,292 : INFO : h_r_error: 54.6545818485676\n", - "2018-08-27 23:45:08,299 : INFO : h_r_error: 54.6545818485676\n", - "2018-08-27 23:45:08,301 : INFO : h_r_error: 14.825648302555102\n", - "2018-08-27 23:45:08,303 : INFO : h_r_error: 14.825648302555102\n", - "2018-08-27 23:45:08,305 : INFO : h_r_error: 31.529639597467817\n", - "2018-08-27 23:45:08,312 : INFO : h_r_error: 31.486608350910135\n", - "2018-08-27 23:45:08,314 : INFO : h_r_error: 31.486608350910135\n", - "2018-08-27 23:45:08,315 : INFO : h_r_error: 45.66469382284119\n", - "2018-08-27 23:45:08,317 : INFO : h_r_error: 45.59755392490864\n", - "2018-08-27 23:45:08,319 : INFO : h_r_error: 45.59755392490864\n", - "2018-08-27 23:45:08,326 : INFO : h_r_error: 40.763545240389135\n", - "2018-08-27 23:45:08,327 : INFO : h_r_error: 40.67618402177974\n", - "2018-08-27 23:45:08,329 : INFO : h_r_error: 40.67618402177974\n", - "2018-08-27 23:45:08,331 : INFO : h_r_error: 37.16831877848398\n", - "2018-08-27 23:45:08,342 : INFO : h_r_error: 37.09642139509022\n", - "2018-08-27 23:45:08,344 : INFO : h_r_error: 37.09642139509022\n", - "2018-08-27 23:45:08,346 : INFO : h_r_error: 52.12541319977978\n", - "2018-08-27 23:45:08,350 : INFO : h_r_error: 51.99433680384548\n", - "2018-08-27 23:45:08,352 : INFO : h_r_error: 51.99433680384548\n", - "2018-08-27 23:45:08,354 : INFO : h_r_error: 6.979708421280952\n", - "2018-08-27 23:45:08,363 : INFO : h_r_error: 6.979708421280952\n", - "2018-08-27 23:45:08,364 : INFO : h_r_error: 20.612044167378826\n", - "2018-08-27 23:45:08,366 : INFO : h_r_error: 20.583899232578943\n", - "2018-08-27 23:45:08,369 : INFO : h_r_error: 20.583899232578943\n", - "2018-08-27 23:45:08,370 : INFO : h_r_error: 2891.087129385072\n", - "2018-08-27 23:45:08,380 : INFO : h_r_error: 2865.8386970743227\n", - "2018-08-27 23:45:08,382 : INFO : h_r_error: 2865.8386970743227\n", - "2018-08-27 23:45:08,386 : INFO : h_r_error: 15.421006276409857\n", - "2018-08-27 23:45:08,390 : INFO : h_r_error: 15.421006276409857\n", - "2018-08-27 23:45:08,399 : INFO : h_r_error: 47.190353920627274\n", - "2018-08-27 23:45:08,401 : INFO : h_r_error: 47.114915576860135\n", - "2018-08-27 23:45:08,406 : INFO : h_r_error: 47.114915576860135\n", - "2018-08-27 23:45:08,416 : INFO : h_r_error: 26.746348655723043\n", - "2018-08-27 23:45:08,418 : INFO : h_r_error: 26.746348655723043\n", - "2018-08-27 23:45:08,419 : INFO : h_r_error: 24.62906573298586\n", - "2018-08-27 23:45:08,421 : INFO : h_r_error: 24.62906573298586\n", - "2018-08-27 23:45:08,423 : INFO : h_r_error: 49.597105240415644\n", - "2018-08-27 23:45:08,433 : INFO : h_r_error: 49.51729290186569\n", - "2018-08-27 23:45:08,434 : INFO : h_r_error: 49.51729290186569\n", - "2018-08-27 23:45:08,436 : INFO : h_r_error: 100.15808013157181\n", - "2018-08-27 23:45:08,438 : INFO : h_r_error: 99.34522756905781\n", - "2018-08-27 23:45:08,439 : INFO : h_r_error: 99.34522756905781\n", - "2018-08-27 23:45:08,450 : INFO : h_r_error: 132.43308651921384\n", - "2018-08-27 23:45:08,451 : INFO : h_r_error: 132.22112305684678\n", - "2018-08-27 23:45:08,453 : INFO : h_r_error: 132.22112305684678\n", - "2018-08-27 23:45:08,454 : INFO : h_r_error: 19.105867334968245\n", - "2018-08-27 23:45:08,456 : INFO : h_r_error: 19.07464669354223\n", - "2018-08-27 23:45:08,458 : INFO : h_r_error: 19.07464669354223\n", - "2018-08-27 23:45:08,461 : INFO : h_r_error: 161.34995583832696\n", - "2018-08-27 23:45:08,470 : INFO : h_r_error: 160.58038715755862\n", - "2018-08-27 23:45:08,472 : INFO : h_r_error: 160.58038715755862\n", - "2018-08-27 23:45:08,473 : INFO : h_r_error: 192.88303575771803\n", - "2018-08-27 23:45:08,474 : INFO : h_r_error: 192.4237618285328\n", - "2018-08-27 23:45:08,477 : INFO : h_r_error: 192.4237618285328\n", - "2018-08-27 23:45:08,486 : INFO : h_r_error: 67.08760936638457\n", - "2018-08-27 23:45:08,490 : INFO : h_r_error: 66.9905719772389\n", - "2018-08-27 23:45:08,493 : INFO : h_r_error: 66.9905719772389\n", - "2018-08-27 23:45:08,494 : INFO : h_r_error: 133.26461736881822\n", - "2018-08-27 23:45:08,500 : INFO : h_r_error: 132.31017199505808\n", - "2018-08-27 23:45:08,503 : INFO : h_r_error: 132.31017199505808\n", - "2018-08-27 23:45:08,508 : INFO : h_r_error: 48.205487230843\n", - "2018-08-27 23:45:08,510 : INFO : h_r_error: 48.06909159340345\n", - "2018-08-27 23:45:08,514 : INFO : h_r_error: 48.06909159340345\n", - "2018-08-27 23:45:08,519 : INFO : h_r_error: 77.42775963463052\n", - "2018-08-27 23:45:08,521 : INFO : h_r_error: 77.23713618871562\n", - "2018-08-27 23:45:08,547 : INFO : h_r_error: 77.23713618871562\n", - "2018-08-27 23:45:08,556 : INFO : h_r_error: 83.1830846139817\n", - "2018-08-27 23:45:08,562 : INFO : h_r_error: 82.79165002747119\n", - "2018-08-27 23:45:08,574 : INFO : h_r_error: 82.79165002747119\n", - "2018-08-27 23:45:08,575 : INFO : h_r_error: 87.0173218892558\n", - "2018-08-27 23:45:08,577 : INFO : h_r_error: 86.85228641128822\n", - "2018-08-27 23:45:08,581 : INFO : h_r_error: 86.85228641128822\n", - "2018-08-27 23:45:08,583 : INFO : h_r_error: 78.66669629395851\n", - "2018-08-27 23:45:08,585 : INFO : h_r_error: 78.52027350487224\n", - "2018-08-27 23:45:08,587 : INFO : h_r_error: 78.52027350487224\n", - "2018-08-27 23:45:08,589 : INFO : h_r_error: 53.385320741181765\n", - "2018-08-27 23:45:08,597 : INFO : h_r_error: 53.18585784283141\n", - "2018-08-27 23:45:08,601 : INFO : h_r_error: 53.18585784283141\n", - "2018-08-27 23:45:08,623 : INFO : h_r_error: 58.56895694621605\n", - "2018-08-27 23:45:08,657 : INFO : h_r_error: 58.56895694621605\n", - "2018-08-27 23:45:08,672 : INFO : h_r_error: 207.12960939450303\n", - "2018-08-27 23:45:08,676 : INFO : h_r_error: 207.12960939450303\n", - "2018-08-27 23:45:08,689 : INFO : h_r_error: 506.5058148890812\n", - "2018-08-27 23:45:08,706 : INFO : h_r_error: 504.6918232878942\n", - "2018-08-27 23:45:08,721 : INFO : h_r_error: 504.6918232878942\n", - "2018-08-27 23:45:08,724 : INFO : h_r_error: 27.990377107722225\n", - "2018-08-27 23:45:08,758 : INFO : h_r_error: 27.94035427277272\n", - "2018-08-27 23:45:08,768 : INFO : h_r_error: 27.94035427277272\n", - "2018-08-27 23:45:08,773 : INFO : h_r_error: 29.688591471080397\n", - "2018-08-27 23:45:08,786 : INFO : h_r_error: 29.656440235140774\n", - "2018-08-27 23:45:08,791 : INFO : h_r_error: 29.656440235140774\n", - "2018-08-27 23:45:08,793 : INFO : h_r_error: 54.30262613904614\n", - "2018-08-27 23:45:08,795 : INFO : h_r_error: 54.20588507641205\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:08,797 : INFO : h_r_error: 54.20588507641205\n", - "2018-08-27 23:45:08,808 : INFO : h_r_error: 25.239972619118518\n", - "2018-08-27 23:45:08,812 : INFO : h_r_error: 25.239972619118518\n", - "2018-08-27 23:45:08,814 : INFO : h_r_error: 779.1560778667736\n", - "2018-08-27 23:45:08,816 : INFO : h_r_error: 751.8088675662666\n", - "2018-08-27 23:45:08,819 : INFO : h_r_error: 751.8088675662666\n", - "2018-08-27 23:45:08,821 : INFO : h_r_error: 293.49057327736494\n", - "2018-08-27 23:45:08,823 : INFO : h_r_error: 292.2370697339675\n", - "2018-08-27 23:45:08,825 : INFO : h_r_error: 292.2370697339675\n", - "2018-08-27 23:45:08,835 : INFO : h_r_error: 37.18396834043754\n", - "2018-08-27 23:45:08,858 : INFO : h_r_error: 37.06869871444631\n", - "2018-08-27 23:45:08,860 : INFO : h_r_error: 37.06869871444631\n", - "2018-08-27 23:45:08,862 : INFO : h_r_error: 15.394499804641221\n", - "2018-08-27 23:45:08,866 : INFO : h_r_error: 15.346255030161108\n", - "2018-08-27 23:45:08,880 : INFO : h_r_error: 15.346255030161108\n", - "2018-08-27 23:45:08,884 : INFO : h_r_error: 64.70430837598282\n", - "2018-08-27 23:45:08,888 : INFO : h_r_error: 64.5100164294243\n", - "2018-08-27 23:45:08,891 : INFO : h_r_error: 64.5100164294243\n", - "2018-08-27 23:45:08,893 : INFO : h_r_error: 49.137231411174085\n", - "2018-08-27 23:45:08,895 : INFO : h_r_error: 49.08009792086358\n", - "2018-08-27 23:45:08,903 : INFO : h_r_error: 49.08009792086358\n", - "2018-08-27 23:45:08,905 : INFO : h_r_error: 65.42631673176713\n", - "2018-08-27 23:45:08,907 : INFO : h_r_error: 65.20699787610023\n", - "2018-08-27 23:45:08,910 : INFO : h_r_error: 65.20699787610023\n", - "2018-08-27 23:45:08,912 : INFO : h_r_error: 87.74052466545629\n", - "2018-08-27 23:45:08,914 : INFO : h_r_error: 87.52407289017123\n", - "2018-08-27 23:45:08,926 : INFO : h_r_error: 87.52407289017123\n", - "2018-08-27 23:45:08,929 : INFO : h_r_error: 73.66205367414582\n", - "2018-08-27 23:45:08,932 : INFO : h_r_error: 73.49252900611022\n", - "2018-08-27 23:45:08,934 : INFO : h_r_error: 73.49252900611022\n", - "2018-08-27 23:45:08,938 : INFO : h_r_error: 79.632015098119\n", - "2018-08-27 23:45:08,940 : INFO : h_r_error: 79.4897593765634\n", - "2018-08-27 23:45:08,942 : INFO : h_r_error: 79.4897593765634\n", - "2018-08-27 23:45:08,952 : INFO : h_r_error: 61.52226425846136\n", - "2018-08-27 23:45:08,955 : INFO : h_r_error: 61.35600924807711\n", - "2018-08-27 23:45:08,957 : INFO : h_r_error: 61.35600924807711\n", - "2018-08-27 23:45:08,959 : INFO : h_r_error: 124.29545757102723\n", - "2018-08-27 23:45:08,961 : INFO : h_r_error: 123.73694815195189\n", - "2018-08-27 23:45:08,965 : INFO : h_r_error: 123.73694815195189\n", - "2018-08-27 23:45:08,969 : INFO : h_r_error: 753.4403594756869\n", - "2018-08-27 23:45:08,972 : INFO : h_r_error: 753.4403594756869\n", - "2018-08-27 23:45:08,977 : INFO : h_r_error: 77.17184421078932\n", - "2018-08-27 23:45:08,979 : INFO : h_r_error: 76.91822063470413\n", - "2018-08-27 23:45:08,983 : INFO : h_r_error: 76.91822063470413\n", - "2018-08-27 23:45:08,986 : INFO : h_r_error: 75.70457828766254\n", - "2018-08-27 23:45:08,989 : INFO : h_r_error: 75.70457828766254\n", - "2018-08-27 23:45:08,992 : INFO : h_r_error: 32.983762862397164\n", - "2018-08-27 23:45:08,995 : INFO : h_r_error: 32.89554938462277\n", - "2018-08-27 23:45:09,000 : INFO : h_r_error: 32.89554938462277\n", - "2018-08-27 23:45:09,002 : INFO : h_r_error: 197.19430913700427\n", - "2018-08-27 23:45:09,004 : INFO : h_r_error: 195.59073716206308\n", - "2018-08-27 23:45:09,007 : INFO : h_r_error: 195.59073716206308\n", - "2018-08-27 23:45:09,014 : INFO : h_r_error: 15.613863212474792\n", - "2018-08-27 23:45:09,016 : INFO : h_r_error: 15.579676252877245\n", - "2018-08-27 23:45:09,018 : INFO : h_r_error: 15.579676252877245\n", - "2018-08-27 23:45:09,022 : INFO : h_r_error: 21.102085358646303\n", - "2018-08-27 23:45:09,026 : INFO : h_r_error: 21.069609592248437\n", - "2018-08-27 23:45:09,028 : INFO : h_r_error: 21.069609592248437\n", - "2018-08-27 23:45:09,030 : INFO : h_r_error: 221.91224528253392\n", - "2018-08-27 23:45:09,035 : INFO : h_r_error: 221.00817679630939\n", - "2018-08-27 23:45:09,044 : INFO : h_r_error: 221.00817679630939\n", - "2018-08-27 23:45:09,046 : INFO : h_r_error: 373.1352342594502\n", - "2018-08-27 23:45:09,047 : INFO : h_r_error: 370.51660575962063\n", - "2018-08-27 23:45:09,049 : INFO : h_r_error: 370.51660575962063\n", - "2018-08-27 23:45:09,050 : INFO : h_r_error: 30.936082076807946\n", - "2018-08-27 23:45:09,052 : INFO : h_r_error: 30.864708068586058\n", - "2018-08-27 23:45:09,057 : INFO : h_r_error: 30.864708068586058\n", - "2018-08-27 23:45:09,058 : INFO : h_r_error: 60.86338673360841\n", - "2018-08-27 23:45:09,062 : INFO : h_r_error: 60.74007437378558\n", - "2018-08-27 23:45:09,064 : INFO : h_r_error: 60.74007437378558\n", - "2018-08-27 23:45:09,070 : INFO : h_r_error: 15.463274944541759\n", - "2018-08-27 23:45:09,071 : INFO : h_r_error: 15.463274944541759\n", - "2018-08-27 23:45:09,073 : INFO : h_r_error: 57.05247336411262\n", - "2018-08-27 23:45:09,074 : INFO : h_r_error: 56.8574655693063\n", - "2018-08-27 23:45:09,081 : INFO : h_r_error: 56.8574655693063\n", - "2018-08-27 23:45:09,082 : INFO : h_r_error: 17.855341320833066\n", - "2018-08-27 23:45:09,084 : INFO : h_r_error: 17.855341320833066\n", - "2018-08-27 23:45:09,096 : INFO : h_r_error: 63.82622798138708\n", - "2018-08-27 23:45:09,098 : INFO : h_r_error: 63.47293311976175\n", - "2018-08-27 23:45:09,107 : INFO : h_r_error: 63.47293311976175\n", - "2018-08-27 23:45:09,110 : INFO : h_r_error: 35.498230407756786\n", - "2018-08-27 23:45:09,111 : INFO : h_r_error: 35.42046298820186\n", - "2018-08-27 23:45:09,112 : INFO : h_r_error: 35.42046298820186\n", - "2018-08-27 23:45:09,122 : INFO : h_r_error: 42.34843557314823\n", - "2018-08-27 23:45:09,124 : INFO : h_r_error: 42.34843557314823\n", - "2018-08-27 23:45:09,128 : INFO : h_r_error: 16.823941640783804\n", - "2018-08-27 23:45:09,130 : INFO : h_r_error: 16.823941640783804\n", - "2018-08-27 23:45:09,139 : INFO : h_r_error: 33.527079508715566\n", - "2018-08-27 23:45:09,141 : INFO : h_r_error: 33.492670827357486\n", - "2018-08-27 23:45:09,143 : INFO : h_r_error: 33.492670827357486\n", - "2018-08-27 23:45:09,144 : INFO : h_r_error: 36.03782359738761\n", - "2018-08-27 23:45:09,148 : INFO : h_r_error: 36.03782359738761\n", - "2018-08-27 23:45:09,156 : INFO : h_r_error: 59.306932740109836\n", - "2018-08-27 23:45:09,157 : INFO : h_r_error: 59.11246855846727\n", - "2018-08-27 23:45:09,159 : INFO : h_r_error: 59.11246855846727\n", - "2018-08-27 23:45:09,160 : INFO : h_r_error: 44.0961909626002\n", - "2018-08-27 23:45:09,162 : INFO : h_r_error: 44.0961909626002\n", - "2018-08-27 23:45:09,163 : INFO : h_r_error: 52.03242714051914\n", - "2018-08-27 23:45:09,173 : INFO : h_r_error: 52.03242714051914\n", - "2018-08-27 23:45:09,177 : INFO : h_r_error: 41.15500076902318\n", - "2018-08-27 23:45:09,178 : INFO : h_r_error: 41.0891998484138\n", - "2018-08-27 23:45:09,188 : INFO : h_r_error: 41.0891998484138\n", - "2018-08-27 23:45:09,190 : INFO : h_r_error: 53.95501218739077\n", - "2018-08-27 23:45:09,193 : INFO : h_r_error: 53.85384306253256\n", - "2018-08-27 23:45:09,196 : INFO : h_r_error: 53.85384306253256\n", - "2018-08-27 23:45:09,210 : INFO : h_r_error: 44.25196835690499\n", - "2018-08-27 23:45:09,212 : INFO : h_r_error: 44.18091618264452\n", - "2018-08-27 23:45:09,215 : INFO : h_r_error: 44.18091618264452\n", - "2018-08-27 23:45:09,220 : INFO : h_r_error: 48.36973614933072\n", - "2018-08-27 23:45:09,224 : INFO : h_r_error: 48.31598846729365\n", - "2018-08-27 23:45:09,233 : INFO : h_r_error: 48.31598846729365\n", - "2018-08-27 23:45:09,236 : INFO : h_r_error: 38.019127456186986\n", - "2018-08-27 23:45:09,239 : INFO : h_r_error: 38.019127456186986\n", - "2018-08-27 23:45:09,242 : INFO : h_r_error: 89.09006619959138\n", - "2018-08-27 23:45:09,249 : INFO : h_r_error: 88.78066072231002\n", - "2018-08-27 23:45:09,256 : INFO : h_r_error: 88.78066072231002\n", - "2018-08-27 23:45:09,260 : INFO : h_r_error: 80.914309066781\n", - "2018-08-27 23:45:09,269 : INFO : h_r_error: 80.72578536402622\n", - "2018-08-27 23:45:09,272 : INFO : h_r_error: 80.72578536402622\n", - "2018-08-27 23:45:09,275 : INFO : h_r_error: 26.263483184077426\n", - "2018-08-27 23:45:09,278 : INFO : h_r_error: 26.263483184077426\n", - "2018-08-27 23:45:09,281 : INFO : h_r_error: 756.6001196676131\n", - "2018-08-27 23:45:09,284 : INFO : h_r_error: 750.6974573627347\n", - "2018-08-27 23:45:09,288 : INFO : h_r_error: 750.6974573627347\n", - "2018-08-27 23:45:09,291 : INFO : h_r_error: 138.1378530603809\n", - "2018-08-27 23:45:09,292 : INFO : h_r_error: 137.83204859692037\n", - "2018-08-27 23:45:09,295 : INFO : h_r_error: 137.83204859692037\n", - "2018-08-27 23:45:09,298 : INFO : h_r_error: 15.362190413034693\n", - "2018-08-27 23:45:09,301 : INFO : h_r_error: 15.362190413034693\n", - "2018-08-27 23:45:09,303 : INFO : h_r_error: 37.64946810568944\n", - "2018-08-27 23:45:09,305 : INFO : h_r_error: 37.54065951702669\n", - "2018-08-27 23:45:09,307 : INFO : h_r_error: 37.54065951702669\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:09,309 : INFO : h_r_error: 90.72532178722821\n", - "2018-08-27 23:45:09,312 : INFO : h_r_error: 90.61667122330805\n", - "2018-08-27 23:45:09,320 : INFO : h_r_error: 90.61667122330805\n", - "2018-08-27 23:45:09,322 : INFO : h_r_error: 32.473202718187586\n", - "2018-08-27 23:45:09,324 : INFO : h_r_error: 32.43099032072294\n", - "2018-08-27 23:45:09,333 : INFO : h_r_error: 32.43099032072294\n", - "2018-08-27 23:45:09,335 : INFO : h_r_error: 55.26154019629022\n", - "2018-08-27 23:45:09,338 : INFO : h_r_error: 55.26154019629022\n", - "2018-08-27 23:45:09,340 : INFO : h_r_error: 103.75728803890173\n", - "2018-08-27 23:45:09,342 : INFO : h_r_error: 103.25373949633641\n", - "2018-08-27 23:45:09,345 : INFO : h_r_error: 103.25373949633641\n", - "2018-08-27 23:45:09,347 : INFO : h_r_error: 14.427678979980671\n", - "2018-08-27 23:45:09,350 : INFO : h_r_error: 14.427678979980671\n", - "2018-08-27 23:45:09,352 : INFO : h_r_error: 37.026167019192364\n", - "2018-08-27 23:45:09,354 : INFO : h_r_error: 36.92301663711912\n", - "2018-08-27 23:45:09,357 : INFO : h_r_error: 36.92301663711912\n", - "2018-08-27 23:45:09,359 : INFO : h_r_error: 13.422687216073953\n", - "2018-08-27 23:45:09,361 : INFO : h_r_error: 13.422687216073953\n", - "2018-08-27 23:45:09,363 : INFO : h_r_error: 79.11819620072004\n", - "2018-08-27 23:45:09,365 : INFO : h_r_error: 78.98484721256735\n", - "2018-08-27 23:45:09,367 : INFO : h_r_error: 78.98484721256735\n", - "2018-08-27 23:45:09,369 : INFO : h_r_error: 18.221981267745008\n", - "2018-08-27 23:45:09,371 : INFO : h_r_error: 18.20091666778991\n", - "2018-08-27 23:45:09,374 : INFO : h_r_error: 18.20091666778991\n", - "2018-08-27 23:45:09,375 : INFO : h_r_error: 79.01212265880551\n", - "2018-08-27 23:45:09,376 : INFO : h_r_error: 78.64109829090482\n", - "2018-08-27 23:45:09,378 : INFO : h_r_error: 78.64109829090482\n", - "2018-08-27 23:45:09,387 : INFO : h_r_error: 192.966249204322\n", - "2018-08-27 23:45:09,388 : INFO : h_r_error: 192.63859444118157\n", - "2018-08-27 23:45:09,390 : INFO : h_r_error: 192.63859444118157\n", - "2018-08-27 23:45:09,398 : INFO : h_r_error: 44.78381545620494\n", - "2018-08-27 23:45:09,406 : INFO : h_r_error: 44.78381545620494\n", - "2018-08-27 23:45:09,408 : INFO : h_r_error: 80.87697737412006\n", - "2018-08-27 23:45:09,409 : INFO : h_r_error: 80.71965663793887\n", - "2018-08-27 23:45:09,411 : INFO : h_r_error: 80.71965663793887\n", - "2018-08-27 23:45:09,421 : INFO : h_r_error: 159.15397541779313\n", - "2018-08-27 23:45:09,431 : INFO : h_r_error: 158.50678105407889\n", - "2018-08-27 23:45:09,435 : INFO : h_r_error: 158.50678105407889\n", - "2018-08-27 23:45:09,438 : INFO : h_r_error: 33.20823743187659\n", - "2018-08-27 23:45:09,446 : INFO : h_r_error: 33.20823743187659\n", - "2018-08-27 23:45:09,448 : INFO : h_r_error: 25.326673633670637\n", - "2018-08-27 23:45:09,451 : INFO : h_r_error: 25.326673633670637\n", - "2018-08-27 23:45:09,459 : INFO : h_r_error: 275.38804344387586\n", - "2018-08-27 23:45:09,462 : INFO : h_r_error: 274.6386810870009\n", - "2018-08-27 23:45:09,465 : INFO : h_r_error: 274.6386810870009\n", - "2018-08-27 23:45:09,472 : INFO : h_r_error: 30.01591631148193\n", - "2018-08-27 23:45:09,475 : INFO : h_r_error: 29.970873486098807\n", - "2018-08-27 23:45:09,477 : INFO : h_r_error: 29.970873486098807\n", - "2018-08-27 23:45:09,486 : INFO : h_r_error: 27.100610701451707\n", - "2018-08-27 23:45:09,489 : INFO : h_r_error: 27.061825739930494\n", - "2018-08-27 23:45:09,492 : INFO : h_r_error: 27.061825739930494\n", - "2018-08-27 23:45:09,499 : INFO : h_r_error: 85.11027604120332\n", - "2018-08-27 23:45:09,502 : INFO : h_r_error: 84.8514391547941\n", - "2018-08-27 23:45:09,504 : INFO : h_r_error: 84.8514391547941\n", - "2018-08-27 23:45:09,512 : INFO : h_r_error: 20.89078671734081\n", - "2018-08-27 23:45:09,516 : INFO : h_r_error: 20.89078671734081\n", - "2018-08-27 23:45:09,518 : INFO : h_r_error: 44.20773118744926\n", - "2018-08-27 23:45:09,526 : INFO : h_r_error: 44.12865861054452\n", - "2018-08-27 23:45:09,528 : INFO : h_r_error: 44.12865861054452\n", - "2018-08-27 23:45:09,530 : INFO : h_r_error: 11.874354665209003\n", - "2018-08-27 23:45:09,544 : INFO : h_r_error: 11.874354665209003\n", - "2018-08-27 23:45:09,546 : INFO : h_r_error: 55.45258634368921\n", - "2018-08-27 23:45:09,548 : INFO : h_r_error: 55.0821107158972\n", - "2018-08-27 23:45:09,577 : INFO : h_r_error: 55.0821107158972\n", - "2018-08-27 23:45:09,580 : INFO : h_r_error: 243.44415610511624\n", - "2018-08-27 23:45:09,585 : INFO : h_r_error: 242.4713266783093\n", - "2018-08-27 23:45:09,595 : INFO : h_r_error: 242.4713266783093\n", - "2018-08-27 23:45:09,597 : INFO : h_r_error: 183.49916453963428\n", - "2018-08-27 23:45:09,600 : INFO : h_r_error: 183.49916453963428\n", - "2018-08-27 23:45:09,606 : INFO : h_r_error: 1137.239701235682\n", - "2018-08-27 23:45:09,619 : INFO : h_r_error: 1131.815977407663\n", - "2018-08-27 23:45:09,622 : INFO : h_r_error: 1131.815977407663\n", - "2018-08-27 23:45:09,624 : INFO : h_r_error: 64.09189611739133\n", - "2018-08-27 23:45:09,626 : INFO : h_r_error: 64.01821281460904\n", - "2018-08-27 23:45:09,636 : INFO : h_r_error: 64.01821281460904\n", - "2018-08-27 23:45:09,639 : INFO : h_r_error: 25.01979526047071\n", - "2018-08-27 23:45:09,641 : INFO : h_r_error: 24.96810761054339\n", - "2018-08-27 23:45:09,650 : INFO : h_r_error: 24.96810761054339\n", - "2018-08-27 23:45:09,652 : INFO : h_r_error: 211.4564615590532\n", - "2018-08-27 23:45:09,654 : INFO : h_r_error: 209.16728726463998\n", - "2018-08-27 23:45:09,663 : INFO : h_r_error: 209.16728726463998\n", - "2018-08-27 23:45:09,666 : INFO : h_r_error: 32.42512449585816\n", - "2018-08-27 23:45:09,668 : INFO : h_r_error: 32.32324874689018\n", - "2018-08-27 23:45:09,676 : INFO : h_r_error: 32.32324874689018\n", - "2018-08-27 23:45:09,678 : INFO : h_r_error: 369.2838379519635\n", - "2018-08-27 23:45:09,680 : INFO : h_r_error: 366.4661222760027\n", - "2018-08-27 23:45:09,690 : INFO : h_r_error: 366.4661222760027\n", - "2018-08-27 23:45:09,692 : INFO : h_r_error: 148.51414302563995\n", - "2018-08-27 23:45:09,694 : INFO : h_r_error: 148.51414302563995\n", - "2018-08-27 23:45:09,702 : INFO : h_r_error: 49.720738110309306\n", - "2018-08-27 23:45:09,705 : INFO : h_r_error: 49.658382868252055\n", - "2018-08-27 23:45:09,708 : INFO : h_r_error: 49.658382868252055\n", - "2018-08-27 23:45:09,711 : INFO : h_r_error: 81.28308513825392\n", - "2018-08-27 23:45:09,717 : INFO : h_r_error: 81.01741629020096\n", - "2018-08-27 23:45:09,723 : INFO : h_r_error: 81.01741629020096\n", - "2018-08-27 23:45:09,729 : INFO : h_r_error: 10.489660220055333\n", - "2018-08-27 23:45:09,733 : INFO : h_r_error: 10.489660220055333\n", - "2018-08-27 23:45:09,740 : INFO : h_r_error: 17.73476658816214\n", - "2018-08-27 23:45:09,744 : INFO : h_r_error: 17.73476658816214\n", - "2018-08-27 23:45:09,753 : INFO : h_r_error: 49.74147073295508\n", - "2018-08-27 23:45:09,757 : INFO : h_r_error: 49.55132230048628\n", - "2018-08-27 23:45:09,760 : INFO : h_r_error: 49.55132230048628\n", - "2018-08-27 23:45:09,769 : INFO : h_r_error: 1313.3914386296585\n", - "2018-08-27 23:45:09,774 : INFO : h_r_error: 1301.053979159957\n", - "2018-08-27 23:45:09,783 : INFO : h_r_error: 1301.053979159957\n", - "2018-08-27 23:45:09,786 : INFO : h_r_error: 78.06655225266941\n", - "2018-08-27 23:45:09,788 : INFO : h_r_error: 77.85666877905578\n", - "2018-08-27 23:45:09,796 : INFO : h_r_error: 77.85666877905578\n", - "2018-08-27 23:45:09,800 : INFO : h_r_error: 233.76052500480293\n", - "2018-08-27 23:45:09,808 : INFO : h_r_error: 228.4489568657454\n", - "2018-08-27 23:45:09,811 : INFO : h_r_error: 228.4489568657454\n", - "2018-08-27 23:45:09,819 : INFO : h_r_error: 264.05498408083804\n", - "2018-08-27 23:45:09,822 : INFO : h_r_error: 263.3149843567885\n", - "2018-08-27 23:45:09,825 : INFO : h_r_error: 263.3149843567885\n", - "2018-08-27 23:45:09,832 : INFO : h_r_error: 15.354953935721626\n", - "2018-08-27 23:45:09,835 : INFO : h_r_error: 15.354953935721626\n", - "2018-08-27 23:45:09,837 : INFO : h_r_error: 52.03321662813771\n", - "2018-08-27 23:45:09,839 : INFO : h_r_error: 51.93657055658818\n", - "2018-08-27 23:45:09,848 : INFO : h_r_error: 51.93657055658818\n", - "2018-08-27 23:45:09,850 : INFO : h_r_error: 144.34528440909045\n", - "2018-08-27 23:45:09,859 : INFO : h_r_error: 144.10238414773016\n", - "2018-08-27 23:45:09,863 : INFO : h_r_error: 144.10238414773016\n", - "2018-08-27 23:45:09,865 : INFO : h_r_error: 67.38067550975245\n", - "2018-08-27 23:45:09,872 : INFO : h_r_error: 67.29752286914739\n", - "2018-08-27 23:45:09,876 : INFO : h_r_error: 67.29752286914739\n", - "2018-08-27 23:45:09,886 : INFO : h_r_error: 204.60635550453622\n", - "2018-08-27 23:45:09,888 : INFO : h_r_error: 204.00640431429917\n", - "2018-08-27 23:45:09,892 : INFO : h_r_error: 204.00640431429917\n", - "2018-08-27 23:45:09,895 : INFO : h_r_error: 79.01802290447688\n", - "2018-08-27 23:45:09,902 : INFO : h_r_error: 79.01802290447688\n", - "2018-08-27 23:45:09,919 : INFO : h_r_error: 53.85500726024805\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:09,929 : INFO : h_r_error: 53.85500726024805\n", - "2018-08-27 23:45:09,937 : INFO : h_r_error: 131.7840283928187\n", - "2018-08-27 23:45:09,943 : INFO : h_r_error: 131.37100202071076\n", - "2018-08-27 23:45:09,946 : INFO : h_r_error: 131.37100202071076\n", - "2018-08-27 23:45:09,949 : INFO : h_r_error: 84.53023850255838\n", - "2018-08-27 23:45:09,951 : INFO : h_r_error: 84.29000882473328\n", - "2018-08-27 23:45:09,954 : INFO : h_r_error: 84.29000882473328\n", - "2018-08-27 23:45:09,957 : INFO : h_r_error: 40.02804697059197\n", - "2018-08-27 23:45:09,959 : INFO : h_r_error: 39.98781253201647\n", - "2018-08-27 23:45:09,962 : INFO : h_r_error: 39.98781253201647\n", - "2018-08-27 23:45:09,965 : INFO : h_r_error: 351.2919620615984\n", - "2018-08-27 23:45:09,967 : INFO : h_r_error: 347.7451589124805\n", - "2018-08-27 23:45:09,975 : INFO : h_r_error: 347.7451589124805\n", - "2018-08-27 23:45:09,987 : INFO : h_r_error: 85.80607509073015\n", - "2018-08-27 23:45:09,990 : INFO : h_r_error: 85.38998726416797\n", - "2018-08-27 23:45:09,992 : INFO : h_r_error: 85.38998726416797\n", - "2018-08-27 23:45:09,999 : INFO : h_r_error: 71.8506176158133\n", - "2018-08-27 23:45:10,010 : INFO : h_r_error: 71.8506176158133\n", - "2018-08-27 23:45:10,012 : INFO : h_r_error: 84.7880846151498\n", - "2018-08-27 23:45:10,016 : INFO : h_r_error: 84.4465956020451\n", - "2018-08-27 23:45:10,032 : INFO : h_r_error: 84.4465956020451\n", - "2018-08-27 23:45:10,034 : INFO : h_r_error: 552.0900980698696\n", - "2018-08-27 23:45:10,039 : INFO : h_r_error: 550.4021430510097\n", - "2018-08-27 23:45:10,041 : INFO : h_r_error: 550.4021430510097\n", - "2018-08-27 23:45:10,048 : INFO : h_r_error: 9.462562407786047\n", - "2018-08-27 23:45:10,056 : INFO : h_r_error: 9.462562407786047\n", - "2018-08-27 23:45:10,059 : INFO : h_r_error: 13.425582881723411\n", - "2018-08-27 23:45:10,066 : INFO : h_r_error: 13.425582881723411\n", - "2018-08-27 23:45:10,069 : INFO : h_r_error: 30.98371582187662\n", - "2018-08-27 23:45:10,072 : INFO : h_r_error: 30.936061353891404\n", - "2018-08-27 23:45:10,093 : INFO : h_r_error: 30.936061353891404\n", - "2018-08-27 23:45:10,105 : INFO : h_r_error: 27.129277269843804\n", - "2018-08-27 23:45:10,108 : INFO : h_r_error: 27.129277269843804\n", - "2018-08-27 23:45:10,115 : INFO : h_r_error: 34.60531279601902\n", - "2018-08-27 23:45:10,117 : INFO : h_r_error: 34.60531279601902\n", - "2018-08-27 23:45:10,123 : INFO : h_r_error: 9.433786505561919\n", - "2018-08-27 23:45:10,132 : INFO : h_r_error: 9.433786505561919\n", - "2018-08-27 23:45:10,138 : INFO : h_r_error: 12.269334683977174\n", - "2018-08-27 23:45:10,147 : INFO : h_r_error: 12.269334683977174\n", - "2018-08-27 23:45:10,164 : INFO : h_r_error: 129.0405686236369\n", - "2018-08-27 23:45:10,173 : INFO : h_r_error: 128.7908816254431\n", - "2018-08-27 23:45:10,176 : INFO : h_r_error: 128.7908816254431\n", - "2018-08-27 23:45:10,180 : INFO : h_r_error: 31.223844816070372\n", - "2018-08-27 23:45:10,183 : INFO : h_r_error: 31.223844816070372\n", - "2018-08-27 23:45:10,185 : INFO : h_r_error: 138.69284722530034\n", - "2018-08-27 23:45:10,186 : INFO : h_r_error: 138.1438392034598\n", - "2018-08-27 23:45:10,190 : INFO : h_r_error: 138.1438392034598\n", - "2018-08-27 23:45:10,199 : INFO : h_r_error: 268.77288870072624\n", - "2018-08-27 23:45:10,203 : INFO : h_r_error: 268.32446848833223\n", - "2018-08-27 23:45:10,210 : INFO : h_r_error: 268.32446848833223\n", - "2018-08-27 23:45:10,218 : INFO : h_r_error: 35.919460372219525\n", - "2018-08-27 23:45:10,220 : INFO : h_r_error: 35.802395958739574\n", - "2018-08-27 23:45:10,223 : INFO : h_r_error: 35.802395958739574\n", - "2018-08-27 23:45:10,226 : INFO : h_r_error: 32.75939045812501\n", - "2018-08-27 23:45:10,229 : INFO : h_r_error: 32.49016441528598\n", - "2018-08-27 23:45:10,240 : INFO : h_r_error: 32.49016441528598\n", - "2018-08-27 23:45:10,243 : INFO : h_r_error: 64.43185723657623\n", - "2018-08-27 23:45:10,245 : INFO : h_r_error: 64.285522030977\n", - "2018-08-27 23:45:10,247 : INFO : h_r_error: 64.285522030977\n", - "2018-08-27 23:45:10,254 : INFO : h_r_error: 98.25565375018076\n", - "2018-08-27 23:45:10,259 : INFO : h_r_error: 97.9806221372769\n", - "2018-08-27 23:45:10,263 : INFO : h_r_error: 97.9806221372769\n", - "2018-08-27 23:45:10,271 : INFO : h_r_error: 31.499335035458028\n", - "2018-08-27 23:45:10,274 : INFO : h_r_error: 31.360250533963363\n", - "2018-08-27 23:45:10,277 : INFO : h_r_error: 31.360250533963363\n", - "2018-08-27 23:45:10,283 : INFO : h_r_error: 133.23664841854372\n", - "2018-08-27 23:45:10,285 : INFO : h_r_error: 132.98555283633544\n", - "2018-08-27 23:45:10,289 : INFO : h_r_error: 132.98555283633544\n", - "2018-08-27 23:45:10,292 : INFO : h_r_error: 262.60602761507937\n", - "2018-08-27 23:45:10,303 : INFO : h_r_error: 261.40885921732774\n", - "2018-08-27 23:45:10,307 : INFO : h_r_error: 261.40885921732774\n", - "2018-08-27 23:45:10,311 : INFO : h_r_error: 85.61348550909437\n", - "2018-08-27 23:45:10,313 : INFO : h_r_error: 85.46781031449201\n", - "2018-08-27 23:45:10,319 : INFO : h_r_error: 85.46781031449201\n", - "2018-08-27 23:45:10,324 : INFO : h_r_error: 82.01722149458661\n", - "2018-08-27 23:45:10,326 : INFO : h_r_error: 81.89150749778378\n", - "2018-08-27 23:45:10,331 : INFO : h_r_error: 81.89150749778378\n", - "2018-08-27 23:45:10,336 : INFO : h_r_error: 86.73958031849567\n", - "2018-08-27 23:45:10,342 : INFO : h_r_error: 86.49706612675365\n", - "2018-08-27 23:45:10,346 : INFO : h_r_error: 86.49706612675365\n", - "2018-08-27 23:45:10,352 : INFO : h_r_error: 61.28373358326729\n", - "2018-08-27 23:45:10,354 : INFO : h_r_error: 61.144142239509286\n", - "2018-08-27 23:45:10,368 : INFO : h_r_error: 61.144142239509286\n", - "2018-08-27 23:45:10,371 : INFO : h_r_error: 34.6073753792893\n", - "2018-08-27 23:45:10,374 : INFO : h_r_error: 34.52884817285492\n", - "2018-08-27 23:45:10,378 : INFO : h_r_error: 34.52884817285492\n", - "2018-08-27 23:45:10,381 : INFO : h_r_error: 12.438992065046062\n", - "2018-08-27 23:45:10,385 : INFO : h_r_error: 12.438992065046062\n", - "2018-08-27 23:45:10,392 : INFO : h_r_error: 27.264662198734758\n", - "2018-08-27 23:45:10,394 : INFO : h_r_error: 27.264662198734758\n", - "2018-08-27 23:45:10,397 : INFO : h_r_error: 1309.6956148886263\n", - "2018-08-27 23:45:10,405 : INFO : h_r_error: 1302.1957924180474\n", - "2018-08-27 23:45:10,408 : INFO : h_r_error: 1302.1957924180474\n", - "2018-08-27 23:45:10,410 : INFO : h_r_error: 18.8413035542282\n", - "2018-08-27 23:45:10,414 : INFO : h_r_error: 18.81418430257025\n", - "2018-08-27 23:45:10,420 : INFO : h_r_error: 18.81418430257025\n", - "2018-08-27 23:45:10,423 : INFO : h_r_error: 415.26850871239236\n", - "2018-08-27 23:45:10,430 : INFO : h_r_error: 414.0867524652071\n", - "2018-08-27 23:45:10,438 : INFO : h_r_error: 414.0867524652071\n", - "2018-08-27 23:45:10,440 : INFO : h_r_error: 77.69124220540704\n", - "2018-08-27 23:45:10,444 : INFO : h_r_error: 77.59511840319354\n", - "2018-08-27 23:45:10,452 : INFO : h_r_error: 77.59511840319354\n", - "2018-08-27 23:45:10,454 : INFO : h_r_error: 51.20603346879964\n", - "2018-08-27 23:45:10,456 : INFO : h_r_error: 51.14052682673531\n", - "2018-08-27 23:45:10,465 : INFO : h_r_error: 51.14052682673531\n", - "2018-08-27 23:45:10,470 : INFO : h_r_error: 351.2270536750511\n", - "2018-08-27 23:45:10,476 : INFO : h_r_error: 350.2090490927045\n", - "2018-08-27 23:45:10,479 : INFO : h_r_error: 350.2090490927045\n", - "2018-08-27 23:45:10,481 : INFO : h_r_error: 185.53643444505425\n", - "2018-08-27 23:45:10,484 : INFO : h_r_error: 185.53643444505425\n", - "2018-08-27 23:45:10,489 : INFO : h_r_error: 659.3238783506164\n", - "2018-08-27 23:45:10,492 : INFO : h_r_error: 657.6361206675075\n", - "2018-08-27 23:45:10,497 : INFO : h_r_error: 657.6361206675075\n", - "2018-08-27 23:45:10,506 : INFO : h_r_error: 18.672257584623008\n", - "2018-08-27 23:45:10,509 : INFO : h_r_error: 18.642374731815746\n", - "2018-08-27 23:45:10,511 : INFO : h_r_error: 18.642374731815746\n", - "2018-08-27 23:45:10,514 : INFO : h_r_error: 175.71399370354834\n", - "2018-08-27 23:45:10,522 : INFO : h_r_error: 175.42814183586435\n", - "2018-08-27 23:45:10,525 : INFO : h_r_error: 175.42814183586435\n", - "2018-08-27 23:45:10,528 : INFO : h_r_error: 46.016614963127715\n", - "2018-08-27 23:45:10,530 : INFO : h_r_error: 45.888293579474826\n", - "2018-08-27 23:45:10,533 : INFO : h_r_error: 45.888293579474826\n", - "2018-08-27 23:45:10,536 : INFO : h_r_error: 62.11022979288852\n", - "2018-08-27 23:45:10,542 : INFO : h_r_error: 61.981174049559534\n", - "2018-08-27 23:45:10,545 : INFO : h_r_error: 61.981174049559534\n", - "2018-08-27 23:45:10,554 : INFO : h_r_error: 85.19106806808192\n", - "2018-08-27 23:45:10,556 : INFO : h_r_error: 84.79763893385412\n", - "2018-08-27 23:45:10,558 : INFO : h_r_error: 84.79763893385412\n", - "2018-08-27 23:45:10,561 : INFO : h_r_error: 12.768182005762013\n", - "2018-08-27 23:45:10,570 : INFO : h_r_error: 12.747134659429635\n", - "2018-08-27 23:45:10,580 : INFO : h_r_error: 12.747134659429635\n", - "2018-08-27 23:45:10,588 : INFO : h_r_error: 41.81074539785168\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:10,595 : INFO : h_r_error: 41.71689134406895\n", - "2018-08-27 23:45:10,608 : INFO : h_r_error: 41.71689134406895\n", - "2018-08-27 23:45:10,614 : INFO : h_r_error: 108.03321989463547\n", - "2018-08-27 23:45:10,621 : INFO : h_r_error: 107.84606871061298\n", - "2018-08-27 23:45:10,626 : INFO : h_r_error: 107.84606871061298\n", - "2018-08-27 23:45:10,629 : INFO : h_r_error: 112.68078163239812\n", - "2018-08-27 23:45:10,633 : INFO : h_r_error: 112.182702555122\n", - "2018-08-27 23:45:10,643 : INFO : h_r_error: 112.182702555122\n", - "2018-08-27 23:45:10,645 : INFO : h_r_error: 10.891440732753185\n", - "2018-08-27 23:45:10,648 : INFO : h_r_error: 10.880070013624625\n", - "2018-08-27 23:45:10,650 : INFO : h_r_error: 10.880070013624625\n", - "2018-08-27 23:45:10,656 : INFO : h_r_error: 137.15990057875675\n", - "2018-08-27 23:45:10,662 : INFO : h_r_error: 136.66579590761867\n", - "2018-08-27 23:45:10,665 : INFO : h_r_error: 136.66579590761867\n", - "2018-08-27 23:45:10,668 : INFO : h_r_error: 51.14945240147144\n", - "2018-08-27 23:45:10,675 : INFO : h_r_error: 50.94589800612068\n", - "2018-08-27 23:45:10,677 : INFO : h_r_error: 50.94589800612068\n", - "2018-08-27 23:45:10,680 : INFO : h_r_error: 28.07548690593866\n", - "2018-08-27 23:45:10,683 : INFO : h_r_error: 28.043570982448475\n", - "2018-08-27 23:45:10,686 : INFO : h_r_error: 28.043570982448475\n", - "2018-08-27 23:45:10,692 : INFO : h_r_error: 16.229166348370203\n", - "2018-08-27 23:45:10,696 : INFO : h_r_error: 16.229166348370203\n", - "2018-08-27 23:45:10,702 : INFO : h_r_error: 25.070613504407554\n", - "2018-08-27 23:45:10,704 : INFO : h_r_error: 25.026654665871238\n", - "2018-08-27 23:45:10,710 : INFO : h_r_error: 25.026654665871238\n", - "2018-08-27 23:45:10,712 : INFO : h_r_error: 351.3239391902058\n", - "2018-08-27 23:45:10,714 : INFO : h_r_error: 349.24155751440594\n", - "2018-08-27 23:45:10,718 : INFO : h_r_error: 349.24155751440594\n", - "2018-08-27 23:45:10,725 : INFO : h_r_error: 369.1166041491549\n", - "2018-08-27 23:45:10,728 : INFO : h_r_error: 367.8028531640634\n", - "2018-08-27 23:45:10,732 : INFO : h_r_error: 367.8028531640634\n", - "2018-08-27 23:45:10,756 : INFO : h_r_error: 82.44546265856535\n", - "2018-08-27 23:45:10,761 : INFO : h_r_error: 82.25623152800664\n", - "2018-08-27 23:45:10,770 : INFO : h_r_error: 82.25623152800664\n", - "2018-08-27 23:45:10,772 : INFO : h_r_error: 60.53961337252454\n", - "2018-08-27 23:45:10,775 : INFO : h_r_error: 60.53961337252454\n", - "2018-08-27 23:45:10,780 : INFO : h_r_error: 98.81547891012593\n", - "2018-08-27 23:45:10,782 : INFO : h_r_error: 98.22456023844445\n", - "2018-08-27 23:45:10,786 : INFO : h_r_error: 98.22456023844445\n", - "2018-08-27 23:45:10,796 : INFO : h_r_error: 104.49632969427316\n", - "2018-08-27 23:45:10,798 : INFO : h_r_error: 104.1692201443283\n", - "2018-08-27 23:45:10,801 : INFO : h_r_error: 104.1692201443283\n", - "2018-08-27 23:45:10,804 : INFO : h_r_error: 287.35209457621767\n", - "2018-08-27 23:45:10,812 : INFO : h_r_error: 283.6714140296512\n", - "2018-08-27 23:45:10,815 : INFO : h_r_error: 283.6714140296512\n", - "2018-08-27 23:45:10,819 : INFO : h_r_error: 66.20612302686573\n", - "2018-08-27 23:45:10,825 : INFO : h_r_error: 66.03074073368457\n", - "2018-08-27 23:45:10,828 : INFO : h_r_error: 66.03074073368457\n", - "2018-08-27 23:45:10,830 : INFO : h_r_error: 409.08098979869794\n", - "2018-08-27 23:45:10,836 : INFO : h_r_error: 407.32189407842174\n", - "2018-08-27 23:45:10,838 : INFO : h_r_error: 407.32189407842174\n", - "2018-08-27 23:45:10,844 : INFO : h_r_error: 245.54578559013385\n", - "2018-08-27 23:45:10,847 : INFO : h_r_error: 244.51946924403012\n", - "2018-08-27 23:45:10,849 : INFO : h_r_error: 244.51946924403012\n", - "2018-08-27 23:45:10,852 : INFO : h_r_error: 67.38643970290559\n", - "2018-08-27 23:45:10,856 : INFO : h_r_error: 67.25304849461244\n", - "2018-08-27 23:45:10,862 : INFO : h_r_error: 67.25304849461244\n", - "2018-08-27 23:45:10,866 : INFO : h_r_error: 403.9324655600927\n", - "2018-08-27 23:45:10,869 : INFO : h_r_error: 397.48997408984536\n", - "2018-08-27 23:45:10,871 : INFO : h_r_error: 397.48997408984536\n", - "2018-08-27 23:45:10,874 : INFO : h_r_error: 168.7049182073785\n", - "2018-08-27 23:45:10,877 : INFO : h_r_error: 168.42552086383373\n", - "2018-08-27 23:45:10,879 : INFO : h_r_error: 168.42552086383373\n", - "2018-08-27 23:45:10,882 : INFO : h_r_error: 64.86823791196655\n", - "2018-08-27 23:45:10,890 : INFO : h_r_error: 64.86823791196655\n", - "2018-08-27 23:45:10,892 : INFO : h_r_error: 19.290314111380322\n", - "2018-08-27 23:45:10,894 : INFO : h_r_error: 19.290314111380322\n", - "2018-08-27 23:45:10,898 : INFO : h_r_error: 13.864914444258329\n", - "2018-08-27 23:45:10,901 : INFO : h_r_error: 13.864914444258329\n", - "2018-08-27 23:45:10,903 : INFO : h_r_error: 118.51357172279829\n", - "2018-08-27 23:45:10,906 : INFO : h_r_error: 118.51357172279829\n", - "2018-08-27 23:45:10,908 : INFO : h_r_error: 265.9270314917215\n", - "2018-08-27 23:45:10,911 : INFO : h_r_error: 265.367837594869\n", - "2018-08-27 23:45:10,914 : INFO : h_r_error: 265.367837594869\n", - "2018-08-27 23:45:10,917 : INFO : h_r_error: 104.66317257217972\n", - "2018-08-27 23:45:10,919 : INFO : h_r_error: 104.53169248228863\n", - "2018-08-27 23:45:10,922 : INFO : h_r_error: 104.53169248228863\n", - "2018-08-27 23:45:10,925 : INFO : h_r_error: 456.79520406781415\n", - "2018-08-27 23:45:10,927 : INFO : h_r_error: 453.61103765303193\n", - "2018-08-27 23:45:10,930 : INFO : h_r_error: 453.61103765303193\n", - "2018-08-27 23:45:10,933 : INFO : h_r_error: 119.57244883406415\n", - "2018-08-27 23:45:10,935 : INFO : h_r_error: 119.19481874419725\n", - "2018-08-27 23:45:10,937 : INFO : h_r_error: 119.19481874419725\n", - "2018-08-27 23:45:10,939 : INFO : h_r_error: 22.630684987091755\n", - "2018-08-27 23:45:10,940 : INFO : h_r_error: 22.588652264230134\n", - "2018-08-27 23:45:10,942 : INFO : h_r_error: 22.588652264230134\n", - "2018-08-27 23:45:10,944 : INFO : h_r_error: 208.84816540225015\n", - "2018-08-27 23:45:10,945 : INFO : h_r_error: 208.3731791023213\n", - "2018-08-27 23:45:10,948 : INFO : h_r_error: 208.3731791023213\n", - "2018-08-27 23:45:10,950 : INFO : h_r_error: 24.2639292148433\n", - "2018-08-27 23:45:10,951 : INFO : h_r_error: 24.2639292148433\n", - "2018-08-27 23:45:10,953 : INFO : h_r_error: 260.2256037639817\n", - "2018-08-27 23:45:10,955 : INFO : h_r_error: 259.16661875388826\n", - "2018-08-27 23:45:10,956 : INFO : h_r_error: 259.16661875388826\n", - "2018-08-27 23:45:10,958 : INFO : h_r_error: 112.97037019692492\n", - "2018-08-27 23:45:10,960 : INFO : h_r_error: 112.23912218261431\n", - "2018-08-27 23:45:10,962 : INFO : h_r_error: 112.23912218261431\n", - "2018-08-27 23:45:10,963 : INFO : h_r_error: 26.1589247317773\n", - "2018-08-27 23:45:10,977 : INFO : h_r_error: 25.855314257262606\n", - "2018-08-27 23:45:10,979 : INFO : h_r_error: 25.855314257262606\n", - "2018-08-27 23:45:10,982 : INFO : h_r_error: 648.0809854652865\n", - "2018-08-27 23:45:10,989 : INFO : h_r_error: 180.50293446636184\n", - "2018-08-27 23:45:10,991 : INFO : h_r_error: 180.50293446636184\n", - "2018-08-27 23:45:10,992 : INFO : h_r_error: 488.01945234950824\n", - "2018-08-27 23:45:10,994 : INFO : h_r_error: 486.8855190688143\n", - "2018-08-27 23:45:10,995 : INFO : h_r_error: 486.8855190688143\n", - "2018-08-27 23:45:10,998 : INFO : h_r_error: 37.8974603126764\n", - "2018-08-27 23:45:11,014 : INFO : h_r_error: 37.8974603126764\n", - "2018-08-27 23:45:11,019 : INFO : h_r_error: 95.90300751943926\n", - "2018-08-27 23:45:11,021 : INFO : h_r_error: 95.67825992379743\n", - "2018-08-27 23:45:11,025 : INFO : h_r_error: 95.67825992379743\n", - "2018-08-27 23:45:11,028 : INFO : h_r_error: 19.40764452391585\n", - "2018-08-27 23:45:11,033 : INFO : h_r_error: 19.40764452391585\n", - "2018-08-27 23:45:11,035 : INFO : h_r_error: 9.418681500595497\n", - "2018-08-27 23:45:11,043 : INFO : h_r_error: 9.418681500595497\n", - "2018-08-27 23:45:11,046 : INFO : h_r_error: 102.24197370328547\n", - "2018-08-27 23:45:11,048 : INFO : h_r_error: 101.92402272666\n", - "2018-08-27 23:45:11,056 : INFO : h_r_error: 101.92402272666\n", - "2018-08-27 23:45:11,059 : INFO : h_r_error: 45.755407650308456\n", - "2018-08-27 23:45:11,066 : INFO : h_r_error: 45.53759076607281\n", - "2018-08-27 23:45:11,068 : INFO : h_r_error: 45.53759076607281\n", - "2018-08-27 23:45:11,073 : INFO : h_r_error: 39.464877539208956\n", - "2018-08-27 23:45:11,075 : INFO : h_r_error: 39.37806593641647\n", - "2018-08-27 23:45:11,078 : INFO : h_r_error: 39.37806593641647\n", - "2018-08-27 23:45:11,081 : INFO : h_r_error: 255.33772138426625\n", - "2018-08-27 23:45:11,083 : INFO : h_r_error: 254.10078751968277\n", - "2018-08-27 23:45:11,088 : INFO : h_r_error: 254.10078751968277\n", - "2018-08-27 23:45:11,090 : INFO : h_r_error: 295.1214818544699\n", - "2018-08-27 23:45:11,093 : INFO : h_r_error: 293.4317534057286\n", - "2018-08-27 23:45:11,095 : INFO : h_r_error: 293.4317534057286\n", - "2018-08-27 23:45:11,098 : INFO : h_r_error: 54.923881889119976\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:11,101 : INFO : h_r_error: 54.791163939138166\n", - "2018-08-27 23:45:11,105 : INFO : h_r_error: 54.791163939138166\n", - "2018-08-27 23:45:11,107 : INFO : h_r_error: 71.28003141174423\n", - "2018-08-27 23:45:11,109 : INFO : h_r_error: 71.28003141174423\n", - "2018-08-27 23:45:11,111 : INFO : h_r_error: 278.7892511784869\n", - "2018-08-27 23:45:11,113 : INFO : h_r_error: 277.8740514173475\n", - "2018-08-27 23:45:11,116 : INFO : h_r_error: 277.8740514173475\n", - "2018-08-27 23:45:11,149 : INFO : h_r_error: 38.33404340328102\n", - "2018-08-27 23:45:11,154 : INFO : h_r_error: 37.94848644040294\n", - "2018-08-27 23:45:11,157 : INFO : h_r_error: 37.94848644040294\n", - "2018-08-27 23:45:11,160 : INFO : h_r_error: 87.53207584347362\n", - "2018-08-27 23:45:11,162 : INFO : h_r_error: 87.42255108756697\n", - "2018-08-27 23:45:11,165 : INFO : h_r_error: 87.42255108756697\n", - "2018-08-27 23:45:11,168 : INFO : h_r_error: 219.70159995282586\n", - "2018-08-27 23:45:11,174 : INFO : h_r_error: 218.47045457251707\n", - "2018-08-27 23:45:11,182 : INFO : h_r_error: 218.47045457251707\n", - "2018-08-27 23:45:11,186 : INFO : h_r_error: 14.428201876243515\n", - "2018-08-27 23:45:11,189 : INFO : h_r_error: 14.428201876243515\n", - "2018-08-27 23:45:11,196 : INFO : h_r_error: 39.254160148759645\n", - "2018-08-27 23:45:11,199 : INFO : h_r_error: 39.1041129543303\n", - "2018-08-27 23:45:11,210 : INFO : h_r_error: 39.1041129543303\n", - "2018-08-27 23:45:11,213 : INFO : h_r_error: 94.66335321868873\n", - "2018-08-27 23:45:11,216 : INFO : h_r_error: 94.52275763053788\n", - "2018-08-27 23:45:11,220 : INFO : h_r_error: 94.52275763053788\n", - "2018-08-27 23:45:11,226 : INFO : h_r_error: 564.0748528850772\n", - "2018-08-27 23:45:11,230 : INFO : h_r_error: 562.8339942911747\n", - "2018-08-27 23:45:11,234 : INFO : h_r_error: 562.8339942911747\n", - "2018-08-27 23:45:11,239 : INFO : h_r_error: 205.93125145695493\n", - "2018-08-27 23:45:11,243 : INFO : h_r_error: 205.27442064489406\n", - "2018-08-27 23:45:11,250 : INFO : h_r_error: 205.27442064489406\n", - "2018-08-27 23:45:11,253 : INFO : h_r_error: 45.6443729334338\n", - "2018-08-27 23:45:11,258 : INFO : h_r_error: 45.6443729334338\n", - "2018-08-27 23:45:11,266 : INFO : h_r_error: 69.42984940771086\n", - "2018-08-27 23:45:11,274 : INFO : h_r_error: 69.28065270476472\n", - "2018-08-27 23:45:11,278 : INFO : h_r_error: 69.28065270476472\n", - "2018-08-27 23:45:11,282 : INFO : h_r_error: 43.66355414804304\n", - "2018-08-27 23:45:11,296 : INFO : h_r_error: 43.66355414804304\n", - "2018-08-27 23:45:11,301 : INFO : h_r_error: 22.111224121555498\n", - "2018-08-27 23:45:11,304 : INFO : h_r_error: 22.08820948787055\n", - "2018-08-27 23:45:11,313 : INFO : h_r_error: 22.08820948787055\n", - "2018-08-27 23:45:11,317 : INFO : h_r_error: 27.56607858679807\n", - "2018-08-27 23:45:11,319 : INFO : h_r_error: 27.518316220238837\n", - "2018-08-27 23:45:11,330 : INFO : h_r_error: 27.518316220238837\n", - "2018-08-27 23:45:11,333 : INFO : h_r_error: 79.75041260898342\n", - "2018-08-27 23:45:11,336 : INFO : h_r_error: 79.75041260898342\n", - "2018-08-27 23:45:11,346 : INFO : h_r_error: 35.12507828848979\n", - "2018-08-27 23:45:11,349 : INFO : h_r_error: 35.04445966312926\n", - "2018-08-27 23:45:11,352 : INFO : h_r_error: 35.04445966312926\n", - "2018-08-27 23:45:11,362 : INFO : h_r_error: 102.50123354911078\n", - "2018-08-27 23:45:11,365 : INFO : h_r_error: 102.27389628547344\n", - "2018-08-27 23:45:11,368 : INFO : h_r_error: 102.27389628547344\n", - "2018-08-27 23:45:11,370 : INFO : h_r_error: 16.70942788830671\n", - "2018-08-27 23:45:11,377 : INFO : h_r_error: 16.690766978580196\n", - "2018-08-27 23:45:11,380 : INFO : h_r_error: 16.690766978580196\n", - "2018-08-27 23:45:11,386 : INFO : h_r_error: 73.35940631465135\n", - "2018-08-27 23:45:11,388 : INFO : h_r_error: 73.18078935009495\n", - "2018-08-27 23:45:11,393 : INFO : h_r_error: 73.18078935009495\n", - "2018-08-27 23:45:11,397 : INFO : h_r_error: 3377.3713877647\n", - "2018-08-27 23:45:11,402 : INFO : h_r_error: 3369.57536266718\n", - "2018-08-27 23:45:11,405 : INFO : h_r_error: 3369.57536266718\n", - "2018-08-27 23:45:11,434 : INFO : h_r_error: 195.13298996869358\n", - "2018-08-27 23:45:11,436 : INFO : h_r_error: 193.6004861352703\n", - "2018-08-27 23:45:11,440 : INFO : h_r_error: 193.6004861352703\n", - "2018-08-27 23:45:11,446 : INFO : h_r_error: 194.58340327465726\n", - "2018-08-27 23:45:11,449 : INFO : h_r_error: 194.22229388005115\n", - "2018-08-27 23:45:11,453 : INFO : h_r_error: 194.22229388005115\n", - "2018-08-27 23:45:11,460 : INFO : h_r_error: 21.394691609099844\n", - "2018-08-27 23:45:11,463 : INFO : h_r_error: 21.394691609099844\n", - "2018-08-27 23:45:11,464 : INFO : h_r_error: 420.2861114973524\n", - "2018-08-27 23:45:11,468 : INFO : h_r_error: 410.80387678082377\n", - "2018-08-27 23:45:11,476 : INFO : h_r_error: 410.80387678082377\n", - "2018-08-27 23:45:11,478 : INFO : h_r_error: 103.27085055289409\n", - "2018-08-27 23:45:11,480 : INFO : h_r_error: 103.04931323868942\n", - "2018-08-27 23:45:11,483 : INFO : h_r_error: 103.04931323868942\n", - "2018-08-27 23:45:11,487 : INFO : h_r_error: 43.184329106061824\n", - "2018-08-27 23:45:11,492 : INFO : h_r_error: 43.034332048868244\n", - "2018-08-27 23:45:11,494 : INFO : h_r_error: 43.034332048868244\n", - "2018-08-27 23:45:11,500 : INFO : h_r_error: 27.31213980597482\n", - "2018-08-27 23:45:11,502 : INFO : h_r_error: 27.31213980597482\n", - "2018-08-27 23:45:11,507 : INFO : h_r_error: 9.335757077966775\n", - "2018-08-27 23:45:11,509 : INFO : h_r_error: 9.322373548656776\n", - "2018-08-27 23:45:11,516 : INFO : h_r_error: 9.322373548656776\n", - "2018-08-27 23:45:11,518 : INFO : h_r_error: 19.929993447472587\n", - "2018-08-27 23:45:11,520 : INFO : h_r_error: 19.929993447472587\n", - "2018-08-27 23:45:11,523 : INFO : h_r_error: 78.12475640047118\n", - "2018-08-27 23:45:11,526 : INFO : h_r_error: 77.8449492499782\n", - "2018-08-27 23:45:11,528 : INFO : h_r_error: 77.8449492499782\n", - "2018-08-27 23:45:11,530 : INFO : h_r_error: 25.538032275891148\n", - "2018-08-27 23:45:11,536 : INFO : h_r_error: 25.503870433862584\n", - "2018-08-27 23:45:11,539 : INFO : h_r_error: 25.503870433862584\n", - "2018-08-27 23:45:11,541 : INFO : h_r_error: 43.01221349387062\n", - "2018-08-27 23:45:11,546 : INFO : h_r_error: 43.01221349387062\n", - "2018-08-27 23:45:11,551 : INFO : h_r_error: 61.71511660366473\n", - "2018-08-27 23:45:11,554 : INFO : h_r_error: 61.61156089303084\n", - "2018-08-27 23:45:11,556 : INFO : h_r_error: 61.61156089303084\n", - "2018-08-27 23:45:11,562 : INFO : h_r_error: 42.43642196110965\n", - "2018-08-27 23:45:11,564 : INFO : h_r_error: 42.43642196110965\n", - "2018-08-27 23:45:11,570 : INFO : h_r_error: 20.185543539656596\n", - "2018-08-27 23:45:11,572 : INFO : h_r_error: 20.159701108344134\n", - "2018-08-27 23:45:11,578 : INFO : h_r_error: 20.159701108344134\n", - "2018-08-27 23:45:11,581 : INFO : h_r_error: 88.18567593092318\n", - "2018-08-27 23:45:11,584 : INFO : h_r_error: 88.00321757843925\n", - "2018-08-27 23:45:11,586 : INFO : h_r_error: 88.00321757843925\n", - "2018-08-27 23:45:11,589 : INFO : h_r_error: 319.50080148676034\n", - "2018-08-27 23:45:11,591 : INFO : h_r_error: 316.36933610385717\n", - "2018-08-27 23:45:11,597 : INFO : h_r_error: 316.36933610385717\n", - "2018-08-27 23:45:11,599 : INFO : h_r_error: 2.9927432769317885\n", - "2018-08-27 23:45:11,601 : INFO : h_r_error: 2.9927432769317885\n", - "2018-08-27 23:45:11,609 : INFO : h_r_error: 115.58449850657578\n", - "2018-08-27 23:45:11,611 : INFO : h_r_error: 115.3723074964942\n", - "2018-08-27 23:45:11,614 : INFO : h_r_error: 115.3723074964942\n", - "2018-08-27 23:45:11,616 : INFO : h_r_error: 142.42691813154966\n", - "2018-08-27 23:45:11,626 : INFO : h_r_error: 141.52811319200882\n", - "2018-08-27 23:45:11,628 : INFO : h_r_error: 141.52811319200882\n", - "2018-08-27 23:45:11,630 : INFO : h_r_error: 31.648703728603316\n", - "2018-08-27 23:45:11,632 : INFO : h_r_error: 31.562697173524654\n", - "2018-08-27 23:45:11,634 : INFO : h_r_error: 31.562697173524654\n", - "2018-08-27 23:45:11,639 : INFO : h_r_error: 51.78611436906381\n", - "2018-08-27 23:45:11,643 : INFO : h_r_error: 51.71814603217257\n", - "2018-08-27 23:45:11,645 : INFO : h_r_error: 51.71814603217257\n", - "2018-08-27 23:45:11,653 : INFO : h_r_error: 125.108085807401\n", - "2018-08-27 23:45:11,659 : INFO : h_r_error: 124.90552578689774\n", - "2018-08-27 23:45:11,664 : INFO : h_r_error: 124.90552578689774\n", - "2018-08-27 23:45:11,673 : INFO : h_r_error: 135.55236150867495\n", - "2018-08-27 23:45:11,679 : INFO : h_r_error: 134.870646209497\n", - "2018-08-27 23:45:11,688 : INFO : h_r_error: 134.870646209497\n", - "2018-08-27 23:45:11,691 : INFO : h_r_error: 22.374556591188806\n", - "2018-08-27 23:45:11,694 : INFO : h_r_error: 22.328784981313994\n", - "2018-08-27 23:45:11,700 : INFO : h_r_error: 22.328784981313994\n", - "2018-08-27 23:45:11,704 : INFO : h_r_error: 39.40185111415704\n", - "2018-08-27 23:45:11,709 : INFO : h_r_error: 39.34952151029273\n", - "2018-08-27 23:45:11,713 : INFO : h_r_error: 39.34952151029273\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:11,719 : INFO : h_r_error: 45.401771414252345\n", - "2018-08-27 23:45:11,721 : INFO : h_r_error: 45.401771414252345\n", - "2018-08-27 23:45:11,726 : INFO : h_r_error: 30.074611573855023\n", - "2018-08-27 23:45:11,731 : INFO : h_r_error: 30.035124149185776\n", - "2018-08-27 23:45:11,734 : INFO : h_r_error: 30.035124149185776\n", - "2018-08-27 23:45:11,736 : INFO : h_r_error: 212.84477695033883\n", - "2018-08-27 23:45:11,741 : INFO : h_r_error: 212.28267152956136\n", - "2018-08-27 23:45:11,745 : INFO : h_r_error: 212.28267152956136\n", - "2018-08-27 23:45:11,746 : INFO : h_r_error: 220.1495256469164\n", - "2018-08-27 23:45:11,750 : INFO : h_r_error: 219.46351890529186\n", - "2018-08-27 23:45:11,752 : INFO : h_r_error: 219.46351890529186\n", - "2018-08-27 23:45:11,754 : INFO : h_r_error: 109.64399896023605\n", - "2018-08-27 23:45:11,757 : INFO : h_r_error: 109.42629761648602\n", - "2018-08-27 23:45:11,759 : INFO : h_r_error: 109.42629761648602\n", - "2018-08-27 23:45:11,761 : INFO : h_r_error: 24.713960627006085\n", - "2018-08-27 23:45:11,763 : INFO : h_r_error: 24.663537385833518\n", - "2018-08-27 23:45:11,765 : INFO : h_r_error: 24.663537385833518\n", - "2018-08-27 23:45:11,767 : INFO : h_r_error: 27.334481118306257\n", - "2018-08-27 23:45:11,769 : INFO : h_r_error: 27.334481118306257\n", - "2018-08-27 23:45:11,771 : INFO : h_r_error: 27.079407548940164\n", - "2018-08-27 23:45:11,774 : INFO : h_r_error: 27.043633370903652\n", - "2018-08-27 23:45:11,776 : INFO : h_r_error: 27.043633370903652\n", - "2018-08-27 23:45:11,778 : INFO : h_r_error: 318.61830954418764\n", - "2018-08-27 23:45:11,780 : INFO : h_r_error: 317.0583707110081\n", - "2018-08-27 23:45:11,782 : INFO : h_r_error: 317.0583707110081\n", - "2018-08-27 23:45:11,783 : INFO : h_r_error: 200.9494059884595\n", - "2018-08-27 23:45:11,785 : INFO : h_r_error: 199.09391981746398\n", - "2018-08-27 23:45:11,786 : INFO : h_r_error: 199.09391981746398\n", - "2018-08-27 23:45:11,788 : INFO : h_r_error: 67.63956423839724\n", - "2018-08-27 23:45:11,789 : INFO : h_r_error: 67.43884912409563\n", - "2018-08-27 23:45:11,791 : INFO : h_r_error: 67.43884912409563\n", - "2018-08-27 23:45:11,792 : INFO : h_r_error: 979.5355383301658\n", - "2018-08-27 23:45:11,793 : INFO : h_r_error: 977.843869418661\n", - "2018-08-27 23:45:11,795 : INFO : h_r_error: 977.843869418661\n", - "2018-08-27 23:45:11,796 : INFO : h_r_error: 65.54331821190507\n", - "2018-08-27 23:45:11,798 : INFO : h_r_error: 65.46786317071306\n", - "2018-08-27 23:45:11,799 : INFO : h_r_error: 65.46786317071306\n", - "2018-08-27 23:45:11,800 : INFO : h_r_error: 13.93747684259868\n", - "2018-08-27 23:45:11,802 : INFO : h_r_error: 13.93747684259868\n", - "2018-08-27 23:45:11,804 : INFO : h_r_error: 13.93747684259868\n", - "2018-08-27 23:45:11,805 : INFO : h_r_error: 63.13809573146082\n", - "2018-08-27 23:45:11,807 : INFO : h_r_error: 63.13809573146082\n", - "2018-08-27 23:45:11,808 : INFO : h_r_error: 101.42727612480007\n", - "2018-08-27 23:45:11,809 : INFO : h_r_error: 101.30163583323908\n", - "2018-08-27 23:45:11,811 : INFO : h_r_error: 101.30163583323908\n", - "2018-08-27 23:45:11,812 : INFO : h_r_error: 15.619739595290737\n", - "2018-08-27 23:45:11,813 : INFO : h_r_error: 15.586235965382263\n", - "2018-08-27 23:45:11,815 : INFO : h_r_error: 15.586235965382263\n", - "2018-08-27 23:45:11,816 : INFO : h_r_error: 44.05263547550892\n", - "2018-08-27 23:45:11,817 : INFO : h_r_error: 43.935971266435445\n", - "2018-08-27 23:45:11,819 : INFO : h_r_error: 43.935971266435445\n", - "2018-08-27 23:45:11,820 : INFO : h_r_error: 61.443819761944404\n", - "2018-08-27 23:45:11,821 : INFO : h_r_error: 61.308264442241736\n", - "2018-08-27 23:45:11,823 : INFO : h_r_error: 61.308264442241736\n", - "2018-08-27 23:45:11,824 : INFO : h_r_error: 64.77163471136676\n", - "2018-08-27 23:45:11,825 : INFO : h_r_error: 64.67862088738569\n", - "2018-08-27 23:45:11,826 : INFO : h_r_error: 64.67862088738569\n", - "2018-08-27 23:45:11,828 : INFO : h_r_error: 137.5184967129021\n", - "2018-08-27 23:45:11,829 : INFO : h_r_error: 137.19530653057123\n", - "2018-08-27 23:45:11,831 : INFO : h_r_error: 137.19530653057123\n", - "2018-08-27 23:45:11,832 : INFO : h_r_error: 43.280706082123054\n", - "2018-08-27 23:45:11,836 : INFO : h_r_error: 43.21345949344759\n", - "2018-08-27 23:45:11,846 : INFO : h_r_error: 43.21345949344759\n", - "2018-08-27 23:45:11,849 : INFO : h_r_error: 214.79591485272337\n", - "2018-08-27 23:45:11,851 : INFO : h_r_error: 205.51493128321812\n", - "2018-08-27 23:45:11,853 : INFO : h_r_error: 205.51493128321812\n", - "2018-08-27 23:45:11,855 : INFO : h_r_error: 56.96276325648226\n", - "2018-08-27 23:45:11,866 : INFO : h_r_error: 56.56497988123869\n", - "2018-08-27 23:45:11,867 : INFO : h_r_error: 56.56497988123869\n", - "2018-08-27 23:45:11,869 : INFO : h_r_error: 21.783031315676922\n", - "2018-08-27 23:45:11,873 : INFO : h_r_error: 21.783031315676922\n", - "2018-08-27 23:45:11,874 : INFO : h_r_error: 59.14652819080889\n", - "2018-08-27 23:45:11,877 : INFO : h_r_error: 59.06082721777681\n", - "2018-08-27 23:45:11,878 : INFO : h_r_error: 59.06082721777681\n", - "2018-08-27 23:45:11,881 : INFO : h_r_error: 74.22121261116645\n", - "2018-08-27 23:45:11,883 : INFO : h_r_error: 74.05067919934247\n", - "2018-08-27 23:45:11,884 : INFO : h_r_error: 74.05067919934247\n", - "2018-08-27 23:45:11,886 : INFO : h_r_error: 38.531746025242384\n", - "2018-08-27 23:45:11,898 : INFO : h_r_error: 38.531746025242384\n", - "2018-08-27 23:45:11,900 : INFO : h_r_error: 57.62205396280413\n", - "2018-08-27 23:45:11,901 : INFO : h_r_error: 57.5041515716967\n", - "2018-08-27 23:45:11,906 : INFO : h_r_error: 57.5041515716967\n", - "2018-08-27 23:45:11,908 : INFO : h_r_error: 111.72834042204755\n", - "2018-08-27 23:45:11,917 : INFO : h_r_error: 111.38805178498411\n", - "2018-08-27 23:45:11,919 : INFO : h_r_error: 111.38805178498411\n", - "2018-08-27 23:45:11,923 : INFO : h_r_error: 23.73956099558545\n", - "2018-08-27 23:45:11,926 : INFO : h_r_error: 23.73956099558545\n", - "2018-08-27 23:45:11,930 : INFO : h_r_error: 14.230440279408615\n", - "2018-08-27 23:45:11,931 : INFO : h_r_error: 14.205037571711062\n", - "2018-08-27 23:45:11,933 : INFO : h_r_error: 14.205037571711062\n", - "2018-08-27 23:45:11,936 : INFO : h_r_error: 49.711644790970226\n", - "2018-08-27 23:45:11,937 : INFO : h_r_error: 49.63861597720887\n", - "2018-08-27 23:45:11,939 : INFO : h_r_error: 49.63861597720887\n", - "2018-08-27 23:45:11,949 : INFO : h_r_error: 25.040767131532018\n", - "2018-08-27 23:45:11,950 : INFO : h_r_error: 25.0119423980994\n", - "2018-08-27 23:45:11,952 : INFO : h_r_error: 25.0119423980994\n", - "2018-08-27 23:45:11,954 : INFO : h_r_error: 34.30015890634604\n", - "2018-08-27 23:45:11,955 : INFO : h_r_error: 34.255574496689576\n", - "2018-08-27 23:45:11,957 : INFO : h_r_error: 34.255574496689576\n", - "2018-08-27 23:45:11,958 : INFO : h_r_error: 137.96207129684282\n", - "2018-08-27 23:45:11,960 : INFO : h_r_error: 137.18877680411754\n", - "2018-08-27 23:45:11,961 : INFO : h_r_error: 137.18877680411754\n", - "2018-08-27 23:45:11,963 : INFO : h_r_error: 58.39701811018821\n", - "2018-08-27 23:45:11,965 : INFO : h_r_error: 58.259764632979746\n", - "2018-08-27 23:45:11,969 : INFO : h_r_error: 58.259764632979746\n", - "2018-08-27 23:45:11,971 : INFO : h_r_error: 9.408486412523626\n", - "2018-08-27 23:45:11,973 : INFO : h_r_error: 9.408486412523626\n", - "2018-08-27 23:45:11,974 : INFO : h_r_error: 90.18287275611605\n", - "2018-08-27 23:45:11,976 : INFO : h_r_error: 89.93647791973042\n", - "2018-08-27 23:45:11,978 : INFO : h_r_error: 89.93647791973042\n", - "2018-08-27 23:45:11,979 : INFO : h_r_error: 28.260466920853883\n", - "2018-08-27 23:45:11,980 : INFO : h_r_error: 28.19797195576139\n", - "2018-08-27 23:45:11,981 : INFO : h_r_error: 28.19797195576139\n", - "2018-08-27 23:45:11,984 : INFO : h_r_error: 26.0951363493579\n", - "2018-08-27 23:45:11,986 : INFO : h_r_error: 26.022950436986505\n", - "2018-08-27 23:45:11,989 : INFO : h_r_error: 26.022950436986505\n", - "2018-08-27 23:45:11,992 : INFO : h_r_error: 60.131149534697535\n", - "2018-08-27 23:45:11,993 : INFO : h_r_error: 59.99753402609404\n", - "2018-08-27 23:45:11,995 : INFO : h_r_error: 59.99753402609404\n", - "2018-08-27 23:45:11,996 : INFO : h_r_error: 58.389173694669026\n", - "2018-08-27 23:45:11,997 : INFO : h_r_error: 58.22923959895184\n", - "2018-08-27 23:45:11,999 : INFO : h_r_error: 58.22923959895184\n", - "2018-08-27 23:45:12,001 : INFO : h_r_error: 605.630128916287\n", - "2018-08-27 23:45:12,014 : INFO : h_r_error: 600.19066373739\n", - "2018-08-27 23:45:12,018 : INFO : h_r_error: 600.19066373739\n", - "2018-08-27 23:45:12,020 : INFO : h_r_error: 28.13122616847215\n", - "2018-08-27 23:45:12,039 : INFO : h_r_error: 28.102623617434922\n", - "2018-08-27 23:45:12,052 : INFO : h_r_error: 28.102623617434922\n", - "2018-08-27 23:45:12,053 : INFO : h_r_error: 103.53689740200376\n", - "2018-08-27 23:45:12,054 : INFO : h_r_error: 103.24342459119137\n", - "2018-08-27 23:45:12,056 : INFO : h_r_error: 103.24342459119137\n", - "2018-08-27 23:45:12,057 : INFO : h_r_error: 22.668222383732715\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:12,067 : INFO : h_r_error: 22.637724257834467\n", - "2018-08-27 23:45:12,069 : INFO : h_r_error: 22.637724257834467\n", - "2018-08-27 23:45:12,070 : INFO : h_r_error: 39.71471153241762\n", - "2018-08-27 23:45:12,072 : INFO : h_r_error: 39.64931448273663\n", - "2018-08-27 23:45:12,073 : INFO : h_r_error: 39.64931448273663\n", - "2018-08-27 23:45:12,076 : INFO : h_r_error: 64.93648605789367\n", - "2018-08-27 23:45:12,078 : INFO : h_r_error: 64.44710543890649\n", - "2018-08-27 23:45:12,082 : INFO : h_r_error: 64.44710543890649\n", - "2018-08-27 23:45:12,083 : INFO : h_r_error: 112.21119587544713\n", - "2018-08-27 23:45:12,091 : INFO : h_r_error: 111.97552549702522\n", - "2018-08-27 23:45:12,094 : INFO : h_r_error: 111.97552549702522\n", - "2018-08-27 23:45:12,098 : INFO : h_r_error: 56.77863023203744\n", - "2018-08-27 23:45:12,101 : INFO : h_r_error: 56.71698210531082\n", - "2018-08-27 23:45:12,103 : INFO : h_r_error: 56.71698210531082\n", - "2018-08-27 23:45:12,118 : INFO : h_r_error: 75.79728742391968\n", - "2018-08-27 23:45:12,123 : INFO : h_r_error: 75.68720556114886\n", - "2018-08-27 23:45:12,127 : INFO : h_r_error: 75.68720556114886\n", - "2018-08-27 23:45:12,133 : INFO : h_r_error: 11.433896280418624\n", - "2018-08-27 23:45:12,134 : INFO : h_r_error: 11.433896280418624\n", - "2018-08-27 23:45:12,141 : INFO : h_r_error: 23.341048964934522\n", - "2018-08-27 23:45:12,147 : INFO : h_r_error: 23.341048964934522\n", - "2018-08-27 23:45:12,153 : INFO : h_r_error: 41.194038328044876\n", - "2018-08-27 23:45:12,155 : INFO : h_r_error: 41.0558741711433\n", - "2018-08-27 23:45:12,158 : INFO : h_r_error: 41.0558741711433\n", - "2018-08-27 23:45:12,160 : INFO : h_r_error: 159.2338951896059\n", - "2018-08-27 23:45:12,163 : INFO : h_r_error: 158.23257606168306\n", - "2018-08-27 23:45:12,165 : INFO : h_r_error: 158.23257606168306\n", - "2018-08-27 23:45:12,168 : INFO : h_r_error: 93.28561730866006\n", - "2018-08-27 23:45:12,169 : INFO : h_r_error: 93.12709951729516\n", - "2018-08-27 23:45:12,171 : INFO : h_r_error: 93.12709951729516\n", - "2018-08-27 23:45:12,172 : INFO : h_r_error: 45.20116215669265\n", - "2018-08-27 23:45:12,173 : INFO : h_r_error: 45.10354801484517\n", - "2018-08-27 23:45:12,175 : INFO : h_r_error: 45.10354801484517\n", - "2018-08-27 23:45:12,176 : INFO : h_r_error: 47.78647736746028\n", - "2018-08-27 23:45:12,178 : INFO : h_r_error: 47.70093576281362\n", - "2018-08-27 23:45:12,179 : INFO : h_r_error: 47.70093576281362\n", - "2018-08-27 23:45:12,181 : INFO : h_r_error: 45.80364318252843\n", - "2018-08-27 23:45:12,182 : INFO : h_r_error: 45.7211067153947\n", - "2018-08-27 23:45:12,184 : INFO : h_r_error: 45.7211067153947\n", - "2018-08-27 23:45:12,185 : INFO : h_r_error: 15.428423750706921\n", - "2018-08-27 23:45:12,187 : INFO : h_r_error: 15.428423750706921\n", - "2018-08-27 23:45:12,188 : INFO : h_r_error: 204.67800135525277\n", - "2018-08-27 23:45:12,190 : INFO : h_r_error: 204.67800135525277\n", - "2018-08-27 23:45:12,191 : INFO : h_r_error: 40.59548529017948\n", - "2018-08-27 23:45:12,195 : INFO : h_r_error: 40.59548529017948\n", - "2018-08-27 23:45:12,197 : INFO : h_r_error: 29.674754112252423\n", - "2018-08-27 23:45:12,198 : INFO : h_r_error: 29.64181207806481\n", - "2018-08-27 23:45:12,200 : INFO : h_r_error: 29.64181207806481\n", - "2018-08-27 23:45:12,202 : INFO : h_r_error: 18.40309853071615\n", - "2018-08-27 23:45:12,203 : INFO : h_r_error: 18.40309853071615\n", - "2018-08-27 23:45:12,204 : INFO : h_r_error: 47.65932653104299\n", - "2018-08-27 23:45:12,206 : INFO : h_r_error: 47.56648904405267\n", - "2018-08-27 23:45:12,207 : INFO : h_r_error: 47.56648904405267\n", - "2018-08-27 23:45:12,208 : INFO : h_r_error: 43.72687176126012\n", - "2018-08-27 23:45:12,209 : INFO : h_r_error: 43.5965485644507\n", - "2018-08-27 23:45:12,211 : INFO : h_r_error: 43.5965485644507\n", - "2018-08-27 23:45:12,212 : INFO : h_r_error: 280.8345986138184\n", - "2018-08-27 23:45:12,213 : INFO : h_r_error: 279.64238978039043\n", - "2018-08-27 23:45:12,215 : INFO : h_r_error: 279.64238978039043\n", - "2018-08-27 23:45:12,217 : INFO : h_r_error: 71.6955198863703\n", - "2018-08-27 23:45:12,218 : INFO : h_r_error: 71.4072262158863\n", - "2018-08-27 23:45:12,220 : INFO : h_r_error: 71.4072262158863\n", - "2018-08-27 23:45:12,221 : INFO : h_r_error: 45.78670677495082\n", - "2018-08-27 23:45:12,223 : INFO : h_r_error: 45.78670677495082\n", - "2018-08-27 23:45:12,224 : INFO : h_r_error: 10.344759986580959\n", - "2018-08-27 23:45:12,225 : INFO : h_r_error: 10.331425344735353\n", - "2018-08-27 23:45:12,233 : INFO : h_r_error: 10.331425344735353\n", - "2018-08-27 23:45:12,235 : INFO : h_r_error: 46.38656148795832\n", - "2018-08-27 23:45:12,236 : INFO : h_r_error: 46.29585949054209\n", - "2018-08-27 23:45:12,242 : INFO : h_r_error: 46.29585949054209\n", - "2018-08-27 23:45:12,243 : INFO : h_r_error: 19.462862479644727\n", - "2018-08-27 23:45:12,245 : INFO : h_r_error: 19.462862479644727\n", - "2018-08-27 23:45:12,246 : INFO : h_r_error: 246.63456905101643\n", - "2018-08-27 23:45:12,250 : INFO : h_r_error: 245.76059823346594\n", - "2018-08-27 23:45:12,251 : INFO : h_r_error: 245.76059823346594\n", - "2018-08-27 23:45:12,253 : INFO : h_r_error: 47.12034903800152\n", - "2018-08-27 23:45:12,259 : INFO : h_r_error: 47.12034903800152\n", - "2018-08-27 23:45:12,260 : INFO : h_r_error: 70.59127466483832\n", - "2018-08-27 23:45:12,261 : INFO : h_r_error: 70.32584466413628\n", - "2018-08-27 23:45:12,276 : INFO : h_r_error: 70.32584466413628\n", - "2018-08-27 23:45:12,277 : INFO : h_r_error: 37.9753562866596\n", - "2018-08-27 23:45:12,279 : INFO : h_r_error: 37.821867665892576\n", - "2018-08-27 23:45:12,280 : INFO : h_r_error: 37.821867665892576\n", - "2018-08-27 23:45:12,282 : INFO : h_r_error: 59.92765397058203\n", - "2018-08-27 23:45:12,283 : INFO : h_r_error: 59.92765397058203\n", - "2018-08-27 23:45:12,286 : INFO : h_r_error: 149.71122481568545\n", - "2018-08-27 23:45:12,287 : INFO : h_r_error: 148.08873118748795\n", - "2018-08-27 23:45:12,298 : INFO : h_r_error: 148.08873118748795\n", - "2018-08-27 23:45:12,302 : INFO : h_r_error: 136.43769725197595\n", - "2018-08-27 23:45:12,304 : INFO : h_r_error: 136.0962581323235\n", - "2018-08-27 23:45:12,309 : INFO : h_r_error: 136.0962581323235\n", - "2018-08-27 23:45:12,311 : INFO : h_r_error: 59.876810054938844\n", - "2018-08-27 23:45:12,312 : INFO : h_r_error: 59.47783070339084\n", - "2018-08-27 23:45:12,313 : INFO : h_r_error: 59.47783070339084\n", - "2018-08-27 23:45:12,316 : INFO : h_r_error: 44.871468819638615\n", - "2018-08-27 23:45:12,317 : INFO : h_r_error: 44.795133490135136\n", - "2018-08-27 23:45:12,319 : INFO : h_r_error: 44.795133490135136\n", - "2018-08-27 23:45:12,329 : INFO : h_r_error: 67.77054830645982\n", - "2018-08-27 23:45:12,331 : INFO : h_r_error: 67.62015398829648\n", - "2018-08-27 23:45:12,336 : INFO : h_r_error: 67.62015398829648\n", - "2018-08-27 23:45:12,338 : INFO : h_r_error: 184.77800892983262\n", - "2018-08-27 23:45:12,340 : INFO : h_r_error: 184.12901353917502\n", - "2018-08-27 23:45:12,353 : INFO : h_r_error: 184.12901353917502\n", - "2018-08-27 23:45:12,355 : INFO : h_r_error: 58.90128875199442\n", - "2018-08-27 23:45:12,357 : INFO : h_r_error: 58.671287496278865\n", - "2018-08-27 23:45:12,359 : INFO : h_r_error: 58.671287496278865\n", - "2018-08-27 23:45:12,361 : INFO : h_r_error: 27.63362981089581\n", - "2018-08-27 23:45:12,362 : INFO : h_r_error: 27.602129164669865\n", - "2018-08-27 23:45:12,370 : INFO : h_r_error: 27.602129164669865\n", - "2018-08-27 23:45:12,371 : INFO : h_r_error: 97.09416222208802\n", - "2018-08-27 23:45:12,372 : INFO : h_r_error: 96.83344897115484\n", - "2018-08-27 23:45:12,374 : INFO : h_r_error: 96.83344897115484\n", - "2018-08-27 23:45:12,382 : INFO : h_r_error: 12.968626755658699\n", - "2018-08-27 23:45:12,386 : INFO : h_r_error: 12.968626755658699\n", - "2018-08-27 23:45:12,388 : INFO : h_r_error: 312.6249461648036\n", - "2018-08-27 23:45:12,389 : INFO : h_r_error: 300.1325683427208\n", - "2018-08-27 23:45:12,403 : INFO : h_r_error: 300.1325683427208\n", - "2018-08-27 23:45:12,404 : INFO : h_r_error: 75.07067453256492\n", - "2018-08-27 23:45:12,415 : INFO : h_r_error: 74.94021451309234\n", - "2018-08-27 23:45:12,417 : INFO : h_r_error: 74.94021451309234\n", - "2018-08-27 23:45:12,419 : INFO : h_r_error: 82.22343683128211\n", - "2018-08-27 23:45:12,428 : INFO : h_r_error: 81.64722144299918\n", - "2018-08-27 23:45:12,431 : INFO : h_r_error: 81.64722144299918\n", - "2018-08-27 23:45:12,438 : INFO : h_r_error: 40.34970908644456\n", - "2018-08-27 23:45:12,440 : INFO : h_r_error: 40.281482793025404\n", - "2018-08-27 23:45:12,442 : INFO : h_r_error: 40.281482793025404\n", - "2018-08-27 23:45:12,445 : INFO : h_r_error: 17.74089797092359\n", - "2018-08-27 23:45:12,448 : INFO : h_r_error: 17.719983890690486\n", - "2018-08-27 23:45:12,450 : INFO : h_r_error: 17.719983890690486\n", - "2018-08-27 23:45:12,452 : INFO : h_r_error: 45.84963271423913\n", - "2018-08-27 23:45:12,457 : INFO : h_r_error: 45.84963271423913\n", - "2018-08-27 23:45:12,459 : INFO : h_r_error: 44.735092451158074\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:12,461 : INFO : h_r_error: 44.638226592924106\n", - "2018-08-27 23:45:12,463 : INFO : h_r_error: 44.638226592924106\n", - "2018-08-27 23:45:12,468 : INFO : h_r_error: 20.69517608393178\n", - "2018-08-27 23:45:12,470 : INFO : h_r_error: 20.69517608393178\n", - "2018-08-27 23:45:12,483 : INFO : h_r_error: 93.70213151604975\n", - "2018-08-27 23:45:12,486 : INFO : h_r_error: 93.30059304693143\n", - "2018-08-27 23:45:12,488 : INFO : h_r_error: 93.30059304693143\n", - "2018-08-27 23:45:12,490 : INFO : h_r_error: 241.76633083233696\n", - "2018-08-27 23:45:12,492 : INFO : h_r_error: 241.0544865439136\n", - "2018-08-27 23:45:12,494 : INFO : h_r_error: 241.0544865439136\n", - "2018-08-27 23:45:12,496 : INFO : h_r_error: 56.82635177627597\n", - "2018-08-27 23:45:12,498 : INFO : h_r_error: 56.76902177918991\n", - "2018-08-27 23:45:12,500 : INFO : h_r_error: 56.76902177918991\n", - "2018-08-27 23:45:12,502 : INFO : h_r_error: 54.65904731872984\n", - "2018-08-27 23:45:12,504 : INFO : h_r_error: 54.56969666726361\n", - "2018-08-27 23:45:12,506 : INFO : h_r_error: 54.56969666726361\n", - "2018-08-27 23:45:12,508 : INFO : h_r_error: 42.302614987115454\n", - "2018-08-27 23:45:12,510 : INFO : h_r_error: 42.16774141160706\n", - "2018-08-27 23:45:12,512 : INFO : h_r_error: 42.16774141160706\n", - "2018-08-27 23:45:12,514 : INFO : h_r_error: 40.61409474223361\n", - "2018-08-27 23:45:12,517 : INFO : h_r_error: 40.61409474223361\n", - "2018-08-27 23:45:12,519 : INFO : h_r_error: 35.06801374957791\n", - "2018-08-27 23:45:12,521 : INFO : h_r_error: 35.013576434272295\n", - "2018-08-27 23:45:12,524 : INFO : h_r_error: 35.013576434272295\n", - "2018-08-27 23:45:12,526 : INFO : h_r_error: 63.41449317706166\n", - "2018-08-27 23:45:12,528 : INFO : h_r_error: 63.41449317706166\n", - "2018-08-27 23:45:12,529 : INFO : h_r_error: 37.09421152566816\n", - "2018-08-27 23:45:12,530 : INFO : h_r_error: 37.02151165862781\n", - "2018-08-27 23:45:12,532 : INFO : h_r_error: 37.02151165862781\n", - "2018-08-27 23:45:12,533 : INFO : h_r_error: 56.18631365772794\n", - "2018-08-27 23:45:12,534 : INFO : h_r_error: 56.05889238847562\n", - "2018-08-27 23:45:12,535 : INFO : h_r_error: 56.05889238847562\n", - "2018-08-27 23:45:12,537 : INFO : h_r_error: 15.295701334976597\n", - "2018-08-27 23:45:12,538 : INFO : h_r_error: 15.277302054741293\n", - "2018-08-27 23:45:12,548 : INFO : h_r_error: 15.277302054741293\n", - "2018-08-27 23:45:12,552 : INFO : h_r_error: 46.03078188674534\n", - "2018-08-27 23:45:12,572 : INFO : h_r_error: 45.95742853333613\n", - "2018-08-27 23:45:12,580 : INFO : h_r_error: 45.95742853333613\n", - "2018-08-27 23:45:12,584 : INFO : h_r_error: 31.598982331188484\n", - "2018-08-27 23:45:12,586 : INFO : h_r_error: 31.564366241758233\n", - "2018-08-27 23:45:12,617 : INFO : h_r_error: 31.564366241758233\n", - "2018-08-27 23:45:12,619 : INFO : h_r_error: 1888.382502093524\n", - "2018-08-27 23:45:12,623 : INFO : h_r_error: 1842.176870785874\n", - "2018-08-27 23:45:12,625 : INFO : h_r_error: 1842.176870785874\n", - "2018-08-27 23:45:12,627 : INFO : h_r_error: 170.57565112700496\n", - "2018-08-27 23:45:12,630 : INFO : h_r_error: 170.18344429794539\n", - "2018-08-27 23:45:12,640 : INFO : h_r_error: 170.18344429794539\n", - "2018-08-27 23:45:12,649 : INFO : h_r_error: 53.17957559256321\n", - "2018-08-27 23:45:12,654 : INFO : h_r_error: 53.03798759780327\n", - "2018-08-27 23:45:12,659 : INFO : h_r_error: 53.03798759780327\n", - "2018-08-27 23:45:12,662 : INFO : h_r_error: 31.189791348888352\n", - "2018-08-27 23:45:12,665 : INFO : h_r_error: 31.10724910854178\n", - "2018-08-27 23:45:12,669 : INFO : h_r_error: 31.10724910854178\n", - "2018-08-27 23:45:12,671 : INFO : h_r_error: 588.5114618554002\n", - "2018-08-27 23:45:12,684 : INFO : h_r_error: 586.3048863597767\n", - "2018-08-27 23:45:12,687 : INFO : h_r_error: 586.3048863597767\n", - "2018-08-27 23:45:12,689 : INFO : h_r_error: 203.89829430365066\n", - "2018-08-27 23:45:12,709 : INFO : h_r_error: 203.89829430365066\n", - "2018-08-27 23:45:12,714 : INFO : h_r_error: 35.28681580686938\n", - "2018-08-27 23:45:12,721 : INFO : h_r_error: 35.19450212224506\n", - "2018-08-27 23:45:12,730 : INFO : h_r_error: 35.19450212224506\n", - "2018-08-27 23:45:12,733 : INFO : h_r_error: 44.14461841047571\n", - "2018-08-27 23:45:12,738 : INFO : h_r_error: 43.98843907066369\n", - "2018-08-27 23:45:12,749 : INFO : h_r_error: 43.98843907066369\n", - "2018-08-27 23:45:12,752 : INFO : h_r_error: 82.43591392108955\n", - "2018-08-27 23:45:12,754 : INFO : h_r_error: 82.34229165430735\n", - "2018-08-27 23:45:12,756 : INFO : h_r_error: 82.34229165430735\n", - "2018-08-27 23:45:12,762 : INFO : h_r_error: 191.0820388370301\n", - "2018-08-27 23:45:12,767 : INFO : h_r_error: 185.70723283645697\n", - "2018-08-27 23:45:12,778 : INFO : h_r_error: 185.70723283645697\n", - "2018-08-27 23:45:12,786 : INFO : h_r_error: 7.467358303204303\n", - "2018-08-27 23:45:12,789 : INFO : h_r_error: 7.467358303204303\n", - "2018-08-27 23:45:12,802 : INFO : h_r_error: 18.036509857521523\n", - "2018-08-27 23:45:12,805 : INFO : h_r_error: 17.993850899898533\n", - "2018-08-27 23:45:12,807 : INFO : h_r_error: 17.993850899898533\n", - "2018-08-27 23:45:12,819 : INFO : h_r_error: 77.93045939974137\n", - "2018-08-27 23:45:12,821 : INFO : h_r_error: 77.74309427692478\n", - "2018-08-27 23:45:12,830 : INFO : h_r_error: 77.74309427692478\n", - "2018-08-27 23:45:12,835 : INFO : h_r_error: 18.151106198779352\n", - "2018-08-27 23:45:12,852 : INFO : h_r_error: 18.12339025213752\n", - "2018-08-27 23:45:12,866 : INFO : h_r_error: 18.12339025213752\n", - "2018-08-27 23:45:12,868 : INFO : h_r_error: 38.923782355761034\n", - "2018-08-27 23:45:12,870 : INFO : h_r_error: 38.83797195229983\n", - "2018-08-27 23:45:12,882 : INFO : h_r_error: 38.83797195229983\n", - "2018-08-27 23:45:12,885 : INFO : h_r_error: 93.23634209916854\n", - "2018-08-27 23:45:12,888 : INFO : h_r_error: 92.9534675575086\n", - "2018-08-27 23:45:12,890 : INFO : h_r_error: 92.9534675575086\n", - "2018-08-27 23:45:12,893 : INFO : h_r_error: 77.58931988490703\n", - "2018-08-27 23:45:12,903 : INFO : h_r_error: 77.42320596577764\n", - "2018-08-27 23:45:12,907 : INFO : h_r_error: 77.42320596577764\n", - "2018-08-27 23:45:12,910 : INFO : h_r_error: 96.73305215734892\n", - "2018-08-27 23:45:12,915 : INFO : h_r_error: 96.42248143880181\n", - "2018-08-27 23:45:12,920 : INFO : h_r_error: 96.42248143880181\n", - "2018-08-27 23:45:12,923 : INFO : h_r_error: 56.809106904279844\n", - "2018-08-27 23:45:12,927 : INFO : h_r_error: 56.74667280573048\n", - "2018-08-27 23:45:12,929 : INFO : h_r_error: 56.74667280573048\n", - "2018-08-27 23:45:12,931 : INFO : h_r_error: 43.53751061283945\n", - "2018-08-27 23:45:12,933 : INFO : h_r_error: 43.46390154369594\n", - "2018-08-27 23:45:12,943 : INFO : h_r_error: 43.46390154369594\n", - "2018-08-27 23:45:12,945 : INFO : h_r_error: 112.59553814812534\n", - "2018-08-27 23:45:12,950 : INFO : h_r_error: 112.59553814812534\n", - "2018-08-27 23:45:12,953 : INFO : h_r_error: 18.331306201723798\n", - "2018-08-27 23:45:12,960 : INFO : h_r_error: 18.331306201723798\n", - "2018-08-27 23:45:12,962 : INFO : h_r_error: 99.24451860987494\n", - "2018-08-27 23:45:12,964 : INFO : h_r_error: 98.83173189834856\n", - "2018-08-27 23:45:12,967 : INFO : h_r_error: 98.83173189834856\n", - "2018-08-27 23:45:12,976 : INFO : h_r_error: 47.44230281438525\n", - "2018-08-27 23:45:12,979 : INFO : h_r_error: 47.34918937472068\n", - "2018-08-27 23:45:12,992 : INFO : h_r_error: 47.34918937472068\n", - "2018-08-27 23:45:12,995 : INFO : h_r_error: 98.97111722658234\n", - "2018-08-27 23:45:13,002 : INFO : h_r_error: 98.69537483133738\n", - "2018-08-27 23:45:13,006 : INFO : h_r_error: 98.69537483133738\n", - "2018-08-27 23:45:13,008 : INFO : h_r_error: 54.852304657556445\n", - "2018-08-27 23:45:13,016 : INFO : h_r_error: 54.852304657556445\n", - "2018-08-27 23:45:13,018 : INFO : h_r_error: 34.171152136130466\n", - "2018-08-27 23:45:13,020 : INFO : h_r_error: 34.1047484690895\n", - "2018-08-27 23:45:13,023 : INFO : h_r_error: 34.1047484690895\n", - "2018-08-27 23:45:13,029 : INFO : h_r_error: 10.970589002858159\n", - "2018-08-27 23:45:13,032 : INFO : h_r_error: 10.970589002858159\n", - "2018-08-27 23:45:13,042 : INFO : h_r_error: 167.4061307117357\n", - "2018-08-27 23:45:13,045 : INFO : h_r_error: 166.8897050244586\n", - "2018-08-27 23:45:13,049 : INFO : h_r_error: 166.8897050244586\n", - "2018-08-27 23:45:13,056 : INFO : h_r_error: 28.84430944530899\n", - "2018-08-27 23:45:13,061 : INFO : h_r_error: 28.77653939364175\n", - "2018-08-27 23:45:13,069 : INFO : h_r_error: 28.77653939364175\n", - "2018-08-27 23:45:13,072 : INFO : h_r_error: 930.550953587178\n", - "2018-08-27 23:45:13,075 : INFO : h_r_error: 930.550953587178\n", - "2018-08-27 23:45:13,082 : INFO : h_r_error: 106.94680752572665\n", - "2018-08-27 23:45:13,085 : INFO : h_r_error: 106.16087076689391\n", - "2018-08-27 23:45:13,096 : INFO : h_r_error: 106.16087076689391\n", - "2018-08-27 23:45:13,099 : INFO : h_r_error: 37.53530334092092\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:13,103 : INFO : h_r_error: 37.53530334092092\n", - "2018-08-27 23:45:13,110 : INFO : h_r_error: 397.7909854957582\n", - "2018-08-27 23:45:13,117 : INFO : h_r_error: 397.7909854957582\n", - "2018-08-27 23:45:13,126 : INFO : h_r_error: 726.262166413542\n", - "2018-08-27 23:45:13,129 : INFO : h_r_error: 722.4899345118284\n", - "2018-08-27 23:45:13,133 : INFO : h_r_error: 722.4899345118284\n", - "2018-08-27 23:45:13,137 : INFO : h_r_error: 141.11286419801348\n", - "2018-08-27 23:45:13,145 : INFO : h_r_error: 140.73422130944556\n", - "2018-08-27 23:45:13,148 : INFO : h_r_error: 140.73422130944556\n", - "2018-08-27 23:45:13,159 : INFO : h_r_error: 444.83067175048154\n", - "2018-08-27 23:45:13,161 : INFO : h_r_error: 440.1682270712009\n", - "2018-08-27 23:45:13,164 : INFO : h_r_error: 440.1682270712009\n", - "2018-08-27 23:45:13,166 : INFO : h_r_error: 27.626672428993928\n", - "2018-08-27 23:45:13,169 : INFO : h_r_error: 27.5832983392481\n", - "2018-08-27 23:45:13,180 : INFO : h_r_error: 27.5832983392481\n", - "2018-08-27 23:45:13,183 : INFO : h_r_error: 109.22340313130226\n", - "2018-08-27 23:45:13,185 : INFO : h_r_error: 109.09057199855393\n", - "2018-08-27 23:45:13,188 : INFO : h_r_error: 109.09057199855393\n", - "2018-08-27 23:45:13,193 : INFO : h_r_error: 88.37222241992028\n", - "2018-08-27 23:45:13,196 : INFO : h_r_error: 88.2595243179797\n", - "2018-08-27 23:45:13,200 : INFO : h_r_error: 88.2595243179797\n", - "2018-08-27 23:45:13,202 : INFO : h_r_error: 119.52799535025494\n", - "2018-08-27 23:45:13,210 : INFO : h_r_error: 119.27898189987657\n", - "2018-08-27 23:45:13,214 : INFO : h_r_error: 119.27898189987657\n", - "2018-08-27 23:45:13,223 : INFO : h_r_error: 173.47044535078976\n", - "2018-08-27 23:45:13,226 : INFO : h_r_error: 172.73144225355435\n", - "2018-08-27 23:45:13,228 : INFO : h_r_error: 172.73144225355435\n", - "2018-08-27 23:45:13,232 : INFO : h_r_error: 111.08915321509407\n", - "2018-08-27 23:45:13,237 : INFO : h_r_error: 110.6049924733988\n", - "2018-08-27 23:45:13,240 : INFO : h_r_error: 110.6049924733988\n", - "2018-08-27 23:45:13,244 : INFO : h_r_error: 17.06898539332425\n", - "2018-08-27 23:45:13,250 : INFO : h_r_error: 17.036735441475695\n", - "2018-08-27 23:45:13,259 : INFO : h_r_error: 17.036735441475695\n", - "2018-08-27 23:45:13,269 : INFO : h_r_error: 79.08808251127273\n", - "2018-08-27 23:45:13,272 : INFO : h_r_error: 78.83068583799286\n", - "2018-08-27 23:45:13,274 : INFO : h_r_error: 78.83068583799286\n", - "2018-08-27 23:45:13,277 : INFO : h_r_error: 66.33231585518573\n", - "2018-08-27 23:45:13,286 : INFO : h_r_error: 66.24011477410166\n", - "2018-08-27 23:45:13,289 : INFO : h_r_error: 66.24011477410166\n", - "2018-08-27 23:45:13,291 : INFO : h_r_error: 42.05735092307161\n", - "2018-08-27 23:45:13,293 : INFO : h_r_error: 42.05735092307161\n", - "2018-08-27 23:45:13,299 : INFO : h_r_error: 47.02237351952087\n", - "2018-08-27 23:45:13,301 : INFO : h_r_error: 46.88906508561372\n", - "2018-08-27 23:45:13,304 : INFO : h_r_error: 46.88906508561372\n", - "2018-08-27 23:45:13,312 : INFO : h_r_error: 66.6281622090688\n", - "2018-08-27 23:45:13,315 : INFO : h_r_error: 66.43592352224717\n", - "2018-08-27 23:45:13,317 : INFO : h_r_error: 66.43592352224717\n", - "2018-08-27 23:45:13,319 : INFO : h_r_error: 71.91663622065518\n", - "2018-08-27 23:45:13,329 : INFO : h_r_error: 71.7387915458513\n", - "2018-08-27 23:45:13,332 : INFO : h_r_error: 71.7387915458513\n", - "2018-08-27 23:45:13,334 : INFO : h_r_error: 21.33432458395946\n", - "2018-08-27 23:45:13,338 : INFO : h_r_error: 21.33432458395946\n", - "2018-08-27 23:45:13,346 : INFO : h_r_error: 67.48930546910239\n", - "2018-08-27 23:45:13,349 : INFO : h_r_error: 67.38480427539871\n", - "2018-08-27 23:45:13,353 : INFO : h_r_error: 67.38480427539871\n", - "2018-08-27 23:45:13,364 : INFO : h_r_error: 20.214505148851188\n", - "2018-08-27 23:45:13,371 : INFO : h_r_error: 20.18801208243566\n", - "2018-08-27 23:45:13,376 : INFO : h_r_error: 20.18801208243566\n", - "2018-08-27 23:45:13,378 : INFO : h_r_error: 47.920433926654965\n", - "2018-08-27 23:45:13,382 : INFO : h_r_error: 47.752958231223985\n", - "2018-08-27 23:45:13,393 : INFO : h_r_error: 47.752958231223985\n", - "2018-08-27 23:45:13,396 : INFO : h_r_error: 49.24016670951457\n", - "2018-08-27 23:45:13,398 : INFO : h_r_error: 49.153608083476904\n", - "2018-08-27 23:45:13,406 : INFO : h_r_error: 49.153608083476904\n", - "2018-08-27 23:45:13,408 : INFO : h_r_error: 8.851464630782392\n", - "2018-08-27 23:45:13,410 : INFO : h_r_error: 8.841955217501157\n", - "2018-08-27 23:45:13,419 : INFO : h_r_error: 8.841955217501157\n", - "2018-08-27 23:45:13,422 : INFO : h_r_error: 40.905583478564424\n", - "2018-08-27 23:45:13,424 : INFO : h_r_error: 40.86001172549085\n", - "2018-08-27 23:45:13,433 : INFO : h_r_error: 40.86001172549085\n", - "2018-08-27 23:45:13,435 : INFO : h_r_error: 7.798304833014612\n", - "2018-08-27 23:45:13,438 : INFO : h_r_error: 7.787301946537544\n", - "2018-08-27 23:45:13,446 : INFO : h_r_error: 7.787301946537544\n", - "2018-08-27 23:45:13,449 : INFO : h_r_error: 15.353021003416512\n", - "2018-08-27 23:45:13,451 : INFO : h_r_error: 15.353021003416512\n", - "2018-08-27 23:45:13,460 : INFO : h_r_error: 9.894754051036047\n", - "2018-08-27 23:45:13,463 : INFO : h_r_error: 9.894754051036047\n", - "2018-08-27 23:45:13,466 : INFO : h_r_error: 39.61504809278037\n", - "2018-08-27 23:45:13,469 : INFO : h_r_error: 39.54710369681954\n", - "2018-08-27 23:45:13,479 : INFO : h_r_error: 39.54710369681954\n", - "2018-08-27 23:45:13,482 : INFO : h_r_error: 111.93653495293171\n", - "2018-08-27 23:45:13,485 : INFO : h_r_error: 111.55528429288242\n", - "2018-08-27 23:45:13,496 : INFO : h_r_error: 111.55528429288242\n", - "2018-08-27 23:45:13,506 : INFO : h_r_error: 1239.5730679234991\n", - "2018-08-27 23:45:13,508 : INFO : h_r_error: 1191.8872405993523\n", - "2018-08-27 23:45:13,513 : INFO : h_r_error: 1191.8872405993523\n", - "2018-08-27 23:45:13,522 : INFO : h_r_error: 29.71492865789174\n", - "2018-08-27 23:45:13,525 : INFO : h_r_error: 29.633178419792813\n", - "2018-08-27 23:45:13,527 : INFO : h_r_error: 29.633178419792813\n", - "2018-08-27 23:45:13,529 : INFO : h_r_error: 144.70907456770988\n", - "2018-08-27 23:45:13,539 : INFO : h_r_error: 144.36253906360503\n", - "2018-08-27 23:45:13,542 : INFO : h_r_error: 144.36253906360503\n", - "2018-08-27 23:45:13,545 : INFO : h_r_error: 1172.5412689705738\n", - "2018-08-27 23:45:13,548 : INFO : h_r_error: 1163.9648885563288\n", - "2018-08-27 23:45:13,552 : INFO : h_r_error: 1163.9648885563288\n", - "2018-08-27 23:45:13,556 : INFO : h_r_error: 8.483311253392532\n", - "2018-08-27 23:45:13,561 : INFO : h_r_error: 8.483311253392532\n", - "2018-08-27 23:45:13,568 : INFO : h_r_error: 199.64917116075725\n", - "2018-08-27 23:45:13,571 : INFO : h_r_error: 199.64917116075725\n", - "2018-08-27 23:45:13,573 : INFO : h_r_error: 28.96563354498746\n", - "2018-08-27 23:45:13,578 : INFO : h_r_error: 28.96563354498746\n", - "2018-08-27 23:45:13,582 : INFO : h_r_error: 38.406919269800454\n", - "2018-08-27 23:45:13,587 : INFO : h_r_error: 38.354620938710404\n", - "2018-08-27 23:45:13,589 : INFO : h_r_error: 38.354620938710404\n", - "2018-08-27 23:45:13,592 : INFO : h_r_error: 40.43725295650745\n", - "2018-08-27 23:45:13,596 : INFO : h_r_error: 40.356347116907656\n", - "2018-08-27 23:45:13,618 : INFO : h_r_error: 40.356347116907656\n", - "2018-08-27 23:45:13,621 : INFO : h_r_error: 51.5497771181147\n", - "2018-08-27 23:45:13,623 : INFO : h_r_error: 51.43842166161657\n", - "2018-08-27 23:45:13,632 : INFO : h_r_error: 51.43842166161657\n", - "2018-08-27 23:45:13,634 : INFO : h_r_error: 66.59572559732041\n", - "2018-08-27 23:45:13,636 : INFO : h_r_error: 66.45136045673901\n", - "2018-08-27 23:45:13,640 : INFO : h_r_error: 66.45136045673901\n", - "2018-08-27 23:45:13,642 : INFO : h_r_error: 21.511953512967573\n", - "2018-08-27 23:45:13,645 : INFO : h_r_error: 21.468918075792566\n", - "2018-08-27 23:45:13,680 : INFO : h_r_error: 21.468918075792566\n", - "2018-08-27 23:45:13,686 : INFO : h_r_error: 36.167184507918904\n", - "2018-08-27 23:45:13,690 : INFO : h_r_error: 36.088510934008994\n", - "2018-08-27 23:45:13,697 : INFO : h_r_error: 36.088510934008994\n", - "2018-08-27 23:45:13,699 : INFO : h_r_error: 15.978496420830874\n", - "2018-08-27 23:45:13,702 : INFO : h_r_error: 15.936454138255073\n", - "2018-08-27 23:45:13,710 : INFO : h_r_error: 15.936454138255073\n", - "2018-08-27 23:45:13,712 : INFO : h_r_error: 11.437562796602723\n", - "2018-08-27 23:45:13,718 : INFO : h_r_error: 11.437562796602723\n", - "2018-08-27 23:45:13,720 : INFO : h_r_error: 56.39639997426265\n", - "2018-08-27 23:45:13,722 : INFO : h_r_error: 56.13567542207467\n", - "2018-08-27 23:45:13,725 : INFO : h_r_error: 56.13567542207467\n", - "2018-08-27 23:45:13,729 : INFO : h_r_error: 66.47178494214911\n", - "2018-08-27 23:45:13,731 : INFO : h_r_error: 66.37163421298497\n", - "2018-08-27 23:45:13,734 : INFO : h_r_error: 66.37163421298497\n", - "2018-08-27 23:45:13,749 : INFO : h_r_error: 42.552796259224856\n", - "2018-08-27 23:45:13,753 : INFO : h_r_error: 42.552796259224856\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-27 23:45:13,756 : INFO : h_r_error: 234.0641450272416\n", - "2018-08-27 23:45:13,762 : INFO : h_r_error: 232.44871362638105\n" - ] - }, { "data": { "text/plain": [ - "1866.0309623695234" + "2563.118564220738" ] }, - "execution_count": 89, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -3374,45 +505,45 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10804.581608113718" + "10311.521089623771" ] }, - "execution_count": 90, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "perplexity(lda, corpus)" + "perplexity(gensim_lda, corpus)" ] }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.038*\"jesu\" + 0.021*\"matthew\" + 0.011*\"peopl\" + 0.010*\"dai\" + 0.010*\"christian\" + 0.010*\"prophet\" + 0.010*\"said\" + 0.009*\"messiah\" + 0.008*\"come\" + 0.008*\"david\"'),\n", + " '0.026*\"anonym\" + 0.020*\"internet\" + 0.015*\"privaci\" + 0.013*\"us\" + 0.013*\"user\" + 0.013*\"email\" + 0.012*\"address\" + 0.011*\"file\" + 0.011*\"inform\" + 0.011*\"mail\"'),\n", " (1,\n", - " '0.021*\"armenian\" + 0.012*\"peopl\" + 0.007*\"turkish\" + 0.006*\"post\" + 0.006*\"russian\" + 0.006*\"genocid\" + 0.005*\"turk\" + 0.005*\"articl\" + 0.005*\"time\" + 0.004*\"year\"'),\n", + " '0.024*\"file\" + 0.019*\"program\" + 0.014*\"avail\" + 0.013*\"includ\" + 0.012*\"version\" + 0.011*\"output\" + 0.009*\"ftp\" + 0.009*\"sourc\" + 0.009*\"packag\" + 0.008*\"sun\"'),\n", " (2,\n", - " '0.916*\"max\" + 0.018*\"umd\" + 0.013*\"hst\" + 0.005*\"gee\" + 0.003*\"univers\" + 0.003*\"end\" + 0.003*\"distribut\" + 0.003*\"keyword\" + 0.003*\"repli\" + 0.003*\"usa\"'),\n", + " '0.014*\"peopl\" + 0.011*\"armenian\" + 0.010*\"turkish\" + 0.010*\"jew\" + 0.009*\"said\" + 0.008*\"know\" + 0.006*\"dai\" + 0.006*\"turkei\" + 0.005*\"time\" + 0.005*\"think\"'),\n", " (3,\n", - " '0.026*\"health\" + 0.017*\"us\" + 0.011*\"report\" + 0.011*\"state\" + 0.011*\"year\" + 0.010*\"public\" + 0.009*\"user\" + 0.009*\"diseas\" + 0.009*\"person\" + 0.009*\"infect\"'),\n", + " '0.775*\"max\" + 0.063*\"giz\" + 0.020*\"wtm\" + 0.006*\"mei\" + 0.006*\"usd\" + 0.006*\"salmon\" + 0.006*\"pwiseman\" + 0.006*\"cliff\" + 0.006*\"ma\" + 0.006*\"end\"'),\n", " (4,\n", - " '0.037*\"argument\" + 0.023*\"conclus\" + 0.020*\"exampl\" + 0.019*\"premis\" + 0.018*\"true\" + 0.012*\"occur\" + 0.011*\"logic\" + 0.011*\"fals\" + 0.010*\"form\" + 0.010*\"assert\"')]" + " '0.009*\"com\" + 0.006*\"articl\" + 0.005*\"space\" + 0.005*\"new\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"good\" + 0.004*\"problem\" + 0.004*\"think\" + 0.004*\"univers\"')]" ] }, - "execution_count": 91, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -3423,36 +554,36 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.010*\"window\" + 0.008*\"com\" + 0.008*\"univers\" + 0.007*\"articl\" + 0.007*\"post\" + 0.006*\"file\" + 0.006*\"like\" + 0.006*\"us\" + 0.006*\"know\" + 0.005*\"time\"'),\n", + " '0.012*\"max\" + 0.011*\"window\" + 0.009*\"file\" + 0.008*\"us\" + 0.007*\"kei\" + 0.007*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.004*\"mail\" + 0.004*\"version\"'),\n", " (1,\n", - " '0.010*\"com\" + 0.008*\"articl\" + 0.007*\"good\" + 0.006*\"like\" + 0.006*\"us\" + 0.006*\"nasa\" + 0.005*\"peopl\" + 0.004*\"post\" + 0.004*\"univers\" + 0.004*\"believ\"'),\n", + " '0.017*\"com\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"articl\" + 0.007*\"univers\" + 0.006*\"drive\" + 0.005*\"know\" + 0.005*\"card\" + 0.005*\"like\" + 0.005*\"us\"'),\n", " (2,\n", - " '0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"post\" + 0.008*\"armenian\" + 0.007*\"articl\" + 0.006*\"know\" + 0.005*\"car\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"time\"'),\n", + " '0.012*\"god\" + 0.009*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.006*\"believ\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"year\"'),\n", " (3,\n", - " '0.014*\"max\" + 0.009*\"peopl\" + 0.008*\"jesu\" + 0.006*\"christian\" + 0.006*\"state\" + 0.006*\"think\" + 0.006*\"articl\" + 0.005*\"god\" + 0.005*\"know\" + 0.004*\"like\"'),\n", + " '0.014*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"thing\"'),\n", " (4,\n", - " '0.013*\"com\" + 0.009*\"post\" + 0.007*\"articl\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.007*\"game\" + 0.007*\"year\" + 0.006*\"new\" + 0.005*\"team\" + 0.005*\"plai\"')]" + " '0.011*\"peopl\" + 0.006*\"govern\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"armenian\" + 0.005*\"jew\" + 0.004*\"law\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"know\"')]" ] }, - "execution_count": 92, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "lda.show_topics()" + "gensim_lda.show_topics()" ] }, { "cell_type": "code", - "execution_count": 67, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3462,22 +593,13 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the personal experience I can say that the higher number of passes and shuffle of the trainset significantly improves performance.\n", - "\n", - "Then, of course, you should perform hyperparameter tuning." - ] - }, { "cell_type": "markdown", "metadata": {}, From a3315f26511533579f7ecef1c56095d088c9298e Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 13:42:49 +0300 Subject: [PATCH 037/144] Outperform sklearn in speed (WTF) --- docs/notebooks/nmf_benchmark.ipynb | 758 +++++++++++++++++++++-------- 1 file changed, 560 insertions(+), 198 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index d8a12b90b1..acd58df902 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -42,29 +42,29 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "from gensim.parsing.preprocessing import preprocess_documents\n", "\n", - "documents = preprocess_documents(fetch_20newsgroups().data[:3000])" + "documents = preprocess_documents(fetch_20newsgroups().data[:10000])" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:14:37,238 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-08-28 13:14:37,818 : INFO : built Dictionary(33228 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 3000 documents (total 412672 corpus positions)\n", - "2018-08-28 13:14:37,895 : INFO : discarding 26411 tokens: [('bricklin', 3), ('edu', 1951), ('lerxst', 2), ('line', 2964), ('organ', 2871), ('post', 1535), ('rac', 2), ('subject', 3000), ('tellm', 2), ('attain', 4)]...\n", - "2018-08-28 13:14:37,897 : INFO : keeping 6817 tokens which were in no less than 5 and no more than 1500 (=50.0%) documents\n", - "2018-08-28 13:14:37,915 : INFO : resulting dictionary: Dictionary(6817 unique tokens: ['addit', 'bodi', 'brought', 'bumper', 'call']...)\n" + "2018-08-28 13:21:20,113 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-08-28 13:21:22,259 : INFO : built Dictionary(61472 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 10000 documents (total 1438922 corpus positions)\n", + "2018-08-28 13:21:22,479 : INFO : discarding 46426 tokens: [('bricklin', 4), ('edu', 6356), ('lerxst', 2), ('line', 9909), ('organ', 9559), ('post', 5114), ('subject', 9999), ('tellm', 2), ('qvfoinnc', 1), ('breifli', 3)]...\n", + "2018-08-28 13:21:22,480 : INFO : keeping 15046 tokens which were in no less than 5 and no more than 5000 (=50.0%) documents\n", + "2018-08-28 13:21:22,524 : INFO : resulting dictionary: Dictionary(15046 unique tokens: ['addit', 'bodi', 'brought', 'bumper', 'call']...)\n" ] } ], @@ -78,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -101,22 +101,22 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 33 s, sys: 7.22 s, total: 40.2 s\n", - "Wall time: 12.6 s\n" + "CPU times: user 15min 25s, sys: 1min 42s, total: 17min 8s\n", + "Wall time: 5min 17s\n" ] } ], "source": [ "%%time\n", "\n", - "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", + "sklearn_nmf = SklearnNmf(n_components=10, tol=1e-5, max_iter=int(1e9), random_state=42)\n", "\n", "W = sklearn_nmf.fit_transform(proba_bow_matrix)\n", "H = sklearn_nmf.components_" @@ -124,16 +124,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8.999726758761664" + "15.604129520276915" ] }, - "execution_count": 6, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -151,14 +151,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "training_params = dict(\n", " corpus=corpus,\n", " chunksize=1000,\n", - " num_topics=5,\n", + " num_topics=10,\n", " id2word=dictionary,\n", " passes=5,\n", " eval_every=10,\n", @@ -175,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 41, "metadata": { "scrolled": true }, @@ -184,20 +184,24 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:14:55,779 : INFO : Loss (no outliers): 571.9953309314792\tLoss (with outliers): 571.9953309314792\n", - "2018-08-28 13:14:58,619 : INFO : Loss (no outliers): 553.622398952605\tLoss (with outliers): 553.622398952605\n", - "2018-08-28 13:15:00,841 : INFO : Loss (no outliers): 551.2262280048596\tLoss (with outliers): 551.2262280048596\n", - "2018-08-28 13:15:01,947 : INFO : Loss (no outliers): 562.7352175359472\tLoss (with outliers): 562.7352175359472\n", - "2018-08-28 13:15:03,665 : INFO : Loss (no outliers): 550.0473747816856\tLoss (with outliers): 550.0473747816856\n", - "2018-08-28 13:15:05,927 : INFO : Loss (no outliers): 549.2175014887133\tLoss (with outliers): 549.2175014887133\n" + "2018-08-28 13:30:05,681 : INFO : Loss (no outliers): 648.195376619122\tLoss (with outliers): 648.195376619122\n", + "2018-08-28 13:30:06,395 : INFO : Loss (no outliers): 648.195376619122\tLoss (with outliers): 648.195376619122\n", + "2018-08-28 13:30:30,806 : INFO : Loss (no outliers): 666.789371878622\tLoss (with outliers): 666.789371878622\n", + "2018-08-28 13:30:31,575 : INFO : Loss (no outliers): 666.789371878622\tLoss (with outliers): 666.789371878622\n", + "2018-08-28 13:30:52,830 : INFO : Loss (no outliers): 677.5826173969449\tLoss (with outliers): 677.5826173969449\n", + "2018-08-28 13:30:53,499 : INFO : Loss (no outliers): 677.5826173969449\tLoss (with outliers): 677.5826173969449\n", + "2018-08-28 13:31:12,796 : INFO : Loss (no outliers): 677.580735228192\tLoss (with outliers): 677.580735228192\n", + "2018-08-28 13:31:13,424 : INFO : Loss (no outliers): 677.580735228192\tLoss (with outliers): 677.580735228192\n", + "2018-08-28 13:31:36,455 : INFO : Loss (no outliers): 688.3209592400099\tLoss (with outliers): 688.3209592400099\n", + "2018-08-28 13:31:37,313 : INFO : Loss (no outliers): 688.3209592400099\tLoss (with outliers): 688.3209592400099\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 18.6 s, sys: 18.8 s, total: 37.4 s\n", - "Wall time: 14 s\n" + "CPU times: user 2min 26s, sys: 2min 48s, total: 5min 15s\n", + "Wall time: 1min 54s\n" ] } ], @@ -211,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 42, "metadata": { "scrolled": true }, @@ -220,155 +224,465 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:15:05,987 : INFO : using symmetric alpha at 0.2\n", - "2018-08-28 13:15:05,991 : INFO : using symmetric eta at 0.2\n", - "2018-08-28 13:15:05,997 : INFO : using serial LDA version on this node\n", - "2018-08-28 13:15:06,009 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 3000 documents, updating model once every 1000 documents, evaluating perplexity every 3000 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-08-28 13:15:06,012 : INFO : PROGRESS: pass 0, at document #1000/3000\n", - "2018-08-28 13:15:07,053 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:07,062 : INFO : topic #0 (0.200): 0.016*\"max\" + 0.006*\"com\" + 0.006*\"articl\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"good\" + 0.004*\"nntp\" + 0.003*\"think\" + 0.003*\"host\" + 0.003*\"know\"\n", - "2018-08-28 13:15:07,063 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.007*\"articl\" + 0.006*\"know\" + 0.006*\"peopl\" + 0.004*\"univers\" + 0.004*\"like\" + 0.004*\"us\" + 0.004*\"god\" + 0.004*\"host\" + 0.004*\"nntp\"\n", - "2018-08-28 13:15:07,065 : INFO : topic #2 (0.200): 0.006*\"articl\" + 0.005*\"com\" + 0.005*\"like\" + 0.005*\"time\" + 0.005*\"peopl\" + 0.005*\"new\" + 0.005*\"univers\" + 0.004*\"know\" + 0.004*\"host\" + 0.004*\"nntp\"\n", - "2018-08-28 13:15:07,066 : INFO : topic #3 (0.200): 0.010*\"com\" + 0.007*\"articl\" + 0.006*\"like\" + 0.006*\"peopl\" + 0.005*\"think\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"nntp\" + 0.004*\"know\"\n", - "2018-08-28 13:15:07,067 : INFO : topic #4 (0.200): 0.008*\"com\" + 0.006*\"peopl\" + 0.006*\"articl\" + 0.005*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"state\" + 0.004*\"like\" + 0.004*\"wai\" + 0.003*\"us\"\n", - "2018-08-28 13:15:07,068 : INFO : topic diff=1.659544, rho=1.000000\n", - "2018-08-28 13:15:07,069 : INFO : PROGRESS: pass 0, at document #2000/3000\n", - "2018-08-28 13:15:08,124 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:08,130 : INFO : topic #0 (0.200): 0.015*\"max\" + 0.007*\"com\" + 0.005*\"univers\" + 0.005*\"articl\" + 0.004*\"like\" + 0.004*\"window\" + 0.004*\"program\" + 0.004*\"nntp\" + 0.004*\"us\" + 0.004*\"problem\"\n", - "2018-08-28 13:15:08,132 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"articl\" + 0.006*\"know\" + 0.005*\"us\" + 0.005*\"peopl\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"univers\" + 0.004*\"nntp\" + 0.004*\"god\"\n", - "2018-08-28 13:15:08,134 : INFO : topic #2 (0.200): 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"peopl\" + 0.005*\"com\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"host\"\n", - "2018-08-28 13:15:08,135 : INFO : topic #3 (0.200): 0.011*\"com\" + 0.008*\"articl\" + 0.006*\"like\" + 0.006*\"peopl\" + 0.005*\"univers\" + 0.005*\"new\" + 0.004*\"nntp\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"host\"\n", - "2018-08-28 13:15:08,136 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.007*\"com\" + 0.005*\"articl\" + 0.005*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"wai\" + 0.004*\"like\" + 0.004*\"armenian\" + 0.004*\"state\"\n", - "2018-08-28 13:15:08,138 : INFO : topic diff=0.847163, rho=0.707107\n", - "2018-08-28 13:15:09,499 : INFO : -8.125 per-word bound, 279.1 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", - "2018-08-28 13:15:09,499 : INFO : PROGRESS: pass 0, at document #3000/3000\n", - "2018-08-28 13:15:10,626 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:10,633 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.007*\"window\" + 0.007*\"kei\" + 0.006*\"com\" + 0.006*\"file\" + 0.006*\"us\" + 0.005*\"univers\" + 0.005*\"program\" + 0.005*\"like\" + 0.004*\"problem\"\n", - "2018-08-28 13:15:10,634 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"articl\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.004*\"univers\" + 0.004*\"work\"\n", - "2018-08-28 13:15:10,635 : INFO : topic #2 (0.200): 0.006*\"articl\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"like\" + 0.005*\"think\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"game\" + 0.004*\"host\"\n", - "2018-08-28 13:15:10,637 : INFO : topic #3 (0.200): 0.011*\"com\" + 0.009*\"articl\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"think\" + 0.005*\"new\" + 0.004*\"time\"\n", - "2018-08-28 13:15:10,638 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.005*\"com\" + 0.005*\"articl\" + 0.004*\"think\" + 0.004*\"state\" + 0.004*\"know\" + 0.004*\"right\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"univers\"\n", - "2018-08-28 13:15:10,640 : INFO : topic diff=0.570486, rho=0.577350\n", - "2018-08-28 13:15:10,641 : INFO : PROGRESS: pass 1, at document #1000/3000\n", - "2018-08-28 13:15:11,478 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:11,485 : INFO : topic #0 (0.200): 0.015*\"max\" + 0.008*\"window\" + 0.006*\"com\" + 0.006*\"file\" + 0.006*\"us\" + 0.006*\"kei\" + 0.005*\"univers\" + 0.005*\"program\" + 0.005*\"problem\" + 0.005*\"like\"\n", - "2018-08-28 13:15:11,487 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"articl\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"god\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"like\" + 0.004*\"work\"\n", - "2018-08-28 13:15:11,488 : INFO : topic #2 (0.200): 0.006*\"articl\" + 0.005*\"think\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"game\" + 0.005*\"new\" + 0.005*\"know\" + 0.005*\"peopl\" + 0.004*\"time\" + 0.004*\"year\"\n", - "2018-08-28 13:15:11,490 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.009*\"articl\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"host\" + 0.005*\"new\" + 0.005*\"car\"\n", - "2018-08-28 13:15:11,491 : INFO : topic #4 (0.200): 0.008*\"peopl\" + 0.005*\"armenian\" + 0.005*\"state\" + 0.005*\"com\" + 0.005*\"articl\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"right\" + 0.004*\"year\"\n", - "2018-08-28 13:15:11,492 : INFO : topic diff=0.426826, rho=0.447214\n", - "2018-08-28 13:15:11,494 : INFO : PROGRESS: pass 1, at document #2000/3000\n", - "2018-08-28 13:15:12,645 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:12,652 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.008*\"window\" + 0.007*\"file\" + 0.007*\"com\" + 0.006*\"us\" + 0.006*\"program\" + 0.005*\"kei\" + 0.005*\"univers\" + 0.005*\"problem\" + 0.004*\"version\"\n", - "2018-08-28 13:15:12,653 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.007*\"articl\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"univers\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"god\"\n", - "2018-08-28 13:15:12,656 : INFO : topic #2 (0.200): 0.006*\"game\" + 0.006*\"think\" + 0.006*\"articl\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"christian\" + 0.005*\"know\" + 0.005*\"team\" + 0.005*\"new\" + 0.005*\"plai\"\n", - "2018-08-28 13:15:12,657 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.010*\"articl\" + 0.006*\"like\" + 0.005*\"peopl\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"new\" + 0.005*\"think\" + 0.005*\"car\"\n", - "2018-08-28 13:15:12,659 : INFO : topic #4 (0.200): 0.009*\"peopl\" + 0.005*\"armenian\" + 0.005*\"know\" + 0.005*\"state\" + 0.004*\"articl\" + 0.004*\"right\" + 0.004*\"think\" + 0.004*\"com\" + 0.004*\"time\" + 0.004*\"govern\"\n", - "2018-08-28 13:15:12,666 : INFO : topic diff=0.415606, rho=0.447214\n", - "2018-08-28 13:15:14,015 : INFO : -7.910 per-word bound, 240.6 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", - "2018-08-28 13:15:14,016 : INFO : PROGRESS: pass 1, at document #3000/3000\n", - "2018-08-28 13:15:14,762 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:14,769 : INFO : topic #0 (0.200): 0.012*\"max\" + 0.009*\"window\" + 0.008*\"file\" + 0.007*\"us\" + 0.007*\"kei\" + 0.006*\"com\" + 0.006*\"program\" + 0.005*\"univers\" + 0.004*\"problem\" + 0.004*\"host\"\n", - "2018-08-28 13:15:14,770 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.007*\"articl\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"new\"\n", - "2018-08-28 13:15:14,772 : INFO : topic #2 (0.200): 0.007*\"god\" + 0.007*\"game\" + 0.006*\"think\" + 0.006*\"christian\" + 0.006*\"articl\" + 0.006*\"univers\" + 0.006*\"like\" + 0.005*\"plai\" + 0.005*\"new\" + 0.005*\"know\"\n", - "2018-08-28 13:15:14,773 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.010*\"articl\" + 0.007*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"car\" + 0.005*\"univers\" + 0.005*\"peopl\" + 0.005*\"think\" + 0.005*\"new\"\n", - "2018-08-28 13:15:14,775 : INFO : topic #4 (0.200): 0.009*\"peopl\" + 0.005*\"state\" + 0.005*\"right\" + 0.004*\"think\" + 0.004*\"govern\" + 0.004*\"articl\" + 0.004*\"jew\" + 0.004*\"armenian\" + 0.004*\"know\" + 0.004*\"com\"\n" + "2018-08-28 13:31:37,387 : INFO : using symmetric alpha at 0.1\n", + "2018-08-28 13:31:37,390 : INFO : using symmetric eta at 0.1\n", + "2018-08-28 13:31:37,403 : INFO : using serial LDA version on this node\n", + "2018-08-28 13:31:37,432 : INFO : running online (multi-pass) LDA training, 10 topics, 5 passes over the supplied corpus of 10000 documents, updating model once every 1000 documents, evaluating perplexity every 10000 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-08-28 13:31:37,434 : INFO : PROGRESS: pass 0, at document #1000/10000\n", + "2018-08-28 13:31:38,735 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:38,757 : INFO : topic #5 (0.100): 0.009*\"com\" + 0.008*\"peopl\" + 0.007*\"articl\" + 0.004*\"nntp\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"good\" + 0.004*\"know\" + 0.004*\"univers\" + 0.003*\"like\"\n", + "2018-08-28 13:31:38,759 : INFO : topic #4 (0.100): 0.006*\"new\" + 0.006*\"univers\" + 0.004*\"articl\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"like\" + 0.003*\"time\" + 0.003*\"com\" + 0.003*\"nntp\"\n", + "2018-08-28 13:31:38,761 : INFO : topic #7 (0.100): 0.034*\"max\" + 0.007*\"com\" + 0.005*\"giz\" + 0.004*\"articl\" + 0.004*\"bhj\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.003*\"univers\" + 0.003*\"time\" + 0.003*\"state\"\n", + "2018-08-28 13:31:38,763 : INFO : topic #8 (0.100): 0.006*\"com\" + 0.006*\"articl\" + 0.005*\"think\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"know\" + 0.004*\"peopl\" + 0.004*\"time\" + 0.004*\"year\" + 0.003*\"group\"\n", + "2018-08-28 13:31:38,765 : INFO : topic #9 (0.100): 0.006*\"know\" + 0.005*\"us\" + 0.005*\"univers\" + 0.005*\"articl\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"god\" + 0.004*\"need\" + 0.003*\"state\"\n", + "2018-08-28 13:31:38,766 : INFO : topic diff=5.782705, rho=1.000000\n", + "2018-08-28 13:31:38,768 : INFO : PROGRESS: pass 0, at document #2000/10000\n", + "2018-08-28 13:31:41,496 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:41,572 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.007*\"file\" + 0.005*\"like\" + 0.005*\"us\" + 0.004*\"work\" + 0.004*\"version\" + 0.004*\"need\" + 0.004*\"articl\" + 0.004*\"program\" + 0.004*\"problem\"\n", + "2018-08-28 13:31:41,584 : INFO : topic #1 (0.100): 0.013*\"com\" + 0.007*\"articl\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"new\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"like\" + 0.004*\"distribut\" + 0.004*\"time\"\n", + "2018-08-28 13:31:41,594 : INFO : topic #7 (0.100): 0.051*\"max\" + 0.011*\"giz\" + 0.010*\"bhj\" + 0.007*\"com\" + 0.004*\"game\" + 0.004*\"univers\" + 0.004*\"articl\" + 0.003*\"like\" + 0.003*\"chz\" + 0.003*\"ibm\"\n", + "2018-08-28 13:31:41,600 : INFO : topic #8 (0.100): 0.006*\"com\" + 0.006*\"articl\" + 0.005*\"think\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"univers\" + 0.004*\"peopl\" + 0.004*\"game\" + 0.004*\"time\"\n", + "2018-08-28 13:31:41,610 : INFO : topic #5 (0.100): 0.009*\"com\" + 0.009*\"peopl\" + 0.006*\"articl\" + 0.005*\"right\" + 0.004*\"nntp\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"gun\" + 0.004*\"law\" + 0.004*\"good\"\n", + "2018-08-28 13:31:41,613 : INFO : topic diff=1.727952, rho=0.707107\n", + "2018-08-28 13:31:41,616 : INFO : PROGRESS: pass 0, at document #3000/10000\n", + "2018-08-28 13:31:45,165 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:45,224 : INFO : topic #7 (0.100): 0.062*\"max\" + 0.008*\"bhj\" + 0.008*\"giz\" + 0.007*\"com\" + 0.005*\"bxn\" + 0.004*\"game\" + 0.004*\"univers\" + 0.004*\"articl\" + 0.004*\"ibm\" + 0.003*\"host\"\n", + "2018-08-28 13:31:45,231 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.008*\"com\" + 0.006*\"articl\" + 0.005*\"right\" + 0.005*\"gun\" + 0.005*\"jew\" + 0.005*\"state\" + 0.005*\"law\" + 0.005*\"think\" + 0.004*\"god\"\n", + "2018-08-28 13:31:45,238 : INFO : topic #2 (0.100): 0.014*\"window\" + 0.007*\"com\" + 0.006*\"us\" + 0.006*\"program\" + 0.005*\"univers\" + 0.005*\"new\" + 0.005*\"file\" + 0.005*\"articl\" + 0.005*\"like\" + 0.004*\"time\"\n", + "2018-08-28 13:31:45,272 : INFO : topic #9 (0.100): 0.007*\"univers\" + 0.006*\"articl\" + 0.006*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"card\" + 0.004*\"power\"\n", + "2018-08-28 13:31:45,276 : INFO : topic #3 (0.100): 0.011*\"com\" + 0.008*\"peopl\" + 0.007*\"articl\" + 0.006*\"like\" + 0.006*\"think\" + 0.005*\"know\" + 0.005*\"time\" + 0.004*\"good\" + 0.004*\"right\" + 0.004*\"look\"\n", + "2018-08-28 13:31:45,279 : INFO : topic diff=1.046492, rho=0.577350\n", + "2018-08-28 13:31:45,282 : INFO : PROGRESS: pass 0, at document #4000/10000\n", + "2018-08-28 13:31:47,036 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:47,068 : INFO : topic #6 (0.100): 0.011*\"armenian\" + 0.007*\"turkish\" + 0.005*\"peopl\" + 0.004*\"articl\" + 0.004*\"cancer\" + 0.004*\"world\" + 0.004*\"time\" + 0.004*\"know\" + 0.003*\"year\" + 0.003*\"space\"\n", + "2018-08-28 13:31:47,070 : INFO : topic #3 (0.100): 0.011*\"com\" + 0.008*\"peopl\" + 0.007*\"articl\" + 0.007*\"like\" + 0.006*\"think\" + 0.005*\"know\" + 0.004*\"time\" + 0.004*\"right\" + 0.004*\"look\" + 0.004*\"good\"\n", + "2018-08-28 13:31:47,071 : INFO : topic #1 (0.100): 0.012*\"com\" + 0.008*\"articl\" + 0.007*\"game\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"plai\" + 0.005*\"new\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"like\"\n", + "2018-08-28 13:31:47,077 : INFO : topic #7 (0.100): 0.065*\"max\" + 0.010*\"bhj\" + 0.008*\"giz\" + 0.007*\"com\" + 0.004*\"game\" + 0.004*\"sa\" + 0.004*\"articl\" + 0.004*\"convex\" + 0.004*\"univers\" + 0.003*\"attack\"\n", + "2018-08-28 13:31:47,079 : INFO : topic #9 (0.100): 0.008*\"univers\" + 0.006*\"articl\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"water\" + 0.004*\"space\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"work\"\n", + "2018-08-28 13:31:47,083 : INFO : topic diff=0.873552, rho=0.500000\n", + "2018-08-28 13:31:47,085 : INFO : PROGRESS: pass 0, at document #5000/10000\n", + "2018-08-28 13:31:48,517 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:48,541 : INFO : topic #4 (0.100): 0.010*\"scsi\" + 0.010*\"new\" + 0.009*\"drive\" + 0.007*\"univers\" + 0.006*\"host\" + 0.005*\"articl\" + 0.005*\"nntp\" + 0.004*\"know\" + 0.004*\"time\" + 0.004*\"work\"\n", + "2018-08-28 13:31:48,543 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"com\" + 0.006*\"gun\" + 0.006*\"state\" + 0.005*\"articl\" + 0.005*\"right\" + 0.005*\"think\" + 0.005*\"law\" + 0.005*\"govern\" + 0.005*\"god\"\n", + "2018-08-28 13:31:48,545 : INFO : topic #6 (0.100): 0.011*\"armenian\" + 0.007*\"turkish\" + 0.005*\"peopl\" + 0.004*\"articl\" + 0.004*\"world\" + 0.004*\"armenia\" + 0.004*\"time\" + 0.003*\"year\" + 0.003*\"turkei\" + 0.003*\"said\"\n", + "2018-08-28 13:31:48,549 : INFO : topic #3 (0.100): 0.011*\"com\" + 0.008*\"peopl\" + 0.007*\"articl\" + 0.007*\"like\" + 0.006*\"think\" + 0.005*\"know\" + 0.005*\"time\" + 0.004*\"right\" + 0.004*\"look\" + 0.004*\"car\"\n", + "2018-08-28 13:31:48,551 : INFO : topic #1 (0.100): 0.011*\"com\" + 0.009*\"game\" + 0.008*\"articl\" + 0.008*\"plai\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.005*\"year\" + 0.005*\"team\" + 0.005*\"new\" + 0.005*\"univers\"\n", + "2018-08-28 13:31:48,553 : INFO : topic diff=0.684549, rho=0.447214\n", + "2018-08-28 13:31:48,554 : INFO : PROGRESS: pass 0, at document #6000/10000\n", + "2018-08-28 13:31:49,823 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:49,862 : INFO : topic #4 (0.100): 0.012*\"scsi\" + 0.011*\"drive\" + 0.010*\"new\" + 0.008*\"univers\" + 0.006*\"articl\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.004*\"time\" + 0.004*\"work\"\n", + "2018-08-28 13:31:49,866 : INFO : topic #0 (0.100): 0.009*\"file\" + 0.009*\"com\" + 0.007*\"us\" + 0.006*\"program\" + 0.005*\"nasa\" + 0.005*\"access\" + 0.005*\"imag\" + 0.005*\"new\" + 0.005*\"work\" + 0.005*\"data\"\n", + "2018-08-28 13:31:49,868 : INFO : topic #6 (0.100): 0.016*\"armenian\" + 0.008*\"turkish\" + 0.005*\"armenia\" + 0.005*\"peopl\" + 0.004*\"said\" + 0.004*\"turkei\" + 0.004*\"world\" + 0.004*\"scienc\" + 0.004*\"azerbaijan\" + 0.004*\"turk\"\n", + "2018-08-28 13:31:49,872 : INFO : topic #2 (0.100): 0.015*\"window\" + 0.008*\"com\" + 0.008*\"program\" + 0.008*\"file\" + 0.008*\"us\" + 0.005*\"run\" + 0.005*\"set\" + 0.005*\"work\" + 0.005*\"problem\" + 0.005*\"univers\"\n", + "2018-08-28 13:31:49,878 : INFO : topic #1 (0.100): 0.013*\"com\" + 0.010*\"game\" + 0.008*\"articl\" + 0.008*\"plai\" + 0.007*\"team\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\"\n", + "2018-08-28 13:31:49,889 : INFO : topic diff=0.548101, rho=0.408248\n", + "2018-08-28 13:31:49,895 : INFO : PROGRESS: pass 0, at document #7000/10000\n", + "2018-08-28 13:31:51,101 : INFO : merging changes from 1000 documents into a model of 10000 documents\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:15:14,776 : INFO : topic diff=0.389880, rho=0.447214\n", - "2018-08-28 13:15:14,777 : INFO : PROGRESS: pass 2, at document #1000/3000\n", - "2018-08-28 13:15:15,539 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:15,545 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.010*\"window\" + 0.007*\"file\" + 0.007*\"us\" + 0.006*\"com\" + 0.006*\"kei\" + 0.006*\"program\" + 0.005*\"univers\" + 0.005*\"problem\" + 0.004*\"host\"\n", - "2018-08-28 13:15:15,547 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.008*\"articl\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"need\"\n", - "2018-08-28 13:15:15,548 : INFO : topic #2 (0.200): 0.008*\"god\" + 0.007*\"christian\" + 0.006*\"think\" + 0.006*\"game\" + 0.006*\"articl\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"believ\" + 0.005*\"plai\"\n", - "2018-08-28 13:15:15,550 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.010*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"think\" + 0.005*\"peopl\" + 0.005*\"time\"\n", - "2018-08-28 13:15:15,551 : INFO : topic #4 (0.200): 0.009*\"peopl\" + 0.006*\"armenian\" + 0.005*\"state\" + 0.004*\"articl\" + 0.004*\"right\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"govern\" + 0.004*\"time\" + 0.004*\"jew\"\n", - "2018-08-28 13:15:15,557 : INFO : topic diff=0.349646, rho=0.408248\n", - "2018-08-28 13:15:15,560 : INFO : PROGRESS: pass 2, at document #2000/3000\n", - "2018-08-28 13:15:16,425 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:16,431 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.009*\"window\" + 0.008*\"file\" + 0.007*\"us\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"kei\" + 0.005*\"univers\" + 0.005*\"version\" + 0.005*\"problem\"\n", - "2018-08-28 13:15:16,433 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.007*\"articl\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"scsi\"\n", - "2018-08-28 13:15:16,434 : INFO : topic #2 (0.200): 0.008*\"god\" + 0.007*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.005*\"team\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"like\"\n", - "2018-08-28 13:15:16,436 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.005*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"think\" + 0.005*\"peopl\" + 0.005*\"new\"\n", - "2018-08-28 13:15:16,437 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.005*\"armenian\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"govern\" + 0.004*\"know\" + 0.004*\"articl\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"like\"\n", - "2018-08-28 13:15:16,438 : INFO : topic diff=0.335500, rho=0.408248\n", - "2018-08-28 13:15:17,669 : INFO : -7.848 per-word bound, 230.4 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", - "2018-08-28 13:15:17,669 : INFO : PROGRESS: pass 2, at document #3000/3000\n", - "2018-08-28 13:15:18,393 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:18,399 : INFO : topic #0 (0.200): 0.012*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.007*\"kei\" + 0.006*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.004*\"problem\" + 0.004*\"work\"\n", - "2018-08-28 13:15:18,400 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.007*\"articl\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"new\"\n", - "2018-08-28 13:15:18,402 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.008*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.005*\"univers\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"know\"\n", - "2018-08-28 13:15:18,404 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"think\" + 0.005*\"peopl\" + 0.004*\"new\"\n", - "2018-08-28 13:15:18,407 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.005*\"right\" + 0.005*\"govern\" + 0.005*\"state\" + 0.004*\"jew\" + 0.004*\"armenian\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"know\" + 0.004*\"time\"\n", - "2018-08-28 13:15:18,408 : INFO : topic diff=0.307183, rho=0.408248\n", - "2018-08-28 13:15:18,410 : INFO : PROGRESS: pass 3, at document #1000/3000\n", - "2018-08-28 13:15:19,327 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:19,334 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.006*\"kei\" + 0.006*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.005*\"problem\" + 0.004*\"host\"\n", - "2018-08-28 13:15:19,336 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.008*\"articl\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"work\" + 0.004*\"new\"\n", - "2018-08-28 13:15:19,337 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.008*\"christian\" + 0.007*\"think\" + 0.007*\"game\" + 0.006*\"articl\" + 0.005*\"jesu\" + 0.005*\"believ\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"like\"\n", - "2018-08-28 13:15:19,339 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.005*\"time\" + 0.005*\"peopl\"\n", - "2018-08-28 13:15:19,340 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.006*\"armenian\" + 0.005*\"state\" + 0.005*\"govern\" + 0.005*\"right\" + 0.004*\"articl\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"jew\" + 0.004*\"time\"\n", - "2018-08-28 13:15:19,341 : INFO : topic diff=0.277336, rho=0.377964\n", - "2018-08-28 13:15:19,342 : INFO : PROGRESS: pass 3, at document #2000/3000\n", - "2018-08-28 13:15:20,041 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:20,048 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"kei\" + 0.005*\"univers\" + 0.005*\"version\" + 0.004*\"do\"\n", - "2018-08-28 13:15:20,050 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.008*\"articl\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.005*\"scsi\" + 0.004*\"work\"\n", - "2018-08-28 13:15:20,051 : INFO : topic #2 (0.200): 0.009*\"god\" + 0.008*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.005*\"know\" + 0.005*\"team\" + 0.005*\"year\" + 0.005*\"univers\"\n", - "2018-08-28 13:15:20,053 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"peopl\"\n", - "2018-08-28 13:15:20,055 : INFO : topic #4 (0.200): 0.011*\"peopl\" + 0.005*\"armenian\" + 0.005*\"govern\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"time\" + 0.004*\"law\"\n", - "2018-08-28 13:15:20,057 : INFO : topic diff=0.265566, rho=0.377964\n", - "2018-08-28 13:15:21,109 : INFO : -7.819 per-word bound, 225.8 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", - "2018-08-28 13:15:21,110 : INFO : PROGRESS: pass 3, at document #3000/3000\n", - "2018-08-28 13:15:21,729 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:21,735 : INFO : topic #0 (0.200): 0.012*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.007*\"kei\" + 0.007*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.004*\"problem\" + 0.004*\"mail\"\n", - "2018-08-28 13:15:21,736 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"articl\" + 0.007*\"univers\" + 0.005*\"know\" + 0.005*\"drive\" + 0.005*\"us\" + 0.005*\"like\" + 0.005*\"work\"\n", - "2018-08-28 13:15:21,737 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.008*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.005*\"believ\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"like\"\n", - "2018-08-28 13:15:21,738 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"peopl\"\n", - "2018-08-28 13:15:21,739 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.005*\"govern\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"armenian\" + 0.004*\"jew\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"know\" + 0.004*\"law\"\n", - "2018-08-28 13:15:21,740 : INFO : topic diff=0.241522, rho=0.377964\n", - "2018-08-28 13:15:21,741 : INFO : PROGRESS: pass 4, at document #1000/3000\n", - "2018-08-28 13:15:22,490 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:22,500 : INFO : topic #0 (0.200): 0.014*\"max\" + 0.011*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.006*\"kei\" + 0.006*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.005*\"problem\" + 0.004*\"mail\"\n" + "2018-08-28 13:31:51,138 : INFO : topic #2 (0.100): 0.015*\"window\" + 0.008*\"com\" + 0.008*\"us\" + 0.008*\"file\" + 0.007*\"program\" + 0.005*\"run\" + 0.005*\"displai\" + 0.005*\"set\" + 0.005*\"problem\" + 0.005*\"work\"\n", + "2018-08-28 13:31:51,141 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.006*\"articl\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.005*\"work\" + 0.005*\"power\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"engin\"\n", + "2018-08-28 13:31:51,146 : INFO : topic #4 (0.100): 0.012*\"drive\" + 0.010*\"new\" + 0.010*\"scsi\" + 0.009*\"univers\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"articl\" + 0.005*\"know\" + 0.004*\"cleveland\" + 0.004*\"time\"\n", + "2018-08-28 13:31:51,150 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.006*\"think\" + 0.006*\"encrypt\" + 0.005*\"exist\" + 0.005*\"god\" + 0.005*\"like\" + 0.004*\"know\" + 0.004*\"time\" + 0.004*\"articl\" + 0.004*\"com\"\n", + "2018-08-28 13:31:51,156 : INFO : topic #1 (0.100): 0.012*\"com\" + 0.012*\"game\" + 0.009*\"team\" + 0.008*\"articl\" + 0.008*\"plai\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"year\" + 0.006*\"univers\" + 0.006*\"new\"\n", + "2018-08-28 13:31:51,159 : INFO : topic diff=0.473029, rho=0.377964\n", + "2018-08-28 13:31:51,160 : INFO : PROGRESS: pass 0, at document #8000/10000\n", + "2018-08-28 13:31:52,099 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:52,134 : INFO : topic #9 (0.100): 0.010*\"univers\" + 0.007*\"articl\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"power\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"engin\" + 0.005*\"us\" + 0.005*\"work\"\n", + "2018-08-28 13:31:52,136 : INFO : topic #0 (0.100): 0.009*\"file\" + 0.009*\"com\" + 0.007*\"imag\" + 0.007*\"us\" + 0.006*\"data\" + 0.006*\"program\" + 0.005*\"avail\" + 0.005*\"access\" + 0.005*\"inform\" + 0.005*\"nasa\"\n", + "2018-08-28 13:31:52,142 : INFO : topic #2 (0.100): 0.016*\"window\" + 0.008*\"com\" + 0.008*\"us\" + 0.008*\"program\" + 0.008*\"file\" + 0.006*\"run\" + 0.005*\"set\" + 0.005*\"problem\" + 0.005*\"version\" + 0.005*\"displai\"\n", + "2018-08-28 13:31:52,147 : INFO : topic #8 (0.100): 0.009*\"kei\" + 0.006*\"encrypt\" + 0.006*\"think\" + 0.005*\"like\" + 0.005*\"god\" + 0.004*\"exist\" + 0.004*\"know\" + 0.004*\"com\" + 0.004*\"articl\" + 0.004*\"time\"\n", + "2018-08-28 13:31:52,149 : INFO : topic #7 (0.100): 0.135*\"max\" + 0.009*\"sa\" + 0.009*\"giz\" + 0.007*\"bhj\" + 0.006*\"com\" + 0.005*\"sdsu\" + 0.005*\"convex\" + 0.005*\"adob\" + 0.004*\"dee\" + 0.004*\"len\"\n", + "2018-08-28 13:31:52,153 : INFO : topic diff=0.415834, rho=0.353553\n", + "2018-08-28 13:31:52,159 : INFO : PROGRESS: pass 0, at document #9000/10000\n", + "2018-08-28 13:31:53,062 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:53,083 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.005*\"exist\" + 0.005*\"god\" + 0.005*\"like\" + 0.004*\"com\" + 0.004*\"know\" + 0.004*\"articl\" + 0.004*\"time\"\n", + "2018-08-28 13:31:53,085 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"articl\" + 0.005*\"gun\" + 0.005*\"law\" + 0.005*\"think\" + 0.005*\"com\" + 0.004*\"govern\"\n", + "2018-08-28 13:31:53,088 : INFO : topic #1 (0.100): 0.012*\"game\" + 0.011*\"com\" + 0.011*\"team\" + 0.008*\"plai\" + 0.008*\"articl\" + 0.008*\"year\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"player\" + 0.006*\"univers\"\n", + "2018-08-28 13:31:53,089 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.008*\"file\" + 0.007*\"us\" + 0.006*\"data\" + 0.006*\"imag\" + 0.006*\"access\" + 0.006*\"nasa\" + 0.005*\"space\" + 0.005*\"program\" + 0.005*\"softwar\"\n", + "2018-08-28 13:31:53,091 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"nntp\" + 0.005*\"work\" + 0.005*\"host\" + 0.005*\"engin\" + 0.005*\"power\" + 0.004*\"us\"\n", + "2018-08-28 13:31:53,093 : INFO : topic diff=0.368125, rho=0.333333\n", + "2018-08-28 13:31:54,778 : INFO : -8.185 per-word bound, 291.0 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n", + "2018-08-28 13:31:54,780 : INFO : PROGRESS: pass 0, at document #10000/10000\n", + "2018-08-28 13:31:55,848 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:55,882 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.007*\"space\" + 0.007*\"us\" + 0.006*\"file\" + 0.006*\"nasa\" + 0.006*\"data\" + 0.006*\"imag\" + 0.006*\"access\" + 0.005*\"new\" + 0.005*\"gov\"\n", + "2018-08-28 13:31:55,883 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.005*\"like\" + 0.005*\"exist\" + 0.005*\"god\" + 0.004*\"know\" + 0.004*\"articl\" + 0.004*\"clipper\" + 0.004*\"chip\"\n", + "2018-08-28 13:31:55,887 : INFO : topic #6 (0.100): 0.014*\"armenian\" + 0.007*\"turkish\" + 0.005*\"said\" + 0.005*\"studi\" + 0.005*\"peopl\" + 0.004*\"year\" + 0.004*\"greek\" + 0.004*\"armenia\" + 0.004*\"world\" + 0.004*\"turk\"\n", + "2018-08-28 13:31:55,893 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.006*\"god\" + 0.005*\"think\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"gun\" + 0.005*\"com\" + 0.005*\"law\" + 0.004*\"govern\"\n", + "2018-08-28 13:31:55,901 : INFO : topic #2 (0.100): 0.016*\"window\" + 0.009*\"com\" + 0.008*\"us\" + 0.008*\"file\" + 0.007*\"program\" + 0.006*\"run\" + 0.006*\"problem\" + 0.005*\"set\" + 0.005*\"work\" + 0.005*\"version\"\n", + "2018-08-28 13:31:55,909 : INFO : topic diff=0.342499, rho=0.316228\n", + "2018-08-28 13:31:55,918 : INFO : PROGRESS: pass 1, at document #1000/10000\n", + "2018-08-28 13:31:56,740 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:56,764 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.007*\"nasa\" + 0.007*\"space\" + 0.007*\"us\" + 0.006*\"file\" + 0.006*\"imag\" + 0.006*\"data\" + 0.005*\"access\" + 0.005*\"softwar\" + 0.005*\"new\"\n", + "2018-08-28 13:31:56,766 : INFO : topic #3 (0.100): 0.015*\"com\" + 0.008*\"articl\" + 0.008*\"car\" + 0.008*\"like\" + 0.007*\"peopl\" + 0.007*\"know\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"thing\"\n", + "2018-08-28 13:31:56,767 : INFO : topic #6 (0.100): 0.017*\"armenian\" + 0.008*\"turkish\" + 0.005*\"peopl\" + 0.005*\"greek\" + 0.005*\"said\" + 0.005*\"turk\" + 0.005*\"studi\" + 0.004*\"year\" + 0.004*\"world\" + 0.004*\"armenia\"\n", + "2018-08-28 13:31:56,770 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.010*\"com\" + 0.008*\"us\" + 0.008*\"file\" + 0.007*\"problem\" + 0.007*\"run\" + 0.007*\"program\" + 0.005*\"set\" + 0.005*\"version\" + 0.005*\"univers\"\n", + "2018-08-28 13:31:56,773 : INFO : topic #1 (0.100): 0.013*\"game\" + 0.012*\"team\" + 0.010*\"com\" + 0.009*\"year\" + 0.008*\"plai\" + 0.008*\"articl\" + 0.007*\"player\" + 0.007*\"new\" + 0.006*\"host\" + 0.006*\"nntp\"\n", + "2018-08-28 13:31:56,775 : INFO : topic diff=0.279936, rho=0.288675\n", + "2018-08-28 13:31:56,778 : INFO : PROGRESS: pass 1, at document #2000/10000\n", + "2018-08-28 13:31:58,145 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:58,176 : INFO : topic #3 (0.100): 0.014*\"com\" + 0.009*\"articl\" + 0.008*\"car\" + 0.008*\"like\" + 0.007*\"peopl\" + 0.007*\"know\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-08-28 13:31:58,178 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.010*\"com\" + 0.008*\"file\" + 0.008*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.006*\"problem\" + 0.005*\"version\" + 0.005*\"do\" + 0.005*\"set\"\n", + "2018-08-28 13:31:58,180 : INFO : topic #9 (0.100): 0.008*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.005*\"like\" + 0.005*\"engin\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"work\" + 0.005*\"know\"\n", + "2018-08-28 13:31:58,186 : INFO : topic #8 (0.100): 0.009*\"kei\" + 0.007*\"think\" + 0.006*\"encrypt\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"god\" + 0.005*\"clipper\" + 0.005*\"christian\" + 0.005*\"peopl\" + 0.004*\"articl\"\n", + "2018-08-28 13:31:58,189 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.011*\"team\" + 0.010*\"com\" + 0.009*\"year\" + 0.009*\"plai\" + 0.008*\"articl\" + 0.007*\"player\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"univers\"\n", + "2018-08-28 13:31:58,198 : INFO : topic diff=0.268756, rho=0.288675\n", + "2018-08-28 13:31:58,202 : INFO : PROGRESS: pass 1, at document #3000/10000\n", + "2018-08-28 13:31:59,388 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:31:59,426 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.006*\"gun\" + 0.006*\"articl\" + 0.005*\"right\" + 0.005*\"think\" + 0.005*\"com\" + 0.005*\"law\" + 0.005*\"govern\"\n", + "2018-08-28 13:31:59,431 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.010*\"team\" + 0.009*\"plai\" + 0.009*\"com\" + 0.009*\"year\" + 0.008*\"articl\" + 0.007*\"player\" + 0.007*\"univers\" + 0.007*\"host\" + 0.007*\"new\"\n", + "2018-08-28 13:31:59,434 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.007*\"space\" + 0.007*\"us\" + 0.007*\"nasa\" + 0.006*\"file\" + 0.006*\"access\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"program\" + 0.005*\"inform\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:15:22,503 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.008*\"articl\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.005*\"drive\" + 0.004*\"new\"\n", - "2018-08-28 13:15:22,506 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.008*\"christian\" + 0.007*\"think\" + 0.007*\"game\" + 0.006*\"jesu\" + 0.006*\"articl\" + 0.005*\"believ\" + 0.005*\"know\" + 0.005*\"plai\" + 0.005*\"univers\"\n", - "2018-08-28 13:15:22,508 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.005*\"time\" + 0.004*\"peopl\"\n", - "2018-08-28 13:15:22,509 : INFO : topic #4 (0.200): 0.010*\"peopl\" + 0.006*\"armenian\" + 0.005*\"state\" + 0.005*\"govern\" + 0.005*\"right\" + 0.004*\"articl\" + 0.004*\"jew\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"time\"\n", - "2018-08-28 13:15:22,510 : INFO : topic diff=0.224455, rho=0.353553\n", - "2018-08-28 13:15:22,512 : INFO : PROGRESS: pass 4, at document #2000/3000\n", - "2018-08-28 13:15:23,236 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:23,242 : INFO : topic #0 (0.200): 0.013*\"max\" + 0.010*\"window\" + 0.008*\"file\" + 0.008*\"us\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"kei\" + 0.005*\"version\" + 0.005*\"univers\" + 0.005*\"do\"\n", - "2018-08-28 13:15:23,243 : INFO : topic #1 (0.200): 0.018*\"com\" + 0.008*\"nntp\" + 0.008*\"host\" + 0.008*\"articl\" + 0.007*\"univers\" + 0.005*\"know\" + 0.005*\"drive\" + 0.005*\"us\" + 0.005*\"scsi\" + 0.005*\"like\"\n", - "2018-08-28 13:15:23,245 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.009*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.006*\"know\" + 0.005*\"year\" + 0.005*\"team\" + 0.005*\"univers\"\n", - "2018-08-28 13:15:23,247 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.005*\"time\" + 0.004*\"new\"\n", - "2018-08-28 13:15:23,248 : INFO : topic #4 (0.200): 0.011*\"peopl\" + 0.006*\"govern\" + 0.005*\"armenian\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"know\" + 0.004*\"law\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"time\"\n", - "2018-08-28 13:15:23,250 : INFO : topic diff=0.217025, rho=0.353553\n", - "2018-08-28 13:15:24,412 : INFO : -7.802 per-word bound, 223.2 perplexity estimate based on a held-out corpus of 1000 documents with 111517 words\n", - "2018-08-28 13:15:24,414 : INFO : PROGRESS: pass 4, at document #3000/3000\n", - "2018-08-28 13:15:25,049 : INFO : merging changes from 1000 documents into a model of 3000 documents\n", - "2018-08-28 13:15:25,056 : INFO : topic #0 (0.200): 0.012*\"max\" + 0.011*\"window\" + 0.009*\"file\" + 0.008*\"us\" + 0.007*\"kei\" + 0.007*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.004*\"mail\" + 0.004*\"version\"\n", - "2018-08-28 13:15:25,057 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"articl\" + 0.007*\"univers\" + 0.006*\"drive\" + 0.005*\"know\" + 0.005*\"card\" + 0.005*\"like\" + 0.005*\"us\"\n", - "2018-08-28 13:15:25,058 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.006*\"believ\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"year\"\n", - "2018-08-28 13:15:25,061 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"thing\"\n", - "2018-08-28 13:15:25,063 : INFO : topic #4 (0.200): 0.011*\"peopl\" + 0.006*\"govern\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"armenian\" + 0.005*\"jew\" + 0.004*\"law\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"know\"\n", - "2018-08-28 13:15:25,064 : INFO : topic diff=0.196557, rho=0.353553\n" + "2018-08-28 13:31:59,439 : INFO : topic #4 (0.100): 0.016*\"drive\" + 0.010*\"univers\" + 0.010*\"new\" + 0.010*\"scsi\" + 0.009*\"host\" + 0.008*\"nntp\" + 0.008*\"articl\" + 0.005*\"cleveland\" + 0.005*\"columbia\" + 0.005*\"repli\"\n", + "2018-08-28 13:31:59,442 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.007*\"think\" + 0.006*\"encrypt\" + 0.005*\"god\" + 0.005*\"know\" + 0.005*\"peopl\" + 0.005*\"like\" + 0.005*\"moral\" + 0.005*\"christian\" + 0.005*\"chip\"\n", + "2018-08-28 13:31:59,444 : INFO : topic diff=0.242727, rho=0.288675\n", + "2018-08-28 13:31:59,454 : INFO : PROGRESS: pass 1, at document #4000/10000\n", + "2018-08-28 13:32:00,455 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:00,478 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.007*\"think\" + 0.006*\"encrypt\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.005*\"moral\" + 0.005*\"know\" + 0.005*\"christian\" + 0.004*\"exist\"\n", + "2018-08-28 13:32:00,480 : INFO : topic #7 (0.100): 0.184*\"max\" + 0.022*\"bhj\" + 0.019*\"giz\" + 0.009*\"sa\" + 0.007*\"convex\" + 0.006*\"bxn\" + 0.006*\"adob\" + 0.006*\"qax\" + 0.005*\"biz\" + 0.005*\"ahl\"\n", + "2018-08-28 13:32:00,483 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.005*\"like\" + 0.005*\"engin\" + 0.005*\"work\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"us\" + 0.004*\"know\"\n", + "2018-08-28 13:32:00,485 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.011*\"file\" + 0.010*\"com\" + 0.008*\"us\" + 0.007*\"program\" + 0.006*\"run\" + 0.006*\"problem\" + 0.005*\"version\" + 0.005*\"do\" + 0.005*\"work\"\n", + "2018-08-28 13:32:00,486 : INFO : topic #6 (0.100): 0.016*\"armenian\" + 0.009*\"turkish\" + 0.006*\"peopl\" + 0.005*\"studi\" + 0.005*\"year\" + 0.005*\"said\" + 0.004*\"world\" + 0.004*\"turkei\" + 0.004*\"armenia\" + 0.004*\"medic\"\n", + "2018-08-28 13:32:00,489 : INFO : topic diff=0.259615, rho=0.288675\n", + "2018-08-28 13:32:00,490 : INFO : PROGRESS: pass 1, at document #5000/10000\n", + "2018-08-28 13:32:01,572 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:01,608 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.013*\"scsi\" + 0.011*\"univers\" + 0.010*\"new\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"articl\" + 0.006*\"columbia\" + 0.005*\"repli\" + 0.005*\"know\"\n", + "2018-08-28 13:32:01,610 : INFO : topic #7 (0.100): 0.323*\"max\" + 0.024*\"giz\" + 0.020*\"bhj\" + 0.009*\"bxn\" + 0.007*\"qax\" + 0.007*\"sa\" + 0.005*\"chz\" + 0.005*\"adob\" + 0.005*\"biz\" + 0.005*\"nui\"\n", + "2018-08-28 13:32:01,612 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.008*\"turkish\" + 0.006*\"peopl\" + 0.005*\"studi\" + 0.005*\"year\" + 0.004*\"said\" + 0.004*\"turkei\" + 0.004*\"armenia\" + 0.004*\"world\" + 0.004*\"greek\"\n", + "2018-08-28 13:32:01,614 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.006*\"engin\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"like\" + 0.005*\"work\" + 0.005*\"us\" + 0.004*\"know\"\n", + "2018-08-28 13:32:01,616 : INFO : topic #3 (0.100): 0.014*\"com\" + 0.009*\"articl\" + 0.008*\"car\" + 0.008*\"like\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"time\" + 0.005*\"good\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:01,619 : INFO : topic diff=0.258218, rho=0.288675\n", + "2018-08-28 13:32:01,620 : INFO : PROGRESS: pass 1, at document #6000/10000\n", + "2018-08-28 13:32:02,560 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:02,599 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.011*\"file\" + 0.010*\"com\" + 0.008*\"us\" + 0.008*\"program\" + 0.006*\"run\" + 0.006*\"problem\" + 0.005*\"set\" + 0.005*\"work\" + 0.005*\"displai\"\n", + "2018-08-28 13:32:02,601 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"believ\" + 0.005*\"christian\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.005*\"secur\"\n", + "2018-08-28 13:32:02,606 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.007*\"space\" + 0.007*\"file\" + 0.007*\"program\" + 0.007*\"us\" + 0.007*\"nasa\" + 0.006*\"access\" + 0.006*\"new\" + 0.005*\"mail\" + 0.005*\"data\"\n", + "2018-08-28 13:32:02,608 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.010*\"team\" + 0.010*\"plai\" + 0.008*\"com\" + 0.008*\"year\" + 0.008*\"player\" + 0.007*\"articl\" + 0.006*\"univers\" + 0.006*\"host\" + 0.006*\"nntp\"\n", + "2018-08-28 13:32:02,613 : INFO : topic #3 (0.100): 0.016*\"com\" + 0.009*\"articl\" + 0.009*\"car\" + 0.008*\"like\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"think\" + 0.005*\"good\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:02,618 : INFO : topic diff=0.207687, rho=0.288675\n", + "2018-08-28 13:32:02,620 : INFO : PROGRESS: pass 1, at document #7000/10000\n", + "2018-08-28 13:32:03,878 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:03,925 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"christian\" + 0.005*\"peopl\" + 0.005*\"like\" + 0.005*\"secur\" + 0.005*\"chip\"\n", + "2018-08-28 13:32:03,931 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"gun\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"articl\" + 0.005*\"law\" + 0.005*\"com\" + 0.004*\"believ\"\n", + "2018-08-28 13:32:03,934 : INFO : topic #2 (0.100): 0.016*\"window\" + 0.011*\"file\" + 0.009*\"com\" + 0.008*\"us\" + 0.008*\"program\" + 0.006*\"run\" + 0.006*\"displai\" + 0.006*\"set\" + 0.006*\"problem\" + 0.005*\"version\"\n", + "2018-08-28 13:32:03,937 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.011*\"team\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"com\" + 0.007*\"articl\" + 0.007*\"player\" + 0.007*\"univers\" + 0.006*\"win\" + 0.006*\"host\"\n", + "2018-08-28 13:32:03,940 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.012*\"univers\" + 0.011*\"scsi\" + 0.009*\"new\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"articl\" + 0.005*\"repli\" + 0.005*\"know\" + 0.005*\"cleveland\"\n", + "2018-08-28 13:32:03,947 : INFO : topic diff=0.198631, rho=0.288675\n", + "2018-08-28 13:32:03,950 : INFO : PROGRESS: pass 1, at document #8000/10000\n", + "2018-08-28 13:32:04,778 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:04,819 : INFO : topic #4 (0.100): 0.023*\"drive\" + 0.013*\"scsi\" + 0.012*\"univers\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"new\" + 0.008*\"articl\" + 0.007*\"hard\" + 0.007*\"control\" + 0.007*\"disk\"\n", + "2018-08-28 13:32:04,823 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.007*\"space\" + 0.007*\"data\" + 0.007*\"file\" + 0.007*\"imag\" + 0.006*\"program\" + 0.006*\"us\" + 0.006*\"nasa\" + 0.006*\"access\" + 0.006*\"inform\"\n", + "2018-08-28 13:32:04,826 : INFO : topic #6 (0.100): 0.014*\"armenian\" + 0.007*\"turkish\" + 0.006*\"said\" + 0.006*\"peopl\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"turkei\" + 0.004*\"world\" + 0.004*\"studi\"\n", + "2018-08-28 13:32:04,832 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.011*\"team\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"com\" + 0.007*\"articl\" + 0.006*\"univers\" + 0.006*\"win\" + 0.006*\"host\"\n", + "2018-08-28 13:32:04,836 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.011*\"file\" + 0.009*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.006*\"version\" + 0.006*\"problem\" + 0.006*\"set\" + 0.005*\"displai\"\n", + "2018-08-28 13:32:04,839 : INFO : topic diff=0.186782, rho=0.288675\n", + "2018-08-28 13:32:04,842 : INFO : PROGRESS: pass 1, at document #9000/10000\n", + "2018-08-28 13:32:05,995 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:06,026 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.010*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.007*\"program\" + 0.007*\"run\" + 0.006*\"problem\" + 0.006*\"version\" + 0.006*\"set\" + 0.005*\"work\"\n", + "2018-08-28 13:32:06,029 : INFO : topic #4 (0.100): 0.021*\"drive\" + 0.012*\"univers\" + 0.012*\"scsi\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.009*\"new\" + 0.009*\"articl\" + 0.007*\"hard\" + 0.007*\"control\" + 0.006*\"disk\"\n", + "2018-08-28 13:32:06,033 : INFO : topic #7 (0.100): 0.240*\"max\" + 0.019*\"bhj\" + 0.018*\"giz\" + 0.009*\"sa\" + 0.007*\"qax\" + 0.007*\"xmu\" + 0.006*\"libxmu\" + 0.006*\"adob\" + 0.006*\"marc\" + 0.005*\"convex\"\n", + "2018-08-28 13:32:06,035 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.012*\"team\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"articl\" + 0.007*\"com\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"host\"\n", + "2018-08-28 13:32:06,039 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"engin\" + 0.006*\"like\" + 0.006*\"power\" + 0.006*\"nntp\" + 0.005*\"work\" + 0.005*\"host\" + 0.005*\"us\" + 0.004*\"know\"\n", + "2018-08-28 13:32:06,042 : INFO : topic diff=0.184350, rho=0.288675\n", + "2018-08-28 13:32:08,044 : INFO : -8.101 per-word bound, 274.5 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-28 13:32:08,045 : INFO : PROGRESS: pass 1, at document #10000/10000\n", + "2018-08-28 13:32:09,270 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:09,303 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.013*\"team\" + 0.010*\"year\" + 0.009*\"plai\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"articl\" + 0.007*\"hockei\" + 0.007*\"new\" + 0.006*\"univers\"\n", + "2018-08-28 13:32:09,304 : INFO : topic #3 (0.100): 0.016*\"com\" + 0.009*\"articl\" + 0.009*\"car\" + 0.009*\"like\" + 0.007*\"know\" + 0.006*\"peopl\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"good\" + 0.005*\"look\"\n", + "2018-08-28 13:32:09,306 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.011*\"univers\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.009*\"new\" + 0.009*\"scsi\" + 0.009*\"articl\" + 0.006*\"hard\" + 0.006*\"control\" + 0.006*\"card\"\n", + "2018-08-28 13:32:09,312 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"power\" + 0.006*\"us\" + 0.006*\"like\" + 0.005*\"wire\" + 0.005*\"work\" + 0.005*\"engin\" + 0.005*\"nntp\" + 0.005*\"host\"\n", + "2018-08-28 13:32:09,321 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.009*\"space\" + 0.007*\"nasa\" + 0.006*\"us\" + 0.006*\"data\" + 0.006*\"new\" + 0.006*\"access\" + 0.006*\"gov\" + 0.006*\"inform\" + 0.006*\"program\"\n", + "2018-08-28 13:32:09,325 : INFO : topic diff=0.179653, rho=0.288675\n", + "2018-08-28 13:32:09,329 : INFO : PROGRESS: pass 2, at document #1000/10000\n", + "2018-08-28 13:32:10,322 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:10,348 : INFO : topic #7 (0.100): 0.260*\"max\" + 0.021*\"giz\" + 0.021*\"bhj\" + 0.009*\"sa\" + 0.007*\"qax\" + 0.006*\"ahl\" + 0.006*\"adob\" + 0.006*\"biz\" + 0.006*\"cec\" + 0.005*\"nist\"\n", + "2018-08-28 13:32:10,351 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"articl\" + 0.005*\"right\" + 0.005*\"jesu\" + 0.005*\"gun\" + 0.005*\"com\" + 0.004*\"law\"\n", + "2018-08-28 13:32:10,353 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.009*\"space\" + 0.008*\"nasa\" + 0.007*\"us\" + 0.006*\"data\" + 0.006*\"new\" + 0.006*\"imag\" + 0.006*\"softwar\" + 0.006*\"access\" + 0.006*\"gov\"\n", + "2018-08-28 13:32:10,354 : INFO : topic #9 (0.100): 0.008*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.006*\"like\" + 0.005*\"nntp\" + 0.005*\"work\" + 0.005*\"host\" + 0.004*\"good\"\n", + "2018-08-28 13:32:10,356 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.013*\"team\" + 0.010*\"year\" + 0.009*\"plai\" + 0.008*\"player\" + 0.007*\"articl\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"com\"\n", + "2018-08-28 13:32:10,359 : INFO : topic diff=0.154888, rho=0.277350\n", + "2018-08-28 13:32:10,360 : INFO : PROGRESS: pass 2, at document #2000/10000\n", + "2018-08-28 13:32:11,386 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:11,419 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"work\" + 0.005*\"host\" + 0.004*\"good\"\n", + "2018-08-28 13:32:11,421 : INFO : topic #7 (0.100): 0.239*\"max\" + 0.028*\"bhj\" + 0.028*\"giz\" + 0.008*\"sa\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.007*\"bxn\" + 0.006*\"marc\" + 0.006*\"chz\" + 0.005*\"biz\"\n", + "2018-08-28 13:32:11,423 : INFO : topic #3 (0.100): 0.016*\"com\" + 0.009*\"articl\" + 0.009*\"car\" + 0.008*\"like\" + 0.007*\"know\" + 0.006*\"peopl\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-08-28 13:32:11,432 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.005*\"state\" + 0.005*\"articl\" + 0.005*\"right\" + 0.005*\"gun\" + 0.005*\"think\" + 0.005*\"law\" + 0.005*\"com\" + 0.004*\"govern\"\n", + "2018-08-28 13:32:11,437 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.007*\"encrypt\" + 0.007*\"think\" + 0.005*\"god\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.005*\"clipper\" + 0.005*\"christian\" + 0.005*\"chip\" + 0.005*\"like\"\n", + "2018-08-28 13:32:11,442 : INFO : topic diff=0.147315, rho=0.277350\n", + "2018-08-28 13:32:11,446 : INFO : PROGRESS: pass 2, at document #3000/10000\n", + "2018-08-28 13:32:12,513 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:12,553 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"know\" + 0.005*\"moral\" + 0.005*\"christian\" + 0.005*\"secur\"\n", + "2018-08-28 13:32:12,561 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.009*\"space\" + 0.007*\"nasa\" + 0.006*\"us\" + 0.006*\"access\" + 0.006*\"new\" + 0.006*\"program\" + 0.006*\"inform\" + 0.006*\"gov\" + 0.005*\"mail\"\n", + "2018-08-28 13:32:12,564 : INFO : topic #6 (0.100): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.007*\"peopl\" + 0.005*\"said\" + 0.005*\"turkei\" + 0.005*\"studi\" + 0.005*\"year\" + 0.004*\"world\" + 0.004*\"medic\" + 0.004*\"food\"\n", + "2018-08-28 13:32:12,568 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.011*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"problem\" + 0.007*\"run\" + 0.006*\"version\" + 0.006*\"do\" + 0.005*\"set\"\n", + "2018-08-28 13:32:12,571 : INFO : topic #7 (0.100): 0.227*\"max\" + 0.024*\"bhj\" + 0.024*\"giz\" + 0.010*\"sa\" + 0.009*\"bxn\" + 0.008*\"qax\" + 0.007*\"adob\" + 0.006*\"marc\" + 0.006*\"convex\" + 0.005*\"biz\"\n", + "2018-08-28 13:32:12,582 : INFO : topic diff=0.132113, rho=0.277350\n", + "2018-08-28 13:32:12,588 : INFO : PROGRESS: pass 2, at document #4000/10000\n", + "2018-08-28 13:32:14,146 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:14,172 : INFO : topic #3 (0.100): 0.016*\"com\" + 0.009*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.006*\"know\" + 0.006*\"peopl\" + 0.006*\"think\" + 0.005*\"time\" + 0.005*\"good\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:14,174 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"gun\" + 0.006*\"god\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"com\" + 0.004*\"govern\"\n", + "2018-08-28 13:32:14,177 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.010*\"plai\" + 0.010*\"team\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"articl\" + 0.006*\"univers\" + 0.006*\"win\" + 0.006*\"new\" + 0.006*\"season\"\n", + "2018-08-28 13:32:14,178 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.014*\"file\" + 0.011*\"com\" + 0.008*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.006*\"problem\" + 0.006*\"version\" + 0.006*\"do\" + 0.005*\"graphic\"\n", + "2018-08-28 13:32:14,180 : INFO : topic #4 (0.100): 0.020*\"drive\" + 0.012*\"univers\" + 0.011*\"scsi\" + 0.011*\"host\" + 0.010*\"nntp\" + 0.009*\"new\" + 0.009*\"articl\" + 0.006*\"card\" + 0.006*\"repli\" + 0.006*\"hard\"\n", + "2018-08-28 13:32:14,182 : INFO : topic diff=0.154180, rho=0.277350\n", + "2018-08-28 13:32:14,183 : INFO : PROGRESS: pass 2, at document #5000/10000\n", + "2018-08-28 13:32:15,329 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:15,360 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.012*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.006*\"run\" + 0.006*\"problem\" + 0.006*\"version\" + 0.006*\"set\" + 0.005*\"displai\"\n", + "2018-08-28 13:32:15,362 : INFO : topic #7 (0.100): 0.341*\"max\" + 0.025*\"giz\" + 0.021*\"bhj\" + 0.009*\"bxn\" + 0.008*\"qax\" + 0.008*\"sa\" + 0.006*\"adob\" + 0.006*\"chz\" + 0.005*\"biz\" + 0.005*\"nui\"\n", + "2018-08-28 13:32:15,364 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.009*\"space\" + 0.007*\"program\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.006*\"file\" + 0.006*\"mail\" + 0.006*\"us\" + 0.006*\"access\" + 0.006*\"imag\"\n", + "2018-08-28 13:32:15,366 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"state\" + 0.006*\"gun\" + 0.006*\"god\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.005*\"govern\" + 0.004*\"com\"\n", + "2018-08-28 13:32:15,368 : INFO : topic #4 (0.100): 0.019*\"drive\" + 0.012*\"scsi\" + 0.012*\"univers\" + 0.011*\"host\" + 0.010*\"nntp\" + 0.009*\"articl\" + 0.009*\"new\" + 0.006*\"repli\" + 0.006*\"columbia\" + 0.006*\"card\"\n", + "2018-08-28 13:32:15,371 : INFO : topic diff=0.166842, rho=0.277350\n", + "2018-08-28 13:32:15,374 : INFO : PROGRESS: pass 2, at document #6000/10000\n", + "2018-08-28 13:32:16,158 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:16,194 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.011*\"plai\" + 0.011*\"team\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"articl\" + 0.006*\"univers\" + 0.006*\"win\" + 0.006*\"com\" + 0.006*\"new\"\n", + "2018-08-28 13:32:16,197 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.009*\"articl\" + 0.009*\"car\" + 0.008*\"like\" + 0.006*\"know\" + 0.006*\"peopl\" + 0.006*\"time\" + 0.005*\"good\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:16,203 : INFO : topic #4 (0.100): 0.019*\"drive\" + 0.013*\"scsi\" + 0.012*\"univers\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.009*\"articl\" + 0.008*\"new\" + 0.006*\"card\" + 0.006*\"mac\" + 0.006*\"disk\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-28 13:32:16,206 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"god\" + 0.006*\"exist\" + 0.006*\"think\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"believ\" + 0.005*\"secur\" + 0.005*\"question\"\n", + "2018-08-28 13:32:16,214 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.006*\"engin\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"like\" + 0.004*\"speed\"\n", + "2018-08-28 13:32:16,223 : INFO : topic diff=0.132050, rho=0.277350\n", + "2018-08-28 13:32:16,231 : INFO : PROGRESS: pass 2, at document #7000/10000\n", + "2018-08-28 13:32:17,624 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:17,668 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.007*\"peopl\" + 0.007*\"turkish\" + 0.007*\"said\" + 0.005*\"studi\" + 0.005*\"medic\" + 0.005*\"year\" + 0.005*\"armenia\" + 0.004*\"turkei\" + 0.004*\"russian\"\n", + "2018-08-28 13:32:17,671 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"secur\" + 0.005*\"christian\" + 0.005*\"clipper\"\n", + "2018-08-28 13:32:17,674 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.012*\"team\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.007*\"articl\" + 0.005*\"new\" + 0.005*\"host\"\n", + "2018-08-28 13:32:17,678 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"gun\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"believ\" + 0.004*\"com\"\n", + "2018-08-28 13:32:17,681 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.008*\"space\" + 0.007*\"imag\" + 0.007*\"program\" + 0.007*\"new\" + 0.006*\"nasa\" + 0.006*\"access\" + 0.006*\"mail\" + 0.006*\"data\" + 0.006*\"inform\"\n", + "2018-08-28 13:32:17,685 : INFO : topic diff=0.127051, rho=0.277350\n", + "2018-08-28 13:32:17,687 : INFO : PROGRESS: pass 2, at document #8000/10000\n", + "2018-08-28 13:32:19,015 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:19,071 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.012*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.009*\"program\" + 0.007*\"run\" + 0.007*\"version\" + 0.006*\"set\" + 0.006*\"color\" + 0.006*\"problem\"\n", + "2018-08-28 13:32:19,073 : INFO : topic #6 (0.100): 0.014*\"armenian\" + 0.008*\"turkish\" + 0.007*\"peopl\" + 0.007*\"said\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"turkei\" + 0.004*\"studi\" + 0.004*\"medic\"\n", + "2018-08-28 13:32:19,085 : INFO : topic #9 (0.100): 0.010*\"univers\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.006*\"power\" + 0.006*\"us\" + 0.006*\"like\" + 0.006*\"work\" + 0.006*\"nntp\" + 0.005*\"host\" + 0.004*\"time\"\n", + "2018-08-28 13:32:19,091 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"exist\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"clipper\" + 0.005*\"secur\" + 0.005*\"believ\"\n", + "2018-08-28 13:32:19,093 : INFO : topic #7 (0.100): 0.219*\"max\" + 0.015*\"giz\" + 0.013*\"sa\" + 0.013*\"bhj\" + 0.008*\"adob\" + 0.007*\"convex\" + 0.007*\"marc\" + 0.007*\"sdsu\" + 0.006*\"bxn\" + 0.005*\"ahl\"\n", + "2018-08-28 13:32:19,098 : INFO : topic diff=0.121956, rho=0.277350\n", + "2018-08-28 13:32:19,101 : INFO : PROGRESS: pass 2, at document #9000/10000\n", + "2018-08-28 13:32:20,084 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:20,107 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"gun\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"com\" + 0.004*\"believ\"\n", + "2018-08-28 13:32:20,110 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"engin\" + 0.006*\"power\" + 0.006*\"like\" + 0.006*\"work\" + 0.005*\"nntp\" + 0.005*\"us\" + 0.005*\"host\" + 0.004*\"time\"\n", + "2018-08-28 13:32:20,112 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"mean\" + 0.005*\"like\" + 0.005*\"clipper\"\n", + "2018-08-28 13:32:20,114 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.008*\"space\" + 0.007*\"nasa\" + 0.007*\"data\" + 0.007*\"access\" + 0.006*\"new\" + 0.006*\"program\" + 0.006*\"inform\" + 0.006*\"mail\" + 0.006*\"softwar\"\n", + "2018-08-28 13:32:20,115 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.008*\"turkish\" + 0.007*\"peopl\" + 0.006*\"said\" + 0.006*\"greek\" + 0.005*\"armenia\" + 0.005*\"studi\" + 0.005*\"year\" + 0.005*\"medic\" + 0.004*\"world\"\n", + "2018-08-28 13:32:20,117 : INFO : topic diff=0.128670, rho=0.277350\n", + "2018-08-28 13:32:21,643 : INFO : -8.078 per-word bound, 270.3 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n", + "2018-08-28 13:32:21,644 : INFO : PROGRESS: pass 2, at document #10000/10000\n", + "2018-08-28 13:32:22,708 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:22,735 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.007*\"turkish\" + 0.007*\"peopl\" + 0.007*\"said\" + 0.006*\"studi\" + 0.005*\"year\" + 0.005*\"greek\" + 0.004*\"food\" + 0.004*\"armenia\" + 0.004*\"turk\"\n", + "2018-08-28 13:32:22,737 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.012*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"card\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.008*\"new\" + 0.007*\"disk\" + 0.007*\"hard\"\n", + "2018-08-28 13:32:22,740 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.010*\"space\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.006*\"gov\" + 0.006*\"inform\" + 0.006*\"access\" + 0.006*\"data\" + 0.006*\"program\" + 0.006*\"mail\"\n", + "2018-08-28 13:32:22,742 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"think\" + 0.006*\"good\" + 0.005*\"peopl\" + 0.005*\"look\"\n", + "2018-08-28 13:32:22,744 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.012*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.007*\"program\" + 0.007*\"run\" + 0.007*\"problem\" + 0.007*\"version\" + 0.006*\"set\" + 0.005*\"color\"\n", + "2018-08-28 13:32:22,752 : INFO : topic diff=0.120220, rho=0.277350\n", + "2018-08-28 13:32:22,759 : INFO : PROGRESS: pass 3, at document #1000/10000\n", + "2018-08-28 13:32:23,576 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:23,617 : INFO : topic #4 (0.100): 0.016*\"drive\" + 0.013*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.008*\"card\" + 0.008*\"new\" + 0.007*\"control\" + 0.007*\"disk\"\n", + "2018-08-28 13:32:23,619 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.006*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"exist\" + 0.005*\"moral\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.005*\"mean\" + 0.005*\"like\"\n", + "2018-08-28 13:32:23,621 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"car\" + 0.009*\"like\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"think\" + 0.006*\"peopl\" + 0.005*\"good\" + 0.005*\"look\"\n", + "2018-08-28 13:32:23,624 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.011*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.007*\"run\" + 0.007*\"program\" + 0.007*\"problem\" + 0.006*\"version\" + 0.005*\"set\" + 0.005*\"do\"\n", + "2018-08-28 13:32:23,627 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.013*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.006*\"new\" + 0.006*\"hockei\"\n", + "2018-08-28 13:32:23,629 : INFO : topic diff=0.109734, rho=0.267261\n", + "2018-08-28 13:32:23,631 : INFO : PROGRESS: pass 3, at document #2000/10000\n", + "2018-08-28 13:32:24,403 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:24,425 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.013*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.011*\"scsi\" + 0.009*\"articl\" + 0.009*\"card\" + 0.008*\"new\" + 0.007*\"control\" + 0.006*\"disk\"\n", + "2018-08-28 13:32:24,427 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.005*\"like\" + 0.005*\"work\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"wire\"\n", + "2018-08-28 13:32:24,429 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"car\" + 0.009*\"like\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"peopl\" + 0.005*\"good\" + 0.005*\"look\"\n", + "2018-08-28 13:32:24,430 : INFO : topic #6 (0.100): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.006*\"said\" + 0.005*\"studi\" + 0.005*\"year\" + 0.004*\"armenia\" + 0.004*\"greek\" + 0.004*\"diseas\" + 0.004*\"turk\"\n", + "2018-08-28 13:32:24,432 : INFO : topic #0 (0.100): 0.012*\"com\" + 0.009*\"space\" + 0.008*\"nasa\" + 0.007*\"new\" + 0.006*\"access\" + 0.006*\"program\" + 0.006*\"inform\" + 0.006*\"gov\" + 0.006*\"softwar\" + 0.006*\"data\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-28 13:32:24,433 : INFO : topic diff=0.100990, rho=0.267261\n", + "2018-08-28 13:32:24,434 : INFO : PROGRESS: pass 3, at document #3000/10000\n", + "2018-08-28 13:32:25,295 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:25,320 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"peopl\" + 0.005*\"chip\" + 0.005*\"secur\" + 0.005*\"moral\" + 0.005*\"know\" + 0.005*\"us\"\n", + "2018-08-28 13:32:25,322 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"think\" + 0.006*\"good\" + 0.005*\"peopl\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:25,324 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.005*\"gun\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.005*\"com\" + 0.004*\"govern\"\n", + "2018-08-28 13:32:25,325 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.006*\"power\" + 0.006*\"us\" + 0.005*\"work\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"wire\"\n", + "2018-08-28 13:32:25,327 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.012*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"version\" + 0.007*\"problem\" + 0.007*\"run\" + 0.006*\"do\" + 0.005*\"set\"\n", + "2018-08-28 13:32:25,329 : INFO : topic diff=0.091840, rho=0.267261\n", + "2018-08-28 13:32:25,331 : INFO : PROGRESS: pass 3, at document #4000/10000\n", + "2018-08-28 13:32:26,202 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:26,226 : INFO : topic #0 (0.100): 0.010*\"space\" + 0.010*\"com\" + 0.007*\"new\" + 0.007*\"nasa\" + 0.007*\"program\" + 0.007*\"mail\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"file\" + 0.006*\"anonym\"\n", + "2018-08-28 13:32:26,228 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.006*\"know\" + 0.006*\"good\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"peopl\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:26,232 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.011*\"plai\" + 0.011*\"team\" + 0.010*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.006*\"univers\" + 0.006*\"articl\" + 0.006*\"new\" + 0.006*\"season\"\n", + "2018-08-28 13:32:26,234 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.015*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.006*\"version\" + 0.006*\"problem\" + 0.006*\"do\" + 0.006*\"graphic\"\n", + "2018-08-28 13:32:26,239 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"gun\" + 0.006*\"god\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"govern\" + 0.004*\"com\"\n", + "2018-08-28 13:32:26,242 : INFO : topic diff=0.113876, rho=0.267261\n", + "2018-08-28 13:32:26,246 : INFO : PROGRESS: pass 3, at document #5000/10000\n", + "2018-08-28 13:32:27,316 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:27,360 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.005*\"said\" + 0.005*\"studi\" + 0.005*\"year\" + 0.005*\"medic\" + 0.005*\"turkei\" + 0.004*\"greek\" + 0.004*\"armenia\"\n", + "2018-08-28 13:32:27,365 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.012*\"univers\" + 0.011*\"scsi\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"articl\" + 0.008*\"card\" + 0.008*\"new\" + 0.006*\"mac\" + 0.006*\"disk\"\n", + "2018-08-28 13:32:27,375 : INFO : topic #0 (0.100): 0.010*\"space\" + 0.009*\"com\" + 0.008*\"program\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.007*\"mail\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"anonym\" + 0.005*\"gov\"\n", + "2018-08-28 13:32:27,379 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"state\" + 0.006*\"gun\" + 0.006*\"god\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"govern\" + 0.004*\"com\"\n", + "2018-08-28 13:32:27,388 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.007*\"encrypt\" + 0.007*\"think\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"chip\" + 0.005*\"moral\" + 0.005*\"us\" + 0.005*\"christian\" + 0.005*\"like\"\n", + "2018-08-28 13:32:27,389 : INFO : topic diff=0.131599, rho=0.267261\n", + "2018-08-28 13:32:27,400 : INFO : PROGRESS: pass 3, at document #6000/10000\n", + "2018-08-28 13:32:28,239 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:28,266 : INFO : topic #6 (0.100): 0.018*\"armenian\" + 0.009*\"turkish\" + 0.007*\"peopl\" + 0.006*\"said\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"studi\" + 0.005*\"year\" + 0.004*\"turk\" + 0.004*\"medic\"\n", + "2018-08-28 13:32:28,268 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.009*\"space\" + 0.007*\"program\" + 0.007*\"mail\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"softwar\" + 0.006*\"gov\"\n", + "2018-08-28 13:32:28,270 : INFO : topic #7 (0.100): 0.306*\"max\" + 0.022*\"giz\" + 0.019*\"bhj\" + 0.008*\"bxn\" + 0.008*\"sa\" + 0.007*\"qax\" + 0.006*\"marc\" + 0.006*\"adob\" + 0.005*\"chz\" + 0.004*\"nui\"\n", + "2018-08-28 13:32:28,273 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.014*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.009*\"program\" + 0.007*\"run\" + 0.006*\"problem\" + 0.006*\"set\" + 0.006*\"version\" + 0.005*\"do\"\n", + "2018-08-28 13:32:28,275 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"exist\" + 0.006*\"god\" + 0.006*\"think\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"secur\" + 0.005*\"question\" + 0.005*\"believ\"\n", + "2018-08-28 13:32:28,277 : INFO : topic diff=0.103775, rho=0.267261\n", + "2018-08-28 13:32:28,279 : INFO : PROGRESS: pass 3, at document #7000/10000\n", + "2018-08-28 13:32:29,066 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:29,103 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.008*\"space\" + 0.007*\"program\" + 0.007*\"new\" + 0.007*\"mail\" + 0.007*\"imag\" + 0.007*\"nasa\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"data\"\n", + "2018-08-28 13:32:29,105 : INFO : topic #4 (0.100): 0.019*\"drive\" + 0.013*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.010*\"scsi\" + 0.009*\"articl\" + 0.008*\"card\" + 0.008*\"new\" + 0.007*\"mac\" + 0.007*\"appl\"\n", + "2018-08-28 13:32:29,108 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.012*\"team\" + 0.011*\"plai\" + 0.010*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"season\"\n", + "2018-08-28 13:32:29,113 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.004*\"time\"\n", + "2018-08-28 13:32:29,118 : INFO : topic #7 (0.100): 0.266*\"max\" + 0.019*\"giz\" + 0.016*\"bhj\" + 0.011*\"sa\" + 0.007*\"adob\" + 0.007*\"bxn\" + 0.007*\"convex\" + 0.006*\"ahl\" + 0.006*\"qax\" + 0.006*\"marc\"\n", + "2018-08-28 13:32:29,120 : INFO : topic diff=0.100589, rho=0.267261\n", + "2018-08-28 13:32:29,123 : INFO : PROGRESS: pass 3, at document #8000/10000\n", + "2018-08-28 13:32:29,872 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:29,907 : INFO : topic #6 (0.100): 0.014*\"armenian\" + 0.008*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"medic\" + 0.004*\"turkei\" + 0.004*\"studi\"\n", + "2018-08-28 13:32:29,910 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.012*\"team\" + 0.011*\"plai\" + 0.010*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.006*\"season\" + 0.005*\"new\"\n", + "2018-08-28 13:32:29,913 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.008*\"space\" + 0.007*\"program\" + 0.007*\"inform\" + 0.007*\"nasa\" + 0.007*\"mail\" + 0.007*\"new\" + 0.007*\"access\" + 0.007*\"data\" + 0.006*\"softwar\"\n", + "2018-08-28 13:32:29,915 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.006*\"think\" + 0.006*\"right\" + 0.005*\"gun\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"believ\" + 0.004*\"christian\"\n", + "2018-08-28 13:32:29,918 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"secur\" + 0.005*\"clipper\"\n", + "2018-08-28 13:32:29,920 : INFO : topic diff=0.097489, rho=0.267261\n", + "2018-08-28 13:32:29,922 : INFO : PROGRESS: pass 3, at document #9000/10000\n", + "2018-08-28 13:32:30,558 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:30,583 : INFO : topic #3 (0.100): 0.018*\"com\" + 0.010*\"articl\" + 0.010*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"think\" + 0.006*\"good\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"peopl\"\n", + "2018-08-28 13:32:30,585 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"engin\" + 0.006*\"power\" + 0.006*\"us\" + 0.006*\"work\" + 0.006*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-28 13:32:30,587 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.013*\"team\" + 0.010*\"plai\" + 0.010*\"year\" + 0.009*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"season\"\n", + "2018-08-28 13:32:30,589 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.008*\"encrypt\" + 0.006*\"exist\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"mean\" + 0.005*\"clipper\"\n", + "2018-08-28 13:32:30,590 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.013*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.007*\"version\" + 0.006*\"problem\" + 0.006*\"set\" + 0.006*\"color\"\n", + "2018-08-28 13:32:30,592 : INFO : topic diff=0.106636, rho=0.267261\n", + "2018-08-28 13:32:32,688 : INFO : -8.068 per-word bound, 268.3 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n", + "2018-08-28 13:32:32,689 : INFO : PROGRESS: pass 3, at document #10000/10000\n", + "2018-08-28 13:32:33,786 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:33,814 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.010*\"space\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.007*\"inform\" + 0.007*\"gov\" + 0.007*\"mail\" + 0.006*\"program\" + 0.006*\"access\" + 0.006*\"data\"\n", + "2018-08-28 13:32:33,817 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.012*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.011*\"card\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.007*\"disk\" + 0.007*\"new\" + 0.007*\"mac\"\n", + "2018-08-28 13:32:33,819 : INFO : topic #3 (0.100): 0.018*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"good\" + 0.006*\"think\" + 0.005*\"look\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:33,822 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"exist\" + 0.005*\"god\" + 0.005*\"chip\" + 0.005*\"peopl\" + 0.005*\"us\" + 0.005*\"clipper\" + 0.005*\"like\"\n", + "2018-08-28 13:32:33,824 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.014*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.009*\"player\" + 0.008*\"win\" + 0.007*\"hockei\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"articl\"\n", + "2018-08-28 13:32:33,826 : INFO : topic diff=0.097712, rho=0.267261\n", + "2018-08-28 13:32:33,828 : INFO : PROGRESS: pass 4, at document #1000/10000\n", + "2018-08-28 13:32:34,633 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:34,664 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.006*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"exist\" + 0.005*\"peopl\" + 0.005*\"moral\" + 0.005*\"us\" + 0.005*\"chip\" + 0.005*\"know\"\n", + "2018-08-28 13:32:34,667 : INFO : topic #9 (0.100): 0.008*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.006*\"wire\" + 0.006*\"us\" + 0.006*\"engin\" + 0.005*\"like\" + 0.005*\"work\" + 0.005*\"nntp\" + 0.005*\"host\"\n", + "2018-08-28 13:32:34,669 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.012*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.007*\"program\" + 0.007*\"run\" + 0.007*\"problem\" + 0.007*\"version\" + 0.006*\"color\" + 0.006*\"set\"\n", + "2018-08-28 13:32:34,671 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.013*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.008*\"player\" + 0.007*\"win\" + 0.006*\"univers\" + 0.006*\"new\" + 0.006*\"articl\" + 0.006*\"hockei\"\n", + "2018-08-28 13:32:34,672 : INFO : topic #7 (0.100): 0.269*\"max\" + 0.022*\"giz\" + 0.022*\"bhj\" + 0.009*\"sa\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.007*\"ahl\" + 0.007*\"cec\" + 0.006*\"biz\" + 0.005*\"nist\"\n", + "2018-08-28 13:32:34,674 : INFO : topic diff=0.091465, rho=0.258199\n", + "2018-08-28 13:32:34,675 : INFO : PROGRESS: pass 4, at document #2000/10000\n", + "2018-08-28 13:32:35,440 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:35,466 : INFO : topic #3 (0.100): 0.018*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"think\" + 0.006*\"time\" + 0.006*\"good\" + 0.005*\"look\" + 0.005*\"peopl\"\n", + "2018-08-28 13:32:35,468 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.006*\"wire\" + 0.005*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\"\n", + "2018-08-28 13:32:35,470 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.013*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.009*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.006*\"new\" + 0.006*\"season\"\n", + "2018-08-28 13:32:35,471 : INFO : topic #7 (0.100): 0.248*\"max\" + 0.028*\"bhj\" + 0.028*\"giz\" + 0.009*\"sa\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.007*\"bxn\" + 0.006*\"cec\" + 0.006*\"chz\" + 0.005*\"marc\"\n", + "2018-08-28 13:32:35,473 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.012*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"version\" + 0.007*\"run\" + 0.007*\"do\" + 0.007*\"problem\" + 0.005*\"set\"\n", + "2018-08-28 13:32:35,475 : INFO : topic diff=0.081521, rho=0.258199\n", + "2018-08-28 13:32:35,476 : INFO : PROGRESS: pass 4, at document #3000/10000\n", + "2018-08-28 13:32:36,168 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:36,192 : INFO : topic #7 (0.100): 0.236*\"max\" + 0.025*\"bhj\" + 0.024*\"giz\" + 0.010*\"sa\" + 0.009*\"bxn\" + 0.008*\"qax\" + 0.007*\"adob\" + 0.006*\"convex\" + 0.006*\"marc\" + 0.005*\"cec\"\n", + "2018-08-28 13:32:36,195 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.012*\"univers\" + 0.012*\"host\" + 0.011*\"nntp\" + 0.011*\"card\" + 0.009*\"scsi\" + 0.008*\"articl\" + 0.008*\"disk\" + 0.007*\"new\" + 0.007*\"control\"\n", + "2018-08-28 13:32:36,197 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.010*\"space\" + 0.008*\"nasa\" + 0.007*\"new\" + 0.007*\"access\" + 0.007*\"mail\" + 0.006*\"inform\" + 0.006*\"gov\" + 0.006*\"program\" + 0.005*\"data\"\n", + "2018-08-28 13:32:36,199 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"version\" + 0.007*\"run\" + 0.007*\"problem\" + 0.006*\"do\" + 0.005*\"set\"\n", + "2018-08-28 13:32:36,200 : INFO : topic #3 (0.100): 0.018*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"good\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"look\"\n", + "2018-08-28 13:32:36,201 : INFO : topic diff=0.075270, rho=0.258199\n", + "2018-08-28 13:32:36,203 : INFO : PROGRESS: pass 4, at document #4000/10000\n", + "2018-08-28 13:32:37,108 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:37,131 : INFO : topic #7 (0.100): 0.216*\"max\" + 0.025*\"bhj\" + 0.022*\"giz\" + 0.011*\"sa\" + 0.008*\"convex\" + 0.007*\"bxn\" + 0.007*\"adob\" + 0.007*\"qax\" + 0.005*\"biz\" + 0.005*\"ahl\"\n", + "2018-08-28 13:32:37,134 : INFO : topic #0 (0.100): 0.010*\"space\" + 0.010*\"com\" + 0.007*\"new\" + 0.007*\"nasa\" + 0.007*\"mail\" + 0.007*\"program\" + 0.006*\"inform\" + 0.006*\"access\" + 0.006*\"gov\" + 0.006*\"anonym\"\n", + "2018-08-28 13:32:37,137 : INFO : topic #4 (0.100): 0.019*\"drive\" + 0.012*\"univers\" + 0.012*\"host\" + 0.011*\"nntp\" + 0.010*\"card\" + 0.010*\"scsi\" + 0.009*\"articl\" + 0.007*\"new\" + 0.007*\"disk\" + 0.006*\"control\"\n", + "2018-08-28 13:32:37,144 : INFO : topic #6 (0.100): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.006*\"said\" + 0.005*\"studi\" + 0.005*\"medic\" + 0.005*\"year\" + 0.005*\"food\" + 0.005*\"russian\" + 0.004*\"turkei\"\n", + "2018-08-28 13:32:37,149 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"gun\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"govern\" + 0.004*\"com\"\n", + "2018-08-28 13:32:37,151 : INFO : topic diff=0.096280, rho=0.258199\n", + "2018-08-28 13:32:37,152 : INFO : PROGRESS: pass 4, at document #5000/10000\n", + "2018-08-28 13:32:38,271 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:38,308 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"moral\" + 0.005*\"god\" + 0.005*\"exist\" + 0.005*\"mean\"\n", + "2018-08-28 13:32:38,311 : INFO : topic #0 (0.100): 0.010*\"space\" + 0.009*\"com\" + 0.008*\"program\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.007*\"mail\" + 0.006*\"inform\" + 0.006*\"access\" + 0.006*\"gov\" + 0.006*\"anonym\"\n", + "2018-08-28 13:32:38,320 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.012*\"univers\" + 0.012*\"host\" + 0.011*\"nntp\" + 0.011*\"scsi\" + 0.010*\"card\" + 0.009*\"articl\" + 0.007*\"new\" + 0.007*\"mac\" + 0.006*\"disk\"\n", + "2018-08-28 13:32:38,323 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.006*\"gun\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"govern\" + 0.004*\"christian\"\n", + "2018-08-28 13:32:38,332 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.014*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.006*\"run\" + 0.006*\"version\" + 0.006*\"problem\" + 0.006*\"set\" + 0.005*\"graphic\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-28 13:32:38,333 : INFO : topic diff=0.115265, rho=0.258199\n", + "2018-08-28 13:32:38,337 : INFO : PROGRESS: pass 4, at document #6000/10000\n", + "2018-08-28 13:32:39,400 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:39,432 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.009*\"space\" + 0.008*\"mail\" + 0.007*\"program\" + 0.007*\"new\" + 0.007*\"nasa\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"gov\" + 0.006*\"list\"\n", + "2018-08-28 13:32:39,434 : INFO : topic #8 (0.100): 0.013*\"kei\" + 0.007*\"encrypt\" + 0.006*\"exist\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"chip\" + 0.005*\"peopl\" + 0.005*\"secur\" + 0.005*\"us\" + 0.005*\"question\"\n", + "2018-08-28 13:32:39,436 : INFO : topic #3 (0.100): 0.019*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.006*\"know\" + 0.006*\"good\" + 0.006*\"time\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"look\"\n", + "2018-08-28 13:32:39,440 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.012*\"univers\" + 0.011*\"scsi\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"card\" + 0.009*\"articl\" + 0.007*\"mac\" + 0.007*\"new\" + 0.007*\"disk\"\n", + "2018-08-28 13:32:39,444 : INFO : topic #7 (0.100): 0.307*\"max\" + 0.022*\"giz\" + 0.019*\"bhj\" + 0.008*\"sa\" + 0.008*\"bxn\" + 0.007*\"qax\" + 0.006*\"adob\" + 0.005*\"marc\" + 0.005*\"chz\" + 0.004*\"nui\"\n", + "2018-08-28 13:32:39,446 : INFO : topic diff=0.090009, rho=0.258199\n", + "2018-08-28 13:32:39,447 : INFO : PROGRESS: pass 4, at document #7000/10000\n", + "2018-08-28 13:32:40,586 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:40,628 : INFO : topic #1 (0.100): 0.017*\"game\" + 0.012*\"team\" + 0.011*\"plai\" + 0.010*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"season\"\n", + "2018-08-28 13:32:40,630 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n", + "2018-08-28 13:32:40,633 : INFO : topic #7 (0.100): 0.268*\"max\" + 0.019*\"giz\" + 0.017*\"bhj\" + 0.011*\"sa\" + 0.007*\"adob\" + 0.007*\"bxn\" + 0.006*\"convex\" + 0.006*\"ahl\" + 0.006*\"qax\" + 0.006*\"sdsu\"\n", + "2018-08-28 13:32:40,635 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"gun\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"articl\" + 0.005*\"law\" + 0.005*\"believ\" + 0.004*\"christian\"\n", + "2018-08-28 13:32:40,638 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.013*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.010*\"scsi\" + 0.010*\"card\" + 0.009*\"articl\" + 0.007*\"mac\" + 0.007*\"new\" + 0.007*\"appl\"\n", + "2018-08-28 13:32:40,641 : INFO : topic diff=0.087850, rho=0.258199\n", + "2018-08-28 13:32:40,643 : INFO : PROGRESS: pass 4, at document #8000/10000\n", + "2018-08-28 13:32:41,972 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:42,015 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.009*\"space\" + 0.007*\"inform\" + 0.007*\"program\" + 0.007*\"mail\" + 0.007*\"new\" + 0.007*\"nasa\" + 0.007*\"access\" + 0.006*\"data\" + 0.006*\"softwar\"\n", + "2018-08-28 13:32:42,023 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"god\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"secur\" + 0.005*\"clipper\"\n", + "2018-08-28 13:32:42,029 : INFO : topic #7 (0.100): 0.227*\"max\" + 0.016*\"giz\" + 0.014*\"bhj\" + 0.013*\"sa\" + 0.008*\"adob\" + 0.007*\"convex\" + 0.007*\"sdsu\" + 0.006*\"bxn\" + 0.005*\"ahl\" + 0.005*\"cec\"\n", + "2018-08-28 13:32:42,034 : INFO : topic #9 (0.100): 0.010*\"univers\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.007*\"power\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n", + "2018-08-28 13:32:42,037 : INFO : topic #4 (0.100): 0.021*\"drive\" + 0.012*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.011*\"scsi\" + 0.010*\"card\" + 0.009*\"disk\" + 0.009*\"mac\" + 0.008*\"articl\" + 0.007*\"control\"\n", + "2018-08-28 13:32:42,039 : INFO : topic diff=0.085266, rho=0.258199\n", + "2018-08-28 13:32:42,049 : INFO : PROGRESS: pass 4, at document #9000/10000\n", + "2018-08-28 13:32:42,864 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:42,890 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.013*\"team\" + 0.010*\"plai\" + 0.010*\"year\" + 0.009*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"season\"\n", + "2018-08-28 13:32:42,892 : INFO : topic #3 (0.100): 0.019*\"com\" + 0.010*\"articl\" + 0.010*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"good\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:42,895 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.009*\"space\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.007*\"mail\" + 0.007*\"inform\" + 0.007*\"access\" + 0.007*\"program\" + 0.006*\"data\" + 0.006*\"gov\"\n", + "2018-08-28 13:32:42,897 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.008*\"encrypt\" + 0.006*\"exist\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"clipper\" + 0.005*\"mean\"\n", + "2018-08-28 13:32:42,899 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.006*\"power\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n", + "2018-08-28 13:32:42,902 : INFO : topic diff=0.095403, rho=0.258199\n", + "2018-08-28 13:32:44,533 : INFO : -8.061 per-word bound, 267.1 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n", + "2018-08-28 13:32:44,534 : INFO : PROGRESS: pass 4, at document #10000/10000\n", + "2018-08-28 13:32:45,311 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", + "2018-08-28 13:32:45,341 : INFO : topic #4 (0.100): 0.016*\"drive\" + 0.012*\"univers\" + 0.012*\"card\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.008*\"disk\" + 0.007*\"mac\" + 0.007*\"new\"\n", + "2018-08-28 13:32:45,343 : INFO : topic #9 (0.100): 0.009*\"wire\" + 0.009*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.006*\"us\" + 0.006*\"engin\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"ground\" + 0.005*\"nntp\"\n", + "2018-08-28 13:32:45,347 : INFO : topic #3 (0.100): 0.019*\"com\" + 0.010*\"articl\" + 0.010*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"good\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"look\" + 0.005*\"thing\"\n", + "2018-08-28 13:32:45,349 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.007*\"god\" + 0.006*\"think\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"gun\" + 0.005*\"law\" + 0.004*\"know\" + 0.004*\"believ\"\n", + "2018-08-28 13:32:45,356 : INFO : topic #7 (0.100): 0.274*\"max\" + 0.020*\"bhj\" + 0.019*\"giz\" + 0.010*\"sa\" + 0.008*\"cec\" + 0.008*\"ahl\" + 0.007*\"edm\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.006*\"sdsu\"\n", + "2018-08-28 13:32:45,358 : INFO : topic diff=0.086883, rho=0.258199\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 18.8 s, sys: 158 ms, total: 19 s\n", - "Wall time: 19.1 s\n" + "CPU times: user 1min 9s, sys: 20 s, total: 1min 29s\n", + "Wall time: 1min 7s\n" ] } ], @@ -389,25 +703,32 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:15:29,891 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-08-28 13:15:29,927 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n", - "2018-08-28 13:15:29,964 : INFO : CorpusAccumulator accumulated stats from 3000 documents\n" + "2018-08-28 13:32:45,477 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-08-28 13:32:45,514 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n", + "2018-08-28 13:32:45,565 : INFO : CorpusAccumulator accumulated stats from 3000 documents\n", + "2018-08-28 13:32:45,630 : INFO : CorpusAccumulator accumulated stats from 4000 documents\n", + "2018-08-28 13:32:45,672 : INFO : CorpusAccumulator accumulated stats from 5000 documents\n", + "2018-08-28 13:32:45,719 : INFO : CorpusAccumulator accumulated stats from 6000 documents\n", + "2018-08-28 13:32:45,764 : INFO : CorpusAccumulator accumulated stats from 7000 documents\n", + "2018-08-28 13:32:45,826 : INFO : CorpusAccumulator accumulated stats from 8000 documents\n", + "2018-08-28 13:32:45,868 : INFO : CorpusAccumulator accumulated stats from 9000 documents\n", + "2018-08-28 13:32:45,915 : INFO : CorpusAccumulator accumulated stats from 10000 documents\n" ] }, { "data": { "text/plain": [ - "-1.8015688322676469" + "-2.5801225246943575" ] }, - "execution_count": 10, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -424,25 +745,32 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:15:30,771 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-08-28 13:15:30,800 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n", - "2018-08-28 13:15:30,831 : INFO : CorpusAccumulator accumulated stats from 3000 documents\n" + "2018-08-28 13:32:46,119 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-08-28 13:32:46,154 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n", + "2018-08-28 13:32:46,215 : INFO : CorpusAccumulator accumulated stats from 3000 documents\n", + "2018-08-28 13:32:46,280 : INFO : CorpusAccumulator accumulated stats from 4000 documents\n", + "2018-08-28 13:32:46,317 : INFO : CorpusAccumulator accumulated stats from 5000 documents\n", + "2018-08-28 13:32:46,367 : INFO : CorpusAccumulator accumulated stats from 6000 documents\n", + "2018-08-28 13:32:46,424 : INFO : CorpusAccumulator accumulated stats from 7000 documents\n", + "2018-08-28 13:32:46,469 : INFO : CorpusAccumulator accumulated stats from 8000 documents\n", + "2018-08-28 13:32:46,532 : INFO : CorpusAccumulator accumulated stats from 9000 documents\n", + "2018-08-28 13:32:46,590 : INFO : CorpusAccumulator accumulated stats from 10000 documents\n" ] }, { "data": { "text/plain": [ - "-1.7170102353622116" + "-2.9703064682982916" ] }, - "execution_count": 11, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -466,7 +794,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -485,16 +813,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2563.118564220738" + "4440.337351539119" ] }, - "execution_count": 13, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -505,16 +833,16 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10311.521089623771" + "18178.56830910186" ] }, - "execution_count": 14, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -525,25 +853,35 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.026*\"anonym\" + 0.020*\"internet\" + 0.015*\"privaci\" + 0.013*\"us\" + 0.013*\"user\" + 0.013*\"email\" + 0.012*\"address\" + 0.011*\"file\" + 0.011*\"inform\" + 0.011*\"mail\"'),\n", + " '0.681*\"max\" + 0.041*\"bhj\" + 0.038*\"giz\" + 0.017*\"qax\" + 0.015*\"biz\" + 0.014*\"nrhj\" + 0.007*\"gizw\" + 0.006*\"vfq\" + 0.006*\"pmfq\" + 0.006*\"ma\"'),\n", " (1,\n", - " '0.024*\"file\" + 0.019*\"program\" + 0.014*\"avail\" + 0.013*\"includ\" + 0.012*\"version\" + 0.011*\"output\" + 0.009*\"ftp\" + 0.009*\"sourc\" + 0.009*\"packag\" + 0.008*\"sun\"'),\n", + " '0.021*\"wire\" + 0.018*\"bit\" + 0.012*\"color\" + 0.012*\"imag\" + 0.010*\"mac\" + 0.009*\"us\" + 0.008*\"file\" + 0.008*\"jpeg\" + 0.008*\"ground\" + 0.006*\"circuit\"'),\n", " (2,\n", - " '0.014*\"peopl\" + 0.011*\"armenian\" + 0.010*\"turkish\" + 0.010*\"jew\" + 0.009*\"said\" + 0.008*\"know\" + 0.006*\"dai\" + 0.006*\"turkei\" + 0.005*\"time\" + 0.005*\"think\"'),\n", + " '0.065*\"stephanopoulo\" + 0.031*\"presid\" + 0.017*\"know\" + 0.017*\"go\" + 0.014*\"think\" + 0.012*\"said\" + 0.011*\"work\" + 0.010*\"group\" + 0.010*\"packag\" + 0.010*\"consid\"'),\n", " (3,\n", - " '0.775*\"max\" + 0.063*\"giz\" + 0.020*\"wtm\" + 0.006*\"mei\" + 0.006*\"usd\" + 0.006*\"salmon\" + 0.006*\"pwiseman\" + 0.006*\"cliff\" + 0.006*\"ma\" + 0.006*\"end\"'),\n", + " '0.017*\"stephanopoulo\" + 0.010*\"wire\" + 0.010*\"think\" + 0.009*\"know\" + 0.008*\"presid\" + 0.007*\"god\" + 0.007*\"peopl\" + 0.006*\"said\" + 0.005*\"believ\" + 0.005*\"time\"'),\n", " (4,\n", - " '0.009*\"com\" + 0.006*\"articl\" + 0.005*\"space\" + 0.005*\"new\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"good\" + 0.004*\"problem\" + 0.004*\"think\" + 0.004*\"univers\"')]" + " '0.022*\"know\" + 0.014*\"armenian\" + 0.014*\"stephanopoulo\" + 0.013*\"said\" + 0.011*\"peopl\" + 0.010*\"go\" + 0.008*\"saw\" + 0.008*\"time\" + 0.008*\"sumgait\" + 0.007*\"work\"'),\n", + " (5,\n", + " '0.018*\"wire\" + 0.012*\"xfree\" + 0.010*\"server\" + 0.010*\"support\" + 0.009*\"window\" + 0.009*\"us\" + 0.008*\"file\" + 0.008*\"run\" + 0.007*\"com\" + 0.007*\"svr\"'),\n", + " (6,\n", + " '0.030*\"space\" + 0.012*\"nasa\" + 0.011*\"orbit\" + 0.010*\"mission\" + 0.010*\"probe\" + 0.007*\"planetari\" + 0.006*\"lunar\" + 0.006*\"mar\" + 0.006*\"data\" + 0.005*\"gov\"'),\n", + " (7,\n", + " '0.022*\"wire\" + 0.017*\"encrypt\" + 0.015*\"kei\" + 0.012*\"us\" + 0.012*\"devic\" + 0.012*\"chip\" + 0.010*\"technolog\" + 0.010*\"protect\" + 0.008*\"law\" + 0.008*\"ground\"'),\n", + " (8,\n", + " '0.013*\"wire\" + 0.012*\"hockei\" + 0.010*\"team\" + 0.010*\"new\" + 0.009*\"leagu\" + 0.008*\"game\" + 0.008*\"nhl\" + 0.007*\"season\" + 0.005*\"list\" + 0.005*\"ground\"'),\n", + " (9,\n", + " '0.009*\"gun\" + 0.009*\"new\" + 0.008*\"state\" + 0.007*\"hockei\" + 0.005*\"israel\" + 0.005*\"leagu\" + 0.005*\"year\" + 0.005*\"team\" + 0.005*\"govern\" + 0.004*\"american\"')]" ] }, - "execution_count": 15, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -554,25 +892,35 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.012*\"max\" + 0.011*\"window\" + 0.009*\"file\" + 0.008*\"us\" + 0.007*\"kei\" + 0.007*\"program\" + 0.006*\"com\" + 0.005*\"univers\" + 0.004*\"mail\" + 0.004*\"version\"'),\n", + " '0.010*\"space\" + 0.010*\"com\" + 0.008*\"new\" + 0.007*\"nasa\" + 0.007*\"inform\" + 0.007*\"mail\" + 0.007*\"gov\" + 0.006*\"program\" + 0.006*\"access\" + 0.006*\"data\"'),\n", " (1,\n", - " '0.017*\"com\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"articl\" + 0.007*\"univers\" + 0.006*\"drive\" + 0.005*\"know\" + 0.005*\"card\" + 0.005*\"like\" + 0.005*\"us\"'),\n", + " '0.015*\"game\" + 0.014*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.009*\"player\" + 0.008*\"win\" + 0.007*\"hockei\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"season\"'),\n", " (2,\n", - " '0.012*\"god\" + 0.009*\"christian\" + 0.007*\"game\" + 0.007*\"think\" + 0.006*\"articl\" + 0.006*\"plai\" + 0.006*\"believ\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"year\"'),\n", + " '0.018*\"window\" + 0.013*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.007*\"version\" + 0.006*\"problem\" + 0.006*\"color\" + 0.006*\"set\"'),\n", " (3,\n", - " '0.014*\"com\" + 0.011*\"articl\" + 0.007*\"like\" + 0.006*\"car\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"thing\"'),\n", + " '0.019*\"com\" + 0.010*\"articl\" + 0.010*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"good\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"look\" + 0.005*\"thing\"'),\n", " (4,\n", - " '0.011*\"peopl\" + 0.006*\"govern\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"armenian\" + 0.005*\"jew\" + 0.004*\"law\" + 0.004*\"think\" + 0.004*\"articl\" + 0.004*\"know\"')]" + " '0.016*\"drive\" + 0.012*\"univers\" + 0.012*\"card\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.008*\"disk\" + 0.007*\"mac\" + 0.007*\"new\"'),\n", + " (5,\n", + " '0.009*\"peopl\" + 0.007*\"god\" + 0.006*\"think\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"gun\" + 0.005*\"law\" + 0.004*\"know\" + 0.004*\"believ\"'),\n", + " (6,\n", + " '0.015*\"armenian\" + 0.008*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.005*\"studi\" + 0.005*\"food\" + 0.005*\"greek\" + 0.005*\"year\" + 0.004*\"armenia\" + 0.004*\"medic\"'),\n", + " (7,\n", + " '0.274*\"max\" + 0.020*\"bhj\" + 0.019*\"giz\" + 0.010*\"sa\" + 0.008*\"cec\" + 0.008*\"ahl\" + 0.007*\"edm\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.006*\"sdsu\"'),\n", + " (8,\n", + " '0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"chip\" + 0.005*\"us\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"clipper\" + 0.005*\"like\"'),\n", + " (9,\n", + " '0.009*\"wire\" + 0.009*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.006*\"us\" + 0.006*\"engin\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"ground\" + 0.005*\"nntp\"')]" ] }, - "execution_count": 16, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -583,21 +931,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, "outputs": [], "source": [ - "# W = gensim_nmf.get_topics().T\n", - "# H = np.hstack(np.array(gensim_nmf[bow])[:, 1:] for bow in corpus)" + "W = gensim_nmf.get_topics().T\n", + "H = np.zeros((W.shape[1], len(corpus)))\n", + "for bow_id, bow in enumerate(corpus):\n", + " for topic_id, proba in gensim_nmf[bow]:\n", + " H[topic_id, bow_id] = proba" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "16.34436509756677" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" + "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, { From 3a03ff9b0accd7cc2f6116b2c4479a9db023effb Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 14:41:20 +0300 Subject: [PATCH 038/144] Remove redundant arg --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index ca3269f265..34bbcf21b3 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -80,7 +80,7 @@ def __init__( self._R = None if corpus is not None: - self.update(corpus, chunksize) + self.update(corpus) @property def A(self): From 70619e127768a93b982b0c106da873214e45afc2 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 14:41:46 +0300 Subject: [PATCH 039/144] Add Olivietti faces --- docs/notebooks/nmf_benchmark.ipynb | 10458 +++++++++++++++++++++++++++ 1 file changed, 10458 insertions(+) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index acd58df902..06c4b7dd2a 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -962,6 +962,10464 @@ "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Faces dataset decompositions" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[(0, 0.6694215),\n", + " (1, 0.6363636),\n", + " (2, 0.6487603),\n", + " (3, 0.6859504),\n", + " (4, 0.7107438),\n", + " (5, 0.76033056),\n", + " (6, 0.76859504),\n", + " (7, 0.8057851),\n", + " (8, 0.7933884),\n", + " (9, 0.80991733),\n", + " (10, 0.8057851),\n", + " (11, 0.79752064),\n", + " (12, 0.7892562),\n", + " (13, 0.79752064),\n", + " (14, 0.7933884),\n", + " (15, 0.78099173),\n", + " (16, 0.78512394),\n", + " (17, 0.79752064),\n", + " (18, 0.79752064),\n", + " (19, 0.79752064),\n", + " (20, 0.79752064),\n", + " (21, 0.8016529),\n", + " (22, 0.79752064),\n", + " (23, 0.8016529),\n", + " (24, 0.7768595),\n", + " (25, 0.78512394),\n", + " (26, 0.7933884),\n", + " (27, 0.77272725),\n", + " (28, 0.7768595),\n", + " (29, 0.7892562),\n", + " (30, 0.79752064),\n", + " (31, 0.7892562),\n", + " (32, 0.7892562),\n", + " (33, 0.7768595),\n", + " (34, 0.76033056),\n", + " (35, 0.75619835),\n", + " (36, 0.77272725),\n", + " (37, 0.76859504),\n", + " (38, 0.76859504),\n", + " (39, 0.75206614),\n", + " (40, 0.72727275),\n", + " (41, 0.72727275),\n", + " (42, 0.6983471),\n", + " (43, 0.6818182),\n", + " (44, 0.6694215),\n", + " (45, 0.6446281),\n", + " (46, 0.6363636),\n", + " (47, 0.6198347),\n", + " (48, 0.60330576),\n", + " (49, 0.6198347),\n", + " (50, 0.5785124),\n", + " (51, 0.59090906),\n", + " (52, 0.5785124),\n", + " (53, 0.57438016),\n", + " (54, 0.54545456),\n", + " (55, 0.5247934),\n", + " (56, 0.4876033),\n", + " (57, 0.42975205),\n", + " (58, 0.39256197),\n", + " (59, 0.36363637),\n", + " (60, 0.2603306),\n", + " (61, 0.14049587),\n", + " (62, 0.2603306),\n", + " (63, 0.30165288),\n", + " (64, 0.661157),\n", + " (65, 0.62396693),\n", + " (66, 0.6652893),\n", + " (67, 0.6983471),\n", + " (68, 0.73966944),\n", + " (69, 0.76859504),\n", + " (70, 0.78099173),\n", + " (71, 0.79752064),\n", + " (72, 0.8057851),\n", + " (73, 0.80991733),\n", + " (74, 0.80991733),\n", + " (75, 0.80991733),\n", + " (76, 0.8057851),\n", + " (77, 0.7933884),\n", + " (78, 0.7933884),\n", + " (79, 0.7768595),\n", + " (80, 0.79752064),\n", + " (81, 0.8057851),\n", + " (82, 0.8140496),\n", + " (83, 0.822314),\n", + " (84, 0.8140496),\n", + " (85, 0.8016529),\n", + " (86, 0.80991733),\n", + " (87, 0.7892562),\n", + " (88, 0.79752064),\n", + " (89, 0.79752064),\n", + " (90, 0.8016529),\n", + " (91, 0.78099173),\n", + " (92, 0.77272725),\n", + " (93, 0.7768595),\n", + " (94, 0.7933884),\n", + " (95, 0.7892562),\n", + " (96, 0.78512394),\n", + " (97, 0.7768595),\n", + " (98, 0.7892562),\n", + " (99, 0.76033056),\n", + " (100, 0.75619835),\n", + " (101, 0.7644628),\n", + " (102, 0.7644628),\n", + " (103, 0.75619835),\n", + " (104, 0.74793386),\n", + " (105, 0.73966944),\n", + " (106, 0.71900827),\n", + " (107, 0.7107438),\n", + " (108, 0.6859504),\n", + " (109, 0.6652893),\n", + " (110, 0.6363636),\n", + " (111, 0.62396693),\n", + " (112, 0.60330576),\n", + " (113, 0.58264464),\n", + " (114, 0.59917355),\n", + " (115, 0.59917355),\n", + " (116, 0.58264464),\n", + " (117, 0.57438016),\n", + " (118, 0.57024795),\n", + " (119, 0.5371901),\n", + " (120, 0.5082645),\n", + " (121, 0.46280992),\n", + " (122, 0.39256197),\n", + " (123, 0.38842976),\n", + " (124, 0.29752067),\n", + " (125, 0.17355372),\n", + " (126, 0.1570248),\n", + " (127, 0.29752067),\n", + " (128, 0.6280992),\n", + " (129, 0.6570248),\n", + " (130, 0.6446281),\n", + " (131, 0.7107438),\n", + " (132, 0.74793386),\n", + " (133, 0.77272725),\n", + " (134, 0.8016529),\n", + " (135, 0.79752064),\n", + " (136, 0.8057851),\n", + " (137, 0.80991733),\n", + " (138, 0.8057851),\n", + " (139, 0.8016529),\n", + " (140, 0.79752064),\n", + " (141, 0.8016529),\n", + " (142, 0.79752064),\n", + " (143, 0.8016529),\n", + " (144, 0.8140496),\n", + " (145, 0.8264463),\n", + " (146, 0.8264463),\n", + " (147, 0.8347107),\n", + " (148, 0.822314),\n", + " (149, 0.8057851),\n", + " (150, 0.8264463),\n", + " (151, 0.8057851),\n", + " (152, 0.8057851),\n", + " (153, 0.8057851),\n", + " (154, 0.79752064),\n", + " (155, 0.7892562),\n", + " (156, 0.76033056),\n", + " (157, 0.7892562),\n", + " (158, 0.7892562),\n", + " (159, 0.7768595),\n", + " (160, 0.77272725),\n", + " (161, 0.78512394),\n", + " (162, 0.78512394),\n", + " (163, 0.8016529),\n", + " (164, 0.75619835),\n", + " (165, 0.7644628),\n", + " (166, 0.76859504),\n", + " (167, 0.76033056),\n", + " (168, 0.76033056),\n", + " (169, 0.75619835),\n", + " (170, 0.71900827),\n", + " (171, 0.73966944),\n", + " (172, 0.7107438),\n", + " (173, 0.6942149),\n", + " (174, 0.6652893),\n", + " (175, 0.6528926),\n", + " (176, 0.62396693),\n", + " (177, 0.5785124),\n", + " (178, 0.57024795),\n", + " (179, 0.57438016),\n", + " (180, 0.59917355),\n", + " (181, 0.59090906),\n", + " (182, 0.57024795),\n", + " (183, 0.5495868),\n", + " (184, 0.5165289),\n", + " (185, 0.4752066),\n", + " (186, 0.42975205),\n", + " (187, 0.38016528),\n", + " (188, 0.3553719),\n", + " (189, 0.22727273),\n", + " (190, 0.12809917),\n", + " (191, 0.22727273),\n", + " (192, 0.59917355),\n", + " (193, 0.6818182),\n", + " (194, 0.6404959),\n", + " (195, 0.71487606),\n", + " (196, 0.75619835),\n", + " (197, 0.7768595),\n", + " (198, 0.8016529),\n", + " (199, 0.8016529),\n", + " (200, 0.8057851),\n", + " (201, 0.8140496),\n", + " (202, 0.8016529),\n", + " (203, 0.8016529),\n", + " (204, 0.8016529),\n", + " (205, 0.8140496),\n", + " (206, 0.8140496),\n", + " (207, 0.8181818),\n", + " (208, 0.8264463),\n", + " (209, 0.8305785),\n", + " (210, 0.8347107),\n", + " (211, 0.8347107),\n", + " (212, 0.838843),\n", + " (213, 0.8305785),\n", + " (214, 0.8347107),\n", + " (215, 0.8305785),\n", + " (216, 0.822314),\n", + " (217, 0.8181818),\n", + " (218, 0.8181818),\n", + " (219, 0.79752064),\n", + " (220, 0.7644628),\n", + " (221, 0.79752064),\n", + " (222, 0.79752064),\n", + " (223, 0.77272725),\n", + " (224, 0.76033056),\n", + " (225, 0.78512394),\n", + " (226, 0.7892562),\n", + " (227, 0.8140496),\n", + " (228, 0.78512394),\n", + " (229, 0.78512394),\n", + " (230, 0.78512394),\n", + " (231, 0.78512394),\n", + " (232, 0.7768595),\n", + " (233, 0.78099173),\n", + " (234, 0.73966944),\n", + " (235, 0.7355372),\n", + " (236, 0.73140496),\n", + " (237, 0.70247936),\n", + " (238, 0.6859504),\n", + " (239, 0.6859504),\n", + " (240, 0.6404959),\n", + " (241, 0.61157024),\n", + " (242, 0.59090906),\n", + " (243, 0.5495868),\n", + " (244, 0.5785124),\n", + " (245, 0.59090906),\n", + " (246, 0.58677685),\n", + " (247, 0.56198347),\n", + " (248, 0.5247934),\n", + " (249, 0.48347107),\n", + " (250, 0.44214877),\n", + " (251, 0.38429752),\n", + " (252, 0.37603307),\n", + " (253, 0.30991736),\n", + " (254, 0.1322314),\n", + " (255, 0.18595041),\n", + " (256, 0.59917355),\n", + " (257, 0.6818182),\n", + " (258, 0.6652893),\n", + " (259, 0.71900827),\n", + " (260, 0.76033056),\n", + " (261, 0.78099173),\n", + " (262, 0.7933884),\n", + " (263, 0.8181818),\n", + " (264, 0.8140496),\n", + " (265, 0.80991733),\n", + " (266, 0.8016529),\n", + " (267, 0.80991733),\n", + " (268, 0.8140496),\n", + " (269, 0.8181818),\n", + " (270, 0.822314),\n", + " (271, 0.8140496),\n", + " (272, 0.8181818),\n", + " (273, 0.8305785),\n", + " (274, 0.838843),\n", + " (275, 0.8429752),\n", + " (276, 0.8347107),\n", + " (277, 0.8471074),\n", + " (278, 0.8305785),\n", + " (279, 0.8347107),\n", + " (280, 0.8347107),\n", + " (281, 0.8347107),\n", + " (282, 0.8305785),\n", + " (283, 0.8181818),\n", + " (284, 0.7892562),\n", + " (285, 0.8057851),\n", + " (286, 0.8140496),\n", + " (287, 0.78099173),\n", + " (288, 0.7644628),\n", + " (289, 0.78512394),\n", + " (290, 0.80991733),\n", + " (291, 0.8264463),\n", + " (292, 0.80991733),\n", + " (293, 0.8016529),\n", + " (294, 0.8016529),\n", + " (295, 0.8057851),\n", + " (296, 0.7933884),\n", + " (297, 0.7933884),\n", + " (298, 0.75206614),\n", + " (299, 0.75619835),\n", + " (300, 0.7355372),\n", + " (301, 0.7107438),\n", + " (302, 0.6942149),\n", + " (303, 0.677686),\n", + " (304, 0.6446281),\n", + " (305, 0.62396693),\n", + " (306, 0.61570245),\n", + " (307, 0.59090906),\n", + " (308, 0.5785124),\n", + " (309, 0.5785124),\n", + " (310, 0.58264464),\n", + " (311, 0.57438016),\n", + " (312, 0.5123967),\n", + " (313, 0.4876033),\n", + " (314, 0.44214877),\n", + " (315, 0.38842976),\n", + " (316, 0.3677686),\n", + " (317, 0.37603307),\n", + " (318, 0.21900827),\n", + " (319, 0.13636364),\n", + " (320, 0.59090906),\n", + " (321, 0.69008267),\n", + " (322, 0.6818182),\n", + " (323, 0.72727275),\n", + " (324, 0.7644628),\n", + " (325, 0.78512394),\n", + " (326, 0.8057851),\n", + " (327, 0.80991733),\n", + " (328, 0.8140496),\n", + " (329, 0.8057851),\n", + " (330, 0.8057851),\n", + " (331, 0.8057851),\n", + " (332, 0.79752064),\n", + " (333, 0.7892562),\n", + " (334, 0.8057851),\n", + " (335, 0.8140496),\n", + " (336, 0.8181818),\n", + " (337, 0.8305785),\n", + " (338, 0.8471074),\n", + " (339, 0.8553719),\n", + " (340, 0.8512397),\n", + " (341, 0.8553719),\n", + " (342, 0.8471074),\n", + " (343, 0.8429752),\n", + " (344, 0.8429752),\n", + " (345, 0.8429752),\n", + " (346, 0.838843),\n", + " (347, 0.8264463),\n", + " (348, 0.8181818),\n", + " (349, 0.80991733),\n", + " (350, 0.8347107),\n", + " (351, 0.8057851),\n", + " (352, 0.78099173),\n", + " (353, 0.7933884),\n", + " (354, 0.8057851),\n", + " (355, 0.838843),\n", + " (356, 0.8305785),\n", + " (357, 0.8305785),\n", + " (358, 0.8305785),\n", + " (359, 0.8181818),\n", + " (360, 0.8057851),\n", + " (361, 0.79752064),\n", + " (362, 0.76859504),\n", + " (363, 0.75619835),\n", + " (364, 0.71900827),\n", + " (365, 0.72727275),\n", + " (366, 0.70247936),\n", + " (367, 0.6652893),\n", + " (368, 0.6487603),\n", + " (369, 0.61570245),\n", + " (370, 0.58677685),\n", + " (371, 0.60330576),\n", + " (372, 0.59090906),\n", + " (373, 0.57438016),\n", + " (374, 0.5785124),\n", + " (375, 0.553719),\n", + " (376, 0.5165289),\n", + " (377, 0.47933885),\n", + " (378, 0.45041323),\n", + " (379, 0.39256197),\n", + " (380, 0.3677686),\n", + " (381, 0.3966942),\n", + " (382, 0.35950413),\n", + " (383, 0.09090909),\n", + " (384, 0.58677685),\n", + " (385, 0.6694215),\n", + " (386, 0.70247936),\n", + " (387, 0.73140496),\n", + " (388, 0.7644628),\n", + " (389, 0.7768595),\n", + " (390, 0.8016529),\n", + " (391, 0.79752064),\n", + " (392, 0.8181818),\n", + " (393, 0.8140496),\n", + " (394, 0.7933884),\n", + " (395, 0.7644628),\n", + " (396, 0.74793386),\n", + " (397, 0.7768595),\n", + " (398, 0.8016529),\n", + " (399, 0.8140496),\n", + " (400, 0.8057851),\n", + " (401, 0.8181818),\n", + " (402, 0.8347107),\n", + " (403, 0.8471074),\n", + " (404, 0.8429752),\n", + " (405, 0.8305785),\n", + " (406, 0.8429752),\n", + " (407, 0.8429752),\n", + " (408, 0.8512397),\n", + " (409, 0.8595041),\n", + " (410, 0.8429752),\n", + " (411, 0.822314),\n", + " (412, 0.8305785),\n", + " (413, 0.80991733),\n", + " (414, 0.8553719),\n", + " (415, 0.822314),\n", + " (416, 0.79752064),\n", + " (417, 0.7933884),\n", + " (418, 0.79752064),\n", + " (419, 0.8305785),\n", + " (420, 0.8512397),\n", + " (421, 0.8512397),\n", + " (422, 0.8347107),\n", + " (423, 0.8264463),\n", + " (424, 0.8057851),\n", + " (425, 0.7892562),\n", + " (426, 0.74380165),\n", + " (427, 0.73140496),\n", + " (428, 0.71487606),\n", + " (429, 0.73140496),\n", + " (430, 0.7107438),\n", + " (431, 0.6818182),\n", + " (432, 0.6694215),\n", + " (433, 0.6446281),\n", + " (434, 0.5785124),\n", + " (435, 0.57024795),\n", + " (436, 0.57024795),\n", + " (437, 0.56198347),\n", + " (438, 0.5661157),\n", + " (439, 0.5371901),\n", + " (440, 0.5123967),\n", + " (441, 0.48347107),\n", + " (442, 0.446281),\n", + " (443, 0.3966942),\n", + " (444, 0.37603307),\n", + " (445, 0.38842976),\n", + " (446, 0.3305785),\n", + " (447, 0.12396694),\n", + " (448, 0.607438),\n", + " (449, 0.6528926),\n", + " (450, 0.6983471),\n", + " (451, 0.73966944),\n", + " (452, 0.76859504),\n", + " (453, 0.78099173),\n", + " (454, 0.77272725),\n", + " (455, 0.8181818),\n", + " (456, 0.8057851),\n", + " (457, 0.78099173),\n", + " (458, 0.74793386),\n", + " (459, 0.7355372),\n", + " (460, 0.74793386),\n", + " (461, 0.75619835),\n", + " (462, 0.78512394),\n", + " (463, 0.7933884),\n", + " (464, 0.78512394),\n", + " (465, 0.7892562),\n", + " (466, 0.78099173),\n", + " (467, 0.77272725),\n", + " (468, 0.74793386),\n", + " (469, 0.75206614),\n", + " (470, 0.76859504),\n", + " (471, 0.80991733),\n", + " (472, 0.8305785),\n", + " (473, 0.8512397),\n", + " (474, 0.838843),\n", + " (475, 0.8140496),\n", + " (476, 0.8305785),\n", + " (477, 0.8181818),\n", + " (478, 0.8636364),\n", + " (479, 0.8347107),\n", + " (480, 0.822314),\n", + " (481, 0.80991733),\n", + " (482, 0.7892562),\n", + " (483, 0.8140496),\n", + " (484, 0.8677686),\n", + " (485, 0.8429752),\n", + " (486, 0.822314),\n", + " (487, 0.8181818),\n", + " (488, 0.7892562),\n", + " (489, 0.74380165),\n", + " (490, 0.69008267),\n", + " (491, 0.6570248),\n", + " (492, 0.6487603),\n", + " (493, 0.6446281),\n", + " (494, 0.6446281),\n", + " (495, 0.677686),\n", + " (496, 0.6570248),\n", + " (497, 0.6404959),\n", + " (498, 0.59917355),\n", + " (499, 0.58264464),\n", + " (500, 0.56198347),\n", + " (501, 0.5206612),\n", + " (502, 0.54545456),\n", + " (503, 0.5371901),\n", + " (504, 0.5082645),\n", + " (505, 0.49586776),\n", + " (506, 0.45041323),\n", + " (507, 0.40495867),\n", + " (508, 0.39256197),\n", + " (509, 0.3553719),\n", + " (510, 0.29752067),\n", + " (511, 0.1446281),\n", + " (512, 0.6363636),\n", + " (513, 0.6570248),\n", + " (514, 0.6983471),\n", + " (515, 0.72727275),\n", + " (516, 0.76033056),\n", + " (517, 0.76859504),\n", + " (518, 0.77272725),\n", + " (519, 0.8016529),\n", + " (520, 0.75206614),\n", + " (521, 0.71900827),\n", + " (522, 0.7231405),\n", + " (523, 0.7355372),\n", + " (524, 0.75619835),\n", + " (525, 0.75619835),\n", + " (526, 0.76859504),\n", + " (527, 0.71900827),\n", + " (528, 0.72727275),\n", + " (529, 0.6652893),\n", + " (530, 0.61157024),\n", + " (531, 0.59504133),\n", + " (532, 0.62396693),\n", + " (533, 0.6735537),\n", + " (534, 0.6570248),\n", + " (535, 0.7231405),\n", + " (536, 0.76033056),\n", + " (537, 0.80991733),\n", + " (538, 0.8305785),\n", + " (539, 0.8181818),\n", + " (540, 0.8264463),\n", + " (541, 0.8016529),\n", + " (542, 0.8347107),\n", + " (543, 0.8264463),\n", + " (544, 0.8429752),\n", + " (545, 0.80991733),\n", + " (546, 0.7644628),\n", + " (547, 0.79752064),\n", + " (548, 0.8512397),\n", + " (549, 0.8305785),\n", + " (550, 0.80991733),\n", + " (551, 0.8016529),\n", + " (552, 0.75206614),\n", + " (553, 0.6818182),\n", + " (554, 0.6280992),\n", + " (555, 0.59504133),\n", + " (556, 0.5413223),\n", + " (557, 0.5206612),\n", + " (558, 0.5413223),\n", + " (559, 0.5661157),\n", + " (560, 0.57438016),\n", + " (561, 0.59090906),\n", + " (562, 0.5785124),\n", + " (563, 0.57438016),\n", + " (564, 0.55785125),\n", + " (565, 0.5495868),\n", + " (566, 0.5247934),\n", + " (567, 0.5247934),\n", + " (568, 0.4752066),\n", + " (569, 0.4876033),\n", + " (570, 0.446281),\n", + " (571, 0.4090909),\n", + " (572, 0.40495867),\n", + " (573, 0.37603307),\n", + " (574, 0.2892562),\n", + " (575, 0.1694215),\n", + " (576, 0.6280992),\n", + " (577, 0.6652893),\n", + " (578, 0.6983471),\n", + " (579, 0.71900827),\n", + " (580, 0.75619835),\n", + " (581, 0.7768595),\n", + " (582, 0.75619835),\n", + " (583, 0.75619835),\n", + " (584, 0.73140496),\n", + " (585, 0.72727275),\n", + " (586, 0.74793386),\n", + " (587, 0.74380165),\n", + " (588, 0.75619835),\n", + " (589, 0.73966944),\n", + " (590, 0.71487606),\n", + " (591, 0.62396693),\n", + " (592, 0.59917355),\n", + " (593, 0.5206612),\n", + " (594, 0.5),\n", + " (595, 0.5041322),\n", + " (596, 0.5661157),\n", + " (597, 0.61570245),\n", + " (598, 0.6404959),\n", + " (599, 0.6735537),\n", + " (600, 0.7231405),\n", + " (601, 0.76859504),\n", + " (602, 0.8140496),\n", + " (603, 0.8140496),\n", + " (604, 0.80991733),\n", + " (605, 0.79752064),\n", + " (606, 0.8057851),\n", + " (607, 0.8057851),\n", + " (608, 0.8512397),\n", + " (609, 0.7892562),\n", + " (610, 0.7355372),\n", + " (611, 0.7644628),\n", + " (612, 0.8264463),\n", + " (613, 0.8057851),\n", + " (614, 0.7644628),\n", + " (615, 0.73966944),\n", + " (616, 0.6818182),\n", + " (617, 0.59504133),\n", + " (618, 0.5661157),\n", + " (619, 0.5206612),\n", + " (620, 0.4752066),\n", + " (621, 0.46694216),\n", + " (622, 0.45867768),\n", + " (623, 0.45454547),\n", + " (624, 0.45454547),\n", + " (625, 0.5082645),\n", + " (626, 0.5661157),\n", + " (627, 0.57438016),\n", + " (628, 0.56198347),\n", + " (629, 0.56198347),\n", + " (630, 0.54545456),\n", + " (631, 0.5082645),\n", + " (632, 0.47933885),\n", + " (633, 0.46694216),\n", + " (634, 0.446281),\n", + " (635, 0.41322315),\n", + " (636, 0.3966942),\n", + " (637, 0.3966942),\n", + " (638, 0.2768595),\n", + " (639, 0.1983471),\n", + " (640, 0.6198347),\n", + " (641, 0.661157),\n", + " (642, 0.6942149),\n", + " (643, 0.70247936),\n", + " (644, 0.73966944),\n", + " (645, 0.76859504),\n", + " (646, 0.71487606),\n", + " (647, 0.76859504),\n", + " (648, 0.74793386),\n", + " (649, 0.73966944),\n", + " (650, 0.74380165),\n", + " (651, 0.71900827),\n", + " (652, 0.6983471),\n", + " (653, 0.677686),\n", + " (654, 0.6735537),\n", + " (655, 0.5785124),\n", + " (656, 0.5289256),\n", + " (657, 0.49173555),\n", + " (658, 0.46694216),\n", + " (659, 0.4752066),\n", + " (660, 0.5082645),\n", + " (661, 0.553719),\n", + " (662, 0.5785124),\n", + " (663, 0.6404959),\n", + " (664, 0.6859504),\n", + " (665, 0.71900827),\n", + " (666, 0.76859504),\n", + " (667, 0.7892562),\n", + " (668, 0.79752064),\n", + " (669, 0.79752064),\n", + " (670, 0.79752064),\n", + " (671, 0.80991733),\n", + " (672, 0.8471074),\n", + " (673, 0.78099173),\n", + " (674, 0.6942149),\n", + " (675, 0.74793386),\n", + " (676, 0.8016529),\n", + " (677, 0.7768595),\n", + " (678, 0.71487606),\n", + " (679, 0.6487603),\n", + " (680, 0.57438016),\n", + " (681, 0.5123967),\n", + " (682, 0.48347107),\n", + " (683, 0.42975205),\n", + " (684, 0.40082645),\n", + " (685, 0.38842976),\n", + " (686, 0.3677686),\n", + " (687, 0.38429752),\n", + " (688, 0.40495867),\n", + " (689, 0.45454547),\n", + " (690, 0.5206612),\n", + " (691, 0.5495868),\n", + " (692, 0.5661157),\n", + " (693, 0.54545456),\n", + " (694, 0.5371901),\n", + " (695, 0.5247934),\n", + " (696, 0.47933885),\n", + " (697, 0.45041323),\n", + " (698, 0.4338843),\n", + " (699, 0.4090909),\n", + " (700, 0.39256197),\n", + " (701, 0.3553719),\n", + " (702, 0.28512397),\n", + " (703, 0.2107438),\n", + " (704, 0.6198347),\n", + " (705, 0.6528926),\n", + " (706, 0.6859504),\n", + " (707, 0.6942149),\n", + " (708, 0.7231405),\n", + " (709, 0.7231405),\n", + " (710, 0.7107438),\n", + " (711, 0.7768595),\n", + " (712, 0.73966944),\n", + " (713, 0.7231405),\n", + " (714, 0.70247936),\n", + " (715, 0.6694215),\n", + " (716, 0.6487603),\n", + " (717, 0.6694215),\n", + " (718, 0.7107438),\n", + " (719, 0.6446281),\n", + " (720, 0.59917355),\n", + " (721, 0.56198347),\n", + " (722, 0.5165289),\n", + " (723, 0.47933885),\n", + " (724, 0.46280992),\n", + " (725, 0.48347107),\n", + " (726, 0.5082645),\n", + " (727, 0.55785125),\n", + " (728, 0.607438),\n", + " (729, 0.6487603),\n", + " (730, 0.7066116),\n", + " (731, 0.76033056),\n", + " (732, 0.7892562),\n", + " (733, 0.78512394),\n", + " (734, 0.8016529),\n", + " (735, 0.822314),\n", + " (736, 0.8471074),\n", + " (737, 0.78512394),\n", + " (738, 0.6983471),\n", + " (739, 0.75619835),\n", + " (740, 0.7933884),\n", + " (741, 0.75206614),\n", + " (742, 0.6528926),\n", + " (743, 0.553719),\n", + " (744, 0.4752066),\n", + " (745, 0.43801653),\n", + " (746, 0.41735536),\n", + " (747, 0.37603307),\n", + " (748, 0.3429752),\n", + " (749, 0.3429752),\n", + " (750, 0.36363637),\n", + " (751, 0.40495867),\n", + " (752, 0.45454547),\n", + " (753, 0.47107437),\n", + " (754, 0.49586776),\n", + " (755, 0.5413223),\n", + " (756, 0.5495868),\n", + " (757, 0.5165289),\n", + " (758, 0.5123967),\n", + " (759, 0.53305787),\n", + " (760, 0.48347107),\n", + " (761, 0.44214877),\n", + " (762, 0.42561984),\n", + " (763, 0.40495867),\n", + " (764, 0.39256197),\n", + " (765, 0.3140496),\n", + " (766, 0.25619835),\n", + " (767, 0.1983471),\n", + " (768, 0.6404959),\n", + " (769, 0.6528926),\n", + " (770, 0.6818182),\n", + " (771, 0.69008267),\n", + " (772, 0.7107438),\n", + " (773, 0.6859504),\n", + " (774, 0.74793386),\n", + " (775, 0.71487606),\n", + " (776, 0.73966944),\n", + " (777, 0.7231405),\n", + " (778, 0.7231405),\n", + " (779, 0.71900827),\n", + " (780, 0.71487606),\n", + " (781, 0.71900827),\n", + " (782, 0.75619835),\n", + " (783, 0.74380165),\n", + " (784, 0.74380165),\n", + " (785, 0.74380165),\n", + " (786, 0.74380165),\n", + " (787, 0.75619835),\n", + " (788, 0.7644628),\n", + " (789, 0.6404959),\n", + " (790, 0.6198347),\n", + " (791, 0.607438),\n", + " (792, 0.60330576),\n", + " (793, 0.59504133),\n", + " (794, 0.6280992),\n", + " (795, 0.6652893),\n", + " (796, 0.6652893),\n", + " (797, 0.6859504),\n", + " (798, 0.71900827),\n", + " (799, 0.75206614),\n", + " (800, 0.77272725),\n", + " (801, 0.7231405),\n", + " (802, 0.6694215),\n", + " (803, 0.70247936),\n", + " (804, 0.7355372),\n", + " (805, 0.677686),\n", + " (806, 0.5495868),\n", + " (807, 0.45454547),\n", + " (808, 0.41322315),\n", + " (809, 0.38016528),\n", + " (810, 0.36363637),\n", + " (811, 0.34710744),\n", + " (812, 0.37190083),\n", + " (813, 0.446281),\n", + " (814, 0.54545456),\n", + " (815, 0.60330576),\n", + " (816, 0.62396693),\n", + " (817, 0.56198347),\n", + " (818, 0.55785125),\n", + " (819, 0.57024795),\n", + " (820, 0.57024795),\n", + " (821, 0.54545456),\n", + " (822, 0.5),\n", + " (823, 0.5123967),\n", + " (824, 0.5123967),\n", + " (825, 0.446281),\n", + " (826, 0.41735536),\n", + " (827, 0.4090909),\n", + " (828, 0.3966942),\n", + " (829, 0.30578512),\n", + " (830, 0.23140496),\n", + " (831, 0.17768595),\n", + " (832, 0.6528926),\n", + " (833, 0.6652893),\n", + " (834, 0.6694215),\n", + " (835, 0.6859504),\n", + " (836, 0.6942149),\n", + " (837, 0.6859504),\n", + " (838, 0.69008267),\n", + " (839, 0.6322314),\n", + " (840, 0.6528926),\n", + " (841, 0.6735537),\n", + " (842, 0.7107438),\n", + " (843, 0.7355372),\n", + " (844, 0.71900827),\n", + " (845, 0.6983471),\n", + " (846, 0.677686),\n", + " (847, 0.7066116),\n", + " (848, 0.6818182),\n", + " (849, 0.6280992),\n", + " (850, 0.61570245),\n", + " (851, 0.62396693),\n", + " (852, 0.607438),\n", + " (853, 0.553719),\n", + " (854, 0.55785125),\n", + " (855, 0.55785125),\n", + " (856, 0.5206612),\n", + " (857, 0.5),\n", + " (858, 0.5165289),\n", + " (859, 0.5289256),\n", + " (860, 0.53305787),\n", + " (861, 0.5495868),\n", + " (862, 0.5785124),\n", + " (863, 0.58677685),\n", + " (864, 0.59504133),\n", + " (865, 0.58264464),\n", + " (866, 0.5495868),\n", + " (867, 0.55785125),\n", + " (868, 0.57024795),\n", + " (869, 0.53305787),\n", + " (870, 0.5),\n", + " (871, 0.45867768),\n", + " (872, 0.446281),\n", + " (873, 0.42561984),\n", + " (874, 0.40082645),\n", + " (875, 0.39256197),\n", + " (876, 0.38842976),\n", + " (877, 0.3966942),\n", + " (878, 0.45867768),\n", + " (879, 0.5289256),\n", + " (880, 0.56198347),\n", + " (881, 0.5247934),\n", + " (882, 0.5123967),\n", + " (883, 0.5289256),\n", + " (884, 0.5413223),\n", + " (885, 0.5495868),\n", + " (886, 0.5),\n", + " (887, 0.48347107),\n", + " (888, 0.48347107),\n", + " (889, 0.46694216),\n", + " (890, 0.40082645),\n", + " (891, 0.39256197),\n", + " (892, 0.40082645),\n", + " (893, 0.3140496),\n", + " (894, 0.23140496),\n", + " (895, 0.17355372),\n", + " (896, 0.6528926),\n", + " (897, 0.6694215),\n", + " (898, 0.6735537),\n", + " (899, 0.6942149),\n", + " (900, 0.6694215),\n", + " (901, 0.6198347),\n", + " (902, 0.57024795),\n", + " (903, 0.6198347),\n", + " (904, 0.6322314),\n", + " (905, 0.6735537),\n", + " (906, 0.7107438),\n", + " (907, 0.6818182),\n", + " (908, 0.59917355),\n", + " (909, 0.6404959),\n", + " (910, 0.6652893),\n", + " (911, 0.75619835),\n", + " (912, 0.6652893),\n", + " (913, 0.5495868),\n", + " (914, 0.5041322),\n", + " (915, 0.5289256),\n", + " (916, 0.5247934),\n", + " (917, 0.4752066),\n", + " (918, 0.4338843),\n", + " (919, 0.53305787),\n", + " (920, 0.54545456),\n", + " (921, 0.5661157),\n", + " (922, 0.60330576),\n", + " (923, 0.5661157),\n", + " (924, 0.446281),\n", + " (925, 0.33471075),\n", + " (926, 0.36363637),\n", + " (927, 0.42561984),\n", + " (928, 0.4338843),\n", + " (929, 0.40495867),\n", + " (930, 0.40082645),\n", + " (931, 0.34710744),\n", + " (932, 0.3429752),\n", + " (933, 0.33471075),\n", + " (934, 0.34710744),\n", + " (935, 0.35123968),\n", + " (936, 0.34710744),\n", + " (937, 0.34710744),\n", + " (938, 0.38016528),\n", + " (939, 0.45454547),\n", + " (940, 0.47107437),\n", + " (941, 0.45041323),\n", + " (942, 0.4214876),\n", + " (943, 0.4090909),\n", + " (944, 0.446281),\n", + " (945, 0.4338843),\n", + " (946, 0.38016528),\n", + " (947, 0.40495867),\n", + " (948, 0.43801653),\n", + " (949, 0.41735536),\n", + " (950, 0.40495867),\n", + " (951, 0.4214876),\n", + " (952, 0.4752066),\n", + " (953, 0.45041323),\n", + " (954, 0.41735536),\n", + " (955, 0.38429752),\n", + " (956, 0.40082645),\n", + " (957, 0.3553719),\n", + " (958, 0.22727273),\n", + " (959, 0.16528925),\n", + " (960, 0.661157),\n", + " (961, 0.6735537),\n", + " (962, 0.6942149),\n", + " (963, 0.6942149),\n", + " (964, 0.59090906),\n", + " (965, 0.61157024),\n", + " (966, 0.6487603),\n", + " (967, 0.6280992),\n", + " (968, 0.6363636),\n", + " (969, 0.6818182),\n", + " (970, 0.6198347),\n", + " (971, 0.60330576),\n", + " (972, 0.6942149),\n", + " (973, 0.6570248),\n", + " (974, 0.5),\n", + " (975, 0.3966942),\n", + " (976, 0.37603307),\n", + " (977, 0.29338843),\n", + " (978, 0.2644628),\n", + " (979, 0.37190083),\n", + " (980, 0.4752066),\n", + " (981, 0.54545456),\n", + " (982, 0.5289256),\n", + " (983, 0.5247934),\n", + " (984, 0.5289256),\n", + " (985, 0.5785124),\n", + " (986, 0.6735537),\n", + " (987, 0.7355372),\n", + " (988, 0.7644628),\n", + " (989, 0.49586776),\n", + " (990, 0.5247934),\n", + " (991, 0.8057851),\n", + " (992, 0.78512394),\n", + " (993, 0.7107438),\n", + " (994, 0.71900827),\n", + " (995, 0.5495868),\n", + " (996, 0.38842976),\n", + " (997, 0.33471075),\n", + " (998, 0.36363637),\n", + " (999, 0.3140496),\n", + " ...],\n", + " [(0, 0.76859504),\n", + " (1, 0.75619835),\n", + " (2, 0.74380165),\n", + " (3, 0.74380165),\n", + " (4, 0.75206614),\n", + " (5, 0.74793386),\n", + " (6, 0.7355372),\n", + " (7, 0.70247936),\n", + " (8, 0.71487606),\n", + " (9, 0.74793386),\n", + " (10, 0.71487606),\n", + " (11, 0.6528926),\n", + " (12, 0.661157),\n", + " (13, 0.59090906),\n", + " (14, 0.59504133),\n", + " (15, 0.59090906),\n", + " (16, 0.58264464),\n", + " (17, 0.58677685),\n", + " (18, 0.59090906),\n", + " (19, 0.58264464),\n", + " (20, 0.58677685),\n", + " (21, 0.5785124),\n", + " (22, 0.57438016),\n", + " (23, 0.55785125),\n", + " (24, 0.57024795),\n", + " (25, 0.57024795),\n", + " (26, 0.5661157),\n", + " (27, 0.55785125),\n", + " (28, 0.5495868),\n", + " (29, 0.553719),\n", + " (30, 0.5495868),\n", + " (31, 0.553719),\n", + " (32, 0.54545456),\n", + " (33, 0.55785125),\n", + " (34, 0.55785125),\n", + " (35, 0.53305787),\n", + " (36, 0.5495868),\n", + " (37, 0.53305787),\n", + " (38, 0.5413223),\n", + " (39, 0.5289256),\n", + " (40, 0.5206612),\n", + " (41, 0.5165289),\n", + " (42, 0.49586776),\n", + " (43, 0.5082645),\n", + " (44, 0.49173555),\n", + " (45, 0.48347107),\n", + " (46, 0.49586776),\n", + " (47, 0.49173555),\n", + " (48, 0.49173555),\n", + " (49, 0.5),\n", + " (50, 0.5206612),\n", + " (51, 0.5247934),\n", + " (52, 0.5247934),\n", + " (53, 0.5371901),\n", + " (54, 0.5413223),\n", + " (55, 0.59090906),\n", + " (56, 0.58677685),\n", + " (57, 0.58264464),\n", + " (58, 0.59090906),\n", + " (59, 0.57438016),\n", + " (60, 0.58677685),\n", + " (61, 0.61570245),\n", + " (62, 0.677686),\n", + " (63, 0.5785124),\n", + " (64, 0.8016529),\n", + " (65, 0.7892562),\n", + " (66, 0.7892562),\n", + " (67, 0.7768595),\n", + " (68, 0.78099173),\n", + " (69, 0.75619835),\n", + " (70, 0.73140496),\n", + " (71, 0.73140496),\n", + " (72, 0.7231405),\n", + " (73, 0.76033056),\n", + " (74, 0.73966944),\n", + " (75, 0.6983471),\n", + " (76, 0.6859504),\n", + " (77, 0.61570245),\n", + " (78, 0.607438),\n", + " (79, 0.59917355),\n", + " (80, 0.58677685),\n", + " (81, 0.58677685),\n", + " (82, 0.59917355),\n", + " (83, 0.60330576),\n", + " (84, 0.60330576),\n", + " (85, 0.59090906),\n", + " (86, 0.59917355),\n", + " (87, 0.57438016),\n", + " (88, 0.59504133),\n", + " (89, 0.59504133),\n", + " (90, 0.58264464),\n", + " (91, 0.57024795),\n", + " (92, 0.5206612),\n", + " (93, 0.5123967),\n", + " (94, 0.5413223),\n", + " (95, 0.54545456),\n", + " (96, 0.553719),\n", + " (97, 0.5661157),\n", + " (98, 0.56198347),\n", + " (99, 0.5371901),\n", + " (100, 0.56198347),\n", + " (101, 0.553719),\n", + " (102, 0.5495868),\n", + " (103, 0.5247934),\n", + " (104, 0.5082645),\n", + " (105, 0.5206612),\n", + " (106, 0.5289256),\n", + " (107, 0.5123967),\n", + " (108, 0.5),\n", + " (109, 0.5),\n", + " (110, 0.5041322),\n", + " (111, 0.49173555),\n", + " (112, 0.5123967),\n", + " (113, 0.5247934),\n", + " (114, 0.5371901),\n", + " (115, 0.5413223),\n", + " (116, 0.5495868),\n", + " (117, 0.55785125),\n", + " (118, 0.58264464),\n", + " (119, 0.59090906),\n", + " (120, 0.607438),\n", + " (121, 0.59504133),\n", + " (122, 0.61157024),\n", + " (123, 0.5785124),\n", + " (124, 0.5785124),\n", + " (125, 0.6198347),\n", + " (126, 0.677686),\n", + " (127, 0.60330576),\n", + " (128, 0.7933884),\n", + " (129, 0.8140496),\n", + " (130, 0.8140496),\n", + " (131, 0.8140496),\n", + " (132, 0.7933884),\n", + " (133, 0.79752064),\n", + " (134, 0.7644628),\n", + " (135, 0.74793386),\n", + " (136, 0.74793386),\n", + " (137, 0.75206614),\n", + " (138, 0.74793386),\n", + " (139, 0.73140496),\n", + " (140, 0.7066116),\n", + " (141, 0.6570248),\n", + " (142, 0.61157024),\n", + " (143, 0.607438),\n", + " (144, 0.60330576),\n", + " (145, 0.59504133),\n", + " (146, 0.58677685),\n", + " (147, 0.61570245),\n", + " (148, 0.6198347),\n", + " (149, 0.62396693),\n", + " (150, 0.60330576),\n", + " (151, 0.59917355),\n", + " (152, 0.60330576),\n", + " (153, 0.61570245),\n", + " (154, 0.59090906),\n", + " (155, 0.59504133),\n", + " (156, 0.5041322),\n", + " (157, 0.45041323),\n", + " (158, 0.5247934),\n", + " (159, 0.5371901),\n", + " (160, 0.553719),\n", + " (161, 0.5661157),\n", + " (162, 0.57024795),\n", + " (163, 0.5413223),\n", + " (164, 0.55785125),\n", + " (165, 0.56198347),\n", + " (166, 0.5785124),\n", + " (167, 0.5247934),\n", + " (168, 0.5247934),\n", + " (169, 0.5289256),\n", + " (170, 0.5371901),\n", + " (171, 0.5206612),\n", + " (172, 0.5),\n", + " (173, 0.5082645),\n", + " (174, 0.5041322),\n", + " (175, 0.5206612),\n", + " (176, 0.53305787),\n", + " (177, 0.53305787),\n", + " (178, 0.5371901),\n", + " (179, 0.56198347),\n", + " (180, 0.57024795),\n", + " (181, 0.57024795),\n", + " (182, 0.57438016),\n", + " (183, 0.58264464),\n", + " (184, 0.607438),\n", + " (185, 0.59917355),\n", + " (186, 0.62396693),\n", + " (187, 0.60330576),\n", + " (188, 0.59504133),\n", + " (189, 0.6198347),\n", + " (190, 0.6694215),\n", + " (191, 0.61157024),\n", + " (192, 0.79752064),\n", + " (193, 0.822314),\n", + " (194, 0.8347107),\n", + " (195, 0.822314),\n", + " (196, 0.8264463),\n", + " (197, 0.7892562),\n", + " (198, 0.7644628),\n", + " (199, 0.75206614),\n", + " (200, 0.74793386),\n", + " (201, 0.74793386),\n", + " (202, 0.73966944),\n", + " (203, 0.6983471),\n", + " (204, 0.69008267),\n", + " (205, 0.661157),\n", + " (206, 0.62396693),\n", + " (207, 0.60330576),\n", + " (208, 0.59917355),\n", + " (209, 0.59504133),\n", + " (210, 0.58677685),\n", + " (211, 0.60330576),\n", + " (212, 0.61157024),\n", + " (213, 0.62396693),\n", + " (214, 0.6280992),\n", + " (215, 0.607438),\n", + " (216, 0.58264464),\n", + " (217, 0.59917355),\n", + " (218, 0.58677685),\n", + " (219, 0.59504133),\n", + " (220, 0.5123967),\n", + " (221, 0.4752066),\n", + " (222, 0.5289256),\n", + " (223, 0.55785125),\n", + " (224, 0.57024795),\n", + " (225, 0.57024795),\n", + " (226, 0.54545456),\n", + " (227, 0.5785124),\n", + " (228, 0.56198347),\n", + " (229, 0.55785125),\n", + " (230, 0.57024795),\n", + " (231, 0.53305787),\n", + " (232, 0.5371901),\n", + " (233, 0.5371901),\n", + " (234, 0.5495868),\n", + " (235, 0.5165289),\n", + " (236, 0.5165289),\n", + " (237, 0.5082645),\n", + " (238, 0.5247934),\n", + " (239, 0.5165289),\n", + " (240, 0.5247934),\n", + " (241, 0.5041322),\n", + " (242, 0.49173555),\n", + " (243, 0.5247934),\n", + " (244, 0.5289256),\n", + " (245, 0.5247934),\n", + " (246, 0.53305787),\n", + " (247, 0.553719),\n", + " (248, 0.58677685),\n", + " (249, 0.6363636),\n", + " (250, 0.6446281),\n", + " (251, 0.6446281),\n", + " (252, 0.661157),\n", + " (253, 0.6487603),\n", + " (254, 0.6652893),\n", + " (255, 0.6446281),\n", + " (256, 0.8140496),\n", + " (257, 0.822314),\n", + " (258, 0.8429752),\n", + " (259, 0.8305785),\n", + " (260, 0.8181818),\n", + " (261, 0.8016529),\n", + " (262, 0.76033056),\n", + " (263, 0.74793386),\n", + " (264, 0.73140496),\n", + " (265, 0.7231405),\n", + " (266, 0.6735537),\n", + " (267, 0.62396693),\n", + " (268, 0.62396693),\n", + " (269, 0.607438),\n", + " (270, 0.58264464),\n", + " (271, 0.57024795),\n", + " (272, 0.55785125),\n", + " (273, 0.5495868),\n", + " (274, 0.54545456),\n", + " (275, 0.53305787),\n", + " (276, 0.55785125),\n", + " (277, 0.553719),\n", + " (278, 0.59090906),\n", + " (279, 0.59504133),\n", + " (280, 0.5661157),\n", + " (281, 0.57438016),\n", + " (282, 0.59090906),\n", + " (283, 0.57438016),\n", + " (284, 0.55785125),\n", + " (285, 0.53305787),\n", + " (286, 0.54545456),\n", + " (287, 0.5661157),\n", + " (288, 0.5785124),\n", + " (289, 0.5785124),\n", + " (290, 0.5495868),\n", + " (291, 0.57438016),\n", + " (292, 0.56198347),\n", + " (293, 0.5495868),\n", + " (294, 0.5661157),\n", + " (295, 0.5206612),\n", + " (296, 0.5413223),\n", + " (297, 0.5206612),\n", + " (298, 0.5165289),\n", + " (299, 0.5165289),\n", + " (300, 0.5123967),\n", + " (301, 0.49173555),\n", + " (302, 0.47107437),\n", + " (303, 0.446281),\n", + " (304, 0.446281),\n", + " (305, 0.4214876),\n", + " (306, 0.4090909),\n", + " (307, 0.4214876),\n", + " (308, 0.43801653),\n", + " (309, 0.46694216),\n", + " (310, 0.5082645),\n", + " (311, 0.5165289),\n", + " (312, 0.553719),\n", + " (313, 0.59090906),\n", + " (314, 0.6363636),\n", + " (315, 0.6652893),\n", + " (316, 0.70247936),\n", + " (317, 0.6942149),\n", + " (318, 0.6735537),\n", + " (319, 0.6528926),\n", + " (320, 0.822314),\n", + " (321, 0.822314),\n", + " (322, 0.8347107),\n", + " (323, 0.8512397),\n", + " (324, 0.79752064),\n", + " (325, 0.8057851),\n", + " (326, 0.77272725),\n", + " (327, 0.7231405),\n", + " (328, 0.6528926),\n", + " (329, 0.6198347),\n", + " (330, 0.60330576),\n", + " (331, 0.57438016),\n", + " (332, 0.5413223),\n", + " (333, 0.5123967),\n", + " (334, 0.47933885),\n", + " (335, 0.446281),\n", + " (336, 0.44214877),\n", + " (337, 0.4090909),\n", + " (338, 0.4338843),\n", + " (339, 0.39256197),\n", + " (340, 0.41322315),\n", + " (341, 0.4338843),\n", + " (342, 0.45867768),\n", + " (343, 0.5371901),\n", + " (344, 0.53305787),\n", + " (345, 0.553719),\n", + " (346, 0.553719),\n", + " (347, 0.5413223),\n", + " (348, 0.5661157),\n", + " (349, 0.54545456),\n", + " (350, 0.54545456),\n", + " (351, 0.5661157),\n", + " (352, 0.5661157),\n", + " (353, 0.57024795),\n", + " (354, 0.553719),\n", + " (355, 0.54545456),\n", + " (356, 0.55785125),\n", + " (357, 0.54545456),\n", + " (358, 0.5413223),\n", + " (359, 0.5041322),\n", + " (360, 0.5041322),\n", + " (361, 0.49586776),\n", + " (362, 0.4876033),\n", + " (363, 0.46280992),\n", + " (364, 0.42561984),\n", + " (365, 0.40082645),\n", + " (366, 0.39256197),\n", + " (367, 0.35950413),\n", + " (368, 0.34710744),\n", + " (369, 0.3305785),\n", + " (370, 0.35950413),\n", + " (371, 0.37190083),\n", + " (372, 0.4090909),\n", + " (373, 0.42975205),\n", + " (374, 0.45041323),\n", + " (375, 0.47933885),\n", + " (376, 0.49173555),\n", + " (377, 0.5247934),\n", + " (378, 0.59504133),\n", + " (379, 0.6487603),\n", + " (380, 0.6983471),\n", + " (381, 0.75206614),\n", + " (382, 0.6735537),\n", + " (383, 0.6404959),\n", + " (384, 0.822314),\n", + " (385, 0.8264463),\n", + " (386, 0.8471074),\n", + " (387, 0.8264463),\n", + " (388, 0.8016529),\n", + " (389, 0.7892562),\n", + " (390, 0.74793386),\n", + " (391, 0.661157),\n", + " (392, 0.59504133),\n", + " (393, 0.5413223),\n", + " (394, 0.53305787),\n", + " (395, 0.53305787),\n", + " (396, 0.5041322),\n", + " (397, 0.46694216),\n", + " (398, 0.42975205),\n", + " (399, 0.38842976),\n", + " (400, 0.3677686),\n", + " (401, 0.34710744),\n", + " (402, 0.3429752),\n", + " (403, 0.3264463),\n", + " (404, 0.3429752),\n", + " (405, 0.40082645),\n", + " (406, 0.3966942),\n", + " (407, 0.43801653),\n", + " (408, 0.46280992),\n", + " (409, 0.5),\n", + " (410, 0.5289256),\n", + " (411, 0.5206612),\n", + " (412, 0.5371901),\n", + " (413, 0.5371901),\n", + " (414, 0.5495868),\n", + " (415, 0.55785125),\n", + " (416, 0.54545456),\n", + " (417, 0.55785125),\n", + " (418, 0.5413223),\n", + " (419, 0.53305787),\n", + " (420, 0.54545456),\n", + " (421, 0.53305787),\n", + " (422, 0.5206612),\n", + " (423, 0.49586776),\n", + " (424, 0.46694216),\n", + " (425, 0.45867768),\n", + " (426, 0.45454547),\n", + " (427, 0.39256197),\n", + " (428, 0.38016528),\n", + " (429, 0.3553719),\n", + " (430, 0.33471075),\n", + " (431, 0.3305785),\n", + " (432, 0.34710744),\n", + " (433, 0.38429752),\n", + " (434, 0.41322315),\n", + " (435, 0.43801653),\n", + " (436, 0.47933885),\n", + " (437, 0.47933885),\n", + " (438, 0.49173555),\n", + " (439, 0.4876033),\n", + " (440, 0.48347107),\n", + " (441, 0.4876033),\n", + " (442, 0.54545456),\n", + " (443, 0.62396693),\n", + " (444, 0.71487606),\n", + " (445, 0.73966944),\n", + " (446, 0.6528926),\n", + " (447, 0.6446281),\n", + " (448, 0.822314),\n", + " (449, 0.8264463),\n", + " (450, 0.8553719),\n", + " (451, 0.75619835),\n", + " (452, 0.79752064),\n", + " (453, 0.74793386),\n", + " (454, 0.7107438),\n", + " (455, 0.6363636),\n", + " (456, 0.62396693),\n", + " (457, 0.57438016),\n", + " (458, 0.55785125),\n", + " (459, 0.55785125),\n", + " (460, 0.54545456),\n", + " (461, 0.5),\n", + " (462, 0.47933885),\n", + " (463, 0.46280992),\n", + " (464, 0.48347107),\n", + " (465, 0.41322315),\n", + " (466, 0.34710744),\n", + " (467, 0.34710744),\n", + " (468, 0.35950413),\n", + " (469, 0.42561984),\n", + " (470, 0.4338843),\n", + " (471, 0.41735536),\n", + " (472, 0.42975205),\n", + " (473, 0.45041323),\n", + " (474, 0.5),\n", + " (475, 0.5041322),\n", + " (476, 0.5165289),\n", + " (477, 0.5247934),\n", + " (478, 0.5247934),\n", + " (479, 0.5165289),\n", + " (480, 0.5495868),\n", + " (481, 0.5371901),\n", + " (482, 0.5165289),\n", + " (483, 0.5123967),\n", + " (484, 0.5041322),\n", + " (485, 0.5082645),\n", + " (486, 0.49173555),\n", + " (487, 0.46694216),\n", + " (488, 0.42561984),\n", + " (489, 0.41735536),\n", + " (490, 0.4090909),\n", + " (491, 0.38429752),\n", + " (492, 0.36363637),\n", + " (493, 0.37190083),\n", + " (494, 0.35123968),\n", + " (495, 0.3429752),\n", + " (496, 0.36363637),\n", + " (497, 0.3966942),\n", + " (498, 0.37190083),\n", + " (499, 0.40082645),\n", + " (500, 0.4214876),\n", + " (501, 0.45041323),\n", + " (502, 0.5123967),\n", + " (503, 0.5413223),\n", + " (504, 0.59090906),\n", + " (505, 0.59504133),\n", + " (506, 0.58264464),\n", + " (507, 0.60330576),\n", + " (508, 0.6942149),\n", + " (509, 0.73966944),\n", + " (510, 0.6198347),\n", + " (511, 0.6363636),\n", + " (512, 0.8264463),\n", + " (513, 0.822314),\n", + " (514, 0.8264463),\n", + " (515, 0.8181818),\n", + " (516, 0.7892562),\n", + " (517, 0.73966944),\n", + " (518, 0.75206614),\n", + " (519, 0.71487606),\n", + " (520, 0.6735537),\n", + " (521, 0.61570245),\n", + " (522, 0.57024795),\n", + " (523, 0.5289256),\n", + " (524, 0.4876033),\n", + " (525, 0.4752066),\n", + " (526, 0.42975205),\n", + " (527, 0.5371901),\n", + " (528, 0.69008267),\n", + " (529, 0.49173555),\n", + " (530, 0.3553719),\n", + " (531, 0.3140496),\n", + " (532, 0.30578512),\n", + " (533, 0.47107437),\n", + " (534, 0.4338843),\n", + " (535, 0.38842976),\n", + " (536, 0.38429752),\n", + " (537, 0.36363637),\n", + " (538, 0.35950413),\n", + " (539, 0.3181818),\n", + " (540, 0.44214877),\n", + " (541, 0.45041323),\n", + " (542, 0.42561984),\n", + " (543, 0.40082645),\n", + " (544, 0.5165289),\n", + " (545, 0.36363637),\n", + " (546, 0.44214877),\n", + " (547, 0.41322315),\n", + " (548, 0.37190083),\n", + " (549, 0.446281),\n", + " (550, 0.38016528),\n", + " (551, 0.40495867),\n", + " (552, 0.2892562),\n", + " (553, 0.18181819),\n", + " (554, 0.24793388),\n", + " (555, 0.2768595),\n", + " (556, 0.29752067),\n", + " (557, 0.32231405),\n", + " (558, 0.338843),\n", + " (559, 0.3305785),\n", + " (560, 0.3264463),\n", + " (561, 0.35123968),\n", + " (562, 0.36363637),\n", + " (563, 0.38016528),\n", + " (564, 0.40082645),\n", + " (565, 0.4214876),\n", + " (566, 0.4338843),\n", + " (567, 0.42561984),\n", + " (568, 0.45041323),\n", + " (569, 0.5),\n", + " (570, 0.5041322),\n", + " (571, 0.5123967),\n", + " (572, 0.56198347),\n", + " (573, 0.69008267),\n", + " (574, 0.6652893),\n", + " (575, 0.661157),\n", + " (576, 0.8305785),\n", + " (577, 0.822314),\n", + " (578, 0.8181818),\n", + " (579, 0.822314),\n", + " (580, 0.78099173),\n", + " (581, 0.76859504),\n", + " (582, 0.71487606),\n", + " (583, 0.61157024),\n", + " (584, 0.49586776),\n", + " (585, 0.43801653),\n", + " (586, 0.47107437),\n", + " (587, 0.48347107),\n", + " (588, 0.4876033),\n", + " (589, 0.5041322),\n", + " (590, 0.47107437),\n", + " (591, 0.59090906),\n", + " (592, 0.8512397),\n", + " (593, 0.8347107),\n", + " (594, 0.6570248),\n", + " (595, 0.45454547),\n", + " (596, 0.4214876),\n", + " (597, 0.43801653),\n", + " (598, 0.446281),\n", + " (599, 0.45041323),\n", + " (600, 0.446281),\n", + " (601, 0.4214876),\n", + " (602, 0.37603307),\n", + " (603, 0.24793388),\n", + " (604, 0.42561984),\n", + " (605, 0.46694216),\n", + " (606, 0.45454547),\n", + " (607, 0.45041323),\n", + " (608, 0.446281),\n", + " (609, 0.37190083),\n", + " (610, 0.4090909),\n", + " (611, 0.3966942),\n", + " (612, 0.40495867),\n", + " (613, 0.45041323),\n", + " (614, 0.42975205),\n", + " (615, 0.46280992),\n", + " (616, 0.37603307),\n", + " (617, 0.26859504),\n", + " (618, 0.42561984),\n", + " (619, 0.446281),\n", + " (620, 0.4214876),\n", + " (621, 0.4090909),\n", + " (622, 0.38429752),\n", + " (623, 0.40082645),\n", + " (624, 0.3966942),\n", + " (625, 0.39256197),\n", + " (626, 0.4214876),\n", + " (627, 0.42561984),\n", + " (628, 0.43801653),\n", + " (629, 0.48347107),\n", + " (630, 0.57024795),\n", + " (631, 0.6198347),\n", + " (632, 0.6446281),\n", + " (633, 0.6487603),\n", + " (634, 0.58264464),\n", + " (635, 0.56198347),\n", + " (636, 0.5165289),\n", + " (637, 0.41322315),\n", + " (638, 0.5206612),\n", + " (639, 0.6735537),\n", + " (640, 0.822314),\n", + " (641, 0.8264463),\n", + " (642, 0.8305785),\n", + " (643, 0.80991733),\n", + " (644, 0.77272725),\n", + " (645, 0.62396693),\n", + " (646, 0.5206612),\n", + " (647, 0.5413223),\n", + " (648, 0.62396693),\n", + " (649, 0.6859504),\n", + " (650, 0.69008267),\n", + " (651, 0.677686),\n", + " (652, 0.6322314),\n", + " (653, 0.59917355),\n", + " (654, 0.5371901),\n", + " (655, 0.6404959),\n", + " (656, 0.9214876),\n", + " (657, 0.91735536),\n", + " (658, 0.8016529),\n", + " (659, 0.4752066),\n", + " (660, 0.4214876),\n", + " (661, 0.40082645),\n", + " (662, 0.39256197),\n", + " (663, 0.41322315),\n", + " (664, 0.43801653),\n", + " (665, 0.47933885),\n", + " (666, 0.47107437),\n", + " (667, 0.40495867),\n", + " (668, 0.29752067),\n", + " (669, 0.446281),\n", + " (670, 0.446281),\n", + " (671, 0.45454547),\n", + " (672, 0.45041323),\n", + " (673, 0.4214876),\n", + " (674, 0.4090909),\n", + " (675, 0.4090909),\n", + " (676, 0.4338843),\n", + " (677, 0.43801653),\n", + " (678, 0.41735536),\n", + " (679, 0.42975205),\n", + " (680, 0.40082645),\n", + " (681, 0.45041323),\n", + " (682, 0.46694216),\n", + " (683, 0.46694216),\n", + " (684, 0.45041323),\n", + " (685, 0.42561984),\n", + " (686, 0.39256197),\n", + " (687, 0.3966942),\n", + " (688, 0.38429752),\n", + " (689, 0.36363637),\n", + " (690, 0.35123968),\n", + " (691, 0.38429752),\n", + " (692, 0.39256197),\n", + " (693, 0.43801653),\n", + " (694, 0.5413223),\n", + " (695, 0.59917355),\n", + " (696, 0.61157024),\n", + " (697, 0.69008267),\n", + " (698, 0.70247936),\n", + " (699, 0.6487603),\n", + " (700, 0.6528926),\n", + " (701, 0.45041323),\n", + " (702, 0.29752067),\n", + " (703, 0.4338843),\n", + " (704, 0.8264463),\n", + " (705, 0.8305785),\n", + " (706, 0.8471074),\n", + " (707, 0.75206614),\n", + " (708, 0.48347107),\n", + " (709, 0.57438016),\n", + " (710, 0.6859504),\n", + " (711, 0.6694215),\n", + " (712, 0.6942149),\n", + " (713, 0.74380165),\n", + " (714, 0.70247936),\n", + " (715, 0.6528926),\n", + " (716, 0.59090906),\n", + " (717, 0.553719),\n", + " (718, 0.5),\n", + " (719, 0.5041322),\n", + " (720, 0.80991733),\n", + " (721, 0.88842976),\n", + " (722, 0.7768595),\n", + " (723, 0.45041323),\n", + " (724, 0.3429752),\n", + " (725, 0.30165288),\n", + " (726, 0.30578512),\n", + " (727, 0.30578512),\n", + " (728, 0.3305785),\n", + " (729, 0.4090909),\n", + " (730, 0.45454547),\n", + " (731, 0.45867768),\n", + " (732, 0.4090909),\n", + " (733, 0.28512397),\n", + " (734, 0.5371901),\n", + " (735, 0.5661157),\n", + " (736, 0.5661157),\n", + " (737, 0.5371901),\n", + " (738, 0.47933885),\n", + " (739, 0.5206612),\n", + " (740, 0.5206612),\n", + " (741, 0.49586776),\n", + " (742, 0.47933885),\n", + " (743, 0.38016528),\n", + " (744, 0.44214877),\n", + " (745, 0.41735536),\n", + " (746, 0.28099173),\n", + " (747, 0.58264464),\n", + " (748, 0.6528926),\n", + " (749, 0.42975205),\n", + " (750, 0.3305785),\n", + " (751, 0.32231405),\n", + " (752, 0.30578512),\n", + " (753, 0.29752067),\n", + " (754, 0.3181818),\n", + " (755, 0.3140496),\n", + " (756, 0.3429752),\n", + " (757, 0.38842976),\n", + " (758, 0.49173555),\n", + " (759, 0.5495868),\n", + " (760, 0.53305787),\n", + " (761, 0.60330576),\n", + " (762, 0.6735537),\n", + " (763, 0.73966944),\n", + " (764, 0.6652893),\n", + " (765, 0.49173555),\n", + " (766, 0.20661157),\n", + " (767, 0.3429752),\n", + " (768, 0.8429752),\n", + " (769, 0.8264463),\n", + " (770, 0.8016529),\n", + " (771, 0.5247934),\n", + " (772, 0.6528926),\n", + " (773, 0.71487606),\n", + " (774, 0.6818182),\n", + " (775, 0.61157024),\n", + " (776, 0.6280992),\n", + " (777, 0.69008267),\n", + " (778, 0.6735537),\n", + " (779, 0.59504133),\n", + " (780, 0.49173555),\n", + " (781, 0.4338843),\n", + " (782, 0.42561984),\n", + " (783, 0.38429752),\n", + " (784, 0.4876033),\n", + " (785, 0.6570248),\n", + " (786, 0.59090906),\n", + " (787, 0.38016528),\n", + " (788, 0.28099173),\n", + " (789, 0.26859504),\n", + " (790, 0.27272728),\n", + " (791, 0.2892562),\n", + " (792, 0.29338843),\n", + " (793, 0.33471075),\n", + " (794, 0.4214876),\n", + " (795, 0.46280992),\n", + " (796, 0.5123967),\n", + " (797, 0.39256197),\n", + " (798, 0.5247934),\n", + " (799, 0.61570245),\n", + " (800, 0.6735537),\n", + " (801, 0.607438),\n", + " (802, 0.49173555),\n", + " (803, 0.5495868),\n", + " (804, 0.553719),\n", + " (805, 0.5289256),\n", + " (806, 0.43801653),\n", + " (807, 0.4214876),\n", + " (808, 0.4752066),\n", + " (809, 0.4090909),\n", + " (810, 0.40495867),\n", + " (811, 0.95454544),\n", + " (812, 0.88842976),\n", + " (813, 0.5082645),\n", + " (814, 0.338843),\n", + " (815, 0.338843),\n", + " (816, 0.3181818),\n", + " (817, 0.30578512),\n", + " (818, 0.32231405),\n", + " (819, 0.3140496),\n", + " (820, 0.32231405),\n", + " (821, 0.3429752),\n", + " (822, 0.4338843),\n", + " (823, 0.45867768),\n", + " (824, 0.43801653),\n", + " (825, 0.47933885),\n", + " (826, 0.5413223),\n", + " (827, 0.677686),\n", + " (828, 0.6487603),\n", + " (829, 0.5289256),\n", + " (830, 0.21487603),\n", + " (831, 0.28512397),\n", + " (832, 0.74793386),\n", + " (833, 0.7892562),\n", + " (834, 0.5206612),\n", + " (835, 0.607438),\n", + " (836, 0.6694215),\n", + " (837, 0.6198347),\n", + " (838, 0.57438016),\n", + " (839, 0.5165289),\n", + " (840, 0.55785125),\n", + " (841, 0.59917355),\n", + " (842, 0.5371901),\n", + " (843, 0.49586776),\n", + " (844, 0.46280992),\n", + " (845, 0.42561984),\n", + " (846, 0.42975205),\n", + " (847, 0.4090909),\n", + " (848, 0.43801653),\n", + " (849, 0.45454547),\n", + " (850, 0.45041323),\n", + " (851, 0.34710744),\n", + " (852, 0.26859504),\n", + " (853, 0.22727273),\n", + " (854, 0.23140496),\n", + " (855, 0.2768595),\n", + " (856, 0.2892562),\n", + " (857, 0.30165288),\n", + " (858, 0.33471075),\n", + " (859, 0.41322315),\n", + " (860, 0.5123967),\n", + " (861, 0.5661157),\n", + " (862, 0.71900827),\n", + " (863, 0.71900827),\n", + " (864, 0.90495867),\n", + " (865, 0.78512394),\n", + " (866, 0.40495867),\n", + " (867, 0.41322315),\n", + " (868, 0.45867768),\n", + " (869, 0.44214877),\n", + " (870, 0.42561984),\n", + " (871, 0.42975205),\n", + " (872, 0.446281),\n", + " (873, 0.38429752),\n", + " (874, 0.3966942),\n", + " (875, 0.78512394),\n", + " (876, 0.75619835),\n", + " (877, 0.46280992),\n", + " (878, 0.3553719),\n", + " (879, 0.38429752),\n", + " (880, 0.338843),\n", + " (881, 0.30991736),\n", + " (882, 0.33471075),\n", + " (883, 0.35123968),\n", + " (884, 0.37190083),\n", + " (885, 0.40495867),\n", + " (886, 0.4214876),\n", + " (887, 0.46694216),\n", + " (888, 0.44214877),\n", + " (889, 0.45041323),\n", + " (890, 0.4752066),\n", + " (891, 0.5371901),\n", + " (892, 0.46280992),\n", + " (893, 0.47933885),\n", + " (894, 0.23966943),\n", + " (895, 0.32231405),\n", + " (896, 0.4338843),\n", + " (897, 0.34710744),\n", + " (898, 0.47107437),\n", + " (899, 0.5785124),\n", + " (900, 0.5123967),\n", + " (901, 0.49173555),\n", + " (902, 0.37603307),\n", + " (903, 0.40495867),\n", + " (904, 0.45867768),\n", + " (905, 0.45867768),\n", + " (906, 0.45867768),\n", + " (907, 0.53305787),\n", + " (908, 0.4752066),\n", + " (909, 0.39256197),\n", + " (910, 0.36363637),\n", + " (911, 0.3305785),\n", + " (912, 0.33471075),\n", + " (913, 0.3264463),\n", + " (914, 0.33471075),\n", + " (915, 0.30578512),\n", + " (916, 0.27272728),\n", + " (917, 0.23553719),\n", + " (918, 0.21487603),\n", + " (919, 0.23553719),\n", + " (920, 0.2768595),\n", + " (921, 0.32231405),\n", + " (922, 0.3264463),\n", + " (923, 0.39256197),\n", + " (924, 0.48347107),\n", + " (925, 0.58677685),\n", + " (926, 0.44214877),\n", + " (927, 0.54545456),\n", + " (928, 0.6570248),\n", + " (929, 0.59504133),\n", + " (930, 0.42975205),\n", + " (931, 0.47107437),\n", + " (932, 0.5041322),\n", + " (933, 0.446281),\n", + " (934, 0.4338843),\n", + " (935, 0.38842976),\n", + " (936, 0.4214876),\n", + " (937, 0.3553719),\n", + " (938, 0.32231405),\n", + " (939, 0.41735536),\n", + " (940, 0.46280992),\n", + " (941, 0.3677686),\n", + " (942, 0.34710744),\n", + " (943, 0.33471075),\n", + " (944, 0.3264463),\n", + " (945, 0.3140496),\n", + " (946, 0.3264463),\n", + " (947, 0.38842976),\n", + " (948, 0.45867768),\n", + " (949, 0.5082645),\n", + " (950, 0.5041322),\n", + " (951, 0.5082645),\n", + " (952, 0.5247934),\n", + " (953, 0.5041322),\n", + " (954, 0.5413223),\n", + " (955, 0.6487603),\n", + " (956, 0.61570245),\n", + " (957, 0.49173555),\n", + " (958, 0.23966943),\n", + " (959, 0.3140496),\n", + " (960, 0.4090909),\n", + " (961, 0.24380165),\n", + " (962, 0.7644628),\n", + " (963, 0.7231405),\n", + " (964, 0.5661157),\n", + " (965, 0.5041322),\n", + " (966, 0.47933885),\n", + " (967, 0.4752066),\n", + " (968, 0.46694216),\n", + " (969, 0.46280992),\n", + " (970, 0.46280992),\n", + " (971, 0.446281),\n", + " (972, 0.37603307),\n", + " (973, 0.32231405),\n", + " (974, 0.22727273),\n", + " (975, 0.18595041),\n", + " (976, 0.18181819),\n", + " (977, 0.1983471),\n", + " (978, 0.2231405),\n", + " (979, 0.2644628),\n", + " (980, 0.2520661),\n", + " (981, 0.2107438),\n", + " (982, 0.2107438),\n", + " (983, 0.23966943),\n", + " (984, 0.28099173),\n", + " (985, 0.39256197),\n", + " (986, 0.37190083),\n", + " (987, 0.446281),\n", + " (988, 0.5165289),\n", + " (989, 0.56198347),\n", + " (990, 0.47933885),\n", + " (991, 0.58264464),\n", + " (992, 0.55785125),\n", + " (993, 0.5082645),\n", + " (994, 0.47933885),\n", + " (995, 0.49586776),\n", + " (996, 0.53305787),\n", + " (997, 0.43801653),\n", + " (998, 0.41735536),\n", + " (999, 0.35123968),\n", + " ...],\n", + " [(0, 0.37190083),\n", + " (1, 0.34710744),\n", + " (2, 0.3677686),\n", + " (3, 0.38016528),\n", + " (4, 0.41735536),\n", + " (5, 0.43801653),\n", + " (6, 0.46280992),\n", + " (7, 0.553719),\n", + " (8, 0.6363636),\n", + " (9, 0.6859504),\n", + " (10, 0.6942149),\n", + " (11, 0.71487606),\n", + " (12, 0.7107438),\n", + " (13, 0.7107438),\n", + " (14, 0.73966944),\n", + " (15, 0.72727275),\n", + " (16, 0.73140496),\n", + " (17, 0.73966944),\n", + " (18, 0.74380165),\n", + " (19, 0.7644628),\n", + " (20, 0.76859504),\n", + " (21, 0.75206614),\n", + " (22, 0.7355372),\n", + " (23, 0.73966944),\n", + " (24, 0.73966944),\n", + " (25, 0.74793386),\n", + " (26, 0.74793386),\n", + " (27, 0.75206614),\n", + " (28, 0.74793386),\n", + " (29, 0.74380165),\n", + " (30, 0.74380165),\n", + " (31, 0.73140496),\n", + " (32, 0.72727275),\n", + " (33, 0.7107438),\n", + " (34, 0.6983471),\n", + " (35, 0.7107438),\n", + " (36, 0.7066116),\n", + " (37, 0.71900827),\n", + " (38, 0.71487606),\n", + " (39, 0.7107438),\n", + " (40, 0.6983471),\n", + " (41, 0.69008267),\n", + " (42, 0.6735537),\n", + " (43, 0.6735537),\n", + " (44, 0.6652893),\n", + " (45, 0.6694215),\n", + " (46, 0.6322314),\n", + " (47, 0.61157024),\n", + " (48, 0.59504133),\n", + " (49, 0.57024795),\n", + " (50, 0.55785125),\n", + " (51, 0.5371901),\n", + " (52, 0.5165289),\n", + " (53, 0.47107437),\n", + " (54, 0.4338843),\n", + " (55, 0.4090909),\n", + " (56, 0.38016528),\n", + " (57, 0.30165288),\n", + " (58, 0.2644628),\n", + " (59, 0.22727273),\n", + " (60, 0.2107438),\n", + " (61, 0.20247933),\n", + " (62, 0.1983471),\n", + " (63, 0.19008264),\n", + " (64, 0.38016528),\n", + " (65, 0.38429752),\n", + " (66, 0.38842976),\n", + " (67, 0.4214876),\n", + " (68, 0.45041323),\n", + " (69, 0.5041322),\n", + " (70, 0.59504133),\n", + " (71, 0.6528926),\n", + " (72, 0.677686),\n", + " (73, 0.7066116),\n", + " (74, 0.7066116),\n", + " (75, 0.71900827),\n", + " (76, 0.72727275),\n", + " (77, 0.73140496),\n", + " (78, 0.7355372),\n", + " (79, 0.73966944),\n", + " (80, 0.73966944),\n", + " (81, 0.75206614),\n", + " (82, 0.75619835),\n", + " (83, 0.76859504),\n", + " (84, 0.7644628),\n", + " (85, 0.76033056),\n", + " (86, 0.74793386),\n", + " (87, 0.73140496),\n", + " (88, 0.74793386),\n", + " (89, 0.75619835),\n", + " (90, 0.74793386),\n", + " (91, 0.74793386),\n", + " (92, 0.75206614),\n", + " (93, 0.73966944),\n", + " (94, 0.74380165),\n", + " (95, 0.7231405),\n", + " (96, 0.7066116),\n", + " (97, 0.7066116),\n", + " (98, 0.6818182),\n", + " (99, 0.6983471),\n", + " (100, 0.7066116),\n", + " (101, 0.7107438),\n", + " (102, 0.7107438),\n", + " (103, 0.7066116),\n", + " (104, 0.6942149),\n", + " (105, 0.6942149),\n", + " (106, 0.677686),\n", + " (107, 0.6652893),\n", + " (108, 0.6694215),\n", + " (109, 0.6363636),\n", + " (110, 0.62396693),\n", + " (111, 0.6280992),\n", + " (112, 0.59917355),\n", + " (113, 0.58264464),\n", + " (114, 0.55785125),\n", + " (115, 0.54545456),\n", + " (116, 0.5123967),\n", + " (117, 0.4752066),\n", + " (118, 0.45454547),\n", + " (119, 0.43801653),\n", + " (120, 0.41735536),\n", + " (121, 0.3677686),\n", + " (122, 0.2768595),\n", + " (123, 0.21487603),\n", + " (124, 0.24380165),\n", + " (125, 0.2768595),\n", + " (126, 0.30578512),\n", + " (127, 0.3264463),\n", + " (128, 0.38842976),\n", + " (129, 0.39256197),\n", + " (130, 0.38429752),\n", + " (131, 0.45041323),\n", + " (132, 0.5247934),\n", + " (133, 0.60330576),\n", + " (134, 0.6528926),\n", + " (135, 0.677686),\n", + " (136, 0.6983471),\n", + " (137, 0.7107438),\n", + " (138, 0.7231405),\n", + " (139, 0.7231405),\n", + " (140, 0.73966944),\n", + " (141, 0.74380165),\n", + " (142, 0.74793386),\n", + " (143, 0.73966944),\n", + " (144, 0.73966944),\n", + " (145, 0.75206614),\n", + " (146, 0.75619835),\n", + " (147, 0.76859504),\n", + " (148, 0.76033056),\n", + " (149, 0.7644628),\n", + " (150, 0.75206614),\n", + " (151, 0.74793386),\n", + " (152, 0.75206614),\n", + " (153, 0.76033056),\n", + " (154, 0.74793386),\n", + " (155, 0.75619835),\n", + " (156, 0.75619835),\n", + " (157, 0.75206614),\n", + " (158, 0.73140496),\n", + " (159, 0.7231405),\n", + " (160, 0.7107438),\n", + " (161, 0.70247936),\n", + " (162, 0.6983471),\n", + " (163, 0.70247936),\n", + " (164, 0.7107438),\n", + " (165, 0.7107438),\n", + " (166, 0.70247936),\n", + " (167, 0.6983471),\n", + " (168, 0.69008267),\n", + " (169, 0.677686),\n", + " (170, 0.6735537),\n", + " (171, 0.6404959),\n", + " (172, 0.6487603),\n", + " (173, 0.6322314),\n", + " (174, 0.61570245),\n", + " (175, 0.61157024),\n", + " (176, 0.59504133),\n", + " (177, 0.59504133),\n", + " (178, 0.57438016),\n", + " (179, 0.53305787),\n", + " (180, 0.5206612),\n", + " (181, 0.47107437),\n", + " (182, 0.47107437),\n", + " (183, 0.47933885),\n", + " (184, 0.45867768),\n", + " (185, 0.37190083),\n", + " (186, 0.3429752),\n", + " (187, 0.34710744),\n", + " (188, 0.3677686),\n", + " (189, 0.37190083),\n", + " (190, 0.35950413),\n", + " (191, 0.34710744),\n", + " (192, 0.40082645),\n", + " (193, 0.40495867),\n", + " (194, 0.4090909),\n", + " (195, 0.47933885),\n", + " (196, 0.57024795),\n", + " (197, 0.6404959),\n", + " (198, 0.6735537),\n", + " (199, 0.69008267),\n", + " (200, 0.71487606),\n", + " (201, 0.71487606),\n", + " (202, 0.72727275),\n", + " (203, 0.7231405),\n", + " (204, 0.7355372),\n", + " (205, 0.73966944),\n", + " (206, 0.76033056),\n", + " (207, 0.74380165),\n", + " (208, 0.74793386),\n", + " (209, 0.75619835),\n", + " (210, 0.76033056),\n", + " (211, 0.76033056),\n", + " (212, 0.7644628),\n", + " (213, 0.75206614),\n", + " (214, 0.75206614),\n", + " (215, 0.74380165),\n", + " (216, 0.73140496),\n", + " (217, 0.74380165),\n", + " (218, 0.74380165),\n", + " (219, 0.74793386),\n", + " (220, 0.74380165),\n", + " (221, 0.74793386),\n", + " (222, 0.71900827),\n", + " (223, 0.73140496),\n", + " (224, 0.70247936),\n", + " (225, 0.6942149),\n", + " (226, 0.6983471),\n", + " (227, 0.70247936),\n", + " (228, 0.7066116),\n", + " (229, 0.7066116),\n", + " (230, 0.69008267),\n", + " (231, 0.70247936),\n", + " (232, 0.6859504),\n", + " (233, 0.6652893),\n", + " (234, 0.6528926),\n", + " (235, 0.6446281),\n", + " (236, 0.6322314),\n", + " (237, 0.6363636),\n", + " (238, 0.607438),\n", + " (239, 0.607438),\n", + " (240, 0.59917355),\n", + " (241, 0.57438016),\n", + " (242, 0.57024795),\n", + " (243, 0.5247934),\n", + " (244, 0.5206612),\n", + " (245, 0.49173555),\n", + " (246, 0.4876033),\n", + " (247, 0.4876033),\n", + " (248, 0.47107437),\n", + " (249, 0.40495867),\n", + " (250, 0.37603307),\n", + " (251, 0.35123968),\n", + " (252, 0.33471075),\n", + " (253, 0.3305785),\n", + " (254, 0.3305785),\n", + " (255, 0.3264463),\n", + " (256, 0.3140496),\n", + " (257, 0.29752067),\n", + " (258, 0.39256197),\n", + " (259, 0.4876033),\n", + " (260, 0.59504133),\n", + " (261, 0.6570248),\n", + " (262, 0.6570248),\n", + " (263, 0.6859504),\n", + " (264, 0.72727275),\n", + " (265, 0.7355372),\n", + " (266, 0.7231405),\n", + " (267, 0.71487606),\n", + " (268, 0.74793386),\n", + " (269, 0.7355372),\n", + " (270, 0.73140496),\n", + " (271, 0.7231405),\n", + " (272, 0.73966944),\n", + " (273, 0.73966944),\n", + " (274, 0.74380165),\n", + " (275, 0.76033056),\n", + " (276, 0.76033056),\n", + " (277, 0.75206614),\n", + " (278, 0.75206614),\n", + " (279, 0.74793386),\n", + " (280, 0.73966944),\n", + " (281, 0.7355372),\n", + " (282, 0.74380165),\n", + " (283, 0.74380165),\n", + " (284, 0.73140496),\n", + " (285, 0.71487606),\n", + " (286, 0.7066116),\n", + " (287, 0.70247936),\n", + " (288, 0.6942149),\n", + " (289, 0.6942149),\n", + " (290, 0.6942149),\n", + " (291, 0.6983471),\n", + " (292, 0.7066116),\n", + " (293, 0.70247936),\n", + " (294, 0.6859504),\n", + " (295, 0.6859504),\n", + " (296, 0.6859504),\n", + " (297, 0.6487603),\n", + " (298, 0.6487603),\n", + " (299, 0.6280992),\n", + " (300, 0.62396693),\n", + " (301, 0.61570245),\n", + " (302, 0.607438),\n", + " (303, 0.60330576),\n", + " (304, 0.59090906),\n", + " (305, 0.58677685),\n", + " (306, 0.55785125),\n", + " (307, 0.5413223),\n", + " (308, 0.5082645),\n", + " (309, 0.49173555),\n", + " (310, 0.4876033),\n", + " (311, 0.5),\n", + " (312, 0.47107437),\n", + " (313, 0.4338843),\n", + " (314, 0.40495867),\n", + " (315, 0.3264463),\n", + " (316, 0.29752067),\n", + " (317, 0.28099173),\n", + " (318, 0.2603306),\n", + " (319, 0.24380165),\n", + " (320, 0.2231405),\n", + " (321, 0.24793388),\n", + " (322, 0.41735536),\n", + " (323, 0.5495868),\n", + " (324, 0.61157024),\n", + " (325, 0.6446281),\n", + " (326, 0.661157),\n", + " (327, 0.677686),\n", + " (328, 0.6942149),\n", + " (329, 0.71900827),\n", + " (330, 0.72727275),\n", + " (331, 0.71900827),\n", + " (332, 0.73966944),\n", + " (333, 0.7355372),\n", + " (334, 0.7355372),\n", + " (335, 0.73966944),\n", + " (336, 0.73966944),\n", + " (337, 0.74380165),\n", + " (338, 0.73140496),\n", + " (339, 0.74380165),\n", + " (340, 0.74793386),\n", + " (341, 0.75619835),\n", + " (342, 0.74793386),\n", + " (343, 0.74380165),\n", + " (344, 0.73966944),\n", + " (345, 0.71900827),\n", + " (346, 0.73140496),\n", + " (347, 0.7231405),\n", + " (348, 0.71487606),\n", + " (349, 0.70247936),\n", + " (350, 0.69008267),\n", + " (351, 0.69008267),\n", + " (352, 0.6818182),\n", + " (353, 0.69008267),\n", + " (354, 0.677686),\n", + " (355, 0.70247936),\n", + " (356, 0.70247936),\n", + " (357, 0.6859504),\n", + " (358, 0.6818182),\n", + " (359, 0.6735537),\n", + " (360, 0.6652893),\n", + " (361, 0.6487603),\n", + " (362, 0.6322314),\n", + " (363, 0.6198347),\n", + " (364, 0.607438),\n", + " (365, 0.59090906),\n", + " (366, 0.61157024),\n", + " (367, 0.59917355),\n", + " (368, 0.59090906),\n", + " (369, 0.5785124),\n", + " (370, 0.57024795),\n", + " (371, 0.5413223),\n", + " (372, 0.5165289),\n", + " (373, 0.49173555),\n", + " (374, 0.48347107),\n", + " (375, 0.5082645),\n", + " (376, 0.49173555),\n", + " (377, 0.42561984),\n", + " (378, 0.3305785),\n", + " (379, 0.28099173),\n", + " (380, 0.2107438),\n", + " (381, 0.2107438),\n", + " (382, 0.21487603),\n", + " (383, 0.21487603),\n", + " (384, 0.2231405),\n", + " (385, 0.30991736),\n", + " (386, 0.46280992),\n", + " (387, 0.57438016),\n", + " (388, 0.6322314),\n", + " (389, 0.6446281),\n", + " (390, 0.6528926),\n", + " (391, 0.6735537),\n", + " (392, 0.69008267),\n", + " (393, 0.71487606),\n", + " (394, 0.74380165),\n", + " (395, 0.73140496),\n", + " (396, 0.7107438),\n", + " (397, 0.7231405),\n", + " (398, 0.72727275),\n", + " (399, 0.71487606),\n", + " (400, 0.7107438),\n", + " (401, 0.71900827),\n", + " (402, 0.72727275),\n", + " (403, 0.7231405),\n", + " (404, 0.72727275),\n", + " (405, 0.74380165),\n", + " (406, 0.73140496),\n", + " (407, 0.73140496),\n", + " (408, 0.7231405),\n", + " (409, 0.71487606),\n", + " (410, 0.71487606),\n", + " (411, 0.70247936),\n", + " (412, 0.6942149),\n", + " (413, 0.6942149),\n", + " (414, 0.6818182),\n", + " (415, 0.6859504),\n", + " (416, 0.6735537),\n", + " (417, 0.6818182),\n", + " (418, 0.6859504),\n", + " (419, 0.677686),\n", + " (420, 0.677686),\n", + " (421, 0.677686),\n", + " (422, 0.6652893),\n", + " (423, 0.6652893),\n", + " (424, 0.6404959),\n", + " (425, 0.6280992),\n", + " (426, 0.61570245),\n", + " (427, 0.59504133),\n", + " (428, 0.59917355),\n", + " (429, 0.59917355),\n", + " (430, 0.58677685),\n", + " (431, 0.58677685),\n", + " (432, 0.59504133),\n", + " (433, 0.57438016),\n", + " (434, 0.5495868),\n", + " (435, 0.5206612),\n", + " (436, 0.5082645),\n", + " (437, 0.49173555),\n", + " (438, 0.46694216),\n", + " (439, 0.46694216),\n", + " (440, 0.47933885),\n", + " (441, 0.4338843),\n", + " (442, 0.3181818),\n", + " (443, 0.29752067),\n", + " (444, 0.22727273),\n", + " (445, 0.23140496),\n", + " (446, 0.23966943),\n", + " (447, 0.24380165),\n", + " (448, 0.21900827),\n", + " (449, 0.38016528),\n", + " (450, 0.5123967),\n", + " (451, 0.61157024),\n", + " (452, 0.6404959),\n", + " (453, 0.6446281),\n", + " (454, 0.6446281),\n", + " (455, 0.6694215),\n", + " (456, 0.6942149),\n", + " (457, 0.71900827),\n", + " (458, 0.71900827),\n", + " (459, 0.6694215),\n", + " (460, 0.6198347),\n", + " (461, 0.62396693),\n", + " (462, 0.62396693),\n", + " (463, 0.6363636),\n", + " (464, 0.6363636),\n", + " (465, 0.6446281),\n", + " (466, 0.677686),\n", + " (467, 0.6983471),\n", + " (468, 0.7066116),\n", + " (469, 0.71900827),\n", + " (470, 0.71487606),\n", + " (471, 0.71487606),\n", + " (472, 0.7107438),\n", + " (473, 0.70247936),\n", + " (474, 0.69008267),\n", + " (475, 0.69008267),\n", + " (476, 0.6818182),\n", + " (477, 0.6694215),\n", + " (478, 0.6652893),\n", + " (479, 0.6528926),\n", + " (480, 0.6694215),\n", + " (481, 0.6694215),\n", + " (482, 0.6735537),\n", + " (483, 0.6694215),\n", + " (484, 0.6652893),\n", + " (485, 0.6528926),\n", + " (486, 0.6487603),\n", + " (487, 0.6487603),\n", + " (488, 0.6198347),\n", + " (489, 0.59917355),\n", + " (490, 0.59917355),\n", + " (491, 0.59090906),\n", + " (492, 0.5785124),\n", + " (493, 0.58677685),\n", + " (494, 0.59090906),\n", + " (495, 0.58677685),\n", + " (496, 0.57024795),\n", + " (497, 0.5371901),\n", + " (498, 0.49173555),\n", + " (499, 0.446281),\n", + " (500, 0.42975205),\n", + " (501, 0.41735536),\n", + " (502, 0.41322315),\n", + " (503, 0.42975205),\n", + " (504, 0.4338843),\n", + " (505, 0.40495867),\n", + " (506, 0.30578512),\n", + " (507, 0.28099173),\n", + " (508, 0.25619835),\n", + " (509, 0.25619835),\n", + " (510, 0.2520661),\n", + " (511, 0.24380165),\n", + " (512, 0.21487603),\n", + " (513, 0.44214877),\n", + " (514, 0.5661157),\n", + " (515, 0.6198347),\n", + " (516, 0.6322314),\n", + " (517, 0.6446281),\n", + " (518, 0.6363636),\n", + " (519, 0.661157),\n", + " (520, 0.677686),\n", + " (521, 0.661157),\n", + " (522, 0.607438),\n", + " (523, 0.553719),\n", + " (524, 0.5289256),\n", + " (525, 0.5289256),\n", + " (526, 0.5123967),\n", + " (527, 0.5041322),\n", + " (528, 0.5),\n", + " (529, 0.5371901),\n", + " (530, 0.5661157),\n", + " (531, 0.5661157),\n", + " (532, 0.60330576),\n", + " (533, 0.6404959),\n", + " (534, 0.6404959),\n", + " (535, 0.6446281),\n", + " (536, 0.6694215),\n", + " (537, 0.6818182),\n", + " (538, 0.6735537),\n", + " (539, 0.6735537),\n", + " (540, 0.661157),\n", + " (541, 0.6487603),\n", + " (542, 0.6446281),\n", + " (543, 0.6322314),\n", + " (544, 0.6446281),\n", + " (545, 0.661157),\n", + " (546, 0.661157),\n", + " (547, 0.6487603),\n", + " (548, 0.6404959),\n", + " (549, 0.6404959),\n", + " (550, 0.6363636),\n", + " (551, 0.6280992),\n", + " (552, 0.607438),\n", + " (553, 0.58677685),\n", + " (554, 0.553719),\n", + " (555, 0.5661157),\n", + " (556, 0.56198347),\n", + " (557, 0.5495868),\n", + " (558, 0.5495868),\n", + " (559, 0.53305787),\n", + " (560, 0.49586776),\n", + " (561, 0.45454547),\n", + " (562, 0.40495867),\n", + " (563, 0.36363637),\n", + " (564, 0.35123968),\n", + " (565, 0.33471075),\n", + " (566, 0.3677686),\n", + " (567, 0.3553719),\n", + " (568, 0.34710744),\n", + " (569, 0.3305785),\n", + " (570, 0.26859504),\n", + " (571, 0.26859504),\n", + " (572, 0.25619835),\n", + " (573, 0.22727273),\n", + " (574, 0.2231405),\n", + " (575, 0.21487603),\n", + " (576, 0.2520661),\n", + " (577, 0.5165289),\n", + " (578, 0.61157024),\n", + " (579, 0.6280992),\n", + " (580, 0.6322314),\n", + " (581, 0.6363636),\n", + " (582, 0.62396693),\n", + " (583, 0.59090906),\n", + " (584, 0.5495868),\n", + " (585, 0.54545456),\n", + " (586, 0.5495868),\n", + " (587, 0.5495868),\n", + " (588, 0.55785125),\n", + " (589, 0.56198347),\n", + " (590, 0.5289256),\n", + " (591, 0.5041322),\n", + " (592, 0.45041323),\n", + " (593, 0.44214877),\n", + " (594, 0.45454547),\n", + " (595, 0.45041323),\n", + " (596, 0.42975205),\n", + " (597, 0.45041323),\n", + " (598, 0.45041323),\n", + " (599, 0.47933885),\n", + " (600, 0.5289256),\n", + " (601, 0.59090906),\n", + " (602, 0.62396693),\n", + " (603, 0.6322314),\n", + " (604, 0.62396693),\n", + " (605, 0.59917355),\n", + " (606, 0.62396693),\n", + " (607, 0.61570245),\n", + " (608, 0.6363636),\n", + " (609, 0.6404959),\n", + " (610, 0.6280992),\n", + " (611, 0.6280992),\n", + " (612, 0.61157024),\n", + " (613, 0.61570245),\n", + " (614, 0.59917355),\n", + " (615, 0.5785124),\n", + " (616, 0.5661157),\n", + " (617, 0.5413223),\n", + " (618, 0.5413223),\n", + " (619, 0.5289256),\n", + " (620, 0.49586776),\n", + " (621, 0.45041323),\n", + " (622, 0.40495867),\n", + " (623, 0.4090909),\n", + " (624, 0.36363637),\n", + " (625, 0.35950413),\n", + " (626, 0.35950413),\n", + " (627, 0.34710744),\n", + " (628, 0.37190083),\n", + " (629, 0.40082645),\n", + " (630, 0.41322315),\n", + " (631, 0.40495867),\n", + " (632, 0.38429752),\n", + " (633, 0.35123968),\n", + " (634, 0.30578512),\n", + " (635, 0.2603306),\n", + " (636, 0.2603306),\n", + " (637, 0.23140496),\n", + " (638, 0.23966943),\n", + " (639, 0.23966943),\n", + " (640, 0.3305785),\n", + " (641, 0.58677685),\n", + " (642, 0.6363636),\n", + " (643, 0.6280992),\n", + " (644, 0.6322314),\n", + " (645, 0.62396693),\n", + " (646, 0.60330576),\n", + " (647, 0.57438016),\n", + " (648, 0.5661157),\n", + " (649, 0.57438016),\n", + " (650, 0.62396693),\n", + " (651, 0.6404959),\n", + " (652, 0.6446281),\n", + " (653, 0.62396693),\n", + " (654, 0.607438),\n", + " (655, 0.58677685),\n", + " (656, 0.5247934),\n", + " (657, 0.4876033),\n", + " (658, 0.46280992),\n", + " (659, 0.4338843),\n", + " (660, 0.41322315),\n", + " (661, 0.38842976),\n", + " (662, 0.338843),\n", + " (663, 0.35123968),\n", + " (664, 0.37190083),\n", + " (665, 0.44214877),\n", + " (666, 0.5206612),\n", + " (667, 0.57024795),\n", + " (668, 0.5785124),\n", + " (669, 0.57438016),\n", + " (670, 0.57438016),\n", + " (671, 0.59090906),\n", + " (672, 0.607438),\n", + " (673, 0.59917355),\n", + " (674, 0.60330576),\n", + " (675, 0.58677685),\n", + " (676, 0.5661157),\n", + " (677, 0.56198347),\n", + " (678, 0.5495868),\n", + " (679, 0.5289256),\n", + " (680, 0.5206612),\n", + " (681, 0.5),\n", + " (682, 0.4752066),\n", + " (683, 0.4214876),\n", + " (684, 0.34710744),\n", + " (685, 0.28099173),\n", + " (686, 0.28099173),\n", + " (687, 0.29338843),\n", + " (688, 0.32231405),\n", + " (689, 0.3264463),\n", + " (690, 0.37603307),\n", + " (691, 0.3966942),\n", + " (692, 0.42975205),\n", + " (693, 0.4338843),\n", + " (694, 0.45454547),\n", + " (695, 0.43801653),\n", + " (696, 0.42975205),\n", + " (697, 0.40495867),\n", + " (698, 0.34710744),\n", + " (699, 0.29752067),\n", + " (700, 0.2892562),\n", + " (701, 0.23553719),\n", + " (702, 0.23553719),\n", + " (703, 0.23140496),\n", + " (704, 0.4090909),\n", + " (705, 0.59504133),\n", + " (706, 0.6487603),\n", + " (707, 0.6280992),\n", + " (708, 0.61157024),\n", + " (709, 0.6198347),\n", + " (710, 0.6198347),\n", + " (711, 0.6363636),\n", + " (712, 0.6487603),\n", + " (713, 0.6570248),\n", + " (714, 0.6694215),\n", + " (715, 0.6404959),\n", + " (716, 0.6198347),\n", + " (717, 0.59504133),\n", + " (718, 0.56198347),\n", + " (719, 0.5289256),\n", + " (720, 0.49586776),\n", + " (721, 0.446281),\n", + " (722, 0.446281),\n", + " (723, 0.4338843),\n", + " (724, 0.4090909),\n", + " (725, 0.39256197),\n", + " (726, 0.3677686),\n", + " (727, 0.3305785),\n", + " (728, 0.3181818),\n", + " (729, 0.3181818),\n", + " (730, 0.41322315),\n", + " (731, 0.48347107),\n", + " (732, 0.5206612),\n", + " (733, 0.5371901),\n", + " (734, 0.54545456),\n", + " (735, 0.56198347),\n", + " (736, 0.5661157),\n", + " (737, 0.56198347),\n", + " (738, 0.56198347),\n", + " (739, 0.53305787),\n", + " (740, 0.5123967),\n", + " (741, 0.49586776),\n", + " (742, 0.49586776),\n", + " (743, 0.46280992),\n", + " (744, 0.45041323),\n", + " (745, 0.43801653),\n", + " (746, 0.39256197),\n", + " (747, 0.30165288),\n", + " (748, 0.25619835),\n", + " (749, 0.2231405),\n", + " (750, 0.2644628),\n", + " (751, 0.29338843),\n", + " (752, 0.30578512),\n", + " (753, 0.3305785),\n", + " (754, 0.3429752),\n", + " (755, 0.3553719),\n", + " (756, 0.38842976),\n", + " (757, 0.4090909),\n", + " (758, 0.4090909),\n", + " (759, 0.41735536),\n", + " (760, 0.42561984),\n", + " (761, 0.3966942),\n", + " (762, 0.3553719),\n", + " (763, 0.338843),\n", + " (764, 0.35123968),\n", + " (765, 0.23966943),\n", + " (766, 0.24380165),\n", + " (767, 0.24793388),\n", + " (768, 0.47933885),\n", + " (769, 0.61570245),\n", + " (770, 0.6280992),\n", + " (771, 0.6363636),\n", + " (772, 0.59917355),\n", + " (773, 0.57438016),\n", + " (774, 0.59090906),\n", + " (775, 0.6198347),\n", + " (776, 0.62396693),\n", + " (777, 0.59917355),\n", + " (778, 0.59090906),\n", + " (779, 0.5413223),\n", + " (780, 0.4876033),\n", + " (781, 0.45454547),\n", + " (782, 0.40082645),\n", + " (783, 0.38429752),\n", + " (784, 0.37190083),\n", + " (785, 0.3553719),\n", + " (786, 0.3305785),\n", + " (787, 0.35123968),\n", + " (788, 0.37603307),\n", + " (789, 0.38842976),\n", + " (790, 0.39256197),\n", + " (791, 0.338843),\n", + " (792, 0.35123968),\n", + " (793, 0.3429752),\n", + " (794, 0.38429752),\n", + " (795, 0.43801653),\n", + " (796, 0.47107437),\n", + " (797, 0.4876033),\n", + " (798, 0.5206612),\n", + " (799, 0.5413223),\n", + " (800, 0.54545456),\n", + " (801, 0.53305787),\n", + " (802, 0.5247934),\n", + " (803, 0.5123967),\n", + " (804, 0.4876033),\n", + " (805, 0.4752066),\n", + " (806, 0.45454547),\n", + " (807, 0.4214876),\n", + " (808, 0.40082645),\n", + " (809, 0.36363637),\n", + " (810, 0.30165288),\n", + " (811, 0.25619835),\n", + " (812, 0.23140496),\n", + " (813, 0.2520661),\n", + " (814, 0.24793388),\n", + " (815, 0.2231405),\n", + " (816, 0.2231405),\n", + " (817, 0.23966943),\n", + " (818, 0.25619835),\n", + " (819, 0.24793388),\n", + " (820, 0.2768595),\n", + " (821, 0.3140496),\n", + " (822, 0.33471075),\n", + " (823, 0.37190083),\n", + " (824, 0.38842976),\n", + " (825, 0.3553719),\n", + " (826, 0.34710744),\n", + " (827, 0.36363637),\n", + " (828, 0.39256197),\n", + " (829, 0.30165288),\n", + " (830, 0.29752067),\n", + " (831, 0.30165288),\n", + " (832, 0.54545456),\n", + " (833, 0.62396693),\n", + " (834, 0.6280992),\n", + " (835, 0.6363636),\n", + " (836, 0.6280992),\n", + " (837, 0.57024795),\n", + " (838, 0.57438016),\n", + " (839, 0.56198347),\n", + " (840, 0.5371901),\n", + " (841, 0.49586776),\n", + " (842, 0.44214877),\n", + " (843, 0.38016528),\n", + " (844, 0.30165288),\n", + " (845, 0.27272728),\n", + " (846, 0.2644628),\n", + " (847, 0.22727273),\n", + " (848, 0.23966943),\n", + " (849, 0.2231405),\n", + " (850, 0.20247933),\n", + " (851, 0.23140496),\n", + " (852, 0.28099173),\n", + " (853, 0.3264463),\n", + " (854, 0.3677686),\n", + " (855, 0.3677686),\n", + " (856, 0.37190083),\n", + " (857, 0.38842976),\n", + " (858, 0.3966942),\n", + " (859, 0.41735536),\n", + " (860, 0.44214877),\n", + " (861, 0.47107437),\n", + " (862, 0.5371901),\n", + " (863, 0.56198347),\n", + " (864, 0.55785125),\n", + " (865, 0.5495868),\n", + " (866, 0.5371901),\n", + " (867, 0.5289256),\n", + " (868, 0.5041322),\n", + " (869, 0.47107437),\n", + " (870, 0.41322315),\n", + " (871, 0.39256197),\n", + " (872, 0.35123968),\n", + " (873, 0.3305785),\n", + " (874, 0.2892562),\n", + " (875, 0.2768595),\n", + " (876, 0.21900827),\n", + " (877, 0.1983471),\n", + " (878, 0.19008264),\n", + " (879, 0.16528925),\n", + " (880, 0.16115703),\n", + " (881, 0.1694215),\n", + " (882, 0.24380165),\n", + " (883, 0.2231405),\n", + " (884, 0.2107438),\n", + " (885, 0.17768595),\n", + " (886, 0.22727273),\n", + " (887, 0.2892562),\n", + " (888, 0.3181818),\n", + " (889, 0.3140496),\n", + " (890, 0.338843),\n", + " (891, 0.37603307),\n", + " (892, 0.39256197),\n", + " (893, 0.35123968),\n", + " (894, 0.30578512),\n", + " (895, 0.29752067),\n", + " (896, 0.59090906),\n", + " (897, 0.6322314),\n", + " (898, 0.6280992),\n", + " (899, 0.6404959),\n", + " (900, 0.62396693),\n", + " (901, 0.5661157),\n", + " (902, 0.5495868),\n", + " (903, 0.5),\n", + " (904, 0.46694216),\n", + " (905, 0.3677686),\n", + " (906, 0.28512397),\n", + " (907, 0.23553719),\n", + " (908, 0.2520661),\n", + " (909, 0.23140496),\n", + " (910, 0.19421488),\n", + " (911, 0.2231405),\n", + " (912, 0.1983471),\n", + " (913, 0.16528925),\n", + " (914, 0.1570248),\n", + " (915, 0.1694215),\n", + " (916, 0.21900827),\n", + " (917, 0.24380165),\n", + " (918, 0.3264463),\n", + " (919, 0.38429752),\n", + " (920, 0.38842976),\n", + " (921, 0.3966942),\n", + " (922, 0.39256197),\n", + " (923, 0.41735536),\n", + " (924, 0.43801653),\n", + " (925, 0.4876033),\n", + " (926, 0.56198347),\n", + " (927, 0.61157024),\n", + " (928, 0.62396693),\n", + " (929, 0.61157024),\n", + " (930, 0.58677685),\n", + " (931, 0.56198347),\n", + " (932, 0.5041322),\n", + " (933, 0.46280992),\n", + " (934, 0.39256197),\n", + " (935, 0.35950413),\n", + " (936, 0.3264463),\n", + " (937, 0.29752067),\n", + " (938, 0.2603306),\n", + " (939, 0.23140496),\n", + " (940, 0.17768595),\n", + " (941, 0.1446281),\n", + " (942, 0.16115703),\n", + " (943, 0.11570248),\n", + " (944, 0.1322314),\n", + " (945, 0.11157025),\n", + " (946, 0.1570248),\n", + " (947, 0.1570248),\n", + " (948, 0.16528925),\n", + " (949, 0.22727273),\n", + " (950, 0.18595041),\n", + " (951, 0.20661157),\n", + " (952, 0.2768595),\n", + " (953, 0.30578512),\n", + " (954, 0.338843),\n", + " (955, 0.38016528),\n", + " (956, 0.38842976),\n", + " (957, 0.3677686),\n", + " (958, 0.27272728),\n", + " (959, 0.26859504),\n", + " (960, 0.57024795),\n", + " (961, 0.62396693),\n", + " (962, 0.6404959),\n", + " (963, 0.6446281),\n", + " (964, 0.6322314),\n", + " (965, 0.60330576),\n", + " (966, 0.54545456),\n", + " (967, 0.5041322),\n", + " (968, 0.4214876),\n", + " (969, 0.30578512),\n", + " (970, 0.23553719),\n", + " (971, 0.20247933),\n", + " (972, 0.2107438),\n", + " (973, 0.21900827),\n", + " (974, 0.17355372),\n", + " (975, 0.23966943),\n", + " (976, 0.2107438),\n", + " (977, 0.16115703),\n", + " (978, 0.19008264),\n", + " (979, 0.19008264),\n", + " (980, 0.20247933),\n", + " (981, 0.24380165),\n", + " (982, 0.2603306),\n", + " (983, 0.3553719),\n", + " (984, 0.38842976),\n", + " (985, 0.4090909),\n", + " (986, 0.41322315),\n", + " (987, 0.40495867),\n", + " (988, 0.45041323),\n", + " (989, 0.53305787),\n", + " (990, 0.6198347),\n", + " (991, 0.6652893),\n", + " (992, 0.6859504),\n", + " (993, 0.6694215),\n", + " (994, 0.6487603),\n", + " (995, 0.59090906),\n", + " (996, 0.5123967),\n", + " (997, 0.45454547),\n", + " (998, 0.38842976),\n", + " (999, 0.32231405),\n", + " ...],\n", + " [(0, 0.28099173),\n", + " (1, 0.35950413),\n", + " (2, 0.40495867),\n", + " (3, 0.446281),\n", + " (4, 0.5495868),\n", + " (5, 0.5785124),\n", + " (6, 0.607438),\n", + " (7, 0.6528926),\n", + " (8, 0.6652893),\n", + " (9, 0.71900827),\n", + " (10, 0.72727275),\n", + " (11, 0.73966944),\n", + " (12, 0.73966944),\n", + " (13, 0.75619835),\n", + " (14, 0.7768595),\n", + " (15, 0.76859504),\n", + " (16, 0.78512394),\n", + " (17, 0.7892562),\n", + " (18, 0.79752064),\n", + " (19, 0.8057851),\n", + " (20, 0.8057851),\n", + " (21, 0.8016529),\n", + " (22, 0.8181818),\n", + " (23, 0.8264463),\n", + " (24, 0.822314),\n", + " (25, 0.822314),\n", + " (26, 0.8305785),\n", + " (27, 0.838843),\n", + " (28, 0.838843),\n", + " (29, 0.838843),\n", + " (30, 0.8429752),\n", + " (31, 0.8429752),\n", + " (32, 0.8429752),\n", + " (33, 0.8429752),\n", + " (34, 0.8471074),\n", + " (35, 0.8553719),\n", + " (36, 0.8512397),\n", + " (37, 0.8553719),\n", + " (38, 0.8512397),\n", + " (39, 0.8512397),\n", + " (40, 0.8553719),\n", + " (41, 0.8553719),\n", + " (42, 0.8512397),\n", + " (43, 0.8512397),\n", + " (44, 0.8512397),\n", + " (45, 0.8471074),\n", + " (46, 0.8429752),\n", + " (47, 0.8471074),\n", + " (48, 0.8429752),\n", + " (49, 0.838843),\n", + " (50, 0.8305785),\n", + " (51, 0.8264463),\n", + " (52, 0.8264463),\n", + " (53, 0.8140496),\n", + " (54, 0.8057851),\n", + " (55, 0.7933884),\n", + " (56, 0.7768595),\n", + " (57, 0.72727275),\n", + " (58, 0.6859504),\n", + " (59, 0.6446281),\n", + " (60, 0.54545456),\n", + " (61, 0.446281),\n", + " (62, 0.2892562),\n", + " (63, 0.09090909),\n", + " (64, 0.3305785),\n", + " (65, 0.41735536),\n", + " (66, 0.45867768),\n", + " (67, 0.5041322),\n", + " (68, 0.553719),\n", + " (69, 0.60330576),\n", + " (70, 0.61157024),\n", + " (71, 0.6652893),\n", + " (72, 0.6942149),\n", + " (73, 0.74793386),\n", + " (74, 0.7644628),\n", + " (75, 0.76033056),\n", + " (76, 0.76033056),\n", + " (77, 0.77272725),\n", + " (78, 0.79752064),\n", + " (79, 0.7933884),\n", + " (80, 0.8016529),\n", + " (81, 0.8057851),\n", + " (82, 0.8140496),\n", + " (83, 0.8181818),\n", + " (84, 0.8181818),\n", + " (85, 0.8264463),\n", + " (86, 0.8347107),\n", + " (87, 0.8347107),\n", + " (88, 0.8347107),\n", + " (89, 0.8305785),\n", + " (90, 0.838843),\n", + " (91, 0.8471074),\n", + " (92, 0.8512397),\n", + " (93, 0.8471074),\n", + " (94, 0.8471074),\n", + " (95, 0.8512397),\n", + " (96, 0.8512397),\n", + " (97, 0.8512397),\n", + " (98, 0.8512397),\n", + " (99, 0.8512397),\n", + " (100, 0.8553719),\n", + " (101, 0.8553719),\n", + " (102, 0.8553719),\n", + " (103, 0.8595041),\n", + " (104, 0.8553719),\n", + " (105, 0.8553719),\n", + " (106, 0.8553719),\n", + " (107, 0.8553719),\n", + " (108, 0.8553719),\n", + " (109, 0.8512397),\n", + " (110, 0.8512397),\n", + " (111, 0.8429752),\n", + " (112, 0.838843),\n", + " (113, 0.8347107),\n", + " (114, 0.822314),\n", + " (115, 0.822314),\n", + " (116, 0.8140496),\n", + " (117, 0.80991733),\n", + " (118, 0.8057851),\n", + " (119, 0.7933884),\n", + " (120, 0.7768595),\n", + " (121, 0.72727275),\n", + " (122, 0.6818182),\n", + " (123, 0.6570248),\n", + " (124, 0.58677685),\n", + " (125, 0.44214877),\n", + " (126, 0.28512397),\n", + " (127, 0.16115703),\n", + " (128, 0.3429752),\n", + " (129, 0.44214877),\n", + " (130, 0.47107437),\n", + " (131, 0.53305787),\n", + " (132, 0.5495868),\n", + " (133, 0.58677685),\n", + " (134, 0.6198347),\n", + " (135, 0.6528926),\n", + " (136, 0.71487606),\n", + " (137, 0.74793386),\n", + " (138, 0.76859504),\n", + " (139, 0.78099173),\n", + " (140, 0.7892562),\n", + " (141, 0.7933884),\n", + " (142, 0.79752064),\n", + " (143, 0.8016529),\n", + " (144, 0.80991733),\n", + " (145, 0.822314),\n", + " (146, 0.8264463),\n", + " (147, 0.8264463),\n", + " (148, 0.8264463),\n", + " (149, 0.8305785),\n", + " (150, 0.838843),\n", + " (151, 0.8347107),\n", + " (152, 0.8347107),\n", + " (153, 0.8347107),\n", + " (154, 0.8429752),\n", + " (155, 0.8512397),\n", + " (156, 0.8553719),\n", + " (157, 0.8512397),\n", + " (158, 0.8471074),\n", + " (159, 0.8512397),\n", + " (160, 0.8553719),\n", + " (161, 0.8553719),\n", + " (162, 0.8553719),\n", + " (163, 0.8512397),\n", + " (164, 0.8553719),\n", + " (165, 0.8553719),\n", + " (166, 0.8553719),\n", + " (167, 0.8595041),\n", + " (168, 0.8595041),\n", + " (169, 0.8553719),\n", + " (170, 0.8512397),\n", + " (171, 0.8553719),\n", + " (172, 0.8512397),\n", + " (173, 0.8471074),\n", + " (174, 0.8471074),\n", + " (175, 0.838843),\n", + " (176, 0.8429752),\n", + " (177, 0.8347107),\n", + " (178, 0.78512394),\n", + " (179, 0.8057851),\n", + " (180, 0.8181818),\n", + " (181, 0.8057851),\n", + " (182, 0.80991733),\n", + " (183, 0.79752064),\n", + " (184, 0.77272725),\n", + " (185, 0.71487606),\n", + " (186, 0.6818182),\n", + " (187, 0.6735537),\n", + " (188, 0.61157024),\n", + " (189, 0.45867768),\n", + " (190, 0.30991736),\n", + " (191, 0.15289256),\n", + " (192, 0.29752067),\n", + " (193, 0.446281),\n", + " (194, 0.47107437),\n", + " (195, 0.5371901),\n", + " (196, 0.57438016),\n", + " (197, 0.56198347),\n", + " (198, 0.60330576),\n", + " (199, 0.6404959),\n", + " (200, 0.7107438),\n", + " (201, 0.75619835),\n", + " (202, 0.78099173),\n", + " (203, 0.79752064),\n", + " (204, 0.80991733),\n", + " (205, 0.80991733),\n", + " (206, 0.80991733),\n", + " (207, 0.80991733),\n", + " (208, 0.8057851),\n", + " (209, 0.8305785),\n", + " (210, 0.8347107),\n", + " (211, 0.8305785),\n", + " (212, 0.8305785),\n", + " (213, 0.8347107),\n", + " (214, 0.8347107),\n", + " (215, 0.8347107),\n", + " (216, 0.8347107),\n", + " (217, 0.838843),\n", + " (218, 0.8429752),\n", + " (219, 0.8471074),\n", + " (220, 0.8553719),\n", + " (221, 0.8553719),\n", + " (222, 0.8512397),\n", + " (223, 0.8553719),\n", + " (224, 0.8595041),\n", + " (225, 0.8553719),\n", + " (226, 0.8595041),\n", + " (227, 0.8553719),\n", + " (228, 0.8512397),\n", + " (229, 0.8553719),\n", + " (230, 0.8553719),\n", + " (231, 0.8553719),\n", + " (232, 0.8553719),\n", + " (233, 0.8512397),\n", + " (234, 0.8512397),\n", + " (235, 0.8512397),\n", + " (236, 0.8512397),\n", + " (237, 0.8512397),\n", + " (238, 0.8429752),\n", + " (239, 0.838843),\n", + " (240, 0.8264463),\n", + " (241, 0.80991733),\n", + " (242, 0.7892562),\n", + " (243, 0.78512394),\n", + " (244, 0.7933884),\n", + " (245, 0.78512394),\n", + " (246, 0.7768595),\n", + " (247, 0.8016529),\n", + " (248, 0.7768595),\n", + " (249, 0.7231405),\n", + " (250, 0.6735537),\n", + " (251, 0.677686),\n", + " (252, 0.6446281),\n", + " (253, 0.4752066),\n", + " (254, 0.34710744),\n", + " (255, 0.15289256),\n", + " (256, 0.3140496),\n", + " (257, 0.4214876),\n", + " (258, 0.47933885),\n", + " (259, 0.5413223),\n", + " (260, 0.57024795),\n", + " (261, 0.55785125),\n", + " (262, 0.58264464),\n", + " (263, 0.6528926),\n", + " (264, 0.71900827),\n", + " (265, 0.7644628),\n", + " (266, 0.78512394),\n", + " (267, 0.8057851),\n", + " (268, 0.8140496),\n", + " (269, 0.8140496),\n", + " (270, 0.80991733),\n", + " (271, 0.80991733),\n", + " (272, 0.80991733),\n", + " (273, 0.8181818),\n", + " (274, 0.822314),\n", + " (275, 0.8264463),\n", + " (276, 0.8264463),\n", + " (277, 0.8305785),\n", + " (278, 0.8305785),\n", + " (279, 0.8305785),\n", + " (280, 0.8305785),\n", + " (281, 0.838843),\n", + " (282, 0.838843),\n", + " (283, 0.838843),\n", + " (284, 0.8512397),\n", + " (285, 0.8595041),\n", + " (286, 0.8553719),\n", + " (287, 0.8553719),\n", + " (288, 0.8553719),\n", + " (289, 0.8553719),\n", + " (290, 0.8553719),\n", + " (291, 0.8553719),\n", + " (292, 0.8553719),\n", + " (293, 0.8512397),\n", + " (294, 0.8512397),\n", + " (295, 0.8512397),\n", + " (296, 0.8553719),\n", + " (297, 0.8512397),\n", + " (298, 0.8471074),\n", + " (299, 0.8512397),\n", + " (300, 0.8512397),\n", + " (301, 0.8429752),\n", + " (302, 0.8264463),\n", + " (303, 0.822314),\n", + " (304, 0.8016529),\n", + " (305, 0.7644628),\n", + " (306, 0.74380165),\n", + " (307, 0.7066116),\n", + " (308, 0.6859504),\n", + " (309, 0.677686),\n", + " (310, 0.677686),\n", + " (311, 0.73966944),\n", + " (312, 0.7768595),\n", + " (313, 0.72727275),\n", + " (314, 0.6735537),\n", + " (315, 0.677686),\n", + " (316, 0.6570248),\n", + " (317, 0.53305787),\n", + " (318, 0.37603307),\n", + " (319, 0.11570248),\n", + " (320, 0.34710744),\n", + " (321, 0.44214877),\n", + " (322, 0.48347107),\n", + " (323, 0.54545456),\n", + " (324, 0.553719),\n", + " (325, 0.553719),\n", + " (326, 0.56198347),\n", + " (327, 0.6652893),\n", + " (328, 0.71900827),\n", + " (329, 0.75619835),\n", + " (330, 0.7644628),\n", + " (331, 0.77272725),\n", + " (332, 0.78512394),\n", + " (333, 0.7933884),\n", + " (334, 0.78512394),\n", + " (335, 0.7768595),\n", + " (336, 0.7892562),\n", + " (337, 0.8016529),\n", + " (338, 0.79752064),\n", + " (339, 0.8016529),\n", + " (340, 0.8057851),\n", + " (341, 0.80991733),\n", + " (342, 0.8181818),\n", + " (343, 0.8140496),\n", + " (344, 0.8181818),\n", + " (345, 0.822314),\n", + " (346, 0.8264463),\n", + " (347, 0.8264463),\n", + " (348, 0.8347107),\n", + " (349, 0.8471074),\n", + " (350, 0.8471074),\n", + " (351, 0.8512397),\n", + " (352, 0.8512397),\n", + " (353, 0.8471074),\n", + " (354, 0.8512397),\n", + " (355, 0.8512397),\n", + " (356, 0.8512397),\n", + " (357, 0.8512397),\n", + " (358, 0.8471074),\n", + " (359, 0.838843),\n", + " (360, 0.8347107),\n", + " (361, 0.8264463),\n", + " (362, 0.8264463),\n", + " (363, 0.8305785),\n", + " (364, 0.8181818),\n", + " (365, 0.7892562),\n", + " (366, 0.74793386),\n", + " (367, 0.7355372),\n", + " (368, 0.6694215),\n", + " (369, 0.6363636),\n", + " (370, 0.6280992),\n", + " (371, 0.5495868),\n", + " (372, 0.5247934),\n", + " (373, 0.5),\n", + " (374, 0.5165289),\n", + " (375, 0.58264464),\n", + " (376, 0.661157),\n", + " (377, 0.6942149),\n", + " (378, 0.6404959),\n", + " (379, 0.6570248),\n", + " (380, 0.6570248),\n", + " (381, 0.5785124),\n", + " (382, 0.41735536),\n", + " (383, 0.12396694),\n", + " (384, 0.3677686),\n", + " (385, 0.46694216),\n", + " (386, 0.4876033),\n", + " (387, 0.5413223),\n", + " (388, 0.5413223),\n", + " (389, 0.5413223),\n", + " (390, 0.55785125),\n", + " (391, 0.661157),\n", + " (392, 0.7107438),\n", + " (393, 0.73966944),\n", + " (394, 0.70247936),\n", + " (395, 0.6694215),\n", + " (396, 0.69008267),\n", + " (397, 0.71487606),\n", + " (398, 0.72727275),\n", + " (399, 0.74380165),\n", + " (400, 0.7355372),\n", + " (401, 0.73966944),\n", + " (402, 0.73140496),\n", + " (403, 0.74380165),\n", + " (404, 0.73966944),\n", + " (405, 0.73140496),\n", + " (406, 0.7355372),\n", + " (407, 0.73966944),\n", + " (408, 0.75619835),\n", + " (409, 0.77272725),\n", + " (410, 0.8016529),\n", + " (411, 0.79752064),\n", + " (412, 0.79752064),\n", + " (413, 0.8181818),\n", + " (414, 0.8305785),\n", + " (415, 0.8305785),\n", + " (416, 0.8347107),\n", + " (417, 0.8305785),\n", + " (418, 0.8305785),\n", + " (419, 0.8347107),\n", + " (420, 0.8429752),\n", + " (421, 0.838843),\n", + " (422, 0.822314),\n", + " (423, 0.8016529),\n", + " (424, 0.77272725),\n", + " (425, 0.74793386),\n", + " (426, 0.7107438),\n", + " (427, 0.69008267),\n", + " (428, 0.61157024),\n", + " (429, 0.54545456),\n", + " (430, 0.56198347),\n", + " (431, 0.54545456),\n", + " (432, 0.4752066),\n", + " (433, 0.42975205),\n", + " (434, 0.42561984),\n", + " (435, 0.37190083),\n", + " (436, 0.3429752),\n", + " (437, 0.33471075),\n", + " (438, 0.3305785),\n", + " (439, 0.38842976),\n", + " (440, 0.45454547),\n", + " (441, 0.45041323),\n", + " (442, 0.4876033),\n", + " (443, 0.58264464),\n", + " (444, 0.6404959),\n", + " (445, 0.60330576),\n", + " (446, 0.46694216),\n", + " (447, 0.10743801),\n", + " (448, 0.38842976),\n", + " (449, 0.4752066),\n", + " (450, 0.4876033),\n", + " (451, 0.5289256),\n", + " (452, 0.5289256),\n", + " (453, 0.5165289),\n", + " (454, 0.58264464),\n", + " (455, 0.61570245),\n", + " (456, 0.6404959),\n", + " (457, 0.60330576),\n", + " (458, 0.5289256),\n", + " (459, 0.5165289),\n", + " (460, 0.5206612),\n", + " (461, 0.5495868),\n", + " (462, 0.59504133),\n", + " (463, 0.6404959),\n", + " (464, 0.6198347),\n", + " (465, 0.58677685),\n", + " (466, 0.5495868),\n", + " (467, 0.56198347),\n", + " (468, 0.55785125),\n", + " (469, 0.5123967),\n", + " (470, 0.5247934),\n", + " (471, 0.5371901),\n", + " (472, 0.55785125),\n", + " (473, 0.6487603),\n", + " (474, 0.72727275),\n", + " (475, 0.71487606),\n", + " (476, 0.7066116),\n", + " (477, 0.75206614),\n", + " (478, 0.78512394),\n", + " (479, 0.8016529),\n", + " (480, 0.80991733),\n", + " (481, 0.80991733),\n", + " (482, 0.8140496),\n", + " (483, 0.8181818),\n", + " (484, 0.822314),\n", + " (485, 0.8140496),\n", + " (486, 0.77272725),\n", + " (487, 0.6942149),\n", + " (488, 0.6404959),\n", + " (489, 0.5371901),\n", + " (490, 0.47933885),\n", + " (491, 0.4338843),\n", + " (492, 0.4214876),\n", + " (493, 0.40495867),\n", + " (494, 0.3966942),\n", + " (495, 0.35950413),\n", + " (496, 0.3264463),\n", + " (497, 0.338843),\n", + " (498, 0.32231405),\n", + " (499, 0.32231405),\n", + " (500, 0.2892562),\n", + " (501, 0.2520661),\n", + " (502, 0.32231405),\n", + " (503, 0.3429752),\n", + " (504, 0.3181818),\n", + " (505, 0.2768595),\n", + " (506, 0.29752067),\n", + " (507, 0.3677686),\n", + " (508, 0.58677685),\n", + " (509, 0.61570245),\n", + " (510, 0.4876033),\n", + " (511, 0.13636364),\n", + " (512, 0.39256197),\n", + " (513, 0.46280992),\n", + " (514, 0.48347107),\n", + " (515, 0.5082645),\n", + " (516, 0.5123967),\n", + " (517, 0.47107437),\n", + " (518, 0.45454547),\n", + " (519, 0.446281),\n", + " (520, 0.3966942),\n", + " (521, 0.35950413),\n", + " (522, 0.34710744),\n", + " (523, 0.3677686),\n", + " (524, 0.37603307),\n", + " (525, 0.38016528),\n", + " (526, 0.40495867),\n", + " (527, 0.40495867),\n", + " (528, 0.40082645),\n", + " (529, 0.36363637),\n", + " (530, 0.3429752),\n", + " (531, 0.3677686),\n", + " (532, 0.38429752),\n", + " (533, 0.3553719),\n", + " (534, 0.3429752),\n", + " (535, 0.36363637),\n", + " (536, 0.38429752),\n", + " (537, 0.47933885),\n", + " (538, 0.59090906),\n", + " (539, 0.61570245),\n", + " (540, 0.5661157),\n", + " (541, 0.59917355),\n", + " (542, 0.7066116),\n", + " (543, 0.76033056),\n", + " (544, 0.78512394),\n", + " (545, 0.79752064),\n", + " (546, 0.78099173),\n", + " (547, 0.7768595),\n", + " (548, 0.78512394),\n", + " (549, 0.77272725),\n", + " (550, 0.6735537),\n", + " (551, 0.55785125),\n", + " (552, 0.44214877),\n", + " (553, 0.38016528),\n", + " (554, 0.3429752),\n", + " (555, 0.29338843),\n", + " (556, 0.29752067),\n", + " (557, 0.28512397),\n", + " (558, 0.2644628),\n", + " (559, 0.2603306),\n", + " (560, 0.24793388),\n", + " (561, 0.2603306),\n", + " (562, 0.23966943),\n", + " (563, 0.28099173),\n", + " (564, 0.29752067),\n", + " (565, 0.24793388),\n", + " (566, 0.26859504),\n", + " (567, 0.35123968),\n", + " (568, 0.35950413),\n", + " (569, 0.32231405),\n", + " (570, 0.29752067),\n", + " (571, 0.3140496),\n", + " (572, 0.41735536),\n", + " (573, 0.6280992),\n", + " (574, 0.5247934),\n", + " (575, 0.16115703),\n", + " (576, 0.3966942),\n", + " (577, 0.46694216),\n", + " (578, 0.4752066),\n", + " (579, 0.49173555),\n", + " (580, 0.46280992),\n", + " (581, 0.37190083),\n", + " (582, 0.33471075),\n", + " (583, 0.27272728),\n", + " (584, 0.25619835),\n", + " (585, 0.2644628),\n", + " (586, 0.2644628),\n", + " (587, 0.2892562),\n", + " (588, 0.30165288),\n", + " (589, 0.29752067),\n", + " (590, 0.2520661),\n", + " (591, 0.24793388),\n", + " (592, 0.24380165),\n", + " (593, 0.22727273),\n", + " (594, 0.23966943),\n", + " (595, 0.24793388),\n", + " (596, 0.2603306),\n", + " (597, 0.23140496),\n", + " (598, 0.21487603),\n", + " (599, 0.24380165),\n", + " (600, 0.32231405),\n", + " (601, 0.39256197),\n", + " (602, 0.46280992),\n", + " (603, 0.5206612),\n", + " (604, 0.47107437),\n", + " (605, 0.49586776),\n", + " (606, 0.6487603),\n", + " (607, 0.69008267),\n", + " (608, 0.73140496),\n", + " (609, 0.76033056),\n", + " (610, 0.7355372),\n", + " (611, 0.71900827),\n", + " (612, 0.7231405),\n", + " (613, 0.6818182),\n", + " (614, 0.53305787),\n", + " (615, 0.42975205),\n", + " (616, 0.38429752),\n", + " (617, 0.3553719),\n", + " (618, 0.27272728),\n", + " (619, 0.21487603),\n", + " (620, 0.21487603),\n", + " (621, 0.20247933),\n", + " (622, 0.18181819),\n", + " (623, 0.18595041),\n", + " (624, 0.2107438),\n", + " (625, 0.23966943),\n", + " (626, 0.27272728),\n", + " (627, 0.3553719),\n", + " (628, 0.3966942),\n", + " (629, 0.4090909),\n", + " (630, 0.38842976),\n", + " (631, 0.40495867),\n", + " (632, 0.5041322),\n", + " (633, 0.5165289),\n", + " (634, 0.42975205),\n", + " (635, 0.3553719),\n", + " (636, 0.338843),\n", + " (637, 0.59090906),\n", + " (638, 0.55785125),\n", + " (639, 0.2231405),\n", + " (640, 0.38016528),\n", + " (641, 0.46694216),\n", + " (642, 0.4752066),\n", + " (643, 0.48347107),\n", + " (644, 0.4090909),\n", + " (645, 0.32231405),\n", + " (646, 0.24793388),\n", + " (647, 0.22727273),\n", + " (648, 0.22727273),\n", + " (649, 0.26859504),\n", + " (650, 0.29338843),\n", + " (651, 0.29752067),\n", + " (652, 0.29338843),\n", + " (653, 0.29752067),\n", + " (654, 0.24793388),\n", + " (655, 0.21900827),\n", + " (656, 0.21900827),\n", + " (657, 0.19008264),\n", + " (658, 0.19421488),\n", + " (659, 0.17768595),\n", + " (660, 0.16528925),\n", + " (661, 0.18181819),\n", + " (662, 0.18595041),\n", + " (663, 0.20661157),\n", + " (664, 0.2603306),\n", + " (665, 0.35123968),\n", + " (666, 0.3966942),\n", + " (667, 0.41322315),\n", + " (668, 0.41322315),\n", + " (669, 0.49173555),\n", + " (670, 0.59504133),\n", + " (671, 0.607438),\n", + " (672, 0.6487603),\n", + " (673, 0.69008267),\n", + " (674, 0.6487603),\n", + " (675, 0.6404959),\n", + " (676, 0.6487603),\n", + " (677, 0.5785124),\n", + " (678, 0.47107437),\n", + " (679, 0.38842976),\n", + " (680, 0.35123968),\n", + " (681, 0.35123968),\n", + " (682, 0.28099173),\n", + " (683, 0.2107438),\n", + " (684, 0.1983471),\n", + " (685, 0.17355372),\n", + " (686, 0.1694215),\n", + " (687, 0.21487603),\n", + " (688, 0.30578512),\n", + " (689, 0.3966942),\n", + " (690, 0.45041323),\n", + " (691, 0.5165289),\n", + " (692, 0.553719),\n", + " (693, 0.57024795),\n", + " (694, 0.58264464),\n", + " (695, 0.6198347),\n", + " (696, 0.6363636),\n", + " (697, 0.6570248),\n", + " (698, 0.5785124),\n", + " (699, 0.48347107),\n", + " (700, 0.42561984),\n", + " (701, 0.56198347),\n", + " (702, 0.58677685),\n", + " (703, 0.23553719),\n", + " (704, 0.36363637),\n", + " (705, 0.44214877),\n", + " (706, 0.47107437),\n", + " (707, 0.46280992),\n", + " (708, 0.39256197),\n", + " (709, 0.30991736),\n", + " (710, 0.30991736),\n", + " (711, 0.30165288),\n", + " (712, 0.3553719),\n", + " (713, 0.38016528),\n", + " (714, 0.39256197),\n", + " (715, 0.4214876),\n", + " (716, 0.41735536),\n", + " (717, 0.36363637),\n", + " (718, 0.34710744),\n", + " (719, 0.3264463),\n", + " (720, 0.3140496),\n", + " (721, 0.2768595),\n", + " (722, 0.25619835),\n", + " (723, 0.24793388),\n", + " (724, 0.24380165),\n", + " (725, 0.25619835),\n", + " (726, 0.28099173),\n", + " (727, 0.29752067),\n", + " (728, 0.3264463),\n", + " (729, 0.37190083),\n", + " (730, 0.3966942),\n", + " (731, 0.40082645),\n", + " (732, 0.45041323),\n", + " (733, 0.5247934),\n", + " (734, 0.55785125),\n", + " (735, 0.56198347),\n", + " (736, 0.59090906),\n", + " (737, 0.59917355),\n", + " (738, 0.59090906),\n", + " (739, 0.59504133),\n", + " (740, 0.58264464),\n", + " (741, 0.5123967),\n", + " (742, 0.446281),\n", + " (743, 0.41735536),\n", + " (744, 0.44214877),\n", + " (745, 0.47107437),\n", + " (746, 0.4090909),\n", + " (747, 0.3553719),\n", + " (748, 0.3264463),\n", + " (749, 0.30991736),\n", + " (750, 0.35950413),\n", + " (751, 0.41322315),\n", + " (752, 0.4214876),\n", + " (753, 0.42561984),\n", + " (754, 0.4214876),\n", + " (755, 0.47107437),\n", + " (756, 0.5495868),\n", + " (757, 0.59504133),\n", + " (758, 0.59090906),\n", + " (759, 0.6198347),\n", + " (760, 0.6446281),\n", + " (761, 0.6652893),\n", + " (762, 0.6363636),\n", + " (763, 0.61157024),\n", + " (764, 0.54545456),\n", + " (765, 0.5661157),\n", + " (766, 0.59917355),\n", + " (767, 0.2520661),\n", + " (768, 0.34710744),\n", + " (769, 0.44214877),\n", + " (770, 0.45867768),\n", + " (771, 0.45454547),\n", + " (772, 0.41735536),\n", + " (773, 0.36363637),\n", + " (774, 0.41735536),\n", + " (775, 0.5),\n", + " (776, 0.60330576),\n", + " (777, 0.6363636),\n", + " (778, 0.6528926),\n", + " (779, 0.6570248),\n", + " (780, 0.6280992),\n", + " (781, 0.5082645),\n", + " (782, 0.47933885),\n", + " (783, 0.49173555),\n", + " (784, 0.5289256),\n", + " (785, 0.49173555),\n", + " (786, 0.46694216),\n", + " (787, 0.4876033),\n", + " (788, 0.5123967),\n", + " (789, 0.5247934),\n", + " (790, 0.5495868),\n", + " (791, 0.56198347),\n", + " (792, 0.57438016),\n", + " (793, 0.59504133),\n", + " (794, 0.60330576),\n", + " (795, 0.58677685),\n", + " (796, 0.58264464),\n", + " (797, 0.60330576),\n", + " (798, 0.61157024),\n", + " (799, 0.6322314),\n", + " (800, 0.6487603),\n", + " (801, 0.6446281),\n", + " (802, 0.6652893),\n", + " (803, 0.6694215),\n", + " (804, 0.6487603),\n", + " (805, 0.61157024),\n", + " (806, 0.5661157),\n", + " (807, 0.58677685),\n", + " (808, 0.71487606),\n", + " (809, 0.72727275),\n", + " (810, 0.661157),\n", + " (811, 0.61570245),\n", + " (812, 0.54545456),\n", + " (813, 0.4876033),\n", + " (814, 0.5082645),\n", + " (815, 0.5413223),\n", + " (816, 0.57024795),\n", + " (817, 0.5785124),\n", + " (818, 0.6198347),\n", + " (819, 0.6735537),\n", + " (820, 0.71900827),\n", + " (821, 0.71487606),\n", + " (822, 0.5495868),\n", + " (823, 0.553719),\n", + " (824, 0.553719),\n", + " (825, 0.57438016),\n", + " (826, 0.59090906),\n", + " (827, 0.60330576),\n", + " (828, 0.60330576),\n", + " (829, 0.57438016),\n", + " (830, 0.58677685),\n", + " (831, 0.29338843),\n", + " (832, 0.35950413),\n", + " (833, 0.42975205),\n", + " (834, 0.446281),\n", + " (835, 0.446281),\n", + " (836, 0.45454547),\n", + " (837, 0.48347107),\n", + " (838, 0.5247934),\n", + " (839, 0.607438),\n", + " (840, 0.607438),\n", + " (841, 0.58264464),\n", + " (842, 0.553719),\n", + " (843, 0.5371901),\n", + " (844, 0.53305787),\n", + " (845, 0.5371901),\n", + " (846, 0.5247934),\n", + " (847, 0.46280992),\n", + " (848, 0.41322315),\n", + " (849, 0.3429752),\n", + " (850, 0.3181818),\n", + " (851, 0.4338843),\n", + " (852, 0.4752066),\n", + " (853, 0.46280992),\n", + " (854, 0.42561984),\n", + " (855, 0.41735536),\n", + " (856, 0.446281),\n", + " (857, 0.4752066),\n", + " (858, 0.5041322),\n", + " (859, 0.45867768),\n", + " (860, 0.35950413),\n", + " (861, 0.3966942),\n", + " (862, 0.45867768),\n", + " (863, 0.5082645),\n", + " (864, 0.5495868),\n", + " (865, 0.5661157),\n", + " (866, 0.61570245),\n", + " (867, 0.6280992),\n", + " (868, 0.60330576),\n", + " (869, 0.5289256),\n", + " (870, 0.4338843),\n", + " (871, 0.4752066),\n", + " (872, 0.5785124),\n", + " (873, 0.5413223),\n", + " (874, 0.45867768),\n", + " (875, 0.39256197),\n", + " (876, 0.39256197),\n", + " (877, 0.40495867),\n", + " (878, 0.38842976),\n", + " (879, 0.37190083),\n", + " (880, 0.35950413),\n", + " (881, 0.553719),\n", + " (882, 0.7355372),\n", + " (883, 0.7644628),\n", + " (884, 0.7107438),\n", + " (885, 0.5413223),\n", + " (886, 0.5371901),\n", + " (887, 0.60330576),\n", + " (888, 0.6322314),\n", + " (889, 0.62396693),\n", + " (890, 0.61157024),\n", + " (891, 0.553719),\n", + " (892, 0.5206612),\n", + " (893, 0.5371901),\n", + " (894, 0.5785124),\n", + " (895, 0.3553719),\n", + " (896, 0.3429752),\n", + " (897, 0.4338843),\n", + " (898, 0.43801653),\n", + " (899, 0.4752066),\n", + " (900, 0.5123967),\n", + " (901, 0.54545456),\n", + " (902, 0.53305787),\n", + " (903, 0.5),\n", + " (904, 0.5206612),\n", + " (905, 0.5371901),\n", + " (906, 0.5247934),\n", + " (907, 0.47933885),\n", + " (908, 0.41735536),\n", + " (909, 0.49586776),\n", + " (910, 0.5247934),\n", + " (911, 0.37190083),\n", + " (912, 0.338843),\n", + " (913, 0.35950413),\n", + " (914, 0.4876033),\n", + " (915, 0.8719008),\n", + " (916, 0.8636364),\n", + " (917, 0.8181818),\n", + " (918, 0.5785124),\n", + " (919, 0.36363637),\n", + " (920, 0.38016528),\n", + " (921, 0.38429752),\n", + " (922, 0.41735536),\n", + " (923, 0.49586776),\n", + " (924, 0.43801653),\n", + " (925, 0.3677686),\n", + " (926, 0.48347107),\n", + " (927, 0.59504133),\n", + " (928, 0.661157),\n", + " (929, 0.6983471),\n", + " (930, 0.73140496),\n", + " (931, 0.7107438),\n", + " (932, 0.62396693),\n", + " (933, 0.47933885),\n", + " (934, 0.45867768),\n", + " (935, 0.5082645),\n", + " (936, 0.48347107),\n", + " (937, 0.4338843),\n", + " (938, 0.39256197),\n", + " (939, 0.338843),\n", + " (940, 0.46280992),\n", + " (941, 0.553719),\n", + " (942, 0.39256197),\n", + " (943, 0.23140496),\n", + " (944, 0.2603306),\n", + " (945, 0.661157),\n", + " (946, 0.8471074),\n", + " (947, 0.8512397),\n", + " (948, 0.89669424),\n", + " (949, 0.5165289),\n", + " (950, 0.4214876),\n", + " (951, 0.49586776),\n", + " (952, 0.59504133),\n", + " (953, 0.6322314),\n", + " (954, 0.6859504),\n", + " (955, 0.5247934),\n", + " (956, 0.32231405),\n", + " (957, 0.4338843),\n", + " (958, 0.5371901),\n", + " (959, 0.44214877),\n", + " (960, 0.29752067),\n", + " (961, 0.4214876),\n", + " (962, 0.46694216),\n", + " (963, 0.53305787),\n", + " (964, 0.41735536),\n", + " (965, 0.5),\n", + " (966, 0.5206612),\n", + " (967, 0.5041322),\n", + " (968, 0.5206612),\n", + " (969, 0.5289256),\n", + " (970, 0.49173555),\n", + " (971, 0.42561984),\n", + " (972, 0.38016528),\n", + " (973, 0.5041322),\n", + " (974, 0.59504133),\n", + " (975, 0.3553719),\n", + " (976, 0.3181818),\n", + " (977, 0.4752066),\n", + " (978, 0.5082645),\n", + " (979, 0.80991733),\n", + " (980, 0.8636364),\n", + " (981, 0.8553719),\n", + " (982, 0.6694215),\n", + " (983, 0.3553719),\n", + " (984, 0.3677686),\n", + " (985, 0.38429752),\n", + " (986, 0.35123968),\n", + " (987, 0.41322315),\n", + " (988, 0.4876033),\n", + " (989, 0.47933885),\n", + " (990, 0.57024795),\n", + " (991, 0.6570248),\n", + " (992, 0.69008267),\n", + " (993, 0.71900827),\n", + " (994, 0.77272725),\n", + " (995, 0.78512394),\n", + " (996, 0.7107438),\n", + " (997, 0.553719),\n", + " (998, 0.5082645),\n", + " (999, 0.5123967),\n", + " ...],\n", + " [(0, 0.37603307),\n", + " (1, 0.4752066),\n", + " (2, 0.57438016),\n", + " (3, 0.6404959),\n", + " (4, 0.661157),\n", + " (5, 0.6983471),\n", + " (6, 0.7231405),\n", + " (7, 0.74793386),\n", + " (8, 0.77272725),\n", + " (9, 0.78099173),\n", + " (10, 0.79752064),\n", + " (11, 0.8016529),\n", + " (12, 0.8016529),\n", + " (13, 0.8057851),\n", + " (14, 0.8140496),\n", + " (15, 0.8181818),\n", + " (16, 0.8264463),\n", + " (17, 0.822314),\n", + " (18, 0.8264463),\n", + " (19, 0.822314),\n", + " (20, 0.8181818),\n", + " (21, 0.8264463),\n", + " (22, 0.822314),\n", + " (23, 0.822314),\n", + " (24, 0.8264463),\n", + " (25, 0.8264463),\n", + " (26, 0.8264463),\n", + " (27, 0.822314),\n", + " (28, 0.8305785),\n", + " (29, 0.8264463),\n", + " (30, 0.822314),\n", + " (31, 0.8140496),\n", + " (32, 0.8140496),\n", + " (33, 0.80991733),\n", + " (34, 0.80991733),\n", + " (35, 0.8057851),\n", + " (36, 0.8016529),\n", + " (37, 0.79752064),\n", + " (38, 0.7892562),\n", + " (39, 0.78512394),\n", + " (40, 0.7892562),\n", + " (41, 0.78512394),\n", + " (42, 0.78512394),\n", + " (43, 0.78099173),\n", + " (44, 0.77272725),\n", + " (45, 0.76859504),\n", + " (46, 0.75206614),\n", + " (47, 0.75619835),\n", + " (48, 0.75619835),\n", + " (49, 0.74793386),\n", + " (50, 0.73140496),\n", + " (51, 0.7231405),\n", + " (52, 0.72727275),\n", + " (53, 0.72727275),\n", + " (54, 0.71900827),\n", + " (55, 0.7107438),\n", + " (56, 0.6859504),\n", + " (57, 0.6694215),\n", + " (58, 0.6404959),\n", + " (59, 0.60330576),\n", + " (60, 0.57024795),\n", + " (61, 0.5413223),\n", + " (62, 0.48347107),\n", + " (63, 0.446281),\n", + " (64, 0.36363637),\n", + " (65, 0.47933885),\n", + " (66, 0.57024795),\n", + " (67, 0.6363636),\n", + " (68, 0.6735537),\n", + " (69, 0.69008267),\n", + " (70, 0.73140496),\n", + " (71, 0.73966944),\n", + " (72, 0.77272725),\n", + " (73, 0.78099173),\n", + " (74, 0.7933884),\n", + " (75, 0.79752064),\n", + " (76, 0.8016529),\n", + " (77, 0.80991733),\n", + " (78, 0.80991733),\n", + " (79, 0.8181818),\n", + " (80, 0.8181818),\n", + " (81, 0.8140496),\n", + " (82, 0.8181818),\n", + " (83, 0.8181818),\n", + " (84, 0.8264463),\n", + " (85, 0.8264463),\n", + " (86, 0.8305785),\n", + " (87, 0.8305785),\n", + " (88, 0.8305785),\n", + " (89, 0.8305785),\n", + " (90, 0.8305785),\n", + " (91, 0.8305785),\n", + " (92, 0.8305785),\n", + " (93, 0.8264463),\n", + " (94, 0.8181818),\n", + " (95, 0.8181818),\n", + " (96, 0.8140496),\n", + " (97, 0.8140496),\n", + " (98, 0.8140496),\n", + " (99, 0.8140496),\n", + " (100, 0.80991733),\n", + " (101, 0.8057851),\n", + " (102, 0.79752064),\n", + " (103, 0.7892562),\n", + " (104, 0.7892562),\n", + " (105, 0.7892562),\n", + " (106, 0.78512394),\n", + " (107, 0.7768595),\n", + " (108, 0.7768595),\n", + " (109, 0.78099173),\n", + " (110, 0.76859504),\n", + " (111, 0.7644628),\n", + " (112, 0.76033056),\n", + " (113, 0.74380165),\n", + " (114, 0.72727275),\n", + " (115, 0.73140496),\n", + " (116, 0.72727275),\n", + " (117, 0.71900827),\n", + " (118, 0.70247936),\n", + " (119, 0.7066116),\n", + " (120, 0.6983471),\n", + " (121, 0.6694215),\n", + " (122, 0.6404959),\n", + " (123, 0.607438),\n", + " (124, 0.5661157),\n", + " (125, 0.53305787),\n", + " (126, 0.47107437),\n", + " (127, 0.44214877),\n", + " (128, 0.35950413),\n", + " (129, 0.4876033),\n", + " (130, 0.5661157),\n", + " (131, 0.6280992),\n", + " (132, 0.6735537),\n", + " (133, 0.70247936),\n", + " (134, 0.73140496),\n", + " (135, 0.74380165),\n", + " (136, 0.77272725),\n", + " (137, 0.78099173),\n", + " (138, 0.79752064),\n", + " (139, 0.8016529),\n", + " (140, 0.8016529),\n", + " (141, 0.8016529),\n", + " (142, 0.8057851),\n", + " (143, 0.8140496),\n", + " (144, 0.822314),\n", + " (145, 0.822314),\n", + " (146, 0.8181818),\n", + " (147, 0.8181818),\n", + " (148, 0.8305785),\n", + " (149, 0.8264463),\n", + " (150, 0.8305785),\n", + " (151, 0.8305785),\n", + " (152, 0.8305785),\n", + " (153, 0.8305785),\n", + " (154, 0.8305785),\n", + " (155, 0.8305785),\n", + " (156, 0.8305785),\n", + " (157, 0.8264463),\n", + " (158, 0.8140496),\n", + " (159, 0.8140496),\n", + " (160, 0.80991733),\n", + " (161, 0.8181818),\n", + " (162, 0.822314),\n", + " (163, 0.80991733),\n", + " (164, 0.8057851),\n", + " (165, 0.8057851),\n", + " (166, 0.8016529),\n", + " (167, 0.79752064),\n", + " (168, 0.7933884),\n", + " (169, 0.7933884),\n", + " (170, 0.78099173),\n", + " (171, 0.78099173),\n", + " (172, 0.7768595),\n", + " (173, 0.7892562),\n", + " (174, 0.77272725),\n", + " (175, 0.76033056),\n", + " (176, 0.75206614),\n", + " (177, 0.74793386),\n", + " (178, 0.7355372),\n", + " (179, 0.73966944),\n", + " (180, 0.73140496),\n", + " (181, 0.7231405),\n", + " (182, 0.70247936),\n", + " (183, 0.6983471),\n", + " (184, 0.6859504),\n", + " (185, 0.6694215),\n", + " (186, 0.6363636),\n", + " (187, 0.60330576),\n", + " (188, 0.57024795),\n", + " (189, 0.53305787),\n", + " (190, 0.46280992),\n", + " (191, 0.4338843),\n", + " (192, 0.3677686),\n", + " (193, 0.5),\n", + " (194, 0.58677685),\n", + " (195, 0.62396693),\n", + " (196, 0.6694215),\n", + " (197, 0.70247936),\n", + " (198, 0.73140496),\n", + " (199, 0.75619835),\n", + " (200, 0.77272725),\n", + " (201, 0.7768595),\n", + " (202, 0.7892562),\n", + " (203, 0.8057851),\n", + " (204, 0.8057851),\n", + " (205, 0.8057851),\n", + " (206, 0.8057851),\n", + " (207, 0.8140496),\n", + " (208, 0.8181818),\n", + " (209, 0.8181818),\n", + " (210, 0.822314),\n", + " (211, 0.822314),\n", + " (212, 0.8264463),\n", + " (213, 0.8264463),\n", + " (214, 0.8264463),\n", + " (215, 0.822314),\n", + " (216, 0.8347107),\n", + " (217, 0.8305785),\n", + " (218, 0.8305785),\n", + " (219, 0.8305785),\n", + " (220, 0.8264463),\n", + " (221, 0.8181818),\n", + " (222, 0.8140496),\n", + " (223, 0.80991733),\n", + " (224, 0.8140496),\n", + " (225, 0.822314),\n", + " (226, 0.8181818),\n", + " (227, 0.8140496),\n", + " (228, 0.80991733),\n", + " (229, 0.80991733),\n", + " (230, 0.8016529),\n", + " (231, 0.79752064),\n", + " (232, 0.78512394),\n", + " (233, 0.78099173),\n", + " (234, 0.78512394),\n", + " (235, 0.78512394),\n", + " (236, 0.7768595),\n", + " (237, 0.78099173),\n", + " (238, 0.7768595),\n", + " (239, 0.75619835),\n", + " (240, 0.73966944),\n", + " (241, 0.75206614),\n", + " (242, 0.75206614),\n", + " (243, 0.74793386),\n", + " (244, 0.73140496),\n", + " (245, 0.73140496),\n", + " (246, 0.72727275),\n", + " (247, 0.7231405),\n", + " (248, 0.6942149),\n", + " (249, 0.6652893),\n", + " (250, 0.6322314),\n", + " (251, 0.59917355),\n", + " (252, 0.55785125),\n", + " (253, 0.53305787),\n", + " (254, 0.46694216),\n", + " (255, 0.44214877),\n", + " (256, 0.37190083),\n", + " (257, 0.5165289),\n", + " (258, 0.58677685),\n", + " (259, 0.62396693),\n", + " (260, 0.661157),\n", + " (261, 0.6983471),\n", + " (262, 0.73966944),\n", + " (263, 0.76859504),\n", + " (264, 0.76859504),\n", + " (265, 0.7768595),\n", + " (266, 0.78512394),\n", + " (267, 0.8057851),\n", + " (268, 0.8057851),\n", + " (269, 0.8057851),\n", + " (270, 0.8181818),\n", + " (271, 0.8140496),\n", + " (272, 0.8181818),\n", + " (273, 0.8140496),\n", + " (274, 0.8181818),\n", + " (275, 0.822314),\n", + " (276, 0.822314),\n", + " (277, 0.822314),\n", + " (278, 0.8264463),\n", + " (279, 0.8181818),\n", + " (280, 0.822314),\n", + " (281, 0.8264463),\n", + " (282, 0.822314),\n", + " (283, 0.8264463),\n", + " (284, 0.8264463),\n", + " (285, 0.8181818),\n", + " (286, 0.8140496),\n", + " (287, 0.80991733),\n", + " (288, 0.80991733),\n", + " (289, 0.8181818),\n", + " (290, 0.80991733),\n", + " (291, 0.80991733),\n", + " (292, 0.8057851),\n", + " (293, 0.8016529),\n", + " (294, 0.7933884),\n", + " (295, 0.78512394),\n", + " (296, 0.78099173),\n", + " (297, 0.7768595),\n", + " (298, 0.7768595),\n", + " (299, 0.77272725),\n", + " (300, 0.7644628),\n", + " (301, 0.7644628),\n", + " (302, 0.76859504),\n", + " (303, 0.7644628),\n", + " (304, 0.7355372),\n", + " (305, 0.75206614),\n", + " (306, 0.75206614),\n", + " (307, 0.75619835),\n", + " (308, 0.74793386),\n", + " (309, 0.74380165),\n", + " (310, 0.73140496),\n", + " (311, 0.7107438),\n", + " (312, 0.6859504),\n", + " (313, 0.6487603),\n", + " (314, 0.6280992),\n", + " (315, 0.59504133),\n", + " (316, 0.55785125),\n", + " (317, 0.5165289),\n", + " (318, 0.46280992),\n", + " (319, 0.45041323),\n", + " (320, 0.3966942),\n", + " (321, 0.5289256),\n", + " (322, 0.59504133),\n", + " (323, 0.6198347),\n", + " (324, 0.6652893),\n", + " (325, 0.6983471),\n", + " (326, 0.7355372),\n", + " (327, 0.76033056),\n", + " (328, 0.76859504),\n", + " (329, 0.7644628),\n", + " (330, 0.78512394),\n", + " (331, 0.8057851),\n", + " (332, 0.80991733),\n", + " (333, 0.8057851),\n", + " (334, 0.822314),\n", + " (335, 0.8140496),\n", + " (336, 0.8140496),\n", + " (337, 0.8181818),\n", + " (338, 0.8140496),\n", + " (339, 0.8181818),\n", + " (340, 0.8181818),\n", + " (341, 0.8181818),\n", + " (342, 0.8140496),\n", + " (343, 0.8016529),\n", + " (344, 0.8181818),\n", + " (345, 0.8181818),\n", + " (346, 0.8140496),\n", + " (347, 0.8140496),\n", + " (348, 0.8140496),\n", + " (349, 0.80991733),\n", + " (350, 0.8057851),\n", + " (351, 0.8016529),\n", + " (352, 0.8016529),\n", + " (353, 0.80991733),\n", + " (354, 0.8057851),\n", + " (355, 0.8057851),\n", + " (356, 0.8057851),\n", + " (357, 0.7933884),\n", + " (358, 0.78512394),\n", + " (359, 0.7768595),\n", + " (360, 0.77272725),\n", + " (361, 0.7768595),\n", + " (362, 0.76859504),\n", + " (363, 0.77272725),\n", + " (364, 0.7644628),\n", + " (365, 0.76033056),\n", + " (366, 0.76859504),\n", + " (367, 0.75619835),\n", + " (368, 0.74380165),\n", + " (369, 0.74793386),\n", + " (370, 0.75619835),\n", + " (371, 0.75619835),\n", + " (372, 0.76033056),\n", + " (373, 0.74793386),\n", + " (374, 0.72727275),\n", + " (375, 0.7107438),\n", + " (376, 0.6735537),\n", + " (377, 0.6363636),\n", + " (378, 0.62396693),\n", + " (379, 0.59917355),\n", + " (380, 0.553719),\n", + " (381, 0.49173555),\n", + " (382, 0.45867768),\n", + " (383, 0.45867768),\n", + " (384, 0.4214876),\n", + " (385, 0.5413223),\n", + " (386, 0.59504133),\n", + " (387, 0.6198347),\n", + " (388, 0.661157),\n", + " (389, 0.7066116),\n", + " (390, 0.7355372),\n", + " (391, 0.75619835),\n", + " (392, 0.76859504),\n", + " (393, 0.7644628),\n", + " (394, 0.78099173),\n", + " (395, 0.79752064),\n", + " (396, 0.8057851),\n", + " (397, 0.8016529),\n", + " (398, 0.8181818),\n", + " (399, 0.8057851),\n", + " (400, 0.8057851),\n", + " (401, 0.80991733),\n", + " (402, 0.80991733),\n", + " (403, 0.80991733),\n", + " (404, 0.80991733),\n", + " (405, 0.8140496),\n", + " (406, 0.8057851),\n", + " (407, 0.7892562),\n", + " (408, 0.8016529),\n", + " (409, 0.8057851),\n", + " (410, 0.8057851),\n", + " (411, 0.8016529),\n", + " (412, 0.8016529),\n", + " (413, 0.7933884),\n", + " (414, 0.79752064),\n", + " (415, 0.79752064),\n", + " (416, 0.8016529),\n", + " (417, 0.8016529),\n", + " (418, 0.80991733),\n", + " (419, 0.8016529),\n", + " (420, 0.8016529),\n", + " (421, 0.7892562),\n", + " (422, 0.7768595),\n", + " (423, 0.76859504),\n", + " (424, 0.7644628),\n", + " (425, 0.77272725),\n", + " (426, 0.77272725),\n", + " (427, 0.7644628),\n", + " (428, 0.76033056),\n", + " (429, 0.75206614),\n", + " (430, 0.75206614),\n", + " (431, 0.74380165),\n", + " (432, 0.74793386),\n", + " (433, 0.75206614),\n", + " (434, 0.76033056),\n", + " (435, 0.75619835),\n", + " (436, 0.75619835),\n", + " (437, 0.73140496),\n", + " (438, 0.73140496),\n", + " (439, 0.7066116),\n", + " (440, 0.661157),\n", + " (441, 0.6198347),\n", + " (442, 0.607438),\n", + " (443, 0.58677685),\n", + " (444, 0.54545456),\n", + " (445, 0.47933885),\n", + " (446, 0.45867768),\n", + " (447, 0.46694216),\n", + " (448, 0.446281),\n", + " (449, 0.553719),\n", + " (450, 0.59504133),\n", + " (451, 0.6198347),\n", + " (452, 0.6570248),\n", + " (453, 0.7107438),\n", + " (454, 0.74793386),\n", + " (455, 0.76033056),\n", + " (456, 0.7644628),\n", + " (457, 0.77272725),\n", + " (458, 0.78099173),\n", + " (459, 0.78099173),\n", + " (460, 0.78099173),\n", + " (461, 0.78099173),\n", + " (462, 0.7933884),\n", + " (463, 0.7892562),\n", + " (464, 0.77272725),\n", + " (465, 0.7892562),\n", + " (466, 0.7892562),\n", + " (467, 0.7892562),\n", + " (468, 0.7933884),\n", + " (469, 0.79752064),\n", + " (470, 0.79752064),\n", + " (471, 0.7892562),\n", + " (472, 0.7933884),\n", + " (473, 0.7892562),\n", + " (474, 0.7892562),\n", + " (475, 0.7933884),\n", + " (476, 0.78099173),\n", + " (477, 0.78512394),\n", + " (478, 0.78099173),\n", + " (479, 0.78512394),\n", + " (480, 0.7892562),\n", + " (481, 0.7933884),\n", + " (482, 0.7933884),\n", + " (483, 0.7933884),\n", + " (484, 0.78512394),\n", + " (485, 0.76859504),\n", + " (486, 0.76033056),\n", + " (487, 0.74380165),\n", + " (488, 0.75619835),\n", + " (489, 0.7644628),\n", + " (490, 0.75619835),\n", + " (491, 0.75206614),\n", + " (492, 0.76033056),\n", + " (493, 0.75619835),\n", + " (494, 0.74380165),\n", + " (495, 0.7231405),\n", + " (496, 0.73140496),\n", + " (497, 0.75206614),\n", + " (498, 0.74380165),\n", + " (499, 0.72727275),\n", + " (500, 0.7107438),\n", + " (501, 0.6983471),\n", + " (502, 0.6942149),\n", + " (503, 0.677686),\n", + " (504, 0.6404959),\n", + " (505, 0.607438),\n", + " (506, 0.59504133),\n", + " (507, 0.57438016),\n", + " (508, 0.5371901),\n", + " (509, 0.48347107),\n", + " (510, 0.446281),\n", + " (511, 0.47107437),\n", + " (512, 0.45867768),\n", + " (513, 0.57438016),\n", + " (514, 0.59917355),\n", + " (515, 0.61157024),\n", + " (516, 0.6446281),\n", + " (517, 0.7066116),\n", + " (518, 0.74793386),\n", + " (519, 0.7644628),\n", + " (520, 0.77272725),\n", + " (521, 0.77272725),\n", + " (522, 0.75206614),\n", + " (523, 0.72727275),\n", + " (524, 0.7107438),\n", + " (525, 0.7107438),\n", + " (526, 0.71487606),\n", + " (527, 0.71487606),\n", + " (528, 0.7066116),\n", + " (529, 0.71900827),\n", + " (530, 0.7107438),\n", + " (531, 0.7355372),\n", + " (532, 0.76033056),\n", + " (533, 0.77272725),\n", + " (534, 0.78512394),\n", + " (535, 0.78512394),\n", + " (536, 0.78512394),\n", + " (537, 0.78099173),\n", + " (538, 0.7768595),\n", + " (539, 0.78512394),\n", + " (540, 0.77272725),\n", + " (541, 0.7768595),\n", + " (542, 0.78099173),\n", + " (543, 0.7644628),\n", + " (544, 0.7768595),\n", + " (545, 0.78099173),\n", + " (546, 0.77272725),\n", + " (547, 0.77272725),\n", + " (548, 0.75619835),\n", + " (549, 0.74380165),\n", + " (550, 0.7355372),\n", + " (551, 0.71900827),\n", + " (552, 0.74793386),\n", + " (553, 0.76033056),\n", + " (554, 0.73966944),\n", + " (555, 0.73966944),\n", + " (556, 0.72727275),\n", + " (557, 0.7231405),\n", + " (558, 0.70247936),\n", + " (559, 0.6528926),\n", + " (560, 0.6446281),\n", + " (561, 0.6570248),\n", + " (562, 0.6570248),\n", + " (563, 0.6528926),\n", + " (564, 0.661157),\n", + " (565, 0.6487603),\n", + " (566, 0.6446281),\n", + " (567, 0.62396693),\n", + " (568, 0.6198347),\n", + " (569, 0.61570245),\n", + " (570, 0.59090906),\n", + " (571, 0.56198347),\n", + " (572, 0.5247934),\n", + " (573, 0.47107437),\n", + " (574, 0.45454547),\n", + " (575, 0.46280992),\n", + " (576, 0.48347107),\n", + " (577, 0.5785124),\n", + " (578, 0.61157024),\n", + " (579, 0.60330576),\n", + " (580, 0.6280992),\n", + " (581, 0.6983471),\n", + " (582, 0.73966944),\n", + " (583, 0.75206614),\n", + " (584, 0.74793386),\n", + " (585, 0.7355372),\n", + " (586, 0.6942149),\n", + " (587, 0.6487603),\n", + " (588, 0.62396693),\n", + " (589, 0.61570245),\n", + " (590, 0.62396693),\n", + " (591, 0.60330576),\n", + " (592, 0.59917355),\n", + " (593, 0.607438),\n", + " (594, 0.61570245),\n", + " (595, 0.61157024),\n", + " (596, 0.6528926),\n", + " (597, 0.6818182),\n", + " (598, 0.71900827),\n", + " (599, 0.74380165),\n", + " (600, 0.75619835),\n", + " (601, 0.76859504),\n", + " (602, 0.7644628),\n", + " (603, 0.77272725),\n", + " (604, 0.76859504),\n", + " (605, 0.76033056),\n", + " (606, 0.76859504),\n", + " (607, 0.74793386),\n", + " (608, 0.7644628),\n", + " (609, 0.77272725),\n", + " (610, 0.75619835),\n", + " (611, 0.74380165),\n", + " (612, 0.73140496),\n", + " (613, 0.71487606),\n", + " (614, 0.7107438),\n", + " (615, 0.7066116),\n", + " (616, 0.70247936),\n", + " (617, 0.69008267),\n", + " (618, 0.6735537),\n", + " (619, 0.6404959),\n", + " (620, 0.6322314),\n", + " (621, 0.61157024),\n", + " (622, 0.59917355),\n", + " (623, 0.57438016),\n", + " (624, 0.553719),\n", + " (625, 0.53305787),\n", + " (626, 0.5206612),\n", + " (627, 0.54545456),\n", + " (628, 0.59504133),\n", + " (629, 0.6280992),\n", + " (630, 0.6198347),\n", + " (631, 0.57024795),\n", + " (632, 0.553719),\n", + " (633, 0.59917355),\n", + " (634, 0.58677685),\n", + " (635, 0.553719),\n", + " (636, 0.5165289),\n", + " (637, 0.48347107),\n", + " (638, 0.4752066),\n", + " (639, 0.4752066),\n", + " (640, 0.5165289),\n", + " (641, 0.58677685),\n", + " (642, 0.61570245),\n", + " (643, 0.607438),\n", + " (644, 0.62396693),\n", + " (645, 0.6818182),\n", + " (646, 0.71487606),\n", + " (647, 0.7107438),\n", + " (648, 0.6694215),\n", + " (649, 0.6528926),\n", + " (650, 0.6363636),\n", + " (651, 0.61570245),\n", + " (652, 0.59504133),\n", + " (653, 0.57024795),\n", + " (654, 0.56198347),\n", + " (655, 0.5495868),\n", + " (656, 0.5247934),\n", + " (657, 0.5123967),\n", + " (658, 0.5289256),\n", + " (659, 0.5247934),\n", + " (660, 0.53305787),\n", + " (661, 0.553719),\n", + " (662, 0.58264464),\n", + " (663, 0.62396693),\n", + " (664, 0.661157),\n", + " (665, 0.6983471),\n", + " (666, 0.7231405),\n", + " (667, 0.73966944),\n", + " (668, 0.75206614),\n", + " (669, 0.75206614),\n", + " (670, 0.75619835),\n", + " (671, 0.74793386),\n", + " (672, 0.75619835),\n", + " (673, 0.75619835),\n", + " (674, 0.72727275),\n", + " (675, 0.7066116),\n", + " (676, 0.70247936),\n", + " (677, 0.69008267),\n", + " (678, 0.677686),\n", + " (679, 0.6652893),\n", + " (680, 0.61570245),\n", + " (681, 0.57024795),\n", + " (682, 0.5206612),\n", + " (683, 0.47933885),\n", + " (684, 0.47933885),\n", + " (685, 0.46280992),\n", + " (686, 0.46280992),\n", + " (687, 0.45454547),\n", + " (688, 0.43801653),\n", + " (689, 0.42561984),\n", + " (690, 0.45454547),\n", + " (691, 0.49586776),\n", + " (692, 0.5247934),\n", + " (693, 0.5661157),\n", + " (694, 0.58264464),\n", + " (695, 0.5413223),\n", + " (696, 0.5165289),\n", + " (697, 0.5495868),\n", + " (698, 0.56198347),\n", + " (699, 0.53305787),\n", + " (700, 0.5165289),\n", + " (701, 0.4752066),\n", + " (702, 0.46694216),\n", + " (703, 0.48347107),\n", + " (704, 0.5371901),\n", + " (705, 0.59090906),\n", + " (706, 0.61157024),\n", + " (707, 0.61570245),\n", + " (708, 0.6280992),\n", + " (709, 0.661157),\n", + " (710, 0.6528926),\n", + " (711, 0.6487603),\n", + " (712, 0.6322314),\n", + " (713, 0.6198347),\n", + " (714, 0.59504133),\n", + " (715, 0.57438016),\n", + " (716, 0.5661157),\n", + " (717, 0.5413223),\n", + " (718, 0.5165289),\n", + " (719, 0.49586776),\n", + " (720, 0.46694216),\n", + " (721, 0.44214877),\n", + " (722, 0.45454547),\n", + " (723, 0.46694216),\n", + " (724, 0.45454547),\n", + " (725, 0.46280992),\n", + " (726, 0.46280992),\n", + " (727, 0.48347107),\n", + " (728, 0.5123967),\n", + " (729, 0.58677685),\n", + " (730, 0.6528926),\n", + " (731, 0.6818182),\n", + " (732, 0.71900827),\n", + " (733, 0.7355372),\n", + " (734, 0.73966944),\n", + " (735, 0.73966944),\n", + " (736, 0.75206614),\n", + " (737, 0.74793386),\n", + " (738, 0.71487606),\n", + " (739, 0.69008267),\n", + " (740, 0.6694215),\n", + " (741, 0.6528926),\n", + " (742, 0.6363636),\n", + " (743, 0.59504133),\n", + " (744, 0.5495868),\n", + " (745, 0.5041322),\n", + " (746, 0.44214877),\n", + " (747, 0.40082645),\n", + " (748, 0.37190083),\n", + " (749, 0.36363637),\n", + " (750, 0.3677686),\n", + " (751, 0.35950413),\n", + " (752, 0.3553719),\n", + " (753, 0.38016528),\n", + " (754, 0.4214876),\n", + " (755, 0.45867768),\n", + " (756, 0.47933885),\n", + " (757, 0.49586776),\n", + " (758, 0.49173555),\n", + " (759, 0.4752066),\n", + " (760, 0.46280992),\n", + " (761, 0.45041323),\n", + " (762, 0.4752066),\n", + " (763, 0.47107437),\n", + " (764, 0.46280992),\n", + " (765, 0.4752066),\n", + " (766, 0.47107437),\n", + " (767, 0.4876033),\n", + " (768, 0.55785125),\n", + " (769, 0.59917355),\n", + " (770, 0.61570245),\n", + " (771, 0.61570245),\n", + " (772, 0.607438),\n", + " (773, 0.5785124),\n", + " (774, 0.58677685),\n", + " (775, 0.59090906),\n", + " (776, 0.57438016),\n", + " (777, 0.57438016),\n", + " (778, 0.56198347),\n", + " (779, 0.5413223),\n", + " (780, 0.5289256),\n", + " (781, 0.5123967),\n", + " (782, 0.49173555),\n", + " (783, 0.47107437),\n", + " (784, 0.4214876),\n", + " (785, 0.40495867),\n", + " (786, 0.41322315),\n", + " (787, 0.40082645),\n", + " (788, 0.40495867),\n", + " (789, 0.40082645),\n", + " (790, 0.4214876),\n", + " (791, 0.43801653),\n", + " (792, 0.446281),\n", + " (793, 0.5082645),\n", + " (794, 0.57438016),\n", + " (795, 0.62396693),\n", + " (796, 0.6859504),\n", + " (797, 0.72727275),\n", + " (798, 0.7355372),\n", + " (799, 0.73966944),\n", + " (800, 0.75206614),\n", + " (801, 0.74793386),\n", + " (802, 0.7107438),\n", + " (803, 0.6694215),\n", + " (804, 0.6363636),\n", + " (805, 0.60330576),\n", + " (806, 0.58264464),\n", + " (807, 0.5371901),\n", + " (808, 0.48347107),\n", + " (809, 0.43801653),\n", + " (810, 0.40495867),\n", + " (811, 0.36363637),\n", + " (812, 0.3553719),\n", + " (813, 0.35123968),\n", + " (814, 0.34710744),\n", + " (815, 0.36363637),\n", + " (816, 0.35950413),\n", + " (817, 0.38429752),\n", + " (818, 0.42561984),\n", + " (819, 0.44214877),\n", + " (820, 0.446281),\n", + " (821, 0.45454547),\n", + " (822, 0.45454547),\n", + " (823, 0.446281),\n", + " (824, 0.44214877),\n", + " (825, 0.38842976),\n", + " (826, 0.39256197),\n", + " (827, 0.39256197),\n", + " (828, 0.3553719),\n", + " (829, 0.43801653),\n", + " (830, 0.48347107),\n", + " (831, 0.49173555),\n", + " (832, 0.57024795),\n", + " (833, 0.607438),\n", + " (834, 0.6280992),\n", + " (835, 0.61570245),\n", + " (836, 0.55785125),\n", + " (837, 0.5165289),\n", + " (838, 0.5495868),\n", + " (839, 0.553719),\n", + " (840, 0.56198347),\n", + " (841, 0.5661157),\n", + " (842, 0.56198347),\n", + " (843, 0.5413223),\n", + " (844, 0.5371901),\n", + " (845, 0.54545456),\n", + " (846, 0.553719),\n", + " (847, 0.57024795),\n", + " (848, 0.56198347),\n", + " (849, 0.5123967),\n", + " (850, 0.45454547),\n", + " (851, 0.41735536),\n", + " (852, 0.40495867),\n", + " (853, 0.40082645),\n", + " (854, 0.42561984),\n", + " (855, 0.44214877),\n", + " (856, 0.45454547),\n", + " (857, 0.4876033),\n", + " (858, 0.5413223),\n", + " (859, 0.59090906),\n", + " (860, 0.6694215),\n", + " (861, 0.71900827),\n", + " (862, 0.74380165),\n", + " (863, 0.75619835),\n", + " (864, 0.75619835),\n", + " (865, 0.75619835),\n", + " (866, 0.7107438),\n", + " (867, 0.661157),\n", + " (868, 0.6198347),\n", + " (869, 0.57024795),\n", + " (870, 0.5165289),\n", + " (871, 0.45041323),\n", + " (872, 0.41322315),\n", + " (873, 0.40082645),\n", + " (874, 0.39256197),\n", + " (875, 0.3677686),\n", + " (876, 0.37603307),\n", + " (877, 0.41735536),\n", + " (878, 0.47933885),\n", + " (879, 0.5495868),\n", + " (880, 0.5661157),\n", + " (881, 0.55785125),\n", + " (882, 0.5247934),\n", + " (883, 0.5082645),\n", + " (884, 0.48347107),\n", + " (885, 0.46694216),\n", + " (886, 0.45454547),\n", + " (887, 0.4338843),\n", + " (888, 0.41322315),\n", + " (889, 0.37603307),\n", + " (890, 0.37190083),\n", + " (891, 0.35123968),\n", + " (892, 0.30991736),\n", + " (893, 0.35950413),\n", + " (894, 0.48347107),\n", + " (895, 0.5),\n", + " (896, 0.5785124),\n", + " (897, 0.61157024),\n", + " (898, 0.6446281),\n", + " (899, 0.6198347),\n", + " (900, 0.553719),\n", + " (901, 0.5165289),\n", + " (902, 0.5247934),\n", + " (903, 0.5371901),\n", + " (904, 0.58677685),\n", + " (905, 0.61570245),\n", + " (906, 0.60330576),\n", + " (907, 0.5785124),\n", + " (908, 0.5785124),\n", + " (909, 0.59504133),\n", + " (910, 0.60330576),\n", + " (911, 0.58677685),\n", + " (912, 0.54545456),\n", + " (913, 0.47933885),\n", + " (914, 0.38842976),\n", + " (915, 0.3553719),\n", + " (916, 0.3553719),\n", + " (917, 0.32231405),\n", + " (918, 0.34710744),\n", + " (919, 0.38016528),\n", + " (920, 0.43801653),\n", + " (921, 0.45041323),\n", + " (922, 0.5041322),\n", + " (923, 0.58677685),\n", + " (924, 0.677686),\n", + " (925, 0.72727275),\n", + " (926, 0.75619835),\n", + " (927, 0.76859504),\n", + " (928, 0.76033056),\n", + " (929, 0.75206614),\n", + " (930, 0.71900827),\n", + " (931, 0.6487603),\n", + " (932, 0.60330576),\n", + " (933, 0.5371901),\n", + " (934, 0.45867768),\n", + " (935, 0.41735536),\n", + " (936, 0.40082645),\n", + " (937, 0.37603307),\n", + " (938, 0.34710744),\n", + " (939, 0.3140496),\n", + " (940, 0.29752067),\n", + " (941, 0.2520661),\n", + " (942, 0.2644628),\n", + " (943, 0.41735536),\n", + " (944, 0.446281),\n", + " (945, 0.45867768),\n", + " (946, 0.46694216),\n", + " (947, 0.49173555),\n", + " (948, 0.5),\n", + " (949, 0.49586776),\n", + " (950, 0.48347107),\n", + " (951, 0.46694216),\n", + " (952, 0.41735536),\n", + " (953, 0.39256197),\n", + " (954, 0.3966942),\n", + " (955, 0.37190083),\n", + " (956, 0.33471075),\n", + " (957, 0.34710744),\n", + " (958, 0.46280992),\n", + " (959, 0.5082645),\n", + " (960, 0.58677685),\n", + " (961, 0.61157024),\n", + " (962, 0.6487603),\n", + " (963, 0.6280992),\n", + " (964, 0.5661157),\n", + " (965, 0.5247934),\n", + " (966, 0.5371901),\n", + " (967, 0.55785125),\n", + " (968, 0.60330576),\n", + " (969, 0.6198347),\n", + " (970, 0.59917355),\n", + " (971, 0.5371901),\n", + " (972, 0.47107437),\n", + " (973, 0.38842976),\n", + " (974, 0.34710744),\n", + " (975, 0.29752067),\n", + " (976, 0.24380165),\n", + " (977, 0.25619835),\n", + " (978, 0.2644628),\n", + " (979, 0.32231405),\n", + " (980, 0.4338843),\n", + " (981, 0.40495867),\n", + " (982, 0.35950413),\n", + " (983, 0.33471075),\n", + " (984, 0.35950413),\n", + " (985, 0.42975205),\n", + " (986, 0.46694216),\n", + " (987, 0.56198347),\n", + " (988, 0.69008267),\n", + " (989, 0.74380165),\n", + " (990, 0.76859504),\n", + " (991, 0.78099173),\n", + " (992, 0.77272725),\n", + " (993, 0.75619835),\n", + " (994, 0.7107438),\n", + " (995, 0.661157),\n", + " (996, 0.59090906),\n", + " (997, 0.48347107),\n", + " (998, 0.42975205),\n", + " (999, 0.4338843),\n", + " ...],\n", + " [(0, 0.20661157),\n", + " (1, 0.28099173),\n", + " (2, 0.3677686),\n", + " (3, 0.39256197),\n", + " (4, 0.6818182),\n", + " (5, 0.71487606),\n", + " (6, 0.7231405),\n", + " (7, 0.73966944),\n", + " (8, 0.75206614),\n", + " (9, 0.76859504),\n", + " (10, 0.78512394),\n", + " (11, 0.76859504),\n", + " (12, 0.79752064),\n", + " (13, 0.8057851),\n", + " (14, 0.8016529),\n", + " (15, 0.8057851),\n", + " (16, 0.8057851),\n", + " (17, 0.80991733),\n", + " (18, 0.8057851),\n", + " (19, 0.80991733),\n", + " (20, 0.8057851),\n", + " (21, 0.80991733),\n", + " (22, 0.822314),\n", + " (23, 0.8181818),\n", + " (24, 0.8140496),\n", + " (25, 0.8016529),\n", + " (26, 0.7768595),\n", + " (27, 0.76033056),\n", + " (28, 0.74793386),\n", + " (29, 0.74793386),\n", + " (30, 0.76033056),\n", + " (31, 0.74793386),\n", + " (32, 0.7355372),\n", + " (33, 0.73140496),\n", + " (34, 0.73140496),\n", + " (35, 0.72727275),\n", + " (36, 0.74793386),\n", + " (37, 0.76033056),\n", + " (38, 0.76859504),\n", + " (39, 0.7768595),\n", + " (40, 0.76859504),\n", + " (41, 0.77272725),\n", + " (42, 0.7768595),\n", + " (43, 0.78099173),\n", + " (44, 0.7644628),\n", + " (45, 0.77272725),\n", + " (46, 0.7768595),\n", + " (47, 0.78099173),\n", + " (48, 0.76859504),\n", + " (49, 0.7768595),\n", + " (50, 0.7768595),\n", + " (51, 0.77272725),\n", + " (52, 0.7892562),\n", + " (53, 0.7933884),\n", + " (54, 0.8057851),\n", + " (55, 0.8181818),\n", + " (56, 0.8305785),\n", + " (57, 0.8677686),\n", + " (58, 0.6652893),\n", + " (59, 0.22727273),\n", + " (60, 0.12396694),\n", + " (61, 0.09917355),\n", + " (62, 0.1446281),\n", + " (63, 0.12809917),\n", + " (64, 0.21900827),\n", + " (65, 0.338843),\n", + " (66, 0.4090909),\n", + " (67, 0.49586776),\n", + " (68, 0.71900827),\n", + " (69, 0.7231405),\n", + " (70, 0.74793386),\n", + " (71, 0.76033056),\n", + " (72, 0.7768595),\n", + " (73, 0.78099173),\n", + " (74, 0.7933884),\n", + " (75, 0.78512394),\n", + " (76, 0.78512394),\n", + " (77, 0.7933884),\n", + " (78, 0.79752064),\n", + " (79, 0.8057851),\n", + " (80, 0.8140496),\n", + " (81, 0.8140496),\n", + " (82, 0.8140496),\n", + " (83, 0.822314),\n", + " (84, 0.8264463),\n", + " (85, 0.822314),\n", + " (86, 0.8264463),\n", + " (87, 0.822314),\n", + " (88, 0.822314),\n", + " (89, 0.822314),\n", + " (90, 0.8057851),\n", + " (91, 0.7768595),\n", + " (92, 0.7644628),\n", + " (93, 0.76859504),\n", + " (94, 0.76033056),\n", + " (95, 0.76033056),\n", + " (96, 0.76033056),\n", + " (97, 0.75206614),\n", + " (98, 0.75206614),\n", + " (99, 0.74380165),\n", + " (100, 0.75619835),\n", + " (101, 0.77272725),\n", + " (102, 0.7768595),\n", + " (103, 0.77272725),\n", + " (104, 0.76859504),\n", + " (105, 0.78099173),\n", + " (106, 0.78512394),\n", + " (107, 0.7892562),\n", + " (108, 0.7892562),\n", + " (109, 0.7768595),\n", + " (110, 0.76859504),\n", + " (111, 0.77272725),\n", + " (112, 0.7768595),\n", + " (113, 0.7768595),\n", + " (114, 0.78099173),\n", + " (115, 0.78512394),\n", + " (116, 0.7892562),\n", + " (117, 0.79752064),\n", + " (118, 0.8140496),\n", + " (119, 0.8057851),\n", + " (120, 0.838843),\n", + " (121, 0.8512397),\n", + " (122, 0.8305785),\n", + " (123, 0.45454547),\n", + " (124, 0.14876033),\n", + " (125, 0.14876033),\n", + " (126, 0.11570248),\n", + " (127, 0.1446281),\n", + " (128, 0.2892562),\n", + " (129, 0.42561984),\n", + " (130, 0.37603307),\n", + " (131, 0.58677685),\n", + " (132, 0.73140496),\n", + " (133, 0.71900827),\n", + " (134, 0.75619835),\n", + " (135, 0.7644628),\n", + " (136, 0.78099173),\n", + " (137, 0.78099173),\n", + " (138, 0.7892562),\n", + " (139, 0.78512394),\n", + " (140, 0.7892562),\n", + " (141, 0.7933884),\n", + " (142, 0.78512394),\n", + " (143, 0.7892562),\n", + " (144, 0.79752064),\n", + " (145, 0.80991733),\n", + " (146, 0.8181818),\n", + " (147, 0.8181818),\n", + " (148, 0.8264463),\n", + " (149, 0.8305785),\n", + " (150, 0.8305785),\n", + " (151, 0.8264463),\n", + " (152, 0.8264463),\n", + " (153, 0.8264463),\n", + " (154, 0.80991733),\n", + " (155, 0.7933884),\n", + " (156, 0.7768595),\n", + " (157, 0.78099173),\n", + " (158, 0.78099173),\n", + " (159, 0.77272725),\n", + " (160, 0.78099173),\n", + " (161, 0.77272725),\n", + " (162, 0.75619835),\n", + " (163, 0.76033056),\n", + " (164, 0.7644628),\n", + " (165, 0.77272725),\n", + " (166, 0.78512394),\n", + " (167, 0.78099173),\n", + " (168, 0.77272725),\n", + " (169, 0.7768595),\n", + " (170, 0.78099173),\n", + " (171, 0.76859504),\n", + " (172, 0.7768595),\n", + " (173, 0.76859504),\n", + " (174, 0.76033056),\n", + " (175, 0.77272725),\n", + " (176, 0.75619835),\n", + " (177, 0.7768595),\n", + " (178, 0.7892562),\n", + " (179, 0.77272725),\n", + " (180, 0.7768595),\n", + " (181, 0.7892562),\n", + " (182, 0.8016529),\n", + " (183, 0.8181818),\n", + " (184, 0.838843),\n", + " (185, 0.8429752),\n", + " (186, 0.87603307),\n", + " (187, 0.7066116),\n", + " (188, 0.24380165),\n", + " (189, 0.20661157),\n", + " (190, 0.15289256),\n", + " (191, 0.14876033),\n", + " (192, 0.3553719),\n", + " (193, 0.42975205),\n", + " (194, 0.4090909),\n", + " (195, 0.6859504),\n", + " (196, 0.71900827),\n", + " (197, 0.73140496),\n", + " (198, 0.75619835),\n", + " (199, 0.76033056),\n", + " (200, 0.77272725),\n", + " (201, 0.76859504),\n", + " (202, 0.7768595),\n", + " (203, 0.77272725),\n", + " (204, 0.78512394),\n", + " (205, 0.78512394),\n", + " (206, 0.78099173),\n", + " (207, 0.7768595),\n", + " (208, 0.7892562),\n", + " (209, 0.79752064),\n", + " (210, 0.8057851),\n", + " (211, 0.80991733),\n", + " (212, 0.8264463),\n", + " (213, 0.8347107),\n", + " (214, 0.838843),\n", + " (215, 0.8264463),\n", + " (216, 0.822314),\n", + " (217, 0.8264463),\n", + " (218, 0.8016529),\n", + " (219, 0.7892562),\n", + " (220, 0.78512394),\n", + " (221, 0.78099173),\n", + " (222, 0.78099173),\n", + " (223, 0.78512394),\n", + " (224, 0.7933884),\n", + " (225, 0.78512394),\n", + " (226, 0.7768595),\n", + " (227, 0.78099173),\n", + " (228, 0.78099173),\n", + " (229, 0.78099173),\n", + " (230, 0.7892562),\n", + " (231, 0.7768595),\n", + " (232, 0.76859504),\n", + " (233, 0.76859504),\n", + " (234, 0.78099173),\n", + " (235, 0.7644628),\n", + " (236, 0.77272725),\n", + " (237, 0.78099173),\n", + " (238, 0.77272725),\n", + " (239, 0.78512394),\n", + " (240, 0.7355372),\n", + " (241, 0.7644628),\n", + " (242, 0.78099173),\n", + " (243, 0.7768595),\n", + " (244, 0.76859504),\n", + " (245, 0.7768595),\n", + " (246, 0.7933884),\n", + " (247, 0.8264463),\n", + " (248, 0.8429752),\n", + " (249, 0.8429752),\n", + " (250, 0.8595041),\n", + " (251, 0.88842976),\n", + " (252, 0.41322315),\n", + " (253, 0.25619835),\n", + " (254, 0.20661157),\n", + " (255, 0.1983471),\n", + " (256, 0.39256197),\n", + " (257, 0.3966942),\n", + " (258, 0.4752066),\n", + " (259, 0.73140496),\n", + " (260, 0.7107438),\n", + " (261, 0.73140496),\n", + " (262, 0.7355372),\n", + " (263, 0.75619835),\n", + " (264, 0.75206614),\n", + " (265, 0.76859504),\n", + " (266, 0.77272725),\n", + " (267, 0.75619835),\n", + " (268, 0.7768595),\n", + " (269, 0.78512394),\n", + " (270, 0.78512394),\n", + " (271, 0.78512394),\n", + " (272, 0.78512394),\n", + " (273, 0.7933884),\n", + " (274, 0.79752064),\n", + " (275, 0.80991733),\n", + " (276, 0.8140496),\n", + " (277, 0.822314),\n", + " (278, 0.8264463),\n", + " (279, 0.8264463),\n", + " (280, 0.8264463),\n", + " (281, 0.8264463),\n", + " (282, 0.8140496),\n", + " (283, 0.8057851),\n", + " (284, 0.78512394),\n", + " (285, 0.78099173),\n", + " (286, 0.7933884),\n", + " (287, 0.7933884),\n", + " (288, 0.79752064),\n", + " (289, 0.79752064),\n", + " (290, 0.7933884),\n", + " (291, 0.7933884),\n", + " (292, 0.78512394),\n", + " (293, 0.7768595),\n", + " (294, 0.78512394),\n", + " (295, 0.76859504),\n", + " (296, 0.75206614),\n", + " (297, 0.76033056),\n", + " (298, 0.7644628),\n", + " (299, 0.74793386),\n", + " (300, 0.74793386),\n", + " (301, 0.75206614),\n", + " (302, 0.75206614),\n", + " (303, 0.75206614),\n", + " (304, 0.72727275),\n", + " (305, 0.7231405),\n", + " (306, 0.75206614),\n", + " (307, 0.7644628),\n", + " (308, 0.77272725),\n", + " (309, 0.76033056),\n", + " (310, 0.78099173),\n", + " (311, 0.8016529),\n", + " (312, 0.822314),\n", + " (313, 0.8553719),\n", + " (314, 0.8471074),\n", + " (315, 0.90082645),\n", + " (316, 0.6446281),\n", + " (317, 0.28099173),\n", + " (318, 0.3140496),\n", + " (319, 0.1570248),\n", + " (320, 0.41322315),\n", + " (321, 0.38429752),\n", + " (322, 0.61570245),\n", + " (323, 0.7355372),\n", + " (324, 0.71900827),\n", + " (325, 0.7355372),\n", + " (326, 0.73140496),\n", + " (327, 0.75206614),\n", + " (328, 0.74380165),\n", + " (329, 0.7355372),\n", + " (330, 0.7231405),\n", + " (331, 0.6818182),\n", + " (332, 0.70247936),\n", + " (333, 0.74380165),\n", + " (334, 0.75206614),\n", + " (335, 0.7355372),\n", + " (336, 0.72727275),\n", + " (337, 0.73966944),\n", + " (338, 0.74793386),\n", + " (339, 0.76033056),\n", + " (340, 0.78099173),\n", + " (341, 0.79752064),\n", + " (342, 0.8016529),\n", + " (343, 0.8057851),\n", + " (344, 0.8181818),\n", + " (345, 0.8181818),\n", + " (346, 0.8140496),\n", + " (347, 0.80991733),\n", + " (348, 0.7933884),\n", + " (349, 0.78512394),\n", + " (350, 0.7892562),\n", + " (351, 0.78512394),\n", + " (352, 0.78512394),\n", + " (353, 0.78512394),\n", + " (354, 0.78099173),\n", + " (355, 0.7644628),\n", + " (356, 0.7644628),\n", + " (357, 0.75206614),\n", + " (358, 0.74380165),\n", + " (359, 0.71900827),\n", + " (360, 0.677686),\n", + " (361, 0.6652893),\n", + " (362, 0.661157),\n", + " (363, 0.6487603),\n", + " (364, 0.6528926),\n", + " (365, 0.6652893),\n", + " (366, 0.6487603),\n", + " (367, 0.6446281),\n", + " (368, 0.6446281),\n", + " (369, 0.62396693),\n", + " (370, 0.6528926),\n", + " (371, 0.6859504),\n", + " (372, 0.70247936),\n", + " (373, 0.74380165),\n", + " (374, 0.7644628),\n", + " (375, 0.7933884),\n", + " (376, 0.77272725),\n", + " (377, 0.8429752),\n", + " (378, 0.8636364),\n", + " (379, 0.8636364),\n", + " (380, 0.8305785),\n", + " (381, 0.3429752),\n", + " (382, 0.38016528),\n", + " (383, 0.18595041),\n", + " (384, 0.4090909),\n", + " (385, 0.43801653),\n", + " (386, 0.69008267),\n", + " (387, 0.71487606),\n", + " (388, 0.6983471),\n", + " (389, 0.75206614),\n", + " (390, 0.75619835),\n", + " (391, 0.73140496),\n", + " (392, 0.6859504),\n", + " (393, 0.61570245),\n", + " (394, 0.61570245),\n", + " (395, 0.6280992),\n", + " (396, 0.607438),\n", + " (397, 0.60330576),\n", + " (398, 0.61570245),\n", + " (399, 0.62396693),\n", + " (400, 0.57438016),\n", + " (401, 0.57024795),\n", + " (402, 0.56198347),\n", + " (403, 0.57024795),\n", + " (404, 0.6487603),\n", + " (405, 0.69008267),\n", + " (406, 0.6859504),\n", + " (407, 0.73140496),\n", + " (408, 0.7644628),\n", + " (409, 0.76859504),\n", + " (410, 0.77272725),\n", + " (411, 0.7892562),\n", + " (412, 0.7933884),\n", + " (413, 0.78099173),\n", + " (414, 0.77272725),\n", + " (415, 0.75619835),\n", + " (416, 0.75206614),\n", + " (417, 0.76033056),\n", + " (418, 0.75619835),\n", + " (419, 0.7066116),\n", + " (420, 0.7066116),\n", + " (421, 0.6818182),\n", + " (422, 0.6322314),\n", + " (423, 0.5785124),\n", + " (424, 0.5371901),\n", + " (425, 0.49586776),\n", + " (426, 0.46280992),\n", + " (427, 0.45041323),\n", + " (428, 0.46280992),\n", + " (429, 0.47933885),\n", + " (430, 0.4876033),\n", + " (431, 0.49173555),\n", + " (432, 0.5165289),\n", + " (433, 0.5041322),\n", + " (434, 0.5371901),\n", + " (435, 0.5785124),\n", + " (436, 0.58264464),\n", + " (437, 0.6322314),\n", + " (438, 0.73140496),\n", + " (439, 0.78099173),\n", + " (440, 0.7933884),\n", + " (441, 0.8429752),\n", + " (442, 0.8595041),\n", + " (443, 0.8553719),\n", + " (444, 0.92561984),\n", + " (445, 0.48347107),\n", + " (446, 0.35950413),\n", + " (447, 0.23553719),\n", + " (448, 0.4090909),\n", + " (449, 0.553719),\n", + " (450, 0.7231405),\n", + " (451, 0.6528926),\n", + " (452, 0.69008267),\n", + " (453, 0.7644628),\n", + " (454, 0.74793386),\n", + " (455, 0.6570248),\n", + " (456, 0.55785125),\n", + " (457, 0.54545456),\n", + " (458, 0.58264464),\n", + " (459, 0.607438),\n", + " (460, 0.58264464),\n", + " (461, 0.5413223),\n", + " (462, 0.48347107),\n", + " (463, 0.45454547),\n", + " (464, 0.42561984),\n", + " (465, 0.4338843),\n", + " (466, 0.4214876),\n", + " (467, 0.41322315),\n", + " (468, 0.45454547),\n", + " (469, 0.5),\n", + " (470, 0.5082645),\n", + " (471, 0.55785125),\n", + " (472, 0.6570248),\n", + " (473, 0.6942149),\n", + " (474, 0.7355372),\n", + " (475, 0.7768595),\n", + " (476, 0.78099173),\n", + " (477, 0.76033056),\n", + " (478, 0.75206614),\n", + " (479, 0.74380165),\n", + " (480, 0.72727275),\n", + " (481, 0.71487606),\n", + " (482, 0.6818182),\n", + " (483, 0.6280992),\n", + " (484, 0.6198347),\n", + " (485, 0.59090906),\n", + " (486, 0.53305787),\n", + " (487, 0.49586776),\n", + " (488, 0.45867768),\n", + " (489, 0.3966942),\n", + " (490, 0.37603307),\n", + " (491, 0.36363637),\n", + " (492, 0.3677686),\n", + " (493, 0.3429752),\n", + " (494, 0.34710744),\n", + " (495, 0.36363637),\n", + " (496, 0.40495867),\n", + " (497, 0.4214876),\n", + " (498, 0.45867768),\n", + " (499, 0.47933885),\n", + " (500, 0.5165289),\n", + " (501, 0.5371901),\n", + " (502, 0.58677685),\n", + " (503, 0.677686),\n", + " (504, 0.76033056),\n", + " (505, 0.8305785),\n", + " (506, 0.8512397),\n", + " (507, 0.838843),\n", + " (508, 0.9338843),\n", + " (509, 0.6487603),\n", + " (510, 0.39256197),\n", + " (511, 0.24380165),\n", + " (512, 0.45041323),\n", + " (513, 0.6487603),\n", + " (514, 0.7107438),\n", + " (515, 0.6859504),\n", + " (516, 0.73140496),\n", + " (517, 0.74380165),\n", + " (518, 0.6322314),\n", + " (519, 0.5165289),\n", + " (520, 0.5289256),\n", + " (521, 0.5495868),\n", + " (522, 0.59090906),\n", + " (523, 0.57438016),\n", + " (524, 0.57438016),\n", + " (525, 0.58264464),\n", + " (526, 0.5165289),\n", + " (527, 0.42561984),\n", + " (528, 0.40495867),\n", + " (529, 0.40082645),\n", + " (530, 0.37190083),\n", + " (531, 0.35950413),\n", + " (532, 0.38016528),\n", + " (533, 0.39256197),\n", + " (534, 0.42561984),\n", + " (535, 0.46280992),\n", + " (536, 0.5413223),\n", + " (537, 0.6280992),\n", + " (538, 0.70247936),\n", + " (539, 0.77272725),\n", + " (540, 0.7892562),\n", + " (541, 0.76859504),\n", + " (542, 0.7644628),\n", + " (543, 0.7644628),\n", + " (544, 0.7355372),\n", + " (545, 0.71900827),\n", + " (546, 0.677686),\n", + " (547, 0.607438),\n", + " (548, 0.57024795),\n", + " (549, 0.5413223),\n", + " (550, 0.4752066),\n", + " (551, 0.4214876),\n", + " (552, 0.40082645),\n", + " (553, 0.37603307),\n", + " (554, 0.3677686),\n", + " (555, 0.3305785),\n", + " (556, 0.3264463),\n", + " (557, 0.3181818),\n", + " (558, 0.3429752),\n", + " (559, 0.38016528),\n", + " (560, 0.43801653),\n", + " (561, 0.4752066),\n", + " (562, 0.5082645),\n", + " (563, 0.53305787),\n", + " (564, 0.57024795),\n", + " (565, 0.61157024),\n", + " (566, 0.6652893),\n", + " (567, 0.60330576),\n", + " (568, 0.60330576),\n", + " (569, 0.77272725),\n", + " (570, 0.8471074),\n", + " (571, 0.8471074),\n", + " (572, 0.8801653),\n", + " (573, 0.8016529),\n", + " (574, 0.37190083),\n", + " (575, 0.25619835),\n", + " (576, 0.57438016),\n", + " (577, 0.6818182),\n", + " (578, 0.7066116),\n", + " (579, 0.7107438),\n", + " (580, 0.75206614),\n", + " (581, 0.6652893),\n", + " (582, 0.5247934),\n", + " (583, 0.59917355),\n", + " (584, 0.6487603),\n", + " (585, 0.661157),\n", + " (586, 0.6735537),\n", + " (587, 0.72727275),\n", + " (588, 0.72727275),\n", + " (589, 0.75206614),\n", + " (590, 0.7066116),\n", + " (591, 0.6322314),\n", + " (592, 0.57024795),\n", + " (593, 0.53305787),\n", + " (594, 0.48347107),\n", + " (595, 0.45454547),\n", + " (596, 0.446281),\n", + " (597, 0.45454547),\n", + " (598, 0.48347107),\n", + " (599, 0.5041322),\n", + " (600, 0.5371901),\n", + " (601, 0.5661157),\n", + " (602, 0.6487603),\n", + " (603, 0.77272725),\n", + " (604, 0.80991733),\n", + " (605, 0.8016529),\n", + " (606, 0.78512394),\n", + " (607, 0.78099173),\n", + " (608, 0.78099173),\n", + " (609, 0.76033056),\n", + " (610, 0.71900827),\n", + " (611, 0.6528926),\n", + " (612, 0.58677685),\n", + " (613, 0.5495868),\n", + " (614, 0.47933885),\n", + " (615, 0.42975205),\n", + " (616, 0.40082645),\n", + " (617, 0.38016528),\n", + " (618, 0.37190083),\n", + " (619, 0.36363637),\n", + " (620, 0.38842976),\n", + " (621, 0.42975205),\n", + " (622, 0.47107437),\n", + " (623, 0.53305787),\n", + " (624, 0.59504133),\n", + " (625, 0.6280992),\n", + " (626, 0.6446281),\n", + " (627, 0.6652893),\n", + " (628, 0.7066116),\n", + " (629, 0.73966944),\n", + " (630, 0.73966944),\n", + " (631, 0.7231405),\n", + " (632, 0.59504133),\n", + " (633, 0.6280992),\n", + " (634, 0.8057851),\n", + " (635, 0.8347107),\n", + " (636, 0.8553719),\n", + " (637, 0.90909094),\n", + " (638, 0.43801653),\n", + " (639, 0.21900827),\n", + " (640, 0.677686),\n", + " (641, 0.70247936),\n", + " (642, 0.7231405),\n", + " (643, 0.7066116),\n", + " (644, 0.6983471),\n", + " (645, 0.57024795),\n", + " (646, 0.5289256),\n", + " (647, 0.661157),\n", + " (648, 0.75619835),\n", + " (649, 0.76859504),\n", + " (650, 0.75206614),\n", + " (651, 0.78099173),\n", + " (652, 0.7892562),\n", + " (653, 0.78512394),\n", + " (654, 0.75619835),\n", + " (655, 0.70247936),\n", + " (656, 0.6818182),\n", + " (657, 0.6487603),\n", + " (658, 0.607438),\n", + " (659, 0.5661157),\n", + " (660, 0.53305787),\n", + " (661, 0.553719),\n", + " (662, 0.58264464),\n", + " (663, 0.59090906),\n", + " (664, 0.61157024),\n", + " (665, 0.6363636),\n", + " (666, 0.6735537),\n", + " (667, 0.77272725),\n", + " (668, 0.8264463),\n", + " (669, 0.822314),\n", + " (670, 0.8016529),\n", + " (671, 0.7892562),\n", + " (672, 0.7933884),\n", + " (673, 0.8057851),\n", + " (674, 0.7892562),\n", + " (675, 0.76859504),\n", + " (676, 0.7231405),\n", + " (677, 0.6404959),\n", + " (678, 0.5289256),\n", + " (679, 0.43801653),\n", + " (680, 0.38842976),\n", + " (681, 0.37603307),\n", + " (682, 0.38429752),\n", + " (683, 0.42975205),\n", + " (684, 0.5123967),\n", + " (685, 0.57024795),\n", + " (686, 0.607438),\n", + " (687, 0.6487603),\n", + " (688, 0.6652893),\n", + " (689, 0.661157),\n", + " (690, 0.69008267),\n", + " (691, 0.6942149),\n", + " (692, 0.72727275),\n", + " (693, 0.78512394),\n", + " (694, 0.78512394),\n", + " (695, 0.7933884),\n", + " (696, 0.71487606),\n", + " (697, 0.59090906),\n", + " (698, 0.661157),\n", + " (699, 0.8181818),\n", + " (700, 0.8512397),\n", + " (701, 0.92561984),\n", + " (702, 0.5785124),\n", + " (703, 0.12396694),\n", + " (704, 0.7355372),\n", + " (705, 0.6983471),\n", + " (706, 0.71487606),\n", + " (707, 0.73140496),\n", + " (708, 0.6322314),\n", + " (709, 0.61157024),\n", + " (710, 0.6570248),\n", + " (711, 0.71900827),\n", + " (712, 0.75619835),\n", + " (713, 0.77272725),\n", + " (714, 0.76859504),\n", + " (715, 0.78512394),\n", + " (716, 0.7933884),\n", + " (717, 0.7892562),\n", + " (718, 0.73966944),\n", + " (719, 0.70247936),\n", + " (720, 0.6859504),\n", + " (721, 0.6570248),\n", + " (722, 0.6198347),\n", + " (723, 0.58264464),\n", + " (724, 0.5289256),\n", + " (725, 0.5041322),\n", + " (726, 0.5247934),\n", + " (727, 0.54545456),\n", + " (728, 0.58677685),\n", + " (729, 0.6404959),\n", + " (730, 0.70247936),\n", + " (731, 0.77272725),\n", + " (732, 0.8181818),\n", + " (733, 0.8264463),\n", + " (734, 0.8181818),\n", + " (735, 0.8057851),\n", + " (736, 0.79752064),\n", + " (737, 0.8057851),\n", + " (738, 0.8305785),\n", + " (739, 0.838843),\n", + " (740, 0.78099173),\n", + " (741, 0.6198347),\n", + " (742, 0.45454547),\n", + " (743, 0.37603307),\n", + " (744, 0.34710744),\n", + " (745, 0.3429752),\n", + " (746, 0.3677686),\n", + " (747, 0.42975205),\n", + " (748, 0.5289256),\n", + " (749, 0.58677685),\n", + " (750, 0.607438),\n", + " (751, 0.6570248),\n", + " (752, 0.677686),\n", + " (753, 0.6570248),\n", + " (754, 0.6859504),\n", + " (755, 0.7107438),\n", + " (756, 0.77272725),\n", + " (757, 0.80991733),\n", + " (758, 0.79752064),\n", + " (759, 0.7644628),\n", + " (760, 0.78099173),\n", + " (761, 0.7231405),\n", + " (762, 0.6859504),\n", + " (763, 0.75206614),\n", + " (764, 0.838843),\n", + " (765, 0.89669424),\n", + " (766, 0.75206614),\n", + " (767, 0.11983471),\n", + " (768, 0.72727275),\n", + " (769, 0.72727275),\n", + " (770, 0.75206614),\n", + " (771, 0.7066116),\n", + " (772, 0.6487603),\n", + " (773, 0.71900827),\n", + " (774, 0.74380165),\n", + " (775, 0.71900827),\n", + " (776, 0.7355372),\n", + " (777, 0.73966944),\n", + " (778, 0.73966944),\n", + " (779, 0.76859504),\n", + " (780, 0.7644628),\n", + " (781, 0.7355372),\n", + " (782, 0.6652893),\n", + " (783, 0.62396693),\n", + " (784, 0.59090906),\n", + " (785, 0.5661157),\n", + " (786, 0.5413223),\n", + " (787, 0.5206612),\n", + " (788, 0.49586776),\n", + " (789, 0.47933885),\n", + " (790, 0.48347107),\n", + " (791, 0.5041322),\n", + " (792, 0.5371901),\n", + " (793, 0.58264464),\n", + " (794, 0.6404959),\n", + " (795, 0.74380165),\n", + " (796, 0.8057851),\n", + " (797, 0.8264463),\n", + " (798, 0.8264463),\n", + " (799, 0.822314),\n", + " (800, 0.8016529),\n", + " (801, 0.8057851),\n", + " (802, 0.8429752),\n", + " (803, 0.8347107),\n", + " (804, 0.71900827),\n", + " (805, 0.5082645),\n", + " (806, 0.37190083),\n", + " (807, 0.34710744),\n", + " (808, 0.35123968),\n", + " (809, 0.3429752),\n", + " (810, 0.33471075),\n", + " (811, 0.3429752),\n", + " (812, 0.40495867),\n", + " (813, 0.4752066),\n", + " (814, 0.5165289),\n", + " (815, 0.55785125),\n", + " (816, 0.59917355),\n", + " (817, 0.61157024),\n", + " (818, 0.6280992),\n", + " (819, 0.661157),\n", + " (820, 0.76033056),\n", + " (821, 0.838843),\n", + " (822, 0.8016529),\n", + " (823, 0.74380165),\n", + " (824, 0.7355372),\n", + " (825, 0.75619835),\n", + " (826, 0.76859504),\n", + " (827, 0.73966944),\n", + " (828, 0.8057851),\n", + " (829, 0.8719008),\n", + " (830, 0.91322315),\n", + " (831, 0.2603306),\n", + " (832, 0.75619835),\n", + " (833, 0.7355372),\n", + " (834, 0.7644628),\n", + " (835, 0.71900827),\n", + " (836, 0.7066116),\n", + " (837, 0.75619835),\n", + " (838, 0.76033056),\n", + " (839, 0.6983471),\n", + " (840, 0.7066116),\n", + " (841, 0.6942149),\n", + " (842, 0.6859504),\n", + " (843, 0.6694215),\n", + " (844, 0.6735537),\n", + " (845, 0.6652893),\n", + " (846, 0.607438),\n", + " (847, 0.5661157),\n", + " (848, 0.5495868),\n", + " (849, 0.5413223),\n", + " (850, 0.49586776),\n", + " (851, 0.48347107),\n", + " (852, 0.4876033),\n", + " (853, 0.45867768),\n", + " (854, 0.45454547),\n", + " (855, 0.45867768),\n", + " (856, 0.46694216),\n", + " (857, 0.5413223),\n", + " (858, 0.61157024),\n", + " (859, 0.6983471),\n", + " (860, 0.7892562),\n", + " (861, 0.8181818),\n", + " (862, 0.8347107),\n", + " (863, 0.8264463),\n", + " (864, 0.7933884),\n", + " (865, 0.8057851),\n", + " (866, 0.8429752),\n", + " (867, 0.822314),\n", + " (868, 0.6404959),\n", + " (869, 0.4214876),\n", + " (870, 0.338843),\n", + " (871, 0.34710744),\n", + " (872, 0.35950413),\n", + " (873, 0.35123968),\n", + " (874, 0.34710744),\n", + " (875, 0.35123968),\n", + " (876, 0.38016528),\n", + " (877, 0.44214877),\n", + " (878, 0.46280992),\n", + " (879, 0.5123967),\n", + " (880, 0.55785125),\n", + " (881, 0.5661157),\n", + " (882, 0.61570245),\n", + " (883, 0.6404959),\n", + " (884, 0.6818182),\n", + " (885, 0.77272725),\n", + " (886, 0.7892562),\n", + " (887, 0.75619835),\n", + " (888, 0.72727275),\n", + " (889, 0.75206614),\n", + " (890, 0.8057851),\n", + " (891, 0.79752064),\n", + " (892, 0.78099173),\n", + " (893, 0.8512397),\n", + " (894, 0.93801653),\n", + " (895, 0.4752066),\n", + " (896, 0.76859504),\n", + " (897, 0.7644628),\n", + " (898, 0.78099173),\n", + " (899, 0.77272725),\n", + " (900, 0.76033056),\n", + " (901, 0.77272725),\n", + " (902, 0.76033056),\n", + " (903, 0.6983471),\n", + " (904, 0.6694215),\n", + " (905, 0.6280992),\n", + " (906, 0.6322314),\n", + " (907, 0.6487603),\n", + " (908, 0.6363636),\n", + " (909, 0.55785125),\n", + " (910, 0.46280992),\n", + " (911, 0.3429752),\n", + " (912, 0.33471075),\n", + " (913, 0.4214876),\n", + " (914, 0.30165288),\n", + " (915, 0.40082645),\n", + " (916, 0.45867768),\n", + " (917, 0.45454547),\n", + " (918, 0.43801653),\n", + " (919, 0.40495867),\n", + " (920, 0.3966942),\n", + " (921, 0.5247934),\n", + " (922, 0.607438),\n", + " (923, 0.6694215),\n", + " (924, 0.76859504),\n", + " (925, 0.80991733),\n", + " (926, 0.8264463),\n", + " (927, 0.8264463),\n", + " (928, 0.78099173),\n", + " (929, 0.7892562),\n", + " (930, 0.8347107),\n", + " (931, 0.8347107),\n", + " (932, 0.60330576),\n", + " (933, 0.4214876),\n", + " (934, 0.4090909),\n", + " (935, 0.38842976),\n", + " (936, 0.34710744),\n", + " (937, 0.3305785),\n", + " (938, 0.3305785),\n", + " (939, 0.33471075),\n", + " (940, 0.32231405),\n", + " (941, 0.30165288),\n", + " (942, 0.25619835),\n", + " (943, 0.3264463),\n", + " (944, 0.3553719),\n", + " (945, 0.3677686),\n", + " (946, 0.5082645),\n", + " (947, 0.61157024),\n", + " (948, 0.73966944),\n", + " (949, 0.7231405),\n", + " (950, 0.6818182),\n", + " (951, 0.7644628),\n", + " (952, 0.7231405),\n", + " (953, 0.7231405),\n", + " (954, 0.78512394),\n", + " (955, 0.822314),\n", + " (956, 0.8057851),\n", + " (957, 0.8140496),\n", + " (958, 0.9214876),\n", + " (959, 0.6487603),\n", + " (960, 0.7644628),\n", + " (961, 0.78099173),\n", + " (962, 0.7892562),\n", + " (963, 0.75619835),\n", + " (964, 0.76033056),\n", + " (965, 0.7768595),\n", + " (966, 0.7644628),\n", + " (967, 0.69008267),\n", + " (968, 0.6198347),\n", + " (969, 0.5785124),\n", + " (970, 0.56198347),\n", + " (971, 0.56198347),\n", + " (972, 0.54545456),\n", + " (973, 0.3553719),\n", + " (974, 0.446281),\n", + " (975, 0.30991736),\n", + " (976, 0.20661157),\n", + " (977, 0.41735536),\n", + " (978, 0.21487603),\n", + " (979, 0.42561984),\n", + " (980, 0.47107437),\n", + " (981, 0.41322315),\n", + " (982, 0.43801653),\n", + " (983, 0.446281),\n", + " (984, 0.45454547),\n", + " (985, 0.5371901),\n", + " (986, 0.6280992),\n", + " (987, 0.69008267),\n", + " (988, 0.76033056),\n", + " (989, 0.78512394),\n", + " (990, 0.8057851),\n", + " (991, 0.8347107),\n", + " (992, 0.7892562),\n", + " (993, 0.7768595),\n", + " (994, 0.8181818),\n", + " (995, 0.8305785),\n", + " (996, 0.6570248),\n", + " (997, 0.49173555),\n", + " (998, 0.47107437),\n", + " (999, 0.41322315),\n", + " ...],\n", + " [(0, 0.4338843),\n", + " (1, 0.57024795),\n", + " (2, 0.6404959),\n", + " (3, 0.6446281),\n", + " (4, 0.6198347),\n", + " (5, 0.6322314),\n", + " (6, 0.6487603),\n", + " (7, 0.6487603),\n", + " (8, 0.6446281),\n", + " (9, 0.6322314),\n", + " (10, 0.6322314),\n", + " (11, 0.6280992),\n", + " (12, 0.6322314),\n", + " (13, 0.6280992),\n", + " (14, 0.6322314),\n", + " (15, 0.6198347),\n", + " (16, 0.60330576),\n", + " (17, 0.61157024),\n", + " (18, 0.61157024),\n", + " (19, 0.60330576),\n", + " (20, 0.58677685),\n", + " (21, 0.59090906),\n", + " (22, 0.58677685),\n", + " (23, 0.58264464),\n", + " (24, 0.58677685),\n", + " (25, 0.58677685),\n", + " (26, 0.57024795),\n", + " (27, 0.5785124),\n", + " (28, 0.5785124),\n", + " (29, 0.56198347),\n", + " (30, 0.55785125),\n", + " (31, 0.553719),\n", + " (32, 0.553719),\n", + " (33, 0.55785125),\n", + " (34, 0.55785125),\n", + " (35, 0.56198347),\n", + " (36, 0.57438016),\n", + " (37, 0.57024795),\n", + " (38, 0.5661157),\n", + " (39, 0.5661157),\n", + " (40, 0.5785124),\n", + " (41, 0.59090906),\n", + " (42, 0.607438),\n", + " (43, 0.6322314),\n", + " (44, 0.6280992),\n", + " (45, 0.677686),\n", + " (46, 0.71487606),\n", + " (47, 0.70247936),\n", + " (48, 0.6983471),\n", + " (49, 0.70247936),\n", + " (50, 0.71487606),\n", + " (51, 0.6942149),\n", + " (52, 0.71487606),\n", + " (53, 0.72727275),\n", + " (54, 0.7231405),\n", + " (55, 0.73966944),\n", + " (56, 0.77272725),\n", + " (57, 0.7892562),\n", + " (58, 0.8016529),\n", + " (59, 0.79752064),\n", + " (60, 0.78099173),\n", + " (61, 0.76859504),\n", + " (62, 0.75206614),\n", + " (63, 0.75206614),\n", + " (64, 0.49173555),\n", + " (65, 0.6322314),\n", + " (66, 0.677686),\n", + " (67, 0.6570248),\n", + " (68, 0.661157),\n", + " (69, 0.6735537),\n", + " (70, 0.6735537),\n", + " (71, 0.661157),\n", + " (72, 0.6528926),\n", + " (73, 0.6280992),\n", + " (74, 0.6280992),\n", + " (75, 0.6322314),\n", + " (76, 0.6322314),\n", + " (77, 0.6280992),\n", + " (78, 0.6280992),\n", + " (79, 0.6198347),\n", + " (80, 0.60330576),\n", + " (81, 0.6198347),\n", + " (82, 0.60330576),\n", + " (83, 0.59917355),\n", + " (84, 0.59090906),\n", + " (85, 0.59504133),\n", + " (86, 0.58264464),\n", + " (87, 0.5785124),\n", + " (88, 0.58264464),\n", + " (89, 0.58677685),\n", + " (90, 0.58264464),\n", + " (91, 0.57438016),\n", + " (92, 0.57438016),\n", + " (93, 0.5785124),\n", + " (94, 0.56198347),\n", + " (95, 0.56198347),\n", + " (96, 0.56198347),\n", + " (97, 0.56198347),\n", + " (98, 0.5661157),\n", + " (99, 0.57438016),\n", + " (100, 0.56198347),\n", + " (101, 0.5661157),\n", + " (102, 0.57024795),\n", + " (103, 0.57024795),\n", + " (104, 0.58677685),\n", + " (105, 0.59917355),\n", + " (106, 0.607438),\n", + " (107, 0.6280992),\n", + " (108, 0.6446281),\n", + " (109, 0.677686),\n", + " (110, 0.71487606),\n", + " (111, 0.71487606),\n", + " (112, 0.6983471),\n", + " (113, 0.70247936),\n", + " (114, 0.71900827),\n", + " (115, 0.7066116),\n", + " (116, 0.7231405),\n", + " (117, 0.7355372),\n", + " (118, 0.73140496),\n", + " (119, 0.75206614),\n", + " (120, 0.77272725),\n", + " (121, 0.78512394),\n", + " (122, 0.8057851),\n", + " (123, 0.80991733),\n", + " (124, 0.7892562),\n", + " (125, 0.7768595),\n", + " (126, 0.76859504),\n", + " (127, 0.76033056),\n", + " (128, 0.53305787),\n", + " (129, 0.661157),\n", + " (130, 0.6859504),\n", + " (131, 0.677686),\n", + " (132, 0.69008267),\n", + " (133, 0.6942149),\n", + " (134, 0.6859504),\n", + " (135, 0.661157),\n", + " (136, 0.6528926),\n", + " (137, 0.6322314),\n", + " (138, 0.6280992),\n", + " (139, 0.6280992),\n", + " (140, 0.62396693),\n", + " (141, 0.61570245),\n", + " (142, 0.61570245),\n", + " (143, 0.60330576),\n", + " (144, 0.59917355),\n", + " (145, 0.59917355),\n", + " (146, 0.59090906),\n", + " (147, 0.58677685),\n", + " (148, 0.58264464),\n", + " (149, 0.5785124),\n", + " (150, 0.57024795),\n", + " (151, 0.5661157),\n", + " (152, 0.57024795),\n", + " (153, 0.5785124),\n", + " (154, 0.57438016),\n", + " (155, 0.5785124),\n", + " (156, 0.57024795),\n", + " (157, 0.5785124),\n", + " (158, 0.5661157),\n", + " (159, 0.55785125),\n", + " (160, 0.553719),\n", + " (161, 0.55785125),\n", + " (162, 0.55785125),\n", + " (163, 0.55785125),\n", + " (164, 0.57438016),\n", + " (165, 0.5661157),\n", + " (166, 0.5661157),\n", + " (167, 0.58264464),\n", + " (168, 0.59090906),\n", + " (169, 0.60330576),\n", + " (170, 0.59504133),\n", + " (171, 0.61157024),\n", + " (172, 0.6322314),\n", + " (173, 0.6735537),\n", + " (174, 0.6942149),\n", + " (175, 0.6942149),\n", + " (176, 0.69008267),\n", + " (177, 0.6983471),\n", + " (178, 0.7066116),\n", + " (179, 0.7066116),\n", + " (180, 0.72727275),\n", + " (181, 0.7355372),\n", + " (182, 0.7231405),\n", + " (183, 0.75619835),\n", + " (184, 0.77272725),\n", + " (185, 0.78099173),\n", + " (186, 0.7933884),\n", + " (187, 0.8181818),\n", + " (188, 0.8016529),\n", + " (189, 0.78099173),\n", + " (190, 0.77272725),\n", + " (191, 0.76859504),\n", + " (192, 0.56198347),\n", + " (193, 0.677686),\n", + " (194, 0.6942149),\n", + " (195, 0.69008267),\n", + " (196, 0.7107438),\n", + " (197, 0.6983471),\n", + " (198, 0.6818182),\n", + " (199, 0.6198347),\n", + " (200, 0.6404959),\n", + " (201, 0.6322314),\n", + " (202, 0.607438),\n", + " (203, 0.61157024),\n", + " (204, 0.607438),\n", + " (205, 0.58677685),\n", + " (206, 0.57024795),\n", + " (207, 0.56198347),\n", + " (208, 0.5661157),\n", + " (209, 0.5661157),\n", + " (210, 0.56198347),\n", + " (211, 0.5495868),\n", + " (212, 0.553719),\n", + " (213, 0.553719),\n", + " (214, 0.5495868),\n", + " (215, 0.553719),\n", + " (216, 0.55785125),\n", + " (217, 0.5661157),\n", + " (218, 0.57438016),\n", + " (219, 0.5661157),\n", + " (220, 0.5661157),\n", + " (221, 0.57438016),\n", + " (222, 0.57024795),\n", + " (223, 0.55785125),\n", + " (224, 0.553719),\n", + " (225, 0.55785125),\n", + " (226, 0.56198347),\n", + " (227, 0.54545456),\n", + " (228, 0.5661157),\n", + " (229, 0.553719),\n", + " (230, 0.55785125),\n", + " (231, 0.56198347),\n", + " (232, 0.5661157),\n", + " (233, 0.57438016),\n", + " (234, 0.57438016),\n", + " (235, 0.59090906),\n", + " (236, 0.62396693),\n", + " (237, 0.6528926),\n", + " (238, 0.6528926),\n", + " (239, 0.6528926),\n", + " (240, 0.6528926),\n", + " (241, 0.6652893),\n", + " (242, 0.6735537),\n", + " (243, 0.6652893),\n", + " (244, 0.70247936),\n", + " (245, 0.71487606),\n", + " (246, 0.71900827),\n", + " (247, 0.73966944),\n", + " (248, 0.76859504),\n", + " (249, 0.77272725),\n", + " (250, 0.78512394),\n", + " (251, 0.8140496),\n", + " (252, 0.8140496),\n", + " (253, 0.78512394),\n", + " (254, 0.7933884),\n", + " (255, 0.7644628),\n", + " (256, 0.58264464),\n", + " (257, 0.6942149),\n", + " (258, 0.6983471),\n", + " (259, 0.70247936),\n", + " (260, 0.71487606),\n", + " (261, 0.6818182),\n", + " (262, 0.6694215),\n", + " (263, 0.62396693),\n", + " (264, 0.6404959),\n", + " (265, 0.607438),\n", + " (266, 0.59090906),\n", + " (267, 0.56198347),\n", + " (268, 0.5495868),\n", + " (269, 0.53305787),\n", + " (270, 0.5165289),\n", + " (271, 0.5082645),\n", + " (272, 0.5206612),\n", + " (273, 0.53305787),\n", + " (274, 0.5041322),\n", + " (275, 0.49173555),\n", + " (276, 0.5),\n", + " (277, 0.5123967),\n", + " (278, 0.5165289),\n", + " (279, 0.53305787),\n", + " (280, 0.5413223),\n", + " (281, 0.553719),\n", + " (282, 0.55785125),\n", + " (283, 0.57024795),\n", + " (284, 0.57024795),\n", + " (285, 0.56198347),\n", + " (286, 0.55785125),\n", + " (287, 0.54545456),\n", + " (288, 0.54545456),\n", + " (289, 0.55785125),\n", + " (290, 0.55785125),\n", + " (291, 0.5413223),\n", + " (292, 0.55785125),\n", + " (293, 0.5413223),\n", + " (294, 0.54545456),\n", + " (295, 0.5495868),\n", + " (296, 0.553719),\n", + " (297, 0.5371901),\n", + " (298, 0.5289256),\n", + " (299, 0.5413223),\n", + " (300, 0.57024795),\n", + " (301, 0.58677685),\n", + " (302, 0.607438),\n", + " (303, 0.607438),\n", + " (304, 0.58264464),\n", + " (305, 0.60330576),\n", + " (306, 0.6280992),\n", + " (307, 0.62396693),\n", + " (308, 0.6363636),\n", + " (309, 0.6694215),\n", + " (310, 0.6983471),\n", + " (311, 0.73140496),\n", + " (312, 0.7644628),\n", + " (313, 0.76859504),\n", + " (314, 0.78099173),\n", + " (315, 0.8057851),\n", + " (316, 0.8181818),\n", + " (317, 0.7933884),\n", + " (318, 0.7933884),\n", + " (319, 0.7768595),\n", + " (320, 0.58677685),\n", + " (321, 0.6983471),\n", + " (322, 0.70247936),\n", + " (323, 0.6983471),\n", + " (324, 0.7066116),\n", + " (325, 0.6942149),\n", + " (326, 0.661157),\n", + " (327, 0.6363636),\n", + " (328, 0.62396693),\n", + " (329, 0.5661157),\n", + " (330, 0.49173555),\n", + " (331, 0.47107437),\n", + " (332, 0.46280992),\n", + " (333, 0.446281),\n", + " (334, 0.43801653),\n", + " (335, 0.42561984),\n", + " (336, 0.43801653),\n", + " (337, 0.44214877),\n", + " (338, 0.4338843),\n", + " (339, 0.42561984),\n", + " (340, 0.4214876),\n", + " (341, 0.44214877),\n", + " (342, 0.45867768),\n", + " (343, 0.47933885),\n", + " (344, 0.5041322),\n", + " (345, 0.5123967),\n", + " (346, 0.5413223),\n", + " (347, 0.54545456),\n", + " (348, 0.553719),\n", + " (349, 0.5413223),\n", + " (350, 0.5413223),\n", + " (351, 0.5289256),\n", + " (352, 0.5206612),\n", + " (353, 0.53305787),\n", + " (354, 0.5413223),\n", + " (355, 0.5123967),\n", + " (356, 0.5289256),\n", + " (357, 0.5165289),\n", + " (358, 0.5041322),\n", + " (359, 0.5082645),\n", + " (360, 0.5041322),\n", + " (361, 0.46694216),\n", + " (362, 0.45454547),\n", + " (363, 0.45454547),\n", + " (364, 0.45867768),\n", + " (365, 0.46694216),\n", + " (366, 0.49586776),\n", + " (367, 0.5206612),\n", + " (368, 0.5),\n", + " (369, 0.5),\n", + " (370, 0.5247934),\n", + " (371, 0.5289256),\n", + " (372, 0.5495868),\n", + " (373, 0.59090906),\n", + " (374, 0.607438),\n", + " (375, 0.6735537),\n", + " (376, 0.74793386),\n", + " (377, 0.76859504),\n", + " (378, 0.78099173),\n", + " (379, 0.80991733),\n", + " (380, 0.8057851),\n", + " (381, 0.7933884),\n", + " (382, 0.7892562),\n", + " (383, 0.7768595),\n", + " (384, 0.58677685),\n", + " (385, 0.7066116),\n", + " (386, 0.71487606),\n", + " (387, 0.70247936),\n", + " (388, 0.7066116),\n", + " (389, 0.6942149),\n", + " (390, 0.6570248),\n", + " (391, 0.61570245),\n", + " (392, 0.5661157),\n", + " (393, 0.46694216),\n", + " (394, 0.40495867),\n", + " (395, 0.38842976),\n", + " (396, 0.36363637),\n", + " (397, 0.35950413),\n", + " (398, 0.35123968),\n", + " (399, 0.3305785),\n", + " (400, 0.3305785),\n", + " (401, 0.30991736),\n", + " (402, 0.30165288),\n", + " (403, 0.30165288),\n", + " (404, 0.30578512),\n", + " (405, 0.3305785),\n", + " (406, 0.37190083),\n", + " (407, 0.40495867),\n", + " (408, 0.45041323),\n", + " (409, 0.47107437),\n", + " (410, 0.5),\n", + " (411, 0.5123967),\n", + " (412, 0.5165289),\n", + " (413, 0.5206612),\n", + " (414, 0.5206612),\n", + " (415, 0.5123967),\n", + " (416, 0.5),\n", + " (417, 0.5123967),\n", + " (418, 0.5206612),\n", + " (419, 0.5041322),\n", + " (420, 0.5041322),\n", + " (421, 0.47933885),\n", + " (422, 0.46280992),\n", + " (423, 0.446281),\n", + " (424, 0.4338843),\n", + " (425, 0.38016528),\n", + " (426, 0.32231405),\n", + " (427, 0.30991736),\n", + " (428, 0.29752067),\n", + " (429, 0.29752067),\n", + " (430, 0.30991736),\n", + " (431, 0.35123968),\n", + " (432, 0.34710744),\n", + " (433, 0.35123968),\n", + " (434, 0.38016528),\n", + " (435, 0.3966942),\n", + " (436, 0.41322315),\n", + " (437, 0.46694216),\n", + " (438, 0.48347107),\n", + " (439, 0.5371901),\n", + " (440, 0.6818182),\n", + " (441, 0.73966944),\n", + " (442, 0.7644628),\n", + " (443, 0.80991733),\n", + " (444, 0.8016529),\n", + " (445, 0.79752064),\n", + " (446, 0.76859504),\n", + " (447, 0.7768595),\n", + " (448, 0.55785125),\n", + " (449, 0.7107438),\n", + " (450, 0.71487606),\n", + " (451, 0.7066116),\n", + " (452, 0.70247936),\n", + " (453, 0.6859504),\n", + " (454, 0.61157024),\n", + " (455, 0.5289256),\n", + " (456, 0.446281),\n", + " (457, 0.37190083),\n", + " (458, 0.34710744),\n", + " (459, 0.3181818),\n", + " (460, 0.29338843),\n", + " (461, 0.2768595),\n", + " (462, 0.2520661),\n", + " (463, 0.24380165),\n", + " (464, 0.23553719),\n", + " (465, 0.2107438),\n", + " (466, 0.20661157),\n", + " (467, 0.20661157),\n", + " (468, 0.21487603),\n", + " (469, 0.23140496),\n", + " (470, 0.2603306),\n", + " (471, 0.30991736),\n", + " (472, 0.36363637),\n", + " (473, 0.4090909),\n", + " (474, 0.44214877),\n", + " (475, 0.46694216),\n", + " (476, 0.48347107),\n", + " (477, 0.5),\n", + " (478, 0.5),\n", + " (479, 0.4876033),\n", + " (480, 0.4876033),\n", + " (481, 0.49173555),\n", + " (482, 0.5),\n", + " (483, 0.49173555),\n", + " (484, 0.47933885),\n", + " (485, 0.45867768),\n", + " (486, 0.42975205),\n", + " (487, 0.38842976),\n", + " (488, 0.35950413),\n", + " (489, 0.29752067),\n", + " (490, 0.23140496),\n", + " (491, 0.2231405),\n", + " (492, 0.21487603),\n", + " (493, 0.19008264),\n", + " (494, 0.19421488),\n", + " (495, 0.2107438),\n", + " (496, 0.2231405),\n", + " (497, 0.22727273),\n", + " (498, 0.2520661),\n", + " (499, 0.2603306),\n", + " (500, 0.3264463),\n", + " (501, 0.3429752),\n", + " (502, 0.3553719),\n", + " (503, 0.42975205),\n", + " (504, 0.58264464),\n", + " (505, 0.70247936),\n", + " (506, 0.73966944),\n", + " (507, 0.7768595),\n", + " (508, 0.79752064),\n", + " (509, 0.7933884),\n", + " (510, 0.77272725),\n", + " (511, 0.77272725),\n", + " (512, 0.5082645),\n", + " (513, 0.70247936),\n", + " (514, 0.7066116),\n", + " (515, 0.6942149),\n", + " (516, 0.70247936),\n", + " (517, 0.6322314),\n", + " (518, 0.5165289),\n", + " (519, 0.44214877),\n", + " (520, 0.40082645),\n", + " (521, 0.36363637),\n", + " (522, 0.3429752),\n", + " (523, 0.30991736),\n", + " (524, 0.28099173),\n", + " (525, 0.2520661),\n", + " (526, 0.23140496),\n", + " (527, 0.23966943),\n", + " (528, 0.23140496),\n", + " (529, 0.22727273),\n", + " (530, 0.2107438),\n", + " (531, 0.21900827),\n", + " (532, 0.22727273),\n", + " (533, 0.2231405),\n", + " (534, 0.20661157),\n", + " (535, 0.2520661),\n", + " (536, 0.28099173),\n", + " (537, 0.32231405),\n", + " (538, 0.38016528),\n", + " (539, 0.4338843),\n", + " (540, 0.45041323),\n", + " (541, 0.48347107),\n", + " (542, 0.47107437),\n", + " (543, 0.46694216),\n", + " (544, 0.46280992),\n", + " (545, 0.47107437),\n", + " (546, 0.47933885),\n", + " (547, 0.48347107),\n", + " (548, 0.46694216),\n", + " (549, 0.45867768),\n", + " (550, 0.41322315),\n", + " (551, 0.3677686),\n", + " (552, 0.3181818),\n", + " (553, 0.25619835),\n", + " (554, 0.21900827),\n", + " (555, 0.23140496),\n", + " (556, 0.20247933),\n", + " (557, 0.17768595),\n", + " (558, 0.17355372),\n", + " (559, 0.18595041),\n", + " (560, 0.20247933),\n", + " (561, 0.2107438),\n", + " (562, 0.22727273),\n", + " (563, 0.22727273),\n", + " (564, 0.30165288),\n", + " (565, 0.3264463),\n", + " (566, 0.30991736),\n", + " (567, 0.38016528),\n", + " (568, 0.45867768),\n", + " (569, 0.59090906),\n", + " (570, 0.69008267),\n", + " (571, 0.74380165),\n", + " (572, 0.7892562),\n", + " (573, 0.78099173),\n", + " (574, 0.76859504),\n", + " (575, 0.7644628),\n", + " (576, 0.46280992),\n", + " (577, 0.6983471),\n", + " (578, 0.7066116),\n", + " (579, 0.6818182),\n", + " (580, 0.6818182),\n", + " (581, 0.553719),\n", + " (582, 0.48347107),\n", + " (583, 0.46280992),\n", + " (584, 0.47107437),\n", + " (585, 0.42975205),\n", + " (586, 0.38429752),\n", + " (587, 0.36363637),\n", + " (588, 0.338843),\n", + " (589, 0.30578512),\n", + " (590, 0.30165288),\n", + " (591, 0.3305785),\n", + " (592, 0.3305785),\n", + " (593, 0.338843),\n", + " (594, 0.32231405),\n", + " (595, 0.3264463),\n", + " (596, 0.33471075),\n", + " (597, 0.32231405),\n", + " (598, 0.30165288),\n", + " (599, 0.30165288),\n", + " (600, 0.29338843),\n", + " (601, 0.3181818),\n", + " (602, 0.38016528),\n", + " (603, 0.42975205),\n", + " (604, 0.46694216),\n", + " (605, 0.47933885),\n", + " (606, 0.46694216),\n", + " (607, 0.46280992),\n", + " (608, 0.45867768),\n", + " (609, 0.46694216),\n", + " (610, 0.4752066),\n", + " (611, 0.48347107),\n", + " (612, 0.48347107),\n", + " (613, 0.46280992),\n", + " (614, 0.43801653),\n", + " (615, 0.39256197),\n", + " (616, 0.3429752),\n", + " (617, 0.29338843),\n", + " (618, 0.30578512),\n", + " (619, 0.30991736),\n", + " (620, 0.2768595),\n", + " (621, 0.2644628),\n", + " (622, 0.27272728),\n", + " (623, 0.29752067),\n", + " (624, 0.30991736),\n", + " (625, 0.30991736),\n", + " (626, 0.3181818),\n", + " (627, 0.2892562),\n", + " (628, 0.3305785),\n", + " (629, 0.3429752),\n", + " (630, 0.37190083),\n", + " (631, 0.41322315),\n", + " (632, 0.45454547),\n", + " (633, 0.49173555),\n", + " (634, 0.54545456),\n", + " (635, 0.69008267),\n", + " (636, 0.7768595),\n", + " (637, 0.7644628),\n", + " (638, 0.7768595),\n", + " (639, 0.74793386),\n", + " (640, 0.40082645),\n", + " (641, 0.6694215),\n", + " (642, 0.6983471),\n", + " (643, 0.6818182),\n", + " (644, 0.6363636),\n", + " (645, 0.5082645),\n", + " (646, 0.4876033),\n", + " (647, 0.5289256),\n", + " (648, 0.5371901),\n", + " (649, 0.5082645),\n", + " (650, 0.46280992),\n", + " (651, 0.45041323),\n", + " (652, 0.43801653),\n", + " (653, 0.40495867),\n", + " (654, 0.3966942),\n", + " (655, 0.41322315),\n", + " (656, 0.41735536),\n", + " (657, 0.41322315),\n", + " (658, 0.3966942),\n", + " (659, 0.40082645),\n", + " (660, 0.40495867),\n", + " (661, 0.41322315),\n", + " (662, 0.41735536),\n", + " (663, 0.42561984),\n", + " (664, 0.39256197),\n", + " (665, 0.38429752),\n", + " (666, 0.44214877),\n", + " (667, 0.4752066),\n", + " (668, 0.4876033),\n", + " (669, 0.49586776),\n", + " (670, 0.48347107),\n", + " (671, 0.46694216),\n", + " (672, 0.4752066),\n", + " (673, 0.47107437),\n", + " (674, 0.4876033),\n", + " (675, 0.5165289),\n", + " (676, 0.5247934),\n", + " (677, 0.5206612),\n", + " (678, 0.4876033),\n", + " (679, 0.43801653),\n", + " (680, 0.3966942),\n", + " (681, 0.38016528),\n", + " (682, 0.35950413),\n", + " (683, 0.35950413),\n", + " (684, 0.3429752),\n", + " (685, 0.35950413),\n", + " (686, 0.38429752),\n", + " (687, 0.3966942),\n", + " (688, 0.41322315),\n", + " (689, 0.41322315),\n", + " (690, 0.42561984),\n", + " (691, 0.42975205),\n", + " (692, 0.45867768),\n", + " (693, 0.45867768),\n", + " (694, 0.46694216),\n", + " (695, 0.46694216),\n", + " (696, 0.49173555),\n", + " (697, 0.5289256),\n", + " (698, 0.5),\n", + " (699, 0.56198347),\n", + " (700, 0.76033056),\n", + " (701, 0.78512394),\n", + " (702, 0.7933884),\n", + " (703, 0.70247936),\n", + " (704, 0.34710744),\n", + " (705, 0.6487603),\n", + " (706, 0.70247936),\n", + " (707, 0.677686),\n", + " (708, 0.58264464),\n", + " (709, 0.5289256),\n", + " (710, 0.59504133),\n", + " (711, 0.61157024),\n", + " (712, 0.58677685),\n", + " (713, 0.57438016),\n", + " (714, 0.5661157),\n", + " (715, 0.5371901),\n", + " (716, 0.5165289),\n", + " (717, 0.49173555),\n", + " (718, 0.47107437),\n", + " (719, 0.46694216),\n", + " (720, 0.45867768),\n", + " (721, 0.44214877),\n", + " (722, 0.4338843),\n", + " (723, 0.42975205),\n", + " (724, 0.41322315),\n", + " (725, 0.4214876),\n", + " (726, 0.446281),\n", + " (727, 0.46694216),\n", + " (728, 0.45867768),\n", + " (729, 0.4752066),\n", + " (730, 0.5165289),\n", + " (731, 0.5289256),\n", + " (732, 0.5289256),\n", + " (733, 0.53305787),\n", + " (734, 0.5082645),\n", + " (735, 0.4876033),\n", + " (736, 0.4876033),\n", + " (737, 0.5041322),\n", + " (738, 0.5289256),\n", + " (739, 0.57438016),\n", + " (740, 0.607438),\n", + " (741, 0.60330576),\n", + " (742, 0.553719),\n", + " (743, 0.47933885),\n", + " (744, 0.42975205),\n", + " (745, 0.3677686),\n", + " (746, 0.38016528),\n", + " (747, 0.37603307),\n", + " (748, 0.3966942),\n", + " (749, 0.41735536),\n", + " (750, 0.4338843),\n", + " (751, 0.42975205),\n", + " (752, 0.44214877),\n", + " (753, 0.46694216),\n", + " (754, 0.49173555),\n", + " (755, 0.5165289),\n", + " (756, 0.553719),\n", + " (757, 0.5661157),\n", + " (758, 0.56198347),\n", + " (759, 0.5495868),\n", + " (760, 0.5495868),\n", + " (761, 0.5785124),\n", + " (762, 0.5785124),\n", + " (763, 0.45041323),\n", + " (764, 0.6983471),\n", + " (765, 0.8016529),\n", + " (766, 0.7892562),\n", + " (767, 0.6446281),\n", + " (768, 0.30165288),\n", + " (769, 0.61570245),\n", + " (770, 0.7066116),\n", + " (771, 0.6818182),\n", + " (772, 0.57024795),\n", + " (773, 0.58264464),\n", + " (774, 0.6652893),\n", + " (775, 0.6570248),\n", + " (776, 0.6363636),\n", + " (777, 0.6322314),\n", + " (778, 0.6280992),\n", + " (779, 0.61157024),\n", + " (780, 0.58264464),\n", + " (781, 0.5413223),\n", + " (782, 0.5082645),\n", + " (783, 0.4876033),\n", + " (784, 0.45454547),\n", + " (785, 0.446281),\n", + " (786, 0.4338843),\n", + " (787, 0.4338843),\n", + " (788, 0.41735536),\n", + " (789, 0.40495867),\n", + " (790, 0.42975205),\n", + " (791, 0.41735536),\n", + " (792, 0.4338843),\n", + " (793, 0.4752066),\n", + " (794, 0.5165289),\n", + " (795, 0.553719),\n", + " (796, 0.59090906),\n", + " (797, 0.57438016),\n", + " (798, 0.5289256),\n", + " (799, 0.5123967),\n", + " (800, 0.5206612),\n", + " (801, 0.53305787),\n", + " (802, 0.58264464),\n", + " (803, 0.6446281),\n", + " (804, 0.69008267),\n", + " (805, 0.661157),\n", + " (806, 0.56198347),\n", + " (807, 0.45041323),\n", + " (808, 0.38016528),\n", + " (809, 0.3553719),\n", + " (810, 0.37190083),\n", + " (811, 0.38016528),\n", + " (812, 0.38016528),\n", + " (813, 0.39256197),\n", + " (814, 0.3966942),\n", + " (815, 0.40082645),\n", + " (816, 0.4090909),\n", + " (817, 0.44214877),\n", + " (818, 0.49586776),\n", + " (819, 0.54545456),\n", + " (820, 0.59090906),\n", + " (821, 0.6363636),\n", + " (822, 0.661157),\n", + " (823, 0.6570248),\n", + " (824, 0.6363636),\n", + " (825, 0.6446281),\n", + " (826, 0.661157),\n", + " (827, 0.45041323),\n", + " (828, 0.59917355),\n", + " (829, 0.8057851),\n", + " (830, 0.78099173),\n", + " (831, 0.57438016),\n", + " (832, 0.26859504),\n", + " (833, 0.59504133),\n", + " (834, 0.71900827),\n", + " (835, 0.6983471),\n", + " (836, 0.59090906),\n", + " (837, 0.62396693),\n", + " (838, 0.7231405),\n", + " (839, 0.6942149),\n", + " (840, 0.6652893),\n", + " (841, 0.6652893),\n", + " (842, 0.661157),\n", + " (843, 0.62396693),\n", + " (844, 0.56198347),\n", + " (845, 0.5),\n", + " (846, 0.45454547),\n", + " (847, 0.4090909),\n", + " (848, 0.38016528),\n", + " (849, 0.3677686),\n", + " (850, 0.35123968),\n", + " (851, 0.338843),\n", + " (852, 0.3264463),\n", + " (853, 0.3429752),\n", + " (854, 0.38016528),\n", + " (855, 0.37603307),\n", + " (856, 0.38842976),\n", + " (857, 0.41322315),\n", + " (858, 0.46694216),\n", + " (859, 0.56198347),\n", + " (860, 0.6487603),\n", + " (861, 0.6280992),\n", + " (862, 0.56198347),\n", + " (863, 0.553719),\n", + " (864, 0.5661157),\n", + " (865, 0.58677685),\n", + " (866, 0.6322314),\n", + " (867, 0.7231405),\n", + " (868, 0.74793386),\n", + " (869, 0.6694215),\n", + " (870, 0.49586776),\n", + " (871, 0.35950413),\n", + " (872, 0.3305785),\n", + " (873, 0.30991736),\n", + " (874, 0.2892562),\n", + " (875, 0.29752067),\n", + " (876, 0.30578512),\n", + " (877, 0.30578512),\n", + " (878, 0.3264463),\n", + " (879, 0.34710744),\n", + " (880, 0.35950413),\n", + " (881, 0.39256197),\n", + " (882, 0.45454547),\n", + " (883, 0.49586776),\n", + " (884, 0.5413223),\n", + " (885, 0.6322314),\n", + " (886, 0.7107438),\n", + " (887, 0.72727275),\n", + " (888, 0.71487606),\n", + " (889, 0.71487606),\n", + " (890, 0.72727275),\n", + " (891, 0.553719),\n", + " (892, 0.5785124),\n", + " (893, 0.7892562),\n", + " (894, 0.7644628),\n", + " (895, 0.5041322),\n", + " (896, 0.2520661),\n", + " (897, 0.58677685),\n", + " (898, 0.73140496),\n", + " (899, 0.70247936),\n", + " (900, 0.6198347),\n", + " (901, 0.69008267),\n", + " (902, 0.75206614),\n", + " (903, 0.71487606),\n", + " (904, 0.677686),\n", + " (905, 0.6446281),\n", + " (906, 0.59917355),\n", + " (907, 0.5413223),\n", + " (908, 0.4876033),\n", + " (909, 0.43801653),\n", + " (910, 0.37603307),\n", + " (911, 0.3305785),\n", + " (912, 0.30165288),\n", + " (913, 0.29338843),\n", + " (914, 0.29338843),\n", + " (915, 0.28512397),\n", + " (916, 0.28099173),\n", + " (917, 0.28512397),\n", + " (918, 0.28099173),\n", + " (919, 0.30578512),\n", + " (920, 0.34710744),\n", + " (921, 0.35950413),\n", + " (922, 0.3966942),\n", + " (923, 0.5413223),\n", + " (924, 0.6652893),\n", + " (925, 0.6694215),\n", + " (926, 0.59917355),\n", + " (927, 0.59504133),\n", + " (928, 0.62396693),\n", + " (929, 0.62396693),\n", + " (930, 0.661157),\n", + " (931, 0.74793386),\n", + " (932, 0.74380165),\n", + " (933, 0.58677685),\n", + " (934, 0.37190083),\n", + " (935, 0.28512397),\n", + " (936, 0.28512397),\n", + " (937, 0.2644628),\n", + " (938, 0.2603306),\n", + " (939, 0.28099173),\n", + " (940, 0.29338843),\n", + " (941, 0.28099173),\n", + " (942, 0.26859504),\n", + " (943, 0.28512397),\n", + " (944, 0.30165288),\n", + " (945, 0.33471075),\n", + " (946, 0.40495867),\n", + " (947, 0.5041322),\n", + " (948, 0.56198347),\n", + " (949, 0.57438016),\n", + " (950, 0.6280992),\n", + " (951, 0.73140496),\n", + " (952, 0.74793386),\n", + " (953, 0.75619835),\n", + " (954, 0.75619835),\n", + " (955, 0.661157),\n", + " (956, 0.6363636),\n", + " (957, 0.7644628),\n", + " (958, 0.74793386),\n", + " (959, 0.446281),\n", + " (960, 0.24380165),\n", + " (961, 0.59090906),\n", + " (962, 0.7355372),\n", + " (963, 0.71900827),\n", + " (964, 0.6735537),\n", + " (965, 0.73140496),\n", + " (966, 0.76033056),\n", + " (967, 0.71900827),\n", + " (968, 0.6404959),\n", + " (969, 0.55785125),\n", + " (970, 0.5413223),\n", + " (971, 0.5041322),\n", + " (972, 0.4338843),\n", + " (973, 0.40082645),\n", + " (974, 0.27272728),\n", + " (975, 0.1983471),\n", + " (976, 0.20661157),\n", + " (977, 0.2107438),\n", + " (978, 0.19421488),\n", + " (979, 0.24793388),\n", + " (980, 0.2603306),\n", + " (981, 0.2644628),\n", + " (982, 0.2603306),\n", + " (983, 0.24380165),\n", + " (984, 0.28512397),\n", + " (985, 0.3181818),\n", + " (986, 0.35123968),\n", + " (987, 0.49586776),\n", + " (988, 0.6446281),\n", + " (989, 0.6859504),\n", + " (990, 0.6280992),\n", + " (991, 0.61570245),\n", + " (992, 0.6570248),\n", + " (993, 0.6363636),\n", + " (994, 0.661157),\n", + " (995, 0.73966944),\n", + " (996, 0.70247936),\n", + " (997, 0.47107437),\n", + " (998, 0.2892562),\n", + " (999, 0.28099173),\n", + " ...],\n", + " [(0, 0.38842976),\n", + " (1, 0.46280992),\n", + " (2, 0.553719),\n", + " (3, 0.70247936),\n", + " (4, 0.76033056),\n", + " (5, 0.76859504),\n", + " (6, 0.76859504),\n", + " (7, 0.7768595),\n", + " (8, 0.7933884),\n", + " (9, 0.79752064),\n", + " (10, 0.79752064),\n", + " (11, 0.7933884),\n", + " (12, 0.7768595),\n", + " (13, 0.78099173),\n", + " (14, 0.7644628),\n", + " (15, 0.78099173),\n", + " (16, 0.7892562),\n", + " (17, 0.79752064),\n", + " (18, 0.79752064),\n", + " (19, 0.79752064),\n", + " (20, 0.8057851),\n", + " (21, 0.7892562),\n", + " (22, 0.8016529),\n", + " (23, 0.8057851),\n", + " (24, 0.7768595),\n", + " (25, 0.78512394),\n", + " (26, 0.76033056),\n", + " (27, 0.76033056),\n", + " (28, 0.75619835),\n", + " (29, 0.74380165),\n", + " (30, 0.74380165),\n", + " (31, 0.7355372),\n", + " (32, 0.73140496),\n", + " (33, 0.73966944),\n", + " (34, 0.7644628),\n", + " (35, 0.76859504),\n", + " (36, 0.7644628),\n", + " (37, 0.76033056),\n", + " (38, 0.76033056),\n", + " (39, 0.76033056),\n", + " (40, 0.75206614),\n", + " (41, 0.74793386),\n", + " (42, 0.75619835),\n", + " (43, 0.75619835),\n", + " (44, 0.74793386),\n", + " (45, 0.74380165),\n", + " (46, 0.73966944),\n", + " (47, 0.73966944),\n", + " (48, 0.7355372),\n", + " (49, 0.73140496),\n", + " (50, 0.7107438),\n", + " (51, 0.72727275),\n", + " (52, 0.7231405),\n", + " (53, 0.71900827),\n", + " (54, 0.7355372),\n", + " (55, 0.6942149),\n", + " (56, 0.7107438),\n", + " (57, 0.6652893),\n", + " (58, 0.6322314),\n", + " (59, 0.60330576),\n", + " (60, 0.60330576),\n", + " (61, 0.5247934),\n", + " (62, 0.36363637),\n", + " (63, 0.2520661),\n", + " (64, 0.40082645),\n", + " (65, 0.49173555),\n", + " (66, 0.59090906),\n", + " (67, 0.71487606),\n", + " (68, 0.77272725),\n", + " (69, 0.75619835),\n", + " (70, 0.7892562),\n", + " (71, 0.8016529),\n", + " (72, 0.8057851),\n", + " (73, 0.7768595),\n", + " (74, 0.78512394),\n", + " (75, 0.78099173),\n", + " (76, 0.77272725),\n", + " (77, 0.78099173),\n", + " (78, 0.7768595),\n", + " (79, 0.78512394),\n", + " (80, 0.8016529),\n", + " (81, 0.79752064),\n", + " (82, 0.8016529),\n", + " (83, 0.8057851),\n", + " (84, 0.8057851),\n", + " (85, 0.8016529),\n", + " (86, 0.8057851),\n", + " (87, 0.8057851),\n", + " (88, 0.7892562),\n", + " (89, 0.79752064),\n", + " (90, 0.77272725),\n", + " (91, 0.77272725),\n", + " (92, 0.76033056),\n", + " (93, 0.75619835),\n", + " (94, 0.74380165),\n", + " (95, 0.74380165),\n", + " (96, 0.75206614),\n", + " (97, 0.75619835),\n", + " (98, 0.75619835),\n", + " (99, 0.76859504),\n", + " (100, 0.76859504),\n", + " (101, 0.76859504),\n", + " (102, 0.7644628),\n", + " (103, 0.77272725),\n", + " (104, 0.75619835),\n", + " (105, 0.74380165),\n", + " (106, 0.7644628),\n", + " (107, 0.77272725),\n", + " (108, 0.75619835),\n", + " (109, 0.75206614),\n", + " (110, 0.75206614),\n", + " (111, 0.74380165),\n", + " (112, 0.74380165),\n", + " (113, 0.7355372),\n", + " (114, 0.72727275),\n", + " (115, 0.72727275),\n", + " (116, 0.71487606),\n", + " (117, 0.71900827),\n", + " (118, 0.72727275),\n", + " (119, 0.75206614),\n", + " (120, 0.72727275),\n", + " (121, 0.6859504),\n", + " (122, 0.6652893),\n", + " (123, 0.58264464),\n", + " (124, 0.59504133),\n", + " (125, 0.54545456),\n", + " (126, 0.40082645),\n", + " (127, 0.2644628),\n", + " (128, 0.39256197),\n", + " (129, 0.48347107),\n", + " (130, 0.60330576),\n", + " (131, 0.72727275),\n", + " (132, 0.76033056),\n", + " (133, 0.77272725),\n", + " (134, 0.8057851),\n", + " (135, 0.8016529),\n", + " (136, 0.7933884),\n", + " (137, 0.78512394),\n", + " (138, 0.78512394),\n", + " (139, 0.7644628),\n", + " (140, 0.7768595),\n", + " (141, 0.78099173),\n", + " (142, 0.7892562),\n", + " (143, 0.7933884),\n", + " (144, 0.8016529),\n", + " (145, 0.8140496),\n", + " (146, 0.80991733),\n", + " (147, 0.8140496),\n", + " (148, 0.8140496),\n", + " (149, 0.8181818),\n", + " (150, 0.822314),\n", + " (151, 0.8181818),\n", + " (152, 0.8016529),\n", + " (153, 0.8181818),\n", + " (154, 0.79752064),\n", + " (155, 0.76859504),\n", + " (156, 0.7644628),\n", + " (157, 0.7768595),\n", + " (158, 0.74793386),\n", + " (159, 0.75619835),\n", + " (160, 0.76033056),\n", + " (161, 0.75619835),\n", + " (162, 0.7644628),\n", + " (163, 0.7644628),\n", + " (164, 0.76859504),\n", + " (165, 0.76859504),\n", + " (166, 0.75206614),\n", + " (167, 0.76859504),\n", + " (168, 0.77272725),\n", + " (169, 0.74793386),\n", + " (170, 0.7644628),\n", + " (171, 0.77272725),\n", + " (172, 0.76033056),\n", + " (173, 0.76033056),\n", + " (174, 0.77272725),\n", + " (175, 0.75206614),\n", + " (176, 0.7355372),\n", + " (177, 0.73966944),\n", + " (178, 0.73966944),\n", + " (179, 0.7355372),\n", + " (180, 0.71900827),\n", + " (181, 0.71487606),\n", + " (182, 0.72727275),\n", + " (183, 0.73966944),\n", + " (184, 0.7355372),\n", + " (185, 0.6859504),\n", + " (186, 0.661157),\n", + " (187, 0.607438),\n", + " (188, 0.607438),\n", + " (189, 0.55785125),\n", + " (190, 0.4090909),\n", + " (191, 0.28512397),\n", + " (192, 0.40495867),\n", + " (193, 0.4876033),\n", + " (194, 0.6363636),\n", + " (195, 0.73966944),\n", + " (196, 0.75206614),\n", + " (197, 0.77272725),\n", + " (198, 0.80991733),\n", + " (199, 0.8057851),\n", + " (200, 0.79752064),\n", + " (201, 0.7892562),\n", + " (202, 0.7768595),\n", + " (203, 0.77272725),\n", + " (204, 0.76859504),\n", + " (205, 0.77272725),\n", + " (206, 0.7892562),\n", + " (207, 0.7933884),\n", + " (208, 0.8057851),\n", + " (209, 0.80991733),\n", + " (210, 0.8057851),\n", + " (211, 0.8181818),\n", + " (212, 0.8181818),\n", + " (213, 0.822314),\n", + " (214, 0.8264463),\n", + " (215, 0.822314),\n", + " (216, 0.8181818),\n", + " (217, 0.838843),\n", + " (218, 0.8305785),\n", + " (219, 0.8140496),\n", + " (220, 0.7892562),\n", + " (221, 0.7933884),\n", + " (222, 0.7644628),\n", + " (223, 0.78099173),\n", + " (224, 0.77272725),\n", + " (225, 0.7644628),\n", + " (226, 0.75619835),\n", + " (227, 0.7892562),\n", + " (228, 0.8057851),\n", + " (229, 0.78099173),\n", + " (230, 0.7644628),\n", + " (231, 0.78512394),\n", + " (232, 0.77272725),\n", + " (233, 0.75619835),\n", + " (234, 0.77272725),\n", + " (235, 0.7768595),\n", + " (236, 0.76859504),\n", + " (237, 0.78099173),\n", + " (238, 0.77272725),\n", + " (239, 0.7768595),\n", + " (240, 0.74380165),\n", + " (241, 0.75206614),\n", + " (242, 0.74380165),\n", + " (243, 0.73966944),\n", + " (244, 0.7107438),\n", + " (245, 0.7231405),\n", + " (246, 0.71900827),\n", + " (247, 0.7231405),\n", + " (248, 0.71487606),\n", + " (249, 0.69008267),\n", + " (250, 0.6363636),\n", + " (251, 0.62396693),\n", + " (252, 0.61157024),\n", + " (253, 0.57024795),\n", + " (254, 0.4214876),\n", + " (255, 0.28099173),\n", + " (256, 0.37603307),\n", + " (257, 0.47107437),\n", + " (258, 0.70247936),\n", + " (259, 0.76033056),\n", + " (260, 0.75206614),\n", + " (261, 0.78099173),\n", + " (262, 0.8140496),\n", + " (263, 0.80991733),\n", + " (264, 0.8057851),\n", + " (265, 0.79752064),\n", + " (266, 0.78512394),\n", + " (267, 0.7768595),\n", + " (268, 0.7892562),\n", + " (269, 0.78099173),\n", + " (270, 0.76859504),\n", + " (271, 0.8016529),\n", + " (272, 0.8016529),\n", + " (273, 0.8057851),\n", + " (274, 0.8181818),\n", + " (275, 0.8181818),\n", + " (276, 0.8305785),\n", + " (277, 0.822314),\n", + " (278, 0.8264463),\n", + " (279, 0.8140496),\n", + " (280, 0.8264463),\n", + " (281, 0.8347107),\n", + " (282, 0.8429752),\n", + " (283, 0.838843),\n", + " (284, 0.8347107),\n", + " (285, 0.8181818),\n", + " (286, 0.8016529),\n", + " (287, 0.78512394),\n", + " (288, 0.7768595),\n", + " (289, 0.78099173),\n", + " (290, 0.78512394),\n", + " (291, 0.8016529),\n", + " (292, 0.8016529),\n", + " (293, 0.7892562),\n", + " (294, 0.76859504),\n", + " (295, 0.7892562),\n", + " (296, 0.78099173),\n", + " (297, 0.7644628),\n", + " (298, 0.78099173),\n", + " (299, 0.77272725),\n", + " (300, 0.76859504),\n", + " (301, 0.78099173),\n", + " (302, 0.76859504),\n", + " (303, 0.76859504),\n", + " (304, 0.76033056),\n", + " (305, 0.74793386),\n", + " (306, 0.73966944),\n", + " (307, 0.7355372),\n", + " (308, 0.7107438),\n", + " (309, 0.70247936),\n", + " (310, 0.71487606),\n", + " (311, 0.7107438),\n", + " (312, 0.7107438),\n", + " (313, 0.6694215),\n", + " (314, 0.6198347),\n", + " (315, 0.61570245),\n", + " (316, 0.607438),\n", + " (317, 0.5661157),\n", + " (318, 0.47107437),\n", + " (319, 0.2768595),\n", + " (320, 0.34710744),\n", + " (321, 0.57438016),\n", + " (322, 0.76033056),\n", + " (323, 0.75619835),\n", + " (324, 0.75619835),\n", + " (325, 0.77272725),\n", + " (326, 0.80991733),\n", + " (327, 0.80991733),\n", + " (328, 0.80991733),\n", + " (329, 0.8016529),\n", + " (330, 0.78512394),\n", + " (331, 0.78512394),\n", + " (332, 0.78512394),\n", + " (333, 0.78099173),\n", + " (334, 0.7644628),\n", + " (335, 0.78099173),\n", + " (336, 0.77272725),\n", + " (337, 0.7892562),\n", + " (338, 0.80991733),\n", + " (339, 0.822314),\n", + " (340, 0.8181818),\n", + " (341, 0.80991733),\n", + " (342, 0.8140496),\n", + " (343, 0.8181818),\n", + " (344, 0.8264463),\n", + " (345, 0.822314),\n", + " (346, 0.8347107),\n", + " (347, 0.8429752),\n", + " (348, 0.8471074),\n", + " (349, 0.8347107),\n", + " (350, 0.8347107),\n", + " (351, 0.8140496),\n", + " (352, 0.78099173),\n", + " (353, 0.8016529),\n", + " (354, 0.8057851),\n", + " (355, 0.8140496),\n", + " (356, 0.822314),\n", + " (357, 0.7892562),\n", + " (358, 0.77272725),\n", + " (359, 0.76859504),\n", + " (360, 0.78099173),\n", + " (361, 0.7644628),\n", + " (362, 0.76859504),\n", + " (363, 0.76859504),\n", + " (364, 0.75619835),\n", + " (365, 0.77272725),\n", + " (366, 0.76033056),\n", + " (367, 0.76033056),\n", + " (368, 0.75206614),\n", + " (369, 0.75206614),\n", + " (370, 0.74793386),\n", + " (371, 0.74380165),\n", + " (372, 0.72727275),\n", + " (373, 0.6983471),\n", + " (374, 0.71487606),\n", + " (375, 0.7107438),\n", + " (376, 0.6983471),\n", + " (377, 0.6528926),\n", + " (378, 0.62396693),\n", + " (379, 0.5785124),\n", + " (380, 0.58264464),\n", + " (381, 0.5661157),\n", + " (382, 0.5165289),\n", + " (383, 0.29752067),\n", + " (384, 0.35950413),\n", + " (385, 0.6694215),\n", + " (386, 0.73966944),\n", + " (387, 0.75619835),\n", + " (388, 0.76033056),\n", + " (389, 0.77272725),\n", + " (390, 0.7933884),\n", + " (391, 0.80991733),\n", + " (392, 0.79752064),\n", + " (393, 0.7933884),\n", + " (394, 0.77272725),\n", + " (395, 0.7644628),\n", + " (396, 0.75206614),\n", + " (397, 0.75206614),\n", + " (398, 0.74793386),\n", + " (399, 0.73140496),\n", + " (400, 0.75206614),\n", + " (401, 0.74793386),\n", + " (402, 0.7644628),\n", + " (403, 0.78512394),\n", + " (404, 0.79752064),\n", + " (405, 0.7892562),\n", + " (406, 0.7933884),\n", + " (407, 0.7933884),\n", + " (408, 0.8057851),\n", + " (409, 0.80991733),\n", + " (410, 0.80991733),\n", + " (411, 0.8181818),\n", + " (412, 0.8471074),\n", + " (413, 0.8057851),\n", + " (414, 0.822314),\n", + " (415, 0.8347107),\n", + " (416, 0.8016529),\n", + " (417, 0.79752064),\n", + " (418, 0.8057851),\n", + " (419, 0.7933884),\n", + " (420, 0.8140496),\n", + " (421, 0.78512394),\n", + " (422, 0.75619835),\n", + " (423, 0.76033056),\n", + " (424, 0.74380165),\n", + " (425, 0.75619835),\n", + " (426, 0.75619835),\n", + " (427, 0.75619835),\n", + " (428, 0.74793386),\n", + " (429, 0.7644628),\n", + " (430, 0.73966944),\n", + " (431, 0.73140496),\n", + " (432, 0.72727275),\n", + " (433, 0.73140496),\n", + " (434, 0.73966944),\n", + " (435, 0.73966944),\n", + " (436, 0.71900827),\n", + " (437, 0.6983471),\n", + " (438, 0.71900827),\n", + " (439, 0.72727275),\n", + " (440, 0.7107438),\n", + " (441, 0.6570248),\n", + " (442, 0.607438),\n", + " (443, 0.57024795),\n", + " (444, 0.57438016),\n", + " (445, 0.553719),\n", + " (446, 0.5247934),\n", + " (447, 0.33471075),\n", + " (448, 0.3966942),\n", + " (449, 0.70247936),\n", + " (450, 0.76859504),\n", + " (451, 0.73140496),\n", + " (452, 0.74380165),\n", + " (453, 0.76033056),\n", + " (454, 0.78099173),\n", + " (455, 0.8016529),\n", + " (456, 0.7892562),\n", + " (457, 0.74793386),\n", + " (458, 0.69008267),\n", + " (459, 0.6570248),\n", + " (460, 0.6404959),\n", + " (461, 0.6528926),\n", + " (462, 0.6446281),\n", + " (463, 0.6487603),\n", + " (464, 0.6280992),\n", + " (465, 0.6198347),\n", + " (466, 0.6487603),\n", + " (467, 0.6652893),\n", + " (468, 0.70247936),\n", + " (469, 0.71487606),\n", + " (470, 0.73140496),\n", + " (471, 0.75206614),\n", + " (472, 0.77272725),\n", + " (473, 0.78099173),\n", + " (474, 0.78099173),\n", + " (475, 0.78512394),\n", + " (476, 0.78512394),\n", + " (477, 0.77272725),\n", + " (478, 0.8057851),\n", + " (479, 0.8181818),\n", + " (480, 0.7892562),\n", + " (481, 0.7768595),\n", + " (482, 0.77272725),\n", + " (483, 0.75619835),\n", + " (484, 0.76859504),\n", + " (485, 0.75206614),\n", + " (486, 0.74380165),\n", + " (487, 0.73966944),\n", + " (488, 0.72727275),\n", + " (489, 0.71487606),\n", + " (490, 0.73140496),\n", + " (491, 0.7355372),\n", + " (492, 0.71900827),\n", + " (493, 0.7355372),\n", + " (494, 0.7066116),\n", + " (495, 0.6983471),\n", + " (496, 0.7066116),\n", + " (497, 0.71487606),\n", + " (498, 0.7066116),\n", + " (499, 0.6942149),\n", + " (500, 0.6652893),\n", + " (501, 0.6280992),\n", + " (502, 0.661157),\n", + " (503, 0.71900827),\n", + " (504, 0.7107438),\n", + " (505, 0.677686),\n", + " (506, 0.58677685),\n", + " (507, 0.553719),\n", + " (508, 0.57438016),\n", + " (509, 0.553719),\n", + " (510, 0.5495868),\n", + " (511, 0.36363637),\n", + " (512, 0.38016528),\n", + " (513, 0.7231405),\n", + " (514, 0.76859504),\n", + " (515, 0.72727275),\n", + " (516, 0.72727275),\n", + " (517, 0.73140496),\n", + " (518, 0.7644628),\n", + " (519, 0.76033056),\n", + " (520, 0.7231405),\n", + " (521, 0.6735537),\n", + " (522, 0.607438),\n", + " (523, 0.59504133),\n", + " (524, 0.56198347),\n", + " (525, 0.5785124),\n", + " (526, 0.553719),\n", + " (527, 0.5785124),\n", + " (528, 0.5206612),\n", + " (529, 0.5041322),\n", + " (530, 0.5495868),\n", + " (531, 0.5371901),\n", + " (532, 0.55785125),\n", + " (533, 0.57024795),\n", + " (534, 0.6198347),\n", + " (535, 0.6942149),\n", + " (536, 0.71487606),\n", + " (537, 0.75206614),\n", + " (538, 0.7644628),\n", + " (539, 0.75619835),\n", + " (540, 0.75206614),\n", + " (541, 0.75206614),\n", + " (542, 0.76859504),\n", + " (543, 0.78099173),\n", + " (544, 0.76033056),\n", + " (545, 0.73966944),\n", + " (546, 0.74793386),\n", + " (547, 0.7355372),\n", + " (548, 0.7231405),\n", + " (549, 0.7231405),\n", + " (550, 0.71900827),\n", + " (551, 0.7066116),\n", + " (552, 0.6818182),\n", + " (553, 0.6487603),\n", + " (554, 0.6446281),\n", + " (555, 0.60330576),\n", + " (556, 0.59090906),\n", + " (557, 0.57438016),\n", + " (558, 0.56198347),\n", + " (559, 0.55785125),\n", + " (560, 0.59090906),\n", + " (561, 0.6280992),\n", + " (562, 0.61157024),\n", + " (563, 0.62396693),\n", + " (564, 0.59917355),\n", + " (565, 0.553719),\n", + " (566, 0.56198347),\n", + " (567, 0.5785124),\n", + " (568, 0.6570248),\n", + " (569, 0.6818182),\n", + " (570, 0.58677685),\n", + " (571, 0.5371901),\n", + " (572, 0.55785125),\n", + " (573, 0.5413223),\n", + " (574, 0.553719),\n", + " (575, 0.38842976),\n", + " (576, 0.36363637),\n", + " (577, 0.75206614),\n", + " (578, 0.7644628),\n", + " (579, 0.7355372),\n", + " (580, 0.6942149),\n", + " (581, 0.677686),\n", + " (582, 0.6859504),\n", + " (583, 0.6363636),\n", + " (584, 0.6322314),\n", + " (585, 0.553719),\n", + " (586, 0.5247934),\n", + " (587, 0.5123967),\n", + " (588, 0.5123967),\n", + " (589, 0.5289256),\n", + " (590, 0.4876033),\n", + " (591, 0.46694216),\n", + " (592, 0.3966942),\n", + " (593, 0.42561984),\n", + " (594, 0.446281),\n", + " (595, 0.4752066),\n", + " (596, 0.49173555),\n", + " (597, 0.5413223),\n", + " (598, 0.59504133),\n", + " (599, 0.6446281),\n", + " (600, 0.6818182),\n", + " (601, 0.72727275),\n", + " (602, 0.74793386),\n", + " (603, 0.7355372),\n", + " (604, 0.7355372),\n", + " (605, 0.7231405),\n", + " (606, 0.7355372),\n", + " (607, 0.73966944),\n", + " (608, 0.7231405),\n", + " (609, 0.7107438),\n", + " (610, 0.71900827),\n", + " (611, 0.7107438),\n", + " (612, 0.6942149),\n", + " (613, 0.69008267),\n", + " (614, 0.6818182),\n", + " (615, 0.6694215),\n", + " (616, 0.6322314),\n", + " (617, 0.57438016),\n", + " (618, 0.5165289),\n", + " (619, 0.45867768),\n", + " (620, 0.4214876),\n", + " (621, 0.41322315),\n", + " (622, 0.4090909),\n", + " (623, 0.3966942),\n", + " (624, 0.44214877),\n", + " (625, 0.47933885),\n", + " (626, 0.5),\n", + " (627, 0.5371901),\n", + " (628, 0.5206612),\n", + " (629, 0.5041322),\n", + " (630, 0.5123967),\n", + " (631, 0.49173555),\n", + " (632, 0.5247934),\n", + " (633, 0.553719),\n", + " (634, 0.59504133),\n", + " (635, 0.5206612),\n", + " (636, 0.53305787),\n", + " (637, 0.5247934),\n", + " (638, 0.553719),\n", + " (639, 0.4090909),\n", + " (640, 0.45041323),\n", + " (641, 0.76033056),\n", + " (642, 0.74793386),\n", + " (643, 0.73140496),\n", + " (644, 0.661157),\n", + " (645, 0.6446281),\n", + " (646, 0.6322314),\n", + " (647, 0.61570245),\n", + " (648, 0.6198347),\n", + " (649, 0.5495868),\n", + " (650, 0.53305787),\n", + " (651, 0.5247934),\n", + " (652, 0.49586776),\n", + " (653, 0.53305787),\n", + " (654, 0.5165289),\n", + " (655, 0.46694216),\n", + " (656, 0.43801653),\n", + " (657, 0.45041323),\n", + " (658, 0.5082645),\n", + " (659, 0.53305787),\n", + " (660, 0.5413223),\n", + " (661, 0.5785124),\n", + " (662, 0.607438),\n", + " (663, 0.61570245),\n", + " (664, 0.661157),\n", + " (665, 0.7066116),\n", + " (666, 0.7355372),\n", + " (667, 0.7355372),\n", + " (668, 0.73966944),\n", + " (669, 0.7066116),\n", + " (670, 0.70247936),\n", + " (671, 0.7066116),\n", + " (672, 0.6983471),\n", + " (673, 0.69008267),\n", + " (674, 0.6942149),\n", + " (675, 0.70247936),\n", + " (676, 0.6859504),\n", + " (677, 0.6570248),\n", + " (678, 0.6322314),\n", + " (679, 0.61570245),\n", + " (680, 0.5661157),\n", + " (681, 0.5165289),\n", + " (682, 0.4752066),\n", + " (683, 0.4338843),\n", + " (684, 0.38429752),\n", + " (685, 0.3553719),\n", + " (686, 0.3305785),\n", + " (687, 0.3140496),\n", + " (688, 0.35950413),\n", + " (689, 0.36363637),\n", + " (690, 0.4090909),\n", + " (691, 0.45454547),\n", + " (692, 0.45041323),\n", + " (693, 0.45867768),\n", + " (694, 0.47107437),\n", + " (695, 0.46694216),\n", + " (696, 0.48347107),\n", + " (697, 0.45867768),\n", + " (698, 0.5),\n", + " (699, 0.4752066),\n", + " (700, 0.5041322),\n", + " (701, 0.5289256),\n", + " (702, 0.54545456),\n", + " (703, 0.4090909),\n", + " (704, 0.48347107),\n", + " (705, 0.7768595),\n", + " (706, 0.7644628),\n", + " (707, 0.7355372),\n", + " (708, 0.6942149),\n", + " (709, 0.6570248),\n", + " (710, 0.6570248),\n", + " (711, 0.661157),\n", + " (712, 0.61570245),\n", + " (713, 0.6280992),\n", + " (714, 0.6404959),\n", + " (715, 0.6570248),\n", + " (716, 0.6528926),\n", + " (717, 0.62396693),\n", + " (718, 0.6694215),\n", + " (719, 0.6487603),\n", + " (720, 0.5785124),\n", + " (721, 0.56198347),\n", + " (722, 0.553719),\n", + " (723, 0.5495868),\n", + " (724, 0.553719),\n", + " (725, 0.5661157),\n", + " (726, 0.57438016),\n", + " (727, 0.607438),\n", + " (728, 0.6570248),\n", + " (729, 0.71487606),\n", + " (730, 0.7107438),\n", + " (731, 0.7107438),\n", + " (732, 0.7107438),\n", + " (733, 0.70247936),\n", + " (734, 0.6942149),\n", + " (735, 0.6942149),\n", + " (736, 0.6942149),\n", + " (737, 0.6859504),\n", + " (738, 0.677686),\n", + " (739, 0.6818182),\n", + " (740, 0.6528926),\n", + " (741, 0.61570245),\n", + " (742, 0.5661157),\n", + " (743, 0.5413223),\n", + " (744, 0.5),\n", + " (745, 0.46280992),\n", + " (746, 0.446281),\n", + " (747, 0.42561984),\n", + " (748, 0.41322315),\n", + " (749, 0.40082645),\n", + " (750, 0.40495867),\n", + " (751, 0.3966942),\n", + " (752, 0.38429752),\n", + " (753, 0.38016528),\n", + " (754, 0.4090909),\n", + " (755, 0.446281),\n", + " (756, 0.47107437),\n", + " (757, 0.48347107),\n", + " (758, 0.49173555),\n", + " (759, 0.47107437),\n", + " (760, 0.46280992),\n", + " (761, 0.4338843),\n", + " (762, 0.4338843),\n", + " (763, 0.46280992),\n", + " (764, 0.49173555),\n", + " (765, 0.5413223),\n", + " (766, 0.56198347),\n", + " (767, 0.37603307),\n", + " (768, 0.49173555),\n", + " (769, 0.7933884),\n", + " (770, 0.78099173),\n", + " (771, 0.7355372),\n", + " (772, 0.6570248),\n", + " (773, 0.6363636),\n", + " (774, 0.55785125),\n", + " (775, 0.5),\n", + " (776, 0.45454547),\n", + " (777, 0.46280992),\n", + " (778, 0.45041323),\n", + " (779, 0.446281),\n", + " (780, 0.45454547),\n", + " (781, 0.37190083),\n", + " (782, 0.6818182),\n", + " (783, 0.76033056),\n", + " (784, 0.5661157),\n", + " (785, 0.47107437),\n", + " (786, 0.41735536),\n", + " (787, 0.40082645),\n", + " (788, 0.38016528),\n", + " (789, 0.36363637),\n", + " (790, 0.3264463),\n", + " (791, 0.4338843),\n", + " (792, 0.46280992),\n", + " (793, 0.47933885),\n", + " (794, 0.4752066),\n", + " (795, 0.4876033),\n", + " (796, 0.46694216),\n", + " (797, 0.45867768),\n", + " (798, 0.4338843),\n", + " (799, 0.45041323),\n", + " (800, 0.4338843),\n", + " (801, 0.44214877),\n", + " (802, 0.4876033),\n", + " (803, 0.46280992),\n", + " (804, 0.46694216),\n", + " (805, 0.41322315),\n", + " (806, 0.38016528),\n", + " (807, 0.3553719),\n", + " (808, 0.3305785),\n", + " (809, 0.29752067),\n", + " (810, 0.2892562),\n", + " (811, 0.26859504),\n", + " (812, 0.30991736),\n", + " (813, 0.338843),\n", + " (814, 0.3677686),\n", + " (815, 0.46694216),\n", + " (816, 0.37603307),\n", + " (817, 0.38429752),\n", + " (818, 0.37603307),\n", + " (819, 0.35950413),\n", + " (820, 0.3677686),\n", + " (821, 0.36363637),\n", + " (822, 0.4090909),\n", + " (823, 0.44214877),\n", + " (824, 0.4214876),\n", + " (825, 0.446281),\n", + " (826, 0.47933885),\n", + " (827, 0.49586776),\n", + " (828, 0.47933885),\n", + " (829, 0.54545456),\n", + " (830, 0.55785125),\n", + " (831, 0.35950413),\n", + " (832, 0.4338843),\n", + " (833, 0.73966944),\n", + " (834, 0.75619835),\n", + " (835, 0.6404959),\n", + " (836, 0.5),\n", + " (837, 0.5206612),\n", + " (838, 0.5371901),\n", + " (839, 0.57024795),\n", + " (840, 0.6446281),\n", + " (841, 0.73966944),\n", + " (842, 0.76859504),\n", + " (843, 0.71900827),\n", + " (844, 0.6280992),\n", + " (845, 0.553719),\n", + " (846, 0.5495868),\n", + " (847, 0.59504133),\n", + " (848, 0.5495868),\n", + " (849, 0.48347107),\n", + " (850, 0.4338843),\n", + " (851, 0.40495867),\n", + " (852, 0.41735536),\n", + " (853, 0.41735536),\n", + " (854, 0.338843),\n", + " (855, 0.3677686),\n", + " (856, 0.36363637),\n", + " (857, 0.21900827),\n", + " (858, 0.4090909),\n", + " (859, 0.5206612),\n", + " (860, 0.5206612),\n", + " (861, 0.5495868),\n", + " (862, 0.5247934),\n", + " (863, 0.5),\n", + " (864, 0.45454547),\n", + " (865, 0.4338843),\n", + " (866, 0.45867768),\n", + " (867, 0.42561984),\n", + " (868, 0.41735536),\n", + " (869, 0.338843),\n", + " (870, 0.20247933),\n", + " (871, 0.24380165),\n", + " (872, 0.3140496),\n", + " (873, 0.35950413),\n", + " (874, 0.37603307),\n", + " (875, 0.38429752),\n", + " (876, 0.42561984),\n", + " (877, 0.48347107),\n", + " (878, 0.5082645),\n", + " (879, 0.59090906),\n", + " (880, 0.5661157),\n", + " (881, 0.57438016),\n", + " (882, 0.58264464),\n", + " (883, 0.59917355),\n", + " (884, 0.55785125),\n", + " (885, 0.4876033),\n", + " (886, 0.4214876),\n", + " (887, 0.3677686),\n", + " (888, 0.3305785),\n", + " (889, 0.36363637),\n", + " (890, 0.36363637),\n", + " (891, 0.3677686),\n", + " (892, 0.46280992),\n", + " (893, 0.56198347),\n", + " (894, 0.5661157),\n", + " (895, 0.338843),\n", + " (896, 0.4876033),\n", + " (897, 0.5785124),\n", + " (898, 0.5041322),\n", + " (899, 0.5289256),\n", + " (900, 0.60330576),\n", + " (901, 0.6818182),\n", + " (902, 0.6859504),\n", + " (903, 0.73966944),\n", + " (904, 0.77272725),\n", + " (905, 0.75206614),\n", + " (906, 0.6983471),\n", + " (907, 0.6487603),\n", + " (908, 0.59090906),\n", + " (909, 0.5371901),\n", + " (910, 0.48347107),\n", + " (911, 0.45867768),\n", + " (912, 0.4752066),\n", + " (913, 0.45867768),\n", + " (914, 0.43801653),\n", + " (915, 0.40495867),\n", + " (916, 0.37603307),\n", + " (917, 0.36363637),\n", + " (918, 0.37190083),\n", + " (919, 0.40495867),\n", + " (920, 0.47107437),\n", + " (921, 0.41322315),\n", + " (922, 0.2644628),\n", + " (923, 0.70247936),\n", + " (924, 0.76859504),\n", + " (925, 0.8347107),\n", + " (926, 0.80991733),\n", + " (927, 0.79752064),\n", + " (928, 0.74793386),\n", + " (929, 0.74380165),\n", + " (930, 0.71900827),\n", + " (931, 0.6280992),\n", + " (932, 0.5289256),\n", + " (933, 0.30578512),\n", + " (934, 0.4090909),\n", + " (935, 0.46694216),\n", + " (936, 0.3966942),\n", + " (937, 0.38429752),\n", + " (938, 0.38842976),\n", + " (939, 0.40495867),\n", + " (940, 0.45041323),\n", + " (941, 0.4876033),\n", + " (942, 0.53305787),\n", + " (943, 0.553719),\n", + " (944, 0.5206612),\n", + " (945, 0.553719),\n", + " (946, 0.59504133),\n", + " (947, 0.6528926),\n", + " (948, 0.6528926),\n", + " (949, 0.677686),\n", + " (950, 0.61570245),\n", + " (951, 0.5289256),\n", + " (952, 0.47107437),\n", + " (953, 0.46280992),\n", + " (954, 0.45454547),\n", + " (955, 0.39256197),\n", + " (956, 0.21900827),\n", + " (957, 0.44214877),\n", + " (958, 0.4876033),\n", + " (959, 0.27272728),\n", + " (960, 0.55785125),\n", + " (961, 0.446281),\n", + " (962, 0.5247934),\n", + " (963, 0.57438016),\n", + " (964, 0.6983471),\n", + " (965, 0.74793386),\n", + " (966, 0.71487606),\n", + " (967, 0.7231405),\n", + " (968, 0.6735537),\n", + " (969, 0.5371901),\n", + " (970, 0.553719),\n", + " (971, 0.48347107),\n", + " (972, 0.44214877),\n", + " (973, 0.54545456),\n", + " (974, 0.2520661),\n", + " (975, 0.19421488),\n", + " (976, 0.3966942),\n", + " (977, 0.2768595),\n", + " (978, 0.2644628),\n", + " (979, 0.35123968),\n", + " (980, 0.37190083),\n", + " (981, 0.3553719),\n", + " (982, 0.35123968),\n", + " (983, 0.34710744),\n", + " (984, 0.38429752),\n", + " (985, 0.45041323),\n", + " (986, 0.41322315),\n", + " (987, 0.38429752),\n", + " (988, 0.78099173),\n", + " (989, 0.8140496),\n", + " (990, 0.71487606),\n", + " (991, 0.6280992),\n", + " (992, 0.607438),\n", + " (993, 0.6818182),\n", + " (994, 0.74380165),\n", + " (995, 0.6487603),\n", + " (996, 0.5247934),\n", + " (997, 0.29338843),\n", + " (998, 0.48347107),\n", + " (999, 0.38016528),\n", + " ...],\n", + " [(0, 0.553719),\n", + " (1, 0.57438016),\n", + " (2, 0.58677685),\n", + " (3, 0.60330576),\n", + " (4, 0.61157024),\n", + " (5, 0.6404959),\n", + " (6, 0.6570248),\n", + " (7, 0.661157),\n", + " (8, 0.6735537),\n", + " (9, 0.6859504),\n", + " (10, 0.6983471),\n", + " (11, 0.71487606),\n", + " (12, 0.71900827),\n", + " (13, 0.7231405),\n", + " (14, 0.7355372),\n", + " (15, 0.73966944),\n", + " (16, 0.74793386),\n", + " (17, 0.77272725),\n", + " (18, 0.77272725),\n", + " (19, 0.77272725),\n", + " (20, 0.7768595),\n", + " (21, 0.76033056),\n", + " (22, 0.76033056),\n", + " (23, 0.7644628),\n", + " (24, 0.7768595),\n", + " (25, 0.78099173),\n", + " (26, 0.7768595),\n", + " (27, 0.7644628),\n", + " (28, 0.76859504),\n", + " (29, 0.76859504),\n", + " (30, 0.76859504),\n", + " (31, 0.76859504),\n", + " (32, 0.7644628),\n", + " (33, 0.7644628),\n", + " (34, 0.76859504),\n", + " (35, 0.78099173),\n", + " (36, 0.77272725),\n", + " (37, 0.7644628),\n", + " (38, 0.77272725),\n", + " (39, 0.7644628),\n", + " (40, 0.76033056),\n", + " (41, 0.75206614),\n", + " (42, 0.71900827),\n", + " (43, 0.6528926),\n", + " (44, 0.59504133),\n", + " (45, 0.61570245),\n", + " (46, 0.607438),\n", + " (47, 0.6570248),\n", + " (48, 0.6942149),\n", + " (49, 0.69008267),\n", + " (50, 0.58264464),\n", + " (51, 0.5123967),\n", + " (52, 0.5082645),\n", + " (53, 0.5041322),\n", + " (54, 0.5041322),\n", + " (55, 0.5123967),\n", + " (56, 0.5123967),\n", + " (57, 0.49173555),\n", + " (58, 0.47107437),\n", + " (59, 0.45454547),\n", + " (60, 0.4214876),\n", + " (61, 0.45867768),\n", + " (62, 0.42975205),\n", + " (63, 0.45041323),\n", + " (64, 0.5495868),\n", + " (65, 0.55785125),\n", + " (66, 0.58677685),\n", + " (67, 0.59917355),\n", + " (68, 0.607438),\n", + " (69, 0.6404959),\n", + " (70, 0.6528926),\n", + " (71, 0.661157),\n", + " (72, 0.677686),\n", + " (73, 0.69008267),\n", + " (74, 0.7066116),\n", + " (75, 0.71900827),\n", + " (76, 0.71900827),\n", + " (77, 0.7231405),\n", + " (78, 0.7355372),\n", + " (79, 0.7355372),\n", + " (80, 0.76033056),\n", + " (81, 0.7768595),\n", + " (82, 0.78099173),\n", + " (83, 0.7644628),\n", + " (84, 0.76033056),\n", + " (85, 0.76033056),\n", + " (86, 0.75619835),\n", + " (87, 0.75619835),\n", + " (88, 0.76859504),\n", + " (89, 0.77272725),\n", + " (90, 0.7768595),\n", + " (91, 0.77272725),\n", + " (92, 0.77272725),\n", + " (93, 0.77272725),\n", + " (94, 0.7768595),\n", + " (95, 0.76859504),\n", + " (96, 0.76033056),\n", + " (97, 0.76033056),\n", + " (98, 0.7644628),\n", + " (99, 0.7768595),\n", + " (100, 0.78099173),\n", + " (101, 0.76859504),\n", + " (102, 0.7768595),\n", + " (103, 0.77272725),\n", + " (104, 0.76859504),\n", + " (105, 0.76859504),\n", + " (106, 0.76033056),\n", + " (107, 0.73966944),\n", + " (108, 0.69008267),\n", + " (109, 0.6652893),\n", + " (110, 0.661157),\n", + " (111, 0.6322314),\n", + " (112, 0.661157),\n", + " (113, 0.6942149),\n", + " (114, 0.6735537),\n", + " (115, 0.62396693),\n", + " (116, 0.55785125),\n", + " (117, 0.5041322),\n", + " (118, 0.49586776),\n", + " (119, 0.48347107),\n", + " (120, 0.4752066),\n", + " (121, 0.46694216),\n", + " (122, 0.446281),\n", + " (123, 0.44214877),\n", + " (124, 0.41735536),\n", + " (125, 0.45867768),\n", + " (126, 0.48347107),\n", + " (127, 0.4876033),\n", + " (128, 0.5371901),\n", + " (129, 0.54545456),\n", + " (130, 0.57024795),\n", + " (131, 0.59090906),\n", + " (132, 0.61570245),\n", + " (133, 0.6363636),\n", + " (134, 0.6570248),\n", + " (135, 0.6694215),\n", + " (136, 0.677686),\n", + " (137, 0.69008267),\n", + " (138, 0.70247936),\n", + " (139, 0.71900827),\n", + " (140, 0.71487606),\n", + " (141, 0.7231405),\n", + " (142, 0.7355372),\n", + " (143, 0.73140496),\n", + " (144, 0.75206614),\n", + " (145, 0.78099173),\n", + " (146, 0.77272725),\n", + " (147, 0.7768595),\n", + " (148, 0.76859504),\n", + " (149, 0.77272725),\n", + " (150, 0.76033056),\n", + " (151, 0.7644628),\n", + " (152, 0.76859504),\n", + " (153, 0.77272725),\n", + " (154, 0.78099173),\n", + " (155, 0.7768595),\n", + " (156, 0.77272725),\n", + " (157, 0.77272725),\n", + " (158, 0.7768595),\n", + " (159, 0.7768595),\n", + " (160, 0.7644628),\n", + " (161, 0.7644628),\n", + " (162, 0.78099173),\n", + " (163, 0.7892562),\n", + " (164, 0.7892562),\n", + " (165, 0.76859504),\n", + " (166, 0.7644628),\n", + " (167, 0.7644628),\n", + " (168, 0.77272725),\n", + " (169, 0.77272725),\n", + " (170, 0.76859504),\n", + " (171, 0.76859504),\n", + " (172, 0.74380165),\n", + " (173, 0.71487606),\n", + " (174, 0.6818182),\n", + " (175, 0.677686),\n", + " (176, 0.661157),\n", + " (177, 0.661157),\n", + " (178, 0.6818182),\n", + " (179, 0.6735537),\n", + " (180, 0.6487603),\n", + " (181, 0.60330576),\n", + " (182, 0.55785125),\n", + " (183, 0.5),\n", + " (184, 0.47933885),\n", + " (185, 0.47107437),\n", + " (186, 0.45454547),\n", + " (187, 0.46280992),\n", + " (188, 0.44214877),\n", + " (189, 0.45867768),\n", + " (190, 0.5165289),\n", + " (191, 0.4876033),\n", + " (192, 0.5371901),\n", + " (193, 0.5247934),\n", + " (194, 0.5495868),\n", + " (195, 0.58677685),\n", + " (196, 0.607438),\n", + " (197, 0.6322314),\n", + " (198, 0.6570248),\n", + " (199, 0.6735537),\n", + " (200, 0.6818182),\n", + " (201, 0.6859504),\n", + " (202, 0.6983471),\n", + " (203, 0.7107438),\n", + " (204, 0.7107438),\n", + " (205, 0.7231405),\n", + " (206, 0.73140496),\n", + " (207, 0.7355372),\n", + " (208, 0.77272725),\n", + " (209, 0.78512394),\n", + " (210, 0.7768595),\n", + " (211, 0.77272725),\n", + " (212, 0.7892562),\n", + " (213, 0.7933884),\n", + " (214, 0.78099173),\n", + " (215, 0.7768595),\n", + " (216, 0.7768595),\n", + " (217, 0.78512394),\n", + " (218, 0.7933884),\n", + " (219, 0.7892562),\n", + " (220, 0.78099173),\n", + " (221, 0.7768595),\n", + " (222, 0.7768595),\n", + " (223, 0.7768595),\n", + " (224, 0.7768595),\n", + " (225, 0.77272725),\n", + " (226, 0.78512394),\n", + " (227, 0.7892562),\n", + " (228, 0.79752064),\n", + " (229, 0.78099173),\n", + " (230, 0.76033056),\n", + " (231, 0.7644628),\n", + " (232, 0.78099173),\n", + " (233, 0.77272725),\n", + " (234, 0.7644628),\n", + " (235, 0.76859504),\n", + " (236, 0.7644628),\n", + " (237, 0.74380165),\n", + " (238, 0.7107438),\n", + " (239, 0.7107438),\n", + " (240, 0.70247936),\n", + " (241, 0.6694215),\n", + " (242, 0.6446281),\n", + " (243, 0.6528926),\n", + " (244, 0.6528926),\n", + " (245, 0.6404959),\n", + " (246, 0.6198347),\n", + " (247, 0.57438016),\n", + " (248, 0.5495868),\n", + " (249, 0.5289256),\n", + " (250, 0.5041322),\n", + " (251, 0.5289256),\n", + " (252, 0.5082645),\n", + " (253, 0.4752066),\n", + " (254, 0.5247934),\n", + " (255, 0.49173555),\n", + " (256, 0.5247934),\n", + " (257, 0.5289256),\n", + " (258, 0.54545456),\n", + " (259, 0.57438016),\n", + " (260, 0.59917355),\n", + " (261, 0.6280992),\n", + " (262, 0.6570248),\n", + " (263, 0.6735537),\n", + " (264, 0.6859504),\n", + " (265, 0.6818182),\n", + " (266, 0.6942149),\n", + " (267, 0.7066116),\n", + " (268, 0.7107438),\n", + " (269, 0.7231405),\n", + " (270, 0.7355372),\n", + " (271, 0.73966944),\n", + " (272, 0.7644628),\n", + " (273, 0.78099173),\n", + " (274, 0.7768595),\n", + " (275, 0.7644628),\n", + " (276, 0.78099173),\n", + " (277, 0.79752064),\n", + " (278, 0.78512394),\n", + " (279, 0.7892562),\n", + " (280, 0.7933884),\n", + " (281, 0.7933884),\n", + " (282, 0.79752064),\n", + " (283, 0.79752064),\n", + " (284, 0.7933884),\n", + " (285, 0.78099173),\n", + " (286, 0.7768595),\n", + " (287, 0.78099173),\n", + " (288, 0.78099173),\n", + " (289, 0.76859504),\n", + " (290, 0.78512394),\n", + " (291, 0.78512394),\n", + " (292, 0.79752064),\n", + " (293, 0.7933884),\n", + " (294, 0.78512394),\n", + " (295, 0.78099173),\n", + " (296, 0.7933884),\n", + " (297, 0.78512394),\n", + " (298, 0.77272725),\n", + " (299, 0.7644628),\n", + " (300, 0.76859504),\n", + " (301, 0.75619835),\n", + " (302, 0.73140496),\n", + " (303, 0.7231405),\n", + " (304, 0.72727275),\n", + " (305, 0.7066116),\n", + " (306, 0.677686),\n", + " (307, 0.6652893),\n", + " (308, 0.6570248),\n", + " (309, 0.6446281),\n", + " (310, 0.6280992),\n", + " (311, 0.607438),\n", + " (312, 0.59917355),\n", + " (313, 0.57024795),\n", + " (314, 0.553719),\n", + " (315, 0.57024795),\n", + " (316, 0.5495868),\n", + " (317, 0.49586776),\n", + " (318, 0.5165289),\n", + " (319, 0.5082645),\n", + " (320, 0.5206612),\n", + " (321, 0.5289256),\n", + " (322, 0.54545456),\n", + " (323, 0.55785125),\n", + " (324, 0.5785124),\n", + " (325, 0.6198347),\n", + " (326, 0.6487603),\n", + " (327, 0.6570248),\n", + " (328, 0.6694215),\n", + " (329, 0.6735537),\n", + " (330, 0.69008267),\n", + " (331, 0.71900827),\n", + " (332, 0.7231405),\n", + " (333, 0.73140496),\n", + " (334, 0.74380165),\n", + " (335, 0.73966944),\n", + " (336, 0.75619835),\n", + " (337, 0.76859504),\n", + " (338, 0.7768595),\n", + " (339, 0.77272725),\n", + " (340, 0.7644628),\n", + " (341, 0.7768595),\n", + " (342, 0.7768595),\n", + " (343, 0.78099173),\n", + " (344, 0.7892562),\n", + " (345, 0.7933884),\n", + " (346, 0.7892562),\n", + " (347, 0.7892562),\n", + " (348, 0.7933884),\n", + " (349, 0.78099173),\n", + " (350, 0.7768595),\n", + " (351, 0.7892562),\n", + " (352, 0.78512394),\n", + " (353, 0.7644628),\n", + " (354, 0.78099173),\n", + " (355, 0.7892562),\n", + " (356, 0.7892562),\n", + " (357, 0.78512394),\n", + " (358, 0.7892562),\n", + " (359, 0.7892562),\n", + " (360, 0.7892562),\n", + " (361, 0.7892562),\n", + " (362, 0.7768595),\n", + " (363, 0.7644628),\n", + " (364, 0.77272725),\n", + " (365, 0.76859504),\n", + " (366, 0.74380165),\n", + " (367, 0.72727275),\n", + " (368, 0.72727275),\n", + " (369, 0.7231405),\n", + " (370, 0.7107438),\n", + " (371, 0.69008267),\n", + " (372, 0.6983471),\n", + " (373, 0.6942149),\n", + " (374, 0.6694215),\n", + " (375, 0.6322314),\n", + " (376, 0.62396693),\n", + " (377, 0.5785124),\n", + " (378, 0.57438016),\n", + " (379, 0.57024795),\n", + " (380, 0.55785125),\n", + " (381, 0.5123967),\n", + " (382, 0.49586776),\n", + " (383, 0.5082645),\n", + " (384, 0.5206612),\n", + " (385, 0.5247934),\n", + " (386, 0.5371901),\n", + " (387, 0.553719),\n", + " (388, 0.57438016),\n", + " (389, 0.61570245),\n", + " (390, 0.6404959),\n", + " (391, 0.62396693),\n", + " (392, 0.6322314),\n", + " (393, 0.6528926),\n", + " (394, 0.677686),\n", + " (395, 0.7107438),\n", + " (396, 0.7231405),\n", + " (397, 0.7231405),\n", + " (398, 0.7355372),\n", + " (399, 0.73140496),\n", + " (400, 0.74380165),\n", + " (401, 0.7644628),\n", + " (402, 0.76859504),\n", + " (403, 0.7644628),\n", + " (404, 0.75619835),\n", + " (405, 0.75206614),\n", + " (406, 0.75619835),\n", + " (407, 0.7644628),\n", + " (408, 0.77272725),\n", + " (409, 0.77272725),\n", + " (410, 0.77272725),\n", + " (411, 0.76859504),\n", + " (412, 0.76859504),\n", + " (413, 0.76033056),\n", + " (414, 0.78099173),\n", + " (415, 0.7892562),\n", + " (416, 0.78099173),\n", + " (417, 0.76859504),\n", + " (418, 0.76859504),\n", + " (419, 0.76859504),\n", + " (420, 0.7768595),\n", + " (421, 0.7644628),\n", + " (422, 0.75619835),\n", + " (423, 0.7644628),\n", + " (424, 0.7644628),\n", + " (425, 0.76033056),\n", + " (426, 0.76033056),\n", + " (427, 0.75206614),\n", + " (428, 0.75206614),\n", + " (429, 0.7644628),\n", + " (430, 0.75206614),\n", + " (431, 0.71900827),\n", + " (432, 0.7107438),\n", + " (433, 0.7066116),\n", + " (434, 0.7066116),\n", + " (435, 0.7107438),\n", + " (436, 0.69008267),\n", + " (437, 0.69008267),\n", + " (438, 0.6528926),\n", + " (439, 0.607438),\n", + " (440, 0.61570245),\n", + " (441, 0.61157024),\n", + " (442, 0.59090906),\n", + " (443, 0.56198347),\n", + " (444, 0.5495868),\n", + " (445, 0.5165289),\n", + " (446, 0.47933885),\n", + " (447, 0.49173555),\n", + " (448, 0.5165289),\n", + " (449, 0.5123967),\n", + " (450, 0.5206612),\n", + " (451, 0.54545456),\n", + " (452, 0.58677685),\n", + " (453, 0.62396693),\n", + " (454, 0.607438),\n", + " (455, 0.57438016),\n", + " (456, 0.59090906),\n", + " (457, 0.61570245),\n", + " (458, 0.6322314),\n", + " (459, 0.6528926),\n", + " (460, 0.6652893),\n", + " (461, 0.661157),\n", + " (462, 0.6694215),\n", + " (463, 0.6818182),\n", + " (464, 0.677686),\n", + " (465, 0.677686),\n", + " (466, 0.69008267),\n", + " (467, 0.6942149),\n", + " (468, 0.6735537),\n", + " (469, 0.6859504),\n", + " (470, 0.7231405),\n", + " (471, 0.73140496),\n", + " (472, 0.72727275),\n", + " (473, 0.7355372),\n", + " (474, 0.74380165),\n", + " (475, 0.7355372),\n", + " (476, 0.7355372),\n", + " (477, 0.72727275),\n", + " (478, 0.7644628),\n", + " (479, 0.79752064),\n", + " (480, 0.77272725),\n", + " (481, 0.7644628),\n", + " (482, 0.74380165),\n", + " (483, 0.74793386),\n", + " (484, 0.73140496),\n", + " (485, 0.7231405),\n", + " (486, 0.72727275),\n", + " (487, 0.73140496),\n", + " (488, 0.71900827),\n", + " (489, 0.70247936),\n", + " (490, 0.6983471),\n", + " (491, 0.677686),\n", + " (492, 0.6735537),\n", + " (493, 0.6942149),\n", + " (494, 0.6818182),\n", + " (495, 0.62396693),\n", + " (496, 0.61157024),\n", + " (497, 0.6280992),\n", + " (498, 0.62396693),\n", + " (499, 0.6322314),\n", + " (500, 0.6322314),\n", + " (501, 0.59504133),\n", + " (502, 0.60330576),\n", + " (503, 0.56198347),\n", + " (504, 0.5661157),\n", + " (505, 0.61570245),\n", + " (506, 0.59917355),\n", + " (507, 0.5661157),\n", + " (508, 0.5495868),\n", + " (509, 0.5123967),\n", + " (510, 0.4752066),\n", + " (511, 0.48347107),\n", + " (512, 0.5082645),\n", + " (513, 0.5041322),\n", + " (514, 0.5082645),\n", + " (515, 0.553719),\n", + " (516, 0.60330576),\n", + " (517, 0.59090906),\n", + " (518, 0.55785125),\n", + " (519, 0.5165289),\n", + " (520, 0.5123967),\n", + " (521, 0.5413223),\n", + " (522, 0.55785125),\n", + " (523, 0.55785125),\n", + " (524, 0.5495868),\n", + " (525, 0.5371901),\n", + " (526, 0.5206612),\n", + " (527, 0.5371901),\n", + " (528, 0.5247934),\n", + " (529, 0.5),\n", + " (530, 0.5),\n", + " (531, 0.5371901),\n", + " (532, 0.5495868),\n", + " (533, 0.553719),\n", + " (534, 0.59917355),\n", + " (535, 0.6446281),\n", + " (536, 0.661157),\n", + " (537, 0.6735537),\n", + " (538, 0.6983471),\n", + " (539, 0.6983471),\n", + " (540, 0.7107438),\n", + " (541, 0.7066116),\n", + " (542, 0.7355372),\n", + " (543, 0.77272725),\n", + " (544, 0.77272725),\n", + " (545, 0.75619835),\n", + " (546, 0.7231405),\n", + " (547, 0.73966944),\n", + " (548, 0.71900827),\n", + " (549, 0.6859504),\n", + " (550, 0.6818182),\n", + " (551, 0.677686),\n", + " (552, 0.6487603),\n", + " (553, 0.59917355),\n", + " (554, 0.56198347),\n", + " (555, 0.5371901),\n", + " (556, 0.5289256),\n", + " (557, 0.53305787),\n", + " (558, 0.5082645),\n", + " (559, 0.47107437),\n", + " (560, 0.45454547),\n", + " (561, 0.49586776),\n", + " (562, 0.48347107),\n", + " (563, 0.5123967),\n", + " (564, 0.5),\n", + " (565, 0.5165289),\n", + " (566, 0.5206612),\n", + " (567, 0.5206612),\n", + " (568, 0.49173555),\n", + " (569, 0.5289256),\n", + " (570, 0.56198347),\n", + " (571, 0.57024795),\n", + " (572, 0.54545456),\n", + " (573, 0.5082645),\n", + " (574, 0.48347107),\n", + " (575, 0.47933885),\n", + " (576, 0.5),\n", + " (577, 0.5041322),\n", + " (578, 0.5082645),\n", + " (579, 0.55785125),\n", + " (580, 0.59090906),\n", + " (581, 0.55785125),\n", + " (582, 0.5041322),\n", + " (583, 0.446281),\n", + " (584, 0.46280992),\n", + " (585, 0.4876033),\n", + " (586, 0.47107437),\n", + " (587, 0.46280992),\n", + " (588, 0.44214877),\n", + " (589, 0.4090909),\n", + " (590, 0.37603307),\n", + " (591, 0.38429752),\n", + " (592, 0.36363637),\n", + " (593, 0.37190083),\n", + " (594, 0.38429752),\n", + " (595, 0.41735536),\n", + " (596, 0.45454547),\n", + " (597, 0.46694216),\n", + " (598, 0.4876033),\n", + " (599, 0.5413223),\n", + " (600, 0.56198347),\n", + " (601, 0.607438),\n", + " (602, 0.6446281),\n", + " (603, 0.6735537),\n", + " (604, 0.6942149),\n", + " (605, 0.6983471),\n", + " (606, 0.71487606),\n", + " (607, 0.73140496),\n", + " (608, 0.75206614),\n", + " (609, 0.73140496),\n", + " (610, 0.6983471),\n", + " (611, 0.7066116),\n", + " (612, 0.6942149),\n", + " (613, 0.6652893),\n", + " (614, 0.61570245),\n", + " (615, 0.57024795),\n", + " (616, 0.5371901),\n", + " (617, 0.48347107),\n", + " (618, 0.4338843),\n", + " (619, 0.41322315),\n", + " (620, 0.39256197),\n", + " (621, 0.37603307),\n", + " (622, 0.3553719),\n", + " (623, 0.3429752),\n", + " (624, 0.3429752),\n", + " (625, 0.37603307),\n", + " (626, 0.38429752),\n", + " (627, 0.4090909),\n", + " (628, 0.38429752),\n", + " (629, 0.3966942),\n", + " (630, 0.41322315),\n", + " (631, 0.46694216),\n", + " (632, 0.46280992),\n", + " (633, 0.446281),\n", + " (634, 0.4752066),\n", + " (635, 0.5289256),\n", + " (636, 0.53305787),\n", + " (637, 0.5165289),\n", + " (638, 0.49586776),\n", + " (639, 0.4752066),\n", + " (640, 0.49586776),\n", + " (641, 0.5041322),\n", + " (642, 0.5041322),\n", + " (643, 0.5371901),\n", + " (644, 0.5289256),\n", + " (645, 0.47107437),\n", + " (646, 0.446281),\n", + " (647, 0.4214876),\n", + " (648, 0.4214876),\n", + " (649, 0.446281),\n", + " (650, 0.41735536),\n", + " (651, 0.39256197),\n", + " (652, 0.36363637),\n", + " (653, 0.338843),\n", + " (654, 0.3264463),\n", + " (655, 0.3264463),\n", + " (656, 0.3140496),\n", + " (657, 0.33471075),\n", + " (658, 0.35950413),\n", + " (659, 0.37603307),\n", + " (660, 0.4090909),\n", + " (661, 0.43801653),\n", + " (662, 0.446281),\n", + " (663, 0.48347107),\n", + " (664, 0.5041322),\n", + " (665, 0.54545456),\n", + " (666, 0.59504133),\n", + " (667, 0.6570248),\n", + " (668, 0.6652893),\n", + " (669, 0.69008267),\n", + " (670, 0.6942149),\n", + " (671, 0.7107438),\n", + " (672, 0.72727275),\n", + " (673, 0.7066116),\n", + " (674, 0.677686),\n", + " (675, 0.6694215),\n", + " (676, 0.6528926),\n", + " (677, 0.60330576),\n", + " (678, 0.5495868),\n", + " (679, 0.5),\n", + " (680, 0.45867768),\n", + " (681, 0.4338843),\n", + " (682, 0.4090909),\n", + " (683, 0.3677686),\n", + " (684, 0.338843),\n", + " (685, 0.3181818),\n", + " (686, 0.3264463),\n", + " (687, 0.3181818),\n", + " (688, 0.3181818),\n", + " (689, 0.32231405),\n", + " (690, 0.3429752),\n", + " (691, 0.338843),\n", + " (692, 0.3264463),\n", + " (693, 0.35123968),\n", + " (694, 0.38429752),\n", + " (695, 0.38016528),\n", + " (696, 0.37190083),\n", + " (697, 0.4090909),\n", + " (698, 0.42561984),\n", + " (699, 0.46280992),\n", + " (700, 0.5),\n", + " (701, 0.5123967),\n", + " (702, 0.5),\n", + " (703, 0.47933885),\n", + " (704, 0.49173555),\n", + " (705, 0.5041322),\n", + " (706, 0.5),\n", + " (707, 0.5),\n", + " (708, 0.45041323),\n", + " (709, 0.41322315),\n", + " (710, 0.40495867),\n", + " (711, 0.37603307),\n", + " (712, 0.35950413),\n", + " (713, 0.37190083),\n", + " (714, 0.35123968),\n", + " (715, 0.338843),\n", + " (716, 0.3429752),\n", + " (717, 0.36363637),\n", + " (718, 0.37603307),\n", + " (719, 0.38429752),\n", + " (720, 0.38016528),\n", + " (721, 0.38016528),\n", + " (722, 0.3966942),\n", + " (723, 0.40082645),\n", + " (724, 0.41735536),\n", + " (725, 0.4338843),\n", + " (726, 0.446281),\n", + " (727, 0.46694216),\n", + " (728, 0.5206612),\n", + " (729, 0.5289256),\n", + " (730, 0.553719),\n", + " (731, 0.6487603),\n", + " (732, 0.6528926),\n", + " (733, 0.677686),\n", + " (734, 0.6859504),\n", + " (735, 0.7066116),\n", + " (736, 0.71900827),\n", + " (737, 0.6859504),\n", + " (738, 0.661157),\n", + " (739, 0.6446281),\n", + " (740, 0.61157024),\n", + " (741, 0.57024795),\n", + " (742, 0.53305787),\n", + " (743, 0.49586776),\n", + " (744, 0.45867768),\n", + " (745, 0.43801653),\n", + " (746, 0.41735536),\n", + " (747, 0.37190083),\n", + " (748, 0.36363637),\n", + " (749, 0.35123968),\n", + " (750, 0.38429752),\n", + " (751, 0.3966942),\n", + " (752, 0.3966942),\n", + " (753, 0.3966942),\n", + " (754, 0.38429752),\n", + " (755, 0.3677686),\n", + " (756, 0.34710744),\n", + " (757, 0.35123968),\n", + " (758, 0.37190083),\n", + " (759, 0.36363637),\n", + " (760, 0.32231405),\n", + " (761, 0.3140496),\n", + " (762, 0.35123968),\n", + " (763, 0.40082645),\n", + " (764, 0.44214877),\n", + " (765, 0.48347107),\n", + " (766, 0.5),\n", + " (767, 0.4876033),\n", + " (768, 0.48347107),\n", + " (769, 0.49173555),\n", + " (770, 0.4876033),\n", + " (771, 0.46694216),\n", + " (772, 0.3966942),\n", + " (773, 0.39256197),\n", + " (774, 0.38842976),\n", + " (775, 0.338843),\n", + " (776, 0.3140496),\n", + " (777, 0.30991736),\n", + " (778, 0.34710744),\n", + " (779, 0.38429752),\n", + " (780, 0.4214876),\n", + " (781, 0.45867768),\n", + " (782, 0.48347107),\n", + " (783, 0.4876033),\n", + " (784, 0.47107437),\n", + " (785, 0.45041323),\n", + " (786, 0.4338843),\n", + " (787, 0.41322315),\n", + " (788, 0.40495867),\n", + " (789, 0.4090909),\n", + " (790, 0.41735536),\n", + " (791, 0.44214877),\n", + " (792, 0.48347107),\n", + " (793, 0.5247934),\n", + " (794, 0.5206612),\n", + " (795, 0.61570245),\n", + " (796, 0.661157),\n", + " (797, 0.69008267),\n", + " (798, 0.70247936),\n", + " (799, 0.7231405),\n", + " (800, 0.72727275),\n", + " (801, 0.6983471),\n", + " (802, 0.661157),\n", + " (803, 0.62396693),\n", + " (804, 0.57024795),\n", + " (805, 0.5165289),\n", + " (806, 0.5),\n", + " (807, 0.47933885),\n", + " (808, 0.43801653),\n", + " (809, 0.42975205),\n", + " (810, 0.41735536),\n", + " (811, 0.3966942),\n", + " (812, 0.41322315),\n", + " (813, 0.4214876),\n", + " (814, 0.45867768),\n", + " (815, 0.47933885),\n", + " (816, 0.48347107),\n", + " (817, 0.5),\n", + " (818, 0.47933885),\n", + " (819, 0.45041323),\n", + " (820, 0.41735536),\n", + " (821, 0.38429752),\n", + " (822, 0.38429752),\n", + " (823, 0.39256197),\n", + " (824, 0.3677686),\n", + " (825, 0.3429752),\n", + " (826, 0.338843),\n", + " (827, 0.34710744),\n", + " (828, 0.38842976),\n", + " (829, 0.44214877),\n", + " (830, 0.4876033),\n", + " (831, 0.49586776),\n", + " (832, 0.4876033),\n", + " (833, 0.4752066),\n", + " (834, 0.46280992),\n", + " (835, 0.42975205),\n", + " (836, 0.38429752),\n", + " (837, 0.37603307),\n", + " (838, 0.38016528),\n", + " (839, 0.35123968),\n", + " (840, 0.35123968),\n", + " (841, 0.35950413),\n", + " (842, 0.4090909),\n", + " (843, 0.47107437),\n", + " (844, 0.5123967),\n", + " (845, 0.5289256),\n", + " (846, 0.5371901),\n", + " (847, 0.5206612),\n", + " (848, 0.4876033),\n", + " (849, 0.45454547),\n", + " (850, 0.40495867),\n", + " (851, 0.37190083),\n", + " (852, 0.35950413),\n", + " (853, 0.38429752),\n", + " (854, 0.3966942),\n", + " (855, 0.38016528),\n", + " (856, 0.3966942),\n", + " (857, 0.46280992),\n", + " (858, 0.5371901),\n", + " (859, 0.62396693),\n", + " (860, 0.6735537),\n", + " (861, 0.69008267),\n", + " (862, 0.7231405),\n", + " (863, 0.74380165),\n", + " (864, 0.74380165),\n", + " (865, 0.71487606),\n", + " (866, 0.661157),\n", + " (867, 0.61570245),\n", + " (868, 0.55785125),\n", + " (869, 0.5),\n", + " (870, 0.46280992),\n", + " (871, 0.4338843),\n", + " (872, 0.41322315),\n", + " (873, 0.4214876),\n", + " (874, 0.4214876),\n", + " (875, 0.41735536),\n", + " (876, 0.4090909),\n", + " (877, 0.40082645),\n", + " (878, 0.45041323),\n", + " (879, 0.47933885),\n", + " (880, 0.48347107),\n", + " (881, 0.5165289),\n", + " (882, 0.5165289),\n", + " (883, 0.5123967),\n", + " (884, 0.48347107),\n", + " (885, 0.45454547),\n", + " (886, 0.4214876),\n", + " (887, 0.3966942),\n", + " (888, 0.3553719),\n", + " (889, 0.33471075),\n", + " (890, 0.3429752),\n", + " (891, 0.3305785),\n", + " (892, 0.33471075),\n", + " (893, 0.40082645),\n", + " (894, 0.46280992),\n", + " (895, 0.49173555),\n", + " (896, 0.49586776),\n", + " (897, 0.4752066),\n", + " (898, 0.43801653),\n", + " (899, 0.3966942),\n", + " (900, 0.38842976),\n", + " (901, 0.3966942),\n", + " (902, 0.40082645),\n", + " (903, 0.40495867),\n", + " (904, 0.41322315),\n", + " (905, 0.41735536),\n", + " (906, 0.46280992),\n", + " (907, 0.5),\n", + " (908, 0.49586776),\n", + " (909, 0.4752066),\n", + " (910, 0.45454547),\n", + " (911, 0.41735536),\n", + " (912, 0.37603307),\n", + " (913, 0.3429752),\n", + " (914, 0.30991736),\n", + " (915, 0.3181818),\n", + " (916, 0.32231405),\n", + " (917, 0.3305785),\n", + " (918, 0.37603307),\n", + " (919, 0.39256197),\n", + " (920, 0.3553719),\n", + " (921, 0.37190083),\n", + " (922, 0.49173555),\n", + " (923, 0.61157024),\n", + " (924, 0.6652893),\n", + " (925, 0.7066116),\n", + " (926, 0.74793386),\n", + " (927, 0.76859504),\n", + " (928, 0.75619835),\n", + " (929, 0.7231405),\n", + " (930, 0.6694215),\n", + " (931, 0.607438),\n", + " (932, 0.553719),\n", + " (933, 0.49173555),\n", + " (934, 0.446281),\n", + " (935, 0.41735536),\n", + " (936, 0.42561984),\n", + " (937, 0.41735536),\n", + " (938, 0.37603307),\n", + " (939, 0.35950413),\n", + " (940, 0.338843),\n", + " (941, 0.27272728),\n", + " (942, 0.32231405),\n", + " (943, 0.3677686),\n", + " (944, 0.3677686),\n", + " (945, 0.40082645),\n", + " (946, 0.42975205),\n", + " (947, 0.4752066),\n", + " (948, 0.4876033),\n", + " (949, 0.4876033),\n", + " (950, 0.47933885),\n", + " (951, 0.45867768),\n", + " (952, 0.41735536),\n", + " (953, 0.37603307),\n", + " (954, 0.37190083),\n", + " (955, 0.3677686),\n", + " (956, 0.3429752),\n", + " (957, 0.36363637),\n", + " (958, 0.44214877),\n", + " (959, 0.47933885),\n", + " (960, 0.49173555),\n", + " (961, 0.4876033),\n", + " (962, 0.4214876),\n", + " (963, 0.38429752),\n", + " (964, 0.40495867),\n", + " (965, 0.42975205),\n", + " (966, 0.42975205),\n", + " (967, 0.446281),\n", + " (968, 0.446281),\n", + " (969, 0.446281),\n", + " (970, 0.45041323),\n", + " (971, 0.4214876),\n", + " (972, 0.37190083),\n", + " (973, 0.32231405),\n", + " (974, 0.27272728),\n", + " (975, 0.24793388),\n", + " (976, 0.2768595),\n", + " (977, 0.29338843),\n", + " (978, 0.21900827),\n", + " (979, 0.3553719),\n", + " (980, 0.40082645),\n", + " (981, 0.3305785),\n", + " (982, 0.3181818),\n", + " (983, 0.37190083),\n", + " (984, 0.37190083),\n", + " (985, 0.37603307),\n", + " (986, 0.41735536),\n", + " (987, 0.56198347),\n", + " (988, 0.6652893),\n", + " (989, 0.7231405),\n", + " (990, 0.76859504),\n", + " (991, 0.7892562),\n", + " (992, 0.77272725),\n", + " (993, 0.7355372),\n", + " (994, 0.6735537),\n", + " (995, 0.59504133),\n", + " (996, 0.5371901),\n", + " (997, 0.46694216),\n", + " (998, 0.42975205),\n", + " (999, 0.4214876),\n", + " ...],\n", + " [(0, 0.15289256),\n", + " (1, 0.17355372),\n", + " (2, 0.26859504),\n", + " (3, 0.34710744),\n", + " (4, 0.39256197),\n", + " (5, 0.42975205),\n", + " (6, 0.45454547),\n", + " (7, 0.48347107),\n", + " (8, 0.4876033),\n", + " (9, 0.49173555),\n", + " (10, 0.4876033),\n", + " (11, 0.49586776),\n", + " (12, 0.4876033),\n", + " (13, 0.5),\n", + " (14, 0.48347107),\n", + " (15, 0.49586776),\n", + " (16, 0.5206612),\n", + " (17, 0.5082645),\n", + " (18, 0.5165289),\n", + " (19, 0.5289256),\n", + " (20, 0.5371901),\n", + " (21, 0.55785125),\n", + " (22, 0.5661157),\n", + " (23, 0.553719),\n", + " (24, 0.5785124),\n", + " (25, 0.57438016),\n", + " (26, 0.58264464),\n", + " (27, 0.5661157),\n", + " (28, 0.59090906),\n", + " (29, 0.59504133),\n", + " (30, 0.58677685),\n", + " (31, 0.59504133),\n", + " (32, 0.59504133),\n", + " (33, 0.5785124),\n", + " (34, 0.56198347),\n", + " (35, 0.5661157),\n", + " (36, 0.57024795),\n", + " (37, 0.55785125),\n", + " (38, 0.5289256),\n", + " (39, 0.5247934),\n", + " (40, 0.5165289),\n", + " (41, 0.49586776),\n", + " (42, 0.49586776),\n", + " (43, 0.46280992),\n", + " (44, 0.4752066),\n", + " (45, 0.46694216),\n", + " (46, 0.4338843),\n", + " (47, 0.4090909),\n", + " (48, 0.41735536),\n", + " (49, 0.4214876),\n", + " (50, 0.40082645),\n", + " (51, 0.4090909),\n", + " (52, 0.40495867),\n", + " (53, 0.40495867),\n", + " (54, 0.40082645),\n", + " (55, 0.40082645),\n", + " (56, 0.3966942),\n", + " (57, 0.37190083),\n", + " (58, 0.3553719),\n", + " (59, 0.30578512),\n", + " (60, 0.2603306),\n", + " (61, 0.2520661),\n", + " (62, 0.12809917),\n", + " (63, 0.14049587),\n", + " (64, 0.14049587),\n", + " (65, 0.18595041),\n", + " (66, 0.29338843),\n", + " (67, 0.38016528),\n", + " (68, 0.41322315),\n", + " (69, 0.46694216),\n", + " (70, 0.4752066),\n", + " (71, 0.4876033),\n", + " (72, 0.47107437),\n", + " (73, 0.48347107),\n", + " (74, 0.49173555),\n", + " (75, 0.49586776),\n", + " (76, 0.49586776),\n", + " (77, 0.5082645),\n", + " (78, 0.49586776),\n", + " (79, 0.5041322),\n", + " (80, 0.5123967),\n", + " (81, 0.53305787),\n", + " (82, 0.5495868),\n", + " (83, 0.54545456),\n", + " (84, 0.5785124),\n", + " (85, 0.5785124),\n", + " (86, 0.58264464),\n", + " (87, 0.5785124),\n", + " (88, 0.5785124),\n", + " (89, 0.59090906),\n", + " (90, 0.59504133),\n", + " (91, 0.5661157),\n", + " (92, 0.58264464),\n", + " (93, 0.59504133),\n", + " (94, 0.59917355),\n", + " (95, 0.60330576),\n", + " (96, 0.5785124),\n", + " (97, 0.58264464),\n", + " (98, 0.57438016),\n", + " (99, 0.5785124),\n", + " (100, 0.59090906),\n", + " (101, 0.57438016),\n", + " (102, 0.57438016),\n", + " (103, 0.553719),\n", + " (104, 0.5206612),\n", + " (105, 0.5206612),\n", + " (106, 0.5206612),\n", + " (107, 0.49173555),\n", + " (108, 0.4876033),\n", + " (109, 0.47933885),\n", + " (110, 0.45041323),\n", + " (111, 0.45041323),\n", + " (112, 0.43801653),\n", + " (113, 0.41735536),\n", + " (114, 0.40082645),\n", + " (115, 0.41735536),\n", + " (116, 0.40082645),\n", + " (117, 0.40082645),\n", + " (118, 0.4090909),\n", + " (119, 0.40082645),\n", + " (120, 0.4090909),\n", + " (121, 0.37190083),\n", + " (122, 0.38016528),\n", + " (123, 0.338843),\n", + " (124, 0.2892562),\n", + " (125, 0.2603306),\n", + " (126, 0.16528925),\n", + " (127, 0.13636364),\n", + " (128, 0.1446281),\n", + " (129, 0.19421488),\n", + " (130, 0.3140496),\n", + " (131, 0.38429752),\n", + " (132, 0.4338843),\n", + " (133, 0.4876033),\n", + " (134, 0.47933885),\n", + " (135, 0.48347107),\n", + " (136, 0.48347107),\n", + " (137, 0.47933885),\n", + " (138, 0.5247934),\n", + " (139, 0.5123967),\n", + " (140, 0.53305787),\n", + " (141, 0.5082645),\n", + " (142, 0.5289256),\n", + " (143, 0.53305787),\n", + " (144, 0.5289256),\n", + " (145, 0.5495868),\n", + " (146, 0.5785124),\n", + " (147, 0.57438016),\n", + " (148, 0.607438),\n", + " (149, 0.59504133),\n", + " (150, 0.6198347),\n", + " (151, 0.6528926),\n", + " (152, 0.6322314),\n", + " (153, 0.6198347),\n", + " (154, 0.61570245),\n", + " (155, 0.59090906),\n", + " (156, 0.607438),\n", + " (157, 0.6198347),\n", + " (158, 0.62396693),\n", + " (159, 0.6280992),\n", + " (160, 0.59090906),\n", + " (161, 0.60330576),\n", + " (162, 0.607438),\n", + " (163, 0.59504133),\n", + " (164, 0.61157024),\n", + " (165, 0.60330576),\n", + " (166, 0.61570245),\n", + " (167, 0.59504133),\n", + " (168, 0.57024795),\n", + " (169, 0.553719),\n", + " (170, 0.57024795),\n", + " (171, 0.53305787),\n", + " (172, 0.5206612),\n", + " (173, 0.5041322),\n", + " (174, 0.49173555),\n", + " (175, 0.47933885),\n", + " (176, 0.45454547),\n", + " (177, 0.42975205),\n", + " (178, 0.42561984),\n", + " (179, 0.4214876),\n", + " (180, 0.4090909),\n", + " (181, 0.41322315),\n", + " (182, 0.41322315),\n", + " (183, 0.40495867),\n", + " (184, 0.41322315),\n", + " (185, 0.38429752),\n", + " (186, 0.38429752),\n", + " (187, 0.34710744),\n", + " (188, 0.3264463),\n", + " (189, 0.27272728),\n", + " (190, 0.1983471),\n", + " (191, 0.13636364),\n", + " (192, 0.15289256),\n", + " (193, 0.19421488),\n", + " (194, 0.3305785),\n", + " (195, 0.40495867),\n", + " (196, 0.446281),\n", + " (197, 0.46280992),\n", + " (198, 0.47933885),\n", + " (199, 0.49173555),\n", + " (200, 0.47933885),\n", + " (201, 0.5),\n", + " (202, 0.5082645),\n", + " (203, 0.5082645),\n", + " (204, 0.5289256),\n", + " (205, 0.5289256),\n", + " (206, 0.5495868),\n", + " (207, 0.57024795),\n", + " (208, 0.553719),\n", + " (209, 0.5661157),\n", + " (210, 0.58677685),\n", + " (211, 0.6280992),\n", + " (212, 0.6280992),\n", + " (213, 0.6446281),\n", + " (214, 0.6735537),\n", + " (215, 0.71900827),\n", + " (216, 0.73966944),\n", + " (217, 0.6694215),\n", + " (218, 0.6363636),\n", + " (219, 0.6280992),\n", + " (220, 0.6363636),\n", + " (221, 0.661157),\n", + " (222, 0.6735537),\n", + " (223, 0.6487603),\n", + " (224, 0.6446281),\n", + " (225, 0.661157),\n", + " (226, 0.661157),\n", + " (227, 0.61157024),\n", + " (228, 0.6528926),\n", + " (229, 0.6570248),\n", + " (230, 0.661157),\n", + " (231, 0.6487603),\n", + " (232, 0.6487603),\n", + " (233, 0.60330576),\n", + " (234, 0.62396693),\n", + " (235, 0.58264464),\n", + " (236, 0.56198347),\n", + " (237, 0.5247934),\n", + " (238, 0.5247934),\n", + " (239, 0.5),\n", + " (240, 0.46280992),\n", + " (241, 0.43801653),\n", + " (242, 0.42975205),\n", + " (243, 0.40495867),\n", + " (244, 0.4090909),\n", + " (245, 0.40495867),\n", + " (246, 0.41322315),\n", + " (247, 0.3966942),\n", + " (248, 0.40495867),\n", + " (249, 0.40495867),\n", + " (250, 0.3966942),\n", + " (251, 0.3677686),\n", + " (252, 0.3429752),\n", + " (253, 0.2768595),\n", + " (254, 0.2231405),\n", + " (255, 0.17768595),\n", + " (256, 0.11570248),\n", + " (257, 0.23966943),\n", + " (258, 0.338843),\n", + " (259, 0.4214876),\n", + " (260, 0.43801653),\n", + " (261, 0.45867768),\n", + " (262, 0.4752066),\n", + " (263, 0.4876033),\n", + " (264, 0.47933885),\n", + " (265, 0.49173555),\n", + " (266, 0.49173555),\n", + " (267, 0.49173555),\n", + " (268, 0.5),\n", + " (269, 0.5165289),\n", + " (270, 0.5289256),\n", + " (271, 0.5661157),\n", + " (272, 0.56198347),\n", + " (273, 0.55785125),\n", + " (274, 0.59917355),\n", + " (275, 0.6404959),\n", + " (276, 0.6487603),\n", + " (277, 0.69008267),\n", + " (278, 0.7066116),\n", + " (279, 0.70247936),\n", + " (280, 0.7231405),\n", + " (281, 0.6983471),\n", + " (282, 0.6322314),\n", + " (283, 0.6528926),\n", + " (284, 0.677686),\n", + " (285, 0.6983471),\n", + " (286, 0.6942149),\n", + " (287, 0.6983471),\n", + " (288, 0.70247936),\n", + " (289, 0.7231405),\n", + " (290, 0.7107438),\n", + " (291, 0.71900827),\n", + " (292, 0.7107438),\n", + " (293, 0.6694215),\n", + " (294, 0.6859504),\n", + " (295, 0.6735537),\n", + " (296, 0.6942149),\n", + " (297, 0.6280992),\n", + " (298, 0.61157024),\n", + " (299, 0.5785124),\n", + " (300, 0.56198347),\n", + " (301, 0.5),\n", + " (302, 0.48347107),\n", + " (303, 0.46280992),\n", + " (304, 0.45867768),\n", + " (305, 0.446281),\n", + " (306, 0.40082645),\n", + " (307, 0.37603307),\n", + " (308, 0.36363637),\n", + " (309, 0.3429752),\n", + " (310, 0.38842976),\n", + " (311, 0.40082645),\n", + " (312, 0.38842976),\n", + " (313, 0.40082645),\n", + " (314, 0.39256197),\n", + " (315, 0.38016528),\n", + " (316, 0.35123968),\n", + " (317, 0.29338843),\n", + " (318, 0.25619835),\n", + " (319, 0.21487603),\n", + " (320, 0.11157025),\n", + " (321, 0.2603306),\n", + " (322, 0.38016528),\n", + " (323, 0.41735536),\n", + " (324, 0.4214876),\n", + " (325, 0.46694216),\n", + " (326, 0.47933885),\n", + " (327, 0.5041322),\n", + " (328, 0.45454547),\n", + " (329, 0.42561984),\n", + " (330, 0.46694216),\n", + " (331, 0.45454547),\n", + " (332, 0.45867768),\n", + " (333, 0.47107437),\n", + " (334, 0.47933885),\n", + " (335, 0.5123967),\n", + " (336, 0.5289256),\n", + " (337, 0.53305787),\n", + " (338, 0.5413223),\n", + " (339, 0.5661157),\n", + " (340, 0.59504133),\n", + " (341, 0.6198347),\n", + " (342, 0.6487603),\n", + " (343, 0.6322314),\n", + " (344, 0.6528926),\n", + " (345, 0.6528926),\n", + " (346, 0.6487603),\n", + " (347, 0.6404959),\n", + " (348, 0.677686),\n", + " (349, 0.6859504),\n", + " (350, 0.6694215),\n", + " (351, 0.7107438),\n", + " (352, 0.7355372),\n", + " (353, 0.75619835),\n", + " (354, 0.72727275),\n", + " (355, 0.7355372),\n", + " (356, 0.6735537),\n", + " (357, 0.6363636),\n", + " (358, 0.61157024),\n", + " (359, 0.6322314),\n", + " (360, 0.61570245),\n", + " (361, 0.5082645),\n", + " (362, 0.5289256),\n", + " (363, 0.5082645),\n", + " (364, 0.44214877),\n", + " (365, 0.43801653),\n", + " (366, 0.41735536),\n", + " (367, 0.3966942),\n", + " (368, 0.37603307),\n", + " (369, 0.3966942),\n", + " (370, 0.35123968),\n", + " (371, 0.35123968),\n", + " (372, 0.338843),\n", + " (373, 0.3140496),\n", + " (374, 0.30991736),\n", + " (375, 0.3677686),\n", + " (376, 0.38016528),\n", + " (377, 0.38429752),\n", + " (378, 0.3677686),\n", + " (379, 0.36363637),\n", + " (380, 0.35123968),\n", + " (381, 0.3264463),\n", + " (382, 0.28512397),\n", + " (383, 0.23966943),\n", + " (384, 0.14049587),\n", + " (385, 0.29752067),\n", + " (386, 0.38842976),\n", + " (387, 0.40495867),\n", + " (388, 0.4214876),\n", + " (389, 0.46694216),\n", + " (390, 0.47933885),\n", + " (391, 0.4752066),\n", + " (392, 0.38429752),\n", + " (393, 0.40082645),\n", + " (394, 0.41735536),\n", + " (395, 0.3966942),\n", + " (396, 0.4090909),\n", + " (397, 0.42975205),\n", + " (398, 0.41735536),\n", + " (399, 0.4090909),\n", + " (400, 0.446281),\n", + " (401, 0.42975205),\n", + " (402, 0.42561984),\n", + " (403, 0.45867768),\n", + " (404, 0.46694216),\n", + " (405, 0.48347107),\n", + " (406, 0.5041322),\n", + " (407, 0.5082645),\n", + " (408, 0.53305787),\n", + " (409, 0.5661157),\n", + " (410, 0.60330576),\n", + " (411, 0.61157024),\n", + " (412, 0.62396693),\n", + " (413, 0.61570245),\n", + " (414, 0.61157024),\n", + " (415, 0.661157),\n", + " (416, 0.6528926),\n", + " (417, 0.6859504),\n", + " (418, 0.6818182),\n", + " (419, 0.6446281),\n", + " (420, 0.58264464),\n", + " (421, 0.5371901),\n", + " (422, 0.5247934),\n", + " (423, 0.54545456),\n", + " (424, 0.5165289),\n", + " (425, 0.45454547),\n", + " (426, 0.42561984),\n", + " (427, 0.35950413),\n", + " (428, 0.3429752),\n", + " (429, 0.28099173),\n", + " (430, 0.3181818),\n", + " (431, 0.29752067),\n", + " (432, 0.2892562),\n", + " (433, 0.32231405),\n", + " (434, 0.3181818),\n", + " (435, 0.34710744),\n", + " (436, 0.35123968),\n", + " (437, 0.3181818),\n", + " (438, 0.2768595),\n", + " (439, 0.28512397),\n", + " (440, 0.3264463),\n", + " (441, 0.37603307),\n", + " (442, 0.3553719),\n", + " (443, 0.35123968),\n", + " (444, 0.35950413),\n", + " (445, 0.33471075),\n", + " (446, 0.30165288),\n", + " (447, 0.26859504),\n", + " (448, 0.14049587),\n", + " (449, 0.3140496),\n", + " (450, 0.40495867),\n", + " (451, 0.40495867),\n", + " (452, 0.41735536),\n", + " (453, 0.45454547),\n", + " (454, 0.4338843),\n", + " (455, 0.37190083),\n", + " (456, 0.3553719),\n", + " (457, 0.3966942),\n", + " (458, 0.38842976),\n", + " (459, 0.40495867),\n", + " (460, 0.37190083),\n", + " (461, 0.37190083),\n", + " (462, 0.35950413),\n", + " (463, 0.32231405),\n", + " (464, 0.28512397),\n", + " (465, 0.28099173),\n", + " (466, 0.3140496),\n", + " (467, 0.30991736),\n", + " (468, 0.3429752),\n", + " (469, 0.36363637),\n", + " (470, 0.37190083),\n", + " (471, 0.37603307),\n", + " (472, 0.41322315),\n", + " (473, 0.47107437),\n", + " (474, 0.5371901),\n", + " (475, 0.553719),\n", + " (476, 0.55785125),\n", + " (477, 0.5495868),\n", + " (478, 0.57024795),\n", + " (479, 0.61157024),\n", + " (480, 0.60330576),\n", + " (481, 0.61570245),\n", + " (482, 0.56198347),\n", + " (483, 0.54545456),\n", + " (484, 0.47933885),\n", + " (485, 0.43801653),\n", + " (486, 0.45454547),\n", + " (487, 0.45041323),\n", + " (488, 0.39256197),\n", + " (489, 0.35123968),\n", + " (490, 0.29752067),\n", + " (491, 0.24380165),\n", + " (492, 0.23966943),\n", + " (493, 0.24380165),\n", + " (494, 0.2603306),\n", + " (495, 0.2603306),\n", + " (496, 0.26859504),\n", + " (497, 0.2768595),\n", + " (498, 0.29338843),\n", + " (499, 0.2892562),\n", + " (500, 0.33471075),\n", + " (501, 0.3181818),\n", + " (502, 0.2768595),\n", + " (503, 0.28099173),\n", + " (504, 0.2644628),\n", + " (505, 0.3264463),\n", + " (506, 0.3264463),\n", + " (507, 0.3429752),\n", + " (508, 0.338843),\n", + " (509, 0.338843),\n", + " (510, 0.30991736),\n", + " (511, 0.26859504),\n", + " (512, 0.14049587),\n", + " (513, 0.3181818),\n", + " (514, 0.38429752),\n", + " (515, 0.40082645),\n", + " (516, 0.43801653),\n", + " (517, 0.41322315),\n", + " (518, 0.3553719),\n", + " (519, 0.39256197),\n", + " (520, 0.40082645),\n", + " (521, 0.41322315),\n", + " (522, 0.40082645),\n", + " (523, 0.39256197),\n", + " (524, 0.37603307),\n", + " (525, 0.34710744),\n", + " (526, 0.35123968),\n", + " (527, 0.3181818),\n", + " (528, 0.28099173),\n", + " (529, 0.2644628),\n", + " (530, 0.2644628),\n", + " (531, 0.2768595),\n", + " (532, 0.2644628),\n", + " (533, 0.3181818),\n", + " (534, 0.28099173),\n", + " (535, 0.29338843),\n", + " (536, 0.33471075),\n", + " (537, 0.3677686),\n", + " (538, 0.44214877),\n", + " (539, 0.49173555),\n", + " (540, 0.48347107),\n", + " (541, 0.5123967),\n", + " (542, 0.5206612),\n", + " (543, 0.54545456),\n", + " (544, 0.54545456),\n", + " (545, 0.5413223),\n", + " (546, 0.5),\n", + " (547, 0.4752066),\n", + " (548, 0.42561984),\n", + " (549, 0.37190083),\n", + " (550, 0.38429752),\n", + " (551, 0.3305785),\n", + " (552, 0.3429752),\n", + " (553, 0.2892562),\n", + " (554, 0.2768595),\n", + " (555, 0.2603306),\n", + " (556, 0.24793388),\n", + " (557, 0.23966943),\n", + " (558, 0.2603306),\n", + " (559, 0.25619835),\n", + " (560, 0.2768595),\n", + " (561, 0.30165288),\n", + " (562, 0.338843),\n", + " (563, 0.3140496),\n", + " (564, 0.2892562),\n", + " (565, 0.29752067),\n", + " (566, 0.32231405),\n", + " (567, 0.30578512),\n", + " (568, 0.29338843),\n", + " (569, 0.29338843),\n", + " (570, 0.30165288),\n", + " (571, 0.3264463),\n", + " (572, 0.3305785),\n", + " (573, 0.3305785),\n", + " (574, 0.30165288),\n", + " (575, 0.26859504),\n", + " (576, 0.15289256),\n", + " (577, 0.3181818),\n", + " (578, 0.37190083),\n", + " (579, 0.41322315),\n", + " (580, 0.42561984),\n", + " (581, 0.3305785),\n", + " (582, 0.4090909),\n", + " (583, 0.45041323),\n", + " (584, 0.48347107),\n", + " (585, 0.47933885),\n", + " (586, 0.42975205),\n", + " (587, 0.4338843),\n", + " (588, 0.43801653),\n", + " (589, 0.41735536),\n", + " (590, 0.37603307),\n", + " (591, 0.3677686),\n", + " (592, 0.3264463),\n", + " (593, 0.2768595),\n", + " (594, 0.2644628),\n", + " (595, 0.28512397),\n", + " (596, 0.2892562),\n", + " (597, 0.27272728),\n", + " (598, 0.2644628),\n", + " (599, 0.2768595),\n", + " (600, 0.30578512),\n", + " (601, 0.3181818),\n", + " (602, 0.38842976),\n", + " (603, 0.4338843),\n", + " (604, 0.46694216),\n", + " (605, 0.47107437),\n", + " (606, 0.49586776),\n", + " (607, 0.48347107),\n", + " (608, 0.5082645),\n", + " (609, 0.49173555),\n", + " (610, 0.47107437),\n", + " (611, 0.42561984),\n", + " (612, 0.39256197),\n", + " (613, 0.3305785),\n", + " (614, 0.3264463),\n", + " (615, 0.30165288),\n", + " (616, 0.29752067),\n", + " (617, 0.27272728),\n", + " (618, 0.25619835),\n", + " (619, 0.23966943),\n", + " (620, 0.23966943),\n", + " (621, 0.24793388),\n", + " (622, 0.30991736),\n", + " (623, 0.3305785),\n", + " (624, 0.3553719),\n", + " (625, 0.37190083),\n", + " (626, 0.42561984),\n", + " (627, 0.40495867),\n", + " (628, 0.38842976),\n", + " (629, 0.39256197),\n", + " (630, 0.36363637),\n", + " (631, 0.3429752),\n", + " (632, 0.3429752),\n", + " (633, 0.33471075),\n", + " (634, 0.25619835),\n", + " (635, 0.30991736),\n", + " (636, 0.3305785),\n", + " (637, 0.3181818),\n", + " (638, 0.30165288),\n", + " (639, 0.28512397),\n", + " (640, 0.16115703),\n", + " (641, 0.3305785),\n", + " (642, 0.38842976),\n", + " (643, 0.42561984),\n", + " (644, 0.37190083),\n", + " (645, 0.3429752),\n", + " (646, 0.4338843),\n", + " (647, 0.47933885),\n", + " (648, 0.5123967),\n", + " (649, 0.5123967),\n", + " (650, 0.49173555),\n", + " (651, 0.46280992),\n", + " (652, 0.46694216),\n", + " (653, 0.46280992),\n", + " (654, 0.4752066),\n", + " (655, 0.446281),\n", + " (656, 0.41322315),\n", + " (657, 0.38842976),\n", + " (658, 0.3429752),\n", + " (659, 0.30991736),\n", + " (660, 0.30578512),\n", + " (661, 0.28512397),\n", + " (662, 0.2768595),\n", + " (663, 0.30578512),\n", + " (664, 0.32231405),\n", + " (665, 0.338843),\n", + " (666, 0.36363637),\n", + " (667, 0.40082645),\n", + " (668, 0.45041323),\n", + " (669, 0.45867768),\n", + " (670, 0.47107437),\n", + " (671, 0.46280992),\n", + " (672, 0.4752066),\n", + " (673, 0.45454547),\n", + " (674, 0.42975205),\n", + " (675, 0.39256197),\n", + " (676, 0.338843),\n", + " (677, 0.3140496),\n", + " (678, 0.2768595),\n", + " (679, 0.28099173),\n", + " (680, 0.2520661),\n", + " (681, 0.24380165),\n", + " (682, 0.24380165),\n", + " (683, 0.28512397),\n", + " (684, 0.30578512),\n", + " (685, 0.3677686),\n", + " (686, 0.42561984),\n", + " (687, 0.4214876),\n", + " (688, 0.42561984),\n", + " (689, 0.4338843),\n", + " (690, 0.44214877),\n", + " (691, 0.42975205),\n", + " (692, 0.4214876),\n", + " (693, 0.4214876),\n", + " (694, 0.38842976),\n", + " (695, 0.38842976),\n", + " (696, 0.40082645),\n", + " (697, 0.40082645),\n", + " (698, 0.30991736),\n", + " (699, 0.28512397),\n", + " (700, 0.32231405),\n", + " (701, 0.3181818),\n", + " (702, 0.30578512),\n", + " (703, 0.28099173),\n", + " (704, 0.14876033),\n", + " (705, 0.3429752),\n", + " (706, 0.40082645),\n", + " (707, 0.4090909),\n", + " (708, 0.338843),\n", + " (709, 0.42561984),\n", + " (710, 0.46280992),\n", + " (711, 0.49586776),\n", + " (712, 0.53305787),\n", + " (713, 0.5371901),\n", + " (714, 0.5206612),\n", + " (715, 0.5206612),\n", + " (716, 0.5082645),\n", + " (717, 0.5247934),\n", + " (718, 0.49173555),\n", + " (719, 0.5082645),\n", + " (720, 0.49173555),\n", + " (721, 0.49173555),\n", + " (722, 0.45454547),\n", + " (723, 0.42975205),\n", + " (724, 0.3677686),\n", + " (725, 0.34710744),\n", + " (726, 0.30991736),\n", + " (727, 0.30991736),\n", + " (728, 0.30991736),\n", + " (729, 0.35123968),\n", + " (730, 0.37603307),\n", + " (731, 0.41322315),\n", + " (732, 0.44214877),\n", + " (733, 0.45867768),\n", + " (734, 0.45867768),\n", + " (735, 0.45454547),\n", + " (736, 0.44214877),\n", + " (737, 0.41322315),\n", + " (738, 0.41322315),\n", + " (739, 0.37603307),\n", + " (740, 0.3429752),\n", + " (741, 0.30991736),\n", + " (742, 0.27272728),\n", + " (743, 0.2520661),\n", + " (744, 0.24793388),\n", + " (745, 0.2768595),\n", + " (746, 0.30578512),\n", + " (747, 0.35123968),\n", + " (748, 0.4214876),\n", + " (749, 0.46694216),\n", + " (750, 0.48347107),\n", + " (751, 0.4752066),\n", + " (752, 0.45454547),\n", + " (753, 0.45454547),\n", + " (754, 0.45454547),\n", + " (755, 0.43801653),\n", + " (756, 0.43801653),\n", + " (757, 0.44214877),\n", + " (758, 0.44214877),\n", + " (759, 0.43801653),\n", + " (760, 0.42975205),\n", + " (761, 0.40495867),\n", + " (762, 0.38842976),\n", + " (763, 0.30165288),\n", + " (764, 0.30991736),\n", + " (765, 0.3264463),\n", + " (766, 0.30991736),\n", + " (767, 0.30165288),\n", + " (768, 0.1570248),\n", + " (769, 0.35950413),\n", + " (770, 0.4090909),\n", + " (771, 0.3966942),\n", + " (772, 0.38842976),\n", + " (773, 0.41322315),\n", + " (774, 0.5),\n", + " (775, 0.5041322),\n", + " (776, 0.5371901),\n", + " (777, 0.55785125),\n", + " (778, 0.54545456),\n", + " (779, 0.55785125),\n", + " (780, 0.5289256),\n", + " (781, 0.48347107),\n", + " (782, 0.43801653),\n", + " (783, 0.45041323),\n", + " (784, 0.45867768),\n", + " (785, 0.45041323),\n", + " (786, 0.4338843),\n", + " (787, 0.43801653),\n", + " (788, 0.38429752),\n", + " (789, 0.38016528),\n", + " (790, 0.35950413),\n", + " (791, 0.33471075),\n", + " (792, 0.3140496),\n", + " (793, 0.338843),\n", + " (794, 0.4090909),\n", + " (795, 0.46280992),\n", + " (796, 0.47107437),\n", + " (797, 0.48347107),\n", + " (798, 0.46280992),\n", + " (799, 0.49586776),\n", + " (800, 0.47933885),\n", + " (801, 0.446281),\n", + " (802, 0.42561984),\n", + " (803, 0.39256197),\n", + " (804, 0.36363637),\n", + " (805, 0.3305785),\n", + " (806, 0.25619835),\n", + " (807, 0.2520661),\n", + " (808, 0.28099173),\n", + " (809, 0.3181818),\n", + " (810, 0.3140496),\n", + " (811, 0.37190083),\n", + " (812, 0.4214876),\n", + " (813, 0.44214877),\n", + " (814, 0.45867768),\n", + " (815, 0.42975205),\n", + " (816, 0.40082645),\n", + " (817, 0.40082645),\n", + " (818, 0.38429752),\n", + " (819, 0.4090909),\n", + " (820, 0.4338843),\n", + " (821, 0.46280992),\n", + " (822, 0.47107437),\n", + " (823, 0.46280992),\n", + " (824, 0.45041323),\n", + " (825, 0.4214876),\n", + " (826, 0.3966942),\n", + " (827, 0.3429752),\n", + " (828, 0.29752067),\n", + " (829, 0.3305785),\n", + " (830, 0.32231405),\n", + " (831, 0.30991736),\n", + " (832, 0.1570248),\n", + " (833, 0.3966942),\n", + " (834, 0.41735536),\n", + " (835, 0.41735536),\n", + " (836, 0.42975205),\n", + " (837, 0.42975205),\n", + " (838, 0.48347107),\n", + " (839, 0.5082645),\n", + " (840, 0.54545456),\n", + " (841, 0.57438016),\n", + " (842, 0.553719),\n", + " (843, 0.5082645),\n", + " (844, 0.39256197),\n", + " (845, 0.3553719),\n", + " (846, 0.37190083),\n", + " (847, 0.40495867),\n", + " (848, 0.43801653),\n", + " (849, 0.3966942),\n", + " (850, 0.34710744),\n", + " (851, 0.28099173),\n", + " (852, 0.22727273),\n", + " (853, 0.28099173),\n", + " (854, 0.3553719),\n", + " (855, 0.38429752),\n", + " (856, 0.35123968),\n", + " (857, 0.338843),\n", + " (858, 0.43801653),\n", + " (859, 0.5123967),\n", + " (860, 0.5289256),\n", + " (861, 0.5165289),\n", + " (862, 0.5123967),\n", + " (863, 0.57024795),\n", + " (864, 0.553719),\n", + " (865, 0.5),\n", + " (866, 0.43801653),\n", + " (867, 0.42975205),\n", + " (868, 0.38842976),\n", + " (869, 0.3264463),\n", + " (870, 0.23966943),\n", + " (871, 0.25619835),\n", + " (872, 0.29338843),\n", + " (873, 0.2768595),\n", + " (874, 0.3429752),\n", + " (875, 0.3181818),\n", + " (876, 0.37190083),\n", + " (877, 0.4214876),\n", + " (878, 0.46694216),\n", + " (879, 0.46694216),\n", + " (880, 0.41735536),\n", + " (881, 0.38429752),\n", + " (882, 0.3429752),\n", + " (883, 0.3181818),\n", + " (884, 0.3181818),\n", + " (885, 0.38016528),\n", + " (886, 0.44214877),\n", + " (887, 0.45041323),\n", + " (888, 0.45867768),\n", + " (889, 0.43801653),\n", + " (890, 0.4090909),\n", + " (891, 0.35950413),\n", + " (892, 0.32231405),\n", + " (893, 0.3181818),\n", + " (894, 0.3264463),\n", + " (895, 0.3264463),\n", + " (896, 0.1570248),\n", + " (897, 0.37190083),\n", + " (898, 0.42561984),\n", + " (899, 0.4214876),\n", + " (900, 0.43801653),\n", + " (901, 0.43801653),\n", + " (902, 0.46280992),\n", + " (903, 0.5082645),\n", + " (904, 0.5206612),\n", + " (905, 0.43801653),\n", + " (906, 0.39256197),\n", + " (907, 0.41322315),\n", + " (908, 0.4338843),\n", + " (909, 0.47107437),\n", + " (910, 0.47107437),\n", + " (911, 0.446281),\n", + " (912, 0.44214877),\n", + " (913, 0.3966942),\n", + " (914, 0.38842976),\n", + " (915, 0.35123968),\n", + " (916, 0.29338843),\n", + " (917, 0.24380165),\n", + " (918, 0.23140496),\n", + " (919, 0.33471075),\n", + " (920, 0.36363637),\n", + " (921, 0.33471075),\n", + " (922, 0.45867768),\n", + " (923, 0.5165289),\n", + " (924, 0.56198347),\n", + " (925, 0.5661157),\n", + " (926, 0.5371901),\n", + " (927, 0.607438),\n", + " (928, 0.59504133),\n", + " (929, 0.5123967),\n", + " (930, 0.44214877),\n", + " (931, 0.45454547),\n", + " (932, 0.40082645),\n", + " (933, 0.30165288),\n", + " (934, 0.2107438),\n", + " (935, 0.3264463),\n", + " (936, 0.338843),\n", + " (937, 0.30165288),\n", + " (938, 0.3140496),\n", + " (939, 0.35123968),\n", + " (940, 0.40495867),\n", + " (941, 0.446281),\n", + " (942, 0.49586776),\n", + " (943, 0.45041323),\n", + " (944, 0.42975205),\n", + " (945, 0.4214876),\n", + " (946, 0.39256197),\n", + " (947, 0.40082645),\n", + " (948, 0.3677686),\n", + " (949, 0.35123968),\n", + " (950, 0.32231405),\n", + " (951, 0.37190083),\n", + " (952, 0.41735536),\n", + " (953, 0.4214876),\n", + " (954, 0.38842976),\n", + " (955, 0.34710744),\n", + " (956, 0.36363637),\n", + " (957, 0.3264463),\n", + " (958, 0.33471075),\n", + " (959, 0.3181818),\n", + " (960, 0.1694215),\n", + " (961, 0.3677686),\n", + " (962, 0.41322315),\n", + " (963, 0.45867768),\n", + " (964, 0.45867768),\n", + " (965, 0.42975205),\n", + " (966, 0.46280992),\n", + " (967, 0.4876033),\n", + " (968, 0.3553719),\n", + " (969, 0.3305785),\n", + " (970, 0.46280992),\n", + " (971, 0.5206612),\n", + " (972, 0.45454547),\n", + " (973, 0.35950413),\n", + " (974, 0.2644628),\n", + " (975, 0.17355372),\n", + " (976, 0.21487603),\n", + " (977, 0.2107438),\n", + " (978, 0.16115703),\n", + " (979, 0.2107438),\n", + " (980, 0.25619835),\n", + " (981, 0.26859504),\n", + " (982, 0.2644628),\n", + " (983, 0.28512397),\n", + " (984, 0.30578512),\n", + " (985, 0.3305785),\n", + " (986, 0.4090909),\n", + " (987, 0.49586776),\n", + " (988, 0.553719),\n", + " (989, 0.59504133),\n", + " (990, 0.5413223),\n", + " (991, 0.607438),\n", + " (992, 0.59090906),\n", + " (993, 0.5123967),\n", + " (994, 0.48347107),\n", + " (995, 0.45454547),\n", + " (996, 0.38429752),\n", + " (997, 0.20661157),\n", + " (998, 0.36363637),\n", + " (999, 0.46280992),\n", + " ...]]" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[\n", + " [\n", + " (feature_idx, value)\n", + " for feature_idx, value\n", + " in enumerate(sample)\n", + " ]\n", + " for sample\n", + " in dataset.data\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0, 1),\n", + " (1, 1),\n", + " (2, 1),\n", + " (3, 1),\n", + " (4, 1),\n", + " (5, 5),\n", + " (6, 1),\n", + " (7, 1),\n", + " (8, 2),\n", + " (9, 1),\n", + " (10, 1),\n", + " (11, 1),\n", + " (12, 1),\n", + " (13, 1),\n", + " (14, 1),\n", + " (15, 1),\n", + " (16, 1),\n", + " (17, 1),\n", + " (18, 2),\n", + " (19, 1),\n", + " (20, 1),\n", + " (21, 1),\n", + " (22, 1),\n", + " (23, 1),\n", + " (24, 1),\n", + " (25, 1),\n", + " (26, 1),\n", + " (27, 1),\n", + " (28, 1),\n", + " (29, 1),\n", + " (30, 1),\n", + " (31, 1),\n", + " (32, 1),\n", + " (33, 1),\n", + " (34, 1),\n", + " (35, 2),\n", + " (36, 1),\n", + " (37, 2),\n", + " (38, 1),\n", + " (39, 1)]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.base import BaseEstimator, TransformerMixin\n", + "\n", + "class NmfWrapper(BaseEstimator, TransformerMixin):\n", + " def __init__(self, **kwargs):\n", + " self.nmf = GensimNmf(**kwargs)\n", + " \n", + " def fit(self, X):\n", + " corpus = (\n", + " [\n", + " (feature_idx, value)\n", + " for feature_idx, value\n", + " in enumerate(sample)\n", + " ]\n", + " for sample\n", + " in X\n", + " )\n", + " \n", + " self.nmf.update(corpus)\n", + " \n", + " @property\n", + " def components_(self):\n", + " return self.nmf.get_topics()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "============================\n", + "Faces dataset decompositions\n", + "============================\n", + "\n", + "This example applies to :ref:`olivetti_faces` different unsupervised\n", + "matrix decomposition (dimension reduction) methods from the module\n", + ":py:mod:`sklearn.decomposition` (see the documentation chapter\n", + ":ref:`decompositions`) .\n", + "\n", + "\n", + "Dataset consists of 400 faces\n", + "Extracting the top 6 Eigenfaces - PCA using randomized SVD...\n", + "done in 0.226s\n", + "Extracting the top 6 Non-negative components - NMF (Sklearn)...\n", + "done in 0.820s\n", + "Extracting the top 6 Non-negative components - NMF (Gensim)...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-28 14:37:53,974 : INFO : Loss (no outliers): 16.540467082433963\tLoss (with outliers): 16.540467082433963\n", + "2018-08-28 14:37:54,855 : INFO : Loss (no outliers): 15.796825049480189\tLoss (with outliers): 15.796825049480189\n", + "2018-08-28 14:37:55,582 : INFO : Loss (no outliers): 15.826059107052513\tLoss (with outliers): 15.826059107052513\n", + "2018-08-28 14:37:56,375 : INFO : Loss (no outliers): 15.754449591388559\tLoss (with outliers): 15.754449591388559\n", + "2018-08-28 14:37:56,380 : INFO : Loss (no outliers): 15.754449591388559\tLoss (with outliers): 15.754449591388559\n", + "2018-08-28 14:37:56,388 : INFO : Loss (no outliers): 15.754449591388559\tLoss (with outliers): 15.754449591388559\n", + "2018-08-28 14:37:56,400 : INFO : Loss (no outliers): 15.754449591388559\tLoss (with outliers): 15.754449591388559\n", + "2018-08-28 14:37:56,408 : INFO : Loss (no outliers): 15.754449591388559\tLoss (with outliers): 15.754449591388559\n", + "2018-08-28 14:37:56,414 : INFO : Loss (no outliers): 15.754449591388559\tLoss (with outliers): 15.754449591388559\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done in 3.006s\n", + "Extracting the top 6 Independent components - FastICA...\n", + "done in 0.331s\n", + "Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...\n", + "done in 1.399s\n", + "Extracting the top 6 MiniBatchDictionaryLearning...\n", + "done in 2.230s\n", + "Extracting the top 6 Cluster centers - MiniBatchKMeans...\n", + "done in 0.257s\n", + "Extracting the top 6 Factor Analysis components - FA...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/sklearn/decomposition/factor_analysis.py:228: ConvergenceWarning: FactorAnalysis did not converge. You might want to increase the number of iterations.\n", + " ConvergenceWarning)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done in 0.362s\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZedZ3vl8994aNJRUVbIsCY3WPFqyPGFjmiGy8KIbG4LdKybExtixF2lYnbBWEnqFNIGETndD0gFCHBoamnYIBNoYMG4zxRM22EjYmqzJKs1SabAkV5VcquHee/qPc35nv+fZ77fvuSWBsc/3rFXr1D1n729/0977fd6xjEYjNTQ0NDQ0fK1j6SvdgYaGhoaGhr8OtBdeQ0NDQ8NCoL3wGhoaGhoWAu2F19DQ0NCwEGgvvIaGhoaGhUB74TU0NDQ0LATaC++rHKWU7yuljCr/rpscc93k79e9QNf84VLKd74Qbf1VoJTyt0sp//Ar3Q9HKWVlsg4/Oufxry6l/HYp5YlSyuFSyn2llJ8vpXxdcuzDpZRfCn+/a3Kts17IMYT20zkupVxbSvkXpZSd9v3cYy+lvKmUclsp5dDknBNfyL43LC7aC+9rB2+R9Br79xeT3/5i8vfNL9C1fljS39gXnqS/Lelv3AtvMyilfJ+kT0naKemHJF0v6X+T9O2SPldKuXKDJn5X4zV/4q+oi7U5vlbSj2nc7ylGo9HqpD+/MtRoKWWrpF+T9IDGY36NpIMvQH8bGrTyle5AwwuGm0aj0T3ZD6PRaL+kT2/UQCll22g0OvyC9+xrAH+dc1NKuVzSL0h6v6S/M+qyQ3y8lPL/aizA/FYp5arJi6SH0Wj0pKQn/zr6Oy9Go9GGe1DS2ZJOkPRfRqPRJ/6Ku9SwYGgMbwGQqTRLKZ8spXyslPKdpZSbSimHJb178tsPl1LuKKU8V0p5ppRyQynljZPfHpZ0pqS3B9XpL6UX7q51QSnl10opj09Uc/eWUv6tHfMtpZSPlFKenfz78OTBH4+hz9eXUj5XSjk4UX29MRzznyT9XUnnhv7dE35/cSnlF0opj5ZSjkzG+U67DurAbyilvL+Usk9jtrWZvi6XUv6XUspjk35+VNJlgwvV4R9JKpJ+aGSpkEaj0Rcl/aikSyW9qdaAqzRLKX9YSvmL5LizSilrpZQfCt+dX0r59VLKkxO14mfnmeNSyrsk/eLksPvCb2fNo9IspfwrSazVr06O/5PJb2+YzDPzeVsp5R+WUpaTdt4z2R/PlVKenuyZrw+/n1hK+alSyv2TPXBvKeVHSiklHHNSKeXfl1IemuzZx0spf1xKubjW/4a/+WgM72sHy6WUuJ6j0Wi0tsE5l0n6t5J+QtL9kp4qpbxdY9XZj2v8kD9O0tWSTpmc8x2S/lDSDZL+5eS7qtqslHKBxoxkv8YP6j2SzpF0XTjmTZJ+W2M13PdoLIj9iKQ/LaW8dDQaPRKavHjS538t6SlJ/1jS+0spF49Go/s0Vqe9aNLn75qcc2hynZ2TMW2R9D9Pxvztkn6xlLJ1NBq917r/65L+s6T3SlreZF//laR/KumnJP1XSa+anDMP/pakz4xGo9q8flDSSNK3aswC58H7JL1vMk93h+//rqQ1jceqUsp5kj4jaa/GKssvajzO3ymlfMdoNPqQ6nP8iKTzJf1PGqs8905+m1et+h8l3SrpNyT9C4332b7Jb+dL+iNJPzu51is1nuMXabyvNOn/v5P0P2r84v3nk6+/XmPm+OlSypZJOxdrvH9vk/Rajff7Lo3XTJJ+RtIbJP0zjV/Cp0j6RkknzzmWhr+JGI1G7d9X8T9J36fxw8//fTIcc93ku9eF7z4paV3SVdbef5T0Fxtc82FJ//ec/fvPGr/sTq/8XjR+8fyhfb9T0tOSftr6fETS+eG7MyZj+yfhu/8k6f7kWj8u6TlJF9j3vyLpcUnLk7/fNWnzp46lrxo/HA9K+vd23D+btPujG8zZUUnv2+CYL0r6PVuTXwp/M4azJn+fIOmApH9p7dxm7fyqpMck7bLjPirpxjnmmOueZ9+vzDn2SyfHfe/AMWXS3o9N5qFMvr9ksqf/94Fz3zFp/7X2/Y9JOizplMnfdw610/59df5rKs2vHXyXxlIv/945fLgk6Z7RaHSrfXeDpJeXUn6mlPK3SinHP89+Xa/xA/Wxyu+XSjpX0q9N1F4rE6b6rMZM47+x4+8cjUb38sdoNNqr8UPvnDn68gZJfybpAbvWH0p6scYPzIgPHGNfr9aYGf+mnf8bc/TxrwSj0ejLGjPT70V1V0p5maQrNGZ/4A2SPiTpQDJH15ZSTvhr7rokqZTydaWUXyylPKixQHBUYxZ4ijrtw+s1fhn+nwNNvUFjLcNf2Pj+SNJWSa+eHHeDpHdOVJ0vL6W0Z+XXAJpK82sHt40qTisD2Jt898sa3/jfr7F34OFSyv8n6R+NRqMHj6FfuzVmHzW8ePL5q5N/jnvt76eTYw5L2j5HX16ssWrxaOX3U+xvn595+3rG5PNx+93/ruFhSefVfiyl7NB4Xh+asz3wPklvk/Q6SX8q6e9J+pKk3wvHnKrx2n9/pY3dkr68yes+L0zsdL+vcd9+XGP2dUjSd2usTmbtWb+N9tsF2ngP/AONGfnf10R9Xkr5VY0Z6nPHNpKGrzTaC2+x0asNNRrrc94r6b2llN2Svk3Sv9HYxvMNx3CNpzR2chn6XZL+icZqM8cL6Rn5lMYviR+u/H6X/e3zM29feVGeZm2eNl839V8lva2U8uJRbsf7Do2ZzEfmbA98RGM72/eWUv5M0lsl/dZo1vv0aUl/IumnK23M+9J+IXGxpJdJeutoNJqy5FLKd9lxX5x8nqkxi8vwlMY2ubdWfr9Pkkaj0QGNX6Y/MrFrvkXjF98hjV+EDV+FaC+8hipGo9HTkn69lPIaSW8PPx3WWGU3D/5I0psGHt63a/wSunw0Gv3U8+rwxv37A0nv0dj29MXk940wb19v1thW+N9Liq71f2fO6/w7jZnYz5ZS3joRQiRJpZQXaeyscZfmd4KRJI1Go/VSyq9p7I37IUmna1adKY3n6OUaawwODTRXm2NenvPuj3mAWn3Kyso4Xu977Lg/1lhIebc65xPHH2gsMOwbjUZfmOfio9Hofkk/VUr5e5I2in9s+BuM9sJrmEEp5f+S9IykP9c4jusSjR8sfxQOu13SN5VS/luNJf4nR6PRA5Um/7nGdpM/L6X8a42l67MlvX40Gr1t8hD+QUm/XUrZLum3NJbCT9fYe+7e0Wj0M5scxu2Svr+U8m5Jn5P03Gg0uk1j1vIWjT0q/w9Jd0vaobFt7rWj0cgZwwzm7etoNHqqlPIzkv5pKeXLGjOmV6uuJvTr3FZK+Qcax+KdWkr5BY0dSS7T+EF+oqTrRpUYvA3wPo0Z6n/QmM180n7/UY29aj9eSvl5jQPAd0m6StI5o9Ho70+Oq83x7ZPff3ASvnBUYwHg+VSa/rzGasr/tZQy0tgx5Yc19i6dYjQa3V1K+VlJ/7iUcrLG3qzrGntp3jYajX5L0v+jsaPXR0spP62xV+hWSRdKeqOk/240Gh0upXxGY5vnbRqrcL9FY3vnLzyPcTR8pfGV9ppp/57fP3VemhcOHFPz0vxYcuw7JH1c45fdIY3tUv9G0o5wzOWT8w9O2v2lDfp4oaT/ovHL4ZDG6qaftmO+QWPW8czkmPs0VqN+/Rx9dg/FHZPrPTPp3z3ht90au5zfr7HH5xMas7AfCseknoab7OuKxiqwxzVmex/VmB1s6KkY2niNpN+ZrMWRSZ//g6Qz55iDGS9NO/Zzk99+onLdczS25T4yue6jGgs83zPnHP/E5Jw1+qDn6aWpcQaXT0323EMaO6y8x8eosar3f9D4RXZYYxXtRyW9Ohxz3KSPd02OeUpjp6Mfk7Q0OeanJ/O0T2OnpFsk/eBX+n5v/57fP9x5GxoaGhoavqbRXG0bGhoaGhYC7YXX0NDQ0LAQaC+8hoaGhoaFQHvhNTQ0NDQsBNoLr6GhoaFhIdBeeA0NDQ0NC4FNBZ7v3LlzdMYZZ2htbRzvub6+3juGMAdKS3nYQxYGwXe1EImh30MJq7n7wXf039vwc7PrbTSu7Ho1ZP3wua3NwdCc1MaXwdv3dmljdbWLdT56dJz4Yvv2cSrDlZUV7d+/XwcPHuxdcPfu3aMzzzxz2if/jNf039hv3pehY2I/s3HOg6G9utGcZutfu3Zt/x1rH+fF0P723/z7+Pvy8mxJuqWlpZlPjuXveM7KyvgRtLa2pscee0z79u3rdeqEE04Y7dy5c7rGQ88D/47r8Bn7sBE2Wrfs2Fo/Xujr1Z4D89zrG7U1z7GbeY7799l7A/h9DOK4fD+VUnTgwAEdOnRow8Fv6oV3xhln6Jd/+Zf1xS/OZmWKA/CHLQ/FoYcY3zEh/Obn8jc3idS/qfz6PPjiRqcd3/z+UI/j4liu7X3mb26sQ4e6rEwc430desnQR747cuTITN8OHz4883t8wDN/W7dunbmuvwDjJuIcn/vnnhvnyT3++HF2p3379k3P2bt378x1rr76ar3vfZ6paoyzzz5bH/7wh/Xss89Kkg4ePChJ07+lbs4OHDgw80lfmIMtW7b0zqGfHPvMM88Mjiuiti6cE+eJeY57UOrv7zgu2tu2bVt6XfaMr3V2HcA46GN86fB/75M/KPg+9ovrMcf+YuITIUfq1v+4446bOeeEE06YuR6/S9KuXbskSaeeeqqk8X5417velY51586d+oEf+IHpnmet4/3J/+n3SSedNNNPxh7nk3M2eglmD3c/h7/9Xo7POd8789yX/ht7w/dx9mzMXgwR2cvFn2ecy9z7cy7uVX/m+n7mc+iFxzj2798/8/fOnTunx5x88skz3+3YsUM///M/X20zoqk0GxoaGhoWAptieOvr6zp48OBUouMt7JKr1L3dkbiQxF0tQbvxt0yyjm1FadYlK/8bZJJdNr6IKEUhKXofXeLh+yjNIu3X1EWZhIk05HPLdYbUlvSbOad9WBrHRgmvNo9cn/7s2LGjNy7Y1Be/+MVBVeLq6mqPMcTxIUUy11yTfkb1l/ebPUn/aePLX/7yzJjjPqCvzogBxw4xLj+Gv+PeYZ5gNb6GXD/bu66q8vspk959f7FH6Jvfmxkr4Bhnds5KYv9ranAfbzzfxz4EZ01xvbjf2OOMbUjF58y69uwYMt3430NmhBoLnMeE4hof75uPJZ7r2qhanyPYzzVtQdamayx8j/o+9P/HccLQWU/+lrq1Zv1XVlbmVuU2htfQ0NDQsBA4JoaHbj6T7Gr2kJoR3M+Pv7nxOzu3ZixGwsskYCQDl1YyvXTtOs70arZEqWMxNYYH4jhdD06f6Zvb5zLQhtu3ODfawpyx+hpkNoIXvehFkjqG9+yzzw7q52O77uggdfNEf2t7J9MOuAbB+z+0Vzday8hC3Z44j7Qe51nq5tDH5QxX6u8Dt9ll+9u1DVzfWRuIc+I2YuD3YmwDiZvr8HxwFh+ldI6NdsTaXi6laHl5uXftOK/0gblzVuFrTbtx/P7p9vp5njuZ9sSPYY79HhhyQPNznCHPY/9zTUnmT+F98HvCfSKyZ5Zfn2P8mRzHA/wY2kBTE/sE+8v6XUNjeA0NDQ0NC4H2wmtoaGhoWAhsSqUZ6wpJfVVJhprBPNLfzKEgazdzZqnF/NA+6pToROB9ceOtO0Bk13G3cFc9uhorgxuaM7Wrq6eAq+Hi9WgnGnUjsvXimBhOkR0b59Fdy/ft21d1WpHGczdPDE7NuE/b8RqELuAYwrH0E9WcO6hI9VAZV7dFFSNwVSPrxHVR60nd3LrzRm39s/WpOUdljjyoW/2e4BjWOAvZ8ZAc5pW9xFyceOKJ03NQQdMX1E++/+I8+v0x5HRw9OhRPfHEE9OQGA85iO25E5HPdVShuSMI/eV7n4t4bi3er/Z7NlZXOWZOJLXQrFqcbkRNRezP0bh3MlNDvJ7v4XhdN7u489k86nc3/7D/4j3vppqtW7cOPnciGsNraGhoaFgIbIrhSbNv2lpAY/zNz8uMnc5A3IGiJiHH79wRwCWgzEED1FykYx+d/Xn7PoboMu0u3TVjeYSzHJiKS6FI69kacA7GXWc0Q8H4NXfxOHeM68ILL5Qk/emf/umGTis+13He6INL5Xz/pS99SVIn2UndvmIeNvqMc8137A2C4d0VP+4dWK2Pc4hx19h+bb9FFu3OKX7dIckWyboWEuSON/EYpHOX7LkecxWPhW37vYJDSdw7p5xyiqSODR49erTKilZXV/X4449Pr717925JsyEyzhT8HsuSFriDhDtXDN3zfp/4/Zeds1H41ZATSS3Rhe+L+NzxdmuML55T08g5AxvSQjizA64Vkfpr4IkjfA9L3fMshqJs9NwBjeE1NDQ0NCwENm3DW1tb6+nsh972NcknSlr+FvccjW7Pitdzhuduu+7GH3/zfsOI+IzswwPBa9Joxg6RRGqphLL+1ALnGQfSkgfES938Pf300zO/uYSXBWH7/PF9lg+R3+LcDNliov0XRCnQbQq0jx6ffRfTdvncuQTsbUX25HY+1yywR6OLPizT18NZQWaj9vl3yXtIU1LTWAzZtZkvZyOe4ioLMWCfMz5PWlBLeSZ18wULdBtO7ANrkCWvAOwb7IYeBhH/7/thKJyCa3raOQ9az+4fT3iwUThP7JP32fddlqrRr1tLSJCx0FoatCHm50zP5yKziXraM9fIZXPimiXfq4wr88Hgty1btrTA84aGhoaGhohNMTwCQF1iy6Q9D+L2YPUo2bvUgOTF37AYZx/xO5fSYIuZFOOeQC41ZQl5PQjZvfNqjCgbe83jzoN943g8iSvAjpFVMfC/mXPsJtmc+Hi9r3GtXYLfSNJaX1/vrQe6es6PY3QbAGON6+LzTfv0zT07I9PH6w/W5mPnelEy9/mvJQTO2nPW6ew804pkezEiYx+cz76jXRiS25Di2runnXs983v00vTvfA9k7Jo+RW3RkGfj2tpaL91UTN9X83x0Jp4xSfrAnvH+Z4kC/H6g/aG0gTV731B6MLfRegKImvYg+86f11lwfC2hQa3aROyfJ4Fwb+As+YMHwTtDzzQAQ/faRmgMr6GhoaFhIbBphrd169ZeaZqhOA6PxeGtnyXkdSnMvaaw3USWAUNAWndvLKTB6NmH5M4xnow08/jxmByXoj3eK0ofHiPk+mn3oov/53p4wLmkzblZQm2XhNzuENkKv9Eex9Q8ZiOQjOfRpTvDp9SHNJs+KP7GfqBv0YbHtRmL959+n3vuuZKkiy66aHrurbfeKkm6//77Z9pCqnzxi1/cu56zFfYV+5CE6meeeWZv7M5cv+7rvk6SdO+990rq4hmj1Myx/MY+gE1RqiuW7CLlG3s/1iuMfw+lv3K7uUv4ca3oE2PnnvAkwvF6rCn33lAC4NFopPX19el9y9gzL2rfn37vZUm9XRvgc5ExT+a2Fsvntnapz/Cc3WTaIe+Lj3coxaA/BzK7m8OfLxnrjMfFZ4iX/PJ5dc2G1O2jWqxtNi7X3kXN0UZoDK+hoaGhYSFwTF6aQ8l8nUV41gJ+j295Z3QunXscVpSakGzd3kNxQNqI+n7vq0tnrj+Wcgkx9t1Zb3Yd93SiLT5jbJPb9bx9L50TJRwkYbd51WwT8druueZzksXQxKTU83pLDXmIIcEj/cGeHn30UUkdo5D6Hnv039k7DOmlL33p9NwrrrhCknTnnXdKkm6++WZJfVtOTHrsjJ4+sjcff/zx3rjoE/NNn5CE+T2bE1gujIJP1tbL4kjS5ZdfLqm7x1w74Tb4rNSPZ1FiLlgbWGS8ttvGYXyZjfpjH/uYpI55X3XVVYNJ1bdu3TqNgYxjBZ48mU8YOB7L2bPK94rHf2b3J3vQGRBj9GTL8Tv3fK0lMZc6NuPM1VlaxnBr5Zlq/gdxDoCP3RlZ1H7U4gsZp7PG2I57TPv6xXM8hrd5aTY0NDQ0NBjaC6+hoaGhYSGwaZXm6urqICWeNjyhm1BhVDNDVas90NiNyLSVpZZy921PghypfnSpjm3UAiXj+X6sqyuh5H6NCPqKWoTPrOYTc+EqTFedZG7p9LGWvieuG8dwHVdBZ2vtqr+lpaVBx4MsLVmm8nnwwQcldepB+nb++edLmlUxulqavcE4mD9UgKS0iqBfX/jCF2b+9kQIEajvUHF6QuOHHnpoeixqO3dWoM/cG1lQt9eW8/llXGefffb0Ow/jcRU6yJzOPDFvLS1aTOvF9diTqI9JAcYaxD3K3vnLv/zL6TFRPRaxvLys3bt3T80Ubi7xtuPY3IQSj+MedceWWg3C2D93UvMK4cwfznSxPcDa8smeivcE57hzWq3GXZwT3ytDiZ8B13FVPePw52zcq7SHWpTrePL1GBrkTjLuYJU52Hi9zMz5qobG8BoaGhoaFgKbTh6Ni7A07ArrhnFnEJEpuEu5BxsiiSEJR4nBww5qQY9ZsLJLE7XUQrG/tWTV7vIbJWM3SiM9YUhHioqONx6Y61KNXyeWo3GW6+wsSzjt7s3urJBJWkjpcd2GgoezgNPIaj/5yU9Kkk477TRJ0mWXXTZttzZW5oV2PEyB7++77z5J0iOPPDI9FybipZ6QZt1AL/W1DjAdxuPOUpJ0zz33SJJe/epXz4zDg7pdGyL1HUFYBxx5YKyxX3fddZck6frrr5/p04033iip7/w1lASCOXAnlujA4Vob9hCOLWecccZMn6Xuvn3yyScljZNy1xJhr6ysaNeuXT03+8zZxpmBO6Jk1bYZv6fG8jCS2D93pvD14X6KTBhNDvcLf7M+GQsFzlg9IUU2J/6bO6Bl2hjGijOga9U8cD+yKw+V8mQAQ1odf+6w3/z+iu279mkeNIbX0NDQ0LAQ2HTg+ZYtW3quo5n9iLcwb2jYzFCpDaQxl3SQKggEjuzJXV3dLX3Pnj0z/Yn/dzuP26SirdCv50mDOZa5ifp+tzlgm0K6dQlT6gdi0gYSPSwoC8J96qmnJPXd3D38IkrpjJk18ITKmQ3PGcKhQ4eqAaCllFRK+9znPjf9jjAB9gz9QxJ2phz7AHtgbmPoQrze7/zO70y/I0SBtfLg8aFkvqwlx7okCquRurmkHbf7cX2OixoMZyh+PQ9xkDp73lve8hZJHaODaRLeATKm5H/7XETblDMg1s3LLcW2GSPzuW/fvqotZnl5Wbt27eoxhPgccI2IF0HOAqXdNufrALsdStDtwdQ+rriW9M0D870sVqYlqSUAAJkmC/izxMMHot2PMfPJXHjaP7fpxT55KSlPMhBZoocsuG+CFxCQOg1IPGbeNGON4TU0NDQ0LASOKXl0rdii1E+1g3SJ9Jylt4GluJcS7dMGklGUSGCOXibD7TFRikUi5TckO097FRme25FqJe/5HpYldUzOwXg98Dhezz2RkJppM0uu6ozR53zI88ltrs5ysxIpGRNyHD16VE888cT0749//OOSZgOY6RfHwdJYJ6S92CeOce9MwDhc6pS6gHNnwO5hHMflzN73GRJr9CTFFnneeefNnAOjfeyxx2b6E7URMHr3JHTWlCVUR7vh2gcPhI/wQGc/1gvDSv1gb67DfUvqtJik20u8bN++verhu7y8rJNPPnlQivcEEMyL2/ajVoP7nrXjnnWmmd1j3tdaQoDI8DyJvBdKzQrAAi8x5mAeIxPyZ5MnPs+KIgP3vPVE8Vm6ONrBJslvaCXQvkS7ptsvgZejyn7L/EE2QmN4DQ0NDQ0LgWPy0gSZDQ+JgLc6Ul18q0uz6YGQXnhjw154+/OJhBzZE153NXsB39MfqWMV6ILpG+Pg+sSDSZ3nG8fASt2ukMUIIdkxZv52thBtEhyD3dJjt1xizWxrziy99EuW9NvLDXlS6Sjl0kdY9vr6etVLc//+/frwhz88jU8juXLcF9iY2EOsLf3mepmnHUwIqb1WkDOOmWOdBfp1omTszJ75cEYemSR7hXRa7D/2JPYSxhm9NJkf90L0gsQR7IkPfvCDM+NhDWmfPhIvF8fKeLg3PXFzJlU7i+a62JtJDSbNesvW2gNLS0szzwufi3hNT5/mnpFRy8CzKSY/53pSt5asV3aPuWbHYx0jc4H1uzdobQxS3+vTfRRA5k3tfazFrWX3rB/DnEQP6fi91GfTjJP2uUcjy0bzx95wbVdWUNm90Lds2TLoHT7T37mOamhoaGho+CrHphleKaVnL4tvV8+O4SVPkFSijcOlcmwetEub2H3i257fkEyRXvnk+rDEeKz3CSkD9kESXkl6//vfPx2/JL3hDW+Q1E9sjUSM/UTqmKJ7SSKhIL3G0jX011mnM2Yk1qi7Z27POeecmT67HTLaVJhHvvNsHVlCbTBPxoP19XUdOnRoaq96+9vfLmk2Do85Y11OP/30mTayTCRua4zSo9S36cX+uz0WeImSLF6ReWHPsIeZtyiBu/cln8wF+yCWygFIvIzLM+24diT2+4EHHpDU7RW35XisbDyG/VdjbfEcjw11ezB9jPZaNBdkWllbW6tK6aPRSIcPH+6VGotwj27G6DG2Wayf20Xdc5AyTllpIY7hby9PlXlrewyvJ4SP46Mv7ufgMXUenyf1i6kCt+Vl5/gna+cJ1TObPnPMvc2zCzYXNRjAY6Nr8c5SP96zJY9uaGhoaGgwPC8bHv+PGRSQCNwW5KUiouSDDQhGgp0n2oakLvr/6quvnp7rsW0eC3T33XdL6piepF6ZEVgNEglSRrQbXHDBBZI6Wx7FQ+kTtgLir6LuHhvG3r17JXVeYRxLrsUo2SElI9khWSMFvuY1r5HUxZUxV9K41IokfeITn5DUSYVIVrQR7Wcek+TxOEh0kbk4m3r22WerLG/Xrl1685vfPJ0LZxCxP6wh8+9epbGECfMEi6afSOUPP/xw2p8IxuRxhey7mBfVCwxzD3hR4biW7A1nh35vZHFYnl2Gda71VepnwOF6Ucsh9VlRPNelcPKMOvuROhsgfXIvV/ZUnEfaZ/1OOumkasYMsjvV7LIZ3JbOZ7wv6Sd9gMWwR91DMbIIj/NzuyznxGcIvzmjdA/YCPczyErsxP5QoVbyAAAgAElEQVRED19ntR53l2Vc8QxV3E+e8QfEvVPLUcwcsHezeEz3c/B9Fs9hz0f7abPhNTQ0NDQ0BLQXXkNDQ0PDQuCYnFY86WpM44TaxB0Z3Nge3ZKh7ahNMHKiRkQV6OmjpM7w7ymYcAD59Kc/LWnWMAtNJgUTVJzrMp5Ikz3sgXZdtYW6MqqPvCQNf3MM14sG9UsuuURSp1657bbbJHWqO1zcUZNEBw/mB3UDaj1Ut6gpokqT/3vYgycDiOfUys1kWF9f18GDB3upy6KzBXPsKhcv4xJVmqjTGP+f/dmfSerWAVV2FlYB+I39xbkeeiJ16nAPC+FYN7pL3Xq4s4WXYskqkLO/ua47NmQu7vSB9lEleVhMlqaK/zMXrMG1114rqZvnaJLwcjqeDJ224j3BOfTttNNOq5YiksbPj1rasziWWrJoDwmQ+inQXLXMXvHnXWzX73/mmPXA5BHboy8cw/OP7+P6s1Zcx/evq3WzBPQeOB/TwsXxx/M5x0MAuN+ytXJHF55NtMVzL6p5GTP3gIddsM+jqtbfKUNJCxyN4TU0NDQ0LAQ2XQB2bW1tKkHC0rJSOJ6sFVZF0HhWBBCJAEmAtpAqKfFy//33T8/l2kgpMCLOxXkhuuAjgcCsPPEvUmeUltywTdLj17/+9ZI6SYXxRYnEEzMzHiQfjo0SsIclwEZJ04TTDH2PEv7tt98uSbr00ktnxoG0yZpERlZzGPDA+jiP7IOYJHaoAOzhw4d7KcCitOmlflxq9j5l/YZpsYZRwpZm14X2mQ/2gycvz8rCcK6n3qLvL3/5y6fnfOpTn5LUSfIe3O0u9PF+gh15wU/AvotrSR9oj/YJYWE+vTxWbAcGF4PFY5/jvLuGInNmkmbvJ9aHfT60d6TxWngqw8hu+I3192QSmfMDGiX2IM8f5jSGTkmz+9BDmzxonOtHRxQvbI3TmhcPzpKjb1TMNQtBqKUq8xSNkVF6IgV/fns6suio4s8InoXsZ/Z/DF5nf7EP/PmQJbimv4S2nHjiiWmoSobG8BoaGhoaFgKbYnirq6t68skney7fV1555fQYL+LqrsRZAmOOhZ1xjgdZw4w8mJi+SZ2EQJoql3YjkF74hA1wTpTo+P/5558/0z7w1F/xeownJsqN46LPkUnAZj1oGIYZ06tJs0yJeaLPSJK0zzjj9ZDS+WSOIxOXZgPFGU9M3zRkxyulTKVo5jyOw93pAf11G0i8thfkdLtLZgvwtGl+rkvPUj8MgXM9eB1bYhyrhyN44ueM4TBmD50BSM0xPZi3w98ewjCUYo5juJ4nVo4s1F3xfT6z8ldu6z548OCGSYDdRpSFSHk6Kw85iedwbcaIBsYL87omI47NtSV870kGMsCOYDlZKjvg7Jbr8Zml4PJgdNcgcP0sGJ9z3L7syR/i3uH/7Fm392WJAzzBPXD7Y7yOB/cvLS01G15DQ0NDQ0PEphje4cOHde+9904lOi/TIPWlCt7UnhopSohIQX4Okg4FK72sfWwPSYe+4XHpSZBjXxxcNwuuRcIlXRPB8QSiwzo8BZPU6Zo9HRjHuD1A6iRglzbpu+v2owSEVMa8MR7mnL9jmR23K7mdxNlQbB/WuWfPnkGGt7S01CscmZVtcqnVWVzsN2OhPaR0PxYmFKVLt20gmXrqorgPkIq5jl8Pdv3nf/7n03NgqCQ/d6nWtQ+ZbZX1YP/xN2nw4v72RLyeJLmW6NivLXXr7cw/rhv7zTUZgL0V9w59YhwPPfRQqrmhTxkLyUoUeeJiX9M4Zo5hD3niYo71orL0SeoXTHYWFdeW//Mc8CTyvu/iNWsMxu+j7Nno7MztznF/u0akZhvLtBIeyO6JpjMG73NbSzydleiaN9g8ojG8hoaGhoaFwKZteE8//fTUu4kEylFS9hLtHsfhCZvj+Z6CiWORzpFMMimG35AY8CB1XbTUsSf6itSObdKlQqlLbEwCa9KgIcXQd5hljJfh2i95yUtmrus2lHg9pEAkG/fg8oTQMT7Oi2C6tMR44/V87j3uhzFEr0cYAwzvhBNOqKZ7Wl5e1s6dO3sesFFKc7uAp8/yPkrdetdSLoFMAq7FEdKGx9ZJ/YTTXqQYDUNMtwez87mpeRBm0jzXZZ29lNbQOGqelrG8CvBE137/uKYmHuN7x9lpZHisLZqSp556KrVdgZi0nnmLjNBttLUi1XHNfR583/kaR7bjCfRhic5y4znYtDy+z+//yGbdXul7iHPc9hrhMYn0CXbqdnqp7yfh9yL3XeZRyjr6HGT2TN8b7qXpyb/jOUP3Sw2N4TU0NDQ0LAQ2HYd35MiR6dsX21R8+yKF85ZHMiQGxaUqqe8l5BIIkkEmkURPHamTQJ2ZREmYYz1xKZ9IDvEcWOGrXvUqSdJb3/pWSf0SL4zvk5/8ZG88njzW7SNRUnFJ0ZPV+hzFc5Ho3GtuKFMFa4qtklhIzyAT2QDMIWauiWWRIpDQ3SM1rqVnKeFYZ2JZglzX67udgvmM9j+3OWTJlONxUp8BeVYWGHD08MUbMGaGiH0a8tZ0Ox9aCGx5vofiOZ4w2ec3i8d09uTef9m6+Vw7y86K73IszwWPtXSsra31mEjmCQ3op2cZyUovcQ95jJm3EeeJsbhmwZN9ZzY8b2PII9Hv2VrC8WzvuFbDbXZ8xrl3LYv7ENQSUkv97FpeDi2La2XOaywtm3vPSHT06NGWPLqhoaGhoSGivfAaGhoaGhYCm1Jpbt++XZdeeqluuukmSX3jtNRXT6Ky8JRF8ThPveUJWVFLOhWPx/LpbvQgc/VGDeW03QPR4//f8Y53SOrX8/KgaMIVpC55sCfQ5hxX2Upd0uMsGXEcnzsFxet4LTAfX6ZaQKXpKhNUNNHwzLVxRNm/f/9g1fN4PnMSHSpQrfh6u6okqjj5zhMAe+C8q6mkbr7dISCmSpNmg/q5HuvPuaz7zTffLKlT90vdPHkYioeAuPo1/p/r0AYOEJ7kOY7DVWWu9smSVdeCuz3YN57jjmOuQsvqS7I+nsYtAykNvd/xHA8LqAXzR5W8J4ugf/48yMI4PNzJ79MsXKi23u6sMpQejPY98DxTCXoaOFfdZwmgPZSBc11164lEpG5NXf05tA9dZe5z5H/HvsRA/abSbGhoaGhoCDgmpxWYURYU6Cl++M3TRWVMAYnbXfKRhHijZ8ZjgEQQy5f49byEiEtYOJd8/vOfn56DRE3JIs5BKmR8tB2Tqt5yyy2SOqnfpRmvaix1TiO11ETuRBClNZesmAtYkJftiHCJlfFkqbmQ6GnvyJEj1fRQa2trOnDgwNTp58Ybb5QkvelNb5oeA3upSbWZodylYt9/noopC0uosQskybiX3PmFdSaZt5fgkbq5dIcjmKxL51mJFw+sJ8CdcIjYR3eVd6cld3TI7t/sN2l4vznbYLyZBsPTrb3qVa+altxylFK0ZcuWQSm+VlooqyK/0TGu3ciccWopvlzDld0PtFfbm1l6MHcE8fG4FiReB3iokScJif316vWANY1rCVwL5eWiQPy75ujiDlUZg0XrtnXr1g01S6AxvIaGhoaGhcCmGV7Ul2bBw0gL7hLvabsim3EG50GdHuwbA1Q94a+XlskkklpRWqRkbFIkcJak7/zO75zpay3okX5EewX2Ksr1IGF56Y1oz4L1eQJeZ3aZZFMLzHRJPEpk7rrOJ8dmLtN+nTPPPHNamsixvr6uZ599Vt/0Td8kqUuufOedd06PoQQS7MnTNmXSntslPFB/SLJ3adkl7SydGmsFA8eG5raOyMy94Kon83VNRmQFHgZAn5zpER4jdSEKhEN4YnUfb9wHWRKE2IYXnpX6iRroP98z/hjuwf+vueYaSWPNSVacN0PG1n0vujbI93E8xu9ht19me6hWeqfWRryOn5ul2fOxArdp+T0R55A9w37wUCee0TFUx4PU3QbuCa7j9bxPnjSc+yg+v13bBZzxRdAOe56E/vOgMbyGhoaGhoXAMRWAdW+/LNWX2+ywgWXlgWoJSmvl6zN9vafpcu+vKJHWJCukDJgd0qckvfKVr5w5p5aWirkhQDj+Hw/ICy+8cObYWsBzRM2OlRXkdBsB7XrS2ji/fm23J2ReZ27nOe2006q2FAB7fs973iNJ+s3f/M3pb+wnyhnx91BguHvjeUoktytkyW6dRXki8qyIJ1Ixv3lgc2T4rqHwIOVaKaYIZyN8nnXWWZJmU5mxRpTvwnbs+929K6W+tyNw78Csb84KYKHZfqO9K664QtLYrlNjS6UULS0t9eYvKw9UsyF7CjrazfrvGGJePqdug4psxp9NzI+3n91j/tx0W+HQGDyBg6chiyW60JCxN9E6uR2TNuP97kzZ2ZunD4tjHUoc7m2Tjo7EIF/+8pdn2hxCY3gNDQ0NDQuBTTG8lZUV7d69e+q96MUopX5peOwILvln3kS8xV3KrMWTxHZcWh1Kn+RSKu2RcJq/SY4tdVIqUoXHtnEOHkgkVJakb//2b5ckfexjH5vpq6dTypiy23uAxypmdlQ8CN2DFMQ2ndE5C8gYXsZQhxK5Li0t9ebr+uuvn/5+ww03SOo8OF/2spdJ6uaU8URpzmMNa5Iu142Mz5l9LYYrSy2GVHzJJZdI6jzGvJin1K1VLTGzM42sOLLbbj1WjLhNqWN7SM14kJLw3PdOxmBq91xWrob22F/EJLqtOjIJmDLnbqQdWFpa6rGn2IcsfVkcoz9bpH55oFqcYmZjc5sgbWEXY3yxj2i5PA7OyxBl8BRzvmaZBzvgWNgt/gEgSyLPs9DtwUNemrV7z/dwZHOZb0D8PmPzvHdiqsbmpdnQ0NDQ0BCwKYa3tLSkE044YZp5whNCS92bGikvemNGRGnGJQP3uPMEylFK84h/PxeJJJ7j0hEM4v7775fUsY7oNYlU4RknXC/PnMQ4PGL37rnnHkmdBI5XopdOiuNAGqrZSUDmuerxX7V5juewLl4kN9OlezHfHTt2VMvzcD1nFZFlvuIVr5DUFU/lEy8s5jSuH/11CbcmAWf9d68yt7nFTCvsFUo9wey8MGy8JzzuE9QSXWexgjVPUi+hFdvhWGzSeMRiI0Vqz5hLraSMx6bFc5C4+fR9GLPPwDZhPUPsppSi5eXlXtaXzLvUbV5D9jEAi/G4XPeqzZKt02/GzP7g98suu2x6Dloi9oMzPfeNiP33bDDsGdcSZGzdGVctw0zsG33wcl787kWlpXpGF5+/7H3B9fy54PdmPCY+x+YtEdQYXkNDQ0PDQqC98BoaGhoaFgKbUmmWUrSysjKlkk888YSkWfUaVBRVJn97CqhMnQbcyM/fWYVmV9d5YDjUP0tYihris5/9rKROTYXKJ57jCYXdOOyOCFEtgRoA9cYnPvEJSeNAbalT/0b3d3dVdxWTp86KlJ523JXY05RlCYe9ArGrzuK6oc5BNVYLL8mu6W7VETir3HvvvZKkRx99VJJ07rnnSppNTeThL0OVn73/rnJxt+ksaTDrihoMtTdOI64Siqi5+ruTR1Sh+vi4r1ApMY9xbdnX3CfMH9/jeMVnDEuoVeF2NXi8Z+kL+4CgfNSWqDL5Xeonod66dWs1LGBtbU3PPvtsNSWgVA8TGHJm8N88yYOr0+I+8Dqf/rc7Bkl9VR/w+zSraccnpoZamFLcd+7IxTg8nCyaL9wZp6aOzEJpas/i7Jno1+Oe8/ALfx7F/8d3TFNpNjQ0NDQ0BGyK4ZEAGCcMnDxgRlInLW6UzipKOW6YraXayYJ6hyRPKa8IDjPFiI+0cuWVV86MIUrNjAPDM9IMUrOnCYvSI78RgI6Dw969eyV1wbcx4bAn6XU3dGcykT04u6059kRk0pePI/ZH6lerrrEqMBqNes4XWWka+odTD+vgzCv2Adbne8mdWeI8eQiG9yML+aAvMZ2a1JemM7Z72mmnSer2DA4BjAHWGOfcHWhYU+452Fs06rvGwEvXuJNEHL8zSl+nGEYAWH/YrrNe+pNJ4UPJgeMxR48erZaLimOppcIbKoVUS8zMnMLe4j3iCQg8uJv1j2wdRuKJwP1ZGfvoTmvOvDx9V0wizlp6G+w7EPvIWNkztOHXzZzT/B5wJj7kbOQhQF5RPmqEmB9Cv0opjeE1NDQ0NDREbIrhra+v6+DBg1Omcscdd0ialSpwj3b9rUuVEV6eZ9o5k5K9YKvU1/ny6QHoMfXSAw88IKlL6kzJGmx3XiJH6gcNw8boC1IS+vAY0sBvSC/YqAiwRjrMglRdZ89c+dxktgp30fag5ayIp0v0tYTKsT0kt0OHDlVZHvbfIRboyQI87IEQgMhCYviH1LEnTzSehRg4G/eCxr7W8RhYi5e/4jPaRVgrvvM0eJ7AIUrALi2zZ7mvGG/GQhmfJ41mDB5MLPVt1TUNTdSysAZ+f9aSv8d2XYORYWlpSccdd9xgkuVaEuKsBBZwm1aNkbA+cU09EbLPG+wjakTQLHmKPLfHZunIPHm3B62jHYj3htsivVhyltbLCz67jW2I4QFn7UNr4nvS94H3OQKGfMUVV0yTK2yExvAaGhoaGhYCm2J40lg64e2O11xkT0g2zhTc2yZKPu4B6JL2kPTndilPweP2uvgd5XoIePZg0thHD4SslaxBasvGBy666CJJ3dzs2bNH0mw6Msq+uGTn3nNZMKd7s7ke3PX+sd8A1u6eVxH8hvR18ODBQYa3ZcuWqk0ituOep7SZJTFwXb9Lvu5lOk/CYY6FsWRewZ4ui/niXoiB1Kwddq/MszaOJfbH2SafMFX2cmbDo094Y+I96QHcsR+e0ICxu20ySvhub/bCs17QObYXvRlr9/loNNLq6mpvLaNWo5bE2VlM5mXsDMSZHwwvrmmtUCpjRUMTtQNe1gZ2znxl+4J2fV38uQPDyzRojMPtmuyTuL/5vxd85m/XdMV9V9MOuf/BkB3d93tm1/Zxffd3f7d+93d/t/d7hsbwGhoaGhoWApuOw1teXu6lQIpSDG9k3up4armdZKYTk/bcq9Bj+DIvw1pJCjwgP/3pT0vqPP6kLj7oda97naROwnKdd9SHuz4aTye34SBVY2uROkkOiYrrXXXVVZI6ZkNRVKlLp4VN1G0pLq1FCdDtmZ6OLJN2acc9uHyNo5TrUtj+/fs3tOHVEjVL3d6gD7WEwJGNuleh21/dxpLBbZwuVUeJ1Nkz3qHMAfsusgbO51juCVgAyDQLrrFw79ws3RrryzzWkoZn+4B9XvOIzLwq3YuWPet7NUs4vVHcZITHRcY5dhseY3MmFveBeyA6G/Tfs7I2zCXsmecMaxz9ANxmd/fdd0vqtAKuPZK6+4519nRnPv44x7VYXfYdz6MIv9dgrLBc9gp/Z8WYPd6wVkw4u66XdWPOoxbRtQ733ntv1cvc0RheQ0NDQ8NC4JgYHpKIv42lTiKA4SBlIqEgCUXPTpeskUyQiIZi7XizIz0Tl4RthSwP2M2kLn4QyRcG5iXvY2aIWqJhPhkD/aDN+BvzhXTE+Ij/u+mmm6bnfOADH5Akvf71r5fUSWMuqbokHvtai8fL7AJuP/NYxMxWiKTFsUM2PIfbBiJo12N0XGqX+vPh/XTpMrMjAWc3WaJu+ouUzLzDavg+SrG0y71AAUsvMJtJqV4k1jNSZDZj1vK8886bmQOX+LPiyLUitEPlgdy+7cVxaT+ynSxB/EaxVM42s6witfV3L9p4jLNCn69sLzH/PCPw8OaTZ0ucT9ga57BnSCqfeYPSB/aKZ3pyppnZYznHk1e7vTsbM2yU53qWdcbBb6y3xwpnrNC1UhwLs4tzz3gozbV///5WHqihoaGhoSHimLw0PWtFZFyeQ5O3PW9qmFfGLmAxnuPNJd8YS1XzlsQjjjbjORQ3vOuuu2b6Rnwenm/vfve7p+fQPsyV9pBeXAKPYH6Q0jgGSSuz6dx8882SunlEmsEz1m2hUeLCnuT5Cn294jm1PH8w1iwfJ+MYso9FlFI2LOMz9JvPtbedteGI48sydkh9lhP3N5oKZ1Yeg5ZJwF4MGW89j6HK8mLSntsVPQNK7IszOC9e7DZyqZ7r1PdFli2De83nPtMOwDbcHpMB+2+Nzce2na0xp1k8l+8jj0/ztjNvXTRIfHp8WtyXzprwJYDp8dwh3lTqnjOwP18X/vaSQ1K3j2i/ZpfNngMO1sv3aBZT5yWy/LkT55H967Gjfv9EPxH6zfP6+OOPbza8hoaGhoaGiPbCa2hoaGhYCGy64vnxxx/fcwWPNNsN1tBY0pE5zZU6VUKNanvYQlT5cA6UH7UAqkfURagxpU61g0oDtQHB6Zwb1R9ve9vbZn5D1edqlixtF+pJ5o0Acz49MXVsh/EwJ1SvJjAdNVlcAw/k52/G4wmv43g8DMFLDUV1FXPO2u7cuXOwRND6+novlVBUH7k60NUrqEri3LoqoxbUnRnoXY3r4TaMPabRcrUMbXCsp1uLv+GwhdqG8Tz88MMzcxHnxFPLsd6c69XSpX4ldfYZ84bzTBYIXCsH5MhUw8D75AkQ4nfzJP1dW1vTvn37pun6slAGf3a4k8pQNfGNEqd7UgOpUxN64nQ3w2RhPN4u36PijM5y3P+YXRiPq/39eSvNPk8iPOA+e377b6wTJivGF/cO//dPkKmv/RjGwbiz4+gLjo833XRTmnosQ2N4DQ0NDQ0LgU2HJWzbtq2XbDVzD0bycSeFrHyOB/O66z/sAykHhib1GReMzsupRFZ4zTXXSOqMw0gKngIqXuejH/3ozG9IyS7pMD6CSqXOOYFxeRJhmFIMZWBOkNI4xxPaZpK4ux/TV2cQUeLGccbXx93gY6JjvjvrrLMkjaXemls7cAearOwHThdcyxlEFijte8eZScZUfO48MS97JjOyO5P0FElxf7s7NnvSg5Nx6Ir7gHM8MNedPmIwvhf49H3tZWKGXLq971nCAJ8nZ3jOnOP/Y8hOje2Rls7TT2XaBA9p8iQSWUgLcO1DLc1aBHu0FvAe4UzXQxe8QHPsk6e581AJZ5hSt488VZo/B7LiqhzLc5y+eUhaXDPXOnjSB0+wHc/3feXrFc+h33EftPJADQ0NDQ0NAZtieMvLyzr++ON77CJKWs5aPMA0KyvvJTCQXjgGfS7SRQwxcLdjJAGkJoJvSdUVv8N2csstt8yMw91rGbvUMUj65vYmfo9la3BZdomSucK9Ns4Jx6LXZ94efPBBSZ30xvexHBHu4YQ5OPvJ7Fxue3QW78HfUjdfztCHgITqduDYP2deQwVsfWwu9Xs6qsgWvX3GgQ3FE1DH67lk7RJwtPs5C3TGynpx/agxcXssYJ970u/YJ+8La4fNFcS0Tb6fPRjfS/9kffJ73YPkIzyhQ4aVlRXt3r27V0A0rrUnCfC19aB4/3/sd7yulNv/eHZwvzM2L/KalZbiN54RziRjknTXdvn96Enlo3bAbWauyeJYEiFIfeaIVoA+sUfZU5lds8a2soQXvp/oozPM+GzxBO7HH398Y3gNDQ0NDQ0Rm7bhbd26dfqWR0KKb2wkBN7UrkPnTT1UqNB126QFGwpWdrsYUjPejFFqov2XvOQlkjopDLubFxGVupRBNS9Nxu0JoqVOwvJ0WkiFWYJUpD+YG3ayM888U1JnX0TCzLylYNm1cktxTmoMr1bCJvY/Sp9DknoppSdxxxRz3j9ndJkU5zYzZ4dZGSIfM+vvxYszj1sPfncW6OOT+kVoPUkw1/cUdLFd1tCT9mYJer3/7EW3kyC9R80Ddm1v3z0j4/i8XWdZQx6fsd3a3lldXdWXvvSlHquOzx3uLeaS9XFWERMmezo97kNPZsEejXPM/c+xaKHQ5vCMwTNX6ntUY8MF9DWWCfProd1ir/KcoK/Ru5F9xNz4veD+DvEc+sZzB7gvRuZ56+NxLUXGzD3Jt3tkx3tiqOTTRmgMr6GhoaFhIbAphre2tqb9+/dPpc0sFqPmNZR5BAGXvrA9ubecSwNSX1rhrY+kR5tREkFKcSkNaQymBauTOqaFBEKSanT5LtXSdryeS9xIcsxJTC2GhAND9dg9ypB4wuvYHl54HsuVSVrOqpn7LFUaGGJCDop4uqdatAE4C3NvLJdUYzvO8NwG5bY3qdsjzLvbqTK7oEuttUTMmdbD40trjCazM7pUO5Q83GMEAYycc9mH0abnyYo9vivbO5ltVer2g0vvsY/x3Jod5tChQ/r85z8/vR+zQsB+bfd4zEo98WzwZxVjh02zT6I9Dj8A9iQetmheGGv0N3D7HuvB37DDqB3yNIS1+yfzZnR/CS+myjlx/ekjDM9Tlg3d427n38gmH+Gp05iD7B50lrm8vNxseA0NDQ0NDRGbZngHDhyYkUCkXAfscUkemxHf2Oih+XSpMssIAdzLB6mt5vkZ/3/vvfdK6tspkPAuu+yy6TlIR7TvUh9ShyfPljrpjz56nI/HLEqdrQ5G59dB8so8+5wZwfQ8i0JkBUiBsB2XxrKsFJ5IeSMpa2lpqeepGpmQsxdHxiTdxuUZFzxuLl6PfZbFP8W2o9Tstiz3wPTMHlI3Z7VitG7bjZ6w7g1MG5yTMUofj3v0sWeyc5Hs0VB4bFrmuepr4LGCQ5I97Q15+K6uruqpp56a9uWCCy6Y6Vu8hq+Ls91MO+CsyZl3VjCVOcSWhp2P5wTMLnpNOtP350KWzcgzxnicnydwj5qlWtForucemHEOvFhtbb/H+fTyU35OpmWhL7THeDL/AEB/4/07lOEpojG8hoaGhoaFQHvhNTQ0NDQsBI4pLMFr3UWVCFQU+u+qQA9ojudnhmWuK/Wr+0odbXa1ICoFT20mSXv27JHUuWC72zafUXVLcCbfocqAkvM944zJqmtqAq8EHVVRMeg9jtNr3GUqJvpPH93Q7Kl+pE6V4MZ/d0zJ1i2qjYbSQy0tLfXSGmVGcP/OqyFn/XPVh6fLygLCUY14VXHG4OmcYt/cASVLFkc8/3wAACAASURBVAxcre7GfAz2HkQc++QOIH69uF/cJED7uMXz6WExUrd/3enHHQ+GQjVcZeuOFXGMUfVY2zvLy8s6+eSTp+ejtsucVzZyVorXcFOJJw3nk+tkyZi9FqCfE/cO8+xqaneEi9fhHNbQU2+5qjmq3xkXfWLdvbJ7vOe5PzzdmSdN8GdyRK22JsieITgB8dz053p8NjK3MaHBPEkvpMbwGhoaGhoWBJtieKPRSEeOHOlVd45ptDzBK29jN2zHt78nFXVjJ1JFVlLE3aSRfJEUcGWOxlyYnRvkaQvDPaV44rEwVo7BWO2lS6Kk5UH4WSJm/xuHGlyGGR+hE264jQzWr+PM0gNupU5SY3zu6JC50NMexx4+fLjqau9Vq0GUzGqJpd1RJEqV7mjgqcs8IXRkBUjS7BlPNO4JjqXOAYg1dYadVc2uSePA91/UmLgR3x1faDu6v3tpJ/YV+x5nBZfepW4t2c9eoitj+r7fnNFm94Q7shx//PFVRrCysqJTTjll2i57NLLaGlvzcWUaBQ8x8fAUnm9RO8C12QeeZN3XS+o0LoQa+Z5xDUOEawX8PspStDFW1t+TVDCGLDzJHdH8ulmCBcBc1NL8xXsQZsx37M3bbrtt5jqR9fozb96QBKkxvIaGhoaGBcGmGB7w1DtRivGkn7zt3caW2QD8jU1b7mYdz3V3XS/eyu8xhZVL/Z7Elc/7779/eg5hAkg4uCp7W874Yl+chXhQZZT86QOuy0iOnjLJQx2kfkJbt88565Y66Z/5cvtsnD/g7tV33nlnj7UCSrxkKb7iMRG1xM9x/d1m43PqqYqyxLwutXph4Dh2dwN3u1IWHO92JE+8PJTUu5aWK6ahi/2Q+loA5o8yVXwiTUdJHEmaveOB7x4wHs/PyinFNrJk5bE0Ui0cZWlpSccdd1zP7gvbjv1mrG4Dz1Kw1QKja1qNyLwZI3PNXnENSWS1XgaMsbtGK6KWTpHvPeQg0yzw6SkFM40Cz+kak+NYfo8hNG4n9STisLn4bGSd+I55pYQbmq54jmt6WuB5Q0NDQ0ODYVMMb2lpaYZtZTYJZ1yehiw7B6nBPdJcUuDaSKhSJ+UhccA2kKyQhKMEgITDJ8HdLonG1GLY7DgHaYXxIvm7LSyOuVa4Eokv2ghgFbBP1/N7ctoocTO3XqTRy5DEtfRikR7I6jZYqWOFMOEnnniiyuBGo5FGo9FgORjfK5nNVpqdP/rpDNtZdGZzQCpH8nYmxvekfJI6+wt9ZF24HuWbotYjSqdSv0gpc5bZKOkvx9LHIbsf+/bcc8+d+Y2962w9svIhVhMR95uPg73pLDhjrozjs5/9bC9pAKDwtNv6Y7+99I0nk3Dv5vh/Z6Sc4zauoSTFzC1jdK1O/K2WFMOTjMe+ANrzPer7IoJnld8T7s0bUQvkdw/vjJX7sexH0iFmacK4x1hbT7QRz8mSPcybQLoxvIaGhoaGhcAxMTyXaodicpB87rrrLkmdhBx1vw4kj1oKM/S69Cl+unTm5TSkTtpzLz2PA4zJnL0oradRcs/H6FXkXnpZ/Is0q++HcbluHkkWL1TGG9MeedFIt5E6S4xj97/pB8dGVkii3GiTqOnS19bW9Mwzz0wZa2RADmf2Lr3Gvvq6u/ckc+oMUOqn1oIt00fGFUu8sDfQHLhnJ2wulmlBO8Ce4Ldrr71WUqex8LmWOpu0F8JkX7MvYqkZ9jrHcl0v+cJ+uOOOO6bnunere8E6Y8qOdSaW2SY5h+vt2bNncE9E7QB9iHvRPTfpg8d9Rgbk2gZn017kNLIZruN2eZ53ntRc6qeYc3u8e7lG+Bwyb8TWZWy1ptlx+3/Gjrw8mNsQ+T1qdJwVenJq+pppd9yzmE8v2ST1k25v3749LS6coTG8hoaGhoaFwKYY3vr6uo4ePdqLeYklf1yaQPLCFoRkFPXvSJ5ezNDZGxJwjDly70/3HspiW/j/3r17Z/rCeNzjLrbLdTwLB5KOJ1uN50a7XmwLaQZpPrZDH2EZtMtcYLOMsZC+Lm4zYE7i+Jwpue2L8SGlSbNecly3xvBWV1f19NNPV7ObxGt5uRn3zhsqPprFJcbvo0SKVAkrYw6Zaxh+5uFLe9432ozaCbeL0q5nSfH9EOfE4UwrahTc9uk2G7QBXixZ6tu8azawyCRqhV59D2XetVzv8ccfH0wavrKy0lv/rNyQszT64rGwUrd2bjN2VusMLJ7jdnLWMss2wt73kl6Z7db76GNnzfy5F9fF579WxDeOq6Z582TVbnfO+uyZpPzZEvtf8zr3wttSN4/RT6R5aTY0NDQ0NARsOtPKc889N2VAxPHEt6u/8T0uy+O84jmuS3ePJPcYlDoJEQnB4+9gVbEf2XdSxxyxscTfuaZnj/BPj8+T+mzQJW+kwjgnsCeOgckhySOFkn8vMgq8TpFqazE8keHRLtd1Cdbz/sU5qcWKRRw9elSPPvrolD25bc3bztpzKTCOze07znI8U4jUScnMHWNkXjwvotTPpOJ2MrfpxD6yHoyLfehliDLm4uvg8VLR7ueem5yDbc/zgEb7n9t9vU2PrZL6XnOZp6Cfw3z98R//cXqsI8vTmnkXcv+5RoL15z6K/fEYM9af9RgqsusMzPdfZjP00mLuHRzX372e/Z7wOYjPHddyeT5MEJ8DPh7P1uKet/H6XvyafeUexpFF1ryA3SYatWOcEzUjLZdmQ0NDQ0NDQHvhNTQ0NDQsBDYdlnDiiSdO3dGhz9FhAurrSWfdzT2eA7IqurEtDJfRRZXfaBcVp6seI42++uqrJUmXXnqppL4RH9VJrFYc50DqjLeuwvKEylJHx93wy3juvPPOmb+lbt4IyPSyIFB9+hjd4FHr0CdP5kqfY1kYNxYzDi/vlBnFo3tzzXh86NAh3XHHHVMV0yWXXCIpr3jO2mXu7FwHeAokr5TsqrjYf3d04Lq1hMBSX5UJ2PdusI9j9PJTWTC0t+3qKMbjezWqvtxZwZNI+70R1aGo2TxFms9fts4cQ189rCj+TbKCL3zhC9Pr1lTi7rSSOXm4kwOhS4wDNX88B/Wmt+fqOg+vkPpJwz2VXbZ3acdVfD7uof1dK6+VlQnzPepr5qptqZ+cnHvAE2v4mOL1eCbxnHUnxLgPPFG3O6HxezyHvrFXh547jsbwGhoaGhoWAsdUHsiDuqMbNZInkjxSFG93mEg0nGJMR7rwwo4eBBmlZ/qAJHfBBRdIkl7xilfMfB+vR9+QGjx4l+vjECJ1jNSZgzvWZEGVLr0gCcHezj//fEnSAw88MD3nc5/7nKR+SQ/6gWEY5hWlNCR5Zy7OFiKz8GB05hXJOXMy8cDtIaeV1dVVPfPMM9NxEfycubf73+7UFI9zxx8v9eOStqd1k/rSshdxjVItx7j7ee0z9smlcQ/yzkrvuLNQbU4ivESSr3+WABowLi+27Aw6WwNAu4zbg8El6YYbbpg5djOu5SCyC+6Hc845R1I/GTpjjmE19C+GOcXvAXMdk1fQb0/j56w2S6dWS5LugftS/fnijm+ZI5onrXDHOzQZ0TnPnf5qYQieZFzqJ2Pg+ebao7jvsmQSUn/fxXllrSNDbgyvoaGhoaEhYNPlgUopvbQvkeHxpn744Ycl9VmA/y11UoVLQEg6bnuI0iVSCuV7rrjiCkkd84ERRanJ9dQuHTCe2EeXtDiXY+hjVvjRbWa04X+TgkfqmCrSDDYJtzfS12hvdDuSlwfKEjzzHZKb25nchiB1knuUoocCpU844YRpGi3CHwhtidf0MAdnPnEtPfyAv92W6oH1Ut/12stdZUzY59YDf13ijsdwrmsd3GaUBfN6ELTbjuK6eGknv46Xo4rXYz95sndAm5kt1xn6ULJyTzKxkYS+tLTUk/pjsmnm//LLL5fUaZIoJOq2aal/L9GeJ3dwLVI8159rntIus8e5jdrZe8aendHV7I5xH3hYEud6maL4rEKj5M8oxse6sZZRYwLD4xnsqcuyROfA73W/X2NiBQ8nmzdxtNQYXkNDQ0PDgmDTNrwsgWqUzpwBeVFA91iT+l6MSGFIIJ5aLEoxSFKUnvDisW6/iH3z/rtEFKVYL/eB5OHlkJA+MsmuZusAkXkxVuwGJN2mLU+DFO0L9NXbp69ZGRIkVk+z5p6MMM445lqgccTKyopOP/103X777ZL6Xq4RWeLd2Kcokbpk6JK1M8C4Li7FOsPL0izV0p3xvc9xPNZLujjDdC9HqZ+g3dfFEx3HMTtTdE9CkKXbcjbF9bIAfm/HA+mz67zjHe+QJP3cz/2cpLG9PGO2XGvr1q1piSeAhoeSSHhler/j+sNWnAG5TY/voye0J292/4JMs+TB6Nzvfv9kGoXamrqdLj5DvFgxnzzn/NkV/8997mzMvetjf7i2p1D0EkPx2e/3uJeNymx47m3ebHgNDQ0NDQ2GTTG8Q4cO6c4775yyqZh0Frh9yKUnJIQsMTPMBLbCm9yZWIxXc+8oJCFPzBolEdfJuxSLh1eUPrz8D5II3yMJcd2oc3advdt9smKKtBftHlK/NIbb3qSOXfCdsxH3eo3fMedeZDNLFJ6lF6ph69atOuuss6YMDykw9sHtYp6mycupxLG5BO8xbllJpqzESfw+S+Y7lBw7+8zarc2be+tlxzrLyeLwWLta8mYvlRPnxG1QwO+viFrSb48DpDiuJF122WWSpHe+852SpPe+972pBy3jOHTo0LRvbqOUOg9rbMOxtJfU7Z14n3h6Nrfpu1YnPkNgQBzDs5D7n+/jPDrbjOVtauPyfeQMzwtOR/brSeK9tBB9zGyhHqvp57o3qtR5t3taRN8zQx6+Nc1MljDetYfzoDG8hoaGhoaFwKYY3pEjR/TQQw9N4ysyKcbtVW5Tc8+k+H+Xyt2byPW78diaPSzzSHRJ13XOSCjRXuWZJ5AUORddPl6I2BRiezBXznVbYWQUzIlne3GvMI8Zi3115uqephkLdQmPNc68AWtlYDKsrKzoRS960bQdWDrZGCJc5+82j7h3nNm5ncRjD6NtzefO7SGZx6VL2M6mXIqPffPkzX4v0Ha8nzLbTPw7Y0W+LjUpOivb46yP67stJ57jNjs0MnhqX3PNNZI6Lz6py7Ry5ZVXShozvd///d/vjYX2d+zYMV1bz1gTQX9j9hipe5ZErRTMyu2jgL+z0kLsK/d0ZA74Pl7PPWvd8zlLjg7cQ92TmEfNCxgqOxTbjKgl7nfPXh+T1DE8z2BT87qO7frfmc0dMMeMuWb7zdAYXkNDQ0PDQqC98BoaGhoaFgKbDjxfX1/XQw89JKlzlY/pelxNh4MIx9RUJBGk9EId4Mlvo0EadYO7fNN+po7whKioB9xtN6rOnJ5Dq6HvtUTAsU/ugOLql8zxxNVr7sjhaYLisR5A7SEhmfuzX3+okrtXVK85HUhdAmDWFJVWVCezZzwA2IPgs6B+dzioJebN0oR5QP5QYDZwxyOvnRZV7B5CgqqcOfXwh8yo76p7D6WI+9sN/X59bzuqmFz9XVvTLDyJT8ZDsoSLL75Y0qyaHweW8847b/pbLbxl27ZtOv/88wdDTPg/fcA5jnuKOY994FifQ851NXncq67y8+cPv8f7kvX2+nu1GpvxWI6pqalrDiLxN1dhZ+YgT0rOOvs9kakaubdrCfyzdas5tLj6N96DzKObbuZBY3gNDQ0NDQuBTTG8Uoq2bNnSM5hG438tiBZpCgeOLLWYB8YimZB+6pFHHun1icTLLgnw9ncpKvbbAyW9JEbsI5Ib7SIFcl13XonXIwgWqaXG3qLUnDkUxD65wZ2STVJnPPYkwi5ZZpWVkbhog3HT5yixOpuqGce59tra2nS9brzxRkkdC5C6tFBI4x7I7GEqsT8eoFtzWorSZa2kizugZKETtbRZfMZzvP1aCMU8bM2Dbp1hRNSCxocq1Xv6tlry4jh+2kXyJjE0mhruedLlSV1ZoD179kiSLrrool7/wZYtW3T66acPJtn2McI2eHZwnSzxgDse1aq9xzV1xyp3eMruX7+XPJGCO8TFY9h39NUdUrKkAjWnMmd2mVOW77taYve4Bux9r3yOJjDTKPh+riVhj9dnn/lzYh40htfQ0NDQsBDYtA1vNBr1iq3GN7azNaQX3sLOTOL5Lj17WjBYVHzbIw15QmvXNUcJ2O0gziBoK5YpQoLEZudJlilLgm0iSj4exO12zEzf7ymLaumP+D26fAOkvb1790rq2zei7cglRHdzZu7j9+7CPqRLp7QUNhTKBGEPlrr0cPQT1uou5plUSbKAWh+GWLSnMnNbXuaCXyuE6kkG4jWdYTkr87R8caxuU6kFrcffPNjepXIvNZT1zUNCsuTRsClCcj7zmc9I6pKhs//iuLgnuF9OPfXUNFifa5122mmDJZh8ntgzlKEi4cFQuR7G5ImtMzumh05l4VaxDanP5Dz9YhaCUkuMXNOmZGnpvM/O2rLwBN8HtXs8s6MyX/MwMN+rzjCz8TuTXF9fn5vlNYbX0NDQ0LAQOCaGx9sYiSUrTePpeZDWd+3aNfO91A+8RYqETbk3W5RuYUVIdDWbTWQmHpzsxU05JzIuPEO9AKJLyQQXZ+makAY96TJ9j16c7hXlbNBTc8VzCeqGJXrqJA+SjX0BjN3TEw0lil5bWxuUtNbW1qbrTyqouHeQ9mHLjMnTusVrsJasD+3Vgnjj3qnZNFy6jdejT860nBVG9uyStTM5byOCvrj3nLOOoWKurLPvu8xm5fYr92R1NiR1mpA/+ZM/mTmW/YcNj/tZ6p4DPBceeeSRdPyM7aSTTurtrYzluP2VZNL0G7YpdfY997x2j8+h8jPOSDyZQcZa6VuWNMLP8bVyz+Fa2jipzuR9D8V59+dMjVVnqfo8wUJM3OHH+nc1++lQyax4bzSG19DQ0NDQELDp8kD8k/KEpUgI/MbbHskbqSmW4PCUQe4J5sVPI/NCSsKG5TFBXiwwXs+LQnrqpxjvRd9Iq+Zs1L00I3vyooqAc+lrlNI5x70BnaVlkp17KNIX9yjLYiGRyjxJdeZh5Xr3IaytrengwYPTNcRe98ADD0yPwQ7nMVSMNYu7cV0/TM9TitW8zeJ3PpecE9fSE3D790Op82r2WLcvZuviEqx7BWbnDEnj8fvIFr1P7knKsdGTkHsZBnfKKadI6pgfezmyefqPB/MzzzxTtUvhHe7zlhXzdS0AfYDp4TkqdVoG99IEHqc3VCiXY9h3QzGONTtYVnC45mHpv2faCO93LYVahKc59L66zS2LN+U5Gj3H4zgjap7eQ16ivuejtnAjNIbX0NDQ0LAQOKZMK5mNC3hRRbd5uFeT1EmAHmflCZIzrym3Lbndyr3MpE4C8RIogGOjlyZ9cG9Qt4dxvSj5MCecg1RLW1kSVJe0a4lSM8ZRK6rodp4sGa7HCHkB0iFd+UZMb3V1dXo+TDnG4TFGpHC8/NyWl3kk1rQDLnHHufF5cmk28wZ0m5bDs/ZkcEbnUnW07TAuz8Lhca5xTtwO47GjQ/Gffh23c/N9LA9z6623zlyHuCvOQdKPbJ7sKzDyWPIrQ5Z9ZIjNsGaM+dJLL5UkffjDH56ewzz72GrZbaLdkv+7h6979g55wLp2ImNxvt9qWY0y1uv7NyuC621tlLXEvbmz66HFgfHzzOd5mj1DfN7myZ7Cc+HAgQPNhtfQ0NDQ0BDRXngNDQ0NDQuBTas0pb6BNjqGQJfdYO1Vq6OK0dWd/IZ6DfWB/x2PdRWWU/9oZHfVhddZQ8URVZ7Q8zPOOENSR71dLZKpFlD1QMFRBXsAJU4b8TtcumnPA8IzQ38trduQ2sBVpozX0zkNpS4aCksYjUZaXV3tuYDHdWHt+CSQGfdx1j0G2TMvrpaK143fx/lzhwNXT2Xu4+5EwN8ck6l+mUNPWecJF9zJROrm26tigyw9mKsqa3snu54nUHY1GN/HfXDLLbfMjJ01ZVysX0y+jNqL651++umDIS/r6+tVh434f1cB0ibXi/PkSbtdxejq5Kj6c5WmOxwNhUx43UNXS2dOWf5ZS+eXOSAN1aOLfY6/ZU4psf3MTFJLyoAjHM/ObN08NMfvo0zF6c5486AxvIaGhoaGhcCmwxJWV1enEkkW1M3bFqM2Uq2Xl4lSsxtrn3jiCUldcKqngMrcm2kfZoLLMedGtgZzwMHApYhLLrlEknTTTTdNz0FCrAX+4pqNET7+7iEGzmBoO5ZZ4jcvLQQLHCpHxG+wQ1yyPUF0dHTxAHZPdJtJhy4NRqcUB67l7jDBGkud4wIsAibMXPJ9lszZJWyXMjPmzZjcKcrDNzIJ0sdOP7K0Ye5k4e3WpOn4m6edcueVeG6t3AzMmDXmnskSQdecgPie1HBZu846SBodnxPsL9jgrl270vHTh7W1tUGGlzmJxLGjccJhLPbH96zPrQd/S/2SVaw/c+D7IbZXqyKe3TseFuLJAxzxueMMv8bwhs5xrVDt+9gnZ3o8k4cSHTij87nK7kHmZGlpaW6W1xheQ0NDQ8NCYNMM78iRIz3WFKUNGI7b1mAmsJgs8Bx4KiRYBtJgVtYGVuhMEpdoXNxjX1wP7YHUUeJijKQmch0+Ugz2iocffnh6LmyT8kbOXJCQo2Ts5Y1go7AR1oDjYHGxL8yNn5O5WXsYidsMMl26S6SllKqktbS0NOPKzhrGYr4wPE8h5+WoYjJp9oanbfOCrLEfwBmJ2zE9IXGEJzYHWfozZ3C1EI/se/7PODO7m5QHEzPHrslwFpwFDzuzB+zrGE7itjtAcgEC0eNccQ8SInTw4MHBsJaY8CILS4jHxU/mib7RF6l/39Xc9z00Jx7jZYnYU5lGoZYIwhMcZOnB3O7rv2c2NU+z5jZ3t1VKfX8D4LZRD5bPxgWrxoaXJUmo2ercjp6Fd2wmhGF67txHNjQ0NDQ0fBWjbKZ4XinlSUkPbHhgwyLj3NFodKp/2fZOwxxoe6fhWJHuHcemXngNDQ0NDQ1frWgqzYaGhoaGhUB74TU0NDQ0LATaC6+hoaGhYSHQXngNDQ0NDQuBTcXhbdu2bXTCCScMlrz3DA2gVvQwO6ZWXn4or9pGmOecY2n3hWjr+Vz3r+o6NWemGHfjWUaee+45HT58WKurq70Lbd++fbRjx47BGLChTBq1/mdxb/HvoTEP5f3c6NyNkJ07FD82T7+y346lj8cyvqxUkv/m8V3ztB/jsJ566ikdOHCgd9LKyspo69atvZizOBfE84F55tozPNWeN0Oo5Vb1awydO098obc/T99qeTjnOedYft+ovFbWD4/r4/1B7CixuVm5rZhN6ejRo+lzx7GpF96OHTv0xje+sVfXKL68PFjTU+6waWOQqm+8WgLYoUDD2mbNkuvWUKsb93zh1/Yktf59/H9tsw797fPpD6Da9eN3noQ7S6RMfbMHH3xQ0nhzfuYzn+m1KY3X+9u+7dt04YUXSuoC9D1YWerXOPSag1kQqj8IPIDVg1XjbyALFo5t+f+zY4ZedF59fZ5K8X5P+OfQWvr6e+B71mf66KnavP34wCURgNfh84dYllCZJAzLy8v6yZ/8yf4EaLzul1122bSGIgkMYr3KV77ylZL6yQM8lV2cc0+IXquans1xbb9tJlED4Pr0Pc5TFuAd4XsonuvB8bVnYAw8r6Uhq1Wbj2162jH/m37ExBGcT0ISngec8yu/8iuSpA9+8IPTczifvu3evVtf+MIX0rE5mkqzoaGhoWEhsCmGV0rR0tJSNbmq1E+55Il4s/Q5nrDWUZOipL4kshk1xEa/D0nrG1H/LLFtDRn7AF7KyM/JWAnfoRbwNFtZ1W7vg7ORLGm2S26ZBB/7dPTo0V5pqaw9319gqIo0qKWHy5i+S8+eUiybp9paDjFyzvHSPjUGFpN6DyXjrsGTu9MG8+vsPV7D2UyNFcR58JIu7Adni3GtOTbug9pYV1ZWdMopp0wrqT/66KOSpIsuumh6jK9lTUuTrV8txZvPT7Z3/L4ZUudupELP7nXacS2XJyn3hOHZeGosPZsT2nMTlc9F3NM+dn+GZOfA1vy5Q0L96667TpJ0ww039MbDsS21WENDQ0NDg2FTDG9tbU379++fvn2Hkix7guRamYn4W01qcukiSiS1gp81J4bsO2eHWR83whDzOxYJayNHgJqtKv4/k6giol0gJnaO7Tr7iWWWmJ+YMHeIPUftAGwzYzPOklzKjPPl7KFm0/NrxP8POUNI+dw6Wx5yXvA5rNmia3aaeKzvlUzKdabsNkR+Z+7jdZG4fU7YQ9zfMbkwc8ExtXI3MXm0l9wZsrEvLy9r165dvSTLMSF8jeE4W8u0EJ482hNPz5OkeihpuvfFzxkqAFvT7PhezcoF1bQOPgeZzdDH5/egP+fjd76mPp/Z89vnnr358pe/XJJ09dVXT8/Zs2fPTHvHHXfc3M/qxvAaGhoaGhYC7YXX0NDQ0LAQ2JRKUxpTUNxnMycTVwO4s4pXYZb67stOwWsOCPG7jdz454nHGVJTDLllb7b9jeJV4v9r6rYhd2TWB1UJoQSuyohjohJ0dPWO18vGx7FUVn/22Wc3rGnmDi6xXXdkQW1GP70mXISrRlwdmlVO9vmoqbaz63l7Q84StTgrbz9TT/qxtXPnifvz+wc1dgw1qd2nvhaZ0wr9Z53cjBH3m6s/vf5axNLSko477rhpzcNdu3ZJkk488cTpMdRcA1FVHvuWPTv4rVaxO7sH3MQwj5NM7Rni90Q0QdRUiiALD/Br155VHnIUz6k5r3nYUgTPHZ8/H1+cE98rqNR9vb7lW75les5DDz0kqatteN999w06zEU0htfQ0NDQsBDYFMNbWlrStm3bqq7yUl8icPfWzG3XpYmag8aQO/1GoQZDGT1AzT0568uxZCTYyLCauSM7y41ZTeI5UcJF0gJUl3ZJPEp2VEnH9RvpmetlQfkEicZA0hqQKkLt0AAAIABJREFU0l0SjdJsrcoyYA/Fc2AkXqndA6czRwp37fbruiQc/+9Sa62tiBpbGwpwdkeDWpiFV3aXZh2MYlvucBPPZY494NzZWmRQtMt3zLXv4bhuhMx4GxlKKdqyZct0L15zzTWS8rXc6DkQmQn9OXDggKRuzDBfZzPRuSdm+YjH0kYtxCoeWwtlyJ47YCNnrNjHWqgR42YNsucOqDkdDiUtYP74ZB/i7BjB+awBzx2uh1MMziuS9Hu/93uSxgHnkvTII4/MHZrQGF5DQ0NDw0Jg04HnKysr07evu9PWvpP6DCFKsUgasBakJD49RU2UomvpyFyqifBjaynM4rm1oOiNUk3Fc12CYxxcJ47Lg4Oxk+3fv3+mr/z+zDPPTM9FKkJyQ3pCAs+kYHIRPvLII5K6OeH78847b2YssQ9IZTGw3LG0tKTt27dXGYvUzYunoXOWEZkpx/o5tM/3ngjB/x+v73s3shlnqG47zNayZjt1yR6mnDEX3zN+T0SWjUTt81ZzF4+s3dt19sk9GtkjtjX2nbNp2owMz+/1Ukr1XhqNRlpdXZ3ajLE3R7bG/13b4H1D2xHBfHCfPPHEE5L6Nr19+/b1znWGf+qp46LbsJu49mhEPEWeaw2yRB5u36uFOjFeqVsz5obnLM8QNEFxf7ttjvvH++a23dhH1oD1oo/07Zxzzpmew2++ZwHjPPvss6ffXXLJJZK6BAQ7duxoYQkNDQ0NDQ0Rx+SlCTLPN0+jxFseySGTtLAfudTCWx8GgQ44k+yQHlzCz6QywHWQGPH+QuKJ0hkSW4191Lwq42/OAmBlSLtkBpc6acy9zZwZcW6029EHl9a4LnPFuKVuvfCA4hjG/dhjj0ma9ZYi4StsYNu2bYOMd/v27YNp1NxrzW0pjCtKwC6Fu4TIHkK6jnPijKrm+ZrZDPkuejjG68fvXSNS8yT1NFIRHvhPn2Hg0WPRg/sZu+8/Z1lSnxGzr3ycUftR85R2xhzn3gOMN8L6+rrOPffcmT4+/PDD09+d/dM/7n+OHWJcgH7yXKKP8R5zezLt8lzLkqKzn7GTM+/uARux0d70dYqB4G47hcFyjj+T43U8VZv7VzDP0avb7ZZu08s0Z2eeeaakLpm8Pz/cHixJL33pSyV1Wq/NoDG8hoaGhoaFwKYZntTX0UcJGMkDiRB9Md/DHKK05Lpf9+gckoC4jpeQQSLgeplXGUAKRPJCQo6ej57OCMmG792LKfOWArQLa+Iz6t+dQbhNxXX5mWcXY0bCQurMmAtMgb6yFhyDFHjrrbdOz/nmb/5mSbN6/iGGt7y8PJ2vIVsXY6W/tO823ThGjz10r8nMs9i91hizS/xxbumLrwuM3NclXpNjOddtbCBLBO42ZD6JRYr14DwFl4PfWdNs73gqLrfDxXMYO1I/mhLXPsR7gu+Yz8OHD1e9p5eWlnT88cdP70/6ENPhuV0MW/T9998/07fIhLmHOYff0FzQ/t69eyXlnpfOwBgj93hk6+7xjIaFOcjsWLVEzF5KiO+j96t7lzJv7sUd7XC+zq5d4VjmhrWOv/l4OJb5jXsVFg37ZE3Q5jHnvEck6YorrpAk/cEf/MFM3+ZBY3gNDQ0NDQuBY2J4IIs5gqU8+eSTkjopD4knKxUCPEEt0kW0bUm5HdG95dwzKNog3AMRSRemhaQfGR7tcw4SFSwk88oCLv0hMTJHWTwUkhrSmNsmnWVndi36iiTpiYEjw+McGCzrg8ca+vLoDerlh0466aSqtEUcnvc3Mm/G5pKhFxaN59Af1qrmZcb3sX/OGLk+Er73g3HEc92Gm9mkXKIGbnfKYqyc2TEeL4LpcW3S7FrFfjAXaDaQrqXuXqA9rof3IXMT9w7t0D6FWjk3y3LCmGNml5p2YNu2bbrgggt6NtfITPg/9xb79iUveYmk7l7IvIyJ52KOWW/mALtc9AfgeeJjr3moRngZKC+SHZk5//fCtv68ybJfsa7uqe73U9Y3167BuJwFR7bmsbDMr8frxnVmr1DAlcTQrInbZCVNbbkcc999981VTFlqDK+hoaGhYUHQXngNDQ0NDQuBTak0R6ORjhw5Uq1hJPWpvasyOTaq7zwdT83FPAsidyrvbrQgU5egUoByo6ZArRPVYxhnXdXoNcX4O/YdKu8OO25wjqoMVBb0oVZLjb7jvCB1Lr78hjrCnYKi+oPf3FUalQPq3mg8pm+oOZaWlgbrgu3YsaNnBI/7APWFq7uZLwzcUT3tLtZumPc0XpmDFXNN33F4cLWbVHekydKQAXeYcZU93zOGeD/RNw9VYL8RfBtdy1kjPrm+7zv2alRpMreuymLfc2xUJ7oa1FVZWZJid2QZSg21detWnXXWWdUQnXhtzATs5zPOOENS5/4eVYxcm376HLvaGrVu7D/X9QD37B6rqd1q6up4vocYeHgAwLFH6quuUfeiovVkz7EPqCwxcfD8o298xnPd6cyf9VlqMb/X77vvPknSPffcI6kLQYjXob1LL71UkvSBD3wgTWadoTG8hoaGhoaFwKYZ3uHDh3uG9EyqdddbpBvcTrOEtZ482F1VM+O3M6xaYtYh47E7DTCe6MLshmzgQbweNB+P8XM9aDgGqyIp8ukOBxzLuZkB2h1enJVk5Y/caI1hmDWIjjzuVj/kHuyJxz2dVvw/v+F4wPxlqZCcNbPuzDWfzgDjd+545GnI4jk+T7BpJGCviC7VQ0lq5YIiE2BfueMTc8D4o0MFLIe1gum5tiALqGYN2JuMx9NSxb3j9yBMgns/q7Q9FGrkWF5e1sknn9xzXov3C6yc/Ur6KtYlCwHxvehgXBkz82dHDK+QuvnKyqD5Oey7oWeUJwd3pxieA/EZyrqyD/hkzzCuLLG+X3ee5NHuQOjB6Z40Qermib3C9ZydxrVmXNdee+20TxslDQeN4TU0NDQ0LAQ2zfCyxM3xLY+kwXG8mXmDoxOODMj1uEhJDz744MzfSAxRF+wBsh48nOnSa2VakCpgljEQ3OFJdvnbbTzxN+8zkt1FF10kaVaKow8wPOxXuJp7qZcszIP2kbDoG+O94447pse6RMr8uW0P3b7ULweTlf8BpZSZ34eKqqK/dwbkkmnsQ43JOSuMNkjG6uvMWL3EUISndHLbVky5VCufVJNKsxI29J8+M172RVYeilASnxNYoycXjmDvMC4+a3bWCBgm12f+Yioo7C9nnXWWpLp9S+qSR7sNOq4lv5Fk2IP8mb+oHfDwBg97YW49qUCEJ4D3zzi3Xm7Iy3Vl97KnLGT+fc28XJHUT6vGs8O1EPEc9g4snfmDOXtwedzbnirPGayHWMQ5YDwcy/WyFH6sD/a9iy++eMaGPYTG8BoaGhoaFgKbLg+0vLw8lUgynTNvfJgAb3kYXpbU2W0ASFpeSBCJDo9BqS/1E2iKxIN0FiUA905yVoKECtOIx8CS/NPtj1FqYp6QUpC0sJMgaUXp0wO9XT/ukmuU+CiQSUkfJCvm/POf/7ykWYZBX2KQdYQH2Er9kiEbBZ5v3bq1F2Qf+8264kXmczoEZ7xoAZzlRrbG3uF67BGX2uM53n8POOfvaP/NPJPjse5hnKUW8yTp2LMyLQTtujSOPQtvQ9hVvB7ry5y496Gz+niOs15PkpAl+0XjM2TLI2mBe2RHJsTYPFGxe3ZmbJaxeh/cfh7vafa8sz7XDmQe7MxL7f7PUsK5v0St/FrsI6yfeadPtD+UysyTR3uasqFC2DwTOZbnKeOMnqXOev3ZD+Jzh3mivW/8xm/U3Xff3etHhsbwGhoaGhoWAptieOvr6zpy5EgvUWuUxN1biDe3xzbFt7x7w8EmiKFBevPip/GYCy+8UJL0zne+c6YtpLSPfOQj03M+8YlPSOpLL55yLMa0oAcn3g0pmb9hEPQ1Sp/0AUkLFsxcYSuIUoxLzTBX4oluv/12SR1bi+wBhnfZZZfNtMF1b7vtNkmzTJljmE+kNOYCRnHjjTdOzyHFD+tx2mmnpaVtQJQGPe2UVC99xFwSExjtiF6YFEmYY1gf5icyIsYEi3b7CxJyZm9mvV3azNKReQoztx3zd1bg2OcCz1VnO1Hi9xgx/n7ggQdmzrn++uslzXrAuU3cWWKW3o3reGo+t/PFPepscGVlZTAWDy/f2G7cB64B8XvavXZjf/hkDtkP3K/EOkYmjBcoyalhqtwvzGmcJ9aQPcizwllhXEv3OndPcvf8zbw0ma/4PPO+AfdJoH32Hc9g7qt4b9AHngt4MPNM4XqxNBzHsF6ecJxnZNwbPE+Zr2uvvVa/8Ru/0RtLhsbwGhoaGhoWAptieGtra9q/f3+v3ExMIEoBUWx2XhKev6N3Ty0RMizq8ssvl9SPx5I6by/ac8kOCSGWiPfMF14OCCkwetpxPlIZ0qV7rXmGijhPjJPPmoen1C9oC7uB6dF3vKmuu+666bmeDLtWMiljlIzdmQN9I8mrJN11112SpJe97GWSpDe/+c1VGyDX9/idaD+oFULl2nhuxawyzANjZT5uvvlmSd06IBFjT4jtu03o/PPPl9R5JsZz+D+SLnufv7OiorUYKme07okp9TOI+N50b0qpm1NsuPQRxoIU/cpXvlJSx/gl6aabbpo5lvvJGR8MR+rmmHu+lvg82rM8gfJQLBXe4e6JmCWE9799bjMPX2dW7Gs0JVwvFpyF0ZEZJO5JqWOJkXHx7GCPsC94dnk8cOyjZ6txrVhm/2PdeXY4280KXXv2JPcSBTwrYW9SPfk+n8xnhGe7Yh97gds4LvrEHn3ta1+bFtzN0BheQ0NDQ8NCYNNxeEePHp2+7WFgUfLh/14ixGPPoq3H40KQtJAM8MBBiop2H76D1XzoQx+SJF155ZWSOgkhMhOXklz/jwQUWSgSLe2h1/c8e7EYKkAax/6GjdKz0UQmwDx6gUSkKL5Hirvzzjun58JUsO/Rvn/G2C366OvlGWuihMw63HLLLZKkb/3Wb03znYLRaNRj/BHOuJh/pDfmHluU1NmGP/vZz0rqmBCMnHNYn6iNYC9yLNdxFk08qNTZMN3jDYYHw8SmHK/jnm7unQmixA2LYb1ZO2I3hzK7MA6kcPYsoJhvlI6vuuoqSZ2mBjsnn+wp5j2ez/7mb1/jaIdxm+c8mTKcFcb2PK8v+9QZUNRqoOmArbkmiblnXNETkD3BOvC88wLYUeNB36IHr9TXDmUeiTWmxZ7imRX3AQyfNlh/+uEsOF7HM67QN/YSz6HIsjmX+4l7jXn71Kc+JUm64IILenPCPvAMU+4vEsE8XXjhhYO+AxGN4TU0NDQ0LATaC6+hoaGhYSGwKZXm0tKStm/fPnU7hWZGoz4U1x1Q3DU7UlBXo7ljiyc0jqpGaDpqCNSFToFRCcXreXkQ1B+oOqLKrxYUynXcwSEGumPU9wTTtWBZqV8NG5WSVw9GPRDnhPZRs9EX5hHnj0suuWR6DmP3YGhAP6JzhAcy33TTTWnlbTAajXpB8DEQ2J2I6Pf/39659Vh2XWV7dFV3px2jlkOwiALGMXbbHBILKVIUzhJccYmEQIH/RX4Bf4DLSJFAlhzhBJzEJORkIDgxhLSIEnfittPd+7uInr3fevaYq6r86bvgq/HeVNWudZhrrrnWHu84vIN5Y32kixHXG9twPNwqzA9zkslETubhGrmHXQdy5gyXHtdusYJ09bCNxaFdAgByTkh+YKy4iSgaZ13m/eK+kzLPOsftxr0mTT3XOWPDjQc4L/c3hZxxLTEHuFL9/GYSGPeBZ3Gr4zmw+HLOE9e4cmG6zCfHkOOqOqyZl156qaoOzwsuz6rjpDVLzHWiz6wjxopr0+100sVt+UaLZVhCL92hhHtwu7qlFM9vns/tjpxQx5zh2szzMSesVe4tyVEcu2s2wPWxL8+P2yFVHcvGXVQ4umoY3mAwGAyuCC7F8G7evFlPPfXU3rokESS/5d2CxAKtXQsUgMXj9iwuzMUyqTpYWBYPdRuTZEAE/m3FYOlgpeV5ODfBWhfkWhA2rVUKLWFyFFtaLigtLa6LOcHSJykCC4tjZhEuVhJWOOzWLZSSrbrNEP+zoG1KKbno/969e0sR4N1uV48ePTpKgumCzZyLa3a5SBbMMpdYni5xcTJOlxrP+VhDTnhIYDWzL3PLPWTNJJPwnLg0gzFxfVmYyxqFYbl4l/u+lZZtEWfWzJalDVIYvOrAcJMpMxaX97Avc5aFz4x7JaztMV2/fr2V6wJY+2YRzD0sLZM+LA/H88KYaD/D/GXpgd8ZPJeWo+uEwF2WwPnd4qrquNzC0mhmevls8Dtrh+eUz3mX5fn8zrXXi+eJ+cznd9W6imfUiVYJNwR2S7UuyZGfW+8dYxjeYDAYDK4ELsXwHnvssXrxxReP0mq3LEVLLzlel9sAF6o6TtG13LB4sOMkaSlZNJV4EhYJFnBadFgcWPCWPeNYXdkFsRTHNCxw21kp7OM2GlhnnK9r4gnLXbUw6URjHQsxU0/LHqaMBbnb7TZFgGkgnMgWL9w75pQxwKKYt2QKbEt8qhPezX1z3XG/+YyxwBZgKjlmF5a7rRJzkkzCRcJmUWa9eS+dys5YiF2ybwozIwPFdTn13+IJeX0cj32IP/r68j7zWQrCVx3uJ//P5wmmwHPy4MGDzVjMw4cPl41081otPMG4/ezlNhZKdmyIn3lf2MZSWKuGrVWHZ5VnyM+ci/yrjuXm2NbvXIuMVx23VYOV0VaHe8x6yTG54bAFEMwe8zyWObOMXOfV4XpchtEVx9sz8tZbb7XfQR2G4Q0Gg8HgSuBSDO/09PQMu+ObO62ZlZ/d2Uv5fywCrAi+wbGm+btrxLiylj2OtADsayZWRAwH6zOzt/DRu6EtlqMzSDOm5iakji90zSLZJ7PY8trNGjJ70ozRWa5dpqwLy93wE0sWP3zVcVuTLXmohw8f1g9/+MP9vNlnX3WwZl3IbMmxvP+Wm2P++clcd2zN8Ql+mhlnLNeFv9wf5qLLJHammb0ejul12YrcF7elgdkls4XtYo3DkO0x4R5nhqdjqzwDzB/PSO7j++a4OYwmx+j46XkNYHNtdTFvF5w7u7HLHeDcjoNx/K2sUYvgM0++h/kecDa2pQY7b9Qq58FegU6qz+859uEdDtNLEXnec2475dZGILORuQ63MMss4Kqzcmt+B67aH3UMjvX14x//eGJ4g8FgMBgkLsXwfvzjH9crr7xSv/d7v1dVxy0cqo6z+ZxRw7d+ZpW5Oadjdraa8tvcFrf98vxMi5TjwKjMgLqMLsZETMN1avYrJwuBIWBxu12P5XvyOJzHbKCTBfJYHLMzch5tEXO/sP74G7miqoO178zcFXa73VGMJb0DfGZrjiwv5iJr/czSLT5rVtDFGBk36xCGtCWE7exjy4QlO7C3wU0vHb/o2gO5RtGNZruGw9TDEVtjbrC4WY/J9N1Q2JmqnKdrf2QGzjYZ5wFeMw8ePNhcPw8fPjxax+kRcQNRx6k7z5PPZ9bptdI9a6v741ZGOUbHIH1dHbP0e2XVaDnB8T03Xoe806oO72V7RLrGuTmePB5gjKw712bnNma7zt7tzsNzcv/+/WF4g8FgMBgkLt0e6N69e0dMLGMczrBjm616G6wgZ9i5fY5ZW/4POKbTffNbTYRjuO1RZmVZLLjLdKzq1RI4HtlQjlly3rSaHVOz1ee5yHlYxS+A2U9ua+aaKjpVB/ZbdbACncnZYbfb1YMHD47iI7mPLd0Vq0Hst+qwzmBnVtrxPHUKP5zX2WOdpW9W5jVL7CPnvKvny23MjLZiU4wZds0aynY9zJcbgJJZ7Lq/ZJRY4z4+6Bies0B55lf75pgyI3K1fmg87f93bM3P40rdpup4nrzO/Mx1z4vF0P0+yhiXY2l+DvmZXg97XFbxxa1M+c7rlGPvPD38z8+N3yXdWJ2n4XZOub4dg+Re8M7cqtvO2PhF1VaG4Q0Gg8HgSmC+8AaDwWBwJXApl+ajR4/q3r17R4kTSZWRHev6QSWSgpqOuzDbFDkp8coNtiUPtSplsCxUFmT6Ojiv3a0dBberwkKzlr/K/R1sd8C5c/N6Pp0WvxItzvNZsJnrdHFxjvW8ovOHDx8euTC65I7cp+rY1ZgBdMbFvbMQ8FbigV2xTgTy51XHQr+WmLJbLH9fuZYtmp7zsEpOsKRe3hdKPzqRh9yXZIX8P2sTcWwLOrAu8lpWCQ2+zi4Z4zzB6KpDH85VT7jueE7c6mCXssMUW4lvPp+TY5wwkr+nmzOP2z0/fp+dVzKR63s1Jt4H3NPch/tvUQbPeSfwsCqd8Pu8K0VyeYfnOsfYCQKMS3MwGAwGg8Clk1beeuutvVVJAsOrr76634ZO4xQwOnBpizi3sXXs9O0ty87WuRMAkiXY0iGhBusCZpdBd+SsVskjWwFul2+QQk8QG+u8kyMyQz0vmSX3Oc/KzX0tc8acWyotu42bcd++fXvJ8na73Zn0YSzE7p66sNhF+JlMZCk5j81p3Gk58j+urWN0+Xn+z0kKzJdLaRJdok6OvbNSfR632QJZKGw5LcC8WqauK4Mwo3Ch9VaauEtqfIzuWs9LK3/48OGSXecYDM95t9787rDXxgkqVes59HXlPOHRMZN0wliXRAK8rr3ecvuV+AbPTyfKwbuId9/Kc8E++TytSkL8XHWye557z2O3T17nMLzBYDAYDAKXYnhVP/tmpy0Q6eGf+9zn9v+35bFiF10cbtXkcD/YxnpeWeWOK6UF4CJHjod1g7RUFsev/PmrdOSuxQf7ILVEyj+sKf3ibnfj61hZflXHMj2rwufO4vb9A118yUz5wx/+cMtSOf6DBw/2DLKTN7OVam9AJxq8sgRtkbJPssNVrMbrsWsp5JT2VVw4j9tJo3X/zzlxoT7zB/PuJKXYZlVu4XF0DJZi/1Xblo6RrUoAzKDzPBcppEawYBVjzf23YsT5/xzfKi6+xdY8DyuG2rVO4zn3fTGb8u85hvSq5LE6AQLfZ3uJsrUaLZL8nFryC2+YGwnkPn5ndN6J8+5X9/1xWe9AYhjeYDAYDK4ELsXwrl+/Xr/wC79Q//AP/1BVVZ/61Keq6pCZWVX1ne98p6qOMx4t/JwMwplA/K/Lisrtq45jhCu/+FYWI751RHaJFSXD85jM8GyZdFl6AKklrD8zvaqq559/vqqOrSSzts7CXInSehzJKM1mbJV3bUnYhnn6xV/8xeU9u3btWt28efNo/DnHZnS+T9212kq3XJst384atBW9JeK8ap+C9Yp3INseWWDc1+N72Vn4PD9Y1ith8KrjZst+RnwPkpWvCpxXx6g6Lih2bKiLwXPfM3az1Tw4pcc8lvzd98wZgltYFYJ3x7Y0mrfpMjJZB85w9DrIewmTZyzEav0eZZ1nprdZtEW9mZtsLcX7G4bH8ez9sCB+1XELuJX4Q+cFWjHxLs5otnmRTN/9cS+85WAwGAwG/4txKYZ37dq1unXr1j7LEGHh3//9399v89JLL1XVwbLBmnCriK6Og20tmAy2WguZkdjySThbiTFhCeGXTrayagNzkaxNW4ocl4aYnPcb3/jGfh9887TIWfnSu9ZC/O76qC05slUsjDmy4HXVofUJbUbu3r27mRF6enp6JFHUxePMajqLfgVLfpk9dZ6F82Ti8nPGz77Mh5lwJ0u3klwym8q4CPEV35/VmPM8Zje2mp1FmWMwK1jFjnN/Mzxi4p3HxLG7d95559xMO1/zSrKtu9aO4a9E6b2GO+FxnofVeu9qE1krrCHYEdfBmsnscNfz4Y3yPh1rck2tY4fcj5xH3oV+f/vZ60SlWbeO4XKMznPDuC1l5jXbZQVn5vBFWd4wvMFgMBhcCVxaaeUnP/nJvn3Kyy+/XFVVf/qnf7rf5nd/93erquq1116rqnX7ns46W2VLuQlqJ0LLt70ZGP/POiUY6t27d6vqYK3YyugaY9p6XjG9zuLwMZgDlDEYV1XVG2+8cWZMbOPs1y6jbBWHwWoiLtAprYBVa6FsD/Tss8+eGdvnP//5Mz79LWBddlYzcNygyy61Jbiqi7PlmNuujrElVu77wPm4rmyJY0ULsw6ux/WGeXx+YuFjrbuuMY+3ElY30+yEx50Zu1XH5jjpqiVYNkPdalxqoLSylQltVnERtr6qEfb4u2xW7tUq43brfMwHcV6YcOfJ8LnZ10LU3bPBtrzn2BYRcZ7lVOlxVq69RX6+8vrN2j12t5GqOvbqreJyyXr93D722GOb6ycxDG8wGAwGVwLzhTcYDAaDK4FLuTRxLeByIY3/s5/97H6bO3fuVNWhKN2SVSRjdIkndiVAUy1DlfQVmmwJLCg3Y8ziSn6HvjuYvCV75YSaVVf2bp9VWQDXm+Ud//Iv/1JVVV/72teq6lAITLkH19sJwNo159IGu8Py99UYO/ce5ybZZqunGanlq9T1HJ/LVJzs00k8+VrtcmGseb7zEo+2EpBWa9Xu9xw3WCVHbLnscWUCC5DnfbEYubtv2+3c3TMnQWz1QXNxPNviwuwSXnytW4kHu92uHj16dOSiz2teCY9vFZOfF4ZweU+eg3eI3cTMucsTqg4uTMoAEPDgc5I+sgO5SzFw7WVSVNXxus/jfvGLXzzzN+9ojo3LM6/D72S71jsBeicQ8o5yMmCuA0IAdnd6fWTpBNuyzi/S/R0MwxsMBoPBlcClpcVgeVWHb1iEoqsOpQoIS8PogBlZ1cEq4qetMwc000LA0nGwNTsp53mrjhMPYE1OcMiArFmaE1zMPrfkgSy82kkNPf3001V1KEanIJSfWEvdvra0Mwmiqm/x4rR9J2V07U64juzcvgoeP3r0qO7fv3+UgJJW80qAm2s028xtzLxWQs2dnJqZnEsxkhG5ZMXlGqzrrqXQqkv1qo1PgoQmkq8sPZed6TkfiTNY0WaanWXs+70qAM45WSXjmC1slR2cnp5uppY/evToQpIWQrHeAAAgAElEQVRSHstKTqsbj5m3f+b7wIXnwMXVneQbTAvvE/eFtZP3xYyKY7AO7HHK+wIrcnkPx8xEPuC1aHa+JUjPue2N4Jh8nnPGXDjpxn/n2lgJBFwEw/AGg8FgcCVw6cLz69evH0kGZUo03/Kk1TvVHGszi1C7uEce19Z6l4JvtoS1RCwxLS03XsUStp88435YNGxrpmepsY7p2NJ1qncWdZM6zNy4cB+LPpvUgpWUj4u+c4wraTFbcsnYV+nHKzx8+HB/PZ0IMddoZr8See6wsri7diaMwUW0WJ1YwLlWM76S+zBfnWjBqrCZtcR5HGPNfS0dRXyM64It5Hm4LsbEMVhnXWulLATfmqNOjH0l39XFQt0ya0v6a7fbtex3S6B7S8x7hfMYXrInx5X9jHWNr+05eOGFF6rqcE95tvJaHYPmuMTdWCtdgThz+7GPfezMeSgro5wovQOwQpdkdB6Zqv6ZZz37/dPFQnnXWijCMbxs7HwR4YEVhuENBoPB4Erg0gzv5s2bR1lenYir40Z861PkmOwJ+Fvdcl6O9eXvWADEDrGesXLSAmb8jt1ZricFgLHcsMKwsFdtgjqfM+d1hlPn77clTwNagIVHbCfn05akLSEzPZ+76lhg1sKzeVzO94EPfGApHs053FIorVnWCOfk2m1pd80gzWpWjUvTuoRRcl7uN3FSruXjH//4fh/uv1ko64wxJ0vrxA9yDuyVSMFhzsO6ZvzPPffcmeuG+VcdLHbOZ9bJWuratawY3lZ80dfHejCj7OJZ/Hzf+953boYv6Ji+77cl+Lpj29PiHIHVzzzPSry5k040C+W+2NuRGZiODYN8n+Wx0hvBO9EskPceY86ibot6r1padevC2/o95ByNhPMK7N3pGDO4iCwdGIY3GAwGgyuB9xTDc4PMLf+6sxbN1qrW1pEtE//d/c+ySlgOKZ/j7DuLR8OaUurLNYFY8q4f6eYEyxcW5lgVbDT3cazE2Uvsw5wl63brDrOermWKs6LMXLnnyeCcqfahD31ok+HlWLp5cgyXbbeahfraLMi71WoKy5a1wTrgp7NEq44ZHvefdQgTy/XNeLG4XUNlCa5kgp7/ZNNVh7lPy56sacckHQ9mDWd8ZJWdCzj/Vjsq7gHn4Zhdw9ZVTWKC947ZfOdZWrGyLrbnmtBVU2X2yUzvVexuJeuWx3eNo9+n3XPJ+mL+WWer1mr5mT1m9r51gvAem71C3fvAbNfenK4RML+7ltPxvq5+km1/9KMfbXogEsPwBoPBYHAlcOk6vKpja3nLSjez42e2QOF3LA+zDGdr5jnM7BzLwVrO2hCOC+PCAsaaIPMx6wsd48IqxvLgGhhjWulkPhF3++53v3tmn2eeeaaqzlpXrtFa1ZNZEaHqOBPWVtmWKszKkrO1lmO6iNLByclJvf/9719adHk838M8hq+1E+nN47s5aY7f7N8Wfteux+eBaRNjgAHaiq46fm4szAvjzH1tueJ1cIwqrXTG6+NarBi2kDFDZyz7HneMjPvEeWyV85wls3FbpS1cu3atbty4cRSPy3vhOjsr4GzV+K2aSLv+N2s4zejs6dlioY6TrpqtJuy5OC/zNo+zyh0Aud7I3HRWpmvfung6Y/DaN0PuYsaee6+LTn2IMX3/+9+/cMbmMLzBYDAYXAm8J4bn+EWnp2a9RmtPZszB1omzFt3EtfNT28LDesWazXpAqxJg+bIN7CytBiwa2BqZfFw7PnWQcRq3EmGssE5qFpOFOuvKlpWtxZwTW0erBqoXbamR23ZxGNjNG2+8sbS0drtd3b9//8jPn2Myw1plmaYVy++OJ7puDGaUrJG1wWewG366FUpev+uwYHadvp/jbLbwk2FVnX2erOvKsb73ve+duf6co2SkVQfmZV1Z1nl6FqjRMsvxs94prfh/nJdjpOXvDNWLwHO/1YLL22y1h1q1g+K+d+dxo+FVE9y8Ps7tFj/Acec8t9sB8c70eyKZvq8TuDY6nyd7B1wj6nnNa3D7MTO6LpPUrJZ97Q3p2DX7bDWeNobhDQaDweBKYL7wBoPBYHAlcOmO5/fv3z9yOSYlhpbb5ebyhK7lCpTYrga3fumEoP3Taf1d12rcDYw5i3er+iQS9sX9aJcaLoVM9f7gBz9YVcdBcNyjuKeyANTp7Z0cWHctec0OTls+rAuo23W66p7eXc+Wa4EWL6BLI/baAbiEmetOmsjp8i4FsZBuno8Uf1yZdnkj4J3bWmg673dVn4zjBKCVlFW6iRgj643rslssC5GZW5e7MEaSp1jvWX7jJCwnkHVF2Oxj1/N5IgQXxaNHj+qtt946cgl3LbFWIu8dVqLuzPWqnCO3XaXDO3yRY7KYM248C6vn9XjeXeriUq6q4xIgwPl5Z7lMojufXY6sj7x+kv3Yx2GerojeiXV24XehD9/bBw8eTOH5YDAYDAaJSzG8hw8f1v/8z//UL/3SL1XVsVXFNlUH68UW15Zl5ICzA+Z8+2fwe3V8t7PpAsGMkYQDJw90ac8uLHVxNGPFuq46NG91Wj3WDVZazgnssitGzevxPFf1KcN5/hUDzP+5mBjkMZ32nMXBxsnJSRvA78bnYlczrmRpbubr4m3YC2wmrVnuu5OmuHdY+K+//vp+Hxdts68bgqZ1azboFivMMcdImThKWL71rW9V1aFUhrng+jrvgAWFnWDDMUjAynMjP0aaepcMYVgYwKn6mcjFHHfttIx333233nzzzX2D5E6g3W3A/Ixvte1iW+4tbNnJHfl+WMmRsWadNFV1XLoE+JvnI9mKvRpOAHJZVh7b8n1mQayZTsrObdfMFi1TlmNE2o415Gcl31VmeGbkXbNqy8jdu3fvQuLgVcPwBoPBYHBFcOkY3ttvv30Uz0pLy5Iwti63YMbhwnOsmjzWquDTBagdu7DVhLXRCRub2a2at2LNpJ/azNWpy5aJ6uZkxfS6mOiKyTk1e+u+rYq+u5KQVdmDkdZ11/TUxc5YoGZ+yRSwTolL8ZM4jIt6u/iB1x0MiHFk+5QvfOELZ7blGLShIlZ4586d/TYweK9Ns2lYaTKuV155paqqvvzlL1fVganCPmENHaO0eMGqiWfOJwySuWc+YXpuj1R1LAzRyU5V9U2f83larZ8HDx7U3bt39y2zthp/8hwy52ad3Tksfs0cM7fMddcw2XPNXHZlPPYSuTSD8215lszSed90whCW8nLuBWs3y6HsIXOs2F6JjF1zf2gCztrhc8dg89o5rwXUYYU59/Zu/fCHPxxpscFgMBgMEv9X4tGdX9zSVPZ121LpjmM2sZIaY0weY3eMtJpsDXWZjlVn4z1ml84q8hiz+Nd+aMcrusaIzFvX2DHRtUpZzYkZ35aQLlhlweb1XBSPHj06KhpNqx/rmLnO7MEcb8YciLfAimBjxIhgPmTKdhlpnJc54PhdFhtzBwvAOv7mN79ZVVX//u//XlVVn/jEJ/b7wIoszOz7QJbb1772tf2+r7322pnr67LxDJgKxyeWAitgXrsGzs8++2xVHVgNP7/yla9UVdXzzz9/5pqqDvcLC95ZdC6SznN2GZfGbrert99++yjzu8v09jNt78pWpjDxSwQJXNRvr0duY5Fvr/O8Zj+PzlHIOBbnXolzWGghY7l+B3tsFu2vOhbJ4Bg8V9xj1kUnWmCRdOcU5PV5DrhOe+a61kwps3bRrN9heIPBYDC4Erg0w7t169b+G7sTyPW3uDOEOkvOLMV+a3/eZYU67rYllGxG6UwuW6xVx409V/Vm/L8TcbXf31mOnSyXfeq2VDtrd5XRueXntnSVY5Vbck4pMLxiojTxtJXezZOBpdi1cYHhEXvinn3kIx+pquM1mgzVEnLE32xd5riwYhm35bNgZLC1qkMMw3VJXrtIzL355pv7bRj/b/3Wb50Zk2u6MrOTsbhJKKzMVnMnacd65+//+I//qKoDk82sTdcmWiB+S9g4PUKrtXP9+vV68skn99fI2LpGwH7feL4ya9JxNo7vmDeMJQXhXTPqNkH8P993rs3zmLmX+Zyu3mds6/devkNWtXQrCbWqA7u1gD4/Wf/evuoQ53X2sxl/9/7ms2wInGPvPIJs+/M///MXyhGpGoY3GAwGgyuCSzG8k5OTunXr1t6KcKZV/m4fsP24HdPbatZZte2HX1k6rtnIz2zpOKO0U2fBanG9iBlfXh8WlGsQ3VQ2sWqeaLbYZVyuVFmcuZpj5DPG6ho4j7nq2EK9efPmuW1YrEjTsU7HSy1gu9WIEyuTY6QF6vOxDfu4XRCZlxlnBLAX9oHlMG/J8IjrEUtzzDYVI6rOzvFTTz1VVQd26Fgqc0O9XtVx7MTi0ezr7M3cxlnHsFTmJpkzY3MmM393sSl7DLbWzc2bN+sjH/nI/hqZk+4d4qy/lZB6gvsBMzGLBzl+5p2MROb8V3/1V8+MI6/LXg17T7rmumafzoh2i6kOKyFtN8muOsSKUX9yXJ3r6t7RrnnmufL9z3ldKXI5Vtll5nfzdR6G4Q0Gg8HgSmC+8AaDwWBwJXBpl+Zjjz22p9ddEonTg1ddirtec8aqA3W6pZzosZL86Y6zSo6xqyGPsxKltdRYXpPpugPRdgVVnU0vzm0Zm4tWcx6cTt9dT15T7uN+W1vuNruvz+ttlu4k34P8zKK6FgSnxKDq4GrDhcjaJMnC7rW8ZlxxuBotqtsl0XA83DVO23aKedUh4I/rCHcRc4pkFokpKWLO/9iWBBPuD3OR95+x4Iby9ZCcsyVLxxicoIY7kfKEnAtS1UkccrLUViLXO++8syxNoOM58/ibv/mbZ46R53CYYOueOmnFrm3muitbsuQX84/L1z0V83hOhmKMduNx7Xl81jfvGReTJ+x+tIBH1++R33HZ233o0pq8Psbo9w7Psd2XCZetcYxObITPeOZff/31tmSkwzC8wWAwGFwJvKfCc2DWk7/zLb5K1OjSdV2I63261GLv48Jw/u5SmG1pYTl0cmhYKQ7A+nq2AukrptexULcMWYlkm0lXHSxUszUz2C44bitwldJcdbAy87rOkxfDms2CVWBvgFkm++QcYzVzTTATs9wuvRkmwnxxzeyD6DfMImHZJq7biQ9VVb/xG79RVYdyA+4pY3zmmWeq6lCsTup/1YGFwspIKmHMnVg51jhzw7a+jk4Q2u2BvGYobYBZ5/9I5GANsT62RMr5ucXw7t27Vy+99NK+bIPr6oSLVx3OmRPuT47Lxc+sMxfwJ8ODWfOZJQX9zsrzrFoWrTwxuY89Ltwn1m4mE6261puB5bvx6aefrqrDvWPtwN7dOinvLet5JQTuAvgcA1iJfndeQBKGvvnNb56Rx9vCMLzBYDAYXAlciuFV/ezb2+wmfc5Oa7d1Z3aTv5u1uKi623eVduwyggT78z/LNXWi2Ja+sWi1mW0n4mqLyiy4kxazGK3Tj7tGk+yLdWZW2rVoshWLpWipobzX9ptvCQADxmk2UHVcdmLxaM6XbIaiYGInzI/jV8Q+UkwA1uT4FNdMLCxZARa1YygWVMdSzuPDAhwvfeGFF6rqUAaRYtWrJp0rkfSqw33mOhgzYr6ANl85n8wjx4XJMTddQb/Zrdd1l8Lu53RLWuztt9+u11577aig3oX8Ccfsttal2SDPOGuFeexEj/ECcO+YA86f7wF7A1ZNXXMuLAdojw73wSUg3fV15VZVZ8tuYPBcM6Ug9oJ1jIv3Dc+kY7idR8vs2szfZVlVBy8Oguo/+MEPRjx6MBgMBoPEpRnetWvXjuS10npyzMSNWEFaGc50sj+W/3cxQ8fwbCF02YCOR1k4uRN+9TYukncm11ZDS2dJdfE/GIT/x5iwpjq25jYt/hx0BfxmrM567TJXu/iecXJyUrdv394zLcafkliObXRxN/+NRUrMbNW806yj6rDObI1z3o4V8pkz6ziWW0xVHcubwUxcUM/Yc3uyTf08OTs558Ss3yLRWMj87ETELS5BVmZmyAKvN+I8jsV2VjjneffddzdZXtVhjinkp8i76jgu7bXTeXpWa93SaH72qg5MDgYMq+Fntw9rxs9N92z5mr2vvTj8zPP5HWVPFnOyld9gLxvrgevM58y5CGZpINeBM3sd5+N8ef9effXVqjo0Rb5x48a5niUwDG8wGAwGVwLvKUtzS6jTIsRmfHksw9s4m43zplXhOhU3/mQ8yRotUeXr6RiLY1z47rs4SI6j6sAKVvVdbqOS29o6ct1dx/As2mrf+VbDVu+zyqLK41yE4V27dq1OTk728QIsu66+xkyPv9k31wmxpd/5nd+pqqrPfe5zZ47PT1hVxsI8h8TOsF45Xza5/Nd//deqOtxftrEEU943mBTMJGN0VQdmx+d5fRzXGYN8Tlwu1x/sI9lT1eH+sC33Mlk288Tz45q6TjydsRD/g40wb107Ku4p8/juu+8uJaJOT0/riSee2M8985nto2BjHt95coVVB3bkbV3jlkzIa8QxKB8jr9nSctwfxpFrh/vOOrbQvFtNJbh3/LQAfucJ8vuE8dtz4czvvI5VnaHr8aqO2xu5+TLHSolAWlVlzHUY3mAwGAwGgUszvBs3bhyxjq71DpaBazOczZZwXYzjf1jP6et3K3pqnajRcMwo97F/2OKuOUZne33961+vqoM6A758jplWs0VOzYS6TDJbbK63MgvKTKtVnU/XXsf7uM4HYGl1otiZdbqytN566636+7//+/qDP/iDqjpYwFaUyXOsBLo7hRgal1rUF1ZFrC/jcY7DOabbqQJZUcdtTNgnm51aYBhL26zDccAcG7V5/E0sjXWdHgwrXJzHcjJmyDxxzWRlOmMxvSywD3tijE59iH3u3r27VFwib8Bix53XhmfZ3iBnruYYVq2wVk2Rq46ZEPvae9LF1l0P5+ax+Uwwt7DaVTYi6y/fA/zOWvQYHa+tOqxnC95bWYY1k+9VzyfHZe102ehWg3HWMZ/zHFcd3r1se/v27c2cicQwvMFgMBhcCVw6S7PqWJewa72z0jDsKuKdzYP17JqPrp2O281gPX/729+uqoNuYcbUXAPkpq32W+c+jIHzcVxULFwvlXALHjPltJp9PqxDzksMAUu/q/ty3Z3rcdI6M7t2zWPXaNZaoFt+9J/85Cf16quv1p/8yZ+c2SebnVonlHXAPe10AxkD1ixMj32YJ6uoVB0z1C7GUHV27XBc3xdnB3Zs/Vd+5Veqquq555478znZZpwnGRfZp6iMYP0T6+haF60yhbH07TlJxuw6U9RMzGyThfBMW2eW56dTy+DcMNfvfe97yxY3p6en9fjjj++vFcbMPFZVvfzyy1V1uD88F6xnjp3vH67NjYAdX+TznOuuNVrVMfNPrJpSOy7XMUq2tZIL+3aeBcfSrPO7pTPMu8Hre6WmU3X8fnP+BteVa8fxZBgt94bj//M///N+H+5hNt2dGN5gMBgMBoH5whsMBoPBlcClk1ZOT0+PqHC6/lwQbfrujsTdtqv0ZLfzyX35DLcRLgfKB3CDVJ1NKKk6uAncpifdFXYHmEJD9aHbWWJg0Wu7gOx6yG0tTm3JNEuQVR3uQVdsm+ftWmqsOqxvpTBnwsvKtbDb7er+/ftHMlSk5Fcd7gtuGQL1pCSTUJGuJXfvJomIa+d6+JmCwxaN5qdlnHIenW7O3+4IjWum6jjl2q5s5o/rzbIFzmNRX+aok16ydJ5djMBlGd312bXNnOXacZmP10pXrsI1fvGLX6yqn7metxIy7t+/v08M+7d/+7eqOluKwXPA/yyR1707nOpvMBdsl65mv6NchmV5xKrj9xzn9Ti6ZBy343GIqJNS5H92AbrMIl2oq0QdxubSilxTLs1xuMHPVX7mInx+/tM//dOZv3Pc6b69KIbhDQaDweBK4D2JR9tCTYvbckZO4ugEoJ3+bdFgrPIuIcBBY6wLmnqStECBeNWxRWUL362Acmxc10rUFaQl6bZDZm9uqphjM7CoSGbYEua1Zef057S8XQKwanuU1qctxYu0B4IJY51lmyASjRgL8+bWJF1Q38kCbvXCuHOtOoXdLZFcSJvnduKRyywyAYM1yDr2enfKf66DTL3Ofczich1YLLxrA1PVF56vkpS4Lu5BjtHMzkkqXodVh2Qlisdv3LixKS326NGj/bV2TIhkpVdeeaWqDkwfDw/3o3vGmH/mwSnxrAvWbh7Hz7BZU9cc2+8BJ3XkGJ0I5PcMc9IVrbsMyfff5839s21TjtUejE4I2mO1iH3Oib16nA/PDx6ATow/3z+TtDIYDAaDQeA9xfAstppWswsXVwKtaW3Y0nCsy40kuwaCfObmp5alyvNY1Ndt5bESqw5W4Mpasq89LY5V81aui5+Z/r6KoTEOWMNWTNTFqBwTS7WzilbX5aLf/GxLtsnHxrJH+Ddb78DGiGWZ6TmOmmMw43L8qitpcXsoH9Nxizw3cwwr4HPmNmMpLgewSLWZTV6fJZxWxcsZS3GsziIQLpJP5rUSJ95a31sNmvN6k5HB7LpYV4fT09OjmDHC2lUHiblvfOMbVXWI5cHwOjFnt3Yyq2G8sJlkwqxb4stuz+MygoRl2sz8Mm2fbd2s2ELX3VpyjgDr0Iw84fvA3PBMWlg731kuaXDxv9lqgrlmXfDMc95kkl5vF33/VA3DGwwGg8EVwaUY3m63qwcPHhyxtq5w1ZYIVkZXeG5LwP5iLJ6uEaOFkrHCusaoYJWJ5JhDWnTOXuOnGZat0Kq+SWeO0Qw29+GnhWC3rJoutpbX2wnOrhplOnaXsUVbs7vdbhmHQZbOTVeTZcPwHAfz2HLclkDibxfkYmnn+TyXZk9d+xSLiLOtM3/zPF4jZnj2RnTxOI9/JZqQ2zpebuHxrZihs+bM7JIVW6jZz2knHwdryhZCK/Hxk5OTunXr1p5NcN9ef/31/TY00SVW/4//+I9VdSjqh+nlORgfa9JM2MXXubb5H3NtuTPmJ9m2n0Mz7C7j1uIIK49ZF6f18S1I4PuWv1t2jHXQNUX2+djHbYi4f7kv18FxYXhk5DJWmF7unzHjieENBoPBYBC4dAzv5OSklZkC1MbY92oLsas5A47HuZ4kLRLLWvl8tt4TjmU5XpItKfjMbTLchgh0bM3sA1bAdXWi2BZ1dsZlJ8ZtSTEL6HbSQqsWP8wN1lnXHghcv359aWnB8FgXnCezNLnfyEJ997vfPTNe7mWOkblbjXsrzsh9WDXK3JJTcx2eYzjd/QCu93McrmviyTGc8ZbySsCMwXFNGFe3DszwvM68thLOynNMPmsgGUMyxq21c/369b1l/9///d9VdVZQmGvh/fPrv/7rVXWI6TFftD/KczvTlnXh68h76rVoxsq6To+IPQjMpXMK0jvAcZlvYverjOVcB16LXg9+RqqOmR33iWNx3qwzBfZkrTJ+c054B5OhTXY944DxbXn1zmscnBiGNxgMBoMrgUvH8Ha73d5i+/CHP1xVvUWKJfWd73ynqo6zifIb21a4RUZhBVjAXQakazwcN0grwLFBrBUsOqyotHxdT2g1Fmd8ZqzSWWCOFXZNXIEzFW1xY4l1MSPHUlxTk9dnBskcY4FZNDavJy3jlbVF81dbjGmROmuS+AgWvducVB1nJDrj0vVXnVqGW8vkmL2PW9hYJN3i0vk/szVnNTojMuE6UNekdrVUzmrODNsVXIPm+GnHmB3n4XyujczYDXGzrHVbxfB2u92ZtUr2dMZ1OBdrhqxNrpn6PNpTcdy8ZsYNi2HceGJS2YXzOduU+li3LcuxWaXFOQw5t9l8uOq4ptdz3L0bPa9eH7mPn3sLTzumn8+br4u1YhHu3O7LX/7ymfMSg2Vemb9cO/4OGfHowWAwGAyE+cIbDAaDwZXAe+qHB/XHPfDaa6/t/wflNRV377R0wdhNYuoLJXZRYtW6FxdUvEt0cf8zC+MiNJ374E6DWjsJgmNx7ExT7zqD53l9jPydeVzt08mS2T2JOwI3RVdQDewiI10Y18Mv//Iv77clwNy5RozT09O6ffv23qXJWLriflxV7khPElG6N/gf23K/7TbsSlq8VjgG95qx5lq1YO3KTZkucN93FwA7ASrdYCmuneex9Fy60FcJVS414L51YsUWgGbMnYi4k69W0oAJwgiEPp544okLFZ9XHZc+VR3myeUouMjoi0n/vapjKTmug+My1zyDuQ7Y1vJdrGsnJlUdz4sFrblvnfBAN+9Vh/Xn+5O/+13lJLpu7VhCsZNKW43V5RVOVOvejYj+IxBPwhpj7Vyn6SK+aOLKMLzBYDAYXAlciuE9fPiwfvCDH9QnP/nJqqr66Ec/WlVVX/3qV/fbuLAcC/7u3btV1af4Om3VQUkYHj+7di3AyStuV1R1XIyMJeLWPp1YrNPgGauTMdLyWZVkuIi9K4q2/NEqaaIrHnaSjBlLN48OUlO4C7tKhgMTvnPnTlUdins7nJ6e1hNPPLFfB1h5uQ/3w0XW7kyd98UF2CuRZf5OKSQXaLsgvyvmZQ6976p9U9Ux+7PlvWLteR4nQXismZhgYWnPG/eWe5rlN5bQcwd0LPKcR45rYWnuBYk8rKXchvfD7du3lwyPkhYnlSX7Zf5JGrEX49d+7deOxgDbYwwrEQmuvUsMcrG1xTNyra6k/ix00bEVe70shNGJgLgkiznpvBDAknk8gy5p4PNcB5zPjNnvnxSCJvHR3iYLq2fpGmvyIp4lYxjeYDAYDK4ELl14fvPmzfrjP/7jqjpOkU1gpWCd/+d//ueZbTsJHFs+trTsJ899zGrchLBrt2Nm6UaZaaWvrC9feyeQ6rR0fjL2rsUL4/f5XBDssoyq47lYCVDn9VnAmuJvrGnGk/539kfE90c/+tGyrdGtW7fqzp07+3R01sNzzz2334b5YHz8jQUMU8C/n9dqa3Ul55Xjc1zC7NmWZO7PZ7ADp7hvFfVbkNctX/Kem0EAi4aAHxkAAAjaSURBVBh0bN2C2hYi4F5kCQ+szN4Hr/8cj5sfu1SHa8hCcVL8uaePP/74siwBWFou59ixetigmwpnzJiSKYuS23vDOuxa/bhQ3yVBuXbMnl0mYi9S1eHd4XIUtzDjWHkvVyU6Xqv57DiG7+a3LibP9xxzzVwwFnshMr+DdWtPgj2FWX5kb8qqYXiHYXiDwWAwuBK4FMP74Ac/WH/1V3+1j7vwjZ7+VWcT8e2OGOgbb7xRVWetj1XLE8sZwT66olcsBMfYtvzUwEyvi8NgibpNiuWZOsvHxeO+Tkv/5FiAhVjZ1zGkHAtwK5FO3s3F6ViMf/7nf15VVX/zN39TVWetdGcs3rt3ry2e59xPP/10vfrqq1V1YIXJuBiDY5pYs51ElWPDMAdb5dynXKsWJXfMjvNsSUqtWFTeD1vpbj+zKvbObd1+yMIKybwtIed2VDBLrPdOds2MwvOX51tJ9HEfWUtZKI4Hgay884qHd7vd0XOS4+bYHJf3jGOtGTMmfsR7xcXUjpt3rX787rJsW2YUM/+sUTO6TnoLWPaM8ziLsZPds1i+BSgyd8CyZ47p+R2ZzIssep4bzsu9Yb7zHhBz5b5ZLLqTsnNW661bt6bwfDAYDAaDxKUY3vve9766c+fO3tL5+te/XlVns6UcA8AywG/LvmntuU7H7Ixv906ax/5iW96d/93ZcY4duLaq6thKsuXrfTu/+EqeydlNCSw3rLBVFmpa3DAvx3+cHZhWEUwJSSasdGJtf/Znf1ZVVZ/+9Kf3+3jOLa+WeOyxx+rFF1+sL3zhC1V1EPVNEVq367HEWCdNhBVroV9n6bm2ruowZ85IW/3M43kN2ZrONWUBbjMKrqebPzfVJKOS9e06rbx2njHmBCZGTRrHTIvbLYRcO9WxNbewcm1kbgtgOcnIt6TF3n333SPPRLJ1syLG4izmZAp4nSxOb2+Hs53zOG547Zh7jtGMdxXDS0+PPVQWdeb4zGN6XRijWafl9jJexvvbMmd+3zkeXHV4hzD3PCu8311bnL/7XeyGAh27zuzqqcMbDAaDwSBw6SzN69ev7y034jFpIaTAatVxrQk++zfffHO/jVtNuE0PVgDbpYVvH73hNjtcR+7j+FsnyNv5yLtjgGSU/M+Zdlbg6DLtbC078wor1CLK3ZhWYsWJF198saoObADrHFbwl3/5l/tt//qv/7qqztY6rWqpbt68WU899dS+Zu/zn/98VZ3NuHz22Werap3xxlyk9YdSB14Gt1oym+6sdK8/ewWSFThG6xqtrl7SLVUcQ2NfzptWvesiuWfcH9ZUWsAc16yTukksceImGWdyVqtjhq7HqjpWqGEtcqxOuYj3APf08ccfX64dxKO9nvOaYb6MhdiQG0LnGDg3ikGuoeP/FrOvOlb0IfvTTX0zo9zKLmaUrumtOtxv5paxuMbN3rDuM9ah2Vm+s12ry7yxDfNsBaDclvNwPdwLx+SrDpmybON6PP7OOTHbOy+798y2F95yMBgMBoP/xZgvvMFgMBhcCbwnlybUFUHhBPQcKr5y9eHSqDoIFENbLTBtt1S6CZxwsBLm7VLLu2A011l1liq7eBhavSrD6Hqa2S266jmWv6+2cYF9ujKc7s4cWAiW1O2qqr/4i7+oqkPSyt/93d9VVdXHPvaxqqr6zGc+U1Vn79tv//ZvV1XVSy+9VFU/c6WtyhIQj37hhReq6uDmIvGp6iD0C1y+0blv+Qy3HO5CF2TjZunKRTg++yI5xTxll2xLmTmJxULNVYd+fhR6O/GJsVpOKbfxPXVPx0zasPuRa8d9zNg4T65Vy485acbrLo/j8AIuM9LV812AG5FwxZNPPtmWRzCGrit3wm5crtku4M49DSxtZxm1dOM6EcgJV10YY1Xq4SSy7llmHycF8v+tEhML23sNdW5Xxsrat8QXz0pKi5EE1PW6zPNmqIh9eG+vkr+6Up0sT7ho8fkwvMFgMBhcCVya4d24cWOfqk4iQ1oVzz//fFUdp/Y6PTi//bFaLHVkaSIneWzB58vEGorIsXy6lGWjY2Hd+VzcXXXcjsX7dFaZmcJKpJjP00pzYSZWLveCn3neZ555pqoOc8K94Hr+8A//sKqq/vZv/3a/D0kmL7/88n6fzvpmDu7du7dvAwLTS4YHAyFNnmP5fue4M+EirxmL14XbuS+BeCxSAvEwMrObPN+K4XdCw8wlVrHl51ibLirOa3fxuAUPcm2ZpcGmAUwaq70TRbaEmkWLM7XcDIJtuC6uG2u+6sDwsgRp9Wztdrt65513ls9C1YFpMP9ORCOpJN87zJP3YQ6cMt8lIvm+ONkjmbCfO7cdYp11rczMMi3x1bVBW3mwfC+7//kYTl7q3sUWjOB6mXv+TwF61bHcnss8QCfRlt8lU3g+GAwGg0HgUgzv5OSkfu7nfq6+9KUvVdXBIuliT26Jk8c4GoQKjYnL8a1O+rStmqqDxWOfNpYcx8x9XOhrS2eL6QFbsxaR7SwOizpvtfZwc9KV/BmWV+7rmJ1jEexLvC7Pwz5YZTT3RTD8j/7oj/b7YLnTJgq5sA4//elP67/+67/2x4VRZnkKDI+4m2NCWJfJuJgP7qXLYpgfF9vmcTgGBbLMEx6MZFzEMLHOWV/cS9hUsg/HUvmb2JYZRJZJ+L473telzHNcx4xgWIydee6KyF1C40ajnRyVnyMXPMPuq469K+fh9PR0f78Y9xbjYix4c0AKNDhGyzxQtuF3VQpkrFqadWsUcM38z8XqjK0Tked/Lr9gjNzzjP9abpF7x/kt0Oxz53HxbHgt55ywDWsUTw3vMn4yvzl+5pHnt2t7Bsz+Tk5OhuENBoPBYJC4dlFJlqqqa9eufb+qvv3/bjiD/w/w9G63e9IfztoZXACzdgbvFe3aMS71hTcYDAaDwf9WjEtzMBgMBlcC84U3GAwGgyuB+cIbDAaDwZXAfOENBoPB4EpgvvAGg8FgcCUwX3iDwWAwuBKYL7zBYDAYXAnMF95gMBgMrgTmC28wGAwGVwL/BxfldYutiQgNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYZXlVJbp+EZGRY2VNQA2AVIE44vD66Sdgg9jYymd3q/haoXEAbFtxeOrDVhxea7XayhMbBWdt21JB0HakoRXH6hZncHoopaCUSFFFTVlDZmVlZkSc98c5K2LHOnvvc6Iy7s2X5V7fF9+Ne+85v/Obzrl77bF1XYdCoVAoFAqLwcqF7kChUCgUCo9k1A9toVAoFAoLRP3QFgqFQqGwQNQPbaFQKBQKC0T90BYKhUKhsEDUD22hUCgUCgvE5A9ta+1FrbUu+LvXOe66RXZ4LlprX9Bae2dr7azt5yMNsh4brbV3t9Z+vLX2OOfYp7XWfra19r5hXu5urf16a+2FrbVV5/hvHNr9xeWMZnT9m1prN12Ia19oDPN+w5Kved1w3Rct8Zo3ttZumXHcVa21V7fW/qa1drq1dldr7W2ttVe11g621h497OkfSNr4t8P4njW8v8ncO5uttROttT9rrX1va+3D92+Uo/s0+rtln651aGjv6/apvQ9srd3QWvsA57vbW2s/tB/X2Q+01j6xtfYHwx55X2vtO1trB2ec9/zW2i+21t4znHtza+1bWmtH96Nfa3s49rMAvFc+2zD/vwnA0wDcdr6dOl+01q4F8CMAXgvgxQAeurA9WjhuBPDD6NfzowH8RwBPb619dNd1pwGgtfZVAF4J4LcAvAzA3wO4HMAnA/hBAPcC+GVp9/OH109trV3Zdd3dCx6H4kuXfL1/7LgN/T38txe6IxatteMA/hDAFoBXALgZwBXo9/rnAPjmruvubK39CoDntda+quu6s05Tn49+3/9P89lfAPji4f/jAJ4C4AsAvKS19pVd14U/3HvE0+T9LwL4cwA3mM/O7NO1zgzXe88+tfeBAL4ZwG84bX4qgBP7dJ3zQmvtYwD8Kvrn2Dei7/crAFwF4IUTp78M/b56Gfr74H9HP+ZPaK09qzvfhBNd16V/AF4EoAPwgVPH/v/lD8AnDH3+Zxe6L0sYawfg2+SzFw6ff+bw/pnoH1KvDtp4EoCPlM+eNrTxpuH1yy/0WC/wPB+8AOt6w4Ue9xLGeSOAWyaO+YJhPj7K+a4BaMP/nzkc91znuOuGe+BbzWc3AXiLc+wBAD8HYBPAxy5o3LcAeM0ejl/q/pNrP2eY1396offLRD9/BcBfAlg1n33R0PcPnzj30c5nPPfp59u3fbPReqrj1tqR1toPDirKkwM1f7qnnmqtfUJr7Tdbaw+01k611t7cWnuKHHNTa+0trbVPaq39SWvtwdba21trzzXH3Ij+BgKA3xyudePw3fNba7/VWrtz6M+fttZGkk5rba219rLW2l+11h4ajv/V1tqHmGMe3Vr7odbara21M4Oq4Yuknatbaz8xqDDOtNZua629sbX2mIc3y7Pxx8PrBw6vLwNwD4Cv9Q7uuu5vu677C/n4hegfNP8OwD9gWiIEEJsQBtVTJ599ZWvtHYOq5kRr7a2ylrtUx621Zw1tf1pr7ftarz68q7X2mtbaZdL2o1trr2ut3T+0/ePDeduqw2QMN7bW3tt6VfvvtdZOA/jO4bu5e6hrrX1ba+0rWq/Of6C19j+bqCRba6vDcbcN+/kmPcYc+5zW2u8P83Vfa+2XWmsfLMfwHnlO69Wgp4c+ftywr799uNY9wziPmnN3qY5bbja6QeY6vReG45493LcPtdb+trX2xXpMgCuG19v1i27A8PaN6Pf55zltfB76H+WfnLpY13Xn0GtTNgB8xcw+7htaa69vrb2rtfbMNqhBAXzL8N3nD/vozmFPva219gI5f6Q6bq29vPWmpSe3/tl6atiXX99aa0lfnoP+BwwAfses/1OH73epjltrLxm+/9jW2s8P98jtrbWvHr7/V621Px+u/4ettY9yrvm81tofDffDiWE+HjsxZ0cAfBKA13ddt2m+eh3659inZed3XXen8zGfo9vXbq09trX22uEeOtP6Z/sbWmuXZ+3vRXW82lrT47e6rttKzvkR9CrnGwC8FcCz0atzd6G19i/Q0/03Afjc4eOXoV/Yj+y67h/M4U8C8CoA3wHgLgBfDeC/tdY+pOu6dwH4VgBvA/BqAF8G4E8AcBKfiF5SfTl66faZAP5La+1w13XWzvB6AJ8B4HvQq0sODcdeA+Dm1quy3gLg8DC2dwP4FAA/2Fo72HXd9w7t/BSAJwD4GvQ/VlcNc3AkmbP9wPXD672tt71+IoBf6rpulgq99TaN5wH49a7r3tdaew2Ar2+tfWjXde/Yjw621j4HwH9G/wD5HfRz+ZHYeahmeBX6h+oLAHww+h/BTewWBn4BwEcA+HoA7wLwfwD4XszHpej3wXcB+AYAp4fP5+4hoN/Lfw3gKwGso1dj/fKwV2l2uWFo/5UAfg3AxwB4g3ZmeOC9Cb3q/3kAjqGfu7e03kRwqzmcKrP/BOAk+vl5w/C3hl5L9aHDMXcgEMCwYw6y+BwAXw7gHUO/Zt0LrbUPBfA/0D8Hng/g4HD8MfRrl+GPhtfXt9Zejp6FntKDuq4721p7HYB/11q7ouu6e8zXnwvg97que+fEtdjWHa21twL4+DnHLwCPQv/8+H8A/BUAjvd69PvyXcP7TwTwU6219a7rbpxos6G/L34M/dp/JoBvR8+uXxec8/sA/i8A341exU6B/O0T13oNem3FD6LfM9/VWnsUelXzf0JvzvsuAL/YWnsyfxzbjonrR9Grbi9Dv89/e9jnDwbX+yD0e3tXv7que6C19h4AHzbRXw+fMLzaZ97rAVwJ4KUAbgVwNYB/jv43IsYMOv4i9PTZ+3ujc9x1w/sPRv8g+lpp79XDcS8yn70LwG/KccfR/5B+j/nsJgDnADzZfPYY9DfqN5jPPmm4xrOSca2gX5gfBfDn5vN/Npz7Fcm5/wH9RnmyfP6jQ5/Xhvcns3b2SV3Sod+4a8NiP3XYGKcAXIv+x70D8B17aPOzh3P+jVnLDsDL97BfrpPPb+i32/b77wPwJxNt3QTgJvP+WUPbPyHHfd+wHlQhfvJw3GfLcW+Y2hfDcTcOx336xHHuHjLr8k4AB8xn/xpGFYXeRn4SwA/JuS+DqI7R/0C9k3tr+Oz64X54pXOPPNF89mlDe78h1/kFAO8276+D3Jty/McP82yvN/deeO3w/qg55vEAzmJCdTwc+03DsR16pvnWYU9dJsd97HDMl5jPnjp89sXO/hqpjs33rwNw+nzuz6TtWxCojtE/zDsAnzJz//0UgD80nx8azv8689nLYe7p4bMG4G8AvGHiOqHqGL2W4YfM+5cMx36t+WwdvR33IQCPM5/zOfNxw/vL0D+3fkCu8UHDmr8k6SOf26N7e9grb9rj+jwBvXbkv8t8nQXwRXtd772ojp87bGL791XJ8R83dOy/yec/Z9+01p6MnqW+dlBtrQ3M+UH00tQz5fx3dkYq7bruDvRS+cgjTjGoTV7XWrsV/cPoHIAvRP9DQvAh/aNJU89B75zxbunzm9FLO5Se/hjA17ReRfoRmYrG9HHVttlam7NG3zCM5TT6OTsH4FO7rnvfjHM9vBDA/QB+CQC6rvtr9OP93Jn9mYM/BvDRrffw/KRB9TMXb5L3/y96hnTV8P6p6IUv9Zb+OczHOfSseRdm7iHi17teDWn7Cezs1Y8AcBTAz8p5r5drHgXwTwD8TLfDhNF13bsB/C52JG/ib7qu+zvz/ubh9c1y3M0AHjdzX16Hfj7fDODfm6/m3gtPA/A/OsNEu15T9btT1x6O/Rb08/aF6H9YrkTPeN7eWrvKHPfH6AVNqz7+fPQOQj8z51oGDf2zID5g9726Fw3hFB7suk7XC621D2lD5AD6H59z6Nm6t/88bN87Xf/r8ZeY8ex8GKC6GV3vmPZuAH/ZdZ11qOW+fPzw+gz02j79Lfi74U9/CxaC1tql6IXyk+j3G4Dt+XobgG9orX1524Nn+l4emm/vuu6t8veu5Phrhtc75PP3y3vaK38MOw8u/v1L9DeUxT0Y4wwmqHtr7RiAXwfwUQC+Dv2ifiyA/4r+IU1cCeCebvDWDfAY9Iuu/aVQwT4/D/2CfS16lcutrbVvmvix+k1p85uycQ34r8NY/jcAj+q67iO7rqNn5d3of4CfMKMdtNauRq/6exOAg621y1pv//x59LaKZ89pZwZ+EsCXoBfI3gzgntbaL7R54WG6B+ityT1wDYAT8iMHjPdehju73baeveyhvfTT65e+vxz9Q9/z6L8dY3W7eoGeTT5fAzAK7bIY1MNvRB918IJut7lo7r1wDfz5n70mXdfd3nXdj3Vd9+Ku665Hr8J+LHrTjMVPAHha68NS1tHfh7/cdd1ew/wejySKYtiru8Y9c//OwcgePdyHvwHgQ9CP+Z+i33+vxZTqssdm13X3y2eTz86HCW+vRfuS1+dvwVsw3k9Pxvi3wLueZyu9Av7vxgiDUPsm9NrAT+66Tvfnc9F7Nn8jeiHvvVN2bmBvNtq9ghv0MeilGeIqOY4hI1+PfhMpPDf9h4Onof+xeUbXdW/hh44UeheAKwabW/Rjezd6AeIrg+//Gthm218G4Mta77TyQvShN3eit114+GIAl5j3c1jpbV3XvdX7ouu6jdY7FP3zwWY2FULwOegfvP9m+FO8EP2PTQTagdfl8103ySAd/jCAHx4cCT4Zvc32Z9D/+J4PbgNweWvtgPzY6t7L4DGZuXtoLniPXIWeWcC8tzgx9Odqp42rMfMh8nAw2Ph/Br1a7+O6sW101r2Afqze/O9lTXah67rvb619K8b2t9egtz1+HoA/Q/+gnXSCsmi9w+LHQLQLgveh/6HTz/YD3v57BnrB4jPs/d5aO7BP17zQ4G/BC9CbSRQqJFj8NXqG/+EwmqxBOP4A5BpKHnsQva/QRwD4xK7rbtZjuq67Hb16/CWttQ9DHz767egFox+P2l7kD+0fod8sn4XBY3PAZ8lxf43eXvHhXde9fIH9oWpy+8E7POA/XY77NfRs5QsRO8/8KoD/E8B7hh/TSQzq129orb0Efaxedtx+4+Xo7VHfCeeB2Fq7HsAlXe95/EL0sYYvctp5GYDnttYu6brugeBafz+8PgW9/Yc/RJ8cda7ruhMAfqa19nHYiWk8H/wBemHhuditltW9t1fM3UNz8RfobVKfjd7JiXi+PajrulOttbcB+KzW2g3djuPIEwA8HXtz8torXon+Af+MbrfDFTH3Xvh99PHYR/lj3Vp7PHq7b/rjNKiG7xQmjdbaNeid1naxzq7rbm2t/QZ6lepHomfNIzVscr0DAH4A/fPx1dFxg0rUFXAXBG//PQa9g9EiQeH88IKv87/Qa9+e2HVd5Jzlouu6B1trvwng+a217zDaqOejfxb89+z84Rn1s+iF6ed0XfcnM675V+hNg1+K5JkO7O2H9qMHrzHFW63dyHTi5tbaTwP41kFV+jb0But/NRyyNRzXtda+DL035jr6wd6FXtJ9Ovob+JV76GeE30MvEX1/a+2b0dvG/u/hWpeafv92a+3nAbxyeBD8Fvq4umeiN6jfhN4D73novaK/G72wcBS9SucZXdd9+qDn/w30ap2b0d8cn45etfFr+zCe2ei67n+11l46jOnD0Dv7vGfoy7PRCxUvGNjLR6B3wrlJ22mtHUJvk/vXiKW3P0af8OAVw7qfQR8qsUu12lr7EQAPoH8A34He4eHzsA9z03Xdr7XWfhfAjwx79l1DnxlKkHnKZ5i1h/bQz3uH/fONrbUH0I/9YwH8W+fw/4BepfXG1mc/OoZeO3Ifek3AvqO19nz04S3fgd6M8FTz9XsHe9vkvTAc/23oBZ1fa629Ar3G4wbMUx1/HoAvaq29Fr0A/yD6/fLV6DVe3++c8xPo773rAXy394wacIkZ1yXo9/+L0ds8v7TrurfN6N+y8DvoBbMfbq19C3qH0W9CP4ejTHD7iJvR3zNf2Fo7hX7O3+FoN84LXdfd0/qQpP/c+qRDb0b/jHgseu/qX+m6LvOz+Cb0auefbq39MHa871/Tdd22N3LrQ89+AMDHd133h8PHP4reafCb0ZsA7F5/T9dHX1yFnvH+NPp9von+uXIYuZbvvL2OO/Q2QXvcdebcI+hVpPegNyy/AcC/gOPRiV6SeCN2vNNuQa+2eZo55ib4Aea3ALjRvHe9jtH/0P8peqnpb9E/RG6A8YYdjltDr4P/G/Sb6k70oQkfbI65HP1D5t3DMXegvxG+avj+IHrV6F8OY78f/Y/QC6bmfC9/cBJWJMc+Hb3t7Db0P/z3oH+4fy56e/33DJvnCcH5K+h/oG+auM6HD2t1cjj+pTrP6JnzTcO8nRnm8bsBHJf1vsm8f9Yw3k8K9qjde48e9s8D6LNe/SR2EnmMEh9Iezei/yHxvpu7h0brAserF720/W3oVU+nhzF/GJyEFeiFnN8fjrsP/U3/wXLMTZB7xFz3C+XzG4bP17z+me+9vxtMO+m9IPflnw7r/XfotRc3YjphxYcO7f8pevXiOfR7+OcA/JPgnMPDHIXrPcwVx7M1HP9n6DUEaYKDfbhvb0Hudfyu4LtPQZ9R6jR69eqXoNdYPWSOibyON4Jr3Tyjv18+9HljaPupw+eR1/Hj5Pw/wNjr/UOGYz9XPv909Nm7HkAvVL0TwH/RvR7089nonfMeGvbIdwE4JMewj081n92e7PWvG445iv4H+a/QP9vuG8b1WVP9YjjE0tBa+/foVZjXdV23XynCCoVJtNa+Dz1buaKbtlUXCoXCvmCRNlq01v4let31n6GXGJ+BPjTgZ+tHtrBItD670aXoNQrr6NnglwB4Rf3IFgqFZWKhP7Toqf9noHcuOoo+k8ar0evBC4VF4hT6OO8noVfjvxt9vPErLmSnCoXCPz4sXXVcKBQKhcI/JlTh90KhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIRTtD7Vxoba07cOAAtrb6XAF89WzEKyv97z/TR66uru76nK/2GD1HU09mqSinjp1z7vm0P3X8Xvu41/HMuV4GHqtrmc2NHtt1He644w7cf//9o4OPHj3aXXbZZdvneO3qZ/pq98zUORH2a433MrcR5vhW7If/hbdOUdvRd/q5/Z7/83mwubm56/3GxkZ4PaK1hpMnT+LMmTOjiT127Fh3xRVXbLfL9tj+VP+ya+7l8/M9dj/PvVDYy36M9pD3WbRu3n3N54D9Tbnvvvvw4IMPLnRCl/lDiyc84Qk4efIkAODUqT6pCDc+jwGA9fU+Te6RI33GsePHj+96f/Todq1qHD7cZwU7eLBPPHTgwIFdbfHVe+DqZ9EPPF/td3quCgN2cfU7217WpndO9GrPiQST6HPOWXbMnB8OfWjyXK6nHbc+SM+dO4ev+RrNDd/j+PHjePGLX4yzZ8/uao9rbsfA9eZ77g+ew+9t/w4dOrTrO+9HWT+P9k405xZ7+VFmOyqYRg8i/qDYc/hZ1GevL1M/gHxvr6c/ZnoM1+/MmZ3oKv7/0EN9iuz77+/T2fI5ce+99+56D/R7Bdi9V3/7t397NBYAuPzyy/HSl750u50TJ/rc83z+2H6xXZ1bb56i54quZXb/nA8pyIROhfaB6xHt86y97JwpASsjV1bwsceoYMS1Asb7S/cf94d9vvGZwd+UY8eO4Sd/ck9psB8WSnVcKBQKhcICsTRG23Udzp07ty01eiocVSsTESOz/0fMT9mpp26cw9oizDknkuwi6TS7zlw1p3fdSNq28x21r21kqpzo+lPqvwhbW1s4depUuC+8trneGROcYuJsg997jDaap2zMOg5vPHqsMtY5Kt2IQcxZh0ijwTY5N1Yjpcfqe49183w9R+fIvier4WfWJOVhc3Nz9LzxnjuR6tHTAEQapeie9vadrnd2b81lvZnWZercOax7L8/I6F5QrQgwvtf4SjbK3w3LTrU9Bdu3Wix+Rg3KoUOH9sXEMoVitIVCoVAoLBAXnNHOcZSJbKf2uyk7ZGb/jK7jMd25LHiOLSMap8dK9DtlxZ5Ul/Uh6kckJUYSZ9aeshMrWeo8ZlJl13W77Hre3Os1rf3WwrOd81Xt+pHdVdux7yOtge1j9N5bQ51TtZXqdTM2FN0rnrOI7p1IM+DZaNX+TgaqNkJgh6kolHnaueE5fD179mzKaO352kf93/ZT583uXzKrSIOWrbVqBc4Huu+951HEtok5LDXzQdF2pmyz3vij9VZm6/UpuhfUV8CC7U3tm/1CMdpCoVAoFBaI+qEtFAqFQmGBWJrqGNjtlEC1j1XHzFUZW7WFqvlUDZiFW0QqoswJYipeN1M3K+Y4QUXXmxMSFKkI9+LgEKmqLSL1S6aiUpVxpkbrug5nz57dXlPP7DClhuOxdr9pmFCkDvT2jvY/UuF66m1VY2ZOHdEeiVSGnrlAj4lU5N5YdV6nnI6AsWqXjidqfrDHRE5XmaqX+2BjYyPtV9d1qSqa0DXkftBXYByypuE+0XrZ/6ccDPcSBqNj8BCpkL3nqrYXhTzOUTur6tZbA42XjswQ2fNHw5Yixzpg7FC3aBSjLRQKhUJhgViqM9Tm5ua2BOsFTStrihycvAQLlDD5nUqcHiuJHKfmBPRHoSGZU8pUWx4bnpsQwRsXpezIkcE7d26o0xxmm4W6KGvY3NxMmb8NI/H6EDm06P5gcgpgJ5kFP9M9k2Ukixg0P8/2twbWa+iJZQBTSQ2UlXqaFM4x32vyDm/vaAIQHYPnhMdxkMGSNeg8eow2ul89RqvztrGxMXm/ZaFuep9HzxS7d/i/zpOuk8f8MlZtP7djUu2HlzBEMTephefsFWn1dLxZyJvnMGfHN4fRqpbEJqzQ/RQ5W3nahL3snf1AMdpCoVAoFBaIpTLajY0Nl5koNHWfptXLwnsiu4qXjksl+ijcIwt/URsC4eVSVUk1YrIeY49YqjcnU2kas/SKc+3JHqOLkikQWQjS2tpayqJba6M0bB5bjNr3WEnEaDUV6BzmrwzTY/FeWAqAkd+C3UuaPlFts7oPPNYd3RPK2Gz/dQ40NMfb9wzBmrLveqE6TLGo52RhRFHKxDnwtFU6X9wX+mr/1zmNNE1zwv10Tr0wKN0jfD/Fku11iMhmb/urz17uBy+l6VQKU9073j7wtBX21TJavdf0+cNjp0IHl4FitIVCoVAoLBBL9zomPC/JyGM4Y7QqUUYSuSe962eZNyYxZWebk2ydUJaYsVO1AUWs1fY7srdmduTIyzXzVNbrqOSaJbmYm9qttRZ6JFroNaNkFEC8/mQrLGLh2SuVwWj/vaozlLBpwySiZCTeGHVP6v63/eBn9KrW14yVRDZaZVYWXBdlhhy3d1/xM/Ypuvfs/eSx3Clmkvk06Jh1/fmeGhAg9jqOtGSelkrt3Hz17JFafIHHsA313raI2G6kLfPmhOujRVw4D/bYiMVnjJ1j1VeOm8faeYw81BXe53O8pfcTxWgLhUKhUFgglspou64b2WCs1KOeoZSaptKbed+p9ORJbZEnYpaiTqUoK3VGfVR2FbGULBYy86SLEDE/bSuLn1O25dlho/i8yDZt/7fXiaTM1hpWV1e3pVvPNhd5f2fMP4prJWvg57oP7WfKyHkO+2rXUj3u1Uarr/bYKL3lXiTzaH953q2ExhtybpRZ2f/5ndrV+OoxDGWRnpe49lfTk0bw4q09D1uuKa/JcpxkcZk9MtKsZbZzHU9kj7djVZtsFtc/5QuS3RvKZFX748UW62dRfLjHQKOSd4TnG8K+cc9EtYvtHp2Tu2ARKEZbKBQKhcICsVRG21obebrZ5O8qQapNST3f2CawI6ko21H7hGcXYPs8V6/r2T/1+lly/Ih9zunjlN0zy9gUxcJl9laVHCPbsMVUknSNXbPtTnkqWqjE6sXlarvKxGwfIhYyJ4G6Qv0JVJNi/1fNhjJZa8ON1ldtp1kfeSxZtkr1HoOOPKHZhmoX7Lk6rqjUn9cO1+Kyyy4DADz44IMAdt/zxJyCFEQUo2//j+zFyibt/9FazmGLCmWr9npq14zK/mX7QIt76Li9mNjIgzyKkfX6pBocepifPn16dE6k3clYvvpW6FzZOdECF8titsVoC4VCoVBYIOqHtlAoFAqFBWKpqmNgnIyChmwgdx0HxuosCzWiq2pNw3yA2LDPflCVbc9Rlaqqcjxj/lTCbM6Jl8wjKo6gTliZo1HkRDbHCSIKxLdzompszwFEr6/zNlUUwPvetheFgFE9RRWkXZco/CVStdrrqepuTv1bvZ6qJtU5yo4jSowRqfjt9aiK1n3AObEqPFXlsi88Ru89z9FIk7mrCs+upTqIsa/so/eceOCBBwDsvgeyRCtbW1uzQsx0v6pDm3XqUbOCnUNvrLZtVR3r/e+pY1WVqo5nnup4bvIZwgsr0+eZPn+8lIiq+lZzg96TdlxTSX0y6G+L9zuxbCcoohhtoVAoFAoLxNIYbWsNBw4cGCVn8BwDopASZZFsFxg7QamkpwZzIE65p8Z8K00rc1IJyWO0UXL9SMr2DP463izJwZQTShZMHwV9q7SaSfcagqLHecdmKRhba1hZWRklQMhCjE6dOgVgzATsOVGyAR5DyZvn2r2jEr+GpHlahMihTNfDY7SqUYj2oV0XfkfmwDZ4b9x777273tv/+UrHFbbB8SgrB8ZJHHQOvBSjuif5nuvnsRJ1eum6LmU8XupXb+/wMy80S/sS3bt6/3hsOEpjmBUBiByMlNnac9j+VEpE777TkMQoIYv33NHkGryPuKb83DJaItLUeJoBLTwRpSe1fcyKfiwSxWgLhUKhUFgglmqjXV1dDXXwQCxdZLYEddeeChfJkv1TyqFE5kmWlOTVZpoFXKvUGwWOe3MSFUfQ0AwvHWGU+pHIEpDrvHrhFVPn6FxZaLtTkuXq6upo7JZNcayUkpX1ZuEPKjXzGG3DO1cTVGSJRTT5gkr6yhaBsb2bbbDPWlTd0/aoJog5N+ngAAAgAElEQVRzRLbqhfdwPLSHKuvOwr0iZqbsy15HQ6w49x7rYR/pS6H+CtqXzc3NNOGKhp9NsUfvmCg1q6fdmUqF6aULjYqWaPiLnduoBKGGDM4JCYqeb3bu2RfuZ33V/W7nUxlrVPjCK+wQ9dm7J/ReyBLl7CeK0RYKhUKhsEAsPQVjZMOw/6uUrHYaj4lF5cJUUvISw0eJ1NUTkmOwoFQaSbQWEQtQG40n/eo41EPRSpaUHNWLVSValXSz/qstzZtHnYsskcCcYwjaaNknTfEG7DCfKOm6bYtQiVc9qrWogE0qrx7DmvRcWQOwI4Gr3wDf33///QB2M1pe89ixY7vGoX4L7LuX5EDZtiagt+PSe0uTuCiztqxCy5NF93pmE+Z1ojJw9jrW1julEeE8eTZfPZf91wIKno02K3EI+F76kXd2ZH/3xqHw0nfqPptK9u+lb1TfF91Tdk5UC8FjlHVzXHZ/RIUV2IYmFbLH6j0XpSu1x9rxLKNUXjHaQqFQKBQWiKWXyaNU5dnvlJUqG/GkW7WR8jst5q0Jw71jvDJ1tm0gluiidIq2j2q30+tlLE8lSmWyVtJTSfLhpBLUvmYxzLqWqhHIYmStBJtJlisrKyPbFccJ7Myljp3w+sDP1MuUDI/fk9l62pfIK9yL/9N4WbI4TdzvlXBjTLd6+/K9l+Zybnk0uy/UPyHykM7S9ikbUQZt13kqjtbzFldNzPr6+mRhdWU3Xhw4r0VGpn3zPPJVW6DaD77a6ynDnCoy4n2nLNTz1YgKH6gGjedkqW2jAhiedlGve8kll+z6XkvfAWMPZXtvW3jnREVbMn8MYip+f79QjLZQKBQKhQVi6ZmhogTuQBx3R3g6d5VIyD4uv/xyADvSlCe9X3rppQDGMVVZFhn1cNTsTp7UHsV16XW8WEiVGJXRqh0G8Mt6ATsSqyZqt/Y/tq+xxZ69muCcaHYcZQ+e9DvHVttaw/r6+rYGgn2w+yBi+Drn3jma0F5tqV65QS3OPYe9K5Ol9yXhlYZTj1RlJ1xrb8+qZ6ruXS+LmjJx1foQnq1Q94hmAuKrdz3VFBGe7Vnv18huCez4hWQsUhk47w9lbR5rVv8EPn+OHz8OYGd9vFhOzbKkXsDeXo2KPugY7PlRoZBI42HHpb4Gam/NfGz4ns8XXSfri8B26eXO1/vuu2/X+DINUaQJzX4vDh48uJRY2mK0hUKhUCgsEEtltFZyiIr0ep+pxOGVraPkyPJa6q1LydzLnELpiVKbsjhr91KJW+1q1oNT+6uvEeuy0rsy5ajUXWYD0rhDtq+5pS04Zh7jefoqorJY3twri19fX08zQ7XWts9RZguMs9Go5J0xTbZH7YeyN09roF6sbJ/7j/1hrKrtizL9yBsUGHueKsvS7+3+VOYfMRgvblc9yMm+OQbOld2rmj1KWTH7xoxU9jp6D0QaFXusPSaLwV9bW9u+DvvgedpHsbHaV3u+ahyISAPhta8+Derxa79TLcycfc729X734oMV+kyKYvJte7zv2RfVpJD12znTe5vzSt+Eu+66C4AfV62/Jdl9pfNk82AvEsVoC4VCoVBYIOqHtlAoFAqFBWLpzlBK3a1KJQod8IoJEFQ1XHHFFQDG6lGFddhRl3VVU6kzif1MnQ80gN8zwEcp0AgvEb2ql7KECIrIyUsDxj0HCo7Dc+ZQqBPXnDAiTQ+YFRVgv7R0n10XXW9Vm3OtqYqy/3OsWhaRr+wXTQwW7D9VxnylylgdxOx1NN2g52imqlUN74lCNYCd+eH1dM94hT24/nTm4bG33nrrrnHRScWq/3Svsi3uL+4lu24cu5pGVIVt5yZKOO+BjnSEOr7xGGBHLakOm56TmqqKVT3qpf8j5qqOvf2t96wtyqF9jNIYRgVd7PW4Dhpuo+tl4am8vfHQDGH3qjrF6bh4X3n7W9/rb4xdAy0CsiwUoy0UCoVCYYFYGqOlm33mROAl8ee59nMrwarBXZ1ENGjeSzAdFdP2yrFFbvZRUXULT5q2bWVzog4MUZJx+78630ROHxZRGkV1+sqKDKg06jHVLPFBBFuuENgtlUZFp5WdMqQL2Ak70LmNHNvsOHgs+3TllVfu6hP7YYP1o1SPKuHbvRQlA9HiAmzbOuywb1EiGC8cQtvndakxykKelEFp6k+yUi9tI9vRRPvKbO3/XjicgoyW97JqKez/qtHi2L2SgOyXOglFyVq8BAzqYBjdp94YNRTIS42qmjQdrz73bB8jrZ5e10ujqE5IWtDBSwCi2rwo2Y4NRdRnvj7jozSs9rMqKlAoFAqFwiMAS2W0586dG0lCNmhfXbuj0BYroSljpfRJu1TGnLx0bLZvRJZoQaXDrFxdlERcmbOV3iOmrLa5OZJlZMvyUv4Rajf0WLdK4no9L7jdK+SQSZZd123Pi4YN2baVGZPVRYkXvHOULXoJQJSxcB1ow/TsrboHlY1ogL89Z6qkohdGomON0kPa8bNd2qPVTkmG7hXOjtKDamIML7lKlKxhTjhZxmi1Da+4gPol6Fx7yW70msqUlZHNsQmqpsuznas/iWoRspS2us/0+WcZrT5Dor3qhUlN7TvCu5+i4gJeWkrVRGkKUC+JzNSzcFEoRlsoFAqFwgKxVK9jW5Ios80po8g8/NR2FRVE9tK1RUXUCU9ijtImKquzErNKqiotarC+Vx4rKovm9XFK+owkW3vtyE7ueRaqNB9JjZ6HOTFlK2GpPO9cYGdelMHyvefJSdapkq+uoXc9tSlpOkW1ZdpzVGOi7FBL4nnHRjY6z38hsheqDdW2F6UJVYZpx6JpKemxqrYyj915yVoAX+ukfZwqKHD27NkwOYz9X59J2q5XXETXMtJaZIl5dK+o7dR+pvcYNQLK5ry+ZPc9sHtd1J/EK1Nnr6v/R8dYeCkmdd9FqR/t+V4SCntOpmW011okitEWCoVCobBALD2OViUVT9qJ2KJXmiyS6CM2bOHFydrre2nHVEpSL12vTe2DF/PofQ+MC9kTKvXaeVT7UGQzzQo7qCQeeSEDY0YWMWrPPh4VkLCgx3rm2a0eomqT9UpzZeXPgHHido+Ra8xlZqtXu76e6xVTJ1OO2GkUi23/172T7W8i2m+R1739TBlzpMGxfYn8GLzSgVxTMuepvXP27NlQi+Ahet7MSRc7ZWu07UZtefeE9kn3ihdVERWkIKISj14f5qRg1TmNnh3e9bUvOhfees31qvbyEmTaqkWgGG2hUCgUCgvEUhktk8PPOc6+qn3Vk6q0XZUoPYkosqPoOVYa1Qww6mGnXoHetdWeq/CS13ted957bzwqFao9285nxEIjhmPb0etGBRCifkcgK4m8Ge2Yohg+LwZbNQ0q7WYMIyoEkBXE8GIdgXECdU9boJqNOTZALcOmDNrrs7J4ZZTZ+PRY7XOmvVANEZm8x/4i/4EIXddNst6oX9F1IyaU7fm58DRNysCmvJz1fyC2BWf7W+9t1aR4Cfuj50Fkh9X/bbuex7ceo78Tc9baamLKRlsoFAqFwkWO+qEtFAqFQmGBWKrqeHV1NVVX8LNILZM5Nk2pgfeiylEVolUdMyQkCoPxVNWRelH7PCdUR8fhpYDUuY1UOJn6R/ucqWWmVDbe99rHKfXN5ubmtpMNQ3ZsHzVgX8fuOXNMOUJoaElW8zdy3POSdBCaFpDH2hq20T7W7wkvcYmGRkSpGO35PEfT3EXmAfu/Ooap6jhzKorucc+Bijh37tzk/skSYKhJJbu2fqbmrDmpRCMzTObgSOh9o+vlhQZGzpfZukTObzp/9n30HNBzsmeIqpWzddPnZtRHO262Zx0cH456f68oRlsoFAqFwgKxNEbbWsOBAwdSB5OM7Vp4qcmmGMUcSZNQKc46QGlwuzoHeOEdkdv7VCiNPddLhm77MSecRDHHSWlOEPpcbUF2na7rQlaytbWFs2fPbkvtTOjgSe+6zuq0ZFmpJjyItAdZ+s4oGUA0TiB2qCNjt+kblTFFDm6Rs5IdJ9uPEpcA4wQI6hylTlJ236kTmR7jaXv0ftL3HtvS9s+ePTuZhlGv7SUsiEIOvZKe0XNsL+woenZx7FnYFa/LNY00UXOwF+fSLPHHVDhZpOHwjiH0Ol6oztTz1LuOp81bJIrRFgqFQqGwQCyV0a6srIx08V6IRhYgrudE0nnk8p3ZPaKwHq8UWJRWUW0b9jO1O0TsJ2PDkR3EMjVlIdp+FCLiHRtJmplNLEvaoOPIwq/stSwL5Pi8cmuEXtuzqU+lpsu0IlMaE288WUo4YLxe9thoH0ShExa8r1jYXJMeeGlJozKIahP0UjBG5dC8JBdaUIN9zBKNcA157qlTpyZL5UX3uB1zppUC9ubLoMd5n0V7yNNs6b2q9kgvDCbSTkXPI48tRuE8XvrOaJz6PrPRR9q9qZBIi+z3Q5/TxWgLhUKhUHgEYKlexysrO4njtXSTHmeRSShqV5tiGpk0FaX7yoopq8TltTGVzi5ji5Ta+arFzz0bbeSZvBd7a+StvRfWPQdT2gt7DV6byertXEQahjmJ2rWQeMT4s2QXEaP20swpU1LP8SyZfJQ4wNtLnBOdiyzpiqYujSR/L9Uo/49evQQwHAePUTtylgZ1TgrG1hrW1ta294y3BtEzIvJitf2bStSfMc0o6sBbS2V40T2dXSdizt4zOEpUoXvVruUcr+kIU8w1s9HqnGQ+PjrmZSSrAIrRFgqFQqGwUCyV0XoxVx5bfDhpzOakYZtqa04i7ciumdmIouTXUTJ+jw1T0teYTq9UWCTlel6MgC8lTs29/TxKTp4lLfdsMdEadl2Hra2t7XkhO6E9DwCOHz8OYGfN1GZJ9uPFSqo9KmIcXrrBTJMRXUeZhdq7Mo/uKCbRS0+qUrvub86JLfjNNJBR6rvI6z07Zs69oSkXteSex2jZ76lYyNbaiCFnXsyKzEM1YvzRs8z+r2uapShUdh2tu5e+la+aEtMr2EAou9ZnoedvoGkgI61lZqvVY6b8GiyiPAGZrXtOu/uBYrSFQqFQKCwQS2O09BylPczzQFSbzlz7HRDbsvYS5xYVgvcyphARK/U8oyPb5V4kS0rkGttp5zFiaPq9J81FXoSZt14U4zlHexC9z8A4UzJb22/abVUCJzPKskkplIHuJWbQ8+RU9qdeup7dKNrXkcd0VpCAe0RjZS2j5ZxqiTW9F6dYoG0/i4VU+20UA2k1BeyvzoGHruuwsbExinv3njtzvI2jMU7ZQz17a8a87HG2j1E5UK+vymg1Fj/L2BQ9M9SG6uUY0P08FWtuP9N9pQzanqvzp/eT5xntRQcsw05bjLZQKBQKhQWifmgLhUKhUFgglqo63tjYGKUzs+qSSF2k7tueKiBK2TZHpasqO1VjZYkEtI6mqmts+3Mci6LjdA746qUHVKcnTUIQqQHttfeS1kzPjRKBew4oc8C9o6pOqzqOHC80UcUcJ5goBCBTA08lLrDns9+arCG7jr5yv0UhG/Y6uh84F0xYYVXH6pR0ySWXAPAdA4GH50ziqSh13XSfWxWlp5qM7q2u67C5uTlyUsuc+aJk+3P2bORMmKUOjJCFFXH99dliz+Ga6bMpSgrhPRv1GahOWF5dV31WReE+3vWm5tqu41Q4WXZ+lqxnEShGWygUCoXCArHUFIzr6+sjKccL6I8CxTPpI3LWUQnMY8OeI4l9bxmtGuejwH6bQCEqqabwnDuiPkYJte21dR4j9pE5QUTvLWObCt7XOQPGjHBKstza2grXB/BLGtp2s7AeZTtT6Ty9z6LE+baPZIt8JXR+yEDs/+wTWaimT/Sc4shUIw2GpmK0x9LhLGJQ2neLaC29RPSEpg1VBxdbaEGvPRXas7Kysn2+d+25mqYspV8UAqRzbT/TfadOoB4z03tNQ3Y8bQiPicoAegxb72EvLErHoClrVQsSsXB7jN436tjkOX1G+8CbZy/UaBmsthhtoVAoFAoLxAUrk+eFzmgYgmJOgLNKYpk7fJRWLmOnaqug3ZPSGkMnvHR9WSiGPc4yjCh8IBqvhUqOU+EEFlFYiYdoHHPsuTZsYEqyVNZm94mOSVlBlhIxCkOIEo1YTDFZa0cmk9UQmiwlnrISZScasuH5Eyh0nFbi1706lUQmY4hTGiMgtq9pMg3vmTAn2QmfO4QyZovIbreXtKpe3yLo3lT2ZtvkukSF3r17TbUCkd3Y66N+xra4Hl6yk2gNlQ17YT5R8g5NwWn3gSY1YV90vJ72Ta+7aBSjLRQKhUJhgVhqCkbaS/g/4Ov4M9YbQfX0U8UF7DmRLdhjtGpzUUZLNpp5VqpEp+nTrI0usmWqbcZKaso29lKUXMcZHZvZK3Wcc1jxVF82NzdHUr1lb/qZsl8vAX2UhDySrrN9qKyNNkFrj6XErdfTtbRJ/tWbmu1Gyf8tItarwf9eCTrdQ5ooxWP5et9Gr3bd1AarjGlOofbMy5TjVPtwdk6mwSA0gcNcPwx7buR97LHtiPVGhUls3/R6c/a3HqNpT/nqJf5QrYqOc8pmbPsUlV603z2cBEdZUZtFoBhtoVAoFAoLxNJttJEtDZhfONpLMxfFYWWezHP1854NI2LMmedwZC/WfmQxuMqyMzuESrte+jm9fmZ78/pqP1OWlSVW175OpdE7d+7cSAti7UOali9KM+d5ZUae5BlL0TlV9sD+eN6yLICg9lfvniBzUFscGUZmB2X7mnJRNQMWOl9aUi9i4bY9tc0pO7GMRxksx6Wfe8zJXnfKf0Pvtcy2HHmue/s3iivO4mgzezLgx6jqPFBLwf3haRqiUoq637xShAQ/4z5mPzwv7uheUy2CPrPt2Al9bmeaDUXUloV97pTXcaFQKBQKFzmWxmhXVlawvr4+yoZjESWUVjaaSa9Tevq92DIo6VnmpKxaC45HMXL22Cjbj2dPjphZdH17jrLEKEm+N1dRdicPcxKpzzl3yq6l+8AyD69ogAXnwltLzThGtqCxkV7Cdj1GpXaPyeg5ZHHZObTbR/GsHlPTvaPMnazEYzJq69Y27TwSkV1cbbReJirOgTInzw6r+/js2bPhPuVzRzUAc54hCi+blGpFdO/PsQFGmp+syIjaJT1GGxWE4P7me9VA2HOi62Ux0ZGfTLQPbXv6GxD1wxtXBLtue/FT2U8Uoy0UCoVCYYFYuo1W2ZQnUUQ22UyCmfI29jxvozhatQFaO5t61kXj8Jim2mY1NtKTYHUOIi/qjKnr+LQNj31Hdinv8ymv4syuOwfqdZx5rHul5iys/TuyyeqaejHYURYsZYd2Dbif7r777l39j7LiADt7gzmHjx07tqtvOk4vtlhZodrZMr+FiEF79mQ9V2NgPQ0RbYzKbNVG68U/z81BbO1wnr09eq5EGgj7v3pwR3vJ89mIvPWVJQM766Brp32z50TZnBTeWhKRTdu7f6PnizceRZTFzmO/0XXVm9/LyhU9zxaNYrSFQqFQKCwQ9UNbKBQKhcICsdSEFWtrayOXc08dE6kP5hi/o8QKnso1SkatKmSrOqbqZkodYtMoqvNOlAh8Tio0PXYvAdeRw4HXPhGphb11ixJjeIhSS2bQcCXbJ027pqomDZYHxuo9TX2XlXTMEqHY63lJ/k+ePAlgR02apU3ktSPHInXysep0LZPHNtTRKEsXqiEhug/s9VR1qGE9nimG//NV58RTHRM2AUjm/Li+vp7uNzWdRPdH5mhG6H7w9kl0v2TOUFyXo0ePAthRuXPevP5EKWUjJ7/MsZKvej3bxygRS2R28JLHKFT9m4UTTfXdtmPfV3hPoVAoFAoXOZbqDLWysjJiEZkzxZSTgneOIgs5mUqu7V1f2QBd5SmRUdL0+qXp8yLX/CyxwxxjfhTWod97TE2dEiInM3tdr/h8dt2srx64dzQMx7an6Q31GG+/qbNQ5Pyk4V7emKPUojbhgyZw0JAWb26j8mtzUjFq+9ybui9sykctwxex/cyJMQrj8BLRK6PV5AmaMMP2yWqKMkZrUzAS9r2m4swKARDR9eaEFU4x2ex8nkunOB2X3Seq9Yq0PZnDlu47Zf8eW1QWGhWn91J/eo6Z9pzo2vY6uj+8ZD722DkhjOeLYrSFQqFQKCwQS7XRArkdImJEka3Wfqbvo/AXz61fkwxE9jA9336ntlvLfsgc1Val4/GYodpzI6k3S/Ieub9nbUaSq2fj0na0vTnSaMYiuq5zmah3vmeLted4KRi1/2pbYmiFlwQ9Ctz39qraRLOCADou7h21u+r1bB+VOUfJNOycRCUDNXwqu5+iguYeS1UGGzFaj6nZ+3WvKRgz3xAiYlcepsIJPVt+FBqYhaVoyIz6XXjXibQtWTL+Kc1ZVmgjes5oX+fs+6wf2r76CKh2y343R5O2nyhGWygUCoXCAnHBGK3nRaaIElZkwetRcgtPOo0kbS3ZZaUelc4ItQV66QGjlGhqI/SkUmUfmTSotrGoHFzmJTy1Pp5tZiq5RWbPmcLW1lbqmRylasuSQSjLicp2ZfZdRRQ0D4y9O+lBqnvXsympPZ17U/vmjUFtsVFJQdsO96zukTl7VedaiwlYRqt7NEp079lULTPL9lHXdaN5tPdn5lHP8xWRfXUqeQsQM6+sH6oF0ZScepzXXvRcyPxlIpbP7+08RnMRaRft57pvta8ew52KiMjuJ7t+5XVcKBQKhcJFjqUyWut17KUHm2Kjnk0pKr00h9mqFyhZgvbNs+doGkWVODPbs3qSRqXw7P+R1OXZV9SGpVJhNBYPkU0ukxIjG/CU13HmybmxsZEycG2ba8n1ydIbqnYiSqNn7aKRR7cyS887W8Hx0JZq+6OFKHRtM9scoZ6WkT3Rfqb3j7bv+RMoQ4vsrdbrWP0hlG17bGuvhb4ZSwvsMEBP4zQnykHHOkc7FJ2rpQ8jm6bXvu4l75wowiPSUniMNkoxmXn0TkUqZClfdRxz1ji6B7wSnF4a3GK0hUKhUChc5FhqHO3q6upI0rfShLIEZaEq9XqfRaXU1HvSnhvZ9TzbXVTaThluFpuo5ypr8aREIvJ6tpiybUcsxV4vkvIyb/G5NhrvmL14/3nnqEYjWn+vHSIqwK72Stv+VOylx2j5GfdIFgvJY8nEeD3tk2ejzdY56nMUgx1phjwGRURxtFlBc7XjegW/syT4EfQey1h8FINtMaWNimKy7f9TWaS8fUCo7XoO84s0WnO8+HUuPC/36NqRR75F5EE8pxyf7tlMM6DP50ybt58oRlsoFAqFwgJRP7SFQqFQKCwQS3WGYjo0IFdbqLpKVbqeylDbiRKce6FBeq4a0b2wFFUDzlH/am3PSD3rOZhoW3MCxnXMkVOZ149IjeWpg6PQhjlJLohMDUhnlsi0kI05S/qu9Wh1L6mznKcm0+uq6sueo/Og+0HND7Z9nqN9Jrz7IEqFR3hOXnqdKDGGp76NQpuiMB/b3yhhha6FbT96r6DZCvAdZNTBJ0od6j0HInOJrqm39yNHw+y+1PnSxCxe0gl1upp6vtr/dV9FtcK9/mv6TJ2zOYlsMvOTtqvtaUiX/d86QpYzVKFQKBQKFzmWnrBiThKDqGxVJnnNcdbQ6xFeUm373guSjtL0eSEjUQhQZLT3+hiFaHgu8+q4EIWCeM4eGhgehatkoTpRGjrPzX4OVlZWcOjQoRHD9MJtlGnpPsgSl2gokErKWSIRgn1UlgzEafS4d9RZzuujJpnQBAyWRehYoxAhC56vY9Z0dsp8bXsRs/GuO5X21GPWuhcPHTqUOu8dOHBg+9qqebL/K1vbS+KDKPzGu57uRXXK9ApJaDv6TPRYnT4bdDzRc9abiyh9p6fRUO1U9Hz1HGEVmbOhjjkqDmIdU70wzGK0hUKhUChc5Fh6wgpiTqqyyIaW2fMiV3JlAPbaUbpBz81eGSy/U3fxLJBfoRJYlt7QC6/x+m7PnSrD5/VLpdAstaCOI7LvZunhsn3QWtuVas67tkqzKq1nxdWnEhV4ycm9EoPeubYf3CNRCIO2bccTHUMWrIXggR2WGNnKvXA5IkvPZ2HXjXOsa6m2QMtOozSoytA9tmU1AZENr7W+oADP9zROvD90PpTJZun/pmy0XCcPapf2bJxMC6t7SMPX7DxFBQci5pwlAsrYb3ROlsRHEaUhnVPYIXruqD3W9sE+r4vRFgqFQqFwkWOpCSvW1tZGLNUrQRd5/6mdChgzi8ijVhNNADtSjbIPZT9e0gG1maiknHk1Rp50HnuJpEFty/YxSikY2bM9m3fGEKJziCm7lf0sC8pX8HxK9/b4yDtWE1dYZkZGpHaoaL2ydKGRtsXzOtbShxlb0PVXlqJSe5YmUlOLZmn01NN6DsONNAJRoQBgbJuNCntkGqIpRmvT7B05cgQAcOrUqdGY95JGccobVu9ly6pU66XJH1Q7A4znXX0oMi1fZFeNihtk41F4/gRaVjJ6VnlFOqYS13j3IKHaRWoR7POQ39lkMcVoC4VCoVC4yLF0RqvM0kpEkQdd5MVmj4nYGhEl47bH7iVmK/Iu9NI2TpXUy7yqo7R2al/xmGHEgrNYuLmM1vvM64sdQ+a1ORVHu7q6OpL8rQ1L7Vrarte+puXUNIcZIjte5mmt869Mk/Nox3X48OFd7WlRDk+DQuhaTXmd2nZ0LniuxkZmKUAjlmo1RvyfzJXH8JXnWhun7rcsMTxjsK2HsrbHa0eetllcq7K0KDWrp83RuVZbtqcNIVTT4THCiKlHTNDTUqndVTWI9p6OfBqi+Hcv5ntOTLSOT23CylqtNoHrXnG0hUKhUCg8grBURru+vj6y/dgYJ0IlfGV+WXaniMFknq8qTSmz1nHYV/1c+2XbibIhqXeod25kq/U8VyMmE43Bi2uMWKrH+qcYrTf3GguZMVrG0Xq2We23Mj2VvC0DY3tRObHIV8BCk5RHUraF2tmy9WB/I/tWlglrym9BbcbeWNl/9VN0k0sAACAASURBVP61pe70eupLofZWe64yWD2H4zt69Oj2OVwv2lszb9aVlRUcOXJk5KnMc71rKdP3bKZT93+WGSrSOOn4vJhYQvedt/7RfRgxOO+5qmvpxbArogxQUa4Diyl26WmIVJugntl2f2u+g/I6LhQKhULhEYClMdqVlRUcPHgwLGcHjJkdoRKQVwQ6ajeTPNX+GRVEzvqibWVlnaL40og1etdRW/CcfKFTHssZItuj5wWqEvScc4jNzc2QOZKVzImx03y6kb3YQmM59VyPlai3L20/UTYeYLwn1O7lFYvXOZwTz0xE9nydRyvxR/tabXaa7cl+x1dlsnxvY32V0eo56qFt+2RtcNFe1ucOYftAlsMxaf5gD1F5PEK1Btk6RdoqL6uYZ5+2n3t9iPoc+WwAMftUdu8956Jjte2sr3PYuM6psny+2hh8vdeK0RYKhUKh8AhA/dAWCoVCobBALN0ZSlW91qiujlGRk5KXwi1SHc8xwE8FqHvOKaqGUVWX137kHJCpTSLX+KzPUfGAyBkmc6TS8IQsfGlKjWahTlxZqjXunSyURdvNkpErNO2fJhnwQhk0KF6dUjwVtZo+9DqaxtP+P1UQwHOG0fWIyj96TmrahqqOPdWhOvfxlfeGOjrZ9lTdzPca3uTNiQ3fUTBhhTrIHDt2bPsYJq9Qhx9NtOGt6dSzY07yfc9ZUNuOnOs0uY43T5H6ek6YX+QQ6N3ruje98pIRIhOfl1qSiMKkVHXsFRWw55bquFAoFAqFixxLZbQHDx4cJRSw0kZUiimTOKLC0VHwuRcErmw3KljsneMVzwZ2S57KgqOkCp7kqc5Vyrq8cKOoj/p9VgaQiALwveQTc0OfbJ/s/GUOI3Y+PdaoySyi0mNe6JQ6+ESJLLx58kIxbNu233o9dZzKHKiiUKAsBGlKs5ClHIycXTQkyAsn0vtIHZ3svaLOa9G955VY5LocPHgwTbCytrY20hZYVk3WrMkz2E9lw3askSNj5IhmET3nvPsoOjZL36khRsoss3tDnx3RdTwHqki7mJUBjTAVumWPUS2TMlwgLlm6aBSjLRQKhUJhgbhgKRi9MmNa8ktZYpauTxmSJjDPSoJpsgNNmOHZI6fCXrJQloiFZEn+iSgtnCcxR4xZpW/PRqtjVybrMTXts0qwGZs8d+7cZKiKJk3ISh4SmY1eJW8NL4tCdmy7uq/mMH+11eu+8/qv50ztIYtofbz3ur9UQ6R99c7VxBRqs7WhNZr+UPe1x4L2UgSAmjSyVvbBhnzQXqvpHrOkDESkNYiSX9hjosIUc0JZiOy5pmFwOsf63rtGlBDFK9IRJXzR57XHUqPxZRoUDYviMVzrLLzH7qGy0RYKhUKhcJFjqYXf6QEI+OWjKPlo+Tr1os2846JC0l4ZMfWSVLtelmxbPaQjD0/7WXTMVGo0b5zaR6/kVFTwPbIJeX2bevXaZV+yYHrC2sMiqbbrul1p+zy7irIQtbN6KRgjL2MtV5axN00dqN7HlmlEXtPKcCyzVXZwPtJ3pB2xcxKxfPZDk09486lexnod75zIx0E1BPYze99kCSsOHz48WlMvBeODDz4IwPdWBfL0htH6ZElvIo9473mg92U2Xr2OJo6IniWZjTaKFsmexTqOyN6fnase+p6/DBlrZJu1a+1pHovRFgqFQqFwkWOpjBYYp0+zUo6mtYtSMlqoDUHfZ9I0EX3nxXBFdogsiXhkU4psS57UFnn0zokTVWRewSo563i8Pk/F2nlxqOplmtlnt7a2cObMme0+UXK1HqrqVarrktn1Veuhnstqp7TfRTYsZdZ2/HO8sgllMFG6vszuFcVve7HsnAt+R3bKczVFol0DjUdWhuulbfQ8XoFxkQa7d7SE39bW1qTHOs/nubTj2f8j254XoxzZlCOmm9kyowIonl1aj9nLfRmlT/TS4UZ7RDUeGWOf6o/HvhX6HPLuJ963ymS5ntZGu5fynPuJYrSFQqFQKCwQS/U6XllZGXkdW3uUxkJGRc89yWvKVqv2OPt/5F3oxWuqJBSVMbPnqCSZZWZSROxHpV7P3hF5F2dSeCQpz5GctY2MfXuahilWq/vBStM2ptK2q7a5jNmSeWm2LzJou1ejNdNCAXZvqbZAvUznetHaPmf7IPL+zBit+jao/0LkUWz/V9u2rnXG7tQm6/lykLHYdcq8Vm3ieLZrC7/r3tH19uLr1d45Z89HY9aoAE8D5I3Lvnr7MYq1jdqwfdVz9VnhPYv1ORo99zwNQdQ31QbafaBsVxmtlsTzzum6bjK7136gGG2hUCgUCgtE/dAWCoVCobBALD1hBaGOTxYaAkRQNZGlRNRjVY3lpfKLnHiy9IaRq7znBDOl/t1LrdeoVqbnUBMVM5iT5GIvSQ6iNjLVVBRiEKG1NtoPXvJ9qo1UXemFakVOQrp3qCZl+IdFlKjfKxgRzaGaKDzzhqrSphzq7DlRoQ01q9jPosIA+r1XIEBVrnpdL1yOfbU1Zr1X+7+95zLV8YEDB0YmH7t31EGKrzrWOSkYFVm9ViJ6/mROkZGK3XMW0vYj1bVV/eq6RGtq247CB7VNzxkqMnPpe69AgDpsaipGb05skY4K7ykUCoVC4SLH0hNWzEn/R8lKHUq8c6KkD1NJ+IFxGamo3JsnWapkpJKld07U1yhJhHedSPryJMvo2MyRInLmyMJkiKlgevu5JxlnrGRlZWV7P3jJJ6KwMTKxzMFE+8t2PQZLsD2yn8iBz9sHRJTO00stGe0dbdNeT0uraXpFTacHjEN0lNnq55bRRuEkUcIE2zfOJ1mIMlkvDeocUJOme8YrDaiMlnsnS64zxd6iZA1eG1lSCn0WRWEvXlhh1IfIEQ2Y1kZ4bDnak9pG5rgVhRN6YZNcD2Wu+iywLDhLfrRIFKMtFAqFQmGBWCqjtQmcVeoAxmWpeIyy0iyhvULtLF5okIa9ROkV7fWm2Ghm1yWyFGiKyBad2ReiEBDFHPd27as3J1N98mxzma3XtmdLoXn9jRgtpV0msvfSN0Z2dt0z1ram/bZB8fY6lgVFrER9EmxbkWSv+89bF7WZ8lhNCO+FXUVMVkve2TnRcB6dV4/9RfdeFLJhMbfsmtWksR3bb2VGyqq9UoheukwP3pgjv4Q5tsIpXwnvOtHzJ0qCAcShZ3qPeOdHIZdTNlxgmtF6mggbqmWP0QQ3FlbbUjbaQqFQKBQuciw9YcX2hSXNnf1MvcasHcgeB8RefyrFeWWdNEGGpu2bw7oiycsymalScxkbfjjB1JEEOWc8as/R5ApZoeTIW9tLsO+lnctsuzbpgK6b/Z97RgsbeMwjSklIaIIFT4qPNA3Wq9GO0SJitt641P6ktlsvjZ5+p/PrnRMlm1CG66VT1HO89rUfmhpR50gTxes1gdgTn9eyiXK8PvB8TXSgNj4vXSyheydidfq/PTZKLGG/8/wTIsz1As68wfcSbaDImKt+HjFX3efeczU614vU4He0v2fPnf1EMdpCoVAoFBaIpTLagwcPpp58KgFrsmi1NQFjhhV5aXoxgxFUEsriWuewxSgGLopn9WxBev1IOrXfRZJzxGy8Y6dSzFmozSeTaCPbT9Y2j6WGw/M+56sWCiAzOnXq1GT/o3hTz7ao+yDyRrdQNpTZnqP9Fu17z94ajce7JyImG5W+86B2PN13WdSA7iEvpl4ZYKZl4bls3zuHXsb8Tpksnz/2Pok0aMo8s3SDkZe2fm+/28u9rXsiemZ5qTE1PWdURMNLpxndy1FUBzB+1k75MwBxDLHuGe/3QguKLBrFaAuFQqFQWCAuWOF3L6YqkjqVAczJnBPFM3pSm2Z+UY9Cj8kQUdk8z96hUmeURcizI+v1lGFmBcZVytZx2nNVYo6kYE9yVilf4zizeOQpG6091+uDFg9Q6dZjDfRE1j5FscR2XbhnIvs+4bHUaB945yiDiLQfnjeoFgTQYu1azs6eo0xWy+VpzLvFlMeqXYOocIjaqz1v2rk+B95e9bzBVVOijNbThikTU8av96Dtr2qrlFl6MbHqaxLtO3v+3H1t+xiVw4vKQs6B7gdvfJG2z9NsRD4uUVv2M/u8KBttoVAoFAoXOeqHtlAoFAqFBeKCFRXwXK9VVasOJZ4zBaGqhUhtmgWOqwpljvOVYo47/xS841XNlCWQiNqZ048oRZnOuaeOicI4PNVypt7x+rS5uZmqCqOE5aoqssHrmqZR51TH5SWDoLpRz/HWhZ9RJamOep5KUZ0HiUjlalW5ahphX9mmJp/wPtNiApkjn+6VKIzNS8yiKmjOkbfW0X6LsLa2Ngon9EwR6lyjBQ7snEfqf50XT7Ue7RXC62OUPlHV8fa4KFWlmqi8fTfl/DSnQESk/iW8sBtd2+i57p3jqaT1fbQnF41itIVCoVAoLBBLZ7RZcneVLLOE0rZdIE6ynSGSBpUFe4kWIglT27bfTUngnmQ5FSbgzaeOK5qLzJEiCiPQ7+21o7SUWdjKHHRdh42NjVCKB8bzrw513jg0bSKZ35x0lxoeECW18BybIodAtmVZdxT2onPuObSo44wyW35vQ55YSIHHaPhDFG6m/9u+RE6G2l87Tr337DmqrbDaDgWfOzp/ngNglBzBe6boGkZ946udR/1ONRpREQDv2OycLEmH174XqjPl7GnP0fZVIzmH0Ub3nhcCF2nZohBPr52u6x5WUqC9ohhtoVAoFAoLxFLDe4DY1dw7RqV5T9qZcgufKi9nj4mkYi8kyLOJ2PdeiE7GyOz3nm1Gx66fe+E90XVUwswkujl2sCgRR/TqHTsHWcq4KM2g7iEvtETZYKQR8CT+iK2RGVqpW1m2ponUcnZe/xXaN8/Opq+afMLaaLWQwlQaPcuadJ2V3XsMTedYNVOaOAMY27gPHDgw+TxR21/GxKIECJ5/RqTJ0iQnmQ+FjjXzQcjSNOq5unaRFsSbk0hzp21mYUX67I3e23NUy6PPfi+kT/uQ2V/Vh6NstIVCoVAoPALQ9uoR+7Av1NqdAP5+KRcrXKx4Qtd1j9YPa+8UZqD2TuHhwt07+4ml/dAWCoVCofCPEaU6LhQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIpcXRrq+vd0eOHAnLrgFx9qMsFm1OzGZ0btTWHEy1vygns2hu9vt6USmybN10/TR+L4tHbq1hY2MDm5ubo0W47LLLumuvvXY0Vm/MUW5WjZHNxpSV65v6bE58+BSytTyfdd7PPfJwSot592aUF1ff275rHt7NzU2cOHECp06dGnVqdXW1O3DgwCgWdk7e7SzbW5Yh6XzxcGLL9xtT+/p874WH25+sTc0H4MUle4Xsz5w5g42NjYXWylvaD+2RI0fwzGc+czvtnda7tJ9pKjye46XU4g0UJQDPkqBPwUv7pe3pdbJgc0JvZC8tmJ4bBax7P2JRmsYI2Y+mJgzQV2An8cHJkycBjBPRX3rppQB2J0a47777AAD333//9md33XWX279rrrkGN9544/Y+0JvFXpPt8T3TCzKBhD1H24lq/c5J/zaVDs77LEpC4gkkWbIO+97b37pnslR8c2rkRteburc0kQGwc79Gr8ePHx+1feLECQDAnXfeCaDfd6961avca66vr+O6667DYx/72F3tHTt2bPuYK664AgBw+PDhXWPTNJReMhBN/hEJb14tZl3vOc8qXRfdH94PUbT+WdGMqcIQXvKOKGWuvmpCHSB+Rs1JGsJ2jhw5sus63Ce89+1nfNbcc889ePvb3+5eez9RquNCoVAoFBaIpaZgbK2FicaBsTqRyKQZxZQ60EpRkbp3jjomUoF77Cfqox7jsQntS1ZqjNDvtN0oQbiHiNV5knOkurESJWGTxPP9lMo0Y/dkFrqHMklfy3dNlfnySnRF7DRT6Udqx6xYQpQuL+pzdgzxcFS5unfnpPzLSjlq6kydL7JKy0A1heiUOvHIkSMpI6M2LLq3Mm3V1Fi9uY+0BpGWwv4fpTnVti2UQUbzNWctNe2hPSfqW5RK195POn9Rak7vHJ03ricZrr2fdM+srKzsq4o7QjHaQqFQKBQWiKUzWk2g7dk9yHYiCdPT7UeScWb3iCSiSJqz/0cOFHylVOW1GznoZA4GUxLzHNuwMhyvwLQeGzkXZaxb+3T69GkAu8vS6ZqePXs2ZOld1xd+135aVqx24agwd2ZTjFiCl7w8SkqeOcnoekfsN7OZTznqeIx2isl6TF3HuRdGq+dmLCwqA6mlA72C5nMYbWsN6+vrIx8Osh1gZ315DPeVsjivfKVq2aaS8dv+TiW0z3w1ojXda/nJqT6qzXxO6cvIJpudq4Vd5tybkb2a59Lmbp8TLEHJtV5fXy9GWygUCoXCxY76oS0UCoVCYYFYmuq4tb4mJNWHXu1VQg3hhKdaVFWhqsu0fdtm5LCgbXg1N6Narpnb+5ST1RynJK2rmjnQaHuqBvZq6vIcqlv4quEMmWt+FCLkqWi0Lx5aa9v7x17bhupQxRhdK6tNOaXa8hxoItVx5LxkP+OcRmYPby4ilbHeR576T/ekqnK5l+13OgeRKs+7Xub8pGOIQo1071j1n/Yxq0dL1THHePToUQC7Vcda31ZV096zimvEfum9lIVsKaZML/b/KMwqU61OPXe8vaXqdH3eeffTVAhQpt7WWrVTjlteuwTb52+NNVlRdXzJJZcA6EPDSnVcKBQKhcJFjqUy2gMHDsyqaK/SoIaCeBKaMr3o+wyR84ZtUx1jKHFn7asDWJSgwmMCUV+iBBa2nYgdaGYdT3LmnJMp8nOP0Wq76ijCNmzCijmhH0RrbZdU6o3dG4uFhhZYsJ9RoH2WTShiZJ5ErpoaTXLgsR7dO0SU/ML2MQqD0XF5jDYanzIOr88RUye8/TYVcpY5Iq2urqaM9uDBgyMmw8QVwA5r4zV1vT2tizJY7vEofDFzGouc4TxHumj+vfFHz4iptQXGIZWRM5TnIOjtq2y8Xp/0HvSec/zMJs8BduaE60otBrCTwIbPk7W1tWK0hUKhUChc7Fgao11ZWcGhQ4dS6TYKe8nsXtqeuuZH4Tj2XLXV8TpZui/2kZKywmOlXpIObwxWEmQfVKKbk4dVmabaXb0EIZGErqzYk+7VTprZD708pBFsWFjU7ygMSr/3NA/RHlEp3q5LxAoyZh2FHOm+t2ONfBmitH22j5TaldHqeLz9FoWJaF/tGkT+EsSctSbYrmejJVNRTYQH+oUw4QXTLZLZAnGIFu9tT7OmzyZqeqIxZzZa3Us8x0tzGjF+b9/z/MjnIPMvUc2dMtws5C0KCcr8ctROrveVl3ZV/TEinwuG+dj/+bqXcKjzQTHaQqFQKBQWiKXbaCMpHoiTvFPa8diCSlgqQar0ayWlKDh/DqaSDnhQL1COU1MA2mQXagvW62QeqpH9i8jsaxHr8qDrxpSLKsF60m+W0lHHpGP2GK2OI2L32jYwTsXH9tX71B4TsRFvP0wlkPDYz1TqxchT1v4fFdhQxmGPmZo/TaYPjDUbaq/M7OPKhvhei1pY2Psp2j9MwXjZZZcBwPar1USpbVY/z+ysynYj+2um4dLPOW/Wp4HzrYUO9FxbpCXSGkXaPvvcUXsrtSPqhexpiHiOJvnX/Z/Zd6PkNHbc6h/DsWuf7fjZJzLaQ4cOLYXVFqMtFAqFQmGBWGoKxtXV1VB6BMbeqRGLs1I7JdPIHpUxJ+2DnjuHLRIqtVnJMuqLSm+eZBnFlyn7slDvVo3547wyNaJlUGw38lzObHPaHsvmeYxA7ThnzpyZxWptO7YPyij4nn0iy7YMTO35UaEALy5QJXr1tFSbk20vsnerXdL+P+WV6+0DnS/1CvdseJGHOu9JvnJtvfnU+1Y1Bl48Mu9feojaIgJ6Hb3Xsjja1dVVXHrppbj88ssB7JRstH3Q+07nYE6seqRpyNgboeeon4Tti5Z/1D1k29Z7ISrtqGvgfadxtfreQp+fGjfuMU3dO/p889ZXNTaao4HtW69jzt8999wDoBhtoVAoFAqPCCyN0XZdt0tCo4RiJVVKyTwuYpzWvkKdO6UZZY8qVc9J2B55y9nPbFJq+6pte4ikRa8coPZFWb3Htsg6NDG72sE8ST3youV4rN2ImLKvkFVmUmnGSrquw7lz50YSv2V+7BfHxALwlFy1ADww9sJW26LCrjGlZHqv0ubDY7hHPZtp5EHMMXjl/yLbuWo8bNu8XsQseKzHSpU5PfDAAwB27lHOq2ej1fbZR86JZas6f+oRz3m241LtBTOHeVhZWcGxY8e2mSz7YJ8heg9pgQovDjwqCKLr4nnaRjZz9oPzY+eWfeBzjv2P+grsrL9qbiIPfDsn+nzh+vD6bMveE5H/jdrzPZbq/R7Y62QRJ/pMVg2RnXva6O+8887tcyqOtlAoFAqFixz1Q1soFAqFwgKxVNWxdRCiOpGvwI7agFRe06ZRjeQFVhNavzIqUGC/07Z4fS8ptarB1OnFq5FJtYuGIvHcyFnKHkPwutp3e5yqszTlX+QWb9vV4O8sEYM6jTC9HddAQ5TsZ7Z25H333Tdqm+1ubGxs94HqX7t3qNqkqvOOO+4AMFYd23P4GVWCbJevOi67D7imdLLRPcr3Vk1KM4fuGVWFe+E9qgbT+VM1uNd/dahRJzY7J/feey+Anfk7ceIEgB3VMefM7h1Vk6rDG+fMzglVeZyvq6++eldbnppTHcIyZxY6Q7F9qpC9AgE6Dj5LvJq4nGd1SuJ88NVzAFN1rJobOLe28IGq1nVueX32x44rSuaizxZvf6u5Q0MTPXW6hjyxT7ZvEVSNH5nZ7P+qtmff1dxmv+MezExW+4litIVCoVAoLBBLZbReOIYFpU2V+Pi5MkMgLr1EKVSdK+xx6kCgRnpKmDaFV8RCNTTAC19Sdq3M02O0ykLVRZ7wnK+U5agjkzpuAONE4KoJUMcaYIflkBmxr2S2HI+VaNVxYn19PWQmXdft6jvXiywWAG699VYAYwbGPmnAPzBmsMqUdVyWAVAi5nU4Vr4y1R/3LjB27NGQNE/i1/2mDE8TO9h1Yb81nIfj5HurSeD/dBa56667dn2uzll23ynL0v3sJQ3RMUfl8ewe1bSnXdeFiWLW1tZw5ZVXbq+DZYmEhqFFmg37/OJ8kPnzWN1/XC8yd2DneUKWrQ5OXHNqS2y/IycsTa7CsQNxwZPoOQSME2CooyBf7fqplpLzyvuUDoqEXUf21SaSsOPW1Im2/zxG09Xq/WXB+/fw4cMV3lMoFAqFwsWOpSassGn0KH1YSU/DLPgdJTtPQotslVFZOSu1UVKldMpzKf16SQeUOSorpqRkpfYoPRuhdgl7nEqqlNJ0rixT4xjZB0qSmrbNs3/pHOt6eUUU2CdK9bwe32sgue1/VAbOguE9nAu2TzssALzvfe/bdU3OR5RIwF5bbUpqw87CETTJhNpU7Zyr5kSld2VUto9ayi0qV2bXUvcvx0emwet4rITfaWhGVOrRXk99G5Sp2T3E+4WfsT1l45aVPPrRjwawO2QvCqdbXV3F8ePHRzZHL6SJ80I2qmO3jOz973//rmOVtfFznmu1IWqrV7shv6dWxM6Dsjg+I5XF2c9US+Al2wf8BBJk7MrgOV6rVeI+4hzwWN6LfO89+/kZWT7XiRoi/gbY8oYcq5Y+5Dxyf3ghT3zGHz9+vBhtoVAoFAoXO5ZeJo/SBaUQK03QvqESirJUK71Gtooo3Z3nvaiSJaXrrKSaQr0MvcQOhNqfaLvT9H12PJFHn5dkQSV0zqsmRPBs3jrXGrjOufG8/1Qa1RRw9hz2m5J513VpwoqNjY1tlkPp2toWla0rW/US9mviANU4qK3RS6OnGg2153rerRGL18TtXv/1+srkvD7yXPW81gQxwDipRVSGUhmovY6WecvS9ammRO1qnjct7xfriRtpi1gmTzUNdu7Vuzjylr377ru3z6ENm59pG/r8sXPMvmo6S9Ws2f2tnsIc++Me9zgAO+zXzjHnMuob59zzqifU05/jJjtl34EdFs/vVCtBpss+Wnaq9lWuP+eI2ivr5c450PuKbFWTGHnHPupRj0rLLO4XitEWCoVCobBALJXRHj58eOQ9aWP4VC+vNh71AgTGSfyViSnzsxK4en/yumRmXgpGtfmq/ZXSr5W8Iu+3KM7QSqXst3pnKqOxjFaTaV911VUAdiRK2lWyFHzss5ae4ntrZ1O7rXoMWqlX+2/PzYqNnz59elti5jjsmHVu2U8eo97HwLjkmMadKhOzNi2NGVW2xr1qGaYyBr2uV8g8Kt7tMWZg9zxonKza0L2iElwrnss1VB8BjesExp7dUZk822e2w73qlfvT67B9m2IyK0+5uro62pNeucyoUAdZK/ef7YOya86pejfbZ5bedxrXzPXwcgwo1IPZ7h3aKjXFp861Ml57PfVUzwpgaIyvpm3U94961KO2z9V7T1Pb8hy7NlERGn2u2/tOfRyOHTsWemXvJ4rRFgqFQqGwQCy18PvBgwe3JRSyKstoKBFR8qFXmtqNrP1TpShKSZRSeCyvZz3dtI0rr7xy16tKnMCYnWmfyBaspHfttdfuGiulXXrSRVKxBedNmZkmDLdjp63immuuAQDcdtttAHbsLJ7tjLYQ9QalVM95tGvAOZ0qoeWtmy2pltloz5w5M7Ix2TFrxiwtnu1lMlJmROavtlldJ9v/iEmrHQ7YWTvVXKh9315HPVE185jaaD2GyevSdmZtjbYt2/7111+/q0/Kwjz7l2bj4j7QeG72w7arBcWVXVrthWqVVlZWwr3TWsPa2tr2sdwn9v7kemgpRfUktvc++62x4nZswM69Yb1z2Ve1kXOdvL2qdkQey3tZvXOBsT1SbbLKAL1C86p1iQpH2OtoLgG9vx7zmMcA2M36b7/99l1zor41nk+A5zthr8t1td7bBMdVUOtK0AAAIABJREFURQUKhUKhUHgEYOll8ihtUEq0Eormi1U7oUpTwI5U9KQnPQnADnukdM1Xr8Qer8OYOF7viU98IoCdrDiUtoCxXUMzJfFzL+uJenJq/k6vqLpKjl52HTs+274W01apkEzXxqNyDSiZP+UpTwGwE7t488037xqnHbv2RdmKZbjq2dlaC2MhW2s4cODASEL2bC+U9NVbUvMaW1AL8kEf9EG7zv2Hf/gHADv5d62NViV+Qota2zGpbVnteOqjAMTZg1QK97Q9msWJ1+fc8zrWvqlxmjyXe4h9V89O23/OE+8j7i/eZ2S89n+1g3Pv6N61/1uv8SlGq970XlwrY7HJPtWz1mqa1MdA7Z7q4W2ZLueJe0c1HBr/bs/hfOtzwMvHHHkZa8y1V5aU+0izvRHe/aSaBt073I9eXDrn4AM+4AN2ncNnr2pSvHZ0PN5zh3PAY44ePVpxtIVCoVAoXOyoH9pCoVAoFBaIpaqOz507N0o/Zg3ZVB/wGC3jRlWEVeHR+E/1Hg3fVHVQ9UB1hlXHaGpCTZHnJWfQMB5V99qyb4SqTKjOVEcaL2CcfeR11YFCQ4TssYQ6FlCNxetZRw22o+FSVMkzxIFJ/G27NtzCXpdqIKsyVDf+ra2t1ClhbW1tpNa0c8w1oppSkw14DmZUf1Jd9fjHPx4A8N73vnfXcZqyEBirsrjudF6ik0oW1sE5UDW3VUdrohUNg1C1oIWmoFNnQ02dafuopQ7VUYh9tmo5TblH0wTvzXe84x0Adt9P3N+amEMLcNi1VsewTHW8srKCo0ePbjsleaU2da9wD6l5y45VHYk06T9fvdA2Qk08nGMv7aSmMdXnDdffmh34v5pytDCJpgAFdp4J+uzQ69r9reFJnGu9X72Sd1rGUJ1WuTb294LH6quamOzzkH3j+DInzP1EMdpCoVAoFBaIpSasOHr06LaU5UnvGlDN7zTA3oY/UDKh44pKXpTWeJyV3nmsSruaONtzMFCJNnJAAnakMXUS0HAesgXrJKMl7nhdSsocn2VsGlZDyU4LBpC5WamUrvd0ZCGzpWMYQ0OspK4SsibwV6YLjEv0TTm0tNZGifXtPHGPaHiIhgBY5kftB9fBMnt7robDAONSgHQWU2clL7mKJuRXJxW73zj/XjJ8YMwwvALjnAuybWXQ9npkFvqemgyyPa6BZV1sj3PBPanhFprM3vZR9wz7bPe0OsGsra1NshK2w1fPmY/X1nAQzoHVhvGe5rkcqyayUSdJYJygRMMXPe2EnsPnS5TYwbanoW6afEZTFwI766xhc1w7ahLtPR0VlldnK66VfRZryBPB63PdvIQc7IuWU/XmhOezT1mJxf1EMdpCoVAoFBaIpSesoPRAacSGlkQJCTQJu7X18Tst0aRSqUrItn2yEl6X9jUNILd9UMbC95SmMlaidg+13XnFtDX0RT/3CtrrdzyHjMNLPqGJEG655RYAO3NOdmfP0ZAG7SO/t3YXrhPX49y5cyEr2dra2hUa5hWsJyjp81qaJELLKtq+qN2YtkVP+8Jj2S77pDZHC86HJihRm6lXGEA1J1omT22atj0yf0r87KNK97YdanU0nSfZg5cSkOyDc889owkZLMPQxBcaIsS+2/tWy+1tbm6myU7OnTs3urcsm+JeZr+jFKK231o8RP1ItKCD3au6N6J0nnZd9JlBlq1szs6DJvVnX5UxeyX22D7ngEl8OG/evcciCLyOhlRpsQmv7CTPtSkSbZ/tM4R9Y1/5zNfUi3bvaBhUpknbTxSjLRQKhUJhgVi617Hqw73SWWrLpPREycSmJiO0iDuh0o2161FKUrajUqplb2orVU9OSv5W4lfWoSnQ1EZkz1VvU/Wo89idslK2x89VcrfjiwqXq/3ICwLXUoXKaG0SccJK0VOsRG2O9lxNqKAB9vzcsm6V9KNi99Z2ZftkX5W1qQ0PGHt/KpPl/rbaiUgLovZ23VO2HU3UrxoI20dNhKBsh3Oh33tzw3tR73nrv6Ce98ryVQtgx273eWZna62NbKXenldbub2mPc6OiXtRnx1a+tJLIamJEtRGb7UT+qziPUyfCr73tBP63NHnK9fW9lE9/NVGyn3uJZ2gpky1LHr/eukUdY+qd729nmp5CE0AZNfNSyVZNtpCoVAoFC5yLI3Rbm1t4cEHH9yW9NQ+CewuAg6MveIoVXkMQ+25mhKNsBK0Sk8q9Xrxk1oCTNPmaRwqMGZ6UcygphEExnYOZcGaONz2QWOVdY60jJZtX5PiK/u1zEklVpWcPcmT17YS/1xGq5IxMN47GquqMdL2My21qHZ3L2WclqDjXuH8eMXutVyiagdUErf/a+pALfflSeXKoNUeqiUELdguv4v67BWzUJujshF7jsYB875VL+EsTjwrk6eF3z0mrnOo9lyPYWqifr0fM6gGS+dFU7UC44IT1A6R0VpfBx2XPkdVw+b5E/AY2j+p/VBNil0X9oHncO9oulq1x9vrcT49zZkdi+1D5L3P66uWE4hT2S4KxWgLhUKhUFgglsZoCS0N5hVgVvug2sysbU51+5Rq1INT2ZWF2m2iLDi2HfabEiZZNu0Tnt1LmR6hEqW1s6gEqeXZeKxXUkvt016mK71+5M2ssXGeJMhjdd081qXahNXV1ck4WmVkVtpV27LaypXF2f+Vnar2wLN/qmZB95cyM/sZvSMp+SsrslCvY2/evD7bPtF2puzeY4G8B7RIgd4bui/t/5qtTOO4vXtQ29O962VnsxqHTBvCgiZ2XHbsqkHjWHVNbR+UjSrzikpF2j7o807X2ivYQM0N9xCZrbe/dc1Uo6LxrB7D1GeH2v29QiHc56qx09KY9rmj6x7tFS+ngZZe1WI0FuoBXTbaQqFQKBQeAagf2kKhUCgUFoilqo63trZGITtW5UOqHzkYeE41UUC/OhR49UG1lqOqzbyE/aqqY8C4GuCz1HvqHBKplG2fVFWsicCtQws/i2rmqoOVhc6f52yl73WuVRWuqjgL63ASqXCoNs76oKpVTWrgOd+xv1Q5cf+pM4yXdEBTOs5JtMDPovrAdNqw6jhdI1WbRnvKHquOYlQ7alIAYFyEQdXnUWiKPUb3g66JHZ+qMQnOo6eiVmeeqYQDGxsb23tQi3HYdnQcGvZir6NmB31m6Fx4quoofaa+2mPodMnnDueJ62afO1QJa6pNffaqU5Hto6aWzRDd/9kzWI/Rvun+9uYkSnvphSBFavtFoxhtoVAoFAoLxNKdobywh+g7DRfwJKaIgUXSlecMo6xNDfHe9TQlmAZpe8m2PenctknY62l4haaj9MIf1NFMmaJ1tlJE4SJeaAah86RJCDyWrzh79mzqlOBd114ncgDT0lzW4Ugd57RghJfeUvsThZVpKTf7v5Z+s+Fjtj+2D1GygTkSurJvZSt2v2kRCw1XUrbvsckosQjfe+umc+KFD+k5HjNS0BlKw9U8JyVCx6SlEG0fNFxIw0a8Pa9r6WkjFKop4XNHnzf2ehpeQ0QFHLw+qlZC951N/KH3rxcWZ6/rrZ8+e/W5Y/sa7RE+/zynMu/YOfvofFGMtlAoFAqFBWLpjFZdza2EQcmC9gaVwPU4YMzaNO2XnmvfRynBNJTGsgRKllqIQFmb7aOynshmoUzXXltLTWmxdSu1UaKLEmSoVOqllovSw+n17Xfqbs8kDlmSAKuJyBjt5ubmiK1ZSVkT5GuhbE1laY/VUmBRyjqP0WhKTH31GKayYU1z6IW8afiOhvd4yQc0qYqWyfOYhZbJ01A3TerhYcrmaOdR7z1Ne0h4c2K/y9jg5ubmKN1mltJxLz4UUQIHXQ9vH0R2XsLOE/co7etaTIXr4iXX0TVTO7KXgpHHqjZCx201RJpyU8P79N7wUjBGWrgs2UlUjN7z6dEkHidPnixGWygUCoXCxY6lMtqu67alLC0KDYylc7UPZGnOVNJXJuNJRCqNqhebxzQ16bl69nrSqZcE3Tsn87DURBWUMDUxuP1fvY0jpmalxynpzvPAjaDjyxjtgQMHJr1H1WbqtadMXIuMezaeyPMwYxhRyT5dY09jo9eNUuPZ9jRphtop55T6YvsseUYG4iVI4R4iw9XUmx6Djjyi9XvPi181Jqpt8TRRc8bcdR02NzdHiUW8Mo+qaSC8OVY2pX3RPnrzFN1r3j1GDRrXhcyVviEsfcjyhsAOa+P66vi4lloQHth5ZtAmrAk4PG0j22Of+IyP7OH2c9UmZs8oQplslCDFu79tidBitIVCoVAoXORYapm8zc3NkW3Bk1Q1ZZzGcNlzojhDhUrOwFjCUylUPSCBHWlJvTK9tHBRH6P0eV46N2XIGgvnSfdq/85Sn9m+2++m7Lt2fJwDLZOldj17nSweU9F13a44Wy3/Zz+L4u/YN5uWTQtt2+t5bXpr6n1n27CfKytV26wWD7ftT8XPZvZ97Sv3MGMxuV7AWEOj9l0dg3e/Rfekt+b8TIslZG0qQ5nSrtjj9V4A4rhP7ZOX0F49drVAhaeF07mLiglYe7neWydOnNj1evfddwPYnUA/8hPg9Wmn1uefPYbt0cuZe5VaEa+wB8FnvD67vMgMfY5FGipPQ8S5iaI57FrzWcX5mvIN2S8Uoy0UCoVCYYFYGqNluSqVdq19SLPEqESmMZL2WJUwI5ZqpZ6oeLrGRFqJmRKexz5s3zyGofGMlACz8m+Eeg5qTKKXTUjnS6XrrExWVthbwetprKV6gHuwWoXM5ra1tRWye9tfjfNU+40nEWd2IDs+LyOZHpMlzqeET6laNTVe8nqdO91Dqr3wtD1cB/VG57nWA1dZgNqV9T7y2Deh8+plg9OxZ4UltF07T9F5m5ubOHXq1DZ797yAlcFa+639fC++DLrvvIIauo/5PPBiRslc1SZ7++23AwDuueceALu1PJoRjIgy7tn5VP8K7h0WT1E7qP2fr2Tk0XU8fwl9Js99dgBjjYA+C4CdedMsgItGMdpCoVAoFBaI+qEtFAqFQmGBWGp4T2stTNoA7KiR6Rauqg+vjqbWWKUKQsMF5tTPVNd1GtmtKonqCHUaUVWHZ+jXmpLqjEB4qmNNnK1pxmxi+Ki2pzr5aDIMe4yGAml4hFc7NSr+4KmBtHbtFLa2tkYqL+ucok5CkROXB87XVAIRLzm5pnnTfngp8bwE6cDOvrB7RxMGRPvbU53yWIaCUHWtjojc77YPur6RQ5WFOoDNSSbPzzLnKoWqejPzxtbWFk6fPr29z3iupr203+nYVNXujSVKbuKti5psdA9xLuiwA4zNMnfeeScA4LbbbgOwkxzGS/6ve1LvPc9pSIuVaEpJtmHD59S5UJ9r0bPSHhs9MzxHOv1dIGyBFWD3XtaENg888EA5QxUKhUKhcLFj6QkrogB1wGdYwNiI7rnKq5So7uFeqkK2pwyW7ymZqYRkr0Noij+vnBPZAq+jjNYLftfAcJVsvdAGZfFTjNZKiey/SrmRk4zti4Y0ZGn6CC2AkCFLoE5MJR+ZI73q2nqOVMosIwZjtSFzCxBYCVz3qJZH1LAfr3wh2RsZ0h133DHqm15PnXjmhBPpsXO0CQp1YvSu46UBjbC1tYVTp05tOxPRQcf2acqxkbDXi0opKqv3SgOq046GD3G93v/+94/Gw71P5ycyWcLu0SiMUPuhWixgXABDS4neddddAHZSQuq17XtluJ4WRvsQPW/s/o72ZlakRZ99586dK0ZbKBQKhcLFjqXbaNU1P0tYoHZCwgvRUBuCSmRqrwR22AGZhdrDPGamEqsmpOe4LFvgd2QuDDWwtjFgXBLPG4dK8Z49V5MNKAPQObMMSm3QOgcem4xCgdRW7CWYmCtNrq2tjex4tg9Taf8ydqWskMj2ZsQoVeNg7chcb4ZIXHvttQCAq6++enuMwG6WoqxAk1vwOrw+U/XZc9ke7fj8nCzPrktUYlHv24xx6vXnfB5pCAhP4+GFeSm6rsPZs2e397OGOAHjMom6hlly+mgfZ4l09L7TtLT66l1PNWdeqJY+G/T+VPao6UqBnb0aJfu32kfVzKnWjX1X7QwQP6/1vvZCuqIQOI+paynMZaEYbaFQKBQKC8RSGe3q6mqY9hAY69gjnb6n2yeigtxeuSd+FrFGzzZLKUwTWGvibssS1NuYr+pl6NkhCEqq7CMTZyjTsccQOn9Z4LgyGn31EqxPJRvwPLHV9puxktYaVlZWRuvj7QP1TM+SUkztnSyxvYLXpX2Nx1qGQbZ5/fXXAwAe//jHA9ixc/G61iOW7WhAvzI0zgVT5dn2aM/T5ANs2yai19JqqsFRVpKxvMgD3O6DyM42J/XeHLv+1tYWHnrooVGSkCzJv/qCqMe9/S7ymlefCqvh4nNFk9Cobds+qzyfFmC3BsO2YY/ldXR9+EpNh9077C/Xmddh37PiIhwP50afjcrKgXEaxai0YlYmL2Kydo20kMLGxkbZaAuFQqFQuNhxwbyOM0YbFdX2pF1+p5689C5UT2Kb+JqfacyjSv5ZOTaVXDXRtdeHKLaX47MSmBZ8j/ruMTWND1XW4MVCUuJXW7NK7h6bUJuwpprz7CJ2H0QMhXY2L52dPcZ7r59nNlqdJ40l9Yqqq4RMe6i2BeysGfcm32uJR2u7Uolej1FtiJcYPtJgeOPUmFsiSpHnlY6L2KinGVA7W1REwUK9z7NSZ9w7ttA34HtnRx72nq9G9IxQtqjFR+zYdI9wjvm88FJx6jPS+gBoH3ms7hW9D8lo7b5TOyq1LtqGNyeE5kXQNbVzwmPVVq971c6JahWj55qndbBrWoy2UCgUCoWLHEtltMDYE82TLFVS0cTpVmLWQuy0JajtkkzWSm0qaWtxa7U1AGMJVrMVebYrtc0q1CvPs2Vq31TiswxEbRU611HBe++zKANRluRdz/XWTT+bKihw5syZEaP14uO0/TkMSZmYV8ZL31NKJwP0mAuwW7qmrZSJ4HmuFn+wdl1lFiqtqwe2LXnHPcH4WcZl8j37YTMQsU+qSVE26nkOq+d9FFlg10r3qo7LY8Fqezt9+vQko1U7oX0OKHNVxqm2VHttPVefB17cuUZA6DOKa2xtptpXrhNf5/hBRJnPNG8AsLMH+TyNsthZfwL1T9C107J5lo3zfy2Wod7Vnm09KnSRFR+ZUyxlP1GMtlAoFAqFBWKpjHZrayssRg2MbXz66nnY8n8yWrXZ8lVZsf0/yl+sXnPA2CaiHm5efCH7r30heH2vmDQlPEqLygSVWds+qcdoVCDZi4XU0mA6Ti8zVCRhevCKQUe2kq7rcO7/a+9ceuM4tiScTUo2tDAMQ9eGd/P/f5Ux64EBWbIBCyTFuxgEO/h1RHbbcPdAd05smmTXI7Mqq3jiPOI8PJzUjO4yR/m5y25m9iLnzAzftY6xPjHIVvPtjbh/+eWXtdaRDbPOkfGwtY6sRsxCn4xzpdiqsonFZKWPq/NrDr5PY34tE3fXcJ6ejsQiGhPdsWDBPU67teMxWtbI+7jIQrnmfR96u6g9LrBlpY+Bn3yXOesm89e6Ui20zp9imPRKtUz29F5lljbjxynHhvkqvH58h/o2Ws+t6iF5QJktvtM5p8dh2uQNBoPBYPAfgPlHOxgMBoPBFfF/JlghpEQcJkPJxaFkAXe5UZCCwv2tpGatLkRAV1IqJ2otmuQWcTcMXWl0V7AMw0H3T3MZJyk0jYWuyl1iEJNt6ArfSe81YfCUDHWJC9KP+/j4uL0vTeR9J26wczf6eZh4stbxmlIgg+45T47Sz3LhEtrXk2Dev3//6lOuYx1f7l8mZ611dC8q2Ulu7pYE6N8xjNMaUqRyErrpte7SvWgiFyxn8WfmEqEKga5jvg98bkJLhuNxfVypVK6Bc00lemu9fib47tPvmkdq+9fCWXQlp8YHHKu2Zcmbj5EuaJb78D3oLuQmZsExpTLG1rLwkuTSz58/38R9PIx2MBgMBoMr4qaM9vHx8US4OiUNtSA+rey1emNsBvMTo2VCQ5OHTELdsohonZFh+3nYcJvF2Um4my3VZFHqWLRa+bNvQ9aX2KnOrWtNtv1XhPZ3iUi7Vn0NTM1PJR/8JHtPYgm0aGlVJ9GONm4mbfj5xDqUpCSGyaQ1CbmvdSqPJ7ELCqVwXfjPOi+TyVJCS5LlTGgenbVOkwzJglLCTmsGwZIh/86ZYWO5T09P69OnTyeypz4/suq/A46X687H38qe6AXx+0Imy3KblGBEGU2usyZTm+bDZ2UnS8n3QBJi8WPyOI5WKujjbl6QJPlJScxdIt0/iWG0g8FgMBhcETdjtCrRoEXpPniypsZyknVI+S02c0+WM60bMmhZZizHWesYG6OAhOAsmAyd8+XY3dJr4vs7KTyOl3HlVrju35HJ7sT5GTe+RIz/khgqt+e5/bitXWKL3/g5GYvjsVKsrrWLY36BQ+fj2lF8VefxNnl6PsRsfV1xPmu9Zo+pLMnHnpiMjk/2Iew8Dzof1xsZrZ+vHW/XZi419t6xki9fvrxc01Ripzlr3FzHqVytvaPo6Ui5B5Rv1LatNaUfh+9Plt/4tdHaaa3h+L5LjRs4LzJZ92iwbIzPIOP/fg8Si09j3eX0sAQq5aIwb8XfK9fEMNrBYDAYDK6ImzLax8fHk8bsKQv4HNxC0f6U7mLMNllEZKNJ1ML/7qDlpbiaLLwUX2lNrZnZlywsWqyyzJNl3TKDGcMQUss7WvU8VmKTTQbxXGPuc9vw+50MJGNIQorrNkbLcyYhkSZjl9a1QKan8ysrWFnCHmdVfFXxXK3F5sFJjbHp9WFzA7HltU4ZH+Ndl8TSGQu+hDEwQ32Xhc6GFzuIsTDe7i0wW4s2gTKAa52u+STT6PCx0ivVGgM4WyRLo7BDWt+aD0UaLhGh0XeUGGU+i4+djTVaC8H0vuA7iaw3eYr4rPHdRe/cWsdny70Jw2gHg8FgMPjKcVNG++XLlxNm5lbiOQs1xUr4tyacn0SpGU8518bOzyeW2ix+Pw/jdY01KqPQLUHGiVsj5JSN17LwdqLvTfpMSPHRJr3YGELCX8n+22VLC61BQGLOXJOtXWNaB5T8pEC7s2XFAvUpJql9tY83BmB8jU0t6MlJ+Qu0/Nky0j02PF4Tat9lfre4e/Po+HetJWZiuO4J2sX4Hx8fX7YVo/EGH61RR8veT3NorfbEJl2Kk7Xj9Dik2tyPHz+++mRcmW0z/Xh8z53LkPZ5iPnrk4w9tbpjY4q2DlJ+jkBGy/Xo+5zLNvacB81D9yDVDl8Dw2gHg8FgMLgibsZoD4dDbGScFJSawsyuxZlA64x1eKlGVdYtWdGuRrCJ1ifR8ktrBVMMVX9rzQwSa2wNvjnWxIbPMYldTaxAyznVs3EsDw8PW0Z7OBxO4qIpLk1G0VrgOZgVyX1TMwtm7DYlsqSGxZaN+l2qTxKKX+vIwFzJxsessSne6kyNGcTMX9hl/pPFk8mymXfaRuC63jWL11h2Xhfe43fv3tXY8fPz83p6ejppz+nPk75jXLqJ1Ke58BmjSL5aJK519FhQ/ah5hNY63kN6QXQPtXZ2rSg5HzZRSY0W2Ly91Zj7z8ya5ny0Rl0Bjc8Nnzl9n7xK2oYelV1t+a0xjHYwGAwGgyti/tEOBoPBYHBF3NR1fHd3VwWt1zoNztNFmBJx/Pj+KTQpsbWOLoy2T0qzp5tJLhW6R1he4nOlO1bJAzqvuyiTe8+3pcstnUfza+n2u+O273fJUK3UJl2Tv1I20poVrHXqsm/lSJ7M0c7dhDE8OUXnk8uOruMkFN+SQ7QO5f51UQrKKFI8nm5gL9Wh65ilSKkkqIUKKO6SyrK43ni/UkITQxRNAGQX3tiFHOg6ToL3bATC5L30buFzRzcpXax+31TO5e5kPyYTnfy4dB1rrD/88MPJPlzXut+UjU3Pnt5rTL7TdWSS1FrHtcp1vnP/CkzY4z47aVCGBXnN/dqzPMn3uyaG0Q4Gg8FgcEXcvLynCfivdbTSmOxA7MoD/HwOJkOkfcnIkoRcSwpgoo4nCVDcm3M/10bPt22C8DtGS0EM/T21OhMubSHo27bPhFQy0yD5Tno63LptIve8bj5XMi4yczIzP7bGz0Q2lqf42iELEoPl2vT1rbIQWeVcfyzod+lEMgiWSIhJ+z2guAGTetigwNdBkxhtCU6+TZO0TM96Elxp7wrJL+oZpCyhz43XZ/c8kkWRibVWeGsdr5nGpHusOTBZbq3jWuE6JhNM5SpMqGQyVBLqaUxWSPKklD9lCVxrwOFz5jpo62OtnmzJ0iRPgKLH6+HhYdrkDQaDwWDwteNmjPbu7m59++23W6FusjWWCSQ22grHyTRSvLUxFsaAvOCZlhzLXWQJJvGNJmfYypnSvhRISPGFNjb9XcegZbvWaYPn1voulclwLK2cyL/z5gU70YHn5+eXa5tKw1gOwPGx7Z+jlVeR+fs6IOPT2MQ8NB6/Jow7KRYnlphEVShiwfNRatRZEOPWjG+l+0+JQv7Oe+rX+VxZVBJVaKIau8bvqXVaWztPT0/rt99+e9lHY/EyKM2NYiM7SVS+q9q607XVulhrrZ9++unVGMS4KArh7zs975TIpNiJ3//mBdN86PFIeRdaZywFSi1EmwCHxqhtdS28HWQTXmlNTfxnlhOxFC69i52pT4x2MBgMBoOvHDdt/H5/f/9i9chCSlmLTSwhiTPsLNm1Tv31zmj4nRgLLZx0Du1DQXJJpKUMXzKLJqOY9iXbJjtxdkdmQWbGAvkdGItLjLDFcZkV6ucjM3r79u12PB6HS3KKTS4xnYfjFNr9kEXslrHucyu037WgU6Yy72G6xswU1jpgvFrwa0KvhH5nrM7jb2LXZFkUftHYfV+NhWIKu9aBul585snu/TztGUh4enp65YmgOMhax2ur60Kml/ISuKY1Xt1jMnIfKzOEdVzG4ZPkI+OpzHZ3kMG2qg7dA18rQewAAAASW0lEQVTf+hszspnZm55ZMVZeR2ZK6/c0FjbgSLFivl94/diuz7e9BYt1DKMdDAaDweCKuCmjXetoocrqcD89rSP6+lPmWZN3k7VDRuZWm+JeHz58WGsdLSBZ80ncm2NgXOeSWlGyHcaendGSdbemDJ5tyOOTwbY4SJpfi9GmOrRm5e7iyMI5dn13d3di1Sb5TjKidD/aOekBYNzdmRHjxa0eNNVCsr6VzCxJ4TVRf4FZqD4mbqt5JLbI+kne7xaLdJD1Mv7q150MrWWJpzWk47XWdNrvzz//fJmH5u6NG8TAxIiajGbyNNGTwn00v/fv37/so+dR7z6ut9TKj/eXovh8r/rf6Nmgd0Is32UpmU2tY7SGKD4WNs0gi0z3q9Uh89qnNoCsm9W95TpfKzcemBjtYDAYDAZfOW7KaN2ySHVYzEokW02xW7a0agpRKWtNlqMYrCwgKbakbDVa6efa16Vxk+3QwkyMRtZaq291JtOyW5mZyHiI78usWTIYP/+OUfiY/y4Oh8Ore87aZf+5xfebKpOjKVwlS7yJ/DPOmtSkGLti7e1OvarFLndWObMxW22kH5djJvPUWFOWM9cVKwNSbWyrLU8NRVKdc5u/6vfJelLrNN0P/c4mAynHwLPm1+r17Z7l/K9//WuttdbPP//8ahvef2eYzGkhu9bvztSp4sRrRK9cqolWHFVjofcleRfJ5nVejYPN5P1vrTFA8uSwVp1KULv3kleaDKMdDAaDweArx81jtDv9XcVKWpww1RnyuE0zN8V3yU7JXGSB+RibpcqMuqTDS4bUdGSTtrK+O8ce/Xwak66X17w53FJv15jMadcmj9vs2uT5+ZplqRaLrK/2a9HalDWFsIRz2ZmeJUlGw3ZiqR1X03NtdeN+7hQb9/mkzFiyrXOKa/6dWE7zELGJvP9MJrtT/zo3xlTLyvyLncdEGuvaRmzH2aJYoJ5lVhSkjN5Wm97aJ3pLuB9//HGtdWS2imVyDftaZeY7vRKajzKafR76rrUd3dUqOxNf6/gOYf2u7yPwGZEClj6l+cy5+r7U9k61+FwHLZ9lrawiNYx2MBgMBoOvHPOPdjAYDAaDK+LmrmO6Tz0pwVPgHTspNGEnX7hWdv+oaJ2uYjY3cHdFElP381J+bq1Tdzmh+bH5wFqnSTdN+D6JbTc3+k7cm2UkTFpr4v1+XLqOmVzkSBKcxOFwWG/fvj1xm6fi9ZYstgOvJa9fShZh+0KtYyYP7VoTttBFciG3Rg07EQ+BAiJCOh8TtFoiHVv7+TZM7tmtR7r/uJ7TPpSh3AnDHw6H9c0335wkGHkZjJ4xHkN/T2Phtjo+wwFMTFyrt8sUtI+Xr7UWhFz3fky6t7kP15nv24RXVJLEJgD+M0WJKBbEJg5rHV3EqYzH5+LviJYo1cr2HLvytGtgGO1gMBgMBlfEzdvk7RqxM2jPlPnEUppcIpMpdCxPT5dVJiuKVjplyPizH4/WXGoFRkuylcykgn4WZzOZyM/HZCgKdjNpJZVONDHxxuh9TGS/KXmJrPeSdnlscZXkBold4g9ZYhsD272l7ygckgRSyM64dnZjFMgONW/dp1SCxPOz4befQ2OijJ6YrZ4RJvusdXp9WrJNKtWit4LP7Y6p7YTh5Q3RuOV5SKIwLSEnCdfw2rVt2cbQ56Yx8JlK0pJ8DjUP3UsxwiQko31Z4sa15M9Kag3p59U8d8lQfAY4X7+nTMKkZyM9m5zXuVI4H5OXUk0y1GAwGAwGXzluGqOVHNpap0XNax0tH0q4Jcvbj+mfspaUMk9pL7fAKOXHFlqp4N4t+DSP1MKN5RtJBszPt2umTEm6XQN1xtXIcCmavtYpW2D8KpVUMC7K+THe68dPQu3E8/PzK1GCFK88J+GWhERa3JPNu/XppQ4UGSGj1Xg8Nse12rwgqWlGa0JOluCsjO3DKKJBr4//3ERP9DtlCv24nK+QSpQSw/DPNMY2v4S7u7v17t27kzaJu1aUzSPjSLkRa/VGB34t2IKQpWBsVLLWkbnqU/tQpMHnxfGT0e5i6CzfYTMGjV3vWT9eE50QG6Y4he/b8lVSE4t2v/gO9nnx/8+tMIx2MBgMBoMr4qYx2s+fP5+0onJQnIHZi4xL+t9aY3LGHzwOwUw+CjykWEJrrUbZuZR1TOF7Mr1kQdPCb00FkoXGDFjGBJklnObOBtC7pgmMCbUM5rTNuVjJ8/PzSTZjYsiNASarvRXYX3KNm3ym/q4x+lrlnJltzNyEtU6bcjNmxjhUaozNVm27+FeTGGXz7sQWeD25rul1cpCVMJ/BPUkav8f+WtaxGG1rgZfGzWMlJs6ciRZnZyx9raNABtu56RiKj7sHhRKSFEZR28bE+NLz53MQnI0zi5pemJR30RpBaFtKMPpaZmYys9BbRvFap3F8Ppv+TCSv4S0wjHYwGAwGgyviZoz26elpffz48cWipHTdWkcrRlaTrBztk+JQtPgbaIGudcogGJfQtm5ZMkOQrCExdVpcjDnv2sqxHVaTwkvMQvsojpKyZgmyxWYNu0XIuG2TPfRjUC7tzZs3Z6X02Gbtkrpq/p5k5hjbIePcyQC2huWMNfk2ZHT0tiTJOJ7nEqlCPhttHe7qJxmT1TOiZyIxgzY/ekf8PIzr7eLIrMe8JOtY37MpvZ+T8cBdVm6KGXKcfmxf+2y7qN9ZX5vWG70TzMNw6Nnie44ejeTtaZ6y5uny457LI6A2gH/XPHepYXtrgCGvS/IQpvfnuRad/wSG0Q4Gg8FgcEXcNEb78PDwYnnJmnFrQ5YImQaZhVuR+o41es3ycwbNmK/G1rKB/dwaP5lFyjrkfMigdjEisiyynlSLyXghM6V3Yv+0KFvdrFvorRZS4LVyaAwfPnw4GzfhdfM5pwxqxyUxzHY/UnyIY+FnYkFcB2RDrRGCz5XbtGxkPzfXg8AWk2udtklk9jEZb8ri5n3mGH3efH4Yh9fvif04o93FaL/77ruTNZjikRon2+MlNpVq0NPvKUufsUrdU13blBtCttuygv39xgxbPgN8t6TzUX+gNXzxn/nO8Pvk80918C2/I+WgkInzvlGXYa3TmLqaTlwbw2gHg8FgMLgi5h/tYDAYDAZXxE1dx09PTycCCC7uLdcxXbb6TKn5lERkOj1FJ5KbgNvQ1eUuSiYDMPkhJTIwjb4lX6RkmSbITtexu8KY5s7j0pXk15Bp+3QDsXzK/8akB7pAz5Xv7BJa7u/vT6QD6RJf67RvL+9HGjfdvE0gJYmC8P7vXIkaA92lvLYpYau5mYnkqm4JWyxJ8+8o4sJ+ywlNsITzTuU9dEUzhOFrozW6SLi7u4sygXxv+PEEuk9T0gwTgOjyTiENvfM8EdCRpFi5TRI38XHs/tbGmN5ZdCvvwgB0z2t+TTglhRB43/mMJoGUJpGaQkE8ziRDDQaDwWDwH4CbMtrHx8eTYLdDRdey/pJw+VqZlTLw3Vikg8XLLenKLX6Nf2cZr/XaOqTF1FpbpQQLWmUtgcclH8nMWPyv78lA1zpNZCH7SBJ2vLY6H+91KglyYZFmWcobwoQwn/Ou/Mh/T8lQtNJ5/VIyDNHKr/z68bvGzFIJWpOL5FryebdCfjaV2DFaCleQYadyC94Lsr3kVRCYsJWEEfjdOdzd3VXx/7U6o2QiZRLs57uCgiKc+1rHJCi9OyRQwXdLml8ru0qeBj6HHPuurJCMlgl8KcGR5ZfcltcovXfa+k7QGHUN6IHkuvfjXVoW+k9hGO1gMBgMBlfETRltaoK9EwRnS6hdUT5T2ZnGnyxwxqwY06R0mG/TROQvKbdoMo6pZGLXJsq3TZJy52KzHLNvw9ZTZKBJvL4xtiTfqPulz12cRN6QHbOkhdokORNLoIXPFmDtvjloRSc5Rd5fXWN6YxI7YRyXsfskfkKvB9sl7uL73KaVme2aS5CNppI+Hk9sj40dkshFartIaO2wYUlqYynoXBJ6kUfNt9M4eX7GI3Ve355rnkIsSbhE22gsfA7Te6KJ6PAdye19Poyd6ry6Rv5u1Bz5bOvvZLrJG8JyIq6ztL51TciYU8llkmec8p7BYDAYDL5y3LRN3tPT04nEn1tVLFYns5Dl4vvob7KaZPnJmjonZLBWj10lK4pjapm2buk3oXtaUqkInLEgWu47uTbGei4RORDIgi/JOm7bpNgdrdudPKSKyimgnxqIp+xi38e9KmQ3rX3hrhVhk8Rs4hdrHdma2ADXW4ojp+vuaB4PH1OLt+5itETzWvjYyHp28VGKC7QqAW9iT0/D58+f61qWJ40sJ0kWctxsTOK5Ijqf3jtkXmwCIa/cWsf7zmeLXqQkrsO4p66Fmguke8lryRyN9G6hN6IxdG/xRyEONkDgeve107wsfAf7/Phu5LVPXg4y2vv7+2G0g8FgMBh87bgpo13raAGlBryMf8qClOX14cOHtdbrZsM6HjPMKFmW4p+0jBl33Vng+pvmQSsqNTRv2X67Bsy0ymQFMiPWz0eWS7bDOjofD+dDppCs7cbmGytOxz0Hn8OOIZ+rO/bztraFZDKCs+4mei4keUPGemm1J6nHxiy4lmjV+/ibTGSSZmzxQj4LqXqAzGwXFxd435L8oH/vx9vV9Pp+j4+Pld35z8wh4f1yRsv8hxaP9lZ+gt5ZjD9TbN/vy/fff7/WOq3EaDH1tbrHpnlH0jXms6Z5kK36uNkGj5/MnPa/tbUqpHwCgR6a5DlMbPoWGEY7GAwGg8EVcTNG++XLl/Xnn3++xCpkCXosiFmYZJaynlKNaotD6HeJbid/fBOEp1h1Oi4t5Vbv6DjXJs/HSJYgkAGkDD4yWjK4xPKoWsRjpixQMtnGDBI8u3GnDHV3d3ci0O5ZzDxnqx1ObPHSpvGOc4pQiW21Non8TGNsTJLrPWVlaltmcqaM9eZ14flTxjrzFVhzS0+KH4f3i5+JOV+iDKV92QzBGQ3vFRsopOOLUaoGlp4lZvYm70tr3p4U8PQd4+ytPaN/1zLHd6B6k+an5z7VwvJvfF51TLHz1ICleR52WdUaW/NQ+ruBx93V7/+TGEY7GAwGg8EVMf9oB4PBYDC4Im7qOv79999fXMcpGE33R+vP6CnlAt0QzS2b3GR0MTBJxF25rQ8s3bOp2JyJOkxGSIk1LH+hKy316G0uUbpNmpswHYOlD2nczd2X0u0p9LHD8/P/9jJmU4Ek4ab70CTdkkQhx8BjpKQxloIx4SSV9ySBiN04NHcfN91wTKxKpWh0fXI9JJF/nrc1m0guXT57bS35cZjIwuMn9+1u/TrevHlzIjyfhGtY9kS3rM9V91+JmS1pLblrmXzlpUt+Psevv/766rw6BuUHU5kcJUub6Imv1eb25RpNoiEtmVDhuySNKFc81zH7Iic3MN3KvBa7/se3KO1ZaxjtYDAYDAZXxc0Y7dPT0/rjjz9erDdZGZ7i3YqjZSnxd9+WLEHWjZIIBFlVvo3GwqLvlCzCNPrWfs+t7MZghJ0YActpeA2YTOLbMvmpJZ6k5AgyCJYzpYSt1lqPJQ9r7QUq0lgeHh5Ozu3jJoOkrGEqV2JCUWsukCx0Nr4gk9WcfZ4sayCj0Dq5pPEBn5WUWELGR4/AJY0WWsvDxE55viaU4ixI91TXhNc6jXHHconD4RBbBzpam7Um4O/n1jZ6r5DxsXTHf9a46H1ReUx6HzBB1N9nfkz+7GPlWkreF76TWlnhTvpVn0oYo6fQr7fm0TxEyWPDBEA+iymZld6D+/v7SYYaDAaDweBrx02bCjw8PJxYqLsG4pRTTDJcsrg/ffr0ap9WwpKEHVj4zFIAR5L/S+dNbbga+6VFm5hTa4ydBO9pfbZrsJNibI23U/nSOQlGxqt8bJfEaiU6kOKCAsVNyOJ2pTO8XmyLltZJm+uuAQHvR2uBeEn7N44ptYdsUpKtdCPNi8/kToqT56PAPj0dvg+ZevMy+FwZn044HA7r7du3J9dn10iBzCgxWj5/ZLaUaPU5a002mc7Ucq89HxLxSVKzTewheYQI3n8yWP3dxYN03TR3igYx3uoCIPqZDRyYE+LXStvSY8L5JZGiJoxyLQyjHQwGg8HgijjcqvHt4XD4n7XWf9/kZIOvFf/1/Pz8I/84a2dwAWbtDP4u4tr5J3Gzf7SDwWAwGPx/xLiOB4PBYDC4IuYf7WAwGAwGV8T8ox0MBoPB4IqYf7SDwWAwGFwR8492MBgMBoMrYv7RDgaDwWBwRcw/2sFgMBgMroj5RzsYDAaDwRUx/2gHg8FgMLgi/g1NZevbVlpsXwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZVlVJTrWjcgusiEbEUitJ3ZVWpaKCgWWCmgpWii2lNihlO+VaelT7EWpJwmKinyKDVJig4ipYi/2IGiKiB12ZQfYZPJQMiFJsouI7CLurh97z7jzjjPH3OvceyPuPjjH993v3LOb1e2111ljtm0YBhQKhUKhUFg+tg67AYVCoVAoFPpQP9qFQqFQKGwI6ke7UCgUCoUNQf1oFwqFQqGwIagf7UKhUCgUNgT1o10oFAqFwoZg9ke7tfaU1trQWru9tXYFnTs6nbv2rLVwQ9Fae2xr7drW2hYdf+g0Zk85pKYVDgDTe/GFh1T3MP2t1N9au661diMdu3G6/idFeb8znX+NqIf/ruto41Zr7S9aa19Dxz+1tfbq1trbWmt3t9be1Fr7pdbaJ7hrbM15n45xuHauLYeJqW8vOOAy1XPxfzceUF0XTuU97YDKe59pXfy/gnM3t9Z+4CDqOQi01j66tfaH0zx9S2vtO1prF3Te+5jW2itba7e01u5srb2utfbkg2jX0TWufQCArwdwIA/vXwEeC+AZAL4FwLY7fhOADwfwj4fQpsLB4SkY358XHWIbntFau24Yhvs6rr0LwKe21i4dhuEuO9haew8Aj5nOR3gxgBfSsVs66vs8AA8BcOYHq7X25QC+B+OYPRfACQDvDeATAXwMgN/sKHfT8EwAf9xa++5hGN54QGV+OH3/RQB/CeBad+zeA6rr3qm+//+AynsfjOviK4MyHw/gtgOqZ19orT0c43x8GYCnY2z3cwE8CMAXdNz7CgC/C+ALMY7hZwF4SWvt6DAMP7qftq3zo/0KAF/WWnveMAxv3U+l/5oxDMO9AP7wsNtR2Hi8AsDjAFwD4Ps6rv8tAB8H4DMw/hAbngzgRgBvBnAkuO9fhmHYy3z9GgAvGYbhJB37pWEY/m937LcB/BBLpJaK1toF0zvchWEY/ry19ucAvgLAlxxEG/h5tNbuBfD23ue0Th+GMfrWOVmvhmH4s3NRTye+GcA/APjsYRhOA3hVa20A8MLW2ncMw/A3yb2fA+AUgE8ZhuHu6dgrWmsfAuDzAezrR3udF+Vbps//OXdha+0/TqKB4621E621V7XW/iNd8+LW2j+31j6ktfZ7rbWTrbW/b619cU9j1rm/tfaerbWfmEQV905iu08Lrvvs1trrW2v3tNb+qrX2ya2161tr17trLmytPa+19tdT/25urf1Ka+393DXXYtxNAsD9JrKazu0Sj7fWvra1dl9r7aqgPX/bWnuZ+36stfac1toN0z03tNae3rPgtdYubq19e2vtH6cxuLm19vOttQe5a9Z5bg9vrb12Eh29obX2idP5r2qjOPbO1trLWmsPpPuH1tqzp3b/83T/q1trD6PrWmvtK6ey72ut3dRae35r7bKgvG9prX35NB53tdZ+t7X2AcEYfHobxV0n26ju+dlGYrqp7de11j6rtfZ30zi8rrX2ke6a6zGy049oO+LI66dzD26t/VgbxWn3Tu3+1dbau849ozXxJwB+CcDTW2vHOq6/G8DPYfyR9ngygB8HcGChEVtrjwTwgQBYHH8lgJuje4Zh2I6OuzIf3lp7a2vtF1prFybXfXBr7Zdba7dNc+v3W2sfRdc8orX2c27+vaG19q2ttYvouutba69prT2htfbnbfxx/JLpXPe8A/BSAJ/L5Z8LtNZe2lr7h9bao6e5fzeAZ03nPn9q8y1T+/+0tfY5dP+KeHxaR0611t63tfby6R25obX2Da21lrTlEwD8xvT199y786jp/C7xeGvti6fzj2jjWmXr7VdP55/QWvvLqf4/aq19cFDnk1prfzy987dN4/FuM2N2DMDHAnjp9INt+CkApwF8cnY/gPMxsut76PgdcL+5rbUHtNZe0Fp787RWvLW19oo2oxbCMAzpH0Yx4IBRPPCcqTHvMZ07Op271l3/QRgXiD8F8ESMO/s/mY59sLvuxQDuBPB3GNnCx2F8yQcAH93Rrq77AfwbAG8D8NcYRXYfj1E8tw3gk911Hzcd+yWMYpovAPBPAN4C4Hp33QMA/DBGccdjAHwaRhZzG4AHT9e8+3TNAOAjADwKwKOmcw+djj9l+v5uGCfCl1D/Pmy67jPcWP8egFsx7tr/M0axzT0AvnNmrM4H8FqM4sj/b+rrEwH8EID32+Nz+1uMop9PmNp1D4DvBPArGMWdXzhd9zPUlgEjq/t9AJ8K4EkA3jD160p33bdO1z5/emZfCeD4VNcWlXcjgJdjfJmeCOAGjLvko+66L56ufdH0fJ+Ece7cAOBSd92NAN409f2JAD4JwJ8DuB3A5dM1/x7An2EUST5q+vv307nfAvBGAJ8L4NEA/iuAHwDw0Lk53fs39eNbAHzANHee5s5dB+BGuv7G6fhjp+vffTr+qKms9wZwPYDXBPU8G+PcO/PX0b5nTM9+i47/NoCTAL4WwL/tWXOm74/DKL7/AQBHqH1+7flQjHP8NdOzezyAX8a4Zn2Yu+4zMJKPT8L4Dn8Jxs3ES6kd12NcO27AOJ8fC+CD1pl307UPn67/mIOaA9HzFedeOs3dN039fCyAR7jn9D8wrgcfh/GdO41pbZquuXBqu59j3z5d91cY16KPxagGGTAyU9XOB0zXDwC+CDvvziXT+ZsB/EDwzr4BwDdM9fzodOzbML5/nzmN/xsxrtd+fnwFxjX9hQD+C4DPBvD307XHknY+bKrj04Jz/wTgx2eex4diXDefh1FFdCWALwVwvy8T42b5XwD8N4xrxacD+G4AH5qW3zEhnoKdH+0rpwnwoulc9KP9c3AL3HTsMgDvAPAL7tiLsfoDewHGxfsHO9rVdT+AH8Gog7uK7v8tAH/hvr8W4w97c8fsh/P6pB1HABzDuKh8pTt+7XQvv8APhfvRdm35A7ruuzFuBC6Yvj95uu/RdN3TAdwH4F2TNn7hdO8nJ9es+9we7Y59EHZeLv/SfNc0UXmhfTuAi2lM7gfwzdP3KzEutC+mNn4e92P6/vcAznPHnjgd/0/T90sw7nJfROW95zR2X+GO3TiN+xXumC26n+OOXQ/6kZuOHwfw5XPzdz9/U1u+Zfr/x6dn9IDpe/aj3ab/nzYdfwGA31f9meqJ/t5npn2/YeXS8X8L4H+7ct6Okb08jq57CnbWnM+dntEzxTj4tedVGDdi59P7+XcYxfJRWxvGdezzMC7wV7lz10/HHibqTuedO34exh+5bzxL8+FG5D/aA4CPnyljaxqHHwfwR+64+tHe9QM9jeMbAfzyTD2fMN37kcE59aP9de7Y+Rjfz3swbT6n4585XfvI6fvlGDdwLwjm4CkAX5y08WOmsh4bnHsdgF/reCb/CaP9ks31ewB8Hl3zDwC+dd3nvZYeaRiGd2BkU5/fWvt34rJHA/jVYRhud/fdiXHH+xi69uQwDL/jrrsX44M/I7Jso4X6mb9178c4SX4dwB1UzssBfHBr7bLW2hGMC/PPD9NoTuX9Kcbd8y601j5zEsfcjnECnMD4w6DGZA4vAfAoE4tM7ftsjCzVdE+fgHG3/FrqxyswLgqPSsp/HICbh2H45eSadZ7biWEYXu2+v376fOWwW5z0eowLwUPo/l8fhuGEq+dGjHozM7B5FMaXk62UX4pxvLk9vzUMw/3u+19NnzYPPhzjBuQnaOzePLXx0VTeHwzD4A1iuLwMfwLga1trT22tfWAmLjS01o7QPF/nvXwGxrn3tXMXTnP7OgBPbq2dj1Ha8JKZ214E4BH09+aZe65GYKw2jIZYH4Lx+T0bwF9glFS9vLUWqd2+AuMm8anDMDwjq3ASPT8GwM8C2HbPuGE0enq0u/ayNqqZ/hHj5vB+jD9WDcD7UtE3DsPwF6LauXln/b4f46bx6pk+ZGvdfnByGIaXB/W9X2vtZ1prb8H4Xt2PcfPSu479mv0zza2/Qd87si5MpI5hNLq8AcDfDMPwz+4aW4P+zfT5URjJFL/z/zT98Tt/YGitvT/GefinGKU5H4dRQvCi1toT3aV/AuCLWmtf31r70N73fi/GH8/DuLN/ljh/JcYdBuNmAFfQschS8F6Muzu01h6KcSKd+ZuOdd0/4V0xKv/vp7/nTuevAvAuGH/43haUt8vorrX2BAA/jXH3/jkAHolxIbuF6l0Hv4Dxh9/0jY+b2u0X1HcF8B5BP/7Y9UPhKoximAzrPLfb/Zdhx3qZn4cd53GJDBnfilFVYG0Bt2cYhlOYxOh07zvou210rF7TJ78Sq+P3gVgdu13luY1Tz/N9EsaNztdhZJX/0lr7ppkX8lXUpm/qqMfa9k8YpUlPbWQ/IPASjOL9ZwC4GONcznDTMAyvo785I6YLIayXh2E4PQzDq4dh+J/DMHwsgPfC+GP3jEYupRhVUP8C4Odn6gPGOXEEo/qHn/H/C+AK9wx+FCOL+16MC+ojMIovre0e0TthmJt3HncDkDrtjrVuP1ixI2itXY7xfXg/jBu+j8Q4Dj+Bvnl+etrUe/Dae1CI1pW5tcbe+ddgdT68L/L10srm+QiM84yfO+M7MKqHPmUYhl8bhuGVwzD8D4yqw+91112DcVN8DcYf+Le21p7bEpsNYD3rcQDAMAzHW2vfhpFxPze45B0AHhwcfzDWN+d/C8aJxMfWwa0Y9aDPSeqwXWZkLPQg7HZN+CwA/zAMw1PsQGvtPKz+kHRjGIYTrbVfxCgKfAbG3e4/DcPw++6yWzHuMD9TFHNjUsXbAfyHmWYc5HObw4PEMdtY2EvxYIy7dwBnJBBXYf6lYdw6fT7Fl+eg3J3WxjAMb8P4A/ClkzTqCzC6/dwC4H+J264BcKn7vu4c/+apnm/saN8bW2t/hNF18xe8ZOUAcSviBS9qz1taaz+M0RXsfbGzCQVG3fMPAri+tfYxwzCERmwTbscoyv5+COnBMAzb04L4KRjF6t9j51prH6ia2NOPDlyJ8T1UOIi1TiHqw0dh3CR/6jAMr7OD01r2zgB75z8HoxqDwRsOjzdg/E34AIzudACA1tolGCUJPzRT9wcCeC1JHYFxbn96a+3yYRhunzY9Xwfg61pr74lxbX82RrsPKVnaqwjmBQC+CjsW5R6/C+DxzfmDttYuBfAEjDqibkwM7nWzF+b4TYzi0b8ZdszvV9Baex2Az2itXWsi8tbah2HUe/of7WMYH6jHk7HqLmO77ovQ96PwEgCf11r7eIwGWrwh+k2Mi9jxYRhezzfP4BUAPqu19oRhGH5FXHNgz60Dj2+tXWwi8olRPAqjrgwYReX3Ydwgvcrd9ySMc3bd9rwW4zN4n2EYfmzPrd6Ne7H7h3YFwzC8AcA3ttGjQW6apuv2jOmH7/sBfBn63HO+A6P06fn7qTdBpHJAa+0hwzBEzNU8L/hH+V8wGk79DoDfmX64Q+Y7bXx/D8AHA/izQVujX4DxXb2fjj9FXL9vtNYejJEByud8QGvdOjCPgzPj0EYPh8ef5Xr9ung28WqM0o33Gobhp9a5cRiGk621V2FcM7/N/fh+Fsa5o9ZQw80APqSNPtn+t+KRGNehld+DYRhuAPCc1toXYIZg7elHexiGe1trz8K4C2Z8M0Y5/qtaa8/BuMv7eoyTRInUzya+CeMO59WttedjZKRXYByY9xqGwaJKPQPjj9svttZ+EKPI/FqMD8AvAL+JMUjF8wD8KkZd+JeBRMYYrasB4Ktba7+BUZyUvZSvwriz/hGME/rH6fxPYLQyfFVr7TsxWk6ej9Hy95Mx7phPIsZ1AP47gJ+apCR/hPEH5+MBfPe0CTiXz+1ujH6Lz8W4iD4T4873ecBoOzH18Rtaaycw2iS8P8ZN4mvgdGk9GIbhztba1wL4/kmE/BsYdYzvhlEPev0wDGG0sAR/C+BLWmtPwhgo5y6Mc+WVGJ/V6zEuiJ+Ccb69Ys3y18W3Y7TIfQxG2weJYRh+AaNK5mzh1QD+W2vtqmEYbnXH/7q19kqMz/MGjHYGj8coqv6ZYRhWAngMw3BTa+2xGC3P7YdbMdCvmup+eWvtRzCKtt8FozXvkWEYnjYMwx2ttT/E+F7ehJH9fiF2VDNnA4+cPl+dXnVu8XsYVXIvnNbyyzCulW/F6P1ytvB6jOvp/zO92/cB+Dtv43IQmNaQpwH4ztba1RhtmO7C+Jw/GsBvDMPwc0kR34RxrfnJ1toLsRNc5bphGP7aLmqtfRFGEvsRwzD80XT4+zCuuS+b7r0Xo2X4pwE4swmYiOLPYJT+ncBoHf9+GKVOEvsJaPCjCMQOwzD8b4y74zsB/BjGH5/jAB4zDMNf7qO+PWFaCB6O8UfuWzFaav8vjIvbb7vrfgujePr9MYpEvh7AV2NciO9wRf4QRhHGkzDuuB6PkY36a4DxB/0FGN0s/gCj0UHWzm2MLmvvhtEQ6h/o/P0Yf2R/COPi/OsYfxy+ACOTlFGxpnsfN/Xb7n0BxgXtHdM15/K5vQTjD+/zp7puAfCfJ0NHw9MxLsL/BeNYPm267xMTFiUxDMMLMW5u/h3Gvv06xk3ZUYwGUeviORg3Wj+M8dm+EKOF6J9h3CD9HMZ59OEAPncYhpeJcg4E04/jd53NOtbAyzCOxSfR8adj3JA+C+Mm5qcxjs/TsOo/fgaTWPyxGDdB1zfhZzuMwTkegVE0+r1THd+DUVzpfzA/G6MO8fsxGrrdDOCp/d1bG58E4E/5nT5MTBufz8D4PH4e46b9+zDO27NZ700Yx/qRGJ/Jn2B8Pmejru/FaNH/HzCulb+GkZwN2DEaVPf+Mca156EY14pnYlx7/ztduoWRfTd3709gXGsuw6iz/lmM8/Ia7I5z8mqM4vufxLjGPQHAl05rlURzxtIFQmvt3TGa5T97GIZvPuz2vDOgjUFmnj0Mw2yQnsLmorX2YowuOR972G05TEw69JsAfM0wDD9y2O0pbD4O0q1gozG5jHwXRvHm2zFatX4dRqOAHz7EphUKm4hnAvi71trDZ9RC7+y4BqNXykHZUhT+laN+tHdwGqO18vMxWiifwKj3+a/K+KVQKMQYhuGGNobqPejwrZuGezEGUmLj1UJhTyjxeKFQKBQKG4KNyKxTKBQKhUKhfrQLhUKhUNgY1I92oVAoFAobgkUZoh07dmy4/PLLD6Qsn6eBczbMfe8tdz9t2u+10fm93LOfa/cyFvtpg9lfvPGNb3z7MAy74mxfccUVw0Me8hBsbW3tuW1cj/+fP3vu7T23zj17sUFZ556e+nrblI3ZOmNxkHY3N91008rcufjii3etOzZ3bC4BwJEjR3Z92jk+Hq07/LkfLKWMs4V15vs6c3V7ezv8PHXq1Gw9hhtuuGFl7hwGFvWjffnll+Oaa67ZVxn2Mp1//vlnjh09OnaTX8a57x7qXM8LqTYJ2QsetUHdywsJf0btUAuK+vRlqXFbZyzUtfasonpOnx6jCT760Y9eifh19dVX46d/+qfPPHf7zJ6lvbhWrn3ai+z/v//++8NreRHw4IWAr+H6/T1zi022sVD1R9fN1efHwqD6zsftXt9vPsb18nd/z0H8eF977bUrc8fWHSv/ggsuAABcfPHFZ6655JJLAACXXXYZAODSSy89cy8AHDs2RgW96KKd6Jw2l887bwznzT/s9pn1S72HPe+alZu9c2qdmSszKp/bnNXB74LaHPvrovfFXxu9v/be3nffGHvqxIkx8NrJk2PwyFtuuWXXd1+PPS/Dk5/85DTS4LlCiccLhUKhUNgQLIppHwQiZqgYqNoRrsNIszaoa3qY9ty9PVA7YX+uF37HazvQrPxeZP3mne7cmJ933nln2E0kbVCsgnfuHnNiXMWeszJ6mBV/57np2zw3/j0ifsW0WSoRtU3Vz88vOmb9yNia9V2N+X4xDMOuMYmkGXOMl9voYeXNqW6y91Sx8r2sB1HbVH1cbzZ31DP0dfB7yfMsmwd8DT8n+8zWfl4fTKrimTZL09aVRpxtLKs1hUKhUCgUJN7pmDbrd6NjkdHIHOaY8DqGb9nxXqOVSMe8Dta9x++w1Q60xyZAXZvpzg2mG4xgTNueLe+ofXmsAzP0GJsplhfdO8dW92N01bP7V4Z8vh1zfc7auB8ds7JXMPj+MRu3Z5xJSPaDqNy9vNO979g6TG4/xm3Rc1Psdc62Zh1k6wFLXnqkUHaPsifx3+f069FvgVofloJi2oVCoVAobAjqR7tQKBQKhQ3BO414nA0OvNhFGSHMuVUB824T67h6ZVhXlLaOEVuP4ZtBGb5EYzJnRJKV29N2fj7eHYzRWsORI0dWnnXUJm53BuWSxKKzSFSnDGW47B73LT4fQY1ljxh7P2Jy5Y7WI47vmTv2LDP3uoPEXozusnuUq1ePSyaPU4/Ll1LHZO6CezGAnbs2W6sMPAaZ4R3PHX4HWWwetUGNuf+94Llu7mJLQTHtQqFQKBQ2BO80TFtFLAJ2dup8jdoBZ0zbwDu4yACJsZdoWT3YC4tdh5VH34H+oC5Zm+2zJ6LUXLlbW1vpPJhjvFHwBhV4RQVmiQz25phoD/PpGVPFIjIWrYK3ZEFW+Jh98hhw//l/30Y2LsuY69l2AVNt9W1YxyBVSQF7mLaqNwK7Uak5E0k+5iRu60gNe6ISzrnfZhIyJSnrcfni4z2SxKWhmHahUCgUChuCdxqmbWw6c/VRO13e7Wf38vFIfzQXGtKQBeJQO2AVYi+6N9vN9rBWf0/GIPiajOWqerJgKL0MvrW2IlXx98y5XGWhE/mcYpkZS1fhPqOxmYtt3ePy16OP5/arNmb9slCRqr7MxYj7a8ejULKMddjffsF9UvYC69gcZMfVNZmtBrdNuWZGkh3V1gxz7mE9evd1pHNK+pRJrqyNNkfXCb0cheFdAoppFwqFQqGwIdh4pm1h6CzwBgfpBzTj7LGUVAFZuKyMaWd6T0OvHrzHIljpMKPd7DoBUubqy9rGoU9Vv7wEQUlEIhjLZmYatVPZIyjpBqCTY5hlaZasgHfsXEbERNkKPgsao8K9KrYcsWZOymGfzMR9eT3PcA5q7COJi9J3r2Mlv18oaQK3BdDzl1mzoScpT6YHz5LK+Ht7Qu0q6/UouY1aT9d5Htk4zl2TjRG/N/wuZPfspR/nAsW0C4VCoVDYEGws07adETNsZnT+f7aqzJiVgtKPR7sxFQYvsu5UVrs9mAtsn+mUenfYERTDjhidYoMsqch05xlaa9ja2uqydlWMLdKvqRC43EZjpJnngTFv7mtkcc4snJ+TTz3L9XHbMut41herZ5hZHCv/+R6GohKGROCxPpe6RhX6WElEomtVe6NkIxGz9WCviwj8bDOJhNLZW9s4Ra2/Z86aP3qnuW28jtp49kgUlQTLH7N67fcis/c5l7YSe0Ex7UKhUCgUNgQbx7R5d6+sbHsswBVTzHSMzAyzgPPqM2KDrG+d03FHO3DbvXI/I4vzOT0/M8fMwllFLvP9Y2mA2kF71sYsosfiPdOrGUtQjDdj2sZsbafOu3q2JvfnTO9tn/fcc8+udvRYc/Nnjy+qspDt8Z9l7EUCEs0dxfrVeAI7z8CzPH/N2WLcfv7x87fv9hlJG+asqzNbl96+RTYg7PPOrDzyjph7L9nGAdh5Hlwfs/OsD8qjx8a1Zx3nPmQeI1bPRRddBGDnXYzm99lOTLNXFNMuFAqFQmFDUD/ahUKhUChsCDZCPB65YClxdSY+5GAQXH5kTKKMK1RYvKgtLPqLxIrK4EgZLWUipx5R+1wowB4jIg5ok7l1ZS49/rwXv63jdmbX8z1RkA42umG3EC/qZPEtjynPP59cgMXj9957LwDg7rvvBgCcPHly5R4W4fu++bZlxnI8Biw29e6Q7ArDyFzxVLALQ2b4xu5wfI/vv91v9dr4sarooFxzrB5zJwWACy+8EABw7NgxAMDFF18MYFUU7KFcvFjFkgXZ4cA1hsxdMHN7VJhbXyK1hVIRWhkmeo7cxJQYnMfePwNWRfQYvrFKgA0f2ZDZ/2+fJR4vFAqFQqGwJ2wc0zYoc/8owQEb/KidbbQztZ0eu9jYtcaSIhcc3j2q3V50zxxrWCfsX+TWoHaPytXHt4fd7fxu2F/r6+DdccRquY38jD1DjDAMQxoqds6wLWNsfC+3v8eI0WBzkxlXVLdy48qkTyp4TBYISD1vZvjAfOIdft+iYC7KxYj75M+xpIqZ5UEZpEXsy95vM2BiiUskOeC1iENpGiL3rczlDthZd3x9yg3M+mFt70kYwvVFLl98zvplEqUTJ06sXMttsn6wNCKSOLGUqUcqqJi9tS2SJLFEpJh2oVAoFAqFPWEjmLbf9WW6ZH9ttANVeiFmvn7XqXbJvDP0uzFm2MzKogADKgQks5iIDSrW3aPf5fLYHSraZXKfWeeYucGwG0XEarj9KrBJhuhZqiAgGTNkqPFiPZ4/p+oxZMk/5sKaRtfMuXZFLj/MbHqCBvF4st4zYp88xsa0lI1F1AZm1pFucx121FrDkSNHVuav6bGBVSkPh6+NJBLWb5NEKbsItrnx9/I8MxYbzSXTt3N5xirNhuKSSy45cw8/Z7aPUK6H/n9+zvz8IxshfrdtrJVLXQRlT2Jj5I8pyR6vXVGbKmFIoVAoFAqFPWEjmLbffdtOjHe+zGp6EhwoHWbEzpTlN+tx/D28Y8/0t6x/VGETMytVBu94vZWytZd3mkon3BMWlMfK75J5Z807+IhFz4VH9LAwpjwvfLmqbyrMrT+n5g4zHs+0bbztXmYC0bxkCQ7rC7MEByq4ShYAhplbjwU2jzEzR9bVq9Sa/t6eZ6z0vBHL5Xvm4Mcu8yKx56vYf2SZz+8OS5eidtu7o96/SFrHITp5LI1p+/pMz2318TrAz8fPb5s7LBXgPkSSJF4jzRqf13dvL8Pzac6jB9h556zvynI/8jYyeInLElBMu1AoFAqFDcFGMG2/2+Jdtdp9R7t7xSJU2k1/bs4vPPLP5d0x7zz8OCxcAAAgAElEQVQjvbRqI/cr2r3y7ts+M10PsyPF1rJUl0rv7uvjftpYzPlv+2v8GEfweslIV8U7dGXT4MFMZ06PZj7EwKqEI7L45TbyONjcZ0ttzzJUaF1+/tk7kYXyZfBcZcmBkqb4NnCYXGal/lkoexLu/16Ztum02UI8areaK5G/tkqOwXPT3r1oPeD5xRIJX7bNPZ4Pnh1z2/l9VPYCyh7Dl6H8tiOvFesPf7K3TuSnzWUpC3vffq6XdfmRpMX6rGxhDgvFtAuFQqFQ2BAsawtByHQiSqeYsSZmjUqn5BndnJ4os65lNsH1RxHDlHUjW6v6e7k8ZfkdRQpSO07W4ftdrl3Llp6ZXtLGwna6zCQNkW6pR8/aWkNrbUW/HrFLZblsyPSqphu77bbbAAB33XUXgFXrXmCH+SgL3UiKwayLGWg0xsykmC0xu42imxl4/kWWzRzJjcfTmKqNiW8f62oN1j+bD34eRP7sHpE1e2RrotBaw9GjR1P/X+Vjzc/L32PtuvPOO3d974kcZ+XyHLWxzaQLXJ5KeuOvYfsLnqv2PdIxM8Nm/+ZIYmHvhrKlsLZG1vG8bisbC38Ne0dYuSzJAlbtfQ4q0t5BoZh2oVAoFAobgkUybWbTfielrJxVnF9AW69Gek8g3mHzNcwYI0tT5VecMQeWAvBuL4u8xf3siYus6mfLc7/D5v5lPr0Mloiwj2fmr51ZsA/DgGEYVphpJKVRYxmNrbXr+PHjAIBbb70VwKoe9/bbb991PbDDJh7wgAcA2LFCtT5nvuRK8hJZnDOD5rjKLH2KdOgGHgOWkHhwP9iy2sbMj4mNgVkL2xhl8flVbHX1juwFvr7IN1i978q2BtiRSLBkguOW27hFbWCbA34//dhaW9gvnJlpZg/BdhgssYrsYgwcLc7ORylOuS0muWK7E99WK+/SSy8FANxyyy0Adua51e/r4xjmrNO29kRr5JyE57BQTLtQKBQKhQ1B/WgXCoVCobAhWKR43MAGT4B292CDJi/uUMEnDCxG9PWpoBbsShCJbpV7SyRSV64XBhaXRWIxlU4vMl5iVw4WodlnlF6PExCweD4SL86lb4wCJkTuGAoWXIWTVmRg8b7V4+818e073vEOADshIc0oxtpofbbjAHDZZZcBWA0YYWVEATn4ubOhU+bWwv1gEWCUHILFnyzmjUTOrGaw+mw+WJmsDvDnrAwO0MF1+H5ErlH+e6Qy6IHNHR63yO3M1pme9I08lhwek4N2RG22Z2cqFqs/SpVp5yxMqXJX9M9D9YeNu6IkQAarz8T+Pc9SuVHZ+2bzwo+R3XPllVcC2BGX33HHHbvaaO3wfbX+8DsRrcWZunQJKKZdKBQKhcKGYJFMm9lLZpTCO7eIiSi3DDagigyD1L12vMfIS4X5i3abyjDIELlCWJ/tHLsARWEebZeq0jjatcYco4AMnJbUxtN2xyz98GAJRWR4ooyxIrTWcN55560w7ChghQovafDP1O4x4xdmR1YGs9kIZpDE0iHfv8jlybcpMsTkkJDcBpurUQIPxRSzcLBsNMjuSDZG7Prlr+X+8HscGVoaVFhWf906xkNmxMj1RK54SooRuSdaO20crJ323Rhh9J6w0Z3dY+D31bfFxp/ZcRSQRblcRs8B2L228PvO9dvaESVyYRfaq666alfb2MjRt8mOsfQhGis23FQJivz3gzRwPBsopl0oFAqFwoZgkUzbEIWv5B2v0jlHwUBUCk4V/ARY3d2xnijTMXKbeUcYBUhhWP3scsJMyEO5YEXMkhkdM58skYeSdkRMm8eLdbRR27KECgxj2lx+5IrH7i0G1n8BqwzbmIbppTO9O7u1WT84OYKfq3aN0uNHu36WPqnnHp1nKRAzoUgHyXpPFWIzS6nKEgzubyRJ4nnH5yNG34vt7e0Vdypvn8Dvm323ayKpIDNcDtDCEhI/xmq9UeFTozZySF+r30uL5tKE8nzwdbB9DQdZyWyJmMWyzllJnHx9NnfMdoT7BKwGp1GpRqNUzj12MYeBYtqFQqFQKGwIFs20oyD1cwkust0dMw7evWb3qCAHEQtUSTBsh2v3Rla1zCZ45xvpeRUTYV1zZBugpAwcpCaydJ/TEfvnpp4T1+9ZIO+Gs+AqVkcWlpOTrahEB9E9XK5KTBPt2A1sVW9z2DMfxZqZBUaMm8dY2VBEyW1UIJbM04GDIEXJc7gdioX3SK6U1bjBB/6YmyseJqWJ5qCB28sW4Nm6o4IQcT09Fu/siRC90wZml7beGEP1beB3gZ9ptO7MhWWNxlMl3lHpVrNw1Grd8d85bG4UlMbXH/VZSUEPC8W0C4VCoVDYECyaaWf+l0r3GiX2YBap0k9GuzplWd6z+2ImymzJt1GlAFX1Z2yAd6BRmjuVSJ7LypiW0rtGVpdKV5uNI++Oe3XbHpE1L8+rniQwXL7a3Uc6RiVFiazHuY+cXjMLY6skHUry48vl55zZNigpFydaiOaWkppk31nqwBKYHruSDK2NqTmzdcDqYHsN9nP3DE7NN64nsn5nNsnhOLN3Qelr7V6vl2Z7C/UuRKyT5wyz9si2RqVKVR43keRKtSmaqywNUmF6o3DH3M+lYFmtKRQKhUKhILFopm3IojIpFu13S2qHm+my1b1cf9RGZrGsv4kihylrUbVD9G1WOnpuu9+dq2D4UUIKhrJOVnrqrAze4UfPradNfE8kkZgrT7EAYDUqF9sLRP7zDGULELGXubZmST8ynaKvw5/jOcsMJIraxudsDNhiN/LT5fq5L5nUax3JSA+GYcD29vZKvINMmqUkRpEdRxbNzt/r30+WjrF0IyuTn6G1iROVZG1S61ukQ2e7CGX/4+9XHg1ssxT1i98Jtf75/1lap1KCRu0vP+1CoVAoFAp7Qv1oFwqFQqGwIdgI8biHcklh44dIBKgMcjJXmTnRcyQCjIwbfNsjow4lplLi6yzAvTLQyYzzlIg1ghrrTO2gDOzYxSMSZ3MZCtG9mQuZQk/fOWdxlMBBIZt/7A7IQS4ikaPKLW/IguxwSFrl6hOFk+TnzyqDLPe3CnKRjb0KfXsQ4svTp0+nLobsrsfzOTIMywIURfdGQZ2UC2CUv9tg7ec83dYHS8oRQRl78XnfNjZA5OcfzW82GOY1M5p3aj3rUZfwmqV+R3xbWEW5FBTTLhQKhUJhQ7Aopm2uF5mxCu/Q+DPb3c4xEq7DX6MYorU1CljBQffZXS0zuuLjGdROPkvNyX3nMjJWy7tlxbQjgxAeR25bFMpRtZHh+5exMPUM+Xt0v7p2neQCmYGeCohhiBidCl+qQmBGUhp+Hqp+IA/aE9WXuaf1GIXys5xjg+tiGIZdTNsQrQO8/mQBdFiiNtfnSDLFZbFEJBpbe2b2aQZo0TPtTY6RsVc7Z4yb3eD8uHK4V2bA6ln7/3mtVwZq/n9O8KQMjD3YiG0pKKZdKBQKhcKGYHFM++jRo2d2UBwOEdBsK9NH9bh28T0G5XrDOkzPzpQeqics3pwuKWojM3tmTxFbUv1idpS50HEZGdNWbndzYWk91gknyM8paqdizRFjn9PBZsxAPbso/SHr+Ng1bp1AD9zGKFAOl8uswuZONCY83zLWYphjyxFb4n6ooDH7YdzDsJqaM+qPCqYSzd/sfeBrGUpfq2wc/LVKOhOtAyzVnLNxidZVXq+zlLx2DScIYZfKzCaF3+3MLoL101x/xqIzadNhoph2oVAoFAobgkUxbWDcfTIjzdiS0k/6HeE6TMCXyf9H9UQWknyvusb3SwUb6NG98G5RJSjwO8Y5/WcWzIXvmbOwj+6f0/P5/zlpikJrTbbft1f1PdJpK+aryorqUwwu6g/bP/DxTIphULYGke6b05+yzpQlIv5/ZtyKOWZSGjWeWX08rr3zQ8GCq+wlXCU/p8gyX9kcqHkYXaN0zhGr5EAian2IyuMxVUGffDlcz/HjxwEAl1xyyUp9Bl4/e0IUqzYbonGOwlr7+iIWrd75paCYdqFQKBQKG4LFMW1g1X8xsqpkPW62U1fWreu0JdNdqvqUNWqU0m7OajOrj61Gub6InSmGoKxkozZxf7Jx5T4r/V7EVAxz/tX+/sySVLHmSCem2NE6Vrbqnmgnr3SZmT6UGaZiS5kFML9rmR5PhdbtkZ7MsZbIFoGRhTrdK4xtA/Ez4HnF7NJ8n81S2187xwyzd8yg/Of9e8y+zpygKLKh4DFUz5bP+3pYt82M29dx7NixsJ8clyCbs8qeJLrH+mzPR6W4jaRrnExnKVhWawqFQqFQKEgsimkPw4D77rtvJfoQX+NhOzS+J2Ivc/6k0b2KjRmiyETMRBXj6dGVrBPtJ9I/+uMRM1GW35kuW0UtmtPZRfWq71F/5vwlff/MOjTS4/Num89H9cwxkKgfc3rbqAzl6aCebVSuOh55Ohg4apZda+MXWUWzHy5bBHOK2KiN2bvHx+b04fuBrzdKC2njwIl2ejxdlARinfdFMVL/LO3ZceIWQ8Tsld+5GttsnbN+8btnjNtfoyzMe57l3DyIylAMPrK452QiBzG/DhLFtAuFQqFQ2BDUj3ahUCgUChuCxYnHT58+nYb7VEYuLMqIgg4ow5Uetx1GFlyFxYI9YQtVMIO5/MNR+YyekJ5s2JcZgmRj7Y9HYJGacjXzbeJwhQre5SsKJMJqEvXp3U/YYGUdVyWeI3PGf75uDjahAklE5bI4XH1GbWExeaSa4PeSx4jVD5HLz5zLZmRgxecOUmy5vb294mLq26DG39qfuSyp556Jw3nMWCxu36O5Y2JxCyvKqpYoVLB6pzMVGJcfvT/+OmBHVG5jYvNsHTWJEoNzWz1U+GtWA/ljB2noeJAopl0oFAqFwoZgUUy7tYatra00NRqzE5UgJHMVUDuobGelmEC061dM23Z7bLDj26vcTjJWwcyH+xmxJVUfuzlkbiLqMxrnOXbL7fLl9AZeOH369MqOOnIXVEkKuH/RMRWIJQr3acd4jjAj8EaUnIxDle/fCS5/zj0oC2urAkr4+uZc/JhxZ0aGqp7IBWfOIG2/yIw+1dga1HyOoN6XKKAMG6Dx54UXXnjmHnNr4nnHEit/j803HndlROvnzsmTJ3e10YzLzK0rem95nWGDvmwNnhvbSKLD65x6V7LAU0tDMe1CoVAoFDYEi2LawLhbytwa/HXADmvNsK5rUhaQgz95F+v/73UXi+rmHSGzV99v3jUqPWG2k2f2xPpKv2tWAVJ6xlEx1XUCp0QYhgGnTp1a2bFnLmu9Ng7ROd6hM7vx/6s+chAhf62xJvs0vWDEhPk9UYFRrH4r05fDc5bLiqQ0/EzZ5ciQ2W6ouRq5FnHb9hq2lGG2NJymMpIuzLH+CFmQI4/o/eS2sPTJ13vixAkAOyyWddv2jC+77LIz9xjr5vC1tr5wIhTvvmX1WZsuuuiiXdda2f75sxSS3QMZWSAYNfY948jvbSbZWZpuu5h2oVAoFAobgkUxbW/9C+RO8pFTvJURlevvVZbnkQUwsyVms2ztG7WthxEoFsa6mKh/c7rZrH5lWc4hEaP6eCfKbYuCamQW9FE7POZ0WsaYorb4dvOcySzAmd2xXljND/8/l8/My7NYY8HGfIzNGFuyz2hslRSD2+OZNktS2CYgmgf8DDkYBZed2RVwH6JnoOxJDsp63OYN993PE36+3JbM00XZ2yhL9KgeZq92/J577jlzjz1XY8M2h6xcY83+Hjtn88rKMGmJ1Wd9MD22L99gY2HlR8F1rNweLxUgfhfnglRF48jvq7U986iwe9ZJCXwuUEy7UCgUCoUNwaKYNjDuanr8GFUCCtZLecyFLWVWFZ1T1uu+TGbY7LeasVili+W2+R0o7wTtO5eRMVUVajXTh7MVtrKWz84dFNMeht3pFTOJC9eV6SXVLn4dnSb3ndNhehjjMbbErClitYqxMRvMwjLOSYMy3SKHtVXt8FDWwtE9zPpVmsr9IrMNsPFn635udxQitDeOQcQqlQ90NE4cclaFk/V+08asrW47x0w00qGzdEYl+PH2Nypd6ZzNQHSsR9Ji7bd+sS6b+xmVuzRr8mLahUKhUChsCBbFtFtrOP/881d8+DKfa6XH8zvhubSQPTs3ZQEatU1FGcr0hFyPsojM2ItK5BHpllhSwOVlO17FytQu2tfHTDvz7VblK3imzUwlKlvt3KOoZioC3pyHALAaS8CYR8TaOAKa0plH0iDlF74OeuIg8NgqXWP2jsxFnVrHR/qgwM8ySiLhWSq3k9ummCe/J5E+1eYBPwce22jucFQ7u8fWVa/TVvYdBusvR0wEdvyyrV7+btd6bwLul/IeyOawkixF84112FY+f4+Y9tKsxg3FtAuFQqFQ2BAsjmkfPXq0K9a00jVG1sMq2Tzr1Xg3688php3tkrk8ZlqZpXy2o+Z7lc+jfUa+7EoPqawpI33bnK4ni4g2pxeNrpnb+Q7DkFqS8g5a2ThE+nvlN8+M25elGLZ9ml+rT1N46aWXAtiJKnXJJZcA2NFtm/WuZ0vsn7sOE7X2WhuUzUE0V5W9h6ojupevyewKzhbDZkRtZK8BNXei6I3qu5KI+Tao8u1ez2LtHpsjSsIYvRMMm7M2LyJ/avvfrmG/7Mi2RcUAV+tPFHOAvWJ4rKJogcr7I4pkuDQdNqOYdqFQKBQKG4L60S4UCoVCYUOwOPH41tZWKs4xsMgscx3i+5WLUnS9Ehf2GIZFYfyAWDyu3Fh6QiByIhJ2xYgM0bivysUkSj2qxEeZOxe7oahnkIn958KYbm9vp+k8M1F2Vu463yOVgFJXmGjTROH+mIWatE8Tj5so3D4B4K677tpVPovLlSrC1+eTSACr6hF/j0pXOpdIJEKPquWwxJWRmJUDirAhZeTeNBcMJFoPOPCOcjHMkrHwuhOJuNV6wyJv5UbqwQa2kaGdcilV4aGjYEXcBn6vs2Q6KshKtH4v1SCtmHahUCgUChuCRTFtYDWUqR0zzAW76AnMktXN9SnDqYz58u53zsgnKnfO+MbXy64VvHO385GxBRuCMCuPdsu8o1UpLyOjlXWY9jrpDq1dqm2+3Rk7jsqMrlXMJwvqMvcJrIZ5tO/MfDwzNqZu1xjzNmO1bExYCqBccCLjPJZyzY2NGh9/zTrGUgeNjMVy4BJ+P6L1Rrk1Gvj5Z8ZQbIgauSpF7q5RWdF8U9IYZqDRu8gBStj1zINd/digN3NbZOkPG/pmTHsuDG0kmc1cjg8TxbQLhUKhUNgQLJJpz6VO9OdU0I7snswlgTHnehHpfPkaTl0YuXEp3XVPmjh2vVCubJmuh9thyCQJzDJY75XptHtcizJbA4Us2AXr7bm9kd5uLihM1sY5Zh8xA2ZLzFqiOctjavOB03lmwUmUrYYhC/PI7VChKX0b+XuP/Qrfc7YYUKRPZZckDk2cMW0VRIXf8SiAjUG5HEbJP2ydUc/S16Oeh3LN8mUxo1fBdvw4qvedQ8dGSW+UdFAxbn+/ctWM1sE5u5XDRjHtQqFQKBQ2BItm2nPXRd8zxqb0T5kOg/WAfE200+adH+/Oo+D7yoozCoziz/tysx2nb4f/f05vk+0yFStn5ur/n2NaPSxXweu0e9gY7/ojCcFc2tMMmd2Db5t/Lhw2UiWDYWtvXx7bJ2QBK7hfKthFlKZS2TKod8ZjjmFHOvTeoD77RfRcOLxsphM1qDCmBqXX9dcqpmj3sDW7v4eZfE84Y56rKriQv4e9VViyE0kU1Xuq2HQENR/8XGWpj0rVGa35S7MaNxTTLhQKhUJhQ7Aopm0sm/2No1B2Sseb+fvyvYZIh8XX8jXZTpB3uCpRSMQqld+0oac+ldAjYtpz1vc97KZHN6z8PDNLapYgZEzbWDbv1CNrdB5bZqSeGbDlPV/LiNqvnmGUZpPnSOTDC8T61jnWFFlFzzEQY3I9unrut2EdyVlPkqCzDX5fo7o5nGk0tsqKW7HZyFKarbjVvPPlc9usDDvuQ58yS+Y2Kst3j7kUsJEOna9VrDZaI7mtaj339TD75/TJkV1JJBFdAoppFwqFQqGwIVgU0zam1KNLmLMojXy7VcKQdfRpmQ6L28K7Om6br4ethOeC/WcsgNscMfDe9I2ZVEDpnDOdtmLjmVV0D9Pm/kXXKhah2gbs7LZ5R66sbKN6+R7e5Ud6ScWaI3Zh97O/LB+/++67d52P2qKsdzOmPeerHvnKZ/1R9Z1rRH7azL743Y4swOfsIqKkFRzNjp9TlmCH35se6+qo/b5NkacDM3pGVB+vjcoThSUA/hjr5nlNzNY5G1eWKEVW6j1r/WGgmHahUCgUChuC+tEuFAqFQmFDsCjxOJAHYoiwFzcQFmFm4QaViJvFfL5MNmRh14fIFYJzLRs4fOI6oU+V8Vx0TPUny8VtUPdGBigqOEkU+pTF1tkzHoYBp0+fTq9V92fGcGrcM1WAQT0HJab3/7NxWRZkx9zE2GjM5o4Sm0fnWJyoEtn4PrNKh/PJR+/x3Lt9rozOemHjNGe45dEbpCPKYc9zhp8tG1H6/+25W3jbLIDSnAGgMmbzbeNyWbwcGc+x6JlF3pERG2Mu9K4/psThmYHf0sTihmLahUKhUChsCBbHtIdhSENp8q6xxxhmblffE8Rjjnn4e5idKmmA30XyTpcNoDIWy/UoFh0Z2PG1HAozc51irMNYlUGaZw497m58PnNVY2MbxSo85lzUmE1GBi32aSEnmc1G4V6Vu2DkCqgYjX1X9QKrxmrKXTACsyE2uMoC5hhUMI2lMW02ZMreD75nLtxmNldV2E1z28qCuvC7bPDrE5/jMlg6GBmV8XeeQ5mEj69RLo7+GrUWR0xbuTJmAYf4nVdjdFgopl0oFAqFwoZgUVsI00saMuajduaRbkYx6DmXpahe5awf6bTnWEXmlsY7UXb4z6B2on5MFLNWbhV+d54l+VDH5/TeXG907VxgiR4mHrU3Y9wqyA2DmTeg3fayYDjMeJUkJJpv3GZjD0rn7a/ZC7PluaPSrfpnqtwrWUoUSRKWAHbPsz7bGEfnDMr2xPrqQ9OyXtiSAfEzzFizPVuW/GXr6tycje5lqUOmhzao0KqZ1FPNnSwhDq/XLFmyzyhhSI8tzWGgmHahUCgUChuCRTFtC2PKuzC/u1UhALMAKSoABu+o2OoV2NEd8S5OWdv6a5XeO2LLc+yPmWpkmc0628zy16DSaaqddtRmpdvqqZdTUEYBWewzCmfrcfr06RVGGtlDzEkIMh0sX6MCZmT3GmuK9Gl2z8mTJ3eVryQvUfmKpWe2DeuA+2HviEoRGo0ns2eWBkXMZ0mwNUmFKgV2xiez3gZ2xilizfze94b/9NewVCsKHqQYLkvAeiSYPCY+bCq/e3wtr6eR1Mug7D4iyRW/a2bnEc1/lnKopE2HhWLahUKhUChsCBbFtIFxJ6b0rIC2OmQ2EVliKkbITDvSq3JZinFHbeCdbo//udrB9/gzG7IdfuZnHiHShxtUONCea9g/vSfJiGrfqVOnVnzgI7//OavxTOfXY//A7Y8YJxAzg4suugjAjn6TmUKkB+dnySE3WfISWY/zM2XvhZ6QtGpsIrakPrOEIUsESzwiK2Tl283jZ8zc/5+xZF8WsDq/VehTv3ZYPfzs2IYmql+FaWUr+SyJCpfFYUajkKsq9C6/K9GxvXhJLG0uFtMuFAqFQmFDsEimzTptr1Nga9ce1spg3aayZOa6/b3MbiIdHNejgvFHmPOFjvzCVWS3Hv0Xl8+7yygIv2pTpK9inXVmNW5Yx3rTmDZbzK7DtCNmqHR9/D3zuWamxc828is1xq28FXwfVFIE9puN7C+YtSibgMirI5r7UT+zd2PTmTYjsnTn98H6aLre6H0xSYt92rV8T8RE2RI/ssg3KMtyuyerj32rVdTACDxn2EbA7vX2THM+1uyL7f9na/EeKNuXw0Yx7UKhUCgUNgSLYtqtNRw5ckTuTIGd3RTrTXosliM25O+daxugI/ZEO9A5RpcxbaX/jqyimckpph2Vw23mcYxsBJS+M4tuxlIT28Ezw46s4nssnIdhwH333Zdao6u5oSzn/f22Y5+zHu+RnmQWuSoCFuvi/D2st1O2DVGqQWNyVq6l71zH5kGx5qitKnbAOjrGJSOSgPCaNRcZzcPmiD0n00Gz1bevT0XIyyRJfA0z7SwCI89r7kdkk6Qio6kUsb4/HI9dMe7oXM9akkneloBi2oVCoVAobAjqR7tQKBQKhQ3BosTjwCiSUAkdgJ1wgUq8Et2jDDFUWMHInYZFQJlRWW9SkygAzJwxRyQ2nwsB2KMyUMFcVDuiNvHYeCOXuWAqmXsQG9Softxzzz0rwXAiN7c5I78oFGnWTgU1R63vkTsVqzq4z5mqQ7Upe/7KDYnnRRYghZPaqEQO/hiPTeayualgNyZe19jYyowPAR2ak0XeWcjQHhfHOdF2zzqgXPyiNY3VLhz+ledHZFTGY6OOq3Lm0OPCephYVmsKhUKhUChILIppmyFatrMxJsWm+5nhjNo98mfmrsEsIguuoYwdFLuI2j1nXBYZWGUGVf46/79ig1miAG4TB6WJgtSw8RUz7ageZgpzu+VTp06l4WwZzASzvrLbHh+PjK56E8dEbVTGYxGbYGMbVX7k8qUMkZQUyv+vwqRmbFklCNmPC+fSwa54KihJ9kwt7CZLZ7w0ay6BRrQ2spRMuatGRo5sDMeuutnzZwbMAVLYIM1fy21kV69oHPcSrlcFtDlsFNMuFAqFQmFDsDimffTo0TNsOtqBmutDph/2x61cf4y/Z7pSlYzD0BPOktuk2G1UvgpkEekJeSfNO/lsTOZCk0YMaE6XHQWpUckSepDpOYdhSCUJvm7FxjO2P5dQxZAl8pir39/Pbi3MRDwD4QApBmUTEM0DxUQiN7Go3f57JkFQ9iM9AYCU++NeWNRhwNpprNneCQ47CuyMO5khMp0AACAASURBVCe2YImVD31q4PUlCyjC0jKGcuf0//P7zy5uEewaczG0fpqO2z6zMKZzrN2fWweZ9G8JKKZdKBQKhcKGYHFM+4ILLlhhJFE4TGVRHFlMKobDTIStYiOokI1+Nza3U4uslFXbuIxIX6ikDOuEMVWWphHDUkkMMp02X6ussX0b1wlp2dqY1pV1WFkKU0bPOM2lMlVt81CBbKJrlP7Yz3vFWpVuO6pv7p7I00HNlR5d/RzTjp4B61A3LSALt5eZY5Togi3QjVnbO+bv4XVHzZnIpkEFD7LjkdcMW8MrL51IkmTHjGlb/06cOAFgh2ln1uP8rmfvxhx8v5Qdy1JQTLtQKBQKhQ3B4ph2tJPzSdQNyl86Yy1zyTAyhqUsjX3bVRtVIo3IJ1mVu07oVbb8jHabc+VlDFixTWZC0e5VhQiMxoSfy5zdgGfakV5NWcauA2U3ELWR61HhPbNn2eO/r6QxcxIYD2bhmd80S7nUZw/TVmw98wfmVKOZxGJpLMnD5qi13+x1gNWUqYr5ZnYjKlRsxj6VV4ch8iJQfuCZVTyHzbWxMIZtx6MQ1mq+eV32fsDrWOm0C4VCoVAo7AmLY9pHjx5NGYjyU+yxrvb18DVArstWFtoRq4z6Fd0T9U+d62Fa6nukg5xjONyOSALC35Wu259T/s5RchgVSSyD8lX1/zObyCQxyte9J/qTsizn55FZ5isrdc+wFAPldyGKsjYXiSzzkZ9LG7qObQjXF/WPxyCTstm1pgNeWlQrYIdVMosGVucmJ67hyH/+/573xKAi4HG9mR1E5JXgj/tnzd4PZjWuvCMifbjyQNiPF0G0VhmWFp1veTO5UCgUCoVCiPrRLhQKhUJhQ7Ao8TgQJ2vw4gl2K2JjFBM5RSJHFoOq717kpEJQZsYvc8ZDkdHSnOivJ6woIzM86m1zZgSmAur3hD7la7P291wLjP1k0awPLMEqFRYNRmoTJT7mPkbuIb1JbaJgLko9YWLRSPTMItR1kiUoUWc0d1SYzJ6AKTyOKmFJJq7k58VqgaicJYrHDTZHTVQMrM4rZQDrReFqTHmcooBGSl015yYJ6PkV5be2Z2TrtPXdvrP7W6TmnAufu47hWKTKU65sS8FyZ3KhUCgUCoVdWBTTNpcvFfQEWGUcvKuPdtRzwTTYUCdKNsLX8E44CnbCoQczNyvlYqEMwyJ2NhegpQdqd97TVm5PBJVMIHpuWZ/n2m9j71P/GSthF8LICE6Vq3b1kSGiCtbTEzY3C1Dh6/f38Hc1bhF7UYZIkVuPukYFd1HtjtqWzTdl4GbXRgZY64QZPiyw+xOw01eVwjaSLhjY3ZElSJ5p87o5N16RSyN/ZwNFL0FQTJsN0DKWqwL/9EgFVH/8mCjp6lKw3JlcKBQKhUJhFxbFtA0Ze+EdqO3Q7J5IX6NcEgxqx+jvUaEZM+ZrO00VgKMnYQhLG7L6GCo0ZYQ5tpYFu+gJftLLmqO0gaqNjGEYuoKC8LPscWuZQybhYVerrI1qfJSbi/9/bp5zWb48xayjuaOumfv0UIljMqan0oZG96wTZnYp8PYXSsLXM07KxTQbUxUgiRGtISphBzNu30dj32x7wrrsKNhS1ha+R0l22LUwkz4sDctsVaFQKBQKhRUsjmlvbW2tpbs0/SQ742dlqGsiFsPnMvbAbTNpAOtpIgvZdZJ7+DKiY6ptWdpIDlpjiCyqe8P8RcdVkJpo18yeAhmGYQjDJUaSF7Z+7knFl+mFfT+iY+vMszlpUJQoR4UP5Xsi5sNj0ZNkQoWRnOuDh5I+9dgvqHnu5y7P0YNmTXvRn64DDtmpwjZHkile37K5qwLU8FoVvZ9WLreVrca99Thbi6t7oiA7Sne9TlAVnjuRdwGXt7RQuMW0C4VCoVDYECyKaZv1uP/uP4GdHRFbSLJVcnSPSgavAuwDfTo+/s5tYatKq89bMSvfccW8MzbYs8NW5asQfpm+V+mNsqQW/Bn1k/2qM6vrYRhCf9GIVTDzZD1hNE4KmefBnH460kEr24ksNadKmMBMOAvtqth51kalQ89YKPvF9khp+N2Y89v2/6/DsHushtn+4WxbFlvfbO3KPFBYP8vrT/QeqVS5zC6z5C+sh+a0mn7dNV0267A5QUpP/AblUZExY37HIz/tc/Vs94pi2oVCoVAobAgWxbSBcSfUk1CBd0q2i8x2x3yvfRpDyRJrzFnMRroXZiS8m40Y3V58oOcsvaN75nbUygeS2w3oHWlPW3v8tSMLzwiRhXPmgaCkJ1F/eizXFbiv61iCG7IoZ71sOSpbWY1nftrZ3Ii++2dq76k9S06iEpXBbeph0VkiGkZrDa21lTb1PFNDpBs9qFSRHtYP79Nt4Eh/NkeM+Zpkz79HSvev4ilEtg12r7FoZuCeaXMKTtaHc7siSRmXz+ejcpREMWLa3JalWZEvqzWFQqFQKBQk6ke7UCgUCoUNwaLE41tbWzj//PNXEh9E5vgm9rBrTDSkDHmAHfGQEv1ZWV4kFOUgju7JDNHYbSMSj7NIS4lkItGgEv1kYsq5gC8quEN0jOvvcYdR4tDIIKQ3QMaRI0dS9cJcEoRIFDyXWzczYmTwNZG4ml1flAFa5N7G81flt+4xtGREAYeUoR3PpUwcO2es5/+fS2oTtbc3YYh3Ne0JYKRchyLjUmUAexDwYnJOlsTiY8stHrlQsmhZrVV7cf3y97B4XImio3c0c/GLvntwPT1unksTixuW2apCoVAoFAorWBTTbq3h/PPPX9ll+R2UcvWynZTtIrN0hGwYxszB78qYtbAxTLQD5boVM4hcL+bYcg8LUIY6kTsd70CV0VQPepg1t58NQTwrW8cgxIyJuJxIIsHMraevakfO3yMjLy6X53VkVGbsrIdpq+Apc8Zl/tw6oRsV61TGTNFcnQsiFIV2Va4+kZRmnRC7dj67RklYWJrgmTa3wZ7p2XIl4nE5fvz4ru/GbqPkGGqt4DUymjtcFvczYtpzEp3M9WvObStLrRzNFVX+UrHs1hUKhUKhUDiDRTFtYNwBMYv1uzIVBIDdAbKd+pw7VRZekllM5hLDCUOYzURuVKy362Ha6lzG2hVbMcy5V0XIXKfm9JFZkINeeLYU6bazsVP1qeeiwjtGrko2D5TeNtLbsYRHhRvNrlHMdC5ITdTWLPWocleMyuJzPI49kqReGw51LLrGrztRX40h8nthzDpzN+J2z7HNs4UorKiCjQUHZMmCLPG6vR9EUla1NvJvgn/m7FKoJJp7cfM8LBTTLhQKhUJhQ9CWFKqttXYLgDcddjsKi8d7DMPwQH+g5k6hEzV3CnvFytw5DCzqR7tQKBQKhYJGiccLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAgW5ad96aWXDldddVUa1WrOjzmCikilju+lrJ5r+fhB+wGu4388V3d2fs53PPO1Vf6Rmc8yRwN7/etf/3a24jx27Nhw+eWXp33aC3r6Fn3Pylqn3r3cuxT0xKDveTfnUqf2xKk23HTTTStz54orrhiuvvrqpCerOBvPY5137mxhL4bJ+4maeBD1rbNuz30COgbHm9/85pW5cxhY1I/2Ax/4QDzrWc/ClVdeCQC47LLLAACXXHLJmWsuuugiAMCFF14IYDWoQfQQODQkB7JX4R49VMD8KCcyn1OLThYAxsCBWfh6D/VDmIUEVAEqssAVvHHinOYWcMISFPhj9tzsu93DuXiBnWAhd911167Phz3sYSvuOZdffjmuueaalf7tF9wnzu2dhcucW2ijgDNzAUv4XmA1AIwKYJIFkjD0JH9Ri2bPRmMueAx/+v8tOQYnm7Bn05OY49prr12ZOw95yENw3XXXyXHz//M5DtUajdNc0COuI7qmZ2x7N+1ZGNt1CA0/Q3U+C1rE37nM7F6VPz7qnx3jhCVRzu+TJ08C2Jlvds1Tn/rURbgFlni8UCgUCoUNwaKYtiUMsZ0zsxtgh/lw6DreuUVMm3diUapCLmtuBzrXHw+V/jIrn1lyVj/vTjPJAUMxxogNzo1JxCQ4XanBnqMxcNsB+3JMuuLPnWuoPnPSgnXmR48EhMHSDX8sY8dzZatQoXsBj1EU2lXVvxcRcU9YzjmcPn16ZRz9e8PPai51rv9fvVMZ8+4Zjzn0sOZeps3t8teo+ZZJdtQ5LjNKwKPS5UbPRCXP6ZFCZulIDxPFtAuFQqFQ2BAsimkDI4NgQzSf7k4lZzcwi/b/c8B8pTfJdNoKmc5H7e6yxA2821eJFbLy7bv1P9KDGuaC8fv6WMrBiREidm7PUI2jSVAiKQfrLs8l+FlZn3hMIxag5mh2npn0XEpTf4zb3JPAoTeJSo9UqOc94j6z9Oug3r11MAwDTp06dWYOZvVmemh1rfrseabKTqHnuWTSR3UPH1/HwHIdvbti5bx2+TJU2s6IlRuyRFL+e2azka3Th4Fi2oVCoVAobAjqR7tQKBQKhQ3BosTjrbVdOZHZvQbQ4igTYUQ5Y82AyT5ZPJ65Yilji16jnwg94nElFotE+iwO4/Kje5ToVBmkeTEVPxd2i+I6gHmVRCRqt7aZ6xiLL88F+BkpN6pIRMjGNkp86MWibNBm19i4ZHmt1fdMhDsn/oxErb0uPj1GPmwoFBmHnm1DoGEYsL293SUWVeMVGZMpVQernPi8PzdnIBitA9ZuJTaOjOUMSqTe4y7K70aPMZ3qT6QuUXOkZ56pdyRai/didHwuUUy7UCgUCoUNwaKYNrDDtoE4IpqBd0jmHG9s2hzj/f92jX0qh/5oZ692vFmQE+Xqkbl8ze1OI0M7PsafPUEH7Lvt+nn375+BnWPXPPvk4DX+Hmbl7NaXGVixwdu5BEstDHMuQP6cYucRizXpAhvARSxASYH4fMQ61Lzm9yuabypQSo+rjJIC9UiSDhp+zfH1rMO0sveEJVM9bpVzTDsz1LJjipF69BiPRW3O2rhOwKE5o7nI5cvGldc3vjcqv7e//t6lMe5i2oVCoVAobAgWx7SB3N2I3ZiM1VkYzBMnTuz6BHbC0jHTtnt5xxbpNxQy9yZmj8Yyox0quwxx37lt1t9oLFSIvsgNTvVPsQRghwVaQBQOTRrZFfC93OZIqqIYyZIQMQKGnZvTbfr/bXzYFS5jSyoQTxbEg11iVOhd3z8VelTpIzO9q5L4RP08m6430bsYSTNUSNhsneDx4LkeBcwxKFfPTNLHuuWeOapsdPh45PqpmHbUL2UDxM89clNlSY76nj0LVf/SAqhkWN4qWCgUCoVCIcQimbYh2hUxizN99fHjxwHsMGz77q+xe5hxs1W5Z4hzTJtZNLDDPC38pu2sOUiI393NWfEya/ZMm/th53oSKCgws/chRG08ObzosWPHAKxKMICdHTPrtJXlObA8XdK6UAExDD3BLlSY1CwYhGoH2ytEbeQybQ6ZtMofY4mOCvUZMfu5/nqcCxaUhekFtOTLENmacP+V5C2yHjesE8ZUSTp6bFu4H6od2Vzj9vcEzFGfkb6aPYR43kVSIT7GEoNMGmTYTyjZs4Fi2oVCoVAobAgWx7SHYVixEo6sa5Uu29I3eutxZtBKt70XZsrWvf6Y2gGypba/Ru2Wmd34tlpf7fNchd3jHahnGQo2TsasmWUYe/flrxNS8bAQMRHFSpR/q4eyEmYG7M9l+kdfXxZq1cpXsQz8/8xeVHhb/z7zu62YXsQG9/OeZmitnfmL2uL/ZwnUOqFiexKF8D0GpSfOvC3m2h5B6bKV/tq3ac62IWsLs2d7xhFrZu8U1uFHfWf0vIPcv6VgWa0pFAqFQqEgsTimvbW1le7GeddtTJutkE2/Gt3DbFX5NwOru1LeYZteKmITytc5s6rkXR3vSDNL8LPBsC+99FIAu8eTLctZL53pMm3s77jjjl33Rno9Y91LsOycixSXMW22GmZ/XQ/WdypL40wvqdqYpfVkRs0SEV8H2yeotvfohpmpcgwFfz+vCwfFuC0iWgalR2WJROR5oiRvmc81M2k1H6K0xfxO8RivIxXIfMl5filvHG8jpKSdLPU0G4qIaXP7WRqQrcUqEU9k0zCX8OewUEy7UCgUCoUNQf1oFwqFQqGwIViUeLy1tiufdpSsInKtAHbcrCJxh0pOwGIpPg+sGo+ZGMfELj2uKtaWLPEF1zMX9MSPCQcqWUdMbuVZ20wkffHFFwPYEYt78bgS/zOyQAzWZuU+5uvpcTc5W1BiXGUEkxmisUiVQ7kCqyFiba6wONSPLYtOWXXDfYlE3XavzQPuj71fvh9qznI9kahbBSmxdkQiVSvnkksuAbBjdBoF8dkLOGiML5dFvnOBmvwxFo+rYE6ZCoIDNkVzx/7ndYbd7Pzcmcvt3ZP8gwNesfrRu6fa//bemxic3VSjUMgMXusjw0d+j2weq7GJ+liGaIVCoVAoFPaExTHto0ePpkYCHMDBuwj5434Hpdgw78yicH+8G2a3qmiHzW2xcm13Z6zV7+hsd6rcaZTxCpfj22S7Vjvv2ZLtQI21XHbZZbu+27jyDtXXrQxsoiAHbFDDRh7WVl+PjSmz87MFZrn+GM9JJbXx4LnDZTEzAlYZABv7Re6CvSlAI7bEz9LOmaTF4FknPzN2z8kM3+ycktZECUqYhTHjtnfSM7p14dcGq9sHlGH2yO89uyr5vqjPHjZpsDlic4YZoz+nEvoY/PNQxqOKnUdSSDZEU2zaHzMX3f08MxUSN5J2sRSAJRdZ2t+luZoW0y4UCoVCYUOwKKYNjDu9LEGE7Xp4h2g7qSjogHJ9UHpCr1e13SMzKdspRvoo3plZW41hW3s8q+REGtYGFQozCoHKYSWNLVs9kV76iiuuAABcddVVu65hHXcUPIYZA7MQv4tWjI4TVnhGxwz1bOm0rc/Zrpt1jErP7p89u69YPzi8beRGo0JC2rOMXGGsLRwmN3IPMlg5Vi7XGzFI5eqj0oj6d1G5sPH4+nG1e2w+2SenMfWIXMcUhmHAqVOnzlzL4YCBnbDILF1iJueh3OlUmkgPPtcTYEglAVIhPP09yjWKxy+adwae71EgqMheYF2wzQbP2cjVlH8DWEoUuYktzdXLUEy7UCgUCoUNweKYtt8lMtMCVnfkyto201HYPcySo+AqtttmPV6mX50LYmDMIAoAYwye9bksJYgCwPDYcOKSyNLUdJemH+QdN+/EfVtYZ2b12Zh5SYJKLsE6tEhndrZ2vPYcuM9Zfdxulnx4FsOMgMfJEElplLW6tTUKLMLsnyU6EbNXaRtVMBF/rT1TY6HMnrheX54Kx5lJH1hCYW23+ebrsbas43nALNCPMfeNmW+WRlh5c7CUIbtX2ZH4fvEcZJ15ZgGuzjFLj9YdllD0WIDzGrwOOGlL9gyyMfZtzMKznquw0L0opl0oFAqFwoZgcUw70p1Gu2SV0jHyv7P7jVnZrsr8PI3d8icwH24v2oUxC7M22Y6TLReBVQtZ9nFkhu/17ryTVbqeyF/W9E9vf/vbd13DzMfvRFlHbiydpRtRmkJmcJn/MVslH5Q/LltvW7sjnSBbwrPHAbct8k1nqQbHFPDjxKyI3wF7Xn4seD5ZGfwuRCF3VRIJtu6PwnNaeeZ5wD63kf7SnqmxZjvHLCmycObv9j5bfdE6YdfOhTzd3t6WFuHAqu2MXcvjFEkk5lLlRhbb/Nz5ObAE0PeVyzWwhMyXz+8htymyzFZhoVmq5rGXWBIMpWdXlu/AfPjhyNPFUH7ahUKhUCgU9oTFMe3W2hlfPt7RA5o1KJ9rD9v53X777QCAW2+9ddenMWzPYlm3zMlHDH43xtbIHMXIGIK3emUGZWNg0gBm2n63ybojY3IsWfC7SeujHbN6bAfPOicvfbAkIsawzAL9QQ96EIAd5h35S1q5zLAiC2fW6/rnopCxZgMzX7Zcj56/tYv1qnatfUYW+myhbePG0bWAnefO0hq7Jkq/auUqZs8RsvzcZb9pTmPL89/XY+VdfvnlAHbeI2ZRXodv+m/rn40Xzz8/D3gdiBJDcL/YHiazuraEIfyO+3eapRhsBxP5l/M7xmyP7RT8OqfsVLjPvj62hOa1MPLbtnJ5rjC4D8CqRMX6y+t3NPa2hnA/uN9+nYvSdXpE0g4rV9l1RP7n/FyKaRcKhUKhUNgTFse0T58+fWZHZbu+TN/ATMEQsZdbbrkFAHDbbbftKstYrrFJYwO+bmOTtnMzZmC7VmNPvlz2k+adb8QMmH3xdxVX2reNoydlTJUZFu+K3/a2twGId5u2W37Tm94EYIdpvfd7vzeAHQbmy+XdK1siRzG114lIlEUoM7AkgnWi/l67xqQIV155JYCd529jztIVYGdO2HyzPltZJvHx84At2JnB2ad//kp3yecjNsj3KL/zqD4bR/u0MTHYWFkaVmBnfKzvV199NYCdd+Utb3nLShsV61TfPXrSd1rOgzlW68HeJCyh8LBn+i7v8i5n6gN23hebY1E0QPZFZ+mQX6v4HtZHRwzV6mQWzpKeSM/PemH2jWcduwczbetHFL3RwDYTtr5EkdcM7GHAa3EkiVFsfCkopl0oFAqFwoagfrQLhUKhUNgQLEo8PgwD7r///pWg7l40x8Et2LjDxFMmfgOAO++8EwDwjne840w9wKqo3cQiXqzLRh0mAmSnfW/AYaI+Tmtp/YlEaSrovQr04UWBLNqy+mzc2LgMWBVtqcAsbJThrzVRnfXDxvnmm29eucfaxikYrawonCCrL3rAxl8eHGyGA8hEho/WR1OPsFjP5pn1w6sg2DCLjXk4DaZvA4fqZJGnFz0qozEWF0dGmqx2YTFoln6V5yq3nY0ofZ+5fFMl2ByyT993u5cNjvi98ugJrmKJiux+qycK3WrPl8XGmVjc1hMLFczjY/BhU9mo1N5pK8vGx78v7K6pxitSjyi1CK+V0RrC3zmZia/PnpWNBc8ZG19TVfp5x6oOGwubO6ZaidSAPEdVcB/f7sNMCZyhmHahUCgUChuCRTJtQ+R+YLsgle6ODUOA1QQazLA4pV3E9mznZ+XaNdbGKBhEFDDE1xvtCLOgJh4RO2MDGmsHBwbxUMFDeIcfpRG1sbBrjYUaO42ClKgkFtGOlw2oena89jwiwzo2lFEJDjyLZSNGDn5ifecEMsDOc7bxsPlnDCt6/pmrFRAnm7E2Gjh4DLsE+nnA7MXG2MqM2Dkby7HLEhumeWmRzRFjSdZPY45mkOTHJnL/ifobnZ+71/eJjTv9PGADQOVW5csw10frM7sNPuABDwCwmpbX/2/z2dgkhwqOXCStDXYvG75GoXYz5gmsGgP6uu1aTufK77rvO6dWtnXG3kWbl1FaZps7bKhs4x2lkTXwusOpnX1/IsPUJaCYdqFQKBQKG4JFMW2G7bYi839me6xr8jtF25mxTsfYke22jF1EbiLMfHiHGIVNZfcjDj3odT2281NBQZjh+XtVAhQ+73egKum93WvjybtpYDXIhT0f2+lGiSJYx8xuKBwm0pcfBZRhmNuOlWcsyesJDfxcOMCCv4d1bfbd2BOzTR9chQOIGFTAHN8mA+sf2Y3PX8MMmPsXSVxY+sJ60SgRylzSF3vfmDX5cuxek2AYw7ZP3z+bbyyZYLsWP872LrPkRWF7ezuVblkfmH3Z84iCdLBul48/8IEP3NW2KO0lJ0DiNSSyG1EupixF8/ewdJDXhyjgjEqAk6XzNHAAFpbO8XgDq8+Z3UWj943nL49n5JbGz7IShhQKhUKhUNgTFsW0t7a2cNFFF6XO7RzUgJkBW0H7/zkIAOsPme0Cq7ss1otHyT/mAohEuh6DsnJU6eiicqx/HHQiqo/1n6rffvfMwVs4LGvEWJReiK2iPZtaJ3D/MAw4ffr0mWca1cdjyNKTyNqV22/sUQXiiCQSbMXLzMqzQHVOJTfx7VfSGWY+/juPO+s0s3SOKi0pey9EDJI/2aLe90VJA3hem444Ojen0x6GQab9BVYZqX2y1MFLFbiPPNfVWEf3qoRF0TrA85lZexRql+eQsib3YPsblm5F7yJLGa0/LLWztkb3Kg+LSLfOawY/4yiAU4+k4DBRTLtQKBQKhQ3Boph2aw0XXnhhmtRcpRKc+w6s7tjZnzFipMoPM7Me5/JsR2j6Og5z6utRjIDb7tuoLMx5HDO9O+9ieYfqd7zMAm23yrYAWZpVblvUb5X+MAPryv3YsK84l2+7fN9unhNsdap8oX3fVPjaKGUjJ2Fg9sphZ7mPgGZ47BMPrOpb+f2KbER4PqmwooYocYzB2qIs3X09qp+RRI6tgjO2NAwDTp06tfIuR5IiZmgcc8GPE9ssRH2L+uXrY795lgJl803ptCMvkjmGHYWLZoki2x6wfhrQUhK2i4jGJLIb8IgSfHC5/B5HNiI9oW8PE8W0C4VCoVDYECyOaR85cmTFGtaDdWAqqLvfOTH7sk9lZRsxUqUzz6LmWD/MUtI+TfcW6WhVpDIei6iNfC/7oUc+nTw2vJOPomupNKVs8Rn5knMZvOvPdGc94Gsj3S/r1ZSlrm8f78w5sULUftah8zhFUhyem8YY2cPBM0eWKvBYK6mK7xdb6tv3yMKdGbYhimDI7VF+53ZcsVF/DT+3KEkMe0PMJX2wtQeI1xQl/ePPSKrAjFNFP4zWEG4/21D4WBYcEZElVFG/lH82z+vouEoCxLEd/D1ssxHZj6i2cr1zbN0f4/dYScF82zLbo8PEslpTKBQKhUJBon60C4VCoVDYECxKPA6Mog8WY0buH1FYPX9P5rbDRh0sDvFgcRgHG8jcGgycsIPDpvp7lFicxUWR2IjvUaFDub3+HhYrZmJKfk4s/ovE2iqYSyYOs/GKwn7Otc2XxwkhOJBNZASjxluJNiPXETZWUmoZ/78KDRkF4lDqEUamwuH3isWG3jhHuQPacVYdRf3je1ntFKm3+DurHyLRdE9+dRON24gIlwAAIABJREFUq4Ai/liPmJ3vYVEsrzt8fXSMQ8Wyu6X/n4MtsTohcxNTouBMZWBtUyGK/bNUKqJsDVZQhndRUhN+FqxmyAJdzT3zc41i2oVCoVAobAgWx7S3trZWEl1ku1c2AMmYNhuiKYOWLCgIB2ThRAK+jbyLNGOiyDWBGYFiTxE7U8EaOF2pB4/X3I472oFzmznQTZTOUyUiiAJacH/WCXIQGQYpFyh+xr4eZRjI/eI6fLnc7sj4hetmoyIOzOPrmTPKzMApUXmso/ShioGoxBQZ01aGfNE9SioTSYV47DMGNwzDmT/VBtVePu6fNbNhXm8yIzl+pmwIGRlNsjEfu3pFbmm9cyV6n5RUS61H/hqV4EmNkT82J43MDHyVm2L0PlXCkEKhUCgUCvvC4pg2kAf555R1atcf7bqZ+fKONNrdKT04B+z39fPukXd30U6ed3Uq2EnUxmiX7+u1etZJDq8+/f+K4bG+Omo/I3IpydqgwGERI5jbVJRClL/PBSqZc7cC4mAWQDx3mWEbWJftn7UK+6uebSZ9YKYdSU04hDCjh6mwPUTmOsdjbW1i97d19KGM06dPr0jNMhaq5nyWXlPp16MANoq18rP2ZWW6a19G9i4r9p/pw7lcntdR4Cmld+d5Ho1n5sKmoFz2Mha9n/l0NlFMu1AoFAqFDcHimLZPkRdZH84Fso/0hcyoVZCViMWoa3nH5nXovENj/QmXHbWBv3PbIxZrn5yqLkrcYCyFd8Vq95rpmnmnrUKhRsfWYfQ9uiV+Xr7dSifO7Y522OqazFpdSQgypsDBW9R88FB2D8xMIsbPNiAqYYNPKMPJMg6C6fJ8i8ZRtT17bgYl7bD7t7e3ZWpbQIfb5eP7CcTh71XBlDLPGp6TzOAzbw71vitpDbC61vIYZMl7bH6ZnQ+/t9FarBLgZM9fSTWygEMGJcE8bBTTLhQKhUJhQ7A4pu2tONk3EdAB+ntC9aldJetVMgbM97LVo28T7+6jVIwG9ltkvTj7Qkc7Q9bzGzIfTMWSMqtp5R/JEoWon6xbYmYZsYH9WG9Gu2Tv2wqsSnQya+eMeQC5j6iBJSDR2PKczPTSiu33SE0UW83sCDgsrkoyEmHOfzoaM9Y1c1KVaJ4ZOBxr1i5+P6O5yEyX68n09+p7NNZz90TtUFbcyksiKk/ZpUTSLuV1kdmI8FzhtYPfxcy+hKWPkceQsknJQsiqd2EpWFZrCoVCoVAoSCyOaR85cmRlFxaln+P0b2y56HddnEDe7lWR0aIdG+90eZfvd2OXXnrprmuZJdu9EZuwazjJCO8qPbtgi0seC0MUSJ+t4xUiXbPavRr8d5XOka1hPTPO0nYeBJhNsC+sbxf7yyrpTcSaFYuJPA/Y1oAlPD1Rn9iXl9sRMUhmQPx8ontM/816cZWQx2OOaUfSDvV+9khneiKiZe8CM05+fyIbCuXvPScZie7h9vf4F7MkJ5MCqMhrXH8mfbC5a8hskni+qbHIJEo8h9axgeqRBnESnaWgmHahUCgUChuC+tEuFAqFQmFDsCjxeGsNR48elYYUHia+YQOTntB5c2b/mfEDi4StfhMV8v2ANgzzbTSRvYmYTp48ues7i5F8mawqsLawEU7k9mLXmHEP58SO2sridy6XRW1R31VY08wIrEdMPhfEBdgZLxMjZ0FAWNTM4nH+Hs07FjGzeNzP4cy1z5fpwaJ6NvJTgUAysCugn99cnxrHKKSwCu3KzysT+6pALP64XduTZMZfD8SuSixqZlVUFGo3SkDjy81E4CpkZ2YIqRKQZAFFlCGYCjecuc7ZuNmYZ6oOnhtzxpP+mApbGrmJGdR6kL37SzNAMyyzVYVCoVAoFFawKKZtyIxfDMwm2EArcvliFxXF5KJAKSqdHrfZ18e7Sq7XG5PZ7vTEiRO7PnuZArDDztmNKtph2zHbYbMbVBYYQRlWZbtlZplz7inAKtvoYdo9xmv2HEyKwWwjC53ILInZdGQ0ySyGDcT8fMuCZ6h+seFM1BZ/XZZshN2nIraopA3cth7Go75HbkJzhm5Z+OEM5mbKzzZ6Lmygxe3PmO+ccVl2rQooEkkx+Llw6NDIQNSu4aA6mWsUM/ket1SWhGXJmvaKqIw5d7GorZkh5WGimHahUCgUChuCRTHtYRhw3333rYRS9DsnFXZO7fr8/cz2sqAMXB/XY2XaDtXr/Jid2G7O9MZRMAXepa7DsA28a1RsNmujQqTTZubIQTei0Jc2XnxtxOhYr5ux59ba2rt0dr1jPaWvU4VHVWF0gdU+M8OOxlyxJWaMUQAgu9ZCQ6ogQllIWuVGE+n3WNrFLpSR/nouLW6ky58LNBO5C6pgQRFaa9ja2pIJKaJ2KtYcpXVV9iFZ4BLF8lR6YQ+bZ5YQxz6jeccpPnkeZOuCkhjZumqSLL/ORu+Y76dyqfTX8PcsnK2SxvBambmlFdMuFAqFQqGwJyyKaQM7bBuIGaIKTJBZN87tijPdBe9OeXecJaPn+hgRezmIXR1LEDKWwUyL9eDMboBVqcZcAhFfHp/rCXbQm5Bia2urq1wleemxXFXBVoxNe9uAuRCtEetgnamdYy+JKDUnSzyYgWZBPFjiYXMomt/KelzNA/9OchAhFQI1em5sr5I9L2aIPe8Vj1fEvpS1cxbyUlm9ZyxWMWyTwEWM36R9ltbVPpXkBdCBflh6E1m8M8NmCRuHnPbXGpRu20vpDMreg5+Xr4MlOophR1IOQzHtQqFQKBQKe8LimDawuuv2O3XenaoUcj3+rEoP3rOzyqyGeffN10Rsgi2NbaepEh1EzIctQbnsLGGIstSP9IVzTDVL2qKsoRUbAVZ3yxmYAUVsRjHTiBkykzY2Y+yFdfTetoHZgvJfjsZWWdlyu3wb2JdY6aM982FLX+U/n3ke8LvA5/29zMpUOOBID27jaW1VHgm+HGX1zX27//77V9rrx1z5hvO8jcapNwFFpMfnuWJMm8PNAjtzj58DSyjm9PtR2yNrdU6WpNLIRiGXrTwOwcweHFFIYaXDjiQk/P6o0NWRPQS3cSkopl0oFAqFwoZgUUzb9NmsEzFWA6zuttSuMdtNKutTFa3JX6O+Rzpfg+2AWU8cpfO0a3kXa/2N/Ko5ahf7ZbKle9Ru7nsWRUslT1CfUVtU/ZFuaR2dNrc/0ksyo2Y/6ojF2nMxS1zW9dr5jBmo3b2XpnAyG56Lka6P2b6yu4hiGFjbrF4Vzc57M/AYq4hv0TvIY8zR+rJUmnPJWqLIW9FcZBjTZklYFN1MfY/WI2V/0+MDzal5WSIRSWAsToP1g59pJHVQMQRUjAk/D1RsCWvH8ePHV+5hmwCVmCTq31yEssiiXvn4K123/z/q8xJQTLtQKBQKhQ3B4pj29va2jBWeQe1ms2sMGYNjPZSyTvY7Nfb/ZWtettT252wnzddkOkdmw+w/yf7CwCrTUZasmcWpYjrrWKszfDuYGc/FzJ7blXO7leW8Hye2CmdGwgzb18sSHN7VM3vy/ytJUmQBbnWbRErpZtk33v/PbIKZduZry+PH7MmXpWIIGKL3VukWM+a1jo+/MW2WYvh77Fmx/Uv0PBg87xSbzNIJqzXQSyTuuOMOAKspMrnvfn7b/OVPti2I4kdY3Alj1BzFMVtbVL4CQxaBTa0vkX6adeYsuYjWb9bf99jSnEsU0y4UCoVCYUNQP9qFQqFQKGwIFicev/fee6VxFLAqImWxdRQMxJcPaMOgnnu4HZE4nt0arG0sNowCZLCokccichtRYiMTl7JIN2oTG/6oBBlRW9YJXDFnGBSJqXoCsLTWcOTIEWkkB+hAEjzmXkyq3MPmwrFGfVIqlShgxZx7S1SPClubqVZ60w9GIkIW77MhF4+zP8bGhayqWCfwiCEysJtzafTI6pxLlRq9gyrRDb/TLLL1/3MwEhYr+/Mmrr7tttsArBo1Gvw6YGuEfSrxuLXRrxNWn0puFIm4eY7MGS9GLnTriMeVKioLvpMZCC4BxbQLhUKhUNgQLIppAztGIUBsoMFQRlA9AQR8nb6+aKe2l+AjVq7tQDmxgu1U/THe0asgF1n6OW5bFPhBJV/g0ITsogGsskq1M81ccBiZlIP7o+4/ffr0SoCRqN38yQzcj7lyiWFWHrmL8c6f56a10QdkYbdATiQTGTEa7BoVajViM2y8yOyPg574a1U/uewo6QMz6iwwj5K08DzLkj70MO0sfKVK56ueaXQtl2v1RUw7S/mp6rN7jPnefvvtu8qNglXxPPZzMWsrsGpwxnOF55Y/p6ROLGGK1lXlOpclm1EJViIJkpJuLgXFtAuFQqFQ2BAsjmm31mS6PiBO5M73+8/oHO/MWN8RJZaPEpF4RC5fBg49aP2KmLZdy4kBsrCSvHvlsqJABcyK1G4y220yg+/VPWf1ZoH75/Sv29vbK+PlnxszTcWEIj04s1bWbUf6W3bjUzrnKJiLnxvAqs2BDzikgptwoAx2BQRW3VuYrUQ2CMzK+Z1kPbyvj9/pHp26ShSRzbNM6hNdu729vVJe9L7sZd1RbcuSVjCTZgkL2wb4cjgIjQodCuy4h6mEQRnrVBKWzIaC3QJVEBcV9jhqW5b4Sc1vrjeyhyimXSgUCoVCYV9YHNPe2tpJRs9p/ADNeDOdqdJ9sN42YqSK2fOOLQqQYe228u+8885dZfp+8bXMdDjIigczbRUoI9ItKX2+0h/6a9SOtEfaodCjY4owDMMZvTawmjyjB1H5bGXPn8xyfX3MjlWClYj5WlpFbn/kPaDCsPJYM7sBVlmSlWuMP2LaKhBGFtqX7+V3LbManvNS6LGHmLMA9kw7sxdRbcnsOBh8PLPq53eXn7WX6rGkjd9lCy8ajYVdy4FZuOzsnVZ2H14qlAUj8mVlz0sFzslsn9Rzy8Jhr+Mdcy5RTLtQKBQKhQ3B4pj29vb2CsP2O1C2blS6F1U2oJliz+6OmQ7rj/3/HIpQlenLVWBpQKR3VczXdr6+PsV4lCVmtjvntke78jkWFpXFOrOeHW+mT1W+mcySohCxys+c++rbz14QzJ7mUjVG9UWSJqX/5HuNPfdY5GZ+9SouAN+bsTIlGcvm25zldoYsvaJJaNgeIopNwN8zNjbHqFWcAH+MWSszbT/fVIpZ+zRrcm8vwXNUIZp/vdKALLmR0l1n+mll8xSxZrVm9ISuVh4Dh41i2oVCoVAobAgWx7S9nzZHWgL0DinThajdu7J69texrpl3uJGFe0/A/HXBZUS+5IolR8nola5UMa4e68p1rb09MiavokNFUBbaqg6gT+KiWDmz5YjFMqvIoqcp9mrHOVKeL1dZpbPOMZLSsIU7Syqie5gxqqiBWf/mfJn9/+p9VfPPY27ueHuIiP3NSfR6mLaBrbwjmxNOs8vXRGPL84znm32aHzews1bxmssJUqJogcyauW1R7AKVXpXfwUg6yWut0m1HTHsdvXQmrVsCimkXCoVCobAhqB/tQqFQKBQ2BIsSjw/DgFOnTq0EAfDiFRPnRO4rVob/9P9HouzoXi9mM6MNu8fqZ/Gxv0eJVw5CTJ5BGT5lhjVzItvInWcuwE2EzKXHf49yGK+jZlCGY4AWzWVt4HLXEc2yQY4yEIwSRdg5NqCK1EAsruZ+chv9M44CvPjyIwOkSGQetTVSrbCIe25e+Hbzd3b1iYIi9c7RKKiTr5fHUqmRonVnLgxr9I5xEJ9MLM7l2bXmNsjia++CZS5ec0GdonmgjOPUZ9Z+DpPKqj1/TBnPZmu/gZ9F9Gz4nnXUfOcCy2pNoVAoFAoFiUUx7e3tbdxzzz0r6SK98YMdYyMf5TLg0eu24RmDcvXKElMYjKVbufY9YjwHwcK5DWyo4Xe8atfKBlVsxOSvUS4tWfpNFYgjSkjAiQgytx1DFp6VDbNU8oIowcWcIVKUWGUOkQEXG0yxQZBd6w117BgbqTH7i6RCBpXyNoJKRMOsLJNcqHcvk1zMMS2PzBUvura11iVpUWNq2Mt7HLFKDpCipBuRhI+NFnnu+Gdthm7MuKM1w5ftz825snnwe2L1qNSZ0Tuv3smewCxzRo3A/gxqzwWW1ZpCoVAoFAoSi2TatsuKnPNtR6ZYXeauo4KAMJv2bIfDYpo+iPW6vo28C+fdZaSrt3qMQa2jL55zwYnYnwrzGbkuMdROOtMnMxRTjVxzbLxUiEWre2trq2uXzQyhh5Upu4jsHqVz5fnhg13wfFPswQfzYVsGZmXcvyjUJrcpq5+ZNTNf1uH7Z8rhNxXTznSZzEyzEJS9zNcz7SiZSTaGXA63O3Of9PX5ecB95nDGkV0JS5JUGNvIlY2fuwo0E80dpefvCZjEjFqtC/4cry+8DkWhXbkMQyTZYRZeLl+FQqFQKBT2hEUx7WEYcO+9965Y0EbMV4XQ9GVF/0foCYavmLbB78qtTca+edfqgygYmC0x48wsGtmyUwXbiO63c8wCM90sl690W1noS05uwDotf8ykDxnTtjJZeuKhdtAq7GcExfJYB+n/N1Zs7c/YH0sDOLECezN48HujPCw8rFwOrsKszduV8Pgw61P6V99uHsfsfWbGyuwzk66xTrgH0djOeRpEa4had5iR2vz2fbe5ot4bnrvAarpYRmQ3YmAvAqV7jtZV9XwiXb1KpsTvZmR/ofqubGs85pIcZfYyFca0UCgUCoXCnrAopm06bdvt2e4n0t8xQ2Q9mofa8fboyGzXygybGZCvw9pk1/DOPdItMUvlMH5sVRn5Pqp0kT262mhX7NsV6bLUZxYGktuidFzAajhYTjmawcbLsw7W1yu/7aivCtwPLyGxVIgWNtK+G4vKkr8ww40SRDD4ubP+M7JXYMkOs+XIj1sliFASn6h/KnxlZIehLMozS3M+to6NSMQqe2M79Oi0+TizT2D1eRgyDw1lNZ7ZbCidLzPtqP9zKTIjqSGHSeWxUSF4/f8q9WwGJQ1QuvR1yz+XKKZdKBQKhcKGYHFM+/jx4yvs1hiKP6b0t+voXuY+fflqlxyxSo6Axvq0SH83l7RCWXlHbVSJCCJfRN4VMyILTd7Bc72ZbQDXnyUKMP2tfa7DtDNfWwOPcaSXVHozVYYHp221T2PekacAP0vFmqLnwc+B4wTY8Yg1KZ1e5KfPySwsXS7r4SOWPhclzhCxXPWeZu9TJpnw8O9TVJ56L1UcB39MWVnzO+ifASfyUH3OErko/+lsvjGzziRxcxbgc2tL1Ga+NooPoWxOMomLisXB3kjA6rq2NCyzVYVCoVAoFFawKKY9DGN6PGPWkTWk6QPtGLPazK9UsWRD5vepfK0NHDnIl89MO2I1HF+bd6nMsHzbVRo/G7+InSnrWrZaj/owp8vOdEFzDNuzaTtmjDFK18dl8zP1/eHxYMYTsT62alVsPep7FK/Z3xPpMpnZsidCxJZVBDLWG0dWymyhz4gkCTbfjGFzGw3e4tygGBWz/8z7QzHsiGlnFuYG8/HndztKZavqVBKDqA3MYvk6/t+Xy88rkvBlFuaMuVjgSl/t+3GQ0RxV3ADf1jnJRTQPVCyOSILC5ZWfdqFQKBQKhT2hfrQLhcL/ae/cldxWkiDalCt77f3/z1r7+jIUE4E1FCXVPcysBjkzGiIij8MXCDSBJtlZzxDCRXgp8zgpU7gKTiozKtPD2DSh4wqH0CSjyu6p8ppq32vdlwIsamwsLOCOrcao2t2xbZ8z5ygzFk1prgmDMh+5ABdl2mKKBU23TO/q26pAHXIcx2/3Sh9b39/379/leAtl7uM5c6ZAlZJV5mMGpDFVqo+DRXb651PHW8sXh+HtVJBlcg31feyem8a81r0J0wVgqu/b9D3lY1ey2NHLmKrUKDeuM2bxqQBL365/bxlwy+8Ci6AoXPrUlNLI6zGlfL0HFq1ywbMq1dClsE7BcpznKpCPuODDryZKO4QQQrgIL620S5n0QvqlVkuFM7hoSv8odsVBOgxkcM0QVIODolZzpbxqBdyVI5WhGzNVdb//TDGAXRMVfoaOUv1uHC5QkAV0pkIMu0A0dTz1nGspqZpMUBGyZKcr6brWn7lZ170CLOsxG8qs9ec8OGuGSkdxgXUMnlRqkPOJSkupQAaI1uO6pUpSc4fWkyl9y6lBPn6PGjyO466Uaz+uC1xyFoO19mU2z5TfdI08ptaVu+JBHReUyzmkSkrTKuSCvNTnqbnDueIKRPX3OuuGspSxTLIrmzr9dr5akZUo7RBCCOEivLTSLnpxlVqhMR1oKqFJuNI9UxrQFS5R5Qu5AuWqTqW91H36qnZ+yv5el+qjVvb0g9bxmEI3lfdzDUKUL8itvll4RJVyVNaMZ6DSZuOWMwUknOpT8QRU33U8l3qmxlTUvFdjP1sEwsVarOVL+aoUQ1p9+LlYXEX5hp1vW827M0WQeBxnMVAcx7He3t5+zz11XXYlVKc5v1PWykrDbfpY19KxNi7ljxYlFfPi4gU4//vxaBXkbwj33cfkSu4qhU04xsnq6VL0+Ls9WQWitEMIIYTwFJdV2hUJXAqNq8ipOINbQamyiwVVBRWpUr679qF91aoUex87V5dKNRMqBuUf4vGd71Ydz7UnZTGPtf6cN/oNqbAnpf0M6rq48orqs9Kvzn1NCo7XsuYVy372fbi5SgXSlbZrjcmxKpxSnJozOAuCa5mommhwTJM1hd8nNx+UolevkeM41s+fP++2UcWI3PdxOs5Z/+lUktTFK/T3OGXvsmbUc2fjf/rYChXxzfdw7tByNJVC3pWxVfPDRY+7z9v36x5/NVHaIYQQwkW4hNLuK52KGi9fduUzliJSPkGXJ+kigJUiZftBvq5wJTVdLm5/j1OxagXqXpseO18O/ZVqle6igidrAKNca9vJp83nnvFp9+PSX1v7ZW5/P/cuatcpt0nROStNL/fp9k9V29nNyUkt7ZSV8mlT/TOKfFImLs95UkC0jDgl9KwiqshxFwvS70/Xl2Nwed8ubmCyZqmsAXdsF4+yqwWhtpnO7TO/Oy6eiJYkfkfUmGh1UEqb9SF4TdTn47We6kN8BVHaIYQQwkW4hNLuUJlRvdZt96u4FadbEfbVrPOxTKvWXVUzpRimhidqn6qVIFeIfL6vQJXffi3vH5/ygl1DjOl4bBCifMd8badydjDPu8ZJf9qZ6PEaZ1l6lDIoGCHr4gf6c4zMdS0Ueb/DbZXSdqrcZUv08dYtG4WQKarbWRZUVUJnaan58Wx2QVXTm8bAmAzOB9Wsgjif+aRmeT1czInaj8stVzEG7nNMPnznq59qCuyyYSZLgps7U0S9U+f8nZuq970npuYziNIOIYQQLkL+tEMIIYSLcDnzOM2HZa6aUrAKmk/OmGh2ReqnFBV3XBXgMJX+U/SAJJoPadJUzSwc7jz24zlz7NTsge9lEw2awte6D0B7b+pFHYMBiPXZVAlXHrtuGcQ2pTfVcWgeV4FvPN6Za7Yr/kBTtzqPLuBJFbtwQUMsm1r0a7oriKEC086m6r1nfpSJfC3tgmBgpjMbT2NwqUqFck3tShQr1wp/x6agsl3g2SPn9pliVS59VLkbXIGURwrOOPdjf+yO8ypEaYcQQggX4XJKu2AgE1fCfRXrghu46lOtEl1aEwNSpoAQKmve9v3sWiROQV71XAUGcRwqlW0XiORS0Prncsqhw8Cq+uwsqlIpfeo9H0Xtl01a1KqfBV64UneNL/q2PHe0Zqjj0SIxsVPaTBfr55OqmcFFtBL053YpPypAjIrHNQyZGvDsgqae4TiOUw08eO0mK5ArK8zX1eNdQagzDS4YgKrOk/ut4nWavoPOOqPmx66EtBtHv+/a5aprMQXwdvp2Z4rSfCVR2iGEEMJFuKzSpi+0Um+UL9A1D6ASUsUh3KrO+eL68Vz5Raozvl89Jkq9MK1qWmW64h2FK+6g9n+mUUCNt1Sta0rf07IeacX5DHXMmkN1/ft1ceVX2Rqxiv2o9BbOM6ra/jmpfJkSNfkYp9SeTo9P4PGc2pysNLQYTJYXqr9HSlEWVEIfUfzidrudUlRUk3Vdag6pbQt+Vr6uvtO7NptqvrH1r0tX7cdhnA/nkLIAcg66MT5SEMr9dvb7zoftYh7U/vl7148zFV55BaK0QwghhItwWaVNhUPl0ws+uGYP9A8pnzb9nsWkJqgauCJU/s/3QMVBZaf8hFNDkI7yZfM99MOqMqZc0XNVPDUMOdt68lkYpa6KM7BtI7MWVNGGmoN1e6ahQp1bKjln8envcZGyhSrFW8ehlYlzSMV5OH/nFPlO6wKVnHqv8xt/VHTv7XZb3759s/EdnZ1PVsUgOEU9nUeXteCOv9b9XHRZA8oKeabQC593VpldWdP+nIten5Q2f+t3pYXV+GtbFedxpqnIVxKlHUIIIVyEyyrtglHI06rL+ca4au0rw1o5U4U/UrifKvOzfSRO6ShflvNhcTu1H6cUptKudZ3cinryZX6W4q4xVOR6Pwc1XioqKm0V1etiJvgepV5qW9dgQ8VDuHnlonv7/Z3l5YzC4vVX14vXf5dpsZb369MS82wZ07V+ff6pzDAVKf3H9fswxWE4a4I6Hq1yjIdQPm3nY34kIpvnkN91FWW9Q1mSzipsFVHvGoQ88rv6SGxIfNohhBBCeIrLK22uSGul2yNkXbQrV5FKZbAiGhuSTBWcyN9asT2St8oVLv3g9LGq9xAVTU7/ExXrlI/8t3xKVNX9/i4XVfn++Vr5tulP6+eW6pxqku9dy0eNc34rpb3L/1XXxWU6OIXdvxuuiQVV4JRZ4Sxm7+F2u9kc5c7ZBitr7Rvd8LugYk7ov+VcUtXG3Fin+Juz1kBlcXHz4Uwmz05hq0yeXXOlRzgTaZ487RBCCCE8Rf60QwghhItwefM4zUfKJOXKCJ4pVzeZv9R2fUwu9eGzzeQ0iz1iXnbmOJXyw8euYEp/jWOaguX43N8yk1ca4Vr3PcOdOZmNQ/qzC6WhAAACUElEQVR9lgLl+VOunHqOgUfqXOzm2Zn+xoVLG1MBQW6enwl8ctuoQC6aj98TcOZ4e3sbSwjXeF2/eeVeoInbuSBUsRV3nvi9VClf6rW1dOMgl7Loggqn3y5n+lbX1AXrulveV8d5hCk98kyp2K8kSjuEEEK4CJdX2lyhqxWaW5G59Ab1XK26GACi9l2rVQarnS1g8FGcSV2gkqLSnopGUIXyuKowArdxhW6mz/NZKAVXaWAsTFLX8sePH/96by/qw2C72nYqRcl0MB7XWY36azvlPSltWqoYENfvuxQmpqVNhWCmVK/ClbZ8JOBy4jh+teU8E+DEuT0dm3Oa27rv3lr355jXlsVp1PF2QXPqNbevyfqwK0U6BZO5a+mKCk3Hfybla/oevSqvPboQQggh/ObySrtgysLUmtOtss6ssF3zduUnorLm8T6i0YHijO+H58utll3TgbXuSwDyuJM/yj3fVftn+C4fpcZQfm76mgulKpi+VftQLUD5HpdKxmIe6r1O4Sm/rEsTcgUs+Bn7Nmz6ouY9C2QUkzpzBUA+qoxp7WNS2up73sdSKOXroFJUpTRdKV9lNdkpevV4p04fsYA5lawsCG6bqTjWFCvxXtR5oLXpVYjSDiGEEC7C7ZVKtN1ut3/WWv/76nGEl+e/x3H8pz+RuRNOkrkTnuVu7nwFL/WnHUIIIQRPzOMhhBDCRcifdgghhHAR8qcdQgghXIT8aYcQQggXIX/aIYQQwkXIn3YIIYRwEfKnHUIIIVyE/GmHEEIIFyF/2iGEEMJF+D+9YXjsY5xdJgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4ZflZ1/v9naru9ECn09Wdrs480IiAQnyICg4MCoGLOHAFwxSN6AUuCsrFXIkoaQ1oRBnuQ0QQzYUYvIBCBGQK5DFMESQySiaSdJMeqjvd1Z3u9FTVVWfdP9b+nv2ez3p/a+9z6lTX3vJ+n6eeU3vttX7rN6213+87tmEYVCgUCoVCYfOxc6k7UCgUCoVCYT3Uj3ahUCgUCluC+tEuFAqFQmFLUD/ahUKhUChsCepHu1AoFAqFLUH9aBcKhUKhsCVY+aPdWnt5a21orX2wtXYdvju++O6Wi9bDLUVr7VNaa7e01nZw/PmLOXv5Jepa4QiweC6+5BLde1j8m9y/tfaG1tptOHbb4vz/0Gnvvy6+/8XOffjvDWv0cae19huttb+XfPeJrbXvb63d0Vo721p7qLX2q621V7fWnrFyAi4iWmtvaa295Qjb+7bW2k8cVXuLNm+bWZu9f0d4v7tba995RG3dsHgvfmzy3S+31n7qKO5zoWit/fXW2ltba/e11s601m5trX1Xa+1Za17//NbaGxd7+8HW2g+ue+0qHD/AuddK+vuSvvYobvz7AJ8i6VWSvkHSbjh+StInSnrvJehT4ejwco3Pz+suYR9e1Vp7wzAMZ9c490OS/lJr7ZphGD7kg62150n65MX3Gb5H0nfh2L1r3O+LJT1D0nfEg621r5H0LyT9V0n/UNL7JH2YpD8h6UslvVjS/7ZG+xcLX3HE7f1zSe9rrX3qMAz/9Yja/BxJTwmfv0PSMUlfdkTtE58l6YEjausGje/F90j6LXz3NySdP6L7XCiul/Qmjev3QUkfLekfSXpJa+1jhmF4tHdha+2pGvf3gxqfg+OSvlHSm1trLxqG4fEL6dhBfrTfJOkrW2vfOgzDPRdy09/PGIbhjKRfvtT9KGw93iTpJRpf1N++xvk/I+nTJf1ljT/Exssk3Sbpdo0vfuLOYRgOs1//nqTXx5dba+1TNf5g/z/DMHw1zv+J1to/k/R5h7jXkWEYhrcfcXunWms/JukVGl/kR9Hmr8fPrbWHJB1fd51aa09ZvIfWvd+vHbCLh8IwDL/zZNxnHQzD8C9x6Odaa3dJ+s+SPlXSj89c/n9KepakTx6G4f2S1Fp7u6S3S/oSQZA9TOdm/2lkFIOkPy3pEUnfHr47vvjuFlzzxyT9rKSHF9e8WdIfwznfI+kOSX9E0i9IelTS70r68lV9Ouj1kl4g6fs0MoQzkn5D0uck532BpHdKelzSb0v6C5LeIukt4ZwrJH2rpP+5GN/dkn5M0h8M59yymJd9/xbfPX/x+eWLz6+QdFbS9Ul/3i7pR8LnqzRKfrcurrlV0tdJ2lljvq6W9BqNDP/Mot8/JOnkIdftxZLeKukxSe+S9OcW3/9fGn8EHpL0I5KejusHjVLn1y3aeUzSz0t6Ec5rkr560fZZjRqK10p6atLeN0j6qsV8fEjSz0n6mGQO/neNAtOjGqXn/yjpuTjnNklvkPT5kt6xmIe3SfpT4Zy3JOv7lsV3N0n6Xkl3Leb5lKT/IunGdfb1mnvfY37jYh2vCt+9QdJtnTG9TtKb8d27JP3jxZh+MbvPIfr3xxfX/hEc/ylJH5B0+QHaWrnnNWq1Bo3P62sl3bf49wZJT0N7f2exro9pZI9vU3gXaPq8u+2/pFHjcP9i73ybRiHnj0r6xcU++R1Jn9HZd+clPeeo9gDan6xd+O41ks5J+kMan+eHJf3A4rvPWqzJ3Yv+/7bG52gHbdwt6TvD5y9fzMnHS/pBjc/cnZK+eW5tJf3B5LkZJH3+4vtflvRT4fzPXHz/WZL+3WK97pf0TRpNu39C0n/T+Dz/tqQ/k9zz0xbz8/Di349L+qhDzvOfWvRnssY475eE52xx/Fck/XT4/CyNv0unNL4r7pL0o5Kum21/jY6+fNHRmzU+PGckPW/x3eRHW9LHLh6I/yHpczVK9r+6OPZx4bzv0fhif4dGtvDpkv7Dor1PXaNfa10v6TkaXxT/U6Oq4jM0vrx2Jf2FcN6nL47958Um+WsaVXd3af9DfK2kf6vxpf7JGlVVP7PYUDctznn24pxB0p+U9AmSPmHx3fO1/0f7WRof6K/A+D5+cd5fDnP9C5JOS/q7kv6sxpfX45K+ecVcXa7xB/YRjSqeT1+szXdrIWwcYt0sNX7mol+Pa3xof0zSn1t895CkH0RfBo2s7pc0vghfqvGH47SkE+G8f7o497WLNftqjQ/dL2j/C3vQ+KP00xpf2p+r8cX+Ho3sgy+a1y3W96Ua986tkq4J590m6fcWY/9cSZ8t6dc1vqiftjjnoyX9mqTf9NpK+ujFdz8j6d2SvkjSJ2lkjt8p6fmHeVF01tM/2h+z2DtfG76b+9H+lMX5z14c/4RFWx+u/o/2N2rce3v/1ujfqxZrH9fp+GIvfd8BxrnWntfyh/VWjVqHl0j6ysX9vjec90Uaf8C+XiNb+iyN5r6/Ec55i/If7dskfYvGZ+fVi2PfvthDX6Jxj/6CxmfsBozj6Yvzv+So9gDan6xd+O41izV/r0bz5qdK+qTFd397Ma+fKenPLObiUU1JWO9H+12Lufw0jYLfIOmVM/28QuNzNyz2iJ+d6xff9360b9X42/Ppi7+DRqHpHRrf05+5uPZBBSFNS2HpP2l8N3yOpP+ukbw9Y825Pbbo94s0Cgi/IemyFdd8UKM2icdfJ+n28PkXNL5Hv0Dju+KvaHwnz/ZtnU6/XMsf7ROLDr0uPFT80f5PCi+4xbGnapSQfjgc+x5Nf2CfovEB/Tdr9Gut6zVKaPcKTFbjy/U3wue3avxhb+GYfzjfMtOPYxrZwIckfXU4fsvi2uM4//kKP9qhL/8N532bRkHgKYvPL1tc90k47+s0MpAuk9P4UhkUhJTknIOu2yeFYx+r5UN8LBz/FklP4NigkQVdjTl5QtKrF59PaBQOvwd9/GKOY/H5dxUeJI0/toOkP7H4/GEaH+jXob0XLObu74Zjty3m/bpw7MWL9r4wHHuLkhelRsHiq1bt3wv5p8CAJf37xRpdu/g896PdFv//2sXx75D0S73xKGdFg6SbV/TvJ91uOHZyce0/S85PhYJ197yWP6zfi/Neq/EHvoXPv7ai729R/qPNvfNri+NRA+Pn4K8l7d6uNd5rh9wP6V5cfPeaRZ++bEUbbTH/r5Z0D77r/Wi/Euf9rKTfWnEfs+0vTr7r/Wh/B857++L4i8OxP7Y49tLF553FnP8ErvVv2GvWnNuHw75/q1ZozBb33febGL77l5IeCfN9VtKXHnS9DxTyNQzD/RrZ1F9trX1k57RPkvRfhmH4YLjuIY20/5Nx7qNDcM4YRjvLuyU918cWHup7/w56vcaF/wlJD6Kdn5b0ca21p7bWjml8Mf/QsJjRRXv/Q6OUtw+ttb/SWvuV1toHNUruj2j8YejNySq8XtIntNZu9pg1Sl8/OCxtT5+pkQG+FeN4k6TLNEqsPbxE0t3DMPzozDkHWbdHhmH4+fD5nYu/PzsMw3kcP67RISniJ4ZheCTc5zaND+wnLg59gkbtAL2Uv1/jfLM/PzMMwxPh828v/noffKJGAeT7MHe3L/r4SWjvvw3DEB1v2N4cflXSK1prf6e19odba23VBa21Y9jnB3kuX6Vx771i1YmLvf0GSS9rrV2ukfW8fsVlr9OoAo7/bl9xzTO1nrOaWms3aRTY9v6F5/yge552xt/WKMifXHz+VUkvaq19e2vt01prV63TxwV+Ep/fqfE5+EUck0btHnGvxnnpgu+6dfbOAfDG5H7Pbq39u9ba+7Wc/38o6cbW2tPWaDOb73WekYMim/v7h2F4G45Jy7n/GI0azzdg7zykcR/wme/hT2vUln6pxvfYm1prH3aIMezD4ln8H5L+QWvtb7fWPmbdaw8Tp/2tGiX7f9L5/oRGHT1xt6TrcCzzSDyjUR2h1trzNX2gn7/u9QvcKOmvsh2NDjHS6CV4g8aXwAeS9vY53bXW/rykH9ComvlCjfa7P6rxobxicvV6+GGNP/wvW3x+yaLf8YV6o6TnJeP472EcPVyv0eY0h4Os2wfjh2Hpvcz18HHOS+bIeI9GU4H7IvZnGIZzWqjRce39+GxBx/e9cfH3ZzWdvz+s6dztay8ITuus70s1Cjr/t0bv2Dtba1+/4of4zejT169xH/ftfRq1SX+ntfb0NS55vUb1/qs0+jn8wIrzTw3D8Db8W+XEdIWWa2Cc1sh6+VK/T0th4Lvx3UH3/Kp98HqNTkJ/XKPQfn9r7YfxTukh29u95yDbJ49JunLFPThOCqeHxe4wDPvebYsfsB/XUrX9KRrXwO/FdfZ6Nt+HfQfOIZv7Ve8aP/Pfp+m8fprm35d7GIbh14dheOswDN+t0ZzycZL+5sz5uxoFA74zpfG9FefsczT6FHydpP+5CIF85Sph7SDe4+7Uwwsvz2/WcoEj7tfojEPcpIOHDdylcSPx2EFwWqPt4J/P3OOcxsW8Mfn+pKT3h8+fL+k9wzC83Adaa5dp+kOyNoZheKS19kaNNrdXaVQDv28Yhl8Kp53WyPr/SqeZ22ZucZ9GR5Q5HOW6rcLJzjELFt7YN2l07pG096K5XtOXxSqcXvx9eWwvoBfudGAsXo5/S9LfWmij/prGl+K9kv5157Ivk3RN+HzQPf7qxX3+wRr9e3dr7Vc02i9/OGpWjhCnhZfWMAznWms/L+nTW2uX+wduIYi9TZJaa5+dtHPYPT/Bgt18l6TvamPOiZdofI/9gMYf8ouJE5qGOBF8173riO49JMc+SqM6//OGYfhPPthau6Te+0cIP/Nfo9HRlThw2NUwDO9orT2i0VQ8h9/RyPSJj9ao2nd7d2s0NXx5a+2jJf11jb48d0v6f3uNH/hHe4Hv0Ogl/A3Jdz8n6bNiPGhr7RpJf16j7WVtLB7st608cR4/pVE9+jvDMDzWO6m19jZJf7m1dotV5K21j9do94w/2ldp/JGPeJmm4TKW8q/Uej8Kr5f0xa21z9DooEWB6Kc0Ooc9PAzDO3nxCrxJ0ue31v78MAw/1jnnyNZtDXxWa+1qq8gXTOcTNNrfpFFVflajgPTmcN1LNe7Zg/bnrRrX4OZhGL730L3ejzPa/0M7wTAM79Ko/vpyzQhNi/MOjWEY7mqt/SuNzlfrhP18k0bt02sv5L4zyEwOvu/PaBSgGfKV4UL2/CwW5o8faK39cV28+GZJo/lDo4bhP67o04W+6w4Cmwb2zEqttadoNMtdTMT34sXEb2sUfj9qGIZvOYoGF78HV2t1jo0flfRPWmvPGYbh9sW1f0CjUPZV2QXDGGr4itbaV2gFwTrUj/YwDGdaa/9E0r9Jvn61Ro/bN7fW7On39zVukp5K/WLi6zWq036+tfZajdL5dRon5oXDMDir1Ks0/ri9sbX2bzSqzG/RKPXE5Cg/pTFJxbdqDOV5scaXJRmLJaqvaa39pKTzKx7KN2vcZP9O44b+9/j++zRKYm9urX2zRs/lyzV6/v4FSX9p6Af8v0HS/yHp/1toSX5F4w/OZ0j6tsUL8clct8c02ob+hUab4z/WqFL6Vmn0nViM8ZULyfYnNDKDb9AYXjMXIznBMAwPtdZeIelfLVTIP6nRMe1ZGlWQbxmGIc0WNoO3S/qK1tpLNT7EH9K4V35W41q9U+ML8S9q3G9vOmD7B8VrNNrdPlmjHbiLYRh+WKNJ5mLh5yX99dba9cMwmPFoGIY3t9a+VtJr2pgR6/UamfQVkv6ARiHtES2Z4YXs+QkWz/WHNHoBf2Bxz5fp4q/NH9L4HGWM71LhtzS+b74pmG6+Rks188XCHRqf9S9qrb1Lo7f6e+FDcsEYhuF8a+1vS/qPC9+FH9LIvm/SaKN+9zAMXaF1oY36fi1DTj9OY+6B2xRYcGvtSzWS2D85DMOvLA7/a41mmB9trX29RkL3TzW+J163uO6kxpDY/7C4x3mNDrRXahRsuzgs09ai46+Q9BHx4DAMv9Va+xSNoSLfq9FL7pc1Bpr/5gXc71AYhuH9rbUXa/wB/qcawy9Oa/QU/95w3s+01qyefqPGkKGv0fij/2Bo8rs1Ojt8iUYJ/Vc1slE6evwXjYv5FYs22uJfr5+7bUwz+fc0OkK9B98/sWDhX6vx5fwCjS+492r8Ees+bItrX7IY25cu/p7WGHZ1/+KcJ3PdXr/o+2s1Cke/qjFWM6q9v06jSvnLNc7h6cV1r1zYjQ6EYRi+q7V2u8Y9+4Ua9/6dGk0nv3GIMfxzjY6H/1ajI9jPaRSCfk2jgPQ8jcLeuyR90TAMP3KIe6yNYRhOt9a+ReM+v9T4EY3qx89WeMYkaRiGb2qt/ZLGeGk/j49rnKcf0OilfH5x7qH3fAe/pFEIeJnG0M27NAq0rzr4EA+Ez9Yo0L3lIt9nbQzD8Fhr7S9qDFv7Pi2ibhZ//9VFvO8TrbW/qZEkvFnjc/gFGn8gj/peb2xjQp9/oCUZOqVRaFuVive/a7Rd2wfj/RojZ/4lTEo7Gn+U997twzA8uHiXfpuWYchv0hilYm3vwxq1AV++uMd5jX5SLx2GYTaVq0MhCglaa8/W+OP9jcMwvPpS9+d/BbQxJ/I3DsPwDy91XwoXD62179EYD/5pl7ovlxptzIb1Q8Mw/KNL3ZfC9uNCmPb/UmitXakxrvhnNTpuvVCjB/CjGtlUoVBYH/9Y0jtaay9+km21G4UFmz2p0eGtULhg1I/2Euc12jteq9FD+RGNqtPPG4YhC4UqFAodDMNwaxsr2WURGb+fcKXGRCIXw0u/8PsQpR4vFAqFQmFLcJjkKoVCoVAoFC4B6ke7UCgUCoUtQf1oFwqFQqGwJdgoR7SrrrpqeNrT1slTPwXTtWa2ep+zs3PhsgrbP4xvQOwz++/P6xznsd416/Zl3Wt7c+7jcU78f//d3R1Drc+fH+uLXH755ZNr/J3/+po77rjjvmEY9uXZ9t7hHBw7tkxU5/+zL8YTTzyRHo9wG95Dc3Pf+653/6zd3l6dm1viMPuB5x5mf2f96rXjtc2+Zzvnzp07dJ9OnTo12TvXXnvtcPLkycmeifPkPdjrm8/1OOKxo5q7ufOya3ht7NthcZD7GXEeOV8Hwar3TdZH4kJ8uLK9cymwUT/aT3va0/RlX3awjIKXXXaZpOVL3y85P9iSdPz4OEw/jHx5G158nx+PGb7mzJkz+77PHmqf6++4yeIL2f/3X47L1/BzHM9TnvKUSbtZ2/H/vR8599VzEedq1Y8R25aW6+G58Pw9+uiY0Oqqq67aN4Z4zt133y1JevzxMV3wV37lV04yfnnveN7898Ybl87LPuZ2z54dc3P4ZXb69Ol9fYzwvF9zzTX7+su5jXPssXhO+dL05yuuWNZY4NpdeeWV+/qeCRZsl/3nvsj2Afcqf7him74ff2j92ddwzeMxX+PxeC382X9jH93+Bz84OmI/9lg3K3EXt9xyy2Tv3HTTTfrO7/zOvbXN9rzvxfeM++31ie8dzo/HRCE0+9Hzd26Pc+A24jyxXe9z3j/uF64H33e9NY7teQ5618Q2sz2Y3Tc7vkoIygQn9tv3jfO2LrK9cylQ6vFCoVAoFLYEG8W0DwJLVT2m7c8ZIpOWpgwxSoGUAH2t/2YSL5kP28iYaI9pUx3r4xlb4nh6n2O/e6rTOWm51677auk9qqbZDtfH58bj7qPHvI5qy/2+9tprJ+2RxZG1mtVGBsc+UJPja7Jx+RruFbadqQ8NsyX2NVsPmhjI9LnPI8j23Les72QvZH9kfPHZ8Lz5r7Un/uu2PXdxrO63tRyHYdoZdnZ2dPXVV+/Nl/sWn2NrQ2K/Yt98btzz1Dj0TESZNoNzyL2THecx7hH3PV5DjYH739MOZho37xF/zhj9upgz5fQ0oz2NX/YdNUk9s8cmo5h2oVAoFApbgq1l2pTuLDGSRWfnZLYPad55jVIyGXCUsKNdK/ucXcPvzJp4n+zanuTO8c4xVUr268wN7Z6UkjMnMP8lg/uwD/uwSRu0xWZrS5j5mo3F9jwmszrOD23e8Ry353O4h2h7lpbsjO2biWSM1/NBRu+x+37R9p9pKbI+ZnZJ7iuyZdpDs766j2a+ZFr2W4jwsZ4mIY7v6quvljTVXHhNsvYPgp2dHT3lKU+ZsK+M7btfZLMZO+cxPp+0W0fbsOfD59J2Tqe8eIx95n0P8h5YB/SLIKPPtDSrkL1TqCni+3NOGzjn6LhtKKZdKBQKhcKWoH60C4VCoVDYEmytetxgaFKmcjYYNrHKYUzqh1zMIXM0y+4zF3qzSiWcqXkY1jCn2mQ7dATqqfDiMTrL0Vkr9t3fWWXsc6xu9Ll09JGWqvP7779/8l3v3Ex96DFSBU0VWgzBssrZx6iC5rXxflRxEtnxnkMizQlxn3Md6BDIa+O+68XyUl0dTQYMmbNa/MEHH9x3vywkaN2Qm+x+NFHMPesHRRaqF9W6XAc+w5lamWpv7z/uFc/F3N7hNXPvIToTUj0eQVMGVejrxFP3HBzncg2sUnWzjexchuZlDrCr3vEXEkt/qVBMu1AoFAqFLcHWMu2e9JgxLCJL+hARGSIlzjnGw2tWhWJl2ZN6586Ni04WdKjJQkCY5MR/ee46jilMaOK/ds6K/yeDZMhenE8fc5a8ufCMnZ0dXXXVVZMxZ4k9esknfO/ItMmwGT7VY03xO+4Dt5kl1SBbZjKddcISee4cI/X895zVPEdRy/GhD31o33dMGjKHCwmxocPZUTHt1pqOHz++5/BG7VqEj3kN3SdqrKQlw/Y8PfLII/va91z4vDg3PWfFufeaQabdS34Uwb3aC/maC0vrhYBG7ZnP7WlG55zmeg62vdCz2EdmXjyMw92moJh2oVAoFApbgv9lmDaZQWZb6tl45uxsPVs2JdAoTZIN0S7NMK65+/VsWHNpJZnkgLZcaWmHPApJ0+1T8rV9WZKe+tSnSpoylTk7OBNWOGFKhtaaWmt7bMbtx/GR2XhuLX373jHcyGOJDCq2Ra3GXOif22VoTKbZYTgVmUkc11w6zAyZLwX3gRmkU4bed999e99Fe/OlxFElxmit6bLLLttj2lnikp6m46GHHpI0TcsrLfeMn0P6AvC9lDFt7oO5uadWhnvHyEIxe6GtbuMgTLsXAhb/3wuL7Wn6su8YEpolOPLYV4X7bhOKaRcKhUKhsCXYWqZtKY7J6i2JZokRDsMQ1pXmDyP1R4mXKSfppdxLgRn/z/E92Sn6elJ6/D/tkmSQkU33Crtk2N3d1dmzZyfe45FV9gocUIKP6TEtkdNTmqlPMxsdpXmyf9832tBpX/d8uJhFVhCH88MEMEzIkRV9oGbH4zTTvtjs2uvm5yA+v+63tSgPP/zwkd7bTJtraRbtcyJoz58r5EJ/B+7DzD+H7HsdW3YvFSnfA/E+1DLxPtQ+rvNOmUsac5Twu4QRJ3EN+J3HSy2X99Y2oJh2oVAoFApbgo1k2rRVRCnfnsS0/VHKjBLjpiaFj/2y1MgE/mStlmIjE79YkuyFIrJqju/kyZOSlkzObPMjP/Ij966xjdFjtddyhmEY9MQTT+wxtqw+N4/1CjbE+6yKKz5ICk3HMR8EZgBPf/pYxtf7O645bfOOZ6bHu8cQtQEe3wMPPCBpOZ5Tp05JOrqiHIbvbR8H99Xrn2ksfMx7xe8Hl1I9yn7F+0WWRr8QlhLNYoRj9IQ09TSn13h8H6z7TEfWTFbZ8+rOohV6BWMy7cy6eLLsxvTpyTRJnifvt7mY/6hh2UQU0y4UCoVCYUuwkUx7LhG8pWyzIdrkMulynaw+lxqrPKRtx7MEbkkxHtsGeH0c92tJ9+6775a01KRI0nOf+1xJ09jKObCkZNTS+F5kSXPtXmotjdmZmZ61Dx/4wAf2zvFY6aHf0xJEBkh7PmNrs4xoF5I9ilo0M2z3nTb9eI3PIRO6UMbtOG3uj7j2zGPgczz3ntP4LNKvws8w/W4yT+l1+hzvH/tADSUjG6IPBTWTjJZYlbnuUqIXjZGVguW6GZ4zP1fx3E21cxfTLhQKhUJhS1A/2oVCoVAobAk2Uj1ON/yoNrIzz6pQiMxBY9NqqmZq+7nEK9JSLb5OCMiThRMnTkhajscq3aiKYiibx+dQJjuQxSQeVpVbLTqnPnRyFa+xHaiiissqv01Ve0nTJBBW37nPVv3FsCfWYGdKSqpS47X+zmt47733SlrusyzhjOdxVRiY2/b6RXhcdA6kA1S8n/tgE5Lv7z7ec889s/3pYWdnR1deeeXefGX7hO8b73Efz4p+UMXM0Ew6eR1EFc1CSdLU9EA1ud+DcT1YxKSXECpTPRNPdvENz/WcsxzfN3x+svet9/6mvieKaRcKhUKhsCXYSKZNZ5QouVm6sjOFJXafkxWeoGObpUs6sMyV1OyV4PO5z3rWs/bOZRpRM05qCaLzAyV3JjtwG3TEi/c7SgnXbTLdaNaXF7zgBfv67mujsxTDkjxeJtOITlJmy2bjTDhDHD9+fK8Pbi+y802VnCPoGOQwJ2sdvIfiPHkuWWSCTjeZ9ua6667bdy1LqGZzTibXcxzNNCN08mGCGd8vMjqybz83ZtwX6izVWtOxY8f2nik7SUbW7LHyOSUrn3Ne8xgdvkfNX9RcmAnyneRzWJ4ytsPiGAw9i2uahcjGdvkuzsIuszDU2Pf4XmJ7LCBEZEmkmAZ27r3XS+XKtubK1W4aimkXCoVCobAl2EimbSmTkrU0lWjNcC1J3XjjjZL2S31kzr72jjvukDQtDzmXFJ9MwdLzh3/4h+9dw1STTHlohh+lP9qW3K4lwWc84xn77k/JMbZvm5Xb8N/ISG677bZ959qmbAnYdp0stIRzwdSh7E+EpX4zRt/HjC+yQzNsr08sQEI4FeVcooXDgKUy3X+v7VGzdyZA8RybcdPWHeE5NQNlYp4saYjn28es+eAaZ2X67aySAAAgAElEQVQwfW5vnxvx+WOxB7IlJhWK7bEv1ELFcMmDJLJxClyzaLLZbExMtpLZVZkIx33ye8ZzkBU58nfUHMVwLV7D+7oN/53TQno8veI/ma8Bi42w/axcLbUOHpfnnkmkssI4LN7SKysavyOjpgYjS6SzqSimXSgUCoXClmCjmHZrTTs7O5OSjNFz1TDrMlOjJ2tkImTnlros3dE+FJkBpTj/dftkQtJSM0ApkqlW77zzzsk1lkBpf/S1treZhcb+0g7NVH0Z8+WYe/bxzL7ndekVcMjKlcakMLGv1pB4fLFv8VgP9h43Mu/xVfB4Yjv0wPVYe57sWTpMFlDoFfiI5/pazxc9kWN6UXrmUyvANY6aK3/ndbAWiAVsItwHJzlZNceZTZNlKtmfOL9MCuJrbF91P+IzcRCm7eQqHjPZZjzm/eD3DzUj8T1AZsi9T1+EbB6pLSG7zQoj0RudeypLPNXzZPc6URPIe0tT7Y+vie8O2rK9lrRTZ9qHbC/GfmQ+GxwX0+RmKWSZaOhSJ1giimkXCoVCobAl2CimvbOzo6uvvnpPgqY3sjQtqUYJ7dZbb5W0tJHG68lWzVZog46MlMzaLMVSsz/HaxxrTLswGVe0ndge52uoXWBJyJjKkfZBzx8ldxeFkKZSN22KTOWYxYW7r7Q1m21EKdnjo52NyDQI9kLvSdrGsWPHZj2meyUK56IGDlIQJLuHNGWzTK2Y2TJZ5MNtZNoSph6l/c7eyhnT4v5lbDVLdUb0bNf0g4hzQuZDD3TacqV+XLOv8fe9PbUKx44d09VXXz3xDM/2Dt8RfF7WscX7+WA63XW0QpynLE0vU6saTL0q5f4uUj/GPJ5HDaXnz++fzKuc/ea89vZHBJ8xn5v5vtDvgfstY9MsahPfm5uAYtqFQqFQKGwJNopp2wOYyGwiLGhAFhvtxbTxOubVbNx2PLeRxcD6fpaSzTzcdsbsmYnIEqC/d3nK2CfaH+nxm9mnac93VitmSIoStqVf/zXj8lxY0rYN1xmz4jGzYs7bM5/5TEn7M1S5Xdq2PR5rP6JkfcMNN+y7T8yWRuzs7OiKK67YG7vnOrNV8S89TNfxOGccuK+Zi3R44QtfKGm5dpbgI4v1fvO+8jrMFdEhk6cGxH+9x2J+Ao/DfWDWriy7ndefXtB+BrwPrA3KyuRSQxZtwXEMcXzuI7OosVDGQTEMg4ZhmDDf+B6gZo/j4Hikqbe4mRu1QbSlx7FZS+K9TxtsfF9yXrxneh7UcazU/lDTk3lm0+/CDJu+NVH74GeCPjz0dXCb8VnkvJElM049tsP3Jn1D4jwygmbTUEy7UCgUCoUtwUYx7fPnz08kbmm/BErPbLImnictJWazBkuIZiCU/jLbErOcWSI0m4g2ZjNDs1Pf99nPfrakqQeqNM2OlEnucdyZ3Z22PjLsKGG7XbfnPjNeMrNlMVbc82XmaE9wM+XYbm+89AOQpjmrs9jk2N6ZM2dmy7Ayyxy9u9dh2GYzZs3vete79n0fS4uaeZqBXH/99ZKWGhZrBeyHIU2ZQK98Y+ZV6/3k+3gu/ddrHJ8nMkavB3OdR22AjzHG3m15LW+66aZ944wwg/Q5fn7e+c53Stq/X8zGPAf073A/LiQz2vnz5yee0vEdQq9tz5f74r8xksLHPD9eF7/jvA+9LtEmT690z5fn0tdmUR3eG73cD3HvuL+05/O5z7KEUftDe7GvifuNpT97vgLM6hb7zfv0bNzS8tmjvZ/+EJlNe5UPzaVCMe1CoVAoFLYE9aNdKBQKhcKWYKPU48MwpCrK6GhlNQrV5FR9RpWMVX0sz0anKDuORIct38fqo54KNV5jpyqWVWQRgKgOoxMUnWqoAozqQ6qErSa1asltx3lkUhiqQ92mVXeZqojJE6jyyhIxMOUp1bEx5IvtxO+I3d1dPfroo3v3yZIzWD1IFeA6BQI8/ptvvjm9xvMVzSRMDWp1qdfD+yOq1L0H6ZBGh73s3j3HQ5p0ognive99r6Tl2jEsyNfEPeZnwuYLf3ZaYI/BZpJo8vqIj/gIScv1dl9sSnI/3K9sPJ5798nq52hmOAjOnz+vRx55ZKJWjqrnXiik++I+xlSqVml7nd0/Oqj6Pp6v2Aea9hgGG/c3E8AwJS3TG0vLdWDCKTr4ci/HvtAJmA5j2TuTJkiq9o0s1LRXypTJZKTlc+v7MXFKBo/Lz+umqcmLaRcKhUKhsCXYKKa9DizxMUUgHRqyhCxmBExQYPbCBP+xHUqPRHRAyViXtHTU8n0yVkmGbQmRDklR+uO1ljgt9WdhQ2S4DAfxXDF9q7Rky76GrMB/sz4SdDzJxk4tSg/nzp3bm1POfezPQYqI+Bo7EZlFeux0kspCozyX/uy/DLeRlnvR31lbwtKV8T4MJTKTY9lNOzG5+Ey8n/vgdfY4M0cdJkCh9sfH3/GOd4jwMc+J2/JnO7FlDoVkt0zUkSWAWRfDMEw0EzEVKkMg6SjmZy06T/o7X2ONiteQTC5qQJgCmcyUzrTxGs+P9wwdUaOWjnNGR1TPbVZEhRoDag4YijoHzv2c41tWnEXKS8L23jvrhAdmoX+bgGLahUKhUChsCbaOaVsatbRK26WlsGhj9v99DRO4+DgLiMRraStl8pOsKIL7ZAnbTMifo92ddjsmuGe4Whwfy91Z2reEaEk/Sr5MyGEwDIU+A9KUZTC0iOExcXxMbei+m8lGqdb/d9gG+xrhBBm0XcV1cTtGxlrZb2pnPA6yJoY9SVOW4vnxepjlRObj9t0uk1p47qOWhulLmSDF82btQ5wTh+WdOnVqX1vum5lcVgrWa+n+e66YdjTC7Nhz4fVy33xtlgCEGiXf70IYtrQsGMLQuSzBC23bsY3Yx3iMrJhaBM9fTB5E+zqfuSzcieGb3kN8LuN+45zy3TjHlqkB6yVKWQe9+cxCvnw/PiPUNMZz5wogEXx3HDZpz8XCZvWmUCgUCoVCF1vHtC1tMbmJWVmWBjVjftJS2mIaxKzAARM5UIqOkqL7ZhZD+7v/RmnPNjFLj5QqWaAgS+3KlKtmr/ZijYnvPUaWbyQyZk/NRc8jM/aRmgODEnXso9mr7a7Ry7oHpneMdi/at2j/ZrlAaVqmkaUy58oT0vYfWUO8NjISMnsmNzGbiUyb6VJ9HzN6711fE+/n9sjgrK3JvIZpI/Vn72EnTOmtebzWoD08sudewRCyp+c///l7/3eRmXUKvrBQkecpJldxO96TZGNZeUh6ufMzn5c4Hu8Zvmdo143vNK8l32cZA+U1jMphMSXPTewjtWcsbnMhpS2zxCy+H8dODWpcNz4/TF41d+/e78alRjHtQqFQKBS2BFvHtGkvoQ14HaZNhpAl3zfI2JhQP2N0Zim+nxkPYwYj8+rZZ8h05ooZsIyipUlLnpHxUFrl3PD7KJn20qYaTMEZz6GHK8tixj76O0vbc3HaBG2A0nJdevHfTJMZ26GtlcUZ6FcQQa9drxPtudLUM5vFWVyMJTJI/58FDhi32rPhS8v91Iu5jd7L7ovv5zWjR3gWeeA5plc0n6u4bixXaviz+5r5oqyDYRj0+OOPT7yg41rSU5kav7nUl3zPMHole8boRU2tBd8X0rQ4BjUSWdwxmXsvwsJtRy0N15de/b4mKxjD54ZsNtMkuG/MXUDtZNQo8B3FKIm5SJI5TdGlRDHtQqFQKBS2BBslQrTWdOzYsVkbCL3D/ZllArM2eIzScWa/Zdy3JTQyk3iN27N9lloBxlHG72hXJQP1faP0SmZgG7DjchlLHI/1Yh8pCWfSuf967mnLyux7lLQpwWcxkT4WbVVEa02ttYmdM34myzfb857JbGLM8uZ+Mquez4se6ixs4GvMLr2G0V7suTT79ne2E3suou2fWfS4z7iHowaEZVXdR/sPOJtZZIEeI30B3Ffb8jPtFxkP45/9OT4b7gtzFbAYRJYJax04EyMZY+w3WSXZXfa+oYbP80KtWZargPHxtINnscrU/tCjnZEw8VyWBDZ43/hMu12WFmWZ2qgV6pVUpsY009JQO0f7dFaas8fs5xg2tY+ZBvZSoph2oVAoFApbgvrRLhQKhUJhS7B16nGrkpgMn2EVUf1BlSlVvuvU4aXqnKEEUY3jcBM6uNEBKKrUqZbiHLAoRHReojrKYSksBhJVhkxuQvUYky7EvtIUkSVCkPbPO9VUrOftuYmqYqsIXUhhziGktabLLrtsMsdR1e22VxU2iOPw9XQM8rW9msIRTOvo+eJ6xXOtSrXa2mF7p0+f3tdWvCed+vgs+JqY+pJzaiczq6et8ozrwvv4M1XeWXKNLDQqzgVDH6WpanbOodNYlfI2wqYVqt9j/1eZGrJQop6TVe/7eB7NYr1CGpmzHO9HE0hcc6q0+a7kOmXqccN7hCl+szrhDKWlmYHmwngOixqxrYieqcDIHO/oBFwFQwqFQqFQKBwKG8e0r7jiiknpxIheqAXDJqK0SUksK2sXv4+g4wzT4rHEZYQlTTqaZI4zDCnqzUEmvTO1Istfum/Ryct9YorDHmvLtALsi6X2LFzD8Pz1QugiC2SK01XsqbW2T6qX9jNtsiWGuWSJRFjQYlVoTITXg9oh/zWrjWtszY3XhWNnmVn+X8qZm7TcYzFhBc9hWI2dwGIYHJNZ9By4MsegLIFRRFaals5QdBxl2/He68ApcBmyFB2o6GTJ9wEdFaVpyB33/JxGkcyX+y5LXEJtGUMvPa4s5TIdtHrMNM4x2bD3BTWYWYIjjouMu5d+NB7jezxLXZztwdjHLPTL3zHR0aagmHahUCgUCluCjWLaOzs7uvLKKyeSYsZmaDehhJZJ6galuF7CD6mfQtF/5xi2r6EdJ2MbPfsWpfKs9ChLCbp9MzmWE5SWLMKsi6U4jSzUg0ynl5AlgqkUWb6TaRSlaVnSOd+D1pouv/zyiWSdpTQkY2dSDbabncOEGQz9kqZJRnrXZuF7nEPaHuP3ZFj0QyCbiKzZ13jPci3tT3DnnXdOriGz6hWdmNNGcC3m9hDnjbbsWB6XxVlWYXd3d2+/ec/E0pwM8XNf/H7IErxwfbn/uFcz+23PbpuFpfHc7NmN38d78/3Z00JmdndqCVkSNCbmYfsMYeM7M7sfP3PPZkybjJ1hkdnvhfcBy6JeahTTLhQKhUJhS7BRTHsYBp09e3aSlCErxkHvcdqAoqRIJtJLoZkxn9g3acl4GNCfpQi1hEb7e5b+kykIezasu+++e18/MtAD2YVL4jUeqxNUmJH4XBY1yUqB9rQDmVRO7YJTipJR2Dtakk6cOLGvvbkxu+iDz2HKUGnJ7u2h7AQlTDqRealTYqdtzsgSpXBNjaxwRM+m53Fle5PJbQjaXyM4//TDcJv2XpemRWto7+2lxpX6HsfGXBnEXmEcr2MWebAOdnZ2dMUVV+w9A1lkQM/nhClJM69+zkfvOckiXvid18VrHrUNXDO+z7JEMPSHYaljvgeyQkXcs2ao1MTEe5Phky3zvR7B93kvAVZsj+9RPseZ38WmYrN7VygUCoVCYQ8bxbQNS4xZ2krb4yjpsszmnMciP88xRLcT7Vvxvr5f5jVKad/3ZfpCaSnp0tZLu+Q6MeVMm8rypdJUOvXY77nnnn3nWgOQ3ZfMqlfQIes/mWTm+UmP7Tnbkv0hOOZTp07tneNiGydPnkz7nUnqPQbQ87qO4JgY659J+b148DkWyL6yT9RYxbUksyLzZVEGabkuvtbP5BzDNsgcqR3ItBJcp/vuu0/S1F4d1yTa7Xt9iTh27NieDwijIGJ/uQf5XGTezr2CIXP2e6bapfZxLr6Y2kDG0cf95nP5TuL68N0V22MEivs8l1aUn7n/sueMmj2y9F7UROyb/3LfR9D34yBamycDxbQLhUKhUNgSbBTT3t3d3VciL8vGZDsnJSWWYsy8KimZkclbco+supf5iJJ7Vn6OcFuWTG1bjd9ZOnYbllrpdb2OVyxLQmZFTXr2rjlmZ7unmQn77PvGPvbYOL2lozbA92Fmtwz2h2BcdZSSuZ9YnIQZt+IxssfMXiftZyK8D4tyMFOaxyFN2TG9k+MzwXHwvu6r5zMrTNErlUhbdzzXMdyea9rds+eAXvi9ZyV7ntwX7yvvWZYkjdfTr6CH8+fP77WTsWXafFk4Zk5r0ovT5viybGr0Wp8rR8q+Ml6aWpzYTi+HAfd9lv+iV6LXz2t873gdeuy1d//Yfk/7xePxO+7vuThwPqcxXn8TUEy7UCgUCoUtQf1oFwqFQqGwJdgo9bhVnAzBiSpHJr23esMqM6tdsiICVFdZncckAVmxgl6Sg7mUhFSDs+9Rrenr3SfWGWbSmCyMwrC6ci6Ujer+VY5W8R52BGI9Zao+s5SHLAxBtWVUdfbWKYNNKw5z8xrG9uio47906on9ZoIUmkfoVBTVyF5ftsEwm2xcVsnZGYb3iaCzGAs1sNhMhNulMxmfFZtCYt+8plRB07kohupRnZyFTBKsP00nUF8b1ctM2TnXvveOx+i/8T3Qe07mnLyoDu+l6pxT1TKtMPdM5iDqsTMBTKbiXpXSuVerPY6LphQmk4lmLT//vbDRXgGRiJ4KPSsy0ntve20z85/boRPgpqCYdqFQKBQKW4KNYtqtNR0/fnziZJE5TtCxydJxllzF51i6ooTG77N0ggaZwlwIFh2QyEiysDRLxXaGM0uhlBwZKqVRlkg0ooRN5yU68JGZxHvwWmMuSYnv7XXqJbqJa20m73tHFkvs7u7q4Ycf3nNU9LlZ4hLfi6U65xhvz3GKZQ8jmHyErI/7UVo63dEBiWUPI2t2ohrPbc/ZK0sz6mu536yhYEKaeKwXbsnUnlkCkF5a1jktDR2CekVnYl8Y+pXBTNv3oYZCWs4HNV50iotryXU3eqFxmRMbSwH3nMxiv733+X7jfo994ziITAuwiqVnKVG9HtSaUKNgxL3TC/Hiuyr2lef2NIlxTpxwqnfupUYx7UKhUCgUtgQbxbSHYdC5c+cmNqyMzdIWSht2ZtdYN+F8RC+ko5egJbbHZAMMOYp9JDueK5YS75+hF06RMfuMDcVzM3bWS/LvNrLwLoYOMQzG58YwsYPYJe0PwTSP2Rz3pHomdoggA6Q2wUws9tF9cLvUCnlOYoihmUjW//g52urdnkOwDM4btR3SlJWZ6dv26IQ0cX97j/pa2llpy44MuZfKs6cFid/xPlyTyJbWSfRiDMOgJ554YlLuMtrIGXoXv4uIe6dnl6VNm+8YthPHMffeoabA51LTF+fJ977//vvTdntaAmmqoeSepZaQ987Gk2kseL+enXquUBHfNz37e7wPE8tsCoppFwqFQqGwJdgopi0tpV4pty2ZifS8Ki3tRUmVtsO5Um7SfqmLtmayyizZSs/mZy9KjiGCbJAsg/06CCI7Y5EJ9pXesHO2JTKUTEI1K2Maxjnva3qWzmEYhn17J7ONZvspnpOxPPaB7JmeulEj4f/TPmwPd7InjyPeh3287rrrJO3XppBFcI7ZtyxRio+5fY43MiTa11kG1dfYXh69h70+TEdMxhW1NIwe8Hz2PI+z71alMT1//vxkz2TJTpja0n3z8ThPZOW9Ep1uK3um6Y/ABDNxr9I+3EvTm0XHWBtiPxK+Bzw30XeDpTipafPnqGmxvZjoaRbiu5gaV753stSu1GLwnTWnVfNzs45fxJOJYtqFQqFQKGwJNoppD8Og3d3dPemHMX3S1D5HkO3x+ngtJfTMvkEbDKVZS2WZR6alcEvSljjpVS4tpVLG5c6lhFwXGYM026OXMtlTxgI4957ruXhGSuP0cDYiw3JfesUlMsylQeT19KrNWC7H1ItJ91pmTNtzbQ9sFmGJ7MP38zVcB48v2v79ndunFsX3y2z2bodFWegdHdmy15K5Chit4H5EGzpjhul/wf3IscbvegUkpPmIEGJ3d1dnzpyZpArOtGdmogbZbMbO2e9esZks/SY/004dtWfeb54vRilk/in0suc7sKcRie14zGSoWbGZnq2cWPV91qcsKifT3Kx7n57vy6XGZvWmUCgUCoVCFxvFtA8C2kQZa5uxvl6sHqXYzIuTUtec5+Kq2NMsCw/Zt9nXUXguMiNb7BNjSdn3Obsrr6UtNc6JmSM1Jb5fVoCD9vx1JF5K/XOsmXGevbjPeG+yc/Y7K+tJbQ3Zsj13JekDH/jAvj6Y4TK6ILLaXgQA2T/9JKTlunq/3XvvvfvG5/tED3czZzNua8R6BR0yjVKWfa4HZgXsFQmKGjKf4z7O2SWHYdCZM2fWykzWs+fTZhr/z3dFz64ar+Vzz7htM+wYMeBj9JnJMiIaPOY+sjAKNT5xDliak97x8Zn2+l+McpeZD0yv4Mnc7wR/U4ppFwqFQqFQOBQ2imm31nTs2LGJJ2kEPZPJqDIJqmf/psSenZ+xxnjc0mbsq/9Pz2LaraNtiVI480T34kIzuK/Pec5zJC2ZdhxDj/3RBpR5x/dy/hpZ+UgzbdqwGaedSbXrlleUln4DzoyWxe6SAXs9GLMcz+3Z6ahtyNbJfWIOcNtH3//+9++de/vtt0uaZtzrsbXYnlm6zzEDNkumN7u0ZPLOJ3/q1Kl9fc7m3uzOY/dc33DDDfvGncU004OfecO9D6ImgVm0GEftvkU2zXVY9fzEyAOy2niMWguy5sx+Sw0B7eD0qYnnkpEyp76fq/gd80Awj32cJ/eBPhMsQUvNQpwTf7cqsieO9WJgzo+lV2LXyHKPc803BcW0C4VCoVDYEtSPdqFQKBQKW4KNVo/PJfaYK8cWr5X6qleq4TPVLFW/VJNbdRLVWP5/z1EjSz5CtbRVm0z76Tbj/dyeHYSsMrO6MutjT/1KdXUWosHwiV4oS3RA8jh6aQWZujbrwzpqqrkyhJnaU5oPq+PeYLtZgRr239dYFW3Vr9XjTh0av/O57BMdMLO++FqWAPUcO+mJtFRpWrXuvywckhVrYXrMGNrFPhp2KqN5gck8spA2j4Mpfj3ezMEuCwPqwffJktBQVcqyl9kepSMa1eEcR1SP0wGMprbMjJY95/EaFgeJfaJa3O16jVnoJd6HRY56iZOOCnxP03QU70d1eC+MK3OA9biykraXEsW0C4VCoVDYEmwU05ZGqZBOD1kxekpMZE9ZwRCCoUsMP5q71qAkKk3ZAkOKmAJTmjrX9MKq/DmyWJZPJCPNQpioZcjCQWJbkamQLWfsj31kqE/PAS3TPvjYQYrRs3CI1Hc4Y/rPLJkPw1nIsJn0IrZHZmXHIP/NUrf2kH1P7YvH5b5QqxLDtwzvRacxZYhZvK/nkUmQyOgz7QnTfvbCBGMyF/aB2qFM+5Sx1x5cqIiOaHHvkOHSqTTT0vWSEPVC12Jf+e5jOF/23EYHw/gdy+7GtnrpSnvjzsoku69xzeJ92ff4XS/x1aoCL/HcueM9B7Re0qzYDvu0KSimXSgUCoXClmDjmLY0tdHNpSRdJ0lD7zuy9iyFYq9PlGKzkoyW/J2wwozKITKZnZhstWfTzOxfTEHJQhVR4mW7ZDNztlpqDHohYNF22iu9x3FntqWsVOIquP0Y3sIQJKZHzZgItTCcHxbcyFgFy61Sc2ANiTRNcdpj3hnzfeCBB/aNg4Vr3Nd4P4ZcURNiZGE0DHt0P1giMnuevFe9d8kSHYIW+8IEStwXcX9w3ValwG2tTUI/Mxt5b79m92EpUb47WIQogsVXyJa937L3QO+5yXw3WDaYSVT4TMf7rXoeWWRlHfTKi8Zx9RLCZP43TDxEbU0Wtsp3+zramicTxbQLhUKhUNgSbBTTbq1pZ2dntrg9bSssEJKlaiRj70lOmZ2IkjRTAlJqju0Y9EY8ffr0vv5IS8mZEr0lznWkP6aNtDRp7+QsvR9ZX48RZ2laaf9iqb7MZs/70as8sx8dRtLNEiO4bTIcJoGIa+nrqcXwOV4Pz3n0rqWNj/c3onbB2gkzA/tFkAnHPeZ7c+5su2biod69pTwhirTfM9wskP4VbJ9MM/7ffbIHvdOo+vuY2rXnLey58JxnzG/dog+ttUkq0si8aRP12HuaGKnvr9F75qKWplf61RoJvv9if/lO8rx4L2V71Nf22P/FSDsq9X2SMg3qXOpRKS8O0ovy6P1uZH07iIbvyUAx7UKhUCgUtgQbxbR3dnZ09dVXzxa3t+RpWwzjly2JZpITbXs9u22W9J8p++i5GtlgjxmyhGG8D+1NtIuzzaxEnkGNQeYb0Isd7XmEZ56tHgeZlz9noITrcWbFBYzMu3YVbEeLbJ/r7LWjliNK1mQYZE1mmT4vltlkyUx6Shtxf19//fX77sP1z7QB3M/cX/RAzuaYDJhMJzJte5hzPCw24X5kdn7fz+3eddddkpZx4lnqUzJXMqCstCWL2fSwu7s7KUwT26MmyO2x3GncY9yvPIfrljFtlnf1c+P9HftorQWfF48r00iQla9bOvOowLS2fq9nRZW4j/g809dC6ueFMFheNPblINEqTyaKaRcKhUKhsCXYKKbtjGiWfrJSebQH9bx5o2TNa/iXcZPR5sN4wp4dLbO9kO2TmWSMhxJ8r80s8xJjuhkvnhUkMNMhY6AHcmY76xUKsbYjSqrMZEfWl9nO3Qcfo3dvBvpBZIyUdkh63UaJnhI/M0f15jy2S0ZIb/Us25iPUaPDrGDxHN8vel5LS82H/2bevN7PLgbi9TbDi32kpzfjmzmvWdy7wfhge8DH8dnO7z7wuaEHvLQ6YyLh8pyx/9k17id9JrJcArw39wxLimae2YyF70UgRJBh008m7m/3yc85szXSqzyuPbVNMbPfuuD7c650Zo/58p2YRQr0isFkvgFzvz+bgGLahUKhUChsCepHu1AoFAqFLcFGqccl7Qv5ysIoqKroqb4jeKxX3zYLd6EjA8OEMqcrOnP0Uq9mjmi8H0PLsprPVMP1Cm3EEKReUgU6wju2+QUAACAASURBVM05LVGlxSIDmeMYE5hwvNEsYLX+QQoP0LEkrj1VmVSRZQ5ITEFK9R0d+OKasn2mLbXTWTbHLL7BmtzxmaB6kiYNt5VdSzOC1eHeK1aXx3WhOp4OYjR1RHMTnzX/ZUGKuG5URfecMuO69VTTc+Bc0AwQ22FSpSwFrtthuJbnkvWv43uHoaZ01Mwcxlj7mmpjz2Pcb15vzzuTm1CFH1XrPuZz7XDpa2LYXg987zAhT5wTmsd6YXhZSlI6+3H+spDW7H2wCSimXSgUCoXClmDjmPYwDJNCA1FyYshVL3wiK89GiYnSXJbSjhKow13MlrKCGiwZyAILRpQcyfrJDOZCFygFWyqnZO++x7lwqI1ZLdlzFjrVK1ca05bGe2Tn9FKfZklxDpNchYxYWjJQrjfT12ZOdwZLStJhx4xYWrIYOpwxGUlkE26foYvW6GSOiO4j05b6uNPmei3niiOYLTF8KLuGyYrorJQ5EPK5pbOk91l0lmMoHp00Ga4U77MO097d3dXjjz++N6csLMO2pX6JzshEmQiF8LksJBOP9Zz8jFighiF+XjM6BGapQenw2NMgxbX0/71XDpKutAe+q7N9Tsc6I0vQRE1sL5wrSzyUvUM2AcW0C4VCoVDYEmwc0z527NgeQ80KDvQKyJO1ZOU1e8nv2Ua0U9OGRSnP50bJzZIn7c/uG6Xz2C7tjrQXss9xTngubU5RSiaDY6GKXmiENA1doy2b6SDjOV6XVWyN94znzMHz4vFk7dFuy/WPoA2WxVg8F2aKcY5pV/V9mc40siWzYu47zm3UdvA+T3/60yUtmZv76vtHhkL24vHYlh3Zn8EEPJ4b29R7xTUyMDmSNTGRtVGz00uKFJkx99dcwRAzbaaO9RxEeM0YfpZp3Fa9q8iA554Xo1eoRJr6CRh8p0QfA75Pev4/fA5ie0cJMuOoVaG2kVqnTJvSe2fwec72aLYum4DN6k2hUCgUCoUuNoppD8Ogs2fP7knsN910k6Q8/SaledqwsiQHZCm98ppRumWCD/8l884S6psdMWFJJv3Pec/Gvhqxj0wKwjJ0WUk72mrdF48vsj9pv7RJD3AzON43Sq9m9L6WNitL1NZSxOvnCl4Q1C5Etk5my/SlZJDSdK16WoVs3czk6dvA+5ldx+/okc80nPEzmQftgtQoZImA+BzR/pklvaG9myx5nSgJzxv3Wxwf2WzPLpmNy5hj2sMw6LHHHpv0Nz4jfJZpC/Zeitd4rNw7PU/wzHeH808tV5wDRkz0ErFkz7JBzQrZ9Dq+QkQW6ULtI+dmzjeJDJv7I2oSyJYzTWXsVzaeTUtnWky7UCgUCoUtwUYx7fPnz+vBBx/ck47Mup7xjGfsncPYOX7O7BuUaJk6MesH70fptVdKTpp6/to2xljOrMBBL26aMetzaSU5Ppbdk6apTVkKkMwrsgCfY4ZNO6znJvaRWgYyIXq+xnPNcljqcg5z8ZcsC8o5z+J9/dcxz4zP9Zx4XiXp7rvv3tcHxiRn96OU32MTcW7drteDUQOci+itTrurvcc5vvisMIbc8+e/c3ZQ2nf9mb4hUfvAvpBRkoFLU9vvHBschmHPri0t5zE+L/T4J1vOvJ3dnsdI9kjWl6Vr5rncD3EfeL3db6Zl9TWRiRrU0rFvPe/1OCfuMzUwcU74DuT7eu6908sPQcYf9/cqjWUGPp9ZvP6lRDHtQqFQKBS2BBvFtKX9kpHLHEap29KkJXNKoJkXZK/cJCU2FjqIsJ2OnuHuR/RypCTLbDxzDIsFNcj0s4IiPQ9n2smzeGBmtyLYD2nJfLwu1CyYlWRZtHo21MyLk9ccJDMRM3pJU/sz2X/mwe57e4w9mxzt/NKycIf3zMXwts3gPpgR92KjY5+ofWBkQFbUxOvcs/dmRS0YQ0yv3YzdMN6Zcfa0h0tTj/q5uR+GQefOnZv4qWTZuMgUyV6jBo7PLt8LvE/0mKcfQq/ARZw/Pne042ZaE/eJkTXUEmRRJL3ojiyXQA/0qOdeinuVcf89bV1cgyz6Ibs203IYc9EPlwLFtAuFQqFQ2BJsHNNurU1sFRkLpDRJ2+Ocx9+quM8oYZOl9uwnURqjZMYczJaiM6m1FwfM79fJpsY5yeygWY7f7JrIms2waf+0lJx5e2dxrPEzx5n1pSc1+147OzuT9rOykGTaRJTuzX6yuG9pOm/R3nvy5Mm9vknr5WI+CrhPp0+fPvC1PY1LBtt+b7jhBknTuG2vZZaf36C/Au3z0nI/0UZLDVkWUZFldCMcteJzHnzwQUn7Mwj63tyn1BjE55LMluyZtQ7iXvL9rG3ks+2+xeeSfTT4rMc9TH8Oapv43svs4UZPmxGfyUwjEa/l2mbZCXtlSaktkpbr5Hk0qNnLyv5mkUibgGLahUKhUChsCepHu1AoFAqFLcFGqcdbazp27Fg3zEpaqj6stqHjTJaAgyoyOqLxPlmSBqtznEDCatBM5dQLEfA5VglGVRPVwhwPQ72ycbI0HUsDxnvQ6YZJHBhSEouB3HjjjZKWak86z2Vl/Kiy89jnnHXo0BTDqYjWmi6//PJJeE0EnYiyQhNSHqLEsprcFyz0IS2TA918882SpNtvv12S9Ju/+ZvdcfTARDNRDc8kHnSSo4NYVmyGjkA0x8T97Xn0uVTVep14njQ1TbCvnr+436za9HpxjZkcKd4n2/vE+fPn9dBDD01MT9GcwbAzmgL8fXxXMemM58V7aa7IEdebz1TmjNULJbSJJ0tz6r6wUEicm9ifiF6ZUKryM6fgnoMbQ7Li556amol64l7lPDLZSra/aV6cMwlcChTTLhQKhUJhS7BRTNtgir7ooEHJaB0G2itgwHCKzJGC6QPpQEHJO/aRUjj/ZgyEWgGmXs2ShjChfS9cI3PqYGgPEz2wCIW0ZNiUXjm+jAX4Gs8bE45k4UhmCnMS7zAMOn/+/GQNs2IznC8WSYn9Nrujc5XBkKjIgJmo4p577pG01FQw3CbrAxOl+G8MZevNaS8xRpZW1GBIkRGv8f/dF4/ZzmPum59bpyWOx+gA5Puy7GY8xhA6Pz9ZSUayvVVOjMeOHZs8E5FpW5vgvehnwPPkPmbpMN0HpjolM479Z6GQXgho5kBFRy3PPx35pGkinF4YVVYymPfpsfQMWSKUg6IXNmhHQmn6HHmPslxypuXoPQuXGsW0C4VCoVDYEmwU03Y6wblkF5QMafdkOr6sHbLVjNEblDwthfnczA5Ouwml8SyRSK8Un/tOSTtKhkyiQvaUlXPkXPRSXpo1xQQ3TMxCWxO/j33qMXyzp8xulZW9JIZhSL+P7LynreCcZkzE82Up3nZKaigyDQiZgEPlzFCzMCv6P5BNRy2N+8LkQNQwZRoQ2jnZl0yTZMbIQhicX7OZmDSE2gBqylhsJDuXfc2KwzD0c1Uo287OzmT/ZMVmzLAdvuV+Z4yNe93nMtQr0xQwOQyvzQrUxGI78bs5X5BsrBHUAhwkwdHFAp8Fam+i/ww1ePTRob9ExKaFehnFtAuFQqFQ2BJsHNM+d+7cRLqPbMkSERkp0wxGidB2DCY3oNcmGYo0LQzAZAOZNoDl+twntz/nVUmG0CsbGVnBqqQGWfJ9si+zFbdlSdT213gt/Ql4nHMV0SsxSvt4bMfzlqXSXIUoQfds7vRxyJiov7Nk7s+eJ9qvpeU6m+lkSW74makaDRYKifuftj16yXPO4/jIUvmMmNFH9tJLAUmvfM9VxtL5XDFBSrRB81lg0iW/H2ISF8+17bnr2CWpGYl7xxoARmTMaVp4jOvkuc28ug0W1CBLz8pQGtRKXghL3gSGbfAd39PixWM934nM12FTGbZRTLtQKBQKhS3BxjHtyDCylJ2WeHvFN7Ji9JZo6fFJ700yBakfnzkHMsxe7HBW4L2XYpUez7EfPYmaHqGxbR7zvPmvy6F6zrJyd710iVmfyZZ69uXYpu3HmZ3zMDArYflRstosWsEMlPGdbivTuNjG+MADD+y7hgUwMhZIj3/6SWTrQT8B7gf2PYIsnddk/hAGU1x6vHMFPeg/4M++T0w76bnveTibLWVpTOe8rCN2d3f32vW9oye796L9ELze9CeIIDvmHqedNUtNzGeMeyZjwCxQxNwWcf162rJLhd47TJr6TvCd4vd2zJXQi1KhRmmbUEy7UCgUCoUtwUYxbRd9iJ/jX2nJXshWmDksMlFfYymZ2ZgsqVuCiyyGWcYsvdK2PRdjSSkvs3/1Eub3isNnNkZmKCJrj+hl9HKRC/sBZGUK2S5ZTWbLpsRL9pF5w9oeyXPXQeY3QNbKrGyZ9zgztdG2zNjXOTsoGTHZczzHfeGesX0880+gNy1t+NxDsQ+0t/aYcLwPbeYuUOJxZ7kNeoVv+MxEW62ZL/MDMG7f7Cn2e+4ZiH06e/bs5BmM17oPflf4+chi3w1mTePxnoe4+yRN31Vkm3G/9fIYcG/Ga5gXgBkALzaYnZJzEtErMkLP7zjfnlOvX9wj0moNzCaimHahUCgUCluC+tEuFAqFQmFLsFHqcWlU08ylXaSKk+FMVh/G8A+rlKwicaKQnqNGpupm2j32MVOp9hyNstAEOonQwYQJGKI6kU5R7IePR7W1nYOY+MWONUxKkKnyCYajxDFQXd1L6hGvYd3xLCTGsGnF6+5zY2IP9pNOSr427jfOA9WJVtmxKIM0TSfbM3lkIYa9BDB0opSmtcq5PlblZipHJhgi5kJ9uC5ZiFf8PvuOJh2veZZyl4mGOBdRTdpz4Mywu7urxx57bNJ+ls7WDmmec68x1eWxD1kYW2yfprcM3DOZWS4rWhI/z5ny6CDq+7jPR+2gRtMJ1f9ZmBrNMT3Vdlb8g88a3y3bhGLahUKhUChsCTaOaUdkjkGWwOxcdsMNN+w7l2Fc8f89xxBLe0wqH2EmRcksc+7oSW90lptL9s+xU/LMUjYaTJtoaTNLyMEkEQbZS3SSIVtmKtd1Cm/QiSRLBNILB8qws7OjK6+8cpKMIu4DajPIHrIkNGSg3gdMIDPHSHplVhlOGPtADY7HQ1Ydv+sljTGysLpeER1qaeJ+6yX+MbgGmTMgHZA8f5kzlc/pJdnJwoOMdQpSmGkb7Fu8h53tGPLlfmdhnL0wUX/v8WTvrF7KZV4r9bV/3HeZNsDzxHKuRw3vDYbQ8v3GsC6pn2qXyLSefvexUMg2oph2oVAoFApbgo1j2plEn31vaYshYAx7ie3YjmupmNKcWUW0h5O5Z6w19ifeO5MW4/HYR0uRGUOM4+aYpKnd031j+ESU+BlS4mt6YWlxfKvO5fjjfagR4bkZW8pC5DLs7OxM2PJBbHGWwiN78Z5g2JZtYmZaZopxTZlylPbCjNH5XN+nl7o1ruWq0C7eJ+5dhjCyDbLc2K7X1H4kZJZM3xvBUDr/nVsvFoYgi840XOsyqmEYumUpYzseq+33TkLEJChZv/k8el4yDQjZ8VwIHsEEPPSTyBg9031y3BeCuFdZ7MOY05YYcyGzWVvx3FW+DVma5k1FMe1CoVAoFLYEG8e0DwozHHr+ZtIk2WzPnhIleLfr75gExG3H1Hlk2PybsUom+KC3OKW/KKmuy7Tm7OC0YffKe0pThtPzWs28sHspZGlTjd/1SoASrbXJfGWRBz1wjaWlfwO1I27LzCtL6uN2vDdYKIIsV5p6z7LvmdYkKyIiTRlJxky4Zxid4HWKNl/aHRmBQJt29Jdge/RpmEvtOpe8h+M7qFfwMAxdP5LYnp8La1ruuOMOScs1jWPlc88xcf7iXqWtfx0G3LODM0FSllxllZ34MKBvTTxGGz3ff/QVidesinjIirb0mPY6aak3DcW0C4VCoVDYEmw90+5Jr5EpUoI2A6J3NUv/SUsJlEUmyN6j1EcJmvZQMn7+P34m480kR3pkmiWZ4dEzPLZD5kg7W+ZxyrSI9La39B7ZPO2QvE8WS97zJ+jh/Pnzk/jSw9jkIktj8QhK+ywVG/tve7dZJTUwbiP6UPQkfzLiqGnxvTNv7Xg8K/5hkBVy38U+Mvad5Q57xUekqXdyr5yrNRjSlGX2So0elmlHlh3biRoXrrfPv//++yVJp06dkrRMAyxN9yvfA/w+rgtjxhmdwDK/sU/0LcjeibwP98yFxC/TxyZD77lkroe58a1TcpR+NkTvmdlkFNMuFAqFQmFLsHFM+7ASniXRa6+9VtJ+Bk5P2F6cNG1xsT+WbGk/ftrTniZpvz2RSenJnphVLbZH6bTnIZkxbffBjIcxtnFOPB4zKN+HnqZZ3DtZuu159FaNdn6DzIqsb05Dsgo7OzuTGOw4f+t6lGdew7T5uW+0eUcbnCMbfD9mgcpKZdIzm2PPsmeR4XIcZD5ZdjuuO9uIx+lRT21ML+Y73puFahhNMBdfzT6uw7gOAs99fD7dH2qEPG9m2nE/c2+4fyw1yxj8eA3jsanliH3ke64Xp5/50vC9cxAParbLd1aW94B9zMowsy0+Gz07fPb8rsqeVt7jhUKhUCgUjhz1o10oFAqFwpZg49TjMUHGQZwD6OBila20VFO63euvv17S1AkjcxCjA5LPocorqrbomEXHtKwW7io1+FytbKrBqHJkcY54TS9BP5NeZOkl6Whks4BV7nF8PacbJluIaizO9aratzs7O3uOY1TVSuurveJargqFsTrceyorAmOwFjKLNUjTkCuq9HltPIeqRqqLsxS4VGHTQTC7hmFPvX7wvhF0jpzbZ+viQtXjnL9MjUxTA9OX3nrrrXvXfNRHfZSkfqIkOuPF/c31v+aaa/Zd43PjmBmWxnOy4j80w/T2jJGpq/l+M+ZCW2keY6KezLzFpDS99T7MMx+v2fQa28W0C4VCoVDYEmwU026t6fjx4xMJLrKdnkRIST2GqNBJiAlSyGLn7kfnriwRQ8/BpFeWMIL3y5zj+JlSKYtaZMVOKLnTmcgskUkw4jl2wmMpTvc5MnuvB9nlXOpI3m8OwzDoiSeemA1dWeWwlCV4sTNdL82j2Sad/6TpnDJ8kKUapaXDUabBicfn5olaIY47Sz5BjcKcA5T/T00C2WiWGKjnxOZ5XYdpU/twVA5oc8lbyPIYgsf0ttKSdT/nOc/Z10+uSxaWxDBOhoBZk5iFp3LfzaUG7YXnsQjQ3N5hKCGdS7PQVt6PGows5DXT+mSI18wVGYr33XR2HVFMu1AoFAqFLcFGMW0jS8pgWAIzA2CoiNlLZvNj8QW3ZeZgNhiZFu0nluLYx6yvDD/qpeyTppImGXevJGhs3+A1/hvHTxbk9jiPTL4iTW1lWXlSacnEpSUzIEujb0AE7Z5zjNtMm8hKWPaKsnhNI5sgw+lJ5A888IAk6cSJE3vHaNOjPTJLIGEwfI8alyzUh8lbqMnJ0mn2QryofZpLesO2GGKYrS33AROPzOFiMe0s9IrgGKnFiHNu+6wTsDjZDsPrsuRH9NHhGtMnJZ7bK0GbXUONF99RXuss1JDPUS+ZSnyeev4cvbKimc1+FQ6TKKWSqxQKhUKhUDhytKOSUo8CrbV7Jf3epe5HYePxvGEYnh4P1N4prInaO4XDYrJ3LgU26ke7UCgUCoVCH6UeLxQKhUJhS1A/2oVCoVAobAnqR7tQKBQKhS1B/WgXCoVCobAl2Kg47WuuuWa4/vrrZ4uc98oM9nLaZmA2s7l8u6uy8GQx1+s698X4xV7WolW5gOOxucxHPazqa6/c3jrXzM0J49HnYqy51u973/vuoxen9w7vl8WIMgaZY4sxm6vWfe5+Ri/r2zpzu85eWpXpbZ1MUuvss3WvmRtPLzsb/8b59XoxGxznca58rK9997vfPdk7V1999XDixIlufoOLhXXmqYesb3PvzXXv1ztnbl/zuwt5V6zzLu7toex9zvjrw8Rje//dcccdk71zKbBRP9rXX3+9XvWqV+19ZgKVeIwJ9X38uuuuk7RMZCAtkwk4qYETOTjBAwuHZIlEmEiCQkLcDPyx4ecseQN/SHrFTLLa2L6GLzdu0CjIMPFC74WYFYHopVR1P7LxOb2j7+NENk5befvtt0+ucYIXFk34vM/7vEl4zokTJ/TKV75ykn4xvkBOnjy5rx3vCyaJiKk0/dLnHDNxyap0ibEN7uGs5jfnmMVs4hzzR4vr3lvr7FhPoM0SsjBNJvdQ9sPSSwDDQjgxAYiT9HBOXJjHqWZjWlgnNjl9+vS+vy95yUsme+e6667TV33VV+3N8Vwt7wsB033O1b/mfuMazwlInH/unbguvDf3JN8pcZ+z2AgTAGUpdzl2g8I792z8P/c3U8xmiYCydMwHxS233LIRYYGlHi8UCoVCYUuwUUxb2i9ZWTrKylD2VDNMESktJUBLWWZSLAKRlbtzfyh9U0qO0iT7xj7PjZvMhow7U32R0feQqY16qq1e0ZNsXDRJ+Jo4Z0zM77X1uWZWseAC2fIqk8cTTzzRTVEqLdffzIySe8YMs6IuEWQV66wLTQHxHkyH2SsykY1vFQtjqsisb73xZEybTIr34xjiOVxLpnzNtF1cCxbv6KXRjOf2sLu7u3YZx4OC2kCmy82KAnnOzHy5r7P9xrXyNW4ju6b3DBs9zVvWf65tVvSG3/WK22R7le/RXrrc2EdqAbJ2tw3FtAuFQqFQ2BJsFNMehiFlAVH660lIZNiR5VmKY2lOSmh0Won3Iwsn085sPT0WSxt3PEZ7YWZnZ9u9IgZz6Nkh3XeyFxZbiefSv4CajXgf2qy8FlkhDJ/jYiNzGIZBZ8+enRST4DnSdE49VhZWiP0iyCI5b1Jf0zJXPrTHHrg/4hr39ob3Pe3I2TPWs5lm+6+3d8iEs2cjFpyIfcxYueE9Ym0Mx+PnNjI6/39d9jzH0g+C2A6Ztf04en4RWaEalvXlOzFby55fB/dF1g6f4Z7WUJruRb4zqEXrjTWeS8adFW9iG713ZOwj52LuPbHpKKZdKBQKhcKWoH60C4VCoVDYEmyUery1puPHj++pQaxemovZpJOKr40qINbspao7c5wiVjn5RLWR1UEMn6DqL6oN6bREVRPVRpkKvxf7asQ5Yb99rvvMWs9ZXWo66fla9z2Oz6F4rN9tx7PMCZDtzqn9d3d39fjjj0/UXlG1TvVwL+Y/jpXrwL74XKpus/Yzp0Xer2cW4djjXu3FovbCBDMVNB3QeN+oeuY4PMd0qPKcxGeD6ljWq89CLLkXaZKYq0feCzGK8HsnCzNaF54DOznG/7M2Ok1RWf/nHM6kvA79KqfZufwJbJ9mjDlnP5qZeo528RyDz6LPZU3w+H/ub/7NHPoYssa52CbHtGLahUKhUChsCTaKaZ8/f14PPfTQRBqLUrIlMErslrIySZ0hXr3kE1kygMx5Ix434jV2eOuFeGTslY5tPYZ1mFCfubC0njMeJeA4/l5GKkvnGYPwXDghhtfPa3Pfffftu2+8nslwejh//nwqbRuZs1gcG6XweMz9J+OgViFjdNQOzSWsYIIPj5nrFK8hS50L1yKyDGSxj3QylJZzYSZJRs05ydbCfXUb1CxEh0Q6jnKO+JzFcfWS1UTs7OzoyiuvnLD/ObhdJnjx53jM51Ij4Xnz57lsh/7rvmXPJbVYvSRPGTsn8/S6+5psHzCcik5sRsa0yZp5TeaE7PmjRoR7OM5JT+vka9xmDDXddBTTLhQKhUJhS7BRTHt3d1cPPfTQhI1lyQBox+C5kZWRaVDaouSWJZLopSTNwl2YPIOhRFkIBEMueH9+nrNL9Wyn8RqyCfoG9GycWZ96tts4TrMOah16CSGyvsU0lQTDBY0sMU/PBmypO7KlHmNjWA0TaEh9W/xckhif67Ey2URm+++FhXENM18Hrh21EV63aKv1PHl8DmWiNsDrH+ebz1jmZyHtf35p5/RfX5vZ6udC8Yjjx4/ruuuu27uGKXcjaLu+9tprJU21TNJyXjwPvsZpdGkDXsdPpZeKOR7z/ag9IwOXpqFP3EtzYWnc+73Ux/GZpiaRbJkal2hb74VrcVwPPfSQCM+btTZex4PkSd8UFNMuFAqFQmFLsFFMexgGDcOgD33oQ5KWEmJkPpYie4lLMq9DXkMp1tKcpdYscUUvzR/tufFYz9aY2Yd4Lb2IaZPJWIUlTtojswIe1D4wyUnPZhvvEwtrxGvoUS1N7Xn+TPYc+2XWepgCDnMVfzyX3lfui//GflOD4/5yfbK0sNQCuf1eMpIIaj7I7CNDzQolxD73CrzE9rlnyCgj03a7ZpIeu/cDkxnFOfE5vo/7TvYZn3n/3wzY7c6lrGW0xSqb9jXXXLP3/HusUWPmPeG+0COb+zr2wfvYhU/cBhOoxOfJ7ZAhZqk6eQ19CTyujNGTtVKTuM47y/djopwM9FNhmlay6bgGfE59XxeD8RxlWk/fh+ycCW/iOZuKYtqFQqFQKGwJNoppE1nM9Q033CBpKjXSLhlti5amLJlZ+iJ79f2y9JtkkSzkkdlt5tKWEmQ87NucrYfMlwzb483sN2yPmgR6TWdgUQsyLWlpZ3IfzGZY9MFaFmlqEzsM445z/vSnj6VwHTNueyS9xjMbrFnegw8+uK999vGBBx7Y+85z5/mhXZ9xu/GaXlpe7t3YR0ZQ0APXxyOL9XcuZcnYa3+mVkWS7rnnnn33oZ0y8wCmzd77zvdnLgVpycIZK8/9lhVr8f38DsjQWtNll122N8eZ78n9998vabk/3b7Zs8cTmbbH4DLBbtdjdZ/cVlwXg1EJ9K6f02KwdGYWeWD00n3yef3gBz+4d42/8zvZc0M/lbiWXitGDTAWfy5vg9v1PDIS4VnPetbeNcz1ceedd+67r5GVLd5UFNMuFAqFQmFLsNFM28jKdVoCsxRu1kQWJU0zE5ktMdY7YzG94uy0I2be1WzPkmnmVWspm4zX59COF5mDz7FUSe9Rt+m5in2hFzmLc2Qx5WSKvsZzYVYaYx/pJUwPXc9VTdNTJQAAIABJREFUZNr0Qu95Gmfg2KUlI/DeIIM3U4mMnl669957777jtP1H2xgLqtA73WsY+9jLiMY4dzO/eD2zAtLjnDG3Wf9pJ/a+y54JangYW575e/gcf/fMZz4zvX9kkH5e3Q5jiM244n1ow2SGr4hhGHTmzJkJ28t8QTgH1LxkLI0s2evO5zX6DfDevex2UQPiZ8rtmuG7j9YCec7jNW6HPix+Vvy9mao09UNwWx6Pr4nvGGpyesVtsqJLfCda0+P7eP6ilpVs38+PP/v34gMf+MDeNW53U1FMu1AoFAqFLUH9aBcKhUKhsCXYCvV4hNUbVs3ceOONkqQTJ05Ikq6//npJ+51ImMyE6kqqzrI0f1b5sdBFlv7Ox+goQZVw7BcdzujExKT80XmJ6nCquKyOi+pxhmWw5i/7lRVw8LxZLeXjdjqLjmieP6uy/Dmqw+P44xjnHGhWIarmGBLCdfLnrEiB+2L1uPvdqyEd++318fzbecnzdvLkycn1vtb7wH3M5sLzzIIRVjl6PXz/uGd9Pz83PdW67x+PuV07J/UKbsQ5cl+tdmWonL/PioxYlenPnkfv3SzNLZ0xM+zu7urMmTOT9Yomtp7KdB2nJTpOec6jU5eUq8fpmMrvo+Oj19XPsFW+fkf6mph8xO9Ahuv5r01Kbiuq7T1ft912m6TlvDFUMz6DTHVK0wEd4OI7xOPyM/j+979/35w84xnPEOF2aFb1/e6++25Jy70klXq8UCgUCoXCEWGjmPbOzo6uuuqqScINO1RIS0ZgKdifLd2tkxTf5zIJCtmN+yRNUykyRCIyHzrMsOAB+xGPGZZamdyFIUGxb2TjZlZZaJGv7xU1sVSblfOz1ErJmokMIpNgcppeidWoDTAzsXblIOXz3O/Y3l133bWvPToRZSlwDSbCoINilgyC4zArMmtxCFpcFzrzULvgNqKWZpWTpJ+njJ2ZvXpujF7qUEk6deqUpP3OcAeF2RI1Ff4c3wGea2vT/D4wY3RfzSilqUaCDpYRu7u7evjhh/fa9XpEjYTne51iIj3ccccdkpbvrszx1aC2jElnvNbRMcxgilWf62fB/ZCW4VF0uKT2zuth5i0tGSnXzM89CzXF6/3s+Ro/I3z3Z866vcJPnotnP/vZk2voeEuHyNhHP5feo5uGYtqFQqFQKGwJNoppuxg9E1ZYwpamyT4YfpIVgmd6Sgbwx/tL+6U9smQmvWBSFGmazIWhCJZEs2IW7LPvw/CgyM7cN9r7zaKysC1LkQwXYpnFjGmznJ2vIePLtB2cR4Zm3XzzzXvX/O7v/u6+cw6S9MDXRFbpuTRDJFtmEhJpyea43r2iMHNg+N7v/d7vSdrP+M32vJb0NWAhDGm59z0u7y+WsTUzysK3DGobaOOUjraMobUOvZSo0nT/+i/Tc8bn1mFNZM8ZXGzGz2n2DvH+7LG8g4BJSLLCJEyYM9d/gql2vYf9Ho02bbdrdsmwNL8nmBI19s3jsX2Y38e5smb0Pe95z75r15lP7+to+8+Qhd9Graa0XE/PlVOhxu82FcW0C4VCoVDYEmwU05b223bNaqJHM20TZimWAOlRKk0lWUtdTPeXSby0N7FwQ1YUgQkDaMv2uO677769a8ys6HlJaTUrT8kCHT3P8yxdJpO50IbFBCqxHdrSaZ+OErHHQTurWZvnJNqjfM8sHea6yFKfZl7i0nIuoicpkz0Yc97IB0W0/TNNLrVE7ltkop5nlmKkp66ZUEyXSc2NnyfPEQvxrAP6R2TMnhEdTCYzp6VhohH3LXq4Mw1rliI04ty5cxM7Z5bOmL4ebtdajMNogzJwzGTa7EfWHtOaWqsRnzEzXX9H722vpT2zo++DGbvfY4zOyObC59KfZB2wdCpL7XpPRW0ANWNuw1pI75PItDcdxbQLhUKhUNgSbBTT3tnZ0eWXXz5J3RhhaZjsmGkLIztnPDbtt/TQzOJ0maCftt5oJ6J9hna6LJE+vZAZe2t2kRWyJxvj3JA9x3OZsJ82O2oLpClL53xmpTvdJ/91Gz6HcxPHZcl5ztbUWtPOzs5k7jNpn2kwGXGQxZV6XjJNx4Ui+jOQNXpe7AmcaZ9Y8MTXUjPhuY/M3kyRnr5u35+zgiE9UAsRx0cfEM95tv4EnwWPj+mJYx/M7LJ3iXHu3Dndd999euELXyhpuR+ylLReH9rV7UfC2OsMPfttps2ihoqpQTNbt+eJMepZKVNqCu0D4M9m4u5bjOR53/veN2kv+xzHtW4MdOaHQ/TuE+eEPhnUWDLXhDRNi3oxnvkLQTHtQqFQKBS2BBvFtHd3d/dJ9IwhlqZSJNmypaNo67GUZQYSWbG0lKwo3cb7WeL0fRk7HKXyzOM6IrMPsti9pWN6vPt+0QbjWEt6vzIONEqmlDhtJ3Kso+/LrGHSNLOX7V2Ok/W6xWxntBe6fXu02ks1SrVk/avshceOHZtI5lmGst45mYdsL8tXD5FVmA3NeQlL+xkxIxtYztG2uBiTzH3rven72auc2dakpXc9y+BmZUpXgczO+yDO3SqNBTUwEb2yuPZIjvPodujhnGF3d1dnz57d02Z4vjL/mkwbEz/H/bZq7vy8MkugtPTmJuujN3l8LrlHqfGgbVua+q6wEInbMEO2NiL2gcU3ej4IsQ98B/L95ucoapQ4B54v5kGIzwbt64wMyKIB6Iuxad7kxbQLhUKhUNgSbBzTzhhdZLG9TGQs3xilO7fpv7ZzmUXSBhylaEtZ/s4ZfSyxZSyQcdq0i2asze0whpP242x8tGtRUvT9I3uxlGobFVmR7+f8vpFB0g5udu644+c973n77iv1fRCYuSzaJT0XHsecXbK1NskqJ+33Us5Kb/Kc7PuDIMumtgpzWbbcF7MH+lZIU+0PvavdJ5ay5P+l9WyJLMlozRX3Ob3apf1x8xnogSxNNUe9/Ared9IyTvv222+XND/Hl112mW688ca98TBGXVruETJFxkTPgZoIxgpHjSIz0VFTkJXondMmxHHN9Y3PkD/7XRnnhBEV3gfuk/s+9+7owXsm8xFwH6iN9OeYyczva787mH8iA7Ubm4Zi2oVCoVAobAnqR7tQKBQKhS3BRqnHpVHlRvVRVD2xfB7TmVq1Ea+x2sbtWo1oJyi3ZVVMdJJhiI2dr1gMJDrBuF2qw6yiyxwbrDZkaUImOWBSB2mpfmL6V/+12iz20df4r9vz+Fh6NAsxcspRJ1x473vfK2mpLn/Oc56zd437TWcS9icWQGBq2lWpHOP37m8WbkRcSBGIiwU6jXm+vEejajIzI0nTpD4+LyuEwJAfJi6JoJOQ947NTn6ebOqIyWoI94lq8cwRjc8CUxpHByQ7p/nZn0vmcfz4cZ04cWLvneH27VgV78HEK3zmounLx6iK9TXuW1aMhI6BXBfPT0wpO5fUpAfPk9chhnRJ09C5aE6x456PsWyx90XmnMeQU5o8MjMgx8wiSlw/aWoSoLmTRYmk6ftmTpV+KVBMu1AoFAqFLcFGMe2dnR1deeWVk+QqkSGysDqZtqWwyJZ9jdu1hGjGYPaXMWCfw6LtTJuaJXNhCBFDCCKLMdNmyA0d3iyhRicJz4Hny3Pg+1uajuPLkvlLS3bsc1/wghdI2i8Jk1U4PaadPlh6UJpqHZiC0EwoS+m5TllEhgv6flFSz0ogXgr0wl6kKYvkvHmMWfgYtULWsHiveN1e9KIX7V3jUB6vnRmVGZfbiHPv9tw3OlyS3WQpIn2u70tHp8j4yOANhn9m+9tzwWIWEcMwaBiGvTGyaI40ZY0Om/JYyYDjudQQuS1f63dV3J9+/j0/fqdQAxHfc3z+e4jzyFBZzrH77vfc29/+9r3v7PjneWOqWCboieOis673GTUukTW7b9aAULOQaWmYeIp71X+js5z7a01ITPu6CSimXSgUCoXClmCjmHZrTceOHduT6rLEFpSCmIrS50aJkYkiKOGukwzCEh+TKGQJK9yuJT5Lcb0UobGPLNxBUBKWlozNEjYLhVBLEO/HJCu2d5rpZGE2bpcpCc2ws7AhJuyn3W2OQTJt5UEQ7VEHKW+4CoexH/L+2X5jyJ3n1OtjhhL3Dpma94P3OdPAZr4NTJDBcUZbJlNbmqW5b35G5oqqWPvD4iZZYiLPgb/zPNK2GZme+2RGzPCkiN3dXT366KMTu3XcO26bhX0M79+YuIRFV5jkiFq6yOiYtInhotTIxP8zna3Xyccjq/R43Ae2Qa1a3DveV04EY42ItQNuI/aRGkSPz3NBJpylNTZYVMljsH1emmphuA8yDQm1PQdJ4ftkoJh2oVAoFApbgo1i2tIoiVn6y4rRU7oiC7NUF22+ZABMqcniDJHFWBJjchBLoCyHGb/rebZ7XNH2RNs1PRbJXiNrdn+pffD9M7ZMSdZzYtufGTdt7PFapgKkp3OcE9qwWR7TbDEyLBYMmWNLvA/thvGYmeKqZBRZuz27qsecpdzl2q6TvIX2Oe63OE/0sve4PHbaOLNCNWZJZLVzpTLdvsfDREeZ7d7tslAMbZiR0fWKzRjWDkSbtvtoe/oqLc3u7u6eP4WvdRRIPOZ7mE16Xax1ir4t9IymFoHsNc4xWT/fbz7X6xX74mfY2gxGbMQ9TLbPcrj0yzGrlpbr8dznPlfSMhETkzplSWOoGeW7kpEC0nIee2WLM00aS+tyrn1/p66N7Tpla/xuE1BMu1AoFAqFLcFGMe2dnR1dccUVe5KUJcTIlhiHzbKaWaEDSquMvyOrzeyUtL1Z4qZNMH5HezGZfLwPpXD/5XiyJPYsGOH7WYrOGB6ZO4tpZMn+jV48eG9uIugBTv+CXix17GOG1pouu+yyvf7bHhXH7PVn3DDLoGagRmDVeYeF15slaLO4c96z95c21chemKqRRU64trFdMp+DgM+Tx+f+xH7RFm+26b9m2vGZp1ZtFdM+duzYXh9OnTolaf97gSVTvbepicjmljZRPjeZHZ++OnxHeTzRB8ERGNYCsOyqEZ9LRrpQk8f3Qxyf59ianZtuumnfZyOLm2YUkOeVMdJx3fhs9VKvxmt6JUypHczSAnONNwXFtAuFQqFQ2BJsFNM2W7JtyTalzMZMxtGzF61zDm0iWaEL/rVdiCwmtkcbNhldvA8lWrfLcWbx1SyRx5hX9zXasiyFMzY9i1GN94h9c1993540K03jff2d2UEmybMPc0zbILuMbXB9zaxov10V53qhoGdunDdrCLwuZmvMF5AVjKG9kJ642bPja83YWCLVcxT3CQs0sATsOsUzPAdk0VnkAcfj+5tRMrtW7L/7tKr4w+7u7p69NosrZ0lRzoERnzFGlpA9cz9HtkctoNvyfNlDOt7PfTHjpe9B9oyxj3wnGj4eNWW+1s+wMyTazu7cE5HZ+z49DQ8jYOb2Et/B2d7xXqcPFDWXc5ElLKpzqVFMu1AoFAqFLUH9aBcKhUKhsCXYKPX4MAx64oknJqqYOVd+OkUZmfqQqmB/ZthBlpCDqi0mrojwMaqRPZ7M8SRTXcVzqe7PHN+obrOZgSn7pKXpwdfyLxHnhM5qTLHJJDLSVHXL9KVZAhXO7ZzD087Ojq666qq99tx+DA+i0028VlrOXwzbsTrUa9dTG2ZFBaiOtzrPa5z10dcwjSlVwHE/MH0o55/q8yyszupKpojMEvNwH/fMGDSfZGPuFf+I+4DqfabWzN4PVO/PqT/93qHTXzST0Gzl+eL6Z6FqdEylSpb1z2N7Bs0HNm/F9KxOQexzPAfeF0w/myFLFiUt90lUj9Ms4sJBTn0cw8MMziND6ViDPXsX0xzHfZEl9XEfGR7p49FZ7+TJk5JyM8kmoJh2oVAoFApbgo1j2ufPn9+TrphCVJo6HZBpZ05RlsQyVhzb4D2y79imJbborODveuEULO+Xfddz8uLcxD7Q0cjzxqQR8Xo6GrHMpxEZBEPWyBQy5kDnO7aRhXj01iuDQ3Y4t9EJxmMl42E40Fyhkx4TIbuMY800HdK0kI20XAczT/fffWRoTOwb2+N6ZOUOyQI9Rx6375clyuH6Z+PhuKlJ8HdmWFkBBybacJ+Z5Cc6NzE0ci5sZ3d3V4899tieE5776GRF0lQTxpAyji/eu5eac65P1A56fXxfPxvPfOYz965x+x6Hk4KwnG+WxtSaHDpHzjkIWqvlcTiFq8/52I/9WEn739++t7UADG2kJi6ip41kMpfsWjqgUUOSOdh5Hg+TPvlioph2oVAoFApbgo0SIYZh0Llz51LWZVDKMsvwuWRuc2DikrnwAkpmlvps98qKMLCPvVCPDGTyTAaQpfej9M9kJw7BiONgGVTOJ1mC9P+3dz6/cRzXFr5DMZJWARzYsh0Eeeus8///FVln8RA5hmMbAYIAMZyIfIuHjzz8+lbPkKKkGeeeDcmZ7urqqupmnfvj3HX6hPu+J5Ri/7fP9e/HwNoh3cSFFaq2VhpLG/J57rptGXhK0RFL4Nq/n3EEZpyOV2C80grh9UX/acOxIcnwYNKkEFkGtiv3aKsDx1jitZPcdaqXrRC2KOV3XpN+1vMc2u/iKzocDoe7sWC8kmn7GhYy6nz/vidbQGwt7M71vHPv+F1T7AcpVT5z/IDjF6q26aAcYytUl4JlhuuiKX/605+qquqPf/zj3Tlv3rypqq2UsK00nVVoZUEye871bSnZVdpdjj0WCu4npWLPAcO0B4PBYDC4EJwV08a3BLpycKsIzD0G5O8s1gD2hFncp70IWrMzi6xw/WQmMAP7jswYu8IaLt/H9SxG0RV6h12sIo67aF6PhXfhZhL5GfcJc3NJzqeWwXv37l394x//uGMg7JY70RtYJbt7+1eTnXdiJlXHZWertgyLtW3rRjIfs3/LPfIzrSaAcywAwn0ncwQwHeaF8eMcIrQ70RDmkLVzLIYjfzcz9XOcz6A/41wzqyzJCPiuk9TN9l+9enV3P0TQEwvS3TPj4vnpSuf62Qa29OU7xO8Mi+ww5lnMwhYV+kimCD8R8MnrMKaMIWuV7xFOyfcz0dX0gevyTnn79m1VPYyH+MMf/vCgL1h0kI71HOf7gLG1pcrPYvfe8XvbIjV5HY9JJ+X8KTFMezAYDAaDC8FZMW3naXfRvWZ3jt7sdrUuIO8IbO/Ucsfr63g31+V2O6eXnRu7VHae6ctclZczyzAz7e7Hn3NsjqNzLA3nB3dlPd13M+6uyATHdFHQ74Obm5v66aef7sYetpT3xzUZUzPDbi4d8dvl2K/gzIKOWbuPLoIAm+EY1lAWZaCPLjbifuwBVkRbMBD6mmwJpsZnlqh1BHyuabMjlxwFe5Yz3ydsLdeo1zXHdCBrhXHCIpF5xo754J5t3djzxbv/9o93BYQor8nYsh5g/J0+AGuIyPLf/e53D/rTFTUxo3fcAlkFeS+MCX5qvxuJLk+LBf5ursdzShvcH+PbZR643KZLBOc6cLYHfe4YNrB2wMiYDgaDwWAweBLOimmjasUuyxGTVVvma18sf+fOfeV/tPoXbebuy5Gd3sHv5Qb6O/uYc8fr/jtq3AVLkok4ipL2ub+unKRZpaPTzcQ7pSeuY199Nxb20X2owvLs5PHN5jg5RxTAwroIYEeqMl7swq201I01vkXnFXcKb15nVtPrfLSOGgd7am0rwCqYb1gnjK9qy44ZN6sEdhH3HMuY+z47CxqfOTbDkc9pfaDffHeMaf/88893c+oCGwnasS++ywd3FgdjCgPlcywXFEDJc4kId7nLzkLhCHdrL/AM5rPHfBAh7Tx5xgIG3BWO4RwXCsFvnevSCog8L5zLs2LLRo7BDz/88OAYZxPkmHAfWAoYV+4LK0C3RrsiKeeAYdqDwWAwGFwI5p/2YDAYDAYXgrMzj79+/frOhIJpJM2VNuMCy/ulOddBLQ5KcNt5vIN4nK6DuSXN5g6qIejBQThpRsZ01ZlXs89dQQ+LhdhkR9+6AA3/bdM2/co5IAjGaWk2GXYBhHtFP54DtI8JLcfLNYgd0NTVHe9kDqu2whjca5qRbZa26MmqOEu2ZxeETdFV2+eEn17fmAhzrdrsajEN1mO2teoT5zLONu1ne65Z7nHsajDTrs2htJkBT8wp87G37hDm4RjmLfvoQFHXPefvvI4DHi1ryn1hcs80Pqdiej10qa4ORMWkvSrsUrWVhnWKJ4FpNulnv+2esUBLJwCDOdzrwesg0/goiEK9cGChlgwco12eF/pod10+q3aJnRuGaQ8Gg8FgcCE4K6Z9OBzqV7/61UYWr2O+KzbZiVwAJ9rTvgPVkm2aTToAhHOTnTnFYy9dC7DjtAShC3qALlXBx+wFhpl1Of3Eu/IuLWklRuO0pcTKkvBcMKvJfptR20LQFbywxKktFA726a7noD6PbcfozABgHB0zoF3uyyl+ZmmdMA/ryVaZLsXNAVb87et1zwbj5OBFW5I6OVvOtaWqK8VIUJfFfDoQAAtDczpaXotjKCZBylKXaupiHy5DybgRGJb37FK5tGvGmM+21yrHEpTXpZo6KJK5WgVY5v2ZHduywLk59vSF9rFQeOzpB+Ocn9mSSd+xtOR6sGW2s4xWPXyfckyW6D0nDNMeDAaDweBCcFZM22DHsydCYj/eY9JbgBPwO/+GhQPsC8rdn1Mr+NvsOHdy7Irtf1ox3mSsTgtb+bI7X613rb5eJ8hgwRFLy3aWBI55TLnNx+BwODxgARaNqNrKldq33I250z/M7hhHi2xUbQV57APuBG7MAJgflxXtxEcsk8o5LujRiWvgD7QliftKRuc1YcbtPnaykl4jji/Icyz4YsGh7pm3hOueT9tM2xLFea+AY23FSiubLQ8eD4sv5XvO0sSO1bD8bNW9dYG0KcYYfzTn5Ng7HQw/tUV8YMidFZL7cZEP2syYBscerQquMH8ZS8GYrySfGat8Bm3JcSqtfdv5+3MJPz03hmkPBoPBYHAhODumfXV1tfEt7+147H/qJDuPRUr7ep0U4ar8JMjvvUtd9T99PWYLFqv3z445mPV5B5oRuRbpWPlSu6ItK8bgOehK5H0oOB6iKx7APbBTd/GKriiK21nJl3Zr1TEFsAx8b44NyD4wL46m7QRgVgzXghlm7dnuSjTkFIEJ2Dpt2ZrSWa68RvcKr1gsyDK59rFnvy0WtMLNzc1udodFZ2xd6ubSFgnLJO9ZJFxml3cJLLIT6HGZVViqMzdSRpe1wJzZSsc5RLZ3Fj7ah9FbHrh7VzlGwO9oP6urz7KtrlSw14HHYm99PLV40YfGMO3BYDAYDC4EZ8W0D4dDvXjxYlOCbc/HbJa8V6rzWDGOLp9xJUpvZpw7NUtO+nqdX9KMw/fuyOOO+a787l0pUEsAOqLa95f3cqxYRhd9+6F82b6uI9ez3/TBzM1R5Hnvnm/v5j1fySpoF4sKLAXWRBvJfFyMw9KUnJM+Vuf7+hgX8Egw/3znjApbLvI+vL7cvqPKs10+c/suplG19eczfr5+xgP4/bCXc3s4HOr6+no328LPsq1Y9nlXbaPEV4VDujKUZoSdr38F5y0bmcfM+OOzZg3Zr8v3e1H44DEZIh5rz2WOieMtVpa9rqyrcYrfenzag8FgMBgM3gtnx7Svr683O9Tc5XvntIre7CJKvXPyrt4MtWobqejIaXbayTJcFtK7cPunq7Y53KvI5s7/ig+JPsBMYPywN376/BwD70A75uNzvDvujv0Y/qH0SzJfaQGxf9Zj0M2XLR7ch1lZVxYQ8FmXt1r10ArBd2b/LnyQfXdUuNksgGGlNYDr8Rl9hHE5bzdhtThbYJiD9IeblXutdM+g1Qc9t3tWtS5OpbuP6+vrjdJaBz8f1mDorGddBkbV1tKT7zIXQnIk+l6Bksc8a5yPeprLUHbv4OeA58PPbTcmfuc6QwDkM7hSHTxlrs8Vw7QHg8FgMLgQnBXTBi6Rl3B0q/1anarZyi9otSfayihrzsXviL+GHGyrUVXd50laJctlF5OBEJ3pnbULshMZmjtI+sYx9ktZ7Shh3WqfY79bHmO/oX3CueN9iub4Sg99D6wZxiQZAuPtiFUrOOW8eMe/+ruLXHV0Ldez/zjBZ6wH53ZjLckIcD5zlLKvj48zmb4ZlC0FXfzFqiTnSpmtY0s8R9a87vzKtvrYsrMXx9Ipuhm3t7d1c3NzNy+PKcW4tzZZ864J4HW9Z1F0JoAtiWkBod/ffvttVT2NRX6sMpTOguC+rM/fKeMBv6O6zIPVd77eJWGY9mAwGAwGF4L5pz0YDAaDwYXgrMzjNzc39a9//evOXOmgnKp7s6DNHF2KD1gFoWCectGHToTEqT38jSkQk3TVvSmLdjHBOD0kTTOYvVdlSWkTs2+aujmXPmAuxbTmNvO+LEzhspr+PLES3ujEKWxC7wLFDMt97pkiD4dDvXz58s683LVLfzHnrlLwOhO372OVAtSlfLnfzN1ewNAqXYe5zBKgmPsZL0uv0qdOetOFbxxwxrPQBYY5aMhBWXYLZDueUwvedEI3DuBcSaLmMXtFRYADYN8H3Rp1QJrdZKB7xiyI40DUDBxzoQvStM4JDspzaqFdivnu9jpbpQnmOSvBnMeU3ezS+T4lhmkPBoPBYHAhOCumfXt7W//+97/vdpHsGDNwxlKGZoTdDm1P1KRqW1ChK3vo3Z1ZTZ7jAu6wY5fT63ZwMAIH9xC4w98pyMF1VgUKusAwl9xbMWqu18kJegxoy1aJbHd1nY4JeRd+jGm/evXqbq10IjhmX96Fd0x7T7jB7fvcVdCaGcJT0mmQQs37ckGUVaBT9tnsmzHg2WOdpeCQg4csPOTUsryeJU/NeFyKNPvtcXIb+Uw4gO9YIaGrq6uNOEwni/qYObMVYfV9t+5s4XCqVxd8Z6vjUwI5jS4QFazWM5/zPu3WjtvzuDKne9LCKzGcvN7q3o/J2ibOLS1smPZgMBgMBheCs2LaVf+/M9rbbfG7Ga9tfVvTAAAYRUlEQVRLSnawv9bl31wqr+qeLXhX6RSV9EG6eLqlUDtfpktlroQZzFizXdiXRUL+9re/VVVfIo/rmK1byCB3pi5Awe7fcoy5Q7X0YMf+DftMj+H29vZufri/ZE8u/2ifL/eeffI53rm7sEvC6WBm3ntxAseQx+HnZtwd9wGYt1x/KxEP1vMXX3zx4Nw8xm1gaaF9rEV5PP12WiLoxFVof5W243HOdvh5zF99e3u7ETLqYIZ4Sirjqcy3Y5VOfbL1Is9hTFcphZ11gGPdvtemS4XmMW7Dz39X9nIlP+3iOtlnC8rspXqt8BSr1ocudvRYDNMeDAaDweBCcFZMG5+22Wzu7sywLbPY+Uy9u+Jcdqbs0Ow3rtpGG3oH2O1AYbxEb3rnzvVy90+f8Mu5SIJ32Ll7xY9rYQ76CmvKPjJu+M5Wkq70sZsD75KJaOb6yQJWZRU9NzlWx2IRjNxpu9Rg1ZrxMn62BuQ5ZqQeA4vTVG2lQe3rs7XG5z8WzlJwxDHIzAPPL3+nf9gws4bps95XsqZV+89pXreTAz22dpL1OsuiY7GG3zvZvtnWqqBKx8psXVqVoexKpgJbEzoLoy1eK+nTroywrVqOg3CcTGJ1X85aqLp/N/o67nMXi+CxdXbOnrDWqo1LxDDtwWAwGAwuBGfFtCmtCGPcy9V0WTaXpcwdlv0/LvHmKM9uh+2c5L2CBC7CYD+dfUDd/Th6lB1x51ulT97ZOvI5r2cfOqzJ48f36Q9fRX7DFBw7ULW1NhzzEed3p+R0X11d1atXr+6uQ39TCtft+djOAmKfvvvr8er8qmaKZjc5L85XtY/vFCbu3GRbTbrShY5PABmlbvCcOgLd+cgJ+079DDoCvmqbl+04AxeQyGNOjfL+5z//Wb/5zW8eXLuLU/B7prOwAK8NWxdWVq2qbWQ87xSfk8+ifcge224s6JP94M6JZ/3l82krg//eK8DE+8YWC94hnYWP+d6TAf4QOCVe6mNimPZgMBgMBheCs2Lat7e39e7du7vdHWwj/WvOtXWJvy5C01GFLiaxp0y0YlpmS+lPM6NfRWLm51aE4m/uj5/4D3P3ChuyT8d+sG6nzW7V0dZcv2Ngq7xIds/8zMhtM0aXAOyw5yfsjs2iDzCTZNq2pKzKASZrsrXCGQ0rVb08ljll7kB3X7boeC47/+GKfTO3Zgq53s1sXTSHNpjTqvuxdb72yg/b+V1tZeBcns28p5V1bc+X6WIpe1HeZB24gExaGayotSoB3Km/mTWbXfJ5PhMoIALuw9aSrqAG7bi8r2Msso9m5RzLXFtlL+9rNf+2KGQ7/KRvq8Ix3Tq3NofX/16RkadgFNEGg8FgMBg8CfNPezAYDAaDC8FZmsddWCNNjg5g4libZvaE+23ixgTYyW9aKIL0KZurutrfwGIkTu/KdjEH2Vx9SuqCA1D4Se3vNCNZJtUmNPqGaSvnYBUMg1mOlK80qe8VrejuL8851Tz+888/LwPeqrbmSsbAwjVdjd2VadaBiVk4BpPyKa4AYxV0typYsoeUAT72HeuNmvAEBuXztTJP28Xjut5V21Qeu7kYvzTh2yxqkzdrNefaRVmOmUlvbm42crD+vmpbM97uizSluq64x4l7ZR3mOre7gHlgzDHdd+4YB43ZVZBuGs558+bNgz74/doVB7Krw9LI3H++577++uuqqvryyy8fnMO4sh7thsj7WQk/dXP8HClej5E8/RgYpj0YDAaDwYXgrJg2YBfbpX5ZGAMW48IGXaEIF+NgV8dPrpOpBOwaV+L0p8gYroJhkoGZgZhpryQcq7bBcC6J2AUvOeDDKTj++5T7Y/fPeOYOm+u4qAjo0ioeKzRye3u7K2XoHfMquCvnaVVO0f3HusDPSwVjxByy/vbWuYP+OqYKHITpFEe+7wI7fT0LjHSlZ8HeujgcDvXixYu7tcm63WNpTmvqykL62twH9wp75icpZ3lt7hXhGtYX45OWHT+HDuTtrFkOeHVQH++hTgjIbNyWMQu0ZN+4LgF3fjd3MscO5LMQyynv4qdgCoYMBoPBYDB4Es6Oab979+5BeklVnzrE7sd+ya4ko8HOD9+O2+hKCVqEgD7uSTYeQ+4MvUt0movLIKa/mGIf3p065SfZLLvwlaiGRRZyx2uZR/zxLkySbTJeq13rqlTjqUCYZ4/pmiV3DM19sGzkc6SQnBNgd6wri7p0ErhO0wIWO+nENVhXltHluXKqW9X2WacN+zjzHEvWHltXL168uGO83TvEfmmnJDkuIq/t94rjEmDLeS7rmHuFcTvl9ccff9xcDzCW9tWn9cwpno5x4fsuxY0+HUury3N4D3z//fcP7pMYCrPojBVyiq5TCt+n1O0lYZj2YDAYDAYXgrNi2kQAG+lj7uQiq7YRv13BEHan+Ifsy3apzqqH0Zl5XTOC7OPKF2bZzLxX79wt0GK2nP2i395pWxKwK09oCUXug/a9s8/r8N0333xTVVXffffdg/5kH49FUNs/9lTsnb8q7rEqypLfvU8U6odgAF3J0Y6lVm0j2/NZseStI747wRngNcl6s4WnK81I+xSZsVxvwv5di+H48+wD2LO8XV1d1cuXL+urr76qqqq//OUvVfXQkmB/LWvfMR+dqJMj5GnX/uJcu+4/Fj+fm8d5bPeklgFz5GM497PPPquq+3nJPjLflkBetZ19tFWGOeR6x4oDVW2tj904/hIxTHswGAwGgwvBWTHtm5ublml3OyezZ+drd5KGtO0i7ewu2e1nFCe+FjNs4NzRqr4AQHduMq9VCUiXTLSEX7Zj/7sjnjsm4qh0MwfnUWY7+KVg2owBbae/7dju933zKd+9e3dyPvSxHOiOET+FJTvH3Syps2KsrmOZ0WRNx3KRbWHaw57kLWD+7Q/12uxkgn2u84+Zm648rq1A9j1nn12Gcq+4xPX1dX3++eebkr17hSIsI9rJiroYy6qkKH3r1gHjwDj585Q79TvKz30nDWorzSoegb+zfCj9dr75qohT1br0J/3Yk011YR8/T7+EspunYJj2YDAYDAYXgrNi2ivkrptdln1s7PKIpE7G7t27WaUVy9JfCHs1a/auOXfyVslyIQKuv3dfZt5d2UjD/m+fkyyaHTPjtlKz6iJzYWzffvvtgz4CK86dgqdGjXfXTXQRwB8LjpVwsQSzmqo12+9YC7BVZs9iYLBWWOeZW191P4dpJXJxCedL2/rUWaGwYDnTAf9orimva/vdO1VEs0tnpBjX19d3/YS95ntgxeZYtx0rt3XEOhA8g9ZVqNpaE5zH7FiErk/OIafvjH3VNt7F7wHHtnRzuSog5NiDbIc1ZGVG8ri7aPxVOdT/lqhxMEx7MBgMBoMLwUUw7b0ym8BqTB17saY5P52/2EVxWr0IdOUHAbths0h2s3kOx8AIHK1q31Oe64hWfEzWIu9K5Dkq1dYB+pFlCt++fbv57FPj5uam9Vs+9+7b7GVPLWm1Vn1O5/NbRf66NGjV/Xzbp2wG0mmqWwfbEb/d8+Sc4RWj85qqureE8R3PCOey/tHLr7pfv+hjm2F1/mSXU8z2jKurq3r16tVm3Ohr1bZUJVixzGxnZSXhPdOpOHKOlcqs950WBO7ZevHWQEhrHUyan35eXMY479dZMI4NAl1Mg8fAc9r1lbFwlLwtenn9U2I0jsHv/E+NYdqDwWAwGFwI5p/2YDAYDAYXgoswjz8GmNvStGXBAMt9Yj7C1JTmFoKuEFzAVGeTZJo8aXcldbpnWnVKh/vemXmc4mWZzi64x6ZUi4g4aOavf/3r3bmYx58DlxZEciytpCvK4tQozG1dkQkLbviYPYEM2u/Swqq2IhRVW0lSpxy6ZGvVvSnVIipcdyXBW3UfBMUzxk+bPLPvXBvZYZeR7IIlAe0hx9oBCVynauY7BLnNVbnLLkVpVXRjZT7OtcO4+H3zxRdfVNVWyCbP933YpJ7Xd3EUjz/H2gWX7Tkg0e+3NHF3gjsJp7Z16WlO2TXyPffrX//6QR+fUiYXwZdzwTDtwWAwGAwuBBfHtI8xMjOFqm3qwSq9iB19l2bgwBx2/XupCW7XrLkLeLPogFNKbC2o2qalsZtkl05bucs0C+MYB8DBEv785z/Xh8CHLquX+JCs3kFYVVum6XQa/52fWXK1W9c+B5ayksI1O8zPgJlXx2ZYV06ZNMPiup9//vnduQ605FwsWqy3TEviWAdFwvjNXLMPezKs4HA41KtXrzbpbrC07OeqyEwnXOJr7xVScR8d5OU5dWBa1f27gp+wdcbJTLxqmzrmYxzEmPftNWmLgd8pCTN7Bwl377nVu9Hv1W59M5e0/5gSumlxOQcM0x4MBoPB4EJwcUz7VGR6S5dSUbXdsVkytGq9Q/euNoVLLAXqv52Cln2zX9o73263TPtmWt6B7vXfKWcgfdkfApfiyzac4mffXx5jFuFyqHsCMGbwXSoMgIlY/MTrLa/XlW3NvrL+0y/tVEn7dbmumWv2xXKWPK9dMR2nYpJ2hZ/6yy+/fHBc4pS0xOvr6/rss8/uxsByqfm7y87Sz86vbivSyorCOGYsja1z/A0z7grZOGbGLN2FcfJ+bA1yKdquoI/vnXNtYegK8HhNror2dOVWfZ/cH2w632G+nsuv7vm48WXvydl+CgzTHgwGg8HgQnCxTPuYfzJ3rd4Bsts6pRykGa+ZtaUbu+s5uhekTKJ3rY4WtlDCng99ZVlI64PZuHetFAPZ8wU+Bxyl+iHL6jmq/n3uLeeuqi+4spqHvYIanXhO1Xa+ci5Xfk/6uPesuKiMr2dp1Px9JQBjcY8sVOIiKbYOgIz2tg+dZxsWzXV+//vf351Du4iq7JXmzDayj+nTJmq7k3VNdFYTzllJIoNOmMXzsyfHarZvCddOaOSYfLDXaldm1dHqvn5n6fOzYWZvKeiqbUyAf2IhYa6q7teILQbMLed2xXS+/vrrzT2fA4ZpDwaDwWBwIbhYpv0YX6ijF+1zcURuF+3ILtIRuJ0kqXeAqwIlXb6sJfk418yuYz6Wc7QkYO5aV1HJ+HiOFVh4LnyKPO1jO+dkfWZUZg17sQa2zpBx4Lz9vHdHyDLvzqPOc8zK7C/OdZb9yXs183FObJ5jJu/cflgTa7kr3mOLgqOG09fIsUTxmuE55zvPgUF1/nVwdXVVL1++3IxfPtOwN5gb7a6e17zX7nr5s/P92loBmIcuYp5jbbUDXSS9mfYq971jy4bfM5188oqFcwzj6TiQqq2Fh/t10ZGcN4q/MF+r4j25RvmMOIaPkdnyGAzTHgwGg8HgQnCxTPt94MIS9tvkznCl+uNI884v6Whh7yrTt2W/oCNy3Y+0DnhX7B32nj+KnzDrH3/8sT4mnkPQ/7Ewu3ek9MpfmeeYVXQ7dkd8e8e+l19sy8deSVaXljUr4n66bAKu47Kxjt7tfLUuXoJqly0JuVbN3LmufbdZpMG524wF16X9LOaBT9zRwx1QRPMcJovm2rB92uU6p+SD2wLiZzpZtQv5mP13lh1b41YZImkBsIXP1jo/n8liPV4rP3Vez+vJ12Guu3F0XILHr7Ocso6cRWCr0FdffXX3Hc/RKr7kU2OY9mAwGAwGF4L5pz0YDAaDwYXgF2Met6nkFNjs4eIZVceLjdgUWLVNy+JvzC4O4KnaBtd0Aiyr+7N5qDNLVj00zzq1okt5+Bg4xXz53PAYu9BFwiY+F1oBe2Zkm/VsSk3Tt4s72F3Szf+qXrP72q0LByuuRH3SXOlzLH6CCZzj0mzNGuzEaLKvXREV2rHQCccS6Fe1Xc9drXUDE/Fe0JULUHDOKW4l16j3uyXXlNeOA1K9HvMYB4DtBXvyGePj+XfgY7bBmvB8g672O3PosaANP5tdgO+qeE7nbuJ8XDdc3+l3GXzK+vruu++q6mHq3zlgmPZgMBgMBheCXwzTdkGPLvhhxUj2ZPfM4M1Iut2dj3EQGz+7AAf673ShVapRXsds3UEdeV++52RDHxOfQsaUezYj6frigBh23baEwBSSOVqmtCvjWvXQAmJpy9W857pbydX6cwckZf8NW526tcp9mKFyP7Sd1+O+zOwsHpTrkXb5jOAiS4nmdR5jcbu5uXkQdLYXeETAEv1Mdn8MTuezNSNlU52K6bQ+W0/yd7Nyf74nsuO1yjukE6JycNwq5bQL7PS70cF43Rw4VdaWzM5qRx9I/frmm28efN5JCTuAeMRVBoPBYDAYPAm/GKYNvFOsWofur3ZQncxf52OpumcZ+bnTMpzOsLfjtZhGJxiQbefv3r1655twUYFz201+DDAfXaEJ4JQop4OshB7ymGMSmgnLfALWhSU9s33PO4zBc5398bkWLOkKijhNEP8gTNjsKc/t0pvyujCfZGdux1YAi4p02GPet7e39Z///GfDupL52uLFPb99+/bB33uiRIwP/lXHUOS5lgQFLuCS42j/8ypmJz9fWfLM8C0zmn3xOjsWW5N9tR/ez1Wuc6e0WRhoryyzGbzXWYrvOAbp3N6Nw7QHg8FgMLgQ/OKYNgyhYzeO0jxlB2WW6nO4XkYA2z/kXWsX6b4SRln1I+FodDM8+9Szv+dSGvNTyJkCdugwK0tTVm2tGRbV6UR2Ti1+0q1VR9Pan7fnv13FUoBkZys/pOMj8l4sG2org+M9Opbu8qGOGck5cMyGI8H5fo9pH1tXt7e3GxaWY+xYAu75t7/9bVXdR6snY4VZO/Ka/lsCuSsCYxEQR+x3ojsWqrFAUxdx7jWzKmPcvbP87rK1aM/S5776vZTWDvffIjv2RWf7FgByP7rSsynwc04Ypj0YDAaDwYXgYpn2MWaWnzu/z36p5yiO0QnOm7XswX46s4uVhF/V/c7dpevsN+qi4k8pBPAx8CkZP3O3V1TC8+DIWTOF/OwUlgdsLbHMI3Pd5fR6nQNH1ybMcFcZCF0EsPu6+jz76nKhvgf3I7/rSpkmci0/1g95OByWbKy7NvNMIZEffvihqu5LgWZ/zLjNgM1Q81xnJ2R/q3qtB1sSbQ3sMg+A4wfok3Pz83e/syyXmlaa1fuGNhyzkc+GffIeN9ZWzp992Sup1+7ZODf5UnAeb+zBYDAYDAZHcVZM+3A41NXV1ZNUzdg9sptMRSTvHleM5LmwYsfOL0w24GjaVS5n5w83O1lFfnbIEoiXjMPhUC9evHhSpOee2hiwNcPooqLZ1Xc+8mN9MfYY76eCo9LNHPcsTY70tR8556JT/8q/GZMVAz+Gm5ub+umnn+5yeUFnISAv27oQFBRJZgjDdtlJP/+dcp6jxB0Z7oJFeb5zqrkP1nCXLXGsGEeniLaKR/AcdtHcK1VCl87s1Pus5sjfMOx83/md777bKlq1fca97j41hmkPBoPBYHAhmH/ag8FgMBhcCM6L9z8CDu7B/EG92zRt/f3vf6+qe/OUawc/pdjIHtyORVb2iksAm2wt2ZjXWAU62SyeJqIuSOSScXt7+94iCKeYsQladPqJzX353WNSDC8J3CtjYlMkps4uxcxBRC46kqZuF1axGd7PftXjC+Dc3Nzcpfh0bjPXLHe/ead07xBM6BQV8fumS1N1EOkqvaoL8loFaPF9Bt6uxG4sdgL2gipXAY9d8NnK7G8RlzzXz5EDHZmDLv3WddwdWJfPfhcEd04Ypj0YDAaDwYXg7Jj2Y3c3HG8WnaH9Fs3g5yr95LmxYvBdUMcKe8IRKzgw5H1SYv4bcIqlheAiGIFZTDenq3S+XwrMnh1s1EltOnjNbXVjZJEQC548NRDt6uqqXr9+vWGEGbBFvyzZyr3ZepffEbyGEAtM1/eabM/BZH5eu4IhZuO0x1jvyXK6vU4S1Oc6CHgVYNcFhpnBW7TG6Wt5jCV2YdbMQfeeOzaeHc4lHdY4z14NBoPBYDDY4KyY9u3t7aNZiP3DXbF7dmL29XDsnnzlJeOYBOul4VPsfFe+PdYdKXMwsGQmZg2/NIa9QpceZNiH7dKmndXD8pWW+nyqSNLhcKjXr19vWFmuN/frlFKZrAmXDn3z5k1V3cfagE4Cd1UMCJyyplzg5RR08swrcMwqPibvayWXisXKqbud4AznML62uHTz5rKxj3kXnttzO0x7MBgMBoMLweGcdhGHw+H7qvrfT92Pwdnjf25vb7/ID2btDE7ErJ3BU7FZO58CZ/VPezAYDAaDwRpjHh8MBoPB4EIw/7QHg8FgMLgQzD/twWAwGAwuBPNPezAYDAaDC8H80x4MBoPB4EIw/7QHg8FgMLgQzD/twWAwGAwuBPNPezAYDAaDC8H80x4MBoPB4ELwf9dEeaxiGb8nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu0btlZ1vnMvc85darq1DWVSqUSSKkgIl7QFhUhkO6GGCBEEBRUhOAdBQWHOmzBNiI2XghpR6ONigjIRcAL0CCB0E0UhEYQtKFjJJCEhFzqfq86t71X/7G+Z+93/773nWt9p05Ixz2fMfb49re+teaac6651nqf99qmadLAwMDAwMB/69h7f3dgYGBgYGDgVwLjhTcwMDAwcCowXngDAwMDA6cC44U3MDAwMHAqMF54AwMDAwOnAuOFNzAwMDBwKnBNL7zW2qtba1Nr7UOuV0daa29srb3xerX3/kJr7WWbuXnZ+/Acr26t/ZH3VfsDfbTWvri19nvfD+e9b7O2sr+vuM7n2mutvSZbx621r2itbcUztdbOtda+sLX2Y621x1trl1prb22t/ZPW2kcm+7fN71Nr7VOuc/8/oTNX8e/rrtP5Xrlp77ddp/Ze3lr7smT7b9ic5zOvx3muB1prX9Rae0tr7WJr7U2ttVevPO6vtNZ+urX2SGvt2dbaz7fW/lZr7bb3VV/PvK8aHnif4tWar93Xv5/7cVrxxZJ+VNK/ej+d/yslfQ+2/fJ1PseepL+2+f+NSzu31m6R9HpJv0XS10r6CklPS/pQSZ8j6Q2Sno/DXirpV23+/1xJ3/dcOx3wHyR9dPj+YknfuelXPM8D1+l8P7o533+5Tu29XNIXau5vxC9uzvPz1+k8zwmttS+R9FWS/rqkfyfpUyT909bawTRN/2zh8Nsl/XNJb9K8Vn6bpP9Z0sdu/q47xgtvYOADD2+dpun/fn93AvjfJP13kj5umqb/ELb/W0lf11r79OSYz5N0RfML9VWttdunaXrsenRmmqYnJB3NUdBG/eKauWutNUlnpmm6svJ8j8Xzva8wTdOzvxLnWYPW2o2SXiPpa6dp+vLN5je21l4i6Stba98yTdNhdfw0TX8Jm364tXYo6ataax82TdN/ve6dnqZp5z/NDGOS9CFh2xs1SzmfIOmnJT0j6eckfXpy/GdLerOkS5L+X0mfvjn+jdjv+ZqlxXdt9n2zpD9R9OXjJH2XpKckPSzp70u6EfveJOlvS3qbpMubzy+VtBf2edmmvVdJ+hpJD23+vlnS7Un/vlXSE5Iek/RNkj5tc/zLsO/v1bxQn9ns+52SPhj7vH1zns/WLCk+LemnJH0s5nnC3xs5x0k//4Gkd27m8Z2S/pmkG8I+r5D045KelfT4Zi4/DO34Gr9C0n/a7Pszkn6HZuHpf5H0HkmPSPoGSTeHY+/b9PVPS/pqzZL1M5K+V9J9OM9ZzZLt2zfX6e2b72eT9v6kpC/fnPcxSf+HpBcnc/AnJP1nSRc31/OfSLoT+0yb8/zZzdp4UvMD+yNwjTj/37D57ddK+tebsV2U9I7NdT5zLfdZMgaP+Y8t7PfnNmvtkc2c/JikV2CfM5L+pqS3hjn5UUm/a/MbxzhJ+rLNsV8haQptfZCkq5L+1x3GcpPm++a7N+tpkvQnr8c8Fef7kM05Xl38/pDmZ82fkfSWzXg+cfPb39ms9yc31/YHJf1WHP/KTfu/LWz7Kc2s91M2a++ZzecnLfT1q5K5f2rz22/YfP/MsP+/0Pxs/BjNzPZZzazpf5TUJP0Vzfe8nzt34HznNLP5t2h+PvyyZi3C2YV+ftKmLx+N7Z+62f5R13CdXr059teEba+S9BOb9fKk5mfjX7ymdXCNi8ed4gvvPZpfYJ+zWcRv2CycuN8nSDrU/GD6lE1b79gc+8aw362S/uvmtz++Oe7vSjqQ9EVJX96xWSgvl/Rlmh+U34Ab/Ec0vwy/eLMYvlTzzf7asN/LNu29TbPU+nJJX7RZRN+IefiRzUX4Qkm/W7OK8Z3CC0/Sn9ps+3pJnyzpszYX7W2Sbgn7vV3SL0n6SUmfqfkm+pnNQr19s8+v1yxQ/GdJv3Pz9+s71+qOzUJ+WNKXbMb9BzSrEm7Z7POKzby+YbO4/qCkX5D0oKQX4Rq/V9LPan4pv1LzjXW/pH8s6Z9u5uGLNUvufycce99mDt4Zrv3nb677z+vky+xbNa+bL9/M/2s27X1r0t7bN/t/kmbG8JC2Bae/tTn+tZv2Pl+zEPUTkvbDfm7vBzbz8Jmba/QL2ry0NKvs3qP5Qeb5/zWb396i+YHzGZI+fjOP3yzp3LXcZ8m19Jj/hOb1fPSH/b5a0h/ZXOtXSPrfNd9znxj2+WuaHx5ftOnrqyT9DUmfsvn9Yzbn+rowzhdtfuML73M3+/4PO4zlD22O+QxJ+5LeLenfX495Ks635oX3Ls331u/X/Lx5yea3b9r092WbefrXmp8HHxqOr154vyzp/9F8z32SZrXfRSVCWTjugyV9i+aXj+f+oza/VS+8RzQ/ez93c56f3Fzfv6f5JfdJmoXDZyR9fTi2aVaPPynpf9qM+89rJg7fuDCnf2HTl1uw/Vdvtn/eymtzRrMA9LGa77XvDr99hOZ7959ovnc/QdIXSPob17QOrnHxvFr5C+8KFsHdmh+kfyVs+/eaH5KRVf1OgalI+qubhfGhOPc/3izOM+jL12K/L92c+9duvv/hzX4fl+x3WdLdm+8v2+zHl9vXbPrTNt8/cbPfZ2O/71d44Um6oJkxfT32+1Wb835x2PZ2SY8qSGCa9dqTpD+Iuf7Rldfqyzfz8Fs6+/yU5of1GfTviqSvTq7xrw7bXrXp3w+hzX8l6W3h+32b/Xjt/WD9o7ihX4P2vmyz/TehvTdiP9+E94b9DiT9z9jP5/20sG3azEN8+X7mZvvvwnX6ZrR312a/V13LPbXyWnrM2V/KIjXb4s5I+r8k/cuw/fWSvqNzLrO81yS/8YX3pYJUvmIsP6j5IX1u8/3vbtr40LVt7Dh3a154jwvsJ9lvXzMj+mVJfzNsr154z0r6oOQa/tmF83yVpIvJ9uqFNymwTs1MfdIsMLew/R9JejJ8N0v7vTjPn1y6Hpo1OleT7bdvjv2SFdflHqzj71LQzGl+vh9ogW2u/bveYQlvmabpLf4yTdMDmlUAHyxJrbV9SR8l6V9MQbc7zTr1t6OtV2iWwN/WWjvjP83S9/M0M52I78D3f675Zv/tob1fkvRjaO8HNavQfieOpwH9ZyXdIOkFm+8frflC/MvkvBEfrZmtfgvO+07NaoiPw/4/Pk3TozivtJnDa8DLJf3kNE0/k/3YWrtZ0m+V9O3TNF319mma3qZZOPl4HPLz0zS9NXx/8+bzB7DfmyW9eGMLieC1//eaHx52MPB8fDOO83f259/gO+frEzWvA87/T2iWajn/b5hO2m3Wzv/DmtWDf6u19sdbax+6sL+k+Z6I/UrmK8NXaL6Pjv7itWutfVRr7ftaa/drXqNXJP33kj4stPGTkj5143H5Ma21c2v6ez3QWnuRZvb57dM0Xd5s/sbN5+cuHNswX/vXsWv/Fveez/nJrbUfaa09olnzcEnSi3RyPiv87DRN7/SXaZrerpk9Xev9XOGBaZp+Onz3ffmD0+bNEbZfaK3dvvn+Cs1aqu9NnovS7Fj0vsRDmtfwx2lmlh8r6V+11vxu+o+bz+9srX16a+15z+Vk1/uF90iy7ZKk85v/79L8crk/2Y/b7tY8CVfw952b3zlwHu/vLwrtvSRpzwZ2tsexXNp8eiwvlPTotG3UzsYhST+UnPs3Lp13miaed1c8T30Pvjs0qzXek/z2Xkl3YhsfCJc7289ologjqmvv6+TzsT/vxe/G0nXy/P+Ctuf/Fu1+3VNsHiqfqFmq/0pJP79xuf+C3nGave5inz5vYX9J+qVpmn4q/vmHjcPAD2kWsr5QsyDxUZrV1XEMf0Mz+/80zba7hzbhA5zfNfAD/SUr9//Dmp89391au33z8P1lzTb/z1l46f9RnZyv6+nYsHUPtNY+VrPK737N1+Z3aJ7Pt2jdPbn0TLxe2OW+lE7eH7du+hTn1UJt7wXzqKT9jYduhNdQNvYTmKbp6mYN/8g0Ta/TzOheodn0o2maflaz+eNmSd8m6YHW2o+21j66arOHX2kvzYc0T+YLkt9eoJmBGQ9rZod/rmiLC/0FmnXY8bs06+Xd3ts06+czvL3YXuE9ku5orZ3FS49je3jz+Wr0z3hyx/Puiod0/DLJ8KhmVcI9yW/3aMWi3RHVtf9Pm/99vns0vwxiX+Lva+H5f7m2b/74+3PGhvl+7uaB/Zs1v3D+QWvt7dM0fX9x2Kdq1hwYb3uO3fhkzQ+w3zdNk4UEM/nY18uaX8xf2Vq7Z9OPr9b8IPxDO57zhzXbCD9Vs+p0CX6pV3Py8apDIb5Lx2tFms0M1wtTsu33aVZ1ftY0TQfe+FyZxv+P8LDm++Llxe89YdnPs4/QSc9Ra9/edA39sfB2FOM9TdPrJb1+4xX6sZpVqd/fWvugaZp2en7+ir7wpmk6aK39pKTPbK29xqqt1trv0Kzbji+812s2qL9joxpdwu/XyZvtszXfhD8R2vsMzd5Ob9Zzx49rZi+foZNqzM/Gfj+m+aX2IdM0faOuDy5pZidr8IOSvqy19punafrP/HGapqdba/9R0u/bXJMD6Ygp/C7NjjvXE7z2H6M5RurHN7//u83nZ2v2IjT8EH7jjud7g+Z18MHTNL3hmnq8jUuSbqx+3LC9/9Ra+/OaGclvUPFw30iw1xM3bT6PhLDW2odrZiZvL/rwXkn/uLX2qZr7qmmarm5cxMtxhuPf2Vr7Z5K+oLX2bdPJsAT34dOmafqu1tpvl/TrNHsNfyd2O6+ZTX2eius8TZO9pn+lcJNmNebRy7C19iptaxquNy5JOtta248v2vcBXq/ZM3V/mqafWNoZeKPmZ9sf0skX3udodkL6j8kxS7DJ4hf5wzSHZLyhtfZ8zU49L9aOcY/vjzi8v6b5IfxdrbV/qNll/q/rWGVlvE6zN+OPtNZep5nR3az5ZnnpNE2/B/t/cmvt727a/u2b83xTsCl+i2bvvP+ztfZazV6O5yT9Gs2OF582TdMzawcxTdMbWms/Kukfttbu0qzi+CxtHhhhvydaa39R0t/fXKjv1ywxvkgbSXaapm9de94N3iTpT7fWPkvzwnhyqmNWXqfZW/CH2pyN42c1q5Z/j6Q/tZGQ/qpmm+X3ttb+gWZHm7++6edrd+zbEm7RyWv/lZrn7pskaZqmn2utfZuk12xsCT+mWS33VyV9264viGmafrG19rclfU1r7cM0hxlc1OxK/4mSvm6aph/ecQxvkvTS1torNa/bhzSzqr8n6ds1q0/3NbP6q1rHeq4X3qDZbvfNm/vmXs3X8h1xp9ba92p+IP20Zi/g36p5Pr4m7PYmzXa+N2z2edc0TZnqW5qF0w/VHEv1tZrVqk9rvr8+R9Jv0szOPk+zAPK3p2l6BxtprX2PpM9orf2ZXe7H9yFeL+mPSfpHm3X5EZq9Gfm8ut54k2a1719orf2wpCuVHf454vs0Cxnf21r7as0Ma0+z09qnSPqCaZpSljdN0zOttS/XbLd+QMeB55+l2TnoyFbfWvt2Sb97mqbbN99fpFlF+W2an2F7mv0o/rzml+e/2ez3JZI+UrOPwLs0a4P+smZNyJG/yGpci6eLOnF4yb5vVwgP2Gz7A5pfYEtxeHdofmC/TbPu+QHNoQBfnPTl4zTH9DylWe2VxeGd1+zi7hjARzQb71+jY6/Pl23a+4RizPeFbc/fXLAndRyH93uUx+F9smbVzxOaXYPfojlM4ddjrr45mcMT3nKa1Xv/ZnPeLU/F5Pi7NXtnvWczj+/U7CTQi8P7bhVxeNh2n5LYsM2cHnkPajsO78HNPHyfpF+FY89pdsz4Jc1M5ZdUx+HxvL5+nP8/rPlGenqzRv6L5of7i8M+k6SvKMb36rDt12leh89sfvuGzRx/o+YQi2c0r61/q/kmf87eZb0xJ/v5/rqo2S72+zU7/fxC2OcvadZ+PLK55v9Vc5aL6Kn7cZq9/C6pE4eH6/ZFm3X0xGatvVWzZ/Vv3Pz+sKQf6PTdXoOfc73mbdPuqji84re/tFmDDvp+qeYXw/eGfco4vOJcX7PQ37OaQ0Ie0iwgLMbh4fgLm/3+MrZ/4Wb7PWHbGUl/cbNWLmp+lv2MZmH05l4/N8f/Oc0vLcdK/5Fkn3/hMWy+37K5X35Bx7HJP7Ppx01hv4/XHKvrWOx3ayYvv3qpX9mfXew/YNHmvG3/VLP77C+8n7szUKC1dp9mweWPT9N0XfIXDgwMDOyCUS1hYGBgYOBUYLzwBgYGBgZOBT7gVZoDAwMDAwNrMBjewMDAwMCpwHjhDQwMDAycCowX3sDAwMDAqcBOgefnz5+fLly4oP39OT3imTPz4Xt7x+9N/xa3SdLBwZwswDbDaDv0/4eHh+U+FZx2z/uuyb3LY9iPNdhlX/ap6mO2fV0u4d3gNmPb3Obr53FevXr1xHfp+JrGz6efflqXLl3a6vRNN9003XrrrUdrpgde/zVrZ+2a6c1ntS6e6zV4Lnby63H9l9bfLufI1g5/8zOgt6/X05Urc0IYr52LFy9u7XznnXdOL3rRcXY8Pyf8KS2vFT5b1oyx+r52n6VjdsG1rKFreb49l2didf+sOYbn43Mowtc4Xv9HHnlETz311OIE7/TCu3Dhgl75ylfqrrvukiTddtttkqRbbjnOcuVtN9xww4lOPfXUU5Kkixfn1Hde8JJ0+fLlE79dunRpa0BS/lLzhHBBe7s/e4uNN4s/10w2b2puz9rxQ9+ffkBE+JhKgOBDJVtk3OZjfG2yl4+33XTTTSfO++CDD0o6vjaS9MQTT0iSHnvssaPPH/gBFk2Ycdttt+nzP//zdccdd5zYnj20vB78+cwzc8KNbO1kD84IXv84j0uCT3b9ew9xjofbst+ytuJ52Ydq36xtrhF+5z0S/68ESa7d+L+P9do5d24uwHDzzTefaEuSHn10Tmt6//1zLvHHH39c3/M937M1Bkm699579R3f8R1H19Zr0NdcOn6++NNrx8d430xY4nwszVf8n/epka2PbD3F7dlLmduqtZQ9G72P75Fq/cXtvO48hufPnnOVsJGdn3NLgcXvkzh3fh74Wh8cHOi1r12XEGqoNAcGBgYGTgV2YnitNZ09e7aUhKRt1sK3ek+dRmlpie5m7WWSB1FJ9Nwe2QIln6U2MsZVsU1KRnHb2s+ISkojW4zXrZrzs2fPSjqW0iMswbONDK013XDDDSWD4P+x31lbxtKa4TE95s1rt0YFRel8jaqvWjtZHyuNBdvO+sR9qvFc79AksymvD99H1ixIx+vK2/b397v9u3z58tZ6NouTpGefffbEtiVWI+1+j8X13dMcLKF6zmSsaq2KNutHpvrLjrmWNcvnbTzfklYtY7CZeUSSnn76aUknnz/sf+8aE4PhDQwMDAycCuzM8M6cObOls4+SviUCS3CUUDOJwe1x38rQHL9XLJDfM2eLbHzVd0oVleTTa5fs13OUsRPuu2R/yVivQfbRczaiPdPH3HjjXCUm2s/Onz9/YhxnzpzpMqz9/f2jtbLLdWEfM5tDjzlyrNy2ZLfosVBija2QkmlPK7B0vX1MtKn1bIK9PkdUmpk1zkHV/MV+mNn58+zZs1276OXLl4/G6HViVidt2/93Yee8x3ivZXbL6nr01g5tWdWzag3Di/dhROxjdWzvOVetlUqDEftarRl+7zkb8dPXOL5jOG9Xr15draUYDG9gYGBg4FRgvPAGBgYGBk4Fdi4Ae+bMmSPKbzVXptKkusBqL6oJ4vGmsYz5WuMQUqmyMpdYUn0b2X1eqk565yaN74UYeJxRBZh9xnaq+eupVpdcpHsOI5wb72vVUwxLoEPLs88+21Vpnj179mgOeq7KlaOGx5Vdl+q72+8599BpqBfqURnI2dfselQhEz11TOUiz9/XxIrxvEZPZVu1n6mil5wIMjOG19X58+e7asiDg4OjOWAYU/zf97LXZjWuCM8HzQjcvotKs7d2/JzhvZb1tVJlVurDTNVZXUOOLzuG92LvGczxcXs13ojKMSk+d/is2gWD4Q0MDAwMnApcU1gCA0ovXLhwtI9/I0Mxem/5iuH1gmuzPsa2MiZBRsdAZ/YjbqNUYemoYl5xHzI8umZHqbQ6hufJ5oZSJz8zd2XPiSVlzhuvuXQcAOrfes4Re3t7uvHGG7tOK9HNPLbXC8WoWJk/l8IV4m9r3JyXGGUv7Kbat2J+0raDERn9Goa3NK7MiWCN00fVDs+XXTevgzVOK9I8brdnaT86rUQGIG2zjN7a5D3LZ1aW/KFKCFG13QNZW+aUdy2hIxxP5XiXOTwt9TtzsOH19v3c00ZVST7I4jLN0hoHKmIwvIGBgYGBU4FrYni23TmlmL9L24zEsAt7xrgoxTANUE/KWZJEMgnB7XubWY2lTTK/uA8lkYp9ZPY4SrX8jPNIGwfTgfXmhqyTc+HxZend3FfaQmjLi/31597eXteGd+7cua11EftQpVpjOEK8BlUAbjxv9sl2smN3wRpmtBQQnoUYeL4qCXitRB7b2CWv5NpkANl5eqEhXE+9wPPWmlprR2vFmoV4T1fB22T6cW6roGfew5nWZo3mgGPm9SWL6T0bKxsxz5+tneqZkc1JlTyCfctshX5mUGNWpUeL2zgHtHNGNs9jdwn6HwxvYGBgYOBUYCeGt7e3pxtuuOGI2fnTyWKlY2nBUn/lvZQFdfekh3hMluKnkp7dVpQQ/L/T1rg9JiLOJK3K06kXpOr/LXGRGXn+InsiK7TtrLJnrrHhkEFHCZk2Cf9GO0C0N7m/kbmu9dL0flkfvE8VRNzzYquuUxYQXtk66bWWBQ+v9drtoUoLlXk9XwtoGySj6SXzreZ8jWfpmj67/WjHrtbONE06PDw80rIwmbi0zdLWsFePxX2wFsr9Z2KFzC5f3WPZs4prpmJNPRtetb4y+2OWYCIbf0T1LOaz0fdm1ILRD6DS1EX0guCzNrJ9rQFYg8HwBgYGBgZOBXZmeLfccssRszPriMzEbMW/+c3rt34WQ0HJpoojy6SYygu059lHL0m3b8mRpSqkY0nDn5VunXFz2fmqhMeZjYPllSjJZvY6SkU8r9uM5VUMxlgS8VqbKfvc58+fL6VJ2/AsNWfXuiq1QmYa+00WU3lrrmF4vHa0fWR9osSdefPSe7Gyw2Trm3GL1H5kbIosh1J6L7Eyx0o7T2a7qmLeWJonHsOxnjt3rlw70zQnjzar4Ke07WFNJp6xJ/aF90nvulRpAmn/i3NTaaHoZ5AlrTc4Lmoj4v5VaR+etxePy1JMfo67NFhmR+W1YF+zuD+ybc5VZsPjfboGg+ENDAwMDJwK7MTw9vf3dcstt+jWW2+VlJeO8f+W5KnPtd3MjEU6lhIq2x299KKkRe9FSqT0DpW27RHcJ9MHMwuLUbG1yITonek5om0gYzuU7C3peF4zCZ9epkuJqLN9oveclMfLmOlz3wzWs/s8mcdllTj2ySeflHTMwKPdgMeQvfQ8IH3dfX0YT8iYwQxcDz5/nAuu60oq59zH/7N247ERlI7J7Ji9omejrJhd5q1LrYTP43UemQvneil59MWLF7euf5T6/RsZnfeh11/ct1o7FduVjtcOi91WaygeQ6bjcdOrMUNlb/Z5ovaD7WQMUjppC+Xa8Pzx85FHHjmxf2yX2hXPhddM9PlgDDK/M+ZOOr7Wbmd/f391LN5geAMDAwMDpwLjhTcwMDAwcCqws0rzwoULR1QyCzw3fTW1turyoYceknSsnorGTlNUqzuZQojqu8whhKpU98m/Z6ETVCFUKbjiPkyUu+Q0Ebcx/MH7uB/xGKqhrEqwsdjz2lN/VE4YVn94ruL/VLPefvvtJ47Nkn772F7guUF1UZw/j9Hr4bHHHjvxndWsJW25qnsNuS2qYqOKyeoTr2OuHafMi6nz4pxlcPu9JL6VUwQN91Lt/s51lzlYeQ68Vjw3NDNEtZT7zb7w+sc++j6N6yDuk6Xq6zkTEdM06eLFi0fj8D3g8cQx+hz+7rH6M/aBzl10tmC/o0qTzxWqNj0XUfVbPZuoCs5MDQZVmXSS6dW45LpgIH/833Ps57Xnmg5DmQq1Cvfx+OM9xNAsP2+8PZsThkYs3ZMRg+ENDAwMDJwK7Mzwbr/99i1mFyUfS1Z+Cz/44IOSjhmepYvI8CzJU6L390cffVTS8dv+tttuOzrW0rclAxqTLUXFY7xPFayauetnDjPxmCq4O/aBUiirNGcSq7dZ4vLn448/fqJfkWVXAe7+NBv2dYy/eZ5YDsjHxHlkUPy5c+dWp9aic0E2VkqiRuZ6zYTgnluGc2TOFpQUvXaydUDjOJOlZ85EVSkZfmbV6+m0xPAe7xvXDqV03lduI3NLz7QoHE/sa2zH8+XzkhXG61hpVTIcHBzoySef3GJrPk8cI5kInVUyRlKV3qF2JWNePp+fQ0y7GNmz++TrQIe7bL3FtH3xs0p7lq0dMm06vmVrx88XP3t9TC+hP9mox5cF4RucY/eRDnFZmJTna5cyQYPhDQwMDAycCuwceH7zzTdvvbmjhGB3VUsK73nPeyQd64Jpi5KO2d/DDz8s6Vha8z6WMiwtRSndkoAlLEvn1A3feeedR8fQZsJ9fZ5o7yEsXVBq6SWAJTvzuLw96tK9j+fN3y0leo58foeKSMeSlufGEp7nyCwtHuPfzIie97znnWjDbbo/8beYbGCpRFBlT4jjp4u5+58lvWaAbGarid8zm6evd7TzSnm4iOfd4/Qc0NbJcjXxGPeZITSZfa4KEqY9zusjbvP6cp99bZlgIbPL+p7gnHvNZKFBDBomu4rr23O9JiWUwxJok/S4pOPnTlUWyPMW7T1MlF6tEaYck7SVIo/PEGs94jFkswzfMOI8uU+0rbNINRl5HPtSerJ4rMfB9IoMPaE/glSHZPD8Wfkrhj+Rzcd7gmFkTz/99OqUfoPhDQwMDAycCuxcHmh/f3+NKCe2AAAgAElEQVTLuzFK6X4j07vH3y2dWfqUjhmeP1n+g8HKEe6L2/UnA88jM7GkQY+qe+65R1KezJkpsVjckJ6fUWriMe6L7ZuWzmMAqLdZiqW3IVlClFxpV6INxW1n5YHokWYGkxVvtBToPt16661l8HlrTXt7e1uMLEq3LDZLZpd5+zGpLaV1BsFmNkNK3P6klBnb99rw2vccmBlnJYwqW2TlzSZtr32vb6+hTDvg36gp4b1INidtS+FVoHNc3wzg99ww0DpK6dSi9MoDTdOkK1eubAU/xzEzfRnXflak2PswkN1zzWdIHDNZS1bQlscQTHCf2VRpO+uV1+L4qB3IbISx79L2equSo8dnYwWyU89jlpaOAea0wfdKSz399NOr7XiD4Q0MDAwMnArsxPBcpoO6/6xEPOOsLEXRTidtewL6bW/phmVjMvsYJQJK/D3bEr2ZGC8jHdu4mAbI+3i8jP+J+7KPVdxP3Nfno23A53Vfo42S56uKyUbJrkoS6z5lbIA2mxtuuKGbAPjw8HCLSWYFK30uSre0QcV+Vgyk8oSM7XJ90QaVSca0S5Gxrimq6Wvau5/oxUZ2Q4+7+Jvb9drwGub1z2KcKju2+5MlbqadjPFmcR6qhNoZpmnSpUuXtuzasQ9kh+4nGV+8x/x/Zdvkesz6XyXXZtyutM1wqH3I/AKqpPtc59kc0x7mNjxvmec573veG3wexHuDWhX/5n3ddmSp9DOo1kO853spEpcwGN7AwMDAwKnATgzPsIRgiTFKWnzzW3qydJbZHPw2t8RLzyO/ye+9994TbUjH0gRtKd4nkyoYme997OkV2RLPQxZAdkYJL7bvPlb2pojKbunzu4933XXXie1xHA888MCJ9ntlNOjNRp24pXWfL7YX49h60tbVq1fL7C/S9nryb2TN0WZM70H3j9lEzGoy2xqZCdluL2uO23Mfs7hPj6uKpaKkHe8nJnymp2KWpcdjtT3R331NaauO94a9qt2u55U25Gh7dZ+oBamytMTforS+ZMOjLTSLi+P6rZKIS9trhBmkDGtV7rjjjqNt7oPvO2Y64bqQjp951TGZnZGxs1zHlSdmPB89mL2d9s24zc8XemPS+zg+n1gYgLGj/j1LVk42yGdijAQwyMDXYDC8gYGBgYFTgZ3j8M6fP78V/R7fxpb2/Ea2N6ZZB7NoRDAeinEyjNOSaiZCW1H00rTEYYm+8gLMJBHa1Hh+lteIc8EsM4zDyTwWOU7mKzRiDJnP85Ef+ZGSjufvve9974lxZV6v3EY7YJSmLAnHDA69EkH7+/tb9tnYnlmR14wlRdqpMtuNj33hC18o6dhG/O53v/vE71mmDc87bU9eZ1FKZ/aXSkp3XF7ch8V1aZNm9pR4Pt4DzFuY2bXpfcqizFlM3d13333imA//8A+XdLx2mPVI2s4URDaQeXYyruvMmTOLWXqqPJLZPNAzMSsPZJjN3HfffSfat4bk+c9/vqSTDI/5HDmuTNPDoqm8PtQSScf3WMUKGcMZn8XURjAnre+JzPvU56WHObM4xWekn7G+T1/ykpecOO/9999/4lM69unwHPg5Rvtmll82KzG2hMHwBgYGBgZOBcYLb2BgYGDgVGBnleaFCxeOVD+mvZFG02nEaoGoFpJy91k6r9ApwpQ5S1hKpxIaObNqxXTioOolOrdYRUWjMV2JScnj2OlGS2N+7DPdf1ktnamZojqIZW+oBskSHHvMPsbqLvYxS5XEAO4MrnbeqyLu/lnNYUcnz1+m8vM1srrJ6ic6c1DdFkF3bbfJlE/x3HRAoGNIXFtUvVDNxgDnOD6qw6nSNLJgfLbPZLteB1kiaMPqPqu/3vrWt0o6aSJgRWsmK2b4irTtDNFThUvzNfJ14nni8TQP0EEsHuOxvfjFL5Z07Mxj84vhY+N2qsGZ4i9L7hDHIm0/37I0WnQmYyiN289K5FRJsZnoOt6Lnh87PLlvNg1QzR+vKZONeM34nqQDlnSsIqcjDVW2cX0wjduSOjxiMLyBgYGBgVOBncMSDg8Pt4obZtKZJQW7iVuqYIokKXf/jmDaoEyaZR/cR0tcUSK29ECpiM4EWTobSul0APHv0S3dkqHZkxmMWWNm4GZZELrr+vweQ3TksVTm81oSMgvKglTpjON583XrBZ5nkinhtHRk1/FaWkJkii2y2MyN2lIlkwh7TpmAPP7mMTN9XJYSjGn1jF4wrOfH9wu1AnS4MIuPfakYUBbaQs2FrxNLv3i+s1ANS+WeN7LQeD63T60AU/dl6y2ynUpKd1o6amCioxYdP6qyUXFumfycSQxi6ir23+vAc+fnnMfqOc4SgfO7z+PrkxWezgqhxu09bYQ/fS9T6xFZr+fHfaCjk53B/IyJ96Lnz8yZISxkqdK2AwoZK+8ZafteGwxvYGBgYGAA2InhuUyHkSXz9TbrgFn8lAHp0nZhSuq9WbIivs2ZcJWJX1nkM4IuuGZAZDWxT3SNZxqizEWWOnOfx+Oha7F0LH0xVRUD3rNUVkwayzlxf2KALVMIsaAuEwJL/fAGwqnFmCA6Sm4MFzFLZgLtLCzFbIX2EWoWsiByBq4ypVnGXMl4WCA3zonXDpkcQ0yydF4MlfB1sY2cNp5srLSlUYrPgtY9Pid0rwrfxr55mz/JnCO7ohZlmqZu4PnBwcGWbT1j3rShMq1eBEtt8T71MywrG1RdQ2sYmM5L2vYNYLqzzL7tY6p0cLwHIwvlPc3EzEaW0tDXnWXXzN6ysDLv42OoSfAzP84jU5ZRU5YlqGBoxC4YDG9gYGBg4FRgZxtea20rnVbUHzMQmKVeLFVl+nx6HlV2sygh0KZCj8+MedHmYP27JboYNGyQzVYpizLblMdlyceflLSiBOxjmI6nKhoakSW7jX3KbKWUhJm2J7MV8PpfuXKltMNO06SrV69205zR9sMEB1wn2Vh4fXqBwJnXZ9ZGBKV0s2R6t8Z5ogdhVXqHSavjsZT0M688g9IyGV4s/Mtxug9Vn9mP+D/XJBMCxz6T7fa0BF47nPt4DNcrbdJGluyY3t+8lzNfBd731Pz4vo2aJa55Ju7IbOucwyrYOtNGZEkJ4vnM0jJ7s+fY46DGLCv5RLupNTFMvu7nX9Yng4nus+fFLgHnR8fsfMTAwMDAwMAHIK4ptRi9baKUTUmQdqrMo48SNRkkJa/MXkFYMqC0KW3bW+yR5u30ZortVGVHyDSi1OQ5YftVCZv4Gz0hGVfE0kaxT1VCaEud0Y5KOxVtBiy0G7GG4cW+xj5FKS3zyIrbGZsT9yVbo22DBSal7XRTLPGT2X0rmx09bqONg6yf9qSKYcYxk1mxr1maLYJ2Hqaryn7jvGVeqLyWZLC0O2eIcXbZbxcvXtyyy0U7ovvJMVaxh3FbTI0XQa/QzFOWMXS8T+O1oLakSh4ej6EXOp93veLYlcaMDCyuc8ZU0obPezF7RlZe92uK4rrPjDuOoJfz2uKv0mB4AwMDAwOnBNcUh2eJIHuzVh6ClPqyYopVqXtK71nUPSVPShNRUmCsme0v3ifTT3vMjD+hTS2zUVJqYnJsevxJ2x6rjL+jV1oEY/fIenxsJrHSdkgP2SgF0/5yeHhYSumOw6OdJ8u+YTB7DseX9YFjpf03zhfnkszS1ymzV7FkjBkePTyl7WuYsc34PbPDMFassiXzeGl7XjlHvQK3vG/JTiI412R82biidmMplorMOPO85HX39cji1HyvMtn1GsaQxWhGZN6h1A6QnfXi1OgBy/vH+2U29squmXnZ+3/f/1VR3MyHgJqF6nt2z1detZknZhbzOuLwBgYGBgYGAsYLb2BgYGDgVGAnlaYDQFkROqunZJh2MiFvNLJaHWR1DQNwqeLM6CtVmT4fXdzj/1Zpel9/ZlSffWOfelSfqBIoRzURnUUqV/Oe+qVSF2QVqGmEpgo1SyXEgOolVVBW1TpLIk7jPZMRZ+rwKjyFKr9MnUKDPNVHWSozOx45lMVrxy7ucW65nqherdT+cR8mzCXi+Sp1N+c+c1uv1J9c35mTFPtMlV3mWLFGFdVa07lz57YSxWftcUx07spMDaxxSHVxpooz6PhThdTEbVRp95J5Z5Xhe32KzyyaBPzdjlZcy3EuqOavkjBkTitMjk8HqF5IGsMfmJQ9jrlKt9bDYHgDAwMDA6cCOzutRPdhJsWVtt/UNGDbYJu569IxhIlfe290Bsz2kvm6D0yBZGQSMqVA/0YHgEz6JDOlC7U/syDVqjxILzSETIhSYebWXQWrMwwiC0HxuC5fvtx1Wtnb29tyr86cHzhPdFrJykNVzhxV6rm4jY4OlYOAdDw/dnSydoLlqOK46MiyxNKzPpLh8ZgsiS/nohc6w/Ex4L2nHaCbeRUsHc9/LS7lXDOZ01XlCMJ7Lm6jBoHzxGdLHFvleEatQQRZJ5lqnE8yOT7PspAm9pHPEDK7TMvC4HQyvoxd8zlXrZneuuP8kdVHVNerh8HwBgYGBgZOBXa24V25cuXo7WtJMqYqotTE9DVZ8DClJeptaeuo+hb3pTQTpQpvY6FZSsaRcVmyoZ6d+uTMzkTXZbKaLKUUz0NpllJuT49dSfaZhFwx1ew8tN0988wzqyV2S4wZe6I7NaXKzBXcDIiSPaXoXuFZ9iML9mVxXe/D69Ur/MnAdl6HLPG0r7e1E9ye2aY8j2TnlMSza1DZUfm7tM3AmTKLSSDi8fG69ALPYzhUxpp4H5J1Mug7/s97t0Jmt6QWglqBXhpErjvauuL/lW2V7K0XJsCkCJmmh2XJyPDoy5DNJ/uWBdSzj/5k6rJMM8OkAkvFg0+cb/WeAwMDAwMDH8DYmeFdvXp1i2nFYGS+zSsdc5bOiG9sSmCZ1EydM6WITOJjMlhLjg6y9HhiGi0mhyVLot0iSh2ZN2ucA0vtcV6Z7oq2CErr2XxS+iPL6en96Y3XS2EU560npdvLN7aTpdHiZ1ZKyOgx6zjW6nvcViXkjdeN5VJ4fao0VfE3Bv5znJFpMHWYj7GnXSyVVJ2P9ite/8xztfIGzOaksmfxPHHtcNtSianDw8O0HfabY2Si6V5awl4B2jguaTspfWW3jOs78xSVthlrvB6VJqdifJGtVV65bjMr10NfC2vvvJ5p088KKle+FtV9lo2r98znOEbg+cDAwMDAAHBNXpp8k2fpbJiaiG/lTCdLbymyHJ5D2i55U6U2y0rvWDq2pGNPOxfXjJ53tM1Qome5lihxkH1aT+3x2h6UeU0atGNVHn/xPAZthj2vJsYVkalHicvX5eGHHy7bq87bWzvUClgC9vGR1TDZMc/F69WL3apsAXHtmOH5ejjuzt+zsjBZot14DNNexf14HvfRa8hML6LyAq2YfWb/W2J4WZyh+9Tz1DWqdG49UJsT1zxZGFlG9typPB255jPP1LWarPidDD5LbE9UaRWrFGPx/qyeGexrvAacY/fN656xilnx78o2yndCPHdVyihbs5y3vb29wfAGBgYGBgYidmJ4BwcHeuqpp7ak3AiWEeEbO9PfVnFI1bG9qPsqviu2ZWmZNrtHHnlE0jHDi9ILvQCZyaFiJ7EdxrbYDtTzljMo0VVZVKS6DAfnKsuSUNkGmHFFOp6n6AXYs+FdvXq19J6M56psafTgkrYZHD/pnZeNmVJklT1D2tYKuF2upbhGq+TXlEozOyTn/7HHHjvx3ftGFhq9ZuM4Kik4sxlVzCXL8NFjURUqzUyG1prOnDlzxAr9Ga8lE0FXpXgyNlWxssqene1TxcdlMW7uq+9/ro8IMlV6hfK8ce5Zio1r01qpLBa2Ynosh7YmBq53jWlf5jM+s032YneXMBjewMDAwMCpwHjhDQwMDAycCuwclvDss88eUWXT0Wh0p9GbteWonpLqdFBUOWUBm1Sf0K3afbMqKB7jdh9//HFJ0oMPPihJW+OL56RakNWsM2pNlULlrJCpe5ecB3opfqgOqVR4cRtd5t1n1jqTjlUzVo08/vjjXRXH1atXt4KgM4M51Wc9F+UqqJX9yIKKq/RcVB/HKtleK1zPvP5ZYm6qmvmZqcGYds/ncT98THReYb3FqlbgLoHnvQDnKrFwVi/RqNzQK7TWugHiVFV6vqj+ygKzK6euNYngeW0zpx7D95L39TPQ9w/Ds2I7VGWyb7y28XyeC8+f1fE+JnsWG9U92auHyLAUXq/4vUrybWT3RHa9hkpzYGBgYGAgYCeGd3h4qGeeeUaPPvqopOOgxPjGpmtqZSzOpHUaso0s0PBoAJAm6BhiaSYyPAaN2vnC7IYlhqTtBNNrJFL2sQq7cN8Y2hDHZbDCe8/gzL6QXWVu+JSodmGUVfVn73NwcLDlcBDbY/8qJ5ZMQlxisbzm2VgrB4CYgICu1XTJp3NT3Jflh9jnLEmCQ1aq5AgMV4jnqVz0q0+pdkKoSuZkqBK4Z3Mfnxc97UBMPJ4l3SYTZRhN5hLP9V+ts57mpXIuY/J8aZvR+/npz6xqOZMSROckqU7nJR2vGWsoyCCzhPA+D+eR37NnCFlWFWLQQ6V9yO4nX9uRWmxgYGBgYADYmeFduXIldVE/arDQhzPAMCszQ1Su5lGycx8s8frTAcCWbqIdxmyNrNMMKyu26f+ZWJpSIAOD4zFug0HXmU2PNjUWxaU7ejxfZU+o0qFlv1XSWpz7LLC1J8VFOwzHGftZBYv3WHWV+LcK+o6oAmVpN5OO2RPtLv7u88X15nbJ8KqCo3fcccfW+dwnMzqH0PRKWfH8nKNMS1CxP66LeM9WpbmqxMexL2tKvOzt7encuXNbBXQz7UBl2zKyNVQx/Yo1xv85do4rMjxfd9+r9957ryTpnnvuOdGfqFFw+3w2ZTZw6eQ97bFag0Vm5LWUpQfjnCyl34v/9xK1E5U2p5f2bcle38NgeAMDAwMDpwI7e2leunTpSPKlvtf7SNvSJKXYXqLkKiWNpeYoAZnJsYwF+5EF11paok3Fv8ekrt7m81WMwiwues3Z7kJbDvueMWYGEXt89H6Nx5r1MSi9Ch6NqGyDWSowStw9G55R2WfjWChNVgHaWf8qhpJJxJQiKZX79xj06rm96667JG0Hw3sOYlo6ljvyGvFc+vp77p/3vOcdHUsbhiV9b4/3gkEtxJK9OTKwyq7Fa5BJ9tyHknj8ndd6SUrf398/Wr8eV6YZ8rWrbNE9VDbjLBkyn2PUMDF5tXRsjzWj86cZvdunnU7aTkdo0EbZC473mvSzKWP+1Gow4XUvHRq9qWnbz8q8Ld23a8rJDYY3MDAwMDAA7GzDu3jx4paElUkVVbxVxga8jSyNDIL2ufgbvcfoaRmlCkvYlrho5+nZfShhU6Ika4z/u12f35+W0q1rl7bLEDFxsrcztiduY+og2v+yZLjcx2w0i8OjnfHixYslm6hSi2UeglXC3F5pn8oWUMWGxWOYRonJvuPc+pp5Xmhjy1J9kWnThkf7XzwfNRTe1+n9PJ5oM+S4yEbIerI5WSosnCV/r2K0shixzItyyc6aFbs1Kntb5WWYHVN5g2fHUhvg+Wcy8WiPtTem14bbZTHkyDDpXVylO8tsuRWzYuxbtPky/ZjXqtcd+xOfc5WXc2VPlbbv20oDFI+lJuny5curWd5geAMDAwMDpwLXZMPzG9ZSTSbVV/a4zPONxVVZRt6f/j2yDLIASyL+ZPYM6VjCYuJS2tCiVMFkvVVMVZZA1+fzMSyqykwb0naZGY/HkgznKMIskLFhnIvIJDgXZHZZPExWrqWXPPry5csp465QSdiRQVSspYrpjKiYHY/JWKivC+ef60KqE/5WmSky70PeC9Qs9MrCUPtBVpydj3NNln0t2VkiaJ/vrQevHTKv3rWtbJFZHF7F7Hq2Y99/ZkS+53zf0o4az+N1YM0ONTHRO5zPM3oHU8sS2ZrZ5kMPPSRJeu973ytJR3HUDzzwwIk+S9ve9H520NM8m6O17DrLuFN55Bvxe2Y/XfM8kQbDGxgYGBg4Jbgmhsd8i1n8GCVTStHR5mApiDF11DVT+pS27R5kMWZXttdJ29lKLGn5M/MCq0rIVN8zdug2LFFRooweXSzhQam9igeM//OTcYCZpx1zGzK+KbMR0KMrg214tI9ldp1K6ss87ao4K9qRMvZW2brIDuK4WHLH8HXIbHiMnWIhUJaYimzN94/Xps/P65Rdf6OyqWVrlRlQKtaTFY2tJPpeSbA4Bz3twMHBwSqPS85HxWrj/0tewFmcLJ8ZZN7M+CQd3/eOofQa8XqwdsC2Pkm6/fbbT2zzc8zXhRl4oteumdz9998v6bhQs5kf+x7BrE+0+/cYc3X/ZjGXlZaF93FPSxB9A5YwGN7AwMDAwKnAeOENDAwMDJwKXFNYgml6VhGa1JSOJlnKHaoMqJboBa3TEFy5qUeQjjPZbhZAXVHmyoU5wuOy2oF961XwpVuwQdVJFoxNRxuGR2TJfH2M56S6FnFbVEn31FJRpUnVSOxDlQA6U6vG9qVtB6Aq+DVrp1L1xfWWBZZLxyp6OhFI245adGyiCj9L32Y1VFYVncdwLVYlbLLQkCoZO9WJmRqU39mPTJVVJXAgYlq6NYHg3G70EqZXKnk6zUnH18zXneWhskQNLun0rne960T7VGlG84uTEPjTv/k8TCYe16XDnJyc3muI5op4T/M5Sge7NSpNhrtUoWnS9nPF89VLH1at7zUYDG9gYGBg4FTgmhieJYVM2qOBsjJKxrc8t1GiIsPLnFYqN1ZLYJlEynQ9durIDKVV2qxKooysrTLIZi7lRhZIKm2HReySWLmXqLeSknrOEZTKLl261A08v3z58tZYY1/oal0lkM2uP+e0cm+O14XOMBUbyBh4dLqSjtcqE3ZLx3PG8lMcZ8Z6mCqvCqjPUudV41njJt4rxRN/77XbO0/PkYForaXXIILriqEY2X1ZMUauoSwBPa8LWW7UehlmYQ4TsBMJNWXR4clpwOy8ElMWxnH72RkZHkMlmGg6S3TA0JmKgRnxmjIones6S/pdte+2eiWA4lqtEiQQg+ENDAwMDJwK7MTwpPntzHRWUbpk6q3KLbinz6/ctTNQoqYbf6anpuTLRKg91lSl6aF0mKWHygouxmPi+RhIWkmULE8iHbONyq7ZQ3ZNI+L2mFLM41tKD9VLo1SVWllTKiRj//E7QwGkbZZR2f9iEnH/xsQKtFNYupa2XcgprfaSFnCdcZxZUWSD81fZPjI2WtlQsutb2ez4mY0rhossrR3akyKqQq9krHHuaY9i/2nrisiSJ8c2M3+AqlyPwwP4XdJWsW3a8KglyHwjKu2DNVxZgmueh2PIbPoG548hGxG0eTMcJnsGVOEPazAY3sDAwMDAqcDODE/aTsWV6YCr8g69tzylFL71s0D3JakyS3pMqdztkhX2PB8pcdMuE3X4ZAUMFvf5o7Tk/80UKElVHqwRLG9TFeqM/a+CezMJkiWLegGg0zTp8PBwS0Jco3sn88nssVXhYSOz9S4lDeb8Ze1z/rPECpR4yfCY6DzzXOX1ZjLpbE7IlImeTbRK4J2xwiq12FIC6nieHrx2eL54XZj0mCmyMn8DMvoq1Z+/Z6yOrImfce7pG+Bx2JbHtGTSthcoS43RSz1bO0xpyGKy0S5oZmc7Itdq75ryHuAzI9NwVJqDSlMTx5oFzC9hMLyBgYGBgVOBnVOLHRwcbMUPRUmLrIWeQFmRU6NieLSPRE8kxo9Z/03GEiVSSzjct+cxRmaSpeeKv/fsDFVhzsieaB+jZM9jM8mOnn30BsvKOlESJrOItilf/9i3td5SmXcbmQgTWmcg6+N1qcaT9WGpvE0EJWqmgosMr/LSpQ0xY9dLfezNDZkX9+2tVbIQ3kdx7fg33nO9FG2ZTXLt2vHcx2dJFTvZs/9WicfJ+LJYWLJY3lMsASUd2+HMqFw66MEHH5R0nAIsPt8qFuPt7hPLVcW+eVuViNpMTzpmdpXHOud1TZowppfMQE0C13tcb0t2+x4GwxsYGBgYOBXY2YZ39erVrYTCUZpldg9KpP7s6V8pNdNm6DjAuM1gqY3Ms4sSD70ZM4m4yuCSlciJv0fQI6lKji2d9HyM7XNes9gdj4+SKjPKRGaebYt99LiyYpHxvEvSFiXuzKZWsZoqBi22W3mVZXE87ENm04rnjb/xfGQ1WeYT9onnp91J2rYr0rMwY8pkjkuZKHo2wyUmE/vEe41rNV5rjrW3blprqTdv1gf6CFTxmXGMlXaANrCYAYUsqSqyHMflvjmmzp933323JOmuu+6SdJyRRTq+x1holr4D7lssLeRnAr0xmWA/3vPel9eQz2Jrx7KsKYw7JePLrjXtpVWyaim/PiMOb2BgYGBgIGC88AYGBgYGTgWuyWmFasRIa7Nacj5WytVGDA42ba9S1EQVqmtLMXjT1Ni0PhqcqX6wGqDn6s0gSlL9XrLqKpTBx7Bqcvx/SWWbqTKojqhqBWYqocpITSeauC2qvXpu5gcHB0dz0XOjrlRxmVqKKaM4t2uC7qkCpPowS6fmvjGol+nRsv5XzhwMgI/nIXo155bSdfXuxSoYm2rLNU4rvF6Zw9DaoOFMJR3HbLVjlZKP5836QPME74Wo+vN956TOvLeygGk6mvietUrTbTn1mLSdpDoGpcdxe36iA8qFCxdObGNYgs8fHV38P9XQTIBvx5rM7MPwhCrtWwTXG98JPQe7M2fODJXmwMDAwMBAxM7Jo5999tktaSs6hFgioVNFlYIrHm/p329zSxuUniMqCcT7+ntkQNH4HPcly4lSBaWSSnqhlBvHVSFz8fV4qlRcZBJxPhlouuRAlLVXserIQt03n69XHujw8FDPPPPM0XxlQda8vmsYHiVROk1Res8S11au/VnC7Cw5dNyetVUlzK6OyVhI5UhThQDEfmdJe2MbcTsTRxjUGmTJo+lgU7myZ7h8+XK5duy0Ukn/0vH9TYcwPp7f1e8AACAASURBVHeW7sXYbyYXiI52bN/n97pm6azYHh00yCgj4zKT8n3HZxfLhsV1SQcUaoes/arSpMXxMdUht8f/qznOtBWVYxrXVFxvGcNbWyJoMLyBgYGBgVOBnRjewcGBnnjiiW7JDSYfXpPmqHKft4RCt2EHcMbfLPkwUNvni1KTddv+pG47CzQlgzAq9/QIn5uJhS0RMZlrPB/Hyb56DFHyY//92XPNz5L5SscSalYihezq4OCgy/AuXbp01J773bM98jyZezvZMW1QVYmSuM1zS7fpLFi9CjB2u9kxTCTMVHaG10lkLh4Hw3hop8vsjNWarUIbIqpwhCxZdRUsTEaXlSGKTKnH8G644YYtppylm/Ja53z1QlpoOyXD85p1IdUIn8cJoX0fsnxX7AM1SGZN7nsMMapSiPG5lt07DLeivc+IWhuvFdoOWWIoS5LOlIz0lfAY4nWk/bcqNNtLJ3ju3LlhwxsYGBgYGIjY2Yb39NNPb0nAkQlRAmZBv6ysBKUuv7mZ3ibTcd95552SttkgmUlExuBiG7F99onpwah/zwJgmWbI5+ml3rFk6H1ph+sFkXMfep0yNZy0Ld1S0suKSPbsiBnidWbZo9hf6uMp5UUmQDbDfWjjzfpDO3NVakbathFSWs/szRXzqRh3z9ZFNprNPZkqmVPP7ufxkW3ymMyOSpBVZbbQNbaX1prOnj27xRBiH6rgd7L4aK+qbE1kzb7Xo4ekvcNpJ6/SeEnHzI22M2ofImuqPIcrFnotfgfRzujnpRmr+1IVj81SRVYsLVtv1AhW9uAskUPcdzC8gYGBgYGBgJ3j8C5durSV1iZKPrQX8a1Ozyep9h6jV1Hm2WcW6BgWsgSWpojnJvOi512UtMgcKVn5fGZkGaPwfNFrjsmypW3dtsdO77CsPBBtRZTwMwmZdiWP3dfW6dx6Hn1LhXoPDg6O9skkxyqlWOXJxf+zNnqJmSsv1irllLStMSDDzjw7aduo0l3xmmZYsiVnfatSfVWp1OIxlLwzm0rlscp7ved92ls7ZnhGdr/6uvC+oddm7DcZN+3BPpaektJ2OSK26fUQ7fLuk7dRe1Mx8tiuwfF4/HGesmdt7HtW8svteB8/37iWaB+M565SzGVpwughymOyeE3/zzJOazAY3sDAwMDAqcDOyaP39va2ilxGW5CloEpHn2WBIEuhVEmmFz37XvCCF0iSXvjCF0o69v7zMZnemuyLemj/Hpmrj2fCZDKIrKQN2R8LIWbSZ2V38b7MeBDH4H5zrnvJW8k+6J2VHct2egVgfQ4y43gtfI7KlpfZ1CrvX0qIlK6lbWZSMe/MXkVvNTKJeD3YLpkVGXk2jkwaj33LMtZwnEuSd7aNNpaMZXM8tIFl9zz3uXLlStdLM9ppMtsb7TpkDkx4L9Xxj7xfsqT1jz76qKTjRM9VCahoW2c5nooRZeub+1b25iw5NuPjsmT1Btkg1wGztEQbZaUxoTdwHF/1zKfWI1432jN3wWB4AwMDAwOnAju9Iq1Lt8RAT0XpmBH47evvlMAySYSZVphRIStJb9udS2u45AY9LaM0Rw9OSumMFYv70oZX5X3MGJ6lInq3+jPLeEB7gj8dE+RPS5zZeMjIM8memRN4DMcS/49S7VJuRNrJopRJD0FK3GtK7xD0nov9r7zWaHOLv9OWSztwltWE0jjtYPTWzeLVaG+q8lZKdeFSxmFl+UzJJLgms3jT6pqTdWfxk5FtLDE8jyvzwCYTrjxdM/somTWve49Fex9rVZiRKB5TledhOa/smMqblTbjzHbMNVmt+wj3yR6lLBvGXMVxG/tGD+Ys/ya92zOvWiOLAx9emgMDAwMDAwHjhTcwMDAwcCqws0rz3LlzW67rmVur1YGmrN5O+h73obG4MqBHdWWVyozB1xFUB2UG7dgPaVt1QPVUZeyVtlUZ7pPnKFO30fBbOZFYvROdabxvlV4pUx3RsF1VpM9UK1loRIb9/f0ttUrsN1V6VUhLpr7wvnSuWZOElmoUqlB7VZ2XEibHPvE711s2f5VaN3NwMFgqhkmEmSYsK0dEVWmmbmMfqz5nc8Kg7l7yaPeHDmKZEwzVkLyGUeVXJU6oEmHEteMUYlTJ+ZmYJaCgKo6lzBhUHvtUgannsnXH8XB7ZiJgAvoqoD6qOnkMr3svBIX3IOcmU/NHrC0zNRjewMDAwMCpwDUxPDo4ZAZ6vsUrydjtZvtS0s9K7/hYhhJY0mL6sNi+JR3vm5XA4biq8RmZ2zYN9P7N58kYDRkDU31ViVrj/0tBw1k6Ks8jDfVZCjNKY0tSetw3Ky9Cxw/OZeYwUQX+st/ZmNku0+BlQdZLLDZjoQzaJcPrMWQ6RfFeyZxWqmTOvIZ06In7Vkw5W9904MoSQ8f94rboOt+bW5cmi4hjZgjJUsmniCwdXLZvFtTtRPb+jY5wMTyF7TOVIR1DIioXfDp/xfvJ2iBeHzKwLNE5E+zb4c6fWRpGOhtWpbnWsDE6rfTCbvb29gbDGxgYGBgYiNiJ4e3t7en8+fNHUgDZgFSztSxNU9Z+bK9KrhvPRzd9JnW1RJIVZKX9i67FUfKpUnpVtps4D5TgWNqH5ZDi8bTVue8Ogs1SHFWu7AyGzYL/GcDKEIoslCEyysrm0FpLf88SAjA8hdJtdg5uYyo2I0rRXJtGr8Ax2Rivd8bEqkK2VahOlvKNEiztSnFcZJRMul4l943t8V5knzPWWxVbzWxFZPNL6dRiaameDbpKU5jZHqtUb3SFZ+IIaZsd2z2fz5bI8NgX2rwYPhL7VAVkM8QgMjza8t2XTIPFPtJWx8TXTIsW/68YvvuRab94D9I2GsG1P1KLDQwMDAwMADszvBtvvPFIUsik6MzOJvV16/RoqvTVmUek9dQuZ8HgZXtTxSBy2u7MksyazPSitMR+04uRElgcA4OUaXeiBCZtS8neh8mX3fde6jSWtOldC6btoQ49uzZMoF0hs73FueAYOU9Zuib3h/YBMhPuF/+vWFrGDpgAgJ5na20J2fiMzIOZ46iCl+M+VUqxqhBoPE/lfVxJ5PE3XoPMQ9L/RxbSs7tlqdoyxtgrOlv1l6WEKuYQmV9lr6IHe1yrfL5Ra+Lrkl1L9pkp82j3jn2rEhFkWjdqDKgpM8NjG/FYak7IpLMyUfzN583YKJMiHBwcLNrWjcHwBgYGBgZOBa6J4Rl+2/fsR5YE+OaOkgtL3R91DnEpWaonJk9mfE+WdLcqJNnT9zNOhBJFVZgxa4+eVWSc2b5VsdheEuYqaXHmLVXZiCzZ9YqWri3EaDte7GNmR+RvvRRVlM7ZT9qDe5JgFm/F869N4psdT03GUsJraXvt0A6XpQBjnF1VSDmLcTKWbJPxHuzF28VxxmNo4+p5+E7TpKtXr27NxZoyShzPGgZeJYSPYGkso6cRoZ2RfgAZA6oSMFcp1Hrlr6rrk6ULrJJGMwF2BOe48tLNPFf5TOR1yjxkowfz8NIcGBgYGBgI2JnhXbhwYcv7L75daS+y7cy6+owBVPpwfrqNKJEwLu1oYEg0m/3GrBXua5YlgYmXKb2Q4cVxMklvZefs2TiWGF6WxYJMiZJddi0qZp7ZSNyXaCOo7Hgs4pmhypZBSThjUUw0XtlhYv/J2rkusvVd9YVsKbsezAZTScBZ4nFmwCD7iEyC9hfOSRWnV405fue9H8fHtZ/F2hn0Lu5J6NM06cqVK6W3q3TMYm3Lr+yjvetCFsXPjAnx2VU9wyLoBV4lz499q1ga2888y6ssVJlXamUjZoL7TDtQrRH2OT5Xq/uJaykrZRQ1Jb0CwhGD4Q0MDAwMnAqMF97AwMDAwKnANQWem27aySJzWqnc2rPqzpXaiaqQTOXDoEZTcNLn6B5MFQb7aGecNcZ8n7cXBEmKT5VZpvJhLSuqQXr116pK06T9meqElcGpSshqw0VDdy/wfH9/f8so3avfZXUtHVMyZ4XKuN9LOF05HnmtZGqUSnVdBQTHPi0lL8gcohh4zLVKB5V4TBWAXjlRxXP3EilwfD1nk7hvpsoy9vf3uw5PVmt6X+mk4wRTsC2pjeP/vcTY8dj4zOL8s83sWcX+8/7PakQuhfpU543/Uy1K1X0cF5NF85Op+tb0ierKOD6qQas0f9m9GJ8hw2llYGBgYGAgYCeGJ52UxHou6jSc91yg/Ta3YZQpcTJjp0FJzo4nNoq7zXgsy/HQuN+rssug7qXSItm+lOyylElMs0VX9mp7bL8quZFdA0rNZKw9d3ujl1psmiYdHBxsBZdHCdnj9z5VSamM4XF9sR+91HY+L68/2Vvclv0Wv2cMj2y8SpEU1xgdnsjWMtf5SrLn/Zo5IlWJfllmJ46bYRdkGxkz57mX2N3BwcHWcyeuHYY08TpkY+U+lVNZpiUgW6ocQrJ5ysYXP7PrUWkSeve0wXljoHucRyYyYFmg3j1osC90uMsSBhgMd6DzXuxDT3tTYTC8gYGBgYFTgZ0Z3uHh4VZ5k4wRUeKmO3Xm3k7bWpVYNguyrgpx9qQzSiuVJBT7xHJDlc0ggoyLkqUZXpRiLLF6Gz+r9FtxW5UM18gYOiU5pkPKjomSfY/hXbp0aeuaZsmcfX09B5QyM5sx+1kVC81sHFUpocx+wKTBDDjPbLlkkFUB2ExzUtmbe6EFBq97xUZ7rJcMv8cKq8D6rFQOmeQSpmnaClLOArSrJAu+b+L5qhSG/H3NdWFC9iyJxZINrQomz34j8+6xHe/D5NQMPYj/L4Uh8Bkdf+NaYcmk+Dyv7PJmeh5XZPDZ9Rg2vIGBgYGBgYCdGJ516X6bZmXemVSXEgFtENJ2gmQGV1NSjCm4LDXSxsBUY5lUQQ9ISz7+HvtIaYwSNe1lme6eEo7P4/RoUYrxGFmcliWNyDSkbT18VXojMgBeH0pMvYQBUcrsMbyrV69uSeAZE2IZEY+ZhStjf4m1Ac2xD1mAcRxf/I3eoDxvRFV+iBqGjD27fXpYVgVhs/arpM6ZvZHH9gKoDUr7vOeoycja67XfWtOZM2eO1nPmccnnDOHf4z22ZK/2Z2brqtK00aYaj2F6LrdLX4XMzliVMlrjxcm++fxZAWD2m0WkmTwhe87xGcV1kN0jvAeopcqSgESNyUgePTAwMDAwEHBNNjzGZMS3K3W9lHgY5yVtS/a0E1BCiBKppQjq6mkDc8kf6bhkkMfhtESUbjKJrrIJVSUxpG3vPNqqyOKkYynJ7I8smLFN0bZI6axiLPGYyp7ktjLWW3kf9kDpPIvro32PqeV8veJvWfxbHGs2F7T7kJlkHnBri7lGVJ52VQHaCJ6vSo6doWK5PQ9JzgXHk80JrynPm60PztcSw4vaCGpT4pjISNjvjGXS9ljF2GXxamQ+9G6Mz7mK8XLOM+bKY8nwMt+I6v7nszhLLVatO/YxizPks4rHZsdwrXDN9OKM17I7aTC8gYGBgYFTgp0ZnrSt+2ZsWgTtfJneuGIKZDGZh5i3sYgri7lGKea22247sY2FGJlxI/ZxyRvUyPpIvTdL+0Q9NYvCVlLNrbfeutVX9pmfjMOJ4zFYsmkN21kqD3RwcFDq6iMqO2mWsaOSYhmzuQsTYhLfzCuUDILjWWPzWkruG0HWWzFZadvruZe8l+cje6rirnrxZZzHNR7MS152e3t7W/dJXGvMxlR5acex0tZk+P7oxZpR40OtUFY+iIya93KPcTOWzejF/VWxqL0Cx+xDpX3LPGXpg+F2GVedab/4LqF9M4Iastba8NIcGBgYGBiIGC+8gYGBgYFTgWtKHk3njkzNteS2G2m0nRDo1sxPtxENz3ScsQrT363ajPT+0UcfPdF/uvEbUQ1ahVdQJZO5i5OWZ843/J65/cZ2rYbNKivT7ZgOKAyej6BTkR1qMvf/nmqMcEgL57GXJoyqOI8nOvdwjJUrfqaeZBtZqjT2sTqP28/Gw/YZ+sHx9VRMlSozqyJdBWGz7Xi+KoSFx2QBx1SZcX1kISjG0tq5ePHi0XXP1FdVgvmekwWDmnnv0vki3gO8lqxLyMBtqU7xxv5k46sC/9c4MfG6V05M8TxZoue4L+cmbque3z31JNXUXGdZAP9SKEqGwfAGBgYGBk4FdnZaiQmCM6nCb1sGPVvyMXOIruV+y5PpUWqj4VQ6lmyr8iWRDRiuikzW2XNDNsjkKGllTKgKHq2cFyLoJkwnlSyEwnNMBxtKnxnbIdulYTueJ2N4S4HnZK5xjukIkCUqlk5KrJbO6WJepcZakwja6yKTSKtg9V2S+RpLlaEjyDp6ZVPYV65NnzebE97TZLnZMUvMleONx6xJHn14eKhLly5tpQfL7hc+K6oSPHFfOr7xGmcJuqtQnMyRy/B9yWdjLw0i+1qNJ0uEwPaqOYlOO1VoScX84j3Ca1qx0fj8pgaJc5Kt7ywF5XBaGRgYGBgYCNiJ4bXWdO7cuTJVUoSZAEMYzOKiHYm6Xx/rAHG6Yse3OYuE0rZm6aVX5HIpmDiCLKCSzrLg0Uoa9HYXno3tMzieNgMmVpaO59zbqkDneN1YSLQKaM3SekUb61KZlzVlTCjB0805s6WwxBKlwIxJ8Np5nyzEIxtLr/1emaiqlMya8xlkXFl5oMpeuksRT7KBjNlU4SNkCRkjW5Mia5rm4q8MS8gCwen6zvCeLIA5nieD5ysyIa8RzssaWy7tfUv3TNynYk/ZWuJzh+uA91UGBslX4QlZu1VIVa88kMHEB1miA6OnWSIGwxsYGBgYOBVoa3WfktRae1DSL73vujPw3wBeMk3T87lxrJ2BFRhrZ+Baka4dYqcX3sDAwMDAwAcqhkpzYGBgYOBUYLzwBgYGBgZOBcYLb2BgYGDgVGC88AYGBgYGTgV2isM7d+7cdNNNN5UlWSKquIg18RJrYyreH/iVdvJZe74swwK/V5/xf8bb9Y7Jypps8mVuXcAzZ85MZ8+eLbPOxLYZB9mLW6viuKo2sn2qY6r91u5zrei1dS3nXdqnt8auZR0s5W7MtrXWdOnSJV25cmWrs7fddtt09913b8WgZVlTqvV7PZDFcL6vn1VL53lfP492ab8Xi7y2zaVngLQdj7u3t6dHHnlETz311OLF2OmFd9NNN+mlL32pLly4IOk4gDKrIl1V2c4mo6oHxjbWpN6pJrMX9FqlmMpQnadKKpzty3RAvWD16rxsM0vmywSsTFqd1d9zhXUG+foY/y4dpwWK6d2crJs4c+aMXvKSlxwd89hjj0k6GczL6+/1xWQFWXV31l3k2swS9y6t0SylVPXy7VVW53plsDrPm+3L8zABQQamm1pKDB37VAWc+zOm7PP/Ttzu9cBg7xhk7GPiw+vNb35zOo67775br3vd647WjD+9lqTjdcRg517atkpIqh662XxVQtKaF+4uL83e82WpraoPvSQQleBQCTUZeGwWeF4lNGeCj3jP+3nguqa33HKLXvva1y72RxoqzYGBgYGBU4Kdk0f3JOQIvrl7Cad7yYEz9CRTShW9St1Vaqcs9VbVp0p6ytRu1RxkUhv7xLRgHG9Mt0VmV503SlpkDixHko0zSyHVk2gPDg6OJPtMLUVGwtRLGXtiSrSK4fVUI9X1MLKE02yDv8e1U7HCNYmTK7bJRNs9NW+VbHmNhE9tRJakmMmjY6mi6jzUNpw/f757jx0eHnbZ2lLl9N51WWJp3D+iegb2GN61qEMr9f4arHlGEVVi8x7rrZ75bLN3jFE97+JvTK+2BoPhDQwMDAycCuycPHpvb28rwfAaMBloRCXprmFVFeOhRJIV1aTxs7KTZOdm3ygJR1RSWU8y6SUfjm1m0luV+HmplEls16jGG3+LpTx6hurDw8Oy/Eg8B9kES07FQr1MUm5dP6/pLs4rRs8eV7E2Ms2sPY6XCa/jXJvR8bO3Rtc4lfE8Bq+PpWiut6ywacV2s7VMhnfx4sVFe1evzEzF8HqMnPcJj+mxtKXio717u7LH9zQ9a9ZxtX2JefX6mDmmSf0yWLuUP6sYJI+N15r25F0cawbDGxgYGBg4FRgvvIGBgYGBU4GdVZpnzpw5UmdYbZM5oLDOUeaswmMqF9g1VaRJuXmeNaoMunhnjgD8TueY3rFL7uk9FZP7SlVgL6auUh/2DPyVuqNXhTte8556oRdzJ22r4qyuY82/WDfQITKsJs0whJ4qc8mJIFNpVmrDTKVZhddwrrL6aAw/oNOKv2frjaaHNTFqdB13eIo/s/uLatZeuI1BB4ao7s4wTVPXWWEpTCi7XlwjSyrgTP2+SzgC77+qHt+aECoic8BbCtHq1WOsVJq9Z0jl4FaFukRUc5Edw7U5VJoDAwMDAwPANYUl0BU8IjMySjV74/9xn+qtv8aI3HOAqYJ5jYwVsJI62+J5Muecqs9rJJSlIM4ey66OzYLVjWpuekbq3jhaa2lISy+o24zOgaZmdrfeeuvRMf6fwel0219TXXoNM6m0DmTiGSusnBTIyOKcsLI9GaQ/M+biff1JRxGOKf5PZue14sQD8Vp6PTnkxJ905MqqW/ec2SKi00qWpWfJiSRz8iEzrZJjrHG2WNJSxf+rNURX/B54bOYYxzVZsd1s7pe0QZlWKrsucXt0bjOqNcnzZeza7RwcHKxmeYPhDQwMDAycCuzE8Pb29nTDDTdsSY5r2BolkR5T2IX5VLrlytU4wpKHpeeevp9S3lLuxkzCXwqdyOwwlaTVkySNyubZc11mKjFv74Wi9Jh3xJkzZ7YCqLMQE18PMro77rjjxHdJuv322yVts0GGMNAGJtXMnvalKH06qJou0WZCPfAYMjt/2h6ZjYO2So87jsusj6yG46FNLP5vluZx+bvnN6b18nx5m/sSg8pjG/GYLBQjwzRN3bVe3e9kbxl7ztLOxe899lTZujK2QzbjdqmJWRNIvWYfzgG1KtSC8P/Yp6XxxnFUc8BniXR8T9Ae10vKkGmsBsMbGBgYGBgI2NlL84YbbtiyG0QJkW9aph3K9OKVFxt/z2wrPXtLPP8u3ktrgpR5XkpRvQB7ns9SThZwyvmr9P+xrz7G14mSfGbnZDuVbj1KZ24/JoCu0FrT2bNnjxhK5n3lfpnZOTmsmd3znve8E9+lY7bnds1A+N1txiS0VZC6kSVKtg3LSbK9j5lf5kFY2aINsjh7nsZtHo/H4X08voy5ZKw29pGJluNY/el9zN7cnyyw3vsyAXmW4Dqz9Ve2K9vvepqfKnk32XPsy1ICcO63JpViL2FE5R1JDdAuKRuN7JnF89G7PlsflWcvkaUGZFJ6aouyZyO1KdR+ME0dx9jrY4bB8AYGBgYGTgWuyYbH2J81nnuV/rjaFo9dk1y38gyKnjzsW6XnZxux/zymShsWx0K25nFVMVaxj5QYub0nUVJ3TjtdlJ7MIPzp8TzyyCMn2oxzZIYUywRV0tbe3p7Onz+/Za+IEr7n45ZbbpF0zN7M7O68884T2+O+Zj4cB5lRTEtmdlRJ9p6fTAL2NTW7dRv+Hj3ReGycE+l4Htnn2EcyPTLXOC6ymsprt1euheuKMZGZV7CPqeycGXPxvtM0de/zg4ODLW1DprXhc4bPlp4drorlW5NCcSnGlmOJ5+sxlCUNVi+WztuqOciOrfwYKl+J3tpZk9yZrI/x2tlzoufBuYTB8AYGBgYGTgV2jsNrrXUlH0q2lLToQSZtF+9c0plnXmX0kqMHViYhMCkxS8pkSXz5vUo8ncVFVXE4mS2UNrSK0WVSIhklP81Cehk9KDE+/vjjW+PyuaMXXsZs3N6ZM2e25jyyHv9P78xod5NOXmvbi8gyuC485mh74hqpMobE87ld70M7qdvIrgc1Ft6XLDSOl4yORXDpYZzNARm958J2yOhxyTi8SlOSZb5wH+++++4T53vggQdOtBHP4/FduXJl0YaXlaOqQPbS6/daG17Pm5HzlrEbeiRW3rKZdmjJe5G2sN6xZMrZnJBp8VgWf477UJPUixVkXytv9zgnVXzxGgyGNzAwMDBwKjBeeAMDAwMDpwLPSaWZGRRNX6muYcBspORLyVupRooUluoNt0vVWqY6Y5omBgLH81AVS+M4VSiZSpN9NnqhGkzQXaUUy9zgqYqpUv9Ix6oJ/2aVmdWK3h5DENxuDE7O0kfF/at5k7YDr90Hpq6K19bbrHIl3B+32XPf9/k8LjqKxN/c76pvmbs91U5V7a+oQvX1p5rIKiV/9tI1+Zo98cQTJz7d53hNqearnCIyFSqTPjisxOexCjXC/Y5rg5imSVevXi1V9LE/fCZxrfcSmPfuYY65crCjujKr48bf6NwTx1WdpzdXBtXRa9z52adK7crwlXgMVZtrVJkGn/EM0o/txnU3As8HBgYGBgYCrqk8EKWpKIXYdZwJpvk9c34w/Ft0WZZOSoOxT/EYsrQsCXLFuMj0ssTGlLBoZO0lwaVkx2DyzLGGDgdZmMUSKMlynLEP/DS7ySRWHx8dKKIDRMTe3p7OnTt3xJoyyc3B1HbecB+YjDhLJGvJ2t+feuqpE58+TwzqZjgASw1lyao5d3SK8PkiqqQEZInZtSUrpLOM5zGe10zqsccekyQ9+OCDko5DTMyGs/N5TXIu6CQT742K1bvv0TGFiKnReqzl4sWLW4408byel8pRImPP1T2cOUqw/1XF+V7YzRLrZAkmKdeIZX3uaVayNH7xe5YasmJ2TDWXOTwR1GBkmiy2TweyXkmhXZ6Fg+ENDAwMDJwK7Mzwzp49uyXl2h05brM0lBXElE5KGwwpqNIE9fS0ZkB0e+8lja4SJns8vbIgHEcvuTJLrPgY2078e3Txdb/9m+0uVSmRXpkdSlZV6EHchxJkZs9y/6P0X7mWe+0wvCMGTLsdsrUswN0ws+EasgTKeYtrldfZiaiduow2KGnb/muQGcc+kpUxlIFagUwC5jU1WzOLe/jhh4+O8Ty95z3vkSS9853vPLGv58x9jPcmji4QuQAAIABJREFU2a5ZLpMBRNZbaVMYqhHP43lyu1evXi0Z3uHhoS5durR1n2aMkYy7Yiyxn+wTtTiZ+zsD8Sv7bFZCjYyE92VcO0x+UIVbGLGPS+EVWVB7NV+0Ufvej/fGEgvNyq5xW8/PwPCcjvJAAwMDAwMDBXZOLXbjjTduJfmNUoaly6o0SaZ/rzwqyVC8X2b/q6SXDJTYKDlmZY/oPURbAaX42MfK/tbz7GOQuJkK5zHTz7v/Zj2UuDOdN20PHgeZcwyKJsO7cOGCHnrooa22pfl6nD9//ohd+JjMjsg5pjQZvf38G71Mq2S0WdJj2hHcZlb6h97HlQ0l87Ss0tGxyGtWwohrx3Y5z/ejjz56dIz/f9e73iVJeve7352OLyuZQ5ug59wB/t4evWLNBs3WohYgjjOyec+PWfbBwUE3hdc0TSWLimOpvJl7bDArKBqRpR5kUgKeP3sOVSWReiWFaIvk86V3T/s5UHl29wK3KxZK7URc55xj9j17VlXP6yqBRRxXtPGvTSA9GN7AwMDAwKnAzgzv5ptvPnorWzqz9BdRxa2xjIq07GVDnX22P3XmlISiVEFbGpGVTbEUy/Ew1ZM/M704U3oxxiqTUigtu2+WvLPYRMbd8Htm9zNoV7JU7vPFY8jSDg8PSym9tab9/f2tcjax3x6br6HZhPtvO1X0DGNckOHz2A7Hcjrxf18Hlr6hp5jHKG2nLCNLjPNg5kPPR3s0M7Ve5unr89H+ltmmvK/Pc++990o6nleuQ2tqYrtug3FlnufMBl+xEcbmxnN625UrV0oPZ8fhVV7O8Rz07M2KjvIYjnFNGR3apdaUB6LWi/YyruG4T1V2jawtsugqNrGKfYu/8T6mvTuzyzI2ryqKHMfCGGtex4zNUwM4UosNDAwMDAwA11QAll5+UfJhvB0ZAu0I0rbdyMfQTsZiqHGb27ck4k9LGfEYejpRwjODiPYqlpJxe4zl8vbIQih9VeVTemU6zBI4F5xv6di+QsmUTDwyyqxAZtyeZZ/hthijSTiG0+PgXMR2OD8ej+2YmTer5//5z3++pGOPS383u4r9M8sge/VnxtZodzXjok0jSr5mcizwytI+XluZVyjXKssQxetP9uTySp4jt29Py7vuuuvo2Pe+972Sjtev58Aen1mcpeeHRWLdp4y5USMTE4sTZnhGppng2vEYuR4zVkgbne9pagAyJuHfeL5sLEvlgCrPy3hslWQ5i3GrvDG9b2bPrvpI7Yfb9v0ct/k54/s1ywZkrE2Kn9n647O457MRMRjewMDAwMCpwM65NA8ODo7e8pGlGVX8W1XuRjqWuhz/5DbsbVZ5VcZ9LWFZOrPdwvFKljZi36p4tUxaqjy3KPVldkZKNpReqlx3cZvHRUZhaT566bnfbtflWiwZ27MvSnFupyrNZHaQxflEhtzTp+/v7x+tHUt9UeK2RG0pneVs6BEnHc/LfffdJ0l68YtfnLZPFhWP9drwHLzgBS+QdDxPMcatyuhi0MbB8Uvbtjx/Ml5T2tZg0D5CG2I8t6+F22eR2nvuuWfrWM+B9/2gD/qgE/v+3M/9nKST2gLPLeNJfV6z7cxeu8arurWmvb29La/DXk7deGwcI0tNSXXuR8a+xWvKLFDeh8+hzKOcHr08bzYXVXk1z3mW85TagcpLM2OczPpSFY3NbKNkyrzn49rJ8odGZM+TzJ454vAGBgYGBgYCxgtvYGBgYOBUYCeV5jRNmqbpiKpmLrNVOp7oaCCdVC3QIOrPLLWTlJcjomrBn1aTxTaoXqUK032L7tpxDqTtAHq610bVAgOZqZ7KEk9XahaqMtx2VEvQkE71Z6ZaqBJoe1xU/8Vj1gR9OmkB1RyZmohqQvfFThYxVMNrxKpMf6/SNUVXaZbJserXoAottuNPt+E1bAcRf0rbAdl06qAZIKqJfH19zfyd5oTsGtAln6qt+++/X1J+/zIo/YUvfKGk47l6xzvecXQMyzrRxdzjiwkDvK6iQ8iSw5PB4O6ISoXt50B02+f96Dl137zeMnUZz031IFWNsd3KpJG1zTChKrE1Ve1xnyyxhZSrUBnKxD7RZBOdmGji8HxWzohxn+pZnDn0GVkI2BIGwxsYGBgYOBXYOfD8/PnzJ0qsSCelTf9PCYQG0yjFkKXExLTSsWSQubBaMjB7sTRhaZIhD9K29MWkxe57DFJmoC+TEZPpRebCZNGUkny+rDyQ4X09F2Su8VjPBVO/MV1UljLLc1GFI8R+Uera29srpXSvHTMwzpu07dbudcZA46gdYGgBk3nzekWGyqTRMc1VPDauHc8h1zEN9ZHhkSl6LfF8WQquKs0ZXcuzIq7UnFB6tqNTZAW+Pp5XBrp7nJENM4C9KhqbsdAYRNxzXNnf3+9qEsh8mHg8S5hOt3yGoXC+eumuspCp2GYGhl1lz0beh9QgcbxxHdBBsGKW8XxkVBVzNeI1cXt8vtHZLM4RHayoicmSFlQl2tZgMLyBgYGBgVOBnQPPo1Tk/6MtiG9kFpQ088qSjtItm8VHWVBS2g7q9nezhSxtF21PDGTMQisq6c4SiSXJLFg5pk+KqNygYzv8ZEmmLH0PpSPaDDk3sX2yX8+Jf8/KA1WhDEQMIPZ82Y4Uz22blxmDWUdmp6BNzf3zMV4PntsYZO2x+Ri6lmfSOZkjXe8dZB61A5Swq0KgRpa+zcf4PqIbd5SafX2rxOruay/xsOfa14d29KykELUERpbCzGsnam/WSuq9MjO0pfdYAJm1r1mV6i+zI7INsulMI8LkEb3E+vRrYLo79jF7rq4pJWTQ9l2Fe3D/rH32MQuDIOsjS8zsnL3Sb0sYDG9gYGBg4FRg58BzadueE3XAVdJo2l+iZEDJh+nHmCw0Y08M9KVEEqUKSr60h2TeP5VER4kkK0lP5kO9e1Z+pEqCW5UJidInWaHRK5FDW13GVKWTDI+21Z4d5vDwUM8+++yWtJmlCaMnJ0sVZd5+TDBOLQGvrbQdzJsxX84B15nbc2C2GV52fFW6iCw0ggVAzX7JzqLdz+Mh+6dtmv2Stj36+JmxeJbGquxNce0sJXCPsGZgTYA2bWj0UM2C1XtsWaq9KeOxVdLjnn2Mz7UsaQWfb9mzIn7PvFB9bLX+es8qonqmxPb4vZqjrE8cX5aUm+0NL82BgYGBgQFg5zi8mD4q0/1XBQIrfXk8picdxe9ZIUbGNjENWZTOqqKg9g61RBTtFiy4aFRxK5nHJe0M2b4cKz0t6Q2W6dir9mmbyiQ7MrBeIU3PW8UoIw4PD3Xx4sUt9hGlPaZyMmg3y9JD0XZTeQlnUjo1B+5TViaKnr22h5nhmcXE+CSyccYY0dYS55Hno82YhW9jO74nlu6rKKXTa459p1YiHk/G1UsJWKXzyzBNk65cudKV5Kt41crbMGIpPq1XjoztZvND0N5HD9xMo1Axu6rPsS+V92nGkKvr0YuH47G0RfJ77zryHsm0EJmX6UgtNjAwMDAwEHBNyaMrXW0EC0gyFiNKKlVsSS+my6iSVJNZRvB8lpbtAZcl8WUJISaPptQRJZJKojcyW0IVf8M4vOxYSmmc+8xWwGvI8XJeY/tLev84zp5tlfZPXrvMxkXQ7sf5i21Qeq48VaM2gl5s9vp03J3j/OK43J7HzrhPFo+NILv1ec0kMxsHpX3a02mnzexaPD+vTbzmtNtXyYnj2sk0CEtSeibtV/twDnpxpEs2ViM7tsrwlPkbVO1VzxZp285XtcX9s/FUDDx7zlb3aW/uK9taldA7Q2/+eHxV0LaHwfAGBgYGBk4FxgtvYGBgYOBUYGenlStXrhwZyrOgTtaJovtxphKhuokqGKpiImgQpTME24q/GUyJlDm6VK61VRBp7GtF8StHkXhuJo9lmi0jSwBrVDXasjlhwmG6qWfB6plajZimSQcHB1uquTgOrx065Pg7k9BK2w4sdOPuhbRw3pnYIEseTYcQB7h7O5Phcg7iOO1ExHWQOWVx7Xt8rEXHMWbH9mr2cV/OeU/talQu+ln4wxp1VGtNrbXSjJD1n+1mlci5by/cIe6/1G78nt1jfJbwGRmvS1WHbikgPB6zFHCePTuqZwiRJR7nb5yjrM+V+jVTY9MEkDmxVRgMb2BgYGDgVGBnhndwcHAkTfrNGqWBNa6nUu5GTSeINZLiUvBoFnBK5xim6cocNOjSXZVByhgeg4fZp0zSrqQyOgBk4yObriTZzLWcoIE4K80Ug+SXSgV5LliGKPa3Cm+okgxI2wH4S45PWbtMwWXEhLzutx2c/Okky9na4XrjXHrcvWtJ0AEmczyp0mpVzgQZmPYuYxZkEmT+vK/i8ZkTVK8fcb/YHgOVq/IyPQeNJeerXigG55rB3vE8VchUVh6qSpFWOfBkmjMySmqNMsexKoRhTdkeogpxyH6rmHl2fNRGrXVcGQxvYGBgYOBUYOewBAcQS337GBkIf4+o3HWps8/aqPbtBVla+qLtjiEUGZupCj/29OSVrp72spjyi7bQKq1ST1qvgoWzAOfKzbqyVWa/LQUHx32ZeFo6ngevL6Yuy9ZOldaKbDqzH1RBygaLrErH2oA77rgjHU9m/6X9lVoJst7YR7fD8ZEFZ6WsDDKXKig7A9f1EguXaltVBEMjlsISshRWWRhPdT9W7J1t986d7cd2e3Z5jplhCL2QrTX+DFUfq+eon3NRY1Il+6js87uk9cqOWdIIZeybz7Nz584NhjcwMDAwMBDxnGx4WckYMgPaUnpMgaA+vidhGWu8jFgsll5zazztKkk3k5qX0vVkCYAZJE7baGVDiPsseaxFsI+VvTFjvZ6/JSlrb29vq8BjLBlTscrKjhD/p/2DKcayNcRttCsxqbh0bLPz/Hit+BivoaycSZV6iZJ9HF/ldUz7S1ZUk+cjG1mzdshGM9tR5QVKZGsnBt/3WEscX9Y+10ilcclsj0v3R3a+KkC6p3HJ2L+0rZXIbHjVOu7Zfw0+d6hxiikUmYyDa6UXgF4936rA/vg/7bJrbITxGTUY3sDAwMDAQMDONrxpmk545Um5RxrjdlgSp6f7pbRW2a9iO5W3FMsSxb6R0XE8vXRNlIC9nWWCYv8Zg1ZJXrGPZKE9ryyimmvGt8W+eZ7sdcgk4FkcXs+ew/4wFi3Ose1QjOuiV+Ya7UBl+8hijioJlNcg/l+tHZZz4vHxvFWC7gi342TULg/kOcnmnuyc46rsNHGfJe1K1EZ4bXicLt9EtptdN++TlayK2NvbK4u8xvaI3vNm6dlRMeL4P58HPF+WnpC2Y88ly1XFPpD9cc1kDI9rn+Wisucc7b8V0+vZEum1S8/eLBF09Zm1T0YcnytLGAxvYGBgYOBUYCeG52wHfNtHKaYq/uh9smSoSxJVTz9d7Utml2X0oJTuzzXeZVWcX5ZJhgyCLDDzRGKMHr3z1sQsVdlfMumJUmBWQojIEmVXsHevbXa+BpknZLTrxT4wMbRUS8eMresloeV8MNNKlOzNXmizo1dtROUlyXuFv8fxML6PhZSz2FTvQ41CL7NIZWvn+eM9T09Vz0nPo5MaiyUvzWmaurbOXqxuRBZztpRppadZWioAm2mJmCXH642xpPGYjNX0zh/Hx3aZUSobVxUbyHsiO7aKp86wNI+ZNqrSYKzBYHgDAwMDA6cC44U3MDAwMHAqsHNYQlQtZC7ApKBULWU0mqrMqgYU94//V4Zgf0ZjLNVRVMX0qkivSRIr9d2DSd97QdH+jUHJvYDwKlVSlWIonm/JLb2n5l1SScWK51lqKTpVMClsz7mjqh9YOa9EVAZ5f3/88ceP9mUYAlV82Tpxn7gmqXJkf6Tj607HD9bSy1y9rUq0MxBTAWbqP97TVGVmqQPplOVPz1WmbuN8rXE6oJNJ5nRFtW0v5d+Sqp9JirO+8FiuzficY4IJq+6pns5MDVXtRp4nezb6vAwfypyJaAapEoiscQKrnFWy81UOLlkwPud+KSXciX6v3nNgYGBgYOADGNdUHsgSamZkrSTCbN+s/fhp9IzVbJdOHpljDR0mKtfyTDqjFMbze7yZUZ8u+T0mS4bF8/VSp1HKpPSbOaRUjKVX9ojtLzG8aZqOKoJn0qzPxbI5NupbMs6cFegUxTWTpW+r1iQDcu2oIm0niebYmepMOpbgHVJgxuXPyqkktue58fz1qsFXAefe7vs3S7NFZse5YOKAuA/ngmuYLu8RWV8iWmur0uiRifQctZYSF/fCoZbc6emgIm070pHxZ4yySn9XJdzI2CGfTWwzm5PM+S6OJ9OYVKx3rUNRD5n2q5fyrcJgeAMDAwMDpwI7B55fvXp1S7rMpLMqUe4anWyVqijT3VfFY6nrjhIpwxIsoZKVRsmBAfSVLj0L0DYoifDYnqRV2dQy92fuU12LLBCYc08pKh7DdnsBoK01nT179miun3766a19LOlSEqS9Kgs4rualkvgjyFC8PhzsHftaaS6oWchKGNG+TOk5S2Xm/poVuE+0x2RMuUo44HWfaVt4nSvmH9eu+8JPssSezbhnh2mtnUgQnNkEeT2qpMfXwi4yVBoY/h7XH9dElXiil7ZtKdA9C+o2+JzLkuRnweix72SHmf3XoN0/0yzxGUVtVHbPZ+FrI7XYwMDAwMBAwM42vEyKj9+XyvQYmVfhksdWzzOo2qfnXUhpnOVoIiukNFx5XGYeXZas3L5tOW4/C0AmU+XcUMLKvM8qj7E19jhKWpkEuca+FzFN01YfMrvOkr03YzMsvVTZY7LzVeu5VyaKNhoWtM2Y8NJnb3y+3rfeeqsk6dFHH906j8EkApwbprjL2BXZWcUO4m9kdmtSp0W7fCWlO3k0SwBl9zTnsrKx+ZxuP/s0eh6eVcLkLCia2h/Ocfb88/8sD8V7PGNP1EJZU+Hr5O/ZteylA4v96JVbon2956XJ50wV/B+RJdtewmB4AwMDAwOnAtdUALaKI5O239DUt/ZsW/T8qbwzo1RRSRrUNWfsiV6StAdGSas6T2WbjJImGQQlE0pv2W+VzbDHendJzLq0TyblUura399f1KWz7BFLpcR9qsKs2Tkqb7ae7bjyfKtinyIo+drTN0tHtiSNs/2Ybq1K02RtAe2b8f/KZky7dlZ6h+yQLC5eNzLIijHHtcv40jVemrwHmQw5oscqDc8ltVL8zJhXZfPuHUPfAY/HTCt7xrgdFmuljTJj3jwvixS7H9mzqpo3sra4X6XNy9g1UbHrXkrANdoBYjC8gYGBgYFTgWuy4THmqSdxG5W0LtWxdJV3ZpZItMqAYgnSMU/Stk6ZUiwT9sb2KGGxT5kOmrFZle2wV6Yli9GqwPlkG94epfS13my9a93r297enm644YYjL0NmY4jHM7l2T0fP2CV6IhoscxLPV2kS/Lttrln7ZBI9hlfZeZmFKPOeZZ+YSDvaJisti0HbUTy2SnRe2fSyflcSfjbmyGqq9bO3t6ezZ892MzEt3R89+3KPBfI8bI9zXc15dj7asbP1zjXK5x09mbN7muyvZ/ervEKr3zOv0GqfNdl0/r/2zqY5jqM5wr0ABDFCJHWRz/7/P8tnXxQiGZIgAvDBUUTy2czqGb7hw+utvCywOx89Pb2zlfWRRbhny5m6O2IY3mAwGAxuAj9Uh8cGjC7ziX5xZrU5Lc3E6Bjz6lpF0FqrY6ouY42p9iXTclZsiqnVsdzYOAZaf50+XrI6eSzHKJO1meZZ30vqE85Kd61QOivu7u6urbtKtYasi9Q55hjqnnFuXeYntSWJ2la9A3WcYnjMfOuyZjl+jsl5FlL8j+tMWRqz/hgf69RHGI9L2cgunkXPSWJBbp/d2rm/v2/XL68tZek68HvSZVqmfXfeAv07NbJ1zzBmDNcrn71O4Sl5iboa3sLO69HNfXrtmF5Xv6vnd+ceLc3BYDAYDID5wRsMBoPBTeC0S3Ot3lVBCsrU3y4BIaXpd7JNic5S/FTlmmr/as9RiRTl0ix3lXPV0oVKN0uXZk35o1Tc7a4juYS7djc7l4YL+u/KEtzYyp22k4d6eHi4Oo7OUxK9rvedXFeBbuq6l0z17rpJ08Xjym5KyPr9+/ffnacKwTu3O9sBcZ3rGuUcMJGn1mh3f/j95Npkyru+RyHorjg7tZ3ifDo3GN2gDiVLl0IDOl5ee/rfwd3vbky6bXp1ZTB1H5hE0snEcY5ZzuNS/7m+6RZ3bn7OAd3v3dykOT/jEk6i2Pq+C1dMWcJgMBgMBoJTDO/l5WU9PT1dNeZUOGFPfb8TrE0tXWgBO0s4JXnU+47h1XnLSndp6IWUSs40YcckaOmmsghnCaUkHM6nSyJgWUJq+aHYlSN0wq/39/etJf36+nrF/B3joqXLOXDF70k2LSVA6d9kNQUmcKx1zeR/++23745R918TXeq9YoX1ynZHLimHa59tejqR4iQTxWNqwgvZerqfuk74nU7f/S7x6enpqU1cUGmxzruxY3bd+kyJYG6OE9vkc8AlW3QJfERKhkv31l0P1xVLOJx0Hq+zKyvjtrsSEZe8lJJh3L1OiTRHMAxvMBgMBjeB0zG85+fnb75nF69KvuyCS5VOlg8ZnZN6omxRSqd2jRhTuxb6uBWMu9HycvJALABlXLOzgAnKUbm4A9OpU1G+QxLD7YSmy9rc+fefn59j2cNaOV5wRFqsQIbNJpvOw1D3hSngFdvVfdi0tWJ6ZETF4vTctY4Zy+MadWPkuqtjuua7LNFg6jqFDup/3ZdsMBXA82/9/wizU6/HrqSlaz66YxMuPnZUqPiI2MKO6blt6dHqRKoZv2Zpgysi57bpvnSMKzHWI/E5XsORbXdj1s+6mH7CMLzBYDAY3AROS4s9Pz8fyp5L1r5jeLQeaOnSanKFsqmtDeNMa71Z8LS8yyp3lg/FWlMLFHfdjN0xNuQK+GlR0/rj+VyBa2rp4SSgjhaNdu1OOomm19fX9fXr1xiD1OPQqjsT40ieBbIe/Zv3sN4vsd1icTrGumfF1mqbOo/GuSsbOMnQdVJqyYORhB10W15nwcUKC6ngmGvHrbczBcCuYe8uk5JZjnpdLPz/V1haoYs3JyZHD0/n/UqyXY5x8XvI89Yz08khMlbnnokFSuTtvk8OZ2QQd3BM2ck7TpbmYDAYDAaC0wxPpcWchZB++TvfNq1IWpe0tPS8rl3JWtcWpKsbYmNWxg4VqRaQjTHrPCpeXGOsV9bfdOK6ycLrWm5wjo9YXLt2JwWt2eL4n56etn76JAzuxpks4a7pJGM1FNdVFspmsFwXzhJOMZO6rorxaVysPAdkVm6t6Jj1+CnDtxujuz/6PxnTWtdrh9+FFPfS99L9csLGR2ve7u7uvo2l5lbvX2o/Rg+JO1/KZiSb1rlI2ZOJ6bltORbnIWF2dPLsdCyUY+tyFHhdKTuzix2nVm1HkOKcLrtaX4fhDQaDwWAgOMXwLpeLzc7S9zoLcC1vtSdhUlo3bKehfye1AtcuJjXCZOadjpFxlgItbB5Tz12vqYamqy9L/n73f7L6KMLsrDP+n+KPerz0vwMtYLXIme3ZeQWOgpaorh02y0zz4+J+dZxPnz6ttd5idi7OXNda2yQLu8aj88hmncwg5ee6TWLtSTXIXQebIbvM31QXRbbl1oeOYWelH4mP8X9+FzqGt6ut07gsVXLSPi4LmWM8ogJTSPfS1ePt5tPFcvkc5XWkXIK1coZ39+ziWknZoY7hdYL9CcPwBoPBYHATmB+8wWAwGNwETheeO1dkVwC6k37Sz5wcj27LwK1+thNiVrpd7ihKijG47twRLNatsZSLiePQ91LavhvzzqVZ6FL36cpMJQ78W8dU+zLxRrc5UlB6uVy+62nGomsd35kC1VTEy/lwortJEIDjUXz+/Pm749d9r9ID9jhb66284ddff11rXbsS6ZZX0JVMF3od27lB+VrXV+64GrOTi2MSSK0lJzLgSo30WC45y7kld+hcmkzLT9dxpi9e/U/35VrXJU3Jnetcv0w44lp1bkIeN4l6u+vZJRIq+P3hfHbPmyTJxoQh59pOc08x+LWuBUnu7kY8ejAYDAaD73C6LKEEpBXOciukX/vOIkn/d92k67NdmYKC26Q2MWu9WR5laZRlXWBLoTMF2p3wK60wJkC4wG1K0e6Yckp/Z9mF66is1mcXgL+/v79iGZpsUe+l0ouu6DlZ/1yPTkarLE6ydMdcat4pvVXjqGvQeeDxmOpPVtitHW7rmDI9FbxPlFlzLIRIbaO6bfm/Y2ROLpC4XP63PRDn3Ilss0A+sU/9LD2Tkni9Hi/JdTkWQ7EAjtF9L1NJEZ97ndeGx+V59X7tEmm6UiqOKT2/Fbw/qRxBE4bcd30Y3mAwGAwGgh8qS6C154q6k2+58yvvfqWP7EM2wKJbPY6zPNfyDWAL6fpoTen5Upo4U75dmvWu/ZCLWSWGx7G5WGhido6d0prtioireJixjSOxIOJI/JeMq+BSywtO7mqtN+ann7FFVs1BrR1XvlOfMb7UWcIsd0mlG8p2ahvGP+o8VQjv2FUSJScb7rwDXQlDgePuioeL4RVq7r98+fLtvfq81msSSO7KEtL7XbzRlSGt5b1EqXQqiUvotnzld6+LqSUBeOeNSl6BdOwzOCIyQGbHxgF6HG1eMAxvMBgMBgPBD8Xw6le4LFYV103ZXWew+7XuWAGZEVui1HW4fZk158aRilNTsbyej2wpZVy545GNpPPqNdMqJ0twmX1kgWR6CrK+TsS1rPQuRrC77y4+kmJKtMop/aX7VrZiMYdidLUOnCBvrac6Xu3rvAY7mTjGZZVRMkaXirpdfInxD3oWXMYd2TrZG7N217r2GKR2UfosYAzvl19+aQXnf/rpp6vmulX0r2Og5F/HMguJrSRmpOD3Jnl89O8UW3dreSfezPul9zI9XxyTLKRC8CNzkbIwu+91Epeo71etXSfRNu2BBoPBYDDrJpePAAAQjUlEQVQI+KEGsPXrT6msta4FStkk9kjdCJlXalmh27ItCwV53Xm6a9Rjus/I8BhTc35x1ujxetUyImNlhleyEt1YGXdxdWcpG5Nj1/N0DJVgHIZ1NnqcFBPc1RXpPmQQFbfSxqyFWjPFHCoDt9aQuy9s5loskc1kdVseg1mHLlbE94pZ0eJ2+5SVzHq7Tng6eQVYx+hiuWRVrL9ShlfzVq8///xzy/D0c7Zk0nlh66BdzZtiV9um85S+S87DQ6QWP25913uUMEsMzHmJOJbknXJj5HeN2+o943Wl51w3Fnol2KxY39M5ORIfXGsY3mAwGAxuBD8UwyuUdaPxnfr1ZZyqyyrciUenDEX3HlURHJtJAqwFJ2xc4Hu0vBxzoZWWsvScnzqxnBQXUtCCZ6zliDoHt+3UWTrc39+vDx8+XIked9ZlirG6fcheWHNW7O3jx4/fjcldI8W+dZ54L8nwGMda6zrWwKxJZlO69lSsM+WYXU0ar52ZuHV9mu2Yzusyewu7+A7vxVpv7Eyt9S7++/j4+O1zMvK1rhVnag5T5uiPoGN4R7wciYUk8W39O7X64TNF78Guzq9rBF1I6kOdKtJOsLvLwWALKNdmidnFk6U5GAwGgwFwOobnFCQ0Y4vNLn9EYYXv0xJ2NWeMZTB+4BRCeIzOt52s2CNMKzHW9Mq/FVSDKbiYCq1a1oG5bEfu22mUMgbV4e7ubn38+PFqXahiTWrB1NVQJfUaZks69lRMgXERMiCnH8o1WWzDzQW9AIxrJ6+BjoUqM53uJ61/ZmUyA7Nbd/z+dJl9VCZhPaCrgeQ9cLhcLuvh4eHbWGquNYbHprDMbnVsIymeEK5ezdXbrpU9M4r0mctgPspcCu75w+8y21C5jPLEhLsMX46VHhS+r/vQQ0dPnWu+6zx+OwzDGwwGg8FNYH7wBoPBYHAT+JdcmuWy0ELZaoFSLoYkb9OJuSZ3jQtgkoLTdeFcDAw0p2JypdFJyJj7dMHj3XU5+ZzOhaDn6QpcWVrg3DG7QlPnbnHF/skFc39//y2xQ8egblV2267xMeiu95LuEkojcawu4Sm5pWsN6/kqwYOumNSCR/fvxAL0WlwSAa/dBe6JJLeWin3dWHj/HdI6ZkKNzgm7VnctXirtnN8FXU9VhM7O8HxmOJd8Vyy+lnfnp4LzrnQmiSpTxF6ROqrzmM7tWuAzMiWv6DYMZTDxivdCweujy9GFpOj2pqSYHsM9rydpZTAYDAYDwQ8xPAayNahPCztZUYr060w26BheIRVXdmUQTNPmvi54TNZEuAawPG9q6dEFnBP7dUFmpsZXYsgRy+5MoW5B709npb979+7bHKQ2Tnq8VDjrZLtS6nU3t1wHxQ5qvjpWU/e5GF9iYGtdF9HukiMUqeUKS2dcKyvHiBWuHIbyUBQBcIkIbDRMNuAEgJngcrlctin9LN/QhCcyA5YluVKj1CS20Ik7cH2lRCsHJlRxjXZjZNJaSi7Tv5NABNdJN/4zJUhdcTo/p1eAa4Wvuk/noUgYhjcYDAaDm8Bphne5XNoUZRYusyGms2IYJzhSsEikeJVjCTum5fzhPE5iZ50vnceihe1kengdHHuXMl0sihJwLh05yUF1sdCuEJy4v79f79+//2Zxu6LusuI0JryWl+viGAoppkfhbLfN77///t3Yau26+8J4D2M6TgqJ5QiFznpO1ivHpjGOVLjPYx4RE+A2jM/pe2RTKcVcx3BkDVVZghau63nXeitRoLRgfQdYoK3g84bf6S62mqS/Ouw8Wt1nu8JwVyaQnkXu2ZHKrs4wPJ6/87alNVL32jE8xq0nhjcYDAaDAXBaWuz5+fmKvTkLmCyQDMm160nF24zTOAFjtnJJsmS8Ht2G53WWb4pJdoXASYCVVqE7H6+H21Lsea23ueCckH0rUgZZErh1+3ZWYMXw2EBVpb5Ss9k6Z12HizmlTDQyZRUVr/n5/PnzWuuN4dW+xRpcUfcZK73L4NR9urkt0Gp32btkMUnA3TUv5XpKMUS9hprHuqdsyeWsdBdr7aTJHh8fr2Jt+gxhnJTZfUfWaMpU7rw1nNMu7tcJKOj7TvBiF1NznqzEBvkd6TwnKYO9E55Ox3AsmJJiZHpkfLrPkQxfYhjeYDAYDG4Cpxjey8vL+vPPP1spF9ZXpZiaWkJljaV2Ep11w2yyQpfJk+IvtICc9FZhZ63pmNN1dcw1sc16ZZajWumVvca572TCeH20opwFxbjI169ftxZ0aka61lvsjiwjCefq3ykTjdeuGcX13h9//LHWeps3MnDnHeD6okSWi4/y/xTL67wRPMYRAeAC47/uu0OvQKrD02cAv9uUW+tYcd3z19fXNsPX1WHp2ikGwHYyFLN33zFeW5fZq2PSfY/E8FOtbmJRiiSh18UZ+Szmq2OPfC89qwq6VlNtMmNuTgia2Zr0JLgszfrsjCD4MLzBYDAY3AROZ2m+vLxc1epoPQwz0spaZ4NGtVTq1zv5pck2lM2QtSR/cVeHRSuts9JTLOBI/G/XiLFTZ0gxO86vvpfEYp0FSwuVvnVnDXKO//nnn20chjVaOid1TcWWeG2dJbdjxK4dEbNYayy0HDt1li7WkHAmDlLo1Dh07GtdZ7WmTFLXzJUsgGyE7HetawZXCijF8DrWU/NFEWbicrlceQV0rhkDqs+Sl0PHy+dM+r5yPPqa8hCcpycxSm6n26b1neJy+l5idEc8Symm79YsazTJ8BwzZ8yOLNBlNnfKVDsMwxsMBoPBTWB+8AaDwWBwEzjt0lzrmiqrO41ioHx10kQu3XytN3cEXWdK+Zk+7YoSuQ/BJJxun+RKoJtAXSdpn25MqcA5pe5ruv2u71WXhszPuoAz3Rrd9dzd3a137959m2vKnSnonqKL2blT6B5OST3qGkxj6ES9KQ/GZAm+uuvgXKc+dboN72G6x2tdfz9Td263dpKwAt296kJiOUJtU67NGo+6LXnc5+fnNmnl/v7+ap46+bb6n/KHnXACXZuUVeOY9LUrAE9IJU5dwtvOtXkm8c09B3bCE7wu/X8nTk73f3pvt8+ZUAAxDG8wGAwGN4HThecvLy/R2lzrLc24LCxaf24fBsIZqGWQnSUIui0ZZsExk8TSjkiYpaLUOo8yCVpnTBZwLCcVTrOEoixXl8jD/7vyDs4b75eTqXLX3lnp2j7Iteth4kcVftc+6kkguGaYUOVKaXgf6rxJ0Fb/ZuJEsRmKGOvfTIpI6dvOO1BjrOvhXOi9TN8fJoY4ubXECpgurve55uD9+/ffnZ8F9sp6WTrz+PjYWuzK8Nz3tO4ZnzvFXt36TQk5blteM3EmNX4n0+WK1Xf7urHtEutS2dda+5ZWRzw+qT2VS0Ahg2SJi2u3pd/pKTwfDAaDwUBwOob3/Px8ZSmoRVoWVb2S8VWqsmNA9R7jfInV6HtJAsvF42i1nLHkXCNJ/b+TB0qvrtA9pdWn+GnHElNM0hWek+EVK3Dxs1QS0qHOyTidnovtXxgvcy1QyGbI8I4UHrOI3d1Lbsu0ameRppKFVNTrJLiSV8CV0NA7wHgm58itnSSZ5VhBjf/Dhw/2GLznek5lnTuZKieyXuD8k62TZehn/C53gukEvSfp+bBW/v4lWT93HD4XujlL19WVJRQSO+N1/kgMT+czzXVXynCk5CxhGN5gMBgMbgKnY3hfv369slSUrZGdsU1H156D7UUYc3AZaYzddVlExJksn1ScfiRLK2VSJXayVpYDSvFM1/6ojssGnd1108LaFaLyPLs5pYWo1h5loco7wHY9Ll7CdUUm9OnTp7gvMy9ZvKygtZpi02qR0hJNseqC/k+2lu6/fgeZmbprD6X3LFnWdYz631npzMTm9WjMhTG2x8fHVqbv7u7uKibomtAyS5bSVe5Z5Y6ncOwwsbXuXu4Kzgvu2UGkDE93nN153Ri5D70PbrvkZeOacuLv6RguXsfnQCcQQAzDGwwGg8FN4IfaA3W+fzYfrUy7sqzKaq+MLt2Hlgdrzrj9WtcWDi0DxpkUu/hEV9OSrHOXQUq2wXicqxGjlU6mx/pDZ30m68nVAfJ6+EpGo/u4ayYqS5Nz4SSq2EKo5qDWjjIvZnDyfjBW5GJGXGe0XpVZJCHogrsfZPRkVmT4ekzKq9VrxSa/fPmy1vq+aW79Tem09F3o2h/RsncsjmK+PK6LUTGGu5PxcuLvOu7UXqbGy7Wk42IGb4rH6/n4zNrdW90m1f/p9RLJ09J5YBJLc02KE8i4umzdlGnJ+XPZlUlo2p2Hnw3DGwwGg8EAOM3wnp6ermqA9Bc7CZYWGFfQbVKrDao7dFllyapRFtK1N9JjOAbE8xW6BpNkvWR6LjaZRG9TXZyzJMnKUjaiHo/XkZQQdB/dt8uYen19a/LJzEt9j0yuMntdDDKtmUInrktBaVrNbGSq+7AuLjEx3Z9xJp7PrSHGwMl2GefUv/ldY3yR1roiKW0UU9J55vUVuprLQn23//nnn8PxdtbtKlL8iLE8vQbnbVjrbb6650ViWJ1HKT2jHJtJTK5j6em86TnrridlZ3ZzkTxKvG4X90tskNeg0Gf+1OENBoPBYCCYH7zBYDAY3AROuzT/+uuvNkmhXD58ZZBXXT5MB3dJHGt54ekCA/6Uc1IXAMWqWaDtguL8jK7EVEyu5+N1pe7w+l5KNOgKXDt5L3cM/SwVtHYCuuqW2LkWuiJr3he60ZxYeR2HyVFJNkpRn6XyF/Zw1M8olFzvVxJJSY2tdV1uQTFpQu81XaR0cTKJZa28vigu4JJy6HaqOWK6v3NpMqzAuXelGnrubt0+PDx8Ww9dWQpLPlJBs/7NsMeRgvMC55LHcjJhKVml+47xuZJk6jp3fyG5//WzJODB83buSbeNu2733plysiP36du2h7ccDAaDweDfGKcY3svLy/r7779by41JAkw0cK2ANOC+1rWFVVasS6NlaiotKycfxLGk9kQuFTZZLUwtd8XDZL0MmncFxxxHwVlpSUqM5+kElXn8rqVRsljddl3g3KUtr3Xd6kVBqzwlnrgEBCYTFTsj43aSWGRLlEXTNV3skwkU9D644mUKOLA7O4vKdSwss2DqPoWh9W+uoSOFwDvRAoVrvdStn4eHhyvW0R0/tbVyafSpLIpz4NYq7xnnpxOVPsJqOq+THp9JOm5s6f3uGZKSVpznZHdf3Oe78oru2aJzPEkrg8FgMBgITotHd1I5brsdi1rrWjSav9ZkSE4ANllSR1JvyV4c+0jSYUxDPhJfTJaXO37yi3NczsJhrPWMSHahswJT08YEd99cmyhu40oYuA8ZCL0P3TyxSWhXPMz9a0xskKpjpTRaii93TJ/xX8aFnaB2oeaRbIcxUn1vFwfWe+3ui27rJMzIOu/u7raxmPSdU6Ti7iSZ5UBvDdeQfpbY05kSA16PjnHnPeH96OJyhU5EnsdN5VjdeZgT0WF3fe6Zkpj4EQzDGwwGg8FN4NKxjKuNL5f/Xmv91//dcAb/D/Cfr6+v/8E3Z+0MDmDWzuBHYdcOceoHbzAYDAaDf1eMS3MwGAwGN4H5wRsMBoPBTWB+8AaDwWBwE5gfvMFgMBjcBOYHbzAYDAY3gfnBGwwGg8FNYH7wBoPBYHATmB+8wWAwGNwE5gdvMBgMBjeB/wEjhtYpzsyTHQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYZFlZ5t8vt6rKrL2reqFraLpZRMStZVPURkXgcVQEBJmRkRaVxnV0HBkRFPDBZfQRBhjRdqNtRUFURGVYZGnbVlARkKWFZumN7uqlqquyKjOrKrMyz/xx7htx8otzIyMyIyIj4ry/58nnZpy4y7k3zr33vN/3ne9YCAFCCCHEuDOx3RUQQgghBoFeeEIIIYpALzwhhBBFoBeeEEKIItALTwghRBHohSeEEKIIOn7hmdl3mdmNZnafmZ0xs9vN7K/M7Gn9rKDYPszsOjMLZvZFM2tpK2b28ur7YGZTSfltZnbdJo73kGpfVydlr0iOEczsfNX2ft/MLt3kef2kmT1zk9veYGY3dbjuWN4zZvYk95ucMbObzewXzGyXW9fM7HvN7H1mdtzMVqr29GYz+6aa/f9dtd//3uN6P8TVu+7vhh4d75HV/p7bo/09prof9rryndVxfrYXx9kqZvbM6vf9XFWvd21hXx+o9vGyXtRtauNVADP7CQCvBfAHAH4dwCKAhwL4zwC+GcCmT0gMPUsALgHwTQDe5777PgCnAexx5c8AcGoTxzoK4GsBfD7z3dcDWAUwDeBRAF4J4GvM7MoQwlqXx/lJADcB+MtN1LEjCrlnfgLAvwKYBfBUAC8H8DDEdgEzmwTwZsT28IcAXg/gAQD/CcCzAbzPzA6EEOa5QzM7gnh9UO3ntT2sL9tXygcBXAfg2qRsM203x23V8T7bo/09BvEa/x7W1/FcdZw7enScrfIsAF8O4B8R28amMLPvB/DIXlUKABBC2PAP8UK+rea7iU720as/ADsGebyS/xAfBF8E8F4A17nvvh7AWrVOADDVpzq8Ird/AD9YlX/pJvZ5G4A/3mR9bgBwUwfrje09A+BJ1bV/sit/Y1V+sPr8surzs2r28xQAs67sJdU276iWj+7ztQkAXrVd17LLur6oqu+R7apDh/WcSP7/MIB3bWIfhwAcA/BfqnN+WS/q1qlJ8yCAe3JfhKR3bWZXV/LzGyvTzUJlxvjNjKnjlWb2ETM7ZWbHzOz9ZvYEtw5NJ880s981s/sB3Ft99wgze1tlLjprZneY2Vudae2wmf22md1lZufM7NNm9sJOTrja9g1mdme17Z1m9kdmtiNZ52lm9sHKpDNfnfOXuP3cYGY3Vet+rFr3o2b2eDObMrNfNrOjZvaARRPiXLItTTA/Ymavrs51ycz+1swe0sl59IjrATzLzNLe2vcB+AfEl8c6zJk0k3bxBDN7U/Wb321mrzOzncl6LSbNNrCHO51s/1gz+/PKZHbGzD5TXd9dyTq3AbgMwPcmJqy0rl9ZtavjyT5ekjnHJ1ftd8nMPmlmz3CrFHfPIKo9AHiYmc0A+GkA7wgh/EXNdXhPCGHJFT8fwKcQVTg/bwtm9iEze291Lf/dzM4BeEH13U9V358ws5Nm9o9m9hS3fYtJ05qmvsea2T9V7ecWM3vBBnV5EYDfqj7embTdiy1j0jSzX7Vo/n9kdQ5L1X35vOr7F1THXai+v8wdz8zsR83sE1Vbuc/MrjWzfRtdt9C9xSXHqwF8CMDbcl+a2aXVs+Ro1U7vNrO/NrMD7XbakUkTwL8AeL6ZfQHA20MIt2yw/h8D+DMAbwDwOAC/AGAOwNXJOpcCeA2igpgD8DwAN5rZ14QQPuH293oA7wTw3wDwAfkOACcA/DBiT+BSAN+Gyi9p0c59E4BdiCrhVkSzy2+Z2Y4QwuvrKl9dtH9CfGi9CsDHAVwI4OkAZgCcs+iHeQeA9wP4HgC7AfwigJvM7KtCCHclu3wYolnrlwAsAPg1AH9d/U1V1+VLq3XuA/BiV6WXAPgYgO+v6vHLAN5jZl8WQlipO48e8heIv+V3AfiT6iX1bAD/E9E81Sl/BOBPATwT0QTzCsTf8OUdbDtpZkDTpPlziA/GTybrPBjxOl2HaGr9MsS2dwUAPnSeAeD/Afj36vgAcD8AmNnjEBXc5wD8FGLbfDiAr3B1eSiiqe1XENveTwN4q5k9MoTwuWqdou6Zisur5UlE89t+xDbeEWb2eABfAuBnQwifNbMPInZMfjaEsNrpfnrMoxHvy19EVO33V+WXIZpBb0d8JjwDwLvM7FtCCB/YYJ8XIHYif6Pa5wsB/L6Z/UcI4YM12/wl4vV9MYDvTOpxHMBkzTYG4K0AfhvxmfMTAK43sy8D8HUAfgbxt34t4r35jcm2rwHwI9XyfYj3+S8BeJSZXdWjl1q+0mbfAuC7Ea99HW9GvI7/A8BdAC4G8K1otvU8HcrLRyA+9EP1dwzxwfUUt97V1fe/7cpfiuh/eUTN/icRH/yfAfDapPxJ1f7e5tY/VJV/Z5s6/zyAswAe7sp/t6p/rQkOsXGvAvjqNut8GNE2P5WUXQ5gBcCrk7IbqrIrkrLvrOr/XrfPvwRwa/L5IdV6N2O9meCJVfkP9ELmtznH6wB8sfr/elSmCQDPQfTt7UXG5Iio+q7LtItXuv3/LYBbMud7dVLG/fu//wDw0DZ1t6pNPQ/R9HqBq1+LSRPAjQDuhDOzuXX4ez48Kbuwai8/V8I9kxzjKVUd9iI+oBYAfLRa53uqdZ7aRXt7Q3XOl1afr6n28bQ+tvFakyaiwljFBmZzxA7DVNV+3pKUP7La/3OTsjdXZV+blM0CmAfwug2OkzVpIj7kA2JHgWW/WpU9x7XTgKj455LyF1flFyVtdw3Ai91xvqXb3wNdmjSrc/ksKhNmcm4vS9YxAMsAXtjt792RSTPE3ulXA7gK8S3/McQezbstHz3zZ+7zmxEbxeNYUJmEPmBmxwGcR3yIPAKxh+fxsvY4gC8A+FUz+yEze3hmm6cB+GcAt1o0HU5Vppt3I/YMHtXmlJ8C4F9DCB/NfWnR7HglYuM+z/IQwq2Ijtqr3Ca3hBC+kHz+dLV8t1vv0wCOWCVlEv48JD2qEMI/IvbyvQO+LZWZYir5q+sZ5rgewJPN7GJEc+bbQwjdOvff4T5/AlGVdcITADwWwOMRX7iLiCr3Iq5gZnvN7H+b2ecRHfkriD1XQ1RqtVg01z4RwJtCq5nN89kQQiMQIYRwH6Iyf3BSVsI98+6qDvOISuIDiFaArrHoKngugPeHpnXkLYi/Y1uzZqZdd2q56oTPhBD+I3PMx5vZO83sPsSX4gqAb0D+t/CcCImSq9rbF9D5vdAN70yOcx+iwr8phLCYrMPnEa01T0W8Z97krumNiL9HqgR7zcsQX7a/VrdCiG+9fwPwc2b2Y5Vi7YiOhyWEEFZDCDeGEF4WQngyopnoEwBenrGb3lvz+VIAMLMrEc1KCwB+AM2H2b8jL0mPuroERPn6YUSz0i1m9gUz++FktQsRf5gV9/fW6vsL2pzuBYgvlDoOIDaIo5nv7kE0haaccJ+X25RPodVE4a8ny7oNy38+1l+LXDRkHe9HPN+fQrwhru/y2ECM0Es5B2BHbsUM/xZC+HAI4V9CCG9FjHa8HNGkQd6I2At+HWL7eCyAH62+a2/qiL/pBNr/7sSfBxDPZd0xCrhnfrSqw6MB7A4hfEcI4fbquzur5WXojO9A/A3eZmb7zWx/Vf5uAE83F4rvuCpT517Rco+b2RWIgVyziGa/r0W8Du/Hxu0M6LD99IDVEMJpV7aM+ucRj39htfwi1l/TZcT7td2zc9OY2cMQ1eZLAcxWbYA+w51Vu+A76xmIkc4vBfBJi377l2TEwjo23RMKIdxtZr+HaP99OKLPglyE6F9JPwPR1grEsNXzAJ4ZEh9U9RA4mTtc5vhfAPB91Ql+JYAfA/AGM7sthPBOxB7tfQDqxvJ8ps3p0b9Rx4mqThdnvrsY+Qa9FS6qKftYl/v5G8Qbk5zrdMMQwpqZvQnR7n8fgPd0eeyeEkK418yOofKvVX7FpwN4RQihEcpuZl/e4S5PIPYsNzW2rxPG8J65JYTw4Zp1P1zV6zsA/E7NOilUcb9Z/XmegxiOn+PfsL5d95KW64jY2dqNGH16jIVmtrtPdRg0x6vlkxAtKZ77M2W94GGIPvq3Zr57afX3pQA+HUK4B7Fz+yIzexRifMMvIwqON9YdoCOFZ2aX1HzFMRI+Gu057vNzER8m/1x9nkU0AzQak5l9MzYh6UPkY2j29OnofFdVvzsqZeD/fM8n5T0AHmdmX1lzzEXEm+zZqVnQYqTT1yH6eXrJdyc9G5jZEwEcQRxD1DEhhOPuGvhAh434A8SX5qvC9gURAGi0yUNo3nw7EJWx791fndn8HKKzvkFlVroJwPPMRUduoX45xvWe8cdYRgzK+HYze1ZuHTP7VjObNbMLEc2pb0cc7+n/7kEbs2YI4bSva6f13CSMVm64M8zs0YiBOv2EHdQtt88NeA+avsJcO7h9ox1skn9B62//1Oq7P6g+t4w1DCHcHEL4GcS4gnaBLh0rvE+a2XsRTSq3Ijqpvw3xDftnIQRfiW8zs19H9eJAjMK7PvF7vAsx7Pg6M3sjoh/i59HszbbFzL4CsZf8FsSIuknEB9t5RLMCEKOLvgfAP5jZaxB7p3OIN/Q3hBCe3uYQrwHwXwG818xehWiGOoSoIF5U3fg/j+iT+lszewNij++ViP6M3+jkPLpgD4C/MrNrARxGNEl9FolZ0cx+H8DzQwi99F+so/JLbcpH0wMeb2ariJ20yxCV5ipiBBpCCPNm9iEAP21mRxFV+guQV2w3A/gGM/t2xIfpsRDCbYhRp38P4INm9huIJp0rAHxVCOHHu6xvafdMjl9BVJJvsTj0428QrR9HEBXrMxHNmN+L+Cx6TQjh7zN1/0MALzazK5wvfLt4D6Ka+GMzey3i+bwS/R/4fXO1/HEz+xPE365bK8+GhBBuNrP/A+B3qhf5PyC+bB+MGN/w+hDCP9VtX5l8r6w+HkCMsP7u6vOHQghfrNZ7IWKg0hNDCP8cQngATixYc9jSrSGEG6qyixA7R3+C2EZXEYOmdgH4u41OrpPImRchhhffjhjFtQjgo4j21plkvasRewbfWFVoAbGB/yaAXW6fP474IDiDOH7nydXJ3pCs8yTkB7heiJi54RbEt/oDiA+qp7r1DiDexLci2p/vQ/zxfrKDc74Q0RRztNr2zuqYO5J1noaoss4gvujeDuBL3H5ugBuojGY04g+68lcgiXhM1vsRxHEp91fn+w4Al7ttr0PlqunVH5IozTbrrKtzVXYb8lGaD8ttm7kuV2f2z781AHcjPjwfl7mu70QcknAfgP+LaH4KAJ6UrPfIqh0sVd+ldf3qat8nq9/10wD+V7vfs+acx/aeqTtGTfswxEjZ9yOajVcQOxJ/ivgSBeJD+3MArGYfj6iO94petu9q3xtFab635rvnVdfyLGKH+FmIgUafdu0sF6X5uZpjbRjNiBgAdTeaav9i1Edpns9sfw+A33NlT6u2/3pX/oKqnS0h3lOfQvSPX7JBHRlNmvt7bma9J7TZVy5Kcw4xcvjm6n6Zr67fsze6flbtoCdYHDD8RsSw5s9tsLrYAIuDy28F8EMhhDr/hRhhdM8IMTg0W4IQQogi0AtPCCFEEfTUpCmEEEIMK1J4QgghikAvPCGEEEWgF54QQogi6GqQ8uzsbNi/f//GK7aBqc7SlGe+zKdD24yfkdtwX53so906/jv5PvPXYH5+HktLSy357HrRdsR4c/LkSbUdsSnq2o6nqxfe/v37cc0112y+VgmTk838yFNTsRozMzMAgImJiXXrrK7GLFZraxtPwVT3IsqVs4xL7t8vc+uUyrlzzfSbZ8+eXffd1NQUrr8+n1O6l21HjCfXXntttlxtR2xEXdvxyKQphBCiCPqWd3EjqNqApqJbWYl5f72yI1RXuRkgvPLqxJTpVVud0ttoPyWR/ia6TkKIUUIKTwghRBFsm8JL8UrOB5xsMKdflnZKwyu6OmUntdJKqub4//nz5xtLXbPBQmsIrSTp//6+kSVDlI4UnhBCiCLQC08IIUQRDIVJ0wejcOnLc0MDaNLxphgfxJIOg6gLVvHfiya5a8UgI363srIy9MM2UtPfRgzTubDe09PTAJpDeHbujPNj7tixo7Euh/lwG34m/A3pSsj9pjRTLy8vA2gOR1lcXOzJ+QixHUjhCSGEKIKhUHiEPU4fxNLJNr1aT+TJDf7n/+z9b2fQilc6VDVURF71ABtn9MmdM8uohKiAuKQy2sp1SNUa688yLnft2gUA2L17NwBgdna2sQ3Vn1+SuvMEmufFpAJ+SYV38uTJxjbz8/PdnF7PSI+7b9++bamDGC2k8IQQQhTBUCk8MbzkfHgso7oJIQxE4aVqZm5uDkBT8XBJJUTlR6XEJbDer5uDao2qB2gqnTNnzqxbLi0trfue18RvD7RaG1gPX+f0XHmeXO7du3fdkkoPaF4DKjvul+qWx0+HkxCqdX9+VHb8nscFgLvvvhsAcPz4cQySY8eONf6XwhOdIIUnhBCiCKTwREf4yL70/0EN1KeKSXvzLKMq4tL7uHLqiQrIRzF65ZomzKaSO3Xq1LolVRr9gjlfoVd2PvKSdU7ryPpTUfHcOXsAy6n80v3V+fCo6KhGc9GodRHSZM+ePY3/Dx8+DKB5bagK+4X3HQvRKVJ4QgghikAKT3QEVVDq78mpvn5AxePVXFqvujpRBVCB+SmN0m38+E+eaxrNyf1QRfGzjwLNzffoU9kRbuOX6f59CjGvGlOfoS/j+bCc14DXJt2WZVRrrCv9kD46Na0L1We/FR4jRNM6CNEJUnhCCCGKQApPdIQf1wY0VQDVx/Lycl/8eNzn6dOn1y2Bprpg/bwC85MLp/4s7/fjNl6RpWqNZVRCdVGbqZLkunXZgLh/1i1V0X6cn1eoucwnXpX5bfm7cdtUkfnsK3U+vHaTI3cyNddWoMq95JJL+rJ/Mb5I4QkhhCgCvfCEEEIUgUyaoitSkyb/pwlubW1tU3MXbgRNgv0OQ6dp0yddzg1W5zo0Fy4sLKz73A3c5oEHHlh3DKB1QDuHQfD4fqB4ui639QPfRx0OyRCiW6TwhBBCFIEUnugInzQZaAYnUJGsra2N9NRKuSEL20E6zIMJknndGdjCddIAHiFEe6TwhBBCFIEUnugI+ojScPS6gc3DhB/s3c0EsMME/XFcbgX+XqN6LT7ykY8AAK688sptronoF/0a2jKaLV4IIYToEik80RE59eaTDs/MzPQlSpPkBoJ7WE+fxLmf9Ro1RlXZkY9//OMApPBE94x2yxdCCCE6RApPdARVQWpT9ypq165dPVUPHN9HX2Fu6h2OkWMUI7dhNOOoqxnRhBPNXnDBBQDWWx02msxXjBZ9S0vXl70KIYQQQ4YUnugIqqucL6xfUX8cF8eefK4Xz0wjacJlYH12FDEeMEKV7YHZbYD1kwILUYcUnhBCiCKQwhMdQcWU5rOk4qL/bHV1tSe2dypG+u64f9YhPQb/95PEivFhbW0Np0+fbuQR5bRA6ZhEKTzRCVJ4QgghikAvPCGEEEUgk6boCE6VwyXQDP2n6XFqaqonA7y5D5owaeKkaXNubq6xLtfZsWPHlo8rhpPV1VXMz883pk+i2XpYkn2L7WVmZqbjgDkpPCGEEEUghYdm8MUwJj8eFniN0nB/qj0OCZiYmOhJ0AoVnleVuQlZxfiztraGxcVFHDt2DABw4sQJAMCRI0e2s1piSOjGqiSFJ4QQogik8CBlt1mo7FKF10t27drV0/2J0eT8+fM4ceJEQ9kdOHAAQNN3LMqEz5vp6emOVZ4UnhBCiCKQwhNdkab38lPvKIGv6AfLy8u47bbbsLi4CKDpwz169GhjncsvvxyApoEqESk8IYQQwiGFJ7oi9dMxapJj4CYnJ9XDFj3n3LlzuPXWWxvtjT73NI0c/Xkaj1kOadS2FJ4QQgiRIIUntgx7Wv2atFGItbW1Fh/xnj17tqk2YhjYTFS4FJ4QQogi0AtPCCFEEcikKTYNTZhcrqysyKwp+sLExERLYMLx48cb/19xxRWDrpLYZvis6WYeTik8IYQQRVCMwksd3pxuRmqke3jtgNbrd+bMmXXfC9ELJiYmsHPnzsY9TKWXKjxRLktLSx0/d6TwhBBCFMHYKzz2BtMQViWL3jxMFJ3C3pUUnugXU1NTLQovbYu8p5XerhzOnTvX+F8KTwghhEgoRuGtrKxsc03Gg7RXzV4Vy7pJ8SNEp5jZunZFa82ZM2caZeztz87ODrZyYqSQwhNCCFEEY6/w5FPqDVRxaWQmVTPLpPBEPwghYG1traVtpW3x5MmTAKTwRHuk8IQQQhSBXniiK0IIjb/z58/j/PnzmJiYwMTEhBSe6Atra2tYWlpqfF5dXcXq6ipmZmYafydPnmyoPCHq0AtPCCFEEeiFJ4QQogjGPmhF9AYO7E2DgGi+TAf7yqTZPdPT0wCa11aJEdYTQsDZs2cxMzMDoDn/4qlTpxrr8BpqAHp/4PUcxrSMfthKO6TwhBBCFIEUnugI9uhShcee9vLy8rbUaVRhb5kh9F6NpIP7FxYWBlexIcXMMD09jbNnzwIAdu7cCWC9Er7nnnsAAPv37wcAHD58eMC1HG+G2erQzcznUnhCCCGKQApPdERO4fmy8+fPD5Vtf1igf4mKmL6oHTt2rCvPJUUmi4uLAIbLdzIoqPB4XZjwIO3Z33vvvQCAQ4cOAQD27NkDoKkGhQCk8IQQQhSCFJ7oiE4UnqYHakJVBzSVHBUcrxs/U+FRsaTbsozLNDKxFKampnDo0KGGimMbS33H9HVyHSq8Bz3oQQC68/OI0WJ1dbVjy4dagRBCiCKQwhNt8X6TtCfFyC32tJeXl4v0MeVIla73OfmozHZJkan2qBL5uaTprqanp3HkyBEcO3YMQPP6pL5OTg9EpXfHHXcAaF7zgwcPApBPr3Sk8IQQQhSBFJ5oC3vRuSwg/J/Ls2fPyodXkbtOhCqD15bjy3jtctfQ/w4lMTMzg0suuQSf+tSnAOQjVb0/mcsTJ04AaP4Gc3NzjW34P9WzGH+k8IQQQhSBFJ7Iko6tA5p+ulSteNUhH15nUNHRd0eFQb9c6p/zKrpEpqen8aAHPagxfpH+ujTy0ud65PVieyz5+okmUnhCCCGKQC88IYQQRSCTpshCs5E3qeWCMWjuVGqx7jhz5sy6pcgzOTmJgwcPYu/evQCA+fl5AOuHc9Ck6Yd8+Gmt0vY56LbKe0pBMtuHFJ4QQogikMIT62CvN1VtQD5knuuUNAhabB9MDJ0LoGJAi1d6DGzxad3Ssn6S1pFKnnVjSjkxOKTwhBBCFIG6GGIdvvfshyfkhiUQJegV/eTIkSMAgAceeADA+rbIwfxe0fnk24NQdSmp9YPH5rCU3bt3D7QuQgpPCCFEIUjhiXX4aDb2ojtReCWmvRKD4/DhwwCaai5ti3X+MD8FUxrFSb9fP/AD34GmypTvbvuQwhNCCFEE6moIAE1fA1Wbn4LFK710HY29E4Ng//79AIBdu3YBaPrC2kGrg1d6aVk/4HFTvzYnpRXbhxSeEEKIIpDCEwBax915RZdLbOy/kw9P9BNmKLnooosAAHfddVfjO58cOjfubpBwol4xXEjhCSGEKAK98IQQQhSBTJoCQNM86U2aNFfS5MkEuOn/3EYDz8Ug4PCEe++9t+U73wa9aXPQA8/FcKEnlBBCiCKQwiuY3BCDOkXHz+lUNn4Iw9TUlHrQou9Q4aWpuThlEPHKLjdMQJSHfn0hhBBFIIVXMFRtQLMHTIVHZUdFx8/tBvsqZZIYBEwtdvDgwUYZ22mdhWHcLQ+581NCiFak8IQQQhSBuuQF4qf+Scu4pJJbWlpat0xVoaefyXiF8HBCWKA5ZRAtFFQ8HABO68O4qp6cb5L3MhNm130edSYmJjpW8FJ4QgghikAKr0Doj0vThFHR0RdCRcfPi4uLANarQp9KrJuelhBbhSnGAOC+++4D0IzWpIphe+TndHqgcSKn1ujr5DXwVhyvflPSaOxhZ3p6WgpPCCGESJHCKxD64dKIyzpFx3Vy0ZlUePLdie3mwgsvBNBst1QtfllSUmdacHju/Ownd04tPUzQPTc3t25bbnPq1Kl+V7trpPCEEEIIhxReQXi1trCw0PiO/7OHTMXHcqrCtCflJ9XspqclRC+hP+/o0aMAmpPE0vrAdllSphXvs+sEWm2YRYk+T143TmJ7+vTpntVzs/jfthPK+fWFEEIUjV54QgghikAmzYKgeZLDEmi2TP+nqcKvS1NHaj6gSYEmzR07dsikKbaVBz/4wQCa7XgzZq+SYQCLN/3yOrZLPDFoGGAzOTmpoBUhhBAiRQqvABiIwiV7v6nC43dUdlzHDy5PB6nyOyk8MSzs378fQFOJcPC1Ept3R13wSjoB9LDQTSCSFJ4QQogiULdnjGFvjGqNg8r9EIS0jEMW2EOmTZ8DdtPUTByMWlKotxhu2Bap7NhelRxha6TWoGEhHTDfaVJwPamEEEIUgRTeGMNeGZWej85MB4/6QelUeD5KM/WF8H9+Ny7TjYjRhwPP2UbHNWl0vxnmezp9NknhCSGEEAlSeGOIV3ZevfH7NCG0V3KMzuKS0Zep3Zy9aHL27NmWqE4htgOO0RLjC1Xd8vJyx88dKTwhhBBFIIU3JqQ9nI0UHlVaTuHRd0dlx14UP6f4sU3Ly8sd29KFEGLQSOEJIYQoAr3whBBCFIFMmmNCOsSAZkm/pNmTJs005JjmTZYxSIUmSm6bmiy9SXN1dVUmTSHE0CKFJ4QQogik8Eac3FQ/LKOSY8AJP+cGirOM2/qZjjW4XAgx6kjhCSGEKAIpvBGFiosJoNNpO3xaMO/Ly0Hfm/fhkdy0P1SM8tsJIUYBKTwhhBBFIIU3ovg0YWnKLz943KfdqSsHmj47H53J6YHSyEzvGzQzqT0hxNAihSeEEKIIpPBGDB+VmfPLUZV5Bdfu80Y+Oyq/dLJX+vtYBz8uTwghhgkpPCFEQy9jAAAUVElEQVSEEEWgLvmIQDVGNeWjKdtNj9GJX437SRUc0DqBZrovn1hamVaEEMOMFJ4QQogi0AtPCCFEEcikOSJwGIIfUuBNkGkZlzRHerMly3Pf0TTZyQB0mTGFEP0kfVZtJb2hFJ4QQogikMIbcnwi6Nw0PR6v6PiZAShUcalaq9sfy7lMB7jv2LFj3X4UtCKE6AepqvNTl3WDFJ4QQogikMIbUuqGGeR8dnXlfoofnx4sHSjuj8dt/SB2+hBzTE5OZn18QgjRK6TwhBBCiA2wbt6SZnY/gNv7Vx0xBlwWQjjsC9V2RAeo7YjNkm07nq5eeEIIIcSoIpOmEEKIItALTwghRBHohSeEEKII9MITQghRBF2Nw5udnQ379+9vKWc2EACYn59f953P8uE/p2U+B6TGdI0eJ0+exNLSUssPNzk5GaanpxsZE7hkthYA2Lt3L9cdRFXFkFHXduqeO6I9PiDRZ03KrVe3zkb77obcc93n8u32HVDXdjxdvfD279+Pa665pqX8pptuavx/4403AgBmZmYAAAcOHAAAXHjhhY19pEug+aDjcteuXQCAnTt3dlM9MQRce+212fKpqSlceumlOH78OIBmMuzHPOYxjXWuuuoqAM0B8qIs6tpO3XNHdAeTRjA9IOfWTJNJ+OT07JjyBecTUaQJK3zyCv/Zv8yAZueW9/zc3ByAZkeY74KNqGs7Hpk0hRBCFEFPUoudOnWq8T97DVR4fioan9g4VyZT5vgRQsDy8nJLEmz26AApOyH6Cd1IVG0510GdudOrNa/80nU2Mou2S1qf228vkcITQghRBD1ReEtLSy1lfgLROqWXfufXFeNDCAErKystPgL5aYUYLHz21k3yDLQ+g+sUVzptj/f71R033bevg08M3W6i682gN4sQQogi0AtPCCFEEWzJpEnpmpsjzZsw243D8+GqMmmOHzRpese2fmshBktuPkwPn+n+Gc/7l2OvGYSWruPX5TrcJnVn1dWhX88FPW2EEEIUwZYUHocg5OAb2iu7XNCKd2ZqyqLxI4SA8+fPN3qMHIKwe/fu7ayWECKDV4FpRiQA2LNnD4D11j0qubrB63xfpJm5uI1/5vfL2ieFJ4QQogi2pPD49k1DyxlWyp4Be/LtcqTl0tSI8WN1dbWlJyeFJ8Tokvrg2vkEU9JhbCdOnADQ6jPs17tACk8IIUQR9GTgeWpnZUoxbwNmORVfLrVYLoJTjBdsK2wHGnguRFnMzs62lFHp9dvKJ4UnhBCiCLYkpajauASa0Tzsuft1clGa7O37SCAxXphZQ73Td6e574QoF6/2FhcXAfRvAgEpPCGEEEWwJYXHiDtO5gk0x2dw2hd+Zo+eE79ysleg80n+xGhjZo2eG1V9mqlBCDF+MPLSTw0GtI7B9lMY9RopPCGEEEWgF54QQogi2JJJ8/777wcAnD59ulFGUyZNllyy3M+ELsrAzDA5OdkwWbBdKFBJiPHGz3WXc2PQzOmHtbWbs28z6K0jhBCiCLak8BYWFgCsdzAySIVLDk/wqcVSx2WaTDS3Dpc+XZkYHcwMMzMzjd/w0KFDAPKDUIUQ4wOf57Tm5Kw6frqhXArKntSlp3sTQgghhpQtKTw/yDz9nz15PxGsn0AQaNppuQ2HKXAbTRc0+pgZduzY0fj9H/rQh25zjYQQw4JXf0oeLYQQQmyBLSk876cDWv1stMFycDpttLmBhXy78zufhqxf6WZE/2GUJtX6kSNHtrlGQohhpV9R/FJ4QgghimBLCo9TtqeRdlR2HE9BVcY3tp/oD2iqQh+tSV8eFaSiM0cXJo6++OKLAShptNg6qcVHfn7RCVJ4QgghimBLCo8KLE0ETQXnx14QH5EJNJUbe/1MMK0sHOMDozQ5/k6IrSJVJ7pFCk8IIUQRbEnh3XHHHQDWT+9Dvx5VG5d+XEUa2cntmW9TjB+Tk5PYs2ePfmPRF2hR4nOF0eCdTD9FS5KPIRDjhxSeEEKIItALTwghRBH0JLVYaqbiVEE0U9KkyWEIDFZJA1Jk5hp/JiYmMDc31whIEmKrpMMS/BAmPme8SZPDpYBmgJ1MmeUghSeEEKIItqTwmAD4zjvvbJRRyTFkmD0s9qZIOvDYpxIT4wenB9q3b992V0WMCemwBKYupOqrG7LAoDoxGvB3TYMcPbk0lXVI4QkhhCiCLSk8srS01PL/7t27AbT2uPg5fSufOnUKQNPfx1Rl/UogKgbPxMQEdu7cqQlfRV/g84T+uG56/WJ44e+Y+mK3kmJSbxQhhBBF0BOFl9pXaXNNVR/QjJqiny5nS6ei49tcqcXGh6mpKVxwwQXbXQ0x5nQy0FyMDrQMppG0XuF1YwmUwhNCCFEEPVF4i4uLjf/9uDumFKOyo9JLx9D47zQN0PgxPT2NSy65ZLurIYQYAbxSTz/zfz/JeCdI4QkhhCiCnkdpEr51qfBoZ/UTw6bfUekNKjrTR46K/qJxlkKITvCTDaSf/XfdIIUnhBCiCPTCE0IIUQQ9MWkePHiw8f/nP//5ljKgaT6kWSsNTKEJM50FvZ9w6ASPN6jjCiGEqIfvCb4TGPyYpqbcimtECk8IIUQR9ETa5KZ8YeioD1LxASpA66D0fpAmk+X/UnZCCDE8+KTfuQCVusTgnSCFJ4QQogh6InFSfxwVnZ8miG9qP0wBGEy4etorUMoyMW6kQ2u20gMWYjvhe4GpxHLWOL5bNpOgRApPCCFEEfRE4XEqIKCpnvzgcR9tk0bd5NKN9RpNNSTGmbR9a2oc0Wu8pY6fU2uCj9Pwz/Ncog+/X/8uoMUwfV9s5T2ht4AQQogi6InCS9+4Bw4cANB8I/Nt7+2tac/AJ5gWQnRHqup4H0npiV7BZzzbVs5P7CMq6xReThX6iHkeh/vMpaLcDFJ4QgghiqAnCm9hYaHxP22uzGbiozN9T8H/L4TYGlR2vje+laS7Ynyg9a2Tcch1CfZzfrSNnuPdKDPu3/sFga1NHyeFJ4QQogj0whNCCFEEPTFpzs3NNf6/6667ALSaMmlmYcoxmjyBpkTV0AEhegfvOd1XIoWmzFwSEA9NioOeO9QHXm3FjJmiO0EIIUQR9HxYwgUXXLDuO59iLId6ohvje1pCdIqCVUSOdsMEPJ0MIt8MdSrTTyfXq0T/esMIIYQogp7Pj7Nv3z4ATV/d0tISgNaegNRcd0jZiU7xodxM98dw9OXl5e2pWI/geUm5bg5eN7aDVD3lpm8DWlND5tKHdTOEwR+vrrzX7wm9dYQQQhRBzxUeo2mYYoxv6DQqE1jfO1NPbfxZXV3F/Px8wwIg+ofvpXv/B3vro5p6TNaOzeET91PhpSqqTlH5JAbcx2YGoOcm4+Z+Ookcbbe/jZDCE0IIUQQ9V3hk586d65ZMP5bzH6jHNv6sra3h9OnTUngDwI9rzaVnGmVyPjw9QzaGqozWts2oM1oLuMxZCbaSKnIzbbSbSNHxuAOEEEKIDeibwvOkk8SK3jEq4/PW1tZw5syZgWdsKIU0E4XPSuGv9bhMH5T6Jnkuigdoxd9zfpJuft4Mo5b4XwpPCCFEEQxM4YneUjdOZlhZW1trjMkUm8f746hycr6PuuwV9OWMChMTE5iZmWn4/6niUiXLc+W5Dfv9MEi8sisZKTwhhBBFoBeeEEKIIpBJs0d4U1O/QqZpyuTM8jnTDY89TIEsIQSsrKwoaGWL1IVt5wbz+rZBc9+oBXaYWaO9A62JhVNo4qX5kykOhwmf6k3m18EhhSeEEKIIpPB6RF2vOsWnemJPm+U+/VoODuT3+0x77ezV+sl3txszw7lz5wAAu3bt2ubajCb+t+TnVAF5hc/PvPajRggBq6urDWXE9p1aCfxQDK+Eh0np8Z7lkr/LsNyn44wUnhBCiCKQwhsAG4WQ8/Ps7GxLGe38PqTc7yvn2/Hh58Pg2ztx4gQAKbxek6bsG/Xpf+rwPrv0s0+n5u8Hrpsqve1SVByeQ2vNuCQCGAWk8IQQQhSBFN4AqYuOy/VK/bpe6fllbhJHLtlz7CQysp/qz8xw+vTpvu1fjCdmhomJiZZ2nbZnqiSW0afprSu5aE/60AatjNslcRb9QQpPCCFEEUjhDQD2Put8dyS14dcpOSo/+iJydn/2GLlk79ZP2pgbu9UvzAzT09ON+m9mosftIhcBy2s6aslzRxG2HaqznKXEKzyvBvl7pWqqzvIxaKU3TONlx53hf9oIIYQQPUAKr0d4FZfzL7Anx3X82L20p7fRGLo6xQc0I9Z8VhOfBSatY7+zb9APw/OZn58HABw4cKCvx90KXl0DTR+Q/C7bR25CW3/f+SjmXJv3kc9cbkbh+eMr4nI4kcITQghRBHrhCSGEKAKZNHuEN0umqY5yDvPcNjlzC6kzOebmOOO66VCFdP85s+sgTDCpSXNxcRHAcJs0eX0UmLK9hBAa6cWA5oDt9J5gm+Zv5VON5VKLcRuuy+EJuQTwHu/CYNoz1pH34zClNBNSeEIIIQpBCq/H5BSX73XWKa1UZXFdOtA5SLUuhDkX8OJTi+USTQ8KTvHC81hYWACwPqGxZmQWORjwxPZcN8wHaN437dZJ9wu0WmDq7pNcIJo/noJWhhspPCGEEEUghddjctME0Y7vJ670foacSvMDtL2/L5cQ2tfBpxgjg+yFTkxMYGZmpqHo2Fs/c+ZMYx0pPJGD1gHeR95fB7ROteWtKfyc83V7dZYeF8gPT6HlpU51ync3nEjhCSGEKAIpvAFQN9UP1U67lEk+kswPSM8NgK5TgduZxmtiYgKzs7ONc2YPOE0mvXfv3sa6QpDJyUns3r274fdNywnvIZbRWlAXiZn+79PEdZNUwFtixHCjJ4sQQogikMIbAGmvEmi177ez93NSWB85xl6oj8QEWhVep2P6+gn9MDyfU6dOAWhOhgk0/SIcZyUEmZycbLQdPx4PaI14pqLzyi9VhX7MrI+4HNeJdEtGCk8IIUQRSOENOakCStm1axeAZm80p/TIsCQ6npiYaOlppz1u+mik8Jr46FyfGNxHGgKtUcGjTggB586da4mETH293mfHz1SF6b4Irx3HhtKXx2ucRhCL8UAKTwghRBFI4Y0o7H1S6aVj6rw/o86XN0jMDFNTUy0979R/ySmDDh06NPgKDgG5HKfEZwUpKSpwdXUVCwsL2LNnD4DWMXZpGa0DbF+8P3LjY/k/rShsm7y3qCiVNWV8kMITQghRBHrhCSGEKAKZNEcUP2VN+tmbYGgG88MjBomZYXp6ulE3LlPTHE1UNG3u27dvwLXcXnImZ2+6rAtOGmezWwgBy8vLLYE76bCB3bt3A2g1ZXKZS8HHazY3NwegadpkEAs/j8u19Ukr6pLMp9/xueKDf0YVKTwhhBBFIIU3ovgw7BSfUqzdkIVBwgTSQLMXndafSrTUxLu5JMWeEgdDhxCwsrLSEoSVa9dUJGxLbG+5BOpsZ1QvVHoMWmEAzHZaRnoJz9dbWXIJtdkG+ZzJTVI9ikjhCSGEKAIpvBGDPVbSLtFyLhR7u/HTt6Q+KvbKhUgJIaxrw2zXadv394FPE0alkrY3Kjf6+aj0mMR8cXERQDMhwjDdR5uh7v5KVZtX0bw2o67siBSeEEKIIlCXekTwUZk+tVSOYeyR+ki7tGfufY/0OfiJckVZmBnMrOH3pW8tTUFXdz/4NHVULABaJiOmwmO5j/j00xONGj41W27asHFRcnVI4QkhhCgCKbwRw/fAchF9uTFuw4KfkDM9H35HZSeFJ1KovLhM24WPSGbb8YmmUz8W1R8jXxmlSSXpx+eNusIjvOe81agEpPCEEEIUgRTeEJCzm1O5+XFFPhotNz6Gvdxhnh6m3bRG/G6Y6y8GRwihMRYPaCquVK1RldHvRsVH9cby3JRCPhsLt/FRmlwfGJ+xeaUhhSeEEKII9MITQghRBDJpDgCaUWiq8/PTtQsu8aHE3oTJZZpyatRNgSU600V71tbWGm3cm/mBZgAKTZu5tFnA+nvDz47OdX0ias7DR1MqAJw4cQJAuWnwRhUpPCGEEEUghddjvJpL//fBKVR27QZ7+m39Nn6Q9ihTNzBWlA1Ti/m2n943VGO8D5gAmqqNy3ap+Nj+qBY5PVXuHuN+Tp8+ve54arPDjRSeEEKIIpDC6zE51eYHv9b54XKTobbbLzD608X4ZNhC1MH7hm0+lyaMSotDCbiuH3IAtKo9+gTp02MS6Rx+mJBXfGI4kcITQghRBFJ4PSbnw/O9QG/n91GbKT6S009kOYwJoruhnf+ynb9FlItXekAzOnN+fh5AU6Wx3KcaA1qjgana/OSn9OWl6/t71rdjKb3hRE8UIYQQRSCF1yN8bzGnXKjSchNYdgp7qooGE6WTpvdiZKX35XHsHNOEMZozZSN/OZNIp/5mP7my98N7ZSmGAyk8IYQQRSCFt0V875CqrV1CaMLeoF/mth8Xn50QvSK9X6ioOGUQP1Ph0aeWbsMoT+9b96qNvr3UikO/nl/XZ3h54IEHGtvo3t1+pPCEEEIUgV54QgghikAmzS2yFZMmP+fmr/NzwskcIsR60vuF9weHKnDJIBaaNnPzL9YNF2KQSu5eZpDMwYMH19XFux7SfZ48eXLdd2LwSOEJIYQoAim8LcLenx+WkPbsNlJrfrhC+v+oT/UjxCCgcvPDABi8wsCT9N7jvUsl560zXvml97SfWohpyPy6OTUnpbd9SOEJIYQoAim8HuF7a6niq1N0OWVHpOyE6ByfmN0ni+Yy9cf5weLeZ8d9+oln0214b3M4BAepU3G2m5iZk8gqicTgkMITQghRBNaNkjCz+wHc3r/qiDHgshDCYV+otiM6QG1HbJZs2/F09cITQgghRhWZNIUQQhSBXnhCCCGKQC88IYQQRaAXnhBCiCLQC08IIUQR6IUnhBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUwf8H2Asm0S9/E9UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Zddd3/nd79VcKpWkQlUqSZbkKWCbtptuSAg0MbAMMW7GrCziACEGuzGBJCQdd0IcBgNmDIOBGENjghtinMU8tzGBmCEOgTSDbcA2llSlkqoklUpVUqkGVdV7p/8493vP733Ob593b1m2pLz9Xeut++655+x57/Obf6XrOjU0NDQ0NPyPjpUnuwENDQ0NDQ0fCbQXXkNDQ0PDlkB74TU0NDQ0bAm0F15DQ0NDw5ZAe+E1NDQ0NGwJtBdeQ0NDQ8OWwFP6hVdKeUUppZv9/bXk9xeH318Srr+llHLkKus8Ukp5S/j+qaEO/91fSvn1Uspfv8o6Pr+U8n9e5bOvm7Vh2yb33YE2Pz5r92+VUv5ZKWVf8syGvi/YnleUUr68cr0rpdyxTHlPRczW071PdjuWQZj/VzzZbckwG1Puq+zvU5+g+v5jKeV9T0RZs/JeU0r53OT6d5RSLj5R9XwoKKW8tJTyU6WUu0opF0opHyyl/GAp5cACzz5/du97SymPlVKOl1J+oZTygo9E2z9cmDw0n0I4K+kfSPp6XP+Hs994eH+LpO+/yrq+QNKjyfV/KumPJBVJt0r6V5L+UynlRV3X3b1kHZ8v6SWSvvcq27gMvl3SL6uf64OS/pakb5b0NaWUv9113QfCvbW+T+EVs7L/Pa7/mqS/KenEVbS54UPHCfXjf+eT3ZAKvkXSD4fvr5L0Skn/m6S1cP0vnqD6vk7S3ieoLEl6jaRfVb+3It4o6eefwHo+FHyVeqbmmyQdkfQxs/8/s5TyP3ddd2Hi2Zepn4sfk/Snkg6oP/P+sJTyiV3XvefD2fAPF54uL7yfl/QlpZRv6Gae8qWU3ZL+rqSfU3/oztF13VVv8q7r/qTy0192XfcH/lJK+RNJfyXppZLedLX1fQRwV2y3pJ8vpbxR0rsk/cxs4XfSZN+XRtd1JyWdfKLKeyJRSlmVVLquu/Jkt2VRlFK2S7rSLRgpouu6xyX9waY3PkmY7dH5Pi2lvHT2739bZF5KKTtnfVy0vg8u38rl0XXdMUnHPhJ1LYBXzvah8TullLsl/YZ64vanJp59S9d13x0vlFJ+W9JRSf9E0lc80Y39SOApLdIM+ElJt6unOIwvUN/+n+PNFGkG8c6rSynfXEo5UUo5U0r5lVLKrXh2UbGeOaHt4dkbSyk/Ukr5QCnlfCnl2EykcEtsm3rO9JYgtjmCMn5o9uzjs8+fLKXsRP3PLKX82kzccLSU8g2llIXms+u6v5L0ekkvlPTpU30vpTxzVv/9s/bcVUr5/tlv75T0YkmfHPryztlvI5FmKWV7KeX1s3ouzT5fPzvMfc8yc/XyUspvl1JOzsbhT0op/5D9nZX3raWUr51t+EuSPmHWhq9J7n/dbP6uX2Q8w3NfUUr5s1LKxVLKQ6WUHyul3IB7/nEp5b+WUh6e9esPSin/O+7xGHxVKeW7SinHJT0u6bowrp9YSnlrKeXRmbjpB0opu5IyXhGuvaWUcm8p5eNKKb836+NflVK+MunLS2bjebH0orBXcV99pFB60VxXSvmcWRtOqT94VUr5mNk4HCm92O7O0ovirkUZG0Sas+e6UsqXlVK+fba+T5dSfrGUcniT9twv6ZCkV4Z1/8Oz3zaINEspu2a/f/1s/R0rpZwrpfxSKeWGUsrhUsrPz+bxaCnlnyf1PWfW/odm8/H/cc1kwMvO+KPZ5y3Jb/HZh5JrD0u6i8+WXrz7vtn4P1xK+cNSymdv1r4nA08XDu+opN9VL9b8vdm1L5X0C5IeW6Kcf62es/ly9eK975H0HyR96gLPrpReb2aR5rdJOi/pV8I9N0i6OKvnpKSbJf0LSf+llPIxXdddVC/KuVHSJ0iyDuBxSZodsO+alfN6Se+etfPzJO3wfTP8gqQfl/R9kj5Hvaji2OzaIvh1SW+Q9MmSfiu7oZTyTEl/OOvnN6jnaG+T9JmzW75K/fitSnr17NqUSPT/kfSF6sfu9yV9kqR/I+lZkr4I9y4yV8+S9LOSvkPSunpx7ZtLKbu7rvthbcQr1G/W10g6N/v/F9VTqnPxd+m5v1dK+umu605P9GUDSinfoX6uf0DS/6X+UHi9pI8tpXxS13UW090h6c3qRUzb1M/dr5ZSPqvrurej2H+j/oD6CvVjHHVDPynpbZL+jnrR5esknZb0jZs09Vr1lP0b1Iu2v0zSm0op7++67j/P+vJ89SLpP5T0cvVr7+sl7Vc/zk8Wflj9fvv7kvxyv0X9XP60pDOSnqN+3P4nLbavv1HS76hfH7dI+m5Jb5H0tyeeeZmk31S/hr99du2BTep5laQ/Ub9PblW/b98i6Sb1EqwfUr8HvreU8mdd1/22JJVSniXpv6nf2/9U0ilJXyLpl0spL+u67jcW6GPEi2eff7nkcyqlHFIvFv3NcO2V6vfz6yT9V0l7JL1I/Rn21EPXdU/ZP/WLsFO/iL9c/YbeJemwpCuSPkP9ou4kvSQ89xZJR8L3O2b3vBPlv2Z2/eZw7Yh6dt7fXT7/zkh62SbtX5X0jNn9X4D23Zvc/83q9RcfN1Hm62blfRmuv0fSO5I+v6pSzs7Z72+a6PtPqCcobp5ozzsl/f7E3N0x+/6xs++vw31fN7v+wmXnCr+vqH+B/KikP8NvnaTjknbjuuf2U8K1z51d+8TN5gtjvSbpG3D9k2dlff4mbX6HpF9K5u6P1Ytes3H9Jlz/VUkfSMp4BfrRSfo0rINTkv7vcO2n1BNse8K1w+pfuEdq4/Ch/IV1vS357aWz3962QDnb1OvHO0nPC9f/o6T3he8fM7vnNyrr8YZN6rlf0puT698h6WL4vmtW3nskrYTrPzS7/ppwbYf6My7uybfO1u5+1PO7kv5gyTG+Tr0Y+U9jW5Z4/ufUnwe3h2tvlvSuD8ea+HD8PV1EmpL0M+o35+dI+mL1Cy7lTCbw6/huxettCzz71eq5sk9QT+G9Xb0O7MXxplLKP5qJtR5T/1K+Z/bTRy9Qx2dK+qNuMV3ar+H7e7VYP4wy+5zSCX2mpF/tuu74EuXW8Ldmn/8B1/39xbi+6VyVUp5bSnlbKeU+SZdnf69SPtZv76Ck77runeqNIl4dLr9a0ru7jXrPzfAZ6l9eby2lbPOfesr8rIa+q5Tyv5ZSfrWU8oD69XF59nzW5l/sZqdKAs7/e7TY/J/vZpycNNf1fQDPfqKkX++67ny474R6jnsSpZTVOAZlQTH7gviFpL5dM3Hh+2eixMsaOJBF9lw2jtJye2kRvKPrusgdW7w659C6rrsk6W71RLLxUvVc7TmsrXeoF8vv0gIopexQzwUfkPT30ZZFnv8m9dKEV3dddzT89EeS/kYp5ftKKZ9eetuKpyyeNi+8ruvOqhdB/QP14sy3Ljtpkh7Gd4sIF1k0H+i67r/P/v5f9WKVuyR9l28opfwT9ZTbf1K/OP66+sNj0ToOSFrU/D3ry0KLfwZvqikrymXasxks4mB99+N3Y3KuSinXqD/YXiTpayV9inpi5N+rJ4yIWj/fJOnvllIOlFJuV3/AUBy6GQ7OPj+o4cXrv33qx1GllGeoJ9JuUK/4/6RZm9+ufO6m5iYbn6zfRCam5do5LOnB5L7NxHZS37/Y/29Y4JlFkY3H96jnyt4i6bPU77mXz35bZD98KGfCMuC4X5q47jW+qn6tfIXG6+pb1J/fm+qZZ+X8lHobiM/pum4pcWYp5Z+pn8fXdF33Vvz8o+pFrZ+i/tx7uJTyMwX69qcKni46POMn1FNkK+pfOE8auq7rSil/qZ7jNF4u6be6rvsXvjDTgy2Kh7SJMvkJhJXevz9xzxPZHh8sN2mjqfxN+H1R/E31hkyf0nXdvA+l7p9Y45R+Qr0e5hXqD4/z6sVIy+DU7PMzlb9Q/PtL1evBvrDrujkhUUrZUyn3ycrddULDSzzi0ALPvlob3YSeCOmAkY3H35P0o13XWZemUspHPYF1Pmnoum6tlPKI+jPv+yq3jYxLIkopRT0R+LmSPq/rut+buj95/lWzur+167rvSdq4rt4V442l9+97qXoi5K0aS22edDzdXni/qZlyuuu6P38yGzIT1bxAG03v92hstPFlyeOPS8pY/3dI+rrS+/b92RPS0ASllOeqp4r/RL0OroZ3SPo7pZTDM5FWhsc19oPM8Luzz5dL+tZw/Ytnn1PtyOCXxGVfmBn9fN4yhXRd92gp5a3qD+pr1OuJlvVF/E31xhy3dV33mxP3ZW3+a+p1fU8lx/Y/kPSyUsoeizVnloufrE38Kruue/9HoH2S5of5boXxnCHbc080anv4icbb1Usx3tMt4YYR8O/U77EvmkmmFkYp5eWSfkTSD3Zd93Wb3d913Sn1Yv1PVk+IPOXwtHrhdb2l25PF2T1vppeTeivLL5X0fEn/Mtzzdkn/qpTyWvUWbp+u3leQ+AtJN5RS/pGk/65eyf0e9ZTUF6l3aH+9en3CR6k/xL9yJtZdFs8qpXyiegOaG9VTXa9UTxl+4YSOSOot2F4m6V2llG9TL7K7RdJLu677ktCXryql/D31nNvZ7NDruu69pZS3SXrdjAt7l3ou7evVv2SWdWR9l3ri4o2llG9U71T8dbN+7V+yrB/SoMeriTN3l1Kyufxg13V/Wkr5Tkn/rpTy0eqt/i6qFxt/hnrjhv+sXuRzRdJPlFK+R73o8JvU63mfSuqF16tft79RSvlu9aLSr1cv0nwyrTQ3YCZleYekV5Xe5eCI+oP2f/kIVP8Xkj6tlPIy9eLfB7uuu2eTZ64Gr1WvC35nKeWH1K+V69W7FN3cdd3IpcSY7YuvUr+m75mdA8YD3SxgRuldns5J+pGu6756du0l6qUffyTpbXj2ggny0rsxnVRPJJ1Ubwz0cgXd5FMJT6sX3pOMHwj/n5b0fvVU09vC9W9Wbwn1z9XL4X9HvXnzXSjrzep1e982u/+oemvGMzPq6PXq9VIH1B8yv61B5r8s/vXs7/Ks3X+uXh7/Y5u9QLuuOzJb6K9XL/a7RtJ9kn4p3Pad6o0D3jz7/XdUNwd/hfqx+HL1L6fjs+e/adlOdV13spTyBerFJz87K+v71es8NjPNZ1nvLqV8QNKjXdf9ceW2G9QbThFvlPSPu6577UzE/dWzv069KflvqXfnUNd1f15K+WL16+SX1RMIX6teDPSpy7T5w4mu6/5i5uf1b9VLVO5TP08vVW/9+VTCV6rnYr5T/cv4V9QTo//lw1zvv1T/IvlZ9Zzej8za8oSi67q7Sikfr96K9TvVE8APqSeGN3NB+qzZ51cmbYvtLeoJ4tXw+0vU+xj/DY2Nld6v/sUm9SqRL1W/t/ep34c/pqvY0x8JlGkCv6Hhf3zMuLK/lPR/dF33Y092e56KmBkJfVDSr3Vd98onuz0NDVeD9sJr2LKYWZI9Rz01+hxJz6HrwlZFKeUH1VP2x9UHUPgaSR8n6RO6rnv3k9m2hoarRRNpNmxlvEq9ePcD6sXT7WU3YJd6Edoh9eL0P1Qf3KG97BqetmgcXkNDQ0PDlsBTyTKsoaGhoaHhw4b2wmtoaGho2BJoL7yGhoaGhi2BpYxWdu3a1e3du9dRsrVjxw5J0srK8N7cti0vsg+KkGPqt+z3TO+4yD018F5/z9rla5uVH3/nvZv1NytnfX19sq1T9W12PWtTbQyytq+urs4/H374YT322GOjm/bv398dOnRIV670uT0vXerdCt2vrH1eVy6f16f6scwY1+q/mnuy+aiNIe+dWlv87Yns3zJ7JauX/fCcrq31GZE857EenxPbt/epEKfWzr59+7oDBw7M593l+VOSLl++vKFOtmlqXq7GjmGzZxeZp6uZwxo8NrFMlj+1b4jN2pb1u9bnuMc3e5bfszJ9Hvja6uqqHn30UV24cGHTAV3qhbd792592qd92vz7bbf1AcWvv36IX3rttdduaIxfiu40Oy9Je/bs2fCMETskDYs5vlS90D0wvtffvSli2dw4vNf1TB3utUPLZbtd8X+XG18Q8TMuSG5cvyAuXuxTovFQ8WfWD/ZvkUOZ85S9fDwPLufw4cP6vu/LQ/4dPHhQb3jDG3TfffdJko4d65NCnz07+L57rRjXXHONJGn//j5wig9Hf8Zn2L7aho199jPuK7/HMTV4jd/9bJx/voS5RjjWcYzZJrffY5AddKyX9XD9xz7wnkVetH7m/Pk+ucKFC72x6yOPPCJJOnWqDyXqtStJe/fulSQ94xl9DPNDhw7pu75rHod9A2644Qa99rWvnZ8Tjz3WBzy6554hsMmJEyc21OF7SFhlL13f4z7zRc2xjuPAMeY4TR3ULMv1xPngHjPcNrdp586dG+qI/3PfuEzXE/cd11ftLMxeWh4D9v3xx/uIaNm+8jXPgdvmNeTrsV/XXXfdhr7v27dPP/dzozzgKZpIs6GhoaFhS2ApDq/rOl26dGlEIUSOq0ZFGlMUKakZUpeZuJQUMKmIjNLivbXPjCvMqH5pzFlOiX5chsvk9awN5A78uym7SD1PUYzxWVNPsf3kPjhfGYdunD17tjo+Xdfp4sWLcy7g0Uf7+Mym/mIbapSw2xLXga+ZSiWXaGTt5vjzuxH7RI6aVC25eGksZeD8sP4IinN5r3+f2htuI7kCw9R01n7uyci5LopsXL1ez507t9DzXucRsS2eX3Ktvsf9ievAbeCapQSEZUXUJD4ZahIr7rE45xQTR+lGVnbsn++ttS1bbzw3PZ618y2WyXU+9Z4wXK7PInKYPh9iPfHcknppwaJi6cbhNTQ0NDRsCSzN4V25cmWSgyCltXt3n0GD1ER825MqJxXjsjLOK7ZNGlMiU7JmUv01/UV2Lyl6IpP3k2JkW+Mz5Iw5BqT8sjHxuNZ0FLFPno9aP309zlum36npztbX13Xx4sW5XsdcRZwfckuE18WuXUNuTv/vdUauqcYpZ/eSE8n0zqY43VZzCTWDjQhy6cYiFDDXpD/N+WScbU0nybZG7slrxdc4JubQY/9q0oApAyLXYx3uhQsXqtKDUop27tw5GrcoHeDeoi4142a8Bjfj7LkXY/lGzc4gzim59dr+nzJa4ielX5lenucNubbYF9ob1Li2TFpAfRvHKJN+kFtjfe5PnGuvda/RZYx/GofX0NDQ0LAl0F54DQ0NDQ1bAksHj+66bqRcjWxtTQFPVtwiKGkseqMIgaLGKE5hW2ruApHVJ2tv1NwV+H9WRk1sGf9nW9xfioj5fPadYt9M1EizZF+ngjiWT8OQKd8njvna2lpVeWyRZjSuic/GNlBE4bZ4zdhdQepNkqXBzD1bk7XrFodS1GKxDk3NpUGkR2OLzMS/Boq2DM5TvMbfvGdsqh/3E/tOUSPNxKMxBkVMhvvl8Y6GLhZLem49RjUDm1iP3QcuXLhQXTsrKyvas2fPaL/EtVgT+VO8FsVsNVcpr7eaCDBe82fNuCf2yevNn3QTyM5Onn21McoMvbxGsvMsIo4jxd+ul2czz7Ssz+4nx8SuaxE8Nxfxp40qgkXFmo3Da2hoaGjYEliawyuljCiFLFpGTWFuSjSj9kw1mgIlVUsz13iP63X5pm5MbWam7KToSV3EemrK4ZohQGbC7LZa2UqqNI4JjUTcH5oFU4kc/6czJ6neKWU8zdL9GTk099H9unjxYtXwYH19XefPn580DCLn47k0RWiHU39KA8dhTsflmrqk8UXmalJTnHsdxnXAeXB/PC5+JjNaqhl1cN1lBl3un+tjvyPX6+dZHjk81xvnlMYKNTP/WB/HIDNIivXHsYjGP7W1Yw6PbgSZBIZr3OPDOZXGHAhN4im1iXNac7vifoxjy/3IZzIsGlnHYxINkMhBcu9lEgX/xnVcc6HK1irXF8/OuJ9q0V+4V6JRlsfRUp1lIsg0Dq+hoaGhYUvgqhLA1hynpbq5NrmqqAOgPoR6EL7BM9NbciSm3jL9AdvgZ8wNkqqJ95CKqTnLZ+bI1LvV4mNKQzgtcsSulxRf5CjdD1K1bjtN2uP/vrfmcBp1RVnYthpKKVpZWRlxG9m8mHI7cOCApD60VPyMOgBT8OTkPP/U7WU6HJqUs18Zt8Y59XrPnqmFm6o5oE+F76IbgvsZ15vv8W+cd7fVaya6eZCTq3GukbPxGHvdUa945swZSRs5aXLIkfsnzOGdPn16Q9uyMGEMU0juM65fOj1zX0zZKpDbrLkLTUlECOrNOQaxPkpDMjsA94NO636WOuzYRkq9LFGo6dpi+ZwfcsFxvXldkSvkWMX17fmqjeMUGofX0NDQ0LAlcFUcHt/gGXfht6+pC1PlpjbjM5T1UtdgqiyT55paqFnn+fdIXZoKJJXiZ02RRqoiUiWxfzUH9Eit1vQ+7pcpoMi5mMMzZeUy7LjNsYj1mRI2B+v+kErPqEHrZmw9Ryu0WE/GzW5mVUUqNraBnJ3Hw9fJxUUwxJi/07k4tj/TYUmD1aElD3FuGSCZYbv8exYAmuuNFKrXR2wPOSpa+GXrj9Qy9yQt7uKcUf9LaQ45fv4vDfNE7joLD+V7Ll26VLUidEAD6rqihII6pVqb4rxw3jNuOSKzaub8T1kxMiAyzzueZVk5tTOLztjScM5R6uXrPJekYe14/1P/5v1DCVccC+9bSj88NrGN/I1rM+Pi/Hymg9wMjcNraGhoaNgSWIrDsyzdlC/f9hF+69qizpyDrzt4sDS85RkeyeVPhR4zJWLULDwz6tK/kUpjHyIYliyj5KSNlI9/cz/MtfnT7Yn6BfoaUdbtT3NDsT7ruqj3MadHyj/2y/NlatAcZU13EOvZzNpsbW1tFH7I1GZsJ8OEUfeQcVxciwxJlK3VWpgmr2+v0SgdcDlx/Wb1Zdan5JY2C14ujS0sDXLr8RnXR27Xnx4z751IcZNDoW7ccxHnjdbHbpvXtyn+qKunnnkKXjvUqUWpSy0EG/00M79Pr31ygdTPxbXv+afuLrMGNXwG+tlaMOdFgjq7rdRdxnnxPuK9RiYx4zjyrKxZYEpj/R+lVJ7/WB+ldx5P6n3jnqfucdHA0VLj8BoaGhoatgiW4vBWV1e1b9++OUWXUWekEPw2NhdHCzFpSCDLKB8137dIAZkD8W+mWslRZpSI20bKOotMQF0KKW5SdpHiJuXoe0hpZ9an1NGQwjK1GCk76gpNLdE/KlLcboPLN0Vs6jxrI6nbbdu2TcrTu66b99ljH/25Mm5FGubLcx3h5KI1f0jqBiJX6zGjzx71dBEul7rUqUg77iM5BXKj9AOL7a75fZpCjmNW08O5P+7f8ePHR/0zyG1T3xR9IclJkAOjzij2MbPWJRy03meHzwNzDrH/7qvH3O3MLGCp2/Qz1Ie57LgeqH93vd5rRuSquHe9/7jOMqtgBsGuBXmPz9LSsWa5nCWcrUW3omV+TOBc88+mDjFKR5jA1tIpnm/ZXuReXwSNw2toaGho2BJoL7yGhoaGhi2BpUWa119//Zxtt/l7FMHQOdhsNTNcR9b74Ycf7hsD527fQ6OWKJZgeXTYzhxlLUqgSJYK1Gi27D66PIqSPBZGFNVR3EqFfS0/X/zNz9KU2nPhcZfGYgmKaDOxq+F5cn9uuukmSYM4IopB6VowFcSVZuU0kZfGinm6Yvj5KN6gcptGMQxhFUWaFu1EYyFpOv8ijYYojsyCMbhfdG2h2IjXY7vdd/fP68Aipcy03H31M77u8fS+i+PpexiyjO4kJ06cmD/DcH7egxQzZgHVs9B4RNd1unTp0rwfrifuMZ5FPn9oABVFpzfeeOOGelxuLSTXQw89NL+XRh0MT5e5pxi1XHp+Jhq8uB/uq8fNotpDhw5JGouPpWFtuD8M1ed1ENVLdDmrBeN2WXFNM8i72+J9lp2VXntuq5+xmivLZ7hIgPYaGofX0NDQ0LAlsLRbQnyj06hEGigPKyGtGKf5eJbd29dMzSziYEiluu+tUe/SQNnSydHURObMbUqE5ZnaIIUXqbRa2Ck6R2cpjFw+TfQ9RlOpV1g/jRkiapm6bRRiajhSg3Qb2b179ySHt2PHjnlf3aYsIC+NLcidReMVl0eOjhQoDVPiPR7TGhcd4d8YJNxtzrKI10JU0QAlC0BAIwXWk0kwmJWdBlXuA7OOSwOH77Hxd8+xOfy4Dg4ePLihPEsF/Ok5ipykx9r9OHv2bJVyL6VodXV1fq/bEPeYuUrve3/SMC1LLUbu3O1k0IVokMJ7OD9T6YFq2eRthBPPGJfrc9XzYA7Ikh2G2IvX3H6eiXQvi+PDFE9eu14r7mfkKP2s28jA85nEhNwfjaJcls9saXyeTQUeJxqH19DQ0NCwJbAUh7dt2zYdPHhwpDeJJsqmBEiFMRhpRs0x4DMdJhnYOJZL1wImRIxcqCkcmgczjE0WhoiBp02p0kE7c4Z0/1g/dZfSQO15bEnRUzcQ62NgW383lWSqPeqzaDLNINkMfxTvjaGyahzelStXdOrUqVSHa1CfY52Jxzhrt+G14nEjRT8VMJsuGJQ4RG7m5MmTksbcEbn4SJEywEAtwMJUmpNaYlH3Ie4nBramG5Gpco9npoehHpXcdhwTuovcc889G8ryvZEjo27aXGKGK1eu6KGHHpq3NwsI8LznPW9D35nOipx47KPv9Vj6GZ8L5HalYd7JBVLHFvepx/KjPuqjNtzLfRn15P7Ne8GcHQM3eA3HM6wWyNpluezIudbca9xPty1bq9Rne8zp9B/HkdIbr0XvmZtvvnlDH+K9cT+1BLANDQ0NDQ0BS3F427dv18GDB/Xud79bUm4ZZArDb/Faenm/9eP/ploYGsnUEvU/0kA1sr7MKsswtXDs2LEN1015ZUGxXSdTCFnHZcsj6hRjP2glVUu2GNvtNpiz8BjQIi7CdTOEEcc5Oh77XlLjMbgvQZ3nIjh8+LCkYbyyBJlMCOx7M07cY2kdo7/TIjJa9BlMhEsdq/ueceumil2GqWXlfdRhAAAgAElEQVSPSaTSWS6tAKdSPVGCQadotjWW57VKKp0phiKFT0tew894fKOlHblp1/vggw9KGgefkMb6zH379lWdzy9fvqyTJ0+OOBVbKEa4T+TAM4kSOV9+0po7SwRMK1bemyVmpqP+Aw88MO+nlOurvFc9V7RC9WeUfvhet9VrhGnR4tqhbYDXga1yuWeyABvU2XkOsiDi7it130xpFN8xrHuR8HRG4/AaGhoaGrYElk4PtLKyMuJQIoVgkKIylWfqM6NI/WlqwpSPrb0yToKcDn2MogWaceutt0oaqCF/N4dnCij63Zj6Mkfn76Z0SU1PpcyhTxWtz+L/5JiZbsllue0RHnOPBRPtmtuK/fG99Eny90ilu+/RGqtmaeewdLTyynSPhueB7Y46Y1P51IvULN+iDo9+nqZmab0bQ1h5TOlnauqV4a+kMQfEYMpTYbW8rpjKhdKQzHfPe4EB1U3F+9k4nm6Tn/UcuPzMGtB7giljMl2b4TZEK9opPcza2tooRFXk2mkjQN1QFnDa/7uPHh9afGbJYxls3XPqe703LJmJ/1N36PHxeMUzK649aWxB7vmiH1tWj5/xuNE6XRqsPv2s7332s58taVgXnvN4jtMGglbCWWhIP29u1P11Pzw21l1Kw7zdf//98341HV5DQ0NDQ0PA0n54O3fuHFkbxrdrzVqS1mWRE/C95ux8r6kK3+u3fLQKM1XJAL1TPjvUqdxyyy2SBi4h0xVRJ0Rfsal0QfTVY5oM3xupM//vNpgKtTWb6zMXHNvnZ8ytmcIidRgpSdeX+QRKA/WZBXD2vJw5c2YyCoLTvMQ2Rq7O40IdlGFqOkbI8DVTiNZ1eJw8Lu6Px0saLMC8Nly/qczMIpZpZzIJgpRzeNSleAxo+ZjpxGktycC8cdy51xi9wsh8E92/D37wgxvq93VLPTKrZ0af4VxH/0KPdQwqP5XmZWVlZeT7lUX9cZ9oPelnos7bXIr75t883x4vn0sxFRl13bS0djuiFIX6Kq9Z98Ptif6KTIXj9U4r0MwSlhFWGB2KwaXjNa9r73dLUtxW9zf2z32/7bbbJA1r5c4775Q07Oe4Dhgc2/Pk/rk/cQ+aez569KikPkXalJQkonF4DQ0NDQ1bAktxeGtra3r00Ufnb2rqvHyPNE4VT31CfCObOjNFxWSG9957r6SBmogU/pEjRyQNlAKTnFLGLg3Uucujv02mh6NPCyl9g9ZFsc8G48O5nzEeJq0YTXGbinLiVz8T9Y2u7wMf+ICkQdb9ghe8QNJAyWZcNv263O8sYae56hg1ZSrSyvbt2+d9dTmRQ6Llnsff7fX6iLoU99W+X7YM9NqkRVeWXJUWnF4r5PyyNnp9ub4s/ZXLZzxW6hCN+J1Wax4vjlHUi5gbp76cPqSM+CKN9TqMTWqu+L777ps/Q/9YUu1MsCqNdYRra2tVDu/y5ct64IEHRpKluHaoc3ZZjEgSpQa+x/PNZKdum6254znnfe9r1OnTF1YabBGod7Nuz2s30+XTKpQWxJlfHOebOlDPR9yzPmv/+I//eEObPW5ujzm+u+++e/6sx5rj6LHnupMGSQz9ZRkzNoJRYM6cObOwpWbj8BoaGhoatgTaC6+hoaGhYUtgKZHm+vq6Hn/88Tl7bRY1iuyYLdqiDytsLZ6KosCP/diPlTSwxBbPmcW3aO6OO+6QtFFcyJRBZuMtrrQ4LzrKmk23iM8iC4tH3bYodqUjqfvnflFcFZ+1GIIBtJlWJRorWDTrMbEoyWPi9viZKKqx8tv3Mj2MxczR4djtp0iTorToGmKRgseW4l1idXV1Lopxe+MzrtufDCCbieCY6oguMgwqa1Fw/I0BDlhPFuzWY+v1bDG7125so8eJ/XBZNPbIAh4wTBPbGMVtvtfiIoo0PZfsS2yD10gtvF+cN67rmjgqcyvy+r18+XJVpLm2tqZTp07p9ttv39DXaKgVx0wa5oOGKHE92LjC/bd4ziJOZgrPjNjcV++5u+66S9IwbrFPnjMbW3gsvX/cjliPzxfvf4+pz5RaEItYt0Xc7i/XWTREe9/73idpUBHQ4Mj1WAwbzzm30W32PQyOEUW2LtciUj/r8fQ6jPvJz7tfZ86cGamNamgcXkNDQ0PDlsBSHF4pRSsrK6PEnNnb15yQKRFTcnYBMJclDdSYy6HBwcd//MdLGqimyAmZIjDVwsSvphyiAYpN05k+g8GkYz10szBqxiyR4jDn4La6TabAqRCOY+JyX/jCF0oaKK/MOMLw/Hz0R3/0hrHw+LmeSH0yZFoMCB37Ew2G6Nh67bXXTpoHd103cheZ4oSMWhDk2F67sDDlCqnLaDjheuiu4T5kYdXcVwcrYIqsuGYMcwNW3tPwyPCcRvN3Ot3TMdf9iYY87jO5M88x3SGypKE0IGPy4sgpkVN1ue6PxyiGzIprRurHvGbwtLq6qgMHDszr8bkTjR/cHo81uVsaUkjDOWBOxH2jcYfHK86FuTLPpcfNnEkW6ICBDTxOlgq4/mi8ZpCj8z0+KxliMfbPe4xcWRaM3f3xGVVzv/AcxP3l+jwXvsfXXW+UDtBlxlInG8+4jVk6Obf70UcfbemBGhoaGhoaIq4qtJipFlMqUZZOk+TIyUnjsEbSQAGQS7PMmSk/IlfAoLbktGga6z7EcpgOhua8sRw6Ars+UyKZ+bMpQzqv02w8o1gZLNicDMc51mcujPpGJi/NOHOGUaJuLwuv5PZfc8011RQ3dktgot4sfYrrqHGx8TvT/tQCM2dBvQ2mQPK69phGKt1108GZfYjXyZVxPVs3TUpYGlPL7K/LztrI0E4M78c1FtvocaSTMrmUCIaD4lzE9Ub3pSm3hN27d+v5z3/+fD14nGIbKK3hGDDkoDTo9713qQ/lvol7zPdSD++xzczk6ZBvzs5t4/xI46St/s75dx+yxNNMvcP9H91y/LzPMd9jDp/7Nu5F3+N6fKYwWW5sIxMYUzpgzjmuDQYGf+yxxyYDXkQ0Dq+hoaGhYUtgKQ6v6zpduXJlTl3QCVcaUxGWMfs7dV7SxlTt0kAR+A1OKipyGaboGBKLQXYjdeY2mSoiRZelomfqEMvwmQjWfcgsSV0urbPcn0gVMixUzSmbnGxsg6keJosk1xifYfoP98vXI1XNOZ0KDeWgBab6Mk6fwW0NOupHHQDDxNWc/I2oy2WKHbYjSz9CTpj1ZUG2aSHI0FK2bmPor9j+WkJTrtn4G3VFnFu3PbaVvzGJsH+P64CO9EziyaDCsdyYlHYqAe7Kysqcs7MeO64TS3g8/tRX0rYggnuM45Sta1rc1vTBkfPwfHvf2zrc93q84pqiPtttcX8YgDyec0xO7N9oyRx1uNRfmvusWWvHM4Rpvci9ZWe/2+SxoB2F64v7ODqcu96psyeicXgNDQ0NDVsCS1tpbt++fU5Vm6qKVBN9qci90Oco3muYMqAc3ojP1qwmGTw2Sxpr7oUUiKmKzMKKlCkpuSydhSkel+d6GTw6Wud5jBlayP3xuLr/kcOL6Xpi+UzJE6l06mwM6mXi2PveGLqoZmm3vr6uCxcujLiczJ+LaWson4+cAHUmpM6ZpDZyeKT2OYdZkktylOSmsrB05IRdBhOmuo2ZHx5DvTGxaWbtWuPS6C8XOQpKW2h5mXFItG41d0B9UxbgOva9tnbW1tZ0+vTpkV9k3NO1UHj8PXKbtP6lVSulRFmyU9/jPRC5DvbZOjtzeB5LW0QytVFsG9eb+06L1UzS4zPEnHHNDkAa5s5rkTpCWrtmc1YL0ci2x3q47twvz2PmX5id05uhcXgNDQ0NDVsCS+vwLl68OH9zU34dYUqB1BE5sPibQd0TqYj4ndQEKT0mWZXGEWJMIZD7jPVQN+m+M/FrpuMgBUIKm7qD2AbqNamzdBsj50VKqjb2kdLyb/Q9sp6EQYuzPm+WhHF9fX1efpaahFwrOYaMmzGoO8ki3tSeJRgJJdPlUpfm8fHvUc/MoMeeQ9/rNmVcqNckdSdcQ3F9U9/LgMoM4D4V6JwcLa2VY/vpA+n+WkqQRcPIuCfiypUrOn369Lxc2hBIwzyYE6lZ9sZ2u121dGfk+OLaoSWvpTOMDBItvc3Z+VlbU1P/FqUejEzl/UgOk22Wxha+7rv1ZdTTSYNUxeX4HvuM0sI3nuO03Mx8hOOzEZTI0N4hnlU8NxfV30mNw2toaGho2CJoL7yGhoaGhi2BpY1WduzYMRKjRBEMFb4M6pzlJaMzcixPGhvCRLEEDQAoZnVbMyMC3+vvZpszc3UqYCkWYj65GIaIz2YiYF63KIHK6syQItYR76FZMB2sY/+YG6uWMyuKW6ygrxm8RKyvr+vixYujwNyZ2Jh9ptl7JsKgCJN9nGpbTYTq+YriaYoYaXzhZ6K4jdcoaqThU1yrNLP3uqLIOXMNoviT4ii6uMT+UOzKtsY5oIsMHdozdwPWPSWWWl9f32CEkjl3M9yU+8FQf7EtFjd6TXqeaUxG8Vosnw75dBOJhmi+h07yPnd8Pa5Vil2zgA2xn5nIlqoaG684KEgcR7qCef97TFhvrI+/0eApmwOGn8syt0sbz1O31+Les2fPttBiDQ0NDQ0NEUtzeNu2bRuZz8aQWaSKaGhABXq8ZiqCIbiMjLqsBXWmE2TMeE7lqqkwchKZs6OfJQVCSjhyLi7f1Dg5vczAggGfaazCdsX6akY+pIIipUVO1VSv255xLjRNvnLlyqYpXmgYEMfRfaWTv+tkVuvY3ppEgZ9Zn2upnXw9BuQ1pWlOgilwWJZU52Io7cjWHdOzODQWA4DHPeP6uK8Y6DozLvB8kDrn+o8SBXLR5GBp3BQRA1nX1o7PHRt90GUn9onGRDSAyzg8BldwWVPBMmrpwhg8Ia6PaMgkDdwUw7nF+eCap+sKxzR+d7k2OGGwfwe6jnA/3FavK57JXA/SeB3QgJBcd4TL8Zwy7Vc89zw/8YzczGBu3saF7mpoaGhoaHiaY2m3hLW1tUnzcOpdGHaKYW3ivTUdAwPYxrc59R7+zdQTqV1pnKCy5iAZYe6DlBVDLmWydOp5mELGZWem5aRceG+mE6XOhBxSxhXXKFa32VRiFlIq6kmnHM8vXbo01/vZ/DlSpKSsyeFl3DNdB7h2yPFlOofas6Y2ox6GOiK6FGR6MeqEyfFN7SePAVNjuR2m0rMg3KSwqYfLwl9x3KgHngI5NO7FjIPLwo4RKysr2rVr1yhxbeSe6LpCt43M8dztYygszhfPH2kYf3J/5uyy+gyvK5r+T3E+tFWgXjGbJ19jAAfvwSx0Gvc9uU/aH2SuVNxHRnbuMEAA0xCR+471eG6vu+66eSDwzdA4vIaGhoaGLYGlODxbS/mtz0DA0phq9XdyfFEmTGdtUrr8Ht/2dD5k0FEHio5gmKyapWek0hnOiMkT2YfoAMrEpW4bnbCzsEC1gLo1DjrWw/4xYWusjw6eWbJGaaPehBaxMewcsbq6qv3798/1MFm4KYZR4zxlVprUh1KHxu9xPEmRUsdpnUfscy3sGMc66msYnLjGabGfsTxyki7TOr2oj2HwZoZbM7Ix8b107qYkI4I6Fa8lpoeJa4MSk6nEwaurq7r22mvn92bptuhYTkfmLIwWz44siIOUO1lzrdAhnM7R0pg7Y6AFI9ob+F7qQw1fd1mxXQxhaKtGhlTMnMcNcmAMWzil0zfIKcfxNbdeswrPLPepVz5w4MDk+tnQloXuamhoaGhoeJrjqtID+Y3NgKnS2IeJVGvGzfh/JlHMQhHFMiPMcZkqN3WbycdJtdLvL9P3kNMyhW2Kq5ZcMd7Lftkf5hnPeIakjZQdLZvoK8TUL5n+j4FZ6VuVjS/1CkaWpoO+YFNJPFdWVrRjx45528jpxT6Ty2RC0UjNkfOgpV2sn8+So6fOyWsq6ooYuopWix7zOJeef3IStRRPUU9C3Qx1eh6TqGc8fvy4pEG6QWvqKZ3oZqHXMh01OaNasOqM+88S5mbYtm2bnvnMZ0qS3vOe90jaaA/g/z0/i5RLfz5y7VwzmWSBwdxZX5wX+lCSKyG3E+tkMGem+poK70gdrss4efKkpDywvoPfe29zTBimLgMtpDMra4+bP+N4Sfn7wvcePnx43oaWHqihoaGhoSFgKQ5vZWVFu3fvnusL/DZ2YkZpkBM7qSX1PJRjx/9ppWfUEldKY87D0QNIVUc9jP+vpY4xBRHroR6GSWnp0xSpJnJC9P9z2pCsPkY8oNVhFgGBVn/kOllG7Dutv6bSwjDo7pQfnq00qVvLrGdZJ8c4s9jK9FGxP7xfGut1vJaYODNbOwzeW0sxE1GzeOT1LHmwyyOHSa4t6w85OfpcRq6OlnQ1nU18hoGSacHq75Gbz/TINXRdpwsXLszXmdPb3HffffN7zFH701Kn2v6M7cvSMkVQT8b/47M8byzJiPVQz2crSp5Z0sD1cb9wXVDyIw3rym11G31GM7WVNOiE6fPoNlKnlln40jKe9hxx/Xs9M7Ey90jkei258NicOHFioaDwUuPwGhoaGhq2CNoLr6GhoaFhS2Bpo5XLly/PnZCt2IwiTYtRbJDBPE4MLOty4zWGQGKA0SzgsNtEVjvLjuw2GsywbZY5GuOYxWawXjq4WqyThUejWMLil0zESHGARQwMYZQFR6bzP0WbdECP/fOzrCcz5KH7AMU8EaUUra6ujtw4Mgd9mrlTRJsZPFFUSoV5Jr7zmrBomUYqWd5At5HKdq8dr/fM4ZgZ1bM8iNLGteP/LWK2yIli3yiWYuBiiiFpcBXHs+buMhWOzOIoiq4oDo2geHr37t2TGc/PnTs370/mwOy96nPAnwwMPxUejC4gFHlmIe2YD28qsD4N9+jUnYn86DzOuaSpf3Qj8Hq2CNUiQIs0XZbXVCyPBjw2BqQTexRTcz1TvZGFaOOZxHPT75hMZHn06FFJ/Rg3o5WGhoaGhoaApTi8tbU1nTlzZmS4YQMVaeyoWKMYI4dXC32VZYCO90cwmCmV7JESMfVHZ1Ffz6h0Gpr4WVItNvXNnIfpaG4KzxRXpGKYKsdlOISOxzlzlqWRQqT+2TaC1DOD7maceeQUalS6AwC7X6a443qpZZynO0c07qGxCF1bGP4sC6PEbOUMXBvroxTC9Zh69rqIa5ShqaiQJ/dpKjre67XifjJodQyuS07L7beUgObvcUyYVZzrL3NWpjSAbaeLTUQtVVaEjVY81+575AY8hw8++KCk8RmRpY9hH2vzYg42rm2G4Kq5MsR6za3QZcJttzFgDD3ouWKoMp9v7oPnOErbfBa5LT6nyUVlbik02HLb3N9MguFrDDjNsziuA3LCDBuWGTe5bf6MgU82Q+PwGhoaGhq2BJYOLfbYY49tSLwnbQw/xZBBBqmKjLIjJ1dz0GSbYr3U+/h7dFJ1+33Nz5pSMDURKQfqD2opfozIFbjvDJ1GrjTjev1JU2JyGnG8WQ/1fBn1SQd9jmMW9srIdJAZzOXFe7PkqtQBTCW7ZTm1xJiZWwVdSOgW4XoiF+o1YQqf9VvXkY0t9b1sEzlmaVh3/qS7SBauyaCeidxutr+yeYn3uv7YRo6bQd17Buuxz58/X03i6aD1XDux3ZSesM5Mh0fdI5+dcqqupc0htxHbaA7P5XtOzT1lyarpHH7DDTdIGqRRPgfcF9+f9cPSIZ/XHgufLbGemjsZEceIgecZYCHT5bIcJtjOJEu+JyY6npJaRTQOr6GhoaFhS2BpK8319fWRQ3CmryK1Rsu7jKqshYWinipSkpRlmxIx95lRTdRLuTxbNWWWnf6f4adMZVjuzhQjsQ1ME+QxMoUXqUUGlvV3cm1+JnILdCj1M6TOIxWcWezF+jNugGmVpih5p3jxGDOMWCyH3AupvQgGh2aw3anA0zULW+pYYr3U93FOs/lnmDu2ldRttCL2b14jtqijJWmkwCl9yPoRy476mFpAdXJIcb3RMtGoOXLHtjHYcwZbh5sTcVuiVXDNKpsBuqdS8DDkoMvPUoyZM6WOiRawEeQgmZ7M3x2IQhq4QoaU85qiRWnkMLm+jx07Jmmsu3WIrlg+QyYy+EfmeM7wfuwX3xvxf1p418LwxfIo1VsEjcNraGhoaNgSWDq02M6dO+eUIS3UIrKgxtnvLjeCVNhUeCvqAt02++WY8rbsWxrk3S7PsnTLv03VRIqOlJz7ZYqbnGumj3N5bospebc1C6TscpiOiPquzJeKFlwMhxVBKozWeeSYOD5ST0lOBY/et2/fKBRcXAduHynFRXxsavpJzltmXRgtHKWNuoFYhjTM94kTJza0jWGjMks7f5o6p0Wa25HpRbhWqO+LbXRbTO1nvnpxTOIepWVvjXrOfDhpbcq1FMuKa9311c6K9fV1nTt3TrfffrukfO2YQyDXRK4i1sE2eO0wnBc55lgf+5b57Bk+X+izt0hqG6YUojVyZndQG3+vIT9jfWBst9eo62NbM/06fWs5Btxnsbwp/W1sa+xH5gu4GRqH19DQ0NCwJbC0lebFixdHQU4zqzm/3UlVMtipNParqQWLznwyaGnHNEHm5jJKlb47ftb9Y/LTWA/1VqZQTMXE+g4ePChpnIyWnEsWFJs6AerlskSxpJaof8t0eNSTZklw+UwWIWKKw9u1a9d8TM2pZgkkqcvj3GVJXEnFss/koqSx35/b5vkyFR2Tq1LPYmrd9TE5cqyTVou1QN0RHieX535QD5NxePSDchmU0MT9SyvdRaJl0MeW92QcDH3cdu7cWV07TktmWJcX9wslLLWko7Gv1FfxfGFZUcdOLtBlMNh7nFNydnw2s3b2erJUyOW6HvrcxjYy6pM5OesfXVZMZUULZdZPXWLsH6Pn0CbD7YhzsFkSZuoopbHf5JRkiWgcXkNDQ0PDlsDSkVYeeeSRUZqbKQurTM/jsgzGkGOEBn6PsnRyPrzXVEaMi+k2mbo0N5j1l+2m/oDWX6Y645hQp+L6fE+UobM+WkORs8ws8GoWl5lllVFLQkoKLNbD6CWbydJLKSNr1jiX5AiY/HEqnU3NurAmAYj3eF5uvPFGSdKhQ4c2tDGzTCWnz7iI0XePvnSMy8r5iuNITpXcxlQEEeqZMos3ttWglIXrIK4t/sb+0LI43mtJRillUw7PnLY58Gg7wIg0jEG6SFoynlXU4UW9bC12L7nGaH3oRM9eZ66fKZ+idMB1Uo9IH7vMnoKWxLfddtuG+ukPKI3TrXG/0kozrgO3m2uViFwhUzPxPPPazM4sc7AtlmZDQ0NDQwPQXngNDQ0NDVsCSxutXLhwYeSEnWXZpUixpkSO/1McyLBgDBAsjUMemdW2AULGepMtt3jC92Rpbug0SnNaP0vlcrzXbbJJu4P5UuQpjZ3F6VJAI5MoQq2FB6uZj2djQofmTDxBsd7ly5cnM57HtZMZW7BvVHpnonOuK/bV45eFlqIJNo0IXH8mymJIu5j13WNhuA0Wz9RcJbLwbTfddJOkQYx3/PjxDf3J0kPRWMWgYQONTGJbauKozIigFnaK6XWyfRtFxDXT9FKKtm/fPhe3Mb2NNA5A4fFnPZkZPQ206OrjfRlVDzQmc1l0H4r1ud3Pe97zJA3npkWBNp6LIk0ax9RcdRjUIMIiTJdFUWY8q3i283zzOp8KJ0gDMq9/OvJn5dBwK3PzskooinEXce2QGofX0NDQ0LBFsHRosUuXLs05FFOdEQy4ytBPmQNoLF8auzaYIshMV8kxMv2MEblQGr/UEo1GaoPcB6lCGkBE8+CY7kUaKCo6r2eGAKSW2NYsDBqdX5nupkZJx/6QOyB3GP93Wy9cuDBZ9vr6+pxKp1FEvEbOp+YCEu9l32puHBGklpnwNTMiYdBeKtddZpx/zwPDctEQwfXEYL6myv2sTcjJ2WXjaNS47oxjroXi4lzHMunuwr2RmfXTIGgqeLTro4FDnNNaGDCaymeSEK47OnV7DiKnzzb4u6U2XkPRiMRz53K8lmxQl7lyeZzcP4YNpAQtuhhwbJjSKAu76Hk1p0qJBQ2fMjclnlVcj1myYoYEpBN7lrjZZ+0NN9zQOLyGhoaGhoaIpXV4jz/++Pxt7zdspCroWE4qMtOpGZul9jC1lJmyk/MixRddD0y9MD2GuY8sdZHLs77HcnZ/uu0uK/bPVB/b6rJMnWQhpWp6GOq1pjivmt4xc2XIEqXGZzJn30iZTpkHl1JG3GdG1XMN+ZlFXFrIbdQoyFguOT1S/pGy9/+WbngOPccek6jv8RrxOvZacRlMTxU5So+Fn3XwAoaci2B/SHFzHTI4RKy3xmVPzXMtldQyIaCmyvU+jbp2hgMkR5Ilu+U4kKOfSlxKNyXPMcuMZwntCph4mk7dsY8MlGz9m9tmKZKDTcffzNEdPXp0QxszLo3h9Bhiribhytpo+BmmNot9ps6T0oEIOszv37+/cXgNDQ0NDQ0RS3F4TuBJuXWmH/Obm5xcJpOtpYWhPoTWdLE+1kurxowrpM6mFpIptpd6CrfF8nGmJYr1+dP1mFsgdxLbT/1lLY1GZvlETs9tmqLsaWXLsYocGcN2TVlpul5a0cXwbbQ8rHGxsQ3kxms6yIxb43y7bdTZRN2TOXj/ZoqaFH60tDM1zlRC1N1lUg+XZ+6Pe4ABD6S6Do36xqmAEZvpT7M9z+/kBjJqPQa4zvrvcnbu3DmX0tgSOuqtac1X0wXFOigtoVUw04fFsHS0ovaYkkuM9VGyQqtzW1NmCYcNP8vgzpYWxHXv8aLlKINHZ9auXt9MmcUxy1LD1SxKs7OfnDKt0rOEw96fkaudSi4b0Ti8hoaGhoYtgaU5vO3bt0+G6yHVyEDFpsoil0ZOkToAv9FNzURqllQKORJTNZEKZdqUmhVR5B5MpZPSZVgtpreP99SsDzN5uPtMKtn1UAcWqV22zc8yPUemz8j0l/H3SGlN6eGy5x977LGq/6JUTz1CrvsrOocAACAASURBVDpL8WIujOG0WF/k1kiFm6p1GSxTGies9D1eUwzYKw2Uu9eVpQC+N+PSDXJPtAaOFrJ8hv59TNviNZPpPzbT+2Zrh5awtSDM0lh/OoWVlRXt3r17zplYdxM5oc3qJjcd20Pdkz+pn497zGcQk99yLuOcMk0T9YzWz2bjlKXWif3LrNPdRj/r9e17aL0d209ph8eX4dcyy1vqKF1+ltaJFrI8s6iTjeX6swWPbmhoaGhoAJZOALtr1645pUWrM2mgIijrp94oUnY1CtFlscxIZfgZWvlQP5dRCEYMQhrbGusxxeEAtuTWaEmacbA1SydSN/H5WuQaUjmR62VQWo5JprshpUpuI+PizOXEwNY1ir3rOq2vr48oscxSlFQyrbtiHdS/sdxFfMHou1ULZi4N42SrTFKxWeJUUsXW+9X8P2P/ahIF6puyJMyef3Mq5N6ngvySo2MfMgkGn2U0mgxMPJzBtgPU12drh0GceW+0KKdFt0EpTRY9x2cgE8x6fdF/UhrOKN/jeWGg6+iHydQ6DOLstt57772SNupWXb7Xqp9hEtkIzwfTULks6kLjOnDQdUZgYhDxuF545jPSSmaZ7TZFjnkRKZPUOLyGhoaGhi2C9sJraGhoaNgSWNpoZceOHaN8clGhanac2W0p+suUuTTppSgzy/lkESPNt80Ku77IElPhTCOSLAwVDRyyfG6xbVkONSqyM0MKo2biWzMLjub9FhlQzOsybK4c54AGQ8yonDnFMjdXKaUadNjtoGgswu1jaC+GmMuU3jRsoSgrE99RpMzs4kY0DfdvVMz7e2YIQFGO59ttottCbCPDQtUcvzODl5rbTS1nnDR2VWEA6Cz3IUWYNTejLKwXQwBm8Lnj9tLYI9ZZC0CRuSXwN+4T7rVsn9bC9WVhtSietqiRhlY+0+K9bqPvzdxfpI3j6fF26EKGI8yCOXttPPTQQxvKZchEO8vHXHpuI9UsNKyJa8z3UFTvObZYPs4b93gzWmloaGhoaACWNlrZvXv3nDKweXVmEl8LdmxMpXqhYzs5r1ifqQYro/3dFArDUkl1h1hyC9HsmcF7GTqI2X4jSP0xwDbNxqVxeh6POY0VMoOfzFBHGhu6eP5iP0ix0rQ9UrmkqkspVedhrx06804ZK5Day4JHk0JkKCZKDaJ0gGbb5IhpcCWNQ3vV1nkcJ5p0k3OtGenEtmUBzWOb457w/zascD8YwowGFtI4KzvnyW2NDvzMul1L9RLnmtz1jh07qmvH99HwLQsmQVcpzk9sQ7aepLHzNbnsrI81w6fMtYnuKTREy0KY2dmeUi+fO1MGVl4HLjea80sb17edud0fS+zI5bod0QiIBlteh/EclTYaCdFh358ea667WK6lWhcvXmwcXkNDQ0NDQ8RSHN727dt1yy23zKmAI0eOSNqo42DYJMrBs6DStWDB1FtkYY1IwdOZ1pRRpDLIUfE7g/1KA+Xjdpu6oGMmqTdpoOxMCZsCIjWVBYC2/N0yc1NWTPERx8TjRgqOJtSZawjD/9B0P3IudBSfCi22fft2HT58eMTtRM70gQce2PBMLXB2po/N9ImxvZwvacwFuizPHb9L0v333y9poGwpfXBZkfL1b26D1wPDRtE1RBrWIrkbOkfHINJuL3VS5GQ4RrE/DINGqUHkXKhX4lhk6Xyo15zS/XZdt4G7yjgTw+V4bNn3uObJKZADJ9cW95jnlxIROrNbTycN8+65ooTBazNKgHie0T2Aeue4/6yrr0l6qP+ThnlxW+hmxeAPkdPnOVZL6xbnmoEB+H7I9jx1eGtra43Da2hoaGhoiFjaSnNlZWXObZiyi1TzPffcIykPTCxtfCvPGwEq2VQLdUSZ3sdUCi2dfJ0Bc2M5NaqADqHSQOGYemY6EqYfiVRazWGW1qHR8s3jVwv0yzBRkRsyBZmVG/sfrzPMGgNDm6LNUnt43s6dO1d1AKWlnSnDSKWbm62tnVgWUZMouB5T/FFPynXldVxL7ikNFDelD5yHOP+kjr2+KNFgAF1pmH9a6xrU7UrjtehnPRbRopdgUlqD6aGyJKXUgZPCz6w0416s7ceVlRXt2bNnpOeJnDcDsdPJmv2I7WO4Pkp+IhdjcH9SepMFr/D4eJ2zLI5bbC/Hy/fQdiDuDUoUGPDcur1YH62/GZKNuuu4lhjGkTpx9y/ThfJMrAXckMZO+Ityd1Lj8BoaGhoatgiuyg+vlihRGutSSJFmVoVRBxTLo6WYyzp58uT8WXJytdA3mc8OLep83Xq/LPTOHXfcIWnQv9GfyNSLrfmkgXPwb+SCTIXGNlKHZmqJug9TWBkXQvk4Aw5nQZiZDsZzMBUyLXJCNWprdXVV+/fvH/nYxTbQR48cMFOVSGNukNz7VJBicudMbOzvXg/SOEQZy8gobVPWXHcec0onMj8lhuniWsr0Y1xnDMLOYMaxz+R+uM8iqNephRrL2hjXbW3t+NyhJXHUsdMK3ONGn8MstRS5WlpgZxwerSStL3MfzD1FPZnH3+uLbaQFc/zfUjWmz6Hv29QYe7ycSijzi6NvMC176Wec+Rmao6R/YxYwnlbuLIsWpfEZY8+ePZM64IjG4TU0NDQ0bAlcVfDoKb8yUyukvGntl/nQ8F76cfit/+CDD87vZYJHWr65Pl6P5dJCKIvkYE6K/laMNmPKLtOPeZyoQ8mCuXIcXX60+pLGAaJjGxltgnqACFK7jLxCvQb/dxk1X6rV1VVdd911c0qYVq2xbraJusKILGWQ65PG3HuWPLgWZcbXM8tO+ydR10FuLl6j/ppcc+b/yeDK1BUx8kt8hvpMcpRZaiFaNVLakvmX+Xlyo6S64/zxnqngv+bw3G5zEFHHXkujlCUaNjwv9E+lXpQWmbFczp33v5EFqybXTH+/yLkyWg0ti12+JU4RlG55fvyM13e08GUUJt9LHTIjaMV6qJOkdX1mB0A7B+sZvRfcLmmsM77uuusah9fQ0NDQ0BCxFIe3vr6uixcvjqilSJGYWiEVxtQnGbVkLozUpa2aTEnG+G2mCEwt2XLLFInbmvm4MfIBKaxIrdEaivJv6hUiReJ+0JeGeoXI7bjuo0ePShpHIDC1lnHM1FvRz4dccQStQekbFCkpyuanZOlOHuw+ZwktPf/Hjx+XNE6ySv+y2EdTgvSL9O9ZX+mHZr0r2xi5J+o6mdop0/syHimvG0yUKQ3riXpX6rczDonrzv2iRCNyR7RypKVdxhXS79OghWTWtixdU4aVlZX5eJn6n7JmZboef8+sw2k9TRsFr8vICRmUljAyScateWypu3NbM11+LWYs938cT+rYKfmh/lka72lGPPF3crjZmHDdZzpKcvpZot5YRhyLlgC2oaGhoaGhgvbCa2hoaGjYElhKpCn17DbTPkRRBsVBZlX9DE1VpbEBA82mzbYznJbbE+upKa8zR9ma+I6hhmK5ZOkpFslcDNivm266aUP5vjeKUC2+oxsCTadpDh9BM/cs27xB1w8qvD1WU4GbV1ZWJkULXdeNxNZxXhhqzX2nk3rmYkLxDR1zeb80Fum4bTQ8ic/UsmBnJtcGxY0eI88xDaGyMWSAZprOR9GZ28uM9Gyrr0cHbqYUoqO5P+O4MuwYHc6z8GFcZ1MGT13X6eLFi/P1YbFh7DPDjTE0lhGziXPP8jxgEInYPu/VEydObHjGfb7vvvs2PBvLY3Z2z6HLzDK5Mzyhn/FnlpaK800Dm8wYjOcAVQJ0J4pGOdwTNAZiKLVYDkW0dICP8+b/6d6xCBqH19DQ0NCwJbC04/nq6uqcsspMihk+htRE5sBM6oSOuAYNUaSBwmG4MxpuZAGHaYJP6jBSdKQG2SYaAkTjBVNu5hwOHTokaaCE6FwqDVyHqRkaR5Bqj0Yyhjli1+t7aaovjalb94NOt5lLg9fDVHJXg+VFQwDPv40SaDTiZ+MzdGWgqwENk6KCnk60VLJn/aKxEjmebHzIufF7FiDXcHkMDsz5yhy4GQ7Mxl9em17L8Vnfy0+2I3KFNH6p9TNKFhjGa8+ePankIcKcAlOCSeO1QlcMBmGI5ZBrYYDuLA3asWPHJA1GZeTS/Ux0MWEYMhqvZfvSbfKzngeGicukbbxGLi0LkuD94t9oOEaDnrh2KHWohVSM5zrdxRg0OnMrYyq4y5cvT6aWimgcXkNDQ0PDlsDSOrzV1dU5xZCZxFP35DBgMVlf/F0am/aTMjSVYbPxSFX4t8OHD0sap/LI9CJ0LKXs2aBprFSXHzM5baQ4HMqH4X/ItcU2Uo/kttF0OtP/MaEodSmk0mL5pHbpbpEF342uAZs5EDPIclw77pvnOQYYkIY1FKlYJshluhRS6ZFDp3uGx8PcMsNFScO8UA9jrjMz0Se3UePspiQmXmd01GWZ0linxhRD5LKzUGaUGJjyz9IRGZuFGIscHLnqffv2Tbq07Nq1a8SZWlISrznxM4M3Z+ls3AaPl8fSY8yzLI6JdXd0/K9Ji2JbPJbkSjhfsY0MmUc9d7Z2GJaLQfmzZxjMmWmVaLMQwWcNnu9xHTCgh+9hAI8o1aPjfAse3dDQ0NDQACzF4TkRY83KSBrezJav3n333ZLGHEmkAmgBaAqI1EQm4/ab35QAOZOMw/O9pr4YoJkBVKVxQlmWQcf02D9SctTD+HsWDJd6HVo10WFTGjt1ZyGyYv18PpZLzjLqJKg/m3IcLqWolDJvv+uLehhT5+aIyan42dgP6oqpS6FEIdOTMQCAuRevwzgvbrep9ZrOeMqSmNbHTKQbOW9y1iw/012QG2R9Hk9KQWIbKPVgWRkHy/5xL0RdKLm1qaAFDmloWLpiXW8sj1bUvsdrK+qCKNUgp+DrXgcxrJ/3O/Wk5KLj/NjK1J/eS7VQirGNLt+/UTqQBQxnsHVKFjKr51qaLYPW8FEq5jmiDpx7Ls6zy/G56jXiZy3tycL7mQNvOryGhoaGhgZg6dBi58+fn79NGWRXGgfpNWXCkF+ZRRZlzbTozKgO6sWYRoftkMZ+IqYyzG3QijPWTcsmJtfMrEJJ+TIQcObjRk6I1Bl1ZZF6pkUffVyMLMwSqXPqNyK3Y6vSU6dOSeqpsSkub3V1dRRmKAtr5Hkw1RctAqWN1B6tuqi3qPmvSWPqmfOT6Rz4m/vhNjNRpjRev7XA3ORSpbHujJxrZhVKa1nqrGkdzHUR28axyfy9yF1wDTC8YIT3zd69eyd1eDt37hxxjHEdkKMzN+Y2ZQmAaWlIXbrnyWMdQxoyEDTnLpP00O+TEiaPcdQV+jxjUGqDutBMKsUg7ORs455g8mCe9Swj0//yDGSoyDgmtTBntpXw+oj7yWMS03g1Dq+hoaGhoSHgqoJH+82apYgg5c40D6bWsxQR/qSFHXUgmWUfU/swcHKkLqkz4ffM14n+MKTamS4oSw9EHSG5nUix0p+PgXlpvRfHhJQrdaGkaGMbmBTXbfYYRR2IxzZyKptRWvTVifoKWmqZyqNfV6RiqScgF5ONj0GdFnVd5K5j22prhv2TxlQq/b24lmJ9lJh4zEmdx2eoZySlPWUdXONuPI70wc3KIZdDLiHC5W0WeHzbtm2jqCKR82YqLOrWsvRg9AXkGVKbH7c3glwzJUCxjbRF4J6JFolek/ahrEl2piQmtGegFCdLLUaJFrnQTNLExNOsJ4tc5PayfKbfylJmxZRwm/lwzvu30F0NDQ0NDQ1Pc7QXXkNDQ0PDlsCHFDzaiOwkRT4W09nU247oUXxHcRRN/C0+oKgr3kP23aC4SspFVbEs5jyTBtFITalr0CE0u5fiB4qRYlsMOm/SLDq21c/S+IZjFA0eKH6iuDIT0Vi5HsMdbSaWoil+7Kd/s3GAxVA0FIlGLJm4SRrG1m3M2s+A5hwLiiBjXyn25DOZYp7rrmbAFfcXxW4US2Wh7DgWXDu136VBXFQziskCC3Bd0QDKe91GSNLYqZuh0oiu60aisuh+Q6OHLJchwbx0HheKw11GFDVyTDm2maEYDZpocJLli3M9N95444Z6uM8y52u6LtG9JzN4qgWtqInFIyhqpIibonapPvbM7xfXBw2FpgyeiMbhNTQ0NDRsCSwdPDpSLJmZsd+09957r6TBnNZvbpuwm2KR6uFs/IypNTonxmdJNZOaiRRQzQyZXE6WSoYKeToAm2KJVDqNIZhiho6asU3uO41lqFjPXCgMUuWZEYHL8zVy2bxPGubfJvlTYcXsPJwZjxim3OhcS4OZrN2ZAYZUTx8kDWNnboPr0HMZy2QQXVLyWYBcgwp/3pNR3gwSzjIyZT2DRzP7NqUwcd3xHhqFuf8x7BslIzRooGFCfCaGHKytn1KKVlZWRtxaNNX3eXL//fdvuIdm7xnnbdBNyX2kBEoaOBAGZsiCVvCZWoBr7m33Pf7G/c7weJkTucFA5zRUi33nvqK7V3b2G8xmT4lZHHcaMvn9YHg87awf4WAC+/bta0YrDQ0NDQ0NEUvr8FZWVkbhuqIOwPo1v6ltTuvvfhNnepgok5XGSTx9X+QO6VRJ89Ys6SmpZZq9u/5IaTGwLHU2dBOIFFAWeDmW5f5FOTV1EOToqDuIz5KCJAdpqjrTbzAsGdsaOVdTZ+a8pqh010eda6TwGHDX9zBsXHyGbic1btaIc0pu3G0zZZqZv9dSrNTcFOK9DMVXC8Qb+0CdCs3eOcfxN+4Fcoseu+hQ7TXChMMeiykOlhwF11c8Jxy0wGtnkQDADLoegyy7POpdfc74XIruQuSEaT7vsigBiOV4LM0B8TyIc8lQbt6H1Blm3GGNi6YeOLaRoepqwTiy1FJeG9SXksPLpB+15LHUXUpj6YPXA4OwxxCEDKSwvr6+cADpxuE1NDQ0NGwJXJUOj5Y6WcJCv9UtZyUVEy22aInjt7UpIFoORoqUwU6pt8goraiziGC/orNjzbLKn3Qqj1STKUSGa5pqj8fC1BkDamdpYdgPUqyk8DN9GvWYbrvLiGlh7rjjDkkbrcBqlNbKyor27NkzssaKnAJDvtECkVS0NE7aSh0HuZ3MuozO6h5r6oVj3bTGrDn3S2Pnd65zg1R17A+tGElhx98Z5oqchceRSUVjWw060pPTk8YcCZMHZ7obS2liG2tBC1ZWVnTNNdeMAhfHPmfrKdbNcyn2zSDnw70X1x33FtOfZalrmEqI0g46usffuFepk5wKT+j+UIeXBeWohWhkQmBzWbF/tKqnXYM/47y5PHKjtUAL8TcHNamd5xkah9fQ0NDQsCWwNIe3uro60nlF/xQGGzaVYV2eZbH2x5OkW265RdKYuiSnR0tPaRxSiLqVTMdR80txf/wMk2BmbaMujdyCNFBLtQSgvjcLQ8RkkeQwmXgy/u/6yIVklp20THS95DCi/yTHLVLhxMrKinbs2DGizrMg2wb9L03RxXkhVU6rPPY5tp8ckL9zHWYcZS2oNy1+4zXXwzBxTA8VqWaGpWPwaM5BvJdWmAwPloUJY59NYdOXKlrN1fzwaJ0XOUHqabuum+Twdu3aNeLW4jgyoLCDR5MLiNyAuUz3kVIbSlky/zj/5vGwRKumt5eGtWJpCfW/8ayqJaeu+WfGPc21w+9c5/EejjGt0bPksUyk7LXiOfH1WK/PGZ7xRiYVy8KoNT+8hoaGhoaGgKU4vEuXLunYsWMjfUnU61B+6wR+9913X19hEjCVKVxqAXpNrUUqwL441Fv4nsziiZZIpA5oCRf7atCakVZTkZKsRWGoJQSNfed3Wglm/likgJjSxc/ENtIytZacMka58TVTtddff30avSG2ixaLsd30ASRFn+ktaRVLa12vx0ynQmtWctxe13ENkYp1mz0WWRQfclJc56Tss6Dl1A2RWo/jTh0k55TcdaaPqwUez9LQUH/t/llP73ujpZ3rjpKgGoe3vr6uxx9/fJSiKtMfmVPIfMxi2+LzXIuMEEJJSdYG983jliVzJcdNC/LMAtbSDI8h/UBruupYTy0NlhHHiFboXCPeT7Ral4axN0dHzt5lxvdFbX6ox4/WtT4fsiD4m6FxeA0NDQ0NWwLthdfQ0NDQsCWwlEhzZWVFu3fvnrPZFmEcPXp0KBAmt8985jMlSe973/skDWzos5/97Pkzd911l6RBLOBPm8Rb3EblcqzPvzELOx3E4/NmzynaZG67+DzFhVTmUtQVf6MCmwY3mREJxS4U72XiV7oh0KAiE/dQJEflNR1EJenWW2/dUE4UWRIOD0VxSpxLmkBTtJ3lw6OojfnxagY7sa+cSzoPZ2bUFKW7jZ7LKGJkuCmuGcNtj+JympbTAIUuL9JYpEnxW6b0NyhGZjsyZAYMsSyPZ3RF8t6Lczpl8BQznhtZfj0akXgss4zndIOhu47PIZ93sX6XRwMQP0MViDQOAMHvWUB6iuyZc45uWbGNXDM00svmmuuZIlPmdoyiRs9HNAyThnXGtRvvreXh8xhlaoXMYGszNA6voaGhoWFL4KoyntMwwYYp0kAN8c38whe+UNJgvBKNH0yR1rITk8uJnBfDNdF8m/dJY+UwA+W6vtgO9odtoglzrK8WJszfTTVlCuca9UxqN1KFtZBpdCKOnETN8MBl2K0kM7c3ZXfmzJkqJ9B1ndbX10fBjyNXy6zRXhem1rMUMl57J06c2PBsZgJdK4NjSSo3PmOOig6zNEiIlC/XaC3UV8YV0HiIYzQVHopGKuwn07hIw3zQGIdcaWYkRedhg0YZ0rC34l6YMi3ftm3bfO/52bjWaERhAwoGK4gcnt2bfBYx5Jv7ms0LuVcayWXBjn1u0cGcxkpZkGq3hSmtatnmIxiUmoZjkXtikAJy4ux/zPxO4x5KZjJDQt7D1GaZgZ0lBXEPNreEhoaGhoaGgKU4vLW1NT388MPzty6dOyNMmdCs9LnPfa6kjZS3HUDf//73SxqoM1NJpuRM8WeUok1dXa9lw1moJ4MUPCngqPejAztNbqmnicGx3Q9yWnQejW0klVQLR0WKiO2WBsqSodoyLrSWPNauB3GMjhw5ImkI3HvbbbdV0/90XacrV66M9IuxP6YWjx8/nvbd1HqkuE3tOZULqfNa6idpnBLJz9J8O7aROjXqZz2XmYN+zayeoZFifbVg3uTw4phk8yuNg/pSTxP7TD0PuZ24Dqh7pYk8U2lJY5ePa6+9dtMULzSNzxLlMvSVy/Q6yVxaKEmoJUjN9NMMkD2lJ3V5dK9iMPu4h8hd8tzJAjiwvZSmTHHk5MbpZuN7PQeZxIfSLnKlU9I26uCzBNfuT7T5YBLnGhqH19DQ0NCwJVCWcdorpZyUdHTTGxu2Mm7vuu5GXmxrp2EBtLXTcLVI1w6x1AuvoaGhoaHh6Yom0mxoaGho2BJoL7yGhoaGhi2B9sJraGhoaNgSaC+8hoaGhoYtgaX88Pbv398dOnRolKomwv4T9LNiwtQIGs5s9n0KtXufiDI+VDwR5dbGZpGyp+7hb/ThyeL8se5Sih555BGdP39+5LB0/fXXdzfffHOavNPwb/QtYvSXDwWxDPaRn1NYNLJDLK82V0wTtAim9gjrqX0u8mytvuhLxfmp+dNlY2//qu3bt+vMmTM6d+7caPB37drVXXPNNaNyY5vo25r5XWb9WPS3RZ/N9knt3kXWG39bZg/U9vQyZ8bV4Gr6x2hXRva+YAzNqXOHWOqFd/DgQX3v937vPGiwwzrFUF92HHSIMTsd0pk3y/nFA4/Xpw5d3jO1yWu/MbxN3NScNG5yTljsHx0y/Z25xiLowMqxsLNqFgia4YGyNsXrsVyGUKsFsY6IGdt//Md/fPS71Ge1/+mf/ul5iLJ777131Hevo5MnT0oanJMZHiw6yjLTOeehFpRWGpyTeVjS2TaOE8Op8RDJ5pSBq+lo7O+ZMz7nt7bO49wykzvrrX3Ge1kWQ6nFPG8OsuBn7RDsQAe1wA7S4IT9rGc9S29605tGv0t9cInP/uzPngeZYI44aQgPdvDgwQ11M3hBPEB5cHKtT507tVyGSwUyRmDzbO0w/yXXJMc0C53Hs2sq7GItNGAtK3s2Jsy+PsUgMTBILXBEbJfPCQdlOH/+vN72trel7SaaSLOhoaGhYUtgKQ5P6t/WzKQdKUSKNEmZ8np8viYOJTUVqZoaF2gwA3a8t4YpNpr9rFEiWRZhcoVMS5RRn6R4GKx6SmzAMGisJwtHxazfpMqyoMGxvCkxycrKyjytDrmQ2LeauNBlR46PFGItrUnWLtZX44zjGHDuSMVyLUv1YN7kplx2Jh1g4F+u67h2GNqLXAI5mWxsyCGzfxEeC/adYdEyzjxmbJ9SR1y6dGmU3Z1BqmN7uT+NjJtxvbUA2dm6pNRkGfEguSWeHXGPUYJEDo/zEb9z37Pt2ZnB32qSLYZUi22bCh/I9tSC8DM4dtZWz9cy6oXG4TU0NDQ0bAksxeGVUrR9+/ZJuTV1dPxk0Ftp0PsxiG6NOp/S4dU4royqyDjG+D3WS4qRcnBygPFZcniLyP2p95gyHqmB3NqUMpnULQO9Mjlm/N/ztr6+XqV019fXdf78+VHA5Ex/RKkAueZMx+Vr5GZoHJGlUaLupKbTieVzvZF7iuuN+lauIVLxkcMjlU4dTWbQUwtSTs5lKkUTnzV3RSpeGnR45Hqpb86SIlsf98gjj1T1X13Xp5ZykGcjkzbUdLdTUhT2nesh01+zjzWJS2ZYw/WVcXZsI+e9xhXGPjGIMzHFGTGgfabPrj3DfWXUzk5prGf22ZIZH7GczSR2EY3Da2hoaGjYEmgvvIaGhoaGLYGlRZqrq6uTYrWaKNMizGhKalhUwTxhFAvUFNHxHooJMnN0GhpQuU9R2lT5NRFTJg41207jiylDh5ofztQc1EyYqdCPxhg114ma0YQ0FpVkJtER6+vrowzGcZxq5vket8xAoGaeTdNoiraydtdcGuIzFPVRLJ6ZltcMJ2iA4jKjKKiW2X5K5PnVkgAAIABJREFUzE/DAvbZ4+ycZlGVwDGuuXXEtercf3YjYX9pxBD/d1suXrxYFU1duXJFp06dmotEMxEdM4Mz59+UasPP2BiP85ON+WauRVPuCTU/xUXcH2rGc1nZNcOjqX7xnppbR3Y+1c6kmk+kNJyBtXKnXFqiaHNRo6HG4TU0NDQ0bAksxeF1Xae1tbUR9xQpezqzmqOzctrfo7M6HVdpoloz685gSo9UbaQKfQ+zIhORmiKlS4X8lOEB7/WnudwsazX7XKN+MxNjjg/HhNRv/I1tpuFLBF0Buq6rUlo2eKoZpMTyyAV6XDLumRmYTaWbW2Kfp1xOagYbGVcQI4TU7o19l8bUKzkVz1M0DKIUguPH3zcrL+tv5hrCT9+TZZ33/+b0/N39y6QDNUf6DF3X6eLFi/Pys/XLNV4z1Inzz3JqWbanAl7QpYVSjsyFphYkYSqiUE1CMWWA5DGh8QiDSmTnHyUXNBzLODyOH42+siAZhsePxmyZsVFmZLhoBJrG4TU0NDQ0bAks7Xi+vr4+4mIiVWMOzg7GDz30kKSBMmSoovg/w49lLgysr2ZqT6rGHIA0UKK+txZKKtPd1Jw4yTlMOQ97LMjtZlRzjRqv6SEz+N4pU19SfVNh1gxyeFOUVilFu3btGpUT++y+msrzvGcuBYbDWF133XWSBq7d/eH4TIVectvoHpPd63LNxTDUWBbqqwbPC7nFWI9RW9cxzBZDpPkZt9Hrz22Mc+C1SJ2ux8S/xz3pur0eLM1x211+dCuoca4ZLDkg5x05ZP/v8GMOLUYHba+X+IzHKQtSIeVuAzwreGZxLUvjMHh0BcrWJoMT1PRkmdTA/3v+/Z3jl0kwDOpNM8kMn63pqGnDIGkeapDh9nw2Znuede/atatxeA0NDQ0NDRFXpcOjk2Ck9qyPs8WWqUnKgKe4GerDpsJD8c1OrtPUTUaRsvypSN2U99PxlLquLJRZLcxaVp9BOTsDzpoCi1xBLYyb54LBarNya9ZfWegic8xXrlyZ1MWsra1Ncu/kgM29kCJ1fdIQfJg6NVP4U+GzyAGROidnLtWDI9DCMlLr7qPH0NQrKXzPQZRGUP/G+Xb/I+dSC0fnsqg7jnvI3Bn3pMswhxd18FwzDzzwgKThLIiWmIafd9Dn3bt3T0oHSilVvak0rAlzeO6rx9Lj5t+ljWMW218L/ZXp8GhFSN17XDuU5PjT64F7QxqPYY0LzQIze7x83vnTY0ApUWw39XDMQuHfs7B71KdSchIt9A32b2rsuQd37NixcHixxuE1NDQ0NGwJLK3DW1tbG3EKmQ6AercpisRUGOXD1FdkvltMW0JkfjJ+hroO6ksyLo0UR83iKsrSTbW4n26Tv5vCi5QLrSKp53QZptZq4YOkYU5cfhb41SDHQt+4LDRXtKbczB/Ga8f6nLh2qOPwvJgLuPHGGyUNXI009J96V4+Hy8+s9KiXMLgOI8fldrsf5AoyyrcWYottoz5QGqe54ae5lMi5uBzq0NxW9yfT4fkaAzVzzcb1xmDyDBqd6W58r+d47969VWtp109OP46T20BOzinMvGb8nc9LYwtE6qgzeD24LEpVMk7f48MA2lMc0GbWixmHQw6L0raMK6xZu7I+2mRI4zPIa5cSh8hZR92zNLZ2zQJ3kwvcvn170+E1NDQ0NDRELM3hSWOrpUjRmeLxW5g6B7+JI3W1WQocv91NVViuHa/5GXKWRqTS2BZSNRmXspk/XC3wcKyPFBcjbES9GanZmmw986WpRWNxP7O0TqTCae2a9Ztjvm3btiql1XWdrly5MvLjyqzY3E5TiLfccoukgTKMHKqfYZQMr0mvFfcrcmsGgx5zDqf0A653ai5rOiH3z8+4bZELMafiZ8i9HThwYNSmmg8dqWcGfZbq0hVLCShZkIa97HZ7Tly/Lbbj2qA17VS0jJWVFe3cuXN+r8uJulxLAQ4fPpy2iT6BsU/UpU3pug1KfFz/VGQQt5/+irRK9nhJdd827nH3L46x73X53lc8U6YC3TNSFhHXDv0+XS8jWEVO0HuANhDU8cc9aPuQ2OYWaaWhoaGhoSGgvfAaGhoaGrYElnZLiDnPLBKwKbM0zkJLEUwWuNjXqIx2PXTqjSy/Rag0saaxRRSdUTznNtdC8cRrNeMEKvejyNbPuK0UlbifUZlbUxYTWU4/X3N9dGyeykvFfHVGFrKNubKmjGEMGihl4jSLfA4ePChJuuGGG6rt9lrwM1wHFtt5LOygLg0iplqQapcRxaAUXbM/mSEAjXtolOO2+zML5muRGeu34262vmkUwaAQHpPTp0/Pn3U5FM0xoHfsp+uheMr9yYJUGx7zc+fOTYbP27Nnz3zuPG9eF5J00003SRqMU3xPLF/K1SG+5vpPnTq1of4s+ALdkbx3fS/DF0qD+JmBL2gkkxmGUQ3hufSZ6d+jcz9dCfzJsuL57fl1+7lHuA7inDKsH9eKxyITRXuevFZsoOa5iOstzqE0nYeTaBxeQ0NDQ8OWwFWFFqNyN1IVpl5N7VHRnL2JTWnUQt5QgRqpJt8THWFjGdl3t9eUgqkWU5B02Iztpwk5lbx0jpXGQZDJ0WamxRwDGpHw2SwAcBbwOfYhttFUPymtWrqY+JuvXbhwoUqlO+M5xzELrkvO9/jx4xvaGPvltUjFuOHyHeIuC71E1AyvpGFcTKXSWMBtjBy3DTxMSXu8TN3SeTwahLhc99Of5AYilc50Ww8++KCkwSHce8Vtj1w23U88FzRpj/3zNUpmPCc2MojcAB3qpzi8bdu26cCBA/PxcT0eP2mYD+/pOB7SmNOThjXBeaHUyH2P64Bpbci9ZBIRukh4LdGQKgu3Z9Bc39/Npcf+uW63zd+9n9wvSwmkcYCLGueUtd3zQ0kJA1REKYvb7TVPFx4jcr0uJ7oPNbeEhoaGhoaGgKsKLWbKLTPB9Vue8nyGKMoSZGYhg+Lvmf7Pv9GsnkFjI0VJ+b6pQobeyeqhC0UtaWmkUBgUm2GoMvPnmu6zpkvM9HHUFfgZ6rtifaRuWX+Uv5MamzLfX1tb06OPPjqn8r0+oj6W1LmpVVOipNpjOxmWjHo5Pxv1pNYBkSun5CKuA7oQWM/oMTbFGqUerqeWWJRUfFwH1EV6TLyWzD1FvZOv3X///RvGxpQ8HcMjdcy1aK6Eupy45+mG4LZ5TXlMzFFJA5XvffnII49UEwj73KErRpxLz5nXE83oPX5xvVH/Sf0bg15H3RGDQzN8VybRMmdlfePNN98saThvXH+sx/3wGDKVmNehn4lO6+Sw3C/Pg/sfOcpaElzXw7Bkce26Da6XkoRsHD0+hw4dkjTsLwbjyM4qr+szZ840HV5DQ0NDQ0PEUhze6uqq9u7dO6IYoi6Eb1o6aGayYVMVtPKjRRJD8mSoOYhHDsjcBSkQhuCJOgdyWEaUf8e+RI6SCTH5maXroQ7PlKmpdz6bUXa1lCukZKVBH8IAw6bGsgSnDOuWOXUbXdfp0qVL87E/efLkhv7EOsnFuA2uL9NT1CyHyUVlloJuk+cpC6ps0PqO64ycpjRwM+aOvYbMHXIu495gMGpy9gwBJY0paQYnYHi6LAkv++H1wVBusVyDc5I5s7uNHoPHHnusqsMzaBEZ59LtNFfLgBS0XM3KdXnkpjIr5Ki3lsZpfDyn0Q6AqZcoYbIkIOoKaSPgc4Dznu1P6tK4v7Kzivpfzr/Hk9IwaTy2TNHFPsR6/JvnlkELYhsZKPyhhx5qHF5DQ0NDQ0PEUhxeKUW7d+8ehV6KHB6tuGjll+n9GBiV1n+kvCP1zPA4DO2UJak1FeF2W0/hNpk7iBwSU3iYernvvvs21OuyMr+oaJ0Uy8wsuhgUupZeKaOaOAcMdF1LMSKNLWbNtWW+SB4n9+vs2bNVKv3KlSs6ffr0iHLL9DZRNi8NY+nxiro8zwNl/S7D+h6HnIpcqNvNtenxYsDu+JupfetDzCW6bVGH5/Vq3yK3wXoLz7/HJlofulxbWNLP1b9HnTHTKHGfur8em6j/s56Jlou1RKTSOGQWOQqviRgGLQuRVvPjXFlZ0d69e+fz5b0Rx5g6LHMx9AmL80/pU417pl5LGtabuTFy1R4/c7BZG209S/1f5PBs0Wm9n+tlIPpMl8+zgTo99zuub7eNKdQ8//R7zYK/8/zx2vR6j+eO20tfSIatjGen95H3zdmzZxfyAZYah9fQ0NDQsEWwNIe3ffv2UVqRKF+lJSJ1TH7bZ74mfvNbls2EnOQApYHiMcVo7o36g8gVmjoy1fCMZzxD0lhXSKpWGigfRr4wmJYmtoGcA4NJR9APhZQPfQgjl00ZPfUAmT6DaTpIGfveqHNzGxzc+c4776xa2tkPjxxD1AHce++9ksb6A7Y3Wor6eVN99Mfz7+bw4rgyfQmD7Fo/Gzkg6gjd5ltvvVVS7odHnzOm06Hlb5wLSwzuuusuScO4eR5chjlAaRg39917wtyG22juIXIUd955pyTpve99r6RBn8U1lAUcdr3uO/dmDIrtuj2Oe/furVr5bt++XYcOHRrp7qLekuuO9gWZ3prz7fLM5TKSUITL9Vj6TGHg7siF0j/WY+t+eXy8lqVhTXgun/Oc50gaziim/rJuPI6J2+91RSvdzM/UY+H2+xlKnqJkyfuS8+Q147bG/Uu9Ns9G12OLVmk4e70v9+/fP5nCKaJxeA0NDQ0NWwJLcXim0kkZRW6G1BJ1KpmVpqkGc3amFI8cObLhWepP3CZpoEBMoTANUZQB+5qpAuoEssS2TLWRJaGMiJwL9ZZMaZONibkLl+MxcVm+bi4r6gwZLYHctq9P6aZIbdNXKbbf3MWUHH3Pnj160YtepBMnTkgauOosPZD1ooyDmkWIYZoZf3odUCcZ9WNMrWIOyPeYq8rifXIMzC1ap5fFUjVXRg6PFnCRana53ldeo6TsYxvdH9/jcs2Neq5db9SJ3n777Rvu8R7wWJiDiGvHa7Fmyey2ZxFkptJPGaurq7ruuuvmfcz0cVy3jNrk3+M4sY/Hjh3b8Kw5FUZkkTbq5mIfPXeMDiUN3IznxffGNSnl4+Tzi5bK/IySLK8Vc9OUftRSQcX+UH9paQ73W2yrx5xWwpllMyNHeT27PzHZs0Hr+tOnT29q4Ws0Dq+hoaGhYUugvfAaGhoaGrYElhZpnj17dhQgNRpdMEyTWXAqmqNYioYYDIRqNj1zbDab7LZY3EExZXRWtjiCaYcYniyCYk6a79JsP4q0aOJLUZ1Z/ixsl9l2i1NqwYOjMQZFaBTdTqWy8Tgy/BXDr0mDuMH9mMp4vnPnTj33uc8dhVyKRjD8zWNuMZpFS1E8bUdjhk179rOfvaEMmpFLw9r0GFu05PmwKXg0dLDY6+6775Y0rEkGgs7Cg7mNFLv7kyJ9adgLtTB0NnCI405jL9frvjMFkPsS+2qDAI/jC17wAknSu9/9bkm5SwDnntnRM6fvKBqrGa2srKxo165d87HIAlVwvzOtThZMwte8vrwvPQ8Wv8d2GAzBR8Mkr+soaqOomS4lcR8ZDMHnev0Mw3nFdrgeqw/8adG25ziOieu2C4nXjOthoI24F2l8yJRMrsf7ShqHjeT7g+dPvBbTEbXg0Q0NDQ0NDQFLuyXs2rVrTk2ZQogcnqkmv+VpPp2lf6CDcU25yqDLsRy+4amYj6DjPOuZ4vTISTLpofufmUy7rQxllYVDY6oV10NjhSxNB8eLKUSyINzkAlyex4hO69KYcymlVCmtlZUV7dy5cxRIObbb42FOzoYSpirpbhHbQ07e/XAf77jjDkkbOUqvY88H15fbGBXndGymsZT7l4U/I0dNrsC/uz0RlkqYw7RBBc3WpXHKGpp8e7/ZOChS+B4fP5MlTmXbXY/Xdy2EWTT68L6MYddqHJ5TknlcXF88dzx27gslCAwbKI2DSXAPu+8MfCGN9wW5DvcvnlVuC1NLMTB4rIfnjdtCYy2fxXEd0KCKqc1oPBV/o9TJ65oBt6OBlctneDCP8//f3pkt2VFdaXhVqSQExg5HYAaBw40jfOn3fxI/AG1LBtxMBoOQVENfOL46f325dlYdIvrCfdZ/U8PJ3LnHPGv8l/dQ1UHrZFx+f9hSmHPREZDch9HwBoPBYHASOErDOz8/rydPnmzsqym5IuU5YXGvKKlt+0gP3OOw52zD3+wu/eNyOtkOP61BdMVJkZqdoA0svWcfV31xYmj20VKnQ7GtcaVk5M8sPXn8CRerdepE9pFrGOteWsLZ2VldXFxspMu9gpXWOk0wW7UtpokWsaJISp+DpWNrKF1ouYvCpt815yD/zzzb523fDekdmXgMkNL5DO23S48xTZPPHHvK+zL7xnzi3zIJQNc3+6aditSVIbIlowMaHlpTZ4Fhbq01e4+mFomfyqkRqTlUbTWjHIvP9IpIO9un305xYj/mc9AKndzPT8aL9SbvdVFc9g7zaNLsfI6LLXPm9tLLTIPI3HBGOyIP2rOlzNaBBO3w8/Hjx6PhDQaDwWCQOLoA7M3NzS5xLRKJC6/aT5aSkAmgXX5oj4LLydSrUivpu3ESqiNJ3a+qbakN/5/nodmmlOjIVNrg+SZ3zvZc0NSSZFcKyNGgjgpk/J2mzE8n+YIVdZj70H32ww8/3GrTe2uJZGqyWfqbWhqSp31oLsnkgqP5memUnMydycpOvEZ6tRbTJUWbGg/J2xpGUnDRX/t/ucf0VFUHadnWFpe7AbnvmBNHNe6VgPL+os+sRednXhVs7nB5eVlff/317bWOEq86rJ2LHrvd9HE54pVr6afnIPf+iu7Q+9oaZ9W2tA5r56jxqi29HX+b8q3zx/Fs+u+o4JVWmuNg75jQobN0WdvlOcyjo6KrDvPH/7yOjsL3GBnfJJ4PBoPBYBA4WsP7+eefNz6JlEjsc7Kk1fn9TLhM+5YUOnuupQpHM7n8RNVBSrGPhn44fy3bA/bHWIrqyKNpz9FYbiP74vmzRrs3N6uiu45grNpKqvztvqXPbVWGqMPV1VV9//33t3lzXSFRS75oCPbDpaTNmJyfZCm2K+rq/jpfyP6TfA57CA3PhXJT4nSupH04SO20mblO+JnYT2iqPIf1yLw4a//+yZp6jqoO68F+6krj5BiyL6bx4qf7nO3xvL3SUjc3N/XmzZvbOUb6z36b1spRlF2kpcs/WePhjPtM5D22ZFkjSc2Ea+k/88Ieou9JBI4vjf/ZKkWbzrGs2tJ/oWm5PFCupYnuAfvM5yvX1LnDK/q4LmfU2p8j6PO94zF/880348MbDAaDwSBxtIZ3eXm51MiqttK+C5Z2/jiXDLJmYm0mJTtL/batdz4CS8cujOko1KptGQtHDlrTzJIyzrNbzUlKZ9aQrdnt+Txsk3eU3p42aDu/I9dS2zG7zFtvvbXsl0tLpR0foNnRXwpkWmNIKd3+NhdzNYFy+h7cV6+PNaWqw7pDsszz8K11vg1bQpzvZzL23Af2HTvXCaSfsSt6nM+3dpVSus+AtUL72bMdRwMznybHzmsZx2effbb0D9/c3NTLly83vrbcQ97TnUZnuGRZPq/qMKddRCLrwLo7WhfkfuAeF8z13sl5cPkvrrXmwz3pJ2VczL+vYb91c2Ttz2fd77CqbXS44zb23lneX56jXCP63VlE7sNoeIPBYDA4CcwX3mAwGAxOAkeZNKv+rXI6yTpVcJv2TGS7F0YPbBJxwmZeb1OcabUczp19s5kSp7id1fk/TForyi2b3/Iz+mpTAm10IfM2P3ncnbnFAQY83+H9nVnZZi+bWbpahEnUuwo8ePToUf3617/eJPFme5iQXInbZrQ023AP15o02PPW0anZBMzfPC9TTKi87KAl76HOdGrTjvvGGqSDnnZ4HmZeAnpMU1e1PQt85iAjBwgkbEqjTea7m0evPeerq7RtE+Tl5eVu4MHFxcUmcCz74Dm16a0LqLLrgmtNCN0FoDj9yc93qkaO2akTDiLLc2liCZtF2ZtOCXE7+XxcBw5eqTqskRP2bW72+z3v8TvZ93R9An4PMc8dOT7z9e233+6mRCVGwxsMBoPBSeBoDe/Ro0cbJ3tKCNY4utDXvC5/d8DLSnvrJFL/z9JEStxOdlxpUV0VaUtFDmywNpqfuYQHUiCSUTq+TWDsuXAQQ5dEbg1spTnncwDtWmrrkvHd1w6Xl5f1zTff3I4ZLSaTyFdkyqxdl0xMe9bWVtW3816XInEAkq0EOX6uZc0oJbOXOsO5cWCVNcDUKLtq4VUHCrU///nPVVX1l7/85fYzl59BY3lIsreJImyx6QK6AJ9xblxuKTU01i1TgO4jHreWkefFxPNOQ3Fl7bzWe9vnZW+eaNcaWBdgxfMcLOS/M4XKQUvWotnnXaASfWQ9rK2T8pJn2ukHJsewdSjH5yDGVWpaB88F7wWnm1UdNOIkQ98jxEiMhjcYDAaDk8DR5NFPnz69pVciNLvz2zi8fe/b3VrLKlnd4eL5bEvWK62tauujs8S7R07b+XW6NrI/TjS3NIj03oW/rzRIa5KddNyR9ub/O23HkiISnqnTqrbh9ntr/Pr163r+/PltGDoJ6Fl6x5RYoEt/AE52Nem2pfj0+1g6p300B67NEiiMH+3F6RB7KR8mjbb/p9uzPHuVyoA28Kc//en2HoilTXhu/3mnBXd+pOyTn1+1Tbdwygn7v5ubJF9Y+fBubm7q+vp6cwbyPeD968R5p5zk794H3n9dwrTXziH/toLlcxxDYML7tCwBn0tbazpfG+15r7Jn0PCePXt2ew/nknZdWsgaXmrt7sPK6tX5NZknp910e4d3I6Wyvvrqq9HwBoPBYDBI/CIND7s7dDdZmsTRcZawVySrVVsf3UNswPb/IXGggXXko362n9slR69KxjgC0rREVQcJzpRSXMMc5T3WrFZUYnvatfsOOg3PUVkrn2FX7oT+v/32220kFu29fPlyQ9hMsVfuz2cbPDv9Bva3+W9+OrqtautroG9o3KxBV5jXBUWdqN2ti8fl0ijWBLvnIPnaV5XPQ2K3785RjqYIzGtWhO4mS8/fTehg2qicezRlfr5+/Xp33Z88ebKxOuR4rD16Tbt3iDVdayL2rXZWFNP1obW5PFXCPnzmDb9s5zNenU//zH3gd6F90ryHKC6cY8aK5/+bpCP7uqLQ2yPYto/a0a/snfTXsr/2iOhXGA1vMBgMBieBozS86+vr+vnnn2+lFqSApDlylJIj76zp7X1mja6T0vifC85ie+ZnamsmjbVkaQqjfI4jLR1Ryj0p2a1ogJC8KAeTmrL7Chyd6WdkH2wXtyTU5ftYM2Jeu8g+j3XPhwfYM4y5o8Ra5St2/iVLk5b0V4S2ea3L19AnUzNlH10Q1T6V3FNI0iu/z0M0PPwu7GekcvLyumLFmXuafbTfMZ/nXE37t6wx5z300Xu2mxP21YsXLzbtGWdnZ3eiNGkfH07VQau1RuX3TOevtBbVRefmOBLOz+WMdwWTeU86t5J7Oqoz++j8zrJvuiu9w7pYo+zG48ha+mTrQJeXax+03wd83vnRnUfLHu2iXdGE0fCePn26S1yfGA1vMBgMBieBo/Pwzs/PN1ITkT1VWzYB+zY6Lc0+tJVNHXS5YABbMD877cbRcmbNQBJKSctRYGarcFRqarYuGeS5QGJJaZD5W/kbu0hSw9GAHkv3v64ET7aRkpT9WRQI7nB5eVnffvvtbTv47roxryJvu/1g350LSdqnlxqA/QWsA+OBzSQl4SQFz88ctdtphexvF/p0cVqKe1YdpHOTYRNhR5Hcv//977f3WPv0WWBcbjPHbo3e/q6upAxamyP6uhwx4gAy8nYlpd/c3NSrV69u28U6kJoC0awuOruK+K26P793z4rC3uF/1m7tD87+2i+LptJFkvp/1spXFqb8zO9g5r7b34A9Sf9djqg756sI8lXUZv6+apc1yEhpcl45J0+fPn2QdalqNLzBYDAYnAjmC28wGAwGJ4GjTJpnZ2f16NGjW/URxzkqctVB9cRkhapvc0VXtTqfU7VNbjSdV9XBRGXSZhPmdqHXpqNCfe/q/HUh3Pn3qg5g/u6kVJP35hw5aZh7bMroiKBXTuM9td8h2A5z7tpchczvgVQW+p9E0JgB+fmHP/zhTvsOXqk6mAcdJOXq6VyXTn36jymOzzAX0kaa7DH/rQINGE8GjNi8bzBv/Mw+2hzepWZkX7u+MSe///3vq2obLt5VrfbZs2kwE8+79I28t7uH3z/55JOq+vd7YmXSJFiO9v76179WVdWnn356e41JCxiTiZo7wmm7CRzA1Zn5V/Rwrm2Xz0vTcdXhXcn8delQdgG5r3b/5DrZDA14HmcxzzTnhH3MWfT8OtAnwWcm4e5MtivyaK6hrzl3divdRzyeGA1vMBgMBieBX5SWgBSDlJZJgasQ33TEV/VlZoC1GIe9p4a3Sk534ntKj6YbspbWSbWmteo0hhxX3osGbK0G7Zf5S+3RCezcY43PlFqJVaV4O7Gzvw79tmaR82ji2lVpIJ757Nmz2zB6a6zZDpoJEijtMgddCL61dUvEnSbsZHSTFCCBd2S+rKkDkDgbGaxAYAnSMtcyB/y/0/BcXmsVvNDR7XFvaqhVh4CELkXI59cpPF7zqvtL89BmziNzTl/evHmzG7Ty+vXrTRh/VrqGos4akDX9LlHawRbWiDridAdDeZ7oW6cVsr4OBKHPHR0Z/+NsoPmsymBle35HsldYj87ywD5mLkzG0FnbfMZWpYW6gEWTcnAv4+0o07i2C8JbYTS8wWAwGJwEjk5LuLq62hDJpuRj6isnFoK8x/4BS3oO+c97nR6wKvmTUoXJoy1xITmkfdqSjcvSWFpMKdEJzbZpe87yM/rkwrO02dnuTeGzKgSa41tJtd0ar665vr5e2tIfP35cH3744e3YvebZB2vlaIUdTZw1UPtY9/yYK8InaHp1AAAgAElEQVRsl0bp9luOK/uGZJy+SX9mPzNaCJp+hmDjT7TFhL7Sdq4lfaT/LtrqxP7cd55HW0qczFx1OC/+SZ86zc3lts7Pz5ca3tXVVX333Xf10Ucf3el/+gR9lqxtohXmMxzK71I0eyXOmFP74dBIOiIENHlbUQB7Jktm+Z3H/NvC0D2PfcVaMT6nbORZdII7c8P87ZGkr2jPVpRt+Ry/7/Zo8Uyo/lD/XdVoeIPBYDA4EfyiArCrRHE+r9oSC5sQ+k4nRF9krcKSXydxW2uzPygTgV06xImySGspQZo81VqIfR8pkVgrQ1ri+V2ZFlOZ8dN26y6R35+BvWKS9n2tivzm3Dtqcs+Hx732X3Y0Si5g6jlPmAKLPvnvvcK8LmDL2DtCAPvOTIZtba1q6/djXey7JbI5950TmN1H+3izD1zDHDCvtmh08+qz3dHtgVXysCOJO39Wai73Seo+y11pGvfBvtyOwox73F9bQnJd2L9oG/TN77DU1mzp4W/Wg/2Qa0kfIDxwNLD3d75DeI4tI/xtCr2qrSbpa1Yl1fJ3l0Hy56nZ2t/nPcvfSezg2Isffvjh3nfPbR8edNVgMBgMBv/hODoPL7WGVb5X1dbHYNLTh5J95j17UWXOCXNJjJQeLcW4nElXbgKJyrRQSHgru3zV1h9iSc+aV9U2v9DRSytfS9VWAqKvSJJ7Ejd9cqRsR9FmLWAvH+bm5qYuLy9vIxGJ2u18j/QBrcZ9yLGu8oG8N7t5srRKPh77gecRLVp1kLQd4cb64G/M/c28u7DniiYux2JJ2tGteyTFK2uArQa5D+zHcgTjng+PeTPNlnOqso/pz1xJ6ZBHo3FzfnKOOe+2xJioO9d/VdSUftunm8WP0dZtBXBeaFdiDMsFfXEUb54xoj0ZM+PkGmjWuuLBtpQx57YwdHRk1vC8z7tz7vNpTa/LC1yVP/LfuUftp98rLWWMhjcYDAaDk8BRGh5SOugKI7pMBZ8h+ezZWh2Naamyu9dMF0ggXMtzU5PgHq5FWkPiMQF1jou+cQ/SLJIeUmD6RZDo6IvbYk4zVxFpzyS1exFP4D4faCcNrnKQViWaqg6SVs75XhHPt99+e0PqnFI/z2IOrZXZB9Vh5VvtCmRaknff2Q8we1RVffbZZ1V1KHP0/vvvV9WBMQR08wQzEWvL85DiuSe1J/vAVxJ4nkuXsKKPzqGzf6t7Dtda4k6fiv3W1oysZVVt80f3inhCHs0+w6qS/jH77OnLyp9Nu/lzlWvI/znjVYfzzxjpC2sLMXPGDjjCm/cCkbiOMM8+sJZoaZwR5zrmHNva5NJtWCtyLXnOKg/T79c9jdIant9hCVtoVsTTVdvz/1D/XdVoeIPBYDA4ERwdpXlvgyqqiQRk/1HnUwMrPj+XrK+6GzlVtWUTcQHNvN+RXS5omlqabeeWKixBJr+oGTWs3ThvKttzXzrmmOx717eVNtjZ7sFqHvdyaO6LtLu4uNj4WNIvYt5I5tB+zC4yzFIfa8r8OSetaivBW+tA80rJHh8dWoYlU6T2jg2Ge/74xz9W1TanDl9h7tVVxKO1hVxz5onP0ArMztEVgHV0NWA/WAvKObD/xfmG2SbPZm5fvXq1lNSvr6/r5cuXG/9hRsKazYN+djmuvsfahKOF2aN5phmTmXX46QjwqsM7hP/hu3Nh1hyLtSbnL7pQap4NR5/yHPrOPGbJK2vKtgKsimZ7rDke/7+7d8XG0kWUM7cZZTwFYAeDwWAwCMwX3mAwGAxOAkcHrWQI6F7AhNVYU4slVomrNjl0yZWYNRzY4jI9WT7FATQeh2l0uj7aEUs/MDmk2dWpEiv6tS4B1E59O/c7Z7+Df2wW6KjFbJ5cVX/OOfGz33rrrd0SROyfbL+jU3P1dSe/Z7/tZMeM4mThLqXBFb/5ybgwaZIQXrWmwcPsxc8ukIufVCfnWlNOERBTtQ3CsGkJE1qGajNPBE44dWEvqMkBJ6uyV13Vapv9HQCTz6Fd5vY3v/lNmxROP6+urjaJ8h25+8os2qUl2ETutBg+Z53SHG7Cee5NE232K2FChVXpsW483tdOdemClwB9ZX9hnnfZonxORxaebSVswlyd3650mr9TbBbvSDnsznoIRsMbDAaDwUngF6UlIFVQkiOlDEuE/ub2N3r+z1KkSWK7EGZrPtZikC7SYe6ES5MEW4pOOBHSztKOLNvOe//fFFfZ7oqeyZJXSlzWKJzYvCd9OmHbUnqOwe3e5zy+vr7ezEWOmXV2wIQlxC4AwRRr1pq7/rPuSOWeYyT71CTY86uiwUjLXYCGC4miESFxOzAkn+0ALmt+GbTjIBUHLTCfXQCCpXATencpHF2Jovy7C3ji/gzKWlkHbm5u7gREdWt5XzpNl5bigCxrt3va1MoahbbeBVg5GAYLAukqSSkGXNDYZ9cpExlY40LAJtzoCC+cxuGke7+rcs397rP1pbMSWYM1zV9nmeGepNeboJXBYDAYDAJHpyWQBFq1LaRadT8BdJesbsnX4eKd/R2saGscrp4aF5IdEtAqBLajIVqRq1rD6Gzc9GWVVJk2fNqxb9JaCH9niLa1XEtNHVmwx+yCql1iurW0PUkLPwz+C7efsJTpwrwpIa4Ssp203iWwOt3F0nPnH7OfxVqSC4NmnwgDNy0Z54gxZLIyUr99g9ZYct591px2AazhdO3ab7rnU3Eqiwnju2T8bHdv71xeXm5I33MtV75t+1xzv/mM2WeH1tQRnXvf2qdnasCqw5yi2fGTdBVTf1VtycltBWMO6GNqoYyD9p1yslfyC3iOeI4L02ZfV4Wn9/z79/le8zyxLqxXxmfch9HwBoPBYHAS+EXlgWyTzW95F1W1r6vzU3TJhVUHKSIpvqr6grMrGp1OinFpF2BtqvMVWmpeFafNsazG56i5lGJW5Y5cPNb9y3bo42ouOq3A0tgebY/7v6fhXV9f1w8//LBJ1M3rrS1bWmbsKcWuCLHdRqdleE2ZN0vrnbaGxG0fXkeozmcuuOpCrJaMs48G4+bebq/ad7ciK8g1NhmDNb1OWrcW5b3LvWlloU/pq9nzw1xdXd0+u4vOM8HFKnqxi9J1GysKrM5PjjbOPmCMphGsOpzHLGtTdbA0oYnlObXWZx++z2BHSwbs+3QR6+ybrVCMh766QGu2nz79qu2+7ggvrLH6vZrrSWRvV/LrPoyGNxgMBoOTwNHlgc7PzzeRY520Z+l5ryyQbf32E+z5xVaRj/688zOu/FSdj8tSpZ+zF8Vm/5g1OmvF+bsjOVc5Tp1fa5XfCFICdCFVS7eO+KzalkI5Pz9fSulnZ2f15MmTW22ti0jD57DKx0KKzrwha76eYxc77frn0i5d5CuAJBifqfPwulwqP9M5qXuRb+4D82aqqaQj6zTvvNbFQxPOv3J+Zjc+n0/vSdacvMDunr0IX6jFGGNHVdb5MrMPq3yyvMc+TefJdXvfpbesGXUljFziCc2ui3ZFs+FeW4u4BwLqxCpi3ZaLfO94DthDzhVlv3dFpFeR5V10td9Vq3w8/J35v9R6pzzQYDAYDAaBozS86+vrO1IhknbHomI/AuhKYFgDsg3YUlTHEGIJ3xGK2W+zI6wImVPysV/ChRD3pJiVz8alf1JiNdGr88k8lr3yKs676XwhK58NcORftkO/98oDEWln/0Gupf1D1hTs98lnr6wArLv9TNme89LQSBx1VnXY8ysNkvF0fka0Q0ed2i/cRQf7jHncqTHbcuHIaWtpOZ98ZsYQn9vOouByO9accu9SCiuLw95XAJYcM9Yn+8B82zJCm/w/97wjue3vtb+8YzGxRcssLZ0/dhVRmiTlBhqVrWB7rCNYRHxOXRi6y490dCZ/r4oyV233iK0te5aTlXbv9222j5VlyKMHg8FgMBDmC28wGAwGJ4Gj0xKurq421C6Z9LxyQq5U8aqtWW4V4NJR4VjlNrFsF2xh8yMmEgdu5D2rsGybTrvkaKc/0Ab/7+pGYaKy6cSmua7Ssefc4wadKcMmGs9nmhbc/l5o+fX1df3444+bpO4k2XZ1egcadAmmNps4PNumno7UmTboC6kT3T5wKg7tMR7aev78+e09Dsu/r/J4t5Y2lXvcuZb0f1VD7yHmd+Y61yc/zzqGdklg9uX59CfXgnYzrWRl0nz06FG9++679cUXX9z5f84T7XFuuuT0qrumYe9FB6c4eTzP5ypoiHt5J3YmfgeLmOow1wUzp9fKQVNOj8n+24Roc2WXbmHzK8/jWta0a9f72kGAnVukcznkeBycmO3fl9Jy554HXTUYDAaDwX84jiaPvr6+vv2GRsrLcONV0vMqiKVq67y/L5Q4pQEHrZiY18/IPljitqSazmVrknbEWorJe3FkW4Ldq8rs/zmAY0XZlmP1NV6LLvzdYemWDnNe7dTfow568+ZNffnll7eSKCTMOWYnkQMHPeQ9DpgADsnunOxoHPy0htVJlaZwYg+hWTj0v2qrmTI+05LtkWPTR2uwtk5UHc6lA11W1pAE84REbwLtPToqJws74CXn3vs2yaGN8/Pz+tWvfnU7Hltbqg5aJYFBwNpUF0Ti5H3+tuaVliyPw9XMuSfD6d9///2qOiST0zfOQheYRpK1UxnQsEwu3Z0n4IAxylTlmXa6EH1l7LZkZDCg3+0+e50G70A6nz2PO8eVleL33j2J0fAGg8FgcBI4OvH84uLiVrr1t3BVn5iasCZR1Yc6V20TF5EmUmqyr6nzaVTdDRN3wUr7OugjCaF743DYrIuI5mf8JImTPlsbrTpIqpaSHkL5Zc3Yc2KtOO+xJO8SSl0pkUyGXfXr9evX9fz58/rkk0+qqpeWV8njqzXO/jqk3ImznV8TqdjJvYTMgw8//PD2d6Rx+s9P1haJOOcJaRwNBb+M6aK6s4E0S1+tLXY+NcL3Tc1mIoKOus+airXuTutdWR+cbpPvCd9zdXW11PDOzs7q0aNHmxSQ3EMr/7/95N3+tBWFfWjqrT3yaKdBdFRmTnNhXdhTvDvSP4ZWyLVYGJza5JiFnBNbvWiL5+Q8ei5ozyV/nBheddiD1qZX5cmyHVs36Ctz0hG4pzY6PrzBYDAYDAJHa3iPHz/eFLtM7cl+ga6se9VdKd10OaskaDQuStNXbUu6IGGbvLqj+nIkkn2FKYkg4VjCdfQkc5HSoH02LmvRSZ9ff/11VW0lIPtDXGIm77FmZ+ltr/yRSV3t58rfcw1WGh7k0UhuaDldxJYT8u1PzPI5aPteS0vlXWQic5bt5XPpBwU683dLmbSPPzvpz3imKb3QxCwBd5qQzwRtOFk+wVmwtcOaXT7vvn3giNa81nPuJOV8jv1L77zzztIPc35+Xu++++7tGaRgbraxSpQ2nVbuN2sVJjhY+faqtkncPmtoYqk9ca2jkO33S82F3z/++OOqqvrb3/5251qXbcr3E++QlQbLXk1tlf3kEkKOBgWpjfLuY8yr93hHrO/vib3ozEw4p/+j4Q0Gg8FgEDg6SvPNmze3EgPf4EmJY2of4G/ulGKQ/Cz5OLKzK7NjqRLtzz6Hrvik85JotyunYrohJDj+b80utV76ZA0SCWuPUNsRkGgjtsPnnNjvYwncOXf5P2CJscuT6fw6Kz/Mo0eP6re//e2S0DZhOjBL76lxEcXGPayLo806GjzWg89YD/qEBJk+PJPnen91fjEXkmWOvHad38c5YSZ85t5cAzQ7+uLoRq9B3ruKIN2jrgOcY/YZ40YLz/3v6MJ33nlnSRpe9e/5ZVy0lxojbbsskLWojjzampytKJ3Vgr3hHD6u7cooOUcQTZU+dbmpPAe/MnvV+4+9lOOzL81z3vnU6KNzYh2B22njzvuzD68ry+a9j9WDdTTNZNVBw0sry97eSYyGNxgMBoOTwNHk0S9fvtzYxVOqQttDE+misaruSgiWNG03tuaXEoKZLzJarWorkVcdpAgkYEsT/N0xkfCTca5yxjqp2Zockpzt5XmtfXf0zYV0s68uO7SyoWd/PA7ap49dwUf+R5+ePn26W7D0008/3eTDdXlDzmGydSD7bUJxS+X0nzXPe53zgxRtVonUQpGwvVfRDjvfjRk1VkVWOz+My8K4SC6fZ3kg2nUemc9Tl+PkNV35mxL2vVvbYI66aMDUnldSOv5fPkfTQ7uvOuwVtAz7tkBqT9aETbq9IjNPrAjhu7VkflxaCNBGRofz3rKv3u+FjmkF0H/W24w4+e6wBcFaqdcotV/Hb7h4NehYtuiby6BxbeZXsr+6PNL7MBreYDAYDE4CR/vwXr16tYlI6hhJ+OmIO/uREv52t/S+4lur6tkpqg5SQPp0zJZhf5x9hlVbCcTMF35+V67D5VmQeJ3PVrVl0rDdeq8A7CryqfPdAWuhzA33Ig2mhOdcmVevXi01vIuLi/rggw82WlpKs0huSHPOJ+vWhRwmItIYI/faf5pjZ05dvJN7+Dvz8lZRoDyf8aVWSPurElbAn1fVJue182lU3bVgfP7551V12DvPnj2rqq0vr+NuZD1WZZW6PWStwJafjj+XteZcXl9f70baXVxcbM5NjtmWCHN1Ouc2+8nc+n3maN2Oh3VVRsvRm1WH94yjc7EWdbED1sb5ydy6H7mnbA3gnLoQbe5V7mF9nENqa1xGIwNrdLYo5ee2Rjli1u+EqsP65x7dy0tOjIY3GAwGg5PAfOENBoPB4CRwtEnz8vJyQ02UKriJpU2503ZCVcmdqOrw9wySsXPYtD1doAtmMJ5naicTUVdtzQGrBFc7iPNaE/O6QnCOi76h0juJd1VCKUG7DuRhLRzCne0xTifldyTVDwXUdFWHcWUQAe299957VbWlxuqCiaBewhRHG4zZCdrZZ9bUSduYnrrAGq8762D6rq5Mi8PPMeeYjq4LDHL4Nm3aTFm1DU7BZOYAmC503kQDdkE4qCX75nJLgPlLM6yD2vaSh9k3rrqd6VAOyLB5kjnNtJRVpXZgYvjcJw6wYq4pYWTi7K59u3lMopGfuZK6g1lM8p39XwWtdCW//E73O8ql4XJN3a5N+XvfAX7ncw9rnS4p+ug9+hCMhjcYDAaDk8DRaQk//fTThsw3k2ztXEdatvSW2tOqrASSgiXTLqXBoc9oECZFzvv9HMZhqabri7UbE+Tm52gfJj+2lpYSJFK/w4I97o46zfRPDj93+Za8x6HEnvO9QJ77woRvbm42FEU5rpUmbK0qJUW0dTQGJ66aEo3Pcz5YK+/V7nm0Z/opwuu7QBDTc5mg2ZRzJCTn/6xh27KQEjD/4+eKJL0L+XaQmcG+TK3ANFsmFXAB3Oz/6u8ElIYAbSaDLVZBZA6w6xLPncrigDC/Y6q2JOvMMWe9Kwnmc7Jqv9Oebe1iHVaE+934bLnq5oK5dbuZ9pIgtaPqcJatOa8o1fx71WG8SUhQdVdT7qjrpjzQYDAYDAaBozS8q6ur+te//rVJbE1pwBI10jMSeCc50h7f6kgZ9h85ITSBJGDNYc9fBVZpAgknsloyWaUCVG3D3q3ZOfG16i4xasLS5x6Zr/0tTvrvwt895x5naq6dX28FSrwgEXaUYmgAjBktnaRiawz5+0cffXTn2lWyevaVOWO/pfaXbXd753e/+11VbTUHlyXKZ66sHKb66q6xBkNb9Lkr20R79hl7D6X2ZKncBN5duoKpuYDJwFPD4558P6yk9LOzs3ry5MkmzD6tA6u9aJKM1BScQmKN3uk8aRGx5cP+OMaa9zhlC9gqkFqT01BWvvW9WAn7Vr3GLhSc7TuVwDSFuXf8bvT7xmQWec0q3colmrIv4KEpCVWj4Q0Gg8HgRHC0D+/777/fUC+lFOMkaqQopJa96EJLDV1JF/rh5+GHsES3J8WaIBd0Nm4kbEf7OarRdFGJVZFa+/SyXcNaommC8nf7KJ003fncTB4MvJ7Zhy6htMPFxcWtVM49WV7EfhH3ryOudXQuEuGKEGDPj7SKSIM2LD8zEa8LcSa8DtYOHC2J9pi/MyeM136flJpN7u7xeG92/jhbSBxB2BXkdEkXn/n09dty8dNPP+1K6hkdbh9Y1WH+TfjAfugo31bJ/N77LoJctS08DNxWfm6yAvvhuxgFazy2gnR0e+6L6fwcfdyVlqIv9vuCztriEmoddVnVXbIJ5skRnSvCg6reF74irTdGwxsMBoPBSeAoDe/y8rK+++67TamItIsj1dle7WjJvdwJEyU7Ii2lOJO2Wlq23ZpxdO05siqlZvsubKe2RJKaxapIJODvzh4OTB1kKTQlPOenWHLuNNhVxNiK0qjqIBkmofJKSseH57GmNuOit9aIve+6/6GNuSSN/cBd+45eZG1TK+SezldXddAgOgorWx3cZkdH5b7YN866ZKSlNQefCfZ156u2b8g5XF3urX13qxJGub/pP+f21atXSyn95ubmTnHhjvQa7dHaNP0kirYr+bUqxGpi9rRumKzcliXQ+aqdS+t+5LvEVg1TJfp5+feq6PYe/ZmfZw1yjwjaz/H71fnACed2PyRyNfO2h1psMBgMBoPA0UwrWR7I+VFVBwnbJLNoAZ2/yhKw7bqW/NIX4NwPk6laE6taSylmmUiJ5D4C6+45fp77aMk+pUFrgZZ4XFRxT3J1JGHn97FvzeVoOqnavpSff/75wbZ0F1mtOuSfOWp1pe1mf7gWSR7CZ69Xrr2ZOzynPDf9PvYJO/Kxi1i0P9Faotc6pfRVjqr9ZbmWzifzPc7dyzmxxuB1554uRxWJm3E6OrOLcnSkcgeYVpg3E1xXHdbQ54P3DpaETgOyNmjfaue/9pn2nulKSzmS01Gg1mATfkfYWtCdT7Cyeu2xNHk/r7ThPU3f88YeTb+918AFj5nPjFGwZeb169fjwxsMBoPBIDFfeIPBYDA4Cfwi8mhCfK12Vh1MSQSvQPCKWYgE9I6mh/ZMnOyw567i+SpBu0sTsInPTn4nnmY7Xe26qq2ZKs0SK5OCzROdKcvBJHbOdqbWjgopn8s9HTk243DF6y75ekUw3AGzlM3gSYnlVAub0ehDmjdsAsF89vHHH1fVlhKpS52wyZH9x3PT7GpTHM8laKRLrHf6js36Nv2kidMmq440IK+r2roaHGhFn32usk8OVmEuOMe5Bk5ZYA7oE2c+18LndS9oBWqxbv3dbxMAOPUo3x28X3BdMA92OXQ0YXZPOLG9IxtwYvaq/l5HnWgqwxURdb6LHbTkvjpdwWOs6tMP8rp8R/q942s6E6oT6t1X1ijfb05+n8TzwWAwGAyEoxPPs6p1F7Ri8lGkOr7BIftNJ/uKfBhpEoc0zuqUSJBW90J73UdLBJawLOXmMy2FORCA/uTz+Z+drSsqnnzein7KBNA5n2BFwdNJn9bkXJZmr1p6JnvvlXh5/PjxRuPOOUaawyrg4ArG2O0d9p0TwaEce/HixZ3xZfv+29J6R1y7SjEBuUcdrOKgAUu3uQ+8F50s3WnXTglymSWe2yUtW+qnXbS27nxZk+A5XgvSTnJOOlorg7QEzj9aZwY/WPMGTtBOiwL3M7dfffXVnWsJwPP7oerwbvK5d/BNF0xmq80eubL3hNfflFxdOlRXBir/7hLdnbrlABunVlQd9rHXHfq7rnSay7ixH/yuzHVzQvvjx493A3DujPlBVw0Gg8Fg8B+OozS8qn9/o68kyKqDpO2yJkh3z549u/P/bMeah4lYO7uxpWZTgHV0VCvfljXMruigQ29t73dB0LzX0p8lr84W7TFbO+iSyO0fQSKyNNj5KJ38bf9mhoIz5vSt7lGivX79ekM/lH4d/GDsIZcK6RJl6YP7z9oRjk6/83lOkPXznHqQ15pyyT7OXA+3Y83K1om81z4pawFdiDmai8sdMSd71Hr8z8Vx+fmPf/zjzuc5djQiW35caDl/Ty1thcvLy/rqq69uNTDQWShcUmplzanarovJyn1vpqc4TWDlH+usRD5L3TnKsee97hPtm3gjx+oz6YT3bLOzbmVbwEVYs6/A7yhbjfIz5n5VDDnnhH2Q3w+j4Q0Gg8FgEDhaw7u+vt74ANIO7+KMjgwjubiLDLJEgk34IWUsgKV1UwDl7/eV6+mislaFX1ckstmuNasuSsr3285uiX8votTSvxPsU6N1Mm9SPmWbXUK1IyU7YBnAH9tFCLK+aGVoEzyTPmW/vWYrHy4J6fgHq7Y+B/tSO6nRY7SPqIuapd8uyOsE586vuSq14jXNOfG13qP2C+caWLL33HTEzdbkgMkLus+Sum4VbffmzZt68eLF7bulG7P9YrRL1DiWpQ7035q9C+d27x/vEUdgJ1ZllLxX986yk9f3CNutwfuMmIi665t9ht4He4VXWS8nlXf+bY+D95GjrxPsq26uVxgNbzAYDAYngaM1vKrtt3FKBUTkrMhc8bHktzLf3p1vqWobLdcVcTTVT15jrOzsqxynHMeq0OJDS8zntc45SWnRUWfW6JjPTrox/c9KAsp1dHkja/FdHqD3weXl5b0UP9aqE8wtviBs9UjpXSFR9lvnM8n+Mg7y86qqvvjiizvj6HKZPM6V1sQcI3Wm1uRoPOd7ed93UXrWYFbr4/5m+47kteSfv6/8S4wh6f08duekskbp7/F++vHHH5ca3tXVVX3//febeUwNj/4wRvYIc4FvKPvta/z/zscFVnEAq3XK/q4KAnfk6I4rsDZo61B+7jzMVcmffJ775vfO3r7zHNg61EU2my7O1hX7knPMmQkw5NGDwWAwGASO0vCQtPbAtzdSkn0qSIHZDhK9i05aUyGSJyUSay/2fXXRTc5hsp/CZUHyM5PTOoewK4XS+b/cp+xPjsssFis2ks5HaUnI0mH6XGyjt5/J1+X9Ga17n6S1p83Qnkmj2SswduQ4VvNiX0eXp4Rf7/nz51W1tRJ0jDUuSrwq4pvrYU3BUrstC5225qg1s7LYt1y1lbTtQ7Em1o15RWK73LoAAAQkSURBVMpOXl7VYX2ICr2vsHI3jj3rABG+9o/le8Aah31c9O2DDz7YtL8q8ePyNnvvEEfc7uU40h77mL5143cpJ7fryOs9C4sjPl1wOa+xv8+WLe/Hqu3720xMXbQ67aDJca0jf7Hy5NizTFBHmt1hNLzBYDAYnATmC28wGAwGJ4GjyaOvr6835qgMO0a1JknTZkJMI2lOI1TcdDmmjeoCHnyPVe4ueMVmsFVtro6OzAENjMNm0YTH4b5bRc9nr8KCbU5MM9mqGrpNGB0hq8frkOw0Rbs22n3Jn2dnZxui5C4k3onKrm2W99jUYxPzKpG2aks/9vnnn995/kPIfFdpMDm3DkdfJfV7P+Q9rpHmCuT5PK+/TU1OsO9o6Vhbk0wwljxXJpmgT5xrTNHpfjDxwF7QF6T1oKudZxOvXSpdCob3CNfw7rKbojvbfpfYbZDnyqZMv0cdPJX3e46dWO+6oPnZKu2hCxL0PcekUtkNQt89z5nA/+WXX7bjwITZEV44PWXIoweDwWAwEI4OWvnnP/+5cWR2IcqWGlelSqoO39guL2Lp3YEoVQcJgHvsdO8cpZZaHJ5r53XVVpPrQrrz767CummwnECbkpi1MTvDV8nlea21UocU7zm4Ldl347KGvJc8fH19XT/++OOtNaCrgv3ee+9V1XYPsbbcm5qygyosCTvUu9MOTHbr/ZZjsqZlrakjgLb0ChyQ0pH83kdSbW0u4YAaBxF0icDW4FgDJ2fn+baWY63URMBVW41rjx6KvZOaQVVPBO40BDTVPZJtrqEv+T7LcaSG2tHAJVwSKvvLc5ljp9TsWT1WVgIHfHV9WZFVJIXiqgzZKhUtLUvWDleECnk2WKdVuhKpSTn3WAVWlI17GA1vMBgMBieBo314XQhofivzbY4UjlRmqbnTFFysE0kLKYI2U9qgffuputBl99HSs8PFUzpblclYJebmvabPsXbWFWS1JsdPk6t6TNk3h0pbQ+6KU3rsDqXPtXZhzL0inpR48Rx0FGwOA7d/pJsn98+2f7TEXONVSoGfm4nu+KVWlEhuK69x6Lyl9s4/Blb+Pv7f3bMqscLzOG+dP87jYQ7oY/pyrUG4aGynIdlfdX5+vrQOQEu3l8ZjomKe6bI9uc9NjWgieL87cm5sMbC23vnj9t6bibzH2hHPM8GBNdy8dlUc22PJ51kL9DtrzzfuPeR3ZqYY+BpbvzhvaR3xGei02hVGwxsMBoPBSeDsPiqoOxefnf1PVf33/113Bv8P8F83Nzfv+5+zdwYPwOydwS9Fu3eMo77wBoPBYDD4T8WYNAeDwWBwEpgvvMFgMBicBOYLbzAYDAYngfnCGwwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUlgvvAGg8FgcBL4XytoTnoBJksQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu4ZnlV3/n9nXOqqi9Vfb+AzVUgtpdRZx5RMYpEGXCiolEeRQPKqJPRTDRmTKKMt47RoMagmYxGo2aMaESMGhWjiAioo+gYoyjKHYRuuqG7qm9Uddft7Pljv+u863z2Wr+936pumeas7/Oc5z3vvvzue7/r+v21YRhUKBQKhcKHOrY+2A0oFAqFQuGvA/WDVygUCoUDgfrBKxQKhcKBQP3gFQqFQuFAoH7wCoVCoXAgUD94hUKhUDgQeEh+8FprT2utvby19t7W2pnW2vHW2qtaa1/eWtteXfPC1trQWnvCQ1En6n9Ga+2W1tqH7A94a+3zW2v/+we7HReC1fwMq79nBeef0FrbXZ3/Knf8ltbaBeXNtNZe21p7LeoY8HdXa+11rbVnX0S/LmjduefhyQuuHVpr34ljl7bWXtlae7C19tmrY7esrn2gtXZlUM6Xu77P1vtIRjDX0d+7HqK6LlmV900PUXlPXs3l44Jzd7TWfvihqOehQGvtb7XWXr9ac+9trX1va+3Igvs+Z/WMvq+1drq19p7W2s+01j7i4WzvRf9AtNa+XtL/I+kaSd8o6ZmSvkLSWyT9W0mfc7F1LMAzJH27PrQ11s+X9Ij8wXO4X9ILguNfJukDwfEfk/S0C6zr76/+iBevynyapK+UdEbSK1prn3QBdTxDH4R111o7Kum/SPpUSZ87DMOv4pKzkp4b3PrlGufgIOBp+LtD0itx7O88RHWdXpX3kw9ReU/WuK4mP3iS/rak73mI6rkotNY+QdKvS3q3xvf8P5P01ZL+3YLbr5X0B5K+RtKzJH2LpP9B0utbax/2sDRY0s7F3Nxae7qkl0j6v4Zh+Dqc/qXW2kskXX4xdXyw0Fo7MgzD6Q92Ox5OfBD6+AuSnttau3wYhpPu+Ask/bykF/qLh2G4VdKtF1LRMAx/kZx6xzAMr7cvrbVXSbpH0hdofAD/f43W2hWSfk3Sx0r6n4Zh+O3gsl/QOKY/7u57rMYf6P8gjPOHIvwcS1Jr7bSku3g8wybPxjCydywq92IxDMMf/3XUsxD/XNLbJH3JMAznJb16ZZH5kdba9w7D8MbsxmEY/gMOva619ieS/kSjIPKDD0eDL1Yy/UZJJyT90+jkMAxvH4bhDdnNKzPALThmpqcXumNPXZlIj69U53e01n5ode4WjdKQJJ01c4W797LW2ve01t65Mre+s7X2zd4M5UxuX9Ba+9HW2p2S3tfreGvtia21l65MDKdXbfrXuObTW2uvbq3d31o7uTJBfQyueW1r7Xdba89srf1xa+1Ua+3PW2t/x13zExql85sic0xr7frW2g+31m5bteVNrbW/h3rMhPb01trPtdbu0eoF3xvfhxi/IGnQ+ONi7foUSU+S9FJe3AKT5qoP39la+7rVXN7fRrPkR+O6fSbNDh7UqOUdcvde0lr7/tU8fGA1x7/SWrvZt039dXd5a+27W2tvX83JHa21n2+t3Yj6r2ut/XRr7b6VSej/bK1dEjW0tXa1pN+U9NGSnpX82EmjpvH01trj3bEXSPorSeE9q7X/+tX6u2e1Rh6Ha57XWvut1tqdq3H5b621Lw/KWjpHz26t/V5r7d5VeW9urX1b0qeHDa21l7XW3rZ6Nl7fWntA0neszn3Zqu13rvrxX1trX4r7JybN1dyfa609ZfXcn1yNxYtaa63Tls/SKNBI0u+45/2TV+f3mTRba1+9Ov/U1fqy9foNq/Of21r701X9f9Ba+7igzi9urf3hau7vXo3HTTNjdplGa97LVj92hp+RdF7Sc3r3Jzi++jzn6vmo1tovr8b/wdbau1trP3sBZUu6CA2vjb65vyXpPw/D8OCFlrOgnqMaTRF/qFEyvV/SEyR9yuqSH5P0GI3mqU/VONh2787q3o/SKI38maRPlvStGk2w34Dq/o3GxfYCSeFLZ1XuE1ftOSXp2yS9VaP54Vnums+W9EuSflXS81eHv1HjIv7YYRje44p8kqR/rdHcdteqXT/XWrt5GIa3rdp+vaSnar2QTq/quULS70q6VNItkt4p6dmS/m0bpdR/g+b/tMZF+VxJOwvG96HEKY2a3Au0/oH7Mo0m8XdsUM7zJb1Z0j+UdFjSv9RoUbh5GIZz3TulrdW6kKQbJP0TjXP98+6aI5KOSfpOSbdrXCt/X9Lvt9Y+chiGO9Rfd4clvUrSx0n6bo3S/5Ua5+Vq7RemXqpxPr5Ao1nsFkl3a/1jarhO0m9pXGefOQzDf+308XckvUvS35X0L1bHXiDppzQKHPvQWvtqje6H/1vji/7Yqh2vW61VM4N+uKT/tOrTrqSnS/qx1tqlwzDQr9Sdo9bah0v65VV536FR6HjKqo4PBq7TOBffI+kvJJkF4omSXqZRk5HGd95LW2uHh2H4iZkym0Yh78c19v8LNM7HuzTOeYTfl/SPJH2/pP9VkikMfz5T109J+gmN8/h3JX1fa+06jSbQ79Io2H2fpF9srT3FfqTa6JJ6iaQf1bjmrtI4H69prX38MAynkvr+hsbfj33tGobh/tbauzW+c2ex+h3Z1jjO36fRovNzq3NN4/v4Vo1jcVzjM/fZS8oOMQzDBf1JulHjw/Pihde/cHX9E9yxQdItuO4Jq+MvXH3/hNX3j+2Ufcvqmh0cf8Hq+NNx/Js1PmA3rL4/Y3XdLy7sy09q9Dl9WOeat0l6NY5dofEH7Qfcsddq9Lk8xR27QeML9P9wx35C0q1BPd+qcTE/Bcd/dFXXDsb/+3Hd7Phe7J8b32dK+oxV3z5M4w/LCUn/i5v3r+K8oqxBo4BxyB177ur4p2BcXxusK/49KOkrZtq/LekyjcLAP1qw7r5idfw5C56Hf4bjr5D0lqDP9vcZS54DjS+tv1wd/8TV8ae4ep+8OndU0r2S/j3KeqLGZ+Trk7q2VvX8qKQ/3XSO3PcrHq51hza9S9JPJedetmrLs2fKsD6/VNIfuOOXrO7/Jnfsu1fHvsQdaxpjG355pp7PWt37qcG5OyT9sPv+1atr/6k7dlij0PSgpMe441+0uvaTVt+v0vjD/kOo429o1LK+utPGz1iV9Yzg3B9J+tWF8/Lnbm3/pfa/Bx+zOv6sh2odPBKCPN6q0cfyI62157fRF7EUn6XRjPN7rbUd+5P0GxpNWJ+M639xYbnPkvSKYRjeG51srT1Fo9b206j3lEYJ7um45a3DMLzVvgzD8H5J71fstCY+S6Np8p2o65UaHcOUtNjHCxpfX9fqLzXTAK+RdJtGKfRzNWqmL194r+FVwzCcdd//bPW5ZLy+U6Om/FSNGtePSvp3rbXn+Ytaa1+0MgHdo/HhP6nxx2FJFNmzJN0xDMMvL7iWASd/prgfr5H0gEbJ/aoF5f6kpJtba0/VqEW/3q8xh6dpFMS4Vt8j6U1ya3VlnvuZ1tptGoW0s5K+SvGYzM3Rn6zuf1lr7bmttRsW9Gmy7pbcsxCnhmF4ZVDfzW0Vga5xHZzVqL0ujSbcm99hfIu/UcvW6aYwM6iGYTij0dLzxmH0gxvetPq0Z/zTNApynPt3rP74nno48MUa1+DzNQpYr2qtPWZ17g6N2t33tda+srX2pIut7GJ+8I5rfAAfP3fhxWAYhns1mhHeK+mHJL27jb6VL1xw+w2r9p3F3x+uzl+L629f2Kxr1Q+msIf3x4O6Pyeo90RQxml1zKqo6+lBPT/n2uqxr48XMb6s79MXtNUe+p/SqH1/uUZp994l9zpwvCy4YMl4/dUwDH+0+vuNYRi+VqNw8AP2o91a+1xJP6tR4vxSSZ+k8QfyzoV1XKvxR30Jor5EYd2/J+nzNAowr1yZslMMoyn89zWaXJ+nPILQ1upvajqn/51W62dl+jYz7TdpfFk+VdK/T9rbnaNV+56t8R30Ukl3tNF/lq6jNqY07Wtje+jSnO4I6rtK47jcrNH0/aka+/zTWrYOzg/DcB+OLX2uN8Xd+H4mOSZXv83972o690/R9N0R1Xd1cO4axe+0CYZheOMwDK8fhuGnJX2mRtPyP16dO6dRk3yDRpPw29roa/3KJWVHuGAJaRjt8K+V9D+2C4/2O61R/faYDPIwDH8i6QtX0scnSHqRpJe31j5uGIaebfu4Rknni5Lz72JVSxqt0VTYc+qa8/VFGh8Y4kxw7EJxXKM2+A+T82/G90kfL3B8nzpTTw8/uarjo3Vhzu2HGm/U6Ou4QaN/7XmS3jYMwwvtgtbaIY0P8hLcJeljZq/aEMMwvKq19lyNfqH/0lp79rA/2pX4SY3Rbuc0mu0i2Fp9ocZxIMx/9zSNwuOnDcPwu3byYrSsYRheo9FXdETS39Rohv3V1toThmG4K7jlvZquu9DKciHNCY59msbn/POHYfgjO7haCx8KsLn/Uo2WHoI/1h5v1riuPlrOarQSjB6n0XKyEYZhuKuNwXhPdsfeKun5bQwy/HhJX6/Rb/yO1frZCBdrEvhujb6S71Xwwl0Fdxwb8kjNv9L0xZA6JFe/+K9vrX2rxhflR2q0AduP7aXan2f065K+UNIHhmF4kx46/IakL2itPXoYhkgrfLPGH9OPHobhux+iOk9r7B/x65K+VtK7V6bQC0ZnfKNr/yg6vrCeN7XWflBjIM7EjPRBwMdqFEJM07xMLlJshRdo9OV5ZOvuNyQ9r7X2ucMw/MpD2dBhGF6xMr/+rKRfaa199jAMDySX/6xGLeoNwzBQ2jf8nsa2P3mYhop7XLb63DNTtjFq9PM26kCAlbD8W6uX5S9p9B9OfvBWproLXncXgKjPN2gUjh5O+HX1cOK3NVrpPnwYhiyIJsQwDKdaa6/WuM5fPKwjNZ+n8TnZeN23MTL0yZJeHdS3K+mPW2v/WOOz+DEazfwb4aJ+8IZh+O02sn+8pLX2URoDK96tUc39TI32/S/VOtKIeJmkb2mtfbPGSLZPk/Ql/oLW2udI+nuS/rNGbe1ySV+n8SH9/dVllnP1Da21X9NoSvgjjaaH/1ljfsi/kvSnGjXKJ2l8oX/+kEch9fDtGhf977XW/oXGAJWbJH3WMAzPH4ZhaK39bxqj0g5r9FHdpTHQ51M0/ji9ZMM6/0LSNa21r9H40D84DMOfaYzm+mKN0Z/fr/HH9nKNZphPG4ah+0JaOL4POYZh+AcPV9kz+PC2CvHWuE6fo/FH4YeGdbTxr0v6/NV4vkKj1vu1Gn2dHtm6+ymNgTg/01p7sUYf67FVPT9wscLXMAy/0FqzqMtfbK19XmRhWf3IdZOrh2G4r7X2TyT9YGvteo2+oHs1rudP1xj48x81/jDet7ru2zWuk2/RuK4nrC5zaGNk6NM1JtC/R6Mp60UaNba5iMS/LvyORt/tj7TWvkOjr/PbNFoBHtO78SLxJo1RsF/VWjupURj7yxltfmMMw3CijakU/6qNyd6v1Pjc36TRzfFrwzD8p04R36bRHPofW2s/ovHH6l9qDA7am8M2pkj9kKS/OQyDpUK9QuOa+vNVnTdrJNY4KekHVtd8osao1pdLervGuIuv0jger73QTj8UEVCfotFndLtGaeiERin3+ZK2Vte8UNMozUs0huPfvur0z2odUfbC1TUfsTr+To1RR3dqfEg+yZWzrdF0836NC2VAHbdoXESnV237f1fHLILxGas6n7lBn5+kMbT4rlW73i7pJbjmaRpfmBYx9S6NP/JPc9e8VtLvBuW/S9JPuO+Xr+q7e9XWd7lzV2v84XunxsXwfo0P69e7a2z8n4x6Zsf3IVgfs+OrzaI0vzO594UY19cG1/i/eyX9scaUgx137ZbG4Jb3agw0ep2k/z6Yk966O6rx4f+r1ZzcrjEE3yKDs/lY1OfV8S9b1fvLGl8GtyiIGsU9Wb1/W6PEfN+qz2/V6J/7KHfNZ0j6bxq1grdrFIwuaI40Phu/pPHH7vRqfH5O0kc8VOsueJ56UZpvS849W6Og/MBqTL5Go2XrQXdNFqV5LqnrTQva+w9WbT63KvuTV8ezKM3H4P7XS/pNHLt5de3zcfzzVmv8fjf3P7ZkLjQqNn+g8d1xu8bUgktwjbXxk92xb1mtpXtWdb5J44/iY901N2n07751dc3x1Rr9zAtdB21VcKFQKBQKH9J4JKQlFAqFQqFw0agfvEKhUCgcCNQPXqFQKBQOBOoHr1AoFAoHAvWDVygUCoUDgfrBKxQKhcKBwEaJ51dfffVw0003yXiC7XNra/27accs3cE+d3d395Xl0yGYGsF7LyR1YpN7Hspro/MXk/qxdGx69Waffk6yes6dO7fvM4LnjX7ggQd05syZCZH0sWPHhmuvvXZSd7QONmk3753jsH641sXF3PNwYWlbemO2dFyja/h+8Oe3t7cnn8ePH9f9998/qejIkSPDZZddNulPVN7cc9Fbb9E1c+i1icjOLbmH87CkXv9ejq6J7smuydoYvft75fM414h9cn14nD8/krqcPTsS4AzDoBMnTugDH/jA7CLd6Afvpptu0stf/vK9Rlx22WX7Pn0HrFEPPjiSV5w+fXrfcfuUpDNnRmpJe6myQ9HLkZh7OUYL3dqa/Rj7e6xNdszaRkT12b380YheBFm/WBbL9GXb/9ZG+845sO/S+EPlz9m99947sm0dP35833F/ra2HQ4cO6fWvjzd+vu6663TLLbfo5MmRLMLm3Jdn7bExtPLtWjvv+8prDRw3G+voR57jb9dYPZv8KFs7/IuA68vGi9fadf5evrTYDva7h+zZ8HXYOTu25AeP5w4dGqkmDx8+HH6XpCuvHMlZrr565B6+/PLL9V3f9V1h+Zdffrme+cxn7rXF1sEll6w5mO0dxPeOfykSds4+s7GMntOe8OXvmSvHH+fYe8zNw87OzuRe+9/G3e619cd6/TG7huWyTJtbf48d44+lHfdttPJt/o4dOyZpvT6uuOKKffVJ63fV7bePrI6nTp3Si1/84nBciDJpFgqFQuFAYCMNbxgGnTt3LpQMDNRwKAlRg/DHIlXVI5JuWN8SbW2ujWyXv4ZtXWJ2pabAayO13ZBJ2nY8kuzYH/u0evjd/5+ZTqI5Z/lR39gXSop+TjNtxq6xvnrYPHBtLNF82AbW39MKszGO1iglakq8S9po4BrtWQk4F3wGo/7x3sykFWmwkZky6oMvv6fVGFprOnz48J5mF82X/W/WAD6fhuiZZhlLxtiusTnkO4XPk78/e96jfmUaJBE90wZaYqLnltfaO5iaXmZS9feyLbzHP8cc88xy5TU80+yPHj26d29v/XiUhlcoFAqFA4GNNbzz589PpD4vNWUSQCYR+/spccw5TKP66JeL2tOTUvy9ka+IkkgmDfYw50zunaPU3PNvmiQVaYEsOwtO6Wmy0T3ZmLbWtL29nWo7S/sU9UOaSq+c48i3Rmk880VF2mLmO4zWbKbVbuInyzTI3nrj2qTPLpLwOfZsazRWtr7ow7FPno/q2dnZ6QY57OzsTKwrvfGy9trajJ7pyI/cgx+vbO6yzwg2Lr2AFGqK7BcRvedYbmbhitpiY8M5pbYdtc3KMo0sep7tnszKF/nRbdxMw/NWxzmUhlcoFAqFA4H6wSsUCoXCgcDGG8AOwzBRTSNVP1ObezlgVEtphurlmmSmRlOJ/b1zJpFeME52nO2IAkIImvcic1tmGumZbJmWYGYI1mfhvdLa7GDh3FmwUZT+4D97Js2dnZ3JWPjv1l6aOQw9M2gW4LQk6CZbm9G8zQUpRYEJXNcM6ojMrVkbs/p6azZKBZKm5r7omqz8aH1znUXpCCx3aVDG1tbWZD569/L5t+9mxpTW682O8VnuBedlQV694A6G9HOd9+aS6zhLZYnMoXxu+E6M8uKy73xG/HhmQV8MVvFrzNrCNXPppZfuOx+Zao8cOSJpfHctyROVSsMrFAqFwgHBxkEr3sFrv7pe6rdfaJ7LJCF/jNJzFNpLUHrJJNFIC6X0xwCHSPLJnMh05ntpJwvPZiJmJOFnGh7b6Ocgqy/Ttv3/punRKR1pCUzYPXv27OK0BJt/Py/ZfNu1kbRnmNNMonHkfGeBSZH2zDKIniaZSc1RcEyUxuPRCzGnBpOVHY1JL33EX+fPcW7t0yTxSNvxGkNv7USI2p1p6yQv4P9STKTAegyZ1YZaXBTQx3I5xlHqRKZ5Zakg/v8skCbqQ2aBySwm0RzwWj4z/t1PcomMWMOPCd+5W1tbpeEVCoVCoeBxUT48+ojsvJSnGEQhylno+9IE8agefo9ComlDp7Qc1ZPZ7lmPbwdDenl8SYIuJS9qpz1/U5ZyEIWWkzKo5zeh9LW9vd2V0odhmGgOUfJwJmFHoeVZuku2hnz7Mx8X10NPWyMiC0akzfjjSxKBOXdsRxSmnvUjk9b9uSwdobdW57SOJeQIEYZh0JkzZ/a0gEgjniOcsHcVtTp/DYkNrPyI8MDA95k9P5dffrmkOLXJNF4bDyZ5e20+mzv68Jkg7svP2rwkNYjopcWwbXx3RVR2pD2bi8Xw5XrLz1LrQGl4hUKhUDgQ2FjDk6ZSpdcCMlt6L+KJ/pyM4qvne8qk80jypXRJTSVKKs4opLJIqEiKsX7Sdxf5szLNJJOEepFdVj4p26L6qDEywi7yL1i5Ozs7XUlrd3d3r3xrUy/Kq0f1ZqDtn/NN7XbOB+n7lSWX+7ZmCcgmxUtTLZlj1KOeY7uzJOIl5AVco70keWo1WXJ5VA6tBfRr+XZ7f3rPH3r69OnJ+ETzMpdkHVlC6FvLxikCnxP7tPn368DaQEsPrUJ+7LP1S+tH9rxG7c/oEf21Vh/XQeYX9OVwvrl2IsuSkUdn9GeRpuyJIUrDKxQKhULBYWMNb2trayIheCkgI2/tSZWMpJqjmYmk9Oic/96L6DJQmoo0IOawLNHwKPHShs4+eND3YG3m9ieRNprltfUoweh3sbZa9Ob999+/d0+mVUUYhmFfJF7kW6Wmw37we9R/aqgc6yjai3PK71FkcpbLydw6X0/mb8v8c6w7KqtHPJ5RV/Genr+Z4xlpeHPb6kQ+bOYe9si+h2EIox09TJOycydOnNh33p49/8wzojzT8CJfJ9cb10rP18l56VmWbG1wCzVaGKJ1l20D1LMsZVYO+7T3jo1V9OxbDp3BrrV3SBQHQGthL4fU/vfv04rSLBQKhULBYSMNr7Wmra2tLotJZksm+4ePlqKGRz+VHTdmEO/3sXIYwZUxEfjyaVumthD5CukXywiZozxD+vB6dmr7/9SpU/v6yQ11eb1v/5xP1DOtWL+Ys2VtjXwS9913375r51gzPPF45Iex8bc+UurvSc0ZehG+Wd4d11TEBsPNarOIX/9/FmHHNvq5zDSGTMKX8kjbLOIy8qkY5qJR/T2Uxm2Moo0/mXM2l4e3tbU1sbxYJKQ0XbdWl/mGetGH/jnw7eV8Rflj1LiuuuoqSeOGx9L+8bN6OF6R5YL94rPA91CkvV9zzTWStLfpMtdMRI4+tykuNUDfZlt33BiceZl+rqzdfPfTUua1Rrbp8OHDpeEVCoVCoeBRP3iFQqFQOBDYOGiltTYJsoiSh0kZY59mrvJmBKryZjbL9inzKq2ZTUxtNzCIxZuJGDZrzlSrx8yI3hyRBXEwcIeBKf4amglsLOzTq/r2vwWJcNzse2TSYr291AVea9dYPT7lwPdbmjqne6ZGCzygKcvPfTQOvm9RyDWDFcw8RJNvZPLgMQYIMFDAl0uzJ9vq53/O/M3gCT8mvJfzQHORP2efHD+a1KJEZ/ar9wzSZJ+RwEf0d36+5tantYkuAWm9Xu3cox71KEnrPdMYKCKt3xl33XXXvnbSFGz9i9YfA14e97jHSVqbNv1YfOADH9hXj7Xf2mHjY8+BRxTwIU3Xv9UrSceOHdt3z/XXX7+vrfb8+vpsXdO0SZdHZvKU1qbMq6++Omz7Pffcs3ctzd1mpra2Wb9s7KT1PFxxxRV7ZZRJs1AoFAoFhwva8bwXQszQbpO8THKwX2ovVVJCnKMn85KWSRx2jFK5SS+mtfnyWS4DNCJiYybTMiCAmq0vhw5aC522MfH3MGjFPtk/JrpGbeE4RoE8PGblmjRGYl1p6vTe3t5OJa3d3V2dPn16r3ymVUh5MBHXhb8nIzfmPJnE6O9lci0Dn6JwdLuW1FFZEIvvR0YSzgCeiKqPbaEW5zVvBg0wqZdrq7cOsrQID4bkW1ttDiJScGp9rbVu4rmnNLS5jNpidZl2Y+MSUeVZ3XYtUz24pvy8ZFs+URP37yorz6w21FTtXenn0pClwfBaC1SRpHvvvVfSWrMz7ZNtNA13SX29XewzSjmbr8h6wGfePu0e+4yS8W28LrvsssWBbKXhFQqFQuFAYGMN79y5c2HovYHSo0kZ9mvc23qHvq1IwpbiROBeeK4v2//PpEfTtEwSMRuxtJZsGCZOjbaXjH333XdLWo+JaU9e+2Qb6WfJfIkRbZOBbaQfypdPYlumMPhxXRrCbudOnz6dhub7vrB8as3R2mHiLdvSs0oYmFQdJUVT4+Emp1ZGpK1HUnHUxojo3MDQb/q7o2M2RnwGbd15fzrD9+0crSt+7in1s7+Rz410d5FW47G7u5sSN7A90jQlgs+vNNVEM8pBplR5MAmafjnTHj3s/ZZRbkW+To4ttTTrX7QVlL3HaGEwTdOnF9kxvrcNpPXy7x1bd/RJ2xhF1ohMw6OlIdpQ2cb4yiuvLB9eoVAoFAoeG0dpeg3PftG9RGJakv36msRAiqKenTrb6iWSKmh3Z3SeScLe/s7NID1dlm+7lxrpB8nor2xMvDTICFUrnz4b30b6W6KtmKS1jdv78KiV0bdiZUQaHvvOqK1o+xGvFcxpeTaOkb+CidgZ6bWX5khHlmnGkeaXkUPzHt/nOSLoKJouo0jjXEbH6aOkb5Ias293RjzAxOpIozBkZOVR4jmThmmhiWivDHNbvAzDMInsjKwNGW0XSQ38MZI6mOabJdCPbTQtAAAgAElEQVRH7bc+WlQoyTKkqeZt/WBEYkTkQe2SVjGLzvQanj1rfB/wved9eBZXkFnkqK1FNH98v9in+b295czKsTGw/nKsIrJyHzla5NGFQqFQKDhc0PZAlG7M3iutJQDTFEh6zPw1aX7TP9YXSRWRX8p/95IPo/0yyTuK/LH2mwTC7xF9DvtHjYWRf75ualaMNouiz+jXyiLtvHbFcWTOUBbx6ctrrXVt6ZEU5ttAf0GmnUXzws0153LP/DHmGNEnFfWJGgXnNNrOxDQIRhRTY/H5jZT65yjGpGmOHjVYtt1L3PRbmcZCRNF51MB7JPO9uczQ2xIpWtO+zijnkFqYnbPj9JNTI5fyTW6jaF1q5VYfo059G/leoYbFqGf/3rF5tfKOHz8uaWqF8zEE1jbzPdJf6vPh2D9DRkRvbfc+Q1r8oqhzgv7MTVAaXqFQKBQOBDYmj/ZZ7abZRblUZK2gFOjvMQmL0qVpG/ad0o60lhbo82J0j9mzpWk0KCOD7B6f05L5EWmDjrYHMkmKtmdGdnrt1NrEiFUDc1q8lGZtZA4fyb695J/5dWyeon5FPtZMw7PtgbINLH15Wd5gtK0TiZINmUbkx4kSKNdZRDicsW9w2ybvK8q2OmH5EYE3JXmuv8hnzHXFtUPrhO+flWtr0cYr8yH68jm3XKPe9x4xxGRrp7WmI0eOTNZgjxCevseIFcrmyMbDCJ/tvXbllVfu++61WuuracBWD/OMI4Yn+r9IEO0tHRkbFK1QjBPwY2Ewnx3Zm/x1jDa2sbHjzAf2zC533nmnpCnDisG0Rj/P9m60a2n1iqxtfF+fP18bwBYKhUKhsA8XxKVp0p9pTV4iNenEPk0ioI3W23Gp4VE7o7TkpQpKArS3R8wnZFagH8YkIC810O5uklwmkUQRXcyV4ThGUjNhdnjTKO1efz2jzugrIl+mb6ONn0le1Gz9OEYRtz0pfXt7e+IL8HlK9FNkG/X6+qjheH+ytB4nsnT4/tsYMl+NXJTSNJ+LlozIX0XfILda4vYtXhOiv4++L861b1vGfMFovR5HKX020bpkW+hzt+N+TKgZ9aI0t7a2dPjw4UnOmwetA9zc18r2Gr5d+8QnPlGSdMMNN0iS3vnOd0paz4utD68Jcx3Q6kXLj2+TtYF5v1F+JvPtsvORL425s3x38X0g5ZsRMx/Q5sD7eMnve/PNN0tav+vf9773SVozvkg5d6e1gxYO3xbD2bNnS8MrFAqFQsGjfvAKhUKhcCBwQUEr3IrDO8xNRWWIeRYiLa3VVqYUkPiXpKH+Gqq+FpJrarY3zVi77RojV7WkS6Yp+HtI3UNzKAMepKkKTlOgmWi9OcFMJNY2mmYj8l0DgwiY6MrrpPU40Slu3zk3/twSAmCrj5RVPiQ+S+pmyoE3F1vdZkoyx7mNKevzwUtmlsmIxiOTJnegN1j5PWLuLHy/R/ZN0xxJC6L6bC0alZ3VY2NNSq1objkmNA17E2qWnMxgrIj0PQqGysDAmSgsnSZGbvXkSSb4fmFKkb0Prr32WknxFjW2Hhi0Yt99UrcFwXAurT4GiETIaAMjwmu+p5luE5HWW39sHG2bJZqtSR/n223jya2aomR8W5Ncxz0qwIxsYglKwysUCoXCgcDGQSvDMOz9ckehvpROqIFx+wdpLQmY1GhOTgYAcMNRaZrYzjD1KIiC0qQ5XhlE4iUHBhQw3YHksb4OSyg3idu0j4zg1pdvQR0MOPBBP1K8fYbVy/BwSpa+LQyKYLJstHWN1xCixHTfJ5tjpob4Y5TcsoRmaaqNUytjP3yfmbRr42JjbFqjX9McDwaAROsu2/Yok9a9BMwk24xmza83EriTwCHa/spgY2BjYv2KSKoNpE5juD23svLtzoIxIjDFwI9TFuhEi5PXCu2at7zlLZLW1hRrkz2vdo9ZD6TpumI/bOwj6wDTAUzLibaHYhK8ge/Z6Pk0cnrrJwO8uHb9OX63tluZkeXHNFgbR3tH2ZqysjzBBkkEmE7CtDZ/zgcxFXl0oVAoFAoOG28PNAzD3i905IfxWzZIU4JU+/QSCjU5UuxQevOSKbectzJIWh35RZggSwnLSyKUsKhBsD1RAmhGim1SUhTCzKT1nsZisH6YREd/Xxbu7+thkrzBjyMlN79JZ1Tuzs7OJMzdS9z0oVC6i0L+DdZXJm+bRBrRhEU0YNKUyLa3DQ01FVvXUcoHQ7upHURh4kwxmEvZ8OWa9YGh37Y2o2cjIyunv7ZHmZURBXjtgYnGPd9va02HDx+epNnY3EpT/y59eNRCfV+ozZrFx95rpul7/x/nkj5Og0+Toa/Onh+rh3EHvh6OcUbYHdGfZVq7fdp5D1vH9ryS6ou+PGltjbJ5IWkGibWl6Vrh995Gun4Tg9LwCoVCoVBw2EjD297e1uWXX55ua+L/Z/QNSZb9LzLpmDJfTi+KjdFjJoFQMpLyDQoZceWTomnLpnbAeryUxqgyaiGMjPL3UPu0fnFMvF8r2xqF9vlIo+S97F+kDRh6/jsrm7RaS5D59DyijSJ9GyP6Ns4hx9ykSy/d0ndGwucehVm2WSzb4fvHhHn6dKL1TWk309IiEmbOD60Qm0QFM4nYj4lJ+0slc7MQ+HqiuSQVGsv3a5TnGLVIAnJPeEGLS7apr9f0rW4S2pN4wFsRaKXJNGNqRL7dpnFxHZgFYMmmuLR+RduSmUUsoz8zRBqsgWuShB7+muidNIfS8AqFQqFwILBxlObW1tZE8vUSArfUoMQYSbH02TDXbBO/BSWSiLaHFEiUYqOtKbilhoHbz0Sai93DLXcYLeX9W9xwNtvQNNvE1B9jnhTzmXy5mYZH7TDCzs5OV2Lf2trqStzsW3QNv5PyzZBJwNE40W9A7c2D7eezwPxTaRo5TL9MRqkmTTVs5lL1iJSzcYy0NEPkJ/fXMs8ta0N0b2SFiN4HUZvOnz8/iW6N/FVZnix9br5Omx/Ok7XXrFXRdlp8Tng+yq3ltRwf3y9aZ/ge5TMebQBLkn+uuyj6naTV2bZbnlrMjtl4kRYvepdk2hojfaNYhcxv2kNpeIVCoVA4ENg4SvP06dMTKdMj2pBUmuZVeFDipOS5ROKm9Mcyow0rTWqx6Cva6r2PwPplEg1t95TavRTHDSaZExRpaeaLiKRYj2gusm2AMpYWaarlMkctiugju0Mvp6q1tk/Di/qcRYb2vme5bdTsuC6iPlELYFt9eZnEHUW8sTyWMafdSFMtPWK6yEDpOYsWjtqS5ZlFPjwDfXmRn5H37u7uzo4DLTJRpDe19OydEp2j9kJfe+S/zuayZ3Gx59/eM2R68e8qapK0BmRbT/lyLWLeWF+y7dCk6XzzPWcaHzcDkNbvRka/Z33w5XOMaAHwfj+bL2tDj3icKA2vUCgUCgcC9YNXKBQKhQOBjU2au7u7eyo5d/n2x3wIstQPo6f6n4WW98x7VNNN1Y4SMhkSbeqymRgiomgzf9JRmoXg9tIEsjQLbx7I+pqFQUeBDiw/C3jx9xgYQp0l2vu6IzJfD0sg9uX6MWZodZaUGtXNT45P1Gc6zBn4FJmnGDzEBN2IRovl9oJwpDgghOkI2e7w/hqaUDNzZVa3/94zS7INfF6joBW2bXt7uxvw5InHI/o+Bsdl5tTI9EU3S2ZW8y4OJvMzuCgK7rFjZoq75pprJMVBIwb22erhpyGaUyO/5h6ltk68uZDm4qx+fw/rprmXYxOZe/k+5fGeK+Ls2bOLUxNKwysUCoXCgcDGGt65c+f2JKIoeZQSFn/NexpQRrLbS7JlufwkybM0pfax8u0ak9a9lkDHNvuVSSi+LYZMGvH3kmw7CzGPJH0GVDCwJmoHy6fE3AvgWLo9kJQ7tP25TOKO+krJPUthiYKlCLY92iaK6Q8mLTNZ2WvoXBNcDwy4idZHJmlTe/TnWN+SgA62jePY08KyNkVkAyy3RwBsaQlcg1G7GVzTW788xt3jaYmJaMnYR6s/0kxsnk2z84ns/t6e1s4gmSVEDvYuefSjHy1Jes973rOvLJ+GZes5C17pWXPsGLdIs36TxNyXZyApdvQ+4ficPn26glYKhUKhUPDYOPH83LlzE7u1l6qYPGlSU5Y+IM0TyFIz6UmkDC2OwmczwumeH4i+DLaVibm90Pls887Iv5RJPNRcotDyLGWCm736NjHRlaHgUdKoPzcXWk7JMaLgoqSfkV/7/+fSEXrIfGqRNYL1MAWEtGG+nGwLlKy/vp7MUhJJ2kxhyHyThh4tWbZ5cXQP1x3bFhEdeNLnTMNrre2zHkQ+vGyt98Yp8xHzM0rj4VrM2u7njZodKQ57qT8ZIQRTCyIt2s5dffXVktbvZNv+yK8He1/yvcL1ztQNaUrgTmtHlFifpTT1UpE4p0vp6aTS8AqFQqFwQLCRhre7u6vTp09PCHK9f4xSSxbF2KNCogaU0TlJefIzNaMoyodShGk+kRTLNtm9lN4pXUvTrUsoATNR15fPiDdqyCSX9eeyiM4o4TSjgON2N1FUJTc/jTAMw96fv9bfY+uJ0b/09/Xs+pmG2Ut6jvw7/nuUoM9rqWH0rAPZVj92PNo+heQBHOso0i7z3fYsKnNaaOQzyvzaXKPRmHhfdSapb21t6ejRo3sUWVxDHhkRQWRFmfNPZhGD0TXZM+a3TjMNi1YAWlf8/Gfavz2P9u6NxoKWOKv3hhtukLQeE0tIl9bPsk/q9mURkU80G8deHEBmdeiNub0vagPYQqFQKBSAjX14u7u7E5ow/ytMHxqJQyntSvM5Z5TAooikLBor0p7myKgjuiZKOtS8MiJgaS3h2vYZRmVGjdZrEjzW0yDYBxt7apvst5faTKtifhHnz7fRtApPldQjEN7Z2Znk2kVb71iULK0FkT+LGlcWgRhJ+Fn0JMc+0vBYBqX2iAbP+pxRl/U0b7vH2mLzEkm2zJ3MKNPYh6h/vCbSpLM8PFpKfD30sfci7Sw63Ciy3v/+90uKtcxs66Voi6w532ZGVyZN55L5khbBfv311+/dY33NorajNmYaqj17va2Fsr5bO0zTi2IHSG3IMVgaFemvzbYL8sjKj8bexro0vEKhUCgUgI00PGPKuO+++yTFTCsZE4XBJJNIm5kjt41swNkmmiZFcPPVqJyMIcRLWpnUT58BI5J822y8/JYa0tR36EFpeW4rlqgcbqfSy/NiDl9vqx5rt/fH9SLtDh06NInOi8aePuJepCXHIdPsIl8LtUNqT72thOgr7vmoDWQe4dqNCLXp7yWTBzVmaT22ZLMhaXq0pVW2lVQPS/x8/M757xEAD8OgBx98UNddd52kKYuS71v2nPSYgjjPZEkh+4gvj/Ngm0bbM+7XG5+XjAmnx4DE3FBq0X4LI/pyabmy/hgTi6+PLCzZc+Wtc1mUNeMPohiMLNc60vjMQmb+y7ltyTxKwysUCoXCgUD94BUKhULhQOCCdjw3FdWCFbxJgGazJYm5ZnrJ9ofrkeDyGpoWSbrr7zeTWUa2HIUH01TC/ehIuippzwRsMLNDltzN8fFtZHuy8x5ZCH2UzJk5jXtJsTTRRtja2tLhw4f31kwUtEKzsZmASfXU61sW2BT1iwEAGSFvtJciCQ1oUusFgpDKim4A3yeag3hN5CLg2No1TCOJSNm5NnpmRmKOGjAiqMhSj4itra2Ja8CTOTO4J5uPnkmbbSKps3dxWLCIjZ2Z1ywwzWDmN2k9DzYvlmZB82FEzJy9V+0ddfz48X1lSevnkvv5sY2+n0yKt7ZwrVo90drhu5DvZP9scrf5LAE9oiC0cazE80KhUCgUgI0Tz0+dOjWRNry0RydntC2LP+7/n5Mqo7Ii56m/JqIWsjaSUJhajJcc2GdKLUwujwIPGJyS7Q7vj2Wh0Rl9k0dGWRSF6HPbj2gbJ3+vNA0Imgs8GIZhQl3kJbpox2d/PErqz6S7iPbMf4/67Nvqy/btMWk4k16jJGxqjtaWTLP0Y8zgK/bX+mmpHFG7qd32tPlst3JDlICcBepk2rdHZG0gGPCU0VH5chioE4FBHQwIYhv9OrEUCVsPpuHZPDFlx5fD+e5ZGGxdcd1FKSzSfq3X2sR6Io3bYFqhjQW1aVrDImRpZNZWr1Hy+ckozDy5SbT1WwWtFAqFQqHgsLEP7/z585Nf7Mg2n0nW/AX3/2dpCD2JjucobVp7PEmx2d8pXVgZ1mavNXpfky83S0CNNDxKjtwOJEquzCjL7DMK76cUlmkFHtRUMwm5J0nNJaN6DZBjHZW9iVabhXb3JNLsHo6xXwfZPDMUP9LwaFmgPy4iSehtA5X1i1u8sFxu3xL1LyOtjkLn54i6o6ToaKuv3tqKrC1+vfFebp/Dev05rgOuY7vHtDppraWYxaIXes97ON8RpZjBNJuIBD9qo9eEaG3IUqj8euP7LGtjZG3jeuYaYnqUb7eBsR7mb4zWjvcjloZXKBQKhYLDxhvAnj17diJhRVFs1BBIyRUho4HqEQNnGojdYzZ0Hy1lyKSyiB6KvjnzmZhtm3bliMLKys+onzwySZs0PT3Jhj47+jN9G6l1RDRHvn7fRkPPrm/XZyTcHvQtUSLu1cNtW6KtZAyZH4RSpr+XfjhG9EbzQd+TYW6jW183rQGkGouQUZZxTpeQ+RKRZsbnJ0si9uht6kxYmxhlKE3HONICs3p4jWlTGXmBvyYixvbnI+sXrTbUwCPrUOZ3Y+SqJ6smmQTbaG33yerc1o2RvdwWKIp65rPA9RFFh2c+8civz/W1vb1dGl6hUCgUCh4bR2k+8MADe7/GJiFE2kxPsuY9Bko8c1uxRKDNmf4MaS3RmL2bEgjz86Sp/8U0x4zKLMqp85IUy/dlS1PpnLlU9IVFklYWpckcHv+/9d3qW6KZW/96BMBGHt0jEWduD30PUdmZvyWT7COfA/vBCLWIHspyKxnZF0U30o9IPwz93L5d9EVlVoHID0Nth3lLSzZFzXwsUd2ZpaSnVXmLRY+Wbnt7e9ImH+3H+V5iATFkFoNetC7zxjKi+14cAJ/hiNw787tSo7V3S5QTy/VFzcv3iz7J7Bnpge+5jKRd0uS3hO+AKHeP10T+0gyl4RUKhULhQGBjDe/kyZMTyTfa6ifzdUR5cXOkvdH2HAYrj/lj1CS83d/+ZxQbtUKfd0ONh3lktHFH0iAle/MD2mckabI/HEdqw/4a9qvnP2OeTRbl1vMvnTx5clbDo+8pss3zs6cV9nILPZYwg5AI2iwAS/LUetunZMS4c+2Rps+GlUFJPNp6h22kXytiBVq67YufN0Zt9zQ7wtbZ0aNH0+ttA1j6laJ8xSyCPHqHcO1Q8yGRsp8XaiCZf86PbeR7lNbajX369wTr4RhYmdG9tBhEvnt+z6JADT1LD+s1ZDEZvj62n/2OLBh+vZUPr1AoFAoFh42jNM+dO7en7XCjUWnqK8l8QJH/KOPSzGzP0tS3RYk7kqqZC2hl3HPPPZKku+++e9JGsiDQL8c+RBK+jZdJaeYHuvPOO0XQnk97u+USRpGEWf6Lfbe2elYGzhM1vIgFhBrJkSNHZnOpelvGZJoCc4K8tJexiLDMKNcxi4CzObXPyB/L/EeOn38mqFFHa8Qfj3LOrD67J4qwM0RbBkXfo0g7to3zGfkQqeln0ZqRpuwl+mzt7Ozs6Nprr917TqK20YdOrbq3ua6B5dJXFFltaHXgevBMKxZBSa2GLE1+TslmlGn6xoEZ5XDa+41WIW727EGNmXMaPU9LGX38OqBmx+9RTAQjY4tLs1AoFAoFoH7wCoVCoXAgsDG1mLRWgb1JzBDt2uyPRyHxDK6wculcjcJ2aULNwrd9AIrVzU8mqfs2RkmhUb2Rs9qCUqzv3In6xIkTk7LNVBHtKi9NzclRuHBmSrN7emMSbVXDdnDsezsPW2g5TUDezMbd1rMgliiwIkuy75nDmeTKEOheQIjtbM1xi7aWYsAT00V6od4kJ2biOZOkpWkARZYaFKX9ZO4Emiej0PJNTJpWjzfnZe3c2trSpZdeujcGkQkuM0v3kKW7zAXA+GN03dinuRw8paGZZB/72MdKWs8tzbE+lSEjx6BZz8ry9zKQj89mLwgsC5Jj/yMXR4Zofq29NGH2Es+zZ3wJSsMrFAqFwoHABW0AazCNKArQyJI5ewnnGZlvlkAtTTURSi1R4IFJD6Z52UaMvS1+WC61JEpTXgq1c1YfA1yYxOzbmznd6XiOttkxUOuwefNaCB3YnL8oaIXlzyWeHzp0aKJB9iiDMse5bxsd45mWECXZUorMNJNeYiu1jsjCYVK+zXNGfxU9MyRJYHBEpKVwLueCByLiCNKecfyi9ZZR8/W2v+K2XhHOnz+v++67b1GCMce2F7Rk4JrN1mGkZXCs7dmK1retA/u8/vrr99Vv9/h+Wrst4CWycvnrojXEJPJM45OmVii+h7K59tdkZAXReZbHYKNoWyyuxQpaKRQKhUIB2EjDI8VPRJibhVxntmF/jOHyphll201IuTbQI3clOTCT5SOJgVoZ+0X/Y0RLFiW0S2up0Cd9kmpnjjTYS4XsMzU8r5Gxf1H7/T1R4qnVfebMma49fXt7eyLB8XzUR/bDawWUpKlN9PxlmUbX86llWgzTBvwa5T3mIyY9VBRun22T0kvz6SVwS/3EY7aF2x5FY5RJ8JGfh/1aouGdPXtWt9122+SeiEzCpwH4NkRzyvFgu3tWA1qb6MPrpZhkG78eP35c0n56sBtvvFHSdJugaENjgpvRkmax16/M6tZLK8o0457fnmNNDbbX1k00u732bnxHoVAoFAqPQGyceB7REHl/FaVHXhNF/1Gjo/0425hTmkpwTN60z96mpxZxR80rSuKkjTsjWfYSOG3n9MPQH+OvNcnd2pptmTSnWfl66EeL2sh+9zQ8PyYZtZclnfek/4wKq7eVUBY9xmjZSFrnsZ42YJhLyI4ixyjZWr+ocUdgVB7bzjXl28JI3sz3EW08yo2AWW/kU8kk+t52W4zwjLC7u7tvbZkv1DQiae0PIxFDRu7MPvTab/D3ZkQTGeG9v9Y0fIvONtgzeOutt+4ds2hPO3fttdfuu8faGm0EbW2w2AEbL+uX+QX9M9+jyOO1viz/f/Yc8bmWco2uFxXMvveiw4nS8AqFQqFwILBxlOb58+cn0kvkUzOYJkSNJdIuqD3M+QakaTRWRi3UoxSiFE0iaGnq08iiGnv1Ma/LxpE5d9LaZp9JS71IK7Y50z57lFKsh37bqJ5z587N5sRQE/frICP85Xrzaywiz/b3ZJKjryf7ZA6a/z/z99Hn6vvKe5ZsaMv5zcjEe9rvHP2a7wOvIbVTpP1E9H3+uH16LZW+u9Za1/fo8+qi3NrbbrtN0loDIkE8rQUeWd/YniiPMIv+jObF5s58aXfccYekqZ/WvwfMJ2n9szIYtcsocWnql6d2nll1fJsyi13UP45Bpr31Isr5juz5+jMttIfS8AqFQqFwILCxDy/afj6yG2fbZERRmtmvORkVIlaRTLJnGZHGlWk1kcSQ2a4zO7+XYHnM2miSnLXDpDZpLe1RkmKeUaTp8VoS2kbk0dkGsxwrL1VTgpvbpmMYhjRPzpc3twFwVEemBVKqjfwH9HkxPy7y+1G6ZLRe5OvOIh45Jv55YlRmRgge+dSoqdKCEmkymbRMqdrfE62DqH9+7Mmas7u7283hvOSSSybEydEzTf8/+xppaXNMNNG9czmj9Ln6e2yczLdG64m3LNk7wtpqfjh7DrlNlPn8pOlG1lau3RONY2bByKI3PbKx6DHWLI3o9GuX47jEsrRX36KrCoVCoVB4hKN+8AqFQqFwILBx0ErkhPVggi8DNKJyaEajCa63nxKduBlBc0TbxXQAmmSiNpJKjCS4NAH6urPAmmj374jeLCoj2n/NwKCILLHfnzNkwRKR6WCJSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNL7e7u7jPVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw21113naTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQuFAYOOgFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201vba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdOXNGt956614gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5J0+e7JI3eJSGVygUCoUDgY01vHPnzk1Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCwwUlnptEEv36RpFGHlFk2JzPjvBSkxGxMnk7oxyTpiS+jLSLJF8rl4S7di01Ph8BadIXty7JIgx9PZlfgdJ0FEEW0bhFZXlQ62CkVy8ybs6Ht7u7O/FBRiBUE7gAACAASURBVITZGa1VJDlSW7d7uYYimjCeY9RuRKxA6ZySto15LwqZ/cjIGqI2ZhHLESFElszLyOWIjD1DFGmX+VtsrURJ2OxXT4tqrenw4cN7zw+Trn0dNpYkgo98+9k8ZFGaUXkZTVv03qFPmGvXEG31RHIEnjf4sWZsAD+jZyUj+zBftd1jml4U/d6Lqpf2P78cWz6nJBn3/dokOtNQGl6hUCgUDgQ23gB2a2trImFFfhhKQPQfeNBvlEmmBi8xZHRDlKYirYCRVEb1E2mp9Otl0XP23UskjIajBESCbd/eLEeR4+ulHebdURvNNnn1sHtIORb1y+fZzPnwKDX78qjpUsrraT4ZOXAWGenv5Tjwu19v1Fbov+KY+3NZjli29Y+/dy5aMopiy8jYMw3Qt2mOmi3S8DKp3I5HxONeu+pRi21vb0/WQeQnZV3UOny7GZXLvkbarIH0c1nOYTRO/M73QfQ+zSgFe/4y+mP5zrCyvDbMdyC1UK7dyB/H3Osl/jU+pz0Njz7hpf47qTS8QqFQKBwQbKzhHTlyZGJL97+49GFlEoKXPjNNg5JjJKUzR4bSGCPSfBv4yWg5Xw/9XhkBdcRUYX4wRjpSGlwSQZhpyv47fXf2afMW5QpmEZ1LyGI9c0xPw9ve3p702fthOJaRP0yKNZIe0a9HxHyRbbkT5WOyz5nPJmKg4NxlkmqPwSjL2erlKGY5gpkFJTrHXDvfdmp9WWRsz7ozB3v3+P70tnrK/KF+7Vh5zPfMCKD9ONHCQ18u10fUhuydEeV9Zv7FXk4d28QoYOb4RmNi7y6WH8U50JKRRV5GWqGB6yvS8OjHLPLoQqFQKBSAjbk0pfWvvP36eymdEYn0pfV+iTNWFtrnozwsk0juu+8+SVO+Sq/5UZKnv6pnE6ZkRWkzyjki/6aBuYpecqEtm9Ig/Z4ezOux/tlx+7T5k9bjQ/5SQ6S59lhMCPPDUBPyEjj71ONWJOgn5TVRJCw1XW6jEvluMqk1y3XrtTvT6KIoNqs3Yv3wbff3eyaKqA/R88R1l/HARmvVtAM+C1EkKcetl8Npa4eaQ7Q+yDFrz9wVV1yxV5YvV8rZmXrvLPro6HdmBLb/n+XRcuWf6blIR46tr4/vG4JR474t1i/Lv+O4GqI5o3WA7+DIIki/Irk8/W9MxK5UGl6hUCgUCg71g1coFAqFA4GNTZrnz5+fmG28apyFyVL19efp7CSNFlXjyKxGkxUd9d58RxOCtc2SKSOzFIM3sq0voqTuyMErTYMmIoczv9NMZOhRtZlJy0wc0Y7nNI3QfBSFozOo48iRI4vTEmj+itrNeY9o4hgAwrQNzqU3F0XBO758mqmkKSk1aaiiHc95L9NhuKairXeyRPPe9lC9c9LUpO7rM2Smpsh0zyAJG6PItMbx2dramiUeJ6l41C+aaUn5FiVKR8FJHhHhudVtfaMZPjJpMoWKa5RpQ/4YST4YnMPrfX1LyAoyMJWB7+DIHM70BJrJo/WWbSEUrTc+y6dPny6TZqFQKBQKHhcVtBIlSnIbjmxjRo8opHZJ/R6UIighRFKzgcEKURIzA1ysDE/W6s97rdfu9Y5XX29EvhulfERtN3jpk5K9nbMyrW3ROFJTpsRlTmxpKskvIY/OAhx8edyCyRAloDMxlwENvfSNjMaI0nmUNkNptqdJsp6MTinSYPn8kIg8CoRgKhDHoBf0wTbRssAQd19elF4Tfff9iYjas/ZkW0FJ0+A4ak/UzFl21Ba+5/xatbptPozikCkOfoy5VvmOjNI3GHhmzzDXErcc82NhGmO2xViUBkFrWxZM0ks8Zxuj9Z8l+TOtIyLH92lWRR5dKBQKhYLDBW0PRP9B9OtrUoPZ0Hubas5tgULJILI90x/BMiOpgloMQ/wjqZPlkcqMElevf7zHS6xWdxaGzmRy7yfJyKN7lGL0M1Lrjvw9lPrnEs+3trZCzY7lcYx76Q5cC9lWNT2/hdVDAuLIV5TVR00rkjizLXc4H1GqyRwReI+QN/veI4rOpPUoBYXzlNGgeWsFy+m1xd47vZB/+mGpbdp7yG8plG0szPcMLUC+PrvXNDz7ZB2+3bSCZalHvm5qY/xu/YuS8aPnlPUYSAxCqxe3OPL12blM64zqpdbZS2EwcMz9puRzKA2vUCgUCgcCG2t4ESlulAhOQmS7jxFq0lQizEhcWYY/R7qZntTEa9ifSPLm/ZnGENESZXRnPdJY1scoMBtfRjZ6kMiY2kFkuzcwGjSypRu8FJhpeKbdUcuNfACZ1B9J5GxXtn1Sb+NSSpmM8O0lkS/Z5JJjy/JZT2/bpmzboyhy1ZA9Gz0NmpJ2z0+Xncu2UPLlGs6ePZuund3dXT344IN72llEG0bSCL47Ir81taVIa/HX9QgP6LuP+kwNKCMr6Fm/DFnyekQizv5k90bHevRzvu0emXUt8uFR67T3Zo+azTS7u+66a68NpeEVCoVCoeCwkYa3u7urM2fOpBFxHvTvUbvwtllKOplPIPLPZBJIJmX6+rINOHv9yUiKSQ/mpXSOU0aS7CUfto1ap+XWRRoeI/joi+rll7Hv1h+TTv28kXaoh9baPg0wyk2k3Z6+1miu5wjGuYYiiZHaBq0QUe5WFpEYjWNGnE7tLIq4zLSALB/UH8v8PtRoI+k9ox+LohwzzZwRi5H/1z4/8IEPdP2/u7u7E9q7iDDdNCyLnrZxoh9bWufdsrxs/fUiAe35uPrqqyXF0aymvdCP3dO4svcbx3rJOsj8pD2NMtvmLdI8GQnLOe75f7N3fOSvPX78uCTpnnvu2bt3Lsp3r6+LrioUCoVC4RGOjX14p0+f7vpzKLVQI4qkM95DbTCT1v291FooiUfbtWTonc9YMdivKLJv7jPK++M1ZHaIIgmp4XFsorxHSnBZdGbkk/D29rkoTY6Jvz4jbeZ6iPKhqL1EdbLszIezNHLQX5uNX1S+YYn/b47EO3omsnNZrqq/l/3Jcql685z5zyPLiffBzzGtmHbGfFZpuonzlVdeua8tPfJt9pXMK4w899faMdMWs8hI/z+1JmpGkZ+ZY8P5yLbk8eUzCjrSuDJSbFonDFHkLceRYxHVR58d++vzmu++++59bdsEpeEVCoVC4UCgfvAKhUKhcCCwsUkzCgGNHNmmotKEYA7bKC2BDsosET1ylG5CiEonNIMiegnnrJffIxNjtuN0bxdr+z9L72B6QtQ/tp3mgiiUnQ7unvmD1y4h/+W1vq0ZMTGp3vw4zYVnM/UgMqtm5ppev+aCVyKzJMd4LtUg6l+WyhAFIPFctn9hZObN6NZ6Yeo0ZWbpOPzfrs3WjwU8mTk/orUi9RpNm6QGlNbPztGjR7t9ZMqLP8cka5qJfXoSTbE060djS3Mwy7dP1h+10drSS//JzO48HplQM+oyQy+lhdfSRWBmTGmdluCJtHvkFPvKXXRVoVAoFAqPcGxMHm1anjRN7vSYoyaKpL05zS7aCZsO0SxsO+uLr9cQ7ZpNaTwLWY6S1jNNggEpS1ILqNlF1FLZdhwm/UbaDjXHbBuSXuLuHLa2+lvAGEhfxPXAMv0nA5wYKBCNMQnBiSgAJUtHiMZpLnWmZ6XguUzDi8rNAquovUVaQaYp99ZBbxsnab+Gw3W7VEKX1uvYa098hk+cOCFpmjoTaXimBc6Nm+9PpjWx71HQSqZ5R+/TbEf1LJk72omebeml+WRE41ngYC/gKbMW+P7xmWbQjVGm3XnnnXvHTMOzaz2hxRxKwysUCoXCgcBGGl5rTTs7O5Mw8d5GovShRPZ9+jB6YcxSTMFl0ksmAfcSzym19LaDydISKBn5Ptk15oPINuaMtlnitXN0YR7WRm5KGm2k26NPkuJw5yW+T17Pe7yUTuo4rh1DT8tkP3obVjIJPiMk6IU/U1OJfJNck1xf9On6dUGLxRLLxZykzVDwyKdCqTwjQPfHmBpCP4x/5pdQ/3lENGJ+7dACcu+990paa3g33njjpN12j607Sy3gWo/axvHJnoUl89TbHo3lZBs0R7ELfDfy3uiZ57xkz1dk1TPQqrJJcrzB6jdN3ZLNo/ZvgtLwCoVCoXAgcEHbA/XIbilZ+3v9eQ8eo6ZFycBLM0zAptTS8xFkm9JGkj3LzRLso3sz6YyfURuo6VEqNURUVgbTwKl9RFI6y6N/y0ti1BzPnj3bJXH1FEBRhJj9bxI8/XDmAzK7vq878+H1fA4sw8B1F23IyXsvJjo4i9r15zg/PTKGTBrPqNuiOTDtiddSa/PI/PWGaKuXbPsrj2EYNAxDOk/Sejy4cfIdd9whaa3pea2QlhfT8LKISN8f0pxl2nSkrbMf1HIj0ops/jlfvXcW6R7tvH+X2DPG/hh6xONZAj/XQbRVG/trn6bhWdRtVI+tjyUoDa9QKBQKBwIba3gPPvjgnhTgJXuDHSONDCMwoyhG5rtQazNE2lqWQxVpnBl5ryHSBuhXzKI1Df47+26f1JCiftm53uatbCt9RfQvZOPq781yBv04kpB3jkS6tTaRWKOILUqr3DAzkuznojUjKZ1a+Zxv14Nt6+WBZmsjy8OMpOa5/kZaGvMaM00vupfXEtGYsJ6ef8nabXPtqaMieP8vI5h9HaQBM+3ttttuk7TW4nwfMg27t5Fu5hclIkrDzLLUG6+M3J3WMN9Gmw8+PzbmvfXN+qgVRs9vRjjOe3z/+ExbfWbF8fl37LNhbuNpj9LwCoVCoXAgsLGGd/bs2cmvcuRzMLsw81QiKZb5UFnEIG3QvnyDlUENM4pEyqLvojw8nqOU1mOvoPTF7xHBNTXhjN0mkvyyXJqMlNvXR98dxyLyTXofQDamW1tbuuSSSyZEtn7+7F47R4YaRgH6PmW+PN4TsXNkjCCRj5Xrl5r+kvnI8gp7a5VtzRhx/DXU8JhbGW0Qmvk6eyTFcxF80TrhVjnnz5/vSum7u7tpdKv/nz5uK9+2krFNQyXpsY99rKTcMtFj06H2xPdbpMVlFgX2oacVZuvazkcbT2frOdLwqN1mDChRziBzorM8wyjvj/N33333SVpr6FE+I5/9JSgNr1AoFAoHAvWDVygUCoUDgY1NmsMwhPtDGTInPk2dXkU1lddCT6k205wWBWiwfqvHdj5mP6LvvdBWmgMzwt9eyH8WRBIlvFv76aDPEkOjtASaJ2ge6FFY0ewRpUNYud58lJmlWmv7AgasH55uivPO3dyZiuHbkPUjCupgGxgunwXN+Guz0PIlaSlzScpRoMhcakFER0X6Kz/+UmzSygIZlgQFZMEqUbBCRHDdo3aLKOGi5H4+/zSr+fB2o6t6whOeIGm93jI6r+iZ5rrqUczRRJqtoR4tXWZSZAqPr4efXI8RCUiWYpJR9kk50XhWvx8Dm6+TJ09KWps0e8+EJ06ooJVCoVAoFBw2Jo/2kpZJ5xG1WJSUnpVjiBIhpak06yXFLDgmS7b095OOKAt88NcspZ+KkuMzrYnfpWlCLiVGBgj48aTGku3C7BO4M+mTCb2RJuHXQS9o5dJLL00TWX27bBxMO2fyu5eAowTY6NrevZxT0uBFwT3Zdk1LtJm5NIVI42IyNAMB/JwzWCVLF+glrWdtj67jOPKZi9JJOC9zO557UCvwfSF5gZV5xRVXTO65/fbbJUlXX321pPU2QXzWoyC2jAjaPiNrRJY6ZegFy/F5z0L+/XPAeZ+jC4vKp/WhR+SQpXkx0CmyRtn7Lkvo92NFK9pll11W5NGFQqFQKHhs7MPb3d2dhK5HGyPSd0dp0yea0u9HXxol/CjxmNoTtUUvAWeUXj0/HOmm6Efo+dQMWRitHTep1N+fkfZmEqYH7d60sfsxoaZioP8x0ubn0jyiNkQJu9Sw+D0Kwc/GiSQGPc0rkjyl2KKQJbbTahD5HDIfcUZe7TEn4fd8NwwT70nD2Rj0tNC55HRaX6Q8nSPD9vZ212rETWG5IaxpeH4ubZsZ8xeRYJo+8Ii0gFoZLQ7+meYzzGc2mhf6wajhU6uK2kitjPUv8cPRkhDdm1mH2Bc/JlnaVS/VhRaESksoFAqFQgFoS0k3Jam1dqekv3r4mlP4EMDjh2G4ngdr7RQWoNZO4UIRrh1iox+8QqFQKBQeqSiTZqFQKBQOBOoHr1AoFAoHAvWDVygUCoUDgfrBKxQKhcKBwEZ5eNvb28OhQ4cm+XK9wJeMi83ni2RsAZtszJpta8Lr5o5lmLu2d36Ol/Bi2rbkurmxiZAxy/Suba3pzjvv1H333Tep6NChQ4PfuiTKhZzLxYnyyJZyP/bW6MUEbmWMFBGyazaZF0PGarFJfZusi946YC4qOUN7zEV+Lk+ePKnTp09PGnPkyJHh6NGje7lYEY8j8+KY49Zrd9aPjHM3Opc9H9E9S8rPypmbq14bszYvqTdjLIruzcpb8p6L2F+ye/2Ynzp1SmfOnJldyBv94B06dEiPecxj9pI5o0RqJqZawue1114rSTp27Ni+T0m6/PLLJa3JbW1Bc2H3kh15rrc/XbbHE8uMflizF1yWsB3dm+2W7O/JklIzqp+ovuyHokcLxH5YkiepmqQpufP29rZe9KIXKcLhw4f1kR/5kXvzcOLECUnrpF9pmoxs7bX1ceWVV0raTwhu/5OMOtspPFqr1v6MAi7a6dpg9VkbSevmEe0ByPKl/ktyCWVa9oOWJf1HtGSs38bK6Oh88rCNlx0zAmC71vrriZu5f9v29rZe/epXK8KxY8f0nOc8Z2//usc97nGTttr4X3PNNfvOGVGCtcUTJ/A9lhG2c51LUwIKJsPzx1+arrdsx/uIyIM/qBmJeY/Sjus7Ig5hG7i/H/vi6RCz/nD9RXv2sV+kQfRgAvvu7q5e97rXTa6LUCbNQqFQKBwIXNCO5/arHml4kalCyrUcf65Xr//0mDMlRHQ9GdVORhvlr+G5Jeo7yyWVVWSuyOqJKMTYjk3MHjzGenvmL7bN085F5Z89e3YyX5FZKjOf9bb6Mcyth57Jh+MWbQ+UbXnCsqJ+sVzSOM31IepHb+1kZjBK4JTefZtYz5ItwbIyfD0mnXtNJVs7W1tbuuyyy/Y0fJP6/dZSds6sROybfUZbcJnWZ20iqTw1I38u0nSkmJZuzgUU0cQZOEfZO8yXnW1Lxjb2jrGf0TgS1PT4/vN9yWjvejR4Vo5pimfOnKntgQqFQqFQ8HhINLyedpGRnkZ+uCwAISvbo0ei7M/7cuYcwRHZLaWVJVJTdg+lJ9/2pUE4vT7MBXREmnlGhh1JWtzOZ875fe7cucmWSH4dUAKMNA/WM7fVTjZP0T302UT1Rf5dX0Y0XpRaM022N9YZ2XI0RtlGw0uCzbitDQl6I38Wx439ibQBkjtvbW2l62d7e1vHjh3b89faujO/nbTW9qLtsnxfff9MszPfon1y/qN10dNaon56cD303muZps33Q89HzXEl0XlvLm28eG1PwzNYvVyPfn3bOZvTbPPYHnqbBxOl4RUKhULhQKB+8AqFQqFwILCxSfP8+fMTdTcy31A15T5RUQg+w6SzFINeDh/NBNG+a0tyPKRlOUfR/mBZmVlwwhKTRpYOEZlF2Ocs8CQy2bJtND366+zYEuexmcNprvTzYiYrv1eivyYKZrFAg8z0QZNPZE7JENU3F+gSOdu5jjnvPRMX5yrbP8yb6rKdtc2E50PzeS/DxDn2UdACy81MwxH8XpeZ2bm1pksuuWTvvWCmTNuhXNqf3uDBwBPfV0tVsH3x7DNLT+C69OUv2XGbz6W1uZfKwueO9WS5j/5/BvBYPyx9JDJpMqAnS9Hw987tpWd98esi2/uSZfh6+Jxk5uQIpeEVCoVC4UBgIw1PWgcfSNOdZz0yzS7aHZkSLhkVsvP+GLVCSkK9pO4sAGATFoElyLSfSAu1frBfmUYRpQts0h7u3J0lyUaasrWxJ2nt7u7qgQce6AZoUONheDaT4P0x7qrNcYqCGbK0Bwtt7wV3UJOjhuFD5lk+5ywjIvDn2B+TknuJ5+wnNb8oeKmngUf1+2uzoBgGPrBOaVxDvQCt7e3tvXkx0go/xvY/+8jAFNNqpLWGZ8fsGltf1i9qOf4YNa8eqQXfVdYP7pbuQatAlArk2+E1WDtn/bFz7Ld/nnitfVpZHItI88qSx6MgJhsvpppkVpFoDJa+76TS8AqFQqFwQLCxD+/cuXOpH8FjSXqAgX4Bao4Z16a0lgwoVZjEHf36Z4nA1Gai8Hd+UkqPuOCy9vdodKjN2jWZBLlEG2XyepQGwRSDJXx71u7d3d3Z8GArP+M8lHIpnWVIU+3S7iWNVqT5Z9og5ydaQ/TD2KdJqH4us9ByA9vmfTqZz5Yaa+SPzdZqlizfa2tGU+bry7QRuzbSzP2a7JE4HDp0aM/Ha5qep6iydlGLMeo6O+6tENRMOV5Mv/LaU6YB0Vrk146Ng7Wf8x69O2g1ydIQogR4+h7NR2ljc++99+777v+nLy+zEkT94zm7x757OkFDxpNKS6E/5lN1Ki2hUCgUCgWHC4rS3IRd27BJsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktaSRElqt5kv0dedEbFm0bD+nrkI1igaMPPlRfXQ/t7zw1iZGRmurzPzG0a+PUr99p0So60Hf2+2Rugb8JIr1wx90/RB+PKZdG/1WJts7CLNJSP1jmijskRzziWTzP012Wc0f9Zn0w4yH4vvl2kd3heWRWlubW3p8ssvn/hp/fPDKMKM4D7yBXGt8PmP5mCOmJnrwx+jNmprl+3y1/Jclkzuj1t9NsbmszMNyzQ8H31qWniWAJ4R+0tT6xp9klamt9iQzs2+M4K1R7dWPrxCoVAoFICNozSlPims/RKbpG25MibF9CI6DaSkMckximaipkWJN/LdsA2RH4T9oi8ji2YjBZQ/Rm2Q0mdvbOb8gD27Pwlao3EkTVimWfby/XoUP+b/pW3et5X5QlaubTF11VVXSdq/PZBFupE8mD68SPPi2uD4U6r142Jrco6ezpfP73YvLRfR9ilLSMNZfubLM0TrPqPMyjRbfy3z2u655x5JMYWVzVOkZUb9ueSSS7r0hKYZZDRWUR6mjXPmj7fyrV9+HdDHxS2SMsJmKfcvMx7BX8PtlKxcn8foP7NjHvQl+mN8v1i9mSUluiejd/PHbW0wRoHj68eeuYlL8j332rj4ykKhUCgUHsHYSMOzaJhexJZJ4yYBmGRNacbn0HDj1yyKsrcdkZXLnJ+eT4W2dJMYMgJaKbcXZ+S+0tpmTUmS9msPjjG1NGtjtDEr+2nIIj19+zOmDR/JxXPezt/T8M6cObM3BvRbSNNtP0x7u/766yX1Nbyrr75a0nS9McrL948RnQSjaP391gZqTxHLSJarRemZfmh/DeeFUm60aWiWH8f+ey2b/syMTNj7Yaw+kjtbuZbfFrFy2LU91pvWmo4cOdKNwM5yALN17evOIm17G8Bm/mYbF/OLRRos8/DsnWnWsKitXKt8Z1g90Vq2a+2Z6xGp2/zbXGaRsfTleVDb5XffRpsnv5mrb0dkRaTvvTS8QqFQKBSA+sErFAqFwoHAxkErOzs7E/OQNzGZOYCfNB9GjnJTa80skAUeeJU4C1Wm+u5NaBFdjTQN9vAmQQYn0BlOGh+vZmchxAaGP0dtoGmEZjE/JpkZLEtE9+Uz3JgO6Mh8YMeOHDkymwBKsmdvvjNSYBvbG264Yd+nBabYp5SbXKL9z3w/pDzknqa+iLYroz2L0mAy6iia0KIgAgatcF4ikxnNbD1S5uxew9zu3NJ0x3CbRzPVRRRmdi1TgbJ2emoxBm74OkixRRNdtKcdTW1WD82hUSAazdVWL99lvr0MVrJxsk//3onMqb5cOx69G7l+7TvJETwJt/1vnzaXUZCK75PvO6nL7LiVFZnQbcztnowi0iOjW+yhNLxCoVAoHAhspOFtbW3pyJEjkwANL6VTaqDUHEl0dG4yNJVhz74+kzwiuixfVkTMzHPcnsZLDtkO4BnVj5e8M3JlamJLEs8NPacutTC2sUf2zGsYPNPTQud2J26tTZz9XvNm0MM111wjab2W6OT312ZksxEtFMGE9t72UQxOMGmZ29D49U26NmqhHL8oaIGaXRZ45f+ntYFpCNGWMhlpeUaH5usxmJTOd4Ffw/aMLSFj39ra0tGjR/c0BBu/SFNgYBjHy683m8Ns3VLL8O8dA9eVjTWDV/y1do7jw/5F5XAuaWmIqNMYKGj1WBCYBXxJa+sJNTsSfNiYRLRklpZiY29tj943TOC3ueBajSwm/p1U1GKFQqFQKDhsrOFdeumlE40rIhC1Y6RTooQsrSUAbs+SJV1HvrUs5L9nAzYphpKctc1Lb1lysoFalK+XIfjZBq1e0qYWxnGk5hxJyqTpYf+8xJVRFpHiJ/LhmeZ17ty5blqC3wA2Sk+hdkE/MP21vr30qVASpubqy+GGn/SL+vqYYkKfdBReH2l9Uu4HjspgugX9JJbkLU23eJnb9ioK76ekzaR4Xyb9O9xINUqop19+GIZ07ezs7Oi6667b0+ztnmgrHG5Kzblcss0MyQuiZysjls78dP4c3y+0MEXbHmXEy3wv+XnhurJ5sOfVNDz7lNbWE6ZBZeQJvn88xm22ohQRWj/ss2cBiDS8pSgNr1AoFAoHAhcUpUkppkfbRQmo92vMKDUmmlLyl6aRfWwTpXdpKoWRTicij6a0F21g6fvnpRhGqs5t4ihNpUBK2oxyjKjF7JhJ3Fnysi+HEqWht+2Rtf/o0aOzRK6cn14krH1y/CJQ4jYtZ4mPiFoAx6C3TRS15YgmjtfOUX9FY0INlpuTRmQMBruGfsZouy3SXPHTxsbXxy1lrDwjJ7a2RlsmLYm029nZ0VVXXTWh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4hICez25G7h6RVRts7kyTjMbG+uN9j9J6PGl1Z1fSIgAAIABJREFUiSJlmVhvx2nJ8+ey55Sas+9Xpn32UBpeoVAoFA4ELohajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvtw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxuPHz8uaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlrenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwoHABW0PFEW8ZddkOT9eSieJq0ncRhpMzc7/2ptESuaBXqSdSWfU0qhNRVtfUEujP8Ta6MumnZrSOPOzpLWERaYTa5P1oRc9ykgxK//EiRP72uXbRDs7NedIgrRjp06dShkzdnd3dfLkyT1tI2KDoRZNCTgiv7WoNeuTXWO5ReZHePvb3y5JetSjHrV3r91jc/jYxz5237jcdtttkzYy95RRoTYvkXUgy7ujdO6tAxk7DiV/r2lwY9lrr71WknTrrbfuO28SuI/8u+uuuyRJT3rSkySt5+L973//vv5HuXsZqXzkuyFbU49pxaLDeywfVpe9D+iHpd/H32PjYZrcO97xDknS7bffvu+4zzmzck0bJGsKfeLSNCrcvjMCN7L0kBSf33sk4vRN8p3on2krl9avu+++e19bI8uZ9+X7sbBn0SwoUaQ3LXJ8Jny/+AwWeXShUCgUCsBGGp5t4mmg/VjKuexok/V2c/vfsvxNEqBEZ5JKZE+mPZrbAkU5Z9z0lJvX9ngj6X+jlOs1POYjWfmM1vLSIDVJk+RNauLYR7lpJskxJ9HG22sP1jb6uqwf0UakkQ+0FzE1DEOXTcTam/lurWyTNv3/pskZ76ZJlXfccce+dvtxMo3uzW9+s6T12vn4j/94SesxNk1QirfU8ccjRhfPNer7Tv9rtEFmtmmwtdU0DD+e1CRsbFjfJ37iJ0qSXvOa1+zda2vTyr355pv3teN973vfvrb6+jKWoyiam/Pvt46KsLW1NbGq+OeTEZf+WfLXRnlqpvm+8Y1vlLSeb7M0mc/IrztuUUNN3/rMdvh7M4aVSOMiNyc35GUEsDTN/+WYR3lsHFt713JuIiuZjYVZDOxe+27Pt/f108rBPG6+f/w1/jelmFYKhUKhUHCoH7xCoVAoHAhcUNAKTYFedY4SIP13JnlKa5OLmTRpnrzuuuv2leXNBOZI5rYtdFZ71ZumHZK5RrtxZw7fjN7G949beJhKb2aBKJiFAUE0cZq5xcbIxlBam2BI+WTX0nTr67PxzCi6vLmFofdzZgXb5kWKk8mZNEwzq5l1LLBCWpt8Hv3oR0taBzqZSfMtb3nLvjLf/e53791rY2jl2rjZOEWkx2bqM3PNEhKBbK0wxSDazocpJZkpPaJos3abScnutXB7GxuPG2+8UdL0mbSxMpOmN+8ZSBhPc1WUDsMUnQjmSmEAVxSoQxLp3k70FpTyhje8QdJ6zqzv9l6w94QnWaYZmibFqD6aW+3Txi0id+B821rlLvIMavPlZ4TM0fOakSDYs25jY+3w70pSTdrzdOedd0paP1ePf/zj9+5hQA3dFzTh+v97ayZDaXiFQqFQOBDYOGhld3d3EvThpUuG9NPByMRjD5MAssTcKOnV/qf0QrLjKJiCUgXL8iA9FAM2SAvkt7Bhf0w74Fj0KHfsO53INs6R85j1MKHbt9HqpvZJJ3JEI7eE+qu1psOHD0/SEXrUYja2plVFm2raXFlwikmgDJKysTCpU1oHJ1iQlI2LaS/R9jG2Rm18TDrvETTTymD94HpjEJOv2+4hSXKkUZI03NpiGoqlKbznPe/ZV5YfA1sb733veyWtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537bvXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+tNN90kaf3e4fuBGqA/FhEazKE0vEKhUCgcCGys4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJa2l6A/7sA+TNPWt+DaYn9T8XFamzYHfjohtsnq43qPkYW996G0tdebMmYlPN1oHfA6t3dZe0zJ8O03zpdZC61BE1MBUI1q9/DNGGjpq+NHm0SQWYNoAKfSilAYbf1oDSE/n20SNMUvHidJTuD0QfeX+HltPfM/YPVznvhy/QcBSerHS8AqFQqFwILCxhvfggw9ONKDIBswIGmoo3vbLCEsmi5uGR4lRmm51Tzu1p70ykOTW7jFJl5FJUflZf9kXfw+lEPo3vQRMSSojpY18a5FEGh3v0UNlmpofe256eujQoVRKtwhNUpRFUZqkzfJzx7axHG6Qaf4XJvf6cyQ/tk9GAPN/ae0bpN/HX0d/ckYtZ4h8yNQG6f/1Pg5aO0jrZ9eaZmN+SH8No+N6UaF2rVlq+PxQa5CmSfhHjx5NN1c2H17krzSwnTamth7oc5Wm0cAG6wfr8d+tHuuT+eoiyjwDI70ZiR1tPE3Niu8srilfLyM3+a6IrEdZBGdWf0T+TkJ/A58rX64dY7StISLJiMZ4DqXhFQqFQuFA4IKoxTJaJbtGmkoK9N1FUjO1ioxAOYqWYllZHpk0jZLLtqjwZUfb7/g2UmqPSGoZZcb6fBnWJo5fL2rSMEdWbeiRrnJOIt9r5tfMytvZ2Zlo3n5cOT6mPVFS7eUaMeKW681rJsz3tPq4djzsGLcDysjSpfWcRXl2vn+96GDm4y2hsLK2cMsXO25ar28P1yR9YpFVJ9OEuB58PSSMP3LkyGy0Hccv2pg3206H1GP+f0Z0ckspUgFKy59P30bTLjmGGSG0v5/rmM8/tXjWHbU1Ip7P5pkbDVs/ozgH+uk59v79zeco21IqymvNLGc9lIZXKBQKhQOBC2Ja6Wkm0UaL0jQqq7eJI3O0+D0ioaVfilut+Eg0k1YowVPi8n3IWArm/DG+jYx09H5Mf51Hpg0wes+PJ230lDqjts9tsUEp2N/vpbCetLWzs5MyyPj20V9Fic7PS0YaHGnprI/aWcaW4vvMXFG2I+o/fcaMyqOGF+VjMmeLfmcf4cu+Z1J5ROps40gNJWqbIbMk9NiIqJH3/L+8l/X6um2sqZFEjC5RtGeESJuh/51rKLJGZf5+Rhr7NmZrk4iilakdUgvk+vN9zMicWU/0PmCbCD8mtExkGxtHGl5Wbw+l4RUKhULhQKB+8AqFQqFwILCxSTNyUkZmnMhpK8WBBzRZkWC6Z9KMQvql6b5h3qRpocrZTtqmPnvVm/v7ZYjMYAa2nyTcUYIz+8nghcgsFZlg/PdozKL94nr1+/+jPQeJ1lpovvTtzsL22aa5cnxbemayzLTD5HFvJmJABs2UkUmf6ykzw0d94VjQJBwlKzPIh/1kGUtM9wyEisgforXo741C5v2Y9Obq/PnzkwAaj4yAmyZBv365Rvj899wVpAHLzO8eUVCSLyMC+8V3CMfMt5GUhrwmIkkgBWRG7h0F69FEO0eS7kETsWHO3Gz3VOJ5oVAoFAoOFxS0siTwgFIrAw56Sd3UgBjyG4GaFYNVfEIyJR/S53Bn5ajv1GAp8US7VhuysFpfH4MVovDcDJSk6HCO0kCosVAijpzw7HuP4qe1ti8kPJJQM3qojL4tOseAgEiKNWSkzZTEI4mUErwlNkcJwAzGilI8fP3RmHDOmKQfhaMzvSLbsisCxzFKBWA52ZqNtB4GVM0Frfg2RO3PAheszOhZzqjs5jT/6JyBlpKIRJzaDINVIq2J5c0RQ/tyWS/fC1G/GGi1RKPMCBRYhn+H8Z7s98NjifUmQ2l4hUKhUDgQ2EjDM3ooajdeW8t8T74MXkefEz97ZVKy5xYslkzsJTxqkNRiIlLsng/Dt8O0mChJ1c4tSZykj85AzaInpVPa7NGGZZJbT0qn784Ti0dtueqqqybScpQwHZF3+3p6min9RdSEorUzF/IdJeaSCDragNOQjTv7E/lW59JeuIaj8tnWzPoStT/T7Px6oU+SbY0kcR6b8+H58iIrR6a9ZhYLabomsjD+iIiA15I0gRYGfw01q2z7qKgNJBrP1r8HtbXMWuDPZf70KD0pA9sW3UNLAi0K3KTbl5t976E0vEKhUCgcCFwQtZiBNmEP/mJndEP+Gmp6S6Q02sGjTUKl/ZLrHPloFDVJjSGzI1u9XuK0Y0aj4zde9WVGmoRpqLTdUyuI/Khz6PkKsoTnKLKTRLoRtra2dMkll+z5VLOINWleavWSts0Lpdi5qL0eqBn7ebH7bS6tLSRUiEh1+cmIzigiLhsLuybS8Ej0nG0tZPDrhfOS+WE8OE5ZVK0/zvfApZdemq7bYRj2aQfR2skiuVl3RINIK1EWaR1tR0R/f49gg+OTaZA+4pZaH99zJM+PEsHplyNxiEe2zrJo+J52lfl2Ix8eNeUs0jy6Z4m2udemxVcWCoVCofAIxsYa3tmzZydSbE+jyCLRonyRjD4pingyUPMg4XSkdXC7kh4pLdGTQn07vIbJzSi5SWTkQ/LbpkjraFPSIUVSdc9G7xFJ3FluZRQFxvGaoxbb2tqaaIWRtJ5FhvW0C/vkWupJf5nfxz65hY003caE/qtIm8kovahZkM5JyvO8OE/eF+o3xpRiSd6XFdE2UfugFhdFSGb9i2D9sudkzoe3u7vb1TaoWVnfM8J2326+d7JtiCLKL1oMSOsWafqk57Jn27Q2X2ZGqpzljEaWLEby2pgbKXaUE03LQeZLjJ5J+uUMvfXASH1GskZWPf9bUnl4hUKhUCg4XJAPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+CXsJtbNIG8m2eOH2JNEGsHbOtnKhhBdppZn/IsutipBFkPqxj3wEPUmrtTYZ2x5RbpZjFGmmmb83u85fy3pIRB35Og3ZxsAeNneGzE8RbWFDbSZjMPJaHDeHzYiuexJ3lh/V07az5ydaZ7x2bgPY8+fPT3xR/nmhBsz4gshf3yPt9mVF+ZkcO1srnFtfL3109izfc889ktYbz3ptnZsSM2fP2mR5oH590oJkGp21I7qH1q9e7jOR5eHRvxr5NTk/jGT1ZbPvRR5dKBQKhQJQP3iFQqFQOBDYmFrMmxYiUyR37aXaacczR7pHZj6JEmUZDNFrI+8x0OHsTQsZpVhmFusl43MsogAbjp+1mXRrkYOd5XMsaP6J+mGgKTBK3PWmq8ykubW1pcOHD++1k+1nOb4tNKdFxMUZSQFNs9FeekxTMdNPFPjCe1hfRDLOtWNzaPXQ9ORBSiwzdzIIw7eDZjXeQ1NdZLLtmRcJritDjwqMJr+eSdiC5fhcRqkKWWpBLx2K6yzb6y5aO5xTPp9RsjoDdsy0GaX3mJnTPvlMLyE65zxb2yzlyZvQOS989tjGiMiBYHBQ5JLgOs76F91z9uzZClopFAqFQsFjY2qxQ4cOTYIuPOhkZxh9tEv6HH1RRr7rzzGxNEs89v/7kGhpP5Et6+mRIkeI6HoYOs9AmygYh9pab4sU1k2pubcNDY9lgQee9ogaV895vLW1tafR+P5E2nrWt+g4JW0GtmQ7OPtrbU1y3iMp3ULIuaWUScu9wIMrr7xy373Hjh3b10ab2xMnTuzde++99+5rC3d0j4gOuK4YYm73RFI61yKfn2i9M/2FcxE93zbWPkk+e5aGYdDp06cnKSf++eS7KAuAiygG+Z3rMNKEGVSW3RPRxHEe+IxbEIu0ToOhhsd2RJYeakI2vvYcWtt8UBVTcbKE/ig1hM90RpofgWsosxr4cpemQ+2rZ9FVhUKhUCg8wrGxD6+1NtGmoq03TGrIwvijY3MaXqSZzFFIReHolKiIKHw22xiT6KVO0J9k2hIlcf//XBJvNna+3mxrDw/6OijBRRs0RkTZc5IWfWle4+oRIUuxLyXrI32pdtxrAryGGj59utLUf2QamGll1kbT3qQp1ddVV121r1zrL6V59lVaa4uZNurvoRZi9TBk3493Rs3WS0vICA7sWtNk/DrJfOIRdnd3derUqT0NOVrPvXdE1LboWmplbGOkrWXvm4hMgu8b+vBMs4u2MstoyKjZReH7tA7wXeJJMkjRZ8jWRYTMutKzLFFD7m10y76WD69QKBQKBeCCNoDNNkiUpn4qbo0TgVJRL2LL1xu1gZJPlEBJGh5GjNLGLk2lPEZl8TovcWeRT7StRwmZlNIp0UVa2xxZcIS56NOeJG4Sai/ydhiGfVGcPX9slgCcnZdyaTJqB+/hOuglk5uUbFI4qcaYtC5J1113naS11YOaIzX9yKdmfr+MqDmyDli59OlRU/b9zLYsMvSI4nt+PtZj8JRZPSvG7u7u3rNN/6lvL58/am3RPZk2uyT5mXOWRXxKU78rrU+MqvXXMN6APv1Iw7N7jJ7Qxi3bzsmXQ22UVoIlZOzU1qL5Z1v43EZE3owyniO82NemRVcVCoVCofAIx8ZRmj6XqufDY66JfdJPIk1zl6I8MbbDwNwWbu0TRRMZKPn0tmmhRsLoJd4bRR/SV9STjOc2P90kAoro+fSyqMaeNLhUuprL92LUZxYBF2lphkwCjaRarkV+RuTKBjtmmpxpb/Zpa8v/b9dmVGb+HoM9N/S/UJPxzxP9rZn0zGfHX5NF+Bp69FAct4ieyq4xf2Vv/VrcgI1F5FvN2tfzPUbR0VH7SUHm743GUFqPhb1bpDx60a658cYbpf+vvbPbkdw6knB2T2swAxiGJXkAC7rY93+sBQwDgiTII48ka6arai8W0Z39MeKQNYu9kCvjprqriuTh4SErI38i66V3QHE9ZrzKs8B6zH7dtJ4UM9arWLWyNfv1SZ4jl1Xdz38Fxv9Wmb5OGJrbkG2uMtY3xzn8zcFgMBgM/sD4rDo8+o9dtX1q5bHKDEt1MYRT++D+9T+FWvv2tGZlWbk4EMdIZse4j8tE4r6YQejUYPayopyFlRpxHrGwOEbBCewmgeaEu7u7TQyvW5eJ0a2aq9LyTXV4zLzs7/GVFmRXr6A3QlYya+u6Zc8YLsdGz0Zneoy7kEmIUbr2QMlaTxmsfQxkRklgvf+9t4YcI+vqKav7/fHxceNR6nOc4uEcm4vDcbzpGea+y/pUzanzemm8GgubIVPkuer5+jKDkxnNrhZW607ZrX2/Vc9rpr+fvHY832tYlbDKJeD++dxzXr1+Hx31cA3DGwwGg8FN4GqG9/DwsMlectYeWWBqqpiO018Zt3JZmvyfzRXl8+6fUfeTShjdIlGcRa/6jqykbmFX+TiTtmU244oVMltzr0atKmfy7cVJ3Pip5LGq99vb/8PDwyaes4qpcfwu2yuxFWbnuuvkGrz2c2SjzqqXmbt9W1qvWnd9f7LWXU1jH1ufI61btoU50paIzJg1Vq4FFOMtq3uPx0lZj2QhVc/z0/eX1ra0NFn/29fOXszOneveul1tm55nnDfHTPTs+Pbbb6vqeU3xedSPrfc0b/RG8XnUt/3yyy9ffKYxuXuCz02n71nlVZF47zklnz6u/p2Vqg334TLvj2IY3mAwGAxuAvODNxgMBoObwNUuzVevXj3RWSdDQxfIXudzbt/3IazobWqBwXTh7opiQDZJSnXK3IPr/ZVuMZcYkgLoqy7pAhM5UqGpK1bm/6ukAo6b86c56S6cPTknHuuLL76IrUqqtnOr/bnrIaTyECbFrK6p4Dq485zpTtP8yPVI4YOqrSubSSzpHql6TtvX/ukOZzFz1dY1SkmxlJjS97cnWu7EJngP8Fr3uZfYtj77y1/+Et2zp9OpPnz4UO/evXuxjRtDEq525Ra8/9JzaOX6pGSd/meZSj9/ys+pXEAdyLu0nLZXYsmf//znF/ugKH8/HttP0b3vnjssu+ru/I5V6VZyZQpuHlOyiuB+L7qb92jX82F4g8FgMLgJXC0tdn9/vwkaul/XJD+2SrNnCcMeM6raWpFsnOqkadgeRVaMrE4G4fvfqWkrG7U69kSkQuAOnh8ZjCusT3JHRwpAk3V+RCxWBcIJl8tlE5x2CSiyQFMRvAuUk+mReTvZppSow5IWZ10mxkM21b8rlubkx6q2bLHvl5JPLMJ2clQccyoqd+s8eQVcWQIlAbn+nCg4k6G++uqryPDO53N9+PBhI+vX2QfXRvKMHEl0SQXibp4omcgmwk6AguzMiXHwONqf5pBCBLx3qrIcHctgVglvek3iIKtSEz5vnDeK2/J/x0L1mUo1jgpfVA3DGwwGg8GN4LNieLQC3K8vreUV49JnZF57lkIHrSYVgvK4fb9khZRB6/ESbdOtb36nyhdUp9jZqmyAMbTUBmTVPoOskPPnLDuBFpdjZNxm1YhRxcOrYt7UiJdxGSc4nYQAUtysnyNfWY7Q2fNe2ybGTaqeWUAq5uZ16mtKRegs1Uhtafr+91LJXbslgeuL53nEg8GxyoNStW2Z9Pbt22Xh+adPn57u6d56iWNILI0ekX5u9CBQnpAsp7/HOaWnoa+dVFq0EuWgx0L7YCmNuz/3BK31fz8vPiP4jFoJ3ifPnHtOCCn3IXkpqp6f7VpPr1+/nsLzwWAwGAw6Pqs9kCvEFGjFkOExPlK1tZLIymj5ubbyLCandd4tAFphPA+xOOezP9JChu/TSuLcuJhaEuhmRp9j2amx7RErKDGXVfZp32blT7+7u9uMfxV7ZJxkxfBStmZqzeTOjefuimB1zl3Wqn9HjKyzEGXOMQ5CFkK5sj5eMUYWcbsi3LSuOUcrts25WHkAEnMhk+zeERcLT+tTogUqhtarm6fEalxcLrGltM+OPXEEoQsQJPnDFC+r2rYSYsya92m/98mi0/Om74NrgusrPVs6kizYEYk2jkPoY9Q66nM/DG8wGAwGg4arGd7Dw8PSQkwZgWRi3aqiPzxlSTlhU/lzZQnpfzIix0zE0mjhOasjxUxSxptjeLR4aQl1K4YsQ+dHi44Mp+8vSUg5i2uVudnhai6PNJiVlb46HuOvjGm5OJyQmN2RGkFeh9QItO+fGXYakxPqVZ0VM9tSrLUzIWasCrTaXdYk1wFbGq2EebnOGAtzrIDrikyGsmz9vH7++efdBrCqTxO77rFOnRPv91XLsZWnit/l8eR10POMNY+qqevnrOuq9c3ngGugzJyBJL3F/Ieq52cg17Hmj7WDbr/CNTJefH6u2vnwmtNb4BrS0uvRGwPsYRjeYDAYDG4Cn9UeaOXPTf5aMrxuMcg6oXUupLhg/4zqGBxbH0/KBqR6isu00+uKbfRzqcpKKjyv7u+n1eIa2PZxOGaWrCUX99tTu3FZWUdEozsul8umbtGNl2vFtbFJY0jqL6vxJzUO12iU49e2qbaunwezNbV2tP5d6xUySnolUuyoKjN6qoN0q95lF/bjO6a8JwzP69n3r7H8+uuvyxZYnz592syTY2Zkz0mEvb+Xaih5rftzifeU5vLHH3+squd7ud/Hau3De1vjcNmnOrb2x2xN1m728+MzkAyPz73+Xorh8T5zajf8Toqrum2o7OPiw+l5egTD8AaDwWBwE5gfvMFgMBjcBK5yad7f39ebN282LgqXbCEwEcCl18tVQRcLXXCuYJr7Ty7GDro0kyB0DyJrG7q5VgkOQkpsSfuo2lJ8FsOujkc3AVPLk2zUCi5BhWNY9Tq8XC4vXJpObirNS3LnVmVpseTGc3NMlynnZSWjlcR7nZswlTLQzd9dTEz4YAd0wSUEUbSA957rB8i1wbXrrsVeggj7vVV5l9VKtODjx49LsWe6MNN3j0hh0a3n7jWek9yU33333Yt9v3//frNNkpQTXImJEnbk9mTZEvvm9fHLHZpCG0qwqXoWp6brnC70o4LxfVueU0dK5HPCIbxuU3g+GAwGgwHwWQyPXXH7rzwLyykwzaBk1VZeZiUwzW1pcTKFfVX0SGYn60lWdN8mFT+zIH0VUKW0Dy3JbgnpM6YlM4DuimNp1SYRXGcVpWJlZ1VfU4yqsgTN00ryjeNmgohjJP04q3N05Slkh6mLef9M64EF1Co876AAMM9H602v7n5KosHah0tpp6QXk2XcHO1JPK1ExOlJoHfCbbsq7u7fefv2rX12CLwvKNTs1i/XCrfhePu9KEanVwkZs1N4L0tIYvHah2sBlYrEObcU4+5zoblRQg3n0cl2ff3111W1FaDm2uni2bynyfxXz51Vu7M+ZjeWDx8+HBaQHoY3GAwGg5vAZ5UlMJ7Vf335HuV7nCAvY3dJ3oZptf27SQrL/Z9kp2iJuPRwWn3cxonUEkcKMtnuI8kDraxmYsWgk6Awx7gSj17h/v7+heXq2KfWRm9iWbW1GF18LLUTWTF8gayd6emOPTM9nDEvFysiY03z19dyYqgamysXoERVGhtbWrmxEivhca6hJJbg9rMnSff69esNqzlSMM1z788drm0W8XMNdbaWmB2FItg+qB+HrN3J3zHeyqJ1znmfB8qf6bsaqxhlv98o4KFz13fo8XE5E1yz9JQ4jwL/53PdrTeXQ7KHYXiDwWAwuAl8lrQYM9J62w/++tLyZmZa1VbqKPlxXbNLWTEUjSbDdELQZGW0iFy21F42kcboRGoFNhZdxf3IQlNBZreikg/nfB5jAAASsElEQVSdbKfPL/fHGKFrJePifYm13N/f15/+9KenbDPHcmRxSopLoLXnmp0yFsRMNOcJYNyLVqs+d1nIZANsWeLYR1pflNxy8QodV9a5i/cJFGpPMV3Hesg+UmxlxchSrM01Q+0ZpasszcfHx6f7xsl2Kf6eJPIYn63K3hrH0nk+fN6QGWkt92Jyxt/0v56jjhEzNsei9STWULWNJ6ZWRh36ruaYnjnK03W4OGnHKmbM/5nz0b/HsawyfDdjOPStwWAwGAz+4PisBrDMtOsWN7N3KAfkJH5SjIMWGOMX/T0yEX7e398TyJUF4TK6mHVKoWNnAZNhCTxOn8cUZxRoxXdwjITLjEs1R2SQK3mvPZzP5yg71P+WZSrLlw1ZXVuYdG6uMaaQrj/jMK62SdBnWgesy+vvUXA6tfzpzCVJvkmkmkLAfUy858gWOb7+d7LWHYNK9xPvBdcUeZX1KZzP5/r111+fjqn1ofhZ1fNc6hhk76tmt8ye1vwlmbV+PNWtcf+OzWgbZUAye9bdY3wvSSY6b4Rrc9a/64THOX4dT3Oe6l37Z6kW0j0nGKPjXLvYpJ4Dmr+Vd4AYhjcYDAaDm8D/SWnFievqVzfV7zC7rP9NJYIUB+xsJ1kVtBRWdXFiEhSt7vtgzCFZIoLLZqQoMa3NbqUzrsi5pmqGiy84Nt3H47I0yVQdY+E2R2qpHh8f68cff9zE1FzbD7ElXZd0Hn2bpASRWiW591gXxbhMH4O+KyuasV0XM05Zsho7lX6qttddY9Z95rIBGatl7FBYeQkEjtWp6qzquvo++pxQoeSrr76K6+fx8bF++OGHpxpHsdoffvjh6Tt6T8yX87aKdQppPbt4M+tvFavjWnVsjWNmvGz1rKJCEVl7PwaftWm9ubh8mgNmi3ekZrhcu6uYOHMuXFawRLj1end3NwxvMBgMBoOOq2N4b9682Vh7XYEg+e2p79etCll5zAhi3Y09AfiU6Z92rT0Yn2D2p6ulI9NiFiP31VkojyfmQmvKxTjIavm/U3RIdYz8fKU6caS2ZS9+2nE6ner9+/dP45a17qzLpNfnaupSDWWqX3OWKdcZW6309d2z4Po5s/XPqkYxfcc1u6TlyoxmwbGPpPOa2EF/j2OkB8BlIes7zEJ2jEVzqtfHx8fINE+nU/3000+bDNIOMV4xvKSP6Z4lyRvAOe7bMmaXGF4/JzE63auKRXPeujeFc0elnVUdHtnYEa+XQD1hPtdc3JaqQ4np93lkfJ7bUNGm6llXtNdjDsMbDAaDwaBhfvAGg8FgcBO4Omnl9evXT/RR1NwJCouuM0XaBYDplqNLk0We3V3IpAUWj7riyiQouyp8T0KzDES7RB6mnfPVpfiyHIDHSa1NeOz+WUqWcJ/tuXfcGPeSHy6Xy9M1Vjq3C+rTTbMKlPMa7pUp9PNgSQHXoZM1YnIAE51W7mmOma4fJ2XmpPiqtq51d31Sijmxcm2nc+guJro5UzihC1Rw/T4+Pka31Pl8rl9++WUz1z1RJ8mYMYGizwHLQJIb2j1DmPjBBBG3L42BpVps+eSSllL5C59Zq3s6PUuc4LRbi31frqUZ3d4Ur14lPHH9Mqmtrx3eC1dJHB7+5mAwGAwGf2BcnbTy+vXrJwvFWWSpUJpFvX1bWobaPxkfWw45cF8uLZnvkQXIqnAsbSV54/7v+0lCxm4bzh8TDbivPlbKkJGBOVaYCrSTKEA/Tv9sFTy+XC4b9u4C9EeLyft4U9JKEv3u39GrEigo3+REC8heaGG7xJq0DyZrOaFcXhcyGidWzWa0KW3cFQ+TKR2RmKO1zjXb1w7XweVyiUlPp9Opfv7556e1wrKVqq2M1qrQnEj3FD0YXU4ryREyacU9d5SwpbT6VArQx0RG5/bP/8m02ErKPTs4Bzw+RUH6/ZuEwJPAf9X2Ocp7g+Ur7lzfvHlzWPxiGN5gMBgMbgJXM7wuEMzU/KpnK4jtJWjRuxRf+v61D1lv2rdrkMjCxVRk2cdNVrCyBuknTjEVVwrAmF2ygFfCzEkGy8VcaC0dSWEmC6T1tyo56NdtxfBOp9MmbtKvZYpx8pxdGj0tU7bvcdeWBdNcO07onGtFY1QchjGQvk2K76T4hXuPMXDXKiel72tOUjPjvh/O9aqVVWJ4SUqvatvmZnXvqaSF8XPFgau27JzjdjF9eox4fTg/q7UqcD325wSvK+9Pl6PAfIkjzyqOMYlFu1g+kZ57Gle/pvqu7gXGjJ13j940tpaitFn/7lFW1zEMbzAYDAY3gavbA7169WqTXditWf1CUxh3ZfmkWIZeyfBcW/mUPeSs6iRgTIu4W1Fp/4wZpThd/4yWl8syoiXP+NuqCJdjXcUIBO5X86Zs2xSbrXppja0Y3qtXr572K0u8N/PVMfQeYyir7NlkaZPpOTk1vepcGYdZWaT0SlAgoIPXO8ngufj2Kg7Sx9z/plRfyijtx9srUqeXoo+f3haNQ+xLBcP9PV2f1bo5n8/122+/PR3z3bt3VfUcA6t6flbovb/+9a9VtRVVXgkdJC+GY3grMfX+vouTU2aRIh1OeID3cDovx9bd2u/bOKbEuUleo45UlK59uBg150BrR+vDZWmyTZgywI9gGN5gMBgMbgJXM7yqrTXtBHmZUUXLsO+DQsisPRLDY+1R1fOvPK1kxhcpCdXHon2s2lgkSydlMbqaur1tO7ifJBPmWAj3n+oM+3Ujs9trE+O22cvQ7NeIguFV23qkNOfOO5CyMRnD6duyZi7Vw3XL3q0jhx5zoIXL/eseoaXvzof7dELkvE8oi0d2ssrSY6zItTCiJBrXrphdz7Q7ErfsY3p4eNg0gO3PEDE7Hev9+/cvvkMvQT/vVD+616LLwa1RfuZqEPv7q3rTVQ1d30dVvi/T/eW+u7r3Ehj7Ts2zO3iPMDuzewcErbe3b98u10/HMLzBYDAY3ASuZnjn83ljbayaKqaYgMt8S9lxbBvjFBuS8oiLk3H/tHRcKxyyJFpJtCBdzDD5tp3FQ+uMllxicW4MnCPHhqj+IKSYZdXWGjudTpHl3d3d2Rhej8cKrAXjfLlxMx5BMWfXeiW1a2LGbV/f9Cik2IrLgNVnXDPMXHYZvlx3PE/XMosxUcXyyNqPCF2nDMYOxoq0LhzDc4LNq7XzxRdfPM2X2HOf43/84x9V9SweLYanOZC4cx93ajvFmJ3G1TO9ycpSpq/zRlzjRUlempTx6RheUpSid6SfO/eXmvv2+4lemz31pv43GZ3eF3PvcU3Xxm1ieIPBYDAYNMwP3mAwGAxuAp+VtCLQJVO1DVTSBSNquhJ1ZvIKA+WrXnMUGnapt3TTJTky10U6uWrpjnAUOwWEjyR9MBEgdQZ2+0lu3554QIkfJv04dwTdH3tlCXd3dxuXZl87Kb09Xad+DtqfZJvS9erj1/VN7vA+bo6RgsOr5Ai6kOnS7K4ybpvKLZhQ4RLH9Jn2T/fuqqSFY6F7zKX3s4CaxeCuJOSIK4oJT06E+O9//3tVPV9/uTYpPOHcadwvX53bnYX/PB8n2EA3aCrZ4rl3MLWfYZFV8sbKZSwwuYv7W42V/SNTX7x+LVlYz2e/XNMdqbznCIbhDQaDweAmcDXDu1wum3RnJ+bLID4ZirOahMTwVoWSqVRilfJP9kmLxFmDey1+hFVpQxJ8dXJrAllgKsp250m261pypOSUZPGvzifhdDptWFwvHv7222/tOa6YqdaXrEoJCnOtuLTqozJNTiZslWJdtS445r44jj6fTKghg1i1weKa5VjpLejv8Tw5VtfiRaDou5sjbrO6Bio8T/da1XOpgpJX/va3v1XVc8KOG0sSjTjChJO81UqgnXPK5BUnrJDKAXhd+H7/TPtPZRWrZ1U6jis8T16oVTkHS1kEJSa565YS+Y5gGN5gMBgMbgJXMzyll1d5C4gMjkXkK+FPWlJkeg6plEBjZJwmnVMfkxMATowuMYl+Lox/cC7cNkkyTSArdDHKNG8rmS0yl1TQ7z579epVTHFXHIYWW2dryTpObLefoyx8SqGtykUEit2mmGffj5OB6mNz5Rss+Ob8OUHixDbI8Drr2YtFcr05FsLrT7bYSwzErgla7/17Pe5b9b/3b7pHT6dT/etf/3q6xzUGXeuO77///sXr119/XVXPjMG1t0oiy1x/bp4IV5bCbRKzX8XyEztnaVW/N3heia118B5MLHclyk5ml0oaqraxOxaaO6GDVYx9D8PwBoPBYHAT+Kz2QPqFdkK5tJrYzDW1qqh6/pUnW2PmZZdtEmiBrERjEzi2vg3lmSjtlDK+Oui7T5JfVVu2Qeaw8rGTPXH+XIwyFZyvrCfuZ4/hffz4ccM6+3FTXIcWomu5QqbHGLGL6bKY+5omnu78Vp9XbVlSyvB0bJ1rJrGR/l7KhEzZotxP35aehH4PduGBvg0L6ldyW6vCc60djqGPm2P47rvvqqrqm2++qaqqn376qaqeszf7uFjIzFi+Y8J8nui42pbPuw6uu9QEtZ9Xkh1LsT2Ot4NrdcUo9+KcjlHy+By7y1zVfLHQ3LFE3stHJN+EYXiDwWAwuAlcHcN7eHiIsYeqLeNIjRJXcmTcB9udOFky/q/vOEsrWZJ7mXdV+5mJq9gk543isU5cOcXUjtQx8Xisz3L1ZRzTSpqLDGjFbs7nc/373//e7LdbbpQmouXNOq+qbT2fZOcoLaZ4j8vSS7VTrgVMio8lBua2oQeDNY/OMuccr1hhaqfE83MSemR/tNJlefcYHuUCdY15Xk4eSvPmxtL3//vvv29yB3pch0Lc//znP6vqmTGI4TmR7VRjmLwq/Xg8R3qp+vpOTap5j/d5InMVUoZnBxlxal3l2FNqQ5Xq8/p+uf7opXD1v4rZ6ZXsrY+HjPv+/v5wHG8Y3mAwGAxuAlfH8O7v72O2Uf871e+wFU8HLQMK5zpWyLiPLC62JepjlOoCfcv0qa/Oi9lYqX7JIdWZOSuG1iAzoBzTozWeGNiqtiVZkP0acP8rK0tW+oqRaty6dqlOrl/z3ny26qWweB8TM/yqMuPm+TgWSkZCK53stIPxRWYHd9CaZZyRrYb6/jjX6b7t55csa8aDXQZwygp2Y+Q9sBIAvlwu9enTp83ad7FczZPWkBieGH5fo19++eWLc+TYeI87Dwbvdwp3u5jxnuKSux7pOZCucUfKY3DNsXnctFbcM5lxTMXTOUf9ujH2ztrrlNHc99fzSvYwDG8wGAwGN4H5wRsMBoPBTeDqpJX7+/sljaabjkFvuROd+GwqjGVxpaPRqWu6qLJLYWZJQSoI7aB7JqWJdwpOlwGD1a4QPLk96X51hcfJVcdtVmnidOscKU9YQUkrq6C4xqNr2YuS+7id65cJE5wnuRFXguDJHdnnlm6p5D7s++A6olh0+l7fbyo8ptu/jyndT0ckmTiP7JfIUELV1qXF6+jKH3piUFpH5/P5RdKK1kNPnOHa5jhV9L7qDM+EN4oYuBDHniutb8Pz45zqfPrcpj57TNtfyZIJSVBhdf9yvacCdHdeTF7SmHtJC7+bysdcgpJzle9hGN5gMBgMbgKflbQiuMJcgV1vU7Ft1TY4TMuALLFbFUxScQknVS+TGZjKzYA2LeO+DVmHQFa4kiFKAehVgJtMj/JnzrLbY7BOHJvJKdzGFbZybA6Xy+VFR3TX3TsV2VMgumNPEk1JCzofSU1VbZkcr+ER0duUvOKYBPfLe8KxhtRSRtC2nTWmdPpU6uLWjs6P+1K6f2chjsHxO1Uv2TXv8ZWVrsJzeiYc8xYSm+pyZEqBT88BjUnSc/0+TsXp9Gy5hCf+z7l2heecS/7virD3mPyqKJ7g88CVJ5Cpcj3ofVeqQW+Tzm9ViuaSrvYwDG8wGAwGN4GrGN7lcqnz+Rzjc1Vbf/cqHibI8ktWZSpA1pg6ksXQ/cbJZ01/eT8Oz0cWdZLg6eebRINTIWrfLy1HxijcvCZ2loqJOzj+xE779t2aTZa6YjSM66w8Btq/1kdvJZTOmXNL0eA+PqWla/+02l2BPj9LQsz9OIxbM3VdWJWYpHR0F3dM8R1aws5jIkuaBc/av+azx1QYR+a2+r+zUDKEPTZyOp3iXPRzJWsmU3DiDpTvIrPX52J6/bsC2Yab870SA45rtU0Soljd00kucCUtxrngdXK5CnwmsnRo5cnSefI+Xnl3Pn78uPQuvdjm0LcGg8FgMPiD4+6aDJe7u7vvq+q///+GM/gPwH9dLpd3fHPWzuAAZu0MPhd27RBX/eANBoPBYPBHxbg0B4PBYHATmB+8wWAwGNwE5gdvMBgMBjeB+cEbDAaDwU1gfvAGg8FgcBOYH7zBYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE/gfv3VZUE2/cMQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKIAAACoCAYAAABjaTV9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHytJREFUeJztXWuMXVd1/tadscceex72xDaxTZzEHtmloU4BC5M25aHgJiLghBQiObyShrpAEESEiigKTaugJpS2gBVUSuOSigRkobjI1A40DkncBGgrKAq26gSFlDi2Er8mtgePPY/TH/esO2u+WXvfc66Ncm61P2l07z1nP8+c/e21115rbcmyDAkJrzRqr3QDEhKA9CImVATpRUyoBNKLmFAJpBcxoRJIL2JCJdD0RRSRD4lIZv6Oi8jPROQmEek06Z4Tka//phqa133HGZahfTn/rDSqIhCRO0SkrfVwnc2TNPAeAPsA9ObfNwFYCOCz+f2rARw7q607+/hXAG8CcOCVbshZxj8CeOiVbsSZoMyL+N9Zlv0i//59EVkB4BPIX8Qsy356tht3tpFl2UEAB1/pdpwtiEhXlmWnsizbhzpJtC3OREb8TwC9IrIQmDo1i0hNRB7Nr/VpBhF5rYicFJG/tgWJyJ/k0/2IiBwSkXtFZH6oYhF5fT7F/r659vH82p3m2mB+7R3572lTs4hsEJGfisgJETkmIk+JyEaq780isjMXS4ZF5HsiclHs4YjIp0XktIgMOPf2iMh3zO+/EJGf5PUfEpFHRGQt5XlL3vZ3i8jXROQggBfze9Om5lx0+qGIHBGRIRH5kT4Hk+b8vMyNIvKXInIgT7tNRJY67f5w3s6TInJURB4TkUvM/W4RuVtEfpn3/ZcicpuINH3PzuRFvADAOIATfCPLsgkA7wPQA+CreSNnA/gWgN0AbjONvwvAPQAeBvAuAJ8GcDmAHSLSEaj7pwCGALzNXHsbgJPOtTEAj3uF5C/yNwA8BuAqAH8E4GsA+k2adwDYmffzfQA25P3aJSKvDrQPAB4A0AHgWqrz9QB+C8A/m8tLAPwdgPUAPgTgJQCPi8hrnXI3ARAA78/ThnA+6lP2e/I2/BeA74rI5U7aWwGsAHAD6rPcm1B/LrbdXwDwDwB+AuC9qD+LxwGcl9/vBPA9ADcC+BKAK/L6bwcwhXhcZFkW/cs7mwFYifpUPg/ARtRfwn8x6Z4D8HXKe3We9/q8E8cBDJr75+flfJby/V6e7ypzLQNwh/n9HQA/yL/XABwB8DcARgHMza9/C8CPnL6cn/++BcCRJv3/BYCddK0XwCEAX2yS998A/JCufRHAUQBdgTwd+XPeC+BL5vpb8rZvdfLcUf9XBttRy8v8PoDv0PPPADxK6W/Jry/Of6/I/09/G6nj/XmeP6DrtwE4DWBh9FmVeBHt3zjqI3p+7EXMr/89gBF9Ieneh/Pry/MHZf+O2Y47L+In8nJnAXgdgAkAi1BnrivyNC8C+KvIi/jm/Pc3AFwJoJ/aN5jfv8Fp3zYAP2ny7PSfsyL/3Zm36auU7jIAPwBwmJ7zQ86L+IEiLyKA1wP4bl7fhCnzf5wX8c8o7x/m19fmv/80/70q0tf783eAn9OaPO+7Ys+qzNR8dV7oKgBzsiz7QJZlRwrkuw9AF+rTzQN0b2H++QvUmcz+9QCYJl8Z/CAv9xIAbwXwsyzLXgTw7wDeKiK/nZf/SKiALMseQ33qejWArQAOisjDIvI71L57nfZd2aR9APAggGHUX0gAWJeX2ZiWReR1ALajPoD+GMBa1J/zz1AfZIymK/5cZNgJYD6Aj6P+jNagvrL2yuT/46n8U9NqP2MLooUAlmH6c/oPKsNFmVXzz7PJVXMhiEg3gM0Afo46u9wF4GaT5HD+uQ716Ypx2LmmeAr16fFtAH4Xky/cI6jLMM+jPiU8EWtjlmXfBvBtEZmLOuvcDeChXFjX+m9FXYZlnG5S9rCIbAVwHYA/R12uejbLMtuma1CXY9+dZdmoXhSReajLwdOKjdWZ43IAfQDem9VX1Fpmd4G8Hg7ln0tQFxk8HAbwS9SfvYfnYhVITqvhBCIfAvBPAAb7+/ufWbx4ceOezfvMM8+gu7sbCxfWSWR8fBwHDx7E8PAwzj33XJw8eRJHjx7FggULMHv2bADA6OgoDhw4gHnz5mHu3LlT6uV27du3Dz09PejrayzCcfjwYYyNjWFsbAzz58/H7Nmzcfr0abz00kvo6upClmVYtGhRI/3w8DCOHDmCc889F52d/hg8fvw4hoaGsHjxYtRqNRw4cABdXV0YGJg6oEPPja+PjIzg8OHDGBgYwJEjRzB37twpfRgaGsLw8DAWL14MEWnkOXToELq6uhrPc2RkBAcPHsSCBQswa1adqDT90NAQjh07hvPOOw8AcOzYMQwNDWHJkiXo6Kiv98bGxrB//350dHRg6dKljWsvvPAC5s+fj56eniltfvHFF7Fo0SLMnj0b4+PjeP7559HX14cFCxYAQKNcbcPLL7+MAwcO4MILL0RXV1fj3v79+3H06FFxH5ZBGUbEkiVLsGXLFoyPjwMAfv3rXzfurV+/HhdffDE+8pGPAAB27tyJTZs24frrr8fatXVNxJe//GX86le/wic/+Un09PQgyzJs27YNjz32GC6++GJceOGF6OzsxNDQEJ5++mm88Y1vxIoVKwAAt9xyC9auXYt169Y16nzyySexdetW1Go13HzzzZg9ezYmJiZw++23Y2RkBOvWrcMVV1zReCg//vGP8c1vfhM33ngjBgYGsH37dpw4cQKDg4Po7e3F0NAQduzYgSVLluBTn/oUAGDPnj3YvHkzBgYGsHr1asyZMwfHjx/Hc889h/7+flx66aUAJl9A/pyYmMDdd9+N0dFRZFmGjRs3Nv6ZIoK9e/fi3nvvxcKFC/GGN7wBhw4dws6dO9HX14eBgQF87GMfAwA8++yzuOeee3DNNddg1apVACZfhu3bt2PHjh34zGc+AwA4cOAAPve5z6G3txdvf/vb8fLLL2Pbtm0455xzMDExgVtvvRUigkOHDuG2227DlVdeiUsvvRS1Wl1S27t3Lz7/+c/jgx/8IFatWoUZM2bggQcewEMPPYQ1a9ZgzZo16O7uxt69ezE4OIjLLrsMtVoNH/3oR7Fv3z5cddVVGBwcxNjYGO68806IyPdRX3hOvjBn8iIWxcGDB7F582ZccskljZcQAK677jrcdddduP/++7FxY11V9853vhMLFy7EE088gSeeqM9Y/f39WLFiBc4555xoPcuXLwcALF26tMEStVoNy5cvx+7duzE4OBjNv2zZMuzatQtbt27F8PAwenp6sHLlSlx++aSG4zWveQ1uuukmPPzww9iyZQtGR0fR09ODZcuWYfXq1U2fRa1Ww+rVq7Fr1y6cd9550/q0cuVKrF+/Ho8//jieeuopvOpVr8K1116LnTt3Ni07hMWLF+OGG27Atm3b8JWvfAULFizA1Vdfjd27d+Ppp59uqcwNGzZg0aJFeOSRR/Doo49i1qxZuOCCCxoDsbOzE5s2bcJ9992HBx98EC+88EJjhgLwJJqIMU2nZouLLroo27JlC06dqsuyw8PDjXsjIyMA6hQN1Kc4ex2oT8VAnSWAqaxhP+29RkPzKUCv628vTexeCLY+245m6bkv3vPkNsfawmmUpWwevqa/9dPCy8+/Q+Vou60Y091dFzNnzJgBAJg3bx4ANKZjAJg5cyaAOmNv2LABe/bsaTo1J+ubhEogvYgJlUBpGVFEGtORLlqA5tOu/c6fsWlNEbvXbNqN5ffq5nZ55fP0HeuDpvWmTgbXFWtDqG6bVuvmVW6sHO5/LucBmJx29Z6KabZcratIfxWJERMqgdKMWKvVGkw4NjbWuK6jhu9Z5rAMasHCskWIETzhvQhCLOwxdwxlFnnKEKEFmP3OCwbv2YQWJ/pb6+M6vLQW3D7v2SgD6uJE/++2Ti27q6ur0GwFJEZMqAhKMaKIoKOjo8F2Khfa78yEHguGRrQ3es6EET1m07TcLssGrCoqwn5lVDIxllNm4U+bVtUpoXK9umNyJOfXZ6Npbd084zFD2nvj4+OFZ47EiAmVQGkZMcuyKCPyitjKDvpdR3RIdvIQkp34uy3Pk0/1U/NoGm+lGVrde2ilDx7L6acqjPm6vVfm+Wka7b83W2h5PFvY3/q/17T8f7ffy8jRiRETKoH0IiZUAqWm5izLMDEx0aBeq+hkyi8ypeh0aKdvRWhx4gnmnNZbKFkB2n7yde+aV17I2saDto9FEttvnopVcayfet/LzwsQO+WziORNzSyesALe/p81DT8jq8orIzIoEiMmVAJnZAbmMYSOIjXL0hFtvzMzxkZQSC3iKVCZuWz7WCWhI1itg+yoVwGc89g0rKaKKcG1fcx2drZgBlR1CC/wbHms2tE89jlqHzQN981C82kaj2E5v/4ObQMm9U1CW6E0I05MTLhvOY9Ob9QrS1p5x+bxEJKvbLmchtkOmC7L6EjWPFYVpWmY9axFujIAq0W8Z6P95f5bVmcGjNkj8rOIPT9Ny3KfLY/7UETNxDKnZdgiW6SMxIgJlUDpVfP4+HiDKbyR4uVpBi3PptURF1pp27o5DW+BAVMZD5hkNE3jrUr1GjMkMF02jG3xKduFZGObn8spskWqbfCUy7ylyXm8fDHjDJaxPUMLmy8ZPSS0FUobPXR2dkY32Xl7zTKXspBulCss0yh0hGk5Kl95bMzyqLeSDbEHt5v7G6qTGSDmP2J9OELQ9qhcy3rFmNzFK1fuGzDZP68NLN/qp7bb6zc/Y1tnyE8mhsSICZVAehETKoGWLLSVulkNA0zfQrKKTlV/FLHOYOoPCegWOn0rbPmsTLb94b6weOGpeFgJz4sWO53xtOhtK3J7FKxcBiafqX6ySspbXPCztotLnq61XSpCef9ndjm1z0bzJXvEhLZDaUa0o9gb9awctelVEGdG9ViOmSW2feexr63H1qWfGn+HVTW2bL3m2TcyQ7MQb8vzbDO5fTwDsALeshzHvpkzZw6ASSay7MTqFu6jh5CHIn+3v72+jI2NJUZMaC+UVmiPjo66IzzEhHZ0cj5mE2/kscWywo5oZQJmRI81WVVhY+YouC5mIAA4cWJqxGaVPT0Zka95aixmrph6SdOwwl3rsXIwG6Ow3GuvsdznmXixD0xMOV9mqy8xYkIl0JLPijKEBlzS60BYYQxMjhrNr1tfygyefwszLBsbANNlTy3XG/Walg0l7IpbmYa3/zwZkbcTtd0qg9r8bERhGVHv8YrYW9Xrs9XPmDldKMKD5wXJjBiLWqH5tZ+WhS0zpy2+hLZCaRnRevF55vV8z44UlgmVEdiYFphkGh1x+/fvn1K+HWlah7KI/tbVpK1Lw+UxvNgtvKr3GJtZKOZlWCS0HrOTPhPbF73Hof96e3sBTDVX03v9/f1TPi00fWirz1sLaNvZeITvpVVzQlshvYgJlUBLFto6XdqIsbwQ4YWDvcYCuOaxAj5vHbHQ7fmjsFrITgs6tbFi17NyZrWD53jOCw79rX3w/FHYZtNT8Whd+tw0QqsX9oOnvZMnT4Khz5j9WbRc23beMoyFbGExwz5X7e+pU6fS1JzQXmjJQttT2ioTKEPocRWeCiUUTsOOaP3OCxrP34OV1ayiAaYruzlolB3RyhaaR9vn+cBoO9kwwmN3ZSX2qLNpeOtNFeeeUYbmZ3WThT6nY8fqJxgzc9v8RXxgONSI5g35fCdGTGgrtGT0oKPBUyorQ3jWvcoazAiqGLcyp6cWsGV4I42V6pZhWTHOSmrLdrztp2oSz88j5gvCdWt7YqGQOb/H2FxXLApGSO7z+qssyYzonfbAfkae6Vna4ktoO7QU+0ZHtlWc6rWQv68HZRXNG/ON5dWyp2QtYr7EK2qWQe01Ds9r28dbcGziZeU/u4r0+hRqs4VneMDPxGOgUIhmW48+f73HxsO231wnG2DYa8kwNqHtkF7EhEqgJXtE65OgYGHbU6EwTVtLXr4f2o+NKVm99oausULWK5enrFid3H87lfKU7PnPsL+J90ya9cVT5Iec5b1ATSpuxEQchdbludqmkCMJbYvS6puxsTH3jVdhlW3lLEILEIXHbLz1xYsOL79nocPl8Sj3FgPM6lYd5C1ggElViGVBDhvnKY65n6yk92aWUF+8/nJe71rIit3zJbJbt1xukeCljMSICZVAaRnRYw69F8qjCMkO3shmxmPFcWxkx9oRksHsCFe1FCvuvS05VodoGi+4JYfN87wMub+eorsZ48TYyZO9Q2exlGHaWMCrIkiMmFAJtLRq9pTUocBM3ugMMaPnJx1aNcfY2BvRzKTcXquQVllQr3l+MgxW9HrW6yxzerJXmZM9Q8+x7GzBbSgig7LPj4VVdieFdkJboSUvPg/s8WY31TmNInYeXihPLCReEbAfhtdeXn3HAraHjpiwYM9G7zxAroOjTFgzNpZLi+j9GJ4XX0jn6M1UMZndM5ZthsSICZVAehETKoGW3Ek9ZS5PLSrE2iklZgFir1vE1AShtN4ChKfkmGsn2/vFbA1DTulFDvq2dbKYwuFZvNBw3PbY1lpMdOD/S8j91baHRQYv6FToBAoPiRETKoHSMbRrtZqrkA0dNu0JsTyqYqMmtC0Yc2D3GILVDMwM1gCBFc+eiqKZvaQXAIBVHnYbkL0CuS+xExxCR/8CYSaMqXjYCt4LtRKyc7T9jdmiMhIjJlQCLVlo64ixodl4VHqGByEjhxgjslxVRNZRWObgYEm8eW8ZUa9xiDhvBghZS3syIp/a5CnlQwece6cBhGREy04hH+iYqVjs7BiP8W0fm7U5hMSICZXAWdvi8wxCAT9CAQeU9EZtSH6Mne3M/iOxs+7Yl9caPWi7WAPg+WWwrMjsZ9vHsp0NOsWMyLJ2TCaOhTkOndNcxECE+8TfbVqbR1fS3d3dKSxdQnshvYgJlUBL6pvY4YOKMk7WnqVJaOrwlMOhg7S9KYoPaGTraWDS0Zytrb026R41u1VasYB9VLxFGgevUnhTHy92WBSx4lFoUeXVoWBRJ7ZoUbTip2KRGDGhEmjpUEjvXBNWIXhL+JC1Tcy3RMGsacsNhUrzIryG7Py8gFKxNoTUVV4AAA614oVN4Qi7RQ545IVHbLsyth3YbBsuxnax2Sw52Ce0HUrbI3Z2djZGrQ05ElI7eFbIoc11D6GAQ14YND443DtvjhmriFeghqmzLKeyoTJWTP7jEB5FjDuYPb3twBgThtJ66pvQ/8WTT4swXBkrc0VixIRKoLSM2NHRET2VVOEpV0NK6iLMyCZZnhzETOgZK3AeXiEDkytfZUK9Z+U1DhPMltUxMzDtv7UK98LFcTmclp+n5y/DTOixcRkL72YW+sBURkwK7YS2QmlG7OrqclfEnmEAI+Q3W2S1x/AYJ8as3GbVG2qQ956enkZa/c4BO71tNo7MEAPLqbZvHJqPP2NmW0W27UJ5i9wr4r3oPZsZM2YkRkxoL6QXMaESKDU112o1zJw501UYK0ILEe9aEfUD5/EitLLCWGG3ungR4S24FDwVx2wr2bKGTyuw4OnWS8Oqj1hAqTJTcquhWoqW26p7b6OcM8qdkHCWUFqhrYYPgG+VGwrpUQSxw7ZDG/xeHbHAn1qeKoiVyaxynlnJO9bWC1bqtcHWHYvsr9/ZwKJIEKYiBib8PGPxtlnB7Sm/YzOU3VhIi5WEtkJpRrRKypjlrsLb4mPEVAAhhi3ixWeh5agMx6cC2PbrKU3sUef5cbMc6bExm81xUCZ7LeSR5ymp+RkVUX4XkRWLyPm8iWBlbtuuZPSQ0FZoyQxMFb32EO4irNSM5bxgP6HtO88MTMEGDfY7r1g9XxtNw4wYM3niE55s3cxqMSV1yP/YO+uE5edYkKgydcaMHkLPwtuMSH7NCW2H9CImVAItxUdUwdQKqCHFZpl9Sm8BErK+9pzIOa+FN11b2DJ4/9hTebCimRcrsQBV3pTHyu2Yk3vI3dNrJwdzOtNTCkILI+9/VwaJERMqgZYWK8qE1vKYneVjI88rl+83U4jHVCmKmII8pGS2fdE8bIUNTA/UxPD8UWJbe8xK3C7vOTITxhgtZjlfhhFDC0xvsVIGiRETKoGWtvg83132tfUYjWWkkNrAuxZjSPaK82SwkLznHTHLchX30dYZUmcUCYRkmZHbx+3yWCa0FemprZqd+uWhzOaBt+WagjAltB1KB2EaHx93GZHNrLyRGJJBioxOVuzGfJZjMlLIQMI7XZPZzlMq89ahx7AhIwJPJubVuGfiFlJke/JkSIsR8yTkcmP+N57Rg72XjB4S2gothaXzttl48zumB4ttISnKGFxyfs8zj0cuM5ddETPDeqHmWCa2ZmS2fNs+9oWO6RFjswYzl5ZXZGszJj+HzowpwoixZ1MEiRETKoH0IiZUAqXVN8AkddtQbjrtsO9GkbM/YlOzwnNcV3AcbHYVBaZO08B0JXNMCRs7+DCmKFboVKUigxc+jhclIXWOzafXNK+ndgoFvooFYYpZRfGU7P1fmm2nekiMmFAJtKTQ9gT8kL2gDdPRih9LaGFjDS40NEhvb++Ue5bJlCVZsPds+VjN4oXyYMbStLposWzACyU7kyj4EMiQj41FSM3iLURiCKnVYgFP9Rq32+ZLQZgS2g4tqW+8JXsoGGXM6KEIM4ZGlx3pHNTSM0gIhTXmo2ttWvZriYEV0J6cpvc4fLKtI2QYYWVc7m/IhMy2i3/HlN78jLxnEzK4sPWnLb6EtkNpRjx9+vS0VRowfZSzLAY038j3ZJtmnn82H8tRlkX0XiiKg8dOMWbgtNo3lVdt+1iD4G0DKtiHuohin9sX8+fhPDZNM4Nbmy9m9GH/v2mLL6GtUHrVPD4+3njL7apZR5PqylSvaJkm5NXlrdp4Iz9mmh4yQfNWcmzk4BlRFGFCBjO4dzIqr75tMPzQcREea3qegl5eW25IP2nbrAht4wHTT+7yjDLsNm/ya05oK6QXMaESOGtBmPh0pZgdXWgh4i1A2PfFmyb5gG9PAa35eVrU617Ufk3DJwbYNLxlxvUA061ttL12alaELFc8dQuremIh8RSxIAGeWo5/swent/3pPYNmSIyYUAmUZsSOjo7oYkBHiqpzbKAhT+1j4S31WeURq5s32z2bwJB/h2UKZSpeMHgLGi9Ikvc71HZuH7O790yYCdkIwrP8VngGCaEtQo/1eCs35kudtvgS2g6lQxd3dXW5MoiOgrlz5wIAhoeHAfgqnhCLeAipRWJWyJ6MqO3QtDFTJTZzi4V7Y3aPhRNmBvNOd+VnpNet8QgbRsQU5EW8IJX5eCuST/Ky19gSP+bzUwSJERMqgZZi3yi7xAw7NY1lRJZ/FDEWCclVntEDK6vtKNV7bKTqbW+xQUQRP11mpVhYOv1tWS7k8+0ZcLA8yTOAZ/RQxASPA9x7/WUfcvYBsnUkhXZC2yG9iAmVQEvH5PK0AUzfu2X/EWBSlcPWvaxc9hByJgemW7d4FitaB9saeor30HQS88vgyLOx9nmLKc7HbYgd9Miwebl/XqABz2rHpvHUNxy6z6aJRacNITFiQiVQOixdrVZzPd/4Giu47TUWeL1tIh71sdBpITtHb7Gi+ZkhYw7ioa0viyK+IdxOTwms4FAmHliN4z2bkKekZx0UsmLytmn5t5cmy7Jkj5jQXihtoW2X5N5GvI4GlQ2t2kEtpnmUxtQ3IQtlj01iNoyhIEyeysMLzVwUMR+OIornUJoy1uueAp7Z0mMw9kdR2OcQCnhl25tCjiS0LUrLiNYMzGMMlqPsqFCf39B5IzHfYh7RsdM/Q+wHTGcsllft95jsVUR25bRlUGTFGeunIiTveSZ8vMJm7Ya9p6yn5nN2xe2F+muGxIgJlUBpRpwxY8a0zXFg+ipZR4oXkYENTz1GbOaXEfOXjgXCZDnS0wCEjDJinm+xUHshA4kYC8fkZgbLfTEZMaYl4E/NY3XB3L5YXCARSVt8Ce2F9CImVAItWWh7h3eraiYUhxkAenp6AIRDZHjWPDE3TUWRCLSKkI9JkSBMdmpudtpVTL0UC+oUCsviiRkhlYw3XYaso2w5rJrRPDZQgS44OY+nINfFbREkRkyoBEoxYkdHB/r6+twQaTpqYgEmNXAmb7cpbLmcJhYI07avWRpFEUYMtcFeY0V0kS1Ij7nLGAiEHOI9hXRI1eadi1LEplT/RyHbUtuXFIQpoe1QWn0zc+ZM19eEt/Y4mBAwuYHf19c3JU1M5cGjKhQwyEvjWTVz+d7vMmGJQ/Kpx3axMCIhxKzWFayQtvd5u9LbHmSZkMPn2bRch8d+to4kIya0FUp78c2aNcsN1K7sw6PIyhcKHUUaatgzpGTWYDnLkz9YRvRWuTxCY158MRZl2ZIZwjNkjRm0hur0GCW0ui1j0ub5aPMq2WNYZk3PTM0LVtoMiRETKoH0IiZUAi052PNxXxas6PQUp7qA0WlIFy+eRTU7mHtWN6HIs56NXGhf2rOtLILQYiUWsMmrJ7QAiU3NPEV7Z540W9jYfFoen0ljVT+hhZYXr9z6NzVDYsSESqC0+mbWrFmu5xsreHlUAdMtc5iNvNHDkf0969/QiQPWaiRkq1hksRIL5RYqJ6Z28foZCkPnWXyzlY23SAmVyyFDgOmhVTiAguehxwscDTHD7UqMmNBWkJJbSwcB/O9vrjkJ/w+xLMuyBc0SlXoRExJ+U0hTc0IlkF7EhEogvYgJlUB6ERMqgfQiJlQC6UVMqATSi5hQCaQXMaESSC9iQiXwf/I5AehCCRTaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4delZ1nm/5zvfUPOcVBIIkUlkuFQUiBPaKGoLDkCjYUwIaWNrK06IGBAQEBW1RRBpEBCMoIhtiKAQBgMdiYJIYoAGxSBkqKSqUpX6aso3nLP6j7Xvc57z28/zrrW/+ioJnve+rnPts/de613vtNZ+7mds0zRpYGBgYGDgf3bsvac7MDAwMDAw8O7A+MEbGBgYGDgVGD94AwMDAwOnAuMHb2BgYGDgVGD84A0MDAwMnAqMH7yBgYGBgVOBp/0Hr7X2otbaVPz9nqfhei9urb3oere74rqttfbGzbg+4d10zZe31n7xaWj3JZtxvM/1bnvg2tFau7O19qWttd/wHrj2Szr38e9Kjv/czXevfRr68h86fYl/916n672utfaK69TWhc0a/tbku1e01l53Pa5zPdBa+4DW2r9urT3aWntna+07r2VOW2t/Y7Me3/t09HMX7L8br/Wpkt6Mz37uabjOiyVdlfSPn4a2e/gdkn7N5v/PlvR97+brX098j6SfkXT/e7ojAydwp6QvkfQ/JL2nHoyfLOk+fJbdxy/cvD6/tfbB0zT91+vYh8+VdEt4/+WSPkTzMybiHdfpep8l6dJ1auuC5jV8TNKP47u/JOn8dbrOU0Jr7Q5Jr5b0dkmfprnfXyXpB1trv2mapssr2/kISX9G128tnhLenT94r5um6bqzkXcHWmvnp2la2vAvlHRF8yb5Q62126dpeufT3rmnAdM0PSDpgfd0PwbeK/HT0zT9j94BrbX3l/TbJf0bSX9AswD4RderA9M0/Syu9w5Jl6Zp+g9rzl95P8frvWHHLl4TrrNQ8FTxZyTdI+mjp2m6T5Jaa/9V0uslfaakb1lqoLW2J+kbJX2tpN/39HV1B0zT9LT+SXqRpEnSB3aOuUHS10j6WUmPa5YgXynp1ybHfoCkf6pZ8rgk6Y2S/u7mu9dsrhX/fiic+3xJP7y5xmOSflDSb0b7L9csQf82Sa+V9KSkv7MwxhslXdTMjH7/5rovTY57jeYfxN8r6aclPaGZSf0hHPfBoR9PSvrvkv6BpNuTvv5imMOHJH11ct2XSDqU9EFhHn5oc/wTm/a/FsdPkt4nfPZZmlnF45IekfRfJL1kxfr/xs28PLQZy89L+oLwfZP0FyT91816vlXzDXJzOGZ/058vlfT5kn5l049/LeluSc+U9N2bNfgVSX8xGf+k+SH8ys3aP7i5zgUc+5zNvD4o6V2ab/BPL9r7KEnfubnuWyX9PUnncezNkr56s5aXNe/XvyyphWN+z6a9T5D0DzVLww9I+nZJt22O+UBt7+1J0mduvv9fNe/XRzbj+3lJL7uO97HH/LwVx37p5tiPkPSfJP1yHO/T8Iz5Z9rcB8l3f3bTl9+8WfuLkl69+e53bPbmWzb3wf8n6YslnUMbr5P0ivD+j2za/N2SvlnSw5qfR/8o7tukL7cXa/hnN9+/QjMx8PG/wWu82VsPbPr/jZLOSfpwST+i+V74BUmfklzzYyR9/2ZfPCHp30n6qBVz+lOSvi/5/PWSvmfluvzJzdrftJnD78X358O9cWkzvh+V9JFP1155dzK8M621eL1pmqaDzf83bP7+mqS3SbpL0p+S9NrW2odM03S/NOuUJf2E5kX/Is0P6udqfmBI0h/X/AA60DzZ0rzQaq39Rs0/Nm/QsbrlCyX9WGvto6dp+pnQtzslfYekv7U55omFsX2SZhXLt2v+Eb1Ps1T7fyfHfrCkv6tZPfAOzQ/wf7lR+/zS5pjnaN4o/0LzzfSBkv6KpF+v+aG9hWmanmyt/WNJL2qtvWw6qXJ4qaQfmabpv7XWbpP0bzU/HD9b88PxeZp/BFNsbDTfpvmm+wuSzkj6UEl3VOdszvstmm/IX5D0eZofLB+8Odf4m5s5+FpJ36v5Jv5ySR/RWvu4aZoOw7Gfo/mG+xOSni3p/9r06y7ND7NvkPQCSV/dWvsv0zS9Cl36Ds374+s24/1izfvuJZv+3qL5hrtV87q/eTNH/7S1dmGaJkq1/3TT5jdrFpC+RPOafvmmvbOSXrUZ85drFm5+q6Qv28zdF6C9r9X8I/5pkn7dZm6uaFbhvUmzyu5fSPoKHavMf7G19kGaH9z/bNP2FUkfJOn9dP3Ru4/VWmua5+x10zS9obX27ZqF2d+l+WH7nsJ3a74/v0azkCXNJogf1/wD8rjm++tLNN9/f2JFm98o6V9K+qOaf5y+ctPO5xXHPyrp4zU/I75W896R5gd+D1+pmS1/hqTftHkvzc+Cr5H0NzTfl9/ZWvvAaZp+RZJaax+7udaPab53rmz69uqNWvLnO9f8UM1CMfGzmgW9Llprz9b8jHvRNE2Pz9tiC1+h+d77Qs3Cxu2a78vuc+Up4en6JQ2/4i9SLtW8pnPOGc1SwROS/nT4/Ds0/9jd2zn3NdpIcPj8FZpZxq2QuN4p6bvCZy/f9O8TdhjjqzZtn9u8/+pNGx+U9O2ypPcPnz1rc+xf6rS/r/mBMUn6CPT1F8P7D9LM5D4tfPaRm/P+t83752/ef2jneicYnmZGcv81rP2Pa/7hvqH4/p7NfPyjYs/8gTD+SfNNcSYc9/c3n//l8NlZzezsm5LxfB2u8yWa7b0fsHlvNvDbcdyrNQsxe2jvi3Hc90v6ufD+czbH/dbkupck3bV5b4b3zTjuGyQ9Ht6b5b0Ix71g8/lN1+u+7ewJ/r0ax33s5vM/t3l/92aN//HT2Lc1DO9LFtpom332f27W5kL4rmJ4X4M2Xr50n+iY5f3F5LuK4f0/OO5HNp9/YvjsuZvPPi989lOSfhL3zAXNWpByPTRrrE7cV+G7r5P0jhVr8t0KjE45w3uNpG95uvZF9vfuDEv4JM2Sgf8+N37ZWntBa+0nWmuPaH4IPaZZ+v614bDfK+mV0zS97Rqu/7Gbcy/6g2m2sX2vpN+JYy9plqgW0Vp7jmbVxj+fjlnVt21ePzs55eenaXpj6MN9mh/Qzw1tnm+tfVFr7edba09qlswsHf9aFZim6b9plspeGj5+qWbW/D2b97+gWWj4ptbaZ6z0xPxJSfe01r69tfYJG5bYxYYtPV/SP5mm6cnisN+i+Qfq5fj8OzX/cHNdXjUFNqFZbSdJP+APpmm6ollt+L7J9b4L7/+ZZuHKEuvHSvrlaZpeg+NeLulebc89HZPeoLCOmtXb/13ST7TW9v2nWUA6p1ndtNTeja21u5OxRPy05nvmn7fWPqW1ds/C8ZKk2Cewth7+kE7exy/F9y/c9OU7JGmapgc130uf0lq7aaE/Z9CnlBZcI/5Vcr27Wmtf01r7Jc33/BXNzOucZq3HErL1uqe1dsNT7Cvxb/H+5zXfHz/oD6aZ1T2pzb7f7IGP1HwvtbDGVzVrMT72OvfxCK21T9Rsu/3TC4f+pKRPba19SWvt+TvswWvGu/MH72emafpP4e8X/EVr7ZM0L8zPaFbnfIzmm+khzRKJcae2PT0Xsblx7tC2d5k0/xjcic/ePm1EkBX4LM3z+D2ttdtba7dv+vgzkj4zuWkfStq4pJPj/FuS/qpmFcwnSPpoHXugXVAfXy/pd7bWPmTzo/PpmqWoK5I0TdPDkv4XzTaHb5D0ptbaG1prf6RqcJqmH5b0xzQ/BF4h6cHW2qtaax/e6cedmqXm3np53k+syzQ7FDys7XV5GO8vdz7P5untxfvnhP5UeyT21+Bach2fodnmfAV/9s67a0V70sKab+6l369j4eHtrbXXttZ+R3VOa+0D2a+Vws8bOvfxjZr36Y9KuhTuh3+l2Zb5yQttvwV9+mMr+rMW2bp+l+b746s1s+yP0qzNkJbvM6ler+vtaZnt7yenbcebuO+fsXn9O9ref5+p7b13hGmantA8lky1eKfyZ5ikIzX+P9CsfXk47IEzkvY3789tDv9CSX9b8zP/tZqfK/+wtXZr1f5TxbvThtfDCzQznxf7g9baBc30P+IdOn44rcY0TVNr7WHNUjpxr7YXcO2PnXRsD6QUZvxOzSqxXfACzT9Sf90fbDbNGvxrzfael2pmczdK+qZ4wDRN/1nSJ28kqo+S9DJJ391a+/Cp0OtP0/Rdkr6rtXazpI/TbF/6t6215xbCwUOa57G3Xp73ezd9lSRtbog71LmxrhHPjNfZvJfmB6378xuT8+4N3++Cd0j6Rc03dIZfKj7fGRuh5Ic3981v02wz/Dettfebpinr95u0bYuhQLArbMv+3dp+SEvzvfJPOuf/Ps0/2sZ/f4r9iTixRzes+eM0m0y+PnxeCgm/yuAwgL+uhN1q9nPo4eckfVjy+YeqH052k2Ytxxdo20b94Zr3xedoVqm+S7PN+cs2mrI/ovkHcE/bmoPrgveWH7wbNVPtiM/WNgN9laQ/3Fp7xrRxZElwSbM0SfyopE9srd00TdPjkrRRzX3Cpt2d0Vr7aM3xP1+v2Zkg4oJmR4oXavcfvBs0S2IRn7PmxGmaDlpr3yjpz2t+kP/AVLiRT9N0VbNj0F/VPA+/Tsdqwqr9xyS9csMQ/o6KH6Zpmh5tc9DxZ7XWvnKzuYnXah7nCzSvj/Fpmtf+1b2+XAP+qGYDvvECzTf+T2ze/6ikT2qtfcw0Tf8xHPfpmlle/LFcg++X9AclPbJRNz9VWKIvVWabef7hzd7+l5odV7L1uaTZg/J64oWancQ+WbPKLeJ/l/SC1tr7TtP0puzkaZpef53704PVq0f32caNPjNDXE8sruH1wDRNb2utvV6zzf9l19DEKyV9QWvtXpuQ2hxT9+s1q30rPKZZg0T8I81emF+o5BkzTdNbJP2D1tqnaP5hfFrw3vKD9/2Svq619rc1M6WP0mw8vojjvliz6ua1rbWv0iw9v6+kj5+myRv15yS9pLX2qZol6IvTHN/y1zQ/YH+otfbVmtVtf1mz+uHLr7HfL9R8Y//NjQ79BFprr9Rsu/hTGzXBWvyApBe31n5Os5T7qZrVmmvxTZpVoh+umb3FPv1hzcH5r9DsHXazZsP+RUn/UQlaa1+pWQXy7zSrhp6reX3+U8EejL+wOefHW2t/V/MP8Adovgk/b5qmB1prf0/SX9zYKr9fs1T55Zp/fH6gaPda8Qdba49rtnM+X7On77cGm+q3aLY7vKK19kWaQw0+U/MN/LnTSY/RNfh2zQ44/26zt9+g2T70gZptYZ+YqKV6eKtmJ6tPa639rGanrjdqFhB+i+b5e5NmZ6C/olmd/HQkd9hCsGV/4zRNP5J8/07NgsNnavbee0/jV7QJQ2itXdTsQfkndTKg/bpjmr2p/4dmDcu/1yaUpiPAPxX8GUmv2jyH/onmRBLP0PwsuThNU++59/c1CymvbK19mY4Dz39WgaW31n69ZueYPz9N09/fCNGvZmOttcc0O7u8Onz2Q5rv89drFpSer9nz9Ct5/vXCe0suzW/QPJmfrlkl9/s0M45H40GbB9PHaJZM/6bmG/xLdTIjyFdpnsRv0WwU/frNuT+t+cH1pOYF+zbNk/yx08mQhFXYqN1eoDnOb+vHboNv1nwDLdkuiD+p2SD+VZL+uebN9hlrT56m6e2S/l/NDzwa1h3v9lc1CxffrDne7HdP0/TWosn/KOn9NYcl/OCmXz+smb30+vEfNG/g+zTr9f+N5h/BKOF/geYME5+o2YHo8yV9q+Yfg11/YJbw6ZpVMv9K84/8NygY1qdpelSzCvqHNdtRX6FZaPiMaTskYREbJ6aP17wX/w/N43+55of+a7TN4pfaO9DsLXnPpo8/qdk54HWaQyn+hmZtxddK+m+a1/R6ZQhZgm3Z6TxN0/Q6Sf9ZxyaA9yg2avhP1szav2nz97OCgPg04Y9rtml9v+Y1/PSn4yLTNP2YZkHoqub4zldp1sq8v6R/v3DuQ5o9wx/Q/Az6Fs3r9/HTyZCnpnks1/Jb8mOaBb9v0/wseqFmUnOtBGQRbb1vxsCvFrTW7tIswf6taZq+7D3dn/c0Wmsv0fxA+zWVendgYOB/fry3qDQHrgM2rsgfIunPaTbS/8P3bI8GBgYG3nvw3qLSHLg++MOa1QQfKemznia7wMDAwMCvSgyV5sDAwMDAqcBgeAMDAwMDpwLjB29gYGBg4FRg/OANDAwMDJwK7OSlub+/P509e1aHh3N4lF+jHZCpI/f29rqv8X+fG7/L2sxyyi4d83Sds+b7tde53uf2+rQEr2mvfdp/p2nS/fffr4sXL24dfNNNN0133nnn1jlxrXmtpdel7zJcyxyvbWdXrLGfZ3O8tj/VuXztHVN97ns/wp8dHByk73vjba3p0Ucf1bve9a6tgdx4443T7bffftTe5ctzGNiVK8dhjFevXk37uebeWtpDu9xb1+vYJXB81+ucao12+bzaZ9nvRfVbwt+C7J73d/v7+3ryySd1+fLlxcnY6Qfv7Nmzet7znqfHH39cko5e48Y7c+bMUSck6cYbb5Qk3XrrrSfe+1WSbrhhzrJz4cKFo+vEV7eZDd7f+bPqvV9jO2zDn/N9/J/HGL0F4pywDX7e6wvH53P9Gv/v9amCN5wfUj733LlzW330MX7YXL16VZ//+Z+ftnv77bfrpS996dHDyu157WO/uf4+xufEsbo/3jucS79mN3u1pj3hzHA7ax6sRu/Gj5/HHxP+ePA6vb7xh8br5M/5Go/xq6/r916/S5eO49n9v18ffXTOF3Hx4pwo6Z3vfKck6V3vOs4u52vGe+D7vo85EmbcdtttevGLX6yHHpqT+rzpTXPegvvvP3ZC9rWefPJkYQ7voew+OX/+fHqM3/f2wdI6ZJ/zM76uWVOD9+cuP2J8NmY/QHwO8H22Vyl0+L3X3a9xjfy/f0u8h/ybcsstc+Ib3/txzDffPGeQvOuuu/RTP/VT5fgjhkpzYGBgYOBUYCeGN02Trl69evTrSykwIpNS4udrJO2MnfE923u6VE0VPaekn4ESd/V5r42K6mcqJv/PeVsDXqca7644PDzUE088cTRWSpnZNSiBZuo2zkPFuHoSd4XeelRrtkbSrs7tqXyq9c+u6//NVHh/8j7zfRzP9Wu1zzNWWO1NI55jpuhjzp07153vw8PDI4bg54/biH3gPUYtUaYJMXsg0zN66tDqHttFLZ6p6Ag+56pnSe8618IGK9aWaQe4n7hn2IZ0zOi4Z7zGTzzxxIm243f+7F3vetcq84A0GN7AwMDAwCnBzgzvypUrR7+w0XZnVIyH9pEoxayxoVWfV/rvNVIN7WG7OED0DP/sY8WS1hjUK6bcQ8XG2FbmbMRx+ZyMNXJu10rosZ3YR5/v72xjIXq2Ttpqerbcan52cS4gA+s5cxi0g/D6cR6XjPjZPFbj8Jywz1HiXrLdZQzDz4ElJ4XsnNg+WUvE4eHhlhNM1m/aBjn2zIZH34E1mhHeH7Gf0rXZ8GhDjKjGU423dz1+nu1Zrpnn19fNtHvU3lBL4HPjfe1nQraPpWOGF214HPOlS5fSMWQYDG9gYGBg4FRg/OANDAwMDJwK7KzSPDg4OKKzVktkKqbKeSBz8aU6qnLXz0ICllSZa+L+SKMzel2ptdbEtiypFtaoPyr1a69/lZotU5NSnVSpbLM+uv2e+nWaJl2+fPnomEwdnrlJZ9eO629Vh9VSfk8VZqZKX4r3rMYhbat61sScVSo/3jO9cJgqHCVTNVdhFdwPmVqqCkOwG3k8h04E3BeZC3tmFunFevkv9rGnQve8eF/4NarTHBrFvbOLc0fl1JOt5dKzMFNpLvWFe6j3bOR1eip0vqfKOFNpeq/4Ozqk8B6RjtfDqk32NQuDMazuvHLlynBaGRgYGBgYiNi5Ht7BwcGRVJYZmSk9ViEGmXuwJRsGGFcB6NlnVfBwBCWtJQeU7NiqrUzSqiTunpNOJcFXTgsZKyAq1/3e+HrvfR2vz8HBQZcJX716tes4Ew3TEXSzt0QubUvplhirfZftncp5JdsP3t9kKNR2RIcKjoOoEgXEz3gMx5k5gfE7Mi8jCzGwZF05FcS58djN/rhHs+fFLgyvtaa9vb1uiAzZi/cSHVNiwgsHLjPxxRrHoIy1RvT2zpJjX8bwqucOmWQWoE2tR+XY1RuHGRYZXramPpbsjP2I7TB5QS/RAZ2vrl69OhjewMDAwMBAxDUFnld56+L/lTSRMaDKzmKJgIwvY4c8l8yoJ3FluuXsfTy2chfPxse+VHPTk9KX0l5dC1uL57j9SnLN7IGUfHs2vNaaWmtH51O/L9W2Gc5XZHi00SztmV5YBec0299Ml8T18biy/UZbBtlbj4Uy3Rpfo2TP9vwdGZ4l8rimZmlV4gGPP9rCKrd+MofI5rzW/qy11pXSz5w5s6VNiWvJdGBmbWZxt912m6TjFIfScdoqj8XnVAHpmX2susey0AnmAHUbDPnI1p/PXIPPm5iqj/eCx+Hx+rWXlpDPRveV9jrp+J6wbc3vfU+4b7GPvo6Pfeyxx070w32Me7SX0GAJg+ENDAwMDJwKXJOXZs9zr2IklDYzO0XFfCpJJftsDcOrpLDK4y47tpqDXdha5Z0a54RScpWOKsMugfTUi1P670nfkRkteTr2mAKPWQq6lmrbpt9XCYLjZ1UAfcY4GXhNRtyb6ypYuZdSinZsSufZuMgK2S73edxDS96/GYunLZdB0Nl1eI/1gr1bazpz5szWvR6fA27npptuknTM7O68884Tr5Hh+VgyPNr9qD2I/1dMiOxGOmY+fvU5TJnW8ySm1oEM3+OO/fZ4bL/0uJlwPbbH9WAqMY8hPiPNzvydE0I7mTjnM8KM0W34vfsT70EGv++CwfAGBgYGBk4FdvbSnKbp6NefqWSkbUmUtpS1aahi+/SAi1JPZXNaY+OqUnBlqZ+W0vGsSWVWebBmtiIyCZYDoWTcS0+2xiu1skXQhpPp0temQWutbaWUilJaloIqQ+yrJWjWSvPnlp7p1ShtMzyDbcW55XrQey1LbFzZQ8nssnuCLLNKCxavwbRTPJflWmJf6XFJb7lsfL4O7S70lMySYrv96IVJtNa0v7+/5aEatQNkPGYxd999t6RjhhcZEJkOvTUrNh3/573l8ZDleIzZ2Dkn2bOKe4QajMwLlePzq+fAx0aGR09KarboTRnvVbJDt8XrxHnkM5Bemka0//a89pcwGN7AwMDAwKnAzgwvIvMQs1TBop08Np5DfTF/3StPMen4l9/SC+NDMsl+KcNGxkKX4m167KRn8+y1HVHZqtjn+H8Vh5XZipZKCtG2F4/dRdKqyrhEkLX6mpaWsyTUtFstZaaRlhOcu6+ZRzFtCxxXFl/GPrB8j++JzBOWfWKmmqz6N/tSxTZl3pN8JfvoeR+6r2YStstERuaCrfQOzjBNkw4PD7cSGGd71c+B22+/XdIxu8ji2egpzP3Luc4YHsFzog2vKunTixkmK6RWwHNKe2T2XVXoNoLrzr1i5uriu7bPZWOnBqGn1bFt9d577z1x7oMPPrh1Du17kf0vYTC8gYGBgYFTgfGDNzAwMDBwKnBNKk3S6hhISBdev6d6KkuFRSM7VRZ0iImfUWXqPpnOZyl3YkosqV/Nl6odqicylZ9BtVvl5JGpUKnCrOptZcGjDAimWizOia/dU3ewj5y3pbCETAUV2+M8+Tu6N2cOGnQs8KvVH1l4Bdfb89FLNcc9SHVxlkarCn+okjJk46Mrt4+xujCqeali9DjpiGJkKe3oNEW1bNxvDGFhgumsDprHE9vtpaXL6nBmldqz0KXYl8yJxGq6at3d79g/hld5jHEdpJN7nmpbqv4ytW4W5hSvT5PNmtAPz5vnIu5Vj51mBO8z34OPPPKIJOmhhx46Opcqcu6ZzOxDpyurwe+55560HxEx5eBQaQ4MDAwMDATsxPBaa6lLaZQ+6DBBKSNzwY4uzhGUCNxmllqKrrB0o4/uugyypmNDlhaIDKFKxNxLKcU5qNI3xWtX6c+qIH1p22XaIIPK5p3Gfa5XL4VZ5gwTj93b29tyd+5VCLdUWSUGiP2tgqzpPh1ZbRUEX7GDCM4L1yHuHUrhvSQFPJfsyHNuFvXOd75TUs7wPHZLxz7HyNjQ2qrf8Rw6PJFBZPuMDjtLDO/SpUtbjDyui9OEWaNj+NqZM1F1T2dps6ScCVOT5TYYmsHxeMyxT2ZP8Tp0nKKWqLdeHB9DNnyduC+8j7yvzOAefvjhE5/73rTzUUSldcucc7wu1D74HK9rZIW8bwfDGxgYGBgYAHZmeGfOnNnS6/dK8FTI7GNMQ7YmvRZZWpWcOLZh6YsSR+WSHa9Z2d8oYWX6/splPktXRrZJ2yCZX8Ysq2D4bG0ona8JpGfw65rUYmRAcR49RttUmIi5ShQQ263m1uiFJ3AdMpuabcOUji0B+9yeFiJL2hv7ltmBGUzOwObMNskSP1WB5cjW2CfOAduM/SXL9rG0kcX/PTdLpaUODg62El1kc8x+uv8sWRP7TQbPIOtMg0G7rJmI3euzUB3ur+pZFVmT55nB45WNP4KhWe6zmaTXxfa4OCdve9vbJElvectbJB0zPZ/rPsb5JLOrAt5j8D/P4dxnJcHI9GNi8SUMhjcwMDAwcCqwc/JoS1tSzhgqSZupmLKS7VUS2l6BTEqVTI1DDzWPI76yBEUV3BuvzfFVknFsn9JYlbYn9peeT2SSWTJuemNSP57Zu2hPWgqWl+r0ahX29va2EuTG6zDlFcuoZHZE2sNo57XtlgmC4zlk9FzbOE5K2PT+s40jrqXn3Syg8rh1f+JeJeMmG83s6Ibb8TkeO+cos8cxxRPv9Tg+eia6XXpVZmnp4v1U7R/7DngNe0mDyZLdN89F7CttgfToJYvKytqwLBTnItMSMWkBbZxmXll7vG8qO13sG9PFea+apcXgcV/77W9/uyTpgQceOHFMpXXJ5sDnuE9mv/F6/oyJrN3XzPbOhPNZQYMKg+ENDAwMDJwK7ByHd3BwsFU6vlewktLPc1rYAAAgAElEQVRsZnOiJOJjGNOXSelM9Fp5LWXpyCgN0is08wasYgPp+ZmBUlEv4bClJNq6qtIyPdZj9JgrWajnmB542ZzENe1JWtHLl7YV6XidK2aQxQbS45TzQ0+xjNUalRdtJqXTTkbWkaWyY9o9et6RXcXrce/Q/hbHUqXMYnxrtnfcHlNjkYVkXtb0uDOydHJZmqsqNZ09OBmTGMdsZuKx2IvQ8+XvMy9NH0smbFsTk0tL24ml+azqeU/6GPfJx9iWFhkebYKcA65x7CP3TFWYNYvd8151qi/GxWVJns3c/Eov6yzekLZ2ertm9zXLOJ07d251AunB8AYGBgYGTgWuqTxQVWxVWrbjGJkE7FfbXe666y5Jx1JOxrJuu+02Sdv69p59qfJ4pJ0itkFvoorJ0eNTqpNf03YU59FSDNmGpRom5I2eT7TVMaMM7QLSsSRl6Zw2ijWZHHpS1t7ens6fP38kwVEij/2mLaBnH2VmCB8b4y5jH7OyNmSUvVJWjHHjfPm68fq0ldFm57XObFOW+snOs2TIBteO3nLUAMQ1oGTNpMG2/2TMhdJ/r2wU7aVLsVR7e3tHNlAzpMiE3V8ybmYKyTIF+R4yi/F1XFIo02Qxvo4ZnjKPYu9nagncRydKjllF3Bfawe64444TffJrfLYxy5XbpddsXEvGjPr69Inwez9/pW1PTu/dX/qlX5J0vAaZZ7ZReZ1m2YeMG2+8cTC8gYGBgYGBiJ0ZXoy1yuLHDHph8Rc7s/tZKqZkxbibKJH4GHsc+bq0B0XpmZ5GvUwuRhXDVJUyyspZcOxklNH7iNdj3JLb9JxFiZPrw2MydkpWS0ZBG188NuYx7Enp8TuPI7LNqjApbaqZdoB7iBI4S/DEc8hQbb+gBB5BOzZjzzIvXc6xx9mz4VW2SWo04p41G/Bc0IZCTUpEtB9FuH33zd6o8XrUJDALSZb7MmZIWtIOmT2ZOcR9YA1H9ADkNWMbsV/v+77vK+lYo+Q2uJeyQql+7rhdP7uyGDfGMJrxMPdodi9Tk0OP316pJx9DG16mmaHGxOOihuS5z33uic/jsZ6/D/uwD5MkPetZz5Ikvf71r5d07PkZr0PmyH2daT9iX4eX5sDAwMDAQMD4wRsYGBgYOBW4pvJAVEdkqYmqUjgZ9TRttTqgZ8SX8mSnVAdQ3ZpVhKY6gC7GUWXCMdM5pZcI2sdQ9ZM5xxBUtzLNEd3j47F0VqgSX8fxMLi717csCXIveHh/f3/LXTuuCw3YDEPwXES1lNVOTNvlc60CYtLlOFb3344ArpbN4P/YDhMdeP6pJo19Yh+pHs9S2jFEp0o8kKnB7ODgeb3vvvtOjMeq2jjPrCrO+8nzHfvIIGGeSxd+6fi+jfuht3fiue5DL90UE11YBei1lY7nx88dmkN4j8X96blbSvkXVfZMuOxXmg2iqplhDpwj9zELNWKqPjuV+H3WJtXqXH+rK9/85jdLOnk/eW/6GM+R76vnPe95kk4+q6pnseE19tzFPkaHmbUYDG9gYGBg4FRgZ4Z3eHi4JcFlaY0qN9EsESvT8zBNDl2NMxfVKsVU5oJfpU9iyppsXO4LnSJY1iJKzTQ8Z4G4cdzxfzJkJu7OJLvM6Sae23POIQNnoHicezL8Na7BTM0V57xKFsAEspbMpWMHEzqNVAHnWWkSM0ZLon7vuY8SKfcmg3rp9BP7XbFDssK4txiewtCCXvIHMiuzGzucZKnaqgTnLLMUWQj3YpUMIq41naAODw9Lx4MzZ87o1ltvPWrfkn083kyDjjJkT3HP+9iqYC2dpaLzkq/tvrh9JpHoBejTac572c4z2bGVo2AWDsW9maVZjJ/Hc6pwJB/r1GPx+WNtiveG58vM0u/j/uZ9yjRoWbJy3oO90lLEYHgDAwMDA6cCOzG8w8NDXb58eav4YHRlpk2BoQVZ8DjTF1lCsMTTYxIs/GrQ/tdLZ2NUQevxMx5jaZDlLKI0Szsf05AxgDt+RpthVZgzS5lFCc/osQK6KjM4ObtOtE32SrxcvXp1K2g42uN4bb9ScsyKalIiZbC3r5PZfdhn2u6yxNx0wec6RVsR9y1tk2TGcXxMg0dk+8ISsO0eZHyezyzMg/ciQ2iykkKeWyZF5j7MGBzvgQwuHuxj3H8HasfzbatjAVYWEZaOmQefZ5wftxHXlPuMtjQG38f2+er5c/vZ+vM+ZJ+5D+NntBlzP2b3RJWiz31kgndpm4Xef//9ko5DM7J0ZCy3Rc1JpvWgRq6XTJwYDG9gYGBg4FRg5/JAMcgvKw9Er7Is4a900i5SSc1Mo5QlRaYEWv3aZ3rqqoBtZh/jOHgupdl4PPXrZCOZZ6dRMTzapKJkR/sL+5yNj/NYJavOxhXfL6WH4niyUk8s6WOp3cg8BBm4WqUcY3+k7dRLxBrtAPcD+xzPpV3G6Hk9U8PAoPgsGJ/7nGwq0yzQZlKVaooaDEvfWfq2eE5WumYNDg4O9Oijj249DyJoF6V9lB6L2djIHGg/jWNmekW21UvuwH1uL1FrtKKNjZ6U1dpmdnkmp2Yigp7WpmLlZLTxPqhKmmXs2qh8FWhfjZog2lzXBp1Lg+ENDAwMDJwSXFPyaHrsZNIaf7nJOrIYMDKfKolvlgC2ur6lzSwOL/MUjJ9HVAyvki7i5xXLrcr4SLU9i3NExhT/57z1vEKrBNpct4xJGEueUrFQY5ZyjpI0y7JkdoNKeqT9wvsgznWVBL3HPhjnRQnc9p+4p2xLY2q3KtaxN8cG1zQrKWRwXVh4OM4d05AxLipjoVUScTLJjEmsSTx+cHCgixcvbt0nWYkxgp9HBkT7e3XfZJ7Q1f3PpNs9D8i7775bkvSMZzzjxLFR00BGVRUCzryDq31Az8teYd5qvHz+RPB5R0YZn0N8rlEb4bYi66WWo+fhSwyGNzAwMDBwKrATw7O3VGUb4rERZDNrzqHkm8WgsGwF+5RlSaDUSk9SHxs9g+hpycwkZLSxj5WHVRWPF48haMvJ7EFVoc8qaXWv/5UtL0NPyjo8PNSlS5e2pPTYh4q9VvZS/i9ts5d4fYKMrhpjL1k1pXbbSXpSc69sDsGyL5XNOIJ2pJ4HJPtRZVHqrS09fM1uaRPNrmMs9THG/2a2m4qV8d7K7KOMF2QsYsZmquw4ZsYxoTrH6HYc9+m40re85S3d8cdX+jlkDI9MyKB9LCtlxn1W7fte2R4mnuacxXbJ/siqM41gFpe9hMHwBgYGBgZOBcYP3sDAwMDAqcBTqoeXGTiz1GEnLpikeDKqiuOkrFlNNoIUP7pKW6XJvlA9Gak31QJVFe6eq2wVLpCpQSsVEseVqSepkmEfM3XpksNJdm6WmqoHJy6Q+rUNK9Vrpl6j2rMKmWF6svhZFerRC/nwdViV3edkaah6am/Pj5SruKvE2pkTCQNyq9R8mSMSnQUqB5QMWQXtiCw4Ppoeeg5gWWhIhNVzdL036O6efcckFtUzLIL3O9O5ZU5ZPtYOTl6fLCymCimhijt77lQpzKiujHPFtavWO9s7XFPPo8MtGHaW9ZsB+1lCdcNrTqfDHgbDGxgYGBg4FdjZaSVzsY9STOVqTUN9llyZUkNlMM2uZ1Aiyhge3aTp+NJzn636bPScSCq3Zx4XQWmc18/6VzGk3jnVuUQ293HNe1L65cuXt8rMZPsgC2iX8jRylFqrcIqM9VahHmucSZhMmWWComNUlUqu0pRk4SKUdHmPZNW4DTpuMSA4SwhesYNM+8E1oJNCj7lGJ4Ul5wOmO8vCU/xZlVw5e35xLqtSPNk9TYc3ahJi0mMmnvdrTJFGVPt5Dejkx1AtJtiOoCbD6DH9JUcXz01WlZ1hQ73STCwMcPbs2RGWMDAwMDAwEHFNNjxKcpmemhJALxh2yYayxDpi+5WuO3OfpSRMSTWTtI2qb1mZDpZNqVxxM/ZEW0SV+muN5EcbUs+leE17vf5n1452mixxMdvlnGeSd7VXKjtcZG9V2jbOfdwHFTtiSAvHLm2zQbKpTDtAZmI7DxP/xvXL0n9l/cgCz+nOXxVWjRoT3mPuI0s2ZawgpqHq2Yv29va2yofFfnvMDvL32HuB7RVLrsKIIrguFTOJY2KB10z7VPWx0j4wTCnuA5ZGY6A9n0sZKhshSyfFPvK7LLF11b5faXeO9wQTXO/CegfDGxgYGBg4FdjZhrfGG1CqJZFe0OiSxJ39klM/nQVgSnnBWTI5MotMgqREUqVTiuNnUUhLeD3GVQWp8/vsPW1DZFPZPFbprdYkaF3rwRfHYOkzFhKt0rdV5ZWkbe87rhPfZ/uA89Wz3dCmwCBYH9uzUZN99lJYsUCmr0O2E7UVFbut9kWWPJpMjywtY8pVcLwZX+b1nI2ZaK1pf3//KBlyxhi5P8mWGRAubT+/OG+08WfeumSJZMSZ9yxtUJW9Mf6/VCYsexYzsTqL1Gbpz+xRSe1AZQ+Ma0AtADUItCFnYzd6Cc4z34S1LG8wvIGBgYGBU4GdbXhSP9VTpWte4/lG6bGKW9rFvpTFblGSy6RW6aRUUSWApiSSpfPxZ5aoLD1VpV/i/5RmlpJlx/+XbGvxeu4vJdVdyrgsJXGNLM/SbVYKhfNCVhP3G8fK/nI/rkmn1kvIS/sBvdmyWKMqPRv3eS+NV2YzkY7nJNprHN9VoUoMHPtAcF4zll2xXtpj4jiix2Dvvt7b29tiRtETlrZMxgRm8Vy9NFnxe+7L+F2lCcli+ciWPV+8ThabymKxfoZ4rv0+rqWPtV2TZYnWeNzS65RzFN9XjM7rlbHeKh0dy1PFvVN50a7BYHgDAwMDA6cCOzE8Z8qgPSHzuKx0vj0GsBRr1rPlVfEqlWTMccVzMom8KodRxdRl2WAo4ZF9ZBkIKjsmJcpdknH3vM7INtfE7hlrY2GkbQlOOh6rJVPvM2ZhiH1YkvY4j1kCYzKtKhF5bMegrShLjl7FQ1Z7KpOaec9F26d0ku1YSiYzod0ls8NU3tSV/U/a9lyttBHxvdd9rQf2wcHBlmYkZiaxpsA2KI7H8xcLiZq1sOArk0hn2aGqTCCMFY176aGHHkqPZaHZeB320eOjx7cR91Jli6YXarb+lfdnTzvAxM9Vwd7YLybdZhHZ7DfGiM/NEYc3MDAwMDAQMH7wBgYGBgZOBXZ2Wjk4ONhyaIiUuApQ5Gt0TV1K0lq5dcf/qbZx+5lbf6XaqVyN4/+Vu3v1efy/CvzN1AVUCTNYfo2qmE4Z7EdPDVqpIeJaZwH6FaZpSmsSRqeVKvCXasueg04VipEFul+L2pb9r5J4x3mi40GVwiobn+enct+3aitTabq9W2655UQ/eJ1egoVdao1V6t4swJrpx5ZU5VeuXOk6rdHV3mpCOsdkKdgql/8q9Zz7FI9hsu0sjVZVl87j8fuo+vU47IhklaY/p8NQVrPPcFiHj+3VVOT4qHY1slp6dDJz+3wf++L14asR9wfv8RF4PjAwMDAwAOwceH7u3Lkt1+zM6JmlSapAt2C6ejPgOAsAzfoS28gYXiVlZolmyfoq55VMGqzSjlUhDfE6lYNBT6qpnCSq/mT9JvvJ5nEpGJY4PDzcCpXIUrBRuqME3EuubFRhHRkqbUQm+ZpxWVquQlliIDhd1Jk8uOe8xOBkvvrcGCjsftMxhM4SvVCXKrF5pQGQtt3RKelHNs9x7O3tlWvk1GIeT3YPcIwMYcm0UQyRqVhmdk9XbJAaLO+T+B37xBSHsY9m8GbpZnh2WvIc+J7paW08J+4Tg+Qjqr3Csl4ZW/Or15sJ1aM2gufwmZiFBnm+4nNzBJ4PDAwMDAwEXFN5oJ4knBUVrNpaQpUiKWN4tJ2QcUXdM+0uLNqYJeSlVLYUoNtLyMo+ZwyJElTFDnuJp9e+j+2QOVRuyvzf75fWlRJp3CfV2GgLygqWktGtKflDey+vw3AISVvpregenq3HUnJ0fh4ZbqUx6dn9OPZqvxlZCE1lN8/ueUrptMMwWXFsN0rylTaotaYLFy5s2aB6miXfn1nyYYP3NMsP8fMsQL/SwJjdxNCJKu0hbXfxOrx2FcKShQDQJk5bmvvYK3TNNbUtLysfxPvHzNnr5utFpu/58TF+32OfRk/bUGEwvIGBgYGBU4GdvTRba92UPNTfV7rZzNOuCt6uXiNob+klDaYHUsXwskBTetpVqayiTaXyQqUEltnAqEunV1YV+N5DZteiVMs+9aSpNXZFBw+TKUQ2Q2++XiIAnkOPN6NK7s3/s/G4H9EOw8TFXJ9Mo8A1cnsVW8vS0rHdpUTdEdRo0PM3s2tRWq/ua6m20TClVDb3axKPO3k002fFvUOPYSZ3yFKLVc+kKhF1XBePsUr957Fn+5up18i0Ms9lBmQbTN+VaXo4LgZ5x3Mqxkh2Svtz7H+1HzIPzCr9XO955r7EZ/Gw4Q0MDAwMDARckw2PyXUzhlfZYbJzGI9WlaDIpMCeZ1dEpu+vmGPGgKp0Q1V8Xi/ei16nGYOpziEL4FjiMZXE2kvTU5VE6SVf3iWWismVY2oxS41V+qJMO+Br0zuu6n8mOVZ24CzBtY9xXBT3gZF5opFR0WZD9h6/o02KzKUXh0kJu7Ipxr4xzrBKDByPpY2Gkn6WhDvu5yUtBeMzI2jr4XMoY7PV84UeyT1P311SJ5LFUFuQ+SgwAbS9M9lnaw3i/cQ14zFel8yjnFq8qkxUppXifquKJvN/qX7uZcmjY3zrYHgDAwMDAwMBOzG8vb09nT9/fiuJby+LSeX5FiWhXnLRDJntyeB1qeOO31H6Y3xHluSULKRiemtsXbThZAmHK68sekmtSVbcy1RReYz2WFvmybe0duxv1OfTS44St9vOEk6zv1Vxz8x7krYVaiWyuD9K/5RmMybhvcPimr3sJpk3Y7x+xp58Dtnumv1AiZqshNeVjj3rzOzIILLsSrTDxEwqxN7enm644YYjhsK4tWxsxC7Zhbj+LMXTA/dfXGvaNsl8mDQ9fudzLl68eOJzg96O0nYBWLIz9zHzCqY3ehWPm3nj85nf0+5Vtlvem5nHfM/3ocJgeAMDAwMDpwI7e2nu7+9380bSW6nyeMpQxQdRSu/FgpHhZQUymVePfaVELm1LeVVexEzaoO56lwKGFZPj3GQ57bg+vdI/S5lJ1jC9HuilSeYibTO8al2yeEVKe2RgWaxjFQ/HPRrP8X56xzveceLYSqqN59vuxwKtlHx7noRkWH7N4vDohVzFVvY8JMlcmbNSOrYvmV34lbac7Dpx/npxePv7+6XtPba9tBd75XOoxalynUrbNkFqXrJzGKNrVsbnUebfQJZWZXqK16MmocpPmXmfVh7rvfklk6vsm1kb1Iz0PLTZ713yvQ6GNzAwMDBwKjB+8AYGBgYGTgV2DkvY398vjf0+RtpO9bMU3BmPYVs9NUFFkysVkHSs3szS40Rkn5viM9C5R6ur79aW1YnoOavwelWoRDaPlZPMLn3tqTtamxMAV2pKaVvlwrEybZRUlxSq1JXxXIaH0ACfuUR7H1mN51eOK0t2631H136qy7Pk0XQL9ysD3+MYGQLCdHic1/h/lSAgMxGwen0VlpA5VvWSHsdjz58/v6WqjY4MTFZAZCptHkvnNZopsmTyRnWPR7OInx133nmnJOmRRx458ZqpDdknXo/Pv5jSkCEsPqZyfOG1IzjnvYQXVRhUpp6skpRX1+X52fseBsMbGBgYGDgVuKbUYjTuL6WUkta5XveuKa1LBFwlc43XY+kQuufa6J5Jg5ZiOQdVeELsS8WwsvFwTipHFCaxjX2qzukZ4fldljSafVwb9Nla65beYfkXGvHJiOIxVQo0rktkkQzm5trxuvF8uosvlZiJ3z366KMn2soCjnk9Xof3XmQfdm8ng1uTjq4KH6LTRKYxqdzt6YwU/4/B8RVL8jOHpWki66HTCNvK5rZ6rnA9GOgsbd//XA+PPdurZOC8jyJL82dMf1g5B8Y5Zjktn8OUYnGuGJpFVNqDeG06lXCfZ5olg/Oa9WNNeasKg+ENDAwMDJwK7MzwpH4arYqZ9FLwLNmHqkDqeG4VjsDSL+xvPJcu5VGyt+STuWXHNjLX+aWgdKbo6rW7xNqyY4mMWS4Fmi/ZWNzXtWuZ2Y8Mhm+QaUWpr2JHVZHNKpF3D3EfxP+z9noJB7g3KZ1n6ZqY8Lcqm9ILS6DEXQWgxz7QvsOwiyxhAEvJ8Ng4Vwyn6aUWm6ZJV69e3WJgGcOr7ovMhkemwGBx2uvj9cguKrtSPMdpwRhK4+u5LTP07Fjuc9q9sznknq2K5EZUWg9qTLI1NYP0fPaScVRJR3r2Wu7bXRLnD4Y3MDAwMHAqcE0Mj7++azwUK2k2O5+/2JQ6o1RQpTxieY6MFVDyoFdglHLdDnXX7HvmNVd5kBpZMVkyoCpZ9Bq9+JLXVPysx6b5fsnLlX1YSv6dBV7H95kXI22PLM9E9hz7SrtLZffJ2JPPsTReJcGN51CS5t7N9g7hcbGEUTaPtDf3JG2C+5uepVHDwXGQkWf3bZV6sNcfsqZo66KdcM2epz2Kqd8YsB/XLyu4Gq9jRBue++tXM7477rhD0vEcxOdB5Q3OlInZs7hKBH7rrbeeOHfNuOix2vMDoE8EvaDX7L81zDz7bgmD4Q0MDAwMnArsHId35syZLYkxswFUXpIZM6KEW5UUMjKvOeqlyYgym1r1mtl7KimCNqTMFlal5aFHWWbXpARcMYmMJS6xttjHqszREuPbBdEOk42ZqNIoRYZHOwG9zDiPPVZbeRT3vAvJLG2/iHuHaeh6GotsvNl3PS/Eig1U8VCZdoDnVna67LuqlExkcZlWZ0lTYGZkVh3bi0mTM2SxdLSh+ZXFTXv3NFk7yzlFGx4ZpBketRBxLX0M7dfUOLk/cV2qkkkcQwRjQjk+aj3i3qliXv3qZ3NPI1jt/YyZR6/dtc+lwfAGBgYGBk4FrikOb40Nr/Ke5Ku0zfDIzigJR8nOUguP7SWarcpLkOFl+ndLl5T+yAoznXP1Pku0XZXUIHPJpDTaq9bE/1XMbk3S2F5cF8F+x7VkTCPHnF2H2VLI6Kpk0hHsi99n9gzaDL1HKkk4nu89QrZJ1hjPrZISM1YxszNSK8BzsxjLyoOY9qBMy8IE07x+ZB+Z7au3x/b29rZsd7EPnAfOaXZf8rPKLp4xPD4HOC4yPWn7GcH93ks8z3OYecXr0ptD2tZ8PbPIeL3Ka5t7qLfvKrtf1l71nMme3/Si3d/fHwxvYGBgYGAgYvzgDQwMDAycCuzstLK3t9c1ehtVHbws1Vem5pRqo35W+43nVkmFY3t01KBzQZaQN9LoeG4vQWqlUqwcfLJxVQHBPSq/VDMrC+asVBjZuHhszxjdWtO5c+e2gvp7jjrcK716YQxkrqqWZw4aVL1xTbPEtQxW5r7oOZ5QTeW2etXSKzNCFkLDY7hnsnMM9qkKH4jqRK4pVZprAoSXXMtba1uB4TE0wirGKol05sLO+533NB1d4rkMWagSKsR+cA7t4OS++/pxbt3+TTfddKI9hp5wriN693C8bhyrz2ESAe7vrHaj22DIxBpnrOr503P+GSrNgYGBgYEBYGenlSWGV0mgVVBxdizBNnqMsjI4cwzStuRWuSVnx1YBzz3Wy2PIOtZUuq6ccbKAU0qDPeOxUTmt9AJA10jwe3t7uvHGG7dck6M0WyUYr9I3SdsMj+nIuN8yFsr95z71JFK6XJvheQ9lYSIMnSFLzIK6yRS4dzKHJ4YDcI9wz0amR61KldYtKynEAHQ6o2VJit2HG264oQxI3tvb0/nz57eSK8cSRUyYzXFkweNV2i46ovWSR1cB+QyXiueYrTEBuZ1HshALt+u+xKTb8X3cB1VSDjpwZX2syvR4DjK2yL1Rsd4eC+X96f7EdGsM4B8Mb2BgYGBgALim1GLGGoZX2aCy4OFegunYdi942KB0m7mWUw/P972A48wmVF2vcvlfU0Sysi8SmS2smsc1YQQVi++lTFtijufOnduyV0VUweJkXnEOeu752fvMXsG2OI5sr2bSsZQzCc4dXeXpZh/3TlZaJ76vkknHc401icfJjCpbXo/h0e7DwPdqDnoM74Ybbthib5FxMeWaWVOl+Ylj5JryHK5ThK/jIq4sceUCwbHd22677US7LJwbGT4TDVQaDI8lrguLBVfMLp7D0kFLmqz4zOIzco02oudXIG0nBYh9iGEqa9KVSYPhDQwMDAycEuzspbm/v78lVWcBpZUtL0sWW6Uho3SepQcii8m8yGJ/snb4mpWcydKoeU6yPmapcHqpxAjad+ihWKXBytqomFjGCo2K2fW8NNfo0avE3dK2BEq7ZRZ0W0m81BoYvaTlld0v89JkSqfKbhGPNcj0uP+ye8NYSjEX+1vtjcxTujqG+4wemNlnVTqy3n174cKFcv+01k7Y+Mh2pO2g/jUJKCp7e5VOL16P90VlB44g64sB39Ixu4rrQq0TPWt9rMefpXxju2R2PY0Ji8gavA+kkzbV2H7Pj6PyILbNLivNRBteb+8Qg+ENDAwMDJwKXBeGF3/laQOo9LdZIllKAhXDy7znKNn3kh1X7IX66kyyrzwr3UaW8HgpVqeKj8nGulQ2KBsnsYuX5poEupn9IGt3f3+/jEHLxsa9krXPeCGWBeqB7VXeu73ik/SEM+J7pqGiZqTyEox9qcpQ9ZJikxG5XXr2xXmgjZWMJUstRu8/Hpsxc8bCnj17ttyXtuFxTuJnvBbvjx7D4/1ZJSSP5zL2kPa4LM6U7fI5k8Xu+XzvlYppZfY4Miq20UusT8/Uni2Ufa00dtn4qhRwtN3F3xiveyyzNGx4AwMDAwMDATszvAsXLpS/xlKd+aTnOVjpluk1R6kwflfpuDObSpXxhN/HtliI0ah00Bk7rLJwZIU/KbFQsqK9K8tcQ6m2Z3Or4u5oA+klxV7y+rxw4cKRJH+7OLcAACAASURBVJ7ZT+hhR0/EbF0439xLtJdloJcuWVXPM7XKtJPtb57DMWQMtup3xcCzdnw9xkBybaW6DI3XhHFm8RyyG8YbZkzCdqwewztz5oxuueWWrbi1W2655egYxr1VtrR4X1YJvyvP6KxQavVs6mlrqmT1mQc2nxlkiVzDLAsV4zyrOMmsfd5HfJ5mGXcqvw2OKZsLXzeW/onvJenmm2+WdJIFDoY3MDAwMDAQsBPDs5Tei5hn3BAZXa88UOWVR0RJkFIR89H1YoAqj6ee/Y9SGiW8TMddSTj08MoYVxWfUnnvZeeyb2vscWyrZwMxel5/zrRCiTSeQ5ZexdTFuajsfFUGlggyO7MNrksmPdI+QTaQzdNSCRsen12PjDXzlqMnJ8dD1tPLa2s25fvarC1mAyHrY9xXVkIpy2LSi8O78cYby7Jh0nH2Eo6tiq2L//P+4P2YefxW9n/G6tFzMbZX2Yzjc4DHcj8z9rGX+aQqzJt5dnIP2W7Wi/urbHV8zmaxsG6fzztmp5GO947v1xjfu4TB8AYGBgYGTgXGD97AwMDAwKnAzk4r58+f36K70WmF7rhUf2aB5z7HVNXvTXMr99aIpfIiUR3B5MCm53QTz9xn16i7+HkVJN4LR8gcCiJ6jjxUyVSlkjLHmgqZyoAqs4ODg66Txfnz549UPGvK6FSJn+M8up3MmSJ+n7nve795n3kfV6rGeG3Of5W8IPtuSbUYr1uFw/TCbypzAvvBNFjxf6q2qtCD7DOWrLGTQeYwEh2FeoHn586dO/GckaTHH3/86H8GufO54/73kgjwc77vmQAylbn7bnheqA5ln1nNPJ7DOeqFx1DNz2dKleJQ2t4HlUllTUrDXjqySp1LE0FUFdPJZ6g0BwYGBgYGgJ2dVs6dO7flWh6lG0thWXFJKZeaq2DR6rUXCMwSLLHv/L9Km2Rkrt40/FaG7p7ETYa5i5ReJf7NjNV08uil9arSLBkZS2XYwOXLlxdDE9hOlq6JpVeoUcjmiUzEn3uuyQ7Yr2yMPfbMvVIlXZbyFE7xmF7ITuWA1NMAUGKn1oXzHK/Hfc4QA7K3eAzv315aOrrkL6UWO3v27FYAf0zMTIcZ3v9kubE/S2Wzesw7S68Yr5OF3TBpBRM2x77TuYd9ZRu9dVlKhxaPqZ6raxJ7LIWlZI5DTGbCEKF4/5LhjbCEgYGBgYEBYOfyQGfOnOkmFrWulRLPmkKclOirQMmeG3VVCqPnjlwFi2bpmij5kA1kTIhSECXuXhB2ZcPp2f+qkIYqlKLX/14JI6ahunr1apfhHR4ebrlER3tFVZCzSpgsbQe7knnRTTyzV9HWQdfvLCEA936WVJkgo6rCLiIqNkabZI+lkZXxHonn8pgq5CC623NNuVd7ydjjHPdSi910001Ha+njbBuM/XZ/7bJOu29Pq8E9z30R+8c9mfkmxO+l7RRlVVLljHGRoTLlWFZkt9IGMbSlF0KVjaP6nHPN5xwTfEvbNnaPz2ubhRVVweprMBjewMDAwMCpwM5emnt7e1u/rPHXl56bVVHNjKVR4q6YXpbOhoHmlNYzSYR2nSpAO35XHbvGS4gSVcUSs/4bPelsaRw9hkcpl/a/npcmpcwM0zSltokIS/D0qOP7zEOQ3l2U0jMGRlbAfcG9lbVfJWrO0p/11ixrIzuXLJD7Pv7PVG20b9PzMv7PNa3s6fF6SyntspRSPU2Fsbd3Mnm023Eh1Xht2/XogVvd89LyvZsx4aoEEm25WWJuMi56M2bPncqG20vvV2mQeI+v8UY2qpSRUp3sg8w5rqXbYxkkB5ozOUQ8Z8kzP8NgeAMDAwMDpwI72/CkunRE/M6v9JbKdMFL6cfcBj2WpG07EiWQLHk0r1OlJ1vjxdjzLFs6purPmnOqJMbxu0rX3WNrZJuU0rJEw5EhVTa8w8NDXbp0aUtii33xZ15neuVmUmeVxijGBkrbdqvYf7bLsWZJjyvvSSP2kWywsj1kXpNV3ypvSmnbZuf3jEnLYhdpq+O89cpR8TOmFIvzyFRSPduvx80E7jHdFG13Znr0KcjuE6NKAWf0it5WNu+MrVUpzbJE51WaxcpLMtMS8Tsy8eyZXLHRyjs9fkc7Juck89blb4rXLUtLZ/QYaoXB8AYGBgYGTgV2ZnjRhudf5cx2w+wePU+kqhQ8vaTIKKS6LJDRK/GyJv7OoHRU6ad7qKSmjCVQ/75k6+hlgeB1egyPbVT2Rim3j/WkrYODgy3pNvPwtVTHLA9kbxFkL4bZTRYfWtmeyPzj/sjsLFI/5owsrfK4zVAVfuXejfcg7UuUvCsWF8+tMnhk92+VWYPPgGi3JcNfE8PZ01S4bcZvMXtJT4uy5M2YzTH7TOaTeRdW3qs9+2L1fKOXYzyu8vCm9iO7p7knqwLHPV8Makp6ca3uk70zzd4zHwLee5cuXRqZVgYGBgYGBiLGD97AwMDAwKnAzmEJWVLcjG7TfZsG0oyi8juqzPyaGT2JXuotUuzKaaanpmS7PTfrqtJxj4ZXaklePwuLqNSfVX20iMqVeY3LfC8swW1QxZ2puezQQNVcpgY1qtAWOj7FOm4Mq6F6iMdV15bWBVlXSQOoHo+gKaAK7s3UkksOKJlKk6ox9mlNOAwdEDJnMybSXko8fu7cuVWJCKpE3QzNiP/zvqRaL9vflWMGExNkzzkGkfcqnzPQvEqkn6n0mYS/SgAe55EmAc451fJMMBKP4R7Jxlep+WneiHPPeTw8PBwqzYGBgYGBgYidnVYiy6Nk5O+lbamO7Cxz26/SWFEizdzSK2eCjAFR0qYTTk9Kp4t19ZoF2S6lwuklca0koUyaqoL8q8DT+P8uaXqqdEMV9vb2tgLOYx9YCoSpsZhgNp7P+alc8rPx2ZWdzipZyZclpp2FMnB8VbKCrI90kiLb6FWtrtKCUWMSz2XYQZUuLK4bJW6vH5leVh6IY8/ghBc8NvuMyYbJ1uO6kCmyDxW7zo5xXzz2bP2rPUJHmywMxudwfbguUYNRJbpnUucsKQfb5zipQYlgWEf1jJRy9h/fZ/OZMdORPHpgYGBgYCDgmpJHU8LK7GiU6sjwsjCBSg/LFFAZK+DrmgDQtSm44v+V3aWSErNxLaWYisfwdU1YAtsgMqlsKaA+C/Lk2HvY29vThQsXthheTELMAsBu1zYIS6pZKruqxJT3TM++yLRklirdRkxAzfWvtANxnJVbNvd9LwCYtpIe+6hs3wzr6aVb43z1mFJlq6mCiLN2ehL6NE06ODjosmeyfz6TMrt1FTLF99lzJ/YttpWxNF6Pe6d6jce63SrUIAsbyjRi2ftotyM7o4akZ+Ot9rfR8zdwOAI1dj42piMjU82uVWEwvIGBgYGBU4GdvTT39/e3vP16bI3SudFjXFVANsuQSHkSYulYAsmC46tUN7S1ZV5llLQq216WwqjyMuylV6LkVtn0MlBa2iXpanWdzEvT6Enp9rSj5B3Xz+tLmxpTjjFRAPsV+0I7cOalSc8wIytNwnOrY+P3lW2Y+y4LZnbfmJDXyALBq+TrPdsdz82SYMfrZ9oPMhTatSLDq/ZzhWmato6J+4CFQ+klmSURWHp2+FwziXjfLCXFp5do1pfqedd7nrIAK9lovL/Iyul96rbiPqju96XPY7/ZV885yyNlc1E9R+M9mJUUGgxvYGBgYGAgYGeGd+7cuaNf7CzJKiVOsqUsCTGlfv7aU1qPUlolIVK6jd+zD1US0l7sXhV/l9ljqrRklZ0sosew4vWzWMjKrthjeEvsL2MfMX6pkrS8d5hUPEpulACZNNzagix9EvdQlQopfk5pkl5lmc2Q163Q85ql/YXSchYrxj3KlGKZHY73AOOwesVqac+qvIOl9dJ5xpCqMjcR9gzPWLphFun2aEfkXuUY4nvOSxaDWnlN92yrGVuJn2dzW6Ujo02frDTrU5WmLkNW9DYis4lW9tjKsz3+v2TfjGDqwStXrgyGNzAwMDAwEPGUCsD2yspb4qCklXkbVlIMGWQmaZHBkfFkyVApkVYekb0yHZTweucy6XFly4vvK/ZJiTKT0qpje3Y/Mla2n2VvqWytGWz/rZIuS7UWwJ/bthfX//HHH0/PoWTYs3XRk7Paj/F87kl6xPVsuJVXZmY3Y3aUJ5988kRfswKwZHZZRpXYj2wP9bwyicozkZ7a8fulrDwR9tKkV2lkStQK+D3Ly8Q5WLKLr2FABrNOZTYuznfFwNZ4FPe8wg3GpFZjyJ5znBPaCGlblvoxqNJ21pjYHp8dzEKTxTVXsZY9DIY3MDAwMHAqMH7wBgYGBgZOBa4p8NzI1EdMY9MzPho0NNO4SbVkVBOQttOInyWcptG4pxYgloI4szapFqhSGEX0qnwvXa9Se9KlOaJSofaScHOdllQL0zSVbu7ZZ1W4SAxC9TWt6qvGkzkvMWWdj3W17MzBimonOg1kDgJWs3FNq/RaUU1ENacDgemIEgP4/b9fqbJdEwpQJUPvpcfjXq0qh2fnL6nmDg4Otvqb1VVjf5lqLEu9RdXYUvJ1/i/VtRWzOaZakI4omdNKtjfi59m+473MtGRZ3yrHPab9Y63KeG0+D6pQrvhdpfbPnjtUH4+whIGBgYGBAeCaygNVQb7StuMBpb3MUE5Jh69VoHa8DlNLkR1mAZlL7KmXVLVCFj5QBQtn12E7lUNIldQ1omLVmeMQJatKwu8lDV7CNE1d1+iK+ValV6RjRxaDiaZ7a1wZ9XvlgegwUTmvZOnIuEaVs0TsD/e1JXwyvchc/D/DEDjubG+xj3RWYIhN/L9yKWcS43hsr1QV+1w5tUknGW5sz+wtY1xVyMWaRMRk9p7zKhly7C+1TlkyZKMKmaFz4BqHF6NiU/w/9plJBHpOOUalNcrCEpYc7bLwDs/14eHhSB49MDAwMDAQsbMNL3O3XnN8z4ZXSb6V3SBjGUtsJiveWCWLzfThVZJo2uV6dp+lIPIsmDf7Lo43s8stBTr31q3SofcCjtdKV1I9X9K2jcFg2q4s2LUqQ0WG0mMStP9m46P9zX2lnSILjs8KV2bjytgT+8ZQg2jDZAo+aj24H3rB2JUNPmOhld3e14vJfnuluCr0Ur1V9v5euEoV/F49S3q2bz5TsnuiCk9iXzM2U6VDXPPM4vOUfcwYV6XZoU0081WoCjZnrLBKis3r92yh586dGza8gYGBgYGBiLajh+IDkn756evOwP8EeL9pmu7hh2PvDKzA2DsD14p07xA7/eANDAwMDAz8asVQaQ4MDAwMnAqMH7yBgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBXaKw7vlllumu+66qxtLZVyLM8y765z3FNbGiqw5Z824n47rZVk5YuzOAw88oEcffXSrkVtvvXW65557ytJI8dqMj2KMUbbfljJ18Br8P3u/dH4Pa8q2PF1Yav9a9gXPzeaxylSSlaVi3NrBwYEuXryoJ554YqtzrbUptsvYLWm7BFGvFJbBeMTq2KpAdO/YNaiOvV77sDpmTTxudUwV4/tUUZVKy2Jzs+fB1atXdXh4uDgpO/3g3XXXXfqiL/oiPfroo5KOa5HFIFQ+eKraUlkwLzdW9RDLEiVX6P0YL23ka3k49hKzLgV199rfZaNV564JEK+qFjtoOCZuvvnmmyVJt99+u6Q57dDLXvaytN27775bX/EVX7FV0y4bO4OqnbaJ6bSk7SThTHNVVV+OYzV4bC/1Evtd7eH43dIPN1OpRVT3T5aqrwrWrVKZ9RIe8JgsOJtB3axBx2rkkvTOd75TkvTggw9KmhN2f+u3fuvWuI39/X3ddtttkua9JOnovTQ/m+K11qTt4j1UpfxzG9k9x31H9JJsV/djlqC9qr9XJSCP51YJwLMA+6XUgkx0sUbQ7NXJY+A8n/0PPPCApOPfGklbvz9PPPHE0XGLfVl11MDAwMDAwK9y7JxaTOozo0pCrMpOSLVKoZKEe6VwiKztKtVXRauz9irswux66cOu5ToVliR+qU4/5lcnas36SFbV63OvNNISA8rmjVJjxdqyNGFUf1Xzs0YttqZMSyXF9rDE7DKWsCYt3BIq1XOvDZYyYtotMz+pZigZWms6e/bs0fk+NyYR53fsU8ZIKpayy/OgSkBu9NanOjYzG3A9mJIt20sVK+f7LJXZGrU0jyMbrfZOr9gA9/utt94q6WRauqXndg+D4Q0MDAwMnArszPBcjFHq22EqiSArEbFkn6oSN8fPKmQlbChhWzpbSu6c9XUNeyIqKSorrktUUlOPwVa2qR5DJyvIJPEsOXFv3NM0dRPlcl9xjD1Ws5R8mOWp4mc8t2fjrfZiT9PQSxKeIVsXslHuoSwB8NL1ltYqQ4+F8H6y9J7Zt8jS9vf3u8znwoULR8f6NZaGov2weu5E+29P2yDVSZfjsdXzp/dcWkqWH5lrlWC6Srod+0hbXWy3wpLjzi4J73lvZKXa2A5th/YZiOW2Mm3TWgyGNzAwMDBwKjB+8AYGBgYGTgWuyWml56bbq5AdP89UMEuu/hmtXlMpWeqrIyqVTOwjVVZLxuQ1MS40Hu9Sa5Dqg8xJYpe4qKqKfe86vN4SWmtlFWTppLop60MWf8U1rFSyWbhFz106th37WNWnq2IIs7EyprGnJmINOK5pL0zgqTitrL2vMlQu+plzxJqaZq01nT9//kiF6XCYqOby/5UTTFanjmrOyglrbYwn25dy0w1Vjbz/4zlVLVDeE0ZWK7IKNcr2KteAjijVMzNiyRwTHXw4Pt6vVlHHcCirNP1dDFlYwmB4AwMDAwOnAjsxPDusVGwg/l+5h/sXPEomlFIqR5BMqqyCRckGs4rnlfs0j8uwFNTbC0+gVJ65aK8NHs5QMTx+3qsCXwUcr2EuGfb29nT+/PmyL9U50rYU2JMqybA515mRnXPdCyL3/JgVMEg+0w64Xe6nJTYa+012S+YX76GK1Vbr08tcs8Zln3PCe67nMGRpvefwtLe3p3Pnzh0xvFtuuUXSscu6dOzAUjk4ZfcyK7V7DQ3eJ1ml9SrwuxfUz7H7tdKqsJ3YZzpwxHWp1r1KBhK/W7o3sj5WGgzetxnLpqOTr2cWd9NNNx2d46QFmWZsCYPhDQwMDAycCuzM8KKk1AsEjpJbfOUvt1TnweN1eoGfBnXNTA8U/7dEt4Y1kQ1WWMNYOEdMxSRts741wepVXyoGFiU8zwnZ7xr36jUB2tI8bgbKxv5TuiPW9IX7jXurZzteE0Se2YKyc3v27eqYTPvBgGqOy3sonkNmV2lKMu0Hx1zlzd0lZV9me6cNqheA3lrThQsXjpjdHXfcIemY6cV2loKdYx88d/7MfaC2I2ubY8rYuXTyuVPd/7Y/+n3Gniv25P3Rew6QydFWHvvMsAeuSy9FJBkXn11Z2BHZZvb7IJ1MI2eG5xRjS+FQJ/q76qiBgYGBgYFf5djZSzP+wmdSgKUh/0JbeqkkU6mWlo2ezZCg/YV6+ux8SrO94Fr2cY2dkVJmpcOPXmdLtpvedZck7Ezi9nXI9CrGHPuwRrqyh2ZvHEu2uiplUQ+91Fhcl4qpZrYO97Xy1sz6ULGCyt4Y/69ee/bfynbDhNuZ1zMZPsfVS8oQg8mzcUdEW2S1j86cOaPbb79d99xzjyTpzjvvlHSSBVTs3+3zORT/55grZOdybPRqjGzKGiXuB3sgejzRluiE6dV1aMOLc1ixcqbzyp5zXrsY3B/PyeZkyTvY8+sxxc8MPoMzG7XZnplez8OXGAxvYGBgYOBU4Jri8IzMI9NSiiUDSy89b7nKXtSLoVoC9fIZK6BHXRX3FVFJ6WtQeU1mtpTqmDXejVXJjR4zquIlybbicUsScURrTfv7+10bHq/NfpN9Zn2opMw1MU7cB5VdKPY/jq/6fskDtrev2S7ZZhYrRu0GGZ0T8fo16yvvDdoXM1bQi5eM/cr63Usttr+/r7vuuuuoBJC9M7P4yYp5ZWnkKg9Lsijay+IYDc8t05DF/RmZTXzPmLPI8J588skT7XBfVx7ucTy8R2gPXmOHY/tZeq/KC5z7MSaCph+FwfHGdXN5qHe84x2SZvY+GN7AwMDAwEDAzgwvetodNRKkAEsp9B4jU4iSqn/lqVPuSXyxP/Ecg5VyM087SmFkRpl+mpI9+7yGRVECihIPUdnJKDVldpiK2WXekEsSUtaPjIn1ks8eHh524xXJXizdXrx4UdJxIVi/SsdScuVdSrtclIithfAr967tPtmYOce+rvdyFuNIFmCwTEuPrRn0NM7W3995jpyR4rHHHjvxGhlAlVGDtvlo2+H8xawYUu59SPQ87fb393X77bcfMTu3nz13mLC6ig2M51fxsdRGZbGOHpPjxNiPzDucsYHM0hSfB/ZEZIxgZQvPtAVk4O4j2dqa9v3eax6fkR4fCzZ7nB5XZMrcb+6Lz/EzIPPivf/++yXNRYTXav8GwxsYGBgYOBUYP3gDAwMDA6cCO6k0W2snVJqZcwfdpBn4TRofj6kcMyqDZkTVRqZiMrX2d1QPZQZnqsqoLqySoMZjqFbpOSS4j1XgKdWy8dwqvZHXLatLdS1B/0Zc46XjqHqMKh+rL7wODz/8sKRj92OrSnycdKzy8Wd+tfqOCQMylebtt98u6TgpMVWd/lzaVgdVDiJx73Dvc655bs/lny703LvSsSrJKkvP3yOPPCLpeM7ovBL7QrUe1ZVRben5Y2C43cc9f5mTSZVoOsJhCW7Hqs24f71WVBd6LvyaqSU9p1Zhe029h7LEEHSfZ6o3fx5Djdx/OoTwvozJkP0d1YN0xjGiepLhT1XoRBZuwbAXowoVimAYgvdX9tzmc9rj9HpmYTcOS7ET01vf+tah0hwYGBgYGIi4LmEJ8dfVv/g0sloSzVzLKSVXbtuZCzaDt8miMoZXBVfT0J25UdPteMmpJJ5TVSfOXP5ZsoTtVs4asT1Kf1XQsrTtoFFVVI5YUyok9vvw8HCL7Ua2ZiO0GQidVbyW8Rwf43Mqxwyfm0ncZgxmKH41Q8mSFFeJrX29iCo9E9lIlujY0rHXgaEF3geehzgXZsgPPPDAiWM8n1kgPyuRm8l53JmGxqDjDjUocS8x5KOnGdjf39czn/nMI4neDiJx/5LNmNVWJaek4zn0fvJc+r3nz/fEM5/5zKNzq+rrvKczRkkNi8eTJaBg4DmfP73Ac/eJLNfjy5ykqr3KNV1TloqMLks64mP8GR1fsme+x/WMZzxD0qxh6D2nIgbDGxgYGBg4Fbim8kCU0qMNgJIGpfKM4ZHh0JW4xxysX492lnjdXtBwFWxtZGnUquTNDHjtlemoElH3grotHXluKLX1dOlVsGqUPilp0RaRhV3QFrAU2jBN09G6mIk5eFSS3v72t0uq3Zopocb/K1bIeYrBvwwLybQBHLPtYB47bVo+N4ZO0H5YBUNnQbZ0jXcf3Q8zSo8/fvbggw9K2k62S+k57kPasaq0Z73SMv6OtsR4Hdth4jkVyzt79qye+cxnHtkKmVhYOl5Dz4vHToYc15+2YdqTHnrooRPv77vvvqNzmaqMwdx+jc8l3h9mdh6X8ZznPOfofz4jqH3ivZeFCVhz4vF6XJ6LLKSFmgP3w5/7ORGTOrsvfBbTFh5L/fh6DOfwa6bB8pqacd9xxx3d5OMRg+ENDAwMDJwKPKXk0ZZ8slI//o7BwrSbZW1nv+pSzrIopTPo1shS7lDnzGDRzIuRQZq0X2VSE3XaVfqjaG9g4DQlH0p+cbyU+tZ4rvpY94E2lmhXMBjke/Xq1dVempYco82La0hGnHl20m5kxue2GHCeScCV51m2Vxkgy6QBnqdsvqpk0dQK9DwJzYzJaCNz8TGVZx+LbWb2D84rGV5k2Qw0J8vhvSEdPw/WBqXfdtttR+vl62UpuDx22qn83gxQOt57TPlFBp7Zjqukx3y2MPlyHDMD6P0cjetB+x5tXb3yYdSm+b3H7b0T97f3lVmgj7Vd23NltpaVpfI5vgf47I/r5v76PjLb9bip9Yuf+Xrv8z7vkwbPZxgMb2BgYGDgVGAnhnd4eKjLly9veTXGX3lKc5S4Mo8+2omqGCD/ivfK9jDZqpFJsZUHZKYPJhusSgxl3pVka0wx1EsLRKnIUiFtCPF6bt9zUcXlZUmDaaur4ozid2u8NA8PD3Xp0qUtz7iIquSOXy05xjglSo9kxNxLURKklynHThYiHe9FX8/HUFqP81Ql/CYLzOKieB16n9I2Lh3fe76e7SyWmunlGPvF+8dzQu/QeI/4HLOZau9EcK/0GF5rTWfPnj2aL7MAsxDpeP7dbzMQ95d2uniM2Qvto54fxxVmKdg4L2TvWfo+ar/sbcg4PWm7zBpTvFFrYzuddLwu7ivvObcR7yczvErT09NwUDNjr1o+x+O9wdR41Mx5r8Z59P72mt92223DS3NgYGBgYCBiZy/NS5cuHUkM/oWN0hrjKCwtMS4lSs1LxRQt3fjXvhfrRI++jK0xCww9njLGwkwN9FC0pOPxR7smY2fI7NifeCw9EysWHMdpid6SG6XbLHuK+12V9DCyYr9xbStPTXto0vYQJTOvMzMzkNlFD0i3Z+mYHm+eL0vpsf9VInDafxjLJW3b48gGo6ca9zylUdoSo5RbMTxL8ln2Cl/Hc5F55Up5UVR79Nl71vuYfYxswXPKmD0y6GzvREZc7Z29vb0TbNjXMTOLn5HVMBNNz3u6ynzkeYxshgyb942PjX3084ve7d7X9jqM+83rzjhZ2ruz+Gd657IUT5bZh+ycc+G1tSdpvBe9Z/gs8fMos2/Tnkmmz+K48fy1npkRg+ENDAwMDJwK7JxL89y5c0eSAfMKSttxYsyywGKH0vGvOuOE/EtOfXyEj6X05CwJlhAYG9KDpc8sZst9YhkLSnhZfjoyCmbPyLLB0A7HEhvuY2Q2tGMwdozMLP5f5XXs2eey1oPeOwAAIABJREFUYpDE3t5eGj8VpT1f0/2lBMysKW43jvX93u/9Thzj2L4s/yLtL7TlUVsR+1DdA1lJIe6ZynbHNY+fef59ffeZ+zBem9ehxyAl7wjP17Of/WxJx8zP91WW2YUxsV43XzdqdbLyMr39c+bMmS37VdxPtI8z72oWw+ljuS7eO7T/xeePP3MbLHhNBhjP97Oqsn3H507Fkhk3m/kueF+5L/TSNQOMz2+vO89lRiHPUWZvNPtj9qG3ve1tkvKMOyxVxPs67lHO36233jpyaQ4MDAwMDESMH7yBgYGBgVOBnVWaZ8+e3VJ3ZYHgdGs2Dc2qFTPtEwMi77333hPXi6qRKhCcqtSoBmM7PLaXcqlSaTJ1UTS+MlCWRuNeAmi6mHPcmaMDXaMZWJuVO6kSeNMpJwYZV6EMGVprJ9QSTB2UXZMJoXsOGnfffbekYxdvq088P1aTZuEiVEdaPeWky1ngueebyQpY1imew/d00srUoVTj+pWqnzg3/sxrxUraDCuK6+I5dx9igl5JeuMb3ygpD0uoHB2yiuFZmrUlpxUm9c4Cz/3qkAUmL8hKIXku/YyyO72dMBjIH8EUYnRqy9T4TNjgczP13bOe9awTffR8+Rnpz32dOCdeSz5/GE4Wn6GeA88jx8Ewibjm3hPeK0xW4OvHNHj33HPPib74XK+x7+ssYYTX5eabbx5hCQMDAwMDAxE7+3U6NEHaTmsjbRtXLRH4F9vSc3S9pSGW5TMYaJhdj+VSmAQ5K/VjMFwgAxleVRiVQcsRZJtVwH02DrpXe46y1EW+NpkyDetRsiOTZFqqjLlkEvkSy2MqqSgBu98MR6FEHNfJUr/njiErlogt8WcskYVfGT6QFQLmXmEQdxbUzzRJLACbMSGmtKOTDAN1pe096vW2ZG3m0tt3ZnaWot0Pz3ecE0r/FcvJSskwKUOGaZp09erVI+nfISaRKXB+fGxW7Nig0wo1I0wxFu8XptzjPeVzY1iC+0LGxT2cOWgwRIeaBl83ljBieI9Zm+fGr3EPcU6owWIYQcaYWUTYLM7zmzkvuT33yfvPax2fE96TdrrpaQeIwfAGBgYGBk4Fdg48jwmCszI7WWHA+D6TlixhmAWyFAXTa2XSGlP7uK1eyRWDiVkZEC5tS9ZVAmC3kUlNBm06bFPathVS/067Vuwr7XB2NWYQZ5YSjn1i+aFox2ApmR5DtmYgS73FPljitf6ebvuxD5wfS/1eF7fh+cqCyOmWbyk6Y6ss2smkCN53awrnMhl6xnbIILyW7mMV8iIdj5k2SjPa7BzPvSVvS9G0zWcsxH3xe18nCw3i2C9fvtxNWnDp0qWtOc2eAywhxPJJ8blTJYLw2F3CyHsralO4htQoVamypOM96LX0a8YK/VxjUmeyT58Tx2dbJEtleV9QmxOP5VxzjrIkCpwDz5fH5/eZVsp7xozO4+H+j/3tpa6rMBjewMDAwMCpwM42vFjihYGMEZk9ojqWn5FN0Xsv2pEo/fO6LL4pbdseyegyOw2lCZ5LlhN1zvSGo3dglsaL16OEReaVJSvmuf7cuvwshVWV+NefZ2ndorRX2fCmadKVK1e22s1Si1nKIwOxtBv7wMB4BmSTKcf+VWWT6DUcz6GtyNKr2YvfZ3uH+5w2XPYrfkcthNc7CwDm/ek94j5bes6KFZNlRTuZlGtomOrJEryl9uwc3jeHh4eLJYIM2rPjWHnf90ovZYksIszwWGpK2n5GMDA7A/0A3D6ZT2yDKRqZJIFp0eK5TDHHYPUsDSJTtFWanyzZBOfY7ZLhxwKwho+lDTz7jeGzqpcUgxgMb2BgYGDgVGBnhhclCEqQUl2Wh/FcWcwZ0yjxlzwrGktJgIyOSWrj/1URVXrNxXNoN6gSz2Y2taW2IqoiuFVx0p60SinUzGWXkkkZG2Cx23PnznUZ3tWrV7eKXEaJ25Ig45NYgDPOJ1Mq0ROyWp94DksW0RM29pFeamZL7muW6ot9okdnL46RNk8W1eRYpO39xvnr3Ru8X6lZyKTqKjF8Zn/hOfHervaO4/CozYnjpDaDMXbuQ8a8+XzJCrHG46RtWxbH7jnPkl77M8fY2e5LH4Z4TTJKMqFsr/pcezzSz4BaotiO7wm+Vp6YsW9VYvvseVP9Pnj+Mnt6FiPc0w5EDIY3MDAwMHAqsHt9hYBM6qdEzV91MpT4GRlj1j5ReQ3RWzTTrVMaJMPMShgZVV/pPRXHShbKYzMWSibn92QwWd8ISonxODKgqmRTZsfIvFoztNa21iMrGUNpmVkkos2BUioLSlbrFPvP72iLykq82M5o+4g/z7QQBu2ju9jwGL+ajceo7C+UzjP7X+V1SDYY7wd6l9KWk8XrGpHlLsXisQRT5g/AfcrnQrZHM7YSP8+S5BuM86WnZ2R4zIBjG57tvr5O1NbYdmdbaqXJcsxt7CNZLZMus5ixtJ0Mm89mZvzJ9mp1H2fe6AaTf2fljgze80v234jB8AYGBgYGTgXGD97AwMDAwKnAzirN1tqWKjCraUU1Bw3Ea+oXVcdkVYuz8IOILCUWVZmsxp0ZgCtVGd9nge5un/OX1Zyj6qhS1WbqyyU33Z5KoRpflUotHttbUycep3NBVCNRNUpHDSbfjv1hijkGmDOMRNpOPO73VEfFgGk6q9D13qqlbO/01MNVH5nCiuE3ns8YzMtAY85FT+3K+5UqzqymH13UqxCBOK5ewDxhhycHTHvuo2qbiScqx7B4DlPWseYk93x233At+TyKzwEfQzU41Ycep3Ss0vRn7IvXIUsEzu98HZoVsjSPfDb5uqw7mqk0+ezqpVCsnP2oQo3neC782Vp1pjQY3sDAwMDAKcHO5YFaa1tJdXvVvckQKkN9PIbG6DVOK3SyYN96Ui1dvHt9pGSzxrGGJWToPJAZaCk1sy/sY8Z61/TN4DGU8JbShknzOCvHg6gZiO1niZIr93a3HatIW2K39Oo5pANSBkqgdGFnQHU8hmyQYSFxXBXDqkJqspAGpgfj55Hh2QmClbvdDzpRZfujWgu+xv+Z9LvnxOR2l4K/jWmatsJFYrgDU8ox/VTmvOZ5IvPm/GR7iGtoVEH/0vFeNUvy9Q2mEZOOn01LifXJTqXtivNkaXSAi+C89QLcjcoxqKfdq54rdCiL80wt2pUrV4bTysDAwMDAQMQ12fDIWOKvL12R16RTqtJzrSkdYlRu2pmEQCbJMISe+2xldzGyc8lCacvLUhdR6q9SmmV2H/a1YnrZ9ZbGmQXFGmfOnOkmAI7uw5m7MaX+Kmg49sFz6WMq6Tyzw1AirQJls+ToDE6m3SoLUqbUXxXQzQKBmZiZ+yNjU5xr2qp7Wg+jsiVnidVpT+yFKPn8bO9n44j708zFbv3Stg2fydWz9eee5lirYsjxGLIknhOvZ1uwQ1p8XTM6J+qODM/jiHY96XjOyc7icVUYFEsoxXGRRTOkpBeewmdUlUIxrnXlI8D1jMyVe+eRRx5ZtZelwfAGBgYGBk4Jdrbh7e/vb9kT4q8rmQLThq3x1FlCFuheSYhZQc4q4XSv3ESlw66kl54nYVX4M0vmzHIjFaPrlcig9NNLD1V52lF6i8dEibi3Dq21rXOihFolljZ7y2wAvSBkjpHncg7p4ZtpGMjwKm/kOC7uDdonuD7ZunB9LZ1boo8SsK9DVuj91UvVV+1V9idLkkD217uvd00eHdc3S35uVmkvWQYyc07i/1XgPO+T7DlX2cF8brStmpHS/uY+P/jgg5KOC/RKx+trW17l50D7bDzX8PPaDNIpx1xGKJ5v71Cmo6uYWPysekZlnt7V89T3V3aPuI9mxBcvXhwMb2BgYGBgIOKakkfTuy1LBM1fXMa4sc2IyrOul8psSSrLykvQZtNL4tvzTorfs1/ZMbQR0M4gbevS6QlXJfWN/1fSOZlGbI82o964OV+7lOkg88/OZ0yVpeXopUnGxXmvbMjZZ7R1MEVWvJ6/o+Yi2/+ZliG+p60jrhtjNrlXzfSi3cfz04vVi2PIwHWv+hrbqYokZ3NOZtSz/x4eHurSpUtbRYjNjCJY3LjncVnF7pJVZAnv2S7hdfL6SMcMy+vj/r/tbW+TJL31rW+VdMxcYvv0OnUbHENkvYz/NaPzsd4zsVyP2Z73jPtC+2+2d3oFtGNfM4/y6pzsWeV+v/nNbz7q0/DSHBgYGBgYCNiJ4TkWpheTRbZCT7SMcVX2girTQWbjqDKeZLptehpVCaYzadCosmb0PLoMxrZkiVgNfkeb2prCk+xzJp1W3oy0VWQ2EKNnw5umuQAsdfNZH6r4sCyLTmW7Y/LgXoafzNs0HhvPsWTtV2aGyEpLcX9X3qGZVyjnn4lzWTw0wscywXrPtlbdi2tiOitP4oxdsZBpj+EdHBzo4sWLW4VMIxPiOmfestJJjYL7QBsemV0WJ1vZblnkNe5Z2+H8alvdL//yL0uSHnjgAUknNRj0UvR4qr2TPbOYOca2RDPMaP/1PDqbjdtnmZ5erDK1RczeEsF7uvqd8F6WjpldVox6CYPhDQwMDAycCowfvIGBgYGBU4GdVZoHBwelAT1+Fs+RanVlPKZyfugl3a2cU+j0kbmyM31SpZLJQJVpNZZ47Sp0wP2JKc6qOnhVwHHPGahyVukFnnOcve+qhN0R3js0ekc1EeeJx2YOE0xQzGN7Sa+ppq0qM8c19hoxvRFVTXE+GZhdBbobmTrUai6rn6hiimm2rE5j3ypHpJ76tVLzZ8HDVb3F7L72mJfCSnze448/vnWvxfuFicWXxpwdWz2rMjV1ZVpwcLmPtXt/PMdred999514zZxw6DDDPcp7Oar+PFZ/Vpk/4v3rfcQ0aH7P/Z/tHYIq7V5Sfq+xQyo8zrjWnhOr8R9++OHVDnOD4Q0MDAwMnArsHHi+t7e3lfA1k5po+O8lW6ax2KhS+/SCyP1KyShKwEbF6LLAWUqDVfmMjFEweLgy/MfxM21blTyW7tfStpReSawZqlRSvXXrBb0bTg9FZ4XY7yoBQM9hYo0zRWwrk9KrEI+sXEsV0sJq0pmTFKuIV8452XzGNErSLNVK2xJ3bL/SUNDhoKfJ6LE0g44MlUNFFsDfY3axD4899pjuv/9+SScDpQ2mqmNC8GxdqrRjnJes4nmlFXA/zKqiA4rnzm71Ho/XNIZocBzUAvCZwkD7+JlhJx8mcohJrCvHNmsNYphFPD4ey3P9PttnlSaBx2YJrt3uk08+ORjewMDAwMBAxDUFnhu9X+4l6XFNoCCljSyNDxmdJSyymFgYkf1nGi9K8dK2RGrJjRJqVpTQfaOti3r3OC66QjOhcixkWaGyp5J1Rywl+86kzzWu5a21E+dm4SlVSqoqNVocwxpbcTw+nsM2WE4nSul027bEa9bBtFHStq2Y7uKUXm+77bat/rsP1FTYlpfdE5Xtk9qBuC+XbHjZ51XYRS9UJgtBWQpp4XrEufD/nFO3b3tPPKfSLPHzXrpA+gwwUXfcB+5bTIkVj2GoSXXt2D6Py8J8rH3wuvBZkrGnKoEHkwzEZ0zFRvncy/abwec3Q0Ok4zm3dmMEng8MDAwMDADXVB7I6OlNq4S4vaKTlPor+1zU1/OzqqxO7Cs9OCm10NYSx+1zaCOsUjFFsFijYUklSoP0WuL4yEpjXxlYT1teFsBPrzZKeNm6sb0lW14mIUdQilwK7q/6Fa/FFGCRUVYppMwguC+kY2n52c9+tqTjdE1mfL5uL5kzJW3aNWknkba9MhmIHINwPVbvqypY2YjrwgBuzmsWRG5Qu9Gz+/WeA9mxly9f3noeZBoYvmZB4wbv1YrNZtoIBq1zbql5iv9Tg2TtQJa2K0vBF+HvM80P049Zc0AP0/isZv/JWPl9LxEF28yuV2nxeG9kHrm2rQ+GNzAwMDAwAFyTl+Yar78q5ZeRJTumjY5MLIt9I0tjMtWMrVVskH3NSryQYWWpxKTc1kUJLotFq65nVHGHWYFEvpKJZV6o7DM9CjNpfW1as8uXL3dTi1X2Cl47O4fzXyVzzmxdtMNEm510ci1tA3K8lW3D7Lv3XTyf8+R18ZxkCXQZK8iiuFncHz0EGf9U2Xbj/2uSlBtVDCRZXE+yf9e73tWV0g8PD7eSYsd94rWjHYn3WhY/SLsR+5F9Ti9Qem3aDhf3gcdaFWD1a9x/XkvvM7/ns9H7IfoquA8uOHvPPfec6KvPieviz+g7wDR1RhaHx/1A1p1poyrvdzK9+F0WC7iEwfAGBgYGBk4FdmZ4Z8+ePfpVziQf/lJTN5tJWvSoosRVvcZ2WCaGtq0oafG6VWaNzGuS0l9lZ8rioir7WJappIqVq7ynIpjxoirQmXlYsc9rdONR4u6VeHnyySe39k4vDqsqTdNLem1QAiYzl46lVnr2seRP3Ac+xzYzzrX3WZS0qWWoCo/6fbTH+Xq2V9DDz5/HWEHbO2gbNHpZaDzWqs9LLCwbX7ZG1OZcunRpMZaqsitFUNOzJoF1ZdOv4nOlY4ZP2xm1JzFm0PZfr53b83rRHhj/Z2FUPjO93+JaO0n0vffeK+mY6bkNjyFqmDz2mJg7fu79yOd6HDO1A9ROZNqPan/xevH/uC5rWd5geAMDAwMDpwLXxPAyG5BRsTHaxSIzqbwzl7KZSNuSNSXTzHvJ/y+xzyz2g1lmqqwWmacVPeAqu1k8h96fVSHGbD573o18n3l7Zn3NsmUYWT7P2M7Vq1e3GF1WKJX2nZ7XX2Xj5CuleWm71A/ZgRGZhEu6UOqntsBem9KxZM9YMGbHyPpotmeJ2xlWmNEjMjx6EFY2xF7ZG+4hrm1c+yqejbacng2v52k3TVP33PgZ+8L7Jp5T+QowXpI2L2mb0XGfuQ2zqHg+7zH32f2IDIjxtvQ6pl0stk07s6/j95mdkf33/qps4b01YN+y9a3KnFUe+vGaaz0zIwbDGxgYGBg4FRg/eAMDAwMDpwI7B57H9FGZSrNKPkpq2lNR9FJJ8T3VDnzNKvP6O1N7qlB7iVhpBK8q/2alUOiwwTFE0CC/VIk6c9VfCuCOqILIe27Ia1JIRVy9enVLFRvboxqNr5mTxVKCA39v1UyW6oltMIwjqvysWowqxHiM58JqTOk4Oa9VTEwPZpUq01PF6/i6MQA3u75Uz1eVHKHnBORXqsXWqJOo8s6c29Yk/XVIC9XhmcNEdq34Pq41r23VHtVrmUqO6cB4HYaPxHa8D6yutBMLn5lSnRSbZhL2PR5Lhz4m0cgSQlDV6PbZn8wkwXlliEjmqObv+IzMVJoMH+olwycGwxsYGBgYOBV4SoHnlCSlWrKihJW5KFeSPaXBzGBevc+kCksLliYYPJylGvKxltzpGs0+Z0VxqxRc/j72sZK015RrqZgR2WiWALhizFnSYEqBPanfjgdV8H3sb1X0NrbF/6uwEDqEREmxkkQ5B1mAMxP/cq6js4LZGZ0IGCrBYF/pWIql67rRS+pdpXoim8+k9CqBMp3EsnOqdGSZU1blUMXzH3/88SO2m7GZHpuM14tYKp9VhTjE76r70esWNQp2EnGKLzs2eT9k+50OSJU2wuwthsMsOREx9VzsL9OgsY3smVWtYU8jWO2dyoFNyu/pkVpsYGBgYGAg4P9v73x647aSIP4kWYnjg5PA2CBADvv9P9Zes0GQAHFgx9LMnkpq/VjV5Gixh+x0XUaaGZLvkY+crv5T/aoYHi3f7tc1xYacbBdxpKg7xSNo3TjRYFr0ZGKd5JIYH1OanZVGtsSxC3UbxjOTbz1Jt9V5pFfHAFLRaMcKk++eOJ1Om0JtFz9iTJVWZictlhheJ4mmcynrODXBXWvbykn7JdOrLE1rRY0/ZY0nWTRnzfJ4XAc1HZ1NTzn3tB7qsSkpp3XuWC8Z/tG43Fovr3X3HHh4eHhiJLpOdc6pmXOacx1DVz5R51PjV6mlkMao71YWqnie9ieGx2vs4uTJy8H7yXm/+EzidXKlOhS6T/KLFalESHCx/uR96nI+kuj6EQzDGwwGg8FV4OIYnorP1/K+7cQe2Bqiy/Dci+V1mX20hN02srpk2dASIvOr+yEoveTYYfJ7s4jUtRLZ84t3QtCpmae7bntWUrdNxxiF8/lsGXP3HlmbKzjdY3hd7Emg4C+vaZ0X2RPPgeJMTgBYn6V7g8XMdb+pmFesoRYoUwyB99URz0xq7uzicRzrXgyxIkn2ObDtUWVPjOtxLC6Tj+eBWbJcMzVDNuUd6Lo79iFmKjEBxXQp6u28KPyfXg95D1yDWzbO1bnQ9XFrlR6L9Mx392LKXHfPibS/rpGuzl9l0RPDGwwGg8Gg4OIY3ps3bzYyNtUHnJoqHmEXyfffZWlyf0l2pm5DNljnVvfhpLKStcx9OzDOR4uyMjzXDLIer4uXJFaQahT5t0NnndU40tH9uKzPFGvi510Mj+93bIOCvLKOXUspQVY6X7kOHRvgq8bceUz0nsbG2jCN3WUsphhrF4cReP8mL0H9LMlEdWyg3tNJAFjZ4bonZOHXjER6axiHdTWolFYTAyc70zaSdavfYRyMsafKxDQWSswpa1OMT59XsB6Ozzutt7pm2diYNZzap8sK5rOJovz8v46NXpB0XesYuUb5TKxjTxnLRzAMbzAYDAZXgYsZ3vl8bsWjheTPd5Z9sh7paxbctvRpd+ostDiZtXkkJpXgmBnPk2uNUv9fa9siKe3LxSj53RTvczV1nDO/W5kEYw/39/ftmqjjpfXsxku2SKFmbu+OQ4vfzZmWKRlenTMVIVJbJcVU1sptiPZUgtbaNno90uqpY0r11cWZXEuk7vh1G2aMdq1fmJH49ddfx3GrhjPFedbaZpdy/64BMFlMbUZbIUb5888/b95jk11mFdYxaixs1qpsTbXzqQyPsUl6FFLT4rW2YuRUSdGYK3sic+U40pjrmBj75HXtvC06PmOhdYy6PkfqfzfHOfzNwWAwGAz+xpgfvMFgMBhcBS52aVbXQldakCSDXBJBkuXaK9R229KFodeatq39Uj6HFLnr70bKz+C4kwlj0gBdDdXdwvIKundT6q/DJS6F9OoKnOnm2nNn1nm4NZQ6gXM9dB3v94RknbiuXC8p2cPJ4HHMSjhw7jueJ11vrjOKmq+1TQ7Ycx9WcI0yWcYlXqVCZx63kzLjd1wq/SVuKI2HCWl1f3TP8l52Igap3yI/l3vt999/f/rsl19+efHKUIYrf9HYtD+5LvW/C8/I/cn1TYEDd++xRIbPRLndu4QQyi9KWlFzqX0fKYoudKEhhjb4TJT7so6Rrtk63j0MwxsMBoPBVeBihnd7e9umUR9leBW0XmglM+nC/ZrvtZapVgaZW5LgcWPlmFJrIbcNrUwGuB0rTOn2qVyhYq/Fj0t0SAkUtN7X6ktNiPP5vL58+RJT2Ov2ewXSlQnTkudrJ0KbupXrNYlX1zmntVTHyP1StosM0Hkj+B3HuAUmYTChgglRdY3Jkk8C545Rcl7J++DKSY54BU6n0/r8+fPTuHUcx/C0P7b+6kpaeL9zXbhtWaCtJBbtg6UHa23LDtguSuypCo+T4fO5w6QWJ8auz8j0UoJK/Y6Ox3IEd2+6JK+6f95X9T0m8DFZpTI8XrdPnz5N4flgMBgMBhUXM7zT6dS2T6EFQjAt3b2XYnmyIKp/nL/2yaJzqeVCklGqc0jitIxPOOuWY0htO1zMkHEQxstcCr/GkmKgbpsUu3OlB9zGsQyH0+n0ZGW6tUM2w9RyFt+utWUpZBn0HrhGqYLOG1lOXS/6jMW1ZFVuG8ZHND+e28rwWCbAmIeLGafiYcY+yBq6MXHezmOSYrqd6HtleontnU6n9eeff25aM9VYJ1vdcM04CbPkUUrlSZV5fffddy/OR5IyrNuowFwMT+PX+/x/rXyPUZZQ/9cico2BY9S8FX+rcTiysb3Sncpg+ZwWeE/U5xzvS11HliW4Zr/1GT8MbzAYDAaDgosZ3lpbP3n9xabw6h7Tc/tNosTMFOKx6zZddlZqQyO4LNGUaZQkrFxxfPKHO6mnlAXqrBsixZ6OiPrynKdMxvpetaL34nip3Uz9m77+TiYsxVtThmBlOYq/MKNO2W1OgEAWrazixLgrKPRMjwLn5SS4uF9KV9WYIRkeJc3Y8NgVhCfpMueFSAyf7LSOkee2s9BPp9P6448/NnGlyp4Ss9P/TsiBsWIX217reX388MMPT++p4NplrdZ9VwZEr4C24VqqheddVrObg2KJa21jtpyXyzvgmJxARBoPx8bfACfpSKaqTFjNg/eim/ubN28OxYLXGoY3GAwGgyvBq8Sj9cvtGjHKiiCLStmFHRi3omDvWlvpJcaBnFWRMjmJ+r6LOay1rW1yMbyUxZha2dRj87MkYeQkk+jf77IpU1YmffaO4V0iwUaGV68l4yCpFUpFsnzJHFyWZmLCSV5trW2DTAqpCzWWIqT4Mq+h8w4IbEPjmCuZXWL27tyR0XeSYkISC04tu+p+kpRZxePj4/r48eOGkdS6OEqKMfNWcLWASWha7JbPu7WevUwfPnx48d2uebDAPAeegzpG3sucJwWpu9ZSjM+6TEt9xno7xdbYALleN3rM0n3ssvrZQov3mVs7l9ZyrjUMbzAYDAZXgosbwN7f328soxoD0S9yYhNHarb4WWdlpnYVbKbZ1d+QtaUaOLftJSDr7Jhmsv5p0TurKWWspkzMtbbZmHuvdRtnVTrc3t5urL1qzXJt0AJl1mYFryEzft34E4tm7MOdJ64Nxkccw0sgc+mEx1lL5dgTx8ZYe6oLXGtffUbomAQZBZmMm9fDw0MrBP7p06dNJq7YwFovMw3rsTqmlQSyeRydi3qMH3/8ca211k8//fTiM3pEKnhd6IERi6rz0jZsHsxMbF1jZY+u5ZnpWlvmWtcu4+a6Tnquq0USY21rbZ+nyZPh6vBY16hX593hOrnkWTwMbzAYDAbLCsAfAAAPZklEQVRXgYsZ3t3d3abKv2Yi1V/8tbb+VtfyZ081JMW+1so6nKkZYd0+NYLtGNfemJ2VSka1F59zY0t1hS5LMWW5pszLtbaxKJ4/V4dHq3kv+7PGf50Fl+I6tIydlibPA+MHGnfN8NXcUvNOx57YQobM0cWiGLNJzNXNj/NycT5C51GWvOZJr4djI6n+srsnUyZ2qm9183l8fNyNyfC61DY+YkdkQN352tNd5f1T6yO1jlQzJ2ZFFl3nfjQeV9eoPvv+++9fzIN6rPRO1e+S4VPZpV5/xthT+yGdOzaVrcfR2LVtV6OcvAPc51pbFjp1eIPBYDAYAPODNxgMBoOrwKvEoxkQrgWgv/3221prmzBB94YrHqb7M0k/VborSs3AOAOzXZCd+2epgQNdZylpov59tDiy7o9zTu5Qdzy6GJlkUl0ZdMXQHea2cWnuaY5KeKIrphOCJjq3RRIqTgXUaz2ncuscs0O0XD9dOxK6gN3aoTuf1077cIkuPJ+pi7STwdP89Eq3tJPqS4Lgbl0LdDE5IQWC7W2+fPkSr6/c4TxPde3ovffv378Yi953rtnkPksJL13iC117roQqrQMWxTvprSQ4T5dtPR7noessV6ZeXdKSxqQQlc4jy2+69cBnvwulMClFnzE5zJXOuGSoPQzDGwwGg8FV4OKklWppuWJeyifJWkmCxmttE1mSZeiKrMmwNDZZXE7CihZBSkd3KbFJfqhLvNkLjnfNKck6yCAcG+YYUxp6nQNLTFLCgxMZuERUoGuuy2A+4Zh5aumUZLuc6DHT0HXOneA0QUZ0pJRlT7S6fs5jMwHG3TNsM8TkFCYxVIubrCe1+nFMnmUcSYi4ftaVANVjvX379mmc8iI5uUDes0lcfK3t9Wdhtpgxz1v9jpqoStBa11rPwZrQxzmzqJpegwq2z0mlOxVsqiro2ah9usatYnbaVmURFHfuxDL2SnfW2j7PNB+2IXIF7vSqHMEwvMFgMBhcBS5meF999dWT79f5r2UV0dcsS6GTtWKKKi3hTn7ItcdYKzcldGDas7Pskz+fMTyXjiwkIWAX90kp8118JDG8lKa8Vi5D0HdlcdXUbDK8vQLQ2lqqvifQC0CW5qzYVOyaRJ2PxKsEx0Zd+5963FSo3Y2Zx3etUFKLFVdQTybPGA5jeM77QSZJ1PlzbPSYuCJs19YreQju7u7Wt99++8SIxC6c3BRjXfRCObFyjY8sgyUadX2wQemvv/661tpKczn25DxV7v+K5GWgt62yQ15vPZs1ZidWLVC6TgxPhedigE6yMcWqWUq11rYBLOehOdQSFMbuLpKrPPzNwWAwGAz+xriI4d3e3q53795tLKJqwYkRyALSL3Mn4somncKe9Nda2xgd/dMuE41WOK1A5xPmWPbichWJDbLI07WFSZmjyRqt7yVL1RXjM57Dhp9idi6OITw8PLTMRjHgtbZxMs6/g7PS0/VIxfdrbdkMGQo9DvVvxriOxKIEd73rtm4dCEkk3cWmUlYmM1a7a5aK5V1xPC1vZmJW74CLm3dZmjXDV6zJSQymDGtma9btu/yCuu8KMSAxHsUVxZZcWyfe73tygRVpjFwH9RyT4fH86jq57GC9p1fNV8yOz1m3H2bmM6/DjYX/c35rPT+DxDoveRYPwxsMBoPBVeBVDI8ZT9Wq0N+ywtii3VnNdf/d/10GnCBGyaaH1UpjXK+LKxH8LLVvcePeE1PtxKP52rWwIXNlTIe1ivVvMj3G8lztnl7/+uuvttbw7u5u48/v4nKpFqceg5l2e5ZiRRI2Ty2u6nt7cTg3n8T0eXyXcZledbxufdPSJxvoPAt7Qt71M54bxgErc2Ecq6vD03FZg1ivdWoHlOqB6/x53lNmav1fjIfZ4PVeWOsl60nttLoWain+zzh353ni3JnpWWXDKGnILE3WQNb8DbLa5DHp5s7njmvcq2eRMmRHWmwwGAwGA+BVdXj8Na5ZPqzMZ9amyzJM1jEtRGfFJ9aU2svX91xtWQKtQFq1ncB1UqCg5VutmKSsckS1hVmvqb1SZWvM0iQbcJmdrkFvioNo7ZChOmbK/1M7JzfnlHlJtYe6P36XrLGC15KZdc5KTyLKiWHWMTL2mGorXU0lY7YuK5PjOGopuxq4vZrEeq4Yv+qs9Nvb2/XNN988HUfPmHpPi4GQRTFu5rIY9xQ7HNMXKyID61i8zjPb9VDxp55bxh6pRtWxUMbqj7BCHZv1dszJcDH4dD/xOeeeIcwg17aKjbrnCuO2RzAMbzAYDAZXgfnBGwwGg8FV4FUdzwVR4krRKS3GILjcEc4lklw8Kemjfof0PLkg6990VfD4jkYniaWu8Dy55Dif6vJxiSwVdB+4dOtUgOwkpVhYnlxmLqW4frcTj3Yuzbq/JK5Lebp6TujaSa5MJ1qeOnVzjp1ALteoK0xngk7qg+bOCfdBN1VXPM5rxmsrHOn7mK6N24buxM51Vu+9zk1/e3u7KVKuyRaas8SjCeeWZJjFdYCv29bjsTM33cYu9MBryG2OYK8Mx5Un8budyLfeY5E/58tzV/frEqnqvuu9kcprKDRdf2OcQMVRYf5heIPBYDC4CrwqaYXWc7UQFIAle6EIsgtQO+kZh7ptx/7Wyu1U1srJCh2SMG5X/EjLJhWRO+bC+ZBtMJjNv9faJqA4VuBYX/2OK2xlicFem47T6bSZj2uFwv2TxR0pG0nb1LXD8boWQjxeCshz/Tkxb36XzM4xITLTlIDSMW8Wngudhb/Xnd1tw3NDRubE0Y8kyciCF9twUnx67nBOZLt1DEmui0LNnOdaW08VhYy78iudF7YQYpnEWl6gv75Pb5XblmUJYmmuxGQvWaW7BukZqHk5lk15M3pkXNsjlSNc0m5NGIY3GAwGg6vAqxrA8u/KFGjN6f+uBICF7Kno1aWy03pJ8bgKWpWMrbiWKy42V7elde7S0lMReWdpJ0uO7MDNl+ecTM+lsu+lvVeGRyusY17n83k9PDxEBlbf24t1HhHOTqzDWaQplsdYW90f2QulxlxZyt74u3kxpsHCcxdvTqnsfHXxdI6dZRgu7kfBcx63MiZXcpLY3vl8Xufz+YlVCc5DwYJoNafWunVSWGn98vzUImsxHY2BnivX7DTF1l0cnkjlPnx2uHY9lC4TW2MxeX2PsTuKRbOVUj0e48vuPiIktk1Rbs2nNhnXZzrOu3fvDjeBHYY3GAwGg6vAxTG8KgCsX9X6y02xYX1GaSrXxDO1k3BCrAItG1oRLlaQWtCzaLXL0kwZUB3Do4XPQtNqadMKTyzEySwxHpeKll1mZxJtdXFO7b9awnvMmtfUNQUlq+A+6znfK1Z3Bec8HmMLZPouw5cgm3FI7JaZq85KT4zeFauT9e15IVzhborZORaamjzzvNZ7k+vq4eEhnrvT6bQ+fvz41GS1E4TXPsRQtH8nfi72wucP73sxIxVB17kw74DjqOeLeQw6vjLbxVycGENqWs015fIb6HXTcRmvq3+L6SU2qHNfr2mKTQpdrgTXNZ+RdV46X1oP79+/jwyYGIY3GAwGg6vAxTG8m5ubjQ+6WiT6VacFpO/q19nVqe297jWlrN91PmZB1hKZnSwvJ65c5++Q2FsdE63jLsM0xRmFLjMyMVWyNycETXbAa+yYpJuzQ93W1XPxPHEsnQTUEaHxuq96vNSCqZP6Yg1qyiit7zkR5bW2zNuNnZ6FjuGnxpg8512mZPJKuH27GHSdj4vddF4b4nQ6vYifucxkgfFDXR8xF8WK1nrODBR74fjZxqc2IeWzghJgZFH1eGoppP851npOUhZuenbUbVMT3CQfVufFBrAUk3bZk6mlGFu1ubZOrEWmd8BlLtfnz4hHDwaDwWBQcDHDu7u7e/ol77Im2fiVrYScqGqKV9FCqcfby8rsxKpp8ZBR1DqdlKXJeXdsjfOhVeaslCQ4TPbh2sOkuihnNab97alf1P2dTqf2+zc3NxsrulP5SFlrR1jBkXOcrgdZwhGLO2XR1ve4jjm2bh10cT6OMdUzMsPOsSy2Y+G8XL3XXvapq9dNAtMO5/N5ff78eZPN6BiejsF7wDVXraL3az0zPWbcMtbn9kdvETOi13r2bgmMcXHMdY700qQYnsuN4P8aO9e7e4/rjNffNf/mvFJWav2b8V/+X8fIZ9VRdrfWMLzBYDAYXAnmB28wGAwGV4FXdTxP6aZrPVNeUnsWzLoCZtJyJiLIteDcKXT5UPqmKyKn+yalAh+Bc+t0wtIV7v2UNNKJOic3SBJorftP5QhOZIDuuz1X4/l83gj1OhFiljsIdH/U/bi07LpP9z9FEJL0W+fSZJF6tw3XKI/Dfbr9JVdmJ8a+J2V3iXtScDJhXCtMinHPiSOQaEE69/VvJkEwiai6xpTAoudZ6lfZJUlRektuUXe9mGiW3JRObo+hhr3wT50HrwfXYb0H+R7LyHTOXJmHisM5n07eLV1TupVdMk4XAkgYhjcYDAaDq8DFDO/t27ebdH1XCMxApWN23CYlaPD/KoXD4krKkzlB3r2UXsfEjshnHUXqPHxJITjZWpeAwvl0hZ//TaJLFRYnzufzenx8jGnHbm5Km2aZRUVKrqB12bEM7pfrzEmw1XnVV77PY7rjdCBrEkMhe+tEC1LHdbeW90oa3LYaU2LmnddD6FpLieE5Zsfx8frwPnFtZvRZLVlYK8sk1uPx3tKacYLZKdGEhfqOcQv0aPD50LE1IUl/rbUVrdD41XaJ7Xrq+UzC80k0vW6TZPCYQFbfO3L/EMPwBoPBYHAVuFha7O7uLlrEa2WGx7IE58ellZ5ko1wciXJJR9q1CMl6rcfZsyaOWM/CXqyyfpZia0nk2e13T5bsyH6ddc3rtHeOHh8fN3GkaunvpSQ7NpuKxlN8pILjTw1nXcE8P2Nc4YgQdBqPO8dJcNwV+++JINOz0MVAaJ27Mp+9bRwYa++Ek/Xc6Upl0v1BhlfZDO8tQayFrc7cc0etaijm4MogUilDV9TP51lqaebELbjOKLPmmC3vG81H54KtjGppR/I6Kb4p9lvPI1sicY3q/+rV4/W/v78/zPaG4Q0Gg8HgKnBzSYbLzc3Nv9da//rfDWfwf4B/ns/nf/DNWTuDA5i1M3gt7NohLvrBGwwGg8Hg74pxaQ4Gg8HgKjA/eIPBYDC4CswP3mAwGAyuAvODNxgMBoOrwPzgDQaDweAqMD94g8FgMLgKzA/eYDAYDK4C84M3GAwGg6vA/OANBoPB4CrwH/7FpVj8bf0vAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "============================\n", + "Faces dataset decompositions\n", + "============================\n", + "\n", + "This example applies to :ref:`olivetti_faces` different unsupervised\n", + "matrix decomposition (dimension reduction) methods from the module\n", + ":py:mod:`sklearn.decomposition` (see the documentation chapter\n", + ":ref:`decompositions`) .\n", + "\n", + "\"\"\"\n", + "print(__doc__)\n", + "\n", + "# Authors: Vlad Niculae, Alexandre Gramfort\n", + "# License: BSD 3 clause\n", + "\n", + "import logging\n", + "from time import time\n", + "\n", + "from numpy.random import RandomState\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from sklearn.datasets import fetch_olivetti_faces\n", + "from sklearn.cluster import MiniBatchKMeans\n", + "from sklearn import decomposition\n", + "\n", + "# Display progress logs on stdout\n", + "logging.basicConfig(level=logging.INFO,\n", + " format='%(asctime)s %(levelname)s %(message)s')\n", + "n_row, n_col = 2, 3\n", + "n_components = n_row * n_col\n", + "image_shape = (64, 64)\n", + "rng = RandomState(0)\n", + "\n", + "# #############################################################################\n", + "# Load faces data\n", + "dataset = fetch_olivetti_faces(shuffle=True, random_state=rng)\n", + "faces = dataset.data\n", + "\n", + "n_samples, n_features = faces.shape\n", + "\n", + "# global centering\n", + "faces_centered = faces - faces.mean(axis=0)\n", + "\n", + "# local centering\n", + "faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)\n", + "\n", + "print(\"Dataset consists of %d faces\" % n_samples)\n", + "\n", + "\n", + "def plot_gallery(title, images, n_col=n_col, n_row=n_row):\n", + " plt.figure(figsize=(2. * n_col, 2.26 * n_row))\n", + " plt.suptitle(title, size=16)\n", + " for i, comp in enumerate(images):\n", + " plt.subplot(n_row, n_col, i + 1)\n", + " vmax = max(comp.max(), -comp.min())\n", + " plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,\n", + " interpolation='nearest',\n", + " vmin=-vmax, vmax=vmax)\n", + " plt.xticks(())\n", + " plt.yticks(())\n", + " plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.)\n", + "\n", + "# #############################################################################\n", + "# List of the different estimators, whether to center and transpose the\n", + "# problem, and whether the transformer uses the clustering API.\n", + "estimators = [\n", + " ('Eigenfaces - PCA using randomized SVD',\n", + " decomposition.PCA(n_components=n_components, svd_solver='randomized',\n", + " whiten=True),\n", + " True),\n", + "\n", + " ('Non-negative components - NMF (Sklearn)',\n", + " decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),\n", + " False),\n", + " \n", + " ('Non-negative components - NMF (Gensim)',\n", + " NmfWrapper(\n", + " chunksize=10,\n", + " id2word={idx:idx for idx in range(faces.shape[1])},\n", + " num_topics=n_components,\n", + " passes=5,\n", + " minimum_probability=0\n", + " ),\n", + " False),\n", + "\n", + " ('Independent components - FastICA',\n", + " decomposition.FastICA(n_components=n_components, whiten=True),\n", + " True),\n", + "\n", + " ('Sparse comp. - MiniBatchSparsePCA',\n", + " decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,\n", + " n_iter=100, batch_size=3,\n", + " random_state=rng),\n", + " True),\n", + "\n", + " ('MiniBatchDictionaryLearning',\n", + " decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,\n", + " n_iter=50, batch_size=3,\n", + " random_state=rng),\n", + " True),\n", + "\n", + " ('Cluster centers - MiniBatchKMeans',\n", + " MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,\n", + " max_iter=50, random_state=rng),\n", + " True),\n", + "\n", + " ('Factor Analysis components - FA',\n", + " decomposition.FactorAnalysis(n_components=n_components, max_iter=2),\n", + " True),\n", + "]\n", + "\n", + "\n", + "# #############################################################################\n", + "# Plot a sample of the input data\n", + "\n", + "plot_gallery(\"First centered Olivetti faces\", faces_centered[:n_components])\n", + "\n", + "# #############################################################################\n", + "# Do the estimation and plot it\n", + "\n", + "for name, estimator, center in estimators:\n", + " print(\"Extracting the top %d %s...\" % (n_components, name))\n", + " t0 = time()\n", + " data = faces\n", + " if center:\n", + " data = faces_centered\n", + " estimator.fit(data)\n", + " train_time = (time() - t0)\n", + " print(\"done in %0.3fs\" % train_time)\n", + " if hasattr(estimator, 'cluster_centers_'):\n", + " components_ = estimator.cluster_centers_\n", + " else:\n", + " components_ = estimator.components_\n", + "\n", + " # Plot an image representing the pixelwise variance provided by the\n", + " # estimator e.g its noise_variance_ attribute. The Eigenfaces estimator,\n", + " # via the PCA decomposition, also provides a scalar noise_variance_\n", + " # (the mean of pixelwise variance) that cannot be displayed as an image\n", + " # so we skip it.\n", + " if (hasattr(estimator, 'noise_variance_') and\n", + " estimator.noise_variance_.ndim > 0): # Skip the Eigenfaces case\n", + " plot_gallery(\"Pixelwise variance\",\n", + " estimator.noise_variance_.reshape(1, -1), n_col=1,\n", + " n_row=1)\n", + " plot_gallery('%s - Train time %.1fs' % (name, train_time),\n", + " components_[:n_components])\n", + "\n", + "plt.show()" + ] + }, { "cell_type": "markdown", "metadata": {}, From 8c47ce0595ece48249b3f58345b2614518571e87 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 14:47:38 +0300 Subject: [PATCH 040/144] Remove redundant code --- docs/notebooks/nmf_benchmark.ipynb | 10100 +-------------------------- 1 file changed, 4 insertions(+), 10096 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 06c4b7dd2a..b8b3cf9493 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -966,10103 +966,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Faces dataset decompositions" + "## Olivietti faces + Gensim NMF" ] }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[[(0, 0.6694215),\n", - " (1, 0.6363636),\n", - " (2, 0.6487603),\n", - " (3, 0.6859504),\n", - " (4, 0.7107438),\n", - " (5, 0.76033056),\n", - " (6, 0.76859504),\n", - " (7, 0.8057851),\n", - " (8, 0.7933884),\n", - " (9, 0.80991733),\n", - " (10, 0.8057851),\n", - " (11, 0.79752064),\n", - " (12, 0.7892562),\n", - " (13, 0.79752064),\n", - " (14, 0.7933884),\n", - " (15, 0.78099173),\n", - " (16, 0.78512394),\n", - " (17, 0.79752064),\n", - " (18, 0.79752064),\n", - " (19, 0.79752064),\n", - " (20, 0.79752064),\n", - " (21, 0.8016529),\n", - " (22, 0.79752064),\n", - " (23, 0.8016529),\n", - " (24, 0.7768595),\n", - " (25, 0.78512394),\n", - " (26, 0.7933884),\n", - " (27, 0.77272725),\n", - " (28, 0.7768595),\n", - " (29, 0.7892562),\n", - " (30, 0.79752064),\n", - " (31, 0.7892562),\n", - " (32, 0.7892562),\n", - " (33, 0.7768595),\n", - " (34, 0.76033056),\n", - " (35, 0.75619835),\n", - " (36, 0.77272725),\n", - " (37, 0.76859504),\n", - " (38, 0.76859504),\n", - " (39, 0.75206614),\n", - " (40, 0.72727275),\n", - " (41, 0.72727275),\n", - " (42, 0.6983471),\n", - " (43, 0.6818182),\n", - " (44, 0.6694215),\n", - " (45, 0.6446281),\n", - " (46, 0.6363636),\n", - " (47, 0.6198347),\n", - " (48, 0.60330576),\n", - " (49, 0.6198347),\n", - " (50, 0.5785124),\n", - " (51, 0.59090906),\n", - " (52, 0.5785124),\n", - " (53, 0.57438016),\n", - " (54, 0.54545456),\n", - " (55, 0.5247934),\n", - " (56, 0.4876033),\n", - " (57, 0.42975205),\n", - " (58, 0.39256197),\n", - " (59, 0.36363637),\n", - " (60, 0.2603306),\n", - " (61, 0.14049587),\n", - " (62, 0.2603306),\n", - " (63, 0.30165288),\n", - " (64, 0.661157),\n", - " (65, 0.62396693),\n", - " (66, 0.6652893),\n", - " (67, 0.6983471),\n", - " (68, 0.73966944),\n", - " (69, 0.76859504),\n", - " (70, 0.78099173),\n", - " (71, 0.79752064),\n", - " (72, 0.8057851),\n", - " (73, 0.80991733),\n", - " (74, 0.80991733),\n", - " (75, 0.80991733),\n", - " (76, 0.8057851),\n", - " (77, 0.7933884),\n", - " (78, 0.7933884),\n", - " (79, 0.7768595),\n", - " (80, 0.79752064),\n", - " (81, 0.8057851),\n", - " (82, 0.8140496),\n", - " (83, 0.822314),\n", - " (84, 0.8140496),\n", - " (85, 0.8016529),\n", - " (86, 0.80991733),\n", - " (87, 0.7892562),\n", - " (88, 0.79752064),\n", - " (89, 0.79752064),\n", - " (90, 0.8016529),\n", - " (91, 0.78099173),\n", - " (92, 0.77272725),\n", - " (93, 0.7768595),\n", - " (94, 0.7933884),\n", - " (95, 0.7892562),\n", - " (96, 0.78512394),\n", - " (97, 0.7768595),\n", - " (98, 0.7892562),\n", - " (99, 0.76033056),\n", - " (100, 0.75619835),\n", - " (101, 0.7644628),\n", - " (102, 0.7644628),\n", - " (103, 0.75619835),\n", - " (104, 0.74793386),\n", - " (105, 0.73966944),\n", - " (106, 0.71900827),\n", - " (107, 0.7107438),\n", - " (108, 0.6859504),\n", - " (109, 0.6652893),\n", - " (110, 0.6363636),\n", - " (111, 0.62396693),\n", - " (112, 0.60330576),\n", - " (113, 0.58264464),\n", - " (114, 0.59917355),\n", - " (115, 0.59917355),\n", - " (116, 0.58264464),\n", - " (117, 0.57438016),\n", - " (118, 0.57024795),\n", - " (119, 0.5371901),\n", - " (120, 0.5082645),\n", - " (121, 0.46280992),\n", - " (122, 0.39256197),\n", - " (123, 0.38842976),\n", - " (124, 0.29752067),\n", - " (125, 0.17355372),\n", - " (126, 0.1570248),\n", - " (127, 0.29752067),\n", - " (128, 0.6280992),\n", - " (129, 0.6570248),\n", - " (130, 0.6446281),\n", - " (131, 0.7107438),\n", - " (132, 0.74793386),\n", - " (133, 0.77272725),\n", - " (134, 0.8016529),\n", - " (135, 0.79752064),\n", - " (136, 0.8057851),\n", - " (137, 0.80991733),\n", - " (138, 0.8057851),\n", - " (139, 0.8016529),\n", - " (140, 0.79752064),\n", - " (141, 0.8016529),\n", - " (142, 0.79752064),\n", - " (143, 0.8016529),\n", - " (144, 0.8140496),\n", - " (145, 0.8264463),\n", - " (146, 0.8264463),\n", - " (147, 0.8347107),\n", - " (148, 0.822314),\n", - " (149, 0.8057851),\n", - " (150, 0.8264463),\n", - " (151, 0.8057851),\n", - " (152, 0.8057851),\n", - " (153, 0.8057851),\n", - " (154, 0.79752064),\n", - " (155, 0.7892562),\n", - " (156, 0.76033056),\n", - " (157, 0.7892562),\n", - " (158, 0.7892562),\n", - " (159, 0.7768595),\n", - " (160, 0.77272725),\n", - " (161, 0.78512394),\n", - " (162, 0.78512394),\n", - " (163, 0.8016529),\n", - " (164, 0.75619835),\n", - " (165, 0.7644628),\n", - " (166, 0.76859504),\n", - " (167, 0.76033056),\n", - " (168, 0.76033056),\n", - " (169, 0.75619835),\n", - " (170, 0.71900827),\n", - " (171, 0.73966944),\n", - " (172, 0.7107438),\n", - " (173, 0.6942149),\n", - " (174, 0.6652893),\n", - " (175, 0.6528926),\n", - " (176, 0.62396693),\n", - " (177, 0.5785124),\n", - " (178, 0.57024795),\n", - " (179, 0.57438016),\n", - " (180, 0.59917355),\n", - " (181, 0.59090906),\n", - " (182, 0.57024795),\n", - " (183, 0.5495868),\n", - " (184, 0.5165289),\n", - " (185, 0.4752066),\n", - " (186, 0.42975205),\n", - " (187, 0.38016528),\n", - " (188, 0.3553719),\n", - " (189, 0.22727273),\n", - " (190, 0.12809917),\n", - " (191, 0.22727273),\n", - " (192, 0.59917355),\n", - " (193, 0.6818182),\n", - " (194, 0.6404959),\n", - " (195, 0.71487606),\n", - " (196, 0.75619835),\n", - " (197, 0.7768595),\n", - " (198, 0.8016529),\n", - " (199, 0.8016529),\n", - " (200, 0.8057851),\n", - " (201, 0.8140496),\n", - " (202, 0.8016529),\n", - " (203, 0.8016529),\n", - " (204, 0.8016529),\n", - " (205, 0.8140496),\n", - " (206, 0.8140496),\n", - " (207, 0.8181818),\n", - " (208, 0.8264463),\n", - " (209, 0.8305785),\n", - " (210, 0.8347107),\n", - " (211, 0.8347107),\n", - " (212, 0.838843),\n", - " (213, 0.8305785),\n", - " (214, 0.8347107),\n", - " (215, 0.8305785),\n", - " (216, 0.822314),\n", - " (217, 0.8181818),\n", - " (218, 0.8181818),\n", - " (219, 0.79752064),\n", - " (220, 0.7644628),\n", - " (221, 0.79752064),\n", - " (222, 0.79752064),\n", - " (223, 0.77272725),\n", - " (224, 0.76033056),\n", - " (225, 0.78512394),\n", - " (226, 0.7892562),\n", - " (227, 0.8140496),\n", - " (228, 0.78512394),\n", - " (229, 0.78512394),\n", - " (230, 0.78512394),\n", - " (231, 0.78512394),\n", - " (232, 0.7768595),\n", - " (233, 0.78099173),\n", - " (234, 0.73966944),\n", - " (235, 0.7355372),\n", - " (236, 0.73140496),\n", - " (237, 0.70247936),\n", - " (238, 0.6859504),\n", - " (239, 0.6859504),\n", - " (240, 0.6404959),\n", - " (241, 0.61157024),\n", - " (242, 0.59090906),\n", - " (243, 0.5495868),\n", - " (244, 0.5785124),\n", - " (245, 0.59090906),\n", - " (246, 0.58677685),\n", - " (247, 0.56198347),\n", - " (248, 0.5247934),\n", - " (249, 0.48347107),\n", - " (250, 0.44214877),\n", - " (251, 0.38429752),\n", - " (252, 0.37603307),\n", - " (253, 0.30991736),\n", - " (254, 0.1322314),\n", - " (255, 0.18595041),\n", - " (256, 0.59917355),\n", - " (257, 0.6818182),\n", - " (258, 0.6652893),\n", - " (259, 0.71900827),\n", - " (260, 0.76033056),\n", - " (261, 0.78099173),\n", - " (262, 0.7933884),\n", - " (263, 0.8181818),\n", - " (264, 0.8140496),\n", - " (265, 0.80991733),\n", - " (266, 0.8016529),\n", - " (267, 0.80991733),\n", - " (268, 0.8140496),\n", - " (269, 0.8181818),\n", - " (270, 0.822314),\n", - " (271, 0.8140496),\n", - " (272, 0.8181818),\n", - " (273, 0.8305785),\n", - " (274, 0.838843),\n", - " (275, 0.8429752),\n", - " (276, 0.8347107),\n", - " (277, 0.8471074),\n", - " (278, 0.8305785),\n", - " (279, 0.8347107),\n", - " (280, 0.8347107),\n", - " (281, 0.8347107),\n", - " (282, 0.8305785),\n", - " (283, 0.8181818),\n", - " (284, 0.7892562),\n", - " (285, 0.8057851),\n", - " (286, 0.8140496),\n", - " (287, 0.78099173),\n", - " (288, 0.7644628),\n", - " (289, 0.78512394),\n", - " (290, 0.80991733),\n", - " (291, 0.8264463),\n", - " (292, 0.80991733),\n", - " (293, 0.8016529),\n", - " (294, 0.8016529),\n", - " (295, 0.8057851),\n", - " (296, 0.7933884),\n", - " (297, 0.7933884),\n", - " (298, 0.75206614),\n", - " (299, 0.75619835),\n", - " (300, 0.7355372),\n", - " (301, 0.7107438),\n", - " (302, 0.6942149),\n", - " (303, 0.677686),\n", - " (304, 0.6446281),\n", - " (305, 0.62396693),\n", - " (306, 0.61570245),\n", - " (307, 0.59090906),\n", - " (308, 0.5785124),\n", - " (309, 0.5785124),\n", - " (310, 0.58264464),\n", - " (311, 0.57438016),\n", - " (312, 0.5123967),\n", - " (313, 0.4876033),\n", - " (314, 0.44214877),\n", - " (315, 0.38842976),\n", - " (316, 0.3677686),\n", - " (317, 0.37603307),\n", - " (318, 0.21900827),\n", - " (319, 0.13636364),\n", - " (320, 0.59090906),\n", - " (321, 0.69008267),\n", - " (322, 0.6818182),\n", - " (323, 0.72727275),\n", - " (324, 0.7644628),\n", - " (325, 0.78512394),\n", - " (326, 0.8057851),\n", - " (327, 0.80991733),\n", - " (328, 0.8140496),\n", - " (329, 0.8057851),\n", - " (330, 0.8057851),\n", - " (331, 0.8057851),\n", - " (332, 0.79752064),\n", - " (333, 0.7892562),\n", - " (334, 0.8057851),\n", - " (335, 0.8140496),\n", - " (336, 0.8181818),\n", - " (337, 0.8305785),\n", - " (338, 0.8471074),\n", - " (339, 0.8553719),\n", - " (340, 0.8512397),\n", - " (341, 0.8553719),\n", - " (342, 0.8471074),\n", - " (343, 0.8429752),\n", - " (344, 0.8429752),\n", - " (345, 0.8429752),\n", - " (346, 0.838843),\n", - " (347, 0.8264463),\n", - " (348, 0.8181818),\n", - " (349, 0.80991733),\n", - " (350, 0.8347107),\n", - " (351, 0.8057851),\n", - " (352, 0.78099173),\n", - " (353, 0.7933884),\n", - " (354, 0.8057851),\n", - " (355, 0.838843),\n", - " (356, 0.8305785),\n", - " (357, 0.8305785),\n", - " (358, 0.8305785),\n", - " (359, 0.8181818),\n", - " (360, 0.8057851),\n", - " (361, 0.79752064),\n", - " (362, 0.76859504),\n", - " (363, 0.75619835),\n", - " (364, 0.71900827),\n", - " (365, 0.72727275),\n", - " (366, 0.70247936),\n", - " (367, 0.6652893),\n", - " (368, 0.6487603),\n", - " (369, 0.61570245),\n", - " (370, 0.58677685),\n", - " (371, 0.60330576),\n", - " (372, 0.59090906),\n", - " (373, 0.57438016),\n", - " (374, 0.5785124),\n", - " (375, 0.553719),\n", - " (376, 0.5165289),\n", - " (377, 0.47933885),\n", - " (378, 0.45041323),\n", - " (379, 0.39256197),\n", - " (380, 0.3677686),\n", - " (381, 0.3966942),\n", - " (382, 0.35950413),\n", - " (383, 0.09090909),\n", - " (384, 0.58677685),\n", - " (385, 0.6694215),\n", - " (386, 0.70247936),\n", - " (387, 0.73140496),\n", - " (388, 0.7644628),\n", - " (389, 0.7768595),\n", - " (390, 0.8016529),\n", - " (391, 0.79752064),\n", - " (392, 0.8181818),\n", - " (393, 0.8140496),\n", - " (394, 0.7933884),\n", - " (395, 0.7644628),\n", - " (396, 0.74793386),\n", - " (397, 0.7768595),\n", - " (398, 0.8016529),\n", - " (399, 0.8140496),\n", - " (400, 0.8057851),\n", - " (401, 0.8181818),\n", - " (402, 0.8347107),\n", - " (403, 0.8471074),\n", - " (404, 0.8429752),\n", - " (405, 0.8305785),\n", - " (406, 0.8429752),\n", - " (407, 0.8429752),\n", - " (408, 0.8512397),\n", - " (409, 0.8595041),\n", - " (410, 0.8429752),\n", - " (411, 0.822314),\n", - " (412, 0.8305785),\n", - " (413, 0.80991733),\n", - " (414, 0.8553719),\n", - " (415, 0.822314),\n", - " (416, 0.79752064),\n", - " (417, 0.7933884),\n", - " (418, 0.79752064),\n", - " (419, 0.8305785),\n", - " (420, 0.8512397),\n", - " (421, 0.8512397),\n", - " (422, 0.8347107),\n", - " (423, 0.8264463),\n", - " (424, 0.8057851),\n", - " (425, 0.7892562),\n", - " (426, 0.74380165),\n", - " (427, 0.73140496),\n", - " (428, 0.71487606),\n", - " (429, 0.73140496),\n", - " (430, 0.7107438),\n", - " (431, 0.6818182),\n", - " (432, 0.6694215),\n", - " (433, 0.6446281),\n", - " (434, 0.5785124),\n", - " (435, 0.57024795),\n", - " (436, 0.57024795),\n", - " (437, 0.56198347),\n", - " (438, 0.5661157),\n", - " (439, 0.5371901),\n", - " (440, 0.5123967),\n", - " (441, 0.48347107),\n", - " (442, 0.446281),\n", - " (443, 0.3966942),\n", - " (444, 0.37603307),\n", - " (445, 0.38842976),\n", - " (446, 0.3305785),\n", - " (447, 0.12396694),\n", - " (448, 0.607438),\n", - " (449, 0.6528926),\n", - " (450, 0.6983471),\n", - " (451, 0.73966944),\n", - " (452, 0.76859504),\n", - " (453, 0.78099173),\n", - " (454, 0.77272725),\n", - " (455, 0.8181818),\n", - " (456, 0.8057851),\n", - " (457, 0.78099173),\n", - " (458, 0.74793386),\n", - " (459, 0.7355372),\n", - " (460, 0.74793386),\n", - " (461, 0.75619835),\n", - " (462, 0.78512394),\n", - " (463, 0.7933884),\n", - " (464, 0.78512394),\n", - " (465, 0.7892562),\n", - " (466, 0.78099173),\n", - " (467, 0.77272725),\n", - " (468, 0.74793386),\n", - " (469, 0.75206614),\n", - " (470, 0.76859504),\n", - " (471, 0.80991733),\n", - " (472, 0.8305785),\n", - " (473, 0.8512397),\n", - " (474, 0.838843),\n", - " (475, 0.8140496),\n", - " (476, 0.8305785),\n", - " (477, 0.8181818),\n", - " (478, 0.8636364),\n", - " (479, 0.8347107),\n", - " (480, 0.822314),\n", - " (481, 0.80991733),\n", - " (482, 0.7892562),\n", - " (483, 0.8140496),\n", - " (484, 0.8677686),\n", - " (485, 0.8429752),\n", - " (486, 0.822314),\n", - " (487, 0.8181818),\n", - " (488, 0.7892562),\n", - " (489, 0.74380165),\n", - " (490, 0.69008267),\n", - " (491, 0.6570248),\n", - " (492, 0.6487603),\n", - " (493, 0.6446281),\n", - " (494, 0.6446281),\n", - " (495, 0.677686),\n", - " (496, 0.6570248),\n", - " (497, 0.6404959),\n", - " (498, 0.59917355),\n", - " (499, 0.58264464),\n", - " (500, 0.56198347),\n", - " (501, 0.5206612),\n", - " (502, 0.54545456),\n", - " (503, 0.5371901),\n", - " (504, 0.5082645),\n", - " (505, 0.49586776),\n", - " (506, 0.45041323),\n", - " (507, 0.40495867),\n", - " (508, 0.39256197),\n", - " (509, 0.3553719),\n", - " (510, 0.29752067),\n", - " (511, 0.1446281),\n", - " (512, 0.6363636),\n", - " (513, 0.6570248),\n", - " (514, 0.6983471),\n", - " (515, 0.72727275),\n", - " (516, 0.76033056),\n", - " (517, 0.76859504),\n", - " (518, 0.77272725),\n", - " (519, 0.8016529),\n", - " (520, 0.75206614),\n", - " (521, 0.71900827),\n", - " (522, 0.7231405),\n", - " (523, 0.7355372),\n", - " (524, 0.75619835),\n", - " (525, 0.75619835),\n", - " (526, 0.76859504),\n", - " (527, 0.71900827),\n", - " (528, 0.72727275),\n", - " (529, 0.6652893),\n", - " (530, 0.61157024),\n", - " (531, 0.59504133),\n", - " (532, 0.62396693),\n", - " (533, 0.6735537),\n", - " (534, 0.6570248),\n", - " (535, 0.7231405),\n", - " (536, 0.76033056),\n", - " (537, 0.80991733),\n", - " (538, 0.8305785),\n", - " (539, 0.8181818),\n", - " (540, 0.8264463),\n", - " (541, 0.8016529),\n", - " (542, 0.8347107),\n", - " (543, 0.8264463),\n", - " (544, 0.8429752),\n", - " (545, 0.80991733),\n", - " (546, 0.7644628),\n", - " (547, 0.79752064),\n", - " (548, 0.8512397),\n", - " (549, 0.8305785),\n", - " (550, 0.80991733),\n", - " (551, 0.8016529),\n", - " (552, 0.75206614),\n", - " (553, 0.6818182),\n", - " (554, 0.6280992),\n", - " (555, 0.59504133),\n", - " (556, 0.5413223),\n", - " (557, 0.5206612),\n", - " (558, 0.5413223),\n", - " (559, 0.5661157),\n", - " (560, 0.57438016),\n", - " (561, 0.59090906),\n", - " (562, 0.5785124),\n", - " (563, 0.57438016),\n", - " (564, 0.55785125),\n", - " (565, 0.5495868),\n", - " (566, 0.5247934),\n", - " (567, 0.5247934),\n", - " (568, 0.4752066),\n", - " (569, 0.4876033),\n", - " (570, 0.446281),\n", - " (571, 0.4090909),\n", - " (572, 0.40495867),\n", - " (573, 0.37603307),\n", - " (574, 0.2892562),\n", - " (575, 0.1694215),\n", - " (576, 0.6280992),\n", - " (577, 0.6652893),\n", - " (578, 0.6983471),\n", - " (579, 0.71900827),\n", - " (580, 0.75619835),\n", - " (581, 0.7768595),\n", - " (582, 0.75619835),\n", - " (583, 0.75619835),\n", - " (584, 0.73140496),\n", - " (585, 0.72727275),\n", - " (586, 0.74793386),\n", - " (587, 0.74380165),\n", - " (588, 0.75619835),\n", - " (589, 0.73966944),\n", - " (590, 0.71487606),\n", - " (591, 0.62396693),\n", - " (592, 0.59917355),\n", - " (593, 0.5206612),\n", - " (594, 0.5),\n", - " (595, 0.5041322),\n", - " (596, 0.5661157),\n", - " (597, 0.61570245),\n", - " (598, 0.6404959),\n", - " (599, 0.6735537),\n", - " (600, 0.7231405),\n", - " (601, 0.76859504),\n", - " (602, 0.8140496),\n", - " (603, 0.8140496),\n", - " (604, 0.80991733),\n", - " (605, 0.79752064),\n", - " (606, 0.8057851),\n", - " (607, 0.8057851),\n", - " (608, 0.8512397),\n", - " (609, 0.7892562),\n", - " (610, 0.7355372),\n", - " (611, 0.7644628),\n", - " (612, 0.8264463),\n", - " (613, 0.8057851),\n", - " (614, 0.7644628),\n", - " (615, 0.73966944),\n", - " (616, 0.6818182),\n", - " (617, 0.59504133),\n", - " (618, 0.5661157),\n", - " (619, 0.5206612),\n", - " (620, 0.4752066),\n", - " (621, 0.46694216),\n", - " (622, 0.45867768),\n", - " (623, 0.45454547),\n", - " (624, 0.45454547),\n", - " (625, 0.5082645),\n", - " (626, 0.5661157),\n", - " (627, 0.57438016),\n", - " (628, 0.56198347),\n", - " (629, 0.56198347),\n", - " (630, 0.54545456),\n", - " (631, 0.5082645),\n", - " (632, 0.47933885),\n", - " (633, 0.46694216),\n", - " (634, 0.446281),\n", - " (635, 0.41322315),\n", - " (636, 0.3966942),\n", - " (637, 0.3966942),\n", - " (638, 0.2768595),\n", - " (639, 0.1983471),\n", - " (640, 0.6198347),\n", - " (641, 0.661157),\n", - " (642, 0.6942149),\n", - " (643, 0.70247936),\n", - " (644, 0.73966944),\n", - " (645, 0.76859504),\n", - " (646, 0.71487606),\n", - " (647, 0.76859504),\n", - " (648, 0.74793386),\n", - " (649, 0.73966944),\n", - " (650, 0.74380165),\n", - " (651, 0.71900827),\n", - " (652, 0.6983471),\n", - " (653, 0.677686),\n", - " (654, 0.6735537),\n", - " (655, 0.5785124),\n", - " (656, 0.5289256),\n", - " (657, 0.49173555),\n", - " (658, 0.46694216),\n", - " (659, 0.4752066),\n", - " (660, 0.5082645),\n", - " (661, 0.553719),\n", - " (662, 0.5785124),\n", - " (663, 0.6404959),\n", - " (664, 0.6859504),\n", - " (665, 0.71900827),\n", - " (666, 0.76859504),\n", - " (667, 0.7892562),\n", - " (668, 0.79752064),\n", - " (669, 0.79752064),\n", - " (670, 0.79752064),\n", - " (671, 0.80991733),\n", - " (672, 0.8471074),\n", - " (673, 0.78099173),\n", - " (674, 0.6942149),\n", - " (675, 0.74793386),\n", - " (676, 0.8016529),\n", - " (677, 0.7768595),\n", - " (678, 0.71487606),\n", - " (679, 0.6487603),\n", - " (680, 0.57438016),\n", - " (681, 0.5123967),\n", - " (682, 0.48347107),\n", - " (683, 0.42975205),\n", - " (684, 0.40082645),\n", - " (685, 0.38842976),\n", - " (686, 0.3677686),\n", - " (687, 0.38429752),\n", - " (688, 0.40495867),\n", - " (689, 0.45454547),\n", - " (690, 0.5206612),\n", - " (691, 0.5495868),\n", - " (692, 0.5661157),\n", - " (693, 0.54545456),\n", - " (694, 0.5371901),\n", - " (695, 0.5247934),\n", - " (696, 0.47933885),\n", - " (697, 0.45041323),\n", - " (698, 0.4338843),\n", - " (699, 0.4090909),\n", - " (700, 0.39256197),\n", - " (701, 0.3553719),\n", - " (702, 0.28512397),\n", - " (703, 0.2107438),\n", - " (704, 0.6198347),\n", - " (705, 0.6528926),\n", - " (706, 0.6859504),\n", - " (707, 0.6942149),\n", - " (708, 0.7231405),\n", - " (709, 0.7231405),\n", - " (710, 0.7107438),\n", - " (711, 0.7768595),\n", - " (712, 0.73966944),\n", - " (713, 0.7231405),\n", - " (714, 0.70247936),\n", - " (715, 0.6694215),\n", - " (716, 0.6487603),\n", - " (717, 0.6694215),\n", - " (718, 0.7107438),\n", - " (719, 0.6446281),\n", - " (720, 0.59917355),\n", - " (721, 0.56198347),\n", - " (722, 0.5165289),\n", - " (723, 0.47933885),\n", - " (724, 0.46280992),\n", - " (725, 0.48347107),\n", - " (726, 0.5082645),\n", - " (727, 0.55785125),\n", - " (728, 0.607438),\n", - " (729, 0.6487603),\n", - " (730, 0.7066116),\n", - " (731, 0.76033056),\n", - " (732, 0.7892562),\n", - " (733, 0.78512394),\n", - " (734, 0.8016529),\n", - " (735, 0.822314),\n", - " (736, 0.8471074),\n", - " (737, 0.78512394),\n", - " (738, 0.6983471),\n", - " (739, 0.75619835),\n", - " (740, 0.7933884),\n", - " (741, 0.75206614),\n", - " (742, 0.6528926),\n", - " (743, 0.553719),\n", - " (744, 0.4752066),\n", - " (745, 0.43801653),\n", - " (746, 0.41735536),\n", - " (747, 0.37603307),\n", - " (748, 0.3429752),\n", - " (749, 0.3429752),\n", - " (750, 0.36363637),\n", - " (751, 0.40495867),\n", - " (752, 0.45454547),\n", - " (753, 0.47107437),\n", - " (754, 0.49586776),\n", - " (755, 0.5413223),\n", - " (756, 0.5495868),\n", - " (757, 0.5165289),\n", - " (758, 0.5123967),\n", - " (759, 0.53305787),\n", - " (760, 0.48347107),\n", - " (761, 0.44214877),\n", - " (762, 0.42561984),\n", - " (763, 0.40495867),\n", - " (764, 0.39256197),\n", - " (765, 0.3140496),\n", - " (766, 0.25619835),\n", - " (767, 0.1983471),\n", - " (768, 0.6404959),\n", - " (769, 0.6528926),\n", - " (770, 0.6818182),\n", - " (771, 0.69008267),\n", - " (772, 0.7107438),\n", - " (773, 0.6859504),\n", - " (774, 0.74793386),\n", - " (775, 0.71487606),\n", - " (776, 0.73966944),\n", - " (777, 0.7231405),\n", - " (778, 0.7231405),\n", - " (779, 0.71900827),\n", - " (780, 0.71487606),\n", - " (781, 0.71900827),\n", - " (782, 0.75619835),\n", - " (783, 0.74380165),\n", - " (784, 0.74380165),\n", - " (785, 0.74380165),\n", - " (786, 0.74380165),\n", - " (787, 0.75619835),\n", - " (788, 0.7644628),\n", - " (789, 0.6404959),\n", - " (790, 0.6198347),\n", - " (791, 0.607438),\n", - " (792, 0.60330576),\n", - " (793, 0.59504133),\n", - " (794, 0.6280992),\n", - " (795, 0.6652893),\n", - " (796, 0.6652893),\n", - " (797, 0.6859504),\n", - " (798, 0.71900827),\n", - " (799, 0.75206614),\n", - " (800, 0.77272725),\n", - " (801, 0.7231405),\n", - " (802, 0.6694215),\n", - " (803, 0.70247936),\n", - " (804, 0.7355372),\n", - " (805, 0.677686),\n", - " (806, 0.5495868),\n", - " (807, 0.45454547),\n", - " (808, 0.41322315),\n", - " (809, 0.38016528),\n", - " (810, 0.36363637),\n", - " (811, 0.34710744),\n", - " (812, 0.37190083),\n", - " (813, 0.446281),\n", - " (814, 0.54545456),\n", - " (815, 0.60330576),\n", - " (816, 0.62396693),\n", - " (817, 0.56198347),\n", - " (818, 0.55785125),\n", - " (819, 0.57024795),\n", - " (820, 0.57024795),\n", - " (821, 0.54545456),\n", - " (822, 0.5),\n", - " (823, 0.5123967),\n", - " (824, 0.5123967),\n", - " (825, 0.446281),\n", - " (826, 0.41735536),\n", - " (827, 0.4090909),\n", - " (828, 0.3966942),\n", - " (829, 0.30578512),\n", - " (830, 0.23140496),\n", - " (831, 0.17768595),\n", - " (832, 0.6528926),\n", - " (833, 0.6652893),\n", - " (834, 0.6694215),\n", - " (835, 0.6859504),\n", - " (836, 0.6942149),\n", - " (837, 0.6859504),\n", - " (838, 0.69008267),\n", - " (839, 0.6322314),\n", - " (840, 0.6528926),\n", - " (841, 0.6735537),\n", - " (842, 0.7107438),\n", - " (843, 0.7355372),\n", - " (844, 0.71900827),\n", - " (845, 0.6983471),\n", - " (846, 0.677686),\n", - " (847, 0.7066116),\n", - " (848, 0.6818182),\n", - " (849, 0.6280992),\n", - " (850, 0.61570245),\n", - " (851, 0.62396693),\n", - " (852, 0.607438),\n", - " (853, 0.553719),\n", - " (854, 0.55785125),\n", - " (855, 0.55785125),\n", - " (856, 0.5206612),\n", - " (857, 0.5),\n", - " (858, 0.5165289),\n", - " (859, 0.5289256),\n", - " (860, 0.53305787),\n", - " (861, 0.5495868),\n", - " (862, 0.5785124),\n", - " (863, 0.58677685),\n", - " (864, 0.59504133),\n", - " (865, 0.58264464),\n", - " (866, 0.5495868),\n", - " (867, 0.55785125),\n", - " (868, 0.57024795),\n", - " (869, 0.53305787),\n", - " (870, 0.5),\n", - " (871, 0.45867768),\n", - " (872, 0.446281),\n", - " (873, 0.42561984),\n", - " (874, 0.40082645),\n", - " (875, 0.39256197),\n", - " (876, 0.38842976),\n", - " (877, 0.3966942),\n", - " (878, 0.45867768),\n", - " (879, 0.5289256),\n", - " (880, 0.56198347),\n", - " (881, 0.5247934),\n", - " (882, 0.5123967),\n", - " (883, 0.5289256),\n", - " (884, 0.5413223),\n", - " (885, 0.5495868),\n", - " (886, 0.5),\n", - " (887, 0.48347107),\n", - " (888, 0.48347107),\n", - " (889, 0.46694216),\n", - " (890, 0.40082645),\n", - " (891, 0.39256197),\n", - " (892, 0.40082645),\n", - " (893, 0.3140496),\n", - " (894, 0.23140496),\n", - " (895, 0.17355372),\n", - " (896, 0.6528926),\n", - " (897, 0.6694215),\n", - " (898, 0.6735537),\n", - " (899, 0.6942149),\n", - " (900, 0.6694215),\n", - " (901, 0.6198347),\n", - " (902, 0.57024795),\n", - " (903, 0.6198347),\n", - " (904, 0.6322314),\n", - " (905, 0.6735537),\n", - " (906, 0.7107438),\n", - " (907, 0.6818182),\n", - " (908, 0.59917355),\n", - " (909, 0.6404959),\n", - " (910, 0.6652893),\n", - " (911, 0.75619835),\n", - " (912, 0.6652893),\n", - " (913, 0.5495868),\n", - " (914, 0.5041322),\n", - " (915, 0.5289256),\n", - " (916, 0.5247934),\n", - " (917, 0.4752066),\n", - " (918, 0.4338843),\n", - " (919, 0.53305787),\n", - " (920, 0.54545456),\n", - " (921, 0.5661157),\n", - " (922, 0.60330576),\n", - " (923, 0.5661157),\n", - " (924, 0.446281),\n", - " (925, 0.33471075),\n", - " (926, 0.36363637),\n", - " (927, 0.42561984),\n", - " (928, 0.4338843),\n", - " (929, 0.40495867),\n", - " (930, 0.40082645),\n", - " (931, 0.34710744),\n", - " (932, 0.3429752),\n", - " (933, 0.33471075),\n", - " (934, 0.34710744),\n", - " (935, 0.35123968),\n", - " (936, 0.34710744),\n", - " (937, 0.34710744),\n", - " (938, 0.38016528),\n", - " (939, 0.45454547),\n", - " (940, 0.47107437),\n", - " (941, 0.45041323),\n", - " (942, 0.4214876),\n", - " (943, 0.4090909),\n", - " (944, 0.446281),\n", - " (945, 0.4338843),\n", - " (946, 0.38016528),\n", - " (947, 0.40495867),\n", - " (948, 0.43801653),\n", - " (949, 0.41735536),\n", - " (950, 0.40495867),\n", - " (951, 0.4214876),\n", - " (952, 0.4752066),\n", - " (953, 0.45041323),\n", - " (954, 0.41735536),\n", - " (955, 0.38429752),\n", - " (956, 0.40082645),\n", - " (957, 0.3553719),\n", - " (958, 0.22727273),\n", - " (959, 0.16528925),\n", - " (960, 0.661157),\n", - " (961, 0.6735537),\n", - " (962, 0.6942149),\n", - " (963, 0.6942149),\n", - " (964, 0.59090906),\n", - " (965, 0.61157024),\n", - " (966, 0.6487603),\n", - " (967, 0.6280992),\n", - " (968, 0.6363636),\n", - " (969, 0.6818182),\n", - " (970, 0.6198347),\n", - " (971, 0.60330576),\n", - " (972, 0.6942149),\n", - " (973, 0.6570248),\n", - " (974, 0.5),\n", - " (975, 0.3966942),\n", - " (976, 0.37603307),\n", - " (977, 0.29338843),\n", - " (978, 0.2644628),\n", - " (979, 0.37190083),\n", - " (980, 0.4752066),\n", - " (981, 0.54545456),\n", - " (982, 0.5289256),\n", - " (983, 0.5247934),\n", - " (984, 0.5289256),\n", - " (985, 0.5785124),\n", - " (986, 0.6735537),\n", - " (987, 0.7355372),\n", - " (988, 0.7644628),\n", - " (989, 0.49586776),\n", - " (990, 0.5247934),\n", - " (991, 0.8057851),\n", - " (992, 0.78512394),\n", - " (993, 0.7107438),\n", - " (994, 0.71900827),\n", - " (995, 0.5495868),\n", - " (996, 0.38842976),\n", - " (997, 0.33471075),\n", - " (998, 0.36363637),\n", - " (999, 0.3140496),\n", - " ...],\n", - " [(0, 0.76859504),\n", - " (1, 0.75619835),\n", - " (2, 0.74380165),\n", - " (3, 0.74380165),\n", - " (4, 0.75206614),\n", - " (5, 0.74793386),\n", - " (6, 0.7355372),\n", - " (7, 0.70247936),\n", - " (8, 0.71487606),\n", - " (9, 0.74793386),\n", - " (10, 0.71487606),\n", - " (11, 0.6528926),\n", - " (12, 0.661157),\n", - " (13, 0.59090906),\n", - " (14, 0.59504133),\n", - " (15, 0.59090906),\n", - " (16, 0.58264464),\n", - " (17, 0.58677685),\n", - " (18, 0.59090906),\n", - " (19, 0.58264464),\n", - " (20, 0.58677685),\n", - " (21, 0.5785124),\n", - " (22, 0.57438016),\n", - " (23, 0.55785125),\n", - " (24, 0.57024795),\n", - " (25, 0.57024795),\n", - " (26, 0.5661157),\n", - " (27, 0.55785125),\n", - " (28, 0.5495868),\n", - " (29, 0.553719),\n", - " (30, 0.5495868),\n", - " (31, 0.553719),\n", - " (32, 0.54545456),\n", - " (33, 0.55785125),\n", - " (34, 0.55785125),\n", - " (35, 0.53305787),\n", - " (36, 0.5495868),\n", - " (37, 0.53305787),\n", - " (38, 0.5413223),\n", - " (39, 0.5289256),\n", - " (40, 0.5206612),\n", - " (41, 0.5165289),\n", - " (42, 0.49586776),\n", - " (43, 0.5082645),\n", - " (44, 0.49173555),\n", - " (45, 0.48347107),\n", - " (46, 0.49586776),\n", - " (47, 0.49173555),\n", - " (48, 0.49173555),\n", - " (49, 0.5),\n", - " (50, 0.5206612),\n", - " (51, 0.5247934),\n", - " (52, 0.5247934),\n", - " (53, 0.5371901),\n", - " (54, 0.5413223),\n", - " (55, 0.59090906),\n", - " (56, 0.58677685),\n", - " (57, 0.58264464),\n", - " (58, 0.59090906),\n", - " (59, 0.57438016),\n", - " (60, 0.58677685),\n", - " (61, 0.61570245),\n", - " (62, 0.677686),\n", - " (63, 0.5785124),\n", - " (64, 0.8016529),\n", - " (65, 0.7892562),\n", - " (66, 0.7892562),\n", - " (67, 0.7768595),\n", - " (68, 0.78099173),\n", - " (69, 0.75619835),\n", - " (70, 0.73140496),\n", - " (71, 0.73140496),\n", - " (72, 0.7231405),\n", - " (73, 0.76033056),\n", - " (74, 0.73966944),\n", - " (75, 0.6983471),\n", - " (76, 0.6859504),\n", - " (77, 0.61570245),\n", - " (78, 0.607438),\n", - " (79, 0.59917355),\n", - " (80, 0.58677685),\n", - " (81, 0.58677685),\n", - " (82, 0.59917355),\n", - " (83, 0.60330576),\n", - " (84, 0.60330576),\n", - " (85, 0.59090906),\n", - " (86, 0.59917355),\n", - " (87, 0.57438016),\n", - " (88, 0.59504133),\n", - " (89, 0.59504133),\n", - " (90, 0.58264464),\n", - " (91, 0.57024795),\n", - " (92, 0.5206612),\n", - " (93, 0.5123967),\n", - " (94, 0.5413223),\n", - " (95, 0.54545456),\n", - " (96, 0.553719),\n", - " (97, 0.5661157),\n", - " (98, 0.56198347),\n", - " (99, 0.5371901),\n", - " (100, 0.56198347),\n", - " (101, 0.553719),\n", - " (102, 0.5495868),\n", - " (103, 0.5247934),\n", - " (104, 0.5082645),\n", - " (105, 0.5206612),\n", - " (106, 0.5289256),\n", - " (107, 0.5123967),\n", - " (108, 0.5),\n", - " (109, 0.5),\n", - " (110, 0.5041322),\n", - " (111, 0.49173555),\n", - " (112, 0.5123967),\n", - " (113, 0.5247934),\n", - " (114, 0.5371901),\n", - " (115, 0.5413223),\n", - " (116, 0.5495868),\n", - " (117, 0.55785125),\n", - " (118, 0.58264464),\n", - " (119, 0.59090906),\n", - " (120, 0.607438),\n", - " (121, 0.59504133),\n", - " (122, 0.61157024),\n", - " (123, 0.5785124),\n", - " (124, 0.5785124),\n", - " (125, 0.6198347),\n", - " (126, 0.677686),\n", - " (127, 0.60330576),\n", - " (128, 0.7933884),\n", - " (129, 0.8140496),\n", - " (130, 0.8140496),\n", - " (131, 0.8140496),\n", - " (132, 0.7933884),\n", - " (133, 0.79752064),\n", - " (134, 0.7644628),\n", - " (135, 0.74793386),\n", - " (136, 0.74793386),\n", - " (137, 0.75206614),\n", - " (138, 0.74793386),\n", - " (139, 0.73140496),\n", - " (140, 0.7066116),\n", - " (141, 0.6570248),\n", - " (142, 0.61157024),\n", - " (143, 0.607438),\n", - " (144, 0.60330576),\n", - " (145, 0.59504133),\n", - " (146, 0.58677685),\n", - " (147, 0.61570245),\n", - " (148, 0.6198347),\n", - " (149, 0.62396693),\n", - " (150, 0.60330576),\n", - " (151, 0.59917355),\n", - " (152, 0.60330576),\n", - " (153, 0.61570245),\n", - " (154, 0.59090906),\n", - " (155, 0.59504133),\n", - " (156, 0.5041322),\n", - " (157, 0.45041323),\n", - " (158, 0.5247934),\n", - " (159, 0.5371901),\n", - " (160, 0.553719),\n", - " (161, 0.5661157),\n", - " (162, 0.57024795),\n", - " (163, 0.5413223),\n", - " (164, 0.55785125),\n", - " (165, 0.56198347),\n", - " (166, 0.5785124),\n", - " (167, 0.5247934),\n", - " (168, 0.5247934),\n", - " (169, 0.5289256),\n", - " (170, 0.5371901),\n", - " (171, 0.5206612),\n", - " (172, 0.5),\n", - " (173, 0.5082645),\n", - " (174, 0.5041322),\n", - " (175, 0.5206612),\n", - " (176, 0.53305787),\n", - " (177, 0.53305787),\n", - " (178, 0.5371901),\n", - " (179, 0.56198347),\n", - " (180, 0.57024795),\n", - " (181, 0.57024795),\n", - " (182, 0.57438016),\n", - " (183, 0.58264464),\n", - " (184, 0.607438),\n", - " (185, 0.59917355),\n", - " (186, 0.62396693),\n", - " (187, 0.60330576),\n", - " (188, 0.59504133),\n", - " (189, 0.6198347),\n", - " (190, 0.6694215),\n", - " (191, 0.61157024),\n", - " (192, 0.79752064),\n", - " (193, 0.822314),\n", - " (194, 0.8347107),\n", - " (195, 0.822314),\n", - " (196, 0.8264463),\n", - " (197, 0.7892562),\n", - " (198, 0.7644628),\n", - " (199, 0.75206614),\n", - " (200, 0.74793386),\n", - " (201, 0.74793386),\n", - " (202, 0.73966944),\n", - " (203, 0.6983471),\n", - " (204, 0.69008267),\n", - " (205, 0.661157),\n", - " (206, 0.62396693),\n", - " (207, 0.60330576),\n", - " (208, 0.59917355),\n", - " (209, 0.59504133),\n", - " (210, 0.58677685),\n", - " (211, 0.60330576),\n", - " (212, 0.61157024),\n", - " (213, 0.62396693),\n", - " (214, 0.6280992),\n", - " (215, 0.607438),\n", - " (216, 0.58264464),\n", - " (217, 0.59917355),\n", - " (218, 0.58677685),\n", - " (219, 0.59504133),\n", - " (220, 0.5123967),\n", - " (221, 0.4752066),\n", - " (222, 0.5289256),\n", - " (223, 0.55785125),\n", - " (224, 0.57024795),\n", - " (225, 0.57024795),\n", - " (226, 0.54545456),\n", - " (227, 0.5785124),\n", - " (228, 0.56198347),\n", - " (229, 0.55785125),\n", - " (230, 0.57024795),\n", - " (231, 0.53305787),\n", - " (232, 0.5371901),\n", - " (233, 0.5371901),\n", - " (234, 0.5495868),\n", - " (235, 0.5165289),\n", - " (236, 0.5165289),\n", - " (237, 0.5082645),\n", - " (238, 0.5247934),\n", - " (239, 0.5165289),\n", - " (240, 0.5247934),\n", - " (241, 0.5041322),\n", - " (242, 0.49173555),\n", - " (243, 0.5247934),\n", - " (244, 0.5289256),\n", - " (245, 0.5247934),\n", - " (246, 0.53305787),\n", - " (247, 0.553719),\n", - " (248, 0.58677685),\n", - " (249, 0.6363636),\n", - " (250, 0.6446281),\n", - " (251, 0.6446281),\n", - " (252, 0.661157),\n", - " (253, 0.6487603),\n", - " (254, 0.6652893),\n", - " (255, 0.6446281),\n", - " (256, 0.8140496),\n", - " (257, 0.822314),\n", - " (258, 0.8429752),\n", - " (259, 0.8305785),\n", - " (260, 0.8181818),\n", - " (261, 0.8016529),\n", - " (262, 0.76033056),\n", - " (263, 0.74793386),\n", - " (264, 0.73140496),\n", - " (265, 0.7231405),\n", - " (266, 0.6735537),\n", - " (267, 0.62396693),\n", - " (268, 0.62396693),\n", - " (269, 0.607438),\n", - " (270, 0.58264464),\n", - " (271, 0.57024795),\n", - " (272, 0.55785125),\n", - " (273, 0.5495868),\n", - " (274, 0.54545456),\n", - " (275, 0.53305787),\n", - " (276, 0.55785125),\n", - " (277, 0.553719),\n", - " (278, 0.59090906),\n", - " (279, 0.59504133),\n", - " (280, 0.5661157),\n", - " (281, 0.57438016),\n", - " (282, 0.59090906),\n", - " (283, 0.57438016),\n", - " (284, 0.55785125),\n", - " (285, 0.53305787),\n", - " (286, 0.54545456),\n", - " (287, 0.5661157),\n", - " (288, 0.5785124),\n", - " (289, 0.5785124),\n", - " (290, 0.5495868),\n", - " (291, 0.57438016),\n", - " (292, 0.56198347),\n", - " (293, 0.5495868),\n", - " (294, 0.5661157),\n", - " (295, 0.5206612),\n", - " (296, 0.5413223),\n", - " (297, 0.5206612),\n", - " (298, 0.5165289),\n", - " (299, 0.5165289),\n", - " (300, 0.5123967),\n", - " (301, 0.49173555),\n", - " (302, 0.47107437),\n", - " (303, 0.446281),\n", - " (304, 0.446281),\n", - " (305, 0.4214876),\n", - " (306, 0.4090909),\n", - " (307, 0.4214876),\n", - " (308, 0.43801653),\n", - " (309, 0.46694216),\n", - " (310, 0.5082645),\n", - " (311, 0.5165289),\n", - " (312, 0.553719),\n", - " (313, 0.59090906),\n", - " (314, 0.6363636),\n", - " (315, 0.6652893),\n", - " (316, 0.70247936),\n", - " (317, 0.6942149),\n", - " (318, 0.6735537),\n", - " (319, 0.6528926),\n", - " (320, 0.822314),\n", - " (321, 0.822314),\n", - " (322, 0.8347107),\n", - " (323, 0.8512397),\n", - " (324, 0.79752064),\n", - " (325, 0.8057851),\n", - " (326, 0.77272725),\n", - " (327, 0.7231405),\n", - " (328, 0.6528926),\n", - " (329, 0.6198347),\n", - " (330, 0.60330576),\n", - " (331, 0.57438016),\n", - " (332, 0.5413223),\n", - " (333, 0.5123967),\n", - " (334, 0.47933885),\n", - " (335, 0.446281),\n", - " (336, 0.44214877),\n", - " (337, 0.4090909),\n", - " (338, 0.4338843),\n", - " (339, 0.39256197),\n", - " (340, 0.41322315),\n", - " (341, 0.4338843),\n", - " (342, 0.45867768),\n", - " (343, 0.5371901),\n", - " (344, 0.53305787),\n", - " (345, 0.553719),\n", - " (346, 0.553719),\n", - " (347, 0.5413223),\n", - " (348, 0.5661157),\n", - " (349, 0.54545456),\n", - " (350, 0.54545456),\n", - " (351, 0.5661157),\n", - " (352, 0.5661157),\n", - " (353, 0.57024795),\n", - " (354, 0.553719),\n", - " (355, 0.54545456),\n", - " (356, 0.55785125),\n", - " (357, 0.54545456),\n", - " (358, 0.5413223),\n", - " (359, 0.5041322),\n", - " (360, 0.5041322),\n", - " (361, 0.49586776),\n", - " (362, 0.4876033),\n", - " (363, 0.46280992),\n", - " (364, 0.42561984),\n", - " (365, 0.40082645),\n", - " (366, 0.39256197),\n", - " (367, 0.35950413),\n", - " (368, 0.34710744),\n", - " (369, 0.3305785),\n", - " (370, 0.35950413),\n", - " (371, 0.37190083),\n", - " (372, 0.4090909),\n", - " (373, 0.42975205),\n", - " (374, 0.45041323),\n", - " (375, 0.47933885),\n", - " (376, 0.49173555),\n", - " (377, 0.5247934),\n", - " (378, 0.59504133),\n", - " (379, 0.6487603),\n", - " (380, 0.6983471),\n", - " (381, 0.75206614),\n", - " (382, 0.6735537),\n", - " (383, 0.6404959),\n", - " (384, 0.822314),\n", - " (385, 0.8264463),\n", - " (386, 0.8471074),\n", - " (387, 0.8264463),\n", - " (388, 0.8016529),\n", - " (389, 0.7892562),\n", - " (390, 0.74793386),\n", - " (391, 0.661157),\n", - " (392, 0.59504133),\n", - " (393, 0.5413223),\n", - " (394, 0.53305787),\n", - " (395, 0.53305787),\n", - " (396, 0.5041322),\n", - " (397, 0.46694216),\n", - " (398, 0.42975205),\n", - " (399, 0.38842976),\n", - " (400, 0.3677686),\n", - " (401, 0.34710744),\n", - " (402, 0.3429752),\n", - " (403, 0.3264463),\n", - " (404, 0.3429752),\n", - " (405, 0.40082645),\n", - " (406, 0.3966942),\n", - " (407, 0.43801653),\n", - " (408, 0.46280992),\n", - " (409, 0.5),\n", - " (410, 0.5289256),\n", - " (411, 0.5206612),\n", - " (412, 0.5371901),\n", - " (413, 0.5371901),\n", - " (414, 0.5495868),\n", - " (415, 0.55785125),\n", - " (416, 0.54545456),\n", - " (417, 0.55785125),\n", - " (418, 0.5413223),\n", - " (419, 0.53305787),\n", - " (420, 0.54545456),\n", - " (421, 0.53305787),\n", - " (422, 0.5206612),\n", - " (423, 0.49586776),\n", - " (424, 0.46694216),\n", - " (425, 0.45867768),\n", - " (426, 0.45454547),\n", - " (427, 0.39256197),\n", - " (428, 0.38016528),\n", - " (429, 0.3553719),\n", - " (430, 0.33471075),\n", - " (431, 0.3305785),\n", - " (432, 0.34710744),\n", - " (433, 0.38429752),\n", - " (434, 0.41322315),\n", - " (435, 0.43801653),\n", - " (436, 0.47933885),\n", - " (437, 0.47933885),\n", - " (438, 0.49173555),\n", - " (439, 0.4876033),\n", - " (440, 0.48347107),\n", - " (441, 0.4876033),\n", - " (442, 0.54545456),\n", - " (443, 0.62396693),\n", - " (444, 0.71487606),\n", - " (445, 0.73966944),\n", - " (446, 0.6528926),\n", - " (447, 0.6446281),\n", - " (448, 0.822314),\n", - " (449, 0.8264463),\n", - " (450, 0.8553719),\n", - " (451, 0.75619835),\n", - " (452, 0.79752064),\n", - " (453, 0.74793386),\n", - " (454, 0.7107438),\n", - " (455, 0.6363636),\n", - " (456, 0.62396693),\n", - " (457, 0.57438016),\n", - " (458, 0.55785125),\n", - " (459, 0.55785125),\n", - " (460, 0.54545456),\n", - " (461, 0.5),\n", - " (462, 0.47933885),\n", - " (463, 0.46280992),\n", - " (464, 0.48347107),\n", - " (465, 0.41322315),\n", - " (466, 0.34710744),\n", - " (467, 0.34710744),\n", - " (468, 0.35950413),\n", - " (469, 0.42561984),\n", - " (470, 0.4338843),\n", - " (471, 0.41735536),\n", - " (472, 0.42975205),\n", - " (473, 0.45041323),\n", - " (474, 0.5),\n", - " (475, 0.5041322),\n", - " (476, 0.5165289),\n", - " (477, 0.5247934),\n", - " (478, 0.5247934),\n", - " (479, 0.5165289),\n", - " (480, 0.5495868),\n", - " (481, 0.5371901),\n", - " (482, 0.5165289),\n", - " (483, 0.5123967),\n", - " (484, 0.5041322),\n", - " (485, 0.5082645),\n", - " (486, 0.49173555),\n", - " (487, 0.46694216),\n", - " (488, 0.42561984),\n", - " (489, 0.41735536),\n", - " (490, 0.4090909),\n", - " (491, 0.38429752),\n", - " (492, 0.36363637),\n", - " (493, 0.37190083),\n", - " (494, 0.35123968),\n", - " (495, 0.3429752),\n", - " (496, 0.36363637),\n", - " (497, 0.3966942),\n", - " (498, 0.37190083),\n", - " (499, 0.40082645),\n", - " (500, 0.4214876),\n", - " (501, 0.45041323),\n", - " (502, 0.5123967),\n", - " (503, 0.5413223),\n", - " (504, 0.59090906),\n", - " (505, 0.59504133),\n", - " (506, 0.58264464),\n", - " (507, 0.60330576),\n", - " (508, 0.6942149),\n", - " (509, 0.73966944),\n", - " (510, 0.6198347),\n", - " (511, 0.6363636),\n", - " (512, 0.8264463),\n", - " (513, 0.822314),\n", - " (514, 0.8264463),\n", - " (515, 0.8181818),\n", - " (516, 0.7892562),\n", - " (517, 0.73966944),\n", - " (518, 0.75206614),\n", - " (519, 0.71487606),\n", - " (520, 0.6735537),\n", - " (521, 0.61570245),\n", - " (522, 0.57024795),\n", - " (523, 0.5289256),\n", - " (524, 0.4876033),\n", - " (525, 0.4752066),\n", - " (526, 0.42975205),\n", - " (527, 0.5371901),\n", - " (528, 0.69008267),\n", - " (529, 0.49173555),\n", - " (530, 0.3553719),\n", - " (531, 0.3140496),\n", - " (532, 0.30578512),\n", - " (533, 0.47107437),\n", - " (534, 0.4338843),\n", - " (535, 0.38842976),\n", - " (536, 0.38429752),\n", - " (537, 0.36363637),\n", - " (538, 0.35950413),\n", - " (539, 0.3181818),\n", - " (540, 0.44214877),\n", - " (541, 0.45041323),\n", - " (542, 0.42561984),\n", - " (543, 0.40082645),\n", - " (544, 0.5165289),\n", - " (545, 0.36363637),\n", - " (546, 0.44214877),\n", - " (547, 0.41322315),\n", - " (548, 0.37190083),\n", - " (549, 0.446281),\n", - " (550, 0.38016528),\n", - " (551, 0.40495867),\n", - " (552, 0.2892562),\n", - " (553, 0.18181819),\n", - " (554, 0.24793388),\n", - " (555, 0.2768595),\n", - " (556, 0.29752067),\n", - " (557, 0.32231405),\n", - " (558, 0.338843),\n", - " (559, 0.3305785),\n", - " (560, 0.3264463),\n", - " (561, 0.35123968),\n", - " (562, 0.36363637),\n", - " (563, 0.38016528),\n", - " (564, 0.40082645),\n", - " (565, 0.4214876),\n", - " (566, 0.4338843),\n", - " (567, 0.42561984),\n", - " (568, 0.45041323),\n", - " (569, 0.5),\n", - " (570, 0.5041322),\n", - " (571, 0.5123967),\n", - " (572, 0.56198347),\n", - " (573, 0.69008267),\n", - " (574, 0.6652893),\n", - " (575, 0.661157),\n", - " (576, 0.8305785),\n", - " (577, 0.822314),\n", - " (578, 0.8181818),\n", - " (579, 0.822314),\n", - " (580, 0.78099173),\n", - " (581, 0.76859504),\n", - " (582, 0.71487606),\n", - " (583, 0.61157024),\n", - " (584, 0.49586776),\n", - " (585, 0.43801653),\n", - " (586, 0.47107437),\n", - " (587, 0.48347107),\n", - " (588, 0.4876033),\n", - " (589, 0.5041322),\n", - " (590, 0.47107437),\n", - " (591, 0.59090906),\n", - " (592, 0.8512397),\n", - " (593, 0.8347107),\n", - " (594, 0.6570248),\n", - " (595, 0.45454547),\n", - " (596, 0.4214876),\n", - " (597, 0.43801653),\n", - " (598, 0.446281),\n", - " (599, 0.45041323),\n", - " (600, 0.446281),\n", - " (601, 0.4214876),\n", - " (602, 0.37603307),\n", - " (603, 0.24793388),\n", - " (604, 0.42561984),\n", - " (605, 0.46694216),\n", - " (606, 0.45454547),\n", - " (607, 0.45041323),\n", - " (608, 0.446281),\n", - " (609, 0.37190083),\n", - " (610, 0.4090909),\n", - " (611, 0.3966942),\n", - " (612, 0.40495867),\n", - " (613, 0.45041323),\n", - " (614, 0.42975205),\n", - " (615, 0.46280992),\n", - " (616, 0.37603307),\n", - " (617, 0.26859504),\n", - " (618, 0.42561984),\n", - " (619, 0.446281),\n", - " (620, 0.4214876),\n", - " (621, 0.4090909),\n", - " (622, 0.38429752),\n", - " (623, 0.40082645),\n", - " (624, 0.3966942),\n", - " (625, 0.39256197),\n", - " (626, 0.4214876),\n", - " (627, 0.42561984),\n", - " (628, 0.43801653),\n", - " (629, 0.48347107),\n", - " (630, 0.57024795),\n", - " (631, 0.6198347),\n", - " (632, 0.6446281),\n", - " (633, 0.6487603),\n", - " (634, 0.58264464),\n", - " (635, 0.56198347),\n", - " (636, 0.5165289),\n", - " (637, 0.41322315),\n", - " (638, 0.5206612),\n", - " (639, 0.6735537),\n", - " (640, 0.822314),\n", - " (641, 0.8264463),\n", - " (642, 0.8305785),\n", - " (643, 0.80991733),\n", - " (644, 0.77272725),\n", - " (645, 0.62396693),\n", - " (646, 0.5206612),\n", - " (647, 0.5413223),\n", - " (648, 0.62396693),\n", - " (649, 0.6859504),\n", - " (650, 0.69008267),\n", - " (651, 0.677686),\n", - " (652, 0.6322314),\n", - " (653, 0.59917355),\n", - " (654, 0.5371901),\n", - " (655, 0.6404959),\n", - " (656, 0.9214876),\n", - " (657, 0.91735536),\n", - " (658, 0.8016529),\n", - " (659, 0.4752066),\n", - " (660, 0.4214876),\n", - " (661, 0.40082645),\n", - " (662, 0.39256197),\n", - " (663, 0.41322315),\n", - " (664, 0.43801653),\n", - " (665, 0.47933885),\n", - " (666, 0.47107437),\n", - " (667, 0.40495867),\n", - " (668, 0.29752067),\n", - " (669, 0.446281),\n", - " (670, 0.446281),\n", - " (671, 0.45454547),\n", - " (672, 0.45041323),\n", - " (673, 0.4214876),\n", - " (674, 0.4090909),\n", - " (675, 0.4090909),\n", - " (676, 0.4338843),\n", - " (677, 0.43801653),\n", - " (678, 0.41735536),\n", - " (679, 0.42975205),\n", - " (680, 0.40082645),\n", - " (681, 0.45041323),\n", - " (682, 0.46694216),\n", - " (683, 0.46694216),\n", - " (684, 0.45041323),\n", - " (685, 0.42561984),\n", - " (686, 0.39256197),\n", - " (687, 0.3966942),\n", - " (688, 0.38429752),\n", - " (689, 0.36363637),\n", - " (690, 0.35123968),\n", - " (691, 0.38429752),\n", - " (692, 0.39256197),\n", - " (693, 0.43801653),\n", - " (694, 0.5413223),\n", - " (695, 0.59917355),\n", - " (696, 0.61157024),\n", - " (697, 0.69008267),\n", - " (698, 0.70247936),\n", - " (699, 0.6487603),\n", - " (700, 0.6528926),\n", - " (701, 0.45041323),\n", - " (702, 0.29752067),\n", - " (703, 0.4338843),\n", - " (704, 0.8264463),\n", - " (705, 0.8305785),\n", - " (706, 0.8471074),\n", - " (707, 0.75206614),\n", - " (708, 0.48347107),\n", - " (709, 0.57438016),\n", - " (710, 0.6859504),\n", - " (711, 0.6694215),\n", - " (712, 0.6942149),\n", - " (713, 0.74380165),\n", - " (714, 0.70247936),\n", - " (715, 0.6528926),\n", - " (716, 0.59090906),\n", - " (717, 0.553719),\n", - " (718, 0.5),\n", - " (719, 0.5041322),\n", - " (720, 0.80991733),\n", - " (721, 0.88842976),\n", - " (722, 0.7768595),\n", - " (723, 0.45041323),\n", - " (724, 0.3429752),\n", - " (725, 0.30165288),\n", - " (726, 0.30578512),\n", - " (727, 0.30578512),\n", - " (728, 0.3305785),\n", - " (729, 0.4090909),\n", - " (730, 0.45454547),\n", - " (731, 0.45867768),\n", - " (732, 0.4090909),\n", - " (733, 0.28512397),\n", - " (734, 0.5371901),\n", - " (735, 0.5661157),\n", - " (736, 0.5661157),\n", - " (737, 0.5371901),\n", - " (738, 0.47933885),\n", - " (739, 0.5206612),\n", - " (740, 0.5206612),\n", - " (741, 0.49586776),\n", - " (742, 0.47933885),\n", - " (743, 0.38016528),\n", - " (744, 0.44214877),\n", - " (745, 0.41735536),\n", - " (746, 0.28099173),\n", - " (747, 0.58264464),\n", - " (748, 0.6528926),\n", - " (749, 0.42975205),\n", - " (750, 0.3305785),\n", - " (751, 0.32231405),\n", - " (752, 0.30578512),\n", - " (753, 0.29752067),\n", - " (754, 0.3181818),\n", - " (755, 0.3140496),\n", - " (756, 0.3429752),\n", - " (757, 0.38842976),\n", - " (758, 0.49173555),\n", - " (759, 0.5495868),\n", - " (760, 0.53305787),\n", - " (761, 0.60330576),\n", - " (762, 0.6735537),\n", - " (763, 0.73966944),\n", - " (764, 0.6652893),\n", - " (765, 0.49173555),\n", - " (766, 0.20661157),\n", - " (767, 0.3429752),\n", - " (768, 0.8429752),\n", - " (769, 0.8264463),\n", - " (770, 0.8016529),\n", - " (771, 0.5247934),\n", - " (772, 0.6528926),\n", - " (773, 0.71487606),\n", - " (774, 0.6818182),\n", - " (775, 0.61157024),\n", - " (776, 0.6280992),\n", - " (777, 0.69008267),\n", - " (778, 0.6735537),\n", - " (779, 0.59504133),\n", - " (780, 0.49173555),\n", - " (781, 0.4338843),\n", - " (782, 0.42561984),\n", - " (783, 0.38429752),\n", - " (784, 0.4876033),\n", - " (785, 0.6570248),\n", - " (786, 0.59090906),\n", - " (787, 0.38016528),\n", - " (788, 0.28099173),\n", - " (789, 0.26859504),\n", - " (790, 0.27272728),\n", - " (791, 0.2892562),\n", - " (792, 0.29338843),\n", - " (793, 0.33471075),\n", - " (794, 0.4214876),\n", - " (795, 0.46280992),\n", - " (796, 0.5123967),\n", - " (797, 0.39256197),\n", - " (798, 0.5247934),\n", - " (799, 0.61570245),\n", - " (800, 0.6735537),\n", - " (801, 0.607438),\n", - " (802, 0.49173555),\n", - " (803, 0.5495868),\n", - " (804, 0.553719),\n", - " (805, 0.5289256),\n", - " (806, 0.43801653),\n", - " (807, 0.4214876),\n", - " (808, 0.4752066),\n", - " (809, 0.4090909),\n", - " (810, 0.40495867),\n", - " (811, 0.95454544),\n", - " (812, 0.88842976),\n", - " (813, 0.5082645),\n", - " (814, 0.338843),\n", - " (815, 0.338843),\n", - " (816, 0.3181818),\n", - " (817, 0.30578512),\n", - " (818, 0.32231405),\n", - " (819, 0.3140496),\n", - " (820, 0.32231405),\n", - " (821, 0.3429752),\n", - " (822, 0.4338843),\n", - " (823, 0.45867768),\n", - " (824, 0.43801653),\n", - " (825, 0.47933885),\n", - " (826, 0.5413223),\n", - " (827, 0.677686),\n", - " (828, 0.6487603),\n", - " (829, 0.5289256),\n", - " (830, 0.21487603),\n", - " (831, 0.28512397),\n", - " (832, 0.74793386),\n", - " (833, 0.7892562),\n", - " (834, 0.5206612),\n", - " (835, 0.607438),\n", - " (836, 0.6694215),\n", - " (837, 0.6198347),\n", - " (838, 0.57438016),\n", - " (839, 0.5165289),\n", - " (840, 0.55785125),\n", - " (841, 0.59917355),\n", - " (842, 0.5371901),\n", - " (843, 0.49586776),\n", - " (844, 0.46280992),\n", - " (845, 0.42561984),\n", - " (846, 0.42975205),\n", - " (847, 0.4090909),\n", - " (848, 0.43801653),\n", - " (849, 0.45454547),\n", - " (850, 0.45041323),\n", - " (851, 0.34710744),\n", - " (852, 0.26859504),\n", - " (853, 0.22727273),\n", - " (854, 0.23140496),\n", - " (855, 0.2768595),\n", - " (856, 0.2892562),\n", - " (857, 0.30165288),\n", - " (858, 0.33471075),\n", - " (859, 0.41322315),\n", - " (860, 0.5123967),\n", - " (861, 0.5661157),\n", - " (862, 0.71900827),\n", - " (863, 0.71900827),\n", - " (864, 0.90495867),\n", - " (865, 0.78512394),\n", - " (866, 0.40495867),\n", - " (867, 0.41322315),\n", - " (868, 0.45867768),\n", - " (869, 0.44214877),\n", - " (870, 0.42561984),\n", - " (871, 0.42975205),\n", - " (872, 0.446281),\n", - " (873, 0.38429752),\n", - " (874, 0.3966942),\n", - " (875, 0.78512394),\n", - " (876, 0.75619835),\n", - " (877, 0.46280992),\n", - " (878, 0.3553719),\n", - " (879, 0.38429752),\n", - " (880, 0.338843),\n", - " (881, 0.30991736),\n", - " (882, 0.33471075),\n", - " (883, 0.35123968),\n", - " (884, 0.37190083),\n", - " (885, 0.40495867),\n", - " (886, 0.4214876),\n", - " (887, 0.46694216),\n", - " (888, 0.44214877),\n", - " (889, 0.45041323),\n", - " (890, 0.4752066),\n", - " (891, 0.5371901),\n", - " (892, 0.46280992),\n", - " (893, 0.47933885),\n", - " (894, 0.23966943),\n", - " (895, 0.32231405),\n", - " (896, 0.4338843),\n", - " (897, 0.34710744),\n", - " (898, 0.47107437),\n", - " (899, 0.5785124),\n", - " (900, 0.5123967),\n", - " (901, 0.49173555),\n", - " (902, 0.37603307),\n", - " (903, 0.40495867),\n", - " (904, 0.45867768),\n", - " (905, 0.45867768),\n", - " (906, 0.45867768),\n", - " (907, 0.53305787),\n", - " (908, 0.4752066),\n", - " (909, 0.39256197),\n", - " (910, 0.36363637),\n", - " (911, 0.3305785),\n", - " (912, 0.33471075),\n", - " (913, 0.3264463),\n", - " (914, 0.33471075),\n", - " (915, 0.30578512),\n", - " (916, 0.27272728),\n", - " (917, 0.23553719),\n", - " (918, 0.21487603),\n", - " (919, 0.23553719),\n", - " (920, 0.2768595),\n", - " (921, 0.32231405),\n", - " (922, 0.3264463),\n", - " (923, 0.39256197),\n", - " (924, 0.48347107),\n", - " (925, 0.58677685),\n", - " (926, 0.44214877),\n", - " (927, 0.54545456),\n", - " (928, 0.6570248),\n", - " (929, 0.59504133),\n", - " (930, 0.42975205),\n", - " (931, 0.47107437),\n", - " (932, 0.5041322),\n", - " (933, 0.446281),\n", - " (934, 0.4338843),\n", - " (935, 0.38842976),\n", - " (936, 0.4214876),\n", - " (937, 0.3553719),\n", - " (938, 0.32231405),\n", - " (939, 0.41735536),\n", - " (940, 0.46280992),\n", - " (941, 0.3677686),\n", - " (942, 0.34710744),\n", - " (943, 0.33471075),\n", - " (944, 0.3264463),\n", - " (945, 0.3140496),\n", - " (946, 0.3264463),\n", - " (947, 0.38842976),\n", - " (948, 0.45867768),\n", - " (949, 0.5082645),\n", - " (950, 0.5041322),\n", - " (951, 0.5082645),\n", - " (952, 0.5247934),\n", - " (953, 0.5041322),\n", - " (954, 0.5413223),\n", - " (955, 0.6487603),\n", - " (956, 0.61570245),\n", - " (957, 0.49173555),\n", - " (958, 0.23966943),\n", - " (959, 0.3140496),\n", - " (960, 0.4090909),\n", - " (961, 0.24380165),\n", - " (962, 0.7644628),\n", - " (963, 0.7231405),\n", - " (964, 0.5661157),\n", - " (965, 0.5041322),\n", - " (966, 0.47933885),\n", - " (967, 0.4752066),\n", - " (968, 0.46694216),\n", - " (969, 0.46280992),\n", - " (970, 0.46280992),\n", - " (971, 0.446281),\n", - " (972, 0.37603307),\n", - " (973, 0.32231405),\n", - " (974, 0.22727273),\n", - " (975, 0.18595041),\n", - " (976, 0.18181819),\n", - " (977, 0.1983471),\n", - " (978, 0.2231405),\n", - " (979, 0.2644628),\n", - " (980, 0.2520661),\n", - " (981, 0.2107438),\n", - " (982, 0.2107438),\n", - " (983, 0.23966943),\n", - " (984, 0.28099173),\n", - " (985, 0.39256197),\n", - " (986, 0.37190083),\n", - " (987, 0.446281),\n", - " (988, 0.5165289),\n", - " (989, 0.56198347),\n", - " (990, 0.47933885),\n", - " (991, 0.58264464),\n", - " (992, 0.55785125),\n", - " (993, 0.5082645),\n", - " (994, 0.47933885),\n", - " (995, 0.49586776),\n", - " (996, 0.53305787),\n", - " (997, 0.43801653),\n", - " (998, 0.41735536),\n", - " (999, 0.35123968),\n", - " ...],\n", - " [(0, 0.37190083),\n", - " (1, 0.34710744),\n", - " (2, 0.3677686),\n", - " (3, 0.38016528),\n", - " (4, 0.41735536),\n", - " (5, 0.43801653),\n", - " (6, 0.46280992),\n", - " (7, 0.553719),\n", - " (8, 0.6363636),\n", - " (9, 0.6859504),\n", - " (10, 0.6942149),\n", - " (11, 0.71487606),\n", - " (12, 0.7107438),\n", - " (13, 0.7107438),\n", - " (14, 0.73966944),\n", - " (15, 0.72727275),\n", - " (16, 0.73140496),\n", - " (17, 0.73966944),\n", - " (18, 0.74380165),\n", - " (19, 0.7644628),\n", - " (20, 0.76859504),\n", - " (21, 0.75206614),\n", - " (22, 0.7355372),\n", - " (23, 0.73966944),\n", - " (24, 0.73966944),\n", - " (25, 0.74793386),\n", - " (26, 0.74793386),\n", - " (27, 0.75206614),\n", - " (28, 0.74793386),\n", - " (29, 0.74380165),\n", - " (30, 0.74380165),\n", - " (31, 0.73140496),\n", - " (32, 0.72727275),\n", - " (33, 0.7107438),\n", - " (34, 0.6983471),\n", - " (35, 0.7107438),\n", - " (36, 0.7066116),\n", - " (37, 0.71900827),\n", - " (38, 0.71487606),\n", - " (39, 0.7107438),\n", - " (40, 0.6983471),\n", - " (41, 0.69008267),\n", - " (42, 0.6735537),\n", - " (43, 0.6735537),\n", - " (44, 0.6652893),\n", - " (45, 0.6694215),\n", - " (46, 0.6322314),\n", - " (47, 0.61157024),\n", - " (48, 0.59504133),\n", - " (49, 0.57024795),\n", - " (50, 0.55785125),\n", - " (51, 0.5371901),\n", - " (52, 0.5165289),\n", - " (53, 0.47107437),\n", - " (54, 0.4338843),\n", - " (55, 0.4090909),\n", - " (56, 0.38016528),\n", - " (57, 0.30165288),\n", - " (58, 0.2644628),\n", - " (59, 0.22727273),\n", - " (60, 0.2107438),\n", - " (61, 0.20247933),\n", - " (62, 0.1983471),\n", - " (63, 0.19008264),\n", - " (64, 0.38016528),\n", - " (65, 0.38429752),\n", - " (66, 0.38842976),\n", - " (67, 0.4214876),\n", - " (68, 0.45041323),\n", - " (69, 0.5041322),\n", - " (70, 0.59504133),\n", - " (71, 0.6528926),\n", - " (72, 0.677686),\n", - " (73, 0.7066116),\n", - " (74, 0.7066116),\n", - " (75, 0.71900827),\n", - " (76, 0.72727275),\n", - " (77, 0.73140496),\n", - " (78, 0.7355372),\n", - " (79, 0.73966944),\n", - " (80, 0.73966944),\n", - " (81, 0.75206614),\n", - " (82, 0.75619835),\n", - " (83, 0.76859504),\n", - " (84, 0.7644628),\n", - " (85, 0.76033056),\n", - " (86, 0.74793386),\n", - " (87, 0.73140496),\n", - " (88, 0.74793386),\n", - " (89, 0.75619835),\n", - " (90, 0.74793386),\n", - " (91, 0.74793386),\n", - " (92, 0.75206614),\n", - " (93, 0.73966944),\n", - " (94, 0.74380165),\n", - " (95, 0.7231405),\n", - " (96, 0.7066116),\n", - " (97, 0.7066116),\n", - " (98, 0.6818182),\n", - " (99, 0.6983471),\n", - " (100, 0.7066116),\n", - " (101, 0.7107438),\n", - " (102, 0.7107438),\n", - " (103, 0.7066116),\n", - " (104, 0.6942149),\n", - " (105, 0.6942149),\n", - " (106, 0.677686),\n", - " (107, 0.6652893),\n", - " (108, 0.6694215),\n", - " (109, 0.6363636),\n", - " (110, 0.62396693),\n", - " (111, 0.6280992),\n", - " (112, 0.59917355),\n", - " (113, 0.58264464),\n", - " (114, 0.55785125),\n", - " (115, 0.54545456),\n", - " (116, 0.5123967),\n", - " (117, 0.4752066),\n", - " (118, 0.45454547),\n", - " (119, 0.43801653),\n", - " (120, 0.41735536),\n", - " (121, 0.3677686),\n", - " (122, 0.2768595),\n", - " (123, 0.21487603),\n", - " (124, 0.24380165),\n", - " (125, 0.2768595),\n", - " (126, 0.30578512),\n", - " (127, 0.3264463),\n", - " (128, 0.38842976),\n", - " (129, 0.39256197),\n", - " (130, 0.38429752),\n", - " (131, 0.45041323),\n", - " (132, 0.5247934),\n", - " (133, 0.60330576),\n", - " (134, 0.6528926),\n", - " (135, 0.677686),\n", - " (136, 0.6983471),\n", - " (137, 0.7107438),\n", - " (138, 0.7231405),\n", - " (139, 0.7231405),\n", - " (140, 0.73966944),\n", - " (141, 0.74380165),\n", - " (142, 0.74793386),\n", - " (143, 0.73966944),\n", - " (144, 0.73966944),\n", - " (145, 0.75206614),\n", - " (146, 0.75619835),\n", - " (147, 0.76859504),\n", - " (148, 0.76033056),\n", - " (149, 0.7644628),\n", - " (150, 0.75206614),\n", - " (151, 0.74793386),\n", - " (152, 0.75206614),\n", - " (153, 0.76033056),\n", - " (154, 0.74793386),\n", - " (155, 0.75619835),\n", - " (156, 0.75619835),\n", - " (157, 0.75206614),\n", - " (158, 0.73140496),\n", - " (159, 0.7231405),\n", - " (160, 0.7107438),\n", - " (161, 0.70247936),\n", - " (162, 0.6983471),\n", - " (163, 0.70247936),\n", - " (164, 0.7107438),\n", - " (165, 0.7107438),\n", - " (166, 0.70247936),\n", - " (167, 0.6983471),\n", - " (168, 0.69008267),\n", - " (169, 0.677686),\n", - " (170, 0.6735537),\n", - " (171, 0.6404959),\n", - " (172, 0.6487603),\n", - " (173, 0.6322314),\n", - " (174, 0.61570245),\n", - " (175, 0.61157024),\n", - " (176, 0.59504133),\n", - " (177, 0.59504133),\n", - " (178, 0.57438016),\n", - " (179, 0.53305787),\n", - " (180, 0.5206612),\n", - " (181, 0.47107437),\n", - " (182, 0.47107437),\n", - " (183, 0.47933885),\n", - " (184, 0.45867768),\n", - " (185, 0.37190083),\n", - " (186, 0.3429752),\n", - " (187, 0.34710744),\n", - " (188, 0.3677686),\n", - " (189, 0.37190083),\n", - " (190, 0.35950413),\n", - " (191, 0.34710744),\n", - " (192, 0.40082645),\n", - " (193, 0.40495867),\n", - " (194, 0.4090909),\n", - " (195, 0.47933885),\n", - " (196, 0.57024795),\n", - " (197, 0.6404959),\n", - " (198, 0.6735537),\n", - " (199, 0.69008267),\n", - " (200, 0.71487606),\n", - " (201, 0.71487606),\n", - " (202, 0.72727275),\n", - " (203, 0.7231405),\n", - " (204, 0.7355372),\n", - " (205, 0.73966944),\n", - " (206, 0.76033056),\n", - " (207, 0.74380165),\n", - " (208, 0.74793386),\n", - " (209, 0.75619835),\n", - " (210, 0.76033056),\n", - " (211, 0.76033056),\n", - " (212, 0.7644628),\n", - " (213, 0.75206614),\n", - " (214, 0.75206614),\n", - " (215, 0.74380165),\n", - " (216, 0.73140496),\n", - " (217, 0.74380165),\n", - " (218, 0.74380165),\n", - " (219, 0.74793386),\n", - " (220, 0.74380165),\n", - " (221, 0.74793386),\n", - " (222, 0.71900827),\n", - " (223, 0.73140496),\n", - " (224, 0.70247936),\n", - " (225, 0.6942149),\n", - " (226, 0.6983471),\n", - " (227, 0.70247936),\n", - " (228, 0.7066116),\n", - " (229, 0.7066116),\n", - " (230, 0.69008267),\n", - " (231, 0.70247936),\n", - " (232, 0.6859504),\n", - " (233, 0.6652893),\n", - " (234, 0.6528926),\n", - " (235, 0.6446281),\n", - " (236, 0.6322314),\n", - " (237, 0.6363636),\n", - " (238, 0.607438),\n", - " (239, 0.607438),\n", - " (240, 0.59917355),\n", - " (241, 0.57438016),\n", - " (242, 0.57024795),\n", - " (243, 0.5247934),\n", - " (244, 0.5206612),\n", - " (245, 0.49173555),\n", - " (246, 0.4876033),\n", - " (247, 0.4876033),\n", - " (248, 0.47107437),\n", - " (249, 0.40495867),\n", - " (250, 0.37603307),\n", - " (251, 0.35123968),\n", - " (252, 0.33471075),\n", - " (253, 0.3305785),\n", - " (254, 0.3305785),\n", - " (255, 0.3264463),\n", - " (256, 0.3140496),\n", - " (257, 0.29752067),\n", - " (258, 0.39256197),\n", - " (259, 0.4876033),\n", - " (260, 0.59504133),\n", - " (261, 0.6570248),\n", - " (262, 0.6570248),\n", - " (263, 0.6859504),\n", - " (264, 0.72727275),\n", - " (265, 0.7355372),\n", - " (266, 0.7231405),\n", - " (267, 0.71487606),\n", - " (268, 0.74793386),\n", - " (269, 0.7355372),\n", - " (270, 0.73140496),\n", - " (271, 0.7231405),\n", - " (272, 0.73966944),\n", - " (273, 0.73966944),\n", - " (274, 0.74380165),\n", - " (275, 0.76033056),\n", - " (276, 0.76033056),\n", - " (277, 0.75206614),\n", - " (278, 0.75206614),\n", - " (279, 0.74793386),\n", - " (280, 0.73966944),\n", - " (281, 0.7355372),\n", - " (282, 0.74380165),\n", - " (283, 0.74380165),\n", - " (284, 0.73140496),\n", - " (285, 0.71487606),\n", - " (286, 0.7066116),\n", - " (287, 0.70247936),\n", - " (288, 0.6942149),\n", - " (289, 0.6942149),\n", - " (290, 0.6942149),\n", - " (291, 0.6983471),\n", - " (292, 0.7066116),\n", - " (293, 0.70247936),\n", - " (294, 0.6859504),\n", - " (295, 0.6859504),\n", - " (296, 0.6859504),\n", - " (297, 0.6487603),\n", - " (298, 0.6487603),\n", - " (299, 0.6280992),\n", - " (300, 0.62396693),\n", - " (301, 0.61570245),\n", - " (302, 0.607438),\n", - " (303, 0.60330576),\n", - " (304, 0.59090906),\n", - " (305, 0.58677685),\n", - " (306, 0.55785125),\n", - " (307, 0.5413223),\n", - " (308, 0.5082645),\n", - " (309, 0.49173555),\n", - " (310, 0.4876033),\n", - " (311, 0.5),\n", - " (312, 0.47107437),\n", - " (313, 0.4338843),\n", - " (314, 0.40495867),\n", - " (315, 0.3264463),\n", - " (316, 0.29752067),\n", - " (317, 0.28099173),\n", - " (318, 0.2603306),\n", - " (319, 0.24380165),\n", - " (320, 0.2231405),\n", - " (321, 0.24793388),\n", - " (322, 0.41735536),\n", - " (323, 0.5495868),\n", - " (324, 0.61157024),\n", - " (325, 0.6446281),\n", - " (326, 0.661157),\n", - " (327, 0.677686),\n", - " (328, 0.6942149),\n", - " (329, 0.71900827),\n", - " (330, 0.72727275),\n", - " (331, 0.71900827),\n", - " (332, 0.73966944),\n", - " (333, 0.7355372),\n", - " (334, 0.7355372),\n", - " (335, 0.73966944),\n", - " (336, 0.73966944),\n", - " (337, 0.74380165),\n", - " (338, 0.73140496),\n", - " (339, 0.74380165),\n", - " (340, 0.74793386),\n", - " (341, 0.75619835),\n", - " (342, 0.74793386),\n", - " (343, 0.74380165),\n", - " (344, 0.73966944),\n", - " (345, 0.71900827),\n", - " (346, 0.73140496),\n", - " (347, 0.7231405),\n", - " (348, 0.71487606),\n", - " (349, 0.70247936),\n", - " (350, 0.69008267),\n", - " (351, 0.69008267),\n", - " (352, 0.6818182),\n", - " (353, 0.69008267),\n", - " (354, 0.677686),\n", - " (355, 0.70247936),\n", - " (356, 0.70247936),\n", - " (357, 0.6859504),\n", - " (358, 0.6818182),\n", - " (359, 0.6735537),\n", - " (360, 0.6652893),\n", - " (361, 0.6487603),\n", - " (362, 0.6322314),\n", - " (363, 0.6198347),\n", - " (364, 0.607438),\n", - " (365, 0.59090906),\n", - " (366, 0.61157024),\n", - " (367, 0.59917355),\n", - " (368, 0.59090906),\n", - " (369, 0.5785124),\n", - " (370, 0.57024795),\n", - " (371, 0.5413223),\n", - " (372, 0.5165289),\n", - " (373, 0.49173555),\n", - " (374, 0.48347107),\n", - " (375, 0.5082645),\n", - " (376, 0.49173555),\n", - " (377, 0.42561984),\n", - " (378, 0.3305785),\n", - " (379, 0.28099173),\n", - " (380, 0.2107438),\n", - " (381, 0.2107438),\n", - " (382, 0.21487603),\n", - " (383, 0.21487603),\n", - " (384, 0.2231405),\n", - " (385, 0.30991736),\n", - " (386, 0.46280992),\n", - " (387, 0.57438016),\n", - " (388, 0.6322314),\n", - " (389, 0.6446281),\n", - " (390, 0.6528926),\n", - " (391, 0.6735537),\n", - " (392, 0.69008267),\n", - " (393, 0.71487606),\n", - " (394, 0.74380165),\n", - " (395, 0.73140496),\n", - " (396, 0.7107438),\n", - " (397, 0.7231405),\n", - " (398, 0.72727275),\n", - " (399, 0.71487606),\n", - " (400, 0.7107438),\n", - " (401, 0.71900827),\n", - " (402, 0.72727275),\n", - " (403, 0.7231405),\n", - " (404, 0.72727275),\n", - " (405, 0.74380165),\n", - " (406, 0.73140496),\n", - " (407, 0.73140496),\n", - " (408, 0.7231405),\n", - " (409, 0.71487606),\n", - " (410, 0.71487606),\n", - " (411, 0.70247936),\n", - " (412, 0.6942149),\n", - " (413, 0.6942149),\n", - " (414, 0.6818182),\n", - " (415, 0.6859504),\n", - " (416, 0.6735537),\n", - " (417, 0.6818182),\n", - " (418, 0.6859504),\n", - " (419, 0.677686),\n", - " (420, 0.677686),\n", - " (421, 0.677686),\n", - " (422, 0.6652893),\n", - " (423, 0.6652893),\n", - " (424, 0.6404959),\n", - " (425, 0.6280992),\n", - " (426, 0.61570245),\n", - " (427, 0.59504133),\n", - " (428, 0.59917355),\n", - " (429, 0.59917355),\n", - " (430, 0.58677685),\n", - " (431, 0.58677685),\n", - " (432, 0.59504133),\n", - " (433, 0.57438016),\n", - " (434, 0.5495868),\n", - " (435, 0.5206612),\n", - " (436, 0.5082645),\n", - " (437, 0.49173555),\n", - " (438, 0.46694216),\n", - " (439, 0.46694216),\n", - " (440, 0.47933885),\n", - " (441, 0.4338843),\n", - " (442, 0.3181818),\n", - " (443, 0.29752067),\n", - " (444, 0.22727273),\n", - " (445, 0.23140496),\n", - " (446, 0.23966943),\n", - " (447, 0.24380165),\n", - " (448, 0.21900827),\n", - " (449, 0.38016528),\n", - " (450, 0.5123967),\n", - " (451, 0.61157024),\n", - " (452, 0.6404959),\n", - " (453, 0.6446281),\n", - " (454, 0.6446281),\n", - " (455, 0.6694215),\n", - " (456, 0.6942149),\n", - " (457, 0.71900827),\n", - " (458, 0.71900827),\n", - " (459, 0.6694215),\n", - " (460, 0.6198347),\n", - " (461, 0.62396693),\n", - " (462, 0.62396693),\n", - " (463, 0.6363636),\n", - " (464, 0.6363636),\n", - " (465, 0.6446281),\n", - " (466, 0.677686),\n", - " (467, 0.6983471),\n", - " (468, 0.7066116),\n", - " (469, 0.71900827),\n", - " (470, 0.71487606),\n", - " (471, 0.71487606),\n", - " (472, 0.7107438),\n", - " (473, 0.70247936),\n", - " (474, 0.69008267),\n", - " (475, 0.69008267),\n", - " (476, 0.6818182),\n", - " (477, 0.6694215),\n", - " (478, 0.6652893),\n", - " (479, 0.6528926),\n", - " (480, 0.6694215),\n", - " (481, 0.6694215),\n", - " (482, 0.6735537),\n", - " (483, 0.6694215),\n", - " (484, 0.6652893),\n", - " (485, 0.6528926),\n", - " (486, 0.6487603),\n", - " (487, 0.6487603),\n", - " (488, 0.6198347),\n", - " (489, 0.59917355),\n", - " (490, 0.59917355),\n", - " (491, 0.59090906),\n", - " (492, 0.5785124),\n", - " (493, 0.58677685),\n", - " (494, 0.59090906),\n", - " (495, 0.58677685),\n", - " (496, 0.57024795),\n", - " (497, 0.5371901),\n", - " (498, 0.49173555),\n", - " (499, 0.446281),\n", - " (500, 0.42975205),\n", - " (501, 0.41735536),\n", - " (502, 0.41322315),\n", - " (503, 0.42975205),\n", - " (504, 0.4338843),\n", - " (505, 0.40495867),\n", - " (506, 0.30578512),\n", - " (507, 0.28099173),\n", - " (508, 0.25619835),\n", - " (509, 0.25619835),\n", - " (510, 0.2520661),\n", - " (511, 0.24380165),\n", - " (512, 0.21487603),\n", - " (513, 0.44214877),\n", - " (514, 0.5661157),\n", - " (515, 0.6198347),\n", - " (516, 0.6322314),\n", - " (517, 0.6446281),\n", - " (518, 0.6363636),\n", - " (519, 0.661157),\n", - " (520, 0.677686),\n", - " (521, 0.661157),\n", - " (522, 0.607438),\n", - " (523, 0.553719),\n", - " (524, 0.5289256),\n", - " (525, 0.5289256),\n", - " (526, 0.5123967),\n", - " (527, 0.5041322),\n", - " (528, 0.5),\n", - " (529, 0.5371901),\n", - " (530, 0.5661157),\n", - " (531, 0.5661157),\n", - " (532, 0.60330576),\n", - " (533, 0.6404959),\n", - " (534, 0.6404959),\n", - " (535, 0.6446281),\n", - " (536, 0.6694215),\n", - " (537, 0.6818182),\n", - " (538, 0.6735537),\n", - " (539, 0.6735537),\n", - " (540, 0.661157),\n", - " (541, 0.6487603),\n", - " (542, 0.6446281),\n", - " (543, 0.6322314),\n", - " (544, 0.6446281),\n", - " (545, 0.661157),\n", - " (546, 0.661157),\n", - " (547, 0.6487603),\n", - " (548, 0.6404959),\n", - " (549, 0.6404959),\n", - " (550, 0.6363636),\n", - " (551, 0.6280992),\n", - " (552, 0.607438),\n", - " (553, 0.58677685),\n", - " (554, 0.553719),\n", - " (555, 0.5661157),\n", - " (556, 0.56198347),\n", - " (557, 0.5495868),\n", - " (558, 0.5495868),\n", - " (559, 0.53305787),\n", - " (560, 0.49586776),\n", - " (561, 0.45454547),\n", - " (562, 0.40495867),\n", - " (563, 0.36363637),\n", - " (564, 0.35123968),\n", - " (565, 0.33471075),\n", - " (566, 0.3677686),\n", - " (567, 0.3553719),\n", - " (568, 0.34710744),\n", - " (569, 0.3305785),\n", - " (570, 0.26859504),\n", - " (571, 0.26859504),\n", - " (572, 0.25619835),\n", - " (573, 0.22727273),\n", - " (574, 0.2231405),\n", - " (575, 0.21487603),\n", - " (576, 0.2520661),\n", - " (577, 0.5165289),\n", - " (578, 0.61157024),\n", - " (579, 0.6280992),\n", - " (580, 0.6322314),\n", - " (581, 0.6363636),\n", - " (582, 0.62396693),\n", - " (583, 0.59090906),\n", - " (584, 0.5495868),\n", - " (585, 0.54545456),\n", - " (586, 0.5495868),\n", - " (587, 0.5495868),\n", - " (588, 0.55785125),\n", - " (589, 0.56198347),\n", - " (590, 0.5289256),\n", - " (591, 0.5041322),\n", - " (592, 0.45041323),\n", - " (593, 0.44214877),\n", - " (594, 0.45454547),\n", - " (595, 0.45041323),\n", - " (596, 0.42975205),\n", - " (597, 0.45041323),\n", - " (598, 0.45041323),\n", - " (599, 0.47933885),\n", - " (600, 0.5289256),\n", - " (601, 0.59090906),\n", - " (602, 0.62396693),\n", - " (603, 0.6322314),\n", - " (604, 0.62396693),\n", - " (605, 0.59917355),\n", - " (606, 0.62396693),\n", - " (607, 0.61570245),\n", - " (608, 0.6363636),\n", - " (609, 0.6404959),\n", - " (610, 0.6280992),\n", - " (611, 0.6280992),\n", - " (612, 0.61157024),\n", - " (613, 0.61570245),\n", - " (614, 0.59917355),\n", - " (615, 0.5785124),\n", - " (616, 0.5661157),\n", - " (617, 0.5413223),\n", - " (618, 0.5413223),\n", - " (619, 0.5289256),\n", - " (620, 0.49586776),\n", - " (621, 0.45041323),\n", - " (622, 0.40495867),\n", - " (623, 0.4090909),\n", - " (624, 0.36363637),\n", - " (625, 0.35950413),\n", - " (626, 0.35950413),\n", - " (627, 0.34710744),\n", - " (628, 0.37190083),\n", - " (629, 0.40082645),\n", - " (630, 0.41322315),\n", - " (631, 0.40495867),\n", - " (632, 0.38429752),\n", - " (633, 0.35123968),\n", - " (634, 0.30578512),\n", - " (635, 0.2603306),\n", - " (636, 0.2603306),\n", - " (637, 0.23140496),\n", - " (638, 0.23966943),\n", - " (639, 0.23966943),\n", - " (640, 0.3305785),\n", - " (641, 0.58677685),\n", - " (642, 0.6363636),\n", - " (643, 0.6280992),\n", - " (644, 0.6322314),\n", - " (645, 0.62396693),\n", - " (646, 0.60330576),\n", - " (647, 0.57438016),\n", - " (648, 0.5661157),\n", - " (649, 0.57438016),\n", - " (650, 0.62396693),\n", - " (651, 0.6404959),\n", - " (652, 0.6446281),\n", - " (653, 0.62396693),\n", - " (654, 0.607438),\n", - " (655, 0.58677685),\n", - " (656, 0.5247934),\n", - " (657, 0.4876033),\n", - " (658, 0.46280992),\n", - " (659, 0.4338843),\n", - " (660, 0.41322315),\n", - " (661, 0.38842976),\n", - " (662, 0.338843),\n", - " (663, 0.35123968),\n", - " (664, 0.37190083),\n", - " (665, 0.44214877),\n", - " (666, 0.5206612),\n", - " (667, 0.57024795),\n", - " (668, 0.5785124),\n", - " (669, 0.57438016),\n", - " (670, 0.57438016),\n", - " (671, 0.59090906),\n", - " (672, 0.607438),\n", - " (673, 0.59917355),\n", - " (674, 0.60330576),\n", - " (675, 0.58677685),\n", - " (676, 0.5661157),\n", - " (677, 0.56198347),\n", - " (678, 0.5495868),\n", - " (679, 0.5289256),\n", - " (680, 0.5206612),\n", - " (681, 0.5),\n", - " (682, 0.4752066),\n", - " (683, 0.4214876),\n", - " (684, 0.34710744),\n", - " (685, 0.28099173),\n", - " (686, 0.28099173),\n", - " (687, 0.29338843),\n", - " (688, 0.32231405),\n", - " (689, 0.3264463),\n", - " (690, 0.37603307),\n", - " (691, 0.3966942),\n", - " (692, 0.42975205),\n", - " (693, 0.4338843),\n", - " (694, 0.45454547),\n", - " (695, 0.43801653),\n", - " (696, 0.42975205),\n", - " (697, 0.40495867),\n", - " (698, 0.34710744),\n", - " (699, 0.29752067),\n", - " (700, 0.2892562),\n", - " (701, 0.23553719),\n", - " (702, 0.23553719),\n", - " (703, 0.23140496),\n", - " (704, 0.4090909),\n", - " (705, 0.59504133),\n", - " (706, 0.6487603),\n", - " (707, 0.6280992),\n", - " (708, 0.61157024),\n", - " (709, 0.6198347),\n", - " (710, 0.6198347),\n", - " (711, 0.6363636),\n", - " (712, 0.6487603),\n", - " (713, 0.6570248),\n", - " (714, 0.6694215),\n", - " (715, 0.6404959),\n", - " (716, 0.6198347),\n", - " (717, 0.59504133),\n", - " (718, 0.56198347),\n", - " (719, 0.5289256),\n", - " (720, 0.49586776),\n", - " (721, 0.446281),\n", - " (722, 0.446281),\n", - " (723, 0.4338843),\n", - " (724, 0.4090909),\n", - " (725, 0.39256197),\n", - " (726, 0.3677686),\n", - " (727, 0.3305785),\n", - " (728, 0.3181818),\n", - " (729, 0.3181818),\n", - " (730, 0.41322315),\n", - " (731, 0.48347107),\n", - " (732, 0.5206612),\n", - " (733, 0.5371901),\n", - " (734, 0.54545456),\n", - " (735, 0.56198347),\n", - " (736, 0.5661157),\n", - " (737, 0.56198347),\n", - " (738, 0.56198347),\n", - " (739, 0.53305787),\n", - " (740, 0.5123967),\n", - " (741, 0.49586776),\n", - " (742, 0.49586776),\n", - " (743, 0.46280992),\n", - " (744, 0.45041323),\n", - " (745, 0.43801653),\n", - " (746, 0.39256197),\n", - " (747, 0.30165288),\n", - " (748, 0.25619835),\n", - " (749, 0.2231405),\n", - " (750, 0.2644628),\n", - " (751, 0.29338843),\n", - " (752, 0.30578512),\n", - " (753, 0.3305785),\n", - " (754, 0.3429752),\n", - " (755, 0.3553719),\n", - " (756, 0.38842976),\n", - " (757, 0.4090909),\n", - " (758, 0.4090909),\n", - " (759, 0.41735536),\n", - " (760, 0.42561984),\n", - " (761, 0.3966942),\n", - " (762, 0.3553719),\n", - " (763, 0.338843),\n", - " (764, 0.35123968),\n", - " (765, 0.23966943),\n", - " (766, 0.24380165),\n", - " (767, 0.24793388),\n", - " (768, 0.47933885),\n", - " (769, 0.61570245),\n", - " (770, 0.6280992),\n", - " (771, 0.6363636),\n", - " (772, 0.59917355),\n", - " (773, 0.57438016),\n", - " (774, 0.59090906),\n", - " (775, 0.6198347),\n", - " (776, 0.62396693),\n", - " (777, 0.59917355),\n", - " (778, 0.59090906),\n", - " (779, 0.5413223),\n", - " (780, 0.4876033),\n", - " (781, 0.45454547),\n", - " (782, 0.40082645),\n", - " (783, 0.38429752),\n", - " (784, 0.37190083),\n", - " (785, 0.3553719),\n", - " (786, 0.3305785),\n", - " (787, 0.35123968),\n", - " (788, 0.37603307),\n", - " (789, 0.38842976),\n", - " (790, 0.39256197),\n", - " (791, 0.338843),\n", - " (792, 0.35123968),\n", - " (793, 0.3429752),\n", - " (794, 0.38429752),\n", - " (795, 0.43801653),\n", - " (796, 0.47107437),\n", - " (797, 0.4876033),\n", - " (798, 0.5206612),\n", - " (799, 0.5413223),\n", - " (800, 0.54545456),\n", - " (801, 0.53305787),\n", - " (802, 0.5247934),\n", - " (803, 0.5123967),\n", - " (804, 0.4876033),\n", - " (805, 0.4752066),\n", - " (806, 0.45454547),\n", - " (807, 0.4214876),\n", - " (808, 0.40082645),\n", - " (809, 0.36363637),\n", - " (810, 0.30165288),\n", - " (811, 0.25619835),\n", - " (812, 0.23140496),\n", - " (813, 0.2520661),\n", - " (814, 0.24793388),\n", - " (815, 0.2231405),\n", - " (816, 0.2231405),\n", - " (817, 0.23966943),\n", - " (818, 0.25619835),\n", - " (819, 0.24793388),\n", - " (820, 0.2768595),\n", - " (821, 0.3140496),\n", - " (822, 0.33471075),\n", - " (823, 0.37190083),\n", - " (824, 0.38842976),\n", - " (825, 0.3553719),\n", - " (826, 0.34710744),\n", - " (827, 0.36363637),\n", - " (828, 0.39256197),\n", - " (829, 0.30165288),\n", - " (830, 0.29752067),\n", - " (831, 0.30165288),\n", - " (832, 0.54545456),\n", - " (833, 0.62396693),\n", - " (834, 0.6280992),\n", - " (835, 0.6363636),\n", - " (836, 0.6280992),\n", - " (837, 0.57024795),\n", - " (838, 0.57438016),\n", - " (839, 0.56198347),\n", - " (840, 0.5371901),\n", - " (841, 0.49586776),\n", - " (842, 0.44214877),\n", - " (843, 0.38016528),\n", - " (844, 0.30165288),\n", - " (845, 0.27272728),\n", - " (846, 0.2644628),\n", - " (847, 0.22727273),\n", - " (848, 0.23966943),\n", - " (849, 0.2231405),\n", - " (850, 0.20247933),\n", - " (851, 0.23140496),\n", - " (852, 0.28099173),\n", - " (853, 0.3264463),\n", - " (854, 0.3677686),\n", - " (855, 0.3677686),\n", - " (856, 0.37190083),\n", - " (857, 0.38842976),\n", - " (858, 0.3966942),\n", - " (859, 0.41735536),\n", - " (860, 0.44214877),\n", - " (861, 0.47107437),\n", - " (862, 0.5371901),\n", - " (863, 0.56198347),\n", - " (864, 0.55785125),\n", - " (865, 0.5495868),\n", - " (866, 0.5371901),\n", - " (867, 0.5289256),\n", - " (868, 0.5041322),\n", - " (869, 0.47107437),\n", - " (870, 0.41322315),\n", - " (871, 0.39256197),\n", - " (872, 0.35123968),\n", - " (873, 0.3305785),\n", - " (874, 0.2892562),\n", - " (875, 0.2768595),\n", - " (876, 0.21900827),\n", - " (877, 0.1983471),\n", - " (878, 0.19008264),\n", - " (879, 0.16528925),\n", - " (880, 0.16115703),\n", - " (881, 0.1694215),\n", - " (882, 0.24380165),\n", - " (883, 0.2231405),\n", - " (884, 0.2107438),\n", - " (885, 0.17768595),\n", - " (886, 0.22727273),\n", - " (887, 0.2892562),\n", - " (888, 0.3181818),\n", - " (889, 0.3140496),\n", - " (890, 0.338843),\n", - " (891, 0.37603307),\n", - " (892, 0.39256197),\n", - " (893, 0.35123968),\n", - " (894, 0.30578512),\n", - " (895, 0.29752067),\n", - " (896, 0.59090906),\n", - " (897, 0.6322314),\n", - " (898, 0.6280992),\n", - " (899, 0.6404959),\n", - " (900, 0.62396693),\n", - " (901, 0.5661157),\n", - " (902, 0.5495868),\n", - " (903, 0.5),\n", - " (904, 0.46694216),\n", - " (905, 0.3677686),\n", - " (906, 0.28512397),\n", - " (907, 0.23553719),\n", - " (908, 0.2520661),\n", - " (909, 0.23140496),\n", - " (910, 0.19421488),\n", - " (911, 0.2231405),\n", - " (912, 0.1983471),\n", - " (913, 0.16528925),\n", - " (914, 0.1570248),\n", - " (915, 0.1694215),\n", - " (916, 0.21900827),\n", - " (917, 0.24380165),\n", - " (918, 0.3264463),\n", - " (919, 0.38429752),\n", - " (920, 0.38842976),\n", - " (921, 0.3966942),\n", - " (922, 0.39256197),\n", - " (923, 0.41735536),\n", - " (924, 0.43801653),\n", - " (925, 0.4876033),\n", - " (926, 0.56198347),\n", - " (927, 0.61157024),\n", - " (928, 0.62396693),\n", - " (929, 0.61157024),\n", - " (930, 0.58677685),\n", - " (931, 0.56198347),\n", - " (932, 0.5041322),\n", - " (933, 0.46280992),\n", - " (934, 0.39256197),\n", - " (935, 0.35950413),\n", - " (936, 0.3264463),\n", - " (937, 0.29752067),\n", - " (938, 0.2603306),\n", - " (939, 0.23140496),\n", - " (940, 0.17768595),\n", - " (941, 0.1446281),\n", - " (942, 0.16115703),\n", - " (943, 0.11570248),\n", - " (944, 0.1322314),\n", - " (945, 0.11157025),\n", - " (946, 0.1570248),\n", - " (947, 0.1570248),\n", - " (948, 0.16528925),\n", - " (949, 0.22727273),\n", - " (950, 0.18595041),\n", - " (951, 0.20661157),\n", - " (952, 0.2768595),\n", - " (953, 0.30578512),\n", - " (954, 0.338843),\n", - " (955, 0.38016528),\n", - " (956, 0.38842976),\n", - " (957, 0.3677686),\n", - " (958, 0.27272728),\n", - " (959, 0.26859504),\n", - " (960, 0.57024795),\n", - " (961, 0.62396693),\n", - " (962, 0.6404959),\n", - " (963, 0.6446281),\n", - " (964, 0.6322314),\n", - " (965, 0.60330576),\n", - " (966, 0.54545456),\n", - " (967, 0.5041322),\n", - " (968, 0.4214876),\n", - " (969, 0.30578512),\n", - " (970, 0.23553719),\n", - " (971, 0.20247933),\n", - " (972, 0.2107438),\n", - " (973, 0.21900827),\n", - " (974, 0.17355372),\n", - " (975, 0.23966943),\n", - " (976, 0.2107438),\n", - " (977, 0.16115703),\n", - " (978, 0.19008264),\n", - " (979, 0.19008264),\n", - " (980, 0.20247933),\n", - " (981, 0.24380165),\n", - " (982, 0.2603306),\n", - " (983, 0.3553719),\n", - " (984, 0.38842976),\n", - " (985, 0.4090909),\n", - " (986, 0.41322315),\n", - " (987, 0.40495867),\n", - " (988, 0.45041323),\n", - " (989, 0.53305787),\n", - " (990, 0.6198347),\n", - " (991, 0.6652893),\n", - " (992, 0.6859504),\n", - " (993, 0.6694215),\n", - " (994, 0.6487603),\n", - " (995, 0.59090906),\n", - " (996, 0.5123967),\n", - " (997, 0.45454547),\n", - " (998, 0.38842976),\n", - " (999, 0.32231405),\n", - " ...],\n", - " [(0, 0.28099173),\n", - " (1, 0.35950413),\n", - " (2, 0.40495867),\n", - " (3, 0.446281),\n", - " (4, 0.5495868),\n", - " (5, 0.5785124),\n", - " (6, 0.607438),\n", - " (7, 0.6528926),\n", - " (8, 0.6652893),\n", - " (9, 0.71900827),\n", - " (10, 0.72727275),\n", - " (11, 0.73966944),\n", - " (12, 0.73966944),\n", - " (13, 0.75619835),\n", - " (14, 0.7768595),\n", - " (15, 0.76859504),\n", - " (16, 0.78512394),\n", - " (17, 0.7892562),\n", - " (18, 0.79752064),\n", - " (19, 0.8057851),\n", - " (20, 0.8057851),\n", - " (21, 0.8016529),\n", - " (22, 0.8181818),\n", - " (23, 0.8264463),\n", - " (24, 0.822314),\n", - " (25, 0.822314),\n", - " (26, 0.8305785),\n", - " (27, 0.838843),\n", - " (28, 0.838843),\n", - " (29, 0.838843),\n", - " (30, 0.8429752),\n", - " (31, 0.8429752),\n", - " (32, 0.8429752),\n", - " (33, 0.8429752),\n", - " (34, 0.8471074),\n", - " (35, 0.8553719),\n", - " (36, 0.8512397),\n", - " (37, 0.8553719),\n", - " (38, 0.8512397),\n", - " (39, 0.8512397),\n", - " (40, 0.8553719),\n", - " (41, 0.8553719),\n", - " (42, 0.8512397),\n", - " (43, 0.8512397),\n", - " (44, 0.8512397),\n", - " (45, 0.8471074),\n", - " (46, 0.8429752),\n", - " (47, 0.8471074),\n", - " (48, 0.8429752),\n", - " (49, 0.838843),\n", - " (50, 0.8305785),\n", - " (51, 0.8264463),\n", - " (52, 0.8264463),\n", - " (53, 0.8140496),\n", - " (54, 0.8057851),\n", - " (55, 0.7933884),\n", - " (56, 0.7768595),\n", - " (57, 0.72727275),\n", - " (58, 0.6859504),\n", - " (59, 0.6446281),\n", - " (60, 0.54545456),\n", - " (61, 0.446281),\n", - " (62, 0.2892562),\n", - " (63, 0.09090909),\n", - " (64, 0.3305785),\n", - " (65, 0.41735536),\n", - " (66, 0.45867768),\n", - " (67, 0.5041322),\n", - " (68, 0.553719),\n", - " (69, 0.60330576),\n", - " (70, 0.61157024),\n", - " (71, 0.6652893),\n", - " (72, 0.6942149),\n", - " (73, 0.74793386),\n", - " (74, 0.7644628),\n", - " (75, 0.76033056),\n", - " (76, 0.76033056),\n", - " (77, 0.77272725),\n", - " (78, 0.79752064),\n", - " (79, 0.7933884),\n", - " (80, 0.8016529),\n", - " (81, 0.8057851),\n", - " (82, 0.8140496),\n", - " (83, 0.8181818),\n", - " (84, 0.8181818),\n", - " (85, 0.8264463),\n", - " (86, 0.8347107),\n", - " (87, 0.8347107),\n", - " (88, 0.8347107),\n", - " (89, 0.8305785),\n", - " (90, 0.838843),\n", - " (91, 0.8471074),\n", - " (92, 0.8512397),\n", - " (93, 0.8471074),\n", - " (94, 0.8471074),\n", - " (95, 0.8512397),\n", - " (96, 0.8512397),\n", - " (97, 0.8512397),\n", - " (98, 0.8512397),\n", - " (99, 0.8512397),\n", - " (100, 0.8553719),\n", - " (101, 0.8553719),\n", - " (102, 0.8553719),\n", - " (103, 0.8595041),\n", - " (104, 0.8553719),\n", - " (105, 0.8553719),\n", - " (106, 0.8553719),\n", - " (107, 0.8553719),\n", - " (108, 0.8553719),\n", - " (109, 0.8512397),\n", - " (110, 0.8512397),\n", - " (111, 0.8429752),\n", - " (112, 0.838843),\n", - " (113, 0.8347107),\n", - " (114, 0.822314),\n", - " (115, 0.822314),\n", - " (116, 0.8140496),\n", - " (117, 0.80991733),\n", - " (118, 0.8057851),\n", - " (119, 0.7933884),\n", - " (120, 0.7768595),\n", - " (121, 0.72727275),\n", - " (122, 0.6818182),\n", - " (123, 0.6570248),\n", - " (124, 0.58677685),\n", - " (125, 0.44214877),\n", - " (126, 0.28512397),\n", - " (127, 0.16115703),\n", - " (128, 0.3429752),\n", - " (129, 0.44214877),\n", - " (130, 0.47107437),\n", - " (131, 0.53305787),\n", - " (132, 0.5495868),\n", - " (133, 0.58677685),\n", - " (134, 0.6198347),\n", - " (135, 0.6528926),\n", - " (136, 0.71487606),\n", - " (137, 0.74793386),\n", - " (138, 0.76859504),\n", - " (139, 0.78099173),\n", - " (140, 0.7892562),\n", - " (141, 0.7933884),\n", - " (142, 0.79752064),\n", - " (143, 0.8016529),\n", - " (144, 0.80991733),\n", - " (145, 0.822314),\n", - " (146, 0.8264463),\n", - " (147, 0.8264463),\n", - " (148, 0.8264463),\n", - " (149, 0.8305785),\n", - " (150, 0.838843),\n", - " (151, 0.8347107),\n", - " (152, 0.8347107),\n", - " (153, 0.8347107),\n", - " (154, 0.8429752),\n", - " (155, 0.8512397),\n", - " (156, 0.8553719),\n", - " (157, 0.8512397),\n", - " (158, 0.8471074),\n", - " (159, 0.8512397),\n", - " (160, 0.8553719),\n", - " (161, 0.8553719),\n", - " (162, 0.8553719),\n", - " (163, 0.8512397),\n", - " (164, 0.8553719),\n", - " (165, 0.8553719),\n", - " (166, 0.8553719),\n", - " (167, 0.8595041),\n", - " (168, 0.8595041),\n", - " (169, 0.8553719),\n", - " (170, 0.8512397),\n", - " (171, 0.8553719),\n", - " (172, 0.8512397),\n", - " (173, 0.8471074),\n", - " (174, 0.8471074),\n", - " (175, 0.838843),\n", - " (176, 0.8429752),\n", - " (177, 0.8347107),\n", - " (178, 0.78512394),\n", - " (179, 0.8057851),\n", - " (180, 0.8181818),\n", - " (181, 0.8057851),\n", - " (182, 0.80991733),\n", - " (183, 0.79752064),\n", - " (184, 0.77272725),\n", - " (185, 0.71487606),\n", - " (186, 0.6818182),\n", - " (187, 0.6735537),\n", - " (188, 0.61157024),\n", - " (189, 0.45867768),\n", - " (190, 0.30991736),\n", - " (191, 0.15289256),\n", - " (192, 0.29752067),\n", - " (193, 0.446281),\n", - " (194, 0.47107437),\n", - " (195, 0.5371901),\n", - " (196, 0.57438016),\n", - " (197, 0.56198347),\n", - " (198, 0.60330576),\n", - " (199, 0.6404959),\n", - " (200, 0.7107438),\n", - " (201, 0.75619835),\n", - " (202, 0.78099173),\n", - " (203, 0.79752064),\n", - " (204, 0.80991733),\n", - " (205, 0.80991733),\n", - " (206, 0.80991733),\n", - " (207, 0.80991733),\n", - " (208, 0.8057851),\n", - " (209, 0.8305785),\n", - " (210, 0.8347107),\n", - " (211, 0.8305785),\n", - " (212, 0.8305785),\n", - " (213, 0.8347107),\n", - " (214, 0.8347107),\n", - " (215, 0.8347107),\n", - " (216, 0.8347107),\n", - " (217, 0.838843),\n", - " (218, 0.8429752),\n", - " (219, 0.8471074),\n", - " (220, 0.8553719),\n", - " (221, 0.8553719),\n", - " (222, 0.8512397),\n", - " (223, 0.8553719),\n", - " (224, 0.8595041),\n", - " (225, 0.8553719),\n", - " (226, 0.8595041),\n", - " (227, 0.8553719),\n", - " (228, 0.8512397),\n", - " (229, 0.8553719),\n", - " (230, 0.8553719),\n", - " (231, 0.8553719),\n", - " (232, 0.8553719),\n", - " (233, 0.8512397),\n", - " (234, 0.8512397),\n", - " (235, 0.8512397),\n", - " (236, 0.8512397),\n", - " (237, 0.8512397),\n", - " (238, 0.8429752),\n", - " (239, 0.838843),\n", - " (240, 0.8264463),\n", - " (241, 0.80991733),\n", - " (242, 0.7892562),\n", - " (243, 0.78512394),\n", - " (244, 0.7933884),\n", - " (245, 0.78512394),\n", - " (246, 0.7768595),\n", - " (247, 0.8016529),\n", - " (248, 0.7768595),\n", - " (249, 0.7231405),\n", - " (250, 0.6735537),\n", - " (251, 0.677686),\n", - " (252, 0.6446281),\n", - " (253, 0.4752066),\n", - " (254, 0.34710744),\n", - " (255, 0.15289256),\n", - " (256, 0.3140496),\n", - " (257, 0.4214876),\n", - " (258, 0.47933885),\n", - " (259, 0.5413223),\n", - " (260, 0.57024795),\n", - " (261, 0.55785125),\n", - " (262, 0.58264464),\n", - " (263, 0.6528926),\n", - " (264, 0.71900827),\n", - " (265, 0.7644628),\n", - " (266, 0.78512394),\n", - " (267, 0.8057851),\n", - " (268, 0.8140496),\n", - " (269, 0.8140496),\n", - " (270, 0.80991733),\n", - " (271, 0.80991733),\n", - " (272, 0.80991733),\n", - " (273, 0.8181818),\n", - " (274, 0.822314),\n", - " (275, 0.8264463),\n", - " (276, 0.8264463),\n", - " (277, 0.8305785),\n", - " (278, 0.8305785),\n", - " (279, 0.8305785),\n", - " (280, 0.8305785),\n", - " (281, 0.838843),\n", - " (282, 0.838843),\n", - " (283, 0.838843),\n", - " (284, 0.8512397),\n", - " (285, 0.8595041),\n", - " (286, 0.8553719),\n", - " (287, 0.8553719),\n", - " (288, 0.8553719),\n", - " (289, 0.8553719),\n", - " (290, 0.8553719),\n", - " (291, 0.8553719),\n", - " (292, 0.8553719),\n", - " (293, 0.8512397),\n", - " (294, 0.8512397),\n", - " (295, 0.8512397),\n", - " (296, 0.8553719),\n", - " (297, 0.8512397),\n", - " (298, 0.8471074),\n", - " (299, 0.8512397),\n", - " (300, 0.8512397),\n", - " (301, 0.8429752),\n", - " (302, 0.8264463),\n", - " (303, 0.822314),\n", - " (304, 0.8016529),\n", - " (305, 0.7644628),\n", - " (306, 0.74380165),\n", - " (307, 0.7066116),\n", - " (308, 0.6859504),\n", - " (309, 0.677686),\n", - " (310, 0.677686),\n", - " (311, 0.73966944),\n", - " (312, 0.7768595),\n", - " (313, 0.72727275),\n", - " (314, 0.6735537),\n", - " (315, 0.677686),\n", - " (316, 0.6570248),\n", - " (317, 0.53305787),\n", - " (318, 0.37603307),\n", - " (319, 0.11570248),\n", - " (320, 0.34710744),\n", - " (321, 0.44214877),\n", - " (322, 0.48347107),\n", - " (323, 0.54545456),\n", - " (324, 0.553719),\n", - " (325, 0.553719),\n", - " (326, 0.56198347),\n", - " (327, 0.6652893),\n", - " (328, 0.71900827),\n", - " (329, 0.75619835),\n", - " (330, 0.7644628),\n", - " (331, 0.77272725),\n", - " (332, 0.78512394),\n", - " (333, 0.7933884),\n", - " (334, 0.78512394),\n", - " (335, 0.7768595),\n", - " (336, 0.7892562),\n", - " (337, 0.8016529),\n", - " (338, 0.79752064),\n", - " (339, 0.8016529),\n", - " (340, 0.8057851),\n", - " (341, 0.80991733),\n", - " (342, 0.8181818),\n", - " (343, 0.8140496),\n", - " (344, 0.8181818),\n", - " (345, 0.822314),\n", - " (346, 0.8264463),\n", - " (347, 0.8264463),\n", - " (348, 0.8347107),\n", - " (349, 0.8471074),\n", - " (350, 0.8471074),\n", - " (351, 0.8512397),\n", - " (352, 0.8512397),\n", - " (353, 0.8471074),\n", - " (354, 0.8512397),\n", - " (355, 0.8512397),\n", - " (356, 0.8512397),\n", - " (357, 0.8512397),\n", - " (358, 0.8471074),\n", - " (359, 0.838843),\n", - " (360, 0.8347107),\n", - " (361, 0.8264463),\n", - " (362, 0.8264463),\n", - " (363, 0.8305785),\n", - " (364, 0.8181818),\n", - " (365, 0.7892562),\n", - " (366, 0.74793386),\n", - " (367, 0.7355372),\n", - " (368, 0.6694215),\n", - " (369, 0.6363636),\n", - " (370, 0.6280992),\n", - " (371, 0.5495868),\n", - " (372, 0.5247934),\n", - " (373, 0.5),\n", - " (374, 0.5165289),\n", - " (375, 0.58264464),\n", - " (376, 0.661157),\n", - " (377, 0.6942149),\n", - " (378, 0.6404959),\n", - " (379, 0.6570248),\n", - " (380, 0.6570248),\n", - " (381, 0.5785124),\n", - " (382, 0.41735536),\n", - " (383, 0.12396694),\n", - " (384, 0.3677686),\n", - " (385, 0.46694216),\n", - " (386, 0.4876033),\n", - " (387, 0.5413223),\n", - " (388, 0.5413223),\n", - " (389, 0.5413223),\n", - " (390, 0.55785125),\n", - " (391, 0.661157),\n", - " (392, 0.7107438),\n", - " (393, 0.73966944),\n", - " (394, 0.70247936),\n", - " (395, 0.6694215),\n", - " (396, 0.69008267),\n", - " (397, 0.71487606),\n", - " (398, 0.72727275),\n", - " (399, 0.74380165),\n", - " (400, 0.7355372),\n", - " (401, 0.73966944),\n", - " (402, 0.73140496),\n", - " (403, 0.74380165),\n", - " (404, 0.73966944),\n", - " (405, 0.73140496),\n", - " (406, 0.7355372),\n", - " (407, 0.73966944),\n", - " (408, 0.75619835),\n", - " (409, 0.77272725),\n", - " (410, 0.8016529),\n", - " (411, 0.79752064),\n", - " (412, 0.79752064),\n", - " (413, 0.8181818),\n", - " (414, 0.8305785),\n", - " (415, 0.8305785),\n", - " (416, 0.8347107),\n", - " (417, 0.8305785),\n", - " (418, 0.8305785),\n", - " (419, 0.8347107),\n", - " (420, 0.8429752),\n", - " (421, 0.838843),\n", - " (422, 0.822314),\n", - " (423, 0.8016529),\n", - " (424, 0.77272725),\n", - " (425, 0.74793386),\n", - " (426, 0.7107438),\n", - " (427, 0.69008267),\n", - " (428, 0.61157024),\n", - " (429, 0.54545456),\n", - " (430, 0.56198347),\n", - " (431, 0.54545456),\n", - " (432, 0.4752066),\n", - " (433, 0.42975205),\n", - " (434, 0.42561984),\n", - " (435, 0.37190083),\n", - " (436, 0.3429752),\n", - " (437, 0.33471075),\n", - " (438, 0.3305785),\n", - " (439, 0.38842976),\n", - " (440, 0.45454547),\n", - " (441, 0.45041323),\n", - " (442, 0.4876033),\n", - " (443, 0.58264464),\n", - " (444, 0.6404959),\n", - " (445, 0.60330576),\n", - " (446, 0.46694216),\n", - " (447, 0.10743801),\n", - " (448, 0.38842976),\n", - " (449, 0.4752066),\n", - " (450, 0.4876033),\n", - " (451, 0.5289256),\n", - " (452, 0.5289256),\n", - " (453, 0.5165289),\n", - " (454, 0.58264464),\n", - " (455, 0.61570245),\n", - " (456, 0.6404959),\n", - " (457, 0.60330576),\n", - " (458, 0.5289256),\n", - " (459, 0.5165289),\n", - " (460, 0.5206612),\n", - " (461, 0.5495868),\n", - " (462, 0.59504133),\n", - " (463, 0.6404959),\n", - " (464, 0.6198347),\n", - " (465, 0.58677685),\n", - " (466, 0.5495868),\n", - " (467, 0.56198347),\n", - " (468, 0.55785125),\n", - " (469, 0.5123967),\n", - " (470, 0.5247934),\n", - " (471, 0.5371901),\n", - " (472, 0.55785125),\n", - " (473, 0.6487603),\n", - " (474, 0.72727275),\n", - " (475, 0.71487606),\n", - " (476, 0.7066116),\n", - " (477, 0.75206614),\n", - " (478, 0.78512394),\n", - " (479, 0.8016529),\n", - " (480, 0.80991733),\n", - " (481, 0.80991733),\n", - " (482, 0.8140496),\n", - " (483, 0.8181818),\n", - " (484, 0.822314),\n", - " (485, 0.8140496),\n", - " (486, 0.77272725),\n", - " (487, 0.6942149),\n", - " (488, 0.6404959),\n", - " (489, 0.5371901),\n", - " (490, 0.47933885),\n", - " (491, 0.4338843),\n", - " (492, 0.4214876),\n", - " (493, 0.40495867),\n", - " (494, 0.3966942),\n", - " (495, 0.35950413),\n", - " (496, 0.3264463),\n", - " (497, 0.338843),\n", - " (498, 0.32231405),\n", - " (499, 0.32231405),\n", - " (500, 0.2892562),\n", - " (501, 0.2520661),\n", - " (502, 0.32231405),\n", - " (503, 0.3429752),\n", - " (504, 0.3181818),\n", - " (505, 0.2768595),\n", - " (506, 0.29752067),\n", - " (507, 0.3677686),\n", - " (508, 0.58677685),\n", - " (509, 0.61570245),\n", - " (510, 0.4876033),\n", - " (511, 0.13636364),\n", - " (512, 0.39256197),\n", - " (513, 0.46280992),\n", - " (514, 0.48347107),\n", - " (515, 0.5082645),\n", - " (516, 0.5123967),\n", - " (517, 0.47107437),\n", - " (518, 0.45454547),\n", - " (519, 0.446281),\n", - " (520, 0.3966942),\n", - " (521, 0.35950413),\n", - " (522, 0.34710744),\n", - " (523, 0.3677686),\n", - " (524, 0.37603307),\n", - " (525, 0.38016528),\n", - " (526, 0.40495867),\n", - " (527, 0.40495867),\n", - " (528, 0.40082645),\n", - " (529, 0.36363637),\n", - " (530, 0.3429752),\n", - " (531, 0.3677686),\n", - " (532, 0.38429752),\n", - " (533, 0.3553719),\n", - " (534, 0.3429752),\n", - " (535, 0.36363637),\n", - " (536, 0.38429752),\n", - " (537, 0.47933885),\n", - " (538, 0.59090906),\n", - " (539, 0.61570245),\n", - " (540, 0.5661157),\n", - " (541, 0.59917355),\n", - " (542, 0.7066116),\n", - " (543, 0.76033056),\n", - " (544, 0.78512394),\n", - " (545, 0.79752064),\n", - " (546, 0.78099173),\n", - " (547, 0.7768595),\n", - " (548, 0.78512394),\n", - " (549, 0.77272725),\n", - " (550, 0.6735537),\n", - " (551, 0.55785125),\n", - " (552, 0.44214877),\n", - " (553, 0.38016528),\n", - " (554, 0.3429752),\n", - " (555, 0.29338843),\n", - " (556, 0.29752067),\n", - " (557, 0.28512397),\n", - " (558, 0.2644628),\n", - " (559, 0.2603306),\n", - " (560, 0.24793388),\n", - " (561, 0.2603306),\n", - " (562, 0.23966943),\n", - " (563, 0.28099173),\n", - " (564, 0.29752067),\n", - " (565, 0.24793388),\n", - " (566, 0.26859504),\n", - " (567, 0.35123968),\n", - " (568, 0.35950413),\n", - " (569, 0.32231405),\n", - " (570, 0.29752067),\n", - " (571, 0.3140496),\n", - " (572, 0.41735536),\n", - " (573, 0.6280992),\n", - " (574, 0.5247934),\n", - " (575, 0.16115703),\n", - " (576, 0.3966942),\n", - " (577, 0.46694216),\n", - " (578, 0.4752066),\n", - " (579, 0.49173555),\n", - " (580, 0.46280992),\n", - " (581, 0.37190083),\n", - " (582, 0.33471075),\n", - " (583, 0.27272728),\n", - " (584, 0.25619835),\n", - " (585, 0.2644628),\n", - " (586, 0.2644628),\n", - " (587, 0.2892562),\n", - " (588, 0.30165288),\n", - " (589, 0.29752067),\n", - " (590, 0.2520661),\n", - " (591, 0.24793388),\n", - " (592, 0.24380165),\n", - " (593, 0.22727273),\n", - " (594, 0.23966943),\n", - " (595, 0.24793388),\n", - " (596, 0.2603306),\n", - " (597, 0.23140496),\n", - " (598, 0.21487603),\n", - " (599, 0.24380165),\n", - " (600, 0.32231405),\n", - " (601, 0.39256197),\n", - " (602, 0.46280992),\n", - " (603, 0.5206612),\n", - " (604, 0.47107437),\n", - " (605, 0.49586776),\n", - " (606, 0.6487603),\n", - " (607, 0.69008267),\n", - " (608, 0.73140496),\n", - " (609, 0.76033056),\n", - " (610, 0.7355372),\n", - " (611, 0.71900827),\n", - " (612, 0.7231405),\n", - " (613, 0.6818182),\n", - " (614, 0.53305787),\n", - " (615, 0.42975205),\n", - " (616, 0.38429752),\n", - " (617, 0.3553719),\n", - " (618, 0.27272728),\n", - " (619, 0.21487603),\n", - " (620, 0.21487603),\n", - " (621, 0.20247933),\n", - " (622, 0.18181819),\n", - " (623, 0.18595041),\n", - " (624, 0.2107438),\n", - " (625, 0.23966943),\n", - " (626, 0.27272728),\n", - " (627, 0.3553719),\n", - " (628, 0.3966942),\n", - " (629, 0.4090909),\n", - " (630, 0.38842976),\n", - " (631, 0.40495867),\n", - " (632, 0.5041322),\n", - " (633, 0.5165289),\n", - " (634, 0.42975205),\n", - " (635, 0.3553719),\n", - " (636, 0.338843),\n", - " (637, 0.59090906),\n", - " (638, 0.55785125),\n", - " (639, 0.2231405),\n", - " (640, 0.38016528),\n", - " (641, 0.46694216),\n", - " (642, 0.4752066),\n", - " (643, 0.48347107),\n", - " (644, 0.4090909),\n", - " (645, 0.32231405),\n", - " (646, 0.24793388),\n", - " (647, 0.22727273),\n", - " (648, 0.22727273),\n", - " (649, 0.26859504),\n", - " (650, 0.29338843),\n", - " (651, 0.29752067),\n", - " (652, 0.29338843),\n", - " (653, 0.29752067),\n", - " (654, 0.24793388),\n", - " (655, 0.21900827),\n", - " (656, 0.21900827),\n", - " (657, 0.19008264),\n", - " (658, 0.19421488),\n", - " (659, 0.17768595),\n", - " (660, 0.16528925),\n", - " (661, 0.18181819),\n", - " (662, 0.18595041),\n", - " (663, 0.20661157),\n", - " (664, 0.2603306),\n", - " (665, 0.35123968),\n", - " (666, 0.3966942),\n", - " (667, 0.41322315),\n", - " (668, 0.41322315),\n", - " (669, 0.49173555),\n", - " (670, 0.59504133),\n", - " (671, 0.607438),\n", - " (672, 0.6487603),\n", - " (673, 0.69008267),\n", - " (674, 0.6487603),\n", - " (675, 0.6404959),\n", - " (676, 0.6487603),\n", - " (677, 0.5785124),\n", - " (678, 0.47107437),\n", - " (679, 0.38842976),\n", - " (680, 0.35123968),\n", - " (681, 0.35123968),\n", - " (682, 0.28099173),\n", - " (683, 0.2107438),\n", - " (684, 0.1983471),\n", - " (685, 0.17355372),\n", - " (686, 0.1694215),\n", - " (687, 0.21487603),\n", - " (688, 0.30578512),\n", - " (689, 0.3966942),\n", - " (690, 0.45041323),\n", - " (691, 0.5165289),\n", - " (692, 0.553719),\n", - " (693, 0.57024795),\n", - " (694, 0.58264464),\n", - " (695, 0.6198347),\n", - " (696, 0.6363636),\n", - " (697, 0.6570248),\n", - " (698, 0.5785124),\n", - " (699, 0.48347107),\n", - " (700, 0.42561984),\n", - " (701, 0.56198347),\n", - " (702, 0.58677685),\n", - " (703, 0.23553719),\n", - " (704, 0.36363637),\n", - " (705, 0.44214877),\n", - " (706, 0.47107437),\n", - " (707, 0.46280992),\n", - " (708, 0.39256197),\n", - " (709, 0.30991736),\n", - " (710, 0.30991736),\n", - " (711, 0.30165288),\n", - " (712, 0.3553719),\n", - " (713, 0.38016528),\n", - " (714, 0.39256197),\n", - " (715, 0.4214876),\n", - " (716, 0.41735536),\n", - " (717, 0.36363637),\n", - " (718, 0.34710744),\n", - " (719, 0.3264463),\n", - " (720, 0.3140496),\n", - " (721, 0.2768595),\n", - " (722, 0.25619835),\n", - " (723, 0.24793388),\n", - " (724, 0.24380165),\n", - " (725, 0.25619835),\n", - " (726, 0.28099173),\n", - " (727, 0.29752067),\n", - " (728, 0.3264463),\n", - " (729, 0.37190083),\n", - " (730, 0.3966942),\n", - " (731, 0.40082645),\n", - " (732, 0.45041323),\n", - " (733, 0.5247934),\n", - " (734, 0.55785125),\n", - " (735, 0.56198347),\n", - " (736, 0.59090906),\n", - " (737, 0.59917355),\n", - " (738, 0.59090906),\n", - " (739, 0.59504133),\n", - " (740, 0.58264464),\n", - " (741, 0.5123967),\n", - " (742, 0.446281),\n", - " (743, 0.41735536),\n", - " (744, 0.44214877),\n", - " (745, 0.47107437),\n", - " (746, 0.4090909),\n", - " (747, 0.3553719),\n", - " (748, 0.3264463),\n", - " (749, 0.30991736),\n", - " (750, 0.35950413),\n", - " (751, 0.41322315),\n", - " (752, 0.4214876),\n", - " (753, 0.42561984),\n", - " (754, 0.4214876),\n", - " (755, 0.47107437),\n", - " (756, 0.5495868),\n", - " (757, 0.59504133),\n", - " (758, 0.59090906),\n", - " (759, 0.6198347),\n", - " (760, 0.6446281),\n", - " (761, 0.6652893),\n", - " (762, 0.6363636),\n", - " (763, 0.61157024),\n", - " (764, 0.54545456),\n", - " (765, 0.5661157),\n", - " (766, 0.59917355),\n", - " (767, 0.2520661),\n", - " (768, 0.34710744),\n", - " (769, 0.44214877),\n", - " (770, 0.45867768),\n", - " (771, 0.45454547),\n", - " (772, 0.41735536),\n", - " (773, 0.36363637),\n", - " (774, 0.41735536),\n", - " (775, 0.5),\n", - " (776, 0.60330576),\n", - " (777, 0.6363636),\n", - " (778, 0.6528926),\n", - " (779, 0.6570248),\n", - " (780, 0.6280992),\n", - " (781, 0.5082645),\n", - " (782, 0.47933885),\n", - " (783, 0.49173555),\n", - " (784, 0.5289256),\n", - " (785, 0.49173555),\n", - " (786, 0.46694216),\n", - " (787, 0.4876033),\n", - " (788, 0.5123967),\n", - " (789, 0.5247934),\n", - " (790, 0.5495868),\n", - " (791, 0.56198347),\n", - " (792, 0.57438016),\n", - " (793, 0.59504133),\n", - " (794, 0.60330576),\n", - " (795, 0.58677685),\n", - " (796, 0.58264464),\n", - " (797, 0.60330576),\n", - " (798, 0.61157024),\n", - " (799, 0.6322314),\n", - " (800, 0.6487603),\n", - " (801, 0.6446281),\n", - " (802, 0.6652893),\n", - " (803, 0.6694215),\n", - " (804, 0.6487603),\n", - " (805, 0.61157024),\n", - " (806, 0.5661157),\n", - " (807, 0.58677685),\n", - " (808, 0.71487606),\n", - " (809, 0.72727275),\n", - " (810, 0.661157),\n", - " (811, 0.61570245),\n", - " (812, 0.54545456),\n", - " (813, 0.4876033),\n", - " (814, 0.5082645),\n", - " (815, 0.5413223),\n", - " (816, 0.57024795),\n", - " (817, 0.5785124),\n", - " (818, 0.6198347),\n", - " (819, 0.6735537),\n", - " (820, 0.71900827),\n", - " (821, 0.71487606),\n", - " (822, 0.5495868),\n", - " (823, 0.553719),\n", - " (824, 0.553719),\n", - " (825, 0.57438016),\n", - " (826, 0.59090906),\n", - " (827, 0.60330576),\n", - " (828, 0.60330576),\n", - " (829, 0.57438016),\n", - " (830, 0.58677685),\n", - " (831, 0.29338843),\n", - " (832, 0.35950413),\n", - " (833, 0.42975205),\n", - " (834, 0.446281),\n", - " (835, 0.446281),\n", - " (836, 0.45454547),\n", - " (837, 0.48347107),\n", - " (838, 0.5247934),\n", - " (839, 0.607438),\n", - " (840, 0.607438),\n", - " (841, 0.58264464),\n", - " (842, 0.553719),\n", - " (843, 0.5371901),\n", - " (844, 0.53305787),\n", - " (845, 0.5371901),\n", - " (846, 0.5247934),\n", - " (847, 0.46280992),\n", - " (848, 0.41322315),\n", - " (849, 0.3429752),\n", - " (850, 0.3181818),\n", - " (851, 0.4338843),\n", - " (852, 0.4752066),\n", - " (853, 0.46280992),\n", - " (854, 0.42561984),\n", - " (855, 0.41735536),\n", - " (856, 0.446281),\n", - " (857, 0.4752066),\n", - " (858, 0.5041322),\n", - " (859, 0.45867768),\n", - " (860, 0.35950413),\n", - " (861, 0.3966942),\n", - " (862, 0.45867768),\n", - " (863, 0.5082645),\n", - " (864, 0.5495868),\n", - " (865, 0.5661157),\n", - " (866, 0.61570245),\n", - " (867, 0.6280992),\n", - " (868, 0.60330576),\n", - " (869, 0.5289256),\n", - " (870, 0.4338843),\n", - " (871, 0.4752066),\n", - " (872, 0.5785124),\n", - " (873, 0.5413223),\n", - " (874, 0.45867768),\n", - " (875, 0.39256197),\n", - " (876, 0.39256197),\n", - " (877, 0.40495867),\n", - " (878, 0.38842976),\n", - " (879, 0.37190083),\n", - " (880, 0.35950413),\n", - " (881, 0.553719),\n", - " (882, 0.7355372),\n", - " (883, 0.7644628),\n", - " (884, 0.7107438),\n", - " (885, 0.5413223),\n", - " (886, 0.5371901),\n", - " (887, 0.60330576),\n", - " (888, 0.6322314),\n", - " (889, 0.62396693),\n", - " (890, 0.61157024),\n", - " (891, 0.553719),\n", - " (892, 0.5206612),\n", - " (893, 0.5371901),\n", - " (894, 0.5785124),\n", - " (895, 0.3553719),\n", - " (896, 0.3429752),\n", - " (897, 0.4338843),\n", - " (898, 0.43801653),\n", - " (899, 0.4752066),\n", - " (900, 0.5123967),\n", - " (901, 0.54545456),\n", - " (902, 0.53305787),\n", - " (903, 0.5),\n", - " (904, 0.5206612),\n", - " (905, 0.5371901),\n", - " (906, 0.5247934),\n", - " (907, 0.47933885),\n", - " (908, 0.41735536),\n", - " (909, 0.49586776),\n", - " (910, 0.5247934),\n", - " (911, 0.37190083),\n", - " (912, 0.338843),\n", - " (913, 0.35950413),\n", - " (914, 0.4876033),\n", - " (915, 0.8719008),\n", - " (916, 0.8636364),\n", - " (917, 0.8181818),\n", - " (918, 0.5785124),\n", - " (919, 0.36363637),\n", - " (920, 0.38016528),\n", - " (921, 0.38429752),\n", - " (922, 0.41735536),\n", - " (923, 0.49586776),\n", - " (924, 0.43801653),\n", - " (925, 0.3677686),\n", - " (926, 0.48347107),\n", - " (927, 0.59504133),\n", - " (928, 0.661157),\n", - " (929, 0.6983471),\n", - " (930, 0.73140496),\n", - " (931, 0.7107438),\n", - " (932, 0.62396693),\n", - " (933, 0.47933885),\n", - " (934, 0.45867768),\n", - " (935, 0.5082645),\n", - " (936, 0.48347107),\n", - " (937, 0.4338843),\n", - " (938, 0.39256197),\n", - " (939, 0.338843),\n", - " (940, 0.46280992),\n", - " (941, 0.553719),\n", - " (942, 0.39256197),\n", - " (943, 0.23140496),\n", - " (944, 0.2603306),\n", - " (945, 0.661157),\n", - " (946, 0.8471074),\n", - " (947, 0.8512397),\n", - " (948, 0.89669424),\n", - " (949, 0.5165289),\n", - " (950, 0.4214876),\n", - " (951, 0.49586776),\n", - " (952, 0.59504133),\n", - " (953, 0.6322314),\n", - " (954, 0.6859504),\n", - " (955, 0.5247934),\n", - " (956, 0.32231405),\n", - " (957, 0.4338843),\n", - " (958, 0.5371901),\n", - " (959, 0.44214877),\n", - " (960, 0.29752067),\n", - " (961, 0.4214876),\n", - " (962, 0.46694216),\n", - " (963, 0.53305787),\n", - " (964, 0.41735536),\n", - " (965, 0.5),\n", - " (966, 0.5206612),\n", - " (967, 0.5041322),\n", - " (968, 0.5206612),\n", - " (969, 0.5289256),\n", - " (970, 0.49173555),\n", - " (971, 0.42561984),\n", - " (972, 0.38016528),\n", - " (973, 0.5041322),\n", - " (974, 0.59504133),\n", - " (975, 0.3553719),\n", - " (976, 0.3181818),\n", - " (977, 0.4752066),\n", - " (978, 0.5082645),\n", - " (979, 0.80991733),\n", - " (980, 0.8636364),\n", - " (981, 0.8553719),\n", - " (982, 0.6694215),\n", - " (983, 0.3553719),\n", - " (984, 0.3677686),\n", - " (985, 0.38429752),\n", - " (986, 0.35123968),\n", - " (987, 0.41322315),\n", - " (988, 0.4876033),\n", - " (989, 0.47933885),\n", - " (990, 0.57024795),\n", - " (991, 0.6570248),\n", - " (992, 0.69008267),\n", - " (993, 0.71900827),\n", - " (994, 0.77272725),\n", - " (995, 0.78512394),\n", - " (996, 0.7107438),\n", - " (997, 0.553719),\n", - " (998, 0.5082645),\n", - " (999, 0.5123967),\n", - " ...],\n", - " [(0, 0.37603307),\n", - " (1, 0.4752066),\n", - " (2, 0.57438016),\n", - " (3, 0.6404959),\n", - " (4, 0.661157),\n", - " (5, 0.6983471),\n", - " (6, 0.7231405),\n", - " (7, 0.74793386),\n", - " (8, 0.77272725),\n", - " (9, 0.78099173),\n", - " (10, 0.79752064),\n", - " (11, 0.8016529),\n", - " (12, 0.8016529),\n", - " (13, 0.8057851),\n", - " (14, 0.8140496),\n", - " (15, 0.8181818),\n", - " (16, 0.8264463),\n", - " (17, 0.822314),\n", - " (18, 0.8264463),\n", - " (19, 0.822314),\n", - " (20, 0.8181818),\n", - " (21, 0.8264463),\n", - " (22, 0.822314),\n", - " (23, 0.822314),\n", - " (24, 0.8264463),\n", - " (25, 0.8264463),\n", - " (26, 0.8264463),\n", - " (27, 0.822314),\n", - " (28, 0.8305785),\n", - " (29, 0.8264463),\n", - " (30, 0.822314),\n", - " (31, 0.8140496),\n", - " (32, 0.8140496),\n", - " (33, 0.80991733),\n", - " (34, 0.80991733),\n", - " (35, 0.8057851),\n", - " (36, 0.8016529),\n", - " (37, 0.79752064),\n", - " (38, 0.7892562),\n", - " (39, 0.78512394),\n", - " (40, 0.7892562),\n", - " (41, 0.78512394),\n", - " (42, 0.78512394),\n", - " (43, 0.78099173),\n", - " (44, 0.77272725),\n", - " (45, 0.76859504),\n", - " (46, 0.75206614),\n", - " (47, 0.75619835),\n", - " (48, 0.75619835),\n", - " (49, 0.74793386),\n", - " (50, 0.73140496),\n", - " (51, 0.7231405),\n", - " (52, 0.72727275),\n", - " (53, 0.72727275),\n", - " (54, 0.71900827),\n", - " (55, 0.7107438),\n", - " (56, 0.6859504),\n", - " (57, 0.6694215),\n", - " (58, 0.6404959),\n", - " (59, 0.60330576),\n", - " (60, 0.57024795),\n", - " (61, 0.5413223),\n", - " (62, 0.48347107),\n", - " (63, 0.446281),\n", - " (64, 0.36363637),\n", - " (65, 0.47933885),\n", - " (66, 0.57024795),\n", - " (67, 0.6363636),\n", - " (68, 0.6735537),\n", - " (69, 0.69008267),\n", - " (70, 0.73140496),\n", - " (71, 0.73966944),\n", - " (72, 0.77272725),\n", - " (73, 0.78099173),\n", - " (74, 0.7933884),\n", - " (75, 0.79752064),\n", - " (76, 0.8016529),\n", - " (77, 0.80991733),\n", - " (78, 0.80991733),\n", - " (79, 0.8181818),\n", - " (80, 0.8181818),\n", - " (81, 0.8140496),\n", - " (82, 0.8181818),\n", - " (83, 0.8181818),\n", - " (84, 0.8264463),\n", - " (85, 0.8264463),\n", - " (86, 0.8305785),\n", - " (87, 0.8305785),\n", - " (88, 0.8305785),\n", - " (89, 0.8305785),\n", - " (90, 0.8305785),\n", - " (91, 0.8305785),\n", - " (92, 0.8305785),\n", - " (93, 0.8264463),\n", - " (94, 0.8181818),\n", - " (95, 0.8181818),\n", - " (96, 0.8140496),\n", - " (97, 0.8140496),\n", - " (98, 0.8140496),\n", - " (99, 0.8140496),\n", - " (100, 0.80991733),\n", - " (101, 0.8057851),\n", - " (102, 0.79752064),\n", - " (103, 0.7892562),\n", - " (104, 0.7892562),\n", - " (105, 0.7892562),\n", - " (106, 0.78512394),\n", - " (107, 0.7768595),\n", - " (108, 0.7768595),\n", - " (109, 0.78099173),\n", - " (110, 0.76859504),\n", - " (111, 0.7644628),\n", - " (112, 0.76033056),\n", - " (113, 0.74380165),\n", - " (114, 0.72727275),\n", - " (115, 0.73140496),\n", - " (116, 0.72727275),\n", - " (117, 0.71900827),\n", - " (118, 0.70247936),\n", - " (119, 0.7066116),\n", - " (120, 0.6983471),\n", - " (121, 0.6694215),\n", - " (122, 0.6404959),\n", - " (123, 0.607438),\n", - " (124, 0.5661157),\n", - " (125, 0.53305787),\n", - " (126, 0.47107437),\n", - " (127, 0.44214877),\n", - " (128, 0.35950413),\n", - " (129, 0.4876033),\n", - " (130, 0.5661157),\n", - " (131, 0.6280992),\n", - " (132, 0.6735537),\n", - " (133, 0.70247936),\n", - " (134, 0.73140496),\n", - " (135, 0.74380165),\n", - " (136, 0.77272725),\n", - " (137, 0.78099173),\n", - " (138, 0.79752064),\n", - " (139, 0.8016529),\n", - " (140, 0.8016529),\n", - " (141, 0.8016529),\n", - " (142, 0.8057851),\n", - " (143, 0.8140496),\n", - " (144, 0.822314),\n", - " (145, 0.822314),\n", - " (146, 0.8181818),\n", - " (147, 0.8181818),\n", - " (148, 0.8305785),\n", - " (149, 0.8264463),\n", - " (150, 0.8305785),\n", - " (151, 0.8305785),\n", - " (152, 0.8305785),\n", - " (153, 0.8305785),\n", - " (154, 0.8305785),\n", - " (155, 0.8305785),\n", - " (156, 0.8305785),\n", - " (157, 0.8264463),\n", - " (158, 0.8140496),\n", - " (159, 0.8140496),\n", - " (160, 0.80991733),\n", - " (161, 0.8181818),\n", - " (162, 0.822314),\n", - " (163, 0.80991733),\n", - " (164, 0.8057851),\n", - " (165, 0.8057851),\n", - " (166, 0.8016529),\n", - " (167, 0.79752064),\n", - " (168, 0.7933884),\n", - " (169, 0.7933884),\n", - " (170, 0.78099173),\n", - " (171, 0.78099173),\n", - " (172, 0.7768595),\n", - " (173, 0.7892562),\n", - " (174, 0.77272725),\n", - " (175, 0.76033056),\n", - " (176, 0.75206614),\n", - " (177, 0.74793386),\n", - " (178, 0.7355372),\n", - " (179, 0.73966944),\n", - " (180, 0.73140496),\n", - " (181, 0.7231405),\n", - " (182, 0.70247936),\n", - " (183, 0.6983471),\n", - " (184, 0.6859504),\n", - " (185, 0.6694215),\n", - " (186, 0.6363636),\n", - " (187, 0.60330576),\n", - " (188, 0.57024795),\n", - " (189, 0.53305787),\n", - " (190, 0.46280992),\n", - " (191, 0.4338843),\n", - " (192, 0.3677686),\n", - " (193, 0.5),\n", - " (194, 0.58677685),\n", - " (195, 0.62396693),\n", - " (196, 0.6694215),\n", - " (197, 0.70247936),\n", - " (198, 0.73140496),\n", - " (199, 0.75619835),\n", - " (200, 0.77272725),\n", - " (201, 0.7768595),\n", - " (202, 0.7892562),\n", - " (203, 0.8057851),\n", - " (204, 0.8057851),\n", - " (205, 0.8057851),\n", - " (206, 0.8057851),\n", - " (207, 0.8140496),\n", - " (208, 0.8181818),\n", - " (209, 0.8181818),\n", - " (210, 0.822314),\n", - " (211, 0.822314),\n", - " (212, 0.8264463),\n", - " (213, 0.8264463),\n", - " (214, 0.8264463),\n", - " (215, 0.822314),\n", - " (216, 0.8347107),\n", - " (217, 0.8305785),\n", - " (218, 0.8305785),\n", - " (219, 0.8305785),\n", - " (220, 0.8264463),\n", - " (221, 0.8181818),\n", - " (222, 0.8140496),\n", - " (223, 0.80991733),\n", - " (224, 0.8140496),\n", - " (225, 0.822314),\n", - " (226, 0.8181818),\n", - " (227, 0.8140496),\n", - " (228, 0.80991733),\n", - " (229, 0.80991733),\n", - " (230, 0.8016529),\n", - " (231, 0.79752064),\n", - " (232, 0.78512394),\n", - " (233, 0.78099173),\n", - " (234, 0.78512394),\n", - " (235, 0.78512394),\n", - " (236, 0.7768595),\n", - " (237, 0.78099173),\n", - " (238, 0.7768595),\n", - " (239, 0.75619835),\n", - " (240, 0.73966944),\n", - " (241, 0.75206614),\n", - " (242, 0.75206614),\n", - " (243, 0.74793386),\n", - " (244, 0.73140496),\n", - " (245, 0.73140496),\n", - " (246, 0.72727275),\n", - " (247, 0.7231405),\n", - " (248, 0.6942149),\n", - " (249, 0.6652893),\n", - " (250, 0.6322314),\n", - " (251, 0.59917355),\n", - " (252, 0.55785125),\n", - " (253, 0.53305787),\n", - " (254, 0.46694216),\n", - " (255, 0.44214877),\n", - " (256, 0.37190083),\n", - " (257, 0.5165289),\n", - " (258, 0.58677685),\n", - " (259, 0.62396693),\n", - " (260, 0.661157),\n", - " (261, 0.6983471),\n", - " (262, 0.73966944),\n", - " (263, 0.76859504),\n", - " (264, 0.76859504),\n", - " (265, 0.7768595),\n", - " (266, 0.78512394),\n", - " (267, 0.8057851),\n", - " (268, 0.8057851),\n", - " (269, 0.8057851),\n", - " (270, 0.8181818),\n", - " (271, 0.8140496),\n", - " (272, 0.8181818),\n", - " (273, 0.8140496),\n", - " (274, 0.8181818),\n", - " (275, 0.822314),\n", - " (276, 0.822314),\n", - " (277, 0.822314),\n", - " (278, 0.8264463),\n", - " (279, 0.8181818),\n", - " (280, 0.822314),\n", - " (281, 0.8264463),\n", - " (282, 0.822314),\n", - " (283, 0.8264463),\n", - " (284, 0.8264463),\n", - " (285, 0.8181818),\n", - " (286, 0.8140496),\n", - " (287, 0.80991733),\n", - " (288, 0.80991733),\n", - " (289, 0.8181818),\n", - " (290, 0.80991733),\n", - " (291, 0.80991733),\n", - " (292, 0.8057851),\n", - " (293, 0.8016529),\n", - " (294, 0.7933884),\n", - " (295, 0.78512394),\n", - " (296, 0.78099173),\n", - " (297, 0.7768595),\n", - " (298, 0.7768595),\n", - " (299, 0.77272725),\n", - " (300, 0.7644628),\n", - " (301, 0.7644628),\n", - " (302, 0.76859504),\n", - " (303, 0.7644628),\n", - " (304, 0.7355372),\n", - " (305, 0.75206614),\n", - " (306, 0.75206614),\n", - " (307, 0.75619835),\n", - " (308, 0.74793386),\n", - " (309, 0.74380165),\n", - " (310, 0.73140496),\n", - " (311, 0.7107438),\n", - " (312, 0.6859504),\n", - " (313, 0.6487603),\n", - " (314, 0.6280992),\n", - " (315, 0.59504133),\n", - " (316, 0.55785125),\n", - " (317, 0.5165289),\n", - " (318, 0.46280992),\n", - " (319, 0.45041323),\n", - " (320, 0.3966942),\n", - " (321, 0.5289256),\n", - " (322, 0.59504133),\n", - " (323, 0.6198347),\n", - " (324, 0.6652893),\n", - " (325, 0.6983471),\n", - " (326, 0.7355372),\n", - " (327, 0.76033056),\n", - " (328, 0.76859504),\n", - " (329, 0.7644628),\n", - " (330, 0.78512394),\n", - " (331, 0.8057851),\n", - " (332, 0.80991733),\n", - " (333, 0.8057851),\n", - " (334, 0.822314),\n", - " (335, 0.8140496),\n", - " (336, 0.8140496),\n", - " (337, 0.8181818),\n", - " (338, 0.8140496),\n", - " (339, 0.8181818),\n", - " (340, 0.8181818),\n", - " (341, 0.8181818),\n", - " (342, 0.8140496),\n", - " (343, 0.8016529),\n", - " (344, 0.8181818),\n", - " (345, 0.8181818),\n", - " (346, 0.8140496),\n", - " (347, 0.8140496),\n", - " (348, 0.8140496),\n", - " (349, 0.80991733),\n", - " (350, 0.8057851),\n", - " (351, 0.8016529),\n", - " (352, 0.8016529),\n", - " (353, 0.80991733),\n", - " (354, 0.8057851),\n", - " (355, 0.8057851),\n", - " (356, 0.8057851),\n", - " (357, 0.7933884),\n", - " (358, 0.78512394),\n", - " (359, 0.7768595),\n", - " (360, 0.77272725),\n", - " (361, 0.7768595),\n", - " (362, 0.76859504),\n", - " (363, 0.77272725),\n", - " (364, 0.7644628),\n", - " (365, 0.76033056),\n", - " (366, 0.76859504),\n", - " (367, 0.75619835),\n", - " (368, 0.74380165),\n", - " (369, 0.74793386),\n", - " (370, 0.75619835),\n", - " (371, 0.75619835),\n", - " (372, 0.76033056),\n", - " (373, 0.74793386),\n", - " (374, 0.72727275),\n", - " (375, 0.7107438),\n", - " (376, 0.6735537),\n", - " (377, 0.6363636),\n", - " (378, 0.62396693),\n", - " (379, 0.59917355),\n", - " (380, 0.553719),\n", - " (381, 0.49173555),\n", - " (382, 0.45867768),\n", - " (383, 0.45867768),\n", - " (384, 0.4214876),\n", - " (385, 0.5413223),\n", - " (386, 0.59504133),\n", - " (387, 0.6198347),\n", - " (388, 0.661157),\n", - " (389, 0.7066116),\n", - " (390, 0.7355372),\n", - " (391, 0.75619835),\n", - " (392, 0.76859504),\n", - " (393, 0.7644628),\n", - " (394, 0.78099173),\n", - " (395, 0.79752064),\n", - " (396, 0.8057851),\n", - " (397, 0.8016529),\n", - " (398, 0.8181818),\n", - " (399, 0.8057851),\n", - " (400, 0.8057851),\n", - " (401, 0.80991733),\n", - " (402, 0.80991733),\n", - " (403, 0.80991733),\n", - " (404, 0.80991733),\n", - " (405, 0.8140496),\n", - " (406, 0.8057851),\n", - " (407, 0.7892562),\n", - " (408, 0.8016529),\n", - " (409, 0.8057851),\n", - " (410, 0.8057851),\n", - " (411, 0.8016529),\n", - " (412, 0.8016529),\n", - " (413, 0.7933884),\n", - " (414, 0.79752064),\n", - " (415, 0.79752064),\n", - " (416, 0.8016529),\n", - " (417, 0.8016529),\n", - " (418, 0.80991733),\n", - " (419, 0.8016529),\n", - " (420, 0.8016529),\n", - " (421, 0.7892562),\n", - " (422, 0.7768595),\n", - " (423, 0.76859504),\n", - " (424, 0.7644628),\n", - " (425, 0.77272725),\n", - " (426, 0.77272725),\n", - " (427, 0.7644628),\n", - " (428, 0.76033056),\n", - " (429, 0.75206614),\n", - " (430, 0.75206614),\n", - " (431, 0.74380165),\n", - " (432, 0.74793386),\n", - " (433, 0.75206614),\n", - " (434, 0.76033056),\n", - " (435, 0.75619835),\n", - " (436, 0.75619835),\n", - " (437, 0.73140496),\n", - " (438, 0.73140496),\n", - " (439, 0.7066116),\n", - " (440, 0.661157),\n", - " (441, 0.6198347),\n", - " (442, 0.607438),\n", - " (443, 0.58677685),\n", - " (444, 0.54545456),\n", - " (445, 0.47933885),\n", - " (446, 0.45867768),\n", - " (447, 0.46694216),\n", - " (448, 0.446281),\n", - " (449, 0.553719),\n", - " (450, 0.59504133),\n", - " (451, 0.6198347),\n", - " (452, 0.6570248),\n", - " (453, 0.7107438),\n", - " (454, 0.74793386),\n", - " (455, 0.76033056),\n", - " (456, 0.7644628),\n", - " (457, 0.77272725),\n", - " (458, 0.78099173),\n", - " (459, 0.78099173),\n", - " (460, 0.78099173),\n", - " (461, 0.78099173),\n", - " (462, 0.7933884),\n", - " (463, 0.7892562),\n", - " (464, 0.77272725),\n", - " (465, 0.7892562),\n", - " (466, 0.7892562),\n", - " (467, 0.7892562),\n", - " (468, 0.7933884),\n", - " (469, 0.79752064),\n", - " (470, 0.79752064),\n", - " (471, 0.7892562),\n", - " (472, 0.7933884),\n", - " (473, 0.7892562),\n", - " (474, 0.7892562),\n", - " (475, 0.7933884),\n", - " (476, 0.78099173),\n", - " (477, 0.78512394),\n", - " (478, 0.78099173),\n", - " (479, 0.78512394),\n", - " (480, 0.7892562),\n", - " (481, 0.7933884),\n", - " (482, 0.7933884),\n", - " (483, 0.7933884),\n", - " (484, 0.78512394),\n", - " (485, 0.76859504),\n", - " (486, 0.76033056),\n", - " (487, 0.74380165),\n", - " (488, 0.75619835),\n", - " (489, 0.7644628),\n", - " (490, 0.75619835),\n", - " (491, 0.75206614),\n", - " (492, 0.76033056),\n", - " (493, 0.75619835),\n", - " (494, 0.74380165),\n", - " (495, 0.7231405),\n", - " (496, 0.73140496),\n", - " (497, 0.75206614),\n", - " (498, 0.74380165),\n", - " (499, 0.72727275),\n", - " (500, 0.7107438),\n", - " (501, 0.6983471),\n", - " (502, 0.6942149),\n", - " (503, 0.677686),\n", - " (504, 0.6404959),\n", - " (505, 0.607438),\n", - " (506, 0.59504133),\n", - " (507, 0.57438016),\n", - " (508, 0.5371901),\n", - " (509, 0.48347107),\n", - " (510, 0.446281),\n", - " (511, 0.47107437),\n", - " (512, 0.45867768),\n", - " (513, 0.57438016),\n", - " (514, 0.59917355),\n", - " (515, 0.61157024),\n", - " (516, 0.6446281),\n", - " (517, 0.7066116),\n", - " (518, 0.74793386),\n", - " (519, 0.7644628),\n", - " (520, 0.77272725),\n", - " (521, 0.77272725),\n", - " (522, 0.75206614),\n", - " (523, 0.72727275),\n", - " (524, 0.7107438),\n", - " (525, 0.7107438),\n", - " (526, 0.71487606),\n", - " (527, 0.71487606),\n", - " (528, 0.7066116),\n", - " (529, 0.71900827),\n", - " (530, 0.7107438),\n", - " (531, 0.7355372),\n", - " (532, 0.76033056),\n", - " (533, 0.77272725),\n", - " (534, 0.78512394),\n", - " (535, 0.78512394),\n", - " (536, 0.78512394),\n", - " (537, 0.78099173),\n", - " (538, 0.7768595),\n", - " (539, 0.78512394),\n", - " (540, 0.77272725),\n", - " (541, 0.7768595),\n", - " (542, 0.78099173),\n", - " (543, 0.7644628),\n", - " (544, 0.7768595),\n", - " (545, 0.78099173),\n", - " (546, 0.77272725),\n", - " (547, 0.77272725),\n", - " (548, 0.75619835),\n", - " (549, 0.74380165),\n", - " (550, 0.7355372),\n", - " (551, 0.71900827),\n", - " (552, 0.74793386),\n", - " (553, 0.76033056),\n", - " (554, 0.73966944),\n", - " (555, 0.73966944),\n", - " (556, 0.72727275),\n", - " (557, 0.7231405),\n", - " (558, 0.70247936),\n", - " (559, 0.6528926),\n", - " (560, 0.6446281),\n", - " (561, 0.6570248),\n", - " (562, 0.6570248),\n", - " (563, 0.6528926),\n", - " (564, 0.661157),\n", - " (565, 0.6487603),\n", - " (566, 0.6446281),\n", - " (567, 0.62396693),\n", - " (568, 0.6198347),\n", - " (569, 0.61570245),\n", - " (570, 0.59090906),\n", - " (571, 0.56198347),\n", - " (572, 0.5247934),\n", - " (573, 0.47107437),\n", - " (574, 0.45454547),\n", - " (575, 0.46280992),\n", - " (576, 0.48347107),\n", - " (577, 0.5785124),\n", - " (578, 0.61157024),\n", - " (579, 0.60330576),\n", - " (580, 0.6280992),\n", - " (581, 0.6983471),\n", - " (582, 0.73966944),\n", - " (583, 0.75206614),\n", - " (584, 0.74793386),\n", - " (585, 0.7355372),\n", - " (586, 0.6942149),\n", - " (587, 0.6487603),\n", - " (588, 0.62396693),\n", - " (589, 0.61570245),\n", - " (590, 0.62396693),\n", - " (591, 0.60330576),\n", - " (592, 0.59917355),\n", - " (593, 0.607438),\n", - " (594, 0.61570245),\n", - " (595, 0.61157024),\n", - " (596, 0.6528926),\n", - " (597, 0.6818182),\n", - " (598, 0.71900827),\n", - " (599, 0.74380165),\n", - " (600, 0.75619835),\n", - " (601, 0.76859504),\n", - " (602, 0.7644628),\n", - " (603, 0.77272725),\n", - " (604, 0.76859504),\n", - " (605, 0.76033056),\n", - " (606, 0.76859504),\n", - " (607, 0.74793386),\n", - " (608, 0.7644628),\n", - " (609, 0.77272725),\n", - " (610, 0.75619835),\n", - " (611, 0.74380165),\n", - " (612, 0.73140496),\n", - " (613, 0.71487606),\n", - " (614, 0.7107438),\n", - " (615, 0.7066116),\n", - " (616, 0.70247936),\n", - " (617, 0.69008267),\n", - " (618, 0.6735537),\n", - " (619, 0.6404959),\n", - " (620, 0.6322314),\n", - " (621, 0.61157024),\n", - " (622, 0.59917355),\n", - " (623, 0.57438016),\n", - " (624, 0.553719),\n", - " (625, 0.53305787),\n", - " (626, 0.5206612),\n", - " (627, 0.54545456),\n", - " (628, 0.59504133),\n", - " (629, 0.6280992),\n", - " (630, 0.6198347),\n", - " (631, 0.57024795),\n", - " (632, 0.553719),\n", - " (633, 0.59917355),\n", - " (634, 0.58677685),\n", - " (635, 0.553719),\n", - " (636, 0.5165289),\n", - " (637, 0.48347107),\n", - " (638, 0.4752066),\n", - " (639, 0.4752066),\n", - " (640, 0.5165289),\n", - " (641, 0.58677685),\n", - " (642, 0.61570245),\n", - " (643, 0.607438),\n", - " (644, 0.62396693),\n", - " (645, 0.6818182),\n", - " (646, 0.71487606),\n", - " (647, 0.7107438),\n", - " (648, 0.6694215),\n", - " (649, 0.6528926),\n", - " (650, 0.6363636),\n", - " (651, 0.61570245),\n", - " (652, 0.59504133),\n", - " (653, 0.57024795),\n", - " (654, 0.56198347),\n", - " (655, 0.5495868),\n", - " (656, 0.5247934),\n", - " (657, 0.5123967),\n", - " (658, 0.5289256),\n", - " (659, 0.5247934),\n", - " (660, 0.53305787),\n", - " (661, 0.553719),\n", - " (662, 0.58264464),\n", - " (663, 0.62396693),\n", - " (664, 0.661157),\n", - " (665, 0.6983471),\n", - " (666, 0.7231405),\n", - " (667, 0.73966944),\n", - " (668, 0.75206614),\n", - " (669, 0.75206614),\n", - " (670, 0.75619835),\n", - " (671, 0.74793386),\n", - " (672, 0.75619835),\n", - " (673, 0.75619835),\n", - " (674, 0.72727275),\n", - " (675, 0.7066116),\n", - " (676, 0.70247936),\n", - " (677, 0.69008267),\n", - " (678, 0.677686),\n", - " (679, 0.6652893),\n", - " (680, 0.61570245),\n", - " (681, 0.57024795),\n", - " (682, 0.5206612),\n", - " (683, 0.47933885),\n", - " (684, 0.47933885),\n", - " (685, 0.46280992),\n", - " (686, 0.46280992),\n", - " (687, 0.45454547),\n", - " (688, 0.43801653),\n", - " (689, 0.42561984),\n", - " (690, 0.45454547),\n", - " (691, 0.49586776),\n", - " (692, 0.5247934),\n", - " (693, 0.5661157),\n", - " (694, 0.58264464),\n", - " (695, 0.5413223),\n", - " (696, 0.5165289),\n", - " (697, 0.5495868),\n", - " (698, 0.56198347),\n", - " (699, 0.53305787),\n", - " (700, 0.5165289),\n", - " (701, 0.4752066),\n", - " (702, 0.46694216),\n", - " (703, 0.48347107),\n", - " (704, 0.5371901),\n", - " (705, 0.59090906),\n", - " (706, 0.61157024),\n", - " (707, 0.61570245),\n", - " (708, 0.6280992),\n", - " (709, 0.661157),\n", - " (710, 0.6528926),\n", - " (711, 0.6487603),\n", - " (712, 0.6322314),\n", - " (713, 0.6198347),\n", - " (714, 0.59504133),\n", - " (715, 0.57438016),\n", - " (716, 0.5661157),\n", - " (717, 0.5413223),\n", - " (718, 0.5165289),\n", - " (719, 0.49586776),\n", - " (720, 0.46694216),\n", - " (721, 0.44214877),\n", - " (722, 0.45454547),\n", - " (723, 0.46694216),\n", - " (724, 0.45454547),\n", - " (725, 0.46280992),\n", - " (726, 0.46280992),\n", - " (727, 0.48347107),\n", - " (728, 0.5123967),\n", - " (729, 0.58677685),\n", - " (730, 0.6528926),\n", - " (731, 0.6818182),\n", - " (732, 0.71900827),\n", - " (733, 0.7355372),\n", - " (734, 0.73966944),\n", - " (735, 0.73966944),\n", - " (736, 0.75206614),\n", - " (737, 0.74793386),\n", - " (738, 0.71487606),\n", - " (739, 0.69008267),\n", - " (740, 0.6694215),\n", - " (741, 0.6528926),\n", - " (742, 0.6363636),\n", - " (743, 0.59504133),\n", - " (744, 0.5495868),\n", - " (745, 0.5041322),\n", - " (746, 0.44214877),\n", - " (747, 0.40082645),\n", - " (748, 0.37190083),\n", - " (749, 0.36363637),\n", - " (750, 0.3677686),\n", - " (751, 0.35950413),\n", - " (752, 0.3553719),\n", - " (753, 0.38016528),\n", - " (754, 0.4214876),\n", - " (755, 0.45867768),\n", - " (756, 0.47933885),\n", - " (757, 0.49586776),\n", - " (758, 0.49173555),\n", - " (759, 0.4752066),\n", - " (760, 0.46280992),\n", - " (761, 0.45041323),\n", - " (762, 0.4752066),\n", - " (763, 0.47107437),\n", - " (764, 0.46280992),\n", - " (765, 0.4752066),\n", - " (766, 0.47107437),\n", - " (767, 0.4876033),\n", - " (768, 0.55785125),\n", - " (769, 0.59917355),\n", - " (770, 0.61570245),\n", - " (771, 0.61570245),\n", - " (772, 0.607438),\n", - " (773, 0.5785124),\n", - " (774, 0.58677685),\n", - " (775, 0.59090906),\n", - " (776, 0.57438016),\n", - " (777, 0.57438016),\n", - " (778, 0.56198347),\n", - " (779, 0.5413223),\n", - " (780, 0.5289256),\n", - " (781, 0.5123967),\n", - " (782, 0.49173555),\n", - " (783, 0.47107437),\n", - " (784, 0.4214876),\n", - " (785, 0.40495867),\n", - " (786, 0.41322315),\n", - " (787, 0.40082645),\n", - " (788, 0.40495867),\n", - " (789, 0.40082645),\n", - " (790, 0.4214876),\n", - " (791, 0.43801653),\n", - " (792, 0.446281),\n", - " (793, 0.5082645),\n", - " (794, 0.57438016),\n", - " (795, 0.62396693),\n", - " (796, 0.6859504),\n", - " (797, 0.72727275),\n", - " (798, 0.7355372),\n", - " (799, 0.73966944),\n", - " (800, 0.75206614),\n", - " (801, 0.74793386),\n", - " (802, 0.7107438),\n", - " (803, 0.6694215),\n", - " (804, 0.6363636),\n", - " (805, 0.60330576),\n", - " (806, 0.58264464),\n", - " (807, 0.5371901),\n", - " (808, 0.48347107),\n", - " (809, 0.43801653),\n", - " (810, 0.40495867),\n", - " (811, 0.36363637),\n", - " (812, 0.3553719),\n", - " (813, 0.35123968),\n", - " (814, 0.34710744),\n", - " (815, 0.36363637),\n", - " (816, 0.35950413),\n", - " (817, 0.38429752),\n", - " (818, 0.42561984),\n", - " (819, 0.44214877),\n", - " (820, 0.446281),\n", - " (821, 0.45454547),\n", - " (822, 0.45454547),\n", - " (823, 0.446281),\n", - " (824, 0.44214877),\n", - " (825, 0.38842976),\n", - " (826, 0.39256197),\n", - " (827, 0.39256197),\n", - " (828, 0.3553719),\n", - " (829, 0.43801653),\n", - " (830, 0.48347107),\n", - " (831, 0.49173555),\n", - " (832, 0.57024795),\n", - " (833, 0.607438),\n", - " (834, 0.6280992),\n", - " (835, 0.61570245),\n", - " (836, 0.55785125),\n", - " (837, 0.5165289),\n", - " (838, 0.5495868),\n", - " (839, 0.553719),\n", - " (840, 0.56198347),\n", - " (841, 0.5661157),\n", - " (842, 0.56198347),\n", - " (843, 0.5413223),\n", - " (844, 0.5371901),\n", - " (845, 0.54545456),\n", - " (846, 0.553719),\n", - " (847, 0.57024795),\n", - " (848, 0.56198347),\n", - " (849, 0.5123967),\n", - " (850, 0.45454547),\n", - " (851, 0.41735536),\n", - " (852, 0.40495867),\n", - " (853, 0.40082645),\n", - " (854, 0.42561984),\n", - " (855, 0.44214877),\n", - " (856, 0.45454547),\n", - " (857, 0.4876033),\n", - " (858, 0.5413223),\n", - " (859, 0.59090906),\n", - " (860, 0.6694215),\n", - " (861, 0.71900827),\n", - " (862, 0.74380165),\n", - " (863, 0.75619835),\n", - " (864, 0.75619835),\n", - " (865, 0.75619835),\n", - " (866, 0.7107438),\n", - " (867, 0.661157),\n", - " (868, 0.6198347),\n", - " (869, 0.57024795),\n", - " (870, 0.5165289),\n", - " (871, 0.45041323),\n", - " (872, 0.41322315),\n", - " (873, 0.40082645),\n", - " (874, 0.39256197),\n", - " (875, 0.3677686),\n", - " (876, 0.37603307),\n", - " (877, 0.41735536),\n", - " (878, 0.47933885),\n", - " (879, 0.5495868),\n", - " (880, 0.5661157),\n", - " (881, 0.55785125),\n", - " (882, 0.5247934),\n", - " (883, 0.5082645),\n", - " (884, 0.48347107),\n", - " (885, 0.46694216),\n", - " (886, 0.45454547),\n", - " (887, 0.4338843),\n", - " (888, 0.41322315),\n", - " (889, 0.37603307),\n", - " (890, 0.37190083),\n", - " (891, 0.35123968),\n", - " (892, 0.30991736),\n", - " (893, 0.35950413),\n", - " (894, 0.48347107),\n", - " (895, 0.5),\n", - " (896, 0.5785124),\n", - " (897, 0.61157024),\n", - " (898, 0.6446281),\n", - " (899, 0.6198347),\n", - " (900, 0.553719),\n", - " (901, 0.5165289),\n", - " (902, 0.5247934),\n", - " (903, 0.5371901),\n", - " (904, 0.58677685),\n", - " (905, 0.61570245),\n", - " (906, 0.60330576),\n", - " (907, 0.5785124),\n", - " (908, 0.5785124),\n", - " (909, 0.59504133),\n", - " (910, 0.60330576),\n", - " (911, 0.58677685),\n", - " (912, 0.54545456),\n", - " (913, 0.47933885),\n", - " (914, 0.38842976),\n", - " (915, 0.3553719),\n", - " (916, 0.3553719),\n", - " (917, 0.32231405),\n", - " (918, 0.34710744),\n", - " (919, 0.38016528),\n", - " (920, 0.43801653),\n", - " (921, 0.45041323),\n", - " (922, 0.5041322),\n", - " (923, 0.58677685),\n", - " (924, 0.677686),\n", - " (925, 0.72727275),\n", - " (926, 0.75619835),\n", - " (927, 0.76859504),\n", - " (928, 0.76033056),\n", - " (929, 0.75206614),\n", - " (930, 0.71900827),\n", - " (931, 0.6487603),\n", - " (932, 0.60330576),\n", - " (933, 0.5371901),\n", - " (934, 0.45867768),\n", - " (935, 0.41735536),\n", - " (936, 0.40082645),\n", - " (937, 0.37603307),\n", - " (938, 0.34710744),\n", - " (939, 0.3140496),\n", - " (940, 0.29752067),\n", - " (941, 0.2520661),\n", - " (942, 0.2644628),\n", - " (943, 0.41735536),\n", - " (944, 0.446281),\n", - " (945, 0.45867768),\n", - " (946, 0.46694216),\n", - " (947, 0.49173555),\n", - " (948, 0.5),\n", - " (949, 0.49586776),\n", - " (950, 0.48347107),\n", - " (951, 0.46694216),\n", - " (952, 0.41735536),\n", - " (953, 0.39256197),\n", - " (954, 0.3966942),\n", - " (955, 0.37190083),\n", - " (956, 0.33471075),\n", - " (957, 0.34710744),\n", - " (958, 0.46280992),\n", - " (959, 0.5082645),\n", - " (960, 0.58677685),\n", - " (961, 0.61157024),\n", - " (962, 0.6487603),\n", - " (963, 0.6280992),\n", - " (964, 0.5661157),\n", - " (965, 0.5247934),\n", - " (966, 0.5371901),\n", - " (967, 0.55785125),\n", - " (968, 0.60330576),\n", - " (969, 0.6198347),\n", - " (970, 0.59917355),\n", - " (971, 0.5371901),\n", - " (972, 0.47107437),\n", - " (973, 0.38842976),\n", - " (974, 0.34710744),\n", - " (975, 0.29752067),\n", - " (976, 0.24380165),\n", - " (977, 0.25619835),\n", - " (978, 0.2644628),\n", - " (979, 0.32231405),\n", - " (980, 0.4338843),\n", - " (981, 0.40495867),\n", - " (982, 0.35950413),\n", - " (983, 0.33471075),\n", - " (984, 0.35950413),\n", - " (985, 0.42975205),\n", - " (986, 0.46694216),\n", - " (987, 0.56198347),\n", - " (988, 0.69008267),\n", - " (989, 0.74380165),\n", - " (990, 0.76859504),\n", - " (991, 0.78099173),\n", - " (992, 0.77272725),\n", - " (993, 0.75619835),\n", - " (994, 0.7107438),\n", - " (995, 0.661157),\n", - " (996, 0.59090906),\n", - " (997, 0.48347107),\n", - " (998, 0.42975205),\n", - " (999, 0.4338843),\n", - " ...],\n", - " [(0, 0.20661157),\n", - " (1, 0.28099173),\n", - " (2, 0.3677686),\n", - " (3, 0.39256197),\n", - " (4, 0.6818182),\n", - " (5, 0.71487606),\n", - " (6, 0.7231405),\n", - " (7, 0.73966944),\n", - " (8, 0.75206614),\n", - " (9, 0.76859504),\n", - " (10, 0.78512394),\n", - " (11, 0.76859504),\n", - " (12, 0.79752064),\n", - " (13, 0.8057851),\n", - " (14, 0.8016529),\n", - " (15, 0.8057851),\n", - " (16, 0.8057851),\n", - " (17, 0.80991733),\n", - " (18, 0.8057851),\n", - " (19, 0.80991733),\n", - " (20, 0.8057851),\n", - " (21, 0.80991733),\n", - " (22, 0.822314),\n", - " (23, 0.8181818),\n", - " (24, 0.8140496),\n", - " (25, 0.8016529),\n", - " (26, 0.7768595),\n", - " (27, 0.76033056),\n", - " (28, 0.74793386),\n", - " (29, 0.74793386),\n", - " (30, 0.76033056),\n", - " (31, 0.74793386),\n", - " (32, 0.7355372),\n", - " (33, 0.73140496),\n", - " (34, 0.73140496),\n", - " (35, 0.72727275),\n", - " (36, 0.74793386),\n", - " (37, 0.76033056),\n", - " (38, 0.76859504),\n", - " (39, 0.7768595),\n", - " (40, 0.76859504),\n", - " (41, 0.77272725),\n", - " (42, 0.7768595),\n", - " (43, 0.78099173),\n", - " (44, 0.7644628),\n", - " (45, 0.77272725),\n", - " (46, 0.7768595),\n", - " (47, 0.78099173),\n", - " (48, 0.76859504),\n", - " (49, 0.7768595),\n", - " (50, 0.7768595),\n", - " (51, 0.77272725),\n", - " (52, 0.7892562),\n", - " (53, 0.7933884),\n", - " (54, 0.8057851),\n", - " (55, 0.8181818),\n", - " (56, 0.8305785),\n", - " (57, 0.8677686),\n", - " (58, 0.6652893),\n", - " (59, 0.22727273),\n", - " (60, 0.12396694),\n", - " (61, 0.09917355),\n", - " (62, 0.1446281),\n", - " (63, 0.12809917),\n", - " (64, 0.21900827),\n", - " (65, 0.338843),\n", - " (66, 0.4090909),\n", - " (67, 0.49586776),\n", - " (68, 0.71900827),\n", - " (69, 0.7231405),\n", - " (70, 0.74793386),\n", - " (71, 0.76033056),\n", - " (72, 0.7768595),\n", - " (73, 0.78099173),\n", - " (74, 0.7933884),\n", - " (75, 0.78512394),\n", - " (76, 0.78512394),\n", - " (77, 0.7933884),\n", - " (78, 0.79752064),\n", - " (79, 0.8057851),\n", - " (80, 0.8140496),\n", - " (81, 0.8140496),\n", - " (82, 0.8140496),\n", - " (83, 0.822314),\n", - " (84, 0.8264463),\n", - " (85, 0.822314),\n", - " (86, 0.8264463),\n", - " (87, 0.822314),\n", - " (88, 0.822314),\n", - " (89, 0.822314),\n", - " (90, 0.8057851),\n", - " (91, 0.7768595),\n", - " (92, 0.7644628),\n", - " (93, 0.76859504),\n", - " (94, 0.76033056),\n", - " (95, 0.76033056),\n", - " (96, 0.76033056),\n", - " (97, 0.75206614),\n", - " (98, 0.75206614),\n", - " (99, 0.74380165),\n", - " (100, 0.75619835),\n", - " (101, 0.77272725),\n", - " (102, 0.7768595),\n", - " (103, 0.77272725),\n", - " (104, 0.76859504),\n", - " (105, 0.78099173),\n", - " (106, 0.78512394),\n", - " (107, 0.7892562),\n", - " (108, 0.7892562),\n", - " (109, 0.7768595),\n", - " (110, 0.76859504),\n", - " (111, 0.77272725),\n", - " (112, 0.7768595),\n", - " (113, 0.7768595),\n", - " (114, 0.78099173),\n", - " (115, 0.78512394),\n", - " (116, 0.7892562),\n", - " (117, 0.79752064),\n", - " (118, 0.8140496),\n", - " (119, 0.8057851),\n", - " (120, 0.838843),\n", - " (121, 0.8512397),\n", - " (122, 0.8305785),\n", - " (123, 0.45454547),\n", - " (124, 0.14876033),\n", - " (125, 0.14876033),\n", - " (126, 0.11570248),\n", - " (127, 0.1446281),\n", - " (128, 0.2892562),\n", - " (129, 0.42561984),\n", - " (130, 0.37603307),\n", - " (131, 0.58677685),\n", - " (132, 0.73140496),\n", - " (133, 0.71900827),\n", - " (134, 0.75619835),\n", - " (135, 0.7644628),\n", - " (136, 0.78099173),\n", - " (137, 0.78099173),\n", - " (138, 0.7892562),\n", - " (139, 0.78512394),\n", - " (140, 0.7892562),\n", - " (141, 0.7933884),\n", - " (142, 0.78512394),\n", - " (143, 0.7892562),\n", - " (144, 0.79752064),\n", - " (145, 0.80991733),\n", - " (146, 0.8181818),\n", - " (147, 0.8181818),\n", - " (148, 0.8264463),\n", - " (149, 0.8305785),\n", - " (150, 0.8305785),\n", - " (151, 0.8264463),\n", - " (152, 0.8264463),\n", - " (153, 0.8264463),\n", - " (154, 0.80991733),\n", - " (155, 0.7933884),\n", - " (156, 0.7768595),\n", - " (157, 0.78099173),\n", - " (158, 0.78099173),\n", - " (159, 0.77272725),\n", - " (160, 0.78099173),\n", - " (161, 0.77272725),\n", - " (162, 0.75619835),\n", - " (163, 0.76033056),\n", - " (164, 0.7644628),\n", - " (165, 0.77272725),\n", - " (166, 0.78512394),\n", - " (167, 0.78099173),\n", - " (168, 0.77272725),\n", - " (169, 0.7768595),\n", - " (170, 0.78099173),\n", - " (171, 0.76859504),\n", - " (172, 0.7768595),\n", - " (173, 0.76859504),\n", - " (174, 0.76033056),\n", - " (175, 0.77272725),\n", - " (176, 0.75619835),\n", - " (177, 0.7768595),\n", - " (178, 0.7892562),\n", - " (179, 0.77272725),\n", - " (180, 0.7768595),\n", - " (181, 0.7892562),\n", - " (182, 0.8016529),\n", - " (183, 0.8181818),\n", - " (184, 0.838843),\n", - " (185, 0.8429752),\n", - " (186, 0.87603307),\n", - " (187, 0.7066116),\n", - " (188, 0.24380165),\n", - " (189, 0.20661157),\n", - " (190, 0.15289256),\n", - " (191, 0.14876033),\n", - " (192, 0.3553719),\n", - " (193, 0.42975205),\n", - " (194, 0.4090909),\n", - " (195, 0.6859504),\n", - " (196, 0.71900827),\n", - " (197, 0.73140496),\n", - " (198, 0.75619835),\n", - " (199, 0.76033056),\n", - " (200, 0.77272725),\n", - " (201, 0.76859504),\n", - " (202, 0.7768595),\n", - " (203, 0.77272725),\n", - " (204, 0.78512394),\n", - " (205, 0.78512394),\n", - " (206, 0.78099173),\n", - " (207, 0.7768595),\n", - " (208, 0.7892562),\n", - " (209, 0.79752064),\n", - " (210, 0.8057851),\n", - " (211, 0.80991733),\n", - " (212, 0.8264463),\n", - " (213, 0.8347107),\n", - " (214, 0.838843),\n", - " (215, 0.8264463),\n", - " (216, 0.822314),\n", - " (217, 0.8264463),\n", - " (218, 0.8016529),\n", - " (219, 0.7892562),\n", - " (220, 0.78512394),\n", - " (221, 0.78099173),\n", - " (222, 0.78099173),\n", - " (223, 0.78512394),\n", - " (224, 0.7933884),\n", - " (225, 0.78512394),\n", - " (226, 0.7768595),\n", - " (227, 0.78099173),\n", - " (228, 0.78099173),\n", - " (229, 0.78099173),\n", - " (230, 0.7892562),\n", - " (231, 0.7768595),\n", - " (232, 0.76859504),\n", - " (233, 0.76859504),\n", - " (234, 0.78099173),\n", - " (235, 0.7644628),\n", - " (236, 0.77272725),\n", - " (237, 0.78099173),\n", - " (238, 0.77272725),\n", - " (239, 0.78512394),\n", - " (240, 0.7355372),\n", - " (241, 0.7644628),\n", - " (242, 0.78099173),\n", - " (243, 0.7768595),\n", - " (244, 0.76859504),\n", - " (245, 0.7768595),\n", - " (246, 0.7933884),\n", - " (247, 0.8264463),\n", - " (248, 0.8429752),\n", - " (249, 0.8429752),\n", - " (250, 0.8595041),\n", - " (251, 0.88842976),\n", - " (252, 0.41322315),\n", - " (253, 0.25619835),\n", - " (254, 0.20661157),\n", - " (255, 0.1983471),\n", - " (256, 0.39256197),\n", - " (257, 0.3966942),\n", - " (258, 0.4752066),\n", - " (259, 0.73140496),\n", - " (260, 0.7107438),\n", - " (261, 0.73140496),\n", - " (262, 0.7355372),\n", - " (263, 0.75619835),\n", - " (264, 0.75206614),\n", - " (265, 0.76859504),\n", - " (266, 0.77272725),\n", - " (267, 0.75619835),\n", - " (268, 0.7768595),\n", - " (269, 0.78512394),\n", - " (270, 0.78512394),\n", - " (271, 0.78512394),\n", - " (272, 0.78512394),\n", - " (273, 0.7933884),\n", - " (274, 0.79752064),\n", - " (275, 0.80991733),\n", - " (276, 0.8140496),\n", - " (277, 0.822314),\n", - " (278, 0.8264463),\n", - " (279, 0.8264463),\n", - " (280, 0.8264463),\n", - " (281, 0.8264463),\n", - " (282, 0.8140496),\n", - " (283, 0.8057851),\n", - " (284, 0.78512394),\n", - " (285, 0.78099173),\n", - " (286, 0.7933884),\n", - " (287, 0.7933884),\n", - " (288, 0.79752064),\n", - " (289, 0.79752064),\n", - " (290, 0.7933884),\n", - " (291, 0.7933884),\n", - " (292, 0.78512394),\n", - " (293, 0.7768595),\n", - " (294, 0.78512394),\n", - " (295, 0.76859504),\n", - " (296, 0.75206614),\n", - " (297, 0.76033056),\n", - " (298, 0.7644628),\n", - " (299, 0.74793386),\n", - " (300, 0.74793386),\n", - " (301, 0.75206614),\n", - " (302, 0.75206614),\n", - " (303, 0.75206614),\n", - " (304, 0.72727275),\n", - " (305, 0.7231405),\n", - " (306, 0.75206614),\n", - " (307, 0.7644628),\n", - " (308, 0.77272725),\n", - " (309, 0.76033056),\n", - " (310, 0.78099173),\n", - " (311, 0.8016529),\n", - " (312, 0.822314),\n", - " (313, 0.8553719),\n", - " (314, 0.8471074),\n", - " (315, 0.90082645),\n", - " (316, 0.6446281),\n", - " (317, 0.28099173),\n", - " (318, 0.3140496),\n", - " (319, 0.1570248),\n", - " (320, 0.41322315),\n", - " (321, 0.38429752),\n", - " (322, 0.61570245),\n", - " (323, 0.7355372),\n", - " (324, 0.71900827),\n", - " (325, 0.7355372),\n", - " (326, 0.73140496),\n", - " (327, 0.75206614),\n", - " (328, 0.74380165),\n", - " (329, 0.7355372),\n", - " (330, 0.7231405),\n", - " (331, 0.6818182),\n", - " (332, 0.70247936),\n", - " (333, 0.74380165),\n", - " (334, 0.75206614),\n", - " (335, 0.7355372),\n", - " (336, 0.72727275),\n", - " (337, 0.73966944),\n", - " (338, 0.74793386),\n", - " (339, 0.76033056),\n", - " (340, 0.78099173),\n", - " (341, 0.79752064),\n", - " (342, 0.8016529),\n", - " (343, 0.8057851),\n", - " (344, 0.8181818),\n", - " (345, 0.8181818),\n", - " (346, 0.8140496),\n", - " (347, 0.80991733),\n", - " (348, 0.7933884),\n", - " (349, 0.78512394),\n", - " (350, 0.7892562),\n", - " (351, 0.78512394),\n", - " (352, 0.78512394),\n", - " (353, 0.78512394),\n", - " (354, 0.78099173),\n", - " (355, 0.7644628),\n", - " (356, 0.7644628),\n", - " (357, 0.75206614),\n", - " (358, 0.74380165),\n", - " (359, 0.71900827),\n", - " (360, 0.677686),\n", - " (361, 0.6652893),\n", - " (362, 0.661157),\n", - " (363, 0.6487603),\n", - " (364, 0.6528926),\n", - " (365, 0.6652893),\n", - " (366, 0.6487603),\n", - " (367, 0.6446281),\n", - " (368, 0.6446281),\n", - " (369, 0.62396693),\n", - " (370, 0.6528926),\n", - " (371, 0.6859504),\n", - " (372, 0.70247936),\n", - " (373, 0.74380165),\n", - " (374, 0.7644628),\n", - " (375, 0.7933884),\n", - " (376, 0.77272725),\n", - " (377, 0.8429752),\n", - " (378, 0.8636364),\n", - " (379, 0.8636364),\n", - " (380, 0.8305785),\n", - " (381, 0.3429752),\n", - " (382, 0.38016528),\n", - " (383, 0.18595041),\n", - " (384, 0.4090909),\n", - " (385, 0.43801653),\n", - " (386, 0.69008267),\n", - " (387, 0.71487606),\n", - " (388, 0.6983471),\n", - " (389, 0.75206614),\n", - " (390, 0.75619835),\n", - " (391, 0.73140496),\n", - " (392, 0.6859504),\n", - " (393, 0.61570245),\n", - " (394, 0.61570245),\n", - " (395, 0.6280992),\n", - " (396, 0.607438),\n", - " (397, 0.60330576),\n", - " (398, 0.61570245),\n", - " (399, 0.62396693),\n", - " (400, 0.57438016),\n", - " (401, 0.57024795),\n", - " (402, 0.56198347),\n", - " (403, 0.57024795),\n", - " (404, 0.6487603),\n", - " (405, 0.69008267),\n", - " (406, 0.6859504),\n", - " (407, 0.73140496),\n", - " (408, 0.7644628),\n", - " (409, 0.76859504),\n", - " (410, 0.77272725),\n", - " (411, 0.7892562),\n", - " (412, 0.7933884),\n", - " (413, 0.78099173),\n", - " (414, 0.77272725),\n", - " (415, 0.75619835),\n", - " (416, 0.75206614),\n", - " (417, 0.76033056),\n", - " (418, 0.75619835),\n", - " (419, 0.7066116),\n", - " (420, 0.7066116),\n", - " (421, 0.6818182),\n", - " (422, 0.6322314),\n", - " (423, 0.5785124),\n", - " (424, 0.5371901),\n", - " (425, 0.49586776),\n", - " (426, 0.46280992),\n", - " (427, 0.45041323),\n", - " (428, 0.46280992),\n", - " (429, 0.47933885),\n", - " (430, 0.4876033),\n", - " (431, 0.49173555),\n", - " (432, 0.5165289),\n", - " (433, 0.5041322),\n", - " (434, 0.5371901),\n", - " (435, 0.5785124),\n", - " (436, 0.58264464),\n", - " (437, 0.6322314),\n", - " (438, 0.73140496),\n", - " (439, 0.78099173),\n", - " (440, 0.7933884),\n", - " (441, 0.8429752),\n", - " (442, 0.8595041),\n", - " (443, 0.8553719),\n", - " (444, 0.92561984),\n", - " (445, 0.48347107),\n", - " (446, 0.35950413),\n", - " (447, 0.23553719),\n", - " (448, 0.4090909),\n", - " (449, 0.553719),\n", - " (450, 0.7231405),\n", - " (451, 0.6528926),\n", - " (452, 0.69008267),\n", - " (453, 0.7644628),\n", - " (454, 0.74793386),\n", - " (455, 0.6570248),\n", - " (456, 0.55785125),\n", - " (457, 0.54545456),\n", - " (458, 0.58264464),\n", - " (459, 0.607438),\n", - " (460, 0.58264464),\n", - " (461, 0.5413223),\n", - " (462, 0.48347107),\n", - " (463, 0.45454547),\n", - " (464, 0.42561984),\n", - " (465, 0.4338843),\n", - " (466, 0.4214876),\n", - " (467, 0.41322315),\n", - " (468, 0.45454547),\n", - " (469, 0.5),\n", - " (470, 0.5082645),\n", - " (471, 0.55785125),\n", - " (472, 0.6570248),\n", - " (473, 0.6942149),\n", - " (474, 0.7355372),\n", - " (475, 0.7768595),\n", - " (476, 0.78099173),\n", - " (477, 0.76033056),\n", - " (478, 0.75206614),\n", - " (479, 0.74380165),\n", - " (480, 0.72727275),\n", - " (481, 0.71487606),\n", - " (482, 0.6818182),\n", - " (483, 0.6280992),\n", - " (484, 0.6198347),\n", - " (485, 0.59090906),\n", - " (486, 0.53305787),\n", - " (487, 0.49586776),\n", - " (488, 0.45867768),\n", - " (489, 0.3966942),\n", - " (490, 0.37603307),\n", - " (491, 0.36363637),\n", - " (492, 0.3677686),\n", - " (493, 0.3429752),\n", - " (494, 0.34710744),\n", - " (495, 0.36363637),\n", - " (496, 0.40495867),\n", - " (497, 0.4214876),\n", - " (498, 0.45867768),\n", - " (499, 0.47933885),\n", - " (500, 0.5165289),\n", - " (501, 0.5371901),\n", - " (502, 0.58677685),\n", - " (503, 0.677686),\n", - " (504, 0.76033056),\n", - " (505, 0.8305785),\n", - " (506, 0.8512397),\n", - " (507, 0.838843),\n", - " (508, 0.9338843),\n", - " (509, 0.6487603),\n", - " (510, 0.39256197),\n", - " (511, 0.24380165),\n", - " (512, 0.45041323),\n", - " (513, 0.6487603),\n", - " (514, 0.7107438),\n", - " (515, 0.6859504),\n", - " (516, 0.73140496),\n", - " (517, 0.74380165),\n", - " (518, 0.6322314),\n", - " (519, 0.5165289),\n", - " (520, 0.5289256),\n", - " (521, 0.5495868),\n", - " (522, 0.59090906),\n", - " (523, 0.57438016),\n", - " (524, 0.57438016),\n", - " (525, 0.58264464),\n", - " (526, 0.5165289),\n", - " (527, 0.42561984),\n", - " (528, 0.40495867),\n", - " (529, 0.40082645),\n", - " (530, 0.37190083),\n", - " (531, 0.35950413),\n", - " (532, 0.38016528),\n", - " (533, 0.39256197),\n", - " (534, 0.42561984),\n", - " (535, 0.46280992),\n", - " (536, 0.5413223),\n", - " (537, 0.6280992),\n", - " (538, 0.70247936),\n", - " (539, 0.77272725),\n", - " (540, 0.7892562),\n", - " (541, 0.76859504),\n", - " (542, 0.7644628),\n", - " (543, 0.7644628),\n", - " (544, 0.7355372),\n", - " (545, 0.71900827),\n", - " (546, 0.677686),\n", - " (547, 0.607438),\n", - " (548, 0.57024795),\n", - " (549, 0.5413223),\n", - " (550, 0.4752066),\n", - " (551, 0.4214876),\n", - " (552, 0.40082645),\n", - " (553, 0.37603307),\n", - " (554, 0.3677686),\n", - " (555, 0.3305785),\n", - " (556, 0.3264463),\n", - " (557, 0.3181818),\n", - " (558, 0.3429752),\n", - " (559, 0.38016528),\n", - " (560, 0.43801653),\n", - " (561, 0.4752066),\n", - " (562, 0.5082645),\n", - " (563, 0.53305787),\n", - " (564, 0.57024795),\n", - " (565, 0.61157024),\n", - " (566, 0.6652893),\n", - " (567, 0.60330576),\n", - " (568, 0.60330576),\n", - " (569, 0.77272725),\n", - " (570, 0.8471074),\n", - " (571, 0.8471074),\n", - " (572, 0.8801653),\n", - " (573, 0.8016529),\n", - " (574, 0.37190083),\n", - " (575, 0.25619835),\n", - " (576, 0.57438016),\n", - " (577, 0.6818182),\n", - " (578, 0.7066116),\n", - " (579, 0.7107438),\n", - " (580, 0.75206614),\n", - " (581, 0.6652893),\n", - " (582, 0.5247934),\n", - " (583, 0.59917355),\n", - " (584, 0.6487603),\n", - " (585, 0.661157),\n", - " (586, 0.6735537),\n", - " (587, 0.72727275),\n", - " (588, 0.72727275),\n", - " (589, 0.75206614),\n", - " (590, 0.7066116),\n", - " (591, 0.6322314),\n", - " (592, 0.57024795),\n", - " (593, 0.53305787),\n", - " (594, 0.48347107),\n", - " (595, 0.45454547),\n", - " (596, 0.446281),\n", - " (597, 0.45454547),\n", - " (598, 0.48347107),\n", - " (599, 0.5041322),\n", - " (600, 0.5371901),\n", - " (601, 0.5661157),\n", - " (602, 0.6487603),\n", - " (603, 0.77272725),\n", - " (604, 0.80991733),\n", - " (605, 0.8016529),\n", - " (606, 0.78512394),\n", - " (607, 0.78099173),\n", - " (608, 0.78099173),\n", - " (609, 0.76033056),\n", - " (610, 0.71900827),\n", - " (611, 0.6528926),\n", - " (612, 0.58677685),\n", - " (613, 0.5495868),\n", - " (614, 0.47933885),\n", - " (615, 0.42975205),\n", - " (616, 0.40082645),\n", - " (617, 0.38016528),\n", - " (618, 0.37190083),\n", - " (619, 0.36363637),\n", - " (620, 0.38842976),\n", - " (621, 0.42975205),\n", - " (622, 0.47107437),\n", - " (623, 0.53305787),\n", - " (624, 0.59504133),\n", - " (625, 0.6280992),\n", - " (626, 0.6446281),\n", - " (627, 0.6652893),\n", - " (628, 0.7066116),\n", - " (629, 0.73966944),\n", - " (630, 0.73966944),\n", - " (631, 0.7231405),\n", - " (632, 0.59504133),\n", - " (633, 0.6280992),\n", - " (634, 0.8057851),\n", - " (635, 0.8347107),\n", - " (636, 0.8553719),\n", - " (637, 0.90909094),\n", - " (638, 0.43801653),\n", - " (639, 0.21900827),\n", - " (640, 0.677686),\n", - " (641, 0.70247936),\n", - " (642, 0.7231405),\n", - " (643, 0.7066116),\n", - " (644, 0.6983471),\n", - " (645, 0.57024795),\n", - " (646, 0.5289256),\n", - " (647, 0.661157),\n", - " (648, 0.75619835),\n", - " (649, 0.76859504),\n", - " (650, 0.75206614),\n", - " (651, 0.78099173),\n", - " (652, 0.7892562),\n", - " (653, 0.78512394),\n", - " (654, 0.75619835),\n", - " (655, 0.70247936),\n", - " (656, 0.6818182),\n", - " (657, 0.6487603),\n", - " (658, 0.607438),\n", - " (659, 0.5661157),\n", - " (660, 0.53305787),\n", - " (661, 0.553719),\n", - " (662, 0.58264464),\n", - " (663, 0.59090906),\n", - " (664, 0.61157024),\n", - " (665, 0.6363636),\n", - " (666, 0.6735537),\n", - " (667, 0.77272725),\n", - " (668, 0.8264463),\n", - " (669, 0.822314),\n", - " (670, 0.8016529),\n", - " (671, 0.7892562),\n", - " (672, 0.7933884),\n", - " (673, 0.8057851),\n", - " (674, 0.7892562),\n", - " (675, 0.76859504),\n", - " (676, 0.7231405),\n", - " (677, 0.6404959),\n", - " (678, 0.5289256),\n", - " (679, 0.43801653),\n", - " (680, 0.38842976),\n", - " (681, 0.37603307),\n", - " (682, 0.38429752),\n", - " (683, 0.42975205),\n", - " (684, 0.5123967),\n", - " (685, 0.57024795),\n", - " (686, 0.607438),\n", - " (687, 0.6487603),\n", - " (688, 0.6652893),\n", - " (689, 0.661157),\n", - " (690, 0.69008267),\n", - " (691, 0.6942149),\n", - " (692, 0.72727275),\n", - " (693, 0.78512394),\n", - " (694, 0.78512394),\n", - " (695, 0.7933884),\n", - " (696, 0.71487606),\n", - " (697, 0.59090906),\n", - " (698, 0.661157),\n", - " (699, 0.8181818),\n", - " (700, 0.8512397),\n", - " (701, 0.92561984),\n", - " (702, 0.5785124),\n", - " (703, 0.12396694),\n", - " (704, 0.7355372),\n", - " (705, 0.6983471),\n", - " (706, 0.71487606),\n", - " (707, 0.73140496),\n", - " (708, 0.6322314),\n", - " (709, 0.61157024),\n", - " (710, 0.6570248),\n", - " (711, 0.71900827),\n", - " (712, 0.75619835),\n", - " (713, 0.77272725),\n", - " (714, 0.76859504),\n", - " (715, 0.78512394),\n", - " (716, 0.7933884),\n", - " (717, 0.7892562),\n", - " (718, 0.73966944),\n", - " (719, 0.70247936),\n", - " (720, 0.6859504),\n", - " (721, 0.6570248),\n", - " (722, 0.6198347),\n", - " (723, 0.58264464),\n", - " (724, 0.5289256),\n", - " (725, 0.5041322),\n", - " (726, 0.5247934),\n", - " (727, 0.54545456),\n", - " (728, 0.58677685),\n", - " (729, 0.6404959),\n", - " (730, 0.70247936),\n", - " (731, 0.77272725),\n", - " (732, 0.8181818),\n", - " (733, 0.8264463),\n", - " (734, 0.8181818),\n", - " (735, 0.8057851),\n", - " (736, 0.79752064),\n", - " (737, 0.8057851),\n", - " (738, 0.8305785),\n", - " (739, 0.838843),\n", - " (740, 0.78099173),\n", - " (741, 0.6198347),\n", - " (742, 0.45454547),\n", - " (743, 0.37603307),\n", - " (744, 0.34710744),\n", - " (745, 0.3429752),\n", - " (746, 0.3677686),\n", - " (747, 0.42975205),\n", - " (748, 0.5289256),\n", - " (749, 0.58677685),\n", - " (750, 0.607438),\n", - " (751, 0.6570248),\n", - " (752, 0.677686),\n", - " (753, 0.6570248),\n", - " (754, 0.6859504),\n", - " (755, 0.7107438),\n", - " (756, 0.77272725),\n", - " (757, 0.80991733),\n", - " (758, 0.79752064),\n", - " (759, 0.7644628),\n", - " (760, 0.78099173),\n", - " (761, 0.7231405),\n", - " (762, 0.6859504),\n", - " (763, 0.75206614),\n", - " (764, 0.838843),\n", - " (765, 0.89669424),\n", - " (766, 0.75206614),\n", - " (767, 0.11983471),\n", - " (768, 0.72727275),\n", - " (769, 0.72727275),\n", - " (770, 0.75206614),\n", - " (771, 0.7066116),\n", - " (772, 0.6487603),\n", - " (773, 0.71900827),\n", - " (774, 0.74380165),\n", - " (775, 0.71900827),\n", - " (776, 0.7355372),\n", - " (777, 0.73966944),\n", - " (778, 0.73966944),\n", - " (779, 0.76859504),\n", - " (780, 0.7644628),\n", - " (781, 0.7355372),\n", - " (782, 0.6652893),\n", - " (783, 0.62396693),\n", - " (784, 0.59090906),\n", - " (785, 0.5661157),\n", - " (786, 0.5413223),\n", - " (787, 0.5206612),\n", - " (788, 0.49586776),\n", - " (789, 0.47933885),\n", - " (790, 0.48347107),\n", - " (791, 0.5041322),\n", - " (792, 0.5371901),\n", - " (793, 0.58264464),\n", - " (794, 0.6404959),\n", - " (795, 0.74380165),\n", - " (796, 0.8057851),\n", - " (797, 0.8264463),\n", - " (798, 0.8264463),\n", - " (799, 0.822314),\n", - " (800, 0.8016529),\n", - " (801, 0.8057851),\n", - " (802, 0.8429752),\n", - " (803, 0.8347107),\n", - " (804, 0.71900827),\n", - " (805, 0.5082645),\n", - " (806, 0.37190083),\n", - " (807, 0.34710744),\n", - " (808, 0.35123968),\n", - " (809, 0.3429752),\n", - " (810, 0.33471075),\n", - " (811, 0.3429752),\n", - " (812, 0.40495867),\n", - " (813, 0.4752066),\n", - " (814, 0.5165289),\n", - " (815, 0.55785125),\n", - " (816, 0.59917355),\n", - " (817, 0.61157024),\n", - " (818, 0.6280992),\n", - " (819, 0.661157),\n", - " (820, 0.76033056),\n", - " (821, 0.838843),\n", - " (822, 0.8016529),\n", - " (823, 0.74380165),\n", - " (824, 0.7355372),\n", - " (825, 0.75619835),\n", - " (826, 0.76859504),\n", - " (827, 0.73966944),\n", - " (828, 0.8057851),\n", - " (829, 0.8719008),\n", - " (830, 0.91322315),\n", - " (831, 0.2603306),\n", - " (832, 0.75619835),\n", - " (833, 0.7355372),\n", - " (834, 0.7644628),\n", - " (835, 0.71900827),\n", - " (836, 0.7066116),\n", - " (837, 0.75619835),\n", - " (838, 0.76033056),\n", - " (839, 0.6983471),\n", - " (840, 0.7066116),\n", - " (841, 0.6942149),\n", - " (842, 0.6859504),\n", - " (843, 0.6694215),\n", - " (844, 0.6735537),\n", - " (845, 0.6652893),\n", - " (846, 0.607438),\n", - " (847, 0.5661157),\n", - " (848, 0.5495868),\n", - " (849, 0.5413223),\n", - " (850, 0.49586776),\n", - " (851, 0.48347107),\n", - " (852, 0.4876033),\n", - " (853, 0.45867768),\n", - " (854, 0.45454547),\n", - " (855, 0.45867768),\n", - " (856, 0.46694216),\n", - " (857, 0.5413223),\n", - " (858, 0.61157024),\n", - " (859, 0.6983471),\n", - " (860, 0.7892562),\n", - " (861, 0.8181818),\n", - " (862, 0.8347107),\n", - " (863, 0.8264463),\n", - " (864, 0.7933884),\n", - " (865, 0.8057851),\n", - " (866, 0.8429752),\n", - " (867, 0.822314),\n", - " (868, 0.6404959),\n", - " (869, 0.4214876),\n", - " (870, 0.338843),\n", - " (871, 0.34710744),\n", - " (872, 0.35950413),\n", - " (873, 0.35123968),\n", - " (874, 0.34710744),\n", - " (875, 0.35123968),\n", - " (876, 0.38016528),\n", - " (877, 0.44214877),\n", - " (878, 0.46280992),\n", - " (879, 0.5123967),\n", - " (880, 0.55785125),\n", - " (881, 0.5661157),\n", - " (882, 0.61570245),\n", - " (883, 0.6404959),\n", - " (884, 0.6818182),\n", - " (885, 0.77272725),\n", - " (886, 0.7892562),\n", - " (887, 0.75619835),\n", - " (888, 0.72727275),\n", - " (889, 0.75206614),\n", - " (890, 0.8057851),\n", - " (891, 0.79752064),\n", - " (892, 0.78099173),\n", - " (893, 0.8512397),\n", - " (894, 0.93801653),\n", - " (895, 0.4752066),\n", - " (896, 0.76859504),\n", - " (897, 0.7644628),\n", - " (898, 0.78099173),\n", - " (899, 0.77272725),\n", - " (900, 0.76033056),\n", - " (901, 0.77272725),\n", - " (902, 0.76033056),\n", - " (903, 0.6983471),\n", - " (904, 0.6694215),\n", - " (905, 0.6280992),\n", - " (906, 0.6322314),\n", - " (907, 0.6487603),\n", - " (908, 0.6363636),\n", - " (909, 0.55785125),\n", - " (910, 0.46280992),\n", - " (911, 0.3429752),\n", - " (912, 0.33471075),\n", - " (913, 0.4214876),\n", - " (914, 0.30165288),\n", - " (915, 0.40082645),\n", - " (916, 0.45867768),\n", - " (917, 0.45454547),\n", - " (918, 0.43801653),\n", - " (919, 0.40495867),\n", - " (920, 0.3966942),\n", - " (921, 0.5247934),\n", - " (922, 0.607438),\n", - " (923, 0.6694215),\n", - " (924, 0.76859504),\n", - " (925, 0.80991733),\n", - " (926, 0.8264463),\n", - " (927, 0.8264463),\n", - " (928, 0.78099173),\n", - " (929, 0.7892562),\n", - " (930, 0.8347107),\n", - " (931, 0.8347107),\n", - " (932, 0.60330576),\n", - " (933, 0.4214876),\n", - " (934, 0.4090909),\n", - " (935, 0.38842976),\n", - " (936, 0.34710744),\n", - " (937, 0.3305785),\n", - " (938, 0.3305785),\n", - " (939, 0.33471075),\n", - " (940, 0.32231405),\n", - " (941, 0.30165288),\n", - " (942, 0.25619835),\n", - " (943, 0.3264463),\n", - " (944, 0.3553719),\n", - " (945, 0.3677686),\n", - " (946, 0.5082645),\n", - " (947, 0.61157024),\n", - " (948, 0.73966944),\n", - " (949, 0.7231405),\n", - " (950, 0.6818182),\n", - " (951, 0.7644628),\n", - " (952, 0.7231405),\n", - " (953, 0.7231405),\n", - " (954, 0.78512394),\n", - " (955, 0.822314),\n", - " (956, 0.8057851),\n", - " (957, 0.8140496),\n", - " (958, 0.9214876),\n", - " (959, 0.6487603),\n", - " (960, 0.7644628),\n", - " (961, 0.78099173),\n", - " (962, 0.7892562),\n", - " (963, 0.75619835),\n", - " (964, 0.76033056),\n", - " (965, 0.7768595),\n", - " (966, 0.7644628),\n", - " (967, 0.69008267),\n", - " (968, 0.6198347),\n", - " (969, 0.5785124),\n", - " (970, 0.56198347),\n", - " (971, 0.56198347),\n", - " (972, 0.54545456),\n", - " (973, 0.3553719),\n", - " (974, 0.446281),\n", - " (975, 0.30991736),\n", - " (976, 0.20661157),\n", - " (977, 0.41735536),\n", - " (978, 0.21487603),\n", - " (979, 0.42561984),\n", - " (980, 0.47107437),\n", - " (981, 0.41322315),\n", - " (982, 0.43801653),\n", - " (983, 0.446281),\n", - " (984, 0.45454547),\n", - " (985, 0.5371901),\n", - " (986, 0.6280992),\n", - " (987, 0.69008267),\n", - " (988, 0.76033056),\n", - " (989, 0.78512394),\n", - " (990, 0.8057851),\n", - " (991, 0.8347107),\n", - " (992, 0.7892562),\n", - " (993, 0.7768595),\n", - " (994, 0.8181818),\n", - " (995, 0.8305785),\n", - " (996, 0.6570248),\n", - " (997, 0.49173555),\n", - " (998, 0.47107437),\n", - " (999, 0.41322315),\n", - " ...],\n", - " [(0, 0.4338843),\n", - " (1, 0.57024795),\n", - " (2, 0.6404959),\n", - " (3, 0.6446281),\n", - " (4, 0.6198347),\n", - " (5, 0.6322314),\n", - " (6, 0.6487603),\n", - " (7, 0.6487603),\n", - " (8, 0.6446281),\n", - " (9, 0.6322314),\n", - " (10, 0.6322314),\n", - " (11, 0.6280992),\n", - " (12, 0.6322314),\n", - " (13, 0.6280992),\n", - " (14, 0.6322314),\n", - " (15, 0.6198347),\n", - " (16, 0.60330576),\n", - " (17, 0.61157024),\n", - " (18, 0.61157024),\n", - " (19, 0.60330576),\n", - " (20, 0.58677685),\n", - " (21, 0.59090906),\n", - " (22, 0.58677685),\n", - " (23, 0.58264464),\n", - " (24, 0.58677685),\n", - " (25, 0.58677685),\n", - " (26, 0.57024795),\n", - " (27, 0.5785124),\n", - " (28, 0.5785124),\n", - " (29, 0.56198347),\n", - " (30, 0.55785125),\n", - " (31, 0.553719),\n", - " (32, 0.553719),\n", - " (33, 0.55785125),\n", - " (34, 0.55785125),\n", - " (35, 0.56198347),\n", - " (36, 0.57438016),\n", - " (37, 0.57024795),\n", - " (38, 0.5661157),\n", - " (39, 0.5661157),\n", - " (40, 0.5785124),\n", - " (41, 0.59090906),\n", - " (42, 0.607438),\n", - " (43, 0.6322314),\n", - " (44, 0.6280992),\n", - " (45, 0.677686),\n", - " (46, 0.71487606),\n", - " (47, 0.70247936),\n", - " (48, 0.6983471),\n", - " (49, 0.70247936),\n", - " (50, 0.71487606),\n", - " (51, 0.6942149),\n", - " (52, 0.71487606),\n", - " (53, 0.72727275),\n", - " (54, 0.7231405),\n", - " (55, 0.73966944),\n", - " (56, 0.77272725),\n", - " (57, 0.7892562),\n", - " (58, 0.8016529),\n", - " (59, 0.79752064),\n", - " (60, 0.78099173),\n", - " (61, 0.76859504),\n", - " (62, 0.75206614),\n", - " (63, 0.75206614),\n", - " (64, 0.49173555),\n", - " (65, 0.6322314),\n", - " (66, 0.677686),\n", - " (67, 0.6570248),\n", - " (68, 0.661157),\n", - " (69, 0.6735537),\n", - " (70, 0.6735537),\n", - " (71, 0.661157),\n", - " (72, 0.6528926),\n", - " (73, 0.6280992),\n", - " (74, 0.6280992),\n", - " (75, 0.6322314),\n", - " (76, 0.6322314),\n", - " (77, 0.6280992),\n", - " (78, 0.6280992),\n", - " (79, 0.6198347),\n", - " (80, 0.60330576),\n", - " (81, 0.6198347),\n", - " (82, 0.60330576),\n", - " (83, 0.59917355),\n", - " (84, 0.59090906),\n", - " (85, 0.59504133),\n", - " (86, 0.58264464),\n", - " (87, 0.5785124),\n", - " (88, 0.58264464),\n", - " (89, 0.58677685),\n", - " (90, 0.58264464),\n", - " (91, 0.57438016),\n", - " (92, 0.57438016),\n", - " (93, 0.5785124),\n", - " (94, 0.56198347),\n", - " (95, 0.56198347),\n", - " (96, 0.56198347),\n", - " (97, 0.56198347),\n", - " (98, 0.5661157),\n", - " (99, 0.57438016),\n", - " (100, 0.56198347),\n", - " (101, 0.5661157),\n", - " (102, 0.57024795),\n", - " (103, 0.57024795),\n", - " (104, 0.58677685),\n", - " (105, 0.59917355),\n", - " (106, 0.607438),\n", - " (107, 0.6280992),\n", - " (108, 0.6446281),\n", - " (109, 0.677686),\n", - " (110, 0.71487606),\n", - " (111, 0.71487606),\n", - " (112, 0.6983471),\n", - " (113, 0.70247936),\n", - " (114, 0.71900827),\n", - " (115, 0.7066116),\n", - " (116, 0.7231405),\n", - " (117, 0.7355372),\n", - " (118, 0.73140496),\n", - " (119, 0.75206614),\n", - " (120, 0.77272725),\n", - " (121, 0.78512394),\n", - " (122, 0.8057851),\n", - " (123, 0.80991733),\n", - " (124, 0.7892562),\n", - " (125, 0.7768595),\n", - " (126, 0.76859504),\n", - " (127, 0.76033056),\n", - " (128, 0.53305787),\n", - " (129, 0.661157),\n", - " (130, 0.6859504),\n", - " (131, 0.677686),\n", - " (132, 0.69008267),\n", - " (133, 0.6942149),\n", - " (134, 0.6859504),\n", - " (135, 0.661157),\n", - " (136, 0.6528926),\n", - " (137, 0.6322314),\n", - " (138, 0.6280992),\n", - " (139, 0.6280992),\n", - " (140, 0.62396693),\n", - " (141, 0.61570245),\n", - " (142, 0.61570245),\n", - " (143, 0.60330576),\n", - " (144, 0.59917355),\n", - " (145, 0.59917355),\n", - " (146, 0.59090906),\n", - " (147, 0.58677685),\n", - " (148, 0.58264464),\n", - " (149, 0.5785124),\n", - " (150, 0.57024795),\n", - " (151, 0.5661157),\n", - " (152, 0.57024795),\n", - " (153, 0.5785124),\n", - " (154, 0.57438016),\n", - " (155, 0.5785124),\n", - " (156, 0.57024795),\n", - " (157, 0.5785124),\n", - " (158, 0.5661157),\n", - " (159, 0.55785125),\n", - " (160, 0.553719),\n", - " (161, 0.55785125),\n", - " (162, 0.55785125),\n", - " (163, 0.55785125),\n", - " (164, 0.57438016),\n", - " (165, 0.5661157),\n", - " (166, 0.5661157),\n", - " (167, 0.58264464),\n", - " (168, 0.59090906),\n", - " (169, 0.60330576),\n", - " (170, 0.59504133),\n", - " (171, 0.61157024),\n", - " (172, 0.6322314),\n", - " (173, 0.6735537),\n", - " (174, 0.6942149),\n", - " (175, 0.6942149),\n", - " (176, 0.69008267),\n", - " (177, 0.6983471),\n", - " (178, 0.7066116),\n", - " (179, 0.7066116),\n", - " (180, 0.72727275),\n", - " (181, 0.7355372),\n", - " (182, 0.7231405),\n", - " (183, 0.75619835),\n", - " (184, 0.77272725),\n", - " (185, 0.78099173),\n", - " (186, 0.7933884),\n", - " (187, 0.8181818),\n", - " (188, 0.8016529),\n", - " (189, 0.78099173),\n", - " (190, 0.77272725),\n", - " (191, 0.76859504),\n", - " (192, 0.56198347),\n", - " (193, 0.677686),\n", - " (194, 0.6942149),\n", - " (195, 0.69008267),\n", - " (196, 0.7107438),\n", - " (197, 0.6983471),\n", - " (198, 0.6818182),\n", - " (199, 0.6198347),\n", - " (200, 0.6404959),\n", - " (201, 0.6322314),\n", - " (202, 0.607438),\n", - " (203, 0.61157024),\n", - " (204, 0.607438),\n", - " (205, 0.58677685),\n", - " (206, 0.57024795),\n", - " (207, 0.56198347),\n", - " (208, 0.5661157),\n", - " (209, 0.5661157),\n", - " (210, 0.56198347),\n", - " (211, 0.5495868),\n", - " (212, 0.553719),\n", - " (213, 0.553719),\n", - " (214, 0.5495868),\n", - " (215, 0.553719),\n", - " (216, 0.55785125),\n", - " (217, 0.5661157),\n", - " (218, 0.57438016),\n", - " (219, 0.5661157),\n", - " (220, 0.5661157),\n", - " (221, 0.57438016),\n", - " (222, 0.57024795),\n", - " (223, 0.55785125),\n", - " (224, 0.553719),\n", - " (225, 0.55785125),\n", - " (226, 0.56198347),\n", - " (227, 0.54545456),\n", - " (228, 0.5661157),\n", - " (229, 0.553719),\n", - " (230, 0.55785125),\n", - " (231, 0.56198347),\n", - " (232, 0.5661157),\n", - " (233, 0.57438016),\n", - " (234, 0.57438016),\n", - " (235, 0.59090906),\n", - " (236, 0.62396693),\n", - " (237, 0.6528926),\n", - " (238, 0.6528926),\n", - " (239, 0.6528926),\n", - " (240, 0.6528926),\n", - " (241, 0.6652893),\n", - " (242, 0.6735537),\n", - " (243, 0.6652893),\n", - " (244, 0.70247936),\n", - " (245, 0.71487606),\n", - " (246, 0.71900827),\n", - " (247, 0.73966944),\n", - " (248, 0.76859504),\n", - " (249, 0.77272725),\n", - " (250, 0.78512394),\n", - " (251, 0.8140496),\n", - " (252, 0.8140496),\n", - " (253, 0.78512394),\n", - " (254, 0.7933884),\n", - " (255, 0.7644628),\n", - " (256, 0.58264464),\n", - " (257, 0.6942149),\n", - " (258, 0.6983471),\n", - " (259, 0.70247936),\n", - " (260, 0.71487606),\n", - " (261, 0.6818182),\n", - " (262, 0.6694215),\n", - " (263, 0.62396693),\n", - " (264, 0.6404959),\n", - " (265, 0.607438),\n", - " (266, 0.59090906),\n", - " (267, 0.56198347),\n", - " (268, 0.5495868),\n", - " (269, 0.53305787),\n", - " (270, 0.5165289),\n", - " (271, 0.5082645),\n", - " (272, 0.5206612),\n", - " (273, 0.53305787),\n", - " (274, 0.5041322),\n", - " (275, 0.49173555),\n", - " (276, 0.5),\n", - " (277, 0.5123967),\n", - " (278, 0.5165289),\n", - " (279, 0.53305787),\n", - " (280, 0.5413223),\n", - " (281, 0.553719),\n", - " (282, 0.55785125),\n", - " (283, 0.57024795),\n", - " (284, 0.57024795),\n", - " (285, 0.56198347),\n", - " (286, 0.55785125),\n", - " (287, 0.54545456),\n", - " (288, 0.54545456),\n", - " (289, 0.55785125),\n", - " (290, 0.55785125),\n", - " (291, 0.5413223),\n", - " (292, 0.55785125),\n", - " (293, 0.5413223),\n", - " (294, 0.54545456),\n", - " (295, 0.5495868),\n", - " (296, 0.553719),\n", - " (297, 0.5371901),\n", - " (298, 0.5289256),\n", - " (299, 0.5413223),\n", - " (300, 0.57024795),\n", - " (301, 0.58677685),\n", - " (302, 0.607438),\n", - " (303, 0.607438),\n", - " (304, 0.58264464),\n", - " (305, 0.60330576),\n", - " (306, 0.6280992),\n", - " (307, 0.62396693),\n", - " (308, 0.6363636),\n", - " (309, 0.6694215),\n", - " (310, 0.6983471),\n", - " (311, 0.73140496),\n", - " (312, 0.7644628),\n", - " (313, 0.76859504),\n", - " (314, 0.78099173),\n", - " (315, 0.8057851),\n", - " (316, 0.8181818),\n", - " (317, 0.7933884),\n", - " (318, 0.7933884),\n", - " (319, 0.7768595),\n", - " (320, 0.58677685),\n", - " (321, 0.6983471),\n", - " (322, 0.70247936),\n", - " (323, 0.6983471),\n", - " (324, 0.7066116),\n", - " (325, 0.6942149),\n", - " (326, 0.661157),\n", - " (327, 0.6363636),\n", - " (328, 0.62396693),\n", - " (329, 0.5661157),\n", - " (330, 0.49173555),\n", - " (331, 0.47107437),\n", - " (332, 0.46280992),\n", - " (333, 0.446281),\n", - " (334, 0.43801653),\n", - " (335, 0.42561984),\n", - " (336, 0.43801653),\n", - " (337, 0.44214877),\n", - " (338, 0.4338843),\n", - " (339, 0.42561984),\n", - " (340, 0.4214876),\n", - " (341, 0.44214877),\n", - " (342, 0.45867768),\n", - " (343, 0.47933885),\n", - " (344, 0.5041322),\n", - " (345, 0.5123967),\n", - " (346, 0.5413223),\n", - " (347, 0.54545456),\n", - " (348, 0.553719),\n", - " (349, 0.5413223),\n", - " (350, 0.5413223),\n", - " (351, 0.5289256),\n", - " (352, 0.5206612),\n", - " (353, 0.53305787),\n", - " (354, 0.5413223),\n", - " (355, 0.5123967),\n", - " (356, 0.5289256),\n", - " (357, 0.5165289),\n", - " (358, 0.5041322),\n", - " (359, 0.5082645),\n", - " (360, 0.5041322),\n", - " (361, 0.46694216),\n", - " (362, 0.45454547),\n", - " (363, 0.45454547),\n", - " (364, 0.45867768),\n", - " (365, 0.46694216),\n", - " (366, 0.49586776),\n", - " (367, 0.5206612),\n", - " (368, 0.5),\n", - " (369, 0.5),\n", - " (370, 0.5247934),\n", - " (371, 0.5289256),\n", - " (372, 0.5495868),\n", - " (373, 0.59090906),\n", - " (374, 0.607438),\n", - " (375, 0.6735537),\n", - " (376, 0.74793386),\n", - " (377, 0.76859504),\n", - " (378, 0.78099173),\n", - " (379, 0.80991733),\n", - " (380, 0.8057851),\n", - " (381, 0.7933884),\n", - " (382, 0.7892562),\n", - " (383, 0.7768595),\n", - " (384, 0.58677685),\n", - " (385, 0.7066116),\n", - " (386, 0.71487606),\n", - " (387, 0.70247936),\n", - " (388, 0.7066116),\n", - " (389, 0.6942149),\n", - " (390, 0.6570248),\n", - " (391, 0.61570245),\n", - " (392, 0.5661157),\n", - " (393, 0.46694216),\n", - " (394, 0.40495867),\n", - " (395, 0.38842976),\n", - " (396, 0.36363637),\n", - " (397, 0.35950413),\n", - " (398, 0.35123968),\n", - " (399, 0.3305785),\n", - " (400, 0.3305785),\n", - " (401, 0.30991736),\n", - " (402, 0.30165288),\n", - " (403, 0.30165288),\n", - " (404, 0.30578512),\n", - " (405, 0.3305785),\n", - " (406, 0.37190083),\n", - " (407, 0.40495867),\n", - " (408, 0.45041323),\n", - " (409, 0.47107437),\n", - " (410, 0.5),\n", - " (411, 0.5123967),\n", - " (412, 0.5165289),\n", - " (413, 0.5206612),\n", - " (414, 0.5206612),\n", - " (415, 0.5123967),\n", - " (416, 0.5),\n", - " (417, 0.5123967),\n", - " (418, 0.5206612),\n", - " (419, 0.5041322),\n", - " (420, 0.5041322),\n", - " (421, 0.47933885),\n", - " (422, 0.46280992),\n", - " (423, 0.446281),\n", - " (424, 0.4338843),\n", - " (425, 0.38016528),\n", - " (426, 0.32231405),\n", - " (427, 0.30991736),\n", - " (428, 0.29752067),\n", - " (429, 0.29752067),\n", - " (430, 0.30991736),\n", - " (431, 0.35123968),\n", - " (432, 0.34710744),\n", - " (433, 0.35123968),\n", - " (434, 0.38016528),\n", - " (435, 0.3966942),\n", - " (436, 0.41322315),\n", - " (437, 0.46694216),\n", - " (438, 0.48347107),\n", - " (439, 0.5371901),\n", - " (440, 0.6818182),\n", - " (441, 0.73966944),\n", - " (442, 0.7644628),\n", - " (443, 0.80991733),\n", - " (444, 0.8016529),\n", - " (445, 0.79752064),\n", - " (446, 0.76859504),\n", - " (447, 0.7768595),\n", - " (448, 0.55785125),\n", - " (449, 0.7107438),\n", - " (450, 0.71487606),\n", - " (451, 0.7066116),\n", - " (452, 0.70247936),\n", - " (453, 0.6859504),\n", - " (454, 0.61157024),\n", - " (455, 0.5289256),\n", - " (456, 0.446281),\n", - " (457, 0.37190083),\n", - " (458, 0.34710744),\n", - " (459, 0.3181818),\n", - " (460, 0.29338843),\n", - " (461, 0.2768595),\n", - " (462, 0.2520661),\n", - " (463, 0.24380165),\n", - " (464, 0.23553719),\n", - " (465, 0.2107438),\n", - " (466, 0.20661157),\n", - " (467, 0.20661157),\n", - " (468, 0.21487603),\n", - " (469, 0.23140496),\n", - " (470, 0.2603306),\n", - " (471, 0.30991736),\n", - " (472, 0.36363637),\n", - " (473, 0.4090909),\n", - " (474, 0.44214877),\n", - " (475, 0.46694216),\n", - " (476, 0.48347107),\n", - " (477, 0.5),\n", - " (478, 0.5),\n", - " (479, 0.4876033),\n", - " (480, 0.4876033),\n", - " (481, 0.49173555),\n", - " (482, 0.5),\n", - " (483, 0.49173555),\n", - " (484, 0.47933885),\n", - " (485, 0.45867768),\n", - " (486, 0.42975205),\n", - " (487, 0.38842976),\n", - " (488, 0.35950413),\n", - " (489, 0.29752067),\n", - " (490, 0.23140496),\n", - " (491, 0.2231405),\n", - " (492, 0.21487603),\n", - " (493, 0.19008264),\n", - " (494, 0.19421488),\n", - " (495, 0.2107438),\n", - " (496, 0.2231405),\n", - " (497, 0.22727273),\n", - " (498, 0.2520661),\n", - " (499, 0.2603306),\n", - " (500, 0.3264463),\n", - " (501, 0.3429752),\n", - " (502, 0.3553719),\n", - " (503, 0.42975205),\n", - " (504, 0.58264464),\n", - " (505, 0.70247936),\n", - " (506, 0.73966944),\n", - " (507, 0.7768595),\n", - " (508, 0.79752064),\n", - " (509, 0.7933884),\n", - " (510, 0.77272725),\n", - " (511, 0.77272725),\n", - " (512, 0.5082645),\n", - " (513, 0.70247936),\n", - " (514, 0.7066116),\n", - " (515, 0.6942149),\n", - " (516, 0.70247936),\n", - " (517, 0.6322314),\n", - " (518, 0.5165289),\n", - " (519, 0.44214877),\n", - " (520, 0.40082645),\n", - " (521, 0.36363637),\n", - " (522, 0.3429752),\n", - " (523, 0.30991736),\n", - " (524, 0.28099173),\n", - " (525, 0.2520661),\n", - " (526, 0.23140496),\n", - " (527, 0.23966943),\n", - " (528, 0.23140496),\n", - " (529, 0.22727273),\n", - " (530, 0.2107438),\n", - " (531, 0.21900827),\n", - " (532, 0.22727273),\n", - " (533, 0.2231405),\n", - " (534, 0.20661157),\n", - " (535, 0.2520661),\n", - " (536, 0.28099173),\n", - " (537, 0.32231405),\n", - " (538, 0.38016528),\n", - " (539, 0.4338843),\n", - " (540, 0.45041323),\n", - " (541, 0.48347107),\n", - " (542, 0.47107437),\n", - " (543, 0.46694216),\n", - " (544, 0.46280992),\n", - " (545, 0.47107437),\n", - " (546, 0.47933885),\n", - " (547, 0.48347107),\n", - " (548, 0.46694216),\n", - " (549, 0.45867768),\n", - " (550, 0.41322315),\n", - " (551, 0.3677686),\n", - " (552, 0.3181818),\n", - " (553, 0.25619835),\n", - " (554, 0.21900827),\n", - " (555, 0.23140496),\n", - " (556, 0.20247933),\n", - " (557, 0.17768595),\n", - " (558, 0.17355372),\n", - " (559, 0.18595041),\n", - " (560, 0.20247933),\n", - " (561, 0.2107438),\n", - " (562, 0.22727273),\n", - " (563, 0.22727273),\n", - " (564, 0.30165288),\n", - " (565, 0.3264463),\n", - " (566, 0.30991736),\n", - " (567, 0.38016528),\n", - " (568, 0.45867768),\n", - " (569, 0.59090906),\n", - " (570, 0.69008267),\n", - " (571, 0.74380165),\n", - " (572, 0.7892562),\n", - " (573, 0.78099173),\n", - " (574, 0.76859504),\n", - " (575, 0.7644628),\n", - " (576, 0.46280992),\n", - " (577, 0.6983471),\n", - " (578, 0.7066116),\n", - " (579, 0.6818182),\n", - " (580, 0.6818182),\n", - " (581, 0.553719),\n", - " (582, 0.48347107),\n", - " (583, 0.46280992),\n", - " (584, 0.47107437),\n", - " (585, 0.42975205),\n", - " (586, 0.38429752),\n", - " (587, 0.36363637),\n", - " (588, 0.338843),\n", - " (589, 0.30578512),\n", - " (590, 0.30165288),\n", - " (591, 0.3305785),\n", - " (592, 0.3305785),\n", - " (593, 0.338843),\n", - " (594, 0.32231405),\n", - " (595, 0.3264463),\n", - " (596, 0.33471075),\n", - " (597, 0.32231405),\n", - " (598, 0.30165288),\n", - " (599, 0.30165288),\n", - " (600, 0.29338843),\n", - " (601, 0.3181818),\n", - " (602, 0.38016528),\n", - " (603, 0.42975205),\n", - " (604, 0.46694216),\n", - " (605, 0.47933885),\n", - " (606, 0.46694216),\n", - " (607, 0.46280992),\n", - " (608, 0.45867768),\n", - " (609, 0.46694216),\n", - " (610, 0.4752066),\n", - " (611, 0.48347107),\n", - " (612, 0.48347107),\n", - " (613, 0.46280992),\n", - " (614, 0.43801653),\n", - " (615, 0.39256197),\n", - " (616, 0.3429752),\n", - " (617, 0.29338843),\n", - " (618, 0.30578512),\n", - " (619, 0.30991736),\n", - " (620, 0.2768595),\n", - " (621, 0.2644628),\n", - " (622, 0.27272728),\n", - " (623, 0.29752067),\n", - " (624, 0.30991736),\n", - " (625, 0.30991736),\n", - " (626, 0.3181818),\n", - " (627, 0.2892562),\n", - " (628, 0.3305785),\n", - " (629, 0.3429752),\n", - " (630, 0.37190083),\n", - " (631, 0.41322315),\n", - " (632, 0.45454547),\n", - " (633, 0.49173555),\n", - " (634, 0.54545456),\n", - " (635, 0.69008267),\n", - " (636, 0.7768595),\n", - " (637, 0.7644628),\n", - " (638, 0.7768595),\n", - " (639, 0.74793386),\n", - " (640, 0.40082645),\n", - " (641, 0.6694215),\n", - " (642, 0.6983471),\n", - " (643, 0.6818182),\n", - " (644, 0.6363636),\n", - " (645, 0.5082645),\n", - " (646, 0.4876033),\n", - " (647, 0.5289256),\n", - " (648, 0.5371901),\n", - " (649, 0.5082645),\n", - " (650, 0.46280992),\n", - " (651, 0.45041323),\n", - " (652, 0.43801653),\n", - " (653, 0.40495867),\n", - " (654, 0.3966942),\n", - " (655, 0.41322315),\n", - " (656, 0.41735536),\n", - " (657, 0.41322315),\n", - " (658, 0.3966942),\n", - " (659, 0.40082645),\n", - " (660, 0.40495867),\n", - " (661, 0.41322315),\n", - " (662, 0.41735536),\n", - " (663, 0.42561984),\n", - " (664, 0.39256197),\n", - " (665, 0.38429752),\n", - " (666, 0.44214877),\n", - " (667, 0.4752066),\n", - " (668, 0.4876033),\n", - " (669, 0.49586776),\n", - " (670, 0.48347107),\n", - " (671, 0.46694216),\n", - " (672, 0.4752066),\n", - " (673, 0.47107437),\n", - " (674, 0.4876033),\n", - " (675, 0.5165289),\n", - " (676, 0.5247934),\n", - " (677, 0.5206612),\n", - " (678, 0.4876033),\n", - " (679, 0.43801653),\n", - " (680, 0.3966942),\n", - " (681, 0.38016528),\n", - " (682, 0.35950413),\n", - " (683, 0.35950413),\n", - " (684, 0.3429752),\n", - " (685, 0.35950413),\n", - " (686, 0.38429752),\n", - " (687, 0.3966942),\n", - " (688, 0.41322315),\n", - " (689, 0.41322315),\n", - " (690, 0.42561984),\n", - " (691, 0.42975205),\n", - " (692, 0.45867768),\n", - " (693, 0.45867768),\n", - " (694, 0.46694216),\n", - " (695, 0.46694216),\n", - " (696, 0.49173555),\n", - " (697, 0.5289256),\n", - " (698, 0.5),\n", - " (699, 0.56198347),\n", - " (700, 0.76033056),\n", - " (701, 0.78512394),\n", - " (702, 0.7933884),\n", - " (703, 0.70247936),\n", - " (704, 0.34710744),\n", - " (705, 0.6487603),\n", - " (706, 0.70247936),\n", - " (707, 0.677686),\n", - " (708, 0.58264464),\n", - " (709, 0.5289256),\n", - " (710, 0.59504133),\n", - " (711, 0.61157024),\n", - " (712, 0.58677685),\n", - " (713, 0.57438016),\n", - " (714, 0.5661157),\n", - " (715, 0.5371901),\n", - " (716, 0.5165289),\n", - " (717, 0.49173555),\n", - " (718, 0.47107437),\n", - " (719, 0.46694216),\n", - " (720, 0.45867768),\n", - " (721, 0.44214877),\n", - " (722, 0.4338843),\n", - " (723, 0.42975205),\n", - " (724, 0.41322315),\n", - " (725, 0.4214876),\n", - " (726, 0.446281),\n", - " (727, 0.46694216),\n", - " (728, 0.45867768),\n", - " (729, 0.4752066),\n", - " (730, 0.5165289),\n", - " (731, 0.5289256),\n", - " (732, 0.5289256),\n", - " (733, 0.53305787),\n", - " (734, 0.5082645),\n", - " (735, 0.4876033),\n", - " (736, 0.4876033),\n", - " (737, 0.5041322),\n", - " (738, 0.5289256),\n", - " (739, 0.57438016),\n", - " (740, 0.607438),\n", - " (741, 0.60330576),\n", - " (742, 0.553719),\n", - " (743, 0.47933885),\n", - " (744, 0.42975205),\n", - " (745, 0.3677686),\n", - " (746, 0.38016528),\n", - " (747, 0.37603307),\n", - " (748, 0.3966942),\n", - " (749, 0.41735536),\n", - " (750, 0.4338843),\n", - " (751, 0.42975205),\n", - " (752, 0.44214877),\n", - " (753, 0.46694216),\n", - " (754, 0.49173555),\n", - " (755, 0.5165289),\n", - " (756, 0.553719),\n", - " (757, 0.5661157),\n", - " (758, 0.56198347),\n", - " (759, 0.5495868),\n", - " (760, 0.5495868),\n", - " (761, 0.5785124),\n", - " (762, 0.5785124),\n", - " (763, 0.45041323),\n", - " (764, 0.6983471),\n", - " (765, 0.8016529),\n", - " (766, 0.7892562),\n", - " (767, 0.6446281),\n", - " (768, 0.30165288),\n", - " (769, 0.61570245),\n", - " (770, 0.7066116),\n", - " (771, 0.6818182),\n", - " (772, 0.57024795),\n", - " (773, 0.58264464),\n", - " (774, 0.6652893),\n", - " (775, 0.6570248),\n", - " (776, 0.6363636),\n", - " (777, 0.6322314),\n", - " (778, 0.6280992),\n", - " (779, 0.61157024),\n", - " (780, 0.58264464),\n", - " (781, 0.5413223),\n", - " (782, 0.5082645),\n", - " (783, 0.4876033),\n", - " (784, 0.45454547),\n", - " (785, 0.446281),\n", - " (786, 0.4338843),\n", - " (787, 0.4338843),\n", - " (788, 0.41735536),\n", - " (789, 0.40495867),\n", - " (790, 0.42975205),\n", - " (791, 0.41735536),\n", - " (792, 0.4338843),\n", - " (793, 0.4752066),\n", - " (794, 0.5165289),\n", - " (795, 0.553719),\n", - " (796, 0.59090906),\n", - " (797, 0.57438016),\n", - " (798, 0.5289256),\n", - " (799, 0.5123967),\n", - " (800, 0.5206612),\n", - " (801, 0.53305787),\n", - " (802, 0.58264464),\n", - " (803, 0.6446281),\n", - " (804, 0.69008267),\n", - " (805, 0.661157),\n", - " (806, 0.56198347),\n", - " (807, 0.45041323),\n", - " (808, 0.38016528),\n", - " (809, 0.3553719),\n", - " (810, 0.37190083),\n", - " (811, 0.38016528),\n", - " (812, 0.38016528),\n", - " (813, 0.39256197),\n", - " (814, 0.3966942),\n", - " (815, 0.40082645),\n", - " (816, 0.4090909),\n", - " (817, 0.44214877),\n", - " (818, 0.49586776),\n", - " (819, 0.54545456),\n", - " (820, 0.59090906),\n", - " (821, 0.6363636),\n", - " (822, 0.661157),\n", - " (823, 0.6570248),\n", - " (824, 0.6363636),\n", - " (825, 0.6446281),\n", - " (826, 0.661157),\n", - " (827, 0.45041323),\n", - " (828, 0.59917355),\n", - " (829, 0.8057851),\n", - " (830, 0.78099173),\n", - " (831, 0.57438016),\n", - " (832, 0.26859504),\n", - " (833, 0.59504133),\n", - " (834, 0.71900827),\n", - " (835, 0.6983471),\n", - " (836, 0.59090906),\n", - " (837, 0.62396693),\n", - " (838, 0.7231405),\n", - " (839, 0.6942149),\n", - " (840, 0.6652893),\n", - " (841, 0.6652893),\n", - " (842, 0.661157),\n", - " (843, 0.62396693),\n", - " (844, 0.56198347),\n", - " (845, 0.5),\n", - " (846, 0.45454547),\n", - " (847, 0.4090909),\n", - " (848, 0.38016528),\n", - " (849, 0.3677686),\n", - " (850, 0.35123968),\n", - " (851, 0.338843),\n", - " (852, 0.3264463),\n", - " (853, 0.3429752),\n", - " (854, 0.38016528),\n", - " (855, 0.37603307),\n", - " (856, 0.38842976),\n", - " (857, 0.41322315),\n", - " (858, 0.46694216),\n", - " (859, 0.56198347),\n", - " (860, 0.6487603),\n", - " (861, 0.6280992),\n", - " (862, 0.56198347),\n", - " (863, 0.553719),\n", - " (864, 0.5661157),\n", - " (865, 0.58677685),\n", - " (866, 0.6322314),\n", - " (867, 0.7231405),\n", - " (868, 0.74793386),\n", - " (869, 0.6694215),\n", - " (870, 0.49586776),\n", - " (871, 0.35950413),\n", - " (872, 0.3305785),\n", - " (873, 0.30991736),\n", - " (874, 0.2892562),\n", - " (875, 0.29752067),\n", - " (876, 0.30578512),\n", - " (877, 0.30578512),\n", - " (878, 0.3264463),\n", - " (879, 0.34710744),\n", - " (880, 0.35950413),\n", - " (881, 0.39256197),\n", - " (882, 0.45454547),\n", - " (883, 0.49586776),\n", - " (884, 0.5413223),\n", - " (885, 0.6322314),\n", - " (886, 0.7107438),\n", - " (887, 0.72727275),\n", - " (888, 0.71487606),\n", - " (889, 0.71487606),\n", - " (890, 0.72727275),\n", - " (891, 0.553719),\n", - " (892, 0.5785124),\n", - " (893, 0.7892562),\n", - " (894, 0.7644628),\n", - " (895, 0.5041322),\n", - " (896, 0.2520661),\n", - " (897, 0.58677685),\n", - " (898, 0.73140496),\n", - " (899, 0.70247936),\n", - " (900, 0.6198347),\n", - " (901, 0.69008267),\n", - " (902, 0.75206614),\n", - " (903, 0.71487606),\n", - " (904, 0.677686),\n", - " (905, 0.6446281),\n", - " (906, 0.59917355),\n", - " (907, 0.5413223),\n", - " (908, 0.4876033),\n", - " (909, 0.43801653),\n", - " (910, 0.37603307),\n", - " (911, 0.3305785),\n", - " (912, 0.30165288),\n", - " (913, 0.29338843),\n", - " (914, 0.29338843),\n", - " (915, 0.28512397),\n", - " (916, 0.28099173),\n", - " (917, 0.28512397),\n", - " (918, 0.28099173),\n", - " (919, 0.30578512),\n", - " (920, 0.34710744),\n", - " (921, 0.35950413),\n", - " (922, 0.3966942),\n", - " (923, 0.5413223),\n", - " (924, 0.6652893),\n", - " (925, 0.6694215),\n", - " (926, 0.59917355),\n", - " (927, 0.59504133),\n", - " (928, 0.62396693),\n", - " (929, 0.62396693),\n", - " (930, 0.661157),\n", - " (931, 0.74793386),\n", - " (932, 0.74380165),\n", - " (933, 0.58677685),\n", - " (934, 0.37190083),\n", - " (935, 0.28512397),\n", - " (936, 0.28512397),\n", - " (937, 0.2644628),\n", - " (938, 0.2603306),\n", - " (939, 0.28099173),\n", - " (940, 0.29338843),\n", - " (941, 0.28099173),\n", - " (942, 0.26859504),\n", - " (943, 0.28512397),\n", - " (944, 0.30165288),\n", - " (945, 0.33471075),\n", - " (946, 0.40495867),\n", - " (947, 0.5041322),\n", - " (948, 0.56198347),\n", - " (949, 0.57438016),\n", - " (950, 0.6280992),\n", - " (951, 0.73140496),\n", - " (952, 0.74793386),\n", - " (953, 0.75619835),\n", - " (954, 0.75619835),\n", - " (955, 0.661157),\n", - " (956, 0.6363636),\n", - " (957, 0.7644628),\n", - " (958, 0.74793386),\n", - " (959, 0.446281),\n", - " (960, 0.24380165),\n", - " (961, 0.59090906),\n", - " (962, 0.7355372),\n", - " (963, 0.71900827),\n", - " (964, 0.6735537),\n", - " (965, 0.73140496),\n", - " (966, 0.76033056),\n", - " (967, 0.71900827),\n", - " (968, 0.6404959),\n", - " (969, 0.55785125),\n", - " (970, 0.5413223),\n", - " (971, 0.5041322),\n", - " (972, 0.4338843),\n", - " (973, 0.40082645),\n", - " (974, 0.27272728),\n", - " (975, 0.1983471),\n", - " (976, 0.20661157),\n", - " (977, 0.2107438),\n", - " (978, 0.19421488),\n", - " (979, 0.24793388),\n", - " (980, 0.2603306),\n", - " (981, 0.2644628),\n", - " (982, 0.2603306),\n", - " (983, 0.24380165),\n", - " (984, 0.28512397),\n", - " (985, 0.3181818),\n", - " (986, 0.35123968),\n", - " (987, 0.49586776),\n", - " (988, 0.6446281),\n", - " (989, 0.6859504),\n", - " (990, 0.6280992),\n", - " (991, 0.61570245),\n", - " (992, 0.6570248),\n", - " (993, 0.6363636),\n", - " (994, 0.661157),\n", - " (995, 0.73966944),\n", - " (996, 0.70247936),\n", - " (997, 0.47107437),\n", - " (998, 0.2892562),\n", - " (999, 0.28099173),\n", - " ...],\n", - " [(0, 0.38842976),\n", - " (1, 0.46280992),\n", - " (2, 0.553719),\n", - " (3, 0.70247936),\n", - " (4, 0.76033056),\n", - " (5, 0.76859504),\n", - " (6, 0.76859504),\n", - " (7, 0.7768595),\n", - " (8, 0.7933884),\n", - " (9, 0.79752064),\n", - " (10, 0.79752064),\n", - " (11, 0.7933884),\n", - " (12, 0.7768595),\n", - " (13, 0.78099173),\n", - " (14, 0.7644628),\n", - " (15, 0.78099173),\n", - " (16, 0.7892562),\n", - " (17, 0.79752064),\n", - " (18, 0.79752064),\n", - " (19, 0.79752064),\n", - " (20, 0.8057851),\n", - " (21, 0.7892562),\n", - " (22, 0.8016529),\n", - " (23, 0.8057851),\n", - " (24, 0.7768595),\n", - " (25, 0.78512394),\n", - " (26, 0.76033056),\n", - " (27, 0.76033056),\n", - " (28, 0.75619835),\n", - " (29, 0.74380165),\n", - " (30, 0.74380165),\n", - " (31, 0.7355372),\n", - " (32, 0.73140496),\n", - " (33, 0.73966944),\n", - " (34, 0.7644628),\n", - " (35, 0.76859504),\n", - " (36, 0.7644628),\n", - " (37, 0.76033056),\n", - " (38, 0.76033056),\n", - " (39, 0.76033056),\n", - " (40, 0.75206614),\n", - " (41, 0.74793386),\n", - " (42, 0.75619835),\n", - " (43, 0.75619835),\n", - " (44, 0.74793386),\n", - " (45, 0.74380165),\n", - " (46, 0.73966944),\n", - " (47, 0.73966944),\n", - " (48, 0.7355372),\n", - " (49, 0.73140496),\n", - " (50, 0.7107438),\n", - " (51, 0.72727275),\n", - " (52, 0.7231405),\n", - " (53, 0.71900827),\n", - " (54, 0.7355372),\n", - " (55, 0.6942149),\n", - " (56, 0.7107438),\n", - " (57, 0.6652893),\n", - " (58, 0.6322314),\n", - " (59, 0.60330576),\n", - " (60, 0.60330576),\n", - " (61, 0.5247934),\n", - " (62, 0.36363637),\n", - " (63, 0.2520661),\n", - " (64, 0.40082645),\n", - " (65, 0.49173555),\n", - " (66, 0.59090906),\n", - " (67, 0.71487606),\n", - " (68, 0.77272725),\n", - " (69, 0.75619835),\n", - " (70, 0.7892562),\n", - " (71, 0.8016529),\n", - " (72, 0.8057851),\n", - " (73, 0.7768595),\n", - " (74, 0.78512394),\n", - " (75, 0.78099173),\n", - " (76, 0.77272725),\n", - " (77, 0.78099173),\n", - " (78, 0.7768595),\n", - " (79, 0.78512394),\n", - " (80, 0.8016529),\n", - " (81, 0.79752064),\n", - " (82, 0.8016529),\n", - " (83, 0.8057851),\n", - " (84, 0.8057851),\n", - " (85, 0.8016529),\n", - " (86, 0.8057851),\n", - " (87, 0.8057851),\n", - " (88, 0.7892562),\n", - " (89, 0.79752064),\n", - " (90, 0.77272725),\n", - " (91, 0.77272725),\n", - " (92, 0.76033056),\n", - " (93, 0.75619835),\n", - " (94, 0.74380165),\n", - " (95, 0.74380165),\n", - " (96, 0.75206614),\n", - " (97, 0.75619835),\n", - " (98, 0.75619835),\n", - " (99, 0.76859504),\n", - " (100, 0.76859504),\n", - " (101, 0.76859504),\n", - " (102, 0.7644628),\n", - " (103, 0.77272725),\n", - " (104, 0.75619835),\n", - " (105, 0.74380165),\n", - " (106, 0.7644628),\n", - " (107, 0.77272725),\n", - " (108, 0.75619835),\n", - " (109, 0.75206614),\n", - " (110, 0.75206614),\n", - " (111, 0.74380165),\n", - " (112, 0.74380165),\n", - " (113, 0.7355372),\n", - " (114, 0.72727275),\n", - " (115, 0.72727275),\n", - " (116, 0.71487606),\n", - " (117, 0.71900827),\n", - " (118, 0.72727275),\n", - " (119, 0.75206614),\n", - " (120, 0.72727275),\n", - " (121, 0.6859504),\n", - " (122, 0.6652893),\n", - " (123, 0.58264464),\n", - " (124, 0.59504133),\n", - " (125, 0.54545456),\n", - " (126, 0.40082645),\n", - " (127, 0.2644628),\n", - " (128, 0.39256197),\n", - " (129, 0.48347107),\n", - " (130, 0.60330576),\n", - " (131, 0.72727275),\n", - " (132, 0.76033056),\n", - " (133, 0.77272725),\n", - " (134, 0.8057851),\n", - " (135, 0.8016529),\n", - " (136, 0.7933884),\n", - " (137, 0.78512394),\n", - " (138, 0.78512394),\n", - " (139, 0.7644628),\n", - " (140, 0.7768595),\n", - " (141, 0.78099173),\n", - " (142, 0.7892562),\n", - " (143, 0.7933884),\n", - " (144, 0.8016529),\n", - " (145, 0.8140496),\n", - " (146, 0.80991733),\n", - " (147, 0.8140496),\n", - " (148, 0.8140496),\n", - " (149, 0.8181818),\n", - " (150, 0.822314),\n", - " (151, 0.8181818),\n", - " (152, 0.8016529),\n", - " (153, 0.8181818),\n", - " (154, 0.79752064),\n", - " (155, 0.76859504),\n", - " (156, 0.7644628),\n", - " (157, 0.7768595),\n", - " (158, 0.74793386),\n", - " (159, 0.75619835),\n", - " (160, 0.76033056),\n", - " (161, 0.75619835),\n", - " (162, 0.7644628),\n", - " (163, 0.7644628),\n", - " (164, 0.76859504),\n", - " (165, 0.76859504),\n", - " (166, 0.75206614),\n", - " (167, 0.76859504),\n", - " (168, 0.77272725),\n", - " (169, 0.74793386),\n", - " (170, 0.7644628),\n", - " (171, 0.77272725),\n", - " (172, 0.76033056),\n", - " (173, 0.76033056),\n", - " (174, 0.77272725),\n", - " (175, 0.75206614),\n", - " (176, 0.7355372),\n", - " (177, 0.73966944),\n", - " (178, 0.73966944),\n", - " (179, 0.7355372),\n", - " (180, 0.71900827),\n", - " (181, 0.71487606),\n", - " (182, 0.72727275),\n", - " (183, 0.73966944),\n", - " (184, 0.7355372),\n", - " (185, 0.6859504),\n", - " (186, 0.661157),\n", - " (187, 0.607438),\n", - " (188, 0.607438),\n", - " (189, 0.55785125),\n", - " (190, 0.4090909),\n", - " (191, 0.28512397),\n", - " (192, 0.40495867),\n", - " (193, 0.4876033),\n", - " (194, 0.6363636),\n", - " (195, 0.73966944),\n", - " (196, 0.75206614),\n", - " (197, 0.77272725),\n", - " (198, 0.80991733),\n", - " (199, 0.8057851),\n", - " (200, 0.79752064),\n", - " (201, 0.7892562),\n", - " (202, 0.7768595),\n", - " (203, 0.77272725),\n", - " (204, 0.76859504),\n", - " (205, 0.77272725),\n", - " (206, 0.7892562),\n", - " (207, 0.7933884),\n", - " (208, 0.8057851),\n", - " (209, 0.80991733),\n", - " (210, 0.8057851),\n", - " (211, 0.8181818),\n", - " (212, 0.8181818),\n", - " (213, 0.822314),\n", - " (214, 0.8264463),\n", - " (215, 0.822314),\n", - " (216, 0.8181818),\n", - " (217, 0.838843),\n", - " (218, 0.8305785),\n", - " (219, 0.8140496),\n", - " (220, 0.7892562),\n", - " (221, 0.7933884),\n", - " (222, 0.7644628),\n", - " (223, 0.78099173),\n", - " (224, 0.77272725),\n", - " (225, 0.7644628),\n", - " (226, 0.75619835),\n", - " (227, 0.7892562),\n", - " (228, 0.8057851),\n", - " (229, 0.78099173),\n", - " (230, 0.7644628),\n", - " (231, 0.78512394),\n", - " (232, 0.77272725),\n", - " (233, 0.75619835),\n", - " (234, 0.77272725),\n", - " (235, 0.7768595),\n", - " (236, 0.76859504),\n", - " (237, 0.78099173),\n", - " (238, 0.77272725),\n", - " (239, 0.7768595),\n", - " (240, 0.74380165),\n", - " (241, 0.75206614),\n", - " (242, 0.74380165),\n", - " (243, 0.73966944),\n", - " (244, 0.7107438),\n", - " (245, 0.7231405),\n", - " (246, 0.71900827),\n", - " (247, 0.7231405),\n", - " (248, 0.71487606),\n", - " (249, 0.69008267),\n", - " (250, 0.6363636),\n", - " (251, 0.62396693),\n", - " (252, 0.61157024),\n", - " (253, 0.57024795),\n", - " (254, 0.4214876),\n", - " (255, 0.28099173),\n", - " (256, 0.37603307),\n", - " (257, 0.47107437),\n", - " (258, 0.70247936),\n", - " (259, 0.76033056),\n", - " (260, 0.75206614),\n", - " (261, 0.78099173),\n", - " (262, 0.8140496),\n", - " (263, 0.80991733),\n", - " (264, 0.8057851),\n", - " (265, 0.79752064),\n", - " (266, 0.78512394),\n", - " (267, 0.7768595),\n", - " (268, 0.7892562),\n", - " (269, 0.78099173),\n", - " (270, 0.76859504),\n", - " (271, 0.8016529),\n", - " (272, 0.8016529),\n", - " (273, 0.8057851),\n", - " (274, 0.8181818),\n", - " (275, 0.8181818),\n", - " (276, 0.8305785),\n", - " (277, 0.822314),\n", - " (278, 0.8264463),\n", - " (279, 0.8140496),\n", - " (280, 0.8264463),\n", - " (281, 0.8347107),\n", - " (282, 0.8429752),\n", - " (283, 0.838843),\n", - " (284, 0.8347107),\n", - " (285, 0.8181818),\n", - " (286, 0.8016529),\n", - " (287, 0.78512394),\n", - " (288, 0.7768595),\n", - " (289, 0.78099173),\n", - " (290, 0.78512394),\n", - " (291, 0.8016529),\n", - " (292, 0.8016529),\n", - " (293, 0.7892562),\n", - " (294, 0.76859504),\n", - " (295, 0.7892562),\n", - " (296, 0.78099173),\n", - " (297, 0.7644628),\n", - " (298, 0.78099173),\n", - " (299, 0.77272725),\n", - " (300, 0.76859504),\n", - " (301, 0.78099173),\n", - " (302, 0.76859504),\n", - " (303, 0.76859504),\n", - " (304, 0.76033056),\n", - " (305, 0.74793386),\n", - " (306, 0.73966944),\n", - " (307, 0.7355372),\n", - " (308, 0.7107438),\n", - " (309, 0.70247936),\n", - " (310, 0.71487606),\n", - " (311, 0.7107438),\n", - " (312, 0.7107438),\n", - " (313, 0.6694215),\n", - " (314, 0.6198347),\n", - " (315, 0.61570245),\n", - " (316, 0.607438),\n", - " (317, 0.5661157),\n", - " (318, 0.47107437),\n", - " (319, 0.2768595),\n", - " (320, 0.34710744),\n", - " (321, 0.57438016),\n", - " (322, 0.76033056),\n", - " (323, 0.75619835),\n", - " (324, 0.75619835),\n", - " (325, 0.77272725),\n", - " (326, 0.80991733),\n", - " (327, 0.80991733),\n", - " (328, 0.80991733),\n", - " (329, 0.8016529),\n", - " (330, 0.78512394),\n", - " (331, 0.78512394),\n", - " (332, 0.78512394),\n", - " (333, 0.78099173),\n", - " (334, 0.7644628),\n", - " (335, 0.78099173),\n", - " (336, 0.77272725),\n", - " (337, 0.7892562),\n", - " (338, 0.80991733),\n", - " (339, 0.822314),\n", - " (340, 0.8181818),\n", - " (341, 0.80991733),\n", - " (342, 0.8140496),\n", - " (343, 0.8181818),\n", - " (344, 0.8264463),\n", - " (345, 0.822314),\n", - " (346, 0.8347107),\n", - " (347, 0.8429752),\n", - " (348, 0.8471074),\n", - " (349, 0.8347107),\n", - " (350, 0.8347107),\n", - " (351, 0.8140496),\n", - " (352, 0.78099173),\n", - " (353, 0.8016529),\n", - " (354, 0.8057851),\n", - " (355, 0.8140496),\n", - " (356, 0.822314),\n", - " (357, 0.7892562),\n", - " (358, 0.77272725),\n", - " (359, 0.76859504),\n", - " (360, 0.78099173),\n", - " (361, 0.7644628),\n", - " (362, 0.76859504),\n", - " (363, 0.76859504),\n", - " (364, 0.75619835),\n", - " (365, 0.77272725),\n", - " (366, 0.76033056),\n", - " (367, 0.76033056),\n", - " (368, 0.75206614),\n", - " (369, 0.75206614),\n", - " (370, 0.74793386),\n", - " (371, 0.74380165),\n", - " (372, 0.72727275),\n", - " (373, 0.6983471),\n", - " (374, 0.71487606),\n", - " (375, 0.7107438),\n", - " (376, 0.6983471),\n", - " (377, 0.6528926),\n", - " (378, 0.62396693),\n", - " (379, 0.5785124),\n", - " (380, 0.58264464),\n", - " (381, 0.5661157),\n", - " (382, 0.5165289),\n", - " (383, 0.29752067),\n", - " (384, 0.35950413),\n", - " (385, 0.6694215),\n", - " (386, 0.73966944),\n", - " (387, 0.75619835),\n", - " (388, 0.76033056),\n", - " (389, 0.77272725),\n", - " (390, 0.7933884),\n", - " (391, 0.80991733),\n", - " (392, 0.79752064),\n", - " (393, 0.7933884),\n", - " (394, 0.77272725),\n", - " (395, 0.7644628),\n", - " (396, 0.75206614),\n", - " (397, 0.75206614),\n", - " (398, 0.74793386),\n", - " (399, 0.73140496),\n", - " (400, 0.75206614),\n", - " (401, 0.74793386),\n", - " (402, 0.7644628),\n", - " (403, 0.78512394),\n", - " (404, 0.79752064),\n", - " (405, 0.7892562),\n", - " (406, 0.7933884),\n", - " (407, 0.7933884),\n", - " (408, 0.8057851),\n", - " (409, 0.80991733),\n", - " (410, 0.80991733),\n", - " (411, 0.8181818),\n", - " (412, 0.8471074),\n", - " (413, 0.8057851),\n", - " (414, 0.822314),\n", - " (415, 0.8347107),\n", - " (416, 0.8016529),\n", - " (417, 0.79752064),\n", - " (418, 0.8057851),\n", - " (419, 0.7933884),\n", - " (420, 0.8140496),\n", - " (421, 0.78512394),\n", - " (422, 0.75619835),\n", - " (423, 0.76033056),\n", - " (424, 0.74380165),\n", - " (425, 0.75619835),\n", - " (426, 0.75619835),\n", - " (427, 0.75619835),\n", - " (428, 0.74793386),\n", - " (429, 0.7644628),\n", - " (430, 0.73966944),\n", - " (431, 0.73140496),\n", - " (432, 0.72727275),\n", - " (433, 0.73140496),\n", - " (434, 0.73966944),\n", - " (435, 0.73966944),\n", - " (436, 0.71900827),\n", - " (437, 0.6983471),\n", - " (438, 0.71900827),\n", - " (439, 0.72727275),\n", - " (440, 0.7107438),\n", - " (441, 0.6570248),\n", - " (442, 0.607438),\n", - " (443, 0.57024795),\n", - " (444, 0.57438016),\n", - " (445, 0.553719),\n", - " (446, 0.5247934),\n", - " (447, 0.33471075),\n", - " (448, 0.3966942),\n", - " (449, 0.70247936),\n", - " (450, 0.76859504),\n", - " (451, 0.73140496),\n", - " (452, 0.74380165),\n", - " (453, 0.76033056),\n", - " (454, 0.78099173),\n", - " (455, 0.8016529),\n", - " (456, 0.7892562),\n", - " (457, 0.74793386),\n", - " (458, 0.69008267),\n", - " (459, 0.6570248),\n", - " (460, 0.6404959),\n", - " (461, 0.6528926),\n", - " (462, 0.6446281),\n", - " (463, 0.6487603),\n", - " (464, 0.6280992),\n", - " (465, 0.6198347),\n", - " (466, 0.6487603),\n", - " (467, 0.6652893),\n", - " (468, 0.70247936),\n", - " (469, 0.71487606),\n", - " (470, 0.73140496),\n", - " (471, 0.75206614),\n", - " (472, 0.77272725),\n", - " (473, 0.78099173),\n", - " (474, 0.78099173),\n", - " (475, 0.78512394),\n", - " (476, 0.78512394),\n", - " (477, 0.77272725),\n", - " (478, 0.8057851),\n", - " (479, 0.8181818),\n", - " (480, 0.7892562),\n", - " (481, 0.7768595),\n", - " (482, 0.77272725),\n", - " (483, 0.75619835),\n", - " (484, 0.76859504),\n", - " (485, 0.75206614),\n", - " (486, 0.74380165),\n", - " (487, 0.73966944),\n", - " (488, 0.72727275),\n", - " (489, 0.71487606),\n", - " (490, 0.73140496),\n", - " (491, 0.7355372),\n", - " (492, 0.71900827),\n", - " (493, 0.7355372),\n", - " (494, 0.7066116),\n", - " (495, 0.6983471),\n", - " (496, 0.7066116),\n", - " (497, 0.71487606),\n", - " (498, 0.7066116),\n", - " (499, 0.6942149),\n", - " (500, 0.6652893),\n", - " (501, 0.6280992),\n", - " (502, 0.661157),\n", - " (503, 0.71900827),\n", - " (504, 0.7107438),\n", - " (505, 0.677686),\n", - " (506, 0.58677685),\n", - " (507, 0.553719),\n", - " (508, 0.57438016),\n", - " (509, 0.553719),\n", - " (510, 0.5495868),\n", - " (511, 0.36363637),\n", - " (512, 0.38016528),\n", - " (513, 0.7231405),\n", - " (514, 0.76859504),\n", - " (515, 0.72727275),\n", - " (516, 0.72727275),\n", - " (517, 0.73140496),\n", - " (518, 0.7644628),\n", - " (519, 0.76033056),\n", - " (520, 0.7231405),\n", - " (521, 0.6735537),\n", - " (522, 0.607438),\n", - " (523, 0.59504133),\n", - " (524, 0.56198347),\n", - " (525, 0.5785124),\n", - " (526, 0.553719),\n", - " (527, 0.5785124),\n", - " (528, 0.5206612),\n", - " (529, 0.5041322),\n", - " (530, 0.5495868),\n", - " (531, 0.5371901),\n", - " (532, 0.55785125),\n", - " (533, 0.57024795),\n", - " (534, 0.6198347),\n", - " (535, 0.6942149),\n", - " (536, 0.71487606),\n", - " (537, 0.75206614),\n", - " (538, 0.7644628),\n", - " (539, 0.75619835),\n", - " (540, 0.75206614),\n", - " (541, 0.75206614),\n", - " (542, 0.76859504),\n", - " (543, 0.78099173),\n", - " (544, 0.76033056),\n", - " (545, 0.73966944),\n", - " (546, 0.74793386),\n", - " (547, 0.7355372),\n", - " (548, 0.7231405),\n", - " (549, 0.7231405),\n", - " (550, 0.71900827),\n", - " (551, 0.7066116),\n", - " (552, 0.6818182),\n", - " (553, 0.6487603),\n", - " (554, 0.6446281),\n", - " (555, 0.60330576),\n", - " (556, 0.59090906),\n", - " (557, 0.57438016),\n", - " (558, 0.56198347),\n", - " (559, 0.55785125),\n", - " (560, 0.59090906),\n", - " (561, 0.6280992),\n", - " (562, 0.61157024),\n", - " (563, 0.62396693),\n", - " (564, 0.59917355),\n", - " (565, 0.553719),\n", - " (566, 0.56198347),\n", - " (567, 0.5785124),\n", - " (568, 0.6570248),\n", - " (569, 0.6818182),\n", - " (570, 0.58677685),\n", - " (571, 0.5371901),\n", - " (572, 0.55785125),\n", - " (573, 0.5413223),\n", - " (574, 0.553719),\n", - " (575, 0.38842976),\n", - " (576, 0.36363637),\n", - " (577, 0.75206614),\n", - " (578, 0.7644628),\n", - " (579, 0.7355372),\n", - " (580, 0.6942149),\n", - " (581, 0.677686),\n", - " (582, 0.6859504),\n", - " (583, 0.6363636),\n", - " (584, 0.6322314),\n", - " (585, 0.553719),\n", - " (586, 0.5247934),\n", - " (587, 0.5123967),\n", - " (588, 0.5123967),\n", - " (589, 0.5289256),\n", - " (590, 0.4876033),\n", - " (591, 0.46694216),\n", - " (592, 0.3966942),\n", - " (593, 0.42561984),\n", - " (594, 0.446281),\n", - " (595, 0.4752066),\n", - " (596, 0.49173555),\n", - " (597, 0.5413223),\n", - " (598, 0.59504133),\n", - " (599, 0.6446281),\n", - " (600, 0.6818182),\n", - " (601, 0.72727275),\n", - " (602, 0.74793386),\n", - " (603, 0.7355372),\n", - " (604, 0.7355372),\n", - " (605, 0.7231405),\n", - " (606, 0.7355372),\n", - " (607, 0.73966944),\n", - " (608, 0.7231405),\n", - " (609, 0.7107438),\n", - " (610, 0.71900827),\n", - " (611, 0.7107438),\n", - " (612, 0.6942149),\n", - " (613, 0.69008267),\n", - " (614, 0.6818182),\n", - " (615, 0.6694215),\n", - " (616, 0.6322314),\n", - " (617, 0.57438016),\n", - " (618, 0.5165289),\n", - " (619, 0.45867768),\n", - " (620, 0.4214876),\n", - " (621, 0.41322315),\n", - " (622, 0.4090909),\n", - " (623, 0.3966942),\n", - " (624, 0.44214877),\n", - " (625, 0.47933885),\n", - " (626, 0.5),\n", - " (627, 0.5371901),\n", - " (628, 0.5206612),\n", - " (629, 0.5041322),\n", - " (630, 0.5123967),\n", - " (631, 0.49173555),\n", - " (632, 0.5247934),\n", - " (633, 0.553719),\n", - " (634, 0.59504133),\n", - " (635, 0.5206612),\n", - " (636, 0.53305787),\n", - " (637, 0.5247934),\n", - " (638, 0.553719),\n", - " (639, 0.4090909),\n", - " (640, 0.45041323),\n", - " (641, 0.76033056),\n", - " (642, 0.74793386),\n", - " (643, 0.73140496),\n", - " (644, 0.661157),\n", - " (645, 0.6446281),\n", - " (646, 0.6322314),\n", - " (647, 0.61570245),\n", - " (648, 0.6198347),\n", - " (649, 0.5495868),\n", - " (650, 0.53305787),\n", - " (651, 0.5247934),\n", - " (652, 0.49586776),\n", - " (653, 0.53305787),\n", - " (654, 0.5165289),\n", - " (655, 0.46694216),\n", - " (656, 0.43801653),\n", - " (657, 0.45041323),\n", - " (658, 0.5082645),\n", - " (659, 0.53305787),\n", - " (660, 0.5413223),\n", - " (661, 0.5785124),\n", - " (662, 0.607438),\n", - " (663, 0.61570245),\n", - " (664, 0.661157),\n", - " (665, 0.7066116),\n", - " (666, 0.7355372),\n", - " (667, 0.7355372),\n", - " (668, 0.73966944),\n", - " (669, 0.7066116),\n", - " (670, 0.70247936),\n", - " (671, 0.7066116),\n", - " (672, 0.6983471),\n", - " (673, 0.69008267),\n", - " (674, 0.6942149),\n", - " (675, 0.70247936),\n", - " (676, 0.6859504),\n", - " (677, 0.6570248),\n", - " (678, 0.6322314),\n", - " (679, 0.61570245),\n", - " (680, 0.5661157),\n", - " (681, 0.5165289),\n", - " (682, 0.4752066),\n", - " (683, 0.4338843),\n", - " (684, 0.38429752),\n", - " (685, 0.3553719),\n", - " (686, 0.3305785),\n", - " (687, 0.3140496),\n", - " (688, 0.35950413),\n", - " (689, 0.36363637),\n", - " (690, 0.4090909),\n", - " (691, 0.45454547),\n", - " (692, 0.45041323),\n", - " (693, 0.45867768),\n", - " (694, 0.47107437),\n", - " (695, 0.46694216),\n", - " (696, 0.48347107),\n", - " (697, 0.45867768),\n", - " (698, 0.5),\n", - " (699, 0.4752066),\n", - " (700, 0.5041322),\n", - " (701, 0.5289256),\n", - " (702, 0.54545456),\n", - " (703, 0.4090909),\n", - " (704, 0.48347107),\n", - " (705, 0.7768595),\n", - " (706, 0.7644628),\n", - " (707, 0.7355372),\n", - " (708, 0.6942149),\n", - " (709, 0.6570248),\n", - " (710, 0.6570248),\n", - " (711, 0.661157),\n", - " (712, 0.61570245),\n", - " (713, 0.6280992),\n", - " (714, 0.6404959),\n", - " (715, 0.6570248),\n", - " (716, 0.6528926),\n", - " (717, 0.62396693),\n", - " (718, 0.6694215),\n", - " (719, 0.6487603),\n", - " (720, 0.5785124),\n", - " (721, 0.56198347),\n", - " (722, 0.553719),\n", - " (723, 0.5495868),\n", - " (724, 0.553719),\n", - " (725, 0.5661157),\n", - " (726, 0.57438016),\n", - " (727, 0.607438),\n", - " (728, 0.6570248),\n", - " (729, 0.71487606),\n", - " (730, 0.7107438),\n", - " (731, 0.7107438),\n", - " (732, 0.7107438),\n", - " (733, 0.70247936),\n", - " (734, 0.6942149),\n", - " (735, 0.6942149),\n", - " (736, 0.6942149),\n", - " (737, 0.6859504),\n", - " (738, 0.677686),\n", - " (739, 0.6818182),\n", - " (740, 0.6528926),\n", - " (741, 0.61570245),\n", - " (742, 0.5661157),\n", - " (743, 0.5413223),\n", - " (744, 0.5),\n", - " (745, 0.46280992),\n", - " (746, 0.446281),\n", - " (747, 0.42561984),\n", - " (748, 0.41322315),\n", - " (749, 0.40082645),\n", - " (750, 0.40495867),\n", - " (751, 0.3966942),\n", - " (752, 0.38429752),\n", - " (753, 0.38016528),\n", - " (754, 0.4090909),\n", - " (755, 0.446281),\n", - " (756, 0.47107437),\n", - " (757, 0.48347107),\n", - " (758, 0.49173555),\n", - " (759, 0.47107437),\n", - " (760, 0.46280992),\n", - " (761, 0.4338843),\n", - " (762, 0.4338843),\n", - " (763, 0.46280992),\n", - " (764, 0.49173555),\n", - " (765, 0.5413223),\n", - " (766, 0.56198347),\n", - " (767, 0.37603307),\n", - " (768, 0.49173555),\n", - " (769, 0.7933884),\n", - " (770, 0.78099173),\n", - " (771, 0.7355372),\n", - " (772, 0.6570248),\n", - " (773, 0.6363636),\n", - " (774, 0.55785125),\n", - " (775, 0.5),\n", - " (776, 0.45454547),\n", - " (777, 0.46280992),\n", - " (778, 0.45041323),\n", - " (779, 0.446281),\n", - " (780, 0.45454547),\n", - " (781, 0.37190083),\n", - " (782, 0.6818182),\n", - " (783, 0.76033056),\n", - " (784, 0.5661157),\n", - " (785, 0.47107437),\n", - " (786, 0.41735536),\n", - " (787, 0.40082645),\n", - " (788, 0.38016528),\n", - " (789, 0.36363637),\n", - " (790, 0.3264463),\n", - " (791, 0.4338843),\n", - " (792, 0.46280992),\n", - " (793, 0.47933885),\n", - " (794, 0.4752066),\n", - " (795, 0.4876033),\n", - " (796, 0.46694216),\n", - " (797, 0.45867768),\n", - " (798, 0.4338843),\n", - " (799, 0.45041323),\n", - " (800, 0.4338843),\n", - " (801, 0.44214877),\n", - " (802, 0.4876033),\n", - " (803, 0.46280992),\n", - " (804, 0.46694216),\n", - " (805, 0.41322315),\n", - " (806, 0.38016528),\n", - " (807, 0.3553719),\n", - " (808, 0.3305785),\n", - " (809, 0.29752067),\n", - " (810, 0.2892562),\n", - " (811, 0.26859504),\n", - " (812, 0.30991736),\n", - " (813, 0.338843),\n", - " (814, 0.3677686),\n", - " (815, 0.46694216),\n", - " (816, 0.37603307),\n", - " (817, 0.38429752),\n", - " (818, 0.37603307),\n", - " (819, 0.35950413),\n", - " (820, 0.3677686),\n", - " (821, 0.36363637),\n", - " (822, 0.4090909),\n", - " (823, 0.44214877),\n", - " (824, 0.4214876),\n", - " (825, 0.446281),\n", - " (826, 0.47933885),\n", - " (827, 0.49586776),\n", - " (828, 0.47933885),\n", - " (829, 0.54545456),\n", - " (830, 0.55785125),\n", - " (831, 0.35950413),\n", - " (832, 0.4338843),\n", - " (833, 0.73966944),\n", - " (834, 0.75619835),\n", - " (835, 0.6404959),\n", - " (836, 0.5),\n", - " (837, 0.5206612),\n", - " (838, 0.5371901),\n", - " (839, 0.57024795),\n", - " (840, 0.6446281),\n", - " (841, 0.73966944),\n", - " (842, 0.76859504),\n", - " (843, 0.71900827),\n", - " (844, 0.6280992),\n", - " (845, 0.553719),\n", - " (846, 0.5495868),\n", - " (847, 0.59504133),\n", - " (848, 0.5495868),\n", - " (849, 0.48347107),\n", - " (850, 0.4338843),\n", - " (851, 0.40495867),\n", - " (852, 0.41735536),\n", - " (853, 0.41735536),\n", - " (854, 0.338843),\n", - " (855, 0.3677686),\n", - " (856, 0.36363637),\n", - " (857, 0.21900827),\n", - " (858, 0.4090909),\n", - " (859, 0.5206612),\n", - " (860, 0.5206612),\n", - " (861, 0.5495868),\n", - " (862, 0.5247934),\n", - " (863, 0.5),\n", - " (864, 0.45454547),\n", - " (865, 0.4338843),\n", - " (866, 0.45867768),\n", - " (867, 0.42561984),\n", - " (868, 0.41735536),\n", - " (869, 0.338843),\n", - " (870, 0.20247933),\n", - " (871, 0.24380165),\n", - " (872, 0.3140496),\n", - " (873, 0.35950413),\n", - " (874, 0.37603307),\n", - " (875, 0.38429752),\n", - " (876, 0.42561984),\n", - " (877, 0.48347107),\n", - " (878, 0.5082645),\n", - " (879, 0.59090906),\n", - " (880, 0.5661157),\n", - " (881, 0.57438016),\n", - " (882, 0.58264464),\n", - " (883, 0.59917355),\n", - " (884, 0.55785125),\n", - " (885, 0.4876033),\n", - " (886, 0.4214876),\n", - " (887, 0.3677686),\n", - " (888, 0.3305785),\n", - " (889, 0.36363637),\n", - " (890, 0.36363637),\n", - " (891, 0.3677686),\n", - " (892, 0.46280992),\n", - " (893, 0.56198347),\n", - " (894, 0.5661157),\n", - " (895, 0.338843),\n", - " (896, 0.4876033),\n", - " (897, 0.5785124),\n", - " (898, 0.5041322),\n", - " (899, 0.5289256),\n", - " (900, 0.60330576),\n", - " (901, 0.6818182),\n", - " (902, 0.6859504),\n", - " (903, 0.73966944),\n", - " (904, 0.77272725),\n", - " (905, 0.75206614),\n", - " (906, 0.6983471),\n", - " (907, 0.6487603),\n", - " (908, 0.59090906),\n", - " (909, 0.5371901),\n", - " (910, 0.48347107),\n", - " (911, 0.45867768),\n", - " (912, 0.4752066),\n", - " (913, 0.45867768),\n", - " (914, 0.43801653),\n", - " (915, 0.40495867),\n", - " (916, 0.37603307),\n", - " (917, 0.36363637),\n", - " (918, 0.37190083),\n", - " (919, 0.40495867),\n", - " (920, 0.47107437),\n", - " (921, 0.41322315),\n", - " (922, 0.2644628),\n", - " (923, 0.70247936),\n", - " (924, 0.76859504),\n", - " (925, 0.8347107),\n", - " (926, 0.80991733),\n", - " (927, 0.79752064),\n", - " (928, 0.74793386),\n", - " (929, 0.74380165),\n", - " (930, 0.71900827),\n", - " (931, 0.6280992),\n", - " (932, 0.5289256),\n", - " (933, 0.30578512),\n", - " (934, 0.4090909),\n", - " (935, 0.46694216),\n", - " (936, 0.3966942),\n", - " (937, 0.38429752),\n", - " (938, 0.38842976),\n", - " (939, 0.40495867),\n", - " (940, 0.45041323),\n", - " (941, 0.4876033),\n", - " (942, 0.53305787),\n", - " (943, 0.553719),\n", - " (944, 0.5206612),\n", - " (945, 0.553719),\n", - " (946, 0.59504133),\n", - " (947, 0.6528926),\n", - " (948, 0.6528926),\n", - " (949, 0.677686),\n", - " (950, 0.61570245),\n", - " (951, 0.5289256),\n", - " (952, 0.47107437),\n", - " (953, 0.46280992),\n", - " (954, 0.45454547),\n", - " (955, 0.39256197),\n", - " (956, 0.21900827),\n", - " (957, 0.44214877),\n", - " (958, 0.4876033),\n", - " (959, 0.27272728),\n", - " (960, 0.55785125),\n", - " (961, 0.446281),\n", - " (962, 0.5247934),\n", - " (963, 0.57438016),\n", - " (964, 0.6983471),\n", - " (965, 0.74793386),\n", - " (966, 0.71487606),\n", - " (967, 0.7231405),\n", - " (968, 0.6735537),\n", - " (969, 0.5371901),\n", - " (970, 0.553719),\n", - " (971, 0.48347107),\n", - " (972, 0.44214877),\n", - " (973, 0.54545456),\n", - " (974, 0.2520661),\n", - " (975, 0.19421488),\n", - " (976, 0.3966942),\n", - " (977, 0.2768595),\n", - " (978, 0.2644628),\n", - " (979, 0.35123968),\n", - " (980, 0.37190083),\n", - " (981, 0.3553719),\n", - " (982, 0.35123968),\n", - " (983, 0.34710744),\n", - " (984, 0.38429752),\n", - " (985, 0.45041323),\n", - " (986, 0.41322315),\n", - " (987, 0.38429752),\n", - " (988, 0.78099173),\n", - " (989, 0.8140496),\n", - " (990, 0.71487606),\n", - " (991, 0.6280992),\n", - " (992, 0.607438),\n", - " (993, 0.6818182),\n", - " (994, 0.74380165),\n", - " (995, 0.6487603),\n", - " (996, 0.5247934),\n", - " (997, 0.29338843),\n", - " (998, 0.48347107),\n", - " (999, 0.38016528),\n", - " ...],\n", - " [(0, 0.553719),\n", - " (1, 0.57438016),\n", - " (2, 0.58677685),\n", - " (3, 0.60330576),\n", - " (4, 0.61157024),\n", - " (5, 0.6404959),\n", - " (6, 0.6570248),\n", - " (7, 0.661157),\n", - " (8, 0.6735537),\n", - " (9, 0.6859504),\n", - " (10, 0.6983471),\n", - " (11, 0.71487606),\n", - " (12, 0.71900827),\n", - " (13, 0.7231405),\n", - " (14, 0.7355372),\n", - " (15, 0.73966944),\n", - " (16, 0.74793386),\n", - " (17, 0.77272725),\n", - " (18, 0.77272725),\n", - " (19, 0.77272725),\n", - " (20, 0.7768595),\n", - " (21, 0.76033056),\n", - " (22, 0.76033056),\n", - " (23, 0.7644628),\n", - " (24, 0.7768595),\n", - " (25, 0.78099173),\n", - " (26, 0.7768595),\n", - " (27, 0.7644628),\n", - " (28, 0.76859504),\n", - " (29, 0.76859504),\n", - " (30, 0.76859504),\n", - " (31, 0.76859504),\n", - " (32, 0.7644628),\n", - " (33, 0.7644628),\n", - " (34, 0.76859504),\n", - " (35, 0.78099173),\n", - " (36, 0.77272725),\n", - " (37, 0.7644628),\n", - " (38, 0.77272725),\n", - " (39, 0.7644628),\n", - " (40, 0.76033056),\n", - " (41, 0.75206614),\n", - " (42, 0.71900827),\n", - " (43, 0.6528926),\n", - " (44, 0.59504133),\n", - " (45, 0.61570245),\n", - " (46, 0.607438),\n", - " (47, 0.6570248),\n", - " (48, 0.6942149),\n", - " (49, 0.69008267),\n", - " (50, 0.58264464),\n", - " (51, 0.5123967),\n", - " (52, 0.5082645),\n", - " (53, 0.5041322),\n", - " (54, 0.5041322),\n", - " (55, 0.5123967),\n", - " (56, 0.5123967),\n", - " (57, 0.49173555),\n", - " (58, 0.47107437),\n", - " (59, 0.45454547),\n", - " (60, 0.4214876),\n", - " (61, 0.45867768),\n", - " (62, 0.42975205),\n", - " (63, 0.45041323),\n", - " (64, 0.5495868),\n", - " (65, 0.55785125),\n", - " (66, 0.58677685),\n", - " (67, 0.59917355),\n", - " (68, 0.607438),\n", - " (69, 0.6404959),\n", - " (70, 0.6528926),\n", - " (71, 0.661157),\n", - " (72, 0.677686),\n", - " (73, 0.69008267),\n", - " (74, 0.7066116),\n", - " (75, 0.71900827),\n", - " (76, 0.71900827),\n", - " (77, 0.7231405),\n", - " (78, 0.7355372),\n", - " (79, 0.7355372),\n", - " (80, 0.76033056),\n", - " (81, 0.7768595),\n", - " (82, 0.78099173),\n", - " (83, 0.7644628),\n", - " (84, 0.76033056),\n", - " (85, 0.76033056),\n", - " (86, 0.75619835),\n", - " (87, 0.75619835),\n", - " (88, 0.76859504),\n", - " (89, 0.77272725),\n", - " (90, 0.7768595),\n", - " (91, 0.77272725),\n", - " (92, 0.77272725),\n", - " (93, 0.77272725),\n", - " (94, 0.7768595),\n", - " (95, 0.76859504),\n", - " (96, 0.76033056),\n", - " (97, 0.76033056),\n", - " (98, 0.7644628),\n", - " (99, 0.7768595),\n", - " (100, 0.78099173),\n", - " (101, 0.76859504),\n", - " (102, 0.7768595),\n", - " (103, 0.77272725),\n", - " (104, 0.76859504),\n", - " (105, 0.76859504),\n", - " (106, 0.76033056),\n", - " (107, 0.73966944),\n", - " (108, 0.69008267),\n", - " (109, 0.6652893),\n", - " (110, 0.661157),\n", - " (111, 0.6322314),\n", - " (112, 0.661157),\n", - " (113, 0.6942149),\n", - " (114, 0.6735537),\n", - " (115, 0.62396693),\n", - " (116, 0.55785125),\n", - " (117, 0.5041322),\n", - " (118, 0.49586776),\n", - " (119, 0.48347107),\n", - " (120, 0.4752066),\n", - " (121, 0.46694216),\n", - " (122, 0.446281),\n", - " (123, 0.44214877),\n", - " (124, 0.41735536),\n", - " (125, 0.45867768),\n", - " (126, 0.48347107),\n", - " (127, 0.4876033),\n", - " (128, 0.5371901),\n", - " (129, 0.54545456),\n", - " (130, 0.57024795),\n", - " (131, 0.59090906),\n", - " (132, 0.61570245),\n", - " (133, 0.6363636),\n", - " (134, 0.6570248),\n", - " (135, 0.6694215),\n", - " (136, 0.677686),\n", - " (137, 0.69008267),\n", - " (138, 0.70247936),\n", - " (139, 0.71900827),\n", - " (140, 0.71487606),\n", - " (141, 0.7231405),\n", - " (142, 0.7355372),\n", - " (143, 0.73140496),\n", - " (144, 0.75206614),\n", - " (145, 0.78099173),\n", - " (146, 0.77272725),\n", - " (147, 0.7768595),\n", - " (148, 0.76859504),\n", - " (149, 0.77272725),\n", - " (150, 0.76033056),\n", - " (151, 0.7644628),\n", - " (152, 0.76859504),\n", - " (153, 0.77272725),\n", - " (154, 0.78099173),\n", - " (155, 0.7768595),\n", - " (156, 0.77272725),\n", - " (157, 0.77272725),\n", - " (158, 0.7768595),\n", - " (159, 0.7768595),\n", - " (160, 0.7644628),\n", - " (161, 0.7644628),\n", - " (162, 0.78099173),\n", - " (163, 0.7892562),\n", - " (164, 0.7892562),\n", - " (165, 0.76859504),\n", - " (166, 0.7644628),\n", - " (167, 0.7644628),\n", - " (168, 0.77272725),\n", - " (169, 0.77272725),\n", - " (170, 0.76859504),\n", - " (171, 0.76859504),\n", - " (172, 0.74380165),\n", - " (173, 0.71487606),\n", - " (174, 0.6818182),\n", - " (175, 0.677686),\n", - " (176, 0.661157),\n", - " (177, 0.661157),\n", - " (178, 0.6818182),\n", - " (179, 0.6735537),\n", - " (180, 0.6487603),\n", - " (181, 0.60330576),\n", - " (182, 0.55785125),\n", - " (183, 0.5),\n", - " (184, 0.47933885),\n", - " (185, 0.47107437),\n", - " (186, 0.45454547),\n", - " (187, 0.46280992),\n", - " (188, 0.44214877),\n", - " (189, 0.45867768),\n", - " (190, 0.5165289),\n", - " (191, 0.4876033),\n", - " (192, 0.5371901),\n", - " (193, 0.5247934),\n", - " (194, 0.5495868),\n", - " (195, 0.58677685),\n", - " (196, 0.607438),\n", - " (197, 0.6322314),\n", - " (198, 0.6570248),\n", - " (199, 0.6735537),\n", - " (200, 0.6818182),\n", - " (201, 0.6859504),\n", - " (202, 0.6983471),\n", - " (203, 0.7107438),\n", - " (204, 0.7107438),\n", - " (205, 0.7231405),\n", - " (206, 0.73140496),\n", - " (207, 0.7355372),\n", - " (208, 0.77272725),\n", - " (209, 0.78512394),\n", - " (210, 0.7768595),\n", - " (211, 0.77272725),\n", - " (212, 0.7892562),\n", - " (213, 0.7933884),\n", - " (214, 0.78099173),\n", - " (215, 0.7768595),\n", - " (216, 0.7768595),\n", - " (217, 0.78512394),\n", - " (218, 0.7933884),\n", - " (219, 0.7892562),\n", - " (220, 0.78099173),\n", - " (221, 0.7768595),\n", - " (222, 0.7768595),\n", - " (223, 0.7768595),\n", - " (224, 0.7768595),\n", - " (225, 0.77272725),\n", - " (226, 0.78512394),\n", - " (227, 0.7892562),\n", - " (228, 0.79752064),\n", - " (229, 0.78099173),\n", - " (230, 0.76033056),\n", - " (231, 0.7644628),\n", - " (232, 0.78099173),\n", - " (233, 0.77272725),\n", - " (234, 0.7644628),\n", - " (235, 0.76859504),\n", - " (236, 0.7644628),\n", - " (237, 0.74380165),\n", - " (238, 0.7107438),\n", - " (239, 0.7107438),\n", - " (240, 0.70247936),\n", - " (241, 0.6694215),\n", - " (242, 0.6446281),\n", - " (243, 0.6528926),\n", - " (244, 0.6528926),\n", - " (245, 0.6404959),\n", - " (246, 0.6198347),\n", - " (247, 0.57438016),\n", - " (248, 0.5495868),\n", - " (249, 0.5289256),\n", - " (250, 0.5041322),\n", - " (251, 0.5289256),\n", - " (252, 0.5082645),\n", - " (253, 0.4752066),\n", - " (254, 0.5247934),\n", - " (255, 0.49173555),\n", - " (256, 0.5247934),\n", - " (257, 0.5289256),\n", - " (258, 0.54545456),\n", - " (259, 0.57438016),\n", - " (260, 0.59917355),\n", - " (261, 0.6280992),\n", - " (262, 0.6570248),\n", - " (263, 0.6735537),\n", - " (264, 0.6859504),\n", - " (265, 0.6818182),\n", - " (266, 0.6942149),\n", - " (267, 0.7066116),\n", - " (268, 0.7107438),\n", - " (269, 0.7231405),\n", - " (270, 0.7355372),\n", - " (271, 0.73966944),\n", - " (272, 0.7644628),\n", - " (273, 0.78099173),\n", - " (274, 0.7768595),\n", - " (275, 0.7644628),\n", - " (276, 0.78099173),\n", - " (277, 0.79752064),\n", - " (278, 0.78512394),\n", - " (279, 0.7892562),\n", - " (280, 0.7933884),\n", - " (281, 0.7933884),\n", - " (282, 0.79752064),\n", - " (283, 0.79752064),\n", - " (284, 0.7933884),\n", - " (285, 0.78099173),\n", - " (286, 0.7768595),\n", - " (287, 0.78099173),\n", - " (288, 0.78099173),\n", - " (289, 0.76859504),\n", - " (290, 0.78512394),\n", - " (291, 0.78512394),\n", - " (292, 0.79752064),\n", - " (293, 0.7933884),\n", - " (294, 0.78512394),\n", - " (295, 0.78099173),\n", - " (296, 0.7933884),\n", - " (297, 0.78512394),\n", - " (298, 0.77272725),\n", - " (299, 0.7644628),\n", - " (300, 0.76859504),\n", - " (301, 0.75619835),\n", - " (302, 0.73140496),\n", - " (303, 0.7231405),\n", - " (304, 0.72727275),\n", - " (305, 0.7066116),\n", - " (306, 0.677686),\n", - " (307, 0.6652893),\n", - " (308, 0.6570248),\n", - " (309, 0.6446281),\n", - " (310, 0.6280992),\n", - " (311, 0.607438),\n", - " (312, 0.59917355),\n", - " (313, 0.57024795),\n", - " (314, 0.553719),\n", - " (315, 0.57024795),\n", - " (316, 0.5495868),\n", - " (317, 0.49586776),\n", - " (318, 0.5165289),\n", - " (319, 0.5082645),\n", - " (320, 0.5206612),\n", - " (321, 0.5289256),\n", - " (322, 0.54545456),\n", - " (323, 0.55785125),\n", - " (324, 0.5785124),\n", - " (325, 0.6198347),\n", - " (326, 0.6487603),\n", - " (327, 0.6570248),\n", - " (328, 0.6694215),\n", - " (329, 0.6735537),\n", - " (330, 0.69008267),\n", - " (331, 0.71900827),\n", - " (332, 0.7231405),\n", - " (333, 0.73140496),\n", - " (334, 0.74380165),\n", - " (335, 0.73966944),\n", - " (336, 0.75619835),\n", - " (337, 0.76859504),\n", - " (338, 0.7768595),\n", - " (339, 0.77272725),\n", - " (340, 0.7644628),\n", - " (341, 0.7768595),\n", - " (342, 0.7768595),\n", - " (343, 0.78099173),\n", - " (344, 0.7892562),\n", - " (345, 0.7933884),\n", - " (346, 0.7892562),\n", - " (347, 0.7892562),\n", - " (348, 0.7933884),\n", - " (349, 0.78099173),\n", - " (350, 0.7768595),\n", - " (351, 0.7892562),\n", - " (352, 0.78512394),\n", - " (353, 0.7644628),\n", - " (354, 0.78099173),\n", - " (355, 0.7892562),\n", - " (356, 0.7892562),\n", - " (357, 0.78512394),\n", - " (358, 0.7892562),\n", - " (359, 0.7892562),\n", - " (360, 0.7892562),\n", - " (361, 0.7892562),\n", - " (362, 0.7768595),\n", - " (363, 0.7644628),\n", - " (364, 0.77272725),\n", - " (365, 0.76859504),\n", - " (366, 0.74380165),\n", - " (367, 0.72727275),\n", - " (368, 0.72727275),\n", - " (369, 0.7231405),\n", - " (370, 0.7107438),\n", - " (371, 0.69008267),\n", - " (372, 0.6983471),\n", - " (373, 0.6942149),\n", - " (374, 0.6694215),\n", - " (375, 0.6322314),\n", - " (376, 0.62396693),\n", - " (377, 0.5785124),\n", - " (378, 0.57438016),\n", - " (379, 0.57024795),\n", - " (380, 0.55785125),\n", - " (381, 0.5123967),\n", - " (382, 0.49586776),\n", - " (383, 0.5082645),\n", - " (384, 0.5206612),\n", - " (385, 0.5247934),\n", - " (386, 0.5371901),\n", - " (387, 0.553719),\n", - " (388, 0.57438016),\n", - " (389, 0.61570245),\n", - " (390, 0.6404959),\n", - " (391, 0.62396693),\n", - " (392, 0.6322314),\n", - " (393, 0.6528926),\n", - " (394, 0.677686),\n", - " (395, 0.7107438),\n", - " (396, 0.7231405),\n", - " (397, 0.7231405),\n", - " (398, 0.7355372),\n", - " (399, 0.73140496),\n", - " (400, 0.74380165),\n", - " (401, 0.7644628),\n", - " (402, 0.76859504),\n", - " (403, 0.7644628),\n", - " (404, 0.75619835),\n", - " (405, 0.75206614),\n", - " (406, 0.75619835),\n", - " (407, 0.7644628),\n", - " (408, 0.77272725),\n", - " (409, 0.77272725),\n", - " (410, 0.77272725),\n", - " (411, 0.76859504),\n", - " (412, 0.76859504),\n", - " (413, 0.76033056),\n", - " (414, 0.78099173),\n", - " (415, 0.7892562),\n", - " (416, 0.78099173),\n", - " (417, 0.76859504),\n", - " (418, 0.76859504),\n", - " (419, 0.76859504),\n", - " (420, 0.7768595),\n", - " (421, 0.7644628),\n", - " (422, 0.75619835),\n", - " (423, 0.7644628),\n", - " (424, 0.7644628),\n", - " (425, 0.76033056),\n", - " (426, 0.76033056),\n", - " (427, 0.75206614),\n", - " (428, 0.75206614),\n", - " (429, 0.7644628),\n", - " (430, 0.75206614),\n", - " (431, 0.71900827),\n", - " (432, 0.7107438),\n", - " (433, 0.7066116),\n", - " (434, 0.7066116),\n", - " (435, 0.7107438),\n", - " (436, 0.69008267),\n", - " (437, 0.69008267),\n", - " (438, 0.6528926),\n", - " (439, 0.607438),\n", - " (440, 0.61570245),\n", - " (441, 0.61157024),\n", - " (442, 0.59090906),\n", - " (443, 0.56198347),\n", - " (444, 0.5495868),\n", - " (445, 0.5165289),\n", - " (446, 0.47933885),\n", - " (447, 0.49173555),\n", - " (448, 0.5165289),\n", - " (449, 0.5123967),\n", - " (450, 0.5206612),\n", - " (451, 0.54545456),\n", - " (452, 0.58677685),\n", - " (453, 0.62396693),\n", - " (454, 0.607438),\n", - " (455, 0.57438016),\n", - " (456, 0.59090906),\n", - " (457, 0.61570245),\n", - " (458, 0.6322314),\n", - " (459, 0.6528926),\n", - " (460, 0.6652893),\n", - " (461, 0.661157),\n", - " (462, 0.6694215),\n", - " (463, 0.6818182),\n", - " (464, 0.677686),\n", - " (465, 0.677686),\n", - " (466, 0.69008267),\n", - " (467, 0.6942149),\n", - " (468, 0.6735537),\n", - " (469, 0.6859504),\n", - " (470, 0.7231405),\n", - " (471, 0.73140496),\n", - " (472, 0.72727275),\n", - " (473, 0.7355372),\n", - " (474, 0.74380165),\n", - " (475, 0.7355372),\n", - " (476, 0.7355372),\n", - " (477, 0.72727275),\n", - " (478, 0.7644628),\n", - " (479, 0.79752064),\n", - " (480, 0.77272725),\n", - " (481, 0.7644628),\n", - " (482, 0.74380165),\n", - " (483, 0.74793386),\n", - " (484, 0.73140496),\n", - " (485, 0.7231405),\n", - " (486, 0.72727275),\n", - " (487, 0.73140496),\n", - " (488, 0.71900827),\n", - " (489, 0.70247936),\n", - " (490, 0.6983471),\n", - " (491, 0.677686),\n", - " (492, 0.6735537),\n", - " (493, 0.6942149),\n", - " (494, 0.6818182),\n", - " (495, 0.62396693),\n", - " (496, 0.61157024),\n", - " (497, 0.6280992),\n", - " (498, 0.62396693),\n", - " (499, 0.6322314),\n", - " (500, 0.6322314),\n", - " (501, 0.59504133),\n", - " (502, 0.60330576),\n", - " (503, 0.56198347),\n", - " (504, 0.5661157),\n", - " (505, 0.61570245),\n", - " (506, 0.59917355),\n", - " (507, 0.5661157),\n", - " (508, 0.5495868),\n", - " (509, 0.5123967),\n", - " (510, 0.4752066),\n", - " (511, 0.48347107),\n", - " (512, 0.5082645),\n", - " (513, 0.5041322),\n", - " (514, 0.5082645),\n", - " (515, 0.553719),\n", - " (516, 0.60330576),\n", - " (517, 0.59090906),\n", - " (518, 0.55785125),\n", - " (519, 0.5165289),\n", - " (520, 0.5123967),\n", - " (521, 0.5413223),\n", - " (522, 0.55785125),\n", - " (523, 0.55785125),\n", - " (524, 0.5495868),\n", - " (525, 0.5371901),\n", - " (526, 0.5206612),\n", - " (527, 0.5371901),\n", - " (528, 0.5247934),\n", - " (529, 0.5),\n", - " (530, 0.5),\n", - " (531, 0.5371901),\n", - " (532, 0.5495868),\n", - " (533, 0.553719),\n", - " (534, 0.59917355),\n", - " (535, 0.6446281),\n", - " (536, 0.661157),\n", - " (537, 0.6735537),\n", - " (538, 0.6983471),\n", - " (539, 0.6983471),\n", - " (540, 0.7107438),\n", - " (541, 0.7066116),\n", - " (542, 0.7355372),\n", - " (543, 0.77272725),\n", - " (544, 0.77272725),\n", - " (545, 0.75619835),\n", - " (546, 0.7231405),\n", - " (547, 0.73966944),\n", - " (548, 0.71900827),\n", - " (549, 0.6859504),\n", - " (550, 0.6818182),\n", - " (551, 0.677686),\n", - " (552, 0.6487603),\n", - " (553, 0.59917355),\n", - " (554, 0.56198347),\n", - " (555, 0.5371901),\n", - " (556, 0.5289256),\n", - " (557, 0.53305787),\n", - " (558, 0.5082645),\n", - " (559, 0.47107437),\n", - " (560, 0.45454547),\n", - " (561, 0.49586776),\n", - " (562, 0.48347107),\n", - " (563, 0.5123967),\n", - " (564, 0.5),\n", - " (565, 0.5165289),\n", - " (566, 0.5206612),\n", - " (567, 0.5206612),\n", - " (568, 0.49173555),\n", - " (569, 0.5289256),\n", - " (570, 0.56198347),\n", - " (571, 0.57024795),\n", - " (572, 0.54545456),\n", - " (573, 0.5082645),\n", - " (574, 0.48347107),\n", - " (575, 0.47933885),\n", - " (576, 0.5),\n", - " (577, 0.5041322),\n", - " (578, 0.5082645),\n", - " (579, 0.55785125),\n", - " (580, 0.59090906),\n", - " (581, 0.55785125),\n", - " (582, 0.5041322),\n", - " (583, 0.446281),\n", - " (584, 0.46280992),\n", - " (585, 0.4876033),\n", - " (586, 0.47107437),\n", - " (587, 0.46280992),\n", - " (588, 0.44214877),\n", - " (589, 0.4090909),\n", - " (590, 0.37603307),\n", - " (591, 0.38429752),\n", - " (592, 0.36363637),\n", - " (593, 0.37190083),\n", - " (594, 0.38429752),\n", - " (595, 0.41735536),\n", - " (596, 0.45454547),\n", - " (597, 0.46694216),\n", - " (598, 0.4876033),\n", - " (599, 0.5413223),\n", - " (600, 0.56198347),\n", - " (601, 0.607438),\n", - " (602, 0.6446281),\n", - " (603, 0.6735537),\n", - " (604, 0.6942149),\n", - " (605, 0.6983471),\n", - " (606, 0.71487606),\n", - " (607, 0.73140496),\n", - " (608, 0.75206614),\n", - " (609, 0.73140496),\n", - " (610, 0.6983471),\n", - " (611, 0.7066116),\n", - " (612, 0.6942149),\n", - " (613, 0.6652893),\n", - " (614, 0.61570245),\n", - " (615, 0.57024795),\n", - " (616, 0.5371901),\n", - " (617, 0.48347107),\n", - " (618, 0.4338843),\n", - " (619, 0.41322315),\n", - " (620, 0.39256197),\n", - " (621, 0.37603307),\n", - " (622, 0.3553719),\n", - " (623, 0.3429752),\n", - " (624, 0.3429752),\n", - " (625, 0.37603307),\n", - " (626, 0.38429752),\n", - " (627, 0.4090909),\n", - " (628, 0.38429752),\n", - " (629, 0.3966942),\n", - " (630, 0.41322315),\n", - " (631, 0.46694216),\n", - " (632, 0.46280992),\n", - " (633, 0.446281),\n", - " (634, 0.4752066),\n", - " (635, 0.5289256),\n", - " (636, 0.53305787),\n", - " (637, 0.5165289),\n", - " (638, 0.49586776),\n", - " (639, 0.4752066),\n", - " (640, 0.49586776),\n", - " (641, 0.5041322),\n", - " (642, 0.5041322),\n", - " (643, 0.5371901),\n", - " (644, 0.5289256),\n", - " (645, 0.47107437),\n", - " (646, 0.446281),\n", - " (647, 0.4214876),\n", - " (648, 0.4214876),\n", - " (649, 0.446281),\n", - " (650, 0.41735536),\n", - " (651, 0.39256197),\n", - " (652, 0.36363637),\n", - " (653, 0.338843),\n", - " (654, 0.3264463),\n", - " (655, 0.3264463),\n", - " (656, 0.3140496),\n", - " (657, 0.33471075),\n", - " (658, 0.35950413),\n", - " (659, 0.37603307),\n", - " (660, 0.4090909),\n", - " (661, 0.43801653),\n", - " (662, 0.446281),\n", - " (663, 0.48347107),\n", - " (664, 0.5041322),\n", - " (665, 0.54545456),\n", - " (666, 0.59504133),\n", - " (667, 0.6570248),\n", - " (668, 0.6652893),\n", - " (669, 0.69008267),\n", - " (670, 0.6942149),\n", - " (671, 0.7107438),\n", - " (672, 0.72727275),\n", - " (673, 0.7066116),\n", - " (674, 0.677686),\n", - " (675, 0.6694215),\n", - " (676, 0.6528926),\n", - " (677, 0.60330576),\n", - " (678, 0.5495868),\n", - " (679, 0.5),\n", - " (680, 0.45867768),\n", - " (681, 0.4338843),\n", - " (682, 0.4090909),\n", - " (683, 0.3677686),\n", - " (684, 0.338843),\n", - " (685, 0.3181818),\n", - " (686, 0.3264463),\n", - " (687, 0.3181818),\n", - " (688, 0.3181818),\n", - " (689, 0.32231405),\n", - " (690, 0.3429752),\n", - " (691, 0.338843),\n", - " (692, 0.3264463),\n", - " (693, 0.35123968),\n", - " (694, 0.38429752),\n", - " (695, 0.38016528),\n", - " (696, 0.37190083),\n", - " (697, 0.4090909),\n", - " (698, 0.42561984),\n", - " (699, 0.46280992),\n", - " (700, 0.5),\n", - " (701, 0.5123967),\n", - " (702, 0.5),\n", - " (703, 0.47933885),\n", - " (704, 0.49173555),\n", - " (705, 0.5041322),\n", - " (706, 0.5),\n", - " (707, 0.5),\n", - " (708, 0.45041323),\n", - " (709, 0.41322315),\n", - " (710, 0.40495867),\n", - " (711, 0.37603307),\n", - " (712, 0.35950413),\n", - " (713, 0.37190083),\n", - " (714, 0.35123968),\n", - " (715, 0.338843),\n", - " (716, 0.3429752),\n", - " (717, 0.36363637),\n", - " (718, 0.37603307),\n", - " (719, 0.38429752),\n", - " (720, 0.38016528),\n", - " (721, 0.38016528),\n", - " (722, 0.3966942),\n", - " (723, 0.40082645),\n", - " (724, 0.41735536),\n", - " (725, 0.4338843),\n", - " (726, 0.446281),\n", - " (727, 0.46694216),\n", - " (728, 0.5206612),\n", - " (729, 0.5289256),\n", - " (730, 0.553719),\n", - " (731, 0.6487603),\n", - " (732, 0.6528926),\n", - " (733, 0.677686),\n", - " (734, 0.6859504),\n", - " (735, 0.7066116),\n", - " (736, 0.71900827),\n", - " (737, 0.6859504),\n", - " (738, 0.661157),\n", - " (739, 0.6446281),\n", - " (740, 0.61157024),\n", - " (741, 0.57024795),\n", - " (742, 0.53305787),\n", - " (743, 0.49586776),\n", - " (744, 0.45867768),\n", - " (745, 0.43801653),\n", - " (746, 0.41735536),\n", - " (747, 0.37190083),\n", - " (748, 0.36363637),\n", - " (749, 0.35123968),\n", - " (750, 0.38429752),\n", - " (751, 0.3966942),\n", - " (752, 0.3966942),\n", - " (753, 0.3966942),\n", - " (754, 0.38429752),\n", - " (755, 0.3677686),\n", - " (756, 0.34710744),\n", - " (757, 0.35123968),\n", - " (758, 0.37190083),\n", - " (759, 0.36363637),\n", - " (760, 0.32231405),\n", - " (761, 0.3140496),\n", - " (762, 0.35123968),\n", - " (763, 0.40082645),\n", - " (764, 0.44214877),\n", - " (765, 0.48347107),\n", - " (766, 0.5),\n", - " (767, 0.4876033),\n", - " (768, 0.48347107),\n", - " (769, 0.49173555),\n", - " (770, 0.4876033),\n", - " (771, 0.46694216),\n", - " (772, 0.3966942),\n", - " (773, 0.39256197),\n", - " (774, 0.38842976),\n", - " (775, 0.338843),\n", - " (776, 0.3140496),\n", - " (777, 0.30991736),\n", - " (778, 0.34710744),\n", - " (779, 0.38429752),\n", - " (780, 0.4214876),\n", - " (781, 0.45867768),\n", - " (782, 0.48347107),\n", - " (783, 0.4876033),\n", - " (784, 0.47107437),\n", - " (785, 0.45041323),\n", - " (786, 0.4338843),\n", - " (787, 0.41322315),\n", - " (788, 0.40495867),\n", - " (789, 0.4090909),\n", - " (790, 0.41735536),\n", - " (791, 0.44214877),\n", - " (792, 0.48347107),\n", - " (793, 0.5247934),\n", - " (794, 0.5206612),\n", - " (795, 0.61570245),\n", - " (796, 0.661157),\n", - " (797, 0.69008267),\n", - " (798, 0.70247936),\n", - " (799, 0.7231405),\n", - " (800, 0.72727275),\n", - " (801, 0.6983471),\n", - " (802, 0.661157),\n", - " (803, 0.62396693),\n", - " (804, 0.57024795),\n", - " (805, 0.5165289),\n", - " (806, 0.5),\n", - " (807, 0.47933885),\n", - " (808, 0.43801653),\n", - " (809, 0.42975205),\n", - " (810, 0.41735536),\n", - " (811, 0.3966942),\n", - " (812, 0.41322315),\n", - " (813, 0.4214876),\n", - " (814, 0.45867768),\n", - " (815, 0.47933885),\n", - " (816, 0.48347107),\n", - " (817, 0.5),\n", - " (818, 0.47933885),\n", - " (819, 0.45041323),\n", - " (820, 0.41735536),\n", - " (821, 0.38429752),\n", - " (822, 0.38429752),\n", - " (823, 0.39256197),\n", - " (824, 0.3677686),\n", - " (825, 0.3429752),\n", - " (826, 0.338843),\n", - " (827, 0.34710744),\n", - " (828, 0.38842976),\n", - " (829, 0.44214877),\n", - " (830, 0.4876033),\n", - " (831, 0.49586776),\n", - " (832, 0.4876033),\n", - " (833, 0.4752066),\n", - " (834, 0.46280992),\n", - " (835, 0.42975205),\n", - " (836, 0.38429752),\n", - " (837, 0.37603307),\n", - " (838, 0.38016528),\n", - " (839, 0.35123968),\n", - " (840, 0.35123968),\n", - " (841, 0.35950413),\n", - " (842, 0.4090909),\n", - " (843, 0.47107437),\n", - " (844, 0.5123967),\n", - " (845, 0.5289256),\n", - " (846, 0.5371901),\n", - " (847, 0.5206612),\n", - " (848, 0.4876033),\n", - " (849, 0.45454547),\n", - " (850, 0.40495867),\n", - " (851, 0.37190083),\n", - " (852, 0.35950413),\n", - " (853, 0.38429752),\n", - " (854, 0.3966942),\n", - " (855, 0.38016528),\n", - " (856, 0.3966942),\n", - " (857, 0.46280992),\n", - " (858, 0.5371901),\n", - " (859, 0.62396693),\n", - " (860, 0.6735537),\n", - " (861, 0.69008267),\n", - " (862, 0.7231405),\n", - " (863, 0.74380165),\n", - " (864, 0.74380165),\n", - " (865, 0.71487606),\n", - " (866, 0.661157),\n", - " (867, 0.61570245),\n", - " (868, 0.55785125),\n", - " (869, 0.5),\n", - " (870, 0.46280992),\n", - " (871, 0.4338843),\n", - " (872, 0.41322315),\n", - " (873, 0.4214876),\n", - " (874, 0.4214876),\n", - " (875, 0.41735536),\n", - " (876, 0.4090909),\n", - " (877, 0.40082645),\n", - " (878, 0.45041323),\n", - " (879, 0.47933885),\n", - " (880, 0.48347107),\n", - " (881, 0.5165289),\n", - " (882, 0.5165289),\n", - " (883, 0.5123967),\n", - " (884, 0.48347107),\n", - " (885, 0.45454547),\n", - " (886, 0.4214876),\n", - " (887, 0.3966942),\n", - " (888, 0.3553719),\n", - " (889, 0.33471075),\n", - " (890, 0.3429752),\n", - " (891, 0.3305785),\n", - " (892, 0.33471075),\n", - " (893, 0.40082645),\n", - " (894, 0.46280992),\n", - " (895, 0.49173555),\n", - " (896, 0.49586776),\n", - " (897, 0.4752066),\n", - " (898, 0.43801653),\n", - " (899, 0.3966942),\n", - " (900, 0.38842976),\n", - " (901, 0.3966942),\n", - " (902, 0.40082645),\n", - " (903, 0.40495867),\n", - " (904, 0.41322315),\n", - " (905, 0.41735536),\n", - " (906, 0.46280992),\n", - " (907, 0.5),\n", - " (908, 0.49586776),\n", - " (909, 0.4752066),\n", - " (910, 0.45454547),\n", - " (911, 0.41735536),\n", - " (912, 0.37603307),\n", - " (913, 0.3429752),\n", - " (914, 0.30991736),\n", - " (915, 0.3181818),\n", - " (916, 0.32231405),\n", - " (917, 0.3305785),\n", - " (918, 0.37603307),\n", - " (919, 0.39256197),\n", - " (920, 0.3553719),\n", - " (921, 0.37190083),\n", - " (922, 0.49173555),\n", - " (923, 0.61157024),\n", - " (924, 0.6652893),\n", - " (925, 0.7066116),\n", - " (926, 0.74793386),\n", - " (927, 0.76859504),\n", - " (928, 0.75619835),\n", - " (929, 0.7231405),\n", - " (930, 0.6694215),\n", - " (931, 0.607438),\n", - " (932, 0.553719),\n", - " (933, 0.49173555),\n", - " (934, 0.446281),\n", - " (935, 0.41735536),\n", - " (936, 0.42561984),\n", - " (937, 0.41735536),\n", - " (938, 0.37603307),\n", - " (939, 0.35950413),\n", - " (940, 0.338843),\n", - " (941, 0.27272728),\n", - " (942, 0.32231405),\n", - " (943, 0.3677686),\n", - " (944, 0.3677686),\n", - " (945, 0.40082645),\n", - " (946, 0.42975205),\n", - " (947, 0.4752066),\n", - " (948, 0.4876033),\n", - " (949, 0.4876033),\n", - " (950, 0.47933885),\n", - " (951, 0.45867768),\n", - " (952, 0.41735536),\n", - " (953, 0.37603307),\n", - " (954, 0.37190083),\n", - " (955, 0.3677686),\n", - " (956, 0.3429752),\n", - " (957, 0.36363637),\n", - " (958, 0.44214877),\n", - " (959, 0.47933885),\n", - " (960, 0.49173555),\n", - " (961, 0.4876033),\n", - " (962, 0.4214876),\n", - " (963, 0.38429752),\n", - " (964, 0.40495867),\n", - " (965, 0.42975205),\n", - " (966, 0.42975205),\n", - " (967, 0.446281),\n", - " (968, 0.446281),\n", - " (969, 0.446281),\n", - " (970, 0.45041323),\n", - " (971, 0.4214876),\n", - " (972, 0.37190083),\n", - " (973, 0.32231405),\n", - " (974, 0.27272728),\n", - " (975, 0.24793388),\n", - " (976, 0.2768595),\n", - " (977, 0.29338843),\n", - " (978, 0.21900827),\n", - " (979, 0.3553719),\n", - " (980, 0.40082645),\n", - " (981, 0.3305785),\n", - " (982, 0.3181818),\n", - " (983, 0.37190083),\n", - " (984, 0.37190083),\n", - " (985, 0.37603307),\n", - " (986, 0.41735536),\n", - " (987, 0.56198347),\n", - " (988, 0.6652893),\n", - " (989, 0.7231405),\n", - " (990, 0.76859504),\n", - " (991, 0.7892562),\n", - " (992, 0.77272725),\n", - " (993, 0.7355372),\n", - " (994, 0.6735537),\n", - " (995, 0.59504133),\n", - " (996, 0.5371901),\n", - " (997, 0.46694216),\n", - " (998, 0.42975205),\n", - " (999, 0.4214876),\n", - " ...],\n", - " [(0, 0.15289256),\n", - " (1, 0.17355372),\n", - " (2, 0.26859504),\n", - " (3, 0.34710744),\n", - " (4, 0.39256197),\n", - " (5, 0.42975205),\n", - " (6, 0.45454547),\n", - " (7, 0.48347107),\n", - " (8, 0.4876033),\n", - " (9, 0.49173555),\n", - " (10, 0.4876033),\n", - " (11, 0.49586776),\n", - " (12, 0.4876033),\n", - " (13, 0.5),\n", - " (14, 0.48347107),\n", - " (15, 0.49586776),\n", - " (16, 0.5206612),\n", - " (17, 0.5082645),\n", - " (18, 0.5165289),\n", - " (19, 0.5289256),\n", - " (20, 0.5371901),\n", - " (21, 0.55785125),\n", - " (22, 0.5661157),\n", - " (23, 0.553719),\n", - " (24, 0.5785124),\n", - " (25, 0.57438016),\n", - " (26, 0.58264464),\n", - " (27, 0.5661157),\n", - " (28, 0.59090906),\n", - " (29, 0.59504133),\n", - " (30, 0.58677685),\n", - " (31, 0.59504133),\n", - " (32, 0.59504133),\n", - " (33, 0.5785124),\n", - " (34, 0.56198347),\n", - " (35, 0.5661157),\n", - " (36, 0.57024795),\n", - " (37, 0.55785125),\n", - " (38, 0.5289256),\n", - " (39, 0.5247934),\n", - " (40, 0.5165289),\n", - " (41, 0.49586776),\n", - " (42, 0.49586776),\n", - " (43, 0.46280992),\n", - " (44, 0.4752066),\n", - " (45, 0.46694216),\n", - " (46, 0.4338843),\n", - " (47, 0.4090909),\n", - " (48, 0.41735536),\n", - " (49, 0.4214876),\n", - " (50, 0.40082645),\n", - " (51, 0.4090909),\n", - " (52, 0.40495867),\n", - " (53, 0.40495867),\n", - " (54, 0.40082645),\n", - " (55, 0.40082645),\n", - " (56, 0.3966942),\n", - " (57, 0.37190083),\n", - " (58, 0.3553719),\n", - " (59, 0.30578512),\n", - " (60, 0.2603306),\n", - " (61, 0.2520661),\n", - " (62, 0.12809917),\n", - " (63, 0.14049587),\n", - " (64, 0.14049587),\n", - " (65, 0.18595041),\n", - " (66, 0.29338843),\n", - " (67, 0.38016528),\n", - " (68, 0.41322315),\n", - " (69, 0.46694216),\n", - " (70, 0.4752066),\n", - " (71, 0.4876033),\n", - " (72, 0.47107437),\n", - " (73, 0.48347107),\n", - " (74, 0.49173555),\n", - " (75, 0.49586776),\n", - " (76, 0.49586776),\n", - " (77, 0.5082645),\n", - " (78, 0.49586776),\n", - " (79, 0.5041322),\n", - " (80, 0.5123967),\n", - " (81, 0.53305787),\n", - " (82, 0.5495868),\n", - " (83, 0.54545456),\n", - " (84, 0.5785124),\n", - " (85, 0.5785124),\n", - " (86, 0.58264464),\n", - " (87, 0.5785124),\n", - " (88, 0.5785124),\n", - " (89, 0.59090906),\n", - " (90, 0.59504133),\n", - " (91, 0.5661157),\n", - " (92, 0.58264464),\n", - " (93, 0.59504133),\n", - " (94, 0.59917355),\n", - " (95, 0.60330576),\n", - " (96, 0.5785124),\n", - " (97, 0.58264464),\n", - " (98, 0.57438016),\n", - " (99, 0.5785124),\n", - " (100, 0.59090906),\n", - " (101, 0.57438016),\n", - " (102, 0.57438016),\n", - " (103, 0.553719),\n", - " (104, 0.5206612),\n", - " (105, 0.5206612),\n", - " (106, 0.5206612),\n", - " (107, 0.49173555),\n", - " (108, 0.4876033),\n", - " (109, 0.47933885),\n", - " (110, 0.45041323),\n", - " (111, 0.45041323),\n", - " (112, 0.43801653),\n", - " (113, 0.41735536),\n", - " (114, 0.40082645),\n", - " (115, 0.41735536),\n", - " (116, 0.40082645),\n", - " (117, 0.40082645),\n", - " (118, 0.4090909),\n", - " (119, 0.40082645),\n", - " (120, 0.4090909),\n", - " (121, 0.37190083),\n", - " (122, 0.38016528),\n", - " (123, 0.338843),\n", - " (124, 0.2892562),\n", - " (125, 0.2603306),\n", - " (126, 0.16528925),\n", - " (127, 0.13636364),\n", - " (128, 0.1446281),\n", - " (129, 0.19421488),\n", - " (130, 0.3140496),\n", - " (131, 0.38429752),\n", - " (132, 0.4338843),\n", - " (133, 0.4876033),\n", - " (134, 0.47933885),\n", - " (135, 0.48347107),\n", - " (136, 0.48347107),\n", - " (137, 0.47933885),\n", - " (138, 0.5247934),\n", - " (139, 0.5123967),\n", - " (140, 0.53305787),\n", - " (141, 0.5082645),\n", - " (142, 0.5289256),\n", - " (143, 0.53305787),\n", - " (144, 0.5289256),\n", - " (145, 0.5495868),\n", - " (146, 0.5785124),\n", - " (147, 0.57438016),\n", - " (148, 0.607438),\n", - " (149, 0.59504133),\n", - " (150, 0.6198347),\n", - " (151, 0.6528926),\n", - " (152, 0.6322314),\n", - " (153, 0.6198347),\n", - " (154, 0.61570245),\n", - " (155, 0.59090906),\n", - " (156, 0.607438),\n", - " (157, 0.6198347),\n", - " (158, 0.62396693),\n", - " (159, 0.6280992),\n", - " (160, 0.59090906),\n", - " (161, 0.60330576),\n", - " (162, 0.607438),\n", - " (163, 0.59504133),\n", - " (164, 0.61157024),\n", - " (165, 0.60330576),\n", - " (166, 0.61570245),\n", - " (167, 0.59504133),\n", - " (168, 0.57024795),\n", - " (169, 0.553719),\n", - " (170, 0.57024795),\n", - " (171, 0.53305787),\n", - " (172, 0.5206612),\n", - " (173, 0.5041322),\n", - " (174, 0.49173555),\n", - " (175, 0.47933885),\n", - " (176, 0.45454547),\n", - " (177, 0.42975205),\n", - " (178, 0.42561984),\n", - " (179, 0.4214876),\n", - " (180, 0.4090909),\n", - " (181, 0.41322315),\n", - " (182, 0.41322315),\n", - " (183, 0.40495867),\n", - " (184, 0.41322315),\n", - " (185, 0.38429752),\n", - " (186, 0.38429752),\n", - " (187, 0.34710744),\n", - " (188, 0.3264463),\n", - " (189, 0.27272728),\n", - " (190, 0.1983471),\n", - " (191, 0.13636364),\n", - " (192, 0.15289256),\n", - " (193, 0.19421488),\n", - " (194, 0.3305785),\n", - " (195, 0.40495867),\n", - " (196, 0.446281),\n", - " (197, 0.46280992),\n", - " (198, 0.47933885),\n", - " (199, 0.49173555),\n", - " (200, 0.47933885),\n", - " (201, 0.5),\n", - " (202, 0.5082645),\n", - " (203, 0.5082645),\n", - " (204, 0.5289256),\n", - " (205, 0.5289256),\n", - " (206, 0.5495868),\n", - " (207, 0.57024795),\n", - " (208, 0.553719),\n", - " (209, 0.5661157),\n", - " (210, 0.58677685),\n", - " (211, 0.6280992),\n", - " (212, 0.6280992),\n", - " (213, 0.6446281),\n", - " (214, 0.6735537),\n", - " (215, 0.71900827),\n", - " (216, 0.73966944),\n", - " (217, 0.6694215),\n", - " (218, 0.6363636),\n", - " (219, 0.6280992),\n", - " (220, 0.6363636),\n", - " (221, 0.661157),\n", - " (222, 0.6735537),\n", - " (223, 0.6487603),\n", - " (224, 0.6446281),\n", - " (225, 0.661157),\n", - " (226, 0.661157),\n", - " (227, 0.61157024),\n", - " (228, 0.6528926),\n", - " (229, 0.6570248),\n", - " (230, 0.661157),\n", - " (231, 0.6487603),\n", - " (232, 0.6487603),\n", - " (233, 0.60330576),\n", - " (234, 0.62396693),\n", - " (235, 0.58264464),\n", - " (236, 0.56198347),\n", - " (237, 0.5247934),\n", - " (238, 0.5247934),\n", - " (239, 0.5),\n", - " (240, 0.46280992),\n", - " (241, 0.43801653),\n", - " (242, 0.42975205),\n", - " (243, 0.40495867),\n", - " (244, 0.4090909),\n", - " (245, 0.40495867),\n", - " (246, 0.41322315),\n", - " (247, 0.3966942),\n", - " (248, 0.40495867),\n", - " (249, 0.40495867),\n", - " (250, 0.3966942),\n", - " (251, 0.3677686),\n", - " (252, 0.3429752),\n", - " (253, 0.2768595),\n", - " (254, 0.2231405),\n", - " (255, 0.17768595),\n", - " (256, 0.11570248),\n", - " (257, 0.23966943),\n", - " (258, 0.338843),\n", - " (259, 0.4214876),\n", - " (260, 0.43801653),\n", - " (261, 0.45867768),\n", - " (262, 0.4752066),\n", - " (263, 0.4876033),\n", - " (264, 0.47933885),\n", - " (265, 0.49173555),\n", - " (266, 0.49173555),\n", - " (267, 0.49173555),\n", - " (268, 0.5),\n", - " (269, 0.5165289),\n", - " (270, 0.5289256),\n", - " (271, 0.5661157),\n", - " (272, 0.56198347),\n", - " (273, 0.55785125),\n", - " (274, 0.59917355),\n", - " (275, 0.6404959),\n", - " (276, 0.6487603),\n", - " (277, 0.69008267),\n", - " (278, 0.7066116),\n", - " (279, 0.70247936),\n", - " (280, 0.7231405),\n", - " (281, 0.6983471),\n", - " (282, 0.6322314),\n", - " (283, 0.6528926),\n", - " (284, 0.677686),\n", - " (285, 0.6983471),\n", - " (286, 0.6942149),\n", - " (287, 0.6983471),\n", - " (288, 0.70247936),\n", - " (289, 0.7231405),\n", - " (290, 0.7107438),\n", - " (291, 0.71900827),\n", - " (292, 0.7107438),\n", - " (293, 0.6694215),\n", - " (294, 0.6859504),\n", - " (295, 0.6735537),\n", - " (296, 0.6942149),\n", - " (297, 0.6280992),\n", - " (298, 0.61157024),\n", - " (299, 0.5785124),\n", - " (300, 0.56198347),\n", - " (301, 0.5),\n", - " (302, 0.48347107),\n", - " (303, 0.46280992),\n", - " (304, 0.45867768),\n", - " (305, 0.446281),\n", - " (306, 0.40082645),\n", - " (307, 0.37603307),\n", - " (308, 0.36363637),\n", - " (309, 0.3429752),\n", - " (310, 0.38842976),\n", - " (311, 0.40082645),\n", - " (312, 0.38842976),\n", - " (313, 0.40082645),\n", - " (314, 0.39256197),\n", - " (315, 0.38016528),\n", - " (316, 0.35123968),\n", - " (317, 0.29338843),\n", - " (318, 0.25619835),\n", - " (319, 0.21487603),\n", - " (320, 0.11157025),\n", - " (321, 0.2603306),\n", - " (322, 0.38016528),\n", - " (323, 0.41735536),\n", - " (324, 0.4214876),\n", - " (325, 0.46694216),\n", - " (326, 0.47933885),\n", - " (327, 0.5041322),\n", - " (328, 0.45454547),\n", - " (329, 0.42561984),\n", - " (330, 0.46694216),\n", - " (331, 0.45454547),\n", - " (332, 0.45867768),\n", - " (333, 0.47107437),\n", - " (334, 0.47933885),\n", - " (335, 0.5123967),\n", - " (336, 0.5289256),\n", - " (337, 0.53305787),\n", - " (338, 0.5413223),\n", - " (339, 0.5661157),\n", - " (340, 0.59504133),\n", - " (341, 0.6198347),\n", - " (342, 0.6487603),\n", - " (343, 0.6322314),\n", - " (344, 0.6528926),\n", - " (345, 0.6528926),\n", - " (346, 0.6487603),\n", - " (347, 0.6404959),\n", - " (348, 0.677686),\n", - " (349, 0.6859504),\n", - " (350, 0.6694215),\n", - " (351, 0.7107438),\n", - " (352, 0.7355372),\n", - " (353, 0.75619835),\n", - " (354, 0.72727275),\n", - " (355, 0.7355372),\n", - " (356, 0.6735537),\n", - " (357, 0.6363636),\n", - " (358, 0.61157024),\n", - " (359, 0.6322314),\n", - " (360, 0.61570245),\n", - " (361, 0.5082645),\n", - " (362, 0.5289256),\n", - " (363, 0.5082645),\n", - " (364, 0.44214877),\n", - " (365, 0.43801653),\n", - " (366, 0.41735536),\n", - " (367, 0.3966942),\n", - " (368, 0.37603307),\n", - " (369, 0.3966942),\n", - " (370, 0.35123968),\n", - " (371, 0.35123968),\n", - " (372, 0.338843),\n", - " (373, 0.3140496),\n", - " (374, 0.30991736),\n", - " (375, 0.3677686),\n", - " (376, 0.38016528),\n", - " (377, 0.38429752),\n", - " (378, 0.3677686),\n", - " (379, 0.36363637),\n", - " (380, 0.35123968),\n", - " (381, 0.3264463),\n", - " (382, 0.28512397),\n", - " (383, 0.23966943),\n", - " (384, 0.14049587),\n", - " (385, 0.29752067),\n", - " (386, 0.38842976),\n", - " (387, 0.40495867),\n", - " (388, 0.4214876),\n", - " (389, 0.46694216),\n", - " (390, 0.47933885),\n", - " (391, 0.4752066),\n", - " (392, 0.38429752),\n", - " (393, 0.40082645),\n", - " (394, 0.41735536),\n", - " (395, 0.3966942),\n", - " (396, 0.4090909),\n", - " (397, 0.42975205),\n", - " (398, 0.41735536),\n", - " (399, 0.4090909),\n", - " (400, 0.446281),\n", - " (401, 0.42975205),\n", - " (402, 0.42561984),\n", - " (403, 0.45867768),\n", - " (404, 0.46694216),\n", - " (405, 0.48347107),\n", - " (406, 0.5041322),\n", - " (407, 0.5082645),\n", - " (408, 0.53305787),\n", - " (409, 0.5661157),\n", - " (410, 0.60330576),\n", - " (411, 0.61157024),\n", - " (412, 0.62396693),\n", - " (413, 0.61570245),\n", - " (414, 0.61157024),\n", - " (415, 0.661157),\n", - " (416, 0.6528926),\n", - " (417, 0.6859504),\n", - " (418, 0.6818182),\n", - " (419, 0.6446281),\n", - " (420, 0.58264464),\n", - " (421, 0.5371901),\n", - " (422, 0.5247934),\n", - " (423, 0.54545456),\n", - " (424, 0.5165289),\n", - " (425, 0.45454547),\n", - " (426, 0.42561984),\n", - " (427, 0.35950413),\n", - " (428, 0.3429752),\n", - " (429, 0.28099173),\n", - " (430, 0.3181818),\n", - " (431, 0.29752067),\n", - " (432, 0.2892562),\n", - " (433, 0.32231405),\n", - " (434, 0.3181818),\n", - " (435, 0.34710744),\n", - " (436, 0.35123968),\n", - " (437, 0.3181818),\n", - " (438, 0.2768595),\n", - " (439, 0.28512397),\n", - " (440, 0.3264463),\n", - " (441, 0.37603307),\n", - " (442, 0.3553719),\n", - " (443, 0.35123968),\n", - " (444, 0.35950413),\n", - " (445, 0.33471075),\n", - " (446, 0.30165288),\n", - " (447, 0.26859504),\n", - " (448, 0.14049587),\n", - " (449, 0.3140496),\n", - " (450, 0.40495867),\n", - " (451, 0.40495867),\n", - " (452, 0.41735536),\n", - " (453, 0.45454547),\n", - " (454, 0.4338843),\n", - " (455, 0.37190083),\n", - " (456, 0.3553719),\n", - " (457, 0.3966942),\n", - " (458, 0.38842976),\n", - " (459, 0.40495867),\n", - " (460, 0.37190083),\n", - " (461, 0.37190083),\n", - " (462, 0.35950413),\n", - " (463, 0.32231405),\n", - " (464, 0.28512397),\n", - " (465, 0.28099173),\n", - " (466, 0.3140496),\n", - " (467, 0.30991736),\n", - " (468, 0.3429752),\n", - " (469, 0.36363637),\n", - " (470, 0.37190083),\n", - " (471, 0.37603307),\n", - " (472, 0.41322315),\n", - " (473, 0.47107437),\n", - " (474, 0.5371901),\n", - " (475, 0.553719),\n", - " (476, 0.55785125),\n", - " (477, 0.5495868),\n", - " (478, 0.57024795),\n", - " (479, 0.61157024),\n", - " (480, 0.60330576),\n", - " (481, 0.61570245),\n", - " (482, 0.56198347),\n", - " (483, 0.54545456),\n", - " (484, 0.47933885),\n", - " (485, 0.43801653),\n", - " (486, 0.45454547),\n", - " (487, 0.45041323),\n", - " (488, 0.39256197),\n", - " (489, 0.35123968),\n", - " (490, 0.29752067),\n", - " (491, 0.24380165),\n", - " (492, 0.23966943),\n", - " (493, 0.24380165),\n", - " (494, 0.2603306),\n", - " (495, 0.2603306),\n", - " (496, 0.26859504),\n", - " (497, 0.2768595),\n", - " (498, 0.29338843),\n", - " (499, 0.2892562),\n", - " (500, 0.33471075),\n", - " (501, 0.3181818),\n", - " (502, 0.2768595),\n", - " (503, 0.28099173),\n", - " (504, 0.2644628),\n", - " (505, 0.3264463),\n", - " (506, 0.3264463),\n", - " (507, 0.3429752),\n", - " (508, 0.338843),\n", - " (509, 0.338843),\n", - " (510, 0.30991736),\n", - " (511, 0.26859504),\n", - " (512, 0.14049587),\n", - " (513, 0.3181818),\n", - " (514, 0.38429752),\n", - " (515, 0.40082645),\n", - " (516, 0.43801653),\n", - " (517, 0.41322315),\n", - " (518, 0.3553719),\n", - " (519, 0.39256197),\n", - " (520, 0.40082645),\n", - " (521, 0.41322315),\n", - " (522, 0.40082645),\n", - " (523, 0.39256197),\n", - " (524, 0.37603307),\n", - " (525, 0.34710744),\n", - " (526, 0.35123968),\n", - " (527, 0.3181818),\n", - " (528, 0.28099173),\n", - " (529, 0.2644628),\n", - " (530, 0.2644628),\n", - " (531, 0.2768595),\n", - " (532, 0.2644628),\n", - " (533, 0.3181818),\n", - " (534, 0.28099173),\n", - " (535, 0.29338843),\n", - " (536, 0.33471075),\n", - " (537, 0.3677686),\n", - " (538, 0.44214877),\n", - " (539, 0.49173555),\n", - " (540, 0.48347107),\n", - " (541, 0.5123967),\n", - " (542, 0.5206612),\n", - " (543, 0.54545456),\n", - " (544, 0.54545456),\n", - " (545, 0.5413223),\n", - " (546, 0.5),\n", - " (547, 0.4752066),\n", - " (548, 0.42561984),\n", - " (549, 0.37190083),\n", - " (550, 0.38429752),\n", - " (551, 0.3305785),\n", - " (552, 0.3429752),\n", - " (553, 0.2892562),\n", - " (554, 0.2768595),\n", - " (555, 0.2603306),\n", - " (556, 0.24793388),\n", - " (557, 0.23966943),\n", - " (558, 0.2603306),\n", - " (559, 0.25619835),\n", - " (560, 0.2768595),\n", - " (561, 0.30165288),\n", - " (562, 0.338843),\n", - " (563, 0.3140496),\n", - " (564, 0.2892562),\n", - " (565, 0.29752067),\n", - " (566, 0.32231405),\n", - " (567, 0.30578512),\n", - " (568, 0.29338843),\n", - " (569, 0.29338843),\n", - " (570, 0.30165288),\n", - " (571, 0.3264463),\n", - " (572, 0.3305785),\n", - " (573, 0.3305785),\n", - " (574, 0.30165288),\n", - " (575, 0.26859504),\n", - " (576, 0.15289256),\n", - " (577, 0.3181818),\n", - " (578, 0.37190083),\n", - " (579, 0.41322315),\n", - " (580, 0.42561984),\n", - " (581, 0.3305785),\n", - " (582, 0.4090909),\n", - " (583, 0.45041323),\n", - " (584, 0.48347107),\n", - " (585, 0.47933885),\n", - " (586, 0.42975205),\n", - " (587, 0.4338843),\n", - " (588, 0.43801653),\n", - " (589, 0.41735536),\n", - " (590, 0.37603307),\n", - " (591, 0.3677686),\n", - " (592, 0.3264463),\n", - " (593, 0.2768595),\n", - " (594, 0.2644628),\n", - " (595, 0.28512397),\n", - " (596, 0.2892562),\n", - " (597, 0.27272728),\n", - " (598, 0.2644628),\n", - " (599, 0.2768595),\n", - " (600, 0.30578512),\n", - " (601, 0.3181818),\n", - " (602, 0.38842976),\n", - " (603, 0.4338843),\n", - " (604, 0.46694216),\n", - " (605, 0.47107437),\n", - " (606, 0.49586776),\n", - " (607, 0.48347107),\n", - " (608, 0.5082645),\n", - " (609, 0.49173555),\n", - " (610, 0.47107437),\n", - " (611, 0.42561984),\n", - " (612, 0.39256197),\n", - " (613, 0.3305785),\n", - " (614, 0.3264463),\n", - " (615, 0.30165288),\n", - " (616, 0.29752067),\n", - " (617, 0.27272728),\n", - " (618, 0.25619835),\n", - " (619, 0.23966943),\n", - " (620, 0.23966943),\n", - " (621, 0.24793388),\n", - " (622, 0.30991736),\n", - " (623, 0.3305785),\n", - " (624, 0.3553719),\n", - " (625, 0.37190083),\n", - " (626, 0.42561984),\n", - " (627, 0.40495867),\n", - " (628, 0.38842976),\n", - " (629, 0.39256197),\n", - " (630, 0.36363637),\n", - " (631, 0.3429752),\n", - " (632, 0.3429752),\n", - " (633, 0.33471075),\n", - " (634, 0.25619835),\n", - " (635, 0.30991736),\n", - " (636, 0.3305785),\n", - " (637, 0.3181818),\n", - " (638, 0.30165288),\n", - " (639, 0.28512397),\n", - " (640, 0.16115703),\n", - " (641, 0.3305785),\n", - " (642, 0.38842976),\n", - " (643, 0.42561984),\n", - " (644, 0.37190083),\n", - " (645, 0.3429752),\n", - " (646, 0.4338843),\n", - " (647, 0.47933885),\n", - " (648, 0.5123967),\n", - " (649, 0.5123967),\n", - " (650, 0.49173555),\n", - " (651, 0.46280992),\n", - " (652, 0.46694216),\n", - " (653, 0.46280992),\n", - " (654, 0.4752066),\n", - " (655, 0.446281),\n", - " (656, 0.41322315),\n", - " (657, 0.38842976),\n", - " (658, 0.3429752),\n", - " (659, 0.30991736),\n", - " (660, 0.30578512),\n", - " (661, 0.28512397),\n", - " (662, 0.2768595),\n", - " (663, 0.30578512),\n", - " (664, 0.32231405),\n", - " (665, 0.338843),\n", - " (666, 0.36363637),\n", - " (667, 0.40082645),\n", - " (668, 0.45041323),\n", - " (669, 0.45867768),\n", - " (670, 0.47107437),\n", - " (671, 0.46280992),\n", - " (672, 0.4752066),\n", - " (673, 0.45454547),\n", - " (674, 0.42975205),\n", - " (675, 0.39256197),\n", - " (676, 0.338843),\n", - " (677, 0.3140496),\n", - " (678, 0.2768595),\n", - " (679, 0.28099173),\n", - " (680, 0.2520661),\n", - " (681, 0.24380165),\n", - " (682, 0.24380165),\n", - " (683, 0.28512397),\n", - " (684, 0.30578512),\n", - " (685, 0.3677686),\n", - " (686, 0.42561984),\n", - " (687, 0.4214876),\n", - " (688, 0.42561984),\n", - " (689, 0.4338843),\n", - " (690, 0.44214877),\n", - " (691, 0.42975205),\n", - " (692, 0.4214876),\n", - " (693, 0.4214876),\n", - " (694, 0.38842976),\n", - " (695, 0.38842976),\n", - " (696, 0.40082645),\n", - " (697, 0.40082645),\n", - " (698, 0.30991736),\n", - " (699, 0.28512397),\n", - " (700, 0.32231405),\n", - " (701, 0.3181818),\n", - " (702, 0.30578512),\n", - " (703, 0.28099173),\n", - " (704, 0.14876033),\n", - " (705, 0.3429752),\n", - " (706, 0.40082645),\n", - " (707, 0.4090909),\n", - " (708, 0.338843),\n", - " (709, 0.42561984),\n", - " (710, 0.46280992),\n", - " (711, 0.49586776),\n", - " (712, 0.53305787),\n", - " (713, 0.5371901),\n", - " (714, 0.5206612),\n", - " (715, 0.5206612),\n", - " (716, 0.5082645),\n", - " (717, 0.5247934),\n", - " (718, 0.49173555),\n", - " (719, 0.5082645),\n", - " (720, 0.49173555),\n", - " (721, 0.49173555),\n", - " (722, 0.45454547),\n", - " (723, 0.42975205),\n", - " (724, 0.3677686),\n", - " (725, 0.34710744),\n", - " (726, 0.30991736),\n", - " (727, 0.30991736),\n", - " (728, 0.30991736),\n", - " (729, 0.35123968),\n", - " (730, 0.37603307),\n", - " (731, 0.41322315),\n", - " (732, 0.44214877),\n", - " (733, 0.45867768),\n", - " (734, 0.45867768),\n", - " (735, 0.45454547),\n", - " (736, 0.44214877),\n", - " (737, 0.41322315),\n", - " (738, 0.41322315),\n", - " (739, 0.37603307),\n", - " (740, 0.3429752),\n", - " (741, 0.30991736),\n", - " (742, 0.27272728),\n", - " (743, 0.2520661),\n", - " (744, 0.24793388),\n", - " (745, 0.2768595),\n", - " (746, 0.30578512),\n", - " (747, 0.35123968),\n", - " (748, 0.4214876),\n", - " (749, 0.46694216),\n", - " (750, 0.48347107),\n", - " (751, 0.4752066),\n", - " (752, 0.45454547),\n", - " (753, 0.45454547),\n", - " (754, 0.45454547),\n", - " (755, 0.43801653),\n", - " (756, 0.43801653),\n", - " (757, 0.44214877),\n", - " (758, 0.44214877),\n", - " (759, 0.43801653),\n", - " (760, 0.42975205),\n", - " (761, 0.40495867),\n", - " (762, 0.38842976),\n", - " (763, 0.30165288),\n", - " (764, 0.30991736),\n", - " (765, 0.3264463),\n", - " (766, 0.30991736),\n", - " (767, 0.30165288),\n", - " (768, 0.1570248),\n", - " (769, 0.35950413),\n", - " (770, 0.4090909),\n", - " (771, 0.3966942),\n", - " (772, 0.38842976),\n", - " (773, 0.41322315),\n", - " (774, 0.5),\n", - " (775, 0.5041322),\n", - " (776, 0.5371901),\n", - " (777, 0.55785125),\n", - " (778, 0.54545456),\n", - " (779, 0.55785125),\n", - " (780, 0.5289256),\n", - " (781, 0.48347107),\n", - " (782, 0.43801653),\n", - " (783, 0.45041323),\n", - " (784, 0.45867768),\n", - " (785, 0.45041323),\n", - " (786, 0.4338843),\n", - " (787, 0.43801653),\n", - " (788, 0.38429752),\n", - " (789, 0.38016528),\n", - " (790, 0.35950413),\n", - " (791, 0.33471075),\n", - " (792, 0.3140496),\n", - " (793, 0.338843),\n", - " (794, 0.4090909),\n", - " (795, 0.46280992),\n", - " (796, 0.47107437),\n", - " (797, 0.48347107),\n", - " (798, 0.46280992),\n", - " (799, 0.49586776),\n", - " (800, 0.47933885),\n", - " (801, 0.446281),\n", - " (802, 0.42561984),\n", - " (803, 0.39256197),\n", - " (804, 0.36363637),\n", - " (805, 0.3305785),\n", - " (806, 0.25619835),\n", - " (807, 0.2520661),\n", - " (808, 0.28099173),\n", - " (809, 0.3181818),\n", - " (810, 0.3140496),\n", - " (811, 0.37190083),\n", - " (812, 0.4214876),\n", - " (813, 0.44214877),\n", - " (814, 0.45867768),\n", - " (815, 0.42975205),\n", - " (816, 0.40082645),\n", - " (817, 0.40082645),\n", - " (818, 0.38429752),\n", - " (819, 0.4090909),\n", - " (820, 0.4338843),\n", - " (821, 0.46280992),\n", - " (822, 0.47107437),\n", - " (823, 0.46280992),\n", - " (824, 0.45041323),\n", - " (825, 0.4214876),\n", - " (826, 0.3966942),\n", - " (827, 0.3429752),\n", - " (828, 0.29752067),\n", - " (829, 0.3305785),\n", - " (830, 0.32231405),\n", - " (831, 0.30991736),\n", - " (832, 0.1570248),\n", - " (833, 0.3966942),\n", - " (834, 0.41735536),\n", - " (835, 0.41735536),\n", - " (836, 0.42975205),\n", - " (837, 0.42975205),\n", - " (838, 0.48347107),\n", - " (839, 0.5082645),\n", - " (840, 0.54545456),\n", - " (841, 0.57438016),\n", - " (842, 0.553719),\n", - " (843, 0.5082645),\n", - " (844, 0.39256197),\n", - " (845, 0.3553719),\n", - " (846, 0.37190083),\n", - " (847, 0.40495867),\n", - " (848, 0.43801653),\n", - " (849, 0.3966942),\n", - " (850, 0.34710744),\n", - " (851, 0.28099173),\n", - " (852, 0.22727273),\n", - " (853, 0.28099173),\n", - " (854, 0.3553719),\n", - " (855, 0.38429752),\n", - " (856, 0.35123968),\n", - " (857, 0.338843),\n", - " (858, 0.43801653),\n", - " (859, 0.5123967),\n", - " (860, 0.5289256),\n", - " (861, 0.5165289),\n", - " (862, 0.5123967),\n", - " (863, 0.57024795),\n", - " (864, 0.553719),\n", - " (865, 0.5),\n", - " (866, 0.43801653),\n", - " (867, 0.42975205),\n", - " (868, 0.38842976),\n", - " (869, 0.3264463),\n", - " (870, 0.23966943),\n", - " (871, 0.25619835),\n", - " (872, 0.29338843),\n", - " (873, 0.2768595),\n", - " (874, 0.3429752),\n", - " (875, 0.3181818),\n", - " (876, 0.37190083),\n", - " (877, 0.4214876),\n", - " (878, 0.46694216),\n", - " (879, 0.46694216),\n", - " (880, 0.41735536),\n", - " (881, 0.38429752),\n", - " (882, 0.3429752),\n", - " (883, 0.3181818),\n", - " (884, 0.3181818),\n", - " (885, 0.38016528),\n", - " (886, 0.44214877),\n", - " (887, 0.45041323),\n", - " (888, 0.45867768),\n", - " (889, 0.43801653),\n", - " (890, 0.4090909),\n", - " (891, 0.35950413),\n", - " (892, 0.32231405),\n", - " (893, 0.3181818),\n", - " (894, 0.3264463),\n", - " (895, 0.3264463),\n", - " (896, 0.1570248),\n", - " (897, 0.37190083),\n", - " (898, 0.42561984),\n", - " (899, 0.4214876),\n", - " (900, 0.43801653),\n", - " (901, 0.43801653),\n", - " (902, 0.46280992),\n", - " (903, 0.5082645),\n", - " (904, 0.5206612),\n", - " (905, 0.43801653),\n", - " (906, 0.39256197),\n", - " (907, 0.41322315),\n", - " (908, 0.4338843),\n", - " (909, 0.47107437),\n", - " (910, 0.47107437),\n", - " (911, 0.446281),\n", - " (912, 0.44214877),\n", - " (913, 0.3966942),\n", - " (914, 0.38842976),\n", - " (915, 0.35123968),\n", - " (916, 0.29338843),\n", - " (917, 0.24380165),\n", - " (918, 0.23140496),\n", - " (919, 0.33471075),\n", - " (920, 0.36363637),\n", - " (921, 0.33471075),\n", - " (922, 0.45867768),\n", - " (923, 0.5165289),\n", - " (924, 0.56198347),\n", - " (925, 0.5661157),\n", - " (926, 0.5371901),\n", - " (927, 0.607438),\n", - " (928, 0.59504133),\n", - " (929, 0.5123967),\n", - " (930, 0.44214877),\n", - " (931, 0.45454547),\n", - " (932, 0.40082645),\n", - " (933, 0.30165288),\n", - " (934, 0.2107438),\n", - " (935, 0.3264463),\n", - " (936, 0.338843),\n", - " (937, 0.30165288),\n", - " (938, 0.3140496),\n", - " (939, 0.35123968),\n", - " (940, 0.40495867),\n", - " (941, 0.446281),\n", - " (942, 0.49586776),\n", - " (943, 0.45041323),\n", - " (944, 0.42975205),\n", - " (945, 0.4214876),\n", - " (946, 0.39256197),\n", - " (947, 0.40082645),\n", - " (948, 0.3677686),\n", - " (949, 0.35123968),\n", - " (950, 0.32231405),\n", - " (951, 0.37190083),\n", - " (952, 0.41735536),\n", - " (953, 0.4214876),\n", - " (954, 0.38842976),\n", - " (955, 0.34710744),\n", - " (956, 0.36363637),\n", - " (957, 0.3264463),\n", - " (958, 0.33471075),\n", - " (959, 0.3181818),\n", - " (960, 0.1694215),\n", - " (961, 0.3677686),\n", - " (962, 0.41322315),\n", - " (963, 0.45867768),\n", - " (964, 0.45867768),\n", - " (965, 0.42975205),\n", - " (966, 0.46280992),\n", - " (967, 0.4876033),\n", - " (968, 0.3553719),\n", - " (969, 0.3305785),\n", - " (970, 0.46280992),\n", - " (971, 0.5206612),\n", - " (972, 0.45454547),\n", - " (973, 0.35950413),\n", - " (974, 0.2644628),\n", - " (975, 0.17355372),\n", - " (976, 0.21487603),\n", - " (977, 0.2107438),\n", - " (978, 0.16115703),\n", - " (979, 0.2107438),\n", - " (980, 0.25619835),\n", - " (981, 0.26859504),\n", - " (982, 0.2644628),\n", - " (983, 0.28512397),\n", - " (984, 0.30578512),\n", - " (985, 0.3305785),\n", - " (986, 0.4090909),\n", - " (987, 0.49586776),\n", - " (988, 0.553719),\n", - " (989, 0.59504133),\n", - " (990, 0.5413223),\n", - " (991, 0.607438),\n", - " (992, 0.59090906),\n", - " (993, 0.5123967),\n", - " (994, 0.48347107),\n", - " (995, 0.45454547),\n", - " (996, 0.38429752),\n", - " (997, 0.20661157),\n", - " (998, 0.36363637),\n", - " (999, 0.46280992),\n", - " ...]]" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[\n", - " [\n", - " (feature_idx, value)\n", - " for feature_idx, value\n", - " in enumerate(sample)\n", - " ]\n", - " for sample\n", - " in dataset.data\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(0, 1),\n", - " (1, 1),\n", - " (2, 1),\n", - " (3, 1),\n", - " (4, 1),\n", - " (5, 5),\n", - " (6, 1),\n", - " (7, 1),\n", - " (8, 2),\n", - " (9, 1),\n", - " (10, 1),\n", - " (11, 1),\n", - " (12, 1),\n", - " (13, 1),\n", - " (14, 1),\n", - " (15, 1),\n", - " (16, 1),\n", - " (17, 1),\n", - " (18, 2),\n", - " (19, 1),\n", - " (20, 1),\n", - " (21, 1),\n", - " (22, 1),\n", - " (23, 1),\n", - " (24, 1),\n", - " (25, 1),\n", - " (26, 1),\n", - " (27, 1),\n", - " (28, 1),\n", - " (29, 1),\n", - " (30, 1),\n", - " (31, 1),\n", - " (32, 1),\n", - " (33, 1),\n", - " (34, 1),\n", - " (35, 2),\n", - " (36, 1),\n", - " (37, 2),\n", - " (38, 1),\n", - " (39, 1)]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [] - }, { "cell_type": "code", "execution_count": 90, @@ -11096,7 +1002,9 @@ { "cell_type": "code", "execution_count": 94, - "metadata": {}, + "metadata": { + "scrolled": false + }, "outputs": [ { "name": "stdout", From e29166429de411568241d8c31fd710376ce3f3e7 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 14:51:38 +0300 Subject: [PATCH 041/144] Add Topics --- docs/notebooks/nmf_benchmark.ipynb | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index b8b3cf9493..0bf8f1fcc6 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -851,6 +851,13 @@ "perplexity(gensim_lda, corpus)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Topics" + ] + }, { "cell_type": "code", "execution_count": 48, From 3302b92f6ddfcb12e32a290038615473feeb9264 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 14:56:35 +0300 Subject: [PATCH 042/144] Make it pretty --- docs/notebooks/nmf_benchmark.ipynb | 100 ++++++++++++++--------------- 1 file changed, 50 insertions(+), 50 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 0bf8f1fcc6..216a663398 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -92,56 +92,6 @@ "proba_bow_matrix = bow_matrix / bow_matrix.sum(axis=0)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sklearn NMF" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 15min 25s, sys: 1min 42s, total: 17min 8s\n", - "Wall time: 5min 17s\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "sklearn_nmf = SklearnNmf(n_components=10, tol=1e-5, max_iter=int(1e9), random_state=42)\n", - "\n", - "W = sklearn_nmf.fit_transform(proba_bow_matrix)\n", - "H = sklearn_nmf.components_" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "15.604129520276915" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -936,6 +886,13 @@ "gensim_lda.show_topics()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gensim NMF vs Sklearn NMF" + ] + }, { "cell_type": "code", "execution_count": 55, @@ -969,6 +926,49 @@ "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 15min 25s, sys: 1min 42s, total: 17min 8s\n", + "Wall time: 5min 17s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "sklearn_nmf = SklearnNmf(n_components=10, tol=1e-5, max_iter=int(1e9), random_state=42)\n", + "\n", + "W = sklearn_nmf.fit_transform(proba_bow_matrix)\n", + "H = sklearn_nmf.components_" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15.604129520276915" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" + ] + }, { "cell_type": "markdown", "metadata": {}, From 5616bd6175b9c670f99e75239fcd4d121e1fa57c Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 28 Aug 2018 15:43:04 +0300 Subject: [PATCH 043/144] Fix wrapper --- docs/notebooks/nmf_benchmark.ipynb | 1873 +++++++++++++++++++--------- 1 file changed, 1295 insertions(+), 578 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 216a663398..a2ed71fca4 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -42,53 +42,71 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 114, + "metadata": {}, + "outputs": [], + "source": [ + "categories = [\n", + " 'alt.atheism',\n", + " 'comp.graphics',\n", + " 'rec.motorcycles',\n", + " 'talk.politics.mideast',\n", + " 'sci.space'\n", + "]\n", + "\n", + "trainset = fetch_20newsgroups(subset='train', categories=categories, random_state=42)\n", + "testset = fetch_20newsgroups(subset='test', categories=categories, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 117, "metadata": {}, "outputs": [], "source": [ "from gensim.parsing.preprocessing import preprocess_documents\n", "\n", - "documents = preprocess_documents(fetch_20newsgroups().data[:10000])" + "train_documents = preprocess_documents(trainset.data)" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 118, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:21:20,113 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-08-28 13:21:22,259 : INFO : built Dictionary(61472 unique tokens: ['addit', 'bodi', 'bricklin', 'brought', 'bumper']...) from 10000 documents (total 1438922 corpus positions)\n", - "2018-08-28 13:21:22,479 : INFO : discarding 46426 tokens: [('bricklin', 4), ('edu', 6356), ('lerxst', 2), ('line', 9909), ('organ', 9559), ('post', 5114), ('subject', 9999), ('tellm', 2), ('qvfoinnc', 1), ('breifli', 3)]...\n", - "2018-08-28 13:21:22,480 : INFO : keeping 15046 tokens which were in no less than 5 and no more than 5000 (=50.0%) documents\n", - "2018-08-28 13:21:22,524 : INFO : resulting dictionary: Dictionary(15046 unique tokens: ['addit', 'bodi', 'brought', 'bumper', 'call']...)\n" + "2018-08-28 15:14:52,359 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-08-28 15:14:52,951 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", + "2018-08-28 15:14:52,994 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2018-08-28 15:14:52,995 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2018-08-28 15:14:53,019 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], "source": [ "from gensim.corpora import Dictionary\n", "\n", - "dictionary = Dictionary(documents)\n", + "dictionary = Dictionary(train_documents)\n", "\n", "dictionary.filter_extremes()" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 119, "metadata": {}, "outputs": [], "source": [ "corpus = [\n", " dictionary.doc2bow(document)\n", " for document\n", - " in documents\n", + " in train_documents\n", "]\n", "\n", - "bow_matrix = matutils.corpus2dense(corpus, len(dictionary), len(documents))\n", + "bow_matrix = matutils.corpus2dense(corpus, len(dictionary), len(train_documents))\n", "proba_bow_matrix = bow_matrix / bow_matrix.sum(axis=0)" ] }, @@ -101,14 +119,14 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 128, "metadata": {}, "outputs": [], "source": [ "training_params = dict(\n", " corpus=corpus,\n", " chunksize=1000,\n", - " num_topics=10,\n", + " num_topics=5,\n", " id2word=dictionary,\n", " passes=5,\n", " eval_every=10,\n", @@ -125,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 129, "metadata": { "scrolled": true }, @@ -134,24 +152,20 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:30:05,681 : INFO : Loss (no outliers): 648.195376619122\tLoss (with outliers): 648.195376619122\n", - "2018-08-28 13:30:06,395 : INFO : Loss (no outliers): 648.195376619122\tLoss (with outliers): 648.195376619122\n", - "2018-08-28 13:30:30,806 : INFO : Loss (no outliers): 666.789371878622\tLoss (with outliers): 666.789371878622\n", - "2018-08-28 13:30:31,575 : INFO : Loss (no outliers): 666.789371878622\tLoss (with outliers): 666.789371878622\n", - "2018-08-28 13:30:52,830 : INFO : Loss (no outliers): 677.5826173969449\tLoss (with outliers): 677.5826173969449\n", - "2018-08-28 13:30:53,499 : INFO : Loss (no outliers): 677.5826173969449\tLoss (with outliers): 677.5826173969449\n", - "2018-08-28 13:31:12,796 : INFO : Loss (no outliers): 677.580735228192\tLoss (with outliers): 677.580735228192\n", - "2018-08-28 13:31:13,424 : INFO : Loss (no outliers): 677.580735228192\tLoss (with outliers): 677.580735228192\n", - "2018-08-28 13:31:36,455 : INFO : Loss (no outliers): 688.3209592400099\tLoss (with outliers): 688.3209592400099\n", - "2018-08-28 13:31:37,313 : INFO : Loss (no outliers): 688.3209592400099\tLoss (with outliers): 688.3209592400099\n" + "2018-08-28 15:16:14,096 : INFO : Loss (no outliers): 610.7993350603717\tLoss (with outliers): 610.7993350603717\n", + "2018-08-28 15:16:15,901 : INFO : Loss (no outliers): 589.3419380609587\tLoss (with outliers): 589.3419380609587\n", + "2018-08-28 15:16:17,869 : INFO : Loss (no outliers): 582.4240873528573\tLoss (with outliers): 582.4240873528573\n", + "2018-08-28 15:16:18,994 : INFO : Loss (no outliers): 589.9804705809371\tLoss (with outliers): 589.9804705809371\n", + "2018-08-28 15:16:20,353 : INFO : Loss (no outliers): 575.7308791463116\tLoss (with outliers): 575.7308791463116\n", + "2018-08-28 15:16:22,307 : INFO : Loss (no outliers): 579.0143749047998\tLoss (with outliers): 579.0143749047998\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 2min 26s, sys: 2min 48s, total: 5min 15s\n", - "Wall time: 1min 54s\n" + "CPU times: user 14.1 s, sys: 17.4 s, total: 31.5 s\n", + "Wall time: 10.5 s\n" ] } ], @@ -165,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 130, "metadata": { "scrolled": true }, @@ -174,465 +188,155 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:31:37,387 : INFO : using symmetric alpha at 0.1\n", - "2018-08-28 13:31:37,390 : INFO : using symmetric eta at 0.1\n", - "2018-08-28 13:31:37,403 : INFO : using serial LDA version on this node\n", - "2018-08-28 13:31:37,432 : INFO : running online (multi-pass) LDA training, 10 topics, 5 passes over the supplied corpus of 10000 documents, updating model once every 1000 documents, evaluating perplexity every 10000 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-08-28 13:31:37,434 : INFO : PROGRESS: pass 0, at document #1000/10000\n", - "2018-08-28 13:31:38,735 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:38,757 : INFO : topic #5 (0.100): 0.009*\"com\" + 0.008*\"peopl\" + 0.007*\"articl\" + 0.004*\"nntp\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"good\" + 0.004*\"know\" + 0.004*\"univers\" + 0.003*\"like\"\n", - "2018-08-28 13:31:38,759 : INFO : topic #4 (0.100): 0.006*\"new\" + 0.006*\"univers\" + 0.004*\"articl\" + 0.004*\"know\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"like\" + 0.003*\"time\" + 0.003*\"com\" + 0.003*\"nntp\"\n", - "2018-08-28 13:31:38,761 : INFO : topic #7 (0.100): 0.034*\"max\" + 0.007*\"com\" + 0.005*\"giz\" + 0.004*\"articl\" + 0.004*\"bhj\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.003*\"univers\" + 0.003*\"time\" + 0.003*\"state\"\n", - "2018-08-28 13:31:38,763 : INFO : topic #8 (0.100): 0.006*\"com\" + 0.006*\"articl\" + 0.005*\"think\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"know\" + 0.004*\"peopl\" + 0.004*\"time\" + 0.004*\"year\" + 0.003*\"group\"\n", - "2018-08-28 13:31:38,765 : INFO : topic #9 (0.100): 0.006*\"know\" + 0.005*\"us\" + 0.005*\"univers\" + 0.005*\"articl\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"god\" + 0.004*\"need\" + 0.003*\"state\"\n", - "2018-08-28 13:31:38,766 : INFO : topic diff=5.782705, rho=1.000000\n", - "2018-08-28 13:31:38,768 : INFO : PROGRESS: pass 0, at document #2000/10000\n", - "2018-08-28 13:31:41,496 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:41,572 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.007*\"file\" + 0.005*\"like\" + 0.005*\"us\" + 0.004*\"work\" + 0.004*\"version\" + 0.004*\"need\" + 0.004*\"articl\" + 0.004*\"program\" + 0.004*\"problem\"\n", - "2018-08-28 13:31:41,584 : INFO : topic #1 (0.100): 0.013*\"com\" + 0.007*\"articl\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"new\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"like\" + 0.004*\"distribut\" + 0.004*\"time\"\n", - "2018-08-28 13:31:41,594 : INFO : topic #7 (0.100): 0.051*\"max\" + 0.011*\"giz\" + 0.010*\"bhj\" + 0.007*\"com\" + 0.004*\"game\" + 0.004*\"univers\" + 0.004*\"articl\" + 0.003*\"like\" + 0.003*\"chz\" + 0.003*\"ibm\"\n", - "2018-08-28 13:31:41,600 : INFO : topic #8 (0.100): 0.006*\"com\" + 0.006*\"articl\" + 0.005*\"think\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"univers\" + 0.004*\"peopl\" + 0.004*\"game\" + 0.004*\"time\"\n", - "2018-08-28 13:31:41,610 : INFO : topic #5 (0.100): 0.009*\"com\" + 0.009*\"peopl\" + 0.006*\"articl\" + 0.005*\"right\" + 0.004*\"nntp\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"gun\" + 0.004*\"law\" + 0.004*\"good\"\n", - "2018-08-28 13:31:41,613 : INFO : topic diff=1.727952, rho=0.707107\n", - "2018-08-28 13:31:41,616 : INFO : PROGRESS: pass 0, at document #3000/10000\n", - "2018-08-28 13:31:45,165 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:45,224 : INFO : topic #7 (0.100): 0.062*\"max\" + 0.008*\"bhj\" + 0.008*\"giz\" + 0.007*\"com\" + 0.005*\"bxn\" + 0.004*\"game\" + 0.004*\"univers\" + 0.004*\"articl\" + 0.004*\"ibm\" + 0.003*\"host\"\n", - "2018-08-28 13:31:45,231 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.008*\"com\" + 0.006*\"articl\" + 0.005*\"right\" + 0.005*\"gun\" + 0.005*\"jew\" + 0.005*\"state\" + 0.005*\"law\" + 0.005*\"think\" + 0.004*\"god\"\n", - "2018-08-28 13:31:45,238 : INFO : topic #2 (0.100): 0.014*\"window\" + 0.007*\"com\" + 0.006*\"us\" + 0.006*\"program\" + 0.005*\"univers\" + 0.005*\"new\" + 0.005*\"file\" + 0.005*\"articl\" + 0.005*\"like\" + 0.004*\"time\"\n", - "2018-08-28 13:31:45,272 : INFO : topic #9 (0.100): 0.007*\"univers\" + 0.006*\"articl\" + 0.006*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"card\" + 0.004*\"power\"\n", - "2018-08-28 13:31:45,276 : INFO : topic #3 (0.100): 0.011*\"com\" + 0.008*\"peopl\" + 0.007*\"articl\" + 0.006*\"like\" + 0.006*\"think\" + 0.005*\"know\" + 0.005*\"time\" + 0.004*\"good\" + 0.004*\"right\" + 0.004*\"look\"\n", - "2018-08-28 13:31:45,279 : INFO : topic diff=1.046492, rho=0.577350\n", - "2018-08-28 13:31:45,282 : INFO : PROGRESS: pass 0, at document #4000/10000\n", - "2018-08-28 13:31:47,036 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:47,068 : INFO : topic #6 (0.100): 0.011*\"armenian\" + 0.007*\"turkish\" + 0.005*\"peopl\" + 0.004*\"articl\" + 0.004*\"cancer\" + 0.004*\"world\" + 0.004*\"time\" + 0.004*\"know\" + 0.003*\"year\" + 0.003*\"space\"\n", - "2018-08-28 13:31:47,070 : INFO : topic #3 (0.100): 0.011*\"com\" + 0.008*\"peopl\" + 0.007*\"articl\" + 0.007*\"like\" + 0.006*\"think\" + 0.005*\"know\" + 0.004*\"time\" + 0.004*\"right\" + 0.004*\"look\" + 0.004*\"good\"\n", - "2018-08-28 13:31:47,071 : INFO : topic #1 (0.100): 0.012*\"com\" + 0.008*\"articl\" + 0.007*\"game\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"plai\" + 0.005*\"new\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"like\"\n", - "2018-08-28 13:31:47,077 : INFO : topic #7 (0.100): 0.065*\"max\" + 0.010*\"bhj\" + 0.008*\"giz\" + 0.007*\"com\" + 0.004*\"game\" + 0.004*\"sa\" + 0.004*\"articl\" + 0.004*\"convex\" + 0.004*\"univers\" + 0.003*\"attack\"\n", - "2018-08-28 13:31:47,079 : INFO : topic #9 (0.100): 0.008*\"univers\" + 0.006*\"articl\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.004*\"water\" + 0.004*\"space\" + 0.004*\"think\" + 0.004*\"host\" + 0.004*\"work\"\n", - "2018-08-28 13:31:47,083 : INFO : topic diff=0.873552, rho=0.500000\n", - "2018-08-28 13:31:47,085 : INFO : PROGRESS: pass 0, at document #5000/10000\n", - "2018-08-28 13:31:48,517 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:48,541 : INFO : topic #4 (0.100): 0.010*\"scsi\" + 0.010*\"new\" + 0.009*\"drive\" + 0.007*\"univers\" + 0.006*\"host\" + 0.005*\"articl\" + 0.005*\"nntp\" + 0.004*\"know\" + 0.004*\"time\" + 0.004*\"work\"\n", - "2018-08-28 13:31:48,543 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"com\" + 0.006*\"gun\" + 0.006*\"state\" + 0.005*\"articl\" + 0.005*\"right\" + 0.005*\"think\" + 0.005*\"law\" + 0.005*\"govern\" + 0.005*\"god\"\n", - "2018-08-28 13:31:48,545 : INFO : topic #6 (0.100): 0.011*\"armenian\" + 0.007*\"turkish\" + 0.005*\"peopl\" + 0.004*\"articl\" + 0.004*\"world\" + 0.004*\"armenia\" + 0.004*\"time\" + 0.003*\"year\" + 0.003*\"turkei\" + 0.003*\"said\"\n", - "2018-08-28 13:31:48,549 : INFO : topic #3 (0.100): 0.011*\"com\" + 0.008*\"peopl\" + 0.007*\"articl\" + 0.007*\"like\" + 0.006*\"think\" + 0.005*\"know\" + 0.005*\"time\" + 0.004*\"right\" + 0.004*\"look\" + 0.004*\"car\"\n", - "2018-08-28 13:31:48,551 : INFO : topic #1 (0.100): 0.011*\"com\" + 0.009*\"game\" + 0.008*\"articl\" + 0.008*\"plai\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.005*\"year\" + 0.005*\"team\" + 0.005*\"new\" + 0.005*\"univers\"\n", - "2018-08-28 13:31:48,553 : INFO : topic diff=0.684549, rho=0.447214\n", - "2018-08-28 13:31:48,554 : INFO : PROGRESS: pass 0, at document #6000/10000\n", - "2018-08-28 13:31:49,823 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:49,862 : INFO : topic #4 (0.100): 0.012*\"scsi\" + 0.011*\"drive\" + 0.010*\"new\" + 0.008*\"univers\" + 0.006*\"articl\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.004*\"time\" + 0.004*\"work\"\n", - "2018-08-28 13:31:49,866 : INFO : topic #0 (0.100): 0.009*\"file\" + 0.009*\"com\" + 0.007*\"us\" + 0.006*\"program\" + 0.005*\"nasa\" + 0.005*\"access\" + 0.005*\"imag\" + 0.005*\"new\" + 0.005*\"work\" + 0.005*\"data\"\n", - "2018-08-28 13:31:49,868 : INFO : topic #6 (0.100): 0.016*\"armenian\" + 0.008*\"turkish\" + 0.005*\"armenia\" + 0.005*\"peopl\" + 0.004*\"said\" + 0.004*\"turkei\" + 0.004*\"world\" + 0.004*\"scienc\" + 0.004*\"azerbaijan\" + 0.004*\"turk\"\n", - "2018-08-28 13:31:49,872 : INFO : topic #2 (0.100): 0.015*\"window\" + 0.008*\"com\" + 0.008*\"program\" + 0.008*\"file\" + 0.008*\"us\" + 0.005*\"run\" + 0.005*\"set\" + 0.005*\"work\" + 0.005*\"problem\" + 0.005*\"univers\"\n", - "2018-08-28 13:31:49,878 : INFO : topic #1 (0.100): 0.013*\"com\" + 0.010*\"game\" + 0.008*\"articl\" + 0.008*\"plai\" + 0.007*\"team\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\"\n", - "2018-08-28 13:31:49,889 : INFO : topic diff=0.548101, rho=0.408248\n", - "2018-08-28 13:31:49,895 : INFO : PROGRESS: pass 0, at document #7000/10000\n", - "2018-08-28 13:31:51,101 : INFO : merging changes from 1000 documents into a model of 10000 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-28 13:31:51,138 : INFO : topic #2 (0.100): 0.015*\"window\" + 0.008*\"com\" + 0.008*\"us\" + 0.008*\"file\" + 0.007*\"program\" + 0.005*\"run\" + 0.005*\"displai\" + 0.005*\"set\" + 0.005*\"problem\" + 0.005*\"work\"\n", - "2018-08-28 13:31:51,141 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.006*\"articl\" + 0.005*\"know\" + 0.005*\"us\" + 0.005*\"like\" + 0.005*\"work\" + 0.005*\"power\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"engin\"\n", - "2018-08-28 13:31:51,146 : INFO : topic #4 (0.100): 0.012*\"drive\" + 0.010*\"new\" + 0.010*\"scsi\" + 0.009*\"univers\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"articl\" + 0.005*\"know\" + 0.004*\"cleveland\" + 0.004*\"time\"\n", - "2018-08-28 13:31:51,150 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.006*\"think\" + 0.006*\"encrypt\" + 0.005*\"exist\" + 0.005*\"god\" + 0.005*\"like\" + 0.004*\"know\" + 0.004*\"time\" + 0.004*\"articl\" + 0.004*\"com\"\n", - "2018-08-28 13:31:51,156 : INFO : topic #1 (0.100): 0.012*\"com\" + 0.012*\"game\" + 0.009*\"team\" + 0.008*\"articl\" + 0.008*\"plai\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"year\" + 0.006*\"univers\" + 0.006*\"new\"\n", - "2018-08-28 13:31:51,159 : INFO : topic diff=0.473029, rho=0.377964\n", - "2018-08-28 13:31:51,160 : INFO : PROGRESS: pass 0, at document #8000/10000\n", - "2018-08-28 13:31:52,099 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:52,134 : INFO : topic #9 (0.100): 0.010*\"univers\" + 0.007*\"articl\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"power\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"engin\" + 0.005*\"us\" + 0.005*\"work\"\n", - "2018-08-28 13:31:52,136 : INFO : topic #0 (0.100): 0.009*\"file\" + 0.009*\"com\" + 0.007*\"imag\" + 0.007*\"us\" + 0.006*\"data\" + 0.006*\"program\" + 0.005*\"avail\" + 0.005*\"access\" + 0.005*\"inform\" + 0.005*\"nasa\"\n", - "2018-08-28 13:31:52,142 : INFO : topic #2 (0.100): 0.016*\"window\" + 0.008*\"com\" + 0.008*\"us\" + 0.008*\"program\" + 0.008*\"file\" + 0.006*\"run\" + 0.005*\"set\" + 0.005*\"problem\" + 0.005*\"version\" + 0.005*\"displai\"\n", - "2018-08-28 13:31:52,147 : INFO : topic #8 (0.100): 0.009*\"kei\" + 0.006*\"encrypt\" + 0.006*\"think\" + 0.005*\"like\" + 0.005*\"god\" + 0.004*\"exist\" + 0.004*\"know\" + 0.004*\"com\" + 0.004*\"articl\" + 0.004*\"time\"\n", - "2018-08-28 13:31:52,149 : INFO : topic #7 (0.100): 0.135*\"max\" + 0.009*\"sa\" + 0.009*\"giz\" + 0.007*\"bhj\" + 0.006*\"com\" + 0.005*\"sdsu\" + 0.005*\"convex\" + 0.005*\"adob\" + 0.004*\"dee\" + 0.004*\"len\"\n", - "2018-08-28 13:31:52,153 : INFO : topic diff=0.415834, rho=0.353553\n", - "2018-08-28 13:31:52,159 : INFO : PROGRESS: pass 0, at document #9000/10000\n", - "2018-08-28 13:31:53,062 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:53,083 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.005*\"exist\" + 0.005*\"god\" + 0.005*\"like\" + 0.004*\"com\" + 0.004*\"know\" + 0.004*\"articl\" + 0.004*\"time\"\n", - "2018-08-28 13:31:53,085 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"articl\" + 0.005*\"gun\" + 0.005*\"law\" + 0.005*\"think\" + 0.005*\"com\" + 0.004*\"govern\"\n", - "2018-08-28 13:31:53,088 : INFO : topic #1 (0.100): 0.012*\"game\" + 0.011*\"com\" + 0.011*\"team\" + 0.008*\"plai\" + 0.008*\"articl\" + 0.008*\"year\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"player\" + 0.006*\"univers\"\n", - "2018-08-28 13:31:53,089 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.008*\"file\" + 0.007*\"us\" + 0.006*\"data\" + 0.006*\"imag\" + 0.006*\"access\" + 0.006*\"nasa\" + 0.005*\"space\" + 0.005*\"program\" + 0.005*\"softwar\"\n", - "2018-08-28 13:31:53,091 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"nntp\" + 0.005*\"work\" + 0.005*\"host\" + 0.005*\"engin\" + 0.005*\"power\" + 0.004*\"us\"\n", - "2018-08-28 13:31:53,093 : INFO : topic diff=0.368125, rho=0.333333\n", - "2018-08-28 13:31:54,778 : INFO : -8.185 per-word bound, 291.0 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n", - "2018-08-28 13:31:54,780 : INFO : PROGRESS: pass 0, at document #10000/10000\n", - "2018-08-28 13:31:55,848 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:55,882 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.007*\"space\" + 0.007*\"us\" + 0.006*\"file\" + 0.006*\"nasa\" + 0.006*\"data\" + 0.006*\"imag\" + 0.006*\"access\" + 0.005*\"new\" + 0.005*\"gov\"\n", - "2018-08-28 13:31:55,883 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.005*\"like\" + 0.005*\"exist\" + 0.005*\"god\" + 0.004*\"know\" + 0.004*\"articl\" + 0.004*\"clipper\" + 0.004*\"chip\"\n", - "2018-08-28 13:31:55,887 : INFO : topic #6 (0.100): 0.014*\"armenian\" + 0.007*\"turkish\" + 0.005*\"said\" + 0.005*\"studi\" + 0.005*\"peopl\" + 0.004*\"year\" + 0.004*\"greek\" + 0.004*\"armenia\" + 0.004*\"world\" + 0.004*\"turk\"\n", - "2018-08-28 13:31:55,893 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.006*\"god\" + 0.005*\"think\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"gun\" + 0.005*\"com\" + 0.005*\"law\" + 0.004*\"govern\"\n", - "2018-08-28 13:31:55,901 : INFO : topic #2 (0.100): 0.016*\"window\" + 0.009*\"com\" + 0.008*\"us\" + 0.008*\"file\" + 0.007*\"program\" + 0.006*\"run\" + 0.006*\"problem\" + 0.005*\"set\" + 0.005*\"work\" + 0.005*\"version\"\n", - "2018-08-28 13:31:55,909 : INFO : topic diff=0.342499, rho=0.316228\n", - "2018-08-28 13:31:55,918 : INFO : PROGRESS: pass 1, at document #1000/10000\n", - "2018-08-28 13:31:56,740 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:56,764 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.007*\"nasa\" + 0.007*\"space\" + 0.007*\"us\" + 0.006*\"file\" + 0.006*\"imag\" + 0.006*\"data\" + 0.005*\"access\" + 0.005*\"softwar\" + 0.005*\"new\"\n", - "2018-08-28 13:31:56,766 : INFO : topic #3 (0.100): 0.015*\"com\" + 0.008*\"articl\" + 0.008*\"car\" + 0.008*\"like\" + 0.007*\"peopl\" + 0.007*\"know\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"thing\"\n", - "2018-08-28 13:31:56,767 : INFO : topic #6 (0.100): 0.017*\"armenian\" + 0.008*\"turkish\" + 0.005*\"peopl\" + 0.005*\"greek\" + 0.005*\"said\" + 0.005*\"turk\" + 0.005*\"studi\" + 0.004*\"year\" + 0.004*\"world\" + 0.004*\"armenia\"\n", - "2018-08-28 13:31:56,770 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.010*\"com\" + 0.008*\"us\" + 0.008*\"file\" + 0.007*\"problem\" + 0.007*\"run\" + 0.007*\"program\" + 0.005*\"set\" + 0.005*\"version\" + 0.005*\"univers\"\n", - "2018-08-28 13:31:56,773 : INFO : topic #1 (0.100): 0.013*\"game\" + 0.012*\"team\" + 0.010*\"com\" + 0.009*\"year\" + 0.008*\"plai\" + 0.008*\"articl\" + 0.007*\"player\" + 0.007*\"new\" + 0.006*\"host\" + 0.006*\"nntp\"\n", - "2018-08-28 13:31:56,775 : INFO : topic diff=0.279936, rho=0.288675\n", - "2018-08-28 13:31:56,778 : INFO : PROGRESS: pass 1, at document #2000/10000\n", - "2018-08-28 13:31:58,145 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:58,176 : INFO : topic #3 (0.100): 0.014*\"com\" + 0.009*\"articl\" + 0.008*\"car\" + 0.008*\"like\" + 0.007*\"peopl\" + 0.007*\"know\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-08-28 13:31:58,178 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.010*\"com\" + 0.008*\"file\" + 0.008*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.006*\"problem\" + 0.005*\"version\" + 0.005*\"do\" + 0.005*\"set\"\n", - "2018-08-28 13:31:58,180 : INFO : topic #9 (0.100): 0.008*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.005*\"like\" + 0.005*\"engin\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"work\" + 0.005*\"know\"\n", - "2018-08-28 13:31:58,186 : INFO : topic #8 (0.100): 0.009*\"kei\" + 0.007*\"think\" + 0.006*\"encrypt\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"god\" + 0.005*\"clipper\" + 0.005*\"christian\" + 0.005*\"peopl\" + 0.004*\"articl\"\n", - "2018-08-28 13:31:58,189 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.011*\"team\" + 0.010*\"com\" + 0.009*\"year\" + 0.009*\"plai\" + 0.008*\"articl\" + 0.007*\"player\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"univers\"\n", - "2018-08-28 13:31:58,198 : INFO : topic diff=0.268756, rho=0.288675\n", - "2018-08-28 13:31:58,202 : INFO : PROGRESS: pass 1, at document #3000/10000\n", - "2018-08-28 13:31:59,388 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:31:59,426 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.006*\"gun\" + 0.006*\"articl\" + 0.005*\"right\" + 0.005*\"think\" + 0.005*\"com\" + 0.005*\"law\" + 0.005*\"govern\"\n", - "2018-08-28 13:31:59,431 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.010*\"team\" + 0.009*\"plai\" + 0.009*\"com\" + 0.009*\"year\" + 0.008*\"articl\" + 0.007*\"player\" + 0.007*\"univers\" + 0.007*\"host\" + 0.007*\"new\"\n", - "2018-08-28 13:31:59,434 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.007*\"space\" + 0.007*\"us\" + 0.007*\"nasa\" + 0.006*\"file\" + 0.006*\"access\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"program\" + 0.005*\"inform\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-28 13:31:59,439 : INFO : topic #4 (0.100): 0.016*\"drive\" + 0.010*\"univers\" + 0.010*\"new\" + 0.010*\"scsi\" + 0.009*\"host\" + 0.008*\"nntp\" + 0.008*\"articl\" + 0.005*\"cleveland\" + 0.005*\"columbia\" + 0.005*\"repli\"\n", - "2018-08-28 13:31:59,442 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.007*\"think\" + 0.006*\"encrypt\" + 0.005*\"god\" + 0.005*\"know\" + 0.005*\"peopl\" + 0.005*\"like\" + 0.005*\"moral\" + 0.005*\"christian\" + 0.005*\"chip\"\n", - "2018-08-28 13:31:59,444 : INFO : topic diff=0.242727, rho=0.288675\n", - "2018-08-28 13:31:59,454 : INFO : PROGRESS: pass 1, at document #4000/10000\n", - "2018-08-28 13:32:00,455 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:00,478 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.007*\"think\" + 0.006*\"encrypt\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.005*\"moral\" + 0.005*\"know\" + 0.005*\"christian\" + 0.004*\"exist\"\n", - "2018-08-28 13:32:00,480 : INFO : topic #7 (0.100): 0.184*\"max\" + 0.022*\"bhj\" + 0.019*\"giz\" + 0.009*\"sa\" + 0.007*\"convex\" + 0.006*\"bxn\" + 0.006*\"adob\" + 0.006*\"qax\" + 0.005*\"biz\" + 0.005*\"ahl\"\n", - "2018-08-28 13:32:00,483 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.005*\"like\" + 0.005*\"engin\" + 0.005*\"work\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"us\" + 0.004*\"know\"\n", - "2018-08-28 13:32:00,485 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.011*\"file\" + 0.010*\"com\" + 0.008*\"us\" + 0.007*\"program\" + 0.006*\"run\" + 0.006*\"problem\" + 0.005*\"version\" + 0.005*\"do\" + 0.005*\"work\"\n", - "2018-08-28 13:32:00,486 : INFO : topic #6 (0.100): 0.016*\"armenian\" + 0.009*\"turkish\" + 0.006*\"peopl\" + 0.005*\"studi\" + 0.005*\"year\" + 0.005*\"said\" + 0.004*\"world\" + 0.004*\"turkei\" + 0.004*\"armenia\" + 0.004*\"medic\"\n", - "2018-08-28 13:32:00,489 : INFO : topic diff=0.259615, rho=0.288675\n", - "2018-08-28 13:32:00,490 : INFO : PROGRESS: pass 1, at document #5000/10000\n", - "2018-08-28 13:32:01,572 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:01,608 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.013*\"scsi\" + 0.011*\"univers\" + 0.010*\"new\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"articl\" + 0.006*\"columbia\" + 0.005*\"repli\" + 0.005*\"know\"\n", - "2018-08-28 13:32:01,610 : INFO : topic #7 (0.100): 0.323*\"max\" + 0.024*\"giz\" + 0.020*\"bhj\" + 0.009*\"bxn\" + 0.007*\"qax\" + 0.007*\"sa\" + 0.005*\"chz\" + 0.005*\"adob\" + 0.005*\"biz\" + 0.005*\"nui\"\n", - "2018-08-28 13:32:01,612 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.008*\"turkish\" + 0.006*\"peopl\" + 0.005*\"studi\" + 0.005*\"year\" + 0.004*\"said\" + 0.004*\"turkei\" + 0.004*\"armenia\" + 0.004*\"world\" + 0.004*\"greek\"\n", - "2018-08-28 13:32:01,614 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.006*\"engin\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"like\" + 0.005*\"work\" + 0.005*\"us\" + 0.004*\"know\"\n", - "2018-08-28 13:32:01,616 : INFO : topic #3 (0.100): 0.014*\"com\" + 0.009*\"articl\" + 0.008*\"car\" + 0.008*\"like\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"time\" + 0.005*\"good\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:01,619 : INFO : topic diff=0.258218, rho=0.288675\n", - "2018-08-28 13:32:01,620 : INFO : PROGRESS: pass 1, at document #6000/10000\n", - "2018-08-28 13:32:02,560 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:02,599 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.011*\"file\" + 0.010*\"com\" + 0.008*\"us\" + 0.008*\"program\" + 0.006*\"run\" + 0.006*\"problem\" + 0.005*\"set\" + 0.005*\"work\" + 0.005*\"displai\"\n", - "2018-08-28 13:32:02,601 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"believ\" + 0.005*\"christian\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.005*\"secur\"\n", - "2018-08-28 13:32:02,606 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.007*\"space\" + 0.007*\"file\" + 0.007*\"program\" + 0.007*\"us\" + 0.007*\"nasa\" + 0.006*\"access\" + 0.006*\"new\" + 0.005*\"mail\" + 0.005*\"data\"\n", - "2018-08-28 13:32:02,608 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.010*\"team\" + 0.010*\"plai\" + 0.008*\"com\" + 0.008*\"year\" + 0.008*\"player\" + 0.007*\"articl\" + 0.006*\"univers\" + 0.006*\"host\" + 0.006*\"nntp\"\n", - "2018-08-28 13:32:02,613 : INFO : topic #3 (0.100): 0.016*\"com\" + 0.009*\"articl\" + 0.009*\"car\" + 0.008*\"like\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"think\" + 0.005*\"good\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:02,618 : INFO : topic diff=0.207687, rho=0.288675\n", - "2018-08-28 13:32:02,620 : INFO : PROGRESS: pass 1, at document #7000/10000\n", - "2018-08-28 13:32:03,878 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:03,925 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"christian\" + 0.005*\"peopl\" + 0.005*\"like\" + 0.005*\"secur\" + 0.005*\"chip\"\n", - "2018-08-28 13:32:03,931 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"gun\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"articl\" + 0.005*\"law\" + 0.005*\"com\" + 0.004*\"believ\"\n", - "2018-08-28 13:32:03,934 : INFO : topic #2 (0.100): 0.016*\"window\" + 0.011*\"file\" + 0.009*\"com\" + 0.008*\"us\" + 0.008*\"program\" + 0.006*\"run\" + 0.006*\"displai\" + 0.006*\"set\" + 0.006*\"problem\" + 0.005*\"version\"\n", - "2018-08-28 13:32:03,937 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.011*\"team\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"com\" + 0.007*\"articl\" + 0.007*\"player\" + 0.007*\"univers\" + 0.006*\"win\" + 0.006*\"host\"\n", - "2018-08-28 13:32:03,940 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.012*\"univers\" + 0.011*\"scsi\" + 0.009*\"new\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"articl\" + 0.005*\"repli\" + 0.005*\"know\" + 0.005*\"cleveland\"\n", - "2018-08-28 13:32:03,947 : INFO : topic diff=0.198631, rho=0.288675\n", - "2018-08-28 13:32:03,950 : INFO : PROGRESS: pass 1, at document #8000/10000\n", - "2018-08-28 13:32:04,778 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:04,819 : INFO : topic #4 (0.100): 0.023*\"drive\" + 0.013*\"scsi\" + 0.012*\"univers\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"new\" + 0.008*\"articl\" + 0.007*\"hard\" + 0.007*\"control\" + 0.007*\"disk\"\n", - "2018-08-28 13:32:04,823 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.007*\"space\" + 0.007*\"data\" + 0.007*\"file\" + 0.007*\"imag\" + 0.006*\"program\" + 0.006*\"us\" + 0.006*\"nasa\" + 0.006*\"access\" + 0.006*\"inform\"\n", - "2018-08-28 13:32:04,826 : INFO : topic #6 (0.100): 0.014*\"armenian\" + 0.007*\"turkish\" + 0.006*\"said\" + 0.006*\"peopl\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"turkei\" + 0.004*\"world\" + 0.004*\"studi\"\n", - "2018-08-28 13:32:04,832 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.011*\"team\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"com\" + 0.007*\"articl\" + 0.006*\"univers\" + 0.006*\"win\" + 0.006*\"host\"\n", - "2018-08-28 13:32:04,836 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.011*\"file\" + 0.009*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.006*\"version\" + 0.006*\"problem\" + 0.006*\"set\" + 0.005*\"displai\"\n", - "2018-08-28 13:32:04,839 : INFO : topic diff=0.186782, rho=0.288675\n", - "2018-08-28 13:32:04,842 : INFO : PROGRESS: pass 1, at document #9000/10000\n", - "2018-08-28 13:32:05,995 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:06,026 : INFO : topic #2 (0.100): 0.017*\"window\" + 0.010*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.007*\"program\" + 0.007*\"run\" + 0.006*\"problem\" + 0.006*\"version\" + 0.006*\"set\" + 0.005*\"work\"\n", - "2018-08-28 13:32:06,029 : INFO : topic #4 (0.100): 0.021*\"drive\" + 0.012*\"univers\" + 0.012*\"scsi\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.009*\"new\" + 0.009*\"articl\" + 0.007*\"hard\" + 0.007*\"control\" + 0.006*\"disk\"\n", - "2018-08-28 13:32:06,033 : INFO : topic #7 (0.100): 0.240*\"max\" + 0.019*\"bhj\" + 0.018*\"giz\" + 0.009*\"sa\" + 0.007*\"qax\" + 0.007*\"xmu\" + 0.006*\"libxmu\" + 0.006*\"adob\" + 0.006*\"marc\" + 0.005*\"convex\"\n", - "2018-08-28 13:32:06,035 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.012*\"team\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"articl\" + 0.007*\"com\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"host\"\n", - "2018-08-28 13:32:06,039 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"engin\" + 0.006*\"like\" + 0.006*\"power\" + 0.006*\"nntp\" + 0.005*\"work\" + 0.005*\"host\" + 0.005*\"us\" + 0.004*\"know\"\n", - "2018-08-28 13:32:06,042 : INFO : topic diff=0.184350, rho=0.288675\n", - "2018-08-28 13:32:08,044 : INFO : -8.101 per-word bound, 274.5 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-28 13:32:08,045 : INFO : PROGRESS: pass 1, at document #10000/10000\n", - "2018-08-28 13:32:09,270 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:09,303 : INFO : topic #1 (0.100): 0.014*\"game\" + 0.013*\"team\" + 0.010*\"year\" + 0.009*\"plai\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"articl\" + 0.007*\"hockei\" + 0.007*\"new\" + 0.006*\"univers\"\n", - "2018-08-28 13:32:09,304 : INFO : topic #3 (0.100): 0.016*\"com\" + 0.009*\"articl\" + 0.009*\"car\" + 0.009*\"like\" + 0.007*\"know\" + 0.006*\"peopl\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"good\" + 0.005*\"look\"\n", - "2018-08-28 13:32:09,306 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.011*\"univers\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.009*\"new\" + 0.009*\"scsi\" + 0.009*\"articl\" + 0.006*\"hard\" + 0.006*\"control\" + 0.006*\"card\"\n", - "2018-08-28 13:32:09,312 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"power\" + 0.006*\"us\" + 0.006*\"like\" + 0.005*\"wire\" + 0.005*\"work\" + 0.005*\"engin\" + 0.005*\"nntp\" + 0.005*\"host\"\n", - "2018-08-28 13:32:09,321 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.009*\"space\" + 0.007*\"nasa\" + 0.006*\"us\" + 0.006*\"data\" + 0.006*\"new\" + 0.006*\"access\" + 0.006*\"gov\" + 0.006*\"inform\" + 0.006*\"program\"\n", - "2018-08-28 13:32:09,325 : INFO : topic diff=0.179653, rho=0.288675\n", - "2018-08-28 13:32:09,329 : INFO : PROGRESS: pass 2, at document #1000/10000\n", - "2018-08-28 13:32:10,322 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:10,348 : INFO : topic #7 (0.100): 0.260*\"max\" + 0.021*\"giz\" + 0.021*\"bhj\" + 0.009*\"sa\" + 0.007*\"qax\" + 0.006*\"ahl\" + 0.006*\"adob\" + 0.006*\"biz\" + 0.006*\"cec\" + 0.005*\"nist\"\n", - "2018-08-28 13:32:10,351 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"articl\" + 0.005*\"right\" + 0.005*\"jesu\" + 0.005*\"gun\" + 0.005*\"com\" + 0.004*\"law\"\n", - "2018-08-28 13:32:10,353 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.009*\"space\" + 0.008*\"nasa\" + 0.007*\"us\" + 0.006*\"data\" + 0.006*\"new\" + 0.006*\"imag\" + 0.006*\"softwar\" + 0.006*\"access\" + 0.006*\"gov\"\n", - "2018-08-28 13:32:10,354 : INFO : topic #9 (0.100): 0.008*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.006*\"like\" + 0.005*\"nntp\" + 0.005*\"work\" + 0.005*\"host\" + 0.004*\"good\"\n", - "2018-08-28 13:32:10,356 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.013*\"team\" + 0.010*\"year\" + 0.009*\"plai\" + 0.008*\"player\" + 0.007*\"articl\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"com\"\n", - "2018-08-28 13:32:10,359 : INFO : topic diff=0.154888, rho=0.277350\n", - "2018-08-28 13:32:10,360 : INFO : PROGRESS: pass 2, at document #2000/10000\n", - "2018-08-28 13:32:11,386 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:11,419 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"work\" + 0.005*\"host\" + 0.004*\"good\"\n", - "2018-08-28 13:32:11,421 : INFO : topic #7 (0.100): 0.239*\"max\" + 0.028*\"bhj\" + 0.028*\"giz\" + 0.008*\"sa\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.007*\"bxn\" + 0.006*\"marc\" + 0.006*\"chz\" + 0.005*\"biz\"\n", - "2018-08-28 13:32:11,423 : INFO : topic #3 (0.100): 0.016*\"com\" + 0.009*\"articl\" + 0.009*\"car\" + 0.008*\"like\" + 0.007*\"know\" + 0.006*\"peopl\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-08-28 13:32:11,432 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.005*\"state\" + 0.005*\"articl\" + 0.005*\"right\" + 0.005*\"gun\" + 0.005*\"think\" + 0.005*\"law\" + 0.005*\"com\" + 0.004*\"govern\"\n", - "2018-08-28 13:32:11,437 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.007*\"encrypt\" + 0.007*\"think\" + 0.005*\"god\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.005*\"clipper\" + 0.005*\"christian\" + 0.005*\"chip\" + 0.005*\"like\"\n", - "2018-08-28 13:32:11,442 : INFO : topic diff=0.147315, rho=0.277350\n", - "2018-08-28 13:32:11,446 : INFO : PROGRESS: pass 2, at document #3000/10000\n", - "2018-08-28 13:32:12,513 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:12,553 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"know\" + 0.005*\"moral\" + 0.005*\"christian\" + 0.005*\"secur\"\n", - "2018-08-28 13:32:12,561 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.009*\"space\" + 0.007*\"nasa\" + 0.006*\"us\" + 0.006*\"access\" + 0.006*\"new\" + 0.006*\"program\" + 0.006*\"inform\" + 0.006*\"gov\" + 0.005*\"mail\"\n", - "2018-08-28 13:32:12,564 : INFO : topic #6 (0.100): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.007*\"peopl\" + 0.005*\"said\" + 0.005*\"turkei\" + 0.005*\"studi\" + 0.005*\"year\" + 0.004*\"world\" + 0.004*\"medic\" + 0.004*\"food\"\n", - "2018-08-28 13:32:12,568 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.011*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"problem\" + 0.007*\"run\" + 0.006*\"version\" + 0.006*\"do\" + 0.005*\"set\"\n", - "2018-08-28 13:32:12,571 : INFO : topic #7 (0.100): 0.227*\"max\" + 0.024*\"bhj\" + 0.024*\"giz\" + 0.010*\"sa\" + 0.009*\"bxn\" + 0.008*\"qax\" + 0.007*\"adob\" + 0.006*\"marc\" + 0.006*\"convex\" + 0.005*\"biz\"\n", - "2018-08-28 13:32:12,582 : INFO : topic diff=0.132113, rho=0.277350\n", - "2018-08-28 13:32:12,588 : INFO : PROGRESS: pass 2, at document #4000/10000\n", - "2018-08-28 13:32:14,146 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:14,172 : INFO : topic #3 (0.100): 0.016*\"com\" + 0.009*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.006*\"know\" + 0.006*\"peopl\" + 0.006*\"think\" + 0.005*\"time\" + 0.005*\"good\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:14,174 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"gun\" + 0.006*\"god\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"com\" + 0.004*\"govern\"\n", - "2018-08-28 13:32:14,177 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.010*\"plai\" + 0.010*\"team\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"articl\" + 0.006*\"univers\" + 0.006*\"win\" + 0.006*\"new\" + 0.006*\"season\"\n", - "2018-08-28 13:32:14,178 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.014*\"file\" + 0.011*\"com\" + 0.008*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.006*\"problem\" + 0.006*\"version\" + 0.006*\"do\" + 0.005*\"graphic\"\n", - "2018-08-28 13:32:14,180 : INFO : topic #4 (0.100): 0.020*\"drive\" + 0.012*\"univers\" + 0.011*\"scsi\" + 0.011*\"host\" + 0.010*\"nntp\" + 0.009*\"new\" + 0.009*\"articl\" + 0.006*\"card\" + 0.006*\"repli\" + 0.006*\"hard\"\n", - "2018-08-28 13:32:14,182 : INFO : topic diff=0.154180, rho=0.277350\n", - "2018-08-28 13:32:14,183 : INFO : PROGRESS: pass 2, at document #5000/10000\n", - "2018-08-28 13:32:15,329 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:15,360 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.012*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.006*\"run\" + 0.006*\"problem\" + 0.006*\"version\" + 0.006*\"set\" + 0.005*\"displai\"\n", - "2018-08-28 13:32:15,362 : INFO : topic #7 (0.100): 0.341*\"max\" + 0.025*\"giz\" + 0.021*\"bhj\" + 0.009*\"bxn\" + 0.008*\"qax\" + 0.008*\"sa\" + 0.006*\"adob\" + 0.006*\"chz\" + 0.005*\"biz\" + 0.005*\"nui\"\n", - "2018-08-28 13:32:15,364 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.009*\"space\" + 0.007*\"program\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.006*\"file\" + 0.006*\"mail\" + 0.006*\"us\" + 0.006*\"access\" + 0.006*\"imag\"\n", - "2018-08-28 13:32:15,366 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"state\" + 0.006*\"gun\" + 0.006*\"god\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.005*\"govern\" + 0.004*\"com\"\n", - "2018-08-28 13:32:15,368 : INFO : topic #4 (0.100): 0.019*\"drive\" + 0.012*\"scsi\" + 0.012*\"univers\" + 0.011*\"host\" + 0.010*\"nntp\" + 0.009*\"articl\" + 0.009*\"new\" + 0.006*\"repli\" + 0.006*\"columbia\" + 0.006*\"card\"\n", - "2018-08-28 13:32:15,371 : INFO : topic diff=0.166842, rho=0.277350\n", - "2018-08-28 13:32:15,374 : INFO : PROGRESS: pass 2, at document #6000/10000\n", - "2018-08-28 13:32:16,158 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:16,194 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.011*\"plai\" + 0.011*\"team\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"articl\" + 0.006*\"univers\" + 0.006*\"win\" + 0.006*\"com\" + 0.006*\"new\"\n", - "2018-08-28 13:32:16,197 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.009*\"articl\" + 0.009*\"car\" + 0.008*\"like\" + 0.006*\"know\" + 0.006*\"peopl\" + 0.006*\"time\" + 0.005*\"good\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:16,203 : INFO : topic #4 (0.100): 0.019*\"drive\" + 0.013*\"scsi\" + 0.012*\"univers\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.009*\"articl\" + 0.008*\"new\" + 0.006*\"card\" + 0.006*\"mac\" + 0.006*\"disk\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-28 13:32:16,206 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"god\" + 0.006*\"exist\" + 0.006*\"think\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"believ\" + 0.005*\"secur\" + 0.005*\"question\"\n", - "2018-08-28 13:32:16,214 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.006*\"engin\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"like\" + 0.004*\"speed\"\n", - "2018-08-28 13:32:16,223 : INFO : topic diff=0.132050, rho=0.277350\n", - "2018-08-28 13:32:16,231 : INFO : PROGRESS: pass 2, at document #7000/10000\n", - "2018-08-28 13:32:17,624 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:17,668 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.007*\"peopl\" + 0.007*\"turkish\" + 0.007*\"said\" + 0.005*\"studi\" + 0.005*\"medic\" + 0.005*\"year\" + 0.005*\"armenia\" + 0.004*\"turkei\" + 0.004*\"russian\"\n", - "2018-08-28 13:32:17,671 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"secur\" + 0.005*\"christian\" + 0.005*\"clipper\"\n", - "2018-08-28 13:32:17,674 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.012*\"team\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.007*\"articl\" + 0.005*\"new\" + 0.005*\"host\"\n", - "2018-08-28 13:32:17,678 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"gun\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"believ\" + 0.004*\"com\"\n", - "2018-08-28 13:32:17,681 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.008*\"space\" + 0.007*\"imag\" + 0.007*\"program\" + 0.007*\"new\" + 0.006*\"nasa\" + 0.006*\"access\" + 0.006*\"mail\" + 0.006*\"data\" + 0.006*\"inform\"\n", - "2018-08-28 13:32:17,685 : INFO : topic diff=0.127051, rho=0.277350\n", - "2018-08-28 13:32:17,687 : INFO : PROGRESS: pass 2, at document #8000/10000\n", - "2018-08-28 13:32:19,015 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:19,071 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.012*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.009*\"program\" + 0.007*\"run\" + 0.007*\"version\" + 0.006*\"set\" + 0.006*\"color\" + 0.006*\"problem\"\n", - "2018-08-28 13:32:19,073 : INFO : topic #6 (0.100): 0.014*\"armenian\" + 0.008*\"turkish\" + 0.007*\"peopl\" + 0.007*\"said\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"turkei\" + 0.004*\"studi\" + 0.004*\"medic\"\n", - "2018-08-28 13:32:19,085 : INFO : topic #9 (0.100): 0.010*\"univers\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.006*\"power\" + 0.006*\"us\" + 0.006*\"like\" + 0.006*\"work\" + 0.006*\"nntp\" + 0.005*\"host\" + 0.004*\"time\"\n", - "2018-08-28 13:32:19,091 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"exist\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"clipper\" + 0.005*\"secur\" + 0.005*\"believ\"\n", - "2018-08-28 13:32:19,093 : INFO : topic #7 (0.100): 0.219*\"max\" + 0.015*\"giz\" + 0.013*\"sa\" + 0.013*\"bhj\" + 0.008*\"adob\" + 0.007*\"convex\" + 0.007*\"marc\" + 0.007*\"sdsu\" + 0.006*\"bxn\" + 0.005*\"ahl\"\n", - "2018-08-28 13:32:19,098 : INFO : topic diff=0.121956, rho=0.277350\n", - "2018-08-28 13:32:19,101 : INFO : PROGRESS: pass 2, at document #9000/10000\n", - "2018-08-28 13:32:20,084 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:20,107 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"gun\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"com\" + 0.004*\"believ\"\n", - "2018-08-28 13:32:20,110 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"engin\" + 0.006*\"power\" + 0.006*\"like\" + 0.006*\"work\" + 0.005*\"nntp\" + 0.005*\"us\" + 0.005*\"host\" + 0.004*\"time\"\n", - "2018-08-28 13:32:20,112 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"mean\" + 0.005*\"like\" + 0.005*\"clipper\"\n", - "2018-08-28 13:32:20,114 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.008*\"space\" + 0.007*\"nasa\" + 0.007*\"data\" + 0.007*\"access\" + 0.006*\"new\" + 0.006*\"program\" + 0.006*\"inform\" + 0.006*\"mail\" + 0.006*\"softwar\"\n", - "2018-08-28 13:32:20,115 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.008*\"turkish\" + 0.007*\"peopl\" + 0.006*\"said\" + 0.006*\"greek\" + 0.005*\"armenia\" + 0.005*\"studi\" + 0.005*\"year\" + 0.005*\"medic\" + 0.004*\"world\"\n", - "2018-08-28 13:32:20,117 : INFO : topic diff=0.128670, rho=0.277350\n", - "2018-08-28 13:32:21,643 : INFO : -8.078 per-word bound, 270.3 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n", - "2018-08-28 13:32:21,644 : INFO : PROGRESS: pass 2, at document #10000/10000\n", - "2018-08-28 13:32:22,708 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:22,735 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.007*\"turkish\" + 0.007*\"peopl\" + 0.007*\"said\" + 0.006*\"studi\" + 0.005*\"year\" + 0.005*\"greek\" + 0.004*\"food\" + 0.004*\"armenia\" + 0.004*\"turk\"\n", - "2018-08-28 13:32:22,737 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.012*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"card\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.008*\"new\" + 0.007*\"disk\" + 0.007*\"hard\"\n", - "2018-08-28 13:32:22,740 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.010*\"space\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.006*\"gov\" + 0.006*\"inform\" + 0.006*\"access\" + 0.006*\"data\" + 0.006*\"program\" + 0.006*\"mail\"\n", - "2018-08-28 13:32:22,742 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"think\" + 0.006*\"good\" + 0.005*\"peopl\" + 0.005*\"look\"\n", - "2018-08-28 13:32:22,744 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.012*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.007*\"program\" + 0.007*\"run\" + 0.007*\"problem\" + 0.007*\"version\" + 0.006*\"set\" + 0.005*\"color\"\n", - "2018-08-28 13:32:22,752 : INFO : topic diff=0.120220, rho=0.277350\n", - "2018-08-28 13:32:22,759 : INFO : PROGRESS: pass 3, at document #1000/10000\n", - "2018-08-28 13:32:23,576 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:23,617 : INFO : topic #4 (0.100): 0.016*\"drive\" + 0.013*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.008*\"card\" + 0.008*\"new\" + 0.007*\"control\" + 0.007*\"disk\"\n", - "2018-08-28 13:32:23,619 : INFO : topic #8 (0.100): 0.010*\"kei\" + 0.006*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"exist\" + 0.005*\"moral\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.005*\"mean\" + 0.005*\"like\"\n", - "2018-08-28 13:32:23,621 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"car\" + 0.009*\"like\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"think\" + 0.006*\"peopl\" + 0.005*\"good\" + 0.005*\"look\"\n", - "2018-08-28 13:32:23,624 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.011*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.007*\"run\" + 0.007*\"program\" + 0.007*\"problem\" + 0.006*\"version\" + 0.005*\"set\" + 0.005*\"do\"\n", - "2018-08-28 13:32:23,627 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.013*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.006*\"new\" + 0.006*\"hockei\"\n", - "2018-08-28 13:32:23,629 : INFO : topic diff=0.109734, rho=0.267261\n", - "2018-08-28 13:32:23,631 : INFO : PROGRESS: pass 3, at document #2000/10000\n", - "2018-08-28 13:32:24,403 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:24,425 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.013*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.011*\"scsi\" + 0.009*\"articl\" + 0.009*\"card\" + 0.008*\"new\" + 0.007*\"control\" + 0.006*\"disk\"\n", - "2018-08-28 13:32:24,427 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.005*\"like\" + 0.005*\"work\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"wire\"\n", - "2018-08-28 13:32:24,429 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"car\" + 0.009*\"like\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"peopl\" + 0.005*\"good\" + 0.005*\"look\"\n", - "2018-08-28 13:32:24,430 : INFO : topic #6 (0.100): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.006*\"said\" + 0.005*\"studi\" + 0.005*\"year\" + 0.004*\"armenia\" + 0.004*\"greek\" + 0.004*\"diseas\" + 0.004*\"turk\"\n", - "2018-08-28 13:32:24,432 : INFO : topic #0 (0.100): 0.012*\"com\" + 0.009*\"space\" + 0.008*\"nasa\" + 0.007*\"new\" + 0.006*\"access\" + 0.006*\"program\" + 0.006*\"inform\" + 0.006*\"gov\" + 0.006*\"softwar\" + 0.006*\"data\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-28 13:32:24,433 : INFO : topic diff=0.100990, rho=0.267261\n", - "2018-08-28 13:32:24,434 : INFO : PROGRESS: pass 3, at document #3000/10000\n", - "2018-08-28 13:32:25,295 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:25,320 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"peopl\" + 0.005*\"chip\" + 0.005*\"secur\" + 0.005*\"moral\" + 0.005*\"know\" + 0.005*\"us\"\n", - "2018-08-28 13:32:25,322 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"think\" + 0.006*\"good\" + 0.005*\"peopl\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:25,324 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.005*\"gun\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.005*\"com\" + 0.004*\"govern\"\n", - "2018-08-28 13:32:25,325 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.006*\"power\" + 0.006*\"us\" + 0.005*\"work\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"wire\"\n", - "2018-08-28 13:32:25,327 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.012*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"version\" + 0.007*\"problem\" + 0.007*\"run\" + 0.006*\"do\" + 0.005*\"set\"\n", - "2018-08-28 13:32:25,329 : INFO : topic diff=0.091840, rho=0.267261\n", - "2018-08-28 13:32:25,331 : INFO : PROGRESS: pass 3, at document #4000/10000\n", - "2018-08-28 13:32:26,202 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:26,226 : INFO : topic #0 (0.100): 0.010*\"space\" + 0.010*\"com\" + 0.007*\"new\" + 0.007*\"nasa\" + 0.007*\"program\" + 0.007*\"mail\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"file\" + 0.006*\"anonym\"\n", - "2018-08-28 13:32:26,228 : INFO : topic #3 (0.100): 0.017*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.006*\"know\" + 0.006*\"good\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"peopl\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:26,232 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.011*\"plai\" + 0.011*\"team\" + 0.010*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.006*\"univers\" + 0.006*\"articl\" + 0.006*\"new\" + 0.006*\"season\"\n", - "2018-08-28 13:32:26,234 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.015*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.006*\"version\" + 0.006*\"problem\" + 0.006*\"do\" + 0.006*\"graphic\"\n", - "2018-08-28 13:32:26,239 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"gun\" + 0.006*\"god\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"govern\" + 0.004*\"com\"\n", - "2018-08-28 13:32:26,242 : INFO : topic diff=0.113876, rho=0.267261\n", - "2018-08-28 13:32:26,246 : INFO : PROGRESS: pass 3, at document #5000/10000\n", - "2018-08-28 13:32:27,316 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:27,360 : INFO : topic #6 (0.100): 0.015*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.005*\"said\" + 0.005*\"studi\" + 0.005*\"year\" + 0.005*\"medic\" + 0.005*\"turkei\" + 0.004*\"greek\" + 0.004*\"armenia\"\n", - "2018-08-28 13:32:27,365 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.012*\"univers\" + 0.011*\"scsi\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"articl\" + 0.008*\"card\" + 0.008*\"new\" + 0.006*\"mac\" + 0.006*\"disk\"\n", - "2018-08-28 13:32:27,375 : INFO : topic #0 (0.100): 0.010*\"space\" + 0.009*\"com\" + 0.008*\"program\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.007*\"mail\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"anonym\" + 0.005*\"gov\"\n", - "2018-08-28 13:32:27,379 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"state\" + 0.006*\"gun\" + 0.006*\"god\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"govern\" + 0.004*\"com\"\n", - "2018-08-28 13:32:27,388 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.007*\"encrypt\" + 0.007*\"think\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"chip\" + 0.005*\"moral\" + 0.005*\"us\" + 0.005*\"christian\" + 0.005*\"like\"\n", - "2018-08-28 13:32:27,389 : INFO : topic diff=0.131599, rho=0.267261\n", - "2018-08-28 13:32:27,400 : INFO : PROGRESS: pass 3, at document #6000/10000\n", - "2018-08-28 13:32:28,239 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:28,266 : INFO : topic #6 (0.100): 0.018*\"armenian\" + 0.009*\"turkish\" + 0.007*\"peopl\" + 0.006*\"said\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"studi\" + 0.005*\"year\" + 0.004*\"turk\" + 0.004*\"medic\"\n", - "2018-08-28 13:32:28,268 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.009*\"space\" + 0.007*\"program\" + 0.007*\"mail\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"softwar\" + 0.006*\"gov\"\n", - "2018-08-28 13:32:28,270 : INFO : topic #7 (0.100): 0.306*\"max\" + 0.022*\"giz\" + 0.019*\"bhj\" + 0.008*\"bxn\" + 0.008*\"sa\" + 0.007*\"qax\" + 0.006*\"marc\" + 0.006*\"adob\" + 0.005*\"chz\" + 0.004*\"nui\"\n", - "2018-08-28 13:32:28,273 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.014*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.009*\"program\" + 0.007*\"run\" + 0.006*\"problem\" + 0.006*\"set\" + 0.006*\"version\" + 0.005*\"do\"\n", - "2018-08-28 13:32:28,275 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"exist\" + 0.006*\"god\" + 0.006*\"think\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"secur\" + 0.005*\"question\" + 0.005*\"believ\"\n", - "2018-08-28 13:32:28,277 : INFO : topic diff=0.103775, rho=0.267261\n", - "2018-08-28 13:32:28,279 : INFO : PROGRESS: pass 3, at document #7000/10000\n", - "2018-08-28 13:32:29,066 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:29,103 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.008*\"space\" + 0.007*\"program\" + 0.007*\"new\" + 0.007*\"mail\" + 0.007*\"imag\" + 0.007*\"nasa\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"data\"\n", - "2018-08-28 13:32:29,105 : INFO : topic #4 (0.100): 0.019*\"drive\" + 0.013*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.010*\"scsi\" + 0.009*\"articl\" + 0.008*\"card\" + 0.008*\"new\" + 0.007*\"mac\" + 0.007*\"appl\"\n", - "2018-08-28 13:32:29,108 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.012*\"team\" + 0.011*\"plai\" + 0.010*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"season\"\n", - "2018-08-28 13:32:29,113 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.004*\"time\"\n", - "2018-08-28 13:32:29,118 : INFO : topic #7 (0.100): 0.266*\"max\" + 0.019*\"giz\" + 0.016*\"bhj\" + 0.011*\"sa\" + 0.007*\"adob\" + 0.007*\"bxn\" + 0.007*\"convex\" + 0.006*\"ahl\" + 0.006*\"qax\" + 0.006*\"marc\"\n", - "2018-08-28 13:32:29,120 : INFO : topic diff=0.100589, rho=0.267261\n", - "2018-08-28 13:32:29,123 : INFO : PROGRESS: pass 3, at document #8000/10000\n", - "2018-08-28 13:32:29,872 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:29,907 : INFO : topic #6 (0.100): 0.014*\"armenian\" + 0.008*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"medic\" + 0.004*\"turkei\" + 0.004*\"studi\"\n", - "2018-08-28 13:32:29,910 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.012*\"team\" + 0.011*\"plai\" + 0.010*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.006*\"season\" + 0.005*\"new\"\n", - "2018-08-28 13:32:29,913 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.008*\"space\" + 0.007*\"program\" + 0.007*\"inform\" + 0.007*\"nasa\" + 0.007*\"mail\" + 0.007*\"new\" + 0.007*\"access\" + 0.007*\"data\" + 0.006*\"softwar\"\n", - "2018-08-28 13:32:29,915 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.006*\"think\" + 0.006*\"right\" + 0.005*\"gun\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"believ\" + 0.004*\"christian\"\n", - "2018-08-28 13:32:29,918 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"exist\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"secur\" + 0.005*\"clipper\"\n", - "2018-08-28 13:32:29,920 : INFO : topic diff=0.097489, rho=0.267261\n", - "2018-08-28 13:32:29,922 : INFO : PROGRESS: pass 3, at document #9000/10000\n", - "2018-08-28 13:32:30,558 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:30,583 : INFO : topic #3 (0.100): 0.018*\"com\" + 0.010*\"articl\" + 0.010*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"think\" + 0.006*\"good\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"peopl\"\n", - "2018-08-28 13:32:30,585 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.006*\"engin\" + 0.006*\"power\" + 0.006*\"us\" + 0.006*\"work\" + 0.006*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n" + "2018-08-28 15:16:22,404 : INFO : using symmetric alpha at 0.2\n", + "2018-08-28 15:16:22,407 : INFO : using symmetric eta at 0.2\n", + "2018-08-28 15:16:22,412 : INFO : using serial LDA version on this node\n", + "2018-08-28 15:16:22,436 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-08-28 15:16:22,437 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2018-08-28 15:16:23,405 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:23,416 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"like\" + 0.005*\"think\" + 0.004*\"host\" + 0.004*\"peopl\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"new\"\n", + "2018-08-28 15:16:23,418 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.003*\"know\" + 0.003*\"new\" + 0.003*\"armenian\" + 0.003*\"right\"\n", + "2018-08-28 15:16:23,420 : INFO : topic #2 (0.200): 0.006*\"right\" + 0.005*\"com\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"israel\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"host\" + 0.004*\"like\" + 0.004*\"think\"\n", + "2018-08-28 15:16:23,422 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"space\" + 0.005*\"know\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"peopl\" + 0.003*\"host\"\n", + "2018-08-28 15:16:23,424 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"said\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenian\"\n", + "2018-08-28 15:16:23,425 : INFO : topic diff=1.649447, rho=1.000000\n", + "2018-08-28 15:16:23,427 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2018-08-28 15:16:24,628 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:24,637 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.007*\"com\" + 0.006*\"graphic\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\" + 0.004*\"know\"\n", + "2018-08-28 15:16:24,643 : INFO : topic #1 (0.200): 0.006*\"nasa\" + 0.006*\"peopl\" + 0.005*\"time\" + 0.005*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"imag\" + 0.003*\"thing\"\n", + "2018-08-28 15:16:24,646 : INFO : topic #2 (0.200): 0.008*\"israel\" + 0.008*\"isra\" + 0.006*\"peopl\" + 0.006*\"right\" + 0.005*\"com\" + 0.005*\"think\" + 0.005*\"arab\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"state\"\n", + "2018-08-28 15:16:24,649 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.009*\"space\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"know\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"host\" + 0.003*\"program\" + 0.003*\"nntp\"\n", + "2018-08-28 15:16:24,651 : INFO : topic #4 (0.200): 0.007*\"armenian\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"think\" + 0.004*\"know\" + 0.004*\"muslim\" + 0.004*\"islam\" + 0.004*\"turkish\" + 0.004*\"time\"\n", + "2018-08-28 15:16:24,653 : INFO : topic diff=0.868179, rho=0.707107\n", + "2018-08-28 15:16:25,802 : INFO : -8.029 per-word bound, 261.2 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-08-28 15:16:25,802 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2018-08-28 15:16:26,685 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-08-28 15:16:26,692 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.007*\"file\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"program\"\n", + "2018-08-28 15:16:26,695 : INFO : topic #1 (0.200): 0.008*\"nasa\" + 0.006*\"space\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"univers\" + 0.004*\"orbit\"\n", + "2018-08-28 15:16:26,696 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"god\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"think\" + 0.005*\"know\" + 0.004*\"com\"\n", + "2018-08-28 15:16:26,698 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.012*\"com\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.003*\"know\"\n", + "2018-08-28 15:16:26,699 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.009*\"peopl\" + 0.007*\"turkish\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenia\" + 0.004*\"islam\"\n", + "2018-08-28 15:16:26,700 : INFO : topic diff=0.663742, rho=0.577350\n", + "2018-08-28 15:16:26,701 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2018-08-28 15:16:27,637 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:27,651 : INFO : topic #0 (0.200): 0.010*\"imag\" + 0.008*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"us\" + 0.005*\"need\"\n", + "2018-08-28 15:16:27,654 : INFO : topic #1 (0.200): 0.007*\"nasa\" + 0.006*\"space\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"univers\" + 0.004*\"moon\" + 0.004*\"time\" + 0.004*\"launch\"\n", + "2018-08-28 15:16:27,660 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"isra\" + 0.007*\"god\" + 0.007*\"peopl\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"state\" + 0.005*\"think\" + 0.005*\"univers\"\n", + "2018-08-28 15:16:27,662 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.012*\"com\" + 0.004*\"bike\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"univers\" + 0.004*\"year\" + 0.004*\"dod\" + 0.004*\"host\" + 0.004*\"like\"\n", + "2018-08-28 15:16:27,663 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.010*\"peopl\" + 0.007*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"greek\" + 0.004*\"islam\"\n", + "2018-08-28 15:16:27,664 : INFO : topic diff=0.449256, rho=0.455535\n", + "2018-08-28 15:16:27,666 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2018-08-28 15:16:28,396 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:28,403 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"file\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"us\"\n", + "2018-08-28 15:16:28,405 : INFO : topic #1 (0.200): 0.009*\"nasa\" + 0.007*\"space\" + 0.005*\"gov\" + 0.005*\"like\" + 0.005*\"orbit\" + 0.005*\"time\" + 0.005*\"peopl\" + 0.004*\"moon\" + 0.004*\"year\" + 0.004*\"univers\"\n", + "2018-08-28 15:16:28,408 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"peopl\" + 0.007*\"god\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"state\" + 0.004*\"know\"\n", + "2018-08-28 15:16:28,410 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.012*\"space\" + 0.005*\"bike\" + 0.004*\"time\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"dod\"\n", + "2018-08-28 15:16:28,412 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.005*\"said\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.004*\"islam\" + 0.004*\"armenia\" + 0.004*\"time\"\n", + "2018-08-28 15:16:28,415 : INFO : topic diff=0.419776, rho=0.455535\n", + "2018-08-28 15:16:29,306 : INFO : -7.774 per-word bound, 218.9 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-08-28 15:16:29,307 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2018-08-28 15:16:29,889 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-08-28 15:16:29,896 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.009*\"file\" + 0.008*\"graphic\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"program\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"univers\" + 0.005*\"host\"\n", + "2018-08-28 15:16:29,897 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.008*\"space\" + 0.005*\"gov\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"year\" + 0.004*\"launch\" + 0.004*\"moon\"\n", + "2018-08-28 15:16:29,898 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"jew\" + 0.006*\"arab\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"exist\" + 0.005*\"state\"\n", + "2018-08-28 15:16:29,900 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.013*\"com\" + 0.005*\"bike\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\" + 0.004*\"like\"\n", + "2018-08-28 15:16:29,901 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.006*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.004*\"time\" + 0.004*\"turkei\" + 0.004*\"muslim\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:32:30,587 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.013*\"team\" + 0.010*\"plai\" + 0.010*\"year\" + 0.009*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"season\"\n", - "2018-08-28 13:32:30,589 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.008*\"encrypt\" + 0.006*\"exist\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"mean\" + 0.005*\"clipper\"\n", - "2018-08-28 13:32:30,590 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.013*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.007*\"version\" + 0.006*\"problem\" + 0.006*\"set\" + 0.006*\"color\"\n", - "2018-08-28 13:32:30,592 : INFO : topic diff=0.106636, rho=0.267261\n", - "2018-08-28 13:32:32,688 : INFO : -8.068 per-word bound, 268.3 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n", - "2018-08-28 13:32:32,689 : INFO : PROGRESS: pass 3, at document #10000/10000\n", - "2018-08-28 13:32:33,786 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:33,814 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.010*\"space\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.007*\"inform\" + 0.007*\"gov\" + 0.007*\"mail\" + 0.006*\"program\" + 0.006*\"access\" + 0.006*\"data\"\n", - "2018-08-28 13:32:33,817 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.012*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.011*\"card\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.007*\"disk\" + 0.007*\"new\" + 0.007*\"mac\"\n", - "2018-08-28 13:32:33,819 : INFO : topic #3 (0.100): 0.018*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"time\" + 0.006*\"good\" + 0.006*\"think\" + 0.005*\"look\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:33,822 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"exist\" + 0.005*\"god\" + 0.005*\"chip\" + 0.005*\"peopl\" + 0.005*\"us\" + 0.005*\"clipper\" + 0.005*\"like\"\n", - "2018-08-28 13:32:33,824 : INFO : topic #1 (0.100): 0.015*\"game\" + 0.014*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.009*\"player\" + 0.008*\"win\" + 0.007*\"hockei\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"articl\"\n", - "2018-08-28 13:32:33,826 : INFO : topic diff=0.097712, rho=0.267261\n", - "2018-08-28 13:32:33,828 : INFO : PROGRESS: pass 4, at document #1000/10000\n", - "2018-08-28 13:32:34,633 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:34,664 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.006*\"encrypt\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"exist\" + 0.005*\"peopl\" + 0.005*\"moral\" + 0.005*\"us\" + 0.005*\"chip\" + 0.005*\"know\"\n", - "2018-08-28 13:32:34,667 : INFO : topic #9 (0.100): 0.008*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.006*\"wire\" + 0.006*\"us\" + 0.006*\"engin\" + 0.005*\"like\" + 0.005*\"work\" + 0.005*\"nntp\" + 0.005*\"host\"\n", - "2018-08-28 13:32:34,669 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.012*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.007*\"program\" + 0.007*\"run\" + 0.007*\"problem\" + 0.007*\"version\" + 0.006*\"color\" + 0.006*\"set\"\n", - "2018-08-28 13:32:34,671 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.013*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.008*\"player\" + 0.007*\"win\" + 0.006*\"univers\" + 0.006*\"new\" + 0.006*\"articl\" + 0.006*\"hockei\"\n", - "2018-08-28 13:32:34,672 : INFO : topic #7 (0.100): 0.269*\"max\" + 0.022*\"giz\" + 0.022*\"bhj\" + 0.009*\"sa\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.007*\"ahl\" + 0.007*\"cec\" + 0.006*\"biz\" + 0.005*\"nist\"\n", - "2018-08-28 13:32:34,674 : INFO : topic diff=0.091465, rho=0.258199\n", - "2018-08-28 13:32:34,675 : INFO : PROGRESS: pass 4, at document #2000/10000\n", - "2018-08-28 13:32:35,440 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:35,466 : INFO : topic #3 (0.100): 0.018*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"think\" + 0.006*\"time\" + 0.006*\"good\" + 0.005*\"look\" + 0.005*\"peopl\"\n", - "2018-08-28 13:32:35,468 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"power\" + 0.006*\"engin\" + 0.006*\"us\" + 0.006*\"wire\" + 0.005*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\"\n", - "2018-08-28 13:32:35,470 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.013*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.009*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.006*\"new\" + 0.006*\"season\"\n", - "2018-08-28 13:32:35,471 : INFO : topic #7 (0.100): 0.248*\"max\" + 0.028*\"bhj\" + 0.028*\"giz\" + 0.009*\"sa\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.007*\"bxn\" + 0.006*\"cec\" + 0.006*\"chz\" + 0.005*\"marc\"\n", - "2018-08-28 13:32:35,473 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.012*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"version\" + 0.007*\"run\" + 0.007*\"do\" + 0.007*\"problem\" + 0.005*\"set\"\n", - "2018-08-28 13:32:35,475 : INFO : topic diff=0.081521, rho=0.258199\n", - "2018-08-28 13:32:35,476 : INFO : PROGRESS: pass 4, at document #3000/10000\n", - "2018-08-28 13:32:36,168 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:36,192 : INFO : topic #7 (0.100): 0.236*\"max\" + 0.025*\"bhj\" + 0.024*\"giz\" + 0.010*\"sa\" + 0.009*\"bxn\" + 0.008*\"qax\" + 0.007*\"adob\" + 0.006*\"convex\" + 0.006*\"marc\" + 0.005*\"cec\"\n", - "2018-08-28 13:32:36,195 : INFO : topic #4 (0.100): 0.017*\"drive\" + 0.012*\"univers\" + 0.012*\"host\" + 0.011*\"nntp\" + 0.011*\"card\" + 0.009*\"scsi\" + 0.008*\"articl\" + 0.008*\"disk\" + 0.007*\"new\" + 0.007*\"control\"\n", - "2018-08-28 13:32:36,197 : INFO : topic #0 (0.100): 0.011*\"com\" + 0.010*\"space\" + 0.008*\"nasa\" + 0.007*\"new\" + 0.007*\"access\" + 0.007*\"mail\" + 0.006*\"inform\" + 0.006*\"gov\" + 0.006*\"program\" + 0.005*\"data\"\n", - "2018-08-28 13:32:36,199 : INFO : topic #2 (0.100): 0.019*\"window\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"version\" + 0.007*\"run\" + 0.007*\"problem\" + 0.006*\"do\" + 0.005*\"set\"\n", - "2018-08-28 13:32:36,200 : INFO : topic #3 (0.100): 0.018*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"good\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"look\"\n", - "2018-08-28 13:32:36,201 : INFO : topic diff=0.075270, rho=0.258199\n", - "2018-08-28 13:32:36,203 : INFO : PROGRESS: pass 4, at document #4000/10000\n", - "2018-08-28 13:32:37,108 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:37,131 : INFO : topic #7 (0.100): 0.216*\"max\" + 0.025*\"bhj\" + 0.022*\"giz\" + 0.011*\"sa\" + 0.008*\"convex\" + 0.007*\"bxn\" + 0.007*\"adob\" + 0.007*\"qax\" + 0.005*\"biz\" + 0.005*\"ahl\"\n", - "2018-08-28 13:32:37,134 : INFO : topic #0 (0.100): 0.010*\"space\" + 0.010*\"com\" + 0.007*\"new\" + 0.007*\"nasa\" + 0.007*\"mail\" + 0.007*\"program\" + 0.006*\"inform\" + 0.006*\"access\" + 0.006*\"gov\" + 0.006*\"anonym\"\n", - "2018-08-28 13:32:37,137 : INFO : topic #4 (0.100): 0.019*\"drive\" + 0.012*\"univers\" + 0.012*\"host\" + 0.011*\"nntp\" + 0.010*\"card\" + 0.010*\"scsi\" + 0.009*\"articl\" + 0.007*\"new\" + 0.007*\"disk\" + 0.006*\"control\"\n", - "2018-08-28 13:32:37,144 : INFO : topic #6 (0.100): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.006*\"said\" + 0.005*\"studi\" + 0.005*\"medic\" + 0.005*\"year\" + 0.005*\"food\" + 0.005*\"russian\" + 0.004*\"turkei\"\n", - "2018-08-28 13:32:37,149 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"gun\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"govern\" + 0.004*\"com\"\n", - "2018-08-28 13:32:37,151 : INFO : topic diff=0.096280, rho=0.258199\n", - "2018-08-28 13:32:37,152 : INFO : PROGRESS: pass 4, at document #5000/10000\n", - "2018-08-28 13:32:38,271 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:38,308 : INFO : topic #8 (0.100): 0.011*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"moral\" + 0.005*\"god\" + 0.005*\"exist\" + 0.005*\"mean\"\n", - "2018-08-28 13:32:38,311 : INFO : topic #0 (0.100): 0.010*\"space\" + 0.009*\"com\" + 0.008*\"program\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.007*\"mail\" + 0.006*\"inform\" + 0.006*\"access\" + 0.006*\"gov\" + 0.006*\"anonym\"\n", - "2018-08-28 13:32:38,320 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.012*\"univers\" + 0.012*\"host\" + 0.011*\"nntp\" + 0.011*\"scsi\" + 0.010*\"card\" + 0.009*\"articl\" + 0.007*\"new\" + 0.007*\"mac\" + 0.006*\"disk\"\n", - "2018-08-28 13:32:38,323 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.006*\"god\" + 0.006*\"state\" + 0.006*\"gun\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"law\" + 0.004*\"govern\" + 0.004*\"christian\"\n", - "2018-08-28 13:32:38,332 : INFO : topic #2 (0.100): 0.018*\"window\" + 0.014*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.006*\"run\" + 0.006*\"version\" + 0.006*\"problem\" + 0.006*\"set\" + 0.005*\"graphic\"\n" + "2018-08-28 15:16:29,902 : INFO : topic diff=0.433169, rho=0.455535\n", + "2018-08-28 15:16:29,903 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2018-08-28 15:16:30,848 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:30,855 : INFO : topic #0 (0.200): 0.012*\"imag\" + 0.009*\"file\" + 0.008*\"graphic\" + 0.008*\"com\" + 0.006*\"univers\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"program\" + 0.006*\"like\" + 0.005*\"us\"\n", + "2018-08-28 15:16:30,856 : INFO : topic #1 (0.200): 0.009*\"nasa\" + 0.008*\"space\" + 0.006*\"orbit\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"gov\" + 0.005*\"earth\" + 0.004*\"year\" + 0.004*\"henri\" + 0.004*\"launch\"\n", + "2018-08-28 15:16:30,858 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.006*\"right\" + 0.006*\"think\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-08-28 15:16:30,860 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.013*\"space\" + 0.006*\"bike\" + 0.005*\"dod\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\"\n", + "2018-08-28 15:16:30,862 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"greek\" + 0.004*\"turk\" + 0.004*\"armenia\"\n", + "2018-08-28 15:16:30,863 : INFO : topic diff=0.348645, rho=0.414549\n", + "2018-08-28 15:16:30,868 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2018-08-28 15:16:31,732 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:31,739 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.007*\"com\" + 0.007*\"program\" + 0.006*\"univers\" + 0.006*\"host\" + 0.005*\"us\" + 0.005*\"nntp\" + 0.005*\"like\"\n", + "2018-08-28 15:16:31,742 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.008*\"space\" + 0.006*\"orbit\" + 0.006*\"gov\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"year\" + 0.005*\"earth\" + 0.005*\"time\" + 0.004*\"new\"\n", + "2018-08-28 15:16:31,743 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"com\"\n", + "2018-08-28 15:16:31,744 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.012*\"space\" + 0.007*\"bike\" + 0.005*\"dod\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"ride\"\n", + "2018-08-28 15:16:31,746 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.004*\"time\"\n", + "2018-08-28 15:16:31,747 : INFO : topic diff=0.322965, rho=0.414549\n", + "2018-08-28 15:16:33,004 : INFO : -7.719 per-word bound, 210.7 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-08-28 15:16:33,005 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2018-08-28 15:16:33,517 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-08-28 15:16:33,524 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.007*\"program\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"color\" + 0.005*\"host\"\n", + "2018-08-28 15:16:33,525 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.010*\"space\" + 0.006*\"orbit\" + 0.006*\"gov\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"earth\" + 0.005*\"moon\" + 0.005*\"launch\" + 0.005*\"new\"\n", + "2018-08-28 15:16:33,527 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"peopl\" + 0.006*\"jew\" + 0.006*\"think\" + 0.006*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"exist\"\n", + "2018-08-28 15:16:33,528 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.013*\"space\" + 0.007*\"bike\" + 0.004*\"dod\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"time\"\n", + "2018-08-28 15:16:33,529 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.006*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"like\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.004*\"muslim\"\n", + "2018-08-28 15:16:33,530 : INFO : topic diff=0.325727, rho=0.414549\n", + "2018-08-28 15:16:33,531 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2018-08-28 15:16:34,355 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:34,368 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"univers\" + 0.006*\"program\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.005*\"need\"\n", + "2018-08-28 15:16:34,373 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.009*\"space\" + 0.007*\"orbit\" + 0.005*\"gov\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"earth\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"henri\"\n", + "2018-08-28 15:16:34,376 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-08-28 15:16:34,379 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.012*\"space\" + 0.008*\"bike\" + 0.006*\"dod\" + 0.005*\"ride\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\"\n", + "2018-08-28 15:16:34,382 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"greek\" + 0.004*\"time\" + 0.004*\"turk\" + 0.004*\"armenia\"\n", + "2018-08-28 15:16:34,386 : INFO : topic diff=0.264433, rho=0.382948\n", + "2018-08-28 15:16:34,392 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2018-08-28 15:16:35,204 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:35,211 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"data\"\n", + "2018-08-28 15:16:35,213 : INFO : topic #1 (0.200): 0.011*\"nasa\" + 0.010*\"space\" + 0.007*\"orbit\" + 0.006*\"gov\" + 0.005*\"moon\" + 0.005*\"like\" + 0.005*\"earth\" + 0.005*\"year\" + 0.004*\"time\" + 0.004*\"new\"\n", + "2018-08-28 15:16:35,214 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.008*\"isra\" + 0.008*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"jew\" + 0.006*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"state\"\n", + "2018-08-28 15:16:35,216 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.011*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"ride\" + 0.004*\"time\" + 0.004*\"new\"\n", + "2018-08-28 15:16:35,217 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.004*\"time\"\n", + "2018-08-28 15:16:35,219 : INFO : topic diff=0.248884, rho=0.382948\n", + "2018-08-28 15:16:36,095 : INFO : -7.692 per-word bound, 206.8 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-08-28 15:16:36,096 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2018-08-28 15:16:36,746 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-08-28 15:16:36,756 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"color\" + 0.005*\"format\"\n", + "2018-08-28 15:16:36,758 : INFO : topic #1 (0.200): 0.011*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"gov\" + 0.005*\"launch\" + 0.005*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"\n", + "2018-08-28 15:16:36,760 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"\n", + "2018-08-28 15:16:36,762 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.012*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"ride\" + 0.004*\"new\" + 0.004*\"time\"\n", + "2018-08-28 15:16:36,763 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"like\" + 0.004*\"turk\"\n", + "2018-08-28 15:16:36,765 : INFO : topic diff=0.251402, rho=0.382948\n", + "2018-08-28 15:16:36,766 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2018-08-28 15:16:37,378 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:37,385 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"program\" + 0.007*\"univers\" + 0.006*\"com\" + 0.006*\"us\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"need\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:32:38,333 : INFO : topic diff=0.115265, rho=0.258199\n", - "2018-08-28 13:32:38,337 : INFO : PROGRESS: pass 4, at document #6000/10000\n", - "2018-08-28 13:32:39,400 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:39,432 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.009*\"space\" + 0.008*\"mail\" + 0.007*\"program\" + 0.007*\"new\" + 0.007*\"nasa\" + 0.006*\"access\" + 0.006*\"inform\" + 0.006*\"gov\" + 0.006*\"list\"\n", - "2018-08-28 13:32:39,434 : INFO : topic #8 (0.100): 0.013*\"kei\" + 0.007*\"encrypt\" + 0.006*\"exist\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"chip\" + 0.005*\"peopl\" + 0.005*\"secur\" + 0.005*\"us\" + 0.005*\"question\"\n", - "2018-08-28 13:32:39,436 : INFO : topic #3 (0.100): 0.019*\"com\" + 0.010*\"articl\" + 0.009*\"like\" + 0.009*\"car\" + 0.006*\"know\" + 0.006*\"good\" + 0.006*\"time\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"look\"\n", - "2018-08-28 13:32:39,440 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.012*\"univers\" + 0.011*\"scsi\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"card\" + 0.009*\"articl\" + 0.007*\"mac\" + 0.007*\"new\" + 0.007*\"disk\"\n", - "2018-08-28 13:32:39,444 : INFO : topic #7 (0.100): 0.307*\"max\" + 0.022*\"giz\" + 0.019*\"bhj\" + 0.008*\"sa\" + 0.008*\"bxn\" + 0.007*\"qax\" + 0.006*\"adob\" + 0.005*\"marc\" + 0.005*\"chz\" + 0.004*\"nui\"\n", - "2018-08-28 13:32:39,446 : INFO : topic diff=0.090009, rho=0.258199\n", - "2018-08-28 13:32:39,447 : INFO : PROGRESS: pass 4, at document #7000/10000\n", - "2018-08-28 13:32:40,586 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:40,628 : INFO : topic #1 (0.100): 0.017*\"game\" + 0.012*\"team\" + 0.011*\"plai\" + 0.010*\"year\" + 0.008*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"season\"\n", - "2018-08-28 13:32:40,630 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n", - "2018-08-28 13:32:40,633 : INFO : topic #7 (0.100): 0.268*\"max\" + 0.019*\"giz\" + 0.017*\"bhj\" + 0.011*\"sa\" + 0.007*\"adob\" + 0.007*\"bxn\" + 0.006*\"convex\" + 0.006*\"ahl\" + 0.006*\"qax\" + 0.006*\"sdsu\"\n", - "2018-08-28 13:32:40,635 : INFO : topic #5 (0.100): 0.010*\"peopl\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"gun\" + 0.006*\"state\" + 0.005*\"think\" + 0.005*\"articl\" + 0.005*\"law\" + 0.005*\"believ\" + 0.004*\"christian\"\n", - "2018-08-28 13:32:40,638 : INFO : topic #4 (0.100): 0.018*\"drive\" + 0.013*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.010*\"scsi\" + 0.010*\"card\" + 0.009*\"articl\" + 0.007*\"mac\" + 0.007*\"new\" + 0.007*\"appl\"\n", - "2018-08-28 13:32:40,641 : INFO : topic diff=0.087850, rho=0.258199\n", - "2018-08-28 13:32:40,643 : INFO : PROGRESS: pass 4, at document #8000/10000\n", - "2018-08-28 13:32:41,972 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:42,015 : INFO : topic #0 (0.100): 0.009*\"com\" + 0.009*\"space\" + 0.007*\"inform\" + 0.007*\"program\" + 0.007*\"mail\" + 0.007*\"new\" + 0.007*\"nasa\" + 0.007*\"access\" + 0.006*\"data\" + 0.006*\"softwar\"\n", - "2018-08-28 13:32:42,023 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"god\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"secur\" + 0.005*\"clipper\"\n", - "2018-08-28 13:32:42,029 : INFO : topic #7 (0.100): 0.227*\"max\" + 0.016*\"giz\" + 0.014*\"bhj\" + 0.013*\"sa\" + 0.008*\"adob\" + 0.007*\"convex\" + 0.007*\"sdsu\" + 0.006*\"bxn\" + 0.005*\"ahl\" + 0.005*\"cec\"\n", - "2018-08-28 13:32:42,034 : INFO : topic #9 (0.100): 0.010*\"univers\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.007*\"power\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n", - "2018-08-28 13:32:42,037 : INFO : topic #4 (0.100): 0.021*\"drive\" + 0.012*\"univers\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.011*\"scsi\" + 0.010*\"card\" + 0.009*\"disk\" + 0.009*\"mac\" + 0.008*\"articl\" + 0.007*\"control\"\n", - "2018-08-28 13:32:42,039 : INFO : topic diff=0.085266, rho=0.258199\n", - "2018-08-28 13:32:42,049 : INFO : PROGRESS: pass 4, at document #9000/10000\n", - "2018-08-28 13:32:42,864 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:42,890 : INFO : topic #1 (0.100): 0.016*\"game\" + 0.013*\"team\" + 0.010*\"plai\" + 0.010*\"year\" + 0.009*\"player\" + 0.007*\"win\" + 0.007*\"univers\" + 0.006*\"articl\" + 0.005*\"new\" + 0.005*\"season\"\n", - "2018-08-28 13:32:42,892 : INFO : topic #3 (0.100): 0.019*\"com\" + 0.010*\"articl\" + 0.010*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"good\" + 0.006*\"think\" + 0.006*\"time\" + 0.005*\"look\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:42,895 : INFO : topic #0 (0.100): 0.010*\"com\" + 0.009*\"space\" + 0.007*\"nasa\" + 0.007*\"new\" + 0.007*\"mail\" + 0.007*\"inform\" + 0.007*\"access\" + 0.007*\"program\" + 0.006*\"data\" + 0.006*\"gov\"\n", - "2018-08-28 13:32:42,897 : INFO : topic #8 (0.100): 0.012*\"kei\" + 0.008*\"encrypt\" + 0.006*\"exist\" + 0.006*\"think\" + 0.006*\"god\" + 0.005*\"peopl\" + 0.005*\"chip\" + 0.005*\"us\" + 0.005*\"clipper\" + 0.005*\"mean\"\n", - "2018-08-28 13:32:42,899 : INFO : topic #9 (0.100): 0.009*\"univers\" + 0.007*\"articl\" + 0.007*\"engin\" + 0.006*\"power\" + 0.006*\"us\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n", - "2018-08-28 13:32:42,902 : INFO : topic diff=0.095403, rho=0.258199\n", - "2018-08-28 13:32:44,533 : INFO : -8.061 per-word bound, 267.1 perplexity estimate based on a held-out corpus of 1000 documents with 132865 words\n", - "2018-08-28 13:32:44,534 : INFO : PROGRESS: pass 4, at document #10000/10000\n", - "2018-08-28 13:32:45,311 : INFO : merging changes from 1000 documents into a model of 10000 documents\n", - "2018-08-28 13:32:45,341 : INFO : topic #4 (0.100): 0.016*\"drive\" + 0.012*\"univers\" + 0.012*\"card\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.008*\"disk\" + 0.007*\"mac\" + 0.007*\"new\"\n", - "2018-08-28 13:32:45,343 : INFO : topic #9 (0.100): 0.009*\"wire\" + 0.009*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.006*\"us\" + 0.006*\"engin\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"ground\" + 0.005*\"nntp\"\n", - "2018-08-28 13:32:45,347 : INFO : topic #3 (0.100): 0.019*\"com\" + 0.010*\"articl\" + 0.010*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"good\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"look\" + 0.005*\"thing\"\n", - "2018-08-28 13:32:45,349 : INFO : topic #5 (0.100): 0.009*\"peopl\" + 0.007*\"god\" + 0.006*\"think\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"gun\" + 0.005*\"law\" + 0.004*\"know\" + 0.004*\"believ\"\n", - "2018-08-28 13:32:45,356 : INFO : topic #7 (0.100): 0.274*\"max\" + 0.020*\"bhj\" + 0.019*\"giz\" + 0.010*\"sa\" + 0.008*\"cec\" + 0.008*\"ahl\" + 0.007*\"edm\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.006*\"sdsu\"\n", - "2018-08-28 13:32:45,358 : INFO : topic diff=0.086883, rho=0.258199\n" + "2018-08-28 15:16:37,386 : INFO : topic #1 (0.200): 0.011*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.005*\"earth\" + 0.005*\"moon\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"new\"\n", + "2018-08-28 15:16:37,388 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"believ\"\n", + "2018-08-28 15:16:37,389 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.011*\"space\" + 0.008*\"bike\" + 0.006*\"dod\" + 0.005*\"ride\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"new\" + 0.004*\"time\"\n", + "2018-08-28 15:16:37,390 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"know\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.005*\"time\"\n", + "2018-08-28 15:16:37,391 : INFO : topic diff=0.210808, rho=0.357622\n", + "2018-08-28 15:16:37,392 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2018-08-28 15:16:38,023 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-08-28 15:16:38,030 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"graphic\" + 0.010*\"file\" + 0.008*\"program\" + 0.007*\"univers\" + 0.006*\"com\" + 0.006*\"us\" + 0.005*\"host\" + 0.005*\"data\" + 0.005*\"mail\"\n", + "2018-08-28 15:16:38,031 : INFO : topic #1 (0.200): 0.012*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"earth\" + 0.005*\"moon\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"launch\" + 0.004*\"new\"\n", + "2018-08-28 15:16:38,034 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"state\"\n", + "2018-08-28 15:16:38,035 : INFO : topic #3 (0.200): 0.016*\"com\" + 0.009*\"space\" + 0.009*\"bike\" + 0.006*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"ride\" + 0.005*\"nntp\" + 0.004*\"time\" + 0.004*\"new\"\n", + "2018-08-28 15:16:38,037 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"like\"\n", + "2018-08-28 15:16:38,038 : INFO : topic diff=0.203456, rho=0.357622\n", + "2018-08-28 15:16:38,893 : INFO : -7.675 per-word bound, 204.4 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-08-28 15:16:38,894 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2018-08-28 15:16:39,383 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-08-28 15:16:39,389 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"com\" + 0.006*\"color\" + 0.006*\"format\"\n", + "2018-08-28 15:16:39,390 : INFO : topic #1 (0.200): 0.014*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"launch\" + 0.006*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"\n", + "2018-08-28 15:16:39,392 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"\n", + "2018-08-28 15:16:39,393 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.010*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.004*\"new\" + 0.004*\"time\"\n", + "2018-08-28 15:16:39,394 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"like\"\n", + "2018-08-28 15:16:39,395 : INFO : topic diff=0.205852, rho=0.357622\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1min 9s, sys: 20 s, total: 1min 29s\n", - "Wall time: 1min 7s\n" + "CPU times: user 16.7 s, sys: 123 ms, total: 16.9 s\n", + "Wall time: 17 s\n" ] } ], @@ -653,32 +357,24 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 131, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:32:45,477 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-08-28 13:32:45,514 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n", - "2018-08-28 13:32:45,565 : INFO : CorpusAccumulator accumulated stats from 3000 documents\n", - "2018-08-28 13:32:45,630 : INFO : CorpusAccumulator accumulated stats from 4000 documents\n", - "2018-08-28 13:32:45,672 : INFO : CorpusAccumulator accumulated stats from 5000 documents\n", - "2018-08-28 13:32:45,719 : INFO : CorpusAccumulator accumulated stats from 6000 documents\n", - "2018-08-28 13:32:45,764 : INFO : CorpusAccumulator accumulated stats from 7000 documents\n", - "2018-08-28 13:32:45,826 : INFO : CorpusAccumulator accumulated stats from 8000 documents\n", - "2018-08-28 13:32:45,868 : INFO : CorpusAccumulator accumulated stats from 9000 documents\n", - "2018-08-28 13:32:45,915 : INFO : CorpusAccumulator accumulated stats from 10000 documents\n" + "2018-08-28 15:16:39,505 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-08-28 15:16:39,531 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { "data": { "text/plain": [ - "-2.5801225246943575" + "-1.681936864017396" ] }, - "execution_count": 43, + "execution_count": 131, "metadata": {}, "output_type": "execute_result" } @@ -695,32 +391,24 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 132, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 13:32:46,119 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-08-28 13:32:46,154 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n", - "2018-08-28 13:32:46,215 : INFO : CorpusAccumulator accumulated stats from 3000 documents\n", - "2018-08-28 13:32:46,280 : INFO : CorpusAccumulator accumulated stats from 4000 documents\n", - "2018-08-28 13:32:46,317 : INFO : CorpusAccumulator accumulated stats from 5000 documents\n", - "2018-08-28 13:32:46,367 : INFO : CorpusAccumulator accumulated stats from 6000 documents\n", - "2018-08-28 13:32:46,424 : INFO : CorpusAccumulator accumulated stats from 7000 documents\n", - "2018-08-28 13:32:46,469 : INFO : CorpusAccumulator accumulated stats from 8000 documents\n", - "2018-08-28 13:32:46,532 : INFO : CorpusAccumulator accumulated stats from 9000 documents\n", - "2018-08-28 13:32:46,590 : INFO : CorpusAccumulator accumulated stats from 10000 documents\n" + "2018-08-28 15:16:39,688 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-08-28 15:16:39,716 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { "data": { "text/plain": [ - "-2.9703064682982916" + "-1.7217224975861698" ] }, - "execution_count": 44, + "execution_count": 132, "metadata": {}, "output_type": "execute_result" } @@ -744,7 +432,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 133, "metadata": {}, "outputs": [], "source": [ @@ -763,16 +451,16 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 134, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4440.337351539119" + "2836.4596054536123" ] }, - "execution_count": 46, + "execution_count": 134, "metadata": {}, "output_type": "execute_result" } @@ -783,16 +471,16 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 135, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "18178.56830910186" + "10928.561522056281" ] }, - "execution_count": 47, + "execution_count": 135, "metadata": {}, "output_type": "execute_result" } @@ -810,35 +498,25 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 136, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.681*\"max\" + 0.041*\"bhj\" + 0.038*\"giz\" + 0.017*\"qax\" + 0.015*\"biz\" + 0.014*\"nrhj\" + 0.007*\"gizw\" + 0.006*\"vfq\" + 0.006*\"pmfq\" + 0.006*\"ma\"'),\n", + " '0.027*\"space\" + 0.020*\"launch\" + 0.014*\"satellit\" + 0.009*\"nasa\" + 0.006*\"commerci\" + 0.006*\"data\" + 0.006*\"market\" + 0.006*\"orbit\" + 0.006*\"year\" + 0.006*\"new\"'),\n", " (1,\n", - " '0.021*\"wire\" + 0.018*\"bit\" + 0.012*\"color\" + 0.012*\"imag\" + 0.010*\"mac\" + 0.009*\"us\" + 0.008*\"file\" + 0.008*\"jpeg\" + 0.008*\"ground\" + 0.006*\"circuit\"'),\n", + " '0.018*\"peopl\" + 0.017*\"know\" + 0.014*\"said\" + 0.010*\"happen\" + 0.009*\"come\" + 0.009*\"think\" + 0.009*\"went\" + 0.009*\"like\" + 0.009*\"apart\" + 0.009*\"sai\"'),\n", " (2,\n", - " '0.065*\"stephanopoulo\" + 0.031*\"presid\" + 0.017*\"know\" + 0.017*\"go\" + 0.014*\"think\" + 0.012*\"said\" + 0.011*\"work\" + 0.010*\"group\" + 0.010*\"packag\" + 0.010*\"consid\"'),\n", + " '0.020*\"god\" + 0.011*\"exist\" + 0.010*\"atheist\" + 0.010*\"believ\" + 0.008*\"argument\" + 0.007*\"atheism\" + 0.007*\"christian\" + 0.006*\"peopl\" + 0.006*\"univers\" + 0.006*\"religion\"'),\n", " (3,\n", - " '0.017*\"stephanopoulo\" + 0.010*\"wire\" + 0.010*\"think\" + 0.009*\"know\" + 0.008*\"presid\" + 0.007*\"god\" + 0.007*\"peopl\" + 0.006*\"said\" + 0.005*\"believ\" + 0.005*\"time\"'),\n", + " '0.025*\"armenian\" + 0.022*\"turkish\" + 0.015*\"jew\" + 0.011*\"turkei\" + 0.008*\"peopl\" + 0.008*\"nazi\" + 0.006*\"book\" + 0.006*\"armenia\" + 0.005*\"govern\" + 0.005*\"war\"'),\n", " (4,\n", - " '0.022*\"know\" + 0.014*\"armenian\" + 0.014*\"stephanopoulo\" + 0.013*\"said\" + 0.011*\"peopl\" + 0.010*\"go\" + 0.008*\"saw\" + 0.008*\"time\" + 0.008*\"sumgait\" + 0.007*\"work\"'),\n", - " (5,\n", - " '0.018*\"wire\" + 0.012*\"xfree\" + 0.010*\"server\" + 0.010*\"support\" + 0.009*\"window\" + 0.009*\"us\" + 0.008*\"file\" + 0.008*\"run\" + 0.007*\"com\" + 0.007*\"svr\"'),\n", - " (6,\n", - " '0.030*\"space\" + 0.012*\"nasa\" + 0.011*\"orbit\" + 0.010*\"mission\" + 0.010*\"probe\" + 0.007*\"planetari\" + 0.006*\"lunar\" + 0.006*\"mar\" + 0.006*\"data\" + 0.005*\"gov\"'),\n", - " (7,\n", - " '0.022*\"wire\" + 0.017*\"encrypt\" + 0.015*\"kei\" + 0.012*\"us\" + 0.012*\"devic\" + 0.012*\"chip\" + 0.010*\"technolog\" + 0.010*\"protect\" + 0.008*\"law\" + 0.008*\"ground\"'),\n", - " (8,\n", - " '0.013*\"wire\" + 0.012*\"hockei\" + 0.010*\"team\" + 0.010*\"new\" + 0.009*\"leagu\" + 0.008*\"game\" + 0.008*\"nhl\" + 0.007*\"season\" + 0.005*\"list\" + 0.005*\"ground\"'),\n", - " (9,\n", - " '0.009*\"gun\" + 0.009*\"new\" + 0.008*\"state\" + 0.007*\"hockei\" + 0.005*\"israel\" + 0.005*\"leagu\" + 0.005*\"year\" + 0.005*\"team\" + 0.005*\"govern\" + 0.004*\"american\"')]" + " '0.054*\"jpeg\" + 0.039*\"imag\" + 0.029*\"file\" + 0.023*\"gif\" + 0.019*\"color\" + 0.017*\"format\" + 0.011*\"version\" + 0.011*\"program\" + 0.010*\"bit\" + 0.010*\"qualiti\"')]" ] }, - "execution_count": 48, + "execution_count": 136, "metadata": {}, "output_type": "execute_result" } @@ -849,35 +527,25 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 137, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.010*\"space\" + 0.010*\"com\" + 0.008*\"new\" + 0.007*\"nasa\" + 0.007*\"inform\" + 0.007*\"mail\" + 0.007*\"gov\" + 0.006*\"program\" + 0.006*\"access\" + 0.006*\"data\"'),\n", + " '0.015*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"com\" + 0.006*\"color\" + 0.006*\"format\"'),\n", " (1,\n", - " '0.015*\"game\" + 0.014*\"team\" + 0.011*\"year\" + 0.010*\"plai\" + 0.009*\"player\" + 0.008*\"win\" + 0.007*\"hockei\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"season\"'),\n", + " '0.014*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"launch\" + 0.006*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"'),\n", " (2,\n", - " '0.018*\"window\" + 0.013*\"file\" + 0.010*\"com\" + 0.009*\"us\" + 0.008*\"program\" + 0.007*\"run\" + 0.007*\"version\" + 0.006*\"problem\" + 0.006*\"color\" + 0.006*\"set\"'),\n", + " '0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"'),\n", " (3,\n", - " '0.019*\"com\" + 0.010*\"articl\" + 0.010*\"like\" + 0.009*\"car\" + 0.007*\"know\" + 0.006*\"good\" + 0.006*\"time\" + 0.006*\"think\" + 0.005*\"look\" + 0.005*\"thing\"'),\n", + " '0.015*\"com\" + 0.010*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.004*\"new\" + 0.004*\"time\"'),\n", " (4,\n", - " '0.016*\"drive\" + 0.012*\"univers\" + 0.012*\"card\" + 0.011*\"host\" + 0.011*\"nntp\" + 0.009*\"articl\" + 0.008*\"scsi\" + 0.008*\"disk\" + 0.007*\"mac\" + 0.007*\"new\"'),\n", - " (5,\n", - " '0.009*\"peopl\" + 0.007*\"god\" + 0.006*\"think\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"articl\" + 0.005*\"gun\" + 0.005*\"law\" + 0.004*\"know\" + 0.004*\"believ\"'),\n", - " (6,\n", - " '0.015*\"armenian\" + 0.008*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.005*\"studi\" + 0.005*\"food\" + 0.005*\"greek\" + 0.005*\"year\" + 0.004*\"armenia\" + 0.004*\"medic\"'),\n", - " (7,\n", - " '0.274*\"max\" + 0.020*\"bhj\" + 0.019*\"giz\" + 0.010*\"sa\" + 0.008*\"cec\" + 0.008*\"ahl\" + 0.007*\"edm\" + 0.007*\"qax\" + 0.007*\"adob\" + 0.006*\"sdsu\"'),\n", - " (8,\n", - " '0.012*\"kei\" + 0.007*\"encrypt\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"chip\" + 0.005*\"us\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"clipper\" + 0.005*\"like\"'),\n", - " (9,\n", - " '0.009*\"wire\" + 0.009*\"univers\" + 0.007*\"power\" + 0.007*\"articl\" + 0.006*\"us\" + 0.006*\"engin\" + 0.006*\"work\" + 0.005*\"like\" + 0.005*\"ground\" + 0.005*\"nntp\"')]" + " '0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"like\"')]" ] }, - "execution_count": 49, + "execution_count": 137, "metadata": {}, "output_type": "execute_result" } @@ -895,7 +563,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 138, "metadata": {}, "outputs": [], "source": [ @@ -908,16 +576,16 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 139, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "16.34436509756677" + "8.563342468627981" ] }, - "execution_count": 56, + "execution_count": 139, "metadata": {}, "output_type": "execute_result" } @@ -928,22 +596,22 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 142, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 15min 25s, sys: 1min 42s, total: 17min 8s\n", - "Wall time: 5min 17s\n" + "CPU times: user 31 s, sys: 7.28 s, total: 38.3 s\n", + "Wall time: 11.5 s\n" ] } ], "source": [ "%%time\n", "\n", - "sklearn_nmf = SklearnNmf(n_components=10, tol=1e-5, max_iter=int(1e9), random_state=42)\n", + "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", "\n", "W = sklearn_nmf.fit_transform(proba_bow_matrix)\n", "H = sklearn_nmf.components_" @@ -951,16 +619,16 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 143, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "15.604129520276915" + "8.300690481807766" ] }, - "execution_count": 51, + "execution_count": 143, "metadata": {}, "output_type": "execute_result" } @@ -973,12 +641,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Olivietti faces + Gensim NMF" + "## Sklearn wrapper" ] }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 158, "metadata": {}, "outputs": [], "source": [ @@ -987,9 +655,14 @@ "class NmfWrapper(BaseEstimator, TransformerMixin):\n", " def __init__(self, **kwargs):\n", " self.nmf = GensimNmf(**kwargs)\n", + " self.corpus = None\n", " \n", + " def fit_transform(self, X):\n", + " self.fit(X)\n", + " return self.transform(X)\n", + " \n", " def fit(self, X):\n", - " corpus = (\n", + " self.corpus = [\n", " [\n", " (feature_idx, value)\n", " for feature_idx, value\n", @@ -997,9 +670,17 @@ " ]\n", " for sample\n", " in X\n", - " )\n", + " ]\n", " \n", - " self.nmf.update(corpus)\n", + " self.nmf.update(self.corpus)\n", + " \n", + " def transform(self, X):\n", + " H = np.zeros((len(self.corpus), self.nmf.num_topics))\n", + " for bow_id, bow in enumerate(self.corpus):\n", + " for topic_id, proba in self.nmf[bow]:\n", + " H[bow_id, topic_id] = proba\n", + " \n", + " return H\n", " \n", " @property\n", " def components_(self):\n", @@ -1008,7 +689,1048 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'data': ['From: John Lussmyer \\nSubject: Re: DC-X update???\\nOrganization: Mystery Spot BBS\\nReply-To: dragon@angus.mi.org\\nLines: 12\\n\\nhenry@zoo.toronto.edu (Henry Spencer) writes:\\n\\n> The first flight will be a low hover that will demonstrate a vertical\\n> landing. There will be no payload. DC-X will never carry any kind\\n\\nExactly when will the hover test be done, and will any of the TV\\nnetworks carry it. I really want to see that...\\n\\n--\\nJohn Lussmyer (dragon@angus.mi.org)\\nMystery Spot BBS, Royal Oak, MI --------------------------------------------?--\\n\\n',\n", + " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 25\\n\\nDear Mr. Beyer:\\n\\nIt is never wise to confuse \"freedom of speech\" with \"freedom\"\\nof racism and violent deragatory.\"\\n\\nIt is unfortunate that many fail to understand this crucial \\ndistinction.\\n\\nIndeed, I find the latter in absolute and complete contradiction\\nto the former. Racial invective tends to create an atmosphere of\\nintimidation where certain individuals (who belong to the group\\nunder target group) do not feel the ease and liberty to exercise \\n*their* fundamental \"freedom of speech.\"\\n\\nThis brand of vilification is not sanctioned under \"freedom of\\nspeech.\\n\\nSalam,\\n\\nJohn Absood\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", + " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 16\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n \\n> \"Wait. You just said that humans are rarely reasonable. Doesn\\'t that\\n> contradict atheism, where everything is explained through logic and\\n> reason? This is THE contradiction in atheism that proves it false.\"\\n> --- Bobby Mozumder proving the existence of Allah, #2\\n\\nDoes anybody have Bobby\\'s post in which he said something like \"I don\\'t\\nknow why there are more men than women in islamic countries. Maybe it\\'s\\natheists killing the female children\"? It\\'s my personal favorite!\\n\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", + " \"From: gdoherty@us.oracle.com (Greg Doherty)\\nSubject: BMW '90 K75RT For Sale\\nDistribution: ca\\nOrganization: Oracle Corporation\\nLines: 11\\nOriginator: gdoherty@kr2seq.us.oracle.com\\nNntp-Posting-Host: kr2seq.us.oracle.com\\nX-Disclaimer: This message was written by an unauthenticated user\\n at Oracle Corporation. The opinions expressed are those\\n of the user and not necessarily those of Oracle.\\n\\n[this is posted for a friend, please reply to dschick@holonet.net]\\n\\n1990 BMW K75RT FOR SALE\\n\\nAsking 5900.00 or best offer.\\nThis bike has a full faring and is great for touring or commuting. It has\\nabout 30k miles and has been well cared for. The bike comes with one hard\\nsaddle bag (the left one; the right side bag was stolen), a Harro tank bag\\n(the large one), and an Ungo Box alarm. Interested? Then Please drop me a\\nline.\\nDAS\\n\",\n", + " 'From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: NONE\\nLines: 21\\n\\nIn article <1993Apr17.185118.10792@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n|> In article <1993Apr16.195452.21375@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n|> >04/16/93 1045 ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\n|> >\\n|> \\n|> Ermenistan kasiniyor...\\n|> \\n|> Let me translate for everyone else before the public traslation service gets\\n|> into it\\t: Armenia is getting itchy. \\n|> \\n|> Esin.\\n\\n\\nLet me clearify Mr. Turkish;\\n\\nARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that SHE\\nWILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\ntricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\nCYPRESS WHILE the world simply WATCHED. \\n\\n\\n',\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: End of the Space Age?\\nOrganization: Express Access Online Communications USA\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nOddly, enough, The smithsonian calls the lindbergh years\\nthe golden age of flight. I would call it the granite years,\\nreflecting the primitive nature of it. It was romantic,\\nswashbuckling daredevils, \"those daring young men in their flying\\nmachines\". But in reality, it sucked. Death was a highly likely\\noccurence, and the environment blew. Ever see the early navy\\npressure suits, they were modified diving suits. You were ready to\\nstar in \"plan 9 from outer space\". Radios and Nav AIds were\\na joke, and engines ran on castor oil. They picked and called aviators\\n\"men with iron stomachs\", and it wasn\\'t due to vertigo.\\n\\nOddly enough, now we are in the golden age of flight. I can hop the\\nshuttle to NY for $90 bucks, now that\\'s golden.\\n\\nMercury gemini, and apollo were romantic, but let\\'s be honest.\\nPeeing in bags, having plastic bags glued to your butt everytime\\nyou needed a bowel movement. Living for days inside a VW Bug.\\nRomantic, but not commercial. The DC-X points out a most likely\\nnew golden age. An age where fat cigar smoking business men in\\nloud polyester space suits will fill the skys with strip malls\\nand used space ship lots.\\n\\nhhhmmmmm, maybe i\\'ll retract that golden age bit. Maybe it was\\nbetter in the old days. Of course, then we\\'ll have wally schirra\\ntelling his great grand children, \"In my day, we walked on the moon.\\nEvery day. Miles. no buses. you kids got it soft\".\\n\\npat\\n',\n", + " 'From: dean@fringe.rain.com (Dean Woodward)\\nSubject: Re: Drinking and Riding\\nOrganization: Organization for Mass Confusion.\\nLines: 36\\n\\ncjackson@adobe.com (Curtis Jackson) writes:\\n\\n> In article MJMUISE@1302.wats\\n> }I think the cops and \"Don\\'t You Dare Drink & Drive\" (tm) commercials will \\n> }usually say 1hr/drink in general, but after about 5 drinks and 5 hrs, you \\n> }could very well be over the legal limit. \\n> }Watch yourself.\\n> \\n> Indeed, especially if you are \"smart\" and eat some food with your\\n> drink. The food coating the stomach lining (especially things like\\n> milk) can temporarily retard the absorption of alcohol. When the\\n> food is digested, the absorption will proceed, and you will\\n> actually be drunker (i.e., have a higher instantaneous BAC) than\\n> you would have been if you had drunk 1 drink/hr. on an empty stomach.\\n> \\n> Put another way, food can cause you to be less drunk than drinking on\\n> an empty stomach early on in those five hours, but more drunk than\\n> drinking on an empty stomach later in those five hours.\\n> -- \\n> Curtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\n> DoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\\n> \"There is no justification for taking away individuals\\' freedom\\n> in the guise of public safety.\" -- Thomas Jefferson\\n\\nAgain, from my alcohol server\\'s class:\\nThe absolute *most* that eating before drinking can do is slow the absorption\\ndown by 15 minutes. That gives me time to eat, slam one beer, and ride like\\nhell to try to make it home in the 10 minutes left after paying, donning \\nhelmet & gloves, starting bike...\\n\\n\\n--\\nDean Woodward | \"You want to step into my world?\\ndean@fringe.rain.com | It\\'s a socio-psychotic state of Bliss...\"\\n\\'82 Virago 920 | -Guns\\'n\\'Roses, \\'My World\\'\\nDoD # 0866\\n',\n", + " 'From: klinger@ccu.umanitoba.ca (Jorg Klinger)\\nSubject: Re: Riceburner Respect\\nNntp-Posting-Host: ccu.umanitoba.ca\\nOrganization: University of Manitoba, Winnipeg, Canada\\nLines: 28\\n\\nIn <1993Apr15.192558.3314@icomsim.com> mmanning@icomsim.com (Michael Manning) writes:\\n\\n>In article craig@cellar.org (Saint Craig) \\n>writes:\\n>> shz@mare.att.com (Keeper of the \\'Tude) writes:\\n>> \\n\\n>Most people wave or return my wave when I\\'m on my Harley.\\n>Other Harley riders seldom wave back to me when I\\'m on my\\n>duck. Squids don\\'t wave, or return waves ever, even to each\\n>other, from what I can tell.\\n\\n\\n When we take a hand off the bars we fall down!\\n\\n__\\n Jorg Klinger | GSXR1100 | If you only new who\\n Arch. & Eng. Services |\"Lost Horizons\" CR500 | I think I am. \\n UManitoba, Man. Ca. |\"The Embalmer\" IT175 | - anonymous\\n\\n --Squidonk-- \\n\\n\\n\\n\\n\\n\\n\\n',\n", + " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Israeli Terrorism\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 8\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n As someone who reads Israeli newpapaers every day, I can state\\nwith absolute certainty, that anybody who relies on western media\\nto get a picture of what is happening in Israel is not getting an\\naccurate picture. There is tremendous bias in those stories that\\ndo get reported. And the stories that NEVER get mentioned create\\na completely false picture of the mideast.\\n\\n',\n", + " 'From: dwarner@sceng.ub.com (Dave Warner)\\nSubject: Sabbatical (and future flames)\\nSummary: I\\'m outta here\\nLines: 32\\nNntp-Posting-Host: 128.203.2.156\\nOrganization: Ungermann-Bass SSE\\n\\nSo, I begin my 6 week sabbatical in about 15 minutes. Six wonderful weeks\\nof riding, and no phones or email.\\n\\nI won\\'t have any way to check mail (or setup a vacation agent, no sh*t!), \\nthough I can dial in and get newsfeed, (dont ask), so if there are any \\noutstanding CFC\\'s or such things,please try my compuserve address:\\n\\n72517.3356@compuserve.com\\n\\nAnybody wants to do some WEEKDAY rides around the BA, send me a mail\\nto above or post here.\\n\\nI\\'ll be thinking about all of you stuck if front of your\\nterminals......\"Sheeyaahhh, and monkeys might fly out of my butt...\"\\nride safe,\\ndave\\n\\n\\n\\n-------------------------------------------------------------------------\\n Sense AIN\\'T common....\\n\\nDave Warner Opinions unlikely to be shared\\nAMA 687955/HOG 0588773/DoD 870\\t by my employer or anyone else\\ndwarner@sceng.ub.com _Signature on file_ \\ndwarner@milo.ub.com 72517.3356@compuserve.com \\n\\'93 FXSTS \\'71 T120 (Stolen)\\n\\n-------------------------------------------------------------------------\\n\\n\\n\\n',\n", + " \"From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Anti-Zionism is Racism\\nOrganization: NYSERNet, Inc.\\nLines: 14\\n\\nB8HA000 writes:\\n\\n>In Re:Syria's Expansion, the author writes that the UN thought\\n>Zionism was Racism and that they were wrong. They were correct\\n>the first time, Zionism is Racism and thankfully, the McGill Daily\\n>(the student newspaper at McGill) was proud enough to print an article\\n>saying so. If you want a copy, send me mail.\\n\\n>Steve\\n\\nJust felt it was important to add four letters that Steve left out of\\nhis Subject: header.\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n\",\n", + " 'From: Center for Policy Research \\nSubject: Desertification of the Negev\\nNf-ID: #N:cdp:1483500361:000:5123\\nNf-From: cdp.UUCP!cpr Apr 25 05:25:00 1993\\nLines: 104\\n\\n\\nFrom: Center for Policy Research \\nSubject: Desertification of the Negev\\n\\n\\nThe desertification of the arid Negev\\n------------------------------------- by Moise Saltiel, I&P March\\n1990\\n\\nI. The Negev Bedouin Before and After 1948 II. Jewish\\nAgricultural Settlement in the Negev III. Development of the\\nNegev\\'s Rural Population IV. Economic Situation of Jewish\\nSettlements in 1990 V. Failure in Settling the Arava Valley\\nVI. Failure in Settling the Central Mountains VII. Failure in\\nMaking the Negev \"Bedouinenrein\" (Cleansing the Negev of Bedouins)\\nVIII. Transforming Bedouin into Low-Paid Workers IX.. Failure\\nin Settling the \"Development Towns\" X. Jordan Water to the\\nNegev: A Strategic Asset XI. The Negev Becomes a Dumping\\nGround XII. The Dimona Nuclear Plant XIII. The Negev as a\\nMilitary Base XIV. The Negev in the Year 2000\\n\\nJust after the creation of the State of Israel, the phrase \"the\\nJewish pioneers will make the desert bloom\" was trumpeted\\nthroughout the Western world. After the Six Day War in 1967, David\\nBen-Gurion declared in a letter to Charles de Gaulle: \"It\\'s by our\\npioneering creation that we have transformed a poor and arid land\\ninto a fertile land, created built-up areas, towns and villages in\\nabandoned desert areas\".\\n\\nContrary to Ben-Gurion\\'s assertion, it must be affirmed that\\nduring the 26 years of the British mandate over Palestine and for\\ncenturies previous, a productive human presence was to be found in\\nall parts of the Negev desert - in the very arid hills and valleys\\nof the southern Negev as well as in the more fertile north. These\\nwere the Bedouin Arabs.\\n\\nThe real desertification of the Negev, mainly in the southern\\npart, occurred after Israel\\'s dispossession of the Bedouin\\'s\\ncultivated lands and pastures. Nowadays, the majority of the\\n12,800 square-kilometer Negev, which represents 62 percent of the\\nState of Israel (pre-1967 borders), has been desertified beyond\\nrecognition. The main new occupiers of the formerly Bedouin Negev\\nare the Israeli army; the Nature Reserves Authority, whose chief\\nrole is to prevent Bedouin from roaming their former pasture\\nlands; and vast industrial zones, including nuclear reactors and\\ndumping grounds for chemical, nuclear and other wastes. Israeli\\nJews in the Negev today cultivate less than half the surface area\\ncultivated by the Bedouin before 1948, and there is no Jewish\\npastoral activity.\\n\\nI. Agricultural and pastoral activities of the Negev Bedouin\\nbefore and after 1948\\n-------------------------------------------------- In 1942,\\naccording to British mandatory statistics, the Beersheba\\nsub-district (which corresponds more or less to Israel\\'s Negev, or\\nSouthern, district) had 52,000 inhabitants, almost all Bedouin\\nArabs, who held 11,500 camels, 6,000 cows and oxen, 42,000 sheep\\nand 22,000 goats.\\n\\nThe majority of the Bedouin lived a more or less sedentary life in\\nthe north, where precipitation ranged between 200 and 350 mm per\\nyear. In 1944 they cultivated about 200,000 hectares of the\\nBeersheba district - i.e. 16 percent of its total area and *more\\nthan double the area cultivated by the Negev\\'s Jewish settlers\\nafter 40 years of \"making the desert bloom\"*\\n\\nThe Bedouin had a very low crop yield - 350 to 400 kilograms of\\nbarley per hectare during rainy years - and their farming\\ntechniques were primitive, but production was based solely on\\nanimal and human labor. It must also be underscored that animal\\nproduction, although low, was based entirely on pasturing.\\nProduction increased considerably during the rainy years and\\ndiminished significantly during drought years. All Bedouin pasture\\nanimals - goats, camels and sheep - had the ability to gain weight\\nquickly over the relatively rainy winters and to withstand many\\nwaterless days during the hot summers. These animals were the\\nresult of a centuries-old process of natural selection in harsh\\nlocal conditions.\\n\\nAfter the creation of the State of Israel, 80 percent of the Negev\\nBedouin were expelled to the Sinai or to Southern Jordan. The\\n10,000 who were allowed to remain were confined to a territory of\\n40,000 hectares in a region were annual mean precipiation was 150\\nmm - a quantity low enough to ensure a crop failure two years out\\nof three. The rare water wells in the south and central Negev,\\nspring of life in the desert, were cemented to prevent Bedouin\\nshepherds from roaming.\\n\\nA few Bedouin shepherds were allowed to stay in the central Negev.\\nBut after 1982, when the Sinai was returned to Egypt, these\\nBedouin were also eliminated. At the same time, strong pressure\\nwas applied on the Bedouin to abandon cultivation of their fields\\nin order that the land could be transferred to the army.\\n\\nNo reliable statistics exist concerning the amount of land held\\ntoday by Negev Bedouin. It is a known fact that a large part of\\nthe 40,000 hectares they cultivated in the 1950s has been seized\\nby the Israeli authorities. Indeed, most of the Bedouin are now\\nconfined to seven \"development towns\", or *sowetos*, established\\nfor them.\\n\\n(the rest of the article is available from Elias Davidsson, email:\\nelias@ismennt.is)\\n\\n',\n", + " 'From: mcguire@cs.utexas.edu (Tommy Marcus McGuire)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: CS Dept, University of Texas at Austin\\nLines: 36\\nDistribution: world\\nNNTP-Posting-Host: cash.cs.utexas.edu\\n\\nIn article <1qmetg$g2n@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n[...]\\n>horse\\'s neck in the direction you wish to go. When training a\\n>plow-steering horse to neck-rein, one technique is to cross the reins\\n>under his necks. Thus, when neck-reining to the left, the right rein\\n ^^^^^\\n[...]\\n>Ed Green, former Ninjaite |I was drinking last night with a biker,\\n[...]\\n\\n\\nGiven my desire to stay as far away as possible from farming and ranching\\nequipment, I really hate to jump into this thread. I\\'m going to anyway,\\nbut I really hate it.\\n\\nEd, exactly what kind of mutant horse-like entity do you ride, anyway?\\nDoes countersteering work on the normal, garden-variety, one-necked horse?\\n\\nObmoto: I was flipping through the March (I think) issue of Rider, and I\\nsaw a small pseudo-ad for a book on hand signals appropriate to motorcycling.\\nIt mentioned something about a signal for \"Your passenger is on fire.\" Any\\nbody know the title and author of this book, and where I could get a copy?\\nThis should not be understood as implying that I have grown sociable enough\\nto ride with anyone, but the book sounded cute.\\n\\n\\n\\n\\n-----\\nTommy McGuire\\nmcguire@cs.utexas.edu\\nmcguire@austin.ibm.com\\n\\n\"...I will append an appropriate disclaimer to outgoing public information,\\nidentifying it as personal and as independent of IBM....\"\\n\\n',\n", + " \"From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: Boom! Dog attack!\\nOrganization: the HP Corporate notes server\\nLines: 30\\n\\nSeveral years ago, while driving a cage, a dog darted out at a quiet\\nintersection right in front of me but there was enough distance\\nbetween us so I didn't have to slow down. However, a 2nd dog\\nsuddenly appeared and collided with my right front bumper and\\nthe force of the impact was enough to kill that Scottish Terrier.\\n\\nApparently, it was following the 1st dog. Henceforth, if a dog\\ndecides to cross the street, keep an eye out for a 2nd dog as\\nmany dogs like to travel in pairs or packs. \\n\\nI've yet to experience a dog chasing me on my black GL1200I which\\nhas a pretty loud OEM horn (not as good as Fiamms, but good enuff)\\nbut the bike is large and heavy enough to run right over one of\\nthe smaller nippers while the larger ones would have trouble\\ngetting my leg between the saddlebags and engine guards. I'd\\ndef feel more vulnerable on my '68 Trump as that'd be easier\\nleg chewing target for those mongrels.\\n\\nIf there's a persistent dog running after bikers despite\\ncomplaints to the owner I wouldn't be adverse to running\\nover it with my truck as a dogs life isn't worth much IMHO\\ncompared to a child riding a bike who gets knocked to the\\nground by said dog and dies from a head injury. \\n\\nAny dog in the neighborhood that's vicious or a public menace\\nrunning about unleashed is fair game as road kill candidate.\\n\\nGraeme Harrison\\n(gharriso@hpcc01.corp.hp.com) DoD#649 \\n\\n\",\n", + " 'Subject: Re: Video in/out\\nFrom: djlewis@ualr.edu\\nOrganization: University of Arkansas at Little Rock\\nNntp-Posting-Host: athena.ualr.edu\\nLines: 40\\n\\nIn article <1993Apr18.080719.4773@nwnexus.WA.COM>, mscrap@halcyon.com (Marta Lyall) writes:\\n> Organization: \"A World of Information at your Fingertips\"\\n> Keywords: \\n> \\n> In article <628@toontown.columbiasc.ncr.com> craig@toontown.ColumbiaSC.NCR.COM (Craig S. Williamson) writes:\\n>>\\n>>I\\'m getting ready to buy a multimedia workstation and would like a little\\n>>advice. I need a graphics card that will do video in and out under windows.\\n>>I was originally thinking of a Targa+ but that doesn\\'t work under Windows.\\n>>What cards should I be looking into?\\n>>\\n>>Thanks,\\n>>Craig\\n>>\\n>>-- \\n>> \"To forgive is divine, to be\\n>>-Craig Williamson an airhead is human.\"\\n>> Craig.Williamson@ColumbiaSC.NCR.COM -Balki Bartokomas\\n>> craig@toontown.ColumbiaSC.NCR.COM (home) Perfect Strangers\\n> \\n> \\n> Craig,\\n> \\n> You should still consider the Targa+. I run windows 3.1 on it all the\\n> time at work and it works fine. I think all you need is the right\\n> driver. \\n> \\n> Josh West \\n> email: mscrap@halcyon.com\\n> \\nAT&T also puts out two new products for windows, Model numbers elude me now,\\na 15 bit video board with framegrabber and a 16bit with same. Yesterday I\\nwas looking at a product at a local Software ETC store. Media Vision makes\\na 15bit (32,768 color) frame capture board that is stand alone and doesnot\\nuse the feature connector on your existing video card. It claims upto 30 fps\\nlive capture as well as single frame from either composite NTSC or s-video\\nin and out.\\n\\nDon Lewis\\n\\n',\n", + " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Yeah, Right\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 49\\nDistribution: world\\nNNTP-Posting-Host: agar.engin.umich.edu\\n\\nIn article <66014@mimsy.umd.edu> mangoe@cs.umd.edu (Charley Wingate) writes:\\n>Benedikt Rosenau writes:\\n>\\n>>And what about that revelation thing, Charley?\\n>\\n>If you\\'re talking about this intellectual engagement of revelation, well,\\n>it\\'s obviously a risk one takes.\\n\\n Ah, now here is the core question. Let me suggest a scenario.\\n\\n We will grant that a God exists, and uses revelation to communicate\\nwith humans. (Said revelation taking the form (paraphrased from your\\nown words) \\'This infinitely powerful deity grabs some poor schmuck,\\nmakes him take dictation, and then hides away for a few hundred years\\'.)\\n Now, there exists a human who has not personally experienced a\\nrevelation. This person observes that not only do these revelations seem\\nto contain elements that contradict rather strongly aspects of the\\nobserved world (which is all this person has ever seen), but there are\\nmany mutually contradictory claims of revelation.\\n\\n Now, based on this, can this person be blamed for concluding, absent\\na personal revelation of their own, that there is almost certainly\\nnothing to this \\'revelation\\' thing?\\n\\n>I\\'m not an objectivist, so I\\'m not particularly impressed with problems of\\n>conceptualization. The problem in this case is at least as bad as that of\\n>trying to explain quantum mechanics and relativity in the terms of ordinary\\n>experience. One can get some rough understanding, but the language is, from\\n>the perspective of ordinary phenomena, inconsistent, and from the\\n>perspective of what\\'s being described, rather inexact (to be charitable).\\n>\\n>An analogous situation (supposedly) obtains in metaphysics; the problem is\\n>that the \"better\" descriptive language is not available.\\n\\n Absent this better language, and absent observations in support of the\\nclaims of revelation, can one be blamed for doubting the whole thing?\\n\\n Here is what I am driving at: I have thought a long time about this. I\\nhave come to the honest conclusion that if there is a deity, it is\\nnothing like the ones proposed by any religion that I am familiar with.\\n Now, if there does happen to be, say, a Christian God, will I be held\\naccountable for such an honest mistake?\\n\\n Sincerely,\\n\\n Ray Ingles ingles@engin.umich.edu\\n\\n \"The meek can *have* the Earth. The rest of us are going to the\\nstars!\" - Robert A. Heinlein\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nOrganization: Express Access Online Communications USA\\nLines: 7\\nNNTP-Posting-Host: access.digex.net\\n\\n Besides this was the same line of horse puckey the mining companies claimed\\nwhen they were told to pay for restoring land after strip mining.\\n\\nthey still mine coal in the midwest, but now it doesn't look like\\nthe moon when theyare done.\\n\\npat\\n\",\n", + " 'From: beck@irzr17.inf.tu-dresden.de (Andre Beck)\\nSubject: Re: Fonts in POV??\\nOrganization: Dept. of Computer Science, TU Dresden, Germany.\\nLines: 57\\nDistribution: world\\nReply-To: Andre_Beck@IRS.Inf.TU-Dresden.DE\\nNNTP-Posting-Host: irzr17.inf.tu-dresden.de\\nKeywords: fonts, raytrace\\n\\n\\nIn article <1qg9fc$et9@wampyr.cc.uow.edu.au>, g9134255@wampyr.cc.uow.edu.au (Coronado Emmanuel Abad) writes:\\n|> \\n|> \\n|> \\tI have seen several ray-traced scenes (from MTV or was it \\n|> RayShade??) with stroked fonts appearing as objects in the image.\\n|> The fonts/chars had color, depth and even textures associated with\\n|> them. Now I was wondering, is it possible to do the same in POV??\\n|> \\n\\nHi Noel,\\n\\nI\\'ve made some attempts to write a converter that reads Adobe Type 1 fonts,\\ntriangulates them, bevelizes them and extrudes them to result in a generic\\n3d object which could be used with PoV f.i.\\n\\nThe problem I\\'m currently stuck on is that theres no algorithm which\\ntriangulates any arbitrary polygonal shape. Delaunay seems to be limited\\nto convex hulls. Constrained delaunay may be okay, but I have no code\\nexample of how to do it.\\n\\nAnother way to do the bartman may be\\n\\n- TGA2POV\\n- A selfmade variation of this, using heightfields.\\n\\n Create a b/w picture (BIG) of the text you need, f.i. using a PostScript\\n previewer. Then, use this as a heightfield. If it is white on black,\\n the heightfield is exactly the images white parts (it\\'s still open\\n on the backside). To close it, mirror it and compound it with the original.\\n\\nExample:\\n\\nobject {\\n union {\\n height_field { gif \"abp2.gif\" }\\n height_field { gif \"abp2.gif\" scale <1 -1 1>}\\n }\\n texture {\\n Glass\\n }\\n translate <-0.5 0 -0.5> //center\\n rotate <-90 0 0> // rotate upwards\\n scale <10 5 100> // scale bigger and thicker\\n translate <0 2 0> // final placement\\n}\\n\\n\\nabp2.gif is a GIF of arbitrary size containing \"ABP\" black on white in\\nTimes-Roman 256 points.\\n\\n--\\n+-o-+--------------------------------------------------------------+-o-+\\n| o | \\\\\\\\\\\\- Brain Inside -/// | o |\\n| o | ^^^^^^^^^^^^^^^ | o |\\n| o | Andre\\' Beck (ABPSoft) mehl: Andre_Beck@IRS.Inf.TU-Dresden.de | o |\\n+-o-+--------------------------------------------------------------+-o-+\\n',\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: \"Conventional Proposales\": Israel & Palestinians\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 117\\n\\nIn article <2BCA3DC0.13224@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n>\\n>The latest Israeli \"proposal\", first proposed in February of 1992, contains \\n>the following assumptions concerning the nature of any \"interim status\" refering to the WB and Gaza, the Palestinians, implemented by negotiations. It\\n>states that: \\n> >Israel will remain the existing source of authority until \"final status\"\\n> is agreed upon;\\n> >Israel will negiotiate the delegation of power to the organs of the \\n> Interim Self-Government Arrangements (ISGA);\\n> >The ISGA will apply to the \"Palestinian inhabitants of the territories\"\\n> under Israeli military administration. The arrangements will not have a \\n> territorial application, nor will they apply to the Israeli population \\n> of the territories or to the Palestinian inhabitants of Jerusalem;\\n> >Residual powers not delegated under the ISGA will be reserved by Israel;\\n> >Israelis will continue to live and settle in the territoriesd;\\n> >Israel alone will have responsibility for security in all its aspects-\\n> external, internal- and for the maintenance of public order;\\n> >The organs of the ISGA will be of an administrative-functional nature;\\n> >The exercise of powers under the ISGA will be subject to cooperation and \\n> coordination with Israel. \\n> >Israel will negotiate delegation of powers and responsibilities in the \\n> areas of administration, justice, personnel, agriculture, education,\\n> business, tourism, labor and social welfare, local police,\\n> local transportation and communications, municipal affairs and religious\\n> affairs.\\n>\\n>The Palestinian counterproposal of March 1992:\\n> >The establishment of a Palestinian Interim Self-Governing Authority \\n> (PISGA) whose authority is vested by the Palestinian people;\\n> >Its (PISGA) powers cannot be delegated by Israel;\\n> >In the interim phase the Israeli military government and civil adminis-\\n> tration will be abolished, and the PISGA will asume the powers previous-\\n> ly enjoyed by Israel;\\n> >There will be no limitations on its (PISGA) powers and responsibilities \\n> \"except those which derive from its character as an interim arrangement\";\\n> >By the time PISGA is inaugurated, the Israeli armed forces will have \\n> completed their withdrawal to agreed points along the borders of the \\n> Occupied Palestinian Territory (OPT). The OPT includes Jerusalem;\\n> >The jurisdiction of the PISGA shall extend to all of the OPT, including \\n> its land, water and air space;\\n> >The PISGA shall have legislative powers to enact, amend and abrogate laws;\\n> >It will wield executive power withput foreign control;\\n> >It shall determine the nature of its cooperation with any state or \\n> international body, and shall be empowered to conclude binding coopera-\\n> tive agreements free of any control by Israel;\\n> >The PISGA shall administer justice throughout the OPT and will have sole\\n> and exclusive jruisdiction;\\n> >It will have a strong police force responsible for security and public\\n> order in the OPT;\\n> >It can request the assistance of a UN peacekeeping force;\\n> >Disputes with Israel over self-governing arrangements will be settled by \\n> a committee composed of representatives of the five permanent members of\\n> the UN Security Council, the Secretary General (of the UN), the PISGA, \\n> Jordan, Egypt, Syria and Israel.\\n>\\n>But perhaps the \"bargaining\" attitude behind these very different visions\\n>of the \"interim stage\" is wrong? For two reasons: 1) the present Palestinian \\n>and Israeli leadership are *as moderate* as is likely to exist for many years,\\n>so the present opportunity may be the last for a significant period, 2) since\\n>these negotiations *are not* designed to, or even attempting to, resolve the \\n>conflict, attention to issues dealing with a desired \"final status\" are mis-\\n>placed and potentially destructive.\\n>\\n>Given this, how should proposals (from either side) be altered to temper\\n>their \"maximalist\" approaches as stated above? How can Israeli worries ,and \\n>desire for some \"interim control\", be addressed while providing for a very \\n>*real* interim Palestinian self-governing entity?\\n>\\n>Tim\\n> \\nApril 13, 1993 response by Al Moore (L629159@LMSC5.IS.LMSC.LOCKHEED.COM):\\n\\nBasically the problem is that Israel may remain, or leave, the occupied \\nterritories; it cannot do both, it cannot do neither. So far, Israe \\ncontinues to propose that they remain. The Palestinians propose that they \\nleave. Why should either change their view? It is worth pointing out that \\nthe only area of compromise accomodating both views seems to require a\\nreduction in the Israeli presence. Israel proposes no such reduction....\\nand in fact may be said to *not* be negotiating.\\n------------------------------------------------------------------------\\n\\nTim: \\n\\nThere seem to be two perceptions that **have to be addressed**. The\\nfirst is that of Israel, where there is little trust for Arab groups, so\\nthere is little support for Israel giving up **tangible** assets in \\nexchange for pieces of paper, \"expectations\", \"hopes\", etc. The second\\nis that of the Arab world/Palestinians, where there is the demand that\\nthese \"tangible concessions\" be made by Israel **without** it receiving\\nanything **tangible** back. Given this, the gap between the two stances\\nseems to be the need by Israel of receiving some ***tangible*** returns\\nfor its expected concessions. By \"tangible\" is meant something that\\n1) provides Israel with \"comparable\" protection (from the land it is to \\ngive up), 2) in some way ensures that the Arab states and Palestine \\n**will be** accountable and held actively (not just \"diplomatically) \\nresponsible for the upholding of all actions on its territory (by citizens \\nor \"visitors\").\\n\\nIn essence I do not believe that Israel objections to Palestinian\\nstatehood would be anywhere near as strong as they are now IF Israel\\nwas assured that any new Palestinian state *would be committed to** \\nco-existing with Israel and held responsible for ALL attacks on Israel \\nfrom its territory.\\n\\tAside from some of the rather slanted proposals above,\\n\\thow *could* such \"guarantees\" be instilled? For example,\\n\\thow could such \"guarantees\"/\"controls\" be added to the\\n\\tPalestinian PISGA proposals?\\n\\nIsrael is hanging on largely because it is scared stiff that the minute\\nit lets go (gives lands back to Arab states, no more \"buffer zone\", gives\\nfull autonomy to Palestinians), ANY and/or ALL of the Arab parties\\ncould (and *would*, if not \"controlled\" somehow) EASILY return to the \\ntraditional anti-Israel position. The question then is HOW to *really*\\nensure that that will not happen.\\n\\nTim\\n\\n',\n", + " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: Re: Israel\\'s Expansion\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 34\\n\\n\\nIn article <18APR93.15729846.0076@VM1.MCGILL.CA>, B8HA000 writes:\\n>Just a couple of questions for the pro-Israeli lobby out there:\\n>\\n>1) Is Israel\\'s occupation of Southern Lebanon temporary? For Mr.\\n>Stein: I am working on a proof for you that Israel is diverting\\n>water to the Jordan River (away from Lebanese territory).\\n\\nYes. As long as the goverment over there can force some authority and prevent\\nterrorists attack against Israel. \\n\\n>\\n>2) Is Israel\\'s occupation of the West Bank, Gaza, and Golan\\n>temporary? If so (for those of you who support it), why were so\\n>many settlers moved into the territories? If it is not temporary,\\n>let\\'s hear it.\\n\\nSinai had several big cities that were avcuated when isreal gave it back to\\nEgypth, but for a peace agreement. So it is my opinin that the settlers will not\\nbe an obstacle for withdrawal as long it is combined with a real peace agreement\\nwith the Arabs and the Palastinians.\\n\\n>\\n>Steve\\n>\\n\\n\\nNaftaly\\n\\n---\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", + " \"From: sproulx@bmtlh204.BNR.CA (Stephane Proulx)\\nSubject: Re: Cobra Locks\\nReply-To: sproulx@bmtlh204.BNR.CA (Stephane Proulx)\\nOrganization: Bell-Northern Research Ltd.\\nLines: 105\\n\\n\\nYou may find it useful.\\n(This is a repost. The original sender is at the bottom.)\\n-------------------cut here--------------------------------------------------\\nArticle 39994 of rec.motorcycles:\\nPath:\\nscrumpy!bnrgate!corpgate!news.utdallas.edu!hermes.chpc.utexas.edu!cs.ute\\nexas.edu!swrinde!mips!pacbell.com!iggy.GW.Vitalink.COM!widener!eff!ibmpc\\ncug!pipex!unipalm!uknet!cf-cm!cybaswan!eeharvey\\nFrom: eeharvey@cybaswan.UUCP (i t harvey)\\nNewsgroups: rec.motorcycles\\nSubject: Re: Best way to lock a bike ?\\nMessage-ID: <861@cybaswan.UUCP>\\nDate: 15 Jul 92 09:47:10 GMT\\nReferences: <1992Jul14.165538.9789@usenet.ins.cwru.edu>\\nLines: 84\\n\\n\\nThese are the figures from the Performance Bikes lock test, taken without\\npermission of course. The price is for comparison. All the cable locks\\nhave some sort of armour, the chain locks are padlock and chain. Each\\nlock was tested for a maximum of ten minutes (600 secs) for each test:\\n\\n\\tBJ\\tBottle jack\\n\\tCD\\tCutting disc\\n\\tBC\\tBolt croppers\\n\\tGAS\\tGas flame\\n\\nThe table should really be split into immoblisers (for-a-while) and\\nlock-to-somethings (for-a-short-while) to make comparisons.\\n\\n\\t\\tType\\tWeight\\tBJ\\tCD\\tBC\\tGAS\\tTotal\\tPrice\\n\\t\\t\\t(kg)\\t(sec)\\t(sec)\\t(sec)\\t(sec)\\t(sec)\\t(Pounds)\\n========================================================================\\n=========\\n3-arm\\t\\tFolding\\t.8\\t53\\t5\\t13\\t18\\t89\\t26\\nCyclelok\\tbar\\n\\nAbus Steel-o-\\tCable\\t1.4\\t103\\t4\\t20\\t26\\t153\\t54\\nflex\\n\\nOxford\\t\\tCable\\t2.0\\t360\\t4\\t32\\t82\\t478\\t38\\nRevolver\\n\\nAbus Diskus\\tChain\\t2.8\\t600\\t7\\t40\\t26\\t675\\t77\\n\\n6-arm\\t\\tFolding\\t1.8\\t44\\t10\\t600\\t22\\t676\\t51\\nCyclelok\\tbar\\n\\nAbus Extra\\tU-lock\\t1.2\\t600\\t10\\t120\\t52\\t782\\t44\\n\\nCobra\\t\\tCable\\t6.0(!)\\t382\\t10\\t600\\t22\\t1014\\t150\\n(6ft)\\n\\nAbus closed\\tChain\\t4.0\\t600\\t11\\t600\\t33\\t1244\\t100\\nshackle\\t\\n\\nKryptonite\\tU-lock\\t2.5\\t600\\t22\\t600\\t27\\t1249\\t100\\nK10\\n\\nOxford\\t\\tU-lock\\t2.0\\t600\\t7\\t600\\t49\\t1256\\t38\\nMagnum\\n\\nDisclock\\tDisc\\t.7\\tn/a\\t44\\tn/a\\t38\\t1282\\t43\\n\\t\\tlock\\n\\nAbus 58HB\\tU-lock\\t2.5\\t600\\t26\\t600\\t64\\t1290\\t100\\n\\nMini Block\\tDisc\\t.65\\tn/a\\t51\\tn/a\\t84\\t1335\\t50\\n\\t\\tlock\\n========================================================================\\n=========\\n\\nPretty depressing reading. I think a good lock and some common sense about\\nwhere and when you park your bike is the only answer. I've spent all my\\nspare time over the last two weeks landscaping (trashing) the garden of\\nmy (and two friends with bikes) new house to accommodate our three bikes in\\nrelative security (never underestimate how much room a bike requires to\\nmanouver in a walled area :( ). Anyway, since the weekend there are only two\\nbikes :( and no, he didn't use his Abus closed shackle lock, it was too much\\nhassle to take with him when visiting his parents. A minimum wait of 8\\nweeks (if they don't decide to investigate) for the insurance company\\nto make an offer and for the real haggling to begin.\\n\\nAbus are a German company and it would seem not well represented in the US\\nbut very common in the UK. The UK distributor, given in the above article\\nis:\\n\\tMichael Brandon Ltd,\\n\\t15/17 Oliver Crescent,\\n\\tHawick,\\n\\tRoxburgh TD9 9BJ.\\n\\tTel. 0450 73333\\n\\nThe UK distributors for the other locks can also given if required.\\n\\nDon't lose it\\n\\tIan\\n\\n-- \\n_______________________________________________________________________\\n Ian Harvey, University College Swansea Too old to rock'n'roll\\n eeharvey@uk.ac.swan.pyr Too young to die\\n '79 GS750E \\n\\n\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Morality? (was Re: >>Explain to me\\n>>>how instinctive acts can be moral acts, and I am happy to listen.\\n>>For example, if it were instinctive not to murder...\\n>Then not murdering would have no moral significance, since there\\n>would be nothing voluntary about it.\\n\\nSee, there you go again, saying that a moral act is only significant\\nif it is \"voluntary.\" Why do you think this?\\n\\nAnd anyway, humans have the ability to disregard some of their instincts.\\n\\n>>So, only intelligent beings can be moral, even if the bahavior of other\\n>>beings mimics theirs?\\n>You are starting to get the point. Mimicry is not necessarily the \\n>same as the action being imitated. A Parrot saying \"Pretty Polly\" \\n>isn\\'t necessarily commenting on the pulchritude of Polly.\\n\\nYou are attaching too many things to the term \"moral,\" I think.\\nLet\\'s try this: is it \"good\" that animals of the same species\\ndon\\'t kill each other. Or, do you think this is right? \\n\\nOr do you think that animals are machines, and that nothing they do\\nis either right nor wrong?\\n\\n\\n>>Animals of the same species could kill each other arbitarily, but \\n>>they don\\'t.\\n>They do. I and other posters have given you many examples of exactly\\n>this, but you seem to have a very short memory.\\n\\nThose weren\\'t arbitrary killings. They were slayings related to some sort\\nof mating ritual or whatnot.\\n\\n>>Are you trying to say that this isn\\'t an act of morality because\\n>>most animals aren\\'t intelligent enough to think like we do?\\n>I\\'m saying:\\n>\\t\"There must be the possibility that the organism - it\\'s not \\n>\\tjust people we are talking about - can consider alternatives.\"\\n>It\\'s right there in the posting you are replying to.\\n\\nYes it was, but I still don\\'t understand your distinctions. What\\ndo you mean by \"consider?\" Can a small child be moral? How about\\na gorilla? A dolphin? A platypus? Where is the line drawn? Does\\nthe being need to be self aware?\\n\\nWhat *do* you call the mechanism which seems to prevent animals of\\nthe same species from (arbitrarily) killing each other? Don\\'t\\nyou find the fact that they don\\'t at all significant?\\n\\nkeith\\n',\n", + " \"From: hesh@cup.hp.com (Chris Steinbroner)\\nSubject: Re: Tracing license plates of BDI cagers?\\nArticle-I.D.: cup.C535HL.C6H\\nReply-To: Chris Steinbroner \\nOrganization: HP-UX Kernel Lab, Cupertino, CA\\nLines: 12\\nNntp-Posting-Host: hesh.cup.hp.com\\nX-Newsreader: TIN [version 1.1 PL9.1]\\n\\nCurtis Jackson (cjackson@adobe.com) wrote:\\n: The driver had looked over at me casually a couple of times; I\\n: know he knew I was there.\\n\\noh, okay. then in that case it was\\nattemped vehicular manslaughter.\\nhe definitely wanted to kill you.\\nall cagers want to kill bikers.\\nthat's the only explanation that\\ni can think of.\\n\\n-- hesh\\n\",\n", + " \"From: halat@pooh.bears (Jim Halat)\\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 37\\n\\nIn article <30121@ursa.bear.com>, halat@pooh.bears (Jim Halat) writes:\\n>In article <115288@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n>>\\n>>He'd have to be precise about is rejection of God and his leaving Islam.\\n>>One is perfectly free to be muslim and to doubt and question the\\n>>existence of God, so long as one does not _reject_ God. I am sure that\\n>>Rushdie has be now made his atheism clear in front of a sufficient \\n>>number of proper witnesses. The question in regard to the legal issue\\n>>is his status at the time the crime was committed. \\n>\\n\\nI'll also add that it is impossible to actually tell when one\\n_rejects_ god. Therefore, you choose to punish only those who\\n_talk_ about it. \\n\\n>\\n>-jim halat \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n\",\n", + " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: Newbie\\nOrganization: NASA Science Internet Project Office\\nLines: 16\\n\\nIn article , os048@xi.cs.fsu.edu () writes:\\n|> hey there,\\n|> Yea, thats what I am....a newbie. I have never owned a motorcycle,\\n\\nThis makes 5! It IS SPRING!\\n\\n|> Matt\\n|> PS I am not really sure what the purpose of this article was but...oh well\\n\\nNeither were we. Read for a few days, then try again.\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", + " \"From: valo@cvtstu.cvt.stuba.cs (Valo Roman)\\nSubject: Re: Text Recognition software availability\\nOrganization: Slovak Technical University Bratislava, Slovakia\\nLines: 23\\nNNTP-Posting-Host: sk2eu.eunet.sk\\nReplyTo: valo@cvtstu.cvt.stuba.cs (Valo Roman)\\n\\nIn article , ab@nova.cc.purdue.edu (Allen B) writes:\\n|> One more time: is there any >free< OCR software out there?\\n|>\\n|> I ask this question periodically and haven't found anything. This is\\n|> the last time. If I don't find anything, I'm going to write some\\n|> myself.\\n|> \\n|> Post here or email me if you have any leads or suggestions, else just\\n|> sit back and wait for me. :)\\n|> \\n|> ab\\n\\nI'm not sure if this is free or shareware, but you can try to look to wsmrsimtel20.army.mil,\\ndirectory PD1: file OCR104.ZIP .\\nFrom the file SIMIBM.LST :\\nOCR104.ZIP B 93310 910424 Optical character recognition for scanners.\\n\\nHope this helps.\\n\\nRoman Valo valo@cvt.stuba.cs\\nSlovak Technical University\\nBratislava \\nSlovakia\\n\",\n", + " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: Investment in Yehuda and Shomron\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , horen@netcom.com (Jonathan B. Horen) writes:\\n|> \\n|> While I applaud investing of money in Yehuda, Shomron, v\\'Chevel-Azza,\\n|> in order to create jobs for their residents, I find it deplorable that\\n|> this has never been an active policy of any Israeli administration\\n|> since 1967, *with regard to their Jewish residents*. Past governments\\n|> found funds to subsidize cheap (read: affordable) housing and the\\n|> requisite infrastructure, but where was the investment for creating\\n|> industry (which would have generated income *and* jobs)? \\n\\nThe investment was there in the form of huge tax breaks, and employer\\nbenfits. You are overlooking the difference that these could have\\nmade to any company. Part of the problem was that few industries\\nwere interested in political settling, as much as profit.\\n\\n|> After 26 years, Yehuda and Shomron remain barren, bereft of even \\n|> middle-sized industries, and the Jewish settlements are sterile\\n|> \"bedroom communities\", havens for (in the main) Israelis (both\\n|> secular *and* religious) who work in Tel-Aviv or Jerusalem but\\n|> cannot afford to live in either city or their surrounding suburbs.\\n\\nTrue, which leads to the obvious question, should any investment have\\nbeen made there at the taxpayer\\'s expense. Obviously, the answer was\\nand still is a resounding no.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n',\n", + " \"From: house@helios.usq.EDU.AU (ron house)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nOrganization: University of Southern Queensland\\nLines: 42\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tFirst I want to start right out and say that I'm a Christian. It \\n\\nI _know_ I shouldn't get involved, but... :-)\\n\\n[bit deleted]\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n>\\tSome reasons why he wouldn't be a liar are as follows. Who would \\n>die for a lie? Wouldn't people be able to tell if he was a liar? People \\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy. Very doubtful, in fact rediculous. For example \\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn't a liar or a lunatic, he must have been the \\n>real thing. \\n\\nRighto, DAN, try this one with your Cornflakes...\\n\\nThe book says that Muhammad was either a liar, or he was crazy ( a \\nmodern day Mad Mahdi) or he was actually who he said he was.\\nSome reasons why he wouldn't be a liar are as follows. Who would \\ndie for a lie? Wouldn't people be able to tell if he was a liar? People \\ngathered around him and kept doing it, many gathered from hearing or seeing \\nhow his son-in-law made the sun stand still. Call me a fool, but I believe \\nhe did make the sun stand still. \\nNiether was he a lunatic. Would more than an entire nation be drawn \\nto someone who was crazy. Very doubtful, in fact rediculous. For example \\nanyone who is drawn to the Mad Mahdi is obviously a fool, logical people see \\nthis right away.\\nTherefore since he wasn't a liar or a lunatic, he must have been the \\nreal thing. \\n\\n--\\n\\nRon House. USQ\\n(house@helios.usq.edu.au) Toowoomba, Australia.\\n\",\n", + " \"From: B8HA \\nSubject: Re: Israel's Expansion II\\nLines: 24\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nIn article <1993Apr22.093527.15720@donau.et.tudelft.nl> avi@duteinh.et.tudelft.nl (Avi Cohen Stuart) writes:\\n>From article <93111.225707PP3903A@auvm.american.edu>, by Paul H. Pimentel :\\n>> What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n>> s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n>> k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n>> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n>> ore they have a right to Jerusaleum as much as Isreal does.\\n>\\n>\\n>There is one big difference between Israel and the Arabs, Christians in this\\n>respect.\\n>\\n>Israel allows freedom of religion.\\n>\\n>Avi.\\n>.\\n>.\\nAvi,\\n For your information, Islam permits freedom of religion - there is\\nno compulsion in religion. Does Judaism permit freedom of religion\\n(i.e. are non-Jews recognized in Judaism). Just wondering.\\n\\nSteve\\n\\n\",\n", + " \"From: jk87377@lehtori.cc.tut.fi (Kouhia Juhana)\\nSubject: Re: More gray levels out of the screen\\nOrganization: Tampere University of Technology\\nLines: 21\\nDistribution: inet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn article <1993Apr6.011605.909@cis.uab.edu> sloan@cis.uab.edu\\n(Kenneth Sloan) writes:\\n>\\n>Why didn't you create 8 grey-level images, and display them for\\n>1,2,4,8,16,32,64,128... time slices?\\n\\nBy '8 grey level images' you mean 8 items of 1bit images?\\nIt does work(!), but it doesn't work if you have more than 1bit\\nin your screen and if the screen intensity is non-linear.\\n\\nWith 2 bit per pixel; there could be 1*c_1 + 4*c_2 timing,\\nthis gives 16 levels, but they are linear if screen intensity is\\nlinear.\\nWith 1*c_1 + 2*c_2 it works, but we have to find the best\\ncompinations -- there's 10 levels, but 16 choises; best 10 must be\\nchosen. Different compinations for the same level, varies a bit, but\\nthe levels keeps their order.\\n\\nReaders should verify what I wrote... :-)\\n\\nJuhana Kouhia\\n\",\n", + " \"From: gfk39017@uxa.cso.uiuc.edu (George F. Krumins)\\nSubject: Re: space news from Feb 15 AW&ST\\nOrganization: University of Illinois at Urbana\\nLines: 23\\n\\njbreed@doink.b23b.ingr.com (James B. Reed) writes:\\n\\n>In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>|> [Pluto's] atmosphere will start to freeze out around 2010, and after about\\n>|> 2005 increasing areas of both Pluto and Charon will be in permanent\\n>|> shadow that will make imaging and geochemical mapping impossible.\\n\\nIt's my understanding that the freezing will start to occur because of the\\ngrowing distance of Pluto and Charon from the Sun, due to it's\\nelliptical orbit. It is not due to shadowing effects. \\n\\n>Where does the shadow come from? There's nothing close enough to block\\n>sunlight from hitting them. I wouldn't expect there to be anything block\\n>our view of them either. What am I missing?\\n\\nPluto can shadow Charon, and vice-versa.\\n\\nGeorge Krumins\\n-- \\n--------------------------------------------------------------------------------\\n| George Krumins |\\n| gfk39017@uxa.cso.uiuc.edu |\\n| Pufferfish Observatory |\\n\",\n", + " 'From: Mark A. Cartwright \\nSubject: Re: TIFF: philosophical significance of 42 (SILLY)\\nOrganization: University of Texas @ Austin, Comp. Center\\nLines: 21\\nDistribution: world\\nNNTP-Posting-Host: aliester.cc.utexas.edu\\nX-UserAgent: Nuntius v1.1\\n\\nWell,\\n\\n42 is 101010 binary, and who would forget that its the\\nanswer to the Question of \"Life, the Universe, and Everything else.\"\\nThat is to quote Douglas Adams in a round about way.\\n\\nOf course the Question has not yet been discovered...\\n\\n--\\nMark A. Cartwright, N5SNP\\nUniversity of Texas @ Austin\\nComputation Center, Graphics Facility\\nmarkc@emx.utexas.edu\\nmarkc@sirius.cc.utexas.edu\\nmarkc@hermes.chpc.utexas.edu\\n(512)-471-3241 x 362\\n\\nPP-ASEL 9-92\\n\\na.) \"Often in error, never in doubt.\"\\nb.) \"This situation has no gravity, I would like a refund please.\"\\n',\n", + " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Nazi Eugenic Theories Circulated by CPR => (unconventianal peace)\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 36\\n\\nIn article <1993Apr19.223054.10273@cirrus.com> chrism@cirrus.com (Chris Metcalfe) writes:\\n>Now we have strong evidence of where the CPR really stands.\\n>Unbelievable and disgusting. It only proves that we must\\n>never forget...\\n>\\n>\\n>>A unconventional proposal for peace in the Middle-East.\\n>\\n>Not so unconventional. Eugenic solutions to the Jewish Problem\\n>have been suggested by Northern Europeans in the past.\\n>\\n> Eugenics: a science that deals with the improvement (as by\\n> control of human mating) of hereditory qualities of race\\n> or breed. -- Webster's Ninth Collegiate Dictionary.\\n>\\n>>I would be thankful for critical comments to the above proposal as\\n>>well for any dissemination of this proposal for meaningful\\n>>discussion and enrichment.\\n>>\\n>>Elias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n>\\n>Critical comment: you can take the Nazi flag and Holocaust photos\\n>off of your bedroom wall, Elias; you'll never succeed.\\n>\\n>-- Chris Metcalfe\\n\\nChris, solid job at discussing the inherent Nazism in Mr. Davidsson's post.\\nOddly, he has posted an address for hate mail, which I think we should\\nall utilize. And Elias,\\n\\nWie nur dem Koph nicht alle Hoffnung schwindet,\\nDer immerfort an schalem Zeuge klebt?\\n\\nPeace,\\npete\\n\\n\",\n", + " ' zaphod.mps.ohio-state.edu!wupost!uunet!olivea!sgigate!odin!fido!solntze.wpd.sgi.com!livesey\\nSubject: Re: <1p88fi$4vv@fido.asd.sgi.com> \\n <1993Mar30.051246.29911@blaze.cs.jhu.edu> <1p8nd7$e9f@fido.asd.sgi.com> <1pa0stINNpqa@gap.caltech.edu> <1pan4f$b6j@fido.asd.sgi.com>\\nOrganization: sgi\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\nLines: 20\\n\\nIn article <1pieg7INNs09@gap.caltech.edu>, keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >Now along comes Mr Keith Schneider and says \"Here is an \"objective\\n|> >moral system\". And then I start to ask him about the definitions\\n|> >that this \"objective\" system depends on, and, predictably, the whole\\n|> >thing falls apart.\\n|> \\n|> It only falls apart if you attempt to apply it. This doesn\\'t mean that\\n|> an objective system can\\'t exist. It just means that one cannot be\\n|> implemented.\\n\\nIt\\'s not the fact that it can\\'t exist that bothers me. It\\'s \\nthe fact that you don\\'t seem to be able to define it.\\n\\nIf I wanted to hear about indefinable things that might in\\nprinciple exist as long as you don\\'t think about them too\\ncarefully, I could ask a religious person, now couldn\\'t I?\\n\\njon.\\n',\n", + " \"From: mrf4276@egbsun12.NoSubdomain.NoDomain (Matthew R. Feulner)\\nSubject: Re: Lunar Colony Race! By 2005 or 2010?\\nNntp-Posting-Host: egbsun12.draper.com\\nOrganization: Draper Laboratory\\nLines: 18\\n\\nIn article <1993Apr20.234427.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\\n|> Okay here is what I have so far:\\n|> \\n|> Have a group (any size, preferibly small, but?) send a human being to the moon,\\n|> set up a habitate and have the human(s) spend one earth year on the moon. Does\\n|> that mean no resupply or ?? \\n|> \\n|> Need to find atleast $1billion for prize money.\\n\\n\\nMy first thought is Ross Perot. After further consideration, I think he'd\\nbe more likely to try to win it...but come in a disappointing third.\\n\\nTry Bill Gates. Try Sam Walton's kids.\\n\\nMatt\\n\\nmatthew_feulner@qmlink.draper.com\\n\",\n", + " 'From: wawers@lif.de (Theo Wawers)\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Lahmeyer International, Frankfurt\\nLines: 15\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\n\\nThere is a nice little tool in Lucid emacs. It\\'s called \"calendar\".\\nOn request it shows for given longitude/latitude coordinates times for\\nsunset and sunrise. The code is written in lisp.\\nI don\\'t know if you like the idea that an editor is the right program to\\ncalculate these things.\\n\\n\\nTheo W.\\n\\nTheo Wawers LAHMEYER INTERNATIONAL GMBH\\nemail : wawers@sunny.lif.de Lyonerstr. 22\\nphone : +49 69 66 77 639 D-6000 Frankfurt/Main\\nfax : +49 69 66 77 571 Germany\\n\\n',\n", + " 'From: eder@hsvaic.boeing.com (Dani Eder)\\nSubject: Re: NASP\\nDistribution: sci\\nOrganization: Boeing AI Center, Huntsville, AL\\nLines: 39\\n\\nI have before me a pertinent report from the United States General\\nAccounting Office:\\n\\nNational Aero-Space Plane: Restructuring Future Research and Development\\nEfforts\\nDecember 1992\\nReport number GAO/NSIAD-93-71\\n\\nIn the back it lists the following related reports:\\n\\nNASP: Key Issues Facing the Program (31 Mar 92) GAO/T-NSIAD-92-26\\n\\nAerospace Plane Technology: R&D Efforts in Japan and Australia\\n(4 Oct 91) GAO/NSIAD-92-5\\n\\nAerospace Plane Technology: R&D Efforts in Europe (25 July 91)\\nGAO/NSIAD-91-194\\n\\nAerospace Technology: Technical Data and Information on Foreign\\nTest Facilities (22 Jun 90) GAO/NSIAD-90-71FS\\n\\nInvestment in Foreign Aerospace Vehicle Research and Technological\\nDevelopment Efforts (2 Aug 89) GAO/T-NSIAD-89-43\\n\\nNASP: A Technology Development and Demonstration Program to Build\\nthe X-30 (27 Apr 88) GAO/NSIAD-88-122\\n\\n\\nOn the inside back cover, under \"Ordering Information\" it says\\n\\n\"The first copy of each GAO report is free. . . . Orders\\nmay also be placed by calling (202)275-6241\\n\"\\n\\nDani\\n\\n-- \\nDani Eder/Meridian Investment Company/(205)464-2697(w)/232-7467(h)/\\nRt.1, Box 188-2, Athens AL 35611/Location: 34deg 37\\' N 86deg 43\\' W +100m alt.\\n',\n", + " \"From: jamesf@apple.com (Jim Franklin)\\nSubject: Re: Tracing license plates of BDI cagers?\\nOrganization: Apple Computer, Inc.\\nLines: 30\\n\\nIn article <1993Apr09.182821.28779@i88.isc.com>, jeq@lachman.com (Jonathan\\nE. Quist) wrote:\\n> \\n\\n> You could file a complaint for dangerous operation of a motor vehicle,\\n> and sign it. Be willing to show up in court if it comes to it.\\n\\nNo... you can do this? Really? The other morning I went to do a lane change\\non the freeway and looked in my mirror, theer was a car there, but far\\nenough behind. I looked again about 3-5 seconds later, car still in same\\nposition, i.e. not accelerating. I triple check with a head turn and decide\\nI have plenty of room, so I do it, accelerating. I travel about 1/4 mile\\nstaying ~200\\nfeet off teh bumper of the car ahead, and I do a casual mirror check. This\\nguy is RIGHT on my tail, I mean you couldn't stick a hair between my tire &\\nhis fender. I keep looking in the mirror at him a,d slowly let off teh\\nthrottle. He stays there until I had lost about 15mph and then comes around\\nme and cuts me off big time. I follow him for about 10 miles and finally\\nget bored and turn back into work. \\n\\nI can file a complaint about this? And actually have the chance to have\\nsomething done? How? Who? Where?\\n\\njim\\n\\n* Jim Franklin * jamesf@apple.com Jim Bob & Sons *\\n* 1987 Cagiva Alazzurra 650 | .signature remodling *\\n* 1969 Triumph 650 (slalom champ) | Low price$ Quality workman- * \\n* DoD #469 KotP(un) | ship * \\n Call today for free estimit\\n\",\n", + " 'From: bobc@sed.stel.com (Bob Combs)\\nSubject: Re: Blow up space station, easy way to do it.\\nOrganization: SED, Stanford Telecom, Reston, VA 22090\\nLines: 16\\n\\nIn article <1993Apr5.184527.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>This might a real wierd idea or maybe not..\\n>\\n>\\n>Why musta space station be so difficult?? why must we have girders? why be\\n>confined to earth based ideas, lets think new ideas, after all space is not\\n>earth, why be limited by earth based ideas??\\n>\\nChoose any or all of the following as an answer to the above:\\n \\n\\n1. Politics\\n2. Traditions\\n3. Congress\\n4. Beauracrats\\n\\n',\n", + " 'From: nerone@ccwf.cc.utexas.edu (Michael Nerone)\\nSubject: Re: Newsgroup Split\\nOrganization: The University of Texas at Austin\\nLines: 25\\nDistribution: world\\n\\t<1993Apr19.193758.12091@unocal.com>\\n\\t<1quvdoINN3e7@srvr1.engin.umich.edu>\\nNNTP-Posting-Host: sylvester.cc.utexas.edu\\nIn-reply-to: tdawson@engin.umich.edu\\'s message of 19 Apr 1993 19:43:52 GMT\\n\\nIn article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n\\n CH> Concerning the proposed newsgroup split, I personally am not in\\n CH> favor of doing this. I learn an awful lot about all aspects of\\n CH> graphics by reading this group, from code to hardware to\\n CH> algorithms. I just think making 5 different groups out of this\\n CH> is a wate, and will only result in a few posts a week per group.\\n CH> I kind of like the convenience of having one big forum for\\n CH> discussing all aspects of graphics. Anyone else feel this way?\\n CH> Just curious.\\n\\nI must agree. There is a dizzying number of c.s.amiga.* newsgroups\\nalready. In addition, there are very few issues which fall cleanly\\ninto one of these categories.\\n\\nAlso, it is readily observable that the current spectrum of amiga\\ngroups is already plagued with mega-crossposting; thus the group-split\\nwould not, in all likelihood, bring about a more structured\\nenvironment.\\n\\n--\\n /~~~~~~~~~~~~~~~~~~~\\\\/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\\\\\n / Michael Nerone \\\\\"I shall do so with my customary lack of tact; and\\\\\\n / Internet Address: \\\\since you have asked for this, you will be obliged\\\\\\n/nerone@ccwf.cc.utexas.edu\\\\to pardon it.\"-Sagredo, fictional char of Galileo.\\\\\\n',\n", + " \"From: lmp8913@rigel.tamu.edu (PRESTON, LISA M)\\nSubject: Another CVIEW question (was CView answers)\\nOrganization: Texas A&M University, Academic Computing Services\\nLines: 12\\nDistribution: world\\nNNTP-Posting-Host: rigel.tamu.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\n\\n\\tHas anybody gotten CVIEW to work in 32k or 64k color mode on a Trident\\n8900c hi-color card? At best the colors come out screwed up, and at worst the \\nprogram hangs. I loaded the VESA driver, and the same thing happens on 2 \\ndifferent machines.\\n\\n\\tIf it doesn't work on the Trident, does anybody know of a viewer that \\ndoes?\\n\\nThanx!\\nLISA \\n\\n\",\n", + " 'From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)\\nSubject: Re: New Member\\nNntp-Posting-Host: crchh410\\nOrganization: BNR, Inc.\\nLines: 47\\n\\nIn article , dfuller@portal.hq.videocart.com (Dave Fuller) writes:\\n|> Hello. I just started reading this group today, and I think I am going\\n|> to be a large participant in its daily postings. I liked the section of\\n|> the FAQ about constructing logical arguments - well done. I am an atheist,\\n|> but I do not try to turn other people into atheists. I only try to figure\\n|> why people believe the way they do - I don\\'t much care if they have a \\n|> different view than I do. When it comes down to it . . . I could be wrong.\\n|> I am willing to admit the possibility - something religious followers \\n|> dont seem to have the capability to do.\\n\\nWelcome aboard!\\n\\n|> \\n|> I notice alot of posts from Bobby. Why does anybody ever respond to \\n|> his posts ? He always falls back on the same argument:\\n\\n(I think you just answered your own question, there)\\n\\n|> \\n|> \"If the religion is followed it will cause no bad\"\\n|> \\n|> He is right. Just because an event was explained by a human to have been\\n|> done \"in the name of religion\", does not mean that it actually followed\\n|> the religion. He will always point to the \"ideal\" and say that it wasn\\'t\\n|> followed so it can\\'t be the reason for the event. There really is no way\\n|> to argue with him, so why bother. Sure, you may get upset because his \\n|> answer is blind and not supported factually - but he will win every time\\n|> with his little argument. I don\\'t think there will be any postings from\\n|> me in direct response to one of his.\\n\\nMost responses were against his postings that spouted the fact that\\nall atheists are fools/evil for not seeing how peachy Islam is.\\nI would leave the pro/con arguments of Islam to Fred Rice, who is more\\nlevel headed and seems to know more on the subject, anyway.\\n\\n|> \\n|> Happy to be aboard !\\n\\nHow did you know I was going to welcome you abord?!?\\n\\n|> \\n|> Dave Fuller\\n|> dfuller@portal.hq.videocart.com\\n|> \\n|> \\n\\nBrian /-|-\\\\\\n',\n", + " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Happy Birthday Israel!\\nOrganization: University of Illinois at Urbana\\nLines: 2\\n\\nIsrael - Happy 45th Birthday!\\n\\n',\n", + " 'From: ken@sugra.uucp (Kenneth Ng)\\nSubject: Re: nuclear waste\\nOrganization: Private Computer, Totowa, NJ\\nLines: 18\\n\\nIn article <1993Mar31.191658.9836@mksol.dseg.ti.com: mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n:Just a bit off, Phil. We don\\'t reprocess nuclear fuel because what\\n:you get from the reprocessing plant is bomb-grade plutonium. It is\\n:also cheaper, given current prices of things, to simply fabricate new\\n:fuel rods rather than reprocess the old ones, creating potentially\\n:dangerous materials (from a national security point of view) and then\\n:fabricate that back into fuel rods.\\n\\nFabricating with reprocessed plutonium may result in something that may go\\nkind of boom, but its hardly decent bomb grade plutonium. If you want bomb\\ngrade plutonium use a research reactor, not a power reactor. But if you want\\na bomb, don\\'t use plutonium, use uranium.\\n\\n-- \\nKenneth Ng\\nPlease reply to ken@eies2.njit.edu for now.\\n\"All this might be an elaborate simulation running in a little device sitting\\non someone\\'s table\" -- J.L. Picard: ST:TNG\\n',\n", + " 'From: pmoloney@maths.tcd.ie (Paul Moloney)\\nSubject: Re: THE POPE IS JEWISH!\\nOrganization: Somewhere in the Twentieth Century\\nLines: 47\\n\\nwest@next02cville.wam.umd.edu (Stilgar) writes:\\n\\n>The pope is jewish.... I guess they\\'re right, and I always thought that\\n>the thing on his head was just a fancy hat, not a Jewish headpiece (I\\n>don\\'t remember the name). It\\'s all so clear now (clear as mud.)\\n\\nAs to what that headpiece is....\\n\\n(by chort@crl.nmsu.edu)\\n\\nSOURCE: AP NEWSWIRE\\n\\nThe Vatican, Home Of Genetic Misfits?\\n\\nMichael A. Gillow, noted geneticist, has revealed some unusual data\\nafter working undercover in the Vatican for the past 18 years. \"The\\nPopehat(tm) is actually an advanced bone spur.\", reveals Gillow in his\\ngroundshaking report. Gillow, who had secretly studied the innermost\\nworkings of the Vatican since returning from Vietnam in a wheel chair,\\nfirst approached the scientific community with his theory in the late\\n1950\\'s.\\n\\n\"The whole hat thing, that was just a cover up. The Vatican didn\\'t\\nwant the Catholic Community(tm) to realize their leader was hefting\\nnearly 8 kilograms of extraneous bone tissue on the top of his\\nskull.\", notes Gillow in his report. \"There are whole laboratories in\\nthe Vatican that experiment with tissue transplants and bone marrow\\nexperiments. What started as a genetic fluke in the mid 1400\\'s is now\\nscientifically engineered and bred for. The whole bone transplant idea\\nstarted in the mid sixties inspired by doctor Timothy Leary\\ntransplanting deer bone cells into small white rats.\" Gillow is quick\\nto point out the assassination attempt on Pope John Paul II and the\\ndisappearance of Dr. Leary from the public eye.\\n\\n\"When it becomes time to replace the pope\", says Gillow, \"The old pope\\nand the replacement pope are locked in a padded chamber. They butt\\nheads much like male yaks fighting for dominance of the herd. The\\nvictor emerges and has earned the privilege of inseminating the choir\\nboys.\"\\n\\n\\nP.\\n-- \\n moorcockpratchettdenislearydelasoulu2iainmbanksneworderheathersbatmanpjorourke\\nclive p a u l m o l o n e y Come, let us retract the foreskin of misconception\\njames trinity college dublin and apply the wire brush of enlightenment - GeoffM\\n brownbladerunnersugarcubeselectronicblaylockpowersspikeleekatebushhamcornpizza \\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: HLV for Fred (was Re: Prefab Space Station?)\\nArticle-I.D.: zoo.C51875.67p\\nOrganization: U of Toronto Zoology\\nLines: 28\\n\\nIn article jbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n>>>Titan IV launches ain't cheap \\n>>Granted. But that's because titan IV's are bought by the governemnt. Titan\\n>>III is actually the cheapest way to put a pound in space of all US expendable\\n>>launchers.\\n>\\n>In that case it's rather ironic that they are doing so poorly on the commercial\\n>market. Is there a single Titan III on order?\\n\\nThe problem with Commercial Titan is that MM has made little or no attempt\\nto market it. They're basically happy with their government business and\\ndon't want to have to learn how to sell commercially.\\n\\nA secondary problem is that it is a bit big. They'd need to go after\\nmulti-satellite launches, a la Ariane, and that complicates the marketing\\ntask quite significantly.\\n\\nThey also had some problems with launch facilities at just the wrong time\\nto get them started properly. If memory serves, the pad used for the Mars\\nObserver launch had just come out of heavy refurbishment work that had\\nprevented launches from it for a year or so.\\n\\nThere have been a few CT launches. Mars Observer was one of them. So\\nwas that stranded Intelsat, and at least one of its brothers that reached\\norbit properly.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Unconventional peace proposal\\nOrganization: The Department of Redundancy Department\\nLines: 85\\n\\nIn article <1483500348@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n>\\n>From: Center for Policy Research \\n>\\n>A unconventional proposal for peace in the Middle-East.\\n>---------------------------------------------------------- by\\n>\\t\\t\\t Elias Davidsson\\n\\nOf all the stupid postings you\\'ve brought here recently, it is\\nilluminating that you chose to put your own name on perhaps the\\nstupidest of them.\\n\\n>The following proposal is based on the following assumptions:\\n>\\n>1. Fundamental human rights, such as the right to life, to\\n>education, to establish a family and have children, to human\\n>dignity, the right to free movement, to free expression, etc. are\\n>more important to human existence that the rights of states.\\n\\nDoes this mean that you are calling for the dismantling of the Arab\\nstates? \\n\\n>2. In the event of a conflict between basic human rights and\\n>rights of collectivities, basic human rights should prevail.\\n\\nApparently, your answer is yes.\\n\\n>6. Attempts to solve the Israeli-Arab conflict by traditional\\n>political means have failed.\\n\\nAttempts to solve these problem by traditional military means and\\nnon-traditional terrorist means has also failed. But that won\\'t stop\\nthem from trying again. After all, it IS a Holy War, you know.... \\n\\n>7. As long as the conflict is perceived as that between two\\n>distinct ethnical/religious communities/peoples which claim the\\n>land, there is no just nor peaceful solution possible.\\n\\n\"No just solution possible.\" How very encouraging.\\n\\n>Having stated my assumptions, I will now state my proposal.\\n\\nYou mean that it gets even funnier?\\n\\n>1. A Fund should be established which would disburse grants\\n>for each child born to a couple where one partner is Israeli-Jew\\n>and the other Palestinian-Arab.\\n[...]\\n>3. For the first child, the grant will amount to $18.000. For\\n>the second the third child, $12.000 for each child. For each\\n>subsequent child, the grant will amount to $6.000 for each child.\\n>\\n>4. The Fund would be financed by a variety of sources which\\n>have shown interest in promoting a peaceful solution to the\\n>Israeli-Arab conflict, \\n\\nNo, the Fund should be financed by the Center for Policy Research. It\\nIS a major organization, isn\\'t it? Isn\\'t it?\\n\\n>5. The emergence of a considerable number of \\'mixed\\'\\n>marriages in Israel/Palestine, all of whom would have relatives on\\n>\\'both sides\\' of the divide, would make the conflict lose its\\n>ethnical and unsoluble core and strengthen the emergence of a\\n>truly civil society. \\n\\nYeah, just like marriages among Arabs has strengthened their\\nsocieties. \\n\\n>The existence of a strong \\'mixed\\' stock of\\n>people would also help the integration of Israeli society into the\\n>Middle-East in a graceful manner.\\n\\nThe world could do with a bit less Middle Eastern \"grace\".\\n\\n>Objections to this proposal will certainly be voiced. I will\\n>attempt to identify some of these:\\n\\nBoy, you\\'re a one-man band. Listen, if you\\'d like to Followup on your\\nown postings and debate with yourself, just tell us and we\\'ll leave\\nyou alone.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " \"From: uk02183@nx10.mik.uky.edu (bryan k williams)\\nSubject: Re: CView answers\\nKeywords: Stupid Programming\\nNntp-Posting-Host: nx10.mik.uky.edu\\nOrganization: University of Kentucky\\nLines: 6\\n\\nre: majority of users not readding from floppy.\\nWell, how about those of us who have 1400-picture CD-ROMS and would like to use\\nCVIEW because it is fast and it works well, but can't because the moron lacked\\nthe foresight to create the temp file in the program's path, not the current\\ndidrectory?\\n\\n\",\n", + " 'From: madhaus@netcom.com (Maddi Hausmann)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: Society for Putting Things on Top of Other Things\\nLines: 40\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes: >\\n\\n>OK, you have disproved one thing, but you failed to \"nail\" me.\\n>\\n>See, nowhere in my post did I claim that something _must_ be believed in. Here\\n>are the three possibilities:\\n>\\n>\\t1) God exists. \\n>\\t2) God does not exist.\\n>\\t3) I don\\'t know.\\n>\\n>My attack was on strong atheism, (2). Since I am (3), I guess by what you said\\n>below that makes me a weak atheist.\\n [snip]\\n>First of all, you seem to be a reasonable guy. Why not try to be more honest\\n>and include my sentence afterwards that \\n\\nHonest, it just ended like that, I swear! \\n\\nHmmmm...I recognize the warning signs...alternating polite and\\nrude...coming into newsgroup with huge chip on shoulder...calls\\npeople names and then makes nice...whirrr...click...whirrr\\n\\n\"Clam\" Bake Timmons = Bill \"Shit Stirrer Connor\"\\n\\nQ.E.D.\\n\\nWhirr click whirr...Frank O\\'Dwyer might also be contained\\nin that shell...pop stack to determine...whirr...click..whirr\\n\\n\"Killfile\" Keith Allen Schneider = Frank \"Closet Theist\" O\\'Dwyer =\\n\\nthe mind reels. Maybe they\\'re all Bobby Mozumder.\\n\\n-- \\nMaddi Hausmann madhaus@netcom.com\\nCentigram Communications Corp San Jose California 408/428-3553\\n\\nKids, please don\\'t try this at home. Remember, I post professionally.\\n\\n',\n", + " 'From: simon@dcs.warwick.ac.uk (Simon Clippingdale)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: nin\\nOrganization: Department of Computer Science, Warwick University, England\\nLines: 49\\n\\nIn article <1993Apr5.023044.19580@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n> One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n> because of the love of their mom. It makes for more virile men.\\n> Compare that with how homos are raised. Do a study and you will get my\\n> point.\\n\\nOh, Bobby. You\\'re priceless. Did I ever tell you that?\\n\\nMy policy with Bobby\\'s posts, should anyone give a damn, is to flick\\nthrough the thread at high speed, searching for posts of Bobby\\'s which\\nhave generated a whole pile of followups, then go in and extract the\\nhilarious quote inevitably present for .sig purposes. Works for me.\\n\\nFor the guy who said he\\'s just arrived, and asked whether Bobby\\'s for real,\\nyou betcha. Welcome to alt.atheism, and rest assured that it gets worse.\\nI have a few pearls of wisdom from Bobby which I reproduce below. Is anyone\\n(Keith?) keeping a big file of such stuff?\\n\\n \"In Allah\\'s infinite wisdom, the universe was created from nothing,\\n just by saying \"Be\", and it became. Therefore Allah exists.\"\\n --- Bobby Mozumder proving the existence of Allah, #1\\n\\n \"Wait. You just said that humans are rarely reasonable. Doesn\\'t that\\n contradict atheism, where everything is explained through logic and\\n reason? This is THE contradiction in atheism that proves it false.\"\\n --- Bobby Mozumder proving the existence of Allah, #2\\n\\n \"Plus, to the believer, it would be contradictory\\n to the Quran for Allah not to exist.\"\\n --- Bobby Mozumder proving the existence of Allah, #3\\n\\nand now\\n\\n \"One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n because of the love of their mom. It makes for more virile men. Compare\\n that with how homos are raised. Do a study and you will get my point.\"\\n -- Bobby Mozumder being Islamically Rigorous on alt.atheism\\n\\nMmmmm. Quality *and* quantity from the New Voice of Islam (pbuh).\\n\\nCheers\\n\\nSimon\\n-- \\nSimon Clippingdale simon@dcs.warwick.ac.uk\\nDepartment of Computer Science Tel (+44) 203 523296\\nUniversity of Warwick FAX (+44) 203 525714\\nCoventry CV4 7AL, U.K.\\n',\n", + " 'From: mogal@deadhead.asd.sgi.com (Joshua Mogal)\\nSubject: Re: SGI sales practices (Was: Crimson (Was: Kubota Announcement?))\\nOrganization: Silicon Graphics, Inc.\\nLines: 123\\nNNTP-Posting-Host: deadhead.asd.sgi.com\\n\\n|> My\\n|> comment regarding DEC was to indicate that I might be open to other\\n|> vendors\\n|> that supported OpenGL, rather than deal further with SGI.\\n\\nOpenGL is a graphics programming library and as such is a great, portable\\ninterface for the development of interactive 3D graphics applications. It\\nis not, however, an indicator of performance, as that will vary strongly\\nfrom machine to machine and vendor to vendor. SGI is committed to high\\nperformance interactive graphics systems and software tools, so OpenGL\\nmeans that you can port easily from SGI to other platforms, there is no\\nguarantee that your performance would be comparable.\\n\\n|> \\n|> What I *am* annoyed about is the fact that we were led to believe that\\n|> we *would* be able to upgrade to a multiprocessor version of the\\n|> Crimson without the assistance of a fork lift truck.\\n\\nIf your sales representative truly mislead you, then you should have a\\nvalid grievance against us which you should carry up to your local SGI\\nsales management team. Feel free to contact the local branch manager...we\\nunderstand that repeat sales come from satisfied customers, so give it a\\nshot.\\n\\n|> \\n|> I\\'m also annoyed about being sold *several* Personal IRISes at a\\n|> previous site on the understanding *that* architecture would be around\\n|> for a while, rather than being flushed.\\n\\nAs one of the previous posts stated, the Personal IRIS was introduced in\\n1988 and grew to include the 4D/20, 4D/25, 4D/30 and 4D/35 as clock rates\\nsped up over time. As a rule of thumb, SGI platforms live for about 4-5\\nyears. This was true of the motorola-based 3000 series (\\'85-\\'89), the PI\\n(\\'88-\\'93), the Professional Series (the early 4D\\'s - \\'86-\\'90), the Power\\nSeries parallel systems (\\'88-\\'93). Individual CPU subsystems running at a\\nparticular clock rate usually live for about 2 years. New graphics\\narchitectures at the high end (GT, VGX, RealityEngine) are released every\\n18 months to 2 years.\\n\\nThese are the facts of life. If we look at these machines, they become\\nalmost archaic after four years, and we have to come out with a new\\nplatform (like Indigo, Onyx, Challenge) which has higher bus bandwidths,\\nfaster CPUs, faster graphics and I/O, and larger disk capacities. If we\\ndon\\'t, we become uncompetitive.\\n\\nFrom the user perspective, you have to buy a machine that meets your\\ncurrent needs and makes economic sense today. You can\\'t wait to buy, but\\nif you need a guaranteed upgrade path for the machine, ask the Sales Rep\\nfor one in writing. If it\\'s feasible, they should be able to do that. Some\\nof our upgrade paths have specific programs associated with them, such as\\nthe Performance Protection Program for older R3000-based Power Series\\nmultiprocessing systems which allowed purchasers of those systems to obtain\\na guaranteed upgrade price for moving to the new Onyx or Challenge\\nR4400-based 64-bit multiprocessor systems.\\n\\n|> \\n|> Now I understand that SGI is responsible to its investors and has to\\n|> keep showing a positive quarterly bottom line (odd that I found myself\\n|> pressured on at least two occasions to get the business on the books\\n|> just before the end of the quarter), but I\\'m just a little tired of\\n|> getting boned in the process.\\n|> \\n\\nIf that\\'s happening, it\\'s becausing of misunderstandings or\\nmis-communication, not because SGI is directly attempting to annoy our\\ncustomer base.\\n\\n|> Maybe it\\'s because my lab buys SGIs in onesies and twosies, so we\\n|> aren\\'t entitled to a \"peek under the covers\" as the Big Kids (NASA,\\n|> for instance) are. This lab, and I suspect that a lot of other labs\\n|> and organizations, doesn\\'t have a load of money to spend on computers\\n|> every year, so we can\\'t be out buying new systems on a regular basis.\\n\\nMost SGI customers are onesy-twosey types, but regardless, we rarely give a\\ngreat deal of notice when we are about to introduce a new system because\\nagain, like a previous post stated, if we pre-announced and the schedule\\nslipped, we would mess up our potential customers schedules (when they were\\ncounting on the availability of the new systems on a particular date) and\\nwould also look awfully bad to both our investors and the financial\\nanalysts who watch us most carefully to see if we are meeting our\\ncommitments.\\n\\n|> The boxes that we buy now will have to last us pretty much through the\\n|> entire grant period of five years and, in some case, beyond. That\\n|> means that I need to buy the best piece of equipment that I can when I\\n|> have the money, not some product that was built, to paraphrase one\\n|> previous poster\\'s words, \\'to fill a niche\\' to compete with some other\\n|> vendor. I\\'m going to be looking at this box for the next five years.\\n|> And every time I look at it, I\\'m going to think about SGI and how I\\n|> could have better spent my money (actually *your* money, since we\\'re\\n|> supported almost entirely by Federal tax dollars).\\n|> \\n\\nFive years is an awfully long time in computer years. New processor\\ntechnologies are arriving every 1-2 years, making a 5 year old computer at\\nleast 2 and probably 3 generations behind the times. The competitive nature\\nof the market is demanding that rate of development, so if your timing is\\nreally 5 years between purchases, you have to accept the limited viability\\nof whatever architecture you buy into from any vendor.\\n\\nThere are some realities about the computer biz that we all have to live\\nwith, but keeping customers happy is the most important, so don\\'t give up,\\nwe know it.\\n\\nJosh |:-)\\n\\n-- \\n\\n\\n**************************************************************************\\n**\\t\\t\\t\\t **\\t\\t\\t\\t\\t**\\n**\\tJoshua Mogal\\t\\t **\\tProduct Manager\\t\\t\\t**\\n**\\tAdvanced Graphics Division **\\t Advanced Graphics Systems\\t**\\n**\\tSilicon Graphics Inc.\\t **\\tMarket Manager\\t\\t\\t**\\n**\\t2011 North Shoreline Blvd. **\\t Virtual Reality\\t\\t**\\n**\\tMountain View, CA 94039-7311 **\\t Interactive Entertainment\\t**\\n**\\tM/S 9L-580\\t\\t **\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t *************************************\\n**\\tTel:\\t(415) 390-1460\\t\\t\\t\\t\\t\\t**\\n**\\tFax:\\t(415) 964-8671\\t\\t\\t\\t\\t\\t**\\n**\\tE-mail:\\tmogal@sgi.com\\t\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t\\t\\t\\t\\t\\t**\\n**************************************************************************\\n',\n", + " 'From: buenneke@monty.rand.org (Richard Buenneke)\\nSubject: White House outlines options for station, Russian cooperation\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 71\\n\\n------- Blind-Carbon-Copy\\n\\nTo: spacenews@austen.rand.org, cti@austen.rand.org\\nSubject: White House outlines options for station, Russian cooperation\\nDate: Tue, 06 Apr 93 16:00:21 PDT\\nFrom: Richard Buenneke \\n\\n4/06/93: GIBBONS OUTLINES SPACE STATION REDESIGN GUIDANCE\\n\\nNASA Headquarters, Washington, D.C.\\nApril 6, 1993\\n\\nRELEASE: 93-64\\n\\n Dr. John H. Gibbons, Director, Office of Science and Technology\\nPolicy, outlined to the members-designate of the Advisory Committee on the\\nRedesign of the Space Station on April 3, three budget options as guidance\\nto the committee in their deliberations on the redesign of the space\\nstation.\\n\\n A low option of $5 billion, a mid-range option of $7 billion and a\\nhigh option of $9 billion will be considered by the committee. Each\\noption would cover the total expenditures for space station from fiscal\\nyear 1994 through 1998 and would include funds for development,\\noperations, utilization, Shuttle integration, facilities, research\\noperations support, transition cost and also must include adequate program\\nreserves to insure program implementation within the available funds.\\n\\n Over the next 5 years, $4 billion is reserved within the NASA\\nbudget for the President\\'s new technology investment. As a result,\\nstation options above $7 billion must be accompanied by offsetting\\nreductions in the rest of the NASA budget. For example, a space station\\noption of $9 billion would require $2 billion in offsets from the NASA\\nbudget over the next 5 years.\\n\\n Gibbons presented the information at an organizational session of\\nthe advisory committee. Generally, the members-designate focused upon\\nadministrative topics and used the session to get acquainted. They also\\nreceived a legal and ethics briefing and an orientation on the process the\\nStation Redesign Team is following to develop options for the advisory\\ncommittee to consider.\\n\\n Gibbons also announced that the United States and its\\ninternational partners -- the Europeans, Japanese and Canadians -- have\\ndecided, after consultation, to give \"full consideration\" to use of\\nRussian assets in the course of the space station redesign process.\\n\\n To that end, the Russians will be asked to participate in the\\nredesign effort on an as-needed consulting basis, so that the redesign\\nteam can make use of their expertise in assessing the capabilities of MIR\\nand the possible use of MIR and other Russian capabilities and systems.\\nThe U.S. and international partners hope to benefit from the expertise of\\nthe Russian participants in assessing Russian systems and technology. The\\noverall goal of the redesign effort is to develop options for reducing\\nstation costs while preserving key research and exploration capabilitiaes.\\nCareful integration of Russian assets could be a key factor in achieving\\nthat goal.\\n\\n Gibbons reiterated that, \"President Clinton is committed to the\\nredesigned space station and to making every effort to preserve the\\nscience, the technology and the jobs that the space station program\\nrepresents. However, he also is committed to a space station that is well\\nmanaged and one that does not consume the national resources which should\\nbe used to invest in the future of this industry and this nation.\"\\n\\n NASA Administrator Daniel S. Goldin said the Russian\\nparticipation will be accomplished through the East-West Space Science\\nCenter at the University of Maryland under the leadership of Roald\\nSagdeev.\\n\\n------- End of Blind-Carbon-Copy\\n',\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Second Law (was: Albert Sabin)\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 20\\n\\nJoel Hanes (jjh00@diag.amdahl.com) wrote:\\n\\n: Mr Connor\\'s assertion that \"more complex\" == later in paleontology\\n: is simply incorrect. Many lineages are known in which whole\\n: structures are lost -- for example, snakes have lost their legs.\\n: Cave fish have lost their eyes. Some species have almost completely\\n: lost their males. Kiwis are descended from birds with functional\\n: wings.\\n\\nJoel,\\n\\nThe statements I made were illustrative of the inescapably\\nanthrpomorphic quality of any desciption of an evolutionary process.\\nThere is no way evolution can be described or explained in terms other\\nthan teleological, that is my whole point. Even those who have reason\\nto believe they understand evolution (biologists for instance) tend to\\npersonify nature and I can\\'t help but wonder if it\\'s because of the\\nlimits of the language or the nature of nature.\\n\\nBill\\n',\n", + " \"From: stgprao@st.unocal.COM (Richard Ottolini)\\nSubject: Re: Rumours about 3DO ???\\nOrganization: Unocal Corporation\\nLines: 5\\n\\nThey need a hit software product to encourage software sales of the product,\\ni.e. the Pong, Pacman, VisiCalc, dBase, or Pagemaker of multi-media.\\nThere are some multi-media and digital television products out there already,\\nalbeit, not as capable as 3DO's. But are there compelling reasons to buy\\nsuch yet? Perhaps someone in this news group will write that hit software :-)\\n\",\n", + " 'From: et@teal.csn.org (Eric H. Taylor)\\nSubject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\nSummary: Dong .... Dong .... Do I hear the death-knell of relativity?\\nKeywords: space, curvature, nothing, tesla\\nNntp-Posting-Host: teal.csn.org\\nOrganization: 4-L Laboratories\\nDistribution: World\\nExpires: Wed, 28 Apr 1993 06:00:00 GMT\\nLines: 30\\n\\nIn article metares@well.sf.ca.us (Tom Van Flandern) writes:\\n>crb7q@kelvin.seas.Virginia.EDU (Cameron Randale Bass) writes:\\n>> Bruce.Scott@launchpad.unc.edu (Bruce Scott) writes:\\n>>> \"Existence\" is undefined unless it is synonymous with \"observable\" in\\n>>> physics.\\n>> [crb] Dong .... Dong .... Dong .... Do I hear the death-knell of\\n>> string theory?\\n>\\n> I agree. You can add \"dark matter\" and quarks and a lot of other\\n>unobservable, purely theoretical constructs in physics to that list,\\n>including the omni-present \"black holes.\"\\n>\\n> Will Bruce argue that their existence can be inferred from theory\\n>alone? Then what about my original criticism, when I said \"Curvature\\n>can only exist relative to something non-curved\"? Bruce replied:\\n>\"\\'Existence\\' is undefined unless it is synonymous with \\'observable\\' in\\n>physics. We cannot observe more than the four dimensions we know about.\"\\n>At the moment I don\\'t see a way to defend that statement and the\\n>existence of these unobservable phenomena simultaneously. -|Tom|-\\n\\n\"I hold that space cannot be curved, for the simple reason that it can have\\nno properties.\"\\n\"Of properties we can only speak when dealing with matter filling the\\nspace. To say that in the presence of large bodies space becomes curved,\\nis equivalent to stating that something can act upon nothing. I,\\nfor one, refuse to subscribe to such a view.\" - Nikola Tesla\\n\\n----\\n ET \"Tesla was 100 years ahead of his time. Perhaps now his time comes.\"\\n----\\n',\n", + " 'From: ednobles@sacam.OREN.ORTN.EDU (Edward d Nobles)\\nSubject: windows imagine??!!\\nOrganization: Oak Ridge National Laboratory\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 10\\n\\n\\nI sent off for my copy today... Snail Mail. Hope to get it back in\\nabout ten days. (Impulse said \"a week\".)\\n\\nI hope it\\'s as good as they claim...\\n\\nJim Nobles\\n\\n(Hope I have what it takes to use it... :>)\\n\\n',\n", + " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nOrganization: University of Illinois at Urbana\\nLines: 48\\n\\nanwar+@cs.cmu.edu (Anwar Mohammed) writes:\\n\\n>In article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>>The readers of this forum seemed to be more interested in the contents\\n>>of those files.\\n>>So It will be nice if Yigal will tell us:\\n>>1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\n>ADL authorities seem to view a lot of people as dangerous, including\\n>the millions of Americans of Arab ancestry. Perhaps you can answer\\n>the question as to why the ADL maintained files and spied on ADC members\\n>in California (and elsewhere??)? Friendly rivalry perhaps?\\n\\nCome on! Most if not all Arabs are sympathetic to the Palestinian war \\nagainst Israel. That is why the ADL monitors Arab organizations. That is\\nthe same reason the US monitored communist organizations and Soviet nationals\\nonly a few years ago. \\n\\n>Perhaps Yigal is a Greenpeace member? Or the NAACP? Or a reporter? \\n>Or a member of any of the dozens of other political organizations/ethnic \\n>minorities/occupations that the ADL spied on.\\n\\nAll of these groups have, in the past, associated with or been a part of anti-\\nIsrael activity or propoganda. The ADL is simply monitoring them so that if\\nanything comes up, they won\\'t be caught by surprise.\\n\\n>>2. Why does the ADL have an interest in that person ?\\n\\n>Paranoia?\\n\\nNo, that is why World Trade Center bombings don\\'t happen in Israel (aside from\\nthe fact that there is no world trade center) and why people like Zein Isa (\\nPalestinian whose American group planned to bow up the Israeli Embassy and \\n\"kill many Jews.\") are caught. As Mordechai Levy of the JDL said, Paranoid\\nJews live longer.\\n\\n>>3. If one does trust either the US government or the ADL what an\\n>> additional information should he send them ?\\n\\n>The names of half the posters on this forum, unless they already \\n>have them.\\n\\nThey probably do.\\n\\n>>Gideon Ehrlich\\n>-anwar\\nEd.\\n\\n',\n", + " 'From: n8643084@henson.cc.wwu.edu (owings matthew)\\nSubject: Re: Riceburner Respect\\nArticle-I.D.: henson.1993Apr15.200429.21424\\nOrganization: Western Washington University\\n \\n The 250 ninja and XL 250 got ridden all winter long. I always wave. I\\nLines: 13\\n\\nam amazed at the number of Harley riders who ARE waving even to a lowly\\nbaby ninja. Let\\'s keep up the good attitudes. Brock Yates said in this\\nmonths Car and Driver he is ready for a war (against those who would rather\\nwe all rode busses). We bikers should be too.\\n\\nIt\\'s a freedom that we all wanna know\\nand it\\'s an obsession to some\\nto keep the world in your rearview mirror\\nwhile you try to run down the sun\\n\\n\"Wheels\" by Rhestless Heart\\nMarty O.\\n87 250 ninja\\n73 XL 250 Motosport\\n',\n", + " 'From: todd@phad.la.locus.com (Todd Johnson)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Locus Computing Corporation, Los Angeles, California\\nLines: 28\\n\\nIn article enzo@research.canon.oz.au (Enzo Liguori) writes:\\n;From the article \"What\\'s New\" Apr-16-93 in sci.physics.research:\\n;\\n;........\\n;WHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n;\\n;1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\n;What about light pollution in observations? (I read somewhere else that\\n;it might even be visible during the day, leave alone at night).\\n;Is NASA really supporting this junk?\\n;Are protesting groups being organized in the States?\\n;Really, really depressed.\\n;\\n; Enzo\\n\\nI wouldn\\'t worry about it. There\\'s enough space debris up there that\\na mile-long inflatable would probably deflate in some very short\\nperiod of time (less than a year) while cleaning up LEO somewhat.\\nSort of a giant fly-paper in orbit.\\n\\nHmm, that could actually be useful.\\n\\nAs for advertising -- sure, why not? A NASA friend and I spent one\\ndrunken night figuring out just exactly how much gold mylar we\\'d need\\nto put the golden arches of a certain American fast food organization\\non the face of the Moon. Fortunately, we sobered up in the morning.\\n\\n\\n',\n", + " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: Morality? (was Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>\\n>What I've been saying is that moral behavior is likely the null behavior.\\n\\n Do I smell .sig material here?\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", + " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Hamza Salah, the Humanist\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 13\\n\\nAre you people sure his posts are being forwarded to his system operator???\\nWho is forwarding them???\\n\\nIs there a similar file being kept on Mr. Omran???\\n\\nSalam,\\n\\nJohn Absood\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", + " 'From: kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran)\\nSubject: We don\\'t need no stinking subjects!\\nX-Disclaimer: Nyx is a public access Unix system run by the University\\n\\tof Denver for the Denver community. The University has neither\\n\\tcontrol over nor responsibility for the opinions of users.\\nOrganization: The Loyal Order Of Keiths.\\nLines: 93\\n\\nIn article <1ql1avINN38a@gap.caltech.edu> keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran) writes:\\n>>keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>>>kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran) writes:\\n>\\n>>No, if you\\'re going to claim something, then it is up to you to prove it.\\n>>Think \"Cold Fusion\".\\n>\\n>Well, I\\'ve provided examples to show that the trend was general, and you\\n>(or others) have provided some counterexamples, mostly ones surrounding\\n>mating practices, etc. I don\\'t think that these few cases are enough to\\n>disprove the general trend of natural morality. And, again, the mating\\n>practices need to be reexamined...\\n\\nSo what you\\'re saying is that your mind is made up, and you\\'ll just explain\\naway any differences at being statistically insignificant?\\n\\n>>>Try to find \"immoral\" non-mating-related activities.\\n>>So you\\'re excluding mating-related-activities from your \"natural morality\"?\\n>\\n>No, but mating practices are a special case. I\\'ll have to think about it\\n>some more.\\n\\nSo you\\'ll just explain away any inconsistancies in your \"theory\" as being\\n\"a special case\".\\n\\n>>>Yes, I think that the natural system can be objectively deduced with the\\n>>>goal of species propogation in mind. But, I am not equating the two\\n>>>as you so think. That is, an objective system isn\\'t necessarily the\\n>>>natural one.\\n>>Are you or are you not the man who wrote:\\n>>\"A natural moral system is the objective moral system that most animals\\n>> follow\".\\n>\\n>Indeed. But, while the natural system is objective, all objective systems\\n>are not the natural one. So, the terms can not be equated. The natural\\n>system is a subset of the objective ones.\\n\\nYou just equated them. Re-read your own words.\\n\\n>>Now, since homosexuality has been observed in most animals (including\\n>>birds and dolphins), are you going to claim that \"most animals\" have\\n>>the capacity of being immoral?\\n>\\n>I don\\'t claim that homosexuality is immoral. It isn\\'t harmful, although\\n>it isn\\'t helpful either (to the mating process). And, when you say that\\n>homosexuality is observed in the animal kingdom, don\\'t you mean \"bisexuality?\"\\n\\nA study release in 1991 found that 11% of female seagulls are lesbians.\\n\\n>>>Well, I\\'m saying that these goals are not inherent. That is why they must\\n>>>be postulates, because there is not really a way to determine them\\n>>>otherwise (although it could be argued that they arise from the natural\\n>>>goal--but they are somewhat removed).\\n>>Postulate: To assume; posit.\\n>\\n>That\\'s right. The goals themselves aren\\'t inherent.\\n>\\n>>I can create a theory with a postulate that the Sun revolves around the\\n>>Earth, that the moon is actually made of green cheese, and the stars are\\n>>the portions of Angels that intrudes into three-dimensional reality.\\n>\\n>You could, but such would contradict observations.\\n\\nNow, apply this last sentence of your to YOUR theory. Notice how your are\\ncontridicting observations?\\n\\n>>I can build a mathematical proof with a postulate that given the length\\n>>of one side of a triangle, the length of a second side of the triangle, and\\n>>the degree of angle connecting them, I can determine the length of the\\n>>third side.\\n>\\n>But a postulate is something that is generally (or always) found to be\\n>true. I don\\'t think your postulate would be valid.\\n\\nYou don\\'t know much math, do you? The ability to use SAS to determine the\\nlength of the third side of the triangle is fundemental to geometry.\\n\\n>>Guess which one people are going to be more receptive to. In order to assume\\n>>something about your system, you have to be able to show that your postulates\\n>>work.\\n>\\n>Yes, and I think the goals of survival and happiness *do* work. You think\\n>they don\\'t? Or are they not good goals?\\n\\nGoals <> postulates.\\n\\nAgain, if one of the \"goals\" of this \"objective/natural morality\" system\\nyou are proposing is \"survival of the species\", then homosexuality is\\nimmoral.\\n--\\n=kcochran@nyx.cs.du.edu | B(0-4) c- d- e++ f- g++ k(+) m r(-) s++(+) t | TSAKC=\\n=My thoughts, my posts, my ideas, my responsibility, my beer, my pizza. OK???=\\n',\n", + " 'From: djf@cck.coventry.ac.uk (Marvin Batty)\\nSubject: Re: Moonbase race\\nNntp-Posting-Host: cc_sysk\\nOrganization: Starfleet, Coventry, UK\\nLines: 22\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu> sysmgr@king.eng.umd.edu writes:\\n>In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>\\n>>Apollo was done the hard way, in a big hurry, from a very limited\\n>>technology base... and on government contracts. Just doing it privately,\\n>>rather than as a government project, cuts costs by a factor of several.\\n>\\n>So how much would it cost as a private venture, assuming you could talk the\\n>U.S. government into leasing you a couple of pads in Florida? \\n>\\nWhy use a ground launch pad. It is entirely posible to launch from altitude.\\nThis was what the Shuttle was originally intended to do! It might be seriously\\ncheaper. \\n\\nAlso, what about bio-engineered CO2 absorbing plants instead of many LOX bottles?\\nStick \\'em in a lunar cave and put an airlock on the door.\\n\\n-- \\n**************************************************************************** \\n Marvin Batty - djf@uk.ac.cov.cck\\n\"And they shall not find those things, with a sort of rafia like base,\\nthat their fathers put there just the night before. At about 8 O\\'clock!\"\\n',\n", + " 'From: mlj@af3.mlb.semi.harris.com (Marvin Jaster )\\nSubject: FOR SALE\\nNntp-Posting-Host: sunsol.mlb.semi.harris.com\\nOrganization: Harris Semiconductor, Melbourne FL\\nKeywords: FOR SALE\\nLines: 46\\n\\nI am selling my Sportster to make room for a new FLHTCU.\\nThis scoot is in excellent condition and has never been wrecked or abused.\\nAlways garaged.\\n\\n\\t1990 Sportster 883 Standard (blue)\\n\\n\\tfactory 1200cc conversion kit\\n\\n\\tless than 8000 miles\\n\\n\\tBranch ported and polished big valve heads\\n\\n\\tScreamin Eagle carb\\n\\n\\tScreamin Eagle cam\\n\\n\\tadjustable pushrods\\n\\n\\tHarley performance mufflers\\n\\n\\ttachometer\\n\\n\\tnew Metzeler tires front and rear\\n\\n\\tProgressive front fork springs\\n\\n\\tHarley King and Queen seat and sissy bar\\n\\n\\teverything chromed\\n\\n\\tO-ring chain\\n\\n\\tfork brace\\n\\n\\toil cooler and thermostat\\n\\n\\tnew Die-Hard battery\\n\\n\\tbike cover\\n\\nprice: $7000.00\\nphone: hm 407/254-1398\\n wk 407/724-7137\\nMelbourne, Florida\\n\\n\\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orion drive in vacuum -- how?\\nOrganization: U of Toronto Zoology\\nLines: 12\\n\\nIn article <1993Apr17.053333.15696@sfu.ca> Leigh Palmer writes:\\n>... a high explosive Orion prototype flew (in the atmosphere) in San\\n>Diego back in 1957 or 1958... I feel sure\\n>that someone must have film of that experiment, and I'd really like to\\n>see it. Has anyone out there seen it?\\n\\nThe National Air & Space Museum has both the prototype and the film.\\nWhen I was there, some years ago, they had the prototype on display and\\nthe film continuously repeating.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " \"From: Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado)\\nSubject: Conference on Manned Lunar Exploration. May 7 Crystal City\\nLines: 25\\n\\nReply address: mark.prado@permanet.org\\n\\n > From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\n >\\n > In article <1993Apr19.230236.18227@aio.jsc.nasa.gov>,\\n > daviss@sweetpea.jsc.nasa.gov (S.F. Davis) writes:\\n > > |> AW&ST had a brief blurb on a Manned Lunar Exploration\\n > confernce> |> May 7th at Crystal City Virginia, under the\\n > auspices of AIAA.\\n >\\n > Thanks for typing that in, Steven.\\n >\\n > I hope you decide to go, Pat. The Net can use some eyes\\n > and ears there...\\n\\nI plan to go. It's about 30 minutes away from my home.\\nI can report on some of it (from my perspective ...)\\nAnyone else on sci.space going to be there? If so, send me\\nnetmail. Maybe we can plan to cross paths briefly...\\nI'll maintain a list of who's going.\\n\\nmark.prado@permanet.org\\n\\n * Origin: Just send it to bill.clinton@permanet.org\\n(1:109/349.2)\\n\",\n", + " 'From: wmiler@nyx.cs.du.edu (Wyatt Miler)\\nSubject: Diaspar Virtual Reality Network Announcement\\nOrganization: Nyx, Public Access Unix @ U. of Denver Math/CS dept.\\nLines: 185\\n\\n\\nPosted to the Internet by wmiler@nyx.cs.du.edu\\n \\n000062David42 041493003715\\n \\n The Lunar Tele-operation Model One (LTM1)\\n =========================================\\n By David H. Mitchell\\n March 23, 1993\\n \\nINTRODUCTION:\\n \\nIn order to increase public interest in space-based and lunar operations, a\\nreal miniature lunar-like environment is being constructed on which to test\\ntele-operated models. These models are remotely-controlled by individuals\\nlocated world-wide using their personal computers, for EduTainment\\npurposes.\\nNot only does this provide a test-bed for simple tele-operation and\\ntele-presence activities but it also provides for the sharing of\\ninformation\\non methods of operating in space, including, but not limited to, layout of\\na\\nlunar colony, tele-operating machines for work and play, disseminating\\neducational information, providing contests and awards for creativity and\\nachievement and provides a new way for students worldwide to participate in\\nTwenty-First century remote learning methods.\\n \\nBecause of the nature of the LTM1 project, people of all ages, interests\\nand\\nskills can contribute scenery and murals, models and structures,\\ninterfacing\\nand electronics, software and graphics. In operation LTM1 is an evolving\\nplayground and laboratory that can be used by children, students and\\nprofessionals worldwide. Using a personal computer at home or a terminal at\\na participating institution a user is able to tele-operate real models at\\nthe\\nLTM1 base for experimental or recreational purposes. Because a real\\nfacility\\nexists, ample opportunity is provided for media coverage of the\\nconstruction\\nof the lunar model, its operation and new features to be added as suggested\\nby the users themselves.\\n \\nThis has broad inherent interest for a wide range of groups:\\n - tele-operations and virtual reality research\\n - radio control, model railroad and ham radio operation\\n - astronomy and space planetariums and science centers\\n - art and theater\\n - bbs and online network users\\n - software and game developers\\n - manufacturers and retailers of model rockets, cars and trains\\n - children\\n - the child in all of us\\n \\nLTM1 OVERALL DESIGN:\\n \\nA room 14 feet by 8 feet contains the base lunar layout. The walls are used\\nfor murals of distant moon mountains, star fields and a view of the earth.\\nThe \"floor\" is the simulated lunar surface. A global call for contributions\\nis hereby made for material for the lunar surface, and for the design and\\ncreation of scale models of lunar colony elements, scenery, and\\nmachine-lets.\\n \\n The LTM1 initial design has 3 tele-operated machinelets:\\n 1. An SSTO scale model which will be able to lift off, hover and land;\\n 2. A bulldozerlet which will be able to move about in a quarry area; and\\n 3. A moon-train which will traverse most of the simulated lunar surface.\\n \\n Each machinelet has a small TV camera utilizing a CCD TV chip mounted on\\n it. A personal computer digitizes the image (including reducing picture\\n content and doing data-compression to allow for minimal images to be sent\\n to the operator for control purposes) and also return control signals.\\n \\nThe first machinelet to be set up will be the moon-train since model trains\\nwith TV cameras built in are almost off-the-shelf items and control\\nelectronics for starting and stopping a train are minimal. The user will\\nreceive an image once every 1 to 4 seconds depending on the speed of their\\ndata link to LTM1.\\n \\nNext, an SSTO scale model with a CCD TV chip will be suspended from a\\nservo-motor operated wire frame mounted on the ceiling allowing for the\\nSSTO\\nto be controlled by the operator to take off, hover over the entire lunar\\nlandscape and land.\\n \\nFinally, some tank models will be modified to be CCD TV chip equipped\\nbulldozerlets. The entire initial LTM1 will allow remote operators\\nworldwide\\nto receive minimal images while actually operating models for landing and\\ntakeoff, traveling and doing work. The entire system is based on\\ncommercially\\navailable items and parts that can be easily obtained except for the\\ninterface electronics which is well within the capability of many advanced\\nham radio operator and computer hardware/software developers.\\n \\nBy taking a graphically oriented communications program (Dmodem) and adding\\na tele-operations screen and controls, the necessary user interface can be\\nprovided in under 80 man hours.\\n \\nPLAN OF ACTION:\\n \\nThe Diaspar Virtual Reality Network has agreed to sponsor this project by\\nproviding a host computer network and Internet access to that network.\\nDiaspar is providing the 14 foot by 8 foot facility for actual construction\\nof the lunar model. Diaspar has, in stock, the electronic tanks that can be\\nmodified and one CCD TV chip. Diaspar also agrees to provide \"rail stock\"\\nfor the lunar train model. Diaspar will make available the Dmodem graphical\\ncommunications package and modify it for control of the machines-lets.\\nAn initial \"ground breaking\" with miniature shovels will be performed for\\na live photo-session and news conference on April 30, 1993. The initial\\nmodels will be put in place. A time-lapse record will be started for\\nhistorical purposes. It is not expected that this event will be completely\\nserious or solemn. The lunar colony will be declared open for additional\\nbuilding, operations and experiments. A photographer will be present and\\nthe photographs taken will be converted to .gif images for distribution\\nworld-wide to major online networks and bbs\\'s. A press release will be\\nissued\\ncalling for contributions of ideas, time, talent, materials and scale\\nmodels\\nfor the simulated lunar colony.\\n \\nA contest for new designs and techniques for working on the moon will then\\nbe\\nannounced. Universities will be invited to participate, the goal being to\\nfind instructors who wish to have class participation in various aspects of\\nthe lunar colony model. Field trips to LTM1 can be arranged and at that\\ntime\\nthe results of the class work will be added to the model. Contributors will\\nthen be able to tele-operate any contributed machine-lets once they return\\nto\\ntheir campus.\\n \\nA monthly LTM1 newsletter will be issued both electronically online and via\\nconventional means to the media. Any major new tele-operated equipment\\naddition will be marked with an invitation to the television news media.\\nHaving a large, real model space colony will be a very attractive photo\\nopportunity for the television community. Especially since the \"action\"\\nwill\\nbe controlled by people all over the world. Science fiction writers will be\\ninvited to issue \"challenges\" to engineering and human factors students at\\nuniversities to build and operate the tele-operated equipment to perform\\nlunar tasks. Using counter-weight and pulley systems, 1/6 gravity may be\\nsimulated to some extent to try various traction challenges.\\n \\nThe long term goal is creating world-wide interest, education,\\nexperimentation\\nand remote operation of a lunar colony. LTM1 has the potential of being a\\nlong\\nterm global EduTainment method for space activities and may be the generic\\nexample of how to teach and explore in many other subject areas not limited\\nto space EduTainment. All of this facilitates the kind of spirit which can\\nlead to a generation of people who are ready for the leap to the stars!\\n \\nCONCLUSION:\\n \\nEduTainment is the blending of education and entertainment. Anyone who has\\never enjoyed seeing miniatures will probably see the potential impact of a\\nglobally available layout for recreation, education and experimentation\\npurposes. By creating a tele-operated model lunar colony we not only create\\nworld-wide publicity, but also a method of trying new ideas that require\\nreal\\n(not virtual) skills and open a new method for putting people\\'s minds in\\nspace.\\n \\n \\nMOONLIGHTERS:\\n \\n\"Illuminating the path of knowledge about space and lunar development.\"\\nThe following people are already engaged in various parts of this work:\\nDavid42, Rob47, Dash, Hyson, Jzer0, Vril, Wyatt, The Dark One, Tiggertoo,\\nThe Mad Hatter, Sir Robin, Jogden.\\n \\nCome join the discussion any Friday night from 10:30 to midnight PST in\\n \\nDiaspar Virtual Reality Network. Ideas welcome!\\n \\nInternet telnet to: 192.215.11.1 or diaspar.com\\n \\n(voice) 714-376-1776\\n(2400bd) 714-376-1200\\n(9600bd) 714-376-1234\\n \\nEmail inquiries to LTM1 project leader Jzer@Hydra.unm.edu\\nor directly to Jzer0 on Diaspar.\\n\\n',\n", + " 'From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: Countersteering, to know or not to know - what is the question?\\nOrganization: University of East Anglia\\nDistribution: net\\nLines: 22\\n\\nlotto@husc4.harvard.edu (Jerry Lotto) writes:\\n\\n>There has been a running thread on the need to understand\\n>countersteering. I have seen a lot of opinion, but not much of it has\\n>any basis in fact or study. The bottom line is:\\n\\n>The understanding and ability to swerve was essentially absent among\\n>the accident-involved riders in the Hurt study.\\n\\n>The \"average rider\" does not identify that countersteering alone\\n>provides the primary input to effect motorcycle lean by themselves,\\n>even after many years of practice.\\n\\nI would agree entirely with these three paragraphs. But did the Hurt\\nstudy make any distinction between an *ability* to swerve and a *failure*\\nto swerve? In most of the accidents and near accidents that I\\'ve seen, riders\\nwill almost always stand on the brakes as hard as they dare, simply because\\nthe instinct to brake in the face of danger is so strong that it over-rides\\neverything else. Hard braking and swerving tend to be mutually exclusive\\nmanouvres - did Hurt draw any conclusions on which one is generally preferable?\\n\\n\\n',\n", + " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israel\\'s Expansion II\\nOrganization: University of Virginia\\nLines: 29\\n\\nwaldo@cybernet.cse.fau.edu writes:\\n> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n> \\n> > First of all I never said the Holocaust. I said before the\\n> > Holocaust. I\\'m not ignorant of the Holocaust and know more\\n> > about Nazi Germany than most people (maybe including you). \\n> \\n> Uh Oh! The first sign of an argument without merit--the stating of one\\'s \\n> \"qualifications\" in an area. If you know something about Nazi Germany, \\n> show it. If you don\\'t, shut up. Simple as that.\\n> \\n> > \\tI don\\'t think the suffering of some Jews during WWII\\n> > justifies the crimes commited by the Israeli government. Any\\n> > attempt to call Civil liberterians like myself anti-semetic is\\n> > not appreciated.\\n> \\n> ALL Jews suffered during WWII, not just our beloved who perished or were \\n> tortured. We ALL suffered. Second, the name-calling was directed against\\n> YOU, not civil-libertarians in general. Your name-dropping of a fancy\\n> sounding political term is yet another attempt to \"cite qualifications\" \\n> in order to obfuscate your glaring unpreparedness for this argument. Go \\n> back to the minors, junior.\\n\\tAll humans suffered emotionally, some Jews and many\\nothers suffered physically. It is sad that people like you are\\nso blinded by emotions that they can\\'t see the facts. Thanks\\nfor calling me names, it only assures me of what kind of\\nignorant people I am dealing with. I included your letter since\\nI thought it demonstrated my point more than anything I could\\nwrite. \\n',\n", + " 'From: Thomas.Enblom@eos.ericsson.se (Thomas Enblom)\\nSubject: NAVSTAR positions\\nReply-To: Thomas.Enblom@eos.ericsson.se\\nOrganization: Ericsson Telecom AB\\nLines: 16\\nNntp-Posting-Host: eos8c29.ericsson.se\\n\\nI\\'ve just read Richard Langley\\'s latest \"Navstar GPS Constellation Status\".\\n\\nIt states that the latest satellite was placed in Orbit Plane Position C-3.\\nThere is already one satellite in that position. I know that it\\'s almost\\nten years since that satellite was launched but it\\'s still in operation so\\nwhy not use it until it goes off?\\n\\nWhy not instead place the new satellite at B-4 since that position is empty\\nand by this measure have an almost complete GPS-constellation\\n(23 out of 24)?\\n\\n/Thomas\\n================================================================================\\nEricsson Telecom, Stockholm, Sweden\\n \\nThomas Enblom, just another employee. \\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Arafat (Re: Sampson)\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 61\\n\\nIn article <5897@copper.Denver.Colorado.EDU> aaldoubo@copper.denver.colorado.edu (Shaqeeqa) writes:\\n>In article <1993Apr10.182402.11676@colorado.edu> perlman@qso.Colorado.EDU (Eric S. Perlman) writes:\\n\\n>>Perhaps, though one can argue about whether or not the current\\n>>Palestinian delegation represents the PLO (I would hope it does not, as\\n>>the PLO really doesn\\'t have that kind of legitimacy).\\n\\n>Does it matter to you, Naftaly, Adam, and others, that Arafat\\n>advises the delegation and that the PLO, overall, supports it? Does\\n>it also matter that Arafat, on behalf of the PLO, recognizes Israel\\n>and its right to exist? Further, does Israel\\'s new policy concerning\\n>direct negotiations with the PLO hold any substance to the situation\\n>as a whole?\\n\\nNo, he does not. Arafat explicitly *denies* this claim.\\n\\n\\nfrom a Libyan televison interview with Yasser Arafat 7-19-1991\\nQ: Some people say that the Palestinian revolution has many times changed\\n its strategies and tactics, something which has left its imprint on the\\n Palestinian problem and on the Palestinian Liberation Front. The\\n [strategies and tactics] have not been clear. The question is, is the\\n direction of the Palestinian problem clear? The Palestinian leadership\\n has stopped, or at least this is what has been said in the media, this\\n happened on the way to the dialogue with the United States, the PLO\\n recognized something called \"Israel\"...\\n\\nA: No, no, no! We do not recognize the State of Israel. We said\\n \"recognition\" -- when a Palestinian state is established. It will then\\n decide if to recognize Israel or not. When it is established, its\\n parliament will convene and decide.\\n\\n>policies which it can justify through occupation. Because of this,\\n>you have the grassroot movements that reject Israel\\'s authority and\\n>disregard for human rights; and, if Israel was serious about peace, it\\n>would abandon these policies.\\n\\n\\tAnd replace them with what? If Israel is to withdraw its\\ncontrol of any territory, there must be two prerequsites. One is that\\nit leads to a reduction in deaths. The second is that it should not\\nweaken Israels bargianing position with respect to peace talks.\\n\\n\\tLeaving Gaza unilateraly is a bad idea because it encourages\\narabs to think they can get what they want by killing Jews. The only\\nway Israel should pull out of Gaza is at the end of negotiations.\\nThese negotiations should lead to a mutually agreeable solution with\\nsecurity guarantees for both sides.\\n\\n\\tUntil arabs are ready to sit down at the table and talk again,\\nthey should not expect, or recieve more concessions.\\n\\n\\nAdam\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'Subject: Need rgb data from saved images\\nFrom: \\nOrganization: Penn State University\\nLines: 4\\n\\n Could someone please help me find a program or figure out how to extract a li\\nst of R G B values for each pixel in an image. I can convert between tga and s\\neveral other popular formats but I need the R G B values for use in a program I\\n am writing. Thanks for the help\\n',\n", + " 'From: Center for Policy Research \\nSubject: Symbiotics: Zionism-Antisemitism\\nNf-ID: #N:cdp:1483500355:000:10647\\nNf-From: cdp.UUCP!cpr Apr 23 15:14:00 1993\\nLines: 197\\n\\n\\nFrom: Center for Policy Research \\nSubject: Symbiotics: Zionism-Antisemitism\\n\\n\\nZionism and the Holocaust\\n-------------------------- by Haim Bresheeth\\n\\nThe first point to note regarding the appropriation of the history\\nof the Holocaust by Zionist propaganda is that Zionism without\\nanti-semitism is impossible. Zionism agrees with the basic tenet\\nof anti-Semitism, namely that Jews cannot live with non- Jews.\\n\\nThe history and roots of the Holocaust go back a long way. While\\nthe industru of death and destruction did not operate before 1942,\\nits roots were firmly placed in the 19th Century. Jewish\\naspirations for emancipation emerged out of the national struggles\\nin Europe. When the hopes for liberation through\\nbourgeois-democratic change were dashed, other alternatives for\\nimproving the lot of the Jews of Europe achieved prominence.\\n\\nThe socialist Bund, a mass movement with enormous following, had\\nto contend with opposition from a new and small, almost\\ninsignificant opponent, the political Zionists. In outline these\\ntwo offered diametrically opposed options for Jews in Europe.\\nWhile the Bund was suggesting joining forces with the rest of\\nEurope\\'s workers, the Zionists were proposing a new programme\\naimed at ridding Europe of its Jews by setting up some form of a\\nJewish state.\\n\\nHistorically, nothing is inevitable, all depends on the balance of\\nforces involved in the struggle. History can be seen as an option\\ntree: every time a certain option is chosen, other routes become\\nbarred. Because of that choice, movement backwards to the point\\nbefore that choice was made is impossible. While Zionism as an\\noption was taken by many young Jews, it remained a minority\\nposition until the first days of the 3rd Reich. The Zionist\\nFederation of Germany (ZVfD), an organisation representing a tiny\\nminority of German Jews, was selected by the Nazis as the body to\\nrepresent the Jews of the Reich. Its was the only flag of an\\ninterantional organisation allowed to fly in Berlin, and this was\\nthe only international organisation allowed to operate during this\\nperiod. From a marginal position, the leaders of the Zionist\\nFederation were propelled to a prominence and centrality that\\nsurprised even them. All of a sudden they attained political\\npower, power based not on representation, but from being selected\\nas the choice of the Nazi regime for dealing with the the \\'Jewish\\nproblem\\'. Their position in negotiating with the Nazis agreements\\nthat affected the lives of many tens of thousands of the Jews in\\nGermany transformed them from a utopian, marginal organisation in\\nGermany (and some other countries in Europe) into a real option to\\nbe considered by German Jews.\\n\\nThe best example of this was the \\'Transfer Agreement\\' of 1934.\\nImmediately after the Nazi takeover in 1933, Jews all over the\\nworld supported or were organising a world wide boycott of German\\ngoods. This campaign hurt the Nazi regime and the German\\nauthorities searched frantically for a way disabling the boycott.\\nIt was clear that if Jews and Jewish organisations were to pull\\nout, the campaign would collapse.\\n\\nThis problem was solved by the ZVfD. A letter sent to the Nazi\\nparty as early as 21. June 1933, outlined the degree of agreement\\nthat existed between the two organisations on the question of\\nrace, nation, and the nature of the \\'Jewish problem\\', and it\\noffered to collaborate with the new regime:\\n\\n\"The realisation of Zionism could only be hurt by resentment of\\nJews abroad against the German development. Boycott propaganda -\\nsuch as is currently being carried out against Germany in many\\nways - is in essence unZionist, because Zionism wants not to do\\nbattle but to convince and build.\"\\n\\nIn their eagerness to gain credence and the backing of the new\\nregime, the Zionist organisation managed to undermine the boycott.\\nThe main public act was the signature of the \"Transfer Agreement\"\\nwith the Nazi authorities during the Zionist Congress of 1934. In\\nessence, the agreement was designed to get Germany\\'s Jews out of\\nthe country and into Mandate Palestine. It provided a possibility\\nfor Jews to take a sizeable part of their property out of the\\ncountry, through a transfer of German goods to Palestine. This\\nright was denied to Jews leaving to any other destination. The\\nZionist organisation was the acting agent, through its financial\\norganisations. This agreement operated on a number of fronts -\\n\\'helping\\' Jews to leave the country, breaking the ring of the\\nboycott, exporting German goods in large quantities to Palestine,\\nand last but not least, enabling the regime to be seen as humane\\nand reasonable even towards its avowed enemies, the Jews. After\\nall, they argued, the Jews do not belong in Europe and now the\\nJews come and agree with them.\\n\\nAfter news of the agreement broke, the boycott was doomed. If the\\nZionist Organization found it possible and necessary to deal with\\nthe Nazis, and import their goods, who could argue for a boycott ?\\nThis was not the first time that the interests of both movements\\nwere presented to the German public as complementary. Baron Von\\nMildenstein, the first head of the Jewish Department of the SS,\\nlater followed by Eichmann, was invited to travel to Palestine.\\nThis he did in early 1933, in the company of a Zionist leader,\\nKurt Tuchler. Having spent six months in Palestine, he wrote a\\nseries of favourable articles in Der STURMER describing the \\'new\\nJew\\' of Zionism, a Jew Nazis could accept and understand.\\n\\nThis little-known episode established quite clearly the\\nrelationship during the early days of Nazism, between the new\\nregime and the ZVfD, a relationship that was echoed later in a\\nnumber of key instances, even after the nature of the Final\\nSolution became clear. In many cases this meant a silencing of\\nreports about the horrors of the exterminations. A book\\nconcentrating on this aspect of the Zionist reaction to the\\nHolocaust is Post-Ugandan Zionism in the Crucible of the\\nHolocaust, by S. B. Beth-Zvi.\\n\\nIn the case of the Kastner episode, around which Jim Allen\\'s play\\nPERDITION is based, even the normal excuse of lack of knowledge of\\nthe real nature of events does not exist. It occured near the end\\nof the war. The USSR had advanced almost up to Germany. Italy and\\nthe African bases had been lost. The Nazis were on the run, with a\\nnumber of key countries, such as Rumania, leaving the Axis. A\\nsecond front was a matter of months away, as the western Allies\\nprepared their forces. In the midst of all this we find Eichmann,\\nthe master bureaucrat of industrial murder, setting up his HZ in\\noccupied Budapest, after the German takeover of the country in\\nApril 1944. His first act was to have a conference with the Jewish\\nleadership, and to appoint Zionist Federation members, headed by\\nKastner as the agent and clearing house for all Jews and their\\nrelationship with the SS and the Nazr authorities. Why they did\\nthis is not difficult to see. As opposed to Poland, where its\\nthree and a half million Jews lived in ghettoes and were visibly\\ndifferent from the rest of the Polish population, the Hungarian\\nJews were an integrated part of the community. The middle class\\nwas mainly Jewish, the Jews were mainly middle-class. They enjoyed\\nfreedom of travel, served in the Hungarian (fascist) army in\\nfronline units, as officers and soldiers, their names were\\nHungarian - how was Eichmann to find them if they were to be\\nexterminated ? The task was not easy, there were a million Jews in\\nHungary, most of them resident, the rest being refugees from other\\ncountries. Many had heard about the fate of Jews elsewhere, and\\nwere unlikely to believe any statements by Nazi officials.\\n\\nLike elsewhere, the only people who had the information and the\\near of the frightened Jewish population were the Judenrat. In this\\ncase the Judenrat comprsied mainly the Zionist Federation members.\\nWithout their help the SS, with 19 officers and less than 90 men,\\nplus a few hundred Hungarian police, could not have collected and\\ncontrolled a million Jews, when they did not even know their\\nwhereabouts. Kastner and the others were left under no illusions.\\nEichmann told Joel Brand, one of the members of Kastner\\'s\\ncommittee, that he intended to send all Hungary\\'s Jews to\\nAuschwitz, before he even started the expulsions! He told them\\nclearly that all these Jews will die, 12,000 a day, unless certain\\nconditions were met.\\n\\nThe Committee faced a simple choice - to tell the Jews of Hungary\\nabout their fate, (with neutral Rumania, where many could escape,\\nbeing in most cases a few hours away) or to collaborate with the\\nNazis by assisting in the concentration process. What would not\\nhave been believed when coming from the SS, sounded quite\\nplausible when coming from the mouths of the Zionist leadership.\\nThus it is, that most of the Hungarian Jews went quietly to their\\ndeath, assured by their leadership that they were to be sent to\\nwork camps.\\n\\nTo be sure, there are thirty pieces of silver in this narrative of\\ndestruction: the trains of \\'prominents\\' which Eichmann promised to\\nKastner - a promise he kept to the last detail. For Eichmann it\\nwas a bargain: allowing 1,680 Jews to survive, as the price paid\\nfor the silent collaboration over the death of almost a million\\nJews.\\n\\nThere was no way in which the Jews of Hungary could even be\\nlocated, not to say murdered, without the full collaboration of\\nKastner and his few friends. No doubt the SS would hunt a few Jews\\nhere and there, but the scale of the operation would have been\\nminiscule compared to the half million who died in Auschwitz.\\n\\nIt is important to realise that Kastner was not an aberration,\\nlike say Rumkovsky in Lodz. Kastner acted as a result of his\\nstrongly held Zionist convictions. His actions were a logical\\noutcome of earlier positions. This is instanced when he exposed to\\nthe Gestapo the existence of a British cell of saboteurs, Palgi\\nand Senesh, and persuaded them to give themselves up, so as not to\\ndisrupt his operations. At no point during his trial or elsewhere,\\ndid Kastner deny that he knew exactly what was to happen to those\\nJews.\\n\\nTo conclude, the role played by Zionists in this period, was\\nconnected to another role they could, and should have played, that\\nof alarming the whole world to what was happening in Europe. They\\nhad the information, but politically it was contrary to their\\npriorities. The priorities were, and still are, quite simple: All\\nthat furthers the Zionist enterprise in Palestine is followed,\\nwhatever the price. The lives of individuals, Jews and non-Jews,\\nare secondary. If this process requires dealing with fascists,\\nNazis and other assorted dictatorial regimes across the world, so\\nbe it.\\n\\n',\n", + " \"From: jgarland@kean.ucs.mun.ca\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nLines: 26\\nOrganization: Memorial University. St.John's Nfld, Canada\\n\\nIn article <1993Apr19.020359.26996@sq.sq.com>, msb@sq.sq.com (Mark Brader) writes:\\n>> > Can these questions be answered for a previous\\n>> > instance, such as the Gehrels 3 that was mentioned in an earlier posting?\\n> \\n>> Orbital Elements of Comet 1977VII (from Dance files)\\n>> p(au) 3.424346\\n>> e 0.151899\\n>> i 1.0988\\n>> cap_omega(0) 243.5652\\n>> W(0) 231.1607\\n>> epoch 1977.04110\\n> \\n> \\n>> Also, perihelions of Gehrels3 were:\\n>> \\n>> April 1973 83 jupiter radii\\n>> August 1970 ~3 jupiter radii\\n> \\n> Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. So the\\n> 1970 figure seems unlikely to actually be anything but a perijove.\\n> Is that the case for the 1973 figure as well?\\n> -- \\nSorry, _perijoves_...I'm not used to talking this language.\\n\\nJohn Garland\\njgarland@kean.ucs.mun.ca\\n\",\n", + " 'From: svoboda@rtsg.mot.com (David Svoboda)\\nSubject: Re: Ok, So I was a little hasty...\\nNntp-Posting-Host: corolla18\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 16\\n\\nIn article speedy@engr.latech.edu (Speedy Mercer) writes:\\n|\\n|This was changed here in Louisiana when a girl went to court and won her \\n|case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\nGeez, what happened? She got a ticket for driving too slow???\\n\\n| ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\nOh, are you saying you\\'re not an edu.breath, then? Okay.\\n\\n\\nDave Svoboda (svoboda@void.rtsg.mot.com) | \"I\\'m getting tired of\\n90 Concours 1000 (Mmmmmmmmmm!) | beating you up, Dave.\\n84 RZ 350 (Ring Ding) (Woops!) | You never learn.\"\\nAMA 583905 DoD #0330 COG 939 (Chicago) | -- Beth \"Bruiser\" Dixon\\n',\n", + " \"From: robert@Xenon.Stanford.EDU (Robert Kennedy)\\nSubject: Solar battery chargers -- any good?\\nOrganization: Computer Science Department, Stanford University.\\nLines: 12\\n\\nI've seen solar battery boosters, and they seem to come without any\\nguarantee. On the other hand, I've heard that some people use them\\nwith success, although I have yet to communicate directly with such a\\nperson. Have you tried one? What was your experience? How did you use\\nit (occasional charging, long-term leave-it-for-weeks, etc.)?\\n\\n\\t-- Robert Kennedy\\n\\nRobert Kennedy\\t\\t\\t\\t\\t(415) 723-4532 (office)\\nrobert@cs.stanford.edu\\t\\t\\t\\t(415) 322-7367 (home voice)\\nComputer Science Dept., Stanford University\\t(415) 322-7329 (home tty)\\n\\n\",\n", + " \"From: jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll)\\nSubject: Re: Vandalizing the sky.\\nOrganization: University of Western Ontario, London\\nNntp-Posting-Host: prism.engrg.uwo.ca\\nLines: 15\\n\\nIn article nickh@CS.CMU.EDU (Nick Haines) writes:\\n>\\n>Would they buy it, given that it's a _lot_ more expensive, and not\\n>much more impressive, than putting a large set of several-km\\n>inflatable billboards in LEO (or in GEO, visible 24 hours from your\\n>key growth market). I'll do _that_ for only $5bn (and the changes of\\n>identity).\\n\\n\\tI've heard of sillier things, like a well-known utility company\\nwanting to buy an 'automated' boiler-cleaning system which uses as many\\noperators as the old system, and which rumour has it costs three million\\nmore per unit. Automation is more 'efficient' although by what scale they are\\nnot saying...\\n\\n\\t\\t\\t\\t\\t\\t\\tJames Nicoll\\n\",\n", + " 'From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Absood\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nOrganization: Columbia University\\nLines: 11\\n\\nTo my fellow Columbian, I must ask, why do you say that I engage\\nin fantasies? Arafat is a terrorist, who happens to have\\n a lot of pull among Palestinians. Can we ignore the two facts?\\nI doubt it.\\n\\nPeace, roar lion roar, and other niceties,\\nPete\\n\\n\\n\\n\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: DC-Y trajectory simulation\\nKeywords: SSTO, Delta Clipper\\nOrganization: University of Illinois at Urbana\\nLines: 91\\n\\n\\nI\\'ve been to three talks in the last month which might be of interest. I\\'ve \\ntranscribed some of my notes below. Since my note taking ability is by no means\\ninfallible, please assume that all factual errors are mine. Permission is \\ngranted to copy this without restriction.\\n\\nNote for newbies: The Delta Clipper project is geared towards producing a\\nsingle staget to orbit, reusable launch vehicle. The DC-X vehicle is a 1/3\\nscale vehicle designed to test some of the concepts invovled in SSTO. It is \\ncurrently undergoing tests. The DC-Y vehicle would be a full scale \\nexperimental vehicle capable of reaching orbit. It has not yet been funded.\\n\\nOn April 6th, Rocky Nelson of MacDonnell Douglas gave a talk entitled \\n\"Optimizing Techniques for Advanced Space Missions\" here at the University of\\nIllinois. Mr Nelson\\'s job involves using software to simulate trajectories and\\ndetermine the optimal trajectory within given requirements. Although he is\\nnot directly involved with the Delta Clipper project, he has spent time with \\nthem recently, using his software for their applications. He thus used \\nthe DC-Y project for most of his examples. While I don\\'t think the details\\nof implicit trajectory simulation are of much interest to the readers (I hope\\nthey aren\\'t - I fell asleep during that part), I think that many of you will\\nbe interested in some of the details gleaned from the examples.\\n\\nThe first example given was the maximization of payload for a polar orbit. The\\nmain restriction is that acceleration must remain below 3 Gs. I assume that\\nthis is driven by passenger constraints rather than hardware constraints, but I\\ndid not verify that. The Delta Clipper Y version has 8 engines - 4 boosters\\nand 4 sustainers. The boosters, which have a lower isp, are shut down in \\nmid-flight. Thus, one critical question is when to shut them down. Mr Nelson\\nshowed the following plot of acceleration vs time:\\n ______\\n3 G /| / |\\n / | / | As ASCII graphs go, this is actually fairly \\n / | / |\\t good. The big difference is that the lines\\n2 G / |/ | made by the / should be curves which are\\n / | concave up. The data is only approximate, as\\n / | the graph wasn\\'t up for very long.\\n1 G / |\\n |\\n |\\n0 G |\\n\\n ^ ^\\n ~100 sec ~400 sec\\n\\n\\nAs mentioned before, a critical constraint is that G levels must be kept below\\n3. Initially, all eight engines are started. As the vehicle burns fuel the\\naccelleration increases. As it gets close to 3G, the booster engines are \\nthrotled back. However, they quickly become inefficient at low power, so it\\nsoon makes more sense to cut them off altogether. This causes the dip in \\naccelleration at about 100 seconds. Eventually the remaining sustainer engines\\nbring the G level back up to about 3 and then hold it there until they cut\\nout entirely.\\n\\nThe engine cutoff does not acutally occur in orbit. The trajectory is aimed\\nfor an altitude slightly higher than the 100nm desired and the last vestiges of\\nair drag slow the vehicle slightly, thus lowering the final altitude to \\nthat desired.\\n\\nQuestions from the audience: (paraphrased)\\n\\nQ: Would it make sense to shut down the booster engines in pairs, rather than\\n all at once?\\n\\nA: Very perceptive. Worth considering. They have not yet done the simulation. Shutting down all four was part of the problem as given.\\n\\nQ: So what was the final payload for this trajectory?\\n\\nA: Can\\'t tell us. \"Read Aviation Leak.\" He also apparently had a good \\n propulsion example, but was told not to use it. \\n\\nMy question: Does anyone know if this security is due to SDIO protecting\\nnational security or MD protecting their own interests?\\n\\nThe second example was reentry simulation, from orbit to just before the pitch\\nup maneuver. The biggest constraint in this one is aerodynamic heating, and \\nthe parameter they were trying to maximize was crossrange. He showed graphs\\nof heating using two different models, to show that both were very similar,\\nand I think we were supposed to assume that this meant they were very accurate.\\nThe end result was that for a polar orbit landing at KSC, the DC-Y would have\\nabout 30 degrees of crossrange and would start it\\'s reentry profile about \\n60 degrees south latitude.\\n\\nI would have asked about the landing maneuvers, but he didn\\'t know about that\\naspect of the flight profile.\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " 'From: laszlo@eclipse.cs.colorado.edu (Laszlo Nemeth)\\nSubject: New DoD listing. Membership is at 1148\\nNntp-Posting-Host: eclipse.cs.colorado.edu\\nOrganization: University of Colorado Boulder, Pizza Disposal Group\\nLines: 23\\n\\nThere is a new DoD listing. To get a copy use one of these commands:\\n\\n\\t\\tfinger motohead@cs.colorado.edu\\n\\t\\t\\t\\tOR\\n\\t\\tmail motohead@cs.colorado.edu\\n\\nIf you send mail make sure your \"From\" line is correct (ie \"man vacation\").\\nI will not try at all to fix mail problems (unless they are mine ;-). And I\\nmay just publicly tell the world what a bad mailer you have. I do scan the \\nmail to find bounces but I will not waste my time answering your questions \\nor requests.\\n\\nFor those of you that want to update your entry or get a # contact the KotL.\\nOnly the KotL can make changes. SO STOP BOTHERING ME WITH INANE MAIL\\n\\nI will not tell what \"DoD\" is! Ask rec.motorcycles. I do not give out the #\\'s.\\n\\n\\nLaszlo Nemeth\\nlaszlo@cs.colorado.edu\\n\"hey - my tool works (yeah, you can quote me on that).\" From elef@Sun.COM\\n\"Flashbacks = free drugs.\"\\nDoD #0666 UID #1999\\n',\n", + " 'From: tychay@cco.caltech.edu (Terrence Y. Chay)\\nSubject: TIFF (NeXT Appsoft draw) -> GIF conversion?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 27\\nNNTP-Posting-Host: punisher.caltech.edu\\nSummary: Help!\\nKeywords: TIFF GIF graphics conversion NeXT Appsoft\\n\\nOkay all my friends are bitching at me that the map I made in Appsoft Draw\\ncan\\'t be displayed in \"xv\"... I checked... It\\'s true, at least with version\\n1.0. My readers on the NeXT have very little trouble on it (Preview messes\\nup the .eps, but does fine with the TIFF and ImageViewer0.9a behaves with\\nflying colors except it doesn\\'t convert worth *&^^% ;-) )\\n\\n Please is there any way I can convert this .drw from Appsoft 1.0 on the NeXT\\nto something more reasonable like .gif? I have access to a sun4 and NeXTstep\\n3.0 systems. any good reliable conversion programs would be helpful... please\\nemail, I\\'ll post responses if anyone wants me to... please email that to.\\n\\nYes I used alphachannel... (god i could choke steve jobs right now ;-) )\\n\\nYes i know how to archie, but tell me what to archie for ;-)\\n\\nAlso is there a way to convert to .ps plain format? ImageViiewer0.9 turns\\nout nothing recognizable....\\n\\n terrychay\\n\\n---\\nsmall editorial\\n\\n-rw-r--r-- 1 tychay 2908404 Apr 18 08:03 Undernet.tiff\\n-rw-r--r-- 1 tychay 73525 Apr 18 08:03 Undernet.tiff.Z\\n\\nand not using gzip! is it me or is there something wrong with this format?\\n',\n", + " \"From: deweeset@ptolemy2.rdrc.rpi.edu (Thomas E. DeWeese)\\nSubject: Finding equally spaced points on a sphere.\\nArticle-I.D.: rpi.4615trd\\nOrganization: Rensselaer Polytechnic Institute, Troy, NY\\nLines: 8\\nNntp-Posting-Host: ptolemy2.rdrc.rpi.edu\\n\\n\\n Hello, I know that this has been discussed before. But at the time\\nI didn't need to teselate a sphere. So if any kind soul has the code\\nor the alg, that was finally decided upon as the best (as I recall it\\nwas a nice, iterative subdivision meathod), I would be very \\nappreciative.\\n\\t\\t\\t\\t\\t\\t\\tThomas DeWeese\\ndeweeset@rdrc.rpi.edu\\n\",\n", + " \"From: diablo.UUCP!cboesel (Charles Boesel)\\nSubject: Alias phone number wanted\\nOrganization: Diablo Creative\\nReply-To: diablo.UUCP!cboesel (Charles Boesel)\\nX-Mailer: uAccess LITE - Macintosh Release: 1.6v2\\nLines: 9\\n\\nWhat is the phone number for Alias?\\nA toll-free number is preferred, if available.\\n\\nThanks\\n\\n--\\ncharles boesel @ diablo creative | If Pro = for and Con = against\\ncboesel@diablo.uu.holonet.net | Then what's the opposite of Progress?\\n+1.510.980.1958(pager) | What else, Congress.\\n\",\n", + " 'From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: NEWS YOU MAY HAVE MISSED, Apr 20\\nOrganization: Bellcore, Livingston, NJ\\nSummary: Totally Unbiased Magazine\\nLines: 134\\n\\nIn article <1qu7op$456@genesis.MCS.COM>, arf@genesis.MCS.COM (Jack Schmidling) writes:\\n> \\n> NEWS YOU MAY HAVE MISSED, APR 19, 1993\\n> \\n> Not because you were too busy but because\\n> Israelists in the US media spiked it.\\n> \\n> ................\\n> \\n> \\n> THOSE INTREPID ISRAELI SOLDIERS\\n> \\n> \\n> Israeli soldiers have sexually taunted Arab women in the occupied Gaza Strip \\n> during the three-week-long closure that has sealed Palestinians off from the \\n> Jewish state, Palestinian sources said on Sunday.\\n> \\n> The incidents occurred in the town of Khan Younis and involved soldiers of\\n> the Golani Brigade who have been at the centre of house-to-house raids for\\n> Palestinian activists during the closure, which was imposed on the strip and\\n> occupied West Bank.\\n> \\n> Five days ago girls at the Al-Khansaa secondary said a group of naked\\n> soldiers taunted them, yelling: ``Come and kiss me.\\'\\' When the girls fled, \\n> the soldiers threw empty bottles at them.\\n> \\n> On Saturday, a group of soldiers opened their shirts and pulled down their\\n> pants when they saw girls from Al-Khansaa walking home from school. Parents \\n> are considering keeping their daughters home from the all-girls school.\\n> \\n> The same day, soldiers harassed two passing schoolgirls after a youth\\n> escaped from them at a boys\\' secondary school. Deputy Principal Srur \\n> Abu-Jamea said they shouted abusive language at the girls, backed them \\n> against a wall, and put their arms around them.\\n> \\n> When teacher Hamdan Abu-Hajras intervened the soldiers kicked him and beat\\n> him with the butts of their rifles.\\n> \\n> On Tuesday, troops stopped a car driven by Abdel Azzim Qdieh, a practising\\n> Moslem, and demanded he kiss his female passenger. Qdieh refused, the \\n> soldiers hit him and the 18-year-old passenger kissed him to stop the \\n> beating.\\n> \\n> On Friday, soldiers entered the home of Zamno Abu-Ealyan, 60, blindfolded\\n> him and his wife, put a music tape on a recorder and demanded they dance. As\\n> the elderly couple danced, the soldiers slipped away. The coupled continued\\n> dancing until their grandson came in and asked what was happening.\\n> \\n> The army said it was checking the reports.\\n> \\n> ....................\\n> \\n> \\n> ISRAELI TROOPS BAR CHRISTIANS FROM JERUSALEM\\n> \\n> Israeli troops prevented Christian Arabs from entering Jerusalem on Thursday \\n> to celebrate the traditional mass of the Last Supper.\\n> \\n> Two Arab priests from the Greek Orthodox church led some 30 worshippers in\\n> prayer at a checkpoint separating the occupied West Bank from Jerusalem after\\n> soldiers told them only people with army-issued permits could enter.\\n> \\n> ``Right now, our brothers are celebrating mass in the Church of the Holy\\n> Sepulchre and we were hoping to be able to join them in prayer,\\'\\' said Father\\n> George Makhlouf of the Ramallah Parish.\\n> \\n> Israel sealed off the occupied lands two weeks ago after a spate of\\n> Palestinian attacks against Jews. The closure cut off Arabs in the West Bank\\n> and Gaza Strip from Jerusalem, their economic, spiritual and cultural centre.\\n> \\n> Father Nicola Akel said Christians did not want to suffer the humiliation\\n> of requesting permits to reach holy sites.\\n> \\n> Makhlouf said the closure was discriminatory, allowing Jews free movement\\n> to take part in recent Passover celebrations while restricting Christian\\n> celebrations.\\n> \\n> ``Yesterday, we saw the Jews celebrate Passover without any interruption.\\n> But we cannot reach our holiest sites,\\'\\' he said.\\n> \\n> An Israeli officer interrupted Makhlouf\\'s speech, demanding to see his\\n> identity card before ordering the crowd to leave.\\n> \\n> ...................\\n> \\n> \\n> \\n> If you are as revolted at this as I am, drop Israel\\'s best friend email and \\n> let him know what you think.\\n> \\n> \\n> 75300.3115@compuserve.com (via CompuServe)\\n> clintonpz@aol.com (via America Online)\\n> clinton-hq@campaign92.org (via MCI Mail)\\n> \\n> \\n> Tell \\'em ARF sent ya.\\n> \\n> ..................................\\n> \\n> If you are tired of \"learning\" about American foreign policy from what is \\n> effectively, Israeli controlled media, I highly recommend checking out the \\n> Washington Report. A free sample copy is available by calling the American \\n> Education Trust at:\\n> (800) 368 5788\\n> \\n> Tell \\'em arf sent you.\\n> \\n> js\\n> \\n> \\n> \\n\\nI took your advice and ordered a copy of the Washinton Report. I\\nheartily recommend it to all pro-Israel types for the following \\nreasons:\\n\\n1. It is an excellent absorber of excrement. I use it to line\\n the bottom of my parakeet\\'s cage. A negative side effect is\\n that my bird now has a somewhat warped view of the mideast.\\n\\n2. It makes a great April Fool\\'s joke, i.e., give it to someone\\n who knows nothing about the middle east and then say \"April\\n Fools\".\\n\\nAnyway, I plan to call them up every month just to keep getting\\nthose free sample magazines (you know how cheap we Jews are).\\n\\nBTW, when you call them, tell \\'em barf sent you.\\n\\nJust Kidding,\\n\\nBen.\\n\\n',\n", + " 'From: hernlem@chess.ncsu.edu (Brad Hernlem)\\nSubject: Israeli Media (was Re: Israeli Terrorism)\\nReply-To: hernlem@chess.ncsu.edu (Brad Hernlem)\\nOrganization: NCSU Chem Eng\\nLines: 33\\n\\n\\nIn article <2BD9C01D.11546@news.service.uci.edu>, tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n|> In article <1993Apr24.203620.6531@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n|> >I think the Israeli press might be a tad bit biased in\\n|> >reporting the events. I doubt the Propaganda machine of Goering\\n|> >reported accurately on what was happening in Germany. It is\\n|> >interesting that you are basing the truth on Israeli propaganda.\\n|> \\n|> Since one is also unlikely to get \"the truth\" from either Arab or \\n|> Palestinian news outlets, where do we go to \"understand\", to learn? \\n|> Is one form of propoganda more reliable than another? The only way \\n|> to determine that is to try and get beyond the writer\\'s \"political\\n|> agenda\", whether it is \"on\" or \"against\" our *side*.\\n|> \\n|> Tim \\n\\nTo Andi,\\n\\nI have to disagree with you about the value of Israeli news sources. If you\\nwant to know about events in Palestine it makes more sense to get the news\\ndirectly from the source. EVERY news source is inherently biased to some\\nextent and for various reasons, both intentional and otherwise. However, \\nthe more sources relied upon the easier it is to see the \"truth\" and to discern \\nthe bias. \\n\\nGo read or listen to some Israeli media. You will learn more news and more\\nopinion about Israel and Palestine by doing so. Then you can form your own\\nopinions and hopefully they will be more informed even if your views don\\'t \\nchange.\\n\\nBrad Hernlem (hernlem@chess.ncsu.EDU)\\nJake can call me Doctor Mohandes Brad \"Ali\" Hernlem (as of last Wednesday)\\n',\n", + " \"From: oehler@picard.cs.wisc.edu (Eric Oehler)\\nSubject: Translating TTTDDD to DXF or Swiv3D.\\nArticle-I.D.: cs.1993Apr6.020751.13389\\nDistribution: usa\\nOrganization: University of Wisconsin, Madison -- Computer Sciences Dept.\\nLines: 8\\n\\nI am a Mac-user when it comes to graphics (that's what I own software and hardware for) and\\nI've recently come across a large number of TTTDDD format modeling databases. Is there any\\nsoftware, mac or unix, for translating those to something I could use, like DXF? Please\\nreply via email.\\n\\nThanx.\\nEric Oehler\\noehler@picard.cs.wisc.edu\\n\",\n", + " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Re: Vulcan? No, not Spock or Haphaestus\\nOrganization: NASA Langley Research Center\\nLines: 16\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\n> Another legend with the name Vulcan was the planet, much like Earth,\\n> in the same orbit\\n\\nThere was a Science fiction movie sometime ago (I do not remember its \\nname) about a planet in the same orbit of Earth but hidden behind the \\nSun so it could never be visible from Earth. Turns out that that planet \\nwas the exact mirror image of Earth and all its inhabitants looked like \\nthe Earthings with the difference that their organs was in the opposite \\nside like the heart was in the right side instead in the left and they \\nwould shake hands with the left hand and so on...\\n\\n C.O.EGALON@LARC.NASA.GOV\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", + " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Re: Space Station Redesign Chief Resigns for Health Reasons\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: tm0006.lerc.nasa.gov\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article , xrcjd@mudpuppy.gsfc.nasa.gov (Charles J. Divine) writes...\\n>Writer Kathy Sawyer reported in today\\'s Washington Post that Joseph Shea, the \\n>head of the space station redesign has resigned for health reasons.\\n> \\n>Shea was hospitalized shortly after his selection in February. He returned\\n>yesterday to lead the formal presentation to the independent White House panel.\\n>Shea\\'s presentation was rambling and almost inaudible.\\n\\nI missed the presentations given in the morning session (when Shea gave\\nhis \"rambling and almost inaudible\" presentation), but I did attend\\nthe afternoon session. The meeting was in a small conference room. The\\nspeaker was wired with a mike, and there were microphones on the table for\\nthe panel members to use. Peons (like me) sat in a foyer outside the\\nconference room, and watched the presentations on closed circuit TV. In\\ngeneral, the sound system was fair to poor, and some of the other\\nspeakers (like the committee member from the Italian Space Agency)\\nalso were \"almost inaudible.\"\\n\\nShea didn\\'t \"lead the formal presentation,\" in the sense of running\\nor guiding the presentation. He didn\\'t even attend the afternoon\\nsession. Vest ran the show (President of MIT, the chair of the\\nadvisory panel).\\n\\n> \\n>Shea\\'s deputy, former astronaut Bryan O\\'Connor, will take over the effort.\\n\\nNote that O\\'Connor has been running the day-to-day\\noperations of the of the redesign team since Shea got sick (which\\nwas immediately after the panel was formed).\\n\\n',\n", + " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 47\\n\\nIn emarsh@hernes-sun.Eng.Sun.COM (Eric \\nMarsh) writes:\\n\\n>In article lis450bw@ux1.cso.uiuc.edu (lis450 \\nStudent) writes:\\n>>Hmmmm. Define objective morality. Well, depends upon who you talk to.\\n>>Some say it means you can\\'t have your hair over your ears, and others say\\n>>it means Stryper is acceptable. _I_ would say that general principles\\n>>of objective morality would be listed in one or two places.\\n\\n>>Ten Commandments\\n\\n>>Sayings of Jesus\\n\\n>>the first depends on whether you trust the Bible, \\n\\n>>the second depends on both whether you think Jesus is God, and whether\\n>> you think we have accurate copies of the NT.\\n\\n>Gong!\\n\\n>Take a moment and look at what you just wrote. First you defined\\n>an \"objective\" morality and then you qualified this \"objective\" morality\\n>with subjective justifications. Do you see the error in this?\\n\\n>Sorry, you have just disqualified yourself, but please play again.\\n\\n>>MAC\\n>>\\n\\n>eric\\n\\nHuh? Please explain. Is there a problem because I based my morality on \\nsomething that COULD be wrong? Gosh, there\\'s a heck of a lot of stuff that I \\nbelieve that COULD be wrong, and that comes from sources that COULD be wrong. \\nWhat do you base your belief on atheism on? Your knowledge and reasoning? \\nCOuldn\\'t that be wrong?\\n\\nMAC\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: He has risen!\\nOrganization: Case Western Reserve University\\nLines: 16\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\n\\n\\n\\tOur Lord and Savior David Keresh has risen!\\n\\n\\n\\tHe has been seen alive!\\n\\n\\n\\tSpread the word!\\n\\n\\n\\n\\n--------------------------------------------------------------------------------\\n\\t\\t\\n\\t\\t\"My sole intention was learning to fly.\"\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: While Armenians destroyed all the Moslem villages in the plain...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 48\\n\\nIn article <1pol62INNa5u@cascade.cs.ubc.ca> kvdoel@cs.ubc.ca (Kees van den Doel) writes:\\n\\n>>See, you are a pathological liar.\\n\\n>You got a crack in your record I think. \\n\\nThis is the point we seem to disagree about. Not a chance.\\n\\n>I keep seeing that line over and over. That\\'s pathetic, even for \\n>Serdar Argic!\\n\\nWell, \"Arromdian\" of ASALA/SDPA/ARF Terrorism and Revisionism Triangle\\nis a compulsive liar. Now try dealing with the rest of what I wrote.\\n\\nU.S. Ambassador Bristol:\\n\\nSource: \"U.S. Library of Congress:\" \\'Bristol Papers\\' - General Correspondence\\nContainer #34.\\n\\n \"While the Dashnaks were in power they did everything in the world to keep the\\n pot boiling by attacking Kurds, Turks and Tartars; by committing outrages\\n against the Moslems; by massacring the Moslems; and robbing and destroying\\n their homes;....During the last two years the Armenians in Russian Caucasus\\n have shown no ability to govern themselves and especially no ability to \\n govern or handle other races under their power.\"\\n\\nA Kurdish scholar:\\n\\nSource: Hassan Arfa, \"The Kurds,\" (London, 1968), pp. 25-26.\\n\\n \"When the Russian armies invaded Turkey after the Sarikamish disaster \\n of 1914, their columns were preceded by battalions of irregular \\n Armenian volunteers, both from the Caucasus and from Turkey. One of \\n these was commanded by a certain Andranik, a blood-thirsty adventurer.\\n These Armenian volunteers committed all kinds of excesses, more\\n than six hundred thousand Kurds being killed between 1915 and 1916 in \\n the eastern vilayets of Turkey.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " \"From: tdawson@llullaillaco.engin.umich.edu (Chris Herringshaw)\\nSubject: Re: Sun IPX root window display - background picture\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 15\\nDistribution: world\\nNNTP-Posting-Host: llullaillaco.engin.umich.edu\\nKeywords: sun ipx background picture\\nOriginator: tdawson@llullaillaco.engin.umich.edu\\n\\n\\nI'm not sure if you got the information you were looking for, so I'll\\npost it anyway for the general public. To load an image on your root\\nwindow add this line to the end of your .xsession file:\\n\\n xloadimage -onroot -fullscreen &\\n\\nThis is assuming of course you have the xloadimage client, and as\\nfor the switches, I think they pretty much explain what is going on.\\nIf you leave out the <&>, the terminal locks till you kill it.\\n(You already knew that though...)\\n\\nHope this helps.\\n\\nDaemon\\n\",\n", + " \"From: arthurc@sfsuvax1.sfsu.edu (Arthur Chandler)\\nSubject: Stereo Pix of planets?\\nOrganization: California State University, Sacramento\\nLines: 5\\n\\nCan anyone tell me where I might find stereo images of planetary and\\nplanetary satellite surfaces? GIFs preferred, but any will do. I'm\\nespecially interested in stereos of the surfaces of Phobos, Deimos, Mars\\nand the Moon (in that order).\\n Thanks. \\n\",\n", + " 'Subject: Re: If You Feed Armenians Dirt -- You Will Bite Dust!\\nFrom: senel@vuse.vanderbilt.edu (Hakan)\\nOrganization: Vanderbilt University\\nSummary: Armenians correcting the geo-political record.\\nNntp-Posting-Host: snarl02\\nLines: 18\\n\\nIn article <1993Apr5.194120.7010@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n\\n>In article <1993Apr5.064028.24746@kth.se> hilmi-er@dsv.su.se (Hilmi Eren) \\n>writes:\\n\\n>David Davidian says: Armenians have nothing to lose! They lack food, fuel, and\\n>warmth. If you fascists in Turkey want to show your teeth, good for you! Turkey\\n>has everything to lose! You can yell and scream like barking dogs along the \\n\\nDavidian, who are fascists? Armenians in Azerbaijan are killing Azeri \\npeople, invading Azeri soil and they are not fascists, because they \\nlack food ha? Strange explanation. There is no excuse for this situation.\\n\\nHerkesi fasist diye damgala sonra, kendileri fasistligin alasini yapinca,\\n\"ac kaldilar da, yiyecekleri yok amcasi, bu seferlik affedin\" de. Yurrruuu, \\nyuru de plaka numarani alalim......\\n\\nHakan\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Level 5?\\nOrganization: Texas Instruments Inc\\nDistribution: sci\\nLines: 33\\n\\nIn 18084TM@msu.edu (Tom) writes:\\n\\n\\n>Nick Haines sez;\\n>>(given that I\\'ve heard the Shuttle software rated as Level 5 in\\n>>maturity, I strongly doubt that this [having lots of bugs] is the case).\\n\\n>Level 5? Out of how many? What are the different levels? I\\'ve never\\n>heard of this rating system. Anyone care to clue me in?\\n\\nSEI Level 5 (the highest level -- the SEI stands for Software\\nEngineering Institute). I\\'m not sure, but I believe that this rating\\nonly applies to the flight software. Also keep in mind that it was\\n*not* achieved through the use of sophisticated tools, but rather\\nthrough a \\'brute force and ignorance\\' attack on the problem during the\\nChallenger standdown - they simply threw hundreds of people at it and\\ndid the whole process by hand. I would not consider receiving a \\'Warning\\'\\nstatus on systems which are not yet in use would detract much (if\\nanything) from such a rating -- I\\'ll have to get the latest copy of\\nthe guidelines to make sure (they just issued new ones, I think).\\n\\nAlso keep in mind that the SEI levels are concerned primarily with\\ncontrol of the software process; the assumption is that a\\nwell controlled process will produce good software. Also keep in mind\\nthat SEI Level 5 is DAMNED HARD. Most software in this country is\\nproduced by \\'engineering practicies\\' that only rate an SEI Level 1 (if\\nthat). \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Deriving Pleasure from Death\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 13\\n\\n\\n>them. (By the way, I do not applaud the killing of _any_ human being,\\n>including prisoners sentenced to death by our illustrious justice department)\\n>\\n>Peace.\\n>-marc\\n>\\n\\nBoy, you really are a stupid person. Our justice department does\\nnot sentence people to death. That's up to state courts. Again,\\nget a brain.\\n\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Method employed by the Armenians in \\'Genocide of the Muslim People\\'.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 28\\n\\nSource: \"Men Are Like That\" by Leonard Ramsden Hartill. The Bobbs-Merrill\\nCompany, Indianapolis (1926). (305 pages). \\n(Memoirs of an Armenian officer who participated in the genocide of 2.5 \\n million Muslim people)\\n\\n\\np. 133 (first paragraph)\\n\\n\"In this movement we took with us three thousand Turkish soldiers who\\n had been captured by the Russians and left on our hands when the Russians\\n abandoned the struggle. During our retreat to Karaklis two thousand of\\n these poor devils were cruelly put to death. I was sickened by the\\n brutality displayed, but could not make any effective protest. Some,\\n mercifully, were shot. Many of them were burned to death. The method\\n employed was to put a quantity of straw into a hut, and then after\\n crowding the hut with Turks, set fire to the straw.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: jbrown@batman.bmd.trw.com\\nSubject: Re: Gulf War and Peace-niks\\nLines: 67\\n\\nIn article <1993Apr20.062328.19776@bmerh85.bnr.ca>, \\ndgraham@bmers30.bnr.ca (Douglas Graham) writes:\\n\\n[...]\\n> \\n> Wait a minute. You said *never* play a Chamberlain. Since the US\\n> *is* playing Chamberlain as far as East Timor is concerned, wouldn\\'t\\n> that lead you to think that your argument is irrelevant and had nothing\\n> to do with the Gulf War? Actually, I rather like your idea. Perhaps\\n> the rest of the world should have bombed (or maybe missiled) Washington\\n> when the US invaded Nicaragua, Grenada, Panama, Vietnam, Mexico, Hawaii,\\n> or any number of other places.\\n\\nWait a minute, Doug. I know you are better informed than that. The US \\nhas never invaded Nicaragua (as far as I know). We liberated Grenada \\nfrom the Cubans\\tto protect US citizens there and to prevent the completion \\nof a strategic air strip. Panama we invaded, true (twice this century). \\nVietnam? We were invited in by the government of S. Vietnam. (I guess \\nwe \"invaded\" Saudi Arabia during the Gulf War, eh?) Mexico? We have \\ninvaded Mexico 2 or 3 times, once this century, but there were no missiles \\nfor anyone to shoot over here at that time. Hawaii? We liberated it from \\nSpain.\\n\\nSo if you mean by the word \"invaded\" some sort of military action where\\nwe cross someone\\'s border, you are right 5 out of 6. But normally\\n\"invaded\" carries a connotation of attacking an autonomous nation.\\n(If some nation \"invades\" the U.S. Virgin Islands, would they be\\ninvading the Virgin Islands or the U.S.?) So from this point of\\nview, your score falls to 2 out of 6 (Mexico, Panama).\\n\\n[...]\\n> \\n> What\\'s a \"peace-nik\"? Is that somebody who *doesn\\'t* masturbate\\n> over \"Guns\\'n\\'Ammo\" or what? Is it supposed to be bad to be a peace-nik?\\n\\nNo, it\\'s someone who believes in \"peace-at-all-costs\". In other words,\\na person who would have supported giving Hitler not only Austria and\\nCzechoslakia, but Poland too if it could have averted the War. And one\\nwho would allow Hitler to wipe all *all* Jews, slavs, and political \\ndissidents in areas he controlled as long as he left the rest of us alone.\\n\\n\"Is it supposed to be bad to be a peace-nik,\" you ask? Well, it depends\\non what your values are. If you value life over liberty, peace over\\nfreedom, then I guess not. But if liberty and freedom mean more to you\\nthan life itself; if you\\'d rather die fighting for liberty than live\\nunder a tyrant\\'s heel, then yes, it\\'s \"bad\" to be a peace-nik.\\n\\nThe problem with most peace-niks it they consider those of us who are\\nnot like them to be \"bad\" and \"unconscionable\". I would not have any\\nargument or problem with a peace-nik if they held to their ideals and\\nstayed out of all conflicts or issues, especially those dealing with \\nthe national defense. But no, they are not willing to allow us to\\nlegitimately hold a different point-of-view. They militate and \\nmany times resort to violence all in the name of peace. (What rank\\nhypocrisy!) All to stop we \"warmongers\" who are willing to stand up \\nand defend our freedoms against tyrants, and who realize that to do\\nso requires a strong national defense.\\n\\nTime to get off the soapbox now. :)\\n\\n[...]\\n> --\\n> Doug Graham dgraham@bnr.ca My opinions are my own.\\n\\nRegards,\\n\\nJim B.\\n',\n", + " 'From: geigel@seas.gwu.edu (Joseph Geigel)\\nSubject: Looking for AUTOCAD .DXF file parser\\nOrganization: George Washington University\\nLines: 16\\n\\n\\n Hello...\\n\\n Does anyone know of any C or C++ function libraries in the public domain\\n that assist in parsing an AUTOCAD .dxf file? \\n\\n Please e-mail.\\n\\n\\n Thanks,\\n\\n-- \\n\\n -- jogle\\n geigel@seas.gwu.edu\\n\\n',\n", + " 'From: JDB1145@tamvm1.tamu.edu\\nSubject: Re: A Little Too Satanic\\nOrganization: Texas A&M University\\nLines: 21\\nNNTP-Posting-Host: tamvm1.tamu.edu\\n\\nIn article <65934@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n>\\n>Nanci Ann Miller writes:\\n>\\n]The \"corrupted over and over\" theory is pretty weak. Comparison of the\\n]current hebrew text with old versions and translations shows that the text\\n]has in fact changed very little over a space of some two millennia. This\\n]shouldn\\'t be all that suprising; people who believe in a text in this manner\\n]are likely to makes some pains to make good copies.\\n \\nTell it to King James, mate.\\n \\n]C. Wingate + \"The peace of God, it is no peace,\\n] + but strife closed in the sod.\\n]mangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\n]tove!mangoe + the marv\\'lous peace of God.\"\\n \\n \\nJohn Burke, jdb1145@summa.tamu.edu\\n',\n", + " 'From: mau@herky.cs.uiowa.edu (Mau Napoleon)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nNntp-Posting-Host: herky.cs.uiowa.edu\\nOrganization: University of Iowa, Iowa City, IA, USA\\nLines: 63\\n\\nFrom article <1993Apr15.092101@IASTATE.EDU>, by tankut@IASTATE.EDU (Sabri T Atan):\\n> Well, Panos, Mr. Tamamidis?, the way you put it it is only the Turks\\n> who bear the responsibility of the things happening today. That is hard to\\n> believe for somebody trying to be objective.\\n> When it comes to conflicts like our countries having you cannot\\n> blame one side only, there always are bad guys on both sides.\\n> What were you doing on Anatolia after the WW1 anyway?\\n> Do you think it was your right to be there?\\n\\nThere were a couple millions of Greeks living in Asia Minor until 1923.\\nSomeone had to protect them. If not us who??\\n\\n> I am not saying that conflicts started with that. It is only\\n> not one side being the aggressive and the ither always suffering.\\n> It is sad that we (both) still are not trying to compromise.\\n> I remember the action of the Turkish government by removing the\\n> visa requirement for greeks to come to Turkey. I thought it\\n> was a positive attempt to make the relations better.\\n> \\nCompromise on what, the invasion of Cyprus, the involment of Turkey in\\nGreek politics, the refusal of Turkey to accept 12 miles of territorial\\nwaters as stated by international law, the properties of the Greeks of \\nKonstantinople, the ownership of the islands in the Greek lake,sorry, Aegean.\\n\\nThere are some things on which there can not be a compromise.\\n\\n\\n> The Greeks I mentioned who wouldn\\'t talk to me are educated\\n> people. They have never met me but they know! I am bad person\\n> because I am from Turkey. Politics is not my business, and it is\\n> not the business of most of the Turks. When it comes to individuals \\n> why the hatred?\\n\\nAny person who supports the policies of the Turkish goverment directly or\\nindirecly is a \"bad\" person.\\nIt is not your nationality that makes you bad, it is your support of the\\nactions of your goverment that make you \"bad\".\\nPeople do not hate you because of who you are but because of what you\\nare. You are a supporter of the policies of the Turkish goverment and\\nas a such you must pay the price.\\n\\n> So that makes me think that there is some kind of\\n> brainwashing going on in Greece. After all why would an educated person \\n> treat every person from a nation the same way? can you tell me about your \\n> history books and things you learn about Greek-Turkish\\n> encounters during your schooling. \\n> take it easy! \\n> \\n> --\\n> Tankut Atan\\n> tankut@iastate.edu\\n> \\n> \"Achtung, baby!\"\\n\\nYou do not need brainwashing to turn people against the Turks. Just talk to\\nGreeks, Arabs, Slavs, Kurds and all other people who had the luck to be under\\nTurkish occupation.\\nThey will talk to you about murders,rapes,distruction.\\n\\nYou do not learn about Turks from history books, you learn about them from\\npeople who experienced first hand Turkish friendliness.\\n\\nNapoleon\\n',\n", + " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 8\\n\\nKeith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n\\n: \\tNice cop out bill.\\n\\nI'm sure you're right, but I have no idea to what you refer. Would you\\nmind explaining how I copped out?\\n\\nBill\\n\",\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: Final Solution for Gaza ?\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 66\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: Final Solution for Gaza ?\\n>\\n>While Israeli Jews fete the uprising of the Warsaw ghetto,\\n\\n\"fete\"??? Since this word both formally and commonly refers to\\npositive/joyous events, your misuse of it here is rather unsettling.\\n \\n>they repress by violent means the uprising of the Gaza ghetto \\n>and attempt to starve the Gazans.\\n\\nI certainly abhor those Israeli policies and attitudes that are\\nabusive towards the Palestinians/Gazans. Given that, however, there \\n*is no comparison* between the reality of the Warsaw Ghetto and in \\nGaza. \\n>\\n>The right of the Gazan population to resist occupation is\\n>recognized in international law and by any person with a sense of\\n>justice. \\n\\nJust as international law recognizes the right of the occupying \\nentity to maintain order, especially in the face of elements\\nthat are consciously attempting to disrupt the civil structure. \\nIronically, international law recognizes each of these focusses\\n(that of the occupied and the occupier) even though they are \\ninherently in conflict.\\n>\\n>As Israel denies Gazans the only two options which are compatible\\n>with basic human rights and international law, that of becoming\\n>Israeli citizens with full rights or respecting their right for\\n>self-determination, it must be concluded that the Israeli Jewish\\n>society does not consider Gazans full human beings.\\n\\nIsrael certainly cannot, and should not, continue its present\\npolicies towards Gazan residents. There is, however, a third \\nalternative- the creation and implementation of a jewish \"dhimmi\"\\nsystem with Gazans/Palestinians as benignly \"protected\" citizens.\\nWould you find THAT as acceptable in that form as you do with\\nregard to Islam\\'s policies towards its minorities?\\n \\n>Whether they have some Final Solution up their sleeve ?\\n\\nIt is a race, then? Between Israel\\'s anti-Palestinian/Gazan\\n\"Final Solution\" and the Arab World\\'s anti-Israel/jewish\\n\"Final Solution\". Do you favor one? neither? \\n>\\n>I urge all those who have slight human compassion to do whatever\\n>they can to help the Gazans regain their full human, civil and\\n>political rights, to which they are entitled as human beings.\\n\\nSince there is justifiable worry by various parties that Israel\\nand Arab/Palestinian \"final solution\" intentions exist, isn\\'t it\\nimportant that BOTH Israeli *and* Palestinian/Gazan \"rights\"\\nbe secured?\\n>\\n>Elias Davidsson Iceland\\n>\\n\\n\\n--\\nTim Clock Ph.D./Graduate student\\nUCI tel#: 714,8565361 Department of Politics and Society\\n fax#: 714,8568441 University of California - Irvine\\nHome tel#: 714,8563446 Irvine, CA 92717\\n',\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: thoughts on christians\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 24\\n\\nKent Sandvik (sandvik@newton.apple.com) wrote:\\n\\n\\n: > This is a good point, but I think \"average\" people do not take up Christianity\\n: > so much out of fear or escapism, but, quite simply, as a way to improve their\\n: > social life, or to get more involved with American culture, if they are kids of\\n: > immigrants for example. Since it is the overwhelming major religion in the\\n: > Western World (in some form or other), it is simply the choice people take if\\n: > they are bored and want to do something new with their lives, but not somethong\\n: > TOO new, or TOO out of the ordinary. Seems a little weak, but as long as it\\n: > doesn\\'t hurt anybody...\\n\\n: The social pressure is indeed a very important factor for the majority\\n: of passive Christians in our world today. In the case of early Christianity\\n: the promise of a heavenly afterlife, independent of your social status,\\n: was also a very promising gift (reason slaves and non-Romans accepted\\n: the religion very rapidly).\\n\\nIf this is a hypothetical proposition, you should say so, if it\\'s\\nfact, you should cite your sources. If all this is the amateur\\nsociologist sub-branch of a.a however, it would suffice to alert the\\nunwary that you are just screwing around ...\\n\\nBill\\n',\n", + " \"From: neideck@nestvx.enet.dec.com (Burkhard Neidecker-Lutz)\\nSubject: Re: Rumours about 3DO ???\\nOrganization: CEC Karlsruhe\\nLines: 17\\nNNTP-Posting-Host: NESTVX\\n\\nIn article <1993Apr15.164940.11632@mercury.unt.edu> Sean McMains writes:\\n>Wow! A 68070! I'd be very interested to get my hands on one of these,\\n>especially considering the fact that Motorola has not yet released the\\n>68060, which is supposedly the next in the 680x0 lineup. 8-D\\n\\nThe 68070 is a variation of the 68010 that was done a few years ago by\\nthe European partners of Motorola. It has some integrated I/O controllers\\nand half a MMU, but otherwise it's a 68010. Think of it the same as\\nthe 8086 and 80186 were.\\n\\n\\t\\tBurkhard Neidecker-Lutz\\n\\nDistributed Multimedia Group, CEC Karlsruhe EERP Portfolio Manager\\nSoftware Motion Pictures & BERKOM II Project Multimedia Base Technology\\nDigital Equipment Corporation\\nneidecker@nestvx.enet.dec.com\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: DESTROYING ETHNIC IDENTITY: TURKS OF GREECE (& Macedonians...)\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 145\\n\\nIn article ptg2351@uxa.cso.uiuc.edu (Panos Tamamidis ) writes:\\n\\n>> Sure your memory is weak. \\n>> Let me refresh your memory (if that\\'s not to late):\\n\\n>> First of all: it is called ISTANBUL. \\n>> Let me even spell it for you: I S T A N B U L\\n\\n> When my grandfather came in Greece, the official name of the city was\\n> Constantinoupolis. \\n\\nAre you related to \\'Arromdian\\' of ASALA/SDPA/ARF Terrorism and Revisionism \\nTriangle?\\n\\n>Now, read carefully the following, and then speak:\\n>The recent Helsinki Watch 78 page report, Broken Promises: Torture and\\n\\nDitto.\\n\\n|1|\\n\\nHELSINKI WATCH: \"PROBLEMS OF TURKS IN WESTERN THRACE CONTINUE\"\\n\\nAnkara (A.A) In a 15-page report of the \"Helsinki Watch\" it is\\nstated that the Turkish minority in Western Thrace is still faced\\nwith problems and stipulated that the discriminatory policy being\\nimplemented by the Greek Government be brought to an end.\\n\\nThe report on Western Thrace emphasized that the Greek government\\nshould grant social and political rights to all the members of\\nminorities that are equal to those enjoyed by Greek citizens and\\nin addition they must recognize the existence of the \"Turkish\\nMinority\" in Western Thrace and grant them the right to identify\\nthemselves as \\'Turks\\'.\\n\\nNEWSPOT, May 1992\\n\\n|2|\\n\\nGREECE ISOLATES WEST THRACE TURKS\\n\\nThe Xanthi independent MP Ahmet Faikoglu said that the Greek\\nstate is trying to cut all contacts and relations of the Turkish\\nminority with Turkey.\\n\\nPointing out that while the Greek minority living in Istanbul is\\ncalled \"Greek\" by ethnic definition, only the religion of the\\nminority in Western Thrace is considered. In an interview with\\nthe Greek newspaper \"Ethnos\" he said: \"I am a Greek citizen of\\nTurkish origin. The individuals of the minority living in Western\\nTrace are also Turkish.\"\\n\\nEmphasizing the education problem for the Turkish minority in\\nWestern Thrace Faikoglu said that according to an agreement\\nsigned in 1951 Greece must distribute textbooks printed in Turkey\\nin Turkish minority schools in Western Thrace.\\n\\nRecalling his activities and those of Komotini independent MP Dr.\\nSadIk Ahmet to defend the rights of the Turkish minority,\\nFaikoglu said. \"In fact we helped Greece. Because we prevented\\nGreece, the cradle of democracy, from losing face before European\\ncountries by forcing the Greek government to recognize our legal\\nrights.\"\\n\\nOn Turco-Greek relations, he pointed out that both countries are\\npredestined to live in peace for geographical and historical\\nreasons and said that Turkey and Greece must resist the foreign\\npowers who are trying to create a rift between them by\\ncooperating, adding that in Turkey he observed that there was\\nwill to improve relations with Greece.\\n\\nNEWSPOT, January 1993\\n\\n|3|\\n\\nMACEDONIAN HUMAN RIGHTS ACTIVISTS TO FACE TRIAL IN GREECE.\\n\\nTwo ethnic Macedonian human rights activists will face trial in\\nAthens for alleged crimes against the Greek state, according to a\\nCourt Summons (No. 5445) obtained by MILS.\\n\\n Hristos Sideropoulos and Tashko Bulev (or Anastasios Bulis)\\nhave been charged under Greek criminal law for making comments in\\nan Athenian magazine.\\n\\n Sideropoulos and Bulev gave an interview to the Greek weekly\\nmagazine \"ENA\" on March 11, 1992, and said that they as\\nMacedonians were denied basic human rights in Greece and would\\nfield an ethnic Macedonian candidate for the up-coming Greek\\ngeneral election.\\n\\n Bulev said in the interview: \"I am not Greek, I am Macedonian.\"\\nSideropoulos said in the article that \"Greece should recognise\\nMacedonia. The allegations regarding territorial aspirations\\nagainst Greece are tales... We are in a panic to secure the\\nborder, at a time when the borders and barriers within the EEC\\nare falling.\"\\n\\n The main charge against the two, according to the court\\nsummons, was that \"they have spread...intentionally false\\ninformation which might create unrest and fear among the\\ncitizens, and might affect the public security or harm the\\ninternational interests of the country (Greece).\"\\n\\n The Greek state does not recognise the existence of a\\nMacedonian ethnicity. There are believed to be between 350,000 to\\n1,000,000 ethnic Macedonians living within Greece, largely\\nconcentrated in the north. It is a crime against the Greek state\\nif anyone declares themselves Macedonian.\\n\\n In 1913 Greece, Serbia-Yugoslavia and Bulgaria partioned\\nMacedonia into three pieces. In 1919 Albania took 50 Macedonian\\nvillages. The part under Serbo-Yugoslav occupation broke away in\\n1991 as the independent Republic of Macedonia. There are 1.5\\nmillion Macedonians in the Republic; 500,000 in Bulgaria; 150,000\\nin Albania; and 300,000 in Serbia proper.\\n\\n Sideropoulos has been a long time campaigner for Macedonian\\nhuman rights in Greece, and lost his job as a forestry worker a\\nfew years ago. He was even exiled to an obscure Greek island in\\nthe mediteranean. Only pressure from Amnesty International forced\\nthe Greek government to allow him to return to his home town of\\nFlorina (Lerin) in Northern Greece (Aegean Macedonia), where the\\nmajority of ethnic Macedonians live.\\n\\n Balkan watchers see the Sideropoulos affair as a show trial in\\nwhich Greece is desperate to clamp down on internal dissent,\\nespecially when it comes to the issue of recognition for its\\nnorthern neighbour, the Republic of Macedonia.\\n\\n Last year the State Department of the United States condemned\\nGreece for its bad treatment of ethnic Macedonians and Turks (who\\nlargely live in Western Thrace). But it remains to be seen if the\\nUS government will do anything until the Presidential elections\\nare over.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " 'From: perry@dsinc.com (Jim Perry)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: Decision Support Inc.\\nLines: 80\\nNNTP-Posting-Host: dsi.dsinc.com\\n\\n(References: deleted to move this to a new thread)\\n\\nIn article <114133@bu.edu> jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n>In article <1phkf7INN86p@dsi.dsinc.com> perry@dsinc.com (Jim Perry) writes:\\n\\n>>}Rushdie is, however, as I understand, a muslim.\\n>>}The fact that he\\'s a British citizen does not preclude his being muslim.\\n>\\n>>Rushdie was an atheist (to use local terminology, not to put words in\\n>>his mouth) at the time of writing TSV and at the time of the fatwa in\\n>>February 1989.[...]\\n>\\n>Well, if he was born muslim (I am fairly certain he was) then he _is_ \\n>muslim until he explicitly renounces Islam. So far as I know he has never\\n>explicitly renounced Islam, though he may have been in extreme doubt\\n>about the existence of God. Being muslim is a legal as well as\\n>intellectual issue, according to Islam.\\n\\n\"To put it as simply as possible: *I am not a Muslim*.[...] I do not\\n accept the charge of apostacy, because I have never in my adult life\\n affirmed any belief, and what one has not affirmed one can not be\\n said to have apostasized from. The Islam I know states clearly that\\n \\'there can be no coercion in matters of religion\\'. The many Muslims\\n I respect would be horrified by the idea that they belong to their\\n faith *purely by virtue of birth*, and that a person who freely chose\\n not to be a Muslim could therefore be put to death.\"\\n \\t \\t \\t \\tSalman Rushdie, \"In Good Faith\", 1990\\n\\n\"God, Satan, Paradise, and Hell all vanished one day in my fifteenth\\n year, when I quite abruptly lost my faith. [...]and afterwards, to\\n prove my new-found atheism, I bought myself a rather tasteless ham\\n sandwich, and so partook for the first time of the forbidden flesh of\\n the swine. No thunderbolt arrived to strike me down. [...] From that\\n day to this I have thought of myself as a wholly seculat person.\"\\n \\t \\t \\t \\tSalman Rushdie, \"In God We Trust\", 1985\\n \\n>>[I] think the Rushdie affair has discredited Islam more in my eyes than\\n>>Khomeini -- I know there are fanatics and fringe elements in all\\n>>religions, but even apparently \"moderate\" Muslims have participated or\\n>>refused to distance themselves from the witch-hunt against Rushdie.\\n>\\n>Yes, I think this is true, but there Khomenei\\'s motivations are quite\\n>irrelevant to the issue. The fact of the matter is that Rushdie made\\n>false statements (fiction, I know, but where is the line between fact\\n>and fiction?) about the life of Mohammad. \\n\\nOnly a functional illiterate with absolutely no conception of the\\nnature of the novel could think such a thing. I\\'ll accept it\\n(reluctantly) from mobs in Pakistan, but not from you. What is\\npresented in the fictional dream of a demented character cannot by the\\nwildest stretch of the imagination be considered a reflection on the\\nactual Mohammad. What\\'s worse, the novel doesn\\'t present the\\nMahound/Mohammed character in any worse light than secular histories\\nof Islam; in particular, there is no \"lewd\" misrepresentation of his\\nlife or that of his wives.\\n\\n>That is why\\n>few people rush to his defense -- he\\'s considered an absolute fool for \\n>his writings in _The Satanic Verses_. \\n\\nDon\\'t hold back; he\\'s considered an apostate and a blasphemer.\\nHowever, it\\'s not for his writing in _The Satanic Verses_, but for\\nwhat people have accepted as a propagandistic version of what is\\ncontained in that book. I have yet to find *one single muslim* who\\nhas convinced me that they have read the book. Some have initially\\nclaimed to have done so, but none has shown more knowledge of the book\\nthan a superficial Newsweek story might impart, and all have made\\nfactual misstatements about events in the book.\\n\\n>If you wish to understand the\\n>reasons behind this as well has the origin of the concept of \"the\\n>satanic verses\" [...] see the\\n>Penguin paperback by Rafiq Zakariyah called _Mohammad and the Quran_.\\n\\nI\\'ll keep an eye out for it. I have a counter-proposal: I suggest\\nthat you see the Viking hardcover by Salman Rushdie called _The\\nSatanic Verses_. Perhaps then you\\'ll understand.\\n-- \\nJim Perry perry@dsinc.com Decision Support, Inc., Matthews NC\\nThese are my opinions. For a nominal fee, they can be yours.\\n',\n", + " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Re: Space Debris\\nOrganization: NASA Langley Research Center\\nLines: 7\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\nThere is a guy in NASA Johnson Space Center that might answer \\nyour question. I do not have his name right now but if you follow \\nup I can dig that out for you.\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", + " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: Rejetting carbs..\\nKeywords: air pump\\nDistribution: na\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 58\\n\\nIn article jburney@hydra.nodc.noaa.gov (Jeff Burney) writes:\\n>\\n>If we are only talking about 4-stroke (I think I can understand exhaust\\n>pulse affect in a 2-stroke), the intake valve is closed on the\\n>exhaust stroke and the gas is pushed out by the cyclinder. I guess\\n>there is some gas compression that may affect the amount pushed out\\n>but the limiting factor seems to be the header pipe and not the \\n>canister. Meaning: would gases \"so far\" down the line (the canister)\\n>really have an effect on the exhaust stroke? Do the gases really \\n>compress that much?\\n\\n For discussion purposes, I will ignore dynamic effects like pulses\\nin the exhaust pipe, and try to paint a useful mental picture.\\n\\n1. Unless an engine is supercharged, the pressure available to force\\nair into the intake tract is _atmospheric_. At the time the intake\\nvalve is opened, the pressure differential available to move air is only\\nthe difference between the combustion chamber pressure (left over after\\nthe exhaust stroke) and atmospheric. As the piston decends on the\\nintake stroke, combustion chamber pressure is decreased, allowing\\natmospheric pressure to move more air into the intake tract. At no time\\ndoes the pressure ever become \"negative\", or even approach a good\\nvacuum.\\n\\n2. At the time of the exhaust valve closing, the pressure in the\\ncombustion chamber is essentially the pressure of the exhaust system up\\nto the first major flow restriction (the muffler). Note that the volume\\nof gas that must flow through the exhaust is much larger than the volume\\nthat must flow through the intake, because of the temperature\\ndifference and the products of combustion.\\n\\n3. In the last 6-8 years, the Japanese manufacturers have started\\npaying attention to exhaust and intake tuning, in pursuit of almighty\\nhorsepower. At this point in time, on high-performance bikes,\\nsubstitution of an aftermarket free-flow air filter will have almost\\nzero affect on performance, because the stock intake system flows very\\nwell anyway. Substitution of an aftermarket exhaust system will make\\nvery little difference, unless (in general) the new exhaust system is\\n_much_ louder than the stocker.\\n\\n4. On older bikes, exhaust back-pressure was the dominating factor.\\nIf free-flowing air filters were substituted, very little difference\\nwas noted, unless a free-flowing exhaust system was installed as well.\\n\\n5. In general, an engine can be visualized as an air pump. At any\\ngiven RPM, anything that will cause the engine to pump more air, be it\\non the intake or exhaust side, will cause it to produce more horsepower.\\nPumping more air will require recalibration (rejetting) of the carburetor.\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", + " \"From: ari@tahko.lpr.carel.fi (Ari Suutari)\\nSubject: Any graphics packages available for AIX ?\\nOrganization: Carelcomp Oy\\nLines: 24\\nNNTP-Posting-Host: tahko.lpr.carel.fi\\nKeywords: gks graphics\\n\\n\\n\\tDoes anybody know if there are any good 2d-graphics packages\\n\\tavailable for IBM RS/6000 & AIX ? I'm looking for something\\n\\tlike DEC's GKS or Hewlett-Packards Starbase, both of which\\n\\thave reasonably good support for different output devices\\n\\tlike plotters, terminals, X etc.\\n\\n\\tI have tried also xgks from X11 distribution and IBM's implementation\\n\\tof Phigs. Both of them work but we require more output devices\\n\\tthan just X-windows.\\n\\n\\tOur salesman at IBM was not very familiar with graphics and\\n\\tI am not expecting for any good solutions from there.\\n\\n\\n\\t\\tAri\\n\\n---\\n\\n\\tAri Suutari\\t\\t\\tari@carel.fi\\n\\tCarelcomp Oy\\n\\tLappeenranta\\n\\tFINLAND\\n\\n\",\n", + " 'From: jaskew@spam.maths.adelaide.edu.au (Joseph Askew)\\nSubject: Re: Small Astronaut (was: Budget Astronaut)\\nOrganization: Statistics, Pure & Applied Mathematics, University of Adelaide\\nLines: 25\\n\\nIn article <1pfkf5$7ab@access.digex.com> prb@access.digex.com (Pat) writes:\\n\\n>Only one problem with sending a corp of Small astronauts.\\n>THey may want to start a galactic empire:-) Napoleon\\n>complex you know. Genghis Khan was a little guy too. I\\'d bet\\n>Julius caesar never broke 5\\'1\".\\n\\nI think you would lose your money. Julius was actually rather tall\\nfor a Roman. He did go on record as favouring small soldiers though.\\nThought they were tougher and had more guts. He was probably right\\nif you think about it. As for Napoleon remember that the French\\navergae was just about 5 feet and that height is relative! Did he\\nreally have a complex?\\n\\nObSpace : We have all seen the burning candle from High School that goes\\nout and relights. If there is a large hot body placed in space but in an\\natmosphere, exactly how does it heat the surroundings? Diffusion only?\\n\\nJoseph Askew\\n\\n-- \\nJoseph Askew, Gauche and Proud In the autumn stillness, see the Pleiades,\\njaskew@spam.maths.adelaide.edu Remote in thorny deserts, fell the grief.\\nDisclaimer? Sue, see if I care North of our tents, the sky must end somwhere,\\nActually, I rather like Brenda Beyond the pale, the River murmurs on.\\n',\n", + " 'From: mt90dac@brunel.ac.uk (Del Cotter)\\nSubject: Re: Crazy? or just Imaginitive?\\nOrganization: Brunel University, West London, UK\\nLines: 26\\n\\n<1993Apr21.205403.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n\\n>So some of my ideas are a bit odd, off the wall and such, but so was Wilbur and\\n>Orville Wright, and quite a few others.. Sorry if I do not have the big degrees\\n>and such, but I think (I might be wrong, to error is human) I have something\\n>that is in many ways just as important, I have imagination, dreams. And without\\n>dreams all the knowledge is worthless.. \\n\\nOh, and us with the big degrees don\\'t got imagination, huh?\\n\\nThe alleged dichotomy between imagination and knowledge is one of the most\\npernicious fallacys of the New Age. Michael, thanks for the generous\\noffer, but we have quite enough dreams of our own, thank you.\\n\\nYou, on the other hand, are letting your own dreams go to waste by\\nfailing to get the maths/thermodynamics/chemistry/(your choices here)\\nwhich would give your imagination wings.\\n\\nJust to show this isn\\'t a flame, I leave you with a quote from _Invasion of \\nthe Body Snatchers_:\\n\\n\"Become one of us; it\\'s not so bad, you know\"\\n-- \\n \\',\\' \\' \\',\\',\\' | | \\',\\' \\' \\',\\',\\'\\n \\', ,\\',\\' | Del Cotter mt90dac@brunel.ac.uk | \\', ,\\',\\' \\n \\',\\' | | \\',\\' \\n',\n", + " 'From: rlennip4@mach1.wlu.ca (robert lennips 9209 U)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nX-Newsreader: TIN [version 1.1 PL6]\\nOrganization: Wilfrid Laurier University\\nLines: 2\\n\\nPlease get a REAL life.\\n\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Final Solution for Gaza ?\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 31\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n\\n\\tOther people have commented on most of this swill, I figured\\nI\\'d add a few comments of my own.\\n\\n>The Gaza strip, this tiny area of land with the highest population\\n>density in the world, has been cut off from the world for weeks.\\n\\n\\tHong Kong, and Cairo both have higher population densities.\\n\\n>The Israeli occupier has decided to punish the whole population of\\n>Gaza, some 700.000 people, by denying them the right to leave the\\n>strip and seek work in Israel.\\n\\n\\tThere is no fundamental right to work in another country. And\\nthe closing of the strip is not a punishment, it is a security measure\\nto stop people from stabbing Israelis.\\n\\n\\n>The only help given to Gazans by Israeli\\n>Jews, only dozens of people, is humanitarian assistance.\\n\\n\\tDozens minus one, since one of them was stabbed to death a few\\ndays ago.\\n\\n\\tAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: lochem@fys.ruu.nl (Gert-Jan van Lochem)\\nSubject: Dutch: symposium compacte objecten\\nSummary: U wordt uitgenodigd voor het symposium compacte objecten 26-4-93\\nKeywords: compacte objecten, symposium\\nOrganization: Physics Department, University of Utrecht, The Netherlands\\nLines: 122\\n\\nSterrenkundig symposium \\'Compacte Objecten\\'\\n op 26 april 1993\\n\\n\\nIn het jaar 1643, zeven jaar na de oprichting van de\\nUniversiteit van Utrecht, benoemde de universiteit haar\\neerste sterrenkundige waarnemer. Hiermee ontstond de tweede\\nuniversiteitssterrenwacht ter wereld. Aert Jansz, de eerste\\nwaarnemer, en zijn opvolgers voerden de Utrechtse sterrenkunde\\nin de daaropvolgende jaren, decennia en eeuwen naar de\\nvoorhoede van het astronomisch onderzoek. Dit jaar is het 350\\njaar geleden dat deze historische benoeming plaatsvond.\\n\\nDe huidige generatie Utrechtse sterrenkundigen en studenten\\nsterrenkunde, verenigd in het Sterrekundig Instituut Utrecht,\\nvieren de benoeming van hun \\'oervader\\' middels een breed scala\\naan feestelijke activiteiten. Zo is er voor scholieren een\\nplanetenproject, programmeert de Studium Generale een aantal\\nvoordrachten met een sterrenkundig thema en wordt op de Dies\\nNatalis aan een astronoom een eredoctoraat uitgereikt. Er\\nstaat echter meer op stapel.\\n\\nStudenten natuur- en sterrenkunde kunnen op 26 april aan een\\nsterrenkundesymposium deelnemen. De onderwerpen van het\\nsymposium zijn opgebouwd rond een van de zwaartepunten van het\\nhuidige Utrechtse onderzoek: het onderzoek aan de zogeheten\\n\\'compacte objecten\\', de eindstadia in de evolutie van sterren.\\nBij de samenstelling van het programma is getracht de\\ndeelnemer een zo aktueel en breed mogelijk beeld te geven van\\nde stand van zaken in het onderzoek aan deze eindstadia. In de\\neerste, inleidende lezing zal dagvoorzitter prof. Lamers een\\nbeknopt overzicht geven van de evolutie van zware sterren,\\nwaarna de zeven overige sprekers in lezingen van telkens een\\nhalf uur nader op de specifieke evolutionaire eindprodukten\\nzullen ingaan. Na afloop van elke lezing is er gelegenheid tot\\nhet stellen van vragen. Het dagprogramma staat afgedrukt op\\neen apart vel.\\nHet niveau van de lezingen is afgestemd op tweedejaars\\nstudenten natuur- en sterrenkunde. OOK ANDERE BELANGSTELLENDEN\\nZIJN VAN HARTE WELKOM!\\n\\nTijdens de lezing van prof. Kuijpers zullen, als alles goed\\ngaat, de veertien radioteleskopen van de Radiosterrenwacht\\nWesterbork worden ingezet om via een directe verbinding tussen\\nhet heelal, Westerbork en Utrecht het zwakke radiosignaal van\\neen snel roterende kosmische vuurtoren, een zogeheten pulsar,\\nin de symposiumzaal door te geven en te audiovisualiseren.\\nProf. Kuijpers zal de binnenkomende signalen (elkaar snel\\nopvolgende scherp gepiekte pulsen radiostraling) bespreken en\\ntrachten te verklaren.\\nHet slagen van dit unieke experiment staat en valt met de\\ntechnische haalbaarheid ervan. De op te vangen signalen zijn\\nnamelijk zo zwak, dat pas na een waarnemingsperiode van 10\\nmiljoen jaar genoeg energie is opgevangen om een lamp van 30\\nWatt een seconde te laten branden! Tijdens het symposium zal\\ner niet zo lang gewacht hoeven te worden: de hedendaagse\\ntechnologie stelt ons in staat live het heelal te beluisteren.\\n\\nDeelname aan het symposium kost f 4,- (exclusief lunch) en\\nf 16,- (inclusief lunch). Inschrijving geschiedt door het\\nverschuldigde bedrag over te maken op ABN-AMRO rekening\\n44.46.97.713 t.n.v. stichting 350 JUS. Het gironummer van de\\nABN-AMRO bank Utrecht is 2900. Bij de inschrijving dient te\\nworden aangegeven of men lid is van de NNV. Na inschrijving\\nwordt de symposiummap toegestuurd. Bij inschrijving na\\n31 maart vervalt de mogelijkheid een lunch te reserveren.\\n\\nHet symposium vindt plaats in Transitorium I,\\nUniversiteit Utrecht.\\n\\nVoor meer informatie over het symposium kan men terecht bij\\nHenrik Spoon, p/a S.R.O.N., Sorbonnelaan 2, 3584 CA Utrecht.\\nTel.: 030-535722. E-mail: henriks@sron.ruu.nl.\\n\\n\\n\\n******* DAGPROGRAMMA **************************************\\n\\n\\n 9:30 ONTVANGST MET KOFFIE & THEE\\n\\n10:00 Opening\\n Prof. dr. H.J.G.L.M. Lamers (Utrecht)\\n\\n10:10 Dubbelster evolutie\\n Prof. dr. H.J.G.L.M. Lamers\\n\\n10:25 Radiopulsars\\n Prof. dr. J.M.E. Kuijpers (Utrecht)\\n\\n11:00 Pulsars in dubbelster systemen\\n Prof. dr. F. Verbunt (Utrecht)\\n\\n11:50 Massa & straal van neutronensterren\\n Prof. dr. J. van Paradijs (Amsterdam)\\n\\n12:25 Theorie van accretieschijven\\n Drs. R.F. van Oss (Utrecht)\\n\\n13:00 LUNCH\\n\\n14:00 Hoe zien accretieschijven er werkelijk uit?\\n Dr. R.G.M. Rutten (Amsterdam)\\n\\n14:35 Snelle fluktuaties bij accretie op neutronensterren\\n en zwarte gaten\\n Dr. M. van der Klis (Amsterdam)\\n\\n15:10 THEE & KOFFIE\\n\\n15:30 Zwarte gaten: knippen en plakken met ruimte en tijd\\n Prof. dr. V. Icke (leiden)\\n\\n16:05 afsluiting\\n\\n16:25 BORREL\\n\\n-- \\nGert-Jan van Lochem\\t \\\\\\\\\\t\\t\"What is it?\"\\nFysische informatica\\t \\\\\\\\\\t\"Something blue\"\\nUniversiteit Utrecht \\\\\\\\\\t\"Shapes, I need shapes!\"\\n030-532803\\t\\t\\t\\\\\\\\\\t\\t\\t- HHGG -\\n',\n", + " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: GGRRRrrr!! Cages double-parking motorc\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 32\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 1@cs.cmu.edu, jfriedl+@RI.CMU.EDU (Jeffrey Friedl) writes:\\n>egreen@east.sun.com (Ed Green - Pixel Cruncher) writes:\\n>|> \\n>|> An apartment complex where I used to live tried this, only they put the\\n>|> thing over the driver\\'s window, \"so they couldn\\'t miss it.\" \\n>\\n>I can see the liability of putting stickers on the car while it was moving,\\n>or something, but it\\'s the BDI that chooses to start and then drive the car\\n>in a known unsafe condition that would (seem to be) liable. \\n\\nAn effort was made to remove the sticker. It came to pieces, leaving\\nmost of it firmly attached to the window. It was dark, and around\\n10:00 pm. The sticker (before being mangled in an ineffective attempt\\nto be torn off) warned the car would be towed if not removed. A\\n\"reasonable person\" would arguably have driven the car. Had an\\naccident occured, I don\\'t think my friend\\'s attorney would have much\\ntrouble fixing blame on the apartment mangement.\\n\\nAs a practical matter, even without a conviction, the cost and\\ninconvenience of defending against the suit would be considerable.\\n\\nAs a moral matter, it was a pretty fucking stupid thing to do for so\\npaltry a violation as parking without an authorization sticker (BTW, it\\nwasn\\'t \"somebody\\'s\" spot, it was resident-only, but unassigned,\\nparking).\\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", + " 'From: enzo@research.canon.oz.au (Enzo Liguori)\\nSubject: Vandalizing the sky.\\nOrganization: Canon Information Systems Research Australia\\nLines: 38\\n\\nFrom the article \"What\\'s New\" Apr-16-93 in sci.physics.research:\\n\\n........\\nWHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n\\n1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\nIn 1950, science fiction writer Robert Heinlein published \"The\\nMan Who Sold the Moon,\" which involved a dispute over the sale of\\nrights to the Moon for use as billboard. NASA has taken the firsteps toward this\\n hideous vision of the future. Observers were\\nstartled this spring when a NASA launch vehicle arrived at the\\npad with \"SCHWARZENEGGER\" painted in huge block letters on the\\nside of the booster rockets. Space Marketing Inc. had arranged\\nfor the ad to promote Arnold\\'s latest movie. Now, Space Marketing\\nis working with University of Colorado and Livermore engineers on\\na plan to place a mile-long inflatable billboard in low-earth\\norbit. NASA would provide contractual launch services. However,\\nsince NASA bases its charge on seriously flawed cost estimates\\n(WN 26 Mar 93) the taxpayers would bear most of the expense. This\\nmay look like environmental vandalism, but Mike Lawson, CEO of\\nSpace Marketing, told us yesterday that the real purpose of the\\nproject is to help the environment! The platform will carry ozone\\nmonitors he explained--advertising is just to help defray costs.\\n..........\\n\\nWhat do you think of this revolting and hideous attempt to vandalize\\nthe night sky? It is not even April 1 anymore.\\nWhat about light pollution in observations? (I read somewhere else that\\nit might even be visible during the day, leave alone at night).\\nIs NASA really supporting this junk?\\nAre protesting groups being organized in the States?\\nReally, really depressed.\\n\\n Enzo\\n-- \\nVincenzo Liguori | enzo@research.canon.oz.au\\nCanon Information Systems Research Australia | Phone +61 2 805 2983\\nPO Box 313 NORTH RYDE NSW 2113 | Fax +61 2 805 2929\\n',\n", + " 'From: mscrap@halcyon.com (Marta Lyall)\\nSubject: Re: Video in/out\\nOrganization: Northwest Nexus Inc. (206) 455-3505\\nLines: 29\\n\\nOrganization: \"A World of Information at your Fingertips\"\\nKeywords: \\n\\nIn article <628@toontown.columbiasc.ncr.com> craig@toontown.ColumbiaSC.NCR.COM (Craig S. Williamson) writes:\\n>\\n>I\\'m getting ready to buy a multimedia workstation and would like a little\\n>advice. I need a graphics card that will do video in and out under windows.\\n>I was originally thinking of a Targa+ but that doesn\\'t work under Windows.\\n>What cards should I be looking into?\\n>\\n>Thanks,\\n>Craig\\n>\\n>-- \\n> \"To forgive is divine, to be\\n>-Craig Williamson an airhead is human.\"\\n> Craig.Williamson@ColumbiaSC.NCR.COM -Balki Bartokomas\\n> craig@toontown.ColumbiaSC.NCR.COM (home) Perfect Strangers\\n\\n\\nCraig,\\n\\nYou should still consider the Targa+. I run windows 3.1 on it all the\\ntime at work and it works fine. I think all you need is the right\\ndriver. \\n\\nJosh West \\nemail: mscrap@halcyon.com\\n\\n',\n", + " \"From: adams@bellini.berkeley.edu (Adam L. Schwartz)\\nSubject: Re: Final Solution in Palestine ?\\nNntp-Posting-Host: bellini.berkeley.edu\\nOrganization: U.C. Berkeley -- ERL\\nLines: 27\\n\\nIn article hm@cs.brown.edu (Harry Mamaysky) writes:\\n>In article <1993Apr25.171003.10694@thunder.mcrcim.mcgill.edu> ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed) writes:\\n>\\n>\\t DRIVING THE JEWS INTO THE SEA ?!\\n>\\n> I am sick and tired of this 'DRIVING THE JEWS INTO THE SEA' sentance attributed\\n> to Islamic movements and the PLO; it simply can't be proven as part of their\\n> plan !\\n>\\n\\nProven? Maybe not. But it can certainly be verified beyond a reasonable doubt. This\\nstatement and statements like it are a matter of public record. Before the Six Day War (1967)\\nI think Nasser and some other Arab leaders were broadcasting these statements on\\nArab radio. You might want to check out some old newspapers Ahmed.\\n\\n\\n> What Hamas and Islamic Jihad believe in, as far as I can get from the Arab media,\\n> is an Islamic state that protects the rights of all its inhabitants under Koranic\\n> Law.\\n\\nI think if you take a look at the Hamas covenant (written in 1988) you might get a \\ndifferent impression. I have the convenant in the original arabic with a translation\\nthat I've verified with Arabic speakers. The document is rife with calls to kill jews\\nand spread Islam and so forth.\\n\\n-Adam Schwartz\\n\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: First, I\\'ll make the assumption that you agree that a murderer is one\\n>who has commited murder.\\n\\nWell, I\\'d say that a murderer is one who intentionally committed a murder.\\nFor instance, if you put a bullet into a gun that was thought to contain\\nblanks, and someone was killed with such a gun, the person who actually\\nperformed the action isn\\'t the murderer (but I guess this is actually made\\nclear in the below definition).\\n\\n>I\\'d be interested to see a more reasonable definition. \\n\\nWhat do you mean by \"reasonable?\"\\n\\n>Otherwise, your inductive definition doesn\\'t bottom out:\\n>Your definition, in essence, is that\\n>>Murder is the intentional killing of someone who has not commited \\n>>murder, against his will.\\n>Expanding the second occurence of `murder\\' in the above, we see that\\n[...]\\n\\nYes, it is bad to include the word being defined in the definition. But,\\neven though the series is recursively infinite, I think the meaning can\\nstill be deduced.\\n\\n>I assume you can see the problem here. To do a correct inductive\\n>definition, you must define something in terms of a simpler case, and\\n>you must have one or several \"bottoming out\" cases. For instance, we\\n>can define the factorial function (the function which assigns to a\\n>positive integer the product of the positive integers less than or\\n>equal to it) on the positive integers inductively as follows:\\n\\n[math lesson deleted]\\n\\nOkay, let\\'s look at this situation: suppose there is a longstanding\\nfeud between two families which claim that the other committed some\\ntravesty in the distant past. Each time a member of the one family\\nkills a member of the other, the other family thinks that it is justified\\nin killing a that member of the first family. Now, let\\'s suppose that this\\nsequence has occurred an infinite number of times. Or, if you don\\'t\\nlike dealing with infinities, suppose that one member of the family\\ngoes back into time and essentially begins the whole thing. That is, there\\nis a never-ending loop of slayings based on some non-existent travesty.\\nHow do you resolve this?\\n\\nWell, they are all murders.\\n\\nNow, I suppose that this isn\\'t totally applicable to your \"problem,\" but\\nit still is possible to reduce an uninduced system.\\n\\nAnd, in any case, the nested \"murderer\" in the definition of murder\\ncannot be infintely recursive, given the finite existence of humanity.\\nAnd, a murder cannot be committed without a killing involved. So, the\\nfirst person to intentionally cause someone to get killed is necessarily\\na murderer. Is this enough of an induction to solve the apparently\\nunreducable definition? See, in a totally objective system where all the\\ninformation is available, such a nested definition isn\\'t really a problem.\\n\\nkeith\\n',\n", + " 'From: dwestner@cardhu.mcs.dundee.ac.uk (Dominik Westner)\\nSubject: need a viewer for gl files\\nOrganization: Maths & C.S. Dept., Dundee University, Scotland, UK\\nLines: 10\\nNNTP-Posting-Host: cardhu.mcs.dundee.ac.uk\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nHi, \\n\\nthe subject says it all. Is there a PD viewer for gl files (for X)?\\n\\nThanks\\n\\n\\nDominik\\n\\n\\n',\n", + " 'From: msb@sq.sq.com (Mark Brader)\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nOrganization: SoftQuad Inc., Toronto, Canada\\nLines: 34\\n\\n> > Can these questions be answered for a previous\\n> > instance, such as the Gehrels 3 that was mentioned in an earlier posting?\\n\\n> Orbital Elements of Comet 1977VII (from Dance files)\\n> p(au) 3.424346\\n> e 0.151899\\n> i 1.0988\\n> cap_omega(0) 243.5652\\n> W(0) 231.1607\\n> epoch 1977.04110\\n\\nThanks for the information!\\n\\nI assume p is the semi-major axis and e the eccentricity. The peri-\\nhelion and aphelion are then given by p(1-e) and p(1+e), i.e., about\\n2.90 and 3.95 AU respectively. For Jupiter, they are 4.95 and 5.45 AU.\\nIf 1977 was after the temporary capture, this means that the comet\\nended up in an orbit that comes no closer than 1 AU to Jupiter\\'s --\\nwhich I take to be a rough indication of how far from Jupiter it could\\nget under Jupiter\\'s influence.\\n\\n> Also, perihelions of Gehrels3 were:\\n> \\n> April 1973 83 jupiter radii\\n> August 1970 ~3 jupiter radii\\n\\nWhere 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. So the\\n1970 figure seems unlikely to actually be anything but a perijove.\\nIs that the case for the 1973 figure as well?\\n-- \\nMark Brader, SoftQuad Inc., Toronto\\t\\t\"Remember the Golgafrinchans\"\\nutzoo!sq!msb, msb@sq.com\\t\\t\\t\\t\\t-- Pete Granger\\n\\nThis article is in the public domain.\\n',\n", + " 'From: ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky)\\nSubject: Re: Ten questions about Israel\\nLines: 66\\nNntp-Posting-Host: taupe.cc.utexas.edu\\nOrganization: University of Texas @ Austin\\nLines: 66\\n\\nIn article <1483500349@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n> \\n> From: Center for Policy Research \\n> Subject: Ten questions about Israel\\n> \\n> \\n> Ten questions to Israelis\\n> -------------------------\\n> \\n> I would be thankful if any of you who live in Israel could help to\\n> provide\\n> accurate answers to the following specific questions. These are\\n> indeed provocative questions but they are asked time and again by\\n> people around me. \\n> \\n> 1. Is it true that the Israeli authorities don\\'t recognize\\n> Israeli nationality ? And that ID cards, which Israeli citizens\\n> must carry at all times, identify people as Jews or Arabs, not as\\n> Israelis ?\\n\\n\\n\\tThat\\'s true. Israeli ID cards do not identify people\\n\\tas Israelies. Smart huh?\\n\\n\\n> 3. Is it true that Israeli stocks nuclear weapons ? If so,\\n> could you provide any evidence ?\\n\\n\\tYes. There\\'s one warhead in my parent\\'s backyard in\\n\\tBeer Sheva (that\\'s only some 20 miles from Dimona,\\n\\tyou know). Evidence? I saw it!\\n\\n \\n> 4. Is it true that in Israeli prisons there are a number of\\n> individuals which were tried in secret and for which their\\n> identities, the date of their trial and their imprisonment are\\n> state secrets ?\\n\\n\\tYes. But unfortunately I can\\'t give you more details.\\n\\tThat\\'s _secret_, you see.\\n\\n\\n\\t\\t\\t[...]\\n\\n> \\n> Thanks,\\n> \\n> Elias Davidsson Iceland email: elias@ismennt.is\\n\\n\\n\\tYou\\'re welcome. Now, let me ask you a few questions, if you\\n\\tdon\\'t mind:\\n\\n\\t1. Is it true that the Center for Policy Research is a \\n\\t one-man enterprise?\\n\\n\\t2. Is it true that your questions are not being asked\\n\\t bona fide?\\n\\n\\t3. Is it true that your statement above, \"These are indeed \\n\\t provocative questions but they are asked time and again by\\n\\t people around me\" is not true?\\n\\n\\nNoam\\n\\n',\n", + " 'From: Club@spektr.msk.su (Koltovoy Nikolay Alexeevich)\\nSubject: [NEWS]Re:List or image processing systems?\\nDistribution: eunet\\nReply-To: Club@spektr.msk.su\\nOrganization: Moscow Scientific Industrial Ass. Spectrum\\nLines: 137\\n\\n\\n Moscow Scientific Inductrial Association \"Spectrum\" offer\\n VIDEOSCAN vision system for PC/AT,wich include software and set of\\n controllers.\\n\\n SOFTWARE\\n\\n For support VIDEOSCAN family program kit was developed. Kit\\n includes more then 200 different functions for image processing.\\n Kit works in the interactive regime, and has include Help for\\n non professional users.\\n There are next possibility:\\n - input frame by any board of VIDEOSCAN family;\\n - read - white image to - from disk;\\n - print image on the printer;\\n - makes arithmetic with 2 frames;\\n - filter image;\\n - work with gistogramme;\\n - edit image.\\n - include users exe modules.\\n\\n CONTROLLER VS9\\n\\n The function of VS-9 controller is to load TV-images into PC/AT.\\n VS-9 controller allows one to load a fragment of the TV-frame from\\n a field of 724x600 pixels.\\n The clock rate is 14,7 MHz when loading an image with 512 pixel in\\n the line and 7,4 MHz when loading a 256 pixels image. This\\n provides the equal pixel size of input image in both horizontal\\n and vertical directions.\\n The number of gray levels in any input modes is 256.\\n Video signal capture time - 2.5s.\\n\\n CONTROLLER VS52\\n\\n The purpose of the controller is to enter the TV images into a IBM\\n PC AT or any other machine of that type. The controller was\\n created on the base of modern elements, including user\\n programmable gate arrays.\\n The controller allows to digitize a input signal with different\\n resolutions. Its flexible architecture makes possible to change\\n technical parameters. Instead of TV signal one can process any\\n other analog signal (including signals from slow-speed scanning\\n devices).\\n The controller has the following technical characteristics:\\n - memory volume - from 256 K to 2 Mb ;\\n - resolution when working with standard video signal - from 64x64\\n to 1024x512 pixels ;\\n - resolution when working in slow input regime - up to 2048x1024\\n pixels;\\n - video signal capture time - 40 ms.\\n - maximum size of a screen when memory volume is 2Mb - 2048x1024\\n pixels ;\\n - number of gray level - 256 ;\\n - clock rate for input - up to 30 MHz ;\\n - 4 input video multiplexer ;\\n - input/output lookup table (LUT);\\n - possibility to realize \"scroll\" and \"zoom\";\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - 8 lines for external synchronization (an input using external\\n controlling signal) ;\\n - electronic adjustment of black and white reference for analog -\\n digital converter;\\n - possibility output image to the color RGB monitor.\\n One can change all listed above functions and parameters of the\\n controller by reprogramming it.\\n\\n\\n IMAGE PROCESSOR VS100\\n\\n\\n Image processor VS100 allows to digitize and process TV\\n signal in real time. It is possible digitize TV signal with\\n 512*512*8 resolution and realize arithmetic and logic operation\\n with two images.\\n Processor was created on the base of modern elements\\n including user programmable gate arrays and designed as a board\\n for PC.\\n Memory volume allows write to the 256 frames with 512*512*8\\n format. It is possible to accumulate until 16 images.\\n The processor has the following technical characteristics:\\n - memory volume to 64 Mb;\\n - number of the gray level - 256;\\n - 4 input video multiplexer;\\n - input/output lookup table;\\n - electronic adjustment for black and white ADC reference;\\n - image size from 256*256 to 8192*8192;\\n - possibility color and black / white output;\\n - possibility input from slow-scan video sources.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Morality? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>So, you are saying that it isn\\'t possible for an instinctive act\\n|> >>to be moral one?\\n|> >\\n|> >I like to think that many things are possible. Explain to me\\n|> >how instinctive acts can be moral acts, and I am happy to listen.\\n|> \\n|> For example, if it were instinctive not to murder...\\n\\nThen not murdering would have no moral significance, since there\\nwould be nothing voluntary about it.\\n\\n|> \\n|> >>That is, in order for an act to be an act of morality,\\n|> >>the person must consider the immoral action but then disregard \\n|> >>it?\\n|> >\\n|> >Weaker than that. There must be the possibility that the\\n|> >organism - it\\'s not just people we are talking about - can\\n|> >consider alternatives.\\n|> \\n|> So, only intelligent beings can be moral, even if the bahavior of other\\n|> beings mimics theirs?\\n\\nYou are starting to get the point. Mimicry is not necessarily the \\nsame as the action being imitated. A Parrot saying \"Pretty Polly\" \\nisn\\'t necessarily commenting on the pulchritude of Polly.\\n\\n|> And, how much emphasis do you place on intelligence?\\n\\nSee above.\\n\\n|> Animals of the same species could kill each other arbitarily, but \\n|> they don\\'t.\\n\\nThey do. I and other posters have given you many examples of exactly\\nthis, but you seem to have a very short memory.\\n\\n|> Are you trying to say that this isn\\'t an act of morality because\\n|> most animals aren\\'t intelligent enough to think like we do?\\n\\nI\\'m saying:\\n\\n\\t\"There must be the possibility that the organism - it\\'s not \\n\\tjust people we are talking about - can consider alternatives.\"\\n\\nIt\\'s right there in the posting you are replying to.\\n\\njon.\\n',\n", + " 'From: rubery@saturn.aitc.rest.tasc.com. (Dan Rubery)\\nSubject: Graphic Formats\\nOrganization: TASC\\nLines: 7\\nNNTP-Posting-Host: saturn.aitc.rest.tasc.com\\n\\nI am writing some utilies to convert Regis and Tektonic esacpe sequences \\ninto some useful formats. I would rather not have to goto a bitmap format. \\nI can convert them to Window Meta FIles easily enough, but I would rather \\nconvert them to Corel Draw, .CDR, or MS Power Point, .PPT, files. \\nMicrosoft would not give me the format. I was wondering if anybody out \\nthere knows the formats for these two applications.\\n\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>\\n>>>Well, chimps must have some system. They live in social groups\\n>>>as we do, so they must have some \"laws\" dictating undesired behavior.\\n>>So, why \"must\" they have such laws?\\n>\\n>The quotation marks should enclose \"laws,\" not \"must.\"\\n>\\n>If there were no such rules, even instinctive ones or unwritten ones,\\n>etc., then surely some sort of random chance would lead a chimp society\\n>into chaos.\\n\\t\\n\\n\\tThe \"System\" refered to a \"moral system\". You havn\\'t shown any \\nreason that chimps \"must\" have a moral system. \\n\\tExcept if you would like to redefine everything.\\n\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: For JOHS@dhhalden.no (3) - Last\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 33\\n\\n: un021432@wvnvms.wvnet.edu writes:\\n\\n: >DUCATI3.UUE\\n: >QUUNCD Ver. 1.4, by Theodore A. Kaldis.\\n: >BEGIN--cut here--CUT HERE--Part 3\\n: >MG@NH)C1M+AV4)I;^**3NYR7,*(.H&\"3V\\'!X12(&E+AFKIN0@APYT;C[#LI2T\\n\\nThis GIF was GREAT!! I have it as the backdrop on my Apollo thingy and many\\npeople stop by and admire it. Of course I tell them that I did it myself....\\n\\nIt\\'s far too much trouble to contact archive sites to get stuff like this, so\\nif anybody else has any good GIFs, please, please don\\'t hesitate to post them.\\n\\nIs the bra thing still going?\\n--\\n\\nNick (the Idiot Biker) DoD 1069 Concise Oxford No Bras\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 16\\n\\nKeith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n: \\n: \\tWild and fanciful claims require greater evidence. If you state that \\n: one of the books in your room is blue, I certainly do not need as much \\n: evidence to believe than if you were to claim that there is a two headed \\n: leapard in your bed. [ and I don\\'t mean a male lover in a leotard! ]\\n\\nKeith, \\n\\nIf the issue is, \"What is Truth\" then the consequences of whatever\\nproposition argued is irrelevent. If the issue is, \"What are the consequences\\nif such and such -is- True\", then Truth is irrelevent. Which is it to\\nbe?\\n\\n\\nBill\\n',\n", + " 'From: arens@ISI.EDU (Yigal Arens)\\nSubject: Re: Ten questions about Israel\\nOrganization: USC/Information Sciences Institute\\nLines: 184\\nDistribution: world\\nNNTP-Posting-Host: grl.isi.edu\\nIn-reply-to: backon@vms.huji.ac.il\\'s message of 20 Apr 93 21:38:19 GMT\\n\\nIn article <1993Apr20.213819.664@vms.huji.ac.il> backon@vms.huji.ac.il writes:\\n>\\n> In article <1483500349@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n> >\\n> > 4. Is it true that in Israeli prisons there are a number of\\n> > individuals which were tried in secret and for which their\\n> > identities, the date of their trial and their imprisonment are\\n> > state secrets ?\\n>\\n>\\n> Apart from Mordechai Vanunu who had a trial behind closed doors, there\\n> was one other espionage case (the nutty professor at the Nes Ziona\\n> Biological Institute who was a K.G.B. mole) who was tried \"in camera\".\\n> I wouldn\\'t exactly call it a state secret. The trial was simply tried\\n> behind closed doors. I hate to disappoint you but the United States\\n> has tried a number of espionage cases in camera.\\n\\nAt issue was not a trial behind closed doors, but arrest, trial and\\nimprisonment in complete secrecy. This was appraently attempted in the\\ncase of Vanunu and failed. It has happened before, and there is reason\\nto believe it still goes on.\\n\\nRead this:\\n\\nFrom Ma\\'ariv, February 18 (possibly 28), 1992\\n\\nPUBLICATION BAN\\n\\n The State of Israel has never officially admitted that for many\\n years there have been in its prisons Israeli citizens who were\\n sentenced to long prison terms without either the fact of\\n their arrest or the crimes of which they were accused ever\\n being made public.\\n\\nBy Baruch Me\\'iri\\n\\nAll those involved in this matter politely refused my request, one way\\nor another: \"Look, the subject is too delicate. If I comment on it, I\\nwill be implicitly admitting that it is true; If I mention a specific\\ncase, even hint at it, I might be guilty of making public something\\nwhich may legally not be published\".\\n\\nThe State of Israel has never officially admitted that for many years\\nthere have been in its prisons Israeli citizens who were sentenced to\\nlong prison terms without either the fact of their arrest or the\\ncrimes of which they were accused ever being made public. More\\nprecisely: A court ordered publication ban was placed on the fact of\\ntheir arrest, and later on their imprisonment.\\n\\nIn Israel of 1993, citizens are imprisoned without us, the citizens of\\nthis country, knowing anything about it. Not knowing anything about\\nthe fact that one person or another were tried and thrown in prison,\\nfor security offenses, in complete secrecy.\\n\\nIn the distant past -- for example during the days of the [Lavon - YA]\\naffair -- we heard about \"the third man\" being in prison. But many\\nyears have passed since then, and what existed then can today no\\nlonger be found even in South American countries, or in the former\\nCommunist countries.\\n\\nBut it appears that this is still possible in Israel of 1993.\\n\\nThe Chair of the Knesset Committee on Law, the Constitution and\\nJustice, MK David Zucker, sent a letter on this subject early this\\nweek to the Prime Minister, the Minister of Justice, and the Cabinet\\nLegal Advisor. Ma\\'ariv has obtained the content of the letter:\\n\\n\"During the past several years a number of Israeli citizens have been\\nimprisoned for various periods for security offenses. In some of\\nthese cases a legal publication ban was imposed not only on the\\nspecifics of the crimes for which the prisoners were convicted, but\\neven on the mere fact of their imprisonment. In those cases, after\\nbeing legally convicted, the prisoners spend their term in prison\\nwithout public awareness either of the imprisonment or of the\\nprisoner\", asserts MK Zucker.\\n\\nOn the other hand Zucker agrees in his letter that, \"There is\\nabsolutely no question that it is possible, and in some cases it is\\nimperative, that a publication ban be imposed on the specifics of\\nsecurity offenses and the course of trials. But even in such cases\\nthe Court must weigh carefully and deliberately the circumstances\\nunder which a trial will not be held in public.\\n\\n\"However, one must ask whether the imposition of a publication ban on\\nthe mere fact of a person\\'s arrest, and on the name of a person\\nsentenced to prison, is justified and appropriate in the State of\\nIsrael. The principle of public trial and the right of the public to\\nknow are not consistent with the disappearance of a person from public\\nsight and his descent into the abyss of prison.\"\\n\\nZucker thus decided to turn to the Prime Minister, the Minister of\\nJustice and the Cabinet Legal Advisor and request that they consider\\nthe question. \"The State of Israel is strong enough to withstand the\\ncost incurred by abiding by the principle of public punishment. The\\nState of Israel cannot be allowed to have prisoners whose detention\\nand its cause is kept secret\", wrote Zucker.\\n\\nThe legal counsel of the Civil Rights Union, Attorney Mordechai\\nShiffman said that, \"We, as the Civil Rights Union, do not know of any\\ncases of security prisoners, Citizens of Israel, who are imprisoned,\\nand whose imprisonment cannot be made public. This is a situation\\nwhich, if it actually exists, is definitely unhealthy. Just like\\ncensorship is an unhealthy matter\".\\n\\n\"The Union is aware\", says Shiffman, \"of cases where notification of a\\nsuspect\\'s arrest to family members and lawyers is withheld. I am\\nspeaking only of several days. I know also of cases where a detainee\\nwas not allowed to meet with an attorney -- sometimes for the whole\\nfirst month of arrest. That is done because of the great secrecy.\\n\\n\"The suspect himself, his family, his lawyer -- or even a journalist --\\ncan challenge the publication ban in court. But there are cases where\\nthe family members themselves are not interested in publicity. The\\njournalist knows nothing of the arrest, and so almost everyone is\\nhappy...\"\\n\\nAttorney Yossi Arnon, an official of the Bar, claims that given the\\nlaws as they exist in Israel today, a situation where the arrest of a\\nperson for security offenses is kept secret is definitely possible. \\n\"Nothing is easier. The court orders a publication ban, and that\\'s\\nthat. Someone who has committed security offenses can spend long\\nyears in prison without us knowing anything about it.\"\\n\\n-- Do you find this situation acceptable?\\n\\nAttorney Arnon: \"Definitely not. We live in a democratic country, and\\nsuch a state of affairs is impermissible. I am well aware that\\npublication can be damaging -- from the standpoint of security -- but\\ntotal non-publication, silence, is unacceptable. Consider the trial of\\nMordechai Vanunu: at least in his case we know that he was charged\\nwith aggravated espionage and sentenced to 18 years in prison. The\\ntrial was held behind closed doors, nobody knew the details except for\\nthose who were authorized to. It is somehow possible to understand,\\nthough not to accept, the reasons, but, as I have noted, we at least\\nare aware of his imprisonment.\"\\n\\n-- Why is the matter actually that serious? Can\\'t we trust the\\ndiscretion of the court?\\n\\nAttorney Arnon: \"The judges have no choice but to trust the\\npresentations made to them. The judges do not have the tools to\\ninvestigate. This gives the government enormous power, power which\\nthey can misuse.\"\\n\\n-- And what if there really is a security issue?\\n\\nAttorney Arnon: \"I am a man of the legal system, not a security expert.\\n Democracy stands in opposition to security. I believe it is possible\\nto publicize the matter of the arrest and the charges -- without\\nentering into detail. We have already seen how the laws concerning\\npublication bans can be misused, in the case of the Rachel Heller\\nmurder. A suspect in the murder was held for many months without the\\nmatter being made public.\"\\n\\nAttorney Shiffman, on the other hand, believes that state security can\\nbe a legitimate reason for prohibiting publication of a suspect\\'s\\narrest, or of a convicted criminal\\'s imprisonment. \"A healthy\\nsituation? Definitely not. But I am aware of the fact that mere\\npublication may be harmful to state security\".\\n\\nA different opinion is expressed by attorney Uri Shtendal, former\\nadvisor for Arab affairs to Prime Ministers Levi Eshkol and Golda\\nMeir. \"Clearly, we are speaking of isolated special cases. Such\\nsituations contrast with the principle that a judicial proceeding must\\nbe held in public. No doubt this contradicts the principle of freedom\\nof expression. Definitely also to the principle of individual freedom\\nwhich is also harmed by the prohibition of publication.\\n\\n\"Nevertheless\", adds Shtendal, \"the legislator allowed for the\\npossibility of such a ban, to accommodate special cases where the\\ndamage possible as a consequence of publication is greater than that\\nwhich may follow from an abridgment of the principles I\\'ve mentioned.\\nThe authority to decide such matters of publication does not rest with\\nthe Prime Minister or the security services, but with the court, which\\nwe may rest assured will authorize a publication ban only if it has\\nbeen convinced of its need beyond a shadow of a doubt.\"\\n\\nNevertheless, attorney Shtendal agrees: \"As a rule, clearly such a\\nphenomenon is undesirable. Such an extreme step must be taken only in\\nthe most extreme circumstances.\"\\n--\\nYigal Arens\\nUSC/ISI TV made me do it!\\narens@isi.edu\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: A visit from the Jehovah\\'s Witnesses\\nOrganization: Case Western Reserve University\\nLines: 48\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article suopanki@stekt6.oulu.fi (Heikki T. Suopanki) writes:\\n>:> God is eternal. [A = B]\\n>:> Jesus is God. [C = A]\\n>:> Therefore, Jesus is eternal. [C = B]\\n>\\n>:> This works both logically and mathematically. God is of the set of\\n>:> things which are eternal. Jesus is a subset of God. Therefore\\n>:> Jesus belongs to the set of things which are eternal.\\n>\\n>Everything isn\\'t always so logical....\\n>\\n>Mercedes is a car.\\n>That girl is Mercedes.\\n>Therefore, that girl is a car?\\n\\n\\tThis is not strickly correct. Only by incorrect application of the \\nrules of language, does it seem to work.\\n\\n\\tThe Mercedes in the first premis, and the one in the second are NOT \\nthe same Mercedes. \\n\\n\\tIn your case, \\n\\n\\tA = B\\n\\tC = D\\n\\t\\n\\tA and D are NOT equal. One is a name of a person, the other the\\nname of a object. You can not simply extract a word without taking the \\ncontext into account. \\n\\n\\tOf course, your case doesn\\'t imply that A = D.\\n\\n\\tIn his case, A does equal D.\\n\\n\\n\\tTry again...\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n\\n',\n", + " 'From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Vast Bandwidth Over-runs on NASA thread (was Re: NASA \"Wraps\")\\nIn-Reply-To: wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov\\'s message of 18 Apr 1993 13:56 CDT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<17APR199316423628@judy.uh.edu> <1993Apr18.034101.21934@iti.org>\\n\\t<18APR199313560620@judy.uh.edu>\\nLines: 12\\n\\nIn article <18APR199313560620@judy.uh.edu>, Dennis writes about a\\nzillion lines in response to article <1993Apr18.034101.21934@iti.org>,\\nin which Allen wrote a zillion lines in response to article\\n<17APR199316423628@judy.uh.edu>, in which Dennis wrote another zillion\\nlines in response to Allen.\\n\\nHey, can it you guys. Take it to email, or talk.politics.space, or\\nalt.flame, or alt.music.pop.will.eat.itself.the.poppies.are.on.patrol,\\nor anywhere, but this is sci.space. This thread lost all scientific\\ncontent many moons ago.\\n\\nNick Haines nickh@cmu.edu\\n',\n", + " \"From: jr0930@eve.albany.edu (REGAN JAMES P)\\nSubject: Re: Pascal-Fractals\\nOrganization: State University of New York at Albany\\nLines: 10\\n\\nApparently, my editor didn't do what I wanted it to do, so I'll try again.\\n\\ni'm looking for any programs or code to do simple animation and/or\\ndrawing using fractals in TurboPascal for an IBM\\n Thanks in advance\\n-- \\n ||||||||||| \\t\\t \\t ||||||||||| \\n_|||||||||||_______________________|||||||||||_ jr0930@eve.albany.edu\\n-|||||||||||-----------------------|||||||||||- jr0930@Albnyvms.bitnet\\n ||||||||||| GO HEAVY OR GO HOME |||||||||||\\n\",\n", + " 'From: davec@silicon.csci.csusb.edu (Dave Choweller)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: California State University, San Bernardino\\nLines: 45\\nNntp-Posting-Host: silicon.csci.csusb.edu\\n\\nIn article <1qif1g$fp3@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n>In article <1qialf$p2m@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>|In article <1qi921$egl@horus.ap.mchp.sni.de>, frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n[stuff deleted...]\\n>||> To the newsgroup at large, how about this for a deal: recognise that what \\n>||> happened in former Communist Russia has as much bearing on the validity \\n>||> of atheism as has the doings of sundry theists on the validity of their \\n>||> theism. That\\'s zip, nada, none. The fallacy is known as ad hominem, and \\n>||> it\\'s an old one. It should be in the Holy FAQ, in the Book of Constructing\\n>||> a Logical Argument :-)\\n>|\\n>|Apart from not making a lot of sense, this is wrong. There\\n>|is no \"atheist creed\" that taught any communist what to do \"in\\n>|the name of atheism\". There clearly are theistic creeds and\\n>|instructions on how to act for theists. They all madly\\n>|conflict with one another, but that\\'s another issue.\\n>\\n>Lack of instructions on how to act might also be evil.\\n\\nThat\\'s like saying that, since mathematics includes no instructions on\\nhow to act, it is evil. Atheism is not a moral system, so why should\\nit speak of instructions on how to act? *Atheism is simply lack of\\nbelief in God*.\\n\\n Plenty of theists\\n>think so. So one could argue the case for \"atheism causes whatever\\n>I didn\\'t like about the former USSR\" with as much validity as \"theism\\n>causes genocide\" - that is to say, no validity at all.\\n\\nI think the argument that a particular theist system causes genocide\\ncan be made more convincingly than an argument that atheism causes genocide.\\nThis is because theist systems contain instructions on how to act,\\nand one or more of these can be shown to cause genocide. However, since\\nthe atheist set of instructions is the null set, how can you show that\\natheism causes genocide?\\n--\\nDavid Choweller (davec@silicon.csci.csusb.edu)\\n\\nThere are scores of thousands of human insects who are\\nready at a moment\\'s notice to reveal the Will of God on\\nevery possible subject. --George Bernard Shaw.\\n-- \\nThere are scores of thousands of human insects who are\\nready at a moment\\'s notice to reveal the Will of God on\\nevery possible subject. --George Bernard Shaw.\\n',\n", + " 'From: todd@psgi.UUCP (Todd Doolittle)\\nSubject: Fork Seals \\nDistribution: world\\nOrganization: Not an Organization\\nLines: 23\\n\\nI\\'m about to undertake changing the fork seals on my \\'88 EX500. My Clymer\\nmanual says I need the following tools from Kawasaki:\\n\\n57001-183 (T handle looking thing in illustration)\\n57001-1057 (Some type of adapter for the end of the T handle)\\n57001-1091 No illustration of this tool and the manual just refers to it\\n as \"the kawasaki tool.\"\\n57001-1058 Oil seal and bearing remover.\\n\\nHow necessary are these tools? Considering the dealers around here didn\\'t\\nhave the Clymer manual, fork seals, and a turn signal assembly in stock I\\nreally doubt they have these tools in stock and I\\'d really like to get this\\ndone this week. Any help would be appreciated as always.\\n\\n--\\n\\n--------------------------------------------------------------------------\\n ..vela.acs.oakland.edu!psgi!todd | \\'88 RM125 The only bike sold without\\n Todd Doolittle | a red-line. \\n Troy, MI | \\'88 EX500 \\n DoD #0832 | \\n--------------------------------------------------------------------------\\n\\n',\n", + " 'From: abdkw@stdvax (David Ward)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nNews-Software: VAX/VMS VNEWS 1.4-b1 \\nOrganization: Goddard Space Flight Center - Robotics Lab\\nLines: 34\\n\\nIn article <20APR199321040621@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes...\\n>In article <1993Apr20.204335.157595@zeus.calpoly.edu>, jgreen@trumpet.calpoly.edu (James Thomas Green) writes...\\n>>Why do spacecraft have to be shut off after funding cuts. For\\n>>example, Why couldn\\'t Magellan just be told to go into a \"safe\"\\n>>mode and stay bobbing about Venus in a low-power-use mode and if\\n>>maybe in a few years if funding gets restored after the economy\\n>>gets better (hopefully), it could be turned on again. \\n> \\n>It can be, but the problem is a political one, not a technical one.\\n\\nAlso remember that every dollar spent keeping one spacecraft in safe mode\\n(probably a spin-stabilized sun-pointing orientation) is a dollar not\\nspent on mission analysis for a newer spacecraft. In order to turn the\\nspacecraft back on, you either need to insure that the Ops guys will be\\navailable, or you need to retrain a new team.\\n\\nHaving said that, there are some spacecraft that do what you have proposed.\\nMany of the operational satellites Goddard flies (like the Tiros NOAA \\nseries) require more than one satellite in orbit for an operational set.\\nExtras which get replaced on-orbit are powered into a \"standby\" mode for\\nuse in an emergency. In that case, however, the same ops team is still\\nrequired to fly the operational birds; so the standby maintenance is\\nrelatively cheap.\\n\\nFinally, Pat\\'s explanation (some spacecraft require continuous maintenance\\nto stay under control) is also right on the mark. I suggested a spin-\\nstabilized control mode because it would require little power or \\nmaintenance, but it still might require some momentum dumping from time\\nto time.\\n\\nIn the end, it *is* a political decision (since the difference is money),\\nbut there is some technical rationale behind the decision.\\n\\nDavid W. @ GSFC \\n',\n", + " \"From: ruca@pinkie.saber-si.pt (Rui Sousa)\\nSubject: Re: Potential World-Bearing Stars?\\nIn-Reply-To: dan@visix.com's message of Mon, 12 Apr 1993 19:52:23 GMT\\nLines: 17\\nOrganization: SABER - Sistemas de Informacao, Lda.\\n\\nIn article dan@visix.com (Daniel Appelquist) writes:\\n\\n\\n I'm on a fact-finding mission, trying to find out if there exists a list of\\n potentially world-bearing stars within 100 light years of the Sun...\\n Is anyone currently working on this sort of thing? Thanks...\\n\\n Dan\\n -- \\n\\nIn principle, any star resembling the Sun (mass, luminosity) might have planets\\nlocated in a suitable orbit. There several within 100 ly of the sun. They are\\nsingle stars, for double or multiple systems might be troublesome. There's a\\nlist located at ames.arc.nasa.gov somewhere in pub/SPACE. I think it is called\\nstars.dat. By the way, what kind of project, if I may know?\\n\\nRui\\n-- \\n*** Infinity is at hand! Rui Sousa\\n*** If yours is big enough, grab it! ruca@saber-si.pt\\n\\n All opinions expressed here are strictly my own\\n\",\n", + " \"From: decay@cbnewsj.cb.att.com (dean.kaflowitz)\\nSubject: Re: some thoughts.\\nOrganization: AT&T\\nDistribution: na\\nLines: 13\\n\\nIn article , edm@twisto.compaq.com (Ed McCreary) writes:\\n> >>>>> On Thu, 15 Apr 1993 04:54:38 GMT, bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) said:\\n> \\n> DLB> \\tFirst I want to start right out and say that I'm a Christian. It \\n> DLB> makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n> DLB>lunatic, or the real thing? (I might be a little off on the title, but he \\n> DLB>writes the book. Anyway he was part of an effort to destroy Christianity, \\n> DLB> in the process he became a Christian himself.\\n> \\n> Here we go again...\\n\\nJust the friendly folks at Christian Central, come to save you.\\n\\n\",\n", + " \"From: mjw19@cl.cam.ac.uk (M.J. Williams)\\nSubject: Re: Rumours about 3DO ???\\nKeywords: 3DO ARM QT Compact Video\\nReply-To: mjw19@cl.cam.ac.uk\\nOrganization: The National Society for the Inversion of Cuddly Tigers\\nLines: 32\\nNntp-Posting-Host: earith.cl.cam.ac.uk\\n\\nIn article <2BD07605.18974@news.service.uci.edu> rbarris@orion.oac.uci.edu (Robert C. Barris) writes:\\n> We\\n>got to see the unit displaying full-screen movies using the CompactVideo codec\\n>(which was nice, very little blockiness showing clips from Jaws and Backdraft)\\n>... and a very high frame rate to boot (like 30fps).\\n\\nAcorn Replay running on a 25MHz ARM 3 processor (the ARM 3 is about 20% slower\\nthan the ARM 6) does this in software (off a standard CD-ROM). 16 bit colour at\\nabout the same resolution (so what if the computer only has 8 bit colour\\nsupport, real-time dithering too...). The 3D0/O is supposed to have a couple of\\nDSPs - the ARM being used for housekeeping.\\n\\n>I'm not sure how a Centris/20MHz 040 stacks up against the 25 MHz ARM in\\n>the 3DO box. Obviously the ARM is faster, but how much?\\n\\nA 25MHz ARM 6xx should clock around 20 ARM MIPS, say 18 flat out. Depends\\nreally on the surrounding system and whether you are talking ARM6x or ARM6xx\\n(the latter has a cache, and so is essential to run at this kind of speed with\\nslower memory).\\n\\nI'll stop saying things there 'cos I'll hopefully be working for ARM after\\ngraduation...\\n\\nMike\\n\\nPS Don't pay heed to what reps from Philips say; if the 3D0/O doesn't beat the\\n pants off 3DI then I'll eat this postscript.\\n--\\n____________________________________________________________________________\\n\\\\ / / Michael Williams Part II Computer Science Tripos\\n|\\\\/|\\\\/\\\\ MJW19@phx.cam.ac.uk University of Cambridge\\n| |(__)Cymdeithas Genedlaethol Traddodiad Troi Teigrod Mwythus Ben I Waered\\n\",\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 159\\n\\n>In article <1993Apr16.130037.18830@ncsu.edu>, hernlem@chess.ncsu.edu \\n (Brad Hernlem) writes:\\n>|> \\n>|> In article <2BCE0918.6105@news.service.uci.edu>, tclock@orion.oac.uci.edu \\n (Tim Clock) writes:\\n>|> \\n>|> Are you suggesting that, when guerillas use the population for cover, \\n>|> Israel should totally back down? So...the easiest way to get away with \\n>|> attacking another is to use an innocent as a shield and hope that the \\n>|> other respects innocent lives?\\n\\n> Tell me Tim, what are these guerillas doing wrong? Assuming that they are \\n> using civilians for cover, \\n\\n\"Assuming\"? Also: come on, Brad. If we are going to get anywhere in \\nthis (or any) discussion, it doesn\\'t help to bring up elements I never \\naddressed, *nor commented on in any way*. I made no comment on who is \\n\"right\" or who is \"wrong\", only that civilians ARE being used as cover \\nand that, having been placed \"in between\" the Israelis and the guerillas,\\nthey *will* be injured as both parties continue their fight.\\n \\n\\t[The *purpose* of an army\\'s use of military uniforms \\n\\tis *to set its members apart* from the civilians so that \\n\\tcivilians will not be thought of by the other side as\\n\\t\"combatants\". So, what do you think is the \"meaning behind\", \\n\\tthe intention and the effect when an \"army\" purposely \\n\\t*does not were uniforms but goes out of its way to *look \\n\\tlike civilians\\'? *They are judging that the benefit they will \\n\\treceive from this \"cover\" is more important that the harm\\n\\tthat will come to civilians.*\\n\\nThis is a comment on the Israeli experience and is saying\\nthat the guerillas *do* have some responsibility in putting civilians\\nin \"the middle\" of this fight. By putting on uniforms and living apart\\nfrom civilians (barracks, etc.), the guerillas would significantly lower\\nthe risk to civilians.\\n\\n\\tBut if the guerillas do this aren\\'t *they* putting themselves\\n\\tat greater risk? Absolutely, they ask themselves \"why set \\n\\tourselves apart (by wearing uniforms) when there is a ready-made \\n\\tcover for us (civilians)? That makes sense from their point of \\n\\tview, BUT when this cover is used, the guerillas should accept \\n\\tsome of the responsibility for subsequent harm to civilians.\\n\\n> If the buffer zone is to prevent attacks on Israel, is it not working? Why\\n> is it further neccessary for Israeli guns to pound Lebanese villages? Why \\n> not just kill those who try to infiltrate the buffer zone? You see, there \\n> is more to the shelling of the villages.... it is called RETALIATION... \\n> \"GETTING BACK\"...\"GETTING EVEN\". It doesn\\'t make sense to shell the \\n> villages. The least it shows is a reckless disregard by the Israeli \\n> government for the lives of civilians.\\n\\nI agree with you here. I have always thought that Israel\\'s bombing\\nsortees and bombing policy is stupid, thoughtless, inhumane AND\\nineffective. BUT, there is no reason that Israel should passive wait \\nuntil attackers chose to act; there is every reason to believe that\\n\"taking the fight *to* the enemy\" will do more to stop attacks. \\n\\nAs I said previously, Israel spent several decades \"sitting passively\"\\non its side of a border and only acting to stop these attacks *after*\\nthe attackers had entered Israeli territory. It didn\\'t work very well.\\nThe \"host\" Arab state did little/nothing to try and stop these attacks \\nfrom its side of the border with Israel so the number of attacks\\nwere considerably higher, as was their physical and psychological impact \\non the civilians caught in their path. \\n>\\n>|> What?So the whole bit about attacks on Israel from neighboring Arab states \\n>|> can start all over again? While I also hope for this to happen, it will\\n>|> only occur WHEN Arab states show that they are *prepared* to take on the \\n>|> responsibility and the duty to stop guerilla attacks on Israel from their \\n>|> soil. They have to Prove it (or provide some \"guaratees\"), there is no way\\n>|> Israel is going to accept their \"word\"- not with their past attitude of \\n>|> tolerance towards \"anti-Israel guerillas in-residence\".\\n>|> \\n> If Israel is not willing to accept the \"word\" of others then, IMHO, it has\\n> no business wasting others\\' time coming to the peace talks. \\n\\nThis is just another \"selectively applied\" statement.\\n \\nThe reason for this drawn-out impasse between Ababs/Palestinians and Israelis\\nis that NEITHER side is willing to accept the Word of the other. By your\\ncriteria *everyone* should stay away from the negotiations.\\n\\nThat is precisely why the Palestinians (in their recent PISGA proposal for \\nthe \"interim\" period after negotiations and leading up to full autonomy) are\\ndemanding conditions that essentially define \"autonomy\" already. They DO\\nNOT trust that Israel will \"follow through\" the entire process and allow\\nPalestinians to reach full autonomy. \\n\\nDo you understand and accept this viewpoint by the Palestinians? \\nIf you do, then why should Israel\\'s view of Arabs/Palestinians \\nbe any different? Why should they trust the Arab/Palestinians\\' words?\\nSince they don\\'t, they are VERY reluctant to give up \"tangible assets \\n(land, control of areas) in exchange for \"words\". For this reason,\\nthey are also concerned about the sorts of \"guarantees\" they will have \\nthat the Arabs WILL follow through on their part of any agreement reached.\\n>\\n>But don\\'t you see that the same statement can be made both ways?\\n>If Lebanon was interested in peace then it should accept the word\\n>of Israel that the attacks were the cause for war and disarming the\\n>Hizbollah will remove the cause for its continued occupancy. \\n\\nAbsolutely, so are the Arabs/Palestinians asking FIRST for the\\nIsraelis \"word\" in relation to any agreement? NO, what is being\\ndemanded FIRST is LAND. When the issue is LAND, and one party\\nfinally gets HOLD of this \"land\", what the \"other party\" does\\nis totally irrelevent. If I NOW have possession of this land,\\nyour words have absolutely no power; whether Israel chooses to\\nkeeps its word does NOT get the land back.\\n\\n>Afterall, Israel has already staged two parts of the withdrawal from \\n>areas it occupied in Lebanon during SLG.\\n>\\n> Tim, you are ignoring the fact that the Palestinians in Lebanon have been\\n> disarmed. Hezbollah remains the only independent militia. Hezbollah does\\n> not attack Israel except at a few times such as when the IDF burned up\\n> Sheikh Mosavi, his wife, and young son. \\n\\nWhile the \"major armaments\" (those allowing people to wage \"civil wars\")\\nhave been removed, the weapons needed to cross-border attacks still\\nremain to some extent. Rocket attacks still continue, and \"commando\"\\nraids only require a few easily concealed weapons and a refined disregard\\nfor human life (yours of that of others). Such attacks also continue.\\n\\n> Of course, if Israel would withdraw from Lebanon\\n> and stop assassinating people and shelling villages they wouldn\\'t\\n> make the Lebanese so mad as to do that.\\n\\nBat guano. The situation you call for existed in the 1970s and attacks\\nwere commonplace.\\n\\n>Furthermore, with Hezbollah subsequently disarmed, it would not be possible.\\n\\nThere is NO WAY these groups can be effectively \"disarmed\" UNLESS the state\\nis as authoritarian is Syria\\'s. The only other way is for Lebanon to take\\nit upon itself to constantly patrol the entire border with Israel, essentially\\nmirroring Israel\\'s border secirity on its side. It HAS TO PROVE TO ISREAL that\\nit is this committed to protecting Israel from attack from Lebanese territory.\\n>\\n>|> Once Syria leaves who is to say that Lebanon will be able to retain \\n>|> control? If Syria stays thay may be even more dangerous for Israel.\\n>|> \\n> Tim, when is the last time that you recall any trouble on the Syrian border?\\n> Not lately, eh?\\n\\nThat\\'s what I said, ok? But, doesn\\'t that mean that Syria has to \"take over\"\\nLebanon? I don\\'t think Israel or Lebanon would like that.\\n> \\nWhat both \"sides\" need is to receive something \"tangible\". The Arabs/\\nPalestinians are looking for \"land\" and demanding that they receive it\\nprior to giving anything to Israel. Israel has two problems: 1) if it\\ngives up real *land* it IS exposing itself to a changed geostrategic\\nsituation (and that change doesn\\'t help Israel\\'s position), and 2) WHEN\\nit gives up this land IT NEEDS to receive something in return to\\ncompensate for the increased risks\\n\\nTim\\n\\n\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Rights Violations in Azerbaijan #013\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 339\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #013\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +---------------------------------------------------------------------+\\n | |\\n | I said that on February 27, when those people were streaming down |\\n | our street, they were shouting, \"Long live Turkey!\" and \"Glory to |\\n | Turkey!\" And during the trial I said to that Ismailov, \"What does |\\n | that mean, \\'Glory to Turkey\\'?\" I still don\\'t understand what Turkey |\\n | has to do with this, we live in the Soviet Union. That Turkey told |\\n | you to or is going to help you kill Armenians? I still don\\'t |\\n | understand why \"Glory to Turkey!\" I asked that question twice and |\\n | got no answer . . . No one answered me . . . |\\n | |\\n +---------------------------------------------------------------------+\\n\\nDEPOSITION OF EMMA SETRAKOVNA SARGISIAN\\n\\n Born 1933\\n Cook\\n Sumgait Emergency Hospital\\n\\n Resident at Building 16/13, Apartment 14\\n Block 5\\n Sumgait [Azerbaijan]\\n\\n\\nTo this day I can\\'t understand why my husband, an older man, was killed. What \\nwas he killed for. He hadn\\'t hurt anyone, hadn\\'t said any word he oughtn\\'t \\nhave. Why did they kill him? I want to find out--from here, from there, from \\nthe government--why my husband was killed.\\n\\nOn the 27th, when I returned from work--it was a Saturday--my son was at home.\\nHe doesn\\'t work. I went straight to the kitchen, and he called me, \"Mamma, is \\nthere a soccer game?\" There were shouts from Lenin Street. That\\'s where we \\nlived. I say, \"I don\\'t know, Igor, I haven\\'t turned on the TV.\" He looked \\nagain and said, \"Mamma, what\\'s going on in the courtyard?!\" I look and see so \\nmany people, it\\'s awful, marching, marching, there are hundreds, thousands, \\nyou can\\'t even tell how many there are. They\\'re shouting, \"Down with the \\nArmenians! Kill the Armenians! Tear the Armenians to pieces!\" My God, why is \\nthat happening, what for? I had known nothing at that point. We lived together\\nwell, in friendship, and suddenly something like this. It was completely \\nunexpected. And they were shouting, \"Long live Turkey!\" And they had flags,\\nand they were shouting. There was a man walking in front well dressed, he\\'s \\naround 40 or 45, in a gray raincoat. He is walking and saying something, I \\ncan\\'t make it out through the vent window. He is walking and saying something,\\nand the children behind him are shouting, \"Tear the Armenians to pieces!\" and \\n\"Down with the Armenians!\" They shout it again, and then shout, \"Hurrah!\" The \\npeople streamed without end, they were walking in groups, and in the groups I \\nsaw that there were women, too. I say, \"My God, there are women there too!\" \\nAnd my son says, \"Those aren\\'t women, Mamma, those are bad women.\" Well we \\ndidn\\'t look a long time. They were walking and shouting and I was afraid, I \\nsimply couldn\\'t sit still. I went out onto the balcony, and my Azerbaijani \\nneighbor is on the other balcony, and I say, \"Khalida, what\\'s going on, what \\nhappened?\" She says, \"Emma, I don\\'t know, I don\\'t know, I don\\'t know what \\nhappened.\" Well she was quite frightened too. They had these white sticks, \\neach second or third one had a white rod. They\\'re waving the rods above their \\nheads as they walk, and the one who\\'s out front, like a leader, he has a white\\nstick too. Well maybe it was an armature shaft, but what I saw was white, I \\ndon\\'t know.\\n\\nMy husband got home 10 or 15 minutes later. He comes home and I say, \"Oh \\ndear, I\\'m frightened, they\\'re going to kill us I bet.\" And he says, \"What are \\nyou afraid of, they\\'re just children.\" I say, \"Everything that happens comes \\nfrom children.\" There had been 15- and 16-year kids from the Technical and \\nVocational School. \"Don\\'t fear,\" he said, \"it\\'s nothing, nothing all that \\nbad.\" He didn\\'t eat, he just lay on the sofa. And just then on television they\\nbroadcast that two Azerbaijanis had been killed in Karabakh, near Askeran. \\nWhen I heard that I couldn\\'t settle down at all, I kept walking here and \\nthere and I said, \"They\\'re going to kill us, the Azerbaijanis are going to \\nkill us.\" And he says, \"Don\\'t be afraid.\" Then we heard--from the central \\nsquare, there are women shouting near near the stage, well, they\\'re shouting\\ndifferent things, and you couldn\\'t hear every well. I say, \"You speak\\nAzerbaijani well, listen to what they\\'re saying.\" He says \"Close the window\\nand go to bed, there s nothing happening there.\" He listened a bit and then \\nclosed the window and went to bed, and told us, \"Come on, go to sleep, it\\'s\\nnothing.\" Sleep, what did he mean sleep? My Son and I stood at the window\\nuntil two in the morning watching. Well he\\'s sick, and all of this was\\naffecting him. I say, \"Igor, you go to bed, I\\'m going to go to bed in a minute\\ntoo.\" He went and I sat at the window until three, and then went to bed. \\nThings had calmed down slightly.\\n\\nThe 28th, Sunday, was my day off. My husband got up and said, \"Come on, Emma, \\nget up.\" I say, \"Today\\'s my day off, let me rest.\" He says, \"Aren\\'t you going \\nto make me some tea?\" Well I felt startled and got up, and said, \"Where are \\nyou going?\" He says, \"I\\'m going out, I have to.\" I say, \"Can you really go \\noutside on a day like today? Don\\'t go out, for God\\'s sake. You never listen to\\nme, I know, and you\\'re not going to listen to me now, but at least don\\'t take \\nthe car out of the garage, go without the car.\" And he says, \"Come on, close \\nthe door!\" And then on the staircase he muttered something, I couldn\\'t make it\\nout, he probably said \"coward\" or something.\\n\\nI closed the door and he left. And I started cleaning . . . picking things up\\naround the house . . . Everything seemed quiet until one o\\'clock in the after-\\nnoon, but at the bus station, my neighbor told me, cars were burning. I said,\\n\"Khalida, was it our car?\" She says, \"No, no, Emma, don\\'t be afraid, they\\nwere government cars and Zhigulis.\\'\\' Our car is a GAZ-21 Volga. And I waited,\\nit was four o\\'clock, five o\\'clock . . . and when he wasn\\'t home at seven I\\nsaid, \"Oh, they\\'ve killed Shagen!\"\\n\\nTires are burning in town, there\\'s black smoke in town, and I\\'m afraid, I\\'m \\nstanding on the balcony and I\\'m all . . . my whole body is shaking. My God, \\nthey\\'ve probably killed him! So basically I waited like that until ten \\no\\'clock and he still hadn\\'t come home. And I\\'m afraid to go out. At ten\\no\\'clock I look out: across from our building is a building with a bookstore,\\nand from upstairs, from the second floor, everything is being thrown outside. \\nI\\'m looking out of one window and Igor is looking out of the other, and I \\ndon\\'t want him to see this, and he, as it turns out, doesn\\'t want me to see \\nit. We wanted to hide it from one another. I joined him. \"Mamma,\" he says,\\n\"look what they\\'re doing over there!\" They were burning everything, and there \\nwere police standing there, 10 or 15 of them, maybe twenty policemen standing \\non the side, and the crowd is on the other side, and two or three people are \\nthrowing everything down from the balcony. And one of the ones on the balcony \\nis shouting, \"What are you standing there for, burn it!\" When they threw the \\ntelevision, wow, it was like a bomb! Our neighbor on the third floor came out \\non her balcony and shouted, \"Why are you doing that, why are you burning those\\nthings, those people saved with such difficulty to buy those things for their \\nhome. Why are you burning them?\" And from the courtyard they yell at her, \"Go \\ninside, go inside! Instead why don\\'t you tell us if they are any of them in \\nyour building or not?\" They meant Armenians, but they didn\\'t say Armenians, \\nthey said, \"of them.\" She says, \"No, no, no, none!\" Then she ran downstairs to\\nour place, and says, \"Emma, Emma, you have to leave!\" I say, \"They\\'ve killed\\nShagen anyway, what do we have to live for? It won\\'t be living for me without \\nShagen. Let them kill us, too!\" She insists, saying, \"Emma, get out of here, \\ngo to Khalida\\'s, and give me the key. When they come I\\'ll say that it\\'s my \\ndaughter\\'s apartment, that they\\'re off visiting someone.\" I gave her the key \\nand went to the neighbor\\'s, but I couldn\\'t endure it. I say, \"Igor, you stay \\nhere, I\\'m going to go downstairs, and see, maybe Papa\\'s . . . Papa\\'s there.\"\\n\\nMeanwhile, they were killing the two brothers, Alik and Valery [Albert and \\nValery Avanesians; see the accounts of Rima Avanesian and Alvina Baluian], in \\nthe courtyard. There is a crowd near the building, they\\'re shouting, howling, \\nand I didn\\'t think that they were killing at the time. Alik and Valery lived\\nin the corner house across from ours. When I went out into the courtyard I saw\\nan Azerbaijani, our neighbor, a young man about 30 years old. I say, \"Madar, \\nUncle Shagen\\'s gone, let\\'s go see, maybe he\\'s dead in the garage or near the \\ngarage, let\\'s at least bring the corpse into the house. \"He shouts, \"Aunt \\nEmma, where do you think you\\'re going?! Go back into the house, I\\'ll look for \\nhim.\" I say, \"Something will happen to you, too, because of me, no, Madar, \\nI\\'m coming too.\" Well he wouldn\\'t let me go all the same, he says, \"You stay \\nhere with us, I\\'m go look.\" He went and looked, and came back and said, \"Aunt \\nEmma, there\\'s no one there, the garage is closed. \"Madar went off again and \\nthen returned and said, \"Aunt Emma, they\\'re already killed Alik, and Valery\\'s \\nthere . . . wheezing.\"\\n\\nMadar wanted to go up to him, but those scoundrels said, \"Don\\'t go near him, \\nor we\\'ll put you next to him.\" He got scared--he\\'s young--and came back and \\nsaid, \"I\\'m going to go call, maybe an ambulance will come, at least to take \\nAlik, maybe he\\'ll live . . . \" They grew up together in our courtyard, they \\nknew each other well, they had always been on good terms. He went to call, but\\nnot a single telephone worked, they had all been shut off. He called, and \\ncalled, and called, and called--nothing.\\n\\nI went upstairs to the neighbor\\'s. Igor says, \"Two police cars drove up over \\nthere, their headlights are on, but they\\'re not touching them, they are still \\nlying where they were, they\\'re still lying there . . . \"We watched out the\\nwindow until four o\\'clock, and then went downstairs to our apartment. I didn\\'t\\ntake my clothes off. I lay on the couch so as not to go to bed, and at six\\no\\'clock in the morning I got up and said, \"Igor, you stay here at home, don\\'t\\ngo out, don\\'t go anywhere, I\\'m going to look, I have to find Papa, dead or\\nalive . . . let me go . . . I\\'ve got the keys from work.\"\\n\\nAt six o\\'clock I went to the Emergency Hospital. The head doctor and another \\ndoctor opened the door to the morgue. I run up to them and say, \"Doctor, is \\nShagen there?\" He says, \"What do you mean? Why should Shagen be here?!\" I \\nwanted to go in, but he wouldn\\'t let me. There were only four people in there,\\nthey said. Well, they must have been awful because they didn\\'t let me in. They\\nsaid, \"Shagen\\'s not here, he\\'s alive somewhere, he\\'ll come back.\"\\n\\nIt\\'s already seven o\\'clock in the morning. I look and there is a panel truck\\nwith three policemen. Some of our people from the hospital were there with\\nthem. I say, \"Sara Baji [\"Sister\" Sara, term of endearment], go look, they\\'ve\\nprobably brought Shagen.\" I said it, shouted it, and she went and came back\\nand says, \"No, Emma, he has tan shoes on, it\\'s a younger person.\" Now Shagen \\njust happened to have tan shoes, light tan, they were already old. When they \\nsaid it like that I guessed immediately. I went and said, \"Doctor, they\\'ve \\nbrought Shagen in dead.\" He says, \"Why are you carrying on like that, dead, \\ndead . . . he\\'s alive.\" But then he went all the same, and when he came back \\nthe look on his face was . . . I could tell immediately that he was dead. They\\nknew one another well, Shagen had worked for him a long time. I say, \"Doctor, \\nis it Shagen?\" He says, \"No, Emma, it\\'s not he, it\\'s somebody else entirely.\" \\nI say, \"Doctor, why are you deceiving me, I\\'ll find out all the same anyway, \\nif not today, then tomorrow.\" And he said . . . I screamed, right there in the\\noffice. He says, \"Emma, go, go calm down a little.\" Another one of our \\ncolleagues said that the doctor had said it was Shagen, but . . . in hideous \\ncondition. They tried to calm me down, saying it wasn\\'t Shagen. A few minutes \\nlater another colleague comes in and says, \"Oh, poor Emma!\" When she said it \\nlike that there was no hope left.\\n\\n That day was awful. They were endlessly bringing in dead and injured \\npeople.\\n\\nAt night someone took me home. I said, \"Igor, Papa\\'s been killed.\"\\n\\nOn the morning of the 1st I left Igor at home again and went to the hospital: \\nI had to bury him somehow, do something. I look and see that the hospital is \\nsurrounded by soldiers. They are wearing dark clothes. \"Hey, citizen, where \\nare you going?\" I say, \"I work here,\" and from inside someone shouts, \"Yes, \\nyes, that\\'s our cook, let her in.\" I went right to the head doctor\\'s office\\nand there is a person from the City Health Department there, he used to\\nwork with us at the hospital. He says, \"Emma, Shagen\\'s been taken to Baku.\\nIn the night they took the wounded and the dead, all of them, to Baku.\" I\\nsay, \"Doctor, how will I bury him?\" He says, \"We\\'re taking care of all that,\\ndon\\'t you worry, we\\'ll do everything, we\\'ll tell you about it. Where did you\\nspend the night?\" I say, \"I was at home.\" He says, \"What do you mean you\\nwere at home?! You were at home alone?\" I say, \"No, Igor was there too.\" He\\nsays, \"You can\\'t stay home, we\\'re getting an ambulance right now, wait just\\none second, the head doctor is coming, we\\'re arranging an ambulance right\\nnow, you put on a lab coat and take one for Igor, you go and bring Igor here\\nlike a patient, and you\\'ll stay here and we\\'ll se~ later what to do next ...\"\\nHis last name is Kagramanov. The head doctor\\'s name is Izyat Jamalogli\\nSadukhov.\\n\\nThe \"ambulance\" arrived and I went home and got Igor. They admitted him as a \\npatient, they gave us a private room, an isolation room. We stayed in the \\nhospital until the 4th.\\n\\nSome police car came and they said, \"Emma, let\\'s go.\" And the women, our \\ncolleagues, then they saw the police car, became anxious and said, \"Where are \\nyou taking her?\" I say, \"They\\'re going to kill me, too . . . \" And the\\ninvestigator says, \"Why are you saying that, we\\'re going to make a positive\\nidentification.\" We went to Baku and they took me into the morgue . . . I\\nstill can\\'t remember what hospital it was . . . The investigator says, \"Let\\'s \\ngo, we need to be certain, maybe it\\'s not Shagen.\" And when I saw the caskets,\\nlying on top of one another, I went out of my mind. I say, \"I can\\'t look, no.\"\\nThe investigator says, \"Are there any identifying marks?\" I say, \"Let me see\\nthe clothes, or the shoes, or even a sock, I\\'ll recognize them.\" He says, \\n\"Isn\\'t they\\'re anything on his body?\" I say he has seven gold teeth and his \\nfinger, he only has half of one of his fingers. Shagen was a carpenter, he had\\nbeen injured at work . . .\\n\\nThey brought one of the sleeves of the shirt and sweater he was wearing, they \\nbrought them and they were all burned . . . When I saw them I shouted, \"Oh, \\nthey burned him!\" I shouted, I don\\'t know, I fell down . . . or maybe I sat \\ndown, I don\\'t remember. And that investigator says, \"Well fine, fine, since \\nwe\\'ve identified that these are his clothes, and since his teeth . . . since\\nhe has seven gold teeth . . . \"\\n\\nOn the 4th they told me: \"Emma, it\\'s time to bury Shagen now.\" I cried, \"How, \\nhow can I bury Shagen when I have only one son and he\\'s sick? I should inform \\nhis relatives, he has three sisters, I can\\'t do it by myself.\" They say, \"OK, \\nyou know the situation. How will they get here from Karabagh? How will they \\nget here from Yerevan? There\\'s no transportation, it s impossible.\"\\n\\nHe was killed on February 28, and I buried him on March 7. We buried him in \\nSumgait. They asked me, \"Where do you want to bury him?\" I said, \"I want to \\nbury him in Karabagh, where we were born, let me bury him in Karabagh,\" I\\'m \\nshouting, and the head of the burial office, I guess, says, \"Do you know what \\nit means, take him to Karabagh?! It means arson!\" I say, \"What do you mean, \\narson? Don\\'t they know what\\'s going on in Karabagh? The whole world knows that\\nthey killed them, and I want to take him to Karabagh, I don\\'t have anyone \\nanymore.\" I begged, I pleaded, I grieved, I even got down on my knees. He\\nsays, \"Let\\'s bury him here now, and in three months, in six months, a year, \\nif it calms down, I\\'ll help you move him to Karabagh . . . \"\\n\\nOur trial was the first in Sumgait. It was concluded on May 16. At the\\ninvestigation the murderer, Tale Ismailov, told how it all happened, but then\\nat the trial he . . . tried to wriggle . . . he tried to soften his crime. \\nThen they brought a videotape recorder, I guess, and played it, and said, \\n\"Ismailov, look, is that you?\" He says, \"Yes.\" \"Well look, here you\\'re \\ndescribing everything as it was on the scene of the crime, right?\" He says, \\n\"Yes.\" \"And now you\\'re telling it differently?\" He says, \"Well maybe I \\nforgot!\" Like that.\\n\\nThe witnesses and that criminal creep himself said that when the car was going\\nalong Mir Street, there was a crowd of about 80 people . . . Shagen had a \\nVolga GAZ-21. The 80 people surrounded his car, and all 80 of them were \\ninvolved. One of them was this Ismailov guy, this Tale. They--it\\'s unclear\\nwho--started pulling Shagen out of the car. Well, one says from the left side\\nof the car, another says from the right side. They pulled off his sports \\njacket. He had a jacket on. Well they ask him, \"What\\'s your nationality?\" He \\nsays, \"Armenian.\" Well they say from the crowd they shouted, \"If he\\'s an\\nArmenian, kill him, kill him!\" They started beating him, they broke seven of\\nhis ribs, and his heart . . . I don\\'t know, they did something there, too \\n. . . it\\'s too awful to tell about. Anyway, they say this Tale guy . . . he \\nhad an armature shaft. He says, \"I picked it up, it was lying near a bush, \\nthat\\'s where I got it.\" He said he picked it up, but the witnesses say that he\\nhad already had it. He said, \"I hit him twice,\" he said, \" . . . once or twice\\non the head with that rod.\" And he said that when he started to beat him \\nShagen was sitting on the ground, and when he hit him he fell over. He said, \\n\"I left, right nearby they were burning things or something in an apartment,\\nkilling someone,\" he says, \"and I came back to look, is that Shagen alive or\\nnot?\" I said, \"You wanted to finish him, right, and if he was still alive, you\\ncame back to hit him again?\" He went back and looked and he was already dead.\\n\"After that,\" that bastard Tale said, \"after that I went home.\"\\n\\nI said, \"You . . . you . . . little snake,\" I said, \"Are you a thief and a \\nmurderer?\" Shagen had had money in his jacket, and a watch on his wrist. They\\nwere taken. He says he didn\\'t take them\\n\\nWhen they overturned and burned the car, that Tale was no longer there, it was\\nother people who did that. Who it was, who turned over the car and who burned\\nit, that hasn\\'t been clarified as yet. I told the investigator, \"How can you \\nhave the trial when you don\\'t know who burned the car?\" He said something, but\\nI didn\\'t get what he was saying. But I said, \"You still haven\\'t straightened \\neverything out, I think that\\'s unjust.\"\\n\\nWhen they burned the car he was lying next to it, and the fire spread to him. \\nIn the death certificate it says that he had third-degree burns over 80\\npercent of his body . . .\\n\\nAnd I ask again, why was he killed? My husband was a carpenter; he was a good \\ncraftsman, he knew how to do everything, he even fixed his own car, with his \\nown hands. We have three children. Three sons. Only Igor was with me at the \\ntime. The older one was in Pyatigorsk, and the younger one is serving in the \\nArmy. And now they\\'re fatherless...\\n\\nI couldn\\'t sit all the way through it. When the Procurator read up to 15\\nyears\\' deprivation of freedom, I just . . . I went out of my mind, I didn\\'t\\nknow what to do with myself, I said, \"How can that be? You,\" I said, \"you are \\nsaying that it was intentional murder and the sentence is 15 years\\' \\ndeprivation of freedom?\" I screamed, I had my mind! I said, \"Let me at that\\ncreep, with my bare hands I\\'ll . . . \" A relative restrained me, and there\\nwere all those military people there . . . I lest. I said,\" This isn\\'t a \\nSoviet trial, this is unjust!\" That\\'s what I shouted, l said it and left . . .\\n\\nI said that on February 27, when those people were streaming down our street, \\nthey were shouting, \"Long live Turkey!\" and \"Glory to Turkey!\" And during the \\ntrial I said to that Ismailov, \"What does that mean, \\'Glory to Turkey\\'?\" I \\nstill don\\'t understand what Turkey has to do with this, we live in the Soviet \\nUnion. That Turkey told you to or is going to help you kill Armenians? I still\\ndon\\'t understand why \"Glory to Turkey!\" I asked that question twice and got no\\nanswer . . . No one answered me . . .\\n\\n May 19, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 178-184\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: Ivanov Sergey \\nSubject: Re: Re: VGA 640x400 graphics mode\\nDistribution: world\\nOrganization: Commercial and Industrial Group ARGUS\\nReply-To: serge@argus.msk.su\\nLines: 7\\n\\n> My 8514/a VESA TSR supports this\\n\\n Can You report CRT and other register state in this mode ?\\n Thank's.\\n\\n Serge Ivanov (serge@argus.msk.su)\\n\\n\",\n", + " 'From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Surface normal orientations\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 42\\n\\nIn article <1pscti$aqe@travis.csd.harris.com> srp@travis.csd.harris.com (Stephen Pietrowicz) writes:\\n>...\\n>How do you go about orienting all normals in the same direction, given a \\n>set of points, edges and faces? \\n\\nLook for edge inconsistencies. Consider two vertices, p and q, which\\nare connected by at least one edge.\\n\\nIf (p,q) is an edge, then (q,p) should *not* appear. \\n\\nIf *both* (p,q) and (q,p) appear as edges, then the surface \"flips\" when\\nyou travel across that edge. This is bad. \\n\\nAssuming (warning...warning...warning) that you have an otherwise\\nacceptable surface - you can pick an edge, any edge, and traverse the\\nsurface enforcing consistency with that edge. \\n\\n 0) pick an edge (p,q), and mark it as \"OK\"\\n 1) for each face, F, containing this edge (if more than 2, oops)\\n make sure that all edges in F are consistent (i.e., the Face\\n should be [(p,q),(q,r),(r,s),(s,t),(t,p)]). Flip those which\\n are wrong. Mark all of the edges in F as \"OK\",\\n and add them to a queue (check for duplicates, and especially\\n inconsistencies - don\\'t let the queue have both (p,q) and (q,p)). \\n 2) remove an edge from the queue, and go to 1).\\n\\nIf a *marked* edge is discovered to be inconsistent, then you lose.\\n\\nIf step 1) finds more than one face sharing a particular edge, then you\\nlose. \\n \\nOtherwise, when done, all of the edges will be consistent. Which means\\nthat all of the surface normals will either point IN or OUT. Deciding\\nwhich way is OUT is left as an exercise...\\n\\n\\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n',\n", + " 'From: kimd@rs6401.ecs.rpi.edu (Daniel Chungwan Kim)\\nSubject: WANTED: Super 8mm Projector with SOUNDS\\nKeywords: projector\\nNntp-Posting-Host: rs6401.ecs.rpi.edu\\nLines: 9\\n\\n\\tI am looking for Super 8mm Projector with SOUNDS.\\nIf anybody out there has one for sale, send email with\\nthe name of brand, condition of the projector, and price\\nfor sale to kimd@rpi.edu\\n(IT MUST HAVE SOUND CAPABILITY)\\n\\nDanny\\nkimd@rpi.edu\\n\\n',\n", + " 'From: mac@utkvx.bitnet (Richard J. McDougald)\\nSubject: Re: Why does Illustrator AutoTrace so poorly?\\nOrganization: University of Tennessee \\nLines: 22\\n\\nIn article <0010580B.vmcbrt@diablo.UUCP> diablo.UUCP!cboesel (Charles Boesel) writes:\\n\\nYeah, Corel Draw and WordPerfect Presentations pretty limited here, too.\\n\\tSince there\\'s no (not really) such thing as a decent raster to\\nvector conversion program, this \"tracing\" technique is about it. Simple\\nstuff, like b&w logos, etc. do pretty well, while more complicated stuff\\ngoes haywire. I suspect (even though I don\\'t write code) that a good\\nbitmapped to vector conversion program would probably be as big as most\\nof these application softwares we\\'re using -- but even so, how come one\\nhasn\\'t been written? (to my knowledge). I mean, even Hijaak, one of the\\ncommercial industry standards of file conversion, hasn\\'t attempted it yet.\\n\\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\\n Mac McDougald * Any opinions expressed herein \\n The Photography Center * are not necessarily (actually,\\n Univ. of Tenn. Knoxville 37996 * are almost CERTAINLY NOT) those\\n mac@utkvx.utk.edu * of The University of Tennessee. \\n mac@utkvx.bitnet * \\n (615-974-3449) * \"Things are more like they are now \\n (615-974-6435) FAX * than they\\'ve ever been before.\"\\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\\n \\n',\n", + " 'From: vdp@mayo.edu (Vinayak Dutt)\\nSubject: Re: Islamic Banks (was Re: Slavery\\nReply-To: vdp@mayo.edu\\nOrganization: Mayo Foundation/Mayo Graduate School :Rochester, MN\\nLines: 39\\n\\nIn article 28833@monu6.cc.monash.edu.au, darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n#In <1993Apr14.143121.26376@bmw.mayo.edu> vdp@mayo.edu (Vinayak Dutt) writes:\\n#>So instead of calling it interest on deposits, you call it *returns on investements*\\n#>and instead of calling loans you call it *investing in business* (that is in other words\\n#>floating stocks in your company). \\n#\\n#No, interest is different from a return on an investment. For one\\n#thing, a return on an investment has greater risk, and not a set return\\n#(i.e. the amount of money you make can go up or down, or you might even\\n#lose money). The difference is, the risk of loss is shared by the\\n#investor, rather than practically all the risk being taken by the\\n#borrower when the borrower borrows from the bank.\\n#\\n\\nBut is it different from stocks ? If you wish to call an investor in stocks as\\na banker, well then its your choice .....\\n\\n#>Relabeling does not make it interest free !!\\n#\\n#It is not just relabeling, as I have explained above.\\n\\nIt *is* relabeling ...\\nAlso its still not interest free. The investor is still taking some money ... as\\ndividend on his investment ... ofcourse the investor (in islamic *banking*, its your\\nso called *bank*) is taking more risk than the usual bank, but its still getting some\\nthing back in return .... \\n\\nAlso have you heard of junk bonds ???\\n\\n\\n---Vinayak\\n-------------------------------------------------------\\n vinayak dutt\\n e-mail: vdp@mayo.edu\\n\\n standard disclaimers apply\\n-------------------------------------------------------\\n\\n\\n',\n", + " 'From: grw@HQ.Ileaf.COM (Gary Wasserman)\\nSubject: Stuff For Sale is GONE!!!\\nNntp-Posting-Host: ars\\nReply-To: grw@HQ.Ileaf.COM (Gary Wasserman)\\nOrganization: Interleaf, Inc.\\nDistribution: usa\\nLines: 10\\n\\n\\nThanks to all who responded. The three items (electric vest,\\nAerostitch Suit, and Scarf) are all spoken for.\\n\\n-Gary\\n\\n-- \\nGary Wasserman \"A completely irrational attraction to BMW bikes\"\\nInterleaf, Inc. Prospect Place, 9 Hillside Ave, Waltham, MA 02154\\ngrw@ileaf.com 617-290-4990x3423 FAX 617-290-4970 DoD#0216\\n',\n", + " 'From: Nanci Ann Miller \\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: Sponsored account, School of Computer Science, Carnegie Mellon, Pittsburgh, PA\\nLines: 56\\n\\t<1993Apr5.084042.822@batman.bmd.trw.com>\\nNNTP-Posting-Host: po5.andrew.cmu.edu\\nIn-Reply-To: <1993Apr5.084042.822@batman.bmd.trw.com>\\n\\n\\njbrown@batman.bmd.trw.com writes:\\n> > Sorry, but there are no supernatural\\n> > forces necessary to create a pathogen. You are saying, \"Since\\n> > diseases are bad, the bad entity must have created it.\" So\\n> > what would you say about acid rain, meteors falling from the\\n> > sky, volcanoes, earthquakes, and other QUOTE UNQUOTE \"Acts\\n> > of God?\" \\n> \\n> I would say that they are not \"acts of God\" but natural\\n> occurrences.\\n\\nIt amazes me that you have the audacity to say that human creation was not\\nthe result of the natural process of evolution (but rather an \"act of God\")\\nand then in the same post say that these other processes (volcanos et al.)\\nare natural occurrences. Who gave YOU the right to choose what things are\\nnatural processes and what are direct acts of God? How do you know that\\nGod doesn\\'t cause each and every natural disaster with a specific purpose\\nin mind? It would certainly go along with the sadistic nature I\\'ve seen in\\nthe bible.\\n\\n> >>Even if Satan had nothing to do with the original inception of\\n> >>disease, evolution by random chance would have produced them since\\n> >>humanity forsook God\\'s protection. If we choose to live apart from\\n> >>God\\'s law (humanity collectively), then it should come as no surprise\\n> >>that there are adverse consequences to our (collective) action. One\\n> >>of these is that we are left to deal with disease and disorders which\\n> >>inevitably result in an entropic universe.\\n> > \\n> > May I ask, where is this \\'collective\\' bullcrap coming from? \\n>\\n> By \"collective\" I was referring to the idea that God works with\\n> humanity on two levels, individually and collectively. If mankind\\n> as a whole decides to undertake a certain action (the majority of\\n> mankind), then God will allow the consequences of that action to\\n> affect mankind as a whole.\\n\\nAdam & Eve (TWO PEOPLE), even tho they had the honor (or so you christians\\nclaim) of being the first two, definitely do NOT represent a majority in\\nthe billions and trillions (probably more) of people that have come after\\nthem. Perhaps they were the majority then, but *I* (and YOU) weren\\'t\\naround to vote, and perhaps we might have voted differently about what to\\ndo with that tree. But your god never asked us. He just assumes that if\\nyou have two bad people then they ALL must be bad. Hmm. Sounds like the\\nsame kind of false generalization that I see many of the theists posting\\nhere resorting to. So THAT\\'s where they get it... shoulda known.\\n\\n> Jim B.\\n\\nNanci\\n\\n.........................................................................\\nIf you know (and are SURE of) the author of this quote, please send me\\nemail (nm0w+@andrew.cmu.edu):\\nLying to ourselves is more deeply ingrained than lying to others.\\n\\n',\n", + " \"From: chico@ccsun.unicamp.br (Francisco da Fonseca Rodrigues)\\nSubject: New planet/Kuiper object found?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 28\\n\\n\\n\\tTonigth a TV journal here in Brasil announced that an object,\\nbeyond Pluto's orbit, was found by an observatory at Hawaii. They\\nnamed the object Karla.\\n\\n\\tThe program said the object wasn't a gaseous giant planet, and\\nshould be composed by rocks and ices.\\n\\n\\tCan someone confirm these information? Could this object be a\\nnew planet or a Kuiper object?\\n\\n\\tThanks in advance.\\n\\n\\tFrancisco.\\n\\n-----------------------=====================================----the stars,----\\n| ._, | Francisco da Fonseca Rodrigues | o o |\\n| ,_| |._/\\\\ | | o o |\\n| | |o/^^~-._ | COTUCA-Colegio Tecnico da UNICAMP | o |\\n|/-' BRASIL | ~| | o o o |\\n|\\\\__/|_ /' | Depto de Processamento de Dados | o o o o |\\n| \\\\__ Cps | . | | o o o o |\\n| | * __/' | InterNet : chico@ccsun.unicamp.br | o o o |\\n| > /' | cotuca@ccvax.unicamp.br| o |\\n| /' /' | Fone/Fax : 55-0192-32-9519 | o o |\\n| ~~^\\\\/' | Campinas - SP - Brasil | o o |\\n-----------------------=====================================----like dust.----\\n\\n\",\n", + " 'From: blgardne@javelin.sim.es.com (Dances With Bikers)\\nSubject: FAQ - What is the DoD?\\nSummary: Everything you always wanted to know about DoD, but were afraid to ask\\nKeywords: DoD FAQ\\nArticle-I.D.: javelin.DoD.monthly_733561501\\nExpires: Sun, 30 May 1993 07:05:01 GMT\\nReply-To: blgardne@javelin.sim.es.com\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 849\\nSupersedes: \\n\\nThis is a periodic posting intended to answer the Frequently Asked\\nQuestion: What is the DoD? It is posted the first of each month, with\\nan expiration time of over a month. Thus, unless your site\\'s news\\nsoftware is ill-mannered, this posting should always be available.\\nThis WitDoDFAQ is crossposted to all four rec.motorcycles groups in an\\nattempt to catch most new users, and followups are directed to\\nrec.motorcycles.\\n\\nLast changed 9-Feb-93 to add a message from the KotL, and a bit of\\nHalon.\\n\\n\\t\\t\\tVERSION 1.1\\n\\nThis collection was originally assembled by Lissa Shoun, from the\\noriginal postings. With Lissa\\'s permission, I have usurped the title of\\nKotWitDoDFAQ. Any corrections, additions, bribes, etc. should be aimed at\\nblgardne@javelin.sim.es.com.\\n\\n------------------------------------------------------------------------\\n\\nContents:\\nHow do I get a DoD number?\\tby Blaine Gardner\\tDoD #46\\nDoD \"Road Rider\" article\\tby Bruce Tanner\\t\\tDoD #161\\nWhat is the DoD?\\t\\tby John Sloan\\t\\tDoD #11\\nThe DoD Logo\\t\\t\\tby Chuck Rogers\\t\\tDoD #3\\nThe DoD (this started it all)\\tby The Denizen of Doom\\tDoD #1\\nThe DoD Anthem\\t\\t\\tby Jonathan Quist\\tDoD #94\\nWhy you have to be killed\\tby Blaine Gardner\\tDoD #46\\nThe rec.moto.photo.archive\\tcourtesy of Bruce Tanner DoD #161\\nPatches? What patches?\\t\\tby Blaine Gardner\\tDoD #46\\nLetter from the AMA museum by Jim Rogers, Director DoD #395\\nThe DoD Rules\\t\\t\\tby consensus\\nOther rec.moto resources\\tby various Keepers\\tDoD #misc\\nThe rec.moto.reviews.archive\\tcourtesy of Loki Jorgenson DoD #1210\\nUpdated stats & rides info\\tby Ed Green (DoD #111) and others\\n\\n------------------------------------------------------------------------\\n\\t\\t\\tHow do I get a DoD number?\\n\\nIf the most Frequently Asked Question in rec.motorcycles is \"What is the\\nDoD?\", then the second most Frequently Asked Question must be \"How do I\\nget a DoD number?\" That is as simple as asking the Keeper of the List\\n(KotL, accept no substitue Keepers) for a number. If you\\'re feeling\\ncreative, and your favorite number hasn\\'t been taken already, you can\\nmake a request, subject to KotL approval. (Warning, non-numeric, non-\\nbase-10 number requests are likely to earn a flame from the KotL. Not\\nthat you won\\'t get it, but you _will_ pay for it.)\\n\\nOh, and just one little, tiny suggestion. Ask the KotL in e-mail. You\\'ll\\njust be playing the lightning rod for flames if you post to the whole\\nnet, and you\\'ll look like a clueless newbie too.\\n\\nBy now you\\'re probably asking \"So who\\'s the KotL already?\". Well, as\\nJohn Sloan notes below, that\\'s about the only real \"secret\" left around\\nhere, but a few (un)subtle hints can be divulged. First, it is not myself,\\nnor anyone mentioned by name in this posting (maybe :-), though John was\\nthe original KotL. Second, in keeping with the true spirit of Unix, the\\nKotL\\'s first name is only two letters long, and can be spelled entirely\\nwith hexadecimal characters. (2.5, the KotL shares his name with a line-\\noriented text utility.) Third, he has occasionally been seen posting\\nmessages bestowing new DoD numbers (mostly to boneheads with \"weenie\\nmailers\"). Fourth, there is reason to suspect the KotL of being a\\nDead-Head.\\n\\n***************** Newsflash: A message from the KotL ******************\\n\\nOnce you have surmounted this intellectual pinnacle and electronically\\ngroveled to the KotL, please keep in mind that the KotL does indeed\\nwork for a living, and occasionally must pacify its boss by getting\\nsomething done. Your request may languish in mailer queue for (gasp!)\\ndays, perhaps even (horrors!) a week or two. During such times of\\neconomic activity on the part of the KotL\\'s employers, sending yet\\nanother copy of your request will not speed processing of the queue (it\\njust makes it longer, verification of this phenominon is left as an\\nexcersize for the reader). If you suspect mailer problems, at least\\nannotate subsequent requests with an indication that a former request\\nwas submitted, lest you be assigned multiple numbers (what, you think\\nthe KotL *memorizes* the list?!?).\\n\\n***********************************************************************\\n\\nOne more thing, the KotL says that its telepathic powers aren\\'t what\\nthey used to be. So provide some information for the list, will ya?\\nThe typical DoD List entry contains number, name, state/country, &\\ne-mail address. For example:\\n\\n0111:Ed Green:CA:ed.green@East.Sun.COM\\n\\n(PS: While John mentions below that net access and a bike are the only\\nrequirements for DoD membership, that\\'s not strictly true these days, as\\nthere are a number of Denizens who lack one or both.)\\n\\nBlaine (Dances With Bikers) Gardner blgardne@javelin.sim.es.com\\n\\n------------------------------------------------------------------------\\n\\n \"Denizens of Doom\", by Bruce Tanner (DoD 0161)\\n\\n [Road Rider, August 1991, reprinted with Bruce\\'s permission]\\n\\nThere is a group of motorcyclists that gets together and does all the normal \\nthings that a bunch of bikers do. They discuss motorcycles and \\nmotorcycling, beverages, cleaning fluids, baklavah, balaclava, caltrops, \\nhelmets, anti-fog shields, spine protectors, aerodynamics, three-angle valve\\nseats, bird hits, deer whistles, good restaurants, racing philosophy, \\ntraffic laws, tickets, corrosion control, personalities, puns, double \\nentendres, culture, absence of culture, first rides and friendship. They \\nargue with each other and plan rides together.\\n\\nThe difference between this group and your local motorcycle club is that, \\nalthough they get together just about everyday, most have never seen each \\nother face to face. The members of this group live all over the known world \\nand communicate with each other electronically via computer.\\n\\nThe computers range from laptops to multi-million dollar computer centers; \\nthe people range from college and university students to high-tech industry \\nprofessionals to public-access electronic bulletin-board users. Currently, \\nrec.motorcycles (pronounced \"wreck-dot-motorcycles,\" it\\'s the file name for \\nthe group\\'s primary on-line \"meeting place\") carries about 2250 articles per \\nmonth; it is read by an estimated 29,000 people. Most of the frequent \\nposters belong to a motorcycle club, the Denizens of Doom, usually referred \\nto as the DoD.\\n\\nThe DoD started when motorcyclist John R. Nickerson wrote a couple of \\nparodies designed to poke fun at motorcycle stereotypes. Fellow computer \\nenthusiast Bruce Robinson posted these articles under the pen name, \"Denizen \\nof Doom.\" A while later Chuck Rogers signed off as DoD nr. 0003 Keeper of \\nthe Flame. Bruce was then designated DoD nr. 0002, retroactively and, of \\ncourse, Nickerson, the originator of the parodies, was given DoD nr. 0001.\\n\\nThe idea of a motorcycle club with no organization, no meetings and no rules \\nappealed to many, so John Sloan -- DoD nr. 0011 -- became Keeper of the \\nList, issuing DoD numbers to anyone who wanted one. To date there have been \\nalmost 400 memberships issued to people all over the United States and \\nCanada, as well as Australia, New Zealand, the United Kingdom, France, \\nGermany, Norway and Finland.\\n\\nKeeper of the List Sloan eventually designed a club patch. The initial run \\nof 300 patches sold out immediately. The profits from this went to the \\nAmerican Motorcycle Heritage Foundation. Another AMHF fund raiser -- \\nselling Denizens of Doom pins to members -- was started by Arnie Skurow a \\nfew months later. Again, the project was successful and the profits were \\ndonated to the foundation. So far, the Denizens have contributed over $1500 \\nto the AMA museum. A plaque in the name of the Denizens of Doom now hangs \\nin the Motorcycle Heritage Museum.\\n\\nAs often as possible, the DoD\\'ers crawl out from behind their CRTs and go \\nriding together. It turns out that the two largest concentrations of \\nDoD\\'ers are centered near Denver/Boulder, Colorado, and in California\\'s \\n\"Silicon Valley.\" Consequently, two major events are the annual Assault on \\nRollins Pass in Colorado, and the Northern versus Southern California \\n\"Joust.\"\\n\\nThe Ride-and-Feed is a bike trip over Rollins Pass, followed by a big \\nbarbecue dinner. The concept for the Joust is to have riders from Northern \\nCalifornia ride south; riders from Southern California to ride north, \\nmeeting at a predesignated site somewhere in the middle. An additional plan \\nfor 1991 is to hold an official Denizens of Doom homecoming in conjunction \\nwith the AMA heritage homecoming in Columbus, Ohio, in July.\\n\\nThough it\\'s a safe bet the the Denizens of Doom and their collective \\ncommunications hub, rec.motorcycles, will not replace the more traditional \\nmotorcycle organizations, for those who prowl the electronic pathways in \\nsearch of two-wheeled camaraderie, it\\'s a great way for kindred spirits to \\nget together. Long may they flame.\\n\\n\\n\"Live to Flame -- Flame to Live\"\\t[centerbar]\\n\\nThis official motto of the Denizens of Doom refers to the ease with which \\nyou can gratuitously insult someone electronically, when you would not do \\nanything like that face to face. These insults are known as \"flames\"; \\nissuing them is called \"flaming.\" Flames often start when a member \\ndisagrees with something another member has posted over the network. A \\ntypical, sophisticated, intelligent form of calm, reasoned rebuttal would be \\nsomething like: \"What an incredibly stupid statement, you Spandex-clad \\nposeur!\" This will guarantee that five other people will reply in defense \\nof the original poster, describing just what they think of you, your riding \\nability and your cat.\\n\\n------------------------------------------------------------------------\\n\\n _The Denizens of Doom: The Saga Unfolds_\\n\\n by John Sloan DoD #0011\\n\\nPeriodically the question \"What is DoD?\" is raised. This is one of\\nthose questions in the same class as \"Why is the sky blue?\", \"If there\\nis a God, why is there so much suffering in the world?\" and \"Why do\\nwomen inevitably tell you that you\\'re such a nice guy just before they\\ndump you?\", the kinds of questions steeped in mysticism, tradition,\\nand philosophy, questions that have inspired research and discussion\\nby philosophers in locker rooms, motorcycle service bays, and in the\\nhalls of academe for generations. \\n\\nA long, long time ago (in computer time, where anything over a few\\nminutes is an eternity and the halting problem really is a problem) on\\na computer far, far away on the net (topologically speaking; two\\nmachines in the same room in Atlanta might route mail to one another\\nvia a system in Chicago), a chap who wished to remain anonymous (but\\nwho was eventually assigned the DoD membership #1) wrote a satire of\\nthe various personalities and flame wars of rec.motorcycles, and\\nsigned it \"The Denizen of Doom\". Not wishing to identify himself, he\\nasked that stalwart individual who would in the fullness of time\\nbecome DoD #2 to post it for him. DoD #2, not really giving a whit\\nabout what other people thought and generally being a right thinking\\nindividual, did so. Flaming and other amusements followed. \\n\\nHe who would become the holder of DoD membership #3 thought this was\\nthe funniest thing he\\'d seen in a while (being the sort that is pretty\\neasily amused), so he claimed membership in the Denizens of Doom\\nMotorcycle Club, and started signing his postings with his membership\\nnumber. \\n\\nPerhaps readers of rec.motorcycles were struck with the vision of a\\nmotorcycle club with no dues, no rules, no restrictions as to brand or\\nmake or model or national origin of motorcycle, a club organized\\nelectronically. It may well be that readers were yearning to become a\\npart of something that would provide them with a greater identity, a\\ngestalt personality, something in which the whole was greater than the\\nsum of its parts. It could also be that we\\'re all computer nerds who\\nwear black socks and sneakers and pocket protectors, who just happen\\nto also love taking risks on machines with awesome power to weight\\nratios, social outcasts who saw a clique that would finally be open\\nminded enough to accept us as members. \\n\\nIn a clear case of self fulfilling prophesy, The Denizens of Doom\\nMotorcycle Club was born. A club in which the majority of members have\\nnever met one another face to face (and perhaps like it that way), yet\\nfeel that they know one another pretty well (or well enough given some\\nof the electronic personalities in the newsgroup). A club organized\\nand run (in the loosest sense of the word) by volunteers through the\\nnetwork via electronic news and mail, with a membership/mailing list\\n(often used to organize group rides amongst members who live in the\\nsame region), a motto, a logo, a series of photo albums circulating\\naround the country (organized by DoD #9), club patches (organized by\\n#11), and even an MTV-style music video (produced by #47 and\\ndistributed on VHS by #18)! \\n\\nWhere will it end? Who knows? Will the DoD start sanctioning races,\\nplacing limits on the memory and clock rate of the on-board engine\\nmanagement computers? Will the DoD organize poker runs where each\\nparticipant collects a hand of hardware and software reference cards?\\nWill the DoD have a rally in which the attendees demand a terminal\\nroom and at least a 386-sized UNIX system? Only time will tell. \\n\\nThe DoD has no dues, no rules, and no requirements other than net\\naccess and a love for motorcycles. To become a member, one need only\\nask (although we will admit that who you must ask is one of the few\\nreally good club secrets). New members will receive via email a\\nmembership number and the latest copy of the membership list, which\\nincludes name, state, and email address. \\n\\nThe Denizens of Doom Motorcycle Club will live forever (or at least\\nuntil next year when we may decided to change the name). \\n\\n Live to Flame - Flame to Live\\n\\n------------------------------------------------------------------------\\n\\n The DoD daemon as seen on the patches, pins, etc. by\\n\\n\\tChuck Rogers, car377@druhi.att.com, DoD #0003\\n \\n\\n :-( DoD )-: \\n :-( x __ __ x )-: \\n :-( x / / \\\\ \\\\ x )-: \\n :-( x / / -\\\\-----/- \\\\ \\\\ x )-: \\n :-( L | \\\\/ \\\\ / \\\\/ | F )-: \\n :-( I | / \\\\ / \\\\ | L )-: \\n :-( V \\\\/ __ / __ \\\\/ A )-: \\n :-( E / / \\\\ / \\\\ \\\\ M )-: \\n :-( | | \\\\ / | | E )-: \\n :-( T | | . | _ | . | | )-: \\n :-( O | \\\\___// \\\\\\\\___/ | T )-: \\n :-( \\\\ \\\\_/ / O )-: \\n :-( F \\\\___ ___/ )-: \\n :-( L \\\\ \\\\ / / L )-: \\n :-( A \\\\ vvvvv / I )-: \\n :-( M | ( ) | V )-: \\n :-( E | ^^^^^ | E )-: \\n :-( x \\\\_______/ x )-: \\n :-( x x )-: \\n :-( x rec.motorcycles x )-:\\n :-( USENET )-:\\n\\n\\n------------------------------------------------------------------------\\n\\n The DoD\\n\\n by the Denizen of Doom DoD #1\\n \\nWelcome one and all to the flamingest, most wonderfullest newsgroup of\\nall time: wreck.mudder-disciples or is it reak.mudder-disciples? The\\nNames have been changes to protect the Guilty (riders) and Innocent\\n(the bikes) alike. If you think you recognize a contorted version of\\nyour name, you don\\'t. It\\'s just your guilt complex working against\\nyou. Read \\'em and weep. \\n\\nWe tune in on a conversation between some of our heros. Terrible\\nBarbarian is extolling the virtues of his Hopalonga Puff-a-cane to\\nReverend Muck Mudgers and Stompin Fueling-Injection: \\n\\nTerrible: This Hopalonga is the greatest... Beats BMWs dead!! \\n\\nMuck: I don\\'t mean to preach, Terrible, but lighten up on the BMW\\n crowd eh? I mean like I like riding my Yuka-yuka Fudgeo-Jammer\\n 11 but what the heck. \\n\\nStompin: No way, the BMW is it, complete, that\\'s all man.\\n\\nTerrible: Nahhhh, you\\'re sounding like Heritick Ratatnack! Hey, at\\n least he is selling his BMW and uses a Hopalonga Intercorruptor!\\n Not as good as a Puff-a-cane, should have been called a\\n Woosh-a-stream.\\n\\nStompin: You mean Wee-Stream.\\n\\nTerrible: Waddya going to do? Call in reinforcements???\\n\\nStompin: Yehh man. Here comes Arlow Scarecrow and High Tech. Let\\'s see\\n what they say, eh? \\n\\nMuck: Now men, let\\'s try to be civil about this.\\n\\nHigh Tech: Hi, I\\'m a 9 and the BMW is the greatest.\\n\\nArlow: Other than my B.T. I love my BMW!\\n\\nTerrible: B.T.???\\n\\nArlow: Burley Thumpison, the greatest all American ride you can own.\\n\\nMuck: Ahhh, look, you\\'re making Terrible gag.\\n\\nTerrible: What does BMW stand for anyway??? \\n\\nMuck, Arlow, High: Beats Me, Wilhelm.\\n\\nTerrible: Actually, my name is Terrible. Hmmm, I don\\'t know either.\\n\\nMuck: Say, here comes Chunky Bear.\\n\\nChunky: Hey, Hey, Hey! Smarter than your average bear!\\n\\nTerrible: Hey, didn\\'t you drop your BMW???\\n\\nChunky: All right eh, a little BooBoo, but I left him behind. I mean \\n even Villy Ogle flamed me for that! \\n\\nMuck: It\\'s okay, we all makes mistakes.\\n\\nOut of the blue the West coasters arrive, led by Tread Orange with\\nDill Snorkssy, Heritick Ratatnack, Buck Garnish, Snob Rasseller and\\nthe perenial favorite: Hooter Boobin Brush! \\n\\nHeritick: Heya Terrible, how\\'s yer front to back bias?\\n\\nTerrible: Not bad, sold yer BMW?\\n\\nHeritick: Nahhh.\\n\\nHooter: Hoot, Hoot.\\n\\nBuck: Nice tree Hooter, how\\'d ya get up there?\\n\\nHooter: Carbujectors from Hell!!!\\n\\nMuck: What\\'s a carbujector?\\n\\nHooter: Well, it ain\\'t made of alumican!!! Made by Tilloslert!!\\n\\nMuck: Ahh, come on down, we aren\\'t going to flame ya, honest!!\\n\\nDill: Well, where do we race?\\n\\nSnob: You know, Chunky, we know about about your drop and well, don\\'t\\n ride! \\n\\nMuck: No! No! Quiet!\\n\\nTread: BMW\\'s are the greatest in my supreme level headed opinion.\\n They even have luggage made by Sourkraut!\\n\\nHigh: My 9 too!\\n\\nTerrible, Heritick, Dill, Buck: Nahhhhh!!!\\n\\nStompin, Tread, High, Chunky, Snob: Yesss Yessssss!!!\\n\\nBefore this issue could be resolved the Hopalonga crew called up more\\ncohorts from the local area including Polyanna Stirrup and the\\ninfamous Booster Robiksen on his Cavortin! \\n\\nPolyanna: Well, men, the real bikers use stirrups on their bikes like\\n I use on my Hopalonga Evening-Bird Special. Helpful for getting\\n it up on the ole ventral stand! \\n\\nTerrible: Hopalonga\\'s are great like Polyanna says and Yuka-Yuka\\'s and\\n Sumarikis and Kersnapis are good too! \\n\\nBooster: I hate Cavortin.\\n\\nAll: WE KNOW, WE KNOW.\\n\\nBooster: I love Cavortin.\\n\\nAll: WE KNOW WE KNOW.\\n\\nMuck: Well, what about Mucho Guzlers and Lepurras?\\n\\nSnob, Tread: Nawwwwww.\\n\\nMuck: What about a Tridump?\\n\\nTerrible: Isn\\'t that a chewing gum?\\n\\nMuck: Auggggg, Waddda about a Pluck-a-kity?\\n\\nHeritick: Heyya Muck, you tryin\\' to call up the demon rider himself?\\n\\nMuck: No, no. There is more to Mudder-Disciples than arguing about make.\\n\\nTwo more riders zoom in, in the form of Pill Turret and Phalanx Lifter.\\nPill: Out with dorsal stands and ventral stands forever.\\n\\nPhalanx: Hey, I don\\'t know about that.\\n\\nAnd Now even more west coasters pour in.\\nRoad O\\'Noblin: Hopalonga\\'s are the greatest!\\n\\nMaulled Beerstein: May you sit on a bikejector!\\n\\nSuddenly more people arrived from the great dark nurth:\\nKite Lanolin: Hey, BMW\\'s are great, men.\\n\\nRobo-Nickie: I prefer motorcycle to robot transformers, personally.\\n\\nMore riders from the west coast come into the discussion:\\nAviator Sourgas: Get a Burley-Thumpison with a belted-rigged frame.\\n\\nGuess Gasket: Go with a BMW or Burley-Thumpison.\\n\\nWith a roar and a screech the latest mudder-disciple thundered in. It\\nwas none other that Clean Bikata on her Hopalonga CaBammerXorn. \\nClean: Like look, Hopalonga are it but only CaBammerXorns. \\n\\nMuck: Why??\\n\\nClean: Well, like it\\'s gotta be a 6-banger or nothin.\\n\\nMuck: But I only have a 4-banger.\\n\\nClean: No GOOD!\\n\\nChunky: Sob, some of us only have 2-bangers!\\n\\nClean: Inferior!\\n\\nStompin: Hey, look, here\\'s proof BMW\\'s are better. The Bimmer-Boys\\nburst into song: (singing) Beemer Babe, Beemer Babe give me a\\nthrill... \\n\\nRoad, Terrible, Polyanna, Maulled, Dill etc.: Wadddoes BMW stand for? \\n\\nHeritick, Stompin, Snob, Chunky, Tread, Kite, High, Arlow: BEAT\\'S ME,\\n WILHEM! \\n\\nRoad, Terrible, Polyanna, Maulled, Dill etc.: Oh, don\\'t you mean BMW? \\n\\nAnd so the ensuing argument goes until the skies clouded over and the\\nthunder roared and the Greatest Mudder-Disciple (G.M.D.) of them all\\nboomed out.\\nG.M.D.: Enough of your bickering! You are doomed to riding\\n Bigot & Suction powered mini-trikes for your childish actions. \\n\\nAll: no, No, NO!!! Puhlease.\\n\\nDoes this mean that all of the wreck.mudder-disciples will be riding\\nmini-trikes? Are our arguing heros doomed? Tune in next week for the\\nnext gut wretching episode of \"The Yearning and Riderless\" with its\\never increasing cast of characters. Where all technical problems will\\nbe flamed over until well done. Next week\\'s episode will answer the\\nquestion of: \"To Helmet or Not to Helmet\" will be aired, this is heady\\nmaterial and viewer discretion is advised. \\n\\n------------------------------------------------------------------------\\n\\n Script for the Denizens of Doom Anthem Video\\n\\n by Jonathan E. Quist DoD #94\\n\\n\\n[Scene: A sterile engineering office. A lone figure, whom we\\'ll call\\nChuck, stands by a printer output bin, wearing a white CDC lab coat,\\nwith 5 mechanical pencils in a pocket protector.] \\n\\n(editor\\'s note: For some reason a great deal of amusement was had at\\nthe First Annual DoD Uni-Coastal Ironhorse Ride & Joust by denizens\\nreferring to each other as \"Chuck\". I guess you had to be there. I\\nwasn\\'t.) \\n\\nChuck: I didn\\'t want to be a Software Systems Analyst,\\n cow-towing to the whims of a machine, and saying yessir, nosir,\\n may-I-have-another-sir. My mother made me do it. I wanted\\n to live a man\\'s life,\\n[Music slowly builds in background]\\n riding Nortons and Triumphs through the highest mountain passes\\n and the deepest valleys,\\n living the life of a Motorcyclist;\\n doing donuts and evading the police;\\n terrorizing old ladies and raping small children;\\n eating small dogs for tea (and large dogs for dinner). In short,\\n\\n\\tI Want to be A Denizen!\\n\\n[Chuck rips off his lab coat, revealing black leather jacket (with\\nfringe), boots, and cap. Scene simultaneously changes to the top of\\nan obviously assaulted Rollins Pass. A small throng of Hell\\'s Angels\\nsit on their Harleys in the near background, gunning their engines,\\nshowering lookers-on with nails as they turn donuts, and leaking oil\\non the tarmac. Chuck is standing in front of a heavily chromed Fat\\nBoy.] \\n\\nChuck [Sings to the tune of \"The Lumberjack Song\"]:\\n\\nI\\'m a Denizen and I\\'m okay,\\nI flame all night and I ride all day.\\n\\n[Hell\\'s Angels Echo Chorus, surprisingly heavy on tenors]:\\nHe\\'s a Denizen and he\\'s okay,\\nHe flames all night and he rides all day.\\n\\nI ride my bike;\\nI eat my lunch;\\nI go to the lavat\\'ry.\\nOn Wednesdays I ride Skyline,\\nRunning children down with glee.\\n\\n[Chorus]:\\nHe rides his bike;\\nHe eats his lunch;\\nHe goes to the lavat\\'ry.\\nOn Wednesdays he rides Skyline,\\nRunning children down with glee.\\n\\n[Chorus refrain]:\\n\\'Cause He\\'s a Denizen...\\n\\nI ride real fast,\\nMy name is Chuck,\\nIt somehow seems to fit.\\nI over-rate the worst bad f*ck,\\nBut like a real good sh*t.\\n\\nOh, I\\'m a Denizen and I\\'m okay!\\nI flame all night and I ride all day.\\n\\n[Chorus refrain]:\\nOh, He\\'s a Denizen...\\n\\nI wear high heels\\nAnd bright pink shorts,\\n full leathers and a bra.\\nI wish I rode a Harley,\\n just like my dear mama.\\n\\n[Chorus refrain]\\n\\n------------------------------------------------------------------------\\n\\n Why you have to be killed.\\n\\nWell, the first thing you have to understand (just in case you managed\\nto read this far, and still not figure it out) is that the DoD started\\nas a joke. And in the words of one Denizen, it intends to remain one.\\n\\nSometime in the far distant past, a hapless newbie asked: \"What does DoD\\nstand for? It\\'s not the Department of Defense is it?\" Naturally, a\\nDenizen who had watched the movie \"Top Gun\" a few times too many rose\\nto the occasion and replied:\\n\\n\"That\\'s classified, we could tell you, but then we\\'d have to kill you.\"\\n\\nAnd the rest is history.\\n\\nA variation on the \"security\" theme is to supply disinformation about\\nwhat DoD stands for. Notable contributions (and contributers, where\\nknown) include:\\n\\nDaughters of Democracy (DoD 23)\\t\\tDoers of Donuts\\nDancers of Despair (DoD 9)\\t\\tDebasers of Daughters\\nDickweeds of Denver\\t\\t\\tDriveway of Death\\nDebauchers of Donuts\\t\\t\\tDumpers of Dirtbikes\\n\\nNote that this is not a comprehensive list, as variations appear to be\\nlimited only by the contents of one\\'s imagination or dictionary file.\\n\\n------------------------------------------------------------------------\\n\\n The rec.moto.photo archive\\n\\nFirst a bit of history, this all started with Ilana Stern and Chuck\\nRogers organizing a rec.motorcycles photo album. Many copies were made,\\nand several sets were sent on tours around the world, only to vanish in\\nunknown locations. Then Bruce Tanner decided that it would be appropriate\\nfor an electronic medium to have an electronic photo album. Bruce has not\\nonly provided the disk space and ftp & e-mail access, but he has taken\\nthe time to scan most of the photos that are available from the archive.\\n\\nNot only can you see what all these folks look like, you can also gawk\\nat their motorcycles. A few non-photo files are available from the\\nserver too, they include the DoD membership list, the DoD Yellow Pages,\\nthe general rec.motorcycles FAQ, and this FAQ posting.\\n\\nHere are a couple of excerpts from from messages Bruce posted about how\\nto use the archive.\\n\\n**********************************************************\\n\\nVia ftp:\\n\\ncerritos.edu [130.150.200.21]\\n\\nVia e-mail:\\n\\nThe address is server@cerritos.edu. The commands are given in the body of the\\nmessage. The current commands are DIR and SEND, given one per line. The\\narguments to the commands are VMS style file specifications. For\\nrec.moto.photo the file spec is [DOD]file. For example, you can send:\\n\\ndir [dod]\\nsend [dod]bruce_tanner.gif\\nsend [dod]dodframe.ps\\n\\nand you\\'ll get back 5 mail messages; a directory listing, 3 uuencoded parts\\nof bruce_tanner.gif, and the dodframe.ps file in ASCII.\\n\\nOh, wildcards (*) are allowed, but a maximum of 20 mail messages (rounded up to\\nthe next whole file) are send. A \\'send [dod]*.gif\\' would send 150 files of\\n50K each; not a good idea.\\n-- \\nBruce Tanner (213) 860-2451 x 596 Tanner@Cerritos.EDU\\nCerritos College Norwalk, CA cerritos!tanner\\n\\n**********************************************************\\n\\nA couple of comments: Bruce has put quite a bit of effort into this, so\\nwhy not drop him a note if you find the rec.moto.photo archive useful?\\nSecond, since Bruce has provided the server as a favor, it would be kind\\nof you to access it after normal working hours (California time). \\n\\n------------------------------------------------------------------------\\n\\n Patches? What patches?\\n\\nYou may have heard mention of various DoD trinkets such as patches &\\npins. And your reaction was probably: \"I want!\", or \"That\\'s sick!\", or\\nperhaps \"That\\'s sick! I want!\"\\n\\nWell, there\\'s some good news and some bad news. The good news is that\\nthere\\'s been an amazing variety of DoD-labeled widgets created. The bad\\nnews is that there isn\\'t anywhere you can buy any of them. This isn\\'t\\nbecause of any \"exclusivity\" attempt, but simply because there is no\\n\"DoD store\" that keeps a stock. All of the creations have been done by\\nindividual Denizens out of their own pockets. The typical procedure is\\nsomeone says \"I\\'m thinking of having a DoD frammitz made, they\\'ll cost\\n$xx.xx, with $xx.xx going to the AMA museum. Anyone want one?\" Then\\norders are taken, and a batch of frammitzes large enough to cover the\\npre-paid orders is produced (and quickly consumed). So if you want a\\nDoD doodad, act quickly the next time somebody decides to do one. Or\\nproduce one yourself if you see a void that needs filling, after all\\nthis is anarchy in action.\\n\\nHere\\'s a possibly incomplete list of known DoD merchandise (and\\nperpetrators). Patches (DoD#11), pins (DoD#99), stickers (DoD#99),\\nmotorcycle license plate frames (DoD#216), t-shirts (DoD#99), polo shirts\\n(DoD#122), Zippo lighters (DoD#99) [LtF FtL], belt buckles (DoD#99), and\\npatches (DoD#99) [a second batch was done (and rapidly consumed) by\\npopular demand].\\n\\nAll \"profits\" have been donated to the American Motorcyclist Association\\nMotorcycle Heritage Museum. As of June 1992, over $5500 dollars has been\\ncontributed to the museum fund by the DoD. If you visit the museum,\\nyou\\'ll see a large plaque on the Founders\\' Wall in the name of \"Denizens\\nof Doom, USENET, The World\", complete with a DoD pin.\\n\\n------------------------------------------------------------------------\\n\\nHere\\'s a letter from the AMA to the DoD regarding our contributions.\\n\\n~Newsgroups: rec.motorcycles\\n~From: Arnie Skurow \\n~Subject: A letter from the Motorcycle Heritage Museum\\n~Date: Mon, 13 Apr 1992 11:04:58 GMT\\n\\nI received the following letter from Jim Rogers, director of the Museum,\\nthe other day.\\n\\n\"Dear Arnie and all members of the Denizens of Doom:\\n\\nCongratulations and expressions of gratitude are in order for you and the\\nDenizens of Doom! With your recent donation, the total amount donated is\\nnow $5,500. On behalf of the AMHF, please extend my heartfeld gratitude\\nto all the membership of the Denizens. The club\\'s new plaque is presently\\nbeing prepared. Of course, everyone is invited to come to the museum to \\nsee the plaque that will be installed in our Founders Foyer. By the way,\\nI will personally mount a Denizens club pin on the plaque. Again, thank \\nyou for all your support, which means so much to the foundation, the\\nmuseum, and the fulfillment of its goals.\\n\\n Sincerely,\\n\\n\\n Jim Rogers, D.O.D. #0395\\n Director\\n\\nP.S. Please post on your computer bulletin board.\"\\n\\nAs you all know, even though the letter was addressed to me personally,\\nit was meant for all of you who purchased DoD goodies that made this\\namount possible.\\n\\nArnie\\n\\n------------------------------------------------------------------------\\n\\nThe Rules, Regulations, & Bylaws of the Denizens of Doom Motorcycle Club\\n\\nFrom time to time there is some mention, discussion, or flame about the\\nrules of the DoD. In order to fan the flames, here is the complete text\\nof the rules governing the DoD.\\n\\n\\t\\t\\tRule #1. There are no rules.\\n\\t\\t\\tRule #0. Go ride.\\n\\n------------------------------------------------------------------------\\n\\n\\t\\tOther rec.motorcycles information resources.\\n\\nThere are several general rec.motorcycles resources that may or may not\\nhave anything to do with the DoD. Most are posted on a regular basis,\\nbut they can also be obtained from the cerritos ftp/e-mail server (see\\nthe info on the photo archive above).\\n\\nA general rec.motorcycles FAQ is maintained by Dave Williams.\\nCerritos filenames are FAQn.TXT, where n is currently 1-5.\\n\\nThe DoD Yellow Pages, a listing of motorcycle industry vendor phone\\nnumbers & addresses, is maintained by bob pakser.\\nCerritos filename is YELLOW_PAGES_Vnn, where n is the rev. number.\\n\\nThe List of the DoD membership is maintained by The Keeper of the List.\\nCerritos filename is DOD.LIST.\\n\\nThis WitDoD FAQ (surprise, surprise!) is maintained by yours truly.\\nCerritos filename is DOD_FAQ.TXT.\\n\\nAdditions, corrections, etc. for any of the above should be aimed at\\nthe keepers of the respective texts.\\n\\n------------------------------------------------------------------------\\n\\n(Loki Jorgenson loki@Physics.McGill.CA) has provided an archive site\\nfor motorcycle and accessory reviews, here\\'s an excerpt from his\\nperiodic announcement.\\n\\n**********************************************************\\n\\n\\tThe Rec.Motorcycles.Reviews Archives (and World Famous Llama\\n Emporium) contains a Veritable Plethora (tm) of bike (and accessories)\\n reviews, written by rec.moto readers based on their own experiences.\\n These invaluable gems of opinion (highly valued for their potential to\\n reduce noise on the list) can be accessed via anonymous FTP, Email\\n server or by personal request:\\n\\n Anonymous FTP:\\t\\tftp.physics.mcgill.ca (132.206.9.13)\\n\\t\\t\\t\\t\\tunder ~ftp/pub/DoD\\n Email archive server:\\t\\trm-reviews@ftp.physics.mcgill.ca\\n Review submissions/questions:\\trm-reviews@physics.mcgill.ca\\n\\n NOTE: There is a difference in the addresses for review submission\\n and using the Email archive server (ie. an \"ftp.\").\\n\\n To get started with the Email server, send an Email message with a line\\n containing only \"send help\". \\n\\n NOTE: If your return address appears like\\n\\tdomain!subdomain!host!username\\n in your mail header, include a line like (or something similar)\\n\\tpath username@host.subdomain.domain \\n\\n\\tIf you are interested in submitting a review of a bike that you\\n already own(ed), PLEASE DO! There is a template of the format that the\\n reviews are kept in (more or less) available at the archive site .\\n For those who have Internet access but are unsure of how anonymous\\n FTP works, an example script is available on request.\\n\\n**********************************************************\\n\\nReviews of any motorcycle related accessory or widget are welcome too.\\n\\n------------------------------------------------------------------------\\n\\n Updated stats & rec.motorcycles rides info\\n\\nSome of the info cited above in various places tends to be a moving\\ntarget. Rather than trying to catch every occurence, I\\'m just sticking\\nthe latest info down here.\\n\\nEstimated rec.motorcycles readership: 35K [news.groups]\\n \\nApproximate DoD Membership: 975 [KotL]\\n\\nDoD contributions to the American Motorcyclist Association Motorcycle\\nHeritage Museum. Over $5500 [Arnie]\\n \\n Organized (?) Rides:\\n\\nSummer 1992 saw more organized rides, with the Joust in its third\\nyear, and the Ride & Feed going strong, but without the Rollins Pass\\ntrip due to the collapse of a tunnel. The East Coast Denizens got\\ntogether for the Right Coast Ride (RCR), with bikers from as far north\\nas NH, and as far south as FL meeting in the Blueridge Mountains of\\nNorth Carolina. The Pacific Northwest crew organized the first Great\\nPacific Northwest Dryside Gather (GPNDG), another successful excuse for\\nriding motorcycles, and seeing the faces behind the names we all have\\ncome to know so well. [Thanks to Ed Green for the above addition.]\\n\\nAlso worth mentioning are: The first rec.moto.dirt ride, held in the\\nMoab/Canyonlands area of southern Utah. Riders from 5 states showed up,\\nriding everything from monster BMWs to itty-bitty XRs to almost-legal\\n2-strokes. And though it\\'s not an \"official\" (as if anything could be\\nofficial with this crowd) rec.moto event, the vintage motorcycle races\\nin Steamboat Springs, Colorado always provides a good excuse for netters\\nto gather. There\\'s also been the occasional Labor Day gather in Utah.\\nEuropean Denizens have staged some gathers too. (Your ad here,\\nreasonable rates!)\\n------------------------------------------------------------------------\\n-- \\nBlaine Gardner @ Evans & Sutherland 580 Arapeen Drive, SLC, Utah 84108\\n blgardne@javelin.sim.es.com BIX: blaine_g@bix.com FJ1200\\nHalf of my vehicles and all of my computers are Kickstarted. DoD#46\\n-- \\nBlaine Gardner @ Evans & Sutherland 580 Arapeen Drive, SLC, Utah 84108\\n blgardne@javelin.sim.es.com BIX: blaine_g@bix.com FJ1200\\nHalf of my vehicles and all of my computers are Kickstarted. DoD#46\\n',\n", + " 'From: frank@marvin.contex.com (Frank Perdicaro)\\nSubject: ST1100 ride\\nKeywords: heavy\\nLines: 95\\n\\nSixteen days I had put off test driving the Honda ST1100. Finally,\\nthe 17th was a Saturday without much rain. In fact it cleared up, \\nbecame warm and sunny, and the wind died. About three weeks ago, I\\ntook a long cool ride on the Hawk down to Cycles! 128 for a test ride.\\nThey had sold, and delivered, the demo ST1100 about fifteen hours\\nbefore I arrived. And the demo VFR was bike-locked in the showroom --\\nsurrounded by 150 other bikes, and not likely to move soon.\\n\\nToday was different. There were even more bikes. 50 used dirt bikes,\\n50 used street bikes, 35 cars, and a big tent full of Outlandishly Fat\\nTouring Bikes With Trailers were all squeezed in the parking lot.\\nSome sort of fat bike convention. Shelly and Dave were running one\\nMSF course each, at the same time. One in the classroom and one on\\nthe back lot. Plus, there was the usuall free cookout food that\\nCycles! gives away every weekend in the summer. Hmmm, it seemed like\\na big moto party.\\n\\nAfter about ten minutes of looking for Rob C, cheif of sales slime,\\nand another 5 minutes reading and signing a long disclosure/libility/\\npray-to-god form I helped JT push the ST out into the mess in the\\nparking lot. We went over the the controls, I put the tank bag from \\nthe Hawk into the right saddlebag, and my wife put everything else\\ninto the left saddlebag. ( Thats nice.... ) Having helped push the \\nST out to the lot, I thought it best to have JT move it to the edge of\\nthe road, away from the 100+ bikes and 100+ people. He rode it like a\\nbicycle! \\'It cant be that heavy\\' I thought.\\n\\nWell I was wrong. As I sat on the ST, both feet down, all I could \\nthink was \"big\". Then I put one foot up. \"Heavy\" came to mind very\\nquickly. With Cindy on the back -- was she on the back? Hard to \\ntell with seat three times as large as a Hawk seat -- the bike seemed\\nnearly out of control just idling on the side of the road.\\n\\nBy 3000 rpm in second gear, all the weight seemed to dissappear. Even\\non bike with 4.1 miles on the odometer, slippery new tires, and pads that \\ndid not yet bite the disks, things seems smooth and sure. Cycles! is\\non a section of 128 that few folks ever ride. About 30 miles north\\nof the computer concentration, about five miles north of where I95\\nsplits away, 128 is a lighly travelled, two lane limited access\\nhighway. It goes through heavily forested sections of Hamilton, \\nManchester-by-the-Sea and Newbury on its way to Gloucester.\\nOn its way there, it meets 133, a road that winds from the sea about\\n30 miles inland to Andover. On its way it goes through many\\nthoroughly New England spots. Perfect, if slow, sport touring sections.\\n\\nCindy has no difficulty with speed. 3rd gear, 4th gear, purring along\\nin top gear. This thing has less low rpm grunt that my Hawk. Lane \\nchanges were a new experience. A big heft is required to move this \\nthing. Responds well though. No wallowing or complaint. Behind the\\nfairing it was fairly quiet, but the helmet buffeting was\\nnon-trivial. Top gear car passing at 85mph was nearly effortless.\\nSmooth, smooth, smooth. Not sure what the v4 sound reminds me of,\\nbut it is pleasant. If only the bars were not transmitting an endless\\nbuzz.\\n\\nThe jump on to 133 caused me to be less than impressed with the\\nbrakes. Its a down hill, reversing camber, twice-reversing radius,\\ndecreasing radius turn. A real squeeze is needed on the front binder. \\nThe section of 133 we were on was tight, but too urban. The ST works ok\\nin this section, but it shows its weight. We went by the clam shack\\noft featured in \"Spencer for Hire\" -- a place where you could really \\nfind \"Spencer\", his house was about 15 miles down 133. After putting\\nthrough traffic for a while, we turned and went back to 128.\\n\\nAbout half way through the onramp, I yanked Cindy\\'s wrist, our singal\\nfor \"hold on tight\". Head check left, time to find redline. Second\\ngear gives a good shove. Third too. Fourth sees DoD speed with a \\nshort shift into top. On the way to 133 we saw no cops and very light\\ntraffic. Did not cross into DoD zone because the bike was too new.\\nWell, now it had 25 miles on it, so it was ok. Tried some high effort\\nlane changes, some wide sweeping turns. Time to wick it up? I went \\nuntil the buffeting was threating to pull us off the seat. And stayed\\nthere. When I was comfortable with the wind and the steering, \\nI looked down to find an indicated 135mph. Not bad for 2-up touring.\\n\\nBeverly comes fast at more than twice the posted limit. At the \"get\\noff in a mile\" sign, I rolled off the throttle and coasted. I wanted\\nto re-adjust to the coming slowness. It was a good idea: there were\\nseveral manhole-sized patches of sand on the exit ramp. Back to the \\nslow and heavy behavior. Cycles! is about a mile from 128. I could \\nsee even more cars stacked up outside right when I got off. I managed\\nto thread the ST through the cars to the edge of the concrete pad\\nout front. Heavy. It took way too much effort for Cindy and I to put\\nthe thing on the center stand. I am sure that if I used the side\\nstand the ST would have been on its side within a minute.\\n\\n\\nMy demo opinion? Heavy. Put it on a diet. Smooth, comfortable,\\nhardly notices the DoD speed. I\\'d buy on for about $3000 less than \\nlist, just like it is. Too much $ for the bike as it is.\\n-- \\n\\t Frank Evan Perdicaro \\t\\t\\t\\tXyvision Color Systems\\n Legalize guns, drugs and cash...today.\\t\\t101 Edgewater Drive\\n inhouse: frank@marvin, x5572\\t\\t\\t\\tWakefield MA\\nouthouse: frank@contex.com, 617-245-4100x5572\\t\\t018801285\\n',\n", + " \"From: havardn@edb.tih.no (Haavard Nesse,o92a)\\nSubject: HELP!!! GRASP\\nReply-To: havardn@edb.tih.no\\nPosting-Front-End: Winix Conference v 92.05.15 1.20 (running under MS-Windows)\\nLines: 13\\n\\nHi!\\n\\nCould anyone tell me if it's possible to save each frame\\nof a .gl (grasp) animation to .gif, .jpg, .iff or any other\\npicture formats.\\n\\n(I've got some animations that I'd like to transfer to my Amiga)\\n \\nI really hope that someone can help me.\\n\\nCheers\\n\\nHaavard Nesse - Trondheim College of Engineering, Trondheim, Norway\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Let the Turks speak for themselves.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 95\\n\\nIn article <1993Apr16.142935.535@cs.yale.edu> karage@scus1.ctstateu.edu (Angelos Karageorgiou) writes:\\n\\n>\\tIf Turks in Greece were so badly mistreated how come they\\n>elected two,m not one but two, representatives in the Greek government?\\n\\nPardon me?\\n\\n\"Greece Government Rail-Roads Two Turkish Ethnic Deputies\"\\n\\nWhile World Human Rights Organizations Scream, Greeks \\nPersistently Work on Removing the Parliamentary Immunity\\nof Dr. Sadik Ahmet and Mr. Ahmet Faikoglu.\\n\\n\\nDr. Sadik Ahmet, Turkish Ethnic Member of Greek Parliament, Visits US\\n\\nWashington DC, July 7- Doctor Sadik Ahmet, one of the two ethnic\\nTurkish members of the Greek parliament visited US on june 24 through\\nJuly 5th and held meetings with human rights organizations and\\nhigh-level US officials in Washington DC and New York.\\n\\nAt his press conference at the National Press Club in Washington DC,\\nSadik Ahmet explained the plight of ethnic Turks in Greece and stated\\nsix demands from Greek government.\\n\\nAhmet said \"our only hope in Greece is the pressure generated from\\nWestern capitals for insisting that Greece respects the human rights.\\nWhat we are having done to ethnic Turks in Greece is exactly the same\\nas South African Apartheid.\" He added: \"What we are facing is pure\\nGreek hatred and racial discrimination.\"\\n\\nSpelling out the demands of the Turkish ethnic community in Greece\\nhe said \"We want the restoration of Greek citizenship of 544 ethnic\\nTurks. Their citizenship was revoked by using the excuse that this\\npeople have stayed out of Greece for too long. They are Greek citizens\\nand are residing in Greece, even one of them is actively serving in\\nthe Greek army. Besides, other non-Turkish citizens of Greece are\\nnot subject to this kind of interpretation at an extent that many of\\nGreek-Americans have Greek citizenship and they permanently live in\\nthe United States.\"\\n\\n\"We want guarantee for Turkish minority\\'s equal rights. We want Greek\\ngovernment to accept the Turkish minority and grant us our civil rights.\\nOur people are waiting since 25 years to get driving licenses. The Greek\\ngovernment is not granting building permits to Turks for renovating\\nour buildings or building new ones. If your name is Turkish, you are\\nnot hired to the government offices.\"\\n\\n\"Furthermore, we want Greek government to give us equal opportunity\\nin business. They do not grant licenses so we can participate in the\\neconomic life of Greece. In my case, they denied me a medical license\\nnecessary for practicing surgery in Greek hospitals despite the fact\\nthat I have finished a Greek medical school and followed all the\\nnecessary steps in my career.\"\\n\\n\"We want freedom of expression for ethnic Turks. We are not allowed\\nto call ourselves Turks. I myself have been subject of a number of\\nlaw suits and even have been imprisoned just because I called myself\\na Turk.\"\\n\\n\"We also want Greek government to provide freedom of religion.\"\\n\\nIn separate interview with The Turkish Times, Dr. Sadik Ahmet stated\\nthat the conditions of ethnic Turks are deplorable and in the eyes of\\nGreek laws, ethnic Greeks are more equal than ethnic Turks. As an example,\\nhe said there are about 20,000 telephone subscribers in Selanik (Thessaloniki)\\nand only about 800 of them are Turks. That is not because Turks do not\\nwant to have telephone services at their home and businesses. He said\\nthat Greek government changed the election law just to keep him out\\nof the parliament as an independent representative and they stated\\nthis fact openly to him. While there is no minimum qualification\\nrequirement for parties in terms of receiving at least 3% of the votes,\\nthey imposed this requirement for the independent parties, including\\nthe Turkish candidates.\\n\\nAhmet was born in a small village at Gumulcine (Komotini), Greece 1947.\\nHe earned his medical degree at University of Thessaloniki in 1974.\\nhe served in the Greek military as an infantryman.\\n\\nIn 1985 he got involved with community affairs for the first time\\nby collecting 15,000 signatures to protest the unjust implementation\\nof laws against ethnic Turks. In 1986, he was arrested by the police\\nfor collecting signatures.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " \"From: gwh@soda.berkeley.edu (George William Herbert)\\nSubject: Re: Moonbase race\\nOrganization: Retro Aerospace\\nLines: 14\\nNNTP-Posting-Host: soda.berkeley.edu\\nSummary: Hmm...\\n\\nHmm. $1 billion, lesse... I can probably launch 100 tons to LEO at\\n$200 million, in five years, which gives about 20 tons to the lunar\\nsurface one-way. Say five tons of that is a return vehicle and its\\nfuel, a bigger Mercury or something (might get that as low as two\\ntons), leaving fifteen tons for a one-man habitat and a year's supplies?\\nGee, with that sort of mass margins I can build the systems off\\nthe shelf for about another hundred million tops. That leaves\\nabout $700 million profit. I like this idea 8-) Let's see\\nif you guys can push someone to make it happen 8-) 8-)\\n\\n[slightly seriously]\\n\\n-george william herbert\\nRetro Aerospace\\n\",\n", + " \"From: jk87377@lehtori.cc.tut.fi (Kouhia Juhana)\\nSubject: XV problems\\nOrganization: Tampere University of Technology\\nLines: 113\\nDistribution: world\\nNNTP-Posting-Host: cc.tut.fi\\n\\n[Please, note the Newsgroups.]\\n\\nRecent discussion about XV's problems were held in some newsgroup.\\nHere is some text users of XV might find interesting.\\nI have added more to text to this collection article, so read on, even\\nyou so my articles a while ago.\\n\\nI hope author of XV corrects those problems as best he can, so fine\\nprogram XV is that it is worth of improving.\\n(I have also minor ideas for 24bit XV, e-mail me for them.)\\n\\nAny misundertanding of mine is understandable.\\n\\n\\nJuhana Kouhia\\n\\n\\n==clip==\\n\\n[ ..deleted..]\\n\\nNote that 'xv' saves only 8bit/rasterized images; that means that\\nthe saved jpegs are just like jpeg-to-gif-to-jpeg quality.\\nAlso, there's three kind of 8bit quantizers; your final image quality\\ndepends on them too.\\n \\nThis were the situation when I read jpeg FAQ a while ago.\\n \\nIMHO, it is design error of 'xv'; there should not be such confusing\\nerrors in programs.\\nThere's two errors:\\n -xv allows the saving of 8bit/rasterized image as jpeg even the\\n original is 24bit -- saving 8bit/rasterized image instead of\\n original 24bit should be a special case\\n -xv allows saving the 8bit/rasterized image made with any quantizer\\n -- the main case should be that 'xv' quantizes the image with the\\n best quantizer available before saving the image to a file; lousier\\n quantizers should be just for viewing purposes (and a special cases\\n in saving the image, if at all)\\n \\n==clip==\\n\\n==clip==\\n\\n[ ..deleted..]\\n\\nIt is limit of *XV*, but not limit of design.\\nIt is error in design.\\nIt is error that 8bit/quantized/rasterized images are stored as jpegs;\\njpeg is not designed to that.\\n\\nAs matter of fact, I'm sure when XV were designed 24bit displays were\\nknown. It is not bad error to program a program for 8bit images only\\nat that time, but when 24bit image formats are included to program the\\nwhole design should be changed to support 24bit images.\\nThat were not done and now we have\\n -the program violate jpeg design (and any 24bit image format)\\n -the program has human interface errors.\\n\\nOtherway is to drop saving images as jpegs or any 24bit format without\\nclearly saying that it is special case and not expected in normal use.\\n\\n[ ..deleted.. ]\\n\\n==clip==\\n\\nSome new items follows.\\n\\n==clip==\\n\\nI have seen that XV quantizes the image sometimes poorly with -best24\\noption than with default option we have.\\nThe reason surely is the quantizer used as -best24; it is (surprise)\\nthe same than used in ppmquant.\\n\\nIf you remember, I have tested some quantizers. In that test I found\\nthat rlequant (with default) is best, then comes djpeg, fbmquant, xv\\n(our default) in that order. In my test ppmquant suggeeded very poorly\\n-- it actually gave image with bad artifacts.\\n\\nI don't know is ppmquant improved any, but I expect no.\\nSo, use of XV's -best24 option is not very good idea.\\n\\nI suggest that author of XV changes the quantizer to the one used in\\nrlequant -- I'm sure rle-people gives permission.\\n(Another could be one used in ImageMagick; I have not tested it, so I\\ncan say nothing about it.)\\n\\n==clip==\\n\\n==clip==\\n\\nSome minor bugs in human interface are:\\n\\nKey pressings and cursor clicks goes to a buffer; Often it happens\\nthat I make click errors or press keyboard when cursor is in the wrong\\nplace. It is very annoying when you have waited image to come about\\nfive minutes and then it is gone away immediately.\\nThe buffer should be cleaned when the image is complete.\\n\\nAlso, good idea is to wait few seconds before activating keyboard\\nand mouse for XV after the image is completed.\\nOften it happens that image pops to the screen quickly, just when\\nI'm writing something with editor or such. Those key pressings\\nthen go to XV and image has gone or something weird.\\n\\nIn the color editor, when I turn a color meter and release it, XV\\nupdates the images. It is impossible to change all RGB values first\\nand then get the updated image. It is annoying wait image to be\\nupdated when the setting are not ready yet.\\nI suggest of adding an 'apply' button to update the exchanges done.\\n\\n==clip==\\n\",\n", + " 'From: mvp@netcom.com (Mike Van Pelt)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: Netcom - Online Communication Services (408 241-9760 guest)\\nLines: 17\\n\\nIn article <1r64pb$nkk@genesis.MCS.COM> arf@genesis.MCS.COM (Jack Schmidling) writes:\\n>Neither the Times nor the trained seals who have responded thus far seem to\\n>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>otherwords, American taxpayers put up at least 30% of the money.\\n\\nDammit, how did ArfArf\\'s latest excretion escape my kill file?\\n\\nOh, he changed sites. Again. *sigh* OK, I assume no other person\\non this planet will ever use the login name of arf.\\n\\n/arf@/aK:j \\n\\n-- \\nMike Van Pelt mvp@netcom.com\\n\"... Local prohibitions cannot block advances in military and commercial\\ntechnology.... Democratic movements for local restraint can only restrain\\nthe world\\'s democracies, not the world as a whole.\" -- K. Eric Drexler\\n',\n", + " \"From: nancyo@fraser.sfu.ca (Nancy Patricia O'Connor)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: Simon Fraser University, Burnaby, B.C., Canada\\nLines: 11\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes:\\n\\n>Rule #4: Don't mix apples with oranges. How can you say that the\\n>extermination by the Mongols was worse than Stalin? Khan conquered people\\n>unsympathetic to his cause. That was atrocious. But Stalin killed millions of\\n>his own people who loved and worshipped _him_ and his atheist state!! How can\\n>anyone be worse than that?\\n\\nYou're right. And David Koresh claimed to be a Christian.\\n\\n\\n\",\n", + " 'From: lpzsml@unicorn.nott.ac.uk (Steve Lang)\\nSubject: Re: Objective Values \\'v\\' Scientific Accuracy (was Re: After 2000 years, can we say that Christian Morality is)\\nOrganization: Nottingham University\\nLines: 38\\n\\nIn article , tk@dcs.ed.ac.uk (Tommy Kelly) wrote:\\n> In article <1qjahh$mrs@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n> \\n> >Science (\"the real world\") has its basis in values, not the other way round, \\n> >as you would wish it. \\n> \\n> You must be using \\'values\\' to mean something different from the way I\\n> see it used normally.\\n> \\n> And you are certainly using \\'Science\\' like that if you equate it to\\n> \"the real world\".\\n> \\n> Science is the recognition of patterns in our perceptions of the Universe\\n> and the making of qualitative and quantitative predictions concerning\\n> those perceptions.\\n\\nScience is the process of modeling the real world based on commonly agreed\\ninterpretations of our observations (perceptions).\\n\\n> It has nothing to do with values as far as I can see.\\n> Values are ... well they are what I value.\\n> They are what I would have rather than not have - what I would experience\\n> rather than not, and so on.\\n\\nValues can also refer to meaning. For example in computer science the\\nvalue of 1 is TRUE, and 0 is FALSE. Science is based on commonly agreed\\nvalues (interpretation of observations), although science can result in a\\nreinterpretation of these values.\\n\\n> Objective values are a set of values which the proposer believes are\\n> applicable to everyone.\\n\\nThe values underlaying science are not objective since they have never been\\nfully agreed, and the change with time. The values of Newtonian physic are\\ncertainly different to those of Quantum Mechanics.\\n\\nSteve Lang\\nSLANG->SLING->SLINK->SLICK->SLACK->SHACK->SHANK->THANK->THINK->THICK\\n',\n", + " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: some thoughts.\\nIn-Reply-To: healta@saturn.wwc.edu\\'s message of Fri, 16 Apr 1993 02: 51:29 GMT\\nOrganization: Compaq Computer Corp\\n\\t\\nLines: 47\\n\\n>>>>> On Fri, 16 Apr 1993 02:51:29 GMT, healta@saturn.wwc.edu (Tammy R Healy) said:\\nTRH> I hope you\\'re not going to flame him. Please give him the same coutesy you\\'\\nTRH> ve given me.\\n\\nBut you have been courteous and therefore received courtesy in return. This\\nperson instead has posted one of the worst arguments I have ever seen\\nmade from the pro-Christian people. I\\'ve known several Jesuits who would\\nlaugh in his face if he presented such an argument to them.\\n\\nLet\\'s ignore the fact that it\\'s not a true trilemma for the moment (nice\\nword Maddi, original or is it a real word?) and concentrate on the\\nliar, lunatic part.\\n\\nThe argument claims that no one would follow a liar, let alone thousands\\nof people. Look at L. Ron Hubbard. Now, he was probably not all there,\\nbut I think he was mostly a liar and a con-artist. But look at how many\\nthousands of people follow Dianetics and Scientology. I think the \\nBaker\\'s and Swaggert along with several other televangelists lie all\\nthe time, but look at the number of follower they have.\\n\\nAs for lunatics, the best example is Hitler. He was obviously insane,\\nhis advisors certainly thought so. Yet he had a whole country entralled\\nand came close to ruling all of Europe. How many Germans gave their lives\\nfor him? To this day he has his followers.\\n\\nI\\'m just amazed that people still try to use this argument. It\\'s just\\nso obviously *wrong*.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", + " 'From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Why is sex only allowed in marriage: Rationality (was: Islamic marriage)?\\nOrganization: Monash University, Melb., Australia.\\nLines: 115\\n\\nIn <1993Apr4.093904.20517@proxima.alt.za> lucio@proxima.alt.za (Lucio de Re) writes:\\n\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n\\n>>My point of view is that the argument \"all sexism is bad\" just simply\\n>>does not hold. Let me give you an example. How about permitting a\\n>>woman to temporarily leave her job due to pregnancy -- should that be\\n>>allowed? It happens to be sexist, as it gives a particular right only\\n>>to women. Nevertheless, despite the fact that it is sexist, I completely \\n>>support such a law, because I think it is just.\\n\\n>Fred, you\\'re exasperating... Sexism, like racialism, is a form of\\n>discrimination, using obvious physical or cultural differences to deny\\n>one portion of the population the same rights as another.\\n\\n>In this context, your example above holds no water whatsoever:\\n>there\\'s no discrimination in \"denying\" men maternity leave, in fact\\n>I\\'m quite convinced that, were anyone to experiment with male\\n>pregnancy, it would be possible for such a future father to take\\n>leave on medical grounds.\\n\\nOkay... I argued this thoroughly about 3-4 weeks ago. Men and women are\\ndifferent ... physically, physiologically, and psychologically. Much\\nrecent evidence for this statement is present in the book \"Brainsex\" by\\nAnne Moir and David Jessel. I recommend you find a copy and read it.\\nTheir book is an overview of recent scientific research on this topic\\nand is well referenced. \\n\\nNow, if women and men are different in some ways, the law can only\\nadequately take into account their needs in these areas where they are\\ndifferent by also taking into account the ways in which men and women\\nare different. Maternity leave is an example of this -- it takes into\\naccount that women get pregnant. It does not give women the same rules\\nit would give to men, because to treat women like it treats men in this\\ninstance would be unjust. This is just simply an obvious example of\\nwhere men and women are intrinsically different!!!!!\\n\\nNow, people make the _naive_ argument that sexism = oppression.\\nHowever, maternity leave is sexist because MEN DO NOT GET PREGNANT. \\nMen do not have the same access to leave that women do (not to the same\\nextent or degree), and therefore IT IS SEXIST. No matter however much a\\nman _wants_ to get pregnant and have maternity leave, HE NEVER CAN. And\\ntherefore the law IS SEXIST. No man can have access to maternity leave,\\nNO MATTER HOW HARD HE TRIES TO GET PREGNANT. I hope this is clear.\\n\\nMaternity leave is an example where a sexist law is just, because the\\nsexism here just reflects the \"sexism\" of nature in making men and women\\ndifferent. There are many other differences between men and women which\\nare far more subtle than pregnancy, and to find out more of these I\\nrecommend you have a look at the book \"Brainsex\".\\n\\nYour point that perhaps some day men can also be pregnant is fallacious.\\nIf men can one day become pregnant it will be by having biologically\\nbecome women! To have a womb and the other factors required for\\npregnancy is usually wrapped up in the definition of what a woman is --\\nso your argument, when it is examined, is seen to be fallacious. You\\nare saying that men can have the sexist maternity leave privilege that \\nwomen can have if they also become women -- which actually just supports\\nmy statement that maternity leave is sexist.\\n\\n>The discrimination comes in when a woman is denied opportunities\\n>because of her (legally determined) sexual inferiorities. As I\\n>understand most religious sexual discrimination, and I doubt that\\n>Islam is exceptional, the female is not allowed into the priestly\\n>caste and in general is subjugated so that she has no aspirations to\\n>rights which, as an equal human, she ought to be entitled to.\\n\\nThere is no official priesthood in Islam -- much of this function is\\ntaken by Islamic scholars. There are female Islamic scholars and\\nfemale Islamic scholars have always existed in Islam. An example from\\nearly Islamic history is the Prophet\\'s widow, Aisha, who was recognized\\nin her time and is recognized in our time as an Islamic scholar.\\n\\n>No matter how sweetly you coat it, part of the role of religions\\n>seems, historically, to have served the function of oppressing the\\n>female, whether by forcing her to procreate to the extent where\\n>there is no opportunity for self-improvement, or by denying her\\n>access to the same facilities the males are offered.\\n\\nYou have no evidence for your blanket statement about all religions, and\\nI dispute it. I could go on and on about women in Islam, etc., but I\\nrecently reposted something here under the heading \"Islam and Women\" --\\nif it is still at your news-site I suggest you read it. It is reposted\\nfrom soc.religion.islam, so if it has disappeared from alt.atheism it\\nstill might be in soc.religion.islam (I forgot what its original title\\nwas though). I will email it to you if you like. \\n\\n>The Roman Catholic Church is the most blatant of the culprit,\\n>because they actually istitutionalised a celibate clergy, but the\\n>other religious are no different: let a woman attempt to escape her\\n>role as child bearer and the wrath of god descends on her.\\n\\nYour statement that \"other religions are no different\" is, I think, a\\nstatement based simply on lack of knowledge about religions other than\\nChristianity and perhaps Judaism.\\n\\n>I\\'ll accept your affirmation that Islam grants women the same rights\\n>as men when you can show me that any muslim woman can aspire to the\\n>same position as (say) Khomeini and there are no artificial religious\\n>or social obstacles on her path to achieve this.\\n\\nAisha, who I mentioned earlier, was not only an Islamic scholar but also\\nwas, at one stage, a military leader.\\n\\n>Show me the equivalent of Hillary Rhodam-Clinton within Islam, and I\\n>may consider discussing the issue with you.\\n\\nThe Prophet\\'s first wife, who died just before the \"Hijra\" (the\\nProphet\\'s journey from Mecca to Medina) was a successful businesswoman.\\n\\nLucio, you cannot make a strong case for your viewpoint when your\\nviewpoint is based on ignorance about world religions.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n',\n", + " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Israeli Terrorism\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 7\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n How many of you readers know anything about Jews living in the\\nArab countries? How many of you know if Jews still live in these\\ncountries? How many of you know what the circumstances of Arabic\\nJews leaving their homelands were? Just curious.\\n\\n\\n',\n", + " 'Organization: Penn State University\\nFrom: Andrew Newell \\nSubject: Re: free moral agency\\nDistribution: na\\n \\nLines: 119\\n\\nIn article , bil@okcforum.osrhe.edu (Bill\\nConner) says:\\n>\\n>dean.kaflowitz (decay@cbnewsj.cb.att.com) wrote:\\n>\\n>: Now, what I am interested in is the original notion you were discussing\\n>: on moral free agency. That is, how can a god punish a person for\\n>: not believing in him when that person is only following his or her\\n>: nature and it is not possible for that person to deny what his or\\n>: her reason tells him or her, which is that there is no god?\\n>\\n>I think you\\'re letting atheist mythology confuse you on the issue of\\n\\n(WEBSTER: myth: \"a traditional or legendary story...\\n ...a belief...whose truth is accepted uncritically.\")\\n\\nHow does that qualify?\\nIndeed, it\\'s almost oxymoronic...a rather amusing instance.\\nI\\'ve found that most atheists hold almost no atheist-views as\\n\"accepted uncritically,\" especially the few that are legend.\\nMany are trying to explain basic truths, as myths do, but\\nthey don\\'t meet the other criterions.\\nAlso...\\n\\n>Divine justice. According to the most fundamental doctrines of\\n>Christianity, When the first man sinned, he was at that time the\\n\\nYou accuse him of referencing mythology, then you procede to\\nlaunch your own xtian mythology. (This time meeting all the\\nrequirements of myth.)\\n\\n>salvation. The idea of punishment is based on the proposition that\\n>everyone knows (instinctively?) that God exists, is their creator and\\n\\nAh, but not everyone \"knows\" that god exists. So you have\\na fallacy.\\n\\n>There\\'s nothing terribly difficult in all this and is well known to\\n>any reasonably Biblically literate Christian. The only controversy is\\n\\nAnd that makes it true? Holding with the Bible rules out controversy?\\nRead the FAQ. If you\\'ve read it, you missed something, so re-read.\\n(Not a bad suggestion for anyone...I re-read it just before this.)\\n\\n>with those who pretend not to know what is being said and what it\\n>means. When atheists claim that they do -not- know if God exists and\\n>don\\'t know what He wants, they contradict the Bible which clearly says\\n>that -everyone- knows. The authority of the Bible is its claim to be\\n\\n...should I repeat what I wrote above for the sake of getting\\nit across? You may trust the Bible, but your trusting it doesn\\'t\\nmake it any more credible to me.\\n\\nIf the Bible says that everyone knows, that\\'s clearly reason\\nto doubt the Bible, because not everyone \"knows\" your alleged\\ngod\\'s alleged existance.\\n\\n>refuted while the species-wide condemnation is justified. Those that\\n>claim that there is no evidence for the existence of God or that His will is\\n>unknown, must deliberately ignore the Bible; the ignorance itself is\\n>no excuse.\\n\\n1) No, they don\\'t have to ignore the Bible. The Bible is far\\nfrom universally accepted. The Bible is NOT a proof of god;\\nit is only a proof that some people have thought that there\\nwas a god. (Or does it prove even that? They might have been\\nwriting it as series of fiction short-stories. As in the\\ncase of Dionetics.) Assuming the writers believed it, the\\nonly thing it could possibly prove is that they believed it.\\nAnd that\\'s ignoring the problem of whether or not all the\\ninterpretations and Biblical-philosophers were correct.\\n\\n2) There are people who have truly never heard of the Bible.\\n\\n3) Again, read the FAQ.\\n\\n>freedom. You are free to ignore God in the same way you are free to\\n>ignore gravity and the consequences are inevitable and well known\\n>in both cases. That an atheist can\\'t accept the evidence means only\\n\\nBzzt...wrong answer!\\nGravity is directly THERE. It doesn\\'t stop exerting a direct and\\nrationally undeniable influence if you ignore it. God, on the\\nother hand, doesn\\'t generally show up in the supermarket, except\\non the tabloids. God doesn\\'t exert a rationally undeniable influence.\\nGravity is obvious; gods aren\\'t.\\n\\n>Secondly, human reason is very comforatble with the concept of God, so\\n>much so that it is, in itself, intrinsic to our nature. Human reason\\n>always comes back to the question of God, in every generation and in\\n\\nNo, human reason hasn\\'t always come back to the existance of\\n\"God\"; it has usually come back to the existance of \"god\".\\nIn other words, it doesn\\'t generally come back to the xtian\\ngod, it comes back to whether there is any god. And, in much\\nof oriental philosophic history, it generally doesn\\'t pop up as\\nthe idea of a god so much as the question of what natural forces\\nare and which ones are out there. From a world-wide view,\\nhuman nature just makes us wonder how the universe came to\\nbe and/or what force(s) are currently in control. A natural\\ntendancy to believe in \"God\" only exists in religious wishful\\nthinking.\\n\\n>I said all this to make the point that Christianity is eminently\\n>reasonable, that Divine justice is just and human nature is much\\n>different than what atheists think it is. Whether you agree or not\\n\\nXtianity is no more reasonable than most other religions, and\\nit\\'s reasonableness certainly doesn\\'t merit eminence.\\nDivine justice...well, it only seems just to those who already\\nbelieve in the divinity.\\nFirst, not all atheists believe the same things about human\\nnature. Second, whether most atheists are correct or not,\\nYOU certainly are not correct on human nature. You are, at\\nthe least, basing your views on a completely eurocentric\\napproach. Try looking at the outside world as well when\\nyou attempt to sum up all of humanity.\\n\\nAndrew\\n',\n", + " 'From: thester@nyx.cs.du.edu (Uncle Fester)\\nSubject: Re: CView answers\\nX-Disclaimer: Nyx is a public access Unix system run by the University\\n\\tof Denver for the Denver community. The University has neither\\n\\tcontrol over nor responsibility for the opinions of users.\\nOrganization: Nyx, Public Access Unix at U. of Denver Math/CS dept.\\nLines: 36\\n\\nIn article <5103@moscom.com> mz@moscom.com (Matthew Zenkar) writes:\\n>Cyberspace Buddha (cb@wixer.bga.com) wrote:\\n>: renew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n>: >over where it places its temp files: it just places them in its\\n>: >\"current directory\".\\n>\\n>: I have to beg to differ on this point, as the batch file I use\\n>: to launch cview cd\\'s to the dir where cview resides and then\\n>: invokes it. every time I crash cview, the 0-byte temp file\\n>: is found in the root dir of the drive cview is on.\\n>\\n>I posted this as well before the cview \"expert\". Apparently, he thought\\nhe\\n>knew better.\\n>\\n>Matthew Zenkar\\n>mz@moscom.com\\n\\n\\n Are we talking about ColorView for DOS here? \\n I have version 2.0 and it writes the temp files to its own\\n current directory.\\n What later versions do, I admit that I don\\'t know.\\n Assuming your \"expert\" referenced above is talking about\\n the version that I have, then I\\'d say he is correct.\\n Is the ColorView for unix what is being discussed?\\n Just mixed up, confused, befuddled, but genuinely and\\n entirely curious....\\n\\n Uncle Fester\\n\\n--\\n : What God Wants : God wants gigolos :\\n : God gets : God wants giraffes :\\n : God help us all : God wants politics :\\n : *thester@nyx.cs.du.edu* : God wants a good laugh :\\n',\n", + " 'From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES \\nOrganization: NONE\\nLines: 52\\n\\nIn article <1993Apr20.110021.5746@kth.se>, hilmi-er@dsv.su.se (Hilmi Eren) writes:\\n\\n\\nhenrik] The Armenians in Nagarno-Karabagh are simply DEFENDING their \\nhenrik] RIGHTS to keep their homeland and it is the AZERIS that are \\nhenrik] INVADING their homeland.\\n\\n\\nHE] Homeland? First Nagarno-Karabagh was Armenians homeland today\\nHE] Fizuli, Lacin and several villages (in Azerbadjan)\\nHE] are their homeland. Can\\'t you see the\\nHE] the \"Great Armenia\" dream in this? With facist methods like\\nHE] killing, raping and bombing villages. The last move was the\\nHE] blast of a truck with 60 kurdish refugees, trying to\\nHE] escape the from Lacin, a city that was \"given\" to the Kurds\\nHE] by the Armenians.\\n\\nNagorno-Karabakh is in Azerbaijan not Armenia. Armenians have lived in Nagorno-\\nKarabakh ever since there were Armenians. Armenians used to live in the areas\\nbetween Armenia and Nagorno-Karabakh and this area is being used to invade \\nNagorno- Karabakh. Armenians are defending themselves. If Azeris are dying\\nbecause of a policy of attacking Armenians, then something is wrong with this \\npolicy.\\n\\nIf I recall correctly, it was Stalin who caused all this problem with land\\nin the first place, not the Armenians.\\n\\nhenrik] However, I hope that the Armenians WILL force a TURKISH airplane\\nhenrik] to LAND for purposes of SEARCHING for ARMS similar to the one\\nhenrik] that happened last SUMMER. Turkey searched an AMERICAN plane\\nhenrik] (carrying humanitarian aid) bound to ARMENIA.\\n\\nHE] Don\\'t speak about things you don\\'t know: 8 U.S. Cargo planes\\nHE] were heading to Armenia. When the Turkish authorities\\nHE] announced that they were going to search these cargo\\nHE] planes 3 of these planes returned to it\\'s base in Germany.\\nHE] 5 of these planes were searched in Turkey. The content of\\nHE] of the other 3 planes? Not hard to guess, is it? It was sure not\\nHE] humanitarian aid.....\\n\\nWhat story are you talking about? Planes from the U.S. have been sending\\naid into Armenian for two years. I would not like to guess about what were in\\nthe 3 planes in your story, I would like to find out.\\n\\n\\nHE] Search Turkish planes? You don\\'t know what you are talking about.\\nHE] Turkey\\'s government has announced that it\\'s giving weapons\\nHE] to Azerbadjan since Armenia started to attack Azerbadjan\\nHE] it self, not the Karabag province. So why search a plane for weapons\\nHE] since it\\'s content is announced to be weapons?\\n\\nIt\\'s too bad you would want Turkey to start a war with Armenia.\\n',\n", + " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 14\\n\\nMr. Freeman:\\n\\nPlease find something more constructive to do with your time rather\\nthan engaging in fantasy..... Not that I have a particular affinty\\nto Arafat or anything.\\n\\nJohn\\n\\n\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Rejetting carbs..\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nDistribution: na\\nLines: 53\\n\\nMark Kromer, on the Thu, 15 Apr 1993 00:42:46 GMT wibbled:\\n: In an article rtaraz@bigwpi (Ramin Taraz) wrote:\\n\\n: >Does the \"amount of exhaust allowed to leave the engine through the\\n: >exhaust pipe\" make that much of a difference? the amount of air/fuel\\n: >mixture that a cylender sucks in (tries to suck in) depends on the\\n: >speed of the piston when it goes down. \\n\\n: ...and the pressure in the cylinder at the end of the exhaust stroke.\\n\\n: With a poor exhaust system, this pressure may be above atmospheric.\\n: With a pipe that scavenges well this may be substantially below\\n: atmospheric. This effect will vary with rpm depending on the tune of\\n: the pipe; some pipes combined with large valve overlap can actually\\n: reverse the intake flow and blow mixture out of the carb when outside\\n: the pipes effective rev range.\\n\\n: >Now, my question is which one provides more resistence as far as the\\n: >engine is conserned:\\n: >) resistance that the exhaust provides \\n: >) or the resistance that results from the bike trying to push itself and\\n: > the rider\\n\\n: Two completely different things. The state of the pipe determines how\\n: much power the motor can make. The load of the bike determines how\\n: much power the motor needs to make.\\n\\n: --\\n: - )V(ark)< FZR400 Pilot / ZX900 Payload / RD400 Mechanic \\n: You\\'re welcome.\\n\\nWell I, for one, am so very glad that I have fuel injection! All those \\nneedles and orifices and venturi and pressures... It\\'s worse than school human\\nbiology reproduction lessons (sex). Always made me feel a bit queasy.\\n--\\n\\nNick (the Simple Minded Biker) DoD 1069 Concise Oxford Tube Rider\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", + " \"From: ralph.buttigieg@f635.n713.z3.fido.zeta.org.au (Ralph Buttigieg)\\nSubject: Why not give $1 billion to first year-lo\\nOrganization: Fidonet. Gate admin is fido@socs.uts.edu.au\\nLines: 34\\n\\nOriginal to: keithley@apple.com\\nG'day keithley@apple.com\\n\\n21 Apr 93 22:25, keithley@apple.com wrote to All:\\n\\n kc> keithley@apple.com (Craig Keithley), via Kralizec 3:713/602\\n\\n\\n kc> But back to the contest goals, there was a recent article in AW&ST\\nabout a\\n kc> low cost (it's all relative...) manned return to the moon. A General\\n kc> Dynamics scheme involving a Titan IV & Shuttle to lift a Centaur upper\\n kc> stage, LEV, and crew capsule. The mission consists of delivering two\\n kc> unmanned payloads to the lunar surface, followed by a manned mission.\\n kc> Total cost: US was $10-$13 billion. Joint ESA(?)/NASA project was\\n$6-$9\\n kc> billion for the US share.\\n\\n kc> moon for a year. Hmmm. Not really practical. Anyone got a\\n kc> cheaper/better way of delivering 15-20 tonnes to the lunar surface\\nwithin\\n kc> the decade? Anyone have a more precise guess about how much a year's\\n kc> supply of consumables and equipment would weigh?\\n\\nWhy not modify the GD plan into Zurbrin's Compact Moon Direct scheme? let\\none of those early flight carry an O2 plant and make your own.\\n\\nta\\n\\nRalph\\n\\n--- GoldED 2.41+\\n * Origin: VULCAN'S WORLD - Sydney Australia (02) 635-1204 3:713/6\\n(3:713/635)\\n\",\n", + " \"From: naren@tekig1.PEN.TEK.COM (Naren Bala)\\nSubject: Re: Slavery (was Re: Why is sex only allowed in marriage: ...)\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 21\\n\\nIn article sandvik@newton.apple.com (Kent Sandvik) writes:\\n>Looking at historical evidence such 'perfect utopian' islamic states\\n>didn't survive. I agree, people are people, and even if you might\\n>start an Islamic revolution and create this perfect state, it takes \\n>some time and the internal corruption will destroy the ground rules --\\n>again.\\n>\\n\\nNothing is perfect. Nothing is perpetual. i.e. even if it is perfect,\\nit isn't going to stay that way forever. \\n\\nPerpetual machines cannot exist. I thought that there\\nwere some laws in mechanics or thermodynamics stating that.\\n\\nNot an atheist\\nBN\\n--\\n---------------------------------------------------------------------\\n- Naren Bala (Software Evaluation Engineer)\\n- HOME: (503) 627-0380\\t\\tWORK: (503) 627-2742\\n- All standard disclaimers apply. \\n\",\n", + " 'From: g9134255@wampyr.cc.uow.edu.au (Coronado Emmanuel Abad)\\nSubject: Fonts in POV??\\nOrganization: University of Wollongong, NSW, Australia.\\nLines: 11\\nNNTP-Posting-Host: wampyr.cc.uow.edu.au\\nKeywords: fonts, raytrace\\n\\n\\n\\n\\tI have seen several ray-traced scenes (from MTV or was it \\nRayShade??) with stroked fonts appearing as objects in the image.\\nThe fonts/chars had color, depth and even textures associated with\\nthem. Now I was wondering, is it possible to do the same in POV??\\n\\n\\nThanks,\\n\\nNoel\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Space Research Spin Off\\nOrganization: Express Access Online Communications USA\\nLines: 30\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article henry@zoo.toronto.edu (Henry Spencer) writes:\\n>In article <1ppm7j$ip@access.digex.net> prb@access.digex.com (Pat) writes:\\n|>I thought the area rule was pioneered by Boeing.\\n|>NASA guys developed the rule, but no-one knew if it worked\\n|>until Boeing built the hardware 727 and maybe the FB-111?????\\n|\\n|Nope. The decisive triumph of the area rule was when Convair's YF-102 --\\n|contractually commmitted to being a Mach 1.5 fighter and actually found\\n|to be incapable of going supersonic in level flight -- was turned into\\n|the area-ruled YF-102A which met the specs. This was well before either\\n|the 727 or the FB-111; the 102 flew in late 1953, and Convair spent most\\n|of the first half of 1954 figuring out what went wrong and most of the\\n|second half building the first 102A.\\n|-- \\n|All work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n| - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\\n\\n\\nGood thing i stuck in a couple of question marks up there.\\n\\nI seem to recall, somebody built or at least proposed a wasp waisetd\\nPassenger civil transport. I thought it was a 727, but maybe it\\nwas a DC- 8,9??? Sure it had a funny passenger compartment,\\nbut on the other hand it seemed to save fuel.\\n\\nI thought Area rules applied even before transonic speeds, just\\nnot as badly.\\n\\npat\\n\",\n", + " 'From: jgreen@amber (Joe Green)\\nSubject: Re: Weitek P9000 ?\\nOrganization: Harris Computer Systems Division\\nLines: 14\\nDistribution: world\\nNNTP-Posting-Host: amber.ssd.csd.harris.com\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nRobert J.C. Kyanko (rob@rjck.UUCP) wrote:\\n> abraxis@iastate.edu writes in article :\\n> > Anyone know about the Weitek P9000 graphics chip?\\n> As far as the low-level stuff goes, it looks pretty nice. It\\'s got this\\n> quadrilateral fill command that requires just the four points.\\n\\nDo you have Weitek\\'s address/phone number? I\\'d like to get some information\\nabout this chip.\\n\\n--\\nJoe Green\\t\\t\\t\\tHarris Corporation\\njgreen@csd.harris.com\\t\\t\\tComputer Systems Division\\n\"The only thing that really scares me is a person with no sense of humor.\"\\n\\t\\t\\t\\t\\t\\t-- Jonathan Winters\\n',\n", + " 'From: yohan@citation.ksu.ksu.edu (Jonathan W Newton)\\nSubject: Re: Societally acceptable behavior\\nOrganization: Kansas State University\\nLines: 35\\nDistribution: world\\nNNTP-Posting-Host: citation.ksu.ksu.edu\\n\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n>Merely a question for the basis of morality\\n>\\n>Moral/Ethical behavior = _Societally_ _acceptable_ _behavior_.\\n\\nI disagree with these. What society thinks should be irrelevant. What the\\nindividual decides is all that is important.\\n\\n>\\n>1)Who is society\\n\\nI think this is fairly obvious\\n\\n>\\n>2)How do \"they\" define what is acceptable?\\n\\nGenerally by what they \"feel\" is right, which is the most idiotic policy I can\\nthink of.\\n\\n>\\n>3)How do we keep from a \"whatever is legal is what is \"moral\" \"position?\\n\\nBy thinking for ourselves.\\n\\n>\\n>MAC\\n>--\\n>****************************************************************\\n> Michael A. Cobb\\n> \"...and I won\\'t raise taxes on the middle University of Illinois\\n> class to pay for my programs.\" Champaign-Urbana\\n> -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n> \\n>With new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", + " 'From: bleve@hoggle2.uucp (Bennett Lee Leve)\\nSubject: Re: Choking Ninja Problem\\nIn-Reply-To: starr@kuhub.cc.ukans.edu\\'s message of 13 Apr 93 15:34:41 CST\\nOrganization: Organized?? Surely you jest!\\nLines: 22\\n\\nIn article <1993Apr13.153441.49118@kuhub.cc.ukans.edu> starr@kuhub.cc.ukans.edu writes:\\n\\n\\n > I need help with my \\'85 ZX900A, I put Supertrapp slip-on\\'s on it and\\n > had the carbs re-jetted to match a set of K&N filters that replaced\\n > the stock airbox. Now I have a huge flat spot in the carburation at\\n > about 5 thousand RPM in most any gear. This is especially frustrating\\n > on the highway, the bike likes to cruise at about 80mph which happens\\n > to be 5,0000 RPM in sixth gear. I\\'ve had it \"tuned\" and this doesn\\'t\\n > seem to help. I am thinking about new carbs or the injection system\\n > from a GPz 1100. Does anyone have any suggestions for a fix besides\\n > restoring it to stock?\\n > Starr@kuhub.ukans.cc.edu\\t the brain dead.\" -Ted Nugent\\n\\nIt sound like to me that your carbs are not jetted properly.\\nIf you did it yourself, take it to a shop and get it done right.\\nIf a shop did it, get your money back, and go to another shop.\\n-- \\n-----------------------------------------------------------------------\\n|Bennett Leve 84 V-65 Sabre | I\\'m drowning, throw |\\n|Orlando, FL 73 XL 250 | me a bagel. |\\n|hoggle!hoggle2!bleve@peora.sdc.ccur.com | |\\n',\n", + " \"From: steel@hal.gnu.ai.mit.edu (Nick Steel)\\nSubject: Re: F*CK OFF TSIEL, logic of Mr. Emmanuel Huna\\nKeywords: Conspiracy, Nutcase\\nOrganization: /etc/organization\\nLines: 24\\nNNTP-Posting-Host: hal.ai.mit.edu\\n\\nIn article <4806@bimacs.BITNET> huna@bimacs.BITNET (Emmanuel Huna) writes:\\n>\\n> Mr. Steel, from what I've read Tsiel is not a racist, but you\\n>are an anti semitic. And stop shouting, you fanatic,\\n\\nMr. Emmanuel Huna,\\n\\nGive logic a break will you. Gosh, what kind of intelligence do\\nyou have, if any?\\n\\n\\nTesiel says : Be a man not an arab for once.\\nI say : Fuck of Tsiel (for saying the above).\\n\\nI get tagged as a racist, and he gets praised?\\nWell Mr. logicless, Tsiel has apologized for his racist remark.\\nI praise him for that courage, but I tell Take a hike to whoever calls me\\na racist without a proof because I am not.\\n\\nYou have proven to us that your brain has been malfunctioning\\nand you are just a moron that's loose on the net.\\n\\nAbout being fanatic: I am proud to be a fanatic about my rights and\\nfreedom, you idiot.\\n\",\n", + " \"From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)\\nSubject: header paint\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: relva.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 8\\n\\nit seems the 200 miles of trailering in the rain has rusted my bike's headers.\\nthe metal underneath is solid, but i need to sand off the rust coating and\\nrepaint the pipes black. any recommendations for paint and application\\nof said paint?\\n\\nthanks!\\n\\naxel\\n\",\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race\\nOrganization: U of Toronto Zoology\\nLines: 11\\n\\nIn article 18084TM@msu.edu (Tom) writes:\\n>On the other hand, if Apollo cost ~25billion, for a few days or weeks\\n>in space, in 1970 dollars, then won't the reward have to be a lot more\\n>than only 1 billion to get any takers?\\n\\nApollo was done the hard way, in a big hurry, from a very limited\\ntechnology base... and on government contracts. Just doing it privately,\\nrather than as a government project, cuts costs by a factor of several.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: sigma@rahul.net (Kevin Martin)\\nSubject: Re: XV under MS-DOS ?!?\\nNntp-Posting-Host: bolero\\nOrganization: a2i network\\nLines: 11\\n\\nIn <1993Apr20.083731.260@eicn.etna.ch> NO E-MAIL ADDRESS@eicn.etna.ch writes:\\n>Do somenone know the solution to run XV ??? any help would be apprecied..\\n\\nI would guess that it requires X, almost certainly DV/X, which commonly\\nuses the GO32 (DJGPP) setup for its programs. If you don\\'t have DV/X\\nrunning, you can\\'t get anything which requires interfacing with X.\\n\\n-- \\nKevin Martin\\nsigma@rahul.net\\n\"I gotta get me another hat.\"\\n',\n", + " 'From: mcelwre@cnsvax.uwec.edu\\nSubject: LARSONIAN Astronomy and Physics\\nOrganization: University of Wisconsin Eau Claire\\nLines: 552\\n\\n\\n\\n LARSONIAN Astronomy and Physics\\n\\n Orthodox physicists, astronomers, and astrophysicists \\n CLAIM to be looking for a \"Unified Field Theory\" in which all \\n of the forces of the universe can be explained with a single \\n set of laws or equations. But they have been systematically \\n IGNORING or SUPPRESSING an excellent one for 30 years! \\n\\n The late Physicist Dewey B. Larson\\'s comprehensive \\n GENERAL UNIFIED Theory of the physical universe, which he \\n calls the \"Reciprocal System\", is built on two fundamental \\n postulates about the physical and mathematical natures of \\n space and time: \\n \\n (1) \"The physical universe is composed ENTIRELY of ONE \\n component, MOTION, existing in THREE dimensions, in DISCRETE \\n UNITS, and in two RECIPROCAL forms, SPACE and TIME.\" \\n \\n (2) \"The physical universe conforms to the relations of \\n ORDINARY COMMUTATIVE mathematics, its magnitudes are \\n ABSOLUTE, and its geometry is EUCLIDEAN.\" \\n \\n From these two postulates, Larson developed a COMPLETE \\n Theoretical Universe, using various combinations of \\n translational, vibrational, rotational, and vibrational-\\n rotational MOTIONS, the concepts of IN-ward and OUT-ward \\n SCALAR MOTIONS, and speeds in relation to the Speed of Light \\n (which Larson called \"UNIT VELOCITY\" and \"THE NATURAL \\n DATUM\"). \\n \\n At each step in the development, Larson was able to \\n MATCH objects in his Theoretical Universe with objects in the \\n REAL physical universe, (photons, sub-atomic particles \\n [INCOMPLETE ATOMS], charges, atoms, molecules, globular star \\n clusters, galaxies, binary star systems, solar systems, white \\n dwarf stars, pulsars, quasars, ETC.), even objects NOT YET \\n DISCOVERED THEN (such as EXPLODING GALAXIES, and GAMMA-RAY \\n BURSTS). \\n \\n And applying his Theory to his NEW model of the atom, \\n Larson was able to precisely and accurately CALCULATE inter-\\n atomic distances in crystals and molecules, compressibility \\n and thermal expansion of solids, and other properties of \\n matter. \\n\\n All of this is described in good detail, with-OUT fancy \\n complex mathematics, in his books. \\n \\n\\n\\n BOOKS of Dewey B. Larson\\n \\n The following is a complete list of the late Physicist \\n Dewey B. Larson\\'s books about his comprehensive GENERAL \\n UNIFIED Theory of the physical universe. Some of the early \\n books are out of print now, but still available through \\n inter-library loan. \\n \\n \"The Structure of the Physical Universe\" (1959) \\n \\n \"The Case AGAINST the Nuclear Atom\" (1963)\\n \\n \"Beyond Newton\" (1964) \\n \\n \"New Light on Space and Time\" (1965) \\n \\n \"Quasars and Pulsars\" (1971) \\n \\n \"NOTHING BUT MOTION\" (1979) \\n [A $9.50 SUBSTITUTE for the $8.3 BILLION \"Super \\n Collider\".] \\n [The last four chapters EXPLAIN chemical bonding.]\\n\\n \"The Neglected Facts of Science\" (1982) \\n \\n \"THE UNIVERSE OF MOTION\" (1984)\\n [FINAL SOLUTIONS to most ALL astrophysical\\n mysteries.] \\n \\n \"BASIC PROPERTIES OF MATTER\" (1988)\\n\\n All but the last of these books were published by North \\n Pacific Publishers, P.O. Box 13255, Portland, OR 97213, and \\n should be available via inter-library loan if your local \\n university or public library doesn\\'t have each of them. \\n\\n Several of them, INCLUDING the last one, are available \\n from: The International Society of Unified Science (ISUS), \\n 1680 E. Atkin Ave., Salt Lake City, Utah 84106. This is the \\n organization that was started to promote Larson\\'s Theory. \\n They have other related publications, including the quarterly \\n journal \"RECIPROCITY\". \\n\\n \\n\\n Physicist Dewey B. Larson\\'s Background\\n \\n Physicist Dewey B. Larson was a retired Engineer \\n (Chemical or Electrical). He was about 91 years old when he \\n died in May 1989. He had a Bachelor of Science Degree in \\n Engineering Science from Oregon State University. He \\n developed his comprehensive GENERAL UNIFIED Theory of the \\n physical universe while trying to develop a way to COMPUTE \\n chemical properties based only on the elements used. \\n \\n Larson\\'s lack of a fancy \"PH.D.\" degree might be one \\n reason that orthodox physicists are ignoring him, but it is \\n NOT A VALID REASON. Sometimes it takes a relative outsider \\n to CLEARLY SEE THE FOREST THROUGH THE TREES. At the same \\n time, it is clear from his books that he also knew ORTHODOX \\n physics and astronomy as well as ANY physicist or astronomer, \\n well enough to point out all their CONTRADICTIONS, AD HOC \\n ASSUMPTIONS, PRINCIPLES OF IMPOTENCE, IN-CONSISTENCIES, ETC.. \\n \\n Larson did NOT have the funds, etc. to experimentally \\n test his Theory. And it was NOT necessary for him to do so. \\n He simply compared the various parts of his Theory with OTHER \\n researchers\\' experimental and observational data. And in \\n many cases, HIS explanation FIT BETTER. \\n \\n A SELF-CONSISTENT Theory is MUCH MORE than the ORTHODOX \\n physicists and astronomers have! They CLAIM to be looking \\n for a \"unified field theory\" that works, but have been \\n IGNORING one for over 30 years now! \\n \\n \"Modern physics\" does NOT explain the physical universe \\n so well. Some parts of some of Larson\\'s books are FULL of \\n quotations of leading orthodox physicists and astronomers who \\n agree. And remember that \"epicycles\", \"crystal spheres\", \\n \"geocentricity\", \"flat earth theory\", etc., ALSO once SEEMED \\n to explain it well, but were later proved CONCEPTUALLY WRONG. \\n \\n \\n Prof. Frank H. Meyer, Professor Emeritus of UW-Superior, \\n was/is a STRONG PROPONENT of Larson\\'s Theory, and was (or \\n still is) President of Larson\\'s organization, \"THE \\n INTERNATIONAL SOCIETY OF UNIFIED SCIENCE\", and Editor of \\n their quarterly Journal \"RECIPROCITY\". He moved to \\n Minneapolis after retiring. \\n \\n\\n\\n \"Super Collider\" BOONDOGGLE!\\n \\n I am AGAINST contruction of the \"Superconducting Super \\n Collider\", in Texas or anywhere else. It would be a GROSS \\n WASTE of money, and contribute almost NOTHING of \"scientific\" \\n value. \\n \\n Most physicists don\\'t realize it, but, according to the \\n comprehensive GENERAL UNIFIED Theory of the late Physicist \\n Dewey B. Larson, as described in his books, the strange GOOFY \\n particles (\"mesons\", \"hyperons\", ALLEGED \"quarks\", etc.) \\n which they are finding in EXISTING colliders (Fermi Lab, \\n Cern, etc.) are really just ATOMS of ANTI-MATTER, which are \\n CREATED by the high-energy colliding beams, and which quickly \\n disintegrate like cosmic rays because they are incompatible \\n with their environment. \\n \\n A larger and more expensive collider will ONLY create a \\n few more elements of anti-matter that the physicists have not \\n seen there before, and the physicists will be EVEN MORE \\n CONFUSED THAN THEY ARE NOW! \\n \\n Are a few more types of anti-matter atoms worth the $8.3 \\n BILLION cost?!! Don\\'t we have much more important uses for \\n this WASTED money?! \\n \\n \\n Another thing to consider is that the primary proposed \\n location in Texas has a serious and growing problem with some \\n kind of \"fire ants\" eating the insulation off underground \\n cables. How much POISONING of the ground and ground water \\n with insecticides will be required to keep the ants out of \\n the \"Supercollider\"?! \\n \\n \\n Naming the \"Super Collider\" after Ronald Reagon, as \\n proposed, is TOTALLY ABSURD! If it is built, it should be \\n named after a leading particle PHYSICIST. \\n \\n\\n\\n LARSONIAN Anti-Matter\\n \\n In Larson\\'s comprehensive GENERAL UNIFIED Theory of the \\n physical universe, anti-matter is NOT a simple case of \\n opposite charges of the same types of particles. It has more \\n to do with the rates of vibrations and rotations of the \\n photons of which they are made, in relation to the \\n vibrational and rotational equivalents of the speed of light, \\n which Larson calls \"Unit Velocity\" and the \"Natural Datum\". \\n \\n In Larson\\'s Theory, a positron is actually a particle of \\n MATTER, NOT anti-matter. When a positron and electron meet, \\n the rotational vibrations (charges) and rotations of their \\n respective photons (of which they are made) neutralize each \\n other. \\n \\n In Larson\\'s Theory, the ANTI-MATTER half of the physical \\n universe has THREE dimensions of TIME, and ONLY ONE dimension \\n of space, and exists in a RECIPROCAL RELATIONSHIP to our \\n MATERIAL half. \\n \\n\\n\\n LARSONIAN Relativity\\n \\n The perihelion point in the orbit of the planet Mercury \\n has been observed and precisely measured to ADVANCE at the \\n rate of 574 seconds of arc per century. 531 seconds of this \\n advance are attributed via calculations to gravitational \\n perturbations from the other planets (Venus, Earth, Jupiter, \\n etc.). The remaining 43 seconds of arc are being used to \\n help \"prove\" Einstein\\'s \"General Theory of Relativity\". \\n \\n But the late Physicist Dewey B. Larson achieved results \\n CLOSER to the 43 seconds than \"General Relativity\" can, by \\n INSTEAD using \"SPECIAL Relativity\". In one or more of his \\n books, he applied the LORENTZ TRANSFORMATION on the HIGH \\n ORBITAL SPEED of Mercury. \\n \\n Larson TOTALLY REJECTED \"General Relativity\" as another \\n MATHEMATICAL FANTASY. He also REJECTED most of \"Special \\n Relativity\", including the parts about \"mass increases\" near \\n the speed of light, and the use of the Lorentz Transform on \\n doppler shifts, (Those quasars with red-shifts greater than \\n 1.000 REALLY ARE MOVING FASTER THAN THE SPEED OF LIGHT, \\n although most of that motion is away from us IN TIME.). \\n \\n In Larson\\'s comprehensive GENERAL UNIFIED Theory of the \\n physical universe, there are THREE dimensions of time instead \\n of only one. But two of those dimensions can NOT be measured \\n from our material half of the physical universe. The one \\n dimension that we CAN measure is the CLOCK time. At low \\n relative speeds, the values of the other two dimensions are \\n NEGLIGIBLE; but at high speeds, they become significant, and \\n the Lorentz Transformation must be used as a FUDGE FACTOR. \\n [Larson often used the term \"COORDINATE TIME\" when writing \\n about this.] \\n \\n \\n In regard to \"mass increases\", it has been PROVEN in \\n atomic accelerators that acceleration drops toward zero near \\n the speed of light. But the formula for acceleration is \\n ACCELERATION = FORCE / MASS, (a = F/m). Orthodox physicists \\n are IGNORING the THIRD FACTOR: FORCE. In Larson\\'s Theory, \\n mass STAYS CONSTANT and FORCE drops toward zero. FORCE is \\n actually a MOTION, or COMBINATIONS of MOTIONS, or RELATIONS \\n BETWEEN MOTIONS, including INward and OUTward SCALAR MOTIONS. \\n The expansion of the universe, for example, is an OUTward \\n SCALAR motion inherent in the universe and NOT a result of \\n the so-called \"Big Bang\" (which is yet another MATHEMATICAL \\n FANTASY). \\n \\n \\n \\n THE UNIVERSE OF MOTION\\n\\n I wish to recommend to EVERYONE the book \"THE UNIVERSE \\n OF MOTION\", by Dewey B. Larson, 1984, North Pacific \\n Publishers, (P.O. Box 13255, Portland, Oregon 97213), 456 \\n pages, indexed, hardcover. \\n \\n It contains the Astrophysical portions of a GENERAL \\n UNIFIED Theory of the physical universe developed by that \\n author, an UNrecognized GENIUS, more than thirty years ago. \\n \\n It contains FINAL SOLUTIONS to most ALL Astrophysical \\n mysteries, including the FORMATION of galaxies, binary and \\n multiple star systems, and solar systems, the TRUE ORIGIN of \\n the \"3-degree\" background radiation, cosmic rays, and gamma-\\n ray bursts, and the TRUE NATURE of quasars, pulsars, white \\n dwarfs, exploding galaxies, etc.. \\n \\n It contains what astronomers and astrophysicists are ALL \\n looking for, if they are ready to seriously consider it with \\n OPEN MINDS! \\n \\n The following is an example of his Theory\\'s success: \\n In his first book in 1959, \"THE STRUCTURE OF THE PHYSICAL \\n UNIVERSE\", Larson predicted the existence of EXPLODING \\n GALAXIES, several years BEFORE astronomers started finding \\n them. They are a NECESSARY CONSEQUENCE of Larson\\'s \\n comprehensive Theory. And when QUASARS were discovered, he \\n had an immediate related explanation for them also. \\n \\n\\n \\n GAMMA-RAY BURSTS\\n\\n Astro-physicists and astronomers are still scratching \\n their heads about the mysterious GAMMA-RAY BURSTS. They were \\n originally thought to originate from \"neutron stars\" in the \\n disc of our galaxy. But the new Gamma Ray Telescope now in \\n Earth orbit has been detecting them in all directions \\n uniformly, and their source locations in space do NOT \\n correspond to any known objects, (except for a few cases of \\n directional coincidence). \\n \\n Gamma-ray bursts are a NECESSARY CONSEQUENCE of the \\n GENERAL UNIFIED Theory of the physical universe developed by \\n the late Physicist Dewey B. Larson. According to page 386 of \\n his book \"THE UNIVERSE OF MOTION\", published in 1984, the \\n gamma-ray bursts are coming from SUPERNOVA EXPLOSIONS in the \\n ANTI-MATTER HALF of the physical universe, which Larson calls \\n the \"Cosmic Sector\". Because of the relationship between the \\n anti-matter and material halves of the physical universe, and \\n the way they are connected together, the gamma-ray bursts can \\n pop into our material half anywhere in space, seemingly at \\n random. (This is WHY the source locations of the bursts do \\n not correspond with known objects, and come from all \\n directions uniformly.) \\n \\n I wonder how close to us in space a source location \\n would have to be for a gamma-ray burst to kill all or most \\n life on Earth! There would be NO WAY to predict one, NOR to \\n stop it! \\n \\n Perhaps some of the MASS EXTINCTIONS of the past, which \\n are now being blamed on impacts of comets and asteroids, were \\n actually caused by nearby GAMMA-RAY BURSTS! \\n \\n\\n\\n LARSONIAN Binary Star Formation\\n \\n About half of all the stars in the galaxy in the \\n vicinity of the sun are binary or double. But orthodox \\n astronomers and astrophysicists still have no satisfactory \\n theory about how they form or why there are so many of them. \\n \\n But binary star systems are actually a LIKELY \\n CONSEQUENCE of the comprehensive GENERAL UNIFIED Theory of \\n the physical universe developed by the late Physicist Dewey \\n B. Larson. \\n \\n I will try to summarize Larsons explanation, which is \\n detailed in Chapter 7 of his book \"THE UNIVERSE OF MOTION\" \\n and in some of his other books. \\n \\n First of all, according to Larson, stars do NOT generate \\n energy by \"fusion\". A small fraction comes from slow \\n gravitational collapse. The rest results from the COMPLETE \\n ANNIHILATION of HEAVY elements (heavier than IRON). Each \\n element has a DESTRUCTIVE TEMPERATURE LIMIT. The heavier the \\n element is, the lower is this limit. A star\\'s internal \\n temperature increases as it grows in mass via accretion and \\n absorption of the decay products of cosmic rays, gradually \\n reaching the destructive temperature limit of lighter and \\n lighter elements. \\n \\n When the internal temperature of the star reaches the \\n destructive temperature limit of IRON, there is a Type I \\n SUPERNOVA EXPLOSION! This is because there is SO MUCH iron \\n present; and that is related to the structure of iron atoms \\n and the atom building process, which Larson explains in some \\n of his books [better than I can]. \\n \\n When the star explodes, the lighter material on the \\n outer portion of the star is blown outward in space at less \\n than the speed of light. The heavier material in the center \\n portion of the star was already bouncing around at close to \\n the speed of light, because of the high temperature. The \\n explosion pushes that material OVER the speed of light, and \\n it expands OUTWARD IN TIME, which is equivalent to INWARD IN \\n SPACE, and it often actually DISAPPEARS for a while. \\n \\n Over long periods of time, both masses start to fall \\n back gravitationally. The material that had been blown \\n outward in space now starts to form a RED GIANT star. The \\n material that had been blown OUTWARD IN TIME starts to form a \\n WHITE DWARF star. BOTH stars then start moving back toward \\n the \"MAIN SEQUENCE\" from opposite directions on the H-R \\n Diagram. \\n \\n The chances of the two masses falling back into the \\n exact same location in space, making a single lone star \\n again, are near zero. They will instead form a BINARY \\n system, orbiting each other. \\n \\n According to Larson, a white dwarf star has an INVERSE \\n DENSITY GRADIENT (is densest at its SURFACE), because the \\n material at its center is most widely dispersed (blown \\n outward) in time. This ELIMINATES the need to resort to \\n MATHEMATICAL FANTASIES about \"degenerate matter\", \"neutron \\n stars\", \"black holes\", etc.. \\n \\n\\n\\n LARSONIAN Solar System Formation\\n\\n If the mass of the heavy material at the center of the \\n exploding star is relatively SMALL, then, instead of a single \\n white dwarf star, there will be SEVERAL \"mini\" white dwarf \\n stars (revolving around the red giant star, but probably \\n still too far away in three-dimensional TIME to be affected \\n by its heat, etc.). These will become PLANETS! \\n \\n In Chapter 7 of THE UNIVERSE OF MOTION, Larson used all \\n this information, and other principles of his comprehensive \\n GENERAL UNIFIED Theory of the physical universe, to derive \\n his own version of Bode\\'s Law. \\n \\n\\n\\n \"Black Hole\" FANTASY!\\n\\n I heard that physicist Stephen W. Hawking recently \\n completed a theoretical mathematical analysis of TWO \"black \\n holes\" merging together into a SINGLE \"black hole\", and \\n concluded that the new \"black hole\" would have MORE MASS than \\n the sum of the two original \"black holes\". \\n \\n Such a result should be recognized by EVERYone as a RED \\n FLAG, causing widespread DOUBT about the whole IDEA of \"black \\n holes\", etc.! \\n \\n After reading Physicist Dewey B. Larson\\'s books about \\n his comprehensive GENERAL UNIFIED Theory of the physical \\n universe, especially his book \"THE UNIVERSE OF MOTION\", it is \\n clear to me that \"black holes\" are NOTHING more than \\n MATHEMATICAL FANTASIES! The strange object at Cygnus X-1 is \\n just an unusually massive WHITE DWARF STAR, NOT the \"black \\n hole\" that orthodox astronomers and physicists so badly want \\n to \"prove\" their theory. \\n \\n \\n By the way, I do NOT understand why so much publicity is \\n being given to physicist Stephen Hawking. The physicists and \\n astronomers seem to be acting as if Hawking\\'s severe physical \\n problem somehow makes him \"wiser\". It does NOT! \\n \\n I wish the same attention had been given to Physicist \\n Dewey B. Larson while he was still alive. Widespread \\n publicity and attention should NOW be given to Larson\\'s \\n Theory, books, and organization (The International Society of \\n Unified Science). \\n \\n \\n \\n ELECTRO-MAGNETIC PROPULSION\\n\\n I heard of that concept many years ago, in connection \\n with UFO\\'s and unorthodox inventors, but I never was able to \\n find out how or why they work, or how they are constructed. \\n \\n I found a possible clue about why they might work on \\n pages 112-113 of the book \"BASIC PROPERTIES OF MATTER\", by \\n the late Physicist Dewey B. Larson, which describes part of \\n Larson\\'s comprehensive GENERAL UNIFIED Theory of the physical \\n universe. I quote one paragraph: \\n \\n \"As indicated in the preceding chapter, the development \\n of the theory of the universe of motion arrives at a totally \\n different concept of the nature of electrical resistance. \\n The electrons, we find, are derived from the environment. It \\n was brought out in Volume I [Larson\\'s book \"NOTHING BUT \\n MOTION\"] that there are physical processes in operation which \\n produce electrons in substantial quantities, and that, \\n although the motions that constitute these electrons are, in \\n many cases, absorbed by atomic structures, the opportunities \\n for utilizing this type of motion in such structures are \\n limited. It follows that there is always a large excess of \\n free electrons in the material sector [material half] of the \\n universe, most of which are uncharged. In this uncharged \\n state the electrons cannot move with respect to extension \\n space, because they are inherently rotating units of space, \\n and the relation of space to space is not motion. In open \\n space, therefore, each uncharged electron remains permanently \\n in the same location with respect to the natural reference \\n system, in the manner of a photon. In the context of the \\n stationary spatial reference system the uncharged electron, \\n like the photon, is carried outward at the speed of light by \\n the progression of the natural reference system. All \\n material aggregates are thus exposed to a flux of electrons \\n similar to the continual bombardment by photons of radiation. \\n Meanwhile there are other processes, to be discussed later, \\n whereby electrons are returned to the environment. The \\n electron population of a material aggregate such as the earth \\n therefore stabilizes at an equilibrium level.\" \\n \\n Note that in Larson\\'s Theory, UNcharged electrons are \\n also massLESS, and are basically photons of light of a \\n particular frequency (above the \"unit\" frequency) spinning \\n around one axis at a particular rate (below the \"unit\" rate). \\n (\"Unit velocity\" is the speed of light, and there are \\n vibrational and rotational equivalents to the speed of light, \\n according to Larson\\'s Theory.) [I might have the \"above\" and \\n \"below\" labels mixed up.] \\n \\n Larson is saying that outer space is filled with mass-\\n LESS UN-charged electrons flying around at the speed of \\n light! \\n \\n If this is true, then the ELECTRO-MAGNETIC PROPULSION \\n fields of spacecraft might be able to interact with these \\n electrons, or other particles in space, perhaps GIVING them a \\n charge (and mass) and shooting them toward the rear to \\n achieve propulsion. (In Larson\\'s Theory, an electrical charge \\n is a one-dimensional rotational vibration of a particular \\n frequency (above the \"unit\" frequency) superimposed on the \\n rotation of the particle.) \\n \\n The paragraph quoted above might also give a clue to \\n confused meteorologists about how and why lightning is \\n generated in clouds. \\n\\n\\n\\n SUPPRESSION of LARSONIAN Physics\\n\\n The comprehensive GENERAL UNIFIED Theory of the physical \\n universe developed by the late Physicist Dewey B. Larson has \\n been available for more than 30 YEARS, published in 1959 in \\n his first book \"THE STRUCTURE OF THE PHYSICAL UNIVERSE\". \\n \\n It is TOTALLY UN-SCIENTIFIC for Hawking, Wheeler, Sagan, \\n and the other SACRED PRIESTS of the RELIGION they call \\n \"science\" (or \"physics\", or \"astronomy\", etc.), as well as \\n the \"scientific\" literature and the \"education\" systems, to \\n TOTALLY IGNORE Larson\\'s Theory has they have. \\n \\n Larson\\'s Theory has excellent explanations for many \\n things now puzzling orthodox physicists and astronomers, such \\n as gamma-ray bursts and the nature of quasars. \\n \\n Larson\\'s Theory deserves to be HONESTLY and OPENLY \\n discussed in the physics, chemistry, and astronomy journals, \\n in the U.S. and elsewhere. And at least the basic principles \\n of Larson\\'s Theory should be included in all related courses \\n at UW-EC, UW-Madison, Cambridge, Cornell University, and \\n elsewhere, so that students are not kept in the dark about a \\n worthy alternative to the DOGMA they are being fed. \\n \\n \\n\\n For more information, answers to your questions, etc., \\n please consult my CITED SOURCES (especially Larson\\'s BOOKS). \\n\\n\\n\\n UN-altered REPRODUCTION and DISSEMINATION of this \\n IMPORTANT partial summary is ENCOURAGED. \\n\\n\\n Robert E. McElwaine\\n B.S., Physics and Astronomy, UW-EC\\n \\n\\n',\n", + " 'Subject: Technical Help Sought\\nFrom: jiu1@husc11.harvard.edu (Haibin Jiu)\\nOrganization: Harvard University Science Center\\nNntp-Posting-Host: husc11.harvard.edu\\nLines: 9\\n\\nHi! I am in immediate need for details of various graphics compression\\ntechniques. So if you know where I could obtain descriptions of algo-\\nrithms or public-domain source codes for such formats as JPEG, GIF, and\\nfractals, I would be immensely grateful if you could share the info with\\nme. This is for a project I am contemplating of doing.\\n\\nThanks in advance. Please reply via e-mail if possible.\\n\\n--hBJ\\n',\n", + " 'From: keith@hydra.unm.edu ()\\nSubject: Where can I AFFORD a Goldwing mirror?\\nOrganization: University of New Mexico, Albuquerque\\nLines: 9\\nDistribution: usa\\nNNTP-Posting-Host: hydra.unm.edu\\n\\nSearched without luck for a FAQ here. I need a left 85 Aspencade\\nmirror and Honda wants $75 for it. Now if this were another piece\\nof chrome to replace the black plastic that wings come so liberally\\nsupplied with I might be able to see that silly price, but a mirror\\nis a piece of SAFETY EQUIPMENT. The fact that Honda clearly places\\nconcern for their profits ahead of concern for my safety is enough\\nto convince me that this (my third) wing will likely be my last.\\nIn the mean time, anyboby have a non-ripoff source for a mirror?\\nkeith smith keith@hydra.unm.edu\\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 06/15 - Constants and Equations\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.constants_733694246\\nExpires: 6 May 1993 19:57:26 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 189\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/constants\\nLast-modified: $Date: 93/04/01 14:39:04 $\\n\\nCONSTANTS AND EQUATIONS FOR CALCULATIONS\\n\\n This list was originally compiled by Dale Greer. Additions would be\\n appreciated.\\n\\n Numbers in parentheses are approximations that will serve for most\\n blue-skying purposes.\\n\\n Unix systems provide the \\'units\\' program, useful in converting\\n between different systems (metric/English, etc.)\\n\\n NUMBERS\\n\\n\\t7726 m/s\\t (8000) -- Earth orbital velocity at 300 km altitude\\n\\t3075 m/s\\t (3000) -- Earth orbital velocity at 35786 km (geosync)\\n\\t6371 km\\t\\t (6400) -- Mean radius of Earth\\n\\t6378 km\\t\\t (6400) -- Equatorial radius of Earth\\n\\t1738 km\\t\\t (1700) -- Mean radius of Moon\\n\\t5.974e24 kg\\t (6e24) -- Mass of Earth\\n\\t7.348e22 kg\\t (7e22) -- Mass of Moon\\n\\t1.989e30 kg\\t (2e30) -- Mass of Sun\\n\\t3.986e14 m^3/s^2 (4e14) -- Gravitational constant times mass of Earth\\n\\t4.903e12 m^3/s^2 (5e12) -- Gravitational constant times mass of Moon\\n\\t1.327e20 m^3/s^2 (13e19) -- Gravitational constant times mass of Sun\\n\\t384401 km\\t ( 4e5) -- Mean Earth-Moon distance\\n\\t1.496e11 m\\t (15e10) -- Mean Earth-Sun distance (Astronomical Unit)\\n\\n\\t1 megaton (MT) TNT = about 4.2e15 J or the energy equivalent of\\n\\tabout .05 kg (50 gm) of matter. Ref: J.R Williams, \"The Energy Level\\n\\tof Things\", Air Force Special Weapons Center (ARDC), Kirtland Air\\n\\tForce Base, New Mexico, 1963. Also see \"The Effects of Nuclear\\n\\tWeapons\", compiled by S. Glasstone and P.J. Dolan, published by the\\n\\tUS Department of Defense (obtain from the GPO).\\n\\n EQUATIONS\\n\\n\\tWhere d is distance, v is velocity, a is acceleration, t is time.\\n\\tAdditional more specialized equations are available from:\\n\\n\\t ames.arc.nasa.gov:pub/SPACE/FAQ/MoreEquations\\n\\n\\n\\tFor constant acceleration\\n\\t d = d0 + vt + .5at^2\\n\\t v = v0 + at\\n\\t v^2 = 2ad\\n\\n\\tAcceleration on a cylinder (space colony, etc.) of radius r and\\n\\t rotation period t:\\n\\n\\t a = 4 pi**2 r / t^2\\n\\n\\tFor circular Keplerian orbits where:\\n\\t Vc\\t = velocity of a circular orbit\\n\\t Vesc = escape velocity\\n\\t M\\t = Total mass of orbiting and orbited bodies\\n\\t G\\t = Gravitational constant (defined below)\\n\\t u\\t = G * M (can be measured much more accurately than G or M)\\n\\t K\\t = -G * M / 2 / a\\n\\t r\\t = radius of orbit (measured from center of mass of system)\\n\\t V\\t = orbital velocity\\n\\t P\\t = orbital period\\n\\t a\\t = semimajor axis of orbit\\n\\n\\t Vc\\t = sqrt(M * G / r)\\n\\t Vesc = sqrt(2 * M * G / r) = sqrt(2) * Vc\\n\\t V^2 = u/a\\n\\t P\\t = 2 pi/(Sqrt(u/a^3))\\n\\t K\\t = 1/2 V**2 - G * M / r (conservation of energy)\\n\\n\\t The period of an eccentric orbit is the same as the period\\n\\t of a circular orbit with the same semi-major axis.\\n\\n\\tChange in velocity required for a plane change of angle phi in a\\n\\tcircular orbit:\\n\\n\\t delta V = 2 sqrt(GM/r) sin (phi/2)\\n\\n\\tEnergy to put mass m into a circular orbit (ignores rotational\\n\\tvelocity, which reduces the energy a bit).\\n\\n\\t GMm (1/Re - 1/2Rcirc)\\n\\t Re = radius of the earth\\n\\t Rcirc = radius of the circular orbit.\\n\\n\\tClassical rocket equation, where\\n\\t dv\\t= change in velocity\\n\\t Isp = specific impulse of engine\\n\\t Ve\\t= exhaust velocity\\n\\t x\\t= reaction mass\\n\\t m1\\t= rocket mass excluding reaction mass\\n\\t g\\t= 9.80665 m / s^2\\n\\n\\t Ve\\t= Isp * g\\n\\t dv\\t= Ve * ln((m1 + x) / m1)\\n\\t\\t= Ve * ln((final mass) / (initial mass))\\n\\n\\tRelativistic rocket equation (constant acceleration)\\n\\n\\t t (unaccelerated) = c/a * sinh(a*t/c)\\n\\t d = c**2/a * (cosh(a*t/c) - 1)\\n\\t v = c * tanh(a*t/c)\\n\\n\\tRelativistic rocket with exhaust velocity Ve and mass ratio MR:\\n\\n\\t at/c = Ve/c * ln(MR), or\\n\\n\\t t (unaccelerated) = c/a * sinh(Ve/c * ln(MR))\\n\\t d = c**2/a * (cosh(Ve/C * ln(MR)) - 1)\\n\\t v = c * tanh(Ve/C * ln(MR))\\n\\n\\tConverting from parallax to distance:\\n\\n\\t d (in parsecs) = 1 / p (in arc seconds)\\n\\t d (in astronomical units) = 206265 / p\\n\\n\\tMiscellaneous\\n\\t f=ma -- Force is mass times acceleration\\n\\t w=fd -- Work (energy) is force times distance\\n\\n\\tAtmospheric density varies as exp(-mgz/kT) where z is altitude, m is\\n\\tmolecular weight in kg of air, g is local acceleration of gravity, T\\n\\tis temperature, k is Bolztmann\\'s constant. On Earth up to 100 km,\\n\\n\\t d = d0*exp(-z*1.42e-4)\\n\\n\\twhere d is density, d0 is density at 0km, is approximately true, so\\n\\n\\t d@12km (40000 ft) = d0*.18\\n\\t d@9 km (30000 ft) = d0*.27\\n\\t d@6 km (20000 ft) = d0*.43\\n\\t d@3 km (10000 ft) = d0*.65\\n\\n\\t\\t Atmospheric scale height\\tDry lapse rate\\n\\t\\t (in km at emission level)\\t (K/km)\\n\\t\\t -------------------------\\t--------------\\n\\t Earth\\t 7.5\\t\\t\\t 9.8\\n\\t Mars\\t 11\\t\\t\\t 4.4\\n\\t Venus\\t 4.9\\t\\t\\t 10.5\\n\\t Titan\\t 18\\t\\t\\t 1.3\\n\\t Jupiter\\t 19\\t\\t\\t 2.0\\n\\t Saturn\\t 37\\t\\t\\t 0.7\\n\\t Uranus\\t 24\\t\\t\\t 0.7\\n\\t Neptune\\t 21\\t\\t\\t 0.8\\n\\t Triton\\t 8\\t\\t\\t 1\\n\\n\\tTitius-Bode Law for approximating planetary distances:\\n\\n\\t R(n) = 0.4 + 0.3 * 2^N Astronomical Units (N = -infinity for\\n\\t Mercury, 0 for Venus, 1 for Earth, etc.)\\n\\n\\t This fits fairly well except for Neptune.\\n\\n CONSTANTS\\n\\n\\t6.62618e-34 J-s (7e-34) -- Planck\\'s Constant \"h\"\\n\\t1.054589e-34 J-s (1e-34) -- Planck\\'s Constant / (2 * PI), \"h bar\"\\n\\t1.3807e-23 J/K\\t(1.4e-23) - Boltzmann\\'s Constant \"k\"\\n\\t5.6697e-8 W/m^2/K (6e-8) -- Stephan-Boltzmann Constant \"sigma\"\\n 6.673e-11 N m^2/kg^2 (7e-11) -- Newton\\'s Gravitational Constant \"G\"\\n\\t0.0029 m K\\t (3e-3) -- Wien\\'s Constant \"sigma(W)\"\\n\\t3.827e26 W\\t (4e26) -- Luminosity of Sun\\n\\t1370 W / m^2\\t (1400) -- Solar Constant (intensity at 1 AU)\\n\\t6.96e8 m\\t (7e8)\\t -- radius of Sun\\n\\t1738 km\\t\\t (2e3)\\t -- radius of Moon\\n\\t299792458 m/s\\t (3e8) -- speed of light in vacuum \"c\"\\n\\t9.46053e15 m\\t (1e16) -- light year\\n\\t206264.806 AU\\t (2e5) -- \\\\\\n\\t3.2616 light years (3)\\t -- --> parsec\\n\\t3.0856e16 m\\t (3e16) -- /\\n\\n\\nBlack Hole radius (also called Schwarzschild Radius):\\n\\n\\t2GM/c^2, where G is Newton\\'s Grav Constant, M is mass of BH,\\n\\t\\tc is speed of light\\n\\n Things to add (somebody look them up!)\\n\\tBasic rocketry numbers & equations\\n\\tAerodynamical stuff\\n\\tEnergy to put a pound into orbit or accelerate to interstellar\\n\\t velocities.\\n\\tNon-circular cases?\\n\\n\\nNEXT: FAQ #7/15 - Astronomical Mnemonics\\n',\n", + " 'From: B8HA \\nSubject: RE: Jews/Islam Dr. Frankenstien\\nLines: 99\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nSome of your article was cut off on the right margin, but I will try\\nand answer from what I can read.\\n\\nIn article kaveh@gate-koi.corp.sgi.com (Kaveh Smith ) writes:\\n>I have found Jewish people very imagentative and creative. Jewish religion was the foundation for Christianity and\\n>Islam. In other words Judaism has fathered both religions. Now Islam has turned against its father I may say.\\n>It is Ironic that after communizem threat is almost gone, religion wars are going to be on the raise.\\n>I thought the idea of believing on one God, was to Unite all man kind. How come both Jews and Islam which believe\\n>on the same God, \"the God of Ebrahim\" are killing each other? Is this like Dr. Frankenstien\\'s story?\\n>How are you going to stop this from happening? How are you going to deal with so many Muslims. Nuking them\\n>would distroy the whole world? Would God get mad, since you have killed his followers, you believe on the same\\n>God, same heaven and the same hell after all? What is the peacefull way of ending this Saga?\\n>\\nJudaism did not father Islam. We had many of the same prophets, but\\nJudaism ignores prophets later prophets including Jesus Christ (who\\nChristians and Muslims believe in) and Mohammed. The idea of believing\\nin one God should unite all peoples. However, note that Christianity\\nand Islam reflect the fact that there are people with different views\\nand the rights of non-Christians and non-Muslims are stated in each\\nreligion.\\n\\n\\n>Man kind needs religion, since it sets up the rules and the regulations which keeps the society in a healthy state.\\n>A religion is mostly a sets of rules which people have experienced and know it works for the society.\\n>The praying, keeps the sole healthy and meditates it. God does not care for man kinds pray, but man kind hopes\\n>that God will help him when he prays.\\n>Religion works mostly on the moral issues and trys to put away the materialistic things in the life. But the\\n>religious leaders need to make a living through religion? So they may corrupt it, or turn it to their own way to\\n>make their living. i.e Muslims have to pay %20 percent of their income to the Mullahs. I guess the rabie gets his\\n>cut too!\\n>\\nWe are supposed to pay 6% of our income after all necessities are\\npaid. Please note that this 6% is on a personal basis - if you are\\npoor, there is no need to pay (quite the contrary, this money most\\noften goes to the poor in each in country and to the poor Muslims\\naround the world). Also, this money is not required in the human\\nsense (i.e. a Muslim never knocks at your door to ask for money\\nand nobody makes a list at the mosque to make sure you have paid\\n(and we surely don\\'t pass money baskets around during our prayer\\nservices)).\\n\\n>Is in it that religion should be such that everybody on planet earth respects each other, be good toward each other\\n>helps one another, respect the mother nature. Is in that heaven and hell are created on earth through the acts\\n>that we take today? Is in it that within every man there is good and bad, he could choose either one, then he will\\n>see the outcome of his choice. How can we prevent man kind from going crazy over religion. How can we stop\\n>another religious killing field, under poor Gods name? What are your thoughts? Do you think man kind would\\n>to come its senses, before it is too late?\\n>\\n>\\n>P.S. on the side\\n>\\n>Do you think that Moses saw the God on mount Sina? Why would God go to top of the mountain? He created\\n>the earth, he could have been anywhere? why on top the mountain? Was it because people thought to see God\\n>you have to reach to the skies/heavens? Why God kept coming back to Middle East? Was it because they created\\n>God through their imagination? Is that why Jewish people were told by God, they were the chosen ones?\\n>\\nGod\\'s presence is certainly on Earth, but since God is everywhere,\\nGod may show signs of existence in other places as well. We can not\\nsay for sure where God has shown signs of his existence and where\\nhe has not/.\\n\\n>Profit Mohammad was married to Khadijeh. She was a Jewish. She taught him how to trade. She probably taught\\n>him about Judaism. Quran is mostly copy right of Taurah (sp? old testement). Do you think God wrote Quran?\\n>Makeh was a trade city before Islam. Do you think it was made to be the center of Islamic world because Mohammad\\n>wanted to expand his trade business? Is that why God has put his house in there?\\n>\\nThe Qur\\'an is not a copyright of the Taurah. Muslims believe that\\nthe Taurah, the Bible, and the Qur\\'an originally contained much the same\\nmessage, thus the many similiarities. However, the Taurah and the\\nBible have been \\'translated\\' into other languages which has changed\\ntheir meaning over time (a translation also reflects some of the\\npersonal views of the translator(s). The Qur\\'an still exists in the\\nsame language that it was revealed in - Arabic. Therefore, we know\\nthat mankind has not changed its meaning. It is truly what was revealed\\nto Mohammed at that time. There are many scientific facts which\\nwere not discovered by traditional scientific methods until much later\\nsuch as the development of the baby in the mother\\'s womb.\\n\\n\\n>I think this religious stuff has gone too far. All man kind are going to hurt from it if they do not wise up.\\n>Look at David Koresh, how that turned out? I am afraid in the bigger scale, the Jews and the Muslims will\\n>have the same ending!!!!!!!!\\n>\\nOnly God knows for sure how it will turn out. I hope it won\\'t, but if\\nthat happens, it was the will of God.\\n\\n>Religion is needed in the sense to keep people in harmony and keep them doing good things, rather than\\n>plotting each others distruction. There is one earth, One life and one God. Let\\'s all man kind be good toward\\n>each other.\\n>\\n>God help us all.\\n>Peace\\n>.\\n>.\\nPlease send this mail to me again so I can read the rest of what\\nyou said. And yes, may God help us all.\\n\\nSteve\\n\\n',\n", + " \"From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Commercial mining activities on the moon\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 10\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article , steinly@topaz.ucsc.edu (Steinn Sigurdsson) writes:\\n\\n>Very cost effective if you use the right accounting method :-)\\n\\nSherzer Methodology!!!!!!\\n\\n\\n\\n Software engineering? That's like military intelligence, isn't it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\",\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: space food sticks\\nOrganization: Express Access Online Communications USA\\nLines: 9\\nNNTP-Posting-Host: access.digex.net\\nKeywords: food\\n\\ndillon comments that Space Food Sticks may have bad digestive properties.\\n\\nI don't think so. I think most NASA food products were designed to\\nbe low fiber 'zero-residue' products so as to minimize the difficulties\\nof waste disposal. I'd doubt they'd deploy anything that caused whole sale\\nGI distress. There aren't enough plastic baggies in the world for\\na bad case of GI disease.\\n\\npat\\n\",\n", + " 'From: mogal@deadhead.asd.sgi.com (Joshua Mogal)\\nSubject: Re: Hollywood Hits, Virtual Reality\\nOrganization: Silicon Graphics, Inc.\\nLines: 137\\nNNTP-Posting-Host: deadhead.asd.sgi.com\\n\\nSorry I missed you Raymond, I was just out in Dahlgren last month...\\n\\nI\\'m the Virtual Reality market manager for Silicon Graphics, so perhaps I\\ncan help a little.\\n\\nIn article <1993Mar17.185725.13487@relay.nswc.navy.mil>,\\nrchui@nswc-wo.nswc.navy.mil (Raymond Chui) writes:\\n|> Hello, the real reality. Our agency started to express interest in\\n|> virtual reality(VR). So far, we do not know much about VR. All we\\n|> know about are the Hollywood movies \"The Terminater 2\" and \"Lawnmover\\n|> Man\". We also know something about VR from ABC news magazine and\\n|> Computer Graphics World magazine.\\n\\n\\nUnfortunately, while SGI systems were used to create the special effects\\nfor both Terminator 2 and Lawnmower Man, those are film-quality computer\\ngraphics, rendered in software and written to film a frame at a time. Each\\nframe of computer animation for those films took hours to render on\\nhigh-end parallel processing computer systems. Thus, that level of graphics\\nwould be difficult, if not impossible, to acheive in real time (30 frames\\nper second).\\n\\n\\n|> \\n|> We certainly want to know more about VR. Who are the leading\\n|> companies,\\n|> agencies, universities? What machines support VR (i.e. SGI, Sun4,\\n|> HP-9000, BIM-6000, etc.)?\\n\\n\\nIt depends upon how serious you are and how advanced your application is.\\nTrue immersive visualization (VR), requires the rendering of complex visual\\ndatabases at anywhere from 20 to 60 newly rendered frames per second. This\\nis a similar requirement to that of traditional flight simulators for pilot\\ntraining. If the frame rate is too low, the user notices the stepping of\\nthe frames as they move their head rapidly around the scene, so the motion\\nof the graphics is not smooth and contiguous. Thus the graphics system\\nmust be powerful enough to sustain high frame rates while rendering complex\\ndata representations.\\n\\nAdditionally, the frame rate must be constant. If the system renders 15\\nframes per second at one point, then 60 frames per second the next (perhaps\\ndue to the scene in the new viewing direction being simpler than what was\\nvisible before), the user can get heavily distracted by the medium (the\\ngraphics computer) rather than focusing on the data. To maintain a constant\\nframe rate, the system must be able to run in real-time. UNIX in general\\ndoes not support real-time operation, but Silicon Graphics has modified the\\nUNIX kernel for its multi-processor systems to be able to support real-time\\noperation, bypassing the usual UNIX process priority-management schemes. \\nUniprocessor systems running UNIX cannot fundamentally support real-time\\noperation (not Sun SPARC10, not HP 700 Series systems, not IBM RS-6000, not\\neven SGI\\'s uniprocessor systems like Indigo or Crimson). Only our\\nmultiprocessor Onyx and Challenge systems support real-time operation due\\nto their Symmetric Multi-Processing (SMP) shared-memory architecture.\\n\\nFrom a graphics perspective, rendering complex virtual environments\\nrequires advanced rendering techniques like texture mapping and real-time\\nmulti-sample anti-aliasing. Of all of the general purpose graphics systems\\non the market today, only Crimson RealityEngine and Onyx RealityEngine2\\nsystems fully support these capabilities. The anti-aliasing is particularly\\nimportant, as the crawling jagged edges of aliased polygons is an\\nunfortunate distraction when immersed in a virtual environment.\\n\\n\\n|> What kind of graphics languages are used with VR\\n|> (GL, opengl, Phigs, PEX, GKS, etc.)?\\n\\nYou can use the general purpose graphics libraries listed above to develop\\nVR applications, but that is starting at a pretty low level. There are\\noff-the- shelf software packages available to get you going much faster,\\nbeing targeted directly at the VR application developer. Some of the most\\npopular are (in no particular order):\\n\\n\\t- Division Inc.\\t\\t (Redwood City, CA) - dVS\\n\\t- Sens8 Inc.\\t\\t (Sausalito, CA) - WorldToolKit\\n\\t- Naval Postgraduate School (Monterey, CA) - NPSnet (FREE!)\\n\\t- Gemini Technology Corp (Irvine, CA) - GVS Simation Series\\n\\t- Paradigm Simulation Inc. (Dallas, TX) - VisionWorks, AudioWorks\\n\\t- Silicon Graphics Inc.\\t (Mountain View,CA) - IRIS Performer\\n\\nThere are some others, but not off the top of my head...\\n\\n\\t\\n|> What companies are making\\n|> interface devices for VR (goggles or BOOM (Binocular Omni-Orientational\\n|> Monitor), hamlets, gloves, arms, etc.)?\\n\\nThere are too many to list here, but here is a smattering:\\n\\n\\t- Fake Space Labs\\t (Menlo Park,CA) - BOOM\\n\\t- Virtual Technologies Inc. (Stanford, CA) - CyberGlove\\n\\t- Digital Image Design\\t (New York, NY) - The Cricket (3D input)\\n\\t- Kaiser Electro Optics\\t (Carlsbad, CA) - Sim Eye Helmet Displays\\n\\t- Virtual Research\\t (Sunnyvale, CA) - Flight Helmet display\\n\\t- Virtual Reality Inc.\\t (Pleasantville,NY) - Head Mtd Displays, s/w\\n\\t- Software Systems\\t (San Jose, CA) - 3D Modeling software\\n\\t- etc., etc., etc.\\n\\n\\n|> What are those company\\'s\\n|> addresses and phone numbers? Where we can get a list name of VR\\n|> experts\\n|> and their phone numbers and Email addresses?\\n\\n\\nRead some of the VR books on the market:\\n\\n\\t- Virtual Reality - Ken Pimental and Ken Texiera (sp?)\\n\\t- Virtual Mirage\\n\\t- Artificial Reality - Myron Kreuger\\n\\t- etc.\\n\\nOr check out the newsgroup sci.virtual_worlds\\n\\nFeel free to contact me for more info.\\n\\nRegards,\\n\\nJosh\\n\\n-- \\n\\n\\n**************************************************************************\\n**\\t\\t\\t\\t **\\t\\t\\t\\t\\t**\\n**\\tJoshua Mogal\\t\\t **\\tProduct Manager\\t\\t\\t**\\n**\\tAdvanced Graphics Division **\\t Advanced Graphics Systems\\t**\\n**\\tSilicon Graphics Inc.\\t **\\tMarket Manager\\t\\t\\t**\\n**\\t2011 North Shoreline Blvd. **\\t Virtual Reality\\t\\t**\\n**\\tMountain View, CA 94039-7311 **\\t Interactive Entertainment\\t**\\n**\\tM/S 9L-580\\t\\t **\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t *************************************\\n**\\tTel:\\t(415) 390-1460\\t\\t\\t\\t\\t\\t**\\n**\\tFax:\\t(415) 964-8671\\t\\t\\t\\t\\t\\t**\\n**\\tE-mail:\\tmogal@sgi.com\\t\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t\\t\\t\\t\\t\\t**\\n**************************************************************************\\n',\n", + " \"From: amehdi@src.honeywell.com (Hossien Amehdi)\\nSubject: Re: was: Go Hezbollah!!\\nNntp-Posting-Host: tbilisi.src.honeywell.com\\nOrganization: Honeywell Systems & Research Center\\nLines: 26\\n\\nIn article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>\\n>What the hell do you know about Israeli policy? What gives you the fiat\\n>to look into the minds of Israeli generals? Has this 'policy of intimidation'\\n>been published somewhere? For your information, the actions taken by Arabs,\\n>specifically the PLO, were not uncommon in the Lebanon Campaign of 1982. My\\n>brain is full of shit? At least I don't look into the minds of others and \\n>make Israeli policy for them!\\n>\\n... deleted\\n\\nI am not in the business of reading minds, however in this case it would not\\nbe necessary. Israelis top leaders in the past and present, always come across\\nas arrogant with their tough talks trying to intimidate the Arabs. \\n\\nThe way I see it, Israelis and Arabs have not been able to achieve peace\\nafter almost 50 years of fighting because of the following two major reasons:\\n\\n 1) Arab governments are not really representative of their people, currently\\n most of their leaders are stupid, and/or not independent, and/or\\n dictators.\\n\\n 2) Israeli government is arrogant and none comprising.\\n\\n\\n\\n\",\n", + " 'From: mlee@eng.sdsu.edu (Mike Lee)\\nSubject: MPEG for x-windows MONO needed.\\nOrganization: San Diego State University Computing Services\\nLines: 4\\nNNTP-Posting-Host: eng.sdsu.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nHello, and thank you for reading this request. I have a Mpeg viewer for x-windows and it did not run because I was running it on a monochrome monitor. I need the mono-driver for mpeg_play. \\n\\nPlease post the location of the file or better yet, e-mail me at mlee@eng.sdsu.edu.\\n\\n',\n", + " 'From: jaeger@buphy.bu.edu (Gregg Jaeger)\\nSubject: Re: An Anecdote about Islam\\nOrganization: Boston University Physics Department\\nLines: 117\\n\\nIn article <16BB112949.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n>In article <115287@bu.edu> jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n\\n \\n>>>>>A brutal system filtered through \"leniency\" is not lenient.\\n\\n\\n>>>>Huh?\\n\\n\\n>>>How do you rate public floggings or floggings at all? Chopping off the\\n>>>hands, heads, or other body parts? What about stoning?\\n\\n\\n>>I don\\'t have a problem with floggings, particularly, when the offenders\\n>>have been given a chance to change their behavior before floggings are\\n>>given. I do have a problem with maiming in general, by whatever means.\\n>>In my opinion no-one who has not maimed another should be maimed. In\\n>>the case of rape the victim _is_ maimed, physically and emotionally,\\n>>so I wouldn\\'t have a problem with maiming rapists. Obviously I wouldn\\'t\\n>>have a problem with maiming murderers either.\\n\\n\\n>May I ask if you had the same opinion before you became a Muslim?\\n\\n\\n\\nSure. Yes, I did. You see I don\\'t think that rape and murder should\\nbe dealt with lightly. You, being so interested in leniency for\\nleniency\\'s sake, apparently think that people should simply be\\ntold the \"did a _bad_ thing.\"\\n\\n\\n>And what about the simple chance of misjudgements?\\n\\nMisjudgments should be avoided as much as possible.\\nI suspect that it\\'s pretty unlikely that, given my requirement\\nof repeated offenses, that misjudgments are very likely.\\n\\n \\n>>>>>>\"Orient\" is not a place having a single character. Your ignorance\\n>>>>>>exposes itself nicely here.\\n\\n\\n>>>>>Read carefully, I have not said all the Orient shows primitive machism.\\n\\n\\n>>>>Well then, why not use more specific words than \"Orient\"? Probably\\n>>>>because in your mind there is no need to (it\\'s all the same).\\n\\n\\n>>>Because it contains sufficient information. While more detail is possible,\\n>>>it is not necessary.\\n\\n\\n>>And Europe shows civilized bullshit. This is bullshit. Time to put out\\n>>or shut up. You\\'ve substantiated nothing and are blabbering on like\\n>>\"Islamists\" who talk about the West as the \"Great Satan.\" You\\'re both\\n>>guilty of stupidities.\\n\\n\\n>I just love to compare such lines to the common plea of your fellow believers\\n>not to call each others names. In this case, to substantiate it: The Quran\\n>allows that one beATs one\\'s wife into submission. \\n\\n\\nReally? Care to give chapter and verse? We could discuss it.\\n\\n\\n>Primitive Machism refers to\\n>that. (I have misspelt that before, my fault).\\n \\n\\nAgain, not all of the Orient follows the Qur\\'an. So you\\'ll have to do\\nbetter than that.\\n\\n\\nSorry, you haven\\'t \"put out\" enough.\\n\\n \\n>>>Islam expresses extramarital sex. Extramarital sex is a subset of sex. It is\\n>>>suppressedin Islam. That marial sexis allowed or encouraged in Islam, as\\n>>>it is in many branches of Christianity, too, misses the point.\\n\\n>>>Read the part about the urge for sex again. Religions that run around telling\\n>>>people how to have sex are not my piece of cake for two reasons: Suppressing\\n>>>a strong urge needs strong measures, and it is not their business anyway.\\n\\n>>Believe what you wish. I thought you were trying to make an argument.\\n>>All I am reading are opinions.\\n \\n>It is an argument. That you doubt the validity of the premises does not change\\n>it. If you want to criticize it, do so. Time for you to put up or shut up.\\n\\n\\n\\nThis is an argument for why _you_ don\\'t like religions that suppress\\nsex. A such it\\'s an irrelevant argument.\\n\\nIf you\\'d like to generalize it to an objective statement then \\nfine. My response is then: you have given no reason for your statement\\nthat sex is not the business of religion (one of your \"arguments\").\\n\\nThe urge for sex in adolescents is not so strong that any overly strong\\nmeasures are required to suppress it. If the urge to have sex is so\\nstrong in an adult then that adult can make a commensurate effort to\\nfind a marriage partner.\\n\\n\\n\\nGregg\\n\\n\\n\\n\\n\\n\\n',\n", + " \"From: cpr@igc.apc.org (Center for Policy Research)\\nSubject: Ten questions about Israel\\nLines: 55\\nNf-ID: #N:cdp:1483500349:000:1868\\nNf-From: cdp.UUCP!cpr Apr 19 14:38:00 1993\\n\\n\\nFrom: Center for Policy Research \\nSubject: Ten questions about Israel\\n\\n\\nTen questions to Israelis\\n-------------------------\\n\\nI would be thankful if any of you who live in Israel could help to\\nprovide\\n accurate answers to the following specific questions. These are\\nindeed provocative questions but they are asked time and again by\\npeople around me.\\n\\n1. Is it true that the Israeli authorities don't recognize\\nIsraeli nationality ? And that ID cards, which Israeli citizens\\nmust carry at all times, identify people as Jews or Arabs, not as\\nIsraelis ?\\n\\n2. Is it true that the State of Israel has no fixed borders\\nand that Israeli governments from 1948 until today have refused to\\nstate where the ultimate borders of the State of Israel should be\\n?\\n\\n3. Is it true that Israeli stocks nuclear weapons ? If so,\\ncould you provide any evidence ?\\n\\n4. Is it true that in Israeli prisons there are a number of\\nindividuals which were tried in secret and for which their\\nidentities, the date of their trial and their imprisonment are\\nstate secrets ?\\n\\n5. Is it true that Jews who reside in the occupied\\nterritories are subject to different laws than non-Jews?\\n\\n6. Is it true that Jews who left Palestine in the war 1947/48\\nto avoid the war were automatically allowed to return, while their\\nChristian neighbors who did the same were not allowed to return ?\\n\\n7. Is it true that Israel's Prime Minister, Y. Rabin, signed\\nan order for ethnical cleansing in 1948, as is done today in\\nBosnia-Herzegovina ?\\n\\n8. Is it true that Israeli Arab citizens are not admitted as\\nmembers in kibbutzim?\\n\\n9. Is it true that Israeli law attempts to discourage\\nmarriages between Jews and non-Jews ?\\n\\n10. Is it true that Hotel Hilton in Tel Aviv is built on the\\nsite of a muslim cemetery ?\\n\\nThanks,\\n\\nElias Davidsson Iceland email: elias@ismennt.is\\n\",\n", + " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 42\\n\\nIn <1qjahh$mrs@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) \\nwrites:\\n\\n>In article pww@spacsun.rice.edu \\n(Peter Walker) writes:\\n>#In article <1qie61$fkt@horus.ap.mchp.sni.de>, frank@D012S658.uucp (Frank\\n>#O\\'Dwyer) wrote:\\n>#> Objective morality is morality built from objective values.\\n>#\\n>#But where do those objective values come from? How can we measure them?\\n>#What mediated thair interaction with the real world, a moralon? Or a scalar\\n>#valuino field?\\n\\n>Science (\"the real world\") has its basis in values, not the other way round, \\n>as you would wish it. If there is no such thing as objective value, then \\n>science can not objectively be said to be more useful than a kick in the head.\\n>Simple theories with accurate predictions could not objectively be said\\n>to be more useful than a set of tarot cards. You like those conclusions?\\n>I don\\'t.\\n\\n>#And how do we know they exist in the first place?\\n\\n>One assumes objective reality, one doesn\\'t know it. \\n\\n>-- \\n>Frank O\\'Dwyer \\'I\\'m not hatching That\\'\\n>odwyer@sse.ie from \"Hens\", by Evelyn Conlon\\n\\nHow do we measure truth, beauty, goodness, love, friendship, trust, honesty, \\netc.? If things have no basis in objective fact then aren\\'t we limited in what\\nwe know to be true? Can\\'t we say that we can examples or instances of reason,\\nbut cannot measure reason, or is that semantics?\\n\\nMAC\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", + " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: rec\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 9\\n\\n>>>>> On 19 Apr 93 21:48:42 GMT, xlyx@vax5.cit.cornell.edu said:\\n> Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\n\\tYes, but the _rear_ wheel comes off the ground, not the front.\\n See, it just HOPS into the air! Figure.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: Gospel Dating\\nOrganization: Case Western Reserve University\\nLines: 26\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1993Apr6.021635.20958@wam.umd.edu> west@next02cville.wam.umd.edu (Stilgar) writes:\\n\\n>Fine... THE ILLIAD IS THE WORD OF GOD(tm) (disputed or not, it is)\\n>\\n>Dispute that. It won\\'t matter. Prove me wrong.\\n\\n\\tThe Illiad contains more than one word. Ergo: it can not be\\nthe Word of God. \\n\\n\\tBut, if you will humbly agree that it is the WORDS of God, I \\nwill conceed.\\n\\n\\t:-D\\n\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n\\n',\n", + " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Ontario Hydro - Research Division\\nLines: 12\\n\\nIn article <1993Apr15.200857.10631@adobe.com> cjackson@adobe.com (Curtis Jackson) writes:\\n>\\n>So perhaps it is only *some* waterski bikes on which one countersteers...\\n\\nA Sea Doo is a boat. It turns by changing the angle of the duct behind the\\npropeller. A waterski bike looks like a motorcycle but has a ski where each\\nwheel should be. Its handlebars are connected through a familiar looking\\nsteering head to the front ski. It handles like a motorcycle.\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", + " \"From: ukrphil@prlhp1.prl.philips.co.uk (M.J.Phillips)\\nSubject: Re: Rumours about 3DO ???\\nReply-To: ukrphil@prlhp1.UUCP (M.J.Phillips)\\nOrganization: Philips Research Laboratories, Redhill, UK\\nLines: 7\\n\\nThe 68070 _does_ exist. It's number was licensed to Philips to make their\\nown variant. This chip includes extra featurfes such as more I/O ports, \\nI2C bus... making it more microcontroller like.\\n\\nBecause of the confusion with numbering (!), Philips other products in the\\n[range with the 68??? core have been given differend numbers like PCF...\\nor PCD7.. or something.\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Turkish Government Agents on UseNet Lie Through Their Teeth!\\nArticle-I.D.: urartu.1993Apr15.204512.11971\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 63\\n\\nIn revision of history <9304131827@zuma.UUCP> as posted by Turkish Government\\nAgents under the guise of sera@zuma.UUCP (Serdar Argic) LIE in response to\\narticle <1993Apr13.033213.4148@urartu.sdpa.org> hla@urartu.sdpa.org and\\nscribed: \\n\\n[(*] Orhan Gunduz is blown up. Gunduz receives an ultimatum: Either \\n[(*] he gives up his honorary position or he will be \"executed\". He \\n[(*] refuses. \"Responsibility\" is claimed by JCAG and SDPA.\\n\\n[(*] May 4, 1982 - Cambridge, Massachusetts\\n[(*]\\tOrhan Gunduz, the Turkish honorary consul in Boston, would not bow \\n[(*]\\tto the Armenian terrorist ultimatum that he give up his title of \\n[(*]\\t\"honorary consul\". Now he is attacked and murdered in cold blood.\\n[(*]\\tPresident Reagan orders an all-out manhunt-to no avail. An eye-\\n[(*]\\twitness who gave a description of the murderer is shot down. He \\n[(*]\\tsurvives... but falls silent. One of the most revolting \"triumphs\" in \\n[(*]\\tthe senseless, mindless history of Armenian terrorism. Such a murder \\n[(*]\\tbrings absolutely nothing - except an ego boost for the murderer \\n[(*]\\twithin the Armenian terrorist underworld, which is already wallowing \\n[(*]\\tin self-satisfaction.\\n[(*] \\n[(*] Were you involved in the murder of Sarik Ariyak? \\n\\n[(*] \\tDecember 17, 1980 - Sydney\\n[(*]\\tTwo Nazi Armenians massacre Sarik Ariyak and his bodyguard, Engin \\n[(*] Sever. JCAG and SDPA claim responsibility.\\n\\nMr. Turkish Governmental Agent: prove that the SDPA even existed in 1980 or\\n1982! Go ahead, provide us the newspaper accounts of the assassinations and \\nshow us the letters SDPA! The Turkish government is good at excising text from\\ntheir references, let\\'s see how good thay are at adding text to verifiable \\nnewspaper accounts! \\n\\nThe Turkish government can\\'t support any of their anti-Armenian claims as\\ntypified in the above scribed garbage! That government continues to make \\nfalse and libelous charges for they have no recourse left after having made \\nfools out of through their attempt at a systematic campaign at denying and \\ncovering up the Turkish genocide of the Armenians. \\n\\nJust like a dog barking at a moving bus, it barks, jumps, yells, until the\\nbus stops, at which point it just walks away! Such will be with this posting!\\nTurkish agents level the most ridiculous charges, and when brought to answer, \\nthey are silent, like the dog after the bus stops!\\n\\nThe Turkish government feels it can funnel a heightened state of ultra-\\nnationalism existing in Turkey today onto UseNet and convince people via its \\nrevisionist, myopic, and incidental view of themselves and their place in the \\nworld. \\n\\nThe resulting inability to address Armenian and Greek refutations of Turkey`s\\nre-write of history is to refer to me as a terrorist, and worse, claim --\\nas part of the record -- I took responsibility for the murder of 2 people!\\n\\nWhat a pack of raging fools, blinded by anti-Armenian fascism. It\\'s too bad\\nthe socialization policies of the Republic of Turkey requires it to always \\nfind non-Turks to de-humanize! Such will be their downfall! \\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: apryan@vax1.tcd.ie\\nSubject: Order MOORE\\'s book to restore Great Telescope\\nLines: 41\\nNntp-Posting-Host: vax1.tcd.ie\\nOrganization: Trinity College Dublin\\nLines: 41\\n\\nSeveral people have enquired about the availability of the book about the\\nGreat 72\" reflector built at Birr Castle, Ireland in 1845 which remained the\\nlargest in the world until the the start of the 20th century.\\n\\n\"The Astronomy of Birr Castle\" was written by Patrick Moore who now sits on\\nthe committee which is going to restore the telescope. (The remains are on\\npublic display all year round - the massive support walls, the 60 foot long\\ntube, and other bits and pieces). This book is the definitivie history of\\nhow one man, the Third Earl of Rosse, pulled off the most impressive\\ntechnical achievement, perhaps ever, in the history of the telescope, and\\nthe discoveries made with the instrument.\\n\\nPatrick Moore is donating all proceeds from the book\\'s sale to help restore\\nthe telescope. Astronomy Ireland is making the book available world wide by\\nmail order. It\\'s a fascinating read and by ordering a copy you bring the day\\nwhen we can all look through it once again that little bit nearer.\\n\\n=====ORDERING INFORMATION=====\\n\"The Astronomy of Birr Castle\" Dr. Patrick Moore, xii, 90pp, 208mm x 145mm.\\nPrice:\\nU.S.: US$4.95 + US$2.95 post & packing (add $3.50 airmail)\\nU.K. (pounds sterling): 3.50 + 1.50 post & packing\\nEUROPE (pounds sterling): 3.50 + 2.00 post and packing\\nREST OF WORLD: as per U.S. but funds payable in US$ only.\\n\\nPAYMENT:\\nMake all payments to \"Astronomy Ireland\".\\nCREDIT CARD: MASTERCARD/VISA/EUROCARD/ACCESS accepted by email or snail\\nmail: give card number, name & address, expiration date, and total amount.\\nPayments otherwise must be by money order or bank draft.\\nSend to our permanent address: P.O.Box 2888, Dublin 1, Ireland.\\n\\nYou can also subscribe to \"Astronomy & Space\" at the same time. See below:\\n----------------------------------------------------------------------------\\nTony Ryan, \"Astronomy & Space\", new International magazine, available from:\\n Astronomy Ireland, P.O.Box 2888, Dublin 1, Ireland.\\n6 issues (one year sub.): UK 10.00 pounds, US$20 surface (add US$8 airmail).\\nACCESS/VISA/MASTERCARD accepted (give number, expiration date, name&address).\\n\\n (WORLD\\'S LARGEST ASTRO. SOC. per capita - unless you know better? 0.033%)\\nTel: 0891-88-1950 (UK/N.Ireland) 1550-111-442 (Eire). Cost up to 48p per min\\n',\n", + " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 30\\n\\nIn article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>The readers of this forum seemed to be more interested in the contents\\n>of those files.\\n>So It will be nice if Yigal will tell us:\\n>1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\nADL authorities seem to view a lot of people as dangerous, including\\nthe millions of Americans of Arab ancestry. Perhaps you can answer\\nthe question as to why the ADL maintained files and spied on ADC members\\nin California (and elsewhere??)? Friendly rivalry perhaps?\\n\\nPerhaps Yigal is a Greenpeace member? Or the NAACP? Or a reporter? \\nOr a member of any of the dozens of other political organizations/ethnic \\nminorities/occupations that the ADL spied on.\\n\\n>2. Why does the ADL have an interest in that person ?\\n\\nParanoia?\\n\\n>3. If one does trust either the US government or the ADL what an\\n> additional information should he send them ?\\n\\nThe names of half the posters on this forum, unless they already \\nhave them.\\n\\n>\\n>\\n>Gideon Ehrlich\\n\\n-anwar\\n',\n", + " 'From: wats@scicom.AlphaCDC.COM (Bruce Watson)\\nSubject: Quotation Was:(Re: , nerone@ccwf.cc.utexas.edu (Michael Nerone) writes:\\n|> In article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n|> \\n|> CH> Concerning the proposed newsgroup split, I personally am not in\\n|> CH> favor of doing this. I learn an awful lot about all aspects of\\n|> CH> graphics by reading this group, from code to hardware to\\n|> CH> algorithms. I just think making 5 different groups out of this\\n|> CH> is a wate, and will only result in a few posts a week per group.\\n|> CH> I kind of like the convenience of having one big forum for\\n|> CH> discussing all aspects of graphics. Anyone else feel this way?\\n|> CH> Just curious.\\n|> \\n|> I must agree. There is a dizzying number of c.s.amiga.* newsgroups\\n|> already. In addition, there are very few issues which fall cleanly\\n|> into one of these categories.\\n|> \\n|> Also, it is readily observable that the current spectrum of amiga\\n|> groups is already plagued with mega-crossposting; thus the group-split\\n|> would not, in all likelihood, bring about a more structured\\n|> environment.\\n|> \\n|> --\\n|> /~~~~~~~~~~~~~~~~~~~\\\\/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\\\\\n|> / Michael Nerone \\\\\"I shall do so with my customary lack of tact; and\\\\\\n|> / Internet Address: \\\\since you have asked for this, you will be obliged\\\\\\n|> /nerone@ccwf.cc.utexas.edu\\\\to pardon it.\"-Sagredo, fictional char of Galileo.\\\\\\n\\nHi,\\nIt might be nice to know, what\\'s possible on different hard ware platforms.\\nBut usually the hard ware is fixed ( in my case either Unix or DOS- PC ).\\nSo I\\'m not much interested in Amiga news. \\n\\nIn the case of Software, I won\\'t get any comercial software mentioned in this\\nnewgroup to run on a Unix- platform, so I\\'m not interested in this information.\\n\\nI would suggest to split the group. I don\\'t see the problem of cross-posting.\\nThen you need to read just 2 newgroups with half the size. \\n\\nBUT WHAT WOULD BE MORE IMPORTANT IS TO HAVE A FAQ. THIS WOULD REDUCE THE\\nTRAFFIC A LOT.\\n\\nSincerely, Gerhard\\n-- \\nI\\'m writing this as a privat person, not reflecting any opinions of the Inst.\\nof Hydromechanics, the University of Karlsruhe, the Land Baden-Wuerttemberg,\\nthe Federal Republic of Germany and the European Community. The address and\\nphone number below are just to get in touch with me. Everything I\\'m saying, \\nwriting and typing is always wrong ! (Statement necessary to avoid law suits)\\n=============================================================================\\n- Dipl.-Ing. Gerhard Bosch M.Sc. voice:(0721) - 608 3118 -\\n- Institute for Hydromechanic FAX:(0721) - 608 4290 -\\n- University of Karlsruhe, Kaiserstrasse 12, 7500-Karlsruhe, Germany -\\n- Internet: bosch@ifh-hp2.bau-verm.uni-karlsruhe.de -\\n- Bitnet: nd07@DKAUNI2.BITNET -\\n=============================================================================\\n',\n", + " \"From: amann@iam.unibe.ch (Stephan Amann)\\nSubject: Re: more on radiosity\\nReply-To: amann@iam.unibe.ch\\nOrganization: University of Berne, Institute of Computer Science and Applied Mathematics, Special Interest Group Computer Graphics\\nLines: 80\\n\\nIn article 66319@yuma.ACNS.ColoState.EDU, xz775327@longs.LANCE.ColoState.Edu (Xia Zhao) writes:\\n>\\n>\\n>In article <1993Apr19.131239.11670@aragorn.unibe.ch>, you write:\\n>|>\\n>|>\\n>|> Let's be serious... I'm working on a radiosity package, written in C++.\\n>|> I would like to make it public domain. I'll announce it in c.g. the minute\\n>|> I finished it.\\n>|>\\n>|> That were the good news. The bad news: It'll take another 2 months (at least)\\n>|> to finish it.\\n>\\n>\\n> Are you using the traditional radiosity method, progressive refinement, or\\n> something else in your package?\\n>\\n\\nMy package is based on several articles about non-standard radiosity and\\nsome unpublished methods.\\n\\nThe main articles are:\\n\\n- Cohen, Chen, Wallace, Greenberg : \\n A Progressive Refinement Approach to fast Radiosity Image Generation\\n Computer Graphics (SIGGRAPH), V. 22(No. 4), pp 75-84, August 1988\\n\\n- Silion, Puech\\n A General Two-Pass Method Integrating Specular and Diffuse Reflection\\n Computer Graphics (SIGGRAPH), V23(No. 3), pp335-344, July 1989 \\n\\n> If you need to project patches on the hemi-cube surfaces, what technique are\\n> you using? Do you have hardware to facilitate the projection?\\n>\\n\\nI do not use hemi-cubes. I have no special hardware (SUN SPARCstation).\\n\\n>\\n>|>\\n>|> In the meantime you may have a look at the file\\n>|> Radiosity_code.tar.Z\\n>|> located at\\n>|> compute1.cc.ncsu.edu\\n>\\n>\\n> What are the guest username and password for this ftp site?\\n>\\n\\nUse anonymous as username and your e-mail address as password.\\n\\n>\\n>|>\\n>|> (there are some other locations; have a look at archie to get the nearest)\\n>|>\\n>|> Hope that'll help.\\n>|>\\n>|> Yours\\n>|>\\n>|> Stephan\\n>|>\\n>\\n>\\n> Thanks, Stephan.\\n>\\n>\\n> Josephine\\n\\n\\nStephan.\\n\\n\\n----------------------------------------------------------------------------\\n\\n Stephan Amann SIG Computer Graphics, University of Berne, Switzerland\\n amann@iam.unibe.ch\\n\\t Tel +41 31 65 46 79\\t Fax +41 31 65 39 65\\n\\n Projects: Radiosity, Raytracing, Computer Graphics\\n\\n----------------------------------------------------------------------------\\n\",\n", + " 'Subject: Re: Request for Support\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 16\\n\\nIn article <1993Apr5.095148.5730@sei.cmu.edu> dpw@sei.cmu.edu (David Wood) writes:\\n\\n>2. If you must respond to one of his articles, include within it\\n>something similar to the following:\\n>\\n> \"Please answer the questions posed to you in the Charley Challenges.\"\\n\\n\\tAgreed.\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", + " 'From: hasan@McRCIM.McGill.EDU \\nSubject: Re: Water on the brain (was Re: Israeli Expansion-lust)\\nOriginator: hasan@lightning.mcrcim.mcgill.edu\\nNntp-Posting-Host: lightning.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 15\\n\\n\\nIn article <1993Apr15.055341.6075@nysernet.org>, astein@nysernet.org (Alan Stein) writes:\\n|> I guess Hasan finally revealed the source of his claim that Israel\\n|> diverted water from Lebanon--his imagination.\\n|> -- \\n|> Alan H. Stein astein@israel.nysernet.org\\nMr. water-head,\\ni never said that israel diverted lebanese rivers, in fact i said that\\nisrael went into southern lebanon to make sure that no \\nwater is being used on the lebanese\\nside, so that all water would run into Jordan river where there\\nisrael will use it !#$%^%&&*-head.\\n\\nHasan \\n',\n", + " 'From: tffreeba@indyvax.iupui.edu\\nSubject: Death and Taxes (was Why not give $1 billion to...\\nArticle-I.D.: indyvax.1993Apr22.162501.747\\nLines: 10\\n\\nIn my first posting on this subject I threw out an idea of how to fund\\nsuch a contest without delving to deep into the budget. I mentioned\\ngranting mineral rights to the winner (my actual wording was, \"mining\\nrights.) Somebody pointed out, quite correctly, that such rights are\\nnot anybody\\'s to grant (although I imagine it would be a fait accompli\\nsituation for the winner.) So how about this? Give the winning group\\n(I can\\'t see one company or corp doing it) a 10, 20, or 50 year\\nmoratorium on taxes.\\n\\nTom Freebairn \\n',\n", + " 'From: sts@mfltd.co.uk (Steve Sherwood (x5543))\\nSubject: Re: Virtual Reality for X on the CHEAP!\\nReply-To: sts@mfltd.co.uk\\nOrganization: Micro Focus Ltd, Newbury, England\\nLines: 39\\n\\nIn article <1r6v3a$rj2@fg1.plk.af.mil>, ridout@bink.plk.af.mil (Brian S. Ridout) writes:\\n|> In article <1993Apr15.134802.21995@mfltd.co.uk>, sts@mfltd.co.uk (Steve Sherwood (x5543)) writes:\\n|> |> Has anyone got multiverse to work ?\\n|> |> \\n|> |> I have built it on 486 svr4, mips svr4s and Sun SparcStation.\\n|> |> \\n|> |> There seems to be many bugs in it. The \\'dogfight\\' and \\'dactyl\\' simply do nothing\\n|> |> (After fixing a bug where a variable is defined twice in two different modules - One needed\\n|> |> setting to static - else the client core-dumped)\\n|> |> \\n|> |> Steve\\n|> |> -- \\n|> |> \\n|> |> Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n|> |> +-----------------------------------+------------------------+ Micro Focus\\n|> |> | Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n|> |> | Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n|> |> | Need courage to survive the day. | | Berkshire\\n|> |> +-----------------------------------+------------------------+ England\\n|> |> (A)bort (R)etry (I)nfluence with large hammer\\n|> I built it on a rs6000 (my only Motif machine) works fine. I added some objects\\n|> into dogfight so I could get used to flying. This was very easy. \\n|> All in all Cool!. \\n|> Brian\\n\\nThe RS6000 compiler is so forgiving, I think that if you mixed COBOL & pascal\\nthe C compiler still wouldn\\'t complain. :-)\\n\\nSteve\\n-- \\n\\n Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n+-----------------------------------+------------------------+ Micro Focus\\n| Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n| Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n| Need courage to survive the day. | | Berkshire\\n+-----------------------------------+------------------------+ England\\n (A)bort (R)etry (I)nfluence with large hammer\\n\\n',\n", + " 'From: arnie@magnus.acs.ohio-state.edu (Arnie Skurow)\\nSubject: Re: Live Free, but Quietly, or Die\\nArticle-I.D.: magnus.1993Apr6.184322.18666\\nOrganization: The Ohio State University\\nLines: 14\\nNntp-Posting-Host: bottom.magnus.acs.ohio-state.edu\\n\\nIn article Russell.P.Hughes@dartmouth.edu (R\\nussell P. Hughes) writes:\\n>What a great day! Got back home last night from some fantastic skiing\\n>in Colorado, and put the battery back in the FXSTC. Cleaned the plugs,\\n>opened up the petcock, waited a minute, hit the starter, and bingo it\\n>started up like a charm! Spent a restless night anticipating the first\\n>ride du saison, and off I went this morning to get my state inspection\\n>done. Now my bike is stock (so far) except for HD slash-cut pipes, and\\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nTherein lies the rub. The HD slash cut, or baloney cuts as some call\\nthem, ARE NOT STOCK mufflers. They\\'re sold for \"off-road use only,\"\\nand are much louder than stock mufflers.\\n\\nArnie\\n',\n", + " 'From: lcd@umcc.umcc.umich.edu (Leon Dent)\\nSubject: Re: MPEG for x-windows MONO needed.\\nOrganization: UMCC, Ann Arbor, MI\\nLines: 20\\nNNTP-Posting-Host: umcc.umcc.umich.edu\\n\\nOn sunsite.unc.edu in pub/multimedia/utilities/unix find \\n mpeg_play-2.0.tar.Z.\\n\\nI find for mono it works best as mpeg_play -dither threshold \\n though you can use mpeg_play -dither mono\\n\\nFace it, this is not be the best viewing situation.\\n\\nAlso someone has made a patch for mpeg_play that gives two more mono\\nmodes (mono2 and halftone).\\n\\nThey are by jan@pandonia.canberra.edu.au (Jan Newmarch).\\nAnd the patch can be found on csc.canberra.edu.au (137.92.1.1) under\\n/pub/motif/mpeg2.0.mono.patch.\\n\\n\\nLeon Dent\\nlcd@umcc.umich.edu\\n \\n\\n',\n", + " \"From: robert@Xenon.Stanford.EDU (Robert Kennedy)\\nSubject: Battery storage -- why not charge and store dry?\\nOrganization: Computer Science Department, Stanford University.\\nLines: 24\\n\\nSo it looks like I'm going to have to put a couple of bikes in storage\\nfor a few months, starting several months from now, and I'm already\\ncontemplating how to do it so they're as easy to get going again as\\npossible. I have everything under control, I think, besides the\\nbatteries. I know that if I buy a $50.00 Battery Tender for each one\\nand leave them plugged in the whole time the bikes are in storage,\\nthey'll be fine. But I'm not sure that's necessary. I've never heard\\nanyone discussing this idea, so maybe there's some reason why it isn't\\nso great. But maybe someone can tell me.\\n\\nWould it be a mistake to fully charge the batteries, drain the\\nelectrolyte into separate containers (one for each battery), seal the\\ncontainer, close up the batteries, and leave them that way? Then it\\nwould seem that when the bikes come out of storage, I could put the\\nelectrolyte back in the batteries and they should still be fully\\ncharged. What's wrong with this?\\n\\nOn a related, but different note for you Bay Area Denizens, wasn't\\nthere someone who had a bunch of spare EDTA a few months back? Who was\\nit? Is there still any of it left?\\n\\nThanks for any and all help!\\n\\n\\t-- Robert\\n\",\n", + " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: Need advice for riding with someone on pillion\\nKeywords: advice, pillion, help!\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nDistribution: na\\nLines: 44\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n\\t<...>\\t<...>\\n>This person is <100 lbs. and fairly small, so I don\\'t see weight as too much\\n>of a problem, but what sort of of advice should I give her before we go?\\n>I want her to hold onto me :-) rather than the grab rail out back, and\\n>I\\'ve heard that she should look over my shoulder in the direction we\\'re\\n>turning so she leans *with* me, but what else? Are there traditional\\n>signals for SLOW DOWN!! or GO FASTER!! or I HAFTA GO PEE!! etc.???\\n\\n\\tI\\'ve never liked my passengers to try and shift their weight with the\\n\\tturns at all... I find the weight shift can be very sudden and\\n\\tunnerving. It\\'s one thing if they\\'re just getting comfortable or\\n\\tdecide to look over your other shoulder, but I don\\'t recommend having\\n\\thim/her shift her weight with each turn... too violent.\\n\\t\\n\\tAlso (I think someone already said this) make sure your passenger\\n\\twears good gear. I sometimes choose to ride without a helmet or\\n\\tlacking other safety gear (depends on how squidly I feel) but I\\n\\twon\\'t let passengers do it. What I do to myself I can handle, but\\n\\tI wouldn\\'t want to hurt anyone else, so I don\\'t let them on without\\n\\tgloves, jacket, (at least) jeans, heavy boots, and a helmet that *fits*\\n\\n>I really want this to be a positive experience for us both, mainly so that\\n>she\\'ll want to go with me again, so any help will be appreciated...\\n\\n\\tGo *real* easy. It\\'s amazing how solid a grip you have on the\\n\\thandle bars that your passenger does not. Don\\'t make her feel like\\n\\tshe\\'s going to slide off the back, and \"snappy\" turns for you are\\n\\tsickening lurches for her. In general, it feels much less controlled\\n\\tand smooth as a passenger. I can\\'t stand being on the back of my\\n\\tbrother\\'s bike, and I ride aggressively when i ride and I know he\\'s\\n\\ta good pilot... still, everything feels very unsteady when you\\'re\\n\\ta passenger. \\n\\n\\n>Thanks,\\n> -Bob-\\n\\n\\tShow off by not showing off the first time out...\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", + " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: Happy Easter!\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 17\\n\\nIn article <1993Apr15.171757.10890@i88.isc.com> jeq@lachman.com (Jonathan E. Quist) writes:\\n>Rolls-Royce owned by a non-British firm?\\n>\\n>Ye Gods, that would be the end of civilization as we know it.\\n\\n Why not? Ford owns Aston-Martin and Jaguar, General Motors owns Lotus\\nand Vauxhall. Rover is only owned 20% by Honda.\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", + " \"From: tom@inferno.UUCP (Tom Sherwin)\\nSubject: Re: XV under MS-DOS ?!?\\nOrganization: Periphonics Corporation\\nLines: 30\\nNNTP-Posting-Host: ablaze\\n\\n|> Hi ... Recently I found XV for MS-DOS in a subdirectory of GNU-CC (GNUISH). I \\n|> use frequently XV on a Sun Spark Station 1 and I never had problems, but when I\\n|> start it on my computer with -h option, it display the help menu and when I\\n|> start it with a GIF-File my Hard disk turns 2 or 3 seconds and the prompt come\\n|> back.\\n|> \\n|> My computer is a little 386/25 with copro, 4 Mega rams, Tseng 4000 (1M) running\\n|> MS-DOS 5.0 with HIMEM.SYS and no EMM386.SYS. I had the GO32.EXE too... but no\\n|> driver who run with it.\\n|> \\n|> Do somenone know the solution to run XV ??? any help would be apprecied..\\n|> \\t\\t\\n\\nYou probably need an X server running on top of MS DOS. I use Desqview/X\\nbut any MS-DOS X server should do.\\n\\n-- \\n\\n XX X Technical documentation is writing 90% of the words\\n XX X for 10% of the features that only 1% of the customers\\n XX X actually use.\\n XX X -------------------------------------------------------\\n A PC to XX X I don't have opinions, I have factual interpretations...\\n the power XX X -Me\\n of X XX ---------------------------------------------------------\\n X XX ...uunet!rutgers!mcdhup!inferno!tom can be found at\\n X XX Periphonics Corporation\\n X XX 4000 Veterans Memorial Highway Bohemia, NY 11716\\n X XX ----------------------------------------------------\\n X XX They pay me to write, not express their opinions...\\n\",\n", + " \"From: kardank@ERE.UMontreal.CA (Kardan Kaveh)\\nSubject: Re: Newsgroup Split\\nOrganization: Universite de Montreal\\nLines: 8\\n\\nI haven't been following this thread, so appologies if this has already been\\nmentioned, but how about\\n\\n\\tcomp.graphics.3d\\n\\n-- \\nKaveh Kardan\\nkardank@ERE.UMontreal.CA\\n\",\n", + " 'From: svoboda@rtsg.mot.com (David Svoboda)\\nSubject: Re: edu breaths\\nNntp-Posting-Host: corolla18\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 29\\n\\nIn article <1993Apr15.214910.5676@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n|In article <1993Apr15.003749.15710@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n|>In article <1993Apr14.220252.14731@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n|>|\\n|>|The difference of opinion, and difference in motorcycling between the sport-bike\\n|>|riders and the cruiser-bike riders. \\n|>\\n|>That difference is only in the minds of certain closed-minded individuals. I\\n|>have had the very best motorcycling times with riders of \"cruiser\" \\n|>bikes (hi Don, Eddie!), yet I ride anything but.\\n|\\n|Continuously, on this forum, and on the street, you find quite a difference\\n|between the opinions of what motorcycling is to different individuals.\\n\\nYes, yes, yes. Motorcycling is slightly different to each and every one of us. This\\nis the nature of people, and one of the beauties of the sport. \\n\\n|Cruiser-bike riders have a different view of motorcycling than those of sport bike riders\\n|(what they like and dislike about motorcycling). This is not closed-minded. \\n\\nAnd what view exactly is it that every single rider of cruiser bikes holds, a veiw\\nthat, of course, no sport-bike rider could possibly hold? Please quantify your\\ngeneralization for us. Careful, now, you\\'re trying to pigeonhole a WHOLE bunch\\nof people.\\n\\nDave Svoboda (svoboda@void.rtsg.mot.com) | \"I\\'m getting tired of\\n90 Concours 1000 (Mmmmmmmmmm!) | beating you up, Dave.\\n84 RZ 350 (Ring Ding) (Woops!) | You never learn.\"\\nAMA 583905 DoD #0330 COG 939 (Chicago) | -- Beth \"Bruiser\" Dixon\\n',\n", + " \"From: nicho@vnet.IBM.COM (Greg Stewart-Nicholls)\\nSubject: Re: Vandalizing the sky.\\nReply-To: nicho@vnet.ibm.com\\nDisclaimer: This posting represents the poster's views, not those of IBM\\nNews-Software: UReply 3.1\\nX-X-From: nicho@vnet.ibm.com\\n \\nLines: 9\\n\\nIn George F. Krumins writes:\\n>It is so typical that the rights of the minority are extinguished by the\\n>wants of the majority, no matter how ridiculous those wants might be.\\n Umm, perhaps you could explain what 'rights' we are talking about\\nhere ..\\n -----------------------------------------------------------------\\nGreg Nicholls ... : Vidi\\nnicho@vnet.ibm.com or : Vici\\nnicho@olympus.demon.co.uk : Veni\\n\",\n", + " \"From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: bikes with big dogs\\nOrganization: AT&T\\nDistribution: na\\nLines: 20\\n\\nIn article <1993Apr14.234835.1@cua.edu> 84wendel@cua.edu writes:\\n>Has anyone ever heard of a rider giving a big dog such as a great dane a ride \\n>on the back of his bike. My dog would love it if I could ever make it work.\\n>\\tThanks\\n>\\t\\t\\t84wendel@cua.edu\\n \\n If a large Malmute counts then yes someone has heard(and seen) such\\nan irresponsible childish stunt. The dog needed assistance straightening\\nout once on board. The owner would lift the front legs of dog and throw\\nthem over the driver/pilots shoulders. Said dog would get shit eating\\ngrin on its face and away they'd go. The dogs ass was firmly planted\\non the seat.\\n \\n My dog and this dog actively seek each other out at camping party's.\\nThey hate each other. I think it's something personal.\\n \\n================================================================================\\n Steatopygias's 'R' Us. doh#0000000005 That ain't no Hottentot.\\n Sesquipedalian's 'R' Us. ZX-10. AMA#669373 DoD#564. There ain't no more.\\n================================================================================\\n\",\n", + " 'Subject: Quotation? Lowest bidder...\\nFrom: bioccnt@otago.ac.nz\\nOrganization: University of Otago, Dunedin, New Zealand\\nNntp-Posting-Host: thorin.otago.ac.nz\\nLines: 12\\n\\n\\nCan someone please remind me who said a well known quotation? \\n\\nHe was sitting atop a rocket awaiting liftoff and afterwards, in answer to\\nthe question what he had been thinking about, said (approximately) \"half a\\nmillion components, each has to work perfectly, each supplied by the lowest\\nbidder.....\" \\n\\nAttribution and correction of the quote would be much appreciated. \\n\\nClive Trotman\\n\\n',\n", + " 'From: mlj@af3.mlb.semi.harris.com (Marvin Jaster )\\nSubject: FOR SALE \\nNntp-Posting-Host: sunsol.mlb.semi.harris.com\\nOrganization: Harris Semiconductor, Melbourne FL\\nKeywords: FOR SALE\\nLines: 44\\n\\nI am selling my Sportster to make room for a new FLHTCU.\\nThis scoot is in excellent condition and has never been wrecked or abused.\\nAlways garaged.\\n\\n\\t1990 Sportster 883 Standard (blue)\\n\\n\\tfactory 1200cc conversion kit\\n\\n\\tless than 8000 miles\\n\\n\\tBranch ported and polished big valve heads\\n\\n\\tScreamin Eagle carb\\n\\n\\tScreamin Eagle cam\\n\\n\\tadjustable pushrods\\n\\n\\tHarley performance mufflers\\n\\n\\ttachometer\\n\\n\\tnew Metzeler tires front and rear\\n\\n\\tProgressive front fork springs\\n\\n\\tHarley King and Queen seat and sissy bar\\n\\n\\teverything chromed\\n\\n\\tO-ring chain\\n\\n\\tfork brace\\n\\n\\toil cooler and thermostat\\n\\n\\tnew Die-Hard battery\\n\\n\\tbike cover\\n\\nprice: $7000.00\\nphone: hm 407/254-1398\\n wk 407/724-7137\\nMelbourne, Florida\\n',\n", + " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: Fundamentalism - again.\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , khan0095@nova.gmi.edu (Mohammad Razi Khan) writes:\\n|> One of my biggest complaints about using the word \"fundamentalist\"\\n|> is that (at least in the U.S.A.) people speak of muslime\\n|> fundamentalists ^^^^^^^muslim\\n|> but nobody defines what a jewish or christan fundamentalist is.\\n|> I wonder what an equal definition would be..\\n|> any takers..\\n\\nWell, I would go as far as saying that Naturei Karta are definitely\\nJewish fundamentalists. Other ultra-orthodox Jewish groups might very\\nwell be, though I am hesitant of making such a broad generalization.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n',\n", + " \"From: howard@netcom.com (Howard Berkey)\\nSubject: Re: Shipping a bike\\nOrganization: Netcom Online Communications Services (408-241-9760 login: guest)\\nLines: 23\\n\\nIn article mellon@ncd.com (Ted Lemon) writes:\\n>\\n>>Can someone recommend how to ship a motorcycle from San Francisco\\n>>to Seattle? And how much might it cost?\\n>\\n>I'd recommend that you hop on the back of it and cruise - that's a\\n>really nice ride, if you choose your route with any care at all.\\n>Shouldn't cost more than about $30 in gas, and maybe a night's motel\\n>bill...\\n>\\n\\nYes! Up the coast, over to Portland, then up I-5. Really nice most\\nof the way, and I'm sure there's even better ways.\\n\\nWatch the weather, though... I got about as good a drenching as\\npossible in the Oregon coast range once... \\n\\n\\n-- \\n::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\\nHoward Berkey \\t\\t\\t\\t\\t\\t howard@netcom.com\\n\\t\\t\\t\\t Help!\\n... .. ... ... .. ... ... .. ... ... .. ... ... .. ... ... .. ...\\n\",\n", + " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: free moral agency and Jeff Clark\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 21\\n\\nIn article sandvik@newton.apple.com (Kent Sandvik) writes:\\n>\\n>This is the reason I like the controversy of post-modernism, the\\n>issues of polarities -- evil and good -- are just artificial \\n>constructs, and they fall apart during a closer inspection.\\n>\\n>The more I look into the notion of a constant struggle between\\n>the evil and good forces, the more it sounds like a metaphor\\n>that people just assume without closer inspection.\\n>\\n\\n More info please. I'm not well exposed to these ideas.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", + " \"From: bob1@cos.com (Bob Blackshaw)\\nSubject: Re: No humanity in Bosnia\\nKeywords: Barbarism\\nOrganization: Corporation for Open Systems\\nDistribution: world \\nLines: 47\\n\\nIn <1993Apr15.135934.23814@julian.uwo.ca> mrizvi@gfx.engga.uwo.ca (Mr. Mubashir Rizvi) writes:\\n\\n>It is very encouraging that a number of people took so interest in my posting.I recieved a couple of letters too,some has debated the statement that events in Bosnia are unprecedented in the history of the modern world.Those who contest this statement present the figures of the World War II.However we must keep in mind that it was a World War and no country had the POWER to stop it,today is the matter not of the POWER but of the WILL.It\\n>seems to be that what we lack is the will.\\n\\nThe idea of the U.S, or any other nation, taking action, i.e., military\\nintervention, in Bosnia has not been well thought out by those who \\nadvocate such action. After the belligerants are subdued, it would require\\nan occupation force for one or two generations. If you will stop and\\nthink about it, you will realize that these people have never forgotten\\na single slight or injury, they have imbibed hatred with their mother's\\nmilk. If we stop the fighting, seize and destroy all weapons, they will\\nsimply go back to killing each other with clubs. And the price for this\\nfutility will be the lives of the young men and women we send there to\\ndie. A price I am unwilling to even consider.\\n\\n>Second point of difference (which makes it different from the holocast(sp?) ) is that at that time international community\\n>didnot have enough muscle to prevent the unfortunate event,\\n\\nThere is no valid comparison to the Holocaust. All of the Jewish people\\nthat I have known as friends were not brought up to hate. To be wary of\\nothers, most certainly, but not to hate. And except for the Warsaw\\nuprising, they were unarmed (and even in Warsaw badly out-gunned).\\nIt is very easy to speak of muscle when they are someone else's muscles.\\nSuppose we do this thing, what will you tell the parents, wives, children,\\nlovers of those we are sending to die? That they gave their lives in some noble cause? Noble cause, separating some mad dogs who will turn on them.\\n\\nWell, I will offer you some muscle. Suppose we tell them that they have\\none week (this will give foreign nationals time to leave) to cease\\ntheir bloodshed. At the end of that week, bring in the Tomahawk firing\\nships and destroy Belgrade as they destroyed the Bosnian cities. Perhaps\\nwhen some of their cities are reduced to rubble they will have a sudden\\nattack of brains. Send in missiles by all means, but do not send in\\ntroops.\\n\\n>today inspite of all the might,the international community is not just standing neutral but has placed an arms embargo which\\n\\nBy all means lift the embargo.\\n\\n>is to the obvious disadvantage of the weeker side and therefore to the advantage of the bully.Hence indirecltly and possibly\\n>unintentionally, mankind has sided with the killers.And this,I think is unprecedented in the history of the modern world.\\n\\nWhich killers? Do you honestly believe they are all on one side?\\n\\n>M.Rizvi\\n> \\nREB\\n\",\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Alaska Pipeline and Space Station!\\nOrganization: Express Access Online Communications USA\\nLines: 25\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr5.160550.7592@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n|\\n|I think this would be a great way to build it, but unfortunately\\n|current spending rules don't permit it to be workable. For this to\\n|work it would be necessary for the government to guarantee a certain\\n|minimum amount of business in order to sufficiently reduce the risk\\n|enough to make this attractive to a private firm. Since they\\n|generally can't allocate money except one year at a time, the\\n|government can't provide such a tenant guarantee.\\n\\n\\nFred.\\n\\n\\tTry reading a bit. THe government does lots of multi year\\ncontracts with Penalty for cancellation clauses. They just like to be\\ndamn sure they know what they are doing before they sign a multi year\\ncontract. THe reason they aren't cutting defense spending as much\\nas they would like is the Reagan administration signed enough\\nMulti year contracts, that it's now cheaper to just finish them out.\\n\\nLook at SSF. THis years funding is 2.2 Billion, 1.8 of which will\\ncover penalty clauses, due to the re-design.\\n\\npat\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian slaughter of defenseless Muslim children and pregnant women.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 81\\n\\nIn article <1993Apr20.232449.22318@kpc.com> henrik@quayle.kpc.com writes:\\n\\nBM] Gimme a break. CAPITAL letters, or NOT, the above is pure nonsense. \\nBM] It seems to me that short sighted Armenians are escalating the hostilities\\n\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n> Again, Armenians in KARABAKH are SIMPLY defending themselves. What do\\n\\nThe winding down of winter puts you in a heavy \\'Arromdian\\' mood? I\\'ll \\nsee if I can get our dear \"Mehmetcik\" to write you a letter giving\\nyou and your criminal handlers at the ASALA/SDPA/ARF Terrorism and\\nRevisionism Triangle some military pointers, like how to shoot armed\\nadult males instead of small Muslim children and pregnant women.\\n\\n\\nSource: \\'The Times,\\' 3 March 1992\\n\\nMASSACRE UNCOVERED....\\n\\nBy ANATOL LIEVEN,\\n\\nMore than sixty bodies, including those of women and children, have \\nbeen spotted on hillsides in Nagorno-Karabakh, confirming claims \\nthat Armenian troops massacred Azeri refugees. Hundreds are missing.\\n\\nScattered amid the withered grass and bushes along a small valley \\nand across the hillside beyond are the bodies of last Wednesday\\'s \\nmassacre by Armenian forces of Azerbaijani refugees.\\n\\nFrom that hill can be seen both the Armenian-controlled town of \\nAskeran and the outskirts of the Azerbaijani military headquarters \\nof Agdam. Those who died very nearly made it to the safety of their \\nown lines.\\n\\nWe landed at this spot by helicopter yesterday afternoon as the last \\ntroops of the Commonwealth of Independent states began pulling out. \\nThey left unhindered by the warring factions as General Boris Gromov, \\nwho oversaw the Soviet withdrawal from Afghanistan, flew to Stepanakert \\nto ease their departure.\\n\\nA local truce was enforced to allow the Azerbaijaines to collect their \\ndead and any refugees still hiding in the hills and forest. All the \\nsame, two attack helicopters circled continuously the nearby Armenian \\npositions.\\n\\nIn all, 31 bodies could be counted at the scene. At least another \\n31 have been taken into Agdam over the past five days. These figures \\ndo not include civilians reported killed when the Armenians stormed \\nthe Azerbaijani town of Khodjaly on Tuesday night. The figures also \\ndo not include other as yet undiscovered bodies\\n\\nZahid Jabarov, a survivor of the massacre, said he saw up to 200 \\npeople shot down at the point we visited, and refugees who came \\nby different routes have also told of being shot at repeatedly and \\nof leaving a trail of bodies along their path. Around the bodies \\nwe saw were scattered possessions, clothing and personnel documents. \\nThe bodies themselves have been preserved by the bitter cold which\\nkilled others as they hid in the hills and forest after the massacre. \\nAll are the bodies of ordinary people, dressed in the poor, ugly \\nclothing of workers.\\n\\nOf the 31 we saw, only one policeman and two apparent national \\nvolunteers were wearing uniform. All the rest were civilians, \\nincluding eight women and three small children. TWO GROUPS, \\nAPPARENTLY FAMILIES, HAD FALLEN TOGETHER, THE CHILDREN CRADLED \\nIN THE WOMEN\\'S ARMS.\\n\\nSEVERAL OF THEM, INCLUDING ONE SMALL GIRL, HAD TERRIBLE HEAD \\nINJURIES: ONLY HER FACE WAS LEFT. SURVIVORS HAVE TOLD HOW THEY \\nSAW ARMENIANS SHOOTING THEM POINT BLANK AS THEY LAY ON THE GROUND.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: The Israeli Press\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 48\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , benali@alcor.concordia.ca ( ILYESS B. BDIRA ) writes:\\n|> \\n|> Of course you never read Arab media,\\n\\nI don\\'t, though when I was in Israel I did make a point of listening\\nto JTV news, as well as Monte Carlo Radio. In the United States,\\nI generally read the NYT, and occasionally, a mainstream Israeli\\nnewpaper.\\n\\n|> I read Arab, ISRAELI (Jer. Post, and this network is more than enough)\\n|> and Western (American, French, and British) reports and I can say\\n|> that if we give Israel -10 and Arabs +10 on the bias scale (of course\\n|> you can switch the polarities) Israeli newspapers will get either\\n|> a -9 or -10, American leading newspapers and TV news range from -6\\n|> to -10 (yes there are some that are more Israelis than Israelis)\\n|> The Montreal suburban (a local free newspaper) probably is closer\\n|> to Kahane\\'s views than some Israeli right wing newspapers, British\\n|> range from 0 (neutral) to -10, French (that Iknow of, of course) range\\n|> from +2 (Afro-french magazines) to -10, Arab official media range from\\n|> 0 to -5 (Egyptian) to +9 in SA. Why no +10? Because they do not want to\\n|> overdo it and stir people against Israel and therefore against them since \\n|> they are doing nothing.\\n\\nWhat you may not be taking into account is that the JP is no longer\\nrepresentative of the mainstream in Israel. It was purchased a few\\nyears ago and in the battle for control, most of the liberal and\\nleft-wing reporters walked out. The new owner stated in the past,\\nmore than once, that the JP\\'s task should be geared towards explaining\\nand promoting Israel\\'s position, more than attacking the gov\\'t (Likud\\nat the time). The paper that I would recommend reading, being middle\\nstream and factual is \"Ha-Aretz\" - or at least this was the case two\\nyears ago.\\n\\n|> the average bias of what you read would be probably around -9,\\n|> while that of the average American would be the same if they do\\n|> not read or read the new-york times and similar News-makers, and\\n|> -8 if they read some other RELATIVELY less biased newspapers.\\n\\nAnd what about the \"Nat\\'l Enquirer\"? 8^)\\nBut seriously, if one were to read some of the leftist newspapers\\none could arrive at other conclusions. The information you received\\nwas highly selective and extrapolating from it is a bad move.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninja of the skies.\\nCambridge, MA |\\n',\n", + " 'From: dpw@sei.cmu.edu (David Wood)\\nSubject: Re: Gospel Dating\\nIn-Reply-To: mangoe@cs.umd.edu\\'s message of 4 Apr 93 10:56:03 GMT\\nOrganization: Software Engineering Institute\\nLines: 33\\n\\n\\n\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n\\n>>David Wood writes:\\n>>\\n>> \"Extraordinary claims require extraordinary evidence.\"\\n>\\n>More seriously, this is just a high-falutin\\' way of saying \"I don\\'t believe\\n>what you\\'re saying\".\\n\\nAre you making a meta-argument here? In any case, you are wrong. \\nThink of those invisible pink unicorns.\\n\\n>Also, the existence if Jesus is not an extradinary claim. \\n\\nI was responding to the \"historical accuracy... of Biblical claims\",\\nof which the existence of Jesus is only one, and one that was not even\\nmentioned in my post.\\n\\n>You may want to\\n>complain that the miracles attributed to him do constitute such claims (and\\n>I won\\'t argue otherwise), but that is a different issue.\\n\\nWrong. That was exactly the issue. Go back and read the context\\nincluded within my post, and you\\'ll see what I mean.\\n\\nNow that I\\'ve done you the kindness of responding to your questions,\\nplease do the same for me. Answer the Charley Challenges. Your claim\\nthat they are of the \"did not!/ did so!\" variety is a dishonest dodge\\nthat I feel certain fools only one person.\\n\\n--Dave Wood\\n',\n", + " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Observation re: helmets\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 40\\n\\nIn article <211353@mavenry.altcit.eskimo.com>,\\nmaven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n|> \\n|> Grf. Dropped my Shoei RF-200 off the seat of my bike while trying to\\n|> rock \\n|> it onto it\\'s centerstand, chipped the heck out of the paint on it...\\n|> \\n|> So I cheerfully spent $.59 on a bottle of testor\\'s model paint and \\n|> repainted the scratches and chips for 20 minutes.\\n|> \\n|> The question for the day is re: passenger helmets, if you don\\'t know\\n|> for \\n|> certain who\\'s gonna ride with you (like say you meet them at a ....\\n|> church \\n|> meeting, yeah, that\\'s the ticket)... What are some guidelines? Should\\n|> I just \\n|> pick up another shoei in my size to have a backup helmet (XL), or\\n|> should I \\n|> maybe get an inexpensive one of a smaller size to accomodate my\\n|> likely \\n|> passenger? \\n\\n My rule of thumb is \"Don\\'t give rides to people that wear\\na bigger helmet than you\", unless your taste runs that way,\\nor they are family.friends.\\nGee, reminds me of a *dancer* in Hull, just over the river \\nfrom Ottowa, that I saw a few years ago, for her I would a\\nbought a bigger helmet (or even her own bike) or anything \\nelse she wanted ;->\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", + " 'From: csc3phx@vaxa.hofstra.edu\\nSubject: Color problem.\\nLines: 8\\n\\n\\nI am scanning in a color image and it looks fine on the screen. When I \\nconverted it into PCX,BMP,GIF files so as to get it into MS Windows the colors\\ngot much lighter. For example the yellows became white. Any ideas?\\n\\nthanks\\nDan\\ncsc3phx@vaxc.hofstra.edu\\n',\n", + " \"From: weber@sipi.usc.edu (Allan G. Weber)\\nSubject: Need help with Mitsubishi P78U image printer\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 26\\nDistribution: na\\nNNTP-Posting-Host: sipi.usc.edu\\n\\nOur group recently bought a Mitsubishi P78U video printer and I could use some\\nhelp with it. We bought this thing because it (1) has a parallel data input in\\naddition to the usual video signal inputs and (2) claimed to print 256 gray\\nlevel images. However, the manual that came with it only describes how to\\nformat the parallel data to print 1 and 4 bit/pixel images. After some initial\\nproblems with the parallel interface I now have this thing running from a\\nparallel port of an Hewlett-Packard workstation and I can print 1 and 4\\nbit/pixel images just fine. I called the Mitsubishi people and asked about the\\n256 level claim and they said that was only available when used with the video\\nsignal inputs. This was not mentioned in the sales literature. However they\\ndid say the P78U can do 6 bit/pixel (64 level) images in parallel mode, but\\nthey didn't have any information about how to program it to do so, and they\\nwould call Japan, etc.\\n\\nFrankly, I find it hard to believe that if this thing can do 8 bit/pixel images\\nfrom the video source, it can't store 8 bits/pixel in the memory. It's not\\nlike memory is that expensive any more. If anybody has any information on\\ngetting 6 bit/pixel (or even 8 bit/pixel) images out of this thing, I would\\ngreatly appreciate your sending it to me.\\n\\nThanks.\\n\\nAllan Weber\\nSignal & Image Processing Institute\\nUniversity of Southern California\\nweber@sipi.usc.edu\\n\",\n", + " 'From: shag@aero.org (Rob Unverzagt)\\nSubject: Re: space food sticks\\nKeywords: food\\nArticle-I.D.: news.1pscc6INNebg\\nOrganization: Organization? You must be kidding.\\nLines: 35\\nNNTP-Posting-Host: aerospace.aero.org\\n\\nIn article <1pr5u2$t0b@agate.berkeley.edu> ghelf@violet.berkeley.edu (;;;;RD48) writes:\\n> I had spacefood sticks just about every morning for breakfast in\\n> first and second grade (69-70, 70-71). They came in Chocolate,\\n> strawberry, and peanut butter and were cylinders about 10cm long\\n> and 1cm in diameter wrapped in yellow space foil (well, it seemed\\n> like space foil at the time). \\n\\nWasn\\'t there a \"plain\" flavor too? They looked more like some\\nkind of extruded industrial product than food -- perfectly\\nsmooth cylinders with perfectly smooth ends. Kinda scary.\\n\\n> The taste is hard to describe, although I remember it fondly. It was\\n> most certainly more \"candy\" than say a modern \"Power Bar.\" Sort of\\n> a toffee injected with vitamins. The chocolate Power Bar is a rough\\n> approximation of the taste. Strawberry sucked.\\n\\nAn other post described it as like a \"microwaved Tootsie Roll\" --\\nwhich captures the texture pretty well. As for taste, they were\\nlike candy, only not very sweet -- does that make sense? I recall\\nliking them for their texture, not taste. I guess I have well\\ndeveloped texture buds.\\n\\n> Man, these were my \"60\\'s.\"\\n\\nIt was obligatory to eat a few while watching \"Captain Scarlet\".\\nDoes anybody else remember _that_, as long as we\\'re off the\\ntopic of space?\\n\\nShag\\n\\n-- \\n----------------------------------------------------------------------\\n Rob Unverzagt |\\n shag@aerospace.aero.org | Tuesday is soylent green day.\\nunverzagt@courier2.aero.org | \\n',\n", + " 'From: pbd@runyon.cim.cdc.com (Paul Dokas)\\nSubject: Big amateur rockets\\nOrganization: ICEM Systems, Inc.\\nLines: 23\\n\\nI was reading Popular Science this morning and was surprised by an ad in\\nthe back. I know that a lot of the ads in the back of PS are fringe\\nscience or questionablely legal, but this one really grabbed my attention.\\nIt was from a company name \"Personal Missle, Inc.\" or something like that.\\n\\nAnyhow, the ad stated that they\\'d sell rockets that were up to 20\\' in length\\nand engines of sizes \"F\" to \"M\". They also said that some rockets will\\nreach 50,000 feet.\\n\\nNow, aside from the obvious dangers to any amateur rocketeer using one\\nof these beasts, isn\\'t this illegal? I can\\'t imagine the FAA allowing\\npeople to shoot rockets up through the flight levels of passenger planes.\\nNot to even mention the problem of locating a rocket when it comes down.\\n\\nAnd no, I\\'m not going to even think of buying one. I\\'m not that crazy.\\n\\n\\n-Paul \"mine\\'ll do 50,000 feet and carries 50 pounds of dynamite\" Dokas\\n-- \\n#include \\n#define FULL_NAME \"Paul Dokas\"\\n#define EMAIL \"pbd@runyon.cim.cdc.com\"\\n/* Just remember, you *WILL* die someday. */\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n|> \\n|> >>But chimps are almost human...\\n|> >Does this mean that Chimps have a moral will?\\n|> \\n|> Well, chimps must have some system. They live in social groups\\n|> as we do, so they must have some \"laws\" dictating undesired behavior.\\n\\nAh, the verb \"to must\". I was warned about that one back\\nin Kindergarten.\\n\\nSo, why \"must\" they have such laws?\\n\\njon.\\n',\n", + " \"From: jfreund@taquito.engr.ucdavis.edu (Jason Freund)\\nSubject: Info on Medical Imaging systems\\nOrganization: College of Engineering - University of California - Davis\\nLines: 10\\n\\n\\n\\tHi, \\n\\n\\tIs anyone into medical imaging? I have a good ray tracing background,\\nand I'm interested in that field. Could you point me to some sources? Or\\nbetter yet, if you have any experience, do you want to talk about what's\\ngoing on or what you're working on?\\n\\nThanks,\\nJason Freund\\n\",\n", + " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: So, do any XXXX, I mean police officers read this stuff?\\nOrganization: Louisiana Tech University\\nLines: 22\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr20.163629.29153@iscnvx.lmsc.lockheed.com> jrlaf@sgi502.msd.lmsc.lockheed.com (J. R. Laferriere) writes:\\n\\n>I was just wondering if there were any law officers that read this. I have\\n>several questions I would like to ask pertaining to motorcycles and cops.\\n>And please don't say get a vehicle code, go to your local station, or obvious\\n>things like that. My questions would not be found in those places nor\\n>answered face to face with a real, live in the flesh, cop.\\n>If your brother had a friend who had a cousin whos father was a cop, etc.\\n>don't bother writing in. Thanks.\\n\\nI just gotta ask... What ARE these questions you want to ask an active cop?\\nWorking on your DoD qualfications? B-)\\n\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", + " \"From: mmadsen@bonnie.ics.uci.edu (Matt Madsen)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nNntp-Posting-Host: bonnie.ics.uci.edu\\nReply-To: mmadsen@ics.uci.edu (Matt Madsen)\\nOrganization: Univ. of Calif., Irvine, Info. & Computer Sci. Dept.\\nLines: 27\\n\\nRobert G. Carpenter writes:\\n\\n>Hi Netters,\\n>\\n>I'm building a CAD package and need a 3D graphics library that can handle\\n>some rudimentry tasks, such as hidden line removal, shading, animation, etc.\\n>\\n>Can you please offer some recommendations?\\n>\\n>I'll also need contact info (name, address, email...) if you can find it.\\n>\\n>Thanks\\n>\\n>(Please Post Your Responses, in case others have same need)\\n>\\n>Bob Carpenter\\n>\\n\\nI too would like a 3D graphics library! How much do C libraries cost\\nanyway? Can you get the tools used by, say, RenderMan, and can you get\\nthem at a reasonable cost?\\n\\nSorry that I don't have any answers, just questions...\\n\\nMatt Madsen\\nmmadsen@ics.uci.edu\\n\\n\",\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: pushing the envelope\\nOrganization: Texas Instruments Inc\\nDistribution: na\\nLines: 35\\n\\nIn <1993Apr3.233154.7045@Princeton.EDU> lije@cognito.Princeton.EDU (Elijah Millgram) writes:\\n\\n\\n>A friend of mine and I were wondering where the expression \"pushing\\n>the envelope\" comes from. Anyone out there know?\\n\\nEvery aircraft has flight constraints for speed/AOA/power. When\\ngraphed, these define the \\'flight envelope\\' of that aircraft,\\npresumably so named because the graphed line encloses (envelopes) the\\narea on the graph that represents conditions where the aircraft\\ndoesn\\'t fall out of the sky. Hence, \\'pushing the envelope\\' becomes\\n\\'operating at (or beyond) the edge of the flight (or operational)\\nenvelope\\'. \\n\\nNote that the envelope isn\\'t precisely known until someone actually\\nflies the airplane in those regions -- up to that point, all there are\\nare the theoretical predictions. Hence, one of the things test pilots\\ndo for a living is \\'push the envelope\\' to find out how close the\\ncorrespondence between the paper airplane and the metal one is -- in\\nessence, \\'pushing back\\' the edges of the theoretical envelope to where\\nthe airplane actually starts to fail to fly. Note, too, that this is\\ndone is a quite calculated and careful way; flight tests are generally\\ncarefully coreographed and just what is going to be \\'pushed\\' and how\\nfar is precisely planned (despite occasional deviations from plans,\\nsuch as the \\'early\\' first flight of the F-16 during its high-speed\\ntaxi tests).\\n\\nI\\'m sure Mary can tell you everything you ever wanted to know about\\nthis process (and then some).\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: gawne@stsci.edu\\nSubject: Re: Vulcan? (No, not the guy with the ears!)\\nDistribution: na\\nOrganization: Space Telescope Science Institute\\nLines: 42\\n\\nIn article , victor@inqmind.bison.mb.ca \\n(Victor Laking) writes:\\n> Does anyone have any info on the apparent sightings of Vulcan?\\n> \\n> All that I know is that there were apparently two sightings at \\n> drastically different times of a small planet that was inside Mercury\\'s \\n> orbit. Beyond that, I have no other info.\\n\\nThe sightings were apparently spurious. There is no planet inside of\\nthe orbit of Mercury.\\n\\nThe idea of Vulcan came from the differences between Mercury\\'s observed\\nperihelion precession and the value it should have had according to\\nNewtonian physics. Leverrier made an extensive set of observations\\nand calculations during the mid 19th century, and Simon Newcombe later\\nimproved on the observations and re-calculated using Leverrier\\'s system\\nof equations. Now Leverrier was one of the co-discoverers of Neptune\\nand since he had predicted its existence based on anomalies in the orbit\\nof Uranus his inclination was to believe the same sort of thing was\\nafoot with Mercury.\\n\\nBut alas, \\'twere not so. Mercury\\'s perihelion precesses at the rate\\nit does because the space where it resides near the sun is significantly\\ncurved due to the sun\\'s mass. This explanation had to wait until 1915\\nand Albert Einstein\\'s synthesis of his earlier theory of the electrodynamics\\nof moving bodies (commonly called Special Relativity) with Reimanian \\ngeometry. The result was the General Theory of Relativity, and one of\\nit\\'s most noteworthy strengths is that it accounts for the precession\\nof Mercury\\'s perihelion almost exactly. (Exactly if you use Newcomb\\'s\\nnumbers rather than Leverrier\\'s.)\\n\\nOf course not everybody believes Einstein, and that\\'s fine. But subsequent\\nefforts to find any planets closer to the sun than Mercury using radar\\nhave been fruitless.\\n\\n-Bill Gawne\\n\\n \"Forgive him, he is a barbarian, who thinks the customs of his tribe\\n are the laws of the universe.\" - G. J. Caesar\\n\\nAny opinions are my own. Nothing in this post constitutes an official\\nstatement from any person or organization.\\n',\n", + " \"From: rytg7@fel.tno.nl (Q. van Rijt)\\nSubject: Re: Sphere from 4 points?\\nOrganization: TNO Physics and Electronics Laboratory\\nLines: 26\\n\\nThere is another useful method based on Least Sqyares Estimation of the sphere equation parameters.\\n\\nThe points (x,y,z) on a spherical surface with radius R and center (a,b,c) can be written as \\n\\n (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2\\n\\nThis equation can be rewritten into the following form: \\n\\n 2ax + 2by + 2cz + R^2 - a^2 - b^2 -c^2 = x^2 + y^2 + z^2\\n\\nApproximate the left hand part by F(x,y,z) = p1.x + p2.x + p3.z + p4.1\\n\\nFor all datapoints, i.c. 4, determine the 4 parameters p1..p4 which minimise the average error |F(x,y,z) - x^2 - y^2 - z^2|^2.\\n\\nIn 'Numerical Recipes in C' can be found algorithms to solve these parameters.\\n\\nThe best fitting sphere will have \\n- center (a,b,c) = (p1/2, p2/2, p3/2)\\n- radius R = sqrt(p4 + a.a + b.b + c.c).\\n\\nSo, at last, will this solve you sphere estination problem, at least for the most situations I think ?.\\n\\nQuick van Rijt, rytg7@fel.tno.nl\\n\\n\\n\\n\",\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Jews can\\'t hide from keith@cco.\\nOrganization: sgi\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article , karner@austin.ibm.com (F. Karner) writes:\\n>\\n> So, you consider the german poster\\'s remark anti-semitic? \\n\\nWhen someone says:\\n\\n\\t\"So after 1000 years of sightseeing and roaming around its \\n\\tok to come back, kill Palastinians, and get their land back, \\n\\tright?\"\\n\\nYes, that\\'s casual antisemitism. I can think of plenty of ways\\nto criticize Israeli policy without insulting Jews or Jewish history.\\n\\nCan\\'t you?\\n\\njon \\n',\n", + " \"From: nicho@vnet.IBM.COM (Greg Stewart-Nicholls)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nReply-To: nicho@vnet.ibm.com\\nDisclaimer: This posting represents the poster's views, not those of IBM\\nNews-Software: UReply 3.1\\nX-X-From: nicho@vnet.ibm.com\\n \\nLines: 15\\n\\nIn Greg Hennessy writes:\\n>In article <1r6aqr$dnv@access.digex.net> prb@access.digex.com (Pat) writes:\\n>#The better question should be.\\n>#Why not transfer O&M of all birds to a separate agency with continous funding\\n>#to support these kind of ongoing science missions.\\n>\\n>Since we don't have the money to keep them going now, how will\\n>changing them to a seperate agency help anything?\\n>\\nHow about transferring control to a non-profit organisation that is\\nable to accept donations to keep craft operational.\\n -----------------------------------------------------------------\\nGreg Nicholls ... : Vidi\\nnicho@vnet.ibm.com or : Vici\\nnicho@olympus.demon.co.uk : Veni\\n\",\n", + " 'From: joerg@sax.sax.de (Joerg Wunsch)\\nSubject: About the various DXF format questions\\nOrganization: SaxNet, Dresden, Germany\\nLines: 25\\nDistribution: world\\nNNTP-Posting-Host: sax.sax.de\\nSummary: List of sites holding documentation of DXF format\\nKeywords: DXF, graphics formats\\n\\nArchie told me the following sites holding documentation about DXF:\\n\\nHost nic.funet.fi (128.214.6.100)\\nLast updated 15:11 7 Apr 1993\\n\\n Location: /pub/csc/graphics/format\\n FILE rwxrwxr-- 95442 Dec 4 1991 dxf.doc\\n\\nHost rainbow.cse.nau.edu (134.114.64.24)\\nLast updated 17:09 1 Jun 1992\\n\\n Location: /graphics/formats\\n FILE rw-r--r-- 95442 Mar 23 23:31 dxf.doc\\n\\nHost ftp.waseda.ac.jp (133.9.1.32)\\nLast updated 00:47 5 Apr 1993\\n\\n Location: /pub/data/graphic\\n FILE rw-r--r-- 39753 Nov 18 1991 dxf.doc.Z\\n\\n-- \\nJ\"org Wunsch, ham: dl8dtl : joerg_wunsch@uriah.sax.de\\nIf anything can go wrong... : ...or:\\n .o .o : joerg@sax.de,wutcd@hadrian.hrz.tu-chemnitz.de,\\n <_ ... IT WILL! : joerg_wunsch@tcd-dresden.de\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Shuttle oxygen (was Budget Astronaut)\\nOrganization: Express Access Online Communications USA\\nLines: 11\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nI thought that under emergency conditions, the STS can\\nput down at any good size Airport. IF it could take a C-5 or a\\n747, then it can take an orbiter. You just need a VOR/TAC\\n\\nI don't know if they need ILS.\\n\\npat\\n\\nANyone know for sure.\\n\",\n", + " 'From: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nSubject: Re: How many israeli soldiers does it take to kill a 5 yr old child?\\nReply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nOrganization: The National Capital Freenet\\nLines: 27\\n\\n\\nIn a previous article, steel@hal.gnu.ai.mit.edu (Nick Steel) says:\\n\\n>Q: How many occupying israeli soldiers (terrorists) does it \\n> take to kill a 5 year old native child?\\n>\\n>A: Four\\n>\\n>Two fasten his arms, one shoots in the face,\\n>and one writes up a false report.\\n\\nThis newsgroup is for intelligent discussion. I want you to either smarten\\nup and stop this bullshit posting or get the fuck out of my face and this\\nnet.\\n\\n Steve\\n\\n-- \\n------------------------------------------------------------------------------\\n| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\\n| Mossad@qube.ocunix.on.ca |\\n| <> |\\n',\n", + " \"From: tony@morgan.demon.co.uk (Tony Kidson)\\nSubject: Re: Info on Sport-Cruisers \\nDistribution: world\\nOrganization: The Modem Palace\\nReply-To: tony@morgan.demon.co.uk\\nX-Newsreader: Simple NEWS 1.90 (ka9q DIS 1.21)\\nLines: 25\\n\\nIn article <4foNhvm00WB4E5hUxB@andrew.cmu.edu> jae+@CMU.EDU writes:\\n\\n>I'm looking for a sport-cruiser - factory installed fairings (\\n>full/half ), hard saddle bags, 750cc and above, and all that and still\\n>has that sporty look.\\n>\\n>I particularly like the R100RS and K75 RT or S, or any of the K series\\n>BMW bikes.\\n>\\n>I was wondering if there are any other comparable type bikes being\\n>produced by companies other than BMW.\\n\\n\\nThe Honda ST1100 was designed by Honda in Germany, originally for the \\nEuropean market, as competition for the BMW 'K' series. Check it out.\\n\\nTony\\n\\n+---------------+------------------------------+-------------------------+\\n|Tony Kidson | ** PGP 2.2 Key by request ** |Voice +44 81 466 5127 |\\n|Morgan Towers, | The Cat has had to move now |E-Mail(in order) |\\n|Morgan Road, | as I've had to take the top |tony@morgan.demon.co.uk |\\n|Bromley, | off of the machine. |tny@cix.compulink.co.uk |\\n|England BR1 3QE|Honda ST1100 -=<*>=- DoD# 0801|100024.301@compuserve.com|\\n+---------------+------------------------------+-------------------------+\\n\",\n", + " 'Subject: Cornerstone DualPage driver wanted\\nFrom: tkelder@ebc.ee (Tonis Kelder)\\nNntp-Posting-Host: kask.ebc.ee\\nX-Newsreader: TIN [version 1.1 PL8]Lines: 12\\nLines: 12\\n\\n\\n\\nI am looking for a WINDOW 3.1 driver for \\n Cornerstone DualPage (Cornerstone Technology, Inc) \\nvideo card. Does anybody know, that has these? Is there one?\\n\\nThanks for any info,\\n\\nTo~nis\\n-- \\nTo~nis Kelder Estonian Biocentre (tkelder@kask.ebc.ee)\\n\\n',\n", + " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: YOU WILL ALL GO TO HELL!!!\\nOrganization: Technical University Braunschweig, Germany\\nLines: 18\\n\\nIn article <93108.020701TAN102@psuvm.psu.edu>\\nAndrew Newell writes:\\n \\n>>In article <93106.155002JSN104@psuvm.psu.edu> writes:\\n>>>YOU BLASHEPHEMERS!!! YOU WILL ALL GO TO HELL FOR NOT BELIEVING IN GOD!!!! BE\\n>>>PREPARED FOR YOUR ETERNAL DAMNATION!!!\\n>>\\n>>readers of the group. How convenient that he doesn't have a real name...\\n>>Let's start up the letters to the sysadmin, shall we?\\n>\\n>His real name is Jeremy Scott Noonan.\\n>vmoper@psuvm.psu.edu should have at least some authority,\\n>or at least know who to email.\\n>\\n \\nPOSTMAST@PSUVM.BITNET respectively P_RFOWLES or P_WVERITY (the sys admins)\\nat the same node are probably a better idea than the operator.\\n Benedikt\\n\",\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Ten questions about Israel\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 64\\n\\nIn article <1483500349@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\nTen Questions about arab countries\\n----------------------------------\\n\\nI would be thankful if any of you who live in arab countries could\\nhelp to provide accurate answers to the following specific questions.\\nThese are indeed provocative questions but they are asked time and\\nagain by people around me.\\n\\n1. Is it true that many arab countries don\\'t recognize\\nIsraeli nationality ? That people with Israeli stamps on their\\npassports can\\'t enter arabic countries?\\n\\n2. Is it true that arabic countries such as Jordan and Syria\\nhave undefined borders and that arab governments from 1948 until today\\nhave refused to state where the ultimate borders of their states\\nshould be?\\n\\n3. Is it true that arab countires refused to sign the Chemical\\nweapon convention treaty in Paris in 1993?\\n\\n4. Is it true that in arab prisons there are a number of\\nindividuals which were tried in secret and for which their\\nidentities, the date of their trial and their imprisonment are\\nstate secrets ?\\n\\n4a.\\tIs it true that some arab countries, like Syria, harbor Nazi\\nwar criminals, and refuse to extradite them?\\n\\n4b.\\tIs it true that some arab countries, like Saudi Arabia,\\nprohibit women from driving cars?\\n\\n5. Is it true that Jews who reside in the Muslim\\ncountries are subject to different laws than Muslims?\\n\\n6. Is it true that arab countries confiscated the property of\\nentire Jewish communites forced to flee by anti-Jewish riots?\\n\\n7. Is it true that Israel\\'s Prime Minister, Y. Rabin, signed\\na chemical weapons treaty that no arab nation was willing to sign?\\n\\n8. Is it true that Syrian Jews are required to leave a $10,000\\ndeposit before leaving the country, and are no longer allowed to\\nemmigrate, despite promises made by Hafez Assad to George Bush?\\n\\n9.\\t Is it true that Jews in Muslim lands are required to pay a\\nspecial tax, for being Jews?\\n\\n10. Is it true that Intercontinental Hotel in Jerusalem was built\\non a Jewish cemetary, with roads being paved over grave sites, and\\ngravestones being used in Jordanian latrines?\\n\\n11.\\tIs it really cheesy and inappropriate to post lists of biased\\nleading questions?\\n\\n11a.\\tIs it less appropriate if information implied in Mr.\\nDavidsson\\'s questions is highly misleading?\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 162\\n\\nC.Wainwright (eczcaw@mips.nott.ac.uk) wrote:\\n: I\\n: |> Jim,\\n: |> \\n: |> I always thought that homophobe was only a word used at Act UP\\n: |> rallies, I didn\\'t beleive real people used it. Let\\'s see if we agree\\n: |> on the term\\'s definition. A homophobe is one who actively and\\n: |> militantly attacks homosexuals because he is actually a latent\\n: |> homosexual who uses his hostility to conceal his true orientation.\\n: |> Since everyone who disapproves of or condemns homosexuality is a\\n: |> homophobe (your implication is clear), it must necessarily follow that\\n: |> all men are latent homosexuals or bisexual at the very least.\\n: |> \\n: \\n: Crap crap crap crap crap. A definition of any type of \\'phobe comes from\\n: phobia = an irrational fear of. Hence a homophobe (not only in ACT UP meetings,\\n: the word is apparently in general use now. Or perhaps it isn\\'t in the bible? \\n: Wouldst thou prefer if I were to communicate with thou in bilespeak?)\\n: \\n: Does an arachnophobe have an irrational fear of being a spider? Does an\\n: agoraphobe have an irrational fear of being a wide open space? Do you\\n: understand English?\\n: \\n: Obviously someone who has phobia will react to it. They will do their best\\n: to avoid it and if that is not possible they will either strike out or\\n: run away. Or do gaybashings occur because of natural processes? People\\n: who definately have homophobia will either run away from gay people or\\n: cause them (or themselves) violence.\\n: \\n\\nIsn\\'t that what I said ...\\nWhat are you taking issue with here, your remarks are merely\\nparenthetical to mine and add nothing useful.\\n\\n: [...]\\n: \\n: |> It would seem odd if homosexuality had any evolutionary function\\n: |> (other than limiting population growth) since evolution only occurs\\n: |> when the members of one generation pass along their traits to\\n: |> subsequent generations. Homosexuality is an evolutionary deadend. If I\\n: |> take your usage of the term, homophobe, in the sense you seem to\\n: |> intend, then all men are really homosexual and evolution of our\\n: |> species at least, is going nowhere.\\n: |> \\n: \\n: So *every* time a man has sex with a woman they intend to produce children?\\n: Hmm...no wonder the world is overpopulated. Obviously you keep to the\\n: Monty Python song: \"Every sperm is sacred\". And if, as *you* say, it has\\n: a purpose as a means to limit population growth then it is, by your own \\n: arguement, natural.\\n\\nConsider the context, I\\'m talking about an evolutionary function. One\\nof the most basic requirements of evolution is that members of a\\nspecies procreate, those who don\\'t have no purpose in that context.\\n\\n: \\n: |> Another point is that if the offspring of each generation is to\\n: |> survive, the participation of both parents is necessary - a family must\\n: |> exist, since homosexuals do not reproduce, they cannot constitute a\\n: |> family. Since the majority of humankind is part of a family,\\n: |> homosexuality is an evolutionary abberation, contrary to nature if you\\n: |> will.\\n: |> \\n: \\n: Well if that is true, by your own arguements homosexuals would have \\n: vanished *years* ago due to non-procreation. Also the parent from single\\n: parent families should put the babies out in the cold now, cos they must,\\n: by your arguement, die.\\n\\nBy your argument, homosexuality is genetically determined. As to your\\nsecond point, you prove again that you have no idea what context\\nmeans. I am talking about evolution, the preservation of the species,\\nthe fundamental premise of the whole process.\\n: \\n: |> But it gets worse. Since the overwhelming majority of people actually\\n: |> -prefer- a heterosexual relationship, homosexuality is a social\\n: |> abberation as well. The homosexual eschews the biological imperative\\n: |> to reproduce and then the social imperative to form and participate in\\n: |> the most fundamental social element, the family. But wait, there\\'s\\n: |> more.\\n: |> \\n: \\n: Read the above. I expect you to have at least ten children by now, with\\n: the family growing. These days sex is less to do with procreation (admittedly\\n: without it there would be no-one) but more to do with pleasure. In pre-pill\\n: and pre-condom days, if you had sex there was the chance of producing children.\\n: These days is just ain\\'t true! People can decide whether or not to have \\n: children and when. Soon they will be able to choose it\\'s sex &c (but that\\'s \\n: another arguement...) so it\\'s more of a \"lifestyle\" decision. Again by\\n: your arguement, since homosexuals can not (or choose not) to reproduce they must\\n: be akin to people who decide to have sex but not children. Both are \\n: as \"unnatural\" as each other.\\n\\nYet another non-sequitur. Sex is an evolutionary function that exists\\nfor procreation, that it is also recreation is incidental. That\\nhomosexuals don\\'t procreate means that sex is -only- recreation and\\nnothing more; they serve no -evolutionary- purpose.\\n\\n: \\n: |> Since homosexuals have come out the closet and have convinced some\\n: |> policy makers that they have civil rights, they are now claiming that\\n: |> their sexuality is a preference, a life-style, an orientation, a\\n: |> choice that should be protected by law. Now if homosexuality is a mere\\n: |> choice and if it is both contrary to nature and anti-social, then it\\n: |> is a perverse choice; they have even less credibility than before they\\n: |> became prominent. \\n: |> \\n: \\n: People are people are people. Who are you to tell anyone else how to live\\n: their life? Are you god(tm)? If so, fancy a date?\\n\\nHere\\'s pretty obvious dodge, do you really think you\\'ve said anything\\nor do you just feel obligated to respond to every statement? I am not\\ntelling anyone anything, I am demonstrating that there are arguments\\nagainst the practice of homosexuality (providing it\\'s a merely an\\nalternate lifestlye) that are not homophobic, that one can reasonably\\ncall it perverse in a context even a atheist can understand. I realize\\nof course that this comes dangerously close to establishing a value,\\nand that atheists are compelled to object on that basis, but if you\\nare to be consistent, you have no case in this regard.\\n: \\n: |> To characterize any opposition to homosexuality as homophobic is to\\n: |> ignore some very compelling arguments against the legitimization of\\n: |> the homosexual \"life-style\". But since the charge is only intended to\\n: |> intimidate, it\\'s really just demogoguery and not to be taken\\n: |> seriously. Fact is, Jim, there are far more persuasive arguments for\\n: |> suppressing homosexuality than those given, but consider this a start.\\n: |> \\n: \\n: Again crap. All your arguments are based on outdated ideals. Likewise the\\n: bible. Would any honest Christian condemn the ten generations spawned by\\n: a \"bastard\" to eternal damnation? Or someone who crushes his penis (either\\n: accidently or not..!). Both are in Deuteronomy.\\n\\nI\\'m sure your comment pertains to something, but you\\'ve disguised it\\nso well I can\\'t see what. Where did I mention ideals, out-dated or\\notherwise? Your arguments are very reactionary; do you have anything\\nat all to contribute?\\n\\n: \\n: |> As to why homosexuals should be excluded from participation in\\n: |> scouting, the reasons are the same as those used to restrict them from\\n: |> teaching; by their own logic, homosexuals are deviates, social and\\n: |> biological. Since any adult is a role model for a child, it is\\n: |> incumbent on the parent to ensure that the child be isolated from\\n: |> those who would do the child harm. In this case, harm means primarily\\n: |> social, though that could be extended easily enough.\\n: |> \\n: |> \\n: \\n: You show me *anyone* who has sex in a way that everyone would describe as\\n: normal, and will take of my hat (Puma baseball cap) to you. \"One man\\'s meat\\n: is another man\\'s poison\"!\\n: \\n\\nWhat has this got to do with anything? Would you pick a single point\\nthat you find offensive and explain your objections, I would really\\nlike to believe that you can discuss this issue intelligibly.\\n\\nBill\\n\\n\\n',\n", + " 'From: tcora@pica.army.mil (Tom Coradeschi)\\nSubject: Re: \"Beer\" unto bicyclists\\nOrganization: Elect Armts Div, US Army Armt RDE Ctr, Picatinny Arsenal, NJ\\nLines: 23\\nNntp-Posting-Host: b329-gator-3.pica.army.mil\\n\\nIn article <31MAR199308594057@erich.triumf.ca>, ivan@erich.triumf.ca (Ivan\\nD. Reid) wrote:\\n> \\n> In article ,\\n> \\t tcora@pica.army.mil (Tom Coradeschi) writes...\\n> >mxcrew@PROBLEM_WITH_INEWS_DOMAIN_FILE (The MX-Crew) wrote:\\n> >> just an information (no flame war please): Budweiser is a beer from the\\n> >> old CSFR (nowadays ?Tschechien? [i just know the german word]).\\n> \\n> >Czechoslovakia. Budweiser Budwar (pronounced bud-var).\\n> ^^^^^^^^^^^^^^\\n> \\tNot any more, a short while ago (Jan 1st?) it split into The Czech\\n> Republic and Slovakia. Actually, I think for a couple of years its official\\n> name was \"The Czech and Slovak Republics\". Sheesh! Don\\'t you guys get CNN??\\n\\nCNN=YuppieTV\\n\\n tom coradeschi <+> tcora@pica.army.mil\\n \\n \"Usenet is like a herd of performing elephants with diarrhea -- massive,\\ndifficult to redirect, awe-inspiring, entertaining, and a source of mind-\\nboggling amounts of excrement when you least expect it.\"\\n --gene spafford, 1992\\n',\n", + " \"From: ()\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: nstlm66\\nOrganization: Bell-Northern Research, Ottawa, Canada\\nLines: 21\\n\\nIn article <115561@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) wrote:\\n\\n>Khomeini advocates the view that\\n> there was a series of twelve Islamic leaders (the Twelve Imams) who\\n> are free of error or sin. This makes him a heretic.\\n> \\n\\nWow, you're quicker to point out heresy than the Church in the\\nMiddle ages. Seriously though, even the Sheiks at Al-Azhar don't\\nclaim that the Shi'ites are heretics. Most of the accusations\\nand fabrications about Shi'ites come out of Saudi Arabia from the\\nWahabis. For that matter you should read the original works of\\nthe Sunni Imams (Imams of the four madhabs). The teacher of\\nat least two of them was Imam Jafar Sadiq (the sixth Imam of the\\nShi'ites). \\n\\nAlthough there is plenty of false propaganda floating around\\nabout the Shi'ites (esp. since the revolution), there are also\\nmany good works by Shi'ites which present the views and teachings\\nof their school. Why make assumptions and allegations (like\\npeople in this group have done about Islam in general) about Shi'ites.\\n\",\n", + " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: Re: rejoinder. Questions to Israelis\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 25\\n\\n\\nIn article <1483500352@igc.apc.org>, Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: rejoinder. Questions to Israelis\\n>\\n>\\n>To: shaig@Think.COM\\n>\\n>Subject: Ten questions to Israelis\\n>\\n>Dear Shai,\\n>\\n>Your answers to my questions are unsatisfactory.\\n\\n\\n\\nSo why don\\'t ypu sue him.\\n\\n----\\n\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", + " \"From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Ancient islamic rituals\\nOrganization: Monash University, Melb., Australia.\\nLines: 21\\n\\nIn <16BA6C947.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n\\n>In article <1993Apr3.081052.11292@monu6.cc.monash.edu.au>\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n> \\n>>There has been some discussion on the pros and cons about sex outside of\\n>>marriage.\\n>>\\n>>I personally think that part of the value of having lasting partnerships\\n>>between men and women is that this helps to provide a stable and secure\\n>>environment for children to grow up in.\\n>(Deletion)\\n> \\n>As an addition to Chris Faehl's post, what about homosexuals?\\n\\nWell, from an Islamic viewpoint, homosexuality is not the norm for\\nsociety. I cannot really say much about the Islamic viewpoint on homosexuality \\nas it is not something I have done much research on.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n\",\n", + " \"From: robert@cpuserver.acsc.com (Robert Grant)\\nSubject: Virtual Reality for X on the CHEAP!\\nOrganization: USCACSC, Los Angeles\\nLines: 187\\nDistribution: world\\nReply-To: robert@cpuserver.acsc.com (Robert Grant)\\nNNTP-Posting-Host: cpuserver.acsc.com\\n\\nHi everyone,\\n\\nI thought that some people may be interested in my VR\\nsoftware on these groups:\\n\\n*******Announcing the release of Multiverse-1.0.2*******\\n\\nMultiverse is a multi-user, non-immersive, X-Windows based Virtual Reality\\nsystem, primarily focused on entertainment/research.\\n\\nFeatures:\\n\\n Client-Server based model, using Berkeley Sockets.\\n No limit to the number of users (apart from performance).\\n Generic clients.\\n Customizable servers.\\n Hierachical Objects (allowing attachment of cameras and light sources).\\n Multiple light sources (ambient, point and spot).\\n Objects can have extension code, to handle unique functionality, easily\\n attached.\\n\\nFunctionality:\\n\\n Client:\\n The client is built around a 'fast' render loop. Basically it changes things\\n when told to by the server and then renders an image from the user's\\n viewpoint. It also provides the server with information about the user's\\n actions - which can then be communicated to other clients and therefore to\\n other users.\\n\\n The client is designed to be generic - in other words you don't need to\\n develop a new client when you want to enter a new world. This means that\\n resources can be spent on enhancing the client software rather than adapting\\n it. The adaptations, as will be explained in a moment, occur in the servers.\\n\\n This release of the client software supports the following functionality:\\n\\n o Hierarchical Objects (with associated addressing)\\n\\n o Multiple Light Sources and Types (Ambient, Point and Spot)\\n\\n o User Interface Panels\\n\\n o Colour Polygonal Rendering with Phong Shading (optional wireframe for\\n\\tfaster frame rates)\\n\\n o Mouse and Keyboard Input\\n\\n (Some people may be disappointed that this software doesn't support the\\n PowerGlove as an input device - this is not because it can't, but because\\n I don't have one! This will, however, be one of the first enhancements!)\\n\\n Server(s):\\n This is where customization can take place. The following basic support is\\n provided in this release for potential world server developers:\\n\\n o Transparent Client Management\\n\\n o Client Message Handling\\n\\n This may not sound like much, but it takes away the headache of\\naccepting and\\n terminating clients and receiving messages from them - the\\napplication writer\\n can work with the assumption that things are happening locally.\\n\\n Things get more interesting in the object extension functionality. This is\\n what is provided to allow you to animate your objects:\\n\\n o Server Selectable Extension Installation:\\n What this means is that you can decide which objects have extended\\n functionality in your world. Basically you call the extension\\n initialisers you want.\\n\\n o Event Handler Registration:\\n When you develop extensions for an object you basically write callback\\n functions for the events that you want the object to respond to.\\n (Current events supported: INIT, MOVE, CHANGE, COLLIDE & TERMINATE)\\n\\n o Collision Detection Registration:\\n If you want your object to respond to collision events just provide\\n some basic information to the collision detection management software.\\n Your callback will be activated when a collision occurs.\\n\\n This software is kept separate from the worldServer applications because\\n the application developer wants to build a library of extended objects\\n from which to choose.\\n\\n The following is all you need to make a World Server application:\\n\\n o Provide an initWorld function:\\n This is where you choose what object extensions will be supported, plus\\n any initialization you want to do.\\n\\n o Provide a positionObject function:\\n This is where you determine where to place a new client.\\n\\n o Provide an installWorldObjects function:\\n This is where you load the world (.wld) file for a new client.\\n\\n o Provide a getWorldType function:\\n This is where you tell a new client what persona they should have.\\n\\n o Provide an animateWorld function:\\n This is where you can go wild! At a minimum you should let the objects\\n move (by calling a move function) and let the server sleep for a bit\\n (to avoid outrunning the clients).\\n\\n That's all there is to it! And to prove it here are the line counts for the\\n three world servers I've provided:\\n\\n generic - 81 lines\\n dactyl - 270 lines (more complicated collision detection due to the\\n stairs! Will probably be improved with future\\n versions)\\n dogfight - 72 lines\\n\\nLocation:\\n\\n This software is located at the following site:\\n ftp.u.washington.edu\\n\\n Directory:\\n pub/virtual-worlds\\n\\n File:\\n multiverse-1.0.2.tar.Z\\n\\nFutures:\\n\\n Client:\\n\\n o Texture mapping.\\n\\n o More realistic rendering: i.e. Z-Buffering (or similar), Gouraud shading\\n\\n o HMD support.\\n\\n o Etc, etc....\\n\\n Server:\\n\\n o Physical Modelling (gravity, friction etc).\\n\\n o Enhanced Object Management/Interaction\\n\\n o Etc, etc....\\n\\n Both:\\n\\n o Improved Comms!!!\\n\\nI hope this provides people with a good understanding of the Multiverse\\nsoftware,\\nunfortunately it comes with practically zero documentation, and I'm not sure\\nwhether that will ever be able to be rectified! :-(\\n\\nI hope people enjoy this software and that it is useful in our explorations of\\nthe Virtual Universe - I've certainly found fascinating developing it, and I\\nwould *LOVE* to add support for the PowerGlove...and an HMD :-)!!\\n\\nFinally one major disclaimer:\\n\\nThis is totally amateur code. By that I mean there is no support for this code\\nother than what I, out the kindness of my heart, or you, out of pure\\ndesperation, provide. I cannot be held responsible for anything good or bad\\nthat may happen through the use of this code - USE IT AT YOUR OWN RISK!\\n\\nDisclaimer over!\\n\\nOf course if you love it, I would like to here from you. And anyone with\\nPOSITIVE contributions/criticisms is also encouraged to contact me. Anyone who\\nhates it: > /dev/null!\\n\\n************************************************************************\\n*********\\nAnd if anyone wants to let me do this for a living: you know where to\\nwrite :-)!\\n************************************************************************\\n*********\\n\\nThanks,\\n\\nRobert.\\n\\nrobert@acsc.com\\n^^^^^^^^^^^^^^^\\n\",\n", + " 'From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Need advice for riding with someone on pillion\\nKeywords: advice, pillion, help!\\nOrganization: NEC Systems Laboratory, Inc.\\nDistribution: na\\nLines: 40\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n>I need some advice on having someone ride pillion with me on my 750 Ninja.\\n>This will be the the first time I\\'ve taken anyone for an extended ride\\n>(read: farther than around the block :-). We\\'ll be riding some twisty, \\n>fairly bumpy roads (the Mines Road-Mt.Hamilton Loop for you SF Bay Areans).\\n\\n\\tYou sonuvabitch. Rub it in, why don\\'t you? \"We have great weather\\nand great roads here, unlike the rest of you putzes in the U.S. Nyah, nyah,\\nnyah.\"\\n\\n\\t:-) for the severely humor-impaired.\\n\\n>This person is <100 lbs. and fairly small, so I don\\'t see weight as too much\\n>of a problem, but what sort of of advice should I give her before we go?\\n>I want her to hold onto me :-) rather than the grab rail out back, and\\n>I\\'ve heard that she should look over my shoulder in the direction we\\'re\\n>turning so she leans *with* me, but what else? Are there traditional\\n>signals for SLOW DOWN!! or GO FASTER!! or I HAFTA GO PEE!! etc.???\\n\\n\\tYou\\'ll likely not notice her weight too much. A piece of advice\\nfor you: don\\'t be abrupt with the throttle. No wheelies, accelerate a\\nwee bit more slowly than usual. Consciously worry about spitting her off\\nthe back. It\\'s as much your job to keep her on the pillion as it is hers,\\nand I guarantee she\\'ll be put off by the bike ripping out from under her\\nwhen you whack it open. Keep the lean angles pretty tame the first time\\nout too. You and her need to learn each other\\'s body English. She needs\\nto learn what your idea is about how to take the turn, and you need to\\nlearn her idea of \"shit! Don\\'t crash now!\" so you don\\'t work at cross\\npurposes while leaned over. You can work up to more aggressive riding over\\ntime.\\n\\n\\tA very important thing: tell her to put her hand against the tank\\nwhen you brake--this could save you some severely crushed cookies.\\n\\nHave fun,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n',\n", + " \"From: bgardner@bambam.es.com (Blaine Gardner)\\nSubject: Re: Why I won't be getting my Low Rider this year\\nKeywords: congratz\\nArticle-I.D.: dsd.1993Apr6.044018.23281\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 23\\nNntp-Posting-Host: bambam\\n\\nIn article <1993Apr5.182851.23410@cbnewsj.cb.att.com> car377@cbnewsj.cb.att.com (charles.a.rogers) writes:\\n>In article <1993Mar30.214419.923@pb2esac.uucp>, prahren@pb2esac.uucp (Peter Ahrens) writes:\\n \\n>> That would be low drag bars and way rad rearsets for the FJ, so that the \\n>> ergonomic constraints would have contraceptive consequences?\\n>\\n>Ouch. :-) This brings to mind one of the recommendations in the\\n>Hurt Study. Because the rear of the gas tank is in close proximity\\n>to highly prized and easily damaged anatomy, Hurt et al recommended\\n>that manufacturers build the tank so as to reduce the, er, step function\\n>provided when the rider's body slides off of the seat and onto the\\n>gas tank in the unfortunate event that the bike stops suddenly and the \\n>rider doesn't. I think it's really inspiring how the manufacturers\\n>have taken this advice to heart in their design of bikes like the \\n>CBR900RR and the GTS1000A.\\n\\nI dunno, on my old GS1000E the tank-seat junction was nice and smooth.\\nBut if you were to travel all the way forward, you'd collect the top\\ntriple-clamp in a sensitive area. I'd hate to have to make the choice,\\nbut I think I'd prefer the FJ's gas tank. :-)\\n-- \\nBlaine Gardner @ Evans & Sutherland\\nbgardner@dsd.es.com\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The wholesale extermination of the Muslim population by the Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 82\\n\\nIn article arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>But some of this is verifiable information. For instance, the person who\\n>knows about the buggy product may be able to tell you how to reproduce the\\n>bug on your own, but still fears retribution if it were to be known that he\\n>was the one who told the public how to do so.\\n\\nTypical \\'Arromdian\\' of the ASALA/SDPA/ARF Terrorism and Revisionism \\nTriangle. Well, does it change the fact that during the period of 1914 \\nto 1920, the Armenian Government ordered, incited, assisted and participated \\nin the genocide of 2.5 million Muslim people because of race, religion\\nand national origin?\\n\\n\\n1) Armenians did slaughter the entire Muslim population of Van.[1,2,3,4,5]\\n2) Armenians did slaughter 42% of Muslim population of Bitlis.[1,2,3,4]\\n3) Armenians did slaughter 31% of Muslim population of Erzurum.[1,2,3,4]\\n4) Armenians did slaughter 26% of Muslim population of Diyarbakir.[1,2,3,4]\\n5) Armenians did slaughter 16% of Muslim population of Mamuretulaziz.[1,2,3,4]\\n6) Armenians did slaughter 15% of Muslim population of Sivas.[1,2,3,4]\\n7) Armenians did slaughter the entire Muslim population of the x-Soviet\\n Armenia.[1,2,3,4]\\n8) .....\\n\\n[1] McCarthy, J., \"Muslims and Minorities, The Population of Ottoman \\n Anatolia and the End of the Empire,\" New York \\n University Press, New York, 1983, pp. 133-144.\\n\\n[2] Karpat, K., \"Ottoman Population,\" The University of Wisconsin Press,\\n 1985.\\n\\n[3] Hovannisian, R. G., \"Armenia on the Road to Independence, 1918. \\n University of California Press (Berkeley and \\n Los Angeles), 1967, pp. 13, 37.\\n\\n[4] Shaw, S. J., \\'On Armenian collaboration with invading Russian armies \\n in 1914, \"History of the Ottoman Empire and Modern Turkey \\n (Volume II: Reform, Revolution & Republic: The Rise of \\n Modern Turkey, 1808-1975).\" (London, Cambridge University \\n Press 1977). pp. 315-316.\\n\\n[5] \"Gochnak\" (Armenian newspaper published in the United States), May 24, \\n 1915.\\n\\n\\nSource: \"Adventures in the Near East\" by A. Rawlinson, Jonathan Cape, \\n30 Bedford Square, London, 1934 (First published 1923) (287 pages).\\n(Memoirs of a British officer who witnessed the Armenian genocide of 2.5 \\n million Muslim people)\\n\\np. 178 (first paragraph)\\n\\n\"In those Moslem villages in the plain below which had been searched for\\n arms by the Armenians everything had been taken under the cloak of such\\n search, and not only had many Moslems been killed, but horrible tortures \\n had been inflicted in the endeavour to obtain information as to where\\n valuables had been hidden, of which the Armenians were aware of the \\n existence, although they had been unable to find them.\"\\n\\np. 175 (first paragraph)\\n\\n\"The arrival of this British brigade was followed by the announcement\\n that Kars Province had been allotted by the Supreme Council of the\\n Allies to the Armenians, and that announcement having been made, the\\n British troops were then completely withdrawn, and Armenian occupation\\n commenced. Hence all the trouble; for the Armenians at once commenced\\n the wholesale robbery and persecution of the Muslem population on the\\n pretext that it was necessary forcibly to deprive them of their arms.\\n In the portion of the province which lies in the plains they were able\\n to carry out their purpose, and the manner in which this was done will\\n be referred to in due course.\"\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Objective morality (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >In another part of this thread, you\\'ve been telling us that the\\n|> >\"goal\" of a natural morality is what animals do to survive.\\n|> \\n|> That\\'s right. Humans have gone somewhat beyond this though. Perhaps\\n|> our goal is one of self-actualization.\\n\\nHumans have \"gone somewhat beyond\" what, exactly? In one thread\\nyou\\'re telling us that natural morality is what animals do to\\nsurvive, and in this thread you are claiming that an omniscient\\nbeing can \"definitely\" say what is right and what is wrong. So\\nwhat does this omniscient being use for a criterion? The long-\\nterm survival of the human species, or what?\\n\\nHow does omniscient map into \"definitely\" being able to assign\\n\"right\" and \"wrong\" to actions?\\n\\n|> \\n|> >But suppose that your omniscient being told you that the long\\n|> >term survival of humanity requires us to exterminate some \\n|> >other species, either terrestrial or alien.\\n|> \\n|> Now you are letting an omniscient being give information to me. This\\n|> was not part of the original premise.\\n\\nWell, your \"original premises\" have a habit of changing over time,\\nso perhaps you\\'d like to review it for us, and tell us what the\\ndifference is between an omniscient being be able to assign \"right\"\\nand \"wrong\" to actions, and telling us the result, is. \\n\\n|> \\n|> >Does that make it moral to do so?\\n|> \\n|> Which type of morality are you talking about? In a natural sense, it\\n|> is not at all immoral to harm another species (as long as it doesn\\'t\\n|> adversely affect your own, I guess).\\n\\nI\\'m talking about the morality introduced by you, which was going to\\nbe implemented by this omniscient being that can \"definitely\" assign\\n\"right\" and \"wrong\" to actions.\\n\\nYou tell us what type of morality that is.\\n\\njon.\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Happy Easter!\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 37\\n\\nkevinh, on the Tue, 20 Apr 1993 13:23:01 GMT wibbled:\\n\\n: In article <1993Apr19.154020.24818@i88.isc.com>, jeq@lachman.com (Jonathan E. Quist) writes:\\n: |> In article <2514@tekgen.bv.tek.com> davet@interceptor.cds.tek.com (Dave Tharp CDS) writes:\\n: |> >In article <1993Apr15.171757.10890@i88.isc.com> jeq@lachman.com (Jonathan E. Quist) writes:\\n: |> >>Rolls-Royce owned by a non-British firm?\\n: |> >>\\n: |> >>Ye Gods, that would be the end of civilization as we know it.\\n: |> >\\n: |> > Why not? Ford owns Aston-Martin and Jaguar, General Motors owns Lotus\\n: |> >and Vauxhall. Rover is only owned 20% by Honda.\\n: |> \\n: |> Yes, it\\'s a minor blasphemy that U.S. companies would ?? on the likes of A.M.,\\n: |> Jaguar, or (sob) Lotus. It\\'s outright sacrilege for RR to have non-British\\n: |> ownership. It\\'s a fundamental thing\\n\\n\\n: I think there is a legal clause in the RR name, regardless of who owns it\\n: it must be a British company/owner - i.e. BA can sell the company but not\\n: the name.\\n\\n: kevinh@hasler.ascom.ch\\n\\nI don\\'t believe that BA have anything to do with RR. It\\'s a seperate\\ncompany from the RR Aero-Engine company. I think that the government\\nown a stake. Unfortunately they owned a stake of Jaguar too, until\\nthey decided to make a quick buck and sold it to Ford. Bastards.\\nThis is definitely the ultimate Arthur-Daley government.\\n--\\n\\nNick (the Cynical Biker) DoD 1069 Concise Oxford Leaky Gearbox\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n',\n", + " 'From: pashdown@slack.sim.es.com (Pete Ashdown)\\nSubject: Need parts/info for 1963 Maicoletta scooter\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 15\\nNNTP-Posting-Host: slack\\n\\n\\nPosted for a friend:\\n\\nLooking for tires, dimensions 14\" x 3.25\" or 3.35\"\\n\\nAlso looking for brakes or info on relining existing shoes.\\n\\nAlso any other Maicoletta owners anywhere to have contact with.\\n\\nCall Scott at 801-583-1354 or email me.\\n-- \\n I saw fops by the thousand sew themselves together round the Lloyds building.\\n\\nDISCLAIMER: My writings have NOTHING to do with my employer. Keep it that way.\\nPete Ashdown pashdown@slack.sim.es.com Salt Lake City, Utah\\n',\n", + " 'From: mikec@sail.LABS.TEK.COM (Micheal Cranford)\\nSubject: Disney Animation\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 5\\n\\n------------------------------------\\n\\n Can anyone tell me anything about the Disney Animation software package?\\nNote the followup line (this is not for me but for a colleague).\\n\\n',\n", + " \"From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Israeli Expansion-lust\\nOrganization: The Department of Redundancy Department\\nLines: 13\\n\\nIn article <1993Apr14.224726.15612@bnr.ca> zbib@bnr.ca writes:\\n>Jake Livni writes\\n>> Sam Zbib writes\\n\\n[all deleted...]\\n\\nSam Zbib's posting is so confused and nonsensical as not to warrant a\\nreasoned response. We're getting used to this, too.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n\",\n", + " 'From: karish@gondwana.Stanford.EDU (Chuck Karish)\\nSubject: Re: Living\\nOrganization: Mindcraft, Inc.\\nLines: 31\\n\\nIn article amc@crash.wpd.sgi.com\\n(Allan McNaughton) writes:\\n>In article <1993Mar27.040606.4847@eos.arc.nasa.gov>, phil@eos.arc.nasa.gov\\n(Phil Stone) writes:\\n>|> Alan, nothing personal, but I object to the \"we all\" in that statement.\\n>|> (I was on many of those rides that Alan is describing.) Pushing the\\n>|> envelope does not necessarily equal taking insane chances.\\n\\nMoreover, if two riders are riding together at the same speed,\\none might be riding well beyond his abilities and the other\\nmay have a safety margin left.\\n\\n>Oh come on Phil. You\\'re an excellent rider, but you still take plenty of\\n>chances. Don\\'t tell me that it\\'s just your skill that keeps you from \\n>getting wacked. There\\'s a lot of luck thrown in there too. You\\'re a very\\n>good rider and a very lucky one too. Hope your luck holds.... \\n\\nAllan, I know the circumstances of several of your falls.\\nOn the ride when you fell while I was next behind you,\\nyou made an error of judgement by riding too fast when\\nyou knew the road was damp, and you reacted badly when\\nyou were surprised by an oncoming car. That crash was\\ndue to factors that were subject to your control.\\n\\nI won\\'t deny that there\\'s a combination of luck and skill\\ninvolved for each of us, but it seems that you\\'re blaming\\nbad luck for more of your own pain than is warranted.\\n--\\n\\n Chuck Karish karish@mindcraft.com\\n (415) 323-9000 x117 karish@pangea.stanford.edu\\n',\n", + " \"From: alaa@peewee.unx.dec.com (Alaa Zeineldine)\\nSubject: Re: THE HAMAS WAY of DEATH\\nOrganization: Digital Equipment Corp.\\nX-Newsreader: Tin 1.1 PL3\\nLines: 12\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n: \\n: While you brought up the separate question of Israel's unjustified\\n: policies and practices, I am still unclear about your reaction to\\n: the practices and polocies reflected in the article above.\\n: \\n: Tim\\n\\nNot a separate question Mr. Clock. It is deceiving to judge the \\nresistance movement out of the context of the occupation.\\n\\nAlaa Zeineldine\\n\",\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: Express Access Online Communications USA\\nLines: 12\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.164801.7530@julian.uwo.ca> jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll) writes:\\n>\\tHmmm. I seem to recall that the attraction of solid state record-\\n>players and radios in the 1960s wasn't better performance but lower\\n>per-unit cost than vacuum-tube systems.\\n>\\n\\n\\nI don't think so at first, but solid state offered better reliabity,\\nid bet, and any lower costs would be only after the processes really scaled up.\\n\\npat\\n\\n\",\n", + " \"From: jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: University of Western Ontario, London\\nNntp-Posting-Host: prism.engrg.uwo.ca\\nLines: 9\\n\\n\\tHmmm. I seem to recall that the attraction of solid state record-\\nplayers and radios in the 1960s wasn't better performance but lower\\nper-unit cost than vacuum-tube systems.\\n\\n\\tMind you, my father was a vacuum-tube fan in the 60s (Switched\\nto solid-state in the mid-seventies and then abruptly died; no doubt\\nthere's a lesson in that) and his account could have been biased.\\n\\n\\t\\t\\t\\t\\t\\t\\tJames Nicoll\\n\",\n", + " 'From: \"danny hawrysio\" \\nSubject: radiosity\\nReply-To: \"danny hawrysio\" \\nOrganization: Canada Remote Systems\\nDistribution: comp\\nLines: 9\\n\\n\\n-> I am looking for source-code for the radiosity-method.\\n\\n I don\\'t know what kind of machine you want it for, but the program\\nRadiance comes with \\'C\\' source code - I don\\'t have ftp access so I\\ncouldn\\'t tell you where to get it via that way.\\n--\\nCanada Remote Systems - Toronto, Ontario\\n416-629-7000/629-7044\\n',\n", + " 'From: dkusswur@falcon.depaul.edu (Daniel C. Kusswurm)\\nSubject: Siggraph 1987 Course Notes\\nNntp-Posting-Host: falcon.depaul.edu\\nOrganization: DePaul University, Chicago\\nDistribution: usa\\nLines: 7\\n\\nI am looking for a copy of the following Siggraph publication: Gomez, J.E.\\n\"Comments on Event Driven Annimation,\" Siggraph Course Notes, 10, 1987.\\n\\nIf anyone knows of a location where I can obtain a copy of these notes, I\\nwould appreciate if they could let me know. Thanks.\\n\\ndkusswur@falcon.depaul.edu\\n',\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nOrganization: Express Access Online Communications USA\\nLines: 54\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.003719.101323@zeus.calpoly.edu> jgreen@trumpet.calpoly.edu (James Thomas Green) writes:\\n>prb@access.digex.com (Pat) Pontificated: \\n>>\\n>>\\n>\\n>I heard once that the voyagers had a failsafe routine built in\\n>that essentially says \"If you never hear from Earth again,\\n>here\\'s what to do.\" This was a back up in the event a receiver\\n>burnt out but the probe could still send data (limited, but\\n>still some data). \\n>\\n\\nVoyager has the unusual luck to be on a stable trajectory out of the\\nsolar system. All it\\'s doing is collecting fields data, and routinely\\nsquirting it down. One of the mariners is also in stable\\nsolar orbit, and still providing similiar solar data. \\n\\nSomething in a planetary orbit, is subject to much more complex forces.\\n\\nComsats, in \"stable \" geosynch orbits, require almost daily\\nstationkeeping operations. \\n\\nFor the occasional deep space bird, like PFF after pluto, sure\\nit could be left on \"auto-pilot\". but things like galileo or\\nmagellan, i\\'d suspect they need enough housekeeping that\\neven untended they\\'d end up unusable after a while.\\n\\nThe better question should be.\\n\\nWhy not transfer O&M of all birds to a separate agency with continous funding\\nto support these kind of ongoing science missions.\\n\\npat\\n\\n\\tWhen ongoing ops are mentioned, it seems to always quote Operations\\nand Data analysis. how much would it cost to collect the data\\nand let it be analyzed whenever. kinda like all that landsat data\\nthat sat around for 15 years before someone analyzed it for the ozone hole.\\n\\n>>Even if you let teh bird drift, it may get hosed by some\\n>>cosmic phenomena. \\n>>\\n>Since this would be a shutdown that may never be refunded for\\n>startup, if some type of cosmic BEM took out the probe, it might\\n>not be such a big loss. Obviously you can\\'t plan for\\n>everything, but the most obvious things can be considered.\\n>\\n>\\n>/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n>| \"I know you believe you understand what it is that you | \\n>| think I said. But I am not sure that you realize that |\\n>| what I said is not what I meant.\" |\\n\\n\\n',\n", + " 'From: jaeger@buphy.bu.edu (Gregg Jaeger)\\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nOrganization: Boston University Physics Department\\nLines: 63\\n\\nIn article <1993Apr14.121134.12187@monu6.cc.monash.edu.au> darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n\\n>>In article khan@itd.itd.nrl.navy.mil (Umar Khan) writes:\\n\\n>I just borrowed a book from the library on Khomeini\\'s fatwa etc.\\n\\n>I found this useful passage regarding the legitimacy of the \"fatwa\":\\n\\n>\"It was also common knowledge as prescribed by Islamic law, that the\\n>sentence was only applicable where the jurisdiction of Islamic law\\n>applies. Moreover, the sentence has to be passed by an Islamic court\\n>and executed by the state machinery through the due process of the law.\\n>Even in Islamic countries, let alone in non-Muslim lands, individuals\\n>cannot take the law into their own hands. The sentence when passed,\\n>must be carried out by the state through the usual machinery and not by\\n>individuals. Indeed it becomes a criminal act to take the law into\\n>one\\'s own hands and punish the offender unless it is in the process of\\n>self-defence. Moreover, the offender must be brought to the notice of\\n>the court and it is the court who shoud decide how to deal with him.\\n>This law applies equally to Muslim as well as non-Muslim territories.\\n\\n\\nI agree fully with the above statement and is *precisely* what I meant\\nby my previous statements about Islam not being anarchist and the\\nlaw not being _enforcible_ despite the _law_ being applicable. \\n\\n\\n>Hence, on such clarification from the ulama [Islamic scholars], Muslims\\n>in Britain before and after Imam Khomeini\\'s fatwa made it very clear\\n>that since Islamic law is not applicable to Britain, the hadd\\n>[compulsory] punishment cannot be applied here.\"\\n\\n\\nI disagree with this conclusion about the _applicability_ of the \\nIslamic law to all muslims, wherever they may be. The above conclusion \\ndoes not strictly follow from the foregoing, but only the conclusion \\nthat the fatwa cannot be *enforced* according to Islamic law. However, \\nI do agree that the punishment cannot be applied to Rushdie even *were*\\nit well founded.\\n\\n>Wow... from the above, it looks like that from an Islamic viewpoint\\n>Khomeini\\'s \"fatwa\" constitutes a \"criminal act\" .... perhaps I could\\n>even go out on a limb and call Khomeini a \"criminal\" on this basis....\\n\\n\\nCertainly putting a price on the head of Rushdie in Britain is a criminal \\nact according to Islamic law. \\n\\n\\n>Anyhow, I think it is understood by _knowledgeable_ Muslims that\\n>Khomeini\\'s \"fatwa\" is Islamically illegitimate, at least on the basis\\n>expounded above. Others, such as myself and others who have posted here\\n>(particularly Umar Khan and Gregg Jaeger, I think) go further and say\\n>that even the punishment constituted in the fatwa is against Islamic law\\n>according to our understanding.\\n\\nYes.\\n\\n\\n\\n\\n\\nGregg\\n',\n", + " 'From: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nSubject: Boom! Dog attack!\\nReply-To: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nDistribution: world\\nOrganization: Computer Dynamics-Vancouver B.C.-(604)986-9937 (604)255-9937\\nLines: 59\\n\\nMy previous posting on dog attacks must have generated some bad karma or\\nsomething. I\\'ve weathered attempted dog attacks before using the\\napproved method: Slow down to screw up dog\\'s triangulation of target,\\nthen take off and laugh at the dog, now far behind you. This time, it\\ndidn\\'t work because I didn\\'t have time. Riding up the hill leading to my\\nhouse, I encountered a liver-and-white Springer Spaniel (no relation to\\nthe Springer Softail, or the Springer Spagthorpe, a close relation to\\nthe Spagthorpe Viking). Actually, the dog encountered me with intent to\\nharm.\\n\\nBut I digress: I was riding near the (unpainted) centerline of the\\nroughly 30-foot wide road, doing between forty and sixty clicks (30 mph\\nfor the velocity-impaired). The dog shot at me from behind bushes on the\\nleft side of the road at an impossibly high speed. I later learned he\\nhad been accelerating from the front porch, about thirty feet away,\\nheading down the very gently sloped approach to the side of the road. I\\nsaw the dog, and before you could say SIPDE, he was on me. Boom! I took\\nthe dog in the left leg, and from the marks on the bike my leg was\\ndriven up the side of the bike with considerable force, making permanent\\nmarks on the plastic parts of the bike, and cracking one panel. I think\\nI saw the dog spin around when I looked back, but my memory of this\\nmoment is hazy.\\n\\nI next turned around, and picked the most likely looking house. The\\napologetic woman explained that the dog was not seriously hurt (cut\\nmouth) and hoped I was not hurt either. I could feel the pain in my\\nshin, and expected a cool purple welt to form soon. Sadly, it has not.\\nSo I\\'m left with a tender shin, and no cool battle scars!\\n\\nInterestingly, the one thing that never happened was that the bike never\\nmoved off course. The not inconsiderable impact did not push the bike\\noff course, nor did it cause me to put the bike out of control from some\\ngut reaction to the sudden impact. Delayed pain may have helped me\\nhere, as I didn\\'t feel a sudden sharp pain that I can remember.\\n\\nWhat worries me about the accident is this: I don\\'t think I could have\\nprevented it except by traveling much slower than I was. This is not\\nnecessarily an unreasonable suggestion for a residential area, but I was\\nriding around the speed limit. I worry about what would have happened if\\nit had been a car instead of a dog, but I console myself with the\\nthought that it would take a truly insane BDI cager to whip out of a\\nblind driveway at 15-30 mph. For that matter, how many driveways are\\nlong enough for a car to hit 30 mph by the end?\\n\\nI eagerly await comment.\\n\\nRyan Cousinetc.|1982 Yamaha Vision XZ550 -Black Pig of Inverness|Live to Ride\\nKotRB |1958 AJS 500 C/S -King Rat |to Work to\\nDoD# 0863 |I\\'d be a squid if I could afford the bike... |Flame to\\nryan.cousineau@compdyn.questor.org | Vancouver, BC, Canada |Live . . .\\n\\n\\n * SLMR 2.1a * \"He\\'s hurt.\" \"Dammit Jim, I\\'m a Doctor -- oh, right.\"\\n \\n----\\n+===============================================================+\\n|COMPUTER DYNAMICS BBS 604-255-9937(HST) 604-986-9937(V32)|\\n|Vancouver, BC, Canada - Easy Access, Low Rates, Friendly Sysop|\\n+===============================================================+\\n',\n", + " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Re: rejoinder. Questions to Israelis\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 22\\n\\nIn article <1483500353@igc.apc.org> Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: rejoinder. Questions to Israelis\\n>\\n>\\n>Dear Josh\\n>\\n>I appreciate the fact that you sought to answer my questions.\\n>\\n>Having said that, I am not totally happy with your answers.\\n>\\n>1. You did not fully answer my question whether Israeli ID cards\\n>identify the holders as Jews or Arabs. You imply that U.S.\\n>citizens must identify themselves by RACE. Is that true ? Or are\\n>just trying to mislead the reader ? \\n\\nI think he is trying to mislead people. In cases where race\\ninformation is sought, it is completely voluntary (the census\\npossibly excepted).\\n\\n-anwar\\n',\n", + " \"From: cheinan@access.digex.com (Cheinan Marks)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nOrganization: Express Access Online Communications, Greenbelt, MD USA\\nLines: 100\\nNNTP-Posting-Host: access.digex.net\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\n: Robert G. Carpenter writes:\\n\\n: >Hi Netters,\\n: >\\n: >I'm building a CAD package and need a 3D graphics library that can handle\\n: >some rudimentry tasks, such as hidden line removal, shading, animation, etc.\\n: >\\n: >Can you please offer some recommendations?\\n: >\\n: >I'll also need contact info (name, address, email...) if you can find it.\\n: >\\n: >Thanks\\n: >\\n: >(Please Post Your Responses, in case others have same need)\\n: >\\n: >Bob Carpenter\\n: >\\n\\nThe following is extracted from sumex-aim.stanford.edu. It should also be on\\nthe mirrors. I think there is source for some applications that may have some\\nbearing on your project. Poke around the source directory. I've never used\\nthis package, nor do I know anyone who did, but the price is right :-)\\n\\nHope this helps.\\n\\n\\t\\t\\t\\t\\tCheinan\\n\\nAbstracts of files as of Thu Apr 1 03:11:39 PST 1993\\nDirectory: info-mac/source\\n\\n#### BINHEX 3d-grafsys-121.hqx ****\\n\\nDate: Fri, 5 Mar 93 14:13:07 +0100\\nFrom: Christian Steffen Ove Franz \\nTo: questions@mac.archive.umich.edu\\nSubject: 3d GrafSys 1.21 in incoming directory\\nA 3d GrafSys short description follows:\\n\\nProgrammers 3D GrafSys Vers 1.21 now available. \\n\\nVersion 1.21 is mainly a bugfix for THINK C users. THIS VERSION\\nNOW RUNS WITH THINK C, I PROMISE! The Docs now contain a chapter for\\nC programmers on how to use the GrafSys. If you have problems, feel free \\nto contact me.\\nThe other change is that I removed the FastPerfTrig calls from\\nthe FPU version to make it run faster.\\n\\nThose of you who don't know what all this is about, read on.\\n\\n********\\n\\nProgrammers 3D GrafSys -- What it is:\\n-------------------------------------\\n\\nDidn't you always have this great game in mind where you needed some way of \\ndrawing three-dimensional scenes? \\n\\nDidn't you always want to write this program that visualized the structure \\nof three-dimensional molecules?\\n\\nAnd didn't the task of writing your 3D conversions routines keep you from \\nactually doing it?\\n\\nWell if the answer to any of the above questions is 'Yes, but what has it to \\ndo with this package???' , read on.\\n\\nGrafSys is a THINK Pascal/C library that provides you with simple routines \\nfor building, saving, loading (as resources), and manipulating \\n(independent rotating around arbitrary achses, translating and scaling) \\nthree dimensional objects. Objects, not just simple single-line drawings.\\n\\nGrafSys supports full 3D clipping, animation and some (primitive) hidden-\\nline/hidden-surface drawing with simple commands from within YOUR PROGRAM.\\n\\nGrafSys also supports full eye control with both perspective and parallel\\nprojections (If you can't understand a word, don't worry, this is just showing\\noff for those who know about it. The docs that come with it will try to explain\\nwhat it all means later on). \\n\\nGrafSys provides a powerful interface to supply your own drawing routines with\\ndata so you can use GrafSys to do the 3D transformations and your own routines\\nto do the actual drawing. (Note that GrafSys also provides drawing routines so\\nyou don't have to worry about that if you don't want to)\\n\\nGrafSys 1.11 comes in two versions. One for the 881 and 020 or above \\nprocessors. The other version uses fixed-point arithmetic and runs on any Mac.\\nBoth versions are *100% source compatibel*. \\n\\nGrafSys comes with an extensive manual that teaches you the fundamentals of 3D\\ngraphics and how to use the package.\\n\\nIf demand is big enough I will convert the GrafSys to an object-class library. \\nHowever, I feelt that the way it is implemented now makes it easier to use for\\na lot more people than the select 'OOP-Guild'.\\n\\nGrafSys is free for any non-commercial usage. Read the documentation enclosed.\\n\\n\\nEnjoy,\\nChristian Franz\\n\",\n", + " 'Subject: Re: Looking for Tseng VESA drivers\\nFrom: t890449@patan.fi.upm.es ()\\nOrganization: /usr/local/lib/organization\\nNntp-Posting-Host: patan.fi.upm.es\\nLines: 10\\n\\nHi, this is my first msg to the Net (actually the 3rd copy of it, dam*ed VI!!).\\n\\n Look for the new VPIC6.0, it comes with updated VESA 1.2 drivers for almost every known card. The VESA level is 1.2, and my Tseng4000 24-bit has a nice affair with the driver. \\n\\n Hope it is useful!!\\n\\n\\n\\t\\t\\t\\t\\t\\t\\tBye\\n\\n\\n',\n", + " 'From: pww@spacsun.rice.edu (Peter Walker)\\nSubject: Re: Rawlins debunks creationism\\nOrganization: I didn\\'t do it, nobody saw me, you can\\'t prove a thing.\\nLines: 30\\n\\nIn article <1993Apr15.223844.16453@rambo.atlanta.dg.com>,\\nwpr@atlanta.dg.com (Bill Rawlins) wrote:\\n> \\n> We are talking about origins, not merely science. Science cannot\\n> explain origins. For a person to exclude anything but science from\\n> the issue of origins is to say that there is no higher truth\\n> than science. This is a false premise.\\n\\nSays who? Other than a hear-say god.\\n\\n> By the way, I enjoy science.\\n\\nYou sure don\\'t understand it.\\n\\n> It is truly a wonder observing God\\'s creation. Macroevolution is\\n> a mixture of 15 percent science and 85 percent religion [guaranteed\\n> within three percent error :) ]\\n\\nBill, I hereby award you the Golden Shovel Award for the biggist pile of\\nbullshit I\\'ve seen in a whils. I\\'m afraid there\\'s not a bit of religion in\\nmacroevolution, and you\\'ve made a rather grand statement that Science can\\nnot explain origins; to a large extent, it already has!\\n\\n> // Bill Rawlins //\\n\\nPeter W. Walker \"Yu, shall I tell you what knowledge is? When \\nDept. of Space Physics you know a thing, say that you know it. When \\n and Astronomy you do not know a thing, admit you do not know\\nRice University it. This is knowledge.\"\\nHouston, TX - K\\'ung-fu Tzu\\n',\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Lunar Colony Race! By 2005 or 2010?\\nArticle-I.D.: aurora.1993Apr20.234427.1\\nOrganization: University of Alaska Fairbanks\\nLines: 27\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nOkay here is what I have so far:\\n\\nHave a group (any size, preferibly small, but?) send a human being to the moon,\\nset up a habitate and have the human(s) spend one earth year on the moon. Does\\nthat mean no resupply or ?? \\n\\nNeed to find atleast $1billion for prize money.\\n\\nContest open to different classes of participants.\\n\\nNew Mexico State has semi-challenged University of Alaska (any branch) to put a\\nteam together and to do it..\\nAny other University/College/Institute of Higher Learning wish to make a\\ncounter challenge or challenge another school? Say it here.\\n\\nI like the idea of having atleast a russian team.\\n\\n\\nSome prefer using new technology, others old or ..\\n\\nThe basic idea of the New Moon Race is like the Solar Car Race acrossed\\nAustralia.. Atleast in that basic vein of endevour..\\n\\nAny other suggestions?\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", + " \"From: dgraham@bmers30.bnr.ca (Douglas Graham)\\nSubject: Re: Jews can't hide from keith@cco.\\nOrganization: Bell-Northern Research, Ottawa, Canada\\nLines: 40\\n\\nIn article <1pqdor$9s2@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>In article <1993Apr3.071823.13253@bmerh85.bnr.ca>, dgraham@bmers30.bnr.ca (Douglas Graham) writes:\\n>The poster casually trashed two thousand years of Jewish history, and \\n>Ken replied that there had previously been people like him in Germany.\\n\\nI think the problem here is that I pretty much ignored the part\\nabout the Jews sightseeing for 2000 years, thinking instead that\\nthe important part of what the original poster said was the bit\\nabout killing Palestinians. In retrospect, I can see how the\\nsightseeing thing would be offensive to many. I originally saw\\nit just as poetic license, but it's understandable that others\\nmight see it differently. I still think that Ken came on a bit\\nstrong though. I also think that your advice to Masud Khan:\\n\\n #Before you argue with someone like Mr Arromdee, it's a good idea to\\n #do a little homework, or at least think.\\n\\nwas unnecessary.\\n\\n>That's right. There have been. There have also been people who\\n>were formally Nazis. But the Nazi party would have gone nowhere\\n>without the active and tacit support of the ordinary man in the\\n>street who behaved as though casual anti-semitism was perfectly\\n>acceptable.\\n>\\n>Now what exactly don't you understand about what I wrote, and why\\n>don't you see what it has to do with the matter at hand?\\n\\nThroughout all your articles in this thread there is the tacit\\nassumption that the original poster was exhibiting casual\\nanti-semitism. If I agreed with that, then maybe your speech\\non why this is bad might have been relevant. But I think you're\\nreading a lot into one flip sentence. While probably not\\ntrue in this case, too often the charge of anti-semitism gets\\nthrown around in order to stifle legitimate criticism of the\\nstate of Israel.\\n\\nAnyway, I'd rather be somewhere else, so I'm outta this thread.\\n--\\nDoug Graham dgraham@bnr.ca My opinions are my own.\\n\",\n", + " \"From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: Recommendation for a front tire.\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 11\\n\\nHey folks--\\n\\nI've got a pair of Dunlop sportmax radials of my ZX-10, and they've been\\nvery sticky (ie no slides yet), but all this talk about the Metzelers has\\nme wondering if my next set should be a Lazer comp K and a radial Metzeler\\nrear...for hard sport-touring, how do the choices stack up?\\n\\nNathaniel\\nZX-10\\nDoD 0812\\nAMA\\n\",\n", + " 'From: tmc@spartan.ac.BrockU.CA (Tim Ciceran)\\nSubject: Re: Newsgroup Split\\nOrganization: Brock University, St. Catharines Ontario\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 19\\n\\nChris Herringshaw (tdawson@engin.umich.edu) wrote:\\n: Concerning the proposed newsgroup split, I personally am not in favor of\\n: doing this. I learn an awful lot about all aspects of graphics by reading\\n: this group, from code to hardware to algorithms. I just think making 5\\n: different groups out of this is a wate, and will only result in a few posts\\n: a week per group. I kind of like the convenience of having one big forum\\n: for discussing all aspects of graphics. Anyone else feel this way?\\n: Just curious.\\n\\n\\n: Daemon\\n\\nWhat he said...\\n\\n-- \\n\\nTMC\\n(tmc@spartan.ac.BrockU.ca)\\n\\n',\n", + " 'From: tjohnson@tazmanian.prime.com (Tod Johnson (617) 275-1800 x2317)\\nSubject: Re: Live Free, but Quietly, or Die\\nDistribution: The entire Nugent family\\nOrganization: Computervision\\nLines: 29\\n\\n\\n In article <1qc2fu$c1r@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n >Loud pipes are a biligerent exercise in ego projection,\\n\\nNo arguements following, just the facts.\\n\\nI was able to avoid an accident by revving my engine and having my\\n*stock* Harley pipes make enough noise to draw someones attention.\\n\\nI instinctively revved my engine before I went for my horn. Don\\'t know\\nwhy, but I did it and it worked. Thats rather important.\\n\\nI am not saying \"the louder the pipes the better\". My Harley is loud\\nand it gets me noticed on the road for that reason. I personally do\\nnot feel it is to loud. If you do, well thats to bad; welcome to \\nAmerica - \"Home of the Free, Land of the Atlanta Braves\".\\n\\nIf you really want a fine tuned machine like our federal government\\nto get involved and pass Db restrictions; it should be generous\\nenough so that a move like revving your engine will get you noticed.\\nSure there are horns but my hand is already on the throttle. Should we\\nget into how many feet a bike going 55mph goes in .30 seconds; or\\nhow long it would take me to push my horn button??\\n\\nAnd aren\\'t you the guy that doesn\\'t even have a bike???\\n\\nTod J. Johnson\\nDoD #883\\n\"Go Slow, Take Geritol\"\\n',\n", + " 'From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Cobra Locks\\nOrganization: NEC Systems Laboratory, Inc.\\nDistribution: usa\\nLines: 55\\n\\nIn article <1r1b3rINNale@cronkite.Central.Sun.COM> doc@webrider.central.sun.com writes:\\n>I was posting to Alt.locksmithing about the best methods for securing \\n>a motorcycle. I got several responses referring to the Cobra Lock\\n>(described below). Has anyone come across a store carrying this lock\\n>in the Chicago area?\\n\\n\\tIt is available through some dealerships, who in turn have to back\\norder it from the manufacturer directly. Each one is made to order, at least\\nif you get a nonstandard length (standard is 5\\', I believe).\\n\\n>Any other feedback from someone who has used this?\\n\\n\\tSee below\\n\\n>In article 1r1534INNraj@shelley.u.washington.edu, basiji@stein.u.washington.edu (David Basiji) writes:\\n>> \\n>> Incidentally, the best lock I\\'ve found for bikes is the Cobra Lock.\\n>> It\\'s a cable which is shrouded by an articulated, hardened steel sleeve.\\n>> The lock itself is cylindrical and the locking pawl engages the joints\\n>> at the articulation points so the chain can be adjusted (like handcuffs).\\n>> You can\\'t get any leverage on the lock to break it open and the cylinder\\n>> is well-protected. I wouldn\\'t want to cut one of these without a torch\\n>> and/or a vice and heavy duty cutting wheel.\\n\\n\\tI have a 6\\' long CobraLinks lock that I used to use for my Harley (she\\ndoesn\\'t get out much anymore, so I don\\'t use the lock that often anymore). It\\nis made of 3/4\" articulated steel shells covering seven strands of steel cable.\\nIt is probably enough to stop all the joyriders, but, unfortunately,\\nprofessionals can open it rather easily:\\n\\n\\t1) Freeze a link.\\n\\n\\t2) Break frozen link with your favorite method (hammers work well).\\n\\n\\t3) Snip through the steel cables (which, I have on authority, are\\n\\t\\tfrightfully thin) with a set of boltcutters.\\n\\n\\tFor the same money, you can get a Kryptonite cable lock, which is\\nanywhere from 1/2\" to 7/8\" thick steel cable (looks like steel rope), shielded\\nin a flexible covering to protect your bike\\'s finish, and has a barrel-type\\nlocking mechanism. I don\\'t know if it\\'s adjustable, but my source says it\\'s\\nmore difficult to pick than most locks, and the cable tends to squish flat\\nin bolt-cutter jaws rather than shear (5/8\" model).\\n\\n\\tAll bets are off if the thief has a die grinder with a cutoff wheel.\\nEven the most durable locks tested yield to this tool in less than one minute.\\n\\n\\tFYI, I\\'ll be getting a Krypto cable next paycheck.\\n\\nLater,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n',\n", + " \"From: roland@sics.se (Roland Karlsson)\\nSubject: Re: Magellan Venus Maps (Thanks)\\nIn-Reply-To: baalke@kelvin.jpl.nasa.gov's message of 30 Mar 1993 00:34 UT\\nLines: 14\\nOrganization: Swedish Institute of Computer Science, Kista\\n\\n\\nThanks Ron and Peter for some very nice maps.\\n\\nI have an advice though. You wrote that the maps were reduced to 256\\ncolors. As far ad I understand JPEG pictures gets much better (and\\nthe compressed files smaller) if you use the original 3 color 24 bit\\ndata when converting to JPEG.\\n\\nThanks again,\\n\\n--\\nRoland Karlsson SICS, PO Box 1263, S-164 28 KISTA, SWEDEN\\nInternet: roland@sics.se Tel: +46 8 752 15 40 Fax: +46 8 751 72 30\\nTelex: 812 6154 7011 SICS Ttx: 2401-812 6154 7011=SICS\\n\",\n", + " 'From: glover@casbah.acns.nwu.edu (Eric Glover)\\nSubject: Re: What if the USSR had reached the Moon first?\\nNntp-Posting-Host: unseen1.acns.nwu.edu\\nOrganization: Northwestern University, Evanston Illinois.\\nLines: 45\\n\\nIn article <1993Apr06.020021.186145@zeus.calpoly.edu> jgreen@trumpet.calpoly.edu (James Thomas Green) writes:\\n>Suppose the Soviets had managed to get their moon rocket working\\n>and had made it first. They could have beaten us if either:\\n>* Their rocket hadn\\'t blown up on the pad thus setting them back,\\n>and/or\\n>* A Saturn V went boom.\\n\\nThe Apollo fire was harsh, A Saturn V explosion would have been\\nhurtful but The Soviets winning would have been crushing. That could have\\nbeen *the* technological turning point for the US turning us\\nfrom Today\\'s \"We can do anything, we\\'re *the* Super Power\" to a much more\\nreserved attitude like the Soviet Program today.\\n\\nKennedy was gone by 68\\\\69, the war was still on is the east, I think\\nthe program would have stalled badly and the goal of the moon\\nby 70 would have been dead with Nasa trying to figure were they went wrong.\\n \\n>If they had beaten us, I speculate that the US would have gone\\n>head and done some landings, but we also would have been more\\n>determined to set up a base (both in Earth Orbit and on the\\n>Moon). Whether or not we would be on Mars by now would depend\\n>upon whether the Soviets tried to go. Setting up a lunar base\\n>would have stretched the budgets of both nations and I think\\n>that the military value of a lunar base would outweigh the value\\n>of going to Mars (at least in the short run). Thus we would\\n>have concentrated on the moon.\\n\\nI speulate that:\\n+The Saturn program would have been pushed into\\nthe 70s with cost over runs that would just be too evil. \\nNixon still wins.\\n+The Shuttle was never proposed and Skylab never built.\\n+By 73 the program stalled yet again under the fuel crisis.\\n+A string of small launches mark the mid seventies.\\n+By 76 the goal of a US man on the moon is dead and the US space program\\ndrifts till the present day.\\n\\n\\n>/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n>| \"I believe that this nation should commit itself to achieving\\t| \\n>| the goal, before this decade is out, of landing a man on the \\t|\\n>| Moon and returning him safely to the Earth.\" \\t\\t|\\n>| \\t\\t|\\n\\n\\n',\n", + " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: thoughts on christians\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 19\\n\\nIn article pl1u+@andrew.cmu.edu (Patrick C Leger) writes:\\n>EVER HEAR OF\\n>BAPTISM AT BIRTH? If that isn't preying on the young, I don't know what\\n>is...\\n>\\n \\n No, that's praying on the young. Preying on the young comes\\n later, when the bright eyed little altar boy finds out what the\\n priest really wears under that chasible.\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", + " 'From: gnb@leo.bby.com.au (Gregory N. Bond)\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nIn-Reply-To: gene@theporch.raider.net\\'s message of Sun, 18 Apr 1993 19:29:40 GMT\\nNntp-Posting-Host: leo-gw\\nOrganization: Burdett, Buckeridge & Young, Melbourne, Australia\\nLines: 32\\n\\nIn article <6ZV82B2w165w@theporch.raider.net> gene@theporch.raider.net (Gene Wright) writes:\\n\\n Announce that a reward of $1 billion would go to the first corporation \\n who successfully keeps at least 1 person alive on the moon for a\\n year. \\n\\nAnd with $1B on offer, the problem of \"keeping them alive\" is highly\\nlikely to involve more than just the lunar environment! \\n\\n\"Oh Dear, my freighter just landed on the roof of ACME\\'s base and they\\nall died. How sad. Gosh, that leaves us as the oldest residents.\"\\n\\n\"Quick Boss, the slime from YoyoDyne are back, and this time they\\'ve\\ngot a tank! Man the guns!\"\\n\\nOne could imagine all sorts of technologies being developed in that\\nsort of environment.....\\n\\nGreg.\\n\\n(I\\'m kidding, BTW, although the problem of winner-takes-all prizes is\\nthat it encourages all sorts of undesirable behaviour - witness\\nmilitary procurement programs. And $1b is probably far too small a\\nreward to encourage what would be a very expensive and high risk\\nproposition.)\\n\\n\\n--\\nGregory Bond Burdett Buckeridge & Young Ltd Melbourne Australia\\n Knox\\'s 386 is slick. Fox in Sox, on Knox\\'s Box\\n Knox\\'s box is very quick. Plays lots of LSL. He\\'s sick!\\n(Apologies to John \"Iron Bar\" Mackin.)\\n',\n", + " 'From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: OPINIONS WANTED -- HELP\\nNntp-Posting-Host: amhux3.amherst.edu\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 9\\n\\nWhat size dirtbikes did you ride? and for how long? You might be able to\\nslip into a 500cc bike. Like I keep telling people, though, buy an older,\\ncheaper bike and ride that for a while first...you might like a 500 Interceptor\\nas an example\\n\\nNathaniel\\nZX-10\\nDoD 0812\\nAMA\\n',\n", + " 'From: viking@iastate.edu (Dan Sorenson)\\nSubject: Re: Flashing anyone?\\nKeywords: flashing\\nOrganization: Iowa State University, Ames IA\\nLines: 29\\n\\nbehanna@syl.nj.nec.com (Chris BeHanna) writes:\\n\\n>>Just before arriving at a toll booth I\\n>>switch the hazards on. I do thisto warn other motorists that I will\\n>>be taking longer than the 2 1/2 seconds to make the transaction.\\n>>My question, is this a good/bad thing to do?\\n\\n>\\tThis sounds like a VERY good thing to do.\\n\\n\\tI\\'ll second that. In addition, I find my hazards to be more\\noften used than my horn. At speeds below 40mph on the interstates,\\nquite common in mountains with trucks, some states require flashers.\\nIn rural areas, flashers let the guy behind you know there is a tractor\\nwith a rather large implement behind it in the way. Use them whenever \\nyou need to communicate that things will deviate from the norm. \\n\\n>-- \\n>Chris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\n>behanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\n>Disclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\n\\n\\tIs that ZX-11 painted green? Since the green Triumph 650 that\\na friend owned was sold off, her name is now free for adoption. How\\ndoes the name \"Thunderpickle\" grab you?\\n\\n< Dan Sorenson, DoD #1066 z1dan@exnet.iastate.edu viking@iastate.edu >\\n< ISU only censors what I read, not what I say. Don\\'t blame them. >\\n< USENET: Post to exotic, distant machines. Meet exciting, >\\n< unusual people. And flame them. >\\n',\n", + " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: uh, der, whassa deltabox?\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 21\\n\\nIn article <5227@unisql.UUCP> ray@unisql.UUCP (Ray Shea) writes:\\n>\\n>Can someone tell me what a deltabox frame is, and what relation that has,\\n>if any, to the frame on my Hawk GT? That way, next time some guy comes up\\n>to me in some parking lot and sez \"hey, dude, nice bike, is that a deltabox\\n>frame on there?\" I can say something besides \"duh, er, huh?\"\\n\\n Deltabox (tm) is a registered trademark of Yamaha, used to describe\\ntheir aluminum perimeter frame design, used on the FZR400 and FZR1000.\\nIn cross-section, it has a five-sided appearance, so it probably really\\nshould be called a \"Pentabox\".\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", + " \"From: palmer@cco.caltech.edu (David M. Palmer)\\nSubject: Re: Gamma Ray Bursters. WHere are they.\\nOrganization: California Institute of Technology, Pasadena\\nLines: 53\\nNNTP-Posting-Host: alumni.caltech.edu\\n\\nprb@access.digex.com (Pat) writes:\\n\\n> What evidence indicates that Gamma Ray bursters are very far away?\\n\\n>Given the enormous power, i was just wondering, what if they are\\n>quantum black holes or something like that fairly close by?\\n\\n>Why would they have to be at galactic ranges? \\n\\nGamma Ray Bursts (GRBs) are seen coming equally from all directions.\\nHowever, given the number of bright ones, there are too few faint\\nones to be consistent with being equally dense for as far\\nas we can see--it is as if they are all contained within\\na finite sphere (or a sphere with fuzzy edges) with us at the\\ncenter. (These measurements are statistical, and you can\\nalways hide a sufficiently small number of a different\\ntype of GRB with a different origin in the data. I am assuming\\nthat there is only one population of GRBs).\\n\\nThe data indicates that we are less than 10% of the radius of the center\\nof the distribution. The only things the Earth is at the exact center\\nof are the Solar system (at the scale of the Oort cloud of comets\\nway beyond Pluto) and the Universe. Cosmological theories, placing\\nGRBs throughout the Universe, require supernova-type energies to\\nbe released over a timescale of milliseconds. Oort cloud models\\ntend to be silly, even by the standards of astrophysics.\\n\\nIf GRBs were Galactic (i.e. distributed through the Milky Way Galaxy)\\nyou would expect them to be either concentrated in the plane of\\nthe Galaxy (for a 'disk' population), or towards the Galactic center\\n(for a spherical 'halo' population). We don't see this, so if they\\nare Galactic, they must be in a halo at least 250,000 light years in\\nradius, and we would probably start to see GRBs from the Andromeda\\nGalaxy (assuming that it has a similar halo.) For comparison, the\\nEarth is 25,000 light-years from the center of the Galaxy.\\n\\n>my own pet theory is that it's Flying saucers entering\\n>hyperspace :-)\\n\\nThe aren't concentrated in the known spacelanes, and we don't\\nsee many coming from Zeta Reticuli and Tau Ceti.\\n\\n>but the reason i am asking is that most everyone assumes that they\\n>are colliding nuetron stars or spinning black holes, i just wondered\\n>if any mechanism could exist and place them closer in.\\n\\nThere are more than 130 GRB different models in the refereed literature.\\nRight now, the theorists have a sort of unofficial moratorium\\non new models until new observational evidence comes in.\\n\\n-- \\n\\t\\tDavid M. Palmer\\t\\tpalmer@alumni.caltech.edu\\n\\t\\t\\t\\t\\tpalmer@tgrs.gsfc.nasa.gov\\n\",\n", + " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Keith Schneider - Stealth Poster?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 12\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\nsandvik@newton.apple.com (Kent Sandvik) writes:\\n\\n>>To borrow from philosophy, you don't truly understand the color red\\n>>until you have seen it.\\n>Not true, even if you have experienced the color red you still might\\n>have a different interpretation of it.\\n\\nBut, you wouldn't know what red *was*, and you certainly couldn't judge\\nit subjectively. And, objectivity is not applicable, since you are wanting\\nto discuss the merits of red.\\n\\nkeith\\n\",\n", + " 'From: buenneke@monty.rand.org (Richard Buenneke)\\nSubject: DC-X Rollout Report\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 124\\n\\n\\nMcDonnell Douglas rolls out DC-X\\n\\n HUNTINGTON BEACH, Calif. -- On a picture-perfect Southern\\nCalifornia day, McDonnell Douglas rolled out its DC-X rocket ship last\\nSaturday. The company hopes this single-stage rocket technology\\ndemonstrator will be the first step towards a single-stage-to-orbit (SSTO)\\nrocket ship.\\n\\n The white conical vehicle was scheduled to go to the White Sands\\nMissile Range in New Mexico this week. Flight tests will start in\\nmid-June.\\n\\n Although there wasn\\'t a cloud in the noonday sky, the forecast for\\nSSTO research remains cloudy. The SDI Organization -- which paid $60\\nmillion for the DC-X -- can\\'t itself afford to fund full development of a\\nfollow-on vehicle. To get the necessary hundreds of millions required for\\na sub-orbital DC-XA, SDIO is passing a tin cup among its sister government\\nagencies.\\n\\n SDIO originally funded SSTO research as a way to cut the costs for\\norbital deployments of space-based sensors and weapns. However, recent\\nchanges in SDI\\'s political marching orders and budget cuts have made SSTO\\nless of a priority. Today, the agency is more interested in using DC-X as\\na step towards a low-cost, reusable sounding rocket.\\n\\n SDIO has already done 50 briefings to other government agencies,\\nsaid Col. Simon \"Pete\" Worden, SDIO\\'s deputy for technology. But Worden\\ndeclined to say how much the agencies would have to pony up for the\\nprogram. \"I didn\\'t make colonel by telling my contractors how much money I\\nhave available to spend,\" he quipped at a press conference at McDonnell\\nDouglas Astronautics headquarters.\\n\\n While SDIO has lowered its sights on the program\\'s orbital\\nobjective, agency officials hail the DC-X as an example of the \"better,\\nfaster, cheaper\" approach to hardware development. The agency believes\\nthis philosophy can produce breakthroughs that \"leapfrog\" ahead of\\nevolutionary technology developments.\\n\\n Worden said the DC-X illustrates how a \"build a little, test a\\nlittle\" approach can produce results on time and within budget. He said\\nthe program -- which went from concept to hardware in around 18 months --\\nshowed how today\\'s engineers could move beyond the \"miracles of our\\nparents\\' time.\"\\n\\n \"The key is management,\" Worden said. \"SDIO had a very light hand\\non this project. We had only one overworked major, Jess Sponable.\"\\n\\n Although the next phase may involve more agencies, Worden said\\nlean management and a sense of government-industry partnership will be\\ncrucial. \"It\\'s essential we do not end up with a large management\\nstructure where the price goes up exponentially.\"\\n\\n SDIO\\'s approach also won praise from two California members of the\\nHouse Science, Space and Technology Committee. \"This is the direction\\nwe\\'re going to have to go,\" said Rep. George Brown, the committee\\'s\\nDemocratic chairman. \"Programs that stretch aout 10 to 15 years aren\\'t\\nsustainable....NASA hasn\\'t learned it yet. SDIO has.\"\\n\\n Rep. Dana Rohrbacher, Brown\\'s Republican colleague, went further.\\nJoking that \"a shrimp is a fish designed by a NASA design team,\"\\nRohrbacher doubted that the program ever would have been completed if it\\nwere left to the civil space agency.\\n\\n Rohrbacher, whose Orange County district includes McDonnell\\nDouglas, also criticized NASA-Air Force work on conventional, multi-staged\\nrockets as placing new casings around old missile technology. \"Let\\'s not\\nbuild fancy ammunition with capsules on top. Let\\'s build a spaceship!\"\\n\\n Although Rohrbacher praised SDIO\\'s sponsorship, he said the\\nprivate sector needs to take the lead in developing SSTO technology.\\n\\n McDonnell Douglas, which faces very uncertain prospects with its\\nC-17 transport and Space Station Freedom programs, were more cautious\\nabout a large private secotro commitment. \"On very large ventures,\\ncompanies put in seed money,\" said Charles Ordahl, McDonnell Douglas\\'\\nsenior vice president for space systems. \"You need strong government\\ninvestments.\"\\n\\n While the government and industry continue to differ on funding\\nfor the DC-XA, they agree on continuing an incremental approach to\\ndevelopment. Citing corporate history, they liken the process to Douglas\\nAircraft\\'s DC aircraft. Just as two earlier aircraft paved the way for\\nthe DC-3 transport, a gradual evolution in single-stage rocketry could\\neventually lead to an orbital Delta Clipper (DC-1).\\n\\n Flight tests this summer at White Sands will \"expand the envelope\"\\nof performance, with successive tests increasing speed and altitude. The\\nfirst tests will reach 600 feet and demonstrate hovering, verticle\\ntake-off and landing. The second series will send the unmanned DC-X up to\\n5,000 feet. The third and final series will take the craft up to 20,000\\nfeet.\\n\\n Maneuvers will become more complex on third phase. The final\\ntests will include a \"pitch-over\" manever that rotates the vehicle back\\ninto a bottom-down configuration for a soft, four-legged landing.\\n\\n The flight test series will be supervised by Charles \"Pete\"\\nConrad, who performed similar maneuvers on the Apollo 12 moon landing.\\nNow a McDonnell Douglas vice president, Conrad paised the vehicles\\naircraft-like approach to operations. Features include automated\\ncheck-out and access panels for easy maintainance.\\n\\n If the program moves to the next stage, engine technology will\\nbecome a key consideration. This engine would have more thrust than the\\nPratt & Whitney RL10A-5 engines used on the DC-X. Each motor uses liquid\\nhydrogen and liquid oxygen propellants to generate up to 14,760 pounds of\\nthrust\\n\\n Based on the engine used in Centaur upper stages, the A-5 model\\nhas a thrust champer designed for sea level operation and three-to-on\\nthrottling capability. It also is designed for repeat firings and rapid\\nturnaround.\\n\\n Worden said future single-stage rockets could employ\\ntri-propellant engine technology developed in the former Soviet Union.\\nThe resulting engines could burn a dense hydrocarbon fuel at takeoff and\\nthen switch to liquid hydrogen at higher altitudes.\\n\\n The mechanism for the teaming may already be in place. Pratt has\\na technology agreement with NPO Energomash, the design bureau responsible\\nfor the tri-propellant and Energia cryogenic engines.\\n\\n\\n',\n", + " 'From: mancus@sweetpea.jsc.nasa.gov (Keith Mancus)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: MDSSC\\nLines: 60\\n\\njbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n>mancus@sweetpea.jsc.nasa.gov (Keith Mancus) writes:\\n>>cook@varmit.mdc.com (Layne Cook) writes:\\n>>> The $25k Orteig prize helped Lindbergh sell his Spirit\\n>>> of Saint Louis venture to his financial backers. But I strongly suspect\\n>>> that his Saint Louis backers had the foresight to realize that much more\\n>>> was at stake than $25,000. Could it work with the moon? Who are the\\n>>> far-sighted financial backers of today?\\n \\n>> The commercial uses of a transportation system between already-settled-\\n>>and-civilized areas are obvious. Spaceflight is NOT in this position.\\n>>The correct analogy is not with aviation of the \\'30\\'s, but the long\\n>>transocean voyages of the Age of Discovery.\\n> Lindbergh\\'s flight took place in \\'27, not the thirties.\\n \\n Of course; sorry for the misunderstanding. I was referring to the fact\\nthat far more aeronautical development took place in the \\'30\\'s. For much\\nof the \\'20\\'s, the super-abundance of Jennies and OX-5 engines held down the\\nindustry. By 1926, many of the obsolete WWI aircraft had been retired\\nand Whirlwind had their power/weight ratio and reliability up to the point\\nwhere long-distance flights became practical. It\\'s important to note that\\nthe Atlantic was flown not once but THREE times in 1927: Lindbergh,\\nChamberlin and Levine, and Byrd\\'s _America_. \"When it\\'s time to railroad,\\nyou railroad.\"\\n\\n>>It didn\\'t require gov\\'t to fund these as long as something was known about\\n>>the potential for profit at the destination. In practice, some were gov\\'t\\n>>funded, some were private.\\n>Could you give examples of privately funded ones?\\n\\n Not off the top of my head; I\\'ll have to dig out my reference books again.\\nHowever, I will say that the most common arrangement in Prince Henry the\\nNavigator\\'s Portugal was for the prince to put up part of the money and\\nmerchants to put up the rest. They profits from the voyage would then be\\nshared.\\n\\n>>But there was no way that any wise investor would spend a large amount\\n>>of money on a very risky investment with no idea of the possible payoff.\\n>A person who puts up $X billion for a moon base is much more likely to do\\n>it because they want to see it done than because they expect to make money\\n>off the deal.\\n\\n The problem is that the amount of prize money required to inspire a\\nMoon Base is much larger than any but a handful of individuals or corporations\\ncan even consider putting up. The Kremer Prizes (human powered aircraft),\\nOrteig\\'s prize, Lord Northcliffe\\'s prize for crossing the Atlantic (won in\\n1919 by Alcock and Brown) were MUCH smaller. The technologies required were\\nwithin the reach of individual inventors, and the prize amounts were well\\nwithin the reach of a large number of wealthy individuals. I think that only\\na gov\\'t could afford to set up a $1B+ prize for any purpose whatsoever.\\n Note that Burt Rutan suggested that NASP could be built most cheaply by\\ntaking out an ad in AvWeek stating that the first company to build a plane\\nthat could take off and fly the profile would be handed $3B, no questions\\nasked.\\n\\n-- \\n Keith Mancus |\\n N5WVR |\\n \"Black powder and alcohol, when your states and cities fall, |\\n when your back\\'s against the wall....\" -Leslie Fish |\\n',\n", + " 'From: neal@cmptrc.lonestar.org (Neal Howard)\\nSubject: Do Splitfires Help Spagthorpe Diesels ?\\nKeywords: Using Splitfire plugs for performance.\\nDistribution: rec.motorcycles\\nOrganization: CompuTrac Inc., Richardson TX\\nLines: 34\\n\\nIn article wcd82671@uxa.cso.uiuc.edu (daniel warren c) writes:\\n>Earlier, I was reading on the net about using Splitfire plugs. One\\n>guy was thinking about it and almost everybody shot him to hell. Well,\\n>I saw one think that someone said about \"Show me a team that used Split-\\n>fires....\" Well, here\\'s some additional insight and some theories\\n>about splitfire plugs and how they boost us as oppossed to cages.\\n>\\n>Splitfires were originally made to burn fuel more efficiently and\\n>increased power for the 4x4 cages. Well, for these guys, splitfires\\n>\\n>Now I don\\'t know about all of this (and I\\'m trying to catch up with\\n>somebody about it now), but Splitfires should help twins more than\\n\\nSplitfires work mainly by providing a more-or-less unshrouded spark to the\\ncombustion chamber. If an engine\\'s cylinder head design can benefit from this,\\nthen the splitfires will yield a slight performance increase, most noticeably\\nin lower rpm range torque. Splitfires didn\\'t do diddly-squat for my 1992 GMC\\npickup (4.3l V6) but do give a noticeable performance boost in my 1991 Harley\\nSportster 1200 and my best friend\\'s 1986 Sportster 883. Folks I know who\\'ve\\ntried them in 1340 Evo motors can\\'t tell any performance boost over plain\\nplugs (which is interesting since the XLH and big twin EVO combustion chambers\\nare pretty much the same shape, just different sizes). Two of my friends who\\nhave shovelhead Harleys swear by the splitfires but if I had a shovelhead,\\nI\\'d dual-plug it instead since they respond well enough to dual plugs to make\\nthe machine work and extra ignition system worth the expense (plus they look\\nreally cool with a spark plug on each side of each head)\\n-- \\n=============================================================================\\nNeal Howard \\'91 XLH-1200 DoD #686 CompuTrac, Inc (Richardson, TX)\\n\\t doh #0000001200 |355o33| neal@cmptrc.lonestar.org\\n\\t Std disclaimer: My opinions are mine, not CompuTrac\\'s.\\n \"Let us learn to dream, gentlemen, and then perhaps\\n we shall learn the truth.\" -- August Kekule\\' (1890)\\n=============================================================================\\n',\n", + " 'From: MANDTBACKA@FINABO.ABO.FI (Mats Andtbacka)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Unorganized Usenet Postings UnInc.\\nLines: 24\\nIn-Reply-To: frank@D012S658.uucp\\'s message of 15 Apr 1993 23:15:09 GMT\\nX-News-Reader: VMS NEWS 1.24\\n\\nIn <1qkq9t$66n@horus.ap.mchp.sni.de> frank@D012S658.uucp writes:\\n\\n(Attempting to define \\'objective morality\\'):\\n\\n> I\\'ll take a wild guess and say Freedom is objectively valuable. I base\\n> this on the assumption that if everyone in the world were deprived utterly\\n> of their freedom (so that their every act was contrary to their volition),\\n> almost all would want to complain.\\n\\n So long as you keep that \"almost\" in there, freedom will be a\\nmostly valuable thing, to most people. That is, I think you\\'re really\\nsaying, \"a real big lot of people agree freedom is subjectively valuable\\nto them\". That\\'s good, and a quite nice starting point for a moral\\nsystem, but it\\'s NOT UNIVERSAL, and thus not \"objective\".\\n\\n> Therefore I take it that to assert or\\n> believe that \"Freedom is not very valuable\", when almost everyone can see\\n> that it is, is every bit as absurd as to assert \"it is not raining\" on\\n> a rainy day.\\n\\n It isn\\'t in Sahara.\\n\\n-- \\n Disclaimer? \"It\\'s great to be young and insane!\"\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Biosphere II\\nOrganization: Express Access Online Communications USA\\nLines: 22\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <19930419.062802.166@almaden.ibm.com> nicho@vnet.ibm.com writes:\\n|In <1q77ku$av6@access.digex.net> Pat writes:\\n|>The Work is privately funded, the DATA belongs to SBV. I don't see\\n|>either george or Fred, scoriating IBM research division for\\n|>not releasing data.\\n| We publish plenty kiddo,you just have to look.\\n\\n\\nNever said you didn't publish, merely that there is data you don't\\npublish, and that no-one scoriates you for those cases. \\n\\nIBM research publishes plenty, it's why you ended up with 2 Nobel\\nprizes in the last 10 years, but that some projects are deemed\\ncompany confidential. ATT Bell Labs, keeps lots of stuff private,\\nLike Karamankars algorithm. Private moeny is entitled to do what\\nit pleases, within the bounds of Law, and For all the keepers of the\\ntemple of SCience, should please shove their pointy little heads\\nup their Conically shaped Posterior Orifices. \\n\\npat\\n\\n\\twho just read the SA article on Karl Fehrabend(sp???)\\n\",\n", + " 'From: alaa@peewee.unx.dec.com (Alaa Zeineldine)\\nSubject: Re: WTC bombing\\nOrganization: Digital Equipment Corp.\\nX-Newsreader: Tin 1.1 PL3\\nLines: 13\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n: \\n: \"But Hadas might be a fictitious character invented by the two men for \\n: billing purposes, said Mohammed Mehdi, head of the Arab-American Relations Committee.\"\\n: \\n: Tim\\n\\nI would remind readers of the fact that the NY Daily News on March 5th \\nreported the arrest of Joise Hadas. Foreign newspapers reported her\\nrelease shortly afterwards. I can provide copies of the articles \\nupon request.\\n\\nAlaa Zeineldine\\n',\n", + " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Re: Gospel Dating\\nLines: 73\\n\\nBenedikt Rosenau writes:\\n\\n>The argument goes as follows: Q-oid quotes appear in John, but not in\\n>the almost codified way they were in Matthew or Luke. However, they are\\n>considered to be similar enough to point to knowledge of Q as such, and\\n>not an entirely different source.\\n\\nAssuming you are presenting it accurately, I don\\'t see how this argument\\nreally leads to any firm conclusion. The material in John (I\\'m not sure\\nexactly what is referred to here, but I\\'ll take for granted the similarity\\nto the Matt./Luke \"Q\" material) IS different; hence, one could have almost\\nany relationship between the two, right up to John getting it straight from\\nJesus\\' mouth.\\n\\n>We are talking date of texts here, not the age of the authors. The usual\\n>explanation for the time order of Mark, Matthew and Luke does not consider\\n>their respective ages. It says Matthew has read the text of Mark, and Luke\\n>that of Matthew (and probably that of Mark).\\n\\nThe version of the \"usual theory\" I have heard has Matthew and Luke\\nindependently relying on Mark and \"Q\". One would think that if Luke relied\\non Matthew, we wouldn\\'t have the grating inconsistencies in the geneologies,\\nfor one thing.\\n\\n>As it is assumed that John knew the content of Luke\\'s text. The evidence\\n>for that is not overwhelming, admittedly.\\n\\nThis is the part that is particularly new to me. If it were possible that\\nyou could point me to a reference, I\\'d be grateful.\\n\\n>>Unfortunately, I haven\\'t got the info at hand. It was (I think) in the late\\n>>\\'70s or early \\'80s, and it was possibly as old as CE 200.\\n\\n>When they are from about 200, why do they shed doubt on the order on\\n>putting John after the rest of the three?\\n\\nBecause it closes up the gap between (supposed) writing and the existing\\ncopy quit a bit. The further away from the original, the more copies can be\\nwritten, and therefore survival becomes more probable.\\n\\n>>And I don\\'t think a \"one step removed\" source is that bad. If Luke and Mark\\n>>and Matthew learned their stories directly from diciples, then I really\\n>>cannot believe in the sort of \"big transformation from Jesus to gospel\" that\\n>>some people posit. In news reports, one generally gets no better\\n>>information than this.\\n\\n>>And if John IS a diciple, then there\\'s nothing more to be said.\\n\\n>That John was a disciple is not generally accepted. The style and language\\n>together with the theology are usually used as counterargument.\\n\\nI\\'m not really impressed with the \"theology\" argument. But I\\'m really\\npointing this out as an \"if\". And as I pointed out earlier, one cannot make\\nthese arguments about I Peter; I see no reason not to accept it as an\\nauthentic letter.\\n\\n\\n>One step and one generation removed is bad even in our times. Compare that\\n>to reports of similar events in our century in almost illiterate societies.\\n\\nThe best analogy would be reporters talking to the participants, which is\\nnot so bad.\\n\\n>In other words, one does not know what the original of Mark did look like\\n>and arguments based on Mark are pretty weak.\\n\\nBut the statement of divinity is not in that section, and in any case, it\\'s\\nagreed that the most important epistles predate Mark.\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", + " 'From: u1452@penelope.sdsc.edu (Jeff Bytof - SIO)\\nSubject: End of the Space Age?\\nOrganization: San Diego Supercomputer Center @ UCSD\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: penelope.sdsc.edu\\n\\nWe are not at the end of the Space Age, but only at the end of Its\\nbeginning.\\n\\nThat space exploration is no longer a driver for technical innovation,\\nor a focus of American cultural attention is certainly debatable; however,\\ntechnical developments in other quarters will always be examined for\\npossible applications in the space area and we can look forward to\\nmany innovations that might enhance the capabilities and lower the\\ncost of future space operations. \\n\\nThe Dream is Alive and Well.\\n\\n-Jeff Bytof\\nmember, technical staff\\nInstitute for Remote Exploration\\n\\n',\n", + " \"From: clarke@acme.ucf.edu (Thomas Clarke)\\nSubject: Re: Vandalizing the sky.\\nOrganization: University of Central Florida\\nLines: 19\\n\\nI posted this over in sci.astro, but it didn't make it here.\\nThought you all would like my wonderful pithy commentary :-)\\n\\nWhat? You guys have never seen the Goodyear blimp polluting\\nthe daytime and nightime skies?\\n\\nActually an oribital sign would only be visible near\\nsunset and sunrise, I believe. So pollution at night\\nwould be minimal.\\n\\nIf it pays for space travel, go for it. Those who don't\\nlike spatial billboards can then head for the pristine\\nenvironment of Jupiter's moons :-)\\n\\n---\\nThomas Clarke\\nInstitute for Simulation and Training, University of Central FL\\n12424 Research Parkway, Suite 300, Orlando, FL 32826\\n(407)658-5030, FAX: (407)658-5059, clarke@acme.ucf.edu\\n\",\n", + " 'From: sieferme@stein.u.washington.edu (Eric Sieferman)\\nSubject: Re: some thoughts.\\nOrganization: University of Washington, Seattle\\nLines: 75\\nNNTP-Posting-Host: stein.u.washington.edu\\nKeywords: Dan Bissell\\n\\nIn article bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\nIt appears that Walla Walla College will fill the same role in alt.atheist\\nthat Allegheny College fills in alt.fan.dan-quayle.\\n\\n>\\tFirst I want to start right out and say that I\\'m a Christian. It \\n>makes sense to be one. Have any of you read Tony Campollo\\'s book- liar, \\n>lunatic, or the real thing? (I might be a little off on the title, but he \\n>writes the book. Anyway he was part of an effort to destroy Christianity, \\n>in the process he became a Christian himself.\\n\\nConverts to xtianity have this tendency to excessively darken their\\npre-xtian past, frequently falsely. Anyone who embarks on an\\neffort to \"destroy\" xtianity is suffering from deep megalomania, a\\ndefect which is not cured by religious conversion.\\n\\n>\\tThe arguements he uses I am summing up. The book is about whether \\n>Jesus was God or not. I know many of you don\\'t believe, but listen to a \\n>different perspective for we all have something to gain by listening to what \\n>others have to say. \\n\\nDifferent perspective? DIFFERENT PERSPECTIVE?? BWAHAHAHAHAHAHAHAH!!!\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n\\n(sigh!) Perhaps Big J was just mistaken about some of his claims.\\nPerhaps he was normally insightful, but had a few off days. Perhaps\\nmany (most?) of the statements attributed to Jesus were not made by\\nhim, but were put into his mouth by later authors. Other possibilities\\nabound. Surely, someone seriously examining this question could\\ncome up with a decent list of possible alternatives, unless the task\\nis not serious examination of the question (much less \"destroying\"\\nxtianity) but rather religious salesmanship.\\n\\n>\\tSome reasons why he wouldn\\'t be a liar are as follows. Who would \\n>die for a lie?\\n\\nHow many Germans died for Nazism? How many Russians died in the name\\nof the proletarian dictatorship? How many Americans died to make the\\nworld safe for \"democracy\". What a silly question!\\n\\n>Wouldn\\'t people be able to tell if he was a liar? People \\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n\\nIs everyone who performs a healing = God?\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy.\\n\\nIt\\'s probably hard to \"draw\" an entire nation to you unless you \\nare crazy.\\n\\n>Very doubtful, in fact rediculous. For example \\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn\\'t a liar or a lunatic, he must have been the \\n>real thing. \\n\\nAnyone who is convinced by this laughable logic deserves\\nto be a xtian.\\n\\n>\\tSome other things to note. He fulfilled loads of prophecies in \\n>the psalms, Isaiah and elsewhere in 24 hrs alone. This in his betrayal \\n>and Crucifixion. I don\\'t have my Bible with me at this moment, next time I \\n>write I will use it.\\n\\nDon\\'t bother. Many of the \"prophecies\" were \"fulfilled\" only in the\\neyes of xtian apologists, who distort the meaning of Isaiah and\\nother OT books.\\n\\n\\n\\n',\n", + " \"From: lmh@juliet.caltech.edu (Henling, Lawrence M.)\\nSubject: Re: Americans and Evolution\\nOrganization: California Institute of Technology\\nLines: 13\\nDistribution: world\\nNNTP-Posting-Host: juliet.caltech.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr3.195642.25261@njitgw.njit.edu>, dmu5391@hertz.njit.edu (David Utidjian Eng.Sci.) writes...\\n>In article <31MAR199321091163@juliet.caltech.edu> lmh@juliet.caltech.edu (Henling, Lawrence M.) writes:\\n>\\tFor a complete description of what is, and is not atheism\\n>or agnosticism see the FAQ for alt.atheism in alt.answers... I think.\\n>utidjian@remarque.berkeley.edu\\n\\n I apologize for posting this. I thought it was only going to talk.origins.\\nI also took my definitions from a 1938 Websters.\\n Nonetheless, the apparent past arguments over these words imply that like\\n'bimonthly' and 'biweekly' they have no commonly accepted definitions and\\nshould be used with care.\\n\\nlarry henling lmh@shakes.caltech.edu\\n\",\n", + " \"From: gunning@cco.caltech.edu (Kevin J. Gunning)\\nSubject: stolen CBR900RR\\nOrganization: California Institute of Technology, Pasadena\\nLines: 12\\nDistribution: usa\\nNNTP-Posting-Host: alumni.caltech.edu\\nSummary: see above\\n\\nStolen from Pasadena between 4:30 and 6:30 pm on 4/15.\\n\\nBlue and white Honda CBR900RR california plate KG CBR. Serial number\\nJH2SC281XPM100187, engine number 2101240.\\n\\nNo turn signals or mirrors, lights taped over for track riders session\\nat Willow Springs tomorrow. Guess I'll miss it. :-(((\\n\\nHelp me find my baby!!!\\n\\nkjg\\n\\n\",\n", + " 'Subject: E-mail of Michael Abrash?\\nFrom: gmontem@eis.calstate.edu (George A. Montemayor)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 0\\n\\n',\n", + " \"From: James Leo Belliveau \\nSubject: First Bike??\\nOrganization: Freshman, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA\\nLines: 17\\nNNTP-Posting-Host: andrew.cmu.edu\\n\\n Anyone, \\n\\n I am a serious motorcycle enthusiast without a motorcycle, and to\\nput it bluntly, it sucks. I really would like some advice on what would\\nbe a good starter bike for me. I do know one thing however, I need to\\nmake my first bike a good one, because buying a second any time soon is\\nout of the question. I am specifically interested in racing bikes, (CBR\\n600 F2, GSX-R 750). I know that this may sound kind of crazy\\nconsidering that I've never had a bike before, but I am responsible, a\\nfast learner, and in love. Please give me any advice that you think\\nwould help me in my search, including places to look or even specific\\nbikes that you want to sell me.\\n\\n Thanks :-)\\n\\n Jamie Belliveau (jbc9@andrew.cmu.edu) \\n\\n\",\n", + " 'From: Wingert@vnet.IBM.COM (Bret Wingert)\\nSubject: Re: Level 5?\\nOrganization: IBM, Federal Systems Co. Software Services\\nDisclaimer: This posting represents the poster\\'s views, not those of IBM\\nNews-Software: UReply 3.1\\n <1993Apr23.124759.1@fnalf.fnal.gov>\\nLines: 29\\n\\nIn <1993Apr23.124759.1@fnalf.fnal.gov> Bill Higgins-- Beam Jockey writes:\\n>In article <19930422.121236.246@almaden.ibm.com>, Wingert@vnet.IBM.COM (Bret Wingert) writes:\\n>> 3. The Onboard Flight Software project was rated \"Level 5\" by a NASA team.\\n>> This group generates 20-40 KSLOCs of verified code per year for NASA.\\n>\\n>Will someone tell an ignorant physicist where the term \"Level 5\" comes\\n>from? It sounds like the RISKS Digest equivalent of Large, Extra\\n>Large, Jumbo... Or maybe it\\'s like \"Defcon 5...\"\\n>\\n>I gather it means that Shuttle software was developed with extreme\\n>care to have reliablility and safety, and almost everything else in\\n>the computing world is Level 1, or cheesy dime-store software. Not\\n>surprising. But who is it that invents this standard, and how come\\n>everyone but me seems to be familiar with it?\\n\\nLevel 5 refers to the Carnegie-Mellon Software Engineering Institute\\'s\\nCapability Maturity Model. This model rates software development\\norg\\'s from1-5. with 1 being Chaotic and 5 being Optimizing. DoD is\\nbeginning to use this rating system as a discriminator in contracts. I\\nhave more data on thifrom 1 page to 1000. I have a 20-30 page\\npresentation that summarizes it wethat I could FAX to you if you\\'re\\ninterested...\\nBret Wingert\\nWingert@VNET.IBM.COM\\n\\n(713)-282-7534\\nFAX: (713)-282-8077\\n\\n\\n',\n", + " 'From: jcopelan@nyx.cs.du.edu (The One and Only)\\nSubject: Re: New Member\\nOrganization: Salvation Army Draft Board\\nLines: 28\\n\\nIn article dfuller@portal.hq.videocart.com (Dave Fuller) writes:\\n>\\n> Hello. I just started reading this group today, and I think I am going\\n>to be a large participant in its daily postings. I liked the section of\\n>the FAQ about constructing logical arguments - well done. I am an atheist,\\n>but I do not try to turn other people into atheists. I only try to figure\\n>why people believe the way they do - I don\\'t much care if they have a \\n>different view than I do. When it comes down to it . . . I could be wrong.\\n>I am willing to admit the possibility - something religious followers \\n>dont seem to have the capability to do.\\n>\\n> Happy to be aboard !\\n>\\n>Dave Fuller\\n>dfuller@portal.hq.videocart.com\\n\\nWelcome. I am the official keeper of the list of nicknames that people\\nare known by on alt.atheism (didn\\'t know we had such a list, did you).\\nYour have been awarded the nickname of \"Buckminster.\" So the next time\\nyou post an article, sign with your nickname like so:\\nDave \"Buckminster\" Fuller. Thanks again.\\n\\nJim \"Humor means never having to say you\\'re sorry\" Copeland\\n--\\nIf God is dead and the actor plays his part | -- Sting,\\nHis words of fear will find their way to a place in your heart | History\\nWithout the voice of reason every faith is its own curse | Will Teach Us\\nWithout freedom from the past things can only get worse | Nothing\\n',\n", + " \"From: 18084TM@msu.edu (Tom)\\nSubject: Space Clippers launched\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 14\\n\\n\\n\\n> SPACE CLIPPERS LAUNCHED SUCCESSFULLY\\n\\nWhen I first saw this, I thought for a second that it was a headline from\\nThe Star about the pliers found in the SRB recently.\\n\\nY'know, sometimes they have wire-cutters built in :-)\\n\\n-Tommy Mac\\n-------------------------------------------------------------------------\\nTom McWilliams 517-355-2178 wk \\\\\\\\ As the radius of vision increases,\\n18084tm@ibm.cl.msu.edu 336-9591 hm \\\\\\\\ the circumference of mystery grows.\\n-------------------------------------------------------------------------\\n\",\n", + " 'From: jimh@carson.u.washington.edu (James Hogan)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nKeywords: slander calumny\\nOrganization: University of Washington, Seattle\\nLines: 60\\nNNTP-Posting-Host: carson.u.washington.edu\\n\\nIn article <1993Apr16.222525.16024@bnr.ca> (Rashid) writes:\\n>In article <1993Apr16.171722.159590@zeus.calpoly.edu>,\\n>jmunch@hertz.elee.calpoly.edu (John Munch) wrote:\\n>> \\n>> In article <1993Apr15.212943.15118@bnr.ca> (Rashid) writes:\\n>> >P.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\n>> >applies to Rushdie and may be encompassed under the umbrella\\n>> >of the \"fasad\" ruling.\\n>> \\n>> Please define the words \"shatim\" and \"fasad\" before you use them again.\\n>\\n>My apologies. \"Shatim\", I believe, refers to slandering or spreading\\n>slander and lies about the Prophets(a.s) - any of the Prophets.\\n\\nBasically, any prophet I\\'ve ever dealt with has either been busy \\nhawking stolen merchandise or selling swampland house lots in \\nFlorida. Then you hear all the stories of sexual abuse by prophets\\nand how the families of victims were paid to keep quiet about it.\\n\\n>It\\'s a kind of willful caulmny and \"cursing\" that\\'s indicated by the\\n>word. This is the best explanation I can come up with off the top\\n>of my head - I\\'ll try and look up a more technical definition when I\\n>have the time.\\n\\nNever mind that, but let me tell you about this Chevelle I bought \\nfrom this dude (you guessed it, a prophet) named Mohammed. I\\'ve\\ngot the car for like two days when the tranny kicks, then Manny, \\nmy mechanic, tells me it was loaded with sawdust! Take a guess\\nwhether \"Mohammed\" was anywhere to be found. I don\\'t think so.\\n\\n>\\n>\"Fasad\" is a little more difficult to describe. Again, this is not\\n>a technical definition - I\\'ll try and get that later. Literally,\\n\\nOh, Mohammed!\\n\\n>the word \"fasad\" means mischief. But it\\'s a mischief on the order of\\n>magnitude indicated by the word \"corruption\". It\\'s when someone who\\n>is doing something wrong to begin with, seeks to escalate the hurt,\\n\\nYeah, you, Mohammed!\\n\\n>disorder, concern, harm etc. (the mischief) initially caused by their \\n>actions. The \"wrong\" is specifically related to attacks against\\n>\"God and His Messenger\" and mischief, corruption, disorder etc.\\n\\nYou slimy mass of pond scum!\\n\\n>resulting from that. The attack need not be a physical attack and there\\n>are different levels of penalty proscribed, depending on the extent\\n>of the mischief and whether the person or persons sought to \\n>\"make hay\" of the situation. The severest punishment is death.\\n\\nYeah, right! You\\'re the one should be watching your butt. You and\\nyour buddy Allah. The stereo he sold me croaked after two days.\\nYour ass is grass!\\n\\nJim\\n\\nYeah, that\\'s right, Jim.\\n',\n", + " \"From: pes@hutcs.cs.hut.fi (Pekka Siltanen)\\nSubject: Re: detecting double points in bezier curves\\nNntp-Posting-Host: hutcs.cs.hut.fi\\nOrganization: Helsinki University of Technology, Finland\\nLines: 26\\n\\nIn article <1993Apr19.234409.18303@kpc.com> jbulf@balsa.Berkeley.EDU (Jeff Bulf) writes:\\n>In article , ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck) writes:\\n>|> I'm looking for any information on detecting and/or calculating a double\\n>|> point and/or cusp in a bezier curve.\\n>|> \\n>|> An algorithm, literature reference or mail about this is very appreciated,\\n>\\n>There was a very useful article in one of the 1989 issues of\\n>Transactions On Graphics. I believe Maureen Stone was one of\\n>the authors. Sorry not to be more specific. I don't have the\\n>reference here with me.\\n\\n\\nStone, DeRose: Geometric characterization of parametric cubic curves.\\nACM Trans. Graphics 8 (3) (1989) 147 - 163.\\n\\n\\nManocha, Canny: Detecting cusps and inflection points in curves.\\nComputer aided geometric design 9 (1992) 1-24.\\n\\nPekka Siltanen\\n\\n\\n\\n\\n\\n\",\n", + " \"Subject: Re: Deriving Pleasure from Death\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 30\\n\\n> Brad Hernlem writes...\\n> >\\n> >Congratulations to the brave men of the Lebanese resistance! With every\\n> >Israeli son that you place in the grave you are underlining the moral\\n> >bankruptcy of Israel's occupation and drawing attention to the Israeli\\n> >government's policy of reckless disregard for civilian life.\\n> >\\n> >Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nTo which Mark Ira Kaufman responds:\\n> \\n> Your delight in the death of human beings says more about you\\n> than anything that I could say.\\n\\nMark,\\nWere you one of the millions of Americans cheering the slaughter of Iraqi\\ncivilians by US forces in 1991? Your comment could also apply to all of\\nthem. (By the way, I do not applaud the killing of _any_ human being,\\nincluding prisoners sentenced to death by our illustrious justice department)\\n\\nPeace.\\n-marc\\n\\n\\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", + " 'From: Mike_Peredo@mindlink.bc.ca (Mike Peredo)\\nSubject: Re: \"Fake\" virtual reality\\nOrganization: MIND LINK! - British Columbia, Canada\\nLines: 11\\n\\nThe most ridiculous example of VR-exploitation I\\'ve seen so far is the\\n\"Virtual Reality Clothing Company\" which recently opened up in Vancouver. As\\nfar as I can tell it\\'s just another \"chic\" clothes spot. Although it would be\\ninteresting if they were selling \"virtual clothing\"....\\n\\nE-mail me if you want me to dig up their phone # and you can probably get\\nsome promotional lit.\\n\\nMP\\n(8^)-\\n\\n',\n", + " 'From: lotto@laura.harvard.edu (Jerry Lotto)\\nSubject: Re: where to put your helmet\\nOrganization: Chemistry Dept., Harvard University\\nLines: 25\\nDistribution: world\\nNNTP-Posting-Host: laura.harvard.edu\\nIn-reply-to: ryan_cousineau@compdyn.questor.org\\'s message of 19 Apr 93 18:25:00 GMT\\n\\n>>>>> On 19 Apr 93 18:25:00 GMT, ryan_cousineau@compdyn.questor.org (Ryan Cousineau) said:\\nCB> DON\\'T BE SO STUPID AS TO LEAVE YOUR HELMET ON THE SEAT WHERE IT CAN\\nCB> FALL DOWN AND GO BOOM!\\n\\nRyan> Another good place for your helmet is your mirror (!). I kid you not.\\n\\nThis is very bad advice. Helmets have two major impact absorbing\\nlayers... a hard outer shell and a closed-cell foam impact layer.\\nMost helmets lose their protective properties because the inner liner\\ncompacts over time, long before the outer shell is damaged or\\ndelaminates from age. Dr. Hurt tested helmets for many years\\nfollowing his landmark study and has estimated that a helmet can lose\\nup to 80% of it\\'s effectiveness from inner liner compression. I have\\na video he produced that discusses this phenomenon in detail.\\n\\nPuncture compression of the type caused by mirrors, sissy bars, and\\nother relatively sharp objects is the worst offender. Even when the\\ncomfort liner is unaffected, dents and holes in the foam can seriously\\ndegrade the effectiveness of a helmet. If you are in the habit of\\n\"parking your lid\" on the mirrors, I suggest you look under the\\ncomfort liner at the condition of the foam. If it is significantly\\ndamaged (or missing :-), replace the helmet.\\n--\\nJerry Lotto MSFCI, HOGSSC, BCSO, AMA, DoD #18\\nChemistry Dept., Harvard Univ. \"It\\'s my Harley, and I\\'ll ride if I want to...\"\\n',\n", + " 'From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Drinking and Riding\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 30\\n\\nIn article maven@eskimo.com (Norman Hamer) writes:\\n\\n> What is a general rule of thumb for sobriety and cycling? Couple hours after\\n>you \"feel\" sober? What? Or should I just work with \"If I drink tonight, I\\n>don\\'t ride until tomorrow\"?\\n\\nInteresting discussion.\\n\\nI limit myself to *one* \\'standard serving\\' of alcohol if I\\'m\\ngoing to ride. And mostly, unless the alcohol is something\\nspecial (fine ale, good wine, or someone else\\'s vsop), I usually\\njust don\\'t drink *any*.\\n\\nBut then alcohol just isn\\'t really important to me, mainly\\nfor financial reasons...\\n\\nAt least one of the magazines claims to follow the\\naviation guideline of \"no alcohol whatsoever\" within\\n24hrs of riding a \\'company\\' bike.\\n\\nDon\\'t remember which mag though, it was a few years ago.\\n\\nRegards, Charles (hicc.)\\nDoD:0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Though his book was dealing with the Genocide of Muslims by Armenians..\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 45\\n\\nIn article arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>Then repeat everything I said before with the word \"race-related\" \\n>substituted for \"racist\". All that changes is the phrasing; complaining \\n>that I used the wrong word is a quibble.\\n\\nWell, your Armenian grandparents were fascist. As early as 1934, K. S. \\nPapazian asserted in \\'Patriotism Perverted\\' that the Armenians\\n\\n \\'lean toward Fascism and Hitlerism.\\'[1]\\n\\nAt that time, he could not have foreseen that the Armenians would\\nactively assume a pro-German stance and even collaborate in World\\nWar II. His book was dealing with the Armenian genocide of Turkish\\npopulation of eastern Anatolia. However, extreme rightwing ideological\\ntendencies could be observed within the Dashnagtzoutune long before\\nthe outbreak of the Second World War.\\n\\nIn 1936, for example, O. Zarmooni of the \\'Tzeghagrons\\' was quoted\\nin the \\'Hairenik Weekly:\\' \\n\\n\"The race is force: it is treasure. If we follow history we shall \\n see that races, due to their innate force, have created the nations\\n and these have been secure only insofar as they have reverted to\\n the race after becoming a nation. Today Germany and Italy are\\n strong because as nations they live and breath in terms of race.\\n On the other hand, Russia is comparatively weak because she is\\n bereft of social sanctities.\"[2]\\n\\n[1] K. S. Papazian, \\'Patriotism Perverted,\\' (Boston, Baikar Press\\n 1934), Preface.\\n[2] \\'Hairenik Weekly,\\' Friday, April 10, 1936, \\'The Race is our\\n Refuge\\' by O. Zarmooni.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " \"From: dannyb@panix.com (Daniel Burstein)\\nSubject: japanese moon landing?\\nOrganization: PANIX Public Access Unix, NYC\\nLines: 17\\n\\nAfraid I can't give any more info on this.. and hoping someone in greter\\nNETLAND has some details.\\n\\nA short story in the newspaper a few days ago made some sort of mention\\nabout how the Japanese, using what sounded like a gravity assist, had just\\nmanaged to crash (or crash-land) a package on the moon.\\n\\nthe article was very vague and unclear. and, to make matters worse, I\\ndidn't clip it.\\n\\ndoes this jog anyone's memory?\\n\\n\\nthanks\\ndannyb@panix.com\\n\\n\\n\",\n", + " \"From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Fat Boy versus ZX-11 (new math)\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 32\\n\\nIn article <1pimfd$cre@agate.berkeley.edu> robinson@cogsci.Berkeley.EDU (Michael Robinson) writes:\\n>In article klinger@ccu.umanitoba.ca (Jorg Klinger) writes:\\n>>In <1993Apr1.130432.11009@bnr.ca> npet@bnr.ca (Nick Pettefar) writes:\\n>>>Manual Velcro, on the 31 Mar 93 09:19:29 +0200 wibbled:\\n>>>: But 14 is greater than 11, or 180 is greater than 120, or ...\\n>>>No! 10 is the best of all.\\n>>No No No!\\n>> It should be obvious that 8 is the best number by far. Last year 10\\n>>was hot but with the improvements to 8 this year there can be no\\n>>question.\\n>\\n>Hell, my Dad used to have an old 5 that would beat out today's 8 without \\n>breaking a sweat.\\n>\\n>(Well, in the twisties, anyway.)\\n>\\n>This year's 8 is just too cumbersome for practical use in anything other \\n>than repeating decimals.\\n>\\nRemember the good old days, when Hexadecimals, and even Binaries\\nwere still legal? Sure, they smoked a little blue stuff out the\\npipes, but I had a hex 7 that could slaughter any decimal 10 on\\nthe road. Sigh, such nostalgia!\\n\\nRegards, Charles\\nDoD0,001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n\",\n", + " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: some thoughts.\\nOrganization: Technical University Braunschweig, Germany\\nLines: 12\\n\\nIn article \\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n \\n> The arguements he uses I am summing up. The book is about whether\\n>Jesus was God or not. I know many of you don't believe, but listen to a\\n>different perspective for we all have something to gain by listening to what\\n>others have to say.\\n \\nRead the FAQ first, watch the list fr some weeks, and come back then.\\n \\nAnd read some other books on the matter in order to broaden your view first.\\n Benedikt\\n\",\n", + " 'From: ivan@erich.triumf.ca (Ivan D. Reid)\\nSubject: Re: Carrying crutches (was Re: Living\\nOrganization: TRIUMF: Tri-University Meson Facility\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: erich.triumf.ca\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1pqhkl$g48@usenet.INS.CWRU.Edu>,\\n\\t ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes...\\n>\\tWhen I got my knee rebuilt I got back on the street bike ASAP. I put\\n>the crutches on the rack and the passenger seat and they hung out back a\\n>LONG way. Just make sure they\\'re tied down tight in front and no problemo.\\n ^^^^\\n\\tHmm, sounds like a useful trick -- it\\'d keep the local cagers at least\\na crutch-length off my tail-light, which is more than they give me now. But\\ndo I have to break a leg to use it?\\n\\n\\t(When I broke my ankle dirt-biking, I ended up strapping the crutches\\nto the back of the bike & riding to the lab. It was my right ankle, but the\\nbike was a GT380 and started easily by hand.)\\n\\nIvan Reid, Paul Scherrer Institute, CH. \\t\\t\\tivan@cvax.psi.ch\\nGSX600F, RG250WD. \"Beware drainage ditches on firetrails\"\\tDoD #484\\n',\n", + " 'From: cliff@watson.ibm.com (cliff)\\nSubject: Reprints\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM.\\nNntp-Posting-Host: cliff.watson.ibm.com\\nOrganization: A\\nLines: 17\\n\\nI have a few reprints left of chapters from my book \"Visions of the \\nFuture\". These include reprints of 3 chapters probably of interest to \\nreaders of this forum, including: \\n \\n1. Current Techniques and Development of Computer Art, by Franz Szabo \\n \\n2. Forging a Career as a Sculptor from a Career as Computer Programmer, \\nby Stewart Dickson \\n \\n3. Fractals and Genetics in the Future by H. Joel Jeffrey \\n \\nI\\'d be happy to send out free reprints to researchers for scholarly \\npurposes, until the reprints run out. \\n \\nJust send me your name and address. \\n \\nThanks, Cliff cliff@watson.ibm.com \\n',\n", + " \"From: friedenb@silver.egr.msu.edu (Gedaliah Friedenberg)\\nSubject: Re: Zionism is Racism\\nOrganization: College of Engineering, Michigan State University\\nLines: 26\\nDistribution: world\\nReply-To: friedenb@silver.egr.msu.edu (Gedaliah Friedenberg)\\nNNTP-Posting-Host: silver.egr.msu.edu\\n\\nIn article <20APR93.23565659.0109@VM1.MCGILL.CA>, B8HA000 writes:\\n|> In Re:Syria's Expansion, the author writes that the UN thought\\n|> Zionism was Racism and that they were wrong. They were correct\\n|> the first time, Zionism is Racism and thankfully, the McGill Daily\\n|> (the student newspaper at McGill) was proud enough to print an article\\n|> saying so. If you want a copy, send me mail.\\n\\nIf you want info claiming that blacks were brought to earth 60 trillion\\nyears ago by Aliens from the plante Shabazz, I can send you literature from\\nthe Nation of Islam (Farrakhan's group) who believe this.\\n\\nIf you want info claiming that the Holocaust never happened, I can send you\\ninfo from IHR (Institute for Historical Review - David Irving's group), or\\njust read Dan Gannon's posts on alt.revisionism.\\n\\nI just wanted to put Steve's post in with the company that it deserves.\\n\\n|> Steve\\n\\nGedaliah Friedenberg\\n-=-Department of Mechanical Engineering\\n-=-Department of Metallurgy, Mechanics and Materials Science\\n-=-Michigan State University\\n\\n\\n \\n\",\n", + " 'From: bandy@catnip.berkeley.ca.us (Andrew Scott Beals -- KC6SSS)\\nSubject: Re: Your opinion and what it means to me.\\nOrganization: The San Jose, California, Home for Perverted Hackers\\nLines: 10\\n\\ninfante@acpub.duke.edu (Andrew Infante) writes:\\n\\n>Since the occurance, I\\'ve paid many\\n>dollars in renumerance, taken the drunk class, \\n>and, yes, listened to all the self-righteous\\n>assholes like yourself that think your SO above the\\n>rest of the world because you\\'ve never had your\\n>own little DD suaree.\\n\\n\"The devil made me do it!\"\\n',\n", + " \"From: rwf2@ns1.cc.lehigh.edu (ROBERT WILLIAM FUSI)\\nSubject: Bike advice\\nOrganization: Lehigh University\\nLines: 11\\n\\nI have an '89 Kawasaki KX 80. It is in mint condition and starts on the first\\nkick EVERY time. I have outgrown the bike, and am considering selling it. I\\nwas told I should ask around $900. Does that sound right or should it be\\nhigher/lower?\\n Also, I am looking for a used ZX-7. How much do I have to spend, and what\\nyear should I look for to get a bike without paying an arm and a leg????\\n Thanks for the help!\\n\\n Rob Fusi\\n rwf2@lehigh.edu\\n-- \\n\",\n", + " 'From: randy@megatek.com (Randy Davis)\\nSubject: Re: A Miracle in California\\nArticle-I.D.: megatek.1993Apr5.223941.11539\\nReply-To: randy@megatek.com\\nOrganization: Megatek Corporation, San Diego, California\\nLines: 15\\n\\nIn article <1ppvof$92a@seven-up.East.Sun.COM> egreen@East.Sun.COM writes:\\n|Bikers wave to bikers the world over. Whether or not Harley riders\\n|wave to other bikers is one of our favorite flame wars...\\n\\n I am happy to say that some Harley riders in our area are better than most\\nthat are flamed about here: I (riding a lowly sport bike, no less) and my\\ngirlfriend were the recipient of no less than twenty waves from a group of\\nat least twenty-five Harley riders. I was leading a group of about four\\nsport bikes at the time (FJ1200/CBR900RR/VFR750). I initiated *some* of the\\nwaves, but not all. It was a perfect day, and friendly riders despite some\\nbrand differences made it all the better...\\n\\nRandy Davis Email: randy@megatek.com\\nZX-11 #00072 Pilot {uunet!ucsd}!megatek!randy\\nDoD #0013\\n',\n", + " 'From: jamshid@cgl.ucsf.edu (J. Naghizadeh)\\nSubject: PR Campaign Against Iran (PBS Frontline)\\nOrganization: Computer Graphics Laboratory, UCSF\\nLines: 51\\nOriginator: jamshid@socrates.ucsf.edu\\n\\nThere have been a number of articles on the PBS frontline program\\nabout Iranian bomb. Here is my $0.02 on this and related subjects.\\n\\nOne is curious to know the real reasons behind this and related\\npublic relations campaign about Iran in recent months. These include:\\n\\n1) Attempts to implicate Iran in the bombing of the New York Trade\\n Center. Despite great efforts in this direction they have not\\n succeeded in this. They, however, have indirectly created\\n the impression that Iran is behind the rise of fundamentalist\\n Islamic movements and thus are indirectly implicated in this matter.\\n\\n2) Public statements by the Secretary of State Christoffer and\\n other official sources regarding Iran being a terrorist and\\n outlaw state.\\n\\n3) And finally the recent broadcast of the Frontline program. I \\n suspect that this PR campaign against Iran will continue and\\n perhaps intensify.\\n\\nWhy this increased pressure on Iran? A number of factors may have\\nbeen behind this. These include:\\n\\n1) The rise of Islamic movements in North-Africa and radical\\n Hamas movement in the Israeli occupied territories. This\\n movement is basically anti-western and is not necessarily\\n fueled by Iran. The cause for accelerated pace of this \\n movement is probably the Gulf War which sought to return\\n colonial Shieks and Amirs to their throne in the name of\\n democracy and freedom. Also, the obvious support of Algerian\\n military coup against the democratically elected Algerian\\n Islamic Front which clearly exposed the democracy myth.\\n A further cause of this may be the daily broadcast of the news\\n on the slaughter of Bosnian Moslems.\\n\\n2) Possible future implications of this movement in Saudi Arabia\\n and other US client states and endangerment of the cheap oil\\n sources from this region.\\n\\n3) A need to create an enemy as an excuse for huge defense\\n expenditures. This has become necessary after the demise of\\n Soveit Union.\\n\\nThe recent PR campaign against Iran, however, seems to be directed\\nfrom Israel rather than Washington. There is no fundamental conflict\\nof interest between Iran and the US and in my opinion, it is in the\\ninterest of both countries to affect reestablishment of normal\\nand friendly relations. This may have a moderating effect on the\\nrise of radical movements within the Islamic world and Iran .\\n\\n--jamshid\\n',\n", + " \"From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: Reasons : was Re: was: Go Hezbollah!!\\nOrganization: Unocal Corporation\\nLines: 35\\n\\n\\n\\nHossien Amehdi writes:\\n\\n>I am not in the business of reading minds, however in this case it would not\\n>be necessary. Israelis top leaders in the past and present, always come across\\n>as arrogant with their tough talks trying to intimidate the Arabs. \\n\\n>The way I see it, Israelis and Arabs have not been able to achieve peace\\n>after almost 50 years of fighting because of the following two major reasons:.\\n\\n> 1) Arab governments are not really representative of their people, currently\\n > most of their leaders are stupid, and/or not independent, and/or\\n> dictators.\\n\\n> 2) Israeli government is arrogant and none comprising.\\n\\n\\n\\nIt's not relevant whether I agree with you or not, there is some reasonable\\nthought in what you say here an I appreciate your point. However, I would make 2\\nremarks: \\n\\n - you forgot about hate, and this is not only at government level.\\n - It's not only 'arab' governments.\\n\\nNow, about taugh talk and arrogance, we are adults, aren't we ? Do you listen \\nto tough talk of american politicians ? or switch the channel ? \\nI would rather be 'intimidated' by some dummy 'talking tough' then by a \\nbomb ready to blow under my seat in B747.\\n\\n\\n\\nDorin\\n\\n\",\n", + " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Portuguese Launch Complex (was:*Doppelganger*)\\nOrganization: NASA Langley Research Center\\nLines: 14\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\n> Portugese launch complex were *wonderful\\n\\nPortuguese launch complex??? Gosh.... Polish are for American in the \\nsame way as Portuguese are for Brazilians (I am from Brazil). There is \\na joke about the Portuguese Space Agency that wanted to send a \\nPortuguese astronaut to the surface of the Sun (if there is such a thing).\\nHow did they solve all problems of sending a man to the surface of the \\nSun??? Simple... their astronauts travelled during the night...\\n\\n C.O.EGALON@LARC.NASA.GOV\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", + " 'From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: Yeah, Right\\nOrganization: Technical University Braunschweig, Germany\\nLines: 54\\n\\nIn article <66014@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n>>And what about that revelation thing, Charley?\\n>\\n>If you\\'re talking about this intellectual engagement of revelation, well,\\n>it\\'s obviously a risk one takes.\\n>\\n \\nI see, it is not rational, but it is intellectual. Does madness qualify\\nas intellectual engagement, too?\\n \\n \\n>>Many people say that the concept of metaphysical and religious knowledge\\n>>is contradictive.\\n>\\n>I\\'m not an objectivist, so I\\'m not particularly impressed with problems of\\n>conceptualization. The problem in this case is at least as bad as that of\\n>trying to explain quantum mechanics and relativity in the terms of ordinary\\n>experience. One can get some rough understanding, but the language is, from\\n>the perspective of ordinary phenomena, inconsistent, and from the\\n>perspective of what\\'s being described, rather inexact (to be charitable).\\n>\\n \\nExactly why science uses mathematics. QM representation in natural language\\nis not supposed to replace the elaborate representation in mathematical\\nterminology. Nor is it supposed to be the truth, as opposed to the\\nrepresentation of gods or religions in ordinary language. Admittedly,\\nnot every religion says so, but a fancy side effect of their inept\\nrepresentations are the eternal hassles between religions.\\n \\nAnd QM allows for making experiments that will lead to results that will\\nbe agreed upon as being similar. Show me something similar in religion.\\n \\n \\n>An analogous situation (supposedly) obtains in metaphysics; the problem is\\n>that the \"better\" descriptive language is not available.\\n>\\n \\nWith the effect that the models presented are useless. And one can argue\\nthat the other way around, namely that the only reason metaphysics still\\nflourish is because it makes no statements that can be verified or falsified -\\nshowing that it is bogus.\\n \\n \\n>>And in case it holds reliable information, can you show how you establish\\n>>that?\\n>\\n>This word \"reliable\" is essentially meaningless in the context-- unless you\\n>can show how reliability can be determined.\\n \\nHaven\\'t you read the many posts about what reliability is and how it can\\nbe acheived respectively determined?\\n Benedikt\\n',\n", + " 'From: Center for Policy Research \\nSubject: conf:mideast.levant\\nNf-ID: #N:cdp:1483500358:000:1967\\nNf-From: cdp.UUCP!cpr Apr 24 14:55:00 1993\\nLines: 47\\n\\n\\nFrom: Center for Policy Research \\nSubject: conf:mideast.levant\\n\\n\\nRights of children violated by the State of Israel (selected\\narticles of the IV Geneva Convention of 1949)\\n-------------------------------------------------------------\\nArticle 31: No physical or moral coercion shall be exercised\\nagainst protected persons, in particular to obtain information\\nfrom them or from third parties.\\n\\nArticle 32: The High Contracting Parties specifically agree that\\neach of them is prohibited from taking any measure of such a\\ncharacter as to cause the physical suffering or extermination of\\nprotected persons in their hands. This prohibition applies not\\nonly to murder, torture, corporal punishment (...) but also to any\\nother measures of brutality whether applied by civilian or\\nmilitary agents.\\n\\nArticle 33: No protected person may be punished for an offence he\\nor she has not personally committed. Collective penalties and\\nlikewise measures of intimidation or of terrorism are prohibited.\\n\\nArticle 34: Taking of hostages is prohibited.\\n\\nArticle 49: Individual or mass forcible transfers, as well as\\ndeportations of protected persons from occupied territory to the\\nterritory of the Occupying Power or to that of any other country,\\noccupied or not, are prohibited, regardless of their motive.\\n\\nArticle 50: The Occupying Power shall, with the cooperation of\\nthe national and local authorities, facilitate the proper working\\nof all institutions devoted to the care and education of\\nchildren.\\n\\nArticle 53: Any destruction by the Occupying Power of real or\\npersonal property belonging individually or collectively to\\nprivate persons, or to the State, or to other public authorities,\\nor to social or cooperative organizations, is prohibited, except\\nwhere such destruction is rendered absolutely necessary by\\nmilitary operations.\\n\\nPS: It is obvious that violations of the above articles are also\\nviolations of the International Convention of the Rights of the\\nChild.\\n\\n',\n", + " 'From: twpierce@unix.amherst.edu (Tim Pierce)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nArticle-I.D.: unix.C52Cw7.I6t\\nOrganization: Blasny Blasny, Consolidated (Amherst, MA Offices)\\nLines: 37\\n\\nIn article <1993Apr6.041343.24997@cbnewsl.cb.att.com> stank@cbnewsl.cb.att.com (Stan Krieger) writes:\\n\\n>Roger and I have\\n>clearly stated our support of the BSA position on the issue;\\n>specifically, that homosexual behavior constitutes a violation of\\n>the Scout Oath (specifically, the promise to live \"morally straight\").\\n>\\n>There is really nothing else to discuss.\\n\\nApparently not.\\n\\nIn response to his claim that it \"terrifies\" gay people not to be able\\nto \"indoctrinate children to our lifestyle\" (or words to that effect),\\nI sent Roger a very calm, carefully-written, detailed letter\\nexplaining simply why the BSA policy does, indeed terrify me. I did\\nnot use inflammatory language and left myself extremely open for an\\nanswer. Thus far, I have not received an answer. I can conclude only\\nthat Roger considers his position either indefensible or simply not\\nworth defending.\\n\\n>Trying to cloud the issue\\n>with comparisons to Blacks or other minorities is also meaningless\\n>because it\\'s like comparing apples to oranges (i.e., people can\\'t\\n>control their race but they can control their behavior).\\n\\nIn fact, that\\'s exactly the point: people can control their behavior.\\nBecause of that fact, there is no need for a blanket ban on\\nhomosexuals.\\n\\n>What else is there to possibly discuss on rec.scouting on this issue?\\n\\nYou tell me.\\n\\n-- \\n____ Tim Pierce / ?Usted es la de la tele, eh? !La madre\\n\\\\ / twpierce@unix.amherst.edu / del asesino! !Ay, que graciosa!\\n \\\\/ (BITnet: TWPIERCE@AMHERST) / -- Pedro Almodovar\\n',\n", + " 'From: crash@ckctpa.UUCP (Frank \"Crash\" Edwards)\\nSubject: Re: forms for curses\\nReply-To: crash%ckctpa@myrddin.sybus.com (Frank \"Crash\" Edwards)\\nOrganization: Edwards & Edwards Consulting\\nLines: 40\\n\\nNote the Followup-To: header ...\\n\\nsteelem@rintintin.Colorado.EDU (STEELE MARK A) writes:\\n>Is there a collection of forms routines that can be used with curses?\\n>If so where is it located?\\n\\nOn my SVR4 Amiga Unix box, I\\'ve got -lform, -lmenu, and -lpanel for\\nuse with the curses library. Guess what they provide? :-)\\n\\nUnix Press, ie. Prentice-Hall, has a programmer\\'s guide for these\\ntools, referred to as the FMLI (Forms Mgmt Language Interface) and\\nETI (Extended Terminal Interface), now in it\\'s 2nd edition. It is\\nISBN 0-13-020637-7.\\n\\nParaphrased from the outside back cover:\\n\\n FMLI is a high-level programming tool for creating menus, forms,\\n and text frames. ETI is a set of screen management library\\n subroutines that promote fast development of application programs\\n for window, panel, menu, and form manipulation.\\n\\nThe FMLI is a shell package which reads ascii text files and produces\\nscreen displays for data entry and presentation. It consists of a\\n\"shell-like\" environment of the \"fmli\" program and it\\'s database\\nfiles. It is section 1F in the Unix Press manual.\\n\\nThe ETI are subroutines, part of the 3X manual section, provide\\nsupport for a multi-window capability on an ordinary ascii terminal\\nwith controls built on top of the curses library.\\n\\n>Thanks\\n>-Mark Steele\\n>steelem@rintintin.colorado.edu\\n\\n-- \\nFrank \"Crash\" Edwards Edwards & Edwards Consulting\\nVoice: 813/786-3675 crash%ckctpa@myrddin.sybus.com, but please\\nData: 813/787-3675 don\\'t ask UUNET to route it -- it\\'s sloooow.\\n There will be times in life when everyone you meet smiles and pats you on\\n the back and tells you how great you are ... so hold on to your wallet.\\n',\n", + " \"From: ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky)\\nSubject: Go Hizbollah II!\\nLines: 28\\nNntp-Posting-Host: purple.cc.utexas.edu\\nOrganization: University of Texas @ Austin\\nLines: 28\\n\\n\\nFrom Israel Line, Thursday, April 22, 1993:\\n \\nToday's HA'ARETZ reports that three women were injured when a\\nKatyusha rocket fell in the center of their community. The rocket\\nwas one of several dozen fired at the communities of the Galilee in\\nnorthern Israel yesterday by the terrorist Hizbullah organization [...] \\n\\n\\nIn article <1993Apr14.125813.21737@ncsu.edu> hernlem@chess.ncsu.edu \\n(Brad Hernlem) wrote:\\n\\nCongratulations to the brave men of the Lebanese resistance! With every\\nIsraeli son that you place in the grave you are underlining the moral\\nbankruptcy of Israel's occupation and drawing attention to the Israeli\\ngovernment's policy of reckless disregard for civilian life.\\n\\n\\n\\tApparently, the Hizbollah were encouraged by Brad's cheers\\n\\t(good job, Brad). Someone forgot to tell them, though, that \\n\\tBrad asks them to place only Israeli _sons_ in the grave, \\n\\tnot daughters. Paraphrasing a bit, with every rocket that \\n\\tthe Hizbollah fires on the Galilee, they justify Israel's \\n\\tholding to the security zone. \\n\\nNoam\\n \\n \\n\",\n", + " \"From: SHICKLEY@VM.TEMPLE.EDU\\nSubject: For Sale (sigh)\\nOrganization: Temple University\\nLines: 34\\nNntp-Posting-Host: vm.temple.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\n\\n FOR SALE (RELUCTANTLY)\\n ---- Classic Bike -----\\n 1972 YAMAHA XS-2 650 TWIN\\n \\n<6000 Original miles. Always stored inside. 1979 front end with\\naftermarket tapered steering head bearings. Racer's supply rear\\nbronze swingarm bushings, Tsubaki chain, Pirrhana 1/4 fairing\\nwith headlight cutout, one-up Carrera racing seat, superbike bars,\\nvelo stacks on twin carbs. Also have original seat. Tank is original\\ncherry/white paint with no scratches, dents or dings. Needs a\\nnew exhaust as original finally rusted through and was discarded.\\nI was in process of making Kenney Roberts TT replica/ cafe racer\\nwhen graduate school, marriage, child precluded further effort.\\nWife would love me to unload it. It does need re-assembly, but\\nI think everything is there. I'll also throw in manuals, receipts,\\nand a collection of XS650 Society newsletters and relevant mag\\narticles. Great fun, CLASSIC bike with over 2K invested. Will\\nconsider reasonable offers.\\n___________________________________________________________________________\\n \\nTimothy J. Shickley, Ph.D. Director, Neurourology\\nDepartments of Urology and Anatomy/Cell Biology\\nTemple University School of Medicine\\n3400 North Broad St.\\nPhiladelphia, PA 19140\\n(voice/data) 215-221-8966; (voice) 21-221-4567; (fax) 21-221-4565\\nINTERNET: shickley@vm.temple.edu BITNET: shickley@templevm.bitnet\\nICBM: 39 57 08N\\n 75 09 51W\\n_________________________________________________________________________\\n \\n \\nw\\n\",\n", + " 'From: pearson@tsd.arlut.utexas.edu (N. Shirlene Pearson)\\nSubject: Re: Sunrise/ sunset times\\nNntp-Posting-Host: wren\\nOrganization: Applied Research Labs, University of Texas at Austin\\nLines: 13\\n\\njpw@cbis.ece.drexel.edu (Joseph Wetstein) writes:\\n\\n\\n>Hello. I am looking for a program (or algorithm) that can be used\\n>to compute sunrise and sunset times.\\n\\nWould you mind posting the responses you get?\\nI am also interested, and there may be others.\\n\\nThanks,\\n\\nN. Shirlene Pearson\\npearson@titan.tsd.arlut.utexas.edu\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: For JOHS@dhhalden.no (3) - Last \\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 37\\n\\nPete Young, on the Tue, 20 Apr 93 08:29:21 GMT wibbled:\\n: Nick Pettefar (npet@bnr.ca) wrote:\\n\\n: : Tsk, tsk, tsk. Another newbie bites the dust, eh? They\\'ll learn.\\n\\n: Newbie. Sorry to disappoint you, but as far as the Internet goes I was\\n: in Baghdad while you were still in your dads bag.\\nIs this bit funny?\\n\\n: Most of the people who made this group interesting 3 or 4 years ago\\n: are no longer around and I only have time to make a random sweep\\n: once a week or so. Hence I missed most of this thread. \\nI\\'m terribly sorry.\\n\\n: Based on your previous postings, apparently devoid of humour, sarcasm,\\n: wit, or the apparent capacity to walk and chew gum at the same time, I\\n: assumed you were serious. Mea culpa.\\nI know, I know. Subtlety is sort of, you know, subtle, isn\\'t it.\\n\\n: Still, it\\'s nice to see that BNR are doing so well that they can afford\\n: to overpay some contractors to sit and read news all day.\\nThat\\'s foreign firms for you.\\n\\n\\n..and a touchy newbie, at that.\\n\\nWhat\\'s the matter, too much starch in the undies?\\n--\\n\\nNick (the Considerate Biker) DoD 1069 Concise Oxford None Gum-Chewer\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n (-\\n',\n", + " 'From: ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck)\\nSubject: Re: detecting double points in bezier curves\\nOrganization: My own node in Groningen, NL.\\nLines: 34\\n\\nrenner@adobe.com (John Renner) writes:\\n\\n> In article <19930420.090030.915@almaden.ibm.com> capelli@vnet.IBM.COM (Ron Ca\\n> >In Ferdinand Oeinck writes:\\n> >>I\\'m looking for any information on detecting and/or calculating a double\\n> >>point and/or cusp in a bezier curve.\\n> >\\n> >See:\\n> > Maureen Stone and Tony DeRose,\\n> > \"A Geometric Characterization of Parametric Cubic Curves\",\\n> > ACM TOG, vol 8, no 3, July 1989, pp. 147-163.\\n> \\n> I\\'ve used that reference, and found that I needed to go to their\\n> original tech report:\\n> \\n> \\tMaureen Stone and Tony DeRose,\\n> \\t\"Characterizing Cubic Bezier Curves\"\\n> \\tXerox EDL-88-8, December 1988\\n> \\n\\nFirst, thanks to all who replied to my original question.\\n\\nI\\'ve implemented the ideas from the article above and I\\'m very satisfied\\nwith the results. I needed it for my bezier curve approximation routine.\\nIn some cases (generating offset curves) loops can occur. I now have a\\nfast method of detecting the generation of a curve with a loop. Although\\nI did not follow the article above strictly. The check if the fourth control\\npoint lies in the the loop area, which is bounded by two parabolas and\\none ellips is too complicated. Instead I enlarged the loop-area and\\nsurrounded it by for straight lines. The check is now simple and fast and\\nmy approximation routine never ever outputs self-intersecting bezier curves\\nagain!\\nFerdinand.\\n\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: U of Toronto Zoology\\nLines: 10\\n\\nIn article <23APR199317452695@tm0006.lerc.nasa.gov> dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock) writes:\\n> - Man-Tended Capability (Griffin has not yet adopted non-sexist\\n> language) ...\\n\\nGlad to see Griffin is spending his time on engineering rather than on\\nritual purification of the language. Pity he got stuck with the turkey\\nrather than one of the sensible options.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: backon@vms.huji.ac.il\\nSubject: Re: From Israeli press. Madness.\\nDistribution: world\\nOrganization: The Hebrew University of Jerusalem\\nLines: 165\\n\\nIn article <1483500342@igc.apc.org>, Center for Policy Research writes:\\n>\\n> From: Center for Policy Research \\n> Subject: From Israeli press. Madness.\\n>\\n> /* Written 4:34 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n> /* ---------- \"From Israeli press. Madness.\" ---------- */\\n> FROM THE ISRAELI PRESS.\\n>\\n> Paper: Zman Tel Aviv (Tel Aviv\\'s time). Friday local Tel Aviv\\'s\\n> paper, affiliated with Maariv.\\n>\\n> Date: 19 February 1993\\n>\\n> Journalist: Guy Ehrlich\\n>\\n> Subject: Interview with soldiers who served in the Duvdevan\\n> (Cherry) units, which disguise themselves as Arabs and operate\\n> within the occupied territories.\\n>\\n> Excerpts from the article:\\n>\\n> \"A lot has been written about the units who disguise themselves as\\n> Arabs, things good and bad, some of the falsehoods. But the most\\n> important problem of those units has been hardly dealt with. It is\\n> that everyone who serves in the Cherry, after a time goes in one\\n> way or another insane\".\\n\\n\\nGee, I\\'d better tell this to the Mental Health Branch of the Israeli Army\\nMedical Corps ! Where would we be without you, Davidson ?\\n\\n\\n\\n\\n\\n>\\n> A man who said this, who will here be called Danny (his full name\\n> is known to the editors) served in the Cherry. After his discharge\\n> from the army he works as delivery boy. His pal, who will here be\\n> called Dudu was also serving in the Cherry, and is now about to\\n> depart for a round-the-world tour. They both look no different\\n> from average Israeli youngsters freshly discharged from conscript\\n> service. But in their souls, one can notice something completely\\n> different....It was not easy for them to come out with disclosures\\n> about what happened to them. And they think that to most of their\\n> fellows from the Cherry it woundn\\'t be easy either. Yet after they\\n> began to talk, it was nearly impossible to make them stop talking.\\n> The following article will contain all the horror stories\\n> recounted with an appalling openness.\\n>\\n> (...) A short time ago I was in command of a veteran team, in\\n> which some of the fellows applied for release from the Cherry. We\\n> called such soldiers H.I. \\'Hit by the Intifada\\'. Under my command\\n> was a soldier who talked to himself non-stop, which is a common\\n> phenomenon in the Cherry. I sent him to a psychiatrist. But why I\\n> should talk about others when I myself feel quite insane ? On\\n> Fridays, when I come home, my parents know I cannot be talked to\\n> until I go to the beach, surf a little, calm down and return. The\\n> keys of my father\\'s car must be ready for in advance, so that I\\n> can go there. I they dare talk to me before, or whenever I don\\'t\\n> want them to talk to me, I just grab a chair and smash it\\n> instantly. I know it is my nerve: Smashing chairs all the time\\n> and then running away from home, to the car and to the beach. Only\\n> there I become normal.(...)\\n>\\n> (...) Another friday I was eating a lunch prepared by my mother.\\n> It was an omelette of sorts. She took the risk of sitting next to\\n> me and talking to me. I then told my mother about an event which\\n> was still fresh in my mind. I told her how I shot an Arab, and how\\n> exactly his wound looked like when I went to inspect it. She began\\n> to laugh hysterically. I wanted her to cry, and she dared laugh\\n> straight in my face instead ! So I told her how my pal had made a\\n> mincemeat of the two Arabs who were preparing the Molotov\\n> cocktails. He shot them down, hitting them beautifully, exactly as\\n> they deserved. One bullet had set a Molotov cocktail on fire, with\\n> the effect that the Arab was burning all over, just beautifully. I\\n> was delighted to see it. My pal fired three bullets, two at the\\n> Arab with the Molotov cocktail, and the third at his chum. It hit\\n> him straight in his ass. We both felt that we\\'d pulled off\\n> something.\\n>\\n> Next I told my mother how another pal of mine split open the guts\\n> in the belly of another Arab and how all of us ran toward that\\n> spot to take a look. I reached the spot first. And then that Arab,\\n> blood gushing forth from his body, spits at me. I yelled: \\'Shut\\n> up\\' and he dared talk back to me in Hebrew! So I just laughed\\n> straight in his face. I am usually laughing when I stare at\\n> something convulsing right before my eyes. Then I told him: \\'All\\n> right, wait a moment\\'. I left him in order to take a look at\\n> another wounded Arab. I asked a soldier if that Arab could be\\n> saved, if the bleeding from his artery could be stopped with the\\n> help of a stone of something else like that. I keep telling all\\n> this to my mother, with details, and she keeps laughing straight\\n> into my face. This infuriated me. I got very angry, because I felt\\n> I was becoming mad. So I stopped eating, seized the plate with he\\n> omelette and some trimmings still on, and at once threw it over\\n> her head. Only then she stopped laughing. At first she didn\\'t know\\n> what to say.\\n>\\n> (...) But I must tell you of a still other madness which falls\\n> upon us frequently. I went with a friend to practice shooting on a\\n> field. A gull appeared right in the middle of the field. My friend\\n> shot it at once. Then we noticed four deer standing high up on the\\n\\n\\nSigh.\\n\\nFour (4) deer in Tel Aviv ?? Well, this is probably as accurate as the rest of\\nthis fantasy.\\n\\n\\n\\n\\n\\n> hill above us. My friend at once aimed at one of them and shot it.\\n> We enjoyed the sight of it falling down the rock. We shot down two\\n> deer more and went to take a look. When we climbed the rocks we\\n> saw a young deer, badly wounded by our bullet, but still trying to\\n> such some milk from its already dead mother. We carefully\\n> inspected two paths, covered by blood and chunks of torn flesh of\\n> the two deer we had hit. We were just delighted by that sight. We\\n> had hit\\'em so good ! Then we decided to kill the young deer too,\\n> so as spare it further suffering. I approached, took out my\\n> revolver and shot him in the head several times from a very short\\n> distance. When you shoot straight at the head you actually see the\\n> bullets sinking in. But my fifth bullet made its brains fall\\n> outside onto the ground, with the effect of splattering lots of\\n> blood straight on us. This made us feel cured of the spurt of our\\n> madness. Standing there soaked with blood, we felt we were like\\n> beasts of prey. We couldn\\'t explain what had happened to us. We\\n> were almost in tears while walking down from that hill, and we\\n> felt the whole day very badly.\\n>\\n> (...) We always go back to places we carried out assignments in.\\n> This is why we can see them. When you see a guy you disabled, may\\n> be for the rest of his life, you feel you got power. You feel\\n> Godlike of sorts.\"\\n>\\n> (...) Both Danny and Dudu contemplate at least at this moment\\n> studying the acting. Dudu is not willing to work in any\\n> security-linked occupation. Danny feels the exact opposite. \\'Why\\n> shouldn\\'t I take advantage of the skills I have mastered so well ?\\n> Why shouldn\\'t I earn $3.000 for each chopped head I would deliver\\n> while being a mercenary in South Africa ? This kind of job suits\\n> me perfectly. I have no human emotions any more. If I get a\\n> reasonable salary I will have no problem to board a plane to\\n> Bosnia in order to fight there.\"\\n>\\n> Transl. by Israel Shahak.\\n>\\n\\nYisrael Shahak the crackpot chemist ? Figures. I often see him in the\\nRechavia (Jerusalem) post office. A really sad figure. Actually, I feel sorry\\nfor him. He was in a concentration camp during the Holocaust and it must have\\naffected him deeply.\\n\\n\\n\\n\\nJosh\\nbackon@VMS.HUJI.AC.IL\\n\\n\\n\\n',\n", + " 'From: un034214@wvnvms.wvnet.edu\\nSubject: M-MOTION VIDEO CARD: YUV to RGB ?\\nOrganization: West Virginia Network for Educational Telecomputing\\nLines: 21\\n\\nI am trying to convert an m-motion (IBM) video file format YUV to RGB \\ndata...\\n\\nTHE Y portion is a byte from 0-255\\nTHE V is a byte -127-127\\nTHe color is U and V\\nand the intensity is Y\\n\\nDOes anyone have any ideas for algorhtyms or programs ?\\n\\nCan someone tell me where to get info on the U and V of a television signal ?\\n\\nIF you need more info reply at the e-mail address...\\nBasically what I am doing is converting a digital NTSC format to RGB (VGA)\\nfor displaying captured video pictures.\\n\\nThanks.\\n\\n\\nTHE U is a byte -127-127\\n\\n',\n", + " \"From: sherry@a.cs.okstate.edu (SHERRY ROBERT MICH)\\nSubject: Re: .SCF files, help needed\\nOrganization: Oklahoma State University\\nLines: 27\\n\\nFrom article <1993Apr21.013846.1374@cx5.com>, by tlc@cx5.com:\\n> \\n> \\n> I've got an old demo disk that I need to view. It was made using RIX Softworks. \\n> The files on the two diskette set end with: .scf\\n> \\n> The demo was VGA resolution (256 colors), but I don't know the spatial \\n> resolution.\\n> \\n\\nAccording to my ColoRIX manual .SCF files are 640x480x256\\n\\n> First problem: When I try to run the demo, the screen has two black bars that \\n> cut across (horizontally) the screen, in the top third and bottom third of the \\n> screen. The bars are about 1-inch wide. Other than this, the demo (the \\n> animation part) seems to be running fine.\\n> \\n> Second problem: I can't find any graphics program that will open and display \\n> these files. I have a couple of image conversion programs, none mention .scf \\n> files.\\n> \\n\\nYou may try VPIC, I think it handles the 256 color RIX files OK..\\n\\n\\nRob Sherry\\nsherry@a.cs.okstate.edu\\n\",\n", + " \"From: nick@sfb256.iam.uni-bonn.de ( Nikan B Firoozye )\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Applied Math, University of Bonn, Germany\\nLines: 15\\n\\nA related question (which I haven't given that much serious thought \\nto): at what lattitude is the average length of the day (averaged \\nover the whole year) maximized? Is this function a constant=\\n12 hours? Is it truly symmetric about the equator? Or is\\nthere some discrepancy due to the fact that the orbit is elliptic\\n(or maybe the difference is enough to change the temperature and\\nmake the seasons in the southern hemisphere more bitter, but\\nis far too small to make a sizeable difference in daylight\\nhours)?\\n\\nI want to know where to move.\\n\\n\\t-Nick Firoozye\\n\\tnick@sfb256.iam.uni-bonn.de\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Given the massacre of the Muslim population of Karabag by Armenians...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nLines: 124\\n\\nIn article <1993Apr19.155856.8260@kpc.com> henrik@quayle.kpc.com writes:\\n\\n>Let me clearify Mr. Turkish;\\n>ARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that \\n>SHE WILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\n>tricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\n>CYPRESS WHILE the world simply WATCHED. \\n\\nAnd the \\'Turkish Karabag\\' is next. As for \\'Cyprus\\', In 1974, Turkiye \\nstepped into Cyprus to preserve the lives of the Turkish population \\nthere. This is nothing but a simple historical fact. Unfortunately, \\nthe intervention was too late at least for some of the victims. Mass \\ngraves containing numerous bodies of women and children already showed \\nwhat fate had been planned for a peaceful minority.\\n\\nThe problems in Cyprus have their origin in decades of \\noppression of the Turkish population by the Greek Cypriot \\nofficials and their violation of the co-founder status of \\nthe Turks set out in the constitution. The coup d\\'etat \\nengineered by Greece in 1974 to execute a final solution \\nto the Turkish problem was the savage blow that invoked \\nTurkiye\\'s intervention. Turkiye intervened reluctantly and \\nonly as a last resort after exhausting all other avenues \\nconsulting with Britain and Greece as the other two signatories \\nto the treaty to protect the integrity of Cyprus. There simply \\nwas not any expansionist motivation in the Turkish action at \\nall. This is in dramatic contrast to the Greek motivation which \\nwas openly expansionist, stated as \\'Enosis,\\' union with Greece. \\nSince the creation of independent Cyprus in 1960, the Turkish \\npopulation, although smaller, legally had status as the co-founder\\nof the republic with the Greek population.\\n\\nThe Greek Cypriots, with the support of \\'Enosis\\'-minded\\nGreeks in the mainland, have consistently ignored that\\nstatus and portrayed the Island as a Greek island with\\na minority population of Turks. The Turks of Cyprus are\\nnot a minority in a Greek Republic and they found the\\nonly way they could show that was to assert their \\nautonomy in a separate republic.\\n\\nTurkiye is not satisfied with the status quo. She would\\nrather not be involved with the island. But, given the\\ndismal record of brutal Greek oppression of the Turkish\\npopulation in Cyprus, she simply cannot leave the fate\\nof the island\\'s Turks in the hands of the Greeks until\\nthe Turkish side is satisfied with whatever accord\\nthe two communities finally reach to guarantee that\\nhistory will not repeat itself to rob Turkish Cypriots\\nof their rights, liberties and their very lives.\\n\\n\\n Source: \\'Cyprus: The Tale Of An Island,\\' A. H. Rizvi, p. 42\\n\\n 21-12-1963 Throughout Cyprus\\n \"Following the Greek Cypriot premeditated onslaught of 21 December,\\n 1963, the Turkish Sectors all over Cyprus were completely besieged\\n by Greeks; all telephonic, telegraphic and postal communications\\n between these sectors were cut off and the Turkish Cypriot\\n Community\\'s contact with each other and with the outside world\\n was thus prevented.\"\\n\\n 21-12-63 -- 31-12-63 Turkish Quarter of Nicosia and suburbs\\n \"Greek Cypriot armed elements broke into hundreds of Turkish\\n homes and fired at the unarmed occupants with automatic\\n weapons killing at random many Turks, including women, children\\n and elderly persons (51 Turks were killed and 82 wounded). They\\n also carried away as hostages more than 700 Turks, including\\n women and children, whom they forced to walk bare-footed and\\n in night-dresses across rough fields and river beds.\"\\n\\n 21-12-63 -- 12-12-64 Throughout Cyprus\\n \"The Greek Cypriot Administration deprived Turkish Cypriots \\n including Ministers, MPs, and Turkish members of the Public\\n services of the republic, of their right to freedom of movement.\"\\n\\n In his report No. S/6102 of 12 December, 1964 to the Security\\n Council, the UN Secretary-General stated in this respect the\\n following:\\n\\n \"Restrictions on the free movement of civilians have been one of\\n the major features of the situation in Cyprus since the early\\n stages of the disturbances, these restrictions have inflicted\\n considerable hardship on the population, especially the Turkish\\n Cypriot Community, and have kept tension high.\"\\n\\n 25-9-1964 -- 31-3-1968 Throughout Cyprus\\n \\n \"Supply of petrol was completely denied to the Turkish sections.\"\\n\\n Makarios Addresses UN Security Council On 19 July 1974\\n After being Ousted by the Greek Junta Coup\\n\\n \"In the beginning I wish to express my sincere thanks to all the\\n members of the Security Council for the great interest they have\\n shown in the critical situation which has been created in Cyprus\\n after the coup organized by the military regime in Greece and\\n carried out by the Greek army officers who were serving in the\\n National Guard and were commanding it.\\n\\n [..]\\n\\n 13-3-1975 On the road travelling to the South to the freedom of\\n the North\\n\\n \"A Turkish woman was seriously wounded and her four-month old\\n baby was riddled with bullets from an automatic weapon fired by\\n a Greek Cypriot mobile patrol which had ambushed the car in which\\n the mother and her baby were travelling to the Turkish region.\\n The baby died in her mother\\'s arms.\\n\\n This wanton murder of a four-month-old baby, which shocked foreign\\n observers as much as the Turkish Community, was not committed by\\n irresponsible persons, but by members of the Greek Cypriot security\\n forces. According to the mother\\'s statement the Greek police patrol\\n had chased their car and deliberately fired upon it.\"\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n',\n", + " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Enough Freeman Bashing! Was: no-Free man propaganda machine: Freemanwith blood greetings from Israel\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 18\\n\\nIn article mafifi@eis.calstate.edu (Marc A Afifi) writes:\\n>pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman) writes:\\n>\\n>\\n>Peter,\\n>\\n>I believe this is your most succinct post to date. Since you have nothing\\n>to say, you say nothing! It's brilliant. Did you think of this all by\\n>yourself?\\n>\\n>-marc \\n>--\\n\\nHey tough guy, read the topic. That's the message. Get a brain. Go to \\na real school.\\n\\n\\n\\n\",\n", + " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 22\\n\\nJim Perry (perry@dsinc.com) wrote:\\n\\n: The Bible says there is a God; if that is true then our atheism is\\n: mistaken. What of it? Seems pretty obvious to me. Socrates said\\n: there were many gods; if that is true then your monotheism (and our\\n: atheism) is mistaken, even if Socrates never existed.\\n\\n\\nJim,\\n\\nI think you must have come in late. The discussion (on my part at\\nleast) began with Benedikt's questioning of the historical acuuracy of\\nthe NT. I was making the point that, if the same standards are used to\\nvalidate secular history that are used here to discredit NT history,\\nthen virtually nothing is known of the first century.\\n\\nYou seem to be saying that the Bible -cannot- be true because it\\nspeaks of the existence of God as it it were a fact. Your objection\\nhas nothing to do with history, it is merely another statement of\\natheism.\\n\\nBill\\n\",\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Level 5?\\nOrganization: U of Toronto Zoology\\nLines: 18\\n\\nIn article <1raejd$bf4@access.digex.net> prb@access.digex.com (Pat) writes:\\n>what ever happened to the hypothesis that the shuttle flight software\\n>was a major factor in the loss of 51-L. to wit, that during the\\n>wind shear event, the Flight control software indicated a series\\n>of very violent engine movements that shocked and set upa harmonic\\n>resonance leading to an overstress of the struts.\\n\\nThis sounds like another of Ali AbuTaha\\'s 57 different \"real causes\" of\\nthe Challenger accident. As far as I know, there has never been the\\nslightest shred of evidence for a \"harmonic resonance\" having occurred.\\n\\nThe windshear-induced maneuvering probably *did* contribute to opening\\nup the leak path in the SRB joint again -- it seems to have sealed itself\\nafter the puffs of smoke during liftoff -- but the existing explanation\\nof this and related events seems to account for the evidence adequately.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: Where are they now?\\nOrganization: Case Western Reserve University\\nLines: 34\\nDistribution: world\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1ql0d3$5vo@dr-pepper.East.Sun.COM> geoff@East.Sun.COM (Geoff Arnold @ Sun BOS - R.H. coast near the top) writes:\\n\\n>Your posting provoked me into checking my save file for memorable\\n>posts. The first I captured was by Ken Arromdee on 19 Feb 1990, on the\\n>subject \"Re: atheist too?\". That was article #473 here; your question\\n>was article #53766, which is an average of about 48 articles a day for\\n>the last three years. As others have noted, the current posting rate is\\n>such that my kill file is depressing large...... Among the posting I\\n>saved in the early days were articles from the following notables:\\n\\n\\tHey, it might to interesting to read some of these posts...\\nEspecially from ones who still regularly posts on alt.atheism!\\n\\n\\n>>From: loren@sunlight.llnl.gov (Loren Petrich)\\n>>From: jchrist@nazareth.israel.rel (Jesus Christ of Nazareth)\\n>>From: mrc@Tomobiki-Cho.CAC.Washington.EDU (Mark Crispin)\\n>>From: perry@apollo.HP.COM (Jim Perry)\\n>>From: lippard@uavax0.ccit.arizona.edu (James J. Lippard)\\n>>From: minsky@media.mit.edu (Marvin Minsky)\\n>\\n>An interesting bunch.... I wonder where #2 is?\\n\\n\\tHee hee hee.\\n\\n\\t*I* ain\\'t going to say....\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", + " \"Subject: Re: Traffic morons\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 28\\n\\nIn article <10326.97.uupcb@compdyn.questor.org>,\\nryan_cousineau@compdyn.questor.org (Ryan Cousineau) wrote:\\n> \\n> NMM>From: nielsmm@imv.aau.dk (Niels Mikkel Michelsen)\\n> NMM>Subject: How to act in front of traffic jerks\\n> \\n> NMM>The other day, it was raining cats and dogs, therefor I was going only to\\n> NMM>the speed limit, on nothing more, on my bike. This guy in his BMW was\\n> NMM>driving 1-2 meters behind me for 7-800 meters and at the next red light I\\n> NMM>calmly put the bike on its leg, walked back to this car, he rolled down the\\n> NMM>window, and I told him he was a total idiot (and the reason why).\\n> \\n> NMM>Did I do the right thing?\\n\\n\\timho, you did the wrong thing. You could have been shot\\n or he could have run over your bike or just beat the shit\\n out of you. Consider that the person is foolish enough\\n to drive like a fool and may very well _act_ like one, too.\\n\\n Just get the heck away from the idiot.\\n\\n IF the driver does something clearly illegal, you _can_\\n file a citizens arrest and drag that person into court.\\n It's a hassle for you but a major hassle for the perp.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n\",\n", + " \"From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Re: Vandalizing the sky.\\nIn-Reply-To: todd@phad.la.locus.com's message of Wed, 21 Apr 93 16:28:00 GMT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<1993Apr21.162800.168967@locus.com>\\nLines: 33\\n\\nIn article <1993Apr21.162800.168967@locus.com> todd@phad.la.locus.com (Todd Johnson) writes:\\n\\n As for advertising -- sure, why not? A NASA friend and I spent one\\n drunken night figuring out just exactly how much gold mylar we'd need\\n to put the golden arches of a certain American fast food organization\\n on the face of the Moon. Fortunately, we sobered up in the morning.\\n\\nHmmm. It actually isn't all that much, is it? Like about 2 million\\nkm^2 (if you think that sounds like a lot, it's only a few tens of m^2\\nper burger that said organization sold last year). You'd be best off\\nwith a reflective substance that could be sprayed thinly by an\\nunmanned craft in lunar orbit (or, rather, a large set of such craft).\\nIf you can get a reasonable albedo it would be visible even at new\\nmoon (since the moon itself is quite dark), and _bright_ at full moon.\\nYou might have to abandon the colour, though.\\n\\nBuy a cheap launch system, design reusable moon -> lunar orbit\\nunmanned spraying craft, build 50 said craft, establish a lunar base\\nto extract TiO2 (say: for colour you'd be better off with a sulphur\\ncompound, I suppose) and some sort of propellant, and Bob's your\\nuncle. I'll do it for, say, 20 billion dollars (plus changes of\\nidentity for me and all my loved ones). Delivery date 2010.\\n\\nCan we get the fast-food chain bidding against the fizzy-drink\\nvendors? Who else might be interested?\\n\\nWould they buy it, given that it's a _lot_ more expensive, and not\\nmuch more impressive, than putting a large set of several-km\\ninflatable billboards in LEO (or in GEO, visible 24 hours from your\\nkey growth market). I'll do _that_ for only $5bn (and the changes of\\nidentity).\\n\\nNick Haines nickh@cmu.edu\\n\",\n", + " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Boom! Hubcap attack!\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nLines: 57\\n\\nIn article , speedy@engr.latech.edu (Speedy\\nMercer) writes:\\n|> I was attacked by a rabid hubcap once. I was going to work on a\\n|> Yamaha\\n|> 750 Twin (A.K.A. \"the vibrating tank\") when I heard a wierd noise off\\n|> to my \\n|> left. I caught a glimpse of something silver headed for my left foot\\n|> and \\n|> jerked it up about a nanosecond before my bike was hit HARD in the\\n|> left \\n|> side. When I went to put my foot back on the peg, I found that it\\n|> was not \\n|> there! I pulled into the nearest parking lot and discovered that I\\n|> had been \\n|> hit by a wire-wheel type hubcap from a large cage! This hubcap\\n|> weighed \\n|> about 4-5 pounds! The impact had bent the left peg flat against the\\n|> frame \\n|> and tweeked the shifter in the process. Had I not heard the\\n|> approaching \\n|> cap, I feel certian that I would be sans a portion of my left foot.\\n|> \\n|> Anyone else had this sort of experience?\\n|> \\n\\n Not with a hub cap but one of those \"Lumber yard delivery\\ntrucks\" made life interesting when he hit a \\'dip\\' in the road\\nand several sheets of sheetrock and a dozen 5 gallon cans of\\nspackle came off at 70 mph. It got real interesting for about\\n20 seconds or so. Had to use a wood mallet to get all the dried\\nspackle off Me, the Helmet and the bike when I got home. Thanks \\nto the bob tail Kenworth between me and the lumber truck I had\\na \"Path\" to drive through he made with his tires (and threw up\\nthe corresponding monsoon from those tires as he ran over\\nwhat ever cans of spackle didn\\'t burst in impact). A car in\\nfront of me in the right lane hit her brakes, did a 360 and\\nnailed a bridge abutment half way through the second 360.\\n\\nThe messiest time was in San Diego in 69\\' was on my way\\nback to the apartment in ocean beach on my Sportster and\\nhad just picked up a shake, burger n fries from jack in\\nthe box and stuffed em in my foul weather jacket when the\\nmilk shake opened up on Nimitz blvd at 50 mph, nothing\\nlike the smell of vanilla milk shake cooking on the\\nengine as it runs down your groin and legs and 15 people\\nwaiting in back of you to make the same left turn you are.\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Camping question?\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 46\\n\\nSanjay Sinha, on the 12 Apr 93 00:23:19 GMT wibbled:\\n\\n: Thanks to everyone who posted in my previous quest for camping info..\\n\\n: Another question. \\n: Well, not strictly r.m. stuff\\n\\n: I am looking for a thermos/flask to keep coffee hot. I mean real\\n: hot! Of course it must be the unbreakable type. So far, what ever\\n: metal type I have wasted money on has not matched the vacuum/glass \\n: type.\\n\\n: Any info appreciated.\\n\\n: Sanjay\\n\\n\\nBack in my youth (ahem) the wiffy and moi purchased a gadget which heated up\\nwater from a 12V source. It was for car use but we thought we\\'d try it on my\\nRD350B. It worked OK apart from one slight problem: we had to keep the revs \\nabove 7000. Any lower and the motor would die from lack of electron movement.\\n\\nIt made for interesting cups of coffee, anyhow. We would plot routes that\\ncontained straights of over three miles so that we had sufficient time to\\nget the water to boiling point. This is sometimes difficult in England.\\n\\nGood luck on your quest.\\n--\\n\\nNick (the Biker) DoD 1069 Concise Oxford\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", + " 'From: arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee)\\nSubject: Re: American Jewish Congress Open Letter to Clinton\\nOrganization: Johns Hopkins University CS Dept.\\nLines: 46\\n\\nIn article <22APR199307534304@vxcrna.cern.ch> casper@vxcrna.cern.ch (CASPER,DAVI./PPE) writes:\\n>> [I said the fixation on Bosnia is due to it being in a European country,\\n>> rather than the third world]\\n>>I recall, before we did anything for Somalia, (apparent) left-wingers saying\\n>>that the reason everyone was more willing to send troops to Bosnia than to\\n>>Somalia was because the Somalis are third-worlders who Americans consider\\n>>unworthy of help. They suddenly shut up when the US decided to send troops to\\n>>the opposite place than that predicted by the theory.\\n>I am a staunch Republican, BTW. The irony of arguing against military\\n>intervention with arguments based on Vietnam has not escaped me. I was opposed\\n>to US intervention in Somalia for the same reasons, although clearly it was\\n>not nearly as risky.\\n\\nBased on the same reasons? You mean you were opposed to US intervention in\\nSomalia because since Somalia is a European country instead of the third world,\\nthe desire to help Somalia is racist? I don\\'t think this \"same reason\" applies\\nto Somalia at all.\\n\\nThe whole point is that Somalia _is_ a third world country, and we were more\\nwilling to send troops there than to Bosnia--exactly the _opposite_ of what\\nthe \"fixation on European countries\" theory would predict. (Similarly, the\\ndesire to help Muslims being fought by Christians is also exactly the opposite\\nof what that theory predicts.)\\n\\n>>For that matter, this theory of yours suggests that Americans should want to\\n>>help the Serbs. After all, they\\'re Christian, and the Muslims are not. If\\n>>the desire to intervene in Bosnia is based on racism against people that are\\n>>less like us, why does everyone _want_ to help the side that _is_ less like us?\\n>>Especially if both of the sides are equal as you seem to think?\\n>Well, one thing you have to remember is, the press likes a good story. Good\\n>for business, don\\'t you know. And BTW, not \"everyone\" wants to help the\\n>side that is less like us.\\n\\nI\\'m referring to people who want to help at all, of course. You don\\'t see\\npeople sending out press releases \"help Bosnian Serbs with ethnic cleansing!\\nThe Muslim presence in the Balkans should be eliminated now!\" (Well, except\\nfor some Serbs, but I admit that the desire of Serbs in America to help the\\nSerbian side probably _is_ because those are people more like them.)\\n--\\n\"On the first day after Christmas my truelove served to me... Leftover Turkey!\\nOn the second day after Christmas my truelove served to me... Turkey Casserole\\n that she made from Leftover Turkey.\\n[days 3-4 deleted] ... Flaming Turkey Wings! ...\\n -- Pizza Hut commercial (and M*tlu/A*gic bait)\\n\\nKen Arromdee (arromdee@jyusenkyou.cs.jhu.edu)\\n',\n", + " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Should liability insurance be required?\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 13\\n\\nIf I have one thing to say about \"No Fault\" it would be\\n\"It isn\\'t\"\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", + " 'From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: BMW MOA members read this!\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 10\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nAs a new BMW owner I was thinking about signing up for the MOA, but\\nright now it is beginning to look suspiciously like throwing money\\ndown a rathole.\\n When you guys sort this out let me know.\\n\\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n',\n", + " \"From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: M-MOTION VIDEO CARD: YUV to RGB ?\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM UK Labs\\nLines: 3\\n\\nI'll contact you offline about this.\\n\\nRick\\n\",\n", + " \"From: delilah@next18pg2.wam.umd.edu (Romeo DeVerona)\\nSubject: Re: New to Motorcycles...\\nNntp-Posting-Host: next18pg2.wam.umd.edu\\nOrganization: Workstations at Maryland, University of Maryland, College Park\\nLines: 10\\n\\n> > Motorcycle Safety Foundation riding course (a must!)\\t$140\\n> ^^^\\n> Wow! Courses in Georgia are much cheaper. $85 for both.\\n> >\\n> \\nin maryland, they were $25 each when i learned to ride 3 years ago. now,\\nit's $125 (!) for the beginner riders' course and $60 for the experienced\\nriders' course (which, admittedly, takes only about half the time ).\\n\\n-D-\\n\",\n", + " 'From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Shaft-drives and Wheelies\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 15\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, xlyx@vax5.cit.cornell.edu () says:\\n\\nMike Terry asks:\\n\\n>Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n>\\nNo Mike. It is imposible due to the shaft effect. The centripital effects\\nof the rotating shaft counteract any tendency for the front wheel to lift\\noff the ground.\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n',\n", + " 'From: yamauchi@ces.cwru.edu (Brian Yamauchi)\\nSubject: DC-X: Choice of a New Generation (was Re: SSRT Roll-Out Speech)\\nOrganization: Case Western Reserve University\\nLines: 27\\nDistribution: world\\nNNTP-Posting-Host: yuggoth.ces.cwru.edu\\nIn-reply-to: jkatz@access.digex.com\\'s message of 21 Apr 1993 22:09:32 -0400\\n\\nIn article <1r4uos$jid@access.digex.net> jkatz@access.digex.com (Jordan Katz) writes:\\n\\n>\\t\\t Speech Delivered by Col. Simon P. Worden,\\n>\\t\\t\\tThe Deputy for Technology, SDIO\\n>\\n>\\tMost of you, as am I, are \"children of the 1960\\'s.\" We grew\\n>up in an age of miracles -- Inter-Continental Ballistic Missiles,\\n>nuclear energy, computers, flights to the moon. But these were\\n>miracles of our parent\\'s doing. \\n\\n> Speech by Pete Worden\\n> Delivered Before the U.S. Space Foundation Conference\\n\\n> I\\'m embarrassed when my generation is compared with the last\\n>generation -- the giants of the last great space era, the 1950\\'s\\n>and 1960\\'s. They went to the moon - we built a telescope that\\n>can\\'t see straight. They soft-landed on Mars - the least we\\n>could do is soft-land on Earth!\\n\\nJust out of curiousity, how old is Worden?\\n--\\n_______________________________________________________________________________\\n\\nBrian Yamauchi\\t\\t\\tCase Western Reserve University\\nyamauchi@alpha.ces.cwru.edu\\tDepartment of Computer Engineering and Science\\n_______________________________________________________________________________\\n\\n',\n", + " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nIn-Reply-To: nicho@vnet.IBM.COM\\'s message of Fri, 23 Apr 93 09: 06:09 BST\\nOrganization: Compaq Computer Corp\\n\\t<1r6aqr$dnv@access.digex.net> \\n\\t<19930423.010821.639@almaden.ibm.com>\\nLines: 14\\n\\n>>>>> On Fri, 23 Apr 93 09:06:09 BST, nicho@vnet.IBM.COM (Greg Stewart-Nicholls) said:\\nGS> How about transferring control to a non-profit organisation that is\\nGS> able to accept donations to keep craft operational.\\n\\nI seem to remember NASA considering this for some of the Apollo\\nequipment left on the moon, but that they decided against it.\\n\\nOr maybe not...\\n\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", + " 'From: MUNIZB%RWTMS2.decnet@rockwell.com (\"RWTMS2::MUNIZB\")\\nSubject: How do they ignite the SSME?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 21\\n\\non Date: Sat, 3 Apr 1993 12:38:50 GMT, Paul Dietz \\nwrites:\\n\\n/in essence, holding a match under the nozzle, is just *nuts*. One\\n/thing you absolutely must do in such an engine is to guarantee that\\n/the propellants ignite as soon as they mix, within milliseconds. To\\n/do otherwise is to fill your engine with a high explosive mixture\\n/which, when it finally does ignite, blows everything to hell.\\n\\nDefinitely! In one of the reports of an early test conducted by Rocketdyne at \\ntheir Santa Susanna Field Lab (\"the Hill\" above the San Fernando and Simi \\nValleys), the result of a hung start was described as \"structural failure\" of \\nthe combustion chamber. The inspection picture showed pumps with nothing below\\n, the CC had vaporized! This was described in a class I took as a \"typical\\nengineering understatement\" :-)\\n\\nDisclaimer: Opinions stated are solely my own (unless I change my mind).\\nBen Muniz MUNIZB%RWTMS2.decnet@consrt.rockwell.com w(818)586-3578\\nSpace Station Freedom:Rocketdyne/Rockwell:Structural Loads and Dynamics\\n \"Man will not fly for fifty years\": Wilbur to Orville Wright, 1901\\n\\n',\n", + " \"From: lulagos@cipres.cec.uchile.cl (admirador)\\nSubject: OAK VGA 1Mb. Please, I needd VESA TSR!!! 8^)\\nOriginator: lulagos@cipres\\nNntp-Posting-Host: cipres.cec.uchile.cl\\nOrganization: Centro de Computacion (CEC), Universidad de Chile\\nLines: 15\\n\\n\\n\\tHi there!...\\n\\t\\tWell, i have a 386/40 with SVGA 1Mb. (OAK chip 077) and i don't\\n\\t\\thave VESA TSR program for this card. I need it . \\n\\t\\t\\tPlease... if anybody can help me, mail me at:\\n\\t\\t\\tlulagos@araucaria.cec.uchile.cl\\n\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tThanks.\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tMackk. \\n _ /| \\n \\\\'o.O' \\n =(___)=\\n U \\n Ack!\\n\",\n", + " \"From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: FAQs\\nArticle-I.D.: mojo.1pst9uINN7tj\\nReply-To: sysmgr@king.eng.umd.edu\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 10\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article <10505.2BBCB8C3@nss.org>, freed@nss.org (Bev Freed) writes:\\n>I was wondering if the FAQ files could be posted quarterly rather than monthly\\n>. Every 28-30 days, I get this bloated feeling.\\n\\nOr just stick 'em on sci.space.news every 28-30 days? \\n\\n\\n\\n Software engineering? That's like military intelligence, isn't it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\",\n", + " 'From: revans@euclid.ucsd.edu ( )\\nSubject: Himmler\\'s speech on the extirpation of the Jewish race\\nLines: 42\\nNntp-Posting-Host: euclid.ucsd.edu\\n\\n\\n WASHINGTON - A stark reminder of the Holocaust--a speech by Nazi \\nSS leader Heinrich Himmler that refers to \"the extermination of the\\nJewish race\"--went on display Friday at the National Archives.\\n\\tThe documents, including handwritten notes by Himmler, are\\namong the best evidence that exists to rebut claims that the\\nHolocaust is a myth, archivists say.\\n\\t\"The notes give them their authenticity,\" said Robert Wolfe,\\na supervisory archivist for captured German records. \"He was\\nsupposed to destroy them. Like a lot of bosses, he didn\\'t obey his\\nown rules.\"\\n\\tThe documents, moved out of Berlin to what Himmler hoped\\nwould be a safe hiding place, were recovered by Allied forces after\\nWorld War II from a salt mine near Salzburg, Austria.\\n\\tHimmler spoke on Oct.4, 1943, in Posen, Poland, to more than\\n100 German secret police generals. \"I also want to talk to you,\\nquite frankly, on a very grave matter. Among ourselves it should be\\nmentioned quite frankly, and yet we will never speak of it publicly.\\nI mean the clearing out of the Jew, the extermination of the Jewish\\nrace. This is a page of GLORY in our history which has never been\\nwritten and is never to be written.\" [Emphasis mine--rje]\\n\\tThe German word Himmler uses that is translated as\\n\"extermination\" is *Ausrottung*.\\n\\tWolfe said a more precise translation would be \"extirpation\"\\nor \"tearing up by the roots.\"\\n\\tIn his handwritten notes, Himmler used a euphemism,\\n\"Judenevakuierung\" or \"evacuation of the Jews.\" But archives\\nofficials said \"extermination\" is the word he actually\\nspoke--preserved on an audiotape in the archives.\\n\\tHimmler, who oversaw Adolf Hitler\\'s \"final solution of the\\nJewish question,\" committed suicide after he was arrested in 1945.\\n\\tThe National Archives exhibit, on display through May 16, is\\na preview of the opening of the United States Holocaust Memorial\\nMuseum here on April 26.\\n\\tThe National Archives exhibit includes a page each of\\nHimmler\\'s handwritten notes, a typed transcript from the speech and\\nan offical translation made for the Nuremberg war crimes trials.\\n\\n\\t---From p.A10 of Saturday\\'s L.A. Times, 4/17/93\\n\\t(Associated Press)\\n-- \\n(revans@math.ucsd.edu)\\n',\n", + " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Fortune-guzzler barred from bars!\\nOrganization: Louisiana Tech University\\nLines: 19\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr16.104158.27890@reed.edu> mblock@reed.edu (Matt Block) writes:\\n\\n>(assuming David didn't know that it can be done one-legged,) I too would \\n\\nIn New Orleans, LA, there was a company making motorcycles for WHEELCHAIR \\nbound people! The rig consists of a flat-bed sidecar rig that the \\nwheelchair can be clamped to. The car has a set of hand controls mounted on \\nconventional handlebars! Looks wierd as hell to see this legless guy \\ndriving the rig from the car while his girlfriend sits on the bike as a \\npassenger!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", + " 'From: robinson@cogsci.Berkeley.EDU (Michael Robinson)\\nSubject: Passenger helmet sizing\\nOrganization: Institute of Cognitive Studies, U.C. Berkeley\\nLines: 32\\nNNTP-Posting-Host: cogsci.berkeley.edu\\n\\nIn article <1qk5oi$d0i@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n>In article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n>> \\n>> The question for the day is re: passenger helmets, if you don\\'t know for \\n>>certain who\\'s gonna ride with you (like say you meet them at a .... church \\n>>meeting, yeah, that\\'s the ticket)... What are some guidelines? Should I just \\n>>pick up another shoei in my size to have a backup helmet (XL), or should I \\n>>maybe get an inexpensive one of a smaller size to accomodate my likely \\n>>passenger? \\n>\\n>If your primary concern is protecting the passenger in the event of a\\n>crash, have him or her fitted for a helmet that is their size. If your\\n>primary concern is complying with stupid helmet laws, carry a real big\\n>spare (you can put a big or small head in a big helmet, but not in a\\n>small one).\\n\\nWhile shopping for a passenger helmet, I noticed that in many cases the\\nexternal dimensions of the helmets were the same from S through XL. The\\ndifference was the amount of inside padding.\\n\\nMy solution was to buy a large helmet, and construct a removable liner \\nfrom a sheet of .5\" closed-cell foam and some satin (glued to the inside\\nsurface). The result is a reasonably snug fit on my smallest-headed pillion\\nwith the liner in, and a comfortable fit on my largest-headed pillion with\\nthe liner out. Everyone else gets linered or not by best fit.\\n\\n\\n\\n-- \\n ----------------------------------------------------------------------------\\n Michael Robinson UUCP: ucbvax!cogsci!robinson\\n INTERNET: robinson@cogsci.berkeley.edu\\n',\n", + " \"From: khan0095@nova.gmi.edu (Mohammad Razi Khan)\\nSubject: Looking for a good book for beginners\\nOrganization: GMI Engineering&Management Institute, Flint, MI\\nLines: 10\\n\\nI wanted to know if any of you out there can recommend a good\\nbook about graphics, still and animated, and in VGA/SVGA.\\n\\nThanks in advance\\n\\n--\\nMohammad R. Khan / khan0095@nova.gmi.edu\\nAfter July '93, please send mail to mkhan@nyx.cs.du.edu\\n\\n\\n\",\n", + " 'From: marshall@csugrad.cs.vt.edu (Kevin Marshall)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Virginia Tech Computer Science Dept, Blacksburg, VA\\nLines: 42\\nNNTP-Posting-Host: csugrad.cs.vt.edu\\n\\nsnm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>If Saddam believed in God, he would pray five times a\\n>day.\\n>\\n>Communism, on the other hand, actually committed genocide in the name of\\n>atheism, as Lenin and Stalin have said themselves. These two were die\\n>hard atheist (Look! A pun!) and believed in atheism as an integral part\\n>of communism.\\n\\nNo, Bobby. Stalin killed millions in the name of Socialism. Atheism was a\\ncharacteristic of the Lenin-Stalin version of Socialism, nothing more.\\nAnother characteristic of Lenin-Stalin Socialism was the centralization of\\nfood distribution. Would you therefore say that Stalin and Lenin killed\\nmillions in the name of rationing bread? Of course not.\\n\\n\\n>More horrible deaths resulted from atheism than anything else.\\n\\nIn earlier posts you stated that true (Muslim) believers were incapable of\\nevil. I suppose if you believe that, you could reason that no one has ever\\nbeen killed in the name of religion. What a perfect world you live in,\\nBobby. \\n\\n\\n>One of the reasons that you are atheist is that you limit God by giving\\n>God a form. God does not have a \"face\".\\n\\nBobby is referring to a rather obscure law in _The Good Atheist\\'s \\nHandbook_:\\n\\nLaw XXVI.A.3: Give that which you do not believe in a face. \\n\\nYou must excuse us, Bobby. When we argue against theism, we usually argue\\nagainst the Christian idea of God. In the realm of Christianity, man was\\ncreated in God\\'s image. \\n\\n-- \\n|\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"|\\n| Kevin Marshall Sophomore, Computer Science |\\n| Virginia Tech, Blacksburg, VA USA marshall@csugrad.cs.vt.edu |\\n|____________________________________________________________________|\\n',\n", + " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 19\\n\\nIn article <1r16ja$dpa@news.ysu.edu>, ak296@yfn.ysu.edu (John R. Daker)\\nwrote:\\n> \\n> \\n> In a previous article, xlyx@vax5.cit.cornell.edu () says:\\n> \\n> Mike Terry asks:\\n> \\n> >Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n> >\\n> No Mike. It is imposible due to the shaft effect. The centripital effects\\n> of the rotating shaft counteract any tendency for the front wheel to lift\\n> off the ground.\\n\\n\\tThis is true as evinced by the popularity of shaft-drive drag bikes.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orbital RepairStation\\nOrganization: U of Toronto Zoology\\nLines: 21\\n\\nIn article collins@well.sf.ca.us (Steve Collins) writes:\\n>The difficulties of a high Isp OTV include...\\n>If you go solar, you have to replace the arrays every trip, with\\n>current technology.\\n\\nYou\\'re assuming that \"go solar\" = \"photovoltaic\". Solar dynamic power\\n(turbo-alternators) doesn\\'t have this problem. It also has rather less\\nair drag due to its higher efficiency, which is a non-trivial win for big\\nsolar plants at low altitude.\\n\\nNow, you might have to replace the *rest* of the electronics fairly often,\\nunless you invest substantial amounts of mass in shielding.\\n\\n>Nuclear power sources are strongly restricted\\n>by international treaty.\\n\\nReferences? Such treaties have been *proposed*, but as far as I know,\\nnone of them has ever been negotiated or signed.\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: djmst19@unixd2.cis.pitt.edu (David J Madura)\\nSubject: Re: Rumours about 3DO ???\\nLines: 13\\nX-Newsreader: Tin 1.1 PL3\\n\\ndave@optimla.aimla.com (Dave Ziedman) writes:\\n\\n: 3DO is still a concept.\\n: The software is what sells and what will determine its\\n: success.\\n\\n\\nApparantly you dont keep up on the news. 3DO was shown\\nat CES to developers and others at private showings. Over\\n300 software licensees currently developing software for it.\\n\\nI would say that it is a *LOT* more than just a concept.\\n\\n',\n", + " 'From: sgoldste@aludra.usc.edu (Fogbound Child)\\nSubject: Re: \"Fake\" virtual reality\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 31\\nNNTP-Posting-Host: aludra.usc.edu\\n\\nMike_Peredo@mindlink.bc.ca (Mike Peredo) writes:\\n\\n>The most ridiculous example of VR-exploitation I\\'ve seen so far is the\\n>\"Virtual Reality Clothing Company\" which recently opened up in Vancouver. As\\n>far as I can tell it\\'s just another \"chic\" clothes spot. Although it would be\\n>interesting if they were selling \"virtual clothing\"....\\n\\n>E-mail me if you want me to dig up their phone # and you can probably get\\n>some promotional lit.\\n\\nI understand there have been a couple of raves in LA billing themselves as\\n\"Virtual Reality\" parties. What I hear they do is project .GIF images around\\non the walls, as well as run animations through a Newtek Toaster.\\n\\nSeems like we need to adopt the term Really Virtual Reality or something, except\\nfor the non-immersive stuff which is Virtually Really Virtual Reality.\\n\\n\\netc.\\n\\n\\n\\n>MP\\n>(8^)-\\n\\n___Samuel___\\n-- \\n_________Pratice Safe .Signature! Prevent Dangerous Signature Virii!_______\\nGuildenstern: Our names shouted in a certain dawn ... a message ... a\\n summons ... There must have been a moment, at the beginning,\\n where we could have said -- no. But somehow we missed it.\\n',\n", + " 'From: mayne@pipe.cs.fsu.edu (William Mayne)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nOrganization: Florida State University Computer Science Department\\nReply-To: mayne@cs.fsu.edu\\nLines: 21\\n\\nIn article jvigneau@cs.ulowell.edu (Joe Vigneau) writes:\\n>\\n>If anything, the BSA has taught me, I don\\'t know, tolerance or something.\\n>Before I met this guy, I thought all gays were \\'faries\\'. So, the BSA HAS\\n>taught me to be an antibigot.\\n\\nI could give much the same testimonial about my experience as a scout\\nback in the 1960s. The issue wasn\\'t gays, but the principles were the\\nsame. Thanks for a well put testimonial. Stan Krieger and his kind who\\nthink this discussion doesn\\'t belong here and his intolerance is the\\nonly acceptable position in scouting should take notice. The BSA has\\nbeen hijacked by the religious right, but some of the core values have\\nsurvived in spite of the leadership and some scouts and former scouts\\nhaven\\'t given up. Seeing a testimonial like this reminds me that\\nscouting is still worth fighting for.\\n\\nOn a cautionary note, you must realize that if your experience with this\\ncamp leader was in the BSA you may be putting him at risk by publicizing\\nit. Word could leak out to the BSA gestapo.\\n\\nBill Mayne\\n',\n", + " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: What is it with Cats and Dogs ???!\\nOrganization: NASA Science Internet Project Office\\nLines: 29\\n\\nIn article , \\nryang@ryang1.pgh.pa.us (Robert H. Yang) writes:\\n|> Hi,\\n|> \\n|> \\tSorry, just feeling silly.\\n|> \\n|> Rob\\n\\n\\nNo need to appologise, as a matter of fact\\nthis reminds me to bring up something I\\nhave found consistant with dogs-\\n\\nMost of the time, they do NOT like having\\nme and my bike anywhere near them, and will\\nchase as if to bite and kill. \\n\\nAn instructor once said it was because the \\nsound from a bike was painfull to their \\nears. As silly as this seams, no other options\\nhave arrizen. \\n\\nnet.wisdom?\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nOrganization: U of Toronto Zoology\\nLines: 22\\n\\nIn article <1993Apr21.212202.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>Here is a way to get the commericial companies into space and mineral\\n>exploration.\\n>\\n>Basically get the eco-freaks to make it so hard to get the minerals on earth.\\n\\nThey aren't going to leave a loophole as glaring as space mining. Quite a\\nfew of those people are, when you come right down to it, basically against\\nindustrial civilization. They won't stop with shutting down the mines here;\\nthat is only a means to an end for them now.\\n\\nThe worst thing you can say to a true revolutionary is that his revolution\\nis unnecessary, that the problems can be corrected without radical change.\\nTelling people that paradise can be attained without the revolution is\\ntreason of the vilest kind.\\n\\nTrying to harness these people to support spaceflight is like trying to\\nharness a buffalo to pull your plough. He's got plenty of muscle, all\\nright, but the furrow will go where he wants, not where you want.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: Used Bikes, East vs. West Coasts\\nOrganization: the HP Corporate notes server\\nLines: 16\\n\\n/ hpcc01:rec.motorcycles / groverc@gold.gvg.tek.com (Grover Cleveland) / 9:07 am Apr 14, 1993 /\\nShop for your bike in Sacramento - the Bay area prices are\\nalways much higher than elsewhere in the state.\\n\\nGC\\n----------\\nAffirmative! Check Sacramento Bee, Fresno Bee, Modesto, Stockton,\\nBakersfield and other newspapers for prices of motos in the\\nclassifieds...a large main public library ought to have a\\nnumber of out-of-town papers. \\n\\n--------------------------------------------------------------------------\\nGraeme Harrison, Hewlett-Packard Co., Communications Components Division,\\n350 W Trimble Rd, San Jose, CA 95131 (gharriso@hpcc01.corp.hp.com) DoD#649 \\n--------------------------------------------------------------------------\\n\\n',\n", + " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Re: LONG TRIPS\\nOrganization: Duke University; Durham, N.C.\\nLines: 27\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nIn article <18859.1076.uupcb@freddy.ersys.edmonton.ab.ca> mark.harrison@freddy.ersys.edmonton.ab.ca (Mark Harrison) writes:\\n>I am new to motorcycliing (i.e. Don't even have a bike yet) and will be\\n>going on a long trip from Edmonton to Vancouver. Any tips on bare\\n>essentials for the trip? Tools, clothing, emergency repairs...?\\n\\nEr, without a bike (Ed, maybe you ought to respond to this...), how\\nyou gonna get there?\\n\\nIf yer going by cage, what's this got to do with r.m?\\n\\n>\\n>I am also in the market for a used cycle. Any tips on what to look for\\n>so I don't get burnt?\\n>\\n>Much appreciated\\n>Mark\\n> \\n\\nMaybe somebody oughta gang-tool-FAQ this guy, hmmm?\\n\\n\\n\\n-- \\nAndy Infante | You can listen to what everybody says, but the fact remains |\\n'71 BMW R60/5 | that you've got to get out there and do the thing yourself. | \\nDoD #2426 | -- Joan Sutherland | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", + " \"From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Thoughts on a 1982 Yamaha Seca Turbo?\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 18\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, howp@skyfox () says:\\n\\n>I was wondering if anybody knows anything about a Yamaha Seca Turbo. I'm \\n>considering buying a used 1982 Seca Turbo for $1300 Canadian (~$1000 US)\\n>with 30,000 km on the odo. This will be my first bike. Any comments?\\n\\t\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nBecause of this I cannot in good faith recommend a Seca Turbo. Power\\ndelivery is too uneven for a novice. The Official (tm) Dod newbie\\nbike of choice would be more appropriate because the powerband is so wide\\nand delivery is very smooth. Perfect for the beginner.\\n\\n\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n\",\n", + " 'From: todd@psgi.UUCP (Todd Doolittle)\\nSubject: Re: Motorcycle Courier (Summer Job)\\nDistribution: world\\nOrganization: Not an Organization\\nLines: 37\\n\\nIn article <1poj23INN9k@west.West.Sun.COM> gaijin@ale.Japan.Sun.COM (John Little - Nihon Sun Repair Depot) writes:\\n>In article <8108.97.uupcb@compdyn.questor.org> \\\\\\n>ryan_cousineau@compdyn.questor.org (Ryan Cousineau) writes:\\n>%\\n>% I think I\\'ve found the ultimate summer job: It\\'s dangerous, involves\\n>% motorcycles, requires high speeds in traffic, and it pays well.\\n>% \\n>% So my question is as follows: Has anyone here done this sort of work?\\n>% What was your experience?\\n>% \\n[Stuff deleted]\\n> Get a -good- \"AtoZ\" type indexed streetmap for all of the areas you\\'re\\n> likely to work. Always carry plenty of black-plastic bin liners to\\n\\nCheck with the local fire department. My buddy is a firefighter and they\\nhave these small map books which are Amazing! They are compact, easy to\\nuse (no folding). They even have a cross reference section in which you\\nmatch your current cross streets with the cross streets you want to go to\\nand it details the quickest route. They gave me an extra they had laying\\naround. But then again I know all those people I\\'m not really sure if they\\nare supposed to give/sell them. (The police may also have something\\nsimilar).\\n \\n>-- \\n> ------------------------------------------------------------------------\\n> | John Little - gaijin@Japan.Sun.COM - Sun Microsystems. Atsugi, Japan | \\n> ------------------------------------------------------------------------\\n\\n--\\n\\n--------------------------------------------------------------------------\\n ..vela.acs.oakland.edu!psgi!todd | \\'88 RM125 The only bike sold without\\n Todd Doolittle | a red-line. \\n Troy, MI | \\'88 EX500 \\n DoD #0832 | \\n--------------------------------------------------------------------------\\n\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: The systematic genocide of the Muslim population by the Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 226\\n\\nIn article <1993Apr5.091410.4108@massey.ac.nz> CBlack@massey.ac.nz (C.K. Black) writes:\\n\\n>Mr. Furr does it again,\\n\\nVery sensible.\\n\\n> He says \\n\\n>>>How many Mutlus can dance on the head of a pin?\\n\\n>And lo and behold, he invokes the Mr.666 of the net himself, our beloved\\n>Serdar, a program designed to seek out the words TERRX and GHEX in the\\n>same sentence and gets the automated reply....\\n\\nMust you rave so? Fascist x-Soviet Armenian Government engaged in \\ndisgusting cowardly massacres of Azeri women and children. I am\\nreally sorry if that fact bothers you.\\n\\n>>Our \"Mutlu\"? Oboy, this is exciting. First you discuss your literature \\n>>tastes, then your fantasies, and now your choices of entertainment. Have \\n>>you considered just turning on the TV and leaving those of us who aren\\'t\\n>>brain dead to continue to discuss the genocide of 2.5 million Muslim \\n>>people by the x-Soviet Armenian Government? \\n\\n>etc. etc. etc........\\n\\nMore ridicule, I take it? Still not addressing the original points made.\\n\\n>Joel, don\\'t do this to me mate! I\\'m only a poor plant scientist, I don\\'t\\n>know how to make \\'kill\\' files. My \\'k\\' key works overtime as it is just to\\n\\nThen what seems to be the problem? Did you ever read newspaper at all?\\n\\n\\n\"PAINFUL SEARCH ..\"\\n\\nTHE GRUESOME extent of February\\'s killings of Azeris by Armenians\\nin the town of Hojali is at last emerging in Azerbaijan - about\\n600 men, women and children dead in the worst outrage of the\\nfour-year war over Nagorny Karabakh.\\n\\nThe figure is drawn from Azeri investigators, Hojali officials\\nand casualty lists published in the Baku press. Diplomats and aid\\nworkers say the death toll is in line with their own estimates.\\n\\nThe 25 February attack on Hojali by Armenian forces was one of\\nthe last moves in their four-year campaign to take full control\\nof Nagorny Karabakh, the subject of a new round of negotiations\\nin Rome on Monday. The bloodshed was something between a fighting\\nretreat and a massacre, but investigators say that most of the\\ndead were civilians. The awful number of people killed was first\\nsuppressed by the fearful former Communist government in Baku.\\nLater it was blurred by Armenian denials and grief-stricken\\nAzerbaijan\\'s wild and contradictory allegations of up to 2,000\\ndead.\\n\\nThe State Prosecuter, Aydin Rasulov, the cheif investigator of a\\n15-man team looking into what Azerbaijan calls the \"Hojali\\nDisaster\", said his figure of 600 people dead was a minimum on\\npreliminary findings. A similar estimate was given by Elman\\nMemmedov, the mayor of Hojali. An even higher one was printed in\\nthe Baku newspaper Ordu in May - 479 dead people named and more\\nthan 200 bodies reported unidentified. This figure of nearly 700\\ndead is quoted as official by Leila Yunusova, the new spokeswoman\\nof the Azeri Ministry of Defence.\\n\\nFranCois Zen Ruffinen, head of delegation of the International\\nRed Cross in Baku, said the Muslim imam of the nearby city of\\nAgdam had reported a figure of 580 bodies received at his mosque\\nfrom Hojali, most of them civilians. \"We did not count the\\nbodies. But the figure seems reasonable. It is no fantasy,\" Mr\\nZen Ruffinen said. \"We have some idea since we gave the body bags\\nand products to wash the dead.\"\\n\\nMr Rasulov endeavours to give an unemotional estimate of the\\nnumber of dead in the massacre. \"Don\\'t get worked up. It will\\ntake several months to get a final figure,\" the 43-year-old\\nlawyer said at his small office.\\n\\nMr Rasulov knows about these things. It took him two years to\\nreach a firm conclusion that 131 people were killed and 714\\nwounded when Soviet troops and tanks crushed a nationalist\\nuprising in Baku in January 1990.\\n\\nThose nationalists, the Popular Front, finally came to power\\nthree weeks ago and are applying pressure to find out exactly\\nwhat happened when Hojali, an Azeri town which lies about 70\\nmiles from the border with Armenia, fell to the Armenians.\\n\\nOfficially, 184 people have so far been certified as dead, being\\nthe number of people that could be medically examined by the\\nrepublic\\'s forensic department. \"This is just a small percentage\\nof the dead,\" said Rafiq Youssifov, the republic\\'s chief forensic\\nscientist. \"They were the only bodies brought to us. Remember the\\nchaos and the fact that we are Muslims and have to wash and bury\\nour dead within 24 hours.\"\\n\\nOf these 184 people, 51 were women, and 13 were children under 14\\nyears old. Gunshots killed 151 people, shrapnel killed 20 and\\naxes or blunt instruments killed 10. Exposure in the highland\\nsnows killed the last three. Thirty-three people showed signs of\\ndeliberate mutilation, including ears, noses, breasts or penises\\ncut off and eyes gouged out, according to Professor Youssifov\\'s\\nreport. Those 184 bodies examined were less than a third of those\\nbelieved to have been killed, Mr Rasulov said.\\n\\nFiles from Mr Rasulov\\'s investigative commission are still\\ndisorganised - lists of 44 Azeri militiamen are dead here, six\\npolicemen there, and in handwriting of a mosque attendant, the\\nnames of 111 corpses brought to be washed in just one day. The\\nmost heartbreaking account from 850 witnesses interviewed so far\\ncomes from Towfiq Manafov, an Azeri investigator who took a\\nhelicopter flight over the escape route from Hojali on 27\\nFebruary.\\n\\n\"There were too many bodies of dead and wounded on the ground to\\ncount properly: 470-500 in Hojali, 650-700 people by the stream\\nand the road and 85-100 visible around Nakhchivanik village,\" Mr\\nManafov wrote in a statement countersigned by the helicopter\\npilot.\\n\\n\"People waved up to us for help. We saw three dead children and\\none two-year-old alive by one dead woman. The live one was\\npulling at her arm for the mother to get up. We tried to land but\\nArmenians started a barrage against our helicopter and we had to\\nreturn.\"\\n\\nThere has been no consolidation of the lists and figures in\\ncirculation because of the political upheavals of the last few\\nmonths and the fact that nobody knows exactly who was in Hojali\\nat the time - many inhabitants were displaced from other villages\\ntaken over by Armenian forces.\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\n\\nHEROES WHO FOUGHT ON AMID THE BODIES\\n\\nAREF SADIKOV sat quietly in the shade of a cafe-bar on the\\nCaspian Sea esplanade of Baku and showed a line of stitches in\\nhis trousers, torn by an Armenian bullet as he fled the town of\\nHojali just over three months ago, writes Hugh Pope.\\n\\n\"I\\'m still wearing the same clothes, I don\\'t have any others,\"\\nthe 51-year-old carpenter said, beginning his account of the\\nHojali disaster. \"I was wounded in five places, but I am lucky to\\nbe alive.\"\\n\\nMr Sadikov and his wife were short of food, without electricity\\nfor more than a month, and cut off from helicopter flights for 12\\ndays. They sensed the Armenian noose was tightening around the\\n2,000 to 3,000 people left in the straggling Azeri town on the\\nedge of Karabakh.\\n\\n\"At about 11pm a bombardment started such as we had never heard\\nbefore, eight or nine kinds of weapons, artillery, heavy\\nmachine-guns, the lot,\" Mr Sadikov said.\\n\\nSoon neighbours were pouring down the street from the direction\\nof the attack. Some huddled in shelters but others started\\nfleeing the town, down a hill, through a stream and through the\\nsnow into a forest on the other side.\\n\\nTo escape, the townspeople had to reach the Azeri town of Agdam\\nabout 15 miles away. They thought they were going to make it,\\nuntil at about dawn they reached a bottleneck between the two\\nArmenian villages of Nakhchivanik and Saderak.\\n\\n\"None of my group was hurt up to then ... Then we were spotted by\\na car on the road, and the Armenian outposts started opening\\nfire,\" Mr Sadikov said.\\n\\nAzeri militiamen fighting their way out of Hojali rushed forward\\nto force open a corridor for the civilians, but their efforts\\nwere mostly in vain. Mr Sadikov said only 10 people from his\\ngroup of 80 made it through, including his wife and militiaman\\nson. Seven of his immediate relations died, including his\\n67-year-old elder brother.\\n\\n\"I only had time to reach down and cover his face with his hat,\"\\nhe said, pulling his own big flat Turkish cap over his eyes. \"We\\nhave never got any of the bodies back.\"\\n\\nThe first groups were lucky to have the benefit of covering fire.\\nOne hero of the evacuation, Alif Hajief, was shot dead as he\\nstruggled to change a magazine while covering the third group\\'s\\ncrossing, Mr Sadikov said.\\n\\nAnother hero, Elman Memmedov, the mayor of Hojali, said he and\\nseveral others spent the whole day of 26 February in the bushy\\nhillside, surrounded by dead bodies as they tried to keep three\\nArmenian armoured personnel carriers at bay.\\n\\nAs the survivors staggered the last mile into Agdam, there was\\nlittle comfort in a town from which most of the population was\\nsoon to flee.\\n\\n\"The night after we reached the town there was a big Armenian\\nrocket attack. Some people just kept going,\" Mr Sadikov said. \"I\\nhad to get to the hospital for treatment. I was in a bad way.\\nThey even found a bullet in my sock.\"\\n\\nVictims of war: An Azeri woman mourns her son, killed in the\\nHojali massacre in February (left). Nurses struggle in primitive\\nconditions (centre) to save a wounded man in a makeshift\\noperating theatre set up in a train carriage. Grief-stricken\\nrelatives in the town of Agdam (right) weep over the coffin of\\nanother of the massacre victims. Calculating the final death toll\\nhas been complicated because Muslims bury their dead within 24\\nhours.\\n\\nPhotographs: Liu Heung / AP\\n Frederique Lengaigne / Reuter\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Fundamentalism - again.\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 19\\n\\nIn article khan0095@nova.gmi.edu (Mohammad Razi Khan) writes:\\n>One of my biggest complaints about using the word \"fundamentalist\"\\n>is that (at least in the U.S.A.) people speak of muslime\\n>fundamentalists ^^^^^^^muslim\\n>but nobody defines what a jewish or christan fundamentalist is.\\n>I wonder what an equal definition would be..\\n>any takers..\\n\\n\\tThe American press routinely uses the word fundamentalist to\\nrefer to both Christians and Jews. Christian fundementalists are\\noften refered to in the context of anti-abortion protests. The\\nAmerican media also uses fundamentalist to refer to Jews who live in\\nJudea, Samaria or Gaza, and to any Jew who follows the torah.\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: sturges@oasys.dt.navy.mil (Richard Sturges)\\nSubject: Re: DOT Tire date codes\\nReply-To: sturges@oasys.dt.navy.mil (Richard Sturges)\\nDistribution: usa\\nOrganization: Carderock Division, NSWC, Bethesda, MD\\nLines: 12\\n\\nIn rec.motorcycles, cookson@mbunix.mitre.org (Cookson) writes:\\n>To the nedod mailing list, and Jack Tavares suggested I check out\\n>how old the tire is as one tactic for getting it replaced. Does\\n>anyone have the file on how to read the date codes handy?\\n\\nIt\\'s quite simple; the code is the week and year of manufacture.\\n\\n\\t<================================================> \\n / Rich Sturges (h) 703-536-4443 \\\\\\n / NSWC - Carderock Division (w) 301-227-1670 \\\\\\n / \"I speak for no one else, and listen to the same.\" \\\\\\n <========================================================>\\n',\n", + " \"From: mbeaving@bnr.ca (M Beavington)\\nSubject: Re: Insurance and lotsa points...\\nNntp-Posting-Host: bmerh824\\nReply-To: MBEAVING@BNR.CA\\nOrganization: BNR Ottawa, DMS Software Design\\nLines: 15\\n\\nIn article <13386@news.duke.edu>, infante@acpub.duke.edu (Andrew Infante) writes:\\n|> Well, it looks like I'm F*cked for insurance.\\n|> \\n|> I had a DWI in 91 and for the beemer, as a rec.\\n|> vehicle, it'll cost me almost $1200 bucks to insure/year.\\n|> \\n|> Now what do I do?\\n|> \\n\\nGo bikeless. You drink and drive, you pay. No smiley.\\n\\n\\nMike Beavington\\nmbeaving@bnr.ca\\n*opinions are my own and not my companies'.\\n\",\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nOrganization: sgi\\nLines: 31\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <115565@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n|> In article <1qi3l5$jkj@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >I hope an Islamic Bank is something other than BCCI, which\\n|> >ripped off so many small depositors among the Muslim\\n|> >community in the Uk and elsewhere.\\n|> \\n|> >jon.\\n|> \\n|> Grow up, childish propagandist.\\n\\nGregg, I\\'m really sorry if having it pointed out that in practice\\nthings aren\\'t quite the wonderful utopia you folks seem to claim\\nthem to be upsets you, but exactly who is being childish here is \\nopen to question.\\n\\nBBCI was an example of an Islamically owned and operated bank -\\nwhat will someone bet me they weren\\'t \"real\" Islamic owners and\\noperators? - and yet it actually turned out to be a long-running\\nand quite ruthless operation to steal money from small and often\\nquite naive depositors.\\n\\nAnd why did these naive depositors put their life savings into\\nBCCI rather than the nasty interest-motivated western bank down\\nthe street? Could it be that they believed an Islamically owned \\nand operated bank couldn\\'t possibly cheat them? \\n\\nSo please don\\'t try to con us into thinking that it will all \\nwork out right next time.\\n\\njon.\\n',\n", + " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Victims of various \\'Good Fight\\'s\\nIn-Reply-To: 9051467f@levels.unisa.edu.au\\'s message of 12 Apr 93 21: 36:33 +0930\\nOrganization: Compaq Computer Corp\\n\\t<9454@tekig7.PEN.TEK.COM> <1993Apr12.213633.20143@levels.unisa.edu.au>\\nLines: 12\\n\\n>>>>> On 12 Apr 93 21:36:33 +0930, 9051467f@levels.unisa.edu.au (The Desert Brat) said:\\n\\nTDB> 12. Disease introduced to Brazilian * oher S.Am. tribes: x million\\n\\nTo be fair, this was going to happen eventually. Given time, the Americans\\nwould have reached Europe on their own and the same thing would have \\nhappened. It was just a matter of who got together first.\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", + " 'From: weston@ucssun1.sdsu.edu (weston t)\\nSubject: graphical representation of vector-valued functions\\nOrganization: SDSU Computing Services\\nLines: 13\\nNNTP-Posting-Host: ucssun1.sdsu.edu\\n\\ngnuplot, etc. make it easy to plot real valued functions of 2 variables\\nbut I want to plot functions whose values are 2-vectors. I have been \\ndoing this by plotting arrays of arrows (complete with arrowheads) but\\nbefore going further, I thought I would ask whether someone has already\\ndone the work. Any pointers??\\n\\nthanx in advance\\n\\n\\nTom Weston | USENET: weston@ucssun1.sdsu.edu\\nDepartment of Philosophy | (619) 594-6218 (office)\\nSan Diego State Univ. | (619) 575-7477 (home)\\nSan Diego, CA 92182-0303 | \\n',\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Moraltiy? (was Re: >>>What if I act morally for no particular reason? Then am I moral? What\\n>>>>if morality is instinctive, as in most animals?\\n>>>Saying that morality is instinctive in animals is an attempt to \\n>>>assume your conclusion.\\n>>Which conclusion?\\n>You conclusion - correct me if I err - that the behaviour which is\\n>instinctive in animals is a \"natural\" moral system.\\n\\nSee, we are disagreeing on the definition of moral here. Earlier, you said\\nthat it must be a conscious act. By your definition, no instinctive\\nbehavior pattern could be an act of morality. You are trying to apply\\nhuman terms to non-humans. I think that even if someone is not conscious\\nof an alternative, this does not prevent his behavior from being moral.\\n\\n>>You don\\'t think that morality is a behavior pattern? What is human\\n>>morality? A moral action is one that is consistent with a given\\n>>pattern. That is, we enforce a certain behavior as moral.\\n>You keep getting this backwards. *You* are trying to show that\\n>the behaviour pattern is a morality. Whether morality is a behavior \\n>pattern is irrelevant, since there can be behavior pattern, for\\n>example the motions of the planets, that most (all?) people would\\n>not call a morality.\\n\\nI try to show it, but by your definition, it can\\'t be shown.\\n\\nAnd, morality can be thought of a large class of princples. It could be\\ndefined in terms of many things--the laws of physics if you wish. However,\\nit seems silly to talk of a \"moral\" planet because it obeys the laws of\\nphyics. It is less silly to talk about animals, as they have at least\\nsome free will.\\n\\nkeith\\n',\n", + " \"From: edimg@willard.atl.ga.us (Ed pimentel)\\nSubject: HELP! Need JPEG / MPEG encod-decode \\nOrganization: Willard's House BBS, Atlanta, GA -- +1 (404) 664 8814\\nLines: 41\\n\\nI am involve in a Distant Learning project and am in need\\nof Jpeg and Mpeg encode/decode source and object code.\\nThis is a NOT-FOR PROFIT project that once completed I\\nhope to release to other educational and institutional\\nlearning centers.\\nThis project requires that TRUE photographic images be sent\\nover plain telephone lines. In addition if there is a REAL Good\\nGUI lib with 3D objects and all types of menu classes that can\\nbe use at both end of the transaction (Server and Terminal End)\\nI would like to hear about it.\\n \\nWe recently posted an RFD announcing the OTG (Open Telematic Group)\\nthat will concern itself with the developement of such application\\nand that it would incorporate NAPLPS, JPEG, MPEG, Voice, IVR, FAX\\nSprites, Animation(fli, flc, etc...).\\nAt present only DOS and UNIX environment is being worked on and it\\nour hope that we can generate enough interest where all the major\\nplatform can be accomodated via a plaform independent API/TOOLKIT/SDK\\nWe are of the mind that it is about time that such project and group\\nbe form to deal with these issues.\\nWe want to setup a repository where these files may be access such as\\nSimte20 and start putting together a OTG FAQ.\\nIf you have some or any information that in your opinion would be \\nof interest to the OTG community and you like to see included in our\\nfirst FAQ please send it email to the address below.\\n \\nThanks in Advance\\n \\nEd\\nP.O. box 95901\\nAtlanta Ga. 30347-0901\\n(404)985-1198 zyxel 14.4\\nepimntl@world.std.com \\ned.pimentel@gisatl.fidonet.org\\n\\n\\n-- \\nedimg@willard.atl.ga.us (Ed pimentel)\\ngatech!kd4nc!vdbsan!willard!edimg\\nemory!uumind!willard!edimg\\nWillard's House BBS, Atlanta, GA -- +1 (404) 664 8814\\n\",\n", + " 'From: tankut@IASTATE.EDU (Sabri T Atan)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: tankut@IASTATE.EDU (Sabri T Atan)\\nOrganization: Iowa State University\\nLines: 43\\n\\nIn article , ptg2351@uxa.cso.uiuc.edu (Panos\\nTamamidis ) writes:\\n> Yeah, too much Mutlu/Argic isn\\'t helping. I could, one day, proceed and\\n\\nYou shouldn\\'t think many Turks read Mutlu/Argic stuff.\\nThey are in my kill file, likewise any other fanatic.\\n \\n> >(I have nothing against Greeks but my problem is with fanatics. I have met\\n> >so many Greeks who wouldn\\'t even talk to me because I am Turkish. From my\\n> >experience, all my friends always were open to Greeks)\\n> \\n> Well, the history, wars, current situations, all of them do not help.\\n\\nWell, Panos, Mr. Tamamidis?, the way you put it it is only the Turks\\nwho bear the responsibility of the things happening today. That is hard to\\nbelieve for somebody trying to be objective.\\nWhen it comes to conflicts like our countries having you cannot\\nblame one side only, there always are bad guys on both sides.\\nWhat were you doing on Anatolia after the WW1 anyway?\\nDo you think it was your right to be there?\\nI am not saying that conflicts started with that. It is only\\nnot one side being the aggressive and the ither always suffering.\\nIt is sad that we (both) still are not trying to compromise.\\nI remember the action of the Turkish government by removing the\\nvisa requirement for greeks to come to Turkey. I thought it\\nwas a positive attempt to make the relations better.\\n\\nThe Greeks I mentioned who wouldn\\'t talk to me are educated\\npeople. They have never met me but they know! I am bad person\\nbecause I am from Turkey. Politics is not my business, and it is\\nnot the business of most of the Turks. When it comes to individuals \\nwhy the hatred? So that makes me think that there is some kind of\\nbrainwashing going on in Greece. After all why would an educated person \\ntreat every person from a nation the same way? can you tell me about your \\nhistory books and things you learn about Greek-Turkish\\nencounters during your schooling. \\ntake it easy! \\n\\n--\\nTankut Atan\\ntankut@iastate.edu\\n\\n\"Achtung, baby!\"\\n',\n", + " 'From: maxg@microsoft.com (Max Gilpin)\\nSubject: HONDA CBR600 For Sale\\nOrganization: Microsoft Corp.\\nKeywords: CBR Hurricane \\nDistribution: usa\\nLines: 8\\n\\nFor Sale 1988 Honda CBR600 (Hurricane). I bought the bike at the end of\\nlast summer and although I love it, the bills are forcing me to part with\\nit. The bike has a little more than 6000 miles on it and runs very strong.\\nIt is in nead of a tune-up and possibly break pads but the rubber is good.\\nI am also tossing in a TankBag and a KIWI Helmet. Asking $3000.00 or best\\noffer. Add hits newspaper 04-20-93 and Micronews 04-23-93. Interested \\nparties can call 206-635-2006 during the day and 889-1510 in the evenings\\nno later than 11:00PM. \\n',\n", + " \"Subject: Re: How many israeli soldiers does it take to kill a 5 yr old child?\\nFrom: jhsegal@wiscon.weizmann.ac.il (Livian Segal)\\nOrganization: Weizmann Institute of Science, Computation Center\\nLines: 16\\n\\nIn article <1qhv50$222@bagel.cs.huji.ac.il> ranen@falafel.cs.huji.ac.il (Ranen Goren) writes:\\n>Q: How many Nick Steel's does it take to twist any truth around?\\n>A: Only one, and thank God there's only one.\\n>\\n>\\tRanen.\\n\\nAbsolutely not true!\\nThere are lots of them!\\n\\n _____ __Livian__ ______ ___ __Segal__ __ __ __ __ __\\n *\\\\ /* | | \\\\ \\\\ \\\\ | | | | \\\\ |\\n***\\\\ /*** | | |__ | /_ \\\\ \\\\ | | | | \\\\ |\\n|---O---| | | / | \\\\ | | | | \\\\ |\\n\\\\ /*\\\\ / \\\\___ / | \\\\ | | | \\\\ | | \\\\___ / | / |\\n \\\\/***\\\\/ / | \\\\ | | | | | / | |\\nVM/CMS: JhsegalL@Weizmann.weizmann.ac.il UNIX: Jhsegal@wiscon.weizmann.ac.il\\n\",\n", + " 'From: CGKarras@world.std.com (Christopher G Karras)\\nSubject: Need Maintenance tips\\nOrganization: The World Public Access UNIX, Brookline, MA\\nLines: 29\\n\\n\\nAfter reading the service manual for my bike (Suzuki GS500E--1990) I have\\na couple of questions I hope you can answer:\\n\\nWhen checking the oil level with the dip stick built into the oil fill\\ncap, does one check it with the cap screwed in or not? I am more used to\\nthe dip stick for a cage where the stick is extracted fully, wiped clean\\nand reinserted fully, then withdrawn and read. The dip stick on my bike\\nis part of the oil filler cap and has about 1/2 inch of threads on it. Do\\nI remove the cap, wipe the stick clean and reinsert it with/without\\nscrewing it down before reading?\\n\\nThe service manual calls for the application of Suzuki Bond No. 1207B on\\nthe head cover. I guess this is some sort of liquid gasket material. do\\nyou know of a generic (cheaper) substitute?\\n\\nMy headlight is a Halogen 60/55 W bulb. Is there an easy, brighter\\nreplacement bulb available? Where should I look for one?\\n\\nAs always, I very much appreciate your help. The weather in Philadelphia\\nhas finally turned WARM. This weekend I saw lotsa bikes, and the riders\\nALL waved. A nice change of tone from what Philadelphia can be like. . . .\\n\\nChris\\n\\n-- \\n*******************************************************************\\nChristopher G. Karras\\nInternet: CGKarras@world.std.com\\n',\n", + " \"From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Bikes vs. Horses (was Re: insect impac\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 27\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nNNTP-Posting-Host: slc4.ins.cwru.edu\\n\\n\\nIn a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n\\n>In article sda@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes:\\n\\n> The only people who train for years to jump a horse 2 feet\\n>are equistrian posers who wear velvet tails and useless helmets.\\n>\\n\\n\\tWhich, as it turns out, is just about everybody that's serious about\\nhorses. What a bunch of weenie fashion nerds. And the helmets suck. I'm wearing\\nmy Shoei mountain bike helmet - fuck em.>>>\\n\\n\\n>>\\tOr I'm permanently injured.\\n>\\n>Oops. too late.\\n>\\n\\n\\tNah, I can still walk unaided.\\n\\n\\n\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n\",\n", + " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Louisiana Tech University\\nLines: 17\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article csundh30@ursa.calvin.edu (Charles Sundheim) writes:\\n\\n\\n\\n>Moral: I'm not really sure, but more and more I believe that bikers ought \\n> to be allowed to carry handguns.\\n\\nCome to Louisiana where it is LEGAL to carry concealed weapons on a bike!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", + " 'From: freed@nss.org (Bev Freed)\\nSubject: FAQs\\nOrganization: The NSS BBS, Pittsburgh PA (412) 366-5208\\nLines: 8\\n\\nI was wondering if the FAQ files could be posted quarterly rather than monthly. Every 28-30 days, I get this bloated feeling.\\n \\n\\n\\n-- \\nBev Freed - via FidoNet node 1:129/104\\nUUCP: ...!pitt!nss!freed\\nINTERNET: freed@nss.org\\n',\n", + " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Mars Observer Update - 04/23/93\\nOrganization: Jet Propulsion Laboratory\\nLines: 48\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Mars Observer, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from the Mars Observer Project\\n\\n MARS OBSERVER STATUS REPORT\\n April 23, 1993\\n 10:00 AM PDT\\n\\nFlight Sequence C8 is active, the Spacecraft subsystems and instrument\\npayload performing well in Array Normal Spin and outer cruise\\nconfiguration, with uplink and downlink via the High Gain Antenna; uplink\\nat 125 bps, downlink at the 2 K Engineering data rate.\\n\\nAs a result of the spacecraft entering Contingency Mode on April 9, all\\npayload instruments were automatically powered off by on-board fault\\nprotection software. Gamma Ray Spectrometer Random Access Memory\\nwas successfully reloaded on Monday, April 19. To prepare for\\nMagnetometer Calibrations which were rescheduled for execution in Flight\\nSequence C9 on Tuesday and Wednesday of next week, a reload of Payload\\nData System Random Access Memory will take place this morning\\nbeginning at 10:30 AM.\\n\\nOver this weekend, the Flight Team will send real-time commands to\\nperform Differential One-Way Ranging to obtain additional data for\\nanalysis by the Navigation Team. Radio Science Ultra Stable Oscillator\\ntesting will take place on Monday .\\n\\nThe Flight Sequence C9 uplink will occur on Sunday, April 25, with\\nactivation at Midnight, Monday evening April 26. C9 has been modified to\\ninclude Magnetometer Calibrations which could not be performed in C8 due\\nto Contingency Mode entry on April 9. These Magnetometer instrument\\ncalibrations will allow the instrument team to better characterize the\\nspacecraft-generated magnetic field and its effect on their instrument.\\nThis information is critical to Martian magnetic field measurements\\nwhich occur during approach and mapping phases. MAG Cals will require\\nthe sequence to command the spacecraft out of Array Normal Spin state\\nand perform slew and roll maneuvers to provide the MAG team data points\\nin varying spacecraft attitudes and orientations.\\n\\nToday, the spacecraft is 22,971,250 km (14,273,673 mi.) from Mars\\ntravelling at a velocity of 2.09 kilometers/second (4,677 mph) with\\nrespect to Mars. One-way light time is approximately 10 minutes, 38\\nseconds.\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n',\n", + " \"Organization: Penn State University\\nFrom: \\nSubject: scanned grey to color equations?\\nLines: 7\\n\\nA while back someone had several equations which could be used for changing 3 f\\niltered grey scale images into one true color image. This is possible because\\nit's the same theory used by most color scanners. I am not looking for the obv\\nious solution which is to buy a color scanner but what I do need is those equat\\nions becasue I am starting to write software which will automate the conversion\\n process. I would really appreciate it if someone would repost the 3 equations\\n/3 unknowns. Thanks for the help!!!\\n\",\n", + " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 48\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn <1993Apr9.154316.19778@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>In article kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n \\n>>\\tIf I state that I know that there is a green marble in a closed box, \\n>>which I have _never_ seen, nor have any evidence for its existance; I would\\n>>be guilty of deceit, even if there is, in fact, a green marble inside.\\n>>\\n>>\\tThe question of whether or not there is a green marble inside, is \\n>>irrelevent.\\n\\n>You go ahead and play with your marbles.\\n\\nI love it, I love it, I love it!! Wish I could fit all that into a .sig\\nfile! (If someone is keeping a list of Bobby quotes, be sure to include\\nthis one!)\\n\\n>>\\n>>\\tStating an unproven opinion as a fact, is deceit. And, knowingly \\n>>being decietful is a falsehood and a lie.\\n\\n>So why do you think its an unproven opinion? If I said something as\\n>fact but you think its opinion because you do not accept it, then who\\'s\\n>right?\\n\\nThe Flat-Earthers state that \"the Earth is flat\" is a fact. I don\\'t accept\\nthis, I think it\\'s an unproven opinion, and I think the Round-Earthers are\\nright because they have better evidence than the Flat-Earthers do.\\n\\nAlthough I can\\'t prove that a god doesn\\'t exist, the arguments used to\\nsupport a god\\'s existence are weak and often self-contradictory, and I\\'m not\\ngoing to believe in a god unless someone comes over to me and gives me a\\nreason to believe in a god that I absolutely can\\'t ignore.\\n\\nA while ago, I read an interesting book by a fellow called Von Daenicken,\\nin which he proved some of the wildest things, and on the last page, he\\nwrote something like \"Can you prove it isn\\'t so?\" I certainly can\\'t, but\\nI\\'m not going to believe him, because he based his \"proof\" on some really\\nquestionable stuff, such as old myths (he called it \"circumstancial\\nevidence\" :] ).\\n\\nSo far, atheism hasn\\'t made me kill anyone, and I\\'m regarded as quite an\\nagreeable fellow, really. :)\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", + " 'From: mmaser@engr.UVic.CA (Michael Maser)\\nSubject: Re: extraordinary footpeg engineering\\nNntp-Posting-Host: uglv.uvic.ca\\nReply-To: mmaser@engr.UVic.CA\\nOrganization: University of Victoria, Victoria, BC, Canada\\nLines: 38\\n\\n--In a previous article, exb0405@csdvax.csd.unsw.edu.au () says:\\n--\\n-->Okay DoD\\'ers, here\\'s a goddamn mystery for ya !\\n-->\\n-->Today I was turning a 90 degree corner just like on any other day, but there\\n-->was a slight difference- a rough spot right in my path caused the suspension\\n-->to compress in mid corner and some part of the bike hit the ground with a very\\n-->tangible \"thunk\". I pulled over at first opportunity to sus out the damage. \\n--== some deleted\\n-->\\n-->Barry Manor DoD# 620 confused accidental peg-scraper\\n-->\\n-->\\n--Check the bottom of your pipes Barry -- suspect that is what may\\n--have hit. I did the same a few years past & thought it was the\\n--peg but found the bottom of my pipe has made contact & showed a\\n--good sized dent & scratch.\\n\\n-- Believe you\\'d feel the suddent change on your foot if the peg\\n--had bumped. As for the piece missing -- contribute that to \\n--vibration loss.\\n\\nYep, the same thing happened to me on my old Honda 200 Twinstar.\\n\\n\\n*****************************************************************************\\n* Mike Maser | DoD#= 0536 | SQUID RATING: 5.333333333333333 *\\n* 9235 Pinetree Rd. |----------------------------------------------*\\n* Sidney, B.C., CAN. | Hopalonga Twinfart Yuka-Yuka EXCESS 400 *\\n* V8L-1J1 | wish list: Tridump, Mucho Guzler, Burley *\\n* home (604) 656-6131 | Thumpison, or Bimotamoeba *\\n* work (604) 721-7297 |***********************************************\\n* mmaser@sirius.UVic.CA |JOKE OF THE MONTH: What did the gay say to the*\\n* University of Victoria | Indian Chief ? *\\n* news: rec.motorcycles | ANSWER: Can I bum a couple bucks ? *\\n*****************************************************************************\\n\\n\\n',\n", + " 'From: David.Rice@ofa123.fidonet.org\\nSubject: islamic authority [sic] over women\\nX-Sender: newtout 0.08 Feb 23 1993\\nLines: 62\\n\\n \\nwho: kmr4@po.CWRU.edu (Keith M. Ryan)\\nwhat: \\nwith: rush@leland.Stanford.EDU \\nwhat: <1993Apr5.050524.9361@leland.Stanford.EDU>\\n \\n>>> Other readers: I just joined, but is this guy for real?\\n>>> I\\'m simply amazed.\\n \\nKR> \"Sadly yes. Don\\'t loose any sleep over Old \\'Zlumber. Just\\nKR> have some fun with him, but he is basically harmless. \\nKR> At least, if you don\\'t work in NY city.\"\\n \\nI don\\'t find it hard to believe that \"Ole \\'Zlumber\" really believes\\nthe hate and ignorant prattle he writes. The frightening thought is,\\nthere are people even worse than he! To say that feminism equals\\n\"superiority\" over men is laughable as long as he doesn\\'t then proceed\\nto pick up a rifle and start to shoot women as a preemptive strike---\\naka the Canada slaughter that occured a few years ago. But then, men\\nkilling women is nothing new. Islamic Fundamentalists just have a\\n\"better\" excuse (Qu\\'ran).\\n \\n from the Vancouver Sun, Thursday, October 4, 1990\\n by John Davidson, Canadian Press\\n \\n MONTREAL-- Perhaps it\\'s the letter to the five-year old\\n daughter that shocks the most.\\n \\n \"I hope one day you will be old enough to understand what\\n happened to your parents,\" wrote Patrick Prevost. \"I loved\\n your mother with a passion that went as far as hatred.\"\\n \\n Police found the piece of paper near Prevost\\'s body in his\\n apartment in northeast Montreal.\\n \\n They say the 39-year-old mechanic committed suicide after\\n killing his wife, Jocelyne Parent, 31.\\n \\n The couple had been separated for a month and the woman had\\n gone to his apartment to talk about getting some more money\\n for food. A violent quarrel broke out and Prevost attacked\\n his wife with a kitchen knife, cutting her throat, police said.\\n \\n She was only the latest of 13 women slain by a husband or\\n lover in Quebec in the last five weeks.\\n \\n Five children have also been slain as a result of the same\\n domestic \"battles.\"\\n \\n Last year in Quebec alone, 29 [women] were slain by their\\n husbands. That was more than one-third of such cases across\\n Canada, according to statistics from the Canadian Centre for\\n Justice. [rest of article ommited]\\n \\nThen to say that women are somehow \"better\" or \"should\" be the\\none to \"stay home\" and raise a child is also laughable. Women\\nhave traditionally done hard labor to support a family, often \\nmore than men in many cultures, throughout history. Seems to me\\nit takes at least two adults to raise a child, and that BOTH should\\nstay home to do so!\\n\\n--- Maximus 2.01wb\\n',\n", + " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Hamza Salah, the Humanist\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 8\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\nMr. Salah, why are you such a homicidal racist? Do you feel this\\nsame hatred towards Christans, or is it only Jews? Are you from\\na family of racists? Did you learn this racism in your home? Or\\nare you a self-made bigot? How does one become such a racist? I\\nwonder what you think your racism will accomplish. Are you under\\nthe impression that your racism will help bring peace in the mid-\\neast? I would like to know your thoughts on this.\\n',\n", + " 'From: laszlo@eclipse.cs.colorado.edu (Laszlo Nemeth)\\nSubject: Re: Protective gear\\nNntp-Posting-Host: eclipse.cs.colorado.edu\\nOrganization: University of Colorado Boulder, Pizza Disposal Group\\nLines: 19\\n\\nIn article , maven@eskimo.com (Norman Hamer) writes:\\n|> Question for the day:\\n|> \\n|> What protective gear is the most important? I\\'ve got a good helmet (shoei\\n|> rf200) and a good, thick jacket (leather gold) and a pair of really cheap\\n|> leather gloves... What should my next purchase be? Better gloves, boots,\\n|> leather pants, what?\\n\\ncondom\\n\\n\\nduring wone of the 500 times i had to go over my accident i\\nwas asked if i was wearing \"protection\" my responces was\\n\"yes i was wearing a condom\"\\n\\n\\n\\nlaz\\n\\n',\n", + " 'From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: Georgia Institute of Technology\\nLines: 21\\n\\nWho the hell is this guy David Davidian. I think he talks too much..\\n\\n\\nYo , DAVID you would better shut the f... up.. O.K ?? I don\\'t like \\n\\nyour attitute. You are full of lies and shit. Didn\\'t you hear the \\n\\nsaying \"DON\\'T MESS WITH A TURC!!\"...\\n\\nSee ya in hell..\\n\\nTimucin.\\n\\n\\n\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n',\n", + " \"From: ernie@woody.apana.org.au (Ernie Elu)\\nSubject: MGR NAPLPS & GUI BBS Frontends\\nOrganization: Woody - Public Access Linux - Melbourne\\nLines: 28\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\n\\n\\nHi all,\\nI am looking into methods I can use to turn my Linux based BBS into a full color\\nGraphical BBS that supports PC, Mac, Linux, and Amiga callers. \\nOriginally I was inspired by the NAPLPS graphics standard (a summary of \\nwhich hit this group about 2 weeks ago). \\nFollowing up on software availability of NAPLPS supporting software I find\\nthat most terminal programs are commercial the only resonable shareware one being\\nPP3 which runs soley on MSDOS machines leaving Mac and Amiga users to buy full\\ncommercial software if they want to try out the BBS (I know I wouldn't)\\n\\nNext most interesting possibility is to port MGR to PC, Mac, Amiga. I know there\\nis an old version of a Mac port on bellcore.com that doesn't work under System 7\\nBut I can't seem to find the source anywhere to see if I can patch it.\\n\\nIs there a color version of MGR for Linux? \\nI know there was an alpha version of the libs out last year but I misplaced it.\\n\\nDoes anyone on this group know if MGR as been ported to PC or Amiga ?\\nI can't seem to send a message to the MGR channel without it bouncing.\\n\\nDoes anyone have any other suggestions for a Linux based GUI BBS ?\\n\\nThanks in advan\\n\",\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1r6ub0$mgl@access.digex.net> prb@access.digex.com (Pat) writes:\\n\\n>In article <1993Apr22.164801.7530@julian.uwo.ca> jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll) writes:\\n>>\\tHmmm. I seem to recall that the attraction of solid state record-\\n>>players and radios in the 1960s wasn\\'t better performance but lower\\n>>per-unit cost than vacuum-tube systems.\\n>>\\n\\n\\n>I don\\'t think so at first, but solid state offered better reliabity,\\n>id bet, and any lower costs would be only after the processes really scaled up.\\n\\nCareful. Making statements about how solid state is (generally) more\\nreliable than analog will get you a nasty follow-up from Tommy Mac or\\nPat. Wait a minute; you *are* Pat. Pleased to see that you\\'re not\\nsuffering from the bugaboos of a small mind. ;-)\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: andersen@me.udel.edu (Stephen Andersen)\\nSubject: Riding Jacket Recommendations\\nNntp-Posting-Host: me.udel.edu\\nOrganization: Center for Composite Materials/University of Delaware\\nLines: 36\\n\\nMy old jacket is about to bite the dust so I\\'m in the market for a new riding\\njacket. I\\'m looking for recommendations for a suitable replacement. I would\\nlike to buy a full Aerostich suit but I can\\'t afford $700 for it right now.\\n\\nI\\'m considering two basic options:\\n\\n1) Buy the Aerostich jacket only. Dunno how much it costs\\n due to recent price increases, but I\\'d imagine over $400.\\n That may be pushing my limit. Advantages include the fact\\n that I can later add the pants, and that it nearly eliminates\\n the need for the jacket portion of a rainsuit.\\n\\n2) Buy some kind of leather jacket. I like a few of the new \\n Hein-Gericke FirstGear line, however they may be a bit pricey\\n unless I can work some sort of deal. Advantages of leather\\n are potentially slightly better protection, enhanced pose\\n value (we all know how important that is :-), possibly cheaper\\n than upper Aerostich.\\n\\nRequirements for a jacket are that it must fit over a few other \\nlayers (mainly a sizing thing), if leather i\\'d prefer a zip-out \\nlining, it MUST have some body armor similar to aerostich (elbows, \\nshoulders, forearms, possibly back/kidney protection, etc.), a \\nreasonable amount of pocket space would be nice, ventilation would \\nbe a plus, however it must be wearable in cold weather (below\\nfreezing) with layers or perhaps electrics.\\n\\nPlease fire away with suggestions, comments, etc...\\n\\nSteve\\n--\\n-- \\n Steve Andersen DoD #0239 andersen@me.udel.edu\\n (302) 832-0136 andersen@zr1.ccm.udel.edu\\n 1992 Ducati 907 I.E. 1987 Yamaha SRX250\\n \"Life is simply a consequence of the complexities of carbon chemistry...\"\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 B\\nSummary: Part B \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 912\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 Part B\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n\\t\\t\\t\\t(Part B of #008)\\n\\n +------------------------------------------------------------------+\\n | |\\n | \"Oh, yes, I just remembered. While they were raping me they |\\n | repeated quite frequently, \"Let the Armenian women have babies |\\n | for us, Muslim babies, let them bear Azerbaijanis for the |\\n | struggle against the Armenians.\" Then they said, \"Those |\\n | Muslims can carry on our holy cause. Heroes!\" They repeated |\\n | it very often.\" |\\n | |\\n +------------------------------------------------------------------+\\n\\n...continued from PART A:\\n\\nThe six of them left. They left and I had an attack. I realized that the dan-\\nger was past, and stopped controlling myself. I relaxed for a moment and the \\nphysical pain immediately made itself felt. My heart and kidneys hurt. I had \\nan awful kidney attack. I rolled back and forth on top of those Christmas\\nornaments, howling and howling. I didn\\'t know where I was or how long this \\nwent on. When we figured out the time, later it turned out that I howled and \\nwas in pain for around an hour. Then all my strength was gone and I burst into\\ntears, I started feeling sorry for myself, and so on and so forth . . .\\n\\nThen someone came into the room. I think I hear someone calling my name. I \\nwant to respond and restrain myself, I think that I\\'m hallucinating. I am \\nsilent, and then it continues: it seems that first a man\\'s voice is calling\\nme, then a woman\\'s. Later I found out that Mamma had sent our neighbor, the\\none whose apartment she was hiding in, Uncle Sabir Kasumov, to our place, \\ntelling him, \"I know that they\\'ve killed Lyuda. Go there and at least bring \\nher corpse to me so they don\\'t violate her corpse.\" He went and returned empty\\nhanded, but Mamma thought he just didn\\'t want to carry the corpse into his \\napartment. She sent him another time, and then sent his wife, and they were \\nwalking through the rooms looking for me, but I didn\\'t answer their calls. \\nThere was no light, they had smashed the chandeliers and lamps.\\n\\nThey started the pogrom in our apartment around five o\\'clock, and at 9:30 I \\nwent down to the Kasumovs\\'. I went down the stairs myself. I walked out of the\\napartment: how long can you wait for your own death, how long can you be \\ncowardly, afraid? Come what will. I walked out and started knocking on the \\ndoors one after the next. No one, not on the fifth floor, not on the fourth, \\nopened the door. On the third floor, on the landing of the stairway, Uncle \\nSabir\\'s son started to shout, \"Aunt Roza, don\\'t cry, Lyuda\\'s alive!\" He \\nknocked on his own door and out came Aunt Tanya, Igor, and after them, Mamma. \\nAunt Tanya, Uncle Sabir\\'s wife, is an Urdmurt. All of us were in their \\napartment. I didn\\'t see Karina, but she was in their home, too, Lying\\ndelirious, she had a fever. Marina was there too, and my father and mother.\\nAll of my family had gathered there.\\n \\nAt the door I lost consciousness. Igor and Aunt Tanya carried me into the\\napartment.\\n\\nLater I found out what they had done to our Karina. Mamma said, \"Lyuda, \\nKarina\\'s in really serious condition, she\\'s probably dying. If she recognizes \\nyou, don\\'t cry, don\\'t tell her that her face looks so awful.\" It was as though\\nher whole face was paralyzed, you know, everything was pushed over to one \\nside, her eye was all swollen, and everything flowed together, her lips, her \\ncheeks . . . It was as though they had dragged her right side around the whole\\nmicrodistrict, that\\'s how disfigured her face was. I said, \"Fine.\" Mamma was \\nafraid to go into the room, because she went in and hugged Karina and started \\nto cry. I went in. As soon as I saw her my legs gave way. I fell down near the\\nbed, hugged her legs and started kissing them and crying. She opened the eye \\nthat was intact, looked at me, and said, \"Who is it?\" But I could barely talk, \\nmy whole face was so badly beaten. I didn\\'t say, but rather muttered something\\ntender, something incomprehensible, but tender, \"My Karochka, my Karina, my \\nlittle golden one . . . \" She understood me.\\n\\nThen Igor brought me some water, I drank it down and moistened Karina\\'s lips. \\nShe started to groan. She was saying something to me, but I couldn\\'t \\nunderstand it. Then I made out, \"It hurts, I hurt all over.\" Her hair was \\nglued down with blood. I stroked her forehead, her head, she had grit on her \\nforehead, and on her lips . . . She was groaning again, and I don\\'t know how \\nto help her. She calls me over with her hand, come closer. I go to her. She\\'s\\nsaying something to me, but I can\\'t understand her. Igor brings her a pencil \\nand paper and says, \"Write it down.\" She shakes her head as if to say, no, I \\ncan\\'t write. I can\\'t understand what she\\'s saying. She wanted to tell me \\nsomething, but she couldn\\'t. I say, \"Karina, just lie there a little while,\\nthen maybe you\\'ll feel better and you can tell me then.\" And then she says,\\n\"Maybe it\\'ll be too late.\" And I completely . . . just broke down, I couldn\\'t\\ncontrol myself.\\n\\nThen I moistened my hand in the water and wiped her forehead and eye. I dipped\\na handkerchief into the water and squeezed a little water onto her lips. She \\nsays, \"Lyuda, we\\'re not saved yet, we have to go somewhere else. Out of this \\ndamned house. They want to kill us, I know. They\\'ll find us here, too. We need\\nto call Urshan.\" She repeated this to me for almost a whole hour, Until I \\nunderstood her every word. I ask, \"What\\'s his number?\" Urshan Feyruzovich, \\nthat\\'s the head of the administration where she works. \"We have to call him.\" \\nBut I didn\\'t know his home number. I say, \"Karina, what\\'s his number?\" She \\nsays, \"I can\\'t remember.\" I say, \"Who knows his number? Who can I call?\" She \\nsays, \"I don\\'t know anything, leave me alone.\"\\n\\nI went out of the room. Igor stayed to watch over her and sat there, he was \\ncrying, too. I say, \"Mamma, Karina says that we have to call Urshan. How can \\nwe call him? Who knows his telephone number?\" I tell Marina, \"Think, think, \\nwho can we call to find out?\" She started calling; several people didn\\'t \\nanswer. She called a girlfriend, her girlfriend called another girlfriend and \\nfound out the number and called us back. The boss\\'s wife answered and said he \\nwas at the dacha. My voice keeps cracking, I can\\'t talk normally. She says, \\n\"Lyuda, don\\'t panic, get a hold of yourself, go out to those hooligans and \\ntell them that they just can\\'t do that.\" She still didn\\'t know what was really\\ngoing on. I said, \"It\\'s easy for you to say that, you don\\'t understand what\\'s \\nhappening. They are killing people here. I don\\'t think there is a single \\nArmenian left in the building, they\\'ve cut them all up. I\\'m even surprised \\nthat we managed to save ourselves. \"She says, \"Well, OK, if it\\'s that serious \\n. . . \" And all the same she\\'s thinking that my emotions are all churned up \\nand that I\\'m fearing for my life, that in fact it\\'s not all that bad. \"OK, \\nfine, fine,\" she says, \"if you\\'re afraid, OK, as soon as Urshan comes back \\nI\\'ll send him over.\"\\n\\nWe called again because they had just started robbing the apartment directly \\nunder Aunt Tanya\\'s, on the second floor, Asya Dallakian\\'s apartment. She \\nwasn\\'t home, she was staying with her daughter in Karabagh. They destroyed \\neverything there . . . We realized that they still might come back. We kept on\\ntrying to get through to Aunt Tanya--Urshan\\'s wife is named Tanya too and \\nfinally we get through. She says, \"Yes, he\\'s come home, he\\'s leaving for your \\nplace now.\" He came. Of course he didn\\'t know what was happening, either, \\nbecause he brought two of his daughters with him. He came over in his jeep \\nwith his two daughters, like he was going on an outing. He came and saw what \\nshape we were in and what was going on in town and got frightened. He has \\ngrown up daughters, they\\'re almost my age.\\n\\nThe three of us carried out Karina, tossed a coat on her and a warm scarf, and\\nwent down to his car. He took Karina and me to the Maternity Home. . . No, \\nfirst they took us to the po]ice precinct. They had stretchers ready. As\\nsoon as we got out of the car they put Karina and me on stretchers and said\\nthat we were in serious condition and that we mustn\\'t move, we might have\\nfractures. From the stretcher I saw about 30 soldiers sitting and lying on the\\nfirst floor, bandaged, on the concrete floor, groaning . . . This was around\\neleven o\\'clock at night. We had left the house somewhere around 1:30. When I \\nsaw those soldiers I realized that a war was going on: soldiers, enemies\\n. . . everything just like a war.\\n\\nThey carried me into some office on the stretcher. The emergency medical\\npeople from Baku were there. The medical attendant there was an older \\nArmenian. Urshan told him what they had done to Karina because she\\'s so proud \\nshe would never have told. And this aging Armenian . . . his name was Uncle \\nArkady, I think, because someone said \"Arkady, get an injection ready,\" he \\nstarted to fill a syringe, and turned around so as to give Karina a shot. But \\nwhen he looked at her face he became ill. And he was an old man, in his \\nsixties, his hair was all grey, and his moustache, too. He hugged Karina and \\nstarted to cry: \"What have they done to you?!\" He was speaking Armenian. \"What\\nhave they done to you?!\" Karina didn\\'t say anything. Mamma came in then, and \\nshe started to cry, too. The man tried to calm her. \"I\\'ll give you a shot.\" \\nMamma tells him, \"I don\\'t need any shot. Where is the government? Just what \\nare they doing? Look what they\\'ve done to my children! They\\'re killing people,\\nand you\\'re just sitting here!\" Some teacups were standing on the table in \\nthere. \"You\\'re sitting here drinking tea! Look what they\\'ve done to my \\ndaughters! Look what they\\'ve turned them into!\" They gave her something to \\ndrink, some heart medicine, I think. They gave Karina an injection and the\\ndoctor said that she had to be taken to the Maternity Home immediately. Papa \\nand Urshan, I think, even though Papa was in bad shape, helped carry Karina \\nout. When they put her on the stretcher, none of the medics got near her. I \\ndon\\'t know, maybe there weren\\'t any orderlies. Then they came to me: \"What\\'s \\nthe matter with you?\" Their tone was so official that I wrapped myself tighter\\nin the half-length coat. I had a blanket on, too, an orange one, Aunt Tanya\\'s.\\nI said, \"I\\'m fine.\" Uncle Arkady came over and was soothing me, and then told \\nthe doctor, \"You leave, let a woman examine her.\" A woman came, an \\nAzerbaijani, I believe, and said, \"What\\'s wrong with you?\" I was wearing my \\nsister Lyuda\\'s nightshirt, the sister who at this time was in Yerevan. When \\nshe was nursing her infant she had cut out a big hole in it so that it would \\nbe easier to breast feed the baby. I tore the night shirt some more and showed\\nher. I took it off my shoulders and turned my back to her. There was a huge \\nwound, about the size of a hand, on my back, from the Indian vase. She said \\nsomething to them and they gave me two shots. She said that it should be \\ndressed with something, but that they\\'d do that in the hospital.\\n\\nThey put me on a stretcher, too. They started looking for people to carry me. \\nI raised up my head a little and wanted to sit up, and this woman, I don\\'t \\nknow if she was a doctor or a nurse, said, \"Lie still, you mustn\\'t move.\" When\\nI was lying back down I saw two policemen leading a man. His profile seemed \\nvery familiar to me. I shouted, \"Stop!\" One of the policemen turned and says, \\n\"What do you want?\" I say, \"Bring him to me, I want to look at him.\" They \\nbrought him over and I said, \"That person was just in our apartment and he \\njust raped me and my sister. I recognize him, note it down.\" They said, \\n\"Fine,\" but didn\\'t write it down and led him on. I don\\'t know where they were \\ntaking him.\\n\\nThen they put my stretcher near where the injured and beaten soldiers were \\nsitting. They went to look for the ambulance driver so he would bring the car \\nup closer. One of the soldiers started talking to me, \"Sister . . . \" I don\\'t \\nremember the conversation exactly, but he asked me were we lived and what they\\ndid to us. I asked him, \"Where are you from?\" He said that he was from Ufa. \\nApparently they were the first that were brought in. The Ufa police. Later I \\nlearned that they suffered most of all. He says, \"OK, you\\'re Armenians, they \\ndidn\\'t get along with you, but I\\'m a Russian,\" he says, \"what are they trying \\nto kill me for?\" Oh, I remembered something else. When I went out onto the \\nbalcony with Kuliyev for a hammer and nails I looked out the window and saw \\ntwo Azerbaijanis beating a soldier near the kindergarten. He was pressed \\nagainst the fence and he covered his head with his arms, they were beating him\\nwith his own club. The way he cried \"Mamma\" made my skin crawl. I don\\'t know \\nwhat they did to him, if he\\'s still alive or not. And something else. Before \\nhe attack on our house we saw sheets, clothes, and some dishes flying from the\\nthird or fourth floor of the neighboring building, but I didn\\'t think it was \\nAzerbaijanis attacking Armenians. I thought that something was on fire or they\\nwere throwing something they didn\\'t need out, or someone was fighting with \\nsomeone. It was only later, when they were burning a passenger car in the \\nyard, when the neighbors said that they were doing that to the Armenians, that\\nI realized that this was serious, that it was anti-Armenian.\\n\\nThey took Karina and me to the Sumgait Maternity Home. Mamma went to them too \\nand said, \"I\\'ve been beaten too, help me.\" But they just ignored her. My \\nfather went to them and said in a guilty voice, as though it was his fault \\nthat he\\'d been beaten, and says, \"My ribs hurt so much, those creeps have \\nprobably broken my ribs. Please look at them.\" The doctor says, \"That\\'s not my\\njob.\" Urshan said, \"Fine, I\\'ll take you to my place and if we need a doctor, \\nI\\'ll find you one. I\\'ll bring one and have him look at you. And he drove them \\nto his apartment.\\n\\nMarina and I stayed there. They examined us. I was more struck by what the \\ndoctor said than by what those Azerbaijanis in our apartment did to us. I \\nwasn\\'t surprised when they beat us they wanted to beat us, but I was very\\nsurprised that in a Soviet medical facility a woman who had taken the\\nHippocratic Oath could talk to victims like that. By happy--or unhappy--\\ncoincidence we were seen by the doctor that had delivered our Karina. And she,\\nhaving examined Karina, said, \"No problem, you got off pretty good. Not like \\nthey did in Kafan, when you Armenians were killing and raping our women.\\n\"Karina was in such terrible condition that she couldn\\'t say anything--she\\nwould certainly have had something to say! Then they examined me. The same \\nstory. They put us in a separate ward. No shots, no medicinal powders, no \\ndrugs. Absolutely none! They didn\\'t even give us tea. All the women there soon\\nfound out that in ward such and such were Armenians who had been raped. And\\nthey started coming and peering through the keyhole, the way people look at \\nzoo animals. Karina didn\\'t see this, she was lying there, and I kept her from \\nseeing it.\\n\\nThey put Ira B. in our ward. She had also been raped. True, she didn\\'t have \\nany serious bodily injuries, but when she told me what had happened at their \\nplace, I felt worse for them than I did for us. Because when they raped Ira \\nher daughter was in the room, she was under the bed on which it happened. And\\nIra was holding her daughter\\'s hand, the one who was hiding under the bed.\\nWhen they were beating Ira or taking her earrings off, gold, when she \\ninvoluntarily let go of her daughter\\'s hand, her daughter took her hand again.\\nHer daughter is in the fourth grade, she\\'s 11 years old. I felt really awful \\nwhen I heard that. Ira asked them not to harm her daughter, she said, \"Do what\\nyou want with me, just leave my daughter alone.\" Well, they did what they \\nwanted. They threatened to kill her daughter if she got in their way. Now I \\nwould be surprised if the criminals had behaved any other way that night. It \\nwas simply Bartholomew\\'s Night, I say, they did what they would love to do \\nevery day: steal, kill, rape . . .\\n\\nMany are surprised that those animals didn\\'t harm the children. The beasts \\nexplained it like this: this would be repeated in 15 to 20 years, and those \\nchildren would be grown, and then, as they put it, \"we\\'ll come take the \\npleasure out of their lives, those children.\" This was about the girls that\\nwould be young women in 15 years. They were thinking about their tomorrow \\nbecause they were sure that there would be no trial and no investigation, just\\nas there was no trial or investigation in 1915, and that those girls could be \\nof some use in 15 years. This I heard from the investigators; one of the \\nvictims testified to it. That\\'s how they described their own natures, that\\nthey would still be bloodthirsty in 15 to 20 years, and in 100 years--they\\nthemselves said that.\\n\\nAnd this, too. Everyone is surprised that they didn\\'t harm our Marina. Many \\npeople say that they either were drunk or had smoked too much. I don\\'t know \\nwhy their eyes were red. Maybe because they hadn\\'t slept the night before, \\nmaybe for some other reason, I don\\'t know. But they hadn\\'t been smoking and \\nthey weren\\'t drunk, I\\'m positive, because someone who has smoked will stop at \\nnothing he has the urge to do. And they spoke in a cultured fashion with \\nMarina: \"Little sister, don\\'t be afraid, we won\\'t harm you, don\\'t look over \\nthere [where I was], you might be frightened. You\\'re a Muslim, a Muslim woman \\nshouldn\\'t see such things.\" So they were really quite sober . . .\\n\\nSo we came out of that story alive. Each every day we have lived since it all \\nhappened bears the mark of that day. It wasn\\'t even a day, of those several \\nhours. Father still can\\'t look us in the eyes. He still feels guilty for what\\nhappened to Karina, Mother, and me. Because of his nerves he\\'s started talk-\\ning to himself, I\\'ve heard him argue with himself several times when he\\nthought no one is listening: \"Listen,\" he\\'ll say, \"what could I do? What could\\nI do alone, how could I protect them?\" I don\\'t know where to find the words,\\nit\\'s not that I\\'m happy, but I am glad that he didn\\'t see it all happen. \\nThat\\'s the only thing they spared us . . . or maybe it happened by chance. Of \\ncourse he knows it all, but there\\'s no way you could imagine every last detail\\nof what happened. And there were so many conversations: Karina and I spoke\\ntogether in private, and we talked with Mamma, too. But Father was never\\npresent at those conversations. We spare him that, if you can say that. And\\nwhen the investigator comes to the house, we don\\'t speak with Father present.\\n\\nOn February 29, the next clay, Karina and I were discharged from the hospital.\\nFirst they released me, but since martial law had been declared in the city, \\nthe soldiers took me to the police precinct in an armored personnel carrier. \\nThere were many people there, Armenian victims. I met the Tovmasian family \\nthere. From them I learned that Rafik and their Uncle Grant had died. They \\nwere sure that both had died. They were talking to me and Raya, Rafik\\'s wife \\nand Grant\\'s daughter, and her mother, were both crying.\\n\\nThen they took us all out of the office on the first floor into the yard.\\nThere\\'s a little one-room house outside there, a recreation and reading area.\\nThey took us in there. The women were afraid to go because they thought\\nthat they were shooing us out of the police precinct because it had become\\nso dangerous that even the people working at the precinct wanted to hide.\\nThe women were shouting. They explained to them: \"We want to hide you\\nbetter because it\\'s possible there will be an attack on the police precinct.\"\\n\\nWe went into the little house. There were no chairs or tables in there. We\\nhad children with us and they were hungry; we even had infants who needed to \\nhave their diapers changed. No one had anything with them. It was just awful. \\nThey kept us there for 24 hours. From the window of the one room house you \\ncould see that there were Azerbaijanis standing on the fences around the \\npolice precinct, as though they were spying on us. The police precinct is \\nsurrounded by a wall, like a fence, and it\\'s electrified, but if they were \\nstanding on the wall, it means the electricity was shut off. This brought \\ngreat psychological pressure to bear on us, particularly on those who hadn\\'t \\njust walked out of their apartments, but who hadn\\'t slept for 24 hours, or 48,\\nor those who had suffered physically and spiritually, the ones who had lost \\nfamily members. For us it was another ordeal. We were especially frightened \\nwhen all the precinct employees suddenly disappeared. We couldn\\'t see a single\\nperson, not in the courtyard and not in the windows. We thought that they must\\nhave already been hiding under the building, that they must have some secret \\nroom down there. People were panicking: they started throwing themselves at\\none another . . . That\\'s the way it is on a sinking ship. We heard those \\npeople, mainly young people, whistling and whopping on the walls. We felt that\\nthe end was approaching. I was completely terrified: I had left Karina in the \\nhospital and didn\\'t know where my parents were. I was sort of calm about my \\nparents, I was thinking only about Karina, if, Heaven forbid, they should \\nattack the hospital, they would immediately tell them that there was an \\nArmenian in there, and something terrible would happen to Karina again, and \\nshe wouldn\\'t be able to take it.\\n\\nThen soldiers with dogs appeared. When they saw the dogs some of the people \\nclimbed down off the fence. Then they brought in about another 30 soldiers.\\nThey all had machine guns in readiness, their fingers on the triggers. We \\ncalmed down a little. They brought us chairs and brought the children some \\nlittle cots and showed us where we could wash our hands, and took the children\\nto the toilet. But we all sat there hungry, but to be honest, it would never \\nhave occurred to any of us that we hadn\\'t eaten for two days and that people \\ndo eat.\\n\\nThen, closer to nightfall, they brought a group of detained criminals. They \\nwere being watched by soldiers with guard dogs. One of the men came back from \\nthe courtyard and told us about it. Raya Tovmasian . . . it was like a \\ndifferent woman had been substituted. Earlier she had been crying, wailing, \\nand calling out: \"Oh, Rafik!,\" but when she heard about this such a rage came \\nover her! She jumped up, she had a coat on, and she started to roll up her \\nsleeves like she was getting ready to beat someone. And suddenly there were \\nsoldiers, and dogs, and lots of people. She ran over to them. The bandits were\\nstanding there with their hands above their heads facing the wall. She went up\\nto one of them and grabbed him by the collar and started to shake and thrash \\nhim! Then, on to a second, and a third. Everyone was rooted to the spot. Not \\none of the soldiers moved, no one went up to help or made her stop her from \\ndoing it. And the bandits fell down and covered their heads with their hands, \\nmuttering something. She came back and sat down, and something akin to a smile\\nappeared on her face. She became so quiet: no tears, no cries. Then that round\\nwas over and she went back to beat them again. She was walking and cursing \\nterribly: take that, and that, they killed my husband, the bastards, the \\ncreeps, and so on. Then she came back again and sat down. She probably did \\nthis the whole night through, well, it wasn\\'t really night, no one slept. She \\nwent five or six times and beat them and returned. And she told the women, \\n\"What are you sitting there for? They killed your husbands and children, they \\nraped, and you\\'re just sitting there. You\\'re sitting and talking as though \\nnothing had happened. Aren\\'t you Armenians?\" She appealed to everyone, but no \\none got up. I was just numb, I didn\\'t have the strength to beat anyone, I \\ncould barely hold myself up, all the more so since I had been standing for so \\nmany hours--I was released at eleven o\\'clock in the morning and it was already\\nafter ten at night because there weren\\'t enough chairs, really it was the \\nelderly and women with children who sat. I was on my feet the whole time. \\nThere was nothing to breathe, the door was closed, and the men were smoking. \\nThe situation was deplorable.\\n\\nAt eleven o\\'clock at night policemen came for us, local policemen, \\nAzerbaijanis. They said, \"Get up. They\\'ve brought mattresses, you can wash up\\nand put the children to bed.\" Now the women didn\\'t want to leave this place, \\neither. The place had become like home, it was safe, there were soldiers with \\ndogs. If anyone went outside, the soldiers would say, \"Oh, it\\'s our little \\nfamily,\" and things like that. The soldiers felt this love, and probably, for \\nthe first time in their lives perceived themselves as defenders. Everyone\\nspoke from the heart, cried, and hugged them and they, with their loaded\\nmachine guns in their hands, said, \"Grandmother, you mustn\\'t approach me,\\nI\\'m on guard.\" Our people would say, \"Oh, that\\'s all right.\" They hugged\\nthem, one woman even kissed one of the machine guns. This was all terribly\\nmoving for me. And the small children kept wanting to pet the dogs.\\n\\nThey took us up to the second floor and said, \"You can undress and sleep in \\nhere. Don\\'t be afraid, the precinct is on guard, and it\\'s quiet in the city.\"\\nThis was the 29th, when the killing was going on in block 41A and in other\\nplaces. Then we were told that all the Armenians were being gathered at the\\nSK club and at the City Party Committee. They took us there. On the way I \\nasked them to stop at the Maternity Home: I wanted to take Karina with me.\\nI didn\\'t know what was happening there. They told me, \"Don\\'t worry, the\\nMaternity Home is full of soldiers, more than mothers-to-be. So you can rest\\nassured. I say, \"Well, I won\\'t rest assured regardless, because the staff in\\nthere is capable of anything.\"\\n\\nWhen I arrived at the City Party Committee it turned out that Karina had\\nalready been brought there. They had seen fit to release her from the hospi-\\ntal, deciding that she felt fine and was no longer in need of any care. Once\\nwe were in the City Party Committee we gave free reign to our tears. We met \\nacquaintances, but everyone was somehow divided into two groups, those who \\nhadn\\'t been injured, who were clothed, who had brought a pot of food with \\nthem, and so on, and those, like me, like Raya, who were wearing whatever had \\ncome their way. There were even people who were all made up, dolled up like \\nthey had come from a wedding. There were people without shoes, naked people, \\nhungry people, those who were crying, and those who had lost someone. And of \\ncourse the stories and the talk were flying: \"Oh, I heard that they killed \\nhim!\" \"What do you mean they killed him!\" \"He stayed at work!\" \"Do you know \\nwhat\\'s happening at this and such a plant? Talk like that.\\n\\nAnd then I met Aleksandr Mikhailovich Gukasian, the teacher. I know him very \\nwell and respect him highly. I\\'ve known him for a long time. They had a small \\nroom, well really it was more like a study-room. We spent a whole night \\ntalking in that study once. On March 1 we heard that Bagirov [First Secretary \\nof the Communist Party of Azerbaijan SSR] had arrived. Everyone ran to see \\nBagirov, what news he had brought with him and how this was all being viewed \\nfrom outside. He arrived and everyone went up to him to talk to him and ask \\nhim things. Everyone was in a tremendous rage. But he was protected by \\nsoldiers, and he went up to the second floor and didn\\'t deign to speak with \\nthe people. Apparently he had more important things to do.\\n\\nSeveral hours passed. Gukasian called me and says, \"Lyudochka, find another \\ntwo or three. We\\'re going to make up lists, they asked for them upstairs, \\nlists of the dead, those whose whereabouts are unknown, and lists of people \\nwho had pogroms of their apartments and of those whose cars were burned.\" I \\nhad about 50 people in my list when they called me and said, \"Lyuda, your \\nMamma has arrived, she\\'s looking for you, she doesn\\'t believe that you are \\nalive and well and that you\\'re here.\" I gave the lists to someone and asked \\nthem to continue what I was doing and went off.\\n\\nThe list was imprecise, of course. It included Grant Adamian, Raya Tovmasian\\'s\\nfather, who was alive, but at the time they thought him dead. There was Engels\\nGrigorian\\'s father and aunt, Cherkez and Maria. The list also included the \\nname of my girlfriend and neighbor, Zhanna Agabekian. One of the guys said \\nthat he had been told that they chopped her head off in the courtyard in front\\nof the Kosmos movie theater. We put her on the list too, and cried, but later \\nit turned out that that was just a rumor, that in fact an hour earlier she had\\nsomehow left Sumgait for the marina and from there had set sail for \\nKrasnovodsk, where, thank God, she was alive and well. I should also say that \\nin addition to those who died that list contained people who were rumored \\nmissing or who were so badly wounded that they were given up for dead. 3\\n\\nAll the lists were taken to Bagirov. I don\\'t remember how many dead were \\ncontained in the list, but it\\'s a fact that when Gukasian came in a couple \\nof minutes later he was cursing and was terribly irate. I asked, \"What\\'s \\ngoing on?\" He said, \"Lyuda, can you imagine what animals, what scoundrels\\nthey are! They say that they lost the list of the dead. Piotr Demichev\\n[Member of the Politburo of the Central Committee of the Communist Party\\nof the USSR] has just arrived, and we were supposed to submit the list to\\nhim, so that he\\'d see the scope of the slaughter, of the tragedy, whether it\\nwas one or fifty.\" They told him that the list had disappeared and they\\nshould ask everyone who hadn\\'t left for the Khimik boarding house all over\\nagain. There were 26 people on our second list. I think that the number 26\\nwas the one that got into the press and onto television and the radio, because\\nthat\\'s the list that Demichev got. I remember exactly that there were 26 \\npeople on the list, I had even told Aleksandr Mikhailovich that that was only \\na half of those that were on the first list. He said, \"Lyuda, please, try to\\nremember at least one more.\" But I couldn\\'t remember anyone else. But there\\nwere more than 30 dead. Of that I am certain. The government and the Procuracy\\ndon\\'t count the people who died of fright, like sick people and old people \\nwhose lives are threatened by any shock. They weren\\'t registered as victims of\\nthe Sumgait tragedy. And then there may be people we didn\\'t know. So many \\npeople left Sumgait between March 1 and 8! Most of them left for smaller towns\\nin Russia, and especially to the Northern Caucasus, to Stavropol, and the \\nKrasnodarsk Territory. We don\\'t have any information on them. I know that \\nthere are people who set out for parts around Moscow. In the periodical \\nKrestyanka [Woman Farmer] there was a call for people who know how to milk \\ncows, and for mechanics, and drivers, and I know a whole group of people went \\nto help out. Also clearly not on our list are those people who died entering\\nthe city, who were burned in their cars. No one knows about them, except the \\nAzerbaijanis, who are hardly likely to say anything about it. And there\\'s\\nmore. A great many of the people who were raped were not included in the list \\ndrawn up at the Procuracy. I know of three instances for sure, and I of course\\ndon\\'t know them all. I\\'m thinking of three women whose parents chose not to \\npublicize what had happened, that is, they didn\\'t take the matter to court, \\nthey simply left. But in so doing they didn\\'t cease being victims. One of them\\nis the first cousin of my classmate Kocharian. She lived in Microdistrict No. \\n8, on the fifth floor. I can\\'t tell you the building number and I don\\'t know \\nher name. Then comes the neighbor of one of my relatives, she lived in \\nMicrodistrict 1 near the gift shop. I don\\'t know her name, she lives on the \\nsame landing as the Sumgait procurator. They beat her father, he was holding \\nthe door while his daughter hid, but he couldn\\'t hold the door forever, and \\nwhen she climbed over the balcony to the neighbors\\' they seized her by her \\nbraid. Like the Azerbaijanis were saying, it was a very cultured mob, because \\nthey didn\\'t kill anyone, they only raped them and left. And the third one \\n. . . I don\\'t remember who the third one was anymore.\\n\\nThey transferred us on March 1. Karina still wasn\\'t herself. Yes, we lived for\\ndays in the SK, in the cultural facility, and at the Khimik. They lived there \\nand I lived at the City Party Committee because I couldn\\'t stay with Karina; \\nit was too difficult for me, but I was at peace: she had survived. I could \\nalready walk, but really it was honest words that held me up. Thanks to the \\nsocial work I did there, I managed to persevere. Aleksandr Mikhailovich said, \\n\"If it weren\\'t for the work I would go insane.\" He and I put ourselves in gear\\nand took everything upon ourselves: someone had an infant and needed diapers \\nand free food, and we went to get them. The first days we bought everything, \\nalthough we should have received it for free. They were supposed to have been \\ndispensed free of charge, and they sold it to us. Then, when we found out it \\nwas free, we went to Krayev. At the time, fortunately, you could still drop by\\nto see him like a neighbor, all the more so since everything was still clearly\\nvisible on our faces. Krayev sent a captain down and he resolved the issue.\\n\\nOn March 2 they sent two investigators to see us: Andrei Shirokov and Vladimir\\nFedorovich Bibishev. The way it worked out, in our family they had considered \\nonly Karina and me victims, maybe because she and I wound up in the hospital.\\nMother and Father are considered witnesses, but not victims.\\n\\nShirokov was involved with Karina\\'s case, and Bibishev, with mine. After I \\ntold him everything, he and I planned to sit down with the identikit and\\nrecord everyone I could remember while everything was still fresh in my mind. \\nWe didn\\'t work with the identikit until the very last day because the\\nconditions weren\\'t there. The investigative group worked slowly and did poor \\nquality work solely because the situation wasn\\'t conducive to working: there \\nweren\\'t enough automobiles, especially during the time when there was a \\ncurfew, and there were no typewriters for typing transcripts, and no still or \\nvideo cameras. I think that this was done on purpose. We\\'re not so poor that \\nwe can\\'t supply our investigators with all that stuff. It was done especially \\nto draw out the investigation, all the more so since the local authorities saw\\nthat the Armenians were leaving at the speed of light, never to return to \\nSumgait. And the Armenians had a lot to say I came to an agreement with \\nBibishev, I told him myself, \"Don\\'t you worry, if it takes us a month or two \\nmonths, I\\'ll be here. I\\'m not afraid, I looked death in the eyes five times in\\nthose two days, I\\'ll help you conduct the investigation.\"\\n\\nHe and I worked together a great deal, and I used this to shelter Karina, I\\ngave them so much to do that for a while they didn\\'t have the time to get to\\nher, so that she would at least have a week or two to get back to being her-\\nself. She was having difficulty breathing so we looked for a doctor to take x-\\nrays. She couldn\\'t eat or drink for nine days, she was nauseous. I didn\\'t eat\\nand drank virtually nothing for five days. Then, on the fifth day, when we\\nwere in Baku already, the investigator told me, \"How long can you go on like \\nthis? Well fine, so you don\\'t want to eat, you don\\'t love yourself, you\\'re\\nnot taking care of yourself, but you gave your word that you would see this\\ninvestigation through. We need you.\" Then I started eating, because in fact I\\nwas exhausted. It wasn\\'t enough that I kept seeing those faces in our apart-\\nment in my mind, every day I went to the investigative solitary confinement\\ncells and prisons. I don\\'t know . . . we were just everywhere! Probably in\\nevery prison in the city of Baku and in all the solitary confinement cells of\\nSumgait. At that time they had even turned the drunk tank into solitary \\nconfinement.\\n\\nThus far I have identified 31 of the people who were in our apartment. Mamma \\nidentified three, and Karina, two. The total is 36. Marina didn\\'t identify \\nanyone, she remembers the faces of two or three, But they weren\\'t among the \\nphotographs of those detained. I told of the neighbor I recognized. The one \\nwho went after the axe. He still hasn\\'t been detained, he\\'s still on the \\nloose. He\\'s gone, and it\\'s not clear if he will be found or not. I don\\'t know \\nhis first or last name. I know which building he lived in and I know his \\nsisters\\' faces. But he\\'s not in the city. The investigators informed me that \\neven if the investigation is closed and even if the trial is over they will \\ncontinue looking for him.\\n\\nThe 31 people I identified are largely blue-collar workers from various \\nplants, without education, and of the very lowest level in every respect.\\nMostly their ages range from 20 to 30 years; there was one who was 48. Only\\none of them was a student. He was attending the Azerbaijan Petroleum and\\nChemical Institute in Sumgait, his mother kept trying to bribe the investiga-\\ntor. Once, thinking that I was an employee and not a victim, she said in front\\nof me \"I\\'ll set you up a restaurant worth 500 rubles and give you 600 in cash\\nsimply for keeping him out of Armenia,\" that is, to keep him from landing in\\na prison on Armenian soil. They\\'re all terribly afraid of that, because if the\\ninvestigator is talking with a criminal and the criminal doesn\\'t confess even\\nthough we identified him, they tell him--in order to apply psychological\\npressure--they say, \"Fine, don\\'t confess, just keep silent. When you\\'re in an\\nArmenian prison, when they find out who you are, they\\'ll take care of you\\nin short order.\" That somehow gets to them. Many give in and start to talk.\\n\\nThe investigators and I were in our apartment and videotaped the entire\\npogrom of our apartment, as an investigative experiment. It was only then\\nthat I saw the way they had left our apartment. Even without knowing who was \\nin our apartment, you could guess. They stole, for example, all the money and \\nall the valuables, but didn\\'t take a single book. They tore them up, burned \\nthem, poured water on them, and hacked them with axes. Only the Materials\\nfrom the 27th Congress of the Communist Party of the Soviet Union and James \\nFenimore Cooper\\'s Last of the Mohigans. Oh yes, lunch was ready, we were \\nboiling a chicken, and there were lemons for tea on the table. After they had \\nbeen in our apartment, both the chicken and the lemons were gone. That\\'s \\nenough to tell you what kind of people were in our apartment, people who don\\'t\\neven know anything about books. They didn\\'t take a single book, but they did \\ntake worn clothing, food, and even the cheapest of the cheap, worn-out \\nslippers.\\n\\nOf those whom I identified, four were Kafan Azerbaijanis living in Sumgait. \\nBasically, the group that went seeking \"revenge\"--let\\'s use their word for \\nit--was joined by people seeking easy gain and thrill-seekers. I talked with \\none of them. He had gray eyes, and somehow against the back-drop of all that \\nblack I remembered him specifically because of his of his eyes. Besides taking\\npart in the pogrom of our apartment, he was also involved in the murder of \\nTamara Mekhtiyeva from Building 16. She was an older Armenian who had recently\\narrived from Georgia, she lived alone and did not have anyone in Sumgait. I \\ndon\\'t know why she had a last name like that, maybe she was married to an \\nAzerbaijani. I had laid eyes on this woman only once or twice, and know \\nnothing about her. I do know that they murdered her in her apartment with an \\naxe. Murdering her wasn\\'t enough for them. They hacked her into pieces and \\nthrew them into the tub with water.\\n\\nI remember another guy really well too, he was also rather fair-skinned. You \\nknow, all the people who were in our apartment were darker than dark, both \\ntheir hair and their skin. And in contrast with them, in addition to the grey-\\neyed one, I remember this one fellow, the one l took to be a Lezgin. I \\nidentified him. As it turned out he was Eduard Robertovich Grigorian, born\\nin the city of Sumgait, and he had been convicted twice. One of our own. How \\ndid I remember him? The name Rita was tattooed on his left or right hand. I \\nkept thinking, is that Rita or \"puma,\" which it would be if you read the word \\nas Latin characters instead of Cyrillic, because the Cyrillic \"T\" was the one \\nthat looks like a Latin \"M.\" When they led him in he sat with his hands behind\\nhis back. This was at the confrontation. He swore on every holy book, tried to\\nput in an Armenian word here and there to try and spark my compassion, and \\ntold me that I was making a mistake, and called me \"dear sister.\" He said, \\n\"You\\'re wrong, how could I, an Armenian, raise my hand against my own, an \\nArmenian,\" and so on. He spoke so convincingly that even the investigator \\nasked me, \"Lyuda, are you sure it was he?\" I told him, \"I\\'ll tell you one more\\nidentifying mark. If I\\'m wrong I shall apologize and say I was mistaken. The \\nname Rita is tattooed on his left or right hand.\" He went rigid and became \\npale. They told him, \"Put your hands on the table.\" He put his hands on the\\ntable with the palms up. I said, \"Now turn your hands over,\" but he didn\\'t \\nturn his hands over. Now this infuriated me. If he had from the very start\\nacknowledged his guilt and said that he hadn\\'t wanted to do it, that they \\nforced him or something else, I would have treated him somewhat differently.\\nBut he insolently stuck to his story, \"No, I did not do anything, it wasn\\'t \\nme.\" When they turned his hands over the name Rita was in fact tattooed on his\\nhand. His face distorted and he whispered something wicked. I immediately flew\\ninto a rage. There was an ashtray on the table, a really heavy one, made out \\nof granite or something, very large, and it had ashes and butts in it. \\nCatching myself quite by surprise, I hurled that ashtray at him. But he ducked\\nand the ashtray hit the wall, and ashes and butts rained down on his head and \\nback. And he smiled. When he smiled it provoked me further. I don\\'t know how, \\nbut I jumped over the table between us and started either pounding him or \\nstrangling him; I no longer remember which. When I jumped I caught the \\nmicrophone cord. The investigator was there, Tolya . . .I no longer recall his\\nlast name, and he says, \"Lyudochka, it\\'s a Japanese microphone! Please . . .\\n\" And shut off all the equipment on the spot, it was all being video taped. \\nThey took him away. I stayed, and they talked to me a little to calm me down, \\nbecause we needed to go on working, I only remember Tolya telling me, \"You\\'re \\nsome actress! What a performance!\" I said, \"Tolya, honestly . . . \" Beforehand\\nthey would always tell me, \"Lyuda, more emotion. You speak as calmly as if \\nnothing had happened to you.\" I say, \"I don\\'t have any more strength or \\nemotion. All my emotions are behind me now, I no longer have the strength \\n. . . I don\\'t have the strength to do anything.\" And he says, \"Lyuda, how were\\nyou able to do that?\" And when I returned to normal, drinking tea and watching\\nthe tape, I said, \"Can I really have jumped over that table? I never jumped \\nthat high in gym class.\"\\n\\nSo you could say the gang that took over our apartment was international. Of \\nthe 36 we identified there was an Armenian, a Russian, Vadim Vorobyev, who \\nbeat Mamma, and 34 Azerbaijanis.\\n\\nAt the second meeting with Grigorian, when he had completely confessed his \\nguilt, he told of how on February 27 the Azerbaijanis had come knocking. Among\\nthem were guys--if you can call them guys--he knew from prison. They said, \\n\"Tomorrow we\\'re going after the Armenians. Meet us at the bus station at three\\no\\'clock.\" He said, \"No, I\\'m not coming.\" They told him, \"If you don\\'t come \\nwe\\'ll kill you.\" He said, \"Alright, I\\'ll come.\" And he went.\\n\\nThey also went to visit my classmate from our microdistrict, Kamo Pogosian. He\\nhad also been in prison; I think that together they had either stolen a \\nmotorcycle or dismantled one to get some parts they needed. They called him \\nout of his apartment and told him the same thing: \"Tomorrow we\\'re going to get\\nthe Armenians. Be there.\" He said, \"No.\" They pulled a knife on him. He said, \\n\"I\\'m not going all the same.\" And in the courtyard on the 27th they stabbed \\nhim several times, in the stomach. He was taken to the hospital. I know he was\\nin the hospital in Baku, in the Republic hospital. If we had known about that \\nwe would have had some idea of what was to come on the 28th.\\n\\nI\\'ll return to Grigorian, what he did in our apartment. I remember that he\\nbeat me along with all the rest. He spoke Azerbaijani extremely well. But he\\nwas very fair-skinned, maybe that led me to think that they had it out for\\nhim, too. But later it was proved that he took part in the beating and burning\\nof Shagen Sargisian. I don\\'t know if he participated in the rapes in our \\napartment; I didn\\'t see, I don\\'t remember. But the people who were in our \\napartment who didn\\'t yet know that he was an Armenian said that he did. I \\ndon\\'t know if he confessed or not, and I myself don\\'t recall because I blacked\\nout very often. But I think that he didn\\'t participate in the rape of Karina\\nbecause he was in the apartment the whole time. When they carried her into the\\ncourtyard, he remained in the apartment.\\n\\nAt one point I was talking with an acquaintance about Edik Grigorian. From her\\nI learned that his wife was a dressmaker, his mother is Russian, he doesn\\'t \\nhave a father, and that he\\'s been convicted twice. Well this will be his third\\nand, I hope, last sentence. He beat his wife, she was eternally coming to work\\nwith bruises. His wife was an Armenian by the name of Rita.\\n\\nThe others who were detained . . . well they\\'re little beasts. You really can\\'t\\ncall them beasts, they\\'re just little beasts. They were robots carrying out\\nsomeone else\\'s will, because at the investigation they all said, \"I don\\'t \\nunderstand how I could have done that, I was out of my head.\" But we know that\\nthey were won around to it and prepared for it, that\\'s why they did it. In the\\nname of Allah, in the name of the Koran, in the name of propagating Islam--\\nthat\\'s holy to them--that\\'s why they did everything they were commanded to do.\\nBecause I saw they didn\\'t have minds of their own, I\\'m not talking about their\\nlevel of cultural sophistication or any higher values. No education, they\\nwork, have a slew of children without the means to raise them properly, they \\ncrowd them in, like at the temporary housing, and apparently, they were \\npromised that if they slaughtered the Armenians they would receive apartments.\\nSo off they went. Many of them explained their participation saying, \"they \\npromised us apartments.\"\\n\\nAmong them was one who genuinely repented. I am sure that he repented from the\\nheart and that he just despised himself after the incident. He worked at a \\nchildren\\'s home, an Azerbaijani, he has two children, and his wife works at \\nthe children\\'s home too. Everything that they acquired, everything that they \\nhave they earned by their own labor, and wasn\\'t inherited from parents or \\ngrandparents. And he said, \"I didn\\'t need anything I just don\\'t know . . . how\\nI ended up in that; it was like some hand was guiding me. I had no will of my \\nown, I had no strength, no masculine dignity, nothing.\" And the whole time I\\nkept repeating, \"Now you imagine that someone did the same to your young wife \\nright before your own eyes.\" He sat there and just wailed.\\n\\nBut that leader in the Eskimo dogskin coat was not detained. He performed a \\nmarvelous disappearing act, but I think that they\\'ll get onto him, they just \\nhave to work a little, because that Vadim, that boy, according to his\\ngrandfather, is in touch with the young person who taught him what to do, how \\nto cover his tracks. He was constantly exchanging jackets with other boys he \\nknew and those he didn\\'t, either, and other things as well, and changed \\nhimself like a chameleon so they wouldn\\'t get onto him, but he was detained.\\n\\nThat one in the Eskimo dogskin coat was at the Gambarians\\' after Aleksandr \\nGambarian was murdered. He came in and said, \"Let\\'s go, enough, you\\'ve spilled\\nenough blood here.\"\\n\\nMaybe Karina doesn\\'t know this but the reason they didn\\'t finish her off was \\nthat they were hoping to take her home with them. I heard this from Aunt Tanya\\nand her sons, the Kasumovs, who were in the courtyard near the entryway. They \\nliked her very much, and they had decided to take her to home with them. When \\nKarina came to at one point--she doesn\\'t remember this yet, this the neighbors \\nold me--and she saw that there was no one around her, she started crawling to \\nthe entryway. They saw that she was still alive and came back, they were \\nalready at the third entryway, on their way to the Gambarians\\'. They came back\\nand started beating her to finish her. If she had not come to she would have \\nsustained lesser bodily injuries, they would have beat her less. An older \\nwoman from our building, Aunt Nazan, an Azerbaijani, all but lay on top of \\nKarina, crying and pleading that they leave her alone, but they flung her off.\\nThe woman\\'s grown sons were right nearby; they picked her up in their hands \\nand led her home. She howled and cried out loudly and swore: God is on Earth, \\nhe sees everything, and He won\\'t forgive this.\\n\\nThere was another woman, too, Aunt Fatima, a sick, aging woman from the first \\nfloor, she\\'s already retired. Mountain dwellers, and Azerbaijanis, too, have a\\ncustom: If men are fighting, they throw a scarf under their feet to stop them.\\nBut they trampled her scarf and sent her home. To trample a scarf is \\ntantamount to trampling a woman\\'s honor.\\n\\nNow that the investigation is going on, now that a lot is behind us and we \\nhave gotten back to being ourselves a little, I think about how could these \\nevents that are now called the Sumgait tragedy happen? How did they come \\nabout? How did it start? Could it have been avoided? Well, it\\'s clear that \\nwithout a signal, without permission from the top leadership, it would not \\nhave happened. All the same, I\\'m not afraid to say this, the Azerbaijanis,\\nlet other worthy people take no offense, the better representatives of their \\nnations, let them take no offense, but the Azerbaijanis in their majority are \\na people who are kept in line only by fear of the law, fear of retribution for\\nwhat they have done. And when the law said that they could do all that, like\\nunleashed dogs who were afraid they wouldn\\'t have time to do everything, they \\nthrew themselves from one thing to the next so as to be able to get more done,\\nto snatch a bit more. The smell of the danger was already in the air on\\nFebruary 27. You could tell that something was going to happen. And everyone \\nwho had figured it out took steps to avoid running into those gangs. Many left\\nfor their dachas, got plane tickets for the other end of the country, just got\\nas far away as their legs would carry them.\\n\\nFebruary 27 was a Saturday. I was teaching my third class. The director came \\ninto my classroom and said that I should let the children out, that there had \\nbeen a call from the City Party Committee asking that all teachers gather for \\na meeting at Lenin Square. Well, I excused the children, and there were few \\nteachers left at school, altogether three women, the director, and six or \\nseven men. The rest had already gone home. We got to Lenin Square and there \\nwere a great many people there. This was around five-thirty or six in the \\nevening, no later. They were saying all kinds of rubbish up on the podium and \\nthe crowd below was supporting them stormily, roaring. They spoke over the \\nmicrophone about what had happened in Kafan a few days earlier and that the \\ndriver of a bus going to some district had recently thrown a small Azerbaijani\\nchild off the bus. The speaker affirmed that he was an eyewitness, that he had\\nseen it himself..The crowd started to rage: \"Death to the Armenians! They must\\nbe killed!\" Then a woman went up on stage. I didn\\'t see the woman because \\npeople were clinging to the podium like flies. I could only hear her. The \\nwoman introduced herself as coming from Kafan, and said that the Armenians \\ncut her daughters\\' breasts off, and called, \"Sons, avenge my daughters!\" That \\nwas enough. A portion of the people on the square took off running in the \\ndirection of the factories, toward the beginning of Lenin Street.\\n\\nWe stood there about an hour. Then the director of School 25 spoke, he gave a \\nvery nationalist speech. He said, \"Brother Muslims, kill the Armenians!\" This \\nhe repeated every other sentence. When he said this the crowd supported him \\nstormily, whistling and shouting \"Karabagh!\" He said, \"Karabagh has been our \\nterritory my whole life long, Karabagh is my soul. How can you tear out my \\nheart?\" As though an Azerbaijani would die without Karabagh. \"It\\'s our \\nterritory, the Armenians will never see it. The Armenians must be eliminated. \\nFrom time immemorial Muslims have cleansed the land of infidel Armenians, from\\ntime immemorial, that\\'s the way nature created it, that every 20 to 30 years \\nthe Azerbaijanis should cleanse the land of filth.\" By filth he meant \\nArmenians.\\n\\nI heard this. Before that I hadn\\'t been listening to the speeches closely.\\nMany people spoke and I stood with my back to the podium, talking shop with \\nthe other teachers, and somehow it all went right by, it didn\\'t penetrate,\\nthat in fact something serious was taking place. Then, when one of our\\nteachers said, \"Listen to what he\\'s saying, listen to what idiocy he\\'s \\nspouting,\" we listened. That was the speech of that director. Before that we \\nlistened to the woman\\'s speech.\\n\\nRight then in our group--there were nine of us--the mood changed, and the \\nsubject of conversation and all school matters were forgotten. Our director of\\nstudies, for whom I had great respect, he\\'s an Azerbaijani . . . Before that I\\nhad considered him an upstanding and worthy person, if there was a need to \\nobtain leave we had asked him, he seemed like a good person. So he tells me,\\n\"Lyuda, you know that besides you there are no Armenians on the square? If \\nthey find out that you\\'re an Armenian they\\'ll tear you to pieces. Should I \\ntell them you\\'re an Armenian? Should I tell them you\\'re an Armenian?\" When he \\nsaid it the first time I pretended not to hear it, and then he asked me a \\nsecond time. I turned to the director, Khudurova, and said that it was already\\nafter eight, I was expected at home, and I should be leaving. She answered, \\n\"No, they said that women should stay here until ten o\\'clock,.and men, until \\ntwelve. Stay here.\" There was a young teacher with us, her children were in \\nkindergarten and her husband worked shifts. She asked to leave: \"I left my \\nchildren at the kindergarten.\" The director excused her. When she let her go I\\nturned around, said, \"Good-bye,\" and left with the young teacher, the \\nAzerbaijani. I didn\\'t see them after that.\\n\\nWhen we were walking the buses weren\\'t running, and a crowd from the rally ran\\nnearby us. They had apparently gotten all fired up. It must have become too \\nmuch for them, and they wanted to seek vengeance immediately, so they rushed \\noff. I wasn\\'t afraid this time because I was sure that the other teacher \\nwouldn\\'t say that I was an Armenian.\\n\\nTo make it short, we reached home. Then Karina told of how they had been at \\nthe movies and what had happened there. I started telling of my experience and\\nagain my parents didn\\'t understand that we were in danger. We watched \\ntelevision as usual, and didn\\'t even imagine that tomorrow would be our last \\nday. That\\'s how it all was.\\n\\nAt the City Party Committee I met an acquaintance, we went to school together,\\nZhanna, I don\\'t remember her last name, she lives above the housewares store \\non Narimanov Street. She was there with her father, for some reason she \\ndoesn\\'t have a mother. The two of them were at home alone. While her father \\nheld the door she jumped from the third floor, and she was lucky that the \\nground was wet and that there wasn\\'t anyone behind the building when she went \\nout on the balcony, there was no one there, they were all standing near the \\nentryway. That building was also a lucky one in that there were no murders \\nthere. She jumped. She jumped and didn\\'t feel any pain in the heat of the \\nmoment. A few days later I found out that she couldn\\'t stand up, she had been \\ninjured somehow. That\\'s how people in Sumgait saved their lives, their honor, \\nand their children: any way they could. \\n\\nWhere it was possible, the Armenians fought back. My father\\'s first cousin, \\nArmen M., lives in Block 30. They found out by phone from one of the victims \\nwhat was going on in town. The Armenians in that building all called one \\nanother immediately and all of them armed themselves with axes, knives, even \\nwith muskets and went up to the roof. They took their infants with them, and \\ntheir old women who had been in bed for God knows how many months, they got \\nthem right out of their beds and took everyone upstairs. They hooked \\nelectricity up to the trap door to the roof and waited, ready to fight. Then \\nthey took the daughter of the school board director hostage, she\\'s an \\nAzerbaijani who lived in their building. They called the school board director\\nand told her that if she didn\\'t help them, the 17 Armenians on the roof, to \\nescape alive and unharmed, she\\'d never see her daughter again. I\\'m sure, of \\ncourse, that Armenians would never lay a hand on a woman, it was just the only\\nthing that could have saved them at the time. She called the police. The \\nArmenians made a deal with the local police to go into town. Two armored \\npersonnel carriers and soldiers were summoned They surrounded the entryway and\\nled everyone down from the roof, and off to the side from the armored \\npersonnel carriers was a crowd that was on its way to the building at that \\nvery moment, into Block 30. That\\'s how they defended themselves.\\n\\nI heard that our neighbors, Roman and Sasha Gambarian, resisted. They\\'re big, \\nstrong guys. Their father was killed. And I heard that the brothers put up a \\nstrong defense and lost their father, but were able to save their mother.\\n\\nOne of the neighbors told me that after it happened, when they were looking \\nfor the criminals on March 1 to 2 and detaining everyone they suspected, \\npeople hid people in our entryway, maybe people who were injured or perhaps \\ndead. The neighbors themselves were afraid to go there, and when they went \\nwith the soldiers into our basement they are supposed to have found \\nAzerbaijani corpses. I don\\'t know how many. Even if they had been wounded and \\nput down there, after two days they would have died from loss of blood or \\ninfection--that basement was filled with water. I heard this from the \\nneighbors. And later when I was talking with the investigators the subject \\ncame up and they confirmed it. I know, too, that for several hours the \\nbasement was used to store objects stolen from our apartment. And our neighbor\\ncarried out our carpet, along with the rest: he stole it for himself, posing \\nas one of the criminals. Everyone was taking his own share, and the neighbor \\ntook his, too, and carried it home. And when we came back, when everything \\nseemed to have calmed down, he returned it, saying that it was the only thing \\nof ours he had managed to \"save.\"\\n\\nRaya\\'s husband and father defended themselves. The Trdatovs defended \\nthemselves, and so did other Armenian families. To be sure there were\\nAzerbaijani victims, although we\\'ll never hear anything about them. For some \\nreason our government doesn\\'t want to say that the Armenians were not just \\nvictims, but that they defended the honor of their sisters and mothers, too. \\nIn the TV show \"Pozitsiya\" [Viewpoint] a military man, an officer, said that \\nthe Armenians did virtually nothing to defend themselves. But that\\'s not \\nimportant, the truth will come out regardless.\\n\\nSo that\\'s the price we paid those three days. For three days our courage, our \\nbravery, and our humanity was tested. It was those three days, and not the \\nyears and dozens of years we had lived before them, that showed what we\\'ve \\nbecome, what we grew up to be. Those three days showed who was who.\\n\\nOn that I will conclude my narrative on the Sumgait tragedy. It should be said\\nthat it\\'s not over yet, the trials are still ahead of us, and the punishments\\nreceived by those who so violated us, who wanted to make us into nonhumans \\nwill depend on our position and on the work of the investigators, the \\nProcuracy, and literally of every person who lent his hand to the investiga-\\ntion. That\\'s the price we paid to live in Armenia, to not fear going out on \\nthe street at night, to not be afraid to say we\\'re Armenians, and to not fear\\nspeaking our native tongue.\\n\\n October 15,1988\\n Yerevan\\n\\n\\t\\t\\t- - - reference for #008 - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 118-145\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 A\\nSummary: Part A \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 501\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 Part A\\n Prelude to Current Events in Nagorno-Karabakh\\n\\t\\n\\t\\t\\t\\t(Part A of #008)\\n\\n +------------------------------------------------------------------+\\n | |\\n | \"Oh, yes, I just remembered. While they were raping me they |\\n | repeated quite frequently, \"Let the Armenian women have babies |\\n | for us, Muslim babies, let them bear Azerbaijanis for the |\\n | struggle against the Armenians.\" Then they said, \"Those |\\n | Muslims can carry on our holy cause. Heroes!\" They repeated |\\n | it very often.\" |\\n | |\\n +------------------------------------------------------------------+\\n\\nDEPOSITION OF LYUDMILA GRIGOREVNA M.\\n\\n Born 1959\\n Teacher\\n Sumgait Secondary School No. 10\\n Secretary of the Komsomol Organization at School No. 10\\n Member of the Sumgait City Komsomol Committee Office\\n\\n Resident at Building 17/33B, Apartment 15\\n Microdistrict No. 3\\n Sumgait [Azerbaijan]\\n\\n[Note: The events in Kafan, used as a pretext to attack Armenians in \\n Azerbaijan are false, as verified by independent International Human Rights\\n organizations - DD]\\n\\nI\\'m thinking about the price the Sumgait Armenians paid to be living in\\nArmenia now. We paid for it in human casualties and crippled fates--the\\nprice was too great! Now, after the Sumgait tragedy, we, the victims, divide\\nour lives into \"before\" and \\'\\'after.\" We talk like that: that was before the\\nwar. Like the people who went through World War II and considered it a whole\\nepoch, a fate. No matter how many years go by, no matter how long we live,\\nit will never be forgotten. On the contrary, some of the moments become even \\nsharper: in our rage, in our sorrow, we saw everything differently, but now\\n. . . They say that you can see more with distance, and we can see those\\ninhuman events with more clarity now . . . we more acutely perceive our\\nlosses and everything that happened.\\n\\nNineteen eighty-eight was a leap year. Everyone fears a leap year and wants it\\nto pass as quickly as possible. Yet we never thought that that leap year would\\nbe such a black one for every Sumgait Armenian: those who lost someone and \\nthose who didn\\'t.\\n\\nThat second to last day of winter was ordinary for our family, although you \\ncould already smell danger in the air. But we didn\\'t think that the danger was\\nnear and possible, so we didn\\'t take any steps to save ourselves. At least, as\\nmy parents say, at least we should have done something to save the children. \\nMy parents themselves are not that old, 52 and 53 years. But then they thought\\nthat they had already lived enough, and did everything they could to save us.\\n\\nIn our apartment the tragedy started on February 28, around five in the\\nafternoon. I call it a tragedy, and I repeat: it was a tragedy even though all\\nour family survived. When I recall how they broke down our door my skin\\ncrawls; even now, among Armenians, among people who wish me only well, I feel\\nlike it\\'s all starting over again. I remember how that mob broke into our \\napartment . . . My parents were standing in the hall. My father had an axe in \\nhis hands and had immediately locked both of the doors. Our door was rarely \\nlocked since friends and neighbors often dropped by. We\\'re known as a \\nhospitable family, and we just never really thought about whether the people \\nwho were coming to see us were Azerbaijanis, Jews, or Russians. We had friends\\nof many nationalities, even a Turkmen woman.\\n\\nMy parents were in the hall, my father with an axe. I remember him telling my \\nmother, \"Run to the kitchen for a knife.\" But Mother was detached, pale, as \\nthough she had decided to sell her life a bit dearer. To be honest I never \\nexpected it of her, she\\'s afraid of getting shot and afraid of the dark. A \\ngirlfriend was at the house that day, a Russian girl, Lyuda, and Mamma said, \\n\"No matter what happens, no matter what they do to us, you\\'re not to come out \\nof the bedroom. We\\'re going to tell them that we\\'re alone in the apartment.\"\\n\\nWe went into the bedroom. There were four of us. Marina and the Russian girl \\ncrawled under the bed, and we covered them up with a rug, boxes of dishes, and\\nKarina and I are standing there and looking at one another. The idea that \\nperhaps we were seeing each other for the last time flashed somewhere inside \\nme. I\\'m an emotional person and I express my emotions immediately. I wanted to\\nembrace her and kiss her, as though it were the last second. And maybe Karina \\nwas thinking the same thing, but she\\'s quite reserved. We didn\\'t have time to \\nsay anything to each other because we immediately heard Mamma raise a shout. \\nThere was so much noise from the tramping of feet, from the shouting, and from\\nexcited voices. I couldn\\'t figure what was going on out there because the door\\nto the bedroom was only open a crack. But when Mamma shouted the second time\\nKarina ran out of the bedroom. I ran after her, I had wanted to hold her back,\\nbut when she opened the door and ran out into the hall they saw us \\nimmediately. The only thing I managed to do was close the door behind me, at \\nleast so as to save Marina and her friend. The mob was shouting, all of their \\neyes were shining, all red, like from insomnia. At first about 40 people burst\\nin, but later I was standing with my back to the door and couldn\\'t see. They \\ncame into the hall, into the kitchen, and dragged my father into the other \\nroom. He didn\\'t utter a word, he just raised the axe to hit them, but Mamma \\nsnatched the axe from behind and said, \"Tell them not to touch the children. \\nTell them they can do as they want with us, but not to harm the children.\" She\\nsaid this to Father in Armenian.\\n\\nThere were Azerbaijanis from Armenia among the mob who broke in. They \\nunderstood Armenian perfectly. The local Azerbaijanis don\\'t know Armenian, \\nthey don\\'t need to speak it. And one of them responded in Armenian: \"You and \\nyour children both . . . we\\'re going to do the same thing to you and your \\nchildren that you Armenians did in Kafan. They killed our women, our girls, \\nour mothers, they cut their breasts off, and burned our houses . . . ,\" and \\nso on and so forth, \"and we came to do the same thing to you.\" This whole time\\nsome of them are destroying the house and the others are shouting at us. They \\nwere mostly young people, under 30. At first there weren\\'t any older people \\namong them. And all of their faces were unfamiliar. Sumgait is a small town, \\nall the same, and we know a lot of people by their faces, especially me, I\\'m \\na teacher.\\n\\nSo they dragged my father into the other room. They twisted his arms and took \\nhim in there, no they didn\\'t take him in there, they dragged him in there,\\nbecause he was already unable to walk. They closed the door to that room all \\nbut a crack. We couldn\\'t see what was happening to Father, what they were \\ndoing to him. Then a young man, about 26 years old, started to tear off \\nMamma\\'s sarafan, and Mamma shouted at him in Azerbaijani: \"I\\'m old enough to \\nbe your mother! What are you doing?!\" He struck her. Now he\\'s being held, \\nMamma identified him. I hope he\\'s convicted. Then they went after Karina, \\nwho\\'s been talking to them like a Komsomol leader, as though she were trying \\nto lead them down a different path, as they say, to influence their \\nconsciousness. She told them that what they were doing was wrong, that they \\nmustn\\'t do it. She said, \"Come on, let\\'s straighten this out, without \\nemotions. What do you want? Who are you? Why did you come here? What did we \\never do to you?\" Someone tried to explain who they were and why they had come \\ninto our home, but then the ones in the back--more of them kept coming and \\ncoming--said, \"What are you talking to, them for. You should kill them. We \\ncame here to kill them.\"\\n\\nThey pushed Karina, struck her, and she fell down. They beat her, but she \\ndidn\\'t cry out. Even when they tore her clothes off, she kept repeating, \"What\\ndid we do to you? What did we do to you?\" And even later, when she came to, \\nshe said, \"Mamma, what did we do to them? Why did they do that to us?\"\\n\\nThat group was prepared, I know this because I noticed that some of them only \\nbroke up furniture, and others only dealt with us. I remember that when they \\nwere beating me, when they were tearing my clothes off, I felt neither pain \\nnor shame because my entire attention was riveted to Karina. All I could do \\nwas watch how much they beat her and how painful it was for her, and what they\\ndid to her. That\\'s why I felt no pain. Later, when they carried Karina off, \\nthey beat her savagely . . . It\\'s really amazing that she not only lived, but \\ndidn\\'t lose her mind . She is very beautiful and they did everything they \\ncould to destroy her beauty. Mostly they beat her face, with their fists, \\nkicking her, using anything they could find.\\n\\nMamma, Karina, and I were all in one room. And again I didn\\'t feel any pain, \\njust didn\\'t feel any, no matter how much they beat me, no matter what they \\ndid. Then one of those creeps said that there wasn\\'t enough room in the\\napartment. They broke up the beds and the desk and moved everything into the \\ncorners so there would be more room. Then someone suggested, \"Let\\'s take her \\noutside.\"\\n\\nThose beasts were in Heaven. They did what they would do every day if they \\nweren\\'t afraid of the authorities. Those were their true colors. At the time \\nI thought that in fact they would always behave that way if they weren\\'t \\nafraid of what would happen to them.\\n\\nWhen they carried Karina out and beat Mamma-her face was completely covered \\nwith blood--that\\'s when I started to feel the pain. I blacked out several \\ntimes from the pain, but each moment that I had my eyes open it was as though \\nI were recording it all on film. I think I\\'m a kind person by nature, but I\\'m \\nvengeful, especially if someone is mean to me, and I don\\'t deserve it. I hold \\na grudge a long time if someone intentionally causes me pain. And every time \\nI would come to and see one of those animals on top of me, I\\'d remember them, \\nand I\\'ll remember them for the rest of my life, even though people tell me \\n\"forget,\" you have to forget, you have to go on living.\\n\\nAt some point I remember that they stood me up and told me something, and \\ndespite the fact that I hurt all over--I had been beaten terribly--I found\\nthe strength in myself to interfere with their tortures. I realized that I had\\nto do something: resist them or just let them kill me to bring my suffering \\nto an end. I pushed one of them away, he was a real horse. I remember now that\\nhe\\'s being held, too. As though they were all waiting for it, they seized me\\nand took me out onto the balcony. I had long hair, and it was stuck all over\\nme. One of the veranda shutters to the balcony was open, and I realized that\\nthey planned to throw me out the window, because they had already picked me up\\nwith their hands, I was up in the air. As though for the last time I took a \\nreally deep breath and closed my eyes, and somehow braced myself inside, I \\nsuddenly became cold, as though my heart had sunk into my feet. And suddenly \\nI felt myself flying. I couldn\\'t figure out if I was really flying or if I \\njust imagined it. When I came to I thought now I\\'m going to smash on the \\nground. And when it didn\\'t happen I opened my eyes and realized that I was \\nstill lying on the floor. And since I didn\\'t scream, didn\\'t beg them at all,\\nthey became all the more wild, like wolves. They started to trample me with\\ntheir feet. Shoes with heels on them, and iron horseshoes, like they had spe-\\ncially put them on. Then I lost consciousness.\\n\\nI came to a couple of times and waited for death, summoned it, beseeched it. \\nSome people ask for good health, life, happiness, but at that moment I didn\\'t \\nneed any of those things. I was sure that none of us would survive, and I had \\neven forgotten about Marina; and if none of us was alive, it wasn\\'t worth \\nliving.\\n\\nThere was a moment when the pain was especially great. I withstood inhuman \\npain, and realized that they were going to torment me for a long time to come \\nbecause I had showed myself to be so tenacious. I started to strangle myself, \\nand when I started to wheeze they realized that with my death I was going to\\nput an end to their pleasures, and they pulled my hands from my throat. The \\nperson who injured and insulted me most painfully I remember him very well, \\nbecause he was the oldest in the group. He looked around 48. I know that he \\nhas four children and that he considers himself an ideal father and person, \\none who would never do such a thing. Something came over him then, you see, \\neven during the investigation he almost called me \"daughter,\" he apologized, \\nalthough, of course, he knew that I\\'d never forgive him. Something like that \\nI can never forgive. I have never injured anyone with my behavior, with my \\nwords, or with my deeds, I have always put myself in the other person\\'s shoes,\\nbut then, in a matter of hours, they trampled me entirely. I shall never \\nforget it.\\n\\nI wanted to do myself in then, because I had nothing to lose, because no one \\ncould protect me. My father, who tried to do something against that hoard of \\nbeasts by himself, could do nothing and wouldn\\'t be able to do anything.\\nI knew that I was even sure that he was no longer alive.\\n\\nAnd Ira Melkumian, my acquaintance I knew her and had been to see her family a\\ncouple of times--her brother tried to save her and couldn\\'t, so he tried to \\nkill her, his very own sister. He threw an axe at her to kill her and put an \\nend to her suffering. When they stripped her clothes off and carried her into \\nthe other room, her brother knew what awaited her. I don\\'t know which one it \\nwas, Edik or Igor. Both of them were in the room from which the axe was \\nthrown. But the axe hit one of the people carrying her and so they killed her \\nand made her death even more excruciating, maybe the most excruciating of all \\nthe deaths of those days in Sumgait. I heard about it all from the neighbor \\nfrom the Melkumians\\' landing. His name is Makhaddin, he knows my family a \\nlittle. He came to see how we had gotten settled in the new apartment in Baku,\\nhow we were feeling, and if we needed anything. He\\'s a good person. He said, \\n\"You should praise God that you all survived. But what I saw with my own eyes,\\nI, a man, who has seen so many people die, who has lived a whole life, I,\" he\\nsays, \"nearly lost my mind that day. I had never seen the likes of it and \\nthink I never shall again.\" The door to his apartment was open and he saw \\neverything. One of the brothers threw the axe, because they had already taken \\nthe father and mother out of the apartment. Igor, Edik, and Ira remained. He \\nsaw Ira, naked, being carried into the other room in the hands of six or seven\\npeople. He told us about it and said he would never forget it. He heard the \\nbrothers shouting something, inarticulate from pain, rage, and the fact that \\nthey were powerless to do anything. But all the same they tried to \\ndo something. The guy who got hit with the axe lived. I I\\n\\nAfter I had been unsuccessful at killing myself I saw them taking Marina and \\nLyuda out of the bedroom. I was in such a state that I couldn\\'t even \\nremember my sister\\'s name. I wanted to cry \"Marina!\" out to her, but could\\nnot. I looked at her and knew that it was a familiar, dear face, but couldn\\'t\\nfor the life of me remember what her name was and who she was. And thus\\nI saved her, because when they were taking her out, she, as it turns out, had\\ntold them that she had just been visiting and that she and Lyuda were both\\nthere by chance, that they weren\\'t Armenians. Lyuda\\'s a Russian, you can tell \\nright away, and Marina speaks Azerbaijani wonderfully and she told them that\\nshe was an Azerbaijani. And I almost gave her away and doomed her. I\\'m glad \\nthat at least Marina came out of this all in good physical health . . . \\nalthough her spirit was murdered . . .\\n\\nAt some point I came to and saw Igor, Igor Agayev, my acquaintance, in that \\nmob. He lives in the neighboring building. For some reason I remembered his \\nname, maybe I sensed my defense in him. I called out to him in Russian, \"Igor,\\nhelp!\" But he turned away and went into the bedroom. Just then they were \\ntaking Marina and Lyuda out of the bedroom. Igor said he knew Marina and \\nLyuda, that Marina in fact was Azerbaijani, and he took both of them to the \\nneighbors.\\n\\nAnd the idea stole through me that maybe Igor had led them to our apartment, \\nsomething like that, but if he was my friend, he was supposed to save me.\\n \\nThen they were striking me very hard--we have an Indian vase, a metal one, \\nthey were hitting me on the back with it and I blacked out--they took me out \\nonto the balcony a second time to throw me out the window. They were already \\nsure that I was dead because I didn\\'t react at all to the new blows. Someone \\nsaid, \"She\\'s already dead, let\\'s throw her out.\" When they carried me out onto\\nthe balcony for the second time, when I was about to die the second time, I \\nheard someone say in Azerbaijani: \"Don\\'t kill her, I know her, she\\'s a \\nteacher.\" I can still hear that voice ringing in my ears, but I can\\'t remember\\nwhose voice it was. It wasn\\'t Igor, because he speaks Azerbaijani with an \\naccent: his mother is Russian and they speak Russian at home. He speaks\\nAzerbaijani worse than our Marina does. I remember when they carried me in and\\nthrew me on the bed he came up to me, that person, and \\tI having opened my \\neyes, saw and recognized that person, but immediately passed out cold. I had \\nbeen beaten so much that I didn\\'t have the strength to remember him. I only \\nremember that this person was older and he had a high position. Unfortunately \\nI can\\'t remember anything more.\\n\\nWhat should I say about Igor? He didn\\'t treat me badly. I had heard a lot \\nabout him, that he wasn\\'t that good a person, that he sometimes drank too\\nmuch. Once he boasted to me that he had served in Afghanistan. He knew that \\nwomen usually like bravery in a man. Especially if a man was in Afghanistan,\\nif he was wounded, then it\\'s about eighty percent sure that he will be treated\\nvery sympathetically, with respect. Later I found out that he had served in \\nUfa, and was injured, but that\\'s not in Afghanistan, of course. I found that \\nall out later.\\n\\nAmong the people who were in our apartment, my Karina also saw the Secretary \\nof the Party organization. I don\\'t know his last name, his first name is \\nNajaf, he is an Armenian-born Azerbaijani. But later Karina wasn\\'t so sure,\\nshe was no longer a hundred percent sure that it was he she saw, and she \\ndidn\\'t want to endanger him. She said, \"He was there,\" and a little while \\nlater, \"Maybe they beat me so much that I am confusing him with someone else. \\nNo, it seems like it was he.\" I am sure it was he because when he came to see \\nus the first time he said one thing, and the next time he said something \\nentirely different. The investigators haven\\'t summoned him yet. He came to see\\nus in the Khimik boarding house where we were living at the time. He brought \\ngroceries and flowers, this was right before March 8th; he almost started \\ncrying, he was so upset to see our condition. I don\\'t know if he was putting \\nus on or not, but later, after we had told the investigator and they summoned \\nhim to the Procuracy, he said that he had been in Baku, he wasn\\'t in Sumgait. \\nThe fact that he changed his testimony leads me to believe that Karina is \\nright, that in fact it was he who was in our apartment. I don\\'t know how the \\ninvestigators are now treating him. At one point I wondered and asked, and was\\ntold that he had an alibi and was not in our apartment. Couldn\\'t he have gone \\nto Baku and arranged an alibi? I\\'m not ruling out that possibility.\\n\\nIll now return to our apartment. Mamma had come to. You could say that she \\nbought them off with the gold Father gave her when they were married: her \\nwedding band and her watch were gold. She bought her own and her husband\\'s \\nlives with them. She gave the gold to a 14-year old boy. Vadim Vorobyev. A \\nRussian boy, he speaks Azerbaijani perfectly. He\\'s an orphan who was raised by\\nhis grandfather and who lives in Sumgait on Nizami Street. He goes to a \\nspecial school, one for mentally handicapped children. But I\\'ll say this--I\\'m \\na teacher all the same and in a matter of minutes I can form an opinion--that\\nboy is not at all mentally handicapped. He\\'s healthy, he can think just fine, \\nand analyze, too . . . policemen should be so lucky. And he\\'s cunning, too. \\nAfter that he went home and tore all of the pictures out of his photo album.\\n\\nHe beat Mamma and demanded gold, saying, \"Lady, if you give us all the gold \\nand money in your apartment we\\'ll let you live.\" And Mamma told them where \\nthe gold was. He brought in the bag and opened it, shook out the contents, and \\neveryone who was in the apartment jumped on it, started knocking each other \\nover and taking the gold from one another. I\\'m surprised they didn\\'t kill one \\nanother right then.\\n\\nMamma was still in control of herself. She had been beaten up, her face was\\nblack and blue from the blows, and her eyes were filled with blood, and she \\nran into the other room. Father was lying there, tied up, with a gag in his\\nmouth and a pillow over his face. There was a broken table on top of the pil-\\nlow. Mamma grabbed Father and he couldn\\'t walk; like me, he was half dead, \\nhalfway into the other world. He couldn\\'t comprehend anything, couldn\\'t see, \\nand was covered with black and blue. Mamma pulled the gag out of his mouth, \\nit was some sort of cloth, I think it was a slipcover from an armchair.\\n\\nThe bandits were still in our apartment, even in the room Mamma pulled Father \\nout of, led him out of, carried him out of. We had two armchairs in that room,\\na small magazine table, a couch, a television, and a screen. Three people \\nwere standing next to that screen, and into their shirts, their pants, \\neverywhere imaginable, they were shoving shot glasses and cups from the coffee\\nservice--Mamma saw them out of the corner of her eye. She said, \"I was afraid \\nto turn around, I just seized Father and started pulling him, but at the \\nthreshold I couldn\\'t hold him up, he fell down, and I picked him up again and \\ndragged him down the stairs to the neighbors\\'.\" Mamma remembered one of the \\ncriminals, the one who had watched her with his face half-turned toward her, \\nout of one eye. She says, \"I realized that my death would come from that \\nperson. I looked him in the eyes and he recoiled from fear and went stealing.\"\\nLater they caught that scoundrel. Meanwhile, Mamma grabbed Father and left.\\n\\nI was alone. Igor had taken Marina away, Mamma and Father were gone, Karina \\nwas already outside, I didn\\'t know what they were doing to her. I was left all\\nalone, and at that moment . . . I became someone else, do you understand? Even\\nthough I knew that neither Mother and Father in the other room, nor Marina and\\nLyuda under the bed could save me, all the same I somehow managed to hold out.\\nI went on fighting them, I bit someone, I remember, and I scratched another. \\nBut when I was left alone I realized what kind of people they were, the ones \\nI had observed, the ones who beat Karina, what kind of people they were, the \\nones who beat me, that it was all unnecessary, that I was about to die and \\nthat all of that would die with me.\\n\\nAt some point I took heart when I saw the young man from the next building. I \\ndidn\\'t know his name, but we would greet one another when we met, we knew that\\nwe were from the same microdistrict. When I saw him I said, \"Neighbor, is that\\nyou?\" In so doing I placed myself in great danger. He realized that if I lived\\nI would remember him. That\\'s when he grabbed the axe. The axe that had been \\ntaken from my father. I automatically fell to my knees and raised my hands to \\ntake the blow of the axe, although at the time it would have been better if he\\nhad struck me in the head with the axe and put me out of my misery. When he \\nstarted getting ready to wind back for the blow, someone came into the room. \\nThe newcomer had such an impact on everyone that my neighbor\\'s axe froze in \\nthe air. Everyone stood at attention for this guy, like soldiers in the \\npresence of a general. Everyone waited for his word: continue the atrocities \\nor not. He said, \"Enough, let\\'s go to the third entryway.\" In the third \\nentryway they killed Uncle Shurik, Aleksandr Gambarian. This confirms once \\nagain that they had prepared in advance. Almost all of them left with him, as \\nthey went picking up pillows, blankets, whatever they needed, whatever they \\nfound, all the way up to worn out slippers and one boot, someone else had \\nalready taken the other.\\n\\nFour people remained in the room, soldiers who didn\\'t obey their general. They\\nhad to have come recently, because other faces had flashed in front of me over\\nthose 2 to 3 hours, but I had never seen those three. One of them, Kuliyev (I \\nidentified him later), a native of the Sisian District of Armenia, an \\nAzerbaijani, had moved to Azerbaijan a year before. He told me in Armenian:\\n\"Sister, don\\'t be afraid, I\\'ll drive those three Azerbaijanis out of here.\"\\nThat\\'s just what he said, \"those Azerbaijanis,\" as though he himself were not \\nAzerbaijani, but some other nationality, he said with such hatred, \"I\\'ll drive\\nthem out of here now, and you put your clothes on, and find a hammer and nails\\nand nail the door shut, because they\\'ll be coming back from Apartment 41.\" \\nThat\\'s when I found out that they had gone to Apartment 41. Before that, the \\nperson in the Eskimo dogskin coat, the one who came in and whom they listened \\nto, the \"general,\" said that they were going to the third entryway.\\n\\nKuliyev helped me get some clothes on, because l couldn\\'t do it by myself. \\nMarina\\'s old fur coat was lying on the floor. He threw it over my shoulders, I\\nwas racked with shivers, and he asked where he could find nails and a hammer. \\nHe wanted to give them to me so that when he left I could nail the door shut. \\nBut the door was lying on the floor in the hall.\\n\\nI went out onto the balcony. There were broken windows, and flowers and dirt \\nfrom flowerpots were scattered on the floor. It was impossible to find \\nanything. He told me, \"Well, fine, I won\\'t leave you here. Would any of the \\nneighbors let you in? They\\'ll be back, they won\\'t calm down, they know you\\'re \\nalive.\" He told me all this in Armenian.\\n\\nThen he returned to the others and said, \"What are you waiting for? Leave!\" \\nThey said, \"Ah, you just want to chase us out of here and do it with her \\nyourself. No, we want to do it to.\" He urged them on, but gently, not \\ncoarsely, because he was alone against them, although they were still just\\nboys, not old enough to be drafted. He led them out of the room, and went\\ndown to the third floor with them himself, and said, \"Leave. What\\'s the mat-\\nter, aren\\'t you men? Go fight with the men. What do you want of her?\" And\\nhe came back upstairs. They wanted to come up after him and he realized that \\nhe couldn\\'t hold them off forever. Then he asked me where he could hide me. I \\ntold him at the neighbors\\' on the fourth floor, Apartment 10, we were on really\\ngood terms with them.\\n\\nWe knocked on the door, and he explained in Azerbaijani. The neighbor woman \\nopened the door and immediately said, \"I\\'m an Azerbaijani.\" He said, \"I know. \\nLet her sit at your place a while. Don\\'t open the door to anyone, no one knows\\nabout this, I won\\'t tell anyone. Let her stay at your place.\" She says, \"Fine,\\nhave her come in.\" I went in. She cried a bit and gave me some stockings, I \\nhad gone entirely numb and was racked with nervous shudders. I burst into \\ntears. Even though I was wearing Marina\\'s old fur coat, it\\'s a short one, a \\nhalf-length, I was cold all the same. I asked, \"Do you know where my family \\nis, what happened to them?\" She says, \"No, I don\\'t know anything. I\\'m afraid \\nto go out of the apartment, now they\\'re so wild that they don\\'t look to see \\nwho\\'s Azerbaijani and who\\'s Armenian.\" Kuliyev left. Ten minutes later my \\nneighbor says, \"You know, Lyuda, I don\\'t want to lose my life because of you, \\nor my son and his wife. Go stay with someone else.\" During the butchery in our\\napartment one of the scum, a sadist, took my earring in his mouth--I had pearl\\nearrings on--and ripped it out, tearing the earlobe. The other earring was \\nstill there. When I\\'m nervous I fix my hair constantly, and then, when I \\ntouched my ear, I noticed that I had one earring on. I took it out and gave it\\nto her. She took the earring, but she led me out of the apartment.\\n\\nI went out and didn\\'t know where to go. I heard someone going upstairs. I \\ndon\\'t know who it was but assumed it was them. With tremendous difficulty I \\nend up to our apartment, I wanted to die in my own home. I go into the \\napartment and hear that they are coming up to our place, to the fifth floor. \\nI had to do something. I went into the bedroom where Marina and Lyuda had \\nhidden and saw that the bed was overturned. Instead of hiding I squatted near \\nsome broken Christmas ornaments, found an unbroken one, and started sobbing. \\nThen they came in. Someone said that there were still some things to take. I \\nthink that someone pushed me under the bed. I lay on the floor, and there were\\nbroken ornaments on it, under my head and legs. I got all cut up, but I lay \\nthere without moving. My heart was beating so hard it seemed the whole town \\ncould hear it. There were no lights on. Maybe that\\'s what saved me. They were \\nburning matches, and toward the end they brought in a candle. They started\\npicking out the clothes that could still be worn. They took Father\\'s sport \\njacket and a bedspread, the end of which was under my head. They pulled on the\\none end, and it felt like they were pulling my hair out. I almost cried out. \\nAnd again I realized I wasn\\'t getting out of there alive, and I started to \\nstrangle myself again. I took my throat in one hand, and pressed the other on \\nmy mouth, so as not to wheeze, so that I would die and they would only find me\\nafterward. They were throwing the burned matches under the bed, and I got \\nburned, but I withstood it. Something inside of me held on, someone\\'s hand was\\nprotecting me to the end. I knew that I was going to die, but I didn\\'t know \\nhow. I knew that if I survived I would walk out of that apartment, but if \\nI found out that one of my family had died, I would die for sure, because I \\nhad never been so close to death and couldn\\'t imagine how you could go on \\nliving without your mother or father, or without your sister. Marina, I \\nthought, was still alive: she went to Lyuda\\'s place or someone is hiding her. \\nI tried to think that Igor wouldn\\'t let them be killed. He served in \\nAfghanistan, he should protect her.\\n\\nWhile I was strangling myself I said my good-byes to everyone. And then I\\nthought, how could Marina survive alone. If they killed all of us, how would \\nshe live all by herself? There were six people in the room. They talked among \\nthemselves and smoked. One talked about his daughter, saying that there was no\\nchildren\\'s footwear in our apartment that he could take for his daughter. \\nAnother said that he liked the apartment--recently we had done a really good \\njob fixing everything up--and that he would live there after everything was \\nall over. They started to argue. A third one says, \"How come you get it? I \\nhave four children, and there are three rooms here, that\\'s just what I need. \\nAll these years I\\'ve been living in God-awful places.\" Another one says, \\n\"Neither of you gets it. We\\'ll set fire to it and leave.\" Then someone said \\nthat Azerbaijanis live right next door, the fire could move over to their\\nplace. And they, to my good fortune, didn\\'t set fire to the apartment, and\\nleft.\\n\\nOh, yes, I just remembered. While they were raping me they repeated quite \\nfrequently, \"Let the Armenian women have babies for us, Muslim babies, let \\nthem bear Azerbaijanis for the struggle against the Armenians.\" Then they \\nsaid, \"Those Muslims can carry on our holy cause. Heroes!\" They repeated it \\nvery often.\\n\\n\\t\\t - - - reference for #008 - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 118-145\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: A1RODRIG@vma.cc.nd.edu\\nSubject: What a HATE filled newsgroup!!!!\\nOrganization: Bullwinkle Fan Club\\nLines: 5\\n\\nIs this group for real? I honestly can't believe that most of you expect you\\nor your concerns to be taken remotely seriously if you behave this way in a\\nforum for discussion. Doesn't it ever occur to those of you who write letters\\nlike the majority of those in this group that you're being mind-bogglingly\\nhypocritical?\\n\",\n", + " 'From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: Should liability insurance be required?\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 14\\nDistribution: usa\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nTommy Marcus McGuire (mcguire@cs.utexas.edu) wrote:\\n: You know, it sounds suspiciously like no fault doesn\\'t even do what it\\n: was advertised as doing---getting the lawyers out of the loop.\\n\\n: Sigh. Another naive illusion down the toilet....\\n\\nSince most legislators are lawyers it is very difficult to get any\\nlaw passed that would cut down on lawyers\\' business. That is why\\n\"No-fault\" insurance laws always backfire. \\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race, NASA resources, why?\\nOrganization: U of Toronto Zoology\\nLines: 33\\n\\nIn article <1993Apr21.210712.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>> So how much would it cost as a private venture, assuming you could talk the\\n>> U.S. government into leasing you a couple of pads in Florida? \\n>\\n>Why must it be a US Government Space Launch Pad? Directly I mean...\\n\\nIn fact, you probably want to avoid US Government anything for such a\\nproject. The pricetag is invariably too high, either in money or in\\nhassles.\\n\\nThe important thing to realize here is that the big cost of getting to\\nthe Moon is getting into low Earth orbit. Everything else is practically\\ndown in the noise. The only part of getting to the Moon that poses any\\nnew problems, beyond what you face in low orbit, is the last 10km --\\nthe actual landing -- and that is not immensely difficult. Of course,\\nyou *can* spend sagadollars (saga- is the metric prefix for beelyuns\\nand beelyuns) on things other than the launches, but you don't have to.\\n\\nThe major component of any realistic plan to go to the Moon cheaply (for\\nmore than a brief visit, at least) is low-cost transport to Earth orbit.\\nFor what it costs to launch one Shuttle or two Titan IVs, you can develop\\na new launch system that will be considerably cheaper. (Delta Clipper\\nmight be a bit more expensive than this, perhaps, but there are less\\nambitious ways of bringing costs down quite a bit.) Any plan for doing\\nsustained lunar exploration using existing launch systems is wasting\\nmoney in a big way.\\n\\nGiven this, questions like whose launch facilities you use are *not* a\\nminor detail; they are very important to the cost of the launches, which\\ndominates the cost of the project.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: ucer@ee.rochester.edu (Kamil B. Ucer)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: University of Rochester Department of Electrical Engineering\\n\\nIn article <1993Apr16.142935.535@cs.yale.edu> karage@scus1.ctstateu.edu (Angelos Karageorgiou Greek and Macedon the only combination) writes:\\n>\\n>\\tOk. My Aykut., what about the busload of Greek turists that was\\n>torched, and all the the people in the buis died. Happened oh, about 5\\n>years ago in Instanbul.\\n>\\tWhat about the Greeks in the islands of Imbros and tenedos, they\\n>are not allowed to have churches any more, instead momama turkey has\\n>turned the church into a warehouse, I got a picture too.\\n>\\tWhat about the pontian Greeks of Trapezounta and Sampsounta,\\n>what you now call Trabzon and Sampson, they spoke a 2 thousand year alod\\n>language, are there any left that still speek or were they Islamicised?\\n>\\tBefore we start another flamefest , and before you start quoting\\n>Argic all over again, or was it somebody else?, please think. I know it\\n>is a hard thing to do for somebody not equipped , but try nevertheless.\\n>\\tIf Turks in Greece were so badly mistreated how come they\\n>elected two,m not one but two, representatives in the Greek government?\\n>How come they have free(absolutely free) hospitalization and education?\\n>Do the Turks in Turkey have so much?If they do then you have every right\\n>to shout, untill then you can also move to Greece and enjoy those\\n>privileges. But I forget , for you do study in a foreign university,\\n>some poor shod is tiling the earth with his own sweat.\\n>\\tBTW is Aziz Nessin still writing poetry? I\\'d like to read some\\n>of his new stuff. Also who was the guy that wrote \"On the mountains of\\n>Tayros.\" ? please respond kindly to the last two questions, I am\\n>interested in finding more books from these two people.\\n>\\t\\n>\\n>-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n>Yeian kai Eytyxeian | The opinions expressed above are nobody else\\'s but\\n>Angelos Karageorgiou | mine,MINE,MIIINNE,MIIINNEEEE,aaaarrgghhhh..(*&#$$*((+_$%\\n>Live long & Prosper | NO CARRIER\\n>-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n>> Any and all mail sent to me , can and will be used in any manner <\\n>> whatsoever. I may repost or publicise parts of messages or whole <\\n>> messages. If you disagree, please exercise your freedom of speech <\\n>> and don\\'t send me anything. <\\n\\nDear Mr. Karageorgiou,\\nI would like to clarify several misunderstandings in your posting. First the bus incident which I believe was in Canakkale three years ago, was done by a mentally ill person who killed himself afterwards. The Pontus Greeks were ex- changedwith Turks in Greece in 1923. I have to logout now since my Greek friend\\nYiorgos here wants to use the computer. Well, I\\'ll be back.Asta la vista baby.\\n\\n',\n", + " \"From: bss2p@kelvin.seas.Virginia.EDU (Brent S. Stone)\\nSubject: Wanted: Advice for New Cylist (Ditto)\\nOrganization: University of Virginia\\nLines: 21\\n\\nIn article blaisec@sr.hp.com (Blaise Cirelli) writes:\\n>\\n\\n\\n\\tI'm thinking about becoming a bike owner this year\\nw/o any bike experience thus far. I figure that getting a \\ndecent used bike for under $1K the thing would pay for itself\\nwhile I'm at grad school (car permits are $$$ where I'm going\\nand who want's to ride a bus). I'm looking for advice\\non a first bike - best models/years. I'm NOT looking for\\nan old loud roaring thing that sounds like a monster. The\\nquit whirring of newer engines is more to my liking.\\n\\nApprec any advice.\\n\\nThanks,\\n\\nBS\\n\\n\\n\\n\",\n", + " 'From: pgf@srl02.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 8\\n\\nThe only ether I see here is the stuff you must\\nhave been breathing before you posted...\\n\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", + " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Keith IS a relativist!\\nOrganization: California Institute of Technology, Pasadena\\nLines: 10\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\n9051467f@levels.unisa.edu.au (The Desert Brat) writes:\\n\\n>Keith, if you start wafffling on about how it is different for a human\\n>to maul someone thrown into it's cage (so to speak), you'd better start\\n>posting tome decent evidence or retract your 'I think there is an absolute\\n>morality' blurb a few weeks ago.\\n\\nDid I claim that there was an absolute morality, or just an objective one?\\n\\nkeith\\n\",\n", + " 'From: dragon@access.digex.com (Covert C Beach)\\nSubject: Re: Mars Observer Update - 03/29/93\\nOrganization: Express Access Online Communications, Greenbelt, MD USA\\nLines: 33\\nDistribution: world\\nNNTP-Posting-Host: access.digex.net\\nKeywords: Mars Observer, JPL\\n\\nIn article <1pcgaa$do1@access.digex.com> prb@access.digex.com (Pat) writes:\\n>Now isn\\'t that always the kicker. It does seem stupid to drop\\n>a mission like Magellan, because there isn\\'t 70 million a year\\n>to keep up the mission. You\\'d think that ongoing science could\\n>justify the money. JPL gets accused of spending more then neccessary,\\n>probably some validity in that, but NASA does put money into some\\n>things that really are Porcine. Oh well.\\n\\nI attended a colloquium at Goddard last fall where the head of the \\noperations section of NASA was talking about what future missions\\nwere going to be funded. I don\\'t remember his name or title off hand\\nand I have discarded the colloquia announcement. In any case, he was \\nasked about that very matter: \"Why can\\'t we spend a few million more\\nto keep instruments that we already have in place going?\"\\n\\nHis responce was that there are only so many $ available to him and\\nthe lead time on an instrument like a COBE, Magellan, Hubble, etc\\nis 5-10 years minumum. If he spent all that could be spent on using\\ncurrent instruments in the current budget enviroment he would have\\nvery little to nothing for future projects. If he did that, sure\\nin the short run the science would be wonderful and he would be popular,\\nhowever starting a few years after he had retired he would become\\none of the greatest villans ever seen in the space community for not\\nfunding the early stages of the next generation of instruments. Just\\nas he had benefited from his predicessor\\'s funding choices, he owed it\\nto whoever his sucessor would eventually be to keep developing new\\nmissions, even at the expense of cutting off some instruments before\\nthe last drop of possible science has been wrung out of them.\\n\\n\\n-- \\nCovert C Beach\\ndragon@access.digex.com\\n',\n", + " 'From: maverick@wpi.WPI.EDU (T. Giaquinto)\\nSubject: General Information Request\\nOrganization: Worcester Polytechnic Institute, Worcester, MA 01609-2280\\nLines: 11\\nNNTP-Posting-Host: wpi.wpi.edu\\n\\n\\n\\tI am looking for any information about the space program.\\nThis includes NASA, the shuttles, history, anything! I would like to\\nknow if anyone could suggest books, periodicals, even ftp sites for a\\nnovice who is interested in the space program.\\n\\n\\n\\n\\t\\t\\t\\t\\tTodd Giaquinto\\n\\t\\t\\t\\t\\tmaverick@wpi.WPI.EDU\\n\\t\\t\\t\\t\\t\\n',\n", + " 'From: ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck)\\nSubject: Re: Distance between two Bezier curves\\nOrganization: My own node in Groningen, NL.\\nLines: 14\\n\\npes@hutcs.cs.hut.fi (Pekka Siltanen) writes:\\n\\n> Suppose two cubic Bezier curves (control points V1,..,V4 and W1,..,W4)\\n> which have equal first and last control points (V1 = W1, V4 = W4). How do I \\n> get upper bound for distance between these curves. \\n\\nWhich distance? The distance between one point (t = ti) on the first curve\\nand a point on the other curve with same parameter (u = ti)?\\n\\n> \\n> Any references appreciated. Thanks in anvance.\\n> \\n> Pekka Siltanen\\n\\n',\n", + " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Freedom In U.S.A.\\nOrganization: University of Virginia\\nLines: 11\\n\\n\\tI have just started reading the articles in this news\\ngroup. There seems to be an attempt by some members to quiet\\nother members with scare tactics. I believe one posting said\\nthat all postings by one person are being forwarded to his\\nserver who keeps a file on him in hope that \"Appropriate action\\nmight be taken\". \\n\\tI don\\'t know where you guys are from but in America\\nsuch attempts to curtail someones first amendment rights are\\nnot appreciated. Here, we let everyone speak their mind\\nregardless of how we feel about it. Take your fascistic\\nrepressive ideals back to where you came from.\\n',\n", + " 'From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: Twit Bicyclists (was RE: Oh JOY!)\\nOrganization: AT&T\\nDistribution: na\\nLines: 20\\n\\nIn article <1993Apr2.045903.6066@spectrum.xerox.com> cooley@xerox.com writes:\\n>Yo, ASSHOLES. I hope you are all just kidding\\n>because it\\'s exactly that kind of attidue that gets\\n>many a MOTORcyclist killed: \"Look at the leather\\n>clad poseurs! Watch how they swirve and\\n>swear as I pretend that they don\\'t exist while\\n>I change lanes.\"\\n>\\n>If you really find it necesary to wreck others\\n>enjoyment of the road to boost your ego, then\\n>it is truely you who are the poseur.\\n>\\n>--aaron\\n\\nDisgruntled Volvo drivers. What are they rebelling against?\\n \\n================================================================================\\n Steatopygias\\'s \\'R\\' Us. doh#0000000005 That ain\\'t no Hottentot.\\n Sesquipedalian\\'s \\'R\\' Us. ZX-10. AMA#669373 DoD#564. There ain\\'t no more.\\n================================================================================\\n',\n", + " 'From: kjenks@gothamcity.jsc.nasa.gov\\nSubject: Space Station Redesign, JSC Alternative #4\\nOrganization: NASA/JSC/GM2, Space Shuttle Program Office \\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 71\\n\\nI have 19 (2 MB worth!) uuencode\\'d GIF images contain charts outlining\\none of the many alternative Space Station designs being considered in\\nCrystal City. Mr. Mark Holderman works down the hall from me, and can\\nbe reached for comment at (713) 483-1317, or via e-mail at\\nmholderm@jscprofs.nasa.gov.\\n\\nMark proposed this design, which he calls \"Geode\" (\"rough on the\\noutside, but a gem on the inside\") or the \"ET Strongback with\\nintegrated hab modules and centrifuge.\" As you can see from file\\ngeodeA.gif, it uses a Space Shuttle External Tank (ET) in place of much\\nof the truss which is currently part of Space Station Freedom. The\\nwhite track on the outside of the ET is used by the Station Remonte\\nManipulator System (SRMS) and by the Reaction Control System (RCS)\\npod. This allows the RCS pod to move along the track so that thrusting\\ncan occur near the center of gravity (CG) of the Station as the mass\\nproperties of the Station change during assembly.\\n\\nThe inline module design allows the Shuttle to dock more easily because\\nit can approach closer to the Station\\'s CG and at a structurally strong\\npart of the Station. In the current SSF design, docking forces are\\nlimited to 400 pounds, which seriously constrains the design of the\\ndocking system.\\n\\nThe ET would have a hatch installed pre-flight, with little additional\\nlaunch mass. We\\'ve always had the ability to put an ET into orbit\\n(contrary to some rumors which have circulated here), but we\\'ve never\\nhad a reason to do it, while we have had some good reasons not to\\n(performance penalties, control, debris generation, and eventual\\nde-orbit and impact footprint). Once on-orbit, we would vent the\\nresidual H2. The ET insulation (SOFI) either a) erodes on-orbit from\\nimpact with atomic Oxygen, or b) stays where it is, and we deploy a\\nKevlar sheath around it to protect it and keep it from contaminating\\nthe local space environment. Option b) has the advantage of providing\\nfurther micrometeor protection. The ET is incredibly strong (remember,\\nit supports the whole stack during launch), and could serve as the\\nnucleus for a much more ambitious design as budget permits.\\n\\nThe white module at the end of ET contains a set of Control Moment\\nGyros to be used for attitude control, while the RCS will be used\\nfor gyro desaturation. The module also contains a de-orbit system\\nwhich can be used at the end of the Station\\'s life to perform a\\ncontrolled de-orbit (so we don\\'t kill any more kangaroos, like we\\ndid with Skylab).\\n\\nThe centrifuge, which has the same volume as a hab module, could be\\nused for long-term studies of the effects of lunar or martian gravity\\non humans. The centrifuge will be used as a momentum storage device\\nfor the whole attitude control system. The centrifuge is mounted on\\none of the modules, opposite the ET and the solar panels.\\n\\nThis design uses most of the existing SSF designs for electrical,\\ndata and communication systems, getting leverage from the SSF work\\ndone to date.\\n\\nMark proposed this design at Joe Shea\\'s committee in Crystal City,\\nand he reports that he was warmly received. However, the rumors\\nI hear say that a design based on a wingless Space Shuttle Orbiter\\nseems more likely.\\n\\nPlease note that this text is my interpretation of Mark\\'s design;\\nyou should see his notes in the GIF files. \\n\\nInstead of posting a 2 MB file to sci.space, I tried to post these for\\nanon-FTP in ames.arc.nasa.gov, but it was out of storage space. I\\'ll\\nlet you all know when I get that done.\\n\\n-- Ken Jenks, NASA/JSC/GM2, Space Shuttle Program Office\\n kjenks@gothamcity.jsc.nasa.gov (713) 483-4368\\n\\n \"...Development of the space station is as inevitable as \\n the rising of the sun.\" -- Wernher von Braun\\n',\n", + " 'Subject: Re: islamic authority over women\\nFrom: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 46\\n\\nIn article <1993Apr5.023044.19580@ultb.isc.rit.edu) snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n)\\n)That\\'s your mistake. It would be better for the children if the mother\\n)raised the child.\\n)\\n)One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n)because of the love of their mom. It makes for more virile men.\\n)Compare that with how homos are raised. Do a study and you will get my\\n)point.\\n)\\n)But in no way do you have a claim that it would be better if the men\\n)stayed home and raised the child. That is something false made up by\\n)feminists that seek a status above men. You do not recognize the fact\\n)that men and women have natural differences. Not just physically, but\\n)mentally also.\\n) [...]\\n)Your logic. I didn\\'t say americans were the cause of worlds problems, I\\n)said atheists.\\n) [...]\\n)Becuase they have no code of ethics to follow, which means that atheists\\n)can do whatever they want which they feel is right. Something totally\\n)based on their feelings and those feelings cloud their rational\\n)thinking.\\n) [...]\\n)Yeah. I didn\\'t say that all atheists are bad, but that they could be\\n)bad or good, with nothing to define bad or good.\\n)\\n\\n Awright! Bobby\\'s back, in all of his shit-for-brains glory. Just\\n when I thought he\\'d turned the corner of progress, his Thorazine\\n prescription runs out. \\n\\n I\\'d put him in my kill file, but man, this is good stuff. I wish\\n I had his staying power.\\n\\n Fortunately, I learned not to take him too seriously long,long,long\\n ago.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n',\n", + " 'From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: free moral agency and Jeff Clark\\nOrganization: Technical University Braunschweig, Germany\\nLines: 30\\n\\nIn article \\nhealta@saturn.wwc.edu (TAMMY R HEALY) writes:\\n \\n(Deletion)\\n>You also said,\"Why did millions suffer for what Adam and Ee did? Seems a\\n>pretty sick way of going about creating a universe...\"\\n>\\n>I\\'m gonna respond by giving a small theology lesson--forgive me, I used\\n>to be a theology major.\\n>First of all, I believe that this planet is involved in a cosmic struggle--\\n>\"the Great Controversy betweed Christ and Satan\" (i borrowed a book title).\\n>God has to consider the interests of the entire universe when making\\n>decisions.\\n(Deletion)\\n \\nAn universe it has created. By the way, can you tell me why it is less\\ntyrannic to let one of one\\'s own creatures do what it likes to others?\\nBy your definitions, your god has created Satan with full knowledge what\\nwould happen - including every choice of Satan.\\n \\nCan you explain us what Free Will is, and how it goes along with omniscience?\\nDidn\\'t your god know everything that would happen even before it created the\\nworld? Why is it concerned about being a tyrant when noone would care if\\neverything was fine for them? That the whole idea comes from the possibility\\nto abuse power, something your god introduced according to your description?\\n \\n \\nBy the way, are you sure that you have read the FAQ? Especially the part\\nabout preaching?\\n Benedikt\\n',\n", + " 'From: cptully@med.unc.edu (Christopher P. Tully,Pathology,62699)\\nSubject: Re: TIFF: philosophical significance of 42\\nNntp-Posting-Host: helix.med.unc.edu\\nReply-To: cptully@med.unc.edu\\nOrganization: UNC-CH School of Medicine\\nLines: 40\\n\\nIn article 8HC@mentor.cc.purdue.edu, ab@nova.cc.purdue.edu (Allen B) writes:\\n>In article <1993Apr10.160929.696@galki.toppoint.de> ulrich@galki.toppoint.de \\n>writes:\\n>> According to the TIFF 5.0 Specification, the TIFF \"version number\"\\n>> (bytes 2-3) 42 has been chosen for its \"deep philosophical \\n>> significance\".\\n>> Last week, I read the Hitchhikers Guide To The Galaxy,\\n>> Is this actually how they picked the number 42?\\n>\\n>I\\'m sure it is, and I am not amused. Every time I read that part of the\\n>TIFF spec, it infuriates me- and I\\'m none too happy about the\\n>complexity of the spec anyway- because I think their \"arbitrary but\\n>carefully chosen number\" is neither. Additionally, I find their\\n>choice of 4 bytes to begin a file with meaningless of themselves- why\\n>not just use the letters \"TIFF\"?\\n>\\n>(And no, I don\\'t think they should have bothered to support both word\\n>orders either- and I\\'ve found that many TIFF readers actually\\n>don\\'t.)\\n>\\n>ab\\n\\nWhy so up tight? FOr that matter, TIFF6 is out now, so why not gripe\\nabout its problems? Also, if its so important to you, volunteer to\\nhelp define or critique the spec.\\n\\nFinally, a little numerology: 42 is 24 backwards, and TIFF is a 24 bit\\nimage format...\\n\\nChris\\n---\\n*********************************************************************\\nChristopher P. Tully\\t\\t\\t\\tcptully@med.unc.edu\\nUniv. of North Carolina - Chapel Hill\\nCB# 7525\\t\\t\\t\\t\\t(919) 966-2699\\nChapel Hill, NC 27599\\n*********************************************************************\\nI get paid for my opinions, but that doesn\\'t mean that UNC or anybody\\n else agrees with them.\\n\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Re: Killer\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 95\\n\\nIn article <1993Apr21.032746.10820@doug.cae.wisc.edu> yamen@cae.wisc.edu\\n(Soner Yamen) responded to article <1r20kr$m9q@nic.umass.edu> BURAK@UCSVAX.\\nUCS.UMASS.EDU (AFS) who wrote:\\n\\n[AFS] Just a quick comment::\\n[AFS]\\n[AFS] Armenians killed Turks------Turks killed Armenians.\\n[AFS]\\n[AFS] Simple as that. Can anybody deny these facts?\\n\\nJews killed Germans in WWII -- Germans killed Jews in WWII, BUT there was \\nquite a difference in these two statements, regardless of what Nazi \\nrevisionists say!\\n\\n[SY] My grand parents were living partly in todays Armenia and partly in\\n[SY] todays Georgia. There were villages, Kurd/Turk (different Turkic groups)\\n[SY] Georgian (muslim/christian) Armenian and Farsi... Very near to eachother.\\n[SY] The people living there were aware of their differences. They were \\n[SY] different people. For example, my grandfather would not have been happy \\n[SY] if his doughter had willed to marry an Armenian guy. But that did not \\n[SY] mean that they were willing to kill eachother. No! They were neighbors.\\n\\nOK.\\n\\n[SY] Armenians killed Turks. Which Armenians? Their neoghbors? As far as my\\n[SY] grandparents are concerned, the Armenians attacked first but these \\n[SY] Armenians were not their neighbors. They came from other places. Maybe \\n[SY] first they had a training at some place. They were taught to kill people,\\n[SY] to hate Turks/Kurds? It seems so...\\n\\nThere is certainly a difference between the planned extermination of the\\nArmenians of eastern Turkey beginning in 1915, with that of the Armeno-\\nGeorgian conflicts of late 1918! The argument is not whether Armenians ever \\nkilled in their collective existence, but rather the wholesale destruction of\\nAnatolian Armenians under orders of the Turkish government. An Armenian-\\nGeorgian dispute over the disposition of Akhalkalak, Lori, and Pambak after\\nthe Turkish Third Army evacuated the region, cannot be equated with the\\nextermination of Anatolian Armenians. Many Armenians and Georgians died\\nin this area in the scramble to re-occupy these lands and the lack of\\npreparation for the winter months. This is not the same as the Turkish \\ngenocide of the Armenians nearly four years earlier, hundreds of kilometers\\naway!\\n\\n[SY] Anyway, but after they killed/raped/... Turks and other muslim people\\n[SY] around, people assumed that \\'Armenians killed us, raped our women\\',\\n[SY] not a particular group of people trained in some camps, maybe backed\\n[SY] by some powerful states... After that step, you cannot explain these \\n[SY] people not to hate all Armenians. \\n\\nI don\\'t follow, perhaps the next paragraph will shed some light.\\n\\n[SY] So what am I trying to point out? First, at least for that region,\\n[SY] you cannot blame Turks/Kurds etc since it was a self defense situation.\\n[SY] Most of the Armenians, I think, are not to blame either. But since some\\n[SY] people started that fire, it is not easy to undo it. There are facts.\\n[SY] People cannot trust eachother easily. It is very difficult to establish\\n[SY] a good relation based on mutual respect and trust between nations with\\n[SY] different ethnic/cultural/religious backgrounds but it is unfortunately\\n[SY] very easy to start a fire!\\n\\nAgain, the fighting between Armenians and Georgians in 1918/19 had little to\\ndo with the destruction of the Armenians in Turkey. It is interesting that\\nthe Georgian leaders of the Transcaucasian Federation (Armenia, Azerbaijan, \\nand Georgia) made special deals with Turkish generals not to pass through \\nTiflis on their way to Baku, in return for Georgians not helping the Armenians \\nmilitarily. Of course, as Turkish troops marched across what was left of\\nCaucasian Armenia, many Armenians went north and such population movement \\ncaused problems with the locals. This is in no comparison with events 4 years \\nearlier in eastern Anatolia. My father\\'s mother\\'s family escaped Cemiskezek -> \\nErzinka -> Erzerum -> Nakhitchevan -> Tiflis -> Constantinople -> \\nMassachusetts. \\n\\n[SY] My grandparents were *not* bloodthirsty people. We did not experience\\n[SY] what they had to endure... They had to leave their lands, there were\\n[SY] ladies, old ladies, all of her children killed while she forced to\\n[SY] witness! Young women put dirt at their face to make themselves\\n[SY] unattractive! I don\\'t want to go into any graphic detail.\\n\\nMy grandmother\\'s brother was forced to dress up as a Kurdish women, and paste\\npotato skins on his face to look ugly. The Turks would kill any Armenian\\nyoung man on sight in Dersim. Because their family was rather influential,\\nlocal Kurds helped them escape before it was too late. This is why I am alive \\ntoday.\\n\\n[SY] You may think that my sources are biased. They were biased in some sense.\\n[SY] They experienced their own pain, of course. That is the way it is. But\\n[SY] as I said they were living in peace with their neighbors before. Why \\n[SY] should they become enemies?\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Commercial mining activities on the moon\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 27\\n\\nIn article steinly@topaz.ucsc.edu (Steinn Sigurdsson) writes:\\n\\n>Seriously though. If you were to ask the British government\\n>whether their colonisation efforts in the Americas were cost\\n>effective, what answer do you think you\\'d get? What if you asked\\n>in 1765, 1815, 1865, 1915 and 1945 respectively? ;-)\\n\\nWhat do you mean? Are you saying they thought the effort was\\nprofitable or that the money was efficiently spent (providing max\\nvalue per money spent)?\\n\\nI think they would answer yes on ballance to both questions. Exceptions\\nwould be places like the US from the French Indian War to the end of\\nthe US Revolution. \\n\\nBut even after the colonies revolted or where given independance the\\nBritish engaged in very lucrative trading with the former colonies.\\nFive years after the American Revolution England was still the largest\\nUS trading partner.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------55 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " \"Subject: Re: was:Go Hezbollah!!\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 43\\n\\nstssdxb@st.unocal.com (Dorin Baru) writes:\\n> Even the most extemist, one sided (jewish/israeli) postings (with which I \\n> certainly disagree), did not openly back plain murder. You do.\\n> \\n> The 'Lebanese resistance' you are talking about is a bunch of lebanese \\n> farmers who detonate bombs after work, or is an organized entity of not-\\n> only-lebanese well trained mercenaries ? I do not know, just curious.\\n> \\n> I guess you also back the killings of hundreds of marines in Beirut, right?\\n> \\n> What kind of 'resistance' movement killed jewish attlets in Munich 1972 ?\\n> \\n> You liked it, didn't you ?\\n> \\n> \\n> You posted some other garbage before, so at least you seem to be consistent.\\n> \\n> Dorin\\n\\nDorin,\\nLet's not forget that the soldiers were killed not murdered. The\\ndistinction is not trivial. Murder happens to innocent people, not people\\nwhose line of work is to kill or be killed. It just so happened that these\\nsoldiers, in the line of duty, were killed by the opposition. And\\nresistance is different from terrorism. Certainly the athletes in Munich\\nwere victims of terrorists (though some might call them freedom fighters).\\nTheir deaths cannot be compared to those of soldiers who are killed by\\nresistance fighters. Don't forget that it was the French Resistance to the\\nNazi occupying forces which eventually succeeded in driving out the\\nhostile occupiers in WWII. Diplomacy has not worked with Israel and the\\nLebanese people are tired of being occupied! They are now turning to the\\nonly option they see as viable. (Don't forget that it worked in driving\\nout the US)\\n\\n-marc\\n\\n\\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", + " \"From: lau@auriga.rose.brandeis.edu (frankie t. k. lau)\\nSubject: PC fastest line/circle drawing routines: HELP!\\nOrganization: Brandeis University\\nLines: 41\\n\\nhi all,\\n\\nIN SHORT: looking for very fast assembly code for line/circle drawing\\n\\t on SVGA graphics.\\n\\nCOMPLETE:\\n\\tI am thinking of a simple but fast molecular\\ngraphics program to write on PC or clones. (ball-and-stick type)\\n\\nReasons: programs that I've seen are far too slow for this purpose.\\n\\nPlatform: 386/486 class machine.\\n\\t 800x600-16 or 1024x728-16 VGA graphics\\n\\t\\t(speed is important, 16-color for non-rendering\\n\\t\\t purpose is enough; may stay at 800x600 for\\n\\t\\t speed reason.)\\n (hope the code would be generic enough for different SVGA\\n cards. My own card is based on Trident 8900c, not VESA?)\\n\\nWhat I'm looking for?\\n1) fast, very fast routines to draw lines/circles/simple-shapes\\n on above-mentioned SVGA resolutions.\\n Presumably in assembly languagine.\\n\\tYes, VERY FAST please.\\n2) related codes to help rotating/zooming/animating the drawings on screen.\\n Drawings for beginning, would be lines, circles mainly, think of\\n text, else later.\\n (you know, the way molecular graphics rotates, zooms a molecule)\\n2) and any other codes (preferentially in C) that can help the \\n project.\\n\\nFinal remarks;-\\nnon-profit. expected to become share-, free-ware.\\n\\n\\tAny help is appreciated.\\n\\tthanks\\n\\n-Frankie\\nlau@tammy.harvard.edu\\n\\nPS pls also email, I may miss reply-post.\\n\",\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: U of Toronto Zoology\\nLines: 17\\n\\nIn article <1993Apr23.103038.27467@bnr.ca> agc@bmdhh286.bnr.ca (Alan Carter) writes:\\n>|> ... a NO-OP command was sent to reset the command loss timer ...\\n>\\n>This activity is regularly reported in Ron's interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n\\nIf I'm not mistaken, this is the usual sort of precaution against loss of\\ncommunications. That timer is counting down continuously; if it ever hits\\nzero, that means Galileo hasn't heard from Earth in a suspiciously long\\ntime and it may be Galileo's fault... so it's time to go into a fallback\\nmode that minimizes chances of spacecraft damage and maximizes chances\\nof restoring contact. I don't know exactly what-all Galileo does in such\\na situation, but a common example is to switch receivers, on the theory\\nthat maybe the one you're listening with has died.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Re: Ten questions about Israel\\nOrganization: Brown University Department of Computer Science\\nLines: 21\\n\\ncpr@igc.apc.org (Center for Policy Research) writes:\\n\\n# 3. Is it true that Israeli stocks nuclear weapons ? If so,\\n# could you provide any evidence ?\\n\\nYes, Israel has nuclear weapons. However:\\n\\n1) Their use so far has been restricted to killing deer, by LSD addicted\\n \"Cherrie\" soldiers.\\n\\n2) They are locked in the cellar of the \"Garinei Afula\" factory, and since\\n the Gingi lost the key, no one can use them anymore.\\n\\n3) Even if the Gingi finds the key, the chief Rabbis have a time lock\\n on the bombs that does not allow them to be activated on the Sabbath\\n and during weeks which follow victories of the Betar Jerusalem soccer\\n team. A quick glance at the National League score table will reveal\\n the strategic importance of this fact.\\n\\n-Danny Keren.\\n\\n',\n", + " 'From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: Studies on Book of Mormon\\nLines: 31\\nOrganization: Walla Walla College\\nLines: 31\\n\\nIn article <735023059snx@enkidu.mic.cl> agrino@enkidu.mic.cl (Andres Grino Brandt) writes:\\n>From: agrino@enkidu.mic.cl (Andres Grino Brandt)\\n>Subject: Studies on Book of Mormon\\n>Date: Sun, 18 Apr 1993 14:15:33 CST\\n>Hi!\\n>\\n>I don\\'t know much about Mormons, and I want to know about serious independent\\n>studies about the Book of Mormon.\\n>\\n>I don\\'t buy the \\'official\\' story about the gold original taken to heaven,\\n>but haven\\'t read the Book of Mormon by myself (I have to much work learning\\n>Biblical Hebrew), I will appreciate any comment about the results of study\\n>in style, vocabulary, place-names, internal consistency, and so on.\\n>\\n>For example: There is evidence for one-writer or multiple writers?\\n>There are some mention about events, places, or historical persons later\\n>discovered by archeologist?\\n>\\n>Yours in Collen\\n>\\n>Andres Grino Brandt Casilla 14801 - Santiago 21\\n>agrino@enkidu.mic.cl Chile\\n>\\n>No hay mas realidad que la realidad, y la razon es su profeta\\nI don\\'t think the Book of Mormon was supposedly translated from Biblical \\nHebrew. I\\'ve read that \"prophet Joseph Smith\" traslated the gold tablets \\nfrom some sort of Egyptian-ish language. \\nFormer Mormons, PLEASE post.\\n\\nTammy \"no trim\" Healy\\n\\n',\n", + " 'From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Freedom In U.S.A.\\nOrganization: NYSERNet, Inc.\\nLines: 23\\n\\nab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>\\tI have just started reading the articles in this news\\n>group. There seems to be an attempt by some members to quiet\\n>other members with scare tactics. I believe one posting said\\n>that all postings by one person are being forwarded to his\\n>server who keeps a file on him in hope that \"Appropriate action\\n>might be taken\". \\n>\\tI don\\'t know where you guys are from but in America\\n>such attempts to curtail someones first amendment rights are\\n>not appreciated. Here, we let everyone speak their mind\\n>regardless of how we feel about it. Take your fascistic\\n>repressive ideals back to where you came from.\\n\\nFreedom of speech does not mean that others are compelled to give one\\nthe means to speak publicly. Some systems have regulations\\nprohibiting the dissemination of racist and bigoted messages from\\naccounts they issue.\\n\\nApparently, that\\'s not the case with virginia.edu, since you are still\\nposting.\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n',\n", + " 'From: dab@vuse.vanderbilt.edu (David A. Braun)\\nSubject: Wrecked BMW\\nOriginator: dab@necs\\nNntp-Posting-Host: necs\\nOrganization: Vanderbilt University School of Engineering, Nashville, TN, USA\\nDistribution: na\\nLines: 13\\n\\n\\nDo you or does anyone you know have a wrecked 1981 or later R80(anything)\\nor R100(anything) that they are interested in getting rid of? I need\\na motor, but will buy a whole bike.\\n\\nemail replies to:\\tDavid.Braun@FtCollinsCO.NCR.com\\n\\tor:\\t\\tdab@vuse.vanderbilt.edu\\n\\nor phone:\\t303/223-5100 x9487 (voice mail)\\n\\t\\t303/229-0952\\t (home)\\n\\n\\n\\n',\n", + " \"From: jaskew@spam.maths.adelaide.edu.au (Joseph Askew)\\nSubject: Re: the call to space (was Re: Clueless Szaboisms )\\nKeywords: trumpet calls, infrastructure, public perception\\nOrganization: Statistics, Pure & Applied Mathematics, University of Adelaide\\nLines: 32\\n\\nIn article <1pfj8k$6ab@access.digex.com> prb@access.digex.com (Pat) writes:\\n>In article <1993Mar31.161814.11683@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n\\n>>It isn't feasible for Japan to try to stockpile the amount of oil they\\n>>would need to run their industries if they did no use nuclear power.\\n\\n>Of course, Given they export 50 % of the GNP, What do they do.\\n\\nWell they don't export anywhere near 50% of their GNP. Mexico's perhaps\\nbut not their own. They actually export around the 9-10% mark. Similar\\nto most developed countries actually. Australia exports a larger share\\nof GNP as does the United States (14% I think off hand. Always likely to\\nbe out by a factor of 12 or more though) This would be immediately obvious\\nif you thought about it.\\n\\n>Anything serious enough to disrupt the sea lanes for oil will\\n>also hose their export routes.\\n\\nIt is their import routes that count. They can do without exports but\\nthey couldn't live without imports for any longer than six months if that.\\n\\n>Given they import everything, oil is just one more critical commodity.\\n\\nToo true! But one that is unstable and hence a source of serious worry.\\n\\nJoseph Askew\\n\\n-- \\nJoseph Askew, Gauche and Proud In the autumn stillness, see the Pleiades,\\njaskew@spam.maths.adelaide.edu Remote in thorny deserts, fell the grief.\\nDisclaimer? Sue, see if I care North of our tents, the sky must end somwhere,\\nActually, I rather like Brenda Beyond the pale, the River murmurs on.\\n\",\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race\\nOrganization: U of Toronto Zoology\\nLines: 23\\n\\nIn article <3HgF3B3w165w@shakala.com> dante@shakala.com (Charlie Prael) writes:\\n>Doug-- Actually, if memory serves, the Atlas is an outgrowth of the old \\n>Titan ICBM...\\n\\nNope, you're confusing separate programs. Atlas was the first-generation\\nUS ICBM; Titan I was the second-generation one; Titan II, which all the\\nTitan launchers are based on, was the third-generation heavy ICBM. There\\nwas essentially nothing in common between these three programs.\\n\\n(Yes, *three* programs. Despite the similarity of names, Titan I and\\nTitan II were completely different missiles. They didn't even use the\\nsame fuels, never mind the same launch facilities.)\\n\\n>If so, there's probably quite a few old pads, albeit in need \\n>of some serious reconditioning. Still, Being able to buy the turf and \\n>pad (and bunkers, including prep facility) at Midwest farmland prices \\n>strikes me as pretty damned cheap.\\n\\nSorry, the Titan silos (a) can't handle the Titan launchers with their\\nlarge SRBs, (b) can't handle *any* sort of launcher without massive\\nviolations of normal range-safety rules (nobody cares about such things\\nin the event of a nuclear war, but in peacetime they matter), and (c) were\\nscrapped years ago.\\n\",\n", + " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Ok, So I was a little hasty...\\nOrganization: Duke University; Durham, N.C.\\nLines: 16\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nApparently that last post was a little hasy, since I\\ncalled around to more places and got quotes for less\\nthan 600 and 425. Liability only, of course.\\n\\nPlus, one palced will give me C7C for my car + liab on the bike for\\nonly 1350 total, which ain't bad at all.\\n\\nSo I won't go with the first place I called, that's\\nfer sure.\\n\\n\\n-- \\nAndy Infante | You can listen to what everybody says, but the fact remains |\\n'71 BMW R60/5 | that you've got to get out there and do the thing yourself. | \\nDoD #2426 | -- Joan Sutherland | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", + " 'From: osinski@chtm.eece.unm.edu (Marek Osinski)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: University of New Mexico, Albuquerque\\nLines: 12\\nDistribution: world\\nNNTP-Posting-Host: chtm.eece.unm.edu\\n\\nIn article <1993Apr15.174657.6176@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>Compromise on what, the invasion of Cyprus, the involment of Turkey in\\n>Greek politics, the refusal of Turkey to accept 12 miles of territorial\\n>waters as stated by international law, the properties of the Greeks of \\n>Konstantinople, the ownership of the islands in the Greek lake,sorry, Aegean.\\n\\nWell, it did not take long to see how consequent some Greeks are in\\nrequesting that Thessaloniki are not called Solun by Bulgarian netters. \\nSo, Napoleon, why do you write about Konstantinople and not Istanbul?\\n\\nMarek Osinski\\n',\n", + " 'From: mbh2@engr.engr.uark.edu (M. Barton Hodges)\\nSubject: Stereoscopic imaging\\nSummary: Stereoscopic imaging\\nKeywords: stereoscopic\\nNntp-Posting-Host: engr.engr.uark.edu\\nOrganization: University of Arkansas\\nLines: 8\\n\\nI am interested in any information on stereoscopic imaging on a sun\\nworkstation. For the most part, I need to know if there is any hardware\\navailable to interface the system and whether the refresh rates are\\nsufficient to produce quality image representations. Any information\\nabout the subject would be greatly appreciated.\\n\\n Thanks!\\n\\n',\n", + " 'From: ktt3@unix.brighton.ac.uk (Koon Tang)\\nSubject: PostScript driver for GINO\\nOrganization: The Univerity of Brighton, U.K.\\nLines: 15\\n\\nDoes anybody know where I can get, via anonymous ftp or otherwise, a PostScript\\ndriver for the graphics libraries GINO verison 3.0A ?\\n\\nWe are runnining on a VAX/VMS and are looking for a way outputing our plots to a\\nPostScript file...\\n\\n\\nThanks in advance...\\n-- \\nKoon Tang, internet: ktt3@unix.bton.ac.uk\\nDepartment of Mathematical Sciences, uucp: uknet!itri!ktt3\\nUniversity of Brighton,\\nBrighton,\\nBN2 4GJ,\\nU.K.\\n',\n", + " 'From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Boom! Hubcap attack!\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 21\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, speedy@engr.latech.edu (Speedy Mercer) says:\\n\\n>I was attacked by a rabid hubcap once. I was going to work on a Yamaha\\n>750 Twin (A.K.A. \"the vibrating tank\") when I heard a wierd noise off to my \\n>left. I caught a glimpse of something silver headed for my left foot and \\n>jerked it up about a nanosecond before my bike was hit HARD in the left \\n>side. When I went to put my foot back on the peg, I found that it was not \\n>there! I pulled into the nearest parking lot and discovered that I had been \\n>hit by a wire-wheel type hubcap from a large cage! This hubcap weighed \\n>about 4-5 pounds! The impact had bent the left peg flat against the frame \\n>and tweeked the shifter in the process. Had I not heard the approaching \\n>cap, I feel certian that I would be sans a portion of my left foot.\\n>\\nHmmmm.....I wondered where that hubcap went.\\n\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n',\n", + " 'From: rbemben@timewarp.prime.com (Rich Bemben)\\nSubject: Re: Riceburner Respect\\nExpires: 15 May 93 05:00:00 GMT\\nOrganization: Computervision Corp., Bedford, Ma.\\nLines: 19\\n\\nIn article <1993Apr9.172953.12408@cbnewsm.cb.att.com> shz@mare.att.com (Keeper of the \\'Tude) writes:\\n>The rider (pilot?) of practically every riceburner I\\'ve passed recently\\n>has waved to me and I\\'m wondering if it will last. Could they simply be \\n>overexuberant that their \\'burners have been removed from winter moth-balls \\n>and the novelty will soon dissipate? Perhaps the gray beard that sprouted\\n>since the last rice season makes them think I\\'m a friendly old fart that\\n>deserves a wave...\\n\\nMaybe...then again did you get rid of that H/D of yorn and buy a rice rocket \\nof your own? That would certainly explain the friendliness...unless you \\nmaybe had a piece of toilet paper stuck on the bottom of your boot...8-).\\n\\nRich\\n\\n\\nRich Bemben - DoD #0044 rbemben@timewarp.prime.com\\n1977 750 Triumph Bonneville (617) 275-1800 x 4173\\n\"Fear not the evil men do in the name of evil, but heaven protect\\n us from the evil men do in the name of good\"\\n',\n", + " \"From: nelson@seahunt.imat.com (Michael Nelson)\\nSubject: Re: Why I won't be getting my Low Rider this year\\nKeywords: congratz\\nArticle-I.D.: myrddin.C52EIp.71x\\nOrganization: SeaHunt, San Francisco CA\\nLines: 29\\nNntp-Posting-Host: seahunt.imat.com\\n\\nIn article <1993Apr5.182851.23410@cbnewsj.cb.att.com> car377@cbnewsj.cb.att.com (charles.a.rogers) writes:\\n>\\n>Ouch. :-) This brings to mind one of the recommendations in the\\n>Hurt Study. Because the rear of the gas tank is in close proximity\\n>to highly prized and easily damaged anatomy, Hurt et al recommended\\n>that manufacturers build the tank so as to reduce the, er, step function\\n>provided when the rider's body slides off of the seat and onto the\\n>gas tank in the unfortunate event that the bike stops suddenly and the \\n>rider doesn't. I think it's really inspiring how the manufacturers\\n>have taken this advice to heart in their design of bikes like the \\n>CBR900RR and the GTS1000A.\\n\\n\\tWhen I'm riding my 900RR, my goodies are already up\\n\\tagainst the tank, because the design of the Corbin seat\\n\\ttends to move you forward.\\n\\n\\tWouldn't the major danger to one's cajones be due to\\n\\taccelerating into and then being stopped by the tank? If\\n\\tyou're already there, there wouldn't be an impact\\n\\tproblem, would there?\\n\\n\\t\\t\\t\\t- Michael -\\n\\n\\n-- \\n+-------------------------------------------------------------+\\n| Michael Nelson 1993 CBR900RR |\\n| Internet: nelson@seahunt.imat.com Dod #0735 |\\n+-------------------------------------------------------------+\\n\",\n", + " \"From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: Happy Easter!\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 23\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nKaren Black (karen@angelo.amd.com) wrote:\\n: ranck@joesbar.cc.vt.edu (Wm. L. Ranck) writes:\\n: >Nick Pettefar (npet@bnr.ca) wrote:\\n: >: English cars:-\\n: >\\n: >: Rover, Reliant, Morgan, Bristol, Rolls Royce, etc.\\n: > ^^^^^^\\n: > Talk about Harleys using old technology, these\\n: >Morgan people *really* like to use old technology.\\n\\n: Well, if you want to pick on Morgan, why not attack its ash (wood)\\n: frame or its hand-bent metal skin (just try and get a replacement :-)). \\n: I thought the kingpost suspension was one of the Mog's better features.\\n\\nHey! I wasn't picking on Morgan. They use old technology. That's all\\nI said. There's nothing wrong with using old technology. People still\\nuse shovels to dig holes even though there are lots of new powered implements\\nto dig holes with. \\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Political Atheists?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 57\\nNNTP-Posting-Host: lloyd.caltech.edu\\n\\nmmwang@adobe.com (Michael Wang) writes:\\n\\n>I was looking for a rigorous definition because otherwise we would be\\n>spending the rest of our lives arguing what a \"Christian\" really\\n>believes.\\n\\nI don\\'t think we need to argue about this.\\n\\n>KS>Do you think that the motto points out that this country is proud\\n>KS>of its freedom of religion, and that this is something that\\n>KS>distinguishes us from many other countries?\\n>MW>No.\\n>KS>Well, your opinion is not shared by most people, I gather.\\n>Perhaps not, but that is because those seeking to make government\\n>recognize Christianity as the dominant religion in this country do not\\n>think they are infringing on the rights of others who do not share\\n>their beliefs.\\n\\nYes, but also many people who are not trying to make government recognize\\nChristianity as the dominant religion in this country do no think\\nthe motto infringes upon the rights of others who do not share their\\nbeliefs.\\n\\nAnd actually, I think that the government already does recognize that\\nChristianity is the dominant religion in this country. I mean, it is.\\nDon\\'t you realize/recognize this?\\n\\nThis isn\\'t to say that we are supposed to believe the teachings of\\nChristianity, just that most people do.\\n\\n>Like I\\'ve said before I personally don\\'t think the motto is a major\\n>concern.\\n\\nIf you agree with me, then what are we discussing?\\n\\n>KS>Since most people don\\'t seem to associate Christmas with Jesus much\\n>KS>anymore, I don\\'t see what the problem is.\\n>Can you prove your assertion that most people in the U.S. don\\'t\\n>associate Christmas with Jesus anymore?\\n\\nNo, but I hear quite a bit about Christmas, and little if anything about\\nJesus. Wouldn\\'t this figure be more prominent if the holiday were really\\nassociated to a high degree with him? Or are you saying that the\\nassociation with Jesus is on a personal level, and that everyone thinks\\nabout it but just never talks about it?\\n\\nThat is, can *you* prove that most people *do* associate Christmas\\nmost importantly with Jesus?\\n\\n>Anyways, the point again is that there are people who do associate\\n>Christmas with Jesus. It doesn\\'t matter if these people are a majority\\n>or not.\\n\\nI think the numbers *do* matter. It takes a majority, or at least a\\nmajority of those in power, to discriminate. Doesn\\'t it?\\n\\nkeith\\n',\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Blow up space station, easy way to do it.\\nArticle-I.D.: aurora.1993Apr5.184527.1\\nOrganization: University of Alaska Fairbanks\\nLines: 28\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nThis might a real wierd idea or maybe not..\\n\\nI have seen where people have blown up ballons then sprayed material into them\\nthat then drys and makes hard walls...\\n\\nWhy not do the same thing for a space station..\\n\\nFly up the docking rings and baloon materials and such, blow up the baloons,\\nspin then around (I know a problem in micro gravity) let them dry/cure/harden?\\nand cut a hole for the docking/attaching ring and bingo a space station..\\n\\nOf course the ballons would have to be foil covered or someother radiation\\nprotective covering/heat shield(?) and the material used to make the wals would\\nhave to meet the out gasing and other specs or atleast the paint/covering of\\nthe inner wall would have to be human safe.. Maybe a special congrete or maybe\\nthe same material as makes caplets but with some changes (saw where someone\\ninstea dof water put beer in the caplet mixture, got a mix that was just as\\nstrong as congret but easier to carry around and such..)\\n\\nSorry for any spelling errors, I missed school today.. (grin)..\\n\\nWhy musta space station be so difficult?? why must we have girders? why be\\nconfined to earth based ideas, lets think new ideas, after all space is not\\nearth, why be limited by earth based ideas??\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\ngoing crazy in Nome Alaska, break up is here..\\n\",\n", + " \"From: mmanning@icomsim.com (Michael Manning)\\nSubject: Re: Bikes And Contacts\\nOrganization: Icom Simulations\\nLines: 30\\n\\nIn article <1993Apr13.163450.1@skcla.monsanto.com> \\nmpmena@skcla.monsanto.com writes:\\n\\n> Michael (Manning)...Must be that blockhead of yours....the gargoyles\\n> are the ONLY thing that work for me! ;*}\\n> \\n> \\n> Michael (Menard)\\n> \\n> P.S. When you showin' up at Highland House? We'll compare sunglasses...\\n\\nLet's see how the weather is Saturday or Sunday. It sucks\\ntoday. What time is good?\\nYou're welcome to give any of the ones I have a try. As\\nfor the gargoyles, if you want mine you can have 'em. I\\nthink the bridge of my nose holds them too far from my face.\\nSame deal for the two of my friends who tried them. For\\npeople who use them with a full face helmet, all bets are\\noff. Sorry if they fit you well and took my complaint\\npersonally. Yes the Oakleys are much more desirable squid\\nattire. Also the gargoyles aren't that ugly, even in my\\nopinion, or I wouldn't have tried them.\\n\\n--\\nMichael Manning\\nmmanning@icomsim.com (NeXTMail accepted.)\\n\\n`92 FLSTF FatBoy\\n`92 Ducati 900SS\\n\\n\",\n", + " 'From: karish@gondwana.Stanford.EDU (Chuck Karish)\\nSubject: Re: Recommended bike for a tall beginner.\\nOrganization: Mindcraft, Inc.\\nDistribution: usa\\nLines: 13\\n\\nIn article <47116@sdcc12.ucsd.edu> jtozer@sdcc3.ucsd.edu (John Tozer) writes:\\n>\\tI am looking for advice on what bikes I should check out. I\\n>am 6\\'4\" tall, and find my legs/hips uncomfortably bent on most of\\n>the bikes I have ridden (not many admittedly). Are there any bikes\\n>out there built for a taller rider?\\n\\nThere\\'s plenty of legroom on the Kawasaki KLR650. A bit\\nshort in the braking department for spirited street riding,\\nbut enough for dirt and for less-agressive street stuff.\\n--\\n\\n Chuck Karish karish@mindcraft.com\\n (415) 323-9000 x117 karish@pangea.stanford.edu\\n',\n", + " \"From: adams@bellini.berkeley.edu (Adam L. Schwartz)\\nSubject: Re: Israel's Expansion II\\nNntp-Posting-Host: bellini.berkeley.edu\\nOrganization: U.C. Berkeley -- ERL\\nLines: 9\\n\\nIn article <93111.225707PP3903A@auvm.american.edu> Paul H. Pimentel writes:\\n>What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n>s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n>k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n>ore they have a right to Jerusaleum as much as Isreal does.\\n\\n\\nWhat gives the United States the right to keep Washington D.C.? \\n\",\n", + " 'From: higgins@fnala.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: NASA Ames server (was Re: Space Station Redesign, JSC Alternative #4)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 14\\nNNTP-Posting-Host: fnala.fnal.gov\\n\\nIn article <1993Apr26.152722.19887@aio.jsc.nasa.gov>, kjenks@jsc.nasa.gov (Ken Jenks [NASA]) writes:\\n> I just posted the GIF files out for anonymous FTP on server ics.uci.edu.\\n[...]\\n> Sorry it took\\n> me so long to get these out, but I was trying for the Ames server,\\n> but it\\'s out of space.\\n\\nHow ironic.\\n\\nBill Higgins, Beam Jockey | \"Treat your password like\\nFermi National Accelerator Laboratory | your toothbrush. Don\\'t let\\nBitnet: HIGGINS@FNAL.BITNET | anybody else use it--\\nInternet: HIGGINS@FNAL.FNAL.GOV | and get a new one every\\nSPAN/Hepnet: 43011::HIGGINS | six months.\" --Cliff Stoll\\n',\n", + " 'From: hdsteven@solitude.Stanford.EDU (H. D. Stevens)\\nSubject: Re: Inflatable Mile-Long Space Billboards (was Re: Vandalizing the sky.)\\nOrganization: stanford\\nLines: 38\\n\\nIn article , yamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n|> >NASA would provide contractual launch services. However,\\n|> >since NASA bases its charge on seriously flawed cost estimates\\n|> >(WN 26 Mar 93) the taxpayers would bear most of the expense. This\\n|> >may look like environmental vandalism, but Mike Lawson, CEO of\\n|> >Space Marketing, told us yesterday that the real purpose of the\\n|> >project is to help the environment! The platform will carry ozone\\n|> >monitors he explained--advertising is just to help defray costs.\\n|> \\n|> This may be the purpose for the University of Colorado people. My\\n|> guess is that the purpose for the Livermore people is to learn how to\\n|> build large, inflatable space structures.\\n|> \\n\\nThe CU people have been, and continue to be big ozone scientists. So \\nthis is consistent. It is also consistent with the new \"Comercial \\napplications\" that NASA and Clinton are pushing so hard. \\n|> \\n|> >Is NASA really supporting this junk?\\n\\nDid anyone catch the rocket that was launched with a movie advert \\nall over it? I think the rocket people got alot of $$ for painting \\nup the sides with the movie stuff. What about the Coke/Pepsi thing \\na few years back? NASA has been trying to find ways to get other \\npeople into the space funding business for some time. Frankly, I\\'ve \\nthought about trying it too. When the funding gets tight, only the \\ninnovative get funded. One of the things NASA is big on is co-funding. \\nIf a PI can show co-funding for any proposal, that proposal has a SIGNIFICANTLY\\nhigher probability of being funded than a proposal with more merit but no \\nco-funding. Once again, money talks!\\n\\n\\n-- \\nH.D. Stevens\\nStanford University\\t\\t\\tEmail:hdsteven@sun-valley.stanford.edu\\nAerospace Robotics Laboratory\\t\\tPhone:\\t(415) 725-3293 (Lab)\\nDurand Building\\t\\t\\t\\t\\t(415) 722-3296 (Bullpen)\\nStanford, CA 94305\\t\\t\\tFax:\\t(415) 725-3377\\n',\n", + " 'Subject: Re: Bill Conner:\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 17\\n\\nIn article bil@okcforum.osrhe.edu (Bill Conner) writes:\\n\\n>Could you explain what any of this pertains to? Is this a position\\n>statement on something or typing practice? And why are you using my\\n>name, do you think this relates to anything I\\'ve said and if so, what.\\n>\\n>Bill\\n\\n Could you explain what any of the above pertains to? Is this a position \\nstatement on something or typing practice? \\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", + " \"From: edb9140@tamsun.tamu.edu (E.B.)\\nSubject: POV problems with tga outputs\\nOrganization: Texas A&M University, College Station, TX\\nLines: 9\\nDistribution: world\\nNNTP-Posting-Host: tamsun.tamu.edu\\n\\nI can't fiqure this out. I have properly compiled pov on a unix machine\\nrunning SunOS 4.1.3 The problem is that when I run the sample .pov files and\\nuse the EXACT same parameters when compiling different .tga outputs. Some\\nof the .tga's are okay, and other's are unrecognizable by any software.\\n\\nHelp!\\ned\\nedb9140@tamsun.tamu.edu\\n\\n\",\n", + " 'From: zowie@daedalus.stanford.edu (Craig \"Powderkeg\" DeForest)\\nSubject: Re: Cold Gas tanks for Sounding Rockets\\nOrganization: Stanford Center for Space Science and Astrophysics\\nLines: 29\\nNNTP-Posting-Host: daedalus.stanford.edu\\nIn-reply-to: rdl1@ukc.ac.uk\\'s message of 16 Apr 93 14:28:07 GMT\\n\\nIn article <3918@eagle.ukc.ac.uk> rdl1@ukc.ac.uk (R.D.Lorenz) writes:\\n >Does anyone know how to size cold gas roll control thruster tanks\\n >for sounding rockets?\\n\\n Well, first you work out how much cold gas you need, then make the\\n tanks big enough.\\n\\nOur sounding rocket payload, with telemetry, guidance, etc. etc. and a\\ntelescope cluster, weighs around 1100 pounds. It uses freon jets for\\nsteering and a pulse-width-modulated controller for alignment (ie\\nduring our eight minutes in space, the jets are pretty much\\ncontinuously firing on a ~10% duty cycle or so...). The jets also\\nneed to kill residual angular momentum from the spin stabilization, and\\nflip the payload around to look at the Sun.\\n\\nWe have two freon tanks, each holding ~5 liters of freon (I\\'m speaking\\nonly from memory of the last flight). The ground crew at WSMR choose how\\nmuch freon to use based on some black-magic algorithm. They have\\nextra tank modules that just bolt into the payload stack.\\n\\nThis should give you an idea of the order of magnitude for cold gas \\nquantity. If you really need to know, send me email and I\\'ll try to get you\\nin touch with our ground crew people.\\n\\nCheers,\\nCraig\\n\\n--\\nDON\\'T DRINK SOAP! DILUTE DILUTE! OK!\\n',\n", + " \"From: rgc3679@bcstec.ca.boeing.com (Robert G. Carpenter)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nOrganization: Boeing\\nLines: 24\\n\\nIn article John_Shepardson.esh@qmail.slac.stanford.edu (John Shepardson) writes:\\n>> Can you please offer some recommendations? (3d graphics)\\n>\\n>\\n>There has been a fantastic 3d programmers package for some years that has\\n>been little advertised, and apparently nobody knows about, called 3d\\n>Graphic Tools written by Mark Owen of Micro System Options in Seattle WA. \\n>I reviewed it a year or so ago and was really awed by it's capabilities. \\n>It also includes tons of code for many aspects of Mac programming\\n>(including offscreen graphics). It does Zbuffering, 24 bit graphics, has a\\n>database for representing graphical objects, and more.\\n>It is very well written (MPW C, Think C, and HyperCard) and the code is\\n>highly reusable. Last time I checked the price was around $150 - WELL\\n>worth it.\\n>\\n>Their # is (206) 868-5418.\\n\\n I've talked with Mark and he faxed some literature, though it wasn't very helpful-\\n just a list of routine names: _BSplineSurface, _DrawString3D... 241 names.\\n There was a Product Info sheet that explained some of the package capabilities.\\n I also found a review in April/May '92 MacTutor.\\n\\n It does look like a good package. The current price is $295 US.\\n\\n\",\n", + " 'From: jscotti@lpl.arizona.edu (Jim Scotti)\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 33\\n\\nIn article <1993Apr21.170817.15845@sq.sq.com> msb@sq.sq.com (Mark Brader) writes:\\n>\\n>> > > Also, peri[jove]s of Gehrels3 were:\\n>> > > \\n>> > > April 1973 83 jupiter radii\\n>> > > August 1970 ~3 jupiter radii\\n>\\n>> > Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. ...\\n>\\n>> Sorry, _perijoves_...I\\'m not used to talking this language.\\n>\\n>Thanks again. One final question. The name Gehrels wasn\\'t known to\\n>me before this thread came up, but the May issue of Scientific American\\n>has an article about the \"Inconstant Cosmos\", with a photo of Neil\\n>Gehrels, project scientist for NASA\\'s Compton Gamma Ray Observatory.\\n>Same person?\\n\\nNeil Gehrels is Prof. Tom Gehrels son. Tom Gehrels was the discoverer\\nof P/Gehrels 3 (as well as about 4 other comets - the latest of which\\ndoes not bear his name, but rather the name \"Spacewatch\" since he was\\nobserving with that system when he found the latest comet). \\n\\n>-- \\n>Mark Brader, SoftQuad Inc., Toronto\\t\"Information! ... We want information!\"\\n>utzoo!sq!msb, msb@sq.com\\t\\t\\t\\t-- The Prisoner\\n\\n---------------------------------------------\\nJim Scotti \\n{jscotti@lpl.arizona.edu}\\nLunar & Planetary Laboratory\\nUniversity of Arizona\\nTucson, AZ 85721 USA\\n---------------------------------------------\\n',\n", + " 'From: mcguire@cs.utexas.edu (Tommy Marcus McGuire)\\nSubject: Re: Countersteering_FAQ please post\\nArticle-I.D.: earth.ls1v14INNjml\\nOrganization: CS Dept, University of Texas at Austin\\nLines: 54\\nNNTP-Posting-Host: earth.cs.utexas.edu\\n\\nIn article <12739@news.duke.edu> infante@acpub.duke.edu (Andrew Infante) writes:\\n>In article <05APR93.02678944.0049@UNBVM1.CSD.UNB.CA> C70A@UNB.CA (C70A000) writes:\\n>>In article Eric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n>>>Would someone please post the countersteering FAQ...i am having this awful\\n[...]\\n>>\\n>> Ummm, if you push on the right handle of your bike while at speed and\\n>>your bike turns left, methinks your bike has a problem. When I do it\\n>\\n>Really!?\\n>\\n>Methinks somethings wrong with _your_ bike.\\n>\\n>Perhaps you meant _pull_?\\n>\\n>Pushing the right side of my handlebars _will_ send me left.\\n>\\n>It should. \\n>REally.\\n>\\n>>on MY bike, I turn right. No wonder you need that FAQ. If I had it\\n>>I\\'d send it.\\n>\\n>I\\'m sure others will take up the slack...\\n>\\n[...]\\n>-- \\n>Andy Infante | I sometimes wish that people would put a little more emphasis |\\n\\n\\nOh, lord. This is where I came in.\\n\\nObcountersteer: For some reason, I\\'ve discovered that pulling on the\\nwrong side of the handlebars (rather than pushing on the other wrong\\nside, if you get my meaning) provides a feeling of greater control. For\\nexample, rather than pushing on the right side to lean right to turn \\nright (Hi, Lonny!), pulling on the left side at least until I get leaned\\nover to the right feels more secure and less counter-intuitive. Maybe\\nI need psychological help.\\n\\nObcountersteer v2.0:Anyone else find it ironic that in the weekend-and-a-\\nnight MSF class, they don\\'t mention countersteering until after the\\nfirst day of riding?\\n\\n\\n\\n-----\\nTommy McGuire, who\\'s going to hit his head on door frames the rest of\\n the evening, leaning into those tight turns....\\nmcguire@cs.utexas.edu\\nmcguire@austin.ibm.com\\n\\n\"...I will append an appropriate disclaimer to outgoing public information,\\nidentifying it as personal and as independent of IBM....\"\\n',\n", + " \"From: ednobles@sacam.OREN.ORTN.EDU (Edward d Nobles)\\nSubject: windows imagine??!!\\nOrganization: Oak Ridge National Laboratory\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 10\\n\\n\\nHas ANYONE who has ordered the new PC version of Imagine ACTUALLY recieved\\nit yet? I'm just about ready to order but reading posts about people still\\nawaiting delivery are making me a little paranoid. Has anyone actually \\nheld this piece of software in their own hands?\\n\\nLater,\\n\\nJim Nobles\\n\\n\",\n", + " 'From: ma170saj@sdcc14.ucsd.edu (System Operator)\\nSubject: A Moment Of Silence\\nOrganization: University of California, San Diego\\nLines: 14\\nNntp-Posting-Host: sdcc14.ucsd.edu\\n\\n\\n April 24th is approaching, and Armenians around the world\\nare getting ready to remember the massacres of their family members\\nby the Turkish government between 1915 and 1920. \\n At least 1.5 Million Armenians perished during that period,\\nand it is important to note that those who deny that this event\\never took place, either supported the policy of 1915 to exterminate\\nthe Armenians, or, as we have painfully witnessed in Azerbaijan,\\nwould like to see it happen again...\\n Thank you for taking the time to read this post.\\n\\n -Helgge\\n\\n\\n',\n", + " 'From: cervi@oasys.dt.navy.mil (Mark Cervi)\\nSubject: Re: ++BIKE SOLD OVER NET 600 MILES AWAY!++\\nOrganization: NSWC, Carderock Division, Annapolis, MD, USA\\nLines: 15\\n\\nIn article <6130331@hplsla.hp.com> kens@hplsla.hp.com (Ken Snyder) writes:\\n>\\n>> Any other bikes sold long distances out there...I\\'d love to hear about\\n>it!\\n\\nI bought my Moto Guzzi from a Univ of Va grad student in Charlottesville\\nlast spring.\\n\\n\\t Mark Cervi, cervi@oasys.dt.navy.mil, (w) 410-267-2147\\n\\t\\t DoD #0603 MGNOC #12998 \\'87 Moto Guzzi SP-II\\n \"What kinda bikes that?\" A Moto Guzzi. \"What\\'s that?\" Its Italian.\\n-- \\n\\n\\tMark Cervi, CARDEROCKDIV, NSWC Code 852, Annapolis, MD 21402\\n\\t\\t cervi@oasys.dt.navy.mil, (w) 410-267-2147\\n',\n", + " \"From: nelson@seahunt.imat.com (Michael Nelson)\\nSubject: Re: Protective gear\\nNntp-Posting-Host: seahunt.imat.com\\nOrganization: SeaHunt, San Francisco CA\\nLines: 15\\n\\nIn article <1993Apr5.151323.7183@rd.hydro.on.ca> jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n>\\n>I'm still looking for good gloves, myself,\\n>as the ones I have now are too loose.\\n\\n\\tWhen you find some new ones, I suggest donating the ones\\n\\tyou have now to the Lautrec family in France... \\n\\n\\t\\t\\t\\tMichael\\n\\n-- \\n+-------------------------------------------------------------+\\n| Michael Nelson 1993 CBR900RR |\\n| Internet: nelson@seahunt.imat.com Dod #0735 |\\n+-------------------------------------------------------------+\\n\",\n", + " \"From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Science News article on Federal R&D\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 24\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , xrcjd@resolve.gsfc.nasa.gov (Charles J. Divine) writes:\\n> Just a pointer to the article in the current Science News article\\n> on Federal R&D funding.\\n> \\n> Very briefly, all R&D is being shifted to gaining current \\n> competitive advantage from things like military and other work that\\n> does not have as much commercial utility.\\n> -- \\n> Chuck Divine\\n\\nGulp.\\n\\n[Disclaimer: This opinion is mine and does not represent the views of\\nFermilab, Universities Research Association, the Department of Energy,\\nor the 49th Ward Regular Science Fiction Organization.]\\n \\n-- \\n O~~* /_) ' / / /_/ ' , , ' ,_ _ \\\\|/\\n - ~ -~~~~~~~~~~~/_) / / / / / / (_) (_) / / / _\\\\~~~~~~~~~~~zap!\\n / \\\\ (_) (_) / | \\\\\\n | | Bill Higgins Fermi National Accelerator Laboratory\\n \\\\ / Bitnet: HIGGINS@FNAL.BITNET\\n - - Internet: HIGGINS@FNAL.FNAL.GOV\\n ~ SPAN/Hepnet: 43011::HIGGINS \\n\",\n", + " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Sixty-two thousand (was Re: How many read sci.space?)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 67\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article <1993Apr15.072429.10206@sol.UVic.CA>, rborden@ugly.UVic.CA (Ross Borden) writes:\\n> In article <734850108.F00002@permanet.org> Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado) writes:\\n>>\\n>>One could go on and on and on here, but I wonder ... how\\n>>many people read sci.space and of what power/influence are\\n>>these individuals?\\n>>\\n> \\tQuick! Everyone who sees this, post a reply that says:\\n> \\n> \\t\\t\\t\"Hey, I read sci.space!\"\\n> \\n> Then we can count them, and find out how many there are! :-)\\n> (This will also help answer that nagging question: \"Just what is\\n> the maximum bandwidth of the Internet, anyways?\")\\n\\nA practical suggestion, to be sure, but one could *also* peek into\\nnews.lists, where Brian Reid has posted \"USENET Readership report for\\nMar 93.\" Another posting called \"USENET READERSHIP SUMMARY REPORT FOR\\nMAR 93\" gives the methodology and caveats of Reid\\'s survey. (These\\npostings failed to appear for a while-- I wonder why?-- but they are\\nnow back.)\\n\\nReid, alas, gives us no measure of the \"power/influence\" of readers...\\nSorry, Mark.\\n\\nI suspect Mark, dangling out there on Fidonet, may not get news.lists\\nso I\\'ve mailed him copies of these reports.\\n\\nThe bottom line?\\n\\n +-- Estimated total number of people who read the group, worldwide.\\n | +-- Actual number of readers in sampled population\\n | | +-- Propagation: how many sites receive this group at all\\n | | | +-- Recent traffic (messages per month)\\n | | | | +-- Recent traffic (kilobytes per month)\\n | | | | | +-- Crossposting percentage\\n | | | | | | +-- Cost ratio: $US/month/rdr\\n | | | | | | | +-- Share: % of newsrders\\n | | | | | | | | who read this group.\\n V V V V V V V V\\n 88 62000 1493 80% 1958 4283.9 19% 0.10 2.9% sci.space \\n\\nThe first figure indicates that sci.space ranks 88th among most-read\\nnewsgroups.\\n\\nI\\'ve been keeping track sporadically to watch the growth of traffic\\nand readership. You might be entertained to see this.\\n\\nOct 91 55 71000 1387 84% 718 1865.2 21% 0.04 4.2% sci.space\\nMar 92 43 85000 1741 82% 1207 2727.2 13% 0.06 4.1% sci.space\\nJul 92 48 94000 1550 80% 1044 2448.3 12% 0.04 3.8% sci.space\\nMay 92 45 94000 2023 82% 834 1744.8 13% 0.04 4.1% sci.space\\n(some kind of glitch in estimating number of readers happens here)\\nSep 92 45 51000 1690 80% 1420 3541.2 16% 0.11 3.6% sci.space \\nNov 92 78 47000 1372 81% 1220 2633.2 17% 0.08 2.8% sci.space \\n(revision in ranking groups happens here(?))\\nMar 93 88 62000 1493 80% 1958 4283.9 19% 0.10 2.9% sci.space \\n\\nPossibly old Usenet hands could give me some more background on how to\\ninterpret these figures, glitches, or the history of Reid\\'s reporting\\neffort. Take it to e-mail-- it doesn\\'t belong in sci.space.\\n\\nBill Higgins, Beam Jockey | In a churchyard in the valley\\nFermi National Accelerator Laboratory | Where the myrtle doth entwine\\nBitnet: HIGGINS@FNAL.BITNET | There grow roses and other posies\\nInternet: HIGGINS@FNAL.FNAL.GOV | Fertilized by Clementine.\\nSPAN/Hepnet: 43011::HIGGINS |\\n',\n", + " \"From: cywang@ux1.cso.uiuc.edu (Crying Freeman)\\nSubject: What's a good assembly VGA programming book?\\nOrganization: University of Illinois at Urbana\\nLines: 9\\n\\nCan someone give me the title of a good VGA graphics programming book?\\nPlease respond by email. Thanks!\\n\\n\\t\\t\\t--Yuan\\n\\n-- \\nChe-Yuan Wang\\ncw21219@uxa.cso.uiuc.edu\\ncywang@ux1.cso.uiuc.edu\\n\",\n", + " 'From: CBW790S@vma.smsu.edu.Ext (Corey Webb)\\nSubject: Re: HELP!!! GRASP\\nOrganization: SouthWest Mo State Univ\\nLines: 29\\nNNTP-Posting-Host: vma.smsu.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\nIn article <1993Apr19.160944.20236W@baron.edb.tih.no>\\nhavardn@edb.tih.no (Haavard Nesse,o92a) writes:\\n>\\n>Could anyone tell me if it\\'s possible to save each frame\\n>of a .gl (grasp) animation to .gif, .jpg, .iff or any other\\n>picture formats.\\n>\\n \\n If you have the GRASP animation system, then yes, it\\'s quite easy.\\nYou simply use GLIB to extract the image (each \"frame\" in a .GL is\\nactually a complete .PCX or .CLP file), then use one of MANY available\\nutilities to convert it. If you don\\'t have the GRASP package, I\\'m afraid\\nI can\\'t help you. Sorry.\\n By the way, before you ask, GRASP (GRaphics Animation System for\\nProfessionals) is a commercial product that sells for just over US$300\\nfrom most mail-order companies I\\'ve seen. And no, I don\\'t have it. :)\\n \\n \\n Corey Webb\\n \\n \\n ____________________________________________________________________\\n | Corey Webb | \"For in much wisdom is much grief, and |\\n | cbw790s@vma.smsu.edu | he that increaseth knowledge increaseth |\\n | Bitnet: CBW790S@SMSVMA | sorrow.\" -- Ecclesiastes 1:18 |\\n |-------------------------|------------------------------------------|\\n | The \"S\" means I am only | \"But first, are you experienced?\" |\\n | speaking for myself. | -- Jimi Hendrix |\\n \\n',\n", + " \"From: n4hy@harder.ccr-p.ida.org (Bob McGwier)\\nSubject: Re: NAVSTAR positions\\nOrganization: IDA Center for Communications Research\\nLines: 11\\nDistribution: world\\nNNTP-Posting-Host: harder.ccr-p.ida.org\\nIn-reply-to: Thomas.Enblom@eos.ericsson.se's message of 19 Apr 93 06:34:55 GMT\\n\\n\\nYou have missed something. There is a big difference between being in\\nthe SAME PLANE and in exactly the same state (positions and velocities\\nequal). IN addition to this, there has always been redundancies proposed.\\n\\nBob\\n--\\n------------------------------------------------------------------------------\\nRobert W. McGwier | n4hy@ccr-p.ida.org\\nCenter for Communications Research | Interests: amateur radio, astronomy,golf\\nPrinceton, N.J. 08520 | Asst Scoutmaster Troop 5700, Hightstown\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: \"Cruel\" (was Re: >This whole thread started because of a discussion about whether\\n>>or not the death penalty constituted cruel punishment, which is forbidden\\n>>by the US Constitution.\\n>Yes, but they didn\\'t say what they meant by \"cruel\", which is why\\n>a) you have the Supreme Court, and b) it makes no sense to refer\\n>to the Constitution, which is quite silent on the meaning of the\\n>word \"cruel\".\\n\\nThey spent quite a bit of time on the wording of the Constitution. They\\npicked words whose meanings implied the intent. We have already looked\\nin the dictionary to define the word. Isn\\'t this sufficient?\\n\\n>>Oh, but we were discussing the death penalty (and that discussion\\n>>resulted from the one about murder which resulted from an intial\\n>>discussion about objective morality--so this is already three times\\n>>removed from the morality discussion).\\n>Actually, we were discussing the mening of the word \"cruel\" and\\n>the US Constitution says nothing about that.\\n\\nBut we were discussing it in relation to the death penalty. And, the\\nConstitution need not define each of the words within. Anyone who doesn\\'t\\nknow what cruel is can look in the dictionary (and we did).\\n\\nkeith\\n',\n", + " \"From: dennisn@ecs.comm.mot.com (Dennis Newkirk)\\nSubject: Re: Proton/Centaur?\\nOrganization: Motorola\\nNntp-Posting-Host: 145.1.146.43\\nLines: 31\\n\\nIn article <1r54to$oh@access.digex.net> prb@access.digex.com (Pat) writes:\\n>The question i have about the proton, is could it be handled at\\n>one of KSC's spare pads, without major malfunction, or could it be\\n>handled at kourou or Vandenberg? \\n\\nSeems like a lot of trouble to go to. Its probably better to \\ninvest in newer launch systems. I don't think a big cost advantage\\nfor using Russian systems will last for very long (maybe a few years). \\nLockheed would be the place to ask, since you would probably have to buy \\nthe Proton from them (they market the Proton world wide except Russia). \\nThey should know a lot about the possibilities, I haven't heard them\\npropose US launches, so I assume they looked into it and found it \\nunprofitable. \\n\\n>Now if it uses storables, \\n\\nYes...\\n\\n>then how long would it take for the russians\\n>to equip something at cape york?\\n\\nComparable to the Zenit I suppose, but since it looks like\\nnothing will be built there, you might just as well pick any\\nspot.\\n\\nThe message is: to launch now while its cheap and while Russia and\\nKazakstan are still cooperating. Later, the story may be different.\\n\\nDennis Newkirk (dennisn@ecs.comm.mot.com)\\nMotorola, Land Mobile Products Sector\\nSchaumburg, IL\\n\",\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: was:Go Hezbollah!!\\nOrganization: The Department of Redundancy Department\\nLines: 39\\n\\nIn article <1993Apr14.210636.4253@ncsu.edu> hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n>Hezbollah and other Lebanese Resistance fighters are skilled at precision\\n>bombing of SLA and Israeli targets. \\n\\nIt\\'s hard to beat a car-bomb with a suicidal driver in getting \\nright up to the target before blowing up. Even booby-traps and\\nradio-controlled bombs under cars are pretty efficient killers. \\nYou have a point. \\n\\n>I find such methods to be far more\\n>restrained and responsible \\n\\nIs this part of your Islamic value-system?\\n\\n>than the Israeli method of shelling and bombing\\n>villages with the hope that a Hezbollah member will be killed along with\\n>the civilians murdered. \\n\\nHad Israeli methods been anything like this, then Iraq wouldn\\'ve been\\nnuked long ago, entire Arab towns deported and executions performed by\\nthe tens of thousands. The fact is, though, that Israeli methods\\naren\\'t even 1/10,000th as evil as those which are common and everyday\\nin Arab states.\\n\\n>Soldiers are trained to die for their country. Three IDF soldiers\\n>did their duty the other day. These men need not have died if their government\\n>had kept them on Israeli soil. \\n\\n\"Israeli soil\"???? Brad/Ali! Just wait until the Ayatollah\\'s\\nthought-police get wind of this. It\\'s all \"Holy Muslim Soil (tm)\".\\nHave you forgotten? May Allah have mercy on you now.\\n\\n>Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: Steve_Mullins@vos.stratus.com\\nSubject: Re: Bible Quiz\\nOrganization: Stratus Computer, Marlboro Ma.\\nLines: 20\\nNNTP-Posting-Host: m72.eng.stratus.com\\n\\n\\nIn article <1993Apr16.130430.1@ccsua.ctstateu.edu> kellyb@ccsua.ctstateu.edu wrote: \\n>In article , kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n>> Only when the Sun starts to orbit the Earth will I accept the Bible. \\n>> \\n> Since when does atheism mean trashing other religions?There must be a God\\n ^^^^^^^^^^^^^^^\\n> of inbreeding to which you are his only son.\\n\\n\\na) I think that he has a rather witty .sig file. It sums up a great\\n deal of atheistic thought (IMO) in one simple sentence.\\nb) Atheism isn\\'t an \"other religion\".\\n\\n\\nsm\\n=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=\\nSteve_Mullins@vos.stratus.com () \"If a man empties his purse into his\\nMy opinions <> Stratus\\' opinions () head, no one can take it from him\\n------------------------------ () ---------------Benjamin Franklin\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1993Apr20.101044.2291@iti.org> aws@iti.org (Allen W. Sherzer) writes:\\n\\n>Depends. If you assume the existance of a working SSTO like DC, on billion\\n>$$ would be enough to put about a quarter million pounds of stuff on the\\n>moon. If some of that mass went to send equipment to make LOX for the\\n>transfer vehicle, you could send a lot more. Either way, its a lot\\n>more than needed.\\n\\n>This prize isn\\'t big enough to warrent developing a SSTO, but it is\\n>enough to do it if the vehicle exists.\\n\\nBut Allen, if you can assume the existence of an SSTO there is no need\\nto have the contest in the first place. I would think that what we\\nwant to get out of the contest is the development of some of these\\n\\'cheaper\\' ways of doing things; if they already exist, why flush $1G\\njust to get someone to go to the Moon for a year?\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " \"From: oz@ursa.sis.yorku.ca (Ozan S. Yigit)\\nSubject: Re: Turkish Government Agents on UseNet Lie Through Their Teeth! \\nIn-Reply-To: dbd@urartu.sdpa.org's message of Thu, 15 Apr 1993 20: 45:12 GMT\\nOrganization: York U. Student Information Systems Project\\nLines: 15\\n\\nDavidian-babble:\\n\\n>The Turkish government feels it can funnel a heightened state of ultra-\\n>nationalism existing in Turkey today onto UseNet and convince people via its \\n>revisionist, myopic, and incidental view of themselves and their place in the \\n>world. \\n\\nTurkish government on usenet? How long are you going to keep repeating\\nthis utterly idiotic [and increasingly saddening] drivel?\\n\\noz\\n---\\n life of a people is a sea, and those that look at it from the shore \\n cannot know its depths.\\t\\t\\t -Armenian proverb \\n\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violatins in Azerbaijan #009\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 262\\n\\n Accounts of Anti-Armenian Human Right Violatins in Azerbaijan #009\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +-----------------------------------------------------------------+\\n | |\\n | There were about six burned people in there, and the small |\\n | corpse of a burned child. It was gruesome. I suffered a |\\n | tremendous shock. There were about ten people there, but the |\\n | doctor on duty said that because of the numbers they were being |\\n | taken to Baku. There was a woman\\'s corpse there too, she had |\\n | been . . . well, there was part of a body there . . . a |\\n | hacked-off part of a woman\\'s body. It was something terrible. |\\n | |\\n +-----------------------------------------------------------------+\\n\\nDEPOSITION OF ROMAN ALEKSANDROVICH GAMBARIAN\\n\\n Born 1954\\n Senior Engineer\\n Sumgait Automotive Transport Production Association\\n\\n Resident at Building 17/33B, Apartment 40\\n Microdistrict No. 3\\n Sumgait [Azerbaijan]\\n\\n\\nWhat happened in Sumgait was a great tragedy, an awful tragedy for us, the \\nArmenian people, and for all of mankind. A genocide of Armenians took place\\nduring peacetime.\\n\\nAnd it was a great tragedy for me personally, because I lost my father in\\nthose days. He was still young. Born in 1926.\\n\\nOn that day, February 28, we were at home. Of course we had heard that there \\nwas unrest in town, my younger brother Aleksandr had told us about it. But we \\ndidn\\'t think . . . we thought that everything would happen outdoors, that they\\nwouldn\\'t go into people\\'s apartments. About five o\\'clock we saw a large crowd \\nnear the Kosmos movie theater in our microdistrict. We were sitting at home \\nwatching television. We go out on the balcony and see the crowd pour into Mir \\nStreet. This is right near downtown, next to the airline ticket office, our \\nhouse is right nearby. That day there was a group of policeman with shields\\nthere. They threw rocks at those policemen. Then they moved off in the \\ndirection of our building. They burned a motorcycle in our courtyard and \\nstarted shouting for Armenians to come out of the building. We switched off \\nthe light. As it turns out, their signal was just the opposite: to turn on the\\nlight. That meant that it was an Azerbaijani home. We, of course, didn\\'t know \\nand thought that if they saw lights on they would come to our apartment.\\n\\nSuddenly there\\'s pounding on the door. We go to the door, all four of us:\\nthere were four of us in the apartment. Father, Mother, my younger brother\\nAleksandr, and I. He was born in 1959. My father was a veteran of World War \\nII and had fought in China and in the Soviet Far East; he was a pilot.\\n\\nWe went to the door and they started pounding on it harder, breaking it down \\nwith axes. We start to talk to them in Azerbaijani, \"What\\'s going on? What\\'s \\nhappened?\" They say, \"Armenians, get out of here!\" We don\\'t open the door, we \\nsay, \"If we have to leave, we\\'ll leave, we\\'ll leave tomorrow.\" They say, \"No, \\nleave now, get out of here, Armenian dogs, get out of here!\" By now they\\'ve \\nbroken the door both on the lock and the hinge sides. We hold them off as best\\nwe can, my father and I on one side, and my mother and brother on the other. \\nWe had prepared ourselves: we had several hammers and an axe in the apartment,\\nand grabbed what we could find to defend ourselves. They broke in the door and\\nwhen the door gave way, we held it for another half-hour. No neighbors, no\\npolice and no one from the city government came to our aid the whole time. We \\nheld the door. They started to smash the door on the lock side, first with an \\naxe, and then with a crowbar.\\n\\nWhen the door gave way--they tore it off its hinges--Sasha hit one of them \\nwith the axe. The axe flew out of his hands. They also had axes, crowbars, \\npipes, and special rods made from armature shafts. One of them hit my father \\nin the head. The pressure from the mob was immense. When we retreated into the\\nroom, one of them hit my mother, too, in the left part of her face. My brother\\nSasha and I fought back, of course. Sasha is quite strong and hot-tempered, he\\nwas the judo champion of Sumgait. We had hammers in our hands, and we injured \\nseveral of the bandits--in the heads and in the eyes, all that went on. But \\nthey, the injured ones, fell back, and others came to take their places, there\\nwere many of them.\\n\\nThe door fell down at an angle. The mob tried to remove the door, so as to go \\ninto the second room and to continue . . . to finish us off. Father brought \\nskewers and gave them to Sasha and me--we flew at them when we saw Father \\nbleeding: his face was covered with blood, he had been wounded in the head, \\nand his whole face was bloody. We just threw ourselves on them when we saw \\nthat. We threw ourselves at the mob and drove back the ones in the hall, drove\\nthem down to the third floor. We came out on the landing, but a group of the \\nbandits remained in one of the rooms they were smashing all the furniture in \\nthere, having closed the door behind them. We started tearing the door off to \\nchase away the remaining ones or finish them. Then a man, an imposing man of \\nabout 40, an Azerbaijani, came in. When he was coming in, Father fell down and\\nMother flew to him, and started to cry out. I jumped out onto the balcony and \\nstarted calling an ambulance, but then the mob started throwing stones through\\nthe windows of our veranda and kitchen. We live on the fourth floor. And no \\none came. I went into the room. It seemed to me that this man was the leader \\nof the group. He was respectably dressed in a hat and a trench coat with a \\nfur collar. And he addressed my mother in Azerbaijani: \"What\\'s with you, \\nwoman, why are you shouting? What happened? Why are you shouting like that?\"\\nShe says, \"What do you mean, what happened? You killed somebody!\" My father \\nwas a musician, he played the clarinet, he played at many weddings, Armenian \\nand Azerbaijani, he played for many years. Everyone knew him. Mother says, \\n\"The person who you killed played at thousands of Azerbaijani weddings, he \\nbrought so much joy to people, and you killed that person.\" He says, \"You \\ndon\\'t need to shout, stop shouting.\" And when they heard the voice of this \\nman, the 15 to 18 people who were in the other room opened the door and \\nstarted running out. We chased after them, but they ran away. That man left, \\ntoo. As we were later told, downstairs one of them told the others, I don\\'t \\nknow if it was from fright or what, told them that we had firearms, even\\nthough we only fought with hammers and an axe. We raced to Father and started \\nto massage his heart, but it was already too late. We asked the neighbors to \\ncall an ambulance. The ambulance never came, although we waited for it all \\nevening and all through the night.\\n\\nSomewhere around midnight about 15 policemen came. They informed us they were \\nfrom Khachmas. They said, \"We heard that a group was here at your place, you \\nhave our condolences.\" They told us not to touch anything and left. Father lay\\nin the room.\\n\\nSo we stayed home. Each of us took a hammer and a knife. We sat at home. Well,\\nwe say, if they descend on us again we\\'ll defend ourselves. Somewhere around \\none o\\'clock in the morning two people came from the Sumgait Procuracy, \\ninvestigators. They say, \"Leave everything just how it is, we\\'re coming back \\nhere soon and will bring an expert who will record and photograph everything.\"\\nThen people came from the Republic Procuracy too, but no one helped us take \\nFather away. The morning came and the neighbors arrived. We wanted to take \\nFather away somehow. We called the Procuracy and the police a couple of times,\\nbut no one came. We called an ambulance, and nobody came. Then one of the \\nneighbors said that the bandits were coming to our place again and we should \\nhide. We secured the door somehow or other. We left Father in the room and \\nwent up to the neighbor\\'s.\\n\\nThe excesses began again in the morning. The bandits came in several vehicles,\\nZIL panel trucks, and threw themselves out of the vehicles like . . . a \\nlanding force near the center of town. Our building was located right there. A\\ncrowd formed. Then they started fighting with the soldiers. Then, in Buildings\\n19 and 20, that\\'s next to the airline ticket office, they started breaking \\ninto Armenian apartments, destroying property, and stealing. The Armenians \\nweren\\'t at home, they had managed to flee and hide somewhere. And again they \\npoured in the direction of our building. They were shouting that there were \\nsome Armenians left on the fourth floor, meaning us. \"They\\'re up there, still,\\nup there. Let\\'s go kill them!\" They broke up all the furniture remaining in \\nthe two rooms, threw it outside, and burned it in large fires. We were hiding \\none floor up. Something heavy fell. Sasha threw himself toward the door \\nshouting that it was probably Father, they had thrown Father, were defiling \\nthe corpse, probably throwing it in the fire, going to burn it. I heard it, \\nand the sound was kind of hollow, and I said, \"No, that\\'s from some of the \\nfurniture.\" Mother and I pounced on Sasha and stopped him somehow, and calmed \\nhim down.\\n\\nThe mob left somewhere around eight o\\'clock. They smashed open the door and \\nwent into the apartment of the neighbors across from us. They were also\\nArmenians, they had left for another city.\\n\\nThe father of the neighbor who was concealing us came and said, \"Are you \\ncrazy? Why are you hiding Armenians? Don\\'t you now they\\'re checking all the \\napartments? They could kill you and them!\" And to us :\" . . . Come on, leave \\nthis apartment!\" We went down to the third floor, to some other neighbors\\'. At\\nfirst the man didn\\'t want to let us in, but then one of his sons asked him and\\nhe relented. We stayed there until eleven o\\'clock at night. We heard the sound\\nof motors. The neighbors said that it was armored personnel carriers. We went \\ndownstairs. There was a light on in the room where we left Father. In the \\nother rooms, as we found out later, all the chandeliers had been torn down. \\nThey left only one bulb. The bulb was burning, which probably was a signal \\nthey had agreed on because there was a light burning in every apartment in our\\nMicrodistrict 3 where there had been a pogrom.\\n\\nWith the help of the soldiers we made it to the City Party Committee and were \\nsaved. Our salvation--my mother\\'s, my brother\\'s, and mine,--was purely \\naccidental, because, as we later found out from the neighbors, someone in the \\ncrowd shouted that we had firearms up there. Well, we fought, but we were only\\nable to save Mother. We couldn\\'t save Father. We inflicted many injuries on \\nthe bandits, some of them serious. But others came to take their places. We \\nwere also wounded, there was blood, and we were scratched all over--we got our\\nshare. It was a miracle we survived. We were saved by a miracle and the \\ntroops. And if troops hadn\\'t come to Sumgait, the slaughter would have been \\neven greater: probably all the Armenians would have been victims of the \\ngenocide.\\n\\nThrough an acquaintance at the City Party Committee I was able to contact the \\nleadership of the military unit that was brought into the city, and at their \\norders we were assigned special people to accompany us, experts. We went to \\'\\npick up Father\\'s corpse. We took it to the morgue. This was about two o\\'clock \\nin the morning, it was already March 1, it was raining very hard and it was \\nquite cold, and we were wearing only our suits. When my brother and I carried \\nFather into the morgue we saw the burned and disfigured corpses. There were \\nabout six burned people in there, and the small corpse of a burned child. It \\nwas gruesome. I suffered a tremendous shock. There were about ten people \\nthere, but the doctor on duty said that because of the numbers they were being\\ntaken to Baku. There was a woman\\'s corpse there too, she had been . . . well, \\nthere was part of a body there . . . a hacked-off part of a woman\\'s body. It \\nwas something terrible. The morgue was guarded by the landing force . . . The \\nchild that had been killed was only ten or twelve years old. It was impossible\\nto tell if it was a boy or a girl because the corpse was burned. There was a \\nman there, too, several men. You couldn\\'t tell anything because their faces \\nwere disfigured, they were in such awful condition...\\n\\nNow two and a half months have passed. Every day I recall with horror what \\nhappened in the city of Sumgait. Every day: my father, and the death of my \\nfather, and how we fought, and the people\\'s sorrow, and especially the morgue.\\n\\nI still want to say that 70 years have passed since Soviet power was\\nestablished, and up to the very last minute we could not conceive of what \\nhappened in Sumgait. It will go down in history.\\n\\nI\\'m particularly surprised that the mob wasn\\'t even afraid of the troops. They\\neven fought the soldiers. Many soldiers were wounded. The mob threw fuel \\nmixtures onto the armored personnel carriers, setting them on fire. They \\nweren\\'t afraid. They were so sure of their impunity that they attacked our \\ntroops. I saw the clashes on February 29 near the airline ticket office, right\\nacross from our building. And that mob was fighting with the soldiers. The \\ninhabitants of some of the buildings, also Azerbaijanis, threw rocks at the \\nsoldiers from windows, balconies, even cinder blocks and glass tanks. They \\nweren\\'t afraid of them. I say they were sure of their impunity. When we were \\nat the neighbors\\' and when they were robbing homes near the airline ticket \\noffice I called the police at number 3-20-02 and said that they were robbing \\nArmenian apartments and burning homes. And they told me that they knew that \\nthey were being burned. During those days no one from the police department \\ncame to anyone\\'s aid. No one came to help us, either, to our home, even though\\nperhaps they could have come and saved us.\\n\\nAs we later found out the mob was given free vodka and drugs, near the bus \\nstation. Rocks were distributed in all parts of town to be thrown and used in \\nfighting. So I think all of it was arranged in advance. They even knew in \\nwhich buildings and apartments the Armenians lived, on which floors--they had\\nlists, the bandits. You can tell that the \"operation\" was planned in advance.\\n\\nThanks, of course, to our troops, to the country\\'s leadership, and to the\\nleadership of the Ministry of Defense for helping us, thanks to the Russian\\npeople, because the majority of the troops were Russians, and the troops \\nsuffered losses, too. I want to express this gratitude in the name of my \\nfamily and in the name of all Armenians, and in the name of all Sumgait\\nArmenians. For coming in time and averting terrible things: worse would\\nhave happened if that mob had not been stopped on time.\\n\\nAt present an investigation is being conducted on the part of the USSR\\nProcuracy. I want to say that those bandits should receive the severest\\npossible punishment, because if they don\\'t, the tragedy, the genocide, could \\nhappen again. Everyone should see that the most severe punishment is meted\\nout for such deeds.\\n\\nVery many bandits and hardened hooligans took part in the unrest, in the mass \\ndisturbances. The mobs were huge. At present not all of them have been caught,\\nvery few of them have been, I think, judging by the newspaper reports. There \\nwere around 80 people near our building alone, that\\'s how many people took \\npart in the pogrom of our building all in all.\\n\\nThey should all receive the most severe punishment so that others see that \\nretribution awaits those who perform such acts.\\n\\n May 18, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 153-157\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Bikes vs. Horses (was Re: insect impacts f\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 41\\n\\nJonathan E. Quist, on the Thu, 15 Apr 1993 14:26:42 GMT wibbled:\\n: In article txd@ESD.3Com.COM (Tom Dietrich) writes:\\n: >>In a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n\\n: [lots of things, none of which are quoted here]\\n\\n: >>>In article rgu@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes:\\n: >>> You think your *average* dirt biker can jump\\n: >>>a 3 foot log? \\n: >\\n: >How about an 18\" log that is suspended about 18\" off of the ground?\\n: >For that matter, how about a 4\" log that is suspended 2.5\\' off of the\\n: >ground?\\n\\n: Oh, ye of little imagination.\\n\\n:You don\\'t jump over those -that\\'s where you lay the bike down and slide under!\\n: -- \\n: Jonathan E. Quist\\n\\nThe nice thing about horses though, is that if they break down in the middle of\\nnowhere, you can eat them. Fuel\\'s a bit cheaper, too.\\n--\\n\\nNick (the 90 HP Biker) DoD 1069 Concise Oxford Giddy-Up!\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", + " 'From: nelson_p@apollo.hp.com (Peter Nelson)\\nSubject: Re: Remember those names come election time.\\nNntp-Posting-Host: c.ch.apollo.hp.com\\nOrganization: Hewlett-Packard Corporation, Chelmsford, MA\\nKeywords: usa federal, government, international, non-usa government\\nLines: 34\\n\\nIn article anwar+@cs.cmu.edu (Anwar Mohammed) writes:\\n>I said:\\n> In article nelson_p@apollo.hp.com (Peter Nelson) writes:\\n> >\\n> > Besides, there\\'s no case that can be made for US military involvement\\n> > there that doesn\\'t apply equally well to, say, Liberia, Angola, or\\n> > (it appears with the Khmer Rouge\\'s new campaign) Cambodia. Non-whites\\n> > don\\'t count?\\n>\\n> Hmm...some might say Kuwaitis are non-white. Ooops, I forgot, Kuwaitis are\\n> \"oil rich\", \"loaded with petro-dollars\", etc so they don\\'t count.\\n>\\n>...and let\\'s not forget Somalia, which is about as far from white as it\\n>gets.\\n\\n And why are we in Somalia? When right across the Gulf of Aden are\\n some of the wealthiest Arab nations on the planet? Why does the \\n US always become the point man for this stuff? I don\\'t mind us\\n helping out; but what invariably happens is that everybody expects\\n us to do most of the work and take most of the risks, even when these\\n events are occuring in other people\\'s back yards, and they have the\\n resources to deal with them quite well, thank you. I mean, it\\'s \\n not like either Serbia, or Somalia represent some overwhelming\\n military force that their neighbors can\\'t handle. Nor are the \\n logistics a big deal -- it\\'s a lot bigger logistical challenge \\n to get troops and supplies from New York to Somalia, than from \\n Saudi Arabia; harder to go from Texas to Serbia, than Turkey or \\n Austria to Serbia.\\n\\n\\n---peter\\n\\n\\n\\n',\n", + " \"From: halat@pooh.bears (Jim Halat)\\nSubject: Islam is caused by believing (was Re: Genocide is Caused by Theism)\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 40\\n\\n\\n\\nIn article <1993Apr13.173100.29861@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>>I'm only saying that anything can happen under atheism. Being a\\n>>beleiver, a knowledgeable one in religion, only good can happen.\\n\\nThis is becoming a tiresome statement. Coming from you it is \\na definition, not an assertion:\\n\\n Islam is good. Belief in Islam is good. Therefore, being a \\n believer in Islam can produce only good...because Islam is\\n good. Blah blah blah.\\n\\nThat's about as circular as it gets, and equally meaningless. To\\nsay that something produces only good because it is only good that \\nit produces is nothing more than an unapplied definition. And\\nall you're application is saying that it's true if you really \\nbelieve it's true. That's silly.\\n\\nConversely, you say off-handedly that _anything_ can happen under\\natheism. Again, just an offshoot of believe-it-and-it-becomes-true-\\ndon't-believe-it-and-it-doesn't. \\n\\nLike other religions I'm aquainted with, Islam teaches exclusion and\\ncaste, and suggests harsh penalties for _behaviors_ that have no\\nlogical call for punishment (certain limits on speech and sex, for\\nexample). To me this is not good. I see much pain and suffering\\nwithout any justification, except for the _waving of the hand_ of\\nsome inaccessible god.\\n\\nBy the by, you toss around the word knowledgable a bit carelessly.\\nFor what is a _knowledgeable believer_ except a contradiction of\\nterms. I infer that you mean believer in terms of having faith.\\nAnd If you need knowledge to believe then faith has nothing\\nto do with it, does it?\\n\\n-jim halat\\n \\n\\n\",\n", + " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Cultural Enquiries\\nOrganization: University College of Wales, Aberystwyth\\nLines: 35\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\nIn article <1pcl6i$e4i@bigboote.WPI.EDU> ravi@vanilla.WPI.EDU (Ravi Narayan) writes:\\n>In a previous article, groh@nu.cs.fsu.edu said:\\n>= azw@aber.ac.uk (Andy Woodward) writes:\\n>= \\n>= >2) Why do they ride Harleys?\\n>= \\n>= 'cause we can.\\n>= \\n>\\n> you sure are lucky! i am told that there are very few people out\\n> there who can actually get their harley to ride ;-) (the name tod\\n> johnson jumps to the indiscreet mind... laz whats it you used to\\n> ride???).\\n>\\n>\\n>-- \\n>----------_________----------_________----------_________----------_________\\n>sig (n): a piece of mail with a fool at one | Ravi Narayan, CS, WPI\\n> end and flames at the other. (C). | 89 SuzukiGS500E - Phaedra ;)\\n>__________---------__________---------__________---------__________---------\\n\\nHi, Ravi\\n\\nIf you need a Harley, we have lots to spare here. All the yuppies\\nbought 'the best' a couple of years ago to pose at the (s)wine\\nbar. They 'rode a mile and walked the rest'. Called a taxi home and \\nwent back to the porsche. So there's are loads going cheap with about\\n1 1/2 miles on the clock (takes a while to coast to a halt).\\n\\nCheers\\n\\nAndy\\n\\nP.S. You get a better class of people on GS500's anyway\\n\",\n", + " 'From: ivan@erich.triumf.ca (Ivan D. Reid)\\nSubject: Re: Accident report\\nNews-Software: VAX/VMS VNEWS 1.41 \\nNntp-Posting-Host: erich.triumf.ca\\nOrganization: TRIUMF: Tri-University Meson Facility\\nLines: 36\\n\\nIn article <1992Jun25.132424.20760@prl.philips.nl>, mcardle@prl.philips.nl (Owen McArdle) writes...\\n>In article ranck@vtvm1.cc.vt.edu (Wm. L. Ranck) writes:\\n>--In article <1992Jun23.214330.18592@bcrka451.bnr.ca> whitton@bnr.ca (Mark Whitton) writes:\\n>--\\n>-->It turns out that the trailer lights were not hooked up\\n>-->to the truck. \\n>--\\n>--Yep, basic rule: *Never* expect or believe turn signals completely.\\n>--Around here, and many other places, people just don\\'t signal at all.\\n>--And, sometimes the signals aren\\'t working. Sometimes they get left on.\\n> \\n>\\tThe scary bit about this is the is the non-availability of rear-\\n>lights at all. Now living in the Netherlands I\\'ve learned that the only\\n>reliable indicators are those red ones which go on at both sides at once -\\n>some people call them brake lights. Once they light up, expect ANYTHING\\n>to occur in front of you :-). (It\\'s not just the Dutch though)\\n> \\n>\\tHowever I never realised how much I relied on this until I got \\n>caught a few times behind someone whose lights didn\\'t work AT ALL. Once \\n>I\\'d sussed it out it wasn\\'t so bad (knowing it is half the battle), but \\n>it\\'s a great way to find out that you\\'ve been following someone too \\n>closely :-). Now I try to check for lights all the time, \\'cos that split \\n>second can make all the difference (though it shouldn\\'t be necessary, I \\n>know),\\n> \\n>Owen.\\n\\tWhat used to peeve me in Canada was the cars with bloody _red_ rear\\nindicators. You\\'d see a single red light come on and think, \"Now, is he\\nstopping but one brake-lamp is not working, or does he have those dumb bloody\\n_red_ rear indicators?\" This being Survival 101, you have to assume he\\'s\\nbraking and take the appropriate actions, until such time as the light goes\\nout and on again, after which you can be reasonably certain it\\'s a bloody _red_\\nrear indicator.\\n\\nIvan Reid, Paul Scherrer Institute, CH. \\t\\t\\tivan@cvax.psi.ch\\nGSX600F, RG250WD.\\tSI=2.66 \"You Porsche. Me pass!\"\\tDoD #484\\n',\n", + " 'From: tankut@IASTATE.EDU (Sabri T Atan)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: tankut@IASTATE.EDU (Sabri T Atan)\\nOrganization: Iowa State University\\nLines: 36\\n\\nIn article <1993Apr20.143453.3127@news.uiowa.edu>, mau@herky.cs.uiowa.edu (Mau\\nNapoleon) writes:\\n> From article <1qvgu5INN2np@lynx.unm.edu>, by osinski@chtm.eece.unm.edu (Marek\\nOsinski):\\n> \\n> > Well, it did not take long to see how consequent some Greeks are in\\n> > requesting that Thessaloniki are not called Solun by Bulgarian netters. \\n> > So, Napoleon, why do you write about Konstantinople and not Istanbul?\\n> > \\n> > Marek Osinski\\n> \\n> Thessaloniki is called Thessaloniki by its inhabitants for the last 2300\\nyears.\\n> The city was never called Solun by its inhabitants.\\n> Instabul was called Konstantinoupolis from 320 AD until about the 1920s.\\n> That\\'s about 1600 years. There many people alive today who were born in a\\ncity\\n> called Konstantinoupolis. How many people do you know that were born in a city\\n> called Solun.\\n> \\n> Napoleon\\n\\nAre you one of those people who were born when Istanbul was called \\nKonstantinopolis? I don\\'t think so! If those people use it because\\nthey are used to do so, then I understand. But open any map\\ntoday (except a few that try to be political) you will see that the name \\nof the city is printed as Istanbul. So, don\\'t try to give\\nany arguments to using Konstantinopolis except to cause some\\nflames, to make some political statement. \\n\\n\\n--\\nTankut Atan\\ntankut@iastate.edu\\n\\n\"Achtung, baby!\"\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Investment in Yehuda and Shomron\\nOrganization: Division of Applied Sciences, Harvard University\\nLines: 29\\n\\n\\nIn article <1483500346@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n\\n>Those who wish to learn something about the perversion of Judaism,\\n>should consult the masterly work by Yehoshua Harkabi, who was many\\n>years the head of Israeli Intelligence and an opponent of the PLO. His\\n>latest book was published in English and includes a very detailed analysis\\n>of Judeo-Nazism.\\n\\n\\tYou mean he talks about those Jews, who, because of their self\\nhatred, spend all their time attacking Judaism, Jews, and Israel,\\nusing the most despicable of anti-Semetic stereotypes?\\n\\n\\tI don\\'t think we need to coin a term like \"Jedeo-Nazism\" to\\nrefer to those Jews who, in their endless desire to be accepted by the\\nNazis, do their dirty work for them. We can just call them house\\nJews, fools, or anti-Semites from Jewish families.\\n\\n\\tI think \"house Jews,\" a reference to a person of Jewish\\nancestry who issues statements for a company or organization that\\ncondemn Judaism is perfectly sufficeint. I think a few years free of\\ntheir anti-Semetic role models would do wonders for most of them.\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: zeno@phylo.genetics.washington.edu (Sean Lamont)\\nSubject: Closed-curve intersection\\nArticle-I.D.: shelley.1ra2paINN68s\\nOrganization: Abstract Software\\nLines: 10\\nNNTP-Posting-Host: phylo.genetics.washington.edu\\n\\nI would like a reference to an algorithm that can detect whether \\none closed curve bounded by some number of bezier curves lies completely\\nwithin another closed curve bounded by bezier curves.\\n\\nThanks.\\n-- \\nSean T. Lamont | Ask me about the WSI-Fonts\\nzeno@genetics.washington.edu | Professional collection for NeXT \\nlamont@abstractsoft.com |____________________________________\\nAbstract Software \\n',\n", + " 'From: mz@moscom.com (Matthew Zenkar)\\nSubject: Re: CView answers\\nOrganization: Moscom Corp., E. Rochester, NY\\nLines: 15\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nCyberspace Buddha (cb@wixer.bga.com) wrote:\\n: renew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n: >over where it places its temp files: it just places them in its\\n: >\"current directory\".\\n\\n: I have to beg to differ on this point, as the batch file I use\\n: to launch cview cd\\'s to the dir where cview resides and then\\n: invokes it. every time I crash cview, the 0-byte temp file\\n: is found in the root dir of the drive cview is on.\\n\\nI posted this as well before the cview \"expert\". Apparently, he thought he\\nknew better.\\n\\nMatthew Zenkar\\nmz@moscom.com\\n',\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nArticle-I.D.: aurora.1993Apr23.123433.1\\nOrganization: University of Alaska Fairbanks\\nLines: 43\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1r96hb$kbi@access.digex.net>, prb@access.digex.com (Pat) writes:\\n> In article <1993Apr23.001718.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>>In article <1r6b7v$ec5@access.digex.net>, prb@access.digex.com (Pat) writes:\\n>>> Besides this was the same line of horse puckey the mining companies claimed\\n>>> when they were told to pay for restoring land after strip mining.\\n>>===\\n>>I aint talking the large or even the \"mining companies\" I am talking the small\\n>>miners, the people who have themselves and a few employees (if at all).The\\n>>people who go out every year and set up thier sluice box, and such and do\\n>>mining the semi-old fashion way.. (okay they use modern methods toa point).\\n> \\n> \\n> Lot\\'s of these small miners are no longer miners. THey are people living\\n> rent free on Federal land, under the claim of being a miner. The facts are\\n> many of these people do not sustaint heir income from mining, do not\\n> often even live their full time, and do fotentimes do a fair bit\\n> of environmental damage.\\n> \\n> These minign statutes were created inthe 1830\\'s-1870\\'s when the west was\\n> uninhabited and were designed to bring people into the frontier. Times change\\n> people change. DEAL. you don\\'t have a constitutional right to live off\\n> the same industry forever. Anyone who claims the have a right to their\\n> job in particular, is spouting nonsense. THis has been a long term\\n> federal welfare program, that has outlived it\\'s usefulness.\\n> \\n> pat\\n> \\n\\nHum, do you enjoy putting words in my mouth? \\nCome to Nome and meet some of these miners.. I am not sure how things go down\\nsouth in the lower 48 (I used to visit, but), of course to believe the\\nmedia/news its going to heck (or just plain crazy). \\nWell it seems that alot of Unionist types seem to think that having a job is a\\nright, and not a priviledge. Right to the same job as your forbearers, SEE:\\nKennedy\\'s and tel me what you see (and the families they have married into).\\nThere is a reason why many historians and poli-sci types use unionist and\\nsocialist in the same breath.\\nThe miners that I know, are just your average hardworking people who pay there\\ntaxes and earn a living.. But taxes are not the answer. But maybe we could move\\nthis discussion to some more appropriate newsgroup..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", + " 'From: djf@cck.coventry.ac.uk (Marvin Batty)\\nSubject: Re: Moon Colony Prize Race! $6 billion total?\\nNntp-Posting-Host: cc_sysk\\nOrganization: Starfleet, Coventry, UK\\nLines: 49\\n\\nIn article <1993Apr20.020259.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>I think if there is to be a prize and such.. There should be \"classes\"\\n>such as the following:\\n>\\n>Large Corp.\\n>Small Corp/Company (based on reported earnings?)\\n>Large Government (GNP and such)\\n>Small Governemtn (or political clout or GNP?)\\n>Large Organization (Planetary Society? and such?)\\n>Small Organization (Alot of small orgs..)\\n\\nWhatabout, Schools, Universities, Rich Individuals (around 250 people \\nin the UK have more than 10 million dollars each). I reecieved mail\\nfrom people who claimed they might get a person into space for $500\\nper pound. Send a skinny person into space and split the rest of the money\\namong the ground crew!\\n>\\n>The organization things would probably have to be non-profit or liek ??\\n>\\n>Of course this means the prize might go up. Larger get more or ??\\n>Basically make the prize (total purse) $6 billion, divided amngst the class\\n>winners..\\n>More fair?\\n>\\n>There would have to be a seperate organization set up to monitor the events,\\n>umpire and such and watch for safety violations (or maybe not, if peopel want\\n>to risk thier own lives let them do it?).\\n>\\nAgreed. I volunteer for any UK attempts. But one clause: No launch methods\\nwhich are clearly dangerous to the environment (ours or someone else\\'s). No\\nusage of materials from areas of planetary importance.\\n\\n>Any other ideas??\\n\\nYes: We should *do* this rather than talk about it. Lobby people!\\nThe major problem with the space programmes is all talk/paperwork and\\nno action!\\n\\n>==\\n>Michael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n>\\n>\\n\\n\\n-- \\n**************************************************************************** \\n Marvin Batty - djf@uk.ac.cov.cck\\n\"And they shall not find those things, with a sort of rafia like base,\\nthat their fathers put there just the night before. At about 8 O\\'clock!\"\\n',\n", + " \"From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)\\nSubject: Re: ++BIKE SOLD OVER NET 600 MILES AWAY!++\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: relva.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 14\\n\\nIn article <6130331@hplsla.hp.com>, kens@hplsla.hp.com (Ken Snyder) writes:\\n|> \\n|> > Any other bikes sold long distances out there...I'd love to hear about\\n|> it!\\n|> \\n|> I bought my VFR750 from a guy in San Jose via the net. That's 825 miles\\n|> according to my odometer!\\n|> \\n\\nmark andy (living in pittsburgh) bought his RZ350 from a dude in\\nmassachusetts (or was it connecticut?).\\n\\naxel\\n\\n\",\n", + " 'From: cdw2t@dayhoff.med.Virginia.EDU (Dances With Federal Rangers)\\nSubject: Re: Misc./buying info. needed\\nOrganization: University of Virginia\\nLines: 28\\n\\nIn article <1993Apr18.160449.1@hamp.hampshire.edu> jyaruss@hamp.hampshire.edu writes:\\n\\n>Is there a buying guide for new/used motorcycles (that lists reliability, how\\n>to go about the buying process, what to look for, etc...)?\\n\\n_Cycle World_ puts one out, but I\\'m sure it\\'s not very objective. Try talking\\nwith dealers and the people that hang out there, as well as us. We love to\\ngive advice.\\n\\n>Is there a pricing guide for new/used motorcycles (Blue Book)?\\n\\nMost of the bigger banks have a blue book which includes motos -- ask for the\\none with RVs in it.\\n\\n>Are there any books/articles on riding cross country, motorcycle camping, etc?\\n\\nCouldn\\'t help you here.\\n\\n>Is there an idiots\\' guide to motorcycles?\\n\\nYou\\'re reading it.\\n\\n----------------------------------------------------------------------------\\n| Cliff Weston DoD# 0598 \\'92 Seca II (Tem) |\\n| |\\n| \"the female body is a beautiful work of art, while the male body |\\n| is lumpy and hairy and should not be seen by the light of day.\" |\\n----------------------------------------------------------------------------\\n',\n", + " 'From: Howard Frederick \\nSubject: Re: Turkish Government Agents on UseNet\\nNf-ID: #R:1993Apr15.204512.11971@urartu.sd:1238805668:cdp:1483500341:000:1042\\nNf-From: cdp.UUCP!hfrederick Apr 16 14:31:00 1993\\nLines: 20\\n\\n\\nI don\\'t know anything about this particular case, but *other*\\ngovernments have been known to follow events on the Usenet. For\\nexample after Tienanmien Square in Beijing the Chinese government\\nbegan monitoring cyberspace. As the former Director of PeaceNet,\\nI am aware of many incidents of local, state, national and\\ninternational authorities monitoring Usenet and other conferences\\nsuch as those on the Institute for Global Communications. But\\nwhat\\'s the big deal? You shouldn\\'t advocate illegal acts in this\\nmedium in any case. If you are concerned about being monitored,\\nyou should use encyrption software (available in IGC\\'s \"micro\"\\nconference). I know for a fact that human rights activists in the\\nBalkan-Mideast area use encryption software to send out their\\nreports to international organizations. Such message *can* be\\ndecoded however by large computers consuming much CPU time, which\\nprobably the Turkish government doesn\\'t have access to.\\n\\nHoward Frederick, University of California, Irvine Department of\\nPolitics and Society\\n\\n',\n", + " \"From: dls@aeg.dsto.gov.au (David Silver)\\nSubject: Re: Fractal Generation of Clouds\\nOrganization: Defence Science and Technology Organisation\\nLines: 14\\nNNTP-Posting-Host: kestrel.dsto.gov.au\\n\\nhaabn@nye.nscee.edu (Frederick J. Haab) writes:\\n\\n\\n>I need to implement an algorithm to fractally generate clouds\\n>as sort of a benchmark for some algorithms I'm working on.\\n\\nJust as a matter of interest, a self-promo computer graphics sequence \\nthat one of the local TV stations used to play quite a lot a couple of\\nyears ago showed a 3D flyover of Australia from the West coast to the\\nEast. The clouds were quite recognisable as fuzzy, flat, white\\nMandlebrot sets!!\\n\\nDavid Silver\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: This year the Turkish Nation is mourning and praying again for...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 207\\n\\nReferring to notes from the personal diary of Russian General L. \\nOdishe Liyetze on the Turkish front, he wrote,\\n\\n\"On the nights 11-12 March, 1918 alone Armenian butchers \\n bayoneted and axed to death 3000 Muslims in areas surrounding\\n Erzincan. These barbars threw their victims into pits, most\\n likely dug according to their sinister plans to extinguish \\n Muslims, in groups of 80. My adjutant counted and unearthed\\n 200 such pits. This is an act against our world of civilization.\"\\n\\nOn March 12, 1918 Lieut-colonel Griyaznof wrote (from an official\\nRussian account of the Turkish genocide),\\n\\n\"Roads leading to villages were littered with bayoneted torsos,\\n dismembered joints and carved out organs of Muslim peasants...\\n alas! mainly of women and children.\"\\n\\nSource: Doc. Dr. Azmi Suslu, \"Russian View on the Atrocities Committed\\n by the Armenians Against the Turks,\" Ankara Universitesi, Ankara,\\n 1987, pp. 45-53.\\n \"Document No: 77,\" Archive No: 1-2, Cabin No: 10, Drawer \\n No: 4, File No: 410, Section No: 1578, Contents No: 1-12, 1-18.\\n (Acting Commander of Erzurum and Deveboynu regions and Commander\\n of the Second Erzurum Artillery Regiment Prisoner of War,\\n Lieutenant Colonel Toverdodleyov)\\n\\n\"The things I have heard and seen during the two months, until the\\n liberation of Erzurum by the Turks, have surpassed all the\\n allegations concerning the vicious, degenerate characteristic of\\n the Armenians. During the Russian occupation of Erzurum, no Armenian\\n was permitted to approach the city and its environs.\\n\\n While the Commander of the First Army Corps, General Kaltiyin remained\\n in power, troops including Armenian enlisted men, were not sent to the\\n area. When the security measures were lifted, the Armenians began to \\n attack Erzurum and its surroundings. Following the attacks came the\\n plundering of the houses in the city and the villages and the murder\\n of the owners of these houses...Plundering was widely committed by\\n the soldiers. This plunder was mainly committed by Armenian soldiers\\n who had remained in the rear during the war.\\n\\n One day, while passing through the streets on horseback, a group of\\n soldiers including an Armenian soldier began to drag two old men of\\n seventy years in a certain direction. The roads were covered with mud,\\n and these people were dragging the two helpless Turks through the mud\\n and dirt...\\n\\n It was understood later that all these were nothing but tricks and\\n traps. The Turks who joined the gendarmarie soon changed their minds\\n and withdrew. The reason was that most of the Turks who were on night\\n patrol did not return, and no one knew what had happened to them. The \\n Turks who had been sent outside the city for labour began to disappear\\n also. Finally, the Court Martial which had been established for the\\n trials of murderers and plunderers, began to liquidate itself for\\n fear that they themselves would be punished. The incidents of murder\\n and rape, which had decreased, began to occur more frequently.\\n\\n Sometime in January and February, a leading Turkish citizen Haci Bekir\\n Efendi from Erzurum, was killed one night at his home. The Commander\\n in Chief (Odiselidge) gave orders to find murderers within three days.\\n The Commander in Chief has bitterly reminded the Armenian intellectuals\\n that disobedience among the Armenian enlisted men had reached its\\n highest point, that they had insulted and robbed the people and half\\n of the Turks sent outside the city had not returned.\\n\\n ...We learnt the details this incident from the Commander-in-Chief,\\n Odishelidge. They were as follows:\\n\\n The killings were organized by the doctors and the employers, and the\\n act of killing was committed solely by the Armenian renegades...\\n More than eight hundred unarmed and defenceless Turks have been\\n killed in Erzincan. Large holes were dug and the defenceless \\n Turks were slaughtered like animals next to the holes. Later, the\\n murdered Turks were thrown into the holes. The Armenian who stood \\n near the hole would say when the hole was filled with the corpses:\\n \\'Seventy dead bodies, well, this hole can take ten more.\\' Thus ten\\n more Turks would be cut into pieces, thrown into the hole, and when\\n the hole was full it would be covered over with soil.\\n\\n The Armenians responsible for the act of murdering would frequently\\n fill a house with eighty Turks, and cut their heads off one by one.\\n Following the Erzincan massacre, the Armenians began to withdraw\\n towards Erzurum... The Armenian renegades among those who withdrew\\n to Erzurum from Erzincan raided the Moslem villages on the road, and\\n destroyed the entire population, together with the villages.\\n\\n During the transportation of the cannons, ammunition and the carriages\\n that were outside the war area, certain people were hired among the \\n Kurdish population to conduct the horse carriages. While the travellers\\n were passing through Erzurum, the Armenians took advantage of the time\\n when the Russian soldiers were in their dwellings and began to kill\\n the Kurds they had hired. When the Russian soldiers heard the cries\\n of the dying Kurds, they attempted to help them. However, the \\n Armenians threatened the Russian soldiers by vowing that they would\\n have the same fate if they intervened, and thus prevented them from\\n acting. All these terrifying acts of slaughter were committed with\\n hatred and loathing.\\n\\n Lieutenant Medivani from the Russian Army described an incident that\\n he witnessed in Erzurum as follows: An Armenian had shot a Kurd. The\\n Kurd fell down but did not die. The Armenian attempted to force the\\n stick in his hand into the mouth of the dying Kurd. However, since\\n the Kurd had firmly closed his jaws in his agony, the Armenian failed\\n in his attempt. Having seen this, the Armenian ripped open the abdomen\\n of the Kurd, disembowelled him, and finally killed him by stamping\\n him with the iron heel of his boot.\\n\\n Odishelidge himself told us that all the Turks who could not escape\\n from the village of Ilica were killed. Their heads had been cut off\\n by axes. He also told us that he had seen thousands of murdered\\n children. Lieutenant Colonel Gryaznov, who passed through the village\\n of Ilica, three weeks after the massacre told us the following:\\n\\n There were thousands of dead bodies hacked to pieces, on the roads.\\n Every Armenian who happened to pass through these roads, cursed and\\n spat on the corpses. In the courtyard of a mosque which was about\\n 25x30 meter square, dead bodies were piled to a height of 140 \\n centimeters. Among these corpses were men and women of every age,\\n children and old people. The women\\'s bodies had obvious marks of\\n rape. The genitals of many girls were filled with gun-powder.\\n\\n A few educated Armenian girls, who worked as telephone operators\\n for the Armenian troops were called by Lieutenant Colonel Gryaznov\\n to the courtyard of the mosque and he bitterly told them to be \\n proud of what the Armenians had done. To the lieutenant colonel\\'s\\n disgusted amazement, the Armenian girls started to laugh and giggle,\\n instead of being horrified. The lieutenant colonel had severely\\n reprimanded those girls for their indecent behaviour. When he told\\n the girls that the Armenians, including women, were generally more\\n licentious than even the wildest animals, and that their indecent\\n and shameful laughter was the most obvious evidence of their inhumanity\\n and barbarity, before a scene that appalled even veteran soldiers,\\n the Armenian girls finally remembered their sense of shame and\\n claimed they had laughed because they were nervous.\\n\\n An Armenian contractor at the Alaca Communication zone command\\n narrated the following incident which took place on February 20:\\n\\n The Armenians had nailed a Turkish women to the wall. They had cut\\n out the women\\'s heart and placed the heart on top of her head.\\n The great massacre in Erzurum began on February 7... The enlisted men \\n of the artillery division caught and stripped 270 people. Then they\\n took these people into the bath to satisfy their lusts. 100 people\\n among this group were able to save their lives as the result of\\n my decisive attempts. The others, the Armenians claimed, were \\n released when they learnt that I understood what was going on. \\n Among those who organized this treacherous act was the envoy to the\\n Armenian officers, Karagodaviev. Today, some Turks were murdered\\n on the streets.\\n\\n On February 12, some Armenians have shot more than ten innocent\\n Moslems. The Russian soldiers who attempted to save these people were\\n threatened with death. Meanwhile I imprisoned an Armenian for\\n murdering an innocent Turk. \\n\\n When an Armenian officer told an Armenian murderer that he would \\n be hanged for his crime, the killer shouted furiously: \\'How dare\\n you hang an Armenian for killing a Turk?\\' In Erzurum, the \\n Armenians burned down the Turkish market. On February 17, I heard\\n that the entire population of Tepekoy village, situated within\\n the artillery area, had been totally annihilated. On the same \\n day when Antranik entered Erzurum, I reported the massacre to\\n him, and asked him to track down the perpetrators of this horrible\\n act. However no result was achieved.\\n\\n In the villages whose inhabitants had been massacred, there was a\\n natural silence. On the night of 26/27 February, the Armenians deceived\\n the Russians, perpetrated a massacre and escaped for fear of the \\n Turkish soldiers. Later, it was understood that this massacre had\\n been based upon a method organized and planned in a circular. \\n The population had been herded in a certain place and then killed\\n one by one. The number of murders committed on that night reached\\n three thousand. It was the Armenians who bragged to about the details\\n of the massacre. The Armenians fighting against the Turkish soldiers\\n were so few in number and so cowardly that they could not even\\n withstand the Turkish soldiers who consisted of only five hundred\\n people and two cannons, for one night, and ran away. The leading\\n Armenians of the community could have prevented this massacre.\\n However, the Armenian intellectuals had shared the same ideas with\\n the renegades in this massacre, just as in all the others. The lower\\n classes within the Armenian community have always obeyed the orders\\n of the leading Armenian figures and commanders. \\n\\n I do not like to give the impression that all Armenian intellectuals\\n were accessories to these murders. No, for there were people who\\n opposed the Armenians for such actions, since they understood that\\n it would yield no result. However, such people were only a minority.\\n Furthermore, such people were considered as traitors to the Armenian\\n cause. Some have seemingly opposed the Armenian murders but have\\n supported the massacres secretly. Some, on the other hand, preferred\\n to remain silent. There were certain others, who, when accused by\\n the Russians of infamy, would say the following: \\'You are Russians.\\n You can never understand the Armenian cause.\\' The Armenians had a\\n conscience. They would commit massacres and then would flee in fear\\n of the Turkish soldiers.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: ldaddari@polaris.cv.nrao.edu (Larry D\\'Addario)\\nSubject: Re: Russian Email Contacts.\\nIn-Reply-To: nsmca@aurora.alaska.edu\\'s message of Sat, 17 Apr 1993 12: 52:09 GMT\\nOrganization: National Radio Astronomy Observatory\\nLines: 32\\n\\nIt is usually possible to reach people at IKI (Institute for Space\\nResearch) in Moscow by writing to\\n\\n\\tIKIMAIL@esoc1.bitnet\\n\\nThis is a machine at ESA in Darmstadt, Germany; IKI has a dedicated\\nphone line to this machine and someone there logs in regularly to\\nretrieve mail.\\n\\nIn addition, there are several user accounts belonging to Russian\\nscientific institutions on\\n\\n\\t@sovam.com\\n\\nwhich is a commercial enterprise based in San Francisco that provides\\nemail services to the former USSR. For example, fian@sovam.com is the\\n\"PHysics Institute of the Academy of Sciences\" (initials transliterated\\nfrom Russian, of course). These connections cost the Russians real\\ndollars, even for *received* messages, so please don\\'t send anything\\nvoluminous or frivilous.\\n\\n=====================================================================\\nLarry R. D\\'Addario\\nNational Radio Astronomy Observatory\\n\\nAddresses (INTERNET) LDADDARI@NRAO.EDU\\n\\t (FAX) +1/804/296-0324 Charlottesville\\n\\t\\t +1/304/456-2200 Green Bank\\n\\t (MAIL) 2015 Ivy Road, Charlottesville, VA 22903, USA\\n\\t (PHONE) +1/804/296-0245 office, 804/973-4983 home CHO\\n\\t\\t +1/304/456-2226 off., -2106 lab, -2256 apt. GB\\n=====================================================================\\n',\n", + " 'From: txd@ESD.3Com.COM (Tom Dietrich)\\nSubject: Re: Ducati 400 opinions wanted\\nLines: 51\\nNntp-Posting-Host: able.mkt.3com.com\\n\\nfrankb@sad.hp.com (Frank Ball) writes:\\n\\n>Godfrey DiGiorgi (ramarren@apple.com) wrote:\\n>& \\n>& The Ducati 400 model is essentially a reduced displacement 750, which\\n>& means it weighs the same and is the same size as the 750 with far less\\n>& power. It is produced specifically to meet a vehicle tax restriction\\n>& in certain markets which makes it commercially viable. It\\'s not sold\\n>& in the US where it is unneeded and unwanted.\\n>& \\n>& As such, it\\'s somewhat large and overweight for its motor. It will \\n>& still handle magnificently, it just won\\'t be very fast. There are\\n>& very few other flaws to mention; the limited steering lock is the \\n>& annoyance noted by most testers. And the mirrors aren\\'t perfect.\\n\\n>The Ducati 750 model is essentially a reduced displacement 900, which\\n>means it weighs the same and is the same size as the 900 with far less\\n\\nNope, it\\'s 24 lbs. lightrer than the 900.\\n\\n>power. And less brakes.\\n\\nA single disk that is quite impressive. WIth two fingers on the lever,\\nmuch to Beth\\'s horror I lifted the rear wheel about 8\" in a fine Randy\\nMamola impression. ;{>\\n\\n>As such, it\\'s somewhat large and overweight for its motor. It will \\n>still handle magnificently, it just won\\'t be very fast. There are\\n\\nI have a feeling that it\\'s going to be fast enough that Beth will give\\na few liter bike riders fits in the future.\\n\\n>very few other flaws to mention; the limited steering lock is the \\n\\nThe steering locks are adjustable.\\n\\n>annoyance noted by most testers. And the mirrors aren\\'t perfect.\\n\\nBeth sees fine out of them... I see 2/3 of them filled with black\\nleather.\\n\\n*********************************************************************\\n\\'86 Concours.....Sophisticated Lady Tom Dietrich \\n\\'72 1000cc Sportster.....\\'Ol Sport-For sale DoD # 055\\n\\'79 SR500.....Spike, the Garage Rat AMA #524245\\nQueued for an M900!! FSSNOC #1843\\nTwo Jousts and a Gather, *BIG fun!* 1KSPT=17.28% \\nMa Bell (408) 764-5874 Cool as a rule, but sometimes...\\ne-mail txd@Able.MKT.3Com.COM (H. Lewis) \\nDisclaimer: 3Com takes no responsibility for opinions preceding this.\\n*********************************************************************\\n',\n", + " 'From: (Rashid)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: 47.252.4.179\\nOrganization: NH\\nLines: 76\\n\\nIn article <1993Apr14.131032.15644@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n> \\n> It is my understanding that it is generally agreed upon by the ulema\\n> [Islamic scholars] that Islamic law applies only in an Islamic country,\\n> of which the UK is not. Furthermore, to take the law into one\\'s own\\n> hands is a criminal act, as these are matters for the state, not for\\n> individuals. Nevertheless, Khomeini offered a cash prize for people to\\n> take the law into their own hands -- something which, to my\\n> understanding, is against Islamic law.\\n\\nYes, this is also my understanding of the majority of Islamic laws.\\nHowever, I believe there are also certain legal rulings which, in all\\nfive schools of law (4 sunni and 1 jaffari), can be levelled against\\nmuslim or non-muslims, both within and outside dar-al-islam. I do\\nnot know if apostasy (when accompanied by active, persistent, and\\nopen hostility to Islam) falls into this category of the law. I do know\\nthat\\nhistorically, apostasy has very rarely been punished at all, let alone\\nby the death penalty.\\n\\nMy understanding is that Khomeini\\'s ruling was not based on the\\nlaw of apostasy (alone). It was well known that Rushdie was an apostate\\nlong before he wrote the offending novel and certainly there is no\\nprecedent in the Qur\\'an, hadith, or in Islamic history for indiscriminantly\\nlevelling death penalties for apostasy.\\n\\nI believe the charge levelled against Rushdie was that of \"fasad\". This\\nruling applies both within and outside the domain of an\\nIslamic state and it can be carried out by individuals. The reward was\\nnot offered by Khomeini but by individuals within Iran.\\n\\n\\n> Stuff deleted\\n> Also, I think you are muddying the issue as you seem to assume that\\n> Khomeini\\'s fatwa was issued due to the _distribution_ of the book. My\\n> understanding is that Khomeini\\'s fatwa was issued in response to the\\n> _writing_ and _publishing_ of the book. If my view is correct, then\\n> your viewpoint that Rushdie was sentenced for a \"crime in progress\" is\\n> incorrect.\\n> \\nI would concur that the thrust of the fatwa (from what I remember) was\\nlevelled at the author and all those who assisted in the publication\\nof the book. However, the charge of \"fasad\" can encompass a\\nnumber of lesser charges. I remember that when diplomatic relations\\nbroke off between Britain and Iran over the fatwa - Iran stressed that\\nthe condemnation of the author, and the removal of the book from\\ncirculation were two preliminary conditions for resolving the\\n\"crisis\". But you are correct to point out that banning the book was not\\nthe main thrust behind the fatwa. Islamic charges such as fasad are\\nlevelled at people, not books.\\n\\nThe Rushdie situation was followed in Iran for several months before the\\nissuance of the fatwa. Rushdie went on a media blitz,\\npresenting himself as a lone knight guarding the sacred values of\\nsecular democracy and mocking the foolish concerns of people\\ncrazy enough to actually hold their religious beliefs as sacred. \\nFanning the flames and milking the controversy to boost\\nhis image and push the book, he was everywhere in the media. Then\\nMuslim demonstrators in several countries were killed while\\nprotesting against the book. Rushdie appeared momentarily\\nconcerned, then climbed back on his media horse to once again\\nattack the Muslims and defend his sacred rights. It was at this\\npoint that the fatwa on \"fasad\" was issued.\\n\\nThe fatwa was levelled at the person of Rushdie - any actions of\\nRushdie that feed the situation contribute to the legitimization of\\nthe ruling. The book remains in circulation not by some independant\\nwill of its own but by the will of the author and the publishers. The fatwa\\nagainst the person of Rushdie encompasses his actions as well. The\\ncrime was certainly a crime in progress (at many levels) and was being\\nplayed out (and played up) in the the full view of the media.\\n\\nP.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\napplies to Rushdie and may be encompassed under the umbrella\\nof the \"fasad\" ruling.\\n',\n", + " 'From: dean@fringe.rain.com (Dean Woodward)\\nSubject: Re: Comments on a 1984 Honda Interceptor 1000?\\nOrganization: Organization for Mass Confusion.\\nLines: 30\\n\\njearls@tekig6.PEN.TEK.COM (Jeffrey David Earls) writes:\\n\\n> In article <19APR93.15421177@skyfox> howp@skyfox writes:\\n> >Hi.\\n> > I am considering the purchase of a 1984 Honda 1000cc Interceptor for\\n> >$2095 CDN (about $1676 US). I don\\'t know the mileage on this bike, but from\\n> >the picture in the \\'RV Trader\\' magazine, it looks to be in good shape.\\n> >Can anybody enlighten me as to whether this is a good purchase? \\n> \\n> Oog. I hate to jump in on this type of thread but ....\\n> \\n> pass on the VF1000. It\\'s big, top heavy, and carries lots of\\n> expensive parts. \\n\\nWhat he said. Most of my friends refer to them as \"ground magnets.\" One\\n\\n\\n> =============================================================================\\n> |Jeff Earls jearls@tekig6.pen.tek.com | DoD #0530 KotTG KotSPT WMTC AMA\\n> |\\'89 FJ1200 - Millennium Falcon | Squid Factor: 16.99 \\n> |\\'93 KLR650 - Thumpy | \"Hit the button Chewie!\"... Han Solo\\n> \\n> \"There ain\\'t nothin\\' like a 115 mph sweeper in the Idaho rockies.\" - me\\n\\n\\n--\\nDean Woodward | \"You want to step into my world?\\ndean@fringe.rain.com | It\\'s a socio-psychotic state of Bliss...\"\\n\\'82 Virago 920 | -Guns\\'n\\'Roses, \\'My World\\'\\nDoD # 0866\\n',\n", + " 'From: MUNIZB%RWTMS2.decnet@rockwell.com (\"RWTMS2::MUNIZB\")\\nSubject: Space Activities in Tucson, AZ ?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 7\\n\\nI would like to find out about space engineering employment and educational\\nopportunities in the Tucson, Arizona area. E-mail responses appreciated.\\nMy mail feed is intermittent, so please try one or all of these addresses.\\n\\nBen Muniz w(818)586-3578 MUNIZB%RWTMS2.decnet@beach.rockwell.com \\nor: bmuniz@a1tms1.remnet.ab.com MUNIZB%RWTMS2.decnet@consrt.rockwell.com\\n\\n',\n", + " \"Subject: Re: Enough Freeman Bashing! Was: no-Free man propaganda machine: Freemanwith blood greetings from Israel\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 16\\n\\npgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman) writes:\\n\\n\\nPeter,\\n\\nI believe this is your most succinct post to date. Since you have nothing\\nto say, you say nothing! It's brilliant. Did you think of this all by\\nyourself?\\n\\n-marc \\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Turkey Admits to Sending Arms to Azerbaijan/Turkish Pilot Caught\\nSummary: Oh, yes...neutral Turkey \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 57\\n\\n4/15/93 1242 Turkey sends light weapons as aid to Azerbaijan\\n\\nBy SEVA ULMAN\\n \\nANKARA, Turkey (UPI) -- Turkey is arming Azerbaijan with light weapons to help\\nit fight Armenian forces in the struggle for the Nagorno- Karabakh enclave, \\nthe newspaper Hurriyet said Thursday.\\n\\nDeputy Prime Minister Erdal Inonu told reporters in Ankara that Turkey was\\nresponding positively to a request from Azerbaijan for assistance.\\n\\n\"We are giving a positive response to all requests\" from Azerbaijan, \"within\\nthe limits of our capabilities,\" he said.\\n\\nForeign Ministry spokesman Vural Valkan declined to elaborate on the nature\\nof the aid being sent to Azerbaijan, but said they were within the framework \\nof the Council for Security and Cooperation in Europe.\\n\\nHurriyet, published in Istanbul, said Turkey was sending light weapons to\\nAzerbaijan, including rockets, rocket launchers and ammunition.\\n\\nAnkara began sending the hardware after a visit to Turkey last week by a\\nhigh-ranking Azerbaijani official. Turkey has however ruled out, for the second\\ntime in one week, that it would intervene militarily in Azerbaijan.\\n\\nWednesday, Inonu told reporters Ankara would not allow Azerbaijan to suffer\\ndefeat at the hands of the Armenians. \"We feel ourselves bound to help\\nAzerbaijan, but I am not in a position right now to tell you what form (that)\\nhelp may take in the future,\" he said.\\n\\nHe said Turkish aid to Azerbaijan was continuing, \"and the whole world knows\\nabout it.\"\\n\\nPrime Minister Suleyman Demirel reiterated that Turkey would not get\\nmilitarily involved in the conflict. Foreign policy decisions could not be \\nbased on street-level excitement, he said.\\n\\nThere was no immediate reaction in Ankara to regional reports, based on\\nArmenian sources in Yerevan, saying Turkish pilots and other officers were\\ncaptured when they were shot down flying Azerbaijani warplanes and \\nhelicopters.\\n\\nThe newspaper Cumhuriyet said Turkish troops were digging in along the border\\nwith Armenia, but military sources denied reports based on claims by local\\npeople that gunfire was heard along the border. No military action has \\noccurred, the sources said.\\n\\nThe latest upsurge in fighting between the Armenians and Azerbaijanis flared\\nearly this month when Armenian forces seized the town of Kelbajar and later\\npositioned themselves outside Fizuli, near the Iranian border.\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: dietz@cs.rochester.edu (Paul Dietz)\\nSubject: Re: Terraforming Venus: can it be done \"cheaply\"?\\nOrganization: University of Rochester\\nLines: 9\\n\\nWould someone please send me James Oberg\\'s email address, if he has\\none and if someone reading this list knows it? I wanted to send\\nhim a comment on something in his terraforming book.\\n\\n\\tPaul F. Dietz\\n\\tdietz@cs.rochester.edu\\n\\n\\tPotential explosive yield of the annual global\\n\\tproduction of borax: 5 million megatons\\n',\n", + " 'From: 9051467f@levels.unisa.edu.au (The Desert Brat)\\nSubject: Victims of various \\'Good Fight\\'s\\nOrganization: Cured, discharged\\nLines: 30\\n\\nIn article <9454@tekig7.PEN.TEK.COM>, naren@tekig1.PEN.TEK.COM (Naren Bala) writes:\\n\\n> LIST OF KILLINGS IN THE NAME OF RELIGION \\n> 1. Iran-Iraq War: 1,000,000\\n> 2. Civil War in Sudan: 1,000,000\\n> 3, Riots in India-Pakistan in 1947: 1,000,000\\n> 4. Massacares in Bangladesh in 1971: 1,000,000\\n> 5. Inquistions in America in 1500s: x million (x=??)\\n> 6. Crusades: ??\\n\\n7. Massacre of Jews in WWII: 6.3 million\\n8. Massacre of other \\'inferior races\\' in WWII: 10 million\\n9. Communist purges: 20-30 million? [Socialism is more or less a religion]\\n10. Catholics V Protestants : quite a few I\\'d imagine\\n11. Recent goings on in Bombay/Iodia (sp?) area: ??\\n12. Disease introduced to Brazilian * oher S.Am. tribes: x million\\n\\n> -- Naren\\n\\nThe Desert Brat\\n-- \\nJohn J McVey, Elc&Eltnc Eng, Whyalla, Uni S Australia, ________\\n9051467f@levels.unisa.edu.au T.S.A.K.C. \\\\/Darwin o\\\\\\nFor replies, mail to whjjm@wh.whyalla.unisa.edu.au /\\\\________/\\nDisclaimer: Unisa hates my opinions. bb bb\\n+------------------------------------------------------+-----------------------+\\n|\"It doesn\\'t make a rainbow any less beautiful that we | \"God\\'s name is smack |\\n|understand the refractive mechanisms that chance to | for some.\" |\\n|produce it.\" - Jim Perry, perry@dsinc.com | - Alice In Chains |\\n+------------------------------------------------------+-----------------------+\\n',\n", + " 'From: frank@D012S658.uucp (Frank O\\'Dwyer)\\nSubject: Re: Societally acceptable behavior\\nOrganization: Siemens-Nixdorf AG\\nLines: 87\\nNNTP-Posting-Host: d012s658.ap.mchp.sni.de\\n\\nIn article cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n#In <1qvabj$g1j@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) \\n#writes:\\n#\\n#>In article cobb@alexia.lis.uiuc.edu (Mike \\n#Cobb) writes:\\n#\\n#Am I making a wrong assumption for the basis of morals? Where do they come \\n#from? The question came from the idea that I heard that morals come from\\n#whatever is societally mandated.\\n\\nIt\\'s only one aspect of morality. Societal morality is necessarily\\nvery crude and broad-brush stuff which attempts to deal with what\\nis necessary to keep that society going - and often it\\'s a little\\nover-enthusiastic about doing so. Individual morality is a different\\nthing, it often includes societal mores (or society is in trouble),\\nbut is stronger. For example, some people are vegetarian, though eating\\nmeat may be perfectly legal.\\n\\n#\\n#>#Merely a question for the basis of morality\\n#>#\\n#>#Moral/Ethical behavior = _Societally_ _acceptable_ _behavior_.\\n#>#\\n#>#1)Who is society\\n#\\n#>Depends on the society.\\n#\\n#Doesn\\'t help. Is the point irrelevant?\\n\\nNo. Often the answer is \"we are\". But if society is those who make\\nthe rules, that\\'s a different question. If society is who should\\nmake the rules, that\\'s yet another. I don\\'t claim to have the answers, either,\\nbut I don\\'t think we do it very well in Ireland, and I like some things\\nabout the US system, at least in principle.\\n\\n#\\n#>#2)How do \"they\" define what is acceptable?\\n#\\n#>Depends.\\n#On.... Again, this comes from a certain question (see above).\\n\\nWell, ideally they don\\'t, but if they must they should do it by consensus, IMO.\\n#\\n#>#3)How do we keep from a \"whatever is legal is what is \"moral\" \"position?\\n#\\n#>By adopting a default position that people\\'s moral decisions\\n#>are none of society\\'s business,\\n#\\n#So how can we put people in jail? How can we condemn other societies?\\n\\nBecause sometimes that\\'s necessary. The hard trick is to recognise when\\nit is, and equally importantly, when it isn\\'t.\\n\\n# and only interfering when it\\'s truly\\n#>necessary.\\n#\\n#Why would it be necessary? What right do we have to interfere?\\n\\nIMO, it isn\\'t often that interference (i.e. jail, and force of various\\nkinds and degrees) is both necessary and effective. Where you derive \\nthe right to interfere is a difficult question - it\\'s a sort of\\nliar\\'s paradox: \"force is necessary for freedom\". One possible justification\\nis that people who wish to take away freedom shouldn\\'t object if\\ntheir own freedom is taken away - the paradox doesn\\'t arise if\\nwe don\\'t actively wish to take way anyone\\'s freedom.\\n#\\n# The introduction of permissible interference causes the problem\\n#>that it can be either too much or too little - but most people seem\\n#>to agree that some level of interference is necessary.\\n#\\n#They see the need for a \"justice\" system. How can we even define that term?\\n\\nOnly by consensus, I guess.\\n\\n# Thus you\\n#>get a situation where \"The law often allows what honour forbids\", which I\\'ve\\n#>come to believe is as it should be. \\n#\\n#I admit I don\\'t understand that statement.\\n\\nWhat I mean is that, while thus-and-such may be legal, thus-and-such may\\nalso be seen as immoral. The law lets you do it, but you don\\'t let yourself\\ndo it. Eating meat, for example.\\n-- \\nFrank O\\'Dwyer \\'I\\'m not hatching That\\'\\nodwyer@sse.ie from \"Hens\", by Evelyn Conlon\\n',\n", + " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: writes:\\n\\n>>>As for rape, surely there the burden of guilt is solely on the rapist?\\n>>Unless you force someone to live with the rapist against his will, in which\\n>>case part of the responsibility is yours.\\n>I'm sorry, but I can't accept that. Unless the rapist was hypnotized or\\n>something, I view him as solely responsible for his actions.\\n\\nNot necessarily, especially if the rapist is known as such. For instance,\\nif you intentionally stick your finger into a loaded mousetrap and get\\nsnapped, whose fault is it?\\n\\nkeith\\n\",\n", + " \"From: bio1@navi.up.ac.za (Fourie Joubert)\\nSubject: Image Analysis for PC\\nOrganization: University of Pretoria\\nLines: 18\\nNNTP-Posting-Host: zeno.up.ac.za\\n\\nHi\\n\\nI am looking for Image Analysis software running in DOS or Windows. I'd like \\nto be able to analyze TIFF or similar files to generate histograms of \\npatterns, etc. \\n\\nAny help would be appreciated!\\n\\n__________________________________________________________________________\\n\\n _/_/_/_/ _/_/_/_/_/ Fourie Joubert \\n _/ _/ Department of Biochemistry\\n _/ _/ University of Pretoria\\n _/_/_/_/ _/ bio1@navi.up.ac.za\\n _/ _/\\n_/ _/_/_/_/\\n__________________________________________________________________________\\n\\n\",\n", + " \"From: wdm@world.std.com (Wayne Michael)\\nSubject: Re: XV under MS-DOS ?!?\\nOrganization: n/a\\nLines: 12\\n\\nNO E-MAIL ADDRESS@eicn.etna.ch writes:\\n\\n>Hi ... Recently I found XV for MS-DOS in a subdirectory of GNU-CC (GNUISH). I \\n\\nplease tell me where you where you FTP'd this from? I would like to have\\na copy of it. (I would have mailed you, but your post indicates you have no mail\\naddress...)\\n\\n> \\n-- \\nWayne Michael\\nwdm@world.std.com\\n\",\n", + " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Duke University; Durham, N.C.\\nLines: 37\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nIn article <05APR93.02678944.0049@UNBVM1.CSD.UNB.CA> C70A@UNB.CA (C70A000) writes:\\n>In article Eric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n>>Would someone please post the countersteering FAQ...i am having this awful\\n>>time debating with someone on why i push the right handle of my motorcycle\\n>>foward when i am turning left...and i can't explain (well at least) why this\\n>>happens...please help...post the faq...i need to convert him.\\n>\\n> Ummm, if you push on the right handle of your bike while at speed and\\n>your bike turns left, methinks your bike has a problem. When I do it\\n\\nReally!?\\n\\nMethinks somethings wrong with _your_ bike.\\n\\nPerhaps you meant _pull_?\\n\\nPushing the right side of my handlebars _will_ send me left.\\n\\nIt should. \\nREally.\\n\\n>on MY bike, I turn right. No wonder you need that FAQ. If I had it\\n>I'd send it.\\n>\\n\\nI'm sure others will take up the slack...\\n\\n\\n>\\n>\\n>\\n\\n-- \\nAndy Infante | I sometimes wish that people would put a little more emphasis |\\n'71 BMW R60/5 | upon the observance of the law than they do upon it's | \\nDoD #2426 | enforcement. -Calvin Coolidge | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Alaska Pipeline and Space Station!\\nOrganization: Texas Instruments Inc\\nLines: 45\\n\\nIn <1pq7rj$q2u@access.digex.net> prb@access.digex.com (Pat) writes:\\n\\n>In article <1993Apr5.160550.7592@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n>|\\n>|I think this would be a great way to build it, but unfortunately\\n>|current spending rules don\\'t permit it to be workable. For this to\\n>|work it would be necessary for the government to guarantee a certain\\n>|minimum amount of business in order to sufficiently reduce the risk\\n>|enough to make this attractive to a private firm. Since they\\n>|generally can\\'t allocate money except one year at a time, the\\n>|government can\\'t provide such a tenant guarantee.\\n\\n\\n>Fred.\\n\\n>\\tTry reading a bit. THe government does lots of multi year\\n>contracts with Penalty for cancellation clauses. They just like to be\\n>damn sure they know what they are doing before they sign a multi year\\n>contract. THe reason they aren\\'t cutting defense spending as much\\n>as they would like is the Reagan administration signed enough\\n>Multi year contracts, that it\\'s now cheaper to just finish them out.\\n\\nI don\\'t have to \"try reading a bit\", Pat. I *work* as a government\\ncontractor and know what the rules are like. Yes, they sign some\\n(damned few -- which is why everyone is always having to go to\\nWashington to see about next week\\'s funding) multi-year contracts;\\nthey also aren\\'t willing to include sufficient cancellation penalties\\nwhen they *do* decide to cut the multi-year contract and not pay on it\\n(which can happen arbitrarily at any time, no matter what previous\\nplans were) to make the risk acceptable of something like putting up a\\nprivate space station with the government as the expected prime\\noccupant.\\n\\nI\\'d like a source for that statement about \"the reason they aren\\'t\\ncutting defense spending as much as they would like\"; I just don\\'t buy\\nit. The other thing I find a bit \\'funny\\' about your posting, Pat, is\\nthat several other people answered the question pretty much the same\\nway I did; mine is the one you comment (and incorrectly, I think) on.\\nI think that says a lot. You and Tommy should move in together.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " \"From: games@max.u.washington.edu\\nSubject: SSTO Senatorial (aide) breifing recollections.\\nArticle-I.D.: max.1993Apr6.125512.1\\nDistribution: world\\nLines: 78\\nNNTP-Posting-Host: max.u.washington.edu\\n\\nThe following are my thoughts on a meeting that I, Hugh Kelso, and Bob Lilly\\nhad with an aide of Sen. Patty Murrays. We were there to discuss SSTO, and\\ncommercial space. This is how it went...\\n\\n\\n\\nAfter receiving a packet containing a presentation on the benifits of SSTO,\\nI called and tried to schedule a meeting with our local Senator (D) Patty\\nMurray, Washington State. I started asking for an hour, and when I heard\\nthe gasp on the end of the phone, I quickly backed off to 1/2 an hour.\\nLater in that conversation, I learned that a standard appointment is 15 minutes.\\n\\nWe got the standard bozo treatment. That is, we were called back by an aide,\\nwho scheduled a meeting with us, in order to determine that we were not\\nbozos, and to familiarize himself with the material, and to screen it, to \\nmake sure that it was appropriate to take the senators time with that material.\\n\\nWell, I got allocated 1/2 hour with Sen. Murrays aide, and we ended up talking\\nto him for 45 minutes, with us ending the meeting, and him still listening.\\nWe covered a lot of ground, and only a little tiny bit was DCX specific. \\nMost of it was a single stage reusable vehicle primer. There was another\\nwoman there who took copius quantities of notes on EVERY topic that\\nwe brought up.\\n\\nBut, with Murray being new, we wanted to entrench ourselves as non-corporate\\naligned (I.E. not speaking for boeing) local citizens interentested in space.\\nSo, we spent a lot of time covering the benifits of lower cost access to\\nLEO. Solar power satellites are a big focus here, so we hit them as becoming \\nfeasible with lower cost access, and we hit the environmental stand on that.\\nWe hit the tourism angle, and I left a copy of the patric Collins Tourism\\npaper, with side notes being that everyone who goes into space, and sees the\\natmosphere becomes more of an environmentalist, esp. after SEEING the smog\\nover L.A. We hit on the benifits of studying bone decalcification (which is \\nmore pronounced in space, and said that that had POTENTIAL to lead to \\nunderstanding of, and MAYBE a cure for osteoporosis. We hit the education \\nwhereby kids get enthused by space, but as they get older and find out that\\nthey havent a hop in hell of actually getting there, they go on to other\\nfields, with low cost to orbit, the chances they might get there someday \\nwould provide greater incentive to hit the harder classes needed.\\n\\nWe hit a little of the get nasa out of the operational launch vehicle business\\nangle. We hit the lower cost of satellite launches, gps navigation, personal\\ncommunicators, tellecommunications, new services, etc... Jobs provided\\nin those sectors.\\n\\nJobs provided building the thing, balance of trade improvement, etc..\\nWe mentioned that skypix would benifit from lower launch costs.\\n\\nWe left the paper on what technologies needed to be invested in in order\\nto make this even easier to do. And he asked questions on this point.\\n\\nWe ended by telling her that we wanted her to be aware that efforts are\\nproceeding in this area, and that we want to make sure that the\\nresults from these efforts are not lost (much like condor, or majellan),\\nand most importantly, we asked that she help fund further efforts along\\nthe lines of lowering the cost to LEO.\\n\\nIn the middle we also gave a little speal about the Lunar Resource Data \\nPurchase act, and the guy filed it separately, he was VERY interested in it.\\nHe asked some questions about it, and seemed like he wanted to jump on it,\\nand contact some of the people involved with it, so something may actually\\nhappen immediatly there.\\n\\nThe last two things we did were to make sure that they knew that we\\nknew a lot of people in the space arena here in town, and that they\\ncould feel free to call us any time with questions, and if we didn't know\\nthe answers, that we would see to it that they questions got to people who\\nreally did know the answers.\\n\\nThen finally, we asked for an appointment with the senator herself. He\\nsaid that we would get on the list, and he also said that knowing her, this\\nwould be something that she would be very interested in, although they\\ndo have a time problem getting her scheduled, since she is only in the\\nstate 1 week out of 6 these days.\\n\\nAll in all we felt like we did a pretty good job.\\n\\n\\t\\t\\tJohn.\\n\",\n", + " 'From: na4@vax5.cit.cornell.edu\\nSubject: Aerostitch: 1- or 2-piece?\\nDistribution: rec\\nOrganization: Cornell University\\nLines: 11\\n\\nRequest for opinions:\\t\\n\\nWhich is better - a one-piece Aerostitch or a two-piece Aerostitch?\\n\\n\\nWe\\'re looking for more than \"Well, the 2-pc is more versatile, but the \\n1-pc is better protection,...\"\\t\\n\\nThanks in advance,\\nNadine\\n\\n',\n", + " \"From: cds7k@Virginia.EDU (Christopher Douglas Saady)\\nSubject: Re: Looking for MOVIES w/ BIKES\\nOrganization: University of Virginia\\nLines: 4\\n\\nThere's also Billy Jack, The Wild One, Smokey and the Bandit\\n(Where Jerry Reed runs his truck over Motorcycle Gangs Bikes),\\nand a video tape documentary on the Hell's Angels I\\nfound in a rental store once\\n\",\n", + " \"From: bclarke@galaxy.gov.bc.ca\\nSubject: Fortune-guzzler barred from bars!\\nOrganization: BC Systems Corporation\\nLines: 20\\n\\nSaw this in today's newspaper:\\n------------------------------------------------------------------------\\nFORTUNE-GUZZLER BARRED FROM BARS\\n--------------------------------\\nBarnstaple, England/Reuter\\n\\n\\tA motorcyclist said to have drunk away a $290,000 insurance payment in\\nless than 10 years was banned Wednesday from every pub in England and Wales.\\n\\n\\tDavid Roberts, 29, had been awarded the cash in compensation for\\nlosing a leg in a motorcycle accident. He spent virtually all of it on cider, a\\ncourt in Barnstaple in southwest England was told.\\n\\n\\tJudge Malcolm Coterill banned Roberts from all bars in England and\\nWales for 12 months and put on two years' probation after he started a brawl in\\na pub.\\n\\n-- \\nBruce Clarke B.C. Environment\\n e-mail: bclarke@galaxy.gov.bc.ca\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: The Orders for the Turkish Extermination of the Armenians #17\\nSummary: To the children of genocide: \"Send them away into the Desert\"\\nArticle-I.D.: urartu.1993Apr6.115347.10660\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 145\\n\\n\\n The Orders for the Turkish Extermination of the Armenians #17\\n To the children of genocide: \"Send them away into the Desert\"\\n\\nThis is part of a continuing series of articles containing official Turkish \\nwartime (WW1) governmental telegrams, in translation, entailing the orders \\nfor the extermination of the Armenian people in Turkey. Generally, these\\ntelegrams were issued by the Turkish Minister of the Interior, Talaat Pasha,\\nfor example, we have the following set regarding children:\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t November 5, 1915. We are informed that the little ones belonging to\\n\\t the Armenians from Sivas, Mamuret-ul-Aziz, Diarbekir and Erzeroum\\n\\t [hundreds of km distance from Aleppo] are adopted by certain Moslem\\n\\t families and received as servants when they are left alone through\\n\\t the death of their parents. We inform you that you are to collect\\n\\t all such children in your province and send them to the places of\\n\\t deportation, and also to give the necessary orders regarding this to\\n\\t the people.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [1]\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t September 21, 1915. There is no need for an orphanage. It is not the\\n\\t time to give way to sentiment and feed the orphans, prolonging their\\n\\t lives. Send them away to the desert and inform us.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\t\\t\\t\\t\\t\\tTalaat\" [2]\\n\\n\\t\"To the General Committee for settling and deportees.\\n\\n\\t November 26, 1915. There were more than four hundred children in the\\n\\t orphanage. They will be added to the caravans and sent to their\\n\\t places of exile.\\n\\n\\t \\t\\t\\t\\tAbdullahad Nuri. [3]\\n\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t January 15, 1916. We hear that certain orphanages which have been\\n\\t opened receive also the children of the Armenians. Whether this is\\n\\t done through the ignorance of our real purpose, or through contempt\\n\\t of it, the Government will regard the feeding of such children or\\n\\t any attempt to prolong their lives as an act entirely opposed to it\\n\\t purpose, since it considers the survival of these children as\\n\\t detrimental. I recommend that such children shall not be received\\n\\t into the orphanages, and no attempts are to be made to establish\\n\\t special orphanages for them.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat.\" [4]\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\n\\t Collect and keep only those orphans who cannot remember the tortures\\n\\t to which their parents have been subjected. Send the rest away with\\n\\t the caravans.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [5]\\n\\n\\t\"From the Ministry of the Interior to the Government of Aleppo.\\n\\n\\t At a time when there are thousands of Moslem refugees and the widows\\n\\t of Shekid [fallen soldiers] are in need of food and protection, it is\\n\\t not expedient to incur extra expenses by feeding the children left by\\n\\t Armenians, who will serve no purpose except that of giving trouble\\n\\t in the future. It is necessary that these children should be turned\\n\\t out of your vilayet and sent with the caravans to the place of\\n\\t deportation. Those that have been kept till now are also to be sent\\n\\t away, in compliance with our previous orders, to Sivas.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [6]\\n\\nIn 1926, Halide Edip (a pioneer Turkish nationalist) wrote in her memoirs\\nabout a conversation with Talaat Pasha, verifying and \"rationalizing\" this\\nultra-national fascist anti-Armenian mentality, the following:\\n\\n\\t\"I have the conviction that as long as a nation does the best for\\n\\t its own interest, and succeeds, the world admires it and thinks\\n\\t it moral. I am ready to die for what I have done, and I know I\\n\\t shall die for it.\" [7]\\n\\n\\nThese telegrams were entered as unquestioned evidence during the 1923 trial of\\nTalaat Pasha\\'s, assassin, Soghomon Tehlerian. The Turkish government never\\nquestioned these \"death march orders\" until 1986, during a time when the world\\nwas again reminded of the genocide of the Armenians.\\n\\nFor reasons known to those who study the psychology of genocide denial, the\\nTurkish government and their supporters in crime deny that such orders were\\never issued, and further claim that these telegrams were forgeries based on a\\nstudy by S. Orel and S. Yuca of the Turkish Historical Society.\\n\\nIf one were to examine the sample \"authentic text\" provided in the Turkish \\nHistorical Society study and use their same forgery test on that sample, it \\ntoo would be a forgery!. In fact, if any of the tests delineated by the \\nTurkish Historical Society are performed an any piece of Ottoman Turkish or \\nPersian/Arabic script, one finds that anything handwritten in such language is\\na forgery. \\n\\nToday, the body of Talaat Pasha lies in a tomb on Liberty Hill, Istanbul,\\nTurkey, just next to the Yildiz University campus. The body of this genocide \\narchitect was returned to Turkey from Germany during WW2 when Turkey was in a \\nheightened state of proto-fascism. Recently, this monument has served as a\\nfocal point for anti-Armenianism in Turkey.\\n\\nThis monument represents the epitome of the Turkish government\\'s pathological\\ndenial of a clear historical event and is an insult to a people whose only\\ncrime was to be born Armenian.\\n\\n\\t\\t\\t- - - references - - -\\n\\n[1] _The Memoirs of Naim Bey_, Aram Andonian, 1919, pages 59-60\\n\\n[2] ibid, page 60\\n\\n[3] ibid, page 60\\n\\n[4] ibid, page 61\\n\\n[5] ibid, page 61\\n\\n[6] ibid, page 62\\n\\n[7] _Memoirs of Halide Edip_, Halide Edip, The Century Press, New York (and\\n London), 1926, page 387\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: drunen@nucleus.ps.uci.edu (Eric Van Drunen)\\nSubject: Re: Big amateur rockets\\nNntp-Posting-Host: nucleus.ps.uci.edu\\nOrganization: University of California, Irvine\\nLines: 30\\n\\nActually, they are legal! I not familiar with the ad you are speaking of\\nbut knowing Popular Science it is probably on the fringe. However, you\\nmay be speaking of \"Public Missle, Inc.\", which is a legitimate company\\nthat has been around for a while.\\n\\nDue to advances in composite fuels, engines are now available for model\\nrockets using similar composites to SRB fuel, roughly 3 times more \\npowerful than black powder motors. They are even available in a reloadable\\nform, i.e. aluminum casing, end casings, o-rings (!). The engines range\\nfrom D all the way to M in common manufacture, N and O I\\'ve heard of\\nused at special occasions.\\n\\nTo be a model rocket, however, the rocket can\\'t contain any metal \\nstructural parts, amongst other requirements. I\\'ve never heard of a\\nmodel rocket doing 50,000. I have heard of > 20,000 foot flights.\\nThese require FAA waivers (of course!). There are a few large national\\nlaunches (LDRS, FireBALLS), at which you can see many > K sized engine\\nflights. Actually, using a > G engine constitutes the area of \"High\\nPower Rocketry\", which is seperate from normal model rocketry. Purchase\\nof engines like I have been describing require membership in the National\\nAssociation of Rocketry, the Tripoli Rocketry Assoc., or you have to\\nbe part of an educational institute or company involved in rocketry.\\n\\nAmatuer rocketry is another area. I\\'m not really familiar with this,\\nbut it is an area where metal parts are allowed, along with liquid fuels\\nand what not. I don\\'t know what kind of regulations are involved, but\\nI\\'m sure they are numerous.\\n\\nHigh power rocketry is very exciting! If you are interested or have \\nmore questions, there is a newsgroup rec.model.rockets.\\n',\n", + " \"From: avi@duteinh.et.tudelft.nl (Avi Cohen Stuart)\\nSubject: Re: Israel's Expansion II\\nOriginator: avi@duteinh.et.tudelft.nl\\nNntp-Posting-Host: duteinh.et.tudelft.nl\\nOrganization: Delft University of Technology, Dept. of Electrical Engineering\\nLines: 14\\n\\nFrom article <93111.225707PP3903A@auvm.american.edu>, by Paul H. Pimentel :\\n> What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n> s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n> k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n> ore they have a right to Jerusaleum as much as Isreal does.\\n\\n\\nThere is one big difference between Israel and the Arabs, Christians in this\\nrespect.\\n\\nIsrael allows freedom of religion.\\n\\nAvi.\\n\",\n", + " \"From: denis@apldbio.com (Denis Concordel)\\nSubject: *** For sale: 1988 Husqvarna 510TE ***\\nDistribution: ba,ca\\nOrganization: Applied Biosystems, Inc\\nLines: 42\\n\\nFor sale:\\n\\n Model : Husqvarna 510 TE (enduro model)\\n Year : 1988\\n Engine : 500 cc Four Stroke\\n\\n Extras : - 1992 ignition (for easy starting)\\n - Suspension by Aftershock\\n - Custom carbon fiber/Kevlar skid plate\\n - Quick steering geometry\\n - Stock (EPA legal and quiet) exhaust system\\n - Bark busters and hand guards\\n - Motion Pro clutch cable\\n\\n Price : $2200\\n\\n Contact: Denis Concordel E-Mail: denis@apldbio.com\\n MaBell: (415) 570 6667 (work)\\n (415) 494 7109 (home)\\n\\n I am selling my trusty Husky... hopefully to buy a Husaberg... This is\\n a very good dirt bike and has been maintained perfectly. I never had\\n any problems with it.\\n\\n It's a four stroke, 4 valves, liquid cooled engine. It is heavier than \\n a 250 2 stroke but still lighter than a Honda XR600 and has a lot better \\n suspension (Ohlins shock, Husky fork) than the XR. For the casual or non\\n competitive rider, the engine is much better than any two stroke.\\n You can easily lug up hills and blast through trails with minimum gear\\n changes.\\n \\n The 1992 ignition and the carefully tuned carburation makes this bike\\n very easy to start (starts of first kick when cold or hot). There is a\\n custom made carbon/kevlar (light 1 pound) wrap around skid plate to protect\\n the engine cases and the water pump. The steering angle has been reduced \\n by 2 degree to increase steering quickness. This with the suspension tune-up\\n by Phil Douglas of Aftershock (Multiple time ISDE rider) gives it a better\\n ride than most bike: plush suspension, responsive steering with no head shake.\\n\\n So if it is such a good bike why sell it???? Gee, I want to buy a Husaberg,\\n which just a husky but 25 pounds lighter... and a tad more $$$.\\n\\n\",\n", + " \"From: g.coulter@daresbury.ac.uk (G. Coulter)\\nSubject: SHADOW Optical Raytracing Package?\\nReply-To: g.coulter@daresbury.ac.uk\\nOrganization: SERC Daresbury Laboratory, UK\\nLines: 17\\nNNTP-Posting-Host: dlsg.dl.ac.uk\\n\\nHi Everyone ::\\n\\nI am looking for some software called SHADOW as \\nfar as I know its a simple raytracer used in\\nthe visualization of synchrotron beam lines.\\nNow we have an old version of the program here\\n,but unfortunately we don't have any documentation\\nif anyone knows where I can get some docs, or\\nmaybe a newer version of the program or even \\nanother program that does the same sort of thing\\nI would love to hear from you.\\n\\nPS I think SHADOW was written by a F Cerrina?\\n\\nAnyone any ideas?\\n\\nThanks -Gary- SERC Daresbury Lab.\\n\",\n", + " 'From: rwf2@ns1.cc.lehigh.edu (ROBERT WILLIAM FUSI)\\nSubject: Re: Recommendation for a front tire.\\nOrganization: Lehigh University\\nLines: 37\\n\\nIn article , nrmendel@unix.amherst.edu (Nathaniel M\\nendell) writes:\\n>Ken Orr (orr@epcot.spdc.ti.com) wrote:\\n>: In article nrmendel@unix.amherst.edu (Nathaniel\\nMendell) writes:\\n>: >Steve Mansfield (smm@rodan.UU.NET) wrote:\\n>: >: Yes, my front tire is all but dead. It has minimal tread left, so it\\'s\\n>: >: time for a new one. Any recommendations on a good tire in front? I\\'m\\n>: >: riding on an almost brand new ME55A in back.\\n>: >:\\n>: >: Steve Mansfield | The system we\\'ve learned says we\\'re equal under la\\nw\\n>: >: smm@uunet.uu.net | But the streets are reality, the weak and poor will\\nfall\\n>: >: 1983 Suzuki GS550E | Let\\'s tip the power balance and tear down the crown\\n>: >: DoD# 1718 | Educate the masses, we\\'ll burn the White House down.\\n>: >: Queensryche - Speak the Word.\\n>: >\\n>: >The best thing is to match front and back, no? Given that the 99A (\"Perfect\"\\n?)\\n>: >is such a good tire, just go with that one\\n>: >\\n>: The Me99a perfect is a rear. The match for the front is the Me33 laser.\\n>:\\n>: DOD #306 K.O.\\n>: AMA #615088 Orr@epcot.spdc.ti.com\\n>\\n>Yeah, what *he* said....<:)\\n>\\n>Nathaniel\\n>ZX-10\\n>DoD 0812\\n>AM\\n\\n>Yes, you definitely need a front tire on a motorcycle....\\n\\n-- \\n',\n", + " \"From: zellner@stsci.edu\\nSubject: Re: HST Servicing Mission\\nLines: 19\\nOrganization: Space Telescope Science Institute\\nDistribution: world,na\\n\\nIn article <1rd1g0$ckb@access.digex.net>, prb@access.digex.com (Pat) writes: \\n > \\n > \\n > SOmebody mentioned a re-boost of HST during this mission, meaning\\n > that Weight is a very tight margin on this mission.\\n > \\n\\nI haven't heard any hint of a re-boost, or that any is needed.\\n\\n > \\n > why not grapple, do all said fixes, bolt a small liquid fueled\\n > thruster module to HST, then let it make the re-boost. it has to be\\n > cheaper on mass then usingthe shuttle as a tug. \\n\\nNasty, dirty combustion products! People have gone to monumental efforts to\\nkeep HST clean. We certainly aren't going to bolt any thrusters to it.\\n\\nBen\\n\\n\",\n", + " \"From: jyaruss@hamp.hampshire.edu\\nSubject: Misc./buying info. needed\\nOrganization: Hampshire College\\nLines: 15\\nNNTP-Posting-Host: hamp.hampshire.edu\\n\\nHi. I have been thinking about buying a Motorcycle or a while now and I have\\nsome questions:\\n\\n-Is there a buying guide for new/used motorcycles (that lists reliability, how\\nto go about the buying process, what to look for, etc...)?\\n-Is there a pricing guide for new/used motorcycles (Blue Book)?\\n\\nAlso\\n-Are there any books/articles on riding cross country, motorcycle camping, etc?\\n-Is there an idiots' guide to motorcycles?\\n\\nANY related information is helpful. Please respond directly to me.\\n\\nThanks a lot.\\n-Jordan\\n\",\n", + " 'From: sigma@rahul.net (Kevin Martin)\\nSubject: Re: Stay Away from MAG Innovision!!!\\nNntp-Posting-Host: bolero\\nOrganization: a2i network\\nLines: 10\\n\\nIn <16BB58B33.D1SAR@VM1.CC.UAKRON.EDU> D1SAR@VM1.CC.UAKRON.EDU (Steve Rimar) writes:\\n>My Mag MX15F works fine....................\\n\\nMine was beautiful for a year and a half. Then it went . I bought\\na ViewSonic 6FS instead. Another great monitor, IMHO.\\n\\n-- \\nKevin Martin\\nsigma@rahul.net\\n\"I gotta get me another hat.\"\\n',\n", + " 'From: lusky@ccwf.cc.utexas.edu (Jonathan R. Lusky)\\nSubject: Kawasaki ZX-6 engine needed\\nReply-To: lusky@ccwf.cc.utexas.edu (Jonathan R. Lusky)\\nDistribution: usa\\nOrganization: UT SAE / Longhorn Racing Team\\nLines: 14\\nOriginator: lusky@sylvester.cc.utexas.edu\\n\\nI\\'m looking for a 1990-91 Kawasaki ZX-6 engine. Just the engine,\\nno intake, exhaust, ignition, etc. Preferably in the central texas\\narea, but we haven\\'t had much luck around here so we\\'ll take whatever we\\ncan get. Please reply via mail or call (512) 471-5399 if you have one\\n(or more... really need a spare).\\n\\nThanx\\n\\n-- \\n--=< Jonathan Lusky ----- lusky@ccwf.cc.utexas.edu >=-- \\n \\\\ \"Turbos are nice, but I\\'d rather be blown!\" /\\n \\\\ 89 Jeep Wrangler - 258/for sale! / \\n \\\\ 79 Rx-7 - 12A/Holley 4bbl / \\n \\\\________67 Camaro RS - 350/4spd________/ \\n',\n", + " 'From: ed@cwis.unomaha.edu (Ed Stastny)\\nSubject: The OTIS Project (FTP sites for original art and images)\\nKeywords: Mr.Owl, how many licks...\\nOrganization: University of Nebraska at Omaha\\nLines: 227\\n\\n\\n\\t-------------------------------------\\n\\t+ ............The OTIS Project \\'93 + \\n\\t+ \"The Operative Term Is STIMULATE\" + \\n\\t-------------------------------------\\n\\t---this file last updated..4-21-93---\\n\\n\\nWHAT IS OTIS?\\n\\nOTIS is here for the purpose of distributing original artwork\\nand photographs over the network for public perusal, scrutiny, \\nand distribution. Digital immortality.\\n\\nThe basic idea behind \"digital immortality\" is that computer networks \\nare here to stay and that anything interesting you deposit on them\\nwill be around near-forever. The GIFs and JPGs of today will be the\\nartifacts of a digital future. Perhaps they\\'ll be put in different\\nformats, perhaps only surviving on backup tapes....but they\\'ll be\\nthere...and someone will dig them up. \\n \\nIf that doesn\\'t interest you... OTIS also offers a forum for critique\\nand exhibition of your works....a virtual art gallery that never closes\\nand exists in an information dimension where your submissions will hang\\nas wallpaper on thousands of glowing monitors. Suddenly, life is \\nbreathed into your work...and by merit of it\\'s stimulus, it will \\ntravel the globe on pulses of light and electrons.\\n \\nSpectators are welcome also, feel free to browse the gallery and \\nlet the artists know what you think of their efforts. Keep your own\\ncopies of the images to look at when you\\'ve got the gumption...\\nthat\\'s what they\\'re here for.\\n\\n---------------------------------------------------------------\\n\\nWHERE? \\n\\nOTIS currently (as of 4/21/93) has two FTP sites. \\n \\n \\t141.214.4.135 (projects/otis), the UWI site\\n\\t\\t\\n\\tsunsite.unc.edu (/pub/multimedia/pictures/OTIS), the SUNsite \\n\\t(you can also GOPHER to this site for OTIS as well)\\n\\nMerely \"anonymous FTP\" to either site on Internet and change to the\\nappropriate directory. Don\\'t forget to get busy and use the \"bin\"\\ncommand to make sure you\\'re in binary.\\n\\nOTIS has also been spreading to some dial-up BBS systems around North\\nAmerica....the following systems have a substancial supply of\\nOTIStuff...\\n\\tUnderground Cafe (Omaha) (402.339.0179) 2 lines\\n\\tCyberDen (SanFran?) (415.472.5527) Usenet Waffle-iron\\n\\n--------------------------------------------------------------\\n \\nHOW DO YOU CONTRIBUTE?\\n \\nWhat happens is...you draw a pretty picture or take a lovely \\nphoto, get it scanned into an image file, then either FTP-put\\nit in the CONTRIB/Incoming directory or use UUENCODE to send it to me\\n(email addresses at eof) in email. After the image is received,\\nit will be put into the correct directory. Computer originated works\\nare also welcome.\\n\\nOTIS\\' directories house two types of image files, GIF and JPG. \\nGIF and JPG files require, oddly enough, a GIF or JPG viewer to \\nsee. These viewers are available for all types of computers at \\nmost large FTP sites around Internet. JPG viewers are a bit\\ntougher to find. If you can\\'t find one, but do have a GIF viewer, \\nyou can obtain a JPG-to-GIF conversion program which will change \\nJPG files to a standard GIF format. \\n\\nOTIS also accepts animation files. \\n\\nWhen you submit image files, please send me email at the same time\\nstating information about what you uploaded and whether it is to be\\nused (in publications or other projects) or if it is merely for people\\nto view. Also, include some biographical information on yourself, we\\'ll\\nbe having info-files on each contributing artist and their works. You \\ncan also just upload a text-file of info about yourself (instead of \\nemailing).\\n\\nIf you have pictures, but no scanner, there is hope. Merely send\\ncopies to:\\n\\nThe OTIS Project\\nc/o Ed Stastny\\nPO BX 241113\\nOmaha, NE 68124-1113\\n\\nI will either scan them myself or get them to someone who will \\nscan them. Include an ample SASE if you want your stuff back. \\nAlso include information on each image, preferably a 1-3 line \\ndescription of the image that we can include in the infofile in the\\ndirectory where it\\'s finally put. If you have preferences as to what\\nthe images are to be named, include those as well. \\n \\nConversely, if you have a scanner and would like to help out, please\\ncontact me and we\\'ll arrange things.\\n\\nIf you want to submit your works by disk, peachy. Merely send a 3.5\"\\ndisk to the above address (Omaha) and a SASE if you want your disk back.\\nThis is good for people who don\\'t have direct access to encoders or FTP,\\nbut do have access to a scanner. We accept disks in either Mac or IBM\\ncompatible format. If possible, please submit image files as GIF or\\nJPG. If you can\\'t...we can convert from most formats...we\\'d just rather\\nnot have to.\\n\\nAt senders request, we can also fill disks with as much OTIS as they\\ncan stand. Even if you don\\'t have stuff to contribute, you can send\\na blank disk and an SASE (or $2.50 for disk, postage and packing) to \\nget a slab-o-OTIS.\\n\\nAs of 04/21/93, we\\'re at about 18 megabytes of files, and growing. \\nEmail me for current archive size and directory.\\n\\n--------------------------------------------------------------------\\n\\nDISTRIBUTION?\\n\\nThe images distributed by the OTIS project may be distributed freely \\non the condition that the original filename is kept and that it is\\nnot altered in any way (save to convert from one image format to\\nanother). In fact, we encourage files to be distributed to local \\nbulletin boards and such. If you could, please transport the\\nappropriate text files along with the images. \\n \\nIt would also be nice if you\\'d send me a note when you did post images\\nfrom OTIS to your local bbs. I just want to keep track of them so\\nparticipants can have some idea how widespread their stuff is.\\n\\nIt\\'s the purpose of OTIS to get these images spread out as much as\\npossible. If you have the time, please upload a few to your favorite\\nBBS system....or even just post this \"info-file\" there. It would be\\nkeen of you.\\n\\n--------------------------------------------------------------------\\n\\nUSE?\\n\\nIf you want to use any of the works you find on the OTIS directory,\\nyou\\'ll have to check to see if permission has been granted and the \\nstipulations of the permission (such as free copy of publication, or\\nfull address credit). You will either find this in the \".rm\" file for \\nthe image or series of images...or in the \"Artists\" directory under the \\nArtists name. If permission isn\\'t explicitly given, then you\\'ll have \\nto contact the artist to ask for it. If no info is available, email\\nme (ed@cwis.unomaha.edu), and I\\'ll get in contact with the artist for \\nyou, or give you their contact information.\\n \\nWhen you DO use permitted work, it\\'s always courteous to let the artist\\nknow about it, perhaps even send them a free copy or some such\\ncompensation for their files.\\n\\n---------------------------------------------------------------------\\n\\nNAMING IMAGES?\\n\\nPlease keep the names of your files in \"dos\" format. That means, keep\\nthe filename (before .jpg or .gif) to eight characters or less. The way\\nI usually do it is to use the initials of the artist, plus a three or\\nfour digit \"code\" for the series of images, plus the series number.\\nThus, Leonardo DeVinci\\'s fifth mechanical drawing would be something\\nlike:\\n \\n\\tldmek5.gif OR ldmek5.jpg OR ldmech5.gif ETC\\n\\nKeeping the names under 8 characters assures that the filename will\\nremain intact on all systems. \\n\\n\\n---------------------------------------------------------------------- \\n\\nCREATING IMAGE FILES?\\n\\nWhen creating image files, be sure to at least include your name\\nsomewhere on or below the picture. This gives people a reference in\\ncase they\\'d like to contact you. You may also want to include a title,\\naddress or other information you\\'d like people to know.\\n\\n-----------------------------------------------------------------------\\n\\nHMMM?!\\n\\nThat\\'s about it for now. More \"guidelines\" will be added as needed.\\nYour input is expected.\\n\\n-----------------------------------------------------------------------\\n\\nDISCLAIMER: The OTIS Project has no connection to the Church of OTIS \\n \\t (a sumerian deity) or it\\'s followers, be they pope, priest,\\n\\t or ezine administrator. We do take sacrifices and donations\\n\\t however.\\n\\n-----------------------------------------------------------------------\\n\\nDISCLAIMER: The OTIS Project is here for the distribution of original \\n \\t image files. The files will go to the public at large. \\n\\t It\\'s possible, as with any form of mass-media, that someone\\n\\t could unscrupulously use your images for financial gain. \\n \\t Unless you\\'ve given permission for that, it\\'s illegal. OTIS\\n\\t takes no responsibility for this. In simple terms, all rights\\n\\t revert to the author/artist. To leave an image on OTIS is to \\n\\t give permission for it to be viewed, copied and distributed \\n\\t electronically. If you don\\'t want your images distributed \\n\\t all-over, don\\'t upload them. To leave an image on OTIS is\\n\\t NOT giving permission to have it used in any publication or\\n\\t broadcast that incurs profit (this includes, but is not \\n\\t limited to, magazines, newsletters, clip-art software, \\n\\t screen-printed clothing, etc). You must give specific\\n\\t permission for this sort of usage. \\n\\n-----------------------------------------------------------------------\\n\\nRemember, the operative term is \"stimulate\". If you know of people\\nthat\\'d be interested in this sort of thing...get them involved...kick\\'m\\nin the booty....offer them free food...whatever...\\n\\n....e (ed@cwis.unomaha.edu)\\n (ed@sunsite.unc.edu)\\n\\n--\\nEd Stastny | OTIS Project, END PROCESS, SOUND News and Arts \\nPO BX 241113\\t | FTP: sunsite.unc.edu (/pub/multimedia/pictures/OTIS)\\nOmaha, NE 68124-1113 | 141.214.4.135 (projects/otis)\\n---------------------- EMail: ed@cwis.unomaha.edu, ed@sunsite.unc.edu\\n',\n", + " 'From: amjad@eng.umd.edu (Amjad A Soomro)\\nSubject: Gamma-Law Correction\\nOrganization: Project GLUE, University of Maryland, College Park\\nLines: 22\\nDistribution: USA\\nExpires: 05/15/93\\nNNTP-Posting-Host: filter.eng.umd.edu\\n\\nHi:\\n\\nI am digitizing a NTSC signal and displaying on a PC video monitor.\\nIt is known that the display response of tubes is non-linear and is\\nsometimes said to follow Gamma-Law. I am not certain if these\\nnon-linearities are \"Gamma-corrected\" before encoding NTSC signals\\nor if the TV display is supposed to correct this.\\n \\nAlso, if 256 grey levels, for example, are coded in a C program do\\nthese intensity levels appear with linear brightness on a PC\\nmonitor? In other words does PC monitor display circuitry\\ncorrect for \"gamma errrors\"?\\n \\nYour response is much appreciated.\\n \\nAmjad.\\n\\nAmjad Soomro\\nCCS, Computer Science Center\\nU. of Maryland at College Park\\nemail: amjad@wam.umd.edu\\n\\n',\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: How many Mutlus can dance on the head of a pin?\\nArticle-I.D.: news.2BC0D53B.20378\\nOrganization: University of California, Irvine\\nLines: 28\\nNntp-Posting-Host: orion.oac.uci.edu\\n\\nIn article <1993Apr5.211146.3662@mnemosyne.cs.du.edu> jfurr@nyx.cs.du.edu (Joel Furr) writes:\\n>In article <3456@israel.nysernet.org> warren@nysernet.org writes:\\n>>In jfurr@polaris.async.vt.edu (Joel Furr) writes:\\n>>>How many Mutlus can dance on the head of a pin?\\n>>\\n>>That reminds me of the Armenian massacre of the Turks.\\n>>\\n>>Joel, I took out SCT, are we sure we want to invoke the name of he who\\n>>greps for Mason Kibo\\'s last name lest he include AFU in his daily\\n>>rounds?\\n>\\n>I dunno, Warren. Just the other day I heard a rumor that \"Serdar Argic\"\\n>(aka Hasan Mutlu and Ahmed Cosar and ZUMABOT) is not really a Turk at all,\\n>but in fact is an Armenian who is attempting to make any discussion of the\\n>massacres in Armenia of Turks so noise-laden as to make serious discussion\\n>impossible, thereby cloaking the historical record with a tremendous cloud\\n>of confusion. \\n\\n\\nDIs it possible to track down \"zuma\" and determine who/what/where \"seradr\" is?\\nIf not, why not? I assu\\\\me his/her/its identity is not shielded by policies\\nsimilar to those in place at \"anonymous\" services.\\n\\nTim\\nD\\nD\\nD\\nVery simpl\\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Boom! Whoosh......\\nOrganization: U of Toronto Zoology\\nLines: 21\\n\\nIn article <1r46ofINNdku@gap.caltech.edu> palmer@cco.caltech.edu (David M. Palmer) writes:\\n>>orbiting billboard...\\n>\\n>I would just like to point out that it is much easier to place an\\n>object at orbital altitude than it is to place it with orbital\\n>velocity. For a target 300 km above the surface of Earth,\\n>you need a delta-v of 2.5 km/s. Assuming that rockets with specific\\n>impulses of 300 seconds are easy to produce, a rocket with a dry\\n>weight of 50 kg would require only about 65 kg of fuel+oxidizer...\\n\\nUnfortunately, if you launch this from the US (or are a US citizen),\\nyou will need a launch permit from the Office of Commercial Space\\nTransportation, and I think it may be difficult to get a permit for\\nan antisatellite weapon... :-)\\n\\nThe threshold at which OCST licensing kicks in is roughly 100km.\\n(The rules are actually phrased in more complex ways, but that is\\nthe result.)\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: jgreen@trumpet.calpoly.edu (James Thomas Green)\\nSubject: Re: Vulcan? (No, not the guy with the ears!)\\nOrganization: California Polytechnic State University, San Luis Obispo\\nLines: 31\\n\\n>In article victor@inqmind.bison.mb.ca (Victor Laking) writes:\\n>>From: victor@inqmind.bison.mb.ca (Victor Laking)\\n>>Subject: Vulcan? (No, not the guy with the ears!)\\n>>Date: Sun, 04 Apr 93 19:31:54 CDT\\n>>Does anyone have any info on the apparent sightings of Vulcan?\\n>> \\n>>All that I know is that there were apparently two sightings at \\n>>drastically different times of a small planet that was inside Mercury\\'s \\n>>orbit. Beyond that, I have no other info.\\n>>\\n>>Does anyone know anything more specific?\\n>>\\n\\nAs I heard the story, before Albert came up the the theory\\no\\'relativity and warped space, nobody could account for\\nMercury\\'s orbit. It ran a little fast (I think) for simple\\nNewtonian physics. With the success in finding Neptune to\\nexplain the odd movments of Uranus, it was postulated that there\\nmight be another inner planet to explain Mercury\\'s orbit. \\n\\nIt\\'s unlikely anything bigger than an asteroid is closer to the\\nsun than Mercury. I\\'m sure we would have spotted it by now.\\nPerhaps some professionals can confirm that.\\n\\n\\n/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n| Heaven, n.: |\\n| A place where the wicked cease from troubling you with talk | \\n| of their own personal affairs, and the good listen with |\\n| attention while you expound your own. |\\n| Ambrose Bierce, \"The Devil\\'s Dictionary\" |\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The museum of \\'BARBARISM\\'.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 215\\n\\nIn article v999saum@ubvmsb.cc.buffalo.edu (Varnavas A. Lambrou) writes:\\n\\n>What about Cyprus?? The majority of the population is christian, but \\n>your fellow Turkish friends DID and STILL DOING a \\'good\\' job for you \\n>by cleaning the area from christians.\\n\\nAll your article reflects is your abundant ignorance. The people of \\nTurkiye know quite well that Greece and the Greek Cypriots will never \\nabandon the idea of hellenizing Cyprus and will remain eternally \\nhopeful of uniting it with Greece, someday, whatever the cost to the\\nparties involved. The history speaks for itself. Greece was the sole \\nperpetrator of invasion on that island when it sent its troops on July \\n15, 1974 in an attempt to topple the legitimate government of Archibishop \\nMakarios.\\n\\nFollowing the Greek Cypriot attempt to annex the island to Greece with \\nthe aid of the Greek army, Turkiye intervened by using her legal right \\ngiven by two international agreements. Turkiye did it for the frequently \\nand conveniently forgotten people of the island, Turkish Cypriots. For \\nthose Turkish Cypriots whose grandparents have been living on the island \\nsince 1571. \\n\\nThe release of Nikos Sampson, a member of EOKA [National Organization\\nof Cypriot Fighters] and a convicted terrorist, shows that the\\n\\'enosis\\' mentality continues to survive in Greece. One should not\\nforget that Sampson dedicated his life to annihilating the Turks\\nin Cyprus, committed murder to achieve this goal, and tried to\\ndestroy the island\\'s independence by annexing it to Greece. Of\\ncourse, the Greek governments will have to bear the consequences \\nfor this irresponsible conduct.\\n\\n\\n THE MUSEUM OF BARBARISM\\n\\n2 Irfan Bey Street, Kumsal Area, Nicosia, Cyprus\\n\\nIt is the house of Dr. Nihat Ilhan, a major who was serving at\\nthe Cyprus Turkish Army Contingent. During the attacks launched\\nagainst the Turks by the Greeks, on 20th December 1963, Dr. Nihat\\nIlhan\\'s wife and three children were ruthlessly and brutally\\nkilled in the bathroom, where they had tried to hide, by savage\\nGreeks. Dr. Nihat Ilhan happened to be on duty that night, the\\n24th December 1963. Pictures reflecting Greek atrocities\\ncommitted during and after 1963 are exhibited in this house which\\nhas been converted into a museum.\\n\\nAN EYE-WITNESS ACCOUNT OF HOW A TURKISH FAMILY WAS BUTCHERED BY\\nGREEK TERRORISTS\\n\\nThe date is the 24th of December, 1963... The onslaught of the\\nGreeks against the Turks, which started three days ago, has been\\ngoing on with all its ferocity; and defenseless women, old men\\nand children are being brutally killed by Greeks. And now Kumsal\\nArea of Nicosia witnesses the worst example of the Greeks savage\\nbloodshed...\\n\\nThe wife and the three infant children of Dr. Nihat Ilhan, a\\nmajor on duty at the camp of the Cyprus Turkish Army Contingent,\\nare mercilessly and dastardly shot dead while hiding in the\\nbathroom of their house, by maddened Greeks who broke into their\\nhome. A glaring example of Greek barbarism.\\n\\nLet us now listen to the relating of the said incident told by\\nMr. Hasan Yusuf Gudum, an eye witness, who himself was wounded\\nduring the same terrible event.\\n\\n\"On the night of the 24th of December, 1963 my wife Feride Hasan\\nand I were paying a visit to the family of Major Dr. Nihat Ilhan.\\nOur neighbours Mrs. Ayshe of Mora, her daughter Ishin and Mrs.\\nAyshe\\'s sister Novber were also with us. We were all sitting\\nhaving supper. All of a sudden bullets from the Pedieos River\\ndirection started to riddle the house, sounding like heavy rain.\\nThinking that the dining-room where we were sitting was\\ndangerous, we ran to the bathroom and toilet which we thought\\nwould be safer. Altogether we were nine persons. We all hid in\\nthe bathroom except my wife who took refuge in the toilet. We\\nwaited in fear. Mrs. Ilhan the wife of Major Doctor, was standing\\nin the bath with her three children Murat, Kutsi and Hakan in her\\narms. Suddenly with a great noise we heard the front door open.\\nGreeks had come in and were combing, every corner of the house\\nwith their machine gun bullets. During these moments I heard\\nvoices saying, in Greek, \"You want Taksim eh!\" and then bullets\\nstarted flying in the bathroom. Mrs. Ilhan and her three children\\nfell into the bath. They were shot. At this moment the Greeks,\\nwho broke into the bathroom, emptied their guns on us again. I\\nheard one of the Major\\'s children moan, then I fainted.\\n\\nWhen I came to myself 2 or 3 hours later, I saw Mrs. Ilhan and\\nher three children lying dead in the bath. I and the rest of the\\nneighbours in the bathroom were all seriously wounded. But what\\nhad happened to my wife? Then I remembered and immediately ran to\\nthe toilet, where, in the doorway, I saw her body. She was\\nbrutally murdered.\\n\\nIn the street admist the sound of shots I heard voices crying\\n\"Help, help. Is there no one to save us?\" I became terrified. I\\nthought that if the Greeks came again and found that I was not\\ndead they would kill me. So I ran to the bedroom and hid myself\\nunder the double-bed.\\n\\nAn our passed by. In the distance I could still hear shots. My\\nmouth was dry, so I came out from under the bed and drank some\\nwater. Then I put some sweets in my pocket and went back to the\\nbathroom, which was exactly as I had left in an hour ago. There I\\noffered sweets to Mrs. Ayshe, her daughter and Mrs. Novber who\\nwere all wounded.\\n\\nWe waited in the bathroom until 5 o\\'clock in the morning. I\\nthought morning would never come. We were all wounded and needed\\nto be taken to hospital. Finally, as we could walk, Mrs. Novber\\nand I, went out into the street hoping to find help, and walked\\nas far as Koshklu Chiftlik.\\n\\nThere, we met some people who took us to hospital where we were\\noperated on. When I regained my consciousness I said that there\\nwere more wounded in the house and they went and brought Mrs.\\nAyshe and her daughter.\\n\\nAfter staying three days in the hospital I was sent by plane to\\nAnkara for further treatment. There I have had four months\\ntreatment but still I cannot use my arm. On my return to Cyprus,\\nGreeks arrested me at the Airport.\\n\\nAll I have related to you above I told the Greeks during my\\ndetention. They then released me.\"\\n\\nON FOOT INTO CYPRUS\\'S DEVASTATED TURKISH QUARTER\\n\\nWe went tonight into the sealed-off Turkish quarter of Nicosia in\\nwhich 200 to 300 people have been slaughtered in the last five\\ndays.\\n\\nWe were the first Western reporters there, and we saw some\\nterrible sights.\\n\\nIn the Kumsal quarter at No. 2, Irfan Bey Sokagi, we made our way\\ninto a house whose floors were covered with broken glass. A\\nchild\\'s bicycle lay in a corner.\\n\\nIn the bathroom, looking like a group of waxworks, were three\\nchildren piled on top of their murdered mother.\\n\\nIn a room next to it we glimpsed the body of a woman shot in the\\nhead.\\n\\nThis, we were told, was the home of a Turkish Army major whose\\nfamily had been killed by the mob in the first violence.\\n\\nToday was five days later, and still they lay there.\\n\\nRene MacCOLL and Daniel McGEACHIE, (From the \"DAILY EXPRESS\")\\n\\n\"...I saw in a bathroom the bodies of a mother and three infant\\nchildren murdered because their father was a Turkish Officer...\"\\n\\nMax CLOS, LE FIGARO 25-26 January, 1964\\n\\n\\n Peter Moorhead reporting from the village of Skyloura, Cyprus. \\n Date : 1 January, 1964. \\n\\n IL GIARNO (Italy)\\n \\n THEY ARE TURK-HUNTING, THEY WANT TO EXTERMINATE THEM.\\n\\n Discussions start in London; in Cyprus terror continues. Right now we\\n are witnessing the exodus of Turks from the villages. Thousands of people\\n abandoning homes, land, herds; Greek Cypriot terrorism is relentless. This \\n time, the rhetoric of the Hellenes and the bust of Plato do not suffice to \\n cover up barbaric and ferocious behaviors.\\n\\n Article by Giorgo Bocca, Correspondent of Il Giorno\\n Date: 14 January 1964\\n\\n DAILY HERALD (London)\\n\\n AN APPALLING SIGHT\\n\\nAnd when I came across the Turkish homes they were an appalling sight.\\nApart from the walls, they just did not exist. I doubt if a napalm bomb\\nattack could have created more devastation. I counted 40 blackened brick\\nand concrete shells that had once been homes. Each house had been deliberately\\nfired by petrol. Under red tile roofs which had caved in, I found a twisted\\nmass of bed springs, children\\'s conts and cribs, and ankle deep grey\\nashes of what had once been chairs, tables and wardrobes.\\n\\nIn the neighbouring village of Ayios Vassilios, a mile away, I counted 16 \\nwrecked and burned out homes. They were all Turkish Cypriot homes. From\\nthis village more than 100 Turkish Cypriots had also vanished.In neither village\\ndid I find a scrap of damage to any Greek Cypriot house.\\n\\n\\n DAILY TELEGRAPH (London)\\n \\n GRAVES OF 12 SHOT TURKISH CYPRIOTS FOUND IN CYPRUS VILLAGE\\n\\n Silent crowds gathered tonight outside the Red Crescent hospital in the\\n Turkish Sector of Nicosia, as the bodies of 9 Turkish Cypriots found\\n crudely buried outside the village of Ayios Vassilios, 13 miles away, were\\n brought to the hospital under the escort of the Parachute Regiment. Three \\n more bodies, including one of a woman, were discovered nearby but could\\n not be removed. Turkish Cypriots guarded by paratroops are still trying to \\n locate the bodies of 20 more believed to have been buried on the same site.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: Wayne.Orwig@AtlantaGA.NCR.COM (Wayne Orwig)\\nSubject: Re: Shaft-drives and Wheelies\\nLines: 21\\nNntp-Posting-Host: worwig.atlantaga.ncr.com\\nOrganization: NCR Corporation\\nX-Newsreader: FTPNuz (DOS) v1.0\\n\\nIn Article <1r16ja$dpa@news.ysu.edu> \"ak296@yfn.ysu.edu (John R. Daker)\" says:\\n> \\n> In a previous article, xlyx@vax5.cit.cornell.edu () says:\\n> \\n> Mike Terry asks:\\n> \\n> >Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n> >\\n> No Mike. It is imposible due to the shaft effect. The centripital effects\\n> of the rotating shaft counteract any tendency for the front wheel to lift\\n> off the ground.\\n> -- \\n> DoD #650<----------------------------------------------------------->DarkMan\\nWell my last two motorcycles have been shaft driven and they will wheelie.\\nThe rear gear does climb the ring gear and lift the rear which gives an\\nodd feel, but it still wheelies.\\n',\n", + " 'Subject: Re: Traffic morons\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 16\\n\\nIn article , ahatcher@athena.cs.uga.edu\\n(Allan Hatcher) wrote:\\n> \\n\\n> You can\\'t make a Citizens arrest on anything but a felony.\\n\\n\\tI\\'m not sure that\\'s true. Let me rephrase; \"You can file a complaint\\n which will bring the person into court.\" As I understand it, a\\n \"citizens arrest\" does not have to be the physical detention of\\n the person.\\n\\n Better now?\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", + " 'From: orourke@sophia.smith.edu (Joseph O\\'Rourke)\\nSubject: Re: Delaunay Triangulation\\nOrganization: Smith College, Northampton, MA, US\\nLines: 22\\n\\nIn article zyeh@caspian.usc.edu (zhenghao yeh) writes:\\n>\\n>Does anybody know what Delaunay Triangulation is?\\n>Is there any reference to it? \\n>Is it useful for creating 3-D objects? If yes, what\\'s the advantage?\\n\\nThere is a vast literature on Delaunay triangulations, literally\\nhundreds of papers. A program is even provided with every copy of \\nMathematica nowadays. You might look at this if you are interested in \\nusing it for creating 3D objects:\\n\\n@article{Boissonnat5,\\n author = \"J.D. Boissonnat\",\\n title = \"Geometric Structures for Three-Dimensional Shape Representation\",\\n journal = \"ACM Transactions on Graphics\",\\n month = \"October\",\\n year = {1984},\\n volume = {3},\\n number = {4},\\n pages = {266-286}\\n}\\n\\n',\n", + " \"From: johnsw@wsuvm1.csc.wsu.edu (William E. Johns)\\nSubject: Need a wheel\\nOriginator: bill@wsuaix.csc.wsu.edu\\nKeywords: '92\\nOrganization: Washington State University\\nDistribution: na\\nLines: 18\\n\\n\\nDoes anyone have a rear wheel for a PD they'd like to part with?\\n\\nDoes anyone know where I might find one salvage?\\n\\nAs long as I'm getting the GIVI luggage for Brunnhilde and have\\nthe room, I thought I'd carry a spare.\\n\\nRide Free,\\n\\nBill\\n___________________________________________________________________ \\njohnsw@wsuvm1.csc.wsu.edu prez=BIMC KotV KotRR \\nDoD #00314 AMA #580924 SPI = 7.18 WMTC #0002 KotD #0001 \\nYamabeemer fj100gs1200pdr650 Special and a Volvo. What more could anyone ask? \\n \\nPain is inevitable, suffering is optional.\\n \\n\",\n", + " \"From: Clarke@bdrc.bd.com (Richard Clarke)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Becton Dickinson Research Center R.T.P. NC USA\\nLines: 27\\nNntp-Posting-Host: polymr4.bdrc.bd.com\\n\\n>I eagerly await comment.\\n\\nThe ice princess next door makes a habit of flooring her cage out of the \\ndriveway when she sees me coming. Probably only hits 25mph, or so. (I made \\nthe mistake of waving to a neighbor. She has some sort of grudge, now.)\\n\\nI was riding downhill at ~60mph on a local backroad when a brown dobie came \\nflashing through the brush at well over 30mph, on an intercept course with \\nmy front wheel. The dog had started out at the top of the hill when it heard \\nme and still had a lead when it hit the road. The dog was approaching from \\nmy left, and was running full tilt to get to my bike on the other side of \\nthe road before I went by. Rover was looking back at me to calculate the \\nfinal trajectory. Too bad it didn't notice the car approaching at 50+mph \\nfrom the other direction.\\n\\nI got a closeup view of the our poor canine friend's noggin careening off \\nthe front bumper, smacking the asphalt, and getting runover by the front \\ntire. It managed a pretty good yelp, just before impact. (peripheral \\nimminent doom?) I guess the driver didn't see me or they probably would have \\nswerved into my lane. The squeegeed pup actually got up and headed back \\nhome, but I haven't seen it since. \\n\\nSniff. \\n\\nSometimes Fate sees you and smiles.\\n\\n-Rick\\n\",\n", + " \"From: bgardner@pebbles.es.com (Blaine Gardner)\\nSubject: Re: Ducati 400 opinions wanted\\nNntp-Posting-Host: 130.187.85.70\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 29\\n\\nIn article <1qmnga$s9q@news.ysu.edu> ak954@yfn.ysu.edu (Albion H. Bowers) writes:\\n>In a previous article, bgardner@pebbles.es.com (Blaine Gardner) says:\\n\\n>>I guess I'm out of touch, but what exactly is the Ducati 400? A v-twin\\n>>desmo, or is it that half-a-v-twin with the balance weight where the 2nd\\n>>cylinder would go? A 12 second 1/4 for a 400 isn't bad at all.\\n>\\n>Sorry, I should have been more specific. The 750 SS ran the quater in\\n>12.10 @ 108.17. The last small V-twin Duc we got in the US (and the 400 is\\n>a Pantah based V-twin) was the 500SL Pantah, and it ran a creditable 13.0 @\\n>103. Modern carbs and what not should put the 400 in the high 12s at 105.\\n>\\n>BTW, FZR 400s ran mid 12s, and the latest crop of Japanese 400s will out\\n>run that. It's hard to remember, but but a new GOOF2 will clobber an old\\n>KZ1000 handily, both in top end and roll-on. Technology stands still for\\n>no-one...\\n\\nNot too hard to remember, I bought a GS1000 new in '78. :-) It was\\n3rd place in the '78 speed wars (behind the CBX & XS Eleven) with a\\n11.8 @ 113 1/4 mile, and 75 horses. That wouldn't even make a good 600\\nthese days. Then again, I paid $2800 for it, so technology isn't the\\nonly thing that's changed. Of course I'd still rather ride the old GS\\nacross three states than any of the 600's.\\n\\nI guess it's an indication of how much things have changed that a 12\\nsecond 400 didn't seem too far out of line.\\n-- \\nBlaine Gardner @ Evans & Sutherland\\nbgardner@dsd.es.com\\n\",\n", + " \"From: bryanw@rahul.net (Bryan Woodworth)\\nSubject: Re: CView answers\\nOrganization: a2i network\\nLines: 13\\nNntp-Posting-Host: bolero\\n\\nIn <1993Apr17.113223.12092@imag.fr> schaefer@imag.imag.fr (Arno Schaefer) writes:\\n\\n>Sorry, Bryan, this is not quite correct. Remember the VGALIB package that comes\\n>with Linux/SLS? It will switch to VGA 320x200x256 mode *without* Xwindows.\\n>So at least it is *possible* to write a GIF viewer under Linux. However I don't\\n>think that there exists a similar SVGA package, and viewing GIFs in 320x200 is\\n>not very nice.\\n\\nNo, VGALIB? Amazing.. I guess it was lost in all those subdirs :-)\\nThanks for correcting me. It doesn't sound very appealing though, only\\n320x200? I'm glad it wasn't something major I missed.\\n\\nThanks,\\n\",\n", + " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: NASA Science Internet Project Office\\nLines: 12\\n\\nIn article , \\nEric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n|> Would someone please post the countersteering FAQ...\\n|> \\t\\t\\t\\teric\\n\\nLike, there\\'s a FAQ for this?\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Final Solution for Gaza ?\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 13\\n\\nIn article <2BDC2931.17498@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>Certainly, the Israeli had a legitimate worry behind the action they took,\\n>but isn\\'t that action a little draconian?\\n\\n\\tWhat alternative would you suggest be taken to safeguard the\\nlives of Israeli citizens?\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Serdar\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nYou are quite the loser\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", + " 'Subject: A word of advice\\nFrom: jcopelan@nyx.cs.du.edu (The One and Only)\\nOrganization: Nyx, Public Access Unix at U. of Denver Math/CS dept.\\nSummary: was Re: Yeah, Right\\nLines: 14\\n\\nIn article <65882@mimsy.umd.edu> mangoe@cs.umd.edu (Charley Wingate) writes:\\n>\\n>I\\'ve said enough times that there is no \"alternative\" that should think you\\n>might have caught on by now. And there is no \"alternative\", but the point\\n>is, \"rationality\" isn\\'t an alternative either. The problems of metaphysical\\n>and religious knowledge are unsolvable-- or I should say, humans cannot\\n>solve them.\\n\\nHow does that saying go: Those who say it can\\'t be done shouldn\\'t interrupt\\nthose who are doing it.\\n\\nJim\\n--\\nHave you washed your brain today?\\n',\n", + " 'From: kempmp@phoenix.oulu.fi (Petri Pihko)\\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: University of Oulu, Finland\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 215\\n\\nThis kind of argument cries for a comment...\\n\\njbrown@batman.bmd.trw.com wrote:\\n: In article <1993Apr3.095220.24632@leland.Stanford.EDU>, galahad@leland.Stanford.EDU (Scott Compton) writes:\\n\\nJim, you originally wrote:\\n \\n: >>...God did not create\\n: >>disease nor is He responsible for the maladies of newborns.\\n: > \\n: >>What God did create was life according to a protein code which is\\n: >>mutable and can evolve. Without delving into a deep discussion of\\n: >>creationism vs evolutionism, God created the original genetic code\\n: >>perfect and without flaw. \\n: > ~~~~~~~ ~~~~~~~ ~~~~\\n\\nDo you have any evidence for this? If the code was once perfect, and\\nhas degraded ever since, we _should_ have some evidence in favour\\nof this statement, shouldn\\'t we?\\n\\nPerhaps the biggest \"imperfection\" of the code is that it is full\\nof non-coding regions, introns, which are so called because they\\nintervene with the coding regions (exons). An impressive amount of\\nevidence suggests that introns are of very ancient origin; it is\\nlikely that early exons represented early protein domains.\\n\\nIs the number of introns decreasing or increasing? It appears that\\nintron loss can occur, and species with common ancestry usually\\nhave quite similar exon-intron structure in their genes. \\n\\nOn the other hand, the possibility that introns have been inserted\\nlater, presents several logical difficulties. Introns are removed\\nby a splicing mechanism - this would have to be present, but unused,\\nif introns are inserted. Moreover, intron insertion would have\\nrequired _precise_ targeting - random insertion would not be tolerated,\\nsince sequences for intron removal (self-splicing of mRNA) are\\nconserved. Besides, transposition of a sequence usually leaves a\\ntrace - long terminal repeats and target - site duplications, and\\nthese are not found in or near intron sequences. \\n\\nI seriously recommend reading textbooks on molecular biology and\\ngenetics before posting \"theological arguments\" like this. \\nTry Watson\\'s Molecular Biology of the Gene or Darnell, Lodish\\n& Baltimore\\'s Molecular Biology of the Cell for starters.\\n\\n: Remember, the question was posed in a theological context (Why does\\n: God cause disease in newborns?), and my answer is likewise from a\\n: theological perspective -- my own. It is no less valid than a purely\\n: scientific perspective, just different.\\n\\nScientific perspective is supported by the evidence, whereas \\ntheological perspectives often fail to fulfil this criterion.\\n \\n: I think you misread my meaning. I said God made the genetic code perfect,\\n: but that doesn\\'t mean it\\'s perfect now. It has certainly evolved since.\\n\\nFor the worse? Would you please cite a few references that support\\nyour assertion? Your assertion is less valid than the scientific\\nperspective, unless you support it by some evidence.\\n\\nIn fact, it has been claimed that parasites and diseases are perhaps\\nmore important than we\\'ve thought - for instance, sex might\\nhave evolved as defence against parasites. (This view is supported by\\ncomputer simulations of evolution, eg Tierra.) \\n \\n: Perhaps. I thought it was higher energy rays like X-rays, gamma\\n: rays, and cosmic rays that caused most of the damage.\\n\\nIn fact, it is thermal energy that does most of the damage, although\\nit is usually mild and easily fixed by enzymatic action. \\n\\n: Actually, neither of us \"knows\" what the atmosphere was like at the\\n: time when God created life. According to my recollection, most\\n: biologists do not claim that life began 4 billion years ago -- after\\n: all, that would only be a half billion years or so after the earth\\n: was created. It would still be too primitive to support life. I\\n: seem to remember a figure more like 2.5 to 3 billion years ago for\\n: the origination of life on earth. Anyone with a better estimate?\\n\\nI\\'d replace \"created\" with \"formed\", since there is no need to \\ninvoke any creator if the Earth can be formed without one.\\nMost recent estimates of the age of the Earth range between 4.6 - 4.8\\nbillion years, and earliest signs of life (not true fossils, but\\norganic, stromatolite-like layers) date back to 3.5 billion years.\\nThis would leave more than billion years for the first cells to\\nevolve.\\n\\nI\\'m sorry I can\\'t give any references, this is based on the course\\non evolutionary biochemistry I attended here. \\n\\n: >>dominion, it was no great feat for Satan to genetically engineer\\n: >>diseases, both bacterial/viral and genetic. Although the forces of\\n: >>natural selection tend to improve the survivability of species, the\\n: >>degeneration of the genetic code tends to more than offset this. \\n\\nAgain, do you _want_ this be true, or do you have any evidence for\\nthis supposed \"degeneration\"? \\n\\nI can understand Scott\\'s reaction:\\n\\n: > Excuse me, but this is so far-fetched that I know you must be\\n: > jesting. Do you know what pathogens are? Do you know what \\n: > Point Mutations are? Do you know that EVERYTHING CAN COME\\n: > ABOUT SPONTANEOUSLY?!!!!! \\n: \\n: In response to your last statement, no, and neither do you.\\n: You may very well believe that and accept it as fact, but you\\n: cannot *know* that.\\n\\nI hope you don\\'t forget this: We have _evidence_ that suggests \\neverything can come about spontaneously. Do you have evidence against\\nthis conclusion? In science, one does not have to _believe_ in \\nanything. It is a healthy sign to doubt and disbelieve. But the \\nright path to walk is to take a look at the evidence if you do so,\\nand not to present one\\'s own conclusions prior to this. \\n\\nTheology does not use this method. Therefore, I seriously doubt\\nit could ever come to right conclusions.\\n\\n: >>Human DNA, being more \"complex\", tends to accumulate errors adversely\\n: >>affecting our well-being and ability to fight off disease, while the \\n: >>simpler DNA of bacteria and viruses tend to become more efficient in \\n: >>causing infection and disease. It is a bad combination. Hence\\n: >>we have newborns that suffer from genetic, viral, and bacterial\\n: >>diseases/disorders.\\n\\nYou are supposing a purpose, not a valid move. Bacteria and viruses\\ndo not exist to cause disease. They are just another manifests of\\na general principle of evolution - only replication saves replicators\\nfrom degradiation. We are just an efficient method for our DNA to \\nsurvive and replicate. The less efficient methods didn\\'t make it \\nto the present. \\n\\nAnd for the last time. Please present some evidence for your claim that\\nhuman DNA is degrading through evolutionary processes. Some people have\\nclaimed that the opposite is true - we have suppressed our selection,\\nand thus are bound to degrade. I haven\\'t seen much evidence for either\\nclaim.\\n \\n: But then I ask, So? Where is this relevant to my discussion in\\n: answering John\\'s question of why? Why are there genetic diseases,\\n: and why are there so many bacterial and viral diseases which require\\n: babies to develop antibodies. Is it God\\'s fault? (the original\\n: question) -- I say no, it is not.\\n\\nOf course, nothing \"evil\" is god\\'s fault. But your explanation does\\nnot work, it fails miserably.\\n \\n: You may be right. But the fact is that you don\\'t know that\\n: Satan is not responsible, and neither do I.\\n: \\n: Suppose that a powerful, evil being like Satan exists. Would it\\n: be inconceivable that he might be responsible for many of the ills\\n: that affect mankind? I don\\'t think so.\\n\\nHe could have done a much better Job. (Pun intended.) The problem is,\\nit seems no Satan is necessary to explain any diseases, they are\\njust as inevitable as any product of evolution.\\n\\n: Did I say that? Where? Seems to me like another bad inference.\\n: Actually what you\\'ve done is to oversimplify what I said to the\\n: point that your summary of my words takes on a new context. I\\n: never said that people are \"meant\" (presumably by God) \"to be\\n: punished by getting diseases\". Why I did say is that free moral\\n: choices have attendent consequences. If mankind chooses to reject\\n: God, as people have done since the beginning, then they should not\\n: expect God to protect them from adverse events in an entropic\\n: universe.\\n\\nI am not expecting this. If god exists, I expect him to leave us alone.\\nI would also like to hear why do you believe your choices are indeed\\nfree. This is an interesting philosophical question, and the answer\\nis not as clear-cut as it seems to be.\\n\\nWhat consequences would you expect from rejecting Allah?\\n \\n: Oh, I admit it\\'s not perfect (yet). But I\\'m working on it. :)\\n\\nA good library or a bookstore is a good starting point.\\n\\n: What does this have to do with the price of tea in China, or the\\n: question to which I provided an answer? Biology and Genetics are\\n: fine subjects and important scientific endeavors. But they explain\\n: *how* God created and set up life processes. They don\\'t explain\\n: the why behind creation, life, or its subsequent evolution.\\n\\nWhy is there a \"why behind\"? And your proposition was something\\nthat is not supported by the evidence. This is why we recommend\\nthese books.\\n\\nIs there any need to invoke any why behind, a prime mover? Evidence\\nfor this? If the whole universe can come into existence without\\nany intervention, as recent cosmological theories (Hawking et al)\\nsuggest, why do people still insist on this?\\n \\n: Thanks Scotty, for your fine and sagely advice. But I am\\n: not highly motivated to learn all the nitty-gritty details\\n: of biology and genetics, although I\\'m sure I\\'d find it a\\n: fascinating subject. For I realize that the details do\\n: not change the Big Picture, that God created life in the\\n: beginning with the ability to change and adapt to its\\n: environment.\\n\\nI\\'m sorry, but they do. There is no evidence for your big picture,\\nand no need to create anything that is capable of adaptation.\\nIt can come into existence without a Supreme Being.\\n\\nTry reading P.W. Atkins\\' Creation Revisited (Freeman, 1992).\\n\\nPetri\\n--\\n ___. .\\'*\\'\\'.* Petri Pihko kem-pmp@ Mathematics is the Truth.\\n!___.\\'* \\'.\\'*\\' \\' . Pihatie 15 C finou.oulu.fi Physics is the Rule of\\n \\' *\\' .* \\'* SF-90650 OULU kempmp@ the Game.\\n *\\' * .* FINLAND phoenix.oulu.fi -> Chemistry is The Game.\\n',\n", + " 'From: gary@ke4zv.uucp (Gary Coffman)\\nSubject: Re: What if the USSR had reached the Moon first?\\nReply-To: gary@ke4zv.UUCP (Gary Coffman)\\nOrganization: Destructive Testing Systems\\nLines: 30\\n\\nIn article <93107.144339SAUNDRSG@QUCDN.QueensU.CA> Graydon writes:\\n>This is turning into \\'what\\'s a moonbase good for\\', and I ought\\n>not to post when I\\'ve a hundred some odd posts to go, but I would\\n>think that the real reason to have a moon base is economic.\\n>\\n>Since someone with space industry will presumeably have a much\\n>larger GNP than they would _without_ space industry, eventually,\\n>they will simply be able to afford more stuff.\\n\\nIf I read you right, you\\'re saying in essence that, with a larger\\neconomy, nations will have more discretionary funds to *waste*\\non a lunar facility. That was certainly partially the case with Apollo, \\nbut real Lunar colonies will probably require a continuing military,\\nscientific, or commercial reason for being rather than just a \"we have \\nthe money, why not?\" approach.\\n\\nIt\\'s conceivable that Luna will have a military purpose, it\\'s possible\\nthat Luna will have a commercial purpose, but it\\'s most likely that\\nLuna will only have a scientific purpose for the next several hundred\\nyears at least. Therefore, Lunar bases should be predicated on funding\\nlevels little different from those found for Antarctic bases. Can you\\nput a 200 person base on the Moon for $30 million a year? Even if you\\nuse grad students?\\n\\nGary\\n-- \\nGary Coffman KE4ZV | You make it, | gatech!wa4mei!ke4zv!gary\\nDestructive Testing Systems | we break it. | uunet!rsiatl!ke4zv!gary\\n534 Shannon Way | Guaranteed! | emory!kd4nc!ke4zv!gary \\nLawrenceville, GA 30244 | | \\n',\n", + " 'From: se92psh@brunel.ac.uk (Peter Hauke)\\nSubject: Re: Grayscale Printer\\nOrganization: Brunel University, Uxbridge, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nDistribution: na\\nLines: 13\\n\\nJian Lu (jian@coos.dartmouth.edu) wrote:\\n: We are interested in purchasing a grayscale printer that offers a good\\n: resoltuion for grayscale medical images. Can anybody give me some\\n: recommendations on these products in the market, in particular, those\\n: under $5000?\\n\\n: Thank for the advice.\\n-- \\n***********************************\\n* Peter Hauke @ Brunel University *\\n*---------------------------------*\\n* se92psh@brunel.ac.uk *\\n***********************************\\n',\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Moonbase race, NASA resources, why?\\nLines: 32\\nNntp-Posting-Host: acad3.alaska.edu\\nOrganization: University of Alaska Fairbanks\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu>, sysmgr@king.eng.umd.edu (Doug Mohney) writes:\\n> In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n> \\n>>Apollo was done the hard way, in a big hurry, from a very limited\\n>>technology base... and on government contracts. Just doing it privately,\\n>>rather than as a government project, cuts costs by a factor of several.\\n> \\n> So how much would it cost as a private venture, assuming you could talk the\\n> U.S. government into leasing you a couple of pads in Florida? \\n> \\n> \\n> \\n> Software engineering? That\\'s like military intelligence, isn\\'t it?\\n> -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\\n\\nWhy must it be a US Government Space Launch Pad? Directly I mean..\\nI know of a few that could launch a small package into space.\\nNot including Ariadne, and the Russian Sites.. I know \"Poker Flats\" here in\\nAlaska, thou used to be only sounding rockets for Auroral Borealous(sp and\\nother northern atmospheric items, is at last I heard being upgraded to be able\\nto put sattelites into orbit. \\n\\nWhy must people in the US be fixed on using NASAs direct resources (Poker Flats\\nis runin part by NASA, but also by the Univesity of Alaska, and the Geophysical\\nInstitute). Sounds like typical US cultural centralism and protectionism..\\nAnd people wonder why we have the multi-trillion dollar deficite(sp).\\nYes, I am working on a spell checker..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n\\n',\n", + " 'From: pgf@srl02.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 16\\n\\nJeff.Cook@FtCollinsCO.NCR.COM (Jeff Cook) writes:\\n...\\n>people in primitive tribes out in the middle of nowhere as they look up\\n>and see a can of Budweiser flying across the sky... :-D\\n\\nSeen that movie already. Or one just like it.\\nCome to think of it, they might send someone on\\na quest to get rid of the dang thing...\\n\\n>Jeff Cook Jeff.Cook@FtCollinsCO.NCR.com\\n\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 15/15 - Orbital and Planetary Launch Services\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 195\\nDistribution: world\\nExpires: 6 May 1993 20:02:47 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/launchers\\nLast-modified: $Date: 93/04/01 14:39:11 $\\n\\nORBITAL AND PLANETARY LAUNCH SERVICES\\n\\nThe following data comes from _International Reference Guide to Space Launch\\nSystems_ by Steven J. Isakowitz, 1991 edition.\\n\\nNotes:\\n * Unless otherwise specified, LEO and polar paylaods are for a 100 nm\\n\\torbit.\\n * Reliablity data includes launches through Dec, 1990. Reliabity for a\\n\\tfamiliy of vehicles includes launches by types no longer built when\\n\\tapplicable\\n * Prices are in millions of 1990 $US and are subject to change.\\n * Only operational vehicle families are included. Individual vehicles\\n\\twhich have not yet flown are marked by an asterisk (*) If a vehicle\\n\\thad first launch after publication of my data, it may still be\\n\\tmarked with an asterisk.\\n\\n\\nVehicle | Payload kg (lbs) | Reliability | Price | Launch Site\\n(nation) | LEO\\t Polar GTO |\\t\\t|\\t| (Lat. & Long.)\\n--------------------------------------------------------------------------------\\n\\nAriane\\t\\t\\t\\t\\t 35/40 87.5%\\t Kourou\\n(ESA)\\t\\t\\t\\t\\t\\t\\t\\t (5.2 N, 52.8 W)\\n AR40\\t\\t4,900\\t 3,900 1,900 1/1\\t\\t $65m\\n\\t (10,800) (8,580) (4,190)\\n AR42P\\t\\t6,100\\t 4,800 2,600 1/1\\t\\t $67m\\n\\t (13,400) (10,600) (5,730)\\n AR44P\\t\\t6,900\\t 5,500 3,000 0/0 ?\\t $70m\\n\\t (15,200) (12,100) (6,610)\\n AR42L\\t\\t7,400\\t 5,900 3,200 0/0 ?\\t $90m\\n\\t (16,300) (13,000) (7,050)\\n AR44LP\\t8,300\\t 6,600 3,700 6/6\\t\\t $95m\\n\\t (18,300) (14,500) (8,160)\\n AR44L\\t\\t9,600\\t 7,700 4,200 3/4\\t\\t $115m\\n\\t (21,100) (16,900) (9,260)\\n\\n* AR5\\t 18,000\\t ???\\t 6,800 0/0\\t\\t $105m\\n\\t (39,600)\\t\\t (15,000)\\n\\t [300nm]\\n\\n\\nAtlas\\t\\t\\t\\t\\t 213/245 86.9%\\t Cape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\t (28.5 N, 81.0W)\\n Atlas E\\t --\\t 820\\t -- 15/17\\t $45m\\t Vandeberg AFB\\n\\t\\t\\t (1,800)\\t\\t\\t\\t(34.7 N, 120.6W)\\n\\n Atlas I\\t5,580\\t 4,670 2,250 1/1\\t\\t $70m\\n\\t (12,300) (10,300) (4,950)\\n\\n Atlas II\\t6,395\\t 5,400 2,680 0/0\\t\\t $75m\\n\\t (14,100) (11,900) (5,900)\\n\\n Atlas IIA\\t6,760\\t 5,715 2,810 0/0\\t\\t $85m\\n\\t (14,900) (12,600) (6,200)\\n\\n* Atlas IIAS\\t8,390\\t 6,805 3,490 0/0\\t\\t $115m\\n\\t (18,500) (15,000) (7,700)\\n\\n\\nDelta\\t\\t\\t\\t\\t 189/201 94.0%\\t Cape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\t Vandenberg AFB\\n Delta 6925\\t3,900\\t 2,950 1,450 14/14\\t $45m\\n\\t (8,780)\\t (6,490) (3,190)\\n\\n Delta 7925\\t5,045\\t 3,830 1,820 1/1\\t\\t $50m\\n\\t (11,100) (8,420) (2,000)\\n\\n\\nEnergia\\t\\t\\t\\t\\t 2/2 100%\\t\\t Baikonur\\n(Russia)\\t\\t\\t\\t\\t\\t\\t (45.6 N 63.4 E)\\n Energia 88,000\\t 80,000 ??? 2/2\\t\\t $110m\\n\\t (194,000) (176,000)\\n\\n\\nH series\\t\\t\\t\\t 22/22 100%\\t\\t Tangeshima\\n(Japan)\\t\\t\\t\\t\\t\\t\\t\\t(30.2 N 130.6 E)\\n* H-2\\t 10,500\\t 6,600\\t 4,000 0/0\\t\\t $110m\\n\\t (23,000)\\t(14,500) (8,800)\\n\\n\\nKosmos\\t\\t\\t\\t\\t 371/377 98.4%\\t Plestek\\n(Russia)\\t\\t\\t\\t\\t\\t\\t (62.8 N 40.1 E)\\n Kosmos 1100 - 1350 (2300 - 3000)\\t\\t $???\\t Kapustin Yar\\n\\t [400 km orbit ??? inclination]\\t\\t\\t (48.4 N 45.8 E)\\n\\n\\nLong March\\t\\t\\t\\t 23/25 92.0%\\t\\t Jiquan SLC\\n(China)\\t\\t\\t\\t\\t\\t\\t\\t (41 N\\t100 E)\\n* CZ-1D\\t\\t 720\\t ???\\t 200 0/0\\t\\t $10m\\t Xichang SLC\\n\\t\\t(1,590)\\t\\t (440)\\t\\t\\t (28 N\\t102 E)\\n\\t\\t\\t\\t\\t\\t\\t\\t Taiyuan SLC\\n CZ-2C\\t\\t3,200\\t 1,750 1,000 12/12\\t $20m\\t (41 N\\t100 E)\\n\\t (7,040)\\t (3,860) (2,200)\\n\\n CZ-2E\\t\\t9,200\\t ???\\t 3,370 1/1\\t\\t $40m\\n\\t (20,300)\\t\\t (7,430)\\n\\n* CZ-2E/HO 13,600\\t ???\\t 4,500 0/0\\t\\t $???\\n\\t (29,900)\\t\\t (9,900)\\n\\n CZ-3\\t\\t???\\t ???\\t 1,400 6/7\\t\\t $33m\\n\\t\\t\\t\\t (3,100)\\n\\n* CZ-3A\\t\\t???\\t ???\\t 2,500 0/0\\t\\t $???m\\n\\t\\t\\t\\t (5,500)\\n\\n CZ-4\\t\\t4,000\\t ???\\t 1,100 2/2\\t\\t $???m\\n\\t (8,800)\\t\\t (2,430)\\n\\n\\nPegasus/Taurus\\t\\t\\t\\t 2/2 100%\\t\\tPeg: B-52/L1011\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tTaur: Canaveral\\n Pegasus\\t 455\\t 365\\t 125 2/2\\t\\t $10m\\t or Vandenberg\\n\\t\\t(1,000) (800) (275)\\n\\n* Taurus\\t1,450\\t 1,180 375 0/0\\t\\t $15m\\n\\t (3,200)\\t (2,600) (830)\\n\\n\\nProton\\t\\t\\t\\t\\t 164/187 87.7%\\t Baikonour\\n(Russia)\\n Proton 20,000\\t ???\\t 5,500 164/187\\t $35-70m\\n\\t (44,100)\\t\\t (12,200)\\n\\n\\nSCOUT\\t\\t\\t\\t\\t 99/113 87.6%\\tVandenberg AFB\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tWallops FF\\n SCOUT G-1\\t 270\\t 210\\t 54\\t 13/13\\t $12m\\t(37.9 N 75.4 W)\\n\\t\\t(600)\\t (460) (120)\\t\\t\\tSan Marco\\n\\t\\t\\t\\t\\t\\t\\t\\t(2.9 S\\t40.3 E)\\n* Enhanced SCOUT 525\\t 372\\t 110\\t 0/0\\t\\t $15m\\n\\t\\t(1,160) (820) (240)\\n\\n\\nShavit\\t\\t\\t\\t\\t 2/2 100%\\t\\tPalmachim AFB\\n(Israel)\\t\\t\\t\\t\\t\\t\\t( ~31 N)\\n Shavit\\t ???\\t 160\\t ???\\t 2/2\\t\\t $22m\\n\\t\\t\\t (350)\\n\\nSpace Shuttle\\t\\t\\t\\t 37/38 97.4%\\tKennedy Space\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tCenter\\n Shuttle/SRB 23,500\\t ???\\t 5,900 37/38\\t $248m (28.5 N 81.0 W)\\n\\t (51,800)\\t\\t (13,000)\\t\\t [FY88]\\n\\n* Shuttle/ASRM 27,100\\t ???\\t ???\\t 0/0\\n\\t (59,800)\\n\\n\\nSLV\\t\\t\\t\\t\\t 2/6 33.3%\\tSHAR Center\\n(India) (400km) (900km polar)\\t\\t\\t\\t(13.9 N 80.4 E)\\n ASLV\\t\\t150\\t ???\\t ??? 0/2\\t\\t $???m\\n\\t (330)\\n\\n* PSLV\\t\\t3,000\\t 1,000 450 0/0\\t\\t $???m\\n\\t (6,600)\\t (2,200) (990)\\n\\n* GSLV\\t\\t8,000\\t ???\\t 2,500 0/0\\t\\t $???m\\n\\t (17,600)\\t\\t (5,500)\\n\\n\\nTitan\\t\\t\\t\\t\\t 160/172 93.0%\\tCape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tVandenberg\\n Titan II\\t ???\\t 1,905 ??? 2/2\\t\\t $43m\\n\\t\\t\\t (4,200)\\n\\n Titan III 14,515\\t ???\\t 5,000 2/3\\t\\t $140m\\n\\t (32,000)\\t\\t (11,000)\\n\\n Titan IV/SRM 17,700\\t 14,100 6,350 3/3\\t\\t $154m-$227m\\n\\t (39,000)\\t(31,100) (14,000)\\n\\n Titan IV/SRMU 21,640\\t 18,600 8,620 0/0\\t\\t $???m\\n\\t (47,700)\\t(41,000) (19,000)\\n\\n\\nVostok\\t\\t\\t\\t\\t 1358/1401 96.9%\\tBaikonur\\n(Russia)\\t\\t [650km]\\t\\t\\t\\tPlesetsk\\n Vostok\\t4,730\\t 1,840 ??? ?/149\\t $14m\\n\\t (10,400)\\t(4,060)\\n\\n Soyuz\\t\\t7,000\\t ???\\t ??? ?/944\\t $15m\\n\\t (15,400)\\n\\n Molniya\\t1500kg (3300 lbs) in\\t ?/258\\t $???M\\n\\t\\tHighly eliptical orbit\\n\\n\\nZenit\\t\\t\\t\\t\\t 12/13 92.3%\\tBaikonur\\n(Russia)\\n Zenit 13,740\\t 11,380 4,300 12/13\\t $65m\\n\\t (30,300)\\t(25,090) (9,480)\\n',\n", + " \"From: jhwitten@cs.ruu.nl (Jurriaan Wittenberg)\\nSubject: Re: images of earth\\nOrganization: Utrecht University, Dept. of Computer Science\\nLines: 27\\n\\nIn <1993Apr18.230732.27804@kakwa.ucs.ualberta.ca> ken@cs.UAlberta.CA (Huisman Kenneth M) writes:\\n\\n>I am looking for some graphic images of earth shot from space. \\n>( Preferably 24-bit color, but 256 color .gif's will do ).\\n>\\n>Anyways, if anyone knows an FTP site where I can find these, I'd greatly\\n>appreciate it if you could pass the information on. Thanks.\\n>\\n>\\nTry FTP-ing at\\n pub-info.jpl.nasa.gov (128.149.6.2) (simple dir-structure)\\n\\nand ames.arc.nasa.gov\\nat /pub/SPACE/GIF and /pub/SPACE/JPEG\\nsorry only 8 bits gifs and jpegs :-( great piccy's though (try the *x.gif\\nfiles they're semi-huge gif89a files)\\n ^^-watch out gif89a dead ahead!!!\\nGood-luck (good software to be found out-there too)\\n\\nJurriaan\\n\\nJHWITTEN@CS.RUU.NL \\n-- \\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n|----=|=-<- - - - - - JHWITTEN@CS.RUU.NL- - - - - - - - - - - - ->-=|=----|\\n|----=|=-<-Jurriaan Wittenberg- - -Department of ComputerScience->-=|=----|\\n|____/|\\\\_________Utrecht_________________The Netherlands___________/|\\\\____|\\n\",\n", + " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: note to Bobby M.\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 14\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn <1993Apr10.191100.16094@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>Insults about the atheistic genocide was totally unintentional. Under\\n>atheism, anything can happen, good or bad, including genocide.\\n\\nAnd you know why this is? Because you\\'ve conveniently _defined_ a theist as\\nsomeone who can do no wrong, and you\\'ve _defined_ people who do wrong as\\natheists. The above statement is circular (not to mention bigoting), and,\\nas such, has no value.\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", + " 'Organization: Penn State University\\nFrom: \\nSubject: Re: Tools Tools Tools\\n <1993Apr1.162709.16643@osf.org> <1993Apr2.235809.3241@kronos.arc.nasa.gov>\\n <1993Apr5.165548.21479@research.nj.nec.com>\\nLines: 1\\n\\nWHAT IS THE FLANK DRIVE EVERYONES TALKING ABOUT?\\n',\n", + " \"From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: CorelDraw Bitmap to SCODAL\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM T.J. Watson Research\\nLines: 4\\n\\nMy CorelDRAW 3.0.whatever write SCODL files directly. Look under File|Export\\non the main menu. \\n\\nRick\\n\",\n", + " 'From: cb@wixer.bga.com (Cyberspace Buddha)\\nSubject: Re: CView answers\\nKeywords: Stupid Programming\\nOrganization: Real/Time Communications\\nLines: 15\\n\\nrenew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n>over where it places its temp files: it just places them in its\\n>\"current directory\".\\n\\nI have to beg to differ on this point, as the batch file I use\\nto launch cview cd\\'s to the dir where cview resides and then\\ninvokes it. every time I crash cview, the 0-byte temp file\\nis found in the root dir of the drive cview is on.\\n\\njust my $0.13,\\ncb\\n-- \\n Cyberspace Buddha { Why are you looking for more knowledge when you } /(o\\\\\\n cb@wixer.bga.com \\\\ do not pay attention to what you already know? / \\\\o)/\\n cb@wixer.cactus.org } \"get out of my chair!\" -- Hillary to god { peace...\\n',\n", + " \"From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: Jet Propulsion Laboratory\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Galileo, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr23.103038.27467@bnr.ca>, agc@bmdhh286.bnr.ca (Alan Carter) writes...\\n>In article <22APR199323003578@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes:\\n>|> 3. On April 19, a NO-OP command was sent to reset the command loss timer to\\n>|> 264 hours, its planned value during this mission phase.\\n> \\n>This activity is regularly reported in Ron's interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n> \\n\\nThe Command Loss Timer is part of the fault protection scheme of the\\nspacecraft. If the Command Loss Timer ever countdowns to zero, then the\\nspacecraft assumes it has lost communications with Earth and will go \\nthrough a set of predetermined steps to try to regain contact. The\\nCommand Loss Timer is set to 264 hours and reset about once a week during \\nthe cruise phase, and is set to a lower value during an encounter phase. \\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian-Nazi Collaboration During World War II.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 51\\n\\nIn article <2BC0D53B.20378@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>Is it possible to track down \"zuma\" and determine who/what/where \"seradr\" \\n>is? \\n\\nDone. But did it change the fact that during the period of 1914 to 1920, \\nthe Armenian Government ordered, incited, assisted and participated \\nin the genocide of 2.5 million Muslim people because of race, religion\\nand national origin? By the way, you still haven\\'t corrected yourself.\\nDuring World War II Armenians were carried away with the German might and\\ncringing and fawning over the Nazis. In that zeal, the Armenian publication\\nin Germany, Hairenik, carried statements as follows:[1]\\n\\n\"Sometimes it is difficult to eradicate these poisonous elements (the Jews)\\n when they have struck deep root like a chronic disease, and when it \\n becomes necessary for a people (the Nazis) to eradicate them in an uncommon\\n method, these attempts are regarded as revolutionary. During the surgical\\n operation, the flow of blood is a natural thing.\" \\n\\nNow for a brief view of the Armenian genocide of the Muslims and Jews -\\nextracts from a letter dated December 11, 1983, published in the San\\nFrancisco Chronicle, as an answer to a letter that had been published\\nin the same journal under the signature of one B. Amarian.\\n\\n \"...We have first hand information and evidence of Armenian atrocities\\n against our people (Jews)...Members of our family witnessed the \\n murder of 148 members of our family near Erzurum, Turkey, by Armenian \\n neighbors, bent on destroying anything and anybody remotely Jewish \\n and/or Muslim. Armenians should look to their own history and see \\n the havoc they and their ancestors perpetrated upon their neighbors...\\n Armenians were in league with Hitler in the last war, on his premise \\n to grant them self government if, in return, the Armenians would \\n help exterminate Jews...Armenians were also hearty proponents of\\n the anti-Semitic acts in league with the Russian Communists. Mr. Amarian!\\n I don\\'t need your bias.\" \\n\\n Signed Elihu Ben Levi, Vacaville, California.\\n\\n[1] James G. Mandalian, \\'Dro, Drastamat Kanayan,\\' in the \\'Armenian\\n Review,\\' a Quarterly by the Hairenik Association, Inc., Summer:\\n June 1957, Vol. X, No. 2-38.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: A moment of silence for the perpetrators of the Turkish Genocide?\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 115\\n\\nIn article <48299@sdcc12.ucsd.edu> ma170saj@sdcc14.ucsd.edu (System Operator) writes:\\n\\n> April 24th is approaching, and Armenians around the world\\n>are getting ready to remember the massacres of their family members\\n\\nCelebrating in joy the cold-blooded genocide of 2.5 million Muslim \\npeople by your criminal grandparents between 1914 and 1920? Did you \\nthink that you could cover up the genocide perpetrated by your fascist\\ngrandparents against my grandparents in 1914? You\\'ve never heard of \\n\\'April 23rd\\'? \\n\\n\\n \"In Soviet Armenia today there no longer exists a single Turkish soul.\\n It is in our power to tear away the veil of illusion that some of us\\n create for ourselves. It certainly is possible to severe the artificial\\n life-support system of an imagined \\'ethnic purity\\' that some of us\\n falsely trust as the only structure that can support their heart beats \\n in this alien land.\"\\n (Sahak Melkonian - 1920 - \"Preserving the Armenian purity\") \\n\\n\\nDuring the First World War and the ensuing years - 1914-1920, \\nthe Armenian Dictatorship through a premeditated and systematic \\ngenocide, tried to complete its centuries-old policy of \\nannihilation against the Turks and Kurds by savagely murdering \\n2.5 million Muslims and deporting the rest from their 1,000 year \\nhomeland.\\n\\nThe attempt at genocide is justly regarded as the first instance\\nof Genocide in the 20th Century acted upon an entire people.\\nThis event is incontrovertibly proven by historians, government\\nand international political leaders, such as U.S. Ambassador Mark \\nBristol, William Langer, Ambassador Layard, James Barton, Stanford \\nShaw, Arthur Chester, John Dewey, Robert Dunn, Papazian, Nalbandian, \\nOhanus Appressian, Jorge Blanco Villalta, General Nikolayef, General \\nBolkovitinof, General Prjevalski, General Odiselidze, Meguerditche, \\nKazimir, Motayef, Twerdokhlebof, General Hamelin, Rawlinson, Avetis\\nAharonian, Dr. Stephan Eshnanie, Varandian, General Bronsart, Arfa,\\nDr. Hamlin, Boghos Nubar, Sarkis Atamian, Katchaznouni, Rachel \\nBortnick, Halide Edip, McCarthy, W. B. Allen, Paul Muratoff and many \\nothers.\\n\\nJ. C. Hurewitz, Professor of Government Emeritus, Former Director of\\nthe Middle East Institute (1971-1984), Columbia University.\\n\\nBernard Lewis, Cleveland E. Dodge Professor of Near Eastern History,\\nPrinceton University.\\n\\nHalil Inalcik, University Professor of Ottoman History & Member of\\nthe American Academy of Arts & Sciences, University of Chicago.\\n\\nPeter Golden, Professor of History, Rutgers University, Newark.\\n\\nStanford Shaw, Professor of History, University of California at\\nLos Angeles.\\n\\nThomas Naff, Professor of History & Director, Middle East Research\\nInstitute, University of Pennsylvania.\\n\\nRonald Jennings, Associate Professor of History & Asian Studies,\\nUniversity of Illinois.\\n\\nHoward Reed, Professor of History, University of Connecticut.\\n\\nDankwart Rustow, Distinguished University Professor of Political\\nScience, City University Graduate School, New York.\\n\\nJohn Woods, Associate Professor of Middle Eastern History, \\nUniversity of Chicago.\\n\\nJohn Masson Smith, Jr., Professor of History, University of\\nCalifornia at Berkeley.\\n\\nAlan Fisher, Professor of History, Michigan State University.\\n\\nAvigdor Levy, Professor of History, Brandeis University.\\n\\nAndreas G. E. Bodrogligetti, Professor of History, University of California\\nat Los Angeles.\\n\\nKathleen Burrill, Associate Professor of Turkish Studies, Columbia University.\\n\\nRoderic Davison, Professor of History, George Washington University.\\n\\nWalter Denny, Professor of History, University of Massachusetts.\\n\\nCaesar Farah, Professor of History, University of Minnesota.\\n\\nTom Goodrich, Professor of History, Indiana University of Pennsylvania.\\n\\nTibor Halasi-Kun, Professor Emeritus of Turkish Studies, Columbia University.\\n\\nJustin McCarthy, Professor of History, University of Louisville.\\n\\nJon Mandaville, Professor of History, Portland State University (Oregon).\\n\\nRobert Olson, Professor of History, University of Kentucky.\\n\\nMadeline Zilfi, Professor of History, University of Maryland.\\n\\nJames Stewart-Robinson, Professor of Turkish Studies, University of Michigan.\\n\\n.......so the list goes on and on and on.....\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: john@goshawk.mcc.ac.uk (John Heaton)\\nSubject: POV reboots PC after memory upgrade\\nReply-To: john@nessie.mcc.ac.uk\\nOrganization: MCC Network Unit\\nLines: 13\\n\\nUp until last week, I have been running POVray v1.0 on my 486/33 under DOS5\\nwithout any major problems. Over Easter I increased the memory from 4Meg to\\n8Meg, and found that POVray reboots the system every time under DOS5. I had\\na go at running POVray in a DOS window when running Win3.1 on the same system\\nand it now works fine, even if a lot slower. I would like to go back to \\nusing POVray directly under DOS, anyone any ideas???\\n\\nJohn\\n-- \\n John Heaton - NRS Central Administrator\\n MCC Network Unit, The University, Oxford Road, Manchester, M13-9PL\\n Phone: (+44) 61 275 6011 - FAX: (+44) 61 275 6040\\n Packet: G1YYH @ G1YYH.GB7PWY.#16.GBR.EU\\n',\n", + " 'Subject: Re: Gospel Dating\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 64\\n\\nIn article bil@okcforum.osrhe.edu (Bill Conner) writes:\\n\\n>Keith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n>: \\n>: \\tWild and fanciful claims require greater evidence. If you state that \\n>: one of the books in your room is blue, I certainly do not need as much \\n>: evidence to believe than if you were to claim that there is a two headed \\n>: leapard in your bed. [ and I don\\'t mean a male lover in a leotard! ]\\n>\\n>Keith, \\n>\\n>If the issue is, \"What is Truth\" then the consequences of whatever\\n>proposition argued is irrelevent. If the issue is, \"What are the consequences\\n>if such and such -is- True\", then Truth is irrelevent. Which is it to\\n>be?\\n\\n\\tI disagree: every proposition needs a certain amount of evidence \\nand support, before one can believe it. There are a miriad of factors for \\neach individual. As we are all different, we quite obviously require \\ndifferent levels of evidence.\\n\\n\\tAs one pointed out, one\\'s history is important. While in FUSSR, one \\nmay not believe a comrade who states that he owns five pairs of blue jeans. \\nOne would need more evidence, than if one lived in the United States. The \\nonly time such a statement here would raise an eyebrow in the US, is if the \\nindividual always wear business suits, etc.\\n\\n\\tThe degree of the effect upon the world, and the strength of the \\nclaim also determine the amount of evidence necessary. When determining the \\nlevel of evidence one needs, it is most certainly relevent what the \\nconsequences of the proposition are.\\n\\n\\n\\n\\tIf the consequences of a proposition is irrelvent, please explain \\nwhy one would not accept: The electro-magnetic force of attraction between \\ntwo charged particles is inversely proportional to the cube of their \\ndistance apart. \\n\\n\\tRemember, if the consequences of the law are not relevent, then\\nwe can not use experimental evidence as a disproof. If one of the \\nconsequences of the law is an incongruency between the law and the state of \\naffairs, or an incongruency between this law and any other natural law, \\nthey are irrelevent when theorizing about the \"Truth\" of the law.\\n\\n\\tGiven that any consequences of a proposition is irrelvent, including \\nthe consequence of self-contradiction or contradiction with the state of \\naffiars, how are we ever able to judge what is true or not; let alone find\\n\"The Truth\"?\\n\\n\\n\\n\\tBy the way, what is \"Truth\"? Please define before inserting it in \\nthe conversation. Please explain what \"Truth\" or \"TRUTH\" is. I do think that \\nanything is ever known for certain. Even if there IS a \"Truth\", we could \\nnever possibly know if it were. I find the concept to be meaningless.\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", + " \"From: asper@calvin.uucp (Alan E. Asper)\\nSubject: Re: V-max handling request\\nOrganization: /usr/lib/news/organization\\nLines: 12\\nNNTP-Posting-Host: calvin.sbc.com\\n\\nIn article <1993Apr15.222224.1@ntuvax.ntu.ac.sg> ba7116326@ntuvax.ntu.ac.sg writes:\\n>hello there\\n>ican anyone who has handson experience on riding the Yamaha v-max, pls kindly\\n>comment on its handling .\\n\\nI've ridden one twice. It was designed to be a monster in a straight line,\\nwhich it is. It has nothing on an FZR400 in the corners. In fact, it just\\ndidn't handle that well at all in curves. But hey, that's not what it\\nwas designed to do.\\nMy two cents,\\nAlan\\n\\n\",\n", + " \"From: sichase@csa2.lbl.gov (SCOTT I CHASE)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Lawrence Berkeley Laboratory - Berkeley, CA, USA\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: 128.3.254.197\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article , pgf@srl02.cacs.usl.edu (Phil G. Fraering) writes...\\n>Jeff.Cook@FtCollinsCO.NCR.COM (Jeff Cook) writes:\\n>....\\n>>people in primitive tribes out in the middle of nowhere as they look up\\n>>and see a can of Budweiser flying across the sky... :-D\\n> \\n>Seen that movie already. Or one just like it.\\n>Come to think of it, they might send someone on\\n>a quest to get rid of the dang thing...\\n\\nActually, the idea, like most good ideas, comes from Jules Verne, not\\n_The Gods Must Be Crazy._ In one of his lesser known books (I can't\\nremember which one right now), the protagonists are in a balloon gondola,\\ntravelling over Africa on their way around the world in the balloon, when\\none of them drops a fob watch. They then speculate about the reaction\\nof the natives to finding such a thing, dropped straight down from heaven.\\nBut the notion is not pursued further than that.\\n\\n-Scott\\n-------------------- New .sig under construction\\nScott I. Chase Please be patient\\nSICHASE@CSA2.LBL.GOV Thank you \\n\",\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nDistribution: na\\nOrganization: University of Illinois at Urbana\\nLines: 33\\n\\nhiggins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey) writes:\\n\\n>(Josh Hopkins) writes:\\n>> I remeber reading the comment that General Dynamics was tied into this, in \\n>> connection with their proposal for an early manned landing. \\n\\n>The General Chairman is Paul Bialla, who is some official of General\\n>Dynamics.\\n\\n>The emphasis seems to be on a scaled-down, fast plan to put *people*\\n>on the Moon in an impoverished spaceflight-funding climate. You\\'d\\n>think it would be a golden opportunity to do lots of precusor work for\\n>modest money using an agressive series of robot spacecraft, but\\n>there\\'s not a hint of this in the brochure.\\n\\nIt may be that they just didn\\'t mention it, or that they actually haven\\'t \\nthought about it. I got the vague impression from their mission proposal\\nthat they weren\\'t taking a very holistic aproach to the whole thing. They\\nseemed to want to land people on the Moon by the end of the decade without \\nexplaining why, or what they would do once they got there. The only application\\nI remember from the Av Week article was placing a telescope on the Moon. That\\'s\\ngreat, but they don\\'t explain why it can\\'t be done robotically. \\n\\n>> Hrumph. They didn\\'t send _me_ anything :(\\n\\n>You\\'re not hanging out with the Right People, apparently.\\n\\nBut I\\'m a _member_. Besides Bill, I hang out with you :) \\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Freeman\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nWatch your language ASSHOLE!!!!\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", + " 'From: joe@rider.cactus.org (Joe Senner)\\nSubject: Re: Shaft-drives and Wheelies\\nReply-To: joe@rider.cactus.org\\nDistribution: rec\\nOrganization: NOT\\nLines: 9\\n\\nxlyx@vax5.cit.cornell.edu (From: xlyx@vax5.cit.cornell.edu) writes:\\n]Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\nyes.\\n\\n-- \\nJoe Senner joe@rider.cactus.org\\nAustin Area Ride Mailing List ride@rider.cactus.org\\nTexas SplatterFest Mailing List fest@rider.cactus.org\\n',\n", + " \"From: tdawson@engin.umich.edu (Chris Herringshaw)\\nSubject: WingCommanderII Graphics\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 8\\nDistribution: world\\nNNTP-Posting-Host: antithesis.engin.umich.edu\\n\\n I was wondering if anyone knows where I can get more information about\\nthe graphics in the WingCommander series, and the RealSpace system they use.\\nI think it's really awesome, and wouldn't mind being able to use similar\\nfeatures in programs. Thanks in advance.\\n\\n\\nDaemon\\n\\n\",\n", + " 'From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Zionism is Racism\\nOrganization: NYSERNet, Inc.\\nLines: 10\\n\\n\"D. C. Sessions\" writes:\\n\\n># So Steve: Lets here, what IS zionism?\\n\\n> Assuming that you mean \\'hear\\', you weren\\'t \\'listening\\': he just\\n> told you, \"Zionism is Racism.\" This is a tautological statement.\\n\\nI think you are confusing \"tautological\" with \"false and misleading.\"\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n',\n", + " 'From: adam@sw.stratus.com (Mark Adam)\\nSubject: Re: space food sticks\\nOrganization: Stratus Computer, Inc.\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: paix.sw.stratus.com\\nKeywords: food\\n\\nIn article <1pr5u2$t0b@agate.berkeley.edu>, ghelf@violet.berkeley.edu (;;;;RD48) writes:\\n> The taste is hard to describe, although I remember it fondly. It was\\n> most certainly more \"candy\" than say a modern \"Power Bar.\" Sort of\\n> a toffee injected with vitamins. The chocolate Power Bar is a rough\\n> approximation of the taste. Strawberry sucked.\\n> \\n\\nPeanut butter was definitely my favorite. I don\\'t think I ever took a second bite\\nof the strawberry.\\n\\nI recently joined Nutri-System and their \"Chewy Fudge Bar\" is very reminicent of\\nthe chocolate Space Food. This is the only thing I can find that even comes close\\nthe taste. It takes you back... your taste-buds are happy and your\\nintestines are in knots... joy!\\n\\n-- \\n\\nmark ----------------------------\\n(adam@paix.sw.stratus.com)\\t|\\tMy opinions are not those of Stratus.\\n\\t\\t\\t\\t|\\tHell! I don`t even agree with myself!\\n\\n\\t\"Logic is a wreath of pretty flowers that smell bad.\"\\n',\n", + " 'From: jrwaters@eos.ncsu.edu (JACK ROGERS WATERS)\\nSubject: Re: The quest for horndom\\nOrganization: North Carolina State University, Project Eos\\nLines: 30\\n\\nIn article <1993Apr5.171807.22861@research.nj.nec.com> behanna@phoenix.syl.nj.nec.com (Chris BeHanna) writes:\\n>In article <1993Apr4.010533.26294@ncsu.edu> jrwaters@eos.ncsu.edu (JACK ROGERS WATERS) writes:\\n>>No laughing, please. I have a few questions. First of all, do I\\n>>need a relay? Are there different kinds, and if so, what kind should\\n>>I get? Both horns are 12 Volt.\\n>\\n>\\tI did some back-of-the-eyelids calculations last night, and I figure\\n>these puppies suck up about 10 amps to work at maximum efficiency (i.e., the\\n>cager might need a shovel to clean out his seat). Assumptions: 125dBA at one\\n>meter. Neglecting solid angle considerations and end effects and other\\n>acoustic niceties from the shape of the horn itself, this is a power output\\n>of 125 Watts. 125Watts/12Volts is approx. 10 Amps.\\n>\\n>\\tYes, get a relay.\\n>\\n>\\tYes, tell me how you did it (I want to do it on the ZX).\\n>\\n>Later,\\n\\nI\\'ll post a summary after I get enough information. I\\'ll include\\ntips like \"how to know when the monkey is pulling your leg\". Shouldn\\'t\\nmonkey\\'s have to be bonded and insured before they work on bikes?\\n\\nJack Waters II\\nDoD#1919\\n\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n~ I don\\'t fear the thief in the night. Its the one that comes in the ~\\n~ afternoon, when I\\'m still asleep, that I worry about. ~\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n',\n", + " 'From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Boom! Whoosh......\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 24\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>In article <1r46ofINNdku@gap.caltech.edu> palmer@cco.caltech.edu (David M. Palmer) writes:\\n>>>orbiting billboard...\\n>>\\n>>I would just like to point out that it is much easier to place an\\n>>object at orbital altitude than it is to place it with orbital\\n>>velocity. For a target 300 km above the surface of Earth,\\n>>you need a delta-v of 2.5 km/s. \\n>Unfortunately, if you launch this from the US (or are a US citizen),\\n>you will need a launch permit from the Office of Commercial Space\\n>Transportation, and I think it may be difficult to get a permit for\\n>an antisatellite weapon... :-)\\n\\nWell Henry, we are often reminded how CANADA is not a part of the United States\\n(yet). You could have quite a commercial A-SAT, er sky-cleaning service going\\nin a few years. \\n\\n\"Toronto SkySweepers: Clear skies in 48 hours, or your money back.\"\\n\\t Discount rates available for astro-researchers. \\n\\n\\n\\n Software engineering? That\\'s like military intelligence, isn\\'t it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n',\n", + " \"From: dgempey@ucscb.UCSC.EDU (David Gordon Empey)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: University of California, Santa Cruz\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: ucscb.ucsc.edu\\n\\n\\nIn <1993Apr23.165459.3323@coe.montana.edu> uphrrmk@gemini.oscs.montana.edu (Jack Coyote) writes:\\n\\n>In sci.astro, dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n>[ a nearly perfect parody -- needed more random CAPS]\\n\\n\\n>Thanks for the chuckle. (I loved the bit about relevance to people starving\\n>in Somalia!)\\n\\n>To those who've taken this seriously, READ THE NAME! (aloud)\\n\\nWell, I thought it must have been a joke, but I don't get the \\njoke in the name. Read it aloud? David MACaloon. David MacALLoon.\\nDavid macalOON. I don't geddit.\\n\\n-Dave Empey (speaking for himself)\\n>-- \\n>Thank you, thank you, I'll be here all week. Enjoy the buffet! \\n\\n\\n\",\n", + " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Lawsuit against ADL\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 142\\n\\n[It looks like Yigal has been busy...]\\n\\nRTw 04/14 2155 JEWISH GROUP SUED FOR PASSING OFFICIAL INFORMATION\\n\\n By Adrian Croft\\n SAN FRANCISCO, April 14, Reuter - Nineteen people, including the son of\\nformer Israeli Defence Minister Moshe Arens, sued the Anti-Defamation League\\n(ADL) on Wednesday, accusing the Jewish group of disclosing confidential\\nofficial information about them.\\n Richard Hirschhaut, director of the San Francisco branch of the ADL, art\\ndealer Roy Bullock and former policeman Tom Gerard were also named as defendants\\nin the suit, filed in San Francisco County Superior Court.\\n The 19 accuse the ADL of B\\'nai B\\'rith, a group dedicated to fighting\\nanti-Semitism, and the other defendants of secretly gathering information on\\nthem, including data from state and federal agencies.\\n The suit alleges they disclosed the information to others, including the\\ngovernments of Israel and South Africa, in what it alleges was a \"a massive\\nspying operation.\"\\n The action is a class-action suit. It was filed on behalf of about 12,000\\nanti-apartheid activists or opponents of Israeli policies about whom the\\nplaintiffs believe the ADL, Bullock and Gerard gathered information.\\n Representatives of the ADL in San Francisco were not immediately available\\nfor comment on Wednesday.\\n The civil suit is the first legal action arising out of allegations that\\nGerard, a former inspector in the San Francisco police intelligence unit, passed\\nconfidential police files on California political activists to a spy ring.\\n The FBI and San Francisco police are investigating the ADL, Bullock and\\nGerard over the affair and last week searched the ADL\\'s offices in San Francisco\\nand Los Angeles.\\n The suit alleges invasion of privacy under the Civil Code of California,\\nwhich prohibits the publication of information obtained from official sources.\\nIt seeks exemplary damages of at least $2,500 per person as well as other\\nunspecified damages.\\n Lawyer Pete McCloskey, a former Congresmen who is representing the\\nplaintiffs, said the 19 plaintiffs included Arab-Americans and Jews -- and his\\nwife Helen, who also had information gathered about her.\\n One of the plaintiffs is Yigal Arens, a research scientist at the\\nUniversity of Southern California who is a son of the former Israeli Defence\\nMinister.\\n Arens told the San Francisco Examiner he had seen a file the ADL kept on\\nhim in the 1980s, presumably because of his criticism of the treatment of\\nPalestinians and his position on the Israeli-occupied territories.\\n According to court documents released last week, Bullock and Gerard both\\nkept information on thousands of California political activists.\\n In the documents, a police investigator said he believed the ADL paid\\nBullock for many years to provide information and that both the league and\\nBullock received confidential information from the authorities.\\n No criminal charges have yet been filed in the case. The ADL, Bullock and\\nGerard have all denied any wrongdoing.\\n REUTER AC KG CM\\n\\n\\n\\nAPn 04/14 2202 ADL Lawsuit\\n\\nCopyright, 1993. The Associated Press. All rights reserved.\\n\\nBy CATALINA ORTIZ\\n Associated Press Writer\\n SAN FRANCISCO (AP) -- Arab-Americans and critics of Israel sued the\\nAnti-Defamation League on Wednesday, saying it invaded their privacy by\\nillegally gathering information about them through a nationwide spy network.\\n The ADL, a national group dedicated to fighting anti-Semitism, intended to\\nuse the data to discredit them because of their political views, according to\\nthe class-action lawsuit filed in San Francisco Superior Court.\\n \"None of us has been guilty of racism or Nazism or anti-Semitism or hate\\ncrimes, or any of the other `isms\\' that the ADL claims to protect against. None\\nof us is violent or criminal in any way,\" said Carol El-Shaieb, an education\\nconsultant who develops programs on Arab culture.\\n The 19 plaintiffs include Yigal Arens, son of former Israel Defense Minister\\nMoshe Arens. The younger Arens, a research scientist at the University of\\nSouthern California, said the ADL kept a file on him in the 1980s presumably\\nbecause he has criticized Israel\\'s treatment of Palestinians.\\n \"The ADL believes that anyone who is an Arab American ... or speaks\\npolitically against Israel is at least a closet anti-Semite,\" Arens said.\\n The ADL has denied any wrongdoing, but couldn\\'t comment on the lawsuit\\nbecause it hasn\\'t reviewed it, said a spokesman at the ADL\\'s New York\\nheadquarters.\\n The FBI and local police and prosecutors are investigating allegations that\\nthe ADL spied on thousands of individuals and hundreds of groups, including\\nwhite supremacist and anti-Semitic organizations, Arab-Americans, Greenpeace,\\nthe National Association for the Advancement of Colored People and San Francisco\\npublic television station KQED.\\n Some information allegedly came from confidential police and government\\nrecords, according to court documents filed in the probe and the civil lawsuit.\\nNo charges have been filed in the criminal investigation.\\n The lawsuit accuses the ADL of violating California\\'s privacy law, which\\nforbids the intentional disclosure of personal information \"not otherwise\\npublic\" from state or federal records.\\n The lawsuit claims the ADL disclosed the information to \"persons and\\nentities\" who had no compelling need to receive it. It didn\\'t elaborate.\\n Defendants include Richard Hirschhaut, director of the ADL\\'s office in San\\nFrancisco. He did not immediately return a phone call seeking comment.\\n Other defendants are San Francisco art dealer Roy Bullock, an alleged ADL\\ninformant over the past four decades, and former police officer Tom Gerard.\\nGerard allegedly tapped into law enforcement and government computers and passed\\ninformation on to Bullock.\\n Gerard, who has retired from the police force, has moved to the Philippines.\\nBullock\\'s lawyer, Richard Breakstone, said he could not comment on the lawsuit\\nbecause he had not yet studied it.\\n\\n\\n\\n\\n\\nUPwe 04/14 1956 ADL sued for allegedly spying on U.S. residents\\n\\n SAN FRANCISCO (UPI) -- A group of California residents filed suit Wednesday\\ncharging the Anti-Defamation League of B\\'nai Brith with violating their privacy\\nby spying on them for the Israeli and South African governments.\\n The class-action suit, filed in San Francisco Superior Court, charges the ADL\\nand its leadership conspired with a local police official to obtain information\\non outspoken opponents of Israeli policies towards the Occupied Territories and\\nSouth Africa\\'s apartheid policy.\\n The ADL refused to comment on the suit.\\n The suit also took aim at two top local ADL officials and retired San\\nFrancicso police officer Tom Gerard, claiming they violated privacy guarantees\\nin the state constitution and violated state confidentiality laws.\\n According to the suit, Gerard helped the ADL obtain access to confidential\\nfiles in law enforcement and government computers. Information from these files\\nwere passed to the foreign governments, the suit charges.\\n \"The whole concept of an organized collection of information based on\\npolitical viewpoints and using government agencies as a source of information is\\nabsolutely repugnant,\" said former Rep. Pete McCloskey, who is representing the\\nplaintiffs.\\n The ADL\\'s information-gathering network was revealed publicly last week when\\nthe San Francisco District Attorney\\'s Office released documents indicating the\\ngroup had spied on 12,000 people and 500 political and ethnic groups for more\\nthan 30 years.\\n \"My understanding is that they (the ADL) consider all activity that is in\\nsome sense opposed to Israel or Israeli action to be part of their responsbility\\nto investigate,\" said Arens, a research scientist at the University of Southern\\nCalifornia.\\n \"The ADL believes that anyone who is Arab American...or speaks politically\\nagainst Israel is at least a closet anti-Semite.\"\\n The FBI and the District Attorney\\'s Office have been investigating the\\noperation for four months.\\n The 19 plaintiffs in the case include Arens, the son of former Israeli\\nDefense Minister Moshe Arens.\\n In a press release, the plaintiffs said the alleged spying had damaged them\\npsychologically and economically and accused the ADL of trying to interfere with\\ntheir freedom of speech.\\n',\n", + " 'From: bds@uts.ipp-garching.mpg.de (Bruce d. Scott)\\nSubject: Re: News briefs from KH # 1026\\nOrganization: Rechenzentrum der Max-Planck-Gesellschaft in Garching\\nLines: 21\\nDistribution: world\\nNNTP-Posting-Host: uts.ipp-garching.mpg.de\\n\\nMack posted:\\n\\n\"I know nothing about statistics, but what significance does the\\nrelatively small population growth rate have where the sampling period\\nis so small (at the end of 1371)?\"\\n\\nThis is not small. A 2.7 per cent annual population growth rate implies\\na doubling in 69/2.7 \\\\approx 25 years. Can you imagine that? Most people\\nseem not able to, and that is why so many deny that this problem exists,\\nfor me most especially in the industrialised countries (low growth rates,\\nbut large environmental impact). Iran\\'s high growth rate threatens things\\nlike accelerated desertification due to intensive agriculture, deforestation,\\nand water table drop. Similar to what is going on in California (this year\\'s\\nrain won\\'t save you in Stanford!). This is probably more to blame than \\nthe current government\\'s incompetence for dropping living standards\\nin Iran.\\n-- \\nGruss,\\nDr Bruce Scott The deadliest bullshit is\\nMax-Planck-Institut fuer Plasmaphysik odorless and transparent\\nbds at spl6n1.aug.ipp-garching.mpg.de -- W Gibson\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: DC-X: Vehicle Nears Flight Test\\nArticle-I.D.: news.C51rzx.AC3\\nOrganization: University of Illinois at Urbana\\nLines: 34\\n\\nnsmca@aurora.alaska.edu writes:\\n\\n[Excellent discussion of DC-X landing techniques by Henry deleted]\\n\\n>Since the DC-X is to take off horizontal, why not land that way??\\n\\nThe DC-X will not take of horizontally. It takes of vertically. \\n\\n>Why do the Martian Landing thing.. \\n\\nFor several reasons. Vertical landings don\\'t require miles of runway and limit\\nnoise pollution. They don\\'t require wheels or wings. Just turn on the engines\\nand touch down. Of course, as Henry pointed out, vetical landings aren\\'t quite\\nthat simple.\\n\\n>Or am I missing something.. Don\\'t know to\\n>much about DC-X and such.. (overly obvious?).\\n\\nWell, to be blunt, yes. But at least you\\'re learning.\\n\\n>Why not just fall to earth like the russian crafts?? Parachute in then...\\n\\nThe Soyuz vehicles use parachutes for the descent and then fire small rockets\\njust before they hit the ground. Parachutes are, however, not especially\\npractical if you want to reuse something without much effort. The landings\\nare also not very comfortable. However, in the words of Georgy Grechko,\\n\"I prefer to have bruises, not to sink.\"\\n\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n \"Tout ce qu\\'un homme est capable d\\'imaginer, d\\'autres hommes\\n \\t seront capable de la realiser\"\\n\\t\\t\\t -Jules Verne\\n',\n", + " 'From: landis@stsci.edu (Robert Landis,S202,,)\\nSubject: Re: Space Debris\\nReply-To: landis@stsci.edu\\nOrganization: Space Telescope Science Institute, Baltimore MD\\nLines: 14\\n\\nAnother fish to check out is Richard Rast -- he works\\nfor Lockheed Missiles, but is on-site at NASA Johnson.\\n\\nNick Johnson at Kaman Sciences in Colo. Spgs and his\\nfriend, Darren McKnight at Kaman in Alexandria, VA.\\n\\nGood luck.\\n\\nR. Landis\\n\\n\"Behind every general is his wife.... and...\\n behind every Hillary is a Bill . .\"\\n\\n\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Legality of the Jewish Purchase\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 104\\n\\nIn article <1993Apr16.225910.16670@bnr.ca> zbib@bnr.ca writes:\\n>Adam Shostack writes: \\n>> Sam Zbib writes\\n> >>I\\'m surprised that you don\\'t consider the acquisition of land by\\n> >>the Jews from arabs, for the purpose of establishing an exclusive\\n> >>state, as a hostile action leading to war.\\n\\n>>\\tIt was for the purpose of establishing a state, not an\\n>> exclusive state. If the state was to be exclusive, it would not have\\n>> 400 000 arab citizens.\\n\\n>Could you please tell me what was the ethnic composition of \\n>Israel right after it was formed. \\n\\n\\t100% Israeli citizens. The ethnic composition depends on what\\nyou mean by formed. What the UN deeded to Israel? What it won in war?\\n\\n>> \\tAnd no, I do not consider the purchase of land a hostile\\n>> action. When someone wants to buy land, and someone else is willing\\n>> to sell it, at a mutually agreeable price, then that is commerce. It\\n>> is not a hostile action leading to war.\\n\\n>No one in his right mind would sell his freedom and dignity.\\n>Palestinians are no exception. Perhaps you heard about\\n>anti-trust in the business world.\\n\\n\\tWere there anti-trust laws in place in mandatory Palestine?\\nSince the answer is no, you\\'re argument, while interestingly\\nconstructed, is irrelevant. I will however, respond to a few points\\nyou assert in the course of talking about anti-trust laws.\\n\\n\\n>They were establishing a bridgehead for the European Jews.\\n\\n\\tAnd those fleeing Arab lands, where Jews were second class\\ncitizens. \\n\\n>Plus they paid fair market value, etc...\\n\\n\\tJews often paid far more than fair market value for the land\\nthey bought.\\n\\n>They did not know they were victims of an international conspiracy.\\n\\n\\tYou know, Sam, when people start talking about an\\nInternational Jewish conspiracy, its really begins to sound like\\nanti-Semitic bull.\\n\\n\\tThe reason there is no conspiracy here is quite simple.\\nZionists made no bones about what was going on. There were\\nconferences, publications, etc, all talking about creating a National\\nhome for the Jews.\\n\\n>>>Israel gave citizenship to the remaining arabs because it\\n>>>had to maintain a democratic facade (to keep the western aid\\n>>>flowing).\\n\\n>>\\tIsrael got no western aid in 1948, nor in 1949 or 50...It\\n>>still granted citizenship to those arabs who remained. And how\\n>>is granting citizenship a facade?\\n\\n>Don\\'t get me wrong. I beleive that Israel is democratic\\n>within the constraints of one dominant ethnic group (Jews).\\n[...]\\n>\\'bad\\' arabs. Personaly, I\\'ve never heard anything about the\\n>arab community in Isreal. Except that they\\'re there. So\\n>yes, they\\'re there. But as a community with history and\\n>roots, its dead.\\n\\n\\tBecause you\\'ve never heard of it, its dead? The fact is, you\\nclaimed Israel had to give arabs rights because of (non-existant)\\nInternational aid. Then you see that that argument has a hole you\\ncould drive a truck through, and again assert that Israel is only\\ndemocratic within the (unexplained) constraints of one ethnic group.\\nThe problem with that argument is that Arabs are allowed to vote for\\nwhoever they please. So, please tell me, Sam, what constraints are\\nthere on Israeli democracy that don\\'t exist in other democratic\\nstates?\\n\\n\\tI\\'ve never heard anything about the Khazakistani arab\\npopulation. Does that mean that they have no history or roots? When\\nI was at Ben Gurion university in Israel, one of my neighbors was an\\nIsraeli arab. He wasn\\'t really all that different from my other\\nneighbors. Does that make him dead or oppressed?\\n\\n\\n>I stand corrected. I meant that the jewish culture was not\\n>predominant in Palestine in recent history. I have no\\n>problem with Jerusalem having a jewish character if it were\\n>predominantly Jewish. So there. what to make of the rest\\n>Palestine?\\n\\n\\tHow recent is recent? I can probably build a case for a\\nJewish Gaza city. It would be pretty silly, but I could do it. I\\'m\\narguing not that Jerusalem is Jewish, but that land has no ethnicity.\\n\\nAdam\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: hm@cs.brown.edu (Harry Mamaysky)\\nSubject: Re: Final Solution for Gaza ?\\nIn-Reply-To: Center for Policy Research\\'s message of 23 Apr 93 15:10 PDT\\nOrganization: Dept. of Computer Science, Brown University\\nLines: 30\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n\\n Final Solution for the Gaza ghetto ?\\n ------------------------------------\\n\\n While Israeli Jews fete the uprising of the Warsaw ghetto, they\\n repress by violent means the uprising of the Gaza ghetto and\\n attempt to starve the Gazans.\\n\\n [...]\\n\\nElias should the families of the children who were stabbed in their\\nhigh school by a Palestinian \"freedom fighter\" be the ones who offer\\ntheir help to the Gazans. Perhaps it should be the families of the 18\\nIsraelis who were murdered last month by Palestinian \"freedom\\nfighters\".\\n\\nThe Jews in the Warsaw ghetto were fighting to keep themselves and\\ntheir families from being sent to Nazi gas chambers. Groups like Hamas\\nand the Islamic Jihad fight with the expressed purpose of driving all\\nJews into the sea. Perhaps, we should persuade Jewish people to help\\nthese wnderful \"freedom fighters\" attain this ultimate goal.\\n\\nMaybe the \"freedom fighters\" will choose to spare the co-operative Jews.\\nIs that what you are counting on, Elias - the pity of murderers.\\n\\nYou say your mother was Jewish. How ashamed she must be of her son. I\\nam sorry, Mrs. Davidsson.\\n\\nHarry.\\n',\n", + " 'From: DKELO@msmail.pepperdine.edu (Dan Kelo)\\nSubject: M-81 Supernova\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 7\\n\\n\\nHow \\'bout some more info on that alleged supernova in M-81?\\nI might just break out the scope for this one.\\n____________________________________________________\\n\"No sir, I don\\'t like it! \"-- Mr. Horse\\nDan Kelo dkelo@pepvax.pepperdine.edu\\n____________________________________________________\\n',\n", + " 'From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: Question: Arai Quantum-S\\nOrganization: AT&T\\nDistribution: na\\nLines: 30\\n\\nIn article amir@ms.uky.edu (Amir Sadr) writes:\\n>they way I want it to. However, I have the following problem: My chin hangs\\n>out from the bottom of the helmet. I am curious to know whether I would still\\n>have this problem if I were to switch to the extra large size? In particular,\\n>can anyone tell me \"for certain\", if the outer shell of the \"Arai Quantum-S\" in\\n>size X-large is any different (larger-rounder-etc.) than the same helmet in size\\n>large? Or if the inner padding/foam on the X-large is such that one\\'s head\\n>fits a little deeper in the helmet, and thus one\\'s chin would not stick out?\\n>This is true for the very old Arthur-Fulmer helmets that I have. Namely, my\\n>chin hangs out a little from the bottom of the Large helmet, and not at all\\n>from the X-large (but the X-large is not as snug as the large). The dealer\\n>is willing to replace the helmet at no additional cost (i.e. shipping), but\\n>I want to make sure that 1) the X-large is in fact a little bigger or linered\\n>such that my chin will not hang out and 2) how much looser will my head fit in\\n>the X-large? If anyone has recent experience with this helmet, please let me\\n>hear (E-mail) from you ASAP. Thank you so much. Amir-\\n\\nI\\'m not sure about the helmet but for chin questions you might\\nwant to write to a:\\n\\n Jay Leno\\n c/o Tonight Show \\n Burbank Calif.\\n \\nGood luck.\\n \\n================================================================================\\n Steatopygias\\'s \\'R\\' Us. doh#0000000005 That ain\\'t no Hottentot.\\n Sesquipedalian\\'s \\'R\\' Us. ZX-10. AMA#669373 DoD#564. There ain\\'t no more.\\n================================================================================\\n',\n", + " 'From: sprattli@azores.crd.ge.com (Rod Sprattling)\\nSubject: Re: Kawi Zephyr? (was Re: Vision vs GpZ 550)\\nArticle-I.D.: crdnns.C52M30.5yI\\nReply-To: sprattli@azores.crd.ge.com (Rod Sprattling)\\nOrganization: GE Corp R&D Center, Schenectady NY\\nLines: 31\\nNntp-Posting-Host: azores.crd.ge.com\\n\\nIn article <1993Apr4.135829.28141@pro-haven.cts.com>,\\nshadow@pro-haven.cts.com writes:\\n|>In <1993Apr3.094509.11448@organpipe.uug.arizona.edu>\\n|>asphaug@lpl.arizona.edu (Erik Asphaug x2773) writes:\\n|>\\n|>% By the way, the short-lived Zephyr is essentially a GpZ 550,\\n|>\\n|>Why was the \"Zephyr\" discontinued? I heard something about a problem with\\n|>the name, but I never did hear anything certain... \\n\\nFord had an anemic mid-sized car by that name back in the last decade.\\nI rented one once. That car would ruin the name \"Zephyr\" for any other\\nuse.\\n\\nRod\\n--- \\nRoderick Sprattling\\t\\t| No job too great, no time too small\\nsprattli@azores.crd.ge.com\\t| With feet to fire and back to wall.\\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n\\n \\n',\n", + " 'From: bill@xpresso.UUCP (Bill Vance)\\nSubject: TRUE \"GLOBE\", Who makes it?\\nOrganization: (N.) To be organized. But that\\'s not important right now.....\\nLines: 11\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nIt has been known for quite a while that the earth is actually more pear\\nshaped than globular/spherical. Does anyone make a \"globe\" that is accurate\\nas to actual shape, landmass configuration/Long/Lat lines etc.?\\nThanks in advance.\\n\\n--\\n\\nbill@xpresso.UUCP (Bill Vance), Bothell, WA\\nrwing!xpresso!bill\\n\\nYou listen when I xpresso, I listen When uuxpresso.......:-)\\n',\n", + " 'From: ghasting@vdoe386.vak12ed.edu (George Hastings)\\nSubject: Re: Space on other nets\\nOrganization: Virginia\\'s Public Education Network (Richmond)\\nLines: 17\\n\\n We run \"SpaceNews & Views\" on our STAREACH BBS, a local\\noperation running WWIV software with the capability to link to\\nover 1500 other BBS\\'s in the U.S.A. and Canada through WWIVNet.\\n Having just started this a couple of months ago, our sub us\\ncurrently subscribed by only about ten other boards, but more\\nare being added.\\n We get our news articles re on Internet, via ftp from NASA\\nsites, and from a variety of aerospace related periodicals. We\\nget a fair amount of questions on space topics from students\\nwho access the system.\\n ____________________________________________________________\\n| George Hastings\\t\\tghasting@vdoe386.vak12ed.edu | \\n| Space Science Teacher\\t\\t72407.22@compuserve.com | If it\\'s not\\n| Mathematics & Science Center \\tSTAREACH BBS: 804-343-6533 | FUN, it\\'s\\n| 2304 Hartman Street\\t\\tOFFICE: 804-343-6525 | probably not\\n| Richmond, VA 23223\\t\\tFAX: 804-343-6529 | SCIENCE!\\n ------------------------------------------------------------\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Lezgians Astir in Azerbaijan and Daghestan\\nSummary: asking not to fight against Armenians in Karabakh & for unification\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 106\\n\\n\\n04/19/1993 0000 Lezghis Astir\\n\\nBy NEJLA SAMMAKIA\\n Associated Press Writer\\n \\nGUSSAR, Azerbaijan (AP) -- The 600,000 Lezghis of Azerbaijan and Russia have\\nbegun clamoring for their own state, threatening turmoil in a tranquil corner \\nof the Caucasus.\\n\\nThe region has escaped the ethnic warfare of neighboring Nagorno-Karabakh,\\nAbkhazia and Ossetia, but Lezhgis could become the next minority in the former\\nSoviet Union to fight for independence.\\n\\nLezghis, who are Muslim descendents of nomadic shepherds, are angry about the\\nconscription of their young men to fight in Azerbaijan\\'s 5-year-old undeclared\\nwar with Armenia.\\n\\nThey also want to unite the Lezghi regions of Azerbaijan and Russia, which\\nwere effectively one until the breakup of the Soviet Union created national\\nborders that had been only lines on a map.\\n\\nA rally of more than 3,000 Lezghis in March to protest conscription and\\ndemand a separate \"Lezghistan\" alarmed the Azerbaijani government.\\n\\nOfficials in Baku, the capital, deny rumors that police shot six\\ndemonstrators to death. But the government announced strict security measures\\nand began cooperating with Russian authorities to control the movement of\\nLezhgis living across the border in the Dagestan region of Russia.\\n\\nVisitors to Gussar, the center of Lezhgi life, found the town quiet soon\\nafter the protest. Children played outdoors in the crisp mountain air.\\n\\nAt the Sunday bazaar, men in heavy coats and dark fur hats gathered to\\ndiscuss grievances ranging from high customs duties at the Russian border to a\\nwar they say is not theirs.\\n\\n\"I have been drafted, but I won\\'t go,\" said Shamil Kadimov, gold teeth\\nglinting in the sun. \"Why must I fight a war for the Azerbaijanis? I have\\nnothing to do with Armenia.\"\\n\\nMore than 3,000 people have died in the war, which centers on the disputed\\nterritory of Nagorno-Karabakh, about 150 miles to the southeast.\\n\\nMalik Kerimov, an official in the mayor\\'s office, said only 11 of 300 locals\\ndrafted in 1992 had served.\\n\\n\"The police don\\'t force people to go,\" he said. \"They are afraid of an\\nuprising that could be backed by Lezghis in Dagestan.\"\\n\\nAll the men agreed that police had not fired at the demonstrators, but\\ndisagreed on how the protest came about.\\n\\nSome said it occurred spontaneously when rumors spread that Azerbaijan was\\nabout to draft 1,500 men from the Gussar region, where 75,000 Lezghis live.\\n\\nOthers said the rally was ordered by Gen. Muhieddin Kahramanov, leader of the\\nLezhgi underground separatist movement, Sadval, based in Dagestan.\\n\\n\"We organized the demonstration when families came to us distraught about\\ndraft orders,\" said Kerim Babayev, a mathematics teacher who belongs to Sadval.\\n\\n\"We hope to reunite peacefully, by approaching everyone -- the Azerbaijanis, \\nthe Russians.\"\\n\\nIn the early 18th century, the Lezhgis formed two khanates, or sovereignties,\\nin what are now Azerbaijan and Dagestan. They roamed freely with their sheep\\nover the green hills and mountains between the two khanates.\\n\\nBy 1812, the Lezghi areas were joined to czarist Russia. After 1917, they\\ncame under Soviet rule. With the disintegration of the Soviet Union, the \\n600,000 Lezghis were faced for the first time with strict borders.\\n\\nAbout half remained in Dagestan and half in newly independent Azerbaijan.\\n\\n\"We have to pay customs on all this, on cars, on wine,\" complained Mais\\nTalibov, a small trader. His goods, laid out on the ground at the bazaar,\\nincluded brandy, stomach medication and plastic shoes from Dagestan.\\n\\n\"We want our own country,\" he said. \"We want to be able to move about easily.\\nBut Baku won\\'t listen to us.\"\\n\\nPhysically, it is hard for outsiders to distinguish Lezhgis from other\\nAzerbaijanis. In many villages, they live side by side, working at the same \\njobs and intermarrying to some degree.\\n\\nBut the Lezhgis have a distinctive language, a mixture of Arabic, Turkish and\\nPersian with strong guttural vowels.\\n\\nAzerbaijan officially supports the cultural preservation of its 10 largest\\nethnic minorities. The Lezghis have weekly newspapers and some elementary \\nschool classes in their language.\\n\\nAutonomy is a different question. If the Lezghis succeeded in separating from\\nAzerbaijan, they would set a precedent for other minorities, such as the \\nTalish in the south, the Tats in the nearby mountains and the Avars of eastern\\nAzerbaijan.\\n\\n\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: shz@mare.att.com (Keeper of the 'Tude)\\nSubject: Re: Riceburner Respect\\nOrganization: Office of 'Tude Licensing\\nNntp-Posting-Host: binky\\nLines: 14\\n\\nIn article <1993Apr14.190210.8996@megatek.com>, randy@megatek.com (Randy Davis) writes:\\n> |The rider (pilot?)\\n> \\n> I'm happy I've had such an effect on your choice of words, Seth.. :-)\\n\\n:-)\\n\\nT'was a time when I could get a respectable response with a posting like that.\\nRandy's post doesn't count 'cause he saw the dearth of responses and didn't \\nwant me to feel ignored (thanks Randy!).\\n\\nI was curious about this DoD thing. How do I get a number? (:-{)}\\n\\n- Roid\\n\",\n", + " \"From: jar2e@faraday.clas.Virginia.EDU (Virginia's Gentleman)\\nSubject: Re: was:Go Hezbollah!!\\nOrganization: University of Virginia\\nLines: 4\\n\\nWe really should try to be as understanding as we can for Brad, because it\\nappears killing is all he knows.\\n\\nJesse\\n\",\n", + " \"From: tmc@spartan.ac.BrockU.CA (Tim Ciceran)\\nSubject: Re: Hijaak\\nOrganization: Brock University, St. Catharines Ontario\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 15\\n\\nHaston, Donald Wayne (haston@utkvx.utk.edu) wrote:\\n: Currently, I use a shareware program called Graphics Workshop.\\n: What kinds of things will Hijaak do that these shareware programs\\n: will not do?\\n\\nI also use Graphic Workshop and the only differences that I know of are that\\nHijaak has screen capture capabilities and acn convert to/from a couple of\\nmore file formats (don't know specifically which one). In the April 13\\nissue of PC Magazine they test the twelve best selling image capture/convert\\nutilities, including Hijaak.\\n\\nTMC.\\n(tmc@spartan.ac.brocku.ca)\\n\\n\\n\",\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Abyss: breathing fluids\\nArticle-I.D.: access.1psghn$s7r\\nOrganization: Express Access Online Communications USA\\nLines: 19\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article enf021@cck.coventry.ac.uk (Achurist) writes:\\n|\\n|I believe the reason is that the lung diaphram gets too tired to pump\\n|the liquid in and out and simply stops breathing after 2-3 minutes.\\n|So if your in the vehicle ready to go they better not put you on \\n|hold, or else!! That's about it. Remember a liquid is several more times\\n|as dense as a gas by its very nature. ~10 I think, depending on the gas\\n|and liquid comparision of course!\\n\\n\\nCould you use some sort of mechanical chest compression as an aid.\\nSorta like the portable Iron Lung? Put some sort of flex tubing\\naround the 'aquanauts' chest. Cyclically compress it and it will\\npush enough on the chest wall to support breathing?????\\n\\nYou'd have to trust your breather, but in space, you have to trust\\nyour suit anyway.\\n\\npat\\n\",\n", + " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: Observation re: helmets\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 12\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 734919391@u.washington.edu, moseley@u.washington.edu (Steve L. Moseley) writes:\\n>\\n>So what should I carry if I want to comply with intelligent helmet laws?\\n\\nTake up residence in a fantasy world. \\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", + " \"From: bdunn@cco.caltech.edu (Brendan Dunn)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: California Institute of Technology, Pasadena\\nLines: 8\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\nThanks to whoever posted this wonderful parody of people who post without \\nreading the FAQ! I was laughing for a good 5 minutes. Were there any \\nparts of the FAQ that weren't mentioned? I think there might have been one\\nor two...\\n\\nPlease don't tell me this wasn't a joke. I'm not ready to hear that yet...\\n\\nBrendan\\n\",\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Syria\\'s Expansion\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 95\\n\\nIn article hallam@zeus02.desy.de writes:\\n>\\n>In article <1993Apr18.212610.5933@das.harvard.edu>, adam@endor.uucp (Adam Shostack) writes:\\n\\n>|>In article <18APR93.15729846.0076@VM1.MCGILL.CA> B8HA000 writes:\\n\\n>|>>1) Is Israel\\'s occupation of Southern Lebanon temporary?\\n\\n>|>\\tIsrael has repeatedly stated that it will leave Lebanon when\\n>|>the Lebanese government can provide guarantees that Israel will not be\\n>|>attacked from Lebanese soil, and when the Syrians leave.\\n\\n>Not acceptable. Syria and Lebanon have a right to determine if\\n>they wish to return to the situation prior to the French invasion\\n>where they were both part of the same \"mandate territory\" - read\\n>colony.\\n\\n\\tAnd Lebanon has a right to make this decision without Syrian\\ntroops controlling the country. Until Syria leaves, and free\\nelections take place, its is rediculous to claim that the Lebanese\\nwould even be involved in determining what happens to their country.\\n\\n>Israel has no right to determine what happens in Lebanon. Invading another\\n>country because you consider them a threat is precisely the way that almost\\n>all wars of aggression have started.\\n\\n\\tI expect you will agree that the same holds true for Syria\\nhaving no right to be in Lebanon?\\n\\n>|>\\tIsrael has already annexed areas taken over in the 1967 war.\\n>|>These areas are not occupied, but disputed, since there is no\\n>|>legitamate governing body. Citizenship was given to those residents\\n>|>in annexed areas who wanted citizenship.\\n\\n>The UN defines them as occupied. They are recognised as such by every\\n>nation on earth (excluding one small caribean island).\\n\\n\\tThe UN also thought Zionism is racism. That fails to make it true.\\n\\n>|>\\tThe first reason was security. A large Jewish presense makes\\n>|>it difficult for terrorists to infiltrate. A Jewish settlements also\\n>|>act as fortresses in times of war.\\n>\\n>Theyu also are a liability. We are talking about civilian encampments that\\n>would last no more than hours against tanks,\\n\\n\\tThey lasted weeks against tanks in \\'48, and stopped those\\ntanks from advancing. They also lasted days in \\'73. There is little\\nevidence for the claim that they are military liabilities.\\n\\n\\tThey evidence is there to show that when infiltrations take\\nplace over the Jordan river, the existance of large, patrolled\\nkibutzim forces terrorists into a very small area, where they are\\nusually picked up in the morning.\\n\\n>|>\\tA second reason was political. Creating \"settlements\" brought\\n>|>the arabs to the negotiation table. Had the creation of new towns and\\n>|>cities gone on another several years, there would be no place left in\\n>|>Israel where there was an arab majority. There would have been no\\n>|>land left that could be called arab.\\n\\n>Don\\'t fool yourself. It was the gulf war that brought the Israelis to the\\n>negotiating table. Once their US backers had a secure base in the gulf\\n>they insrtructed Shamir to negotiate or else.\\n\\n\\tNonsense. Israel has been trying to get its neighbors to the\\nnegotiating table for 40 years. It was the gulf war that brought the\\narabs to the table, not the Israelis.\\n\\n>|>\\tThe point is, there are many reasons people moved over the\\n>|>green line, and many reasons the government wanted them to. Whatever\\n>|>status is negotiated for disputed territories, it will not be an \"all\\n>|>or nothing\" deal. New boundaries will be drawn up by negotiation, not\\n>|>be the results of a war.\\n\\n>Unless the new boundaries drawn up are those of 48 there will be no peace.\\n>Araffat has precious little authority to agree to anything else.\\n\\n\\tNonsense. According to Arafat, Israel must be destroyed. He\\nhas never come clean and denied that this is his plan. He always\\nwaffles on what he means.\\n\\n\\t``When the Arabs set off their volcano, there will only be Arabs in\\n\\tthis part of the world. Our people will continue to fuel the torch\\n\\tof the revolution with rivers of blood until the whole of the\\n\\toccupied homeland is liberated...\\'\\'\\n\\t--- Yasser Arafat, AP, 3/12/79\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 57\\n\\nIn article bh437292@lance.colostate.edu writes:\\n\\n[most of Brads post deleted.]\\n\\n>we have come to accept and deal with, the Lebanese Resistance\\n>on the other hand is not going to stop its attacks on OCCUPYING \\n>ISRAELI SOLDIERS until they withdraw, this is the only real \\n>leverage that they have to force Israel to withdraw.\\n\\n\\tTell me, do these young men also attack Syrian troops?\\n\\n\\n>with the blood of its soldiers. If Israel is interested in peace,\\n>than it should withdraw from OUR land.\\n\\n\\tThere must be a guarantee of peace before this happens. It\\nseems that many of these Lebanese youth are unable to restrain\\nthemselves from violence, and unable to to realize that their actions\\nprolong Israels stay in South Lebanon.\\n\\n\\tIf the Lebanese army was able to maintain the peace, then\\nIsrael would not have to be there. Until it is, Israel prefers that\\nits soldiers die rather than its children.\\n\\n\\n>If Israel really wants to save some Israeli lives it would withdraw \\n>unilaterally from the so-called \"Security Zone\" before the conclusion\\n>of the peace talks. Such a move would save Israeli lives,\\n>advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n>public image abroad and give it an edge in the peace negociations \\n>since Israel can rightly claim that it is genuinely interested in \\n>peace and has already offered some important concessions.\\n\\n\\tIsrael should withdraw from Lebanon when a peace treaty is\\nsigned. Not a day before. Withdraw because of casualties would tell\\nthe Lebanese people that all they need to do to push Israel around is\\nkill a few soldiers. Its not gonna happen.\\n\\n>Along with such a withdrawal Israel could demand that Hizbollah\\n>be disarmed by the Lebanese government and warn that it will not \\n>accept any attacks against its northern cities and that if such a\\n>shelling occurs than it will consider re-taking the buffer zone\\n>and will hold the Lebanese and Syrian government responsible for it.\\n\\n\\n\\tWhy should Israel not demand this while holding the buffer\\nzone? It seems to me that the better bargaining position is while\\nholding your neighbors land. If Lebanon were willing to agree to\\nthose conditions, Israel would quite probably have left already.\\nUnfortunately, it doesn\\'t seem that the Lebanese can disarm the\\nHizbolah, and maintain the peace.\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: eylerken@stein.u.washington.edu (Ken Eyler)\\nSubject: stand alone editing suite.\\nArticle-I.D.: shelley.1qvkaeINNgat\\nDistribution: world\\nOrganization: University of Washington, Seattle\\nLines: 12\\nNNTP-Posting-Host: stein.u.washington.edu\\n\\nI need some help. We are upgrading our animation/video editing stand. We\\nare looking into the different type of setups for A/B roll and a cuts only\\nstation. We would like this to be controlled by a computer ( brand doesnt matter but maybe MAC, or AMIGA). Low end to high end system setups would be very\\nhelpful. If you have a system or use a system that might be of use, could you\\nmail me your system requirements, what it is used for, and all the hardware and\\nsoftware that will be necessary to set the system up. If you need more \\ninfo, you can mail me at eylerken@u.washington.edu\\n\\nthanks in advance.\\n\\n:ken\\n:eylerken@u.washington.edu\\n',\n", + " 'From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: RE: was:Go Hezbollah!\\nOrganization: Unocal Corporation\\nLines: 68\\n\\n\\nhernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n\\n>I just thought that I would make it clear, in case you are not familiar with\\n>my past postings on this subject; I do not condone attacks on civilians. \\n>Hezbollah and other Lebanese Resistance fighters are skilled at precision\\n>bombing of SLA and Israeli targets. I find such methods to be far more\\n>restrained and responsible than the Israeli method of shelling and bombing\\n>villages with the hope that a Hezbollah member will be killed along with\\n>the civilians murdered. I do not consider the killing of combatants to be\\n>murder. Soldiers are trained to die for their country. Three IDF soldiers\\n>did their duty the other day. These men need not have died if their government\\n>had kept them on Israeli soil. \\n\\nIs there any Israeli a civilian, in your opinion ?\\n\\nNow, I do not condone myself bombing villages, any kind of villages.\\nBut you claim these are villages with civilians, and Iraelis claim they are \\ncamps filled with terrorists. You claim that israelis shell the villages with the\\n\\'hope\\' of finding a terrorist or so. If they kill one, fine, if not, too bad, \\ncivilians die, right ? I am not so sure. \\n\\nAs somebody wrote, Saddam Hussein had no problems using civilians in disgusting\\nmanner. And he also claimed \\'civilians murdered\\'. Let me ask you, isn\\'t there \\nat least a slight chance that you (not only, and the question is very general, \\nno insult) are doing a similar type of propaganda in respect to civilians in\\nsouthern Lebanon ?\\n\\nNow, a lot people who post here consider \\'Israeli soil\\' kind of Mediteranean sea.\\nHow do you define Israeli soil ? From what you say, if you do not clearly \\nrecognize the state of Israel, you condone killing israelis anywhere.\\n\\n>Dorin, are you aware that the IDF sent helicopters and gun-boats up the\\n>coast of Lebanon the other day and rocketted a Palestinian refugee north of\\n>Beirut. Perhaps I should ask YOU \"what qualifies a person for murder?\":\\n\\nI do not know what was the pupose of the action you describe. If it was \\nto kill civilians (I doubt), I certainly DO NOT CONDONE IT. If civilians were \\nkilled, i do not condone it. \\n\\n>That they are Palestinian?\\n\\n>That they are children and may grow up to be \"terrorists\"?\\n\\n>That they are female and may give birth to little terrorists?\\n\\n>Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nMr. Hernlem, it was YOU, not ME, who was showing a huge satisfaction for 3 \\nisraelis (human beings by most standards, Don\\'t know about your standards) killed.\\n\\nIf you ask me those questions, I will have no problem answering (not with a \\nquestion, as you did) : No, NOBODY is qualified candidate for murder, nothing\\njustifies murder. I have the feeling that you may be able yourself to make\\nsimilar statements, maybe after eliminating all Israelis, jews, ? Am I wrong ?\\n\\n\\nNow tell me, did you also condone Saddam\\'s scuds on israeli \\'soldiers\\' in, let\\'s\\nsay, Tel Aviv ? From what I understand, a lot of palestineans cheered. What does\\nit show? It does not qualify for freedom fighting to me ? But again, I may be \\nwrong, and the jewish controlled media distorted the information, and I am just\\nan ignorant victim of the media, like most of us.\\n\\n\\nDorin\\n\\n\\n',\n", + " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Dreams and Degrees (was Re: Crazy? or just Imaginitive?)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 47\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , mt90dac@brunel.ac.uk (Del Cotter) writes:\\n> <1993Apr21.205403.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>> Sorry if I do not have the big degrees\\n>>and such, but I think (I might be wrong, to error is human) I have something\\n>>that is in many ways just as important, I have imagination, dreams. And without\\n>>dreams all the knowledge is worthless.. \\n> \\n> Oh, and us with the big degrees don\\'t got imagination, huh?\\n> \\n> The alleged dichotomy between imagination and knowledge is one of the most\\n> pernicious fallacys of the New Age. Michael, thanks for the generous\\n> offer, but we have quite enough dreams of our own, thank you.\\n\\nWell said.\\n \\n> You, on the other hand, are letting your own dreams go to waste by\\n> failing to get the maths/thermodynamics/chemistry/(your choices here)\\n> which would give your imagination wings.\\n> \\n> Just to show this isn\\'t a flame, I leave you with a quote from _Invasion of \\n> the Body Snatchers_:\\n> \\n> \"Become one of us; it\\'s not so bad, you know\"\\n\\nOkay, Del, so Michael was being unfair, but you are being unfair back. \\nHe is taking college courses now, I presume he is studying hard, and\\nhis postings reveal that he is *somewhat* hip to the technical issues\\nof astronautics. Plus, he is attentively following the erudite\\ndiscourse of the Big Brains who post to sci.space; is it not\\ninevitable that he will get a splendid technical education from\\nreading the likes of you and me? [1]\\n\\nLike others involved in sci.space, Mr. Adams shows symptoms of being a\\nfledgling member of the technoculture, and I think he\\'s soaking it up\\nfast. I was a young guy with dreams once, and they led me to get a\\ntechnical education to follow them up. Too bad I wound up in an\\nassembly-line job stamping out identical neutrinos day after day...\\n(-:\\n\\n[1] Though rumors persist that Del and I are both pseudonyms of Fred\\nMcCall.\\n\\nBill Higgins, Beam Jockey | \"We\\'ll see you\\nFermi National Accelerator Laboratory | at White Sands in June. \\nBitnet: HIGGINS@FNAL.BITNET | You bring your view-graphs, \\nInternet: HIGGINS@FNAL.FNAL.GOV | and I\\'ll bring my rocketship.\" \\nSPAN/Hepnet: 43011::HIGGINS | --Col. Pete Worden on the DC-X\\n',\n", + " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Bill Conner:\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 6\\n\\n\\nCould you explain what any of this pertains to? Is this a position\\nstatement on something or typing practice? And why are you using my\\nname, do you think this relates to anything I've said and if so, what.\\n\\nBill\\n\",\n", + " 'From: bsaffo01@cad.gmeds.com (Brian H. Safford)\\nSubject: IGES Viewer for DOS/Windows\\nOrganization: EDS/Cadillac\\nLines: 10\\nNNTP-Posting-Host: ccadmn1.cad.gmeds.com\\n\\nAnybody know of an IGES Viewer for DOS/Windows? I need to be able to display \\nComputerVision IGES files on a PC running Windows 3.1. Thanks in advance.\\n\\n+-----------------------------------------------------------+\\n| Brian H. Safford EMAIL: bsaffo01@cad.gmeds.com |\\n| Electronic Data Systems PHONE: (313) 696-6302 |\\n+-----------------------------------------------------------+\\n| NOTE: The views and opinions expressed herein are mine, |\\n| and DO NOT reflect those of Electronic Data Systems Corp. |\\n+-----------------------------------------------------------+\\n',\n", + " \"From: geoffrey@cosc.canterbury.ac.nz (Geoff Thomas)\\nSubject: Re: Help! 256 colors display in C.\\nKeywords: graphics\\nArticle-I.D.: cantua.C533EM.Cv7\\nOrganization: University of Canterbury, Christchurch, New Zealand\\nLines: 21\\nNntp-Posting-Host: huia.canterbury.ac.nz\\n\\n\\nYou'll probably have to set the palette up before you try drawing\\nin the new colours.\\n\\nUse the bios interrupt calls to set the r g & b values (in the range\\nfrom 0-63 for most cards) for a particular palette colour (in the\\nrange from 0-255 for 256 colour modes).\\n\\nThen you should be able to draw pixels in those palette values and\\nthe result should be ok.\\n\\nYou might have to do a bit of colourmap compressing if you have\\nmore than 256 unique rgb triplets, for a 256 colour mode.\\n\\n\\nGeoff Thomas\\t\\t\\tgeoffrey@cosc.canterbury.ac.nz\\nComputer Science Dept.\\nUniversity of Canterbury\\nPrivate Bag\\t\\t\\t\\t+-------+\\nChristchurch\\t\\t\\t\\t| Oook! |\\nNew Zealand\\t\\t\\t\\t+-------+\\n\",\n", + " 'From: joachim@kih.no (joachim lous)\\nSubject: Re: XV for MS-DOS !!!\\nOrganization: Kongsberg Ingeniorhogskole\\nLines: 20\\nNNTP-Posting-Host: samson.kih.no\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\nNOE-MAILADDRESS@eicn.etna.ch wrote:\\n> I\\'m sorry for...\\n\\n> 1) The late of the answer but I couldn\\'t find xv221 for msdos \\'cause \\n> \\tI forgot the address...but I\\'ve retrieve it..\\n\\n> 2) Posting this answer here in comp.graphics \\'cause I can\\'t use e-mail,\\n> ^^^ not yet....\\n\\n> 2) My bad english \\'cause I\\'m a Swiss and my language is french....\\n ^^^\\nIf french is your language, try counting in french in stead, maybe\\nit will work better.... :-)\\n\\n _______________________________\\n / _ L* / _ / . / _ /_ \"One thing is for sure: The sheep\\n / _) /()(/(/)//)) /_ ()(/_) / / Is NOT a creature of the earth.\"\\n / \\\\_)~ (/ Joachim@kih.no / / \\n/_______________________________/ / -The back-masking on \\'Haaden II\\'\\n /_______________________________/ from \\'Exposure\\' by Robert Fripp.\\n',\n", + " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Cookamunga Tourist Bureau\\nLines: 26\\n\\nIn article <1993Apr19.113255.27550@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n> >Fred, the problem with such reasoning is that for us non-believers\\n> >we need a better measurement tool to state that person A is a\\n> >real Muslim/Christian, while person B is not. As I know there are\\n> >no such tools, and anyone could believe in a religion, misuse its\\n> >power and otherwise make bad PR. It clearly shows the sore points\\n> >with religion -- in other words show me a movement that can\\'t spin\\n> >off Khomeinis, Stalins, Davidians, Husseins... *).\\n> \\n> I don\\'t think such a system exists. I think the reason for that is an\\n> condition known as \"free will\". We humans have got it. Anybody, using\\n> their free-will, can tell lies and half-truths about *any* system and\\n> thus abuse it for their own ends.\\n\\nI don\\'t think such tools exist either. In addition, there\\'s no such\\nthing as objective information. All together, it looks like religion\\nand any doctrines could be freely misused to whatever purpose.\\n\\nThis all reminds me of Descartes\\' whispering deamon. You can\\'t trust\\nanything. So why bother.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", + " 'From: pbenson@ecst.csuchico.edu (Paul A. Benson)\\nSubject: CD-ROM Indexes available\\nOrganization: California State University, Chico\\nLines: 6\\nNNTP-Posting-Host: cscihp.ecst.csuchico.edu\\n\\nThe file and contents listings for:\\n\\nKnowledge Media Resource Library: Graphics 1\\nKnowledge Media Resource Library: Audio 1\\n\\nare now available for anonymous FTP from cdrom.com\\n',\n", + " 'From: terziogl@ee.rochester.edu (Esin Terzioglu)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: Univ of Rochester, College of Engineering and Applied Science\\nLines: 33\\n\\nIn article <1993Apr19.155856.8260@kpc.com> henrik@quayle.kpc.com writes:\\n>In article <1993Apr17.185118.10792@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n>|> In article <1993Apr16.195452.21375@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>|> >04/16/93 1045 ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\n>|> >\\n>|> \\n>|> Ermenistan kasiniyor...\\n>|> \\n>|> Let me translate for everyone else before the public traslation service gets\\n>|> into it\\t: Armenia is getting itchy. \\n>|> \\n>|> Esin.\\n>\\n>\\n>Let me clearify Mr. Turkish;\\n>\\n>ARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that SHE\\n>WILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\n>tricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n>CYPRESS WHILE the world simply WATCHED. \\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\nYour ignorance is obvious from your posting. \\n\\n1) Cyprus was an INDEPENDENT country with Turkish/Greek inhabitants (NOT a \\n Greek island like your ignorant posting claims)\\n\\n2) The name should be Cyprus (in English)\\n\\nnext time read and learn before you post. \\n\\nEsin.\\n',\n", + " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 30\\n\\nSCOTT D. SAUYET (SSAUYET@eagle.wesleyan.edu) wrote:\\n\\n: Regardless of people's hidden motivations, the stated reasons for many\\n: wars include religion. Of course you can always claim that the REAL\\n: reason was economics, politics, ethnic strife, or whatever. But the\\n: fact remains that the justification for many wars has been to conquer\\n: the heathens.\\n\\n: If you want to say, for instance, that economics was the chief cause\\n: of the Crusades, you could certainly make that point. But someone\\n: could come along and demonstrate that it was REALLY something else, in\\n: the same manner you show that it was REALLY not religion. You could\\n: in this manner eliminate all possible causes for the Crusades.\\n: \\n\\nScott,\\n\\nI don't have to make outrageous claims about religion's affecting and\\neffecting history, for the purpsoe of a.a, all I have to do point out\\nthat many claims made here are wrong and do nothing to validate\\natheism. At no time have I made any statement that religion was the\\nsole cause of anything, what I have done is point out that those who\\ndo make that kind of claim are mistaken, usually deliberately. \\n\\nTo credit religion with the awesome power to dominate history is to\\nmisunderstand human nature, the function of religion and of course,\\nhistory. I believe that those who distort history in this way know\\nexaclty what they're doing, and do it only for affect.\\n\\nBill\\n\",\n", + " 'From: declrckd@rtsg.mot.com (Dan J. Declerck)\\nSubject: Re: edu breaths\\nNntp-Posting-Host: corolla17\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 53\\n\\nIn article <1993Apr15.221024.5926@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>In article <1993Apr15.214910.5676@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n>|In article <1993Apr15.003749.15710@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>|>In article <1993Apr14.220252.14731@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n>|>|\\n>|>|The difference of opinion, and difference in motorcycling between the sport-bike\\n>|>|riders and the cruiser-bike riders. \\n>|>\\n>|>That difference is only in the minds of certain closed-minded individuals. I\\n>|>have had the very best motorcycling times with riders of \"cruiser\" \\n>|>bikes (hi Don, Eddie!), yet I ride anything but.\\n>|\\n>|Continuously, on this forum, and on the street, you find quite a difference\\n>|between the opinions of what motorcycling is to different individuals.\\n>\\n>Yes, yes, yes. Motorcycling is slightly different to each and every one of us. This\\n>is the nature of people, and one of the beauties of the sport. \\n>\\n>|Cruiser-bike riders have a different view of motorcycling than those of sport bike riders\\n>|(what they like and dislike about motorcycling). This is not closed-minded. \\n>\\n>And what view exactly is it that every single rider of cruiser bikes holds, a veiw\\n>that, of course, no sport-bike rider could possibly hold? Please quantify your\\n>generalization for us. Careful, now, you\\'re trying to pigeonhole a WHOLE bunch\\n>of people.\\n>\\nThat plastic bodywork is useless. That torque, and an upright riding position is\\nbetter than a slightly or radically forward riding position combined with a high-rpm\\nlow torque motor.\\n\\nTo a cruiser-motorcyclist, chrome has some importance. To sport-bike motorcyclists\\nchrome has very little impact on buying choice.\\n\\nUnless motivated solely by price, these are the criteria each rider uses to select\\nthe vehicle of choice. \\n\\nTo ignore these, as well as other criteria, would be insensitive. In other words,\\nno one motorcycle can fufill the requirements that a sport-bike rider and a cruiser\\nrider may have.(sometimes it\\'s hard for *any* motorcycle to fufill a person\\'s requirements)\\n \\nYou\\'re fishing for flames, Dave.\\n\\nThis difference of opinion is analogous to the difference\\nbetween Sports-car owners, and luxury-car owners. \\n\\nThis is a moot conversation.\\n\\n\\n-- \\n=> Dan DeClerck | EMAIL: declrckd@rtsg.mot.com <=\\n=> Motorola Cellular APD | <=\\n=>\"Friends don\\'t let friends wear neon\"| Phone: (708) 632-4596 <=\\n----------------------------------------------------------------------------\\n',\n", + " 'From: rj3s@Virginia.EDU (\"Get thee to a nunnery.....\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 32\\n\\neshneken@ux4.cso.uiuc.edu writes:\\n> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n> \\n> >I think the Israeli press might be a tad bit biased in\\n> >reporting the events. I doubt the Propaganda machine of Goering\\n> >reported accurately on what was happening in Germany. It is\\n> >interesting that you are basing the truth on Israeli propaganda.\\n> \\n> If you consider Israeli reporting of events in Israel to be propoganda, then \\n> consider the Washington Post\\'s handling of American events to be propoganda\\n> too. What makes the Israeli press inherently biased in your opinion? I\\n> wouldn\\'t compare it to Nazi propoganda either. Unless you want to provide\\n> some evidence of Israeli inaccuracies or parallels to Nazism, I suggest you \\n> keep your mouth shut. I\\'m sick and tired of all you anti-semites comparing\\n> Israel to the Nazis (and yes, in my opinion, if you compare Israel to the Nazis\\n> you are an anti-semite because you know damn well it isn\\'t true and you are\\n> just trying to discredit Israel).\\n> \\n> Ed.\\n> \\nYou know ed,... You\\'re right! Andi shouldn\\'t be comparing\\nIsrael to the Nazis. The Israelis are much worse than the\\nNazis ever were anyway. The Nazis did a lot of good for\\nGermany, and they would have succeeded if it weren\\'t for the\\ndamn Jews. The Holocaust never happened anyway. Ample\\nevidence given by George Schafer at Harvard, Dept. of History,\\nand even by Randolph Higgins at NYU, have shown that the\\nHolocaust was just a semitic conspiracy created to obtain\\nsympathy to piush for the creation of Israel.\\n\\n\\n\\t\\t\\t\\t\\t\\n',\n", + " 'From: aa429@freenet.carleton.ca (Terry Ford)\\nSubject: A flawed propulsion system: Space Shuttle\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 13\\n\\n\\n\\nFor an essay, I am writing about the space shuttle and a need for a better\\npropulsion system. Through research, I have found that it is rather clumsy \\n(i.e. all the checks/tests before launch), the safety hazards (\"sitting\\non a hydrogen bomb\"), etc.. If you have any beefs about the current\\nspace shuttle program Re: propulsion, please send me your ideas.\\n\\nThanks a lot.\\n\\n--\\nTerry Ford [aa429@freenet.carleton.ca]\\nNepean, Ontario, Canada.\\n',\n", + " 'From: IMAGING.CLUB@OFFICE.WANG.COM (\"Imaging Club\")\\nSubject: Re: WANTED: Info on Image Databases\\nOrganization: Mail to News Gateway at Wang Labs\\nLines: 14\\n\\nPadmini Srivathsa in Wisconsin writes:\\n\\n>I would like references to any introductory material on image\\n>databases.\\n\\nI\\'d be happy to US (international) Snail mail technical information on\\nimaging databases to anyone who needs it, if you can provide me with your\\naddress for hard copy (not Email). We\\'re focusing mostly on Open PACE,\\nOracle, Ingres, Adabas, Sybase, and Gupta, regarding our imaging\\ndatabases installed. (We have over 1,000 installed and in production now;\\nmost of the new ones going in are on Novell LANs, the RS/6000, and now HP\\nUnix workstations.) We work with Visual Basic too.\\n\\nMichael.Willett@OFFICE.Wang.com\\n',\n", + " 'From: inu530n@lindblat.cc.monash.edu.au (I Rachmat)\\nSubject: Fractal compression\\nSummary: looking for good reference\\nKeywords: fractal\\nOrganization: Monash University, Melb., Australia.\\nLines: 6\\n\\nHi... can anybody give me book or reference title to give me a start at \\nfractal image compression technique. Helps will be appreciated... thanx\\n\\ninu530n@lindblat.cc.monash.edu.au\\ninu530n@aurora.cc.monash.edu.au\\n\\n',\n", + " 'From: isaackuo@skippy.berkeley.edu (Isaac Kuo)\\nSubject: Re: Abyss--breathing fluids\\nOrganization: U.C. Berkeley Math. Department.\\nLines: 19\\nNNTP-Posting-Host: skippy.berkeley.edu\\n\\nAre breathable liquids possible?\\n\\nI remember seeing an old Nova or The Nature of Things where this idea was\\ntouched upon (it might have been some other TV show). If nothing else, I know\\nsuch liquids ARE possible because...\\n\\nThey showed a large glass full of this liquid, and put a white mouse (rat?) in\\nit. Since the liquid was not dense, the mouse would float, so it was held down\\nby tongs clutching its tail. The thing struggled quite a bit, but it was\\ncertainly held down long enough so that it was breathing the liquid. It never\\ndid slow down in its frantic attempts to swim to the top.\\n\\nNow, this may not have been the most humane of demonstrations, but it certainly\\nshows breathable liquids can be made.\\n-- \\n*Isaac Kuo (isaackuo@math.berkeley.edu)\\t* ___\\n*\\t\\t\\t\\t\\t* _____/_o_\\\\_____\\n*\\tTwinkle, twinkle, little .sig,\\t*(==(/_______\\\\)==)\\n*\\tKeep it less than 5 lines big.\\t* \\\\==\\\\/ \\\\/==/\\n',\n", + " 'From: dkennett@fraser.sfu.ca (Daniel Kennett)\\nSubject: [POV] Having trouble bump mapping a gif to a sphere\\nSummary: Having trouble bump mapping a gif to a spher in POVray\\nKeywords: bump map\\nOrganization: Simon Fraser University, Burnaby, B.C., Canada\\nLines: 44\\n\\n\\nHello,\\n I\\'ve been trying to bump map a gif onto a sphere for a while and I\\ncan\\'t seem to get it to work. Image mapping works, but not bump\\nmapping. Here\\'s a simple file I was working with, could some kind\\nsoul tell me whats wrong with this.....\\n\\n#include \"colors.inc\"\\n#include \"shapes.inc\"\\n#include \"textures.inc\"\\n \\ncamera {\\n location <0 1 -3>\\n direction <0 0 1.5>\\n up <0 1 0>\\n right <1.33 0 0>\\n look_at <0 1 2>\\n}\\n \\nobject { light_source { <2 4 -3> color White }\\n }\\n \\nobject {\\n sphere { <0 1 2> 1 }\\n texture {\\n bump_map { 1 <0 1 2> gif \"surf.gif\"}\\n }\\n}\\n\\nNOTE: surf.gif is a plasma fractal from Fractint that is using the\\nlandscape palette map.\\n\\n \\n\\tThanks in advance\\n\\t -Daniel-\\n\\n*======================================================================* \\n| Daniel Kennett\\t \\t\\t |\\n| dkennett@sfu.ca \\t\\t \\t\\t\\t |\\n| \"Our minds are finite, and yet even in those circumstances of |\\n| finitude, we are surrounded by possibilities that are infinite, and |\\n| the purpose of human life is to grasp as much as we can out of that |\\n| infinitude.\" - Alfred North Whitehead | \\n*======================================================================*\\n',\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: The Department of Redundancy Department\\nLines: 39\\n\\nIn article bh437292@lance.colostate.edu writes:\\n\\n>Most of the \\n>people in my village are regular inhabitants that go about their daily\\n>business, some work in the fields, some own small shops, others are\\n>older men that go to the coffe shop and drink coffee. Is that so hard to\\n>imagine ????\\n\\n...quickly followed by...\\n\\n>SOME young men, usually aged between 17 to 30 years are members of\\n>the Lebanese resistance. Even the inhabitants of the village do not \\n>know who these are, they are secretive about it, but most people often\\n>suspect who they are and what they are up to. \\n\\nThis is the standard method for claiming non-combatant status, even\\nfor the commanders of combat.\\n\\n>These young men are\\n>supported financially by Iran most of the time. They sneak arms and\\n>ammunitions into the occupied zone where they set up booby traps\\n>for Israeli patrols. Every time an Israeli soldier is killed or injured\\n>by these traps, Israel retalliates by indiscriminately bombing villages\\n>of their own choosing often killing only innocent civilians. \\n\\n\"Innocent civilians\"??? Like the ones who set up the booby traps or\\nengaged in shoot-outs with soldiers or attack them with grenades or\\naxes? \\n\\n>We are now accustomed to Israeli tactics, and we figure that this is \\n\\nAnd the rest of the world is getting used to Arab tactics of claiming\\ninnocence for even the most guilty of the vile murderers among them.\\nKeep it up long enough and it will backfire but good.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: ddeciacco@cix.compulink.co.uk (David Deciacco)\\nSubject: Re: Another CVIEW question (wa\\nReply-To: ddeciacco@cix.compulink.co.uk\\nLines: 5\\n\\n\\nIn-Reply-To: <20APR199312262902@rigel.tamu.edu> lmp8913@rigel.tamu.edu (PRESTON, LISA M)\\n\\nI have a trident card and fullview works real gif jpg try it#\\ndave\\n',\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Morality? (was Re: I don\\'t expect the lion to know, or not know anything of the kind.\\n>In fact, I don\\'t have any evidence that lions ever consider such \\n>issues.\\n>And that, of course, is why I don\\'t think you can assign moral\\n>significance to the instinctive behaviour of lions.\\n\\nWhat I\\'ve been saying is that moral behavior is likely the null behavior.\\nThat is, it doesn\\'t take much work to be moral, but it certainly does to\\nbe immoral (in some cases). Also, I\\'ve said that morality is a remnant\\nof evolution. Our moral system is based on concepts well practiced in\\nthe animal kingdom.\\n\\n>>So you are basically saying that you think a \"moral\" is an undefinable\\n>>term, and that \"moral systems\" don\\'t exist? If we can\\'t agree on a\\n>>definition of these terms, then how can we hope to discuss them?\\n>No, it\\'s perfectly clear that I am saying that I know what a moral\\n>is in *my* system, but that I can\\'t speak for other people.\\n\\nBut, this doesn\\'t get us anywhere. Your particular beliefs are irrelevant\\nunless you can share them or discuss them...\\n\\nkeith\\n',\n", + " 'From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: SSAUYET@eagle.wesleyan.edu (SCOTT D. SAUYET) writes:\\n>In <1qabe7INNaff@gap.caltech.edu> keith@cco.caltech.edu writes:\\n>\\n>>> Chimpanzees fight wars over land.\\n>> \\n>> But chimps are almost human...\\n>> \\n>> keith\\n>\\n>Could it be? This is the last message from Mr. Schneider, and it\\'s\\n>more than three days old!\\n>\\n>Are these his final words? (And how many here would find that\\n>appropriate?) Or is it just that finals got in the way?\\n>\\n\\n No. The christians were leary of having an atheist spokesman\\n (seems so clandestine, and all that), so they had him removed. Of\\n course, Keith is busy explaining to his fellow captives how he\\n isn\\'t really being persecuted, since (after all) they *are*\\n feeding him, and any resistance on his part would only be viewed\\n as trouble making. \\n\\n I understand he did make a bit of a fuss when they tatooed \"In God\\n We Trust\" on his forehead, though.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n',\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Orbital RepairStation\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 20\\n\\nIn article henry@zoo.toronto.edu (Henry Spencer) writes:\\n\\n>The biggest problem with this is that all orbits are not alike. It can\\n>actually be more expensive to reach a satellite from another orbit than\\n>from the ground. \\n\\nBut with cheaper fuel from space based sources it will be cheaper to \\nreach more orbits than from the ground.\\n\\nAlso remember, that the presence of a repair/supply facility adds value\\nto the space around it. If you can put your satellite in an orbit where it\\ncan be reached by a ready source of supply you can make it cheaper and gain\\nbenefit from economies of scale.\\n\\n Allen\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------58 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " \"From: joth@ersys.edmonton.ab.ca (Joe Tham)\\nSubject: Where can I find SIPP?\\nOrganization: Edmonton Remote Systems #2, Edmonton, AB, Canada\\nLines: 11\\n\\n I recently got a file describing a library of rendering routines \\ncalled SIPP (SImple Polygon Processor). Could anyone tell me where I can \\nFTP the source code and which is the newest version around?\\n Also, I've never used Renderman so I was wondering if Renderman \\nis like SIPP? ie. a library of rendering routines which one uses to make \\na program that creates the image...\\n\\n Thanks, Joe Tham\\n\\n--\\nJoe Tham joth@ersys.edmonton.ab.ca \\n\",\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Russian Email Contacts.\\nLines: 15\\nNntp-Posting-Host: acad3.alaska.edu\\nOrganization: University of Alaska Fairbanks\\n\\nDoes anyone have any Russian Contacts (Space or other) or contacts in the old\\nUSSR/SU or Eastern Europe?\\n\\nPost them here so we all can talk to them and ask questions..\\nI think the cost of email is high, so we would have to keep the content to\\nspecific topics and such..\\n\\nBasically if we want to save Russia and such, then we need to make contacts,\\ncontacts are a form of info, so lets get informing.\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\\nAlive in Nome, Alaska (once called Russian America).\\n\\n\",\n", + " 'From: warren@nysernet.org (Warren Burstein)\\nSubject: Re: To be exact, 2.5 million Muslims were exterminated by the Armenians.\\nOrganization: NYSERNet, Inc.\\nLines: 34\\n\\nac = In <9304202017@zuma.UUCP> sera@zuma.UUCP (Serdar Argic)\\npl = linden@positive.Eng.Sun.COM (Peter van der Linden)\\n\\npl: 1. So, did the Turks kill the Armenians?\\n\\nac: So, did the Jews kill the Germans? \\nac: You even make Armenians laugh.\\n\\nac: \"An appropriate analogy with the Jewish Holocaust might be the\\nac: systematic extermination of the entire Muslim population of \\nac: the independent republic of Armenia which consisted of at \\nac: least 30-40 percent of the population of that republic. The \\nac: memoirs of an Armenian army officer who participated in and \\nac: eye-witnessed these atrocities was published in the U.S. in\\nac: 1926 with the title \\'Men Are Like That.\\' Other references abound.\"\\n\\nTypical Mutlu. PvdL asks if X happened, the response is that Y\\nhappened. Even if we grant that the Armenians *did* do what Cosar\\naccuses them of doing, this has no bearing on whether the Turks did\\nwhat they are accused of.\\n\\nWhile I can understand how an AI could be this stupid, I\\ncan\\'t understand how a human could be such a moron as to either let\\nsuch an AI run amok or to compose such pointless messages himself.\\n\\nI do not expect any followup to this article from Argic to do anything\\nto alleviate my puzzlement. But maybe I\\'ll see a new line from his\\nlist of insults.\\n\\n-- \\n/|/-\\\\/-\\\\ This article is supplied without longbox\\n |__/__/_/ and uses recycled 100% words, characters and ideas.\\n |warren@ \\n/ nysernet.org \\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 11/15 - Upcoming Planetary Probes\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 243\\nDistribution: world\\nExpires: 6 May 1993 20:00:01 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/new_probes\\nLast-modified: $Date: 93/04/01 14:39:17 $\\n\\nUPCOMING PLANETARY PROBES - MISSIONS AND SCHEDULES\\n\\n Information on upcoming or currently active missions not mentioned below\\n would be welcome. Sources: NASA fact sheets, Cassini Mission Design\\n team, ISAS/NASDA launch schedules, press kits.\\n\\n\\n ASUKA (ASTRO-D) - ISAS (Japan) X-ray astronomy satellite, launched into\\n Earth orbit on 2/20/93. Equipped with large-area wide-wavelength (1-20\\n Angstrom) X-ray telescope, X-ray CCD cameras, and imaging gas\\n scintillation proportional counters.\\n\\n\\n CASSINI - Saturn orbiter and Titan atmosphere probe. Cassini is a joint\\n NASA/ESA project designed to accomplish an exploration of the Saturnian\\n system with its Cassini Saturn Orbiter and Huygens Titan Probe. Cassini\\n is scheduled for launch aboard a Titan IV/Centaur in October of 1997.\\n After gravity assists of Venus, Earth and Jupiter in a VVEJGA\\n trajectory, the spacecraft will arrive at Saturn in June of 2004. Upon\\n arrival, the Cassini spacecraft performs several maneuvers to achieve an\\n orbit around Saturn. Near the end of this initial orbit, the Huygens\\n Probe separates from the Orbiter and descends through the atmosphere of\\n Titan. The Orbiter relays the Probe data to Earth for about 3 hours\\n while the Probe enters and traverses the cloudy atmosphere to the\\n surface. After the completion of the Probe mission, the Orbiter\\n continues touring the Saturnian system for three and a half years. Titan\\n synchronous orbit trajectories will allow about 35 flybys of Titan and\\n targeted flybys of Iapetus, Dione and Enceladus. The objectives of the\\n mission are threefold: conduct detailed studies of Saturn\\'s atmosphere,\\n rings and magnetosphere; conduct close-up studies of Saturn\\'s\\n satellites, and characterize Titan\\'s atmosphere and surface.\\n\\n One of the most intriguing aspects of Titan is the possibility that its\\n surface may be covered in part with lakes of liquid hydrocarbons that\\n result from photochemical processes in its upper atmosphere. These\\n hydrocarbons condense to form a global smog layer and eventually rain\\n down onto the surface. The Cassini orbiter will use onboard radar to\\n peer through Titan\\'s clouds and determine if there is liquid on the\\n surface. Experiments aboard both the orbiter and the entry probe will\\n investigate the chemical processes that produce this unique atmosphere.\\n\\n The Cassini mission is named for Jean Dominique Cassini (1625-1712), the\\n first director of the Paris Observatory, who discovered several of\\n Saturn\\'s satellites and the major division in its rings. The Titan\\n atmospheric entry probe is named for the Dutch physicist Christiaan\\n Huygens (1629-1695), who discovered Titan and first described the true\\n nature of Saturn\\'s rings.\\n\\n\\t Key Scheduled Dates for the Cassini Mission (VVEJGA Trajectory)\\n\\t -------------------------------------------------------------\\n\\t 10/06/97 - Titan IV/Centaur Launch\\n\\t 04/21/98 - Venus 1 Gravity Assist\\n\\t 06/20/99 - Venus 2 Gravity Assist\\n\\t 08/16/99 - Earth Gravity Assist\\n\\t 12/30/00 - Jupiter Gravity Assist\\n\\t 06/25/04 - Saturn Arrival\\n\\t 01/09/05 - Titan Probe Release\\n\\t 01/30/05 - Titan Probe Entry\\n\\t 06/25/08 - End of Primary Mission\\n\\t (Schedule last updated 7/22/92)\\n\\n\\n GALILEO - Jupiter orbiter and atmosphere probe, in transit. Has returned\\n the first resolved images of an asteroid, Gaspra, while in transit to\\n Jupiter. Efforts to unfurl the stuck High-Gain Antenna (HGA) have\\n essentially been abandoned. JPL has developed a backup plan using data\\n compression (JPEG-like for images, lossless compression for data from\\n the other instruments) which should allow the mission to achieve\\n approximately 70% of its original objectives.\\n\\n\\t Galileo Schedule\\n\\t ----------------\\n\\t 10/18/89 - Launch from Space Shuttle\\n\\t 02/09/90 - Venus Flyby\\n\\t 10/**/90 - Venus Data Playback\\n\\t 12/08/90 - 1st Earth Flyby\\n\\t 05/01/91 - High Gain Antenna Unfurled\\n\\t 07/91 - 06/92 - 1st Asteroid Belt Passage\\n\\t 10/29/91 - Asteroid Gaspra Flyby\\n\\t 12/08/92 - 2nd Earth Flyby\\n\\t 05/93 - 11/93 - 2nd Asteroid Belt Passage\\n\\t 08/28/93 - Asteroid Ida Flyby\\n\\t 07/02/95 - Probe Separation\\n\\t 07/09/95 - Orbiter Deflection Maneuver\\n\\t 12/95 - 10/97 - Orbital Tour of Jovian Moons\\n\\t 12/07/95 - Jupiter/Io Encounter\\n\\t 07/18/96 - Ganymede\\n\\t 09/28/96 - Ganymede\\n\\t 12/12/96 - Callisto\\n\\t 01/23/97 - Europa\\n\\t 02/28/97 - Ganymede\\n\\t 04/22/97 - Europa\\n\\t 05/31/97 - Europa\\n\\t 10/05/97 - Jupiter Magnetotail Exploration\\n\\n\\n HITEN - Japanese (ISAS) lunar probe launched 1/24/90. Has made\\n multiple lunar flybys. Released Hagoromo, a smaller satellite,\\n into lunar orbit. This mission made Japan the third nation to\\n orbit a satellite around the Moon.\\n\\n\\n MAGELLAN - Venus radar mapping mission. Has mapped almost the entire\\n surface at high resolution. Currently (4/93) collecting a global gravity\\n map.\\n\\n\\n MARS OBSERVER - Mars orbiter including 1.5 m/pixel resolution camera.\\n Launched 9/25/92 on a Titan III/TOS booster. MO is currently (4/93) in\\n transit to Mars, arriving on 8/24/93. Operations will start 11/93 for\\n one martian year (687 days).\\n\\n\\n TOPEX/Poseidon - Joint US/French Earth observing satellite, launched\\n 8/10/92 on an Ariane 4 booster. The primary objective of the\\n TOPEX/POSEIDON project is to make precise and accurate global\\n observations of the sea level for several years, substantially\\n increasing understanding of global ocean dynamics. The satellite also\\n will increase understanding of how heat is transported in the ocean.\\n\\n\\n ULYSSES- European Space Agency probe to study the Sun from an orbit over\\n its poles. Launched in late 1990, it carries particles-and-fields\\n experiments (such as magnetometer, ion and electron collectors for\\n various energy ranges, plasma wave radio receivers, etc.) but no camera.\\n\\n Since no human-built rocket is hefty enough to send Ulysses far out of\\n the ecliptic plane, it went to Jupiter instead, and stole energy from\\n that planet by sliding over Jupiter\\'s north pole in a gravity-assist\\n manuver in February 1992. This bent its path into a solar orbit tilted\\n about 85 degrees to the ecliptic. It will pass over the Sun\\'s south pole\\n in the summer of 1993. Its aphelion is 5.2 AU, and, surprisingly, its\\n perihelion is about 1.5 AU-- that\\'s right, a solar-studies spacecraft\\n that\\'s always further from the Sun than the Earth is!\\n\\n While in Jupiter\\'s neigborhood, Ulysses studied the magnetic and\\n radiation environment. For a short summary of these results, see\\n *Science*, V. 257, p. 1487-1489 (11 September 1992). For gory technical\\n detail, see the many articles in the same issue.\\n\\n\\n OTHER SPACE SCIENCE MISSIONS (note: this is based on a posting by Ron\\n Baalke in 11/89, with ISAS/NASDA information contributed by Yoshiro\\n Yamada (yamada@yscvax.ysc.go.jp). I\\'m attempting to track changes based\\n on updated shuttle manifests; corrections and updates are welcome.\\n\\n 1993 Missions\\n\\to ALEXIS [spring, Pegasus]\\n\\t ALEXIS (Array of Low-Energy X-ray Imaging Sensors) is to perform\\n\\t a wide-field sky survey in the \"soft\" (low-energy) X-ray\\n\\t spectrum. It will scan the entire sky every six months to search\\n\\t for variations in soft-X-ray emission from sources such as white\\n\\t dwarfs, cataclysmic variable stars and flare stars. It will also\\n\\t search nearby space for such exotic objects as isolated neutron\\n\\t stars and gamma-ray bursters. ALEXIS is a project of Los Alamos\\n\\t National Laboratory and is primarily a technology development\\n\\t mission that uses astrophysical sources to demonstrate the\\n\\t technology. Contact project investigator Jeffrey J Bloch\\n\\t (jjb@beta.lanl.gov) for more information.\\n\\n\\to Wind [Aug, Delta II rocket]\\n\\t Satellite to measure solar wind input to magnetosphere.\\n\\n\\to Space Radar Lab [Sep, STS-60 SRL-01]\\n\\t Gather radar images of Earth\\'s surface.\\n\\n\\to Total Ozone Mapping Spectrometer [Dec, Pegasus rocket]\\n\\t Study of Stratospheric ozone.\\n\\n\\to SFU (Space Flyer Unit) [ISAS]\\n\\t Conducting space experiments and observations and this can be\\n\\t recovered after it conducts the various scientific and\\n\\t engineering experiments. SFU is to be launched by ISAS and\\n\\t retrieved by the U.S. Space Shuttle on STS-68 in 1994.\\n\\n 1994\\n\\to Polar Auroral Plasma Physics [May, Delta II rocket]\\n\\t June, measure solar wind and ions and gases surrounding the\\n\\t Earth.\\n\\n\\to IML-2 (STS) [NASDA, Jul 1994 IML-02]\\n\\t International Microgravity Laboratory.\\n\\n\\to ADEOS [NASDA]\\n\\t Advanced Earth Observing Satellite.\\n\\n\\to MUSES-B (Mu Space Engineering Satellite-B) [ISAS]\\n\\t Conducting research on the precise mechanism of space structure\\n\\t and in-space astronomical observations of electromagnetic waves.\\n\\n 1995\\n\\tLUNAR-A [ISAS]\\n\\t Elucidating the crust structure and thermal construction of the\\n\\t moon\\'s interior.\\n\\n\\n Proposed Missions:\\n\\to Advanced X-ray Astronomy Facility (AXAF)\\n\\t Possible launch from shuttle in 1995, AXAF is a space\\n\\t observatory with a high resolution telescope. It would orbit for\\n\\t 15 years and study the mysteries and fate of the universe.\\n\\n\\to Earth Observing System (EOS)\\n\\t Possible launch in 1997, 1 of 6 US orbiting space platforms to\\n\\t provide long-term data (15 years) of Earth systems science\\n\\t including planetary evolution.\\n\\n\\to Mercury Observer\\n\\t Possible 1997 launch.\\n\\n\\to Lunar Observer\\n\\t Possible 1997 launch, would be sent into a long-term lunar\\n\\t orbit. The Observer, from 60 miles above the moon\\'s poles, would\\n\\t survey characteristics to provide a global context for the\\n\\t results from the Apollo program.\\n\\n\\to Space Infrared Telescope Facility\\n\\t Possible launch by shuttle in 1999, this is the 4th element of\\n\\t the Great Observatories program. A free-flying observatory with\\n\\t a lifetime of 5 to 10 years, it would observe new comets and\\n\\t other primitive bodies in the outer solar system, study cosmic\\n\\t birth formation of galaxies, stars and planets and distant\\n\\t infrared-emitting galaxies\\n\\n\\to Mars Rover Sample Return (MRSR)\\n\\t Robotics rover would return samples of Mars\\' atmosphere and\\n\\t surface to Earch for analysis. Possible launch dates: 1996 for\\n\\t imaging orbiter, 2001 for rover.\\n\\n\\to Fire and Ice\\n\\t Possible launch in 2001, will use a gravity assist flyby of\\n\\t Earth in 2003, and use a final gravity assist from Jupiter in\\n\\t 2005, where the probe will split into its Fire and Ice\\n\\t components: The Fire probe will journey into the Sun, taking\\n\\t measurements of our star\\'s upper atmosphere until it is\\n\\t vaporized by the intense heat. The Ice probe will head out\\n\\t towards Pluto, reaching the tiny world for study by 2016.\\n\\n\\nNEXT: FAQ #12/15 - Controversial questions\\n',\n", + " 'From: bprofane@netcom.com (Gert Niewahr)\\nSubject: Re: Rumours about 3DO ???\\nArticle-I.D.: netcom.bprofaneC51wHz.HIo\\nOrganization: Netcom Online Communications Services (408-241-9760 login: guest)\\nLines: 39\\n\\nIn article lex@optimla.aimla.com (Lex van Sonderen) writes:\\n>In article erik@westworld.esd.sgi.com (Erik Fortune) writes:\\n>>> better than CDI\\n>>*Much* better than CDI.\\n>Of course, I do not agree. It does have more horsepower. Horsepower is not\\n>the only measurement for \\'better\\'. It does not have full motion, full screen\\n>video yet. Does it have CD-ROM XA?\\n>\\n>>> starting in the 4 quarter of 1993\\n>>The first 3DO \"multiplayer\" will be manufactured by panasonic and will be \\n>>available late this year. A number of other manufacturers are reported to \\n>>have 3DO compatible boxes in the works.\\n>Which other manufacturers?\\n>We shall see about the date.\\n\\nA 3DO marketing rep. recently offered a Phillips marketing rep. a $100\\nbet that 3DO would have boxes on the market on schedule. The Phillips\\nrep. declined the bet, probably because he knew that 3DO players are\\nalready in pre-production manufacturing runs, 6 months before the\\ncommercial release date.\\n\\nBy the time of commercial release, there will be other manufacturers of\\n3DO players announced and possibly already tooling up production. Chip\\nsets will be in full production. The number of software companies\\ndesigning titles for the box will be over 300.\\n\\nHow do I know this? I was at a bar down the road from 3DO headquarters\\nlast week. Some folks were bullshitting a little too loudly about\\ncompany business.\\n\\n>>All this information is third hand or so and worth what you paid for it:-).\\n>This is second hand, but it still hard to look to the future ;-).\\n>\\n>Lex van Sonderen\\n>lex@aimla.com\\n>Philips Interactive Media\\n ^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n What an impartial source!\\n',\n", + " 'From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 33\\n\\nIn article cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n>In <11825@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>\\n>\\n>> Actually, my atheism is based on ignorance. Ignorance of the\\n>> existence of any god. Don\\'t fall into the \"atheists don\\'t believe\\n>> because of their pride\" mistake.\\n>\\n>How do you know it\\'s based on ignorance, couldn\\'t that be wrong? Why would it\\n>be wrong \\n>to fall into the trap that you mentioned? \\n>\\n\\n If I\\'m wrong, god is free at any time to correct my mistake. That\\n he continues not to do so, while supposedly proclaiming his\\n undying love for my eternal soul, speaks volumes.\\n\\n As for the trap, you are not in a position to tell me that I don\\'t\\n believe in god because I do not wish to. Unless you can know my\\n motivations better than I do myself, you should believe me when I\\n say that I earnestly searched for god for years and never found\\n him.\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n',\n", + " 'From: ba7116326@ntuvax.ntu.ac.sg\\nSubject: V-max handling request\\nLines: 5\\nNntp-Posting-Host: v9001.ntu.ac.sg\\nOrganization: Nanyang Technological University - Singapore\\n\\nhello there\\nican anyone who has handson experience on riding the Yamaha v-max, pls kindly\\ncomment on its handling .\\n\\n\\n',\n", + " 'From: lioness@maple.circa.ufl.edu\\nSubject: Re: comp.graphics.programmer\\nOrganization: Center for Instructional and Research Computing Activities\\nLines: 68\\nReply-To: LIONESS@ufcc.ufl.edu\\nNNTP-Posting-Host: maple.circa.ufl.edu\\n\\nIn article , andreasa@dhhalden.no (ANDREAS ARFF) writes:\\n|>Hello netters\\n|>\\n|>Sorry, I don\\'t know if this is the right way of doing this kind of thing,\\n|>probably should be a CFV, but since I don\\'t have tha ability to create a \\n|>news group myself, I just want to start the discussion. \\n|>\\n|>I enjoy reading c.g very much, but I often find it difficult to sort out what\\n|>I\\'m interested in. Everything from screen-drivers, graphics cards, graphics\\n|>programming and graphics programs are discused here. What I\\'d like is a \\n|>comp.graphics.programmer news group.\\n|>What do you other think.\\n\\nThis sounds wonderful, but it seems no one either wants to spend time doing\\nthis, or they don\\'t have the power to do so. For example, I would like\\nto see a comp.graphics architecture like this:\\n\\ncomp.graphics.algorithms.2d\\ncomp.graphics.algorithms.3d\\ncomp.graphics.algorithms.misc\\ncomp.graphics.hardware\\ncomp.graphics.misc\\ncomp.graphics.software/apps\\n\\nHowever, that is almost overkill. Something more like this would probably\\nmake EVERYONE a lot happier:\\n\\ncomp.graphics.programmer\\ncomp.graphics.hardware\\ncomp.graphics.apps\\ncomp.graphics.misc\\n\\nIt would be nice to see specialized groups devote to 2d, 3d, morphing,\\nraytracing, image processing, interactive graphics, toolkits, languages,\\nobject systems, etc. but these could be posted to a relevant group or\\nhave a mailing list organized.\\n\\nThat way when someone reads news they don\\'t have to see these subject\\nheadings, which are rather disparate:\\n\\nSystem specific stuff ( should be under comp.sys or comp.os.???.programmer ):\\n\\n\\t\"Need help programming GL\"\\n\\t\"ModeX programming information?\"\\n\\t\"Fast sprites on PC\"\\n\\nHardware technical stuff:\\n\\n\\t\"Speed of Weitek P9000\"\\n\\t\"Drivers for SpeedStar 24X\"\\n\\nApplications oriented stuff:\\n\\n\\t\"VistaPro 3.0 help\"\\n\\t\"How good is 3dStudio?\"\\n\\t\"Best image processing program for Amiga\"\\n\\nProgramming oriented stuff:\\n\\n\\t\"Fast polygon routine needed\"\\n\\t\"Good morphing alogirhtm wanted\"\\n\\t\"Best depth sort for triangles?\"\\n\\t\"Which C++ library to get?\"\\n\\nI wish someone with the power would get a CFD and then a CFV going on\\nthis stuff....this newsgroup needs it.\\n\\nBrian\\n',\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: 30826\\nArticle-I.D.: aurora.1993Apr25.151108.1\\nOrganization: University of Alaska Fairbanks\\nLines: 14\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nI like option C of the new space station design.. \\nIt needs some work, but it is simple and elegant..\\n\\nIts about time someone got into simple construction versus overly complex...\\n\\nBasically just strap some rockets and a nose cone on the habitat and go for\\nit..\\n\\nMight be an idea for a Moon/Mars base to.. \\n\\nWhere is Captain Eugenia(sp) when you need it (reference to russian heavy\\nlifter, I think).\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", + " 'From: ramarren@apple.com (Godfrey DiGiorgi)\\nSubject: Re: uh, der, whassa deltabox?\\nOrganization: Apple Computer\\nLines: 15\\n\\n>Can someone tell me what a deltabox frame is, and what relation that has,\\n>if any, to the frame on my Hawk GT? That way, next time some guy comes up\\n>to me in some parking lot and sez \"hey, dude, nice bike, is that a deltabox\\n>frame on there?\" I can say something besides \"duh, er, huh?\"\\n\\nThe Yammie Deltabox and the Hawk frame are conceptually similar\\nbut Yammie has a TM on the name. The Hawk is a purer \\'twin spar\\' \\nframe design: investment castings at steering head and swing arm\\ntied together with aluminum extruded beams. The Yammie solution is\\na bit more complex.\\n------------------------------------------------------------------\\nGodfrey DiGiorgi - ramarren@apple.com | DoD #0493 AMA#489408\\n Rule #1: Never sell a Ducati. | \"The street finds its own\\n Rule #2: Always obey Rule #1. | uses for things.\" -WG\\n------ Ducati Cinelli Toyota Krups Nikon Sony Apple Telebit ------\\n',\n", + " 'Subject: Re: A visit from the Jehovah\\'s Witnesses\\nFrom: lippard@skyblu.ccit.arizona.edu (James J. Lippard)\\nDistribution: world,local\\nOrganization: University of Arizona\\nNntp-Posting-Host: skyblu.ccit.arizona.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\nLines: 27\\n\\nIn article , chrisb@tafe.sa.edu.au (Chris BELL) writes...\\n>jbrown@batman.bmd.trw.com writes:\\n> \\n>>My syllogism is of the form:\\n>>A is B.\\n>>C is A.\\n>>Therefore C is B.\\n> \\n>>This is a logically valid construction.\\n> \\n>>Your syllogism, however, is of the form:\\n>>A is B.\\n>>C is B.\\n>>Therefore C is A.\\n> \\n>>Therefore yours is a logically invalid construction, \\n>>and your comments don\\'t apply.\\n\\nIf all of those are \"is\"\\'s of identity, both syllogisms are valid.\\nIf, however, B is a predicate, then the second syllogism is invalid.\\n(The first syllogism, as you have pointed out, is valid--whether B\\nis a predicate or designates an individual.)\\n\\nJim Lippard Lippard@CCIT.ARIZONA.EDU\\nDept. of Philosophy Lippard@ARIZVMS.BITNET\\nUniversity of Arizona\\nTucson, AZ 85721\\n',\n", + " 'From: hahm@fossi.hab-weimar.de (peter hahm)\\nSubject: Radiosity\\nKeywords: radiosity, raytracing, rendering\\nNntp-Posting-Host: fossi.hab-weimar.de\\nOrganization: Hochschule fuer Architektur und Bauwesen Weimar, Germany\\nLines: 17\\n\\n\\n\\nRADIOSITY SOURCES WANTED !!!\\n============================\\n\\nWhen I read the comp.graphics group, I never found something about \\nradiosity. Is there anybody interested in out there? I would be glad \\nto hear from somebody.\\nI am looking for source-code for the radiosity-method. I have already\\nread common literature, e. g.Foley ... . I think little examples could \\nhelp me to understand how radiosity works. Common languages ( C, C++, \\nPascal) prefered.\\nI hope you will help me!\\n\\nYours\\nPeter \\n\\n',\n", + " 'From: hilmi-er@dsv.su.se (Hilmi Eren)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik)\\nLines: 95\\nNntp-Posting-Host: viktoria.dsv.su.se\\nReply-To: hilmi-er@dsv.su.se (Hilmi Eren)\\nOrganization: Dept. of Computer and Systems Sciences, Stockholm University\\n\\n\\n\\n\\n|>The student of \"regional killings\" alias Davidian (not the Davidian religios sect) writes:\\n\\n\\n|>Greater Armenia would stretch from Karabakh, to the Black Sea, to the\\n|>Mediterranean, so if you use the term \"Greater Armenia\" use it with care.\\n\\n\\n\\tFinally you said what you dream about. Mediterranean???? That was new....\\n\\tThe area will be \"greater\" after some years, like your \"holocaust\" numbers......\\n\\n\\n\\n\\n|>It has always been up to the Azeris to end their announced winning of Karabakh \\n|>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to \\n|>power last year, he announced he would be be \"swimming in Lake Sevan [in \\n|>Armeniaxn] by July\".\\n\\t\\t*****\\n\\tIs\\'t July in USA now????? Here in Sweden it\\'s April and still cold.\\n\\tOr have you changed your calendar???\\n\\n\\n|>Well, he was wrong! If Elchibey is going to shell the \\n|>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey \\n\\t\\t\\t\\t\\t\\t ****************\\n|>is going to shell Karabakh from Fizuli his people will pay the price! If \\n\\t\\t\\t\\t\\t\\t ******************\\n|>Elchibey thinks he can get away with bombing Armenia from the hills of \\n|>Kelbajar, his people will pay the price. \\n\\t\\t\\t ***************\\n\\n\\n\\tNOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT\\'s TRUE.\\n\\t\\n\\tSHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH\\n\\t\\t\\t\\t\\t\\t **************\\n\\tBEING RAPED, KILLED AND TORTURED BY THE ARMENIANS??????????\\n\\t\\n\\tHAVE YOU HEARDED SOMETHING CALLED: \"GENEVA CONVENTION\"???????\\n\\tYOU FACIST!!!!!\\n\\n\\n\\n\\tOhhh i forgot, this is how Armenians fight, nobody has forgot\\n\\tyou killings, rapings and torture against the Kurds and Turks once\\n\\tupon a time!\\n \\n \\n\\n|>And anyway, this \"60 \\n|>Kurd refugee\" story, as have other stories, are simple fabrications sourced in \\n|>Baku, modified in Ankara. Other examples of this are Armenia has no border \\n|>with Iran, and the ridiculous story of the \"intercepting\" of Armenian military \\n|>conversations as appeared in the New York Times supposedly translated by \\n|>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed \\n|>\"special correspondent\" to the NY Times from Baku. Real accurate!\\n\\nOhhhh so swedish RedCross workers do lie they too? What ever you say\\n\"regional killer\", if you don\\'t like the person then shoot him that\\'s your policy.....l\\n\\n\\n|>[HE]\\tSearch Turkish planes? You don\\'t know what you are talking about.<-------\\n|>[HE]\\tsince it\\'s content is announced to be weapons? \\t\\t\\t\\ti\\t \\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n|>Well, big mouth Ozal said military weapons are being provided to Azerbaijan\\ti\\n|>from Turkey, yet Demirel and others say no. No wonder you are so confused!\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\tConfused?????\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\tYou facist when you delete text don\\'t change it, i wrote:\\t\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n Search Turkish planes? You don\\'t know what you are talking about.\\ti\\n Turkey\\'s government has announced that it\\'s giving weapons <-----------i\\n to Azerbadjan since Armenia started to attack Azerbadjan\\t\\t\\n it self, not the Karabag province. So why search a plane for weapons\\t\\n since it\\'s content is announced to be weapons? \\n\\n\\tIf there is one that\\'s confused then that\\'s you! We have the right (and we do)\\n\\tto give weapons to the Azeris, since Armenians started the fight in Azerbadjan!\\n \\n\\n|>You are correct, all Turkish planes should be simply shot down! Nice, slow\\n|>moving air transports!\\n\\n\\tShoot down with what? Armenian bread and butter? Or the arms and personel \\n\\tof the Russian army?\\n\\n\\n\\n\\nHilmi Eren\\nStockholm University\\n',\n", + " 'From: borst@cs.utwente.nl (Pim Borst)\\nSubject: PBM-PLUS sources, where?\\nNntp-Posting-Host: utis116.cs.utwente.nl\\nOrganization: University of Twente, Dept. of Computer Science\\nLines: 7\\n\\nHi everybody,\\n\\nCan anyone name an anonymous ftp-site where I can find the sources\\nof the PBM-PLUS package (portable bit/gray/pixel map).\\nI would like to compile and run it on a Sun Sparcstation.\\n\\nThanks!\\n',\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: About this \\'Center for Policy Resea\\nOrganization: The Department of Redundancy Department\\nLines: 85\\n\\nIn article <1483500350@igc.apc.org> Center for Policy Research writes:\\n\\n>It seems to me that many readers of this conference are interested\\n>who is behind the Center for Polict Research. I will oblige.\\n\\nTrumpets, please.\\n\\n>My name is Elias Davidsson, Icelandic citizen, born in Palestine. My\\n>mother was thrown from Germany because she belonged to the \\'undesirables\\'\\n>(at that times this group was defined as \\'Jews\\'). She was forced to go\\n>to Palestine due to many cynical factors. \\n\\n\"Forced to go to Palestine.\" How dreadful. Unlike other\\nundesirables/Jews, she wasn\\'t forced to go into a gas chamber, forced\\nunder a bulldozer, thrown into a river, forced into a \"Medical\\nexperiment\" like a rat, forced to march until she dropped dead, burned\\nto nothingness in a crematorium. Your mother was \"forced to go to\\nPalestine.\" You have our deepest sympathies.\\n\\n>I have meanwhile settled in Iceland (30 years ago) \\n\\nWe are pleased to hear of your escape. At least you won\\'t have to\\nsuffer the same fate that your mother did.\\n\\n>and met many people who were thrown out from\\n>my homeland, Palestine, \\n\\nYour homeland, Palestine? \\n\\n>because of the same reason (they belonged to\\n>the \\'indesirables\\'). \\n\\nShould we assume that you are refering here to Jews who were kicked\\nout of their homes in Jerusalem during the Jordanian Occupation of\\nEast Jerusalem? These are the same people who are now being called\\nthieves for re-claiming houses that they once owned and lived in and\\nnever sold to anyone?\\n\\n>These people include my neighbors in Jerusalem\\n>with the children of whom I played as child. Their crime: Theyare\\n>not Jews. \\n\\nI have never heard of NOT being a Jew as a crime. Certainly in\\nIsrael, there is no such crime. In some times and places BEING a Jew\\nis a crime, but NOT being a Jew??!!\\n\\n>My conscience does not accept such injustice, period. \\n\\nOur brains do not accept your logic, yet, either.\\n\\n>My\\n>work for justice is done in the name of my principled opposition to racism\\n>and racial discrimination. Those who protest against such practices\\n>in Arab countries have my support - as long as their protest is based\\n>on a principled position, but not as a tactic to deflect criticism\\n>from Israel. \\n\\nThe way you\\'ve written this, you seem to accept criticism in the Arab\\nworld UNLESS it deflects criticism from Israel, in which case, we have\\nto presume, you no longer support criticism of the Arab world.\\n\\n>The struggle against discrimination and racism is universal.\\n\\nLook who\\'s taling about discrimination now!\\n\\n>The Center for Policy Research is a name I gave to those activities\\n>undertaken under my guidance in different domains, and which command\\n>the support of many volunteers in Iceland. It is however not a formal\\n>institution and works with minimal funds.\\n\\nBe careful. You are starting to sound like Barfling.\\n\\n>Professionally I am music teacher and composer. I have published \\n>several pieces and my piano music is taught widely in Europe.\\n>\\n>I would hope that discussion about Israel/Palestine be conducted in\\n>a more civilized manner. Calling names is not helpful.\\n\\nGood. Don\\'t call yourself \"ARF\" or \"the Center for Policy Research\",\\neither. \\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: kshin@stein.u.washington.edu (Kevin Shin)\\nSubject: thinning algorithm\\nOrganization: University of Washington, Seattle\\nLines: 10\\nNNTP-Posting-Host: stein.u.washington.edu\\n\\nHi, netters\\n\\nI am looking for source code that can reads the ascii file\\nor bitmap file and produced the thinned image.\\nFor example, to preprocess the character image I want to\\napply thinning algorithm.\\n\\nthanks\\nkevin\\n.\\n',\n", + " \"From: wrs@wslack.UUCP (Bill Slack)\\nSubject: Re: Shaft-drives and Wheelies\\nDistribution: world\\nOrganization: W. R. Slack\\nLines: 20\\n\\n\\nVarious posts about shafties can't do wheelies:\\n\\n>: > No Mike. It is imposible due to the shaft effect. The centripital effects\\n>: > of the rotating shaft counteract any tendency for the front wheel to lift\\n>: > off the ground\\n>\\n>Good point John...a buddy of mine told me that same thing when I had my\\n>BMW R80GS; I dumped the clutch at 5,000rpm (hey, ito nly revved to 7 or so) and\\n>you know what? He was right!\\n\\nUh, folks, the shaft doesn't have diddleysquatpoop to do with it. I can get\\nthe front wheel off the ground on my /5, ferchrissake!\\n\\nBill \\n__\\nwrs@gozer.mv.com (Bill Slack) DoD #430\\nBut her tears were shed in vain and her every word was lost\\nIn the rumble of his engine and the smoke from his exhaust! Oo..o&o\\n \\n\",\n", + " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Re: Who Says the Apostles Were Tortured?\\nLines: 9\\n\\nThe traditions of the church hold that all the \"apostles\" (meaning the 11\\nsurviving disciples, Matthias, Barnabas and Paul) were martyred, except for\\nJohn. \"Tradition\" should be understood to read \"early church writings other\\nthan the bible and heteroorthodox scriptures\".\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", + " \"From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Insurance and lotsa points...\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 39\\n\\nIn article <1993Apr18.230531.11329@bcars6a8.bnr.ca> keithh@bnr.ca (Keith Hanlan) writes:\\n>In article <13386@news.duke.edu> infante@acpub.duke.edu (Andrew Infante) writes:\\n>>Well, it looks like I'm F*cked for insurance.\\n>>\\n>>I had a DWI in 91 and for the beemer, as a rec.\\n>>vehicle, it'll cost me almost $1200 bucks to insure/year.\\n>>\\n>>Now what do I do?\\n>\\n>Sell the bike and the car and start taking the bus. That way you can\\n>keep drinking which seems to be where your priorities lay.\\n>\\n>I expect that enough of us on this list have lost friends because of\\n>driving drunks that our collective sympathy will be somewhat muted.\\n\\nLook, guy, I doubt anyone here approves of Drunk Driving, but if\\nhe's been caught and convicted and punished maybe you ought to\\nlighten up? I mean, it isn't like most of us haven't had a few\\nand then ridden or driven home. *We* just didn't get caught.\\nAnd I can speak for myself and say it will *never* happen again,\\nbut that is beside the point.\\n\\nIn answer to the original poster: I'd insure whatever vehicle\\nis cheapest, and can get you to and from work, and suffer\\nthrough it for a few years, til your rates drop.\\n\\nAnd *don't* drink and drive. I had one friend killed by a \\ndrunk, and I was rear ended by one, totaling my bike (bent\\nframe), and only failing to kill me because I had an eye\\non my mirror while I waited at the stoplight.\\n\\nRegards, Charles\\nDoD0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n\",\n", + " 'From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Ed must be a Daemon Child!!\\nArticle-I.D.: usenet.1pqhvu$go8\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 22\\nNNTP-Posting-Host: slc10.ins.cwru.edu\\n\\n\\nIn a previous article, svoboda@rtsg.mot.com (David Svoboda) says:\\n\\n>In article <1993Apr2.163021.17074@linus.mitre.org> cookson@mbunix.mitre.org (Cookson) writes:\\n>|\\n>|Wait a minute here, Ed is Noemi AND Satan? Wow, and he seemed like such\\n>|a nice boy at RCR I too.\\n>\\n>And Noemi makes me think of \"cuddle\", not \"KotL\".\\n>\\n\\n\\tYou talking bout the same Noemi I know? She makes me think of big bore\\nhand guns and extreme weirdness. This babe rode a CSR300 across the desert! And\\na borrowed XL100 on the Death Ride. Don\\'t fuck with her man, your making a big\\nmistake.\\n\\n\\n\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n',\n", + " \"From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: ISLAM BORDERS vs Israeli borders\\nOrganization: University of Illinois at Urbana\\nLines: 46\\n\\nhasan@McRCIM.McGill.EDU writes:\\n\\n\\n>In article <1993Apr5.202800.27705@wam.umd.edu>, spinoza@next06wor.wam.umd.edu (Yon Bonnie Laird of Cairn Robbing) writes:\\n>|> In article ilyess@ECE.Concordia.CA \\n>|> (Ilyess Bdira) writes:\\n>|> > > 1)why do jews who don't even believe in God (as is the case with many\\n>|> > of the founders of secular zionism) have a right in Palestine more\\n>|> > than the inhabitants of Palestine, just because God gave you the land?\\n>|> G-d has nothing to do with it. Some of the land was in fact given to the \\n>|> Jews by the United Nations, quite a bit of it was purchased from Arab \\n>|> absentee landlords. Present claims are based on prior ownership (purchase \\n>|> from aforementioned absentee landlords) award by the United Nations in the \\n>|> partition of the Palestine mandate territory, and as the result of \\n>|> defensive wars fought against the Egyptians, Syrians, Jordanians, et al.\\n>|> \\n>|> ***\\n>|> > 2)Why do most of them speak of the west bank as theirs while most of\\n>|> > the inhabitants are not Jews and do not want to be part of Israel?\\n>|> First, I should point out that many Jews do not in fact agree with the \\n>|> idea that the West Bank is theirs. Since, however, I agree with those who \\n>|> claim the West Bank, I think I can answer your question thusly: the West \\n>|> bank was what is called the spoils of war. Hussein ordered the Arab Legion \\n\\n>\\t\\t\\t^^^^^^^^^^^^^^^^^^^^\\n>This is very funny.\\n>Anyway, suppose that in fact israel didnot ATTACK jordan till jordan attacked\\n>israel. Now, how do you explain the attack on Syria in 1967, Syria didnot\\n>enter the war with israel till the 4th day .\\n\\nSyria had been bombing Israeli settlements from the Golan and sending\\nterrorist squads into Israel for years. Do you need me to provide specifics?\\nI can.\\n\\nWhy don't you give it up, Hasan? I'm really starting to get tired of your \\nempty lies. You can defend your position and ideology with documented facts\\nand arguments rather than the crap you regularly post. Take an example from\\nsomeone like Brendan McKay, with whom I don't agree, but who uses logic and\\ndocumentation to argue his position. Why must you insist on constantly spouting\\nbaseless lies? You may piss some people off, but that's about it. You won't\\nprove anything or add anything worthy to a discussion. Your arguments just \\nprove what a poor debater you are and how weak your case really is.\\n\\nAll my love,\\nEd.\\n\\n\",\n", + " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: Route Suggestions?\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nDistribution: usa\\nLines: 27\\n\\nIn article <1993Apr20.173413.29301@porthos.cc.bellcore.com> mdc2@pyuxe.cc.bellcore.com (corrado,mitchell) writes:\\n>In article <1qmm5dINNnlg@cronkite.Central.Sun.COM>, doc@webrider.central.sun.com (Steve Bunis - Chicago) writes:\\n>> 55E -> I-81/I-66E. After this point the route is presently undetermined\\n>> into Pennsylvania, New York?, and back to Chicago (by 6/6). Suggestions \\n>\\n>If you do make it into New York state, the Palisades Interstate Parkway is a\\n>pleasant ride (beautiful scenery, good road surface, minimal traffic). You\\n\\t\\t\\t\\t ^^^^^^^^^^^^^^^^^\\n\\n\\tBeen a while since you hit the PIP? The pavement (at least until around\\n\\texit 9) is for sh*t these days. I think it must have taken a beating\\n\\tthis winter, because I don\\'t remember it being this bad. It\\'s all\\n\\tbreaking apart, and there are some serious potholes now. Of course\\n\\tthere are also the storm drains that are *in* your lane as opposed\\n\\tto on the side of the road (talk about annoying cost saving measures).\\n\\t\\t\\n\\tAs for traffic, don\\'t try it around 5:15 - 6:30 on weekdays (outbound,\\n\\trush hour happens inbound too) as there are many BDC\\'s...\\n\\n\\t<...> <...>\\n> \\'\\\\ Mitch Corrado\\n> / DEC \\\\======== mdc2@panther.tnds.bellcore.com\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", + " 'From: joe@rider.cactus.org (Joe Senner)\\nSubject: Re: BMW MOA members read this!\\nReply-To: joe@rider.cactus.org\\nDistribution: world\\nOrganization: NOT\\nLines: 25\\n\\nvech@Ra.MsState.Edu (Craig A. Vechorik) writes:\\n]I wrote the slash two blues for a bit of humor which seems to be lacking\\n]in the MOA Owners News, when most of the stuff is \"I rode the the first\\n]day, I saw that, I rode there the second day, I saw this\" \\n\\nI admit it was a surprise to find something interesting to read in \\nthe most boring and worthless mag of all the ones I get.\\n\\n]any body out there know were the sense if humor went in people?\\n]I though I still had mine, but I dunno... \\n\\nI think most people see your intended humor, I do, I liked the article.\\nyou seem to forget that you\\'ve stepped into the political arena. as well\\nintentioned as you may intend something you\\'re walking through a china\\nstore carrying that /2 on your head. everything you say or do says something\\nabout how you would represent the membership on any given day. you don\\'t\\nhave to look far in american politics to see what a few light hearted\\njokes about one segment of the population can do to someone in the limelight.\\n\\nOBMoto: I did manage to squeak in a reference to a /2 ;-)\\n\\n-- \\nJoe Senner joe@rider.cactus.org\\nAustin Area Ride Mailing List ride@rider.cactus.org\\nTexas SplatterFest Mailing List fest@rider.cactus.org\\n',\n", + " \"From: Center for Policy Research \\nSubject: Final Solution for Gaza ?\\nNf-ID: #N:cdp:1483500354:000:5791\\nNf-From: cdp.UUCP!cpr Apr 23 15:10:00 1993\\nLines: 126\\n\\n\\nFrom: Center for Policy Research \\nSubject: Final Solution for Gaza ?\\n\\n\\nFinal Solution for the Gaza ghetto ?\\n------------------------------------\\n\\nWhile Israeli Jews fete the uprising of the Warsaw ghetto, they\\nrepress by violent means the uprising of the Gaza ghetto and\\nattempt to starve the Gazans.\\n\\nThe Gaza strip, this tiny area of land with the highest population\\ndensity in the world, has been cut off from the world for weeks.\\nThe Israeli occupier has decided to punish the whole population of\\nGaza, some 700.000 people, by denying them the right to leave the\\nstrip and seek work in Israel.\\n\\nWhile Polish non-Jews risked their lives to save Jews from the\\nGhetto, no Israeli Jew is known to have risked his life to help\\nthe Gazan resistance. The only help given to Gazans by Israeli\\nJews, only dozens of people, is humanitarian assistance.\\n\\nThe right of the Gazan population to resist occupation is\\nrecognized in international law and by any person with a sense of\\njustice. A population denied basic human rights is entitled to\\nrise up against its tormentors.\\n\\nAs is known, the Israeli regime is considering Gazans unworthy of\\nIsraeli citizenship and equal rights in Israel, although they are\\nconsidered worthy to do the dirty work in Israeli hotels, shops\\nand fields. Many Gazans are born in towns and villages located in\\nIsrael. They may not live there, for these areas are reserved for\\nthe Master Race.\\n\\nThe Nazi regime accorded to the residents of the Warsaw ghetto the\\nright to self- administration. They selected Jews to pacify the\\noccupied population and preventing any form of resistance. Some\\nJewish collaborators were killed. Israel also wishes to rule over\\nGaza through Arab collaborators.\\n\\nAs Israel denies Gazans the only two options which are compatible\\nwith basic human rights and international law, that of becoming\\nIsraeli citizens with full rights or respecting their right for\\nself-determination, it must be concluded that the Israeli Jewish\\nsociety does not consider Gazans full human beings. This attitude\\nis consistent with the attitude of the Nazis towards Jews. The\\ncurrent policies by the Israeli government of cutting off Gaza are\\nconsistent with the wish publicly expressed by Prime Mininister\\nYitzhak Rabin that 'Gaza sink into the sea'. One is led to ask\\noneself whether Israeli leaders entertain still more sinister\\ngoals towards the Gazans ? Whether they have some Final Solution\\nup their sleeve ?\\n\\nI urge all those who have slight human compassion to do whatever\\nthey can to help the Gazans regain their full human, civil and\\npolitical rights, to which they are entitled as human beings.\\n\\nElias Davidsson Iceland\\n\\nFrom elias@ismennt.is Fri Apr 23 02:30:21 1993 Received: from\\nisgate.is by igc.apc.org (4.1/Revision: 1.77 )\\n\\tid AA00761; Fri, 23 Apr 93 02:30:13 PDT Received: from\\nrvik.ismennt.is by isgate.is (5.65c8/ISnet/14-10-91); Fri, 23 Apr\\n1993 09:29:41 GMT Received: by rvik.ismennt.is\\n(16.8/ISnet/11-02-92); Fri, 23 Apr 93 09:30:23 GMT From:\\nelias@ismennt.is (Elias Davidsson) Message-Id:\\n<9304230930.AA11852@rvik.ismennt.is> Subject: no subject (file\\ntransmission) To: cpr@igc.org Date: Fri, 23 Apr 93 9:30:22 GMT\\nX-Charset: ASCII X-Char-Esc: 29 Status: RO\\n\\nFinal Solution for the Gaza ghetto ?\\n------------------------------------\\n\\nWhile Israeli Jews fete the uprising of the Warsaw ghetto, they\\nrepress by violent means the uprising of the Gaza ghetto and\\nattempt to starve the Gazans.\\n\\nThe Gaza strip, this tiny area of land with the highest population\\ndensity in the world, has been cut off from the world for weeks.\\nThe Israeli occupier has decided to punish the whole population of\\nGaza, some 700.000 people, by denying them the right to leave the\\nstrip and seek work in Israel.\\n\\nWhile Polish non-Jews risked their lives to save Jews from the\\nGhetto, no Israeli Jew is known to have risked his life to help\\nthe Gazan resistance. The only help given to Gazans by Israeli\\nJews, only dozens of people, is humanitarian assistance.\\n\\nThe right of the Gazan population to resist occupation is\\nrecognized in international law and by any person with a sense of\\njustice. A population denied basic human rights is entitled to\\nrise up against its tormentors.\\n\\nAs is known, the Israeli regime is considering Gazans unworthy of\\nIsraeli citizenship and equal rights in Israel, although they are\\nconsidered worthy to do the dirty work in Israeli hotels, shops\\nand fields. Many Gazans are born in towns and villages located in\\nIsrael. They may not live there, for these areas are reserved for\\nthe Master Race.\\n\\nThe Nazi regime accorded to the residents of the Warsaw ghetto the\\nright to self- administration. They selected Jews to pacify the\\noccupied population and preventing any form of resistance. Some\\nJewish collaborators were killed. Israel also wishes to rule over\\nGaza through Arab collaborators.\\n\\nAs Israel denies Gazans the only two options which are compatible\\nwith basic human rights and international law, that of becoming\\nIsraeli citizens with full rights or respecting their right for\\nself-determination, it must be concluded that the Israeli Jewish\\nsociety does not consider Gazans full human beings. This attitude\\nis consistent with the attitude of the Nazis towards Jews. The\\ncurrent policies by the Israeli government of cutting off Gaza are\\nconsistent with the wish publicly expressed by Prime Mininister\\nYitzhak Rabin that 'Gaza sink into the sea'. One is led to ask\\noneself whether Israeli leaders entertain still more sinister\\ngoals towards the Gazans ? Whether they have some Final Solution\\nup their sleeve ?\\n\\nI urge all those who have slight human compassion to do whatever\\nthey can to help the Gazans regain their full human, civil and\\npolitical rights, to which they are entitled as human beings.\\n\\nElias Davidsson Iceland\\n\\n\",\n", + " 'From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Ontario Hydro - Research Division\\nLines: 18\\n\\nIn article mcguire@cs.utexas.edu (Tommy Marcus McGuire) writes:\\n>\\n>Obcountersteer: For some reason, I\\'ve discovered that pulling on the\\n>wrong side of the handlebars (rather than pushing on the other wrong\\n>side, if you get my meaning) provides a feeling of greater control. For\\n>example, rather than pushing on the right side to lean right to turn \\n>right (Hi, Lonny!), pulling on the left side at least until I get leaned\\n>over to the right feels more secure and less counter-intuitive. Maybe\\n>I need psychological help.\\n\\nI told a newbie friend of mine, who was having trouble from the complicated\\nexplanations of his rider course, to think of using the handlebars to lean,\\nnot to turn. Push the right handlebar \"down\" (or pull left up or whatever)\\nto lean right. It worked for him, he stopped steering with his tuchus.\\n\\nI\\'ve bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n',\n", + " 'From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Islam & Dress Code for women\\nOrganization: Monash University, Melb., Australia.\\nLines: 120\\n\\nIn <16BA7103C3.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n\\n>In article <1993Apr5.091258.11830@monu6.cc.monash.edu.au>\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n> \\n>(Deletion)\\n>>>>Of course people say what they think to be the religion, and that this\\n>>>>is not exactly the same coming from different people within the\\n>>>>religion. There is nothing with there existing different perspectives\\n>>>>within the religion -- perhaps one can say that they tend to converge on\\n>>>>the truth.\\n>>\\n>>>My point is that they are doing a lot of harm on the way in the meantime.\\n>>>\\n>>>And that they converge is counterfactual, religions appear to split and\\n>>>diverge. Even when there might be a \\'True Religion\\' at the core, the layers\\n>>>above determine what happens in practise, and they are quite inhumane\\n>>>usually.\\n>>>\\n> \\n>What you post then is supposed to be an answer, but I don\\'t see what is has\\n>got to do with what I say.\\n> \\n>I will repeat it. Religions as are harm people. And religions don\\'t\\n>converge, they split. Giving more to disagree upon. And there is a lot\\n>of disagreement to whom one should be tolerant or if one should be\\n>tolerant at all.\\n\\nIdeologies also split, giving more to disagree upon, and may also lead\\nto intolerance. So do you also oppose all ideologies?\\n\\nI don\\'t think your argument is an argument against religion at all, but\\njust points out the weaknesses of human nature.\\n\\n>(Big deletion)\\n>>(2) Do women have souls in Islam?\\n>>\\n>>People have said here that some Muslims say that women do not have\\n>>souls. I must admit I have never heard of such a view being held by\\n>>Muslims of any era. I have heard of some Christians of some eras\\n>>holding this viewpoint, but not Muslims. Are you sure you might not be\\n>>confusing Christian history with Islamic history?\\n> \\n>Yes, it is supposed to have been a predominant view in the Turkish\\n>Caliphate.\\n\\nI would like a reference if you have got one, for this is news to me.\\n\\n>>Anyhow, that women are the spiritual equals of men can be clearly shown\\n>>from many verses of the Qur\\'an. For example, the Qur\\'an says:\\n>>\\n>>\"For Muslim men and women, --\\n>>for believing men and women,\\n>>for devout men and women,\\n>>for true men and women,\\n>>for men and women who are patient and constant,\\n>>for men and women who humble themselves,\\n>>for men and women who give in charity,\\n>>for men and women who fast (and deny themselves),\\n>>for men and women who guard their chastity,\\n>>and for men and women who engage much in God\\'s praise --\\n>>For them has God prepared forgiveness and a great reward.\"\\n>>\\n>>[Qur\\'an 33:35, Abdullah Yusuf Ali\\'s translation]\\n>>\\n>>There are other quotes too, but I think the above quote shows that men\\n>>and women are spiritual equals (and thus, that women have souls just as\\n>>men do) very clearly.\\n>>\\n> \\n>No, it does not. It implies that they have souls, but it does not say they\\n>have souls. And it is not given that the quote above is given a high\\n>priority in all interpretations.\\n\\nOne must approach the Qur\\'an with intelligence. Any thinking approach\\nto the Qur\\'an cannot but interpret the above verse and others like it\\nthat women and men are spiritual equals.\\n\\nI think that the above verse does clearly imply that women have\\nsouls. Does it make any sense for something without a soul to be\\nforgiven? Or to have a great reward (understood to be in the\\nafter-life)? I think the usual answer would be no -- in which case, the\\npart saying \"For them has God prepared forgiveness and a great reward\"\\nsays they have souls. \\n\\n(If it makes sense to say that things without souls can be forgiven, then \\nI have no idea _what_ a soul is.)\\n\\nAs for your saying that the quote above may not be given a high priority\\nin all interpretations, any thinking approach to the Qur\\'an has to give\\nall verses of the Qur\\'an equal priority. That is because, according to\\nMuslim belief, the _whole_ Qur\\'an is the revelation of God -- in fact,\\ndenying the truth of any part of the Qur\\'an is sufficient to be\\nconsidered a disbeliever in Islam.\\n\\n>Quite similar to you other post, even when the Quran does not encourage\\n>slavery, it is not justified to say that iit forbids or puts an end to\\n>slavery. It is a non sequitur.\\n\\nLook, any approach to the Qur\\'an must be done with intelligence and\\nthought. It is in this fashion that one can try to understand the\\nQuran\\'s message. In a book of finite length, it cannot explicitly\\nanswer every question you want to put to it, but through its teachings\\nit can guide you. I think, however, that women are the spiritual equals\\nof men is clearly and unambiguously implied in the above verse, and that\\nsince women can clearly be \"forgiven\" and \"rewarded\" they _must_ have\\nsouls (from the above verse).\\n\\nLet\\'s try to understand what the Qur\\'an is trying to teach, rather than\\ntry to see how many ways it can be misinterpreted by ignoring this\\npassage or that passage. The misinterpretations of the Qur\\'an based on\\nignoring this verse or that verse are infinite, but the interpretations \\nfully consistent are more limited. Let\\'s try to discuss these\\ninterpretations consistent with the text rather than how people can\\nignore this bit or that bit, for that is just showing how people can try\\nto twist Islam for their own ends -- something I do not deny -- but\\nprovides no reflection on the true teachings of Islam whatsoever.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n',\n", + " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: THE HAMAS WAY of DEATH\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 104\\n\\n\\n THE HAMAS WAY of DEATH\\n \\n (Following is a transcript of a recruitment and training\\nvideotape made last summer by the Qassam Battalions, the military\\narm of Hamas, an Islamic Palestinian group. Hamas figures\\nsignificantly in the Middle East equation. In December, Israel\\ndeported more than 400 Palestinians to Lebanon in response to\\nHamas\\'s kidnapping and execution of an Israeli soldier. A longer\\nversion appears in the May issue of Harper\\'s Magazine, which\\nobtained and translated the tape.)\\n \\n My name is Yasir Hammad al-Hassan Ali. I live in Nuseirat [a\\nrefugee camp in the Gaza Strip]. I was born in 1964. I finished\\nhigh school, then attended Gaza Polytechnic. Later, I went to work\\nfor Islamic University in Gaza as a clerk. I\\'m married and I have\\ntwo daughters.\\n The Qassam Battalions are the only group in Palestine\\nexplicitly dedicated to jihad [holy war]. Our primary concern is\\nPalestinians who collaborate with the enemy. Many young men and\\nwomen have fallen prey to the cunning traps laid by the [Israeli]\\nSecurity Services.\\n Since our enemies are trying to obliterate our nation,\\ncooperation with them is clearly a terrible crime. Our most\\nimportant objective must be to put an end to the plague of\\ncollaboration. To do so, we abduct collaborators, intimidate and\\ninterrogate them in order to uncover other collaborators and expose\\nthe methods that the enemy uses to lure Palestinians into\\ncollaboration in the first place. In addition to that, naturally,\\nwe confront the problem of collaborators by executing them.\\n We don\\'t execute every collaborator. After all, about 70\\npercent of them are innocent victims, tricked or black-mailed into\\ntheir misdeeds. The decision whether to execute a collaborator is\\nbased on the seriousness of his crimes. If, like many\\ncollaborators, he has been recruited as an agent of the Israeli\\nBorder Guard then it is imperative that he be executed at once.\\nHe\\'s as dangerous as an Israeli soldier, so we treat him like an\\nIsraeli soldier.\\n There\\'s another group of collaborators who perform an even\\nmore loathsome role -- the ones who help the enemy trap young men\\nand women in blackmail schemes that force them to become\\ncollaborators. I regard the \"isqat\" [the process by which a\\nPalestinians is blackmailed into collaboration] of single person as\\ngreater crime than the killing of a demonstrator. If someone is\\nguilty of causing repeated cases of isqat, than it is our religious\\nduty to execute him.\\n A third group of collaborators is responsible for the\\ndistribution of narcotics. They work on direct orders from the\\nSecurity Services to distribute drugs as widely as possible. Their\\nvictims become addicted and soon find it unbearable to quit and\\nimpossible to afford more. They collaborate in order to get the\\ndrugs they crave. The dealers must also be executed.\\n In the battalions, we have developed a very careful method of\\nuncovering collaborators, We can\\'t afford to abduct an innocent\\nperson, because once we seize a person his reputation is tarnished\\nforever. We will abduct and interrogate a collaborator only after\\nevidence of his guilt has been established -- never before. If\\nafter interrogation the collaborator is found guilty beyond any\\ndoubt, then he is executed.\\n In many cases, we don\\'t have to make our evidence against\\ncollaborators public, because everyone knows that they\\'re guilty.\\nBut when the public isn\\'t aware that a certain individual is a\\ncollaborator, and we accuse him, people are bound to ask for\\nevidence. Many people will proclaim his innocence, so there must be\\nirrefutable proof before he is executed. This proof is usually\\nobtained in the form of a confession.\\n At first, every collaborator denies his crimes. So we start\\noff by showing the collaborator the testimony against him. We tell\\nhim that he still has a chance to serve his people, even in the\\nlast moment of his life, by confessing and giving us the\\ninformation we need.\\n We say that we know his repentance in sincere and that he has\\nbeen a victim. That kind of talk is convincing. Most of them\\nconfess after that. Others hold out; in those cases, we apply\\npressure, both psychological and physical. Then the holdouts\\nconfess as well.\\n Only one collaborator has ever been executed without an\\ninterrogation. In that case, the collaborator had been seen working\\nfor the Border Guard since before the intifada, and he himself\\nconfessed his involvement to a friend, who disclosed the\\ninformation to us. In addition, three members of his network of\\ncollaborators told us that he had caused their isqat. With this\\nmuch evidence, there was no need to interrogate him. But we are\\nvery careful to avoid wrongful executions. In every case, our\\nprincipal is the same: the accused should be interrogated until he\\nhimself confesses his crimes. \\n A few weeks ago, we sat down and complied a list of\\ncollaborators to decide whether there were any who could be\\nexecuted without interrogation. An although we had hundreds of\\nnames, still, because of our fear of God and of hell, we could not\\nmark any of these men, except for the one I just mentioned, for\\nexecution.\\n When we execute a collaborator in public, we use a gun. But\\nafter we abduct and interrogate a collaborator, we can\\'t shoot him\\n-- to do so might give away our locations. That\\'s why collaborators\\nare strangled. Sometimes we ask the collaborator, \"What do you\\nthink? How should we execute you?\" One collaborator told us,\\n\"Strangle me.\" He hated the sight of blood.\\n\\n-----\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n\\n>mathew writes:\\n>>As for rape, surely there the burden of guilt is solely on the rapist?\\n>\\n>Not so. If you are thrown into a cage with a tiger and get mauled, do you\\n>blame the tiger?\\n\\n\\tA human has greater control over his/her actions, than a \\npredominately instictive tiger.\\n\\n\\tA proper analogy would be:\\n\\n\\tIf you are thrown into a cage with a person and get mauled, do you \\nblame that person?\\n\\n\\tYes. [ providing that that person was in a responsible frame of \\nmind, eg not clinicaly insane, on PCB\\'s, etc. ]\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n',\n", + " \"Subject: Re: univesa driver\\nFrom: djlewis@ualr.edu\\nOrganization: University of Arkansas at Little Rock\\nNntp-Posting-Host: athena.ualr.edu\\nLines: 13\\n\\nIn article <13622@news.duke.edu>, seth@north13.acpub.duke.edu (Seth Wandersman) writes:\\n> \\n> \\tI got the univesa driver available over the net. I thought that finally\\n> my 1-meg oak board would be able to show 680x1024 256 colors. Unfortunately a\\n> program still says that I can't do this. Is it the fault of the program (fractint)\\n> or is there something wrong with my card.\\n> \\tunivesa- a free driver available over the net that makes many boards\\n> vesa compatible. \\nWHATS THIS 680x1024 256 color mode? Asking a lot of your hardware ?\\n\\nDon Lewis\\n\\n\\n\",\n", + " \"From: mathew \\nSubject: Re: KORESH IS GOD!\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 5\\n\\nThe latest news seems to be that Koresh will give himself up once he's\\nfinished writing a sequel to the Bible.\\n\\n\\nmathew\\n\",\n", + " 'From: arp@cooper!osd (Andrew Pinkowitz)\\nSubject: SIGGRAPH -- Conference on Understanding Images\\nKeywords: graphics animation nyc acm siggraph\\nOrganization: Online Systems Development ( NY, NY)\\nLines: 140\\n\\n======================================================================\\n NYC ACM/SIGGRAPH: UNDERSTANDING IMAGES\\n======================================================================\\n\\n SUBJECT:\\n\\n Pace University/SIGGRAPH Conference on UNDERSTANDING IMAGES\\n ===========================================================\\n\\n The purpose of this conference is to bring together a breadth of\\n disciplines, including the physical, biological and computational\\n sciences, technology, art, psychology, philosophy, and education,\\n in order to define and discuss the issues essential to image\\n understanding within the computer graphics context.\\n\\n FEATURED TOPICS INCLUDE:\\n\\n Psychology/Perception\\n Image Analysis\\n Design\\n Text\\n Sound\\n Philosophy\\n\\n DATE: Friday & Saturday, 21-22 May 1993\\n\\n TIME: 9:00 am - 6:00 pm\\n\\n PLACE: The Pace Downtown Theater\\n One Pace Plaza\\n (on Spruce Street between Park Row & Gold Street)\\n NY, NY 10038\\n\\n FEES:\\n\\n PRE-REGISTRATION (Prior to 1 May 1993):\\n Members $55.00\\n Non-Members $75.00\\n Students $40.00 (Proof of F/T Status Required)\\n\\n REGISTRATION (After 1 May 1993 or On-Site):\\n All Attendees $95.00\\n\\n (Registration Fee Includes Brakfast, Breaks & Lunch)\\n\\n\\n SEND REGISTRATION INFORMATION & FEES TO:\\n\\n Dr. Francis T. Marchese\\n Computer Science Department\\n NYC/ACM SIGGRAPH Conference\\n Pace University\\n 1 Pace Plaza (Room T-1704)\\n New York NY 10036\\n\\n voice: (212) 346-1803 fax: (212) 346-1933\\n email: MARCHESF@PACEVM.bitnet\\n\\n======================================================================\\nREGISTRATION INFORMATION:\\n\\nName _________________________________________________________________\\n\\nTitle ________________________________________________________________\\n\\nCompany ______________________________________________________________\\n\\nStreet Address _______________________________________________________\\n\\nCity ________________________________State____________Zip_____________\\n\\nDay Phone (___) ___-____ Evening Phone (___) ___-____\\n\\nFAX Phone (___) ___-____ Email_____________________________________\\n======================================================================\\n\\nDETAILED DESCRIPTION:\\n=====================\\n\\n Artists, designers, scientists, engineers and educators share the\\n problem of moving information from one mind to another.\\n Traditionally, they have used pictures, words, demonstrations,\\n music and dance to communicate imagery. However, expressing\\n complex notions such as God and infinity or a seemingly well\\n defined concept such as a flower can present challenges which far\\n exceed their technical skills.\\n\\n The explosive use of computers as visualization and expression\\n tools has compounded this problem. In hypermedia, multimedia and\\n virtual reality systems vast amounts of information confront the\\n observer or participant. Wading through a multitude of\\n simultaneous images and sounds in possibly unfamiliar\\n representions, a confounded user asks: \"What does it all mean?\"\\n\\n Since image construction, transmission, reception, decipherment and\\n ultimate understanding are complex tasks, strongly influenced by\\n physiology, education and culture; and, since electronic media\\n radically amplify each processing step, then we, as electronic\\n communicators, must determine the fundamental paradigms for\\n composing imagery for understanding.\\n\\n Therefore, the purpose of this conference is to bring together a\\n breadth of disciplines, including, but not limited to, the\\n physical, biological and computational sciences, technology, art,\\n psychology, philosophy, and education, in order to define and\\n discuss the issues essential to image understanding within the\\n computer graphics context.\\n\\n\\n FEATURED SPEAKERS INCLUDE:\\n\\n Psychology/Perception:\\n Marc De May, University of Ghent\\n Beverly J. Jones, University of Oregon\\n Barbara Tversky, Standfor University\\n Michael J. Shiffer, MIT\\n Tom Hubbard, Ohio State University\\n Image Analysis:\\n A. Ravishankar Rao, IBM Watson Research Center\\n Nalini Bhusan, Smith College\\n Xiaopin Hu, University of Illinois\\n Narenda Ahuja, University of Illinois\\n Les M. Sztander, University of Toledo\\n Design:\\n Mark Bajuk, University of Illinois\\n Alyce Kaprow, MIT\\n Text:\\n Xia Lin, Pace University\\n John Loustau, Hunter College\\n Jong-Ding Wang, Hunter College\\n Judson Rosebush, Judson Rosebush Co.\\n Sound:\\n Matthew Witten, University of Texas\\n Robert Wyatt, Center for High Performance Computing\\n Robert S. Williams, Pace University\\n Rory Stuart, NYNEX\\n Philosophy\\n Michael Heim, Education Foundation of DPMA\\n\\n======================================================================\\n',\n", + " \"From: mbeaving@bnr.ca (Michael Beavington)\\nSubject: Re: Ok, So I was a little hasty...\\nNntp-Posting-Host: bmerh824\\nReply-To: MBEAVING@BNR.CA\\nOrganization: BNR Ottawa, DMS Software Design\\nLines: 18\\n\\nIn article <13394@news.duke.edu>, infante@acpub.duke.edu (Andrew Infante) writes:\\n|> Apparently that last post was a little hasy, since I\\n|> called around to more places and got quotes for less\\n|> than 600 and 425. Liability only, of course.\\n|> \\n|> Plus, one palced will give me C7C for my car + liab on the bike for\\n|> only 1350 total, which ain't bad at all.\\n|> \\n|> So I won't go with the first place I called, that's\\n|> fer sure.\\n|> \\n\\nNevertheless, DWI is F*ckin serious. Hope you've got some \\nbrains now.\\n\\nMike Beavington\\nmbeaving@bnr.ca\\n* these opinions are my own and not my companies'.\\n\",\n", + " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Benediktine Metaphysics\\nLines: 24\\n\\nBenedikt Rosenau writes, with great authority:\\n\\n> IF IT IS CONTRADICTORY IT CANNOT EXIST.\\n\\n\"Contradictory\" is a property of language. If I correct this to\\n\\n\\n THINGS DEFINED BY CONTRADICTORY LANGUAGE DO NOT EXIST\\n\\nI will object to definitions as reality. If you then amend it to\\n\\n THINGS DESCRIBED BY CONTRADICTORY LANGUAGE DO NOT EXIST\\n\\nthen we\\'ve come to something which is plainly false. Failures in\\ndescription are merely failures in description.\\n\\n(I\\'m not an objectivist, remember.)\\n\\n\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Space Research Spin Off\\nOrganization: Express Access Online Communications USA\\nLines: 29\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article shafer@rigel.dfrf.nasa.gov (Mary Shafer) writes:\\n>Dryden flew the first digital fly by wire aircraft in the 70s. No\\n>mechnaical or analog backup, to show you how confident we were.\\n\\nConfident, or merely crazed? That desert sun :-)\\n\\n\\n>successful we were. (Mind you, the Avro Arrow and the X-15 were both\\n>fly-by-wire aircraft much earlier, but analog.)\\n>\\n\\nGee, I thought the X-15 was Cable controlled. Didn't one of them have a\\ntotal electrical failure in flight? Was there machanical backup systems?\\n\\n|\\n|The NASA habit of acquiring second-hand military aircraft and using\\n|them for testbeds can make things kind of confusing. On the other\\n|hand, all those second-hand Navy planes give our test pilots a chance\\n|to fold the wings--something most pilots at Edwards Air Force Base\\n|can't do.\\n|\\n\\nWhat do you mean? Overstress the wings, and they fail at teh joints?\\n\\nYou'll have to enlighten us in the hinterlands.\\n\\n\\npat\\n\\n\",\n", + " \"From: uphrrmk@gemini.oscs.montana.edu (Jack Coyote)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nReply-To: uphrrmk@gemini.oscs.montana.edu (Jack Coyote)\\nOrganization: Never Had It, Never Will\\nLines: 14\\n\\nIn sci.astro, dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n[ a nearly perfect parody -- needed more random CAPS]\\n\\n\\nThanks for the chuckle. (I loved the bit about relevance to people starving\\nin Somalia!)\\n\\nTo those who've taken this seriously, READ THE NAME! (aloud)\\n\\n-- \\nThank you, thank you, I'll be here all week. Enjoy the buffet! \\n\\n\\n\",\n", + " \"Organization: Queen's University at Kingston\\nFrom: Graydon \\nSubject: Re: What if the USSR had reached the Moon first?\\n <1993Apr7.124724.22534@yang.earlham.edu>\\n <1993Apr12.161742.22647@yang.earlham.edu>\\nLines: 9\\n\\nThis is turning into 'what's a moonbase good for', and I ought\\nnot to post when I've a hundred some odd posts to go, but I would\\nthink that the real reason to have a moon base is economic.\\n\\nSince someone with space industry will presumeably have a much\\nlarger GNP than they would _without_ space industry, eventually,\\nthey will simply be able to afford more stuff.\\n\\nGraydon\\n\",\n", + " 'From: fischer@iesd.auc.dk (Lars Peter Fischer)\\nSubject: Re: Rumours about 3DO ???\\nIn-Reply-To: archer@elysium.esd.sgi.com\\'s message of 6 Apr 93 18:18:30 GMT\\nOrganization: Mathematics and Computer Science, Aalborg University\\n\\t <1993Apr6.144520.2190@unocal.com>\\n\\t\\nLines: 11\\n\\n\\n>>>>> \"Archer\" == Archer (Bad Cop) Surly (archer@elysium.esd.sgi.com)\\n\\nArcher> How about \"Interactive Sex with Madonna\"?\\n\\nor \"Sexium\" for short.\\n\\n/Lars\\n--\\nLars Fischer, fischer@iesd.auc.dk | It takes an uncommon mind to think of\\nCS Dept., Aalborg Univ., DENMARK. | these things. -- Calvin\\n',\n", + " \"From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Bikes vs. Horses (was Re: insect impacts f\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 34\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nNNTP-Posting-Host: slc4.ins.cwru.edu\\n\\n\\nIn a previous article, npet@bnr.ca (Nick Pettefar) says:\\n\\n>Jonathan E. Quist, on the Thu, 15 Apr 1993 14:26:42 GMT wibbled:\\n>: In article txd@ESD.3Com.COM (Tom Dietrich) writes:\\n>: >>In a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n>\\n>: [lots of things, none of which are quoted here]\\n>\\n>The nice thing about horses though, is that if they break down in the middle of\\n>nowhere, you can eat them.\\n\\n\\tAnd they're rather tasty.\\n\\n\\n> Fuel's a bit cheaper, too.\\n>\\n\\n\\tPer gallon (bushel) perhaps. Unfortunately they eat the same amount\\nevery day no matter how much you ride them. And if you don't fuel them they\\ndie. On an annual basis, I spend much less on bike stuff than Amy the Wonder\\nWife does on horse stuff. She has two horses, I've got umm, lesseee, 11 bikes.\\nI ride constantly, she rides four or five times a week. Even if you count \\ninsurance and the cost of the garage I built, I'm getting off cheaper than \\nshe is. And having more fun (IMHO).\\n\\n\\n\\n>\\n>\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n\",\n", + " 'From: chrisb@seachg.com (Chris Blask)\\nSubject: Re: A silly question on x-tianity\\nReply-To: chrisb@seachg.com (Chris Blask)\\nOrganization: Sea Change Corporation, Mississauga, Ontario, Canada\\nLines: 44\\n\\nwerdna@cco.caltech.edu (Andrew Tong) writes:\\n>mccullou@snake2.cs.wisc.edu (Mark McCullough) writes:\\n>\\n>>Question 2: This attitude god character seems awfully egotistical\\n>>and proud. But Christianity tells people to be humble. What\\'s the deal?\\n>\\n>Well, God pretty much has a right to be \"egotistical and proud.\" I\\n>mean, he created _you_, doesn\\'t he have the right to be proud of such\\n>a job?\\n>\\n>Of course, people don\\'t have much of a right to be proud. What have\\n>they accomplished that can match God\\'s accomplishments, anyways? How\\n>do their abilities compare with those of God\\'s. We\\'re an \"imbecile\\n>worm of the earth,\" to quote Pascal.\\n\\nGrumblegrumble... \\n\\n>If you were God, and you created a universe, wouldn\\'t you be just a\\n>little irked if some self-organizing cell globules on a tiny planet\\n>started thinking they were as great and awesome as you?\\n\\nunfortunately the logic falls apart quick: all-perfect > insulted or\\nthreatened by the actions of a lesser creature > actually by offspring >\\n???????????????????\\n\\nHow/why shuold any all-powerful all-perfect feel either proud or offended?\\nAnything capable of being aware of the relationship of every aspect of every \\nparticle in the universe during every moment of time simultaneously should\\nbe able to understand the cause of every action of every \\'cell globule\\' on\\neach tniy planet...\\n\\n>Well, actually, now that I think of it, it seems kinda odd that God\\n>would care at all about the Earth. OK, so it was a bad example. But\\n>the amazing fact is that He does care, apparently, and that he was\\n>willing to make some grand sacrifices to ensure our happiness.\\n\\n\"All-powerful, Owner Of Everything in the Universe Makes Great Sacrifices\"\\nmakes a great headline but it doesn\\'t make any sense. What did he\\nsacrifice? Where did it go that he couldn\\'t get it back? If he gave\\nsomething up, who\\'d he give it up to?\\n\\n-chris\\n\\n[you guys have fun, I\\'m agoin\\' to Key West!!]\\n',\n", + " 'From: deniz@mandolin.ctr.columbia.edu (Deniz Akkus)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: Columbia University Center for Telecommunications Research\\nX-Posted-From: mandolin.ctr.columbia.edu\\nNNTP-Posting-Host: sol.ctr.columbia.edu\\nLines: 43\\n\\nIn article <1993Apr20.164517.20876@kpc.com> henrik@quayle.kpc.com writes:\\n>In article <1993Apr20.000413.25123@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n>My response to the \"shooting down\" of a Turkish airplane over the Armenian\\n>air space was because of the IGNORANT posting of the person from your \\n>Country. Turks and Azeris consistantly WANT to drag ARMENIA into the\\n>KARABAKH conflict with Azerbaijan. The KARABAKHI-ARMENIANS who have lived\\n>in their HOMELAND for 3000 years (CUT OFF FROM ARMENIA and GIVEN TO AZERIS \\n>BY STALIN) are the ones DIRECTLY involved in the CONFLICT. They are defending \\n>themselves against AZERI AGGRESSION. Agression that has NO MERCY for INOCENT \\n>people that are costantly SHELLED with MIG-23\\'s and othe Russian aircraft. \\n>\\n>At last, I hope that the U.S. insists that Turkey stay out of the KARABAKH \\n>crisis so that the repeat of the CYPRUS invasion WILL NEVER OCCUR again.\\n>\\n\\nArmenia is involved in fighting with Azarbaijan. It is Armenian\\nsoldiers from mainland Armenia that are shelling towns in Azarbaijan.\\nYou might wish to read more about whether or not it is Azeri aggression\\nonly in that region. It seems to me that the Armenians are better\\norganized, have more success militarily and shell Azeri towns\\nrepeatedly. \\n\\nI don\\'t wish to get into the Cyprus discussion. Turkey had the right to\\nintervene, and it did. Perhaps the intervention was not supposed to\\nlast for so long, but the constant refusal of the Greek governments both\\non the island and in Greece to deal with reality is also to be blamed\\nfor the ongoing standoff in the region. \\n\\nLastly, why is there not a soc.culture.armenia? I vote yes for it.\\nAfter all, it is now free. \\n\\nregards,\\nDeniz\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n',\n", + " 'From: chrisb@tafe.sa.edu.au (Chris BELL)\\nSubject: Re: Don\\'t more innocents die without the death penalty?\\nOrganization: South Australian Regional Academic and Research Network\\nLines: 19\\nDistribution: world\\nNNTP-Posting-Host: baarnie.tafe.sa.edu.au\\n\\n\"James F. Tims\" writes:\\n\\n>By maintaining classes D and E, even in prison, it seems as if we \\n>place more innocent people at a higher risk of an unjust death than \\n>we would if the state executed classes D and E with an occasional error.\\n\\nI would rather be at a higher risk of being killed than actually killed by\\n ^^^^ ^^^^^^^^\\nmistake. Though I do agree with the concept that the type D and E murderers\\nare a massive waste of space and resources I don\\'t agree with the concept:\\n\\n\\tkilling is wrong\\n\\tif you kill we will punish you\\n\\tour punishment will be to kill you.\\n\\nSeems to be lacking in consistency.\\n\\n--\\n\"I know\" is nothing more than \"I believe\" with pretentions.\\n',\n", + " \"From: Leigh Palmer \\nSubject: Re: Orion drive in vacuum -- how?\\nX-Xxmessage-Id: \\nX-Xxdate: Fri, 16 Apr 93 06:33:17 GMT\\nOrganization: Simon Fraser University\\nX-Useragent: Nuntius v1.1.1d17\\nLines: 15\\n\\nIn article <1qn4bgINN4s7@mimi.UU.NET> James P. Goltz, goltz@mimi.UU.NET\\nwrites:\\n> Background: The Orion spacedrive was a theoretical concept.\\n\\nIt was more than a theoretical concept; it was seriously pursued by\\nFreeman Dyson et al many years ago. I don't know how well-known this is,\\nbut a high explosive Orion prototype flew (in the atmosphere) in San\\nDiego back in 1957 or 1958. I was working at General Atomic at the time,\\nbut I didn't learn about the experiment until almost thirty years later,\\nwhen \\nTed Taylor visited us and revealed that it had been done. I feel sure\\nthat someone must have film of that experiment, and I'd really like to\\nsee it. Has anyone out there seen it?\\n\\nLeigh\\n\",\n", + " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Israel does not kill reporters.\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 12\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n Anas Omran has claimed that, \"the Israelis used to arrest, and\\nsometime to kill some of these neutral reporters.\" The assertion\\nby Anas Omran is, of course, a total fabrication. If there is an\\nonce of truth iin it, I\\'m sure Anas Omran can document such a sad\\nand despicable event. Otherwise we may assume that it is another\\npiece of anti-Israel bullshit posted by someone whose family does\\nnot know how to teach their children to tell the truth. If Omran\\nwould care to retract this \\'error\\' I would be glad to retract the\\naccusation that he is a liar. If he can document such a claim, I\\nwould again be glad to apologize for calling him a liar. Failing\\nto do either of these would certainly show what a liar he is.\\n',\n", + " \"From: coburnn@spot.Colorado.EDU (Nicholas S. Coburn)\\nSubject: Re: Shipping a bike\\nNntp-Posting-Host: spot.colorado.edu\\nOrganization: University of Colorado, Boulder\\nLines: 31\\n\\nIn article <1qkhrm$7go@agate.berkeley.edu> manish@uclink.berkeley.edu (Manish Vij) writes:\\n>\\n>Can someone recommend how to ship a motorcycle from San Francisco\\n>to Seattle? And how much might it cost?\\n>\\n>I remember a thread on shipping. If someone saved the instructions\\n>on bike prep, please post 'em again, or email.\\n>\\n>Thanks,\\n>\\n>Manish\\n\\nStep 1) Join the AMA (American Motorcycling Association). Call 1-800-AMA-JOIN.\\n\\nStep 2) After you become a member, they will ship your bike, UNCRATED to \\njust about anywhere across the fruited plain for a few hundred bucks.\\n\\nI have used this service and have been continually pleased. They usually\\nonly take a few days for the whole thing, and you do not have to prepare\\nthe bike in any way (other than draining the gas). Not to mention that\\nit is about 25% of the normal shipping costs (by the time you crate a bike\\nand ship it with another company, you can pay around $1000)\\n\\n\\n________________________________________________________________________\\nNick Coburn DoD#6425 AMA#679817\\n '88CBR1000 '89CBR600\\n coburnn@spot.colorado.edu\\n________________________________________________________________________\\n\\n\\n\",\n", + " 'From: brody@eos.arc.nasa.gov (Adam R. Brody )\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: NASA Ames Research Center\\nDistribution: na\\nLines: 14\\n\\nprb@access.digex.com (Pat) writes:\\n\\n\\n>AW&ST had a brief blurb on a Manned Lunar Exploration confernce\\n>May 7th at Crystal City Virginia, under the auspices of AIAA.\\n\\n>Does anyone know more about this? How much, to attend????\\n\\n>Anyone want to go?\\n\\n>pat\\n\\nI got something in the mail from AIAA about it. Cost is $75.\\nSpeakers include John Pike, Hohn Young, and Ian Pryke.\\n',\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: $1bil space race ideas/moon base on the cheap.\\nArticle-I.D.: aurora.1993Apr25.150437.1\\nOrganization: University of Alaska Fairbanks\\nLines: 28\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nThat is an idea.. The most efficient moon habitat.. \\n\\nalso the idea of how to get the people off the moon once the prize was won..\\n\\nAlso the idea of how to rescue someone who is \"dying\" on the moon.\\n\\nMaybe have a area where they can all \"see\" each other, and can help each other\\nif something happens.. \\n\\nI liek the idea of one prize for the first moon landing and return, by a\\nnon-governmental body..\\n\\nAlso the idea of then having a moon habitat race.. \\n\\nI know we need to do somthing to get people involved..\\n\\nEccentric millionaire/billionaire would be nice.. We see how old Ross feels\\nabout it.. After all it would be a great promotional thing and a way to show he\\ndoes care about commericalization and the people.. Will try to broach the\\nsubject to him.. \\n\\nMoonbase on the cheap is a good idea.. NASA and friends seem to take to much\\ntime and give us to expensive stuff that of late does not work (hubble and\\nsuch). Basically what is the difference between a $1mil peice of junk and a\\nmulti $1mil piece of junk.. I know junk..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", + " 'From: jcm@head-cfa.harvard.edu (Jonathan McDowell)\\nSubject: Re: Shuttle Launch Question\\nOrganization: Smithsonian Astrophysical Observatory, Cambridge, MA, USA\\nDistribution: sci\\nLines: 23\\n\\nFrom article , by tombaker@world.std.com (Tom A Baker):\\n>>In article , ETRAT@ttacs1.ttu.edu (Pack Rat) writes...\\n>>>\"Clear caution & warning memory. Verify no unexpected\\n>>>errors. ...\". I am wondering what an \"expected error\" might\\n>>>be. Sorry if this is a really dumb question, but\\n> \\n> Parity errors in memory or previously known conditions that were waivered.\\n> \"Yes that is an error, but we already knew about it\"\\n> I\\'d be curious as to what the real meaning of the quote is.\\n> \\n> tom\\n\\n\\nMy understanding is that the \\'expected errors\\' are basically\\nknown bugs in the warning system software - things are checked\\nthat don\\'t have the right values in yet because they aren\\'t\\nset till after launch, and suchlike. Rather than fix the code\\nand possibly introduce new bugs, they just tell the crew\\n\\'ok, if you see a warning no. 213 before liftoff, ignore it\\'.\\n\\n - Jonathan\\n\\n\\n',\n", + " 'Subject: Re: There must be a creator! (Maybe)\\nFrom: halat@pooh.bears (Jim Halat)\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 24\\n\\nIn article <16BA1E927.DRPORTER@SUVM.SYR.EDU>, DRPORTER@SUVM.SYR.EDU (Brad Porter) writes:\\n>\\n> Science is wonderful at answering most of our questions. I\\'m not the type\\n>to question scientific findings very often, but... Personally, I find the\\n>theory of evolution to be unfathomable. Could humans, a highly evolved,\\n>complex organism that thinks, learns, and develops truly be an organism\\n>that resulted from random genetic mutations and natural selection?\\n\\n[...stuff deleted...]\\n\\nComputers are an excellent example...of evolution without \"a\" creator.\\nWe did not \"create\" computers. We did not create the sand that goes\\ninto the silicon that goes into the integrated circuits that go into\\nprocessor board. We took these things and put them together in an\\ninteresting way. Just like plants \"create\" oxygen using light through \\nphotosynthesis. It\\'s a much bigger leap to talk about something that\\ncreated \"everything\" from nothing. I find it unfathomable to resort\\nto believing in a creator when a much simpler alternative exists: we\\nsimply are incapable of understanding our beginnings -- if there even\\nwere beginnings at all. And that\\'s ok with me. The present keeps me\\nperfectly busy.\\n\\n-jim halat\\n\\n',\n", + " 'From: loss@fs7.ECE.CMU.EDU (Doug Loss)\\nSubject: Re: Death and Taxes (was Why not give $1 billion to...\\nOrganization: Electrical and Computer Engineering, Carnegie Mellon\\nLines: 7\\n\\nIn my last post I referred to Michael Adams as \"Nick.\" Completely my\\nerror; Nick Adams was a film and TV actor from the \\'50\\'s and early \\'60\\'s\\n(remember Johnny Yuma, The Rebel?). He was from my part of the country,\\nand Michael\\'s email address of \"nmsca[...]\" probably helped confuse things\\nin my mind. Purely user headspace error on my part. Sorry.\\n\\nDoug Loss\\n',\n", + " 'From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Shuttle oxygen (was Budget Astronaut)\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 19\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article <1993Apr16.151729.8610@aio.jsc.nasa.gov>, kjenks@gothamcity.jsc.nasa.gov writes:\\n\\n>Josh Hopkins (jbh55289@uxa.cso.uiuc.edu) replied:\\n>: Double wow. Can you land a shuttle with a 5cm hole in the wall?\\n>Personnally, I don\\'t know, but I\\'d like to try it sometime.\\n\\nAre you volunteering? :)\\n\\n> But a\\n>hole in the pressure vessel would cause us to immediately de-orbit\\n>to the next available landing site.\\n\\nWill NASA have \"available landing sites\" in the Russian Republic, now that they\\nare Our Friends and Comrades?\\n\\n\\n\\n Software engineering? That\\'s like military intelligence, isn\\'t it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n',\n", + " \"From: tony@morgan.demon.co.uk (Tony Kidson)\\nSubject: Re: Insurance and lotsa points... \\nDistribution: world\\nOrganization: The Modem Palace\\nReply-To: tony@morgan.demon.co.uk\\nX-Newsreader: Simple NEWS 1.90 (ka9q DIS 1.21)\\nLines: 16\\n\\nIn article <1993Apr19.211340.12407@adobe.com> cjackson@adobe.com writes:\\n\\n>I am very glad to know that none of you judgemental little shits has\\n\\nHey Pal! Who're you calling litte?\\n\\n\\nTony\\n\\n+---------------+------------------------------+-------------------------+\\n|Tony Kidson | ** PGP 2.2 Key by request ** |Voice +44 81 466 5127 |\\n|Morgan Towers, | The Cat has had to move now |E-Mail(in order) |\\n|Morgan Road, | as I've had to take the top |tony@morgan.demon.co.uk |\\n|Bromley, | off of the machine. |tny@cix.compulink.co.uk |\\n|England BR1 3QE|Honda ST1100 -=<*>=- DoD# 0801|100024.301@compuserve.com|\\n+---------------+------------------------------+-------------------------+\\n\",\n", + " 'From: dmatejka@netcom.com (Daniel Matejka)\\nSubject: Re: Speeding ticket from CHP\\nOrganization: Netcom - Online Communication Services\\nLines: 47\\n\\nIn article <1pq4t7$k5i@agate.berkeley.edu> downey@homer.CS.Berkeley.EDU (Allen B. Downey) writes:\\n> Fight your ticket : California edition by David Brown 1st ed.\\n> Berkeley, CA : Nolo Press, 1982\\n>\\n>The second edition is out (but not in UCB\\'s library). Good luck; let\\n>us know how it goes.\\n>\\n Daniel Matejka writes:\\n The fourth edition is out, too. But it\\'s probably also not\\nvery high on UCB\\'s \"gotta have that\" list.\\n\\nIn article <65930405053856/0005111312NA1EM@mcimail.com> 0005111312@mcimail.com (Peter Nesbitt) writes:\\n>Riding to work last week via Hwy 12 from Suisun, to I-80, I was pulled over by\\n>a CHP black and white by the 76 Gas station by Jameson Canyon Road. The\\n>officer stated \"...it like you were going kinda fast coming down\\n>highway 12. You been going at least 70 or 75.\" I just said okay,\\n>and did not agree or disagree to anything he said. \\n\\n Can you beat this ticket? Personally, I think it\\'s your Duty As a Citizen\\nto make it as much trouble as possible for them, so maybe they\\'ll Give Up\\nand Leave Us Alone Someday Soon.\\n The cop was certainly within his legal rights to nail you by guessing\\nyour speed. Mr. Brown (the author of Fight Your Ticket) mentions an\\nOakland judge who convicted a speeder \"on the officer\\'s testimony that\\nthe driver\\'s car sounded like it was being driven at an excessive speed.\"\\n You can pay off the State and your insurance company, or you can\\ntake it to court and be creative. Personally, I\\'ve never won that way\\nor seen anyone win, but the judge always listens politely. And I haven\\'t\\nseen _that_ many attempts.\\n You could try the argument that since bikes are shorter than the\\ncars whose speed the nice officer is accustomed to guessing, they therefore\\nappear to be further away, and so their speed appears to be greater than\\nit actually is. I left out a step or two, but you get the idea. If you\\ncan make it convincing, theoretically you\\'re supposed to win.\\n I\\'ve never tried proving the cop was mistaken. I did get to see\\nsome other poor biker try it. He was mixing up various facts like\\nthe maximum acceleration of a (cop) car, and the distance at which\\nthe cop had been pacing him, and end up demonstrating that he couldn\\'t\\npossibly have been going as fast as the cop had suggested. He\\'d\\nbrought diagrams and a calculator. He was Prepared. He lost. Keep\\nin mind cops do this all the time, and their word is better than yours.\\nMaybe, though, they don\\'t guess how fast bikes are going all the time.\\nBesides, this guy didn\\'t speak English very well, and ended up absolutely\\nconfounding the judge, the cop, and everyone else in the room who\\'d been\\nrecently criminalized by some twit with a gun and a quota.\\n Ahem. OK, I\\'m better now. Maybe he\\'d have won had his presentation\\nbeen more polished. Maybe not. He did get applause.\\n',\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Space Station Redesign (30826) Option C\\nArticle-I.D.: aurora.1993Apr25.214653.1\\nOrganization: University of Alaska Fairbanks\\nLines: 22\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1993Apr25.151108.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\\n> I like option C of the new space station design.. \\n> It needs some work, but it is simple and elegant..\\n> \\n> Its about time someone got into simple construction versus overly complex...\\n> \\n> Basically just strap some rockets and a nose cone on the habitat and go for\\n> it..\\n> \\n> Might be an idea for a Moon/Mars base to.. \\n> \\n> Where is Captain Eugenia(sp) when you need it (reference to russian heavy\\n> lifter, I think).\\n> ==\\n> Michael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n> \\n> \\n> \\n> \\n\\n\\nThis is a report, I got the subject messed up..\\n\",\n", + " 'From: oberto@genes.icgeb.trieste.it (Jacques Oberto)\\nSubject: Re: HELP!!! GRASP\\nOrganization: ICGEB\\nLines: 33\\n\\nCBW790S@vma.smsu.edu.Ext (Corey Webb) writes:\\n\\n>In article <1993Apr19.160944.20236W@baron.edb.tih.no>\\n>havardn@edb.tih.no (Haavard Nesse,o92a) writes:\\n>>\\n>>Could anyone tell me if it\\'s possible to save each frame\\n>>of a .gl (grasp) animation to .gif, .jpg, .iff or any other\\n>>picture formats.\\n>>\\n> \\n> If you have the GRASP animation system, then yes, it\\'s quite easy.\\n>You simply use GLIB to extract the image (each \"frame\" in a .GL is\\n>actually a complete .PCX or .CLP file), then use one of MANY available\\n>utilities to convert it. If you don\\'t have the GRASP package, I\\'m afraid\\n>I can\\'t help you. Sorry.\\n> By the way, before you ask, GRASP (GRaphics Animation System for\\n>Professionals) is a commercial product that sells for just over US$300\\n>from most mail-order companies I\\'ve seen. And no, I don\\'t have it. :)\\n> \\n> \\n> Corey Webb\\n> \\n\\nThere are several public domain utilities available at your usual\\narchive site that allow \\'extraction\\' of single frames from a .gl\\nfile, check in the \\'graphics\\' directories under *grasp. The problem \\nis that the .clp files you generate cannot be decoded by any of \\nthe many pd format converters I have used. Any hint welcome!\\nLet me know if you have problems locating the utilities.\\nHope it helps.\\n\\n-- \\nJacques Oberto \\n',\n", + " 'From: clump@acaps.cs.mcgill.ca (Clark VERBRUGGE)\\nSubject: Re: BGI Drivers for SVGA\\nOrganization: SOCS, McGill University, Montreal, Canada\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 29\\n\\nDominic Lai (cs_cylai@cs.ust.hk) wrote:\\n: Simon Crowe (scrowe@hemel.bull.co.uk) wrote:\\n: 8~> I require BGI drivers for Super VGA Displays and Super XVGA Displays. Does \\n: 8~> anyone know where I could obtain the relevant drivers ? (FTP sites ??)\\n\\n: \\tI would like to know too!\\n\\n: Regards,\\n: Dominic\\n\\ngarbo.uwasa.fi (or one of its many mirrors) has a file\\ncalled \"svgabg40\" in the programming subdirectory.\\nThese are svga bgi drivers for a variety of cards.\\n\\n[from the README]:\\n\"Card types supported: (SuperVGA drivers)\\n Ahead, ATI, Chips & Tech, Everex, Genoa, Paradise, Oak, Trident (both 8800 \\n and 8900, 9000), Tseng (both 3000 and 4000 chipsets) and Video7.\\n These drivers will also work on video cards with VESA capability.\\n The tweaked drivers will work on any register-compatible VGA card.\"\\n\\nenjoy,\\nClark Verbrugge\\nclump@cs.mcgill.ca\\n\\n--\\n\\n HONK HONK BLAT WAK WAK WAK WAK WAK UNGOW!\\n\\n',\n", + " 'From: pooder@rchland.vnet.ibm.com (Don Fearn)\\nSubject: Re: Antifreeze/coolant\\nReply-To: pooder@msus1.msus.edu\\t\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM\\nNntp-Posting-Host: garnet.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 34\\n\\nIn article <1993Apr15.193938.8569@research.nj.nec.com>, behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n|> \\tFor those of you with motorcycles of the liquid-cooled persuasion,\\n|> what brand of coolant do you use and why? I am looking for aluminum-safe\\n|> coolant, preferably phosphate-free, and preferably cheaper than $13/gallon.\\n|> (Can you believe it: the Kaw dealer wants $4.95 a QUART for the Official\\n|> Blessed Holy Kawasaki Coolant!!! No way I\\'m paying that usury...)\\n|> \\n\\nPrestone. I buy it at ShopKo for less \\nthan that a _gallon_. BMW has even more\\nexpensive stuff than Kawasaki (must be \\nfrom grapes only grown in certain parts of\\nthe fatherland), but BMW Dave* said \"Don\\'t \\nworry about it -- just change it yearly and\\nkeep it topped off\". It\\'s been keeping \\nGretchen happy since \\'87, so I guess it\\'s OK.\\n\\nKept my Rabbit\\'s aluminum radiator hoppy for\\n12 years and 130,000 miles, too, so I guess\\nit\\'s aluminum safe. \\n\\n*Former owner of the late lamented Rochester \\nBMW Motorcycles and all around good guy.\\n\\n-- \\n\\n\\n Pooder - Rochester, MN - DoD #591 \\n -------------------------------------------------------------------------\\n \"What Do *You* Care What Other People Think?\" -- Richard Feynman \\n -------------------------------------------------------------------------\\n I share garage space with: Gretchen - \\'86 K75 Harvey - \\'72 CB500 \\n -------------------------------------------------------------------------\\n << Note the different \"Reply-To:\" address if you want to send me e-mail>>\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Vandalizing the sky\\nOrganization: University of Illinois at Urbana\\nLines: 50\\n\\nyamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n\\n>enzo@research.canon.oz.au (Enzo Liguori) writes:\\n>>WHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n\\n>>1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\n>>In 1950, science fiction writer Robert Heinlein published \"The\\n>>Man Who Sold the Moon,\" which involved a dispute over the sale of\\n>>rights to the Moon for use as billboard. NASA has taken the firsteps toward this\\n>>hideous vision of the future. Observers were\\n>>startled this spring when a NASA launch vehicle arrived at the\\n>>pad with \"SCHWARZENEGGER\" painted in huge block letters on the\\n>>side of the booster rockets. Space Marketing Inc. had arranged\\n>>for the ad to promote Arnold\\'s latest movie.\\n\\n>Well, if you\\'re going to get upset with this, you might as well direct\\n>some of this moral outrage towards Glavcosmos as well. They pioneered\\n>this capitalist application of booster adverts long before NASA.\\n\\nIn fact, you can all direct your ire at the proper target by ingoring NASA \\naltogether. The rocket is a commercial launch vechicle - a Conestoga flying \\na COMET payload. NASA is simply the primary customer. I believe SDIO has a\\nsmall payload as well. The advertising space was sold by the owners of the\\nrocket, who can do whatever they darn well please with it. In addition, these\\nanonymous \"observers\" had no reason to be startled. The deal made Space News\\nat least twice. \\n\\n>>Now, Space Marketing\\n>>is working with University of Colorado and Livermore engineers on\\n>>a plan to place a mile-long inflatable billboard in low-earth\\n>>orbit.\\n>>NASA would provide contractual launch services. However,\\n>>since NASA bases its charge on seriously flawed cost estimates\\n>>(WN 26 Mar 93) the taxpayers would bear most of the expense. \\n\\n>>Is NASA really supporting this junk?\\n\\n>And does anyone have any more details other than what was in the WN\\n>news blip? How serious is this project? Is this just in the \"wild\\n>idea\" stage or does it have real funding?\\n\\nI think its only fair to find that out before everyone starts having a hissy\\nfit. The fact that they bothered to use the conditional tense suggests that\\nit has not yet been approved.\\n\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " 'From: dewey@risc.sps.mot.com (Dewey Henize)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nOrganization: Motorola, Inc. -- Austin,TX\\nLines: 48\\nNNTP-Posting-Host: rtfm.sps.mot.com\\n\\nIn article <1993Apr15.212943.15118@bnr.ca> (Rashid) writes:\\n[deletions]\\n>\\n>The fatwa was levelled at the person of Rushdie - any actions of\\n>Rushdie that feed the situation contribute to the legitimization of\\n>the ruling. The book remains in circulation not by some independant\\n>will of its own but by the will of the author and the publishers. The fatwa\\n>against the person of Rushdie encompasses his actions as well. The\\n>crime was certainly a crime in progress (at many levels) and was being\\n>played out (and played up) in the the full view of the media.\\n>\\n>P.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\n>applies to Rushdie and may be encompassed under the umbrella\\n>of the \"fasad\" ruling.\\n\\nIf this is grounded firmly in Islam, as you claim, then you have just\\nexposed Islam as the grounds for terrorism, plain and simple.\\n\\nWhether you like it or not, whether Rushdie acted like a total jerk or\\nnot, there is no acceptable civilized basis for putting someone in fear\\nof their life for words.\\n\\nIt simply does not matter whether his underlying motive was to find the\\nworst possible way he could to insult Muslims and their beliefs, got that?\\nYou do not threaten the life of someone for words - when you do, you\\nquite simply admit the backruptcy of your position. If you support\\nthreatening the life of someone for words, you are not yet civilized.\\n\\nThis is exactly where I, and many of the people I know, have to depart\\nfrom respecting the religions of others. When those beliefs allow and\\nencourage (by interpretation) the killing of non-physical opposition.\\n\\nYou, or I or anyone, are more than privledged to believe that someone,\\nwhether it be Rushdie or Bush or Hussien or whover, is beyond the pale\\nof civilized society and you can condemn his/her soul, refuse to allow\\nany members of your association to interact with him/her, _peacably_\\ndemonstrate to try to convince others to disassociate themselves from\\nthe \"miscreants\", or whatever, short of physical force.\\n\\nBut once you physically threaten, or support physical threats, you get\\nmuch closer to your earlier comparison of rape - with YOU as the rapist\\nwho whines \"She asked for it, look how she was dressed\".\\n\\nBlaming the victim when you are unable to be civilized doesn\\'t fly.\\n\\nDew\\n-- \\nDewey Henize Sys/Net admin RISC hardware (512) 891-8637 pager 928-7447 x 9637\\n',\n", + " \"Subject: Re: Bikes vs. Horses (was Re: insect impac\\nFrom: emd@ham.almanac.bc.ca\\nDistribution: world\\nOrganization: Robert Smits\\nLines: 21\\n\\ncooper@mprgate.mpr.ca (Greg Cooper) writes:\\n\\n> In article <1qeftj$d0i@sixgun.East.Sun.COM>, egreen@east.sun.com (Ed Green - \\n> >In article sda@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturde\\n> >>\\n> >>\\tOnly exceptional ones like me. Average ones like you can barely fart\\n> >>by themselves.\\n> >\\n> >Fuck you very much, Mike.\\n> >\\n> \\n> Gentlemen _please_. \\n> -- \\n\\n\\nGreg's obviously confused. There aren't many (any) gentlemen on this \\nnewsgroup. Well, maybe. One or two.\\n\\n\\nRobert Smits Ladysmith BC | If Lucas built weapons, wars\\nemd@ham.almanac.bc.ca | would never start, either.\\n\",\n", + " \"From: collins@well.sf.ca.us (Steve Collins)\\nSubject: Re: Orbital RepairStation\\nNntp-Posting-Host: well.sf.ca.us\\nOrganization: Whole Earth 'Lectronic Link\\nLines: 29\\n\\n\\nThe difficulties of a high Isp OTV include:\\nLong transfer times (radiation damage from VanAllen belts for both\\n the spacecraft and OTV\\nArcjets or Xenon thrusters require huge amounts of power so you have\\nto have either nuclear power source (messy, dangerous and source of\\nradiation damage) or BIG solar arrays (sensitive to radiation, or heavy)\\nthat make attitude control and docking a big pain.\\n\\nIf you go solar, you have to replace the arrays every trip, with\\ncurrent technology. Nuclear power sources are strongly restricted\\nby international treaty.\\n\\nRefueling (even for very high Isp like xenon) is still required and]\\nturn out to be a pain.\\n\\nYou either have to develop autonomous rendezvous or long range teleoperation\\nto do docking or ( and refueling) .\\n\\nYou still can't do much plane change because the deltaV required is so high!\\n\\nThe Air Force continues to look at doing things this way though. I suppose\\nthey are biding their time till the technology becomes available and\\nthe problems get solved. Not impossible in principle, but hard to\\ndo and marginally cheaper than one shot rockets, at least today.\\n\\nJust a few random thoughts on high Isp OTV's. I designed one once...\\n\\n Steve Collins\\n\",\n", + " \"From: lm001@rrz.Uni-Koeln.DE (Erwin H. Keeve)\\nSubject: Marchin Cubes\\nOrganization: Regional Computing Center, University of Cologne\\nLines: 27\\nDistribution: world\\nNNTP-Posting-Host: rs1.rrz.uni-koeln.de\\nKeywords: Polygon Reduction\\n\\n\\n\\nHi there,\\n\\nis there anybody who know a polygon_reduction algorithm for\\nmarching cube surfaces. e.g. the algirithm of Schroeder,\\nSiggraph'92.\\n\\nFor any hints, hugs and kisses.\\n\\n- Erwin\\n\\n ,,,\\n (o o)\\n ___________________________________________oOO__(-)__OOo_____________\\n|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|_|\\n|_|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|\\n| | |\\n| Erwin Keeve | adress: Peter-Welter-Platz 2 |\\n| | W-5000 Cologne 1, Germany |\\n| | |\\n| Dept. of Computergraphics & | phone: +49-221-20189-132 (-192) |\\n| Computeranimation | FAX: +49-221-20189-17 |\\n| | |\\n| Academy of Media Arts Cologne | Email: keeve@khm.uni-koeln.de |\\n|_______________________________|_____________________________________|\\n\\n\",\n", + " \"From: shaig@Think.COM (Shai Guday)\\nSubject: Basil, opinions? (Re: Water on the brain)\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 40\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article <1993Apr15.204930.9517@thunder.mcrcim.mcgill.edu>, hasan@McRCIM.McGill.EDU writes:\\n|> \\n|> In article <1993Apr15.055341.6075@nysernet.org>, astein@nysernet.org (Alan Stein) writes:\\n|> |> I guess Hasan finally revealed the source of his claim that Israel\\n|> |> diverted water from Lebanon--his imagination.\\n|> |> -- \\n|> |> Alan H. Stein astein@israel.nysernet.org\\n|> Mr. water-head,\\n|> i never said that israel diverted lebanese rivers, in fact i said that\\n|> israel went into southern lebanon to make sure that no \\n|> water is being used on the lebanese\\n|> side, so that all water would run into Jordan river where there\\n|> israel will use it !#$%^%&&*-head.\\n\\nOf course posting some hard evidence or facts is much more\\ndifficult. You have not bothered to substantiate this in\\nany way. Basil, do you know of any evidence that would support\\nthis?\\n\\nI can just imagine a news report from ancient times, if Hasan\\nhad been writing it.\\n\\nNewsflash:\\nCairo AP (Ancient Press). Israel today denied Egypt acces to the Red\\nSea. In a typical display of Israelite agressiveness, the leader of\\nthe Israelite slave revolt, former prince Moses, parted the Red Sea.\\nThe action is estimated to have caused irreparable damage to the environment.\\nEgyptian authorities have said that thousands of fisherman have been\\ndenied their livelihood by the parted waters. Pharaoh's brave charioteers\\nwere successful in their glorious attempt to cause the waters of the\\nRed Sea to return to their normal state. Unfortunately they suffered\\nheavy casualties while doing so.\\n\\n|> Hasan \\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n\",\n", + " 'From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: images of earth\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM UK Labs\\nLines: 6\\n\\nLook in the /pub/SPACE directory on ames.arc.nasa.gov - there are a number\\nof earth images there. You may have to hunt around the subdirectories as\\nthings tend to be filed under the mission (ie, \"APOLLO\") rather than under\\t\\nthe image subject.\\t\\n\\nRick\\n',\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: DC-X update???\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 25\\n\\nIn article schumach@convex.com (Richard A. Schumacher) writes:\\n\\n>Would the sub-orbital version be suitable as-is (or \"as-will-be\") for use\\n>as a reuseable sounding rocket?\\n\\nDC-X as is today isn\\'t suitable for this. However, the followon SDIO\\nfunds will. A reusable sounding rocket was always SDIO\\'s goal.\\n\\n>Thank Ghod! I had thought that Spacelifter would definitely be the\\n>bastard Son of NLS.\\n\\nSo did I. There is a lot going on now and some reports are due soon \\nwhich should be very favorable. The insiders have been very bush briefing\\nthe right people and it is now paying off.\\n\\nHowever, public support is STILL critical. In politics you need to keep\\nconstant pressure on elected officials.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " 'From: moseley@u.washington.edu (Steve L. Moseley)\\nSubject: Re: Observation re: helmets\\nOrganization: Microbial Pathogenesis and Motorcycle Maintenance\\nLines: 20\\nDistribution: world\\nNNTP-Posting-Host: microb0.biostat.washington.edu\\n\\nIn article <1qk5oi$d0i@sixgun.East.Sun.COM>\\n egreen@east.sun.com (Ed Green - Pixel Cruncher) writes:\\n\\n>If your primary concern is protecting the passenger in the event of a\\n>crash, have him or her fitted for a helmet that is their size. If your\\n>primary concern is complying with stupid helmet laws, carry a real big\\n>spare (you can put a big or small head in a big helmet, but not in a\\n>small one).\\n\\nSo what should I carry if I want to comply with intelligent helmet laws?\\n\\n(The above comment in no way implies support for any helmet law, nor should \\nsuch support be inferred. A promise is a promise.)\\n\\nSteve\\n__________________________________________________________________________\\nSteve L. Moseley moseley@u.washington.edu\\nMicrobiology SC-42 Phone: (206) 543-2820\\nUniversity of Washington FAX: (206) 543-8297\\nSeattle, WA 98195\\n',\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Objective morality (was Re: Humans have \"gone somewhat beyond\" what, exactly? In one thread\\n>you\\'re telling us that natural morality is what animals do to\\n>survive, and in this thread you are claiming that an omniscient\\n>being can \"definitely\" say what is right and what is wrong. So\\n>what does this omniscient being use for a criterion? The long-\\n>term survival of the human species, or what?\\n\\nWell, that\\'s the question, isn\\'t it? The goals are probably not all that\\nobvious. We can set up a few goals, like happiness and liberty and\\nthe golden rule, etc. But these goals aren\\'t inherent. They have to\\nbe defined before an objective system is possible.\\n\\n>How does omniscient map into \"definitely\" being able to assign\\n>\"right\" and \"wrong\" to actions?\\n\\nIt is not too difficult, one you have goals in mind, and absolute\\nknoweldge of everyone\\'s intent, etc.\\n\\n>>Now you are letting an omniscient being give information to me. This\\n>>was not part of the original premise.\\n>Well, your \"original premises\" have a habit of changing over time,\\n>so perhaps you\\'d like to review it for us, and tell us what the\\n>difference is between an omniscient being be able to assign \"right\"\\n>and \"wrong\" to actions, and telling us the result, is. \\n\\nOmniscience is fine, as long as information is not given away. Isn\\'t\\nthis the resolution of the free will problem? An interactive omniscient\\nbeing changes the situation.\\n\\n>>Which type of morality are you talking about? In a natural sense, it\\n>>is not at all immoral to harm another species (as long as it doesn\\'t\\n>>adversely affect your own, I guess).\\n>I\\'m talking about the morality introduced by you, which was going to\\n>be implemented by this omniscient being that can \"definitely\" assign\\n>\"right\" and \"wrong\" to actions.\\n>You tell us what type of morality that is.\\n\\nWell, I was speaking about an objective system in general. I didn\\'t\\nmention a specific goal, which would be necessary to determine the\\nmorality of an action.\\n\\nkeith\\n',\n", + " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Serdar\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nWhat are you, retarded?\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", + " 'From: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nSubject: Re: rejoinder. Questions to Israelis\\nReply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nOrganization: The National Capital Freenet\\nLines: 34\\n\\n\\nIn a previous article, cpr@igc.apc.org (Center for Policy Research) says:\\n\\n>today ? Finally, if Israel wants peace, why can\\'t it declare what\\n>it considers its legitimate and secure borders, which might be a\\n>base for negotiations? Having all the above facts in mind, one\\n>cannot blame Arab countries to fear Israeli expansionism, as a\\n>number of wars have proved (1948, 1956, 1967, 1982).\\n\\nOh yeah, Israel was really ready to \"expand its borders\" on the holiest day\\nof the year (Yom Kippur) when the Arabs attacked in 1973. Oh wait, you\\nchose to omit that war...perhaps because it 100% supports the exact \\nOPPOSITE to the point you are trying to make? I don\\'t think that it\\'s\\nbecause it was the war that hit Israel the hardest. Also, in 1967 it was\\nEgypt, not Israel who kicked out the UN force. In 1948 it was the Arabs\\nwho refused to accept the existance of Israel BASED ON THE BORDERS SET\\nBY THE UNITED NATIONS. In 1956, Egypt closed off the Red Sea to Israeli\\nshipping, a clear antagonistic act. And in 1982 the attack was a response\\nto years of constant shelling by terrorist organizations from the Golan\\nHeights. Children were being murdered all the time by terrorists and Israel\\nfinally retaliated. Nowhere do I see a war that Israel started so that \\nthe borders could be expanded.\\n \\n Steve\\n-- \\n------------------------------------------------------------------------------\\n| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\\n| Mossad@qube.ocunix.on.ca |\\n| <> |\\n',\n", + " 'From: yamauchi@ces.cwru.edu (Brian Yamauchi)\\nSubject: Griffin / Office of Exploration: RIP\\nOrganization: Case Western Reserve University\\nLines: 19\\nDistribution: world\\nNNTP-Posting-Host: yuggoth.ces.cwru.edu\\n\\nAny comments on the absorbtion of the Office of Exploration into the\\nOffice of Space Sciences and the reassignment of Griffin to the \"Chief\\nEngineer\" position? Is this just a meaningless administrative\\nshuffle, or does this bode ill for SEI?\\n\\nIn my opinion, this seems like a Bad Thing, at least on the surface.\\nGriffin seemed to be someone who was actually interested in getting\\nthings done, and who was willing to look an innovative approaches to\\ngetting things done faster, better, and cheaper. It\\'s unclear to me\\nwhether he will be able to do this at his new position.\\n\\nDoes anyone know what his new duties will be?\\n--\\n_______________________________________________________________________________\\n\\nBrian Yamauchi\\t\\t\\tCase Western Reserve University\\nyamauchi@alpha.ces.cwru.edu\\tDepartment of Computer Engineering and Science\\n_______________________________________________________________________________\\n\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: sgi\\nLines: 24\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <115468@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n|> In article <1qg79g$kl5@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >You are amazed that I find it difficult to grasp it when\\n|> >people justify death-threats against Rushdie with the \\n|> >claim \"he was born Muslim?\"\\n|> \\n|> This is empty rhetoric. I am amazed at your inability to understand what\\n|> I am saying not that you find it difficult to \"grasp it when people\\n|> justify death-threats...\". I find it amazing that your ability to\\n|> consider abstract questions in isolation. You seem to believe in the\\n|> falsity of principles by the consequence of their abuse. You must *hate*\\n|> physics!\\n\\nYou\\'re closer than you might imagine. I certainly despised living\\nunder the Soviet regime when it purported to organize society according\\nto what they fondly imagined to be the \"objective\" conclusions of\\nMarxist dialectic.\\n\\nBut I don\\'t hate Physics so long as some clown doesn\\'t start trying\\nto control my life on the assumption that we are all interchangeable\\natoms, rather than individual human beings.\\n\\njon. \\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Metric vs English\\nArticle-I.D.: mksol.1993Apr6.131900.8407\\nOrganization: Texas Instruments Inc\\nLines: 31\\n\\nIn <1993Apr5.195215.16833@pixel.kodak.com> dj@ekcolor.ssd.kodak.com (Dave Jones) writes:\\n\\n>Keith Mancus (mancus@sweetpea.jsc.nasa.gov) wrote:\\n>> Bruce_Dunn@mindlink.bc.ca (Bruce Dunn) writes:\\n>> > SI neatly separates the concepts of \"mass\", \"force\" and \"weight\"\\n>> > which have gotten horribly tangled up in the US system.\\n>> \\n>> This is not a problem with English units. A pound is defined to\\n>> be a unit of force, period. There is a perfectly good unit called\\n>> the slug, which is the mass of an object weighing 32.2 lbs at sea level.\\n>> (g = 32.2 ft/sec^2, of course.)\\n>> \\n\\n>American Military English units, perhaps. Us real English types were once \\n>taught that a pound is mass and a poundal is force (being that force that\\n>causes 1 pound to accelerate at 1 ft.s-2). We had a rare olde tyme doing \\n>our exams in those units and metric as well.\\n\\nAmerican, perhaps, but nothing military about it. I learned (mostly)\\nslugs when we talked English units in high school physics and while\\nthe teacher was an ex-Navy fighter jock the book certainly wasn\\'t\\nproduced by the military.\\n\\n[Poundals were just too flinking small and made the math come out\\nfunny; sort of the same reason proponents of SI give for using that.] \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: arf@genesis.MCS.COM (Jack Schmidling)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: MCSNet Contributor, Chicago, IL\\nLines: 26\\nNNTP-Posting-Host: localhost.mcs.com\\n\\nIn article jim@specialix.com (Jim Maurer) writes:\\n>arf@genesis.MCS.COM (Jack Schmidling) writes:\\n>>>\\n>\\n>\\n>>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>\\n>The donations are tax deductible like any donations to a non-profit\\n>organization. I\\'ve donated money to a group restoring streetcars\\n>and it was tax deductible. Why don\\'t you contribute to a group\\n>helping the homeless if you so concerned?\\n\\nI do (did) contribute to the ARF mortgage fund but when interest\\nrates plumetted, I just paid it off.\\n\\nThe problem is, I couldn\\'t convince Congress to move my home to \\na nicer location on Federal land.\\n\\nBTW, even though the building is alleged to be funded by tax exempt\\nprivate funds, the maintainence and operating costs will be borne by \\ntaxpayers forever.\\n\\nWould anyone like to guess how much that will come to and tell us why\\nthis point is never mentioned?\\n\\njs\\n',\n", + " \"From: camter28@astro.ocis.temple.edu (Carter Ames)\\nSubject: Re: alt.raytrace (potential group)\\nOrganization: Temple University\\nLines: 7\\nNntp-Posting-Host: astro.ocis.temple.edu\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\n\\n\\n\\n Yes, please create the group alt.raytrace soon!!\\nI'm hooked on pov.\\ngeez. like I don't have anything better to do....\\nOH!! dave letterman is on...\\n\",\n", + " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Magellan Update - 04/23/93\\nOrganization: Jet Propulsion Laboratory\\nLines: 34\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Magellan, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from Doug Griffith, Magellan Project Manager\\n\\n MAGELLAN STATUS REPORT\\n April 23, 1993\\n\\n1. The Magellan spacecraft continues to operate normally, gathering\\ngravity data to plot the density variations of Venus in the\\nmid-latitudes. The solar panel offpoint was returned to zero degrees\\nand spacecraft temperatures dropped 2-3 degrees C.\\n\\n2. An end-to-end test of the Delayed Aerobraking Data readout\\nprocess was conducted this week in preparation for the Transition\\nExperiment. There was some difficulty locking up to the data frames,\\nand engineers are presently checking whether the problem was in\\nequipment at the tracking station.\\n\\n3. Magellan has completed 7277 orbits of Venus and is now 32 days\\nfrom the end of Cycle 4 and the start of the Transition Experiment.\\n\\n4. Magellan scientists were participating in the Brown-Vernadsky\\nMicrosymposium at Brown University in Providence, RI, this week. This\\njoint meeting of U.S. and Russian Venus researchers has been\\ncontinuing for many years.\\n\\n5. A three-day simulation of Transition Experiment aerobraking\\nactivities is planned for next week, including Orbit Trim Maneuvers\\nand Starcal (Star calibration) Orbits.\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n',\n", + " 'From: hasan@McRCIM.McGill.EDU\\nSubject: Re: ISLAM BORDERS. ( was :Israel: misisipi to ganges)\\nOriginator: hasan@lightning.mcrcim.mcgill.edu\\nNntp-Posting-Host: lightning.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 26\\n\\n\\nIn article <4805@bimacs.BITNET>, ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n|> \\n|> Hassan and some other seemed not to be a ware that Jews celebrating on\\n|> these days Thje Passover holliday the holidy of going a way from the\\n|> Nile.\\n|> So if one let his imagination freely work it seemed beter to write\\n|> that the Zionist drean is \"from the misisipi to the Nile \".\\n\\nthe question is by going East or West from the misisipi. on either choice\\nyou would loose Palestine or Broklyn, N.Y.\\n\\nI thought you\\'re gonna say fromn misisipi back to the misisipi !\\n\\n|> By the way :\\n|> \\n|> What are the borders the Islamic world dreams about ??\\n|> \\n|> Islamic readers, I am waiting to your honest answer.\\n\\nLet\\'s say : \" let\\'s establish the islamic state first\" or \"let\\'s free our\\noccupied lands first\". And then we can dream about expansion, Mr. Gideon\\n\\n\\nhasan\\n',\n", + " 'From: qpliu@phoenix.Princeton.EDU (q.p.liu)\\nSubject: Re: free moral agency\\nOriginator: news@nimaster\\nNntp-Posting-Host: phoenix.princeton.edu\\nReply-To: qpliu@princeton.edu\\nOrganization: Princeton University\\nLines: 26\\n\\nIn article kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n>In article <1993Apr15.000406.10984@Princeton.EDU> qpliu@phoenix.Princeton.EDU (q.p.liu) writes:\\n>\\n>>>So while Faith itself is a Gift, obedience is what makes Faith possible.\\n>>What makes obeying different from believing?\\n\\n>\\tI am still wondering how it is that I am to be obedient, when I have \\n>no idea to whom I am to be obedient!\\n\\nIt is all written in _The_Wholly_Babble:_the_Users_Guide_to_Invisible_\\n_Pink_Unicorns_.\\n\\nTo be granted faith in invisible pink unicorns, you must read the Babble,\\nand obey what is written in it.\\n\\nTo obey what is written in the Babble, you must believe that doing so is\\nthe way to be granted faith in invisible pink unicorns.\\n\\nTo believe that obeying what is written in the Babble leads to believing\\nin invisible pink unicorns, you must, essentially, believe in invisible\\npink unicorns.\\n\\nThis bit of circular reasoning begs the question:\\nWhat makes obeying different from believing?\\n-- \\nqpliu@princeton.edu Standard opinion: Opinions are delta-correlated.\\n',\n", + " \"From: hugo@hydra.unm.edu (patrice cummings)\\nSubject: polygon orientation in DXF?\\nOrganization: University of New Mexico, Albuquerque\\nLines: 21\\nNNTP-Posting-Host: hydra.unm.edu\\n\\n\\nHi. I'm writing a program to convert .dxf files to a database\\nformat used by a 3D graphics program I've written. My program stores\\nthe points of a polygon in CCW order. I've used 3D Concepts a \\nlittle and it seems that the points are stored in the order\\nthey are drawn.\\n\\nDoes the DXF format have a way of indicating which order the \\npoints are stored in, CW or CCW? Its easy enough to convert,\\nbut if I don't know which way they are stored, I dont know \\nwhich direction the polygon should be visible from.\\n\\nIf DXF doesn't handle this, can anyone recommend a workaround?\\nThe best I can think of is to create two polygons for each one\\nin the DXF file, one stored CW and the other CCW. But that\\ndoubles the number of polygons and decreases speed...\\n\\nThanks in advance for any help,\\n\\nPatrice\\nhugo@hydra.unm.edu \\n\",\n", + " \"From: ricardo@rchland.vnet.ibm.com (Ricardo Hernandez Muchado)\\nSubject: Re: Rumours about 3DO ???\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: rs43873.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 74\\n\\nIn article <1993Apr15.164940.11632@mercury.unt.edu>, Sean McMains writes:\\n|> In article <1993Apr15.144843.19549@rchland.ibm.com> Ricardo Hernandez\\n|> Muchado, ricardo@rchland.vnet.ibm.com writes:\\n|> > And CD-I's CPU doesn't help much either. I understand it is\\n|> >a 68070 (supposedly a variation of a 68000/68010) running at something\\n|> >like 7Mhz. With this speed, you *truly* need sprites.\\n|> \\n|> Wow! A 68070! I'd be very interested to get my hands on one of these,\\n|> especially considering the fact that Motorola has not yet released the\\n|> 68060, which is supposedly the next in the 680x0 lineup. 8-D\\n\\n Sean, the 68070 exists! :-)\\n\\n|> \\n|> Ricardo, the animation playback to which Lawrence was referring in an\\n|> earlier post is plain old Quicktime 1.5 with the Compact Video codec.\\n|> I've seen digitized video (some of Apple's early commercials, to be\\n|> precise) running on a Centris 650 at about 30fps very nicely (16-bit\\n|> color depth). I would expect that using the same algorithm, a RISC\\n|> processor should be able to approach full-screen full-motion animation,\\n|> though as you've implied, the processor will be taxed more with highly\\n|> dynamic material.\\n|> ========================================================================\\n|> Sean McMains | Check out the Gopher | Phone:817.565.2039\\n|> University of North Texas | New Bands Info server | Fax :817.565.4060\\n|> P.O. Box 13495 | at seanmac.acs.unt.edu | E-Mail:\\n|> Denton TX 76203 | | McMains@unt.edu\\n\\n\\n Sean, I don't want to get into a 'mini-war' by what I am going to say,\\nbut I have to be a little bit skeptic about the performance you are\\nclaiming on the Centris, you'll see why (please, no-flames, I reserve\\nthose for c.s.m.a :-) )\\n\\n I was in Chicago in the last consumer electronics show, and Apple had a\\nbooth there. I walked by, and they were showing real-time video capture\\nusing a (Radious or SuperMac?) card to digitize and make right on the spot\\nquicktime movies. I think the quicktime they were using was the old one\\n(1.5).\\n\\n They digitized a guy talking there in 160x2xx something. It played back quite\\nnicely and in real time. The guy then expanded the window (resized) to 25x by\\n3xx (320 in y I think) and the frame rate decreased enough to notice that it\\nwasn't 30fps (or about 30fps) anymore. It dropped to like 15 fps. Then he\\nincreased it just a bit more, and it dropped to 10<->12 fps. \\n\\n Then I asked him what Mac he was using... He was using a Quadra (don't know\\nwhat model, 900?) to do it, and he was telling the guys there that the Quicktime\\ncould play back at the same speed even on an LCII.\\n\\n Well, I spoiled his claim so to say, since a 68040 Quadra Mac was having\\na little bit of trouble. And this wasn't even from the hardisk! This was\\nfrom memory!\\n\\n Could it be that you saw either a newer version of quicktime, or some\\nhardware assisted Centris, or another software product running the \\nanimation (like supposedly MacroMind's Accelerator?)?\\n\\n Don't misunderstand me, I just want to clarify this.\\n\\n But for the sake of the posting about a computer doing it or not, I can\\nclaim 320x200 (a tad more with overscan) being done in 256,000+ colors in \\nmy computer (not from the hardisk) at 30fps with Scala MM210.\\n\\n But I agree, if we consider MPEG stuff, I think a multimedia consumer\\nlow-priced box has a lot of market... I just think 3DO would make it, \\nno longer CD-I.\\n\\n--------------------------------------\\nRaist New A1200 owner 320<->1280 in x, 200<->600 in y\\nin 256,000+ colors from a 24-bit palette. **I LOVE IT!**<- New Low Fat .sig\\n*don't e-mail me* -> I don't have a valid address nor can I send e-mail\\n\\n \\n\",\n", + " 'Reply-To: dcs@witsend.tnet.com\\nFrom: \"D. C. Sessions\" \\nOrganization: Nobody but me -- really\\nX-Newsposter: TMail version 1.20R\\nSubject: Re: Zionism is Racism\\nDistribution: world\\nLines: 23\\n\\nIn <1993Apr21.104330.16704@ifi.uio.no>, michaelp@ifi.uio.no (Michael Schalom Preminger) wrote:\\n# \\n# In article <20APR93.23565659.0109@VM1.MCGILL.CA>, B8HA000 writes:\\n# > In Re:Syria\\'s Expansion, the author writes that the UN thought\\n# > Zionism was Racism and that they were wrong. They were correct\\n# > the first time, Zionism is Racism and thankfully, the McGill Daily\\n# > (the student newspaper at McGill) was proud enough to print an article\\n# > saying so. If you want a copy, send me mail.\\n# > \\n# Was the article about zionism? or about something else. The majority\\n# of people I heard emitting this ignorant statement, do not really\\n# know what zionism is. They have just associated it with what they think\\n# they know about the political situation in the middle east. \\n# \\n# So Steve: Lets here, what IS zionism?\\n\\n Assuming that you mean \\'hear\\', you weren\\'t \\'listening\\': he just\\n told you, \"Zionism is Racism.\" This is a tautological statement.\\n\\n--- D. C. Sessions Speaking for myself ---\\n--- Note new network address: dcs@witsend.tnet.com ---\\n--- Author (and everything else!) of TMail (DOS mail/news shell) ---\\n',\n", + " \"From: aron@tikal.ced.berkeley.edu (Aron Bonar)\\nSubject: Re: 3d-Studio V2.01 : Any differences with previous version\\nOrganization: University of California, Berkeley\\nLines: 18\\nDistribution: world\\nNNTP-Posting-Host: tikal.ced.berkeley.edu\\n\\nIn article <1993Apr22.021708.13381@hparc0.aus.hp.com>, doug@hparc0.aus.hp.com (Doug Parsons) writes:\\n|> FOMBARON marc (fombaron@ufrima.imag.fr) wrote:\\n|> : Are there significant differences between V2.01 and V2.00 ?\\n|> : Thank you for helping\\n|> \\n|> \\n|> No. As I recall, the only differences are in the 3ds.set parameters - some\\n|> of the defaults have changed slightly. I'll look when I get home and let\\n|> you know, but there isn't enough to actually warrant upgrading.\\n|> \\n|> douginoz\\n\\nWrong...the major improvements for 2.01 and 2.01a are in the use of IPAS routines\\nfor 3d studio. They have increased in speed anywhere from 30-200% depending\\non which ones you use.\\n\\nAll the Yost group IPAS routines that you can buy separate from the 3d studio\\npackage require the use of 2.01 or 2.01a. They are too slow with 2.00.\\n\",\n", + " 'From: cbrooks@ms.uky.edu (Clayton Brooks)\\nSubject: Re: Changing sprocket ratios (79 Honda CB750)\\nOrganization: University Of Kentucky, Dept. of Math Sciences\\nLines: 15\\n\\nkarish@gondwana.Stanford.EDU (Chuck Karish) writes:\\n\\n>That\\'s a twin-cam, right? \\n\\nYep...I think it\\'s the only CB750 with a 630 chain.\\nAfter 14 years, it\\'s finally stretching into the \"replace\" zone.\\n\\n>Honda 750s don\\'t have the widest of power bands.\\n\\n I know .... I know.\\n-- \\n Clayton T. Brooks _,,-^`--. From the heart cbrooks@ms.uky.edu\\n 722 POT U o\\'Ky .__,-\\' * \\\\ of the blue cbrooks@ukma.bitnet\\n Lex. KY 40506 _/ ,/ grass and {rutgers,uunet}!ukma!cbrooks\\n 606-257-6807 (__,-----------\\'\\' bourbon country AMA NMA MAA AMS ACBL DoD\\n',\n", + " 'From: Dave Dal Farra \\nSubject: Re: CB750 C with flames out the exhaust!!!!---->>>\\nX-Xxdate: Tue, 20 Apr 93 14:15:17 GMT\\nNntp-Posting-Host: bcarm41a\\nOrganization: BNR Ltd.\\nX-Useragent: Nuntius v1.1.1d9\\nLines: 49\\n\\n\\nIn article <1993Apr20.045032.9199@research.nj.nec.com> Chris BeHanna,\\nbehanna@syl.nj.nec.com writes:\\n>In article <1993Apr19.204159.17534@bnr.ca> Dave Dal Farra \\nwrites:\\n>>Reminds me of a great editorial by Bruce Reeve a couple months ago\\n>>in Cycle Canada.\\n>>\\n>>He was so pissed off with cops pulling over speeders in dangerous\\n>>spots (and often blind corners) that one day he decided to get\\n>>revenge.\\n>>\\n>>Cruising on a factory loaner ZZR1100 test bike, he noticed a cop \\n>>had pulled over a motorist on an on or off ramp with almost no\\n>>shoulder. Being a bright lad, he hit his bike\\'s kill switch\\n>>just before passing the cop, who happened to be bending towards\\n>>the offending motorist there-by exposing his glutes to the\\n>>passing world.\\n>>\\n>>With his ignition system now dead, he pumped his throtle two\\n>>or three times to fill his exhaust canister\\'s with volatile raw fuel.\\n>>\\n>>All it took was a stab at the kill switch to re-light the ignition\\n>>and send a 10\\' flame in Sargeant Swell\\'s direction.\\n>>\\n>>I wonder if any cycle cops read Cycle Canada?\\n>\\n>\\tAlthough I agree with the spirit of the action, I do hope that\\n>the rider ponied up the $800 or so it takes to replace the exhaust system\\n>he just destroyed. The owner\\'s manual explicitly warns against such\\n>behavior for exactly that reason: you can destroy your muflers that way.\\n>\\n>Later,\\n>-- \\n>Chris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\n>behanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\n>Disclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\n>agree with any of this anyway? I was raised by a pack of wild corn dogs.\\n\\nYa, Fat Chance. The \"offending\" rider was a moto journalist. Those\\nguys can sell hundreds of bikes with one stroke of the pen and\\nas such get away with murder when it comes to test bikes.\\n\\nOne way or the other, it was probably worth the early expiration of \\none mufler to see a bone head get his butt baked.\\n\\nDave D.F.\\n\"It\\'s true they say that money talks. When mine spoke it said\\n\\'Buy me a Drink!\\'.\"\\n',\n", + " \"From: eder@hsvaic.boeing.com (Dani Eder)\\nSubject: Re: Elevator to the top floor\\nOrganization: Boeing AI Center, Huntsville, AL\\nLines: 56\\n\\n\\nReading from a Amoco Performance Products data sheet, their\\nERL-1906 resin with T40 carbon fiber reinforcement has a compressive\\nstrength of 280,000 psi. It has a density of 0.058 lb/cu in,\\ntherefore the theoretical height for a constant section column\\nthat can just support itself is 4.8 million inches, or 400,000 ft,\\nor 75 Statute miles.\\n\\nNow, a real structure will have horizontal bracing (either a truss\\ntype, or guy wires, or both) and will be used below the crush strength.\\nLet us assume that we will operate at 40% of the theoretical \\nstrength. This gives a working height of 30 miles for a constant\\nsection column. \\n\\nA constant section column is not the limit on how high you can\\nbuild something if you allow a tapering of the cross section\\nas you go up. For example, let us say you have a 280,000 pound\\nload to support at the top of the tower (for simplicity in\\ncalculation). This requires 2.5 square inches of column cross\\nsectional area to support the weight. The mile of structure\\nbelow the payload will itself weigh 9,200 lb, so at 1 mile \\nbelow the payload, the total load is now 289,200 lb, a 3.3% increase.\\n\\nThe next mile of structure must be 3.3% thicker in cross section\\nto support the top mile of tower plus the payload. Each mile\\nof structure must increase in area by the same ratio all the way\\nto the bottom. We can see from this that there is no theoretical\\nlimit on area, although there will be practical limits based\\non how much composites we can afford to by at $40/lb, and how\\nmuch load you need to support on the ground (for which you need\\na foundation that the bedrock can support.\\n\\nLet us arbitrarily choose $1 billion as the limit in costruction\\ncost. With this we can afford perhaps 10,000,000 lb of composites,\\nassuming our finished structure costs $100/lb. The $40/lb figure\\nis just for materials cost. Then we have a tower/payload mass\\nratio of 35.7:1. At a 3.3% mass ratio per mile, the tower\\nheight becomes 111 miles. This is clearly above the significant\\natmosphere. A rocket launched from the top of the tower will still\\nhave to provide orbital velocity, but atmospheric drag and g-losses\\nwill be almost eliminated. G-losses are the component of\\nrocket thrust in the vertical direction to counter gravity,\\nbut which do not contribute to horizontal orbital velocity. Thus\\nthey represent wasted thrust. Together with drag, rockets starting\\nfrom the ground have a 15% velocity penalty to contend with.\\n\\nThis analysis is simplified, in that it does not consider wind\\nloads. These will require more structural support over the first\\n15 miles of height. Above that, the air pressure drops to a low\\nenough value for it not to be a big factor.\\n\\nDani Eder\\n\\n-- \\nDani Eder/Meridian Investment Company/(205)464-2697(w)/232-7467(h)/\\nRt.1, Box 188-2, Athens AL 35611/Location: 34deg 37' N 86deg 43' W +100m alt.\\n\",\n", + " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 15\\n\\nWell i\\'m not sure about the story nad it did seem biased. What\\nI disagree with is your statement that the U.S. Media is out to\\nruin Israels reputation. That is rediculous. The U.S. media is\\nthe most pro-israeli media in the world. Having lived in Europe\\nI realize that incidences such as the one described in the\\nletter have occured. The U.S. media as a whole seem to try to\\nignore them. The U.S. is subsidizing Israels existance and the\\nEuropeans are not (at least not to the same degree). So I think\\nthat might be a reason they report more clearly on the\\natrocities.\\n\\tWhat is a shame is that in Austria, daily reports of\\nthe inhuman acts commited by Israeli soldiers and the blessing\\nreceived from the Government makes some of the Holocaust guilt\\ngo away. After all, look how the Jews are treating other races\\nwhen they got power. It is unfortunate.\\n',\n", + " 'From: cpr@igc.apc.org (Center for Policy Research)\\nSubject: Re: From Israeli press. Madness.\\nLines: 8\\nNf-ID: #R:cdp:1483500342:cdp:1483500347:000:151\\nNf-From: cdp.UUCP!cpr Apr 17 15:37:00 1993\\n\\n\\nBefore getting excited and implying that I am posting\\nfabrications, I would suggest the readers to consult the\\nnewspaper in question. \\n\\nTahnks,\\n\\nElias\\n',\n", + " \"Subject: Re: Vandalizing the sky.\\nFrom: thacker@rhea.arc.ab.ca\\nOrganization: Alberta Research Council\\nNntp-Posting-Host: rhea.arc.ab.ca\\nLines: 13\\n\\nIn article , enzo@research.canon.oz.au (Enzo Liguori) writes:\\n\\n<<>>\\n\\n> What about light pollution in observations? (I read somewhere else that\\n> it might even be visible during the day, leave alone at night).\\n\\n> Really, really depressed.\\n> \\n> Enzo\\n\\nNo need to be depressed about this one. Lights aren't on during the day\\nso there shouldn't be any daytime light pollution.\\n\",\n", + " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Motorcycle Security\\nKeywords: nothing will stop a really determined thief\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 24\\n\\nIn article <2500@tekgen.bv.tek.com>, davet@interceptor.cds.tek.com (Dave\\nTharp CDS) writes:\\n|> I saw his bike parked in front of a bar a few weeks later without\\n|> the\\n|> dog, and I wandered in to find out what had happened.\\n|> \\n|> He said, \"Somebody stole m\\' damn dog!\". They left the Harley\\n|> behind.\\n|> \\n\\nAnimal Rights people have been know to do that to other\\n\"Bike riding dogs.cats and Racoons. \\n\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", + " 'From: Patrick C Leger \\nSubject: Re: thoughts on christians\\nOrganization: Sophomore, Electrical and Computer Engineering, Carnegie Mellon, Pittsburgh, PA\\nLines: 51\\nNNTP-Posting-Host: po3.andrew.cmu.edu\\nIn-Reply-To: \\n\\nExcerpts from netnews.alt.atheism: 15-Apr-93 Re: thoughts on christians\\nby Dave Fuller@portal.hq.vi \\n> I\\'m sick of religious types being pampered, looked out for, and WORST\\n> OF ALL . . . . respected more than atheists. There must be an end\\n> in sight.\\n> \\nI think it\\'d help if we got a couple good atheists (or even some good,\\nsteadfast agnostics) in some high political offices. When was the last\\ntime we had an (openly) atheist president? Have we ever? (I don\\'t\\nactually know; these aren\\'t rhetorical questions.) How \\'bout some\\nSupreme court justices? \\n\\nOne thing that really ticked me off a while ago was an ad for a news\\nprogram on a local station...The promo said something like \"Who are\\nthese cults, and why do they prey on the young?\" Ahem. EVER HEAR OF\\nBAPTISM AT BIRTH? If that isn\\'t preying on the young, I don\\'t know what\\nis...\\n\\nI used to be (ack, barf) a Catholic, and was even confirmed...Shortly\\nthereafter I decided it was a load of BS. My mom, who really insisted\\nthat I continue to go to church, felt it was her duty (!) to bring me up\\nas a believer! That was one of the more presumptuous things I\\'ve heard\\nin my life. I suggested we go talk to the priest, and she agreed. The\\npriest was amazingly cool about it...He basically said that if I didn\\'t\\nbelieve it, there was no good in forcing it on me. Actually, I guess he\\nwasn\\'t amazingly cool about it--His response is what you\\'d hope for\\n(indeed, expect) from a human being. I s\\'pose I just _didn\\'t_ expect\\nit... \\n\\nI find it absurd that religion exists; Yet, I can also see its\\nusefulness to people. Facing up to the fact that you\\'re just going to\\nbe worm food in a few decades, and that there isn\\'t some cosmic purpose\\nto humanity and the universe, can be pretty difficult for some people. \\nHaving a readily-available, pre-digested solution to this is pretty\\nattractive, if you\\'re either a) gullible enough, b) willing to suspend\\nyour reasoning abilities for the piece of mind, or c) have had the stuff\\nrammed down your throat for as long as you can remember. Religion in\\ngeneral provides a nice patch for some human weaknesses; Organized\\nreligion provides a nice way to keep a population under control. \\n\\nBlech.\\n\\nChris\\n\\n\\n----------------------\\nChris Leger\\nSophomore, Carnegie Mellon Computer Engineering\\nRemember...if you don\\'t like what somebody is saying, you can always\\nignore them!\\n\\n',\n", + " \"From: maler@vercors.imag.fr (Oded Maler)\\nSubject: Re: Unconventional peace proposal\\nNntp-Posting-Host: pelvoux\\nOrganization: IMAG, University of Grenoble, France\\nLines: 43\\n\\nIn article <1483500348@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n|> \\n|> From: Center for Policy Research \\n|> Subject: Unconventional peace proposal\\n|> \\n|> \\n|> A unconventional proposal for peace in the Middle-East.\\n|> ---------------------------------------------------------- by\\n|> \\t\\t\\t Elias Davidsson\\n\\n|> \\n|> 1. A Fund should be established which would disburse grants\\n|> for each child born to a couple where one partner is Israeli-Jew\\n|> and the other Palestinian-Arab.\\n|> \\n|> 2. To be entitled for a grant, a couple will have to prove\\n|> that one of the partners possesses or is entitled to Israeli\\n|> citizenship under the Law of Return and the other partner,\\n|> although born in areas under current Isreali control, is not\\n|> entitled to such citizenship under the Law of Return.\\n|> \\n|> 3. For the first child, the grant will amount to $18.000. For\\n|> the second the third child, $12.000 for each child. For each\\n|> subsequent child, the grant will amount to $6.000 for each child.\\n...\\n\\n|> I would be thankful for critical comments to the above proposal as\\n|> well for any dissemination of this proposal for meaningful\\n|> discussion and enrichment.\\n|> \\n|> Elias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n\\nMaybe I'm a bit old-fashioned, but have you heard about something\\ncalled Love? It used to play some role in people's considerations\\nfor getting married. Of course I know some people who married \\nfictitiously in order to get a green card, but making a common\\nchild for 18,000$? The power of AA is limited. Your proposal is\\nindeed unconventional. \\n\\n===============================================================\\nOded Maler, LGI-IMAG, Bat D, B.P. 53x, 38041 Grenoble, France\\nPhone: 76635846 Fax: 76446675 e-mail: maler@imag.fr\\n===============================================================\\n\",\n", + " 'From: \"Robert Knowles\" \\nSubject: Re: Suggestion for \"resources\" FAQ\\nIn-Reply-To: \\nNntp-Posting-Host: 127.0.0.1\\nOrganization: Kupajava, East of Krakatoa\\nX-Mailer: PSILink-DOS (3.3)\\nLines: 34\\n\\n>DATE: Mon, 19 Apr 1993 15:01:10 GMT\\n>FROM: Bruce Stephens \\n>\\n>I think a good book summarizing and comparing religions would be good.\\n>\\n>I confess I don\\'t know of any---indeed that\\'s why I checked the FAQ to see\\n>if it had one---but I\\'m sure some alert reader does.\\n>\\n>I think the list of books suffers far too much from being Christian based;\\n>I agree that most of the traffic is of this nature (although a few Islamic\\n>references might be good) but I still think an overview would be nice.\\n\\nOne book I have which presents a fairly unbiased account of many religions\\nis called _Man\\'s Religions_ by John B. Noss. It was a textbook in a class\\nI had on comparative religion or some such thing. It has some decent\\nbibliographies on each chapter as a jumping off point for further reading.\\n\\nIt doesn\\'t \"compare\" religions directly but describes each one individually\\nand notes a few similarities. But nothing I have read in it could be even\\nremotely described as preachy or Christian based. In fact, Christianity\\nmercifully consumes only 90 or so of its nearly 600 pages. The book is\\ndivided according to major regions of the world where the biggies began \\n(India, East Asia, Near East). There is nothing about New World religions\\nfrom the Aztecs, Mayas, Incas, etc. Just the stuff people kill each\\nother over nowadays. And a few of the older religions snuffed out along\\nthe way. \\n\\nIf you like the old stuff, then a couple of books called \"The Ancient Near\\nEast\" by James B. Pritchard are pretty cool. Got the Epic of Gilgamesh,\\nCode of Hammurabi, all the stuff from way back when men were gods and gods\\nwere men. Essential reading for anyone who wishes to make up their own\\nreligion and make it sound real good.\\n\\n\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: \"Cruel\" (was Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n\\n>>>This whole thread started because of a discussion about whether\\n>>>or not the death penalty constituted cruel punishment, which is forbidden\\n>>>by the US Constitution.\\n>>Yes, but they didn\\'t say what they meant by \"cruel\", which is why\\n>>a) you have the Supreme Court, and b) it makes no sense to refer\\n>>to the Constitution, which is quite silent on the meaning of the\\n>>word \"cruel\".\\n>\\n>They spent quite a bit of time on the wording of the Constitution. They\\n>picked words whose meanings implied the intent. We have already looked\\n>in the dictionary to define the word. Isn\\'t this sufficient?\\n\\n\\tWe only need to ask the question: what did the founding fathers \\nconsider cruel and unusual punishment?\\n\\n\\tHanging? Hanging there slowing being strangled would be very \\npainful, both physically and psychologicall, I imagine.\\n\\n\\tFiring squad ? [ note: not a clean way to die back in those \\ndays ], etc. \\n\\n\\tAll would be considered cruel under your definition.\\n\\tAll were allowed under the constitution by the founding fathers.\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", + " 'From: (Rashid)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: 47.252.4.179\\nOrganization: NH\\nLines: 34\\n\\n> What about the Twelve Imams, who he considered incapable of error\\n> or sin? Khomeini supports this view of the Twelve Imans. This is\\n> heresy for the very reasons I gave above. \\n\\nI would be happy to discuss the issue of the 12 Imams with you, although\\nmy preference would be to move the discussion to another\\nnewsgroup. I feel a philosophy\\nor religion group would be more appropriate. The topic is deeply\\nembedded in the world view of Islam and the\\nesoteric teachings of the Prophet (S.A.). Heresy does not enter\\ninto it at all except for those who see Islam only as an exoteric\\nreligion that is only nominally (if at all) concerned with the metaphysical\\nsubstance of man\\'s being and nature.\\n\\nA good introductory book (in fact one of the best introductory\\nbooks to Islam in general) is Murtaza Mutahhari\\'s \"Fundamental\\'s\\nof Islamic Thought - God, Man, and the Universe\" - Mizan Press,\\ntranslated by R. Campbell. Truly a beautiful book. A follow-up book\\n(if you can find a decent translation) is \"Wilaya - The Station\\nof the Master\" by the same author. I think it also goes under the\\ntitle of \"Master and Mastership\" - It\\'s a very small book - really\\njust a transcription of a lecture by the author.\\nThe introduction to the beautiful \"Psalms of Islam\" - translated\\nby William C. Chittick (available through Muhammadi Trust of\\nGreat Britain) is also an excellent introduction to the subject. We\\nhave these books in our University library - I imagine any well\\nstocked University library will have them.\\n\\nFrom your posts, you seem fairly well versed in Sunni thought. You\\nshould seek to know Shi\\'ite thought through knowledgeable \\nShi\\'ite authors as well - at least that much respect is due before the\\ncharge of heresy is levelled.\\n\\nAs salaam a-laikum\\n',\n", + " 'From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Ok, So I was a little hasty...\\nOrganization: Louisiana Tech University\\nLines: 30\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr20.010734.18225@megatek.com> randy@megatek.com (Randy Davis) writes:\\n\\n>In article speedy@engr.latech.edu (Speedy Mercer) writes:\\n>|In article jnmoyne@lbl.gov (Jean-Noel Moyne) writes:\\n>|> What does \"DWI\" stand for ? I thought it was \"DUI\" for Driving Under\\n>|>Influence, so here what does W stand for ?\\n>|\\n>|Driving While Intoxicated.\\n\\n> Actually, I beleive \"DWI\" normally means \"Driving While Impaired\" rather\\n>than \"Intoxicated\", at least it does in the states I\\'ve lived in...\\n\\n>|This was changed here in Louisiana when a girl went to court and won her \\n>|case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\n> One can be imparied without necessarily being impaired by liquor - drugs,\\n>not enough sleep, being a total moron :-), all can impair someone etc... I\\'m\\n>surprised this got her off the hook... Perhaps DWI in Lousiana *is* confined\\n>to liquor?\\n\\nLets just say it is DUI here now!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n',\n", + " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Concerning God\\'s Morality (was: Americans and Evolution)\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 110\\nDistribution: world\\nNNTP-Posting-Host: syndicoot.engin.umich.edu\\n\\nIn article <1993Apr2.155057.808@batman.bmd.trw.com> jbrown@batman.bmd.trw.com writes:\\n[why do babies get diseases, etc.]\\n>What God did create was life according to a protein code which is\\n>mutable and can evolve. Without delving into a deep discussion of\\n>creationism vs evolutionism,\\n\\n Here\\'s the (main) problem. The scenario you outline is reasonably \\nconsistent, but all the evidence that I am familiar with not only does\\nnot support it, but indicates something far different. The Earth, by\\nlatest estimates, is about 4.6 billion years old, and has had life for\\nabout 3.5 billion of those years. Humans have only been around for (at\\nmost) about 200,000 years. But, the fossil evidence inidcates that life\\nhas been changing and evolving, and, in fact, disease-ridden, long before\\nthere were people. (Yes, there are fossils that show signs of disease...\\nmostly bone disorders, of course, but there are some.) Heck, not just\\nfossil evidence, but what we\\'ve been able to glean from genetic study shows\\nthat disease has been around for a long, long time. If human sin was what\\nbrought about disease (at least, indirectly, though necessarily) then\\nhow could it exist before humans?\\n\\n> God created the original genetic code\\n>perfect and without flaw. And without getting sidetracked into\\n>the theological ramifications of the original sin, the main effect\\n>of the so-called original sin for this discussion was to remove\\n>humanity from God\\'s protection since by their choice A&E cut\\n>themselves off from intimate fellowship with God. In addition, their\\n>sin caused them to come under the dominion of Satan, who then assumed\\n>dominion over the earth...\\n[deletions]\\n>Since humanity was no longer under God\\'s protection but under Satan\\'s\\n>dominion, it was no great feat for Satan to genetically engineer\\n>diseases, both bacterial/viral and genetic. Although the forces of\\n>natural selection tend to improve the survivability of species, the\\n>degeneration of the genetic code tends to more than offset this. \\n\\n Uh... I know of many evolutionary biologists, who know more about\\nbiology than you claim to, who will strongly disagree with this. There\\nis no evidence that the human genetic code (or any other) \\'started off\\'\\nin perfect condition. It seems to adapt to its envionment, in a\\ncollective sense. I\\'m really curious as to what you mean by \\'the\\ndegeneration of the genetic code\\'.\\n\\n>Human DNA, being more \"complex\", tends to accumulate errors adversely\\n>affecting our well-being and ability to fight off disease, while the \\n>simpler DNA of bacteria and viruses tend to become more efficient in \\n>causing infection and disease. It is a bad combination.\\n\\n Umm. Nah, we seem to do a pretty good job of adapting to viruses and\\nbacteria, and they to us. Only a very small percentage of microlife is\\nharmful to humans... and that small percentage seems to be reasonalby\\nconstant in size, but the ranks keep changing. For example, bubonic\\nplague used to be a really nasty disease, I\\'m sure you\\'ll agree. But\\nit still pops up from time to time, even today... and doesn\\'t do as\\nmuch damage. Part of that is because of better sanitation, but even\\nwhen people get the disease, the symptoms tend to be less severe than in\\nthe past. This seems to be partly because people who were very susceptible\\ndied off long ago, and because the really nasty variants \\'overgrazed\\',\\n(forgive the poor terminology, I\\'m an engineer, not a doctor! :-> ) and\\ndied off for lack of nearby hosts.\\n I could be wrong on this, but from what I gather acne is only a few\\nhundred years old, and used to be nastier, though no killer. It seems to\\nbe getting less nasty w/age...\\n\\n> Hence\\n>we have newborns that suffer from genetic, viral, and bacterial\\n>diseases/disorders.\\n\\n Now, wait a minute. I have a question. Humans were created perfect, right?\\nAnd, you admit that we have an inbuilt abiliy to fight off disease. It\\nseems unlikely that Satan, who\\'s making the diseases, would also gift\\nhumans with the means to fight them off. Simpler to make the diseases less\\nlethal, if he wants survivors. As far as I can see, our immune systems,\\nimperfect though they may (presently?) be, must have been built into us\\nby God. I want to be clear on this: are you saying that God was planning\\nahead for the time when Satan would be in charge by building an immune\\nsystem that was not, at the time of design, necessary? That is, God made\\nour immune systems ahead of time, knowing that Adam and Eve would sin and\\ntheir descendents would need to fight off diseases?\\n\\n>This may be more of a mystical/supernatural explanation than you\\n>are prepared to accept, but God is not responsible for disease.\\n>Even if Satan had nothing to do with the original inception of\\n>disease, evolution by random chance would have produced them since\\n>humanity forsook God\\'s protection.\\n\\n Here\\'s another puzzle. What, exactly, do you mean by \\'perfect\\' in the\\nphrase, \\'created... perfect and without flaw\\'? To my mind, a \\'perfect\\'\\nsystem would be incapable of degrading over time. A \\'perfect\\' system\\nthat will, without constant intervention, become imperfect is *not* a\\nperfect system. At least, IMHO.\\n Or is it that God did something like writing a masterpiece novel on a\\nbunch of gum wrappers held together with Elmer\\'s glue? That is, the\\noriginal genetic \\'instructions\\' were perfect, but were \\'written\\' in\\ninferior materials that had to be carefully tended or would fall apart?\\nIf so, why could God not have used better materials?\\n Was God *incapable* of creating a system that could maintain itself,\\nof did It just choose not to?\\n\\n[deletions]\\n>In summary, newborns are innocent, but God does not cause their suffering.\\n\\n My main point, as I said, was that there really isn\\'t any evidence for\\nthe explanation you give. (At least, that I\\'m aware of.) But, I couldn\\'t\\nhelp making a few nitpicks here and there. :->\\n\\nSincerely,\\n\\nRay Ingles || The above opinions are probably\\n || not those of the University of\\ningles@engin.umich.edu || Michigan. Yet.\\n',\n", + " 'From: backon@vms.huji.ac.il\\nSubject: Re: Go Hezbollah!!\\nDistribution: world\\nOrganization: The Hebrew University of Jerusalem\\nLines: 23\\n\\nIn article <1993Apr14.125813.21737@ncsu.edu>, hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n>\\n> Lebanese resistance forces detonated a bomb under an Israeli occupation\\n> patrol in Lebanese territory two days ago. Three soldiers were killed and\\n> two wounded. In \"retaliation\", Israeli and Israeli-backed forces wounded\\n> 8 civilians by bombarding several Lebanese villages. Ironically, the Israeli\\n> government justifies its occupation in Lebanon by claiming that it is\\n> necessary to prevent such bombardments of Israeli villages!!\\n>\\n> Congratulations to the brave men of the Lebanese resistance! With every\\n> Israeli son that you place in the grave you are underlining the moral\\n> bankruptcy of Israel\\'s occupation and drawing attention to the Israeli\\n> government\\'s policy of reckless disregard for civilian life.\\n>\\n> Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\n\\nI\\'m sure the Federal Bureau of Investigation (fbi.gov on the Internet) is going\\nto *love* reading your incitement to murder.\\n\\n\\nJosh\\nbackon@VMS.HUJI.AC.IL\\n',\n", + " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: islamic authority over women\\nOrganization: Cookamunga Tourist Bureau\\nLines: 21\\n\\nIn article <1993Apr19.120352.1574@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n>> The problem with your argument is that you do not _know_ who is a _real_\\n> believer and who may be \"faking it\". This is something known only by\\n> the person him/herself (and God). Your assumption that anyone who\\n> _claims_ to be a \"believer\" _is_ a \"believer\" is not necessarily true.\\n\\nSo that still leaves the door totally open for Khomeini, Hussein\\net rest. They could still be considered true Muslims, and you can\\'t\\njudge them, because this is something between God and the person.\\n\\nYou have to apply your rule as well with atheists/agnostics, you\\ndon\\'t know their belief, this is something between them and God.\\n\\nSo why the hoopla about Khomeini not being a real Muslim, and the\\nhoopla about atheists being not real human beings?\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", + " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Gibbons Outlines SSF Redesign Guidance\\nNews-Software: VAX/VMS VNEWS 1.41 \\nNntp-Posting-Host: tm0006.lerc.nasa.gov\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 76\\n\\nNASA Headquarters distributed the following press\\nrelease today (4/6). I\\'ve typed it in verbatim, for you\\nfolks to chew over. Many of the topics recently\\ndiscussed on sci.space are covered in this.\\n\\nGibbons Outlines Space Station Redesign Guidance\\n\\nDr. John H. Gibbons, Director, Office of Science and\\nTechnology Policy, outlined to the members-designate of\\nthe Advisory Committee on the Redesign of the Space\\nStation on April 3, three budget options as guidance to\\nthe committee in their deliberations on the redesign of\\nthe space station.\\n\\nA low option of $5 billion, a mid-range option of $7\\nbillion and a high option of $9 billion will be\\nconsidered by the committee. Each option would cover\\nthe total expenditures for space station from fiscal\\nyear 1994 through 1998 and would include funds for\\ndevelopment, operations, utilization, Shuttle\\nintegration, facilities, research operations support,\\ntransition cost and also must include adequate program\\nreserves to insure program implementation within the\\navailable funds.\\n\\nOver the next 5 years, $4 billion is reserved within\\nthe NASA budget for the President\\'s new technology\\ninvestment. As a result, station options above $7\\nbillion must be accompanied by offsetting reductions in\\nthe rest of the NASA budget. For example, a space\\nstation option of $9 billion would require $2 billion\\nin offsets from the NASA budget over the next 5 years.\\n\\nGibbons presented the information at an organizational\\nsession of the advisory committee. Generally, the\\nmembers-designate focused upon administrative topics\\nand used the session to get acquainted. They also\\nreceived a legal and ethics briefing and an orientation\\non the process the Station Redesign Team is following\\nto develop options for the advisory committee to\\nconsider.\\n\\nGibbons also announced that the United States and its\\ninternational partners -- the Europeans, Japanese, and\\nCanadians -- have decided, after consultation, to give\\n\"full consideration\" to use of Russian assets in the\\ncourse of the space station redesign process.\\n\\nTo that end, the Russians will be asked to participate\\nin the redesign effort on an as-needed consulting\\nbasis, so that the redesign team can make use of their\\nexpertise in assessing the capabilities of MIR and the\\npossible use of MIR and other Russian capabilities and\\nsystems. The U.S. and international partners hope to\\nbenefit from the expertise of the Russian participants\\nin assessing Russian systems and technology. The\\noverall goal of the redesign effort is to develop\\noptions for reducing station costs while preserving key\\nresearch and exploration capabilities. Careful\\nintegration of Russian assets could be a key factor in\\nachieving that goal.\\n\\nGibbons reiterated that, \"President Clinton is\\ncommitted to the redesigned space station and to making\\nevery effort to preserve the science, the technology\\nand the jobs that the space station program represents.\\nHowever, he also is committed to a space station that\\nis well managed and one that does not consume the\\nnational resources which should be used to invest in\\nthe future of this industry and this nation.\"\\n\\nNASA Administrator Daniel S. Goldin said the Russian\\nparticipation will be accomplished through the East-\\nWest Space Science Center at the University of Maryland\\nunder the leadership of Roald Sagdeev.\\n\\n',\n", + " 'From: looper@cco.caltech.edu (Mark D. Looper)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: California Institute of Technology, Pasadena\\nLines: 23\\nNNTP-Posting-Host: sandman.caltech.edu\\nKeywords: Galileo, JPL\\n\\nprb@access.digex.com (Pat) writes:\\n\\n>Galileo\\'s HGA is stuck. \\n\\n>The HGA was left closed, because galileo had a venus flyby.\\n\\n>If the HGA were pointed att he sun, near venus, it would\\n>cook the foci elements.\\n\\n>question: WHy couldn\\'t Galileo\\'s course manuevers have been\\n>designed such that the HGA did not ever do a sun point.?\\n\\nThe HGA isn\\'t all that reflective in the wavelengths that might \"cook the\\nfocal elements\", nor is its figure good on those scales--the problem is\\nthat the antenna _itself_ could not be exposed to Venus-level sunlight,\\nlest like Icarus\\' wings it melt. (I think it was glues and such, as well\\nas electronics, that they were worried about.) Thus it had to remain\\nfurled and the axis _always_ pointed near the sun, so that the small\\nsunshade at the tip of the antenna mast would shadow the folded HGA.\\n(A larger sunshade beneath the antenna shielded the spacecraft bus.)\\n\\n--Mark Looper\\n\"Hot Rodders--America\\'s first recyclers!\"\\n',\n", + " 'From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Ellipse from Its Offset\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\nKeywords: ellipse\\n\\n\\nHi! Everyone,\\n\\nSince some people quickly solved the problem of determining a sphere from\\n4 points, I suddenly recalled a problem which is how to find the ellipse\\nfrom its offset. For example, given 5 points on the offset, can you find\\nthe original ellipse analytically?\\n\\nI spent two months solving this problem by using analytical method last year,\\nbut I failed. Under the pressure, I had to use other method - nonlinear\\nprogramming technique to deal with this problem approximately.\\n\\nAny ideas will be greatly appreciated. Please post here, let the others\\nshare our interests.\\n\\nYeh\\nUSC\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Unconventional peace proposal\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 22\\n\\nIn article <1483500348@igc.apc.org> Center for Policy Research writes:\\n\\n>1. The idea of providing financial incentives to selected\\n>forms of partnership and marriage, is not conventional. However,\\n>it is based on the concept of affirmative action, which is\\n>recognized as a legitimate form of public policy to reverse the\\n>perverse effects of segregation and discrimination.\\n\\n\\tOther people have already shown this to be a rediculous\\nproposal. however, I wanted to point out that there are many people\\nwho do not think that affirmative action is a either intelligent or\\nproductive. It is demeaning to those who it supposedly helps and it\\nis discriminatory.\\n\\n\\tAny proposal based on it is likely bunk as well.\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " \"From: arens@ISI.EDU (Yigal Arens)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nOrganization: USC/Information Sciences Institute\\nLines: 43\\nNNTP-Posting-Host: grl.isi.edu\\nIn-reply-to: ehrlich@bimacs.BITNET's message of 19 Apr 93 14:58:49 GMT\\n\\nIn article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>\\n> In article arens@ISI.EDU (Yigal\\n> Arens) writes:\\n>\\n> >Los Angeles Times, Tuesday, April 13, 1993. P. A1.\\n> > ........\\n>\\n> The problem if transffering US government files about Yigal Arens\\n> and some other similar persons does or does not violate a federal\\n> or a local American law seemed to belong to some local american law\\n> forum not to this forum.\\n> The readers of this forum seemed to be more interested in the contents\\n> of those files.\\n> So It will be nice if Yigal will tell us:\\n> 1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\nI'm not aware that the US government considers me dangerous. In any\\ncase, that has nothing to do with the current case. The claim against\\nthe ADL is that it illegally obtained and disseminated information that\\nwas gathered by state and/or federal agencies in the course of their\\nstandard interaction with citizens such as myself. By that I refer to\\nthings such as: address and phone number, vehicle registration and\\nlicense information, photographs, etc.\\n\\n> 2. Why does the ADL have an interest in that person ?\\n\\nYou should ask the ADL, if you want an authoritative answer. My guess\\nis that they collected information on anyone who did or might engage in\\npolitical criticism of Israel. I further believe that they did this as\\nagents of the Israeli government, or at least in agreement with them.\\nAt least some of the information collected by the ADL was passed on to\\nIsraeli officials. In some cases it was used to influence, or attempt\\nto influence, people's access to jobs or public forums. These matters\\nwill be brought out as the court case unfolds, since California law\\nentitles people to compensation if such actions can be proven. As my\\nprevious posting shows, California law entitles people to compensation\\neven in the absence of any specific consequences -- just for the further\\ndissemination of certain types of private information about them.\\n--\\nYigal Arens\\nUSC/ISI TV made me do it!\\narens@isi.edu\\n\",\n", + " 'From: Center for Policy Research \\nSubject: Assistance to Palest.people\\nNf-ID: #N:cdp:1483500359:000:3036\\nNf-From: cdp.UUCP!cpr Apr 24 15:00:00 1993\\nLines: 78\\n\\n\\nFrom: Center for Policy Research \\nSubject: Assistance to Palest.people\\n\\n\\nU.N. General Assembly Resolution 46/201 of 20 December 1991\\n\\nASSISTANCE TO THE PALESTINIAN PEOPLE\\n---------------------------------------------\\nThe General Assembly\\n\\nRecalling its resolution 45/183 of 21 December 1990\\n\\nTaking into account the intifadah of the Palestinian people in the\\noccupied Palestinian territory against the Israeli occupation,\\nincluding Israeli economic and social policies and practices,\\n\\nRejecting Israeli restrictions on external economic and social\\nassistance to the Palestinian people in the occupied Palestinian\\nterritory,\\n\\nConcerned about the economic losses of the Palestinian people as a\\nresult of the Gulf crisis,\\n\\nAware of the increasing need to provide economic and social\\nassistance to the Palestinian people,\\n\\nAffirming that the Palestinian people cannot develop their\\nnational economy as long as the Israeli occupation persists,\\n\\n1. Takes note of the report of the Secretary-General on assistance\\nto the Palestinian people;\\n\\n2. Expresses its appreciation to the States, United Nations bodies\\nand intergovernmental and non-governmental organizations that have\\nprovided assistance to the Palestinian people,\\n\\n3. Requests the international community, the United Nations system\\nand intergovernmental and non-governmental organizations to\\nsustain and increase their assistance to the Palestinian people,\\nin close cooperation with the Palestine Liberation Organization\\n(PLO), taking in account the economic losses of the Palestinian\\npeople as a result of the Gulf crisis;\\n\\n4. Calls for treatment on a transit basis of Palestinian exports\\nand imports passing through neighbouring ports and points of exit\\nand entry;\\n\\n5. Also calls for the granting of trade concessions and concrete\\npreferential measures for Palestinian exports on the basis of\\nPalestinian certificates of origin;\\n\\n6. Further calls for the immediate lifting of Israeli restrictions\\nand obstacles hindering the implementation of assistance projects\\nby the United Nations Development Programme, other United Nations\\nbodies and others providing economic and social assistance to the\\nPalestinian people in the occupied Palestinian territory;\\n\\n7. Reiterates its call for the implementation of development\\nprojects in the occupied Palestinian territory, including the\\nprojects mentioned in its resolution 39/223 of 18 December 1984;\\n\\n8. Calls for facilitation of the establishment of Palestinian\\ndevelopment banks in the occupied Palestinian territory, with a\\nview to promoting investment, production, employment and income\\ntherein;\\n\\n9. Requests the Secretary-General to report to the General\\nThe General Assembly at its 47th session, through the Economic and Social\\nCouncil, on the progress made in the implementation of the present\\nresolution.\\n-----------------------------------------------\\n\\nIn favour 137 countries (Europe, Canada, Australia, New Zealand,\\nJapan, Africa, South America, Central America and Asia) Against:\\nUnited States and Israel Abstaining: None\\n\\n\\n',\n", + " \"From: daviss@sweetpea.jsc.nasa.gov (S.F. Davis)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: NSPC\\nDistribution: na\\nLines: 107\\n\\nIn article <1quule$5re@access.digex.net>, prb@access.digex.com (Pat) writes:\\n|> \\n|> AW&ST had a brief blurb on a Manned Lunar Exploration confernce\\n|> May 7th at Crystal City Virginia, under the auspices of AIAA.\\n|> \\n|> Does anyone know more about this? How much, to attend????\\n|> \\n|> Anyone want to go?\\n|> \\n|> pat\\n\\nHere are some selected excerpts of the invitation/registration form they\\nsent me. Retyped without permission, all typo's are mine.\\n\\n---------------------------------------------------------------------\\nLow-Cost Lunar Access: A one-day conference to explore the means and \\nbenefits of a rejuvenated human lunar program.\\n\\nFriday, May 7, 1993\\nHyatt Regency - Crystal City Hotel\\nArlington, VA\\n\\nABOUT THE CONFERENCE\\nThe Low-Cost Lunar Access conference will be a forum for the exchange of\\nideas on how to initiate and structure an affordable human lunar program.\\nInherent in such low-cost programs is the principle that they be \\nimplemented rapidly and meet their objectives within a short time\\nframe.\\n\\n[more deleted]\\n\\nCONFERENCE PROGRAM (Preliminary)\\n\\nIn the Washington Room:\\n\\n 9:00 - 9:10 a.m. Opening Remarks\\n Dr. Alan M. Lovelace\\n\\n 9:10 - 9:30 a.m. Keynote Address\\n Mr. Brian Dailey\\n\\n 9:30 - 10:00 a.m. U.S. Policy Outlook\\n John Pike, American Federation of Scientists\\n\\n A discussion of the prospects for the introduction of a new low-cost\\n lunar initiative in view of the uncertain direction the space\\n program is taking.\\n\\n 10:00 - 12:00 noon Morning Plenary Sessions\\n\\n Presentations on architectures, systems, and operational concepts.\\n Emphasis will be on mission approaches that produce significant\\n advancements beyond Apollo yet are judged to be affordable in the\\n present era of severely constrained budgets\\n\\n\\nIn the Potomac Room\\n\\n 12:00 - 1:30 p.m. Lunch\\n Guest Speaker: Mr. John W. Young,\\n NASA Special Assistant and former astronaut\\n\\nIn the Washington Room\\n\\n 1:30 - 2:00 p.m. International Policy Outlook\\n Ian Pryke (invited)\\n ESA, Washington Office\\n\\n The prevailing situation with respect to international space \\n commitments, with insights into preconditions for European \\n entry into new agreements, as would be required for a cooperative\\n lunar program.\\n\\n 2:00 - 3:30 p.m. Afternoon Plenary Sessions\\n\\n Presentations on scientific objectives, benefits, and applications.\\n Emphasis will be placed on the scientific and technological value\\n of a lunar program and its timeliness.\\n\\n\\n---------------------------------------------------------------------\\n\\nThere is a registration form and the fee is US$75.00. The mail address\\nis \\n\\n American Institute of Aeronautics and Astronautics\\n Dept. No. 0018\\n Washington, DC 20073-0018\\n\\nand the FAX No. is: \\n\\n (202) 646-7508\\n\\nor it says you can register on-site during the AIAA annual meeting \\nand on Friday morning, May 7, from 7:30-10:30\\n\\n\\nSounds interesting. Too bad I can't go.\\n\\n|--------------------------------- ******** -------------------------|\\n| * _!!!!_ * |\\n| Steven Davis * / \\\\ \\\\ * |\\n| daviss@sweetpea.jsc.nasa.gov * () * | \\n| * \\\\>_db_ Dale.James@cs.cmu.edu writes:\\n>GS1100E. It\\'s a great bike, but you\\'d better be damn careful! \\n>I got a 1983 as my third motorcycle, \\n[...deleta...]\\n>The bike is light for it\\'s size (I think it\\'s 415 pounds); but heavy for a\\n>beginner bike.\\n\\nHeavy for a beginner bike it is; 415 pounds it isn\\'t, except maybe in\\nsome adman\\'s dream. With a full tank, it\\'s in the area of 550 lbs,\\ndepending on year etc.\\n\\n>You\\'re 6\\'4\" -- you should have no problem physically managing\\n>it. The seat is roughly akin to a plastic-coated 2by6. Very firm to very\\n>painful, depending upon time in the saddle.\\n\\nThe 1980 and \\'81 versions had a much better seat, IMO.\\n\\n>The bike suffers from the infamous Suzuki regulator problem. I have so far\\n>avoided forking out the roughly $150 for the Suzuki part by kludging in\\n>different Honda regulator/rectifier units from junkyards. The charging system\\n>consistently overcharges the battery. I have to refill it nearly weekly.\\n>This in itself is not so bad, but battery access is gained only after removing\\n>the seat, the tank, and the airbox.\\n\\nMy regulator lasted over 100,000 miles, and didn\\'t overcharge the battery.\\nThe wiring connectors in the charging path did get toasty though,\\ntending to melt their insulation. I suspect they were underspecified;\\nit didn\\'t help that they were well removed from cool air.\\n\\nBattery access on the earlier bikes doesn\\'t require tank removal.\\nAfter you learn the drill, it\\'s pretty straightforward.\\n\\n[...]\\n>replacement parts, like all Suzuki parts, are outrageously expensive.\\n\\nHaving bought replacement parts for several brands of motorcycles,\\nI\\'ll offer a grain of salt to be taken with Dale\\'s assessment.\\n\\n[...]\\n>Good luck, and be careful!\\n>--Dale\\n\\nSentiments I can\\'t argue with...or won\\'t...\\n-- Dean Deeds\\n\\tdeeds@vulcan1.edsg.hac.com\\n',\n", + " \"From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Surface normal orientations\\nArticle-I.D.: cis.1993Apr6.181509.1973\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 16\\n\\nIn article <1993Apr6.175117.1848@cis.uab.edu> sloan@cis.uab.edu (Kenneth Sloan) writes:\\n\\nA brilliant algorithm. *NOT*\\n\\nSeriously - it's correct, up to a sign change. The flaw is obvious, and\\nwill therefore not be shown.\\n\\nsorry about that.\\n\\n\\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n\",\n", + " 'From: IMAGING.CLUB@OFFICE.WANG.COM (\"Imaging Club\")\\nSubject: Re: Signature Image Database\\nOrganization: Mail to News Gateway at Wang Labs\\nLines: 21\\n\\nContact Signaware Corp\\n800-4583820\\n800 6376564\\n\\n-------------------------------- Original Memo --------------------------------\\nBCC: Vincent Wall From: Imaging Club\\nSubject: Signature verification ? Date Sent: 05/04/93\\n\\nsci.image.processing\\nFrom: yyqi@ece.arizona.edu (Yingyong Qi)\\nSubject: Signature Image Database\\nOrganization: U of Arizona Electrical and Computer Engineering\\n\\nHi, All:\\n\\nCould someone tell me if there is a database of handwriting signature\\nimages available for evaluating signature verification systems.\\n\\nThanks.\\n\\nYY\\n',\n", + " \"From: David.Anderman@ofa123.fidonet.org\\nSubject: LRDPA news\\nX-Sender: newtout 0.08 Feb 23 1993\\nLines: 28\\n\\n Many of you at this point have seen a copy of the \\nLunar Resources Data Purchase Act by now. This bill, also known as the Back to \\nthe Moon bill, would authorize the U.S. \\ngovernment to purchase lunar science data from private \\nand non-profit vendors, selected on the basis of competitive bidding, with an \\naggregate cap on bid awards of $65 million. \\n If you have a copy of the bill, and can't or don't want to go through \\nall of the legalese contained in all Federal legislation,don't both - you have \\na free resource to evaluate the bill for you. Your local congressional office, \\nlisted in the phone book,is staffed by people who can forward a copy of the\\nbill to legal experts. Simply ask them to do so, and to consider supporting\\nthe Lunar Resources Data Purchase Act. \\n If you do get feedback, negative or positive, from your congressional \\noffice, please forward it to: David Anderman\\n3136 E. Yorba Linda Blvd., Apt G-14, Fullerton, CA 92631,\\nor via E-Mail to: David.Anderman@ofa123.fidonet.org. \\n Another resource is your local chapter of the National Space Society. \\nMembers of the chapter will be happy to work with you to evaluate and support \\nthe Back to the Moon bill. For the address and telephone number of the nearest \\nchapter to you, please send E-mail, or check the latest issue of Ad Astra, in \\na library near you.\\n Finally, if you have requested, and not received, information about\\nthe Back to the Moon bill, please re-send your request. The database for the\\nbill was recently corrupted, and some information was lost. The authors of the \\nbill thank you for your patience.\\n\\n\\n--- Maximus 2.01wb\\n\",\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: HST Servicing Mission Scheduled for 11 Days\\nOrganization: U of Toronto Zoology\\nLines: 35\\n\\nIn article <1rd1g0$ckb@access.digex.net> prb@access.digex.com (Pat) writes:\\n>How will said re-boost be done?\\n>Grapple, HST, stow it in Cargo bay, do OMS burn to high altitude, \\n>unstow HST, repair gyros, costar install, fix solar arrays,\\n>then return to earth?\\n\\nActually, the reboost will probably be done last, so that there is a fuel\\nreserve during the EVAs (in case they have to chase down an adrift\\nastronaut or something like that). But yes, you've got the idea -- the\\nreboost is done by taking the whole shuttle up.\\n\\n>My guess is why bother with usingthe shuttle to reboost?\\n>why not grapple, do all said fixes, bolt a small liquid fueled\\n>thruster module to HST, then let it make the re-boost...\\n\\nSomebody has to build that thruster module; it's not an off-the-shelf\\nitem. Nor is it a trivial piece of hardware, since it has to include\\nattitude control (HST's own is not strong enough to compensate for things\\nlike thruster imbalance), guidance (there is no provision to feed gyro\\ndata from HST's own gyros to an external device), and separation (you\\ndon't want it left attached afterward, if only to avoid possible\\ncontamination after the telescope lid is opened again). You also get\\nto worry about whether the lid is going to open after the reboost is\\ndone and HST is inaccessible to the shuttle (the lid stays closed for\\nthe duration of all of this to prevent mirror contamination from\\nthrusters and the like).\\n\\nThe original plan was to use the Orbital Maneuvering Vehicle to do the\\nreboost. The OMV was planned to be a sort of small space tug, well\\nsuited to precisely this sort of job. Unfortunately, it was costing\\na lot to develop and the list of definitely-known applications was\\nrelatively short, so it got cancelled.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " \"From: rm03@ic.ac.uk (Mr R. Mellish)\\nSubject: Re: university violating separation of church/state?\\nOrganization: Imperial College\\nLines: 33\\nNntp-Posting-Host: 129.31.80.14\\n\\nIn article <199304041750.AA17104@kepler.unh.edu> dmn@kepler.unh.edu (...until kings become philosophers or philosophers become kings) writes:\\n>\\n>\\n>\\n> Recently, RAs have been ordered (and none have resisted or cared about\\n>it apparently) to post a religious flyer entitled _The Soul Scroll: Thoughts\\n>on religion, spirituality, and matters of the soul_ on the inside of bathroom\\n>stall doors. (at my school, the University of New Hampshire) It is some sort\\n>of newsletter assembled by a Hall Director somewhere on campus.\\n[most of post deleted]\\n>\\n> Please respond as soon as possible. I'd like these religious postings to\\n>stop, NOW! \\n>\\n> \\n>Thanks,\\n>\\n> Dana\\n>\\n> \\n> \\nThere is an easy way out....\\nPost the flyers on the stall doors, but add at the bottom, in nice large\\ncapitals,\\n\\n EMERGENCY TOILET PAPER\\n\\n:)\\n\\n-- \\n------ Robert Mellish, FOG, IC, UK ------\\n Email: r.mellish@ic.ac.uk Net: rm03@sg1.cc.ic.ac.uk IRC: HobNob\\n------ and also the mrs joyful prize for rafia work. ------\\n\",\n", + " \"From: SRUHL@MECHANICAL.watstar.uwaterloo.ca (Stefan Ruhl)\\nSubject: crappy Honda CX650\\nLines: 24\\nOrganization: University of Waterloo\\n\\nHi, I just have a small question about my bike. \\nBeing a fairly experienced BMW and MZ-Mechanic, I just don't know what to \\nthink about my Honda. \\nShe was using too much oil for the last 5000 km (on my trip to Daytona bike \\nweek this spring), and all of a sudden, she trailed smoke like hell and \\nwas running only on one cylinder. \\nI towed the bike home and took it apart, but everything looks in perfect \\nworking order. No cracks in the heads or pistons, the cylinder walls look \\nvery clean, and the wear of pistons and cylinders is not measurable. All \\nstill within factory specs. The only thing I could find, however, was a \\nslightly bigger ring gap on the right cylinder (the one with the problem), \\nbut it is still way below the wear-limit given in the Clymer-manual for \\nthis bike. \\nAny syggestions??? What else could cause my problem??? Do I have to hone \\nthe cylinder walls (make them a little rougher in a criss-cross-pattern) in \\norder to get better breaking in of my new rings??? Won't that increase the \\nwear of my pistons??\\nPlease send comments to \\n\\tsruhl@mechanical.watstar.uwaterloo.ca\\nThanks in advance. Stef. \\n------------------------------------------------------------------------------ \\nStefan Ruhl \\ngerman exchange student. \\nDon't poke into my privacy ! \\n\",\n", + " \"From: george@ccmail.larc.nasa.gov (George M. Brown)\\nSubject: QC/MSC code to view/save images\\nOrganization: Client Specific Systems, Inc.\\nLines: 12\\nNNTP-Posting-Host: thrasher.larc.nasa.gov\\n\\nDear Binary Newsers,\\n\\nI am looking for Quick C or Microsoft C code for image decoding from file for\\nVGA viewing and saving images from/to GIF, TIFF, PCX, or JPEG format. I have\\nscoured the Internet, but its like trying to find a Dr. Seuss spell checker \\nTSR. It must be out there, and there's no need to reinvent the wheel.\\n\\nThanx in advance.\\n\\n//////////////\\n\\n The Internet is like a Black Hole....\\n\",\n", + " \"From: mtrost@convex.com (Matthew Trost)\\nSubject: Re: The best of times, the worst of times\\nNntp-Posting-Host: eugene.convex.com\\nOrganization: CONVEX Computer Corporation, Richardson, Tx., USA\\nX-Disclaimer: This message was written by a user at CONVEX Computer\\n Corp. The opinions expressed are those of the user and\\n not necessarily those of CONVEX.\\nLines: 17\\n\\nIn <1993Apr20.161357.20354@ttinews.tti.com> paulb@harley.tti.com (Paul Blumstein) writes:\\n\\n>(note: this is not about the L.A. or NY Times)\\n\\n\\n>Turned out to be a screw unscrewed inside my Mikuni HS40 \\n>carb. I keep hearing that one should keep all of the screws\\n>tight on a bike, but I never thought that I had to do that\\n>on the screws inside of a carb. At least it was roadside\\n>fixable and I was on my way in hardly any time.\\n\\nYou better check all the screws in that carb before you suck\\none into a jug and munge a piston, or valve. I've seen it\\nhappen before.\\n\\nMatthew\\n\\n\",\n", + " \"From: ken@cs.UAlberta.CA (Huisman Kenneth M)\\nSubject: images of earth\\nNntp-Posting-Host: cab101.cs.ualberta.ca\\nOrganization: University of Alberta\\nLines: 14\\n\\nI am looking for some graphic images of earth shot from space. \\n( Preferably 24-bit color, but 256 color .gif's will do ).\\n\\nAnyways, if anyone knows an FTP site where I can find these, I'd greatly\\nappreciate it if you could pass the information on. Thanks.\\n\\n\\n( please send email ).\\n\\n\\nKen Huisman\\n\\nken@cs.ualberta.ca\\n\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: An Iranian Azeri Who Would Drop an Atomic Bomb on Armenia\\nSummary: fool\\nArticle-I.D.: urartu.1993Apr15.231047.13120\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 70\\n\\nIn article <93104.101314FHM100F@ODUVM.BITNET> FARID \\nwrites:\\n\\n[FARID] In support of the preservation of the territorial integrity of \\n[FARID] Azerbaijan and its independence from Russian rule, the Iranians which \\n[FARID] includes millions of Azerbaijanis will have Armenia retreat from the \\n[FARID] territory of Azerbaijan. \\n\\nOh, they will? This should prove quite interesting!\\n\\n[FARID] To count on Iranian help to supposedly counter Turkish influence will \\n[FARID] be a fatal error on the part of Armenia as long as Armenia in \\n[FARID] violation of international law has Azerbaijani lands in occupation. \\n\\nArmenia is not counting on Iranian help. As far as violations of international\\nlaws, which international law gives Azerbaijan the right to attack and \\ndepopulate the Armenians in Karabakh?\\n\\n[FARID] If Armenian aggression continues in the territory of Azerbaijan, not \\n[FARID] only there won\\'t be any aid from Iran to Armenia but also steps will \\n[FARID] be taken to have Armenian army back in Armenia. \\n\\nAnd who do you speak for? Rafsanjani?\\n\\n[FARID] The Azerbaijanis of Iran will be the guarantors of this policy. As for \\n[FARID] scaring Iranians or Turks from the Russian power, experts on present \\n[FARID] and future military potentials of these people would not put much \\n[FARID] stock on the Russain power as the sole power in the region for long!!! \\n\\nWell, Farid, your supposed experts are not expert! The Russians have had\\nnon-stop influence in the Caucasus since the Treaty of Turkmanchay in 1828.\\nHmm... that makes it 1993-1828 = 165 years! \\n\\nOh, I see the Azeris from Iran are going to force out the Armenians from \\nKarabakh! That will be a real good trick! \\n\\n[FARID] Iran is not alian to developing the capability to produce the A bomb \\n[FARID] and a reliable delivery system (refer to recent news releases \\n[FARID] regarding the potential of Iran). \\n\\nSo the Azeris from Iran are going to force the Armenians from Karabakh by\\nforcing the Iranian government to drop an atomic bomb on these Armenians.\\n\\n[FARID] The moral of the story is that, you don\\'t go invading your neighbor\\'s \\n[FARID] home (Azerbaijan) and flash Russia\\'s guns when questioned about it. \\n\\nOh, but it\\'s just fine if you drop an atomic bomb on your neighbor! You are\\na damn fool, Farid!\\n\\n[FARID] (Marshal Shapashnikov may have to eat his words regarding Turkey in a \\n[FARID] few short years!). \\n\\nSo you are going to drop an atomic bomb on Russia as well. \\n\\n[FARID] Peaceful resolution of the Armenian-Azerbaijani conflict is the only \\n[FARID] way to go. Armenia may soon find the fruits of Aggression very bitter \\n[FARID] indeed.\\n\\nAnd the Armenians will take your \"peaceful\" dropping of an atomic bomb as\\nan example of Iranian Azeri benevolence! You sir are a poor example of an \\nIranian Azeri! \\n\\nHa! And to think I had a nice two day stay in Tabriz back in 1978! \\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orion drive in vacuum -- how?\\nOrganization: U of Toronto Zoology\\nLines: 15\\n\\nIn article <1qn4bgINN4s7@mimi.UU.NET> goltz@mimi.UU.NET (James P. Goltz) writes:\\n> Would this work? I can't see the EM radiation impelling very much\\n>momentum (especially given the mass of the pusher plate), and it seems\\n>to me you're going to get more momentum transfer throwing the bombs\\n>out the back of the ship than you get from detonating them once\\n>they're there.\\n\\nThe Orion concept as actually proposed (as opposed to the way it has been\\nsomewhat misrepresented in some fiction) included wrapping a thick layer\\nof reaction mass -- probably plastic of some sort -- around each bomb.\\nThe bomb vaporizes the reaction mass, and it's that which transfers\\nmomentum to the pusher plate.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Hell-mets.\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 56\\n\\nIn article <217766@mavenry.altcit.eskimo.com> maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n>\\n> \\n> Having talked to a couple people about helmets & dropping, I\\'m getting \\n>about 20% \"Don\\'t sweat it\", 78% \"You might think about replacing it\" and the \\n>other 2% \"DON\\'T RIDE WITH IT! GO WITHOUT A HELMET FIRST!\"\\n> \\n> Is there any way to tell if a helmet is damaged structurally? I dropped it \\n>about 2 1/2 feet to cement off my seat, chipped the paint. Didn\\'t seem to \\n>screw up the actual shell. \\n\\nI\\'d bet the price of the helmet that it\\'s okay...From 6 feet\\nor higher, maybe not.\\n\\n> If I don\\'t end up replacing it in the real near future, would I do better \\n>to wear my (totally nondamaged) 3/4 face DOT-RATED cheapie which doesn\\'t fit \\n>as well or keep out the wind as well, or wearing the Shoei RF-200 which is a \\n>LOT more comfortable, keeps the wind out better, is quieter... but might \\n>have some minor damage?\\n\\nI\\'d wear the full facer, but then, I\\'d be *way* more worried\\nabout wind blast in the face, and inability to hear police\\nsirens, than the helmet being a little damaged.\\n\\n\\n> Also, what would you all reccomend as far as good helmets? I\\'m slightly \\n>disappointed by how badly the shoei has scratched & etc from not being \\n>bloody careful about it, and how little impact it took to chip the paint \\n>(and arguably mess it up, period)... Looking at a really good full-face with \\n>good venting & wind protection... I like the Shoei style, kinda like the \\n>Norton one I saw awhile back too... But suspect I\\'m going to have to get a \\n>much more expensive helmet if I want to not replace it every time I\\'m not \\n>being careful where I set it down.\\n\\nWell, my next helmet will be, subject to it fitting well, an AGV\\nsukhoi. That\\'s just because I like the looks. My current one is\\na Shoei task5, and it\\'s getting a little old, and I crashed in\\nit once a couple of years ago (no hard impact to head...My hip\\ntook care of that.). If price was a consideration I\\'d get\\na Kiwi k21, I hear they are both good and cheap.\\n\\n> Christ, I don\\'t treat my HEAD as carefully as I treated the shoei as far as \\n>tossing it down, and I don\\'t have any bruises on it. \\n\\nBe *mildly* mildly paranoid about the helmet, but don\\'t get\\ncarried away. There are people on the net (like those 2% you\\nmentioned) that do not consistently live on our planet...\\n\\nRegards, Charles\\nDoD0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n',\n", + " \"From: asphaug@lpl.arizona.edu (Erik Asphaug x2773)\\nSubject: Insurance discount\\nSummary: Two or more vehicles... discount?\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 26\\n\\nHola amigos,\\n\\nQuiero... I need an answer to a pressing question. I now own two\\nbikes and would love to keep them both. One is a capable and\\nsmooth street bike, low and lightweight with wide power and great\\nbrakes; the other is a Beemer G/S, kind of rough for the city but\\ngreat on the long road and backroad. A good start at a stable, but\\nI don't think it's going to work. Unfortunately, insurance is going\\nto pluck me by the short hairs. \\n\\nUnless... some insurance agent offers a multi-vehicle discount. They\\ndo this all the time for cars, assuming that you're only capable of \\ndriving one of the things at a time. I don't think I'll ever manage\\nto straddle both bikes and ride them tandem down the street. (Turn left...\\naccelerate the Zephyr; turn right... accelerate the Beemer.) Does\\nanybody know of an agency that makes use of this simple fact to\\ndiscount your rates? State Farm doesn't.\\n\\nBy the way, I'm moving to the Bay area so I'll be insuring the bikes\\nthere, and registering them. To ease me of the shock, can somebody\\nguesstimate the cost of insuring a ZR550 and a R800GS? Here in Tucson\\nthey only cost me $320 (full) and $200 (liability only) for the two,\\nper annum.\\n\\nMuchas gracias,\\n\\t\\t\\tEnrique\\n\",\n", + " 'From: jburnside@ll.mit.edu (jamie w burnside)\\nSubject: Re: GOT MY BIKE! (was Wanted: Advice on CB900C Purchase)\\nKeywords: CB900C, purchase, advice\\nReply-To: jburnside@ll.mit.edu (jamie w burnside)\\nOrganization: MIT Lincoln Laboratory\\nLines: 29\\n\\n--\\nIn article <1993Apr16.005131.29830@ncsu.edu>, jrwaters@eos.ncsu.edu \\n(JACK ROGERS WATERS) writes:\\n|>>\\n|>>>Being a reletively new reader, I am quite impressed with all the usefull\\n|>>>info available on this newsgroup. I would ask how to get my own DoD number,\\n|>>>but I\\'ll probably be too busy riding ;-).\\n|>>\\n|>>\\tDoes this count?\\n|>\\n|>Yes. He thought about it.\\n|>>\\n|>>$ cat dod.faq | mailx -s \"HAHAHHA\" jburnside@ll.mit.edu (waiting to press\\n|>>\\t\\t\\t\\t\\t\\t\\t return...)\\n\\nHey, c\\'mon guys (and gals), I chose my words very carefully and even \\ntried to get my FAQ\\'s straight. Don\\'t holler BOHICA at me!\\n \\n----------------------------------------------------------------------\\n| |\\\\/\\\\/\\\\/| ___________________ |\\n| | | / \\\\ |\\n| | | / Jamie W. Burnside \\\\ 1980 CB900 Custom |\\n| | (o)(o) ( jburnside@ll.mit.edu ) 1985 KDX200 (SOLD!) |\\n| C _) / \\\\_____________________/ 1978 CB400 (for sale) |\\n| | ,___| / |\\n| | / |\\n| / __\\\\ |\\n| / \\\\ |\\n----------------------------------------------------------------------\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Traditional and Historical Armenian Barbarism (Was Re: watch OUT!!).\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 106\\n\\nIn article <21APR199314025948@elroy.uh.edu> st156@elroy.uh.edu (Fazia Begum Rizvi) writes:\\n\\n>Seems to me that a lot of good muslims would care about those terms.\\n>Especially those affected by the ideology and actions that such terms\\n>decscribe. The Bosnians suffering from such bigotry comes to mind. They\\n>get it from people who call them \\'dirty descendants of Turks\\', from\\n>people who hate their religion, and from those who don\\'t think they are\\n>really muslims at all since they are white. The suffering that they are\\n\\nLet us not forget about the genocide of the Azeri people in \\'Karabag\\' \\nand x-Soviet Armenia by the Armenians. Between 1914 and 1920, Armenians \\ncommitted unheard-of crimes, resorted to all conceivable methods of \\ndespotism, organized massacres, poured petrol over babies and burned \\nthem, raped women and girls in front of their parents who were bound \\nhand and foot, took girls from their mothers and fathers and appropriated \\npersonal property and real estate. And today, they put Azeris in the most \\nunbearable conditions any other nation had ever known in history.\\n \\n\\nAREF SADIKOV sat quietly in the shade of a cafe-bar on the\\nCaspian Sea esplanade of Baku and showed a line of stitches in\\nhis trousers, torn by an Armenian bullet as he fled the town of\\nHojali just over three months ago, writes Hugh Pope.\\n\\n\"I\\'m still wearing the same clothes, I don\\'t have any others,\"\\nthe 51-year-old carpenter said, beginning his account of the\\nHojali disaster. \"I was wounded in five places, but I am lucky to\\nbe alive.\"\\n\\nMr Sadikov and his wife were short of food, without electricity\\nfor more than a month, and cut off from helicopter flights for 12\\ndays. They sensed the Armenian noose was tightening around the\\n2,000 to 3,000 people left in the straggling Azeri town on the\\nedge of Karabakh.\\n\\n\"At about 11pm a bombardment started such as we had never heard\\nbefore, eight or nine kinds of weapons, artillery, heavy\\nmachine-guns, the lot,\" Mr Sadikov said.\\n\\nSoon neighbours were pouring down the street from the direction\\nof the attack. Some huddled in shelters but others started\\nfleeing the town, down a hill, through a stream and through the\\nsnow into a forest on the other side.\\n\\nTo escape, the townspeople had to reach the Azeri town of Agdam\\nabout 15 miles away. They thought they were going to make it,\\nuntil at about dawn they reached a bottleneck between the two\\nArmenian villages of Nakhchivanik and Saderak.\\n\\n\"None of my group was hurt up to then ... Then we were spotted by\\na car on the road, and the Armenian outposts started opening\\nfire,\" Mr Sadikov said.\\n\\nAzeri militiamen fighting their way out of Hojali rushed forward\\nto force open a corridor for the civilians, but their efforts\\nwere mostly in vain. Mr Sadikov said only 10 people from his\\ngroup of 80 made it through, including his wife and militiaman\\nson. Seven of his immediate relations died, including his\\n67-year-old elder brother.\\n\\n\"I only had time to reach down and cover his face with his hat,\"\\nhe said, pulling his own big flat Turkish cap over his eyes. \"We\\nhave never got any of the bodies back.\"\\n\\nThe first groups were lucky to have the benefit of covering fire.\\nOne hero of the evacuation, Alif Hajief, was shot dead as he\\nstruggled to change a magazine while covering the third group\\'s\\ncrossing, Mr Sadikov said.\\n\\nAnother hero, Elman Memmedov, the mayor of Hojali, said he and\\nseveral others spent the whole day of 26 February in the bushy\\nhillside, surrounded by dead bodies as they tried to keep three\\nArmenian armoured personnel carriers at bay.\\n\\nAs the survivors staggered the last mile into Agdam, there was\\nlittle comfort in a town from which most of the population was\\nsoon to flee.\\n\\n\"The night after we reached the town there was a big Armenian\\nrocket attack. Some people just kept going,\" Mr Sadikov said. \"I\\nhad to get to the hospital for treatment. I was in a bad way.\\nThey even found a bullet in my sock.\"\\n\\nVictims of war: An Azeri woman mourns her son, killed in the\\nHojali massacre in February (left). Nurses struggle in primitive\\nconditions (centre) to save a wounded man in a makeshift\\noperating theatre set up in a train carriage. Grief-stricken\\nrelatives in the town of Agdam (right) weep over the coffin of\\nanother of the massacre victims. Calculating the final death toll\\nhas been complicated because Muslims bury their dead within 24\\nhours.\\n\\nPhotographs: Liu Heung / AP\\n Frederique Lengaigne / Reuter\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " 'From: rdl1@ukc.ac.uk (R.D.Lorenz)\\nSubject: Cold Gas tanks for Sounding Rockets\\nOrganization: Computing Lab, University of Kent at Canterbury, UK.\\nLines: 14\\nNntp-Posting-Host: eagle.ukc.ac.uk\\n\\n>Does anyone know how to size cold gas roll control thruster tanks\\n>for sounding rockets?\\n\\nWell, first you work out how much cold gas you need, then make the\\ntanks big enough.\\n\\nWorking out how much cold gas is another problem, depending on\\nvehicle configuration, flight duration, thruster Isp (which couples\\ninto storage pressure, which may be a factor in selecting tank\\nwall thickness etc.)\\n\\nRalph Lorenz\\nUnit for Space Sciences\\nUniversity of Kent, UK\\n',\n", + " \"From: osprey@ux4.cso.uiuc.edu (Lucas Adamski)\\nSubject: Fast polygon routine needed\\nKeywords: polygon, needed\\nOrganization: University of Illinois at Urbana-Champaign\\nLines: 6\\n\\nThis may be a fairly routine request on here, but I'm looking for a fast\\npolygon routine to be used in a 3D game. I have one that works right now, but\\nits very slow. Could anyone point me to one, pref in ASM that is fairly well\\ndocumented and flexible?\\n\\tThanx,\\n //Lucas.\\n\",\n", + " 'From: jbatka@desire.wright.edu\\nSubject: Re: Gamma Ray Bursters. WHere are they.\\nOrganization: Wright State University \\nLines: 16\\n\\nI assume that can only be guessed at by the assumed energy of the\\nevent and the 1/r^2 law. So, if the 1/r^2 law is incorrect (assume\\nsome unknown material [dark matter??] inhibits Gamma Ray propagation),\\ncould it be possible that we are actually seeing much less energetic\\nevents happening much closer to us? The even distribution could\\nbe caused by the characteristic propagation distance of gamma rays \\nbeing shorter then 1/2 the thickness of the disk of the galaxy.\\n\\nJust some idle babbling,\\n-- \\n\\n Jim Batka | Work Email: BATKAJ@CCMAIL.DAYTON.SAIC.COM | Elvis is\\n | Home Email: JBATKA@DESIRE.WRIGHT.EDU | DEAD!\\n\\n 64 years is 33,661,440 minutes ...\\n and a minute is a LONG time! - Beatles: _ Yellow Submarine_\\n',\n", + " 'From: west@next02cville.wam.umd.edu (Stilgar)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: next15csc.wam.umd.edu\\nReply-To: west@next02.wam.umd.edu\\nOrganization: Workstations at Maryland, University of Maryland, College Park\\nLines: 35\\n\\nIn article kmr4@po.CWRU.edu (Keith M. \\nRyan) writes:\\n> In article <1993Apr5.163050.13308@wam.umd.edu> \\nwest@next02cville.wam.umd.edu (Stilgar) writes:\\n> >In article kmr4@po.CWRU.edu (Keith M. \\n> >Ryan) writes:\\n> >> In article <1993Apr5.025924.11361@wam.umd.edu> \\n> >west@next02cville.wam.umd.edu (Stilgar) writes:\\n> >> \\n> >> >THE ILLIAD IS THE UNDISPUTED WORD OF GOD(tm) *prove me wrong*\\n> >> \\n> >> \\tI dispute it.\\n> >> \\n> >> \\tErgo: by counter-example: you are proven wrong.\\n> >\\n> >\\tI dispute your counter-example\\n> >\\n> >\\tErgo: by counter-counter-example: you are wrong and\\n> >\\tI am right so nanny-nanny-boo-boo TBBBBBBBTTTTTTHHHHH\\n> \\n> \\tNo. The premis stated that it was undisputed. \\n> \\n\\nFine... THE ILLIAD IS THE WORD OF GOD(tm) (disputed or not, it is)\\n\\nDispute that. It won\\'t matter. Prove me wrong.\\n\\nBrian West\\n--\\nTHIS IS NOT A SIG FILE * -\"To the Earth, we have been\\nTHIS IS NOT A SIG FILE * here but for the blink of an\\nOK, SO IT\\'S A SIG FILE * eye, if we were gone tomorrow, \\nposted by west@wam.umd.edu * we would not be missed.\"- \\nwho doesn\\'t care who knows it. * (Jurassic Park) \\n** DICLAIMER: I said this, I meant this, nobody made me do it.**\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: How many read sci.space?\\nOrganization: Texas Instruments Inc\\nLines: 16\\n\\nIn <1993Apr15.204210.26022@mksol.dseg.ti.com> pyron@skndiv.dseg.ti.com (Dillon Pyron) writes:\\n\\n\\n>There are actually only two of us. I do Henry, Fred, Tommy and Mary. Oh yeah,\\n>this isn\\'t my real name, I\\'m a bald headed space baby.\\n\\nYes, and I do everyone else. Why, you may wonder, don\\'t I do \\'Fred\\'?\\nWell, that would just be too *obvious*, wouldn\\'t it? Oh yeah, this\\nisn\\'t my real name, either. I\\'m actually Elvis. Or maybe a lemur; I\\nsometimes have difficulty telling which is which.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 102\\nDistribution: world\\nNNTP-Posting-Host: tm0006.lerc.nasa.gov\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr23.184732.1105@aio.jsc.nasa.gov>, kjenks@gothamcity.jsc.nasa.gov writes...\\n\\n {Description of \"External Tank\" option for SSF redesign deleted}\\n\\n>Mark proposed this design at Joe Shea\\'s committee in Crystal City,\\n>and he reports that he was warmly received. However, the rumors\\n>I hear say that a design based on a wingless Space Shuttle Orbiter\\n>seems more likely.\\n\\nYo Ken, let\\'s keep on-top of things! Both the \"External Tank\" and\\n\"Wingless Orbiter\" options have been deleted from the SSF redesign\\noptions list. Today\\'s (4/23) edition of the New York Times reports\\nthat O\\'Connor told the panel that some redesign proposals have\\nbeen dropped, such as using the \"giant external fuel tanks used\\nin launching space shuttles,\" and building a \"station around\\nan existing space shuttle with its wings and tail removed.\"\\n\\nCurrently, there are three options being considered, as presented\\nto the advisory panel meeting yesterday (and as reported in\\ntoday\\'s Times).\\n\\nOption \"A\" - Low Cost Modular Approach\\nThis option is being studied by a team from MSFC. {As an aside,\\nthere are SSF redesign teams at MSFC, JSC, and LaRC supporting\\nthe SRT (Station Redesign Team) in Crystal City. Both LeRC and\\nReston folks are also on-site at these locations, helping the respective\\nteams with their redesign activities.} Key features of this\\noption are:\\n - Uses \"Bus-1\", a modular bus developed by Lockheed that\\'s\\n qualified for STS and ELV\\'s. The bus provides propulsion, GN&C\\n Communications, & Data Management. Lockheed developed this\\n for the Air Force.\\n - A \"Power Station Capability\" is obtained in 3 Shuttle Flights.\\n SSF Solar arrays are used to provide 20 kW of power. The vehicle\\n flies in an \"arrow mode\" to optimize the microgravity environment.\\n Shuttle/Spacelab missions would utilize the vehilce as a power\\n source for 30 day missions.\\n - Human tended capability (as opposed to the old SSF sexist term\\n of man-tended capability) is achieved by the addition of the\\n US Common module. This is a modified version of the existing\\n SSF Lab module (docking ports are added for the International\\n Partners\\' labs, taking the place of the nodes on SSF). The\\n Shuttle can be docked to the station for 60 day missions.\\n The Orbiter would provide crew habitability & EVA capability.\\n - International Human Tended. Add the NASDA & ESA modules, and\\n add another 20 kW of power\\n - Permanent Human Presence Capability. Add a 3rd power module,\\n the U.S. habitation module, and an ACRV (Assured Crew Return\\n Vehicle).\\n\\nOption \"B\" - Space Station Freedom Derived\\nThe Option \"B\" team is based at LaRC, and is lead by Mike Griffin.\\nThis option looks alot like the existing SSF design, which we\\nhave all come to know and love :)\\n\\nThis option assumes a lightweight external tank is available for\\nuse on all SSF assembly flights (so does option \"A\"). Also, the \\nnumber of flights is computed for a 51.6 inclination orbit,\\nfor both options \"A\" and \"B\".\\n\\nThe build-up occurs in six phases:\\n - Initial Research Capability reached after 3 flights. Power\\n is transferred from the vehicle to the Orbiter/Spacelab, when\\n it visits.\\n - Man-Tended Capability (Griffin has not yet adopted non-sexist\\n language) is achieved after 8 flights. The U.S. Lab is\\n deployed, and 1 solar power module provides 20 kW of power.\\n - Permanent Human Presence Capability occurs after 10 flights, by\\n keeping one Orbiter on-orbit to use as an ACRV (so sometimes\\n there would be two Orbiters on-orbit - the ACRV, and the\\n second one that comes up for Logistics & Re-supply).\\n - A \"Two Fault Tolerance Capability\" is achieved after 14 flights,\\n with the addition of a 2nd power module, another thermal\\n control system radiator, and more propulsion modules.\\n - After 20 flights, the Internationals are on-board. More power,\\n the Habitation module, and an ACRV are added to finish the\\n assembly in 24 flights.\\n\\nMost of the systems currently on SSF are used as-is in this option, \\nwith the exception of the data management system, which has major\\nchanges.\\n\\nOption C - Single Core Launch Station.\\nThis is the JSC lead option. Basically, you take a 23 ft diameter\\ncylinder that\\'s 92 ft long, slap 3 Space Shuttle Main Engines on\\nthe backside, put a nose cone on the top, attached it to a \\nregular shuttle external tank and a regular set of solid rocket\\nmotors, and launch the can. Some key features are:\\n - Complete end-to-end ground integration and checkout\\n - 4 tangentially mounted fixed solar panels\\n - body mounted radiators (which adds protection against\\n micrometeroid & orbital debris)\\n - 2 centerline docking ports (one on each end)\\n - 7 berthing ports\\n - a single pressurized volume, approximately 26,000 cubic feet\\n (twice the volume of skylab).\\n - 7 floors, center passageway between floors\\n - 10 kW of housekeeping power\\n - graceful degradation with failures (8 power channels, 4 thermal\\n loops, dual environmental control & life support system)\\n - increased crew time for utilization\\n - 1 micro-g thru out the core module\\n',\n", + " \"Organization: Queen's University at Kingston\\nFrom: Graydon \\nSubject: Re: Gamma Ray Bursters. Where are they?\\n <1993Apr24.221344.1@vax1.mankato.msus.edu>\\nLines: 8\\n\\nIf all of these things have been detected in space, has anyone\\nlooked into possible problems with the detectors?\\n\\nThat is, is there some mechanism (cosmic rays, whatever) that\\ncould cause the dector to _think_ it was seeing one of these\\nthings?\\n\\nGraydon\\n\",\n", + " 'From: loss@fs7.ECE.CMU.EDU (Doug Loss)\\nSubject: Jemison on Star Trek\\nOrganization: Electrical and Computer Engineering, Carnegie Mellon\\nLines: 7\\n\\n I saw in the newspaper last night that Dr. Mae Jemison, the first\\nblack woman in space (she\\'s a physician and chemical engineer who flew\\non Endeavour last year) will appear as a transporter operator on the\\n\"Star Trek: The Next Generation\" episode that airs the week of May 31.\\nIt\\'s hardly space science, I know, but it\\'s interesting.\\n\\nDoug Loss\\n',\n", + " 'From: dgf1@quads.uchicago.edu (David Farley)\\nSubject: Re: Photoshop for Windows\\nReply-To: dgf1@midway.uchicago.edu\\nOrganization: University of Chicago\\nLines: 25\\n\\nIn article beaver@rot.qc.ca (Andre Boivert) writes:\\n>\\n>\\n>I am looking for comments from people who have used/heard about PhotoShop\\n>for Windows. Is it good? How does it compare to the Mac version? Is there\\n>a lot of bugs (I heard the Windows version needs \"fine-tuning)?\\n>\\n>Any comments would be greatly appreciated..\\n>\\n>Thank you.\\n>\\n>Andre Boisvert\\n>beaver@rot.qc.ca\\n>\\nAn review of both the Mac and Windows versions in either PC Week or Info\\nWorld this week, said that the Windows version was considerably slower\\nthan the Mac. A more useful comparison would have been between PhotoStyler\\nand PhotoShop for Windows. David\\n\\n\\n-- \\nDavid Farley The University of Chicago Library\\n312 702-3426 1100 East 57th Street, JRL-210\\ndgf1@midway.uchicago.edu Chicago, Illinois 60637\\n\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: nuclear waste\\nOrganization: Texas Instruments Inc\\nLines: 78\\n\\nIn <1993Apr2.150038.2521@cs.rochester.edu> dietz@cs.rochester.edu (Paul Dietz) writes:\\n\\n>In article <1993Apr1.204657.29451@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n\\n>>>This system would produce enough energy to drive the accelerator,\\n>>>perhaps with some left over. A very high power (100\\'s of MW CW or\\n>>>quasi CW), very sharp proton beam would be required, but this appears\\n>>>achievable using a linear accelerator. The biggest question mark\\n>>>would be the lead target chemistry and the on-line processing of all\\n>>>the elements being incinerated.\\n>>\\n>>Paul, quite frankly I\\'ll believe that this is really going to work on\\n>>the typical trash one needs to process when I see them put a couple\\n>>tons in one end and get (relatively) clean material out the other end,\\n>>plus be able to run it off its own residual power. Sounds almost like\\n>>perpetual motion, doesn\\'t it?\\n\\n>Fred, the honest thing to do would be to admit your criticism on\\n>scientific grounds was invalid, rather than pretend you were actually\\n>talking about engineering feasibility. Given you postings, I can\\'t\\n>say I am surprised, though.\\n\\nWell, pardon me for trying to continue the discussion rather than just\\ntugging my forelock in dismay at having not considered actually trying\\nto recover the energy from this process (which is at least trying to\\ngo the \\'right\\' way on the energy curve). Now, where *did* I put those\\nsackcloth and ashes?\\n\\n[I was not and am not \\'pretending\\' anything; I am *so* pleased you are\\nnot surprised, though.]\\n\\n>No, it is nothing like perpetual motion. \\n\\nNote that I didn\\'t say it was perpetual motion, or even that it\\nsounded like perpetual motion; the phrase was \"sounds almost like\\nperpetual motion\", which I, at least, consider a somewhat different\\npropposition than the one you elect to criticize. Perhaps I should\\nbeg your pardon for being *too* precise in my use of language?\\n\\n>The physics is well\\n>understood; the energy comes from fission of actinides in subcritical\\n>assemblies. Folks have talked about spallation reactors since the\\n>1950s. Pulsed spallation neutron sources are in use today as research\\n>tools. Accelerator design has been improving, particularly with\\n>superconducting accelerating cavities, which helps feasibility. Los\\n>Alamos has expertise in high current accelerators (LAMPF), so I\\n>believe they know what they are talking about.\\n\\nI will believe that this process comes even close to approaching\\ntechnological and economic feasibility (given the mixed nature of the\\ntrash that will have to be run through it as opposed to the costs of\\nseparating things first and having a different \\'run\\' for each\\nactinide) when I see them dump a few tons in one end and pull\\n(relatively) clean material out the other. Once the costs,\\ntechnological risks, etc., are taken into account I still class this\\none with the idea of throwing waste into the sun. Sure, it\\'s possible\\nand the physics are well understood, but is it really a reasonable\\napproach? \\n\\nAnd I still wonder at what sort of \\'burning\\' rate you could get with\\nsomething like this, as opposed to what kind of energy you would\\nreally recover as opposed to what it would cost to build and power\\nwith and without the energy recovery. Are we talking ounces, pounds,\\nor tons (grams, kilograms, or metric tons, for you SI fans) of\\nmaterial and are we talking days, weeks, months, or years (days,\\nweeks, months or years, for you SI fans -- hmmm, still using a\\nnon-decimated time scale, I see ;-))?\\n\\n>The real reason why accelerator breeders or incinerators are not being\\n>built is that there isn\\'t any reason to do so. Natural uranium is\\n>still too cheap, and geological disposal of actinides looks\\n>technically reasonable.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'Subject: Vonnegut/atheism\\nFrom: dmn@kepler.unh.edu (...until kings become philosophers or philosophers become kings)\\nOrganization: UTexas Mail-to-News Gateway\\nNNTP-Posting-Host: cs.utexas.edu\\nLines: 21\\n\\n\\n\\n Yesterday, I got the chance to hear Kurt Vonnegut speak at the\\nUniversity of New Hampshire. Vonnegut succeeded Isaac Asimov as the \\n(honorary?) head of the American Humanist Association. (Vonnegut is\\nan atheist, and so was Asimov) Before Asimov\\'s funeral, Vonnegut stood up\\nand said about Asimov, \"He\\'s in heaven now,\" which ignited uproarious \\nlaughter in the room. (from the people he was speaking to around the time\\nof the funeral)\\n\\n\\t \"It\\'s the funniest thing I could have possibly said\\nto a room full of humanists,\" Vonnegut said at yesterday\\'s lecture. \\n\\n If Vonnegut comes to speak at your university, I highly recommend\\ngoing to see him even if you\\'ve never read any of his novels. In my opinion,\\nhe\\'s the greatest living humorist. (greatest living humanist humorist as well)\\n\\n\\n Peace,\\n\\n Dana\\n',\n", + " 'From: ajackson@cch.coventry.ac.uk (Alan Jackson)\\nSubject: MPEG Location\\nNntp-Posting-Host: cc_sysh\\nOrganization: Coventry University\\nLines: 11\\n\\n\\nCan anyone tell me where to find a MPEG viewer (either DOS or\\nWindows).\\n\\nThanks in advance.\\n\\n-- \\nAlan M. Jackson Mail : ajackson@cch.cov.ac.uk\\n\\n Liverpool Football Club - Simply The Best\\n \"You\\'ll Never Walk Alone\"\\n',\n", + " \"From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Delaunay Triangulation\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 9\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\n\\n\\nDoes anybody know what Delaunay Triangulation is?\\nIs there any reference to it? \\nIs it useful for creating 3-D objects? If yes, what's the advantage?\\n\\nThanks in advance.\\n\\nYeh\\nUSC\\n\",\n", + " \"From: pnakada@oracle.com (Paul Nakada)\\nSubject: Eating and Riding was Re: Drinking and Riding\\nArticle-I.D.: pnakada.PNAKADA.93Apr5140811\\nOrganization: Oracle Corporation, Redwood Shores, CA\\nLines: 14\\nNntp-Posting-Host: pnakada.us.oracle.com\\nX-Disclaimer: This message was written by an unauthenticated user\\n at Oracle Corporation. The opinions expressed are those\\n of the user and not necessarily those of Oracle.\\n\\n\\nWhat's the feeling about eating and riding? I went out riding this\\nweekend, and got a little carried away with some pecan pie. The whole\\nride back I felt sluggish. I was certainly much more alert on the\\nride in. I'm sure others have the same feeling, but the strangest\\nthing is that eating is usually the turnaround point of weekend rides.\\n\\nFrom now on, a little snack will do. I'd much rather have a get that\\nfull/sluggish feeling closer to home.\\n\\n-Paul\\n--\\nPaul Nakada | Oracle Corporation | pnakada@oracle.com\\nDoD #7773 | '91 R100C | '90 K75S\\n\",\n", + " \"From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: Georgia Institute of Technology\\nLines: 19\\n\\nI see that our retarded translator, David, is still writing things that\\ndon't make sense. Hey David I can see where you are.. May be one day,\\nWe will have the chance to talk deeply about that freedom of speach of\\nyours.. And you now, killing or torture, these things are only easy\\nways out.. I have different plans for you and all empty headeds like \\nyou...\\n\\nLets get serious, DAVE, don't ever write bad things about Turkish people\\nor especially Cyprus.. If I hear a word from you again that I consider\\nto be a curse to my people I will retalliate...\\n\\nMuccccukkk..\\nTIMUCIN.\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n\",\n", + " 'From: srlnjal@grace.cri.nz\\nSubject: CorelDraw BITMAP to SCODAL (2)\\nOrganization: Industrial Research Ltd., New Zealand.\\nLines: 22\\nNNTP-Posting-Host: grv.grace.cri.nz\\n\\n\\nYes I am aware CorelDraw exports in SCODAL.\\nVersion 2 did it quite well, apart from a\\nfew hassles with radial fills. Version 3 RevB\\nis better but if you try to export in SCODAL\\nwith a bitmap image included in the drawing\\nit will say something like \"cannot export\\nSCODAL with bitmap\"- at least it does on my\\nversion.\\n If anyone out there knows a way around this\\nI am all ears.\\n Temporal images make a product called Filmpak\\nwhich converts Autocad plots to SCODAL, postscript\\nto SCODAL and now GIF to SCODAL but it costs $650\\nand I was just wondering if there was anything out\\nthere that just did the bitmap to SCODAL part a tad\\ncheaper.\\n\\nJeff Lyall\\nInst.Geo.&.Nuc.Sci.Ltd\\nLower Hutt New Zealand\\n\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: 2.5 million Muslims perished of butchery at the hands of Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 92\\n\\nIn article <1993Apr25.015551.23259@husc3.harvard.edu> verbit@brauer.harvard.edu (Mikhail S. Verbitsky) writes:\\n\\n>\\tActually, Jarmo is a permanent resident of my killfile\\n\\nAnyone care to speculate on this? I\\'ll let the rest of the net judge\\nthis on its own merits. Between 1914 and 1920, 2.5 million Turks perished \\nof butchery at the hands of Armenians. The genocide involved not only \\nthe killing of innocents but their forcible deportation from the Russian \\nArmenia. They were persecuted, banished, and slaughtered while much of \\nOttoman Army was engaged in World War I. The Genocide Treaty defines \\ngenocide as acting with a \\n\\n \\'specific intent to destroy, in whole or in substantial part, a \\n national, ethnic, racial or religious group.\\' \\n\\nHistory shows that the x-Soviet Armenian Government intended to eradicate \\nthe Muslim population. 2.5 million Turks and Kurds were exterminated by the \\nArmenians. International diplomats in Ottoman Empire at the time - including \\nU.S. Ambassador Bristol - denounced the x-Soviet Armenian Government\\'s policy \\nas a massacre of the Kurds, Turks, and Tartars. The blood-thirsty leaders of \\nthe x-Soviet Armenian Government at the time personally involved in the \\nextermination of the Muslims. The Turkish genocide museums in Turkiye honor \\nthose who died during the Turkish massacres perpetrated by the Armenians. \\n\\nThe eyewitness accounts and the historical documents established,\\nbeyond any doubt, that the massacres against the Muslim people\\nduring the war were planned and premeditated. The aim of the policy\\nwas clearly the extermination of all Turks in x-Soviet Armenian \\nterritories.\\n\\nThe Muslims of Van, Bitlis, Mus, Erzurum and Erzincan districts and\\ntheir wives and children have been taken to the mountains and killed.\\nThe massacres in Trabzon, Tercan, Yozgat and Adana were organized and\\nperpetrated by the blood-thirsty leaders of the x-Soviet Armenian \\nGovernment.\\n\\nThe principal organizers of the slaughter of innocent Muslims were\\nDro, Antranik, Armen Garo, Hamarosp, Daro Pastirmadjian, Keri,\\nKarakin, Haig Pajise-liantz and Silikian.\\n\\nSource: \"Bristol Papers\", General Correspondence: Container #32 - Bristol\\n to Bradley Letter of September 14, 1920.\\n\\n\"I have it from absolute first-hand information that the Armenians in \\n the Caucasus attacked Tartar (Turkish) villages that are utterly \\n defenseless and bombarded these villages with artillery and they murder\\n the inhabitants, pillage the village and often burn the village.\"\\n\\n\\nSources: (The Ottoman State, the Ministry of War), \"Islam Ahalinin \\nDucar Olduklari Mezalim Hakkinda Vesaike Mustenid Malumat,\" (Istanbul, 1918). \\nThe French version: \"Documents Relatifs aux Atrocites Commises par les Armeniens\\nsur la Population Musulmane,\" (Istanbul, 1919). In the Latin script: H. K.\\nTurkozu, ed., \"Osmanli ve Sovyet Belgeleriyle Ermeni Mezalimi,\" (Ankara,\\n1982). In addition: Z. Basar, ed., \"Ermenilerden Gorduklerimiz,\" (Ankara,\\n1974) and, edited by the same author, \"Ermeniler Hakkinda Makaleler -\\nDerlemeler,\" (Ankara, 1978). \"Askeri Tarih Belgeleri ...,\" Vol. 32, 83\\n(December 1983), document numbered 1881.\\n\"Askeri Tarih Belgeleri ....,\" Vol. 31, 81 (December 1982), document\\n numbered 1869.\\n\\n\"Those who were capable of fighting were taken away at the very beginning\\n with the excuse of forced labor in road construction, they were taken\\n in the direction of Sarikamis and annihilated. When the Russian army\\n withdrew, a part of the remaining people was destroyed in Armenian\\n massacres and cruelties: they were thrown into wells, they were locked\\n in houses and burned down, they were killed with bayonets and swords, in places\\n selected as butchering spots, their bellies were torn open, their lungs\\n were pulled out, and girls and women were hanged by their hair after\\n being subjected to every conceivable abominable act. A very small part \\n of the people who were spared these abominations far worse than the\\n cruelty of the inquisition resembled living dead and were suffering\\n from temporary insanity because of the dire poverty they had lived\\n in and because of the frightful experiences they had been subjected to.\\n Including women and children, such persons discovered so far do not\\n exceed one thousand five hundred in Erzincan and thirty thousand in\\n Erzurum. All the fields in Erzincan and Erzurum are untilled, everything\\n that the people had has been taken away from them, and we found them\\n in a destitute situation. At the present time, the people are subsisting\\n on some food they obtained, impelled by starvation, from Russian storages\\n left behind after their occupation of this area.\"\\n \\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'Subject: Re: islamic authority over women\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 29\\n\\nIn article <1993Apr6.124112.12959@dcs.warwick.ac.uk> simon@dcs.warwick.ac.uk (Simon Clippingdale) writes:\\n\\n>For the guy who said he\\'s just arrived, and asked whether Bobby\\'s for real,\\n>you betcha. Welcome to alt.atheism, and rest assured that it gets worse.\\n>I have a few pearls of wisdom from Bobby which I reproduce below. Is anyone\\n>(Keith?) keeping a big file of such stuff?\\n\\n\\tSorry, I was, but I somehow have misplaced my diskette from the last \\ncouple of months or so. However, thanks to the efforts of Bobby, it is being \\nreplenished rather quickly! \\n\\n\\tHere is a recent favorite:\\n\\n\\t--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", + " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 36\\n\\nIn kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n\\n>In article <1qj9gq$mg7@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank \\nO\\'Dwyer) writes:\\n\\n>>Is good logic *better* than bad? Is good science better than bad? \\n\\n> By definition.\\n\\n\\n> great - good - okay - bad - horrible\\n\\n> << better\\n> worse >>\\n\\n\\n> Good is defined as being better than bad.\\n\\n>---\\nHow do we come up with this setup? Is this subjective, if enough people agreed\\nwe could switch the order? Isn\\'t this defining one unknown thing by another? \\nThat is, good is that which is better than bad, and bad is that which is worse\\nthan good? Circular?\\n\\nMAC\\n> Only when the Sun starts to orbit the Earth will I accept the Bible. \\n> \\n\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", + " 'From: jfw@ksr.com (John F. Woods)\\nSubject: Re: A WRENCH in the works?\\nOrganization: Kendall Square Research Corp.\\nLines: 15\\n\\nnanderso@Endor.sim.es.com (Norman Anderson) writes:\\n>jmcocker@eos.ncsu.edu (Mitch) writes:\\n>>effect that one of the SSRBs that was recovered after the\\n>>recent space shuttle launch was found to have a wrench of\\n>>some sort rattling around apparently inside the case.\\n>I heard a similar statement in our local news (UTAH) tonight. They referred\\n>to the tool as \"...the PLIERS that took a ride into space...\". They also\\n>said that a Thiokol (sp?) employee had reported missing a tool of some kind\\n>during assembly of one SRB.\\n\\nI assume, then, that someone at Thiokol put on their \"manager\\'s hat\" and said\\nthat pissing off the customer by delaying shipment of the SRB to look inside\\nit was a bad idea, regardless of where that tool might have ended up.\\n\\nWhy do I get the feeling that Thiokol \"manager\\'s hats\" are shaped like cones?\\n',\n", + " \"From: rbarris@orion.oac.uci.edu (Robert C. Barris)\\nSubject: Re: Rumours about 3DO ???\\nNntp-Posting-Host: orion.oac.uci.edu\\nSummary: 3DO demonstration\\nOrganization: University of California, Irvine\\nKeywords: 3DO ARM QT Compact Video\\nLines: 73\\n\\nIn article <1993Apr16.212441.34125@rchland.ibm.com> ricardo@rchland.vnet.ibm.com (Ricardo Hernandez Muchado) writes:\\n>In article <1993Apr15.164940.11632@mercury.unt.edu>, Sean McMains writes:\\n>|> In article <1993Apr15.144843.19549@rchland.ibm.com> Ricardo Hernandez\\n>|> Muchado, ricardo@rchland.vnet.ibm.com writes:\\n>|> > And CD-I's CPU doesn't help much either. I understand it is\\n>|> >a 68070 (supposedly a variation of a 68000/68010) running at something\\n>|> >like 7Mhz. With this speed, you *truly* need sprites.\\n[snip]\\n(the 3DO is not a 68000!!!)\\n>|> \\n>|> Ricardo, the animation playback to which Lawrence was referring in an\\n>|> earlier post is plain old Quicktime 1.5 with the Compact Video codec.\\n>|> I've seen digitized video (some of Apple's early commercials, to be\\n>|> precise) running on a Centris 650 at about 30fps very nicely (16-bit\\n>|> color depth). I would expect that using the same algorithm, a RISC\\n>|> processor should be able to approach full-screen full-motion animation,\\n>|> though as you've implied, the processor will be taxed more with highly\\n>|> dynamic material.\\n[snip]\\n>booth there. I walked by, and they were showing real-time video capture\\n>using a (Radious or SuperMac?) card to digitize and make right on the spot\\n>quicktime movies. I think the quicktime they were using was the old one\\n>(1.5).\\n>\\n> They digitized a guy talking there in 160x2xx something. It played back quite\\n>nicely and in real time. The guy then expanded the window (resized) to 25x by\\n>3xx (320 in y I think) and the frame rate decreased enough to notice that it\\n>wasn't 30fps (or about 30fps) anymore. It dropped to like 15 fps. Then he\\n>increased it just a bit more, and it dropped to 10<->12 fps. \\n>\\n> Then I asked him what Mac he was using... He was using a Quadra (don't know\\n>what model, 900?) to do it, and he was telling the guys there that the Quicktime\\n>could play back at the same speed even on an LCII.\\n>\\n> Well, I spoiled his claim so to say, since a 68040 Quadra Mac was having\\n>a little bit of trouble. And this wasn't even from the hardisk! This was\\n>from memory!\\n>\\n> Could it be that you saw either a newer version of quicktime, or some\\n>hardware assisted Centris, or another software product running the \\n>animation (like supposedly MacroMind's Accelerator?)?\\n>\\n> Don't misunderstand me, I just want to clarify this.\\n>\\n\\n\\nThe 3DO box is based on an ARM RISC processor, one or two custom graphics\\nchips, a DSP, a double-speed CDROM, and 2MB of RAM/VRAM. (I'm a little\\nfuzzy on the breakdown of the graphics chips and RAM/VRAM capacity).\\n\\nIt was demonstrated at a recent gathering at the Electronic Cafe in\\nSanta Monica, CA. From 3DO, RJ Mical (of Amiga/Lynx fame) and Hal\\nJosephson (sp?) were there to talk about the machine and their plan. We\\ngot to see the unit displaying full-screen movies using the CompactVideo codec\\n(which was nice, very little blockiness showing clips from Jaws and Backdraft)\\n... and a very high frame rate to boot (like 30fps).\\n\\nNote however that the 3DO's screen resolution is 320x240.\\n\\nCompactVideo is pretty amazing... I also wanted to point out that QuickTime\\ndoes indeed slow down when one dynamically resizes material as was stated\\nabove... I'm sure if the material had been compressed at the large size\\nthen it would play back fine (I have a Q950 and do this quite a bit). The\\nprice of generality... personally I don't use the dynamic sizing of movies\\noften, if ever. But playing back stuff at its original size is plenty quick\\non the latest 040 machines.\\n\\nI'm not sure how a Centris/20MHz 040 stacks up against the 25 MHz ARM in\\nthe 3DO box. Obviously the ARM is faster, but how much?\\n\\nRob Barris\\nQuicksilver Software Inc.\\nrbarris@orion.oac.uci.edu\\n\",\n", + " \"From: charlie@elektro.cmhnet.org (Charlie Smith)\\nSubject: Re: Internet Discussion List\\nOrganization: Why do you suspect that?\\nLines: 17\\n\\nIn article <1qc5f0$3ad@moe.ksu.ksu.edu> bparker@uafhp..uark.edu (Brian Parker) writes:\\n> Hello world of Motorcyles lovers/soon-to-be-lovers!\\n>I have started a discussion list on the internet for people interested in\\n>talking Bikes! We discuss anything and everything. If you are interested in\\n>joining, drop me a line. Since it really isn't a 'list', what we do is if you \\n>have a post, you send it to me and I distribute it to everyone. C'mon...join\\n>and enjoy!\\n\\nHuh? Did this guy just invent wreck.motorcycles?\\n\\n\\tCurious minds want to know.\\n\\n\\nCharlie Smith charlie@elektro.cmhnet.org KotdohL KotWitDoDL 1KSPI=22.85\\n DoD #0709 doh #0000000004 & AMA, MOA, RA, Buckey Beemers, BK Ohio V\\n BMW K1100-LT, R80-GS/PD, R27, Triumph TR6 \\n Columbus, Ohio USA\\n\",\n", + " \"From: ktj@beach.cis.ufl.edu (kerry todd johnson)\\nSubject: army in space\\nOrganization: Univ. of Florida CIS Dept.\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: beach.cis.ufl.edu\\n\\n\\nIs anybody out there willing to discuss with me careers in the Army that deal\\nwith space? After I graduate, I will have a commitment to serve in the Army, \\nand I would like to spend it in a space-related field. I saw a post a long\\ntime ago about the Air Force Space Command which made a fleeting reference to\\nits Army counter-part. Any more info on that would be appreciated. I'm \\nlooking for things like: do I branch Intelligence, or Signal, or other? To\\nwhom do I voice my interest in space? What qualifications are necessary?\\nEtc, etc. BTW, my major is computer science engineering.\\n\\nPlease reply to ktj@reef.cis.ufl.edu\\n\\nThanks for ANY info.\\n=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=\\n= Whether they ever find life there or not, I think Jupiter should be =\\n= considered an enemy planet. -- Jack Handy =\\n---ktj@reef.cis.ufl.edu---cirop59@elm.circa.ufl.edu---endeavour@circa.ufl.edu--\\n\",\n", + " 'From: Chris W. Johnson \\nSubject: Re: New DC-x gif\\nOrganization: University of Texas at Austin Computation Center\\nLines: 20\\nDistribution: world\\nNNTP-Posting-Host: gargravarr.cc.utexas.edu\\nX-UserAgent: Nuntius v1.1.1d20\\nX-XXMessage-ID: \\nX-XXDate: Thu, 15 Apr 93 19:42:41 GMT\\n\\nIn article Andy Cohen,\\nCohen@ssdgwy.mdc.com writes:\\n> I just uploaded \"DCXart2.GIF\" to bongo.cc.utexas.edu...after Chris Johnson\\n> moves it, it\\'ll probably be in pub/delta-clipper.\\n\\nThanks again Andy.\\n\\nThe image is in pub/delta-clipper now. The name has been changed to \\n\"dcx-artists-concept.gif\" in the spirit of verboseness. :-)\\n\\n----Chris\\n\\nChris W. Johnson\\n\\nInternet: chrisj@emx.cc.utexas.edu\\nUUCP: {husc6|uunet}!cs.utexas.edu!ut-emx!chrisj\\nCompuServe: >INTERNET:chrisj@emx.cc.utexas.edu\\nAppleLink: chrisj@emx.cc.utexas.edu@internet#\\n\\n...wishing the Delta Clipper team success in the upcoming DC-X flight tests.\\n',\n", + " 'From: pmoloney@maths.tcd.ie (Paul Moloney)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nOrganization: Somewhere in the Twentieth Century\\nLines: 14\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy.\\n\\nFind an encyclopedia. Volume H. Now look up Hitler, Adolf. He had\\nmany more people than just Germans enamoured with him.\\n\\nP.\\n-- \\n moorcockpratchettdenislearydelasoulu2iainmbanksneworderheathersbatmanpjorourke\\nclive p a u l m o l o n e y Come, let us retract the foreskin of misconception\\njames trinity college dublin and apply the wire brush of enlightenment - GeoffM\\n brownbladerunnersugarcubeselectronicblaylockpowersspikeleekatebushhamcornpizza \\n',\n", + " \"From: wlm@wisdom.attmail.com (Bill Myers)\\nSubject: Re: graphics libraries\\nIn-Reply-To: ch41@prism.gatech.EDU's message of 21 Apr 93 12:56:08 GMT\\nOrganization: /usr1/lib/news/organization\\nLines: 28\\n\\n\\n> Does anyone out there have any experience with Figaro+ form TGS or\\n> HOOPS from Ithaca Software? I would appreciate any comments.\\n\\nYes, I do. A couple of years ago, I did a comparison of the two\\nproducts. Some of this may have changed, but here goes.\\n\\nAs far as a PHIGS+ implementation, Figaro+ is fine. But, its PHIGS!\\nPersonally, I hate PHIGS because I find it is too low level. I also\\ndislike structure editing, which I find impossible, but enough about\\nPHIGS.\\n\\nI have found HOOPS to be a system that is full-featured and easy to\\nuse. They support all of their rendering methods in software when\\nthere is no hardware support, their documentation is good, and they\\nare easily portable to other systems.\\n\\nI would be happy to elaborate further if you have more specific\\nquestions. \\n--\\n|------------------------------------------------------|\\n ~~~ Here's lookin' at ya.\\n ~~_ _~~\\n |`O-@'| Bill | wlm@wisdom.attmail.com\\n @| > |@ Phone: (216) 831-2880 x2002\\n |\\\\___/|\\n |_____|\\n|______________________________________________________|\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: >Natural morality may specifically be thought of as a code of ethics that\\n>>a certain species has developed in order to survive.\\n>Wait. Are we talking about ethics or morals here?\\n\\nIs the distinction important?\\n\\n>>We see this countless\\n>>times in the animal kingdom, and such a \"natural\" system is the basis for\\n>>our own system as well.\\n>Huh?\\n\\nWell, our moral system seems to mimic the natural one, in a number of ways.\\n\\n>>In order for humans to thrive, we seem to need\\n>>to live in groups,\\n>Here\\'s your problem. \"we *SEEM* to need\". What\\'s wrong with the highlighted\\n>word?\\n\\nI don\\'t know. What is wrong? Is it possible for humans to survive for\\na long time in the wild? Yes, it\\'s possible, but it is difficult. Humans\\nare a social animal, and that is a cause of our success.\\n\\n>>and in order for a group to function effectively, it\\n>>needs some sort of ethical code.\\n>This statement is not correct.\\n\\nIsn\\'t it? Why don\\'t you think so?\\n\\n>>And, by pointing out that a species\\' conduct serves to propogate itself,\\n>>I am not trying to give you your tautology, but I am trying to show that\\n>>such are examples of moral systems with a goal. Propogation of the species\\n>>is a goal of a natural system of morality.\\n>So anybody who lives in a monagamous relationship is not moral? After all,\\n>in order to ensure propogation of the species, every man should impregnate\\n>as many women as possible.\\n\\nNo. As noted earlier, lack of mating (such as abstinence or homosexuality)\\nisn\\'t really destructive to the system. It is a worst neutral.\\n\\n>For that matter, in herds of horses, only the dominate stallion mates. When\\n>he dies/is killed/whatever, the new dominate stallion is the only one who\\n>mates. These seems to be a case of your \"natural system of morality\" trying\\n>to shoot itself in the figurative foot.\\n\\nAgain, the mating practices are something to be reexamined...\\n\\nkeith\\n',\n", + " 'From: globus@nas.nasa.gov (Al Globus)\\nSubject: Space Colony Size Preferences Summary\\nOrganization: Applied Research Office, NASA Ames Research Center\\nReply-To: globus@nas.nasa.gov\\nDistribution: sci.space\\nLines: 92\\n\\n\\nSome time ago I sent the following message:\\n Every once in a while I design an orbital space colony. I\\'m gearing up to\\n do another one. I\\'d some info from you. If you were to move\\n onto a space colony to live permanently, how big would the colony have\\n to be for you to view a permanent move as desirable? Specifically,\\n\\n How many people do you want to share the colony with?\\n \\n\\n What physical dimensions does the living are need to have? \\n\\n\\n Assume 1g living (the colony will rotate). Assume that you can leave\\n from time to time for vacations and business trips. If you\\'re young\\n enough, assume that you\\'ll raise your children there.\\n\\nI didn\\'t get a lot of responses, and they were all over the block.\\nThanx muchly to all those who responded, it is good food for thought.\\n\\n\\n\\n\\nHere\\'s the (edited) responses I got:\\n\\n\\n How many people do you want to share the colony with?\\n \\n100\\n\\n What physical dimensions does the living are need to have? \\n\\nCylinder 200m diameter x 1 km long\\n\\nRui Sousa\\nruca@saber-si.pt\\n\\n=============================================================================\\n\\n> How many people do you want to share the colony with?\\n\\n100,000 - 250,000\\n\\n> What physical dimensions does the living are need to have? \\n\\n100 square kms surface, divided into city, towns, villages and\\ncountryside. Must have lakes, rivers amd mountains.\\n\\n=============================================================================\\n\\n> How many\\n1000. 1000 people really isn\\'t that large a number;\\neveryone will know everyone else within the space of a year, and will probably\\nbe sick of everyone else within another year.\\n\\n>What physical dimensions does the living are need to have? \\n\\nHm. I am not all that great at figuring it out. But I would maximize the\\npercentage of colony-space that is accessible to humans. Esecially if there\\nwere to be children, since they will figure out how to go everywhere anyways.\\nAnd everyone, especially me, likes to \"go exploring\"...I would want to be able\\nto go for a walk and see something different each time...\\n\\n=============================================================================\\n\\nFor population, I think I would want a substantial town -- big enough\\nto have strangers in it. This helps get away from the small-town\\n\"everybody knows everything\" syndrome, which some people like but\\nI don\\'t. Call it several thousand people.\\n\\nFor physical dimensions, a somewhat similar criterion: big enough\\nto contain surprises, at least until you spent considerable time\\ngetting to know it. As a more specific rule of thumb, big enough\\nfor there to be places at least an hour away on foot. Call that\\n5km, which means a 10km circumference if we\\'re talking a sphere.\\n\\n Henry Spencer at U of Toronto Zoology\\n henry@zoo.toronto.edu utzoo!henry\\n\\n=============================================================================\\nMy desires, for permanent move to a space colony, assuming easy communication\\nand travel:\\n\\nSize: About a small-town size, say 9 sq. km. \\'Course, bigger is better :-)\\nPopulation: about 100/sq km or less. So, ~1000 for 9sqkm. Less is\\nbetter for elbow room, more for interest and sanity, so say max 3000, min 300.\\n\\n-Tommy Mac\\n-------------------------------------------------------------------------\\nTom McWilliams | 517-355-2178 (work) \\\\\\\\ Inhale to the Chief!\\n18084tm@ibm.cl.msu.edu | 336-9591 (hm)\\\\\\\\ Zonker Harris in 1996!\\n-------------------------------------------------------------------------\\n',\n", + " 'From: wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov\\nSubject: Re: NASA \"Wraps\"\\nOrganization: University of Houston\\nLines: 160\\nDistribution: world\\nNNTP-Posting-Host: judy.uh.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr18.034101.21934@iti.org>, aws@iti.org (Allen W. Sherzer) writes...\\n>In article <17APR199316423628@judy.uh.edu> wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov writes:\\n> \\n>>I don\\'t care who told you this it is not generally true. I see EVERY single\\n>>line item on a contract and I have to sign it. There is no such thing as\\n>>wrap at this university. \\n> \\n>Dennis, I have worked on or written proposals worth tens of millions\\n>of $$. Customers included government (including NASA), for profit and\\n>non-profit companies. All expected a wrap (usually called a fee). Much\\n>of the work involved allocating and costing the work of subcontractors.\\n>The subcontractors where universities, for-profits, non-profits, and\\n>even some of the NASA Centers for the Commercialization of Space. ALL\\n>charged fees as part of the work. Down the street is one of the NASA\\n>commercialization centers; they charge a fee.\\n> \\n\\nYou totally forgot the original post that you posted Allen. In that post\\nyou stated that the \"wrap\" was on top of and in addition to any overhead.\\nGeez in this post you finally admit that this is not true.\\n\\n>Now, I\\'m sure your a competent engineer Dennis, but you clearly lack\\n>experience in several areas. Your posts show that you don\\'t understand\\n>the importance of integration in large projects. You also show a lack\\n>of understanding of costing efforts as shown by your belief that it\\n>is reasonable to charge incremental costs for everything. This isn\\'t\\n>a flame, jsut a statement.\\n\\nCome your little ol buns down here and you will find out who is doing\\nwhat and who is working on integration. This is simply an ad hominum\\nattack and you know it.\\n\\n> \\n>Your employer DOES charge a fee. You may not see it but you do.\\n>\\n\\nOf course there is a fee. It is for administration. Geez Allen any\\norganization has costs but there is a heck of a difference in legitimate\\ncosts, such as libraries and other things that must be there to support\\na program and \"wrap\" as you originally stated it.You stated that wrap\\nwas on top of all of the overhead which a couple of sentences down you\\nsay is not true. Which is it Allen?\\n\\n>>>Sounds like they are adding it to their overhead rate. Go ask your\\n>>>costing people how much fee they add to a project.\\n> \\n>>I did they never heard of it but suggest that, like our president did, that\\n>>any percentage number like this is included in the overhead.\\n> \\n>Well there you are Dennis. As I said, they simply include the fee in\\n>their overhead. Many seoparate the fee since the fee structure can\\n>change depending on the customer.\\n>\\n\\nAs you have posted on this subject Allen, you state that wrap is over and\\nabove overhead and is a seperate charge. You admit here that this is wrong.\\nNasa has a line item budget every year. I have seen it Allen. Get some\\nnumbers from that detailed NASA budget and dig out the wrap numbers and then\\nhowl to high heaven about it. Until you do that you are barking in the wind.\\n\\n>>No Allen you did not. You merely repeated allegations made by an Employee\\n>>of the Overhead capital of NASA. \\n> \\n>Integration, Dennis, isn\\'t overhead.\\n> \\n>>Nothing that Reston does could not be dont\\n>>better or cheaper at the Other NASA centers where the work is going on.\\n>\\n\\nIntegration could be done better at the centers. Apollo integration was \\ndone here at Msfc and that did not turn out so bad. The philosophy of\\nReston is totally wrong Allen. There you have a bunch of people who are\\ncompletely removed from the work that they are trying to oversee. There\\nis no way that will ever work. It has never worked in any large scale project\\nthat it was ever tried on. Could you imagine a Reston like set up for \\nApollo?\\n\\n>Dennis, Reston has been the only NASA agency working to reduce costs. When\\n>WP 02 was hemoraging out a billion $$, the centers you love so much where\\n>doing their best to cover it up and ignore the problem. Reston was the\\n>only place you would find people actually interested in solving the\\n>problems and building a station.\\n>\\n\\nOh you are full of it Allen on this one. I agree that JSC screwed up big.\\nThey should be responsible for that screw up and the people that caused it\\nreplaced. To make a stupid statement like that just shows how deep your\\nbias goes. Come to MSFC for a couple of weeks and you will find out just\\nhow wrong you really are. Maybe not, people like you believe exactly what\\nthey want to believe no matter what the facts are contrary to it. \\n\\n>>Kinda funny isn\\'t it that someone who talks about a problem like this is\\n>>at a place where everything is overhead.\\n> \\n>When you have a bit more experience Dennis, you will realize that\\n>integration isn\\'t overhead. It is the single most important part\\n>of a successful large scale effort.\\n>\\n\\nI agree that integration is the single most important part of a successful\\nlarge scale effort. What I completly disagree with is seperating that\\nintegration function from the people that are doing the work. It is called\\nleadership Allen. That is what made Apollo work. Final responsibility for\\nthe success of Apollo was held by less than 50 people. That is leadership\\nand responsibility. There is neither when you have any organization set up\\nas Reston is. You could take the same people and move them to JSC or MSFC\\nand they could do a much better job. Why did it take a year for Reston to\\nfinally say something about the problem? If they were on site and part of the\\nprocess then the problem would have never gotten out of hand in the first place.\\n\\nThere is one heck of a lot I do not know Allen, but one thing I do know is that\\nfor a project to be successful you must have leadership. I remember all of the\\nturn over at Reston that kept SSF program in shambles for years do you? It is\\nlack of responsibility and leadership that is the programs problem. Lack of\\nleadership from the White House, Congress and at Reston. Nasa is only a\\nsymptom of a greater national problem. You are so narrowly focused in your\\nefforts that you do not see this.\\n\\n>>Why did the Space News artice point out that it was the congressionally\\n>>demanded change that caused the problems? Methinks that you are being \\n>>selective with the facts again.\\n> \\n>The story you refer to said that some NASA people blamed it on\\n>Congress. Suprise suprise. The fact remains that it is the centers\\n>you support so much who covered up the overheads and wouldn\\'t address\\n>the problems until the press published the story.\\n> \\n>Are you saying the Reston managers where wrong to get NASA to address\\n>the overruns? You approve of what the centers did to cover up the overruns?\\n>\\n\\nNo, I am saying that if they were located at JSC it never would have \\nhappened in the first place.\\n\\n>>If it takes four flights a year to resupply the station and you have a cost\\n>>of 500 million a flight then you pay 2 billion a year. You stated that your\\n>>\"friend\" at Reston said that with the current station they could resupply it\\n>>for a billion a year \"if the wrap were gone\". This merely points out a \\n>>blatent contridiction in your numbers that understandably you fail to see.\\n> \\n>You should know Dennis that NASA doesn\\'t include transport costs for\\n>resuply. That comes from the Shuttle budget. What they where saying\\n>is that operational costs could be cut in half plus transport.\\n> \\n>>Sorry gang but I have a deadline for a satellite so someone else is going\\n>>to have to do Allen\\'s math for him for a while. I will have little chance to\\n>>do so.\\n> \\n>I do hope you can find the time to tell us just why it was wrong of\\n>Reston to ask that the problems with WP 02 be addressed.\\n> \\nI have the time to reitereate one more timet that if the leadership that is\\nat reston was on site at JSC the problem never would have happened, totally\\nignoring the lack of leadership of congress. This many headed hydra that\\nhas grown up at NASA is the true problem of the Agency and to try to \\nchange the question to suit you and your bias is only indicative of\\nyour position.\\n\\nDennis, University of Alabama in Huntsville\\n\\n',\n", + " \"From: raible@nas.nasa.gov (Eric Raible)\\nSubject: Re: Need advice for riding with someone on pillion\\nIn-Reply-To: rwert@well.sf.ca.us's message of 21 Apr 93 01:07:56 GMT\\nOrganization: Applied Research Office, NASA Ames Research Center\\nReply-To: raible@nas.nasa.gov\\nDistribution: na\\nLines: 22\\n\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n\\n I need some advice on having someone ride pillion with me on my 750 Ninja.\\n This will be the the first time I've taken anyone for an extended ride\\n (read: farther than around the block :-). We'll be riding some twisty, \\n fairly bumpy roads (the Mines Road-Mt.Hamilton Loop for you SF Bay Areans).\\n\\nI'd say this is a very bad idea - you should start out with something\\nmuch mellower so that neither one of you get in over your head.\\nThat particular road requires full concentration - not the sort of\\nthing you want to take a passenger on for the first time.\\n\\nOnce you both decide that you like riding together, and want to do\\nsomething longer and more challenging, *then* go for a hard core road\\nlike Mines-Mt. Hamilton.\\n\\nIn any case, it's *your* (moral) responsibility to make sure that she\\nhas proper gear that fits - especially if you're going sport\\nriding.\\n\\n- Eric\\n\",\n", + " 'From: klf@druwa.ATT.COM (FranklinKL)\\nSubject: Re: Hell-mets.\\nSummary: Visual damage is NOT an indicator.\\nLines: 50\\n\\nIn article <1993Apr18.035125.29930@freenet.carleton.ca>, aa963@Freenet.carleton.ca (Lloyd Carr) writes:\\n> \\n> In a previous article, maven@mavenry.altcit.eskimo.com (Norman Hamer) says:\\n> \\n> >\\n> > \\n> > If I don\\'t end up replacing it in the real near future, would I do better \\n> >to wear my (totally nondamaged) 3/4 face DOT-RATED cheapie which doesn\\'t fit \\n> >as well or keep out the wind as well, or wearing the Shoei RF-200 which is a \\n> >LOT more comfortable, keeps the wind out better, is quieter... but might \\n> >have some minor damage?\\n> \\n> == Wear the RF200. Even after a few drops & paint chips, it is FAR better\\n> than no helmet or a poorly fitting one. I\\'ve had many scratches & bangs\\n> which have been repaired plus I\\'m still confident of the protection the\\n> helmet will continue to give me. Only when you actually see depressions\\n \\n> or actual cracks (using a magnifying glass) should you consider replacement.\\n\\n> -- \\n\\nThis is not good advice. A couple of years I was involved in a low-speed\\ngetoff in which I landed on my back on the pavement. My head (helmeted)\\nhit the pavement with a \"clunk\", leaving a couple of dings and chips in the\\npaint at the point of impact, but no other visible damage. I called the\\nhelmet manufacturer and inquired about damage. They said that the way a\\nfiberglass shell works is to first give, then delaminate, then crack.\\nThis is the way fiberglass serves to spread the force of the impact over a\\nwider area. After the fiberglass has done its thing, the crushable foam\\nliner takes care of absorbing (hopefully) the remaining impact force.\\nThey told me that the second stage of fiberglass functionality (delamination\\nof the glass/resin layers) can occur with NO visible signs, either inside or\\noutside of the helmet. They suggested that I send them the helmet and they\\nwould inspect it (including X-raying). I did so. They sent back the helmet\\nwith a letter stating that that they could find no damage that would\\ncompromise the ability of the helmet to provide maximum protection.\\n(I suspect that this letter would eliminate their being able to claim\\nprior damage to the helmet in the event I were to sue them.)\\n\\nThe bottom line, though, is that it appears that a helmets integrity\\ncan be compromised with no visible signs. The only way to know for sure\\nis to send it back and have it inspected. Note that some helmet\\nmanufacturers provide inspections services and some do not. Another point\\nto consider when purchasing a lid.\\n\\n--\\nKen Franklin \\tThey say there\\'s a heaven for people who wait\\nAMA \\tAnd some say it\\'s better but I say it ain\\'t\\nGWRRA I\\'d rather laugh with the sinners than cry with the saints\\nDoD #0126 The sinners are lots more fun, Y\\'know only the good die young\\n',\n", + " 'From: spl@ivem.ucsd.edu (Steve Lamont)\\nSubject: SGI sales practices (Was: Crimson (Was: Kubota Announcement?))\\nOrganization: University of Calif., San Diego/Microscopy and Imaging Resource\\nLines: 49\\nNNTP-Posting-Host: ivem.ucsd.edu\\n\\nIn article <30523@hacgate.SCG.HAC.COM> lee@luke.rsg.hac.com (C. Lee) writes:\\n>The original posting complained (1) about SGI coming out with newer (and\\n>better) architectures and not having an upgrade path from the older ones,\\n>and (2) that DEC did.\\n\\nNo. That\\'s *not* what I was complaining about, nor did I intend to\\nsuggest that DEC was any better than SGI (let me tell you about the\\nLynx some day, but be prepared with a large sedative if you do...). My\\ncomment regarding DEC was to indicate that I might be open to other vendors\\nthat supported OpenGL, rather than deal further with SGI.\\n\\nWhat I *am* annoyed about is the fact that we were led to believe that\\nwe *would* be able to upgrade to a multiprocessor version of the\\nCrimson without the assistance of a fork lift truck.\\n\\nI\\'m also annoyed about being sold *several* Personal IRISes at a\\nprevious site on the understanding *that* architecture would be around\\nfor a while, rather than being flushed.\\n\\nNow I understand that SGI is responsible to its investors and has to\\nkeep showing a positive quarterly bottom line (odd that I found myself\\npressured on at least two occasions to get the business on the books\\njust before the end of the quarter), but I\\'m just a little tired of\\ngetting boned in the process.\\n\\nMaybe it\\'s because my lab buys SGIs in onesies and twosies, so we\\naren\\'t entitled to a \"peek under the covers\" as the Big Kids (NASA,\\nfor instance) are. This lab, and I suspect that a lot of other labs\\nand organizations, doesn\\'t have a load of money to spend on computers\\nevery year, so we can\\'t be out buying new systems on a regular basis.\\nThe boxes that we buy now will have to last us pretty much through the\\nentire grant period of five years and, in some case, beyond. That\\nmeans that I need to buy the best piece of equipment that I can when I\\nhave the money, not some product that was built, to paraphrase one\\nprevious poster\\'s words, \\'to fill a niche\\' to compete with some other\\nvendor. I\\'m going to be looking at this box for the next five years.\\nAnd every time I look at it, I\\'m going to think about SGI and how I\\ncould have better spent my money (actually *your* money, since we\\'re\\nsupported almost entirely by Federal tax dollars).\\n\\nNow you\\'ll have to pardon me while I go off and hiss and fume in a\\ncorner somewhere and think dark, libelous thoughts.\\n\\n\\t\\t\\t\\t\\t\\t\\tspl\\n-- \\nSteve Lamont, SciViGuy -- (619) 534-7968 -- spl@szechuan.ucsd.edu\\nSan Diego Microscopy and Imaging Resource/UC San Diego/La Jolla, CA 92093-0608\\n\"My other car is a car, too.\"\\n - Bumper strip seen on I-805\\n',\n", + " \"From: santac@aix.rpi.edu (Christopher James Santarcangelo)\\nSubject: FORSALE: 1982 Yamaha Seca 650 Turbo\\nKeywords: forsale seca turbo\\nNntp-Posting-Host: aix.rpi.edu\\nDistribution: usa\\nLines: 17\\n\\nI don't want to do this, but I need money for school. This is\\na very snappy bike. It needs a little work and I don't have the\\nmoney for it. Some details:\\n\\n\\t~19000 miles\\n\\tMitsubishi turbo\\n\\tnot asthetically beautiful, but very fast!\\n\\tOne of the few factory turboed bikes... not a kit!\\n\\tMust see and ride to appreciate how fun this bike is!\\n\\nI am asking $700 or best offer. The bike can be seen in\\nBennington, Vermont. E-mail for more info!\\n\\nThanks,\\nChris\\nsantac@rpi.edu\\n\\n\",\n", + " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 25\\nDistribution: na\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , jbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n> I remeber reading the comment that General Dynamics was tied into this, in \\n> connection with their proposal for an early manned landing. Sorry I don\\'t \\n> rember where I heard this, but I\\'m fairly sure it was somewhere reputable. \\n> Anyone else know anything on this angle?\\n\\nThe General Chairman is Paul Bialla, who is some official of General\\nDynamics.\\n\\nThe emphasis seems to be on a scaled-down, fast plan to put *people*\\non the Moon in an impoverished spaceflight-funding climate. You\\'d\\nthink it would be a golden opportunity to do lots of precusor work for\\nmodest money using an agressive series of robot spacecraft, but\\nthere\\'s not a hint of this in the brochure.\\n\\n> Hrumph. They didn\\'t send _me_ anything :(\\n\\nYou\\'re not hanging out with the Right People, apparently.\\n\\nBill Higgins, Beam Jockey | \"I\\'m gonna keep on writing songs\\nFermilab | until I write the song\\nBitnet: HIGGINS@FNAL.BITNET | that makes the guys in Detroit\\nInternet: HIGGINS@FNAL.FNAL.GOV | who draw the cars\\nSPAN/Hepnet: 43011::HIGGINS | put tailfins on \\'em again.\"\\n --John Prine\\n',\n", + " 'From: arf@genesis.MCS.COM (Jack Schmidling)\\nSubject: NEWS YOU MAY HAVE MISSED, Apr 20\\nOrganization: MCSNet Contributor, Chicago, IL\\nLines: 111\\nDistribution: world\\nNNTP-Posting-Host: localhost.mcs.com\\n\\n \\n NEWS YOU MAY HAVE MISSED, APR 19, 1993\\n \\n Not because you were too busy but because\\n Israelists in the US media spiked it.\\n \\n ................\\n \\n \\n THOSE INTREPID ISRAELI SOLDIERS\\n \\n \\n Israeli soldiers have sexually taunted Arab women in the occupied Gaza Strip \\n during the three-week-long closure that has sealed Palestinians off from the \\n Jewish state, Palestinian sources said on Sunday.\\n \\n The incidents occurred in the town of Khan Younis and involved soldiers of\\n the Golani Brigade who have been at the centre of house-to-house raids for\\n Palestinian activists during the closure, which was imposed on the strip and\\n occupied West Bank.\\n \\n Five days ago girls at the Al-Khansaa secondary said a group of naked\\n soldiers taunted them, yelling: ``Come and kiss me.\\'\\' When the girls fled, \\n the soldiers threw empty bottles at them.\\n \\n On Saturday, a group of soldiers opened their shirts and pulled down their\\n pants when they saw girls from Al-Khansaa walking home from school. Parents \\n are considering keeping their daughters home from the all-girls school.\\n \\n The same day, soldiers harassed two passing schoolgirls after a youth\\n escaped from them at a boys\\' secondary school. Deputy Principal Srur \\n Abu-Jamea said they shouted abusive language at the girls, backed them \\n against a wall, and put their arms around them.\\n \\n When teacher Hamdan Abu-Hajras intervened the soldiers kicked him and beat\\n him with the butts of their rifles.\\n \\n On Tuesday, troops stopped a car driven by Abdel Azzim Qdieh, a practising\\n Moslem, and demanded he kiss his female passenger. Qdieh refused, the \\n soldiers hit him and the 18-year-old passenger kissed him to stop the \\n beating.\\n \\n On Friday, soldiers entered the home of Zamno Abu-Ealyan, 60, blindfolded\\n him and his wife, put a music tape on a recorder and demanded they dance. As\\n the elderly couple danced, the soldiers slipped away. The coupled continued\\n dancing until their grandson came in and asked what was happening.\\n \\n The army said it was checking the reports.\\n \\n ....................\\n \\n \\n ISRAELI TROOPS BAR CHRISTIANS FROM JERUSALEM\\n \\n Israeli troops prevented Christian Arabs from entering Jerusalem on Thursday \\n to celebrate the traditional mass of the Last Supper.\\n \\n Two Arab priests from the Greek Orthodox church led some 30 worshippers in\\n prayer at a checkpoint separating the occupied West Bank from Jerusalem after\\n soldiers told them only people with army-issued permits could enter.\\n \\n ``Right now, our brothers are celebrating mass in the Church of the Holy\\n Sepulchre and we were hoping to be able to join them in prayer,\\'\\' said Father\\n George Makhlouf of the Ramallah Parish.\\n \\n Israel sealed off the occupied lands two weeks ago after a spate of\\n Palestinian attacks against Jews. The closure cut off Arabs in the West Bank\\n and Gaza Strip from Jerusalem, their economic, spiritual and cultural centre.\\n \\n Father Nicola Akel said Christians did not want to suffer the humiliation\\n of requesting permits to reach holy sites.\\n \\n Makhlouf said the closure was discriminatory, allowing Jews free movement\\n to take part in recent Passover celebrations while restricting Christian\\n celebrations.\\n \\n ``Yesterday, we saw the Jews celebrate Passover without any interruption.\\n But we cannot reach our holiest sites,\\'\\' he said.\\n \\n An Israeli officer interrupted Makhlouf\\'s speech, demanding to see his\\n identity card before ordering the crowd to leave.\\n \\n ...................\\n \\n \\n \\n If you are as revolted at this as I am, drop Israel\\'s best friend email and \\n let him know what you think.\\n \\n \\n 75300.3115@compuserve.com (via CompuServe)\\n clintonpz@aol.com (via America Online)\\n clinton-hq@campaign92.org (via MCI Mail)\\n \\n \\n Tell \\'em ARF sent ya.\\n \\n ..................................\\n \\n If you are tired of \"learning\" about American foreign policy from what is \\n effectively, Israeli controlled media, I highly recommend checking out the \\n Washington Report. A free sample copy is available by calling the American \\n Education Trust at:\\n (800) 368 5788\\n \\n Tell \\'em arf sent you.\\n \\n js\\n \\n \\n\\n',\n", + " 'From: watson@madvax.uwa.oz.au (David Watson)\\nSubject: Re: Sphere from 4 points?\\nOrganization: Maths Dept UWA\\nLines: 23\\nDistribution: world\\nNNTP-Posting-Host: xanthorrhoea.maths.uwa.edu.au\\n\\nIn article <1qkgbuINNs9n@shelley.u.washington.edu>, \\nbolson@carson.u.washington.edu (Edward Bolson) writes:\\n \\n|> Given 4 points (non coplanar), how does one find the sphere, that is,\\n|> center and radius, exactly fitting those points? \\n\\nFinding the circumcenter of a tetrahedron is discussed on page 33 in\\n\\nCONTOURING: A guide to the analysis and display of spatial data,\\nby Dave Watson, Pergamon Press, 1992, ISBN 0 08 040286 0, 321p.\\n\\nEach pair of tetrahedral vertices define a plane which is a \\nperpendicular bisector of the line between that pair. Express each\\nplane in the form Ax + By + Cz = D\\nand solve the set of simultaneous equations from any three of those\\nplanes that have a vertex in common (all vertices are used). \\nThe solution is the circumcenter.\\n\\n-- \\nDave Watson Internet: watson@maths.uwa.edu.au\\nDepartment of Mathematics \\nThe University of Western Australia Tel: (61 9) 380 3359\\nNedlands, WA 6009 Australia. FAX: (61 9) 380 1028\\n',\n", + " 'From: keithley@apple.com (Craig Keithley)\\nSubject: Re: Moonbase race, NASA resources, why?\\nOrganization: Apple Computer, Inc.\\nLines: 44\\n\\nIn article , henry@zoo.toronto.edu (Henry\\nSpencer) wrote:\\n> \\n> The major component of any realistic plan to go to the Moon cheaply (for\\n> more than a brief visit, at least) is low-cost transport to Earth orbit.\\n> For what it costs to launch one Shuttle or two Titan IVs, you can develop\\n> a new launch system that will be considerably cheaper. (Delta Clipper\\n> might be a bit more expensive than this, perhaps, but there are less\\n> ambitious ways of bringing costs down quite a bit.) \\n\\nAh, there\\'s the rub. And a catch-22 to boot. For the purposes of a\\ncontest, you\\'ll probably not compete if\\'n you can\\'t afford the ride to get\\nthere. And although lower priced delivery systems might be doable, without\\ndemand its doubtful that anyone will develop a new system. Course, if a\\nlow priced system existed, there might be demand... \\n\\nI wonder if there might be some way of structuring a contest to encourage\\nlow cost payload delivery systems. The accounting methods would probably\\nbe the hardest to work out. For example, would you allow Rockwell to\\n\\'loan\\' you the engines? And so forth...\\n\\n> Any plan for doing\\n> sustained lunar exploration using existing launch systems is wasting\\n> money in a big way.\\n> \\n\\nThis depends on the how soon the new launch system comes on line. In other\\nwords, perhaps a great deal of worthwhile technology (life support,\\nnavigation, etc.) could be developed prior to a low cost launch system. \\nYou wouldn\\'t want to use the expensive stuff forever, but I\\'d hate to see\\nfolks waiting to do anything until a low cost Mac, oops, I mean launch\\nsystem comes on line.\\n\\nI guess I\\'d simplify this to say that \\'waste\\' is a slippery concept. If\\nyour goal is manned lunar exploration in the next 5 years, then perhaps its\\nnot \\'wasted\\' money. If your goal is to explore the moon for under $500\\nmillion, then you should put of this exploration for a decade or so.\\n\\nCraig\\n\\n\\nCraig Keithley |\"I don\\'t remember, I don\\'t recall, \\nApple Computer, Inc. |I got no memory of anything at all\"\\nkeithley@apple.com |Peter Gabriel, Third Album (1980)\\n',\n", + " 'From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Griffin / Office of Exploration: RIP\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 43\\n\\nyamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n\\n>Any comments on the absorbtion of the Office of Exploration into the\\n>Office of Space Sciences and the reassignment of Griffin to the \"Chief\\n>Engineer\" position? Is this just a meaningless administrative\\n>shuffle, or does this bode ill for SEI?\\n\\n>In my opinion, this seems like a Bad Thing, at least on the surface.\\n>Griffin seemed to be someone who was actually interested in getting\\n>things done, and who was willing to look an innovative approaches to\\n>getting things done faster, better, and cheaper. It\\'s unclear to me\\n>whether he will be able to do this at his new position.\\n\\n>Does anyone know what his new duties will be?\\n\\nFirst I\\'ve heard of it. Offhand:\\n\\nGriffin is no longer an \"office\" head, so that\\'s bad.\\n\\nOn the other hand:\\n\\nRegress seemed to think: we can\\'t fund anything by Griffin, because\\nthat would mean (and we have the lies by the old hardliners about the\\n$ 400 billion mars mission to prove it) that we would be buying into a\\nmission to Mars that would cost 400 billion. Therefore there will be\\nno Artemis or 20 million dollar lunar orbiter et cetera...\\n\\nThey were killing Griffin\\'s main program simply because some sycophants\\nsomewhere had Congress beleivin that to do so would simply be to buy into\\nthe same old stuff. Sorta like not giving aid to Yeltsin because he\\'s\\na communist hardliner.\\n\\nAt least now the sort of reforms Griffin was trying to bring forward\\nwon\\'t be trapped in their own little easily contained and defunded\\nghetto. That Griffin is staying in some capacity is very very very\\ngood. And if he brings something up, noone can say \"why don\\'t you go\\nback to the OSE where you belong\" (and where he couldn\\'t even get money\\nfor design studies).\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", + " 'Subject: Re: Gamma Ray Bursters. Where are they? \\nFrom: belgarath@vax1.mankato.msus.edu\\nOrganization: Mankato State University\\nNntp-Posting-Host: vax1.mankato.msus.edu\\nLines: 67\\n\\nIn article <1radsr$att@access.digex.net>, prb@access.digex.com (Pat) writes:\\n> What evidence indicates that Gamma Ray bursters are very far away?\\n> \\n> Given the enormous power, i was just wondering, what if they are\\n> quantum black holes or something like that fairly close by?\\n> \\n> Why would they have to be at galactic ranges? \\n> \\n> my own pet theory is that it\\'s Flying saucers entering\\n> hyperspace :-)\\n> \\n> but the reason i am asking is that most everyone assumes that they\\n> are colliding nuetron stars or spinning black holes, i just wondered\\n> if any mechanism could exist and place them closer in.\\n> \\n> pat \\n Well, lets see....I took a class on this last fall, and I have no\\nnotes so I\\'ll try to wing it... \\n Here\\'s how I understand it. Remember from stellar evolution that \\nblack holes and neutron stars(pulsars) are formed from high mass stars,\\nM(star)=1.4M(sun). High mass stars live fast and burn hard, taking\\nappoximately 10^5-10^7 years before going nova, or supernova. In this time,\\nthey don\\'t live long enough to get perturbed out of the galactic plane, so any\\nof these (if assumed to be the sources of GRB\\'s) will be in the plane of the\\ngalaxy. \\n Then we take the catalog of bursts that have been recieved from the\\nvarious satellites around the solar system, (Pioneer Venus has one, either\\nPion. 10 or 11, GINGA, and of course BATSE) and we do distribution tests on our\\ncatalog. These tests all show, that the bursts have an isotropic\\ndistribution(evenly spread out in a radial direction), and they show signs of\\nhomogeneity, i.e. they do not clump in any one direction. So, unless we are\\nsampling the area inside the disk of the galaxy, we are sampling the UNIVERSE.\\nNot cool, if you want to figure out what the hell caused these things. Now, I\\nsuppose you are saying, \"Well, we stil only may be sampling from inside the\\ndisk.\" Well, not necessarily. Remember, we have what is more or less an\\ninterplanetary network of burst detectors with a baseline that goes waaaay out\\nto beyond Pluto(pioneer 11), so we should be able, with all of our detectors de\\ntect some sort of difference in angle from satellite to satellite. Here\\'s an \\nanalogy: You see a plane overhead. You measure the angle of the plane from\\nthe origin of your arbitrary coordinate system. One of your friends a mile\\naway sees the same plane, and measures the angle from the zero point of his\\narbitrary system, which is the same as yours. The two angles are different,\\nand you should be able to triangulate the position of your burst, and maybe\\nfind a source. To my knowledge, no one has been able to do this. \\n I should throw in why halo, and corona models don\\'t work, also. As I\\nsaid before, looking at the possible astrophysics of the bursts, (short\\ntimescales, high energy) black holes, and pulsars exhibit much of this type of\\nbehavior. If this is the case, as I said before, these stars seem to be bound\\nto the disk of the galaxy, especially the most energetic of the these sources.\\nWhen you look at a simulated model, where the bursts are confined to the disk,\\nbut you sample out to large distances, say 750 mpc, you should definitely see\\nnot only an anisotropy towards you in all direction, but a clumping of sources \\nin the direction of the galactic center. As I said before, there is none of\\nthese characteristics. \\n \\n I think that\\'s all of it...if someone needs clarification, or knows\\nsomething that I don\\'t know, by all means correct me. I had the honor of\\ntaking the Bursts class with the person who has done the modeling of these\\ndifferent distributions, so we pretty much kicked around every possible\\ndistribution there was, and some VERY outrageous sources. Colliding pulsars,\\nblack holes, pulsars that are slowing down...stuff like that. It\\'s a fun\\nfield. \\n Complaints and corrections to: belgarath@vax1.mankato.msus.edu or \\npost here. \\n -jeremy\\n\\n \\n',\n", + " 'From: prange@nickel.ucs.indiana.edu (Henry Prange)\\nSubject: Re: (tangentially) Re: Live Free, but Quietly, or Die\\nNntp-Posting-Host: nickel.ucs.indiana.edu\\nOrganization: Indiana University\\nLines: 20\\n\\nIn article <1993Apr15.035406.29988@rd.hydro.on.ca> jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n\\nimpertinent stuff deleted\\n>\\n>Am I showing my Canadian University-ness here, of does anyone else know\\n>what I\\'m talking about?\\n>\\n>I\\'ve bike like | Jody Levine DoD #275 kV\\n> got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n> ride it | Toronto, Ontario, Canada\\n\\nThere you go again, you edu-breath poser! \"University-ness\" indeed!\\nLeave that stuff to us professionals.\\n\\nHenry Prange biker/professional edu-breath\\nPhysiology/IU Sch. Med., Blgtn., 47405\\nDoD #0821; BMWMOA #11522; GSI #215\\nride = \\'92 R100GS; \\'91 RX-7 conv = cage/2; \\'91 Explorer = cage*2\\nThe unifying trait of our species is the relentless pursuit of folly.\\nHypocrisy is the only national religion of this country.\\n',\n", + " \"From: af774@cleveland.Freenet.Edu (Chad Cipiti)\\nSubject: Good shareware paint and/or animation software for SGI?\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 15\\nReply-To: af774@cleveland.Freenet.Edu (Chad Cipiti)\\nNNTP-Posting-Host: hela.ins.cwru.edu\\n\\n\\nDoes anyone know of any good shareware animation or paint software for an SGI\\n machine? I've exhausted everyplace on the net I can find and still don't hava\\n a nice piece of software.\\n\\nThanks alot!\\n\\nChad\\n\\n\\n-- \\nKnock, knock. Chad Cipiti\\nWho's there? af774@cleveland.freenet.edu\\n cipiti@bobcat.ent.ohiou.edu\\nIt might be Heisenberg. chad@voxel.zool.ohiou.edu\\n\",\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Moonbase race\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 16\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu> sysmgr@king.eng.umd.edu writes:\\n\\n>So how much would it cost as a private venture, assuming you could talk the\\n>U.S. government into leasing you a couple of pads in Florida? \\n\\nWhy would you want to do that? The goal is to do it cheaper (remember,\\nthis isn\\'t government). Instead of leasing an expensive launch pad,\\njust use a SSTO and launch from a much cheaper facility.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------56 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " \"Subject: So what is Maddi?\\nFrom: madhaus@netcom.com (Maddi Hausmann)\\nOrganization: Society for Putting Things on Top of Other Things\\nLines: 12\\n\\nAs I was created in the image of Gaea, therefore I must\\nbe the pinnacle of creation, She which Creates, She which\\nBirths, She which Continues.\\n\\nOr, to cut all the religious crap, I'm a woman, thanks.\\nAnd it's sexism that started me on the road to atheism.\\n\\n-- \\nMaddi Hausmann madhaus@netcom.com\\nCentigram Communications Corp San Jose California 408/428-3553\\n\\nKids, please don't try this at home. Remember, I post professionally.\\n\",\n", + " 'From: ridout@bink.plk.af.mil (Brian S. Ridout)\\nSubject: Re: Virtual Reality for X on the CHEAP!\\nOrganization: Air Force Phillips Lab.\\nLines: 23\\nDistribution: world\\nNNTP-Posting-Host: bink.plk.af.mil\\n\\nIn article <1993Apr15.134802.21995@mfltd.co.uk>, sts@mfltd.co.uk (Steve Sherwood (x5543)) writes:\\n|> Has anyone got multiverse to work ?\\n|> \\n|> I have built it on 486 svr4, mips svr4s and Sun SparcStation.\\n|> \\n|> There seems to be many bugs in it. The \\'dogfight\\' and \\'dactyl\\' simply do nothing\\n|> (After fixing a bug where a variable is defined twice in two different modules - One needed\\n|> setting to static - else the client core-dumped)\\n|> \\n|> Steve\\n|> -- \\n|> \\n|> Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n|> +-----------------------------------+------------------------+ Micro Focus\\n|> | Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n|> | Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n|> | Need courage to survive the day. | | Berkshire\\n|> +-----------------------------------+------------------------+ England\\n|> (A)bort (R)etry (I)nfluence with large hammer\\nI built it on a rs6000 (my only Motif machine) works fine. I added some objects\\ninto dogfight so I could get used to flying. This was very easy. \\nAll in all Cool!. \\nBrian\\n',\n", + " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: lotto@laura.harvard.edu (Jerry Lotto)\\nDistribution: rec\\nOrganization: Chemistry Dept., Harvard University\\nNNTP-Posting-Host: laura.harvard.edu\\nIn-reply-to: xlyx@vax5.cit.cornell.edu\\'s message of 19 Apr 93 21:48:42 GMT\\nLines: 10\\n\\n>>>>> On 19 Apr 93 21:48:42 GMT, xlyx@vax5.cit.cornell.edu said:\\nMike> Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\nSure. In fact, you can do a wheelie on a shaft-drive motorcycle\\nwithout even moving. Just don\\'t try countersteering.\\n\\n:-)\\n--\\nJerry Lotto MSFCI, HOGSSC, BCSO, AMA, DoD #18\\nChemistry Dept., Harvard Univ. \"It\\'s my Harley, and I\\'ll ride if I want to...\"\\n',\n", + " \"From: bh437292@longs.LANCE.ColoState.Edu (Basil Hamdan)\\nSubject: Re: Go Hizbollah II!\\nReply-To: bh437292@lance.colostate.edu\\nNntp-Posting-Host: traver.lance.colostate.edu\\nOrganization: Engineering College, Colorado State University\\nLines: 15\\n\\nIn article <1993Apr24.202201.1@utxvms.cc.utexas.edu>, ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky) writes:\\n|> Paraphrasing a bit, with every rocket that \\n|> \\tthe Hizbollah fires on the Galilee, they justify Israel's \\n|> \\tholding to the security zone. \\n|> \\n|> Noam\\n\\n\\n\\nI only want to say that I agree with Noam on this point\\nand I hope that all sides stop targeting civilians.\\n\\nBasil \\n\\n\\n\",\n", + " 'From: hl7204@eehp22 (H L)\\nSubject: Re: Graphics Library Package\\nOrganization: University of Illinois at Urbana\\nLines: 2\\n\\n \\n\\n',\n", + " \"From: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nSubject: Re: Motorcycle Courier (S\\nReply-To: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nDistribution: world\\nOrganization: Computer Dynamics-Vancouver B.C.-(604)986-9937 (604)255-9937\\nLines: 19\\n\\nJL-NS>Subject: Re: Motorcycle Courier (Summer Job)\\n\\nI'd like to thank everyone who replied. I will probably start looking in\\nearnest after May, when I return from my trip down the Pacific Coast\\n(the geographical feature, not the bike).\\n\\nRyan Cousinetc.|1982 Yamaha Vision XZ550 -Black Pig of Inverness|Live to Ride\\nKotRB |1958 AJS 500 C/S -King Rat |to Work to\\nDoD# 0863 |I'd be a squid if I could afford the bike... |Flame to\\nryan.cousineau@compdyn.questor.org | Vancouver, BC, Canada |Live . . .\\n\\n\\n * SLMR 2.1a * Have bike, will travel. Quickly. Very quickly.\\n \\n----\\n+===============================================================+\\n|COMPUTER DYNAMICS BBS 604-255-9937(HST) 604-986-9937(V32)|\\n|Vancouver, BC, Canada - Easy Access, Low Rates, Friendly Sysop|\\n+===============================================================+\\n\",\n", + " 'From: sugarman@ra.cs.umb.edu (Steven R. Garman)\\nSubject: WANTED - Optical Shaft Encoders for Telescope\\nNntp-Posting-Host: ra.cs.umb.edu\\nOrganization: University of Massachusetts at Boston\\nLines: 23\\n\\n\\n[Also posted in misc.forsale.wanted,misc.wanted,ne.wanted,ny.wanted,nj.wanted]\\n\\nWANTED: Optical Shaft Encoders\\n\\nQuantity 2\\nSingle-ended\\nIncremental\\n\\nNeeded to encode the movements of a 16\" Cassegrain telescope. The telescope\\nis in the observatory of the Univ. of Mass. at Boston. The project is being\\nmanaged by Mr. George Tucker, a graduate student at UMB. Please call him, or\\nemail/call me, if you have one or two of the specified type of encoder. Of\\ncourse, due to our low funding level we are looking for a price that is\\nsufficiently lower than that given for new encoders. :)\\n\\nGeorge Tucker\\n617-965-3408\\n\\nME:\\n-- \\nsugarman@cs.umb.edu | 6172876077 univ | 6177313637 home | Standard Disclaimer\\nBoston Massachusetts USA\\n',\n", + " 'From: schultz@schultz.kgn.ibm.com (Karl Schultz)\\nSubject: Re: VESA standard VGA/SVGA programming???\\nReply-To: schultz@vnet.ibm.com\\nOrganization: IBM AWS Graphics Systems\\nKeywords: vga\\nLines: 45\\n\\n|> 1. How VESA standard works? Any documentation for VESA standard?\\n\\n\\tThe VESA standard can be requested from VESA:\\n\\tVESA\\n\\t2150 North First Street, Suite 440\\n\\tSan Jose, CA 95131-2029\\n\\n\\tAsk for the VESA VBE and Super VGA Programming starndards. VESA\\n\\talso defines local bus and other standards.\\n\\n\\tThe VESA standard only addresses ways in which an application\\n\\tcan find out info and capabilities of a specific super VGA\\n\\timplementation and to control the video mode selection\\n\\tand video memory access.\\n\\n\\tYou still have to set your own pixels.\\n\\n|> 2. At a higher resolution than 320x200x256 or 640x480x16 VGA mode,\\n|> where the video memory A0000-AFFFF is no longer sufficient to hold\\n|> all info, what is the trick to do fast image manipulation? I\\n|> heard about memory mapping or video memory bank switching but know\\n|> nothing on how it is implemented. Any advice, anyone? \\n\\n\\tVESA defines a \"window\" that is used to access video memory.\\n\\tThis window is anchored at the spot where you want to write,\\n\\tand then you can write as far as the window takes you (usually\\n\\t64K). Windows have granularities, so you can\\'t just anchor \\n\\tthem anywhere. Also, some implementations allow two windows.\\n\\n|> 3. My interest is in 640x480x256 mode. Should this mode be called\\n|> SVGA mode? What is the technique for fast image scrolling for the\\n|> above mode? How to deal with different SVGA cards?\\n\\n\\tThis is VESA mode 101h. There is a Set Display Start function\\n\\tthat might be useful for scrolling.\\n\\n|> Your guidance to books or any other sources to the above questions\\n|> would be greatly appreciated. Please send me mail.\\n\\n\\tYour best bet is to write VESA for the info. There have also\\n\\tbeen announcements on this group of VESA software.\\n\\n-- \\nKarl Schultz schultz@vnet.ibm.com\\nThese statements or opinions are not necessarily those of IBM\\n',\n", + " \"From: csundh30@ursa.calvin.edu (Charles Sundheim)\\nSubject: Looking for MOVIES w/ BIKES\\nSummary: Bike movies\\nKeywords: movies\\nNntp-Posting-Host: ursa\\nOrganization: Calvin College\\nLines: 21\\n\\nFolks,\\n\\nI am assembling info for a Film Criticism class final project.\\n\\nEssentially I need any/all movies that use motos in any substantial\\ncapacity (IE; Fallen Angles, T2, H-D & the Marlboro Man,\\nRaising Arizona, etc). \\nAny help you fellow r.m'ers could give me would be much `preciated.\\n(BTW, a summary of bike(s) or plot is helpful but not necessary)\\n\\nThanx\\n\\n-Erc.\\n\\n\\n_______________________________________________________________________________\\nC Eric Sundheim csundh30@ursa.Calvin.edu\\nGrandRapids, MI, USA\\n`90 Hondo VFR750f\\nDoD# 1138\\n-------------------------------------------------------------------------------\\n\",\n", + " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: ISLAM BORDERS vs Israeli borders\\nOrganization: University of Illinois at Urbana\\nLines: 15\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>I too strongly object to those that justify Israeli \"rule\" \\n>of those who DO NOT WANT THAT. The \"occupied territories\" are not\\n>Israel\\'s to control, to keep, or to dominate.\\n\\nThey certainly are until the Arabs make peace. Only the most leftist/Arabist\\nlunatics call upon Israel to withdraw now. Most moderates realize that an \\nIsraeli withdrawl will be based on the Camp David/242/338/Madrid formulas\\nwhich make full peace a prerequisite to territorial concessions.\\n\\n>Tim\\n\\nEd\\n\\n',\n", + " \"From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 153\\n\\nIn article <1993Apr20.143453.3127@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>Instabul was called Konstantinoupolis from 320 AD until about the 1920s.\\n>That's about 1600 years. There many people alive today who were born in \\n>a city called Konstantinoupolis. \\n\\nI know it doesn't make sense, but since when is 'Napoleon' about\\nsense, anyway? Further striking bigoted and racist attitude of \\ncertain Greeks still exists in our day. Most Greeks insist even \\ntoday, that the 537 year-old capital of the Ottoman Empire should \\nbe called not by its rightful name of Istanbul, but by its half \\na millennium-old moniker 'Cons*(whatever).'\\n\\nEveryone knows that New York City was once called 'New Amsterdam'\\nbut Dutch people do not persist on calling it that today. The name \\nof Stalingrad too is long gone, replaced by Volgagrad. China's\\nPeking traded its name for Beiging long ago. Ciudad Trujillo\\nof the Dominican Republic is now Santa Domingo. Zimbabve's\\nold colonial capital Salisburry became Harrare. These changes\\nhave all been accepted officially by everyone in the world.\\n\\nBut, Greeks are still determined on calling the Turkish Istanbul \\nby the name of 'Cons*.'\\n\\nHow can one explain this total intransigence? What makes Greeks\\nso different from other mortals? 18-year-old questionable\\ndemocracy? Why don't they seem to reconcile with the fact,\\nfor instance, that Istanbul changed hands 537 years ago in\\n1453 AD, and that this predates the discovery of the New \\nWorld, by 39 years. The declaration of U.S. independence\\nin 1776 will come 284 years later.\\n\\nShouldn't then, half a millennium be considered enough time for \\n'Cons*' to be called a Turkish city? Where is the logic in the \\nGreek reasoning, if there is any? How long can one sit on the \\nlaurels of an ancient civilization? Ancient Greece does not exist, \\nany more than any other 16 civilizations that existed on the soil \\nof Anatolia.\\n\\nThese undereducated 'wieneramus' live with an illusion. It \\nis the same mentality which allows them to rationalize\\nthat Cyprus is a Greek Island. No history book shows\\nthat it ever was. It belonged to the Ottoman Turks 'lock,\\nstock and barrel' for a period of well over 300 years.\\n\\nIn fact, prior to the Turks' acquisition of it, following\\nbloody naval battles with the Venetians in 1570 AD, the\\nisland of Cyprus belonged, invariably, to several nations:\\n\\nThe Assyrians, the Sumerians, the Phoenicians, the Egyptians,\\nthe Ottoman Turks, of course in that order, owned it as \\ntheir territory. But, it has never been the possession\\nof the government of Greece - not even for one day -\\nin the history of the world. Moreover, Cyprus is\\nlocated 1500 miles from the Greek mainland, but only \\n40 miles from Turkiye's southern coastline.\\n\\nSaddam Hussein claims that Kuwait was once Iraqi\\nterritory and the Greek Cypriot government and \\nthe terrorist Greek governments think that Cyprus\\nalso was once part of the Greek hegemony.\\n\\nThose 'Arromdians' involved in this grandiose hallucination\\nshould wake up from their sweet daydreams and confront \\nreality. Again, wishful thinking is unproductive, only \\nfacts count.\\n\\nAs for Selanik,\\n\\n <>\\n\\n <>\\n\\n[47] Robert Mantran, 'La structure sociale de la communaute juive de\\n Salonqiue a la fin du dix-neuvieme siecle', RH no.534 (1980), 391-92;\\n Nehama VII, 762; Joseph Nehama (Salonica) to AIU (Paris) no.2868/2,\\n 12 May 1903 (AIU Archives I-C-43); and no.2775, 10 January 1900 (AIU\\n Archives I-C-41), describing daily battles between Jewish and Greek\\n children in the streets of Salonica. Benghiat, Director of Ecole Moise\\n Allatini, Salonica, to AIU (Paris), no.7784, 1 December 1909 (AIU\\n Archives I-C-48), describing Greek attacks on Jews, boycotts of Jewish\\n shops and manufacturers, and Greek press campaigns leading to blood libel\\n attacks. Cohen, Ecole Secondaire Moise Allatini, Salonica, to AIU (Paris),\\n no.7745/4, 4 December 1912 (AIU Archives I-C-49) describes a week of terror\\n that followed the Greek army occupation of Salonica in 1912, with the\\n soldiers pillaging the Jewish quarters and destroying Jewish synagogues,\\n accompanied by what he described as an 'explosion of hatred' by local\\n Greek population against local Jews and Muslims. Mizrahi, President of the\\n AIU at Salonica, reported to the AIU (Paris), no.2704/3, 25 July 1913\\n (AIU Archives I-C-51) that 'It was not only the irregulars (Comitadjis)\\n that massacred, pillaged and burned. The Army soldiers, the Chief of\\n Police, and the high civil officials also took an active part in the\\n horrors...', Moise Tovi (Salonica) to AIU (Paris) no.3027 (20 August 1913)\\n (AIU Archives I-C-51) describes the Greek pillage of the Jewish quarter\\n during the night of 18-19 August 1913.\\n\\n(AIU = Alliance Israelite Universelle, Paris.)\\n\\nSerdar Argic\\n\\n 'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.'\\n (Ohanus Appressian - 1919)\\n 'In Soviet Armenia today there no longer exists \\n a single Turkish soul.' (Sahak Melkonian - 1920)\\n\\n\",\n", + " 'From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: r.m split (was: Re: insect impacts)\\nOrganization: the HP Corporate notes server\\nLines: 30\\n\\n/ hpcc01:rec.motorcycles / cookson@mbunix.mitre.org (Cookson) / 2:02 pm Apr 2, 1993 /\\n\\nAll right people, this inane bug wibbling is just getting to much. I\\npropose we split off a new group.\\nrec.motorcycles.nutrition \\nto deal with the what to do with squashed bugs thread.\\n\\n-- \\n| Dean Cookson / dcookson@mitre.org / 617 271-2714 | DoD #207 AMA #573534 |\\n| The MITRE Corp. Burlington Rd., Bedford, Ma. 01730 | KotNML / KotB |\\n| \"If I was worried about who saw me, I\\'d never get | \\'92 VFR750F |\\n| nekkid at all.\" -Ed Green, DoD #0111 | \\'88 Bianchi Limited |\\n----------\\nWhat?!?!? Haven\\'t you heard about cross-posting??!?!? Leave it intact and\\nsimply ignore the basenotes and/or responses which have zero interest for\\na being of your stature and discriminating taste. ;-)\\n\\nYesterday, while on Lonoak Rd, a wasp hit my faceshield with just\\nenough force to glue it between my eyes, but not enough to kill it as\\nthe legs were frantically wiggling away and I found that rather, shall\\nwe say, distracting. I flicked it off and wiped off the residue at the\\nnext gas stop in Greenfield. :-) BTW, Lonoak Rd leads from #25 into\\nKing City although we took Metz from KC into Greenfield. \\n \\n--------------------------------------------------------------------------\\nGraeme Harrison, Hewlett-Packard Co., Communications Components Division,\\n350 W Trimble Rd, San Jose, CA 95131 (gharriso@hpcc01.corp.hp.com) DoD#649 \\n--------------------------------------------------------------------------\\n\\n\\n',\n", + " \"From: rob@rjck.UUCP (Robert J.C. Kyanko)\\nSubject: Re: VGA 640x400 graphics mode\\nDistribution: world\\nOrganization: Neptune Software Inc\\nLines: 15\\n\\ngchen@essex.ecn.uoknor.edu writes in article :\\n> \\n> Greetings!\\n> \\n> Does anybody know if it is possible to set VGA graphics mode to 640x400\\n> instead of 640x480? Any info is appreciated!\\n\\nSome VESA bios's support this mode (0x100). And *any* VGA should be able to\\nsupport this (640x480 by 256 colors) since it only requires 256,000 bytes.\\nMy 8514/a VESA TSR supports this; it's the only VESA mode by card can support\\ndue to 8514/a restrictions. (A WD/Paradise)\\n\\n--\\nI am not responsible for anything I do or say -- I'm just an opinion.\\n Robert J.C. Kyanko (rob@rjck.UUCP)\\n\",\n", + " 'From: jack@shograf.com (Jack Ritter)\\nSubject: Help!!\\nArticle-I.D.: shograf.C531E6.7uo\\nDistribution: usa\\nOrganization: SHOgraphics, Sunnyvale\\nLines: 9\\n\\nI need a complete list of all the polygons\\nthat there are, in order.\\n\\nI\\'ll summarize to the net.\\n\\n\\n--------------------------------------------------------\\n \"If only I had been compiled with the \\'-g\\' option.\"\\n---------------------------------------------------------\\n',\n", + " 'From: doc@webrider.central.sun.com (Steve Bunis - Chicago)\\nSubject: Route Suggestions?\\nOrganization: Sun Microsystems, Inc.\\nLines: 33\\nDistribution: usa\\nReply-To: doc@webrider.central.sun.com\\nNNTP-Posting-Host: webrider.central.sun.com\\n\\nAs I won\\'t be able to make the Joust this summer (Job related time \\nconflict :\\'^{ ), I plan instead on going to the Rider Rally in \\nKnoxville.\\n\\nI\\'ll be leaving from Chicago. and generally plan on going down along\\nthe Indiana/Illinois border into Kentucky and then Tennessee. I would \\nbe very interested in hearing suggestions of roads/routes/areas that \\nyou would consider \"must ride\" while on the way to Knoxville.\\n\\nI can leave as early as 5/22 and need to arrive in Knoxville by 6PM\\non 5/25. That leaves me a pretty good stretch of time to explore on \\nthe way.\\n\\nBy the way if anyone else is going, and would like to partner for the \\nride down, let me know. I\\'ll be heading east afterward to visit family, \\nbut sure don\\'t mind company on the ride down to the Rally. Depending on \\nweather et al. my plan is motelling/tenting thru the trip.\\n\\nFrom the Rally I\\'ll be heading up the Blue Ridge Parkway, then jogging\\ninto West Va (I-77) to run up 219 -> Marlington, 28 -> Petersburg, \\n55E -> I-81/I-66E. After this point the route is presently undetermined\\ninto Pennsylvania, New York?, and back to Chicago (by 6/6). Suggestions \\nfor these areas would be of great interest also.\\n\\nMany thanks for your ideas,\\n\\nEnjoy,\\n\\n---\\nSteve Bunis, Sun Microsystems ***DoD #0795***\\t93-ST1100\\n Itasca, IL\\t ***AMA #682049***\\t78-KZ650\\n\\t(ARE YOU SURE THIS IS APRIL?????? B^| )\\n\\n',\n", + " 'From: KINDER@nervm.nerdc.ufl.edu (JIM COBB)\\nSubject: ET 4000 /W32 VL-Bus Cards\\nOrganization: University of Florida, NERDC\\nLines: 3\\nNNTP-Posting-Host: nervm.nerdc.ufl.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\nDoes anyone know of a VL-Bus video card based on the ET4000 /W32 card?\\nIf so: how much will it cost, where can I get one, does it come with more\\nthan 1MB of ram, and what is the windows performance like?\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Fortune-guzzler barred from bars!\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 44\\n\\nCharles Parr, on the Tue, 20 Apr 93 21:25:10 GMT wibbled:\\n: In article <1993Apr19.141959.4057@bnr.ca> npet@bnr.ca (Nick Pettefar) writes:\\n\\n: >If Satan rode a bike (CB1000?) would you stop to help him?\\n\\n: Of course! We riders have to stick together, you know...Besides,\\n: he\\'d stop for me.\\n\\n: Satan, by the way, rides a Vincent. So does God.\\n\\n: Jesus rides an RZ350, the Angels get Ariels, and the demons\\n: all ride Matchless 500s.\\n\\n: I know, because they talk to me through the fillings in my teeth.\\n\\n: Regards, Charles\\n: DoD0.001\\n: RZ350\\n: -- \\n: Within the span of the last few weeks I have heard elements of\\n: separate threads which, in that they have been conjoined in time,\\n: struck together to form a new chord within my hollow and echoing\\n: gourd. --Unknown net.person\\n\\n\\nI think that the Vincent is the wrong sort of bike for Satan to ride.\\nHonda have just brought out the CB1000 (look in BIKE Magazine) which\\nlooks so evil that Satan would not hesitate to ride it. 17-hole DMs,\\nLevi 501s and a black bomber jacket. I\\'m not sure about the helmet,\\noh, I know, one of those Darth Vader ones. There you go. Satan.\\nAnybody seen him lately? Just a cruisin\\'?\\n\\nGod would ride a Vincent White Lightning with rightous injection.\\nHe\\'d wear a one-piece leather suit with matching boots, helmet and gloves.\\n--\\n\\nNick (the Righteous Biker) DoD 1069 Concise Oxford New (non-leaky) gearbox\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n (-\\n',\n", + " \"From: kv07@IASTATE.EDU (Warren Vonroeschlaub)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nReply-To: kv07@IASTATE.EDU (Warren Vonroeschlaub)\\nOrganization: Ministry of Silly Walks\\nLines: 28\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nwrites:\\n>In <1qlapk$d7v@morrow.stanford.edu> salem@pangea.Stanford.EDU (Bruce Salem) \\n>writes:\\n>>In article cobb@alexia.lis.uiuc.edu (Mike \\n>Cobb) writes:\\n>>>Theory of Creationism: MY theistic view of the theory of creationism, (there\\n>>>are many others) is stated in Genesis 1. In the beginning God created\\n>>>the heavens and the earth.\\n>\\n>> Wonderful, now try alittle imaginative thinking!\\n>\\n>Huh? Imaginative thinking? What did that have to do with what I said? Would it\\n>have been better if I said the world has existed forever and never was created\\n>and has an endless supply of energy and there was spontaneous generation of \\n>life from non-life? WOuld that make me all-wise, and knowing, and\\nimaginative?\\n\\n No, but at least it would be a theory.\\n\\n | __L__\\n-|- ___ Warren Kurt vonRoeschlaub\\n | | o | kv07@iastate.edu\\n |/ `---' Iowa State University\\n/| ___ Math Department\\n | |___| 400 Carver Hall\\n | |___| Ames, IA 50011\\n J _____\\n\",\n", + " 'From: jim@specialix.com (Jim Maurer)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: Specialix Inc.\\nLines: 25\\n\\narf@genesis.MCS.COM (Jack Schmidling) writes:\\n\\n>In article jake@bony1.bony.com (Jake Livni) writes:\\n>>through private contributions on Federal land\". Your hate-mongering\\n>>article is devoid of current and historical fact, intellectual content\\n>>and social value. Down the toilet it goes.....\\n>>\\n\\n>And we all know what an unbiased source the NYT is when it comes to things\\n>concerning Israel.\\n\\n>Neither the Times nor the trained seals who have responded thus far seem to\\n>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>otherwords, American taxpayers put up at least 30% of the money. And\\n>finalyy, how does \"Federal land\" mitigate the offensiveness of this alien\\n>monument dedicated to perpetuating pitty and the continual flow of tax money\\n>to a foreign entity?\\n\\n>That \"Federal land\" and tax money could have been used to commerate\\n>Americans or better yet, to house homeless Americans.\\n\\nThe donations are tax deductible like any donations to a non-profit\\norganization. I\\'ve donated money to a group restoring streetcars\\nand it was tax deductible. Why don\\'t you contribute to a group\\nhelping the homeless if you so concerned?\\n',\n", + " \"Organization: Penn State University\\nFrom: Andrew Newell \\nSubject: Re: Christian Morality is\\n \\nLines: 32\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nsays:\\n>\\n>In <11836@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>\\n>>In article cobb@alexia.lis.uiuc.edu (Mike\\n>Cobb) writes:\\n>\\n>> If I'm wrong, god is free at any time to correct my mistake. That\\n>> he continues not to do so, while supposedly proclaiming his\\n>> undying love for my eternal soul, speaks volumes.\\n>\\n>What are the volumes that it speaks besides the fact that he leaves your\\n>choices up to you?\\n\\nLeaves the choices up to us but gives us no better reason\\nto believe than an odd story of his alleged son getting\\nkilled for us? And little new in the past few thousand\\nyears, leaving us with only the texts passed down through\\ncenturies of meddling with the meaning and even wording.\\n...most of this passing down and interpretation of course\\ncoming from those who have a vested interest in not allowing\\nthe possibility that it might not be the ultimate truth.\\nWhat about maybe talking to us directly, eh?\\nHe's a big god, right? He ought to be able to make time\\nfor the creations he loves so much...at least enough to\\ngive us each a few words of direct conversation.\\nWhat, he's too busy to get around to all of us?\\nOr maybe a few unquestionably-miraculous works here and\\nthere?\\n...speaks volumes upon volumes to me that I've never\\ngotten a chance to meet the guy and chat with him.\\n\",\n", + " 'From: bowmanj@csn.org (Jerry Bowman)\\nSubject: Re: Women\\'s Jackets? (was Ed must be a Daemon Child!!)\\nNntp-Posting-Host: fred.colorado.edu\\nOrganization: University of Colorado Boulder, OCS\\nDistribution: usa\\nLines: 48\\n\\nIn article bethd@netcom.com (Beth Dixon) writes:\\n>In article <1993Apr14.141637.20071@mnemosyne.cs.du.edu> jhensley@nyx.cs.du.edu (John Hensley) writes:\\n>>Beth Dixon (bethd@netcom.com) wrote:\\n>>: new Duc 750SS doesn\\'t, so I\\'ll have to go back to carrying my lipstick\\n>>: in my jacket pocket. Life is _so_ hard. :-)\\n>>\\n>>My wife is looking for a jacket, and most of the men\\'s styles she\\'s tried\\n>>don\\'t fit too well. If they fit the shoulders and arms, they\\'re too\\n>>tight across the chest, or something like that. Anyone have any \\n>>suggestions? I\\'m assuming that the V-Pilot, in addition to its handy\\n>>storage facilities, is a pretty decent fit. Is there any company that\\n>>makes a reasonable line of women\\'s motorcycling stuff? More importantly,\\n>>does anyone in Boulder or Denver know of a shop that bothers carrying any?\\n>\\n>I was very lucky I found a jacket I liked that actually _fits_.\\n>HG makes the v-pilot jackets, mine is a very similar style made\\n>by Just Leather in San Jose. I bought one of the last two they\\n>ever made.\\n>\\n>Finding decent womens motorcycling gear is not easy. There is a lot\\n>of stuff out there that\\'s fringed everywhere, made of fashion leather,\\n>made to fit men, etc. I don\\'t know of a shop in your area. There\\n>are some women rider friendly places in the San Francisco/San Jose\\n>area, but I don\\'t recommend buying clothing mail order. Too hard\\n>to tell if it\\'ll fit. Bates custom makes leathers. You might want\\n>to call them (they\\'re in L.A.) and get a cost estimate for the type\\n>of jacket your wife is interested in. Large manufacturers like\\n>BMW and H.G. sell women\\'s lines of clothing of decent quality, but\\n>fit is iffy.\\n>\\n>A while ago, Noemi and Lisa Sieverts were talking about starting\\n>a business doing just this sort of thing. Don\\'t know what they\\n>finally decided.\\n>\\n>Beth\\n Seems to me that Johns H.D. in Ft Collins used to carry some\\n honest to god womens garb.>\\n>=================================================================\\n>Beth [The One True Beth] Dixon bethd@netcom.com\\n>1981 Yamaha SR250 \"Excitable Girl\" DoD #0384\\n>1979 Yamaha SR500 \"Spike the Garage Rat\" FSSNOC #1843\\n>1992 Ducati 750SS AMA #631903\\n>1963 Ducati 250 Monza -- restoration project 1KQSPT = 1.8\\n>\"I can keep a handle on anything just this side of deranged.\"\\n> -- ZZ Top\\n>=================================================================\\n\\n\\n',\n", + " 'From: howard@sharps.astro.wisc.edu (Greg Howard)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: University of Wisconsin - Astronomy Department\\nLines: 10\\nNNTP-Posting-Host: uwast.astro.wisc.edu\\n\\n\\nActually, the \"ether\" stuff sounded a fair bit like a bizzare,\\nqualitative corruption of general relativity. nothing to do with\\nthe old-fashioned, ether, though. maybe somebody could loan him\\na GR text at a low level.\\n\\ndidn\\'t get much further than that, tho.... whew.\\n\\n\\ngreg\\n',\n", + " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: bikes with big dogs\\nOrganization: Ontario Hydro - Research Division\\nLines: 17\\n\\nIn article <1993Apr14.212827.2277@galaxy.gov.bc.ca> bclarke@galaxy.gov.bc.ca writes:\\n>In article <1993Apr14.234835.1@cua.edu>, 84wendel@cua.edu writes:\\n>> Has anyone ever heard of a rider giving a big dog such as a great dane a ride \\n>> on the back of his bike. My dog would love it if I could ever make it work.\\n>\\n>!!! Post of the month !!!\\n>Actually, I've seen riders carting around a pet dog in a sidecar....\\n>A great Dane on the back though; sounds a bit hairy to me.\\n\\nYeah, I'm sure that our lab would love a ride (he's the type that sticks his\\nhead out car windows) but I didn't think that he would enjoy being bungee-\\ncorded to the gas tank, and 65 lbs or squirming beast is a bit much for a\\nbackpack (ok who's done it....).\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", + " \"From: hap@scubed.com (Hap Freiberg)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nNntp-Posting-Host: s3saturn\\nOrganization: S-CUBED, A Division of Maxwell Labs; San Diego CA\\nLines: 26\\n\\nIn article smith@minerva.harvard.edu (Steven Smith) writes:\\n>dgannon@techbook.techbook.com (Dan Gannon) writes:\\n>> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>>\\n>> by Theodore J. O'Keefe\\n>> [Holocaust revisionism]\\n>> \\n>> Theodore J. O'Keefe is an editor with the Institute for Historical\\n>> Review. Educated at Harvard University . . .\\n>\\n>According to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\n>graduate. You may decide for yourselves if he was indeed educated\\n>anywhere.\\n>\\n>Steven Smith\\n\\nIs any education a prerequisite for employment at IHR ?\\nIs it true that IHR really stands for Institution of Hysterical Reviews?\\nCurious minds would like to know...\\n\\nHap\\n\\n--\\n****************************************************************************************************\\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Omnia Extares >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\\n****************************************************************************************************\\n\",\n", + " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Where are they now?\\nIn-Reply-To: acooper@mac.cc.macalstr.edu\\'s message of 15 Apr 93 11: 17:13 -0600\\nOrganization: Compaq Computer Corp\\n\\t<1993Apr15.111713.4726@mac.cc.macalstr.edu>\\nLines: 18\\n\\na> In article <1qi156INNf9n@senator-bedfellow.MIT.EDU>, tcbruno@athena.mit.edu (Tom Bruno) writes:\\n> \\n..stuff deleted...\\n> \\n> Which brings me to the point of my posting. How many people out there have \\n> been around alt.atheism since 1990? I\\'ve done my damnedest to stay on top of\\n...more stuff deleted...\\n\\nHmm, USENET got it\\'s collective hooks into me around 1987 or so right after I\\nswitched to engineering. I\\'d say I started reading alt.atheism around 1988-89.\\nI\\'ve probably not posted more than 50 messages in the time since then though.\\nI\\'ll never understand how people can find the time to write so much. I\\ncan barely keep up as it is.\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", + " 'From: jonas-y@isy.liu.se (Jonas Yngvesson)\\nSubject: Re: Point within a polygon\\nKeywords: point, polygon\\nOrganization: Dept of EE, University of Linkoping\\nLines: 129\\n\\nscrowe@hemel.bull.co.uk (Simon Crowe) writes:\\n\\n>I am looking for an algorithm to determine if a given point is bound by a \\n>polygon. Does anyone have any such code or a reference to book containing\\n>information on the subject ?\\n\\nWell, it\\'s been a while since this was discussed so i take the liberty of\\nreprinting (without permission, so sue me) Eric Haines reprint of the very\\ninteresting discussion of this topic...\\n\\n /Jonas\\n\\n O / \\\\ O\\n------------------------- X snip snip X ------------------------------\\n O \\\\ / O\\n\\n\"Give a man a fish, and he\\'ll eat one day.\\nGive a man a fishing rod, and he\\'ll laze around fishing and never do anything.\"\\n\\nWith that in mind, I reprint (without permission, so sue me) relevant\\ninformation posted some years ago on this very problem. Note the early use of\\nPostScript technology, predating many of this year\\'s papers listed in the\\nApril 1st SIGGRAPH Program Announcement posted here a few days ago.\\n\\n-- Eric\\n\\n\\nIntersection Between a Line and a Polygon (UNDECIDABLE??),\\n\\tby Dave Baraff, Tom Duff\\n\\n\\tFrom: deb@charisma.graphics.cornell.edu\\n\\tNewsgroups: comp.graphics\\n\\tKeywords: P, NP, Jordan curve separation, Ursyhon Metrization Theorem\\n\\tOrganization: Program of Computer Graphics\\n\\nIn article [...] ncsmith@ndsuvax.UUCP (Timothy Lyle Smith) writes:\\n>\\n> I need to find a formula/algorithm to determine if a line intersects\\n> a polygon. I would prefer a method that would do this in as little\\n> time as possible. I need this for use in a forward raytracing\\n> program.\\n\\nI think that this is a very difficult problem. To start with, lines and\\npolygons are semi-algebraic sets which both contain uncountable number of\\npoints. Here are a few off-the-cuff ideas.\\n\\nFirst, we need to check if the line and the polygon are separated. Now, the\\nJordan curve separation theorem says that the polygon divides the plane into\\nexactly two open (and thus non-compact) regions. Thus, the line lies\\ncompletely inside the polygon, the line lies completely outside the polygon,\\nor possibly (but this will rarely happen) the line intersects the polyon.\\n\\nNow, the phrasing of this question says \"if a line intersects a polygon\", so\\nthis is a decision problem. One possibility (the decision model approach) is\\nto reduce the question to some other (well known) problem Q, and then try to\\nsolve Q. An answer to Q gives an answer to the original decision problem.\\n\\nIn recent years, many geometric problems have been successfully modeled in a\\nnew language called PostScript. (See \"PostScript Language\", by Adobe Systems\\nIncorporated, ISBN # 0-201-10179-3, co. 1985).\\n\\nSo, given a line L and a polygon P, we can write a PostScript program that\\ndraws the line L and the polygon P, and then \"outputs\" the answer. By\\n\"output\", we mean the program executes a command called \"showpage\", which\\nactually prints a page of paper containing the line and the polygon. A quick\\nexamination of the paper provides an answer to the reduced problem Q, and thus\\nthe original problem.\\n\\nThere are two small problems with this approach. \\n\\n\\t(1) There is an infinite number of ways to encode L and P into the\\n\\treduced problem Q. So, we will be forced to invoke the Axiom of\\n\\tChoice (or equivalently, Zorn\\'s Lemma). But the use of the Axiom of\\n\\tChoice is not regarded in a very serious light these days.\\n\\n\\t(2) More importantly, the question arises as to whether or not the\\n\\tPostScript program Q will actually output a piece of paper; or in\\n\\tother words, will it halt?\\n\\n\\tNow, PostScript is expressive enough to encode everything that a\\n\\tTuring Machine might do; thus the halting problem (for PostScript) is\\n\\tundecidable. It is quite possible that the original problem will turn\\n\\tout to be undecidable.\\n\\n\\nI won\\'t even begin to go into other difficulties, such as aliasing, finite\\nprecision and running out of ink, paper or both.\\n\\nA couple of references might be:\\n\\n1. Principia Mathematica. Newton, I. Cambridge University Press, Cambridge,\\n England. (Sorry, I don\\'t have an ISBN# for this).\\n\\n2. An Introduction to Automata Theory, Languages, and Computation. Hopcroft, J\\n and Ulman, J.\\n\\n3. The C Programming Language. Kernighan, B and Ritchie, D.\\n\\n4. A Tale of Two Cities. Dickens, C.\\n\\n--------\\n\\nFrom: td@alice.UUCP (Tom Duff)\\nSummary: Overkill.\\nOrganization: AT&T Bell Laboratories, Murray Hill NJ\\n\\nThe situation is not nearly as bleak as Baraff suggests (he should know\\nbetter, he\\'s hung around The Labs for long enough). By the well known\\nDobbin-Dullman reduction (see J. Dullman & D. Dobbin, J. Comp. Obfusc.\\n37,ii: pp. 33-947, lemma 17(a)) line-polygon intersection can be reduced to\\nHamiltonian Circuit, without(!) the use of Grobner bases, so LPI (to coin an\\nacronym) is probably only NP-complete. Besides, Turing-completeness will no\\nlonger be a problem once our Cray-3 is delivered, since it will be able to\\ncomplete an infinite loop in 4 milliseconds (with scatter-gather.)\\n\\n--------\\n\\nFrom: deb@svax.cs.cornell.edu (David Baraff)\\n\\nWell, sure its no worse than NP-complete, but that\\'s ONLY if you restrict\\nyourself to the case where the line satisfies a Lipschitz condition on its\\nsecond derivative. (I think there\\'s an \\'89 SIGGRAPH paper from Caltech that\\ndeals with this).\\n\\n--\\n------------------------------------------------------------------------------\\n J o n a s Y n g v e s s o n email: jonas-y@isy.liu.se\\nDept. of Electrical Engineering\\t voice: +46-(0)13-282162 \\nUniversity of Linkoping, Sweden fax : +46-(0)13-139282\\n',\n", + " \"From: ednclark@kraken.itc.gu.edu.au (Jeffrey Clark)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nNntp-Posting-Host: kraken.itc.gu.edu.au\\nOrganization: ITC, Griffith University, Brisbane, Australia\\nLines: 70\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n\\nOr he was just convinced by religious fantasies of the time that he was the\\nMessiah, or he was just some rebel leader that an organisation of Jews built\\ninto Godhood for the purpose off throwing of the yoke of Roman oppression,\\nor.......\\n\\n>\\tSome reasons why he wouldn't be a liar are as follows. Who would \\n>die for a lie? \\n\\nAre the Moslem fanatics who strap bombs to their backs and driving into\\nJewish embassies dying for the truth (hint: they think they are)? Were the\\nNAZI soldiers in WWII dying for the truth? \\n\\nPeople die for lies all the time.\\n\\n\\n>Wouldn't people be able to tell if he was a liar? People \\n\\nWas Hitler a liar? How about Napoleon, Mussolini, Ronald Reagan? We spend\\nmillions of dollars a year trying to find techniques to detect lying? So the\\nanswer is no, they wouldn't be able to tell if he was a liar if he only lied\\nabout some things.\\n\\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n\\nWhy do you think he healed people, because the Bible says so? But if God\\ndoesn't exist (the other possibility) then the Bible is not divinely\\ninspired and one can't use it as a piece of evidence, as it was written by\\nunbiased observers.\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy. Very doubtful, in fact rediculous. For example \\n\\nWere Hitler or Mussolini lunatics? How about Genghis Khan, Jim Jones...\\nthere are thousands of examples through history of people being drawn to\\nlunatics.\\n\\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn't a liar or a lunatic, he must have been the \\n>real thing. \\n\\nSo we obviously cannot rule out liar or lunatic not to mention all the other\\npossibilities not given in this triad.\\n\\n>\\tSome other things to note. He fulfilled loads of prophecies in \\n>the psalms, Isaiah and elsewhere in 24 hrs alone. This in his betrayal \\n\\nPossibly self-fulfilling prophecy (ie he was aware what he should do in\\norder to fulfil these prophecies), possibly selective diting on behalf of\\nthose keepers of the holy bible for a thousand years or so before the\\ngeneral; public had access. possibly also that the text is written in such\\nriddles (like Nostradamus) that anything that happens can be twisted to fit\\nthe words of raving fictional 'prophecy'.\\n\\n>and Crucifixion. I don't have my Bible with me at this moment, next time I \\n>write I will use it.\\n [stuff about how hard it is to be a christian deleted]\\n\\nI severely recommend you reconsider the reasons you are a christian, they\\nare very unconvincing to an unbiased observer.\\n\\nJeff.\\n\\n\",\n", + " 'From: s127@ii.uib.no (Torgeir Veimo)\\nSubject: Re: sources for shading wanted\\nOrganization: Institutt for Informatikk UIB Norway\\nLines: 24\\n\\nIn article <1r3ih5INNldi@irau40.ira.uka.de>, S_BRAUN@IRAV19.ira.uka.de \\n(Thomas Braun) writes:\\n|> I\\'m looking for shading methods and algorithms.\\n|> Please let me know if you know where to get source codes for that.\\n\\n\\'Illumination and Color in Computer Generated Imagery\\' by Roy Hall contains c\\nsource for several famous illumination models, including Bouknight, Phong,\\nBlinn, Whitted, and Hall illumination models. If you want an introduction to\\nshading you might look through the book \\'Writing a Raytracer\\' edited by\\nGlassner. Also, the book \\'Procedural elements for Computer Graphics\\' by Rogers\\nis a good reference. Source for code in these book are available on the net i \\nbelieve, you might check out nic.funet.fi or some site closer to you carrying \\ngraphics related stuff. \\n\\nHope this is what you were asking for.\\n-- \\nTorgeir Veimo\\n\\nStudying at the University of Bergen\\n\\n\"...I\\'m gona wave my freak flag high!\" (Jimi Hendrix)\\n\\n\"...and it would be okay on any other day!\" (The Police)\\n\\n',\n", + " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: bike for sale in MA, USA\\nKeywords: wicked-sexist\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nLines: 18\\n\\nIn article <1993Apr19.194630.102@zorro.tyngsboro.ma.us> jd@zorro.tyngsboro.ma.us (Jeff deRienzo) writes:\\n>I\\'ve recently become father of twins! I don\\'t think I can afford\\n> to keep 2 bikes and 2 babies. Both babies are staying, so 1 of\\n> the Harleys is going.\\n>\\n>\\t1988 883 XLHD\\n>\\t~4000 mi. (hey, it was my wife\\'s bike :-)\\n\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n\\tWell that was pretty uncalled for. (No smile)\\n\\tIs our Harley manhood feeling challenged?\\n\\n> Jeff deRienzo\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", + " \"From: ahatcher@athena.cs.uga.edu (Allan Hatcher)\\nSubject: Re: Traffic morons\\nOrganization: University of Georgia, Athens\\nLines: 37\\n\\nIn article Stafford@Vax2.Winona.MSUS.Edu (John Stafford) writes:\\n>In article <10326.97.uupcb@compdyn.questor.org>,\\n>ryan_cousineau@compdyn.questor.org (Ryan Cousineau) wrote:\\n>> \\n>> NMM>From: nielsmm@imv.aau.dk (Niels Mikkel Michelsen)\\n>> NMM>Subject: How to act in front of traffic jerks\\n>> \\n>> NMM>The other day, it was raining cats and dogs, therefor I was going only to\\n>> NMM>the speed limit, on nothing more, on my bike. This guy in his BMW was\\n>> NMM>driving 1-2 meters behind me for 7-800 meters and at the next red light I\\n>> NMM>calmly put the bike on its leg, walked back to this car, he rolled down the\\n>> NMM>window, and I told him he was a total idiot (and the reason why).\\n>> \\n>> NMM>Did I do the right thing?\\n>\\n>\\timho, you did the wrong thing. You could have been shot\\n> or he could have run over your bike or just beat the shit\\n> out of you. Consider that the person is foolish enough\\n> to drive like a fool and may very well _act_ like one, too.\\n>\\n> Just get the heck away from the idiot.\\n>\\n> IF the driver does something clearly illegal, you _can_\\n> file a citizens arrest and drag that person into court.\\n> It's a hassle for you but a major hassle for the perp.\\n>\\n>====================================================\\n>John Stafford Minnesota State University @ Winona\\nYou can't make a Citizens arrest on anything but a felony.\\n.\\n \\n\\n\\n>\\n> All standard disclaimers apply.\\n\\n\\n\",\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: The Area Rule\\nOrganization: Express Access Online Communications USA\\nLines: 20\\nDistribution: sci\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nI am sure Mary or Henry can describe this more aptly then me.\\nBut here is how i understand it.\\n\\nAt Speed, Near supersonic. The wind behaves like a fluid pipe.\\nIt becomes incompressible. So wind has to bend away from the\\nwing edges. AS the wing thickens, the more the pipes bend.\\n\\nIf they have no place to go, they begin to stall, and force\\ncompression, stealing power from the vehicle (High Drag).\\n\\nIf you squeeze the fuselage, so that these pipes have aplace to bend\\ninto, then drag is reduced. \\n\\nEssentially, teh cross sectional area of the aircraft shoulf\\nremain constant for all areas of the fuselage. That is where the wings are\\nsubtract, teh cross sectional area of the wings from the fuselage.\\n\\npat\\n',\n", + " 'From: william.vaughan@uuserv.cc.utah.edu (WILLIAM DANIEL VAUGHAN)\\nSubject: Re: A silly question on x-tianity\\nLines: 9\\nOrganization: University of Utah Computer Center\\n\\nIn article pww@spacsun.rice.edu (Peter Walker) writes:\\n>From: pww@spacsun.rice.edu (Peter Walker)\\n>Subject: Re: A silly question on x-tianity\\n>Date: Mon, 12 Apr 1993 07:06:33 GMT\\n>In article <1qaqi1INNgje@gap.caltech.edu>, werdna@cco.caltech.edu (Andrew\\n>Tong) wrote:\\n>> \\n\\nso what\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Big amateur rockets\\nOrganization: U of Toronto Zoology\\nLines: 30\\n\\nIn article pbd@runyon.cim.cdc.com (Paul Dokas) writes:\\n>Anyhow, the ad stated that they\\'d sell rockets that were up to 20\\' in length\\n>and engines of sizes \"F\" to \"M\". They also said that some rockets will\\n>reach 50,000 feet.\\n>\\n>Now, aside from the obvious dangers to any amateur rocketeer using one\\n>of these beasts, isn\\'t this illegal? I can\\'t imagine the FAA allowing\\n>people to shoot rockets up through the flight levels of passenger planes.\\n\\nThe situation in this regard has changed considerably in recent years.\\nSee the discussion of \"high-power rocketry\" in the rec.models.rockets\\nfrequently-asked-questions list.\\n\\nThis is not hardware you can walk in off the street and buy; you need\\nproper certification. That can be had, mostly through Tripoli (the high-\\npower analog of the NAR), although the NAR is cautiously moving to extend\\nthe upper boundaries of what it considers proper too.\\n\\nYou need special FAA authorization, but provided you aren\\'t doing it under\\none of the LAX runway approaches or something stupid like that, it\\'s not\\nespecially hard to arrange.\\n\\nAs with model rocketry, this sort of hardware is reasonably safe if handled\\nproperly. Proper handling takes more care, and you need a lot more empty\\nair to fly in, but it\\'s basically just model rocketry scaled up. As with\\nmodel rocketry, the high-power people use factory-built engines, which\\neliminates the major safety hazard of do-it-yourself rocketry.\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: University of Illinois at Urbana\\nLines: 42\\n\\nmancus@sweetpea.jsc.nasa.gov (Keith Mancus) writes:\\n\\n>cook@varmit.mdc.com (Layne Cook) writes:\\n>> All of this talk about a COMMERCIAL space race (i.e. $1G to the first 1-year \\n>> moon base) is intriguing. Similar prizes have influenced aerospace \\n>>development before. The $25k Orteig prize helped Lindbergh sell his Spirit of \\n>> Saint Louis venture to his financial backers.\\n>> But I strongly suspect that his Saint Louis backers had the foresight to \\n>> realize that much more was at stake than $25,000.\\n>> Could it work with the moon? Who are the far-sighted financial backers of \\n>> today?\\n\\n> The commercial uses of a transportation system between already-settled-\\n>and-civilized areas are obvious. Spaceflight is NOT in this position.\\n>The correct analogy is not with aviation of the \\'30\\'s, but the long\\n>transocean voyages of the Age of Discovery.\\n\\nLindbergh\\'s flight took place in \\'27, not the thirties.\\n\\n>It didn\\'t require gov\\'t to\\n>fund these as long as something was known about the potential for profit\\n>at the destination. In practice, some were gov\\'t funded, some were private.\\n\\nCould you give examples of privately funded ones?\\n\\n>But there was no way that any wise investor would spend a large amount\\n>of money on a very risky investment with no idea of the possible payoff.\\n\\nYour logic certainly applies to standard investment strategies. However, the\\nconcept of a prize for a difficult goal is done for different reasons, I \\nsuspect. I\\'m not aware that Mr Orteig received any significant economic \\nbenefit from Lindbergh\\'s flight. Modern analogies, such as the prize for a\\nhuman powered helicopter face similar arguments. There is little economic\\nbenefit in such a thing. The advantage comes in the new approaches developed\\nand the fact that a prize will frequently generate far more work than the \\nequivalent amount of direct investment would. A person who puts up $ X billion\\nfor a moon base is much more likely to do it because they want to see it done\\nthan because they expect to make money off the deal.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 133\\n\\nIn article bh437292@lance.colostate.edu writes:\\n>\\n>It is NOT a \"terrorist camp\" as you and the Israelis like \\n>to view the villages they are small communities with kids playing soccer\\n>in the streets, women preparing lunch, men playing cards, etc.....\\n>SOME young men, usually aged between 17 to 30 years are members of\\n>the Lebanese resistance. Even the inhabitants of the village do not \\n>know who these are, they are secretive about it, but most people often\\n>suspect who they are and what they are up to. These young men are\\n>supported financially by Iran most of the time. They sneak arms and\\n>ammunitions into the occupied zone where they set up booby traps\\n>for Israeli patrols. Every time an Israeli soldier is killed or injured\\n>by these traps, Israel retalliates by indiscriminately bombing villages\\n>of their own choosing often killing only innocent civilians. \\n\\nThis a \"tried and true\" method utilized by guerilla and terrorists groups:\\nto conduct operations in the midst of the local populace, thus forcing the\\nopposing \"state\" to possible harm innocent civilians in their search or,\\nin order to avoid the deaths of civilians, abandon the search. Certainly the\\npeople who use the population for cover are *also* to blaim for dragging the\\ninnocent civilians into harm\\'s way.\\n\\nAre you suggesting that, when guerillas use the population for cover, Israel\\nshould totally back down? So...the easiest way to get away with attacking\\nanother is to use an innocent as a shield and hope that the other respects\\ninnocent lives?\\n\\n>If Israel insists that\\n>the so called \"Security Zone\" is necessary for the protection of \\n>Northern Israel, than it will have to pay the price of its occupation\\n>with the blood of its soldiers. \\n\\nYour damn right Israel insists on some sort of \"demilitarized\" or \"buffer\"\\nzone. Its had to put up with too many years of attacks from the territory\\nof Arab states and watched as the states did nothing. It is not exactly\\nsurprizing that Israel decided that the only way to stop such actions is to \\ndo it themselves.\\n\\n>If Israel is interested in peace, than it should withdraw from OUR land. \\n\\nWhat? So the whole bit about attacks on Israel from neighboring Arab states \\ncan start all over again? While I also hope for this to happen, it will\\nonly occur WHEN Arab states show that they are *prepared* to take on the \\nresponsibility and the duty to stop guerilla attacks on Israel from their \\nsoil. They have to Prove it (or provide some \"guaratees\"), there is no way\\nIsrael is going to accept their \"word\"- not with their past attitude of \\ntolerance towards \"anti-Israel guerillas in-residence\".\\n>\\n>I have written before on this very newsgroup, that the only\\n>real solution will come as a result of a comprehensive peace\\n>settlement whereby Israel withdraws to its own borders and\\n>peace keeping troops are stationed along the border to insure\\n>no one on either side of the border is shelled.\\n\\nGood lord, Brad. What in the world goves you the idea that UN troops stop\\nanything? They are ONLY stationed in a country because that country allows\\nthem in. It can ask them to leave *at any time*; as Nasser did in \\'56 and\\n\\'67. Somehow, with that \"limitation\" on the troops \"powers\" I don\\'t\\nthink that Israel is going to be any more comfortable. Without a *genuine* commitment to peace from the Arab states, and concrete (not intellectual or political exercises in jargon) \"guarantees\" by other parties, the UN is worthless\\nto Israel (but, perhaps useful as a \"ruse\"?).\\n\\n>This is the only realistic solution, it is time for Israel to\\n>realize that the concept of a \"buffer zone\" aimed at protecting\\n>its northern cities has failed. In fact it has caused much more\\n>Israeli deaths than the occasional shelling of Northern Israel\\n>would have resulted in. \\n\\nPerhaps you are aware that, to most communities of people, there is\\nthe feeling that it is better that \"many of us die fighting\\nagainst those who attack us than for few to die while we silently \\naccept our fate.\" If,however, you call on Israel to see the sense of \\nsuffering fewer casualties, I suggest you apply the same to Palestinian,\\nArab and Islamic groups.\\n\\n>If Israel really wants to save some Israeli lives it would withdraw \\n>unilaterally from the so-called \"Security Zone\" before the conclusion\\n>of the peace talks. Such a move would save Israeli lives,\\n>advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n>public image abroad and give it an edge in the peace negociations \\n>since Israel can rightly claim that it is genuinely interested in \\n>peace and has already offered some important concessions.\\n>Along with such a withdrawal Israel could demand that Hizbollah\\n>be disarmed by the Lebanese government and warn that it will not \\n>accept any attacks against its northern cities and that if such a\\n>shelling occurs than it will consider re-taking the buffer zone\\n>and will hold the Lebanese and Syrian government responsible for it.\\n\\nFrom Israel\\'s perspective, \"concessions\" gets it NOTHING...except the \\nrealization that it has given \"something\" up and now *can only \\nhope* that the other side decides to do likewise. Words *can be taken\\nback* by merely doing so; to \"take back\" tangible items (land,\\ncontrol of land) requires the sort of action you say Israel should\\nstay away from.\\n \\nIsrael put up with attacks from Arab state territories for decades \\nbefore essentially putting a stop to it through its invasion of Lebanon.\\nThe entire basis of that reality was exactly as you state above: 1) Israel \\nwould express outrage at these attacks and protest to the Arab state \\ninvolved, 2) that state promptly ignored the entire matter, secure \\nin the knowledge that IT could not be held responsible for the acts \\ncommitted by \"private groups\", 3) Israel would prepare for the next \\nround of attacks. What would Israel want to return to those days (and\\ndon\\'t be so idiotic as to suggest \"trust\" for the motivations of\\npresent-day Arab states)?\\n\\n>There seems to be very little incentive for the Syrian and Lebanese\\n>goovernment to allow Hizbollah to bomb Israel proper under such \\n>circumstances, \\n>\\nAh, ok...what is \"different\" about the present situation that tells\\nus that the Arab states will *not* pursue their past antagonistic \\npolicies towards Israel? Now, don\\'t talk about vague \"political factors\"\\nbut about those \"tangible\" (just like that which Israel gave up)\\nfactors that \"guarantee\" the responsibility of those states. Your\\nassessment of \"difference\" here is based on a whole lot of assumptions,\\nand most states don\\'t feel confortable basing their existence on that\\nsort of thing.\\n\\n>and now the Lebanese government has proven that it is\\n>capable of controlling and disarming all militias as they did\\n>in all other parts of Lebanon.\\n>\\n>Basil\\n\\nIt has not. Without the support, and active involvement, of Syria,\\nLebanon would not have been able to accomplish all that has occurred.\\nOnce Syria leaves who is to say that Lebanon will be able to retain \\ncontrol? If Syria stays thay may be even more dangerous for Israel.\\n> \\nTim\\n\\nYour view of this entire matter is far too serenely one-sided and\\nselectively naive.\\n',\n", + " 'From: waldo@cybernet.cse.fau.edu (Todd J. Dicker)\\nSubject: Re: Hamza Salah, the Humanist\\nOrganization: Cybernet BBS, Boca Raton, Florida\\nLines: 19\\n\\ndzk@cs.brown.edu (Danny Keren) writes:\\n\\n> He-he. The great humanist speaks. One has to read Mr. Salah\\'s posters,\\n> in which he decribes Jews as \"sons of pigs and monkeys\", keeps\\n> promising the \"final battle\" between Muslims and Jews (in which the\\n> stons and the trees will \"cry for the Muslims to come and kill the\\n> Jews hiding behind them\"), makes jokes about Jews dying from heart\\n> attacks etc, to realize his objective stance on the matters involved.\\n> \\n> -Danny Keren.\\n----------\\nDon\\'t worry, Danny, every blatantly violent and abusive posting made by \\nHamzah is immediately forwarded to the operator of the system in which he \\nhas an account. I\\'d imagine they have quite a file started on this \\nfruitcake--and have already indicated that they have rules governing \\nracist and threatening use of their resources. I\\'d imagine he\\'ll be out \\nof our hair in a short while.\\n\\nTodd\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: , mathew@mantis.co.uk (mathew) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> > And we, meaning people who drive,\\n|> > accept the risks of doing so, and contribute tax money to design systems\\n|> > to minimize those risks.\\n|> \\n|> Eh? We already have systems to minimize those risks. It\\'s just that you car\\n|> drivers don\\'t want to use them.\\n|> \\n|> They\\'re called bicycles, trains and buses.\\n\\nPoor Matthew. A million posters to call \"you car drivers\" and he\\nchooses me, a non car owner.\\n\\njon.\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nKeywords: Galileo, JPL\\nOrganization: Texas Instruments Inc\\nLines: 25\\n\\nIn <1993Apr23.103038.27467@bnr.ca> agc@bmdhh286.bnr.ca (Alan Carter) writes:\\n\\n>In article <22APR199323003578@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes:\\n>|> 3. On April 19, a NO-OP command was sent to reset the command loss timer to\\n>|> 264 hours, its planned value during this mission phase.\\n\\n>This activity is regularly reported in Ron\\'s interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n\\nThe Command Loss Timer is a timer that does just what its name says;\\nit indicates to the probe that it has lost its data link for receiving\\ncommands. Upon expiration of the Command Loss Timer, I believe the\\nprobe starts a \\'search for Earth\\' sequence (involving antenna pointing\\nand attitude changes which consume fuel) to try to reestablish\\ncommunications. No-ops are sent periodically through those periods\\nwhen there are no real commands to be sent, just so the probe knows\\nthat we haven\\'t forgotten about it.\\n\\nHope that\\'s clear enough to be comprehensible. \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 66\\n\\n\\nJames Hogan writes:\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes:\\n>>Jim Hogan quips:\\n\\n>>... (summary of Jim\\'s stuff)\\n\\n>>Jim, I\\'m afraid _you\\'ve_ missed the point.\\n\\n>>>Thus, I think you\\'ll have to admit that atheists have a lot\\n>>more up their sleeve than you might have suspected.\\n\\n>>Nah. I will encourage people to learn about atheism to see how little atheists\\n>>have up their sleeves. Whatever I might have suspected is actually quite\\n>>meager. If you want I\\'ll send them your address to learn less about your\\n>>faith.\\n\\n>Faith?\\n\\nYeah, do you expect people to read the FAQ, etc. and actually accept hard\\natheism? No, you need a little leap of faith, Jimmy. Your logic runs out\\nof steam!\\n\\n>>>Fine, but why do these people shoot themselves in the foot and mock\\n>>>the idea of a God? ....\\n\\n>>>I hope you understand now.\\n\\n>>Yes, Jim. I do understand now. Thank you for providing some healthy sarcasm\\n>>that would have dispelled any sympathies I would have had for your faith.\\n\\n>Bake,\\n\\n>Real glad you detected the sarcasm angle, but am really bummin\\' that\\n>I won\\'t be getting any of your sympathy. Still, if your inclined\\n>to have sympathy for somebody\\'s *faith*, you might try one of the\\n>religion newsgroups.\\n\\n>Just be careful over there, though. (make believe I\\'m\\n>whispering in your ear here) They\\'re all delusional!\\n\\nJim,\\n\\nSorry I can\\'t pity you, Jim. And I\\'m sorry that you have these feelings of\\ndenial about the faith you need to get by. Oh well, just pretend that it will\\nall end happily ever after anyway. Maybe if you start a new newsgroup,\\nalt.atheist.hard, you won\\'t be bummin\\' so much?\\n\\n>Good job, Jim.\\n>.\\n\\n>Bye, Bake.\\n\\n\\n>>[more slim-Jim (tm) deleted]\\n\\n>Bye, Bake!\\n>Bye, Bye!\\n\\nBye-Bye, Big Jim. Don\\'t forget your Flintstone\\'s Chewables! :) \\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", + " \"From: karr@cs.cornell.edu (David Karr)\\nSubject: Re: Fortune-guzzler barred from bars!\\nOrganization: Cornell Univ. CS Dept, Ithaca NY 14853\\nLines: 23\\n\\nIn article Russell.P.Hughes@dartmouth.edu (Knicker Twister) writes:\\n>In article <1993Apr19.141959.4057@bnr.ca>\\n>npet@bnr.ca (Nick Pettefar) writes:\\n>\\n>> With regards to the pub brawl, he might have a history of such things.\\n>> Just because he was a biker doesn't make him out to be a reasonable\\n>> person. Even the DoD might object to him joining, who knows?\\n\\nIf he had a history of such things, why was it not mentioned in the\\narticle, and why did they present the irrelevant detail of where he\\ngot his drinking money from?\\n\\nI can't say exactly who is at fault here, but from where I sit is\\nlooks like we're seeing the results either of the law going way out\\nof hand or of shoddy journalism.\\n\\nIf the law wants to attach strings to how you spend a settlement, they\\nshould put the money in trust. They don't, so I would assume it's\\nperfectly legitimate to drink it away, though I wouldn't spend it that\\nway myself.\\n\\n-- David Karr (karr@cs.cornell.edu)\\n\\n\",\n", + " 'From: S901924@mailserv.cuhk.hk\\nSubject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\nSummary: Dong .... Dong .... Do I hear the death-knell of relativity?\\nKeywords: space, curvature, nothing, tesla\\nNntp-Posting-Host: wksb14.csc.cuhk.hk\\nOrganization: Computer Services Centre, C.U.H.K.\\nDistribution: World\\nLines: 36\\n\\nIn article et@teal.csn.org (Eric H. Taylor) writes:\\n>From: et@teal.csn.org (Eric H. Taylor)\\n>Subject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\n>Summary: Dong .... Dong .... Do I hear the death-knell of relativity?\\n>Keywords: space, curvature, nothing, tesla\\n>Date: Sun, 28 Mar 1993 20:18:04 GMT\\n>In article metares@well.sf.ca.us (Tom Van Flandern) writes:\\n>>crb7q@kelvin.seas.Virginia.EDU (Cameron Randale Bass) writes:\\n>>> Bruce.Scott@launchpad.unc.edu (Bruce Scott) writes:\\n>>>> \"Existence\" is undefined unless it is synonymous with \"observable\" in\\n>>>> physics.\\n>>> [crb] Dong .... Dong .... Dong .... Do I hear the death-knell of\\n>>> string theory?\\n>>\\n>> I agree. You can add \"dark matter\" and quarks and a lot of other\\n>>unobservable, purely theoretical constructs in physics to that list,\\n>>including the omni-present \"black holes.\"\\n>>\\n>> Will Bruce argue that their existence can be inferred from theory\\n>>alone? Then what about my original criticism, when I said \"Curvature\\n>>can only exist relative to something non-curved\"? Bruce replied:\\n>>\"\\'Existence\\' is undefined unless it is synonymous with \\'observable\\' in\\n>>physics. We cannot observe more than the four dimensions we know about.\"\\n>>At the moment I don\\'t see a way to defend that statement and the\\n>>existence of these unobservable phenomena simultaneously. -|Tom|-\\n>\\n>\"I hold that space cannot be curved, for the simple reason that it can have\\n>no properties.\"\\n>\"Of properties we can only speak when dealing with matter filling the\\n>space. To say that in the presence of large bodies space becomes curved,\\n>is equivalent to stating that something can act upon nothing. I,\\n>for one, refuse to subscribe to such a view.\" - Nikola Tesla\\n>\\n>----\\n> ET \"Tesla was 100 years ahead of his time. Perhaps now his time comes.\"\\n>----\\n',\n", + " 'From: charlie@elektro.cmhnet.org (Charlie Smith)\\nSubject: Re: Where\\'s The Oil on my K75 Going?\\nOrganization: Why do you suspect that?\\nLines: 35\\n\\nIn article tim@intrepid.gsfc.nasa.gov (Tim Seiss) writes:\\n>\\n> After both oil changes, the oil level was at the top mark in the\\n>window on the lower right side of the motor, but I\\'ve been noticing\\n>that the oil level seen in the window gradually decreases over the\\n>miles. I\\'m always checking the window with the bike on level ground\\n>and after it has sat idle for awhile, so the oil has a chance to drain\\n>back into the pan. The bike isn\\'t leaking oil any place, and I don\\'t\\n>see any smoke coming out of the exhaust.\\n>\\n> My owner\\'s manual says the amount of oil corresponding to the\\n>high and low marks in the oil level window is approx. .5 quart. It\\n>looks like my bike has been using about .25 quarts/1000 miles. The\\n>owner\\'s manual also gives a figure for max. oil consumption of about\\n>.08oz/mile or .15L/100km.\\n>\\n> My question is whether the degree of \"oil consumption\" I\\'m seeing on\\n>my bike is normal? Have any other K75 owners seen their oil level\\n>gradually and consistently go down? Should I take the bike in for\\n>work? I\\'m asking local guys also, to get as many data points as I\\n>can. \\n\\n\\nIt\\'s normal for the BMW K bikes to use a little oil in the first few thousand \\nmiles. I don\\'t know why. I\\'ve had three new K bikes, and all three used a\\nbit of oil when new - max maybe .4 quart in first 1000 miles; this soon quits\\nand by the time I had 10,000 miles on them the oil consumption was about zero.\\nI\\'ve been told that the harder you run the bike (within reason) the sooner\\nit stops using any oil.\\n\\n\\nCharlie Smith charlie@elektro.cmhnet.org KotdohL KotWitDoDL 1KSPI=22.85\\n DoD #0709 doh #0000000004 & AMA, MOA, RA, Buckey Beemers, BK Ohio V\\n BMW K1100-LT, R80-GS/PD, R27, Triumph TR6 \\n Columbus, Ohio USA\\n',\n", + " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Re: Himmler\\'s speech on the extirpation of the Jewish race\\nOrganization: Brown University Department of Computer Science\\nLines: 56\\n\\nIt is appropriate to add what Himmler said other \"inferior races\" \\nand \"human animals\" in his speech at Posen and elsewhere:\\n\\n\\nFrom the speech of Reichsfuehrer-SS Himmler, before SS\\nMajor-Generals, Posen, October 4 1943\\n[\"Nazi Conspiracy and Aggression\", Vol. IV, p. 559]\\n-------------------------------------------------------------------\\nOne basic principal must be the absolute rule for the SS man: we\\nmust be honest, decent, loyal, and comradely to members of our own\\nblood and to nobody else. What happens to a Russian, to a Czech,\\ndoes not interest me in the slightest. What the nations can offer\\nin good blood of our type, we will take, if necessary by kidnapping\\ntheir children and raising them with us. Whether nations live in\\nprosperity or starve to death interests me only in so far as we\\nneed them as slaves for our culture; otherwise, it is of no interest\\nto me. Whether 10,000 Russian females fall down from exhaustion\\nwhile digging an anti-tank ditch interest me only in so far as\\nthe anti-tank ditch for Germany is finished. We shall never be rough\\nand heartless when it is not necessary, that is clear. We Germans,\\nwho are the only people in the world who have a decent attitude\\ntowards animals, will also assume a decent attitude towards these\\nhuman animals. But it is a crime against our own blood to worry\\nabout them and give them ideals, thus causing our sons and\\ngrandsons to have a more difficult time with them. When someone\\ncomes to me and says, \"I cannot dig the anti-tank ditch with women\\nand children, it is inhuman, for it will kill them\", then I\\nwould have to say, \"you are a murderer of your own blood because\\nif the anti-tank ditch is not dug, German soldiers will die, and\\nthey are the sons of German mothers. They are our own blood\".\\n\\n\\n\\nExtract from Himmler\\'s address to party comrades, September 7 1940\\n[\"Trials of Wa Criminals\", Vol. IV, p. 1140]\\n------------------------------------------------------------------\\nIf any Pole has any sexual dealing with a German woman, and by this\\nI mean sexual intercourse, then the man will be hanged right in\\nfront of his camp. Then the others will not do it. Besides,\\nprovisions will be made that a sufficient number of Polish women\\nand girls will come along as well so that a necessity of this\\nkind is out of the question.\\n\\nThe women will be brought before the courts without mercy, and\\nwhere the facts are not sufficiently proved - such borderline\\ncases always happen - they will be sent to a concentration camp.\\nThis we must do, unless these one million Poles and those\\nhundreds of thousands of workers of alien blood are to inflict\\nuntold damage on the German blood. Philosophizing is of no avail\\nin this case. It would be better if we did not have them at all -\\nwe all know that - but we need them.\\n\\n\\n\\n-Danny Keren.\\n\\n',\n", + " \"From: prestonm@cs.man.ac.uk (Martin Preston)\\nSubject: Problems grabbing a block of a Starbase screen.\\nKeywords: Starbase, HP\\nLines: 26\\n\\nAt the moment i'm trying to grab a portion of a Starbase screen, and store it\\nin an area of memory. The data needs to be in a 24-bit format (which\\nshouldn't be a problem as the app is running on a 24 bit screen), though\\ni'm not too fussy about the exact format.\\n\\n(I actually intend to write the data out as a TIFF but that bits not the\\nproblem)\\n\\nDoes anyone out there know how to grab a portion of the screen? The\\nblock_read call seems to grab the screen, but not in 24 bit colour,\\nwhatever the screen/window type i get 1 byte per pixel. \\n\\nthanks in advance,\\n\\nMartin\\n\\n\\n\\n\\n--\\n---------------------------------------------------------------------------\\n|Martin Preston, (m.preston@manchester.ac.uk) | Computer Graphics |\\n|Computer Graphics Unit, Manchester Computing Centre, | is just |\\n|University of Manchester, | a load of balls. |\\n|Manchester, U.K., M13 9PL Phone : 061 275 6095 | |\\n---------------------------------------------------------------------------\\n\",\n", + " \"From: B8HA000 \\nSubject: Zionism is Racism\\nLines: 8\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nIn Re:Syria's Expansion, the author writes that the UN thought\\nZionism was Racism and that they were wrong. They were correct\\nthe first time, Zionism is Racism and thankfully, the McGill Daily\\n(the student newspaper at McGill) was proud enough to print an article\\nsaying so. If you want a copy, send me mail.\\n\\nSteve\\n\\n\",\n", + " 'From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: Bellcore, Livingston, NJ\\nSummary: An Untried Approach\\nLines: 59\\n\\nIn article <1993Apr20.114746.3364@ncsu.edu>, hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n> \\n> In article <1993Apr19.214300.17989@unocal.com>, stssdxb@st.unocal.com (Dorin Baru) writes:\\n> \\n> |> (Brad Hernlem writes:\\n> |> \\n> |> \\n> |> >Well, you should have noted that I was cheering an attack on an Israeli \\n> |> >patrol INSIDE Lebanese territory while I was condemning the \"retaliatory\"\\n> |> >shelling of Lebanese villages by Israeli and Israeli-backed forces. My \"team\",\\n> |> >you see, was \"playing fair\" while the opposing team was rearranging the\\n> |> >faces of the spectators in my team\\'s viewing stands, so to speak. \\n> |> \\n> |> >I think that you should try to find more sources of news about what goes on\\n> |> >in Lebanon and try to see through the propaganda. There are no a priori\\n> |> >black and white hats but one sure wonders how the IDF can bombard villages in \\n> |> >retaliation to pin-point attacks on its soldiers in Lebanon and then call the\\n> |> >Lebanese terrorists.\\n> |> \\n> |> If the attack was justified or not is at least debatable. But this is not the\\n> |> issue. The issue is that you were cheering DEATH. [...]\\n> |> \\n> |> Dorin\\n> \\n> Dorin, of all the criticism of my post expressed on t.p.m., this one I accept.\\n> I regret that aspect of my post. It is my hope that the occupation will end (and\\n> the accompanying loss of life) but I believe that stiff resistance can help to \\n> achieve that end. Despite what some have said on t.p.m., I think that there is \\n> a point when losses are unacceptable. The strategy drove U.S. troops out of \\n> Lebanon, at least.\\n> \\n> Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nHi Brad,\\n\\nI have two comments: Regarding your hope that the \"occupation will end... \\nbelive that stiff resistance..etc. - how about an untried approach, i.e.,\\npeace and cooperation. I can\\'t help but wonder what would happen if all\\nviolence against Israelis stopped. Hopefully, violence against Arabs\\nwould stop at the same time. If a state of non-violence could be \\nmaintained, perhaps a state of cooperation could be achieved, i.e.,\\ngreater economic opportunities for both peoples living in the\\n\"territories\". \\n\\nOf course, given the current leadership of Israel, your way may work\\nalso - but if that leadership changes, e.g., to someone with Ariel\\nSharon\\'s mentality, then I would predict a considerable loss of life,\\ni.e., no winners.\\n\\nSecondly, regarding your comment about the U.S. troops responding\\nto \"stiff resistance\" - the analogy is not quite valid. The U.S.\\ntroops could get out of the neighborhood altogether. The Israelis\\ncould not.\\n\\nJust my $.02 worth, no offense intended.\\n\\nRespectfully, \\n\\nBen.\\n',\n", + " 'From: arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee)\\nSubject: Re: American Jewish Congress Open Letter to Clinton\\nOrganization: Johns Hopkins University CS Dept.\\nLines: 30\\n\\nIn article <22APR199300513566@vxcrna.cern.ch> casper@vxcrna.cern.ch (CASPER,DAVI./PPE) writes:\\n>>Are you aware that there is an arms embargo on all of what is/was\\n>>Yugoslavia, including Bosnia, which guarantees massive military\\n>>superiority of Serbian forces and does not allow the Bosnians to\\n>>try to defend themselves? \\n>Should we sell weapons to all sides, or just the losing one, then?\\n\\nEnding an embargo does not _we_ must sell anything at all.\\n\\n>If the Europeans want to sell weapons to one or both sides, they are welcome\\n>as far as I\\'m concerned.\\n\\nYou seem to oppose ending the embargo. You know, it is difficult for Europeans\\nto sell weapons when there is an embargo in place.\\n\\n>I do not automatically accept the argument that Bosnia is any worse than\\n>other recent civil wars, say Vietnam for instance. The difference is it is\\n>happening to white people inside Europe, with lots of TV coverage.\\n\\nBut if this was the reason, and if furthermore both sides are equal, wouldn\\'t\\nall us racist Americans be favoring the good Christians (Serbs) instead\\nof the non-Christians we really seem to favor?\\n--\\n\"On the first day after Christmas my truelove served to me... Leftover Turkey!\\nOn the second day after Christmas my truelove served to me... Turkey Casserole\\n that she made from Leftover Turkey.\\n[days 3-4 deleted] ... Flaming Turkey Wings! ...\\n -- Pizza Hut commercial (and M*tlu/A*gic bait)\\n\\nKen Arromdee (arromdee@jyusenkyou.cs.jhu.edu)\\n',\n", + " 'Subject: Re: Surviving Large Accelerations?\\nFrom: lpham@eis.calstate.edu (Lan Pham)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 25\\n\\nAmruth Laxman writes:\\n> Hi,\\n> I was reading through \"The Spaceflight Handbook\" and somewhere in\\n> there the author discusses solar sails and the forces acting on them\\n> when and if they try to gain an initial acceleration by passing close to\\n> the sun in a hyperbolic orbit. The magnitude of such accelerations he\\n> estimated to be on the order of 700g. He also says that this is may not\\n> be a big problem for manned craft because humans (and this was published\\n> in 1986) have already withstood accelerations of 45g. All this is very\\n> long-winded but here\\'s my question finally - Are 45g accelerations in\\n> fact humanly tolerable? - with the aid of any mechanical devices of\\n> course. If these are possible, what is used to absorb the acceleration?\\n> Can this be extended to larger accelerations?\\n\\nare you sure 45g is the right number? as far as i know, pilots are\\nblackout in dives that exceed 8g - 9g. 45g seems to be out of human\\ntolerance. would anybody clarify this please.\\n\\nlan\\n\\n\\n> \\n> Thanks is advance...\\n> -Amruth Laxman\\n> \\n',\n", + " 'From: stefan@prague (Stefan Fielding-Isaacs)\\nSubject: Racelist: WHO WHAT WHERE\\nDistribution: rec\\nOrganization: Gain Technology, Palo Alto, CA.\\nLines: 111\\nNntp-Posting-Host: prague.gain.com\\n\\n\\n Greetings fellow motorcycle roadracing enthusiasts!\\n\\n BACKGROUND\\n ----------\\n\\n The racing listserver (boogie.EBay.sun.com) contains discussions \\n devoted to racing and racing-related topics. This is a pretty broad \\n interest group. Individuals have a variety of backgrounds: motojournalism, \\n roadracing from the perspective of pit crew and racers, engineering,\\n motosports enthusiasts.\\n\\n The size of the list grows weekly. We are currently at a little\\n over one hundred and eighty-five members, with contributors from\\n New Zealand, Australia, Germany, France, England, Canada\\n Finland, Switzerland, and the United States.\\n\\n The list was formed (October 1991) in response to a perceived need \\n to both provide technical discussion of riding at the edge of \\n performance (roadracing) and to improve on the very low signal-to-noise \\n ratio found in rec.motorcycles. Anyone is free to join.\\n\\n Discussion is necessarily limited by the rules of the list to \\n issues related to racing motorcycles and is to be \"flame-free\". \\n\\n HOW TO GET THE DAILY DISTRIBUTION\\n ---------------------------------\\n\\n You are welcome to subscribe. To subscribe send your request to:\\n\\n\\n race-request@boogie.EBay.Sun.COM\\n\\n\\n Traffic currently runs between five and twenty-five messages per day\\n (depending on the topic). \\n\\n NB: Please do _not_ send your subscription request to the\\n list directly.\\n \\n After you have contacted the list administrator, you will receive\\n an RSVP request. Please respond to this request in a timely manner\\n so that you can be added to the list. The request is generated in\\n order to insure that there is a valid mail pathway to your site.\\n \\n Upon receipt of your RSVP, you will be added to either the daily\\n or digest distribution (as per your initial request).\\n\\n HOW TO GET THE DIGEST DISTRIBUTION\\n ----------------------------------\\n\\n It is possible to receive the list in \\'digest\\'ed form (ie. a\\n single email message). The RoadRacing Digest is mailed out \\n whenever it contains enough interesting content. Given the\\n frequency of postings this appears to be about every other\\n day.\\n\\n Should you wish to receive the list via digest (once every \\n 30-40K or so), please send a subscription request to:\\n\\n\\n digest-request@boogie.EBay.Sun.COM\\n\\n\\n HOW TO POST TO THE LIST\\n -----------------------\\n\\n This is an open forum. To post an article to the list, send to:\\n\\n\\n race@boogie.EBay.Sun.COM\\n\\n\\n Depending on how mail is set up at your site you may or may\\n not see the mail that you have posted. If you want to see it\\n (though this isn\\'t necessarily a guarantee that it went out)\\n you can include a \"metoo\" line in your .mailrc file (on UNIX\\n based mail systems). \\n\\n BOUNCES\\n -------\\n\\n Because I haven\\'t had the time (or the inclination to replace\\n the list distribution mechanism) we still have a problem with\\n bounces returning to the poster of a message. Occasionally,\\n sites or users go off-line (either leaving their place of\\n employment prematurely or hardware problems) and you will receive\\n bounces from the race list. Check the headers carefully, and\\n if you find that the bounce originated at Sun (from whence I\\n administer this list) contact me through my administration\\n hat (race-request@boogie.EBay.sun.com). If not, ignore the bounce. \\n\\n OTHER LISTS \\n -----------\\n\\n Two-strokes: 2strokes@microunity.com\\n Harleys: harley-request@thinkage.on.ca\\n or uunet!watmath!thinkage!harley-request\\n European bikes: majordomo@onion.rain.com\\n (in body of message write: subscribe euro-moto)\\n\\n\\n thanks, be seeing you, \\n Rich (race list administrator)\\n\\n rich@boogie.EBay.Sun.COM\\n-- \\nStefan Fielding-Isaacs 415.822.5654 office/fax\\ndba Art & Science \"Books By Design\" 415.599.4876 voice/pager\\nAMA/CCS #14\\n* currently providing consulting writing services to: Gain Technology, Verity *\\n',\n", + " \"From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Riceburner Respect\\nOrganization: NEC Systems Laboratory, Inc.\\nLines: 14\\n\\nIn article <1993Apr15.141927.23722@cbnewsm.cb.att.com> shz@mare.att.com (Keeper of the 'Tude) writes:\\n>Huh?\\n>\\n>- Roid\\n\\n\\tOn a completely different tack, what was the eventual outcome of\\nBabe vs. the Bad-Mouthed Biker?\\n\\nLater,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee's Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n\",\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Americans and Evolution\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 30\\n\\nRobert Singleton (bobs@thnext.mit.edu) wrote:\\n\\n: > Sure it isn\\'t mutually exclusive, but it lends weight to (i.e. increases\\n: > notional running estimates of the posterior probability of) the \\n: > atheist\\'s pitch in the partition, and thus necessarily reduces the same \\n: > quantity in the theist\\'s pitch. This is because the `divine component\\' \\n: > falls prey to Ockham\\'s Razor, the phenomenon being satisfactorily \\n: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n: > explained without it, and there being no independent evidence of any \\n: ^^^^^^^^^^^^^^^^^^^^\\n: > such component. More detail in the next post.\\n: > \\n\\nOccam\\'s Razor is not a law of nature, it is way of analyzing an\\nargument, even so, it interesting how often it\\'s cited here and to\\nwhat end. \\nIt seems odd that religion is simultaneously condemned as being\\nprimitive, simple-minded and unscientific, anti-intellectual and\\nchildish, and yet again condemned as being too complex (Occam\\'s\\nrazor), the scientific explanation of things being much more\\nstraightforeward and, apparently, simpler. Which is it to be - which\\nis the \"non-essential\", and how do you know?\\nConsidering that even scientists don\\'t fully comprehend science due to\\nits complexity and diversity. Maybe William of Occam has performed a\\nlobotomy, kept the frontal lobe and thrown everything else away ...\\n\\nThis is all very confusing, I\\'m sure one of you will straighten me out\\ntough.\\n\\nBill\\n',\n", + " \"From: u895027@franklin.cc.utas.edu.au (Mark Mackey)\\nSubject: Raytracers: which is best?\\nOrganization: University of Tasmania, Australia.\\nLines: 15\\n\\nHi all!\\n\\tI've just recently become seriously hooked on POV, but there are a few\\nthing that I want to do that POV won't do (penumbral shadows, dispersion\\netc.). I was just wondering: what other shareware/freeware raytracers are\\nout there, and what can they do? I've heard of Vivid and Polyray and \\nRayshade and so on, but I'd rather no wade through several hundred pages of \\nmanual for each trying to work out what their capabilities are. Can anyone\\nhelp? A comparison of tracing speed between each program would also be \\nmucho useful.\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tMark.\\n\\n-------------------------------------------------------------------------------\\nMark Mackey | Life is a terminal disease and oxygen is \\nmmackey@aqueous.ml.csiro.au | addictive. Are _you_ hooked? \\n-------------------------------------------------------------------------------\\n\",\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Moraltiy? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>>>What if I act morally for no particular reason? Then am I moral? What\\n|> >>>>if morality is instinctive, as in most animals?\\n|> >>>\\n|> >>>Saying that morality is instinctive in animals is an attempt to \\n|> >>>assume your conclusion.\\n|> >>\\n|> >>Which conclusion?\\n|> >\\n|> >You conclusion - correct me if I err - that the behaviour which is\\n|> >instinctive in animals is a \"natural\" moral system.\\n|> \\n|> See, we are disagreeing on the definition of moral here. Earlier, you said\\n|> that it must be a conscious act. By your definition, no instinctive\\n|> behavior pattern could be an act of morality. You are trying to apply\\n|> human terms to non-humans.\\n\\nPardon me? *I* am trying to apply human terms to non-humans?\\n\\nI think there must be some confusion here. I\\'m the guy who is\\nsaying that if animal behaviour is instinctive then it does *not*\\nhave any moral sugnificance. How does refusing to apply human\\nterms to animals get turned into applying human terms?\\n\\n|> I think that even if someone is not conscious of an alternative, \\n|> this does not prevent his behavior from being moral.\\n\\nI\\'m sure you do think this, if you say so. How about trying to\\nconvince me?\\n\\n|> \\n|> >>You don\\'t think that morality is a behavior pattern? What is human\\n|> >>morality? A moral action is one that is consistent with a given\\n|> >>pattern. That is, we enforce a certain behavior as moral.\\n|> >\\n|> >You keep getting this backwards. *You* are trying to show that\\n|> >the behaviour pattern is a morality. Whether morality is a behavior \\n|> >pattern is irrelevant, since there can be behavior pattern, for\\n|> >example the motions of the planets, that most (all?) people would\\n|> >not call a morality.\\n|> \\n|> I try to show it, but by your definition, it can\\'t be shown.\\n\\nI\\'ve offered, four times, I think, to accept your definition if\\nyou allow me to ascribe moral significence to the orbital motion\\nof the planets.\\n\\n|> \\n|> And, morality can be thought of a large class of princples. It could be\\n|> defined in terms of many things--the laws of physics if you wish. However,\\n|> it seems silly to talk of a \"moral\" planet because it obeys the laws of\\n|> phyics. It is less silly to talk about animals, as they have at least\\n|> some free will.\\n\\nAh, the law of \"silly\" and \"less silly\". what Mr Livesey finds \\nintuitive is \"silly\" but what Mr Schneider finds intuitive is \"less \\nsilly\".\\n\\nNow that\\'s a devastating argument, isn\\'t it.\\n\\njon.\\n',\n", + " \"From: seth@north1.acpub.duke.edu (Seth Wandersman)\\nSubject: Oak Driver NEEDED (30d studio)\\nReply-To: seth@north1.acpub.duke.edu (Seth Wandersman)\\nLines: 8\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\n\\n\\tHi, I'm looking for the 3-D studio driver for the\\n\\tOak card with 1 M of RAM.\\n\\tThis would be GREATLY (and I mean that) appreciated\\n\\n\\tMaybe I should have just gotten a more well know card.\\nthanks\\nseth@acpub.duke.edu\\n\",\n", + " 'From: raymaker@bcm.tmc.edu (Mark Raymaker)\\nSubject: graphics driver standards\\nOrganization: Baylor College of Medicine, Houston, Tx\\nLines: 21\\nNNTP-Posting-Host: bcm.tmc.edu\\nKeywords: graphics,standards\\n\\nI have a researcher who collecting electical impulses from\\nthe human heart through a complex Analog to Digital system\\nhe has designed and inputting this information into his EISA\\nbus HP Vectra Computer running DOS and the Phar Lap DOS extender. \\n\\nHe want to purchase a very high-performance video card for\\n3-D modeling. He is aware of a company called Matrox but\\nhe is concerned about getting married to a company and their\\nvideo routine library. He would hope some more flexibility:\\nto choose between several card manufacturers with a standard\\nvideo driver. He would like to write more generic code- \\ncode that could be easily moved to other cards or computer operating\\nsystems in the future. Is there any hope?\\nAny information would be greatly appreciated-\\nPlease, if possible, respond directly to internet mail \\nto raymaker@bcm.tmc.edu\\n\\nThanks\\n\\n\\n\\n',\n", + " 'From: thomsonal@cpva.saic.com\\nSubject: Cosmos 2238: an EORSAT\\nArticle-I.D.: cpva.15337.2bc16ada\\nOrganization: Science Applications Int\\'l Corp./San Diego\\nLines: 48\\n\\n>Date: Tue, 6 Apr 1993 15:40:47 GMT\\n\\n>I need as much information about Cosmos 2238 and its rocket fragment (1993-\\n>018B) as possible. Both its purpose, launch date, location, in short,\\n>EVERYTHING! Can you help?\\n\\n>-Tony Ryan, \"Astronomy & Space\", new International magazine, available from:\\n\\n------------------------------------------------------------------------------\\n\\nOcean Reconnaissance Launch Surprises West\\nSpace News, April 5-11, 1993, p.2\\n[Excerpts]\\n Russia launched its first ocean reconnaissance satellite in 26 months \\nMarch 30, confounding Western analysts who had proclaimed the program dead. \\n The Itar-TASS news agency announced the launch of Cosmos 2238 from \\nPlesetsk Cosmodrome, but provided little description of the payload\\'s mission. \\n However, based on the satellite\\'s trajectory, Western observers \\nidentified it as a military spacecraft designed to monitor electronic \\nemissions from foreign naval ships in order to track their movement. \\n Geoff Perry of the Kettering Group in England... [said] Western \\nobservers had concluded that no more would be launched. But days after the \\nlast [such] satellite re-entered the Earth\\'s atmosphere, Cosmos 2238 was \\nlaunched. \\n\\n\"Cosmos-2238\" Satellite Launched for Defense Ministry\\nMoscow ITAR-TASS World Service in Russian 1238 GMT 30 March 1993\\nTranslated in FBIS-SOV-93-060, p.27\\nby ITAR-TASS correspondent Veronika Romanenkova\\n Moscow, 30 March -- The Cosmos-2238 satellite was launched at 1600 Moscow \\ntime today from the Baykonur by a \"Tsiklon-M\" carrier rocket. An ITAR-TASS \\ncorrespondent was told at the press center of Russia\\'s space-military forces \\nthat the satellite was launched in the interests of the Russian Defense \\nMinistry. \\n\\nParameters Given\\nMoscow ITAR-TASS World Service in Russian 0930 GMT 31 March 1993\\nTranslated in FBIS-SOV-93-060, p.27\\n Moscow, 31 March -- Another artificial Earth satellite, Cosmos-2238, was \\nlaunched on 30 March from the Baykonur cosmodrome. \\n The satellite carries scientific apparatus for continuing space research. \\nThe satellite has been placed in an orbit with the following parameters: \\ninitial period of revolution--92.8 minutes; apogee--443 km; perigee--413 km; \\norbital inclination--65 degrees. \\n Besides scientific apparatus the satellite carries a radio system for the \\nprecise measurement of orbital elements and a radiotelemetry system for \\ntransmitting to Earth data about the work of the instruments and scientific \\napparatus. The apparatus aboard the satellite is working normally. \\n',\n", + " 'From: holler@holli.augs1.adsp.sub.org (Jan Holler)\\nSubject: Re: Newsgroup Split\\nReply-To: holli!holler@augs1.adsp.sub.org\\nOrganization: private\\nLines: 24\\nX-NewsSoftware: GRn 1.16f (10.17.92) by Mike Schwartz & Michael B. Smith\\n\\nIn article nerone@ccwf.cc.utexas.edu (Michael Nerone) writes:\\n> In article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n> \\n> CH> Concerning the proposed newsgroup split, I personally am not in\\n\\n> Also, it is readily observable that the current spectrum of amiga\\n> groups is already plagued with mega-crossposting; thus the group-split\\n> would not, in all likelihood, bring about a more structured\\n> environment.\\n\\nAm I glad you write that. I got flamed all along because I begged NOT to\\ncrosspost some nonsense articles.\\n\\nThe problem with crossposting is on the first poster. I am aware that this\\nposting is a crossposting too, but what else should one do. You never know\\nwhere the interested people stay in.\\n\\nTo split up newsgroups brings even more crossposting.\\n\\n-- \\n\\nJan Holler, Bern, Switzerland Good is not good enough, make it better!\\nholli!holler@augs1.adsp.sub.org ((Second chance: holler@iamexwi.unibe.ch))\\n-------------------------------------------------------------------------------\\n (( fast mail: cbmehq!cbmswi!augs1!holli!holler@cbmvax.commodore.com )) \\n',\n", + " 'From: sean@whiting.mcs.com (Sean Gum)\\nSubject: Re: CView answers\\nOrganization: -*- Whiting Corporation, Harvey, Illinois -*-\\nX-Newsreader: Tin 1.1 PL4\\nLines: 23\\n\\nbryanw@rahul.net (Bryan Woodworth) writes:\\n: In <1993Apr16.114158.2246@whiting.mcs.com> sean@whiting.mcs.com (Sean Gum) writes:\\n: \\n: >A stupid question, but what will CView run on and where can I get it? I\\n: >am still in need of a GIF viewer for Linux. (Without X-Windows.)\\n: >Thanks!\\n: > \\n: \\n: Ho boy. There is no way in HELL you are going to be able to view GIFs or do\\n: any other graphics in Linux without X windows! I love Linux because it is\\n: so easy to learn.. You want text? Okay. Use Linux. You want text AND\\n: graphics? Use Linux with X windows. Simple. Painless. REQUIRED to have\\n: X Windows if you want graphics! This includes fancy word processors like\\n: doc, image viewers like xv, etc.\\n:\\nUmmm, I beg to differ. A kind soul sent me a program called DPG-VIEW that\\nwill do exactly what I want, view GIF images under Linux without X-Windows.\\nAnd, it does support all the way up to 1024x768. The biggest complaint I\\nhave is it is painfully SLOW. It takes about 1 minute to display an image.\\nI am use to CSHOW under DOS which takes a split second. Any idea why it\\nis so slow under Linux? Anybody have anything better? Plus, anybody have\\nthe docs to DPG-View? Thanks!\\n \\n',\n", + " \"From: Nanci Ann Miller \\nSubject: Re: Bible Quiz\\nOrganization: Sponsored account, School of Computer Science, Carnegie Mellon, Pittsburgh, PA\\nLines: 14\\n\\t\\nNNTP-Posting-Host: andrew.cmu.edu\\nIn-Reply-To: \\n\\nkmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n> Would you mind e-mailing me the questions, with the pairs of answers?\\n> I would love to have them for the next time a Theist comes to my door!\\n\\nI'd like this too... maybe you should post an answer key after a while?\\n\\nNanci\\n\\n.........................................................................\\nIf you know (and are SURE of) the author of this quote, please send me\\nemail (nm0w+@andrew.cmu.edu):\\nIt is better to be a coward for a minute than dead for the rest of your\\nlife.\\n\\n\",\n", + " 'From: hm@cs.brown.edu (Harry Mamaysky)\\nSubject: Dir Yassin (was Re: no-Free man propaganda machine: Freeman, with blood greetings from Israel)\\nIn-Reply-To: hasan@McRCIM.McGill.EDU \\'s message of Tue, 13 Apr 93 14:15:18 GMT\\nOrganization: Dept. of Computer Science, Brown University\\nLines: 85\\n\\nIn article <1993Apr13.141518.13900@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n CHECK MENAHEM BEGIN DAIRIES (published book) you\\'ll find accounts of the\\n massacres there including Deir Yassen,\\n though with the numbers of massacred men, children and women are \\n greatly minimized.\\n\\nAs per request of Hasan:\\n\\nFrom _The Revolt_, by Menachem Begin, Dell Publishing, NY, 1977:\\n\\n[pp. 225-227]\\n\\n \"Apart from the military aspect, there is a moral aspect to the\\nstory of Dir Yassin. At that village, whose name was publicized\\nthroughout the world, both sides suffered heavy casualties. We had\\nfour killed and nearly forty wounded. The number of casualties was\\nnearly forty percent of the total number of the attackers. The Arab\\ntroops suffered casualties neraly three times as heavy. The fighting\\nwas thus very severe. Yet the hostile propaganda, disseminated\\nthroughout the world, deliberately ignored the fact that the civilian\\npopulation of Dir Yassin was actually given a warning by us before the\\nbattle began. One of our tenders carrying a loud speaker was stationed\\nat the entrance to the village and it exhorted in Arabic all women,\\nchildren and aged to leave their houses and to take shelter on the\\nslopes of the hill. By giving this humane warning our fighters threw\\naway the element of complete surprise, and thus increased their own\\nrisk in the ensuing battle. A substantial number of the inhabitants\\nobeyed the warning and they were unhurt. A few did not leave their\\nstone houses - perhaps because of the confusion. The fire of the enemy\\nwas murderous - to which the number of our casualties bears eloquent\\ntestimony. Our men were compelled to fight for every house; to\\novercome the enemy they used large numbers of hand grenades. And the\\ncivilians who had disregarded our warnings suffered inevitable\\ncasualties.\\n\\n \"The education which we gave our soldiers throughout the years of\\nrevolt was based on the observance of the traditional laws of war. We\\nnever broke them unless the enemy first did so and thus forced us, in\\naccordance with the accepted custom of war, to apply reprisals. I am\\nconvinced, too, that our officers and men wished to avoid a single\\nunnecessary casualty in the Dir Yassin battle. But those who throw\\nstones of denunciation at the conquerors of Dir Yassin [1] would do\\nwell not to don the cloak of hypocrisy [2].\\n\\n \"In connection with the capture of Dir Yassin the Jewish Agency\\nfound it necessary to send a letter of apology to Abdullah, whom Mr.\\nBen Gurion, at a moment of great political emotion, called \\'the wise\\nruler who seeks the good of his people and this country.\\' The \\'wise\\nruler,\\' whose mercenary forces demolished Gush Etzion and flung the\\nbodies of its heroic defenders to birds of prey, replied with feudal\\nsuperciliousness. He rejected the apology and replied that the Jews\\nwere all to blame and that he did not believe in the existence of\\n\\'dissidents.\\' Throughout the Arab world and the world at large a wave\\nof lying propaganda was let loose about \\'Jewish attrocities.\\'\\n\\n \"The enemy propaganda was designed to besmirch our name. In the\\nresult it helped us. Panic overwhelmed the Arabs of Eretz Israel.\\nKolonia village, which had previously repulsed every attack of the\\nHaganah, was evacuated overnight and fell without further fighting.\\nBeit-Iksa was also evacuated. These two places overlooked the main\\nroad; and their fall, together with the capture of Kastel by the\\nHaganah, made it possible to keep open the road to Jerusalem. In the\\nrest of the country, too, the Arabs began to flee in terror, even\\nbefore they clashed with Jewish forces. Not what happened at Dir\\nYassin, but what was invented about Dir Yassin, helped to carve the\\nway to our decisive victories on the battlefield. The legend of Dir\\nYassin helped us in particular in the saving of Tiberias and the\\nconquest of Haifa.\"\\n\\n\\n[1] (A footnote from _The Revolt_, pp.226-7.) \"To counteract the loss\\nof Dir yassin, a village of strategic importance, Arab headquarters at\\nRamallah broadcast a crude atrocity story, alleging a massacre by\\nIrgun troops of women and children in the village. Certain Jewish\\nofficials, fearing the Irgun men as political rivals, seized upon this\\nArab gruel propaganda to smear the Irgun. An eminent Rabbi was induced\\nto reprimand the Irgun before he had time to sift the truth. Out of\\nevil, however, good came. This Arab propaganda spread a legend of\\nterror amongst Arabs and Arab troops, who were seized with panic at\\nthe mention of Irgun soldiers. The legend was worth half a dozen\\nbattalions to the forces of Israel. The `Dir Yassin Massacre\\' lie\\nis still propagated by Jew-haters all over the world.\"\\n\\n[2] In reference to denunciation of Dir Yassin by fellow Jews.\\n',\n", + " 'From: mathew \\nSubject: Alt.Atheism FAQ: Introduction to Atheism\\nSummary: Please read this file before posting to alt.atheism\\nKeywords: FAQ, atheism\\nExpires: Thu, 6 May 1993 12:22:45 GMT\\nDistribution: world\\nOrganization: Mantis Consultants, Cambridge. UK.\\nSupersedes: <19930308134439@mantis.co.uk>\\nLines: 646\\n\\nArchive-name: atheism/introduction\\nAlt-atheism-archive-name: introduction\\nLast-modified: 5 April 1993\\nVersion: 1.2\\n\\n-----BEGIN PGP SIGNED MESSAGE-----\\n\\n An Introduction to Atheism\\n by mathew \\n\\nThis article attempts to provide a general introduction to atheism. Whilst I\\nhave tried to be as neutral as possible regarding contentious issues, you\\nshould always remember that this document represents only one viewpoint. I\\nwould encourage you to read widely and draw your own conclusions; some\\nrelevant books are listed in a companion article.\\n\\nTo provide a sense of cohesion and progression, I have presented this article\\nas an imaginary conversation between an atheist and a theist. All the\\nquestions asked by the imaginary theist are questions which have been cropped\\nup repeatedly on alt.atheism since the newsgroup was created. Some other\\nfrequently asked questions are answered in a companion article.\\n\\nPlease note that this article is arguably slanted towards answering questions\\nposed from a Christian viewpoint. This is because the FAQ files reflect\\nquestions which have actually been asked, and it is predominantly Christians\\nwho proselytize on alt.atheism.\\n\\nSo when I talk of religion, I am talking primarily about religions such as\\nChristianity, Judaism and Islam, which involve some sort of superhuman divine\\nbeing. Much of the discussion will apply to other religions, but some of it\\nmay not.\\n\\n\"What is atheism?\"\\n\\nAtheism is characterized by an absence of belief in the existence of God.\\nSome atheists go further, and believe that God does not exist. The former is\\noften referred to as the \"weak atheist\" position, and the latter as \"strong\\natheism\".\\n\\nIt is important to note the difference between these two positions. \"Weak\\natheism\" is simple scepticism; disbelief in the existence of God. \"Strong\\natheism\" is a positive belief that God does not exist. Please do not\\nfall into the trap of assuming that all atheists are \"strong atheists\".\\n\\nSome atheists believe in the non-existence of all Gods; others limit their\\natheism to specific Gods, such as the Christian God, rather than making\\nflat-out denials.\\n\\n\"But isn\\'t disbelieving in God the same thing as believing he doesn\\'t exist?\"\\n\\nDefinitely not. Disbelief in a proposition means that one does not believe\\nit to be true. Not believing that something is true is not equivalent to\\nbelieving that it is false; one may simply have no idea whether it is true or\\nnot. Which brings us to agnosticism.\\n\\n\"What is agnosticism then?\"\\n\\nThe term \\'agnosticism\\' was coined by Professor Huxley at a meeting of the\\nMetaphysical Society in 1876. He defined an agnostic as someone who\\ndisclaimed (\"strong\") atheism and believed that the ultimate origin of things\\nmust be some cause unknown and unknowable.\\n\\nThus an agnostic is someone who believes that we do not and cannot know for\\nsure whether God exists.\\n\\nWords are slippery things, and language is inexact. Beware of assuming that\\nyou can work out someone\\'s philosophical point of view simply from the fact\\nthat she calls herself an atheist or an agnostic. For example, many people\\nuse agnosticism to mean \"weak atheism\", and use the word \"atheism\" only when\\nreferring to \"strong atheism\".\\n\\nBeware also that because the word \"atheist\" has so many shades of meaning, it\\nis very difficult to generalize about atheists. About all you can say for\\nsure is that atheists don\\'t believe in God. For example, it certainly isn\\'t\\nthe case that all atheists believe that science is the best way to find out\\nabout the universe.\\n\\n\"So what is the philosophical justification or basis for atheism?\"\\n\\nThere are many philosophical justifications for atheism. To find out why a\\nparticular person chooses to be an atheist, it\\'s best to ask her.\\n\\nMany atheists feel that the idea of God as presented by the major religions\\nis essentially self-contradictory, and that it is logically impossible that\\nsuch a God could exist. Others are atheists through scepticism, because they\\nsee no evidence that God exists.\\n\\n\"But isn\\'t it impossible to prove the non-existence of something?\"\\n\\nThere are many counter-examples to such a statement. For example, it is\\nquite simple to prove that there does not exist a prime number larger than\\nall other prime numbers. Of course, this deals with well-defined objects\\nobeying well-defined rules. Whether Gods or universes are similarly\\nwell-defined is a matter for debate.\\n\\nHowever, assuming for the moment that the existence of a God is not provably\\nimpossible, there are still subtle reasons for assuming the non-existence of\\nGod. If we assume that something does not exist, it is always possible to\\nshow that this assumption is invalid by finding a single counter-example.\\n\\nIf on the other hand we assume that something does exist, and if the thing in\\nquestion is not provably impossible, showing that the assumption is invalid\\nmay require an exhaustive search of all possible places where such a thing\\nmight be found, to show that it isn\\'t there. Such an exhaustive search is\\noften impractical or impossible. There is no such problem with largest\\nprimes, because we can prove that they don\\'t exist.\\n\\nTherefore it is generally accepted that we must assume things do not exist\\nunless we have evidence that they do. Even theists follow this rule most of\\nthe time; they don\\'t believe in unicorns, even though they can\\'t conclusively\\nprove that no unicorns exist anywhere.\\n\\nTo assume that God exists is to make an assumption which probably cannot be\\ntested. We cannot make an exhaustive search of everywhere God might be to\\nprove that he doesn\\'t exist anywhere. So the sceptical atheist assumes by\\ndefault that God does not exist, since that is an assumption we can test.\\n\\nThose who profess strong atheism usually do not claim that no sort of God\\nexists; instead, they generally restrict their claims so as to cover\\nvarieties of God described by followers of various religions. So whilst it\\nmay be impossible to prove conclusively that no God exists, it may be\\npossible to prove that (say) a God as described by a particular religious\\nbook does not exist. It may even be possible to prove that no God described\\nby any present-day religion exists.\\n\\nIn practice, believing that no God described by any religion exists is very\\nclose to believing that no God exists. However, it is sufficiently different\\nthat counter-arguments based on the impossibility of disproving every kind of\\nGod are not really applicable.\\n\\n\"But what if God is essentially non-detectable?\"\\n\\nIf God interacts with our universe in any way, the effects of his interaction\\nmust be measurable. Hence his interaction with our universe must be\\ndetectable.\\n\\nIf God is essentially non-detectable, it must therefore be the case that he\\ndoes not interact with our universe in any way. Many atheists would argue\\nthat if God does not interact with our universe at all, it is of no\\nimportance whether he exists or not.\\n\\nIf the Bible is to be believed, God was easily detectable by the Israelites.\\nSurely he should still be detectable today?\\n\\nNote that I am not demanding that God interact in a scientifically\\nverifiable, physical way. It must surely be possible to perceive some\\neffect caused by his presence, though; otherwise, how can I distinguish him\\nfrom all the other things that don\\'t exist?\\n\\n\"OK, you may think there\\'s a philosophical justification for atheism, but\\n isn\\'t it still a religious belief?\"\\n\\nOne of the most common pastimes in philosophical discussion is \"the\\nredefinition game\". The cynical view of this game is as follows:\\n\\nPerson A begins by making a contentious statement. When person B points out\\nthat it can\\'t be true, person A gradually re-defines the words he used in the\\nstatement until he arrives at something person B is prepared to accept. He\\nthen records the statement, along with the fact that person B has agreed to\\nit, and continues. Eventually A uses the statement as an \"agreed fact\", but\\nuses his original definitions of all the words in it rather than the obscure\\nredefinitions originally needed to get B to agree to it. Rather than be seen\\nto be apparently inconsistent, B will tend to play along.\\n\\nThe point of this digression is that the answer to the question \"Isn\\'t\\natheism a religious belief?\" depends crucially upon what is meant by\\n\"religious\". \"Religion\" is generally characterized by belief in a superhuman\\ncontrolling power -- especially in some sort of God -- and by faith and\\nworship.\\n\\n[ It\\'s worth pointing out in passing that some varieties of Buddhism are not\\n \"religion\" according to such a definition. ]\\n\\nAtheism is certainly not a belief in any sort of superhuman power, nor is it\\ncategorized by worship in any meaningful sense. Widening the definition of\\n\"religious\" to encompass atheism tends to result in many other aspects of\\nhuman behaviour suddenly becoming classed as \"religious\" as well -- such as\\nscience, politics, and watching TV.\\n\\n\"OK, so it\\'s not a religion. But surely belief in atheism (or science) is\\n still just an act of faith, like religion is?\"\\n\\nFirstly, it\\'s not entirely clear that sceptical atheism is something one\\nactually believes in.\\n\\nSecondly, it is necessary to adopt a number of core beliefs or assumptions to\\nmake some sort of sense out of the sensory data we experience. Most atheists\\ntry to adopt as few core beliefs as possible; and even those are subject to\\nquestioning if experience throws them into doubt.\\n\\nScience has a number of core assumptions. For example, it is generally\\nassumed that the laws of physics are the same for all observers. These are\\nthe sort of core assumptions atheists make. If such basic ideas are called\\n\"acts of faith\", then almost everything we know must be said to be based on\\nacts of faith, and the term loses its meaning.\\n\\nFaith is more often used to refer to complete, certain belief in something.\\nAccording to such a definition, atheism and science are certainly not acts of\\nfaith. Of course, individual atheists or scientists can be as dogmatic as\\nreligious followers when claiming that something is \"certain\". This is not a\\ngeneral tendency, however; there are many atheists who would be reluctant to\\nstate with certainty that the universe exists.\\n\\nFaith is also used to refer to belief without supporting evidence or proof.\\nSceptical atheism certainly doesn\\'t fit that definition, as sceptical atheism\\nhas no beliefs. Strong atheism is closer, but still doesn\\'t really match, as\\neven the most dogmatic atheist will tend to refer to experimental data (or\\nthe lack of it) when asserting that God does not exist.\\n\\n\"If atheism is not religious, surely it\\'s anti-religious?\"\\n\\nIt is an unfortunate human tendency to label everyone as either \"for\" or\\n\"against\", \"friend\" or \"enemy\". The truth is not so clear-cut.\\n\\nAtheism is the position that runs logically counter to theism; in that sense,\\nit can be said to be \"anti-religion\". However, when religious believers\\nspeak of atheists being \"anti-religious\" they usually mean that the atheists\\nhave some sort of antipathy or hatred towards theists.\\n\\nThis categorization of atheists as hostile towards religion is quite unfair.\\nAtheist attitudes towards theists in fact cover a broad spectrum.\\n\\nMost atheists take a \"live and let live\" attitude. Unless questioned, they\\nwill not usually mention their atheism, except perhaps to close friends. Of\\ncourse, this may be in part because atheism is not \"socially acceptable\" in\\nmany countries.\\n\\nA few atheists are quite anti-religious, and may even try to \"convert\" others\\nwhen possible. Historically, such anti-religious atheists have made little\\nimpact on society outside the Eastern Bloc countries.\\n\\n(To digress slightly: the Soviet Union was originally dedicated to separation\\nof church and state, just like the USA. Soviet citizens were legally free to\\nworship as they wished. The institution of \"state atheism\" came about when\\nStalin took control of the Soviet Union and tried to destroy the churches in\\norder to gain complete power over the population.)\\n\\nSome atheists are quite vocal about their beliefs, but only where they see\\nreligion encroaching on matters which are not its business -- for example,\\nthe government of the USA. Such individuals are usually concerned that\\nchurch and state should remain separate.\\n\\n\"But if you don\\'t allow religion to have a say in the running of the state,\\n surely that\\'s the same as state atheism?\"\\n\\nThe principle of the separation of church and state is that the state shall\\nnot legislate concerning matters of religious belief. In particular, it\\nmeans not only that the state cannot promote one religion at the expense of\\nanother, but also that it cannot promote any belief which is religious in\\nnature.\\n\\nReligions can still have a say in discussion of purely secular matters. For\\nexample, religious believers have historically been responsible for\\nencouraging many political reforms. Even today, many organizations\\ncampaigning for an increase in spending on foreign aid are founded as\\nreligious campaigns. So long as they campaign concerning secular matters,\\nand so long as they do not discriminate on religious grounds, most atheists\\nare quite happy to see them have their say.\\n\\n\"What about prayer in schools? If there\\'s no God, why do you care if people\\n pray?\"\\n\\nBecause people who do pray are voters and lawmakers, and tend to do things\\nthat those who don\\'t pray can\\'t just ignore. Also, Christian prayer in\\nschools is intimidating to non-Christians, even if they are told that they\\nneed not join in. The diversity of religious and non-religious belief means\\nthat it is impossible to formulate a meaningful prayer that will be\\nacceptable to all those present at any public event.\\n\\nAlso, non-prayers tend to have friends and family who pray. It is reasonable\\nto care about friends and family wasting their time, even without other\\nmotives.\\n\\n\"You mentioned Christians who campaign for increased foreign aid. What about\\n atheists? Why aren\\'t there any atheist charities or hospitals? Don\\'t\\n atheists object to the religious charities?\"\\n\\nThere are many charities without religious purpose that atheists can\\ncontribute to. Some atheists contribute to religious charities as well, for\\nthe sake of the practical good they do. Some atheists even do voluntary work\\nfor charities founded on a theistic basis.\\n\\nMost atheists seem to feel that atheism isn\\'t worth shouting about in\\nconnection with charity. To them, atheism is just a simple, obvious everyday\\nmatter, and so is charity. Many feel that it\\'s somewhat cheap, not to say\\nself-righteous, to use simple charity as an excuse to plug a particular set\\nof religious beliefs.\\n\\nTo \"weak\" atheists, building a hospital to say \"I do not believe in God\" is a\\nrather strange idea; it\\'s rather like holding a party to say \"Today is not my\\nbirthday\". Why the fuss? Atheism is rarely evangelical.\\n\\n\"You said atheism isn\\'t anti-religious. But is it perhaps a backlash against\\n one\\'s upbringing, a way of rebelling?\"\\n\\nPerhaps it is, for some. But many people have parents who do not attempt to\\nforce any religious (or atheist) ideas upon them, and many of those people\\nchoose to call themselves atheists.\\n\\nIt\\'s also doubtless the case that some religious people chose religion as a\\nbacklash against an atheist upbringing, as a way of being different. On the\\nother hand, many people choose religion as a way of conforming to the\\nexpectations of others.\\n\\nOn the whole, we can\\'t conclude much about whether atheism or religion are\\nbacklash or conformism; although in general, people have a tendency to go\\nalong with a group rather than act or think independently.\\n\\n\"How do atheists differ from religious people?\"\\n\\nThey don\\'t believe in God. That\\'s all there is to it.\\n\\nAtheists may listen to heavy metal -- backwards, even -- or they may prefer a\\nVerdi Requiem, even if they know the words. They may wear Hawaiian shirts,\\nthey may dress all in black, they may even wear orange robes. (Many\\nBuddhists lack a belief in any sort of God.) Some atheists even carry a copy\\nof the Bible around -- for arguing against, of course!\\n\\nWhoever you are, the chances are you have met several atheists without\\nrealising it. Atheists are usually unexceptional in behaviour and\\nappearance.\\n\\n\"Unexceptional? But aren\\'t atheists less moral than religious people?\"\\n\\nThat depends. If you define morality as obedience to God, then of course\\natheists are less moral as they don\\'t obey any God. But usually when one\\ntalks of morality, one talks of what is acceptable (\"right\") and unacceptable\\n(\"wrong\") behaviour within society.\\n\\nHumans are social animals, and to be maximally successful they must\\nco-operate with each other. This is a good enough reason to discourage most\\natheists from \"anti-social\" or \"immoral\" behaviour, purely for the purposes\\nof self-preservation.\\n\\nMany atheists behave in a \"moral\" or \"compassionate\" way simply because they\\nfeel a natural tendency to empathize with other humans. So why do they care\\nwhat happens to others? They don\\'t know, they simply are that way.\\n\\nNaturally, there are some people who behave \"immorally\" and try to use\\natheism to justify their actions. However, there are equally many people who\\nbehave \"immorally\" and then try to use religious beliefs to justify their\\nactions. For example:\\n\\n \"Here is a trustworthy saying that deserves full acceptance: Jesus Christ\\n came into the world to save sinners... But for that very reason, I was\\n shown mercy so that in me... Jesus Christ might display His unlimited\\n patience as an example for those who would believe in him and receive\\n eternal life. Now to the king eternal, immortal, invisible, the only God,\\n be honor and glory forever and ever.\"\\n\\nThe above quote is from a statement made to the court on February 17th 1992\\nby Jeffrey Dahmer, the notorious cannibal serial killer of Milwaukee,\\nWisconsin. It seems that for every atheist mass-murderer, there is a\\nreligious mass-murderer. But what of more trivial morality?\\n\\n A survey conducted by the Roper Organization found that behavior\\n deteriorated after \"born again\" experiences. While only 4% of respondents\\n said they had driven intoxicated before being \"born again,\" 12% had done\\n so after conversion. Similarly, 5% had used illegal drugs before\\n conversion, 9% after. Two percent admitted to engaging in illicit sex\\n before salvation; 5% after.\\n [\"Freethought Today\", September 1991, p. 12.]\\n\\nSo it seems that at best, religion does not have a monopoly on moral\\nbehaviour.\\n\\n\"Is there such a thing as atheist morality?\"\\n\\nIf you mean \"Is there such a thing as morality for atheists?\", then the\\nanswer is yes, as explained above. Many atheists have ideas about morality\\nwhich are at least as strong as those held by religious people.\\n\\nIf you mean \"Does atheism have a characteristic moral code?\", then the answer\\nis no. Atheism by itself does not imply anything much about how a person\\nwill behave. Most atheists follow many of the same \"moral rules\" as theists,\\nbut for different reasons. Atheists view morality as something created by\\nhumans, according to the way humans feel the world \\'ought\\' to work, rather\\nthan seeing it as a set of rules decreed by a supernatural being.\\n\\n\"Then aren\\'t atheists just theists who are denying God?\"\\n\\nA study by the Freedom From Religion Foundation found that over 90% of the\\natheists who responded became atheists because religion did not work for\\nthem. They had found that religious beliefs were fundamentally incompatible\\nwith what they observed around them.\\n\\nAtheists are not unbelievers through ignorance or denial; they are\\nunbelievers through choice. The vast majority of them have spent time\\nstudying one or more religions, sometimes in very great depth. They have\\nmade a careful and considered decision to reject religious beliefs.\\n\\nThis decision may, of course, be an inevitable consequence of that\\nindividual\\'s personality. For a naturally sceptical person, the choice\\nof atheism is often the only one that makes sense, and hence the only\\nchoice that person can honestly make.\\n\\n\"But don\\'t atheists want to believe in God?\"\\n\\nAtheists live their lives as though there is nobody watching over them. Many\\nof them have no desire to be watched over, no matter how good-natured the\\n\"Big Brother\" figure might be.\\n\\nSome atheists would like to be able to believe in God -- but so what? Should\\none believe things merely because one wants them to be true? The risks of\\nsuch an approach should be obvious. Atheists often decide that wanting to\\nbelieve something is not enough; there must be evidence for the belief.\\n\\n\"But of course atheists see no evidence for the existence of God -- they are\\n unwilling in their souls to see!\"\\n\\nMany, if not most atheists were previously religious. As has been explained\\nabove, the vast majority have seriously considered the possibility that God\\nexists. Many atheists have spent time in prayer trying to reach God.\\n\\nOf course, it is true that some atheists lack an open mind; but assuming that\\nall atheists are biased and insincere is offensive and closed-minded.\\nComments such as \"Of course God is there, you just aren\\'t looking properly\"\\nare likely to be viewed as patronizing.\\n\\nCertainly, if you wish to engage in philosophical debate with atheists it is\\nvital that you give them the benefit of the doubt and assume that they are\\nbeing sincere if they say that they have searched for God. If you are not\\nwilling to believe that they are basically telling the truth, debate is\\nfutile.\\n\\n\"Isn\\'t the whole of life completely pointless to an atheist?\"\\n\\nMany atheists live a purposeful life. They decide what they think gives\\nmeaning to life, and they pursue those goals. They try to make their lives\\ncount, not by wishing for eternal life, but by having an influence on other\\npeople who will live on. For example, an atheist may dedicate his life to\\npolitical reform, in the hope of leaving his mark on history.\\n\\nIt is a natural human tendency to look for \"meaning\" or \"purpose\" in random\\nevents. However, it is by no means obvious that \"life\" is the sort of thing\\nthat has a \"meaning\".\\n\\nTo put it another way, not everything which looks like a question is actually\\na sensible thing to ask. Some atheists believe that asking \"What is the\\nmeaning of life?\" is as silly as asking \"What is the meaning of a cup of\\ncoffee?\". They believe that life has no purpose or meaning, it just is.\\n\\n\"So how do atheists find comfort in time of danger?\"\\n\\nThere are many ways of obtaining comfort; from family, friends, or even pets.\\nOr on a less spiritual level, from food or drink or TV.\\n\\nThat may sound rather an empty and vulnerable way to face danger, but so\\nwhat? Should individuals believe in things because they are comforting, or\\nshould they face reality no matter how harsh it might be?\\n\\nIn the end, it\\'s a decision for the individual concerned. Most atheists are\\nunable to believe something they would not otherwise believe merely because\\nit makes them feel comfortable. They put truth before comfort, and consider\\nthat if searching for truth sometimes makes them feel unhappy, that\\'s just\\nhard luck.\\n\\n\"Don\\'t atheists worry that they might suddenly be shown to be wrong?\"\\n\\nThe short answer is \"No, do you?\"\\n\\nMany atheists have been atheists for years. They have encountered many\\narguments and much supposed evidence for the existence of God, but they have\\nfound all of it to be invalid or inconclusive.\\n\\nThousands of years of religious belief haven\\'t resulted in any good proof of\\nthe existence of God. Atheists therefore tend to feel that they are unlikely\\nto be proved wrong in the immediate future, and they stop worrying about it.\\n\\n\"So why should theists question their beliefs? Don\\'t the same arguments\\n apply?\"\\n\\nNo, because the beliefs being questioned are not similar. Weak atheism is\\nthe sceptical \"default position\" to take; it asserts nothing. Strong atheism\\nis a negative belief. Theism is a very strong positive belief.\\n\\nAtheists sometimes also argue that theists should question their beliefs\\nbecause of the very real harm they can cause -- not just to the believers,\\nbut to everyone else.\\n\\n\"What sort of harm?\"\\n\\nReligion represents a huge financial and work burden on mankind. It\\'s not\\njust a matter of religious believers wasting their money on church buildings;\\nthink of all the time and effort spent building churches, praying, and so on.\\nImagine how that effort could be better spent.\\n\\nMany theists believe in miracle healing. There have been plenty of instances\\nof ill people being \"healed\" by a priest, ceasing to take the medicines\\nprescribed to them by doctors, and dying as a result. Some theists have died\\nbecause they have refused blood transfusions on religious grounds.\\n\\nIt is arguable that the Catholic Church\\'s opposition to birth control -- and\\ncondoms in particular -- is increasing the problem of overpopulation in many\\nthird-world countries and contributing to the spread of AIDS world-wide.\\n\\nReligious believers have been known to murder their children rather than\\nallow their children to become atheists or marry someone of a different\\nreligion.\\n\\n\"Those weren\\'t REAL believers. They just claimed to be believers as some\\n sort of excuse.\"\\n\\nWhat makes a real believer? There are so many One True Religions it\\'s hard\\nto tell. Look at Christianity: there are many competing groups, all\\nconvinced that they are the only true Christians. Sometimes they even fight\\nand kill each other. How is an atheist supposed to decide who\\'s a REAL\\nChristian and who isn\\'t, when even the major Christian churches like the\\nCatholic Church and the Church of England can\\'t decide amongst themselves?\\n\\nIn the end, most atheists take a pragmatic view, and decide that anyone who\\ncalls himself a Christian, and uses Christian belief or dogma to justify his\\nactions, should be considered a Christian. Maybe some of those Christians\\nare just perverting Christian teaching for their own ends -- but surely if\\nthe Bible can be so readily used to support un-Christian acts it can\\'t be\\nmuch of a moral code? If the Bible is the word of God, why couldn\\'t he have\\nmade it less easy to misinterpret? And how do you know that your beliefs\\naren\\'t a perversion of what your God intended?\\n\\nIf there is no single unambiguous interpretation of the Bible, then why\\nshould an atheist take one interpretation over another just on your say-so?\\nSorry, but if someone claims that he believes in Jesus and that he murdered\\nothers because Jesus and the Bible told him to do so, we must call him a\\nChristian.\\n\\n\"Obviously those extreme sorts of beliefs should be questioned. But since\\n nobody has ever proved that God does not exist, it must be very unlikely\\n that more basic religious beliefs, shared by all faiths, are nonsense.\"\\n\\nThat does not hold, because as was pointed out at the start of this dialogue,\\npositive assertions concerning the existence of entities are inherently much\\nharder to disprove than negative ones. Nobody has ever proved that unicorns\\ndon\\'t exist, but that doesn\\'t make it unlikely that they are myths.\\n\\nIt is therefore much more valid to hold a negative assertion by default than\\nit is to hold a positive assertion by default. Of course, \"weak\" atheists\\nwould argue that asserting nothing is better still.\\n\\n\"Well, if atheism\\'s so great, why are there so many theists?\"\\n\\nUnfortunately, the popularity of a belief has little to do with how \"correct\"\\nit is, or whether it \"works\"; consider how many people believe in astrology,\\ngraphology, and other pseudo-sciences.\\n\\nMany atheists feel that it is simply a human weakness to want to believe in\\ngods. Certainly in many primitive human societies, religion allows the\\npeople to deal with phenomena that they do not adequately understand.\\n\\nOf course, there\\'s more to religion than that. In the industrialized world,\\nwe find people believing in religious explanations of phenomena even when\\nthere are perfectly adequate natural explanations. Religion may have started\\nas a means of attempting to explain the world, but nowadays it serves other\\npurposes as well.\\n\\n\"But so many cultures have developed religions. Surely that must say\\n something?\"\\n\\nNot really. Most religions are only superficially similar; for example, it\\'s\\nworth remembering that religions such as Buddhism and Taoism lack any sort of\\nconcept of God in the Christian sense.\\n\\nOf course, most religions are quick to denounce competing religions, so it\\'s\\nrather odd to use one religion to try and justify another.\\n\\n\"What about all the famous scientists and philosophers who have concluded\\n that God exists?\"\\n\\nFor every scientist or philosopher who believes in a god, there is one who\\ndoes not. Besides, as has already been pointed out, the truth of a belief is\\nnot determined by how many people believe it. Also, it is important to\\nrealize that atheists do not view famous scientists or philosophers in the\\nsame way that theists view their religious leaders.\\n\\nA famous scientist is only human; she may be an expert in some fields, but\\nwhen she talks about other matters her words carry no special weight. Many\\nrespected scientists have made themselves look foolish by speaking on\\nsubjects which lie outside their fields of expertise.\\n\\n\"So are you really saying that widespread belief in religion indicates\\n nothing?\"\\n\\nNot entirely. It certainly indicates that the religion in question has\\nproperties which have helped it so spread so far.\\n\\nThe theory of memetics talks of \"memes\" -- sets of ideas which can propagate\\nthemselves between human minds, by analogy with genes. Some atheists view\\nreligions as sets of particularly successful parasitic memes, which spread by\\nencouraging their hosts to convert others. Some memes avoid destruction by\\ndiscouraging believers from questioning doctrine, or by using peer pressure\\nto keep one-time believers from admitting that they were mistaken. Some\\nreligious memes even encourage their hosts to destroy hosts controlled by\\nother memes.\\n\\nOf course, in the memetic view there is no particular virtue associated with\\nsuccessful propagation of a meme. Religion is not a good thing because of\\nthe number of people who believe it, any more than a disease is a good thing\\nbecause of the number of people who have caught it.\\n\\n\"Even if religion is not entirely true, at least it puts across important\\n messages. What are the fundamental messages of atheism?\"\\n\\nThere are many important ideas atheists promote. The following are just a\\nfew of them; don\\'t be surprised to see ideas which are also present in some\\nreligions.\\n\\n There is more to moral behaviour than mindlessly following rules.\\n\\n Be especially sceptical of positive claims.\\n\\n If you want your life to have some sort of meaning, it\\'s up to you to\\n find it.\\n\\n Search for what is true, even if it makes you uncomfortable.\\n\\n Make the most of your life, as it\\'s probably the only one you\\'ll have.\\n\\n It\\'s no good relying on some external power to change you; you must change\\n yourself.\\n\\n Just because something\\'s popular doesn\\'t mean it\\'s good.\\n\\n If you must assume something, assume something it\\'s easy to test.\\n\\n Don\\'t believe things just because you want them to be true.\\n\\nand finally (and most importantly):\\n\\n All beliefs should be open to question.\\n\\nThanks for taking the time to read this article.\\n\\n\\nmathew\\n\\n-----BEGIN PGP SIGNATURE-----\\nVersion: 2.2\\n\\niQCVAgUBK8AjRXzXN+VrOblFAQFSbwP+MHePY4g7ge8Mo5wpsivX+kHYYxMErFAO\\n7ltVtMVTu66Nz6sBbPw9QkbjArbY/S2sZ9NF5htdii0R6SsEyPl0R6/9bV9okE/q\\nnihqnzXE8pGvLt7tlez4EoeHZjXLEFrdEyPVayT54yQqGb4HARbOEHDcrTe2atmP\\nq0Z4hSSPpAU=\\n=q2V5\\n-----END PGP SIGNATURE-----\\n\\nFor information about PGP 2.2, send mail to pgpinfo@mantis.co.uk.\\nÿ\\n',\n", + " \"From: markus@octavia.anu.edu.au (Markus Buchhorn)\\nSubject: HDF readers/viewers\\nOrganization: Australian National University, Canberra\\nLines: 33\\nDistribution: world\\nNNTP-Posting-Host: 150.203.5.35\\nOriginator: markus@octavia\\n\\n\\n\\nG'day all,\\n\\nCan anybody point me at a utility which will read/convert/crop/whatnot/\\ndisplay HDF image files ? I've had a look at the HDF stuff under NCSA \\nand it must take an award for odd directory structure, strange storage\\napproaches and minimalist documentation :-)\\n\\nPart of the problem is that I want to look at large (5MB+) HDF files and\\ncrop out a section. Ideally I would like a hdftoppm type of utility, from\\nwhich I can then use the PBMplus stuff quite merrily. I can convert the cropped\\npart into another format for viewing/animation.\\n\\nOtherwise, can someone please explain how to set up the NCSA Visualisation S/W\\nfor HDF (3.2.r5 or 3.3beta) and do the above cropping/etc. This is for\\nSuns with SunOS 4.1.2.\\n\\nAny help GREATLY appreciated. Ta muchly !\\n\\nCheers,\\n\\tMarkus\\n\\n-- \\nMarkus Buchhorn, Parallel Computing Research Facility\\nemail = markus@octavia.anu.edu.au\\nAustralian National University, Canberra, 0200 , Australia.\\n[International = +61 6, Australia = 06] [Phone = 2492930, Fax = 2490747]\\n-- \\nMarkus Buchhorn, Parallel Computing Research Facility\\nemail = markus@octavia.anu.edu.au\\nAustralian National University, Canberra, 0200 , Australia.\\n[International = +61 6, Australia = 06] [Phone = 2492930, Fax = 2490747]\\n\",\n", + " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: New Member\\nOrganization: Cookamunga Tourist Bureau\\nLines: 20\\n\\nIn article ,\\ndfuller@portal.hq.videocart.com (Dave Fuller) wrote:\\n> He is right. Just because an event was explained by a human to have been\\n> done \"in the name of religion\", does not mean that it actually followed\\n> the religion. He will always point to the \"ideal\" and say that it wasn\\'t\\n> followed so it can\\'t be the reason for the event. There really is no way\\n> to argue with him, so why bother. Sure, you may get upset because his \\n> answer is blind and not supported factually - but he will win every time\\n> with his little argument. I don\\'t think there will be any postings from\\n> me in direct response to one of his.\\n\\nHey! Glad to have some serious and constructive contributors in this\\nnewsgroup. I agree 100% on the statement above, you might argue with\\nBobby for eons, and he still does not get it, so the best thing is\\nto spare your mental resources to discuss more interesting issues.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", + " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 76\\n\\n\\nChris Faehl writes:\\n\\n> >Many atheists do not mock the concept of a god, they are shocked that\\n> >so many theists have fallen to such a low level that they actually\\n> >believe in a god. You accuse all atheists of being part of a conspiracy,\\n> >again without evidence.\\n>\\n>> Rule *2: Condescending to the population at large (i.e., theists) will >not\\n>> win many people to your faith anytime soon. It only ruins your credibility.\\n\\n>Fallacy #1: Atheism is a faith. Lo! I hear the FAQ beckoning once again...\\n>[wonderful Rule #3 deleted - you\\'re correct, you didn\\'t say anything >about\\n>a conspiracy]\\n\\nCorrection: _hard_ atheism is a faith.\\n\\n>> Rule #4: Don\\'t mix apples with oranges. How can you say that the\\n>> extermination by the Mongols was worse than Stalin? Khan conquered people\\n>> unsympathetic to his cause. That was atrocious. But Stalin killed millions of\\n>> his own people who loved and worshipped _him_ and his atheist state!! How can\\n>> anyone be worse than that?\\n\\n>I will not explain this to you again: Stalin did nothing in the name of\\n>atheism. Whethe he was or was not an atheist is irrelevant.\\n\\nGet a grip, man. The Stalin example was brought up not as an\\nindictment of atheism, but merely as another example of how people will\\nkill others under any name that\\'s fit for the occasion.\\n\\n>> Rule #6: If you rely on evidence, state it. We\\'re waiting.\\n\\n>As opposed to relying on a bunch of black ink on some crumbling old paper...\\n>Atheism has to prove nothing to you or anyone else. It is the burden of\\n>dogmatic religious bullshit to provide their \\'evidence\\'. Which \\'we\\'\\n>might you be referring to, and how long are you going to wait?\\n\\nSo hard atheism has nothing to prove? Then how does it justify that\\nGod does not exist? I know, there\\'s the FAQ, etc. But guess what -- if\\nthose justifications were so compelling why aren\\'t people flocking to\\n_hard_ atheism? They\\'re not, and they won\\'t. I for one will discourage\\npeople from hard atheism by pointing out those very sources as reliable\\nstatements on hard atheism.\\n\\nSecond, what makes you think I\\'m defending any given religion? I\\'m merely\\nrecognizing hard atheism for what it is, a faith.\\n\\nAnd yes, by \"we\" I am referring to every reader of the post. Where is the\\nevidence that the poster stated that he relied upon?\\n>\\n>> Oh yes, though I\\'m not a theist, I can say safely that *by definition* many\\n>> theists are not arrogant, since they boast about something _outside_\\n>> themselves, namely, a god or gods. So in principle it\\'s hard to see how\\n>> theists are necessarily arrogant.\\n\\n>Because they say, \"Such-and-such is absolutely unalterably True, because\\n ^^^^\\n>my dogma says it is True.\" I am not prepared to issue blanket statements\\n>indicting all theists of arrogance as you are wont to do with atheists.\\n\\nBzzt! By virtue of your innocent little pronoun, \"they\", you\\'ve just issued\\na blanket statement. At least I will apologize by qualifying my original\\nstatement with \"hard atheist\" in place of atheist. Would you call John the\\nBaptist arrogant, who boasted of one greater than he? That\\'s what many\\nChristians do today. How is that _in itself_ arrogant?\\n>\\n>> I\\'m not worthy!\\n>Only seriously misinformed.\\nWith your sophisticated put-down of \"they\", the theists, _your_ serious\\nmisinformation shines through.\\n\\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", + " \"From: alan@saturn.cs.swin.OZ.AU (Alan Christiansen)\\nSubject: Re: Sphere from 4 points?\\nOrganization: Swinburne University of Technology\\nLines: 71\\nNNTP-Posting-Host: saturn.cs.swin.oz.au\\n\\nspworley@netcom.com (Steve Worley) writes:\\n\\n>bolson@carson.u.washington.edu (Edward Bolson) writes:\\n\\n>>Boy, this will be embarassing if it is trivial or an FAQ:\\n\\n>>Given 4 points (non coplanar), how does one find the sphere, that is,\\n>>center and radius, exactly fitting those points? I know how to do it\\n>>for a circle (from 3 points), but do not immediately see a \\n>>straightforward way to do it in 3-D. I have checked some\\n>>geometry books, Graphics Gems, and Farin, but am still at a loss?\\n>>Please have mercy on me and provide the solution? \\n\\n>It's not a bad question: I don't have any refs that list this algorithm\\n>either. But thinking about it a bit, it shouldn't be too hard.\\n\\n>1) Take three of the points and find the plane they define as well as\\n>the circle that they lie on (you say you have this algorithm already)\\n\\n>2) Find the center of this circle. The line passing through this center\\n>perpendicular to the plane of the three points passes through the center of\\n>the sphere.\\n\\n>3) Repeat with the unused point and two of the original points. This\\n>gives you two different lines that both pass through the sphere's\\n>origin. Their interection is the center of the sphere.\\n\\n>4) the radius is easy to compute, it's just the distance from the center to\\n>any of the original points.\\n\\n>I'll leave the math to you, but this is a workable algorithm. :-)\\n\\nGood I had a bad feeling about this problem because of a special case\\nwith no solution that worried me.\\n\\nFour coplanar points in the shape of a square have no unique sphere \\nthat they are on the surface of.\\nSimilarly 4 colinear point have no finite sized sphere that they are on the\\nsurface of.\\n\\nThese algorithms being geometrical designed rather than algebraically design\\nmeet these problems neatly.\\n\\nWhen determining which plane the 3 points are on if they are colinear\\nthe algorithm should afil or return infinite R.\\nWhen intersecting the two lines there are 2 possibilities\\nthey are the same line (the 4 points were on a planar circle)\\nthey are different lines but parallel. There is a sphere of in radius.\\n\\nThis last case can be achieved with 3 colinier points and any 4th point\\nby taking the 4th point and pairs of the first 3 parallel lines will be produced\\n\\nit can also be achieved by\\n\\nIf all 4 points are coplanar but are not on one circle. \\n\\nIt seems to me that the algorithm only fails when the 4 points are coplanar.\\nThe algorithm always fails when the points are coplanar.\\n(4 points being colinear => coplanar)\\n\\nTesting if the 4th point is coplanar when the plane of the first 3 points\\nhas been found is trivial.\\n\\n\\n>An alternate method would be to take pairs of points: the plane formed\\n>by the perpendicular bisector of each line segment pair also contains the\\n>center of the sphere. Three pairs will form three planes, intersecting\\n>at a point. This might be easier to implement.\\n\\n>-Steve\\n>spworley@netcom.com\\n\",\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Eco-Freaks forcing Space Mining.\\nArticle-I.D.: aurora.1993Apr21.212202.1\\nOrganization: University of Alaska Fairbanks\\nLines: 24\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nHere is a way to get the commericial companies into space and mineral\\nexploration.\\n\\nBasically get the eci-freaks to make it so hard to get the minerals on earth..\\nYou think this is crazy. Well in a way it is, but in a way it is reality.\\n\\nThere is a billin the congress to do just that.. Basically to make it so\\nexpensive to mine minerals in the US, unless you can by off the inspectors or\\ntax collectors.. ascially what I understand from talking to a few miner friends \\nof mine, that they (the congress) propose to have a tax on the gross income of\\nthe mine, versus the adjusted income, also the state governments have there\\nnormal taxes. So by the time you get done, paying for materials, workers, and\\nother expenses you can owe more than what you made.\\nBAsically if you make a 1000.00 and spend 500. ofor expenses, you can owe\\n600.00 in federal taxes.. Bascially it is driving the miners off the land.. And\\nthe only peopel who benefit are the eco-freaks.. \\n\\nBasically to get back to my beginning statement, is space is the way to go\\ncause it might just get to expensive to mine on earth because of either the\\neco-freaks or the protectionist.. \\nSuch fun we have in these interesting times..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", + " 'From: mancus@sweetpea.jsc.nasa.gov (Keith Mancus)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: MDSSC\\nLines: 32\\n\\nIn article <1r3nuvINNjep@lynx.unm.edu>, cook@varmit.mdc.com (Layne Cook) writes:\\n> All of this talk about a COMMERCIAL space race (i.e. $1G to the first 1-year \\n> moon base) is intriguing. Similar prizes have influenced aerospace \\n> development before. The $25k Orteig prize helped Lindbergh sell his Spirit of \\n> Saint Louis venture to his financial backers.\\n> But I strongly suspect that his Saint Louis backers had the foresight to \\n> realize that much more was at stake than $25,000.\\n> Could it work with the moon? Who are the far-sighted financial backers of \\n> today?\\n\\n The commercial uses of a transportation system between already-settled-\\nand-civilized areas are obvious. Spaceflight is NOT in this position.\\nThe correct analogy is not with aviation of the \\'30\\'s, but the long\\ntransocean voyages of the Age of Discovery. It didn\\'t require gov\\'t to\\nfund these as long as something was known about the potential for profit\\nat the destination. In practice, some were gov\\'t funded, some were private.\\nBut there was no way that any wise investor would spend a large amount\\nof money on a very risky investment with no idea of the possible payoff.\\n I am sure that a thriving spaceflight industry will eventually develop,\\nand large numbers of people will live and work off-Earth. But if you ask\\nme for specific justifications other than the increased resource base, I\\ncan\\'t give them. We just don\\'t know enough. The launch rate demanded by\\nexisting space industries is just too low to bring costs down much, and\\nwe are very much in the dark about what the revolutionary new space industries\\nwill be, when they will practical, how much will have to be invested to\\nstart them, etc.\\n\\n-- \\n Keith Mancus |\\n N5WVR |\\n \"Black powder and alcohol, when your states and cities fall, |\\n when your back\\'s against the wall....\" -Leslie Fish |\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Lunar Colony Race! By 2005 or 2010?\\nOrganization: U of Toronto Zoology\\nLines: 18\\n\\nIn article <1993Apr21.140804.15028@draper.com> mrf4276@egbsun12.NoSubdomain.NoDomain (Matthew R. Feulner) writes:\\n>|> Need to find atleast $1billion for prize money.\\n>\\n>My first thought is Ross Perot. After further consideration, I think he\\'d\\n>be more likely to try to win it...but come in a disappointing third.\\n>Try Bill Gates. Try Sam Walton\\'s kids.\\n\\nWhen the Lunar Society\\'s $500M estimate of the cost of a lunar colony was\\nmentioned at Making Orbit, somebody asked Jerry Pournelle \"have you talked\\nto Bill Gates?\". The answer: \"Yes. He says that if he were going to\\nsink that much money into it, he\\'d want to run it -- and he doesn\\'t have\\nthe time.\"\\n\\n(Somebody then asked him about Perot. Answer: \"Having Ross Perot on your\\nboard may be a bigger problem than not having the money.\")\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " \"From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: FJ1100/1200 Owners: Tankbag Suggestions Wanted\\nOrganization: University of East Anglia\\nLines: 14\\n\\nmartenm@chess.ncsu.edu (Mark Marten) writes:\\n\\n\\n\\n>I am looking for a new tank bag now, and I wondered if you, as follow \\n>FJ1100/1200 owners, could make some suggestions as to what has, and has \\n>not worked for you. If there is already a file on this I apologize for \\n>asking and will gladly accept any flames that are blown my way!\\n\\nI've got a Belstaff tankbag on my FJ1100, and it ain't too good. It's\\ndifficult to fix it securely cos of the the tank/fairing/sidepanel layout,\\nand also with the bars on full lock the bag touches the handlebar switches,\\nso you get the horn on full left lock and the starter motor on full right!!\\nIf I was buying another I think I'd go for a magnetic one.\\n\",\n", + " \"From: smith@minerva.harvard.edu (Steven Smith)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nIn-Reply-To: dgannon@techbook.techbook.com's message of 21 Apr 1993 07:55:09 -0700\\nOrganization: Applied Mathematics, Harvard University\\nLines: 15\\n\\ndgannon@techbook.techbook.com (Dan Gannon) writes:\\n> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>\\n> by Theodore J. O'Keefe\\n>\\n> [Holocaust revisionism]\\n> \\n> Theodore J. O'Keefe is an editor with the Institute for Historical\\n> Review. Educated at Harvard University . . .\\n\\nAccording to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\ngraduate. You may decide for yourselves if he was indeed educated\\nanywhere.\\n\\nSteven Smith\\n\",\n", + " 'From: MAILRP%ESA.BITNET@vm.gmd.de\\nSubject: message from Space Digest\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 62\\n\\n\\n\\n\\n\\nPress Release No.19-93\\nParis, 22 April 1993\\n\\nUsers of ESA\\'s Olympus satellite report on the outcome of\\ntheir experiments\\n\\n\"Today Europe\\'s space telecommunications sector would not\\nbe blossoming as it now does, had OLYMPUS not provided\\na testbed for the technologies and services of the 1990s\". This\\nsummarises the general conclusions of 135 speakers and 300\\nparticipants at the Conference on Olympus Utilisation held in\\nSeville on 20-22-April 1993. The conference was organised by\\nthe European Space Agency (ESA) and the Spanish Centre for\\nthe Development of Industrial Technology (CDTI).\\n\\nOLYMPUS has been particularly useful :\\n- in bringing satellite telecommunications to thousands of\\n new users, thanks to satellite terminals with very small\\n antennas (VSATs). OLYMPUS experiments have tested\\n data transmission, videoconferencing, business television,\\n distance teaching and rural telephony, to give but a few\\n examples.\\n\\n- in opening the door to new telecommunications services\\n which could not be accommodated on the crowded lower-\\n frequency bands; OLYMPUS was the first satellite over\\n Europe to offer capacity in the 20/30 GHz band.\\n\\n- in establishing two-way data relay links OLYMPUS\\n received for the first time in Europe, over several months,\\n high-volume data from a low-Earth orbiting spacecraft and\\n then distributed it to various centres in Europe.\\n\\nWhen OLYMPUS was launched on 12 July 1989 it was the\\nworld\\'s largest telecommunications satellite; and no other\\nsatellite has yet equalled its versatility in combining four\\ndifferent payloads in a wide variety of frequency bands.\\n\\nOLYMPUS users range from individual experimenters to some\\nof the world\\'s largest businesses. Access to the satellite is\\ngiven in order to test new telecommunications techniques or\\nservices; over the past four years some 200 companies and\\norganisations made use of this opportunity, as well as over\\n100 members of the EUROSTEP distance-learning\\norganisation.\\n\\n\\n\\nAs the new technologies and services tested by these\\nOLYMPUS users enter the commercial market, they then\\nmake use of operational satellites such as those of\\nEUTELSAT.\\n\\nOLYMPUS utilisation will continue through 1993 and 1994,\\nwhen the spacecraft will run out of fuel as it approaches the\\nend of its design life.\\n\\n \\n',\n", + " \"From: sas58295@uxa.cso.uiuc.edu (Lord Soth )\\nSubject: MPEG for MS-DOS\\nOrganization: University of Illinois at Urbana\\nLines: 13\\n\\nDoes anyone know where I can FTP MPEG for DOS from? Thanks for any\\nhelp in advance. Email is preferred but posting is fine.\\n\\n\\t\\t\\t\\tScott\\n\\n\\n---------------------------------------------------------------------------\\n| Lord Soth, Knight |||| email to --> LordSoth@uiuc ||||||||\\n| of the Black Rose |||| NeXT to ---> sas58295@sumter.cso.uiuc.edu ||||||||\\n| @}--'-,--}-- |||||||||||||||||||||||||||||||||||||||||||||||||||||||\\n|-------------------------------------------------------------------------|\\n| I have no clue what I want to say in here so I won't say anything. |\\n---------------------------------------------------------------------------\\n\",\n", + " \"From: ezzie@lucs2.lancs.ac.uk (One of those daze...)\\nSubject: Borland turbo C libraries for S3 graphics card\\nOrganization: Lancaster University Computer Society\\nLines: 5\\n\\nI've recently got hold of a PC with an S3 card in it, and I'd like to do some\\nC programming with it, are there any libraries out there that will let me\\naccess the high resolution modes available via Borland Turbo C?\\n\\n\\tAndy\\n\",\n", + " \"From: renouar@amertume.ufr-info-p7.ibp.fr (Renouard Olivier)\\nSubject: Re: POV previewer\\nNntp-Posting-Host: amertume.ufr-info-p7.ibp.fr\\nOrganization: Universite PARIS 7 - UFR d'Informatique\\nLines: 10\\n\\nActually I am trying to write something like this but I encounter some\\nproblems, amongst them:\\n\\n- drawing a 3d wireframe view of a quadric/quartic requires that you have\\nthe explicit equation of the quadric/quartic (x, y, z functions of some\\nparameters). How to convert the implicit equation used by PoV to an\\nexplicit one? Is it mathematically always possible?\\n\\nI don't have enough math to find out by myself, has anybody heard about\\nuseful books on the subject?\\n\",\n", + " 'From: lucio@proxima.alt.za (Lucio de Re)\\nSubject: A fundamental contradiction (was: A visit from JWs)\\nReply-To: lucio@proxima.Alt.ZA\\nOrganization: MegaByte Digital Telecommunications\\nLines: 35\\n\\njbrown@batman.bmd.trw.com writes:\\n\\n>\"Will\" is \"self-determination\". In other words, God created conscious\\n>beings who have the ability to choose between moral choices independently\\n>of God. All \"will\", therefore, is \"free will\".\\n\\nThe above is probably not the most representative paragraph, but I\\nthought I\\'d hop on, anyway...\\n\\nWhat strikes me as self-contradicting in the fable of Lucifer\\'s\\nfall - which, by the way, I seem to recall to be more speculation\\nthan based on biblical text, but my ex RCism may be showing - is\\nthat, as Benedikt pointed out, Lucifer had perfect nature, yet he\\nhad the free will to \"choose\" evil. But where did that choice come\\nfrom?\\n\\nWe know from Genesis that Eve was offered an opportunity to sin by a\\ntempter which many assume was Satan, but how did Lucifer discover,\\ninvent, create, call the action what you will, something that God\\nhad not given origin to?\\n\\nAlso, where in the Bible is there mention of Lucifer\\'s free will?\\nWe make a big fuss about mankind having free will, but it strikes me\\nas being an after-the-fact rationalisation, and in fact, like\\nsalvation, not one that all Christians believe in identically.\\n\\nAt least in my mind, salvation and free will are very tightly\\ncoupled, but then my theology was Roman Catholic...\\n\\nStill, how do theologian explain Lucifer\\'s fall? If Lucifer had\\nperfect nature (did man?) how could he fall? How could he execute an\\nact that (a) contradicted his nature and (b) in effect cause evil to\\nexist for the first time?\\n-- \\nLucio de Re (lucio@proxima.Alt.ZA) - tab stops at four.\\n',\n", + " 'From: prange@nickel.ucs.indiana.edu (Henry Prange)\\nSubject: Re: BMW MOA members read this!\\nNntp-Posting-Host: nickel.ucs.indiana.edu\\nOrganization: Indiana University\\nLines: 21\\n\\nI first heard it about academic politics but the same thought seems to\\napply to the BMWMOA\\n\\n\"The politics is so dirty because the stakes are so small.\"\\n\\nWho cares? I get my dues-worth from the ads and occasional technical\\narticles in the \"News\". I skip the generally drab articles about someone\\'s\\ntrek across Iowa. If some folks get thrilled by the power of the BMWMOA,\\nthey deserve whatever thrills their sad lives provide.\\n\\nBTW, I voted for new blood just to keep things stirred up.\\n\\nHenry Prange\\nPhysiology/IU Sch. Med., Blgtn., 47405\\nDoD #0821; BMWMOA #11522; GSI #215\\nride = \\'92 R100GS; \\'91 RX-7 conv = cage/2; \\'91 Explorer = cage*2\\nThe four tenets of all major religions:\\n1. I am right.\\n2. You are wrong.\\n3. Hence, you deserve to be punished.\\n4. By me.\\n',\n", + " \"From: suopanki@stekt6.oulu.fi (Heikki T. Suopanki)\\nSubject: Re: A visit from the Jehovah's Witnesses\\nIn-Reply-To: jbrown@batman.bmd.trw.com's message of 5 Apr 93 11:24:30 MST\\nLines: 17\\nReply-To: suopanki@stekt.oulu.fi\\nOrganization: Unixverstas Olutensin, Finlandia\\n\\t<1993Apr3.183519.14721@proxima.alt.za>\\n\\t<1993Apr5.112430.825@batman.bmd.trw.com>\\n\\n>>>>> On 5 Apr 93 11:24:30 MST, jbrown@batman.bmd.trw.com said:\\n\\n:> God is eternal. [A = B]\\n:> Jesus is God. [C = A]\\n:> Therefore, Jesus is eternal. [C = B]\\n\\n:> This works both logically and mathematically. God is of the set of\\n:> things which are eternal. Jesus is a subset of God. Therefore\\n:> Jesus belongs to the set of things which are eternal.\\n\\nEverything isn't always so logical....\\n\\nMercedes is a car.\\nThat girl is Mercedes.\\nTherefore, that girl is a car?\\n\\n-Heikki\\n\",\n", + " \"From: stjohn@math1.kaist.ac.kr (Ryou Seong Joon)\\nSubject: WANTED: Multi-page GIF!!\\nOrganization: Korea Advanced Institute of Science and Technology\\nX-Newsreader: Tin 1.1 PL3\\nLines: 12\\n\\nHi!... \\n\\nI am searching for packages that could handle Multi-page GIF\\nfiles... \\n\\nAre there any on some ftp servers?\\n\\nI'll appreciate one which works on PC (either on DOS or Windows 3.0/3.1).\\nBut any package works on Unix will be OK..\\n\\nThanks in advance...\\n\",\n", + " 'From: bean@ra.cgd.ucar.edu (Gregory Bean)\\nSubject: Help! Which bikes are short?\\nOrganization: Climate and Global Dynamics Division/NCAR, Boulder, CO\\nLines: 18\\n\\nHelp! I\\'ve got a friend shopping for her first motorcycle. This is great!\\nUnfortunately, she needs at most a 28\" seat. This is not great. So far,\\nthe only thing we\\'ve found was an old and unhappy-looking KZ440.\\n\\nSo, it\\'s time to tap the collective memory of all the denizens out there.\\nAnybody know of models (old models and used bikes are not a problem)\\nwith a 28\" or lower seat? And, since she has to make this difficult ( 8-) ),\\nshe would prefer not to end up with a cruiser. So there\\'s bonus points\\nfor listing tiny standards.\\n\\nI seem to remember a thread with a point similar to this passing through\\nseveral months ago. Did anybody keep that list?\\n\\nThanks!\\n\\n--\\nGregory Bean DoD #580\\nbean@ncar.ucar.edu \"In fact, everything\\'s got that big reverb sound...\"\\n',\n", + " 'From: pinky@tamu.edu (The Man behind The Curtain)\\nSubject: Views on isomorphic perspectives?\\nOrganization: Texas A&M University\\nLines: 87\\nNNTP-Posting-Host: tamsun.tamu.edu\\nKeywords: isomorphic perspectives\\n\\n \\nI\\'m working upon a game using an isometric perspective, similar to\\nthat used in Populous. Basically, you look into a room that looks\\nsimilar to the following:\\n\\n xxxx\\n xxxxx xxxx\\n xxxx x xxxx\\n xxxx x xxxx\\n xxxx 2 xxxx 1 xxxx\\n x xxxx xxxx x\\n x xxxx xxxx x\\n x xxxx o xxxx x\\n xxxx 3 /|\\\\ xxxx\\n xxxx /~\\\\ xxxx\\n xxxx xxxx\\n xxxx xxxx\\n xxxx\\n\\nThe good thing about this perspective is that you can look and move\\naround in three dimensions and still maintain your peripheral vision. [*]\\n\\nSince your viewpoint is always the same, the routines can be hard-coded\\nfor a particular vantage. In my case, wall two\\'s rising edge has a slope\\nof 1/4. (I\\'m also using Mode X, 320x240).\\n\\nI\\'ve run into two problems; I\\'m sure that other readers have tried this\\nbefore, and have perhaps formulated their own opinions:\\n\\n1) The routines for drawing walls 1 & 2 were trivial, but when I ran a\\npacked->planar image through them, I was dismayed by the \"jaggies.\" I\\'m\\nnow considered some anti-aliasing routines (speed is not really necessary).\\nIs it worth the effort to have the artist draw the wall already skewed,\\nthus being assured of nice image, or is this too much of a burden?\\n\\n2) Wall 3 presents a problem; the algorithm I used tends to overly distort\\nthe original. I tried to decide on paper what pixels go where, and failed.\\nHas anyone come up with method for mapping a planar to crosswise sheared\\nshape?\\n\\nCurrently I take:\\n\\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16\\n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32\\n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48\\n 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64\\n\\nand produce:\\n \\n 1 2 3 4\\n33 34 35 36 17 18 19 20 5 6 7 8\\n49 50 51 52 37 38 39 40 21 22 23 24 9 10 11 12\\n 53 54 55 56 41 42 43 44 25 26 27 28 13 14 15 16\\n 57 58 59 60 45 46 47 48 29 30 31 32\\n 61 62 63 64\\n\\nLine 1 follows the slope. Line 2 is directly under line 1.\\nLine 3 moves up a line and left 4 pixels. Line 4 is under line 3.\\nThis fills the shape exactly without any unfilled pixels. But\\nit causes distortions. Has anyone come up with a better way?\\nPerhaps it is necessary to simply draw the original bitmap\\nalready skewed?\\n\\nAre there any other particularly sticky problems with this perspective?\\nI was planning on having hidden plane removal by using z-buffering.\\nLocations are stored in (x,y,z) form.\\n\\n[*] For those of you who noticed, the top lines of wall 2 (and wall 1)\\n*are* parallel with its bottom lines. This is why there appears to\\nbe an optical illusion (ie. it appears to be either the inside or outside\\nof a cube, depending on your mood). There are no vanishing points.\\nThis simplifies the drawing code for objects (which don\\'t have to\\nchange size as they move about in the room). I\\'ve decided that this\\napproximation is alright, since small displacements at a large enough\\ndistance cause very little change in the apparent size of an object in\\na real perspective drawing.\\n\\nHopefully the \"context\" of the picture (ie. chairs on the floor, torches\\nhanging on the walls) will dispell any visual ambiguity.\\n\\nThanks in advance for any help.\\n\\n-- \\nTill next time, \\\\o/ \\\\o/\\n V \\\\o/ V email:pinky@tamu.edu\\n<> Sam Inala <> V\\n\\n',\n", + " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 32\\nDistribution: world\\nNNTP-Posting-Host: syndicoot.engin.umich.edu\\n\\nIn article <1993Apr5.084042.822@batman.bmd.trw.com> jbrown@batman.bmd.trw.com writes:\\n>In article <1993Apr3.095220.24632@leland.Stanford.EDU>, galahad@leland.Stanford.EDU (Scott Compton) writes:\\n[deletions]\\n>> Now, back to your post. You have done a fine job at using \\n>> your seventh grade \\'life science\\' course to explain why\\n>> bad diseases are caused by Satan and good things are a \\n>> result of God. But I want to let you in on a little secret.\\n>> \"We can create an amino acid sequence in lab! -- And guess\\n>> what, the sequence curls into a helix! Wow! That\\'s right,\\n>> it can happen without a supernatural force.\" \\n>\\n>Wow! All it takes is a few advanced science degrees and millions\\n>of dollars of state of the art equipment. And I thought it took\\n>*intelligence* to create the building blocks of life. Foolish me!\\n\\n People with advanced science degrees use state of the art equipment\\nand spend millions of dollars to simulate tornadoes. But tornadoes\\ndo not require intelligence to exist.\\n Not only that, the equipment needed is not really \\'state of the art.\\'\\nTo study the *products*, yes, but not to generate them.\\n\\n>If you want to be sure that I read your post and to provide a\\n>response, send a copy to Jim_Brown@oz.bmd.trw.com. I can\\'t read\\n>a.a. every day, and some posts slip by. Thanks.\\n \\n Oh, I will. :->\\n\\nSincerely,\\n\\nRay Ingles || The above opinions are probably\\n || not those of the University of\\ningles@engin.umich.edu || Michigan. Yet.\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: U of Toronto Zoology\\nLines: 14\\n\\nIn article <1ralibINNc0f@cbl.umd.edu> mike@starburst.umd.edu (Michael F. Santangelo) writes:\\n>... The only thing\\n>that scares me is the part about simply strapping 3 SSME\\'s and\\n>a nosecone on it and \"just launching it.\" I have this vision\\n>of something going terribly wrong with the launch resulting in the\\n>complete loss of the new modular space station (not just a peice of\\n>it as would be the case with staged in-orbit construction).\\n\\nIt doesn\\'t make a whole lot of difference, actually, since they weren\\'t\\nbuilding spares of the station hardware anyway. (Dumb.) At least this\\nis only one launch to fail.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " \"From: rick@trystro.uucp (Richard Nickle)\\nSubject: Re: How to read sci.space without netnews\\nOrganization: The Trystro System (617) 625-7155 v.32/v.42bis\\nLines: 27\\n\\nIn article mwm+@cs.cmu.edu (Mark Maimone) writes:\\n>In article <734975852.F00001@permanet.org> Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado) writes:\\n>>If anyone knows anyone else who would like to get sci.space,\\n>>but doesn't have an Internet feed (or has a cryptic Internet\\n>>feed), I would be willing to feed it to them.\\t\\n>\\n>\\tKudos to Mark for his generous offer, but there already exists a\\n>large (email-based) forwarding system for sci.space posts: Space Digest.\\n>It mirrors sci.space exactly, and provides simple two-way communication.\\n>\\nI think Mark was talking about making it available to people who didn't\\nhave email in the first place.\\n\\nIf anybody in the Boston area wants a sci.space feed by honest-to-gosh UUCP\\n(no weird offline malreaders), let me know. I'll also hand out logins to\\nanyone who wants one, especially the Boston Chapter of NSS (which I keep forgetting\\nto re-attend).\\n\\n>Questions, comments to space-request@isu.isunet.edu\\n>-- \\n>Mark Maimone\\t\\t\\t\\tphone: +1 (412) 268 - 7698\\n>Carnegie Mellon Computer Science\\temail: mwm@cmu.edu\\n\\n\\n-- \\nrichard nickle\\t\\trick@trystro.uucp\\t617-625-7155 v.32/v.42bis\\n\\t\\t\\tthink!trystro!rick\\tsomerville massachusetts\\n\",\n", + " 'From: car377@cbnewsj.cb.att.com (charles.a.rogers)\\nSubject: Re: dogs\\nOrganization: AT&T\\nSummary: abnormal canine psychology\\nLines: 21\\n\\nIn article , mrc@Ikkoku-Kan.Panda.COM (Mark Crispin) writes:\\n> \\n> With a hostile dog, or one which you repeatedly encounter, stronger measures\\n> may be necessary. This is the face off. First -- and there is very important\\n> -- make sure you NEVER face off a dog on his territory. Face him off on the\\n> road, not on his driveway. If necessary, have a large stick, rolled up\\n> newspaper, etc. (something the beast will understand is something that will\\n> hurt him). Stand your ground, then slowly advance. Your mental attitude is\\n> that you are VERY ANGRY and are going to dispense TERRIBLE PUNISHMENT. The\\n> larger the dog, the greater your anger.\\n\\nThis tactic depends for its effectiveness on the dog\\'s conformance to\\na \"psychological norm\" that may not actually apply to a particular dog.\\nI\\'ve tried it with some success before, but it won\\'t work on a Charlie Manson\\ndog or one that\\'s really, *really* stupid. A large Irish Setter taught me\\nthis in *my* yard (apparently HIS territory) one day. I\\'m sure he was playing \\na game with me. The game was probably \"Kill the VERY ANGRY Neighbor\" Before \\nHe Can Dispense the TERRIBLE PUNISHMENT.\\n\\nChuck Rogers\\ncar377@torreys.att.com\\n',\n", + " 'From: horen@netcom.com (Jonathan B. Horen)\\nSubject: Investment in Yehuda and Shomron\\nLines: 40\\n\\nIn today\\'s Israeline posting, at the end (an afterthought?), I read:\\n\\n> More Money Allocated to Building Infrastructure in Territories to\\n> Create Jobs for Palestinians\\n> \\n> KOL YISRAEL reports that public works geared at building\\n> infrastructure costing 140 million New Israeli Shekels (about 50\\n> million dollars) will begin Sunday in the Territories. This was\\n> announced last night by Prime Minister Yitzhak Rabin and Finance\\n> Minister Avraham Shohat in an effort to create more jobs for\\n> Palestinian residents of the Territories. This infusion of money\\n> will bring allocations given to developing infrastructure in the\\n> Territories this year to 450 million NIS, up from last year\\'s\\n> figure of 120 million NIS.\\n\\nWhile I applaud investing of money in Yehuda, Shomron, v\\'Chevel-Azza,\\nin order to create jobs for their residents, I find it deplorable that\\nthis has never been an active policy of any Israeli administration\\nsince 1967, *with regard to their Jewish residents*. Past governments\\nfound funds to subsidize cheap (read: affordable) housing and the\\nrequisite infrastructure, but where was the investment for creating\\nindustry (which would have generated income *and* jobs)? \\n\\nAfter 26 years, Yehuda and Shomron remain barren, bereft of even \\nmiddle-sized industries, and the Jewish settlements are sterile\\n\"bedroom communities\", havens for (in the main) Israelis (both\\nsecular *and* religious) who work in Tel-Aviv or Jerusalem but\\ncannot afford to live in either city or their surrounding suburbs.\\n\\nThere\\'s an old saying: \"bli giboosh, ayn kivoosh\" -- just living there\\nwasn\\'t enough, we had to *really* settle it. But instead, we \"settled\"\\nfor Potemkin villages, and now we are paying the price (and doing\\nfor others what we should have done for ourselves).\\n\\n\\n-- \\nYonatan B. Horen | Jews who do not base their advocacy of Jewish positions and\\n(408) 736-3923 | interests on Judaism are essentially racists... the only \\nhoren@netcom.com | morally defensible grounds for the preservation of Jews as a\\n | separate people rest on their religious identity as Jews.\\n',\n", + " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: Observation re: helmets\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 21\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n> \\n> The question for the day is re: passenger helmets, if you don\\'t know for \\n>certain who\\'s gonna ride with you (like say you meet them at a .... church \\n>meeting, yeah, that\\'s the ticket)... What are some guidelines? Should I just \\n>pick up another shoei in my size to have a backup helmet (XL), or should I \\n>maybe get an inexpensive one of a smaller size to accomodate my likely \\n>passenger? \\n\\nIf your primary concern is protecting the passenger in the event of a\\ncrash, have him or her fitted for a helmet that is their size. If your\\nprimary concern is complying with stupid helmet laws, carry a real big\\nspare (you can put a big or small head in a big helmet, but not in a\\nsmall one).\\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #010\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 170\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #010\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +-------------------------------------------------------+\\n | |\\n | On the way the driver says, \"In fact there aren\\'t any |\\n | Armenians left. \\'They burned them all, beat them all, |\\n | and stabbed them.\" |\\n |\\t\\t\\t\\t\\t\\t\\t|\\n +-------------------------------------------------------+\\n\\nDEPOSITION OF VANYA BAGRATOVICH BAZIAN\\n\\n Born 1940\\n Foreman\\n Baku Spetsmontazh Administration (UMSMR-1)\\n\\n Resident at Building 36/7, Apartment 9\\n Block 14\\n Sumgait [Azerbaijan]\\n\\n\\nDuring the first days of the events, the 27th and the 28th [of February], I\\nwas away on a business trip. On the 10th I had got my crew, done the paper-\\nwork, and left for the Zhdanov District. That\\'s in Azerbaijan, near the\\nNagorno Karabagh region.\\n\\nAfter the 14th, rumors started to the effect that in Karabagh, specifically\\nin Stepanakert, an uprising had taken place. They said \"uprising\" in\\nAzerbaijani, but I don\\'t think it was really an uprising, just a \\ndemonstration. After that the unrest started. Several Armenians living in the \\nZhdanov District were injured. How were they injured? They were beaten, even \\nwomen; it was said that they were at the demonstrations, but they live here, \\nand went from here to Karabagh to demonstrate. After that I felt uneasy. There\\nwere some conversations about Armenians among the local population: the\\nArmenians had done this, the Armenians had done that. Right there at the site.\\nI was attacked a couple of times by kids. Well true, the guys from my crew \\nwouldn\\'t let them come at me with cables and knives. After that I felt really \\nbad. I didn\\'t know where to go. I up and called home. And my children tell me,\\n\"There\\'s unrest everywhere, be careful.\" Well I had a project going on. I told\\nthe Second Secretary of the District Party Committee what had been going on \\nand said I wanted to take my crew off the site. They wouldn\\'t allow it, they \\nsaid, \"Nothing\\'s going to happen to you, we\\'ve entrusted the matter to the \\npolice, we\\'ve warned everyone in the district, nothing will happen to you.\" \\nWell, in fact they did especially detail us a policeman to look after me, he \\nknows all the local people and would protect me if something happened. This\\nman didn\\'t leave me alone for five minutes: he was at work the whole time and \\nafterward he spent the night with us, too.\\n\\nI sense some disquiet and call home; my wife also tells me, \"The situation is\\nvery tense, be careful.\"\\n\\nWe finished the job at the site, and I left for Sumgait first thing on the\\nmorning of the 29th. When we left the guys warned me, they told me that I\\nshouldn\\'t tell anyone on the way that I was an Armenian. I took someone else\\'s\\nbusiness travel documents, in the name of Zardali, and hid my own. I hid it \\nand my passport in my socks. We set out for Baku. Our guys were on the bus, \\nthey sat behind, and I sat up front. In Baku they had come to me and said that\\nthey had to collect all of our travel documents just in case. As it turns out \\nthey knew what was happening in Sumgait.\\n\\nI arrive at the bus station and there they tell me that the city of Sumgait is\\nclosed, there is no way to get there. That the city is closed off and the \\nbuses aren\\'t running. Buses normally leave Baku for Sumgait almost every two\\nminutes. And suddenly--no buses. Well, we tried to get there via private\\ndrivers. One man, an Azerbaijani, said, \"Let\\'s go find some other way to get\\nthere.\" They found a light transport vehicle and arranged for the driver to\\ntake us to Sumgait.\\n\\nHe took us there. But the others had said, \"I wouldn\\'t go if you gave me a\\nthousand rubles.\" \"Why?\" \"Because they\\'re burning the city and killing the\\nArmenians. There isn\\'t an Armenian left.\" Well I got hold of myself so I could\\nstill stand up. So we squared it away, the four of us got in the car, and we \\nset off for Sumgait. On the way the driver says, \"In fact there aren\\'t any\\nArmenians left. \\'They burned them all, beat them all, and stabbed them.\" Well \\nI was silent. The whole way--20-odd miles--I was silent. The driver asks me, \\n\"How old are you, old man?\" He wants to know: if I\\'m being that quiet, not \\nsaying anything, maybe it means I\\'m an Armenian. \"How old are you?\" he asks \\nme. I say, \"I\\'m 47.\" \"I\\'m 47 too, but I call you \\'old man\\'.\" I say, \"It \\ndepends on God, each person\\'s life in this world is different.\" I look much\\nolder than my years, that\\'s why he called me old man. Well after that he was\\nsilent, too.\\n\\nWe\\'re approaching the city, I look and see tanks all around, and a cordon.\\nBefore we get to the Kavkaz store the driver starts to wave his hand. Well, he\\nwas waving his hand, we all start waving our hands. I\\'m sitting there with\\nthem, I start waving my hand, too. I realized that this was a sign that meant\\nthere were no Armenians with us.\\n\\nI look at the city--there is a crowd of people walking down the middle of the \\nstreet, you know, and there\\'s no traffic. Well probably I was scared. They\\nstopped our car. People were standing on the sidewalks. They have armature \\nshafts, and stones . . . And they stopped us . . .\\n\\nAlong the way the driver tells us how they know who\\'s an Armenian and who\\'s \\nnot. The Armenians usually . . . For example, I\\'m an Armenian, but I speak \\ntheir language very well. Well Armenians usually pronounce the Azeri word for \\n\"nut,\" or \"little nut,\" as \"pundukh,\" but \"fundukh\" is actually correct. The \\npronunciations are different. Anyone who says \"pundukh,\" even if they\\'re not \\nArmenian, they immediately take out and start to slash. Another one says, \\n\"There was a car there, with five people inside it,\" he says. \"They started \\nhitting the side of it with an axe and lit it on fire. And they didn\\'t let the\\npeople out,\" he says, \"they wouldn\\'t let them get out of the car.\" I only saw \\nthe car, but the driver says that he saw everything. Well he often drives from\\nBaku to Sumgait and back . . .\\n\\nWhen they stop us we all get out of the car. I look and there\\'s a short guy,\\nhis eyes are gleaming, he has an armature shaft in one hand and a stone in\\nthe other and asks the guys what nationality they are one by one. \"We\\'re\\nAzerbaijani,\\' they tell him, \\'no Armenians here.\" He did come up to me when \\nwe were pulling our things out and says, \"Maybe you\\'re an Armenian, old man?\" \\nBut in Azerbaijani I say, \"You should be ashamed of yourself!\" And . . . he \\nleft. Turned and left. That was all that happened. What was I to do? I had \\nto . . . the city was on fire, but I had to steal my children out of my own \\nhome.\\n\\nThey stopped us at the entrance to Mir Street, that\\'s where the Kavkaz store \\nand three large, 12-story buildings are. That\\'s the beginning of down-town. I \\nsaw that burned automobile there, completely burned, only metal remained. I \\ncouldn\\'t figure out if it was a Zhiguli or a Zaporozhets. Later I was told it \\nwas a Zhiguli. And the people in there were completely incinerated. Nothing \\nremained of them, not even any traces. That driver had told me about it, and I\\nsaw the car myself. The car was there. The skeleton, a metallic carcass. About\\n30 to 40 yards from the Kavkaz store.\\n\\nI see a military transport, an armored personnel carrier. The hatches are\\nclosed. And people are throwing armature shafts and pieces of iron at it, the\\ncrowd is. And I hear shots, not automatic fire, it\\'s true, but pistol shots.\\nSeveral shots. There were Azerbaijanis crowded around that personnel carrier. \\nSomeone in the crowd was shooting. Apparently they either wanted to kill the \\nsoldiers or get a machine gun or something. At that point there was only one \\narmored personnel carrier. And all the tanks were outside the city, cordoning \\noff Sumgait.\\n\\nI walked on. I see two Azerbaijanis going home from the plant. I can tell by \\ntheir gait that they\\'re not bandits, they\\'re just people, walking home. I\\njoined them so in case something happened, in case someone came up to us\\nand asked questions, either of us would be in a position to answer, you see.\\nBut I avoided the large groups because I\\'m a local and might be quickly \\nrecognized. I tried to keep at a distance, and walked where there were fewer\\npeople. Well so I walked into Microdistrict 2, which is across from our block.\\nI can\\'t get into our block, but I walked where there were fewer people, so as \\nto get around. Well there I see a tall guy and 25 to 30 people are walking \\nbehind him. And he\\'s shouting into a megaphone: \"Comrades, the Armenian-\\nAzerbaijani war has begun!\"\\n\\nThe police have megaphones like that. So they\\'re talking and walking around \\nthe second microdistrict. I see that they\\'re coming my way, and turn off \\nbehind a building. I noticed that they walked around the outside buildings, \\nand inside the microdistricts there were about 5 or 6 people standing on every\\ncorner, and at the middles of the buildings, and at the edges. What they were \\ndoing I can\\'t say, because I couldn\\'t get up close to them, I was afraid. But \\nthe most important thing was to get away from there, to get home, and at least\\nfind out if my children were alive or not . . .\\n\\n April 20, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 158-160\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Argic\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 6\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nHey Serdar:\\n Man without a brain, yare such a LOSER!!!\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", + " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Observation re: helmets\\nOrganization: Ontario Hydro - Research Division\\nDistribution: usa\\nLines: 19\\n\\nIn article <1993Apr15.220511.11311@research.nj.nec.com> behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n>\\tDo I have to be the one to say it?\\n>\\n>\\tDON'T BE SO STUPID AS TO LEAVE YOUR HELMET ON THE SEAT WHERE IT CAN\\n>\\tFALL DOWN AND GO BOOM!\\n\\nTrue enough. I put it on the ground if it's free of spooge, or directly\\non my head otherwise.\\n\\n>\\tThat kind of fall is what the helmet is designed to protect against.\\n\\nNot exactly. The helmet has a lot less energy if your head isn't in it, and\\nthere's no lump inside to compress the liner against the shell. Is a drop\\noff the seat enough to crack the shell? I doubt it, but you can always\\nsend it to be inspected.\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", + " \"From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: rejoinder. Questions to Israelis\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 38\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n Although I realize that principle is not one of your strongest\\npoints, I would still like to know why do do not ask any question\\nof this sort about the Arab countries.\\n\\n If you want to continue this think tank charade of yours, your\\nfixation on Israel must stop. You might have to start asking the\\nsame sort of questions of Arab countries as well. You realize it\\nwould not work, as the Arab countries' treatment of Jews over the\\nlast several decades is so bad that your fixation on Israel would\\nbegin to look like the biased attack that it is.\\n\\n Everyone in this group recognizes that your stupid 'Center for\\nPolicy Research' is nothing more than a fancy name for some bigot\\nwho hates Israel.\\n\\n Why don't you try being honest about your hatred of Israel? I\\nhave heard that your family once lived in Israel, but the members\\nof your family could not cut the competition there. Is this true\\nabout your family? Is this true about you? Is this actually not\\nabout Israel, but is really a personal vendetta? Why are you not\\nthe least bit objective about Israel? Do you think that the name\\nof your phony-baloney center hides your bias in the least? Get a\\nclue, Mr. Davidsson. Haven't you realized yet that when you post\\nsuch stupidity in this group, you are going to incur answers from\\npeople who are armed with the truth? Haven't you realized that a\\npiece of selective data here and a piece there does not make up a\\ntruth? Haven't you realized that you are in over your head? The\\npeople who read this group are not as stupid as you would hope or\\nneed them to be. This is not the place for such pseudo-analysis.\\nYou will be continually ripped to shreds, until you start to show\\nsome regard for objectivity. Or you can continue to show what an\\nanti-Israel zealot you are, trying to disguise your bias behind a\\npompous name like the 'Center for Policy Research.' You ought to\\nknow that you are a laughing stock, your 'Center' is considered a\\njoke, and until you either go away, or make at least some attempt\\nto be objective, you will have a place of honor among the clowns,\\nbigots, and idiots of Usenet.\\n\",\n", + " 'From: \"james kewageshig\" \\nSubject: articles on flocking?\\nReply-To: \"james kewageshig\" \\nOrganization: Canada Remote Systems\\nDistribution: comp\\nLines: 17\\n\\nHI All,\\nCan someone point me towards some articles on \\'boids\\' or\\nflocking algorithms... ?\\n\\nAlso, articles on particle animation formulas would be nice...\\n ________________________________________________________________________\\n|0 ___ ___ ____ ____ ____ 0|\\\\\\n| \\\\ \\\\// || || || James Kewageshig |\\\\|\\n| _\\\\//_ _||_ _||_ _||_ UUCP: james.kewageshig@canrem.com |\\\\|\\n| N E T W O R K V I I I FIDONET: James Kewageshig - 1:229/15 |\\\\|\\n|0______________________________________________________________________0|\\\\|\\n \\\\________________________________________________________________________\\\\|\\n---\\n þ DeLuxeý 1.25 #8086 þ Head of Co*& XV$# Hi This is a signature virus. Co\\n--\\nCanada Remote Systems - Toronto, Ontario\\n416-629-7000/629-7044\\n',\n", + " \"From: Center for Policy Research \\nSubject: Unconventional peace proposal\\nNf-ID: #N:cdp:1483500348:000:5967\\nNf-From: cdp.UUCP!cpr Apr 18 07:24:00 1993\\nLines: 131\\n\\n\\nFrom: Center for Policy Research \\nSubject: Unconventional peace proposal\\n\\n\\nA unconventional proposal for peace in the Middle-East.\\n---------------------------------------------------------- by\\n\\t\\t\\t Elias Davidsson\\n\\nThe following proposal is based on the following assumptions:\\n\\n1. Fundamental human rights, such as the right to life, to\\neducation, to establish a family and have children, to human\\ndignity, the right to free movement, to free expression, etc. are\\nmore important to human existence that the rights of states.\\n\\n2. In the event of a conflict between basic human rights and\\nrights of collectivities, basic human rights should prevail.\\n\\n3. Between the collectivities defining themselves as\\nJewish-Israeli and Palestinian-Arab, however labelled, an\\nunresolved conflict exists.\\n\\n4. This conflict has caused great sufferings for millions of\\npeople. It moreover poisons relations between communities, peoples\\nand nations.\\n\\n5. Each year, the United States expends billions of dollars\\nin economic and military aid to the conflicting parties.\\n\\n6. Attempts to solve the Israeli-Arab conflict by traditional\\npolitical means have failed.\\n\\n7. As long as the conflict is perceived as that between two\\ndistinct ethnical/religious communities/peoples which claim the\\nland, there is no just nor peaceful solution possible.\\n\\n8. Love between human beings can be capitalized for the sake\\nof peace and justice. When people love, they share.\\n\\nHaving stated my assumptions, I will now state my proposal.\\n\\n1. A Fund should be established which would disburse grants\\nfor each child born to a couple where one partner is Israeli-Jew\\nand the other Palestinian-Arab.\\n\\n2. To be entitled for a grant, a couple will have to prove\\nthat one of the partners possesses or is entitled to Israeli\\ncitizenship under the Law of Return and the other partner,\\nalthough born in areas under current Isreali control, is not\\nentitled to such citizenship under the Law of Return.\\n\\n3. For the first child, the grant will amount to $18.000. For\\nthe second the third child, $12.000 for each child. For each\\nsubsequent child, the grant will amount to $6.000 for each child.\\n\\n\\n4. The Fund would be financed by a variety of sources which\\nhave shown interest in promoting a peaceful solution to the\\nIsraeli-Arab conflict, including the U.S. Government, Jewish and\\nChristian organizations in the U.S. and a great number of\\ngovernments and international organizations.\\n\\n5. The emergence of a considerable number of 'mixed'\\nmarriages in Israel/Palestine, all of whom would have relatives on\\n'both sides' of the divide, would make the conflict lose its\\nethnical and unsoluble core and strengthen the emergence of a\\ntruly civil society. The existence of a strong 'mixed' stock of\\npeople would also help the integration of Israeli society into the\\nMiddle-East in a graceful manner.\\n\\nObjections to this proposal will certainly be voiced. I will\\nattempt to identify some of these:\\n\\n1. The idea of providing financial incentives to selected\\nforms of partnership and marriage, is not conventional. However,\\nit is based on the concept of affirmative action, which is\\nrecognized as a legitimate form of public policy to reverse the\\nperverse effects of segregation and discrimination. International\\nlaw clearly permits affirmative action when it is aimed at\\nreducing racial discrimination and segregation.\\n\\n2. It may be objected that the Israeli-Palestinian conflict\\nis not primarily a religious or ethnical conflict, but that it is\\na conflict between a colonialist settler society and an indigenous\\ncolonized society that can only regain its freedom by armed\\nstruggle. This objection is based on the assumption that the\\n'enemy' is not Zionism as ideology and practice, but\\nIsraeli-Jewish society and its members which will have to be\\ndefeated. This objection has no merit because it does not fulfill\\nthe first two assumptions concerning the primacy of fundamental\\nhuman rights over collective rights (see above)\\n\\n3. Fundamentalist Jews would certainly object to the use of\\nfinancial incentives to encourage 'mixed marriages'. From their\\npoint of view, the continued existence of a specific Jewish People\\noverrides any other consideration, be it human love, peace of\\nhuman rights. The President of the World Jewish Congress, Edgar\\nBronfman, reflected this view a few years ago in an interview he\\ngave to Der Spiegel, a German magazine. He called the increasing\\nassimilation of Jews in the world a , comparable in its\\neffects only with the Holocaust. This objection has no merit\\neither because it does not fulfill the first two assumptions (see\\nabove)\\n\\n4. It may objected that only a few people in\\nIsrael/Palestine, would request such grants and that it would thus\\nnot serve its purpose. To this objection one might respond that\\nalthough it is not possible to determine with certainty the effect\\nof such a proposal, the existence of such a Fund would help mixed\\ncouples to resist the pressure of their respective societies and\\nencourage young couples to reject fundamentalist and racist\\nattitudes.\\n\\n5. It may objected that such a Fund would need great sums to\\nbring about substantial demographic changes. This objection has\\nmerits. However, it must be remembered that huge sums, more than\\n$3 billion, are expended each year by the United States government\\nand by U.S. organizations to maintain an elusive peace in the\\nMiddle-East through armaments. A mere fraction of these sums would\\nsuffice to launch the above proposal and create a more favorable\\nclimate towards the existence of 'mixed' marriages in\\nIsrael/Palestine, thus encouraging the emergence of a\\nnon-segregated society in that worn-torn land.\\n\\nI would be thankful for critical comments to the above proposal as\\nwell for any dissemination of this proposal for meaningful\\ndiscussion and enrichment.\\n\\nElias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n\\n\",\n", + " \"From: lipman@oasys.dt.navy.mil (Robert Lipman)\\nSubject: Call for presentations: Navy SciViz/VR seminar\\nReply-To: lipman@oasys.dt.navy.mil (Robert Lipman)\\nOrganization: Carderock Division, NSWC, Bethesda, MD\\nLines: 74\\n\\n**********************************************************************\\n\\n\\t\\t 2ND CALL FOR PRESENTATIONS\\n\\t\\n NAVY SCIENTIFIC VISUALIZATION AND VIRTUAL REALITY SEMINAR\\n\\n\\t\\t\\tTuesday, June 22, 1993\\n\\n\\t Carderock Division, Naval Surface Warfare Center\\n\\t (formerly the David Taylor Research Center)\\n\\n\\t\\t\\t Bethesda, Maryland\\n\\n**********************************************************************\\n\\nSPONSOR: NESS (Navy Engineering Software System) is sponsoring a \\none-day Navy Scientific Visualization and Virtual Reality Seminar. \\nThe purpose of the seminar is to present and exchange information for\\nNavy-related scientific visualization and virtual reality programs, \\nresearch, developments, and applications.\\n\\nPRESENTATIONS: Presentations are solicited on all aspects of \\nNavy-related scientific visualization and virtual reality. All \\ncurrent work, works-in-progress, and proposed work by Navy \\norganizations will be considered. Four types of presentations are \\navailable.\\n\\n 1. Regular presentation: 20-30 minutes in length\\n 2. Short presentation: 10 minutes in length\\n 3. Video presentation: a stand-alone videotape (author need not \\n\\tattend the seminar)\\n 4. Scientific visualization or virtual reality demonstration (BYOH)\\n\\nAccepted presentations will not be published in any proceedings, \\nhowever, viewgraphs and other materials will be reproduced for \\nseminar attendees.\\n\\nABSTRACTS: Authors should submit a one page abstract and/or videotape to:\\n\\n Robert Lipman\\n Naval Surface Warfare Center, Carderock Division\\n Code 2042\\n Bethesda, Maryland 20084-5000\\n\\n VOICE (301) 227-3618; FAX (301) 227-5753 \\n E-MAIL lipman@oasys.dt.navy.mil\\n\\nAuthors should include the type of presentation, their affiliations, \\naddresses, telephone and FAX numbers, and addresses. Multi-author \\npapers should designate one point of contact.\\n\\n**********************************************************************\\nDEADLINES: The abstact submission deadline is April 30, 1993. \\nNotification of acceptance will be sent by May 14, 1993. \\nMaterials for reproduction must be received by June 1, 1993.\\n**********************************************************************\\n\\nFor further information, contact Robert Lipman at the above address.\\n\\n**********************************************************************\\n\\n\\t PLEASE DISTRIBUTE AS WIDELY AS POSSIBLE, THANKS.\\n\\n**********************************************************************\\n\\n\\nRobert Lipman | Internet: lipman@oasys.dt.navy.mil\\nDavid Taylor Model Basin - CDNSWC | or: lip@ocean.dt.navy.mil\\nComputational Signatures and | Voicenet: (301) 227-3618\\n Structures Group, Code 2042 | Factsnet: (301) 227-5753\\nBethesda, Maryland 20084-5000 | Phishnet: stockings@long.legs\\n\\t\\t\\t\\t \\nThe sixth sick shiek's sixth sheep's sick.\\n\\n\",\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nArticle-I.D.: mksol.1993Apr22.213815.12288\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1993Apr22.130923.115397@zeus.calpoly.edu> dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n> ETHER IMPLODES 2 EARTH CORE, IS GRAVITY!!!\\n\\nIf not for the lack of extraneously capitalized words, I\\'d swear that\\nMcElwaine had changed his name and moved to Cal Poly. I also find the\\nchoice of newsgroups \\'interesting\\'. Perhaps someone should tell this\\nguy that \\'sci.astro\\' doesn\\'t stand for \\'astrology\\'?\\n\\nIt\\'s truly frightening that posts like this are originating at what\\nare ostensibly centers of higher learning in this country. Small\\nwonder that the rest of the world thinks we\\'re all nuts and that we\\nhave the problems that we do.\\n\\n[In case you haven\\'t gotten it yet, David, I don\\'t think this was\\nquite appropriate for a posting to \\'sci\\' groups.]\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " \"From: lynn@pacesetter.com (Lynn E. Hall)\\nSubject: Re: story \\nKeywords: PARTY!!!!\\nNntp-Posting-Host: camellia\\nOrganization: Siemens Pacesetter, Inc.\\nLines: 20\\n\\n>lynn@pacesetter.com (Lynn E. Hall) writes:\\n>\\n>>allowed (yes, there is a God). No open containers on the street was the\\n>>signs in the bars. Yeah, RIGHT! The 20 or so cops on hand for the couple of\\n>>thousand of bikers in a 1 block main street were not citing anyone. The\\n>>street was filled with empty cans at least 2 feet deep in the gutter. The\\n>>crowd was raisin' hell - tittie shows everywhere. Can you say PARTY?\\n>\\n>\\n>And still we wonder why they stereotype us...\\n>\\n>-Erc.\\n\\n Whacha mean 'we'...ifin they (whom ever 'they' are) want to stereotype me\\nas one that likes to drink beer and watch lovely ladies display their\\nbeautiful bodies - I like that stereotype.\\n If you were refering 'stereotype' to infer a negative - you noticed we\\ndidn't rape, pillage, or burn down the town. We also left mucho bucks as in\\nMONEY with the town. Me thinks the town LIKES us. Least they said so.\\n Lynn Hall - NOS Bros\\n\",\n", + " 'From: mikej@PROBLEM_WITH_INEWS_GATEWAY_FILE (Mike Johnson)\\nSubject: Re: Paris-Dakar BMW touring???\\nNntp-Posting-Host: mikej.mentorg.com\\nOrganization: Mentor Graphics\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 8\\n\\n\\n--\\n-----------------------------------------------------------------------------\\n mike_johnson@mentorg.com\\n-----------------------------------------------------------------------------\\n Mentor Graphics | 8005 SW Boeckman Rd | Software Support \\n Corporation | Wilsonville, OR 97070-7777 | Framework Products Division \\n_____________________________________________________________________________\\n',\n", + " \"From: erick@andr.UB.com (Eric A. Kilpatrick)\\nSubject: Re: Drinking and Riding\\nNntp-Posting-Host: pixel.andr.ub.com\\nReply-To: erick@andr.UB.com\\nOrganization: Ungermann-Bass Inc./Andover, MA\\nLines: 7\\n\\nPersonally, I follow the no alcohol rule when I'm on a bike. My view is that you have to be in such a high degree of control that any alcohol could be potentially hazardous to my bike! If I get hurt it's my own fault, but I don't want to wreck my Katana. I developed this philosophy from an impromptu *experiment*. I had one beer at 6:00 in the evening and had volleyball practice at 7:00. I wasn't even close to leagle intoxication, but I couldn't perform even the most basic things until 8:30! This made\\n\\n\\n\\n me think about how I viewed alcohol and intoxication. You may seem fine, but your reactions may be affected such that you'll be unable to recover from hitting a rock or even just a gust of wind. I greatly enjoy social drinking but, for me, it just doesn't mix with riding.\\n\\nMax enjoyment!\\nEric\\n\\n\",\n", + " 'From: yoo@engr.ucf.edu (Hoi Yoo)\\nSubject: Ribbon Information ?\\nOrganization: engineering, University of Central Florida, Orlando\\nDistribution: usa\\nLines: 20\\n\\n\\n\\nDoes anyone out there have or know of, any kind of utility program for\\n\\nRibbons?\\n\\n\\nRibbons are a popular representation for 2D shape. I am trying to\\nfind symmetry axis in a given any 2D shape using ribbons.\\n\\n\\nAny suggestions will be greatly appreciated how to start program. \\n\\n\\nThanks very much in advance,\\nHoi\\n\\n\\nyoo@engr.ucf.edu\\n\\n',\n", + " \"From: small@tornado.seas.ucla.edu (James F. Small)\\nSubject: Re: Here's to the assholes\\nOrganization: School of Engineering and Applied Sciences, UCLA\\nLines: 26\\n\\nIn article you rambled on about:\\n)In article <9953@lee.SEAS.UCLA.EDU> small@thunder.seas.ucla.edu (James F. Small) writes:\\n)> Here's to the 3 asshole scooter owners who TRIPLE PARKED behind my\\n)> bike today. \\n)\\n)Jim calling other prople assholes, what's next?\\n ^^^^^^\\n\\nIf you're going to flame, learn to spell.\\n\\n)Besides, assholeism is endemic to the two-wheeled motoring community.\\n\\nWhy I do believe that Jason, the wise, respected (hahahha), has just made a\\nstereotypical remark. How unsophisticated of you. I'm so sorry you had to\\ncome out of your ivory tower and stoop (as you would say), to my , obviously,\\nlower level.\\n\\nBesides, geekism is endemic to the albino-phoosball playing community (and\\nthose who drive volvos)\\n\\n\\nRemember ,send your flames to jrobbins@cs.ucla.edu\\n-- \\nI need what a formal education can not provide.\\n---\\nDoD# 2024\\n\",\n", + " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: islamic genocide\\nOrganization: Technical University Braunschweig, Germany\\nLines: 23\\n\\nIn article <1qi83b$ec4@horus.ap.mchp.sni.de>\\nfrank@D012S658.uucp (Frank O'Dwyer) writes:\\n \\n(Deletion)\\n>#>Few people can imagine dying for capitalism, a few\\n>#>more can imagine dying for democracy, but a lot more will die for their\\n>#>Lord and Savior Jesus Christ who Died on the Cross for their Sins.\\n>#>Motivation, pure and simple.\\n>\\n>Got any cites for this nonsense? How many people will die for Mom?\\n>Patriotism? Freedom? Money? Their Kids? Fast cars and swimming pools?\\n>A night with Kim Basinger or Mel Gibson? And which of these things are evil?\\n>\\n \\nRead a history book, Fred. And tell me why so many religions command to\\ncommit genocide when it has got nothing to do with religion. Or why so many\\nreligions say that not living up to the standards of the religion is worse\\nthan dieing? Coincidence, I assume. Or ist part of the absolute morality\\nyou describe so often?\\n \\nTheism is strongly correlated with irrational belief in absolutes. Irrational\\nbelief in absolutes is strongly correlated with fanatism.\\n Benedikt\\n\",\n", + " 'From: flax@frej.teknikum.uu.se (Jonas Flygare)\\nSubject: Re: 18 Israelis murdered in March\\nOrganization: Dept. Of Control, Teknikum, Uppsala\\nLines: 184\\n\\t\\n\\t<1993Apr5.125419.8157@thunder.mcrcim.mcgill.edu>\\nNNTP-Posting-Host: frej.teknikum.uu.se\\nIn-reply-to: hasan@McRCIM.McGill.EDU\\'s message of Mon, 5 Apr 93 12:54:19 GMT\\n\\nIn article <1993Apr5.125419.8157@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n\\n[After a small refresh Hasan got on the track again.]\\n\\n In article , flax@frej.teknikum.uu.se (Jonas Flygare) writes:\\n\\n |> In article <1993Apr3.182738.17587@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n |> In article , flax@frej.teknikum.uu.se (Jonas Flygare) writes:\\n\\n |> |> I get the impression Hasan realized he goofed and is now\\n |> |> trying to drop the thread. Let him. It might save some\\n |> |> miniscule portion of his sorry face.\\n\\n |> Not really. since i am a logical person who likes furthering himself\\n |> from any \"name calling\", i started trashing any article that contains\\n |> such abuses without responding to, and sometimes not even reading articles \\n |> written by those who acquired such bad habits from bad company!\\n |> \\n |> Ah, but in my followup on the subject (which you, by the way, never bothered\\n |> responding to..) there was no name-calling. Hence the assumption.\\n |> Do you feel more up to it now, so that we might have an answer?\\n |> Or, to refresh your memory, does the human right issue in the area\\n |> apply to Palestinians only? Also, do you claim there is such a thing as \\n |> forfeiting a human right? If that\\'s possible, then explain to the rest of \\n |> us how there can exist any such thing?\\n |> \\n |> Use your logic, and convince us! This is your golden chance!\\n\\n |> Jonas Flygare,\\n\\n\\n well , ok. let\\'s see what Master of Wisdom, Mr. Jonas Flygare,\\n wrote that can be wisdomely responded to :\\n\\nAre you calling names, or giving me a title? If the first, read your \\nparagraph above, if not I accept the title, in order to let you get into the\\num, well, debate again.\\n\\n\\n Master of Wisdom writes in <1993Mar31.101957@frej.teknikum.uu.se>:\\n\\n |> [hasan]\\n\\n |> |> [flax]\\n\\n |> |> |> [hasan]\\n\\n |> |> |> In case you didNOT know, Palestineans were there for 18 months. \\n |> |> |> and they are coming back\\n |> |> |> when you agree to give Palestineans their HUMAN-RIGHTS.\\n\\n |> |> |> Afterall, human rights areNOT negotiable.\\n\\n |> |> |> Correct me if I\\'m wrong, but isn\\'t the right to one\\'s life _also_\\n |> |> |> a \\'human right\\'?? Or does it only apply to palestinians?\\n\\n |> |> No. it is EVERYBODY\\'s right. However, when a killer kills, then he is giving\\n |> |> up -willingly or unwillingly - his life\\'s right to the society. \\n |> |> the society represented by the goverment would exercise its duty by \\n |> |> depriving the killer off his life\\'s right.\\n\\n |> So then it\\'s all right for Israel to kill the people who kill Israelis?\\n |> The old \\'eye for an eye\\' thinking? Funny, I thought modern legal systems\\n |> were made to counter exactly that.\\n\\n So what do you expect me to tell you to tell you, Master of Wsidom, \\n\\t\\t\\t\\t\\t\\t\\t ^^^\\n------------------------------------------------------------------\\nIf you insist on giving me names/titles I did not ask for you could at\\nleast spell them correctly. /sigh.\\n\\n when you are intentionally neglecting the MOST important fact that \\n the whole israeli presence in the occupied territories is ILLEGITIMATE, \\n and hence ALL their actions, their courts, their laws are illegitimate on \\n the ground of occupied territories.\\n\\nNo, I am _not_ neglecting that, I\\'m merely asking you whether the existance\\nof Israeli citicens in the WB or in Gaza invalidates those individuals right\\nto live, a (as you so eloquently put it) human right. We can get back to the \\nquestion of which law should be used in the territories later. Also, you have \\nnot adressed my question if the israelis also have human rights.\\n\\n What do you expect me to tell you, Master of Wisdom, when I did explain my\\n point in the post, that you \"responded to\". The point is that since Israel \\n is occupying then it is automatically depriving itself from some of its rights \\n to the Occupied Palestineans, which is exactly similar the automatic \\n deprivation of a killer from his right of life to the society.\\n\\nIf a state can deprive all it\\'s citizens of human rights by its actions, then \\ntell me why _any_ human living today should have any rights at all?\\n\\n |> |> In conjugtion with the above, when a group of people occupies others \\n |> |> territories and rule them by force, then this group would be -willingly or \\n |> |> unwillingly- deprived from some of its rights. \\n\\n |> Such as the right to live? That\\'s nice. The swedish government is a group\\n |> of people that rule me by force. Does that give me the right to kill\\n |> them?\\n\\n Do you consider yourself that you have posed a worthy question here ?\\n\\nWorthy or not, I was just applying your logic to a related problem.\\nAm I to assume you admit it wouldn\\'t hold?\\n\\n |> |> What kind of rights and how much would be deprived is another issue?\\n |> |> The answer is to be found in a certain system such as International law,\\n |> |> US law, Israeli law ,...\\n\\n |> And now it\\'s very convenient to start using the legal system to prove a \\n |> point.. Excuse me while I throw up.\\n\\n ok, Master of Wisdom is throwing up. \\n You people stay away from the screen while he is doing it !\\n\\nOh did you too watch that comedy where they pipe water through the telephone?\\nI\\'ll let you in on a secret... It\\'s not for real.. Take my word for it.\\n\\n |> |> It seems that the US law -represented by US State dept in this case-\\n |> |> is looking to the other way around when violence occurs in occupied territories.\\n |> |> Anyway, as for Hamas, then obviously they turned to the islamic system.\\n\\n |> And which system do you propose we use to solve the ME problem?\\n\\n The question is NOT which system would solve the ME problem. Why ? because\\n any system can solve it. \\n The laws of minister Sharon says kick Palestineans out of here (all palestine). \\n\\nI asked for which system should be used, that will preserve human rights for \\nall people involved. I assumed that was obvious, but I won\\'t repeat that \\nmistake. Now that I have straightened that out, I\\'m eagerly awaiting your \\nreply.\\n\\n Joseph Weitz (administrator responsible for Jewish colonization) \\n said it best when writing in his diary in 1940:\\n\\t \"Between ourselves it must be clear that there is no room for both\\n\\t peoples together in this country.... We shall not achieve our goal\\n\\t\\t\\t\\t\\t\\t^^^ ^^^\\n\\t of being an independent people with the Arabs in this small country.\\n\\t The only solution is a Palestine, at least Western Palestine (west of\\n\\t the Jordan river) without Arabs.... And there is no other way than\\n\\t to transfer the Arabs from here to the neighbouring countries, to\\n\\t transfer all of them; not one village, not one tribe, should be \\n\\t left.... Only after this transfer will the country be able to\\n\\t absorb the millions of our own brethren. There is no other way out.\"\\n\\t\\t\\t\\t DAVAR, 29 September, 1967\\n\\t\\t\\t\\t (\"Courtesy\" of Marc Afifi)\\n\\nJust a question: If we are to disregard the rather obvious references to \\ngetting Israel out of ME one way or the other in both PLO covenant and HAMAS\\ncharter (that\\'s the english translations, if you have other information I\\'d\\nbe interested to have you translate it) why should we give any credence to \\na _private_ paper even older? I\\'m not going to get into the question if he\\nwrote the above, but it\\'s fairly obvious all parties in the conflict have\\ntheir share of fanatics. Guess what..? Those are not the people that will\\nmake any lasting peace in the region. Ever. It\\'s those who are willing to \\nmake a tabula rasa and start over, and willing to give in order to get \\nsomething back.\\n\\n\\n \"We\" and \"our\" either refers to Zionists or Jews (i donot know which). \\n\\n Well, i can give you an answer, you Master of Wisdom, I will NOT suggest the \\n imperialist israeli system for solving the ME problem !\\n\\n I think that is fair enough .\\n\\nNo, that is _not_ an answer, since I asked for a system that could solve \\nthe problem. You said any could be used, then you provided a contradiction.\\nGuess where that takes your logic? To never-never land. \\n\\n\\n \"The greatest problem of Zionism is Arab children\".\\n\\t\\t\\t -Rabbi Shoham.\\n\\nOh, and by the way, let me add that these cute quotes you put at the end are\\na real bummer, when I try giving your posts any credit.\\n--\\n\\n--------------------------------------------------------\\nJonas Flygare, \\t\\t+ Wherever you go, there you are\\nV{ktargatan 32 F:621\\t+\\n754 22 Uppsala, Sweden\\t+\\n',\n", + " 'From: cjackson@adobe.com (Curtis Jackson)\\nSubject: Re: New to Motorcycles...\\nOrganization: Adobe Systems Incorporated, Mountain View\\nLines: 26\\n\\nIn article <1993Apr20.131800.16136@alw.nih.gov> gregh@niagara.dcrt.nih.gov (Gregory Humphreys) writes:\\n}1) I only have about $1200-1300 to work with, so that would have \\n}to cover everything (bike, helmet, anything else that I\\'m too \\n}ignorant to know I need to buy)\\n\\nThe following numbers are approximate, and will no doubt get me flamed:\\n\\nHelmet (new, but cheap)\\t\\t\\t\\t\\t$100\\nJacket (used or very cheap)\\t\\t\\t\\t$100\\nGloves (nothing special)\\t\\t\\t\\t$ 20\\nMotorcycle Safety Foundation riding course (a must!)\\t$140\\n\\nThat leaves you between $900 and $1000 (depending on the accuracy\\nof my numbers) to buy a used bike, get it registered, get it\\ninsured, and get it running properly. I\\'d say you\\'re cutting\\nit close. Perhaps if your parents are reasonable, and you indicated\\nyour wish to learn to ride safely, you could get them to pick up\\nthe cost of the MSF course and some of the safety gear. Early\\nholiday presents or whatever. Those are one-time (well, long-term\\nanyway) investments, and you could spend your money on the actual\\nbike, insurance, registration, and maintenance.\\n-- \\nCurtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\nDoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\"\\n\"There is no justification for taking away individuals\\' freedom\\n in the guise of public safety.\" -- Thomas Jefferson\\n',\n", + " 'From: wallacen@CS.ColoState.EDU (nathan wallace)\\nSubject: ORION test film\\nReply-To: wallacen@CS.ColoState.EDU\\nNntp-Posting-Host: sor.cs.colostate.edu\\nOrganization: Colorado State University -=- Computer Science Dept.\\nLines: 11\\n\\nIs the film from the \"putt-putt\" test vehicle which used conventional\\nexplosives as a proof-of-concept test, or another one?\\n\\n---\\nC/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/\\nC/ Nathan F. Wallace C/C/ \"Reality Is\" C/\\nC/ e-mail: wallacen@cs.colostate.edu C/C/ ancient Alphaean proverb C/\\nC/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/\\n \\n\\n\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Case Western Reserve University\\nLines: 26\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1qkq9t$66n@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n\\n>I\\'ll take a wild guess and say Freedom is objectively valuable. I base\\n>this on the assumption that if everyone in the world were deprived utterly\\n>of their freedom (so that their every act was contrary to their volition),\\n>almost all would want to complain. Therefore I take it that to assert or\\n>believe that \"Freedom is not very valuable\", when almost everyone can see\\n>that it is, is every bit as absurd as to assert \"it is not raining\" on\\n>a rainy day. I take this to be a candidate for an objective value, and it\\n>it is a necessary condition for objective morality that objective values\\n>such as this exist.\\n\\n\\tYou have only shown that a vast majority ( if not all ) would\\nagree to this. However, there is nothing against a subjective majority.\\n\\n\\tIn any event, I must challenge your assertion. I know many \\nsocieties- heck, many US citizens- willing to trade freedom for \"security\".\\n\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", + " 'From: mini@csd4.csd.uwm.edu (Padmini Srivathsa)\\nSubject: WANTED : Info on Image Databases\\nOrganization: Computing Services Division, University of Wisconsin - Milwaukee\\nLines: 15\\nDistribution: world\\nNNTP-Posting-Host: 129.89.7.4\\nOriginator: mini@csd4.csd.uwm.edu\\n\\n Guess the subject says it all.\\n I would like references to any introductory material on Image\\n Databases.\\n Please send any pointers to mini@point.cs.uwm.edu\\n\\n Thanx in advance!\\n \\n\\n\\n\\n-- \\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n-< MINI >- mini@point.cs.uwm.edu | mini@csd4.csd.uwm.edu \\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n\\n',\n", + " 'From: Center for Policy Research \\nSubject: From Israeli press. Madness.\\nNf-ID: #N:cdp:1483500342:000:6673\\nNf-From: cdp.UUCP!cpr Apr 16 16:49:00 1993\\nLines: 130\\n\\n\\nFrom: Center for Policy Research \\nSubject: From Israeli press. Madness.\\n\\n/* Written 4:34 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n/* ---------- \"From Israeli press. Madness.\" ---------- */\\nFROM THE ISRAELI PRESS.\\n\\nPaper: Zman Tel Aviv (Tel Aviv\\'s time). Friday local Tel Aviv\\'s\\npaper, affiliated with Maariv.\\n\\nDate: 19 February 1993\\n\\nJournalist: Guy Ehrlich\\n\\nSubject: Interview with soldiers who served in the Duvdevan\\n(Cherry) units, which disguise themselves as Arabs and operate\\nwithin the occupied territories.\\n\\nExcerpts from the article:\\n\\n\"A lot has been written about the units who disguise themselves as\\nArabs, things good and bad, some of the falsehoods. But the most\\nimportant problem of those units has been hardly dealt with. It is\\nthat everyone who serves in the Cherry, after a time goes in one\\nway or another insane\".\\n\\nA man who said this, who will here be called Danny (his full name\\nis known to the editors) served in the Cherry. After his discharge\\nfrom the army he works as delivery boy. His pal, who will here be\\ncalled Dudu was also serving in the Cherry, and is now about to\\ndepart for a round-the-world tour. They both look no different\\nfrom average Israeli youngsters freshly discharged from conscript\\nservice. But in their souls, one can notice something completely\\ndifferent....It was not easy for them to come out with disclosures\\nabout what happened to them. And they think that to most of their\\nfellows from the Cherry it woundn\\'t be easy either. Yet after they\\nbegan to talk, it was nearly impossible to make them stop talking.\\nThe following article will contain all the horror stories\\nrecounted with an appalling openness.\\n\\n(...) A short time ago I was in command of a veteran team, in\\nwhich some of the fellows applied for release from the Cherry. We\\ncalled such soldiers H.I. \\'Hit by the Intifada\\'. Under my command\\nwas a soldier who talked to himself non-stop, which is a common\\nphenomenon in the Cherry. I sent him to a psychiatrist. But why I\\nshould talk about others when I myself feel quite insane ? On\\nFridays, when I come home, my parents know I cannot be talked to\\nuntil I go to the beach, surf a little, calm down and return. The\\nkeys of my father\\'s car must be ready for in advance, so that I\\ncan go there. I they dare talk to me before, or whenever I don\\'t\\nwant them to talk to me, I just grab a chair and smash it\\ninstantly. I know it is my nerve: Smashing chairs all the time\\nand then running away from home, to the car and to the beach. Only\\nthere I become normal.(...)\\n\\n(...) Another friday I was eating a lunch prepared by my mother.\\nIt was an omelette of sorts. She took the risk of sitting next to\\nme and talking to me. I then told my mother about an event which\\nwas still fresh in my mind. I told her how I shot an Arab, and how\\nexactly his wound looked like when I went to inspect it. She began\\nto laugh hysterically. I wanted her to cry, and she dared laugh\\nstraight in my face instead ! So I told her how my pal had made a\\nmincemeat of the two Arabs who were preparing the Molotov\\ncocktails. He shot them down, hitting them beautifully, exactly as\\nthey deserved. One bullet had set a Molotov cocktail on fire, with\\nthe effect that the Arab was burning all over, just beautifully. I\\nwas delighted to see it. My pal fired three bullets, two at the\\nArab with the Molotov cocktail, and the third at his chum. It hit\\nhim straight in his ass. We both felt that we\\'d pulled off\\nsomething.\\n\\nNext I told my mother how another pal of mine split open the guts\\nin the belly of another Arab and how all of us ran toward that\\nspot to take a look. I reached the spot first. And then that Arab,\\nblood gushing forth from his body, spits at me. I yelled: \\'Shut\\nup\\' and he dared talk back to me in Hebrew! So I just laughed\\nstraight in his face. I am usually laughing when I stare at\\nsomething convulsing right before my eyes. Then I told him: \\'All\\nright, wait a moment\\'. I left him in order to take a look at\\nanother wounded Arab. I asked a soldier if that Arab could be\\nsaved, if the bleeding from his artery could be stopped with the\\nhelp of a stone of something else like that. I keep telling all\\nthis to my mother, with details, and she keeps laughing straight\\ninto my face. This infuriated me. I got very angry, because I felt\\nI was becoming mad. So I stopped eating, seized the plate with he\\nomelette and some trimmings still on, and at once threw it over\\nher head. Only then she stopped laughing. At first she didn\\'t know\\nwhat to say.\\n\\n(...) But I must tell you of a still other madness which falls\\nupon us frequently. I went with a friend to practice shooting on a\\nfield. A gull appeared right in the middle of the field. My friend\\nshot it at once. Then we noticed four deer standing high up on the\\nhill above us. My friend at once aimed at one of them and shot it.\\nWe enjoyed the sight of it falling down the rock. We shot down two\\ndeer more and went to take a look. When we climbed the rocks we\\nsaw a young deer, badly wounded by our bullet, but still trying to\\nsuch some milk from its already dead mother. We carefully\\ninspected two paths, covered by blood and chunks of torn flesh of\\nthe two deer we had hit. We were just delighted by that sight. We\\nhad hit\\'em so good ! Then we decided to kill the young deer too,\\nso as spare it further suffering. I approached, took out my\\nrevolver and shot him in the head several times from a very short\\ndistance. When you shoot straight at the head you actually see the\\nbullets sinking in. But my fifth bullet made its brains fall\\noutside onto the ground, with the effect of splattering lots of\\nblood straight on us. This made us feel cured of the spurt of our\\nmadness. Standing there soaked with blood, we felt we were like\\nbeasts of prey. We couldn\\'t explain what had happened to us. We\\nwere almost in tears while walking down from that hill, and we\\nfelt the whole day very badly.\\n\\n(...) We always go back to places we carried out assignments in.\\nThis is why we can see them. When you see a guy you disabled, may\\nbe for the rest of his life, you feel you got power. You feel\\nGodlike of sorts.\"\\n\\n(...) Both Danny and Dudu contemplate at least at this moment\\nstudying the acting. Dudu is not willing to work in any\\nsecurity-linked occupation. Danny feels the exact opposite. \\'Why\\nshouldn\\'t I take advantage of the skills I have mastered so well ?\\nWhy shouldn\\'t I earn $3.000 for each chopped head I would deliver\\nwhile being a mercenary in South Africa ? This kind of job suits\\nme perfectly. I have no human emotions any more. If I get a\\nreasonable salary I will have no problem to board a plane to\\nBosnia in order to fight there.\"\\n\\nTransl. by Israel Shahak.\\n\\n',\n", + " \"Subject: Re: Americans and Evolution\\nFrom: rfox@charlie.usd.edu (Rich Fox, Univ of South Dakota)\\nReply-To: rfox@charlie.usd.edu\\nOrganization: The University of South Dakota Computer Science Dept.\\nNntp-Posting-Host: charlie\\nLines: 26\\n\\nIn article <1pik3i$1l4@fido.asd.sgi.com>, livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>In article , bil@okcforum.osrhe.edu (Bill Conner) writes:\\n>|>\\n>|> \\n>|> Why do you spend so much time posting here if your atheism is so\\n>|> incidental, if the question of God is trivial? Fess up, it matters to\\n>|> you a great deal.\\n>\\n>Ask yourself two questions.\\n>\\n>\\t1. How important is Mithras in your life today?\\n>\\n>\\t2. How important would Mithras become if there was a\\n>\\t well funded group of fanatics trying to get the\\n>\\t schools system to teach your children that Mithras\\n>\\t was the one true God?\\n>\\n>jon.\\n\\nRight on, Jon! Who cares who or whose, as long as it works for the individual.\\nBut don't try to impose those beliefs on us or our children. I would add the\\nwell-funded group tries also to purge science, to deny children access to great\\nwonders and skills. And how about the kids born to creationists? What a\\nburden with which to begin adult life. It must be a cruel awakening for those\\nwho finally see the light, provided it is possible to escape from the depths of\\nthis type of ignorance.\\n\",\n", + " 'From: kempmp@phoenix.oulu.fi (Petri Pihko)\\nSubject: Re: Idle questions for fellow atheists\\nOrganization: University of Oulu, Finland\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 59\\n\\nacooper@mac.cc.macalstr.edu wrote:\\n \\n: I wonder how many atheists out there care to speculate on the face of\\n: the world if atheists were the majority rather than the minority group\\n: of the population. \\n\\nI\\'ve been thinking about this every now and then since I cut my ties\\nwith Christianity. It is surprising to note that a large majority of\\npeople, at least in Finland, seem to be apatheists - even though\\n90 % of the population are members of the Lutheran Church of Finland,\\nreligious people are actually a minority. \\n\\nCould it be possible that many people believe in god \"just in case\"?\\nIt seems people do not want to seek the truth; they fall prey to Pascal\\'s\\nWager or other poor arguments. A small minority of those who do believe\\nreads the Bible regularly. The majority doesn\\'t care - it believes,\\nbut doesn\\'t know what or how. \\n\\nPeople don\\'t usually allow their beliefs to change their lifestyle,\\nthey only want to keep the virtual gate open. A Christian would say\\nthat they are not \"born in the Spirit\", but this does not disturb them.\\nReligion is not something to think about. \\n\\nI\\'m afraid a society with a true atheist majority is an impossible\\ndream. Religions have a strong appeal to people, nevertheless - \\na promise of life after death is something humans eagerly listen to.\\nCoupled with threats of eternal torture and the idea that our\\nmorality is under constant scrutiny of some cosmic cop, too many\\npeople take the poison with a smile. Or just pretend to swallow\\n(and unconsciously hope god wouldn\\'t notice ;-) )\\n\\n: Also, how many atheists out there would actually take the stance and accor a\\n: higher value to their way of thinking over the theistic way of thinking. The\\n: typical selfish argument would be that both lines of thinking evolved from the\\n: same inherent motivation, so one is not, intrinsically, different from the\\n: other, qualitatively. But then again a measuring stick must be drawn\\n: somewhere, and if we cannot assign value to a system of beliefs at its core,\\n: than the only other alternative is to apply it to its periphery; ie, how it\\n: expresses its own selfishness.\\n\\nIf logic and reason are valued, then I would claim that atheistic thinking\\nis of higher value than the theistic exposition. Theists make unnecessary\\nassumptions they believe in - I\\'ve yet to see good reasons to believe\\nin gods, or to take a leap of faith at all. A revelation would do.\\n\\nHowever, why do we value logic and reasoning? This questions bears\\nsome resemblance to a long-disputed problem in science: why mathematics\\nworks? Strong deep structuralists, like Atkins, have proposed that\\nperhaps, after all, everything _is_ mathematics. \\n\\nIs usefulness any criterion?\\n\\nPetri\\n\\n--\\n ___. .\\'*\\'\\'.* Petri Pihko kem-pmp@ Mathematics is the Truth.\\n!___.\\'* \\'.\\'*\\' \\' . Pihatie 15 C finou.oulu.fi Physics is the Rule of\\n \\' *\\' .* \\'* SF-90650 OULU kempmp@ the Game.\\n *\\' * .* FINLAND phoenix.oulu.fi -> Chemistry is The Game.\\n',\n", + " 'From: perlman@qso.Colorado.EDU (Eric S. Perlman)\\nSubject: Re: Final Solution for Gaza ?\\nSummary: Davidsson can\\'t even get the most basic facts right.\\nNntp-Posting-Host: qso.colorado.edu\\nOrganization: University of Colorado, Boulder\\nLines: 27\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n>\\n>[...]\\n>The Gaza strip, this tiny area of land with the highest population\\n>density in the world, has been cut off from the world for weeks.\\n>The Israeli occupier has decided to punish the whole population of\\n>Gaza, some 700.000 people, by denying them the right to leave the\\n>strip and seek work in Israel.\\n\\nAnyone who can repeate this choice piece of tripe without checking\\nhis/her sources does not deserve to be believed. The Gaza strip does\\nnot possess the highest population density in the world. In fact, it\\nisn\\'t even close. Just one example will serve to illustrate the folly\\nof this statement: the city of Hong Kong has nearly ten times the\\npopulation of the Gaza strip in a roughly comparable land area. The\\ncenters of numerous cities also possess comparable, if not far higher,\\npopulation densities. Examples include Manhattan Island (NY City), Sao\\nPaolo, Ciudad de Mexico, Bombay,... \\n\\nNeed I go on? The rest of Mr. Davidsson\\'s message is no closer to the\\ntruth than this oft-repeated statement is.\\n\\n-- \\n\"How sad to see/A model of decorum and tranquillity/become like any other sport\\nA battleground for rival ideologies to slug it out with glee.\" -Tim Rice,\"Chess\"\\n Eric S. Perlman \\t\\t\\t\\t \\n Center for Astrophysics and Space Astronomy, University of Colorado, Boulder\\n',\n", + " 'From: ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed)\\nSubject: Re: Desertification of the Negev\\nOriginator: ahmeda@ice.mcrcim.mcgill.edu\\nNntp-Posting-Host: ice.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 23\\n\\n\\nIn article <1993Apr26.021105.25642@cs.brown.edu>, dzk@cs.brown.edu (Danny Keren) writes:\\n|> This is nonsense. I lived in the Negev for many years and I can say\\n|> for sure that no Beduins were \"moved\" or harmed in any way. On the\\n|> contrary, their standard of living has climbed sharply; many of them\\n|> now live in rather nice, permanent houses, and own cars. There are\\n|> quite a few Beduin students in the Ben-Gurion university. There are\\n|> good, friendly relations between them and the rest of the population.\\n|> \\n|> All the Beduins I met would be rather surprised to read Mr. Davidson\\'s\\n|> poster, I have to say.\\n|> \\n|> -Danny Keren.\\n|> \\n\\nIt is nonsense, Danny, if you can refute it with proof. If you are citing your\\nexperience then you should have been there in the 1940\\'s (the article is\\ncomparing the condition then with that now).\\n\\nOtherwise, it is you who is trying to change the facts.\\n\\n-Ahmed.\\n',\n", + " \"From: lm001@rrz.Uni-Koeln.DE (Erwin H. Keeve)\\nSubject: Polygon Reduction for Marching Cubes\\nOrganization: Regional Computing Center, University of Cologne\\nLines: 36\\nDistribution: world\\nNNTP-Posting-Host: rs1.rrz.uni-koeln.de\\nKeywords: Polygon Reduction, Marching Cubes, Surfaces, Midical Visualisation\\n\\n\\nDear Reader,\\n\\n\\nI'am searching for an implementation of a polygon reduction algorithm\\nfor marching cubes surfaces. I think the best one is the reduction algorithm\\nfrom Schroeder et al., SIGGRAPH '92. So, is there any implementation of this \\nalgorithm, it would be very nice if you could leave it to me.\\n\\nAlso I'am looking for a fast !!! connectivity\\ntest for marching cubes surfaces.\\n\\nAny help or hints will be very useful.\\nThanks a lot\\n\\n\\n ,,,\\n (o o)\\n ___________________________________________oOO__(-)__OOo_____________\\n|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|_|\\n|_|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|\\n| | |\\n| Erwin Keeve | adress: Peter-Welter-Platz 2 |\\n| | W-5000 Cologne 1, Germany |\\n| | |\\n| Dept. of Computergraphics & | phone: +49-221-20189-132 (-192) |\\n| Computeranimation | FAX: +49-221-20189-17 |\\n| | |\\n| Academy of Media Arts Cologne | Email: keeve@khm.uni-koeln.de |\\n|_______________________________|_____________________________________|\\n\\n\\n\\n\\n\\n\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 36\\n\\nIn article <93332@hydra.gatech.EDU> gt1091a@prism.gatech.EDU (gt1091a gt1091a\\nKAAN,TIMUCIN) wrote:\\n\\n[KAAN] Who the hell is this guy David Davidian. I think he talks too much..\\n\\nI am your alter-ego!\\n\\n[KAAN] Yo , DAVID you would better shut the f... up.. O.K ??\\n\\nNo, its\\' not OK! What are you going to do? Come and get me? \\n\\n[KAAN] I don\\'t like your attitute. You are full of lies and shit. \\n\\nIn the United States we refer to it as Freedom of Speech. If you don\\'t like \\nwhat I write either prove me wrong, shut up, or simply fade away! \\n\\n[KAAN] Didn\\'t you hear the saying \"DON\\'T MESS WITH A TURC!!\"...\\n\\nNo. Why do you ask? What are you going to do? Are you going to submit me to\\nbodily harm? Are you going to kill me? Are you going to torture me?\\n\\n[KAAN] See ya in hell..\\n\\nWrong again!\\n\\n[KAAN] Timucin.\\n\\nAll I did was to translate a few lines from Turkish into English. If it was\\nso embarrassing in Turkish, it shouldn\\'t have been written in the first place!\\nDon\\'t kill the messenger!\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: szabo@techbook.com (Nick Szabo)\\nSubject: SSF Redesign: Constellation\\nSummary: decentralize & automate functions\\nKeywords: space station, constellation\\nArticle-I.D.: techbook.C51z6E.CL1\\nOrganization: TECHbooks --- Public Access UNIX --- (503) 220-0636\\nLines: 89\\n\\nSSF is up for redesign again. Let's do it right this\\ntime! Let's step back and consider the functionality we want:\\n\\n[1] microgravity/vacuum process research\\n[2] life sciences research (adaptation to space)\\n[3] spacecraft maintenence \\n\\nThe old NASA approach, explified by Shuttle and SSF so far, was to\\ncentralize functionality. These projects failed to meet\\ntheir targets by a wide margin: the military and commercial users \\ntook most of their payloads off Shuttle after wasting much effort to \\ntie their payloads to it, and SSF has crumbled into disorganization\\nand miscommunication. Over $50 billion has been spent on these\\ntwo projects with no reduction in launch costs and littel improvement\\nin commercial space industrialization. Meanwhile, military and commercial \\nusers have come up with a superior strategy for space development: the \\nconstellation. \\n\\nFirstly, different functions are broken down into different \\nconstellations placed in the optimal orbit for each function:\\nthus we have the GPS/Navstar constellation in 12-hour orbits,\\ncomsats in Clarke and Molniya orbits, etc. Secondly, the task\\nis distributed amongst several spacecraft in a constellation,\\nproviding for redundancy and full coverage where needed.\\n\\nSSF's 3 main functions require quite different environments\\nand are also prime candidates for constellization.\\n\\n[1] We have the makings of a microgravity constellation now:\\nCOMET and Mir for long-duration flights, Shuttle/Spacelab for\\nshort-duration flights. The best strategy for this area is\\ninexpensive, incremental improvement: installation of U.S. facilities \\non Mir, Shuttle/Mir linkup, and transition from Shuttle/Spacelab\\nto a much less expensive SSTO/Spacehab/COMET or SSTO/SIF/COMET.\\nWe might also expand the research program to take advantage of \\ninteresting space environments, eg the high-radiation Van Allen belt \\nor gas/plasma gradients in comet tails. The COMET system can\\nbe much more easily retrofitted for these tasks, where a \\nstation is too large to affordably launch beyond LEO.\\n\\n[2] We need to study life sciences not just in microgravity,\\nbut also in lunar and Martian gravities, and in the radiation\\nenvironments of deep space instead of the protected shelter\\nof LEO. This is a very long-term, low-priority project, since\\nastronauts will have little practical use in the space program\\nuntil costs come down orders of magnitude. Furthermore, using\\nastronauts severely restricts the scope of the investigation,\\nand the sample size. So I propose LabRatSat, a constellation\\ntether-bolo satellites that test out various levels of gravity\\nin super-Van-Allen-Belt orbits that are representative of the\\nradiation environment encountered on Earth-Moon, Earth-Mars,\\nEarth-asteroid, etc. trips. The miniaturized life support\\nmachinery might be operated real-time from earth thru a VR\\ninterface. AFter several orbital missions have been flown,\\nfollow-ons can act as LDEFs on the lunar and Martian surface,\\ntesting out the actual environment at low cost before $billions\\nare spent on astronauts.\\n\\n[3] By far the largest market for spacecraft servicing is in \\nClarke orbit. I propose a fleet of small teleoperated\\nrobots and small test satellites on which ground engineers can\\npractice their skills. Once in place, robots can pry stuck\\nsolar arrays and antennas, attach solar battery power packs,\\ninject fuel, etc. Once the fleet is working, it can be\\nspun off to commercial company(s) who can work with the comsat\\ncompanies to develop comsat replaceable module standards.\\n\\nBy applying the successful constellation strategy, and getting\\nrid of the failed centralized strategy of STS and old SSF, we\\nhave radically improved the capability of the program while\\ngreatly cutting its cost. For a fraction of SSF's pricetag,\\nwe can fix satellites where the satellites are, we can study\\nlife's adaptation to a much large & more representative variety \\nof space environments, and we can do microgravity and vacuum\\nresearch inexpensively and, if needed, in special-purpose\\norbits.\\n\\nN.B., we can apply the constellation strategy to space exploration\\nas well, greatly cutting its cost and increasing its functionality. \\nMars Network and Artemis are two good examples of this; more ambitiously \\nwe can set up a network of native propellant plants on Mars that can be used\\nto fuel planet-wide rover/ballistic hopper prospecting and\\nsample return. The descendants of LabRatSat's technology can\\nbe used as a Mars surface LDEF and to test out closed-ecology\\ngreenhouses on Mars at low cost.\\n\\n\\n-- \\nNick Szabo\\t\\t\\t\\t\\t szabo@techboook.com\\n\",\n", + " 'From: jennise@opus.dgi.com (Milady Printcap the goddess of peripherals)\\nSubject: RE: Looking for a little research help\\nOrganization: Dynamic Graphics Inc.\\nLines: 6\\nDistribution: usa\\nNNTP-Posting-Host: opus.dgi.com\\n\\nFound it! Thanks. I got several offers for help. I appreciate it and\\nwill be contacting those people via e-mail.\\n\\nThanks again...\\n\\njennise\\n',\n", + " \"From: nraclaw@jade.tufts.edu (Nissan Raclaw)\\nSubject: Re: Go Hezbollah!!\\nOrganization: Tufts University - Medford, MA\\nLines: 13\\n\\nCongratulations also are due to the Hamas activists who blew up the \\nWorld Trade Center, no? After all, with every American that they put\\n\\nin the grave they are underlining the USA's bankrupt imperialist\\npolicies. Go HAmas!\\n\\nBlah blah blah blah blah\\n\\nBrad, you are only asking that that violence that you love so much\\ncome back to haunt you...............\\n\\nNissan\\n\\n\",\n", + " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Protective gear\\nOrganization: University College of Wales, Aberystwyth\\nLines: 19\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\nIn article <1993Apr3.200829.2207@galaxy.gov.bc.ca> bclarke@galaxy.gov.bc.ca writes:\\n>In article , maven@eskimo.com (Norman Hamer) writes:\\n>> What protective gear is the most important? I've got a good helmet (shoei\\n>> rf200) and a good, thick jacket (leather gold) and a pair of really cheap\\n>> leather gloves... What should my next purchase be? Better gloves, boots,\\n>> leather pants, what?\\n\\nIF you can remember to tuck properly, the bits that are going to take most \\npunishment with the gear you have will probably be your feet, then hips and \\nknees. Get boots then trousers. The gloves come last, as long as you've the \\nself control to pull your arms in when you tuck. If not, get good gloves \\nfirst - Hands are VERY easily wrecked if you put one down to steady your \\nfall at 70mph!! The other bits heal easier.\\n\\nOnce you are fully covered, you no longer tuck, just lie back and enjoy the \\nride.\\n\\nBest of all, take a mean of all the contradictory answers you get.\\n\",\n", + " 'From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: note to Bobby M.\\nLines: 52\\nOrganization: Walla Walla College\\nLines: 52\\n\\nIn article <1993Apr14.190904.21222@daffy.cs.wisc.edu> mccullou@snake2.cs.wisc.edu (Mark McCullough) writes:\\n>From: mccullou@snake2.cs.wisc.edu (Mark McCullough)\\n>Subject: Re: note to Bobby M.\\n>Date: Wed, 14 Apr 1993 19:09:04 GMT\\n>In article <1993Apr14.131548.15938@monu6.cc.monash.edu.au> darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n>>In madhaus@netcom.com (Maddi Hausmann) writes:\\n>>\\n>>>Mark, how much do you *REALLY* know about vegetarian diets?\\n>>>The problem is not \"some\" B-vitamins, it\\'s balancing proteins. \\n>>>There is also one vitamin that cannot be obtained from non-animal\\n>>>products, and this is only of concern to VEGANS, who eat no\\n>>>meat, dairy, or eggs. I believe it is B12, and it is the only\\n>>>problem. Supplements are available for vegans; yes, the B12\\n>>>does come from animal by-products. If you are on an ovo-lacto\\n>>>vegetarian diet (eat dairy and eggs) this is not an issue.\\n>\\n>I didn\\'t see the original posting, but...\\n>Yes, I do know about vegetarian diets, considering that several of my\\n>close friends are devout vegetarians, and have to take vitamin supplements.\\n>B12 was one of the ones I was thinking of, it has been a long time since\\n>I read the article I once saw talking about the special dietary needs\\n>of vegetarians so I didn\\'t quote full numbers. (Considering how nice\\n>this place is. ;)\\n>\\n>>B12 can also come from whole-grain rice, I understand. Some brands here\\n>>in Australia (and other places too, I\\'m sure) get the B12 in the B12\\n>>tablets from whole-grain rice.\\n>\\n>Are you sure those aren\\'t an enriched type? I know it is basically\\n>rice and soybeans to get almost everything you need, but I hadn\\'t heard\\n>of any rice having B12. \\n>\\n>>Just thought I\\'d contribute on a different issue from the norm :)\\n>\\n>You should have contributed to the programming thread earlier. :)\\n>\\n>> Fred Rice\\n>> darice@yoyo.cc.monash.edu.au \\n>\\n>M^2\\n>\\nIf one is a vegan (a vegetarian taht eats no animal products at at i.e eggs, \\nmilk, cheese, etc., after about 3 years of a vegan diet, you need to start \\ntaking B12 supplements because b12 is found only in animals.) Acutally our \\nbodies make B12, I think, but our bodies use up our own B12 after 2 or 3 \\nyears. \\nLacto-oveo vegetarians, like myself, still get B12 through milk products \\nand eggs, so we don\\'t need supplements.\\nAnd If anyone knows more, PLEASE post it. I\\'m nearly contridicting myself \\nwith the mish-mash of knowledge I\\'ve gleaned.\\n\\nTammy\\n',\n", + " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Solar Sail Data\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 56\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article <1993Apr15.051746.29848@news.duc.auburn.edu>, snydefj@eng.auburn.edu (Frank J. Snyder) writes:\\n> I am looking for any information concerning projects involving Solar\\n> Sails. [...]\\n> Are there any groups out there currently involved in such a project ?\\n\\nSure. Contact the World Space Foundation. They\\'re listed in the sci.space\\nFrequently Asked Questions file, which I\\'ll excerpt.\\n\\n WORLD SPACE FOUNDATION - has been designing and building a solar-sail\\n spacecraft for longer than any similar group; many JPL employees lend\\n their talents to this project. WSF also provides partial funding for the\\n Palomar Sky Survey, an extremely successful search for near-Earth\\n asteroids. Publishes *Foundation News* and *Foundation Astronautics\\n Notebook*, each a quarterly 4-8 page newsletter. Contributing Associate,\\n minimum of $15/year (but more money always welcome to support projects).\\n\\n\\tWorld Space Foundation\\n\\tPost Office Box Y\\n\\tSouth Pasadena, California 91301\\n\\nWSF put together a little paperback anthology of fiction and\\nnonfiction about solar sails: *Project Solar Sail*. I think Robert\\nStaehle, David Brin, or Arthur Clarke may be listed as editor.\\n\\nAlso there is a nontechnical book on solar sailing by Louis Friedman,\\na technical one by a guy whose name escapes me (help me out, Josh),\\nand I would expect that Greg Matloff and Eugene Mallove have something\\nto say about the subject in *The Starflight Handbook*, as well as\\nquite a few references.\\n\\n\\nCheck the following articles in *Journal of the British Interplanetary\\nSociety*:\\n\\nV36 p. 201-209 (1983)\\nV36 p. 483-489 (1983)\\nV37 p. 135-141 (1984)\\nV37 p. 491-494 (1984)\\nV38 p. 113-119 (1984)\\nV38 p. 133-136 (1984)\\n\\n(Can you guess that Matloff visited Fermilab and gave me a bunch of\\nreprints? I just found the file.)\\n\\nAnd K. Eric Drexler\\'s paper \"High Performance Solar Sails and Related\\nReflecting Devices,\" AIAA paper 79-1418, probably in a book called\\n*Space Manufacturing*, maybe the proceedings of the Second (?)\\nConference on Space Manufacturing. The 1979 one, at any rate.\\n\\nSubmarines, flying boats, robots, talking Bill Higgins\\npictures, radio, television, bouncing radar Fermilab\\nvibrations off the moon, rocket ships, and HIGGINS@FNAL.BITNET\\natom-splitting-- all in our time. But nobody HIGGINS@FNAL.FNAL.GOV\\nhas yet been able to figure out a music SPAN: 43011::HIGGINS\\nholder for a marching piccolo player. \\n --Meredith Willson, 1948\\n',\n", + " 'Organization: Ryerson Polytechnical Institute\\nFrom: Mike Mychalkiw \\nSubject: Re: Cobra Locks\\nDistribution: usa\\nLines: 33\\n\\nGreetings netters,\\n\\nSteve writes ... \\n\\nWell I have the mother of all locks. On Friday the 16th of April I took\\npossesion of a 12\\' Cobra Links lock, 1\" diameter. This was a special order.\\n\\nI weighs a lot. I had to carry it home and it was digging into my shoulder\\nafter about two blocks.\\n\\nI have currently a Kryptonite Rock Lock through the front wheel, a HD\\npadlock for the steering lock, a Master padlock to lock the cover to two\\nfront spokes, and the Cobra Links through the rear swing arm and around a\\npost in an underground parking garage.\\n\\nNext Friday the 30th I have an appointment to have an alarm installed on\\nme bike.\\n\\nWhen I travel the Cobra Links and the cover and padlock stay at home.\\n\\nBy the way. I also removed the plastic mesh that is on the Cobra Links\\nand encased the lock from end to end using bicycle inner tubes (two of\\nthem) I got the from bicycle dealer that sold me the Cobra Links. The\\nguys were really great and didn\\'t mark up the price of the lock much\\nand the inner tubes were free.\\n\\nLater.\\n\\n-------------------------------------------------------------------------------\\n1992 FXSTC Rock \\'N Roll Mike Mychalkiw\\nHOG Ryerson Polytechnical Institute -\\nDoD #665 Just THIS side of HELL. Academic Computing Information Centre\\ndoh #0000000667 Just the OTHER side. EMAIL : ACAD8059@RYEVM.RYERSON.CA\\n',\n", + " 'From: Dave Dal Farra \\nSubject: Re: Eating and Riding was Re: Drinking and Riding\\nX-Xxdate: Tue, 6 Apr 93 15:22:03 GMT\\nNntp-Posting-Host: bcarm41a\\nOrganization: BNR Ltd.\\nX-Useragent: Nuntius v1.1.1d9\\nLines: 30\\n\\nIn article Paul Nakada,\\npnakada@oracle.com writes:\\n>\\n>What\\'s the feeling about eating and riding? I went out riding this\\n>weekend, and got a little carried away with some pecan pie. The whole\\n>ride back I felt sluggish. I was certainly much more alert on the\\n>ride in. I\\'m sure others have the same feeling, but the strangest\\n>thing is that eating is usually the turnaround point of weekend rides.\\n>\\n>From now on, a little snack will do. I\\'d much rather have a get that\\n>full/sluggish feeling closer to home.\\n>\\n>-Paul\\n>--\\n>Paul Nakada | Oracle Corporation | pnakada@oracle.com\\n>DoD #7773 | \\'91 R100C | \\'90 K75S\\n>\\n\\nTo maintain my senses at their sharpest, I never eat a full meal\\nwithin 24 hrs of a ride. I\\'ve tried Slim Fast Lite before a \\nride but found that my lap times around the Parliament Buildings suffered \\n0.1 secs. The resultant 70 pound weight loss over the summer\\njust sharpens my bike\\'s handling and I can always look\\nforward to a winter of carbo-loading.\\n\\nObligatory 8:)\\n\\nDave D.F.\\n\"It\\'s true they say that money talks. When mine spoke it said\\n\\'Buy me a Drink!\\'.\"\\n',\n", + " 'From: wcd82671@uxa.cso.uiuc.edu (daniel warren c)\\nSubject: Hard Copy --- Hot Pursuit!!!!\\nSummary: SHIT!!!!!!!\\nKeywords: Running from the Police.\\nArticle-I.D.: news.C5J34y.2t4\\nDistribution: rec.motorcycles\\nOrganization: University of Illinois at Urbana\\nLines: 44\\n\\n\\nYo, did anybody see this run of HARD COPY?\\n\\nI guy on a 600 Katana got pulled over by the Police (I guess for\\nspeeding or something). But just as the cop was about to step\\nout of the car, the dude punches it down an interstate in Georgia.\\nAng then, the cop gives chase.\\n\\nNow this was an interesting episode because it was all videotaped!!!\\nEverything from the dramatic takeoff and 135mph chase to the sidestreet\\nbattle at about 100mph. What happened at the end? The guy (who is\\nbeing relentless chased down box the cage with the disco lights)\\nslows a couple of times to taunt the cop. After blowing a few stop\\nsigns and making car jump to the side, he goes up a dead end street.\\n\\nThe Kat, although not the latest machine, is still a high performance\\nmachine and he slams on the brakes. Of couse, we all know that cages,\\nespecially the ones with the disco lights, can\\'t stop as fast as our\\nhigh performance machines. So what happens?... The cage plows into the\\nKat.\\n\\nLuckily for this dude, he was wearing a helmet and was not hurt. But\\ndude, how crazy can you get!?! Yeah, we\\'ve all went out and played\\ncat and mouse with our friends but, with a cop!!???!!! How crazy can\\nyou get!?!?! It took just one look at a ZX-7 who tried this crap\\nto convince me not to try any shit like that. (Although the dude\\ncollided with a car head on at 140 mph, the Kawasaki team colors\\nstill looked good!!! Just a few scratches, like no front end....\\n3 inch long engine and other \"minor\" scratches...)\\n\\nIf you guys are out there, please, slow it down. I not being\\nan advocate for the cages (especially the ones that make that \\nannoying ass noises...), but just think... The next time you\\npunched it (whether you have an all mighty ZX-11 or a \"I can\\ndo it\" 250 Ninja), just remember, a kid could step out at any \\ntime.\\n\\nPeace & ride (kinda) safe.\\n\\nWarren -- \"Have Suzuki, Will travel...\"\\nWCD82671@uxa.cso.uiuc.edu\\n\\n\"What\\'s the big deal about riding one of these. I\\'m only going...\\n95!?!?!\" - Annie (Robotech)\\n',\n", + " 'From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 30\\n\\nIn article <1993Apr25.182253.1449@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>\\tI don\\'t know where you guys are from but in America\\n>such attempts to curtail someones first amendment rights are\\n>not appreciated. Here, we let everyone speak their mind\\n>regardless of how we feel about it. Take your fascistic\\n>repressive ideals back to where you came from.\\n\\n\\nHey tough guy, freedom necessitates responsibility, and\\nno freedom is absolute. \\nBTW, to anyone who defends Arafat, read on:\\n\\n\"Open fire on the new Jewish immigrants, be they from the Soviet\\nUnion, Ethiopia or anywhere else....I give you my instructions to\\nuse violence against the immigrants. I willjail anyone who\\nrefuses to do this.\"\\n\\t\\t\\t\\tYassir Arafat, Al-Muharar, 4/10/90\\n\\nAt least he\\'s not racist!\\nJust anti-Jewish\\n\\n\\nPete\\n\\n\\n\\n\\n\\n\\n',\n", + " 'From: dchien@hougen.seas.ucla.edu (David H. Chien)\\nSubject: Orbit data - help needed\\nOrganization: SEASnet, University of California, Los Angeles\\nLines: 43\\n\\nI have the \"osculating elements at perigee\" of an orbit, which I need\\nto convert to something useful, preferably distance from the earth\\nin evenly spaced time intervals. A GSM coordinate system is preferable,\\nbut I convert from other systems. C, pascal, or fortran code, or\\nif you can point me to a book or something that\\'d be great.\\n\\nhere\\'s the first few lines of the file.\\n\\n0 ()\\n1 (2X, A3, 7X, A30)\\n2 (2X, I5, 2X, A3, 2X, E24.18)\\n3 (4X, A3, 7X, E24.18)\\n1 SMA SEMI-MAJOR AXIS\\n1 ECC ECCENTRICITY\\n1 INC INCLINATION\\n1 OMG RA OF ASCENDING NODE\\n1 POM ARGUMENT OF PERICENTRE\\n1 TRA TRUE ANOMALY\\n1 HAP APOCENTRE HEIGHT\\n1 HPE PERICENTRE HEIGHT\\n2 3 BEG 0.167290000000000000E+05\\n3 SMA 0.829159999999995925E+05\\n3 ECC 0.692307999999998591E+00\\n3 INC 0.899999999999999858E+02\\n3 OMG 0.184369999999999994E+03\\n3 POM 0.336549999999999955E+03\\n3 TRA 0.359999999999999943E+03\\n3 HAP 0.133941270127999174E+06\\n3 HPE 0.191344498719999910E+05\\n2 1 REF 0.167317532658774153E+05\\n3 SMA 0.829125167527418671E+05\\n3 ECC 0.691472268118590319E+00\\n3 INC 0.899596754214342091E+02\\n3 OMG 0.184377521828175002E+03\\n3 POM 0.336683788851850579E+03\\n3 TRA 0.153847166458030088E-05\\n3 HAP 0.133866082767180880E+06\\n3 HPE 0.192026707383028306E+05\\n\\nThanks in advance,\\n\\nlarry kepko\\nlkepko@igpp.ucla.edu\\n',\n", + " ' howland.reston.ans.net!europa.eng.gtefsd.com!uunet!mcsun!Germany.EU.net!news.dfn.de!tubsibr!dbstu1.rz.tu-bs.de!I3150101\\nSubject: Re: Gospel Dating\\nFrom: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nOrganization: Technical University Braunschweig, Germany\\nLines: 35\\n\\nIn article <66015@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n(Deletion)\\n>I cannot see any evidence for the V. B. which the cynics in this group would\\n>ever accept. As for the second, it is the foundation of the religion.\\n>Anyone who claims to have seen the risen Jesus (back in the 40 day period)\\n>is a believer, and therefore is discounted by those in this group; since\\n>these are all ancients anyway, one again to choose to dismiss the whole\\n>thing. The third is as much a metaphysical relationship as anything else--\\n>even those who agree to it have argued at length over what it *means*, so\\n>again I don\\'t see how evidence is possible.\\n>\\n \\nNo cookies, Charlie. The claims that Jesus have been seen are discredited\\nas extraordinary claims that don\\'t match their evidence. In this case, it\\nis for one that the gospels cannot even agree if it was Jesus who has been\\nseen. Further, there are zillions of other spook stories, and one would\\nhardly consider others even in a religious context to be some evidence of\\na resurrection.\\n \\nThere have been more elaborate arguments made, but it looks as if they have\\nnot passed your post filtering.\\n \\n \\n>I thus interpret the \"extraordinary claims\" claim as a statement that the\\n>speaker will not accept *any* evidence on the matter.\\n \\nIt is no evidence in the strict meaning. If there was actual evidence it would\\nprobably be part of it, but the says nothing about the claims.\\n \\n \\nCharlie, I have seen Invisible Pink Unicorns!\\nBy your standards we have evidence for IPUs now.\\n Benedikt\\n',\n", + " 'From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Ok, So I was a little hasty...\\nOrganization: Ontario Hydro - Research Division\\nLines: 17\\n\\nIn article speedy@engr.latech.edu (Speedy Mercer) writes:\\n>In article jnmoyne@lbl.gov (Jean-Noel Moyne) writes:\\n>> Ok, hold on a second and clarify something for me:\\n>\\n>> What does \"DWI\" stand for ? I thought it was \"DUI\" for Driving Under\\n>>Influence, so here what does W stand for ?\\n>\\n>Driving While Intoxicated.\\n>\\n>This was changed here in Louisiana when a girl went to court and won her \\n>case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\nHere it\\'s driving while impaired. That about covers everything.\\n\\nI\\'ve bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n',\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: FLAME and a Jewish home in Palestine\\nOrganization: The Department of Redundancy Department\\nLines: 41\\n\\nIn article maler@vercors.imag.fr (Oded Maler) writes:\\n>In article , jake@bony1.bony.com (Jake Livni) writes:\\n\\n>|> Typical Arabic thinking. If we are guilty of something, so is\\n>|> everyone else. Unfortunately for you, Nabil, Jewish tribes are not\\n>|> nearly as susceptible to the fratricidal murdering that is still so\\n>|> common among Arabs in the Middle East. There were no \" killings\\n>|> between the Jewish tribes on the way.\"\\n\\n>I don\\'t like this comment about \"Typical\" thinking. You could state\\n>your interpretation of Exodus without it. As I read Exodus I can see \\n>a lot of killing there, which is painted by the author of the bible\\n>in ideological/religious colors. The history in the desert can be seen\\n>as an ethos of any nomadic people occupying a land. That\\'s why I think\\n>it is a great book with which descendants Arabs, Turks and Mongols can \\n>unify as well.\\n\\nYou somehow missed Nabil\\'s comments, even though you included it in\\nyour followup: \\n\\n >The number which could have arrived to the Holy Lands must have been\\n >substantially less ude to the harsh desert and the killings between the\\n >Jewish tribes on the way..\\n\\nI am not aware of \"killings between Jewish tribes\" in the desert.\\n\\nThe point of \"typical thinking\" here is that while Arabs STILL TODAY\\nact in the manner you describe, like \"any nomadic people occupying a \\nland\", killing and plundering each other with regularity, others have\\nsomehow progressed over time. It is not surprising then that Arabs\\noften accuse others (infidels) of things that they are quite familiar\\nwith: civil rights violations, religious discrimination, ethnic\\ncleansing, land theft, torture and murder. It is precisely this \\nmechanism at work that leads people to say that Jewish tribes were\\nkilling each other in the desert, even without support for such a\\nludicrous suggestion.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " \"From: roell@informatik.tu-muenchen.de (Thomas Roell)\\nSubject: Re: 24 bit Graphics cards\\nIn-Reply-To: rjs002c@parsec.paradyne.com's message of Wed, 14 Apr 1993 21:59:34 GMT\\nOrganization: Inst. fuer Informatik, Technische Univ. Muenchen, Germany\\nLines: 20\\n\\n>I am looking for EISA or VESA local bus graphic cards that support at least \\n>1024x786x24 resolution. I know Matrox has one, but it is very\\n>expensive. All the other cards I know of, that support that\\n>resoultion, are striaght ISA. \\n\\nWhat about the ELSA WINNER4000 (S3 928, Bt485, 4MB, EISA), or the\\nMetheus Premier-4VL (S3 928, Bt485, 4MB, ISA/VL) ?\\n\\n>Also are there any X servers for a unix PC that support 24 bits?\\n\\nAs it just happens, SGCS has a Xserver (X386 1.4) that does\\n1024x768x24 on those cards. Please email to info@sgcs.com for more\\ndetails.\\n\\n- Thomas\\n--\\n-------------------------------------------------------------------------------\\nDas Reh springt hoch, \\t\\t\\t\\te-mail: roell@sgcs.com\\ndas Reh springt weit,\\t\\t\\t\\t#include \\nwas soll es tun, es hat ja Zeit ...\\n\",\n", + " \"From: M. Burnham \\nSubject: Re: How to act in front of traffic jerks\\nX-Xxdate: Thu, 15 Apr 93 16:39:59 GMT\\nNntp-Posting-Host: 130.57.72.65\\nOrganization: Novell Inc.\\nX-Useragent: Nuntius v1.1.1d12\\nLines: 16\\n\\nIn article Robert Mugele,\\nrmugele@oracle.com writes:\\n>Absolutely, unless you are in the U.S. Then the cager will pull a gun\\n>and blow you away.\\n\\nWell, I would guess the probability of a BMW driver having a gun would\\nbe lower than some other vehicles. At least, I would be more likely \\nto say something to someone in a luxosedan, than a hopped-up pickup\\ntruck, for example.\\n\\n- Mark\\n\\n------------------------------------------------------------------------\\nMark S. Burnham (markb@wc.novell.com) AMA#668966 DoD#0747 \\nAlfa Romeo GTV-6 '90 Ninja 750\\n------------------------------------------------------------------------\\n\",\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 09/15 - Mission Schedules\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 177\\nDistribution: world\\nExpires: 6 May 1993 19:59:07 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/schedule\\nLast-modified: $Date: 93/04/01 14:39:23 $\\n\\nSPACE SHUTTLE ANSWERS, LAUNCH SCHEDULES, TV COVERAGE\\n\\n SHUTTLE LAUNCHINGS AND LANDINGS; SCHEDULES AND HOW TO SEE THEM\\n\\n Shuttle operations are discussed in the Usenet group sci.space.shuttle,\\n and Ken Hollis (gandalf@pro-electric.cts.com) posts a compressed version\\n of the shuttle manifest (launch dates and other information)\\n periodically there. The manifest is also available from the Ames SPACE\\n archive in SPACE/FAQ/manifest. The portion of his manifest formerly\\n included in this FAQ has been removed; please refer to his posting or\\n the archived copy. For the most up to date information on upcoming\\n missions, call (407) 867-INFO (867-4636) at Kennedy Space Center.\\n\\n Official NASA shuttle status reports are posted to sci.space.news\\n frequently.\\n\\n\\n WHY DOES THE SHUTTLE ROLL JUST AFTER LIFTOFF?\\n\\n The following answer and translation are provided by Ken Jenks\\n (kjenks@gothamcity.jsc.nasa.gov).\\n\\n The \"Ascent Guidance and Flight Control Training Manual,\" ASC G&C 2102,\\n says:\\n\\n\\t\"During the vertical rise phase, the launch pad attitude is\\n\\tcommanded until an I-loaded V(rel) sufficient to assure launch tower\\n\\tclearance is achieved. Then, the tilt maneuver (roll program)\\n\\torients the vehicle to a heads down attitude required to generate a\\n\\tnegative q-alpha, which in turn alleviates structural loading. Other\\n\\tadvantages with this attitude are performance gain, decreased abort\\n\\tmaneuver complexity, improved S-band look angles, and crew view of\\n\\tthe horizon. The tilt maneuver is also required to start gaining\\n\\tdownrange velocity to achieve the main engine cutoff (MECO) target\\n\\tin second stage.\"\\n\\n This really is a good answer, but it\\'s couched in NASA jargon. I\\'ll try\\n to interpret.\\n\\n 1)\\tWe wait until the Shuttle clears the tower before rolling.\\n\\n 2)\\tThen, we roll the Shuttle around so that the angle of attack\\n\\tbetween the wind caused by passage through the atmosphere (the\\n\\t\"relative wind\") and the chord of the wings (the imaginary line\\n\\tbetween the leading edge and the trailing edge) is a slightly\\n\\tnegative angle (\"a negative q-alpha\").\\tThis causes a little bit of\\n\\t\"downward\" force (toward the belly of the Orbiter, or the +Z\\n\\tdirection) and this force \"alleviates structural loading.\"\\n\\tWe have to be careful about those wings -- they\\'re about the\\n\\tmost \"delicate\" part of the vehicle.\\n\\n 3)\\tThe new attitude (after the roll) also allows us to carry more\\n\\tmass to orbit, or to achieve a higher orbit with the same mass, or\\n\\tto change the orbit to a higher or lower inclination than would be\\n\\tthe case if we didn\\'t roll (\"performance gain\").\\n\\n 4)\\tThe new attitude allows the crew to fly a less complicated\\n\\tflight path if they had to execute one of the more dangerous abort\\n\\tmaneuvers, the Return To Launch Site (\"decreased abort maneuver\\n\\tcomplexity\").\\n\\n 5)\\tThe new attitude improves the ability for ground-based radio\\n\\tantennae to have a good line-of-sight signal with the S-band radio\\n\\tantennae on the Orbiter (\"improved S-band look angles\").\\n\\n 6)\\tThe new attitude allows the crew to see the horizon, which is a\\n\\thelpful (but not mandatory) part of piloting any flying machine.\\n\\n 7)\\tThe new attitude orients the Shuttle so that the body is\\n\\tmore nearly parallel with the ground, and the nose to the east\\n\\t(usually). This allows the thrust from the engines to add velocity\\n\\tin the correct direction to eventually achieve orbit. Remember:\\n\\tvelocity is a vector quantity made of both speed and direction.\\n\\tThe Shuttle has to have a large horizontal component to its\\n\\tvelocity and a very small vertical component to attain orbit.\\n\\n This all begs the question, \"Why isn\\'t the launch pad oriented to give\\n this nice attitude to begin with? Why does the Shuttle need to roll to\\n achieve that attitude?\" The answer is that the pads were leftovers\\n from the Apollo days. The Shuttle straddles two flame trenches -- one\\n for the Solid Rocket Motor exhaust, one for the Space Shuttle Main\\n Engine exhaust. (You can see the effects of this on any daytime\\n launch. The SRM exhaust is dirty gray garbage, and the SSME exhaust is\\n fluffy white steam. Watch for the difference between the \"top\"\\n [Orbiter side] and the \"bottom\" [External Tank side] of the stack.) The\\n access tower and other support and service structure are all oriented\\n basically the same way they were for the Saturn V\\'s. (A side note: the\\n Saturn V\\'s also had a roll program. Don\\'t ask me why -- I\\'m a Shuttle\\n guy.)\\n\\n I checked with a buddy in Ascent Dynamics.\\tHe added that the \"roll\\n maneuver\" is really a maneuver in all three axes: roll, pitch and yaw.\\n The roll component of that maneuver is performed for the reasons\\n stated. The pitch component controls loading on the wings by keeping\\n the angle of attack (q-alpha) within a tight tolerance. The yaw\\n component is used to determine the orbital inclination. The total\\n maneuver is really expressed as a \"quaternion,\" a grad-level-math\\n concept for combining all three rotation matrices in one four-element\\n array.\\n\\n\\n HOW TO RECEIVE THE NASA TV CHANNEL, NASA SELECT\\n\\n NASA SELECT is broadcast by satellite. If you have access to a satellite\\n dish, you can find SELECT on Satcom F2R, Transponder 13, C-Band, 72\\n degrees West Longitude, Audio 6.8, Frequency 3960 MHz. F2R is stationed\\n over the Atlantic, and is increasingly difficult to receive from\\n California and points west. During events of special interest (e.g.\\n shuttle missions), SELECT is sometimes broadcast on a second satellite\\n for these viewers.\\n\\n If you can\\'t get a satellite feed, some cable operators carry SELECT.\\n It\\'s worth asking if yours doesn\\'t.\\n\\n The SELECT schedule is found in the NASA Headline News which is\\n frequently posted to sci.space.news. Generally it carries press\\n conferences, briefings by NASA officials, and live coverage of shuttle\\n missions and planetary encounters. SELECT has recently begun carrying\\n much more secondary material (associated with SPACELINK) when missions\\n are not being covered.\\n\\n\\n AMATEUR RADIO FREQUENCIES FOR SHUTTLE MISSIONS\\n\\n The following are believed to rebroadcast space shuttle mission audio:\\n\\n\\tW6FXN - Los Angeles\\n\\tK6MF - Ames Research Center, Mountain View, California\\n\\tWA3NAN - Goddard Space Flight Center (GSFC), Greenbelt, Maryland.\\n\\tW5RRR - Johnson Space Center (JSC), Houston, Texas\\n\\tW6VIO - Jet Propulsion Laboratory (JPL), Pasadena, California.\\n\\tW1AW Voice Bulletins\\n\\n\\tStation VHF\\t 10m\\t 15m\\t 20m\\t 40m\\t 80m\\n\\t------\\t ------ ------ ------ ------ -----\\t-----\\n\\tW6FXN\\t 145.46\\n\\tK6MF\\t 145.585\\t\\t\\t 7.165\\t3.840\\n\\tWA3NAN\\t 147.45 28.650 21.395 14.295 7.185\\t3.860\\n\\tW5RRR\\t 146.64 28.400 21.350 14.280 7.227\\t3.850\\n\\tW6VIO\\t 224.04\\t\\t 21.340 14.270\\n\\tW6VIO\\t 224.04\\t\\t 21.280 14.282 7.165\\t3.840\\n\\tW1AW\\t\\t 28.590 21.390 14.290 7.290\\t3.990\\n\\n W5RRR transmits mission audio on 146.64, a special event station on the\\n other frequencies supplying Keplerian Elements and mission information.\\n\\n W1AW also transmits on 147.555, 18.160. No mission audio but they\\n transmit voice bulletins at 0245 and 0545 UTC.\\n\\n Frequencies in the 10-20m bands require USB and frequencies in the 40\\n and 80m bands LSB. Use FM for the VHF frequencies.\\n\\n [This item was most recently updated courtesy of Gary Morris\\n (g@telesoft.com, KK6YB, N5QWC)]\\n\\n\\n SOLID ROCKET BOOSTER FUEL COMPOSITION\\n\\n Reference: \"Shuttle Flight Operations Manual\" Volume 8B - Solid Rocket\\n Booster Systems, NASA Document JSC-12770\\n\\n Propellant Composition (percent)\\n\\n Ammonium perchlorate (oxidizer)\\t\\t\\t69.6\\n Aluminum\\t\\t\\t\\t\\t\\t16\\n Iron Oxide (burn rate catalyst)\\t\\t\\t0.4\\n Polybutadiene-acrilic acid-acrylonitrile (a rubber) 12.04\\n Epoxy curing agent\\t\\t\\t\\t\\t1.96\\n\\n End reference\\n\\n Comment: The aluminum, rubber, and epoxy all burn with the oxidizer.\\n\\nNEXT: FAQ #10/15 - Historical planetary probes\\n',\n", + " 'From: mdennie@xerox.com (Matt Dennie)\\nSubject: Re: Flashing anyone?\\nKeywords: flashing\\nOrganization: Xerox\\n\\nIn <1993Apr15.123539.2228@news.columbia.edu> rdc8@cunixf.cc.columbia.edu (Robert D Castro) writes:\\n\\n>Hello all,\\n\\n>On my bike I have hazard lights (both front and back turn signals\\n>flash). Since I live in NJ and commute to NYC there are a number of\\n>tolls one must pay on route. Just before arriving at a toll booth I\\n>switch the hazards on. I do thisto warn other motorists that I will\\n>be taking longer than the 2 1/2 seconds to make the transaction.\\n>Taking gloves off, getting money out of coin changer/pocket, making\\n>transaction, putting gloves back on takes a little more time than the\\n>average cager takes to make the same transaction of paying the toll.\\n>I also notice that when I do this cagers tend to get the message and\\n>usually go to another booth.\\n\\n>My question, is this a good/bad thing to do?\\n\\n>Any others tend to do the same?\\n\\n>Just curious\\n\\n>o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o>\\n> Rob Castro | email - rdc8@cunixf.cc.columbia.edu | Live for today\\n> 1983 KZ550LTD | phone - (212) 854-7617 | For today you live!\\n> DoD# NYC-1 | New York, New York, USA | RC (tm)\\n\\nBeleive it or not: NY state once considered eliminating tolls for motor-\\ncycles based simply on the fact that motos clog up toll booths. But then\\nMario realized the foolishness of trading a few hundred K $`s a year for\\nsome relief in traffic congestion.\\n\\nToo bad he won`t take that Sumpreme Court Justice job - I thought we might\\nbe rid of him forever.\\n--\\n--Matt Dennie Internet: mmd.wbst207v@xerox.com\\nXerox Corporation, Rochester, NY (USA)\\n\"Reaching consensus in a group often\\n is confused with finding the right answer.\" -- Norman Maier\\n',\n", + " 'From: ray@unisql.UUCP (Ray Shea)\\nSubject: Re: What is it with Cats and Dogs ???!\\nOrganization: UniSQL, Inc., Austin, Texas, USA\\nLines: 17\\n\\nIn article <1993Apr14.200933.15362@cbnewsj.cb.att.com> jimbes@cbnewsj.cb.att.com (james.bessette) writes:\\n>In article <6130328@hplsla.hp.com> kens@hplsla.hp.com (Ken Snyder) writes:\\n>>ps. I also heard from a dog breeder that the chains of bicycles and\\n>>motorcycles produced high frequency squeaks that dogs loved to chase.\\n>\\n>Ask the breeder why they also chase BMWs also.\\n\\n\\nSqueaky BMW riders.\\n\\n\\n\\n-- \\nRay Shea \\t\\t \"they wound like a very effective method.\"\\nUniSQL, Inc.\\t\\t --Leah\\nunisql!ray@cs.utexas.edu some days i miss d. boon real bad. \\nDoD #0372 : Team Twinkie : \\'88 Hawk GT \\n',\n", + " \"From: leavitt@cs.umd.edu (Mr. Bill)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: The Cafe at the Edge of the Universe\\nLines: 43\\n\\nmjs@sys.uea.ac.uk (Mike Sixsmith) writes:\\nmjs>Secondly, it is the adhesion of the\\nmjs>tyre on the road, the suspension geometry and the ground clearance of the\\nmjs> motorcycle which dictate how quickly you can swerve to avoid obstacles, and\\nmjs>not the knowledge of physics between the rider's ears. Are you seriously\\n ^^^^^^^^^^^^^^^^^^^^\\nmjs>suggesting that countersteering knowledge enables you to corner faster\\nmjs>or more competentlY than you could manage otherwise??\\n\\negreen@east.sun.com writes:\\ned>If he's not, I will. \\n\\nHey Ed, you didn't give me the chance! Sheesh!\\n\\nThe answer is, absolutely!, as Ed so eloquently describes:\\n\\ned>Put two riders on identical machines. It's the\\ned>one who knows what he's doing, and why, that will be faster. It *may*\\ned>be possible to improve your technique if you have no idea what it is,\\ned>through trial and error, but it is not very effective methodology.\\ned>Only by understanding the technique of steering a motorcycle can one\\n ^^^^^^^^^^^^^^^^^^^^^\\ned>improve on that technique (I hold that this applies to any human\\ned>endeavor).\\n\\nHerein lies the key to this thread:\\n\\nKindly note the difference in the responses. Ed (and I) are talking\\nabout knowing riding technique, while Mike is arguing knowing the physics\\nbehind it. It *is* possible to be taught the technique of countersteering\\n(ie: push the bar on the inside of the turn to go that way) *without*\\nhaving to learn all the fizziks about gyroscopes and ice cream cones\\nand such as seen in the parallel thread. That stuff is mainly of interest\\nto techno-motorcycle geeks like the readers of rec.motorcycles ;^),\\nbut doesn't need to be taught to the average student learning c-steering.\\nMike doesn't seem to be able to make the distinction. I know people\\nwho can carve circles around me who couldn't tell you who Newton was.\\nOn the other hand, I know very intelligent, well-educated people who\\nthink that you steer a motorcycle by either: 1) leaning, 2) steering\\na la bicycles, or 3) a combination of 1 and 2. Knowledge of physics\\ndoesn't get you squat - knowledge of technique does!\\n\\nMr. Bill\\n\",\n", + " \"From: vwelch@ncsa.uiuc.edu (Von Welch)\\nSubject: Re: MOTORCYCLE DETAILING TIP #18\\nOrganization: Nat'l Ctr for Supercomp App (NCSA) @ University of Illinois\\nLines: 22\\n\\nIn article <1993Apr15.164644.7348@hemlock.cray.com>, ant@palm21.cray.com (Tony Jones) writes:\\n|> \\n|> How about someone letting me know MOTORCYCLE DETAILING TIP #19 ?\\n|> \\n|> The far side of my instrument panel was scuffed when the previous owner\\n|> dumped the bike. Same is true for one of the turn signals.\\n|> \\n|> Both of the scuffed areas are black plastic.\\n|> \\n|> I recall reading somewhere, that there was some plastic compound you could coat\\n|> the scuffed areas with, then rub it down, ending with a nice smooth shiny \\n|> finish ?\\n|> \\n\\nIn the May '93 Motorcyclist (pg 15-16), someone writes in and recomends using\\nrubberized undercoating for this. \\n\\n-- \\nVon Welch (vwelch@ncsa.uiuc.edu)\\tNCSA Networking Development Group\\n'93 CBR600F2\\t\\t\\t'78 KZ650\\t\\t'83 Subaru GL 4WD\\n\\n- I speak only for myself and those who think exactly like me -\\n\",\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: A Little Too Satanic\\nOrganization: sgi\\nLines: 16\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <66486@mimsy.umd.edu>, mangoe@cs.umd.edu (Charley Wingate) writes:\\n|> Jeff West writes:\\n|> \\n|> >You claimed that people that took the time to translate the bible would\\n|> >also take the time to get it right. But here in less than a couple\\n|> >generations you\\'ve been given ample proof (agreed to by yourself above)\\n|> >that the \"new\" versions \"tends to be out of step with other modern\\n|> >translations.\"\\n|> \\n|> What I said was that people took time to *copy* *the* *text* correctly.\\n|> Translations present completely different issues.\\n\\nSo why do I read in the papers that the Qumram texts had \"different\\nversions\" of some OT texts. Did I misunderstand?\\n\\njon. \\n',\n", + " 'From: harley-request@thinkage.on.ca (Harley Mailing List Digest)\\nSubject: Harley-Davidson Mailing List -- an Email taste sensation!\\nSummary: a sort of bi-monthly not really automated announcement\\nOriginator: hogreq@hog.thinkage.on.ca\\nKeywords: digests, lists, harley-davidson, hogaholics\\nSupersedes: <93mar09-hog-announce@hog.thinkage.on.ca>\\nOrganization: Thinkage Ltd.\\nExpires: Fri, 30 Apr 1993 11:00:00 GMT\\nLines: 36\\n\\n Anyone interesting in a mailing list for Harley-Davidson bikes, lifestyle,\\npolitics, H.O.G. and whatever over 310 members from 14 countries make it,\\nmay subscribe by sending a request to:\\n\\n harley-request@thinkage.on.ca\\n or uunet.ca!thinkage!harley-request\\n\\n***\\n* Your request to join should have a signature or something giving your full\\n* Email address. Do not RELY on the header \"From:\" field being useful to me.\\n*\\n* This is not an automated \"listserv\" facility. Do not expect instant\\n* gratification.\\n***\\n\\nThe list is a digest format scheduled for twice a day.\\n\\nMembers of the harley list may obtain back-issues and subject-index\\n listings, pictures, etc. via an Email archive server. \\nServer access is restricted to list subscribers only.\\nFTP access \"real soon\".\\n\\nOther motorcycle related lists i\\'ve heard of (not run by me),\\n these addresses may or may not be current:\\n\\n 2-stroke: 2strokes-request@microunity.com\\n Dirt: dirt-request@zygot.ati.com\\n European: listserv@frigg.isc-br.com\\n Racing: race-request@formula1.corp.sun.com\\n digest-request@formula1.corp.sun.com\\n Short Riding: short-request@smarmy.sun.com\\n Wet Leather: listserv@frigg.isc-br.com\\n\\n---\\nIt climbs the hills like a Matchless \\'cause my Honda\\'s built really light...\\n -Brian Wilson (Honda Honda)\\n',\n", + " 'From: cjackson@adobe.com (Curtis Jackson)\\nSubject: Re: Cultural Enquiries\\nOrganization: Adobe Systems Incorporated, Mountain View\\nLines: 32\\n\\n}>More like those who use their backs instead of their minds to make\\n}>their living who are usually ignorant and intolerant of anything outside\\n}>of their group or level of understanding.\\n\\nThere seems to be some confusion between rednecks and white trash.\\nThe confusion is understandable, as there is substantial overlap\\nbetween the two sets. Let me see if I can clarify:\\n\\nRednecks: Primarily use their backs instead of their minds to make a\\n\\tliving. Usually somewhat ignorant (by somebody\\'s standards,\\n\\tanyway) because they have never held education above basic\\n\\treading/writing/math skills to be that important to their\\n\\teventual vocation. Note I did not say stupid, just ignorant.\\n\\t(They might be stupid, but then so are some high percentage\\n\\tof any group).\\n\\nWhite trash: \"White trash fit the stereotype referred to by the\\n\\tword \\'nigger\\' better than any black person I ever met, only\\n\\twith the added \\'bonus\\' that white trash are mean as hell.\"\\n\\t-- my father. Genuinely lazy (not just out of work or under-\\n\\tqualified), good-for-nothing, dishonest, white people who are\\n\\tmean as snakes. The \"squeal like a pig\" boys in _Deliverance_\\n\\tmay or may not have been rednecks, but they were sure as hell\\n\\twhite trash.\\n\\nWhite trash are assuredly intolerant of anything outside of their\\ngroup or level of understanding. Rednecks may or may not be.\\n-- \\nCurtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\nDoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\"\\n\"There is no justification for taking away individuals\\' freedom\\n in the guise of public safety.\" -- Thomas Jefferson\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: How many read sci.space?\\nOrganization: Express Access Online Communications USA\\nLines: 9\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.184650.4833@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n>isn't my real name, either. I'm actually Elvis. Or maybe a lemur; I\\n>sometimes have difficulty telling which is which.\\n\\ndefinitely a lemur.\\n\\nElvis couldn't spell, just listen to any of his songs.\\n\\npat\\n\",\n", + " 'From: Center for Policy Research \\nSubject: From Israeli press. Short notes.\\nNf-ID: #N:cdp:1483500345:000:1466\\nNf-From: cdp.UUCP!cpr Apr 16 16:51:00 1993\\nLines: 39\\n\\n\\nFrom: Center for Policy Research \\nSubject: From Israeli press. Short notes.\\n\\n/* Written 4:43 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n/* ---------- \"From Israeli press. Short notes.\" ---------- */\\nFROM THE ISRAELI PRESS\\n\\nHadashot, 14 March 1993:\\n\\nThe Israeli Police Department announced on the evening of Friday,\\nMarch 12 that it is calling upon [Jewish] Israeli citizens with\\ngun permits to carry them at all times \"so as to contribute to\\ntheir security and that of their surroundings\".\\n\\nHa\\'aretz, 15 March 1993:\\n\\nYehoshua Matza (Likud), Chair of the Knesset Interior Committee,\\nstated that he intends to demand that the police department make\\nit clear to the public that anyone who wounds or kills\\n[non-Jewish] terrorists will not be put on trial.\\n\\nHa\\'aretz, 16 March1993:\\n\\nToday a private security firm and units from the IDF Southern\\nCommand will begin installation of four magnetic gates in the Gaza\\nstrip, as an additional stage in the upgrading of security\\nmeasures in the Strip.\\n\\nThe gates will aid in the searching of [non-Jewish] Gaza residents\\nas they leave for work in Israel. They can be used to reveal the\\npresence of knives, axes, weapons and other sharp objects.\\n\\nIn addition to the gates, which will be operated by a private\\ncivilian company, large quantities of magnetic-card reading\\ndevices are being brought to the inspection points, to facilitate\\nthe reading of the magnetic cards these [non-Jewish] workers must\\ncarry.\\n\\n',\n", + " 'From: mathew \\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 13\\n\\nfrank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n> In article <1993Apr15.125245.12872@abo.fi> MANDTBACKA@FINABO.ABO.FI (Mats\\n> Andtbacka) writes:\\n> | \"And these objective values are ... ?\"\\n> |Please be specific, and more importantly, motivate.\\n> \\n> I\\'ll take a wild guess and say Freedom is objectively valuable.\\n\\nYes, but whose freedom? The world in general doesn\\'t seem to value the\\nfreedom of Tibetans, for example.\\n\\n\\nmathew\\n',\n", + " \"From: cbrooks@ms.uky.edu (Clayton Brooks)\\nSubject: Re: V-max handling request\\nOrganization: University Of Kentucky, Dept. of Math Sciences\\nLines: 13\\n\\nbradw@Newbridge.COM (Brad Warkentin) writes:\\n\\n>............. Seriously, handling is probably as good as the big standards\\n>of the early 80's but not compareable to whats state of the art these days.\\n\\nI think you have to go a little further back.\\nThis opinion comes from riding CB750's GS1000's KZ1300's and a V-Max.\\nI find no enjoyment in riding a V-Max fast on a twisty road.\\n-- \\n Clayton T. Brooks _,,-^`--. From the heart cbrooks@ms.uky.edu\\n 722 POT U o'Ky .__,-' * \\\\ of the blue cbrooks@ukma.bitnet\\n Lex. KY 40506 _/ ,/ grass and {rutgers,uunet}!ukma!cbrooks\\n 606-257-6807 (__,-----------'' bourbon country AMA NMA MAA AMS ACBL DoD\\n\",\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 13/15 - Interest Groups & Publications\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.groups_733694492\\nExpires: 6 May 1993 20:01:32 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 354\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/groups\\nLast-modified: $Date: 93/04/01 14:39:08 $\\n\\nSPACE ACTIVIST/INTEREST/RESEARCH GROUPS AND SPACE PUBLICATIONS\\n\\n GROUPS\\n\\n AIA -- Aerospace Industry Association. Professional group, with primary\\n\\tmembership of major aerospace firms. Headquartered in the DC area.\\n\\tActs as the \"voice of the aerospace industry\" -- and it\\'s opinions\\n\\tare usually backed up by reams of analyses and the reputations of\\n\\tthe firms in AIA.\\n\\n\\t [address needed]\\n\\n AIAA -- American Institute of Aeronautics and Astronautics.\\n\\tProfessional association, with somewhere about 30,000-40,000\\n\\tmembers. 65 local chapters around the country -- largest chapters\\n\\tare DC area (3000 members), LA (2100 members), San Francisco (2000\\n\\tmembers), Seattle/NW (1500), Houston (1200) and Orange County\\n\\t(1200), plus student chapters. Not a union, but acts to represent\\n\\taviation and space professionals (engineers, managers, financial\\n\\ttypes) nationwide. Holds over 30 conferences a year on space and\\n\\taviation topics publishes technical Journals (Aerospace Journal,\\n\\tJournal of Spacecraft and Rockets, etc.), technical reference books\\n\\tand is _THE_ source on current aerospace state of the art through\\n\\ttheir published papers and proceedings. Also offers continuing\\n\\teducation classes on aerospace design. Has over 60 technical\\n\\tcommittees, and over 30 committees for industry standards. AIAA acts\\n\\tas a professional society -- offers a centralized resume/jobs\\n\\tfunction, provides classes on job search, offers low-cost health and\\n\\tlife insurance, and lobbies for appropriate legislation (AIAA was\\n\\tone of the major organizations pushing for IRAs - Individual\\n\\tRetirement Accounts). Very active public policy arm -- works\\n\\tdirectly with the media, congress and government agencies as a\\n\\tlegislative liaison and clearinghouse for inquiries about aerospace\\n\\ttechnology technical issues. Reasonably non-partisan, in that they\\n\\trepresent the industry as a whole, and not a single company,\\n\\torganization, or viewpoint.\\n\\n\\tMembership $70/yr (student memberships are less).\\n\\n\\tAmerican Institute of Aeronautics and Astronautics\\n\\tThe Aerospace Center\\n\\t370 L\\'Enfant Promenade, SW\\n\\tWashington, DC 20077-0820\\n\\t(202)-646-7400\\n\\n AMSAT - develops small satellites (since the 1960s) for a variety of\\n\\tuses by amateur radio enthusiasts. Has various publications,\\n\\tsupplies QuickTrak satellite tracking software for PC/Mac/Amiga etc.\\n\\n\\tAmateur Satellite Corporation (AMSAT)\\n\\tP.O. Box 27\\n\\tWashington, DC 20044\\n\\t(301)-589-6062\\n\\n ASERA - Australian Space Engineering and Research Association. An\\n\\tAustralian non-profit organisation to coordinate, promote, and\\n\\tconduct space R&D projects in Australia, involving both Australian\\n\\tand international (primarily university) collaborators. Activities\\n\\tinclude the development of sounding rockets, small satellites\\n\\t(especially microsatellites), high-altitude research balloons, and\\n\\tappropriate payloads. Provides student projects at all levels, and\\n\\tis open to any person or organisation interested in participating.\\n\\tPublishes a monthly newsletter and a quarterly technical journal.\\n\\n\\tMembership $A100 (dual subscription)\\n\\tSubscriptions $A25 (newsletter only) $A50 (journal only)\\n\\n\\tASERA Ltd\\n\\tPO Box 184\\n\\tRyde, NSW, Australia, 2112\\n\\temail: lindley@syd.dit.csiro.au\\n\\n BIS - British Interplanetary Society. Probably the oldest pro-space\\n\\tgroup, BIS publishes two excellent journals: _Spaceflight_, covering\\n\\tcurrent space activities, and the _Journal of the BIS_, containing\\n\\ttechnical papers on space activities from near-term space probes to\\n\\tinterstellar missions. BIS has published a design study for an\\n\\tinterstellar probe called _Daedalus_.\\n\\n\\tBritish Interplanetary Society\\n\\t27/29 South Lambeth Road\\n\\tLondon SW8 1SZ\\n\\tENGLAND\\n\\n\\tNo dues information available at present.\\n\\n ISU - International Space University. ISU is a non-profit international\\n\\tgraduate-level educational institution dedicated to promoting the\\n\\tpeaceful exploration and development of space through multi-cultural\\n\\tand multi-disciplinary space education and research. For further\\n\\tinformation on ISU\\'s summer session program or Permanent Campus\\n\\tactivities please send messages to \\'information@isu.isunet.edu\\' or\\n\\tcontact the ISU Executive Offices at:\\n\\n\\tInternational Space University\\n\\t955 Massachusetts Avenue 7th Floor\\n\\tCambridge, MA 02139\\n\\t(617)-354-1987 (phone)\\n\\t(617)-354-7666 (fax)\\n\\n L-5 Society (defunct). Founded by Keith and Carolyn Henson in 1975 to\\n\\tadvocate space colonization. Its major success was in preventing US\\n\\tparticipation in the UN \"Moon Treaty\" in the late 1970s. Merged with\\n\\tthe National Space Institute in 1987, forming the National Space\\n\\tSociety.\\n\\n NSC - National Space Club. Open for general membership, but not well\\n\\tknown at all. Primarily comprised of professionals in aerospace\\n\\tindustry. Acts as information conduit and social gathering group.\\n\\tActive in DC, with a chapter in LA. Monthly meetings with invited\\n\\tspeakers who are \"heavy hitters\" in the field. Annual \"Outlook on\\n\\tSpace\" conference is _the_ definitive source of data on government\\n\\tannual planning for space programs. Cheap membership (approx\\n\\t$20/yr).\\n\\n\\t [address needed]\\n\\n NSS - the National Space Society. NSS is a pro-space group distinguished\\n\\tby its network of local chapters. Supports a general agenda of space\\n\\tdevelopment and man-in-space, including the NASA space station.\\n\\tPublishes _Ad Astra_, a monthly glossy magazine, and runs Shuttle\\n\\tlaunch tours and Space Hotline telephone services. A major sponsor\\n\\tof the annual space development conference. Associated with\\n\\tSpacecause and Spacepac, political lobbying organizations.\\n\\n\\tMembership $18 (youth/senior) $35 (regular).\\n\\n\\tNational Space Society\\n\\tMembership Department\\n\\t922 Pennsylvania Avenue, S.E.\\n\\tWashington, DC 20003-2140\\n\\t(202)-543-1900\\n\\n Planetary Society - founded by Carl Sagan. The largest space advocacy\\n\\tgroup. Publishes _Planetary Report_, a monthly glossy, and has\\n\\tsupported SETI hardware development financially. Agenda is primarily\\n\\tsupport of space science, recently amended to include an\\n\\tinternational manned mission to Mars.\\n\\n\\tThe Planetary Society\\n\\t65 North Catalina Avenue\\n\\tPasadena, CA 91106\\n\\n\\tMembership $35/year.\\n\\n SSI - the Space Studies Institute, founded by Dr. Gerard O\\'Neill.\\n\\tPhysicist Freeman Dyson took over the Presidency of SSI after\\n\\tO\\'Neill\\'s death in 1992. Publishes _SSI Update_, a bimonthly\\n\\tnewsletter describing work-in-progress. Conducts a research program\\n\\tincluding mass-drivers, lunar mining processes and simulants,\\n\\tcomposites from lunar materials, solar power satellites. Runs the\\n\\tbiennial Princeton Conference on Space Manufacturing.\\n\\n\\tMembership $25/year. Senior Associates ($100/year and up) fund most\\n\\t SSI research.\\n\\n\\tSpace Studies Institute\\n\\t258 Rosedale Road\\n\\tPO Box 82\\n\\tPrinceton, NJ 08540\\n\\n SEDS - Students for the Exploration and Development of Space. Founded in\\n\\t1980 at MIT and Princeton. SEDS is a chapter-based pro-space\\n\\torganization at high schools and universities around the world.\\n\\tEntirely student run. Each chapter is independent and coordinates\\n\\tits own local activities. Nationally, SEDS runs a scholarship\\n\\tcompetition, design contests, and holds an annual international\\n\\tconference and meeting in late summer.\\n\\n\\tStudents for the Exploration and Development of Space\\n\\tMIT Room W20-445\\n\\t77 Massachusetts Avenue\\n\\tCambridge, MA 02139\\n\\t(617)-253-8897\\n\\temail: odyssey@athena.mit.edu\\n\\n\\tDues determined by local chapter.\\n\\n SPACECAUSE - A political lobbying organization and part of the NSS\\n\\tFamily of Organizations. Publishes a bi-monthly newsletter,\\n\\tSpacecause News. Annual dues is $25. Members also receive a discount\\n\\ton _The Space Activist\\'s Handbook_. Activities to support pro-space\\n\\tlegislation include meeting with political leaders and interacting\\n\\twith legislative staff. Spacecause primarily operates in the\\n\\tlegislative process.\\n\\n\\tNational Office\\t\\t\\tWest Coast Office\\n\\tSpacecause\\t\\t\\tSpacecause\\n\\t922 Pennsylvania Ave. SE\\t3435 Ocean Park Blvd.\\n\\tWashington, D.C. 20003\\t\\tSuite 201-S\\n\\t(202)-543-1900\\t\\t\\tSanta Monica, CA 90405\\n\\n SPACEPAC - A political action committee and part of the NSS Family of\\n\\tOrganizations. Spacepac researches issues, policies, and candidates.\\n\\tEach year, updates _The Space Activist\\'s Handbook_. Current Handbook\\n\\tprice is $25. While Spacepac does not have a membership, it does\\n\\thave regional contacts to coordinate local activity. Spacepac\\n\\tprimarily operates in the election process, contributing money and\\n\\tvolunteers to pro-space candidates.\\n\\n\\tSpacepac\\n\\t922 Pennsylvania Ave. SE\\n\\tWashington, DC 20003\\n\\t(202)-543-1900\\n\\n UNITED STATES SPACE FOUNDATION - a public, non-profit organization\\n\\tsupported by member donations and dedicated to promoting\\n\\tinternational education, understanding and support of space. The\\n\\tgroup hosts an annual conference for teachers and others interested\\n\\tin education. Other projects include developing lesson plans that\\n\\tuse space to teach other basic skills such as reading. Publishes\\n\\t\"Spacewatch,\" a monthly B&W glossy magazine of USSF events and\\n\\tgeneral space news. Annual dues:\\n\\n\\t\\tCharter\\t\\t$50 ($100 first year)\\n\\t\\tIndividual\\t$35\\n\\t\\tTeacher\\t\\t$29\\n\\t\\tCollege student $20\\n\\t\\tHS/Jr. High\\t$10\\n\\t\\tElementary\\t $5\\n\\t\\tFounder & $1000+\\n\\t\\t Life Member\\n\\n\\tUnited States Space Foundation\\n\\tPO Box 1838\\n\\tColorado Springs, CO 80901\\n\\t(719)-550-1000\\n\\n WORLD SPACE FOUNDATION - has been designing and building a solar-sail\\n spacecraft for longer than any similar group; many JPL employees lend\\n their talents to this project. WSF also provides partial funding for the\\n Palomar Sky Survey, an extremely successful search for near-Earth\\n asteroids. Publishes *Foundation News* and *Foundation Astronautics\\n Notebook*, each a quarterly 4-8 page newsletter. Contributing Associate,\\n minimum of $15/year (but more money always welcome to support projects).\\n\\n\\tWorld Space Foundation\\n\\tPost Office Box Y\\n\\tSouth Pasadena, California 91301\\n\\n\\n PUBLICATIONS\\n\\n Aerospace Daily (McGraw-Hill)\\n\\tVery good coverage of aerospace and space issues. Approx. $1400/yr.\\n\\n Air & Space / Smithsonian (bimonthly magazine)\\n\\tBox 53261\\n\\tBoulder, CO 80332-3261\\n\\t$18/year US, $24/year international\\n\\n ESA - The European Space Agency publishes a variety of periodicals,\\n\\tgenerally available free of charge. A document describing them in\\n\\tmore detail is in the Ames SPACE archive in\\n\\tpub/SPACE/FAQ/ESAPublications.\\n\\n Final Frontier (mass-market bimonthly magazine) - history, book reviews,\\n\\tgeneral-interest articles (e.g. \"The 7 Wonders of the Solar System\",\\n\\t\"Everything you always wanted to know about military space\\n\\tprograms\", etc.)\\n\\n\\tFinal Frontier Publishing Co.\\n\\tPO Box 534\\n\\tMt. Morris, IL 61054-7852\\n\\t$14.95/year US, $19.95 Canada, $23.95 elsewhere\\n\\n Space News (weekly magazine) - covers US civil and military space\\n\\tprograms. Said to have good political and business but spotty\\n\\ttechnical coverage.\\n\\n\\tSpace News\\n\\tSpringfield VA 22159-0500\\n\\t(703)-642-7330\\n\\t$75/year, may have discounts for NSS/SSI members\\n\\n Journal of the Astronautical Sciences and Space Times - publications of\\n\\tthe American Astronautical Society. No details.\\n\\n\\tAAS Business Office\\n\\t6352 Rolling Mill Place, Suite #102\\n\\tSpringfield, VA 22152\\n\\t(703)-866-0020\\n\\n GPS World (semi-monthly) - reports on current and new uses of GPS, news\\n\\tand analysis of the system and policies affecting it, and technical\\n\\tand product issues shaping GPS applications.\\n\\n\\tGPS World\\n\\t859 Willamette St.\\n\\tP.O. Box 10460\\n\\tEugene, OR 97440-2460\\n\\t(503)-343-1200\\n\\n\\tFree to qualified individuals; write for free sample copy.\\n\\n Innovation (Space Technology) -- Free. Published by the NASA Office of\\n\\tAdvanced Concepts and Technology. A revised version of the NASA\\n\\tOffice of Commercial Programs newsletter.\\n\\n Planetary Encounter - in-depth technical coverage of planetary missions,\\n\\twith diagrams, lists of experiments, interviews with people directly\\n\\tinvolved.\\n World Spaceflight News - in-depth technical coverage of near-Earth\\n\\tspaceflight. Mostly covers the shuttle: payload manifests, activity\\n\\tschedules, and post-mission assessment reports for every mission.\\n\\n\\tBox 98\\n\\tSewell, NJ 08080\\n\\t$30/year US/Canada\\n\\t$45/year elsewhere\\n\\n Space (bi-monthly magazine)\\n\\tBritish aerospace trade journal. Very good. $75/year.\\n\\n Space Calendar (weekly newsletter)\\n\\n Space Daily/Space Fax Daily (newsletter)\\n\\tShort (1 paragraph) news notes. Available online for a fee\\n\\t(unknown).\\n\\n Space Technology Investor/Commercial Space News -- irregular Internet\\n\\tcolumn on aspects of commercial space business. Free. Also limited\\n\\tfax and paper edition.\\n\\n\\t P.O. Box 2452\\n\\t Seal Beach, CA 90740-1452.\\n\\n All the following are published by:\\n\\n\\tPhillips Business Information, Inc.\\n\\t7811 Montrose Road\\n\\tPotomac, MC 20854\\n\\n\\tAerospace Financial News - $595/year.\\n\\tDefense Daily - Very good coverage of space and defense issues.\\n\\t $1395/year.\\n\\tSpace Business News (bi-weekly) - Very good overview of space\\n\\t business activities. $497/year.\\n\\tSpace Exploration Technology (bi-weekly) - $495/year.\\n\\tSpace Station News (bi-weekly) - $497/year.\\n\\n UNDOCUMENTED GROUPS\\n\\n\\tAnyone who would care to write up descriptions of the following\\n\\tgroups (or others not mentioned) for inclusion in the answer is\\n\\tencouraged to do so.\\n\\n\\tAAS - American Astronautical Society\\n\\tOther groups not mentioned above\\n\\nNEXT: FAQ #14/15 - How to become an astronaut\\n',\n", + " \"From: arnie@magnus.acs.ohio-state.edu (Arnie Skurow)\\nSubject: Re: Solar battery chargers -- any good?\\nNntp-Posting-Host: photon.magnus.acs.ohio-state.edu\\nOrganization: The Ohio State University\\nLines: 28\\n\\nIn article <1993Apr16.061736.8785@CSD-NewsHost.Stanford.EDU> robert@Xenon.Stanf\\nord.EDU (Robert Kennedy) writes:\\n>I've seen solar battery boosters, and they seem to come without any\\n>guarantee. On the other hand, I've heard that some people use them\\n>with success, although I have yet to communicate directly with such a\\n>person. Have you tried one? What was your experience? How did you use\\n>it (occasional charging, long-term leave-it-for-weeks, etc.)?\\n>\\n> -- Robert Kennedy\\n\\nI have a cheap solar charger that I keep in my car. I purchased it via\\nsome mail order catalog when the 4 year old battery in my Oldsmobile would\\nrun down during Summer when I was riding my bike more than driving my car.\\nKnowing I'd be selling the car in a year or so, I purchased the charger.\\nBelieve it or not, the thing worked. The battery held a charge and\\nenergetically started the car, many times after 4 or 5 weeks of just\\nsitting.\\n\\nEventually I had to purchase a new battery anyway because the Winter sun\\nwasn't strong enough due to its low angle.\\n\\nI think I paid $29 or $30 for the charger. There are more powerful, more\\nexpensive ones, but I purchased the cheapest one I could find.\\n\\nI've never used it on the bike because I have an E-Z Charger on it and\\nkeep it plugged in all the time the bike is garaged.\\n\\nArnie Skurow\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenians serving in the Wehrmacht and the SS.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 63\\n\\nIn article <735426299@amazon.cs.duke.edu> wiener@duke.cs.duke.edu (Eduard Wiener) writes:\\n\\n>\\t I can see how little taste you actually have in the\\n>\\t cheap shot you took at me when I did nothing more\\n>\\t than translate Kozovski\\'s insulting reference\\n>\\t to Milan Pavlovic.\\n\\nC\\'mon, you still haven\\'t corrected yourself, \\'wieneramus\\'. In April \\n1942, Hitler was preparing for the invasion of the Caucasus. A \\nnumber of Nazi Armenian leaders began submitting plans to German\\nofficials in spring and summer 1942. One of them was Souren Begzadian\\nPaikhar, son of a former ambassador of the Armenian Republic in Baku.\\nPaikhar wrote a letter to Hitler, asking for German support to his\\nArmenian national socialist movement Hossank and suggesting the\\ncreation of an Armenian SS formation in order \\n\\n\"to educate the youth of liberated Armenia according to the \\n spirit of the Nazi ideas.\"\\n\\nHe wanted to unite the Armenians of the already occupied territories\\nof the USSR in his movement and with them conquer historic Turkish\\nhomeland. Paikhar was confined to serving the Nazis in Goebbels\\nPropaganda ministry as a speaker for Armenian- and French-language\\nradio broadcastings.[1] The Armenian-language broadcastings were\\nproduced by yet another Nazi Armenian Viguen Chanth.[2]\\n\\n[1] Patrick von zur Muhlen (Muehlen), p. 106.\\n[2] Enno Meyer, A. J. Berkian, \\'Zwischen Rhein und Arax, 900\\n Jahre Deutsch-Armenische beziehungen,\\' (Heinz Holzberg\\n Verlag-Oldenburg 1988), pp. 124 and 129.\\n\\n\\nThe establishment of Armenian units in the German army was favored\\nby General Dro (the Butcher). He played an important role in the\\nestablishment of the Armenian \\'legions\\' without assuming any \\nofficial position. His views were represented by his men in the\\nrespective organs. An interesting meeting took place between Dro\\nand Reichsfuehrer-SS Heinrich Himmler toward the end of 1942.\\nDro discussed matters of collaboration with Himmler and after\\na long conversation, asked if he could visit POW camp close to\\nBerlin. Himmler provided Dro with his private car.[1] \\n\\nA minor problem was that some of the Soviet nationals were not\\n\\'Aryans\\' but \\'subhumans\\' according to the official Nazi philosophy.\\nAs such, they were subject to German racism. However, Armenians\\nwere the least threatened and indeed most privileged. In August \\n1933, Armenians had been recognized as Aryans by the Bureau of\\nRacial Investigation in the Ministry for Domestic Affairs.\\n\\n[1] Meyer, Berkian, ibid., pp. 112-113.\\n\\nNeed I go on?\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Suicide Bomber Attack in the Territories \\nOrganization: Brown University Department of Computer Science\\nLines: 22\\n\\n Attention Israel Line Recipients\\n \\n Friday, April 16, 1993\\n \\n \\nTwo Arabs Killed and Eight IDF Soldiers Wounded in West Bank Car\\nBomb Explosion\\n \\nIsrael Defense Forces Radio, GALEI ZAHAL, reports today that a car\\nbomb explosion in the West Bank today killed two Palestinians and\\nwounded eight IDF soldiers. The blast is believed to be the work of\\na suicide bomber. Radio reports said a car packed with butane gas\\nexploded between two parked buses, one belonging to the IDF and the\\nother civilian. Both busses went up in flames. The blast killed an\\nArab man who worked at a nearby snack bar in the Mehola settlement.\\nAn Israel Radio report stated that the other man who was killed may\\nhave been the one who set off the bomb. According to officials at\\nthe Haemek Hospital in Afula, the eight IDF soldiers injured in the\\nblast suffered light to moderate injuries.\\n \\n\\n-Danny Keren\\n',\n", + " 'Subject: [ANNOUNCE] Ivan Sutherland to speak at Harvard\\nFrom: eekim@husc11.harvard.edu (Eugene Kim)\\nDistribution: harvard\\nOrganization: Harvard University Science Center\\nNntp-Posting-Host: husc11.harvard.edu\\nLines: 21\\n\\nThe Harvard Computer Society is pleased to announce its third lecture of\\nthe spring. Ivan Sutherland, the father of computer graphics and an\\ninnovator in microprocessing, will be speaking at Harvard University on\\nTuesday, April 20, 1993, at 4:00 pm in Aiken Computations building, room\\n101. The title of his talk is \"Logical Effort and the Conflict over the\\nControl of Information.\"\\n\\nCookies and tea will be served at 3:30 pm in the Aiken Lobby. Admissions\\nis free, and all are welcome.\\n\\nAiken is located north of the Science Center near the Law School.\\n\\nFor more information, send e-mail to eekim@husc.harvard.edu.\\n\\nThe lecture will be videotaped, and a tape will be made available.\\n\\nThanks.\\n\\n-- \\nEugene Kim \\'96 | \"Give me a place to stand, and I will\\nINTERNET: eekim@husc.harvard.edu | move the earth.\" --Archimedes\\n',\n", + " 'From: tom@igc.apc.org\\nSubject: computer cult\\nNf-ID: #N:cdp:1469100033:000:2451\\nNf-From: cdp.UUCP!tom Apr 24 09:26:00 1993\\nLines: 59\\n\\n\\nFrom: \\nSubject: computer cult\\n\\nFrom scott Fri Apr 23 16:31:21 1993\\nReceived: by igc.apc.org (4.1/Revision: 1.77 )\\n\\tid AA16121; Fri, 23 Apr 93 16:31:09 PDT\\nDate: Fri, 23 Apr 93 16:31:09 PDT\\nMessage-Id: <9304232331.AA16121@igc.apc.org>\\nFrom: Scott Weikart \\nSender: scott\\nTo: cdplist\\nSubject: Next stand-off?\\nStatus: R\\n\\nRedwood City, CA (API) -- A tense stand-off entered its third week\\ntoday as authorities reported no progress in negotiations with\\ncharismatic cult leader Steve Jobs.\\n\\nNegotiators are uncertain of the situation inside the compound, but\\nsome reports suggest that half of the hundreds of followers inside\\nhave been terminated. Others claim to be staying of their own free\\nwill, but Jobs\\' persuasive manner makes this hard to confirm.\\n\\nIn conversations with authorities, Jobs has given conflicting\\ninformation on how heavily prepared the group is for war with the\\nindustry. At times, he has claimed to \"have hardware which will blow\\nanything else away\", while more recently he claims they have stopped\\nmanufacturing their own.\\n\\nAgents from the ATF (Apple-Taligent Forces) believe that the group is\\nequipped with serious hardware, including 486-caliber pieces and\\npossibly Canon equipment.\\n\\nThe siege has attracted a variety of spectators, from the curious to\\nother cultists. Some have offered to intercede in negotiations,\\nincluding a young man who will identify himself only as \"Bill\" and\\nclaims to be the \"MS-iah\".\\n\\nFormer members of the cult, some only recently deprogrammed, speak\\nhesitantly of their former lives, including being forced to work\\n20-hour days, and subsisting on Jolt and Twinkies. There were\\nfrequent lectures in which they were indoctrinated into a theory of\\n\"interpersonal computing\" which rejects traditional roles.\\n\\nLate-night vigils on Chesapeake Drive are taking their toll on\\nfederal marshals. Loud rock and roll, mostly Talking Heads, blares\\nthroughout the night. Some fear that Jobs will fulfill his own\\napocalyptic prophecies, a worry reinforced when the loudspeakers\\ncarry Jobs\\' own speeches -- typically beginning with a chilling \"I\\nwant to welcome you to the \\'Next World\\' \".\\n\\n- - -- \\nRoland J. Schemers III | Networking Systems\\nSystems Programmer | G16 Redwood Hall (415) 723-6740\\nDistributed Computing Group | Stanford, CA 94305-4122\\nStanford University | schemers@Slapshot.Stanford.EDU\\n\\n\\n',\n", + " 'From: harmons@.WV.TEK.COM (Harmon Sommer)\\nSubject: Re: Countersteering_FAQ please post\\nLines: 15\\n\\nSender: \\nReply-To: harmons@gyro.WV.TEK.COM (Harmon Sommer)\\nDistribution: \\nOrganization: /usr/ens/etc/organization\\nKeywords: \\n\\n\\n>Hey Ed, how do you explain the fact that you pull on a horse\\'s reins\\n>left to go left? :-) Or am I confusing two threads here?\\n\\nUnless they have been taught to \"neck rein\". Then the left rein is brought\\nto bear on the left side of horse\\'s neck to go right.\\n\\nEquestrian counter steering?\\n',\n", + " \"From: viking@iastate.edu (Dan Sorenson)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Iowa State University, Ames IA\\nLines: 36\\n\\nryan_cousineau@compdyn.questor.org (Ryan Cousineau) writes:\\n\\n>Riding up the hill leading to my\\n>house, I encountered a liver-and-white Springer Spaniel (no relation to\\n>the Springer Softail, or the Springer Spagthorpe, a close relation to\\n>the Spagthorpe Viking).\\n\\n\\tI must have missed the article on the Spagthorpe Viking. Was\\nthat the one with the little illuminated Dragon's Head on the front\\nfender, a style later copied by Indian, and the round side covers?\\n\\n[accident deleted]\\n\\n>What worries me about the accident is this: I don't think I could have\\n>prevented it except by traveling much slower than I was. This is not\\n>necessarily an unreasonable suggestion for a residential area, but I was\\n>riding around the speed limit.\\n\\n\\tYou can forget this line of reasoning. When an animal\\ndecides to take you, there's nothing you can do about it. It has\\nsomething to do with their genetics. I was putting along at a\\nmere 20mph or so, gravel road with few loose rocks on it (as in,\\njust like bad concrete), and 2200lbs of swinging beef jumped a\\nfence, came out of the ditch, and rammed me! When I saw her jump\\nthe fence I went for the gas, since she was about 20 feet ahead\\nof me but a good forty to the side. Damn cow literally chased me\\ndown and nailed me. No damage to cow, a bent case guard and a\\nseverely annoyed rider were the only casualties. If I had my\\nshotgun I'd still be eating steak. Nope, if 2200lbs of cow\\ncan hit me when I'm actively evading, forget a much more\\nmanueverable dog. Just run them over.\\n\\n< Dan Sorenson, DoD #1066 z1dan@exnet.iastate.edu viking@iastate.edu >\\n< ISU only censors what I read, not what I say. Don't blame them. >\\n< USENET: Post to exotic, distant machines. Meet exciting, >\\n< unusual people. And flame them. >\\n\",\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Israeli Terrorism\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 46\\n\\nIn article <1rd7eo$1a4@usenet.INS.CWRU.Edu> cy779@cleveland.Freenet.Edu (Anas Omran) writes:\\n>\\n>In a previous article, tclock@orion.oac.uci.edu (Tim Clock) says:\\n\\n>>In article <1993Apr24.203620.6531@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>>Since one is also unlikely to get \"the truth\" from either Arab or \\n>>Palestinian news outlets, where do we go to \"understand\", to learn? \\n>>Is one form of propoganda more reliable than another?\\n\\n>There are many neutral human rights organizations which always report\\n>on the situation in the O.T.\\n\\n\\tA neutral organization would report on the situation in\\nIsrael, where the elderly and children are the victims of stabbings by\\nHamas \"activists.\" A neutral organization might also report that\\nIsraeli arabs have full civil rights.\\n\\n>The Israelis used to arrest and sometimes to kill some of these\\n>neutral reporters.\\n\\n\\tCare to name names, or is this yet another unsubstantiated\\nslander? \\n\\n>So, this is another kind of terrorism committed by the Jews in Palestine.\\n>They do not allow fair and neutral coverage of the situation in Palestine.\\n\\n\\tTerrorism, as you would know if you had a spine that allowed\\nyou to stand up, is random attacks on civilians. Terorism includes\\nsuch things as shooting a cripple and thowing him off the side of a\\nboat because he happens to be Jewish. Not allowing people to go where\\nthey are likely to be stabbed and killed, like a certain lawyer killed\\nlast week, is not terorism.\\n\\nAdam\\n\\n\\n\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 92\\n\\nIn article <1993Apr17.153728.12152@ncsu.edu> hernlem@chess.ncsu.edu \\n(Brad Hernlem) writes:\\n>\\n>In article <2BCF287A.25524@news.service.uci.edu>, tclock@orion.oac.uci.edu \\n(Tim Clock) writes:\\n>|\\n>|> \"Assuming\"? Also: come on, Brad. If we are going to get anywhere in \\n>|> this (or any) discussion, it doesn\\'t help to bring up elements I never \\n>|> addressed, *nor commented on in any way*. I made no comment on who is \\n>|> \"right\" or who is \"wrong\", only that civilians ARE being used as cover \\n>|> and that, having been placed \"in between\" the Israelis and the guerillas,\\n>|> they *will* be injured as both parties continue their fight.\\n>\\n>Pardon me Tim, but I do not see how it can be possible for the IDF to fail\\n>to detect the presence of those responsible for planting the bomb which\\n>killed the three IDF troops and then later know the exact number and \\n>whereabouts of all of them. Several villages were shelled. How could the IDF\\n>possibly have known that there were guerrillas in each of the targetted\\n>villages? You see, it was an arbitrary act of \"retaliation\".\\n>\\nI will again *repeat* my statement: 1) I *do not* condone these \\n*indiscriminate* Israeli acts (nor have I *ever*, 2) If the villagers do not know who these \"guerillas\" are (which you stated earlier), how do you expect the\\nIsraelis to know? It is **very** difficult to \"identify\" who they are (this\\n*is why* the \"guerillas\" prefer to lose themselves in the general population \\nby dressing the same, acting the same, etc.).\\n>\\n>|> The \"host\" Arab state did little/nothing to try and stop these attacks \\n>|> from its side of the border with Israel \\n>\\n>The problem, Tim, is that the original reason for the invasion was Palestinian\\n>attacks on Israel, NOT Lebanese attacks. \\n>\\nI agree; but, because Lebanon was either unwilling or unable to stop these\\nattacks from its territory should Israel simply sit quietly and accept its\\nsituation? Israel asked the Lebanese government over and over to control\\nthis \"third party state\" within Lebanese territory and the attacks kept\\noccuring. At **what point** does Israel (or ANY state) have the right to do\\nsomething ITSELF to stop such attacks? Never?\\n>|> >\\n>|> While the \"major armaments\" (those allowing people to wage \"civil wars\")\\n>|> have been removed, the weapons needed to cross-border attacks still\\n>|> remain to some extent. Rocket attacks still continue, and \"commando\"\\n>|> raids only require a few easily concealed weapons and a refined disregard\\n>|> for human life (yours of that of others). Such attacks also continue.\\n>\\n>Yes, I am afraid that what you say is true but that still does not justify\\n>occupying your neighbor\\'s land. Israel must resolve its disputes with the\\n>native Palestinians if it wants peace from such attacks.\\n>\\nIt is also the responsibility of *any* state to NOT ALLOW *any* outside\\nparty to use its territory for attacks on a neighboring state. If 1) Angola\\nhad the power, and 2) South Africa refused (or couldn\\'t) stop anti-Angolan\\nguerillas based on SA soil from attacking Angola, and 3) South Africa\\nrefused to have UN troops stationed on its territory between it and Angola,\\nwould Angola be justified in entering SA? If not, are you saying that\\nAngola HAD to accept the situation, do NOTHING and absorb the attacks?\\n>|> \\n>|> Bat guano. The situation you call for existed in the 1970s and attacks\\n>|> were commonplace.\\n>\\n>Not true. Lebanese were not attacking Israel in the 1970s. With a strong\\n>Lebanese government (free from Syrian and Israeli interference) I believe\\n>that the border could be adequately patrolled. The Palestinian heavy\\n>weapons have been siezed in past years and I do not see as significant a\\n>threat as once existed.\\n>\\nI refered above *at all times* to the Palestinian attacks on Israel from\\nLebanese soil, NOT to Lebanese attacks on Israel. \\n\\nOne hopes that a Lebanese government will be strong enough to patrol its \\nborder but there is NO reason to believe it will be any stronger. WHAT HAS \\nCHANGED is that the PLO was largely *driven out* of Lebanon (not by the \\nLebanese, not by Syria) and THAT is by far the most important making it \\nEASIER to control future Palestinian attacks from Lebanese soil. That\\n**change** was brought about by Israeli action; the PLO would *never*\\nhave been ejected by Lebanese, Arab state or UN actions. \\n>\\n>Please, Tim, don\\'t fall into the trap of treating Lebanese and Palestinians\\n>as all part of the same group. There are too many who think all Arabs or all\\n>Muslims are the same. Too many times I have seen people support the bombing\\n>of Palestinian camps in \"retaliation\" for an IDF death at the hands of the\\n>Lebanese Resistance or the shelling of Lebanese villages in \"retaliation\" for\\n>a Palestinian attack. \\n>|>\\nI fully recognize that the Lebanese do NOT WANT to be \"used\" by EITHER side,\\nand have been (and continue to be). But the most fundamental issue is that\\nif a state cannot control its borders and make REAL efforts to do so, it\\nshould expect others to do it for them. Hopefully that \"other\" will be\\nthe UN but it is (as we see in its cowardice regarding Bosnia) weak.\\n\\nTim \\n\\n',\n", + " ' zaphod.mps.ohio-state.edu!wupost!uunet!olivea!sgigate!odin!fido!solntze.wpd.sgi.com!livesey\\nSubject: Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> (reference line trimmed)\\n|> \\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> [...]\\n|> \\n|> >There is a good deal more confusion here. You started off with the \\n|> >assertion that there was some \"objective\" morality, and as you admit\\n|> >here, you finished up with a recursive definition. Murder is \\n|> >\"objectively\" immoral, but eactly what is murder and what is not itself\\n|> >requires an appeal to morality.\\n|> \\n|> Yes.\\n|> \\n|> >Now you have switch targets a little, but only a little. Now you are\\n|> >asking what is the \"goal\"? What do you mean by \"goal?\". Are you\\n|> >suggesting that there is some \"objective\" \"goal\" out there somewhere,\\n|> >and we form our morals to achieve it?\\n|> \\n|> Well, for example, the goal of \"natural\" morality is the survival and\\n|> propogation of the species. \\n\\n\\nI got just this far. What do you mean by \"goal\"? I hope you\\ndon\\'t mean to imply that evolution has a conscious \"goal\".\\n\\njon.\\n',\n", + " \"From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: Clintons views on Jerusalem\\nOrganization: Bellcore, Livingston, NJ\\nSummary: Verify statements\\nLines: 21\\n\\nIn article <16BB28ABD.DSHAL@vmd.cso.uiuc.edu>, DSHAL@vmd.cso.uiuc.edu writes:\\n> It seems that President Clinton can recognize Jerusalem as Israels capitol\\n> while still keeping his diplomatic rear door open by stating that the Parties\\n> concerned should decide the city's final status. Even as I endorse Clintons vie\\n> w (of course), it is definitely a matter to be decided upon by Israel (and\\n> other participating neighboring contries).\\n> I see no real conflict in stating both views, nor expect any better from\\n> politicians.\\n> -----\\n> David Shalhevet / dshal@vmd.cso.uiuc.edu / University of Illinois\\n> Dept Anim Sci / 220 PABL / 1201 W. Gregory Dr. / Urbana, IL 61801\\n\\nI was trying to avoid a discussion of the whether Clintons views\\nshould be endorsed or not. All I was trying to find out was \\nwhether the newspaper article was correct in making these\\nstatements about the President by obtaining some information\\nabout when and where he made these statements.\\n\\nThank you.\\n\\nBen.\\n\",\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nArticle-I.D.: aurora.1993Apr20.141137.1\\nOrganization: University of Alaska Fairbanks\\nLines: 33\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1993Apr20.101044.2291@iti.org>, aws@iti.org (Allen W. Sherzer) writes:\\n> In article <1qve4kINNpas@sal-sun121.usc.edu> schaefer@sal-sun121.usc.edu (Peter Schaefer) writes:\\n> \\n>>|> > Announce that a reward of $1 billion would go to the first corporation \\n>>|> > who successfully keeps at least 1 person alive on the moon for a year. \\n> \\n>>Oh gee, a billion dollars! That\\'d be just about enough to cover the cost of the\\n>>feasability study! Happy, Happy, JOY! JOY!\\n> \\n> Depends. If you assume the existance of a working SSTO like DC, on billion\\n> $$ would be enough to put about a quarter million pounds of stuff on the\\n> moon. If some of that mass went to send equipment to make LOX for the\\n> transfer vehicle, you could send a lot more. Either way, its a lot\\n> more than needed.\\n> \\n> This prize isn\\'t big enough to warrent developing a SSTO, but it is\\n> enough to do it if the vehicle exists.\\n> \\n> Allen\\n> \\n> -- \\n> +---------------------------------------------------------------------------+\\n> | Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n> | W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n> +----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n\\nOr have different classes of competetors.. and made the total purse $6billion\\nor $7billion (depending on how many different classes there are, as in auto\\nracing/motocycle racing and such)..\\n\\nWe shall see how things go..\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", + " 'From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Removing Distortion From Bitmapped Drawings?\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 135\\n\\nIn article <1993Apr19.141034.24731@sctc.com> boebert@sctc.com (Earl Boebert) writes:\\n>Let\\'s say you have a scanned image of a line drawing; in this case a\\n>boat, but it could be anything. On the drawing you have a set of\\n>reference points whose true x,y positions are known. \\n>\\n>Now you digitize the drawing manually (in this case, using Yaron\\n>Danon\\'s excellent Digitize program). That is, you use a program which\\n>converts cursor positions to x,y and saves those values when you click\\n>the mouse.\\n>\\n>Upon digitizing you notice that the reference point values that come\\n>out of the digitizing process differ in small but significant ways\\n>from the known true values. This is understandable because the\\n>scanned drawing is a reproduction of the original and there are\\n>successive sources of distortion such as differential expansion and\\n>contraction of paper, errors introduced in the printing process,\\n>scanner errors and what have you.\\n>\\n>The errors are not uniform over the entire drawing, so \"global\"\\n>adjustments such as stretching/contracting uniformly over x or y, or\\n>rotating the whole drawing, are not satisfactory.\\n>\\n>So the question is: does any kind soul know of an algorithm for\\n>removing such distortion? In particular, if I have three sets of\\n>points \\n>\\n>Reference(x,y) (the known true values)\\n>\\n>DistortedReference(x,y) (the same points, with known errors)\\n>\\n>DistortedData(x,y) (other points, with unknown errors)\\n>\\n>what function of Reference and Distorted could I apply to\\n>DistortedData to remove the errors.\\n>\\n>I suspect the problem could be solved by treating the distorted\\n>reference points as resulting from the projection of a \"bumpy\" 3d\\n>surface, solving for the surface and then \"flattening\" it to remove\\n>the errors in the other data points.\\n\\nIt helps to have some idea of the source of the distortion - or at least\\na reasonable model of the class of distortion. Below is a very short\\ndescription of the process which we use; if you have further questions,\\nfeel free to poke me via e-mail.\\n\\n================================================================\\n*ASSUME: locally smooth distortion\\n\\n0) Compute the Delaunay Triangulation of your (x,y) points. This\\n defines the set of neighbors for each point. If your data are\\n not naturally convex, you may have very long edges on the convex hull.\\n Consider deleting these edges.\\n\\n1) Now, there are two goals:\\n\\n a) move the DistortedData(x,y) to the Reference(x,y)\\n b) keep the Length(e) (as measured from the current (x,y)\\'s)\\n as close as possible to the DigitizedLength(e) (as measured \\n using the digitized (x,y)\\'s).\\n\\n2) For every point, compute a displacement based on a) and b). For\\n example:\\n\\n a) For (x,y) points for which you know the Reference(x,y), you\\n can move alpha0*(Reference(x,y) - Current(x,y)). This will\\n slowly move the DistortedReference(x,y) towards the\\n Reference(x,y). \\n b) For all other points, examine the current length of each edge.\\n For each edge, compute a displacement which would make that edge\\n the correct length (where \"correct\" is the DigitizedLength). \\n Take the vector sum of these edge displacements, and move the\\n point alpha1*SumOfEdgeDisplacements. This will keep the\\n triangulated mesh consistent with your Digitized mesh.\\n\\n3) Iterate 2) until you are happy (for example, no point moves very much).\\n\\nalpha0 and alpha1 need to be determined by experimentation. Consider\\nhow much you believe the Reference(x,y) - i.e., do you absolutely insist\\non the final points exactly matching the References, or do you want to\\nbalance some error in matching the Reference against changes in length\\nof the edges.\\n\\nWARNING: there are a couple of geometric invariants which must be\\nobserved (essentially, you can\\'t allow the convex hull to change, and\\nyou can\\'t allow triangles to \"fold over\" neighboring triangles. Both of\\nthese can be handled either by special case checks on the motion of\\nindividual points, or by periodically re-triangulating the points (using \\nthe current positions - but still calculating DigitizedLength from the\\noriginal positions. When we first did this, the triangulation time was\\nprohibitive, so we only did it once. If I were motivated to try and\\nchange code that has been working in production mode for 5 years, I\\n*might* go back and re-triangulate on every iteration. If you have more\\ncompute power than you know what to do with, you might consider having\\nevery point interact with every other point....but first read up on\\nlinear solutions to the n-body problem.\\n\\nThere are lots of papers in the last 10 years of SIGGRAPH proceedings on\\nsprings, constraints, and energy calculations which are relevant. The\\nabove method is described, in more or less detail in:\\n\\n@inproceedings{Sloan86,\\nauthor=\"Sloan, Jr., Kenneth R. and David Meyers and Christine A.~Curcio\",\\ntitle=\"Reconstruction and Display of the Retina\",\\nbooktitle=\"Proceedings: Graphics Interface \\'86 Vision Interface \\'86\",\\naddress=\"Vancouver, Canada\",\\npages=\"385--389\",\\nmonth=\"May\",\\nyear=1986 }\\n\\n@techreport{Curcio87b,\\nauthor=\"Christine A.~Curcio and Kenneth R.~Sloan and David Meyers\",\\ntitle=\"Computer Methods for Sampling, Reconstruction, Display, and\\nAnalysis of Retinal Whole Mounts\",\\nnumber=\"TR 87-12-03\",\\ninstitution=\"Department of Computer Science, University of Washington\",\\naddress=\"Seattle, WA\",\\nmonth=\"December\",\\nyear=1987 }\\n\\n@article{Curcio89,\\nauthor=\"Christine A.~Curcio and Kenneth R.~Sloan and David Meyers\",\\ntitle=\"Computer Methods for Sampling, Reconstruction, Display, and\\nAnalysis of Retinal Whole Mounts\",\\njournal=\"Vision Research\",\\nvolume=29,\\nnumber=5,\\npages=\"529--540\",\\nyear=1989 }\\n \\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n',\n", + " \"From: richter@fossi.hab-weimar.de (Axel Richter)\\nSubject: True Color Display in POV\\nKeywords: POV, Raytracing\\nNntp-Posting-Host: fossi.hab-weimar.de\\nOrganization: Hochschule fuer Architektur und Bauwesen Weimar, Germany\\nLines: 6\\n\\n\\nHallo POV-Renderers !\\nI've got a BocaX3 Card. Now I try to get POV displaying True Colors\\nwhile rendering. I've tried most of the options and UNIVESA-Driver\\nbut what happens isn't correct.\\nCan anybody help me ?\\n\",\n", + " \"From: add@sciences.sdsu.edu (James D. Murray)\\nSubject: Need specs/info on Apple QuickTime\\nOrganization: San Diego State University, College of Sciences\\nLines: 12\\nNNTP-Posting-Host: sciences.sdsu.edu\\nKeywords: quicktime\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nI need to get the specs, or at least a very verbose interpretation of the\\nspecs, for QuickTime. Technical articles from magazines and references to\\nbooks would be nice too.\\n\\nI also need the specs in a format usable on a Unix or MS-DOS system. I can't\\ndo much with the QuickTime stuff they have on ftp.apple.com in its present\\nformat.\\n\\nThanks in advance.\\n\\nJames D. Murray\\nadd@sciences.sdsu.edu\\n\",\n", + " 'From: morley@suncad.camosun.bc.ca (Mark Morley)\\nSubject: VGA Mode 13h Routines Available\\nNntp-Posting-Host: suncad.camosun.bc.ca\\nOrganization: Camosun College, Victoria B.C, Canada\\nX-Newsreader: Tin 1.1 PL4\\nLines: 31\\n\\nHi there,\\n\\nI\\'ve made a VGA mode 13h graphics library available via FTP. I originally\\nwrote the routines as a kind of exercise for myself, but perhaps someone\\nhere will find them useful. They are certainly useable as they are, but\\nare missing some higher-level functionality. They\\'re intended more as an\\nintro to mode 13h programming, a starting point.\\n\\n*** The library assumes a 386 processor, but it is trivial to modify it\\n*** for a 286. If enough people ask, I\\'ll make the mods and re-post it as a\\n*** different version.\\n\\nThe routines are written in assembly (TASM) and are callable from C. They\\nare fairly simple, but I\\'ve found them to be very fast (for my purposes,\\nanyway). Routines are included to enter and exit mode 13h, define a\\n\"virtual screen\", put and get pixels, put a pixmap (rectangular image with\\nno transparent spots), put a sprite (image with see-thru areas), copy\\nareas of the virtual screen into video memory, etc. I\\'ve also included a\\nsimple C routine to draw a line, as well as a C routine to load a 256\\ncolor GIF image into a buffer. I also wrote a quick\\'n\\'dirty(tm) demo program\\nthat bounces a bunch of sprites around behind three \"windows\".\\n\\nThe whole package is available on spang.camosun.bc.ca in /pub/dos/vgl.zip \\nIt is zipped with pkzip 2.04g\\n\\nIt is completely in the public domain, as far as I\\'m concerned. Do with\\nit whatever you like. However, it\\'d be nice to get credit where it\\'s due,\\nand maybe an e-mail telling me you like it (if you don\\'t like it don\\'t bother)\\n\\nMark\\nmorley@camosun.bc.ca\\n',\n", + " 'From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Re: What if the USSR had reached the Moon first?\\nIn-Reply-To: gary@ke4zv.uucp\\'s message of Sun, 18 Apr 1993 09:10:51 GMT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<1993Apr7.124724.22534@yang.earlham.edu> \\n\\t<1993Apr12.161742.22647@yang.earlham.edu>\\n\\t<93107.144339SAUNDRSG@QUCDN.QueensU.CA>\\n\\t<1993Apr18.091051.14496@ke4zv.uucp>\\nLines: 35\\n\\nIn article <1993Apr18.091051.14496@ke4zv.uucp> gary@ke4zv.uucp (Gary Coffman) writes:\\n\\n In article <93107.144339SAUNDRSG@QUCDN.QueensU.CA> Graydon writes:\\n\\n >This is turning into \\'what\\'s a moonbase good for\\', and I ought not\\n >to post when I\\'ve a hundred some odd posts to go, but I would\\n >think that the real reason to have a moon base is economic.\\n >\\n >Since someone with space industry will presumeably have a much\\n >larger GNP than they would _without_ space industry, eventually,\\n >they will simply be able to afford more stuff.\\n\\n If I read you right, you\\'re saying in essence that, with a larger\\n economy, nations will have more discretionary funds to *waste* on a\\n lunar facility. That was certainly partially the case with Apollo,\\n but real Lunar colonies will probably require a continuing\\n military, scientific, or commercial reason for being rather than\\n just a \"we have the money, why not?\" approach.\\n\\nAh, but the whole point is that money spent on a lunar base is not\\nwasted on the moon. It\\'s not like they\\'d be using $1000 (1000R?) bills\\nto fuel their moon-dozers. The money to fund a lunar base would be\\nspent in the country to which the base belonged. It\\'s a way of funding\\nhigh-tech research, just like DARPA was a good excuse to fund various\\nfields of research, under the pretense that it was crucial to the\\ndefense of the country, or like ESPRIT is a good excuse for the EC to\\nfund research, under the pretense that it\\'s good for pan-European\\ncooperation.\\n\\nNow maybe you think that government-funded research is a waste of\\nmoney (in fact, I\\'m pretty sure you do), but it does count as\\ninvestment spending, which does boost the economy (and just look at\\nthe size of that multiplier :->).\\n\\nNick Haines nickh@cmu.edu\\n',\n", + " \"From: srlnjal@grace.cri.nz\\nSubject: CorelDraw Bitmap to SCODAL\\nOrganization: Industrial Research Ltd., New Zealand.\\nLines: 10\\nNNTP-Posting-Host: grv.grace.cri.nz\\n\\n\\nDoes anyone know of software that will allow\\nyou to convert CorelDraw (.CDR) files\\ncontaining bitmaps to SCODAL, as this is the\\nonly format our bureau's filmrecorder recognises.\\n\\nJeff Lyall\\nInst.Geo.Nuc.Sci.Ltd\\nLower Hutt New Zealand\\n\\n\",\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Solar Sail Data\\nOrganization: University of Illinois at Urbana\\nLines: 24\\n\\nhiggins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey) writes:\\n\\n>snydefj@eng.auburn.edu (Frank J. Snyder) writes:\\n\\n>> I am looking for any information concerning projects involving Solar\\n>> Sails. [...]\\n>> Are there any groups out there currently involved in such a project ?\\n\\nBill says ...\\n\\n>Also there is a nontechnical book on solar sailing by Louis Friedman,\\n>a technical one by a guy whose name escapes me (help me out, Josh),\\n\\nI presume the one you refer to is \"Space Sailing\" by Jerome L. Wright. He \\nworked on solar sails while at JPL and as CEO of General Astronautics. I\\'ll\\nfurnish ordering info upon request.\\n\\nThe Friedman book is called \"Starsailing: Solar Sails and Interstellar Travel.\"\\nIt was available from the Planetary Society a few years ago, I don\\'t know if\\nit still is.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " \"From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: NONE\\nLines: 100\\n\\nIn article , mucit@cs.rochester.edu (Bulent Murtezaoglu) writes:\\n|> In article <1993Apr20.164517.20876@kpc.com> henrik@quayle.kpc.com writes:\\n|> [stuff deleted]\\n|> \\nhenrik] Country. Turks and Azeris consistantly WANT to drag ARMENIA into the\\nhenrik] KARABAKH conflict with Azerbaijan. \\n\\nBM] Gimme a break. CAPITAL letters, or NOT, the above is pure nonsense. It\\nBM] seems to me that short sighted Armenians are escalating the hostilities\\n\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n Again, Armenians in KARABAKH are SIMPLY defending themselves. What do\\n want them to do. Lay down their ARMS and let Azeris walk all over them.\\n\\nBM] while hoping that Turkey will stay out. Stop and think for a moment,\\nBM] will you? Armenia doesn't need anyone to drag her into the conflict, it\\nBM] is a part of it. \\n\\nArmenians KNEW from the begining that TURKS were FULLY engaged \\ntraining AZERIS militarily to fight against KARABAKHI-Armenians.\\n\\t\\nhenrik] The KARABAKHI-ARMENIANS who have lived in their HOMELAND for 3000 \\nhenrik] years (CUT OFF FROM ARMENIA and GIVEN TO AZERIS BY STALIN) are the \\nhenrik] ones DIRECTLY involved in the CONFLICT. They are defending \\nhenrik] themselves against AZERI AGGRESSION. \\n\\nBM] Huh? You didn't expect Azeri's to be friendly to forces fighting with them\\nBM] within their borders? \\n\\n\\tWell, history is SAD. Remember, those are relocated Azeris into \\n the Armenian LAND of KARABAKH by the STALIN regime.\\n\\nhenrik] At last, I hope that the U.S. insists that Turkey stay out of the \\nhenrik] KARABAKH crisis so that the repeat of the CYPRUS invasion WILL NEVER \\nhenrik] OCCUR again.\\n\\nBM] You're not playing with a full deck, are you? Where would Turkey invade?\\n\\n It is not up to me to speculate but I am sure Turkey would have stepped\\n into Armenia if SHE could.\\n \\nBM] Are you throwing the Cyprus buzzword around with s.c.g. in the header\\nBM] in hopes that the Greek netters will jump the gun? \\n\\n\\tAbsolutely NOT ! I am merely trying to emphasize that in many\\n cases, HISTORY repeats itself. \\n\\nBM] Yes indeed Turkey has the military prowess to intervene, what she wishes \\nBM] she had, however, is the diplomatic power to stop the hostilities and bring\\nBM] the parties to the negotiating table. That's hard to do when Armenians \\nBM] are attacking Azeri towns.\\n\\n\\tSo, let me understand in plain WORDS what you are saying; Turkey\\n wants a PEACEFUL END to this CONFLICT. NOT !!\\n\\n\\tI will believe it when I see it.\\n\\n\\tNow, as far as attacking, what do you do when you see a GUN pointing\\n to your HEAD ? Do you sit there and WATCH or DEFEND yoursef(fat chance)?\\n\\tDo you remember what Azeris did to the Armenians in BAKU ? All the\\n\\tBARBERIAN ACTS especially against MOTHERS and their CHILDREN. I mean\\n\\tBURNING people ALIVE !\\n\\nBM] Armenian leaders are lacking the statesmanship to recognize the \\nBM] futility of armed conflict and convince their nation that a compromise that \\nBM] leads to stability is much better than a military faits accomplis that's \\nBM] going to cause incessant skirmishes. \\n\\n\\tArmenians in KARABAKH want PEACE and their own republic. They are \\n NOT asking much. They simply want to get back what was TAKEN AWAY \\n\\tfrom them and GIVEN to AZERIS by STALIN. \\n\\nBM] Think of 10 or 20 years down the line -- both of the newly independent \\nBM] countries need to develop economically and neither one is going to wipe \\nBM] the other out. These people will be neighbors, would it not be better \\nBM] to keep the bad blood between them minimal?\\n\\n\\tDon't get me WRONG. I also want PEACEFUL solution to the\\n\\tconflict. But until Azeris realize that, the Armenians in\\n\\tKARABAKH will defend themselves against aggresion.\\n\\nBM] If you belong to the Armenian diaspora, keep in mind that what strikes\\nBM] your fancy on the map is costing the local Armenians dearly in terms of \\nBM] their blood and future. \\n\\n\\tAgain, you are taking different TURNS. Armenia HAS no intension\\n to GRAB any LAND from Azerbaijan. The Armenians in KARABAKH\\n are simply defending themselves UNTIL a solution is SET.\\n\\nBM] It's easy to be comfortable abroad and propagandize \\nBM] craziness to have your feelings about Turks tickled. The Armenians\\nBM] in Armenia and N-K will be there, with the same people you seem to hate \\nBM] as their neighbors, for maybe 3000 years more. The sooner there's peace in\\nBM] the region the better it is for them and everyone else. I'd push for\\nBM] compromise if I were you instead of hitting the caps-lock and spreading\\nBM] inflammatory half-truths.\\n\\n\\tIt is NOT up to me to decide the PEACE initiative. I am absolutely\\n for it. But, in the meantime, if you do not take care of yourself,\\n you will be WIPED out. Such as the case in the era of 1915-20 of\\n\\tThe Armenian Massacres.\\n\",\n", + " 'From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 49\\n\\nhoover@mathematik.uni-bielefeld.de (Uwe Schuerkamp) writes:\\n\\n>In article enzo@research.canon.oz.au \\n>(Enzo Liguori) writes:\\n\\n>> hideous vision of the future. Observers were\\n>>startled this spring when a NASA launch vehicle arrived at the\\n>>pad with \"SCHWARZENEGGER\" painted in huge block letters on the\\n\\n>This is ok in my opinion as long as the stuff *returns to earth*.\\n\\n>>What do you think of this revolting and hideous attempt to vandalize\\n>>the night sky? It is not even April 1 anymore.\\n\\n>If this turns out to be true, it\\'s time to get seriously active in\\n>terrorism. This is unbelievable! Who do those people think they are,\\n>selling every bit that promises to make money? I guess we really\\n>deserve being wiped out by uv radiation, folks. \"Stupidity wins\". I\\n>guess that\\'s true, and if only by pure numbers.\\n\\n>\\tAnother depressed planetary citizen,\\n>\\thoover\\n\\n\\nThis isn\\'t inherently bad.\\n\\nThis isn\\'t really light pollution since it will only\\nbe visible shortly before or after dusk (or during the\\nday).\\n\\n(Of course, if night only lasts 2 hours for you, you\\'re probably going\\nto be inconvienenced. But you\\'re inconvienenced anyway in that case).\\n\\nFinally: this isn\\'t the Bronze Age, and most of us aren\\'t Indo\\nEuropean; those people speaking Indo-Eurpoean languages often have\\nmuch non-indo-european ancestry and cultural background. So:\\nplease try to remember that there are more human activities than\\nthose practiced by the Warrior Caste, the Farming Caste, and the\\nPriesthood.\\n\\nAnd why act distressed that someone\\'s found a way to do research\\nthat doesn\\'t involve socialism?\\n\\nIt certianly doesn\\'t mean we deserve to die.\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", + " 'From: warren@itexjct.jct.ac.il (Warren Burstein)\\nSubject: Re: To be exact, 2.5 million Muslims were exterminated by the Armenians.\\nOrganization: ITEX, Jerusalem, Israel\\nLines: 33\\n\\nac = In <9304202017@zuma.UUCP> sera@zuma.UUCP (Serdar Argic)\\npl = linden@positive.Eng.Sun.COM (Peter van der Linden)\\n\\npl: 1. So, did the Turks kill the Armenians?\\n\\nac: So, did the Jews kill the Germans? \\nac: You even make Armenians laugh.\\n\\nac: \"An appropriate analogy with the Jewish Holocaust might be the\\nac: systematic extermination of the entire Muslim population of \\nac: the independent republic of Armenia which consisted of at \\nac: least 30-40 percent of the population of that republic. The \\nac: memoirs of an Armenian army officer who participated in and \\nac: eye-witnessed these atrocities was published in the U.S. in\\nac: 1926 with the title \\'Men Are Like That.\\' Other references abound.\"\\n\\nTypical Mutlu. PvdL asks if X happened, the response is that Y\\nhappened. Even if we grant that the Armenians *did* do what Cosar\\naccuses them of doing, this has no bearing on whether the Turks did\\nwhat they are accused of.\\n\\nWhile I can understand how an AI could be this stupid, I\\ncan\\'t understand how a human could be such a moron as to either let\\nsuch an AI run amok or to compose such pointless messages himself.\\n\\nI do not expect any followup to this article from Argic to do anything\\nto alleviate my puzzlement. But maybe I\\'ll see a new line from his\\nlist of insults.\\n-- \\n/|/-\\\\/-\\\\ \\n |__/__/_/ \\n |warren@ \\n/ nysernet.org\\n',\n", + " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 22\\n\\ntclock@orion.oac.uci.edu writes:\\n> Since one is also unlikely to get \"the truth\" from either Arab or \\n> Palestinian news outlets, where do we go to \"understand\", to learn? \\n> Is one form of propoganda more reliable than another? The only way \\n> to determine that is to try and get beyond the writer\\'s \"political\\n> agenda\", whether it is \"on\" or \"against\" our *side*.\\n> \\n> Tim \\n\\tFirst let me correct myself in that it was Goerbels and\\nnot Goering (Airforce) who ran the Nazi propaganda machine. I\\nagree that Arab news sources are also inherently biased. But I\\nbelieve the statement I was reacting to was that since the\\namerican accounts of events are not fully like the Israeli\\naccounts, the Americans are biased. I just thought that the\\nIsraelis had more motivation for bias.\\n\\tThe UN has tried many times to condemn Israel for its\\ngross violation of human rights. However the US has vetoed most\\nsuch attempts. It is interesting to note that the U.S. is often\\nthe only country opposing such condemnation (well the U.S. and\\nIsrael). It is also interesting to note that that means\\nother western countries realize these human rights violations.\\nSo maybe there are human rights violations going on after all. \\n',\n", + " 'Subject: Re: Drinking and Riding\\nFrom: bclarke@galaxy.gov.bc.ca\\nOrganization: BC Systems Corporation\\nLines: 11\\n\\nIn article , manes@magpie.linknet.com (Steve Manes) writes:\\n{drinking & riding}\\n> It depends on how badly you want to live. The FAA says \"eight hours, bottle\\n> to throttle\" for pilots but recommends twenty-four hours. The FARs specify\\n> a blood/alcohol level of 0.4 as legally drunk, I think, which is more than\\n> twice as strict as DWI minimums.\\n\\n0.20 is DWI in New York? Here the limit is 0.08 !\\n-- \\nBruce Clarke B.C. Environment\\n e-mail: bclarke@galaxy.gov.bc.ca\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: After all, Armenians exterminated 2.5 million Muslim people there.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 297\\n\\nIn article hovig@uxa.cso.uiuc.edu (Hovig Heghinian) writes:\\n\\n>article. I have no partisan interests --- I would just like to know\\n>what conversations between TerPetrosyan and Demirel sound like. =)\\n\\nVery simple.\\n\\n\"X-Soviet Armenian government must pay for their crime of genocide \\n against 2.5 million Muslims by admitting to the crime and making \\n reparations to the Turks and Kurds.\"\\n\\nAfter all, your criminal grandparents exterminated 2.5 million Muslim\\npeople between 1914 and 1920.\\n\\n\\n\\nhovig@uxa.cso.uiuc.edu (Hovig Heghinian)\\n\\n>To which I say:\\n>Hear, hear. Motion seconded.\\n\\nYou must be a new Armenian clown. You are counting on ASALA/SDPA/ARF \\ncrooks and criminals to prove something for you? No wonder you are in \\nsuch a mess. That criminal idiot and \\'its\\' forged/non-existent junk has \\nalready been trashed out by Mutlu, Cosar, Akgun, Uludamar, Akman, Oflazer \\nand hundreds of people. Moreover, ASALA/SDPA/ARF criminals are responsible \\nfor the massacre of the Turkish people that also prevent them from entering \\nTurkiye and TRNC. SDPA has yet to renounce its charter which specifically \\ncalls for the second genocide of the Turkish people. This racist, barbarian \\nand criminal view has been touted by the fascist x-Soviet Armenian government \\nas merely a step on the road to said genocide. \\n\\nNow where shall I begin?\\n\\n#From: ahmet@eecg.toronto.edu (Parlakbilek Ahmet)\\n#Subject: YALANCI, LIAR : DAVIDIAN\\n#Keywords: Davidian, the biggest liar\\n#Message-ID: <1991Jan10.122057.11613@jarvis.csri.toronto.edu>\\n\\nFollowing is the article that Davidian claims that Hasan Mutlu is a liar:\\n\\n>From: dbd@urartu.SDPA.org (David Davidian)\\n>Message-ID: <1154@urartu.SDPA.org>\\n\\n>In article <1991Jan4.145955.4478@jarvis.csri.toronto.edu> ahmet@eecg.toronto.\\n>edu (Ahmet Parlakbilek) asked a simple question:\\n\\n>[AP] I am asking you to show me one example in which mutlu,coras or any other\\n>[AP] Turk was proven to lie.I can show tens of lies and fabrications of\\n>[AP] Davidian, like changing quote , even changing name of a book, Anna.\\n\\n>The obvious ridiculous \"Armenians murdered 3 million Moslems\" is the most\\n>outragious and unsubstantiated charge of all. You are obviously new on this \\n>net, so read the following sample -- not one, but three proven lies in one\\n>day!\\n\\n>\\t\\t\\t- - - start yalanci.txt - - -\\n\\n[some parts are deleted]\\n\\n>In article <1990Aug5.142159.5773@cbnewsd.att.com> the usenet scribe for the \\n>Turkish Historical Society, hbm@cbnewsd.att.com (hasan.b.mutlu), continues to\\n>revise the history of the Armenian people. Let\\'s witness the operational\\n>definition of a revisionist yalanci (or liar, in Turkish):\\n\\n>[Yalanci] According to Leo:[1]\\n>[Yalanci]\\n>[Yalanci] \"The situation is clear. On one side, we have peace-loving Turks\\n>[Yalanci] and on the other side, peace-loving Armenians, both sides minding\\n>[Yalanci] their own affairs. Then all was submerged in blood and fire. Indeed,\\n>[Yalanci] the war was actually being waged between the Committee of \\n>[Yalanci] Dashnaktsutiun and the Society of Ittihad and Terakki - a cruel and \\n>[Yalanci] savage war in defense of party political interests. The Dashnaks \\n>[Yalanci] incited revolts which relied on Russian bayonets for their success.\"\\n>[Yalanci] \\n>[Yalanci] [1] L. Kuper, \"Genocide: Its Political Use in the Twentieth Century,\"\\n>[Yalanci] New York 1981, p. 157.\\n\\n>This text is available not only in most bookstores but in many libraries. On\\n>page 157 we find a discussion of related atrocities (which is title of the\\n>chapter). The topic on this page concerns itself with submissions to the Sub-\\n>Commission on Prevention of Discrimination of Minorities of the Commission on\\n>Human Rights of the United Nations with respect to the massacres in Cambodia.\\n>There is no mention of Turks nor Armenians as claimed above.\\n\\n\\t\\t\\t\\t- - -\\n\\n>Vay sarsak, vay yobaz, vay yalanci! Vay Turk milletinin yuz karasi Mutlu vay!\\n\\n>The depth of foolishness the Turkish Historical Society engages in, while\\n>covering up the Turkish genocide of the Armenians, is only surpassed by the \\n>ridiculous \"historical\" material publicly displayed!\\n\\n>David Davidian | The life of a people is a sea, and \\n\\nReceiving this message, I checked the reference, L.Kuper,\"Genocide...\" and\\nwhat I have found was totally consistent with what Davidian said.The book\\nwas like \"voice of Armenian revolutionists\" and although I read the whole book,\\nI could not find the original quota.\\nBut there was one more thing to check:The original posting of Mutlu.I found \\nthe original article of Mutlu.It is as follows:\\n\\n> According to Leo:[1]\\n\\n>\"The situation is clear. On one side, we have peace-loving Turks and on\\n> the other side, peace-loving Armenians, both sides minding their own \\n> affairs. Then all was submerged in blood and fire. Indeed, the war was\\n> actually being waged between the Committee of Dashnaktsutiun and the\\n> Society of Ittihad and Terakki - a cruel and savage war in defense of party\\n> political interests. The Dashnaks incited revolts which relied on Russian\\n> bayonets for their success.\" \\n\\n>[1] B. A. Leo. \"The Ideology of the Armenian Revolution in Turkey,\" vol II,\\n ======================================================================\\n> p. 157.\\n ======\\n\\nQUATO IS THE SAME, REFERENCE IS DIFFERENT !\\n\\nDAVIDIAN LIED AGAIN, AND THIS TIME HE CHANGED THE ORIGINAL POSTING OF MUTLU\\nJUST TO ACCUSE HIM TO BE A LIAR.\\n\\nDavidian, thank you for writing the page number correctly...\\n\\nYou are the biggest liar I have ever seen.This example showed me that tomorrow\\nyou can lie again, and you may try to make me a liar this time.So I decided\\nnot to read your articles and not to write answers to you.I also advise\\nall the netters to do the same.We can not prevent your lies, but at least\\nwe may save time by not dealing with your lies.\\n\\nAnd for the following line:\\n>Vay sarsak, vay yobaz, vay yalanci! Vay Turk milletinin yuz karasi Mutlu vay!\\n\\nI also return all the insults you wrote about Mutlu to you.\\nI hope you will be drowned in your lies.\\n\\nAhmet PARLAKBILEK\\n\\n#From: vd8@cunixb.cc.columbia.edu (Vedat Dogan)\\n#Message-ID: <1993Apr8.233029.29094@news.columbia.edu>\\n\\nIn article <1993Apr7.225058.12073@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>In article <1993Apr7.030636.7473@news.columbia.edu> vd8@cunixb.cc.columbia.edu\\n>(Vedat Dogan) wrote in response to article <1993Mar31.141308.28476@urartu.\\n>11sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>\\n \\n>[(*] Source: \"Adventures in the Near East, 1918-1922\" by A. Rawlinson,\\n>[(*] Jonathan Cape, 30 Bedford Square, London, 1934 (First published 1923) \\n>[(*] (287 pages).\\n>\\n>[DD] Such a pile of garbage! First off, the above reference was first published\\n>[DD] in 1924 NOT 1923, and has 353 pages NOT 287! Second, upon checking page \\n>[DD] 178, we are asked to believe:\\n> \\n>[VD] No, Mr.Davidian ... \\n> \\n>[VD] It was first published IN 1923 (I have the book on my desk,now!) \\n>[VD] ********\\n> \\n>[VD] and furthermore,the book I have does not have 353 pages either, as you\\n>[VD] claimed, Mr.Davidian..It has 377 pages..Any question?..\\n> \\n>Well, it seems YOUR book has its total page numbers closer to mine than the \\nn>crap posted by Mr. [(*]!\\n \\n o boy! \\n \\n Please, can you tell us why those quotes are \"crap\"?..because you do not \\n like them!!!...because they really exist...why?\\n \\n As I said in my previous posting, those quotes exactly exist in the source \\n given by Serdar Argic .. \\n \\n You couldn\\'t reject it...\\n \\n>\\n>In addition, the Author\\'s Preface was written on January 15, 1923, BUT THE BOOK\\n>was published in 1924.\\n \\n Here we go again..\\n In the book I have, both the front page and the Author\\'s preface give \\n the same year: 1923 and 15 January, 1923, respectively!\\n (Anyone can check it at her/his library,if not, I can send you the copies of\\n pages, please ask by sct) \\n \\n \\nI really don\\'t care what year it was first published(1923 or 1924)\\nWhat I care about is what the book writes about murders, tortures,et..in\\nthe given quotes by Serdar Argic, and your denial of these quotes..and your\\ngroundless accussations, etc. \\n \\n>\\n[...]\\n> \\n>[DD] I can provide .gif postings if required to verify my claim!\\n> \\n>[VD] what is new?\\n> \\n>I will post a .gif file, but I am not going go through the effort to show there \\n>is some Turkish modified re-publication of the book, like last time!\\n \\n \\n I claim I have a book in my hand published in 1923(first publication)\\n and it exactly has the same quoted info as the book published\\n in 1934(Serdar Argic\\'s Reference) has..You couldn\\'t reject it..but, now you\\n are avoiding the real issues by twisting around..\\n \\n Let\\'s see how you lie!..(from \\'non-existing\\' quotes to re-publication)\\n \\n First you said there was no such a quote in the given reference..You\\n called Serdar Argic a liar!..\\n I said to you, NO, MR.Davidian, there exactly existed such a quote...\\n (I even gave the call number, page numbers..you could\\'t reject it.)\\n \\n And now, you are lying again and talking about \"modified,re-published book\"\\n(without any proof :how, when, where, by whom, etc..)..\\n (by the way, how is it possible to re-publish the book in 1923 if it was\\n first published in 1924(your claim).I am sure that you have some \\'pretty \\n well suited theories\\', as usual)\\n \\n And I am ready to send the copies of the necessary pages to anybody who\\n wants to compare the fact and Mr.Davidian\\'s lies...I also give the call number\\n and page numbers again for the library use, which are: \\n 949.6 R 198\\n \\n and the page numbers to verify the quotes:218 and 215\\n \\n \\n \\n> \\n>It is not possible that [(*]\\'s text has 287 pages, mine has 353, and yours has\\n>377!\\n \\n Now, are you claiming that there can\\'t be such a reference by saying \"it is\\n not possible...\" ..If not, what is your point?\\n \\n Differences in the number of pages?\\n Mine was published in 1923..Serdar Argic\\'s was in 1934..\\n No need to use the same book size and the same letter \\n charachter in both publications,etc, etc.. does it give you an idea!!\\n \\n The issue was not the number of pages the book has..or the year\\n first published.. \\n And you tried to hide the whole point..\\n the point is that both books have the exactly the same quotes about\\n how moslems are killed, tortured,etc by Armenians..and those quotes given \\n by Serdar Argic exist!! \\n It was the issue, wasn\\'t-it? \\n \\n you were not able to object it...Does it bother you anyway? \\n \\n You name all these tortures and murders (by Armenians) as a \"crap\"..\\n People who think like you are among the main reasons why the World still\\n has so many \"craps\" in the 1993. \\n \\n Any question?\\n \\n\\n\\nhovig@uxa.cso.uiuc.edu (Hovig Heghinian)\\n\\n> Hmm ... Turks sure know how to keep track of deaths, but they seem to\\n>lose count around 1.5 million.\\n\\nWell, apparently we have another son of Dro \\'the Butcher\\' to contend with. \\nYou should indeed be happy to know that you rekindled a huge discussion on\\ndistortions propagated by several of your contemporaries. If you feel \\nthat you can simply act as an Armenian governmental crony in this forum \\nyou will be sadly mistaken and duly embarrassed. This is not a lecture to \\nanother historical revisionist and a genocide apologist, but a fact.\\n\\nI will dissect article-by-article, paragraph-by-paragraph, line-by-line, \\nlie-by-lie, revision-by-revision, written by those on this net, who plan \\nto \\'prove\\' that the Armenian genocide of 2.5 million Turks and Kurds is \\nnothing less than a classic un-redressed genocide. We are neither in \\nx-Soviet Union, nor in some similar ultra-nationalist fascist dictatorship, \\nthat employs the dictates of Hitler to quell domestic unrest. Also, feel \\nfree to distribute all responses to your nearest ASALA/SDPA/ARF terrorists,\\nthe Armenian pseudo-scholars, or to those affiliated with the Armenian\\ncriminal organizations.\\n\\nArmenian government got away with the genocide of 2.5 million Turkish men,\\nwomen and children and is enjoying the fruits of that genocide. You, and \\nthose like you, will not get away with the genocide\\'s cover-up.\\n\\nNot a chance.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Morality? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>>Explain to me\\n|> >>>how instinctive acts can be moral acts, and I am happy to listen.\\n|> >>For example, if it were instinctive not to murder...\\n|> >\\n|> >Then not murdering would have no moral significance, since there\\n|> >would be nothing voluntary about it.\\n|> \\n|> See, there you go again, saying that a moral act is only significant\\n|> if it is \"voluntary.\" Why do you think this?\\n\\nIf you force me to do something, am I morally responsible for it?\\n\\n|> \\n|> And anyway, humans have the ability to disregard some of their instincts.\\n\\nWell, make up your mind. Is it to be \"instinctive not to murder\"\\nor not?\\n\\n|> \\n|> >>So, only intelligent beings can be moral, even if the bahavior of other\\n|> >>beings mimics theirs?\\n|> >\\n|> >You are starting to get the point. Mimicry is not necessarily the \\n|> >same as the action being imitated. A Parrot saying \"Pretty Polly\" \\n|> >isn\\'t necessarily commenting on the pulchritude of Polly.\\n|> \\n|> You are attaching too many things to the term \"moral,\" I think.\\n|> Let\\'s try this: is it \"good\" that animals of the same species\\n|> don\\'t kill each other. Or, do you think this is right? \\n\\nIt\\'s not even correct. Animals of the same species do kill\\none another.\\n\\n|> \\n|> Or do you think that animals are machines, and that nothing they do\\n|> is either right nor wrong?\\n\\nSigh. I wonder how many times we have been round this loop.\\n\\nI think that instinctive bahaviour has no moral significance.\\nI am quite prepared to believe that higher animals, such as\\nprimates, have the beginnings of a moral sense, since they seem\\nto exhibit self-awareness.\\n\\n|> \\n|> \\n|> >>Animals of the same species could kill each other arbitarily, but \\n|> >>they don\\'t.\\n|> >\\n|> >They do. I and other posters have given you many examples of exactly\\n|> >this, but you seem to have a very short memory.\\n|> \\n|> Those weren\\'t arbitrary killings. They were slayings related to some \\n|> sort of mating ritual or whatnot.\\n\\nSo what? Are you trying to say that some killing in animals\\nhas a moral significance and some does not? Is this your\\nnatural morality>\\n\\n\\n|> \\n|> >>Are you trying to say that this isn\\'t an act of morality because\\n|> >>most animals aren\\'t intelligent enough to think like we do?\\n|> >\\n|> >I\\'m saying:\\n|> >\\t\"There must be the possibility that the organism - it\\'s not \\n|> >\\tjust people we are talking about - can consider alternatives.\"\\n|> >\\n|> >It\\'s right there in the posting you are replying to.\\n|> \\n|> Yes it was, but I still don\\'t understand your distinctions. What\\n|> do you mean by \"consider?\" Can a small child be moral? How about\\n|> a gorilla? A dolphin? A platypus? Where is the line drawn? Does\\n|> the being need to be self aware?\\n\\nAre you blind? What do you think that this sentence means?\\n\\n\\t\"There must be the possibility that the organism - it\\'s not \\n\\tjust people we are talking about - can consider alternatives.\"\\n\\nWhat would that imply?\\n\\n|> \\n|> What *do* you call the mechanism which seems to prevent animals of\\n|> the same species from (arbitrarily) killing each other? Don\\'t\\n|> you find the fact that they don\\'t at all significant?\\n\\nI find the fact that they do to be significant. \\n\\njon.\\n',\n", + " \"From: benali@alcor.concordia.ca ( ILYESS B. BDIRA )\\nSubject: Re: The Israeli Press\\nNntp-Posting-Host: alcor.concordia.ca\\nOrganization: Concordia University, Montreal, Canada\\nLines: 41\\n\\nbc744@cleveland.Freenet.Edu (Mark Ira Kaufman) writes:\\n\\n\\n...\\n>for your information on Israel. Since I read both American media\\n>and Israeli media, I can say with absolute certainty that anybody\\n>who reliesx exclusively on the American press for knowledge about\\n>Israel does not have a true picture of what is going on.\\n\\nOf course you never read Arab media,\\n\\nI read Arab, ISRAELI (Jer. Post, and this network is more than enough)\\nand Western (American, French, and British) reports and I can say\\nthat if we give Israel -10 and Arabs +10 on the bias scale (of course\\nyou can switch the polarities) Israeli newspapers will get either\\na -9 or -10, American leading newspapers and TV news range from -6\\nto -10 (yes there are some that are more Israelis than Israelis)\\nThe Montreal suburban (a local free newspaper) probably is closer\\nto Kahane's views than some Israeli right wing newspapers, British\\nrange from 0 (neutral) to -10, French (that Iknow of, of course) range\\nfrom +2 (Afro-french magazines) to -10, Arab official media range from\\n0 to -5 (Egyptian) to +9 in SA. Why no +10? Because they do not want to\\noverdo it and stir people against Israel and therefore against them since \\nthey are doing nothing.\\n\\n \\n> As to the claim that Israeli papers are biased, of course they\\n>are. Some may lean to the right or the left, just like the media\\n>here in America. But they still report events about which people\\n>here know nothing. I choose to form my opinions about Israel and\\n>the mideast based on more knowledge than does an average American\\n>who relies exclusively on an American media which does not report\\n>on events in the mideast with any consistency or accuracy.\\n\\nthe average bias of what you read would be probably around -9,\\nwhile that of the average American would be the same if they do\\nnot read or read the new-york times and similar News-makers, and\\n-8 if they read some other RELATIVELY less biased newspapers.\\n\\nso you are not better off.\\n\\n\",\n", + " 'From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: Maxima Chain wax\\nNntp-Posting-Host: amhux3.amherst.edu\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 31\\n\\nTom Dietrich (txd@ESD.3Com.COM) wrote:\\n: parr@acs.ucalgary.ca (Charles Parr) writes:\\n: \\n: >I bought it, I tried it:\\n: \\n: >It is, truly, the miracle spooge.\\n: \\n: >My chain is lubed, my wheel is clean, after 1000km.\\n: \\n: Good, glad to hear it, I\\'m still studying it.\\n: \\n: >I think life is now complete...The shaft drive weenies now\\n: >have no comeback when I discuss shaft effect.\\n: \\n: Sure I do, even though I don\\'t consider myself a weenie... \\n\\n---------------- rip! pithy \"I\\'m afraid to work on my bike\" stuff deleted ---\\n\\n: There is also damn little if any shaft effect\\n: with a Concours. So there! :{P PPPpppphhhhhttttttt!!!\\n: \\nHeh, heh...that\\'s pretty funny. So what do you call it instead of shaft\\neffect?\\n\\n\\nNathaniel\\nZX-10 <--- damn little if any shaft effect\\nDoD 0812\\nAMA\\n\\np.s. okay, so it\\'s flame bait, so what\\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 14/15 - How to Become an Astronaut\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.astronaut_733694515\\nExpires: 6 May 1993 20:01:55 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 313\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/astronaut\\nLast-modified: $Date: 93/04/01 14:39:02 $\\n\\nHOW TO BECOME AN ASTRONAUT\\n\\n First the short form, authored by Henry Spencer, then an official NASA\\n announcement.\\n\\n Q. How do I become an astronaut?\\n\\n A. We will assume you mean a NASA astronaut, since it\\'s probably\\n impossible for a non-Russian to get into the cosmonaut corps (paying\\n passengers are not professional cosmonauts), and the other nations have\\n so few astronauts (and fly even fewer) that you\\'re better off hoping to\\n win a lottery. Becoming a shuttle pilot requires lots of fast-jet\\n experience, which means a military flying career; forget that unless you\\n want to do it anyway. So you want to become a shuttle \"mission\\n specialist\".\\n\\n If you aren\\'t a US citizen, become one; that is a must. After that,\\n the crucial thing to remember is that the demand for such jobs vastly\\n exceeds the supply. NASA\\'s problem is not finding qualified people,\\n but thinning the lineup down to manageable length.\\tIt is not enough\\n to be qualified; you must avoid being *dis*qualified for any reason,\\n many of them in principle quite irrelevant to the job.\\n\\n Get a Ph.D. Specialize in something that involves getting your hands\\n dirty with equipment, not just paper and pencil. Forget computer\\n programming entirely; it will be done from the ground for the fore-\\n seeable future. Degree(s) in one field plus work experience in\\n another seems to be a frequent winner.\\n\\n Be in good physical condition, with good eyesight.\\t(DO NOT get a\\n radial keratomy or similar hack to improve your vision; nobody knows\\n what sudden pressure changes would do to RKed eyes, and long-term\\n effects are poorly understood. For that matter, avoid any other\\n significant medical unknowns.) If you can pass a jet-pilot physical,\\n you should be okay; if you can\\'t, your chances are poor.\\n\\n Practise public speaking, and be conservative and conformist in\\n appearance and actions; you\\'ve got a tough selling job ahead, trying\\n to convince a cautious, conservative selection committee that you\\n are better than hundreds of other applicants. (And, also, that you\\n will be a credit to NASA after you are hired: public relations is\\n a significant part of the job, and NASA\\'s image is very prim and\\n proper.) The image you want is squeaky-clean workaholic yuppie.\\n Remember also that you will need a security clearance at some point,\\n and Security considers everybody guilty until proven innocent.\\n Keep your nose clean.\\n\\n Get a pilot\\'s license and make flying your number one hobby;\\n experienced pilots are known to be favored even for non-pilot jobs.\\n\\n Work for NASA; of 45 astronauts selected between 1984 and 1988,\\n 43 were military or NASA employees, and the remaining two were\\n a NASA consultant and Mae Jemison (the first black female astronaut).\\n If you apply from outside NASA and miss, but they offer you a job\\n at NASA, ***TAKE IT***; sometimes in the past this has meant \"you\\n do look interesting but we want to know you a bit better first\".\\n\\n Think space: they want highly motivated people, so lose no chance\\n to demonstrate motivation.\\n\\n Keep trying. Many astronauts didn\\'t make it the first time.\\n\\n\\n\\n\\n NASA\\n National Aeronautics and Space Administration\\n Lyndon B. Johnson Space Center\\n Houston, Texas\\n\\n Announcement for Mission Specialist and Pilot Astronaut Candidates\\n ==================================================================\\n\\n Astronaut Candidate Program\\n ---------------------------\\n\\n The National Aeronautics and Space Administration (NASA) has a need for\\n Pilot Astronaut Candidates and Mission Specialist Astronaut Candidates\\n to support the Space Shuttle Program. NASA is now accepting on a\\n continuous basis and plans to select astronaut candidates as needed.\\n\\n Persons from both the civilian sector and the military services will be\\n considered.\\n\\n All positions are located at the Lyndon B. Johnson Space Center in\\n Houston, Texas, and will involved a 1-year training and evaluation\\n program.\\n\\n Space Shuttle Program Description\\n ---------------------------------\\n\\n The numerous successful flights of the Space Shuttle have demonstrated\\n that operation and experimental investigations in space are becoming\\n routine. The Space Shuttle Orbiter is launched into, and maneuvers in\\n the Earth orbit performing missions lastling up to 30 days. It then\\n returns to earth and is ready for another flight with payloads and\\n flight crew.\\n\\n The Orbiter performs a variety of orbital missions including deployment\\n and retrieval of satellites, service of existing satellites, operation\\n of specialized laboratories (astronomy, earth sciences, materials\\n processing, manufacturing), and other operations. These missions will\\n eventually include the development and servicing of a permanent space\\n station. The Orbiter also provides a staging capability for using higher\\n orbits than can be achieved by the Orbiter itself. Users of the Space\\n Shuttle\\'s capabilities are both domestic and foreign and include\\n government agencies and private industries.\\n\\n The crew normally consists of five people - the commander, the pilot,\\n and three mission specialists. On occasion additional crew members are\\n assigned. The commander, pilot, and mission specialists are NASA\\n astronauts.\\n\\n Pilot Astronaut\\n\\n Pilot astronauts server as both Space Shuttle commanders and pilots.\\n During flight the commander has onboard responsibility for the vehicle,\\n crew, mission success and safety in flight. The pilot assists the\\n commander in controlling and operating the vehicle. In addition, the\\n pilot may assist in the deployment and retrieval of satellites utilizing\\n the remote manipulator system, in extra-vehicular activities, and other\\n payload operations.\\n\\n Mission Specialist Astronaut\\n\\n Mission specialist astronauts, working with the commander and pilot,\\n have overall responsibility for the coordination of Shuttle operations\\n in the areas of crew activity planning, consumables usage, and\\n experiment and payload operations. Mission specialists are required to\\n have a detailed knowledge of Shuttle systems, as well as detailed\\n knowledge of the operational characteristics, mission requirements and\\n objectives, and supporting systems and equipment for each of the\\n experiments to be conducted on their assigned missions. Mission\\n specialists will perform extra-vehicular activities, payload handling\\n using the remote manipulator system, and perform or assist in specific\\n experimental operations.\\n\\n Astronaut Candidate Program\\n ===========================\\n\\n Basic Qualification Requirements\\n --------------------------------\\n\\n Applicants MUST meet the following minimum requirements prior to\\n submitting an application.\\n\\n Mission Specialist Astronaut Candidate:\\n\\n 1. Bachelor\\'s degree from an accredited institution in engineering,\\n biological science, physical science or mathematics. Degree must be\\n followed by at least three years of related progressively responsible,\\n professional experience. An advanced degree is desirable and may be\\n substituted for part or all of the experience requirement (master\\'s\\n degree = 1 year, doctoral degree = 3 years). Quality of academic\\n preparation is important.\\n\\n 2. Ability to pass a NASA class II space physical, which is similar to a\\n civilian or military class II flight physical and includes the following\\n specific standards:\\n\\n\\t Distant visual acuity:\\n\\t 20/150 or better uncorrected,\\n\\t correctable to 20/20, each eye.\\n\\n\\t Blood pressure:\\n\\t 140/90 measured in sitting position.\\n\\n 3. Height between 58.5 and 76 inches.\\n\\n Pilot Astronaut Candidate:\\n\\n 1. Bachelor\\'s degree from an accredited institution in engineering,\\n biological science, physical science or mathematics. Degree must be\\n followed by at least three years of related progressively responsible,\\n professional experience. An advanced degree is desirable. Quality of\\n academic preparation is important.\\n\\n 2. At least 1000 hours pilot-in-command time in jet aircraft. Flight\\n test experience highly desirable.\\n\\n 3. Ability to pass a NASA Class I space physical which is similar to a\\n military or civilian Class I flight physical and includes the following\\n specific standards:\\n\\n\\t Distant visual acuity:\\n\\t 20/50 or better uncorrected\\n\\t correctable to 20/20, each eye.\\n\\n\\t Blood pressure:\\n\\t 140/90 measured in sitting position.\\n\\n 4. Height between 64 and 76 inches.\\n\\n Citizenship Requirements\\n\\n Applications for the Astronaut Candidate Program must be citizens of\\n the United States.\\n\\n Note on Academic Requirements\\n\\n Applicants for the Astronaut Candidate Program must meet the basic\\n education requirements for NASA engineering and scientific positions --\\n specifically: successful completion of standard professional curriculum\\n in an accredited college or university leading to at least a bachelor\\'s\\n degree with major study in an appropriate field of engineering,\\n biological science, physical science, or mathematics.\\n\\n The following degree fields, while related to engineering and the\\n sciences, are not considered qualifying:\\n - Degrees in technology (Engineering Technology, Aviation Technology,\\n\\tMedical Technology, etc.)\\n - Degrees in Psychology (except for Clinical Psychology, Physiological\\n\\tPsychology, or Experimental Psychology which are qualifying).\\n - Degrees in Nursing.\\n - Degrees in social sciences (Geography, Anthropology, Archaeology, etc.)\\n - Degrees in Aviation, Aviation Management or similar fields.\\n\\n Application Procedures\\n ----------------------\\n\\n Civilian\\n\\n The application package may be obtained by writing to:\\n\\n\\tNASA Johnson Space Center\\n\\tAstronaut Selection Office\\n\\tATTN: AHX\\n\\tHouston, TX 77058\\n\\n Civilian applications will be accepted on a continuous basis. When NASA\\n decides to select additional astronaut candidates, consideration will be\\n given only to those applications on hand on the date of decision is\\n made. Applications received after that date will be retained and\\n considered for the next selection. Applicants will be notified annually\\n of the opportunity to update their applications and to indicate\\n continued interest in being considered for the program. Those applicants\\n who do not update their applications annually will be dropped from\\n consideration, and their applications will not be retained. After the\\n preliminary screening of applications, additional information may be\\n requested for some applicants, and person listed on the application as\\n supervisors and references may be contacted.\\n\\n Active Duty Military\\n\\n Active duty military personnel must submit applications to their\\n respective military service and not directly to NASA. Application\\n procedures will be disseminated by each service.\\n\\n Selection\\n ---------\\n\\n Personal interviews and thorough medical evaluations will be required\\n for both civilian and military applicants under final consideration.\\n Once final selections have been made, all applicants who were considered\\n will be notified of the outcome of the process.\\n\\n Selection rosters established through this process may be used for the\\n selection of additional candidates during a one year period following\\n their establishment.\\n\\n General Program Requirements\\n\\n Selected applicants will be designated Astronaut Candidates and will be\\n assigned to the Astronaut Office at the Johnson Space Center, Houston,\\n Texas. The astronaut candidates will undergo a 1 year training and\\n evaluation period during which time they will be assigned technical or\\n scientific responsibilities allowing them to contribute substantially to\\n ongoing programs. They will also participate in the basic astronaut\\n training program which is designed to develop the knowledge and skills\\n required for formal mission training upon selection for a flight. Pilot\\n astronaut candidates will maintain proficiency in NASA aircraft during\\n their candidate period.\\n\\n Applicants should be aware that selection as an astronaut candidate does\\n not insure selection as an astronaut. Final selection as an astronaut\\n will depend on satisfactory completion of the 1 year training and\\n evaluation period. Civilian candidates who successfully complete the\\n training and evaluation and are selected as astronauts will become\\n permanent Federal employees and will be expected to remain with NASA for\\n a period of at least five years. Civilian candidates who are not\\n selected as astronauts may be placed in other positions within NASA\\n depending upon Agency requirements and manpower constraints at that\\n time. Successful military candidates will be detailed to NASA for a\\n specified tour of duty.\\n\\n NASA has an affirmative action program goal of having qualified\\n minorities and women among those qualified as astronaut candidates.\\n Therefore, qualified minorities and women are encouraged to apply.\\n\\n Pay and Benefits\\n ----------------\\n\\n Civilians\\n\\n Salaries for civilian astronaut candidates are based on the Federal\\n Governments General Schedule pay scales for grades GS-11 through GS-14,\\n and are set in accordance with each individuals academic achievements\\n and experience.\\n\\n Other benefits include vacation and sick leave, a retirement plan, and\\n participation in group health and life insurance plans.\\n\\n Military\\n\\n Selected military personnel will be detailed to the Johnson Space Center\\n but will remain in an active duty status for pay, benefits, leave, and\\n other similar military matters.\\n\\n\\nNEXT: FAQ #15/15 - Orbital and Planetary Launch Services\\n',\n", + " \"From: clldomps@cs.ruu.nl (Louis van Dompselaar)\\nSubject: Re: images of earth\\nOrganization: Utrecht University, Dept. of Computer Science\\nLines: 16\\n\\nIn <1993Apr19.193758.12091@unocal.com> stgprao@st.unocal.COM (Richard Ottolini) writes:\\n\\n>Beware. There is only one such *copyrighted* image and the company\\n>that generated is known to protect that copyright. That image took\\n>hundreds of man-hours to build from the source satellite images,\\n>so it is unlikely that competing images will appear soon.\\n\\nSo they should sue the newspaper I got it from for printing it.\\nThe article didn't say anything about copyrights.\\n\\nLouis\\n\\n-- \\nI'm hanging on your words, Living on your breath, Feeling with your skin,\\nWill I always be here? -- In Your Room [ DM ]\\n\\n\",\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Symbiotics: Zionism-Antisemitism\\nOrganization: The Department of Redundancy Department\\nLines: 21\\n\\nIn article <1483500355@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n\\n>The first point to note regarding the appropriation of the history\\n>of the Holocaust by Zionist propaganda is that Zionism without\\n>anti-semitism is impossible. Zionism agrees with the basic tenet\\n>of anti-Semitism, namely that Jews cannot live with non- Jews.\\n\\nThat\\'s why the Zionists decided that Zion must be Gentile-rein.\\nWhat?! They didn\\'t?! You mean to tell me that the early Zionists\\nactually granted CITIZENSHIP in the Jewish state to Christian and\\nMuslim people, too? \\n\\nIt seems, Elias, that your \"first point to note\" is wrong, so the rest\\nof your posting isn\\'t worth much, either.\\n\\nTa ta...\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: rws@cs.arizona.edu (Ronald W. Schmidt)\\nSubject: outlining of spline surface\\nKeywords: spline rasterization\\nLines: 38\\n\\n\\n\\tAbout a year ago I started work on a problem that appeared to\\nbe very simple and turned out to be quite difficult. I am wondering if\\nanyone on the net has seen this problem and (hopefully) some published \\nsolutions to it.\\n\\n\\tThe problem is to draw an outline of a surface defined by two\\nroughly parallel cubic splines. For inputs the problem essentially\\nstarts with two sets of points where each set of points is on the \\nedge of an object which we treat as two dimensional, i.e. only extant\\nbetween the edges, but which exists in three dimensional space. To draw \\nthe object we \\n\\n1) fit a cubic spline through the points. Each spline is effectively\\n\\tcomputed as a sequence of line segments approximating the\\n curve. Each spline has an equal number of segments. We assume\\n\\tthat the nth segment along each spline is roughly, but not\\n\\texactly, the same distance along each spline by any reasonable\\n\\tmeasure.\\n2) Take each segment (n) along each spline and match it to the nth segment\\n\\tof the opposing spline. Use the pair of segments to form two\\n\\ttriangles which will be filled in to color the surface.\\n3) Depth sort the triangles\\n4) Take each triangle in sorted order, project onto a 2D pixmap, draw\\n\\tand color the triangle. Take the edge of the triangle that is\\n\\talong the edge of the surface and draw a line along that edge\\n\\tcolored with a special \"edge color\"\\n\\n\\tIt is the edge coloring in step 4 that is at the heart of the\\nproblem. The idea is to effectively outline the edge of the surface.\\nThe net result however generally has lots of breaks and gaps in\\nthe edge of the surface. The reasons for this are fairly complicated.\\nThey involve both rasterization problems and problems resulting\\nfrom the projecting the splines. If anything about this problem\\nsounds familiar we would appreciate knowing about other work in this\\narea.\\n\\n-Thanks\\n',\n", + " 'From: daviss@sweetpea.jsc.nasa.gov (S.F. Davis)\\nSubject: Re: japanese moon landing/temporary orbit\\nOrganization: NSPC\\nLines: 46\\n\\nIn article , pgf@srl03.cacs.usl.edu (Phil G. Fraering) writes:\\n|> rls@uihepa.hep.uiuc.edu (Ray Swartz (Oh, that guy again)) writes:\\n|> \\n|> >The gravity maneuvering that was used was to exploit \\'fuzzy regions\\'. These\\n|> >are described by the inventor as exploiting the second-order perturbations in a\\n|> >three body system. The probe was launched into this region for the\\n|> >earth-moon-sun system, where the perturbations affected it in such a way as to\\n|> >allow it to go into lunar orbit without large expenditures of fuel to slow\\n|> >down. The idea is that \\'natural objects sometimes get captured without\\n|> >expending fuel, we\\'ll just find the trajectory that makes it possible\". The\\n|> >originator of the technique said that NASA wasn\\'t interested, but that Japan\\n|> >was because their probe was small and couldn\\'t hold a lot of fuel for\\n|> >deceleration.\\n|> \\n|> \\n|> I should probably re-post this with another title, so that\\n|> the guys on the other thread would see that this is a practical\\n|> use of \"temporary orbits...\"\\n|> \\n|> Another possible temporary orbit:\\n|> \\n|> --\\n|> Phil Fraering |\"Seems like every day we find out all sorts of stuff.\\n|> pgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n|> \\n|> \\n\\nIf you are really interested in these orbits and how they are obtained\\nyou should try and find the following paper:\\n\\n Hiroshi Yamakawa, Jun\\'ichiro Kawaguchi, Nobuaki Ishii, \\n and Hiroki Matsuo, \"A Numerical Study of Gravitational Capture\\n Orbit in the Earth-Moon System,\" AAS-92-186, AAS/AIAA Spaceflight\\n Mechanics Meeting, Colorado Springs, Colorado, 1992.\\n\\nThe references included in this paper are quite interesting also and \\ninclude several that are specific to the HITEN mission itself. \\n\\n|--------------------------------- ******** -------------------------|\\n| * _!!!!_ * |\\n| Steven Davis * / \\\\ \\\\ * |\\n| daviss@sweetpea.jsc.nasa.gov * () * | \\n| * \\\\>_db_ jar2e@faraday.clas.Virginia.EDU (Virginia's Gentleman) writes:\\n\\n This post has all the earmarks of a form program, where the user types in\\n a nationality or ethnicity and it fills it in in certain places in the story. \\n If this is true, I condemn it. If it's a fabrication, then the posters have\\n horrible morals and should be despised by everyone on tpm who values truth.\\n\\n Jesse\\n\\nAgreed.\\n\\nHarry.\\n\",\n", + " \"From: amehdi@src.honeywell.com (Hossien Amehdi)\\nSubject: Re: was: Go Hezbollah!!\\nNntp-Posting-Host: tbilisi.src.honeywell.com\\nOrganization: Honeywell Systems & Research Center\\nLines: 25\\n\\nIn article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>amehdi@src.honeywell.com (Hossien Amehdi) writes:\\n>\\n>>You know when Israelis F16 (thanks to General Dynamics) fly high in the sky\\n>>and bomb the hell out of some village in Lebanon, where civilians including\\n>>babies and eldery getting killed, is that plain murder or what?\\n>\\n>If you Arabs wouldn't position guerilla bases in refugee camps, artillery \\n>batteries atop apartment buildings, and munitions dumps in hospitals, maybe\\n>civilians wouldn't get killed. Kinda like Saddam Hussein putting civilians\\n>in a military bunker. \\n>\\n>Ed.\\n\\nWho is the you Arabs here. Since you are replying to my article you\\nare assuming that I am an Arab. Well, I'm not an Arab, but I think you\\nare brain is full of shit if you really believe what you said. The\\nbombardment of civilian and none civilian areas in Lebanon by Israel is\\nvery consistent with its policy of intimidation. That is the only\\npolicy that has been practiced by the so called only democracy in\\nthe middle east!\\n\\nI was merley pointing out that the other side is also suffering.\\nLike I said, I'm not an Arab but if I was, say a Lebanese, you bet\\nI would defende my homeland against any invader by any means.\\n\",\n", + " \"From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nLines: 31\\nOrganization: Walla Walla College\\nLines: 31\\n\\nIn article <11820@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\n>Subject: Re: some thoughts.\\n>Keywords: Dan Bissell\\n>Date: 15 Apr 93 18:21:21 GMT\\n>In article bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n>>\\n>>\\tFirst I want to start right out and say that I'm a Christian. It \\n>>makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n>>lunatic, or the real thing? (I might be a little off on the title, but he \\n>>writes the book. Anyway he was part of an effort to destroy Christianity, \\n>>in the process he became a Christian himself.\\n>\\n> This should be good fun. It's been a while since the group has\\n> had such a ripe opportunity to gut, gill, and fillet some poor\\n> bastard. \\n>\\n> Ah well. Off to get the popcorn...\\n>\\n>/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n>\\n>Bob Beauchaine bobbe@vice.ICO.TEK.COM \\n>\\n>They said that Queens could stay, they blew the Bronx away,\\n>and sank Manhattan out at sea.\\n>\\n>^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nI hope you're not going to flame him. Please give him the same coutesy you'\\nve given me.\\n\\nTammy\\n\",\n", + " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Freezing and Riding\\nOrganization: University College of Wales, Aberystwyth\\nLines: 14\\nNntp-Posting-Host: 144.124.112.30\\n\\n>every spec of alertness to keep from getting squished, otherwise it's not\\n>only dangerous, it's unpleasant. The same goes for cold and fatigue, as I\\n>once took a half hour nap at a gas station to insure that I would make it\\n\\nYeah, hypothermia is MUCH more detrimemtal to your judgement and reactions\\nthan people realise. I wish I had the patience to stop when I should. One\\nday I'll pay for it....\\n\\nIf you begin to shiver - STOP and warm up thoroughly. If you leave it\\ntill the shivering stops, this doesnt mean you're OK again, it means \\nyou're a danger to yourself and everyone else on the road - your brain\\nand body are working about as fast as a tree grows. You will not realise\\nthis yourself till you hit something. The next stage is passing out. \\nThis usually means falling off.\\n\",\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Express Access Online Communications USA\\nLines: 18\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1r6f3a$2ai@news.umbc.edu> rouben@math9.math.umbc.edu (Rouben Rostamian) writes:\\n>how the length of the daylight varies with the time of the year.\\n>Experiment with various choices of latitudes and tilt angles.\\n>Compare the behavior of the function at locations above and below\\n>the arctic circle.\\n\\n\\n\\nIf you want to have some fun.\\n\\nPlug the basic formulas into Lotus.\\n\\nUse the spreadsheet auto re-calc, and graphing functions\\nto produce bar graphs based on latitude, tilt and hours of day light avg.\\n\\n\\npat\\n\\n',\n", + " 'From: mathew \\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 32\\n\\njaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n> Why would the Rushdie case be particularly legitimate? As I\\'ve said\\n> elsewhere on this issue, Rushdie\\'s actions had effects in Islamic\\n> countries so that it is not so simple to say that he didn\\'t commit\\n> a crime in an Islamic country.\\n\\nActually, it is simple.\\n\\nA person P has committed a crime C in country X if P was within the borders\\nof X at the time when C was committed. It doesn\\'t matter if the physical\\nmanifestation of C is outside X.\\n\\nFor instance, if I hack into NASA\\'s Ames Research Lab and delete all their\\nfiles, I have committed a crime in the United Kingdom. If the US authorities\\nwish to prosecute me under US law rather than UK law, they have no automatic\\nright to do so.\\n\\nThis is why the net authorities in the US tried to put pressure on some sites\\nin Holland. Holland had no anti-cracking legislation, and so it was viewed\\nas a \"hacker haven\" by some US system administrators.\\n\\nSimilarly, a company called Red Hot Television is broadcasting pornographic\\nmaterial which can be received in Britain. If they were broadcasting in\\nBritain, they would be committing a crime. But they are not, they are\\nbroadcasting from Denmark, so the British Government is powerless to do\\nanything about it, in spite of the apparent law-breaking.\\n\\nOf course, I\\'m not a lawyer, so I could be wrong. More confusingly, I could\\nbe right in some countries but not in others...\\n\\n\\nmathew\\n',\n", + " 'From: der10@cus.cam.ac.uk (David Rourke)\\nSubject: xs1100 timing\\nOrganization: U of Cambridge, England\\nLines: 4\\nNntp-Posting-Host: bootes.cus.cam.ac.uk\\n\\nCould some kind soul tell me the advance timing/revs for a 1981 xs1100 special\\n(bought in Canada).\\n\\nthanks.\\n',\n", + " 'From: u7711501@bicmos.ee.nctu.edu.tw (jih-shin ho)\\nSubject: disp135 [0/7]\\nOrganization: National Chiao Tung University\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 285\\n\\n\\n\\nI have posted disp135.zip to alt.binaries.pictures.utilities\\n\\n\\n****** You may distribute this program freely for non-commercial use\\n if no fee is gained.\\n****** There is no warranty. The author is not responsible for any\\n damage caused by this program.\\n\\n\\nImportant changes since version 1.30:\\n Fix bugs in file management system (file displaying).\\n Improve file management system (more user-friendly).\\n Fix bug in XPM version 3 reading.\\n Fix bugs in TARGA reading/writng.\\n Fix bug in GEM/IMG reading.\\n Add support for PCX and GEM/IMG writing.\\n Auto-skip macbinary header.\\n\\n\\n(1) Introduction:\\n This program can let you READ, WRITE and DISPLAY images with different\\n formats. It also let you do some special effects(ROTATION, DITHERING ....)\\n on image. Its main purpose is to let you convert image among different\\n formts.\\n Include simple file management system.\\n Support \\'slide show\\'.\\n There is NO LIMIT on image size.\\n Currently this program supports 8, 15, 16, 24 bits display.\\n If you want to use HiColor or TrueColor, you must have VESA driver.\\n If you want to modify video driver, please read section (8).\\n\\n\\n(2) Hardware Requirement:\\n PC 386 or better. MSDOS 3.3 or higher.\\n min amount of ram is 4M bytes(Maybe less memory will also work).\\n (I recommend min 8M bytes for better performance).\\n Hard disk for swapping(virtual memory).\\n\\n The following description is borrowed from DJGPP.\\n\\n Supported Wares:\\n\\n * Up to 128M of extended memory (expanded under VCPI)\\n * Up to 128M of disk space used for swapping\\n * SuperVGA 256-color mode up to 1024x768\\n * 80387\\n * XMS & VDISK memory allocation strategies\\n * VCPI programs, such as QEMM, DESQview, and 386MAX\\n\\n Unsupported:\\n\\n * DPMI\\n * Microsoft Windows\\n\\n Features: 80387 emulator, 32-bit unix-ish environment, flat memory\\n model, SVGA graphics.\\n\\n\\n(3) Installation:\\n Video drivers, emu387 and go32.exe are borrowed from DJGPP.\\n (If you use Western Digital VGA chips, read readme.wd)\\n (This GO32.EXE is a modified version for vesa and is COMPLETELY compatible\\n with original version)\\n+ *** But some people report that this go32.exe is not compatible with\\n+ other DJGPP programs in their system. If you encounter this problem,\\n+ DON\\'T put go32.exe within search path.\\n\\n *** Please read runme.bat for how to run this program.\\n\\n If you choose xxxxx.grn as video driver, add \\'nc 256\\' to environment\\n GO32.\\n\\n For example, go32=driver x:/xxxxx/xxxxx.grn nc 256\\n\\n If you don\\'t have 80x87, add \\'emu x:/xxxxx/emu387\\' to environment GO32.\\n\\n For example, go32=driver x:/xxxxx/xxxxx.grd emu x:/xxxxx/emu387\\n\\n **** Notes: 1. I only test tr8900.grn, et4000.grn and vesa.grn.\\n Other drivers are not tested.\\n 2. I have modified et4000.grn to support 8, 15, 16, 24 bits\\n display. You don\\'t need to use vesa driver.\\n If et4000.grn doesn\\'t work, please try vesa.grn.\\n 3. For those who want to use HiColor or TrueColor display,\\n please use vesa.grn(except et4000 users).\\n You can find vesa BIOS driver from :\\n wuarchive.wustl.edu: /mirrors/msdos/graphics\\n godzilla.cgl.rmit.oz.au: /kjb/MGL\\n\\n\\n(4) Command Line Switch:\\n\\n+ Usage : display [-d|--display initial_display_type]\\n+ [-s|--sort sort_method]\\n+ [-h|-?]\\n\\n Display type: 8(SVGA,default), 15, 16(HiColor), 24(TrueColor)\\n+ Sort method: \\'name\\', \\'ext\\'\\n\\n\\n(5) Function Key:\\n\\n F2 : Change disk drive\\n\\n+ CTRL-A -- CTRL-Z : change disk drive.\\n\\n F3 : Change filename mask (See match.doc)\\n\\n F4 : Change parameters\\n\\n F5 : Some effects on picture, eg. flip, rotate ....\\n\\n F7 : Make Directory\\n\\n t : Tag file\\n\\n + : Tag group files (See match.doc)\\n\\n T : Tag all files\\n\\n u : Untag file\\n\\n - : Untag group files (See match.doc)\\n\\n U : Untag all files\\n\\n Ins : Change display type (8,15,16,24) in \\'read\\' & \\'screen\\' menu.\\n\\n F6,m,M : Move file(s)\\n\\n F8,d,D : Delete file(s)\\n\\n r,R : Rename file\\n\\n c,C : Copy File(s)\\n\\n z,Z : Display first 10 bytes in Ascii, Hex and Dec modes.\\n\\n+ f,F : Display disk free space.\\n\\n Page Up/Down : Move one page\\n\\n TAB : Change processing target.\\n\\n Arrow keys, Home, End, Page Up, Page Down: Scroll image.\\n Home: Left Most.\\n End: Right Most.\\n Page Up: Top Most.\\n Page Down: Bottom Most.\\n in \\'screen\\' & \\'effect\\' menu :\\n Left,Right arrow: Change display type(8, 15, 16, 24 bits)\\n\\n s,S : Slide Show. ESCAPE to terminate.\\n\\n ALT-X : Quit program without prompting.\\n\\n+ ALT-A : Reread directory.\\n\\n Escape : Abort function and return.\\n\\n\\n(6) Support Format:\\n\\n Read: GIF(.gif), Japan MAG(.mag), Japan PIC(.pic), Sun Raster(.ras),\\n Jpeg(.jpg), XBM(.xbm), Utah RLE(.rle), PBM(.pbm), PGM(.pgm),\\n PPM(.ppm), PM(.pm), PCX(.pcx), Japan MKI(.mki), Tiff(.tif),\\n Targa(.tga), XPM(.xpm), Mac Paint(.mac), GEM/IMG(.img),\\n IFF/ILBM(.lbm), Window BMP(.bmp), QRT ray tracing(.qrt),\\n Mac PICT(.pct), VIS(.vis), PDS(.pds), VIKING(.vik), VICAR(.vic),\\n FITS(.fit), Usenix FACE(.fac).\\n\\n the extensions in () are standard extensions.\\n\\n Write: GIF, Sun Raster, Jpeg, XBM, PBM, PGM, PPM, PM, Tiff, Targa,\\n XPM, Mac Paint, Ascii, Laser Jet, IFF/ILBM, Window BMP,\\n+ Mac PICT, VIS, FITS, FACE, PCX, GEM/IMG.\\n\\n All Read/Write support full color(8 bits), grey scale, b/w dither,\\n and 24 bits image, if allowed for that format.\\n\\n\\n(7) Detail:\\n\\n Initialization:\\n Set default display type to highest display type.\\n Find allowable screen resolution(for .grn video driver only).\\n\\n 1. When you run this program, you will enter \\'read\\' menu. Whthin this\\n menu you can press any function key except F5. If you move or copy\\n files, you will enter \\'write\\' menu. the \\'write\\' menu is much like\\n \\'read\\' menu, but only allow you to change directory.\\n+ The header line in \\'read\\' menu includes \"(d:xx,f:xx,t:xx)\".\\n+ d : display type. f: number of files. t: number of tagged files.\\n pressing SPACE in \\'read\\' menu will let you select which format to use\\n for reading current file.\\n pressing RETURN in \\'read\\' menu will let you reading current file. This\\n program will automatically determine which format this file is.\\n The procedure is: First, check magic number. If fail, check\\n standard extension. Still fail, report error.\\n pressing s or S in \\'read\\' menu will do \\'Slide Show\\'.\\n If delay time is 0, program will wait until you hit a key\\n (except ESCAPE).\\n If any error occurs, program will make a beep.\\n ESCAPE to terminate.\\n pressing Ins in \\'read\\' menu will change display type.\\n pressing ALT-X in \\'read\\' menu will quit program without prompting.\\n\\n 2. Once image file is successfully read, you will enter \\'screen\\' menu.\\n Within this menu F5 is turn on. You can do special effect on image.\\n pressing RETURN: show image.\\n in graphic mode, press RETURN, SPACE or ESCAPE to return to text\\n mode.\\n pressing TAB: change processing target. This program allows you to do\\n special effects on 8-bit or 24-bit image.\\n pressing Left,Right arrow: change display type. 8, 15, 16, 24 bits.\\n pressing SPACE: save current image to file.\\n B/W Dither: save as black/white image(1 bit).\\n Grey Scale: save as grey image(8 bits).\\n Full Color: save as color image(8 bits).\\n True Color: save as 24-bit image.\\n\\n This program will ask you some questions if you want to write image\\n to file. Some questions are format-dependent. Finally This program\\n will prompt you a filename. If you want to save file under another\\n directory other than current directory, please press SPACE. after\\n pressing SPACE, you will enter \\'write2\\' menu. You can change\\n directory to what you want. Then,\\n\\n pressing SPACE: this program will prompt you \\'original\\' filename.\\n pressing RETURN: this program will prompt you \\'selected\\' filename\\n (filename under bar).\\n\\n\\n 3. This program supports 8, 15, 16, 24 bits display.\\n\\n 4. This Program is MEMORY GREEDY. If you don\\'t have enough memory,\\n the performance is poor.\\n\\n 5. If you want to save 8 bits image :\\n try GIF then TIFF(LZW) then TARGA then Sun Raster then BMP then ...\\n\\n If you want to save 24 bits image (lossless):\\n try TIFF(LZW) or TARGA or ILBM or Sun Raster\\n (No one is better for true 24bits image)\\n\\n 6. I recommend Jpeg for storing 24 bits images, even 8 bits images.\\n\\n 7. Not all subroutines are fully tested\\n\\n 8. This document is not well written. If you have any PROBLEM, SUGGESTION,\\n COMMENT about this program,\\n Please send to u7711501@bicmos.ee.nctu.edu.tw (140.113.11.13).\\n I need your suggestion to improve this program.\\n (There is NO anonymous ftp on this site)\\n\\n\\n(8) Tech. information:\\n Program (user interface and some subroutines) written by Jih-Shin Ho.\\n Some subroutines are borrowed from XV(2.21) and PBMPLUS(dec 91).\\n Tiff(V3.2) and Jpeg(V4) reading/writing are through public domain\\n libraries.\\n Compiled with DJGPP.\\n You can get whole DJGPP package from SIMTEL20 or mirror sites.\\n For example, wuarchive.wustl.edu: /mirrors/msdos/djgpp\\n\\n\\n(9) For Thoese who want to modify video driver:\\n 1. get GRX source code from SIMTEL20 or mirror sites.\\n 2. For HiColor and TrueColor:\\n 15 bits : # of colors is set to 32768.\\n 16 bits : # of colors is set to 0xc010.\\n 24 bits : # of colors is set to 0xc018.\\n\\n\\nAcknowledgment:\\n I would like to thank the authors of XV and PBMPLUS for their permission\\n to let me use their subroutines.\\n Also I will thank the authors who write Tiff and Jpeg libraries.\\n Thank DJ. Without DJGPP I can\\'t do any thing on PC.\\n\\n\\n Jih-Shin Ho\\n u7711501@bicmos.ee.nctu.edu.tw\\n',\n", + " 'From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: Re: No land for peace - No negotiatians\\nOrganization: Unocal Corporation\\nLines: 52\\n\\n\\n\\nhasan@McRCIM.McGill.EDU writes:\\n\\n\\n>Ok. I donot know why there are israeli voices against negotiations. However,\\n>i would guess that is because they refuse giving back a land for those who\\n>have the right for it.\\n\\nSounds like wishful guessing.\\n\\n\\n>As for the Arabian and Palestinean voices that are against the\\n>current negotiations and the so-called peace process, they\\n>are not against peace per se, but rather for their well-founded predictions\\n>that Israel would NOT give an inch of the West bank (and most probably the same\\n>for Golan Heights) back to the Arabs. An 18 months of \"negotiations\" in Madrid,\\n>and Washington proved these predictions. Now many will jump on me saying why\\n>are you blaming israelis for no-result negotiations.\\n>I would say why would the Arabs stall the negotiations, what do they have to\\n>loose ?\\n\\n\\n\\'So-called\\' ? What do you mean ? How would you see the peace process?\\n\\nSo you say palestineans do not negociate because of \\'well-founded\\' predictions ?\\nHow do you know that they are \\'well founded\\' if you do not test them at the \\ntable ? 18 months did not prove anything, but it\\'s always the other side at \\nfault, right ?\\n\\nWhy ? I do not know why, but if, let\\'s say, the Palestineans (some of them) want\\nALL ISRAEL, and these are known not to be accepted terms by israelis.\\n\\nOr, maybe they (palestinenans) are not yet ready for statehood ?\\n\\nOr, maybe there is too much politics within the palestinean leadership, too many\\nfractions aso ?\\n\\nI am not saying that one of these reasons is indeed the real one, but any of\\nthese could make arabs stall the negotiations.\\n\\n>Arabs feel that the current \"negotiations\" is ONLY for legitimizing the current\\n>status-quo and for opening the doors of the Arab markets for israeli trade and\\n>\"oranges\". That is simply unacceptable and would be revoked.\\n \\nI like California oranges. And the feelings may get sharper at the table.\\n\\n\\n\\nRegards,\\n\\nDorin\\n',\n", + " 'From: robinson@cogsci.Berkeley.EDU (Michael Robinson)\\nSubject: Krypto cables (was Re: Cobra Locks)\\nOrganization: Institute of Cognitive Studies, U.C. Berkeley\\nLines: 51\\nDistribution: usa\\nNNTP-Posting-Host: cogsci.berkeley.edu\\n\\nIn article <1993Apr20.184432.21485@research.nj.nec.com> behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n>\\tFor the same money, you can get a Kryptonite cable lock, which is\\n>anywhere from 1/2\" to 7/8\" thick steel cable (looks like steel rope), shielded\\n>in a flexible covering to protect your bike\\'s finish, and has a barrel-type\\n>locking mechanism. I don\\'t know if it\\'s adjustable, but my source says it\\'s\\n>more difficult to pick than most locks, and the cable tends to squish flat\\n>in bolt-cutter jaws rather than shear (5/8\" model).\\n>\\n>\\tFYI, I\\'ll be getting a Krypto cable next paycheck.\\n\\nA word of warning, though: Kryptonite also sells almost useless cable\\nlocks under the Kryptonite name.\\n\\nWhen I obtained my second motorcycle, I migrated one of my Kryptonite \\nU-locks from my bicycle to the new bike. I then went out shopping for\\na new lock for the bicycle.\\n\\nFor about the same money ($20) I had the choice of a Kryptonite cable lock\\n(advantages: lock front and back wheels on bicycle and keep them both,\\nKryptonite name) or a cheesy no-name U-lock (advantages: real steel).\\nI chose the Kryptonite cable. After less than a week, I took it back in\\ndisgust and exchanged it for the cheesy no-name U-lock.\\n\\nFirst, the Krypto cable I bought is not made by Kryptonite, is not covered by\\nthe Kryptonite guarantee, and doesn\\'t even approach Kryptonite standards of\\nquality and quality assurance. It is just some generic made-in-Taiwan cable\\nlock with the Kryptonite name on it.\\n\\nSecondly, the latch engagement mechanism is something of a joke. I\\ndon\\'t know if mine was a particularly poor example, but it was often\\nquite frustrating to get the latch to positively engage, and sometimes\\nit would seem to engage, only to fall open when I went to unlock it.\\n\\nThirdly, the lock has a little plastic door on the keyway which serves\\nthe sole purpose of frustrating any attempt to insert the key in the \\ndark. I didn\\'t try it (obviously), but I have my doubts that the \\nlock mechanism would stand up to an \"insert screwdriver and TORQUE\"\\nattack.\\n\\nFourthly, the cable was not, in my opinion, of sufficient thickness to \\ndeter theft (for my piece of crap bicycle, that is). All cables suffer the\\nweakness that they can be cut a few strands at a time. If you are patient\\nyou can cut cables with fingernail clippers. Aviation snips would go \\nthrough the cable in well under a minute.\\n\\n\\n\\n-- \\n ----------------------------------------------------------------------------\\n Michael Robinson UUCP: ucbvax!cogsci!robinson\\n INTERNET: robinson@cogsci.berkeley.edu\\n',\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: DC-X: Vehicle Nears Flight Test\\nArticle-I.D.: aurora.1993Apr5.191011.1\\nOrganization: University of Alaska Fairbanks\\nLines: 53\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n> In article <2736@snap> paj@uk.co.gec-mrc (Paul Johnson) writes:\\n>>This bit interests me. How much automatic control is there? Is it\\n>>purely autonomous or is there some degree of ground control?\\n> \\n> The \"stick-and-rudder man\" is always the onboard computer. The computer\\n> normally gets its orders from a stored program, but they can be overridden\\n> from the ground.\\n> \\n>>How is\\n>>the transition from aerodynamic flight (if thats what it is) to hover\\n>>accomplished? This is the really new part...\\n> \\n> It\\'s also one of the tricky parts. There are four different ideas, and\\n> DC-X will probably end up trying all of them. (This is from talking to\\n> Mitch Burnside Clapp, who\\'s one of the DC-X test pilots, at Making Orbit.)\\n> \\n> (1) Pop a drogue chute from the nose, light the engines once the thing\\n> \\tstabilizes base-first. Simple and reliable. Heavy shock loads\\n> \\ton an area of structure that doesn\\'t otherwise carry major loads.\\n> \\tNeeds a door in the \"hot\" part of the structure, a door whose\\n> \\toperation is mission-critical.\\n> \\n> (2) Switch off pitch stability -- the DC is aerodynamically unstable at\\n> \\tsubsonic speeds -- wait for it to flip, and catch it at 180\\n> \\tdegrees, then light engines. A bit scary.\\n> \\n> (3) Light the engines and use thrust vectoring to push the tail around.\\n> \\tProbably the preferred method in the long run. Tricky because\\n> \\tof the fuel-feed plumbing: the fuel will start off in the tops\\n> \\tof the tanks, then slop down to the bottoms during the flip.\\n> \\tKeeping the engines properly fed will be complicated.\\n> \\n> (4) Build up speed in a dive, then pull up hard (losing a lot of speed,\\n> \\tthis thing\\'s L/D is not that great) until it\\'s headed up and\\n> \\tthe vertical velocity drops to zero, at which point it starts\\n> \\tto fall tail-first. Light engines. Also a bit scary, and you\\n> \\tprobably don\\'t have enough altitude left to try again.\\n> -- \\n> All work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n> - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\\nSince the DC-X is to take off horizontal, why not land that way??\\nWhy do the Martian Landing thing.. Or am I missing something.. Don\\'t know to\\nmuch about DC-X and such.. (overly obvious?).\\n\\nWhy not just fall to earth like the russian crafts?? Parachute in then...\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n\\nPlease enlighten me... Ignorance is easy to correct. make a mistake and\\neveryone will let you know you messed up..\\n',\n", + " \"From: alanf@eng.tridom.com (Alan Fleming)\\nSubject: Re: New to Motorcycles...\\nNntp-Posting-Host: tigger.eng.tridom.com\\nReply-To: alanf@eng.tridom.com (Alan Fleming)\\nOrganization: AT&T Tridom, Engineering\\nLines: 22\\n\\nIn article <1993Apr20.163315.8876@adobe.com>, cjackson@adobe.com (Curtis Jackson) writes:\\n|> In article <1993Apr20.131800.16136@alw.nih.gov> gregh@niagara.dcrt.nih.gov (Gregory Humphreys) writes:\\n> }1) I only have about $1200-1300 to work with, so that would have \\n> }to cover everything (bike, helmet, anything else that I'm too \\n> }ignorant to know I need to buy)\\n> \\n> The following numbers are approximate, and will no doubt get me flamed:\\n> \\n> Helmet (new, but cheap)\\t\\t\\t\\t\\t$100\\n> Jacket (used or very cheap)\\t\\t\\t\\t$100\\n> Gloves (nothing special)\\t\\t\\t\\t$ 20\\n> Motorcycle Safety Foundation riding course (a must!)\\t$140\\n ^^^\\nWow! Courses in Georgia are much cheaper. $85 for both.\\n>\\n\\nThe list looks good, but I'd also add:\\n Heavy Boots (work, hiking, combat, or similar) $45\\n\\nThink Peace.\\n-- Alan (alanf@eng.tridom.com)\\nKotBBBB (1988 GSXR1100J) AMA# 634578 DOD# 4210 PGP key available\\n\",\n", + " \"From: astein@nysernet.org (Alan Stein)\\nSubject: Re: was: Go Hezbollah!\\nOrganization: NYSERNet, Inc.\\nLines: 21\\n\\nhernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n>Tell me Tim, what are these guerillas doing wrong? Assuming that they are using\\n>civilians for cover, are they not killing SOLDIERS in THEIR country?\\n\\nSo, it's okay to use civilians for cover if you're attacking soldiers\\nin your country. (Of course, many of those attacking claim that they\\naren't Lebanese, so it's not their country.)\\n\\nGot it. I think. Hmm. This is confusing.\\n\\nCould you perhaps repeat your rules explaining exactly when it is\\npermissible to use civilians as shields? Also please explain under\\nwhat conditions it is permissible for soldiers to defend themselves.\\nAlso please explain the particular rules that make it okay for\\nterrorists to launch missiles from Lebanon against Israeli civilians,\\nbut not okay for the Israelis to try to defend themselves against\\nthose missiles.\\n\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n\",\n", + " 'From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Ellipse Again\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 39\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\nKeywords: ellipse\\n\\n\\nHi! Everyone,\\n\\nBecause no one has touched the problem I posted last week, I guess\\nmy question was not so clear. Now I\\'d like to describe it in detail:\\n\\nThe offset of an ellipse is the locus of the center of a circle which\\nrolls on the ellipse. In other words, the distance between the ellipse\\nand its offset is same everywhere.\\n\\nThis problem comes from the geometric measurement when a probe is used.\\nThe tip of the probe is a ball and the computer just outputs the\\npositions of the ball\\'s center. Is the offset of an ellipse still\\nan ellipse? The answer is no! Ironically, DMIS - an American Indutrial\\nStandard says it is ellipse. So almost all the software which was\\nimplemented on the base of DMIS was wrong. The software was also sold\\ninternationaly. Imagine, how many people have or will suffer from this bug!!!\\nHow many qualified parts with ellipse were/will be discarded? And most\\nimportantly, how many defective parts with ellipse are/will be used?\\n\\nI was employed as a consultant by a company in Los Angeles last year\\nto specially solve this problem. I spent two months on analysis of this\\nproblem and six months on programming. Now my solution (nonlinear)\\nis not ideal because I can only reconstruct an ellipse from its entire\\nor half offset. It is very difficult to find the original ellipse from\\na quarter or a segment of its offset because the method I used is not\\nanalytical. I am now wondering if I didn\\'t touch the base and make things\\ncomplicated. Please give me a hint.\\n\\nI know you may argue this is not a CG problem. You are right, it is not.\\nHowever, so many people involved in the problem \"sphere from 4 poits\".\\nWhy not an ellipse? And why not its offset?\\n\\nPlease post here and let the others share our interests \\n(I got several emails from our netters, they said they need the\\nsummary of the answers).\\n\\nYeh\\nUSC\\n',\n", + " \"From: avi@duteinh.et.tudelft.nl (Avi Cohen Stuart)\\nSubject: Re: was: Go Hezbollah!!\\nOriginator: avi@duteinh.et.tudelft.nl\\nNntp-Posting-Host: duteinh.et.tudelft.nl\\nOrganization: Delft University of Technology, Dept. of Electrical Engineering\\nLines: 35\\n\\nFrom article <1993Apr15.031349.21824@src.honeywell.com>, by amehdi@src.honeywell.com (Hossien Amehdi):\\n> In article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>>amehdi@src.honeywell.com (Hossien Amehdi) writes:\\n>>\\n>>>You know when Israelis F16 (thanks to General Dynamics) fly high in the sky\\n>>>and bomb the hell out of some village in Lebanon, where civilians including\\n>>>babies and eldery getting killed, is that plain murder or what?\\n>>\\n>>If you Arabs wouldn't position guerilla bases in refugee camps, artillery \\n>>batteries atop apartment buildings, and munitions dumps in hospitals, maybe\\n>>civilians wouldn't get killed. Kinda like Saddam Hussein putting civilians\\n>>in a military bunker. \\n>>\\n>>Ed.\\n> \\n> Who is the you Arabs here. Since you are replying to my article you\\n> are assuming that I am an Arab. Well, I'm not an Arab, but I think you\\n> are brain is full of shit if you really believe what you said. The\\n> bombardment of civilian and none civilian areas in Lebanon by Israel is\\n> very consistent with its policy of intimidation. That is the only\\n> policy that has been practiced by the so called only democracy in\\n> the middle east!\\n> \\n> I was merley pointing out that the other side is also suffering.\\n> Like I said, I'm not an Arab but if I was, say a Lebanese, you bet\\n> I would defende my homeland against any invader by any means.\\n\\nTell me then, would you also fight the Syrians in Lebanon?\\n\\nOh, no of course not. They would be your brothers and you would\\ntell that you invited them. \\n\\nAvi.\\n\\n\\n\",\n", + " \"From: ednclark@kraken.itc.gu.edu.au (Jeffrey Clark)\\nSubject: Re: mathew writes:\\n\\n>>>Perhaps we shouldn't imprision people if we could watch them closely\\n>>>instead. The cost would probably be similar, especially if we just\\n>>>implanted some sort of electronic device.\\n>>Why wait until they commit the crime? Why not implant such devices in\\n>>potential criminals like Communists and atheists?\\n\\n>Sorry, I don't follow your reasoning. You are proposing to punish people\\n>*before* they commit a crime? What justification do you have for this?\\n\\nNo, Mathew is proposing a public defence mechanism, not treating the\\nelectronic device as an impropriety on the wearer. What he is saying is that\\nthe next step beyond what you propose is the permanent bugging of potential\\ncriminals. This may not, on the surface, sound like a bad thing, but who\\ndefines what a potential criminal is? If the government of the day decides\\nthat being a member of an opposition party makes you a potential criminal\\nthen openly defying the government becomes a lethal practice, this is not\\nconducive to a free society.\\n\\nMathew is saying that implanting electronic surveillance devices upon people\\nis an impropriety upon that person, regardless of what type of crime or\\nwhat chance of recidivism there is. Basically you see the criminal justice\\nsystem as a punishment for the offender and possibly, therefore, a deterrant\\nto future offenders. Mathew sees it, most probably, as a means of\\nrehabilitation for the offender. So he was being cynical at you, okay?\\n\\nJeff.\\n\\n\",\n", + " 'From: full_gl@pts.mot.com (Glen Fullmer)\\nSubject: Needed: Plotting package that does...\\nNntp-Posting-Host: dolphin\\nReply-To: glen_fullmer@pts.mot.com\\nOrganization: Paging and Wireless Data Group, Motorola, Inc.\\nComments: Hyperbole mail buttons accepted, v3.07.\\nLines: 27\\n\\nLooking for a graphics/CAD/or-whatever package on a X-Unix box that will\\ntake a file with records like:\\n\\nn a b p\\n\\nwhere n = a count - integer \\n a = entity a - string\\n b = entity b - string\\n p = type - string\\n\\nand produce a networked graph with nodes represented with boxes or circles\\nand the vertices represented by lines and the width of the line determined by\\nn. There would be a different line type for each type of vertice. The boxes\\nneed to be identified with the entity\\'s name. The number of entities < 1000\\nand vertices < 100000. It would be nice if the tool minimized line\\ncross-overs and did a good job of layout. ;-)\\n\\n I have looked in the FAQ for comp.graphics and gnuplot without success. Any\\nideas would be appreciated?\\n\\nThanks,\\n--\\nGlen Fullmer, glen_fullmer@pts.mot.com, (407)364-3296\\n*******************************************************************************\\n* \"For a successful technology, reality must take precedence *\\n* over public relations, for Nature cannot be fooled.\" - Richard P. Feynman *\\n*******************************************************************************\\n',\n", + " 'From: ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed)\\nSubject: Re: Final Solution in Palestine ?\\nOriginator: ahmeda@celeborn.mcrcim.mcgill.edu\\nNntp-Posting-Host: celeborn.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 59\\n\\n\\nIn article , hm@cs.brown.edu (Harry Mamaysky) writes:\\n|> In article <1483500354@igc.apc.org> Center for Policy Research writes:\\n|> \\n|> Final Solution for the Gaza ghetto ?\\n|> ------------------------------------\\n|> \\n|> While Israeli Jews fete the uprising of the Warsaw ghetto, they\\n|> repress by violent means the uprising of the Gaza ghetto and\\n|> attempt to starve the Gazans.\\n|> \\n|> [...]\\n|> \\n|> The Jews in the Warsaw ghetto were fighting to keep themselves and\\n|> their families from being sent to Nazi gas chambers. Groups like Hamas\\n|> and the Islamic Jihad fight with the expressed purpose of driving all\\n|> Jews into the sea. Perhaps, we should persuade Jewish people to help\\n ^^^^^^^^^^^^^^^^^^\\n|> these wnderful \"freedom fighters\" attain this ultimate goal.\\n|> \\n|> Maybe the \"freedom fighters\" will choose to spare the co-operative Jews.\\n|> Is that what you are counting on, Elias - the pity of murderers.\\n|> \\n|> You say your mother was Jewish. How ashamed she must be of her son. I\\n|> am sorry, Mrs. Davidsson.\\n|> \\n|> Harry.\\n\\nO.K., its my turn:\\n\\n DRIVING THE JEWS INTO THE SEA ?!\\n\\nI am sick and tired of this \\'DRIVING THE JEWS INTO THE SEA\\' sentance attributed\\nto Islamic movements and the PLO; it simply can\\'t be proven as part of their\\nplan !\\n\\n(Pro Israeli activists repeat it like parrots without checking its authenticity\\nsince it was coined by Bnai Brith)\\n\\nWhat Hamas and Islamic Jihad believe in, as far as I can get from the Arab media,\\nis an Islamic state that protects the rights of all its inhabitants under Koranic\\nLaw. This would be a reversal of the 1948 situation in which the Jews in\\nPalestine took control of the land and its (mostly Muslim) inhabitants.\\n\\nHowever, whoever committed crimes against humanity (torture, blowing up their\\nhomes, murders,...) must be treated and tried as a war criminal. The political\\nthought of these movements shows that a freedom of choice will be given to the\\nJews in living under the new law or leaving to the destintion of their choice.\\n\\nAs for the PLO, I am at a loss to explain what is going inside Arafat\\'s mind.\\n\\nAlthough their political thinking seems far fetched with Israel acting as a true\\nsuper-power in the region, the Islamic movements are using the same weapon the\\nJews used to establish their state : Religion.\\n\\n\\nAhmed.\\n\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: TRUE \"GLOBE\", Who makes it?\\nOrganization: U of Toronto Zoology\\nLines: 12\\n\\nIn article bill@xpresso.UUCP (Bill Vance) writes:\\n>It has been known for quite a while that the earth is actually more pear\\n>shaped than globular/spherical. Does anyone make a \"globe\" that is accurate\\n>as to actual shape, landmass configuration/Long/Lat lines etc.?\\n\\nI don\\'t think you\\'re going to be able to see the differences from a sphere\\nunless they are greatly exaggerated. Even the equatorial bulge is only\\nabout 1 part in 300 -- you\\'d never notice a 1mm error in a 30cm globe --\\nand the other deviations from spherical shape are much smaller.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Space Advertising (2 of 2)\\nOrganization: University of Illinois at Urbana\\nLines: 24\\n\\nWales.Larrison@ofa123.fidonet.org writes:\\n\\n>the \"Environmental\\n>Billboard\" is a large inflatable outer support structure of up to\\n>804x1609 meters. Advertising is carried by a mylar reflective area,\\n>deployed by the inflatable \\'frame\\'.\\n> To help sell the concept, the spacecraft responsible for\\n>maintaining the billboard on orbit will carry \"ozone reading\\n>sensors\" to \"continuously monitor the condition of the Earth\\'s\\n>delicate protective ozone layer,\" according to Mike Lawson, head of\\n>SMI. Furthermore, the inflatable billboard has reached its minimum\\n>exposure of 30 days it will be released to re-enter the Earth\\'s\\n>atmosphere. According to IMI, \"as the biodegradable material burns,\\n>it will release ozone-building components that will literally\\n>replenish the ozone layer.\"\\n ^^^^^^^^^ ^^^ ^^^^^ ^^^^^\\n\\n Can we assume that this guy studied advertising and not chemistry? Granted \\nit probably a great advertising gimic, but it doesn\\'t sound at all practical.\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " \"From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: Minority Abuses in Greece.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 201\\n\\nIn article mpoly@panix.com (Michael S. Polymenakos) writes:\\n\\n> Well, ZUMABOT claims just the opposite: That Greeks are not allowing\\n>Turks to exit the country. Now, explain this: The number of Turks in\\n>Thrace has steadily risen from 50,000 in 23 to 80,000, while the Greeks of\\n\\nDr. Goebels thought that a lie repeated enough times could finally \\nbe believed. I have been observing that 'Poly' has been practicing \\nGoebels' rule quite loyally. 'Poly's audience is mostly made of Greeks \\nwho are not allowed to listen to Turkish news. However, in today's \\ninformed world Greek propagandists can only fool themselves. For \\ninstance, those who lived in 1974 will remember the TV news they \\nwatched and the newspapers they read and the younger generation can \\nread the American newspapers of July and August 1974 to find out what \\nreally happened. \\n\\nThere are in Turkiye the Greek Hospital, The Greek Girls' Lycee \\nAlumni Association, the Principo Islands Greek Benevolent Society, \\nthe Greek Medical Foundation, the Principo Greek Orphanage Foundation, \\nthe Yovakimion Greek Girls' Lycee Foundation, and the Fener Greek \\nMen's Lycee Foundation. \\n\\nAs for Greece, the longstanding use of the adjective 'Turkish' \\nin titles and on signboards is prohibited. The Greek courts \\nhave ordered the closure of the Turkish Teachers' Association, \\nthe Komotini Turkish Youth Association and the Ksanti \\nTurkish Association on grounds that there are no Turks\\nin Western Thrace. Such community associations had been \\nactive until 1984. But they were first told to remove\\nthe word 'Turkish' on their buildings and on their official\\npapers and then eventually close down. This is also the \\nfinal verdict (November 4, 1987) of the Greek High Court.\\n\\nIn the city of Komotini, a former Greek Parliamentarian of Turkish\\nparentage, was sentenced recently to 18 months of imprisonment\\nwith no right to appeal, just for saying outloud that he was\\nof Turkish descent. This duly-elected ethnic Turkish official\\nwas also deprived of his political rights for a period of three \\nyears. Each one of these barbaric acts seems to be none other than \\na vehicle, used by the Greek governments, to cover-up their inferiority \\ncomplex they display, vis-a-vis, the people of Turkiye. \\n\\nThe Agreement on the Exchange of Minorities uses the term 'Turks,' \\nwhich demonstrates what is actually meant by the previous reference \\nto 'Muslims.' The fact that the Greek governments also mention the \\nexistence of a few thousand non-Turkish Muslims does not change the \\nessential reality that there lives in Western Thrace a much bigger \\nTurkish minority. The 'Pomaks' are also a Muslim people, whom all the \\nthree nations (Bulgarians, Turks, and Greeks) consider as part of \\nthemselves. Do you know how the Muslim Turkish minority was organized \\naccording to the agreements? Poor 'Poly.'\\n\\nIt also proves that the Turkish people are trapped in Greece \\nand the Greek people are free to settle anywhere in the world.\\nThe Greek authorities deny even the existence of a Turkish\\nminority. They pursue the same denial in connection with \\nthe Macedonians of Greece. Talk about oppression. In addition,\\nin 1980 the 'democratic' Greek Parliament passed Law No. 1091,\\nvirtually taking over the administration of the vakiflar and\\nother charitable trusts. They have ceased to be self-supporting\\nreligious and cultural entities. Talk about fascism. The Greek \\ngovernments are attempting to appoint the muftus, irrespective\\nof the will of the Turkish minority, as state official. Although\\nthe Orthodox Church has full authority in similar matters in\\nGreece, the Muslim Turkish minority will have no say in electing\\nits religious leaders. Talk about democracy.\\n\\nThe government of Greece has recently destroyed an Islamic \\nconvention in Komotini. Such destruction, which reflects an \\nattitude against the Muslim Turkish cultural heritage, is a \\nviolation of the Lausanne Convention as well as the 'so-called' \\nGreek Constitution, which is supposed to guarantee the protection \\nof historical monuments. \\n\\nThe government of Greece, on the other hand, is building new \\nchurches in remote villages as a complementary step toward \\nHellenizing the region.\\n\\nAnd you pondered. Sidiropoulos, the president of the Macedonian Human \\nRights Committee, became the latest victim of a tactic long used by \\nthe Greeks to silence critics of policies of forced assimilation \\nof the Macedonian minority. A forestry official by occupation, \\nSidiropoulos has been sent to 'internal exile' on the island of \\nKefalonia, hundreds of kilometers away from his native Florina. \\nHis employer, the Florina City Council, asked him to depart in \\n24 hours. The Greek authorities are trying to punish him for his \\ninvolvement in Copenhagen. He returned to Florina by his own choice \\nand remains without a job. \\n\\nHelsinki Watch, a well-known Human Rights group, had been investigating \\nthe plight of the Turkish Minority in Greece. In August 1990, their \\nfindings were published in a report titled \\n\\n 'Destroying Ethnic Identity: Turks of Greece.'\\n\\nThe report confirmed gross violations of the Human Rights of the \\nTurkish minority by the Greek authorities. It says for instance, \\nthe Greek government recently destroyed an Islamic convent in \\nKomotini. Such destruction, which reflects an attitude against \\nthe Muslim Turkish cultural heritage, is a violation of the \\nLausanne Convention. \\n\\nThe Turkish cemeteries in the village of Vafeika and in Pinarlik\\nwere attacked, and tombstones were broken. The cemetery in\\nKarotas was razed by bulldozers.\\n\\nShall I go on? Why not? The people of Turkiye are not going \\nto take human rights lessons from the Greek Government. The \\ndiscussion of human rights violations in Greece does not \\nstop at the Greek frontier. In several following articles \\nI shall dwell on and expose the Greek treatment of Turks\\nin Western Thrace and the Aegean Macedonians.\\n\\nIt has been reported that the Greek Cypriot administration \\nhas an intense desire for arms and that Greece has made \\nplans to supply it with the tanks and armored vehicles it \\nhas to destroy in accordance with the agreement reached on \\nconventional arms reductions in Europe. Meanwhile, Greek \\nand Greek Cypriot officials are reported to have planned \\nto take ostentatious measures aimed at camouflaging the \\ntransfer of these tanks and armored vehicles to southern \\nCyprus, a process that will conflict with the spirit of \\nthe agreement on conventional arms reduction in Europe.\\n\\nAn acceptable method may certainly be found when there\\nis a will. But we know of various kinds of violent\\nbehaviors ranging from physical attacks to the burning\\nof buildings. The rugs at the Amfia village mosque were \\ndragged out to the front of the building and burnt there. \\nShots were fired on the mosque in the village of Aryana.\\n\\nNow wait, there is more.\\n\\n 'Greek Atrocities in the Vilayet of Smyrna (May to July 1919), Inedited\\n Documents and Evidence of English and French Officers,' Published by\\n The Permanent Bureau of the Turkish Congress at Lausanne, Lausanne,\\n Imprimerie Petter, Giesser & Held, Caroline, 5 (1919).\\n\\n pages 82-83:\\n\\n<< 1. The train going from Denizli to Smyrna was stopped at Ephesus\\n and the 90 Turkish travellers, men and women who were in it ordered\\n to descend. And there in the open street, under the eyes of their\\n husbands, fathers and brothers, the women without distinction of age\\n were violated, and then all the travellers were massacred. Amongst\\n the latter the Lieutenant Salih Effendi, a native of Tripoli, and a\\n captain whose name is not known, and to whom the Hellenic authorities\\n had given safe conduct, were killed with specially atrocious tortures.\\n\\n 2. Before the battle, the wife of the lawyer Enver Bey coming from\\n her garden was maltreated by Greek soldiers, she was even stript\\n of her garments and her servant Assie was violated.\\n\\n 3. The two tax gatherers Mustapha and Ali Effendi were killed in the\\n following manner: Their arms were bound behind their backs with wire\\n and their heads were battered and burst open with blows from the butt\\n end of a gun.\\n\\n 4. During the firing of the town, eleven children, six little girls\\n and five boys, fleeing from the flames, were stopped by Greek soldiers\\n in the Ramazan Pacha quarter, and thrown into a burning Jewish house\\n near bridge, where they were burnt alive. This fact is confirmed on oath\\n by the retired commandant Hussein Hussni Effendi who saw it.\\n\\n 5. The clock-maker Ahmed Effendi and his son Sadi were arrested and\\n dragged out of their shop. The son had his eyes put out and was then\\n killed in the court of the Greek Church, but Ahmed Effendi has been\\n no more heard of.\\n\\n 6. At the market, during the fire, two unknown people were wounded\\n by bayonets, then bound together, thrown into the fire and burnt alive.\\n\\n The Greeks killed also many Jews. These are the names of some:\\n\\n Moussa Malki, shoemaker killed\\n Bohor Levy, tailor killed\\n Bohor Israel, cobbler killed\\n Isaac Calvo, shoemaker killed\\n David Aroguete killed\\n Moussa Lerosse killed\\n Gioia Katan killed\\n Meryem Malki killed\\n Soultan Gharib killed\\n Isaac Sabah wounded\\n Moche Fahmi wounded\\n David Sabah wounded\\n Moise Bensignor killed\\n Sarah Bendi killed\\n Jacob Jaffe wounded\\n Aslan Halegna wounded....>>\\n\\nSerdar Argic\\n\\n 'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.'\\n (Ohanus Appressian - 1919)\\n 'In Soviet Armenia today there no longer exists \\n a single Turkish soul.' (Sahak Melkonian - 1920)\\n\\n\\n\",\n", + " 'From: wats@scicom.AlphaCDC.COM (Bruce Watson)\\nSubject: Re: First Spacewalk\\nDistribution: sci\\nOrganization: Alpha Science Computer Network, Denver, Co.\\nLines: 13\\n\\nIn article , frank@D012S658.uucp (Frank\\nO\\'Dwyer) wrote:\\n> (1) Does the term \"hero-worship\" mean anything to you? \\n\\nYes, worshipping Jesus as the super-saver is indeed hero-worshipping\\nof the grand scale. Worshipping Lenin that will make life pleasant\\nfor the working people is, eh, somehow similar, or what.\\n \\n> (2) I understand that gods are defined to be supernatural, not merely\\n> superhuman.\\nThe notion of Lenin was on the borderline of supernatural insights\\ninto how to change the world, he wasn\\'t a communist God, but he was\\nthe man who gave presents to kids during Christmas.\\n \\n> #Actually, I agree. Things are always relative, and you can\\'t have \\n> #a direct mapping between a movement and a cause. However, the notion\\n> #that communist Russia was somewhat the typical atheist country is \\n> #only something that Robertson, Tilton et rest would believe in.\\n> \\n> Those atheists were not True Unbelievers, huh? :-)\\n\\nDon\\'t know what they were, but they were fanatics indeed.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: xSoviet Armenia denies the historical fact of the Turkish Genocide.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 52\\n\\nIn article <1993Apr17.172014.663@hellgate.utah.edu> tolman%asylum.cs.utah.edu@cs.utah.edu (Kenneth Tolman) writes:\\n\\n>>I sure hope so. Because, the unspeakable crimes of the Armenians must \\n>>be righted. Armenian invaders burned and sacked the fatherland of \\n\\n>No! NO! no no no no no. It is not justifiable to right wrongs of\\n>previous years. My ancestors tortured, enslaved, and killed blacks. I\\n>do not want to take responsibility for them. I may not have any direct\\n>relatives who did such things, but how am I to know?\\n>There is enough CURRENT torture, enslavement and genocide to go around.\\n>Lets correct that. Lets forget and forgive, each and every one of us has\\n>a historical reason to kill, torture or take back things from those around\\n>us. Pray let us not be infantile arbiters for past injustice.\\n\\nAre you suggesting that we should forget the cold-blooded genocide of\\n2.5 million Muslim people by the Armenians between 1914 and 1920? But \\nmost people aren\\'t aware that in 1939 Hitler said that he would pattern\\nhis elimination of the Jews based upon what the Armenians did to Turkish\\npeople in 1914.\\n\\n\\n \\'After all, who remembers today the extermination of the Tartars?\\'\\n (Adolf Hitler, August 22, 1939: Ruth W. Rosenbaum (Durusoy), \\n \"The Turkish Holocaust - Turk Soykirimi\", p. 213.)\\n\\n\\nI refer to the Turks and Kurds as history\\'s forgotten people. It does\\nnot serve our society well when most people are totally unaware of\\nwhat happened in 1914 where a vicious society, run by fascist Armenians,\\ndecided to simply use the phoniest of pretexts as an excuse, for wiping \\nout a peace-loving, industrious, and very intelligent and productive \\nethnic group. What we have is a demand from the fascist government of\\nx-Soviet Armenia to redress the wrongs that were done against our\\npeople. And the only way we can do that is if we can catch hold of and \\nnot lose sight of the historical precedence in this very century. We \\ncannot reverse the events of the past, but we can and we must strive to \\nkeep the memory of this tragedy alive on this side of the Atlantic, so as\\nto help prevent a recurrence of the extermination of a people because \\nof their religion or their race. Which means that I support the claims \\nof the Turks and Kurds to return to their lands in x-Soviet Armenia, \\nto determine their own future as a nation in their own homeland.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " \"From: sprattli@azores.crd.ge.com (Rod Sprattling)\\nSubject: Self-Insured (was: Should liability insurance be required?)\\nNntp-Posting-Host: azores.crd.ge.com\\nReply-To: sprattli@azores.crd.ge.com (Rod Sprattling)\\nOrganization: GE Corp R&D Center, Schenectady NY\\nLines: 27\\n\\nIn article ,\\nviking@iastate.edu (Dan Sorenson) writes:\\n|>\\tI get annoyed at insurance. Hence, I'm self-insured above\\n|>liability. Mandating that I play their game is silly if I've a better\\n|>game to play and everybody is still financially secure.\\n\\nWhat's involved in getting bonded? Anyone know if that's an option\\nrecognized by NYS DMV?\\n\\nRod\\n---\\nRoderick Sprattling\\t\\t| No job too great, no time too small\\nsprattli@azores.crd.ge.com\\t| With feet to fire and back to wall.\\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n\\n \\n\\n\",\n", + " 'From: echen@burn.ee.washington.edu (Ed Chen)\\nSubject: Windows BMP to Sun raster or others?\\nArticle-I.D.: shelley.1r49iaINNc3k\\nDistribution: world\\nOrganization: University of Washington\\nLines: 11\\nNNTP-Posting-Host: burn.ee.washington.edu\\n\\nHi,\\n\\n\\nAnyone has a converter from BMP to any format that xview or xv can\\n\\nhandle? This converter must run Unix.. I looked at the FAQ and downloaded\\nseveral packages but had no luck... thanks in advance.\\n\\ned\\n\\nechen@burn.ee.washington.edu\\n',\n", + " 'From: sp1marse@kristin (Marco Seirio)\\nSubject: Flat globe\\nLines: 13\\nX-Newsreader: Tin 1.1 PL3\\n\\n\\nDoes anybody have an algorithm for \"flattening\" out a globe, or any other\\nparametric surface, that is definied parametrically. \\nThat is, I would like to take a sheet of paper and a knife and to be\\nable to calculate how I must cut in the paper so I can fold it to a\\nglobe (or any other object).\\n\\n\\n Marco Seirio - In real life sp1marse@caligula.his.se\\n\\n \\n\\n \\n',\n", + " \"From: Center for Policy Research \\nSubject: Re: Final Solution for Gaza ?\\nNf-ID: #R:cdp:1483500354:cdp:1483500364:000:1767\\nNf-From: cdp.UUCP!cpr Apr 26 17:36:00 1993\\nLines: 38\\n\\n\\nDear folks,\\n\\nI am still awaiting for some sensible answer and comment.\\n\\nIt is a fact that the inhabitants of Gaza are not entitled to a normal\\ncivlized life. They habe been kept under occupation by Israel since 1967\\nwithout civil and political rights. \\n\\nIt is a fact that Gazans live in their own country, Palestine. Gaza is\\nnot a foriegn country. Nor is TelAviv, Jaffa, Askalon, BeerSheba foreign\\ncountry for Gazans. All these places are occupied as far as Palestinians\\nare concerned and as far as common sense has it. \\n\\nIt is a fact that Zionists deny Gazans equal rights as Israeli citizens\\nand the right to determine by themsevles their government. When Zionists\\nwill begin to consider Gazans as human beings who deserve the same\\nrights as themselves, there will be hope for peace. Not before.\\n\\nSomebody mentioned that Gaza is 'foreign country' and therefore Israel\\nis entitled to close its borders to Gaza. In this case, Gaza should be\\nentitled to reciprocate, and deny Israeli civilians and military personnel\\nto enter the area. As the relation is not symmetrical, but that of a master\\nand slave, the label 'foreign country' is inaccurate and misleading.\\n\\nTo close off 700,000 people in the Strip, deny them means of subsistence\\nand means of defending themselves, is a collective punishment and a\\ncrime. It is neither justifiable nor legal. It just reflects the abyss \\nto which Israeli society has degraded. \\n\\nI would like to ask any of those who heap foul langauge on me to explain\\nwhy Israel denies Gazans who were born and brought up in Jaffa to return\\nand live there ? Would they be allowed to, if they converted to Judaism ?\\nIs their right to live in their former town depdendent upon their\\nreligion or ethnic origin ? Please give an honest answer.\\n\\nElias\\n\\n\",\n", + " \"From: SITUNAYA@IBM3090.BHAM.AC.UK\\nSubject: (None set)\\nOrganization: The University of Birmingham, United Kingdom\\nLines: 5\\nNNTP-Posting-Host: ibm3090.bham.ac.uk\\n\\n==============================================================================\\nBear with me i'm new at this game, but could anyone explain exactly what DMORF\\ndoes, does it simply fade one bitmap into another or does it re shape one bitma\\np into another. Please excuse my ignorance, i' not even sure if i've posted thi\\ns message correctly.\\n\",\n", + " 'From: mas@Cadence.COM (Masud Khan)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: Cadence Design Systems, Inc.\\nLines: 48\\n\\nIn article <16BAFA9D9.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n> \\n> \\n>Yes, but, fortunately, religions have been replaced by systems\\n>that value Human Rights higher.\\n\\nSecular laws seem to value criminal life more than the victims life,\\nIslam places the rights of society and every member in it above \\nthe rights of the individual, this is what I call true human rights.\\n\\n> \\n>By the way, do you actually support the claim of precedence of Islamic\\n>Law? In case you do, what about the laws of other religions?\\n\\nAs a Muslim living in a non-Muslim land I am bound by the laws of the land\\nI live in, but I do not disregard Islamic Law it still remains a part of my \\nlife. If the laws of a land conflict with my religion to such an extent\\nthat I am prevented from being allowed to practise my religion then I must \\nleave the land. So in a way Islamic law does take precendence over secular law\\nbut we are instructed to follow the laws of the land that we live in too.\\n\\nIn an Islamic state (one ruled by a Khaliphate) religions other than Islam\\nare allowed to rule by their own religious laws provided they don\\'t affect\\nthe genral population and don\\'t come into direct conflict with state \\nlaws, Dhimmis (non-Muslim population) are exempt from most Islamic laws\\non religion, such as fighting in a Jihad, giving Zakat (alms giving)\\netc but are given the benefit of these two acts such as Military\\nprotection and if they are poor they will receive Zakat.\\n\\n> \\n>If not, what has it got to do with Rushdie? And has anyone reliable\\n>information if he hadn\\'t left Islam according to Islamic law?\\n>Or is the burden of proof on him?\\n> Benedikt\\n\\nAfter the Fatwa didn\\'t Rushdie re-affirm his faith in Islam, didn\\'t\\nhe go thru\\' a very public \"conversion\" to Islam? If so he is binding\\nhimself to Islamic Laws. He has to publicly renounce in his belief in Islam\\nso the burden is on him.\\n\\nMas\\n\\n\\n-- \\nC I T I Z E N +-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+\\n_____ _____ | C A D E N C E D E S I G N S Y S T E M S Inc. |\\n \\\\_/ | Masud Ahmed Khan mas@cadence.com All My Opinions|\\n_____/ \\\\_____ +-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+\\n',\n", + " 'From: dingebre@imp.sim.es.com (David Ingebretsen)\\nSubject: Re: images of earth\\nOrganization: Evans & Sutherland Computer Corp., Salt Lake City, UT\\nLines: 20\\nDistribution: world\\nReply-To: dingebre@imp.sim.es.com (David Ingebretsen)\\nNNTP-Posting-Host: imp.sim.es.com\\n\\nI downloaded an image of the earth re-constructed from elevation data taken\\nat 1/2 degree increments. The author (not me) wrote some c-code (included)\\nthat read in the data file and generated b&w and pseudo color images. They\\nwork very well and are not incumbered by copyright. They are at an aminet\\nsite near you called earth.lha in the amiga/pix/misc area...\\n\\nI refer you to the included docs for the details on how the author (sorry, I\\nforget his name) created these images. The raw data is not included.\\n\\n-- \\n\\tDavid\\n\\n\\tDavid M. Ingebretsen\\n\\tEvans & Sutherland Computer Corp.\\n\\tdingebre@thunder.sim.es.com\\n\\n\\tDisclaimer: The content of this message in no way reflects the\\n\\t opinions of my employer, nor are my actions\\n\\t\\t encouraged, supported, or acknowledged by my\\n\\t\\t employer.\\n',\n", + " \"From: bates@spica.ucsb.edu (Andrew M. Bates)\\nSubject: Renderman Shaders/Discussion?\\nOrganization: University of California, Santa Barbara\\nLines: 12\\n\\n\\n Does anyone know of a site where I could ftp some RenderMan shaders?\\nOr of a newsgroup which has discussion or information about RenderMan? I'm\\nnew to the RenderMan (Mac) family, and I'd like to get as much info I can\\nlay my hands on. Thanks!\\n\\n Andy Bates.\\n\\n\\n---------------------------------------------------------------------------\\nAndy Bates.\\n---------------------------------------------------------------------------\\n\",\n", + " 'From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Lezgians Astir in Azerbaijan and Daghestan\\nOrganization: Georgia Institute of Technology\\nLines: 16\\n\\nHELLO, shit face david, I see that you are still around. I dont want to \\nsee your shitty writings posted here man. I told you. You are getting\\nitchy as your fucking country. Hey , and dont give me that freedom\\nof speach bullshit once more. Because your freedom has ended when you started\\nwriting things about my people. And try to translate this \"ebenin donu\\nbutti kafa David.\".\\n\\nBYE, ANACIM HADE.\\nTIMUCIN\\n\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n',\n", + " \"From: mblock@reed.edu (Matt Block)\\nSubject: Re: Fortune-guzzler barred from bars!\\nArticle-I.D.: reed.1993Apr16.104158.27890\\nOrganization: Reed College, Portland, Oregon\\nLines: 37\\n\\nbclarke@galaxy.gov.bc.ca writes:\\n>Saw this in today's newspaper:\\n>------------------------------------------------------------------------\\n>FORTUNE-GUZZLER BARRED FROM BARS\\n>--------------------------------\\n>Barnstaple, England/Reuter\\n>\\n>\\tA motorcyclist said to have drunk away a $290,000 insurance payment in\\n>less than 10 years was banned Wednesday from every pub in England and Wales.\\n>\\n>\\tDavid Roberts, 29, had been awarded the cash in compensation for\\n>losing a leg in a motorcycle accident. He spent virtually all of it on cider, a\\n>court in Barnstaple in southwest England was told.\\n>\\n>\\tJudge Malcolm Coterill banned Roberts from all bars in England and\\n>Wales for 12 months and put on two years' probation after he started a brawl in\\n>a pub.\\n\\n\\tIs there no JUSTICE?!\\n\\n\\tIf I lost my leg when I was 19, and had to give up motorcycling\\n(assuming David didn't know that it can be done one-legged,) I too would want\\nto get swamped.... maybe even for ten years! I'll admit, I'd probably prefer\\nhomebrew to pubbrew, but still...\\n\\n\\tJudge Coterill is in some serious trouble, I can tell you that. Any\\nchance you can get to him and convince him his ruling was backward, Nick?\\n\\n\\tPerhaps the lad deserved something for starting a brawl (bad form...\\nhorribly bad form,) but for getting drunk? That, I thought, was ones natural\\nborn right! And for spending his own money? My goodness, who cares what one\\ndoes with one's own moolah, even if one spends it recklessly?\\n\\n\\tI'm ashamed of humanity.\\n\\n\\tMatt Block & Koch\\n\\tDoD# #007\\t\\t\\t1980 Honda CB650\\n\",\n", + " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Drinking and Riding\\nOrganization: University College of Wales, Aberystwyth\\nLines: 10\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\n>So, you can't ride the bike, but you will drive truck home? The\\n>judgement and motor skills needed to pilot a moto are not required in a\\n>cage? This scares the sh*t out of me.\\n> \\nThis is a piece of psychology its essential for any long term biker to\\nunderstand. People do NOT think 'if I do this will someone else suffer?'.\\nThey assess things purely on' if I do this will I suffer?.\\n\\nThis is a vital concept in bike-cage interaction.\\n\",\n", + " 'From: maven@eskimo.com (Norman Hamer)\\nSubject: Re: A Miracle in California\\nOrganization: -> ESKIMO NORTH (206) For-Ever <-\\nLines: 22\\n\\nRe: Waving...\\n\\nI must say, that the courtesy of a nod or a wave as I meet other bikers while\\nriding does a lot of good things to my mood... While riding is a lot of fun by\\nitself, there\\'s something really special about having someone say to you \"Hey,\\nit\\'s a great day for a ride... Isn\\'t it wonderful that we can spend some time\\non the road on days like this...\" with a gesture.\\n\\nWas sunny today for the first time in a week, took my bike out for a spin down\\nto the local salvage yard/bike shop... ran into about 20 other people who were\\ndown there for similar reasons (there\\'s this GREAT stretch of road on the way\\ndown there... no side streets, lotsa leaning bends... ;) ... Went on an\\nimpromptu coffee and bullshit run down to puyallup with a batch of people who \\nI didn\\'t know, but who were my kinda people nonetheless.\\n\\nAs a fellow commented to me while I was admiring his bike... \"Hey, it\\'s not\\nwhat you ride, it\\'s that you ride... As long as it has 2 wheels and an engine\\nit\\'s the same thing...\"\\n-- \\n----\\nmaven@eskimo.com (InterNet) maven@mavenry.altcit.eskimo.com (UseNet)\\nThe Maven@The Mavenry (AlterNet)\\n',\n", + " 'From: asphaug@lpl.arizona.edu (Erik Asphaug x2773)\\nSubject: Re: CAMPING was Help with backpack\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 24\\n\\nIn article <1993Apr14.193739.13359@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>In article <1993Apr13.152706.27518@bnr.ca> Dave Dal Farra writes:\\n>|My crafty girfriend makes campfire/bbq starters a la McGiver:\\n>Well, heck, if you\\'re going to make them yourself, you can buy\\n>candle-wax by the pound--much cheper than the candles themselves.\\n\\nHell, just save your candle stubs and bring them. Light them up, and\\ndribble the wax all over the kindling wood and light _that_. Although\\nI like the belly-button lint / eggshell case idea the best, if you\\'re\\nfeeling particularly industrious some eventful evening. Or you can\\ndo what I did one soggy summer: open the fuel line, drain some onto a \\npiece of rough or rotten wood, stick that into the middle of the soon-to-\\nbe inferno and CAREFULLY strike a match... As Kurt Vonnegut titled one\\nof the latter chapters in Cat\\'s Cradle, \"Ah-Whoom!\"\\n\\nWorks like a charm every time :-)\\n\\n\\n/-----b-o-d-y---i-s---t-h-e---b-i-k-e----------------------------\\\\\\n| |\\n| DoD# 88888 asphaug@hindmost.lpl.arizona.edu |\\n| \\'90 Kawi Zephyr (Erik Asphaug) |\\n| \\'86 BMW R80GS |\\n\\\\-----------------------s-o-u-l---i-s---t-h-e---r-i-d-e-r--------/\\n',\n", + " 'From: hasan@McRCIM.McGill.EDU \\nSubject: Re: No land for peace - No negotiatians\\nOriginator: hasan@haley.mcrcim.mcgill.edu\\nNntp-Posting-Host: haley.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 45\\n\\n\\nIn article <1993Apr5.175047.17368@unocal.com>, stssdxb@st.unocal.com (Dorin Baru) writes:\\n\\n|> Alan Stein writes:\\n|> \\n|> >What are you talking about? The Rabin government has clearly\\n|> >indicated its interest in a territorial compromise that would leave\\n|> >the vast majority of the Arabs in Judea, Samaria and Gaza outside\\n|> >Israeli control.\\n\\n(just an interrupting comment here) Since EARLY 1980\\'s , israelis said they are \\nwilling to give up the Adminstration rule of the occupied terretories to\\nPalestineans. Palestineans refused and will refuse such settlement that denies\\nthem their right of SELF-DETERMINATION. period.\\n\\n|> I know. I was just pointing out that not compromising may be a bad idea. And\\n|> there are, in Israel, voices against negotiations. And I think there are many\\n|> among palestineans also against any negociations. \\n|> \\n|> Just an opinion\\n|>\\n|> Dorin\\n\\nOk. I donot know why there are israeli voices against negotiations. However,\\ni would guess that is because they refuse giving back a land for those who\\nhave the right for it.\\n\\nAs for the Arabian and Palestinean voices that are against the\\ncurrent negotiations and the so-called peace process, they\\nare not against peace per se, but rather for their well-founded predictions\\nthat Israel would NOT give an inch of the West bank (and most probably the same\\nfor Golan Heights) back to the Arabs. An 18 months of \"negotiations\" in Madrid,\\nand Washington proved these predictions. Now many will jump on me saying why\\nare you blaming israelis for no-result negotiations.\\nI would say why would the Arabs stall the negotiations, what do they have to\\nloose ?\\n\\nArabs feel that the current \"negotiations\" is ONLY for legitimizing the current\\nstatus-quo and for opening the doors of the Arab markets for israeli trade and\\n\"oranges\". That is simply unacceptable and would be revoked. \\n\\nJust an opinion.\\n\\nHasan\\n',\n", + " 'From: cdw2t@dayhoff.med.Virginia.EDU (Dances With Federal Rangers)\\nSubject: Re: BMW MOA members read this!\\nOrganization: University of Virginia\\nLines: 19\\n\\nIn article <1993Apr15.065731.23557@cs.cornell.edu> karr@cs.cornell.edu (David Karr) writes:\\n\\n [riveting BMWMOA election soap-opera details deleted]\\n\\n>Well, there doesn\\'t seem to be any shortage of alternative candidates.\\n>Obviously you\\'re not voting for Mr. Vechorik, but what about the\\n>others?\\n\\nI\\'m going to buy a BMW just to cast a vote for Groucho.\\n\\nRide safe,\\n----------------------------------------------------------------------------\\n| Cliff Weston DoD# 0598 \\'92 Seca II (Tem) |\\n| |\\n| This bike is in excellent condition. |\\n| I\\'ve done all the work on it myself. |\\n| |\\n| -- Glen \"CRASH\" Stone |\\n----------------------------------------------------------------------------\\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 10/15 - Planetary Probe History\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 527\\nDistribution: world\\nExpires: 6 May 1993 19:59:36 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/probe\\nLast-modified: $Date: 93/04/01 14:39:19 $\\n\\nPLANETARY PROBES - HISTORICAL MISSIONS\\n\\n This section was lightly adapted from an original posting by Larry Klaes\\n (klaes@verga.enet.dec.com), mostly minor formatting changes. Matthew\\n Wiener (weemba@libra.wistar.upenn.edu) contributed the section on\\n Voyager, and the section on Sakigake was obtained from ISAS material\\n posted by Yoshiro Yamada (yamada@yscvax.ysc.go.jp).\\n\\nUS PLANETARY MISSIONS\\n\\n\\n MARINER (VENUS, MARS, & MERCURY FLYBYS AND ORBITERS)\\n\\n MARINER 1, the first U.S. attempt to send a spacecraft to Venus, failed\\n minutes after launch in 1962. The guidance instructions from the ground\\n stopped reaching the rocket due to a problem with its antenna, so the\\n onboard computer took control. However, there turned out to be a bug in\\n the guidance software, and the rocket promptly went off course, so the\\n Range Safety Officer destroyed it. Although the bug is sometimes claimed\\n to have been an incorrect FORTRAN DO statement, it was actually a\\n transcription error in which the bar (indicating smoothing) was omitted\\n from the expression \"R-dot-bar sub n\" (nth smoothed value of derivative\\n of radius). This error led the software to treat normal minor variations\\n of velocity as if they were serious, leading to incorrect compensation.\\n\\n MARINER 2 became the first successful probe to flyby Venus in December\\n of 1962, and it returned information which confirmed that Venus is a\\n very hot (800 degrees Fahrenheit, now revised to 900 degrees F.) world\\n with a cloud-covered atmosphere composed primarily of carbon dioxide\\n (sulfuric acid was later confirmed in 1978).\\n\\n MARINER 3, launched on November 5, 1964, was lost when its protective\\n shroud failed to eject as the craft was placed into interplanetary\\n space. Unable to collect the Sun\\'s energy for power from its solar\\n panels, the probe soon died when its batteries ran out and is now in\\n solar orbit. It was intended for a Mars flyby with MARINER 4.\\n\\n MARINER 4, the sister probe to MARINER 3, did reach Mars in 1965 and\\n took the first close-up images of the Martian surface (22 in all) as it\\n flew by the planet. The probe found a cratered world with an atmosphere\\n much thinner than previously thought. Many scientists concluded from\\n this preliminary scan that Mars was a \"dead\" world in both the\\n geological and biological sense.\\n\\n MARINER 5 was sent to Venus in 1967. It reconfirmed the data on that\\n planet collected five years earlier by MARINER 2, plus the information\\n that Venus\\' atmospheric pressure at its surface is at least 90 times\\n that of Earth\\'s, or the equivalent of being 3,300 feet under the surface\\n of an ocean.\\n\\n MARINER 6 and 7 were sent to Mars in 1969 and expanded upon the work\\n done by MARINER 4 four years earlier. However, they failed to take away\\n the concept of Mars as a \"dead\" planet, first made from the basic\\n measurements of MARINER 4.\\n\\n MARINER 8 ended up in the Atlantic Ocean in 1971 when the rocket\\n launcher autopilot failed.\\n\\n MARINER 9, the sister probe to MARINER 8, became the first craft to\\n orbit Mars in 1971. It returned information on the Red Planet that no\\n other probe had done before, revealing huge volcanoes on the Martian\\n surface, as well as giant canyon systems, and evidence that water once\\n flowed across the planet. The probe also took the first detailed closeup\\n images of Mars\\' two small moons, Phobos and Deimos.\\n\\n MARINER 10 used Venus as a gravity assist to Mercury in 1974. The probe\\n did return the first close-up images of the Venusian atmosphere in\\n ultraviolet, revealing previously unseen details in the cloud cover,\\n plus the fact that the entire cloud system circles the planet in four\\n Earth days. MARINER 10 eventually made three flybys of Mercury from 1974\\n to 1975 before running out of attitude control gas. The probe revealed\\n Mercury as a heavily cratered world with a mass much greater than\\n thought. This would seem to indicate that Mercury has an iron core which\\n makes up 75 percent of the entire planet.\\n\\n\\n PIONEER (MOON, SUN, VENUS, JUPITER, and SATURN FLYBYS AND ORBITERS)\\n\\n PIONEER 1 through 3 failed to meet their main objective - to photograph\\n the Moon close-up - but they did reach far enough into space to provide\\n new information on the area between Earth and the Moon, including new\\n data on the Van Allen radiation belts circling Earth. All three craft\\n had failures with their rocket launchers. PIONEER 1 was launched on\\n October 11, 1958, PIONEER 2 on November 8, and PIONEER 3 on December 6.\\n\\n PIONEER 4 was a Moon probe which missed the Moon and became the first\\n U.S. spacecraft to orbit the Sun in 1959. PIONEER 5 was originally\\n designed to flyby Venus, but the mission was scaled down and it instead\\n studied the interplanetary environment between Venus and Earth out to\\n 36.2 million kilometers in 1960, a record until MARINER 2. PIONEER 6\\n through 9 were placed into solar orbit from 1965 to 1968: PIONEER 6, 7,\\n and 8 are still transmitting information at this time. PIONEER E (would\\n have been number 10) suffered a launch failure in 1969.\\n\\n PIONEER 10 became the first spacecraft to flyby Jupiter in 1973. PIONEER\\n 11 followed it in 1974, and then went on to become the first probe to\\n study Saturn in 1979. Both vehicles should continue to function through\\n 1995 and are heading off into interstellar space, the first craft ever\\n to do so.\\n\\n PIONEER Venus 1 (1978) (also known as PIONEER Venus Orbiter, or PIONEER\\n 12) burned up in the Venusian atmosphere on October 8, 1992. PVO made\\n the first radar studies of the planet\\'s surface via probe. PIONEER Venus\\n 2 (also known as PIONEER 13) sent four small probes into the atmosphere\\n in December of 1978. The main spacecraft bus burned up high in the\\n atmosphere, while the four probes descended by parachute towards the\\n surface. Though none were expected to survive to the surface, the Day\\n probe did make it and transmitted for 67.5 minutes on the ground before\\n its batteries failed.\\n\\n\\n RANGER (LUNAR LANDER AND IMPACT MISSIONS)\\n\\n RANGER 1 and 2 were test probes for the RANGER lunar impact series. They\\n were meant for high Earth orbit testing in 1961, but rocket problems\\n left them in useless low orbits which quickly decayed.\\n\\n RANGER 3, launched on January 26, 1962, was intended to land an\\n instrument capsule on the surface of the Moon, but problems during the\\n launch caused the probe to miss the Moon and head into solar orbit.\\n RANGER 3 did try to take some images of the Moon as it flew by, but the\\n camera was unfortunately aimed at deep space during the attempt.\\n\\n RANGER 4, launched April 23, 1962, had the same purpose as RANGER 3, but\\n suffered technical problems enroute and crashed on the lunar farside,\\n the first U.S. probe to reach the Moon, albeit without returning data.\\n\\n RANGER 5, launched October 18, 1962 and similar to RANGER 3 and 4, lost\\n all solar panel and battery power enroute and eventually missed the Moon\\n and drifted off into solar orbit.\\n\\n RANGER 6 through 9 had more modified lunar missions: They were to send\\n back live images of the lunar surface as they headed towards an impact\\n with the Moon. RANGER 6 failed this objective in 1964 when its cameras\\n did not operate. RANGER 7 through 9 performed well, becoming the first\\n U.S. lunar probes to return thousands of lunar images through 1965.\\n\\n\\n LUNAR ORBITER (LUNAR SURFACE PHOTOGRAPHY)\\n\\n LUNAR ORBITER 1 through 5 were designed to orbit the Moon and image\\n various sites being studied as landing areas for the manned APOLLO\\n missions of 1969-1972. The probes also contributed greatly to our\\n understanding of lunar surface features, particularly the lunar farside.\\n All five probes of the series, launched from 1966 to 1967, were\\n essentially successful in their missions. They were the first U.S.\\n probes to orbit the Moon. All LOs were eventually crashed into the lunar\\n surface to avoid interference with the manned APOLLO missions.\\n\\n\\n SURVEYOR (LUNAR SOFT LANDERS)\\n\\n The SURVEYOR series were designed primarily to see if an APOLLO lunar\\n module could land on the surface of the Moon without sinking into the\\n soil (before this time, it was feared by some that the Moon was covered\\n in great layers of dust, which would not support a heavy landing\\n vehicle). SURVEYOR was successful in proving that the lunar surface was\\n strong enough to hold up a spacecraft from 1966 to 1968.\\n\\n Only SURVEYOR 2 and 4 were unsuccessful missions. The rest became the\\n first U.S. probes to soft land on the Moon, taking thousands of images\\n and scooping the soil for analysis. APOLLO 12 landed 600 feet from\\n SURVEYOR 3 in 1969 and returned parts of the craft to Earth. SURVEYOR 7,\\n the last of the series, was a purely scientific mission which explored\\n the Tycho crater region in 1968.\\n\\n\\n VIKING (MARS ORBITERS AND LANDERS)\\n\\n VIKING 1 was launched from Cape Canaveral, Florida on August 20, 1975 on\\n a TITAN 3E-CENTAUR D1 rocket. The probe went into Martian orbit on June\\n 19, 1976, and the lander set down on the western slopes of Chryse\\n Planitia on July 20, 1976. It soon began its programmed search for\\n Martian micro-organisms (there is still debate as to whether the probes\\n found life there or not), and sent back incredible color panoramas of\\n its surroundings. One thing scientists learned was that Mars\\' sky was\\n pinkish in color, not dark blue as they originally thought (the sky is\\n pink due to sunlight reflecting off the reddish dust particles in the\\n thin atmosphere). The lander set down among a field of red sand and\\n boulders stretching out as far as its cameras could image.\\n\\n The VIKING 1 orbiter kept functioning until August 7, 1980, when it ran\\n out of attitude-control propellant. The lander was switched into a\\n weather-reporting mode, where it had been hoped it would keep\\n functioning through 1994; but after November 13, 1982, an errant command\\n had been sent to the lander accidentally telling it to shut down until\\n further orders. Communication was never regained again, despite the\\n engineers\\' efforts through May of 1983.\\n\\n An interesting side note: VIKING 1\\'s lander has been designated the\\n Thomas A. Mutch Memorial Station in honor of the late leader of the\\n lander imaging team. The National Air and Space Museum in Washington,\\n D.C. is entrusted with the safekeeping of the Mutch Station Plaque until\\n it can be attached to the lander by a manned expedition.\\n\\n VIKING 2 was launched on September 9, 1975, and arrived in Martian orbit\\n on August 7, 1976. The lander touched down on September 3, 1976 in\\n Utopia Planitia. It accomplished essentially the same tasks as its\\n sister lander, with the exception that its seisometer worked, recording\\n one marsquake. The orbiter had a series of attitude-control gas leaks in\\n 1978, which prompted it being shut down that July. The lander was shut\\n down on April 12, 1980.\\n\\n The orbits of both VIKING orbiters should decay around 2025.\\n\\n\\n VOYAGER (OUTER PLANET FLYBYS)\\n\\n VOYAGER 1 was launched September 5, 1977, and flew past Jupiter on March\\n 5, 1979 and by Saturn on November 13, 1980. VOYAGER 2 was launched\\n August 20, 1977 (before VOYAGER 1), and flew by Jupiter on August 7,\\n 1979, by Saturn on August 26, 1981, by Uranus on January 24, 1986, and\\n by Neptune on August 8, 1989. VOYAGER 2 took advantage of a rare\\n once-every-189-years alignment to slingshot its way from outer planet to\\n outer planet. VOYAGER 1 could, in principle, have headed towards Pluto,\\n but JPL opted for the sure thing of a Titan close up.\\n\\n Between the two probes, our knowledge of the 4 giant planets, their\\n satellites, and their rings has become immense. VOYAGER 1&2 discovered\\n that Jupiter has complicated atmospheric dynamics, lightning and\\n aurorae. Three new satellites were discovered. Two of the major\\n surprises were that Jupiter has rings and that Io has active sulfurous\\n volcanoes, with major effects on the Jovian magnetosphere.\\n\\n When the two probes reached Saturn, they discovered over 1000 ringlets\\n and 7 satellites, including the predicted shepherd satellites that keep\\n the rings stable. The weather was tame compared with Jupiter: massive\\n jet streams with minimal variance (a 33-year great white spot/band cycle\\n is known). Titan\\'s atmosphere was smoggy. Mimas\\' appearance was\\n startling: one massive impact crater gave it the Death Star appearance.\\n The big surprise here was the stranger aspects of the rings. Braids,\\n kinks, and spokes were both unexpected and difficult to explain.\\n\\n VOYAGER 2, thanks to heroic engineering and programming efforts,\\n continued the mission to Uranus and Neptune. Uranus itself was highly\\n monochromatic in appearance. One oddity was that its magnetic axis was\\n found to be highly skewed from the already completely skewed rotational\\n axis, giving Uranus a peculiar magnetosphere. Icy channels were found on\\n Ariel, and Miranda was a bizarre patchwork of different terrains. 10\\n satellites and one more ring were discovered.\\n\\n In contrast to Uranus, Neptune was found to have rather active weather,\\n including numerous cloud features. The ring arcs turned out to be bright\\n patches on one ring. Two other rings, and 6 other satellites, were\\n discovered. Neptune\\'s magnetic axis was also skewed. Triton had a\\n canteloupe appearance and geysers. (What\\'s liquid at 38K?)\\n\\n The two VOYAGERs are expected to last for about two more decades. Their\\n on-target journeying gives negative evidence about possible planets\\n beyond Pluto. Their next major scientific discovery should be the\\n location of the heliopause.\\n\\n\\nSOVIET PLANETARY MISSIONS\\n\\n Since there have been so many Soviet probes to the Moon, Venus, and\\n Mars, I will highlight only the primary missions:\\n\\n\\n SOVIET LUNAR PROBES\\n\\n LUNA 1 - Lunar impact attempt in 1959, missed Moon and became first\\n\\t craft in solar orbit.\\n LUNA 2 - First craft to impact on lunar surface in 1959.\\n LUNA 3 - Took first images of lunar farside in 1959.\\n ZOND 3 - Took first images of lunar farside in 1965 since LUNA 3. Was\\n\\t also a test for future Mars missions.\\n LUNA 9 - First probe to soft land on the Moon in 1966, returned images\\n\\t from surface.\\n LUNA 10 - First probe to orbit the Moon in 1966.\\n LUNA 13 - Second successful Soviet lunar soft landing mission in 1966.\\n ZOND 5 - First successful circumlunar craft. ZOND 6 through 8\\n\\t accomplished similar missions through 1970. The probes were\\n\\t unmanned tests of a manned orbiting SOYUZ-type lunar vehicle.\\n LUNA 16 - First probe to land on Moon and return samples of lunar soil\\n\\t to Earth in 1970. LUNA 20 accomplished similar mission in\\n\\t 1972.\\n LUNA 17 - Delivered the first unmanned lunar rover to the Moon\\'s\\n\\t surface, LUNOKHOD 1, in 1970. A similar feat was accomplished\\n\\t with LUNA 21/LUNOKHOD 2 in 1973.\\n LUNA 24 - Last Soviet lunar mission to date. Returned soil samples in\\n\\t 1976.\\n\\n\\n SOVIET VENUS PROBES\\n\\n VENERA 1 - First acknowledged attempt at Venus mission. Transmissions\\n\\t lost enroute in 1961.\\n VENERA 2 - Attempt to image Venus during flyby mission in tandem with\\n\\t VENERA 3. Probe ceased transmitting just before encounter in\\n\\t February of 1966. No images were returned.\\n VENERA 3 - Attempt to place a lander capsule on Venusian surface.\\n\\t Transmissions ceased just before encounter and entire probe\\n\\t became the first craft to impact on another planet in 1966.\\n VENERA 4 - First probe to successfully return data while descending\\n\\t through Venusian atmosphere. Crushed by air pressure before\\n\\t reaching surface in 1967. VENERA 5 and 6 mission profiles\\n\\t similar in 1969.\\n VENERA 7 - First probe to return data from the surface of another planet\\n\\t in 1970. VENERA 8 accomplished a more detailed mission in\\n\\t 1972.\\n VENERA 9 - Sent first image of Venusian surface in 1975. Was also the\\n\\t first probe to orbit Venus. VENERA 10 accomplished similar\\n\\t mission.\\n VENERA 13 - Returned first color images of Venusian surface in 1982.\\n\\t\\tVENERA 14 accomplished similar mission.\\n VENERA 15 - Accomplished radar mapping with VENERA 16 of sections of\\n\\t\\tplanet\\'s surface in 1983 more detailed than PVO.\\n VEGA 1 - Accomplished with VEGA 2 first balloon probes of Venusian\\n\\t atmosphere in 1985, including two landers. Flyby buses went on\\n\\t to become first spacecraft to study Comet Halley close-up in\\n\\t March of 1986.\\n\\n\\n SOVIET MARS PROBES\\n\\n MARS 1 - First acknowledged Mars probe in 1962. Transmissions ceased\\n\\t enroute the following year.\\n ZOND 2 - First possible attempt to place a lander capsule on Martian\\n\\t surface. Probe signals ceased enroute in 1965.\\n MARS 2 - First Soviet Mars probe to land - albeit crash - on Martian\\n\\t surface. Orbiter section first Soviet probe to circle the Red\\n\\t Planet in 1971.\\n MARS 3 - First successful soft landing on Martian surface, but lander\\n\\t signals ceased after 90 seconds in 1971.\\n MARS 4 - Attempt at orbiting Mars in 1974, braking rockets failed to\\n\\t fire, probe went on into solar orbit.\\n MARS 5 - First fully successful Soviet Mars mission, orbiting Mars in\\n\\t 1974. Returned images of Martian surface comparable to U.S.\\n\\t probe MARINER 9.\\n MARS 6 - Landing attempt in 1974. Lander crashed into the surface.\\n MARS 7 - Lander missed Mars completely in 1974, went into a solar orbit\\n\\t with its flyby bus.\\n PHOBOS 1 - First attempt to land probes on surface of Mars\\' largest\\n\\t moon, Phobos. Probe failed enroute in 1988 due to\\n\\t human/computer error.\\n PHOBOS 2 - Attempt to land probes on Martian moon Phobos. The probe did\\n\\t enter Mars orbit in early 1989, but signals ceased one week\\n\\t before scheduled Phobos landing.\\n\\n While there has been talk of Soviet Jupiter, Saturn, and even\\n interstellar probes within the next thirty years, no major steps have\\n yet been taken with these projects. More intensive studies of the Moon,\\n Mars, Venus, and various comets have been planned for the 1990s, and a\\n Mercury mission to orbit and land probes on the tiny world has been\\n planned for 2003. How the many changes in the former Soviet Union (now\\n the Commonwealth of Independent States) will affect the future of their\\n space program remains to be seen.\\n\\n\\nJAPANESE PLANETARY MISSIONS\\n\\n SAKIGAKE (MS-T5) was launched from the Kagoshima Space Center by ISAS on\\n January 8 1985, and approached Halley\\'s Comet within about 7 million km\\n on March 11, 1986. The spacecraft is carrying three instru- ments to\\n measure interplanetary magnetic field/plasma waves/solar wind, all of\\n which work normally now, so ISAS made an Earth swingby by Sakigake on\\n January 8, 1992 into an orbit similar to the earth\\'s. The closest\\n approach was at 23h08m47s (JST=UTC+9h) on January 8, 1992. The\\n geocentric distance was 88,997 km. This is the first planet-swingby for\\n a Japanese spacecraft.\\n\\n During the approach, Sakigake observed the geotail. Some geotail\\n passages will be scheduled in some years hence. The second Earth-swingby\\n will be on June 14, 1993 (at 40 Re (Earth\\'s radius)), and the third\\n October 28, 1994 (at 86 Re).\\n\\n\\n HITEN, a small lunar probe, was launched into Earth orbit on January 24,\\n 1990. The spacecraft was then known as MUSES-A, but was renamed to Hiten\\n once in orbit. The 430 lb probe looped out from Earth and made its first\\n lunary flyby on March 19, where it dropped off its 26 lb midget\\n satellite, HAGOROMO. Japan at this point became the third nation to\\n orbit a satellite around the Moon, joining the Unites States and USSR.\\n\\n The smaller spacecraft, Hagoromo, remained in orbit around the Moon. An\\n apparently broken transistor radio caused the Japanese space scientists\\n to lose track of it. Hagoromo\\'s rocket motor fired on schedule on March\\n 19, but the spacecraft\\'s tracking transmitter failed immediately. The\\n rocket firing of Hagoromo was optically confirmed using the Schmidt\\n camera (105-cm, F3.1) at the Kiso Observatory in Japan.\\n\\n Hiten made multiple lunar flybys at approximately monthly intervals and\\n performed aerobraking experiments using the Earth\\'s atmosphere. Hiten\\n made a close approach to the moon at 22:33 JST (UTC+9h) on February 15,\\n 1992 at the height of 423 km from the moon\\'s surface (35.3N, 9.7E) and\\n fired its propulsion system for about ten minutes to put the craft into\\n lunar orbit. The following is the orbital calculation results after the\\n approach:\\n\\n\\tApoapsis Altitude: about 49,400 km\\n\\tPeriapsis Altitude: about 9,600 km\\n\\tInclination\\t: 34.7 deg (to ecliptic plane)\\n\\tPeriod\\t\\t: 4.7 days\\n\\n\\nPLANETARY MISSION REFERENCES\\n\\n I also recommend reading the following works, categorized in three\\n groups: General overviews, specific books on particular space missions,\\n and periodical sources on space probes. This list is by no means\\n complete; it is primarily designed to give you places to start your\\n research through generally available works on the subject. If anyone can\\n add pertinent works to the list, it would be greatly appreciated.\\n\\n Though naturally I recommend all the books listed below, I think it\\n would be best if you started out with the general overview books, in\\n order to give you a clear idea of the history of space exploration in\\n this area. I also recommend that you pick up some good, up-to-date\\n general works on astronomy and the Sol system, to give you some extra\\n background. Most of these books and periodicals can be found in any good\\n public and university library. Some of the more recently published works\\n can also be purchased in and/or ordered through any good mass- market\\n bookstore.\\n\\n General Overviews (in alphabetical order by author):\\n\\n J. Kelly Beatty et al, THE NEW SOLAR SYSTEM, 1990.\\n\\n Merton E. Davies and Bruce C. Murray, THE VIEW FROM SPACE:\\n PHOTOGRAPHIC EXPLORATION OF THE PLANETS, 1971\\n\\n Kenneth Gatland, THE ILLUSTRATED ENCYCLOPEDIA OF SPACE\\n TECHNOLOGY, 1990\\n\\n Kenneth Gatland, ROBOT EXPLORERS, 1972\\n\\n R. Greeley, PLANETARY LANDSCAPES, 1987\\n\\n Douglas Hart, THE ENCYCLOPEDIA OF SOVIET SPACECRAFT, 1987\\n\\n Nicholas L. Johnson, HANDBOOK OF SOVIET LUNAR AND PLANETARY\\n EXPLORATION, 1979\\n\\n Clayton R. Koppes, JPL AND THE AMERICAN SPACE PROGRAM: A\\n HISTORY OF THE JET PROPULSION LABORATORY, 1982\\n\\n Richard S. Lewis, THE ILLUSTRATED ENCYCLOPEDIA OF THE\\n UNIVERSE, 1983\\n\\n Mark Littman, PLANETS BEYOND: DISCOVERING THE OUTER SOLAR\\n SYSTEM, 1988\\n\\n Eugene F. Mallove and Gregory L. Matloff, THE STARFLIGHT\\n HANDBOOK: A PIONEER\\'S GUIDE TO INTERSTELLAR TRAVEL, 1989\\n\\n Frank Miles and Nicholas Booth, RACE TO MARS: THE MARS\\n FLIGHT ATLAS, 1988\\n\\n Bruce Murray, JOURNEY INTO SPACE, 1989\\n\\n Oran W. Nicks, FAR TRAVELERS, 1985 (NASA SP-480)\\n\\n James E. Oberg, UNCOVERING SOVIET DISASTERS: EXPLORING THE\\n LIMITS OF GLASNOST, 1988\\n\\n Carl Sagan, COMET, 1986\\n\\n Carl Sagan, THE COSMIC CONNECTION, 1973\\n\\n Carl Sagan, PLANETS, 1969 (LIFE Science Library)\\n\\n Arthur Smith, PLANETARY EXPLORATION: THIRTY YEARS OF UNMANNED\\n SPACE PROBES, 1988\\n\\n Andrew Wilson, (JANE\\'S) SOLAR SYSTEM LOG, 1987\\n\\n Specific Mission References:\\n\\n Charles A. Cross and Patrick Moore, THE ATLAS OF MERCURY, 1977\\n (The MARINER 10 mission to Venus and Mercury, 1973-1975)\\n\\n Joel Davis, FLYBY: THE INTERPLANETARY ODYSSEY OF VOYAGER 2, 1987\\n\\n Irl Newlan, FIRST TO VENUS: THE STORY OF MARINER 2, 1963\\n\\n Margaret Poynter and Arthur L. Lane, VOYAGER: THE STORY OF A\\n SPACE MISSION, 1984\\n\\n Carl Sagan, MURMURS OF EARTH, 1978 (Deals with the Earth\\n information records placed on VOYAGER 1 and 2 in case the\\n probes are found by intelligences in interstellar space,\\n as well as the probes and planetary mission objectives\\n themselves.)\\n\\n Other works and periodicals:\\n\\n NASA has published very detailed and technical books on every space\\n probe mission it has launched. Good university libraries will carry\\n these books, and they are easily found simply by knowing which mission\\n you wish to read about. I recommend these works after you first study\\n some of the books listed above.\\n\\n Some periodicals I recommend for reading on space probes are NATIONAL\\n GEOGRAPHIC, which has written articles on the PIONEER probes to Earth\\'s\\n Moon Luna and the Jovian planets Jupiter and Saturn, the RANGER,\\n SURVEYOR, LUNAR ORBITER, and APOLLO missions to Luna, the MARINER\\n missions to Mercury, Venus, and Mars, the VIKING probes to Mars, and the\\n VOYAGER missions to Jupiter, Saturn, Uranus, and Neptune.\\n\\n More details on American, Soviet, European, and Japanese probe missions\\n can be found in SKY AND TELESCOPE, ASTRONOMY, SCIENCE, NATURE, and\\n SCIENTIFIC AMERICAN magazines. TIME, NEWSWEEK, and various major\\n newspapers can supply not only general information on certain missions,\\n but also show you what else was going on with Earth at the time events\\n were unfolding, if that is of interest to you. Space missions are\\n affected by numerous political, economic, and climatic factors, as you\\n probably know.\\n\\n Depending on just how far your interest in space probes will go, you\\n might also wish to join The Planetary Society, one of the largest space\\n groups in the world dedicated to planetary exploration. Their\\n periodical, THE PLANETARY REPORT, details the latest space probe\\n missions. Write to The Planetary Society, 65 North Catalina Avenue,\\n Pasadena, California 91106 USA.\\n\\n Good luck with your studies in this area of space exploration. I\\n personally find planetary missions to be one of the more exciting areas\\n in this field, and the benefits human society has and will receive from\\n it are incredible, with many yet to be realized.\\n\\n Larry Klaes klaes@verga.enet.dec.com\\n\\nNEXT: FAQ #11/15 - Upcoming planetary probes - missions and schedules\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The religious persecution, cultural oppression and economical...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 161\\n\\nIn article <1993Apr21.202728.29375@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>You may not be afraid of anything but you act as if you are.\\n\\nI always like your kind of odds. The Greek governments must be held \\nto account for the sub-human conditions of the Turkish minority living \\nin the Western Thrace under the brutal Greek domination. The religious \\npersecution, cultural oppression and economical ex-communication applied \\nto the Turkish population in that area are the dimensions of the human \\nrights abuse widespread in Greece.\\n\\n\"Greece\\'s Housing Policies Worry Western Thrace Turks\"\\n\\n...Newly built houses belonging to members of the minority\\ncommunity in Dedeagac province, had, he said, been destroyed\\nby Evros province public works department on Dec. 4.\\n\\nSungar added that they had received harsh treatment by the\\nsecurity forces during the demolition.\\n\\n\"This is not the first demolition in Dedeagac province; more\\nthan 40 houses were destroyed there between 1979-1984 and \\nmembers of that minority community were made homeless,\" he\\ncontinued. \\n\\n\"Greece Government Rail-Roads Two Turkish Ethnic Deputies\"\\n\\nWhile World Human Rights Organizations Scream, Greeks \\nPersistently Work on Removing the Parliamentary Immunity\\nof Dr. Sadik Ahmet and Mr. Ahmet Faikoglu.\\n\\nIn his 65-page confession, Salman Demirok, a former chief of PKK\\noperations in Hakkari confessed that high-level relations between\\nPKK, Greece and Greek Cypriot administration existed.\\n\\nAccording to Demirok, Greek Cypriot administration not only \\ngives shelter to PKK guerillas but also supplies them with \\nfood and weapons at the temporary camps set up in its territory. \\nDemirok disclosed that PKK has three safe houses in South Cyprus, \\nused by terrorists such as Ferhat. In the camps, he added, \\nterrorists were trained to use various weapons including RPG\\'s \\nand anti-aircraft guns which had been purchased directly from \\nthe Greek government. Greek Cypriot government has gone to the \\nextent of issuing special identification cards to PKK members so \\nthat they can travel from one region to another without being \\nconfronted by legal obstacles. Demirok\\'s account was confirmed \\nby another PKK defector, Fatih Tan, who gave himself over to \\npolice in Hakkari after spending four years with PKK. Tan explained\\nthat the terrorists went through a training in camps in South Cyprus, \\nsometimes for a period of 12 weeks or more.\\n\\n \"Torture in Greece: Hidden Reality\"\\n\\nCase 1: Kostas Andreadis and Dimitris Voglis.\\n\\n...Andreadis\\' head was covered with a hood and he was tortured\\nby falanga (beating on the soles of the feet), electric shocks,\\nand was threatened with being thrown out of the window. An \\nofficial medical report clearly documented this torture....\\n\\nCase 2: Horst Bosniatzki, a West German Citizen.\\n\\n...At midnight he was taken to the beach, chains were put to his \\nfeet and he was threatened to be thrown to the sea. He was dragged\\nalong the beach for about a 1.5 Km while being punched on the \\nhead and kidneys...Back on the police station, he was beaten\\non the finger tips with a thin stick until one of the fingertips\\nsplit open....\\n\\nCase 3: Torture of Dimitris Voglis.\\n\\nCase 4: Brothers Vangelis (16) and Christos Arabatzis (12),\\n Vasilis Papadopoulos (13), and Kostas Kiriazis (13).\\n\\nCase 5: Torture of Eight Students at Thessaloniki Police\\n Headquarters.\\n\\n SOURCE: The British Broadcasting Corporation, Summary of\\n World Broadcasting -July 6, 1987: Part 4-A: The\\n Middle East, ME/8612/A/1.\\n\\n \"Abu Nidal\\'s Advisers\" Reportedly Training\\n \"PKK & ASALA Militants\" in Cyprus\\n\\n Nicosia, Ankara, Tel Aviv. The Israeli secret service,\\n Mossad, is reported to have acquired significant\\n information in connection with the camps set up in the\\n Troodos mountains in Cyprus for the training of\\n militants of the PKK and ASALA {Armenian Secret Army for\\n the Liberation of Armenia}. According to sources close\\n to Mossad, about 700 Kurdish, Greek Cypriot and Armenian\\n militants are undergoing training in the Troodos\\n mountains in southern Cyprus. The same sources stated\\n that Abu Nidal\\'s special advisers are giving military\\n training to the PKK and ASALA militants in the camps.\\n They added that the militants leave southern Cyprus for\\n Libya, Lebanon, Syria, Greece and Iran after completing\\n their training. Mossad has established that due to the\\n clashes which were taking place among the terrorist\\n groups based in Syria, the PKK and ASALA organisations\\n moved to the Greek Cypriot part of Cyprus, where they\\n would be more comfortable. They also transferred a\\n number of their camps in northern Syria to the Troodos\\n mountains.\\n\\n Mossad revealed that the Armenian National Movement,\\n which is known as the MNA, has opened liaison offices in\\n Nicosia, Athens and Tripoli in order to meet the needs\\n of the camps. The offices are used to provide material\\n support for the Armenian camps. Meanwhile, the leader\\n of the Popular Front for the Liberation of Palestine,\\n George Habash, is reported to have ordered his men\\n not to participate in the operations carried out\\n by the PKK & ASALA, which he described as \"extreme\\n racist, extreme nationalist and fascist.\" Reliable\\n sources have said that Habash believed that the recent\\n operations carried out by the PKK militants show that\\n organisation to be a band of irregulars engaged in\\n extreme nationalist operations. They added that he\\n instructed his militants to sever their links with the\\n PKK and avoid clashing with it. It has been established\\n that George Habash expelled ASALA militants from his\\n camp after ASALA\\'s connections with drug trafficking\\n were exposed.\\n\\nSource: Alan Cowell, \\'U.S. & Greece in Dispute on Terror,\\' The New\\n York Times, June 27, 1987, p. 4.\\n\\n Special to The New York Times\\n\\nATHENS, June 26 - A dispute developed today between Athens and \\nWashington over United States intelligence reports saying that \\nAthens, for several months, conducted negotiations with the\\nterrorist known as Abu Nidal...\\n\\nThey said the contacts were verified in what were termed hard\\nintelligence reports.\\n\\nAbu Nidal leads the Palestinian splinter group Al Fatah \\nRevolutionary Council, implicated in the 1985 airport \\nbombings at Rome and Vienna that contributed to the Reagan \\nAdministration\\'s decision to bomb Tripoli, Libya, last year.\\n\\nIn Washington, State Department officials said that when\\nAdministration officials learned about the contacts, the\\nState Department drafted a strongly worded demarche. The\\nofficials also expressed unhappiness with Greece\\'s dealings\\nwith ASALA, the Armenian Liberation Army, which has carried\\nout terrorist acts against Turks....\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: DC-X update???\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 122\\n\\nIn article dragon@angus.mi.org writes:\\n\\n>Exactly when will the hover test be done, \\n\\nEarly to mid June.\\n\\n>and will any of the TV\\n>networks carry it. I really want to see that...\\n\\nIf they think the public wants to see it they will carry it. Why not\\nwrite them and ask? You can reach them at:\\n\\n\\n F: NATIONAL NEWS MEDIA\\n\\n\\nABC \"World News Tonight\" \"Face the Nation\"\\n7 West 66th Street CBS News\\nNew York, NY 10023 2020 M Street, NW\\n212/887-4040 Washington, DC 20036\\n 202/457-4321\\n\\nAssociated Press \"Good Morning America\"\\n50 Rockefeller Plaza ABC News\\nNew York, NY 10020 1965 Broadway\\nNational Desk (212/621-1600) New York, NY 10023\\nForeign Desk (212/621-1663) 212/496-4800\\nWashington Bureau (202/828-6400)\\n Larry King Live TV\\n\"CBS Evening News\" CNN\\n524 W. 57th Street 111 Massachusetts Avenue, NW\\nNew York, NY 10019 Washington, DC 20001\\n212/975-3693 202/898-7900\\n\\n\"CBS This Morning\" Larry King Show--Radio\\n524 W. 57th Street Mutual Broadcasting\\nNew York, NY 10019 1755 So. Jefferson Davis Highway\\n212/975-2824 Arlington, VA 22202\\n 703/685-2175\\n\"Christian Science Monitor\"\\nCSM Publishing Society \"Los Angeles Times\"\\nOne Norway Street Times-Mirror Square\\nBoston, MA 02115 Los Angeles, CA 90053\\n800/225-7090 800/528-4637\\n\\nCNN \"MacNeil/Lehrer NewsHour\"\\nOne CNN Center P.O. Box 2626\\nBox 105366 Washington, DC 20013\\nAtlanta, GA 30348 703/998-2870\\n404/827-1500\\n \"MacNeil/Lehrer NewsHour\"\\nCNN WNET-TV\\nWashington Bureau 356 W. 58th Street\\n111 Massachusetts Avenue, NW New York, NY 10019\\nWashington, DC 20001 212/560-3113\\n202/898-7900\\n\\n\"Crossfire\" NBC News\\nCNN 4001 Nebraska Avenue, NW\\n111 Massachusetts Avenue, NW Washington, DC 20036\\nWashington, DC 20001 202/885-4200\\n202/898-7951 202/362-2009 (fax)\\n\\n\"Morning Edition/All Things Considered\" \\nNational Public Radio \\n2025 M Street, NW \\nWashington, DC 20036 \\n202/822-2000 \\n\\nUnited Press International\\n1400 Eye Street, NW\\nWashington, DC 20006\\n202/898-8000\\n\\n\"New York Times\" \"U.S. News & World Report\"\\n229 W. 43rd Street 2400 N Street, NW\\nNew York, NY 10036 Washington, DC 20037\\n212/556-1234 202/955-2000\\n212/556-7415\\n\\n\"New York Times\" \"USA Today\"\\nWashington Bureau 1000 Wilson Boulevard\\n1627 Eye Street, NW, 7th Floor Arlington, VA 22229\\nWashington, DC 20006 703/276-3400\\n202/862-0300\\n\\n\"Newsweek\" \"Wall Street Journal\"\\n444 Madison Avenue 200 Liberty Street\\nNew York, NY 10022 New York, NY 10281\\n212/350-4000 212/416-2000\\n\\n\"Nightline\" \"Washington Post\"\\nABC News 1150 15th Street, NW\\n47 W. 66th Street Washington, DC 20071\\nNew York, NY 10023 202/344-6000\\n212/887-4995\\n\\n\"Nightline\" \"Washington Week In Review\"\\nTed Koppel WETA-TV\\nABC News P.O. Box 2626\\n1717 DeSales, NW Washington, DC 20013\\nWashington, DC 20036 703/998-2626\\n202/887-7364\\n\\n\"This Week With David Brinkley\"\\nABC News\\n1717 DeSales, NW\\nWashington, DC 20036\\n202/887-7777\\n\\n\"Time\" magazine\\nTime Warner, Inc.\\nTime & Life Building\\nRockefeller Center\\nNew York, NY 10020\\n212/522-1212\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian admission to the crime of Turkish Genocide.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 34\\n\\nSource: \"Men Are Like That\" by Leonard Ramsden Hartill. The Bobbs-Merrill\\nCompany, Indianapolis (1926). (305 pages). \\n(Memoirs of an Armenian officer who participated in the genocide of 2.5 \\n million Muslim people)\\n\\n\\np. 19 (first paragraph)\\n\\n\"The Tartar section of the town no longer existed, except as a pile of\\n ruins. It had been destroyed and its inhabitants slaughtered. The same \\n fate befell the Tartar section of Khankandi.\"\\n\\np. 130 (third paragraph)\\n\\n\"The city was a scene of confusion and terror. During the early days of \\n the war, when the Russian troops invaded Turkey, large numbers of the \\n Turkish population abandoned their homes and fled before the Russian \\n advance.\"\\n\\np. 181 (first paragraph)\\n\\n\"The Tartar villages were in ruins.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Successful Balloon Flight Measures Ozone Layer\\nOrganization: Jet Propulsion Laboratory\\nLines: 96\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from:\\nPUBLIC INFORMATION OFFICE\\nJET PROPULSION LABORATORY\\nCALIFORNIA INSTITUTE OF TECHNOLOGY\\nNATIONAL AERONAUTICS AND SPACE ADMINISTRATION\\nPASADENA, CALIF. 91109. (818) 354-5011\\n\\nContact: Mary A. Hardin\\n\\nFOR IMMEDIATE RELEASE April 15, 1993\\n#1506\\n\\n Scientists at NASA\\'s Jet Propulsion Laboratory report the\\nsuccessful flight of a balloon carrying instruments designed to\\nmeasure and study chemicals in the Earth\\'s ozone layer.\\n\\n The April 3 flight from California\\'s Barstow/Daggett Airport\\nreached an altitude of 37 kilometers (121,000 feet) and took\\nmeasurements as part of a program established to correlate data\\nwith the Upper Atmosphere Research Satellite (UARS). \\n\\n The data from the balloon flight will also be compared to\\nreadings from the Atmospheric Trace Molecular Spectroscopy\\n(ATMOS) experiment which is currently flying onboard the shuttle\\nDiscovery.\\n\\n \"We launch these balloons several times a year as part of an\\nongoing ozone research program. In fact, JPL is actively\\ninvolved in the study of ozone and the atmosphere in three\\nimportant ways,\" said Dr. Jim Margitan, principal investigator on\\nthe balloon research campaign. \\n\\n \"There are two JPL instruments on the UARS satellite,\" he\\ncontinued. \"The ATMOS experiment is conducted by JPL scientists,\\nand the JPL balloon research provides collaborative ground truth\\nfor those activities, as well as data that is useful in its own\\nright.\"\\n\\n The measurements taken by the balloon payload will add more\\npieces to the complex puzzle of the atmosphere, specifically the\\nmid-latitude stratosphere during winter and spring. \\nUnderstanding the chemistry occurring in this region helps\\nscientists construct more accurate computer models which are\\ninstrumental in predicting future ozone conditions.\\n\\n The scientific balloon payload consisted of three JPL\\ninstruments: an ultraviolet ozone photometer which measures\\nozone as the balloon ascends and descends through the atmosphere;\\na submillimeterwave limb sounder which looks at microwave\\nradiation emitted by molecules in the atmosphere; and a Fourier\\ntransform infrared interferometer which monitors how the\\natmosphere absorbs sunlight. \\n\\n Launch occurred at about noontime, and following a three-\\nhour ascent, the balloon floated eastward at approximately 130\\nkilometers per hour (70 knots). Data was radioed to ground\\nstations and recorded onboard. The flight ended at 10 p.m.\\nPacific time in eastern New Mexico when the payload was commanded\\nto separate from the balloon.\\n\\n \"We needed to fly through sunset to make the infrared\\nmeasurements,\" Margitan explained, \"and we also needed to fly in\\ndarkness to watch how quickly some of the molecules disappear.\"\\n\\n It will be several weeks before scientists will have the\\ncompleted results of their experiments. They will then forward\\ntheir data to the UARS central data facility at the Goddard Space\\nFlight Center in Greenbelt, Maryland for use by the UARS\\nscientists. \\n\\n The balloon was launched by the National Scientific Balloon\\nFacility, normally based in Palestine, Tex., operating under a\\ncontract from NASA\\'s Wallops Flight Facility. The balloon was\\nlaunched in California because of the west-to-east wind direction\\nand the desire to keep the operation in the southwest.\\n\\n The balloons are made of 20-micron (0.8 mil, or less than\\none-thousandth of an inch) thick plastic, and are 790,000 cubic\\nmeters (28 million cubic feet) in volume when fully inflated with\\nhelium (120 meters (400 feet) in diameter). The balloons weigh\\nbetween 1,300 and 1,800 kilograms (3,000 and 4,000 pounds). The\\nscientific payload weighs about 1,300 kilograms (3,000) pounds\\nand is 1.8 meters (six feet) square by 4.6 meters (15 feet) high.\\n\\n The JPL balloon research is sponsored by NASA\\'s Upper\\nAtmosphere Research Program and the UARS Correlative Measurements\\nProgram. \\n\\n #####\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | Being cynical never helps \\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | to correct the situation \\n|_____|/ |_|/ |_____|/ | and causes more aggravation\\n | instead.\\n',\n", + " 'From: bh437292@longs.LANCE.ColoState.Edu (Basil Hamdan)\\nSubject: Re: was:Go Hezbollah!\\nReply-To: bh437292@lance.colostate.edu\\nNntp-Posting-Host: parry.lance.colostate.edu\\nOrganization: Engineering College, Colorado State University\\nLines: 95\\n\\nIn article <1993Apr15.224353.24945@das.harvard.edu>, adam@endor.uucp (Adam Shostack) writes:\\n\\n|> \\tTell me, do these young men also attack Syrian troops?\\n\\nIn the South Lebanon area, only Israeli (and SLA) and Lebanese troops \\nare present.\\nSyrian troops are deployed north of the Awali river. Between the \\nAwali river and the \"Security Zone\" only Lebanese troops are stationed.\\n\\n|> \\n|> >with the blood of its soldiers. If Israel is interested in peace,\\n|> >than it should withdraw from OUR land.\\n|> \\n|> \\tThere must be a guarantee of peace before this happens. It\\n|> seems that many of these Lebanese youth are unable to restrain\\n|> themselves from violence, and unable to to realize that their actions\\n|> prolong Israels stay in South Lebanon.\\n\\nThat is your opinion and the opinion of the Israeli government.\\nI agree peace guarantees would be better for all, but I am addressing\\nthe problem as it stands now. Hopefully a comprehensive peace settlement\\nwill be concluded soon, and will include security guarantees for\\nboth sides. My proposal was aimed at decreasing the casualties\\nin the interim period. In my opinion, if Israel withdraws\\nunilaterally it would still be better off than staying.\\nThe Israeli gov\\'t obviously agrees with you and is not willing\\nto do such a move. I hope to be be able to change your opinion\\nand theirs, that\\'s why I post to tpm.\\n\\n|> \\tIf the Lebanese army was able to maintain the peace, then\\n|> Israel would not have to be there. Until it is, Israel prefers that\\n|> its soldiers die rather than its children.\\n\\nAs I explained, I contend that if Israel does withdraw unilaterally\\nI believe no attacks would ensue against northern Israel. I also\\nexplained why I believe that to be the case. My suggestion\\nis aimed at reducing the level of tension and casualties on all sides.\\nIt is unfortunate that Israel does not agree with my opinion.\\n\\n\\n|> \\n|> >If Israel really wants to save some Israeli lives it would withdraw \\n|> >unilaterally from the so-called \"Security Zone\" before the conclusion\\n|> >of the peace talks. Such a move would save Israeli lives,\\n|> >advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n|> >public image abroad and give it an edge in the peace negociations \\n|> >since Israel can rightly claim that it is genuinely interested in \\n|> >peace and has already offered some important concessions.\\n|> \\n|> \\tIsrael should withdraw from Lebanon when a peace treaty is\\n|> signed. Not a day before. Withdraw because of casualties would tell\\n|> the Lebanese people that all they need to do to push Israel around is\\n|> kill a few soldiers. Its not gonna happen.\\n\\n\\nThat is too bad.\\n \\n|> >Along with such a withdrawal Israel could demand that Hizbollah\\n|> >be disarmed by the Lebanese government and warn that it will not \\n|> >accept any attacks against its northern cities and that if such a\\n|> >shelling occurs than it will consider re-taking the buffer zone\\n|> >and will hold the Lebanese and Syrian government responsible for it.\\n|> \\n|> \\n|> \\tWhy should Israel not demand this while holding the buffer\\n|> zone? It seems to me that the better bargaining position is while\\n|> holding your neighbors land.\\n\\nBecause Israel is not occupying the \"Security Zone\" free of charge.\\nIt is paying the price for that. Once Israel withdraws it may have\\nlost a bargaining chip at the negociating table but it would save\\nsome soldiers\\' lives, that is my contention.\\n\\n If Lebanon were willing to agree to\\n|> those conditions, Israel would quite probably have left already.\\n|> Unfortunately, it doesn\\'t seem that the Lebanese can disarm the\\n|> Hizbolah, and maintain the peace.\\n\\nThat is completely untrue. Hizbollah is now a minor force in Lebanese\\npolitics. The real heavy weights are Syria\\'s allies. The gov\\'t is \\nsupported by Syria. The Lebanese Army is over 30,000 troops and\\nunified like never before. Hizbollah can have no moral justification\\nin attacking Israel proper, especially after Israeli withdrawal.\\nThat would draw the ire of the Lebanese the Syrian and the\\nIsraeli gov\\'ts. If Israel does withdraw and such an act \\n(Hizbolllah attacking Israel) would be akin to political and moral \\nsuicide.\\n\\nBasil\\n \\n|> Adam\\n|> Adam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n|> \\n|> \"If we had a budget big enough for drugs and sexual favors, we sure\\n|> wouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: gregh@niagara.dcrt.nih.gov (Gregory Humphreys)\\nSubject: New to Motorcycles...\\nOrganization: National Institutes of Health, Bethesda, MD\\nLines: 39\\n\\nHello everyone. I\\'m new to motorcycles so no flames please. I don\\'t\\nhave my bike yet so I need a few pieces of information:\\n\\n1) I only have about $1200-1300 to work with, so that would have \\nto cover everything (bike, helmet, anything else that I\\'m too \\nignorant to know I need to buy)\\n\\n2) What is buying a bike going to do to my insurance? I turn 18 in \\nabout a month so my parents have been taking care of my insurance up\\ntill now, and I need a comprehensive list of costs that buying a \\nmotorcycle is going to insure (I live in Washington DC if that makes\\na difference)\\n\\n3) Any recommendations on what I should buy/where I should look for it?\\n\\n4) In DC, as I imagine it is in every other state (OK, OK, we\\'re not a \\nstate - we\\'re not bitter ;)), you take the written test first and then\\nget a learners permit. However, I\\'m wondering how one goes about \\nlearning to ride the bike proficiently enough so as to a) get a liscence\\nand b) not kill oneself. I don\\'t know anyone with a bike who could \\nteach me, and the most advice I\\'ve heard is either \"do you live near a\\nfield\" or \"do you have a friend with a pickup truck\", the answers to both\\nof which are NO. Do I just ride around my neighborhood and hope for \\nthe best? I kind of live in a residential area but it\\'s not suburbs.\\nIt\\'s still the big city and I\\'m about a mile from downtown so that \\ndoesn\\'t seem too viable. Any stories on how you all learned?\\n\\nThanks for any replies in advance.\\n\\n\\t-Greg Humphreys\\n\\t:wq\\n\\t^^^\\n\\tMeant to do that. (Damn autoindent)\\n\\n--\\nGreg Humphreys | \"This must be Thursday. I never\\nNational Institutes of Health| could get the hang of Thursdays.\"\\ngregh@alw.nih.gov |\\n(301) 402-1817\\t | -Arthur Dent\\n',\n", + " 'From: joachim@kih.no (joachim lous)\\nSubject: Re: TIFF: philosophical significance of 42\\nOrganization: Kongsberg Ingeniorhogskole\\nLines: 30\\nNNTP-Posting-Host: samson.kih.no\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\nulrich@galki.toppoint.de wrote:\\n\\n> According to the TIFF 5.0 Specification, the TIFF \"version number\"\\n> (bytes 2-3) 42 has been chosen for its \"deep philosophical \\n> significance\".\\n\\n> When I first read this, I rotfl. Finally some philosphy in a technical\\n> spec. But still I wondered what makes 42 so significant.\\n\\n> Last week, I read the Hitchhikers Guide To The Galaxy, and rotfl the\\n> second time. (After millions of years of calculation, the second-best\\n> computer of all time reveals that 42 is the answer to the question\\n> about life, the universe and everything)\\n\\n> Is this actually how they picked the number 42?\\n\\nYes.\\n\\n> Does anyone have any other suggestions where the 42 came from?\\n\\nI don\\'t know where Douglas Adams took it from, but I\\'m pretty sure he\\'s\\nthe one who launched it (in the Guide). Since then it\\'s been showing up \\nall over the place.\\n\\n _______________________________\\n / _ L* / _ / . / _ /_ \"One thing is for sure: The sheep\\n / _) /()(/(/)//)) /_ ()(/_) / / Is NOT a creature of the earth.\"\\n / \\\\_)~ (/ Joachim@kih.no / / \\n/_______________________________/ / -The back-masking on \\'Haaden II\\'\\n /_______________________________/ from \\'Exposure\\' by Robert Fripp.\\n',\n", + " 'From: steinly@topaz.ucsc.edu (Steinn Sigurdsson)\\nSubject: Re: DC-X Rollout Report\\nArticle-I.D.: topaz.STEINLY.93Apr6170313\\nDistribution: sci\\nOrganization: Lick Observatory/UCO\\nLines: 29\\nNNTP-Posting-Host: topaz.ucsc.edu\\nIn-reply-to: buenneke@monty.rand.org\\'s message of Tue, 6 Apr 1993 22:34:39 GMT\\n\\nIn article buenneke@monty.rand.org (Richard Buenneke) writes:\\n\\n McDonnell Douglas rolls out DC-X\\n\\n ...\\n\\n\\n SSTO research remains cloudy. The SDI Organization -- which paid $60\\n million for the DC-X -- can\\'t itself afford to fund full development of a\\n follow-on vehicle. To get the necessary hundreds of millions required for\\n\\nThis is a little peculiar way of putting it, SDIO\\'s budget this year\\nwas, what, $3-4 billion? They _could_ fund all of the DC development\\nout of one years budget - of course they do have other irons in the\\nfire ;-) and launcher development is not their primary purpose, but\\nthe DC development could as easily be paid for by diverting that money\\nas by diverting the comparable STS ops budget...\\n\\n- oh, and before the flames start. I applaud the SDIO for funding DC-X\\ndevlopment and I hope it works, and, no, launcher development is not\\nNASAs primary goal either, IMHO they are supposed to provide the\\nenabling technology research for others to do launcher development,\\nand secondarily operate such launchers as they require - but that\\'s\\njust me.\\n\\n| Steinn Sigurdsson\\t|I saw two shooting stars last night\\t\\t|\\n| Lick Observatory\\t|I wished on them but they were only satellites\\t|\\n| steinly@lick.ucsc.edu |Is it wrong to wish on space hardware?\\t\\t|\\n| \"standard disclaimer\"\\t|I wish, I wish, I wish you\\'d care - B.B. 1983\\t|\\n',\n", + " \"From: rogerc@discovery.uk.sun.com (Roger Collier)\\nSubject: Re: Camping question?\\nOrganization: Sun Microsystems (UK) Ltd\\nLines: 26\\nDistribution: world\\nReply-To: rogerc@discovery.uk.sun.com\\nNNTP-Posting-Host: discovery.uk.sun.com\\n\\nIn article 10823@bnr.ca, npet@bnr.ca (Nick Pettefar) writes:\\n\\n>\\n>Back in my youth (ahem) the wiffy and moi purchased a gadget which heated up\\n>water from a 12V source. It was for car use but we thought we'd try it on my\\n>RD350B. It worked OK apart from one slight problem: we had to keep the revs \\n>above 7000. Any lower and the motor would die from lack of electron movement.\\n\\nOn my LC (RZ to any ex-colonists) I replaced the bolt at the bottom of the barrel\\nwith a tap. When I wanted a coffee I could just rev the engine until boiling\\nand pour out a cup of hot water.\\nI used ethylene glycol as antifreeze rather than methanol as it tastes sweeter.\\n\\n(-:\\n\\n #################################\\n _ # Roger.Collier@Uk.Sun.COM #\\no_/_\\\\_o # #\\n (O_O) # Sun Microsystems, #\\n \\\\H/ # Coventry, England. #\\n U # (44) 203 692255 #\\n # DoD#226 GSXR1100L #\\n #################################\\n Keeper of the GSXR1100 list.\\n\\n\\n\",\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Russian Operation of US Space Missions.\\nOrganization: University of Illinois at Urbana\\nLines: 10\\n\\nI know people hate it when someone says somethings like \"there was an article \\nabout that somewhere a while ago\" but I\\'m going to say it anyway. I read an\\narticle on this subject, almost certainly in Space News, and something like\\nsix months ago. If anyone is really interested in the subject I can probably\\nhunt it down given enough motivation.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n \"Tout ce qu\\'un homme est capable d\\'imaginer, d\\'autres hommes\\n \\t seront capable de le realiser\"\\n\\t\\t\\t -Jules Verne\\n',\n", + " 'From: r0506048@cml3 (Chun-Hung Lin)\\nSubject: Re: JPEG file format?\\nNntp-Posting-Host: cml3.csie.ntu.edu.tw\\nReply-To: r0506048@csie.ntu.edu.tw\\nOrganization: Communication & Multimedia Lab, NTU, Taiwan\\nX-Newsreader: Tin 1.1 PL3\\nLines: 20\\n\\npeterbak@microsoft.com (Peter Bako) writes:\\n: \\n: Where could I find a description of the JPG file format? Specifically\\n: I need to know where in a JPG file I can find the height and width of \\n: the image, and perhaps even the number of colors being used.\\n: \\n: Any suggestions?\\n: \\n: Peter\\n\\nTry ftp.uu.net, in /graphics/jpeg.\\n--\\n--------------------------------\\n=================================================================\\nChun-Hung Lin ( ªL«T§» ) \\nr0506048@csie.ntu.edu.tw \\nCommunication & Multimedia Lab.\\nDept. of Comp. Sci. & Info. Eng.\\nNational Taiwan University, Taipei, Taiwan, R.O.C.\\n=================================================================\\n',\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: H.R. violations by Israel/Arab st.\\nOrganization: The Department of Redundancy Department\\nLines: 37\\n\\nIn article <1483500360@igc.apc.org> Center for Policy Research writes:\\n\\n>I am born in Palestine (now Israel). I have family there. The lack of\\n>peace and utter injustice in my home country has affected me all my life.\\n\\nBullshit. You\\'ve been in Iceland for the past 30 years. You told us\\nso yourself. It had something to do with not wanting to suffer the\\nfate of your mother, who has lived with Jews for a long time or\\nsomesuch. Sounded awful.\\n\\n>I am concerned by Palestine (Israel) because I want peace to come to\\n>it. Peace AND justice. \\n\\nAre you as concerned about peace and justice in Palestine (Jordan)?\\n\\n>Israeli trights and Palestinian rights are not symmetrical. The first\\n>party has a state and the other has none. The first is an occupier and\\n>the second the occupied. \\n\\nLet\\'s say that Israel grants the PLO _EVERYTHING THEY EVER ASKED FOR_.\\nThat Israel goes back to the 1967 borders. What will the \"Palestinean\\nArabs\" in Tel-Aviv call themselves? The Palestineans in West\\nJerusalem? In Haifa? Will they still claim to be \"occupied\"?\\n\\nOr do you suggest that Israel expell or kill off any remaining Arabs,\\nmuch as the Arabs did to their Jews?\\n\\nIndeed, there is much which is not symmetrical about the conflict in\\nthe M.E. And most of this lack of symmetry does NOT favor Israel.\\n\\n>Elias Davidsson\\n>Iceland\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 29\\n\\n\\nRobert Knowles writes:\\n\\n>>\\n>>My my, there _are_ a few atheists with time on their hands. :)\\n>>\\n>>OK, first I apologize. I didn\\'t bother reading the FAQ first and so fired an\\n>>imprecise flame. That was inexcusable.\\n>>\\n\\n>How about the nickname Bake \"Flamethrower\" Timmons?\\n\\nSure, but Robert \"Koresh-Fetesh\" (sic) Knowles seems good, too. :) \\n>\\n>You weren\\'t at the Koresh compound around noon today by any chance, were you?\\n>\\n>Remember, Koresh \"dried\" for your sins.\\n>\\n>And pass that beef jerky. Umm Umm.\\n\\nThough I wasn\\'t there, at least I can rely on you now to keep me posted on what\\nwhat he\\'s doing.\\n\\nHave you any other fetishes besides those for beef jerky and David Koresh? \\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nArticle-I.D.: po.kmr4.1447.734101641\\nOrganization: Case Western Reserve University\\nLines: 28\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1993Apr6.041343.24997@cbnewsl.cb.att.com> stank@cbnewsl.cb.att.com (Stan Krieger) writes:\\n\\n>The point has been raised and has been answered. Roger and I have\\n>clearly stated our support of the BSA position on the issue;\\n>specifically, that homosexual behavior constitutes a violation of\\n>the Scout Oath (specifically, the promise to live \"morally straight\").\\n\\n\\tPlease define \"morally straight\". \\n\\n\\t\\n\\t\\n\\tAnd, don\\'t even try saying that \"straight\", as it is used here, \\nimplies only hetersexual behavior. [ eg: \"straight\" as in the slang word \\nopposite to \"gay\" ]\\n\\n\\n\\tThis is alot like \"family values\". Everyone is talking about them, \\nbut misteriously, no one knows what they are.\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n',\n", + " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Political Atheists?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 11\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\narromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>>The motto originated in the Star-Spangled Banner. Tell me that this has\\n>>something to do with atheists.\\n>The motto _on_coins_ originated as a McCarthyite smear which equated atheism\\n>with Communism and called both unamerican.\\n\\nNo it didn't. The motto has been on various coins since the Civil War.\\nIt was just required to be on *all* currency in the 50's.\\n\\nkeith\\n\",\n", + " 'From: manes@magpie.linknet.com (Steve Manes)\\nSubject: Re: Oops! Oh no!\\nOrganization: Manes and Associates, NYC\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 53\\n\\nWm. L. Ranck (ranck@joesbar.cc.vt.edu) wrote:\\n: I hate to admit this, and I\\'m still mentally kicking myself for it.\\n: I rode the brand new K75RT home last Friday night. 100 miles in rain\\n: and darkness. No problems. Got it home and put it on the center stand.\\n: The next day I pushed it off the center stand in preparation for going\\n: over to a friend\\'s house to pose. You guessed it. It got away from me\\n: and landed on its right side. \\n: Scratched the lower fairing, cracked the right mirror, and cracked the\\n: upper fairing. \\n: *DAMN* am I stupid! It\\'s going to cost me ~$200 to get the local\\n: body shop to fix it. And that is after I take the fairing off for them.\\n: Still, that\\'s probably cheaper than the mirror alone if I bought a \\n: replacement from BMW.\\n\\nYou got off cheap. My sister\\'s ex-boyfriend was such an incessant pain\\nin the ass about wanting to ride my bikes (no way, Jose) that I\\nfinally took him to Lindner\\'s BMW in New Canaan, CT last fall where\\nI had seen a nice, used K100RS in perfect condition. After telling\\neveryone in the shop his Norton war stories from fifteen years ago,\\nsigning the liability waiver, and getting his pre-flight, off he went...\\n\\nWell, not quite. I walked out of a pizza shop up the street,\\nfeeling good about myself (made my sister\\'s boyfriend happy and got\\nthe persistent wanker off my ass for good), heard the horrendous\\nracket of an engine tortured to its red line and then a crash. I\\nsaw people running towards the obvious source of the disturbance...\\nJeff laying under the BMW with the rear wheel spinning wildly and\\nsomeone groping for the kill switch. I stared in disbelief with\\na slice hanging out of my mouth as Matty, the shop manager, slid\\nup beside me and asked, \"Friend of yours, Steve?\". \"Shit, Matty,\\nit could have been worse. That could been my FLHS!\"\\n\\nJeff hadn\\'t made it 10 inches. Witnesses said he lifted his feet\\nbefore letting out the clutch and gravity got the best of him.\\nJeff claimed that the clutch didn\\'t engage. Matty was quick.\\nWhile Jeff was still stuttering in embarrassed shock he managed\\nto snatch Jeff\\'s credit card for a quick imprint and signature. Twenty\\nminutes later, when Jeff\\'s color had paled to a flush, Matty\\npresented him with an estimate of $580 for a busted right mirror\\nand a hairline crack in the fairing. That was for fixing the crack\\nand masking the damaged area, not a new fairing. Or he could buy the\\nbike.\\n\\nI\\'m not sure what happened later as my sister split up with Jeff shortly\\nafterwards (to hook up with another piece of work) except that Matty\\ntold me he ran the charge through in December and that it went\\nuncontested.\\n\\n\\n-- \\nStephen Manes\\t\\t\\t\\t\\t manes@magpie.linknet.com\\nManes and Associates\\t\\t\\t\\t New York, NY, USA =o&>o\\n\\n',\n", + " \"From: pmm7@ellis.uchicago.edu (peggy boucher murphy (you had to ask?))\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nReply-To: pmm7@midway.uchicago.edu\\nOrganization: University of Chicago\\nLines: 21\\n\\nIn article Steven Smith writes:\\n>dgannon@techbook.techbook.com (Dan Gannon) writes:\\n>> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>>\\n>> by Theodore J. O'Keefe\\n>>\\n>> [Holocaust revisionism]\\n>> \\n>> Theodore J. O'Keefe is an editor with the Institute for Historical\\n>> Review. Educated at Harvard University . . .\\n>\\n>According to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\n>graduate. You may decide for yourselves if he was indeed educated\\n>anywhere.\\n\\n(forgive any inaccuracies, i deleted the original post)\\nisn't this the same person who wrote the book, and was censured\\nin canada a few years back? \\n\\npeg\\n\\n\",\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Jemison on Star Trek (Better Ideas)\\nOrganization: Express Access Online Communications USA\\nLines: 11\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr25.154449.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n|\\n|Better idea for use of NASA Shuttle Astronauts and Crew is have them be found\\n|lost in space after a accident with a worm hole or other space/time glitch..\\n|\\n|Maybe age Jemison a few years (makeup and such) and have her as the only\\n>survivour of a failed shuttle mission that got lost.. \\n\\n\\nOf course that asumes the mission was able to launch :-)\\n\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: Express Access Online Communications USA\\nLines: 20\\nNNTP-Posting-Host: access.digex.net\\nKeywords: Galileo, JPL\\n\\n\\n\\nINteresting question about Galileo.\\n\\nGalileo's HGA is stuck. \\n\\nThe HGA was left closed, because galileo had a venus flyby.\\n\\nIf the HGA were pointed att he sun, near venus, it would\\ncook the foci elements.\\n\\nquestion: WHy couldn't Galileo's course manuevers have been\\ndesigned such that the HGA did not ever do a sun point.?\\n\\nAfter all, it would normally be aimed at earth anyway?\\n\\nor would it be that an emergency situation i.e. spacecraft safing\\nand seek might have caused an HGA sun point?\\n\\npat\\n\",\n", + " \"From: perrakis@embl-heidelberg.de\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: EMBL, European Molecular Biology Laboratory\\nLines: 76\\n\\nIn article <93105.134708FINAID2@auvm.american.edu>, writes:\\n>> Look Mr. Atakan: I have repeated it in the past, and I shall repeat it once\\n>> more, that when it comes to how Greeks are treating the Turks in Greece,\\n>> you and your copatriots should simply shut up.\\n>>\\n>> Because what you are hearing is simply a form of propaganda from your ethnic\\n>> fellows who studied at the Greek universities without paying any money for\\n>> tuition, food, and helth insurance.\\n>>\\n>> And any high school graduate can put down some simple math and compare the\\n>> grouth of the Turkish community in Greece with the destruction of the Greek\\n>> minority in Turkey.\\n>>\\n>> >Aykut Atalay Atakan\\n>>\\n>> Panos Tamamidis\\n> \\n> Mr. Tamamidis:\\n> \\n> Before repling your claims, I suggest you be kind to individuals\\n> who are trying to make some points abouts human rights, discriminations,\\n> and unequal treatment of Turkish minority in GREECE.I want the World\\n> know how bad you treat these people. You will deny anything I say but\\n> It does not make any difrence because I will write things that I saw with\\n> my eyes.You prove yourself prejudice by saying free insurance, school\\n> etc. Do you Greeks only give these things to Turkish minority or\\n> everybody has rights to get them.Your words even discriminate\\n> these people. You think that you are giving big favor to these\\n> people by giving these thing that in reality they get nothing.\\n> If you do not know unhuman practices that are being conducted\\n> by the Government of the Greece, I suggest that you investigate\\n> to see the facts. Then, we can discuss about the most basic\\n> human rights like fredom of religion,\\nIf you did not see with your 'eyes' freedom of religion you\\nmust ne at least blind !\\n> fredom of press of Turkish\\n2 weeks ago I read the interview of a Turkish journalist in a GReek magazine,\\nhe said nothing about being forbiden to have Turkish press in Greece !\\n> minority, ethnic cleansing of all Turks in Greece,\\nGive as a brake. You call athnic cleansing of apopulation when it doubles?\\n> freedom of\\n> right to have property without government intervention,\\nWhat do you mean by that ? Anyway in Greece, as in every country if you want\\nsome property you 'inform' the goverment .\\n> fredom of right to vote to choose your community leaders,\\nWell well well. When Turkish in Area of Komotini elect 1 out of 3\\nrepresenatives of this area to GReek parliament, if not freedom what is it?\\n3 out of 3 ? Maybe there are only Turks living there ....\\n> how Greek Government encourages people to destroy\\n> religious places, houses, farms, schools for Turkish minority then\\n> forcing them to go to turkey without anything with them.\\nI cannot deny that actions of fanatics from both sides were reported.\\nA minority of Greek idiots indeed attack religious places, which\\nwere protected by the Greek police. Photographs of Greek policemen \\npreventing Turks from this non brain minority were all over Greek press.\\n> Before I conclude my writing, let me point out how Greeks are\\n> treated in Turkey. We do not consider them Greek minority, instead\\n> we consider a part of our society. There is no difference among people in\\n> Turkey. We do not state that Greek minority go to Turkish universities,\\n> get free insurance, food, and health insurance because these are basic\\n> human needs and they are a part of turkish community. All big businesses\\n> belong to Greeks in Turkey and we are proud to have them.unlike the\\n> Greece which tries to destroy Turkish minority, We encourage all\\n> minorities in Turkey to be a part of Turkish society.\\n\\n\\nOh NO. PLEASE DO GIVE AS A BRAKE !\\nMinorities in Turkish treated like that ? YOur own countrymen die\\nin the prisons every day bacause of their political beliefs, an this\\nis reported by Turks, and you want us to believe tha Turkey is the paradise\\nof Human rights ? Business of Greeks i Turkey? Yes 80 years ago !\\nYou seem to be intelligent, so before presenting Turkey as the paradise of\\nHuman rights just invastigate this matter a bit more.\\n> \\n> Aykut Atalay Atakan\\n> \\n\",\n", + " \"From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: some thoughts.\\nOrganization: Cookamunga Tourist Bureau\\nLines: 24\\n\\nIn article , bissda@saturn.wwc.edu (DAN\\nLAWRENCE BISSELL) wrote:\\n> \\n> \\tFirst I want to start right out and say that I'm a Christian. It \\n> makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n> lunatic, or the real thing? (I might be a little off on the title, but he \\n> writes the book. Anyway he was part of an effort to destroy Christianity, \\n> in the process he became a Christian himself.\\n\\nSeems he didn't understand anything about realities, liar, lunatic\\nor the real thing is a very narrow view of the possibilities of Jesus\\nmessage.\\n\\nSigh, it seems religion makes your mind/brain filter out anything\\nthat does not fit into your personal scheme. \\n\\nSo anyone that thinks the possibilities with Jesus is bound to the\\nclassical Lewis notion of 'liar, lunatic or saint' is indeed bound\\nto become a Christian.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n\",\n", + " \"From: farzin@apollo3.ntt.jp (Farzin Mokhtarian)\\nSubject: News briefs from KH # 1026\\nOriginator: sehari@vincent1.iastate.edu\\nOrganization: NTT Corp. Japan\\nLines: 31\\n\\n\\nFrom: Kayhan Havai # 1026\\n--------------------------\\n \\n \\no Dr. Namaki, deputy minister of health stated that infant\\n mortality (under one year old) in Iran went down from 120 \\n per thousand before the revolution to 33 per thousand at\\n the end of 1371 (last month).\\n \\no Dr Namaki also stated that before the revolution only\\n 254f children received vaccinations to protect them\\n from various deseases but this figure reached 93at\\n the end of 1371.\\n \\no Dr. Malekzadeh, the minister of health mentioned that\\n the population growth rate in Iran at the end of 1371\\n went below 2.7\\n \\no During the visit of Mahathir Mohammad, the prime minister\\n of Malaysia, to Iran, agreements for cooperation in the\\n areas of industry, trade, education and tourism were\\n signed. According to one agreement, Iran will be in\\n charge of building Malaysia's natural gas network.\\n \\n----------------------------------------------------------\\n \\n - Farzin Mokhtarian\\n \\n\\n-- \\n\",\n", + " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: insect impacts\\nOrganization: Ontario Hydro - Research Division\\nLines: 64\\n\\nI feel childish.\\n\\nIn article <1ppvds$92a@seven-up.East.Sun.COM> egreen@East.Sun.COM writes:\\n>In article 7290@rd.hydro.on.ca, jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n>>>>\\n>>>>how _do_ the helmetless do it?\\n>>>\\n>>>Um, the same way people do it on \\n>>>horseback\\n>>\\n>>not as fast, and they would probably enjoy eating bugs, anyway\\n>\\n>Every bit as fast as a dirtbike, in the right terrain. And we eat\\n>flies, thank you.\\n\\nWho mentioned dirtbikes? We're talking highway speeds here. If you go 70mph\\non your dirtbike then feel free to contribute.\\n\\n>>>jeeps\\n>>\\n>>you're *supposed* to keep the windscreen up\\n>\\n>then why does it go down?\\n\\nBecause it wouldn't be a Jeep if it didn't. A friend of mine just bought one\\nand it has more warning stickers than those little 4-wheelers (I guess that's\\nbecuase it's a big 4 wheeler). Anyway, it's written in about ten places that\\nthe windshield should remain up at all times, and it looks like they've made\\nit a pain to put it down anyway, from what he says. To be fair, I do admit\\nthat it would be a similar matter to drive a windscreenless Jeep on the \\nhighway as for bikers. They may participate in this discussion, but they're\\nprobably few and far between, so I maintain that this topic is of interest\\nprimarily to bikers.\\n\\n>>>snow skis\\n>>\\n>>NO BUGS, and most poeple who go fast wear goggles\\n>\\n>So do most helmetless motorcyclists.\\n\\nNotice how Ed picked on the more insignificant (the lower case part) of the \\ntwo parts of the statement. Besides, around here it is quite rare to see \\nbikers wear goggles on the street. It's either full face with shield, or \\nopen face with either nothing or aviator sunglasses. My experience of \\nbicycling with contact lenses and sunglasses says that non-wraparound \\nsunglasses do almost nothing to keep the crap out of ones eyes.\\n\\n>>The question still stands. How do cruiser riders with no or negligible helmets\\n>>stand being on the highway at 75 mph on buggy, summer evenings?\\n>\\n>helmetless != goggleless\\n\\nOk, ok, fine, whatever you say, but lets make some attmept to stick to the\\npoint. I've been out on the road where I had to stop every half hour to clean\\nmy shield there were so many bugs (and my jacket would be a blood-splattered\\nmess) and I'd see guys with shorty helmets, NO GOGGLES, long beards and tight\\nt-shirts merrily cruising along on bikes with no windscreens. Lets be really\\nspecific this time, so that even Ed understands. Does anbody think that \\nsplattering bugs with one's face is fun, or are there other reasons to do it?\\nImage? Laziness? To make a point about freedom of bug splattering?\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", + " 'From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: UEA School of Information Systems, Norwich, UK.\\nLines: 86\\nNntp-Posting-Host: zen.sys.uea.ac.uk\\n\\nleavitt@cs.umd.edu (Mr. Bill) writes:\\n\\n>mjs@sys.uea.ac.uk (Mike Sixsmith) writes:\\n>mjs>Also, IMHO, telling newbies about countersteering is, er, counter-productive\\n>mjs>cos it just confuses them. I rode around quite happily for 10 years \\n>mjs>knowing nothing about countersteering. I cannot say I ride any differently\\n>mjs>now that I know about it.\\n\\n>I interpret this to mean that you\\'re representative of every other\\n>motorcyclist in the world, eh Mike? Rather presumptive of you!\\n\\nIMHO = in my humble opinion!!\\n\\n>leavitt@cs.umd.edu (Mr. Bill) writes:\\n>leavitt>The time to learn countersteering techniques is when you are first\\n>leavitt>starting to learn, before you develop any bad habits. I rode for\\n>leavitt>five years before taking my first course (MSF ERC) and learning\\n>leavitt>about how to countersteer. It\\'s now eight years later, and I *still*\\n>leavitt>have to consciously tell myself \"Don\\'t steer, COUNTERsteer!\" Old\\n>leavitt>habits die hard, and bad habits even harder.\\n\\n>mjs>Sorry Bill, but this is complete bollocks. You learned how to countersteer \\n>mjs>the first time you rode the bike, it\\'s natural and intuitive. \\n\\n>Sorry Mike, I\\'m not going to kick over the \"can you _not_ countersteer\\n>over 5mph?\" stone. That one\\'s been kicked around enough. For the sake of\\n>argument, I\\'ll concede that it\\'s countersteering (sake of argument only).\\n\\n>mjs>MSF did not teach you *how* to countersteer, it only told you what\\n>mjs>you were already doing.\\n\\n>And there\\'s no value in that? \\n\\n\\nI didn\\'t say there was no value - all I said was that it is very confusing\\nto newbies. \\n\\n> There\\'s a BIG difference in: 1) knowing\\n>what\\'s happening and how to make it do it, especially in the extreme\\n>case of an emergency swerve, and: 2) just letting the bike do whatever\\n>it does to make itself turn. Once I knew precisely what was happening\\n>and how to make it do it abruptly and on command, my emergency avoidance\\n>abilities improved tenfold, not to mention a big improvement in my normal\\n>cornering ability. I am much more proficient \"knowing\" how to countersteer\\n>the motorcycle rather than letting the motorcycle steer itself. That is,\\n>when I *remember* to take cognitive command of the bike rather than letting\\n>it run itself through the corners. Whereupon I return to my original\\n>comment - better to learn what\\'s happening right from the start and how\\n>to take charge of it, rather than developing the bad habit of merely going\\n>along for the ride.\\n\\nBill, you are kidding yourself here. Firstly, motorcycles do not steer\\nthemselves - only the rider can do that. Secondly, it is the adhesion of the\\ntyre on the road, the suspension geometry and the ground clearance of the\\n motorcycle which dictate how quickly you can swerve to avoid obstacles, and\\nnot the knowledge of physics between the rider\\'s ears. Are you seriously\\nsuggesting that countersteering knowledge enables you to corner faster\\nor more competentlY than you could manage otherwise??\\n\\n\\n>Mike, I\\'m extremely gratified for you that you have such a natural\\n>affinity and prowess for motorcycling that formal training was a total\\n>waste of time for you (assuming your total \"training\" hasn\\'t come from\\n>simply from reading rec.motorcycles). However, 90%+ of the motorcyclists\\n>I\\'ve discussed formal rider education with have regarded the experience\\n>as overwhelmingly positive. This regardless of the amount of experience\\n>they brought into the course (ranging from 10 minutes to 10+ years).\\n\\nFormal training in this country (as far as I am aware) does not include\\ncountersteering theory. I found out about countersteering about six years ago,\\nfrom a physics lecturer who was also a motorcyclist. I didn\\'t believe him\\nat first when he said I steered my bike to the right to make it turn left,\\nbut I went out and analysed closely what I was doing, and realized he was \\nright! It\\'s an interesting bit of knowledge, and I\\'ve had a lot of fun since\\nthen telling others about it, who were at first as sceptical as I was. But\\nthat\\'s all it is - an interesting bit of knowledge, and to claim that\\nit is essential for all bikers to know it, or that you can corner faster\\nor better as a result, is absurd.\\n\\nFormal training is in my view absolutely essential if you\\'re going to\\nbe able to ride a bike properly and safely. But by including countersteering\\ntheory in newbie courses we are confusing people unnecessarily, right at\\nthe time when there are *far* more important matters for them to learn.\\nAnd that was my original point.\\n\\nMike\\n',\n", + " \"From: frahm@ucsu.colorado.edu (Joel A. Frahm)\\nSubject: Re: Identify this bike for me\\nArticle-I.D.: colorado.1993Apr6.153132.27965\\nReply-To: frahm@ucsu.colorado.edu\\nOrganization: Department of Rudeness and Pomposity\\nLines: 17\\nNntp-Posting-Host: sluggo.colorado.edu\\n\\n\\nIn article <1993Apr6.002937.9237@adobe.com> cjackson@adobe.com (Curtis Jackson) writes:\\n>In article <1993Apr5.193804.18482@ucsu.Colorado.EDU> coburnn@spot.Colorado.EDU (Nicholas S. Coburn) writes:\\n>}first I thought it was an 'RC31' (a Hawk modified by Two Brothers Racing),\\n>}but I did not think that they made this huge tank for it. Additionally,\\n>\\nI think I've seen this bike. Is it all white, with a sea-green stripe\\nand just 'HONDA' for decals, I've seen such a bike numerous times over\\nby Sewall hall at CU, and I thought it was a race-prepped CBR. \\nI didn't see it over at the EC parking lot (I buzzed over there on my \\nway home, all of 1/2 block off my route!) but it was gone.\\n\\nIs a single sided swingarm available for the CBR? I would imagine so, \\nkinda neccisary for quick tire changes. When I first saw it, I assumed it\\nwas a bike repainted to cover crash damage.\\n\\nJoel.\\n\",\n", + " 'From: nanderso@Endor.sim.es.com (Norman Anderson)\\nSubject: COMET...when did/will she launch?\\nOrganization: Evans & Sutherland Computer Corp.\\nLines: 12\\n\\nCOMET (Commercial Experiment Transport) is to launch from Wallops Island\\nVirginia and orbit Earth for about 30 days. It is scheduled to come down\\nin the Utah Test & Training Range, west of Salt Lake City, Utah. I saw\\na message in this group toward the end of March that it was to launch \\non March 27. Does anyone know if it launched on that day, or if not, \\nwhen it is scheduled to launch and/or when it will come down.\\n\\nI would also be interested in what kind(s) of payload(s) are onboard.\\n\\nThanks for your help.\\n\\nNorman Anderson nanderso@endor.sim.es.com\\n',\n", + " ...],\n", + " 'filenames': array(['/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/sci.space/60862',\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76238',\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/alt.atheism/53093',\n", + " ...,\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/sci.space/60155',\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76058',\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76304'],\n", + " dtype='" ] @@ -1104,7 +1822,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZVlVJTrWjcgusiEbEUitJ3ZVWpaKCgWWCmgpWii2lNihlO+VaelT7EWpJwmKinyKDVJig4ipYi/2IGiKiB12ZQfYZPJQMiFJsouI7CLurh97z7jzjjPH3OvceyPuPjjH993v3LOb1e2111ljtm0YBhQKhUKhUFg+tg67AYVCoVAoFPpQP9qFQqFQKGwI6ke7UCgUCoUNQf1oFwqFQqGwIagf7UKhUCgUNgT1o10oFAqFwoZg9ke7tfaU1trQWru9tXYFnTs6nbv2rLVwQ9Fae2xr7drW2hYdf+g0Zk85pKYVDgDTe/GFh1T3MP2t1N9au661diMdu3G6/idFeb8znX+NqIf/ruto41Zr7S9aa19Dxz+1tfbq1trbWmt3t9be1Fr7pdbaJ7hrbM15n45xuHauLYeJqW8vOOAy1XPxfzceUF0XTuU97YDKe59pXfy/gnM3t9Z+4CDqOQi01j66tfaH0zx9S2vtO1prF3Te+5jW2itba7e01u5srb2utfbkg2jX0TWufQCArwdwIA/vXwEeC+AZAL4FwLY7fhOADwfwj4fQpsLB4SkY358XHWIbntFau24Yhvs6rr0LwKe21i4dhuEuO9haew8Aj5nOR3gxgBfSsVs66vs8AA8BcOYHq7X25QC+B+OYPRfACQDvDeATAXwMgN/sKHfT8EwAf9xa++5hGN54QGV+OH3/RQB/CeBad+zeA6rr3qm+//+AynsfjOviK4MyHw/gtgOqZ19orT0c43x8GYCnY2z3cwE8CMAXdNz7CgC/C+ALMY7hZwF4SWvt6DAMP7qftq3zo/0KAF/WWnveMAxv3U+l/5oxDMO9AP7wsNtR2Hi8AsDjAFwD4Ps6rv8tAB8H4DMw/hAbngzgRgBvBnAkuO9fhmHYy3z9GgAvGYbhJB37pWEY/m937LcB/BBLpJaK1toF0zvchWEY/ry19ucAvgLAlxxEG/h5tNbuBfD23ue0Th+GMfrWOVmvhmH4s3NRTye+GcA/APjsYRhOA3hVa20A8MLW2ncMw/A3yb2fA+AUgE8ZhuHu6dgrWmsfAuDzAezrR3udF+Vbps//OXdha+0/TqKB4621E621V7XW/iNd8+LW2j+31j6ktfZ7rbWTrbW/b619cU9j1rm/tfaerbWfmEQV905iu08Lrvvs1trrW2v3tNb+qrX2ya2161tr17trLmytPa+19tdT/25urf1Ka+393DXXYtxNAsD9JrKazu0Sj7fWvra1dl9r7aqgPX/bWnuZ+36stfac1toN0z03tNae3rPgtdYubq19e2vtH6cxuLm19vOttQe5a9Z5bg9vrb12Eh29obX2idP5r2qjOPbO1trLWmsPpPuH1tqzp3b/83T/q1trD6PrWmvtK6ey72ut3dRae35r7bKgvG9prX35NB53tdZ+t7X2AcEYfHobxV0n26ju+dlGYrqp7de11j6rtfZ30zi8rrX2ke6a6zGy049oO+LI66dzD26t/VgbxWn3Tu3+1dbau849ozXxJwB+CcDTW2vHOq6/G8DPYfyR9ngygB8HcGChEVtrjwTwgQBYHH8lgJuje4Zh2I6OuzIf3lp7a2vtF1prFybXfXBr7Zdba7dNc+v3W2sfRdc8orX2c27+vaG19q2ttYvouutba69prT2htfbnbfxx/JLpXPe8A/BSAJ/L5Z8LtNZe2lr7h9bao6e5fzeAZ03nPn9q8y1T+/+0tfY5dP+KeHxaR0611t63tfby6R25obX2Da21lrTlEwD8xvT199y786jp/C7xeGvti6fzj2jjWmXr7VdP55/QWvvLqf4/aq19cFDnk1prfzy987dN4/FuM2N2DMDHAnjp9INt+CkApwF8cnY/gPMxsut76PgdcL+5rbUHtNZe0Fp787RWvLW19oo2oxbCMAzpH0Yx4IBRPPCcqTHvMZ07Op271l3/QRgXiD8F8ESMO/s/mY59sLvuxQDuBPB3GNnCx2F8yQcAH93Rrq77AfwbAG8D8NcYRXYfj1E8tw3gk911Hzcd+yWMYpovAPBPAN4C4Hp33QMA/DBGccdjAHwaRhZzG4AHT9e8+3TNAOAjADwKwKOmcw+djj9l+v5uGCfCl1D/Pmy67jPcWP8egFsx7tr/M0axzT0AvnNmrM4H8FqM4sj/b+rrEwH8EID32+Nz+1uMop9PmNp1D4DvBPArGMWdXzhd9zPUlgEjq/t9AJ8K4EkA3jD160p33bdO1z5/emZfCeD4VNcWlXcjgJdjfJmeCOAGjLvko+66L56ufdH0fJ+Ece7cAOBSd92NAN409f2JAD4JwJ8DuB3A5dM1/x7An2EUST5q+vv307nfAvBGAJ8L4NEA/iuAHwDw0Lk53fs39eNbAHzANHee5s5dB+BGuv7G6fhjp+vffTr+qKms9wZwPYDXBPU8G+PcO/PX0b5nTM9+i47/NoCTAL4WwL/tWXOm74/DKL7/AQBHqH1+7flQjHP8NdOzezyAX8a4Zn2Yu+4zMJKPT8L4Dn8Jxs3ES6kd12NcO27AOJ8fC+CD1pl307UPn67/mIOaA9HzFedeOs3dN039fCyAR7jn9D8wrgcfh/GdO41pbZquuXBqu59j3z5d91cY16KPxagGGTAyU9XOB0zXDwC+CDvvziXT+ZsB/EDwzr4BwDdM9fzodOzbML5/nzmN/xsxrtd+fnwFxjX9hQD+C4DPBvD307XHknY+bKrj04Jz/wTgx2eex4diXDefh1FFdCWALwVwvy8T42b5XwD8N4xrxacD+G4AH5qW3zEhnoKdH+0rpwnwoulc9KP9c3AL3HTsMgDvAPAL7tiLsfoDewHGxfsHO9rVdT+AH8Gog7uK7v8tAH/hvr8W4w97c8fsh/P6pB1HABzDuKh8pTt+7XQvv8APhfvRdm35A7ruuzFuBC6Yvj95uu/RdN3TAdwH4F2TNn7hdO8nJ9es+9we7Y59EHZeLv/SfNc0UXmhfTuAi2lM7gfwzdP3KzEutC+mNn4e92P6/vcAznPHnjgd/0/T90sw7nJfROW95zR2X+GO3TiN+xXumC26n+OOXQ/6kZuOHwfw5XPzdz9/U1u+Zfr/x6dn9IDpe/aj3ab/nzYdfwGA31f9meqJ/t5npn2/YeXS8X8L4H+7ct6Okb08jq57CnbWnM+dntEzxTj4tedVGDdi59P7+XcYxfJRWxvGdezzMC7wV7lz10/HHibqTuedO34exh+5bzxL8+FG5D/aA4CPnyljaxqHHwfwR+64+tHe9QM9jeMbAfzyTD2fMN37kcE59aP9de7Y+Rjfz3swbT6n4585XfvI6fvlGDdwLwjm4CkAX5y08WOmsh4bnHsdgF/reCb/CaP9ks31ewB8Hl3zDwC+dd3nvZYeaRiGd2BkU5/fWvt34rJHA/jVYRhud/fdiXHH+xi69uQwDL/jrrsX44M/I7Jso4X6mb9178c4SX4dwB1UzssBfHBr7bLW2hGMC/PPD9NoTuX9Kcbd8y601j5zEsfcjnECnMD4w6DGZA4vAfAoE4tM7ftsjCzVdE+fgHG3/FrqxyswLgqPSsp/HICbh2H45eSadZ7biWEYXu2+v376fOWwW5z0eowLwUPo/l8fhuGEq+dGjHozM7B5FMaXk62UX4pxvLk9vzUMw/3u+19NnzYPPhzjBuQnaOzePLXx0VTeHwzD4A1iuLwMfwLga1trT22tfWAmLjS01o7QPF/nvXwGxrn3tXMXTnP7OgBPbq2dj1Ha8JKZ214E4BH09+aZe65GYKw2jIZYH4Lx+T0bwF9glFS9vLUWqd2+AuMm8anDMDwjq3ASPT8GwM8C2HbPuGE0enq0u/ayNqqZ/hHj5vB+jD9WDcD7UtE3DsPwF6LauXln/b4f46bx6pk+ZGvdfnByGIaXB/W9X2vtZ1prb8H4Xt2PcfPSu479mv0zza2/Qd87si5MpI5hNLq8AcDfDMPwz+4aW4P+zfT5URjJFL/z/zT98Tt/YGitvT/GefinGKU5H4dRQvCi1toT3aV/AuCLWmtf31r70N73fi/GH8/DuLN/ljh/JcYdBuNmAFfQschS8F6Muzu01h6KcSKd+ZuOdd0/4V0xKv/vp7/nTuevAvAuGH/43haUt8vorrX2BAA/jXH3/jkAHolxIbuF6l0Hv4Dxh9/0jY+b2u0X1HcF8B5BP/7Y9UPhKoximAzrPLfb/Zdhx3qZn4cd53GJDBnfilFVYG0Bt2cYhlOYxOh07zvou210rF7TJ78Sq+P3gVgdu13luY1Tz/N9EsaNztdhZJX/0lr7ppkX8lXUpm/qqMfa9k8YpUlPbWQ/IPASjOL9ZwC4GONcznDTMAyvo785I6YLIayXh2E4PQzDq4dh+J/DMHwsgPfC+GP3jEYupRhVUP8C4Odn6gPGOXEEo/qHn/H/C+AK9wx+FCOL+16MC+ojMIovre0e0TthmJt3HncDkDrtjrVuP1ixI2itXY7xfXg/jBu+j8Q4Dj+Bvnl+etrUe/Dae1CI1pW5tcbe+ddgdT68L/L10srm+QiM84yfO+M7MKqHPmUYhl8bhuGVwzD8D4yqw+91112DcVN8DcYf+Le21p7bEpsNYD3rcQDAMAzHW2vfhpFxPze45B0AHhwcfzDWN+d/C8aJxMfWwa0Y9aDPSeqwXWZkLPQg7HZN+CwA/zAMw1PsQGvtPKz+kHRjGIYTrbVfxCgKfAbG3e4/DcPw++6yWzHuMD9TFHNjUsXbAfyHmWYc5HObw4PEMdtY2EvxYIy7dwBnJBBXYf6lYdw6fT7Fl+eg3J3WxjAMb8P4A/ClkzTqCzC6/dwC4H+J264BcKn7vu4c/+apnm/saN8bW2t/hNF18xe8ZOUAcSviBS9qz1taaz+M0RXsfbGzCQVG3fMPAri+tfYxwzCERmwTbscoyv5+COnBMAzb04L4KRjF6t9j51prH6ia2NOPDlyJ8T1UOIi1TiHqw0dh3CR/6jAMr7OD01r2zgB75z8HoxqDwRsOjzdg/E34AIzudACA1tolGCUJPzRT9wcCeC1JHYFxbn96a+3yYRhunzY9Xwfg61pr74lxbX82RrsPKVnaqwjmBQC+CjsW5R6/C+DxzfmDttYuBfAEjDqibkwM7nWzF+b4TYzi0b8ZdszvV9Baex2Az2itXWsi8tbah2HUe/of7WMYH6jHk7HqLmO77ovQ96PwEgCf11r7eIwGWrwh+k2Mi9jxYRhezzfP4BUAPqu19oRhGH5FXHNgz60Dj2+tXWwi8olRPAqjrgwYReX3Ydwgvcrd9ySMc3bd9rwW4zN4n2EYfmzPrd6Ne7H7h3YFwzC8AcA3ttGjQW6apuv2jOmH7/sBfBn63HO+A6P06fn7qTdBpHJAa+0hwzBEzNU8L/hH+V8wGk79DoDfmX64Q+Y7bXx/D8AHA/izQVujX4DxXb2fjj9FXL9vtNYejJEByud8QGvdOjCPgzPj0EYPh8ef5Xr9ung28WqM0o33Gobhp9a5cRiGk621V2FcM7/N/fh+Fsa5o9ZQw80APqSNPtn+t+KRGNehld+DYRhuAPCc1toXYIZg7elHexiGe1trz8K4C2Z8M0Y5/qtaa8/BuMv7eoyTRInUzya+CeMO59WttedjZKRXYByY9xqGwaJKPQPjj9svttZ+EKPI/FqMD8AvAL+JMUjF8wD8KkZd+JeBRMYYrasB4Ktba7+BUZyUvZSvwriz/hGME/rH6fxPYLQyfFVr7TsxWk6ej9Hy95Mx7phPIsZ1AP47gJ+apCR/hPEH5+MBfPe0CTiXz+1ujH6Lz8W4iD4T4873ecBoOzH18Rtaaycw2iS8P8ZN4mvgdGk9GIbhztba1wL4/kmE/BsYdYzvhlEPev0wDGG0sAR/C+BLWmtPwhgo5y6Mc+WVGJ/V6zEuiJ+Ccb69Ys3y18W3Y7TIfQxG2weJYRh+AaNK5mzh1QD+W2vtqmEYbnXH/7q19kqMz/MGjHYGj8coqv6ZYRhWAngMw3BTa+2xGC3P7YdbMdCvmup+eWvtRzCKtt8FozXvkWEYnjYMwx2ttT/E+F7ehJH9fiF2VDNnA4+cPl+dXnVu8XsYVXIvnNbyyzCulW/F6P1ytvB6jOvp/zO92/cB+Dtv43IQmNaQpwH4ztba1RhtmO7C+Jw/GsBvDMPwc0kR34RxrfnJ1toLsRNc5bphGP7aLmqtfRFGEvsRwzD80XT4+zCuuS+b7r0Xo2X4pwE4swmYiOLPYJT+ncBoHf9+GKVOEvsJaPCjCMQOwzD8b4y74zsB/BjGH5/jAB4zDMNf7qO+PWFaCB6O8UfuWzFaav8vjIvbb7vrfgujePr9MYpEvh7AV2NciO9wRf4QRhHGkzDuuB6PkY36a4DxB/0FGN0s/gCj0UHWzm2MLmvvhtEQ6h/o/P0Yf2R/COPi/OsYfxy+ACOTlFGxpnsfN/Xb7n0BxgXtHdM15/K5vQTjD+/zp7puAfCfJ0NHw9MxLsL/BeNYPm267xMTFiUxDMMLMW5u/h3Gvv06xk3ZUYwGUeviORg3Wj+M8dm+EKOF6J9h3CD9HMZ59OEAPncYhpeJcg4E04/jd53NOtbAyzCOxSfR8adj3JA+C+Mm5qcxjs/TsOo/fgaTWPyxGDdB1zfhZzuMwTkegVE0+r1THd+DUVzpfzA/G6MO8fsxGrrdDOCp/d1bG58E4E/5nT5MTBufz8D4PH4e46b9+zDO27NZ700Yx/qRGJ/Jn2B8Pmejru/FaNH/HzCulb+GkZwN2DEaVPf+Mca156EY14pnYlx7/ztduoWRfTd3709gXGsuw6iz/lmM8/Ia7I5z8mqM4vufxLjGPQHAl05rlURzxtIFQmvt3TGa5T97GIZvPuz2vDOgjUFmnj0Mw2yQnsLmorX2YowuOR972G05TEw69JsAfM0wDD9y2O0pbD4O0q1gozG5jHwXRvHm2zFatX4dRqOAHz7EphUKm4hnAvi71trDZ9RC7+y4BqNXykHZUhT+laN+tHdwGqO18vMxWiifwKj3+a/K+KVQKMQYhuGGNobqPejwrZuGezEGUmLj1UJhTyjxeKFQKBQKG4KNyKxTKBQKhUKhfrQLhUKhUNgY1I92oVAoFAobgkUZoh07dmy4/PLLD6Qsn6eBczbMfe8tdz9t2u+10fm93LOfa/cyFvtpg9lfvPGNb3z7MAy74mxfccUVw0Me8hBsbW3tuW1cj/+fP3vu7T23zj17sUFZ556e+nrblI3ZOmNxkHY3N91008rcufjii3etOzZ3bC4BwJEjR3Z92jk+Hq07/LkfLKWMs4V15vs6c3V7ezv8PHXq1Gw9hhtuuGFl7hwGFvWjffnll+Oaa67ZVxn2Mp1//vlnjh09OnaTX8a57x7qXM8LqTYJ2QsetUHdywsJf0btUAuK+vRlqXFbZyzUtfasonpOnx6jCT760Y9eifh19dVX46d/+qfPPHf7zJ6lvbhWrn3ai+z/v//++8NreRHw4IWAr+H6/T1zi022sVD1R9fN1efHwqD6zsftXt9vPsb18nd/z0H8eF977bUrc8fWHSv/ggsuAABcfPHFZ6655JJLAACXXXYZAODSSy89cy8AHDs2RgW96KKd6Jw2l887bwznzT/s9pn1S72HPe+alZu9c2qdmSszKp/bnNXB74LaHPvrovfFXxu9v/be3nffGHvqxIkx8NrJk2PwyFtuuWXXd1+PPS/Dk5/85DTS4LlCiccLhUKhUNgQLIppHwQiZqgYqNoRrsNIszaoa3qY9ty9PVA7YX+uF37HazvQrPxeZP3mne7cmJ933nln2E0kbVCsgnfuHnNiXMWeszJ6mBV/57np2zw3/j0ifsW0WSoRtU3Vz88vOmb9yNia9V2N+X4xDMOuMYmkGXOMl9voYeXNqW6y91Sx8r2sB1HbVH1cbzZ31DP0dfB7yfMsmwd8DT8n+8zWfl4fTKrimTZL09aVRpxtLKs1hUKhUCgUJN7pmDbrd6NjkdHIHOaY8DqGb9nxXqOVSMe8Dta9x++w1Q60xyZAXZvpzg2mG4xgTNueLe+ofXmsAzP0GJsplhfdO8dW92N01bP7V4Z8vh1zfc7auB8ds7JXMPj+MRu3Z5xJSPaDqNy9vNO979g6TG4/xm3Rc1Psdc62Zh1k6wFLXnqkUHaPsifx3+f069FvgVofloJi2oVCoVAobAjqR7tQKBQKhQ3BO414nA0OvNhFGSHMuVUB824T67h6ZVhXlLaOEVuP4ZtBGb5EYzJnRJKV29N2fj7eHYzRWsORI0dWnnXUJm53BuWSxKKzSFSnDGW47B73LT4fQY1ljxh7P2Jy5Y7WI47vmTv2LDP3uoPEXozusnuUq1ePSyaPU4/Ll1LHZO6CezGAnbs2W6sMPAaZ4R3PHX4HWWwetUGNuf+94Llu7mJLQTHtQqFQKBQ2BO80TFtFLAJ2dup8jdoBZ0zbwDu4yACJsZdoWT3YC4tdh5VH34H+oC5Zm+2zJ6LUXLlbW1vpPJhjvFHwBhV4RQVmiQz25phoD/PpGVPFIjIWrYK3ZEFW+Jh98hhw//l/30Y2LsuY69l2AVNt9W1YxyBVSQF7mLaqNwK7Uak5E0k+5iRu60gNe6ISzrnfZhIyJSnrcfni4z2SxKWhmHahUCgUChuCdxqmbWw6c/VRO13e7Wf38vFIfzQXGtKQBeJQO2AVYi+6N9vN9rBWf0/GIPiajOWqerJgKL0MvrW2IlXx98y5XGWhE/mcYpkZS1fhPqOxmYtt3ePy16OP5/arNmb9slCRqr7MxYj7a8ejULKMddjffsF9UvYC69gcZMfVNZmtBrdNuWZGkh3V1gxz7mE9evd1pHNK+pRJrqyNNkfXCb0cheFdAoppFwqFQqGwIdh4pm1h6CzwBgfpBzTj7LGUVAFZuKyMaWd6T0OvHrzHIljpMKPd7DoBUubqy9rGoU9Vv7wEQUlEIhjLZmYatVPZIyjpBqCTY5hlaZasgHfsXEbERNkKPgsao8K9KrYcsWZOymGfzMR9eT3PcA5q7COJi9J3r2Mlv18oaQK3BdDzl1mzoScpT6YHz5LK+Ht7Qu0q6/UouY1aT9d5Htk4zl2TjRG/N/wuZPfspR/nAsW0C4VCoVDYEGws07adETNsZnT+f7aqzJiVgtKPR7sxFQYvsu5UVrs9mAtsn+mUenfYERTDjhidYoMsqch05xlaa9ja2uqydlWMLdKvqRC43EZjpJnngTFv7mtkcc4snJ+TTz3L9XHbMut41herZ5hZHCv/+R6GohKGROCxPpe6RhX6WElEomtVe6NkIxGz9WCviwj8bDOJhNLZW9s4Ra2/Z86aP3qnuW28jtp49kgUlQTLH7N67fcis/c5l7YSe0Ex7UKhUCgUNgQbx7R5d6+sbHsswBVTzHSMzAyzgPPqM2KDrG+d03FHO3DbvXI/I4vzOT0/M8fMwllFLvP9Y2mA2kF71sYsosfiPdOrGUtQjDdj2sZsbafOu3q2JvfnTO9tn/fcc8+udvRYc/Nnjy+qspDt8Z9l7EUCEs0dxfrVeAI7z8CzPH/N2WLcfv7x87fv9hlJG+asqzNbl96+RTYg7PPOrDzyjph7L9nGAdh5Hlwfs/OsD8qjx8a1Zx3nPmQeI1bPRRddBGDnXYzm99lOTLNXFNMuFAqFQmFDUD/ahUKhUChsCDZCPB65YClxdSY+5GAQXH5kTKKMK1RYvKgtLPqLxIrK4EgZLWUipx5R+1wowB4jIg5ok7l1ZS49/rwXv63jdmbX8z1RkA42umG3EC/qZPEtjynPP59cgMXj9957LwDg7rvvBgCcPHly5R4W4fu++bZlxnI8Biw29e6Q7ArDyFzxVLALQ2b4xu5wfI/vv91v9dr4sarooFxzrB5zJwWACy+8EABw7NgxAMDFF18MYFUU7KFcvFjFkgXZ4cA1hsxdMHN7VJhbXyK1hVIRWhkmeo7cxJQYnMfePwNWRfQYvrFKgA0f2ZDZ/2+fJR4vFAqFQqGwJ2wc0zYoc/8owQEb/KidbbQztZ0eu9jYtcaSIhcc3j2q3V50zxxrWCfsX+TWoHaPytXHt4fd7fxu2F/r6+DdccRquY38jD1DjDAMQxoqds6wLWNsfC+3v8eI0WBzkxlXVLdy48qkTyp4TBYISD1vZvjAfOIdft+iYC7KxYj75M+xpIqZ5UEZpEXsy95vM2BiiUskOeC1iENpGiL3rczlDthZd3x9yg3M+mFt70kYwvVFLl98zvplEqUTJ06sXMttsn6wNCKSOLGUqUcqqJi9tS2SJLFEpJh2oVAoFAqFPWEjmLbf9WW6ZH9ttANVeiFmvn7XqXbJvDP0uzFm2MzKogADKgQks5iIDSrW3aPf5fLYHSraZXKfWeeYucGwG0XEarj9KrBJhuhZqiAgGTNkqPFiPZ4/p+oxZMk/5sKaRtfMuXZFLj/MbHqCBvF4st4zYp88xsa0lI1F1AZm1pFucx121FrDkSNHVuav6bGBVSkPh6+NJBLWb5NEKbsItrnx9/I8MxYbzSXTt3N5xirNhuKSSy45cw8/Z7aPUK6H/n9+zvz8IxshfrdtrJVLXQRlT2Jj5I8pyR6vXVGbKmFIoVAoFAqFPWEjmLbffdtOjHe+zGp6EhwoHWbEzpTlN+tx/D28Y8/0t6x/VGETMytVBu94vZWytZd3mkon3BMWlMfK75J5Z807+IhFz4VH9LAwpjwvfLmqbyrMrT+n5g4zHs+0bbztXmYC0bxkCQ7rC7MEByq4ShYAhplbjwU2jzEzR9bVq9Sa/t6eZ6z0vBHL5Xvm4Mcu8yKx56vYf2SZz+8OS5eidtu7o96/SFrHITp5LI1p+/pMz2318TrAz8fPb5s7LBXgPkSSJF4jzRqf13dvL8Pzac6jB9h556zvynI/8jYyeInLElBMu1AoFAqFDcFGMG2/2+Jdtdp9R7t7xSJU2k1/bs4vPPLP5d0x7zz8OCxcAAAgAElEQVQjvbRqI/cr2r3y7ts+M10PsyPF1rJUl0rv7uvjftpYzPlv+2v8GEfweslIV8U7dGXT4MFMZ06PZj7EwKqEI7L45TbyONjcZ0ttzzJUaF1+/tk7kYXyZfBcZcmBkqb4NnCYXGal/lkoexLu/16Ztum02UI8areaK5G/tkqOwXPT3r1oPeD5xRIJX7bNPZ4Pnh1z2/l9VPYCyh7Dl6H8tiOvFesPf7K3TuSnzWUpC3vffq6XdfmRpMX6rGxhDgvFtAuFQqFQ2BAsawtByHQiSqeYsSZmjUqn5BndnJ4os65lNsH1RxHDlHUjW6v6e7k8ZfkdRQpSO07W4ftdrl3Llp6ZXtLGwna6zCQNkW6pR8/aWkNrbUW/HrFLZblsyPSqphu77bbbAAB33XUXgFXrXmCH+SgL3UiKwayLGWg0xsykmC0xu42imxl4/kWWzRzJjcfTmKqNiW8f62oN1j+bD34eRP7sHpE1e2RrotBaw9GjR1P/X+Vjzc/L32PtuvPOO3d974kcZ+XyHLWxzaQLXJ5KeuOvYfsLnqv2PdIxM8Nm/+ZIYmHvhrKlsLZG1vG8bisbC38Ne0dYuSzJAlbtfQ4q0t5BoZh2oVAoFAobgkUybWbTfielrJxVnF9AW69Gek8g3mHzNcwYI0tT5VecMQeWAvBuL4u8xf3siYus6mfLc7/D5v5lPr0Mloiwj2fmr51ZsA/DgGEYVphpJKVRYxmNrbXr+PHjAIBbb70VwKoe9/bbb991PbDDJh7wgAcA2LFCtT5nvuRK8hJZnDOD5rjKLH2KdOgGHgOWkHhwP9iy2sbMj4mNgVkL2xhl8flVbHX1juwFvr7IN1i978q2BtiRSLBkguOW27hFbWCbA34//dhaW9gvnJlpZg/BdhgssYrsYgwcLc7ORylOuS0muWK7E99WK+/SSy8FANxyyy0Adua51e/r4xjmrNO29kRr5JyE57BQTLtQKBQKhQ1B/WgXCoVCobAhWKR43MAGT4B292CDJi/uUMEnDCxG9PWpoBbsShCJbpV7SyRSV64XBhaXRWIxlU4vMl5iVw4WodlnlF6PExCweD4SL86lb4wCJkTuGAoWXIWTVmRg8b7V4+818e073vEOADshIc0oxtpofbbjAHDZZZcBWA0YYWVEATn4ubOhU+bWwv1gEWCUHILFnyzmjUTOrGaw+mw+WJmsDvDnrAwO0MF1+H5ErlH+e6Qy6IHNHR63yO3M1pme9I08lhwek4N2RG22Z2cqFqs/SpVp5yxMqXJX9M9D9YeNu6IkQAarz8T+Pc9SuVHZ+2bzwo+R3XPllVcC2BGX33HHHbvaaO3wfbX+8DsRrcWZunQJKKZdKBQKhcKGYJFMm9lLZpTCO7eIiSi3DDagigyD1L12vMfIS4X5i3abyjDIELlCWJ/tHLsARWEebZeq0jjatcYco4AMnJbUxtN2xyz98GAJRWR4ooyxIrTWcN55560w7ChghQovafDP1O4x4xdmR1YGs9kIZpDE0iHfv8jlybcpMsTkkJDcBpurUQIPxRSzcLBsNMjuSDZG7Prlr+X+8HscGVoaVFhWf906xkNmxMj1RK54SooRuSdaO20crJ323Rhh9J6w0Z3dY+D31bfFxp/ZcRSQRblcRs8B2L228PvO9dvaESVyYRfaq666alfb2MjRt8mOsfQhGis23FQJivz3gzRwPBsopl0oFAqFwoZgkUzbEIWv5B2v0jlHwUBUCk4V/ARY3d2xnijTMXKbeUcYBUhhWP3scsJMyEO5YEXMkhkdM58skYeSdkRMm8eLdbRR27KECgxj2lx+5IrH7i0G1n8BqwzbmIbppTO9O7u1WT84OYKfq3aN0uNHu36WPqnnHp1nKRAzoUgHyXpPFWIzS6nKEgzubyRJ4nnH5yNG34vt7e0Vdypvn8Dvm323ayKpIDNcDtDCEhI/xmq9UeFTozZySF+r30uL5tKE8nzwdbB9DQdZyWyJmMWyzllJnHx9NnfMdoT7BKwGp1GpRqNUzj12MYeBYtqFQqFQKGwIFs20oyD1cwkust0dMw7evWb3qCAHEQtUSTBsh2v3Rla1zCZ45xvpeRUTYV1zZBugpAwcpCaydJ/TEfvnpp4T1+9ZIO+Gs+AqVkcWlpOTrahEB9E9XK5KTBPt2A1sVW9z2DMfxZqZBUaMm8dY2VBEyW1UIJbM04GDIEXJc7gdioX3SK6U1bjBB/6YmyseJqWJ5qCB28sW4Nm6o4IQcT09Fu/siRC90wZml7beGEP1beB3gZ9ptO7MhWWNxlMl3lHpVrNw1Grd8d85bG4UlMbXH/VZSUEPC8W0C4VCoVDYECyaaWf+l0r3GiX2YBap0k9GuzplWd6z+2ImymzJt1GlAFX1Z2yAd6BRmjuVSJ7LypiW0rtGVpdKV5uNI++Oe3XbHpE1L8+rniQwXL7a3Uc6RiVFiazHuY+cXjMLY6skHUry48vl55zZNigpFydaiOaWkppk31nqwBKYHruSDK2NqTmzdcDqYHsN9nP3DE7NN64nsn5nNsnhOLN3Qelr7V6vl2Z7C/UuRKyT5wyz9si2RqVKVR43keRKtSmaqywNUmF6o3DH3M+lYFmtKRQKhUKhILFopm3IojIpFu13S2qHm+my1b1cf9RGZrGsv4kihylrUbVD9G1WOnpuu9+dq2D4UUIKhrJOVnrqrAze4UfPradNfE8kkZgrT7EAYDUqF9sLRP7zDGULELGXubZmST8ynaKvw5/jOcsMJIraxudsDNhiN/LT5fq5L5nUax3JSA+GYcD29vZKvINMmqUkRpEdRxbNzt/r30+WjrF0IyuTn6G1iROVZG1S61ukQ2e7CGX/4+9XHg1ssxT1i98Jtf75/1lap1KCRu0vP+1CoVAoFAp7Qv1oFwqFQqGwIdgI8biHcklh44dIBKgMcjJXmTnRcyQCjIwbfNsjow4lplLi6yzAvTLQyYzzlIg1ghrrTO2gDOzYxSMSZ3MZCtG9mQuZQk/fOWdxlMBBIZt/7A7IQS4ikaPKLW/IguxwSFrl6hOFk+TnzyqDLPe3CnKRjb0KfXsQ4svTp0+nLobsrsfzOTIMywIURfdGQZ2UC2CUv9tg7ec83dYHS8oRQRl78XnfNjZA5OcfzW82GOY1M5p3aj3rUZfwmqV+R3xbWEW5FBTTLhQKhUJhQ7Aopm2uF5mxCu/Q+DPb3c4xEq7DX6MYorU1CljBQffZXS0zuuLjGdROPkvNyX3nMjJWy7tlxbQjgxAeR25bFMpRtZHh+5exMPUM+Xt0v7p2neQCmYGeCohhiBidCl+qQmBGUhp+Hqp+IA/aE9WXuaf1GIXys5xjg+tiGIZdTNsQrQO8/mQBdFiiNtfnSDLFZbFEJBpbe2b2aQZo0TPtTY6RsVc7Z4yb3eD8uHK4V2bA6ln7/3mtVwZq/n9O8KQMjD3YiG0pKKZdKBQKhcKGYHFM++jRo2d2UBwOEdBsK9NH9bh28T0G5XrDOkzPzpQeqics3pwuKWojM3tmTxFbUv1idpS50HEZGdNWbndzYWk91gknyM8paqdizRFjn9PBZsxAPbso/SHr+Ng1bp1AD9zGKFAOl8uswuZONCY83zLWYphjyxFb4n6ooDH7YdzDsJqaM+qPCqYSzd/sfeBrGUpfq2wc/LVKOhOtAyzVnLNxidZVXq+zlLx2DScIYZfKzCaF3+3MLoL101x/xqIzadNhoph2oVAoFAobgkUxbWDcfTIjzdiS0k/6HeE6TMCXyf9H9UQWknyvusb3SwUb6NG98G5RJSjwO8Y5/WcWzIXvmbOwj+6f0/P5/zlpikJrTbbft1f1PdJpK+aryorqUwwu6g/bP/DxTIphULYGke6b05+yzpQlIv5/ZtyKOWZSGjWeWX08rr3zQ8GCq+wlXCU/p8gyX9kcqHkYXaN0zhGr5EAian2IyuMxVUGffDlcz/HjxwEAl1xyyUp9Bl4/e0IUqzYbonGOwlr7+iIWrd75paCYdqFQKBQKG4LFMW1g1X8xsqpkPW62U1fWreu0JdNdqvqUNWqU0m7OajOrj61Gub6InSmGoKxkozZxf7Jx5T4r/V7EVAxz/tX+/sySVLHmSCem2NE6Vrbqnmgnr3SZmT6UGaZiS5kFML9rmR5PhdbtkZ7MsZbIFoGRhTrdK4xtA/Ez4HnF7NJ8n81S2187xwyzd8yg/Of9e8y+zpygKLKh4DFUz5bP+3pYt82M29dx7NixsJ8clyCbs8qeJLrH+mzPR6W4jaRrnExnKVhWawqFQqFQKEgsimkPw4D77rtvJfoQX+NhOzS+J2Ivc/6k0b2KjRmiyETMRBXj6dGVrBPtJ9I/+uMRM1GW35kuW0UtmtPZRfWq71F/5vwlff/MOjTS4/Num89H9cwxkKgfc3rbqAzl6aCebVSuOh55Ohg4apZda+MXWUWzHy5bBHOK2KiN2bvHx+b04fuBrzdKC2njwIl2ejxdlARinfdFMVL/LO3ZceIWQ8Tsld+5GttsnbN+8btnjNtfoyzMe57l3DyIylAMPrK452QiBzG/DhLFtAuFQqFQ2BDUj3ahUCgUChuCxYnHT58+nYb7VEYuLMqIgg4ow5Uetx1GFlyFxYI9YQtVMIO5/MNR+YyekJ5s2JcZgmRj7Y9HYJGacjXzbeJwhQre5SsKJMJqEvXp3U/YYGUdVyWeI3PGf75uDjahAklE5bI4XH1GbWExeaSa4PeSx4jVD5HLz5zLZmRgxecOUmy5vb294mLq26DG39qfuSyp556Jw3nMWCxu36O5Y2JxCyvKqpYoVLB6pzMVGJcfvT/+OmBHVG5jYvNsHTWJEoNzWz1U+GtWA/ljB2noeJAopl0oFAqFwoZgUUy7tYatra00NRqzE5UgJHMVUDuobGelmEC061dM23Z7bLDj26vcTjJWwcyH+xmxJVUfuzlkbiLqMxrnOXbL7fLl9AZeOH369MqOOnIXVEkKuH/RMRWIJQr3acd4jjAj8EaUnIxDle/fCS5/zj0oC2urAkr4+uZc/JhxZ0aGqp7IBWfOIG2/yIw+1dga1HyOoN6XKKAMG6Dx54UXXnjmHnNr4nnHEit/j803HndlROvnzsmTJ3e10YzLzK0rem95nWGDvmwNnhvbSKLD65x6V7LAU0tDMe1CoVAoFDYEi2LawLhbytwa/HXADmvNsK5rUhaQgz95F+v/73UXi+rmHSGzV99v3jUqPWG2k2f2xPpKv2tWAVJ6xlEx1XUCp0QYhgGnTp1a2bFnLmu9Ng7ROd6hM7vx/6s+chAhf62xJvs0vWDEhPk9UYFRrH4r05fDc5bLiqQ0/EzZ5ciQ2W6ouRq5FnHb9hq2lGG2NJymMpIuzLH+CFmQI4/o/eS2sPTJ13vixAkAOyyWddv2jC+77LIz9xjr5vC1tr5wIhTvvmX1WZsuuuiiXdda2f75sxSS3QMZWSAYNfY948jvbSbZWZpuu5h2oVAoFAobgkUxbW/9C+RO8pFTvJURlevvVZbnkQUwsyVms2ztG7WthxEoFsa6mKh/c7rZrH5lWc4hEaP6eCfKbYuCamQW9FE7POZ0WsaYorb4dvOcySzAmd2xXljND/8/l8/My7NYY8HGfIzNGFuyz2hslRSD2+OZNktS2CYgmgf8DDkYBZed2RVwH6JnoOxJDsp63OYN993PE36+3JbM00XZ2yhL9KgeZq92/J577jlzjz1XY8M2h6xcY83+Hjtn88rKMGmJ1Wd9MD22L99gY2HlR8F1rNweLxUgfhfnglRF48jvq7U986iwe9ZJCXwuUEy7UCgUCoUNwaKYNjDuanr8GFUCCtZLecyFLWVWFZ1T1uu+TGbY7LeasVili+W2+R0o7wTtO5eRMVUVajXTh7MVtrKWz84dFNMeht3pFTOJC9eV6SXVLn4dnSb3ndNhehjjMbbErClitYqxMRvMwjLOSYMy3SKHtVXt8FDWwtE9zPpVmsr9IrMNsPFn635udxQitDeOQcQqlQ90NE4cclaFk/V+08asrW47x0w00qGzdEYl+PH2Nypd6ZzNQHSsR9Ji7bd+sS6b+xmVuzRr8mLahUKhUChsCBbFtFtrOP/881d8+DKfa6XH8zvhubSQPTs3ZQEatU1FGcr0hFyPsojM2ItK5BHpllhSwOVlO17FytQu2tfHTDvz7VblK3imzUwlKlvt3KOoZioC3pyHALAaS8CYR8TaOAKa0plH0iDlF74OeuIg8NgqXWP2jsxFnVrHR/qgwM8ySiLhWSq3k9ummCe/J5E+1eYBPwce22jucFQ7u8fWVa/TVvYdBusvR0wEdvyyrV7+btd6bwLul/IeyOawkixF84112FY+f4+Y9tKsxg3FtAuFQqFQ2BAsjmkfPXq0K9a00jVG1sMq2Tzr1Xg3688php3tkrk8ZlqZpXy2o+Z7lc+jfUa+7EoPqawpI33bnK4ni4g2pxeNrpnb+Q7DkFqS8g5a2ThE+nvlN8+M25elGLZ9ml+rT1N46aWXAtiJKnXJJZcA2NFtm/WuZ0vsn7sOE7X2WhuUzUE0V5W9h6ojupevyewKzhbDZkRtZK8BNXei6I3qu5KI+Tao8u1ez2LtHpsjSsIYvRMMm7M2LyJ/avvfrmG/7Mi2RcUAV+tPFHOAvWJ4rKJogcr7I4pkuDQdNqOYdqFQKBQKG4L60S4UCoVCYUOwOPH41tZWKs4xsMgscx3i+5WLUnS9Ehf2GIZFYfyAWDyu3Fh6QiByIhJ2xYgM0bivysUkSj2qxEeZOxe7oahnkIn958KYbm9vp+k8M1F2Vu463yOVgFJXmGjTROH+mIWatE8Tj5so3D4B4K677tpVPovLlSrC1+eTSACr6hF/j0pXOpdIJEKPquWwxJWRmJUDirAhZeTeNBcMJFoPOPCOcjHMkrHwuhOJuNV6wyJv5UbqwQa2kaGdcilV4aGjYEXcBn6vs2Q6KshKtH4v1SCtmHahUCgUChuCRTFtYDWUqR0zzAW76AnMktXN9SnDqYz58u53zsgnKnfO+MbXy64VvHO385GxBRuCMCuPdsu8o1UpLyOjlXWY9jrpDq1dqm2+3Rk7jsqMrlXMJwvqMvcJrIZ5tO/MfDwzNqZu1xjzNmO1bExYCqBccCLjPJZyzY2NGh9/zTrGUgeNjMVy4BJ+P6L1Rrk1Gvj5Z8ZQbIgauSpF7q5RWdF8U9IYZqDRu8gBStj1zINd/digN3NbZOkPG/pmTHsuDG0kmc1cjg8TxbQLhUKhUNgQLJJpz6VO9OdU0I7snswlgTHnehHpfPkaTl0YuXEp3XVPmjh2vVCubJmuh9thyCQJzDJY75XptHtcizJbA4Us2AXr7bm9kd5uLihM1sY5Zh8xA2ZLzFqiOctjavOB03lmwUmUrYYhC/PI7VChKX0b+XuP/Qrfc7YYUKRPZZckDk2cMW0VRIXf8SiAjUG5HEbJP2ydUc/S16Oeh3LN8mUxo1fBdvw4qvedQ8dGSW+UdFAxbn+/ctWM1sE5u5XDRjHtQqFQKBQ2BItm2nPXRd8zxqb0T5kOg/WAfE200+adH+/Oo+D7yoozCoziz/tysx2nb4f/f05vk+0yFStn5ur/n2NaPSxXweu0e9gY7/ojCcFc2tMMmd2Db5t/Lhw2UiWDYWtvXx7bJ2QBK7hfKthFlKZS2TKod8ZjjmFHOvTeoD77RfRcOLxsphM1qDCmBqXX9dcqpmj3sDW7v4eZfE84Y56rKriQv4e9VViyE0kU1Xuq2HQENR/8XGWpj0rVGa35S7MaNxTTLhQKhUJhQ7Aopm0sm/2No1B2Sseb+fvyvYZIh8XX8jXZTpB3uCpRSMQqld+0oac+ldAjYtpz1vc97KZHN6z8PDNLapYgZEzbWDbv1CNrdB5bZqSeGbDlPV/LiNqvnmGUZpPnSOTDC8T61jnWFFlFzzEQY3I9unrut2EdyVlPkqCzDX5fo7o5nGk0tsqKW7HZyFKarbjVvPPlc9usDDvuQ58yS+Y2Kst3j7kUsJEOna9VrDZaI7mtaj339TD75/TJkV1JJBFdAoppFwqFQqGwIVgU0zam1KNLmLMojXy7VcKQdfRpmQ6L28K7Om6br4ethOeC/WcsgNscMfDe9I2ZVEDpnDOdtmLjmVV0D9Pm/kXXKhah2gbs7LZ5R66sbKN6+R7e5Ud6ScWaI3Zh97O/LB+/++67d52P2qKsdzOmPeerHvnKZ/1R9Z1rRH7azL743Y4swOfsIqKkFRzNjp9TlmCH35se6+qo/b5NkacDM3pGVB+vjcoThSUA/hjr5nlNzNY5G1eWKEVW6j1r/WGgmHahUCgUChuC+tEuFAqFQmFDsCjxOJAHYoiwFzcQFmFm4QaViJvFfL5MNmRh14fIFYJzLRs4fOI6oU+V8Vx0TPUny8VtUPdGBigqOEkU+pTF1tkzHoYBp0+fTq9V92fGcGrcM1WAQT0HJab3/7NxWRZkx9zE2GjM5o4Sm0fnWJyoEtn4PrNKh/PJR+/x3Lt9rozOemHjNGe45dEbpCPKYc9zhp8tG1H6/+25W3jbLIDSnAGgMmbzbeNyWbwcGc+x6JlF3pERG2Mu9K4/psThmYHf0sTihmLahUKhUChsCBbHtIdhSENp8q6xxxhmblffE8Rjjnn4e5idKmmA30XyTpcNoDIWy/UoFh0Z2PG1HAozc51irMNYlUGaZw497m58PnNVY2MbxSo85lzUmE1GBi32aSEnmc1G4V6Vu2DkCqgYjX1X9QKrxmrKXTACsyE2uMoC5hhUMI2lMW02ZMreD75nLtxmNldV2E1z28qCuvC7bPDrE5/jMlg6GBmV8XeeQ5mEj69RLo7+GrUWR0xbuTJmAYf4nVdjdFgopl0oFAqFwoZgUVsI00saMuajduaRbkYx6DmXpahe5awf6bTnWEXmlsY7UXb4z6B2on5MFLNWbhV+d54l+VDH5/TeXG907VxgiR4mHrU3Y9wqyA2DmTeg3fayYDjMeJUkJJpv3GZjD0rn7a/ZC7PluaPSrfpnqtwrWUoUSRKWAHbPsz7bGEfnDMr2xPrqQ9OyXtiSAfEzzFizPVuW/GXr6tycje5lqUOmhzao0KqZ1FPNnSwhDq/XLFmyzyhhSI8tzWGgmHahUCgUChuCRTFtC2PKuzC/u1UhALMAKSoABu+o2OoV2NEd8S5OWdv6a5XeO2LLc+yPmWpkmc0628zy16DSaaqddtRmpdvqqZdTUEYBWewzCmfrcfr06RVGGtlDzEkIMh0sX6MCZmT3GmuK9Gl2z8mTJ3eVryQvUfmKpWe2DeuA+2HviEoRGo0ns2eWBkXMZ0mwNUmFKgV2xiez3gZ2xilizfze94b/9NewVCsKHqQYLkvAeiSYPCY+bCq/e3wtr6eR1Mug7D4iyRW/a2bnEc1/lnKopE2HhWLahUKhUChsCBbFtIFxJ6b0rIC2OmQ2EVliKkbITDvSq3JZinFHbeCdbo//udrB9/gzG7IdfuZnHiHShxtUONCea9g/vSfJiGrfqVOnVnzgI7//OavxTOfXY//A7Y8YJxAzg4suugjAjn6TmUKkB+dnySE3WfISWY/zM2XvhZ6QtGpsIrakPrOEIUsESzwiK2Tl283jZ8zc/5+xZF8WsDq/VehTv3ZYPfzs2IYmql+FaWUr+SyJCpfFYUajkKsq9C6/K9GxvXhJLG0uFtMuFAqFQmFDsEimzTptr1Nga9ce1spg3aayZOa6/b3MbiIdHNejgvFHmPOFjvzCVWS3Hv0Xl8+7yygIv2pTpK9inXVmNW5Yx3rTmDZbzK7DtCNmqHR9/D3zuWamxc828is1xq28FXwfVFIE9puN7C+YtSibgMirI5r7UT+zd2PTmTYjsnTn98H6aLre6H0xSYt92rV8T8RE2RI/ssg3KMtyuyerj32rVdTACDxn2EbA7vX2THM+1uyL7f9na/EeKNuXw0Yx7UKhUCgUNgSLYtqtNRw5ckTuTIGd3RTrTXosliM25O+daxugI/ZEO9A5RpcxbaX/jqyimckpph2Vw23mcYxsBJS+M4tuxlIT28Ezw46s4nssnIdhwH333Zdao6u5oSzn/f22Y5+zHu+RnmQWuSoCFuvi/D2st1O2DVGqQWNyVq6l71zH5kGx5qitKnbAOjrGJSOSgPCaNRcZzcPmiD0n00Gz1bevT0XIyyRJfA0z7SwCI89r7kdkk6Qio6kUsb4/HI9dMe7oXM9akkneloBi2oVCoVAobAjqR7tQKBQKhQ3BosTjwCiSUAkdgJ1wgUq8Et2jDDFUWMHInYZFQJlRWW9SkygAzJwxRyQ2nwsB2KMyUMFcVDuiNvHYeCOXuWAqmXsQG9Softxzzz0rwXAiN7c5I78oFGnWTgU1R63vkTsVqzq4z5mqQ7Upe/7KDYnnRRYghZPaqEQO/hiPTeayualgNyZe19jYyowPAR2ak0XeWcjQHhfHOdF2zzqgXPyiNY3VLhz+ledHZFTGY6OOq3Lm0OPCephYVmsKhUKhUChILIppmyFatrMxJsWm+5nhjNo98mfmrsEsIguuoYwdFLuI2j1nXBYZWGUGVf46/79ig1miAG4TB6WJgtSw8RUz7ageZgpzu+VTp06l4WwZzASzvrLbHh+PjK56E8dEbVTGYxGbYGMbVX7k8qUMkZQUyv+vwqRmbFklCNmPC+fSwa54KihJ9kwt7CZLZ7w0ay6BRrQ2spRMuatGRo5sDMeuutnzZwbMAVLYIM1fy21kV69oHPcSrlcFtDlsFNMuFAqFQmFDsDimffTo0TNsOtqBmutDph/2x61cf4y/Z7pSlYzD0BPOktuk2G1UvgpkEekJeSfNO/lsTOZCk0YMaE6XHQWpUckSepDpOYdhSCUJvm7FxjO2P5dQxZAl8pir39/Pbi3MRDwD4QApBmUTEM0DxUQiN7Go3f57JkFQ9iM9AYCU++NeWNRhwNpprNneCQ47CuyMO5khMp0AACAASURBVCe2YImVD31q4PUlCyjC0jKGcuf0//P7zy5uEewaczG0fpqO2z6zMKZzrN2fWweZ9G8JKKZdKBQKhcKGYHFM+4ILLlhhJFE4TGVRHFlMKobDTIStYiOokI1+Nza3U4uslFXbuIxIX6ikDOuEMVWWphHDUkkMMp02X6ussX0b1wlp2dqY1pV1WFkKU0bPOM2lMlVt81CBbKJrlP7Yz3vFWpVuO6pv7p7I00HNlR5d/RzTjp4B61A3LSALt5eZY5Togi3QjVnbO+bv4XVHzZnIpkEFD7LjkdcMW8MrL51IkmTHjGlb/06cOAFgh2ln1uP8rmfvxhx8v5Qdy1JQTLtQKBQKhQ3B4ph2tJPzSdQNyl86Yy1zyTAyhqUsjX3bVRtVIo3IJ1mVu07oVbb8jHabc+VlDFixTWZC0e5VhQiMxoSfy5zdgGfakV5NWcauA2U3ELWR61HhPbNn2eO/r6QxcxIYD2bhmd80S7nUZw/TVmw98wfmVKOZxGJpLMnD5qi13+x1gNWUqYr5ZnYjKlRsxj6VV4ch8iJQfuCZVTyHzbWxMIZtx6MQ1mq+eV32fsDrWOm0C4VCoVAo7AmLY9pHjx5NGYjyU+yxrvb18DVArstWFtoRq4z6Fd0T9U+d62Fa6nukg5xjONyOSALC35Wu259T/s5RchgVSSyD8lX1/zObyCQxyte9J/qTsizn55FZ5isrdc+wFAPldyGKsjYXiSzzkZ9LG7qObQjXF/WPxyCTstm1pgNeWlQrYIdVMosGVucmJ67hyH/+/573xKAi4HG9mR1E5JXgj/tnzd4PZjWuvCMifbjyQNiPF0G0VhmWFp1veTO5UCgUCoVCiPrRLhQKhUJhQ7Ao8TgQJ2vw4gl2K2JjFBM5RSJHFoOq717kpEJQZsYvc8ZDkdHSnOivJ6woIzM86m1zZgSmAur3hD7la7P291wLjP1k0awPLMEqFRYNRmoTJT7mPkbuIb1JbaJgLko9YWLRSPTMItR1kiUoUWc0d1SYzJ6AKTyOKmFJJq7k58VqgaicJYrHDTZHTVQMrM4rZQDrReFqTHmcooBGSl015yYJ6PkV5be2Z2TrtPXdvrP7W6TmnAufu47hWKTKU65sS8FyZ3KhUCgUCoVdWBTTNpcvFfQEWGUcvKuPdtRzwTTYUCdKNsLX8E44CnbCoQczNyvlYqEMwyJ2NhegpQdqd97TVm5PBJVMIHpuWZ/n2m9j71P/GSthF8LICE6Vq3b1kSGiCtbTEzY3C1Dh6/f38Hc1bhF7UYZIkVuPukYFd1HtjtqWzTdl4GbXRgZY64QZPiyw+xOw01eVwjaSLhjY3ZElSJ5p87o5N16RSyN/ZwNFL0FQTJsN0DKWqwL/9EgFVH/8mCjp6lKw3JlcKBQKhUJhFxbFtA0Ze+EdqO3Q7J5IX6NcEgxqx+jvUaEZM+ZrO00VgKMnYQhLG7L6GCo0ZYQ5tpYFu+gJftLLmqO0gaqNjGEYuoKC8LPscWuZQybhYVerrI1qfJSbi/9/bp5zWb48xayjuaOumfv0UIljMqan0oZG96wTZnYp8PYXSsLXM07KxTQbUxUgiRGtISphBzNu30dj32x7wrrsKNhS1ha+R0l22LUwkz4sDctsVaFQKBQKhRUsjmlvbW2tpbs0/SQ742dlqGsiFsPnMvbAbTNpAOtpIgvZdZJ7+DKiY6ptWdpIDlpjiCyqe8P8RcdVkJpo18yeAhmGYQjDJUaSF7Z+7knFl+mFfT+iY+vMszlpUJQoR4UP5Xsi5sNj0ZNkQoWRnOuDh5I+9dgvqHnu5y7P0YNmTXvRn64DDtmpwjZHkile37K5qwLU8FoVvZ9WLreVrca99Thbi6t7oiA7Sne9TlAVnjuRdwGXt7RQuMW0C4VCoVDYECyKaZv1uP/uP4GdHRFbSLJVcnSPSgavAuwDfTo+/s5tYatKq89bMSvfccW8MzbYs8NW5asQfpm+V+mNsqQW/Bn1k/2qM6vrYRhCf9GIVTDzZD1hNE4KmefBnH460kEr24ksNadKmMBMOAvtqth51kalQ89YKPvF9khp+N2Y89v2/6/DsHushtn+4WxbFlvfbO3KPFBYP8vrT/QeqVS5zC6z5C+sh+a0mn7dNV0267A5QUpP/AblUZExY37HIz/tc/Vs94pi2oVCoVAobAgWxbSBcSfUk1CBd0q2i8x2x3yvfRpDyRJrzFnMRroXZiS8m40Y3V58oOcsvaN75nbUygeS2w3oHWlPW3v8tSMLzwiRhXPmgaCkJ1F/eizXFbiv61iCG7IoZ71sOSpbWY1nftrZ3Ii++2dq76k9S06iEpXBbeph0VkiGkZrDa21lTb1PFNDpBs9qFSRHtYP79Nt4Eh/NkeM+Zpkz79HSvev4ilEtg12r7FoZuCeaXMKTtaHc7siSRmXz+ejcpREMWLa3JalWZEvqzWFQqFQKBQk6ke7UCgUCoUNwaLE41tbWzj//PNXEh9E5vgm9rBrTDSkDHmAHfGQEv1ZWV4kFOUgju7JDNHYbSMSj7NIS4lkItGgEv1kYsq5gC8quEN0jOvvcYdR4tDIIKQ3QMaRI0dS9cJcEoRIFDyXWzczYmTwNZG4ml1flAFa5N7G81flt+4xtGREAYeUoR3PpUwcO2es5/+fS2oTtbc3YYh3Ne0JYKRchyLjUmUAexDwYnJOlsTiY8stHrlQsmhZrVV7cf3y97B4XImio3c0c/GLvntwPT1unksTixuW2apCoVAoFAorWBTTbq3h/PPPX9ll+R2UcvWynZTtIrN0hGwYxszB78qYtbAxTLQD5boVM4hcL+bYcg8LUIY6kTsd70CV0VQPepg1t58NQTwrW8cgxIyJuJxIIsHMraevakfO3yMjLy6X53VkVGbsrIdpq+Apc8Zl/tw6oRsV61TGTNFcnQsiFIV2Va4+kZRmnRC7dj67RklYWJrgmTa3wZ7p2XIl4nE5fvz4ru/GbqPkGGqt4DUymjtcFvczYtpzEp3M9WvObStLrRzNFVX+UrHs1hUKhUKhUDiDRTFtYNwBMYv1uzIVBIDdAbKd+pw7VRZekllM5hLDCUOYzURuVKy362Ha6lzG2hVbMcy5V0XIXKfm9JFZkINeeLYU6bazsVP1qeeiwjtGrko2D5TeNtLbsYRHhRvNrlHMdC5ITdTWLPWocleMyuJzPI49kqReGw51LLrGrztRX40h8nthzDpzN+J2z7HNs4UorKiCjQUHZMmCLPG6vR9EUla1NvJvgn/m7FKoJJp7cfM8LBTTLhQKhUJhQ9CWFKqttXYLgDcddjsKi8d7DMPwQH+g5k6hEzV3CnvFytw5DCzqR7tQKBQKhYJGiccLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAgW5ad96aWXDldddVUa1WrOjzmCikilju+lrJ5r+fhB+wGu4388V3d2fs53PPO1Vf6Rmc8yRwN7/etf/3a24jx27Nhw+eWXp33aC3r6Fn3Pylqn3r3cuxT0xKDveTfnUqf2xKk23HTTTStz54orrhiuvvrqpCerOBvPY5137mxhL4bJ+4maeBD1rbNuz30COgbHm9/85pW5cxhY1I/2Ax/4QDzrWc/ClVdeCQC47LLLAACXXHLJmWsuuugiAMCFF14IYDWoQfQQODQkB7JX4R49VMD8KCcyn1OLThYAxsCBWfh6D/VDmIUEVAEqssAVvHHinOYWcMISFPhj9tzsu93DuXiBnWAhd911167Phz3sYSvuOZdffjmuueaalf7tF9wnzu2dhcucW2ijgDNzAUv4XmA1AIwKYJIFkjD0JH9Ri2bPRmMueAx/+v8tOQYnm7Bn05OY49prr12ZOw95yENw3XXXyXHz//M5DtUajdNc0COuI7qmZ2x7N+1ZGNt1CA0/Q3U+C1rE37nM7F6VPz7qnx3jhCVRzu+TJ08C2Jlvds1Tn/rURbgFlni8UCgUCoUNwaKYtiUMsZ0zsxtgh/lw6DreuUVMm3diUapCLmtuBzrXHw+V/jIrn1lyVj/vTjPJAUMxxogNzo1JxCQ4XanBnqMxcNsB+3JMuuLPnWuoPnPSgnXmR48EhMHSDX8sY8dzZatQoXsBj1EU2lXVvxcRcU9YzjmcPn16ZRz9e8PPai51rv9fvVMZ8+4Zjzn0sOZeps3t8teo+ZZJdtQ5LjNKwKPS5UbPRCXP6ZFCZulIDxPFtAuFQqFQ2BAsimkDI4NgQzSf7k4lZzcwi/b/c8B8pTfJdNoKmc5H7e6yxA2821eJFbLy7bv1P9KDGuaC8fv6WMrBiREidm7PUI2jSVAiKQfrLs8l+FlZn3hMIxag5mh2npn0XEpTf4zb3JPAoTeJSo9UqOc94j6z9Oug3r11MAwDTp06dWYOZvVmemh1rfrseabKTqHnuWTSR3UPH1/HwHIdvbti5bx2+TJU2s6IlRuyRFL+e2azka3Th4Fi2oVCoVAobAjqR7tQKBQKhQ3BosTjrbVdOZHZvQbQ4igTYUQ5Y82AyT5ZPJ65Yilji16jnwg94nElFotE+iwO4/Kje5ToVBmkeTEVPxd2i+I6gHmVRCRqt7aZ6xiLL88F+BkpN6pIRMjGNkp86MWibNBm19i4ZHmt1fdMhDsn/oxErb0uPj1GPmwoFBmHnm1DoGEYsL293SUWVeMVGZMpVQernPi8PzdnIBitA9ZuJTaOjOUMSqTe4y7K70aPMZ3qT6QuUXOkZ56pdyRai/didHwuUUy7UCgUCoUNwaKYNrDDtoE4IpqBd0jmHG9s2hzj/f92jX0qh/5oZ692vFmQE+Xqkbl8ze1OI0M7PsafPUEH7Lvt+nn375+BnWPXPPvk4DX+Hmbl7NaXGVixwdu5BEstDHMuQP6cYucRizXpAhvARSxASYH4fMQ61Lzm9yuabypQSo+rjJIC9UiSDhp+zfH1rMO0sveEJVM9bpVzTDsz1LJjipF69BiPRW3O2rhOwKE5o7nI5cvGldc3vjcqv7e//t6lMe5i2oVCoVAobAgWx7SB3N2I3ZiM1VkYzBMnTuz6BHbC0jHTtnt5xxbpNxQy9yZmj8Yyox0quwxx37lt1t9oLFSIvsgNTvVPsQRghwVaQBQOTRrZFfC93OZIqqIYyZIQMQKGnZvTbfr/bXzYFS5jSyoQTxbEg11iVOhd3z8VelTpIzO9q5L4RP08m6430bsYSTNUSNhsneDx4LkeBcwxKFfPTNLHuuWeOapsdPh45PqpmHbUL2UDxM89clNlSY76nj0LVf/SAqhkWN4qWCgUCoVCIcQimbYh2hUxizN99fHjxwHsMGz77q+xe5hxs1W5Z4hzTJtZNLDDPC38pu2sOUiI393NWfEya/ZMm/th53oSKCgws/chRG08ObzosWPHAKxKMICdHTPrtJXlObA8XdK6UAExDD3BLlSY1CwYhGoH2ytEbeQybQ6ZtMofY4mOCvUZMfu5/nqcCxaUhekFtOTLENmacP+V5C2yHjesE8ZUSTp6bFu4H6od2Vzj9vcEzFGfkb6aPYR43kVSIT7GEoNMGmTYTyjZs4Fi2oVCoVAobAgWx7SHYVixEo6sa5Uu29I3eutxZtBKt70XZsrWvf6Y2gGypba/Ru2Wmd34tlpf7fNchd3jHahnGQo2TsasmWUYe/flrxNS8bAQMRHFSpR/q4eyEmYG7M9l+kdfXxZq1cpXsQz8/8xeVHhb/z7zu62YXsQG9/OeZmitnfmL2uL/ZwnUOqFiexKF8D0GpSfOvC3m2h5B6bKV/tq3ac62IWsLs2d7xhFrZu8U1uFHfWf0vIPcv6VgWa0pFAqFQqEgsTimvbW1le7GeddtTJutkE2/Gt3DbFX5NwOru1LeYZteKmITytc5s6rkXR3vSDNL8LPBsC+99FIAu8eTLctZL53pMm3s77jjjl33Rno9Y91LsOycixSXMW22GmZ/XQ/WdypL40wvqdqYpfVkRs0SEV8H2yeotvfohpmpcgwFfz+vCwfFuC0iWgalR2WJROR5oiRvmc81M2k1H6K0xfxO8RivIxXIfMl5filvHG8jpKSdLPU0G4qIaXP7WRqQrcUqEU9k0zCX8OewUEy7UCgUCoUNQf1oFwqFQqGwIViUeLy1tiufdpSsInKtAHbcrCJxh0pOwGIpPg+sGo+ZGMfELj2uKtaWLPEF1zMX9MSPCQcqWUdMbuVZ20wkffHFFwPYEYt78bgS/zOyQAzWZuU+5uvpcTc5W1BiXGUEkxmisUiVQ7kCqyFiba6wONSPLYtOWXXDfYlE3XavzQPuj71fvh9qznI9kahbBSmxdkQiVSvnkksuAbBjdBoF8dkLOGiML5dFvnOBmvwxFo+rYE6ZCoIDNkVzx/7ndYbd7Pzcmcvt3ZP8gwNesfrRu6fa//bemxic3VSjUMgMXusjw0d+j2weq7GJ+liGaIVCoVAoFPaExTHto0ePpkYCHMDBuwj5434Hpdgw78yicH+8G2a3qmiHzW2xcm13Z6zV7+hsd6rcaZTxCpfj22S7Vjvv2ZLtQI21XHbZZbu+27jyDtXXrQxsoiAHbFDDRh7WVl+PjSmz87MFZrn+GM9JJbXx4LnDZTEzAlYZABv7Re6CvSlAI7bEz9LOmaTF4FknPzN2z8kM3+ycktZECUqYhTHjtnfSM7p14dcGq9sHlGH2yO89uyr5vqjPHjZpsDlic4YZoz+nEvoY/PNQxqOKnUdSSDZEU2zaHzMX3f08MxUSN5J2sRSAJRdZ2t+luZoW0y4UCoVCYUOwKKYNjDu9LEGE7Xp4h2g7qSjogHJ9UHpCr1e13SMzKdspRvoo3plZW41hW3s8q+REGtYGFQozCoHKYSWNLVs9kV76iiuuAABcddVVu65hHXcUPIYZA7MQv4tWjI4TVnhGxwz1bOm0rc/Zrpt1jErP7p89u69YPzi8beRGo0JC2rOMXGGsLRwmN3IPMlg5Vi7XGzFI5eqj0oj6d1G5sPH4+nG1e2w+2SenMfWIXMcUhmHAqVOnzlzL4YCBnbDILF1iJueh3OlUmkgPPtcTYEglAVIhPP09yjWKxy+adwae71EgqMheYF2wzQbP2cjVlH8DWEoUuYktzdXLUEy7UCgUCoUNweKYtt8lMtMCVnfkyto201HYPcySo+AqtttmPV6mX50LYmDMIAoAYwye9bksJYgCwPDYcOKSyNLUdJemH+QdN+/EfVtYZ2b12Zh5SYJKLsE6tEhndrZ2vPYcuM9Zfdxulnx4FsOMgMfJEElplLW6tTUKLMLsnyU6EbNXaRtVMBF/rT1TY6HMnrheX54Kx5lJH1hCYW23+ebrsbas43nALNCPMfeNmW+WRlh5c7CUIbtX2ZH4fvEcZJ15ZgGuzjFLj9YdllD0WIDzGrwOOGlL9gyyMfZtzMKznquw0L0opl0oFAqFwoZgcUw70p1Gu2SV0jHyv7P7jVnZrsr8PI3d8icwH24v2oUxC7M22Y6TLReBVQtZ9nFkhu/17ryTVbqeyF/W9E9vf/vbd13DzMfvRFlHbiydpRtRmkJmcJn/MVslH5Q/LltvW7sjnSBbwrPHAbct8k1nqQbHFPDjxKyI3wF7Xn4seD5ZGfwuRCF3VRIJtu6PwnNaeeZ5wD63kf7SnqmxZjvHLCmycObv9j5bfdE6YdfOhTzd3t6WFuHAqu2MXcvjFEkk5lLlRhbb/Nz5ObAE0PeVyzWwhMyXz+8htymyzFZhoVmq5rGXWBIMpWdXlu/AfPjhyNPFUH7ahUKhUCgU9oTFMe3W2hlfPt7RA5o1KJ9rD9v53X777QCAW2+9ddenMWzPYlm3zMlHDH43xtbIHMXIGIK3emUGZWNg0gBm2n63ybojY3IsWfC7SeujHbN6bAfPOicvfbAkIsawzAL9QQ96EIAd5h35S1q5zLAiC2fW6/rnopCxZgMzX7Zcj56/tYv1qnatfUYW+myhbePG0bWAnefO0hq7Jkq/auUqZs8RsvzcZb9pTmPL89/XY+VdfvnlAHbeI2ZRXodv+m/rn40Xzz8/D3gdiBJDcL/YHiazuraEIfyO+3eapRhsBxP5l/M7xmyP7RT8OqfsVLjPvj62hOa1MPLbtnJ5rjC4D8CqRMX6y+t3NPa2hnA/uN9+nYvSdXpE0g4rV9l1RP7n/FyKaRcKhUKhUNgTFse0T58+fWZHZbu+TN/ATMEQsZdbbrkFAHDbbbftKstYrrFJYwO+bmOTtnMzZmC7VmNPvlz2k+adb8QMmH3xdxVX2reNoydlTJUZFu+K3/a2twGId5u2W37Tm94EYIdpvfd7vzeAHQbmy+XdK1siRzG114lIlEUoM7AkgnWi/l67xqQIV155JYCd529jztIVYGdO2HyzPltZJvHx84At2JnB2ad//kp3yecjNsj3KL/zqD4bR/u0MTHYWFkaVmBnfKzvV199NYCdd+Utb3nLShsV61TfPXrSd1rOgzlW68HeJCyh8LBn+i7v8i5n6gN23hebY1E0QPZFZ+mQX6v4HtZHRwzV6mQWzpKeSM/PemH2jWcduwczbetHFL3RwDYTtr5EkdcM7GHAa3EkiVFsfCkopl0oFAqFwoagfrQLhUKhUNgQLEo8PgwD7r///pWg7l40x8Et2LjDxFMmfgOAO++8EwDwjne840w9wKqo3cQiXqzLRh0mAmSnfW/AYaI+Tmtp/YlEaSrovQr04UWBLNqy+mzc2LgMWBVtqcAsbJThrzVRnfXDxvnmm29eucfaxikYrawonCCrL3rAxl8eHGyGA8hEho/WR1OPsFjP5pn1w6sg2DCLjXk4DaZvA4fqZJGnFz0qozEWF0dGmqx2YTFoln6V5yq3nY0ofZ+5fFMl2ByyT993u5cNjvi98ugJrmKJiux+qycK3WrPl8XGmVjc1hMLFczjY/BhU9mo1N5pK8vGx78v7K6pxitSjyi1CK+V0RrC3zmZia/PnpWNBc8ZG19TVfp5x6oOGwubO6ZaidSAPEdVcB/f7sNMCZyhmHahUCgUChuCRTJtQ+R+YLsgle6ODUOA1QQazLA4pV3E9mznZ+XaNdbGKBhEFDDE1xvtCLOgJh4RO2MDGmsHBwbxUMFDeIcfpRG1sbBrjYUaO42ClKgkFtGOlw2oena89jwiwzo2lFEJDjyLZSNGDn5ifecEMsDOc7bxsPlnDCt6/pmrFRAnm7E2Gjh4DLsE+nnA7MXG2MqM2Dkby7HLEhumeWmRzRFjSdZPY45mkOTHJnL/ifobnZ+71/eJjTv9PGADQOVW5csw10frM7sNPuABDwCwmpbX/2/z2dgkhwqOXCStDXYvG75GoXYz5gmsGgP6uu1aTufK77rvO6dWtnXG3kWbl1FaZps7bKhs4x2lkTXwusOpnX1/IsPUJaCYdqFQKBQKG4JFMW2G7bYi839me6xr8jtF25mxTsfYke22jF1EbiLMfHiHGIVNZfcjDj3odT2281NBQZjh+XtVAhQ+73egKum93WvjybtpYDXIhT0f2+lGiSJYx8xuKBwm0pcfBZRhmNuOlWcsyesJDfxcOMCCv4d1bfbd2BOzTR9chQOIGFTAHN8mA+sf2Y3PX8MMmPsXSVxY+sJ60SgRylzSF3vfmDX5cuxek2AYw7ZP3z+bbyyZYLsWP872LrPkRWF7ezuVblkfmH3Z84iCdLBul48/8IEP3NW2KO0lJ0DiNSSyG1EupixF8/ewdJDXhyjgjEqAk6XzNHAAFpbO8XgDq8+Z3UWj943nL49n5JbGz7IShhQKhUKhUNgTFsW0t7a2cNFFF6XO7RzUgJkBW0H7/zkIAOsPme0Cq7ss1otHyT/mAohEuh6DsnJU6eiicqx/HHQiqo/1n6rffvfMwVs4LGvEWJReiK2iPZtaJ3D/MAw4ffr0mWca1cdjyNKTyNqV22/sUQXiiCQSbMXLzMqzQHVOJTfx7VfSGWY+/juPO+s0s3SOKi0pey9EDJI/2aLe90VJA3hem444Ojen0x6GQab9BVYZqX2y1MFLFbiPPNfVWEf3qoRF0TrA85lZexRql+eQsib3YPsblm5F7yJLGa0/LLWztkb3Kg+LSLfOawY/4yiAU4+k4DBRTLtQKBQKhQ3Boph2aw0XXnhhmtRcpRKc+w6s7tjZnzFipMoPM7Me5/JsR2j6Og5z6utRjIDb7tuoLMx5HDO9O+9ieYfqd7zMAm23yrYAWZpVblvUb5X+MAPryv3YsK84l2+7fN9unhNsdap8oX3fVPjaKGUjJ2Fg9sphZ7mPgGZ47BMPrOpb+f2KbER4PqmwooYocYzB2qIs3X09qp+RRI6tgjO2NAwDTp06tfIuR5IiZmgcc8GPE9ssRH2L+uXrY795lgJl803ptCMvkjmGHYWLZoki2x6wfhrQUhK2i4jGJLIb8IgSfHC5/B5HNiI9oW8PE8W0C4VCoVDYECyOaR85cmTFGtaDdWAqqLvfOTH7sk9lZRsxUqUzz6LmWD/MUtI+TfcW6WhVpDIei6iNfC/7oUc+nTw2vJOPomupNKVs8Rn5knMZvOvPdGc94Gsj3S/r1ZSlrm8f78w5sULUftah8zhFUhyem8YY2cPBM0eWKvBYK6mK7xdb6tv3yMKdGbYhimDI7VF+53ZcsVF/DT+3KEkMe0PMJX2wtQeI1xQl/ePPSKrAjFNFP4zWEG4/21D4WBYcEZElVFG/lH82z+vouEoCxLEd/D1ssxHZj6i2cr1zbN0f4/dYScF82zLbo8PEslpTKBQKhUJBon60C4VCoVDYECxKPA6Mog8WY0buH1FYPX9P5rbDRh0sDvFgcRgHG8jcGgycsIPDpvp7lFicxUWR2IjvUaFDub3+HhYrZmJKfk4s/ovE2iqYSyYOs/GKwn7Otc2XxwkhOJBNZASjxluJNiPXETZWUmoZ/78KDRkF4lDqEUamwuH3isWG3jhHuQPacVYdRf3je1ntFKm3+DurHyLRdE9+dRON24gIlwAAIABJREFUq4Ai/liPmJ3vYVEsrzt8fXSMQ8Wyu6X/n4MtsTohcxNTouBMZWBtUyGK/bNUKqJsDVZQhndRUhN+FqxmyAJdzT3zc41i2oVCoVAobAgWx7S3trZWEl1ku1c2AMmYNhuiKYOWLCgIB2ThRAK+jbyLNGOiyDWBGYFiTxE7U8EaOF2pB4/X3I472oFzmznQTZTOUyUiiAJacH/WCXIQGQYpFyh+xr4eZRjI/eI6fLnc7sj4hetmoyIOzOPrmTPKzMApUXmso/ShioGoxBQZ01aGfNE9SioTSYV47DMGNwzDmT/VBtVePu6fNbNhXm8yIzl+pmwIGRlNsjEfu3pFbmm9cyV6n5RUS61H/hqV4EmNkT82J43MDHyVm2L0PlXCkEKhUCgUCvvC4pg2kAf555R1atcf7bqZ+fKONNrdKT04B+z39fPukXd30U6ed3Uq2EnUxmiX7+u1etZJDq8+/f+K4bG+Omo/I3IpydqgwGERI5jbVJRClL/PBSqZc7cC4mAWQDx3mWEbWJftn7UK+6uebSZ9YKYdSU04hDCjh6mwPUTmOsdjbW1i97d19KGM06dPr0jNMhaq5nyWXlPp16MANoq18rP2ZWW6a19G9i4r9p/pw7lcntdR4Cmld+d5Ho1n5sKmoFz2Mha9n/l0NlFMu1AoFAqFDcHimLZPkRdZH84Fso/0hcyoVZCViMWoa3nH5nXovENj/QmXHbWBv3PbIxZrn5yqLkrcYCyFd8Vq95rpmnmnrUKhRsfWYfQ9uiV+Xr7dSifO7Y522OqazFpdSQgypsDBW9R88FB2D8xMIsbPNiAqYYNPKMPJMg6C6fJ8i8ZRtT17bgYl7bD7t7e3ZWpbQIfb5eP7CcTh71XBlDLPGp6TzOAzbw71vitpDbC61vIYZMl7bH6ZnQ+/t9FarBLgZM9fSTWygEMGJcE8bBTTLhQKhUJhQ7A4pu2tONk3EdAB+ntC9aldJetVMgbM97LVo28T7+6jVIwG9ltkvTj7Qkc7Q9bzGzIfTMWSMqtp5R/JEoWon6xbYmYZsYH9WG9Gu2Tv2wqsSnQya+eMeQC5j6iBJSDR2PKczPTSiu33SE0UW83sCDgsrkoyEmHOfzoaM9Y1c1KVaJ4ZOBxr1i5+P6O5yEyX68n09+p7NNZz90TtUFbcyksiKk/ZpUTSLuV1kdmI8FzhtYPfxcy+hKWPkceQsknJQsiqd2EpWFZrCoVCoVAoSCyOaR85cmRlFxaln+P0b2y56HddnEDe7lWR0aIdG+90eZfvd2OXXnrprmuZJdu9EZuwazjJCO8qPbtgi0seC0MUSJ+t4xUiXbPavRr8d5XOka1hPTPO0nYeBJhNsC+sbxf7yyrpTcSaFYuJPA/Y1oAlPD1Rn9iXl9sRMUhmQPx8ontM/816cZWQx2OOaUfSDvV+9khneiKiZe8CM05+fyIbCuXvPScZie7h9vf4F7MkJ5MCqMhrXH8mfbC5a8hskni+qbHIJEo8h9axgeqRBnESnaWgmHahUCgUChuC+tEuFAqFQmFDsCjxeGsNR48elYYUHia+YQOTntB5c2b/mfEDi4StfhMV8v2ANgzzbTSRvYmYTp48ues7i5F8mawqsLawEU7k9mLXmHEP58SO2sridy6XRW1R31VY08wIrEdMPhfEBdgZLxMjZ0FAWNTM4nH+Hs07FjGzeNzP4cy1z5fpwaJ6NvJTgUAysCugn99cnxrHKKSwCu3KzysT+6pALP64XduTZMZfD8SuSixqZlVUFGo3SkDjy81E4CpkZ2YIqRKQZAFFlCGYCjecuc7ZuNmYZ6oOnhtzxpP+mApbGrmJGdR6kL37SzNAMyyzVYVCoVAoFFawKKZtyIxfDMwm2EArcvliFxXF5KJAKSqdHrfZ18e7Sq7XG5PZ7vTEiRO7PnuZArDDztmNKtph2zHbYbMbVBYYQRlWZbtlZplz7inAKtvoYdo9xmv2HEyKwWwjC53ILInZdGQ0ySyGDcT8fMuCZ6h+seFM1BZ/XZZshN2nIraopA3cth7Go75HbkJzhm5Z+OEM5mbKzzZ6Lmygxe3PmO+ccVl2rQooEkkx+Llw6NDIQNSu4aA6mWsUM/ket1SWhGXJmvaKqIw5d7GorZkh5WGimHahUCgUChuCRTHtYRhw3333rYRS9DsnFXZO7fr8/cz2sqAMXB/XY2XaDtXr/Jid2G7O9MZRMAXepa7DsA28a1RsNmujQqTTZubIQTei0Jc2XnxtxOhYr5ux59ba2rt0dr1jPaWvU4VHVWF0gdU+M8OOxlyxJWaMUQAgu9ZCQ6ogQllIWuVGE+n3WNrFLpSR/nouLW6ky58LNBO5C6pgQRFaa9ja2pIJKaJ2KtYcpXVV9iFZ4BLF8lR6YQ+bZ5YQxz6jeccpPnkeZOuCkhjZumqSLL/ORu+Y76dyqfTX8PcsnK2SxvBambmlFdMuFAqFQqGwJyyKaQM7bBuIGaIKTJBZN87tijPdBe9OeXecJaPn+hgRezmIXR1LEDKWwUyL9eDMboBVqcZcAhFfHp/rCXbQm5Bia2urq1wleemxXFXBVoxNe9uAuRCtEetgnamdYy+JKDUnSzyYgWZBPFjiYXMomt/KelzNA/9OchAhFQI1em5sr5I9L2aIPe8Vj1fEvpS1cxbyUlm9ZyxWMWyTwEWM36R9ltbVPpXkBdCBflh6E1m8M8NmCRuHnPbXGpRu20vpDMreg5+Xr4MlOophR1IOQzHtQqFQKBQKe8LimDawuuv2O3XenaoUcj3+rEoP3rOzyqyGeffN10Rsgi2NbaepEh1EzIctQbnsLGGIstSP9IVzTDVL2qKsoRUbAVZ3yxmYAUVsRjHTiBkykzY2Y+yFdfTetoHZgvJfjsZWWdlyu3wb2JdY6aM982FLX+U/n3ke8LvA5/29zMpUOOBID27jaW1VHgm+HGX1zX27//77V9rrx1z5hvO8jcapNwFFpMfnuWJMm8PNAjtzj58DSyjm9PtR2yNrdU6WpNLIRiGXrTwOwcweHFFIYaXDjiQk/P6o0NWRPQS3cSkopl0oFAqFwoZgUUzb9NmsEzFWA6zuttSuMdtNKutTFa3JX6O+Rzpfg+2AWU8cpfO0a3kXa/2N/Ko5ahf7ZbKle9Ru7nsWRUslT1CfUVtU/ZFuaR2dNrc/0ksyo2Y/6ojF2nMxS1zW9dr5jBmo3b2XpnAyG56Lka6P2b6yu4hiGFjbrF4Vzc57M/AYq4hv0TvIY8zR+rJUmnPJWqLIW9FcZBjTZklYFN1MfY/WI2V/0+MDzal5WSIRSWAsToP1g59pJHVQMQRUjAk/D1RsCWvH8ePHV+5hmwCVmCTq31yEssiiXvn4K123/z/q8xJQTLtQKBQKhQ3B4pj29va2jBWeQe1ms2sMGYNjPZSyTvY7Nfb/ZWtettT252wnzddkOkdmw+w/yf7CwCrTUZasmcWpYjrrWKszfDuYGc/FzJ7blXO7leW8Hye2CmdGwgzb18sSHN7VM3vy/ytJUmQBbnWbRErpZtk33v/PbIKZduZry+PH7MmXpWIIGKL3VukWM+a1jo+/MW2WYvh77Fmx/Uv0PBg87xSbzNIJqzXQSyTuuOMOAKspMrnvfn7b/OVPti2I4kdY3Alj1BzFMVtbVL4CQxaBTa0vkX6adeYsuYjWb9bf99jSnEsU0y4UCoVCYUNQP9qFQqFQKGwIFicev/fee6VxFLAqImWxdRQMxJcPaMOgnnu4HZE4nt0arG0sNowCZLCokccichtRYiMTl7JIN2oTG/6oBBlRW9YJXDFnGBSJqXoCsLTWcOTIEWkkB+hAEjzmXkyq3MPmwrFGfVIqlShgxZx7S1SPClubqVZ60w9GIkIW77MhF4+zP8bGhayqWCfwiCEysJtzafTI6pxLlRq9gyrRDb/TLLL1/3MwEhYr+/Mmrr7tttsArBo1Gvw6YGuEfSrxuLXRrxNWn0puFIm4eY7MGS9GLnTriMeVKioLvpMZCC4BxbQLhUKhUNgQLIppAztGIUBsoMFQRlA9AQR8nb6+aKe2l+AjVq7tQDmxgu1U/THe0asgF1n6OW5bFPhBJV/g0ITsogGsskq1M81ccBiZlIP7o+4/ffr0SoCRqN38yQzcj7lyiWFWHrmL8c6f56a10QdkYbdATiQTGTEa7BoVajViM2y8yOyPg574a1U/uewo6QMz6iwwj5K08DzLkj70MO0sfKVK56ueaXQtl2v1RUw7S/mp6rN7jPnefvvtu8qNglXxPPZzMWsrsGpwxnOF55Y/p6ROLGGK1lXlOpclm1EJViIJkpJuLgXFtAuFQqFQ2BAsjmm31mS6PiBO5M73+8/oHO/MWN8RJZaPEpF4RC5fBg49aP2KmLZdy4kBsrCSvHvlsqJABcyK1G4y220yg+/VPWf1ZoH75/Sv29vbK+PlnxszTcWEIj04s1bWbUf6W3bjUzrnKJiLnxvAqs2BDzikgptwoAx2BQRW3VuYrUQ2CMzK+Z1kPbyvj9/pHp26ShSRzbNM6hNdu729vVJe9L7sZd1RbcuSVjCTZgkL2wb4cjgIjQodCuy4h6mEQRnrVBKWzIaC3QJVEBcV9jhqW5b4Sc1vrjeyhyimXSgUCoVCYV9YHNPe2tpJRs9p/ADNeDOdqdJ9sN42YqSK2fOOLQqQYe228u+8885dZfp+8bXMdDjIigczbRUoI9ItKX2+0h/6a9SOtEfaodCjY4owDMMZvTawmjyjB1H5bGXPn8xyfX3MjlWClYj5WlpFbn/kPaDCsPJYM7sBVlmSlWuMP2LaKhBGFtqX7+V3LbManvNS6LGHmLMA9kw7sxdRbcnsOBh8PLPq53eXn7WX6rGkjd9lCy8ajYVdy4FZuOzsnVZ2H14qlAUj8mVlz0sFzslsn9Rzy8Jhr+Mdcy5RTLtQKBQKhQ3B4pj29vb2CsP2O1C2blS6F1U2oJliz+6OmQ7rj/3/HIpQlenLVWBpQKR3VczXdr6+PsV4lCVmtjvntke78jkWFpXFOrOeHW+mT1W+mcySohCxys+c++rbz14QzJ7mUjVG9UWSJqX/5HuNPfdY5GZ+9SouAN+bsTIlGcvm25zldoYsvaJJaNgeIopNwN8zNjbHqFWcAH+MWSszbT/fVIpZ+zRrcm8vwXNUIZp/vdKALLmR0l1n+mll8xSxZrVm9ISuVh4Dh41i2oVCoVAobAgWx7S9nzZHWgL0DinThajdu7J69texrpl3uJGFe0/A/HXBZUS+5IolR8nola5UMa4e68p1rb09MiavokNFUBbaqg6gT+KiWDmz5YjFMqvIoqcp9mrHOVKeL1dZpbPOMZLSsIU7Syqie5gxqqiBWf/mfJn9/+p9VfPPY27ueHuIiP3NSfR6mLaBrbwjmxNOs8vXRGPL84znm32aHzews1bxmssJUqJogcyauW1R7AKVXpXfwUg6yWut0m1HTHsdvXQmrVsCimkXCoVCobAhqB/tQqFQKBQ2BIsSjw/DgFOnTq0EAfDiFRPnRO4rVob/9P9HouzoXi9mM6MNu8fqZ/Gxv0eJVw5CTJ5BGT5lhjVzItvInWcuwE2EzKXHf49yGK+jZlCGY4AWzWVt4HLXEc2yQY4yEIwSRdg5NqCK1EAsruZ+chv9M44CvPjyIwOkSGQetTVSrbCIe25e+Hbzd3b1iYIi9c7RKKiTr5fHUqmRonVnLgxr9I5xEJ9MLM7l2bXmNsjia++CZS5ec0GdonmgjOPUZ9Z+DpPKqj1/TBnPZmu/gZ9F9Gz4nnXUfOcCy2pNoVAoFAoFiUUx7e3tbdxzzz0r6SK98YMdYyMf5TLg0eu24RmDcvXKElMYjKVbufY9YjwHwcK5DWyo4Xe8atfKBlVsxOSvUS4tWfpNFYgjSkjAiQgytx1DFp6VDbNU8oIowcWcIVKUWGUOkQEXG0yxQZBd6w117BgbqTH7i6RCBpXyNoJKRMOsLJNcqHcvk1zMMS2PzBUvura11iVpUWNq2Mt7HLFKDpCipBuRhI+NFnnu+Gdthm7MuKM1w5ftz825snnwe2L1qNSZ0Tuv3smewCxzRo3A/gxqzwWW1ZpCoVAoFAoSi2TatsuKnPNtR6ZYXeauo4KAMJv2bIfDYpo+iPW6vo28C+fdZaSrt3qMQa2jL55zwYnYnwrzGbkuMdROOtMnMxRTjVxzbLxUiEWre2trq2uXzQyhh5Upu4jsHqVz5fnhg13wfFPswQfzYVsGZmXcvyjUJrcpq5+ZNTNf1uH7Z8rhNxXTznSZzEyzEJS9zNcz7SiZSTaGXA63O3Of9PX5ecB95nDGkV0JS5JUGNvIlY2fuwo0E80dpefvCZjEjFqtC/4cry+8DkWhXbkMQyTZYRZeLl+FQqFQKBT2hEUx7WEYcO+9965Y0EbMV4XQ9GVF/0foCYavmLbB78qtTca+edfqgygYmC0x48wsGtmyUwXbiO63c8wCM90sl690W1noS05uwDotf8ykDxnTtjJZeuKhdtAq7GcExfJYB+n/N1Zs7c/YH0sDOLECezN48HujPCw8rFwOrsKszduV8Pgw61P6V99uHsfsfWbGyuwzk66xTrgH0djOeRpEa4had5iR2vz2fbe5ot4bnrvAarpYRmQ3YmAvAqV7jtZV9XwiXb1KpsTvZmR/ofqubGs85pIcZfYyFca0UCgUCoXCnrAopm06bdvt2e4n0t8xQ2Q9mofa8fboyGzXygybGZCvw9pk1/DOPdItMUvlMH5sVRn5Pqp0kT262mhX7NsV6bLUZxYGktuidFzAajhYTjmawcbLsw7W1yu/7aivCtwPLyGxVIgWNtK+G4vKkr8ww40SRDD4ubP+M7JXYMkOs+XIj1sliFASn6h/KnxlZIehLMozS3M+to6NSMQqe2M79Oi0+TizT2D1eRgyDw1lNZ7ZbCidLzPtqP9zKTIjqSGHSeWxUSF4/f8q9WwGJQ1QuvR1yz+XKKZdKBQKhcKGYHFM+/jx4yvs1hiKP6b0t+voXuY+fflqlxyxSo6Axvq0SH83l7RCWXlHbVSJCCJfRN4VMyILTd7Bc72ZbQDXnyUKMP2tfa7DtDNfWwOPcaSXVHozVYYHp221T2PekacAP0vFmqLnwc+B4wTY8Yg1KZ1e5KfPySwsXS7r4SOWPhclzhCxXPWeZu9TJpnw8O9TVJ56L1UcB39MWVnzO+ifASfyUH3OErko/+lsvjGzziRxcxbgc2tL1Ga+NooPoWxOMomLisXB3kjA6rq2NCyzVYVCoVAoFFawKKY9DGN6PGPWkTWk6QPtGLPazK9UsWRD5vepfK0NHDnIl89MO2I1HF+bd6nMsHzbVRo/G7+InSnrWrZaj/owp8vOdEFzDNuzaTtmjDFK18dl8zP1/eHxYMYTsT62alVsPep7FK/Z3xPpMpnZsidCxJZVBDLWG0dWymyhz4gkCTbfjGFzGw3e4tygGBWz/8z7QzHsiGlnFuYG8/HndztKZavqVBKDqA3MYvk6/t+Xy88rkvBlFuaMuVjgSl/t+3GQ0RxV3ADf1jnJRTQPVCyOSILC5ZWfdqFQKBQKhT2hfrQLhcL/ae/cldxWkiDalCt77f3/z1r7+jIUE4E1FCXVPcysBjkzGiIij8MXCDSBJtlZzxDCRXgp8zgpU7gKTiozKtPD2DSh4wqH0CSjyu6p8ppq32vdlwIsamwsLOCOrcao2t2xbZ8z5ygzFk1prgmDMh+5ABdl2mKKBU23TO/q26pAHXIcx2/3Sh9b39/379/leAtl7uM5c6ZAlZJV5mMGpDFVqo+DRXb651PHW8sXh+HtVJBlcg31feyem8a81r0J0wVgqu/b9D3lY1ey2NHLmKrUKDeuM2bxqQBL365/bxlwy+8Ci6AoXPrUlNLI6zGlfL0HFq1ywbMq1dClsE7BcpznKpCPuODDryZKO4QQQrgIL620S5n0QvqlVkuFM7hoSv8odsVBOgxkcM0QVIODolZzpbxqBdyVI5WhGzNVdb//TDGAXRMVfoaOUv1uHC5QkAV0pkIMu0A0dTz1nGspqZpMUBGyZKcr6brWn7lZ170CLOsxG8qs9ec8OGuGSkdxgXUMnlRqkPOJSkupQAaI1uO6pUpSc4fWkyl9y6lBPn6PGjyO466Uaz+uC1xyFoO19mU2z5TfdI08ptaVu+JBHReUyzmkSkrTKuSCvNTnqbnDueIKRPX3OuuGspSxTLIrmzr9dr5akZUo7RBCCOEivLTSLnpxlVqhMR1oKqFJuNI9UxrQFS5R5Qu5AuWqTqW91H36qnZ+yv5el+qjVvb0g9bxmEI3lfdzDUKUL8itvll4RJVyVNaMZ6DSZuOWMwUknOpT8QRU33U8l3qmxlTUvFdjP1sEwsVarOVL+aoUQ1p9+LlYXEX5hp1vW827M0WQeBxnMVAcx7He3t5+zz11XXYlVKc5v1PWykrDbfpY19KxNi7ljxYlFfPi4gU4//vxaBXkbwj33cfkSu4qhU04xsnq6VL0+Ls9WQWitEMIIYTwFJdV2hUJXAqNq8ipOINbQamyiwVVBRWpUr679qF91aoUex87V5dKNRMqBuUf4vGd71Ydz7UnZTGPtf6cN/oNqbAnpf0M6rq48orqs9Kvzn1NCo7XsuYVy372fbi5SgXSlbZrjcmxKpxSnJozOAuCa5mommhwTJM1hd8nNx+UolevkeM41s+fP++2UcWI3PdxOs5Z/+lUktTFK/T3OGXvsmbUc2fjf/rYChXxzfdw7tByNJVC3pWxVfPDRY+7z9v36x5/NVHaIYQQwkW4hNLuK52KGi9fduUzliJSPkGXJ+kigJUiZftBvq5wJTVdLm5/j1OxagXqXpseO18O/ZVqle6igidrAKNca9vJp83nnvFp9+PSX1v7ZW5/P/cuatcpt0nROStNL/fp9k9V29nNyUkt7ZSV8mlT/TOKfFImLs95UkC0jDgl9KwiqshxFwvS70/Xl2Nwed8ubmCyZqmsAXdsF4+yqwWhtpnO7TO/Oy6eiJYkfkfUmGh1UEqb9SF4TdTn47We6kN8BVHaIYQQwkW4hNLuUJlRvdZt96u4FadbEfbVrPOxTKvWXVUzpRimhidqn6qVIFeIfL6vQJXffi3vH5/ygl1DjOl4bBCifMd8badydjDPu8ZJf9qZ6PEaZ1l6lDIoGCHr4gf6c4zMdS0Ueb/DbZXSdqrcZUv08dYtG4WQKarbWRZUVUJnaan58Wx2QVXTm8bAmAzOB9Wsgjif+aRmeT1czInaj8stVzEG7nNMPnznq59qCuyyYSZLgps7U0S9U+f8nZuq970npuYziNIOIYQQLkL+tEMIIYSLcDnzOM2HZa6aUrAKmk/OmGh2ReqnFBV3XBXgMJX+U/SAJJoPadJUzSwc7jz24zlz7NTsge9lEw2awte6D0B7b+pFHYMBiPXZVAlXHrtuGcQ2pTfVcWgeV4FvPN6Za7Yr/kBTtzqPLuBJFbtwQUMsm1r0a7oriKEC086m6r1nfpSJfC3tgmBgpjMbT2NwqUqFck3tShQr1wp/x6agsl3g2SPn9pliVS59VLkbXIGURwrOOPdjf+yO8ypEaYcQQggX4XJKu2AgE1fCfRXrghu46lOtEl1aEwNSpoAQKmve9v3sWiROQV71XAUGcRwqlW0XiORS0Prncsqhw8Cq+uwsqlIpfeo9H0Xtl01a1KqfBV64UneNL/q2PHe0Zqjj0SIxsVPaTBfr55OqmcFFtBL053YpPypAjIrHNQyZGvDsgqae4TiOUw08eO0mK5ArK8zX1eNdQagzDS4YgKrOk/ut4nWavoPOOqPmx66EtBtHv+/a5aprMQXwdvp2Z4rSfCVR2iGEEMJFuKzSpi+0Um+UL9A1D6ASUsUh3KrO+eL68Vz5Raozvl89Jkq9MK1qWmW64h2FK+6g9n+mUUCNt1Sta0rf07IeacX5DHXMmkN1/ft1ceVX2Rqxiv2o9BbOM6ra/jmpfJkSNfkYp9SeTo9P4PGc2pysNLQYTJYXqr9HSlEWVEIfUfzidrudUlRUk3Vdag6pbQt+Vr6uvtO7NptqvrH1r0tX7cdhnA/nkLIAcg66MT5SEMr9dvb7zoftYh7U/vl7148zFV55BaK0QwghhItwWaVNhUPl0ws+uGYP9A8pnzb9nsWkJqgauCJU/s/3QMVBZaf8hFNDkI7yZfM99MOqMqZc0XNVPDUMOdt68lkYpa6KM7BtI7MWVNGGmoN1e6ahQp1bKjln8envcZGyhSrFW8ehlYlzSMV5OH/nFPlO6wKVnHqv8xt/VHTv7XZb3759s/EdnZ1PVsUgOEU9nUeXteCOv9b9XHRZA8oKeabQC593VpldWdP+nIten5Q2f+t3pYXV+GtbFedxpqnIVxKlHUIIIVyEyyrtglHI06rL+ca4au0rw1o5U4U/UrifKvOzfSRO6ShflvNhcTu1H6cUptKudZ3cinryZX6W4q4xVOR6Pwc1XioqKm0V1etiJvgepV5qW9dgQ8VDuHnlonv7/Z3l5YzC4vVX14vXf5dpsZb369MS82wZ07V+ff6pzDAVKf3H9fswxWE4a4I6Hq1yjIdQPm3nY34kIpvnkN91FWW9Q1mSzipsFVHvGoQ88rv6SGxIfNohhBBCeIrLK22uSGul2yNkXbQrV5FKZbAiGhuSTBWcyN9asT2St8oVLv3g9LGq9xAVTU7/ExXrlI/8t3xKVNX9/i4XVfn++Vr5tulP6+eW6pxqku9dy0eNc34rpb3L/1XXxWU6OIXdvxuuiQVV4JRZ4Sxm7+F2u9kc5c7ZBitr7Rvd8LugYk7ov+VcUtXG3Fin+Juz1kBlcXHz4Uwmz05hq0yeXXOlRzgTaZ487RBCCCE8Rf60QwghhItwefM4zUfKJOXKCJ4pVzeZv9R2fUwu9eGzzeQ0iz1iXnbmOJXyw8euYEp/jWOaguX43N8yk1ca4Vr3PcOdOZmNQ/qzC6WhAAACUElEQVR9lgLl+VOunHqOgUfqXOzm2Zn+xoVLG1MBQW6enwl8ctuoQC6aj98TcOZ4e3sbSwjXeF2/eeVeoInbuSBUsRV3nvi9VClf6rW1dOMgl7Loggqn3y5n+lbX1AXrulveV8d5hCk98kyp2K8kSjuEEEK4CJdX2lyhqxWaW5G59Ab1XK26GACi9l2rVQarnS1g8FGcSV2gkqLSnopGUIXyuKowArdxhW6mz/NZKAVXaWAsTFLX8sePH/96by/qw2C72nYqRcl0MB7XWY36azvlPSltWqoYENfvuxQmpqVNhWCmVK/ClbZ8JOBy4jh+teU8E+DEuT0dm3Oa27rv3lr355jXlsVp1PF2QXPqNbevyfqwK0U6BZO5a+mKCk3Hfybla/oevSqvPboQQggh/ObySrtgysLUmtOtss6ssF3zduUnorLm8T6i0YHijO+H58utll3TgbXuSwDyuJM/yj3fVftn+C4fpcZQfm76mgulKpi+VftQLUD5HpdKxmIe6r1O4Sm/rEsTcgUs+Bn7Nmz6ouY9C2QUkzpzBUA+qoxp7WNS2up73sdSKOXroFJUpTRdKV9lNdkpevV4p04fsYA5lawsCG6bqTjWFCvxXtR5oLXpVYjSDiGEEC7C7ZVKtN1ut3/WWv/76nGEl+e/x3H8pz+RuRNOkrkTnuVu7nwFL/WnHUIIIQRPzOMhhBDCRcifdgghhHAR8qcdQgghXIT8aYcQQggXIX/aIYQQwkXIn3YIIYRwEfKnHUIIIVyE/GmHEEIIFyF/2iGEEMJF+D+9YXjsY5xdJgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm8ZllZHvqsU1U9VHX1KDKZK4omRqOSK0S8KqBRNDhEI2FQQaKJcEkUZ1FypcFZf45BIo4E2ojGCWcmbQFnnOIEOHRzUbql6aaHquqp6uz8sfdb5z3P9z7vXt+pU3X2h+/z+53fd749rHmtbz3vtNowDCgUCoVCobB8bB10AQqFQqFQKPShfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAjqR7tQKBQKhQ3B7I92a+0ZrbWhtXZ7a+0qund4unfteSvhhqK19rjW2rWttS26/rCpzZ5xQEUr7AOmefH5B5T3MP2t5N9au661diNdu3F6/n+K9H59uv9GkQ//XddRxq3W2h+31r6Crn9Ga+31rbV3ttbubq29rbX2c621T3bP2JrzAR3tcO1cWQ4SU91evM9pqn7xfzfuU16XTOk9d5/S+4BpXfy/gns3t9a+fz/y2Q+01j6utfY70zh9R2vt21prF3e89ztJv/zcuZbr8BrPXgHgqwHsS+f9I8DjADwfwDcA2HbXbwLwUQD+5gDKVNg/PAPj/PmRAyzD81tr1w3DcF/Hs3cB+IzW2vFhGO6yi6219wXw2Ol+hJcCeAldu6Ujv88F8GAAZ3+wWmtfDOB7MLbZtwM4CeDhAD4FwMcD+NWOdDcNLwDwe6217x6G4a37lOZH0fefBfAnAK511+7dp7zunfL7//cpvQ/AuC6+NkjzCQDevU/5nBNaa4/EOB5fCeB5GMv97QAeCODzZl7/AgDH6dpjAXwLgJ8/17Kt86P9agBf1Fr7rmEY/uFcM/7HimEY7gXwOwddjsLG49UAHg/gmQD+W8fzrwHwiQA+C+MPseFpAG4E8HYAh4L3/n4Yhr2M168A8LJhGE7RtZ8bhuEL3LVfA/CDLJFaKlprF09zuAvDMPxRa+2PAHwJgGfvRxm4P1pr9wJ4V28/rVOHYYy+dUHWq2EY/vBC5NOJrwfw1wCeOgzDGQCva60NAF7SWvu2YRj+XL0Y3WutfRGAUwD+17kWbJ2J8g3T53+de7C19q9aa69trZ1orZ1srb2utfav6JmXttb+rrX2L1trb2itnWqt/VVr7Vk9hVnn/dba+7XWfqy1dktr7d5JbPeZwXNPba29ubV2T2vtT1trn95au761dr175pLW2ne11v5sqt/NrbVfaK19kHvmWoy7SQC430Qj071d4vHW2le21u5rrV0TlOcvWmuvdN+Ptta+tbV2w/TODa215/UseK21Y621b2mt/c3UBje31n66tfZA98w6/fbI1tpvTaKjt7TWPmW6/2VtFMfe2Vp7ZWvtAfT+0Fr7xqncfze9//rW2iPoudZa+9Ip7ftaaze11l7UWrs8SO8bWmtfPLXHXa2132itfUjQBv+ujaKrU21U9/yvRmK6qezXtdae0lr7y6kd3tRa+xj3zPUYd84f3XbEXtdP9x7UWvsfbRSn3TuV+xdba+8910dr4vcB/ByA57XWjnY8fzeAn8L4I+3xNAAvB7BvoRFbax8J4EMBsDj+agA3R+8Mw7AdXXdpPrK19g+ttZ9prV2SPPfhrbWfb629expbv9la+1h65lGttZ9y4+8trbVvaq1dSs9d31p7Y2vt01prf9TGH8dnT/e6xx2AVwD4HE7/QqC19orW2l+31h4zjf27Abxwuvf0qcy3TOX/g9baZ9P7K+LxaR053Vr7wNbaq6Y5ckNr7Wtaay0pyycD+JXp6xvc3Hn0dH+XeLy19qzp/qPauFbZevvl0/1Pa639yZT/77bWPjzI88mttd+b5vy7p/Z46EybHQXwCQBeMf1gG34cwBkAn569H6R3OYDPBPCzJOV6aBt/l26a1op3TGP3Kp0agGEY0j+MYsABo3jgWzGKS953und4unete/7DMC4QfwDgiRh39r8/Xftw99xLAdwJ4C8xsoVPxDjJBwAf11GurvcB/BMA7wTwZxhFdp+EUTy3DeDT3XOfOF37OYxims8D8LcA3gHgevfcFQB+CMBTMC7cn4mRxbwbwIOmZ95nemYA8NEAHg3g0dO9h03XnzF9fyjGgfBsqt9HTM99lmvrNwC4FeOu/V9jFNvcA+A7ZtrqIgC/hVEc+f9NdX0igB8E8EF77Le/APD5AD55Ktc9AL4DwC9gFHd+/vTcT1JZBoys7jcBfAaAJwN4y1Svq91z3zQ9+6Kpz74UwIkpry1K70YAr8I4mZ4I4AaMu+TD7rlnTc/+yNS/T8Y4dm4AcNw9dyOAt011fyKATwXwRwBuB3Dl9MwHA/hDjCLJR09/Hzzdew2AtwL4HACPAfDvAXw/gIfNjenev6ke3wDgQ6ax81x37zoAN9LzN07XHzc9/z7T9UdPaT0cwPUA3hjk840Yx97Zv47yPX/q+y26/msY2cZXAvinPWvO9P3xGMX33w/gEJXPrz3/N8Yx/sap756AURx5L4CPcM99Fkby8akY5/CzMW4mXkHluB7j2nEDxvH8OAAfts64m5595PT8x+/XGIj6V9x7xTR23zbV83EAHuX66f/FuB58IsY5dwbT2jQ9c8lUdj/GvmV67k8xrkWfgFENMmBkpqqcV0zPDwC+EDtz57Lp/s0Avj+Ys28B8DVTPj86XftmjPPvSVP7vxXjeu3Hx5dgXNNfAuDfAHgqgL+anj2alPMRUx6fGdz7WwAvX7N/vmBK7xPp+hswrqNPxbhWPAnjmvzgNL2ODJ+BnR/tq6cB8CPTvehH+6fgFrjp2uUAbgPwM+7aS7H6A3sxxsX7BzrK1fU+gB/GqIO7ht5/DYA/dt9/C+MPe3PX7Ifz+qQchwAcxbiofKm7fu30Lk/gh8H9aLuy/DY9990YNwIXT9+fNr33GHrueQDuA/DeSRk/f3r305Nn1u23x7hrH4adyeUnzXcCuB+rC+27AByjNrkfwNdP36/GuNC+lMr4uVyP6ftfATjirj1xuv7/TN8vA3AHpnHrnnu/qe2+xF27cWr3q9w1W3Q/2127HvQjN10/AeCL15nU6/5NZfmG6f+XT310xfQ9+9Fu0//Pna6/GMBvqvpM+UR/HzBTvl+xdOn6PwXwv10678LIXh5Pzz0DO2vO50x99ALRDn7teR3GjdhFND//EqNYPiprw7iOfS7GBf4ad+/66dojRN7puHPXj2D8kfva8zQebkT+oz0A+KSZNLamdng5gN9119WP9q4f6Kkd3wrg52fy+eTp3Y8J7qkf7a9y1y7COD/vwbT5nK4/aXr2I6fvV2LcwL04GIOnATwrKePHT2k9Lrj3JgC/tGb//AZGouLJRpvG9Reu299r6ZGGYbgNI5t6emvtn4nHHgPgF4dhuN29dyfGHe9j6dlTwzD8unvuXowdf1Zk2UYL9bN/676PcZD8MoA7KJ1XAfjw1trlrbVDGBfmnx6mFp3S+wOMu+ddaK09aRLH3I5xAJzE+MOg2mQOLwPw6DZZy07leypGlmq6p0/GuFv+LarHqzEuCo9O0n88gJuHYciMINbpt5PDMLzefX/z9PnaYbc46c0YF4IH0/u/PAzDSZfPjRj1ZmZg82iMk5OtlF+Bsb25PK8ZhuF+9/1Pp08bBx+FcQPyY9R2b5/K+BhK77eHYfAGMZxeht8H8JWttee01j40ExcaWmuHaJyvMy+fj3HsfeXcg9PYvg7A01prF2GUNrxs5rUfAfAo+nv7zDsPQWCsNoyGWP8SY/99I4A/xiipelVrLVK7fQnGTeJzhmF4fpbhJHp+LEad4bbr44bR6Okx7tnL26hm+huMm8P7Mf5YNQAfSEnfOAzDH4ts58ad1ft+jJvGh8zUIVvrzgWnhmF4VZDfB7XWfrK19g6M8+p+jJuX3nXsl+yfaWz9OfrmyLowkTqG0ejyBgB/PgzD37lnbA36J9Pnx2IkUzzn/3b64zl/XtBae7+pLC8fnApoaq8/APC1rbX/ItQqIfZi/PFdGHf2LxT3r8ZoIc24GQDL6iNLwXsx7u7QWnsYxoF09m+61vX+hPcG8HROB6MlIABcA+C9MP7wvTNIb5fRXWvt0wD8BMbd+2cD+EiMC9ktlO86+BmMP/ymb3z8VG6/oL43gPcN6vF7rh4K1wD4+5kyrNNvt/svw471MveHXed2iQwZ/wGjqsDKAi7PMAynMYnR6d3b6LttdCxf0ye/Fqvt96FYbbtd6bmNU0//PhnjRuerMLLKv2+tfd3MD/HrqExf15GPle1vMUqTntPIfkDgZRjF+88HcAzjWM5w0zAMb6K/OSOmSyCsl4dhODMMw+uHYfivwzB8AoD3x/hj9/xAl/cUjOP2p2fyA8YxcQij+of7+L8AuMr1wY9iZHHfi1Es/CgA/9mV3SOaE4a5cedxNwCp0+5Y684FK3YErbUrMc6HD8K44fsYjO3wY+gb52emTb0Hr737hWhdmVtrbM6/Eavj4QORr5eWdqRbvhqr/Z7haRg3g/8juPeZGC3Unwfgz9poY5HaBQDrWY8DAIZhONFa+2aMjPvbg0duA/Cg4PqDsL45/zswDiS+tg5uxag7+NYkD9tlRsZCD8Ru14SnAPjrYRieYRdaa0ew+kPSjWEYTrbWfhajKPD5GHe7fzsMw2+6x27FuMN8kkjmxiSLdwH4FzPF2M9+m8MDxTXbWNikeBDG3TuAsxKIa7DepAHGtgNGsWtk9ancndbGMAzvxPgD8J8nadTnYXT7uQXAfxevPRO7XUTWHeNfP+XztR3le2tr7Xcxum7+jJes7CNuRbzgReV5R2vthzC6gn0gdjahwKh7/gEA17fWPn4YhtCIbcLtGEXZ3wchPRiGYbuNRmz/FqNY/XvsXmvtQ1URe+rRgasxzkOF/VjrFKI6fCzGTfJnDMPwJrs4rWXvCbA5/9kY1RgM3nB4vAXjb8KHYHSnAwC01i7DKEn4wTXK8XSM6oa38I1pPD8LwLNaax8M4D9gtCu4GePGMsReRTAvBvBl2LEo9/gNAE9ozh+0tXYcwKdh1BF1Y2Jwb5p9MMevYhSP/vkwDHerh1prbwLwWa21a01E3lr7CIx6T/+jfRRjh3o8DavuMrbrvhR9PwovA/C5rbVPwmigxRuiX8W4iJ0YhuHN/PIMXg3gKa21TxuG4RfEM/vWbx14QmvtmInIJ0bxaIy6MmAUld+HcYP0OvfekzGO2XXL81sY++ADhmGIdrx7wb1Y9cXchWmifm0bPRrkpima0Otg+uH7PgBfhD73nG/DuJi86FzyTRCpHNBae/AwDBFzNc8L/lH+e4yGU78O4NenH+6Q+U4b3zcA+HAAfzhoa/SLMc7V++n6M8Tz54zW2oMwMkDZz/u01q0D8zg42w5t9HB4wnnO16+L5xOvxyjdeP9hGH58nReHYTjVWnsdxjXzm53K7ykYx45aQ3ehjR4nD8dIcOfy/AuMarVnY4Zg7elHexiGe1trL8S4C2Z8PUarzNe11r4V4y7vqzEOEiVSP5/4Ooy799e31l6EkZFehbFh3n8YBosq9XyMP24/21r7AYwi82sxLiR+AfhVjEEqvgvAL2LUhX8RSGSM0SoQAL68tfYrGMVJ2aR8Hcad9Q9jHNAvp/s/hnEn9rrW2ndgtJy8COOg+HSMO+ZTiHEdgP8E4McnKcnvYvzB+SQA3z1tAi5kv90N4NWttW/HuIi+AOPO97uA0XZiquPXtNZOYrRJ+OcYN4lvhNOl9WAYhjtba18J4PsmEfKvYNQxPhSjHvT6YRjCaGEJ/gLAs1trT8YYKOcujGPltRj76s0YF8R/i3G8vXrN9NfFt2C0yH0sRtsHiWEYfgajSuZ84fUA/kNr7ZphGG511/+stfZajP15A0Y7gydgZBs/OQzDSgCPYRhuaq09DqPluf1wKwb6ZVPer2qt/TBG0fZ7YbQqPzQMw3OHYbijtfY7GOflTRjZ7+djRzVzPvCR0+fr06cuLN6AUSX3kmktvxzjWvkPGL1fzhfejHE9/Y/T3L4PwF96G5f9wLSGPBfAd7TWHoLRhukujP38cQB+ZRiGn0qS+DqMa83/bK29BDvBVa4bhuHP7KHW2hdiJLEfPQzD71IaT8e4SXkFJ95GV9tXYvR4egtGQ8UnYlz7X5PV7VwCGvwoArHDMAz/G+Pu+E6McvyXY7SofewwDH9yDvntCdNC8EiMP3LfhLFB/jvGxe3X3HOvwSie/ucYRSJfDeDLMS7Ed7gkfxCjEc2TMe64noCRjfpngPEH/cUY3Sx+G6OBUlbObYwd+FCMhlB/Tffvx/gj+4MYF+dfxvjj8HkYmaSMijW9+/ip3vbuizEuaLdNz1zIfnsZxh/eF0153QLgX0+GjobnYVyE/w3Gtnzu9N6nJCxKYhiGl2Dc3PwzjHX7ZYybssMYDaLWxbdi3Gj9EMa+fQlGi9Y/xLhB+imM4+ijAHzOMAyvFOnsC6Yfx+88n3msgVdibItPpevPw7govRDjJuYnMLbPc7HqP34WkxjxcRg3Qdc34Wc7jME5HoVRNPq9Ux7fg9Fuwf9gPhWjEdD3YTR0uxnAc/qrtzY+FcAf8Jw+SEwbn8/C2B8/jXHT/t8wjtvzme9NGNv6IzH2ye9j7J/zkdf3Yvwh/BcY18pfwkjOBuwYDap3fw/j2vMwjGvFCzCuvf+JHt3CyL536aEnNcyTAPwCGbUaTkxleBbG9v9pjK5mTx6GIY0M2JyxdIHQWnsfjH6X3zgMw9cfdHneE9DGIDPfOAzDbJCewuaitfZSjC45n3DQZTlITIv3TQC+YhiGHz7o8hQ2H/vpVrDRmFxGvhOjePNdGK1avwpjMIgfOsCiFQqbiBcA+MvW2iNn1ELv6XgmRq+U/bKlKPwjR/1o7+AMRmvlF2G0UD6JUe/z75XxS6FQiDEMww1tDNW73+FbNw33YgykxMarhcKeUOLxQqFQKBQ2BBtxsk6hUCgUCoX60S4UCoVCYWNQP9qFQqFQKGwIFmWIdvTo0eHKK6/cl7R8+FYO5Tr3vTfdcynTuT4b3d/LO+fy7PluC37G7C/e+ta3vmsYhl1xtq+66qrhwQ9+MLa2ts65bN7Ow/7nz553e++t885ebFDWeacnv94yZW22Tlvsp93NTTfdtDJ2jh07tmvdsbFjYwkADh06tOvT7vH1aN3hz3PBUtI4X1hnvK8zVre3t3d9njlzZtdnzxi74YYbVsbOQWBRP9pXXnklnvnMZ55TGjaZLrroorPXDh8eq8mTce67h7rXMyHVJiGb4FEZ1Lu8kHB9evKb+/TlUe22TluoNrG+ivKxCfaYxzxmJeLXQx7yEPzET/zE2X63z6wvbaKePn16V/r23f9///3373rGPnkx8OCFgJ/hBcS/oxYb+8w2Fir/6Lm5/HxbGFTd+bq96+vN1zhf/u7f2Y8f72uvvXZl7Ni6Y+lffPHFAIBjx46dfeayyy4DAFx++eUAgOPHj599FwCOHh2jgl566U50ThvLR46M4bz5h53HYQQ1D3vmmqWbzU+1zsylGaXPZc7y4LmgNsf+uWi++Gej+XvffWPMKZu/J0+OgddOnRqDR95yyy27vvt8uNxPf/rT00iDFwolHi8UCoVCYUOwKKa9H4iYITNQJULNRKvr7HB7xfF7EaXtl2hrXdbid7zGGNROex1k7bpumx85cuQsu4nElVxu3rFHmBPjKvYcPbtOm88xLF/2ufbvEfFzfSx9Szuq11y/WHtn1zgfThvYqbtq83PFMAy72iSSZsxJonxaDGZu68xtnmOc/jpzLyubyo/zzcaO6kOfB6/Bdm9OAhc9w/0UlcPGm40zWx9YImsM3D9rjD0axweJYtqFQqFQKGwI3uOYNut3o2sRC5vD3A57HcO37Hqv0UqkY14H677jd9i2E1X6/UyPrK7zDtzfs0/TDap0jhw5Ig2GfDqKafcwYsXyoneZRShWsxf06CIVC/Tl2IsUYC/vqLKxvYLB14/ZOLOn/UaUbo+elp/rnWPr6JXPxbgt6jfFXvfTiC5bD5jF9uj37R2l4/Y67bl+Y3snn65K/6BRTLtQKBQKhQ1B/WgXCoVCobAheI8Rj7N41Ytd7BobIeyHWGodg7Se9OcQGbP0iu6zdwzK8MU/x2LWvbifqPpkhmiZQUhrDYcOHVrp66hMXG5135ebjV5YZBa5filDGU67x32L70dQ46BHjL2XfJWbWOa2o4yGsrFjfZm51+0n9mJ0F4HHrTIu5Of9/9xOmTHbnKGWIXPb6jWiVWWYK+ucuDozvOOxo8TWXo3Gz6j6RGuL5WPuYktBMe1CoVAoFDYE7zFMOzNAYjcgFcUo2m32MsTIAImxl2hZPZhzuViHaffuuIH+oC49ZY+MA9dh2vZ8Ng7mGG/ETDiYCgcHySIrqSAkmQuWYj49UiH1TMaiVfCWLMgKX+PgNMyEIumDQRmXZWz3fLuAqbL6MqxjkKqkgD1MW+Ubgd2oOP1IUqHWjjnXrww9UQnn3G8zCZmSlFnZskh2/E6UVhbIaAkopl0oFAqFwobgPYZpG5tmvTWwuuPlnS7v9rN3+XrkzjMXGtLQE4hD7QwzHQzvOKPd7Bxz20vQE6XDi8rIaWUuX4qZMMztC8hdOVRZstCJfE+xTK9DUyFP+XvmgqOYQo/LHzOvSBfI5VdlzOplOj8lscjqx2W161EoWca5uCGtC66TYp7r2BzMXY/uZbYaXDblmhlJdlS+GZilrhPiWUkhMijpUya5sjLaGFXrTZT/OnHJLySKaRcKhUKhsCHYeKZtYeiYYXkLwnV1rhGrVEynh2n3nCjTqwfPdEt8T7FaD6Unzna+cxbmkW5J7Yq57JHVf08wnNYaDh8+vPJOxCqUPYKSbgA64IIdSBAdVmC7e9aDcxoRE2UreKtPJEniunLAEqV/j8rNbcFM3Kc314eZ5wG3fcbaVH043wvBiDL7B18WQEv0mDUbeg7lyfTgc7pYlrxE9eJ0FXv393huqzQzZO0490zWRiypUlLPqN/2I4jQ+UAx7UKhUCgUNgQby7Q54DszkohhsVVlxqwUlH482o0pP8LIulNZ7faAGVu2G+drvTvsCIo1RYyOGb2yCYikHL36rq2trS4rVMXYovwy/3+ffuTLye1jz3BdM2t1tdv3R8/O5cvjP9Jp87tKHx+VxebenL43Autd12E159tf20NJe5REJHpW+RdHdY+YbZRW5lHBfZv1i9LZW9n4iFr/DrdBxmIjmwVfD8ufx1QEZTsUSYWsjCaBzex99mIxfyFRTLtQKBQKhQ3BxjFt1gcxA1rHAlwxg0zHyMww2oEra8Ys+hCz5Dkdd7QDt92r8s+M9MWKzarDNKLy9wTh72VUXs/Hz875afuIaFG5jSUoxhvVh/WOtlNnK/JIp816b/u85557dn33fc1W6UoC0yORUNb9Pf6z3ObeRkRZ76p0M2bHuvSoHVU8BW6j/YYfbxdffDGAnXYwSQdL+jyUnp5ZdObjryJ6RXOC10BOl/W6/v/ongfbOAA784jzYxuEyJrboDx6rF2jOa/Wt2gecH6W3iWXXAJgZy5G0jV7VnkvHBSKaRcKhUKhsCGoH+1CoVAoFDYEGyEez0SBLK6OjLxYXMNGQyxy9yIZFSqRRTQ9RmUq2IHPh0WJymgpEwn2iNrnQgH2GF9wQJvMVUIZuPD96CzcHrGu3ed0oyAdbHRj75gI1LcXG2Ip4xS7byLv6Nq9994LADh16hQA4O677155h4NAGNjYJ3JrUa5FLO7zom42HlIqnCw/Q4/hFRs0sVg5a0elxtrvIBhWPxsP/v+jR48CAI4dO7ar/NkZ3Ly+sIolctGy/zlwjSFzF2QxeQ/m1pdIbaFUhJaGiZ4zNzETg/MYtfY2MTaw6taryhq5b6k1mNP077Cb5VJQTLtQKBQKhQ3BsrYQApmjfc8BB7ZbzcJHAvHO1HZ87GJjzxojiFxwePfIu72oXnOGWufinhYZhjGUq48vD+9SPSPxz/o8eHfMLJ3L7J+1MniGqKDCjgKr/cBtnbnbKRabufzZuPNsAdDGZlE6cwElojIqlp4dGKH6m/sa0AfvGNjgLwvMosZ55DqlpGxzRlTrImJfNsYvvfTSXXnyfImCnbB0Qbkw+uuZyx2ws+74dU4ZbFo9rOw9B4ZwfpHLF9+z8ptE6eTJkyvPGqyNrR4sjeAx5O8pQzRD1AfM7K1sUVAnK9v5NnTcK4ppFwqFQqGwIdgIpu13Opku2T8b7UCVXoh3yX6npnbJvDP0bIIZNrPKKMCAYlCsL4r04j07d85PHafI7lARI+c626eVNXODYYYSsRp+NtoNRxiGQYYq9Xkws+ZQpL7OzECU+4elaSwDWGUlzDwjlqOCw/TotJXuX+nf/f/M3DKJj5Wf21O5v0UBOfheD5tRzDqSqihJkkr30KFDK+M30qdaGayfeT76cWx1ZFsJ5Srn+5Rd4ayd2H3Q19mYNNvwGKs0W4rLLrvs7DssKWJ7BR6r0djhcL3s6hjZCPH8tLZWLnUZLE22HfHXeA1mCVPkDhtJJpaAYtqFQqFQKGwINoJpe+ZgOzHWbzKr6TngQFmdRuxMWX6zHse/wzv2TH/L7EiFTYyYntJzs+7Ul5GZgtILKitzD2Ze9t3vklkfybq6iBnP6a48zHKcx4XfQXNdlH41YgY8RpgpWn2iXT4zAbOqjcYls0ked5HUYe7oUma3fgxZedlKObPE5jZWAY4ij4BM/6jyVUxehdH06GXcUUCdaOyYxb+yh4ks87mOLF2KpCc2d+bmn29be0c9a0zb18us4TmYiZIK+Pa0scNSAcufLcP9PV4jzRqf13dvL8PjeM6jB9iZc1Z3ZbmfBeNim52DRjHtQqFQKBQ2BBvBtP1Oh3fVavcdMdI5S9Uen1TlF+79SpV1OO88/U5xLkB+ZnmuwjvaZ6brYcts5Xsb6ZOZmbLe3efH6Vmfso4r2i1HbRzB6yUjXZXSuapQkT5vHhvKB9tYtL/H+kgfr1rAAAAgAElEQVR1WEKUD7O+zFKa68y6RWZE/n/lf97j4WB1Z7/diBGxHpSt06P8slCx/p29Mm3Tadv8jHSZmZW4r0dkp8LlVTYgke2O0mFH65xJAQz2jB+TPm3/v2LarFOP2pPnRCb54bWBP9lbx6/9rN+es7D35ed8s+NjbSxanXv06hcSxbQLhUKhUNgQLJppZzoRxZYyH2hmjcpX2DM6ZqC8m8usa61sXJaMVXNZFFuKpAHZEXVcDuVjyzpn3on7fNjSk/P39WPWzyyDGbf/v+eIvNYaWmsr+vVI4sKR8ZQeP8rT2My73/1uAMBdd921Ky3PaqLDCIDcKp51bsxAIyteYw/sA6902ZE+3KDsLrKDUJjFmJ40ahOrD+vOWX8Y6ZiVTYNdjw6biaQ9jNYaDh8+nFrMW125L1V9gJ12ufPOO3d9V7Yafr6yH7M9Y1KATLrA6fFc83p37ktl32HfIx0zM2zLJ5K02DWbR2xLYfWyMvo2sXHF67aysfDPqNgBVh8/D1hXvzQU0y4UCoVCYUOwSKbNbDqKxqSsUKMdqNoxRXpPID7OkZ+x3Rhbznoov+JIh8W7VbbE5h1wZHHM9Yz0bPyOgXfWbB3td9j8bBYVjMESEc4ninqmrKK5/MMwrFjsRlIaQxb72WDlMl/XW2+9FcCq9f0dd9yxqz7ADpu44oorAOx4EViakV+1ihxniDweOI43s3SWPmVHj6q43p6xsp7T0mPd6YkTJwDsbhMbR+YrbG2UxedXNidWdmaJe0Fkue3TU/NdxSwAdiyW7dPKaZbS3G5ZGVgqE3kCWFnYL5yZqV932EaH7S9YYhXZxRiUn7hfBzmGg+VrkisVvdLnd/z4cQDALbfcAmBnnHO0Ot8W9sk6bZYK+Daxe+v4/F8IFNMuFAqFQmFDUD/ahUKhUChsCBYpHjewwROgwzyyA7wXd8wFn2Axos9PHVLA4sPMVUUdBRrlw64XBhaXRWIxdZxeZLzEIk4WodlndLweH0DA4vnIRUKFaVUHvvgy9ojHLbiK5RMdbMBgUXSkTjDR5m233QZgR0xuRjH2rol57ToAXH755QBWA0bwYQXROFCGRpFBpHKb4zEVtSeLW+cO1fHvs+jWxoOVmdUBXFdAG/1ERpNs9MWi3Sj8cA9s7LDo26fHaiKeJ5EIlUXmlr61Cx8kE6VhfWcqFss/cn9j1QO3SzQ3VH24n6LgKgbLz8T+PX2pjru0eWTjwreRvXP11VcD2BGXm2rKymjl8HW1+rBYPAvqtM76cyGxrNIUCoVCoVCQWCTTZoadhZjjnVvkFqLcMpSDfeRoz+/y8W0ezLqV61W025wL6xgZR1id7Z4KpuDzYxcWliDYs8Yco50oH0tq7Wm748h4jY0MVbCaqCwZWms4cuTIiguJhwp3mfWX1cmMX6xOPFayY0M5yAUfkhAdAcmSFnb1iyQ7yniJ3V4iKRSPUW6jKEgNS6hsrFgd7Ls3WGJJERszRu6QSrrFxlh+nVjnkAczYlShhH1ded1hxha5fJkEwspp340RRmEyme3bO4ZI4sJhk9Wxq1noU54jPJa8IRrPd87f+j8KUsPlv+aaa3aVjY01fZnsGksf+KAPnz6v2zy+vXRQhTpdCoppFwqFQqGwIVgk02ZkwU6YeWTBQNQRnPzpd9i8u1OHTngwy+Pg99GuXLmHWf7scpIxO+WClYWk5HdV8BX/jpJ2RExbMeoojKCBQ3hmh5YY0+Z0o0Mf1DiI3M6MYVudTOdmum51sIK/x3YD6nAE/38k9Ynq4N9RwUFUCNYIKhRldBCGXePgLqwLjNwv7Z61b3aMrJKM8Wd0BGgvhmFY0e97+wSeb/adD9zw9WCGyy5yPF8iiaLSS0flUoflMHv1emJ1QIgKVuX7Utmj9KwhbG/DOucoyI7B6mNjx2xHInCAF+6T7CjnTGp3kCimXSgUCoXChmDRTDsKUj93wEVmKc6Mg3evmb5Q6Ql7wFajVkbPDPh4PnWUZaTn5V2yskSPwlcqKQPXMzoknhlDphtW/ZQdWJFZMEfY2tpKw3KyHpXbNGqn6NhE/w4HnfB1VvYIhuj4Qc5PHcIRQVnmZ3VRx6oaovnE84RZGQfdyA4omQsTDPQzHq9vzaQyDAtjmoXLZakSW4Bn644KQsReHZl0gPOP1j8e+5yutaMxVF8Gbn8V1MnPJxV0hKUDkX0CSxJ6jurlNNS648H1ioLScF3UurAUFNMuFAqFQmFDsGimHYXsVFanvNONQvWp3bDSF/m8s2f4utLpZUcWqiNAVf491tEcji8K3K9290pvHd1jRKE25yQJWTpW1l4rco/Impfbrke/ruwfDJE+mX1feRyyj6y/x3p2PtwkO86T65eNYdZZsn1Cj22DgaUNkaQka2OPyLdXHYjTY1cyl9ehQ4fSOW55sL0Gh/mMDlbhdYzziQ4WYjbJ4TizuaD0tfau132rELicVsQ6VQhnvh7NQQa3edSeypZBeSD4sqi+yNqe01gKllWaQqFQKBQKEotm2oZsp65YdMR8FVvKdlKKGfQwOmVpnkUO43fUDjHTMSqW7negyv+8R4+srJOVnjxLQ0k91i0TvxNJJObS69EpWhuytXDkP89lUdHOIlsDZkumJ448HJQuW0ll/LtKr8pW3pGenxmOtQEf2ZlJO+bmZlSv7ICfvWAYBmxvb6/EO8ikWdzm0VGwLPlQ4ytiiFYGZsecZja+OcodH1SSlUmtb5EOXUmwsmhjSjrENkseyvNErX9R+TlmQbS+r7MuHASKaRcKhUKhsCGoH+1CoVAoFDYEGyEe92DRnzKY8mIcJYpToi4vHpkTPUfuGhxEwZC5EigRmvoeiVT5mSytOZHSOu4ncy500TNKlBaJJHuNlyJRYeRCpuoWvWPgOrFBUBakgdMwREZeyvWGDca8+FCdLd9TDg5J23NgiCo/j4soDXUwSWQQpMBjaD+CX5w5c2ZlfPiysCqLx3NkdKWM+JRqL1NB8PyIzu82cNhcVuFYgCAPZeSljBp92dgAkUOVRoaWyhUrU1Wq9YyvRy5mPDbZ5Styg+wJRnQQKKZdKBQKhcKGYFFM21wvePcYMd/eEHr+/Tnmw3n4ZxTDjgJKcMAKdi+IwnIqpt3DIpTzf3Y0J+ej3Day/FQo2Yi9q7bmsvldOacz5/IV1S9j7iqkYXRoyZy7UWSMo4ziMjbJ6fERo9HYUVIKFQIzktJwPXlcRxILdmVTxppZcA3FVLN+m2OD62IYhl1M2xCtA7z+cN5R+GR1QE0m8ZsL5hMFnFFugmaAFo0plhSptozGLo87Y9xslBcdaqIkpFyOzNBOGW1G76gDntglLEJ27yBQTLtQKBQKhQ3B4pj24cOHz+6gOBwioFllpo/qcUFS95WbEAf+iI5zVO4ZWVi8OV1SVEZm9sxamK1l9WJ2lLnQcRpZUALl2qMOqIiwTjhB7qeonHOHCPQ8kzEDpWvO9PvMqHjM9LSBauvMfcvuMRPhcgA7bcFhcuekKf5/1W4RW+K2ZqlGFnCoF8OwejRnVB8VTCUKK5q5M0b3PZS+Vtk4+Gf5WEt2c4rSM6i+jOY4jydbr6OjRg32DB8QwlKbbD6tIyljWwnLX4Xtjeoc/Q4dJIppFwqFQqGwIVgU0wbG3Ruzr4wtMTOJmGHP0Y4eETPg/FWA+ygd9Yyvlwo20KMHZXakDv3wO+05/SfnH9VPBffnwDDR+1zGrI969E727jo7dYPaufv/mXHOpeX/Vwwu04NnB4MAuXeE0vX1hFo1vaSSSvD//t11wj3OMewoPyVN6x0fWVm2t7f3FK6S+ymS8GWeEf56ZKXMY1PNW18WDvur1ocoPSUNipg2s2TL58SJEwCAyy67bCU/g/JSWEeSxIjaWVmAs447Wic4dPBSUEy7UCgUCoUNweKYNrDq3xfpiViPa4h2rXO6pQy801Q65yg/ZY3KfoBReup6VD+2GuX8IsanGIKyko3KwPXJ2pXrrHTnUfk5jQyqv/z/ijVnOm1OQ0lCeqyeDdkuf873OvIr5WfnfOP9M+pQmwjKK0FZk2chIhkZ6zT02qisA2PbPu9ojnFdrZ3M99kstf2zc8wwq6uSAkUSGRV6lpl3ZHFuUGFm+b7Ph6VlzLh9HkePHg3rx8cwZ2NW2ZNE71idrX/UoU3RnI9sAJaAYtqFQqFQKGwIFsW0h2HAfffdFx6k4Z/xsN0QvxOxl94jOTNr1zlrTv+O8mNex7+0x29b6Z8MGTNRvrw9DHiOZWb1y3SmnA/bESj4+pnOKtLjz7HJ6PocA1nHxzvr/16fZ98Wql0UK4uet/RtHrE/cOSzzDo/bt9zPUpV1UO167nA5xsdC2l1tXHFdjeZp4s6SGed+aIYqe9L6zs+uMUQMXvF9ufWO18mXn947hnj9s8oC/OevpwbB1EaisFzuwKrsQn2U6KzHyimXSgUCoXChqB+tAuFQqFQ2BAsTjx+5syZFQf4LFCKCi/qMRfUIBNTKXFNFlxlziAnCluoghlkIV35XSXGWSekpwpyEL2jgqr0GNawWC4LGsMuTAre5SsKJMJqEvXpxbpsLLaOqxKPkTnjP583h3vMAsBwuiwOV58e3AaWP7u8AaviXhUIhsP2RnVXhlaRgRW353664mxvb6+4mPoyqPa38meqANXvmTic24zF4hxAxZfB1k9z31Nnf0dlUa6fUZk5/Wj++OeAHVG5tYmNsx41yZwYPBNnq/DXrAYC+gxrDxLFtAuFQqFQ2BAsimm31nYFV8lcLwzrBE6ZM1zJ0mDmy6zFp6mYtu32OIRfVLasDRjcBsrIKzo2ktO3XTrvmiM3EfWZhTxUxnlcLp9OL9M+c+bMyo46chdUhxRw/aJr3F7MfHxado3HCDMCb0TJoUE5/czVRwX+YTYbGU3NBY2JDN/mwpZm/abYZmRgpYwA1zHo7EFmKKja1sBzPIOaL5HbERtK8ecll1xy9h1za+JxxxIr/w4bHvKzPE89Iz116tSuMppxmbl1RdIHXmd4jmdr8FzbRhIdHtc8V+x7dODTUlFMu1AoFAqFDcGimDYw7paYtUQ7H96ZZbuwdV2TsoAc/Mk7U/9/r7tYlLdy/me3iugZzjcLz8ksjFkAB2YA+lgyf++VJGQ6+7mDVk6fPi3dazxU+VU9onvMgJnd+P/n2Jmvlz1rrOmee+7Z9Zkd4MFlUno8S8tf4zHLaUVSGu5TdjkyZLYbaqxGc6Pnmb3AbGn4EImI7fe47TFUmF9GND+5LKxD9/mfPHkSwA5rVLrtK6644uw7xrrtWcvH1hc+CMW7b1l+VtZLL71017OWtu9/lkIq98Aevf+c+6X/X9kE8PUonaXptotpFwqFQqGwIVgU0/bWv0DuJK9CzWX6SMUms2ANzJbUjjeyUs52cQzFwlj3EtVvTjfbc/wc71Y5JGKUH0swVECQKP3Igp6h3sme79H985jJLMCVLYPSG/awM2Ze/h1j2MZ8jM0YW1pHH63075aHLz+HDOZxF7Flu8b6dk47syvgOmRSofNlPW5Mm4MGRRbF/MkW8pGnC0uIVP9E0hO2zWBpgJeaWL8aG2a9sbFm/47laePL9NSmnza2bHWw+z59Xgst/cj7x6Qwyksl0/MriWkm4VNSKJYsRB4VmffDQaKYdqFQKBQKG4JFMW1g3NX06DMUa84ON58LWxqFiOR7nEa0w2aGzX6rGYtVOvqMifBOkC0/DRlTVaFWM+bDVtjKWj66Nse4ImS6JWbZWdtyXuuExZyzYO7xo+fjMD2M8RhbYqYdsdpemwalW/f3FCLvAQMzVGUv4aGshaN3mPWrYyrPFYqVATvMLPL88GWJxmBvHIOIVfIcY122bye2ZbB32Bc6Yuds78CSpEiHztIZbhNm+P5ZHjM9NgPrzFODlZ/nD+v7s7DA+z3OzhXFtAuFQqFQ2BAsimm31nDRRRet6GKinc7cbt6zGHUspKFn56YsQDNmpXRXGdOODnL372bsRR3kkUWWY39glV+kJ1L5R3VQLJx1WB5zkewY29vbK3n36Myz/lc6zLkIWR58cARb5vqxatdUPIDsgBrlF74OlCQpiimgfOIzbw0luWKs4yO9X+Bx4Jk2MzQ1/zNpD7eTfUb6VI6Ip+xIfL/Y2GH/f9Zbe6Yd2Uj4NJiJ+rFqem/Ll79zdL+ojEoqlI1hNeeiPlFW4vw98o7okfgeBIppFwqFQqGwIVgc0z58+HBXBCzFbCKrQ3X8nDrEPWOIvPuKdsms97JnmWl5KAtIZYGasWbWmUb5KT2kik8d6dvmdqBZRLR1WXTPM8MwdPmKqz41RPp75TevdvvAKktl5mF+rf6YwuPHjwPYiSp12WWXAQDuuusuAKv+28CO3juKyjYHK6+VQdkeRF4dc94DnId/R3k6RGNqHR3mfiBaW9hrQNXZS0AybwqfPkvEfDps98D6fM9iFVvt8dRg2Ji1cRH5U9v/bGnOYybyHlDzSHlpeLDXBftT+z5QceszP20eg+WnXSgUCoVCYU+oH+1CoVAoFDYEixOPb21tdYlx5lxtIrGoQQXDj55X4sIew7AojB+waozh31cBRXrCcrIBCAdkiN7l9lNGMpn4yKDayv8fGTap+imXsgjm8pUd57kXV6F1xhlDicdZTG6icH/t8ssvB7AjLmcXMB9Okg9o4HCWmZiWRZvZeDbMuZjNhbeNrmXteFCGQJGYlQ232JAycm+aCwbCoUJ93nOHpWQGnLzuRCJutd6o4CrZ2szi+MjIVbmUstg6C1bEZeA26hGPc36ZEWqJxwuFQqFQKOwJi2LawO5Qpuu4Ve2HmX7G9hRbiXZhvGubM/KJ0p0zvvH5MnNjJm/3I2MyZk3MyiO3FN7RqiMvI6MVZp89EoReAxrv8hXtyucC5URQzyrmE6U1Z9wVhXnkwBjGeMx4zT4B4NixYwB2xtmdd94JYMddh/vY56eMJpWhEBAbB0V1z+YtG0Jm8/VCGaBlLJYDl3A9ojLOuTVy//v7bDyqgqr4eRkdXuTfycabMgxlthnNRZM+WFnYbTEKyKIMejO3RRU6lvstY9rKhTNbG5eGYtqFQqFQKGwIFsm0M5eBObedjJXt5R2lp1PBNqJ37ZN3tX5HrNhX5lJkYNcLZrGRbkkFL+C2yCQJKpBJptNWfRv1RQ9z47JmwS7myhmVey4oTFbGORaZMQOWVni9N4P1jXxwQ08YUwYHGPGMTh2Aotigz2/ODcqQ2aSc76AXkT6VXf84NHE0P+eCqPAcjwLYGJTLYXT4h60zyi3W56P6gyUIfDiIf4a/c1v4dlTrAAc9YRcwny63gWLc/v05l7Js3lZwlUKhUCgUCnvC4pg20KfDnNshRsFH1OEUvIPLdvkG3rH559hyWbGnLB+2CGf4urC+WO0Q/U6fd+5zbDDTOfP36AABZX3a0289umcr6zq2DVymiGnPHXuaQY27LEAPh/DldzPmrRgIsxivk+axwuMiOjxDhQXm/DJ9r5q/kT4xC6l7PhD1C+tps/lvUGFMDdwGkTRjLlxu1Jecj7JX8f8rG5NM98vrjvI4iSSKap4qNh09y/U2+DZR7chW6lEgHRVS+qBRTLtQKBQKhQ3Boph2aw2HDh1a8TeOrFUzBphd9+8aIh3W3LPRTpDzVgeFRIeqq13k3G49uqd8bCOmPWd938NueKcdsWplCZ7ZF2TMnWEsO/MZVnkpy3Z/j9lrFL6W81PSBd7tZ7v8uQMW/DUlMVC+vv6efRrT5+/rhLHlflon7kL0/UJb8/J8jfLmcKZRGeesuFXaPm/uQzXufPpcNkvDrvvQpxzTQdkMZWXkT26LSIee2QJ4RPYlyrLdEPl2K3/tzB88W28OEsW0C4VCoVDYECyKaRtT6tEX7kXPwLvF6IAQfo51SJkOy6AsInlXGR2rx3oh5R8cWbaqMkcMvPf4xh6LauWHnOm0lRV2pKtnNqAQWal6qHIzw47KraLosd42ypd1vKxPi45HVLrGiOXa++wva37adt0sjT1bmzuyMJMo9fqqZ94fimEvwUc28tNmexSe25EFuPKBtzaIonLxGOVnovbrGc/8Dkvl1IEe0brDjJ4RjVVeG5UnSjTneT1QtiGZn7bNBfaKiCQYS9NlG4ppFwqFQqGwIagf7UKhUCgUNgSLEo8D+Xm0EfYiwlCuSpHRhRJxs5jPp8mGLGzYEBk6mHicxeQcPjFzjVJn00ZBLviaqk92FrdBvRu5eqjPKPQpi6Szvh6GAadPn06fVe9nrmVzYvHMSE71hzL28f8rlU1UBxaP2zMsCoxcvlikrly+ony5bexZDo0azWOuZyb+XwKsneYMtzzmXJMMkYhWGQiqgDb+f+tfcwvMAigpcTU/y+uRf4efZXF1JHpmNSO3a2TExmBVRaQG5LVYhUuNyhittUtAMe1CoVAoFDYEi2PaQB5Kk3eCPa5JczulnrCmc8zDv8PsVJXN7yKZSfkddJRPtANVO84sYAXvsK0NlKtThoyxKobKn77ePa4xHt7lK2pzZincHxkj5O/KUCwKu2ifbAgWGa+xNIaZAtfB32O2YGzi7rvv3pVWZEzErl494LHBgWh6QtNyuy3JEM2Dw3ny/MjC/c6F28zGqgq/aW5bWVAXnssGvz71rjPRnJnrS0Mm4eNnMunMnOQqGt8sKVWuXhHTZsO3paCYdqFQKBQKG4JFbSGGYZjVabPOg/XDGTNULkOKBUbvMquJjoBUu+8s8EcWvs9/79n18S4y2skrZq3cKjL99Bwbje4xs452tXMHLnjw2Ikw1y9cxrlr0f1sHKiAFb7cxoqzMIsqH64P67CjQx8id6Ne8NhRbny+T+d09dF8yvr9QoPd82xemHtddM+gJEd23Y5fBVb1wnYYEPdhxpqtb1nyl62rKkRtNqf3IpXjfOfcMQE9drJAKazDZjuPKHgQSxWWZl9RTLtQKBQKhQ3Boph2a+OxnMwq/e5WsST+jHZOKgAGW0r73R0fc8c6kMihXzG+SG87Vy/1XBQakIM5ZJa/hrlDM3pYswqmkeXLOrOo7VlXGoWz9dje3u7SMSqJS08gGX5GBeyJ8rHvxpqYBQA7jI29FXhMRWNMHdiggu1E5e8B14PDDjPDjqzxmT1n83dpTAfYWZOywCXWPsoim9lyxJrZOr03/Kd/hudaFKZ3LsRvtGYpSRu3iQ+bqg6ZMbC9RySNVJKqyLaDbTVsXpl9SRY0iL0hloJi2oVCoVAobAgWxbSBcSem9KyA1vUqvZ7/X+lemWlnFszMBKLdHbMG3un2+P2pHXyPP7Mh88/M/MwjRPpwA++asxCiimGzf7p/ptdf//Tp0ys2Dpm/tpIUZDq/HvsHLj+zFGUfAezoNe2TdXAR8+b6sC5TWaT79JXEILNwV77qmc3DnOV05o++RLDEw0tNmK0yw+Z2M2bu/1dpGCJrbrZpYD21H4+WD49reyc7TIfXJGUlHx2iwpIqji0QhVlWoXbtWX4XWGXUJsnK7F+WPvaKaRcKhUKhsCFYJNNmnbbXKajA+YYeiz9mD1lULtZnqAhikQ6O82H2nOkTey3dfRlVZLce/Renz+0XWWSqMkX6KpZicFtHrLpHN24wps0sMzpERFmLZ9Hm1DOZvYQ9w6yJyxGxCaWLi5gos3B7l/1mI/sLTpePO4zGd3YvaqPM/1jp25fOdhQiS3eeD1ZH0/VGVvYscbFn7TOyqZiLiBiNb5YC8ZjhMkYSt0hKFn334DHDNgJ82A2gjwJVkf98PaJ7Cr3Sx4PCMktVKBQKhUJhBYti2q01HDp0SO5MgZ2dEutNVCxjfy2KJsXPZmUDdnaVmbW3YguKnUVQ+txoF6jiY2esZc5nNIvWZLtz1h9zOaK4yNZ+toNn69WIqfawr2EYcN99963oyiM9PkNZzvs6qaNSGVmf8riOLHLtfWNYfMxm1Basp1O2DdGxsuwPzDpAJXnxYP1gZgmubFDWicS2ZPh2Yu8Anic90RxtjFx66aUA9Lzx+bFEhXXPHopVMtPOIjDyfOd6RDZJKjKakixF9WIdNvtez6U3h4o9XigUCoVC4ZxQP9qFQqFQKGwIFiUeB0aRROauw6LAHnGHCqrBor8orKQSAWVGZb2HmkQBYLiM3BaR2FyFAOwx5FKi5yxsJoPFvexC559RwVSi+rN7U9bX29vbuOeee86K87LwsnNGfr5vOR2liohgYjvOz+oelYdF5iyWj0SpqgxK7Bq9y+Mqc4Oz8vIhDCr8Y2akqQzSNtUQzYMNA9Vcjg5r6T3YIgvXrNQWfrxlAZ/8O5laSLn4ZXPanuGwsDznfX2V+J/F45Fh5zqhcLNgNEtAMe1CoVAoFDYEi2LaZoiWsTpjUmqHFhlWKKbBn5m7BrtCZME1FCNkxhi50ahgCmyUFTH7zKDK19P/r47m5HJFzF4FpYmC1KiDQeYYni/r3G759OnT8lCBCCpITMQqFcNWBn2+3KptI8kOv8usggNLRPcUm40CVjCDV2FafbtGBzP47xlbVgeEZOFnNx1WN3XYCAe/AVbZoxkIsvGnl2apoCrctpGhJRuR8ZoSSY3YGI5ddbP+V6FHlaujf4bLqIKt+P/PJVzv0ly/llWaQqFQKBQKEotj2keOHFnR+fkdqLnCZHozf93S9df4e+Zuog7jMKyzG+vR0arj/DKmraQM7DKXtclcaNKIfSo9f8S0VQAYdTCCR4+ecxiGVJLg81aSlh6pQsaOgLhP52wM1nFrse9Z0Ak1VrIDZJQ0Khurqh7Krcu/o8qUMW0lBdoLizoIWDnt+FUe+xGrZBc8llT50KcG7jOWwHiwKytDuXNG9/hgn2jt4Lpa/axNbFyb7VIk4WFmrXTb/t46yOxsloBllaZQKBQKhYLE4pj2RRddtMJIonCYyiowCgYxZ13LoRsz3elcyEZf3jlL3OyA9zmrzSiYC99bJ4ypCqIR7c4V61R66+ydTEe8DmpEEQ4AACAASURBVINqbTzWlZlqdPjLOoFDGHNHmUaYO8glgmKkEYtVR3AqKUCW/xwTBjTDnQuc0ZN+ZtvAOtRNC8iibADYCh/YYZxsgc7HoUaSJG4f7g//Dq95PJ7teuQ1o0LQZnYeXBZm2CdPngSww7R9m3A7qTnh69e7hkRH6qrw0weNYtqFQqFQKGwIFse0Dx8+vMKw/SHqBmZzPfo6xayYaUeY201mzEAdpBHpenrCls6VlS0/o93mXHoZA+49mtHvULnOPW3C/TKnW/JMmxkCoHXYjB6JxJxvKrDaD8yAo3Io/3jVP/7/OeYZ2QYo25DMRmTuYIqM0c/pvSNfYgOPKx4f0dxfGkvyMOZo5Td7HWD1yFTFfDO7Ee7bnngHKn6CIbKl4XZnSUzmf25M29rCGLZdz+w9+LPnMJAesERnaR4NxbQLhUKhUNgQLI5pHzp0KGVCyk+xx7ra58PPALkuW1loR/rpqF7RO5GVsvqeHXvHO2v1bsSw+LsqY6Tz4Xvq0z87x8qzyHLKwtWDfZIjf2ZmEwzfNoq1KJ12Jg1gH/9snPdKJvw9ZqDKDzySBvAzPEeiuaGOSuT7ERTbszaJ7CG4nbj/Ir07H4u6JBirZBYNrM4HPriGI//5/3vmiUH54/fYfWTSGF8e/xwfo2nW43zYRxbdTI3vHompQjSfVL0OGssbyYVCoVAoFELUj3ahUCgUChuCRYnHgfiwBi+e4FCZLBIxkVNk3MMin7lwo5yOTysTGylRaWa0NCf6Y3F1FOyEoQKnRFBlzsqqjFUy47UeAz4uf8+zwFhPDv/pg5Aod7Meoyu+p1QQkch9TozooQzd2CgzM9Rid0juj8hgTblv9YQxVa5mmaEdqxn42UxcqcJyZgaXSzZIszFqomJA143HXRTGdK5No3eUuqpH1KzUICbijoKd2DrNwVTYrSsSj88ZTa6DzGi2J/jWQaCYdqFQKBQKG4JFMW02RIsMC5hx8O4rYiBzoU6Vm030rmLLmUsMu375+nK9el2vIiO2uQAtPVC786isCll+6jCBqN+yOitwf9kOHthhGOxCyEY/WVCQOYO0KJgLM5F1wuYamM1GxnIq8I9i0VF6yiDJQzGdngNDlJTB6s3uNr4eBm7PjE0vNRSlB7s/eXBQE2V06KHCiPJ65NF72FBkxMjf2TDRSxDmmDYfCpJJhXjcnUuwpMho1lCGaIVCoVAoFPaERTFtQ8RaDLbrMdZkOzXeqXtkgVeAPiaiWFjGfNVOMNPBMVvgd3vcxbjsPbpt3qVm+ncuayZ14PTnWHN0IAGnoTAMQ8pIVfAP1mFlwU4UIrckbkulA45cldRuvydghZIKRHVi/bR6N3LFU8/O5Q/o8RUxPTV2evTgyu5iifD2F1Y3dlljqV0moVJtHEkxenXZWcAc1mFHroCsv1fvRDp8FZY30/sruxh2LcxsA5aGZZaqUCgUCoXCChbHtLe2ttbSXZp+kp3xe8J88jMq0IS/l7EHLpu6Hung1jncw6cRXVP5R/ViFqhYp99hqzB//E5UBxWkJtrBR7tghWEYwkATEZiZZuxC9QeXNwoOo4KCZIdxzOXHzDi6pnR+2dGFzHCywz9UGEmuQ4a54DHZ+FfPRBbA50unvRf96Trg4yejAzuAWDLF61s2dpXumq3Ko/lk6Rp75nCikfU467DVEbRRkB0V8GUd63EVNCrT1S/N86CYdqFQKBQKG4JFMW2zHvffo2eAVQtJ25GxnsP/73VGHipUpU9vTrcdMVGlh7Q6eCtmZrSKvfLz0bWeHbZKnxlPjyWwYtg9esmsnuxXmrHnYRh26c4yfTGzy0xPOMfQeLxlOkYuW8S01fhSbNrXQ1mpc30jlj53CEhURmUrkrFQttZVjDq6Hs1tn0+mq+1BdjiGgSVR59uy2Mpga1fmgRIdIuLTiOYRr5/MQHt0zPwMW4L7ddd02cys+YCUnvgNyhsoY8Ys2Yusxy9U3+4VxbQLhUKhUNgQLIppA+NOqOdABd4p2S4y293zu2z1GOlX5/xXM90LM5IsElfmF+3Rw7Cz3bhB+bZy2aOdb2+Er56y9vhrKwbBiCyco133nIV0Zv3Oaajv/h0ltYhsKNQBHcyS/f1ethzpoFXksywimhobPR4BNk+tL60emU6by9RjD5EdRMNorWFra6vrWf+OR6Qb3a+jIj2sbJFPNx/NyeuOSfb8PGKGzVbqKl6AT9/eNRbNY9gzbT6Ck3X3XC6fH/cPz5FornM9lE47isRpWJoV+bJKUygUCoVCQaJ+tAuFQqFQ2BAsSjy+tbWFiy66aMUIIjLHZ/GaiYayUJQmHlKiPz5gwd9Tbi1RYHsWybDbRiTW4zN15w7hyAw1lKtR5B6iRI0qfGt0TYmeMkMOVb/IIKTXqOjQoUOpekEZ2XG9MqM7JaJdxxWQP/3YYjcZfiYSj7MhmjJ04/tRnXuMb+Zc+1iM2SOOzdpRBfwx9KjP5saOicj9u1kAIy4vi6D9O8oAdj/gxeR8WBKLjy1QS+RCyaJltVZF6yobB7Prl3+HxeNKFB3NUR6bXObMAE2J37P1dGliccMyS1UoFAqFQmEFi2LarTVcdNFFqdGPctex67aLVMfF+WdVIBG/K2PWwrvwaAeqDjTw9eR85oJN8LsZC1AGaZE7He9Ae1y9FLLwlcrQiA1BPCtbxyCktbbLZVAd0uLL1cOS5w5S4LaPjLyU0VrEJjjYxJxRmf+fjdWUUWFkaDkXujFy3+NnuY+jwz+Ui1/WJgzlYhaFMVVlZfigTj3BNJiBWl090+YyWJ+eL1ciZsEnTpzY9d3YbXSojVoreI2Mxg6nxfWMQu6qNsgMYA1zblvR0cpZYCuVfibNPEgU0y4UCoVCYUOwKKYNjDugLEyd2jGxHi0KqjEXIlTpgvy7KtxjpCe0Z3m3Gu3kVJCOHqat7mWsnXflSi+5DtZhrJxvFuSgF14v2XPwhCq/h+oXZQMQ2UNEthIqP25D1ldnblusU1RBKDK2NBdsB1iVCil3xahNFPPhdoz6TY3ZHmaUjSWT0GRMmyV79qwx68zdiMvA9goXClFYUQWrHwdkycas6qe9IAqUotZGtluIAsCooD5zoZ+XiGLahUKhUChsCNqSdhittVsAvO2gy1FYPN53GIYH+As1dgqdqLFT2CtWxs5BYFE/2oVCoVAoFDRKPF4oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ7AoP+3jx48P11xzTRrVas6POYLyH+45XnHu3rm8s98Rd9bxP57LO7s/5zueRW2bi9kdxRrmqGBvfvOb38VWnEePHh2uvPLKtE57QU/dou9ZWuvku5d3Dxrr+Eur79k4UJG4sjjVhptuumll7Fx11VXDQx7yEFnmCOejP9aZc+cLezFM3kvUxP1MY514+XOfgI7B8fa3v31l7BwEFvWj/YAHPAAvfOELYYuvfR47duzsM0ePHgWwE/xeBQHxnWCBETi4AId7NGRhHtUBC1Ho0953M3BglizcJP8Q9pwPrQJUZIEreOPEmyzrG/sEdoJQXHLJJbu+W/AGPosX2Om3u+66a9fnIx7xiBX3nCuvvBLPfOYzV+p5rrDy8VnEvKGMwkHOLbQ9AWDUASjZAS4qgElPIAl1GEjPDyLXIUuf5w0HkYkORLHDMfiwCeubnoM5rr322pWx8+AHPxjXXXedbLeoTnzudNZOPXNK5bfOISm9m/ZsfeslOP4ahxtWaasy+GeiM+bVM+r8+OwH2NZ+GytRwJlTp07t+rTx95znPGcRboElHi8UCoVCYUOwKKbdWsORI0fOMjRmY8DOzlYxkEzcwcyad2Y9orksH18PVb+5dxkqcH70rgpf2ZOPYowRG5zblUfv8HGlButHY+DGonxZLr300pV7Fxpz0hOWiPQgOxRBjaHowAOWNs0dutGT317ElXPhRjPMhZjN7vWE5cwwDANOnz69MgeyYyjVASQ9KqE5qVZ0by/oYc29TJvL5Z/pXe88WOrD4Ubt3UiCqdperdX+nvqM6pAdR3qQKKZdKBQKhcKGYFFMGxgZGQd398fdMdNmNhkdqMB6C3Wwwjo6GEam85vT30Tg3T4frJCVQel6Ij2oQbGAiDVzgH51RKO/bn2oym/SlEjfZtf8OLhQUG1oei7ul8hoUtU5us9Meu5IU3/NMMcm/PjsPUQlY2d83RC1Cd9Tx4hm6a57vwdnzpxZaYtIr6oOvInaT0mr1ulTZaeQrVFz0sHomurLczGwzCQ6Sjqn7DP8PZZQ9dhQqANPsuNq+ZmloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8XibzkM20YiJTP25tGx0w+KPyITfzPvNkMm+K3+8zABFuXGs804kwlfvstgoMi6bE4v3nIVrn+q8WS+CYrcn6ydO37+jVBIGdqHx9YgMEi8UuI+UG1UkqmNjG+W2ExmV8TusForS4TL2iC3nxJ/RnLA2USJbficz8uHz6aOz7LN5sh8YhmFX/TK3o7kYBZF6hFUdPMf4fpSeEl9H6wD3D9cj638lUs9E3VzGbE4wVL2idY7dA9cZZ6os0fjei2vuhUQx7UKhUCgUNgSLYtqGLCKagXfDzKYtWAewE5TBnlFMO2OkCpkBCtdH1SGCcmuIGAkHDuAdaRRERu0m51gBsNMvxoD5k8vh0+NgJRy0JDOw8iz8QkNJR+ZcgPw9xc4jFmtuj2wAF+3+56RA67gn8rM8lnx51bM9rjJKChTNwR7DzXNBaw2ttS7XT4XMYJMlUz1ulXPMMGLAzCoVI/XoCdoSlTkrY2bE2sN0/XU/39hAmde3CHNjJ3NLK6ZdKBQKhULhnLBIph3p+gzMio3VGZu20HMnT548+45dMxbOYRB5xxaxCsWkot2ksUn7tHvGKqPdLOuDuO5cby9J4DCtVj+7bpKFKDSk2kUqlgDssEALiMKhSSO7AquzPctljqQq2Y59KYgYAYMDR2RSDGZJbC+QsSVmWsrVy48tZTOhpFD+fw45qmwrMr2r0mFG9Tyfuu3IHTJzjcskHwxuDx7ras77e3N968FrSc8YVdIZvu7zmwuxG83bOR09SxL9uyo4lvreU7913G+XguWtgoVCoVAoFEIsjmlnO0dglT0a4zxx4gSAHYZt34EdFs7B4pVV+TphEW236S2bjU1a+E0OBKOsrQGtt1X19v+r+uwFrHP0IURNcmGHt9g9+27t55k9SxvYIjwKnJJZo28i5oKR+GvMAJTXhP9/Th/JOkF/T5XNxpD1ub/GEh1mg5med66+qq7nC6bXVvmyHQKz1sjWhOvPdhs29jOJyzpjXkk6MtuW3kAime7XwJKwzLZhTrIT6atZusrjLpIKWXntWcW4I+xHKNnzgWLahUKhUChsCBbHtIdhkPpc/7/tnJhp26exa2BVx8pMO9LB9iIKEco7Wrtn11nXDWjGYZ+Zdbxdszqfb79WtQONfGz5HbYiZz2vSSf8O0uz3oywTlnnfHD9NWbRPB78PeVb3+NLzHrc7PhaZjTK3ziyh1CSpMw/Vx2ruJ/IfHyB1XayMmRxGjjtnoNCVHmU/jvztuB69MSHULpspb/2ZZqzbYjKoo5kjexweGzyWInWJe4XNScyT4Fi2oVCoVAoFPaExTHt1lrXwfK22zLGaTsye9f0q9E7rPNVuz1gdVfK7CKK2sa6K2VN6XfJzMp5t8r+6H4H2eOvuFccP34cwO72ZJ0c+21nukxr+7vuumtXGlFUKGPdSwjYrw5S6dmxs9Uwj28P1bbcppleUpUxGncsBeJxaH0a6XetjEqKEkkQlCeAPWvjI2LazNL3k3EPw5DaHCg9qpUh0xczw42kCQz23lDjwbcJe60wO+7xn5/zIY+kNPYOtxGvWf6ZOamn2VBETFuVP5PssGQii9qWMfcloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8XhrDYcOHVoR60SGBWz0ZG5WkXGHOpyAxSB83//P4jATu2QiGxY1WlCS6OALrs9c0JPo3Sh86BwsPQ6UcuzYMQA7YnH77t9RoiYO7uD/t08OimOicO9alqlJLhTYEEeNoSzULn+3NKKDUPgMeTZajETrLDpl1Q3XJRJ127s2RvngEhsXvh7qMBX+Hs2N6CAan6+fD6wSuuyyywDsqFj2YkDKGIZhpX98ukrky2JdX26ej+ozMuDkPrR+USGE/f+8zvCa4dt87mxv1U/+GrsHsug7ck/lIFg271l8vo4oPxKP8zyycazaJqqrCkN9UCimXSgUCoXChmBxTPvIkSMy3COw25ULWGXYUQhUtePnnRk74vt3bFfMblXRDtvXx6druztjr35HZztN5U6THWbALI93uhxCFNjZgZqhmX0aizHmyztUDxXcIGJibGClXGh8PhwQIXMp2w8wy/XXeLetDrzwfcrsjMd1xJaYAbAhkiELDakOcMiMbni8eckKsJt1KrbJ7o+Z8ZKSHLB7F7DDzph92Vi1OekZ3brwhmjWbz6gDJeB68yuSv6e+uxhkwZmzzw//f8ZGwd2j2VlPKoYeHS4jYHdcK39/Jpt/xvDPtc+8+XIDnqxstk6ywcVRcGdlopi2oVCoVAobAgWxbSBcYeXmdrbLtF2nuzYHzEj5fqgdvter2q7YdbX2U4xOkqQy227OGbY3o3K6sM7wp4A91xuS8N248ZefX5W56uuugoAcM011+x6xsrDoVh9+swYWKcV7aKZ0Vk5IobFDPV86bStzpH7nkEd+pIdlciMje0HokNSlEuUtY+9mx2zamVU49zD2tjS5Xyjg2W4jOwqyWF7fb7qsBSWxHjmY+/beGI3TxurHpFrpMIwDDh9+vTZZy19zxB5vmdSJQOvA/xO5kqkQqpm7yhbFp5z0RhVbqo853we3LbsrhWFUz6XQFYG1vfzmI1cTXm8sZTIl5FdFpcW3KmYdqFQKBQKG4LFMe0oqEIUSJ91f2wlGFloG1Toxii4iu26Wfea6VfnghgYe40CwNiO3naiSqcUBYBhNshsObI0Nd2l6Qd5x50xCEvf0jK2Zjtsr59mFs59y+zM532+drpskRsFLmEo9s9sxoPZI9thZEdAGvgI04ypWHpsER5ZzKqAH8ry2f9vc4OtuHl8RAFAlN1KxJ7sf5svbINi5fD5cFl6xhDPf9/GLHFTXgORZbbyIlD6Y5++CsyShXvlYCd8PbME53s8rqN1x9JXBy9FUsFsfZmDpaHC6EZ9wOOM+9qXg/tjCcGdPIppFwqFQqGwIVgc0/a7pExfzLptQ8QmWB9o4OM8+RPQuo/MJ5r1QVYmKwdbLgKrx2uyXpgZvte7K6t4pRf1ZTP907ve9a5dz7D1su8X1pEbS2fpRhQuk3e6KiSmrzPrzs8VLJGwvHsOx2CPA3WABLAqBbL2YqYdeSsonbnpWb0OjseTkmJEc8PawsYZ+75GTJvH9eWXXw5gZyyxztn3m5XbHwzj87NxHVk4W9lYkpRZINuzWcjTYRhw5syZFU8Q3y/Kup3ZdCQp4jnM99m+w99jXTan6fNjC2glBfDPscSA1w6WKPm1WK2NbFvjsZdYEgxe71jS2ON7rSQK/v0o9sISsMxSFQqFQqFQWMEimTb7YkcRo9jSV/lc+3dsl3f77bcDAG677TYAwK233gpgNToPsOorzDo/zgPYYRFcJmYIXkpgLMV2q9YGpi9kpu13m6w7MiZn6fMu3dfRrlk+toNnnZOXPphPtzEss0B/0IMeBGDVxxfYaTfuC2bynm1wm/t+UbBxEVk9G6wfTEKgrOD9Nfax5wNQrN28nQKXxfrF2i06UMH6nSUSKk4AsDre2F6Bddo+P2ZY6tCHSMds+Vx55ZUAVueTwUu4TLrFemo+UjeydFc+7GwR7MudHSnpMQyD9C7xeSk7mCi6Gc8xlmJYWpEdDre78tePIseptTCLC8BjhRHZbFhfsX+2Xc/sCGwN4Xpwvf06x5I3RiTt4LnHkoRIb93jdXGQKKZdKBQKhcKGYFlbCIy7HNvt264vs+yLGBqwm5XZDvCWW24BALz73e8GsLML5zi4tuv3eRubtLIZM7Vdq7Enny77SfPON/JJVlbqrDPN4pezVTdbd3oww2JG8s53vhNArN+x3fLb3vY2ADsM6+EPfziAHQbm0+WdLrPNKKb2Oug59tD6w9qHdaJ+121t+cAHPhAAcPXVVwPY6X9rc/b1Bnbax8ab1dnSMomPHwdsRc/eAqxbB+YtpJU/tX+XwWlFvtZsDe/nDbDTVnfcccdKOlb3hz70oQB25so73vGOlTKytEsdTxmN0Z7jO+3MA7aviGwoWCfLfsfRO9an7/Ve77WrHjZfbIxF0QDZj94YsY0L3+Y8h5WHgwd7lnCEtMyzRh3NybY7EZhpWz2i6I0Gtpmw9cWYvY9gZ2APA449HsVFYA+apaGYdqFQKBQKG4L60S4UCoVCYUOwKPH4MAy4//77z4oyTLziRXWRYYz/buIwL5K78847AewYyrBRlMHEIl6sy0Yd6lAEb8DBwVPs0+oTidJU0HsVJtPXn0VbLKpl4zKfDqfHB4RkoShNVGf1sHa++eabV97hvmSRpvVbdARoJPZS4H7ysDpxaFY27vMibiuPqUdYrGfjjF2nfJ3YbYqDj0SH27ARkwqgA+ggGsrILzLuYWPFLCywGpscBpSNKH2d2eXP1Es2huzTl8ne5fysLbJAQJm6pLWGw4cPr6jl/PzkUMEsNs7E4raeWKhgbh+DHztsVGpz2tKy9olcW9kdVqlafD24fdhAKxoHyo2KRdA+P+srawsWX1v7mqrSr3Os6rC2sLFz00037UrLQ62jUb1YrF9hTAuFQqFQKOwJi2PafjcVGSPYjlMF7I9YLB+gwQzLdlbsSuKvcXhRDhEZ7dSUu0kUIIXzY5bEafgdKAe7YNefyHjJoIKH8A4/CnpibWHPGguNXL64v9iIKNrxqnCzGZglReVWRzDysX3AjpELB59hthyFQ7Rr1h42/oxhRf3P45eNfay9fHCSKOCKrwczfj8OlKEWu15FbmIshWEpjRkX+TaxMWIsydrImGPkdjk3DtjQLro3F4ry0KFDK/PDjwOWRCnXQi+lMZdCqzP33RVXXAFghxlGIUltfBmbtLaNQrdyGVkyEc0JlrSpA0MyNzh7h+d99I7V3fJlqSS7vvp3LT0bO2yobPn7scr9zusOl8fXZ2nhSw3FtAuFQqFQ2BAsimkzooMn+J7tHu0762CAnZ0Z63RsV2+7LWMXEQNitxN7Jzq6Uun8OPSgZwbM/plNsI4xelcdsMEBTQAdSJ91qpH7A1+z/jFmwS5uvmwGdkOJ2BKXO9v5mtuOpafcuXyezJpZJ+v/t/awMWLMh/Xg2UEXBhUwJwKzIw656p9hhqBCYPp+YXbJ7CiyIeH24zFk881YU+QmZGUzN0xj5fbp+9rqzPOSpRC+na2fIv10hO3t7RXplk9PHRiS6T85qI3B5scDHvCAXWlHx14ys+c1xKdt7aFcTFmK5svPoXBZ5xsxX3b5M7DtRmRrwAFYjCXbd5aK+fSsXyxdGxfRfOM5zu0ZuaWx9CGbnweBYtqFQqFQKGwIFsW0W2u49NJLV8IVen0DBwrhgPeRdS0fRsE6WT4IPgrsYGBmHR3+oQKIsDQgCgahjv5jNh0dP2ew+mUBBPhd3nHy7tgzHw5OwmFTo0NGlD6aw016NsX9nwXw50MfovyYUXNbRiyWy28MgfWHPB78PbbEz0JfquAdzNp8GVWAFLYjiEI2cruzbUHW9ip9Y03WFhFTUWyd9bC+zirMqH2ajji6l0lphmHA9vb2Sp9GkiJmpux5EOlTebxxG2frHKfLa1e0DvB4ZlbumSjPVZbOGKIxxvY3LN2KJGQ85q0+LLWzskZ6fpZccrt63bryMmLGHbX9uRxqcj5RTLtQKBQKhQ3Bopj21tbWLqvYiLFFB2b475kehfV37M8YMVLlh5lZj3N6tiM0fR2HOfX5qN0d+5T7MiqmxXopX3/eyfMulneoka88Wzqzz292zCqXLWJCzCbmDn3w6fN4AFbDurKeznb5kS+q8mPndoo8D9hegA+F8exMHWvIh4JkoUhZWsN6aT+WeU6wX3gU00Ad9clSm0jawf1sZWHvjEgaoPqfGSawevTnHGs6c+ZMehwtW8hzP7BdAbBqs6BsM6J6KT9wrkc03tSBIdE6wPkpf+0oP5Yosu1BFj6Zy5xJHbgsSmoShbNVVvEsHYgOYIqkmktAMe1CoVAoFDYEi2LaZgGsLDX5WSDeZQO7d6TMOFifpqyt/T3eqbEuxKfBu2RjEWx5HO3guD68M4x0jMyO7Rnlh+7TU22TRWDjfJlpR2xd7eB515/pznp2vCyR8Dto3qmrSGheL630dtymkS6QpT7cTtEhDCxxYS8FPg7RP8v1UxHL/LvsCcBeCpGFO0tHWOqk9KQRuL8iiRNLWlQEuOg4XqWjZVhUNCBeU7hto+NAuQzc/uwvn8UfULYtzPR9JEaOiMj6/EhixUyU1zlDFmmQ241jO/g+ZhbLn1yujHErD5go1gNLH3heZ1E3i2kXCoVCoVDYE+pHu1AoFAqFDcGixOPAKIrIDA7Y9YnFOJG5vnL1YVFclh+LZDityDXBwG4NLEaM3mHRknJdyN5RoUO5vP4dFitGbcJiNjbsYheMqNycTyaK4nCcGbhsPj12n+JANlF5lRGcap9oHLBrIYsCIzGsCg0ZGSSxCFiJ8yIxLIfl5QAsLNr19WL1gr3LqqNIHKvEv5ExEddPGZ1GoumeELimlmNxq39HjU9VD/8/i2LXGQfcLqzC8eJxNorldS4yzuR6rWPsx2VTIYojIy9Wu2RrsIIyvMsMSdmIMjo7nfupxOOFQqFQKBT2hMUxbWA1KIAH75gMmbEN77bV7q5nl8esiQOz+DIqo6KITShGoJhjFOBeGZNkAUd4d6wMz7LgGtz2n3zBjAAAIABJREFUkWuJ6jdmZ5FrETOHHkTGScwIVbAWnw8HyOHQqqo+Pm9uJ2axEaNjoyJ2o4kM7PZiOGOMh9kKH1gRGRMp1sn3s6A+jGh8c1+y9CuSerCB5VxwFftTZVDlZoNE3/9stDhngNbDtC0tZor+HZ7vLNXKjtecQxRWlD/VeuSfsbZQga6iNmJJgXLn6pFCWjtGY5THVR3NWSgUCoVCYU9YHNPe2tpaCREYhcNURzBGO2uly2adZra7U3rwKAwe7x6Vm1hULy5LpIfiMjIbNDAjiXTCSieX6dQVK+d3ojIqxpPlo1h6BLYfiGBuU3xIgSFz/7D+VyFPo115xDh8WlEAGCsbs6fIRUa5Kqm+zcY3u35FjG6uLzMGzO8qG4dIksTuaNaPe9GHMnwI3GhOM9SYj9YdW6sUw+7Rh6tPn5bSXWdzuTdwUTSuFdPlcR0FnlJ6dx7nUXsq6WDmYqjaYGksugfFtAuFQqFQ2BAsjmlvb2+vBBCImIHSX0QWi8yslWN/ZHmunuFdXnSsnkHt3KN8VHhRfi5isfbJR9VFrDAK0gHoQCaZrlntXnt0mVz2jNH3MCnuL19upRPncme2FIopZpbSysMh0kGzVbCy0PZQTGMuNK1/hm0z+DhJb59g9+Ysf3uCq6g6ZAFAuOxZv0XlZ9iBIZmluQq3y9eVrl7lC8R6Va6rsuHJdL4qMFRmPc75cdv6MvL6zM9ktjQ2hszOR63J0bqqPDai/ldSDSXRjFDW44VCoVAoFPaExTFtb8UZWVmzlSHvdKNd65wvIrMNv7tjvbeBdY3ez499AZkp8uEjUb1YL658oT2YnXFZIxbALEkd0hGxAGbyxhKjgym4LGzFGYVaNZyL3ilrJwNLZyIrXi6LKlPmI8rf+ehU/z7r+jK9tNL9K9bnyzjnAZBJA+yT9ZBZf/WwYi4769ftAB51mI8Hh2PNysXhZjMrZMW4M33q3Pd14gRkXgR70d9m8z3KP4Lq/8hGhOMBsHQ1qp+SIEVH3Bo4HS5jj/SumHahUCgUCoU9YXFM+9ChQyv6tSgAvOltmYFEhzDYs3yQvNJ1+3cVw1aHuAPA8ePHd73Duzt7N2ITfGyjffK72SET3BaGqB05XXXAQiS5iA6q94gOcGApBEtTPDPOju3cDzA7Yl9YXy4VsSvzb2f7AGZAkSTp1KlTAFb71N7Noj7xM+z7njE6ZbOhLN+BVZ9hZfmbxQfgexGzZ7sR5SXhkbE9RmsNW1tbK37mXq/PFtE8fyIbinWjjEVW3ar8mQW/PcuSnEwKoCKvcZqZ9MHWKkNkX8TtxeM7izmgIuPx/I3y47Jm4Lqer/VnryimXSgUCoXChqB+tAuFQqFQ2BAsSjze2nimbRYMwKAOkchC57FRggp92hMOkQ3DLrnkkpV3DEoU5MtoInwTMZmY1D7ZSMob37CLh5WFjXAitxd7xox7+EzsqKxsaMaiNBa1eagQhHyf/wf6xFQ9Ii1ray8GB/JgJyzSVu5u0bhT79j1yEhKGfVkoTW5DGwYmInHDawusXf8+FYqA8svCynM88nA/ZWJfZWRlL9uz1pf90CpioBVVQOroqIwpsp9ci5/QBvWcrv4Oqt7KuwroA3BlMuXn9NcL1sPrM0j9QCvxUrtELWZ+l1g1Vp2WJSBDUp9mygV4VJQTLtQKBQKhQ3Bopi2gQ0oImMEu8chT5nN+mf5+EHFxrLgKipAR3Q4Bu/yuGyeLdvu9OTJk7s+12EKxsrZJSfaYds1a2t2g+LACNG7aicf9RuzzJ4Qi8w2eph2j/Ga9YNJNZhtZEFvFPPlAzd8WZjFMGvLXFWU1CaaE0oawP0fMRHlphexRTagUyFdo7kyx6ij8TZ3lG7GlqK2ZZibaWasNhcoh5/z5TTMGZdlz6p28v3Fa6P1E4cOjQxE7Rk2Ls36i+c/Sx+zIEVzQaTWCVLDiOaGkrL2sPOlhTotpl0oFAqFwoZgUUx7GAbcd999Z3d9rHO0Z/yngXeR0fGKc0EnVJk8mEVaWb3Oj9mJlcX0xtGunXep6zBsAzMQxWazMipEOm1ml9ZfkesUh+fkZyNGt04ghNba2joodr2LjuxkKQm79nCeXr/PUgylF/VQbIkZYxTe0Z61sajYWjQOmAFlAY74XQ4ixDrhSHLB9iMZ81LvKJ0mvx+1Bd/b2tpKmfvcAT4RK2MJB89D5cLkMWcfE0kSrD/s0JnLLrsMQNxOfCAMs+ZsXWB7Dw52Y5IsLw1Qx+Kq8Zb1mwq2Eh0ywn3Ka0skpVknAMuFRDHtQqFQKBQ2BIti2sC4q2G9mtcTKhbJYfE85kIA9hwUwDsz1glHh9ErqUBPmMdzAbdftltlXTPrwSNLWpZczFlU+/RUeMys3r1HL25tbXWlOxfkJLNcVZbTkXSIbQv4gIWIdShLfLYwj6yUVTjZuUN2ojKyZ0AUcIbHjLKO93OSgwgxc8xCiHKI3ay/eo5MZSgvkyi9nuA6nDffy1isYtgmgYsYv0lYjh49uuvTrkdl43HMbcBjNrJT4WBYbGfk1yOWDKi1mMdwVDbl2RMFnmLJgQpr6u8tFcW0C4VCoVDYECyOaQOr7M7v1FUIQ9Y/RL6BvDtW1o+RfkP5E0dsgnVH/Eyme2Fmow468OVhpsiW4JkuPwq/6BHpwZipKr/JyIKfGQS3eVTGyH9egfs6YjNsxc36PN+XzKSNtdiRgsywvW0DSy2YTUQH1LAESUmDfBmVzjwK6wjsZj7sJaD85yOmyuyMv0dhbpmVcVjeqN/sf2tP1s1H9gU8BlmCwXW7//77U8tpHr9q3GY6bZZ4ROXgOvNYMaZt9329bOxxP6hDgPyzXGYlLfQslg85UodzZOONQ99afZhxA9ruQjHuqEw83iLdvTpEaSkopl0oFAqFwoZgUUzbdrx85J/pZvYzH2CVGWZ+rKw3U9aP0T225uXdJbCzq7Nn+VATZuKeTfPBDeyXyZbuUbmVnjWyPGf9lpJgZIdnqPwj3dI6Om0uf8S0mYmyH3XEYq1fzCKXWbrdj5gBs5SMiRiTili4L090jSOSMctkxuXLYvmqaHbm+eDv8bMZ8+V3ORoc67IjCdPcYS090eIi2LqjbA6i91kSkUn45thrNPa5XVg/HOndLU6D1YP7NJI6qBgCKsaE7xdL3/K96667dn0/ceLErud8PZQERPlV+3ooRBb1yvMg83BgNj53rOuFRjHtQqFQKBQ2BItj2tvb22lEGtZrzO1mIyj9VASlh1I7UWBnN8xWvcxEonpxnHDW42UxrlV+7CPt02crXkbEXpQFeMZ4+F2lQ/flYHuCLGY2EO/KIz0np5e1k/1vn8paPLJ2Zbav9GqRzm9ufPt8LG/TsyvdLFuI+/85XjQz7cjXVrUfs6ce7w9DNG+j6F9AzrxUpK0ILOHjNAAdKz2zGjfwfFFs0jNEPkZYrWeeBd5xxx0AVo/I5LL6epqEiD957EbxI0z6YoyaozhmawuPrx49/5zvdhTdjKWaPcfHMvvuiap3IVFMu1AoFAqFDUH9aBcKhUKhsCFYnHj83nvvlcZRwKqIqSfcHUOFpsxC2ikxeeTqwWJPM6Rj8ZuvlwoJqoxVeoy8TFzKRib+fbvGxhYsNsqC8PcErlBGalzmSDyu3MU8Wms4dOiQNJIDVg3QWBTMom5/j13x+DsbY0V1Ui5AHuympUI0RvmosLX8TnSoiUEdiBGV1ca3cmnkds7qx6L2vQS4iAzsogNWFLJgJ1GQIZ9uNJ5VeFKey2xs5v9n0SyLlf19E1ffeuutMl1g9zpga4R9KvG4peXXCTM4M3E8h16O1lMeI3PGi77t5tRvkXicRdyRETCXcS/r24VEMe1CoVAoFDYEi2LawLirUeb5wOruXTHuiBkalPFLFr5QBZuIDn/gstkOlMP7eTcadvFRQV0iKOamDGB8fiqoBu/0I7bEBnX8mQW44bJnBkg9bTEMA86cOZMe68rlnnNdArRLjApRGgUCYrbH0gYfkIXDx3KABzb68mC3qbmjOqNnmP1xOEv+3z+jAh/5Plfulplr1pyrVMRo93LYwzoHhnDZovGtGCGXLWLEXBYV3Ck63MaY7+23374rfYPvPx7HZmCppEKRe6Jy22PDWH+P02dXzWhMzbnOZSFJ1foauepl42AJKKZdKBQKhcKGYHFMu7WWukJE7lL8vrqmdnes7/D5RWEjo3wi53wDhx60ekVM257lgwGYCXnwbpHTisJZMmOIdpw+v4ixMIPv0RsqnSnnF92bS397ezvV37KURqUX6cGZjTMzicJk2jvMQJgleaZt6fmxAazaHJgO0uetGDbbL0TMd07S49uKXcrmXCijwDwcttSQzd91GFAm9Yme3d7eXkkvkrjNrTs9c0BJ9qIQqMqtLtL9c9hkDuZk8N+NlWcSHF+2LNynIXNPZZsQ5Tqb2bGodTxz3+LxzflGktm9SGsuBIppFwqFQqGwIVgc0wZW9SeeZaiwd1mAD6X7UMHj/c5K6W15x+Z3ryoE4Z133rkrTV8vDlsaWYlH5fDPWFnYipPZoX9HSTV4h+u/q51tZjvQa90f7Wp7mZXptYGYVe4FrJfjTxVaE1hlx3MH1lg9gB2PA9ZlZsd5sl6d2zy6rvTQLGGIgvkwMstffkYxnR7bBnU/uzanl4yYNt/3n+cy5lVIZN/G6vhTtq2IAn/w+mZlNFYd1dPe4cAsXOZMEqLsPrxUiMP9KklL1L52T+mlsyAoyhI8GzvrBOi5kCimXSgUCoXChmCRTJt1zFEYRENP2FJ+t5cpRmVilsT6Y/+/MS3TT/KuMjowZC7/yF9cHS3Kh4xE/u6KQWS+61x+5dOdWdJyepF+LNNVKWRWt8o3k9ONrNTn/My5PQHdZ2xjkFlMc/psW+GfUSzZ7pu+PCqjsk/oOfxFWfn3sDMlSYoswTmddUIXZ8crmoSG7SEyD5SetUMxaiVp8ZIwlvAopu3bSUlc7NOsyf1axV4CCtH442tKCuXrxTYgSncdzXleq9R63uM5lNk8KGnqUlBMu1AoFAqFDcHimPYwDCu67Mj3Ve26o52v2g0rfZp/jnXNkV82fzdmzdF3sohLc8jyUzoe3jF6tpEdLeq/R/7Oyrqyx9p7znfVI/NjVVBRwVQePp/suTnfYOWrDKyyiix6GteD84use9UxqiryW2QPodo2Ytqsx1f66YhFKQkFI5u/yoc4Y4tzY8fbQ0TlnmPz6/jycj2iiIV8zC4/E81LvqeYsB3sAeysVcqDJjsMhn28+aCiKHaBsgHhNSs6DnMukmWPJThfj77P+cgfNIppFwqFQqGwIagf7UKhUCgUNgSLEo8PwxjC1MQTJnaJ3KlYzJIZhLD4RInYIyMYFh/xs5G4XIlXzkU83gN1FnNmWDMnso1cz9Yx/ut9J2p7FtWt0349Yt11DsdQRk/ZO2yQowwEo7Oqo3tR/r4eKmwpG+pkxkQGNT58utx+VtYe98u9qEn4GRWi0j/TY2Rq5VGGTsCqGFepL+bcEqPv0RxTYum5UL7+HQOPQx/Mx9Y3/uRyWP0iEb4K5RuJx1X5WRXGqj1/bc79LlKtGJRxYCQen1PhHBSWVZpCoVAoFAoSi2La29vbuOeee1aOizRjDGDHXUHt5jOXEbVjZ4MGz25UsBM2+vC7W3vWymrfbRcbufrshwO/Cq1q+fsdr9q18pF80Q5bufL0HP6gyhodSMBGgJFxCkOFVARWDbPU4QVRmM85l7XoYBWFzAiGJTpsEGT18W1hfcXHuaq+jcba3BGd0T1mKYqBRxISxZYyyQXP18wVcJ2woq01tNbkOuHT4Tr31HWuDBwMBViVkqi2jUIT85zlsePXAQumYmussXBlhJVJrpiVR6xazROb92y8G7nqKelGJu2Ym78ZOy+mXSgUCoVCYU9YJNPmwPdeB8OuCWrXn+m2DcptJzoiz3atFpKPw5t6aQDvUnl3GQWNsTobg1pHX6wOkleHgPj68C6SmXYEtZNeh2mr4CqRa461lwqxaGXa2tpKd8kscegJkMLvKruI6B0eTyy1icLO2jPGmhV7yAJkqOAqEftUUgY+0CFiIiqoD8+N6GhdDjzTw7SVK2M0vjMXvAieaUfpRi5Wc9+VzlpJmTj8sL/HEr3o4CQlSeI1LHJlY3aeBZoxKD2/IQuYxJ+syzZEhzdlYYD5HcWw1foT3SuXr0KhUCgUCnvCopj2MAy49957z+66oqD4zMiyIyt9uhl6wi0qpm2I9NMcNjI6FN7AbGkujKjPjy18VbCN6H3WnfXocDl93uFH+jd1MACz0MiewBhIxrQtTT5UIDr8RYX97LEWVUw7smC2/7n8mS6Wg0vwwQpmFxExSCsDh5PMdKqWLlt+c59Gh80oPa/Sv/pyK/10Fr6S2XiPZIR1wj2I3lFrCLPMLISmKmMUCvnUqVO7yqCCBkXHXnqpX1RWP8ciexdfpkxPzJIj7p/IApwDZ6lQv1Hfzs1bQzTu5mwoIukq57sUFNMuFAqFQmFDsCimbTptPrrS70BNv826MXVkJ//voXb9fmdlu1Zm2MyAIgtge4ZZUaRbYuZrdbey2HfW9/t32B9T6bj9tcxi1pcr0+/NMa/ongpJ6NvK+t1255HOT8He8ayDdbBcn6yuClwPv2M3Zn3ixIld35lxRxIJZrjZISNsFcxjlJlJpCdkxsPvRKEouWxK4hNZHCt7kkg/qvTc6+i/e2xEFJMHVtcK9U50j6VXyhMg81oxZHYjPGYUS4/WAS4zM+1IsjN3RGbEYjn2Auupo/HGdVdHz0bgdY7LqnTpvekfBIppFwqFQqGwIVgc0z5x4sRZdmQ7UNPvADtMOwucD+Q6sbnIRBEDVtbpEatUPpaGzG9VlUVZefv/eZeqInL5/HhXrOrt66CskrMdsLKYzQ4K4ChNPX7anH5UBsWAIr3knAV2xuBYV2n1sAMb2I/f56ekJ4YoqhmzYxXdKophoA7U4L71ZTJGx3OSpVBRfAAVJY6fA7R9R2ZxrnSXChGrjuapsm6O5qmKnqY8ETzT5uN9OX8+3MT/ryQdmQU4P6NYdGYJruxysrbnMcvP+rEzZ3OSSVx4PLA/eJTm0vyzDcssVaFQKBQKhRUsimkPw3g8njHryBrS2IPt7tlStcc3WFlIZ36fytfakOlgmGlHUX5YZ80MOLPMVjGAlW4LWN1BR/pOVQfFOrMdvYHZC+98vd7a2sT6fE6nvb29vdL/vj7s+zzHKvy1uYhKUd2VtwBLOTybYmZrZeMjGn292LeWpT8Z81kn2pyB4ydYemb3wbELokhfzIrUuOD/o/pE0qIe62eD+fjzuPDl5vgFc9bIHsrKvccjZM7LIpLw8XyM1iZ+h8vEn5H0QUnpzgWsd4/isas4FJnEhcvP61zkZcJr41JQTLtQKBQKhQ1B/WgXCoVCobAhWJR4nGGuMZFxkolKVRCIzAVjzqgoMrZQhjqcNrAqrjRY2TiwgMrbg8WmkWGQOl4zE9kZVEjKzKhMGZ5lRjkcftauR8ZmfIhApFbweZp6xdfHp3fs2LFd5eVyRiLAOTGugV2ygB3xsJXb6shBg/zYYWMeX78oP19X5XrHbR2JkecCSmRGTCqUaySSnhMnZ4Zxap5moXd73XZ8GNOoPlyuzHjVoMJ8shouUkGx+k+Jx6N2YmO/zEBUHXiynyLvCBy0issaGWAqd0FDFMyF1x2e45lKbx13wQuJYtqFQqFQKGwIFs20jU17ly9jq8bC2cgnCqQ/x16zMKZsyMCuKlH4SmVgwrtnzxyZGSrmw8ft8f+qHr4cPn2VD++4ozTZxSxj58wulAGaZw7MLtYxlvo/7Z27cuNKEkSbY46/9v7/Z629/hgzIXKtilt7mFkNkpKGiMjjiCLAxqtBIus5FYNwJVV5rftrBqVQpfP69M+U4maKVH22B1ryGKmiVflKl5bIc6DuA9e+sZhSvuo46rj4dypnSuUzBcvtggDVdXuE2+22rtfrnSWnb3dXslOVX3XBsS5YdkrjPBpQ1Ze5ssYqINWltPIe7OeY31W8p6djrDlPRc35qOa5s9JMwXKuMcl0Tqbfhb9JlHYIIYRwEt5aaRe9SEQpMhasOJLyVTzSUpJPWfS9KCVKv+SujGF/zZQePnGrAgNTAYS+rkprqGW1PddApON8ce5pvY9PGKOgfNqf5Wej0laNW7gdPr27kpBUNf015wyLj/RUNu4T91Xt+1TidHd8hVMvSi1TfTPlkMc3Fb2gT13NO+c/nvzKvPd25+Tj4+OudDCXd3i+pnRBZ61yjXfUOhxTxT7stqfUq7MgubS6fh447/gdUqhiRa7krovL6bhzPzXtcal6al5EaYcQQgjhUziF0u4+7fKFVCRwPR1T6agn0MKp8qlYPX0wVKTKX7xTiKodnPPfcXlfb+fDpsLn/vbx3ZO3KhriLBaqUYDy4691r7C70qY/7ZkoTnVdXMS0uk6upCWv+5F9Y3tXtsPs4/A6T0qb18plD6hCI061OCuKOh6qI+dj79vh+VQqyX2GVpsp2ptjKG632/r9+/ddLID6HnA+bbVdXktaa6j2VJwK72GX8bDWvXXOFSHp7DJNprgffpbfjdN3FSPBOZeORHO7wi/qnPCeP3Ktud13IUo7hBBCOAmnUNr9SYftDSuCtRSa8lPuVOwRRUqlc8RX5kpqulzc/hmnYo/kyx5Z7tblk69S2lPrxbW00nZKhzEKXYnT3/1MdHAfj0qn5kz50wq137tIbKqptbzP8ufPn/83Ro8ed1YA+o+na+mi41U8BI+L6yqlzXuiLAeTWimokp1inXLJqXxezae93W7rz58/4728i2BX++DyvqnuJhVL1TodI9Ujt7+rBTGNodh970xKm98dtNbQktn3m8fB+dHveb7nzomK+lfjvQNR2iGEEMJJOIXS7lCZ0c9VT0WqHSBxVZ/6E/eu4foUGeu2pxTDrpqUiwhf696/6iJx1XERF7U5NTPY5Xiuda/cS+VSYav2hJNl4hFcm8PaN1XJzkWP1/8uxqGPU+enFD3VTD/n9V7tq8s86Di/usvPVdG83I6LfO/7wKhxHrdSdryGzpc9XQPCLINHqTxt0t9jNcMj1RT7+GrZroVvH5/3tqpH4e4/vj/FULi88yk63s0v9X3qLDhHsn/cvDoSPc7PuEYpanu7apjfTZR2CCGEcBLyox1CCCGchNOZxxkcUH+nFKyCpnRnmpnMyK50njJTue2qAIdH05p6wB3NhzRpqmYWDnceVYCfcxlM5qT6TK0zBaKxx/irqRe1DaZGMbirX39nYpwCHwu6JdjMRvXGnnp7O5yplu+z3Gxf5lweqtgF5xXTj2hyV4F9zqSpSrDuUvVeDUTjdlSAFV0nrvHNVIyIAbFH0gYZiOaWq/13+za5Alxa1XR8PM6pEYpb5lLPlGvFuf+UG8WVY3aBhGo7r7rlPpso7RBCCOEknE5pF1RoDHRShT3cUyLVpAr/L1hG8EjZRVe0XqUjMeCJqOMrxcN94d+pyURx9El4La+aONZa94FVdewsqtJLerrmKa9S47JJiwq6YnEGF+ynLCUueGwKQKL6OpJuoiwEantKabvrS9XUg804d3YWF9WCtuDxqYJE/MwuaOoZrtfrmDpXY9NqNW2byncKJuXyo0GFCs6HKWXOKeldmmx/7awzan44i45rBqKUtit0dKS1rrtH+nrOYvUuRGmHEEIIJ+G0SpvKrAo8qCdE52OlEmJKzlq+3KJSEYXzvbhG9tym+p+op0nnlypUSc+CvnsqMKU6aBXgGOo80k/Nv705zFcXNaht1hyqIic9NaysL/Rh0mpSxX6m1DieU/rH17pPSaE6PlIYYzeX+nVS1oW+z8paQD+r882qFCzGNDh/pLJCcQxabV7hx48fo6p0avKZZjbOV6ru6UfabFK11jmeCons0sO4PxOu6NIjBaHcd2d/zTnjSpUqGE/Csfs+fVasxGcTpR1CCCGchNMq7Xq6LmXGp66uDFxktmvKoHx+LKowKR+nIqmwP+sJjorDRfMqn9nObzMVcaBqmnxBu6fi+l81DNm1VXyV2qbaHi0EnCuTf7qUO5vNOFW7lleeUwSw80vymqr2oSws44q5qDgP1ajD7SOX8XxOUfOuLOdnRfdeLpfRQqK27YqEHCnEQQuVKupT49D6N8WaOH80/fAqUlq1C1ZM0fGu2JK6f933KL+Xpjabz7Tu5famgkpFosdDCCGE8BSnVdoFo5DrCbXnz7qnORfJqKASmdblUyLV5Ff7SHaNFfo6rowl1+vvu3zWSfnUeywlyrxXlbNcfJXirn0ov7SKeqfCcTENysfImInJ908F4hpsqHiIXXYE/bF936ZWrDtoyeH86DCLwOUDK582x6dl5NkypjWG89H3/ds1vOjz21kc3DErtcc6FK78pxr3kdznqTVq346Kst6hLBY7ha38084K9UyZ0emecXPzXYjSDiGEEE7C6ZU2faGqYQiVDRXv5INhpCyffEs9TbmBxXc9sTnFOz1V0rdFP6JqwMLx6ePu55FNP7jupJK+y6dEVd1fuwhwFzm/1j/xFjVG+bbZbKR/lttx+eHKkuRUsot8VsfHzx6p+Mf5QIXdr62LUuYYU263iyZ/hcvlcqganTu3jPZfy7eDLKaYE0ZPu+8d1YyDTJYIWjF2kfiTVYjrqPPorICu6p3KQDkSFX+UI5HmydMOIYQQwlPkRzuEEEI4Cac3j7vSoFVspXOkNB+ZTItqrL5PzpT21WZyV3r1CM4cp1J+ilqHJvBu4nRBeDTZHTHhfzW9wAvTcqoQiyvzqcyVNR7XUQ0VWFKXgUfqXOzm2dTf2M0V3itTQJC7n6bAJ67Deafm266v9it8fHzYnul9P12/+aKfC+dq2pnJ+/b41wWmqfd4bVXjIKZ68X8XsKrYBZWpdZw5fJo7xStmcTfP+fodidIOIYQQTsKCBA6FAAAB30lEQVTplTafQI883U9lFvvyTj19VTDRFATB0oNMwfiuVAKXVtGhkqLimYpG7AJRVGEEt28cczqer0LNh0oDK+XrGq3UcajGGnUuf/36NY6x1n2Am9uusjq40pC8TpPS5n3EgLj+2gVuUUX18+rmvksJ7Ms4R6d5/Qi3221dr9e7AKepRa9L9VOBWq6QiGs+08dnudQaS52nyaIyvd+XubHUfblLE51KkbriQdNnd9t/ZB5M1rtXLJXfQZR2CCGEcBJOr7SLqUjAzm93hF0ZQeUncv6h4qsaYhzx/fB8uafl2kf1pM0SgNzu5I9y73dF8xW+y0dhIxMq30KdAyqbGkOlB7nPuLaePeWLn3XWClV0wymsqYCFi0tgydep2A6VKtdVc3Wnzl7her3eqdm+D/QHu8YnqgQucTEHqriK8+NPVhNeH3eN1bpuX49YwFycgrIguHWmkqSTv/tV1Hk4Gsfw3URphxBCCCfh8k72+svl8t+11n/+9n6Et+fft9vtX/2NzJ1wkMyd8Cx3c+dv8FY/2iGEEELwxDweQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEvKjHUIIIZyE/GiHEEIIJyE/2iGEEMJJyI92CCGEcBLyox1CCCGchP8BQ1/B0WsHM94AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1114,7 +1832,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4ZflZ1/v9naru9ECn09Wdrs480IiAQnyICg4MCoGLOHAFwxSN6AUuCsrFXIkoaQ1oRBnuQ0QQzYUYvIBCBGQK5DFMESQySiaSdJMeqjvd1Z3u9FTVVWfdP9b+nv2ez3p/a+9z6lTX3vJ+n6eeU3vttX7rN6213+87tmEYVCgUCoVCYfOxc6k7UCgUCoVCYT3Uj3ahUCgUCluC+tEuFAqFQmFLUD/ahUKhUChsCepHu1AoFAqFLUH9aBcKhUKhsCVY+aPdWnt5a21orX2wtXYdvju++O6Wi9bDLUVr7VNaa7e01nZw/PmLOXv5Jepa4QiweC6+5BLde1j8m9y/tfaG1tptOHbb4vz/0Gnvvy6+/8XOffjvDWv0cae19huttb+XfPeJrbXvb63d0Vo721p7qLX2q621V7fWnrFyAi4iWmtvaa295Qjb+7bW2k8cVXuLNm+bWZu9f0d4v7tba995RG3dsHgvfmzy3S+31n7qKO5zoWit/fXW2ltba/e11s601m5trX1Xa+1Za17//NbaGxd7+8HW2g+ue+0qHD/AuddK+vuSvvYobvz7AJ8i6VWSvkHSbjh+StInSnrvJehT4ejwco3Pz+suYR9e1Vp7wzAMZ9c490OS/lJr7ZphGD7kg62150n65MX3Gb5H0nfh2L1r3O+LJT1D0nfEg621r5H0LyT9V0n/UNL7JH2YpD8h6UslvVjS/7ZG+xcLX3HE7f1zSe9rrX3qMAz/9Yja/BxJTwmfv0PSMUlfdkTtE58l6YEjausGje/F90j6LXz3NySdP6L7XCiul/Qmjev3QUkfLekfSXpJa+1jhmF4tHdha+2pGvf3gxqfg+OSvlHSm1trLxqG4fEL6dhBfrTfJOkrW2vfOgzDPRdy09/PGIbhjKRfvtT9KGw93iTpJRpf1N++xvk/I+nTJf1ljT/Exssk3Sbpdo0vfuLOYRgOs1//nqTXx5dba+1TNf5g/z/DMHw1zv+J1to/k/R5h7jXkWEYhrcfcXunWms/JukVGl/kR9Hmr8fPrbWHJB1fd51aa09ZvIfWvd+vHbCLh8IwDL/zZNxnHQzD8C9x6Odaa3dJ+s+SPlXSj89c/n9KepakTx6G4f2S1Fp7u6S3S/oSQZA9TOdm/2lkFIOkPy3pEUnfHr47vvjuFlzzxyT9rKSHF9e8WdIfwznfI+kOSX9E0i9IelTS70r68lV9Ouj1kl4g6fs0MoQzkn5D0uck532BpHdKelzSb0v6C5LeIukt4ZwrJH2rpP+5GN/dkn5M0h8M59yymJd9/xbfPX/x+eWLz6+QdFbS9Ul/3i7pR8LnqzRKfrcurrlV0tdJ2lljvq6W9BqNDP/Mot8/JOnkIdftxZLeKukxSe+S9OcW3/9fGn8EHpL0I5KejusHjVLn1y3aeUzSz0t6Ec5rkr560fZZjRqK10p6atLeN0j6qsV8fEjSz0n6mGQO/neNAtOjGqXn/yjpuTjnNklvkPT5kt6xmIe3SfpT4Zy3JOv7lsV3N0n6Xkl3Leb5lKT/IunGdfb1mnvfY37jYh2vCt+9QdJtnTG9TtKb8d27JP3jxZh+MbvPIfr3xxfX/hEc/ylJH5B0+QHaWrnnNWq1Bo3P62sl3bf49wZJT0N7f2exro9pZI9vU3gXaPq8u+2/pFHjcP9i73ybRiHnj0r6xcU++R1Jn9HZd+clPeeo9gDan6xd+O41ks5J+kMan+eHJf3A4rvPWqzJ3Yv+/7bG52gHbdwt6TvD5y9fzMnHS/pBjc/cnZK+eW5tJf3B5LkZJH3+4vtflvRT4fzPXHz/WZL+3WK97pf0TRpNu39C0n/T+Dz/tqQ/k9zz0xbz8/Di349L+qhDzvOfWvRnssY475eE52xx/Fck/XT4/CyNv0unNL4r7pL0o5Kum21/jY6+fNHRmzU+PGckPW/x3eRHW9LHLh6I/yHpczVK9r+6OPZx4bzv0fhif4dGtvDpkv7Dor1PXaNfa10v6TkaXxT/U6Oq4jM0vrx2Jf2FcN6nL47958Um+WsaVXd3af9DfK2kf6vxpf7JGlVVP7PYUDctznn24pxB0p+U9AmSPmHx3fO1/0f7WRof6K/A+D5+cd5fDnP9C5JOS/q7kv6sxpfX45K+ecVcXa7xB/YRjSqeT1+szXdrIWwcYt0sNX7mol+Pa3xof0zSn1t895CkH0RfBo2s7pc0vghfqvGH47SkE+G8f7o497WLNftqjQ/dL2j/C3vQ+KP00xpf2p+r8cX+Ho3sgy+a1y3W96Ua986tkq4J590m6fcWY/9cSZ8t6dc1vqiftjjnoyX9mqTf9NpK+ujFdz8j6d2SvkjSJ2lkjt8p6fmHeVF01tM/2h+z2DtfG76b+9H+lMX5z14c/4RFWx+u/o/2N2rce3v/1ujfqxZrH9fp+GIvfd8BxrnWntfyh/VWjVqHl0j6ysX9vjec90Uaf8C+XiNb+iyN5r6/Ec55i/If7dskfYvGZ+fVi2PfvthDX6Jxj/6CxmfsBozj6Yvzv+So9gDan6xd+O41izV/r0bz5qdK+qTFd397Ma+fKenPLObiUU1JWO9H+12Lufw0jYLfIOmVM/28QuNzNyz2iJ+d6xff9360b9X42/Ppi7+DRqHpHRrf05+5uPZBBSFNS2HpP2l8N3yOpP+ukbw9Y825Pbbo94s0Cgi/IemyFdd8UKM2icdfJ+n28PkXNL5Hv0Dju+KvaHwnz/ZtnU6/XMsf7ROLDr0uPFT80f5PCi+4xbGnapSQfjgc+x5Nf2CfovEB/Tdr9Gut6zVKaPcKTFbjy/U3wue3avxhb+GYfzjfMtOPYxrZwIckfXU4fsvi2uM4//kKP9qhL/8N532bRkHgKYvPL1tc90k47+s0MpAuk9P4UhkUhJTknIOu2yeFYx+r5UN8LBz/FklP4NigkQVdjTl5QtKrF59PaBQOvwd9/GKOY/H5dxUeJI0/toOkP7H4/GEaH+jXob0XLObu74Zjty3m/bpw7MWL9r4wHHuLkhelRsHiq1bt3wv5p8CAJf37xRpdu/g896PdFv//2sXx75D0S73xKGdFg6SbV/TvJ91uOHZyce0/S85PhYJ197yWP6zfi/Neq/EHvoXPv7ai729R/qPNvfNri+NRA+Pn4K8l7d6uNd5rh9wP6V5cfPeaRZ++bEUbbTH/r5Z0D77r/Wi/Euf9rKTfWnEfs+0vTr7r/Wh/B857++L4i8OxP7Y49tLF553FnP8ErvVv2GvWnNuHw75/q1ZozBb33febGL77l5IeCfN9VtKXHnS9DxTyNQzD/RrZ1F9trX1k57RPkvRfhmH4YLjuIY20/5Nx7qNDcM4YRjvLuyU918cWHup7/w56vcaF/wlJD6Kdn5b0ca21p7bWjml8Mf/QsJjRRXv/Q6OUtw+ttb/SWvuV1toHNUruj2j8YejNySq8XtIntNZu9pg1Sl8/OCxtT5+pkQG+FeN4k6TLNEqsPbxE0t3DMPzozDkHWbdHhmH4+fD5nYu/PzsMw3kcP67RISniJ4ZheCTc5zaND+wnLg59gkbtAL2Uv1/jfLM/PzMMwxPh828v/noffKJGAeT7MHe3L/r4SWjvvw3DEB1v2N4cflXSK1prf6e19odba23VBa21Y9jnB3kuX6Vx771i1YmLvf0GSS9rrV2ukfW8fsVlr9OoAo7/bl9xzTO1nrOaWms3aRTY9v6F5/yge552xt/WKMifXHz+VUkvaq19e2vt01prV63TxwV+Ep/fqfE5+EUck0btHnGvxnnpgu+6dfbOAfDG5H7Pbq39u9ba+7Wc/38o6cbW2tPWaDOb73WekYMim/v7h2F4G45Jy7n/GI0azzdg7zykcR/wme/hT2vUln6pxvfYm1prH3aIMezD4ln8H5L+QWvtb7fWPmbdaw8Tp/2tGiX7f9L5/oRGHT1xt6TrcCzzSDyjUR2h1trzNX2gn7/u9QvcKOmvsh2NDjHS6CV4g8aXwAeS9vY53bXW/rykH9ComvlCjfa7P6rxobxicvV6+GGNP/wvW3x+yaLf8YV6o6TnJeP472EcPVyv0eY0h4Os2wfjh2Hpvcz18HHOS+bIeI9GU4H7IvZnGIZzWqjRce39+GxBx/e9cfH3ZzWdvz+s6dztay8ITuus70s1Cjr/t0bv2Dtba1+/4of4zejT169xH/ftfRq1SX+ntfb0NS55vUb1/qs0+jn8wIrzTw3D8Db8W+XEdIWWa2Cc1sh6+VK/T0th4Lvx3UH3/Kp98HqNTkJ/XKPQfn9r7YfxTukh29u95yDbJ49JunLFPThOCqeHxe4wDPvebYsfsB/XUrX9KRrXwO/FdfZ6Nt+HfQfOIZv7Ve8aP/Pfp+m8fprm35d7GIbh14dheOswDN+t0ZzycZL+5sz5uxoFA74zpfG9FefsczT6FHydpP+5CIF85Sph7SDe4+7Uwwsvz2/WcoEj7tfojEPcpIOHDdylcSPx2EFwWqPt4J/P3OOcxsW8Mfn+pKT3h8+fL+k9wzC83Adaa5dp+kOyNoZheKS19kaNNrdXaVQDv28Yhl8Kp53WyPr/SqeZ22ZucZ9GR5Q5HOW6rcLJzjELFt7YN2l07pG096K5XtOXxSqcXvx9eWwvoBfudGAsXo5/S9LfWmij/prGl+K9kv5157Ivk3RN+HzQPf7qxX3+wRr9e3dr7Vc02i9/OGpWjhCnhZfWMAznWms/L+nTW2uX+wduIYi9TZJaa5+dtHPYPT/Bgt18l6TvamPOiZdofI/9gMYf8ouJE5qGOBF8173riO49JMc+SqM6//OGYfhPPthau6Te+0cIP/Nfo9HRlThw2NUwDO9orT2i0VQ8h9/RyPSJj9ao2nd7d2s0NXx5a+2jJf11jb48d0v6f3uNH/hHe4Hv0Ogl/A3Jdz8n6bNiPGhr7RpJf16j7WVtLB7st608cR4/pVE9+jvDMDzWO6m19jZJf7m1dotV5K21j9do94w/2ldp/JGPeJmm4TKW8q/Uej8Kr5f0xa21z9DooEWB6Kc0Ooc9PAzDO3nxCrxJ0ue31v78MAw/1jnnyNZtDXxWa+1qq8gXTOcTNNrfpFFVflajgPTmcN1LNe7Zg/bnrRrX4OZhGL730L3ejzPa/0M7wTAM79Ko/vpyzQhNi/MOjWEY7mqt/SuNzlfrhP18k0bt02sv5L4zyEwOvu/PaBSgGfKV4UL2/CwW5o8faK39cV28+GZJo/lDo4bhP67o04W+6w4Cmwb2zEqttadoNMtdTMT34sXEb2sUfj9qGIZvOYoGF78HV2t1jo0flfRPWmvPGYbh9sW1f0CjUPZV2QXDGGr4itbaV2gFwTrUj/YwDGdaa/9E0r9Jvn61Ro/bN7fW7On39zVukp5K/WLi6zWq036+tfZajdL5dRon5oXDMDir1Ks0/ri9sbX2bzSqzG/RKPXE5Cg/pTFJxbdqDOV5scaXJRmLJaqvaa39pKTzKx7KN2vcZP9O44b+9/j++zRKYm9urX2zRs/lyzV6/v4FSX9p6Af8v0HS/yHp/1toSX5F4w/OZ0j6tsUL8clct8c02ob+hUab4z/WqFL6Vmn0nViM8ZULyfYnNDKDb9AYXjMXIznBMAwPtdZeIelfLVTIP6nRMe1ZGlWQbxmGIc0WNoO3S/qK1tpLNT7EH9K4V35W41q9U+ML8S9q3G9vOmD7B8VrNNrdPlmjHbiLYRh+WKNJ5mLh5yX99dba9cMwmPFoGIY3t9a+VtJr2pgR6/UamfQVkv6ARiHtES2Z4YXs+QkWz/WHNHoBf2Bxz5fp4q/NH9L4HGWM71LhtzS+b74pmG6+Rks188XCHRqf9S9qrb1Lo7f6e+FDcsEYhuF8a+1vS/qPC9+FH9LIvm/SaKN+9zAMXaF1oY36fi1DTj9OY+6B2xRYcGvtSzWS2D85DMOvLA7/a41mmB9trX29RkL3TzW+J163uO6kxpDY/7C4x3mNDrRXahRsuzgs09ai46+Q9BHx4DAMv9Va+xSNoSLfq9FL7pc1Bpr/5gXc71AYhuH9rbUXa/wB/qcawy9Oa/QU/95w3s+01qyefqPGkKGv0fij/2Bo8rs1Ojt8iUYJ/Vc1slE6evwXjYv5FYs22uJfr5+7bUwz+fc0OkK9B98/sWDhX6vx5fwCjS+492r8Ees+bItrX7IY25cu/p7WGHZ1/+KcJ3PdXr/o+2s1Cke/qjFWM6q9v06jSvnLNc7h6cV1r1zYjQ6EYRi+q7V2u8Y9+4Ua9/6dGk0nv3GIMfxzjY6H/1ajI9jPaRSCfk2jgPQ8jcLeuyR90TAMP3KIe6yNYRhOt9a+ReM+v9T4EY3qx89WeMYkaRiGb2qt/ZLGeGk/j49rnKcf0OilfH5x7qH3fAe/pFEIeJnG0M27NAq0rzr4EA+Ez9Yo0L3lIt9nbQzD8Fhr7S9qDFv7Pi2ibhZ//9VFvO8TrbW/qZEkvFnjc/gFGn8gj/peb2xjQp9/oCUZOqVRaFuVive/a7Rd2wfj/RojZ/4lTEo7Gn+U997twzA8uHiXfpuWYchv0hilYm3vwxq1AV++uMd5jX5SLx2GYTaVq0MhCglaa8/W+OP9jcMwvPpS9+d/BbQxJ/I3DsPwDy91XwoXD62179EYD/5pl7ovlxptzIb1Q8Mw/KNL3ZfC9uNCmPb/UmitXakxrvhnNTpuvVCjB/CjGtlUoVBYH/9Y0jtaay9+km21G4UFmz2p0eGtULhg1I/2Euc12jteq9FD+RGNqtPPG4YhC4UqFAodDMNwaxsr2WURGb+fcKXGRCIXw0u/8PsQpR4vFAqFQmFLcJjkKoVCoVAoFC4B6ke7UCgUCoUtQf1oFwqFQqGwJdgoR7SrrrpqeNrT1slTPwXTtWa2ep+zs3PhsgrbP4xvQOwz++/P6xznsd416/Zl3Wt7c+7jcU78f//d3R1Drc+fH+uLXH755ZNr/J3/+po77rjjvmEY9uXZ9t7hHBw7tkxU5/+zL8YTTzyRHo9wG95Dc3Pf+653/6zd3l6dm1viMPuB5x5mf2f96rXjtc2+Zzvnzp07dJ9OnTo12TvXXnvtcPLkycmeifPkPdjrm8/1OOKxo5q7ufOya3ht7NthcZD7GXEeOV8Hwar3TdZH4kJ8uLK9cymwUT/aT3va0/RlX3awjIKXXXaZpOVL3y85P9iSdPz4OEw/jHx5G158nx+PGb7mzJkz+77PHmqf6++4yeIL2f/3X47L1/BzHM9TnvKUSbtZ2/H/vR8599VzEedq1Y8R25aW6+G58Pw9+uiY0Oqqq67aN4Z4zt133y1JevzxMV3wV37lV04yfnnveN7898Ybl87LPuZ2z54dc3P4ZXb69Ol9fYzwvF9zzTX7+su5jXPssXhO+dL05yuuWNZY4NpdeeWV+/qeCRZsl/3nvsj2Afcqf7him74ff2j92ddwzeMxX+PxeC382X9jH93+Bz84OmI/9lg3K3EXt9xyy2Tv3HTTTfrO7/zOvbXN9rzvxfeM++31ie8dzo/HRCE0+9Hzd26Pc+A24jyxXe9z3j/uF64H33e9NY7teQ5618Q2sz2Y3Tc7vkoIygQn9tv3jfO2LrK9cylQ6vFCoVAoFLYEG8W0DwJLVT2m7c8ZIpOWpgwxSoGUAH2t/2YSL5kP28iYaI9pUx3r4xlb4nh6n2O/e6rTOWm51677auk9qqbZDtfH58bj7qPHvI5qy/2+9tprJ+2RxZG1mtVGBsc+UJPja7Jx+RruFbadqQ8NsyX2NVsPmhjI9LnPI8j23Les72QvZH9kfPHZ8Lz5r7Un/uu2PXdxrO63tRyHYdoZdnZ2dPXVV+/Nl/sWn2NrQ2K/Yt98btzz1Dj0TESZNoNzyL2THecx7hH3PV5DjYH739MOZho37xF/zhj9upgz5fQ0oz2NX/YdNUk9s8cmo5h2oVAoFApbgq1l2pTuLDGSRWfnZLYPad55jVIyGXCUsKNdK/ucXcPvzJp4n+zanuTO8c4xVUr268wN7Z6UkjMnMP8lg/uwD/uwSRu0xWZrS5j5mo3F9jwmszrOD23e8Ry353O4h2h7lpbsjO2biWSM1/NBRu+x+37R9p9pKbI+ZnZJ7iuyZdpDs766j2a+ZFr2W4jwsZ4mIY7v6quvljTVXHhNsvYPgp2dHT3lKU+ZsK+M7btfZLMZO+cxPp+0W0fbsOfD59J2Tqe8eIx95n0P8h5YB/SLIKPPtDSrkL1TqCni+3NOGzjn6LhtKKZdKBQKhcKWoH60C4VCoVDYEmytetxgaFKmcjYYNrHKYUzqh1zMIXM0y+4zF3qzSiWcqXkY1jCn2mQ7dATqqfDiMTrL0Vkr9t3fWWXsc6xu9Ll09JGWqvP7779/8l3v3Ex96DFSBU0VWgzBssrZx6iC5rXxflRxEtnxnkMizQlxn3Md6BDIa+O+68XyUl0dTQYMmbNa/MEHH9x3vywkaN2Qm+x+NFHMPesHRRaqF9W6XAc+w5lamWpv7z/uFc/F3N7hNXPvIToTUj0eQVMGVejrxFP3HBzncg2sUnWzjexchuZlDrCr3vEXEkt/qVBMu1AoFAqFLcHWMu2e9JgxLCJL+hARGSIlzjnGw2tWhWJl2ZN6586Ni04WdKjJQkCY5MR/ee46jilMaOK/ds6K/yeDZMhenE8fc5a8ufCMnZ0dXXXVVZMxZ4k9esknfO/ItMmwGT7VY03xO+4Dt5kl1SBbZjKddcISee4cI/X895zVPEdRy/GhD31o33dMGjKHCwmxocPZUTHt1pqOHz++5/BG7VqEj3kN3SdqrKQlw/Y8PfLII/va91z4vDg3PWfFufeaQabdS34Uwb3aC/maC0vrhYBG7ZnP7WlG55zmeg62vdCz2EdmXjyMw92moJh2oVAoFApbgv9lmDaZQWZb6tl45uxsPVs2JdAoTZIN0S7NMK65+/VsWHNpJZnkgLZcaWmHPApJ0+1T8rV9WZKe+tSnSpoylTk7OBNWOGFKhtaaWmt7bMbtx/GR2XhuLX373jHcyGOJDCq2Ra3GXOif22VoTKbZYTgVmUkc11w6zAyZLwX3gRmkU4bed999e99Fe/OlxFElxmit6bLLLttj2lnikp6m46GHHpI0TcsrLfeMn0P6AvC9lDFt7oO5uadWhnvHyEIxe6GtbuMgTLsXAhb/3wuL7Wn6su8YEpolOPLYV4X7bhOKaRcKhUKhsCXYWqZtKY7J6i2JZokRDsMQ1pXmDyP1R4mXKSfppdxLgRn/z/E92Sn6elJ6/D/tkmSQkU33Crtk2N3d1dmzZyfe45FV9gocUIKP6TEtkdNTmqlPMxsdpXmyf9832tBpX/d8uJhFVhCH88MEMEzIkRV9oGbH4zTTvtjs2uvm5yA+v+63tSgPP/zwkd7bTJtraRbtcyJoz58r5EJ/B+7DzD+H7HsdW3YvFSnfA/E+1DLxPtQ+rvNOmUsac5Twu4QRJ3EN+J3HSy2X99Y2oJh2oVAoFApbgo1k2rRVRCnfnsS0/VHKjBLjpiaFj/2y1MgE/mStlmIjE79YkuyFIrJqju/kyZOSlkzObPMjP/Ij966xjdFjtddyhmEY9MQTT+wxtqw+N4/1CjbE+6yKKz5ICk3HMR8EZgBPf/pYxtf7O645bfOOZ6bHu8cQtQEe3wMPPCBpOZ5Tp05JOrqiHIbvbR8H99Xrn2ksfMx7xe8Hl1I9yn7F+0WWRr8QlhLNYoRj9IQ09TSn13h8H6z7TEfWTFbZ8+rOohV6BWMy7cy6eLLsxvTpyTRJnifvt7mY/6hh2UQU0y4UCoVCYUuwkUx7LhG8pWyzIdrkMulynaw+lxqrPKRtx7MEbkkxHtsGeH0c92tJ9+6775a01KRI0nOf+1xJ09jKObCkZNTS+F5kSXPtXmotjdmZmZ61Dx/4wAf2zvFY6aHf0xJEBkh7PmNrs4xoF5I9ilo0M2z3nTb9eI3PIRO6UMbtOG3uj7j2zGPgczz3ntP4LNKvws8w/W4yT+l1+hzvH/tADSUjG6IPBTWTjJZYlbnuUqIXjZGVguW6GZ4zP1fx3E21cxfTLhQKhUJhS1A/2oVCoVAobAk2Uj1ON/yoNrIzz6pQiMxBY9NqqmZq+7nEK9JSLb5OCMiThRMnTkhajscq3aiKYiibx+dQJjuQxSQeVpVbLTqnPnRyFa+xHaiiissqv01Ve0nTJBBW37nPVv3FsCfWYGdKSqpS47X+zmt47733SlrusyzhjOdxVRiY2/b6RXhcdA6kA1S8n/tgE5Lv7z7ec889s/3pYWdnR1deeeXefGX7hO8b73Efz4p+UMXM0Ew6eR1EFc1CSdLU9EA1ud+DcT1YxKSXECpTPRNPdvENz/WcsxzfN3x+svet9/6mvieKaRcKhUKhsCXYSKZNZ5QouVm6sjOFJXafkxWeoGObpUs6sMyV1OyV4PO5z3rWs/bOZRpRM05qCaLzAyV3JjtwG3TEi/c7SgnXbTLdaNaXF7zgBfv67mujsxTDkjxeJtOITlJmy2bjTDhDHD9+fK8Pbi+y802VnCPoGOQwJ2sdvIfiPHkuWWSCTjeZ9ua6667bdy1LqGZzTibXcxzNNCN08mGCGd8vMjqybz83ZtwX6izVWtOxY8f2nik7SUbW7LHyOSUrn3Ne8xgdvkfNX9RcmAnyneRzWJ4ytsPiGAw9i2uahcjGdvkuzsIuszDU2Pf4XmJ7LCBEZEmkmAZ27r3XS+XKtubK1W4aimkXCoVCobAl2EimbSmTkrU0lWjNcC1J3XjjjZL2S31kzr72jjvukDQtDzmXFJ9MwdLzh3/4h+9dw1STTHlohh+lP9qW3K4lwWc84xn77k/JMbZvm5Xb8N/ISG677bZ959qmbAnYdp0stIRzwdSh7E+EpX4zRt/HjC+yQzNsr08sQEI4FeVcooXDgKUy3X+v7VGzdyZA8RybcdPWHeE5NQNlYp4saYjn28es+eAaZ2X67aySAAAgAElEQVQwfW5vnxvx+WOxB7IlJhWK7bEv1ELFcMmDJLJxClyzaLLZbExMtpLZVZkIx33ye8ZzkBU58nfUHMVwLV7D+7oN/53TQno8veI/ma8Bi42w/axcLbUOHpfnnkmkssI4LN7SKysavyOjpgYjS6SzqSimXSgUCoXClmCjmHZrTTs7O5OSjNFz1TDrMlOjJ2tkImTnlros3dE+FJkBpTj/dftkQtJSM0ApkqlW77zzzsk1lkBpf/S1treZhcb+0g7NVH0Z8+WYe/bxzL7ndekVcMjKlcakMLGv1pB4fLFv8VgP9h43Mu/xVfB4Yjv0wPVYe57sWTpMFlDoFfiI5/pazxc9kWN6UXrmUyvANY6aK3/ndbAWiAVsItwHJzlZNceZTZNlKtmfOL9MCuJrbF91P+IzcRCm7eQqHjPZZjzm/eD3DzUj8T1AZsi9T1+EbB6pLSG7zQoj0RudeypLPNXzZPc6URPIe0tT7Y+vie8O2rK9lrRTZ9qHbC/GfmQ+GxwX0+RmKWSZaOhSJ1giimkXCoVCobAl2CimvbOzo6uvvnpPgqY3sjQtqUYJ7dZbb5W0tJHG68lWzVZog46MlMzaLMVSsz/HaxxrTLswGVe0ndge52uoXWBJyJjKkfZBzx8ldxeFkKZSN22KTOWYxYW7r7Q1m21EKdnjo52NyDQI9kLvSdrGsWPHZj2meyUK56IGDlIQJLuHNGWzTK2Y2TJZ5MNtZNoSph6l/c7eyhnT4v5lbDVLdUb0bNf0g4hzQuZDD3TacqV+XLOv8fe9PbUKx44d09VXXz3xDM/2Dt8RfF7WscX7+WA63XW0QpynLE0vU6saTL0q5f4uUj/GPJ5HDaXnz++fzKuc/ea89vZHBJ8xn5v5vtDvgfstY9MsahPfm5uAYtqFQqFQKGwJNopp2wOYyGwiLGhAFhvtxbTxOubVbNx2PLeRxcD6fpaSzTzcdsbsmYnIEqC/d3nK2CfaH+nxm9mnac93VitmSIoStqVf/zXj8lxY0rYN1xmz4jGzYs7bM5/5TEn7M1S5Xdq2PR5rP6JkfcMNN+y7T8yWRuzs7OiKK67YG7vnOrNV8S89TNfxOGccuK+Zi3R44QtfKGm5dpbgI4v1fvO+8jrMFdEhk6cGxH+9x2J+Ao/DfWDWriy7ndefXtB+BrwPrA3KyuRSQxZtwXEMcXzuI7OosVDGQTEMg4ZhmDDf+B6gZo/j4Hikqbe4mRu1QbSlx7FZS+K9TxtsfF9yXrxneh7UcazU/lDTk3lm0+/CDJu+NVH74GeCPjz0dXCb8VnkvJElM049tsP3Jn1D4jwygmbTUEy7UCgUCoUtwUYx7fPnz08kbmm/BErPbLImnictJWazBkuIZiCU/jLbErOcWSI0m4g2ZjNDs1Pf99nPfrakqQeqNM2OlEnucdyZ3Z22PjLsKGG7XbfnPjNeMrNlMVbc82XmaE9wM+XYbm+89AOQpjmrs9jk2N6ZM2dmy7Ayyxy9u9dh2GYzZs3vete79n0fS4uaeZqBXH/99ZKWGhZrBeyHIU2ZQK98Y+ZV6/3k+3gu/ddrHJ8nMkavB3OdR22AjzHG3m15LW+66aZ944wwg/Q5fn7e+c53Stq/X8zGPAf073A/LiQz2vnz5yee0vEdQq9tz5f74r8xksLHPD9eF7/jvA+9LtEmT690z5fn0tdmUR3eG73cD3HvuL+05/O5z7KEUftDe7GvifuNpT97vgLM6hb7zfv0bNzS8tmjvZ/+EJlNe5UPzaVCMe1CoVAoFLYE9aNdKBQKhcKWYKPU48MwpCrK6GhlNQrV5FR9RpWMVX0sz0anKDuORIct38fqo54KNV5jpyqWVWQRgKgOoxMUnWqoAozqQ6qErSa1asltx3lkUhiqQ92mVXeZqojJE6jyyhIxMOUp1bEx5IvtxO+I3d1dPfroo3v3yZIzWD1IFeA6BQI8/ptvvjm9xvMVzSRMDWp1qdfD+yOq1L0H6ZBGh73s3j3HQ5p0ognive99r6Tl2jEsyNfEPeZnwuYLf3ZaYI/BZpJo8vqIj/gIScv1dl9sSnI/3K9sPJ5798nq52hmOAjOnz+vRx55ZKJWjqrnXiik++I+xlSqVml7nd0/Oqj6Pp6v2Aea9hgGG/c3E8AwJS3TG0vLdWDCKTr4ci/HvtAJmA5j2TuTJkiq9o0s1LRXypTJZKTlc+v7MXFKBo/Lz+umqcmLaRcKhUKhsCXYKKa9DizxMUUgHRqyhCxmBExQYPbCBP+xHUqPRHRAyViXtHTU8n0yVkmGbQmRDklR+uO1ljgt9WdhQ2S4DAfxXDF9q7Rky76GrMB/sz4SdDzJxk4tSg/nzp3bm1POfezPQYqI+Bo7EZlFeux0kspCozyX/uy/DLeRlnvR31lbwtKV8T4MJTKTY9lNOzG5+Ey8n/vgdfY4M0cdJkCh9sfH3/GOd4jwMc+J2/JnO7FlDoVkt0zUkSWAWRfDMEw0EzEVKkMg6SjmZy06T/o7X2ONiteQTC5qQJgCmcyUzrTxGs+P9wwdUaOWjnNGR1TPbVZEhRoDag4YijoHzv2c41tWnEXKS8L23jvrhAdmoX+bgGLahUKhUChsCbaOaVsatbRK26WlsGhj9v99DRO4+DgLiMRraStl8pOsKIL7ZAnbTMifo92ddjsmuGe4Whwfy91Z2reEaEk/Sr5MyGEwDIU+A9KUZTC0iOExcXxMbei+m8lGqdb/d9gG+xrhBBm0XcV1cTtGxlrZb2pnPA6yJoY9SVOW4vnxepjlRObj9t0uk1p47qOWhulLmSDF82btQ5wTh+WdOnVqX1vum5lcVgrWa+n+e66YdjTC7Nhz4fVy33xtlgCEGiXf70IYtrQsGMLQuSzBC23bsY3Yx3iMrJhaBM9fTB5E+zqfuSzcieGb3kN8LuN+45zy3TjHlqkB6yVKWQe9+cxCvnw/PiPUNMZz5wogEXx3HDZpz8XCZvWmUCgUCoVCF1vHtC1tMbmJWVmWBjVjftJS2mIaxKzAARM5UIqOkqL7ZhZD+7v/RmnPNjFLj5QqWaAgS+3KlKtmr/ZijYnvPUaWbyQyZk/NRc8jM/aRmgODEnXso9mr7a7Ry7oHpneMdi/at2j/ZrlAaVqmkaUy58oT0vYfWUO8NjISMnsmNzGbiUyb6VJ9HzN6711fE+/n9sjgrK3JvIZpI/Vn72EnTOmtebzWoD08sudewRCyp+c///l7/3eRmXUKvrBQkecpJldxO96TZGNZeUh6ufMzn5c4Hu8Zvmdo143vNK8l32cZA+U1jMphMSXPTewjtWcsbnMhpS2zxCy+H8dODWpcNz4/TF41d+/e78alRjHtQqFQKBS2BFvHtGkvoQ14HaZNhpAl3zfI2JhQP2N0Zim+nxkPYwYj8+rZZ8h05ooZsIyipUlLnpHxUFrl3PD7KJn20qYaTMEZz6GHK8tixj76O0vbc3HaBG2A0nJdevHfTJMZ26GtlcUZ6FcQQa9drxPtudLUM5vFWVyMJTJI/58FDhi32rPhS8v91Iu5jd7L7ovv5zWjR3gWeeA5plc0n6u4bixXaviz+5r5oqyDYRj0+OOPT7yg41rSU5kav7nUl3zPMHole8boRU2tBd8X0rQ4BjUSWdwxmXsvwsJtRy0N15de/b4mKxjD54ZsNtMkuG/MXUDtZNQo8B3FKIm5SJI5TdGlRDHtQqFQKBS2BBslQrTWdOzYsVkbCL3D/ZllArM2eIzScWa/Zdy3JTQyk3iN27N9lloBxlHG72hXJQP1faP0SmZgG7DjchlLHI/1Yh8pCWfSuf967mnLyux7lLQpwWcxkT4WbVVEa02ttYmdM34myzfb857JbGLM8uZ+Mquez4se6ixs4GvMLr2G0V7suTT79ne2E3suou2fWfS4z7iHowaEZVXdR/sPOJtZZIEeI30B3Ffb8jPtFxkP45/9OT4b7gtzFbAYRJYJax04EyMZY+w3WSXZXfa+oYbP80KtWZargPHxtINnscrU/tCjnZEw8VyWBDZ43/hMu12WFmWZ2qgV6pVUpsY009JQO0f7dFaas8fs5xg2tY+ZBvZSoph2oVAoFApbgvrRLhQKhUJhS7B16nGrkpgMn2EVUf1BlSlVvuvU4aXqnKEEUY3jcBM6uNEBKKrUqZbiHLAoRHReojrKYSksBhJVhkxuQvUYky7EvtIUkSVCkPbPO9VUrOftuYmqYqsIXUhhziGktabLLrtsMsdR1e22VxU2iOPw9XQM8rW9msIRTOvo+eJ6xXOtSrXa2mF7p0+f3tdWvCed+vgs+JqY+pJzaiczq6et8ozrwvv4M1XeWXKNLDQqzgVDH6WpanbOodNYlfI2wqYVqt9j/1eZGrJQop6TVe/7eB7NYr1CGpmzHO9HE0hcc6q0+a7kOmXqccN7hCl+szrhDKWlmYHmwngOixqxrYieqcDIHO/oBFwFQwqFQqFQKBwKG8e0r7jiiknpxIheqAXDJqK0SUksK2sXv4+g4wzT4rHEZYQlTTqaZI4zDCnqzUEmvTO1Istfum/Ryct9YorDHmvLtALsi6X2LFzD8Pz1QugiC2SK01XsqbW2T6qX9jNtsiWGuWSJRFjQYlVoTITXg9oh/zWrjWtszY3XhWNnmVn+X8qZm7TcYzFhBc9hWI2dwGIYHJNZ9By4MsegLIFRRFaals5QdBxl2/He68ApcBmyFB2o6GTJ9wEdFaVpyB33/JxGkcyX+y5LXEJtGUMvPa4s5TIdtHrMNM4x2bD3BTWYWYIjjouMu5d+NB7jezxLXZztwdjHLPTL3zHR0aagmHahUCgUCluCjWLaOzs7uvLKKyeSYsZmaDehhJZJ6galuF7CD6mfQtF/5xi2r6EdJ2MbPfsWpfKs9ChLCbp9MzmWE5SWLMKsi6U4jSzUg0ynl5AlgqkUWb6TaRSlaVnSOd+D1pouv/zyiWSdpTQkY2dSDbabncOEGQz9kqZJRnrXZuF7nEPaHuP3ZFj0QyCbiKzZ13jPci3tT3DnnXdOriGz6hWdmNNGcC3m9hDnjbbsWB6XxVlWYXd3d2+/ec/E0pwM8XNf/H7IErxwfbn/uFcz+23PbpuFpfHc7NmN38d78/3Z00JmdndqCVkSNCbmYfsMYeM7M7sfP3PPZkybjJ1hkdnvhfcBy6JeahTTLhQKhUJhS7BRTHsYBp09e3aSlCErxkHvcdqAoqRIJtJLoZkxn9g3acl4GNCfpQi1hEb7e5b+kykIezasu+++e18/MtAD2YVL4jUeqxNUmJH4XBY1yUqB9rQDmVRO7YJTipJR2Dtakk6cOLGvvbkxu+iDz2HKUGnJ7u2h7AQlTDqRealTYqdtzsgSpXBNjaxwRM+m53Fle5PJbQjaXyM4//TDcJv2XpemRWto7+2lxpX6HsfGXBnEXmEcr2MWebAOdnZ2dMUVV+w9A1lkQM/nhClJM69+zkfvOckiXvid18VrHrUNXDO+z7JEMPSHYaljvgeyQkXcs2ao1MTEe5Phky3zvR7B93kvAVZsj+9RPseZ38WmYrN7VygUCoVCYQ8bxbQNS4xZ2krb4yjpsszmnMciP88xRLcT7Vvxvr5f5jVKad/3ZfpCaSnp0tZLu+Q6MeVMm8rypdJUOvXY77nnnn3nWgOQ3ZfMqlfQIes/mWTm+UmP7Tnbkv0hOOZTp07tneNiGydPnkz7nUnqPQbQ87qO4JgY659J+b148DkWyL6yT9RYxbUksyLzZVEGabkuvtbP5BzDNsgcqR3ItBJcp/vuu0/S1F4d1yTa7Xt9iTh27NieDwijIGJ/uQf5XGTezr2CIXP2e6bapfZxLr6Y2kDG0cf95nP5TuL68N0V22MEivs8l1aUn7n/sueMmj2y9F7UROyb/3LfR9D34yBamycDxbQLhUKhUNgSbBTT3t3d3VciL8vGZDsnJSWWYsy8KimZkclbco+supf5iJJ7Vn6OcFuWTG1bjd9ZOnYbllrpdb2OVyxLQmZFTXr2rjlmZ7unmQn77PvGPvbYOL2lozbA92Fmtwz2h2BcdZSSuZ9YnIQZt+IxssfMXiftZyK8D4tyMFOaxyFN2TG9k+MzwXHwvu6r5zMrTNErlUhbdzzXMdyea9rds+eAXvi9ZyV7ntwX7yvvWZYkjdfTr6CH8+fP77WTsWXafFk4Zk5r0ovT5viybGr0Wp8rR8q+Ml6aWpzYTi+HAfd9lv+iV6LXz2t873gdeuy1d//Yfk/7xePxO+7vuThwPqcxXn8TUEy7UCgUCoUtQf1oFwqFQqGwJdgo9bhVnAzBiSpHJr23esMqM6tdsiICVFdZncckAVmxgl6Sg7mUhFSDs+9Rrenr3SfWGWbSmCyMwrC6ci6Ujer+VY5W8R52BGI9Zao+s5SHLAxBtWVUdfbWKYNNKw5z8xrG9uio47906on9ZoIUmkfoVBTVyF5ftsEwm2xcVsnZGYb3iaCzGAs1sNhMhNulMxmfFZtCYt+8plRB07kohupRnZyFTBKsP00nUF8b1ctM2TnXvveOx+i/8T3Qe07mnLyoDu+l6pxT1TKtMPdM5iDqsTMBTKbiXpXSuVerPY6LphQmk4lmLT//vbDRXgGRiJ4KPSsy0ntve20z85/boRPgpqCYdqFQKBQKW4KNYtqtNR0/fnziZJE5TtCxydJxllzF51i6ooTG77N0ggaZwlwIFh2QyEiysDRLxXaGM0uhlBwZKqVRlkg0ooRN5yU68JGZxHvwWmMuSYnv7XXqJbqJa20m73tHFkvs7u7q4Ycf3nNU9LlZ4hLfi6U65xhvz3GKZQ8jmHyErI/7UVo63dEBiWUPI2t2ohrPbc/ZK0sz6mu536yhYEKaeKwXbsnUnlkCkF5a1jktDR2CekVnYl8Y+pXBTNv3oYZCWs4HNV50iotryXU3eqFxmRMbSwH3nMxiv733+X7jfo994ziITAuwiqVnKVG9HtSaUKNgxL3TC/Hiuyr2lef2NIlxTpxwqnfupUYx7UKhUCgUtgQbxbSHYdC5c+cmNqyMzdIWSht2ZtdYN+F8RC+ko5egJbbHZAMMOYp9JDueK5YS75+hF06RMfuMDcVzM3bWS/LvNrLwLoYOMQzG58YwsYPYJe0PwTSP2Rz3pHomdoggA6Q2wUws9tF9cLvUCnlOYoihmUjW//g52urdnkOwDM4btR3SlJWZ6dv26IQ0cX97j/pa2llpy44MuZfKs6cFid/xPlyTyJbWSfRiDMOgJ554YlLuMtrIGXoXv4uIe6dnl6VNm+8YthPHMffeoabA51LTF+fJ977//vvTdntaAmmqoeSepZaQ987Gk2kseL+enXquUBHfNz37e7wPE8tsCoppFwqFQqGwJdgopi0tpV4pty2ZifS8Ki3tRUmVtsO5Um7SfqmLtmayyizZSs/mZy9KjiGCbJAsg/06CCI7Y5EJ9pXesHO2JTKUTEI1K2Maxjnva3qWzmEYhn17J7ONZvspnpOxPPaB7JmeulEj4f/TPmwPd7InjyPeh3287rrrJO3XppBFcI7ZtyxRio+5fY43MiTa11kG1dfYXh69h70+TEdMxhW1NIwe8Hz2PI+z71alMT1//vxkz2TJTpja0n3z8ThPZOW9Ep1uK3um6Y/ABDNxr9I+3EvTm0XHWBtiPxK+Bzw30XeDpTipafPnqGmxvZjoaRbiu5gaV753stSu1GLwnTWnVfNzs45fxJOJYtqFQqFQKGwJNoppD8Og3d3dPemHMX3S1D5HkO3x+ngtJfTMvkEbDKVZS2WZR6alcEvSljjpVS4tpVLG5c6lhFwXGYM026OXMtlTxgI4957ruXhGSuP0cDYiw3JfesUlMsylQeT19KrNWC7H1ItJ91pmTNtzbQ9sFmGJ7MP38zVcB48v2v79ndunFsX3y2z2bodFWegdHdmy15K5Chit4H5EGzpjhul/wf3IscbvegUkpPmIEGJ3d1dnzpyZpArOtGdmogbZbMbO2e9esZks/SY/004dtWfeb54vRilk/in0suc7sKcRie14zGSoWbGZnq2cWPV91qcsKifT3Kx7n57vy6XGZvWmUCgUCoVCFxvFtA8C2kQZa5uxvl6sHqXYzIuTUtec5+Kq2NMsCw/Zt9nXUXguMiNb7BNjSdn3Obsrr6UtNc6JmSM1Jb5fVoCD9vx1JF5K/XOsmXGevbjPeG+yc/Y7K+tJbQ3Zsj13JekDH/jAvj6Y4TK6ILLaXgQA2T/9JKTlunq/3XvvvfvG5/tED3czZzNua8R6BR0yjVKWfa4HZgXsFQmKGjKf4z7O2SWHYdCZM2fWykzWs+fTZhr/z3dFz64ar+Vzz7htM+wYMeBj9JnJMiIaPOY+sjAKNT5xDliak97x8Zn2+l+McpeZD0yv4Mnc7wR/U4ppFwqFQqFQOBQ2imm31nTs2LGJJ2kEPZPJqDIJqmf/psSenZ+xxnjc0mbsq/9Pz2LaraNtiVI480T34kIzuK/Pec5zJC2ZdhxDj/3RBpR5x/dy/hpZ+UgzbdqwGaedSbXrlleUln4DzoyWxe6SAXs9GLMcz+3Z6ahtyNbJfWIOcNtH3//+9++de/vtt0uaZtzrsbXYnlm6zzEDNkumN7u0ZPLOJ3/q1Kl9fc7m3uzOY/dc33DDDfvGncU004OfecO9D6ImgVm0GEftvkU2zXVY9fzEyAOy2niMWguy5sx+Sw0B7eD0qYnnkpEyp76fq/gd80Awj32cJ/eBPhMsQUvNQpwTf7cqsieO9WJgzo+lV2LXyHKPc803BcW0C4VCoVDYEtSPdqFQKBQKW4KNVo/PJfaYK8cWr5X6qleq4TPVLFW/VJNbdRLVWP5/z1EjSz5CtbRVm0z76Tbj/dyeHYSsMrO6MutjT/1KdXUWosHwiV4oS3RA8jh6aQWZujbrwzpqqrkyhJnaU5oPq+PeYLtZgRr239dYFW3Vr9XjTh0av/O57BMdMLO++FqWAPUcO+mJtFRpWrXuvywckhVrYXrMGNrFPhp2KqN5gck8spA2j4Mpfj3ezMEuCwPqwffJktBQVcqyl9kepSMa1eEcR1SP0wGMprbMjJY95/EaFgeJfaJa3O16jVnoJd6HRY56iZOOCnxP03QU70d1eC+MK3OA9biykraXEsW0C4VCoVDYEmwU05ZGqZBOD1kxekpMZE9ZwRCCoUsMP5q71qAkKk3ZAkOKmAJTmjrX9MKq/DmyWJZPJCPNQpioZcjCQWJbkamQLWfsj31kqE/PAS3TPvjYQYrRs3CI1Hc4Y/rPLJkPw1nIsJn0IrZHZmXHIP/NUrf2kH1P7YvH5b5QqxLDtwzvRacxZYhZvK/nkUmQyOgz7QnTfvbCBGMyF/aB2qFM+5Sx1x5cqIiOaHHvkOHSqTTT0vWSEPVC12Jf+e5jOF/23EYHw/gdy+7GtnrpSnvjzsoku69xzeJ92ff4XS/x1aoCL/HcueM9B7Re0qzYDvu0KSimXSgUCoXClmDjmLY0tdHNpSRdJ0lD7zuy9iyFYq9PlGKzkoyW/J2wwozKITKZnZhstWfTzOxfTEHJQhVR4mW7ZDNztlpqDHohYNF22iu9x3FntqWsVOIquP0Y3sIQJKZHzZgItTCcHxbcyFgFy61Sc2ANiTRNcdpj3hnzfeCBB/aNg4Vr3Nd4P4ZcURNiZGE0DHt0P1giMnuevFe9d8kSHYIW+8IEStwXcX9w3ValwG2tTUI/Mxt5b79m92EpUb47WIQogsVXyJa937L3QO+5yXw3WDaYSVT4TMf7rXoeWWRlHfTKi8Zx9RLCZP43TDxEbU0Wtsp3+zramicTxbQLhUKhUNgSbBTTbq1pZ2dntrg9bSssEJKlaiRj70lOmZ2IkjRTAlJqju0Y9EY8ffr0vv5IS8mZEr0lznWkP6aNtDRp7+QsvR9ZX48RZ2laaf9iqb7MZs/70as8sx8dRtLNEiO4bTIcJoGIa+nrqcXwOV4Pz3n0rqWNj/c3onbB2gkzA/tFkAnHPeZ7c+5su2biod69pTwhirTfM9wskP4VbJ9MM/7ffbIHvdOo+vuY2rXnLey58JxnzG/dog+ttUkq0si8aRP12HuaGKnvr9F75qKWplf61RoJvv9if/lO8rx4L2V71Nf22P/FSDsq9X2SMg3qXOpRKS8O0ovy6P1uZH07iIbvyUAx7UKhUCgUtgQbxbR3dnZ09dVXzxa3t+RpWwzjly2JZpITbXs9u22W9J8p++i5GtlgjxmyhGG8D+1NtIuzzaxEnkGNQeYb0Isd7XmEZ56tHgeZlz9noITrcWbFBYzMu3YVbEeLbJ/r7LWjliNK1mQYZE1mmT4vltlkyUx6Shtxf19//fX77sP1z7QB3M/cX/RAzuaYDJhMJzJte5hzPCw24X5kdn7fz+3eddddkpZx4lnqUzJXMqCstCWL2fSwu7s7KUwT26MmyO2x3GncY9yvPIfrljFtlnf1c+P9HftorQWfF48r00iQla9bOvOowLS2fq9nRZW4j/g809dC6ueFMFheNPblINEqTyaKaRcKhUKhsCXYKKbtjGiWfrJSebQH9bx5o2TNa/iXcZPR5sN4wp4dLbO9kO2TmWSMhxJ8r80s8xJjuhkvnhUkMNMhY6AHcmY76xUKsbYjSqrMZEfWl9nO3Qcfo3dvBvpBZIyUdkh63UaJnhI/M0f15jy2S0ZIb/Us25iPUaPDrGDxHN8vel5LS82H/2bevN7PLgbi9TbDi32kpzfjmzmvWdy7wfhge8DH8dnO7z7wuaEHvLQ6YyLh8pyx/9k17id9JrJcArw39wxLimae2YyF70UgRJBh008m7m/3yc85szXSqzyuPbVNMbPfuuD7c650Zo/58p2YRQr0isFkvgFzvz+bgGLahUKhUChsCepHu1AoFAqFLcFGqccl7Qv5ysIoqKroqb4jeKxX3zYLd6EjA8OEMqcrOnP0Uq9mjmi8H0PLsprPVMP1Cm3EEKReUgU6wju2+QUAACAASURBVM05LVGlxSIDmeMYE5hwvNEsYLX+QQoP0LEkrj1VmVSRZQ5ITEFK9R0d+OKasn2mLbXTWTbHLL7BmtzxmaB6kiYNt5VdSzOC1eHeK1aXx3WhOp4OYjR1RHMTnzX/ZUGKuG5URfecMuO69VTTc+Bc0AwQ22FSpSwFrtthuJbnkvWv43uHoaZ01Mwcxlj7mmpjz2Pcb15vzzuTm1CFH1XrPuZz7XDpa2LYXg987zAhT5wTmsd6YXhZSlI6+3H+spDW7H2wCSimXSgUCoXClmDjmPYwDJNCA1FyYshVL3wiK89GiYnSXJbSjhKow13MlrKCGiwZyAILRpQcyfrJDOZCFygFWyqnZO++x7lwqI1ZLdlzFjrVK1ca05bGe2Tn9FKfZklxDpNchYxYWjJQrjfT12ZOdwZLStJhx4xYWrIYOpwxGUlkE26foYvW6GSOiO4j05b6uNPmei3niiOYLTF8KLuGyYrorJQ5EPK5pbOk91l0lmMoHp00Ga4U77MO097d3dXjjz++N6csLMO2pX6JzshEmQiF8LksJBOP9Zz8jFighiF+XjM6BGapQenw2NMgxbX0/71XDpKutAe+q7N9Tsc6I0vQRE1sL5wrSzyUvUM2AcW0C4VCoVDYEmwc0z527NgeQ80KDvQKyJO1ZOU1e8nv2Ua0U9OGRSnP50bJzZIn7c/uG6Xz2C7tjrQXss9xTngubU5RSiaDY6GKXmiENA1doy2b6SDjOV6XVWyN94znzMHz4vFk7dFuy/WPoA2WxVg8F2aKcY5pV/V9mc40siWzYu47zm3UdvA+T3/60yUtmZv76vtHhkL24vHYlh3Zn8EEPJ4b29R7xTUyMDmSNTGRtVGz00uKFJkx99dcwRAzbaaO9RxEeM0YfpZp3Fa9q8iA554Xo1eoRJr6CRh8p0QfA75Pev4/fA5ie0cJMuOoVaG2kVqnTJvSe2fwec72aLYum4DN6k2hUCgUCoUuNoppD8Ogs2fP7knsN910k6Q8/SaledqwsiQHZCm98ppRumWCD/8l884S6psdMWFJJv3Pec/Gvhqxj0wKwjJ0WUk72mrdF48vsj9pv7RJD3AzON43Sq9m9L6WNitL1NZSxOvnCl4Q1C5Etk5my/SlZJDSdK16WoVs3czk6dvA+5ldx+/okc80nPEzmQftgtQoZImA+BzR/pklvaG9myx5nSgJzxv3Wxwf2WzPLpmNy5hj2sMw6LHHHpv0Nz4jfJZpC/Zeitd4rNw7PU/wzHeH808tV5wDRkz0ErFkz7JBzQrZ9Dq+QkQW6ULtI+dmzjeJDJv7I2oSyJYzTWXsVzaeTUtnWky7UCgUCoUtwUYx7fPnz+vBBx/ck47Mup7xjGfsncPYOX7O7BuUaJk6MesH70fptVdKTpp6/to2xljOrMBBL26aMetzaSU5Ppbdk6apTVkKkMwrsgCfY4ZNO6znJvaRWgYyIXq+xnPNcljqcg5z8ZcsC8o5z+J9/dcxz4zP9Zx4XiXp7rvv3tcHxiRn96OU32MTcW7drteDUQOci+itTrurvcc5vvisMIbc8+e/c3ZQ2nf9mb4hUfvAvpBRkoFLU9vvHBschmHPri0t5zE+L/T4J1vOvJ3dnsdI9kjWl6Vr5rncD3EfeL3db6Zl9TWRiRrU0rFvPe/1OCfuMzUwcU74DuT7eu6908sPQcYf9/cqjWUGPp9ZvP6lRDHtQqFQKBS2BBvFtKX9kpHLHEap29KkJXNKoJkXZK/cJCU2FjqIsJ2OnuHuR/RypCTLbDxzDIsFNcj0s4IiPQ9n2smzeGBmtyLYD2nJfLwu1CyYlWRZtHo21MyLk9ccJDMRM3pJU/sz2X/mwe57e4w9mxzt/NKycIf3zMXwts3gPpgR92KjY5+ofWBkQFbUxOvcs/dmRS0YQ0yv3YzdMN6Zcfa0h0tTj/q5uR+GQefOnZv4qWTZuMgUyV6jBo7PLt8LvE/0mKcfQq/ARZw/Pne042ZaE/eJkTXUEmRRJL3ojiyXQA/0qOdeinuVcf89bV1cgyz6Ibs203IYc9EPlwLFtAuFQqFQ2BJsHNNurU1sFRkLpDRJ2+Ocx9+quM8oYZOl9uwnURqjZMYczJaiM6m1FwfM79fJpsY5yeygWY7f7JrIms2waf+0lJx5e2dxrPEzx5n1pSc1+147OzuT9rOykGTaRJTuzX6yuG9pOm/R3nvy5Mm9vknr5WI+CrhPp0+fPvC1PY1LBtt+b7jhBknTuG2vZZaf36C/Au3z0nI/0UZLDVkWUZFldCMcteJzHnzwQUn7Mwj63tyn1BjE55LMluyZtQ7iXvL9rG3ks+2+xeeSfTT4rMc9TH8Oapv43svs4UZPmxGfyUwjEa/l2mbZCXtlSaktkpbr5Hk0qNnLyv5mkUibgGLahUKhUChsCepHu1AoFAqFLcFGqcdbazp27Fg3zEpaqj6stqHjTJaAgyoyOqLxPlmSBqtznEDCatBM5dQLEfA5VglGVRPVwhwPQ72ycbI0HUsDxnvQ6YZJHBhSEouB3HjjjZKWak86z2Vl/Kiy89jnnHXo0BTDqYjWmi6//PJJeE0EnYiyQhNSHqLEsprcFyz0IS2TA918882SpNtvv12S9Ju/+ZvdcfTARDNRDc8kHnSSo4NYVmyGjkA0x8T97Xn0uVTVep14njQ1TbCvnr+436za9HpxjZkcKd4n2/vE+fPn9dBDD01MT9GcwbAzmgL8fXxXMemM58V7aa7IEdebz1TmjNULJbSJJ0tz6r6wUEicm9ifiF6ZUKryM6fgnoMbQ7Li556amol64l7lPDLZSra/aV6cMwlcChTTLhQKhUJhS7BRTNtgir7ooEHJaB0G2itgwHCKzJGC6QPpQEHJO/aRUjj/ZgyEWgGmXs2ShjChfS9cI3PqYGgPEz2wCIW0ZNiUXjm+jAX4Gs8bE45k4UhmCnMS7zAMOn/+/GQNs2IznC8WSYn9Nrujc5XBkKjIgJmo4p577pG01FQw3CbrAxOl+G8MZevNaS8xRpZW1GBIkRGv8f/dF4/ZzmPum59bpyWOx+gA5Puy7GY8xhA6Pz9ZSUayvVVOjMeOHZs8E5FpW5vgvehnwPPkPmbpMN0HpjolM479Z6GQXgho5kBFRy3PPx35pGkinF4YVVYymPfpsfQMWSKUg6IXNmhHQmn6HHmPslxypuXoPQuXGsW0C4VCoVDYEmwU03Y6wblkF5QMafdkOr6sHbLVjNEblDwthfnczA5Ouwml8SyRSK8Un/tOSTtKhkyiQvaUlXPkXPRSXpo1xQQ3TMxCWxO/j33qMXyzp8xulZW9JIZhSL+P7LynreCcZkzE82Up3nZKaigyDQiZgEPlzFCzMCv6P5BNRy2N+8LkQNQwZRoQ2jnZl0yTZMbIQhicX7OZmDSE2gBqylhsJDuXfc2KwzD0c1Uo287OzmT/ZMVmzLAdvuV+Z4yNe93nMtQr0xQwOQyvzQrUxGI78bs5X5BsrBHUAhwkwdHFAp8Fam+i/ww1ePTRob9ExKaFehnFtAuFQqFQ2BJsHNM+d+7cRLqPbMkSERkp0wxGidB2DCY3oNcmGYo0LQzAZAOZNoDl+twntz/nVUmG0CsbGVnBqqQGWfJ9si+zFbdlSdT213gt/Ql4nHMV0SsxSvt4bMfzlqXSXIUoQfds7vRxyJiov7Nk7s+eJ9qvpeU6m+lkSW74makaDRYKifuftj16yXPO4/jIUvmMmNFH9tJLAUmvfM9VxtL5XDFBSrRB81lg0iW/H2ISF8+17bnr2CWpGYl7xxoARmTMaVp4jOvkuc28ug0W1CBLz8pQGtRKXghL3gSGbfAd39PixWM934nM12FTGbZRTLtQKBQKhS3BxjHtyDCylJ2WeHvFN7Ji9JZo6fFJ700yBakfnzkHMsxe7HBW4L2XYpUez7EfPYmaHqGxbR7zvPmvy6F6zrJyd710iVmfyZZ69uXYpu3HmZ3zMDArYflRstosWsEMlPGdbivTuNjG+MADD+y7hgUwMhZIj3/6SWTrQT8B7gf2PYIsnddk/hAGU1x6vHMFPeg/4M++T0w76bnveTibLWVpTOe8rCN2d3f32vW9oye796L9ELze9CeIIDvmHqedNUtNzGeMeyZjwCxQxNwWcf162rJLhd47TJr6TvCd4vd2zJXQi1KhRmmbUEy7UCgUCoUtwUYxbRd9iJ/jX2nJXshWmDksMlFfYymZ2ZgsqVuCiyyGWcYsvdK2PRdjSSkvs3/1Eub3isNnNkZmKCJrj+hl9HKRC/sBZGUK2S5ZTWbLpsRL9pF5w9oeyXPXQeY3QNbKrGyZ9zgztdG2zNjXOTsoGTHZczzHfeGesX0880+gNy1t+NxDsQ+0t/aYcLwPbeYuUOJxZ7kNeoVv+MxEW62ZL/MDMG7f7Cn2e+4ZiH06e/bs5BmM17oPflf4+chi3w1mTePxnoe4+yRN31Vkm3G/9fIYcG/Ga5gXgBkALzaYnZJzEtErMkLP7zjfnlOvX9wj0moNzCaimHahUCgUCluC+tEuFAqFQmFLsFHqcWlU08ylXaSKk+FMVh/G8A+rlKwicaKQnqNGpupm2j32MVOp9hyNstAEOonQwYQJGKI6kU5R7IePR7W1nYOY+MWONUxKkKnyCYajxDFQXd1L6hGvYd3xLCTGsGnF6+5zY2IP9pNOSr427jfOA9WJVtmxKIM0TSfbM3lkIYa9BDB0opSmtcq5PlblZipHJhgi5kJ9uC5ZiFf8PvuOJh2veZZyl4mGOBdRTdpz4Mywu7urxx57bNJ+ls7WDmmec68x1eWxD1kYW2yfprcM3DOZWS4rWhI/z5ny6CDq+7jPR+2gRtMJ1f9ZmBrNMT3Vdlb8g88a3y3bhGLahUKhUChsCTaOaUdkjkGWwOxcdsMNN+w7l2Fc8f89xxBLe0wqH2EmRcksc+7oSW90lptL9s+xU/LMUjYaTJtoaTNLyMEkEQbZS3SSIVtmKtd1Cm/QiSRLBNILB8qws7OjK6+8cpKMIu4DajPIHrIkNGSg3gdMIDPHSHplVhlOGPtADY7HQ1Ydv+sljTGysLpeER1qaeJ+6yX+MbgGmTMgHZA8f5kzlc/pJdnJwoOMdQpSmGkb7Fu8h53tGPLlfmdhnL0wUX/v8WTvrF7KZV4r9bV/3HeZNsDzxHKuRw3vDYbQ8v3GsC6pn2qXyLSefvexUMg2oph2oVAoFApbgo1j2plEn31vaYshYAx7ie3YjmupmNKcWUW0h5O5Z6w19ifeO5MW4/HYR0uRGUOM4+aYpKnd031j+ESU+BlS4mt6YWlxfKvO5fjjfagR4bkZW8pC5DLs7OxM2PJBbHGWwiN78Z5g2JZtYmZaZopxTZlylPbCjNH5XN+nl7o1ruWq0C7eJ+5dhjCyDbLc2K7X1H4kZJZM3xvBUDr/nVsvFoYgi840XOsyqmEYumUpYzseq+33TkLEJChZv/k8el4yDQjZ8VwIHsEEPPSTyBg9031y3BeCuFdZ7MOY05YYcyGzWVvx3FW+DVma5k1FMe1CoVAoFLYEG8e0DwozHHr+ZtIk2WzPnhIleLfr75gExG3H1Hlk2PybsUom+KC3OKW/KKmuy7Tm7OC0YffKe0pThtPzWs28sHspZGlTjd/1SoASrbXJfGWRBz1wjaWlfwO1I27LzCtL6uN2vDdYKIIsV5p6z7LvmdYkKyIiTRlJxky4Zxid4HWKNl/aHRmBQJt29Jdge/RpmEvtOpe8h+M7qFfwMAxdP5LYnp8La1ruuOMOScs1jWPlc88xcf7iXqWtfx0G3LODM0FSllxllZ34MKBvTTxGGz3ff/QVidesinjIirb0mPY6aak3DcW0C4VCoVDYEmw90+5Jr5EpUoI2A6J3NUv/SUsJlEUmyN6j1EcJmvZQMn7+P34m480kR3pkmiWZ4dEzPLZD5kg7W+ZxyrSI9La39B7ZPO2QvE8WS97zJ+jh/Pnzk/jSw9jkIktj8QhK+ywVG/tve7dZJTUwbiP6UPQkfzLiqGnxvTNv7Xg8K/5hkBVy38U+Mvad5Q57xUekqXdyr5yrNRjSlGX2So0elmlHlh3biRoXrrfPv//++yVJp06dkrRMAyxN9yvfA/w+rgtjxhmdwDK/sU/0LcjeibwP98yFxC/TxyZD77lkroe58a1TcpR+NkTvmdlkFNMuFAqFQmFLsHFM+7ASniXRa6+9VtJ+Bk5P2F6cNG1xsT+WbGk/ftrTniZpvz2RSenJnphVLbZH6bTnIZkxbffBjIcxtnFOPB4zKN+HnqZZ3DtZuu159FaNdn6DzIqsb05Dsgo7OzuTGOw4f+t6lGdew7T5uW+0eUcbnCMbfD9mgcpKZdIzm2PPsmeR4XIcZD5ZdjuuO9uIx+lRT21ML+Y73puFahhNMBdfzT6uw7gOAs99fD7dH2qEPG9m2nE/c2+4fyw1yxj8eA3jsanliH3ke64Xp5/50vC9cxAParbLd1aW94B9zMowsy0+Gz07fPb8rsqeVt7jhUKhUCgUjhz1o10oFAqFwpZg49TjMUHGQZwD6OBila20VFO63euvv17S1AkjcxCjA5LPocorqrbomEXHtKwW7io1+FytbKrBqHJkcY54TS9BP5NeZOkl6Whks4BV7nF8PacbJluIaizO9aratzs7O3uOY1TVSuurveJargqFsTrceyorAmOwFjKLNUjTkCuq9HltPIeqRqqLsxS4VGHTQTC7hmFPvX7wvhF0jpzbZ+viQtXjnL9MjUxTA9OX3nrrrXvXfNRHfZSkfqIkOuPF/c31v+aaa/Zd43PjmBmWxnOy4j80w/T2jJGpq/l+M+ZCW2keY6KezLzFpDS99T7MMx+v2fQa28W0C4VCoVDYEmwU026t6fjx4xMJLrKdnkRIST2GqNBJiAlSyGLn7kfnriwRQ8/BpFeWMIL3y5zj+JlSKYtaZMVOKLnTmcgskUkw4jl2wmMpTvc5MnuvB9nlXOpI3m8OwzDoiSeemA1dWeWwlCV4sTNdL82j2Sad/6TpnDJ8kKUapaXDUabBicfn5olaIY47Sz5BjcKcA5T/T00C2WiWGKjnxOZ5XYdpU/twVA5oc8lbyPIYgsf0ttKSdT/nOc/Z10+uSxaWxDBOhoBZk5iFp3LfzaUG7YXnsQjQ3N5hKCGdS7PQVt6PGows5DXT+mSI18wVGYr33XR2HVFMu1AoFAqFLcFGMW0jS8pgWAIzA2CoiNlLZvNj8QW3ZeZgNhiZFu0nluLYx6yvDD/qpeyTppImGXevJGhs3+A1/hvHTxbk9jiPTL4iTW1lWXlSacnEpSUzIEujb0AE7Z5zjNtMm8hKWPaKsnhNI5sgw+lJ5A888IAk6cSJE3vHaNOjPTJLIGEwfI8alyzUh8lbqMnJ0mn2QryofZpLesO2GGKYrS33AROPzOFiMe0s9IrgGKnFiHNu+6wTsDjZDsPrsuRH9NHhGtMnJZ7bK0GbXUONF99RXuss1JDPUS+ZSnyeev4cvbKimc1+FQ6TKKWSqxQKhUKhUDhytKOSUo8CrbV7Jf3epe5HYePxvGEYnh4P1N4prInaO4XDYrJ3LgU26ke7UCgUCoVCH6UeLxQKhUJhS1A/2oVCoVAobAnqR7tQKBQKhS1B/WgXCoVCobAl2Kg47WuuuWa4/vrrZ4uc98oM9nLaZmA2s7l8u6uy8GQx1+s698X4xV7WolW5gOOxucxHPazqa6/c3jrXzM0J49HnYqy51u973/vuoxen9w7vl8WIMgaZY4sxm6vWfe5+Ri/r2zpzu85eWpXpbZ1MUuvss3WvmRtPLzsb/8b59XoxGxznca58rK9997vfPdk7V1999XDixIlufoOLhXXmqYesb3PvzXXv1ztnbl/zuwt5V6zzLu7toex9zvjrw8Rje//dcccdk71zKbBRP9rXX3+9XvWqV+19ZgKVeIwJ9X38uuuuk7RMZCAtkwk4qYETOTjBAwuHZIlEmEiCQkLcDPyx4ecseQN/SHrFTLLa2L6GLzdu0CjIMPFC74WYFYHopVR1P7LxOb2j7+NENk5befvtt0+ucYIXFk34vM/7vEl4zokTJ/TKV75ykn4xvkBOnjy5rx3vCyaJiKk0/dLnHDNxyap0ibEN7uGs5jfnmMVs4hzzR4vr3lvr7FhPoM0SsjBNJvdQ9sPSSwDDQjgxAYiT9HBOXJjHqWZjWlgnNjl9+vS+vy95yUsme+e6667TV33VV+3N8Vwt7wsB033O1b/mfuMazwlInH/unbguvDf3JN8pcZ+z2AgTAGUpdzl2g8I792z8P/c3U8xmiYCydMwHxS233LIRYYGlHi8UCoVCYUuwUUxb2i9ZWTrKylD2VDNMESktJUBLWWZSLAKRlbtzfyh9U0qO0iT7xj7PjZvMhow7U32R0feQqY16qq1e0ZNsXDRJ+Jo4Z0zM77X1uWZWseAC2fIqk8cTTzzRTVEqLdffzIySe8YMs6IuEWQV66wLTQHxHkyH2SsykY1vFQtjqsisb73xZEybTIr34xjiOVxLpnzNtF1cCxbv6KXRjOf2sLu7u3YZx4OC2kCmy82KAnnOzHy5r7P9xrXyNW4ju6b3DBs9zVvWf65tVvSG3/WK22R7le/RXrrc2EdqAbJ2tw3FtAuFQqFQ2BJsFNMehiFlAVH660lIZNiR5VmKY2lOSmh0Won3Iwsn085sPT0WSxt3PEZ7YWZnZ9u9IgZz6Nkh3XeyFxZbiefSv4CajXgf2qy8FlkhDJ/jYiNzGIZBZ8+enRST4DnSdE49VhZWiP0iyCI5b1Jf0zJXPrTHHrg/4hr39ob3Pe3I2TPWs5lm+6+3d8iEs2cjFpyIfcxYueE9Ym0Mx+PnNjI6/39d9jzH0g+C2A6Ztf04en4RWaEalvXlOzFby55fB/dF1g6f4Z7WUJruRb4zqEXrjTWeS8adFW9iG713ZOwj52LuPbHpKKZdKBQKhcKWoH60C4VCoVDYEmyUery1puPHj++pQaxemovZpJOKr40qINbspao7c5wiVjn5RLWR1UEMn6DqL6oN6bREVRPVRpkKvxf7asQ5Yb99rvvMWs9ZXWo66fla9z2Oz6F4rN9tx7PMCZDtzqn9d3d39fjjj0/UXlG1TvVwL+Y/jpXrwL74XKpus/Yzp0Xer2cW4djjXu3FovbCBDMVNB3QeN+oeuY4PMd0qPKcxGeD6ljWq89CLLkXaZKYq0feCzGK8HsnCzNaF54DOznG/7M2Ok1RWf/nHM6kvA79KqfZufwJbJ9mjDlnP5qZeo528RyDz6LPZU3w+H/ub/7NHPoYssa52CbHtGLahUKhUChsCTaKaZ8/f14PPfTQRBqLUrIlMErslrIySZ0hXr3kE1kygMx5Ix434jV2eOuFeGTslY5tPYZ1mFCfubC0njMeJeA4/l5GKkvnGYPwXDghhtfPa3Pfffftu2+8nslwejh//nwqbRuZs1gcG6XweMz9J+OgViFjdNQOzSWsYIIPj5nrFK8hS50L1yKyDGSxj3QylJZzYSZJRs05ydbCfXUb1CxEh0Q6jnKO+JzFcfWS1UTs7OzoyiuvnLD/ObhdJnjx53jM51Ij4Xnz57lsh/7rvmXPJbVYvSRPGTsn8/S6+5psHzCcik5sRsa0yZp5TeaE7PmjRoR7OM5JT+vka9xmDDXddBTTLhQKhUJhS7BRTHt3d1cPPfTQhI1lyQBox+C5kZWRaVDaouSWJZLopSTNwl2YPIOhRFkIBEMueH9+nrNL9Wyn8RqyCfoG9GycWZ96tts4TrMOah16CSGyvsU0lQTDBY0sMU/PBmypO7KlHmNjWA0TaEh9W/xckhif67Ey2URm+++FhXENM18Hrh21EV63aKv1PHl8DmWiNsDrH+ebz1jmZyHtf35p5/RfX5vZ6udC8Yjjx4/ruuuu27uGKXcjaLu+9tprJU21TNJyXjwPvsZpdGkDXsdPpZeKOR7z/ag9IwOXpqFP3EtzYWnc+73Ux/GZpiaRbJkal2hb74VrcVwPPfSQCM+btTZex4PkSd8UFNMuFAqFQmFLsFFMexgGDcOgD33oQ5KWEmJkPpYie4lLMq9DXkMp1tKcpdYscUUvzR/tufFYz9aY2Yd4Lb2IaZPJWIUlTtojswIe1D4wyUnPZhvvEwtrxGvoUS1N7Xn+TPYc+2XWepgCDnMVfzyX3lfui//GflOD4/5yfbK0sNQCuf1eMpIIaj7I7CNDzQolxD73CrzE9rlnyCgj03a7ZpIeu/cDkxnFOfE5vo/7TvYZn3n/3wzY7c6lrGW0xSqb9jXXXLP3/HusUWPmPeG+0COb+zr2wfvYhU/cBhOoxOfJ7ZAhZqk6eQ19CTyujNGTtVKTuM47y/djopwM9FNhmlay6bgGfE59XxeD8RxlWk/fh+ycCW/iOZuKYtqFQqFQKGwJNoppE1nM9Q033CBpKjXSLhlti5amLJlZ+iJ79f2y9JtkkSzkkdlt5tKWEmQ87NucrYfMlwzb483sN2yPmgR6TWdgUQsyLWlpZ3IfzGZY9MFaFmlqEzsM445z/vSnj6VwHTNueyS9xjMbrFnegw8+uK999vGBBx7Y+85z5/mhXZ9xu/GaXlpe7t3YR0ZQ0APXxyOL9XcuZcnYa3+mVkWS7rnnnn33oZ0y8wCmzd77zvdnLgVpycIZK8/9lhVr8f38DsjQWtNll122N8eZ78n9998vabk/3b7Zs8cTmbbH4DLBbtdjdZ/cVlwXg1EJ9K6f02KwdGYWeWD00n3yef3gBz+4d42/8zvZc0M/lbiWXitGDTAWfy5vg9v1PDIS4VnPetbeNcz1ceedd+67r5GVLd5UFNMuFAqFQmFLsNFM28jKdVoCsxRu1kQWJU0zE5ktMdY7YzG94uy0I2be1WzPkmnmVWspm4zX59COF5mDz7FUSe9Rt+m5in2hFzmLc2Qx5WSKvsZzYVYaYx/pJUwPXc9VTdNTJQAAIABJREFUZNr0Qu95Gmfg2KUlI/DeIIM3U4mMnl669957777jtP1H2xgLqtA73WsY+9jLiMY4dzO/eD2zAtLjnDG3Wf9pJ/a+y54JangYW575e/gcf/fMZz4zvX9kkH5e3Q5jiM244n1ow2SGr4hhGHTmzJkJ28t8QTgH1LxkLI0s2evO5zX6DfDevex2UQPiZ8rtmuG7j9YCec7jNW6HPix+Vvy9mao09UNwWx6Pr4nvGGpyesVtsqJLfCda0+P7eP6ilpVs38+PP/v34gMf+MDeNW53U1FMu1AoFAqFLUH9aBcKhUKhsCXYCvV4hNUbVs3ceOONkqQTJ05Ikq6//npJ+51ImMyE6kqqzrI0f1b5sdBFlv7Ox+goQZVw7BcdzujExKT80XmJ6nCquKyOi+pxhmWw5i/7lRVw8LxZLeXjdjqLjmieP6uy/Dmqw+P44xjnHGhWIarmGBLCdfLnrEiB+2L1uPvdqyEd++318fzbecnzdvLkycn1vtb7wH3M5sLzzIIRVjl6PXz/uGd9Pz83PdW67x+PuV07J/UKbsQ5cl+tdmWonL/PioxYlenPnkfv3SzNLZ0xM+zu7urMmTOT9Yomtp7KdB2nJTpOec6jU5eUq8fpmMrvo+Oj19XPsFW+fkf6mph8xO9Ahuv5r01Kbiuq7T1ft912m6TlvDFUMz6DTHVK0wEd4OI7xOPyM/j+979/35w84xnPEOF2aFb1/e6++25Jy70klXq8UCgUCoXCEWGjmPbOzo6uuuqqScINO1RIS0ZgKdifLd2tkxTf5zIJCtmN+yRNUykyRCIyHzrMsOAB+xGPGZZamdyFIUGxb2TjZlZZaJGv7xU1sVSblfOz1ErJmokMIpNgcppeidWoDTAzsXblIOXz3O/Y3l133bWvPToRZSlwDSbCoINilgyC4zArMmtxCFpcFzrzULvgNqKWZpWTpJ+njJ2ZvXpujF7qUEk6deqUpP3OcAeF2RI1Ff4c3wGea2vT/D4wY3RfzSilqUaCDpYRu7u7evjhh/fa9XpEjYTne51iIj3ccccdkpbvrszx1aC2jElnvNbRMcxgilWf62fB/ZCW4VF0uKT2zuth5i0tGSnXzM89CzXF6/3s+Ro/I3z3Z866vcJPnotnP/vZk2voeEuHyNhHP5feo5uGYtqFQqFQKGwJNoppuxg9E1ZYwpamyT4YfpIVgmd6Sgbwx/tL+6U9smQmvWBSFGmazIWhCJZEs2IW7LPvw/CgyM7cN9r7zaKysC1LkQwXYpnFjGmznJ2vIePLtB2cR4Zm3XzzzXvX/O7v/u6+cw6S9MDXRFbpuTRDJFtmEhJpyea43r2iMHNg+N7v/d7vSdrP+M32vJb0NWAhDGm59z0u7y+WsTUzysK3DGobaOOUjraMobUOvZSo0nT/+i/Tc8bn1mFNZM8ZXGzGz2n2DvH+7LG8g4BJSLLCJEyYM9d/gql2vYf9Ho02bbdrdsmwNL8nmBI19s3jsX2Y38e5smb0Pe95z75r15lP7+to+8+Qhd9Graa0XE/PlVOhxu82FcW0C4VCoVDYEmwU05b223bNaqJHM20TZimWAOlRKk0lWUtdTPeXSby0N7FwQ1YUgQkDaMv2uO677769a8ys6HlJaTUrT8kCHT3P8yxdJpO50IbFBCqxHdrSaZ+OErHHQTurWZvnJNqjfM8sHea6yFKfZl7i0nIuoicpkz0Yc97IB0W0/TNNLrVE7ltkop5nlmKkp66ZUEyXSc2NnyfPEQvxrAP6R2TMnhEdTCYzp6VhohH3LXq4Mw1rliI04ty5cxM7Z5bOmL4ebtdajMNogzJwzGTa7EfWHtOaWqsRnzEzXX9H722vpT2zo++DGbvfY4zOyObC59KfZB2wdCpL7XpPRW0ANWNuw1pI75PItDcdxbQLhUKhUNgSbBTT3tnZ0eWXXz5J3RhhaZjsmGkLIztnPDbtt/TQzOJ0maCftt5oJ6J9hna6LJE+vZAZe2t2kRWyJxvj3JA9x3OZsJ82O2oLpClL53xmpTvdJ/91Gz6HcxPHZcl5ztbUWtPOzs5k7jNpn2kwGXGQxZV6XjJNx4Ui+jOQNXpe7AmcaZ9Y8MTXUjPhuY/M3kyRnr5u35+zgiE9UAsRx0cfEM95tv4EnwWPj+mJYx/M7LJ3iXHu3Dndd999euELXyhpuR+ylLReH9rV7UfC2OsMPfttps2ihoqpQTNbt+eJMepZKVNqCu0D4M9m4u5bjOR53/veN2kv+xzHtW4MdOaHQ/TuE+eEPhnUWDLXhDRNi3oxnvkLQTHtQqFQKBS2BBvFtHd3d/dJ9IwhlqZSJNmypaNo67GUZQYSWbG0lKwo3cb7WeL0fRk7HKXyzOM6IrMPsti9pWN6vPt+0QbjWEt6vzIONEqmlDhtJ3Kso+/LrGHSNLOX7V2Ok/W6xWxntBe6fXu02ks1SrVk/avshceOHZtI5lmGst45mYdsL8tXD5FVmA3NeQlL+xkxIxtYztG2uBiTzH3rven72auc2dakpXc9y+BmZUpXgczO+yDO3SqNBTUwEb2yuPZIjvPodujhnGF3d1dnz57d02Z4vjL/mkwbEz/H/bZq7vy8MkugtPTmJuujN3l8LrlHqfGgbVua+q6wEInbMEO2NiL2gcU3ej4IsQ98B/L95ucoapQ4B54v5kGIzwbt64wMyKIB6Iuxad7kxbQLhUKhUNgSbBzTzhhdZLG9TGQs3xilO7fpv7ZzmUXSBhylaEtZ/s4ZfSyxZSyQcdq0i2asze0whpP242x8tGtRUvT9I3uxlGobFVmR7+f8vpFB0g5udu644+c973n77iv1fRCYuSzaJT0XHsecXbK1NskqJ+33Us5Kb/Kc7PuDIMumtgpzWbbcF7MH+lZIU+0PvavdJ5ay5P+l9WyJLMlozRX3Ob3apf1x8xnogSxNNUe9/Ared9IyTvv222+XND/Hl112mW688ca98TBGXVruETJFxkTPgZoIxgpHjSIz0VFTkJXondMmxHHN9Y3PkD/7XRnnhBEV3gfuk/s+9+7owXsm8xFwH6iN9OeYyczva787mH8iA7Ubm4Zi2oVCoVAobAnqR7tQKBQKhS3BRqnHpVHlRvVRVD2xfB7TmVq1Ea+x2sbtWo1oJyi3ZVVMdJJhiI2dr1gMJDrBuF2qw6yiyxwbrDZkaUImOWBSB2mpfmL6V/+12iz20df4r9vz+Fh6NAsxcspRJ1x473vfK2mpLn/Oc56zd437TWcS9icWQGBq2lWpHOP37m8WbkRcSBGIiwU6jXm+vEejajIzI0nTpD4+LyuEwJAfJi6JoJOQ947NTn6ebOqIyWoI94lq8cwRjc8CUxpHByQ7p/nZn0vmcfz4cZ04cWLvneH27VgV78HEK3zmounLx6iK9TXuW1aMhI6BXBfPT0wpO5fUpAfPk9chhnRJ09C5aE6x456PsWyx90XmnMeQU5o8MjMgx8wiSlw/aWoSoLmTRYmk6ftmTpV+KVBMu1AoFAqFLcFGMe2dnR1deeWVk+QqkSGysDqZtqWwyJZ9jdu1hGjGYPaXMWCfw6LtTJuaJXNhCBFDCCKLMdNmyA0d3iyhRicJz4Hny3Pg+1uajuPLkvlLS3bsc1/wghdI2i8Jk1U4PaadPlh6UJpqHZiC0EwoS+m5TllEhgv6flFSz0ogXgr0wl6kKYvkvHmMWfgYtULWsHiveN1e9KIX7V3jUB6vnRmVGZfbiHPv9tw3OlyS3WQpIn2u70tHp8j4yOANhn9m+9tzwWIWEcMwaBiGvTGyaI40ZY0Om/JYyYDjudQQuS1f63dV3J9+/j0/fqdQAxHfc3z+e4jzyFBZzrH77vfc29/+9r3v7PjneWOqWCboieOis673GTUukTW7b9aAULOQaWmYeIp71X+js5z7a01ITPu6CSimXSgUCoXClmCjmHZrTceOHduT6rLEFpSCmIrS50aJkYkiKOGukwzCEh+TKGQJK9yuJT5Lcb0UobGPLNxBUBKWlozNEjYLhVBLEO/HJCu2d5rpZGE2bpcpCc2ws7AhJuyn3W2OQTJt5UEQ7VEHKW+4CoexH/L+2X5jyJ3n1OtjhhL3Dpma94P3OdPAZr4NTJDBcUZbJlNbmqW5b35G5oqqWPvD4iZZYiLPgb/zPNK2GZme+2RGzPCkiN3dXT366KMTu3XcO26bhX0M79+YuIRFV5jkiFq6yOiYtInhotTIxP8zna3Xyccjq/R43Ae2Qa1a3DveV04EY42ItQNuI/aRGkSPz3NBJpylNTZYVMljsH1emmphuA8yDQm1PQdJ4ftkoJh2oVAoFApbgo1i2tIoiVn6y4rRU7oiC7NUF22+ZABMqcniDJHFWBJjchBLoCyHGb/rebZ7XNH2RNs1PRbJXiNrdn+pffD9M7ZMSdZzYtufGTdt7PFapgKkp3OcE9qwWR7TbDEyLBYMmWNLvA/thvGYmeKqZBRZuz27qsecpdzl2q6TvIX2Oe63OE/0sve4PHbaOLNCNWZJZLVzpTLdvsfDREeZ7d7tslAMbZiR0fWKzRjWDkSbtvtoe/oqLc3u7u6eP4WvdRRIPOZ7mE16Xax1ir4t9IymFoHsNc4xWT/fbz7X6xX74mfY2gxGbMQ9TLbPcrj0yzGrlpbr8dznPlfSMhETkzplSWOoGeW7kpEC0nIee2WLM00aS+tyrn1/p66N7Tpla/xuE1BMu1AoFAqFLcFGMe2dnR1dccUVe5KUJcTIlhiHzbKaWaEDSquMvyOrzeyUtL1Z4qZNMH5HezGZfLwPpXD/5XiyJPYsGOH7WYrOGB6ZO4tpZMn+jV48eG9uIugBTv+CXix17GOG1pouu+yyvf7bHhXH7PVn3DDLoGagRmDVeYeF15slaLO4c96z95c21chemKqRRU64trFdMp+DgM+Tx+f+xH7RFm+26b9m2vGZp1ZtFdM+duzYXh9OnTolaf97gSVTvbepicjmljZRPjeZHZ++OnxHeTzRB8ERGNYCsOyqEZ9LRrpQk8f3Qxyf59ianZtuumnfZyOLm2YUkOeVMdJx3fhs9VKvxmt6JUypHczSAnONNwXFtAuFQqFQ2BJsFNM2W7JtyTalzMZMxtGzF61zDm0iWaEL/rVdiCwmtkcbNhldvA8lWrfLcWbx1SyRx5hX9zXasiyFMzY9i1GN94h9c1993540K03jff2d2UEmybMPc0zbILuMbXB9zaxov10V53qhoGdunDdrCLwuZmvMF5AVjKG9kJ642bPja83YWCLVcxT3CQs0sATsOsUzPAdk0VnkAcfj+5tRMrtW7L/7tKr4w+7u7p69NosrZ0lRzoERnzFGlpA9cz9HtkctoNvyfNlDOt7PfTHjpe9B9oyxj3wnGj4eNWW+1s+wMyTazu7cE5HZ+z49DQ8jYOb2Et/B2d7xXqcPFDWXc5ElLKpzqVFMu1AoFAqFLUH9aBcKhUKhsCXYKPX4MAx64oknJqqYOVd+OkUZmfqQqmB/ZthBlpCDqi0mrojwMaqRPZ7M8SRTXcVzqe7PHN+obrOZgSn7pKXpwdfyLxHnhM5qTLHJJDLSVHXL9KVZAhXO7ZzD087Ojq666qq99tx+DA+i0028VlrOXwzbsTrUa9dTG2ZFBaiOtzrPa5z10dcwjSlVwHE/MH0o55/q8yyszupKpojMEvNwH/fMGDSfZGPuFf+I+4DqfabWzN4PVO/PqT/93qHTXzST0Gzl+eL6Z6FqdEylSpb1z2N7Bs0HNm/F9KxOQexzPAfeF0w/myFLFiUt90lUj9Ms4sJBTn0cw8MMziND6ViDPXsX0xzHfZEl9XEfGR7p49FZ7+TJk5JyM8kmoJh2oVAoFApbgo1j2ufPn9+TrphCVJo6HZBpZ05RlsQyVhzb4D2y79imJbborODveuEULO+Xfddz8uLcxD7Q0cjzxqQR8Xo6GrHMpxEZBEPWyBQy5kDnO7aRhXj01iuDQ3Y4t9EJxmMl42E40Fyhkx4TIbuMY800HdK0kI20XAczT/fffWRoTOwb2+N6ZOUOyQI9Rx6375clyuH6Z+PhuKlJ8HdmWFkBBybacJ+Z5Cc6NzE0ci5sZ3d3V4899tieE5776GRF0lQTxpAyji/eu5eac65P1A56fXxfPxvPfOYz965x+x6Hk4KwnG+WxtSaHDpHzjkIWqvlcTiFq8/52I/9WEn739++t7UADG2kJi6ip41kMpfsWjqgUUOSOdh5Hg+TPvlioph2oVAoFApbgo0SIYZh0Llz51LWZVDKMsvwuWRuc2DikrnwAkpmlvps98qKMLCPvVCPDGTyTAaQpfej9M9kJw7BiONgGVTOJ1mC9P+3dz6/cRzXFr5DMZJWARzYsh0Eeeus8///FVln8RA5hmMbAYIAMZyIfIuHjzz8+lbPkKKkGeeeDcmZ7urqqupmnfvj3HX6hPu+J5Ri/7fP9e/HwNoh3cSFFaq2VhpLG/J57rptGXhK0RFL4Nq/n3EEZpyOV2C80grh9UX/acOxIcnwYNKkEFkGtiv3aKsDx1jitZPcdaqXrRC2KOV3XpN+1vMc2u/iKzocDoe7sWC8kmn7GhYy6nz/vidbQGwt7M71vHPv+F1T7AcpVT5z/IDjF6q26aAcYytUl4JlhuuiKX/605+qquqPf/zj3Tlv3rypqq2UsK00nVVoZUEye871bSnZVdpdjj0WCu4npWLPAcO0B4PBYDC4EJwV08a3BLpycKsIzD0G5O8s1gD2hFncp70IWrMzi6xw/WQmMAP7jswYu8IaLt/H9SxG0RV6h12sIo67aF6PhXfhZhL5GfcJc3NJzqeWwXv37l394x//uGMg7JY70RtYJbt7+1eTnXdiJlXHZWertgyLtW3rRjIfs3/LPfIzrSaAcywAwn0ncwQwHeaF8eMcIrQ70RDmkLVzLIYjfzcz9XOcz6A/41wzqyzJCPiuk9TN9l+9enV3P0TQEwvS3TPj4vnpSuf62Qa29OU7xO8Mi+ww5lnMwhYV+kimCD8R8MnrMKaMIWuV7xFOyfcz0dX0gevyTnn79m1VPYyH+MMf/vCgL1h0kI71HOf7gLG1pcrPYvfe8XvbIjV5HY9JJ+X8KTFMezAYDAaDC8FZMW3naXfRvWZ3jt7sdrUuIO8IbO/Ucsfr63g31+V2O6eXnRu7VHae6ctclZczyzAz7e7Hn3NsjqNzLA3nB3dlPd13M+6uyATHdFHQ74Obm5v66aef7sYetpT3xzUZUzPDbi4d8dvl2K/gzIKOWbuPLoIAm+EY1lAWZaCPLjbifuwBVkRbMBD6mmwJpsZnlqh1BHyuabMjlxwFe5Yz3ydsLdeo1zXHdCBrhXHCIpF5xo754J5t3djzxbv/9o93BYQor8nYsh5g/J0+AGuIyPLf/e53D/rTFTUxo3fcAlkFeS+MCX5qvxuJLk+LBf5ursdzShvcH+PbZR643KZLBOc6cLYHfe4YNrB2wMiYDgaDwWAweBLOimmjasUuyxGTVVvma18sf+fOfeV/tPoXbebuy5Gd3sHv5Qb6O/uYc8fr/jtq3AVLkok4ipL2ub+unKRZpaPTzcQ7pSeuY199Nxb20X2owvLs5PHN5jg5RxTAwroIYEeqMl7swq201I01vkXnFXcKb15nVtPrfLSOGgd7am0rwCqYb1gnjK9qy44ZN6sEdhH3HMuY+z47CxqfOTbDkc9pfaDffHeMaf/88893c+oCGwnasS++ywd3FgdjCgPlcywXFEDJc4kId7nLzkLhCHdrL/AM5rPHfBAh7Tx5xgIG3BWO4RwXCsFvnevSCog8L5zLs2LLRo7BDz/88OAYZxPkmHAfWAoYV+4LK0C3RrsiKeeAYdqDwWAwGFwI5p/2YDAYDAYXgrMzj79+/frOhIJpJM2VNuMCy/ulOddBLQ5KcNt5vIN4nK6DuSXN5g6qIejBQThpRsZ01ZlXs89dQQ+LhdhkR9+6AA3/bdM2/co5IAjGaWk2GXYBhHtFP54DtI8JLcfLNYgd0NTVHe9kDqu2whjca5qRbZa26MmqOEu2ZxeETdFV2+eEn17fmAhzrdrsajEN1mO2teoT5zLONu1ne65Z7nHsajDTrs2htJkBT8wp87G37hDm4RjmLfvoQFHXPefvvI4DHi1ryn1hcs80Pqdiej10qa4ORMWkvSrsUrWVhnWKJ4FpNulnv+2esUBLJwCDOdzrwesg0/goiEK9cGChlgwco12eF/pod10+q3aJnRuGaQ8Gg8FgcCE4K6Z9OBzqV7/61UYWr2O+KzbZiVwAJ9rTvgPVkm2aTToAhHOTnTnFYy9dC7DjtAShC3qALlXBx+wFhpl1Of3Eu/IuLWklRuO0pcTKkvBcMKvJfptR20LQFbywxKktFA726a7noD6PbcfozABgHB0zoF3uyyl+ZmmdMA/ryVaZLsXNAVb87et1zwbj5OBFW5I6OVvOtaWqK8VIUJfFfDoQAAtDczpaXotjKCZBylKXaupiHy5DybgRGJb37FK5tGvGmM+21yrHEpTXpZo6KJK5WgVY5v2ZHduywLk59vSF9rFQeOzpB+Ocn9mSSd+xtOR6sGW2s4xWPXyfckyW6D0nDNMeDAaDweBCcFZM22DHsydCYj/eY9JbgBPwO/+GhQPsC8rdn1Mr+NvsOHdy7Irtf1ox3mSsTgtb+bI7X613rb5eJ8hgwRFLy3aWBI55TLnNx+BwODxgARaNqNrKldq33I250z/M7hhHi2xUbQV57APuBG7MAJgflxXtxEcsk8o5LujRiWvgD7QliftKRuc1YcbtPnaykl4jji/Icyz4YsGh7pm3hOueT9tM2xLFea+AY23FSiubLQ8eD4sv5XvO0sSO1bD8bNW9dYG0KcYYfzTn5Ng7HQw/tUV8YMidFZL7cZEP2syYBscerQquMH8ZS8GYrySfGat8Bm3JcSqtfdv5+3MJPz03hmkPBoPBYHAhODumfXV1tfEt7+147H/qJDuPRUr7ep0U4ar8JMjvvUtd9T99PWYLFqv3z445mPV5B5oRuRbpWPlSu6ItK8bgOehK5H0oOB6iKx7APbBTd/GKriiK21nJl3Zr1TEFsAx8b44NyD4wL46m7QRgVgzXghlm7dnuSjTkFIEJ2Dpt2ZrSWa68RvcKr1gsyDK59rFnvy0WtMLNzc1udodFZ2xd6ubSFgnLJO9ZJFxml3cJLLIT6HGZVViqMzdSRpe1wJzZSsc5RLZ3Fj7ah9FbHrh7VzlGwO9oP6urz7KtrlSw14HHYm99PLV40YfGMO3BYDAYDC4EZ8W0D4dDvXjxYlOCbc/HbJa8V6rzWDGOLp9xJUpvZpw7NUtO+nqdX9KMw/fuyOOO+a787l0pUEsAOqLa95f3cqxYRhd9+6F82b6uI9ez3/TBzM1R5Hnvnm/v5j1fySpoF4sKLAXWRBvJfFyMw9KUnJM+Vuf7+hgX8Egw/3znjApbLvI+vL7cvqPKs10+c/suplG19eczfr5+xgP4/bCXc3s4HOr6+no328LPsq1Y9nlXbaPEV4VDujKUZoSdr38F5y0bmcfM+OOzZg3Zr8v3e1H44DEZIh5rz2WOieMtVpa9rqyrcYrfenzag8FgMBgM3gtnx7Svr683O9Tc5XvntIre7CJKvXPyrt4MtWobqejIaXbayTJcFtK7cPunq7Y53KvI5s7/ig+JPsBMYPywN376/BwD70A75uNzvDvujv0Y/qH0SzJfaQGxf9Zj0M2XLR7ch1lZVxYQ8FmXt1r10ArBd2b/LnyQfXdUuNksgGGlNYDr8Rl9hHE5bzdhtThbYJiD9IeblXutdM+g1Qc9t3tWtS5OpbuP6+vrjdJaBz8f1mDorGddBkbV1tKT7zIXQnIk+l6Bksc8a5yPeprLUHbv4OeA58PPbTcmfuc6QwDkM7hSHTxlrs8Vw7QHg8FgMLgQnBXTBi6Rl3B0q/1anarZyi9otSfayihrzsXviL+GHGyrUVXd50laJctlF5OBEJ3pnbULshMZmjtI+sYx9ktZ7Shh3WqfY79bHmO/oX3CueN9iub4Sg99D6wZxiQZAuPtiFUrOOW8eMe/+ruLXHV0Ldez/zjBZ6wH53ZjLckIcD5zlLKvj48zmb4ZlC0FXfzFqiTnSpmtY0s8R9a87vzKtvrYsrMXx9Ipuhm3t7d1c3NzNy+PKcW4tzZZ864J4HW9Z1F0JoAtiWkBod/ffvttVT2NRX6sMpTOguC+rM/fKeMBv6O6zIPVd77eJWGY9mAwGAwGF4L5pz0YDAaDwYXgrMzjNzc39a9//evOXOmgnKp7s6DNHF2KD1gFoWCectGHToTEqT38jSkQk3TVvSmLdjHBOD0kTTOYvVdlSWkTs2+aujmXPmAuxbTmNvO+LEzhspr+PLES3ujEKWxC7wLFDMt97pkiD4dDvXz58s683LVLfzHnrlLwOhO372OVAtSlfLnfzN1ewNAqXYe5zBKgmPsZL0uv0qdOetOFbxxwxrPQBYY5aMhBWXYLZDueUwvedEI3DuBcSaLmMXtFRYADYN8H3Rp1QJrdZKB7xiyI40DUDBxzoQvStM4JDspzaqFdivnu9jpbpQnmOSvBnMeU3ezS+T4lhmkPBoPBYHAhOCumfXt7W//+97/vdpHsGDNwxlKGZoTdDm1P1KRqW1ChK3vo3Z1ZTZ7jAu6wY5fT63ZwMAIH9xC4w98pyMF1VgUKusAwl9xbMWqu18kJegxoy1aJbHd1nY4JeRd+jGm/evXqbq10IjhmX96Fd0x7T7jB7fvcVdCaGcJT0mmQQs37ckGUVaBT9tnsmzHg2WOdpeCQg4csPOTUsryeJU/NeFyKNPvtcXIb+Uw4gO9YIaGrq6uNOEwni/qYObMVYfV9t+5s4XCqVxd8Z6vjUwI5jS4QFazWM5/zPu3WjtvzuDKne9LCKzGcvN7q3o/J2ibOLS1smPZgMBgMBheCs2LaVf+/M9rbbfG7Ga9tfVvTAAAYRUlEQVRLSnawv9bl31wqr+qeLXhX6RSV9EG6eLqlUDtfpktlroQZzFizXdiXRUL+9re/VVVfIo/rmK1byCB3pi5Awe7fcoy5Q7X0YMf+DftMj+H29vZufri/ZE8u/2ifL/eeffI53rm7sEvC6WBm3ntxAseQx+HnZtwd9wGYt1x/KxEP1vMXX3zx4Nw8xm1gaaF9rEV5PP12WiLoxFVof5W243HOdvh5zF99e3u7ETLqYIZ4Sirjqcy3Y5VOfbL1Is9hTFcphZ11gGPdvtemS4XmMW7Dz39X9nIlP+3iOtlnC8rspXqt8BSr1ocudvRYDNMeDAaDweBCcFZMG5+22Wzu7sywLbPY+Uy9u+Jcdqbs0Ow3rtpGG3oH2O1AYbxEb3rnzvVy90+f8Mu5SIJ32Ll7xY9rYQ76CmvKPjJu+M5Wkq70sZsD75KJaOb6yQJWZRU9NzlWx2IRjNxpu9Rg1ZrxMn62BuQ5ZqQeA4vTVG2lQe3rs7XG5z8WzlJwxDHIzAPPL3+nf9gws4bps95XsqZV+89pXreTAz22dpL1OsuiY7GG3zvZvtnWqqBKx8psXVqVoexKpgJbEzoLoy1eK+nTroywrVqOg3CcTGJ1X85aqLp/N/o67nMXi+CxdXbOnrDWqo1LxDDtwWAwGAwuBGfFtCmtCGPcy9V0WTaXpcwdlv0/LvHmKM9uh+2c5L2CBC7CYD+dfUDd/Th6lB1x51ulT97ZOvI5r2cfOqzJ48f36Q9fRX7DFBw7ULW1NhzzEed3p+R0X11d1atXr+6uQ39TCtft+djOAmKfvvvr8er8qmaKZjc5L85XtY/vFCbu3GRbTbrShY5PABmlbvCcOgLd+cgJ+079DDoCvmqbl+04AxeQyGNOjfL+5z//Wb/5zW8eXLuLU/B7prOwAK8NWxdWVq2qbWQ87xSfk8+ifcge224s6JP94M6JZ/3l82krg//eK8DE+8YWC94hnYWP+d6TAf4QOCVe6mNimPZgMBgMBheCs2Lat7e39e7du7vdHWwj/WvOtXWJvy5C01GFLiaxp0y0YlpmS+lPM6NfRWLm51aE4m/uj5/4D3P3ChuyT8d+sG6nzW7V0dZcv2Ngq7xIds/8zMhtM0aXAOyw5yfsjs2iDzCTZNq2pKzKASZrsrXCGQ0rVb08ljll7kB3X7boeC47/+GKfTO3Zgq53s1sXTSHNpjTqvuxdb72yg/b+V1tZeBcns28p5V1bc+X6WIpe1HeZB24gExaGayotSoB3Km/mTWbXfJ5PhMoIALuw9aSrqAG7bi8r2Msso9m5RzLXFtlL+9rNf+2KGQ7/KRvq8Ix3Tq3NofX/16RkadgFNEGg8FgMBg8CfNPezAYDAaDC8FZmsddWCNNjg5g4libZvaE+23ixgTYyW9aKIL0KZurutrfwGIkTu/KdjEH2Vx9SuqCA1D4Se3vNCNZJtUmNPqGaSvnYBUMg1mOlK80qe8VrejuL8851Tz+888/LwPeqrbmSsbAwjVdjd2VadaBiVk4BpPyKa4AYxV0typYsoeUAT72HeuNmvAEBuXztTJP28Xjut5V21Qeu7kYvzTh2yxqkzdrNefaRVmOmUlvbm42crD+vmpbM97uizSluq64x4l7ZR3mOre7gHlgzDHdd+4YB43ZVZBuGs558+bNgz74/doVB7Krw9LI3H++577++uuqqvryyy8fnMO4sh7thsj7WQk/dXP8HClej5E8/RgYpj0YDAaDwYXgrJg2YBfbpX5ZGAMW48IGXaEIF+NgV8dPrpOpBOwaV+L0p8gYroJhkoGZgZhpryQcq7bBcC6J2AUvOeDDKTj++5T7Y/fPeOYOm+u4qAjo0ioeKzRye3u7K2XoHfMquCvnaVVO0f3HusDPSwVjxByy/vbWuYP+OqYKHITpFEe+7wI7fT0LjHSlZ8HeujgcDvXixYu7tcm63WNpTmvqykL62twH9wp75icpZ3lt7hXhGtYX45OWHT+HDuTtrFkOeHVQH++hTgjIbNyWMQu0ZN+4LgF3fjd3MscO5LMQyynv4qdgCoYMBoPBYDB4Es6Oab979+5BeklVnzrE7sd+ya4ko8HOD9+O2+hKCVqEgD7uSTYeQ+4MvUt0movLIKa/mGIf3p065SfZLLvwlaiGRRZyx2uZR/zxLkySbTJeq13rqlTjqUCYZ4/pmiV3DM19sGzkc6SQnBNgd6wri7p0ErhO0wIWO+nENVhXltHluXKqW9X2WacN+zjzHEvWHltXL168uGO83TvEfmmnJDkuIq/t94rjEmDLeS7rmHuFcTvl9ccff9xcDzCW9tWn9cwpno5x4fsuxY0+HUury3N4D3z//fcP7pMYCrPojBVyiq5TCt+n1O0lYZj2YDAYDAYXgrNi2kQAG+lj7uQiq7YRv13BEHan+Ifsy3apzqqH0Zl5XTOC7OPKF2bZzLxX79wt0GK2nP2i395pWxKwK09oCUXug/a9s8/r8N0333xTVVXffffdg/5kH49FUNs/9lTsnb8q7rEqypLfvU8U6odgAF3J0Y6lVm0j2/NZseStI747wRngNcl6s4WnK81I+xSZsVxvwv5di+H48+wD2LO8XV1d1cuXL+urr76qqqq//OUvVfXQkmB/LWvfMR+dqJMj5GnX/uJcu+4/Fj+fm8d5bPeklgFz5GM497PPPquq+3nJPjLflkBetZ19tFWGOeR6x4oDVW2tj904/hIxTHswGAwGgwvBWTHtm5ublml3OyezZ+drd5KGtO0i7ewu2e1nFCe+FjNs4NzRqr4AQHduMq9VCUiXTLSEX7Zj/7sjnjsm4qh0MwfnUWY7+KVg2owBbae/7dju933zKd+9e3dyPvSxHOiOET+FJTvH3Syps2KsrmOZ0WRNx3KRbWHaw57kLWD+7Q/12uxkgn2u84+Zm648rq1A9j1nn12Gcq+4xPX1dX3++eebkr17hSIsI9rJiroYy6qkKH3r1gHjwDj585Q79TvKz30nDWorzSoegb+zfCj9dr75qohT1br0J/3Yk011YR8/T7+EspunYJj2YDAYDAYXgrNi2ivkrptdln1s7PKIpE7G7t27WaUVy9JfCHs1a/auOXfyVslyIQKuv3dfZt5d2UjD/m+fkyyaHTPjtlKz6iJzYWzffvvtgz4CK86dgqdGjXfXTXQRwB8LjpVwsQSzmqo12+9YC7BVZs9iYLBWWOeZW191P4dpJXJxCedL2/rUWaGwYDnTAf9orimva/vdO1VEs0tnpBjX19d3/YS95ntgxeZYtx0rt3XEOhA8g9ZVqNpaE5zH7FiErk/OIafvjH3VNt7F7wHHtnRzuSog5NiDbIc1ZGVG8ri7aPxVOdT/lqhxMEx7MBgMBoMLwUUw7b0ym8BqTB17saY5P52/2EVxWr0IdOUHAbths0h2s3kOx8AIHK1q31Oe64hWfEzWIu9K5Dkq1dYB+pFlCt++fbv57FPj5uam9Vs+9+7b7GVPLWm1Vn1O5/NbRf66NGjV/Xzbp2wG0mmqWwfbEb/d8+Sc4RWj85qqureE8R3PCOey/tHLr7pfv+hjm2F1/mSXU8z2jKurq3r16tVm3Ohr1bZUJVixzGxnZSXhPdOpOHKOlcqs950WBO7ZevHWQEhrHUyan35eXMY479dZMI4NAl1Mg8fAc9r1lbFwlLwtenn9U2I0jsHv/E+NYdqDwWAwGFwI5p/2YDAYDAYXgoswjz8GmNvStGXBAMt9Yj7C1JTmFoKuEFzAVGeTZJo8aXcldbpnWnVKh/vemXmc4mWZzi64x6ZUi4g4aOavf/3r3bmYx58DlxZEciytpCvK4tQozG1dkQkLbviYPYEM2u/Swqq2IhRVW0lSpxy6ZGvVvSnVIipcdyXBW3UfBMUzxk+bPLPvXBvZYZeR7IIlAe0hx9oBCVynauY7BLnNVbnLLkVpVXRjZT7OtcO4+H3zxRdfVNVWyCbP933YpJ7Xd3EUjz/H2gWX7Tkg0e+3NHF3gjsJp7Z16WlO2TXyPffrX//6QR+fUiYXwZdzwTDtwWAwGAwuBBfHtI8xMjOFqm3qwSq9iB19l2bgwBx2/XupCW7XrLkLeLPogFNKbC2o2qalsZtkl05bucs0C+MYB8DBEv785z/Xh8CHLquX+JCs3kFYVVum6XQa/52fWXK1W9c+B5ayksI1O8zPgJlXx2ZYV06ZNMPiup9//vnduQ605FwsWqy3TEviWAdFwvjNXLMPezKs4HA41KtXrzbpbrC07OeqyEwnXOJr7xVScR8d5OU5dWBa1f27gp+wdcbJTLxqmzrmYxzEmPftNWmLgd8pCTN7Bwl377nVu9Hv1W59M5e0/5gSumlxOQcM0x4MBoPB4EJwcUz7VGR6S5dSUbXdsVkytGq9Q/euNoVLLAXqv52Cln2zX9o73263TPtmWt6B7vXfKWcgfdkfApfiyzac4mffXx5jFuFyqHsCMGbwXSoMgIlY/MTrLa/XlW3NvrL+0y/tVEn7dbmumWv2xXKWPK9dMR2nYpJ2hZ/6yy+/fHBc4pS0xOvr6/rss8/uxsByqfm7y87Sz86vbivSyorCOGYsja1z/A0z7grZOGbGLN2FcfJ+bA1yKdquoI/vnXNtYegK8HhNror2dOVWfZ/cH2w632G+nsuv7vm48WXvydl+CgzTHgwGg8HgQnCxTPuYfzJ3rd4Bsts6pRykGa+ZtaUbu+s5uhekTKJ3rY4WtlDCng99ZVlI64PZuHetFAPZ8wU+Bxyl+iHL6jmq/n3uLeeuqi+4spqHvYIanXhO1Xa+ci5Xfk/6uPesuKiMr2dp1Px9JQBjcY8sVOIiKbYOgIz2tg+dZxsWzXV+//vf351Du4iq7JXmzDayj+nTJmq7k3VNdFYTzllJIoNOmMXzsyfHarZvCddOaOSYfLDXaldm1dHqvn5n6fOzYWZvKeiqbUyAf2IhYa6q7teILQbMLed2xXS+/vrrzT2fA4ZpDwaDwWBwIbhYpv0YX6ijF+1zcURuF+3ILtIRuJ0kqXeAqwIlXb6sJfk418yuYz6Wc7QkYO5aV1HJ+HiOFVh4LnyKPO1jO+dkfWZUZg17sQa2zpBx4Lz9vHdHyDLvzqPOc8zK7C/OdZb9yXs183FObJ5jJu/cflgTa7kr3mOLgqOG09fIsUTxmuE55zvPgUF1/nVwdXVVL1++3IxfPtOwN5gb7a6e17zX7nr5s/P92loBmIcuYp5jbbUDXSS9mfYq971jy4bfM5188oqFcwzj6TiQqq2Fh/t10ZGcN4q/MF+r4j25RvmMOIaPkdnyGAzTHgwGg8HgQnCxTPt94MIS9tvkznCl+uNI884v6Whh7yrTt2W/oCNy3Y+0DnhX7B32nj+KnzDrH3/8sT4mnkPQ/7Ewu3ek9MpfmeeYVXQ7dkd8e8e+l19sy8deSVaXljUr4n66bAKu47Kxjt7tfLUuXoJqly0JuVbN3LmufbdZpMG524wF16X9LOaBT9zRwx1QRPMcJovm2rB92uU6p+SD2wLiZzpZtQv5mP13lh1b41YZImkBsIXP1jo/n8liPV4rP3Vez+vJ12Guu3F0XILHr7Ocso6cRWCr0FdffXX3Hc/RKr7kU2OY9mAwGAwGF4L5pz0YDAaDwYXgF2Met6nkFNjs4eIZVceLjdgUWLVNy+JvzC4O4KnaBtd0Aiyr+7N5qDNLVj00zzq1okt5+Bg4xXz53PAYu9BFwiY+F1oBe2Zkm/VsSk3Tt4s72F3Szf+qXrP72q0LByuuRH3SXOlzLH6CCZzj0mzNGuzEaLKvXREV2rHQCccS6Fe1Xc9drXUDE/Fe0JULUHDOKW4l16j3uyXXlNeOA1K9HvMYB4DtBXvyGePj+XfgY7bBmvB8g672O3PosaANP5tdgO+qeE7nbuJ8XDdc3+l3GXzK+vruu++q6mHq3zlgmPZgMBgMBheCXwzTdkGPLvhhxUj2ZPfM4M1Iut2dj3EQGz+7AAf673ShVapRXsds3UEdeV++52RDHxOfQsaUezYj6frigBh23baEwBSSOVqmtCvjWvXQAmJpy9W857pbydX6cwckZf8NW526tcp9mKFyP7Sd1+O+zOwsHpTrkXb5jOAiS4nmdR5jcbu5uXkQdLYXeETAEv1Mdn8MTuezNSNlU52K6bQ+W0/yd7Nyf74nsuO1yjukE6JycNwq5bQL7PS70cF43Rw4VdaWzM5qRx9I/frmm28efN5JCTuAeMRVBoPBYDAYPAm/GKYNvFOsWofur3ZQncxf52OpumcZ+bnTMpzOsLfjtZhGJxiQbefv3r1655twUYFz201+DDAfXaEJ4JQop4OshB7ymGMSmgnLfALWhSU9s33PO4zBc5398bkWLOkKijhNEP8gTNjsKc/t0pvyujCfZGdux1YAi4p02GPet7e39Z///GfDupL52uLFPb99+/bB33uiRIwP/lXHUOS5lgQFLuCS42j/8ypmJz9fWfLM8C0zmn3xOjsWW5N9tR/ez1Wuc6e0WRhoryyzGbzXWYrvOAbp3N6Nw7QHg8FgMLgQ/OKYNgyhYzeO0jxlB2WW6nO4XkYA2z/kXWsX6b4SRln1I+FodDM8+9Szv+dSGvNTyJkCdugwK0tTVm2tGRbV6UR2Ti1+0q1VR9Pan7fnv13FUoBkZys/pOMj8l4sG2org+M9Opbu8qGOGck5cMyGI8H5fo9pH1tXt7e3GxaWY+xYAu75t7/9bVXdR6snY4VZO/Ka/lsCuSsCYxEQR+x3ojsWqrFAUxdx7jWzKmPcvbP87rK1aM/S5776vZTWDvffIjv2RWf7FgByP7rSsynwc04Ypj0YDAaDwYXgYpn2MWaWnzu/z36p5yiO0QnOm7XswX46s4uVhF/V/c7dpevsN+qi4k8pBPAx8CkZP3O3V1TC8+DIWTOF/OwUlgdsLbHMI3Pd5fR6nQNH1ybMcFcZCF0EsPu6+jz76nKhvgf3I7/rSpkmci0/1g95OByWbKy7NvNMIZEffvihqu5LgWZ/zLjNgM1Q81xnJ2R/q3qtB1sSbQ3sMg+A4wfok3Pz83e/syyXmlaa1fuGNhyzkc+GffIeN9ZWzp992Sup1+7ZODf5UnAeb+zBYDAYDAZHcVZM+3A41NXV1ZNUzdg9sptMRSTvHleM5LmwYsfOL0w24GjaVS5n5w83O1lFfnbIEoiXjMPhUC9evHhSpOee2hiwNcPooqLZ1Xc+8mN9MfYY76eCo9LNHPcsTY70tR8556JT/8q/GZMVAz+Gm5ub+umnn+5yeUFnISAv27oQFBRJZgjDdtlJP/+dcp6jxB0Z7oJFeb5zqrkP1nCXLXGsGEeniLaKR/AcdtHcK1VCl87s1Pus5sjfMOx83/md777bKlq1fca97j41hmkPBoPBYHAhmH/ag8FgMBhcCM6L9z8CDu7B/EG92zRt/f3vf6+qe/OUawc/pdjIHtyORVb2iksAm2wt2ZjXWAU62SyeJqIuSOSScXt7+94iCKeYsQladPqJzX353WNSDC8J3CtjYlMkps4uxcxBRC46kqZuF1axGd7PftXjC+Dc3Nzcpfh0bjPXLHe/ead07xBM6BQV8fumS1N1EOkqvaoL8loFaPF9Bt6uxG4sdgL2gipXAY9d8NnK7G8RlzzXz5EDHZmDLv3WddwdWJfPfhcEd04Ypj0YDAaDwYXg7Jj2Y3c3HG8WnaH9Fs3g5yr95LmxYvBdUMcKe8IRKzgw5H1SYv4bcIqlheAiGIFZTDenq3S+XwrMnh1s1EltOnjNbXVjZJEQC548NRDt6uqqXr9+vWGEGbBFvyzZyr3ZepffEbyGEAtM1/eabM/BZH5eu4IhZuO0x1jvyXK6vU4S1Oc6CHgVYNcFhpnBW7TG6Wt5jCV2YdbMQfeeOzaeHc4lHdY4z14NBoPBYDDY4KyY9u3t7aNZiP3DXbF7dmL29XDsnnzlJeOYBOul4VPsfFe+PdYdKXMwsGQmZg2/NIa9QpceZNiH7dKmndXD8pWW+nyqSNLhcKjXr19vWFmuN/frlFKZrAmXDn3z5k1V3cfagE4Cd1UMCJyyplzg5RR08swrcMwqPibvayWXisXKqbud4AznML62uHTz5rKxj3kXnttzO0x7MBgMBoMLweGcdhGHw+H7qvrfT92Pwdnjf25vb7/ID2btDE7ErJ3BU7FZO58CZ/VPezAYDAaDwRpjHh8MBoPB4EIw/7QHg8FgMLgQzD/twWAwGAwuBPNPezAYDAaDC8H80x4MBoPB4EIw/7QHg8FgMLgQzD/twWAwGAwuBPNPezAYDAaDC8H80x4MBoPB4ELwf9dEeaxiGb8nAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZedZ3vl895ZKUpVK1lSSbBnkgU4TCIGsOExJGNJgaAeS0BlMAg4OSQNtyEAbEwwBGwzEOEy9MIQhcYNj0oEEHCBhMHhhJgeCAQfCIIMt2bIGa7RkTaWqurv/2Oe5572/8377nDuU6hx4n7Vqnbr77P3tb9r7vM87tmEYVCgUCoVCYf2xdbE7UCgUCoVCYTXUj3ahUCgUChuC+tEuFAqFQmFDUD/ahUKhUChsCOpHu1AoFAqFDUH9aBcKhUKhsCFY+qPdWntxa21orb2/tXY1vjs2++6VF6yHG4rW2ie11l7ZWtvC8WfN5uzFF6lrhSPA7Ln4/It072H2b+H+rbU3tNZuw7HbZuf/+057Pz/7/pc79+G/N6zQx63W2ttba1+WfPdxrbX/0Fp7b2vtydbaw621X2+tvaq19vSlE3AB0Vp7S2vtLUfY3re31n7yqNqbtXnbxNrs/jvC+93dWvvuI2rrutl78c8m3/1qa+2nj+I+h0Vr7R+01t7aWruvtXamtXZra+17Wms3rXj9s1prb5zt7Ydaaz+86rXLcGwf5z5N0j+X9BVHceM/AfgkSa+Q9PWSdsLxuyR9nKR3XoQ+FY4OL9b4/LzuIvbhFa21NwzD8OQK535A0t9orZ0ahuEDPthau1nSJ86+z/D9kr4Hx+5d4X6fK+npkr4rHmytvVTSv5L085L+haR3SbpC0sdL+gJJz5P0v6/Q/oXCS464vW+S9K7W2icPw/DzR9TmZ0m6NPz9XZK2JX3hEbVPvEDSg0fU1nUa34t/JOm38d0/lHT+iO5zWFwr6U0a1+/9kj5M0ldLen5r7cOHYXisd2Fr7UqN+/shjc/BMUnfIOnNrbWPGobhicN0bD8/2m+S9I9ba982DMP7DnPTP8kYhuGMpF+92P0obDzeJOn5Gl/U37HC+T8r6VMl/U2NP8TGiyTdJul2jS9+4o5hGA6yX79M0uvjy6219skaf7D/n2EYvhTn/2Rr7V9K+tsHuNeRYRiG3zvi9u5qrf2EpJdpfJEfRZu/Ff9urT0s6diq69Rau3T2Hlr1fr+5zy4eCMMw/O5TcZ9VMAzDN+PQL7TW7pT0nyV9sqT/OnH5/yXpJkmfOAzDeySptfZ7kn5P0ucLguxBOjf5TyOjGCT9ZUmPSvqO8N2x2XevxDUfLennJD0yu+bNkj4a53y/pPdK+nOSfknSY5L+UNIXLevTfq+X9GxJP6iRIZyR9HZJn5Wc93cl/YGkJyT9jqS/Juktkt4SzrlM0rdJ+p+z8d0t6SckfWg455Wzednzb/bds2Z/v3j298skPSnp2qQ/vyfpx8LfJzRKfrfOrrlV0ldJ2lphvk5KerVGhn9m1u8fkXTDAdfteZLeKulxSbdI+quz7/9vjT8CD0v6MUmncf2gUer8qlk7j0v6RUkfhfOapC+dtf2kRg3FayVdmbT39ZL+yWw+PiDpFyR9eDIH/4dGgekxjdLzf5T0wTjnNklvkPTZkn5/Ng9vk/SXwjlvSdb3LbPvbpT0A5LunM3zXZL+i6TrV9nXK+59j/mNs3U8Eb57g6TbOmN6naQ347tbJH3tbEy/nN3nAP37mNm1fw7Hf1rSPZKO76OtpXteo1Zr0Pi8vlbSfbN/b5B0Fdr7p7N1fVwje3ybwrtAi8+72/4bGjUOD8z2zrdrFHL+gqRfnu2T35X0aZ19d17SBx3VHkD7C2sXvnu1pHOS/ozG5/kRST80++4FszW5e9b/39H4HG2hjbslfXf4+4tmc/LnJf2wxmfuDknfMrW2kj40eW4GSZ89+/5XJf10OP/TZ9+/QNK/na3XA5Jeo9G0+/GS/pvG5/l3JP2V5J6fMpufR2b//qukP33Aef5Ls/4srDHO+xXhOZsd/zVJPxP+vknj79JdGt8Vd0r6cUlXT7a/QkdfPOvoh2h8eM5Iunn23cKPtqQ/O3sgfkPS39Io2f/67NhHhvO+X+OL/fc1soVPlfTvZ+198gr9Wul6SR+k8UXxPzWqKj5N48trR9JfC+d96uzYf55tks/TqLq7U3sf4qdJ+jcaX+qfqFFV9bOzDXXj7Jxnzs4ZJP1FSR8r6WNn3z1Le3+0b9L4QL8E4/vzs/P+ZpjrX5J0v6R/Jul/0/jyekLStyyZq+Maf2Af1aji+dTZ2nyfZsLGAdbNUuOnz/r1hMaH9ick/dXZdw9L+mH0ZdDI6n5F44vwhRp/OO6XdE047xtn5752tmZfqvGh+yXtfWEPGn+UfkbjS/tvaXyx/5FG9sEXzetm6/tCjXvnVkmnwnm3SXr3bOx/S9JnSPotjS/qq2bnfJik35T0P7y2kj5s9t3PSnqHpM+R9AkameN3S3rWQV4UnfX0j/aHz/bOV4Tvpn60P2l2/jNnxz921tZz1f/R/gaNe2/33wr9e8Vs7eM6HZvtpR/cxzhX2vOa/7DeqlHr8HxJ/3h2vx8I532Oxh+wr9HIll6g0dz3D8M5b1H+o32bpG/V+Oy8anbsO2Z76PM17tFf0viMXYdxnJ6d//lHtQfQ/sLahe9ePVvzd2o0b36ypE+Yffcls3n9dEl/ZTYXj2mRhPV+tG+ZzeWnaBT8Bkkvn+jnZRqfu2G2R/zsXDv7vvejfavG355PnX0OGoWm39f4nv702bUPKQhpmgtL/0nju+GzJP13jeTt6SvO7fas3x+lUUB4u6RLllzzfo3aJB5/naTbw9+/pPE9+nc1viv+jsZ38mTfVun0izX/0b5m1qHXhYeKP9r/SeEFNzt2pUYJ6UfDse/X4g/spRof0O9doV8rXa9RQrtXYLIaX65vD3+/VeMPewvH/MP5lol+bGtkAx+Q9KXh+Ctn1x7D+c9S+NEOfflvOO/bNQoCl87+ftHsuk/AeV+lkYF0mZzGl8qgIKQk5+x33T4hHPuzmj/E2+H4t0o6i2ODRhZ0EnNyVtKrZn9fo1E4/H708XM5jtnff6jwIGn8sR0kffzs7ys0PtCvQ3vPns3dPwvHbpvN+9Xh2PNm7f29cOwtSl6UGgWLf7Js/x7mnwIDlvTvZmv0tNnfUz/abfb/r5gd/y5Jv9Ibj3JWNEj6kCX9+ym3G47dMLv2Xybnp0LBqnte8x/WH8B5r9X4A9/C37+5pO9vUf6jzb3zm7PjUQPj5+DzknZv1wrvtQPuh3Qvzr579axPX7ikjTab/1dJeh++6/1ovxzn/Zyk315yH7Ptz02+6/1ofxfO+73Z8eeFYx89O/bC2d9bszn/SVzr37BXrzi3j4R9/1Yt0ZjN7rvnNzF8982SHg3z/aSkL9jveu8r5GsYhgc0sqm/31r7XzunfYKk/zIMw/vDdQ9rpP2fiHMfG4JzxjDaWd4h6YN9bOahvvtvv9drXPiflPQQ2vkZSR/ZWruytbat8cX8I8NsRmft/YZGKW8PWmt/p7X2a62192uU3B/V+MPQm5NleL2kj22tfYjHrFH6+uFhbnv6dI0M8K0Yx5skXaJRYu3h+ZLuHobhxyfO2c+6PToMwy+Gv/9g9vlzwzCcx/FjGh2SIn5yGIZHw31u0/jAftzs0Mdq1A7QS/k/aJxv9udnh2E4G/7+ndmn98HHaRRAfhBzd/usj5+A9v7bMAzR8YbtTeHXJb2stfZPW2sf0Vpryy5orW1jn+/nuXyFxr33smUnzvb2GyS9qLV2XCPref2Sy16nUQUc/92+5JpnaDVnNbXWbtQosO3+C8/5fvc87Yy/o1GQv2H2969L+qjW2ne01j6ltXZilT7O8FP4+w80Pge/jGPSqN0j7tU4L13wXbfK3tkH3pjc75mttX/bWnuP5vP/LyRd31q7aoU2s/le5RnZL7K5f2AYhrfhmDSf+w/XqPF8A/bOwxr3AZ/5Hv6yRm3pF2h8j72ptXbFAcawB7Nn8TckfWVr7Utaax++6rUHidP+No2S/dd1vr9Go46euFvS1TiWeSSe0aiOUGvtWVp8oJ+16vUzXC/p77MdjQ4x0ugleJ3Gl8A9SXt7nO5aa58p6Yc0qmb+nkb73V/Q+FBetnD1avhRjT/8L5r9/fxZv+ML9XpJNyfj+O9hHD1cq9HmNIX9rNv74x/D3HuZ6+HjnJfMkfF9Gk0F7ovYn2EYzmmmRse1D+BvCzq+7/Wzz5/T4vx9hBbnbk97QXBaZX1fqFHQ+XKN3rF3tNa+ZskP8ZvRp69Z4T7u27s0apP+aWvt9AqXvF6jev8VGv0cfmjJ+XcNw/A2/FvmxHSZ5mtg3K+R9fKlfp/mwsD34bv97vll++D1Gp2EPkaj0P5Aa+1H8U7pIdvbvecg2yePS7p8yT04TgqnB8XOMAx73m2zH7D/qrlq+5M0roHfi6vs9Wy+D/oOnEI298veNX7mf1CL8/opmn5f7mIYht8ahuGtwzB8n0ZzykdK+kcT5+9oFAz4zpTG91acs8/S6FPwVZL+5ywE8uXLhLX9eI+7U4/MvDy/RfMFjnhAozMOcaP2HzZwp8aNxGP7wf0abQffNHGPcxoX8/rk+xskvSf8/dmS/mgYhhf7QGvtEi3+kKyMYRgeba29UaPN7RUa1cDvGobhV8Jp92tk/X+n08xtE7e4T6MjyhSOct2W4YbOMQsW3tg3anTukbT7orlWiy+LZbh/9vni2F5AL9xp35i9HL9Y0hfPtFGfp/GleK+kf9257AslnQp/73ePv2p2n69coX/vaK39mkb75Y9GzcoR4n7hpTUMw7nW2i9K+tTW2nH/wM0EsbdJUmvtM5J2DrrnFzBjN98j6XvamHPi+RrfYz+k8Yf8QuIaLYY4EXzX3XJE9x6SY39aozr/bw/D8J98sLV2Ub33jxB+5l+q0dGV2HfY1TAMv99ae1SjqXgKv6uR6RMfplG17/bu1mhq+KLW2odJ+gcafXnulvT/9hrf94/2DN+l0Uv465PvfkHSC2I8aGvtlKTP1Gh7WRmzB/ttS0+cxk9rVI/+7jAMj/dOaq29TdLfbK290iry1tqf12j3jD/aJzT+yEe8SIvhMpbyL9dqPwqvl/S5rbVP0+igRYHopzU6hz0yDMMf8OIleJOkz26tfeYwDD/ROefI1m0FvKC1dtIq8hnT+ViN9jdpVJU/qVFAenO47oUa9+x++/NWjWvwIcMw/MCBe70XZ7T3h3YBwzDcolH99UWaEJpm5x0YwzDc2Vr7To3OV6uE/bxGo/bptYe57wQyk4Pv+7MaBWiGfGU4zJ6fxMz88UOttY/RhYtvljSaPzRqGP7jkj4d9l23H9g0sGtWaq1dqtEsdyER34sXEr+jUfj908MwfOtRNDj7PTip5Tk2flzS17XWPmgYhttn1/4pjULZP8kuGMZQw5e11l6iJQTrQD/awzCcaa19naTvTb5+lUaP2ze31uzp9881bpKeSv1C4ms0qtN+sbX2Wo3S+dUaJ+Y5wzA4q9QrNP64vbG19r0aVeav1Cj1xOQoP60xScW3aQzleZ7GlyUZiyWql7bWfkrS+SUP5Zs1brJ/q3FD/zt8/4MaJbE3t9a+RaPn8nGNnr9/TdLfGPoB/2+Q9H9K+v9mWpJf0/iD82mSvn32Qnwq1+1xjbahf6XR5vi1GlVK3yaNvhOzMb58Jtn+pEZm8PUaw2umYiQXMAzDw621l0n6zpkK+ac0OqbdpFEF+ZZhGNJsYRP4PUkvaa29UOND/AGNe+XnNK7VH2h8If51jfvtTftsf794tUa72ydqtAN3MQzDj2o0yVwo/KKkf9Bau3YYBjMeDcPw5tbaV0h6dRszYr1eI5O+TNKf0iikPao5MzzMnl/A7Ln+gEYv4Htm93yRLvza/BmNz1HG+C4Wflvj++Y1wXTzUs3VzBcK79X4rH9Oa+0Wjd7q74QPyaExDMP51tqXSPqPM9+FH9HIvm/UaKN+xzAMXaF1po36D5qHnH6kxtwDtymw4NbaF2gksX9xGIZfmx3+1xrNMD/eWvsajYTuGzW+J143u+4GjSGx/352j/MaHWgv1yjYdnFQpq1Zx18m6X+JB4dh+O3W2idpDBX5AY1ecr+qMdD8fxzifgfCMAzvaa09T+MP8DdqDL+4X6On+A+E8362tWb19Bs1hgy9VOOP/kOhye/T6Ozw+Rol9F/XyEbp6PFfNC7mS2ZttNm/Xj932phm8ss0OkL9Eb4/O2PhX6Hx5fxsjS+4d2r8Ees+bLNrnz8b2xfMPu/XGHb1wOycp3LdXj/r+2s1Cke/rjFWM6q9v0qjSvmLNM7h/bPrXj6zG+0LwzB8T2vtdo179u9p3Pt3aDSdvP0AY/gmjY6H/0ajI9gvaBSCflOjgHSzRmHvFkmfMwzDjx3gHitjGIb7W2vfqnGfX2z8mEb142coPGOSNAzDa1prv6IxXtrP4xMa5+mHNHopn5+de+A938GvaBQCXqQxdPNOjQLtK/Y/xH3hMzQKdG+5wPdZGcMwPN5a++saw9Z+ULOom9nnd17A+55trf0jjSThzRqfw7+r8QfyqO/1xjYm9PlKzcnQXRqFtmWpeP+7Rtu1fTDeozFy5pthUtrS+KO8+24fhuGh2bv02zUPQ36TxigVa3sf0agN+KLZPc5r9JN64TAMk6lcHQpRSNBae6bGH+9vGIbhVRe7P38c0MacyN8wDMO/uNh9KVw4tNa+X2M8+Kdc7L5cbLQxG9aPDMPw1Re7L4XNx2GY9h8rtNYu1xhX/HMaHbeeo9ED+DGNbKpQKKyOr5X0+6215z3Fttq1wozN3qDR4a1QODTqR3uO8xrtHa/V6KH8qEbV6d8ehiELhSoUCh0Mw3BrGyvZZREZf5JwucZEIhfCS7/wJxClHi8UCoVCYUNwkOQqhUKhUCgULgLqR7tQKBQKhQ1B/WgXCoVCobAhWCtHtBMnTgxXXXWVtrfH5GJOwXrs2LybtsHv7OShuj5+/vy8boXb2dra2vPJFK9Zylcf69n+fTx+32uXbcVr2L7/5rUHwbIxTPU562sPPCdbI7Z3EJ+Ku+66675hGPbk2T558uRwzTXXLOwZr3X8f28fTM31sn5n4+iNbWotl+2zVdo4CuxnXbhXjannqXc8eza5F3vPb9xv586NSQvPnh0Tfvl9cOutty7snSuvvHK4/vq5v1y2xsveGew/r18FU++Q3v32M8cH6ctBntNV3jOHef6PEt4f2buY74l3vvOdC3vnYmCtfrSvvvpqffEXf7GuuGIsouLJuu6663bP8SQ//vjejKTeDHxYIy67bMwlf/z4cUl7hYEICw38vzRfULfvF8XUi97fXXLJJXuudV+zdvi3++E5yR5wX8MHIb5Ien3cz/fut+/rF6I/3Y/sJepjTz455sXI1mkZXvnKVy5k/Lr22mv10pe+VJdfPmZHPHFizNLotZakq64aCxddeeWVkqRLL71U0nxdKCxK87lzfz0OfhpxvjgffNF6/2XCDddySohzH9mOj7uP2Xn+v/vCPmfrz/XuCcWZ4OS5zn7kpPkz6nXMxuM19afbjON69NGxiNytt45F+h57bEyc9oIXvGBh75w+fVrf9E3ftDtPHnNcW/eH8+Exsk/x3GXCRrYuvfXmuyu+wzj/3M+9+8djfH+6T/w7okegMmHOxyKpypC9V3vkI3sn8n5+fvk+vffesRid94skPfLII5K0+zvk/fV5n/d5k5kGnyqUerxQKBQKhQ3BWjHt1pq2trZ2pSFLOpHtkuXFa6W55BmvsbTl78hMKe1nzJTSHFlSJiXzb/bdElzWl17fprBMPR3/pgTPcy0JZ2osSslkZ2Rg8f9kAZk54yAYZgXiOR5L2BG9PvD7CJ/TU7tm/adWpqctyRhC75yMJfWYL9eFY4ngPHE88RqyFsP7mcwye37j3pfmDNJtxv5wnXpM1ZqT2H+/Q5aZJM6cOTO5DzI1aryPEdtwv30NmW9Pq5Yd45waU+PiHsreKey/14d7J9OIURvDZzxj1b3xcLx+v2YaRb7HOb64Blw3/+395/vH8bHfF1uFTxTTLhQKhUJhQ7BWTFsapVFLzLZL0q6cgbaKKKn37MWUPDPbiKU62i6JKL2SUfcktcx23rtmFSbaY45G1g8ySM4Nv4996Um6GSsgy9yPBmEVDMOgs2fPLrDOzG/B9/Y5/DvC4z5zZqwo+MQTT+w5l9J4HNcyB0RL95l9Oo4ru1/cO+wDmXbv73hNz4aeaUJ6+4tr7Gsiq/Y5Zta0U2cMq+d8Sg1GvI9t0P5c9vzu7OwsjD2O2W3z2V7FebGnGehpn+KxZc/JlIanh/g9130V/xSC71Hav7Nngs+nx04WPTUnvT2b7dWeJil7v9G34bBawKNGMe1CoVAoFDYE9aNdKBQKhcKGYO3U4+fPn99Vi2eq4l4YDdUcUyqSnrotU3FR5cdzMlUUVTu9kKxM9bPM2SZTOfVUV725if/3PFn9u4rKmH3k3GTzSwc+juuwKqidnR099thju3Pqz5MnTy7ci+EtDI2KTik+xpCvnmpuyomxN09xrXsOelTZZeAcr2JiWWZKyUK/emalXujNlOOb1c6Z2t/geHrPb3bN1VdfLWlvSA/RWtOll166EIoZx0GVL53M+BzFsVH1S3U43zH8f4YsPJH7ius95VTqa+m41XvfZuC8ZWp//9+hff60SZRq8/i+4HPbM+nFPrrdnkNatr/dB5vCHCK6LiimXSgUCoXChmCtmPbW1pZOnjy5IGVGidH/7yXlyJi2pbue88FU9p8emyBrilK/v7OkHUNR4veR+ZKd9xIITIWYcVxkjpYcpXlymsNkJuol1TCihE0p+UKFUXiMp06d2nPfCDIqamKciCMe8zlmUj2mnWXv49pOZfxjOCDXdCq5So/hTjmVkY31tBCZVoihjHwms9DG3tjtMOZzzcCkuUMqE7Nw3eJz5j762im2ZCdGsrHs+ewlrPE8xuQqdJDzmMgiOa7Ybi9ca5WsfTw+pZnoOZ5xD2eOnWT4HrfXI17DY1mI7qrj5Hsu03b4mO/LZCt8D8Z7fuADH0j7drFRTLtQKBQKhQ3BWjHt1pq2t7e79mqpn2bPkllkk7HdeG0vNGlKEl2GLKzBErSlOqY8zKS7ZcgC/snGLGmaMWZzchTohYkYGXOgVH6QNKZTIIuOUrePWYL2vHl+fG4MD7EtlAyb+y6zT/dsvdwfGRPtMY9VcqpzHfisZOlzs3Cw2I/4bHi+ekx+ipW5LxyPGbH/dlIUaW6XNluOLDz2PQvrcl+cwjbDzs6OnnjiiZXst73ETEypKs21B2Z5PodrTNt3/P9UCJSU293JJnthnbH/DMXqPa9xfL10qR5vlhzL12c269hm9jyxjz2NWZb/vRfytcr75+GHH156zlOJYtqFQqFQKGwI1oppS6NURqk72hjJjjLpkVjGpA/DsKfaoBciJetog2PSCUqgPTtOvLelSSYAuVjIklMYq2oWDgoz4yh1k6EZnjcXCohzy3S1Dz300IH7lBW2YL/IpDlP2f7oFYroRVTEdaHmiqlIs3XyPLnf/runaYnFP+KzHPG0pz1tz7mxLT8nHo/PpSYrsikmrpl6xodh0JNPPrnwbGU2cmrnyLDjuiyzadNrPGPa9IdhUhqOI/afTDRbf7Jxt99Lo5wxbfbJ72++x+O5Ux7m8ftMG+k+U7OUpe31/6nNYOKfzOufzH5dUEy7UCgUCoUNwdoxbWkuSRvR7kB72SpS0FEw6aMAJcJoa/a4LJ2SFVri9DXRS9WS9FQs6sVAXBv27ajTmBK0nUpzj3KmpHz/+98vaT7nUbqnN/9hmHbPfrbKutHGGdmL+00WQbud7xPtu95PB/F7iOwkg+esx66lRV8Uz+/dd9+9e47LJ3rdbr75Zkl95irN19px+vfdd99kP8+dO5d6EhO+lxnw1Lr0/BJ6tuzIYulZ3msjs/myL1MpO1kuuFc8yeON2gzGWrstz3lmq+/luejlLsjeIV4naliy3wL3we9L7zNGK0S7NZ+f+K5dBxTTLhQKhUJhQ7BWTNu2JUpbUaJflvVnU8E4X0rwngMfN5OQ5jbFTcKF0n5YcqaHszRnBJbMafc2A41syRK5Pc7NBC3tHwUiuzFLYWy9+3HNNddIkh588MHda+hVTc/5Bx54QNL82YmarEzrE8F9GPt2FGt4+vRpSXMmx8iH2Dc/I+9+97slzceR+XB4TnzOsvfEzs7O7r1pR5bmY/Y6ULuRxUIztp77jXM7VdCH9tupcp5sx/c1U43svVcIh7km+B6K39HeT43SVLlSguw57ksyaj+T3I9Tc0KNZpad0s+2r+35wlwsFNMuFAqFQmFDUD/ahUKhUChsCNZKPS6N6gumo4tOJFbxMFj+jwt6oRAME8uc86wStNroQqUKJaxWdl+tXooqZKqhemr/w5o73G6WutUOZ6zT7uQddjjJEqS4n0x20avtOwWGc914442737lv3uc+x85Ynh/3WVpM3sNEHF4HXxPnxO15De2Q43G4P1mI4WHgvj3jGc/Y0+Y999yzZyyxLz3HKu/7973vfbvXXHfddZKk66+/XtK04+MwDDp//vxCopkYqsa+9ApqZMVmeklnGKoXr/V+4z7j+yG+B/ks8X6Zytnn9pJV+b1jc0WcR4/9/vvvlzRPpkKzQObIxSRR/mSCoyxhjr+jc2FWeIVFonxfPxPuW1SBuw8+J0sSdDFRTLtQKBQKhQ3BWokQrTUdP358gU1HCbTHsCkZmiFIiyn4LG3ZgStzeDsMGEbRQ3R+oMTOcAmP239HadlSovtv5xvfnyEZ0pyNG70kFEz6Ii1Krddee+2ec/y92WHWf4PJHA4btsb9EZ2uPGYzTjvzsTxghMfic8y+3vWud0la1IRElt4raGAJ3m0997nP3b3G+9jncA29Z80kpbmjGR1neF/30WxWmj8nTNVoh7csIUzPCc/j4bzGfedrPc6nP/3pkuZ712vj+ZXme4KskNqP+Mx7TjwHy8J2dnZ2FphvfB/4ejr5MU1mlozZev6uAAAgAElEQVSGWjPPrZFpZ5jUp5eEJDrskVkzqYv3d3Rc9TE6+7GQi+c8OsCSrTK0LysOxJTSvbCtzNmRWi06WFI7FNtjml7PQbYvqNVYN61uMe1CoVAoFDYEa8e0t7e3dyW2LJ0gw5ss+Vlism0uSlsOoyGrc/iOpVdLz5kdhXZ2StbRxkg2YabAwgbuVzyHzI6pAikBx2Meh21LvaIW0twORSbF8BCWtov3I9tg2cjYR4aHMPwlK4RBbcAUtre3dcUVVyxI+1FSt03b9/rgD/5gSfM9lZXztMTvOfW+YmpaH482eZ/DdJLuo/thu6u0yJI9Bx/0QR8kaa69iIzH82zmQZZmm7n7GstUer59X5/L/RfZhveOWbKfOWs13L77Fdmh193j8rz603MWE8D0imfQVpylg/XezOzThm3atHvHvcNiH9SEZBoiMnfalsnap+zuXCf3Iyb76aVN5bsjvt/INJnMxaGFPh5DDfkOZNhgxlDdJ68//W+oxcsSHZFxk2nHeWTaa4O/I3HvUJO0bmHFxbQLhUKhUNgQrBXTlkapqZe6z99Lc6Zhqd7HLbFnxTiYSN+MgXaieH9KcbTTZQH9TEjg+zEZQLQt9qRhpg9kso3YHkv+eS5oJ43HLOWTYUeJOvYjzoHv63bNNjObvsfFRAVkoZkNelVsbW0t2OQjk6CfgFmKpW7PyU033bR7DctoMq0j7eCRGdCm7L/J1t7znvfsXmPW7ft5PXxfr2n0lHYf/EzQv8NzfMcdd0jay7Q9Pmt9yM4ym5/XyL4M/nQb/mSqT2m+R9wH982fnqtos+cce1/Qwzrz3H7nO98paa4V6CGuG73xpcWoFd/L88PCG9Ji6VUybhYFyUpKkuXxeFwf2vrpY+I+Zp7SZKT0oM/s1iwFyqQk/ozrTz8Pet27P1MpUKlZyTSJBouoMG2vP63Jin1aVxTTLhQKhUJhQ7BWTHtra0vHjx9f8ByM0pal0l7BEDOQaC+2JMYCEZSoM29v349J8A2yJmkxXpKekVMpMOkha1Baj23EscZx0jcgeghTKjUDotSaFVFwu7SZ0wM1Axm323CbU7bHKWxvb+vUqVMLXtBRaqaHvtfFLMI24chEzAjpeW1p3/32PEXtAO1oLDZBj3BpvneokaBNNWp2WDhjiq1Ie/eBWbLngrZaj89zI839N2ij7RVTyZ5fs3X6AsSIA15PrYCRMS3v+bvuumvPfTMMw6CzZ88ueGhnvi2MQaafQFaMw58sUsFIl7j3maqT6V3JaqXFdyK1A95DcS68zrRPMy0rx5t9xz1Kj22p7+fBveq2Mt8dluh0P7wv4hr4Pr2St/RWz86tgiGFQqFQKBQOhLVj2qdOndq1p1q6jGyaNjdmosqkfp9je6A9U+ndTUYizSVdt2vvWkuGWXxmL1tSFsNp0B7NDGiWIt32e9/73t1ro6etNJfGyRjiPJrduV3PjSV42wBdnCHCUqn7ZpbhNj1ncbxmE73YdfZ5v7AH8BSorWAGNEvY0V7sNr3vyJ5tj848V81obWs2WyUjietHT1yWEzWcSUyaz619NLwnyei8TpFp+xnzPvDYp5g9wbh8/+19kGmhXCjEnzfccIOkuW3x9ttv373G/TXr6mVIi3HVnhOP49Zbb53s//nz5xfGHL2fGXPM55UahHi9NXt+r/lZ83r4++x5sWbHNn7OQVxLemuzz75vlveCnuscn9cyjo9e3O6b14Mx2LFPft7df7Jofx+fRT8nzLtBDarHKS36Zrgvfq5oW+f8sL11QDHtQqFQKBQ2BGvFtHd2dvT444/vSuZmDtHblXYhxmzSk1pazC/LWFSzVkt30Tbmdp3F6DnPec6e45bu/CnNpWKyftsP6U3M/8dr6VnqPsc4XbMk2otoN4r2VsZf0hPT51LiluZrYKn72c9+tqQ5K7CXcrwfveIZc+lP2qRXxdmzZ3X33XcvHM/sUbTFx5h+aZHVStptm8zA2gVL49E+7T1BG5/3lzU8kb3TM9v74JnPfKak+fz5e2m+lowZ5j7IxkV7sPcSbeuRifj/3oOMo6bGIu5Vt+s95Dm68847JUkf8REfIWnOvGP79Bb3fbzPoq2WNsvMPh3P3d7e3t0rXsu4F+lVTduv+5Zdw7h5vw/8PTPkSdLNN9+8pz33if4Ece963Tkf/pv28HhPj4uaLvc5Y6Tuv+fN7XLuowbM/faeoE2Z44raE4+H9/Fx76WopWE0Bj3QremZKv98lGV4jwLFtAuFQqFQ2BDUj3ahUCgUChuCtVKPnz9/Xg899NCC41SW4J4hCEwkEOHvrFqyyo9hTm47qpyYrIVhBmxLmquprI6ik4rHFxOY0MGF46B6akotRnUciydIi450dGLyNUzbKc2doOhow/SsWflQJlFgQYejVkVFFb3Xmf3zOnmM0XGG4W1eS//tPUVzgzRfbzpO+T4+N4YwcV9xv2VpRX1vqtsZasgwstie18Nry8Q5US3KOfAaMn2uz4uOdlb32kTlvt5yyy2SlJo4vHeWOTNmaUDd/2zs8bqTJ08uvFPiNSwYwsIXHkcWguV2bNLwuV4v76GoWrdTn+fOJjd/WgUcVc9WBfecOd23+IwxSYv3IsPfModEr4fH6X3IENtotqBjrfeb3yHum/+OJgP/33Pg+/hd5ecp7rdlDoS+xu+/eK7B1MgXG8W0C4VCoVDYEKwV07YjGouOR2nS/7f0w7SiluQi47HTg50OGG5A5hUZKROGmAmwsEOUXu1o4mN2qmEoWGSv7q+1CgzF8N+WzqODVUyDGeeAzjEZE6EjHx3gMuc8S8Hug+fEbXncmROJ26OzyoVy9shKZVoy5xwznCteQ1ZMZ5WsOAa1FCyRyaQU0mKiFJ9LbUbmVOi9Qw2C++j7xJSNbteOT14HO3+SNcf/06GKCTLifQw71NEpilqwyKaZ4pQsl59xftzelIPj1taWTpw4sTDWLEkHn3sWusj2EDUdLExDZ8zYB7Nns0umcc5KV0bHv4gsWZXH1UvP6zW1FiXOidfM+87nMq1x5hTs9t0uHROzZDh0gDV8P++p+HtBR14WN8ocFZmiugqGFAqFQqFQOBDWimkPw6Ann3xyITwjsiVLP0w1x2uipG5GwPSitOeZRcUye7T9Wtpjic4ojTGMioXkKe3F/9OWxHM9zmjrscRrdkH7sM+N17B4AVmMv/c1U+VKDc9FJvGyjCeT5FwoZGkXvb4xTC/2KTIVM04WeeC6ZAUeWLaTJRhZZjG2Y/ZiLY1tnGYm99133+41Ppe+INxvTC4T++A2vJe4DyKDZOEJ2lC5t7Lnl6yWxWailobJOgyfw/SwsT1q5HqIhYqYFCn+v5f8iPs7HnN71vD4b68lw5/cn3gfaloyO2uPITLxVFz/XigU7boed5wTanKoUTLi/fydNR/0w+kVEsnmwuNhIabsvcqwS9/P/cj8bxhiti4opl0oFAqFwoZgrZi2kxywQHlmo7F0RzZh6Sgr08eSdfG+0pyRR1ZJyZpelBnTJ8NiOj/ajaVFxkvmQdtMZDeen8hOpDlLdl8j0+6xI7KMLOl/lqQjtklPzaxdJlO4UIiMgeUFyQiYEldanH+W+mNK1NgmC7bwmswL2vNhux3t77TfRXBv0l8hs4f7HJewNLN3MqHM/yLzjYhguceI3rU9jVnsA/vMNK1x3cximQa0h52dnYVnPCuzSfsz+xLRK/7DJDhZCtxeOWFqUeK7jH4jTDPqa7MSoPSdoZd1dj/3jUl16JeTlYLleKj9nErmwiIn1GjE9xzf9Rwv1yD+f6rw0cVEMe1CoVAoFDYEa8W0pVHiov0hSk60eVF6JDOO3/UKd/TsuFm7lu7oPZoVK2Aie0rpUeKlHaWX+pJFLmI7ttuxnGZmE7T9nlIy08RmfWVaSTM3+htEKZksMCuJdxhYS0NWFv+mrZXM12OOfbLNy3NL9spUjZGR9rQVZOdRs2RWwphr9y3zgiZLItMmu43aDeYqsK3cfcs0OwY9j3vxwXE+e9oArk20QVM70/PmnfINcFx4D1tbW5OFfXqaIWpNYt96uRfYfmaLzZhmbD9ry3uF7xL2NdOA8b7UjLHcazyH+4A27jgGPv9Gz1cpY/Y9zQHjxuP96Nfh8TA1bjw30xStA4ppFwqFQqGwIVgrpr21taXLLrtsIc40graPXlL+LDaQ3qwZi5Ty+Exm8vLfmTTme9vj19fYzub7R3ZODQGlVsb4RnsLvXmZxSvTBnC+aB9ijGWcT/afHvT+PrKlnn3Nc7QKpsp2ttZ07NixruYl/p/skhmw4twy41W8X/yeXqoR9DxnmdUsBtoZmnoZ8iID6TFq9oX9iNea4fu+jv2/6aabFu7v/mde1ll/Ijvr+YgwLjgyH7IyXsMY6thfZlPr4dy5cwvzl2lpetEcU+hlNyRDjWPme85rx+x6sc/MTGeQycc+8/1CTQI9z+Nak1Ez25n9MTIvfGobyG6piYngnPCa7N3ItY1+Hfz+qLWAR41i2oVCoVAobAjqR7tQKBQKhQ3BWqnHpVHFYWcoOlZIfccMOuFEdQfVN3T7p+o2a5/3oeo5hqU5dIyhXVbnWH0dVVHL1ONUH2WOdlR1slBIpgKiGo5pYrMwEaqlWCObTlvx3Avl5OHkGAx7i31wvxkGwuNZ2lyuAxNZcB7j/2licJt2Not7x7XIjV5ilqk64Vxvznl0SPQ53jN22HJ9a9YEj/+n2pdhi0Y8j/uObTDkKPabfabKOM4jk8VMhakNw6CdnZ1JEwTfGVx/9ile35sPmlSyPvK+3KtxLWNolbSY8IXPeETPZEj1eZY8iIVI/PzzfZvdj+p+zmtUUWchmdl4smeQ6JkQIyrkq1AoFAqFwqGwdkxbmjtSZIk9GFhvkEVk4R90nOkl9shCLxjixVJ2MfWpmb3PoVTs+0dJnmw5S/AQ287GnpXtlOYFPSILpQTKRBUMBcsKE9AJh/2IkuqUE1lEFnqxShtbW1u64oorFtJWxjX2MRZH8Dpk7L8XAjOVXCf2SVp0aOGcvvvd714Yo5OBcA58TdwHvrf3F5NQEJGZuC8+1+Uj3ff3vve9e/oV78PkPdzDmTMRQ+ao5eLzFdErE8mENNI8NM5lGpcVfTh//vyC01XcO352mOQoS9XKsfbC3IyM0XGs1Ez4M7JrHzPj5fszS3rUK1nZS6scQXbsOWf4aHxXs8Qp98HUXDFcrKflytg1GXzv3bUJKKZdKBQKhcKGYK2Y9tbWli699NJdKcj2qCh191JQGkxrGv/fs19Q+s+uNShdMrEI+ystsvVMOmcITM8+mNmWmACBITFmILZTSnPpl2FHtN1nTJvzxXnL/ApoI+thimlPsSXbtK2lIWOM15MtM6lK1m+OkXbCzG+A4WBMguK9E8dsZtgLfcmSeDBExUybWgLagKXFYgieN3/63Ghrd7/9LHrOqbniXo4gK1olKQ7b5fGstKWfxal9t7OzoyeffHL3XIYDRfQKamTPCb/jM95jwvHcXr+ztWTBjp7NPAvbopak93cWLmhG7f3gfmR2fq5Lr4hTNie90qzGFNN2+97vflbI7HnPdUQx7UKhUCgUNgRrx7RPnDixm0oxs+taQmNC/dgGr+nZkii5kUFKiwkpfD/ajTKbTy/lqRGvYTKTXupV240y+7SPsXynvWqj/cs2+AcffFDSYllKSq1RWibrZF+zpBq0nfUk6inb0pQEfP78eT300EMLGoOYuMRrlnnexnOn7JO9vzNvaLIlzznvG9eFdnCzPvplZMlOuA96xSAifB97W/taa7my9J9m3e6LoyU8jikv5WVargw9ps2ER04ME+8z5TXeQ/ZuYZlGP6+9fZD1oZcEp3c8a7entYnwvmNSKTJ8aTGBFd9jZNPRX4Zli/3p+zp6Ja55rxCS+zGVVGWZb0BPCxKPRd8jKdd6MgJl3VBMu1AoFAqFDcFaMm1L7Ja+ohesJSMzQtrtWMg+/r8XzzflIclCEPQ8zqRy95dsnF7rkYn6O8Y4UxKkvTK27/kiY7TNMaZ5pL2VzI6FQ7JCCOzjlNaBDCEridfDVBx97NO5c+d2x26JPrZPaZ6sNis40CvFyb5laUw9H2Yc/s5z689Ma+K9k0ULZGOP7VHjscxzOsKaHF9rFh9TY3qOyUh8rfcMn9HYN7IkssGp1JcZu5T2skZGUiyL0z5z5szu85HZOVlkplckI95nVW/xqThmzz/9R+iTEuH1oa9Blp6TtuVeWcrsHcmiMv7b7TPfRq8daa6lobYwnkf/EWq3pjQ7fI75/VTK0oz1X0wU0y4UCoVCYUOwVkx7GAadPXt2N0bVxSSyuFIfo3RHBul24zHGgrpNS6/Ro5ax1mS+Wdwss4iRrZKtS8vL9/m+Zg6RbTBLGr11Lb1aao99cR88bz6XXpaRQZiRuD3a7LOCKJRwpzx0jSmvV8Le42QTcY7tmU2P/17pzNiHqBWR9s6lNM8cds899+we8717WbkyVrMqK87Wkva6w8SeUksQY6BZ+IbaAM89NQyx314LMivGSsf2qN1yW9QwSP2sd1PwOLLCMbb5M38B3ynxGjLtnh8OtUMRvQIl2T5h36h9zPIGMIKCn7SDZ1oT3oflVWNfGZXC957XLfOeZz4CxpZnxaIIFjfy/qs47UKhUCgUCkeO+tEuFAqFQmFDsFbq8fPnz+vhhx/edUpwgoeourAKiyoShq5k6e96dW2pvs6KIxCsqx3VeW7H6iGPh0lQYh/pNMQ0f+xbVP8xxIOhP+yPtFhzl6on3j+Ozw5HVHFTPRbH1wuzohkgqrNZYGUZzp8/v1BnOK450256HG7fJoEsVM37znNKlbCvjWpkqmTpTJSZVuhoec011+w5N1PDOuRqPw5nPVCF73FFdbxV2+6r18zjmCoy4Tn3p8G615npyN/5eWJK0ayoDVNfZmitaXt7eyFxTWYmYegizWdZqClrhfM9xBSb2Tl8L2TpXulsRVNXZrbiu8N9pTNrlq63l+KZzrRxfzONaM8RleZPaXFvMEw0exfzGeO7ZJnJbaqPFwvFtAuFQqFQ2BCsFdPe2dnRY489tsuWM1ZJlsLEElmyhiwhRTyXqTwj01qW7ITJXqTF4gJkk5l0R0bPEAw6e2TOPQxHmUqTSGcbS7GUnungF/tP9kd2E+eRITN0HsnYku+9ipNIa03Hjh1bSCcZx+y2GdplKZxajXiMIXAcY+ZExDn0mjK0KCsc43P8yb5Fp7NVnWhWDZ2TFkMcIzvzfvMnC0TQeWmVUqe+xhqGuL/Zfs+pLM6j540ao96Yh2FYcEjNUnYaDBFiqth4PR3PliV5yr6b6jvb5TPcS4YU++v54hwzrDOOj452LBuaacroLJY5uEXEee6lKaVzXvb82lF0Pw5nLKazLiimXSgUCoXChmDtmPaZM2cm7XcsCMJgfUuKEb6G9hnaP2nfidfQNkZJNEqTbI8SL1lUPJfMmkkUbJ+K46Ska1bE8qGRLXEeaTeknSheuyzlKG158RoWfKEWYEqqXVbec3t7e8H2GNtjAQt/MoQp7reeHZoaAs59PIchN9yjcb8xEY/XmxqfOLdeX7MJwtd6nLGPvZSnHMNUch3vmR4rzLQdy8orxjnhs90rNZmlH+6VYoxoram1tsCwM5s22+cYs3nq7RlqB9mn2EbPrhrHxftx301p+KgxzDR68bz4Hd+r7EdWRGeZLTvTpvQKE/X8f+J3DIdcBesaBlZMu1AoFAqFDcFaMW0nV2G6zyiJkgFmbcRr4zFK5pREeY/YDm2NU2ypZ4ekJBrHRSm/x9KzEoA91kcWE9lZz/5lTBXPMLLEK9nfcXyZvTAi86hnGb3edceOHVtgKFmq2F75wWysZIZM+0oNTJzHXjEJakuYqEVaTC9JbUoW4eC57TEtr2l8NrxXqR1i36NWiPusVzY0Y+9MiGFkaWA5F/QWZxKROI+9c3rY3t6eTIdJjV4vzXBWWIdz2ht79p7jc2pfA9qNpfm+8j7w/uK8xXcHfVao6eC7JHvvGIxAYeKc+H9q+sjOMzs/NRR8v/H9HvvSS307hXXzGjeKaRcKhUKhsCFYK6YtjZKYJTSmjpQWvUJ5PGNljIMk86T0nzEu2+0szTNNYmTejkFl3Col06kScCxdRxaTlQDktb6GnsDxHHq40m6U2bYoJRPZcRbrYAlNahLiPbPvMuzs7Cx4dWcewFm50XicbcZ2qMmh70HG0sguPBe2szkWW5p7T9O/omc/lOb7iMymxzIzZk8WSI2F+xW/W7ZXMptgr0xlphkxOAcZo4rjzfq/LB73+PHjCxqDzJeGfeilSI796Wl02Kd4rf/PNfVamlVHDYj76E9qUbhP4n2olWG6UX9maUVpN+Z7J6aFZvRIT+uVFZbhXPOc7L3Nd/AqyMrsrhOKaRcKhUKhsCFYK6bteEmylihB0dvRUh2ZSeaxOsUepZzJ9bzUmf0rk0BpD2UxhCz2mRneekw0y4hGKZxSc5xHSta0oZOdZZnKGGvJrElxTizdcy2mpFmyv1UkX7KXzHOV7MHXZHb8Xgw3fSsyhk07p9tiPOn73ve+3Ws8TzfddJOkOVvKyrkazFXw4IMP7ukb+zOV6cvn+L4s85iNnWwms++yD9w7PVuxtOg/QibPIhdxjFMx0LFPW1tbC2wv8wSnL8Mqe7Nnt433711jcMws+xv/b8bLZznTBvjd4Kx67BNt3FkMtO/jPlmTxKyRUt/rPvM0j8eza+jzkuVmOIjXeFZYZZ1QTLtQKBQKhQ3BWjFtewCTqWZZf8wAKIllZfWWxWdTyosMmMcsRbJvMb+uJTTn5qb06HOj1ElJluycY4iswu05k5wl3Kk83LRzm631PFujhO17mwExx3mWCapXcrSXHSpiVZt27IuZYWYnpNd7z56X9YGMm9J4XBfu48xmHtuS5rHWtiF7HPapyNafTK63/zJWyL55HziHepbxj3nXPV8+Tm1A5hHes/Nmmbd6tmHut4xp97KSEcMwTEYnZCwutpvFXPdYJNchy3XOcfB+GQMlk/b6+xo/r1N5LzhftEFH9Hx0zG69L+K6+L3tfUX7dC9uX1p8J/Y0CNFmfxCmbVTu8UKhUCgUCodC/WgXCoVCobAhWCv1uDSqJOjskalFGcZF9U6WfKKnpqRzUeb4ZvSSu0QVJ9XuVltbdZ8ltmeKzV74WaYCytqL988cK6iSozMPnfViP+j8Z5UXw1Pi/ZYVCmExjXjPnlo5YhiGPSrQLB1ilpjG18ZrppJr0JmQ32dqWO6VnhNW/D/Dwuj4GEFVplWPXMNsfD7X6nd/MrVrHAPV0z0VbrZ3eipoqpLjeb0QvanwPl67DNvb2wvrkTld9dLtZuafnhNrps5nX3uFNfx3ZgZkeVA7JMaQq3he7K9V6VRpc/5i6J+f+15q0iyZT3Ys9qMXAhav6Tl/em6ykLb9gPvqIIlZLiSKaRcKhUKhsCFYK6btxP10rMkkUEpDU+y8lzqxlzgjS/fZS+5vKTNew7SLZk1OupI5PNmJx0yHUjOZXpT0GZZD5sXC77FdOrawqEUWBkXGxjnKJN5eoZUeY4ntMVSrB4cMxj5EVr0snGQq1WUvrIT3yZLQGB4z1zZLCuK+mC2ZCWVpTMlS3YbnP2OOhvcd7zsV0kRmxeeUmqsI7iem6TTiWvUcuKidigyS7HIVxj3lOEgHRGoZpkL+6GxFjQ+1hvEaMsWptKL+zk6E1GJ5fFPFf/yu4Jqy7Gpsz/A5fg9N7QPOhe/j/ZilO+6FavIze98dBCzVui4opl0oFAqFwoZgrZi2NEqYdO2PktpU6bZ4bmZHI9PuJZ7PpLue5JvZsmz3sbTPhP3+O7ZFqdTMqpd0ICac6CU1oQSahcHRhu2++e+s7CIZJCVunxsl3t789Yp4xHayknvEMAx70piyaEJsuxdWl+03MlCmMfVeYeKUbEw9e26mDbAt25/c91khlN44aVueSi9qtnrllVfu+ZxKlDKVRjL2Q5rPE9kg7ZVRc9XrK/uc7Z39hO1MlfHs+WJM2cF7PhnLirNk5/bC3eK6sF0marKmLytqw6RU1GK4zehz4ncDS6e6H/blyd7fvg/TQRtMoxqv8TH60rht3/egoA/UspLATzWKaRcKhUKhsCFYO6YtTdsue/a5nsQW0UvsMWXvolRnqZF2jii9uo9mE5ZAKWXGa3qpSJ1ekKwz2uzITnqpUCN78f/96b46uUYvAU085nNoF89sZ8ayAg5ZecIp21jEzs7OQpKauE69PeL+UvsgzeeQY+2lr8yiCHoFXTINAj3vuc99PK4/2SRT/TKRTtSU9FgE/TCixsLsu6fBIvuM93MfzdKo0fH4I6PjniH7o49AhmWlOaM/RMZie0lUeoU14rmMtugh7s+ettF/e36ygjj0Tndb1gBmSY+4d2izz8r7sg/0U2EilTiOnn+R58/7LVtTJkfyNX4mlr0nloHajSmtz8VAMe1CoVAoFDYEa8W0W2u65JJLuh6aPkda9KKmV2rmhUxm3bMFZ+k+mbqT0l2E2zUj6dma47U9L2SycrKBOC5qKFjI3mxGmnt4mln7k0XjmbIy3o9996ftsFHipQRPyT6Lc56y9RFbW1s6derUri+A1ym212Nk3kOZbZTSPG3wtM1laVN7a0qPdGk5I1wFbqNXbnWVa820vQ+i1sTt0abJqIUpz2q3z/hwa3wiesVzyOwyDZ2/myqDOwyDzpw5M+ll34t+yJ5Ho5dGmP4QWUy0+835930zb+5ee/QEj/fhd6umfI7/53rTPyYrjMQ96mtZqCbLLcEUwu7j1BrvB2T9q6RPfipRTLtQKBQKhQ3BeokQmvYAlfqFJygJZ7Y62vp4T0tu0euZntK0c2RZn6ZiheP3U6XfzHAz1hrbiN9R0mSJ0zhuMxtKtKtk+qIGhBoKsgJpsYRpj7lkhUlok83QWtP29lxfigsAACAASURBVPZuO74mlpQk86SXbWaDJlv2Ncs0PbEPhL1bWawhomcvzspQMtaZTIuMN7PtM7bb59imHQsvuP/XXnvtQl9iW1Nla8me/Zll+lpWTIL7PF7vY8uY9rlz5xbmJfPj4D7IzjW4dr1iPMxyFr8jI+U7JWOiPc1O9u7kXqE/Ao9nMdCeW3qPT2W09Jr1GH3mB0C/Epb+9L7M3sX7QU8buC4opl0oFAqFwoagfrQLhUKhUNgQrJV63CpOqraypCB0FugV3IjHqC7sJS7I0tZZJcNa2HY2i6o1qjB74TtRpebrrYakAw3VPFEF5HOoonNt5uz+vsbOcJwDOtxF9NKYem78mYWjUB1GlVc2Rq5thmEYdP78+W64W3YPr7NNBVlKTYaXMOTP65U5XVG13CtwMOX41DueqfB76RapAo0qVX5nh8SrrrpK0ty8cP/99+9e4zDEe++9d7KNTB1LtW9PpRuxzCkqWzeq4adMK1aP85ypuuO91K2ZgyjHxLSimRmt967weOjAFb/rpfucMkHR3EjHVCP+7X7b+dOqc6aVzUJN6bjJ8LTMVEXnP5/j58zq8czEuh/Q0e2wIWRHjWLahUKhUChsCNaKaQ/DoLNnz+5KY5kjGtkrHcGy4gF0qmDpQkqTmaNOr4RhVkiE7fuTBTwyVkHnJCajyNL79UJgfI0l0Mypw1KypX86Z2XOe14XOoix2ECWKIUFVshQskIYq6QTdLEZ99PjypgPw+jYl4zF+tNjdvsPPPDAnu+nigsw3SOTn8T/Z4lJIvYT3sI24rVcXxZnycIFmWqX7XsOnMwjXtvTrDCNaeZoR8c2atuysLSeporY2tqaXLtegRBqCjKnO84t311ZCCi1Ikxrm6U3Zvhh790YnyM6S/LZmEoIw4RTbpeOgTGtqM+57rrr9vS1V3wmSynMd66Zdi/l835B579MC3gxUUy7UCgUCoUNwVoxbWMq7R+D8HvFPqI0yTR0TMnH0Ih4XybcoLRvST5K6WQrZEUeX2QovdJ4tGVlbMCMx+glLsmYtm2Xvsb3p9Sa2d9p32VIURaCQymYKUQjo6eNblkayK2trd1SlkaWVpTts/9Tdnz316xoFcbrMfHT94lhacsSwBw1uEcMaoPiPLqPZtJeW88J5yr2vVc8g/fNmH2vWEeWDpZpbKdYtH1peG2GZXbOyLR9T+5bMm0j7qUY/iUt2pinCtT4O7/fmBI03pchjGTavdDD2D6fYdqEM7u7NQb0qaFtO84dtRtM9ZwlxzoM1s2WbRTTLhQKhUJhQ7BWTHsYBj355JO7kts111yzezyeIy0y354tVlpkNsuSHESmRanR9hlLilMB+EzAQTtVlP57RTF6xRey0oy0XVGyztKC0s5LTUJmQydz8FzQDpbZ99i3XiGG2G9jynt8Z2dHjz/++AKLyRgW+0d7/lTRErMYS/m9dKaxv26X3s9Z8hGmBjUL9znef3Fc+/VyzfYqbdi9tJZSv1iPr13GauN4qK3Jkpf0CsdM2T9X0Z7EPm1vb+8yRzO3KaxS+pPPOeel59cR26OmbWqN2QdqOjJNovvP8sH0/8l8LHqaqqkUr14H+m5QK5mtKd9JjmiYiso5DI4ipfCFQDHtQqFQKBQ2BGvFtHd2dvTYY48t2FcdCy0tenZbquNnZAa029H20kvDKc2lbtuN7anYKzqS9Y1MJLOD9wq803M6k/6YipSsialC4zFKvL37ZeyMHrpksFlxAYNpDDOPT2oQprxCz507tyeWOPME76UNdf+zcptM30iP+Skva9olaWv0Z7wfY1u5V506NO5R983sv8fsstKjvp8ZPdfQbUwVfaAHOvdOZLlZSck4Bttf4/h6BX162qF4/VT6TcNRB5yfVfwIVrGfLvN78HxG3xvaiam1ydg54e+sCcv2t7/je5VlT+ndLy1q4ViCOPOlYTGRXiEh2tbjMb+D4/N+IbGfwkVPBYppFwqFQqGwIVgrph0L0UtzSer06dO7x+jVSPacSb5k4bS90js1y2rl7E/33XefpAvvzWvmY+ZGO15WUIHSuZEVo+/FtVta9jVk5LGPnhuy5ixeknNNe2QWG8/7HSReMq5lr/AE90XGtM1i/Z3nycepGYnt+j5eS1/rNc48l8kee6VapUV2zP1Or/6oASDj4VxzzuL19PD1pz2djUxD4vuYAfe0EnEuemVSs3wOtI1O2dmlce74TBzVM87+MdtXZoPlM0uPfWc7jIVcGHPdY4hxf3Of0Q5OLVRWRKVXIjXbD5xj+hn1/I2k+bPmd/BThaPyRj8qFNMuFAqFQmFDsFZM21mtpkplWiLvxTpmHov0UObfZKpZHGPPAzuzt/a81SnFRqmVffI5zDrl76OdjOybrCzz6vW4HKd99dVX7+lHz6YuzSVeS/ts3/eNNjqzALLBXvnAOOYsZ/KqiFmmmCPbcLtZeU3aDt0/sk3GrEqLNj/vC44ni0V1v90e53aqDCXthkYWC8/verm1I1tyX6iV6UV0ZPkI4rpI8/n0eK3FibDGjTZTxifH/7tdZ67L4Lz1F9p2ScY2VZaW5Tr5TuF58Zxejvss3wGZNnOb+/tMm0EfBr7nMi0HI096+TWy2gFm2FP+CX8SUEy7UCgUCoUNQf1oFwqFQqGwIVgr9XgPUR1iRwwmYaAzR5ZoYSosTJo7CmXJB+g8ZMe0DFZpUbVOxPtYXdgrN8jwmqx8ZK/MHYuOxHPo8EZ1dRZa4rHTRNErV5iNi3M/VQwkMwmsirgP6EzDPWOValQF0+TgMTO5Spays5fe1Xs4K5XJfnNts/vQuae3zzM1rO/jvjHFLvdfvMbwuvTSWGZFH6jCnXJ44lw77I3hQlS5S/M1WJYwJTrB+tnI2jtK9IqQSItOZXY4oxNefIfQ+Y6heHwvRSwrV+z+ZGGjLKxBVX4009DxlE5sTGIU1+2ee+5Z6PdTgal308VAMe1CoVAoFDYEa8m0KYFGpxSnNqVT2VSoAJ03mFaSif0zRw3D0iyZSGS+vjelYX7GMBczeaZzJFvL0n1OFWiI58Y58v/pLESG5+/jGvj/LKtH5hPZAp186KSXMXqu8UGYdnT+IQPtJXzxWsTrs9KL0vQ+4Dh8bQzTif2RFvcb+5qFnzDUj+GPdKLMUkNS+8A9FP/mXuT4vO6ex6jh4f5mMhV/H69x+2RfdqI04v7wPFKDlcGOaHwPxD4cpfNTLy1r5lzYK5WaaYsYBss9k13Tc87kNZmTHveIGXWWxtjopTGmo6rX7Y477lho46lGMe1CoVAoFAoHwtox7a2trW5KO2nRjtorBBClQEqTDCWitDeVUJ9pJo2sRJ7BZCNZ6lOyILMGMrcpqa9XvN1sJpsrhpJxzl2gwuFdsZ2e/cthalmhgF7iF483Y9NHlbif4Wa9lIlx7/QSK9C3wMwgm+Mes/LcxhCsXnrXXrGMCGqdyLRX0QbwO85Z/D+T1HA+s6IP3L/UsHhOsiQehjUVPsc+CFna3CnfkzjGM2fOLMztVJGRw4AslmFV0vw56BUkmiqVSa0C1yE+Y9xvDL3iuzgrHETfHd4/SwRl0GfDn163dUhssg59iCimXSgUCoXChmCtmHZrTceOHVuQ7qJt1JI4PWYpqUWJzpKlGY1ZY88DOEqilh7JAFfxfu7ZI6eSONCzs9dGlmqz16fMVs/iCCxL6bl58MEH99xfmnuc0842Va60x+SohYjfM9XlYeF2nva0p0la9IilPU2a7xl6WdPWlzFgrjMjAMxyMu0Cbf5c26yAB/dxz3afeXMzzSe1J1N2UM8JbcL0SI/j4njo6R6ToVx//fV7zvUce296HaPGwnPtc6bS5Mb7S4t25AsF7pn4vNA/gZrFrBgHi7wYZNqZPwy1j0ycwvdtbJdaIO7ZLNFVr2iTU1dbW3cxwSicdUEx7UKhUCgUNgRrxbQN2lOipG4JjLZleh9mBQ7MtOjB2rPnxnv702VCfX/fN7MT0ZbJFKFTZSN7dnFK4LF9pg/1PNqmHb3V2Q7nkTGfZtfxXMZp0gM9ModeMROyg2xOjgq0XffsdlGy7tmYGVdKlptdY3DeppjIMnthbK+XxnYK2VrF+2flNXvpK33cNuYpb38+cz3PZ2kxfp7+HmbTTsUr9Z/BVcDokti/o2RdXJ+4T7hnPAcs45ldw3cg7dWZpq+XrtdrSg9+aVEbRL+VqZS7BtPW3n333Qt9u1jIYuHXAcW0C4VCoVDYEKwd026tLXgUR0nN9mhLgJaCLFmbTUZmSK9m2t56HprxGG1IZq+240YJlF66/i7THBhkbmTnU4U1erG9tH9lhVA4TttzfX+zm8jSOW+MXc9sWdQgMB6YzCh+d9Qsh/3kGkf20vMw73lKxz5yLVnsJgPbZTa/TBPDwiS9KIWMpdNWb/RyG8TvyLC8V5iBL/NJ4Fr2ND9xfPGZjuPKynuafa+C1pqOHz8+aYv1/BxlljQ+A1lZV6O3hhnT7kV10Mclfue562n0uOZZ+72ojDgW2vH9brzrrru0LuDvzzJ/iKcaxbQLhUKhUNgQ1I92oVAoFAobgrVSjzvky+oUq9cy93+rlByEnzlbGU576BSoVqexfrKvnVKP0nHHKsHogER1MVWoUw4avcQEdEyZSl9ItW8WZtMLZ6GqMavNTMezLAVp7HvsL80ZBucs4qjV476X90yv4EY85j3I+sasQ5yFfNEByGNfZVyZOUTau5Y9h0diKpUnayC7b1QVSotj79WFzhIgMS1vLwVrVMN6bm2KYtid24rFJbi/pubY6nGmVM3SvV4Ih7Rs3fhM03SXhaX1nn+qxeP+Xpa8pReiF9vpJS3K9huTxjiEt7A6imkXCoVCobAhWCumLY0SHiXGLHG/HU3MdOl0Q0lbmkt1dibphZtkpeR6sHRJJ5kMdGaakuR7hVCM6BzBMnc9pp0VDKGDm9uaSn3KUCWOi/eI55CV98pkRhx16JdBp5up9JVZ2VZp0YEushhfw9Cb3hzsBxnTm0pxump7vZKZ8Rk0emGJdFDMNDx+Bn2ONRh+9rICJWbSTrbS6+t+YQ0fNSLZ/j1ICNmqiO8st8/wSiN7LzDZDc/NQtmYSpWfXONVUvzy/Rb3N7UKLJ6zDmCJ1qlkWBcDxbQLhUKhUNgQrB3TlvrhNBlYPMASfJQ2mTiEYTQMd8hSNpJhMcl/7KPTZLpd98lSqvuR2c4ZgkM2m6UvpG2e48pSUbr/TDxjhs2CKFOFPFiekow//r9XAnQVu+5RgyxyqkSi54XjoO030wpQUmfaz2zsWZKRZTjKeaLNNLOD0pZJuzht3NJ8zExaREaZ3Y9M3u36WTgs0zZYPlKaa/T2E0p2GHhs2ftMytkfz+Hz73HFZ7tXvpXahsz2Tc1az9clnsdxZRrRiw33KUuCtQ4opl0oFAqFwoZg7Zj2uXPnFqTIrCwgpR+zVyecj17ktBMbvbKUkSFaeqVdmIkyMs9PepabzZLxS4ssn+y45xEsLTJt+gJkNmePi0ybPgJkxvE+7j9TLGbpEjm+ng01Y1gXGp4XM7aYDIR+AZ5resFPpRk1mBKUhTfiOQexc18IZFoTMt1eSld/xsRD9LJnG2bL8dmg9sLtHVVhj9aatre3J9eQz1T0VL+QoH8A+zO1dzw/TEUa0SsqY0yV2eQ7gr4umeaDKWjXZZ9ncF8rjWmhUCgUCoUDYa2Y9s7Ojp544olueUopTzEYz3E8bZSE6Yntvy010y4dmYFtmZYmae9iQYfYjo/5WsaBZkybaTJp0860AfQEz2xy0l6bFz2a6UVK1hztYPbCd/9pl8pKBDJtIddvFaZ6oeB+WsuQ9YHrzzS6XtPI+lYpxcprWM7yKNNmrgJ6ILO4SXYuyzqy5Gh2LVkh90xkabRpe056BVn2i2EY9jBIPoOxv9RQMe74qYLvm2khmUaZ44nPJX0IemlMM40LGTXTNjMlcrzfxWLY+/EV6ZUTvtgopl0oFAqFwoZgrZi2NEpA9MyNTKRXmJylDGOmHXoDskQmPYMj0zZzZ+wemXaWoYolMhnTHSU42gV7sc/0mI0g46D0H7UBbof26F6R+iiZUkpln+lZH9tdJuFmkvxThSz7U68IAlkMz5f62gPGxGdsiXvGc5GVMD1K0NM4iz/3nuHeZ9GZTEvgc8lQabuN88r54xwddp9sbW3p8ssvX9ijsV0/nyyg4/FkRVEuJNzHeF9qe5i9j2Vm47k9cG2nIgHItBlFEP9/UE//w2I/DD8rg7wOKKZdKBQKhcKGoH60C4VCoVDYEKydery11i3SIS06vfSSjkTHqSzESprX5qbaOqqPmGbP31E9FvvIY71awbGPWSKKbLwsxhDvQzU1HVMi6ETi9liMgeE10uI80qxwkLClgyQTOWqwhrg0N7PYTGJ1IkPhMgdBOvcsM+1EUFVPtfFRmw7o1DVlpvE57iP3g+eMzozS8mQ6WV11g/NEk9VBE3UMw6AzZ84smIqyutP+ziY1nnuhUu6uAoZRui/um8eXFRkx+O7g93Ef0JRGZ82s2AmLv6wzVnUkfapRTLtQKBQKhQ3BWjJtJqHIpHIybUtwZsDxGkvFlgzNWuwow1R9MTEL2YQdPyh9RWmSzmp0nGGqUmkx1IYsmdJz5vhGtkdnouhg5/+zqAMZBR3W4ncMG+P3+8Fhil0cFax5OXXq1O4xhjz5HGtJmJgnCxMiI+H8xX1AJ0zO5VR40zL23UtMlPVpqjCG9zcdD6fKq/b6uEqhH96X2g4WxFjWB2IYBp09e3ZBC5A5e/I7vyuyfl9M1i3N19DrQq2alDuLRTCcNI6J+4n7IoMZ9rqlBs2wrn0spl0oFAqFwoZg7Zi2tFoxdTMdFqy3JGx2Lc0ZdS8BvBOxWNq/+uqrd79jMg3eJ0tjSgbCazM7IUvi0cZoSX4qRKNXSs5SchYeQjZIjUIWvuNzfWwVmw9LCTKhzTokMvD6RNZEPwT32/NDlpetaY9FMoGJNN8bDCFapYTpFJOeOp5hirX3CsT0+jbVFud8P3uJcz+V+nQKwzDo3LlzKxWt6ZWfJfuXFkOt1gVxnMu0MyxbnK0x9znT18bwrsP4Ylwsv5eyaRcKhUKhUDgQ2jrp7Vtr90p698XuR2HtcfMwDKfjgdo7hRVRe6dwUCzsnYuBtfrRLhQKhUKh0EepxwuFQqFQ2BDUj3ahUCgUChuC+tEuFAqFQmFDUD/ahUKhUChsCNYqTvvKK68cTp8+neZxJnp5iLNYPp7buzZDlulq2d+8Ztm1U33rfT91PyI7zry6vTk5SIxi1kdmhzuIA6TX9o477riPXpwnTpwYrrrqqn31j2M7SPwnxzM1X70yn6v0jefuZ1328xyt0m5vrKvsv4PEkPfu08vtP9XenXfeubB3Tp48OVx99dWT69Kbw2XPXgZmIZsqAbnsvlPtEvvZM72+ZWU2V/17P31Z5Z3F41PXsPTwVNY7X8MaCrfffvvC3rkYWKsf7dOnT+s1r3lNmmje8IKdOHFC0mKBAx+PCQ2YkISJ9adSNvJc98mL72QK8X5MwNArpBF/JLjh3OdegpnsB5EJKng8K2bRS9Yy9SPUezj5GeeB9XPdl/0kwXCCk5e//OUL4TlXXXWVvvALv3Dy+izdpbRYy/mo0EsocxhkhRyY3IJpbJnEJfbLx1jMhPW8M4GGAjLT2mYJSVgQhPubSYti/90nt8F63X72Yx94zld/9Vene+clL3nJ5F5kQhfuddYHz+D969SnXJ+4L7kuvYJC8fnt9Y1JT7L3Kp8N7hXuqex+vWsiOJ7eXsneyb0fZ5/LIj4Rfgc/8MADkub7wkWisvZcJOj++++XJH35l3/5WoQFlnq8UCgUCoUNwVox7a2tLZ04cWKBxUYJ1NI0CzZQuorlFckaWe6SJeUiM2C7vSIgUXqlhGtJmpJixrw4ZqZA9H3itT4WC53EczIp2d8tU4tzvBkocVN6juOhNLyf1ISxsMZhQC0GC8asknayp6mI4/CYqVXwvjiIiSDbOz1W5vnisxLB9Llcy4yVESzjSdYU9477xPS4vecq6wPbyMB2lmk5lu2/nsaNc5/tHX/nd1ePaU8VEGLxn1VUwYavnVJxu49k3FS5x/3O+/TeKVlxI/aZ32cphXtmR2pnsr3jfnsNqA2I13hf8XdoXVBMu1AoFAqFDcHaMe3LLrtsV9LJnAUsMVlapbSVObGx6AYZIctvxjKUtlWReVJ6zaS7/Uj7tFmx6AgZcLwfpVNKzz4er6FUzPuSCUfpmZqJnl08rhvb3U+BiKMGSwmS1URwrGQrLHgSpfKeFiErLrEMXIc4t/4/mbbXmzbh2B+yPZbFzbRPZEdkJGQ+GVt6+OGHVxp3HA/3mfucFZnp2YB72K8TIp8pj8tajdg/a/38Sa0Gy3xm37ktagnj+Ohk1dPkZEybGsNMgyjtfa/2bMw9zUu8H32RuGfoKxDb4Xe+xu/t+Bx7rr0u/uSzEZ9F+l081QVKlqGYdqFQKBQKG4L60S4UCoVCYUOwVurx1pqOHTu24EgTVTSuk201B9WsWUgM1XcM7WHIwFQMdOYgEe8b7011IVVqcVx02qHa1aBDV2zfbTBsY8qZrOfcQaepqILs1TtnX+P9eiFF+4lzPaxDCPvbU23GWuxUQ/acb6hWju33wqZovojt0LmQZpI41+43Vfi8D/dD/I6OSBx3fGb4PD366KOS5nXpDxOLn8G1xelQN2V22o9pahiGffeVJpXsmXY4kT9jSJo0Xw/vt8zMtExNHcdFcwRDAKfC93qOp1Ox1zS39PJRZPHzVKHTATdT8fOdRLW492h8N/veNk3QFJHNr9vpmf0uNoppFwqFQqGwIVgrUaK1puPHj8uZrSxhx/AthkdYerX0ZSkpOpNZ8nJ7DBUhU42SaI/dZQlLDErBZNGUgCMYokB2mDlHkA33sihFJ5netf7sJcGIYF8oeWdhcGSDnN8pp4+4pgcBHc2oIaA0np3r/lLqz7QZZCtsNwuRYQgRHWYybQnP7X16nFFrkjmnSYvPzIMPPrj73SOPPLLQh4gLVe6XGjIzVLOmODceD5nbUYHhdO5D3GOnTp2SNH9H+ZNsbyokj5qPqeyKXleGLJG1xrngvCzLpja1/4gsnIpOmOyb+8yEVPEcPmtT4XDUBvEdcM0110jau7c8Hr8PVs20+FShmHahUCgUChuCtWLaTq5CNh2lI///aU97mqS5lGV7mlPPRWbQC0VhKJgRGR3Dz/zp4xmrsORMCZR2oyhZM1zH6OXBjX2mLd7nMrzB0ma8hoyKIT5M0JKNx2vSSwQT/99Lfeg5XyWxyUGRJX2R5ozIn3HdljEB95f2cWlxrXohSxl7Ybtk4BG0d64anha/I+PyXrnrrrvS79cBniPbjDM/llX6vbW1pUsvvXSlNLaea7J8z3lMi+m14nPpdeczlb0PDO6djDVzfXt7Ne5RnsuEQ0R2be/c7P3q9yZ9kfh+NTKbPefCa5AlQ/HYqYm11oOhtXE8XoMs1enFRDHtQqFQKBQ2BGvFtLe3t3Xq1KldScdMMUpblnBtb7DkZqboz8yusSxtJe258d60F2We5galN0qzq9glyXB7xUBiu2TwZOeZTXhKso2YsjVPed8TZCrUBhw10452fLJ926quu+46SfM9Fcfq/viTbMzXeDyRLflc70na8TOPdNrMmZox8xrmmi0r+hDRK9gRtTIXAmQzTDwyZZf0WlDrFW2P+0lB6agV7mOeE/vH+2SaFq4/31XUJE4VcvE+5jrFvcP1pcYle7+xAFLPxyE7Tk0O58/jjPNJRk9t1FSKZ9/nyiuvTPuWJanhb4j7NKUFm4rUWAesV28KhUKhUCh0sVZMe2trS1dcccVuisNMurXt2udY+vbflmbjNTHuNoLehpaMo8RrycygvdptREZHpp2xB2lv3KaZBm2nTOWaeQB7zO4Dr+3FGK8C3je27/sx1Wtm6+qxI9uRs3KeXtvDpBGM/hDXX3+9pPlc04btz7jm1M5wjqdKtHpMtE97DnolJiN6DCHuJWtQuDc8djMPr1N8HtyO23efOPdZrO1BcO211+7pg713Gasc59H/f//737+nry6zyL0lLWpVpjQ4wzDo/Pnzuwwus4f3CltQyxX3jteFqTmZitnvgTjH3mc+xr+zflFrxfh977OocevlgTB67654n17cdJYXg1qmLA9A/DuyZu9n+y0xSoUpeeP11HqyVOeNN97YnYNi2oVCoVAoFA6EtWLatmlbGnM8aJR87BVOmwdt3fF7xhxT+mZ2oyj1+Vx6nJO9xj6ScbKwgdsy05PmkqwlQCbFpy3LGocI2k5XKXvZiwem9D9lYyI78n2nvHHdnjUkp0+fljRnXvEcajumwJjoKHU//elPl7TISLwu7ku8H8fAeWC8dtTw9LLaea29ZzONBO2E3te2v5shSIvxv8wGxvWJ3rA+ZkZCDZLHH8dN2zztlB6v2zS7luZ73ud43ckks2xUvp/X6Q//8A8lSe973/sk7WWQvs8qe2dnZ0dPPPHEwp6JGgnao1lS9EKBrNl94nMbz3H/qUGirVla1IpRO0hP9ywjGn2DyLSzqBX6CvkcPl9Rg+k+kAmzGEh85qlx4bNP7/I4xnVj2MZ69qpQKBQKhcIC6ke7UCgUCoUNwVqpx1truuSSSxZCVKKqzOoNqoKpLsocghhGtUq4Awta9FJTZmEiVtOw4EHmMEH1OI8b/j6rjW1wfFndYZoTemryLHSGCVjsIOS/ra6N6Wc9dqv16fDk+bS6NPZxP+pxj93Jd2J4iFWmnlOrOO+///49fcsKnTAxC5NEeF3i/RiKQvWe24rX9JwIjSxFrNfD886iIx4PE0pI83W2ytzj8jXZnHB8DNexWtxrcPXVV+9e43myGcRrwgQdWS127ye35/G8/e1vl7RXDcu696uEEtKRKvbpsCl0DwqaiPgsxHeIggsN4QAAIABJREFU15D7gXMbx+J5orMin/Es6QrfTQzx8rUx7S2Leixzalzl2adJJXs2/P7xnDg8kIlZYv99jR3f1gXFtAuFQqFQ2BCsFdOWRjZi6dIMLjoj+P9mBGYplrYsRcYwGkp3lvwsbVkysxQWHVDs+MaQJLdpqSzej84pZgh0cInSP8NN3C4Zg/sRQyHsiGOQaWfOMpbKzXQy9h8RJV6mHmVCBEumZlpxzO6TGRxDZqJU3itEMAXPo8O77LgVx+A5vO+++yTNnbqyYizUsLj/DNPyNTF9Lsv/0ZmHYU/SItN2nz2nZpPxGrfvtbSjFhNIZGklb7jhhj33Y8ihxxAZEVmrx8E2vMZxTekMRe0DHaHiOLw3PXb3/TnPeY4k6d3vfvfuNXToXAU9rdY6IhsXnVZ9jp91aoXi/70evUQlmSMatUBM+ZyVysxKbh4WvVTPWR/pCOe9G50zmZAlvmvXAcW0C4VCoVDYEKwV097Z2dEjjzzSTeEozSUj2z4tzdHWGKVJsgezIdoHab+JYJgOpdcYGsRwHTMgJlOIdhQfM1M0WyKjN6IEaY0B07G6jyyUIs3ZCot++H4M/Ynw3Po738csMGNLlMIZpjFV+nMV2B/Cc+F5jGEbnlMzbGpNssIALBFIO/uUrZRrxtSNRmSi9LtgOJoRx+V+m9naRs/EPF6DqE1h6JL/vueeeyTlJRl9DkN+euuVJWZhkp2p8pTur9fU11qD5ecq2s75jK+CVQqG7AdMpnMQ9EpiZsVmmEiEiVH8jonvRrJTt8trszKyLEhCpm/ENT2KwjP0EZkKF/TzSk0pQ9xcGEeSnvWsZ+25XxZ+eDFRTLtQKBQKhQ3BeokQGiUgJmfIElZEe6m0mFYwJh+hlEXPbzNE2w0zSZRSMxMYxJSklDhp//T9Y3IVpvyjXch98n0j8/I5vg8LX9g3IGos6BHJ4gVmb7QDx3Y9n5Rms8QmLFZAT+NMmnV/vdZZQhmjtabW2oK2IbNL0vObaSYzxs1Ut6t4I6/KKqIdnB6/3u/WjGTJINxf2++pJaHfQEx2Ynbq8d1xxx2SFgspZDbUVceXaVHot0Iv73iN95efUybG8F6O+4PlYnu+GgcFI1uyeZpKT7sqGL1iZIUuekWGPE+ex8zmSy1jL2omS1rFIk3cw3EejoJpU/vAtMoZmDTK7x1rb6x9i/3tzf3FRjHtQqFQKBQ2BGvFtFtr2t7eXmAZ0YuYTLpnR4mskgVI7HVqyZ0l9KItkiyM6SqZJk+aS7SW5mhzpo09HmNxCd/fbCxLfWnJkHZQ2zaNGDcd7ahxPPTCz1IR+lyWAmV5xchuepqEXkGUOEZLx7TrRgzDoHPnzi2U0szsW9Zw+N4ca8YGPMeHYU+99Ihxnhgn633xjGc8Y8/3cY+6Pc8TyzqyFGm03XpOmB7Y2g2v8SqlOsnGs3Kl3N8sS5kV6yDzsWaB5V0jI/IcUFN2VKBnfi+u/kKBKWv5/wimcY7vHaZapn8CNW3x2p53PZ/xo0712tNyZT4JfL8Y1CxkRaWy2PR1QDHtQqFQKBQ2BGvFtM+fP6+HHnpoV+ojk4v/J+Ng4vnIsGy3YPJ7etmSeUmLGXQcE21pjxnF4v/dHu21vn9WApKSOjUJvibaXWlXp50tYyKM5aad8D3vec+e8cU1oERLtsTsQ3FcXiePw/fzusWYSNq7M1tzHM/ll1++q0HISkr63p4v2npZkCIeWxVxHyzzHs/WnHuefhjZ3DKW2vZvep6ztKE0tynffffde871uuwnVpnPQsbs/R3t0czalmWhokbEDNzevpHRMdvdKj4Ih8GFYti0nbMkbKbNYr4BFq6J7yNqfzIv8fj9Kh72+31mpPke5n5zkR9p/o7wHvGz7k9GpkjzfcTYa+9Da2zju9H7NtMurAOKaRcKhUKhsCFYK6bdWtOll166K/WYjUUva8YV+xwzhCkbFlm5r3H7jAOVFj2MLaVaurPkGe3FtNcZlup8nyj9MzadMcRmDszvLS3a0CmFZ2UjKbF7Xi3N0vM8i5818zWbcWzvzTffvNBHrynt3b5v5rlv2AdhKjPR1taWTpw4sdtfS9IZM6B9neUWD8OaVpHKaSvLWCA1E2YKmaes/29Wwlh/g9oNaT7/zgpHX4oMvXz7nj/vIfc1suZe7DI93qONkXZw+n8Yz33uc3f/f/vtt0s6+vzR9Fw+iL3W3vv0OYk56N3fqX0s5T4W7pvnyW34eY3PMkuy0tZLH4OjKlfptWS+CO9N+p3E/1Oj50/v4bgv/R33EOc1vqvp3xPfY+uAYtqFQqFQKGwI6ke7UCgUCoUNwdqpx48dO7YQXhJVgUwrafWU1R1WMU05pfiTCVJ8nh0RsvbpuJUVtbBa0kUr6DSXFYrwmK3iofqQasXoOGG1F53J6LSWJe6n2o1ObJljiueEoR2GCzdkairPzbLUlxG+JqapJBzyxTCgCCaD8Fz3nAAPgv0kYvBezQpqMEzH59DMIM3NB3E/xWup0oxmBptsmBqUjjtxbmhScXvso/d/HJ/HHBPKxDZ8bbzGfbrxxhv3tOFrGGoY/5/N8VHA7479OOrx+SSyPh4ktSr3IB33ormRhUEYauh9eJiQxywszc8pHRI5hpgwx8fuvffePeNweKLH4u/j/fh74b/93nVIZbyPn5ssHOxioph2oVAoFAobgrVj2tvb27tSV8YGLSnZOcCSoNmkpe7oiMai5j7XjMEMxQw8SoZ0PHMbLFkXnUjo3OE+UpqNzNft+zs6pjH0Kya4t+OXz7HkyQQwkXHRYcpzbemVYWSREbs9r5Odv+isEtmU54fJQ1ZJXGDpPoZ/EA4XNBtzu1lBBTvMmblbmp9yvqLzSwzX2y+4Hpm2gcfMSLwecS5uuukmSfN97b3kc+ns9+xnP3v32ltuuUXSPAWqWQZL3sa17DnHsc8OG4wMuMew/QwydW3sk/em7+s9aiYUmSoZ1VElyMieh2XgersNahRXafMwRUi8h6IWimGwfn/6OWVI2LJUwrF9lu6N7fQKoRhTmhGvOzUsvq81T7EPdHxlXyObprZhP+VdnwoU0y4UCoVCYUOwVkxbGqUbluLLwqkMBs8zkYA0l7JcztOSlBkiy3tGyZBlKNmmpb5o22aSCbdPphDZGtN4+hpK1rTpx3MZikPmFedkqhRibIsMU1pMx+r70F4V14o27P0whanQqNj+zs7Ogg0+S7voPpitun2GKsV2zI7I6twnz1ecJybEYZKYLM2ntT2+luUn7W9hdh3bdZ+8rz1e2vWysp7UYLEYTNzfbMfPgm3Y9PuITMV7lWGJHp/vlyWc4XzR/h/76HZ9zlS44CqgH4rn2PNFrZq0GPrpeWDZWLPXrGgOWd5Uqt1lyIp+GLRts29Z2Uu+i/13L1FKBNOHMsQ1u4fn0UyaCWGy5DFM/OS/ybDjfXw999m6oJh2oVAoFAobgrVi2q01XXbZZQtsOUpBtLGYvfp4xsZox6BXIL2go62Jkp+lfhZejzYRsxe3Z8m6l8AgnsM+mz35WqdRjdeS8WapXGPfpUXvZBZGITvMShuyKIfPoaQa22XSkFW8Uc1uVklFyX5mXu899uq9FCVrzpPHxhSdHmtk2r6378d0ul7TLK2k27Hd3eeazUYPYJcVZHITJiMh+4z9NnyO++z7xL1DBu/7UIuSjc99Y+IPj3fK14H2V8NsN5uToyrNyb3NNcw0YGST9Dj385olPWGSG5aE9frEdxV9d+h3kTF539s+BExbbE0m93m81s8yNSxuKz63vp4RG0wdSu1EhMfH/ZYVYjJYfIgaxDiP7stUWdqLiWLahUKhUChsCNaKae/s7Ojxxx9fKEw+lRTf0pyl18ymzbhFSoRkF1GyYgq7Xgq9yJR79m/GT8dxmfVZKiWboF0vSpOMm2b8auZx6j74frQBM31qZD5klWRLmcTLsoC+7yppP93uFCvf3t7WyZMnFzQG0a5mydme0h4TbYxRu8LCGSxmw88I2nzJSDL7pNmiWQz9OhxPGlmUtTFmCx57L91oFglAduF+0L9Emu9BsiX6Org/mQ3V92U+AOYJiOPpadmy1KtMFXvY9JuM6mDsblZa1ufSl8Lnen6yvvU8mFnCNLPF9uzd9F6PffEzxvniuyu+s6h98jX0Us9yWfAdTF8U7qX4f+/9Xu6KOCeMguG+y7Q37O9htTRHjWLahUKhUChsCNaOaT/22GO7Nkx6/knLy0JmHuD0lKbdkHaimFmKmXQsodG7OsvA5vbcFx+nDZpzEEEJm8UA4jUeB+2DWfJ9xghT2ifDjv2iVOy5oB0q2rJYeMXS8pS9iOs15cW5tbWlkydPLkjdccwcC4vAZDYsMmlqIqjFiWNmu76W44rREdxfXjt7zLKkoLRYvIY2P3ruZ5EVnievOz1x4zPIZ43PBtlgtgbL/CAiu+EzTpsp/T/iMbK/g4KMl88PM8jFe1Kr1HsfxTnme4DaK2ali+f0nulMC8lIF74/p/IT9DSV9qzPxkUtQC8z4tSzTi0ExxX3DssVuy9890bNifvCvBrrgmLahUKhUChsCOpHu1AoFAqFDcFa8f5hGHT27NmFMKosrMEqDKrbMuebXqgQ1VRUm8b2CV4TnaSsnmHSfauW7NQTHUKoOjd6yeujmoohZG6r54QRr2EIFlXeWfIBJnqhExvbjH3Lkp7E8UU1mfvtgiFTqvTWmi655JJdtXFWQ5zJGLzOdDTJalUz9GtKDW9QPc619DVZQhar5rxXHPrlNKAxHeiyOuC+bzZe94Wqe65P1keDoYz+3n3PktUw9Gcq1KsXlkanwHgfq8q9f5el32ytLaTfjFjmeOj+RzUrk4wsq1Ed2+T8EH42ormQzy4LIRlxLWky4nPKpCvRSYvhdP6MKWilvc8g9yifRar/4/jpNMd3YhYmxjrtLHKTOfTRNHTYxDxHjWLahUKhUChsCNaSaTuVoyWcKCUzqQkdaCz9RQmUrIiS+VRKQIabsA2GnklzCc19sGMGQ4yy0ASmLyWbYLL8rI+WWlk4IktS03ME8dwwvCJ+R2cVsvUsFSU1JSzJGFmO23Ufpkpz+r6eH7PzKPV7Ll26z/ekM06UrMkAe5oCIzIDMk+OPdMKuY92QHMBFMPj8jMS+0RW1tsXmVNhr7BGdtzjYvKUzNEpthHvzb5NFcLoOSX5Pt4fkVH2CuL0cOzYsUmm7WPeG9QYkJnGMfEa9mkqXJBMmIw4Y4juK51JmTI2gu1RS5RpaRiW1dN+ZqUt+Q7m3sw0DCyHzGcycxjjXuSzkqU+5XytG4ppFwqFQqGwIVg7pn3u3Dk98MADkqRrr71W0l6bdBYmI82lS5aUkxaZjtujrZupFeMx2i4toTl0IEqGWeEJaTEZf5Tu3BdKqT6X9rEoLdNGangubP+MrJN2VoPJSabs05ktMX4fGRLP5RxkbMNjZThKDzs7O7tjNCON4XvWODB8hawmrgsZB89lUpBMU0CGwIQtcb9ZCxP7Lc21TU44FO/TS8TDNcxK3TLMrWerjeA+o02b6xVtqAT7mtkyyb44Xj87USNHO/Gy0MLLL798IWlQnCcmG7ImhAw184fp+cV4nsja4/+5hrSLx3eY+0hfExaqyVglfYK4HiwgE+eCzwSvieNiiFzP74PjjX0iA+aezd4l7gtDwHyfOC724ajKuh4VimkXCoVCobAhWCumvbW1pUsvvXShOHxklZQws+Qf8XtpUXLqeYBm6TfJPHslNCMoofkaS7pMRiItJhvplTdk0YnYF0vYTvLva8y0MzusJU8m2eC8ZteSvfS8YmM7ZEtTUqzn1qxzKuXp+fPn9eijj+7OsVlXTLjhfrnoxh133LHnOBlCHCOZD1n/KvPDvcTEItLeohdxHLfddpsk6e6775Y0X2NpMQ0rmbCfBWuwWEhCms+J548+AZGJkFF5jlmiNWOQPZsi911krH5efI7njQw7rgn9OrJERoaZtvdbpv1hwqBekpUsWoEezNQy0YM+a5eMO9McMIkL0/ayUI60+I4iA6aWJmpNmNyG19BeHe/dS4FKjU/cy705J/PO2Hlv7rP3D4tQxXfIOqCYdqFQKBQKG4K1YtqtNR0/fnyX/ZlxRynZ0qTZI9NjMt4vopc2kGwys4n4Gttx6E0ZY655vSVSj2MqnpDFF9jHzOOY6UrpVUtGFK/3HLN8qO/LQizSIjMgs8sYHxmD58RzYWY3halzHHngfcGyq9JisQd7o5PdZT4NHMdUP3g/rmXP1hj75jm85ZZbJEnveMc7JM3XI+7vnh8EfTnMSKMmy/313vjQD/1QSYulHzO7NGP43bepcq696Asyx4wBkcGRPcX7ud9+Xk+fPr3QXsTOzs7C+yH2ifZulh/NNEe9EsM9W3emkTB6kQHxPcB3np9p+wZlaaG9hszLwL2bMV+uB+37fvZiH7ln9rMPuHd6Wq8sXfOyAjJRy8Gyu9ZQrQuKaRcKhUKhsCFYK6YtjdKT7WiWkiO7sfRjqdF/9zLrSP1sXLT9Mjl+bN/Slv9m2cuMiVIaZ8xjZL5mKWR9LO+X2dDJ3JjtJ4td933MXhkLzQxIkX26L+5/L6F+ZD5ZEZFl46Ltclk8/dbW1i6bzGJu///2zr03kvJq4me8yy2AFClZSILQy/f/VLwICWlBIG7JAmtP/kDlKf+6Ts94bO/2KKekldeevjy37nnqXOrIEqFxoZVBP33n3imEMQaAa8rPpRVFY6917uyCfdW6U245i2VULUuzkuHpc/rLqw5zyDWp/ukZ9LVKS5HYk8acsQFrZV1ZeCX5ahkrQa0GrT+3xGi8UllI4vr6un766adbhqW+ertZwpGWhxTZ3mUcdIU8kupgZ9nRuCWLotqm/qR1JlCbgH52rvNUbIYWA2YNeB9Ylrjzg6/FunCtMF5m7V3SxfC4pVTPltr60GIzj41h2oPBYDAYXAjmS3swGAwGgwvBpszjEleRaYTmzKqDGY+iFkxZSAFINGGlQImquyINMpHomC5lIBUloeiEzLGp5jfNQzJL0kXAlBMHi47Q7ObmQ5qH6GagOdBTfvSZzG8sjMI0Ee+XjqFJnaIO/n+mACaonrbGQAFpKV2QMoUsgOJmZJ3P8aH5kkFufh8GwVDkwte3riuZUl1X7UgmVj4TXT1tmQD9XK4ZrlXBzcwMHlKfKddJMZmqg/uAEphcq26uZCoW3Vzqv9Lh/Jy1VC/vz2+//bYwNfszTVGOTobVTcFcb116WxK2YUpUVwPezfT6TH3WZ3Qn+DOmOaPLg3OoNidRJ44bC5Q4WDyFQWU0z6f0Lbod+EymGuPqHwMJk7uD70S6M942ttWawWAwGAwGLTbFtHe7XT179mxR6MJ3Tvobd1Xc7Tkz6IKgKHqgXaAzRAZMkFUKzuzVRgU0kEUzYKfqEPwiNiymw+ArBqj5sakcpR+bJA8FsiLu6JPYRReM01kwqpbsU0gyoMfSqwixbb+PX0PjRJZCNuYWCTHDTu6zs974/7tArSQkIoYt1sgyq0nsRvPalbDkmPu5bJOK21AIRlYVv57apn7qGKZO+TrhPDOlSOemtUrGSKuUrx2KhHRFRxy0pqX0Js5ZSt8UmPK2luLF3ykFy2I8ScZUfdYzwBKWlAytOqx9ndOJKekcBWtWHZ4nygGvWSzItLuCHkKyPnSpeUk2lUyb1xB8rvX8q91rMrxvA8O0B4PBYDC4EGyKaV9dXdVf/vKX2x1OSvkStLsj46bvsWop70efBYsBODoBewp9uC/z008/rarDLpa+N93Hd6Tyo4vpsC1kdp5aJOh68smq317GsQOZCEVe3HJBH1InSek77E5ululK92XXwn6/r99//31R8jOlndFfz3742pHVhJ+lQioEU66YqsJ0vqrD/ItpMyUuzYeuxzKnHEuuPz+GKZNiUWJgSdqVLF1rUuNL5urncr7Z5lQ8Q3ORJEO7Ngop5qRD8mGS6XYlRZ1Ns1QlU0DXwJgJlh/VWHufmeJFmVH1y591lgJmfwn3aTNdj/OvY1PJVBYb4c8kgUt0aYKp2AzngIVLvL8U7zllvt4khmkPBoPBYHAh2BzTfu+9907y31Gik2w2lYXkZyzRmXyDLDOpY8iAxJDS9difJJfJnXvnH16TWhVbp5zkY8DH8xT/YAfu6NcEU3jO2rE3Nzf166+/LsZ2TSCjK+iRoqsZbdpJt/qc0oeon2KM9Ov6dRlj0MU2+LFqa5IPTf3ldaqW/tBUPIMMpItTSIyfkedkS8nv3jHqNfEgfXYfgQwy+JS1wmIp9Lf7PHVMsJPqXJMIpd+emSjefrWVlsTkf2epUWa8MIbHi83I2qh4HGVsaCxoGfF7M+OhyxTx5ymVNPa2pdK9jEniutPna+x8oscHg8FgMBichU0x7f1+Xzc3Nwu/VmJLAtkzc251XT+Gv3O35ztD+jKZt52gz77++us77ZePJ0Uj0rei9uvnfXy93E2ewlTfFM7xWZ96zn6/X0QL+05dPjeNC4uvsLBH1XLnT98mdQKcxTDiXNC6FquV5Ka3RXKyZJNpDhnJTHZOxpskfsW0VAZV/eHv3h8ykq5sZcq15bO3VgRC8SJ69vRTx9Df69f3fO9jYLSwt6FjXYwJWCv60flrk3WBhZA6C4W/h2Rp4xhqfOTzdr80Yxa0DjgvWlMeyyOJXTFsWRs15qmMMCO8uXZpYfJnn+PFjJ70/tbaITvnePpzxe+U8WkPBoPBYDA4C5ti2lV/7ni4Y0oqWVQT4s4zsQn6g7lDS4pBZFaCdn3amXoeq3ayjKakD9MZHaN23Xd0X2h3Sf+o77BPURl7CiS/02Oe06kkVS0j1WlhSQVjyKCYC7+miMX28xo8t+rAUrQeyIR03zR/aqsYju7H3Htng7q+zmFxEUUiu9+dFivmT5O9pAIOVLxi9LXPOX32fI6T35rlatfW+263q91ut2px43oi+6LP26/DLAKOASPqvS8dI0yxLcc0HpRF4rnWKlmqtlDzQX9n1HrVIcOB99F8pCh/rRW9Exkb0BXZ8f8zE4AM3Nc3tT5ofUpgNlEqtPM2MUx7MBgMBoMLwaaY9s3NTb169epeuY8pIrbq7u6OClTcRTJHMLF0/aTilhi2crOrDrtE+SVZZpF56H5MYiWnQm2i4hf9iN6Gh0SCPwY6FvKQa1Vl9pKigv28xF7oh+zyzNcipbnumOngVhUy6i7DwZ8JHUvNaVlWqPiWsgrEfMS0qB7n55C1sA5AZ9HwzzpWmxiWLEfMC2Y50TTXp5R1VTs63QH/G/OaGW3dXduv17HnlM/MfGKxPh2bLHLH+up+aV2fedPdGl3TFSdSJk+n6cC4n2T1FNS2FEdSdddSprXDeA5auXyuef2JHh8MBoPBYHAW5kt7MBgMBoMLwabM49fX1/XLL7/cmkiSeVxgaUzCTSY0YdEc3pVbrFqmscjUqGumQDSaCynrp2AOlxdV23QshV6YPpHKhwo0eSeRh05E4U3jPvc9JtyfAhaT2T0FZPk5awIZXTnFZM6jGZQBLkzJ8c+0VrS+tGZSKUEF2yioiG6SNUlIBvHweVJAVDIf0rSo+1EIxAPEOrMnXTjeP5q46fpQqpGvJZ3zzTff3GlTwtXVVX3wwQeLICxPVdJnqciLt2lt7XTBa0leluI2lOXVe+ghAatVB9eCftI8/VB54arT0gU7IRpHZ7rvCuX4Z0zrpNvHg9t0jsa4+455WximPRgMBoPBhWBTTHu/39erV69udziJhbEspAINtEtlwn3Vkg1RVIMpYR7QwkAQimkk4RIWTNBnCkwTM/IULO2YFSSiMdCuj9YHvx+Ddxigo8/XikwcCzBJQTmPwc7XrtEV3Fi71pqQTBc0pnPW0rbYFjKrVMZPx5LNaKwpSuLH6Lq63t/+9rc791VAZNXymaB4DEsnelAZA6oYuJPK2lLcpCvGkFiT+qdzdT9aMHytdsVEGLzp88Znbw273a7efffdWzbNkqqOrjRvCu7rxGcYmJjSyMh4dX0K8zw22Hf9TJarFGjo0HvOx0bvxq6sb5di63+jVYYWjCTjy/fmWmlOphG/LStkh2Hag8FgMBhcCDbFtKvusqU1+Tj6ibudW9WyWAD9eNyVe/oGGQj9ePrdfUtsG3dsSVRD9xHDZilGChWspbR1fhzHMQZC9unjST/QqUz4vuD1jpVXlEiGt8l31GSAHfP2XT4ZNtkRf/d5IbOmb1bH+lx0Fg+tJf6sOqw3MjiulZTKpL7yvvSLO+iDpa+e90spdLIo6bmR7179Svdl+p2ea4p5pHOO+SWT/Gy6nv5G1syx9791MrJ8H/ic0vJAi4d+/+STT27Pefny5WofT4Heo7QkJotLJz2qcySB63OpPmpeOHd8xtO8UTRI12Dbq3qZa7VD13frKt+fj5GO+pgYpj0YDAaDwYVgU0xbBUMYvZmS87VDoo8kFUWgNJ6uR9+FdmHuy5JfhvfhTi2xTO7YWCrPGQ+jQLm7o/iBgz4zXV/97fxwqa2MOKZ/1O9HxkhhmCSKIzyFn2i/3y/mNjEfFkFgeT4fY/2fc0driX5+9913t+cq4ruT0EzWAEZP08JDK07VsiiG5pnnpuIIjIM4pVRmt57ZnhRfwmdR65plRX29dKxT47vGiDsBDsdut6vnz58v2PIphSJorUmxNHy/dJaQVIaSLJ3Po8+9JGcpl9zNaQL7ofumwhucD8Vd6FhlvPg5FAmiiAxjRfwdQn+32qh1sOZ3Z8Q5342pfGj6LtkChmkPBoPBYHAh2BzT/u233253itqxOUNkzql25iyS4bsj5nce8+e67KMYDxkCfTy+S1apRfk0O7F/30WKabOtOlZsTYzEd9hkvsxH53FVy903c8oZGZrOJQvltRz0DT92mdDdblfvvPPOSfKsbAPZhbef0eG8vtaH/p4kIo8hjUXHYoVUFIFRyIowXivAw7Z2UqEPE+l+AAAWpklEQVTejsROqg5jQT9kGk/9TexQbIl+cj+WvlPlZyfQInfKXMivrjk85Rw+/0kroHumuzx3h8ZBfVa/9Jz62pH1Re9C5jWndyMtU1wHtEKtWU2kVcGiII7O6qf7M3shMWBaG+jnTznXzM9mNk4qH8pztoJh2oPBYDAYXAg2tYXY7/f1+vXrW9YppuAsln4N7YLWmHaX5ynQf+Tl5wSWbWROd1J9UnH4zpecfC/0Ielc+kWdSYqdyEKQcrmPgWxAWMt7pyIRmV7yRx2LAH8o1DaW/vP2CV10vfeVOaGaB/p6H9tycAy+dmTR6ZTQaK0Ru606sFXNoa71ENBq5DEi9FnzOdY5/gxqXesYPVeuCngMx2Iodrvd7X103fsU70l9FdRXjb/6rLHQ7x7XwkhoncuIZn/GGF9D9TzGLaQ2MgefBVL8PSRmzeuxuEh6BnWO/N60/KXIbb6/dawsTeqnjyMzAfidkqyDa3EKW8Aw7cFgMBgMLgTzpT0YDAaDwYVgU+bxqj9NEzQVJzGIruAA67JWLc22TAdhaowLTdC8wmskYYdkmvU2UZTEj6W4BAMlkhmWpu1OZOUUyMzfBfz59Wg2YvqTm+7OMdnf1yx1fX29kHv0OejSztRnuj78HAYCCXQNPDVSqo/aqLUjEyBlRfV3f544LzSx38dEzCC2NREhuqiYtpaKZ2jdyXx9SqDYWl1mHtcVEloD3STeJhblUfu5RpMpWM8bC4QwXTQF+bEfNJev1W/vnrlk6uZ9FYCrNiZxFQX70YXT1fVO4PrS2pGp3U34ahtN6GuiO0wxHPP4YDAYDAaDs7Appi1xFSbeO1Mka2YKhHZZzrR5bhIMqVqmSvj1tANUOU0GIGkHyf74fcTWUjpPFzzUpSOlgC6mwJzD/jrBGb8WmTt3rWln+tRM9Obmpl69erWQjk0pIwJFaVh4paoPoKOVhsU5HgssCdsVXPC26FgWH0nFOMS+GeR1jnQjhV8SY6UcL4WUEhvUOWJyLmDTQX0ls+qOff78+YK5pYDUY0hiPgyc6litv7PIkj140K+dCl2Q9XfCJVWHcRZL7Z5hjqf/jUG6+ql16MVN9J7UfVm+lXKjqX+8rwoxrT2DGj++45MlppOf3QqGaQ8Gg8FgcCHYFNO+ubmpf//737c7XTFH96dSGIO7oiSDyNKUZH0sg+i7Lu229Rl9vrqm78rFysR0mIqQfFj0E3N3fB+/9EOg3TGlAdek/NhW+smq7ucbPQf7/b6ur69v5ycxK64ZzV1XnIX/r1rOO/2HqegDWQNTSny9iQkwNYXlan090OpDSxULeqTSs51PO6XveZEKP1ZWqa7IiveV8Srdz6qD2IkY9n3SBk9hSVdXV/XBBx/ctjP5RoUuDSj57+ljpmzpmtgNRXwY88JyrH6OwHgMvVd9/tQPrTf1nddQm9O66wSukjjWV199dadNXRpX8ifzva3ri0VTZMX7o2MoCJPEnro2bQXDtAeDwWAwuBBsimnv9/v6/fffb3c9yTehHZ92atwxrfmuBDJuFljwXReZh44ho5cvUP2oOuzydAzl/XzXSp/eOf60Y1iTMaWwjHb09ylPJwanMerKTD4luBv3djOKljvpZA1gdKnGhTEMuo/8a1XLiGjeL0Wwduu3E/fx/5O90HIktu7MQetOz4D6xQIR3hf6Pyk8o3aoXWuCLZSVTGxJcSQssbsGxq8cg0ePa5xcKIUxJrx+ikImQ6OsbFc2smo5DnpnaSy5htL9kiWn6q4FjNYmxvms9VNtZOyC3ttqq7/LOobNdZYkUPncqkCJxlVtdOuD1ipjQBgzkApMHSvn+rYwTHswGAwGgwvBppj21dVVffTRRwu/g++wKT9HXw93wn4Moyn5kz7HqsOum2UcmU+tXZ+3Tedox0nfqe+StVtk/rfYKtmg74jpd9LOlv5xHxPmwlOSlLmKSXK1w9tg2ESKguXaYB8TmB3AsoOMh/Advc7RGtJnHHs/p9MoSMVMBK5NXY++dJavrTqwY0Y0s/iHr9WOyVNaM60DRup7cR5vq7OzrrTpGtQmteEY45aVr+rQD7cucF74d7+OwHgAWucoHesWCcqHMm875YXrWBb7YUyPrzdG12sMWFCD7wdvC2VrGbPh66B7N7Bfun+K6taz9+LFi6o6rF31RfnhVUuLEZ+fZI2gVetNxROdimHag8FgMBhcCDbFtKv+3KUxotF33V1h+c5P6ccy55bRlvS3VB12XV25tlTUROyBu1fmJPqulTtARc5rZ6rrJ/8X2bLOoYqb7xgZ2UymlaJhu3PfFE6JVxA05mssdq2AgsDcXTJDKlZ5TiqVr5ibqvu775TrjQp/aV64dsTw6WtUv1PpQqrY0Srga0fnU51Lx6z5NNUGxnvomjr2odkGSRGvw263q2fPni2i3VMGSodUoldjqbXD4h9CV66y6jB3eqbPsWJRF2ItxoDFTBh/k+IvaH3gnJ7ynmD/dF9/nhQvIoatiHAyYY83oaWiK0iyFpOwNd/2MO3BYDAYDC4Em2Ta2olqd5R2ucxfFHtJPj+yCCqt0ceUInOZk7hWjF6fiUGxnGjy1bP0HiNwdX0xLve3KY9V16CfMuXadhH0nX70m2bVCans4UNwjra0GGj3d28j1Zfo+9PvSUWL0bo6JmnBMwKbzwaZo9+PLEXX5dpJpUA73QF9TmtB1YEdiUFpnStCXGvZGZbW+suXL+tUUHHt2Fw/f/58oeTmY6PnolNYY3zMWpt0Lp81f3e9LT8qlf4Yw+MWzK4/jKE5592h95HKf1ZV/fOf/6yqqn/961932korqz8bjBrvVOL8O4btnTztwWAwGAwGZ2G+tAeDwWAwuBBsyjx+fX1dv/7660JK0wMLaI6UKVh/l1nHg4uYEiATHNMZBP+d0o8s8aaAMTcBMhWGgWiUmfRjGTTCdC797oE67Af7k4ItaB6ncMWbLjl5Cs4JCElBhef0iSZgBqloTr2NWitavzr3yy+/vPO7m+Y07hQqofvHTalsSwoe82un9BaKCNH06dAzpjYx4Irz5O3Qs63niv1joKmfwwC3NagNKd0xHfvxxx8vUiTdRM/r0EyegsmYPqVj9DtT53ysuZ40HzL9pqJDNG13ZX4dTO3T73QzpmePwWl0m6g9HjzHwEAGq+m+emZkEq+q+uKLL6pqKenL4DJvO8dW3ylM+/SxZxneKRgyGAwGg8HgLGyKaV9dXdX7779/G9qv3ZCnSDB9icUK9LvvDBlIwN8ZjJUKeTCoRn+nsL+DEoHa5ZFd8J5PhSST2GFru8uq85h2SnMTupSVtetoDsXCaHlJKT8UGxFT0LkevKb7iFFxrWgOnbGwiIXWt65LC4PPvdjYscAjZy8sRMJiKSy/6IFBtCDoGrqmzk3FZpK0pcOf6/sGD+ndU7VM66xaWtyYrpdkU7muGNTHwDe3INB6whSsJGfLPjNolRZH/z8DDxmAmvrHYFmmCSYxHwoaMdWURUA+//zz23NZRpbrK8n00jKm9bUmiUsL2H0K1LwJDNMeDAaDweBCsCmm/fz583rx4sXtjko7nCQoQOlE7dS0y/PdFv2z3FF3pRr9OmRNOob+j6rDDlA7Qh2bCqD8ryIJvhxDSud7CHS9tZ004xLop9Tn+t1ZjNaK5v3777+/cw6lUauWYkFkWGKqvr7pD+z6mVL/yMb0k7K6bqVR28isKJ+paycZy07yUqIr/jzJukEpTVoY3MpxX3/kzc3NIkXT3wO00tA/zFRA/z/fFfSjpvgBxh/Q95wklwU+W0wXTOUuGQOQfL1+rarDs6AYIa4Dfe7347uWcRBa55999llV3S0jyvgRtV1jxO8N/4yxCIyTSNYAXU8lYbeCYdqDwWAwGFwINsW0d7tdFDlIu6AUZVqVZQspW6ndHH09SXaPOzRB16JPzv9P6dPBAZqTU8p40pf1WDjFR065XJZopHCOMxOtEfkqxZLV53QOizvo+hofsXNfb4z45rmUKk2lZ7uoYTGR5CekBanzU3pMCn3zFCnSmHnGiCwUZJWMDPY20me55uO+ubmp//znP7fjliLBGTHfiba41YQRy4zDIXNMRYDYNwrkuDWA5Yr188cff7xzP78Po9IF3Y+le/1+fK/xGVnLjmCZYrVDxT4koOLjuRbX4fC+0BLKc1ia1tumY7dmIR2mPRgMBoPBhWCTTFv44YcfquruDls7r67sHf1cVQeWQp8YReSTfCFzH3Vd7b5kFUj+L/raWNDjfxmcp7VIbsYgnAuyomPlGhOYLcA5TTmpYlqUqqUFqOpgVdBuX31noRIfJzJt/UxlVb1djk4nIOXxM/KbZSR1PzE8nzf6YikDnHy1tByQhcoP7mOfnuUO+/2+Xr9+vShS4e0mS+VcMvbAz2dJTPqJyWqrltYYzmWyNNICovGgdSihi8zvCjJ5mzr/t/qdrk1rgKLF//GPf1RVnoMup1v9pWyw/1/WLlqUKBfs0Bzfp1DRm8C2WjMYDAaDwaDFppj29fV1/fzzz/Xtt99W1WFH7yyDuzsWORcDdj8EmTT9QmTCXowjCcpXLRm2szgyGfquWNjDz6EPdYv50uegi3rV7ymanGP+WOpsZC/0p64xEs0Z87LVHynkVR2Yjnb5p0TXck0yKp3+aQdZWOez97+TSXPtaoySX1o/1U+1kT5oZyqM+FX/6D/0Z1DHsKQln01fH2L5p+Dq6qree++923WQxpiKi8w31/vHy5CqPSzrSmtdyoVnRDnfWczJr1oqren6p1iUjlmx0rNHa+cpUfF8F2ts5MNmzIZbeLpId1rr/B3CvmuOaeXyuWYsypTmHAwGg8FgcBbmS3swGAwGgwvBpszjr1+/ru++++7WLCFTSTIf6m8KWKDJMZlkhDXBgKp1MxVNcmvBazQFCjTt+7FMVdHfZe47J3hqC+iKdWjcGPBX1QcePRQaQ8os3ifQTWZQmTxTeohEJzqTM+Us/TO1jebXFNzDtB0GDdHcmwpT8PnRz1Skg2Zx/c41murGM5CUKTdMl/R283pMnTq37vFut6t33313MU9pvTGQSXPIIkRVh+AqfSahEAbWMZjN75OknP3cFHTF8dL1dY37uNxozvb7dcVluB79fapj1Da945XqxcBObytdR4KeH42VBwWz1jy/H1IBHrWB9eK3gmHag8FgMBhcCDbFtK+vr+v777+/3Q0laUAyMwZxpIIh3EEzzJ+fO9s7xmy5c/Q2qh+UwiSrcXRBSpfKsIlOvpQiH46nKpHHsqenFBBhEAwZkO/yKanbFV/w4CWxSK59poCl8oOUuuQY677O6MhsdX+xDP0utpiO0X2YipOYL9MsGcTEsapapgcJtFicy7SFtYAmMk6xaKWlJgufxofSxxSUSe8QQedo3rn+3LLDZ0hBXhpLFjfx//N9Q0tCSksTaAXSffW7r1VaGcW0O7lgfxa78qhCYuddf5jylVLnpjTnYDAYDAaDB2FTTFtygtwVOTOg/0dlPJVqQ5m8ql5UoysYkXwYOvaYjKVfr/MTJnlTCiNsGZ1/eg3cHXOMuQOuOsQriIk+duqF2KNYE8thJnD3rWOZJlK1TInRuTpHLCPt5NlXsRdK/Hq7KcjBtlJcyI/RuuM65E/vI0WCeN9OGKZqyc4YI+JQux/KpI+hEz2pWlpNKOjCZ7tqGXdDyxulPD3NjUxTbaOAyJo1g0yUrLZqWVSks84knzZlStkfIZWrVT/4PuA7058NplmqH+xDkmmlpZJznay5w7QHg8FgMBg8CJti2vv9/vZfVfb1dOxObClJhJINUw6PfrU1n49AKUpniGTWFKNI5TzfNo6x54eyHI4xkZgW2eVjiasQinpOPkWC46A5TsVMyM7IVmQdckEW+te1RjQWjHj361M4gmwsFU2gD5n+3CS9S2uQ5ofrOcWX0J+rcyla4nPdxXXQgvEQRrTb7Rb+4lQkRWOn9ivqWZ8ncRWOIaP4U9EKjh1jD8T0nU13xTD47KX3Kd9nQjfmfiyjxbtYEf+/xpaxFBQI8swKjgWPZZyE/59WAT4T3k++n4dpDwaDwWAwOAubYtqSE9RuSP5q94npM7Jl+o98d0R5P+0AtfPlriuxSu3uyAR0LfeDslxnlzf7VMzxPmDBFfo2uVN1nBJtzft0xyZJT41tymN9CqT5ULvJGliEZk12ltK0a/Pefab1tZarznVLBvJUjIEsRs/gmtSmLAfqD/29CV2GwSl5tGvjpvcO2Z8zNmovsFTqX//610Vb+Cwx953WJZ8fymtq7bMdKedeoMUy5STz+l2BElp+OD5+DmM5UtEPPjcsf5msa4zNYM4/LRcOvnP1u+6TCuKkXPgtYFutGQwGg8Fg0GJTTPv6+rp+/PHHevHiRVXlaET9X37ATnXMfSECix/Qx6ydnO/kmT+qHSGL0Kfdq7AW6fkm4fenehJ3yWQbKWr0WH+Sb+k+6kLc9T+1cH9iotyZa21w3h9aNvRUnMOW31TsBIub0A9fdWBH+kyR6FoXKTaALIkR9Orf2hwcG7fdbre6ntUHRs6rveqXv6vog6VVUGuI+fVVSz+4jlmLHqdPm9YfvucczK3v/LmpZGoXs6H7+byoz5p/RoBzrj1+gqxfFlgy4bV3sdrCUqoes9FltmwFw7QHg8FgMLgQzJf2YDAYDAYXgk2Zx3e7Xb3//vu3AWgyv7hgBesKv3z5sqqq/v73v1fVwazipiJdR+kZNFN1xTqqlgFZDLJJQhMMrmFAyFOjC6zzVA8GbXQiCqx3XbWUE+yQCgV0pto0b6ee+1hYS3tj8AsDd1hfvWpbKX1PgWP1umkurzqMn+ZZAjcUW/FnRc8W1wHNpfcJ0kttpgvH+6fz1X65yZjWp4A07xtTrZh6p+N8nChxykDENPZqG6/P90Ay99I8zTFO0rQ0/+t3jU0KMuNY8F2i+2tcPYWOIkJ8Xlmb3fvB+zPNLqX5vmnX16kYpj0YDAaDwYVgU0z72bNn9eGHH94GKaTSnAx60C5Iu9UU7s8dJq9L4QIPRODOloFvup/v7rqCIZR3ZLGJh0I79U44wHfnDNSjRYE7bd+dn5qqlsr4deeuBccIqZjIY+KUfjF4iOshydluIbXvMcGgPMpyCl2hj6pDICmfgcQgKY7EoDX9fU0CeM3qIWEVBmUmIRGxPN1LDDiV22VpTr3XUnqj/93vR2GUNflkjgell4UkY9tZLzgfSSiHxUsohevPtsaA6Vtkt0m6VvdmuiD751ZPWUb1vuvSIlOgbXpvbgHDtAeDwWAwuBBsimnLp00RipSqREEH7u78HO5o6Yck3IdOFk6GlXyw3L2RabG8qB9zanqBsxr6yjhGlI7kvf0YpnN1u/VT4DvUU4RF/H6OVCrxbYEsSVabJA6y5je7NPh66UpKslAFRT2qDuPGdCEyryQ0QgnXriDKsfYT+/2+/vjjj8Wz7aBlTe8O+m/9OSGrFBR/o3icJNfMPp6SLtqNLdM4k9WBliI+/xpb90+zjWyrfortVi1Flvh+5TvT1w5ZOduezmFamCwjFNLxa2odUGJ1KximPRgMBoPBhWC3pQjX3W73bVX9/9tux2Dz+L/9fv/C/zBrZ3AiZu0MzsVi7bwNbOpLezAYDAaDQY8xjw8Gg8FgcCGYL+3BYDAYDC4E86U9GAwGg8GFYL60B4PBYDC4EMyX9mAwGAwGF4L50h4MBoPB4EIwX9qDwWAwGFwI5kt7MBgMBoMLwXxpDwaDwWBwIfgvtzF+Jty7kuwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1124,7 +1842,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu0btlZ1vnMvc85darq1DWVSqUSSKkgIl7QFhUhkO6GGCBEEBRUhOAdBQWHOmzBNiI2XghpR6ONigjIRcAL0CCB0E0UhEYQtKFjJJCEhFzqfq86t71X/7G+Z+93/773nWt9p05Ixz2fMfb49re+teaac6651nqf99qmadLAwMDAwMB/69h7f3dgYGBgYGDgVwLjhTcwMDAwcCowXngDAwMDA6cC44U3MDAwMHAqMF54AwMDAwOnAuOFNzAwMDBwKnBNL7zW2qtba1Nr7UOuV0daa29srb3xerX3/kJr7WWbuXnZ+/Acr26t/ZH3VfsDfbTWvri19nvfD+e9b7O2sr+vuM7n2mutvSZbx621r2itbcUztdbOtda+sLX2Y621x1trl1prb22t/ZPW2kcm+7fN71Nr7VOuc/8/oTNX8e/rrtP5Xrlp77ddp/Ze3lr7smT7b9ic5zOvx3muB1prX9Rae0tr7WJr7U2ttVevPO6vtNZ+urX2SGvt2dbaz7fW/lZr7bb3VV/PvK8aHnif4tWar93Xv5/7cVrxxZJ+VNK/ej+d/yslfQ+2/fJ1PseepL+2+f+NSzu31m6R9HpJv0XS10r6CklPS/pQSZ8j6Q2Sno/DXirpV23+/1xJ3/dcOx3wHyR9dPj+YknfuelXPM8D1+l8P7o533+5Tu29XNIXau5vxC9uzvPz1+k8zwmttS+R9FWS/rqkfyfpUyT909bawTRN/2zh8Nsl/XNJb9K8Vn6bpP9Z0sdu/q47xgtvYOADD2+dpun/fn93AvjfJP13kj5umqb/ELb/W0lf11r79OSYz5N0RfML9VWttdunaXrsenRmmqYnJB3NUdBG/eKauWutNUlnpmm6svJ8j8Xzva8wTdOzvxLnWYPW2o2SXiPpa6dp+vLN5je21l4i6Stba98yTdNhdfw0TX8Jm364tXYo6ataax82TdN/ve6dnqZp5z/NDGOS9CFh2xs1SzmfIOmnJT0j6eckfXpy/GdLerOkS5L+X0mfvjn+jdjv+ZqlxXdt9n2zpD9R9OXjJH2XpKckPSzp70u6EfveJOlvS3qbpMubzy+VtBf2edmmvVdJ+hpJD23+vlnS7Un/vlXSE5Iek/RNkj5tc/zLsO/v1bxQn9ns+52SPhj7vH1zns/WLCk+LemnJH0s5nnC3xs5x0k//4Gkd27m8Z2S/pmkG8I+r5D045KelfT4Zi4/DO34Gr9C0n/a7Pszkn6HZuHpf5H0HkmPSPoGSTeHY+/b9PVPS/pqzZL1M5K+V9J9OM9ZzZLt2zfX6e2b72eT9v6kpC/fnPcxSf+HpBcnc/AnJP1nSRc31/OfSLoT+0yb8/zZzdp4UvMD+yNwjTj/37D57ddK+tebsV2U9I7NdT5zLfdZMgaP+Y8t7PfnNmvtkc2c/JikV2CfM5L+pqS3hjn5UUm/a/MbxzhJ+rLNsV8haQptfZCkq5L+1x3GcpPm++a7N+tpkvQnr8c8Fef7kM05Xl38/pDmZ82fkfSWzXg+cfPb39ms9yc31/YHJf1WHP/KTfu/LWz7Kc2s91M2a++ZzecnLfT1q5K5f2rz22/YfP/MsP+/0Pxs/BjNzPZZzazpf5TUJP0Vzfe8nzt34HznNLP5t2h+PvyyZi3C2YV+ftKmLx+N7Z+62f5R13CdXr059teEba+S9BOb9fKk5mfjX7ymdXCNi8ed4gvvPZpfYJ+zWcRv2CycuN8nSDrU/GD6lE1b79gc+8aw362S/uvmtz++Oe7vSjqQ9EVJX96xWSgvl/Rlmh+U34Ab/Ec0vwy/eLMYvlTzzf7asN/LNu29TbPU+nJJX7RZRN+IefiRzUX4Qkm/W7OK8Z3CC0/Sn9ps+3pJnyzpszYX7W2Sbgn7vV3SL0n6SUmfqfkm+pnNQr19s8+v1yxQ/GdJv3Pz9+s71+qOzUJ+WNKXbMb9BzSrEm7Z7POKzby+YbO4/qCkX5D0oKQX4Rq/V9LPan4pv1LzjXW/pH8s6Z9u5uGLNUvufycce99mDt4Zrv3nb677z+vky+xbNa+bL9/M/2s27X1r0t7bN/t/kmbG8JC2Bae/tTn+tZv2Pl+zEPUTkvbDfm7vBzbz8Jmba/QL2ry0NKvs3qP5Qeb5/zWb396i+YHzGZI+fjOP3yzp3LXcZ8m19Jj/hOb1fPSH/b5a0h/ZXOtXSPrfNd9znxj2+WuaHx5ftOnrqyT9DUmfsvn9Yzbn+rowzhdtfuML73M3+/4PO4zlD22O+QxJ+5LeLenfX495Ks635oX3Ls331u/X/Lx5yea3b9r092WbefrXmp8HHxqOr154vyzp/9F8z32SZrXfRSVCWTjugyV9i+aXj+f+oza/VS+8RzQ/ez93c56f3Fzfv6f5JfdJmoXDZyR9fTi2aVaPPynpf9qM+89rJg7fuDCnf2HTl1uw/Vdvtn/eymtzRrMA9LGa77XvDr99hOZ7959ovnc/QdIXSPob17QOrnHxvFr5C+8KFsHdmh+kfyVs+/eaH5KRVf1OgalI+qubhfGhOPc/3izOM+jL12K/L92c+9duvv/hzX4fl+x3WdLdm+8v2+zHl9vXbPrTNt8/cbPfZ2O/71d44Um6oJkxfT32+1Wb835x2PZ2SY8qSGCa9dqTpD+Iuf7Rldfqyzfz8Fs6+/yU5of1GfTviqSvTq7xrw7bXrXp3w+hzX8l6W3h+32b/Xjt/WD9o7ihX4P2vmyz/TehvTdiP9+E94b9DiT9z9jP5/20sG3azEN8+X7mZvvvwnX6ZrR312a/V13LPbXyWnrM2V/KIjXb4s5I+r8k/cuw/fWSvqNzLrO81yS/8YX3pYJUvmIsP6j5IX1u8/3vbtr40LVt7Dh3a154jwvsJ9lvXzMj+mVJfzNsr154z0r6oOQa/tmF83yVpIvJ9uqFNymwTs1MfdIsMLew/R9JejJ8N0v7vTjPn1y6Hpo1OleT7bdvjv2SFdflHqzj71LQzGl+vh9ogW2u/bveYQlvmabpLf4yTdMDmlUAHyxJrbV9SR8l6V9MQbc7zTr1t6OtV2iWwN/WWjvjP83S9/M0M52I78D3f675Zv/tob1fkvRjaO8HNavQfieOpwH9ZyXdIOkFm+8frflC/MvkvBEfrZmtfgvO+07NaoiPw/4/Pk3TozivtJnDa8DLJf3kNE0/k/3YWrtZ0m+V9O3TNF319mma3qZZOPl4HPLz0zS9NXx/8+bzB7DfmyW9eGMLieC1//eaHx52MPB8fDOO83f259/gO+frEzWvA87/T2iWajn/b5hO2m3Wzv/DmtWDf6u19sdbax+6sL+k+Z6I/UrmK8NXaL6Pjv7itWutfVRr7ftaa/drXqNXJP33kj4stPGTkj5143H5Ma21c2v6ez3QWnuRZvb57dM0Xd5s/sbN5+cuHNswX/vXsWv/Fveez/nJrbUfaa09olnzcEnSi3RyPiv87DRN7/SXaZrerpk9Xev9XOGBaZp+Onz3ffmD0+bNEbZfaK3dvvn+Cs1aqu9NnovS7Fj0vsRDmtfwx2lmlh8r6V+11vxu+o+bz+9srX16a+15z+Vk1/uF90iy7ZKk85v/79L8crk/2Y/b7tY8CVfw952b3zlwHu/vLwrtvSRpzwZ2tsexXNp8eiwvlPTotG3UzsYhST+UnPs3Lp13miaed1c8T30Pvjs0qzXek/z2Xkl3YhsfCJc7289ologjqmvv6+TzsT/vxe/G0nXy/P+Ctuf/Fu1+3VNsHiqfqFmq/0pJP79xuf+C3nGave5inz5vYX9J+qVpmn4q/vmHjcPAD2kWsr5QsyDxUZrV1XEMf0Mz+/80zba7hzbhA5zfNfAD/SUr9//Dmp89391au33z8P1lzTb/z1l46f9RnZyv6+nYsHUPtNY+VrPK737N1+Z3aJ7Pt2jdPbn0TLxe2OW+lE7eH7du+hTn1UJt7wXzqKT9jYduhNdQNvYTmKbp6mYN/8g0Ta/TzOheodn0o2maflaz+eNmSd8m6YHW2o+21j66arOHX2kvzYc0T+YLkt9eoJmBGQ9rZod/rmiLC/0FmnXY8bs06+Xd3ts06+czvL3YXuE9ku5orZ3FS49je3jz+Wr0z3hyx/Puiod0/DLJ8KhmVcI9yW/3aMWi3RHVtf9Pm/99vns0vwxiX+Lva+H5f7m2b/74+3PGhvl+7uaB/Zs1v3D+QWvt7dM0fX9x2Kdq1hwYb3uO3fhkzQ+w3zdNk4UEM/nY18uaX8xf2Vq7Z9OPr9b8IPxDO57zhzXbCD9Vs+p0CX6pV3Py8apDIb5Lx2tFms0M1wtTsu33aVZ1ftY0TQfe+FyZxv+P8LDm++Llxe89YdnPs4/QSc9Ra9/edA39sfB2FOM9TdPrJb1+4xX6sZpVqd/fWvugaZp2en7+ir7wpmk6aK39pKTPbK29xqqt1trv0Kzbji+812s2qL9joxpdwu/XyZvtszXfhD8R2vsMzd5Ob9Zzx49rZi+foZNqzM/Gfj+m+aX2IdM0faOuDy5pZidr8IOSvqy19punafrP/HGapqdba/9R0u/bXJMD6Ygp/C7NjjvXE7z2H6M5RurHN7//u83nZ2v2IjT8EH7jjud7g+Z18MHTNL3hmnq8jUuSbqx+3LC9/9Ra+/OaGclvUPFw30iw1xM3bT6PhLDW2odrZiZvL/rwXkn/uLX2qZr7qmmarm5cxMtxhuPf2Vr7Z5K+oLX2bdPJsAT34dOmafqu1tpvl/TrNHsNfyd2O6+ZTX2eius8TZO9pn+lcJNmNebRy7C19iptaxquNy5JOtta248v2vcBXq/ZM3V/mqafWNoZeKPmZ9sf0skX3udodkL6j8kxS7DJ4hf5wzSHZLyhtfZ8zU49L9aOcY/vjzi8v6b5IfxdrbV/qNll/q/rWGVlvE6zN+OPtNZep5nR3az5ZnnpNE2/B/t/cmvt727a/u2b83xTsCl+i2bvvP+ztfZazV6O5yT9Gs2OF582TdMzawcxTdMbWms/Kukfttbu0qzi+CxtHhhhvydaa39R0t/fXKjv1ywxvkgbSXaapm9de94N3iTpT7fWPkvzwnhyqmNWXqfZW/CH2pyN42c1q5Z/j6Q/tZGQ/qpmm+X3ttb+gWZHm7++6edrd+zbEm7RyWv/lZrn7pskaZqmn2utfZuk12xsCT+mWS33VyV9264viGmafrG19rclfU1r7cM0hxlc1OxK/4mSvm6aph/ecQxvkvTS1torNa/bhzSzqr8n6ds1q0/3NbP6q1rHeq4X3qDZbvfNm/vmXs3X8h1xp9ba92p+IP20Zi/g36p5Pr4m7PYmzXa+N2z2edc0TZnqW5qF0w/VHEv1tZrVqk9rvr8+R9Jv0szOPk+zAPK3p2l6BxtprX2PpM9orf2ZXe7H9yFeL+mPSfpHm3X5EZq9Gfm8ut54k2a1719orf2wpCuVHf454vs0Cxnf21r7as0Ma0+z09qnSPqCaZpSljdN0zOttS/XbLd+QMeB55+l2TnoyFbfWvt2Sb97mqbbN99fpFlF+W2an2F7mv0o/rzml+e/2ez3JZI+UrOPwLs0a4P+smZNyJG/yGpci6eLOnF4yb5vVwgP2Gz7A5pfYEtxeHdofmC/TbPu+QHNoQBfnPTl4zTH9DylWe2VxeGd1+zi7hjARzQb71+jY6/Pl23a+4RizPeFbc/fXLAndRyH93uUx+F9smbVzxOaXYPfojlM4ddjrr45mcMT3nKa1Xv/ZnPeLU/F5Pi7NXtnvWczj+/U7CTQi8P7bhVxeNh2n5LYsM2cHnkPajsO78HNPHyfpF+FY89pdsz4Jc1M5ZdUx+HxvL5+nP8/rPlGenqzRv6L5of7i8M+k6SvKMb36rDt12leh89sfvuGzRx/o+YQi2c0r61/q/kmf87eZb0xJ/v5/rqo2S72+zU7/fxC2OcvadZ+PLK55v9Vc5aL6Kn7cZq9/C6pE4eH6/ZFm3X0xGatvVWzZ/Vv3Pz+sKQf6PTdXoOfc73mbdPuqji84re/tFmDDvp+qeYXw/eGfco4vOJcX7PQ37OaQ0Ie0iwgLMbh4fgLm/3+MrZ/4Wb7PWHbGUl/cbNWLmp+lv2MZmH05l4/N8f/Oc0vLcdK/5Fkn3/hMWy+37K5X35Bx7HJP7Ppx01hv4/XHKvrWOx3ayYvv3qpX9mfXew/YNHmvG3/VLP77C+8n7szUKC1dp9mweWPT9N0XfIXDgwMDOyCUS1hYGBgYOBUYLzwBgYGBgZOBT7gVZoDAwMDAwNrMBjewMDAwMCpwHjhDQwMDAycCowX3sDAwMDAqcBOgefnz5+fLly4oP39OT3imTPz4Xt7x+9N/xa3SdLBwZwswDbDaDv0/4eHh+U+FZx2z/uuyb3LY9iPNdhlX/ap6mO2fV0u4d3gNmPb3Obr53FevXr1xHfp+JrGz6efflqXLl3a6vRNN9003XrrrUdrpgde/zVrZ+2a6c1ntS6e6zV4Lnby63H9l9bfLufI1g5/8zOgt6/X05Urc0IYr52LFy9u7XznnXdOL3rRcXY8Pyf8KS2vFT5b1oyx+r52n6VjdsG1rKFreb49l2didf+sOYbn43Mowtc4Xv9HHnlETz311OIE7/TCu3Dhgl75ylfqrrvukiTddtttkqRbbjnOcuVtN9xww4lOPfXUU5Kkixfn1Hde8JJ0+fLlE79dunRpa0BS/lLzhHBBe7s/e4uNN4s/10w2b2puz9rxQ9+ffkBE+JhKgOBDJVtk3OZjfG2yl4+33XTTTSfO++CDD0o6vjaS9MQTT0iSHnvssaPPH/gBFk2Ycdttt+nzP//zdccdd5zYnj20vB78+cwzc8KNbO1kD84IXv84j0uCT3b9ew9xjofbst+ytuJ52Ydq36xtrhF+5z0S/68ESa7d+L+P9do5d24uwHDzzTefaEuSHn10Tmt6//1zLvHHH39c3/M937M1Bkm699579R3f8R1H19Zr0NdcOn6++NNrx8d430xY4nwszVf8n/epka2PbD3F7dlLmduqtZQ9G72P75Fq/cXtvO48hufPnnOVsJGdn3NLgcXvkzh3fh74Wh8cHOi1r12XEGqoNAcGBgYGTgV2YnitNZ09e7aUhKRt1sK3ek+dRmlpie5m7WWSB1FJ9Nwe2QIln6U2MsZVsU1KRnHb2s+ISkojW4zXrZrzs2fPSjqW0iMswbONDK013XDDDSWD4P+x31lbxtKa4TE95s1rt0YFRel8jaqvWjtZHyuNBdvO+sR9qvFc79AksymvD99H1ixIx+vK2/b397v9u3z58tZ6NouTpGefffbEtiVWI+1+j8X13dMcLKF6zmSsaq2KNutHpvrLjrmWNcvnbTzfklYtY7CZeUSSnn76aUknnz/sf+8aE4PhDQwMDAycCuzM8M6cObOls4+SviUCS3CUUDOJwe1x38rQHL9XLJDfM2eLbHzVd0oVleTTa5fs13OUsRPuu2R/yVivQfbRczaiPdPH3HjjXCUm2s/Onz9/YhxnzpzpMqz9/f2jtbLLdWEfM5tDjzlyrNy2ZLfosVBija2QkmlPK7B0vX1MtKn1bIK9PkdUmpk1zkHV/MV+mNn58+zZs1276OXLl4/G6HViVidt2/93Yee8x3ivZXbL6nr01g5tWdWzag3Di/dhROxjdWzvOVetlUqDEftarRl+7zkb8dPXOL5jOG9Xr15draUYDG9gYGBg4FRgvPAGBgYGBk4Fdi4Ae+bMmSPKbzVXptKkusBqL6oJ4vGmsYz5WuMQUqmyMpdYUn0b2X1eqk565yaN74UYeJxRBZh9xnaq+eupVpdcpHsOI5wb72vVUwxLoEPLs88+21Vpnj179mgOeq7KlaOGx5Vdl+q72+8599BpqBfqURnI2dfselQhEz11TOUiz9/XxIrxvEZPZVu1n6mil5wIMjOG19X58+e7asiDg4OjOWAYU/zf97LXZjWuCM8HzQjcvotKs7d2/JzhvZb1tVJlVurDTNVZXUOOLzuG92LvGczxcXs13ojKMSk+d/is2gWD4Q0MDAwMnApcU1gCA0ovXLhwtI9/I0Mxem/5iuH1gmuzPsa2MiZBRsdAZ/YjbqNUYemoYl5xHzI8umZHqbQ6hufJ5oZSJz8zd2XPiSVlzhuvuXQcAOrfes4Re3t7uvHGG7tOK9HNPLbXC8WoWJk/l8IV4m9r3JyXGGUv7Kbat2J+0raDERn9Goa3NK7MiWCN00fVDs+XXTevgzVOK9I8brdnaT86rUQGIG2zjN7a5D3LZ1aW/KFKCFG13QNZW+aUdy2hIxxP5XiXOTwt9TtzsOH19v3c00ZVST7I4jLN0hoHKmIwvIGBgYGBU4FrYni23TmlmL9L24zEsAt7xrgoxTANUE/KWZJEMgnB7XubWY2lTTK/uA8lkYp9ZPY4SrX8jPNIGwfTgfXmhqyTc+HxZend3FfaQmjLi/31597eXteGd+7cua11EftQpVpjOEK8BlUAbjxv9sl2smN3wRpmtBQQnoUYeL4qCXitRB7b2CWv5NpkANl5eqEhXE+9wPPWmlprR2vFmoV4T1fB22T6cW6roGfew5nWZo3mgGPm9SWL6T0bKxsxz5+tneqZkc1JlTyCfctshX5mUGNWpUeL2zgHtHNGNs9jdwn6HwxvYGBgYOBUYCeGt7e3pxtuuOGI2fnTyWKlY2nBUn/lvZQFdfekh3hMluKnkp7dVpQQ/L/T1rg9JiLOJK3K06kXpOr/LXGRGXn+InsiK7TtrLJnrrHhkEFHCZk2Cf9GO0C0N7m/kbmu9dL0flkfvE8VRNzzYquuUxYQXtk66bWWBQ+v9drtoUoLlXk9XwtoGySj6SXzreZ8jWfpmj67/WjHrtbONE06PDw80rIwmbi0zdLWsFePxX2wFsr9Z2KFzC5f3WPZs4prpmJNPRtetb4y+2OWYCIbf0T1LOaz0fdm1ILRD6DS1EX0guCzNrJ9rQFYg8HwBgYGBgZOBXZmeLfccssRszPriMzEbMW/+c3rt34WQ0HJpoojy6SYygu059lHL0m3b8mRpSqkY0nDn5VunXFz2fmqhMeZjYPllSjJZvY6SkU8r9uM5VUMxlgS8VqbKfvc58+fL6VJ2/AsNWfXuiq1QmYa+00WU3lrrmF4vHa0fWR9osSdefPSe7Gyw2Trm3GL1H5kbIosh1J6L7Eyx0o7T2a7qmLeWJonHsOxnjt3rlw70zQnjzar4Ke07WFNJp6xJ/aF90nvulRpAmn/i3NTaaHoZ5AlrTc4Lmoj4v5VaR+etxePy1JMfo67NFhmR+W1YF+zuD+ybc5VZsPjfboGg+ENDAwMDJwK7MTw9vf3dcstt+jWW2+VlJeO8f+W5KnPtd3MjEU6lhIq2x299KKkRe9FSqT0DpW27RHcJ9MHMwuLUbG1yITonek5om0gYzuU7C3peF4zCZ9epkuJqLN9oveclMfLmOlz3wzWs/s8mcdllTj2ySeflHTMwKPdgMeQvfQ8IH3dfX0YT8iYwQxcDz5/nAuu60oq59zH/7N247ERlI7J7Ji9omejrJhd5q1LrYTP43UemQvneil59MWLF7euf5T6/RsZnfeh11/ct1o7FduVjtcOi91WaygeQ6bjcdOrMUNlb/Z5ovaD7WQMUjppC+Xa8Pzx85FHHjmxf2yX2hXPhddM9PlgDDK/M+ZOOr7Wbmd/f391LN5geAMDAwMDpwLjhTcwMDAwcCqws0rzwoULR1QyCzw3fTW1turyoYceknSsnorGTlNUqzuZQojqu8whhKpU98m/Z6ETVCFUKbjiPkyUu+Q0Ebcx/MH7uB/xGKqhrEqwsdjz2lN/VE4YVn94ruL/VLPefvvtJ47Nkn772F7guUF1UZw/j9Hr4bHHHjvxndWsJW25qnsNuS2qYqOKyeoTr2OuHafMi6nz4pxlcPu9JL6VUwQN91Lt/s51lzlYeQ68Vjw3NDNEtZT7zb7w+sc++j6N6yDuk6Xq6zkTEdM06eLFi0fj8D3g8cQx+hz+7rH6M/aBzl10tmC/o0qTzxWqNj0XUfVbPZuoCs5MDQZVmXSS6dW45LpgIH/833Ps57Xnmg5DmQq1Cvfx+OM9xNAsP2+8PZsThkYs3ZMRg+ENDAwMDJwK7Mzwbr/99i1mFyUfS1Z+Cz/44IOSjhmepYvI8CzJU6L390cffVTS8dv+tttuOzrW0rclAxqTLUXFY7xPFayauetnDjPxmCq4O/aBUiirNGcSq7dZ4vLn448/fqJfkWVXAe7+NBv2dYy/eZ5YDsjHxHlkUPy5c+dWp9aic0E2VkqiRuZ6zYTgnluGc2TOFpQUvXaydUDjOJOlZ85EVSkZfmbV6+m0xPAe7xvXDqV03lduI3NLz7QoHE/sa2zH8+XzkhXG61hpVTIcHBzoySef3GJrPk8cI5kInVUyRlKV3qF2JWNePp+fQ0y7GNmz++TrQIe7bL3FtH3xs0p7lq0dMm06vmVrx88XP3t9TC+hP9mox5cF4RucY/eRDnFZmJTna5cyQYPhDQwMDAycCuwceH7zzTdvvbmjhGB3VUsK73nPeyQd64Jpi5KO2d/DDz8s6Vha8z6WMiwtRSndkoAlLEvn1A3feeedR8fQZsJ9fZ5o7yEsXVBq6SWAJTvzuLw96tK9j+fN3y0leo58foeKSMeSlufGEp7nyCwtHuPfzIie97znnWjDbbo/8beYbGCpRFBlT4jjp4u5+58lvWaAbGarid8zm6evd7TzSnm4iOfd4/Qc0NbJcjXxGPeZITSZfa4KEqY9zusjbvP6cp99bZlgIbPL+p7gnHvNZKFBDBomu4rr23O9JiWUwxJok/S4pOPnTlUWyPMW7T1MlF6tEaYck7SVIo/PEGs94jFkswzfMOI8uU+0rbNINRl5HPtSerJ4rMfB9IoMPaE/glSHZPD8Wfkrhj+Rzcd7gmFkTz/99OqUfoPhDQwMDAycCuxcHmh/f3+NKCe2AAAgAElEQVTLuzFK6X4j07vH3y2dWfqUjhmeP1n+g8HKEe6L2/UnA88jM7GkQY+qe+65R1KezJkpsVjckJ6fUWriMe6L7ZuWzmMAqLdZiqW3IVlClFxpV6INxW1n5YHokWYGkxVvtBToPt16661l8HlrTXt7e1uMLEq3LDZLZpd5+zGpLaV1BsFmNkNK3P6klBnb99rw2vccmBlnJYwqW2TlzSZtr32vb6+hTDvg36gp4b1INidtS+FVoHNc3wzg99ww0DpK6dSi9MoDTdOkK1eubAU/xzEzfRnXflak2PswkN1zzWdIHDNZS1bQlscQTHCf2VRpO+uV1+L4qB3IbISx79L2equSo8dnYwWyU89jlpaOAea0wfdKSz399NOr7XiD4Q0MDAwMnArsxPBcpoO6/6xEPOOsLEXRTidtewL6bW/phmVjMvsYJQJK/D3bEr2ZGC8jHdu4mAbI+3i8jP+J+7KPVdxP3Nfno23A53Vfo42S56uKyUbJrkoS6z5lbIA2mxtuuKGbAPjw8HCLSWYFK30uSre0QcV+Vgyk8oSM7XJ90QaVSca0S5Gxrimq6Wvau5/oxUZ2Q4+7+Jvb9drwGub1z2KcKju2+5MlbqadjPFmcR6qhNoZpmnSpUuXtuzasQ9kh+4nGV+8x/x/Zdvkesz6XyXXZtyutM1wqH3I/AKqpPtc59kc0x7mNjxvmec573veG3wexHuDWhX/5n3ddmSp9DOo1kO853spEpcwGN7AwMDAwKnATgzPsIRgiTFKWnzzW3qydJbZHPw2t8RLzyO/ye+9994TbUjH0gRtKd4nkyoYme997OkV2RLPQxZAdkYJL7bvPlb2pojKbunzu4933XXXie1xHA888MCJ9ntlNOjNRp24pXWfL7YX49h60tbVq1fL7C/S9nryb2TN0WZM70H3j9lEzGoy2xqZCdluL2uO23Mfs7hPj6uKpaKkHe8nJnymp2KWpcdjtT3R331NaauO94a9qt2u55U25Gh7dZ+oBamytMTforS+ZMOjLTSLi+P6rZKIS9trhBmkDGtV7rjjjqNt7oPvO2Y64bqQjp951TGZnZGxs1zHlSdmPB89mL2d9s24zc8XemPS+zg+n1gYgLGj/j1LVk42yGdijAQwyMDXYDC8gYGBgYFTgZ3j8M6fP78V/R7fxpb2/Ea2N6ZZB7NoRDAeinEyjNOSaiZCW1H00rTEYYm+8gLMJBHa1Hh+lteIc8EsM4zDyTwWOU7mKzRiDJnP85Ef+ZGSjufvve9974lxZV6v3EY7YJSmLAnHDA69EkH7+/tb9tnYnlmR14wlRdqpMtuNj33hC18o6dhG/O53v/vE71mmDc87bU9eZ1FKZ/aXSkp3XF7ch8V1aZNm9pR4Pt4DzFuY2bXpfcqizFlM3d13333imA//8A+XdLx2mPVI2s4URDaQeXYyruvMmTOLWXqqPJLZPNAzMSsPZJjN3HfffSfat4bk+c9/vqSTDI/5HDmuTNPDoqm8PtQSScf3WMUKGcMZn8XURjAnre+JzPvU56WHObM4xWekn7G+T1/ykpecOO/9999/4lM69unwHPg5Rvtmll82KzG2hMHwBgYGBgZOBcYLb2BgYGDgVGBnleaFCxeOVD+mvZFG02nEaoGoFpJy91k6r9ApwpQ5S1hKpxIaObNqxXTioOolOrdYRUWjMV2JScnj2OlGS2N+7DPdf1ktnamZojqIZW+oBskSHHvMPsbqLvYxS5XEAO4MrnbeqyLu/lnNYUcnz1+m8vM1srrJ6ic6c1DdFkF3bbfJlE/x3HRAoGNIXFtUvVDNxgDnOD6qw6nSNLJgfLbPZLteB1kiaMPqPqu/3vrWt0o6aSJgRWsmK2b4irTtDNFThUvzNfJ14nni8TQP0EEsHuOxvfjFL5Z07Mxj84vhY+N2qsGZ4i9L7hDHIm0/37I0WnQmYyiN289K5FRJsZnoOt6Lnh87PLlvNg1QzR+vKZONeM34nqQDlnSsIqcjDVW2cX0wjduSOjxiMLyBgYGBgVOBncMSDg8Pt4obZtKZJQW7iVuqYIokKXf/jmDaoEyaZR/cR0tcUSK29ECpiM4EWTobSul0APHv0S3dkqHZkxmMWWNm4GZZELrr+vweQ3TksVTm81oSMgvKglTpjON583XrBZ5nkinhtHRk1/FaWkJkii2y2MyN2lIlkwh7TpmAPP7mMTN9XJYSjGn1jF4wrOfH9wu1AnS4MIuPfakYUBbaQs2FrxNLv3i+s1ANS+WeN7LQeD63T60AU/dl6y2ynUpKd1o6amCioxYdP6qyUXFumfycSQxi6ir23+vAc+fnnMfqOc4SgfO7z+PrkxWezgqhxu09bYQ/fS9T6xFZr+fHfaCjk53B/IyJ96Lnz8yZISxkqdK2AwoZK+8ZafteGwxvYGBgYGAA2InhuUyHkSXz9TbrgFn8lAHp0nZhSuq9WbIivs2ZcJWJX1nkM4IuuGZAZDWxT3SNZxqizEWWOnOfx+Oha7F0LH0xVRUD3rNUVkwayzlxf2KALVMIsaAuEwJL/fAGwqnFmCA6Sm4MFzFLZgLtLCzFbIX2EWoWsiByBq4ypVnGXMl4WCA3zonXDpkcQ0yydF4MlfB1sY2cNp5srLSlUYrPgtY9Pid0rwrfxr55mz/JnCO7ohZlmqZu4PnBwcGWbT1j3rShMq1eBEtt8T71MywrG1RdQ2sYmM5L2vYNYLqzzL7tY6p0cLwHIwvlPc3EzEaW0tDXnWXXzN6ysDLv42OoSfAzP84jU5ZRU5YlqGBoxC4YDG9gYGBg4FRgZxtea20rnVbUHzMQmKVeLFVl+nx6HlV2sygh0KZCj8+MedHmYP27JboYNGyQzVYpizLblMdlyceflLSiBOxjmI6nKhoakSW7jX3KbKWUhJm2J7MV8PpfuXKltMNO06SrV69205zR9sMEB1wn2Vh4fXqBwJnXZ9ZGBKV0s2R6t8Z5ogdhVXqHSavjsZT0M688g9IyGV4s/Mtxug9Vn9mP+D/XJBMCxz6T7fa0BF47nPt4DNcrbdJGluyY3t+8lzNfBd731Pz4vo2aJa55Ju7IbOucwyrYOtNGZEkJ4vnM0jJ7s+fY46DGLCv5RLupNTFMvu7nX9Yng4nus+fFLgHnR8fsfMTAwMDAwMAHIK4ptRi9baKUTUmQdqrMo48SNRkkJa/MXkFYMqC0KW3bW+yR5u30ZortVGVHyDSi1OQ5YftVCZv4Gz0hGVfE0kaxT1VCaEud0Y5KOxVtBiy0G7GG4cW+xj5FKS3zyIrbGZsT9yVbo22DBSal7XRTLPGT2X0rmx09bqONg6yf9qSKYcYxk1mxr1maLYJ2Hqaryn7jvGVeqLyWZLC0O2eIcXbZbxcvXtyyy0U7ovvJMVaxh3FbTI0XQa/QzFOWMXS8T+O1oLakSh4ej6EXOp93veLYlcaMDCyuc8ZU0obPezF7RlZe92uK4rrPjDuOoJfz2uKv0mB4AwMDAwOnBNcUh2eJIHuzVh6ClPqyYopVqXtK71nUPSVPShNRUmCsme0v3ifTT3vMjD+hTS2zUVJqYnJsevxJ2x6rjL+jV1oEY/fIenxsJrHSdkgP2SgF0/5yeHhYSumOw6OdJ8u+YTB7DseX9YFjpf03zhfnkszS1ymzV7FkjBkePTyl7WuYsc34PbPDMFassiXzeGl7XjlHvQK3vG/JTiI412R82biidmMplorMOPO85HX39cji1HyvMtn1GsaQxWhGZN6h1A6QnfXi1OgBy/vH+2U29squmXnZ+3/f/1VR3MyHgJqF6nt2z1detZknZhbzOuLwBgYGBgYGAsYLb2BgYGDgVGAnlaYDQFkROqunZJh2MiFvNLJaHWR1DQNwqeLM6CtVmT4fXdzj/1Zpel9/ZlSffWOfelSfqBIoRzURnUUqV/Oe+qVSF2QVqGmEpgo1SyXEgOolVVBW1TpLIk7jPZMRZ+rwKjyFKr9MnUKDPNVHWSozOx45lMVrxy7ucW65nqherdT+cR8mzCXi+Sp1N+c+c1uv1J9c35mTFPtMlV3mWLFGFdVa07lz57YSxWftcUx07spMDaxxSHVxpooz6PhThdTEbVRp95J5Z5Xhe32KzyyaBPzdjlZcy3EuqOavkjBkTitMjk8HqF5IGsMfmJQ9jrlKt9bDYHgDAwMDA6cCOzutRPdhJsWVtt/UNGDbYJu569IxhIlfe290Bsz2kvm6D0yBZGQSMqVA/0YHgEz6JDOlC7U/syDVqjxILzSETIhSYebWXQWrMwwiC0HxuC5fvtx1Wtnb29tyr86cHzhPdFrJykNVzhxV6rm4jY4OlYOAdDw/dnSydoLlqOK46MiyxNKzPpLh8ZgsiS/nohc6w/Ex4L2nHaCbeRUsHc9/LS7lXDOZ01XlCMJ7Lm6jBoHzxGdLHFvleEatQQRZJ5lqnE8yOT7PspAm9pHPEDK7TMvC4HQyvoxd8zlXrZneuuP8kdVHVNerh8HwBgYGBgZOBXa24V25cuXo7WtJMqYqotTE9DVZ8DClJeptaeuo+hb3pTQTpQpvY6FZSsaRcVmyoZ6d+uTMzkTXZbKaLKUUz0NpllJuT49dSfaZhFwx1ew8tN0988wzqyV2S4wZe6I7NaXKzBXcDIiSPaXoXuFZ9iML9mVxXe/D69Ur/MnAdl6HLPG0r7e1E9ye2aY8j2TnlMSza1DZUfm7tM3AmTKLSSDi8fG69ALPYzhUxpp4H5J1Mug7/s97t0Jmt6QWglqBXhpErjvauuL/lW2V7K0XJsCkCJmmh2XJyPDoy5DNJ/uWBdSzj/5k6rJMM8OkAkvFg0+cb/WeAwMDAwMDH8DYmeFdvXp1i2nFYGS+zSsdc5bOiG9sSmCZ1EydM6WITOJjMlhLjg6y9HhiGi0mhyVLot0iSh2ZN2ucA0vtcV6Z7oq2CErr2XxS+iPL6en96Y3XS2EU560npdvLN7aTpdHiZ1ZKyOgx6zjW6nvcViXkjdeN5VJ4fao0VfE3Bv5znJFpMHWYj7GnXSyVVJ2P9ite/8xztfIGzOaksmfxPHHtcNtSianDw8O0HfabY2Si6V5awl4B2jguaTspfWW3jOs78xSVthlrvB6VJqdifJGtVV65bjMr10NfC2vvvJ5p088KKle+FtV9lo2r98znOEbg+cDAwMDAAHBNXpp8k2fpbJiaiG/lTCdLbymyHJ5D2i55U6U2y0rvWDq2pGNPOxfXjJ53tM1Qome5lihxkH1aT+3x2h6UeU0atGNVHn/xPAZthj2vJsYVkalHicvX5eGHHy7bq87bWzvUClgC9vGR1TDZMc/F69WL3apsAXHtmOH5ejjuzt+zsjBZot14DNNexf14HvfRa8hML6LyAq2YfWb/W2J4WZyh+9Tz1DWqdG49UJsT1zxZGFlG9typPB255jPP1LWarPidDD5LbE9UaRWrFGPx/qyeGexrvAacY/fN656xilnx78o2yndCPHdVyihbs5y3vb29wfAGBgYGBgYidmJ4BwcHeuqpp7ak3AiWEeEbO9PfVnFI1bG9qPsqviu2ZWmZNrtHHnlE0jHDi9ILvQCZyaFiJ7EdxrbYDtTzljMo0VVZVKS6DAfnKsuSUNkGmHFFOp6n6AXYs+FdvXq19J6M56psafTgkrYZHD/pnZeNmVJklT1D2tYKuF2upbhGq+TXlEozOyTn/7HHHjvx3ftGFhq9ZuM4Kik4sxlVzCXL8NFjURUqzUyG1prOnDlzxAr9Ga8lE0FXpXgyNlWxssqene1TxcdlMW7uq+9/ro8IMlV6hfK8ce5Zio1r01qpLBa2Ynosh7YmBq53jWlf5jM+s032YneXMBjewMDAwMCpwHjhDQwMDAycCuwclvDss88eUWXT0Wh0p9GbteWonpLqdFBUOWUBm1Sf0K3afbMqKB7jdh9//HFJ0oMPPihJW+OL56RakNWsM2pNlULlrJCpe5ecB3opfqgOqVR4cRtd5t1n1jqTjlUzVo08/vjjXRXH1atXt4KgM4M51Wc9F+UqqJX9yIKKq/RcVB/HKtleK1zPvP5ZYm6qmvmZqcGYds/ncT98THReYb3FqlbgLoHnvQDnKrFwVi/RqNzQK7TWugHiVFV6vqj+ygKzK6euNYngeW0zpx7D95L39TPQ9w/Ds2I7VGWyb7y28XyeC8+f1fE+JnsWG9U92auHyLAUXq/4vUrybWT3RHa9hkpzYGBgYGAgYCeGd3h4qGeeeUaPPvqopOOgxPjGpmtqZSzOpHUaso0s0PBoAJAm6BhiaSYyPAaN2vnC7IYlhqTtBNNrJFL2sQq7cN8Y2hDHZbDCe8/gzL6QXWVu+JSodmGUVfVn73NwcLDlcBDbY/8qJ5ZMQlxisbzm2VgrB4CYgICu1XTJp3NT3Jflh9jnLEmCQ1aq5AgMV4jnqVz0q0+pdkKoSuZkqBK4Z3Mfnxc97UBMPJ4l3SYTZRhN5hLP9V+ts57mpXIuY/J8aZvR+/npz6xqOZMSROckqU7nJR2vGWsoyCCzhPA+D+eR37NnCFlWFWLQQ6V9yO4nX9uRWmxgYGBgYADYmeFduXIldVE/arDQhzPAMCszQ1Su5lGycx8s8frTAcCWbqIdxmyNrNMMKyu26f+ZWJpSIAOD4zFug0HXmU2PNjUWxaU7ejxfZU+o0qFlv1XSWpz7LLC1J8VFOwzHGftZBYv3WHWV+LcK+o6oAmVpN5OO2RPtLv7u88X15nbJ8KqCo3fcccfW+dwnMzqH0PRKWfH8nKNMS1CxP66LeM9WpbmqxMexL2tKvOzt7encuXNbBXQz7UBl2zKyNVQx/Yo1xv85do4rMjxfd9+r9957ryTpnnvuOdGfqFFw+3w2ZTZw6eQ97bFag0Vm5LWUpQfjnCyl34v/9xK1E5U2p5f2bcle38NgeAMDAwMDpwI7e2leunTpSPKlvtf7SNvSJKXYXqLkKiWNpeYoAZnJsYwF+5EF11paok3Fv8ekrt7m81WMwiwues3Z7kJbDvueMWYGEXt89H6Nx5r1MSi9Ch6NqGyDWSowStw9G55R2WfjWChNVgHaWf8qhpJJxJQiKZX79xj06rm96667JG0Hw3sOYlo6ljvyGvFc+vp77p/3vOcdHUsbhiV9b4/3gkEtxJK9OTKwyq7Fa5BJ9tyHknj8ndd6SUrf398/Wr8eV6YZ8rWrbNE9VDbjLBkyn2PUMDF5tXRsjzWj86cZvdunnU7aTkdo0EbZC473mvSzKWP+1Gow4XUvHRq9qWnbz8q8Ld23a8rJDYY3MDAwMDAA7GzDu3jx4paElUkVVbxVxga8jSyNDIL2ufgbvcfoaRmlCkvYlrho5+nZfShhU6Ika4z/u12f35+W0q1rl7bLEDFxsrcztiduY+og2v+yZLjcx2w0i8OjnfHixYslm6hSi2UeglXC3F5pn8oWUMWGxWOYRonJvuPc+pp5Xmhjy1J9kWnThkf7XzwfNRTe1+n9PJ5oM+S4yEbIerI5WSosnCV/r2K0shixzItyyc6aFbs1Kntb5WWYHVN5g2fHUhvg+Wcy8WiPtTem14bbZTHkyDDpXVylO8tsuRWzYuxbtPky/ZjXqtcd+xOfc5WXc2VPlbbv20oDFI+lJuny5curWd5geAMDAwMDpwLXZMPzG9ZSTSbVV/a4zPONxVVZRt6f/j2yDLIASyL+ZPYM6VjCYuJS2tCiVMFkvVVMVZZA1+fzMSyqykwb0naZGY/HkgznKMIskLFhnIvIJDgXZHZZPExWrqWXPPry5csp465QSdiRQVSspYrpjKiYHY/JWKivC+ef60KqE/5WmSky70PeC9Qs9MrCUPtBVpydj3NNln0t2VkiaJ/vrQevHTKv3rWtbJFZHF7F7Hq2Y99/ZkS+53zf0o4az+N1YM0ONTHRO5zPM3oHU8sS2ZrZ5kMPPSRJeu973ytJR3HUDzzwwIk+S9ve9H520NM8m6O17DrLuFN55Bvxe2Y/XfM8kQbDGxgYGBg4Jbgmhsd8i1n8GCVTStHR5mApiDF11DVT+pS27R5kMWZXttdJ29lKLGn5M/MCq0rIVN8zdug2LFFRooweXSzhQam9igeM//OTcYCZpx1zGzK+KbMR0KMrg214tI9ldp1K6ss87ao4K9qRMvZW2brIDuK4WHLH8HXIbHiMnWIhUJaYimzN94/Xps/P65Rdf6OyqWVrlRlQKtaTFY2tJPpeSbA4Bz3twMHBwSqPS85HxWrj/0tewFmcLJ8ZZN7M+CQd3/eOofQa8XqwdsC2Pkm6/fbbT2zzc8zXhRl4oteumdz9998v6bhQs5kf+x7BrE+0+/cYc3X/ZjGXlZaF93FPSxB9A5YwGN7AwMDAwKnAeOENDAwMDJwKXFNYgml6VhGa1JSOJlnKHaoMqJboBa3TEFy5qUeQjjPZbhZAXVHmyoU5wuOy2oF961XwpVuwQdVJFoxNRxuGR2TJfH2M56S6FnFbVEn31FJRpUnVSOxDlQA6U6vG9qVtB6Aq+DVrp1L1xfWWBZZLxyp6OhFI245adGyiCj9L32Y1VFYVncdwLVYlbLLQkCoZO9WJmRqU39mPTJVVJXAgYlq6NYHg3G70EqZXKnk6zUnH18zXneWhskQNLun0rne960T7VGlG84uTEPjTv/k8TCYe16XDnJyc3muI5op4T/M5Sge7NSpNhrtUoWnS9nPF89VLH1at7zUYDG9gYGBg4FTgmhieJYVM2qOBsjJKxrc8t1GiIsPLnFYqN1ZLYJlEynQ9durIDKVV2qxKooysrTLIZi7lRhZIKm2HReySWLmXqLeSknrOEZTKLl261A08v3z58tZYY1/oal0lkM2uP+e0cm+O14XOMBUbyBh4dLqSjtcqE3ZLx3PG8lMcZ8Z6mCqvCqjPUudV41njJt4rxRN/77XbO0/PkYForaXXIILriqEY2X1ZMUauoSwBPa8LWW7UehlmYQ4TsBMJNWXR4clpwOy8ElMWxnH72RkZHkMlmGg6S3TA0JmKgRnxmjIones6S/pdte+2eiWA4lqtEiQQg+ENDAwMDJwK7MTwpPntzHRWUbpk6q3KLbinz6/ctTNQoqYbf6anpuTLRKg91lSl6aF0mKWHygouxmPi+RhIWkmULE8iHbONyq7ZQ3ZNI+L2mFLM41tKD9VLo1SVWllTKiRj//E7QwGkbZZR2f9iEnH/xsQKtFNYupa2XcgprfaSFnCdcZxZUWSD81fZPjI2WtlQsutb2ez4mY0rhossrR3akyKqQq9krHHuaY9i/2nrisiSJ8c2M3+AqlyPwwP4XdJWsW3a8KglyHwjKu2DNVxZgmueh2PIbPoG548hGxG0eTMcJnsGVOEPazAY3sDAwMDAqcDODE/aTsWV6YCr8g69tzylFL71s0D3JakyS3pMqdztkhX2PB8pcdMuE3X4ZAUMFvf5o7Tk/80UKElVHqwRLG9TFeqM/a+CezMJkiWLegGg0zTp8PBwS0Jco3sn88nssVXhYSOz9S4lDeb8Ze1z/rPECpR4yfCY6DzzXOX1ZjLpbE7IlImeTbRK4J2xwiq12FIC6nieHrx2eL54XZj0mCmyMn8DMvoq1Z+/Z6yOrImfce7pG+Bx2JbHtGTSthcoS43RSz1bO0xpyGKy0S5oZmc7Itdq75ryHuAzI9NwVJqDSlMTx5oFzC9hMLyBgYGBgVOBnVOLHRwcbMUPRUmLrIWeQFmRU6NieLSPRE8kxo9Z/03GEiVSSzjct+cxRmaSpeeKv/fsDFVhzsieaB+jZM9jM8mOnn30BsvKOlESJrOItilf/9i3td5SmXcbmQgTWmcg6+N1qcaT9WGpvE0EJWqmgosMr/LSpQ0xY9dLfezNDZkX9+2tVbIQ3kdx7fg33nO9FG2ZTXLt2vHcx2dJFTvZs/9WicfJ+LJYWLJY3lMsASUd2+HMqFw66MEHH5R0nAIsPt8qFuPt7hPLVcW+eVuViNpMTzpmdpXHOud1TZowppfMQE0C13tcb0t2+x4GwxsYGBgYOBXY2YZ39erVrYTCUZpldg9KpP7s6V8pNdNm6DjAuM1gqY3Ms4sSD70ZM4m4yuCSlciJv0fQI6lKji2d9HyM7XNes9gdj4+SKjPKRGaebYt99LiyYpHxvEvSFiXuzKZWsZoqBi22W3mVZXE87ENm04rnjb/xfGQ1WeYT9onnp91J2rYr0rMwY8pkjkuZKHo2wyUmE/vEe41rNV5rjrW3blprqTdv1gf6CFTxmXGMlXaANrCYAYUsqSqyHMflvjmmzp933323JOmuu+6SdJyRRTq+x1holr4D7lssLeRnAr0xmWA/3vPel9eQz2Jrx7KsKYw7JePLrjXtpVWyaim/PiMOb2BgYGBgIGC88AYGBgYGTgWuyWmFasRIa7Nacj5WytVGDA42ba9S1EQVqmtLMXjT1Ni0PhqcqX6wGqDn6s0gSlL9XrLqKpTBx7Bqcvx/SWWbqTKojqhqBWYqocpITSeauC2qvXpu5gcHB0dz0XOjrlRxmVqKKaM4t2uC7qkCpPowS6fmvjGol+nRsv5XzhwMgI/nIXo155bSdfXuxSoYm2rLNU4rvF6Zw9DaoOFMJR3HbLVjlZKP5836QPME74Wo+vN956TOvLeygGk6mvietUrTbTn1mLSdpDoGpcdxe36iA8qFCxdObGNYgs8fHV38P9XQTIBvx5rM7MPwhCrtWwTXG98JPQe7M2fODJXmwMDAwMBAxM7Jo5999tktaSs6hFgioVNFlYIrHm/p329zSxuUniMqCcT7+ntkQNH4HPcly4lSBaWSSnqhlBvHVSFz8fV4qlRcZBJxPhlouuRAlLVXserIQt03n69XHujw8FDPPPPM0XxlQda8vmsYHiVROk1Res8S11au/VnC7Cw5dNyetVUlzK6OyVhI5UhThQDEfmdJe2MbcTsTRxjUGmTJo+lgU7myZ7h8+XK5duy0Ukn/0vH9TYcwPp7f1e8AACAASURBVHeW7sXYbyYXiI52bN/n97pm6azYHh00yCgj4zKT8n3HZxfLhsV1SQcUaoes/arSpMXxMdUht8f/qznOtBWVYxrXVFxvGcNbWyJoMLyBgYGBgVOBnRjewcGBnnjiiW7JDSYfXpPmqHKft4RCt2EHcMbfLPkwUNvni1KTddv+pG47CzQlgzAq9/QIn5uJhS0RMZlrPB/Hyb56DFHyY//92XPNz5L5SscSalYihezq4OCgy/AuXbp01J773bM98jyZezvZMW1QVYmSuM1zS7fpLFi9CjB2u9kxTCTMVHaG10lkLh4Hw3hop8vsjNWarUIbIqpwhCxZdRUsTEaXlSGKTKnH8G644YYtppylm/Ja53z1QlpoOyXD85p1IdUIn8cJoX0fsnxX7AM1SGZN7nsMMapSiPG5lt07DLeivc+IWhuvFdoOWWIoS5LOlIz0lfAY4nWk/bcqNNtLJ3ju3LlhwxsYGBgYGIjY2Yb39NNPb0nAkQlRAmZBv6ysBKUuv7mZ3ibTcd95552SttkgmUlExuBiG7F99onpwah/zwJgmWbI5+ml3rFk6H1ph+sFkXMfep0yNZy0Ld1S0suKSPbsiBnidWbZo9hf6uMp5UUmQDbDfWjjzfpDO3NVakbathFSWs/szRXzqRh3z9ZFNprNPZkqmVPP7ufxkW3ymMyOSpBVZbbQNbaX1prOnj27xRBiH6rgd7L4aK+qbE1kzb7Xo4ekvcNpJ6/SeEnHzI22M2ofImuqPIcrFnotfgfRzujnpRmr+1IVj81SRVYsLVtv1AhW9uAskUPcdzC8gYGBgYGBgJ3j8C5durSV1iZKPrQX8a1Ozyep9h6jV1Hm2WcW6BgWsgSWpojnJvOi512UtMgcKVn5fGZkGaPwfNFrjsmypW3dtsdO77CsPBBtRZTwMwmZdiWP3dfW6dx6Hn1LhXoPDg6O9skkxyqlWOXJxf+zNnqJmSsv1irllLStMSDDzjw7aduo0l3xmmZYsiVnfatSfVWp1OIxlLwzm0rlscp7ved92ls7ZnhGdr/6uvC+oddm7DcZN+3BPpaektJ2OSK26fUQ7fLuk7dRe1Mx8tiuwfF4/HGesmdt7HtW8svteB8/37iWaB+M565SzGVpwughymOyeE3/zzJOazAY3sDAwMDAqcDOyaP39va2ilxGW5CloEpHn2WBIEuhVEmmFz37XvCCF0iSXvjCF0o69v7zMZnemuyLemj/Hpmrj2fCZDKIrKQN2R8LIWbSZ2V38b7MeBDH4H5zrnvJW8k+6J2VHct2egVgfQ4y43gtfI7KlpfZ1CrvX0qIlK6lbWZSMe/MXkVvNTKJeD3YLpkVGXk2jkwaj33LMtZwnEuSd7aNNpaMZXM8tIFl9zz3uXLlStdLM9ppMtsb7TpkDkx4L9Xxj7xfsqT1jz76qKTjRM9VCahoW2c5nooRZeub+1b25iw5NuPjsmT1Btkg1wGztEQbZaUxoTdwHF/1zKfWI1432jN3wWB4AwMDAwOnAju9Iq1Lt8RAT0XpmBH47evvlMAySYSZVphRIStJb9udS2u45AY9LaM0Rw9OSumMFYv70oZX5X3MGJ6lInq3+jPLeEB7gj8dE+RPS5zZeMjIM8memRN4DMcS/49S7VJuRNrJopRJD0FK3GtK7xD0nov9r7zWaHOLv9OWSztwltWE0jjtYPTWzeLVaG+q8lZKdeFSxmFl+UzJJLgms3jT6pqTdWfxk5FtLDE8jyvzwCYTrjxdM/somTWve49Fex9rVZiRKB5TledhOa/smMqblTbjzHbMNVmt+wj3yR6lLBvGXMVxG/tGD+Ys/ya92zOvWiOLAx9emgMDAwMDAwHjhTcwMDAwcCqws0rz3LlzW67rmVur1YGmrN5O+h73obG4MqBHdWWVyozB1xFUB2UG7dgPaVt1QPVUZeyVtlUZ7pPnKFO30fBbOZFYvROdabxvlV4pUx3RsF1VpM9UK1loRIb9/f0ttUrsN1V6VUhLpr7wvnSuWZOElmoUqlB7VZ2XEibHPvE711s2f5VaN3NwMFgqhkmEmSYsK0dEVWmmbmMfqz5nc8Kg7l7yaPeHDmKZEwzVkLyGUeVXJU6oEmHEteMUYlTJ+ZmYJaCgKo6lzBhUHvtUgannsnXH8XB7ZiJgAvoqoD6qOnkMr3svBIX3IOcmU/NHrC0zNRjewMDAwMCpwDUxPDo4ZAZ6vsUrydjtZvtS0s9K7/hYhhJY0mL6sNi+JR3vm5XA4biq8RmZ2zYN9P7N58kYDRkDU31ViVrj/0tBw1k6Ks8jDfVZCjNKY0tSetw3Ky9Cxw/OZeYwUQX+st/ZmNku0+BlQdZLLDZjoQzaJcPrMWQ6RfFeyZxWqmTOvIZ06In7Vkw5W9904MoSQ8f94rboOt+bW5cmi4hjZgjJUsmniCwdXLZvFtTtRPb+jY5wMTyF7TOVIR1DIioXfDp/xfvJ2iBeHzKwLNE5E+zb4c6fWRpGOhtWpbnWsDE6rfTCbvb29gbDGxgYGBgYiNiJ4e3t7en8+fNHUgDZgFSztSxNU9Z+bK9KrhvPRzd9JnW1RJIVZKX9i67FUfKpUnpVtps4D5TgWNqH5ZDi8bTVue8Ogs1SHFWu7AyGzYL/GcDKEIoslCEyysrm0FpLf88SAjA8hdJtdg5uYyo2I0rRXJtGr8Ax2Rivd8bEqkK2VahOlvKNEiztSnFcZJRMul4l943t8V5knzPWWxVbzWxFZPNL6dRiaameDbpKU5jZHqtUb3SFZ+IIaZsd2z2fz5bI8NgX2rwYPhL7VAVkM8QgMjza8t2XTIPFPtJWx8TXTIsW/68YvvuRab94D9I2GsG1P1KLDQwMDAwMADszvBtvvPFIUsik6MzOJvV16/RoqvTVmUek9dQuZ8HgZXtTxSBy2u7MksyazPSitMR+04uRElgcA4OUaXeiBCZtS8neh8mX3fde6jSWtOldC6btoQ49uzZMoF0hs73FueAYOU9Zuib3h/YBMhPuF/+vWFrGDpgAgJ5na20J2fiMzIOZ46iCl+M+VUqxqhBoPE/lfVxJ5PE3XoPMQ9L/RxbSs7tlqdoyxtgrOlv1l6WEKuYQmV9lr6IHe1yrfL5Ra+Lrkl1L9pkp82j3jn2rEhFkWjdqDKgpM8NjG/FYak7IpLMyUfzN583YKJMiHBwcLNrWjcHwBgYGBgZOBa6J4Rl+2/fsR5YE+OaOkgtL3R91DnEpWaonJk9mfE+WdLcqJNnT9zNOhBJFVZgxa4+eVWSc2b5VsdheEuYqaXHmLVXZiCzZ9YqWri3EaDte7GNmR+RvvRRVlM7ZT9qDe5JgFm/F869N4psdT03GUsJraXvt0A6XpQBjnF1VSDmLcTKWbJPxHuzF28VxxmNo4+p5+E7TpKtXr27NxZoyShzPGgZeJYSPYGkso6cRoZ2RfgAZA6oSMFcp1Hrlr6rrk6ULrJJGMwF2BOe48tLNPFf5TOR1yjxkowfz8NIcGBgYGBgI2JnhXbhwYcv7L75daS+y7cy6+owBVPpwfrqNKJEwLu1oYEg0m/3GrBXua5YlgYmXKb2Q4cVxMklvZefs2TiWGF6WxYJMiZJddi0qZp7ZSNyXaCOo7Hgs4pmhypZBSThjUUw0XtlhYv/J2rkusvVd9YVsKbsezAZTScBZ4nFmwCD7iEyC9hfOSRWnV405fue9H8fHtZ/F2hn0Lu5J6NM06cqVK6W3q3TMYm3Lr+yjvetCFsXPjAnx2VU9wyLoBV4lz499q1ga2888y6ssVJlXamUjZoL7TDtQrRH2OT5Xq/uJaykrZRQ1Jb0CwhGD4Q0MDAwMnAqMF97AwMDAwKnANQWem27aySJzWqnc2rPqzpXaiaqQTOXDoEZTcNLn6B5MFQb7aGecNcZ8n7cXBEmKT5VZpvJhLSuqQXr116pK06T9meqElcGpSshqw0VDdy/wfH9/f8so3avfZXUtHVMyZ4XKuN9LOF05HnmtZGqUSnVdBQTHPi0lL8gcohh4zLVKB5V4TBWAXjlRxXP3EilwfD1nk7hvpsoy9vf3uw5PVmt6X+mk4wRTsC2pjeP/vcTY8dj4zOL8s83sWcX+8/7PakQuhfpU543/Uy1K1X0cF5NF85Op+tb0ierKOD6qQas0f9m9GJ8hw2llYGBgYGAgYCeGJ52UxHou6jSc91yg/Ta3YZQpcTJjp0FJzo4nNoq7zXgsy/HQuN+rssug7qXSItm+lOyylElMs0VX9mp7bL8quZFdA0rNZKw9d3ujl1psmiYdHBxsBZdHCdnj9z5VSamM4XF9sR+91HY+L68/2Vvclv0Wv2cMj2y8SpEU1xgdnsjWMtf5SrLn/Zo5IlWJfllmJ46bYRdkGxkz57mX2N3BwcHWcyeuHYY08TpkY+U+lVNZpiUgW6ocQrJ5ysYXP7PrUWkSeve0wXljoHucRyYyYFmg3j1osC90uMsSBhgMd6DzXuxDT3tTYTC8gYGBgYFTgZ0Z3uHh4VZ5k4wRUeKmO3Xm3k7bWpVYNguyrgpx9qQzSiuVJBT7xHJDlc0ggoyLkqUZXpRiLLF6Gz+r9FtxW5UM18gYOiU5pkPKjomSfY/hXbp0aeuaZsmcfX09B5QyM5sx+1kVC81sHFUpocx+wKTBDDjPbLlkkFUB2ExzUtmbe6EFBq97xUZ7rJcMv8cKq8D6rFQOmeQSpmnaClLOArSrJAu+b+L5qhSG/H3NdWFC9iyJxZINrQomz34j8+6xHe/D5NQMPYj/L4Uh8Bkdf+NaYcmk+Dyv7PJmeh5XZPDZ9Rg2vIGBgYGBgYCdGJ516X6bZmXemVSXEgFtENJ2gmQGV1NSjCm4LDXSxsBUY5lUQQ9ISz7+HvtIaYwSNe1lme6eEo7P4/RoUYrxGFmcliWNyDSkbT18VXojMgBeH0pMvYQBUcrsMbyrV69uSeAZE2IZEY+ZhStjf4m1Ac2xD1mAcRxf/I3eoDxvRFV+iBqGjD27fXpYVgVhs/arpM6ZvZHH9gKoDUr7vOeoycja67XfWtOZM2eO1nPmccnnDOHf4z22ZK/2Z2brqtK00aYaj2F6LrdLX4XMzliVMlrjxcm++fxZAWD2m0WkmTwhe87xGcV1kN0jvAeopcqSgESNyUgePTAwMDAwEHBNNjzGZMS3K3W9lHgY5yVtS/a0E1BCiBKppQjq6mkDc8kf6bhkkMfhtESUbjKJrrIJVSUxpG3vPNqqyOKkYynJ7I8smLFN0bZI6axiLPGYyp7ktjLWW3kf9kDpPIvro32PqeV8veJvWfxbHGs2F7T7kJlkHnBri7lGVJ52VQHaCJ6vSo6doWK5PQ9JzgXHk80JrynPm60PztcSw4vaCGpT4pjISNjvjGXS9ljF2GXxamQ+9G6Mz7mK8XLOM+bKY8nwMt+I6v7nszhLLVatO/YxizPks4rHZsdwrXDN9OKM17I7aTC8gYGBgYFTgp0ZnrSt+2ZsWgTtfJneuGIKZDGZh5i3sYgri7lGKea22247sY2FGJlxI/ZxyRvUyPpIvTdL+0Q9NYvCVlLNrbfeutVX9pmfjMOJ4zFYsmkN21kqD3RwcFDq6iMqO2mWsaOSYhmzuQsTYhLfzCuUDILjWWPzWkruG0HWWzFZadvruZe8l+cje6rirnrxZZzHNR7MS152e3t7W/dJXGvMxlR5acex0tZk+P7oxZpR40OtUFY+iIya93KPcTOWzejF/VWxqL0Cx+xDpX3LPGXpg+F2GVedab/4LqF9M4Iastba8NIcGBgYGBiIGC+8gYGBgYFTgWtKHk3njkzNteS2G2m0nRDo1sxPtxENz3ScsQrT363ajPT+0UcfPdF/uvEbUQ1ahVdQJZO5i5OWZ843/J65/cZ2rYbNKivT7ZgOKAyej6BTkR1qMvf/nmqMcEgL57GXJoyqOI8nOvdwjJUrfqaeZBtZqjT2sTqP28/Gw/YZ+sHx9VRMlSozqyJdBWGz7Xi+KoSFx2QBx1SZcX1kISjG0tq5ePHi0XXP1FdVgvmekwWDmnnv0vki3gO8lqxLyMBtqU7xxv5k46sC/9c4MfG6V05M8TxZoue4L+cmbque3z31JNXUXGdZAP9SKEqGwfAGBgYGBk4FdnZaiQmCM6nCb1sGPVvyMXOIruV+y5PpUWqj4VQ6lmyr8iWRDRiuikzW2XNDNsjkKGllTKgKHq2cFyLoJkwnlSyEwnNMBxtKnxnbIdulYTueJ2N4S4HnZK5xjukIkCUqlk5KrJbO6WJepcZakwja6yKTSKtg9V2S+RpLlaEjyDp6ZVPYV65NnzebE97TZLnZMUvMleONx6xJHn14eKhLly5tpQfL7hc+K6oSPHFfOr7xGmcJuqtQnMyRy/B9yWdjLw0i+1qNJ0uEwPaqOYlOO1VoScX84j3Ca1qx0fj8pgaJc5Kt7ywF5XBaGRgYGBgYCNiJ4bXWdO7cuTJVUoSZAEMYzOKiHYm6Xx/rAHG6Yse3OYuE0rZm6aVX5HIpmDiCLKCSzrLg0Uoa9HYXno3tMzieNgMmVpaO59zbqkDneN1YSLQKaM3SekUb61KZlzVlTCjB0805s6WwxBKlwIxJ8Np5nyzEIxtLr/1emaiqlMya8xlkXFl5oMpeuksRT7KBjNlU4SNkCRkjW5Mia5rm4q8MS8gCwen6zvCeLIA5nieD5ysyIa8RzssaWy7tfUv3TNynYk/ZWuJzh+uA91UGBslX4QlZu1VIVa88kMHEB1miA6OnWSIGwxsYGBgYOBVoa3WfktRae1DSL73vujPw3wBeMk3T87lxrJ2BFRhrZ+Baka4dYqcX3sDAwMDAwAcqhkpzYGBgYOBUYLzwBgYGBgZOBcYLb2BgYGDgVGC88AYGBgYGTgV2isM7d+7cdNNNN5UlWSKquIg18RJrYyreH/iVdvJZe74swwK/V5/xf8bb9Y7Jypps8mVuXcAzZ85MZ8+eLbPOxLYZB9mLW6viuKo2sn2qY6r91u5zrei1dS3nXdqnt8auZR0s5W7MtrXWdOnSJV25cmWrs7fddtt09913b8WgZVlTqvV7PZDFcL6vn1VL53lfP492ab8Xi7y2zaVngLQdj7u3t6dHHnlETz311OLF2OmFd9NNN+mlL32pLly4IOk4gDKrIl1V2c4mo6oHxjbWpN6pJrMX9FqlmMpQnadKKpzty3RAvWD16rxsM0vmywSsTFqd1d9zhXUG+foY/y4dpwWK6d2crJs4c+aMXvKSlxwd89hjj0k6GczL6+/1xWQFWXV31l3k2swS9y6t0SylVPXy7VVW53plsDrPm+3L8zABQQamm1pKDB37VAWc+zOm7PP/Ttzu9cBg7xhk7GPiw+vNb35zOo67775br3vd647WjD+9lqTjdcRg517atkpIqh662XxVQtKaF+4uL83e82WpraoPvSQQleBQCTUZeGwWeF4lNGeCj3jP+3nguqa33HKLXvva1y72RxoqzYGBgYGBU4Kdk0f3JOQIvrl7Cad7yYEz9CRTShW9St1Vaqcs9VbVp0p6ytRu1RxkUhv7xLRgHG9Mt0VmV503SlpkDixHko0zSyHVk2gPDg6OJPtMLUVGwtRLGXtiSrSK4fVUI9X1MLKE02yDv8e1U7HCNYmTK7bJRNs9NW+VbHmNhE9tRJakmMmjY6mi6jzUNpw/f757jx0eHnbZ2lLl9N51WWJp3D+iegb2GN61qEMr9f4arHlGEVVi8x7rrZ75bLN3jFE97+JvTK+2BoPhDQwMDAycCuycPHpvb28rwfAaMBloRCXprmFVFeOhRJIV1aTxs7KTZOdm3ygJR1RSWU8y6SUfjm1m0luV+HmplEls16jGG3+LpTx6hurDw8Oy/Eg8B9kES07FQr1MUm5dP6/pLs4rRs8eV7E2Ms2sPY6XCa/jXJvR8bO3Rtc4lfE8Bq+PpWiut6ywacV2s7VMhnfx4sVFe1evzEzF8HqMnPcJj+mxtKXio717u7LH9zQ9a9ZxtX2JefX6mDmmSf0yWLuUP6sYJI+N15r25F0cawbDGxgYGBg4FRgvvIGBgYGBU4GdVZpnzpw5UmdYbZM5oLDOUeaswmMqF9g1VaRJuXmeNaoMunhnjgD8TueY3rFL7uk9FZP7SlVgL6auUh/2DPyVuqNXhTte8556oRdzJ22r4qyuY82/WDfQITKsJs0whJ4qc8mJIFNpVmrDTKVZhddwrrL6aAw/oNOKv2frjaaHNTFqdB13eIo/s/uLatZeuI1BB4ao7s4wTVPXWWEpTCi7XlwjSyrgTP2+SzgC77+qHt+aECoic8BbCtHq1WOsVJq9Z0jl4FaFukRUc5Edw7U5VJoDAwMDAwPANYUl0BU8IjMySjV74/9xn+qtv8aI3HOAqYJ5jYwVsJI62+J5Muecqs9rJJSlIM4ey66OzYLVjWpuekbq3jhaa2lISy+o24zOgaZmdrfeeuvRMf6fwel0219TXXoNM6m0DmTiGSusnBTIyOKcsLI9GaQ/M+biff1JRxGOKf5PZue14sQD8Vp6PTnkxJ905MqqW/ec2SKi00qWpWfJiSRz8iEzrZJjrHG2WNJSxf+rNURX/B54bOYYxzVZsd1s7pe0QZlWKrsucXt0bjOqNcnzZeza7RwcHKxmeYPhDQwMDAycCuzE8Pb29nTDDTdsSY5r2BolkR5T2IX5VLrlytU4wpKHpeeevp9S3lLuxkzCXwqdyOwwlaTVkySNyubZc11mKjFv74Wi9Jh3xJkzZ7YCqLMQE18PMro77rjjxHdJuv322yVts0GGMNAGJtXMnvalKH06qJou0WZCPfAYMjt/2h6ZjYO2So87jsusj6yG46FNLP5vluZx+bvnN6b18nx5m/sSg8pjG/GYLBQjwzRN3bVe3e9kbxl7ztLOxe899lTZujK2QzbjdqmJWRNIvWYfzgG1KtSC8P/Yp6XxxnFUc8BniXR8T9Ae10vKkGmsBsMbGBgYGBgI2NlL84YbbtiyG0QJkW9aph3K9OKVFxt/z2wrPXtLPP8u3ktrgpR5XkpRvQB7ns9SThZwyvmr9P+xrz7G14mSfGbnZDuVbj1KZ24/JoCu0FrT2bNnjxhK5n3lfpnZOTmsmd3znve8E9+lY7bnds1A+N1txiS0VZC6kSVKtg3LSbK9j5lf5kFY2aINsjh7nsZtHo/H4X08voy5ZKw29pGJluNY/el9zN7cnyyw3vsyAXmW4Dqz9Ve2K9vvepqfKnk32XPsy1ICcO63JpViL2FE5R1JDdAuKRuN7JnF89G7PlsflWcvkaUGZFJ6aouyZyO1KdR+ME0dx9jrY4bB8AYGBgYGTgWuyYbH2J81nnuV/rjaFo9dk1y38gyKnjzsW6XnZxux/zymShsWx0K25nFVMVaxj5QYub0nUVJ3TjtdlJ7MIPzp8TzyyCMn2oxzZIYUywRV0tbe3p7Onz+/Za+IEr7n45ZbbpF0zN7M7O68884T2+O+Zj4cB5lRTEtmdlRJ9p6fTAL2NTW7dRv+Hj3ReGycE+l4Htnn2EcyPTLXOC6ymsprt1euheuKMZGZV7CPqeycGXPxvtM0de/zg4ODLW1DprXhc4bPlp4drorlW5NCcSnGlmOJ5+sxlCUNVi+WztuqOciOrfwYKl+J3tpZk9yZrI/x2tlzoufBuYTB8AYGBgYGTgV2jsNrrXUlH0q2lLToQSZtF+9c0plnXmX0kqMHViYhMCkxS8pkSXz5vUo8ncVFVXE4mS2UNrSK0WVSIhklP81Cehk9KDE+/vjjW+PyuaMXXsZs3N6ZM2e25jyyHv9P78xod5NOXmvbi8gyuC485mh74hqpMobE87ld70M7qdvIrgc1Ft6XLDSOl4yORXDpYZzNARm958J2yOhxyTi8SlOSZb5wH+++++4T53vggQdOtBHP4/FduXJl0YaXlaOqQPbS6/daG17Pm5HzlrEbeiRW3rKZdmjJe5G2sN6xZMrZnJBp8VgWf477UJPUixVkXytv9zgnVXzxGgyGNzAwMDBwKjBeeAMDAwMDpwLPSaWZGRRNX6muYcBspORLyVupRooUluoNt0vVWqY6Y5omBgLH81AVS+M4VSiZSpN9NnqhGkzQXaUUy9zgqYqpUv9Ix6oJ/2aVmdWK3h5DENxuDE7O0kfF/at5k7YDr90Hpq6K19bbrHIl3B+32XPf9/k8LjqKxN/c76pvmbs91U5V7a+oQvX1p5rIKiV/9tI1+Zo98cQTJz7d53hNqearnCIyFSqTPjisxOexCjXC/Y5rg5imSVevXi1V9LE/fCZxrfcSmPfuYY65crCjujKr48bf6NwTx1WdpzdXBtXRa9z52adK7crwlXgMVZtrVJkGn/EM0o/txnU3As8HBgYGBgYCrqk8EKWpKIXYdZwJpvk9c34w/Ft0WZZOSoOxT/EYsrQsCXLFuMj0ssTGlLBoZO0lwaVkx2DyzLGGDgdZmMUSKMlynLEP/DS7ySRWHx8dKKIDRMTe3p7OnTt3xJoyyc3B1HbecB+YjDhLJGvJ2t+feuqpE58+TwzqZjgASw1lyao5d3SK8PkiqqQEZInZtSUrpLOM5zGe10zqsccekyQ9+OCDko5DTMyGs/N5TXIu6CQT742K1bvv0TGFiKnReqzl4sWLW4408byel8pRImPP1T2cOUqw/1XF+V7YzRLrZAkmKdeIZX3uaVayNH7xe5YasmJ2TDWXOTwR1GBkmiy2TweyXkmhXZ6Fg+ENDAwMDJwK7Mzwzp49uyXl2h05brM0lBXElE5KGwwpqNIE9fS0ZkB0e+8lja4SJns8vbIgHEcvuTJLrPgY2078e3Txdb/9m+0uVSmRXpkdSlZV6EHchxJkZs9y/6P0X7mWe+0wvCMGTLsdsrUswN0ws+EasgTKeYtrldfZiaiduow2KGnb/muQGcc+kpUxlIFagUwC5jU1WzOLe/jhh4+O8Ty95z3vkSS9853vPLGv58x9jPcmji4QuQAAIABJREFU2a5ZLpMBRNZbaVMYqhHP43lyu1evXi0Z3uHhoS5durR1n2aMkYy7Yiyxn+wTtTiZ+zsD8Sv7bFZCjYyE92VcO0x+UIVbGLGPS+EVWVB7NV+0Ufvej/fGEgvNyq5xW8/PwPCcjvJAAwMDAwMDBXZOLXbjjTduJfmNUoaly6o0SaZ/rzwqyVC8X2b/q6SXDJTYKDlmZY/oPURbAaX42MfK/tbz7GOQuJkK5zHTz7v/Zj2UuDOdN20PHgeZcwyKJsO7cOGCHnrooa22pfl6nD9//ohd+JjMjsg5pjQZvf38G71Mq2S0WdJj2hHcZlb6h97HlQ0l87Ss0tGxyGtWwohrx3Y5z/ejjz56dIz/f9e73iVJeve7352OLyuZQ5ug59wB/t4evWLNBs3WohYgjjOyec+PWfbBwUE3hdc0TSWLimOpvJl7bDArKBqRpR5kUgKeP3sOVSWReiWFaIvk86V3T/s5UHl29wK3KxZK7URc55xj9j17VlXP6yqBRRxXtPGvTSA9GN7AwMDAwKnAzgzv5ptvPnorWzqz9BdRxa2xjIq07GVDnX22P3XmlISiVEFbGpGVTbEUy/Ew1ZM/M704U3oxxiqTUigtu2+WvLPYRMbd8Htm9zNoV7JU7vPFY8jSDg8PSym9tab9/f2tcjax3x6br6HZhPtvO1X0DGNckOHz2A7Hcjrxf18Hlr6hp5jHKG2nLCNLjPNg5kPPR3s0M7Ve5unr89H+ltmmvK/Pc++990o6nleuQ2tqYrtug3FlnufMBl+xEcbmxnN625UrV0oPZ8fhVV7O8Rz07M2KjvIYjnFNGR3apdaUB6LWi/YyruG4T1V2jawtsugqNrGKfYu/8T6mvTuzyzI2ryqKHMfCGGtex4zNUwM4UosNDAwMDAwA11QAll5+UfJhvB0ZAu0I0rbdyMfQTsZiqHGb27ck4k9LGfEYejpRwjODiPYqlpJxe4zl8vbIQih9VeVTemU6zBI4F5xv6di+QsmUTDwyyqxAZtyeZZ/hthijSTiG0+PgXMR2OD8ej+2YmTer5//5z3++pGOPS383u4r9M8sge/VnxtZodzXjok0jSr5mcizwytI+XluZVyjXKssQxetP9uTySp4jt29Py7vuuuvo2Pe+972Sjtev58Aen1mcpeeHRWLdp4y5USMTE4sTZnhGppng2vEYuR4zVkgbne9pagAyJuHfeL5sLEvlgCrPy3hslWQ5i3GrvDG9b2bPrvpI7Yfb9v0ct/k54/s1ywZkrE2Kn9n647O457MRMRjewMDAwMCpwM65NA8ODo7e8pGlGVX8W1XuRjqWuhz/5DbsbVZ5VcZ9LWFZOrPdwvFKljZi36p4tUxaqjy3KPVldkZKNpReqlx3cZvHRUZhaT566bnfbtflWiwZ27MvSnFupyrNZHaQxflEhtzTp+/v7x+tHUt9UeK2RG0pneVs6BEnHc/LfffdJ0l68YtfnLZPFhWP9drwHLzgBS+QdDxPMcatyuhi0MbB8Uvbtjx/Ml5T2tZg0D5CG2I8t6+F22eR2nvuuWfrWM+B9/2gD/qgE/v+3M/9nKST2gLPLeNJfV6z7cxeu8arurWmvb29La/DXk7deGwcI0tNSXXuR8a+xWvKLFDeh8+hzKOcHr08bzYXVXk1z3mW85TagcpLM2OczPpSFY3NbKNkyrzn49rJ8odGZM+TzJ454vAGBgYGBgYCxgtvYGBgYOBUYCeV5jRNmqbpiKpmLrNVOp7oaCCdVC3QIOrPLLWTlJcjomrBn1aTxTaoXqUK032L7tpxDqTtAHq610bVAgOZqZ7KEk9XahaqMtx2VEvQkE71Z6ZaqBJoe1xU/8Vj1gR9OmkB1RyZmohqQvfFThYxVMNrxKpMf6/SNUVXaZbJserXoAottuNPt+E1bAcRf0rbAdl06qAZIKqJfH19zfyd5oTsGtAln6qt+++/X1J+/zIo/YUvfKGk47l6xzvecXQMyzrRxdzjiwkDvK6iQ8iSw5PB4O6ISoXt50B02+f96Dl137zeMnUZz031IFWNsd3KpJG1zTChKrE1Ve1xnyyxhZSrUBnKxD7RZBOdmGji8HxWzohxn+pZnDn0GVkI2BIGwxsYGBgYOBXYOfD8/PnzJ0qsSCelTf9PCYQG0yjFkKXExLTSsWSQubBaMjB7sTRhaZIhD9K29MWkxe57DFJmoC+TEZPpRebCZNGUkny+rDyQ4X09F2Su8VjPBVO/MV1UljLLc1GFI8R+Uera29srpXSvHTMwzpu07dbudcZA46gdYGgBk3nzekWGyqTRMc1VPDauHc8h1zEN9ZHhkSl6LfF8WQquKs0ZXcuzIq7UnFB6tqNTZAW+Pp5XBrp7nJENM4C9KhqbsdAYRNxzXNnf3+9qEsh8mHg8S5hOt3yGoXC+eumuspCp2GYGhl1lz0beh9QgcbxxHdBBsGKW8XxkVBVzNeI1cXt8vtHZLM4RHayoicmSFlQl2tZgMLyBgYGBgVOBnQPPo1Tk/6MtiG9kFpQ088qSjtItm8VHWVBS2g7q9nezhSxtF21PDGTMQisq6c4SiSXJLFg5pk+KqNygYzv8ZEmmLH0PpSPaDDk3sX2yX8+Jf8/KA1WhDEQMIPZ82Y4Uz22blxmDWUdmp6BNzf3zMV4PntsYZO2x+Ri6lmfSOZkjXe8dZB61A5Swq0KgRpa+zcf4PqIbd5SafX2rxOruay/xsOfa14d29KykELUERpbCzGsnam/WSuq9MjO0pfdYAJm1r1mV6i+zI7INsulMI8LkEb3E+vRrYLo79jF7rq4pJWTQ9l2Fe3D/rH32MQuDIOsjS8zsnL3Sb0sYDG9gYGBg4FRg58BzadueE3XAVdJo2l+iZEDJh+nHmCw0Y08M9KVEEqUKSr60h2TeP5VER4kkK0lP5kO9e1Z+pEqCW5UJidInWaHRK5FDW13GVKWTDI+21Z4d5vDwUM8+++yWtJmlCaMnJ0sVZd5+TDBOLQGvrbQdzJsxX84B15nbc2C2GV52fFW6iCw0ggVAzX7JzqLdz+Mh+6dtmv2Stj36+JmxeJbGquxNce0sJXCPsGZgTYA2bWj0UM2C1XtsWaq9KeOxVdLjnn2Mz7UsaQWfb9mzIn7PvFB9bLX+es8qonqmxPb4vZqjrE8cX5aUm+0NL82BgYGBgQFg5zi8mD4q0/1XBQIrfXk8picdxe9ZIUbGNjENWZTOqqKg9g61RBTtFiy4aFRxK5nHJe0M2b4cKz0t6Q2W6dir9mmbyiQ7MrBeIU3PW8UoIw4PD3Xx4sUt9hGlPaZyMmg3y9JD0XZTeQlnUjo1B+5TViaKnr22h5nhmcXE+CSyccYY0dYS55Hno82YhW9jO74nlu6rKKXTa459p1YiHk/G1UsJWKXzyzBNk65cudKV5Kt41crbMGIpPq1XjoztZvND0N5HD9xMo1Axu6rPsS+V92nGkKvr0YuH47G0RfJ77zryHsm0EJmX6UgtNjAwMDAwEHBNyaMrXW0EC0gyFiNKKlVsSS+my6iSVJNZRvB8lpbtAZcl8WUJISaPptQRJZJKojcyW0IVf8M4vOxYSmmc+8xWwGvI8XJeY/tLev84zp5tlfZPXrvMxkXQ7sf5i21Qeq48VaM2gl5s9vp03J3j/OK43J7HzrhPFo+NILv1ec0kMxsHpX3a02mnzexaPD+vTbzmtNtXyYnj2sk0CEtSeibtV/twDnpxpEs2ViM7tsrwlPkbVO1VzxZp285XtcX9s/FUDDx7zlb3aW/uK9taldA7Q2/+eHxV0LaHwfAGBgYGBk4FxgtvYGBgYOBUYGenlStXrhwZyrOgTtaJovtxphKhuokqGKpiImgQpTME24q/GUyJlDm6VK61VRBp7GtF8StHkXhuJo9lmi0jSwBrVDXasjlhwmG6qWfB6plajZimSQcHB1uquTgOrx065Pg7k9BK2w4sdOPuhbRw3pnYIEseTYcQB7h7O5Phcg7iOO1ExHWQOWVx7Xt8rEXHMWbH9mr2cV/OeU/talQu+ln4wxp1VGtNrbXSjJD1n+1mlci5by/cIe6/1G78nt1jfJbwGRmvS1WHbikgPB6zFHCePTuqZwiRJR7nb5yjrM+V+jVTY9MEkDmxVRgMb2BgYGDgVGBnhndwcHAkTfrNGqWBNa6nUu5GTSeINZLiUvBoFnBK5xim6cocNOjSXZVByhgeg4fZp0zSrqQyOgBk4yObriTZzLWcoIE4K80Ug+SXSgV5LliGKPa3Cm+okgxI2wH4S45PWbtMwWXEhLzutx2c/Okky9na4XrjXHrcvWtJ0AEmczyp0mpVzgQZmPYuYxZkEmT+vK/i8ZkTVK8fcb/YHgOVq/IyPQeNJeerXigG55rB3vE8VchUVh6qSpFWOfBkmjMySmqNMsexKoRhTdkeogpxyH6rmHl2fNRGrXVcGQxvYGBgYOBUYOewBAcQS337GBkIf4+o3HWps8/aqPbtBVla+qLtjiEUGZupCj/29OSVrp72spjyi7bQKq1ST1qvgoWzAOfKzbqyVWa/LQUHx32ZeFo6ngevL6Yuy9ZOldaKbDqzH1RBygaLrErH2oA77rgjHU9m/6X9lVoJst7YR7fD8ZEFZ6WsDDKXKig7A9f1EguXaltVBEMjlsISshRWWRhPdT9W7J1t986d7cd2e3Z5jplhCL2QrTX+DFUfq+eon3NRY1Il+6js87uk9cqOWdIIZeybz7Nz584NhjcwMDAwMBDxnGx4WckYMgPaUnpMgaA+vidhGWu8jFgsll5zazztKkk3k5qX0vVkCYAZJE7baGVDiPsseaxFsI+VvTFjvZ6/JSlrb29vq8BjLBlTscrKjhD/p/2DKcayNcRttCsxqbh0bLPz/Hit+BivoaycSZV6iZJ9HF/ldUz7S1ZUk+cjG1mzdshGM9tR5QVKZGsnBt/3WEscX9Y+10ilcclsj0v3R3a+KkC6p3HJ2L+0rZXIbHjVOu7Zfw0+d6hxiikUmYyDa6UXgF4936rA/vg/7bJrbITxGTUY3sDAwMDAQMDONrxpmk545Um5RxrjdlgSp6f7pbRW2a9iO5W3FMsSxb6R0XE8vXRNlIC9nWWCYv8Zg1ZJXrGPZKE9ryyimmvGt8W+eZ7sdcgk4FkcXs+ew/4wFi3Ose1QjOuiV+Ya7UBl+8hijioJlNcg/l+tHZZz4vHxvFWC7gi342TULg/kOcnmnuyc46rsNHGfJe1K1EZ4bXicLt9EtptdN++TlayK2NvbK4u8xvaI3vNm6dlRMeL4P58HPF+WnpC2Y88ly1XFPpD9cc1kDI9rn+Wisucc7b8V0+vZEum1S8/eLBF09Zm1T0YcnytLGAxvYGBgYOBUYCeG52wHfNtHKaYq/uh9smSoSxJVTz9d7Utml2X0oJTuzzXeZVWcX5ZJhgyCLDDzRGKMHr3z1sQsVdlfMumJUmBWQojIEmVXsHevbXa+BpknZLTrxT4wMbRUS8eMresloeV8MNNKlOzNXmizo1dtROUlyXuFv8fxML6PhZSz2FTvQ41CL7NIZWvn+eM9T09Vz0nPo5MaiyUvzWmaurbOXqxuRBZztpRppadZWioAm2mJmCXH642xpPGYjNX0zh/Hx3aZUSobVxUbyHsiO7aKp86wNI+ZNqrSYKzBYHgDAwMDA6cC44U3MDAwMHAqsHNYQlQtZC7ApKBULWU0mqrMqgYU94//V4Zgf0ZjLNVRVMX0qkivSRIr9d2DSd97QdH+jUHJvYDwKlVSlWIonm/JLb2n5l1SScWK51lqKTpVMClsz7mjqh9YOa9EVAZ5f3/88ceP9mUYAlV82Tpxn7gmqXJkf6Tj607HD9bSy1y9rUq0MxBTAWbqP97TVGVmqQPplOVPz1WmbuN8rXE6oJNJ5nRFtW0v5d+Sqp9JirO+8FiuzficY4IJq+6pns5MDVXtRp4nezb6vAwfypyJaAapEoiscQKrnFWy81UOLlkwPud+KSXciX6v3nNgYGBgYOADGNdUHsgSamZkrSTCbN+s/fhp9IzVbJdOHpljDR0mKtfyTDqjFMbze7yZUZ8u+T0mS4bF8/VSp1HKpPSbOaRUjKVX9ojtLzG8aZqOKoJn0qzPxbI5NupbMs6cFegUxTWTpW+r1iQDcu2oIm0niebYmepMOpbgHVJgxuXPyqkktue58fz1qsFXAefe7vs3S7NFZse5YOKAuA/ngmuYLu8RWV8iWmur0uiRifQctZYSF/fCoZbc6emgIm070pHxZ4yySn9XJdzI2CGfTWwzm5PM+S6OJ9OYVKx3rUNRD5n2q5fyrcJgeAMDAwMDpwI7B55fvXp1S7rMpLMqUe4anWyVqijT3VfFY6nrjhIpwxIsoZKVRsmBAfSVLj0L0DYoifDYnqRV2dQy92fuU12LLBCYc08pKh7DdnsBoK01nT179miun3766a19LOlSEqS9Kgs4rualkvgjyFC8PhzsHftaaS6oWchKGNG+TOk5S2Xm/poVuE+0x2RMuUo44HWfaVt4nSvmH9eu+8JPssSezbhnh2mtnUgQnNkEeT2qpMfXwi4yVBoY/h7XH9dElXiil7ZtKdA9C+o2+JzLkuRnweix72SHmf3XoN0/0yzxGUVtVHbPZ+FrI7XYwMDAwMBAwM42vEyKj9+XyvQYmVfhksdWzzOo2qfnXUhpnOVoIiukNFx5XGYeXZas3L5tOW4/C0AmU+XcUMLKvM8qj7E19jhKWpkEuca+FzFN01YfMrvOkr03YzMsvVTZY7LzVeu5VyaKNhoWtM2Y8NJnb3y+3rfeeqsk6dFHH906j8EkApwbprjL2BXZWcUO4m9kdmtSp0W7fCWlO3k0SwBl9zTnsrKx+ZxuP/s0eh6eVcLkLCia2h/Ocfb88/8sD8V7PGNP1EJZU+Hr5O/ZteylA4v96JVbon2956XJ50wV/B+RJdtewmB4AwMDAwOnAtdUALaKI5O239DUt/ZsW/T8qbwzo1RRSRrUNWfsiV6StAdGSas6T2WbjJImGQQlE0pv2W+VzbDHendJzLq0TyblUura399f1KWz7BFLpcR9qsKs2Tkqb7ae7bjyfKtinyIo+drTN0tHtiSNs/2Ybq1K02RtAe2b8f/KZky7dlZ6h+yQLC5eNzLIijHHtcv40jVemrwHmQw5oscqDc8ltVL8zJhXZfPuHUPfAY/HTCt7xrgdFmuljTJj3jwvixS7H9mzqpo3sra4X6XNy9g1UbHrXkrANdoBYjC8gYGBgYFTgWuy4THmqSdxG5W0LtWxdJV3ZpZItMqAYgnSMU/Stk6ZUiwT9sb2KGGxT5kOmrFZle2wV6Yli9GqwPlkG94epfS13my9a93r297enm644YYjL0NmY4jHM7l2T0fP2CV6IhoscxLPV2kS/Lttrln7ZBI9hlfZeZmFKPOeZZ+YSDvaJisti0HbUTy2SnRe2fSyflcSfjbmyGqq9bO3t6ezZ892MzEt3R89+3KPBfI8bI9zXc15dj7asbP1zjXK5x09mbN7muyvZ/ervEKr3zOv0GqfNdl0/r/2zqY5jqM5wr0ABDFCJHWRz/7/P8tnXxQiGZIgAvDBUUTy2czqGb7hw+utvCywOx89Pb2zlfWRRbhny5m6O2IY3mAwGAxuAj9Uh8cGjC7ziX5xZrU5Lc3E6Bjz6lpF0FqrY6ouY42p9iXTclZsiqnVsdzYOAZaf50+XrI6eSzHKJO1meZZ30vqE85Kd61QOivu7u6urbtKtYasi9Q55hjqnnFuXeYntSWJ2la9A3WcYnjMfOuyZjl+jsl5FlL8j+tMWRqz/hgf69RHGI9L2cgunkXPSWJBbp/d2rm/v2/XL68tZek68HvSZVqmfXfeAv07NbJ1zzBmDNcrn71O4Sl5iboa3sLO69HNfXrtmF5Xv6vnd+ceLc3BYDAYDID5wRsMBoPBTeC0S3Ot3lVBCsrU3y4BIaXpd7JNic5S/FTlmmr/as9RiRTl0ix3lXPV0oVKN0uXZk35o1Tc7a4juYS7djc7l4YL+u/KEtzYyp22k4d6eHi4Oo7OUxK9rvedXFeBbuq6l0z17rpJ08Xjym5KyPr9+/ffnacKwTu3O9sBcZ3rGuUcMJGn1mh3f/j95Npkyru+RyHorjg7tZ3ifDo3GN2gDiVLl0IDOl5ee/rfwd3vbky6bXp1ZTB1H5hE0snEcY5ZzuNS/7m+6RZ3bn7OAd3v3dykOT/jEk6i2Pq+C1dMWcJgMBgMBoJTDO/l5WU9PT1dNeZUOGFPfb8TrE0tXWgBO0s4JXnU+47h1XnLSndp6IWUSs40YcckaOmmsghnCaUkHM6nSyJgWUJq+aHYlSN0wq/39/etJf36+nrF/B3joqXLOXDF70k2LSVA6d9kNQUmcKx1zeR/++23745R918TXeq9YoX1ynZHLimHa59tejqR4iQTxWNqwgvZerqfuk74nU7f/S7x6enpqU1cUGmxzruxY3bd+kyJYG6OE9vkc8AlW3QJfERKhkv31l0P1xVLOJx0Hq+zKyvjtrsSEZe8lJJh3L1OiTRHMAxvMBgMBjeB0zG85+fnb75nF69KvuyCS5VOlg8ZnZN6omxRSqd2jRhTuxb6uBWMu9HycvJALABlXLOzgAnKUbm4A9OpU1G+QxLD7YSmy9rc+fefn59j2cNaOV5wRFqsQIbNJpvOw1D3hSngFdvVfdi0tWJ6ZETF4vTctY4Zy+MadWPkuqtjuua7LNFg6jqFDup/3ZdsMBXA82/9/wizU6/HrqSlaz66YxMuPnZUqPiI2MKO6blt6dHqRKoZv2Zpgysi57bpvnSMKzHWI/E5XsORbXdj1s+6mH7CMLzBYDAY3AROS4s9Pz8fyp5L1r5jeLQeaOnSanKFsqmtDeNMa71Z8LS8yyp3lg/FWlMLFHfdjN0xNuQK+GlR0/rj+VyBa2rp4SSgjhaNdu1OOomm19fX9fXr1xiD1OPQqjsT40ieBbIe/Zv3sN4vsd1icTrGumfF1mqbOo/GuSsbOMnQdVJqyYORhB10W15nwcUKC6ngmGvHrbczBcCuYe8uk5JZjnpdLPz/V1haoYs3JyZHD0/n/UqyXY5x8XvI89Yz08khMlbnnokFSuTtvk8OZ2QQd3BM2ck7TpbmYDAYDAaC0wxPpcWchZB++TvfNq1IWpe0tPS8rl3JWtcWpKsbYmNWxg4VqRaQjTHrPCpeXGOsV9bfdOK6ycLrWm5wjo9YXLt2JwWt2eL4n56etn76JAzuxpks4a7pJGM1FNdVFspmsFwXzhJOMZO6rorxaVysPAdkVm6t6Jj1+CnDtxujuz/6PxnTWtdrh9+FFPfS99L9csLGR2ve7u7uvo2l5lbvX2o/Rg+JO1/KZiSb1rlI2ZOJ6bltORbnIWF2dPLsdCyUY+tyFHhdKTuzix2nVm1HkOKcLrtaX4fhDQaDwWAgOMXwLpeLzc7S9zoLcC1vtSdhUlo3bKehfye1AtcuJjXCZOadjpFxlgItbB5Tz12vqYamqy9L/n73f7L6KMLsrDP+n+KPerz0vwMtYLXIme3ZeQWOgpaorh02y0zz4+J+dZxPnz6ttd5idi7OXNda2yQLu8aj88hmncwg5ee6TWLtSTXIXQebIbvM31QXRbbl1oeOYWelH4mP8X9+FzqGt6ut07gsVXLSPi4LmWM8ogJTSPfS1ePt5tPFcvkc5XWkXIK1coZ39+ziWknZoY7hdYL9CcPwBoPBYHATmB+8wWAwGNwETheeO1dkVwC6k37Sz5wcj27LwK1+thNiVrpd7ihKijG47twRLNatsZSLiePQ91LavhvzzqVZ6FL36cpMJQ78W8dU+zLxRrc5UlB6uVy+62nGomsd35kC1VTEy/lwortJEIDjUXz+/Pm749d9r9ID9jhb66284ddff11rXbsS6ZZX0JVMF3od27lB+VrXV+64GrOTi2MSSK0lJzLgSo30WC45y7kld+hcmkzLT9dxpi9e/U/35VrXJU3Jnetcv0w44lp1bkIeN4l6u+vZJRIq+P3hfHbPmyTJxoQh59pOc08x+LWuBUnu7kY8ejAYDAaD73C6LKEEpBXOciukX/vOIkn/d92k67NdmYKC26Q2MWu9WR5laZRlXWBLoTMF2p3wK60wJkC4wG1K0e6Yckp/Z9mF66is1mcXgL+/v79iGZpsUe+l0ouu6DlZ/1yPTkarLE6ydMdcat4pvVXjqGvQeeDxmOpPVtitHW7rmDI9FbxPlFlzLIRIbaO6bfm/Y2ROLpC4XP63PRDn3Ilss0A+sU/9LD2Tkni9Hi/JdTkWQ7EAjtF9L1NJEZ97ndeGx+V59X7tEmm6UiqOKT2/Fbw/qRxBE4bcd30Y3mAwGAwGgh8qS6C154q6k2+58yvvfqWP7EM2wKJbPY6zPNfyDWAL6fpoTen5Upo4U75dmvWu/ZCLWSWGx7G5WGhido6d0prtioireJixjSOxIOJI/JeMq+BSywtO7mqtN+ann7FFVs1BrR1XvlOfMb7UWcIsd0mlG8p2ahvGP+o8VQjv2FUSJScb7rwDXQlDgePuioeL4RVq7r98+fLtvfq81msSSO7KEtL7XbzRlSGt5b1EqXQqiUvotnzld6+LqSUBeOeNSl6BdOwzOCIyQGbHxgF6HG1eMAxvMBgMBgPBD8Xw6le4LFYV103ZXWew+7XuWAGZEVui1HW4fZk158aRilNTsbyej2wpZVy545GNpPPqNdMqJ0twmX1kgWR6CrK+TsS1rPQuRrC77y4+kmJKtMop/aX7VrZiMYdidLUOnCBvrac6Xu3rvAY7mTjGZZVRMkaXirpdfInxD3oWXMYd2TrZG7N217r2GKR2UfosYAzvl19+aQXnf/rpp6vmulX0r2Og5F/HMguJrSRmpOD3Jnl89O8UW3dreSfezPul9zI9XxyTLKRC8CNzkbIwu+91Epeo71etXSfRNu2BBoPBYDDrJpePAAAQjUlEQVQI+KEGsPXrT6msta4FStkk9kjdCJlXalmh27ItCwV53Xm6a9Rjus/I8BhTc35x1ujxetUyImNlhleyEt1YGXdxdWcpG5Nj1/N0DJVgHIZ1NnqcFBPc1RXpPmQQFbfSxqyFWjPFHCoDt9aQuy9s5loskc1kdVseg1mHLlbE94pZ0eJ2+5SVzHq7Tng6eQVYx+hiuWRVrL9ShlfzVq8///xzy/D0c7Zk0nlh66BdzZtiV9um85S+S87DQ6QWP25913uUMEsMzHmJOJbknXJj5HeN2+o943Wl51w3Fnol2KxY39M5ORIfXGsY3mAwGAxuBD8UwyuUdaPxnfr1ZZyqyyrciUenDEX3HlURHJtJAqwFJ2xc4Hu0vBxzoZWWsvScnzqxnBQXUtCCZ6zliDoHt+3UWTrc39+vDx8+XIked9ZlirG6fcheWHNW7O3jx4/fjcldI8W+dZ54L8nwGMda6zrWwKxJZlO69lSsM+WYXU0ar52ZuHV9mu2Yzusyewu7+A7vxVpv7Eyt9S7++/j4+O1zMvK1rhVnag5T5uiPoGN4R7wciYUk8W39O7X64TNF78Guzq9rBF1I6kOdKtJOsLvLwWALKNdmidnFk6U5GAwGgwFwOobnFCQ0Y4vNLn9EYYXv0xJ2NWeMZTB+4BRCeIzOt52s2CNMKzHW9Mq/FVSDKbiYCq1a1oG5bEfu22mUMgbV4e7ubn38+PFqXahiTWrB1NVQJfUaZks69lRMgXERMiCnH8o1WWzDzQW9AIxrJ6+BjoUqM53uJ61/ZmUyA7Nbd/z+dJl9VCZhPaCrgeQ9cLhcLuvh4eHbWGquNYbHprDMbnVsIymeEK5ezdXbrpU9M4r0mctgPspcCu75w+8y21C5jPLEhLsMX46VHhS+r/vQQ0dPnWu+6zx+OwzDGwwGg8FNYH7wBoPBYHAT+JdcmuWy0ELZaoFSLoYkb9OJuSZ3jQtgkoLTdeFcDAw0p2JypdFJyJj7dMHj3XU5+ZzOhaDn6QpcWVrg3DG7QlPnbnHF/skFc39//y2xQ8egblV2267xMeiu95LuEkojcawu4Sm5pWsN6/kqwYOumNSCR/fvxAL0WlwSAa/dBe6JJLeWin3dWHj/HdI6ZkKNzgm7VnctXirtnN8FXU9VhM7O8HxmOJd8Vyy+lnfnp4LzrnQmiSpTxF6ROqrzmM7tWuAzMiWv6DYMZTDxivdCweujy9GFpOj2pqSYHsM9rydpZTAYDAYDwQ8xPAayNahPCztZUYr060w26BheIRVXdmUQTNPmvi54TNZEuAawPG9q6dEFnBP7dUFmpsZXYsgRy+5MoW5B709npb979+7bHKQ2Tnq8VDjrZLtS6nU3t1wHxQ5qvjpWU/e5GF9iYGtdF9HukiMUqeUKS2dcKyvHiBWuHIbyUBQBcIkIbDRMNuAEgJngcrlctin9LN/QhCcyA5YluVKj1CS20Ik7cH2lRCsHJlRxjXZjZNJaSi7Tv5NABNdJN/4zJUhdcTo/p1eAa4Wvuk/noUgYhjcYDAaDm8Bphne5XNoUZRYusyGms2IYJzhSsEikeJVjCTum5fzhPE5iZ50vnceihe1kengdHHuXMl0sihJwLh05yUF1sdCuEJy4v79f79+//2Zxu6LusuI0JryWl+viGAoppkfhbLfN77///t3Yau26+8J4D2M6TgqJ5QiFznpO1ivHpjGOVLjPYx4RE+A2jM/pe2RTKcVcx3BkDVVZghau63nXeitRoLRgfQdYoK3g84bf6S62mqS/Ouw8Wt1nu8JwVyaQnkXu2ZHKrs4wPJ6/87alNVL32jE8xq0nhjcYDAaDAXBaWuz5+fmKvTkLmCyQDMm160nF24zTOAFjtnJJsmS8Ht2G53WWb4pJdoXASYCVVqE7H6+H21Lsea23ueCckH0rUgZZErh1+3ZWYMXw2EBVpb5Ss9k6Z12HizmlTDQyZRUVr/n5/PnzWuuN4dW+xRpcUfcZK73L4NR9urkt0Gp32btkMUnA3TUv5XpKMUS9hprHuqdsyeWsdBdr7aTJHh8fr2Jt+gxhnJTZfUfWaMpU7rw1nNMu7tcJKOj7TvBiF1NznqzEBvkd6TwnKYO9E55Ox3AsmJJiZHpkfLrPkQxfYhjeYDAYDG4Cpxjey8vL+vPPP1spF9ZXpZiaWkJljaV2Ep11w2yyQpfJk+IvtICc9FZhZ63pmNN1dcw1sc16ZZajWumVvca572TCeH20opwFxbjI169ftxZ0aka61lvsjiwjCefq3ykTjdeuGcX13h9//LHWeps3MnDnHeD6okSWi4/y/xTL67wRPMYRAeAC47/uu0OvQKrD02cAv9uUW+tYcd3z19fXNsPX1WHp2ikGwHYyFLN33zFeW5fZq2PSfY/E8FOtbmJRiiSh18UZ+Szmq2OPfC89qwq6VlNtMmNuTgia2Zr0JLgszfrsjCD4MLzBYDAY3AROZ2m+vLxc1epoPQwz0spaZ4NGtVTq1zv5pck2lM2QtSR/cVeHRSuts9JTLOBI/G/XiLFTZ0gxO86vvpfEYp0FSwuVvnVnDXKO//nnn20chjVaOid1TcWWeG2dJbdjxK4dEbNYayy0HDt1li7WkHAmDlLo1Dh07GtdZ7WmTFLXzJUsgGyE7HetawZXCijF8DrWU/NFEWbicrlceQV0rhkDqs+Sl0PHy+dM+r5yPPqa8hCcpycxSm6n26b1neJy+l5idEc8Symm79YsazTJ8BwzZ8yOLNBlNnfKVDsMwxsMBoPBTWB+8AaDwWBwEzjt0lzrmiqrO41ioHx10kQu3XytN3cEXWdK+Zk+7YoSuQ/BJJxun+RKoJtAXSdpn25MqcA5pe5ruv2u71WXhszPuoAz3Rrd9dzd3a137959m2vKnSnonqKL2blT6B5OST3qGkxj6ES9KQ/GZAm+uuvgXKc+dboN72G6x2tdfz9Td263dpKwAt296kJiOUJtU67NGo+6LXnc5+fnNmnl/v7+ap46+bb6n/KHnXACXZuUVeOY9LUrAE9IJU5dwtvOtXkm8c09B3bCE7wu/X8nTk73f3pvt8+ZUAAxDG8wGAwGN4HThecvLy/R2lzrLc24LCxaf24fBsIZqGWQnSUIui0ZZsExk8TSjkiYpaLUOo8yCVpnTBZwLCcVTrOEoixXl8jD/7vyDs4b75eTqXLX3lnp2j7Iteth4kcVftc+6kkguGaYUOVKaXgf6rxJ0Fb/ZuJEsRmKGOvfTIpI6dvOO1BjrOvhXOi9TN8fJoY4ubXECpgurve55uD9+/ffnZ8F9sp6WTrz+PjYWuzK8Nz3tO4ZnzvFXt36TQk5blteM3EmNX4n0+WK1Xf7urHtEutS2dda+5ZWRzw+qT2VS0Ahg2SJi2u3pd/pKTwfDAaDwUBwOob3/Px8ZSmoRVoWVb2S8VWqsmNA9R7jfInV6HtJAsvF42i1nLHkXCNJ/b+TB0qvrtA9pdWn+GnHElNM0hWek+EVK3Dxs1QS0qHOyTidnovtXxgvcy1QyGbI8I4UHrOI3d1Lbsu0ameRppKFVNTrJLiSV8CV0NA7wHgm58itnSSZ5VhBjf/Dhw/2GLznek5lnTuZKieyXuD8k62TZehn/C53gukEvSfp+bBW/v4lWT93HD4XujlL19WVJRQSO+N1/kgMT+czzXVXynCk5CxhGN5gMBgMbgKnY3hfv369slSUrZGdsU1H156D7UUYc3AZaYzddVlExJksn1ScfiRLK2VSJXayVpYDSvFM1/6ojssGnd1108LaFaLyPLs5pYWo1h5loco7wHY9Ll7CdUUm9OnTp7gvMy9ZvKygtZpi02qR0hJNseqC/k+2lu6/fgeZmbprD6X3LFnWdYz631npzMTm9WjMhTG2x8fHVqbv7u7uKibomtAyS5bSVe5Z5Y6ncOwwsbXuXu4Kzgvu2UGkDE93nN153Ri5D70PbrvkZeOacuLv6RguXsfnQCcQQAzDGwwGg8FN4IfaA3W+fzYfrUy7sqzKaq+MLt2Hlgdrzrj9WtcWDi0DxpkUu/hEV9OSrHOXQUq2wXicqxGjlU6mx/pDZ30m68nVAfJ6+EpGo/u4ayYqS5Nz4SSq2EKo5qDWjjIvZnDyfjBW5GJGXGe0XpVZJCHogrsfZPRkVmT4ekzKq9VrxSa/fPmy1vq+aW79Tem09F3o2h/RsncsjmK+PK6LUTGGu5PxcuLvOu7UXqbGy7Wk42IGb4rH6/n4zNrdW90m1f/p9RLJ09J5YBJLc02KE8i4umzdlGnJ+XPZlUlo2p2Hnw3DGwwGg8EAOM3wnp6ermqA9Bc7CZYWGFfQbVKrDao7dFllyapRFtK1N9JjOAbE8xW6BpNkvWR6LjaZRG9TXZyzJMnKUjaiHo/XkZQQdB/dt8uYen19a/LJzEt9j0yuMntdDDKtmUInrktBaVrNbGSq+7AuLjEx3Z9xJp7PrSHGwMl2GefUv/ldY3yR1roiKW0UU9J55vUVuprLQn23//nnn8PxdtbtKlL8iLE8vQbnbVjrbb6650ViWJ1HKT2jHJtJTK5j6em86TnrridlZ3ZzkTxKvG4X90tskNeg0Gf+1OENBoPBYCCYH7zBYDAY3AROuzT/+uuvNkmhXD58ZZBXXT5MB3dJHGt54ekCA/6Uc1IXAMWqWaDtguL8jK7EVEyu5+N1pe7w+l5KNOgKXDt5L3cM/SwVtHYCuuqW2LkWuiJr3he60ZxYeR2HyVFJNkpRn6XyF/Zw1M8olFzvVxJJSY2tdV1uQTFpQu81XaR0cTKJZa28vigu4JJy6HaqOWK6v3NpMqzAuXelGnrubt0+PDx8Ww9dWQpLPlJBs/7NsMeRgvMC55LHcjJhKVml+47xuZJk6jp3fyG5//WzJODB83buSbeNu2733plysiP36du2h7ccDAaDweDfGKcY3svLy/r7779by41JAkw0cK2ANOC+1rWFVVasS6NlaiotKycfxLGk9kQuFTZZLUwtd8XDZL0MmncFxxxHwVlpSUqM5+kElXn8rqVRsljddl3g3KUtr3Xd6kVBqzwlnrgEBCYTFTsj43aSWGRLlEXTNV3skwkU9D644mUKOLA7O4vKdSwss2DqPoWh9W+uoSOFwDvRAoVrvdStn4eHhyvW0R0/tbVyafSpLIpz4NYq7xnnpxOVPsJqOq+THp9JOm5s6f3uGZKSVpznZHdf3Oe78oru2aJzPEkrg8FgMBgITotHd1I5brsdi1rrWjSav9ZkSE4ANllSR1JvyV4c+0jSYUxDPhJfTJaXO37yi3NczsJhrPWMSHahswJT08YEd99cmyhu40oYuA8ZCL0P3TyxSWhXPMz9a0xskKpjpTRaii93TJ/xX8aFnaB2oeaRbIcxUn1vFwfWe+3ui27rJMzIOu/u7raxmPSdU6Ti7iSZ5UBvDdeQfpbY05kSA16PjnHnPeH96OJyhU5EnsdN5VjdeZgT0WF3fe6Zkpj4EQzDGwwGg8FN4NKxjKuNL5f/Xmv91//dcAb/D/Cfr6+v/8E3Z+0MDmDWzuBHYdcOceoHbzAYDAaDf1eMS3MwGAwGN4H5wRsMBoPBTWB+8AaDwWBwE5gfvMFgMBjcBOYHbzAYDAY3gfnBGwwGg8FNYH7wBoPBYHATmB+8wWAwGNwE5gdvMBgMBjeB/wEjhtYpzsyTHQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu0bflV1/ld59x7695KvW5Sj5CCEBDEVtTWFhUxEGyIQCCgIKBGiO8HIGiro9ugJIiNDx7taLRRkJcQRBTRBgVCN1EQGkGDjR2QIKmkklSl3rmVVNV9nLP6j7W/58zz2XP+9t63bpIRz/yOccY+e+211u+xfmut+Z3PaZ5nNRqNRqPx3zr23t8daDQajUbjfYF+4TUajUbjVKBfeI1Go9E4FegXXqPRaDROBfqF12g0Go1TgX7hNRqNRuNU4LpeeNM0vXKapnmapo+4UR2Zpun10zS9/kad7/2FaZpespqbl7wX23jlNE1/5L11/sYY0zR92TRNv/f90O6LVmsr+/uqG9zW3jRNr87W8TRNXzVN01o80zRN56Zp+uJpmn5ymqZ3TdN0eZqmX5mm6R9O0/TfJ/tPq9/naZpedoP7/0mDuYp/33yD2vv01fl+yw0630unafryZPtHr9r5nBvRzo3ANE1fMk3Tm6ZpemaapjdO0/TKLY/7muKafOd7q69n3lsnbrxX8Uot1+5b3s/9OK34Mkk/Ien73k/tf7Wkf4ltb7vBbexJ+orV/6/ftPM0TbdK+iFJv0nSN0r6KknvkfSRkl4h6XWS7sJhL5b0Yav/v0DSDz7bTgf8e0kfG75/sKTvXfUrtvPQDWrvJ1bt/cINOt9LJX2xlv5G/NdVO790g9p5Vpim6c9J+hpJr5H0byW9TNK3TtN0MM/zP9riFFckfQK2PXxje3mMfuE1Gh94+JV5nv+f93cngP9d0v8g6ePnef73Yfu/kfTN0zT9nuSYL5R0VcsL9eXTNN0xz/MTN6Iz8zxfknQ0R0Eb9V+3mbtpmiZJZ+Z5vrple0/E9t5bmOf56fdFO9tgmqYLkl4t6Rvnef7K1ebXT9P0oZK+epqm75rn+XDDaeb36Vqe53nnPy0MY5b0EWHb67VIOZ8k6T9KekrSf5b0e5LjP1/SL0q6LOn/k/R7Vse/HvvdpUVafPtq31+U9CeKvny8pO+X9G5Jj0r6u5IuYN+bJf1NSW/WIlm8WdKrJO2FfV6yOt/LJX2DpEdWf98p6Y6kf6+VdEnSE5K+Q9JnrY5/Cfb9vVoW6lOrfb9X0guxz32rdj5fi6T4Hkk/K+l3Yp5n/L2ec5z08+9Jun81j/dL+keSbgr7fIqkn5L0tKR3rebyo3AeX+NPkfRzq33fIOm3aRGe/ldJD0h6TNK3SXpOOPZFq77+GUlfp0WyfkrSD0h6Edo5q0WyvW91ne5bfT+bnO9PSvrKVbtPSPo/JX1wMgd/QtJ/kvTM6nr+Q0nPxT7zqp0/u1obT2p5YP86XCPO/7etfvvVkv75amzPSHrr6jqfuZ77LBmDx/zHNuz3pau19thqTn5S0qdgnzOS/rqkXwlz8hOSfsfqN45xlvTlq2O/SsuDyuf6EEnXJP1vO4zlZi33zb9YradZ0p+8EfNUtPcRqzZeWfz+iJZnzRdJetNqPJ+8+u1vrdb7k6tr+yOSfjOO//TV+X9L2PazWljvy1Zr76nV56du6OvXJHP/7tVvH736/jlh/3+q5dn4cVqY7dOS3ijpf5Q0SfrLWu55P3cuor1zWtj8m7Q8H96mRYtwdkM/P3XVl4/F9s9Ybf+YLcb5zBbX7ndK+jFJj6/m8Jclfe11rYPrXDyvVP7Ce0DLC+wVq0X8utXCift9kqRDLQ+ml63O9dbVsa8P+90m6b+sfvvjq+P+tqQDSV+S9OWtqwl8qaQv1/Kg/Dbc4D+u5WX4ZavF8CotN/vXhv1esjrfm7VIrS+V9CWrRfTtmIcf13LTfrGk361FxXi/8MKT9KdW275F0qdJ+jwtL7Q3S7o17HefpLdI+hlJn6PlJnrDaqHesdrn12oRKP6TpN+++vu1g2t1cbWQH5X051bj/v2S/rHbXl2rg9X1ermkP7BaVA9LuhfX+EFJP6/lpfzpWm6sd0r6JknfupqHL9Miuf+tcOyLVnNwf7j2f3h13X9JJ19mr9Wybr5yNf+vXp3vtcn57lvt/6laGMMjWhec/sbq+K9dne8PaxGiflrSftjP5/vh1Tx8zuoa/bJWLy0tKrsHtDzIPP+/avXbm7Q8cD5bi5rmD2gRYM5dz32WXEuP+U9oWc9Hf9jv6yT9kdW1/hRJ/4eWe+6Twz5foeUB/iWrvr5c0l+T9LLV7x+3auubwzjvXf3GF94XrPb9XTuM5Q+ujvlsSfuS3iHp392IeSra2+aF93Yt99bnannefOjqt+9Y9fclq3n651qeBx8Zjq9eeG+T9P9quec+VYva7xklQlk47oWSvkvLy8dz/zGr36oX3mNanr1fsGrnZ1bX9+9oecl9qhbh8ClJ3xKOnbSox5+U9L+sxv3ntRCHb98wp39h1Zdbsf3DV9u/cMPxX7Nalw9qef68Wcs9fy7sc6eOBaOXSfrE1dr+hutaB9e5eF6p/IV3FYvg7tVA/nLY9u+0PCQjq/rtAlOR9FdWC+Mj0fY3rRbnGfTlG7Hfq1Zt/+rV9z+02u/jk/2uSLp79f0lq/34cvuGVX+m1fdPXu33+djvXyu88CTdooUxfQv2+7BVu18Wtt2nRYq5GLb9ltX5/gDm+ie2vFZfuZqH3zTY52e1PKzPoH9XJX1dco0/PGx7+ap/P4pzfp+kN4fvL1rtx2vvB+sfxQ39apzvy1fbfwPO93rs55vwBWG/A0l/Ffu53c8K2+bVPMSX7+estv8OXKfvxPnuXO338uu5p7a8lh5z9peySC22uDOS/m9J/yxs/yFJ/2TQllneq5Pf+MJ71WrfX7XDWH5Ey0P63Or7316d4yO3PceOc7fNC+9dAvtJ9tvXwojeJumvh+3VC+9pSR+SXMM/u6GdlP2ofuHNCqxTC1OftQjMU9j+DyQ9Gb6bpf1etPMnN10PLRqda8n2O1bH/rkNY/xjkv4nLS/Z363l5XxN0veHfV6yOteHj8617d+NDkt40zzPb/KXeZ4f0qICeKEkTdO0L+ljJP3TOeh250WHex/O9SlaJPA3T9N0xn9apO/naWE6Ef8E3/+xlpv9t4bzvUXST+J8P6JFhfbbcTwN6D8v6SZJ96y+f6yWB+k/S9qN+FgtbPW70O79WtQQH4/9f2qe58fRrrSaw+vASyX9zDzPb8h+nKbpOZJ+s6Tvmef5mrfP8/xmLcLJJ+CQX5rn+VfC919cff4w9vtFSR+8soVE8Nr/Oy0PDzsYeD7oqeXv7M+/wnfO1ydrWQec/5/WItVy/l83n7TbbDv/j2pRD/6NaZr++DRNH7lhf0nLPRH7lcxXhq/Sch8d/cVrN03Tx0zT9IPTNL1Tyxq9qkUy/qhwjp+R9Bkrj8uPm6bp3Db9vRGYpuleLezze+Z5vrLa/O2rzy/YcOyE+dq/gV37N7j33OanTdP049M0PablgXxZ0r06OZ8Vfn6e5/v9ZZ7n+7Swp+u9nys8NM/zfwzffV/+yLx6c4Ttt0zTdMfq+6doYVA/kDwXpcWx6L2CeZ6/eZ7nr53n+Ufnef7heZ6/VIvm4TOnafLz+I1aTDvfOk3T75+m6QXPps0b/cJ7LNl2WdL51f93anm5vDPZj9vu1vIwuoq/7139/rwNx/v7veF8H5qczwZ2no9jubz69Fg+SNLj87pROxuHJP1o0vav39TuPM9sd1c8T2MPvota1BoPJL89KOm52MYHwpXB9jNaJOKI6tr7Ork99udB/G5suk6e/1/W+vzfqt2ve4rVQ+WTtUj1Xy3pl1Yu9396dJwWr7vYpy/csL8kvWWe55+Nf/5h5TDwo1qErC/WIkh8jBZ1dRzDX9PC/j9Li+3ukVX4AOd3G/iB/qFb7v+HtDx7/sU0TXesHr5v02Lzf8WGl/4f1cn5+i/X0d8Ka/fANE2/U4vK751ars1v0zKfb9J29+SmZ+KNwi73pXTy/rht1ac4rxZqeX+wzf2Vh26E11A29k347tXnx0hHpOl3aTHrfJOkt0/T9HPXG8byvvbSfETLZN6T/HaPFgZmPKqFHX5pcS4u9Hu06LDjd2nRy/t8b9ain89wX7G9wgOSLk7TdBYvPY7t0dXnK9E/48kd290Vj+j4ZZLhcS0qg+cnvz1f17doR6iu/c+t/nd7z9fyMoh9ib9vC8//S7V+88ffnzVWzPcLVg/s36jlhfP3pmm6b57nf10c9hlaNAfGm59lNz5NywPs983zbCHBTD729YqWF/NXT9P0/FU/vk7Lg/AP7tjmj2mxxXyGFtXpJvilXs3JJ6gOhfh+Ha8VaTEz3CjMybbfp0XV+XnzPB944zRNoxfBBxIe1XJfvLT4fSQs+3n263TSc9Tatzc+i34dXYt58fr9zGmazmoROP6KpH8+TdOvgbZpI96nL7x5ng+mafoZSZ8zTdOrrdqapum3adFtxxfeD2kxqL919ZbfhM/VyZvt87XchD8dzvfZWrydflHPHj+lhb18tk6qMT8f+/2klpfaR8zz/O26MbishZ1sgx+R9OXTNP3GeZ7/E3+c5/k90zT9B0m/b3VNDqQjpvA7tDju3Ejw2n+clhipn1r9/m9Xn5+vxYvQ8EP49Tu29zot6+CF8zy/7rp6vI7Lki5UP67Y3s9N0/TntTCSj1bxcJ/n+eez7c8CN68+j4SwaZr+Oy0PivuKPjwo6ZumafoMLX3VPM/Xpmk61GCc4fj7p2n6R5L+9DRN3z2fDEtwHz5rnufvn6bpt0r6NVq8hr8Xu53Xwqa+UMV1nufZXtPvK9ysRY159ACepunlWtc03GhclnR2mqb9+KJ9L+CHtHim7s/z/NObdgZer+XZ9gd18oX3Ci1OSP/hOvrj+3xtDa2IxU9M0/QaLS/oj9IxE90K7484vK/Q8hD+/mma/r4Wl/nX6FhlZXy9Fm/GH5+m6eu1MLrnaLlZXjzP82di/0+bpulvr879W1ftfEewKX6XFu+8/2uapq/V4uV4TtKv0uJ48VnzPD+17SDmeX7dNE0/IenvT9N0pxYVx+dp9cAI+12apukvSvq70zTdpeXB9y4trOsTtDhdvHbbdld4o6Q/M03T52lhQU/O81ypdr5ei7fgj05LNo6f16Ja/kxJf2qe5ye1SEw/qEWP//e0ONq8ZtXPr92xb5twq05e+6/WMnffIUnzPP/naZq+W9KrV7aEn9Silvsrkr571xfEPM//dZqmvynpG6Zp+igtYQbPaHGl/2RJ3zzP84/tOIY3SnrxNE2frmXdPqKFVf0dSd+jRX26r4XVX9N2rOdG4XVa7HbfubpvXqDlWr417jRN0w9oeSD9Ry3qot+sZT6+Iez2Ri12vtet9nn7PM+Z6ltahNOPlPRj0zR9oxa16nu03F+vkPQbtLCzL9QigPzNeZ7fypNM0/QvJX32NE1ftMv9+F7ED2lxrvgHq3X567R4M/J5daPxRi1q378wTdOPSbpa2eGfJX5Qi5DxA9M0fZ0WlfyeFqe1l0n60/M8pyxvnuenpmn6Si1264d0HHj+eVqcg45s9dM0fY+k3z3P8x2r78/Rohn4Ti1e2ntatBN/Soud/9+v9vtcLcLvv9RCiG7T4kX6+Kqvu+F6PF00iMNL9r1PITxgte33a3mBbYrDu6jlgf1mLbrnh7SEAnxZ0peP1+K6+m4taq8sDu+8Fhd3xwA+psV4/2ode32+ZHW+TyrG/KKw7S4tOucndRyH95nK4/A+TcsFvqTFNfhNWsIUfi3m6juTOTzhLadFvfevVu2ueSomx9+txTvrgdU83q/FSWAUh/cvVMThYduLlMSGreb0yHtQ63F4D6/m4QclfRiOPafFMeMtWpjKW1TH4bFdXz/O/x/SIoW+Z7VGfkHLw/2Dwz6zpK8qxvfKsO3XaFmHT61++7bVHH+7lpv3KS1r699oucmftXfZaMzJfr6/ntFiF/tcLQ+WXw77/CUt2o/HVtf8v0j6qzrpqfvxWrz8LmsQh4fr9iWrdXRptdZ+RYvt5devfn9U0g8P+m6vwVfcqHlbnXerOLzit7+0WoMO+n6xloftD4R9yji8oq2hW70WX4dvXu17qC3i8HD8Lav9/mds/+LV9ueHbWck/cXVWnlGy7PsDVqE0eeM+rk6/ku1CN6Olf4jyT7/1GMIa+V7V+vj6VW7P7+a67gGf8Pq2Les9nmnlpdf6XU++rOL/QcspiVv27dqcZ/95fdzdxoFpml6kRbB5Y/P83xD8hc2Go3GLuhqCY1Go9E4FegXXqPRaDROBT7gVZqNRqPRaGyDZniNRqPROBXoF16j0Wg0TgX6hddoNBqNU4GdAs9vvfXW+c4779S1a0ueWn8eHh7X+Ds4WJIC0Da4t7e8W50mL6bL42/+fiOwjY1yu3y9u++7qQ+jvvG3TeMY9as6V3ZOb/N19HnPnj27tu/+/v6JzzNnzujhhx/WpUuX1jrznOc8Z7548eLa+sj6zTXi9cB1ku3L821z/XexY1/Pddh1zdzoPlfHPJtxx+9cT34e8HuchzNnzqx9Pvzww3ryySfXJmt/f3+O6y9bB1wj2zxT/NuzuT9vxL1d9etG73M9z7nqmNEYdmln01zwOSTl1/jSpUt6+umnNza80wvvzjvv1Fd8xVfo4YeXCuzvete7JElPPnmcDtLbLl++fKKjt912myTpppuWtIF+SErS+fPnT3x6Hy7SbIH6ZuIC54N1mwvkPmU3h4/3Dep9eHN7e9ZHvkz4GcHfeOz1vMh9rK+NBZbYR3++5z3vOdHOnXfeKen4GknH1/SOO5bE6xcvXtSrXvWqtC8XL17UF33RF+nxx0+ms4xz7f6eO7ck7vdD7jnPec6JtrOHn4/xNeTDluOM+1QPBh4bj+Hn6MGaPaBHiO2yD1X7sd3qxePrz2s9Wqu85yjsxv997FNPLQlSrlxZ8hR7LcXxX7x4UZJ0zz1LatXbb79dr3nNa9L5OHfunF70ohcd3Xt+PsR1cMstt0iSbr311hO/eT34++jedv/j2LLf4/+cUx4TUe3DZ1jsY0UUqu2xXe8Tn7WjYyOq9cxnZbZ22A77kQlLPtbX2PD7JJ775puX7Hm+5vv7+3rta7dLVtUqzUaj0WicCuzE8OZ51tWrV9ckxMhQLB15G9/Y1Xnj+a5evZoem0kxI0m3QiXRj9RjFaPahoWSdRpkcbE9znH1mTFY/0bG6nnNrhslVffFUrql9thH/8ZzZDg8PNTly5fX+h+ldF4Xzm0maVeMntdhNE881yZV1wgjNXGFqq/xN84bz53dE6N9svZvFHzfen14HT7zzHFhA69FaxtGa2eaJt10001r7MJMTzqW+s30M7ZEVM+xSpsS+1ipbY3rUdlnrIpjro7J+lGpd7dZ35Vpw+fy9thX95HPEmq9MvUkzSP+tHbHWoKIihWO0Ayv0Wg0GqcCOzO8a9euHUlnfmNHSd9vd+9DCZzbpWNWSGmW242MeVUMbxsnmepc2Xko+VQsJILj8XxVdrq4L1kvz5nZYdgHS0sju4Pbo8TlfZ5++mlJJ6UpS+zu27Vr14ZS48HBwdHYM2mWtgZiNNZNzjCZPa6yV1VraHRert2sj1xD29hSKLlXfY7sg9cgG/smVOt6kzODVF/H2C8zO39euXJlyEDPnj27tkajPdn/m+FV/R6tHX7yfskYHtfdNmuH8zN6vlkDwnnn/Zldl4oVjhyQKqZdHZvZG3leXzf6P0SQ2XmfCxeW6lTx+cfjz549u7WWohleo9FoNE4F+oXXaDQajVOB61JpUs2VqTRJ+enqG9UsNG5X4QGZKpIUu3J8yFRn3tdUuzKcxn3Zp23ckT0HHqfnIqoC42c8xvtUYRaZCmJTnzK136aYHaueoqMAHVpuvvnmYVzS1atXj44ZORVUjhqZGnlT3N3IQF/FiW3jcECwr3G/Sv2d7VudtwpHGanhq99GKs5t1fyZiWCT41hmxrBaPDo0ZcedOXPm6HerLa3uko5VmnSc2EbVRbMB1ca8T+M+VZ9H4Sn8XjmxZL9xn1EYTuXQUqnJ42+8B/j8zuaVfaqemdEsUo2Pz+D43MnOsy2a4TUajUbjVOC6whIYUPrud7/7aB+yGEpAfPtHMIiYkv7IxbgypmZs0YZgSwhuz9/5e/y/MsyOAsPprGKJka7ZGVPmMVUgdexXFbLgz9GcWFImA3Mfo3uwJWz/dnh4WDK8w8NDPfXUU2uhDBGVw0EVksH/I6rEANn5dwlt2cSER2EClcPLyPGJYT48Zpvg+G37HreNHBuqYyjRk/nFvnLNX716dagduHbt2pqzSmR4GQPI+j8ax7bhCXHfKrQl+53zTc1SpsHi9R49P4kq7InXI2OuRrV2M/bGNcn7OWvPz53KcYzvhHj89YTTNMNrNBqNxqnAdTE822ycUszfpXX24rew7X0jCcXb6Io7sqlssk9lLsw+P1kNt8egaNoIjEovHt1oydYs3dp+wc94DPcdBega1LcbnouMwVqC8vm9D0NQYh99Tb1tZBvy2uH54hz7N15/2sAySZssYxPLjefN+hoxkiTJmkeMcpN2gAkC4v/cd5R4oEJlU9nmGM7BKISksp9ltqKY5m7TGLxezewiq9sUmF35EsR9fX7a7jiu+H+lwRrZ2DmnFdOL5+F1r8IEYnu0/1fsM/MdIDifWW5db/OzhEkARuuvSkPmz8jm/dy5ngQRzfAajUajcSqwE8M7PDzUM888c2Szu3TpkqTjN6607n1VJUYdpcCpvG9GNpxK92wJwamHpGNpwdso0TFpcdynCmQls8uS61qa9Xz50wzZv0vrDM/7VHafXYKLPb+R9VJitfRMhhEl+4yxVv2g/dfni33gHFZ2qlESgZEdKI4zbuMnWcDIa459H3mdVtvZbmbL3eR9mnncVl6BVVLhbDxVe5sSDGwC77lNgef7+/tr921cO7Sx72Lj4jOrsrln93TF0rP0fUblX5A99zYlRRh5XNKPYptkDGynSsKdJXKvfhut1U0e5WSJ2b7N8BqNRqPRAHZmeO9+97vXbHeRmZi1sLwMS/5E6dKSDXXMsd34OfIqqiSsuB/tjIYlRx8T+5jZ9bLzM34u9rfaN/NiY2LUWAojbqekGfvo+aSHp7fTiyr2KbL2iHitLXFH+97IS/PKlStHUnSWEquSiiltxmtAlkIpklLtKAEwJf7MG6w6P+OHokRK21Bld87iMcl2N5U/iu2R0VFaZ7841tgX75vdTxWbIivI7KfRvj2S1M+cOXP0DGEZsfg/1wNtQVlfec9yXWQe57ynq++ZfazyKGeJq2xfMjC2E/evGD6/ZxoTeqyTvd1+++2Scjsqx8FYPj53Y78rb/RowxvFR25CM7xGo9FonArsxPAODg705JNPHjE8S/sxDo/2KSZ1tV3MhRqlYylhk+2OUo20rmentGZGkWVNoZ3M53d/YswZJdwq/s59jUzI/7tPPm/0eIzniOd1Xxl75O+ZRxzjCz1Ho3g2Sqj0CqUXoqS1dXBwcDCU0m3Hq85HadxjNLtlCZg41ipLzihjBDMFVeWTtvHSZH8yTzuycv5Ob17peG7JyozMdljZQSi1e35H9j8yFnpXSsfzSDsv119m/433a7V29vb2dOHChaO1n2Va8dqgFyG9q2MfNpWmoe0p3p++Pzx23uO+LvFa0kbIOR0Vqd0UQ8d7PI7D2zwXXEPRFkoPS8+r59qfz33uc0/sF/tdeUzThyFuoz8A2VtcoywZtI3N+KiPW+/ZaDQajcYHMPqF12g0Go1TgZ2dVi5durSWUiwLmDbVve222yRJd911l6Rj9VSk0aao/mSwuFWMmUNIpSakuioGx5sm0+W1Uk9Jm1VlxMg4TpWdx3fHHXeste1PqxY8n57HrO9U33HePCdRtZDVtpOkd73rXen2eB4fu417MNVFUcVEt3PPh9cFVXPS8Rz6GH5SrZOpmLiOPS/eHlX2MY1ahMfj849czCvVcpa0IHNGkMYOCQw78VrxPNLMEJ2AfGwVZpM5Hnj9MhTJ+3AtS7kz0SaVps0gvgdi2JD/91j4nKGqLu5LNSgdj7w9C+qmkx5NKVH1y/VF9SefLXEfo3J4Y7hP3Ifj833G7/F/O6V4rn0/+Vpn87kpWTWTaMS58PP5iSeeOLGPj8mc8tw2TUMjNMNrNBqNxqnATgzv2rVreuKJJ46cFbKUUpYI/BY2s7vzzjslrUsK0rE0cfHixRP7+Ls/LXGZdUjHjhPeRonBko+D5OM+mSE79j1z16WBlFLNKNmppU5K4GQp0rFTjyVXSlz+7vajlEPpk3OSMRfv43m0ZOW+MdlAbNPS7ajEi7TMEecpSv1kdmRpmVs/pVdKrT6H28mcLTxGpkrL0ieRmdD5gs5E0jqDqwLes7RkdFaho4n3zdiO15DXChleFniescw4niwcgn30GiUrjNe60qpk2N/f1y233LLmOOF2pOM143uM2hs67MTfmOLLyBiQ4flhELzXULa+6QhCrUoWJuTzjUKzpOPnaRaW4H2pWfJnXDvum9eM59VzQEeUrORTxTpHITQ+v7/zHZOFSUWNz7aJpJvhNRqNRuNUYGcb3lNPPXVCSpZOMhO7q/qN/YIXvEDSsbRJHbF0zP78aanCEpy/W4qJ7VsSMAMx26Bu/fHHHz86hkGvtOVY8uE4IzK9vpQH1lvCITvzXFFPnu3r75w/tx+ZlyVGj4fhI943HuPfLO09+uijko7n13MSJUj/72OfeuqpYWqxg4ODNbtIlJ7dNqVJMoQsBINByWQvVXkn6VhS9Foxy6UNVDpeix6n58e2Bx+TlauhraZy+c9CDMhGyNYi2/E2ry+yH6+zjC3QvsuwDx+TuZbTJsVj4/q2tmHbpNfnz58/WhceR7R5e6y87gwXiv1mP7m+3EeyLGmdvfgZ4vWQHUOmUyWAiPPk8VSB7VmoFsfHZMvUDmQluzgXFdOMDJb2Ns5RlliEQf0MDctC1hhqdvPNN2+dEL0ZXqPRaDROBXaqd7lEAAAgAElEQVSukX5wcLCWxidK6ZQ4aU/wp+1ykvS85z3vxCf18KOCf96H0itTZMVAd0sD9DJ84IEHThyTeVhRKmP6IfY5O4aeq2Zr0XPV0qt/o/ccWUK04cWSK/EY2lgy+wJtlZZYs2vgYyzZP/HEE8Mg0MPDw7Wg5CxwlYyhSokV/6cNr0omHI/12iSLcjuUMuP5vXa89j3HZsZZcnTaiCpbXlx3lOS53r0+MvsvNSW8FzNv3aqEzCg4nh7R9MajDSmOgzbQDNM06dy5c0Obt68LvRjpVZqxCwaykzVlpbnISGiPi8kYKjAhQaaFqOx9xqa0jNK4wGzsq7S+3qrEz75umd2RfaPnamT1vP4+f5XgP/7v8zXDazQajUYD2Jnh7e/vDxOkUhKgRG8WF/XvltisM/f5KD1bGsiS+dLjiDFGI1sBkyy/7W1vk3RS8rWdyufx+akfz+IMaV+qPMmilELJyfYlz5E/LeVEG6XH7HaZOsvHRCmdjIu2MHp+xm2+PqPk0R4fr0uWKJnsyXNLL97YTyaUrZIsZx6eXF9kxNGzj+u6ik/apqgmE6xn9xO1KP6kvTOyUN43jz32mKR1m26WjorrgPadrLSU9+WaZLxZnAd6aW6Kw7vpppuO2KwZahwzmQ0TY7OIcOy370cmQ+d9E+eCLJBjzOIwyXBoU3N/4lg8z26bzIuJ8OMcU1PhY6ihi+uNv5GxsjD0KK6R5+dY4ljpBcx7Jt7zme27vTQbjUaj0QjYmeHN83wkBVhijJKW397MeFB5G0rHb3lLiJQMLE3YxhY90qjz9bksBVqqiFJMzLoSjzWDsB0mk8wpFdPuk0mSlM4pRWe6+yoeylLiI488cqKvUWoyi7777rtPnH9TjFzsAyVUS+sPP/zw0TbaQG677baNRTwpmcbrwvXE+EUm0JaO590ep54HMq7MfsBEyd6H12eUNcdz6j56XNED1nZQSrO0W7D4rrSeCHyTliDOgZkdE1A/+OCDktZjVaVjr2qf1+Ogl2aU7C19UwtSZWmJv2XlhohpmnT27Nm1tZllFTGY0Sez8bBQqa+/x+zze+17PuMxVfJ6H+vrFNvjfFDDEG1qvkbWBvD5w/biWvV1cV+ZCHpUcNjPWjJWap6yOFqWMqNWIs6J9/HacXtMpJ0V467KvI3QDK/RaDQapwI7Mbx5nnX58uU1L6z4lufbnNlSMo9E6rApzVT5EqX1uBtLY2RPUaqg1E/vv1HuP0sXlrwoOZJZxLmgvYc69SjZ08ZBFkImFUsZ+Rq84Q1vkHQsLd1zzz0n2s0ybZDNUCqN0pSZS5TCRsUYDw8Pj453H6N06fg3rxXaVjJ7lSVdH/uOd7zjxDnMWCy1Z9k+mAvS15Y5XmMfqIVgCRTH5cV96DnMslRZ9hFmoGC+2VF5IK4d2gw9J5EdPfTQQyeO+YVf+AVJ0vOf/3xJ61mPpOP58/WyPZlMPa4dlhS6du1aqR2Y51mHh4drts7Yb2pWquKz2Zq3luQtb3nLifNbQ2JtSsbwaEP2uDJNj7VOtC8z41O8J5ijsyomnY2P9mtmLvI9k8XheW3QO5i2/Pi8oFbN8+l2/fzxp3QcP+l2svPGduN4otZhm3hOqRleo9FoNE4J+oXXaDQajVOB66p4zjQ6UU1kqs3gan/P3E5pEDeNNzWmY0BUE5jqMpg8qj3ZHoNCKxffGMxtis+E2XTfjgmZDVN9qiFovI6qM47HfWZYQmbsZyoxn8PtMDg/jpnJuNnHLPjW13aTU8y1a9fW3KsjfLydbpj0OAuu9VitRrP6iWpjnyOqfCq38FHyaCZrpot/VtWcwfwMjmeAcxwf1eGs7G3EcVFFxtRsTCKcJYI2rMbzevjwD/9wSScTOVCdy9CQLOibzhAjlabBxARxjulAxTmmO710rHa+//77JR0783j9GT6H1W+xHV4zz5PDrrL1xj7zemTPU+9DByQjK5HDxOqeP6ZMi/3y/Pi6e5z33nuvpOP1x6QN0nqCAz8zfU+yrI90PKd8JtEpJ46PjjwjMwrRDK/RaDQapwI7hyXs7e2tGd2zgFJKCgw5iAysSk/DIG+m4on/0y3ZfaNjhXQyUDqel+l7okTKVEt0WWcy6VjCyBKj++LvljDJNKV14zcZBCXMOJ9mN3YwsCTk9ixxxTmjM473ZbByDOlg8GkMOyDM8DjHUVI1g6cDAPuYFUi1VGmJkaEeTEAurSfGdd8qx4c4VjJUBsNmwcNkklV4Qpxjb6vKUmUOVpR4PV+eIxYRzkI1vEa8hshCY3s+P7UCTN2XrbdqfBno/JKlRCOLZfLheIwZCMtEMUzA8xavKUN97OzDhPNxnshgGeCeOSBlGoMIJmPPUnCRfdIBKnOS8fwxyTfvo6wQsJ/5LAbOPsdxMeSEBWDjOXjfbKMdOGp7q70ajUaj0fgAx04Mb29vT+fPn1+TgKOU7t/s6lsVP402ALqdM+iZYQNZgUwGmLpdS29ZuRa6Z1syYRCztG7PYaFPSzoZw4nlc2I7TEMVx8UUabSh0V04S+/GuWFC6GhvJJO0TYxpyKIunVL1KL2PA8+pAYjzyiKavg5mGZl2wOfzemJJIY8xS9+WJWuW1lOaZfZGplyyZMxAbWldC+HfyHyYCi7OhT/NvGk3jX1k+ina0ijFZ0Hrnj+X7CKyPpLZuR0WCo77ZOVziGmatLe3t2bPjmyNaa3oxs/SNdLxfNtWzOtilpslhmCYkGENA1l97BOvu/dhmEo8hqFg7IeR2Unp58DnQnzeut++7tWzi/eIdHx9fQxTwfkz9tnj4jOE2pws6XcsWdQMr9FoNBqNgJ1teNI6s4vsyW9aS6KWypjyaVQYkWXfaTeL0jM9kKhbzyQE2hzMRp02y9szJslPeibSI046lrQs+fgzpsiSTkrAPi9LltDDM5NsKKVT0qcUJa1Ln1nCXCkv5xM94kYs78yZM2nCWoMSKSX5KrEs24h9I/vIvOZ4DSs7XewbWahZs79H5sqUYVki67g9O7aakwxkbmR4Me1Z/F1at48woTH7Ef/nvcY1mhVfzZg3MU2Tzpw5sybZx7XmOSNbp50+zq3/Z0A4NSJZCSNeu6p0UXw2cs3THpp5QrOIKvflmskS63NuWXw5jsX9d9+saXJ79IzMEjkwlRl9MOJzLvPLkNa9n7P0YZEhd/LoRqPRaDQCdmJ4h4eHeuaZZ9bepvE7pXTGcTE1U/yfEik9rrIChpReKrtM5olkFmpmRwaWeROx0CQl1Yw9Mb7Q56eUlhVG9DgseTHOiPF6o75tE39Fe4I/mT4qIvapkrQshTH2LYupo72U3sBR2qO3bFV6JZOeuc48xiptlHTMLmzTMFuih2Jk70xhR4ZKthCl3YpZMYVd5lFMUEuQeTuS1dA2zWTF8bdNRWNHnqSbGN6FCxfWEjTHe7zqJ4sHx5SGvC+ocWFcbjavTOrNhNSZZolxhLwumTco7X1VarsIajXIcsnA4nlYHJjPA++X3e98NlXJxCOqIshMhxf7S5v4NmiG12g0Go1TgZ0Ynr2lWCQwA1kZpZcsdi/z+oy/ZzYcejxVpSOiR6KlFkvltr8wUWvsBxM808vMxzBhbuwbY9lo64geWJY23SfGW/EaZCybnmmMAxvZ0ay7d1/JemLbWR8IJwCmXSdLAEzQjpjZVrlG6GE5KrLLROMG4/OkdcnT3qz+zLzXGM9H26qRJfVm6SwW5s2YUVX81uAcZRlleE/ymMx2TLsfs2ZkXo6U7Cs4cf22YGHoLNaXMXr+PmKbBn0GOC9kytK6t2rleR3B2EPa9Pg8zWKUyQLppZv5RJAFMs40KzhL8Npm93yVdYoMMyJjwu2l2Wg0Go1GQL/wGo1Go3EqcF2pxeg4kdUqMmgYp0FTWjca0xA8cqdnu1QP0tga/7dKk67eWUopqjQrdW6mRuKcVCq6rCI0QzGqhLAZqDKh2iC2RyM0k+5miV/phHHhwoWhWvPg4KB0xY9tVurpLKSBatpKzZqpzqhepSt0VoGaISYOafF6s4t77GNVZ7FSBWcqW9bqI7IUT1yjm1SbcXzchw4Hsb2q2nhVoy6eZxuV5jzPunLlypqTR5ZEgI4MVCNnoQVM2kwX/5EqjiELo+B4OqtQ7c4wLGndNJONIyKr4el2/Z11EKO5x3NBdS+d8vhckNavIdWwo2vAZ5LXOdP9Sesq8m3VmVIzvEaj0WicElyX04rBIEVpnU3QPTdzM6XrPd3DKWVkb3RKCmR8UWpi2ZwYCBnbjxKpjbeUzsmMMocEpkSrUv3E9rLUS/EYut3H9io3cV6byDQrI7SvgeckMgy6n48Cz+d51sHBwZrUn6VEqxyPsqrODJSuEgRkIS1ViAQZXsYKvYYc2hJLO3FcTDPFPtG5IEvVx3AIsrfIuMiI6YxjjBxPNoUXZdoIfq9S3MXjt0lLZzCAPtOyZM4iUq4RIRurHFBGbvS8p/wsZAKHbBxMD8hk0lId4lElos62kcm7r3bWi88YBo9T67aNZqmam2wuOE7OX+bQM3Ly2YRmeI1Go9E4FdiZ4Z09e/bo7WvJNaYq4tuc6WvIvOJvLPa3ydYRUSVGzRie27G07H1oM4z2KjKdKrg7k4Dp9k1JJ0vTw+BwMq9tUoyN2BbPSSZJ+wIl/2zfW265ZWupKwvMpeRGCXx0/c2A2D6l9uwcVXq4zJ3efaEdhOsiY1W0N2YJANge2Z+ZpbdnzJwu6pUdJrOf8TpXZY+y9FeGr4XbzRI3k7lsYnjRd4DtxfMwOTm1BVm4iJ8Dm9ZuFmpEOxU1M1loE9MfGtm1zNKaxXGN7FnVM4OJ77NE4NzXfWeYxyjUhGslC47nc5Rl0bJ1waQCmW9AhWZ4jUaj0TgV2NlLM5Z4MWIwcpUuq/LgicdQ8qHEnwXmsi+UXslQpPVUVZZezEZtr4sljCjpUDJh3+N4M2/W2A8Wd41jZFA00xyRycZxcZ9R+jPasao0SBlzcbqxCxcuDKXkvb29NdtaZL+0T7gvVcqxuC89Ayv7S+bZVyWR9vYsLZ1ZAYOVszRVVfJuXie3E/vI9eZjbDuMpZI4LjI7XrsR02ffuJbiWq5sNvw9m/vocbkpLZ2RrbHKrsOSO5kNl6jsY5ndkmOuEjbH9qok0ln79GysbHlZSkWuZ97bvm8zD0iWu/J6pndmvCerJBAcf8b0eM/zXsk8iUfMsUIzvEaj0WicClyXlybf5JHhVV6MVfJTad3utympb1Zck1Izpdso+bg9S8eWdOxp5+KaMVEymRzj1UZSGtMz0cZhb6nIJCovsyrGKfNiqqTBkb2kshlktin36XnPe97G81ZSerST0puVXmtmVZHV0A7BPvB6jaTLKrYpevH6WrnfXiOeC6+hWBamSrSbxTZyP+/jdngtWepHWr/3GL9IyXvE8Kq1E1mKz5+V7YnItB4Za8/gEkHxPJm2gc8QrqFMO1SlwOJcZLGHVfo2xtHGPnAcmU0yjjvuW3k8jlKLbYpjzhL50yOWtmN+xmP4TOI5s2djZvOM58jSiEUv6rbhNRqNRqMRsBPD29vb0y233HIk5VbxPVLtZZN5eVHioYRAKSrzRCLjymJnDDM4M1NL5RcvXpR0XJo+jo9egIxXqQrCxvOwsK0ZS8Ys3H96plWZCTLPLkqBVSmjeN6K5WReWZ7HLDFvhhinlzH9Slr2vizm6nPGffiZ2cU2gZkhogRO+y6zZLBgr1Rfh0rSzjJReI69NplBJMZHek7c101ZTTJPWfaxKv0T/2d86QhVNpMM8zzr2rVrw+TOjJ3NvDLj9lHbvBdo+4q/GZyfbJ543/ma8d4eaUp8LVmmJ7Md0uuca5Oapgg+s2izHHk9E9tc40pDl8195nm/rR2vGV6j0Wg0TgX6hddoNBqNU4GdVZoXLlw4osam4lGlRfVGFTAZnTyYrqaiwJm7Kyk1VXzu23Of+9y18/jTqrm7775b0rEqIKqyqpQ+VKVmaiOqMlmHzcgMs1X9uE0OInF8VYqhrPo3a5kxSDVLqG3VyO233z50Ld/f31+71pnRuwpLyVQvlSMG+5GpcWkgr4KHo1PWHXfcceJ8VG1nquEqpRsdELJjvS8raVu16WOcCF1aT6iwqaZdphqiOo/XIktHxetTOTFkY92kBj08PEzV4AbvC9Z8zJ4pm9ZOVnct65e07niSObr4GjKhPoO94z1W1cOr1NRxfft54/s0JoiIiAmuObdcO1XoSew/55xOM1mwOp8LPH+8Jzj2bdSqR+1tvWej0Wg0Gh/A2Jnh3XzzzUfOHa7ynJWM4ZuahvtMWqcDCKWXTCKjcZpsytKMJfN4HksNlpbpIBJDGViWhZJu5docz8dwC3+6bwxtiOMiMx455VBK87F0AY/7UaqtgjpHAbWj5NF2K/ccZ9IeQ0kM9iFzLa8cQYzM0E2plSze544ScRVUS2k9C+bNSlXFc2Uu/3YQs5RuRxSvbzvPjBIrVGWBsrVaXT9K4CPWU6Uny+Z+m7SB8zzr8PCwDDmK5yO7qJ4p8fhsbcRjdgll4fMu3nNMhu6QErNzaqXitirR/ai6PdOB8fzZvczEFpXD4Cg8xahYe/bcqZxgMhbHdVA52mVohtdoNBqNU4HrSh7N0hERlhD89mVZiSwId9ugwUyHz7RgZHb8XVqXkhgQ7s+4H1146SJdFaCN+1D6Z0B9lOwooXpfSu9mnlEPzyBsMuPM1deoWEFWwqiyvVaY57lMBRfb5j6ZDYio7FTb2DyrQFleH+l4bsm0eV2i3Y/JsBmATMZizUk8r/tkRmebNAvfSuv3ZVaANfZ1VKKpcrMfhTLQfpVJ4Jl9bxSwfuXKlbUCrVmQ9aYQjCz5QVUotxpXto1rd7R2fK++4x3vkCQ9+OCDJ9rPEl54vTG4f5SYnj4KLKHltRSTJPAa8P4ZzWeVwnAbcF2N/DlGTH8TmuE1Go1G41RgZxve+fPn19hGxtAoefBtHN/KlKgpeZFVRQnIQeP0gGQ7USK1FGgGx3FQao/b3F6VLscSmJP7xr4xwWtMuhzHF/tdeXhWTDqOqyriuU3pjSrpcpYKLH5ukuqqRARSbXska4trZ5NHKveLrKAqJcSUTJkt95FHHpG0HgzvYzK7n6+Drw+1D577Rx999OhYplyypO/xeT3Gea20EERmH6ENrLKNZkypst2xvTiebdiAA89pa4trp/KWrgLCq7Fk+2RMkDZIP++YzDtqepyey4zOn2b0Pic1UNLxOqt8IRggHsfBtWLb4Uhr488q1SA9i+M+VYHj7NnPdVbdx5nPwvUUgm2G12g0Go1TgZ1teJHhWYqNUgWLHDLOItO/V+XkyV6YCiz+RiZHVhOlAEta/qRdcSQ5WNKi56O/mwFEVkAG6X38aV26de3SuvRP2wDjHeM1sJRJ9sE5ycqd8DfGpEXm7vmK3mAjSX1/f79kZBFVwtwRw+MxVWmp7NjKezazdfL60sbG8iqx/5xTS//+zNpjujHv67XrMUSbIT0TOQeUprO4qJEXMI+pStgYGZMkQ8pi6wx7+I7aqdLSVUwv+y0riJr9HvtLG7vvZW+Pmh573PraZV6Z7COZVJVEOrPlVhqzSnskHT87aHf2uqNdNotVrgoIjIoiV9+za83znD17dmt7YTO8RqPRaJwK7GzDu+mmm47esJYqR8lcK8+3+JbeVEaeDC+TFCgB+zOLqaPtzn2LUrJ0UtKilynPT+k8Slpuz8dUXmxRirGkaOnLx1KizxI3mwHT69TjZdaGbBsT2mbJaTNmVElaXjsex0iiN6p4scxbjsdQms1QMbsqFij+5rXK+WdR3/g/r3dVOiv2mZoRej1zv/h/5ek2in2ixqKy+8Y52ZQ4OTsms++MYjjPnj27ZsMbJeiuMnVkmVYqr2Uy1eyZZUbkT997tKPGPng9WKPDzDjR49r3i9eVf6syy8RnmJ8hd955pyTpBS94gaTjuN+77rpL0kl7s6+/z0/vdPc1s5WPPHm5b7WtWpuZzTgmbt/WjtcMr9FoNBqnAjvb8G666aa1fItZPkRKpPTyi5IImZ1ZDWNNKH1K69IZPy2RxFyDjKFiEU/3J/MCc9uU2jOvJYNzUMUMRRbqvlDCok00091XOvsqt13ch/GELEOTFd/dRkr3fqN4TKNiIpmHXRWzR0/BzFbE+eCxRhbjRgbhNeNjow3Pa5BaAd4rWR99fS2tm0lw/rIinkblLTmSuKuisaNcoVVWjuxaZ/akTXlYK+/PCK59tp2xdc4D11QWJ2sm5+tC5p3Zx/ycccFkrxFqoWJRX9sA/Wn7n68LmWZka47VdI5gt+t92PcIZn2i9zbLl8V9qvs3W9/VPcBnVrY2ooambXiNRqPRaAT0C6/RaDQapwLXpdJkoGzmMkqjLSlrZmSnsb0qHRFVDpUrsTFS21A9WaXV8tiz820y1ErrAfMMf8hUNOwbnVbo+ps5gfAaMDFsVEVn6mlpXQ2bqSN8/ptuumlj8uiRuo3hAAzqz0JM6GhC1fJInULV1SipsuG1GENjpGPVEp0I4v9WYdGxiaEnsV9UaWZV0XlM5YpPp4wsNIQhIEzQuylJd/xtpNLc5CiUYZRMgmuHxxhZuEUWNhGROSgxWQTNLVmiBjuL3HvvvSfaY4iLwxek4yQE/ozqTmk9mXgMfHdSfLfrNcR7Okt/xvuJqszsOcc1QrUkw83i/3yWjNIfsr2Dg4Ot01M2w2s0Go3GqcB1FYC1pDBiNZSoKdFlDI+GX0pPIweHKsDYknfWRzqv2LkgS71F5sN26YyRMZfKlTzrW+VazuDljLlQ2uE+Ixde9oXSeTYnvm6bGF5MPG5kbJ2sbMS4qpRElbE7Svh0hqlKrWSsgCEsLLKZlU2pipLS0SJL9VT11Yhzk4XGSDVLy0oZUQvANZM5rWwKTxgF/Y/g1GKjkkRMKUYmnIV8MDlBlcCYTnXS8bWk5oeamQizMIcJ2KmEYUqR4ZnR2WklOt/Fcbo/keFZC+FtVYB7ZFEsMEs2yHNkoSGcP/Yxc14i0+P6GDG90bogmuE1Go1G41RgZxve3t7ekcSQpbXaFLA8Sh5dSRPbSIGVG39me6r0+pWbevZblSIrYwW0W1aBzVnAseeajG/UniVS6uNHzK5yKc/6xnZiEHzVhl3LfU0z7QDZMaW/UbDrpiS0GevhNaULPm0s8TcmVmAITZS0fV6GLlTjHrnvc1xZUeTqWIYUjDQzld10G5s428lS9VWhMxWmaVqbpywZNcMR+BnnvkrbNUq9Vh1Lu3xWANb7xBSC0rFt3+1G+7CLbZsN0obH8Y80Z0xiziQd0nr6syr8pbKZxm20Y2bhDzyv9/E9lyXuJnvepQxRM7xGo9FonArsxPAM6rYzabZiILThRPAtTyk6S7ZaSWeUYmO7VaAxvYgyZlmVH6KOOdPh09uLdoYsqNtzW0n6ZH4RLG9DiTsrmcTfaAuL8+i+eVybmLg1BHHfbbz9qpI1cdsmZJ6ClP65dt3XyPDYLm1cTLuXtU2pmIHHkYVUtmKmforgvGWp+LL943lpm6qKu8Zt9OAbBYgbW6eESmxvUatR3Rdkg5lHOa8/2RvTFkaQ2fEcce69jc8dB4RTmyMd2/3o0cu+0X4W92GSDI8jS8phZmePYtqvR2WWsnRxUu6dSVQ+Epl3PBNm74JmeI1Go9E4FdiZ4e3v759I2inl5UzoAURWGFF5q5G9ZDFQfvPzNybqjdKmJRzvy7RZo4SllQ2P448Mj+wo81aK2+O+TJhdxQxldi1+Z4LoeN0oMZJZuP049+zbLt5SmeS2yX5Ee1ncVnlnjtKEEdvE/hhmY1WB1sjwaE+uPAezpMhcX5Wdc3T9OY9sd8TEuC6y0lLcVsVqZTbxKr51BCY4z46v7G9ZarHKe7Uq5xT3ZRww77HI1mx/8+djjz0m6Tj11z333CPp5D1WacR4zzGWL/bf22iz83YzPemY2bHgLNdMdi9WHvnUAI1iIfn8yTQKmcak4/AajUaj0QjY2UszlukwsvgU2hZGSUfLzhW6YMcBSuuMkYUKyfTiPiyXY4w83iiR0jtsZJtixgHageKcsPwPWQD189a9x21GxeyiNEhJqmJ48VpH263Pv0nSosSd2dT4fRuvucoWVGUmYdvS+jXL7D6cF7KBzCOxYh+VfS6yUNoVyZ4yhkTpvyrTMrKJcr2RycQ1VhUYruzBkta8dTdlyxh588Y2q0xBmWZkE2vx+bMMKGRLZIOZJ6nH7Ji6xx9/XJL00EMPSZIeeeQRSccZUqTj+40aH/oOuG8jtsbk5RlzrUqY0a+BCffjb/TF4HN8dJ35vOZayrDNc8dohtdoNBqNU4F+4TUajUbjVOC6As+pjsyCnklBqT7J1EQjRxMpr0zugEwGb/pcrDYe+8sqwqxmnjlUMB3YKKGtQVUVDfZ2/om1s2y4psqWalirMmL9tSrha1UzUMqNw7F9jyH2kXUR9/f3NyaPtnojc8E3KuN2VsdvlEQ5+x5RJZgeJavm9afKOTuG7VV9ztIoVY5Ao6Tl1ZqsHEXisUwizrng2sp+q+qiZUH/Ua1YrZ15ntN1kpkpMrVwROZkYXDemNg6qnF931kNSTXhqLahnze+Zx9++GFJx04sDlOQ1kN//J0hM1mYis0cdEBhWEI0bWTPvtg+n1Xx+UQVMZ1XjOzaVOs5W29ZOFGrNBuNRqPRCLiu5NF+q1uCiBIpkzVbehg5CNAwSQNwxRrdJ2k9ear3tSQSjbl2C66kCUskcVyUSKvg9MxRYFOarizEgel4qgDgjEmQBZIxZ448FZti5ebI8Ogyff78+VJKd0o6BsNnQc9GxW4yx4MswUA8f5bCisZ09j1La1T1ZRQAXwXcjpxweH5KsFwH2b1BZyj2NUtEnUnUcXsW9F0F7mcsrsK5c+eGcxhdz7MEzb6/q5RvRpbqi/flplSH2VhY1Z7lbrL2qudN1EZZ0wKEq0MAACAASURBVOP7jmWpGAwfr4uZHZPj+3qxXFXsm1E9B+iYEv+vEpuP0tJVqeAyp5Xsud0Mr9FoNBqNgJ0Y3v7+vm6//fY1m0CWkLVKM5RJy7RtMAE07WVZAlVvqwrORj21JRsyVIY0ROmJweNkDhxD5oJNPThtYFH/zrFSKnTfPIboMu19qKMfufZWqcrcRzP3yPAoyY/sMNO0FA9mMdTIvCnNVWnjsn7ThrYpmUHc5vNXSaqzxLVVgLGPyWzGPn8VmuPrFJmL54K23MyeabBUEW1RVWhDBCVslo2JqIKFKxtZ3HcbljvPsy5fvjxMIu7++R7i/Z8F9VfJw8kOPZ8upBrha+gkz74PyfSkWtPie4q2tdhvaqGqtIHx+lTFXPkcyLQ23ub73sySLM6+E/FY2o63KTxd+R1k4R1cm5cvX9466UUzvEaj0WicCuxsw3vOc56zJnFHaZaSoPfx9swuUrEkJjBl8Kt0HLxJT0tLIlF6YR+p//Y5MvsSpXIGVY7Kgvh/f1qC4/YsebT7xCBe95Eep7HfHCel6ujtyhRClPQs4cVxUdof6dFdHsggy439JEuuPH4j6OVF+1GW6IDBu1VC6DguJiXOPF7Z56rsTMW4R0HrZKNGHF+lGWHfMrbm8dEOPCqGu8kjO0suzms7Sio/z7OuXr26ZnOM46qYaOV5K9Up8aqSNTHhhb3D+Wyi53d8xlCrQY/OzBN6kwapWrPZsZXXZJx7PxPMZrOE1vGc2X3lOaHGjMfGfakJrHwK4hi3CUonmuE1Go1G41Rg5zi8c+fOrSVIjp5DlmwsKVQxR1FiqBLkjmJMDEtLjz766IljyMgim2H/q/RTMXUWJRp6YbGPmeTj9hi7xaTS8XyUlqpYocz7kPYsIytESzbgsVuqta4+Yx8V6yD29vbWyh5l66AqL5N5wFbshfa3UToqSs20PcV5qmxpTJKesfWKOVbxS9k+WZkmghIwWVqVaiyCczMqGpvZWbLxZN61xiiGs2J4Wfwv7Ua81zJbUJVajAnp4/PALKwqa+N7PdrjqHGh9qZKDB/7anA8Hv+ItXtfjyNb7/6NGpjKphtRpXMc+Tewv9uwNo/dfejk0Y1Go9FoADuXB5rnec17KUo+zARAySTzLiPjoDROe0KUmpx49R3veIek9YSplsAym5pBrzZLNdEDicmTKw+vjFVZ+nCfyAoz6ZMSPb2zPM9ZRhZv41zTyy2CzMTny2x3Bq/tmTNnNmZa4drJbE+0OdL2OIo5MyhNZnZb7kMGNmLCtL/yWsbrwZjNihmPsomMbJHxXNn5NyV3zjK7bPKWG8WZ8t6oYuLiPmfPnt2a4WUlxowqY5CvU1Y0tvLwo3botttuO/rNXpm2dfEaZ97hZHabPBNj32ibrOKBs0wyni8+CzPmTe0G1w7HELVulT1ulKyc93Rlu4vbq4xF26AZXqPRaDROBXZiePM868qVK2veRJFxmRX57WuGQPtBVsSTUhilG0sTsSS9bXfOaefSG9QxR1uPJR6W3mC8XCy5432jLVBatxFl7fk3zxNjtbLijTyP+8iYIH7GPlGyo50jSk1VSQ+ON5PsIzMaZcuY53nNtpYxb89LlRlkFLNF0LN3lB+V64FZJuLxnidmy8hYYVU6ivNHe1Pch2OP9guOi567/OScZHZNxhmyP/GY6pqPbKFc15sY3sHBwVHfeP/G/myK68s8Rfm9Yk0ZE/Q+fs4xbi1eF9//LM9Fr/DYThVDy/tolLuT46myREWw7Bhj+uhJH8fFtTqyb1f+BYw7zvLnbmLoGZrhNRqNRuNUoF94jUaj0TgV2EmleXh4qCtXrqwFdWeBi6bCpqLenqmWqLqisbtKKh3/r6plZ0HkVOVU6ruMelMtkCXgjeeW6krDniMGXMfz0lBPh5Qs7CIr3RHPlcHnoXqXKocsoDpT4xFWS9FVPUtrVIWJZOev0llVKZninFA9SeM610f8PyvlE48dpbDi+Kqk4tn5dgkToIPBNmWiqgDzUXq3SjVoZE4rVLOPkkd77YzShBnVfZgld6jUhOwvnUqk45R/3Mf35yignk5q2zi8VeEpdKLKArSr8jyZapNhFXzmMrA+PosZEsZ1Xz0rY/853qz4AFWZo5AWohleo9FoNE4FdnZauXr1apmgNf7PtzhdrzM3000ML0tgy1RiNB5nDJCBwEyMyhIcsS+bjOKZ5E0DvX8zu6GUKK3PScWqM6bhMbNUEsMSYh/J7ChF0Ygct7nfWRo3gtJ5dLOvXP3Zh8jW6aZflVHKQjF4XjqeZG7wFescBb4yEJeu1hVbjL9lzinV+Fimh676dISIoRqbkqJXwevxGH7PGF6W1HsU0uLSZLFPsQ/USGwKi4qo1jr7E+9Pz6GZHgtOMwWhtL52mMow037x2E0OT5FR+v6n843nMXuWeYxMsM+0aCyHFOfA4PkzTVA113yuZ4HuWRm3TWiG12g0Go1TgZ0Z3jPPPHMkbWR2noqtVfrxCLqbVtJ5VnrHbvlO6sog9Sid0e7lT4dUUAKKbZKZVOmhomRpKch9sGRnqYm2lnheSnBMZFulOIrtUbJiEHs8nlI5dfpZUdxRQHtEDEtgu3Fs7m9VziRrh9tYnoXjyH6rAtvjmFkChes4Y6FkxxWTyM6ZpWOSxgnVq0BmakjIBOO+VVKEjOFVgfWjAru0I21ieDfddNNagoiITYVfM5ta1V8yhixJPpNimAkxxCVjeFyLTIoQr2WVZo+sKUuwwfRgniP6NWSJFWir8/j8PGVatGx8VWmuuHaqsC7PX2bX5Po9PDxsG16j0Wg0GhE7e2k+/fTTa7r/TAdc2ToymwelL0tYVUqayArMyihFWEJxQcYYIFkFi/pcZk9ROqPun0lVR0VxaU+szhU9LasUVky+nDG8Kjk17WejZL5V4uEsOa37MPICtaedkQWhMjF3VUA0SsBMj0S2RDtjXKu0MfBaZtJ15dk5KsjKY40q8DfzYOY4mG4vJi2gBMwUVqOCwFU6t5EnqcF1RftzlkYuspBq7vb29tJUbSPvWWN0Pcjoq3JBmXaA9jaO1b9nSevJDqtEAfE39pl2/4w98RxcKxnDq+y9lVYqe46zj7zXM22U5433KRNdx77F8zbDazQajUYj4LoYnuG3fZZGy5/06KSNQDqWhujlV3lYRSmOyZNpY8vKEZEpUorN7DC0U1UxJpRus3Gw/EgWk8Yx05bH9GEZG63Gl3lnVQzPOvtReqXoeTuy48UyHlniWkruWfkSHkNPR7IySsJV8uW4D5lPbJ/SclWmKbNXMWVeVdpotHbI7LLYVP7GlFYcwyipcxV/F6X0il3zezzG69afIxuej+W9l6V8Y5+MbbQaBplYptWg5oPbs+ccn0n8zJ5vlVcsj828w9kXr52qHFv8n2uEHqVZqTZe58pLN96DvBeqmN54DfhciPG9m9AMr9FoNBqnAjszvHe/+91DWxCZnKVL67Iz9lRlSzFYUiZKTVXZeu/jY7I4JWbhMGPNMmy4/xWTo3Qe26OkVXkfZvGMUQKW1hme+xUlnIrhbQN6pFHyiudyXzyOuDaIeZ5TSTmCklvF8DLbFz0hq9IkWaFc2scqW0R2DGPosj6TMZDBjmI8KeFXnpZxbulRy8xCmXemkWkoYp84NxxrPC+ZWJTss1iwkQ3v3Llza+snrjU/Z6rSN9m4KuZdZY6J7WXesdnYMw923tN8hmVxn3y+ZOs5jinuw2fuKLaWGgN6kDI7z+jeqPqaMTz2n33PMtbEWORRIuyIZniNRqPROBXoF16j0Wg0TgV2Vmk+88wzR3STqWukdZpMdWUWmE2nispRI3Nlp8qNRtZMrUdKzzp0DrLMVIHcRho/SmFFtRDVX1maLYYsVAGn26R3q6oZxz5x/qhKiN+ZdmqT08rBwcHa+WKfqrqEdFXO1DabjPtZv6r58JodBfNT5VIliJbWU4pl48jOFcHrU6k4429UYVJ1Z2TqySq8w8jmhqATQ7z2VDkeHBwM1840TWuu6zEQvEpQPFIXb5M0IO6XOXdUaa0y1TZDB6qadlGlWaWUI0ZOOVTVjyqsVyESTHA/WqvsE7/HdcC5pQqTz4SISq07QjO8RqPRaJwK7JxaLEslE1EFu9LIGd/KDBY3m6G7fpZqjAzOgeZMzBwlMUorlOwrSTj21biewFz2PUuZRAmHyaKr7bGdSqLM+ui5YMqgUdqlzMA8kkT39/fXqjBHoz/dlr0OGCibBY9XY6sCqTNQKzEaSyXhZpI9pdYq4D0z0FeB/5TOs5RvXMe8pqPk79U8ZczO2+hUwrnIAsVHDDxif39/zekirh2vlSrYOXO6qpyGqJXKHNH4XDOqEKT4P9cM7/9sfRPVvGX70zmnckyJ/5Ph8R7M1kGVXKRyuMvO4+cP5yJjvbGdDjxvNBqNRiNgJ4Y3TUuZDkoMWekGBuaaVWVBt1VQelX6JUtRRFdrvvEzl2K7MtMOlzFJ2ogobdKWliVI3eSGPCri6mNZHiiT6Cp3+9GceF+mDKJtNJM+4/krSd3poTgHWTJnlkKiHSFef7ZHe9moiGyVtot26Mi4GMTL6565/LudkW1QylOZMaC4CrsYaVvYj5GrfgXamTKNAoP7ue6jlL6JSWZgSEQWoM0wId5bsb0q8D7TCsVzxv/JNkeB4Hy+MSXfyGegCjSvkotL62ujYm0Zw6uKBnPNZAkIeN2ZSHsbfwO37/HGpByZvb4ZXqPRaDQaATsxPOlkos6snAWT6tJOkQVdU8dLZkeblL1DpXVPPrKmzEOM57ME4vFYmogSXpVmiEwok9Yo8TBo3OnRohTDbSxlRPYTJaQsoXDsaybB0kZUebBFqYpt7+3tbbThVWncYptMzO1rmXnEVRLuNoGolacl+xbXapUs3Mik9IqFGkxanEmutOWNvPe4T5WEm+2z7YgRG6xslKOA6ur8Fa5du7aWGisLIud88NrGe6zS6JBBZrauKvCfjCjzHfCnx0PmE8dVMbwqiDwLdKedl74K8TnBZ0fl/TxKDUgNDddBpuHw2qF2xXMVn98sHTRKWkA0w2s0Go3GqcB12fBY1mIkkVSST4yhMWjfYYkI/i6tpyjy29/HWKp06R/pmD25DywSO5LoKkZRpZyKv9Fu4b65r9GGx99YHJXf43yyvBKlM5Z3iuMju/G5PM+R4VYlZDJ47VA6z7wZad9jajlfrwiel2wjk1TJxulNmLH1qnQM5zqLM61SLWX2t6q9KpYz62Mmhcft29iMqrUz8iRkuyN788gGZTAtHTUAsU0yHn5m8VxViR1668Y+UFPFZwcLEMc++pN2xUwrwWOqxM/Zdan8DSqv9Ph/5dk9Sm1GWy01WlksJJNFUyM3Oiben83wGo1Go9EI2NmGN8/zWqxWlJrosUk7X6Y3ZrHTKnuKmVnm5WMm5OKtbs/MLurSn3jiiRN94Xgy/Tu9ojZlGsgkkorhMaZOWs82QgnP53LcYWbf2lTQNF4DsrPK62wkQW7KtBI9fLNivlW/jSzrAouZVoVYR7YnHsN1l7FQsjK2n4GSdhWHlzE+96ny9Mxs4lUSbMaSxmu2KRvIKAmzQWl9VBw3s8cR8zzr8PBwTasR14d/Y/+qslHS8b3Fsly+7qNsMnweMH4tKx9EO+PIlmpU2WqqDCURlW2afghZYWYeS/+KLLaS9yfXjuc7Y70eh4+lfTOC59sUwxnRDK/RaDQapwL9wms0Go3GqcDOyaMvX768ZvSM1LyqLcZ0PZFGU4VAusyaY1m9KO9jtaepuFWakfbecccdJ/pUufFn6ZrozFEFhEZQVZEFYEonVU1VYK7bpxo2qpKtRq4CqTOHIYP7eD6zWnZUN1Qu7dIyf7Fu1ShFkduunDuicw9VzJW6iAmoI7iGqHrMVJpsZxRUzvPT2WsUrFzNV5X4IKJK3stzZ45IVRhClgC4cpUfVZcnRmtnb29P58+fX0sfFrFJpZk5hngf1rqkgwtDn+L5KgcQOsJJeRX0iFEyZKo2q+fOSG3Mdoy4dhgITvU3VauZGYZzXoWbZeNhnxmuIK07s2VjqtAMr9FoNBqnAjs7rRwcHKy5t2aODEwlxpIe0bXcEgGrFlMioNFaOpa+KgcHG6SjhHD77bdLWmedZBaZ1MnURTTIZ0yI0hgN6ZkLeBUUe+nSpRPtZK7FlC55rsxlmgHOVTmQLMlAnK+RAfnMmTNr85WVJvE2GuiNuN6YJJzzP3L5Nshq6KaeSZIMPK+uadb/ynklA9cZHWpGTj/VOKvyN7E9nmvkgLKJuWb3UxVInWGaltJAdOMf3Z9+LlQhJ3HfysGJ2qqo8eGzqVoX2X1JTdI2qJ4hWSpDHsMEDjxHdNqp0s5VzC/OA5kdnRAzpykWBmDfs0rnDJ3Yttq51Ayv0Wg0GqcEO5cHylzPM500AzD9NraUE+1IdNu3JOVCrD5X9ranxMvQApYako4lDYcwVMGqI1QpuDJsssf5HO95z3uOfqNdcVNwvG160noKI6NKkh3bIyukxBrH633jdavmbpqmo+DzCpwPMr3MBkIXZR5LLcSIFVSpxjLwfPy+TYHUSkuQscPK7pIxZUrUtO+M1jnHTjaQBZFXqdJGDI/tjbQDZnjU8GTrl3Yk2o+ygHnOJfuRFUr1fUlbFkNZ4rm2LcjLscfzVLa80TnIwBkONWKHTAvHa5CVfGLKxsonI+5bjTMLPK/W9zZohtdoNBqNU4Fpl6C9aZoelvSW9153Gv8N4EPneb6LG3vtNLZAr53G9SJdO8ROL7xGo9FoND5Q0SrNRqPRaJwK9Auv0Wg0GqcC/cJrNBqNxqlAv/AajUajcSqwUxzeuXPn5gsXLqzFVYxiJKo4ogxVHMxpwS5zdKPb2XTerAwJ86IeHh7q0qVLevrpp9dOdvHixfnee+8tcxxmYCxgFj+2qeAnzzWKPdvme7U2n82aHR27qb0bfa9UWUdG9zNjpTZlMMl+m+dZDzzwgJ544om1tXP77bfPd999d1k2iucZfd/mmPcVRhlvbgRu9Pmyc46eJdusnSorj5Ftz+JV77//fj366KMbB7zTC+/mm2/Wi1/84qPky07R5QTD0nGqGNY+Gt0M1SKtAmVHtc2qQOnRxd/lRbspSfEIVR+2WTTbVByuzrcpTVB2HraXJZ52MPy73vUuSUttvte+9rXpGO+991593/d939H6uHjxoqSTiaB5DRlUnwXUOwCYdch8LFOjxSDVqg4dv8f0UFWNweoznq9aO2w3oqpandVsrI7dtL6zlxfXCgOs43XzNXWidt/7TAaQpQQ0rl69qle84hVp/+6++259/dd//VEiCo85C+reVIE+e+4waXf1Isrmj/chX8YjAWub55pRPWdGz6Pq5bFNkHrVbvUsif8zLRirtsdgda8Dv0OYsszn9NqSjmufxnp4n/iJn1iO6cR4ttqr0Wg0Go0PcOycPHpvb69UYcRtFTJVTCWVVexsJAnz+6ii8vWoUKu+VvvFdnZhePyN4xnNc5XCbJf0WkSmvqZqe9M49vf311K9RQmR/eL1yVKLkekw5dpIHVoxq02JjCMqiT72sVoru7ABpqNiuqvsfmLF82qtZmuJSYlHCa99LZnei+eKoPTv1HMZ5nk+0fdRijKOaVTuiPfFplRVWf+qpM7ZNa+uN9d5Nj6mhxvNFf/neqjSeMV9KnCtZJoMpixju3E9UIuyiWFK+bNjW/VtM7xGo9FonArszPBiAmAmGPXv8TeDrC1KBtvq0DP4LV9JJttI6xVbGtkKNzkNZNsr5jVCpTPfhfFtA56vkoxHyWL39vY22iFG2oEqiTNterFEkW13tvOxqO82ziqbHF0yKbZijllB3kpyZ9LoTLIno2M5qGzdb+PcEdsdOQSwACdturEv27BBg9qBm266abiGr127tjbmbZyvRgVSq9JEWeJnHluxw1GC7so2XNlns7YrW/tofVeak9H15zkqVriNZoGsbRuGbmTtZInNm+E1Go1GoxHQL7xGo9FonArsrNKU1t1PM+NhRVEzx4MsnmtbbKuOHKltKvVdRqM3uRSPjL6ck23q8I3cgOMYMieCSr2THeO2WcdtFAbhfbNaYxUqFUn8n44aVls6HCHWDbSrulWa3pfrbKTy2bRmRypNrtUsXGDbtUIVV9zG83J7PIb3U1V3z8juDYYh+Bpn7v12D69CA0YOI9W6jrDTCtXVWb8rNfFI/Vm53m/T/03VtrO1w+9cB9m1rPo0cnyq2uO4R/ctq4pvs3aqUKrqHFlfjcz0wX3Pnj3bKs1Go9FoNCJ2Ynh2WKkqBUdQMqH0F4N5LbFRMq0YUQQlgG0yvZCZkrGOgrkrQ/DIXdfHUoIno82kwU3SWCYBUeqsxhfZHJ0TiCwzCh0bNhmPMxftjAl5XszozOKefPLJE5/xf7M+H0PHgG20B9uExVSVzrnOs2tZOS3xnohz4v/NXMl6/XumMeFvvF+zNcVAc1a8dpB57KOPd8iJmRgdymLg+TahMnHfzGklogoLGGkoqnupYnwZRmEIPFcVBM91n4XObHr+ZM57ldPN9Ti60Wktm08yuerZHJ873IfvAO4XMWKMFZrhNRqNRuNU4LpseNvoZKu0TZnbdsXw+JavwhZiHzaxt7iNAZJRAuUx27haV6BkR/aRSa6U9jYxu8y2Romq0qlLx9K5bTXbSE0jFk1YSve4Mtdrj9Vrg8zuiSeeOPEpSZcuXZJ0bMNjeIIZX2Zb4/oiO6M9SzqeH86Tv5NZRPg8lNa5DjyG2H/aMfmZsUIyPErpDA2I/zM9mNeHGV7so+GUT/70udz3iG1DJ6Rlni5fvryWLm6URqsKnM/u21GoTAXuu0uIEX0H+GzJ2DqZcGX3H2kWtgmdqMa3DRveFOaVtVNpFKgVG/lGNMNrNBqNRgPY2Ya3v78/DKAmO2NQamanqDzfqkDW0duekp33ZbqjuK9BJrSLt+g2Gf0pcTMdVrRrbgqyrZistO5h5/avZ3zbBN+yT9V5rl69epRwOmOZ7o/tcU5K/eijj574fPzxx4+OIcPz+f2dXpwx8bT/5xo1vGZiomQnub311ltP7ONPagmybbyWZKPus7QeWO+58T4eb6Yx4frinDPBexyrP5nc132M7Rnc13OSsfmMXVY4PDw8wfAyj+KKkYwSXlRekpXfwcjLlMdWwescV/wc7VvZl6mVGNk32e5IG0EWWmmLYp+p8fM+9PDNjnG/vXb4bI7j8jqwtmEXNMNrNBqNxqnAzja8/f39oXdmlWqJ7Ca+sakPrmJLMj38tixspKemZLKL/aqKdckYXmWjzOwZlUcXJVWW0cjGlSVbJapYSErnI4l8lFrs8PBQTz/99Nraiecz07LNzuzNjO6xxx47sT3ua+ZDWx6ZXrQnmR1V0rFZziiNlu1VPDaOKyszFM9h1kSWGrdxHzK8OK5NtrtqfcTfeJ2Z2mzknWemR5tl5rnsfff29kqGYxsevZxHzIRtMn4xjmWbBPAVKiY0ui83aawyrUflyVnZoeM+fL5RA5B53FbxvplGieDz3GvUcxJLQ/E+dZ9dPiwbl+8FlgnaBs3wGo1Go3EqcF1xeHy7b/LOi9im+CjtcEYW41Tp3y1NZOyGnmjsEyXTOI7KRmBkXpxVTBDbyfpoiZSSq3+3zjtKOZSwYnLn2Mdt7As+xv2Ic0K2tokZHxwclEmQ4/9mL2Zy0e4mnbTHujAk55BZYKzvzxJPex7IjNyfaMPzeckc2O42sZw+lqwtjpe2O3pncgyxD7TlMpbOdkhLynEcMbZytD22Z0n+oYceOtHe3XfffeLYOBcex9mzZzcyqsqOFc9dsZhsvdHDtWJNHKe0zmYNagAymy491emlHtcO+0aP3srvIe5DdsbnaOxjdZ0rT8/sOcdjPG9ed6NMQlwDLjKeaQd8/S5cuLAVG5ea4TUajUbjlKBfeI1Go9E4FdjZaeXMmTNpHTSiMpQb2yQsNUbJVekIQJVmZpjnb1T9ZHS9Up2yT5l6jwZ0qk4ylSbVnhyHPxkQnO27KS1R/K0KEdmmLtWmsIRr166tBZfHMVPFZ5UFU1dFFYy33XbbbWm73pcB6dK6I4bbq5xJpHV1kPvv+c9UfjyWc8lqz1FN5j7wmlqV7c84J7w/PUdWD3musrVTBUVXn7E9rnOHlbgdq58jYuLpkQNaptLK1IW+llUigswcUt3bHlcWGlQ5b3F75vBENR77EdthsD1V6VXoVjYu922UNN3rjAm6qdrOnpFUmVa1OyOi05J0fL1szvD2qHZnqNn58+e3dl5shtdoNBqNU4GdGN7e3p7Onz+/5hCSuWCT/dFtN0pn1du5ksDisVWAO9lalj6pYp0MJpZy54DYfuUCHEGpaZsE15xjsgBLz1ECqpxHKoYRf6PUTAadGYdj36q2HXjueaS0Ka272rufHmsWDsN9/N0OGWYVXhdZULfbY5A6A+Cl9YBrBvWbccU+bgpD4ZxHduj+04nJ/fCxkT157HfccYck6c477zzxaaaXsVGvUY+dgfx0tIhjrZyifGzGeuN5R+EB165dKx2ppOPQFTqn0HklY4qGf/Na4rMjCxvK7qX4PfaxSixNh404t1XgfBX+lYHPEDqgxWcjt1GrwmuYaXz4nVqdOA/UDpHpjZwOYxKEdlppNBqNRiNg57CEaMOjrcD7SMdSRBXsGt/Y1F1XSU4zJkS346qcBpkK+yCt68ejLcX/Vy7Eo1CNKnRhVEqkSvRLWxFTQGWgvYlp3qSaqY7schWbzzDPs65cubIWyB4Dpn0NWVDW+5DNScfMhsmcadvzeGLxWLMXj8NMjgHuMSyBdphqvmIfyTYYvM1zRWmV19XX7nnPe56kYxbn79Ixy/ygD/ogSdILX/hCScfMjmnRImu11MyAfs8FP6U6vRVDBLKSYD7PuXPnhgzv6tWra/deDNBnIgaWVTLifcl0g0znt01yfKbNanY1eAAAIABJREFUGrXHNULWRM1G/L8qWVSlxYt94zOYz4y4xrz23DevGT6PyNoiqvRn2TOYtkfeA0ytJx1rs2KITtvwGo1Go9EIuK7UYlngp8G3OBndKDVV5WFpZDY92kEoEWXB6pREKXmNSgpVXlEjT0W2U6Uyy+aT80VJMvPsqyRJMrvMzkRd+Oh6WYqOkmPF8pwAuLJnxf5wHViiy7z9GHhfJRGmxBj3oVRrFk2bbhyzpfHKdpvZfysplna5KDXTRug+3nXXXZKO7XIxFdNzn/tcSdK9994rSXrBC15woo9Mh5alluK8Mmm2maV0zNJoA62k9TieOPbKDuW0dEwuHp8PHhMZONdD1EZV5cC2uafpkViV2sm8tcmW6A2aab/YZ2oHMvsYU7z5vCwFlgXU+x6g97N/z54h9DY2uHbjHNHXgloe/x7XjvsWk603w2s0Go1GI+CG2PAyCZHpu8i4Mu8eShyV5DsqLTQqXWRQsiUjijYbgoyhYm1RIqENkqxp5GlFyYV2p8xWUZV4qfoT+09PTo4rzmeVpLjCwcHBkfRPhhr76fOZyVnKM3OJDI8SqeF5crFYs49ow2NfOJeZ7Yk2OrdL6TzOkxmQ7WJu17ZCprjK1oEZDEvvZF5sjD1829veduK8PhcZUzwv2QHv5wgyCNrCacuLffO2kQ3v8PBQTz311FH/fW2jZ7JRxa153jI2Y/CeZnxu5mVK9pp5gxpVkVOfIyvX5HVLzQjLNGVFdvk8y7xA435xn+jNLK2vi5G3tlH5UWRzQ3btcWUJ3Kkx2dvbG3qpnmhnq70ajUaj0fgAx84ML+q9Mw8d2j0oXWTSHt/ufoNbirFER4kxotL9ZtJE5XFEjEpgVMwyK4VSlTWh3joD9/XcUJI1e4htWwK2Ht7fswwVlb2C44pzxes2krIcS+V+ehzR1kU7Cz3FbDfKvMrMGJy42HFZLhob58cws6EU6U+3Hxme9/XaMdskK4jX1EzO28g2KbHG8VEj4t94LWMffX6yDc+Rx2Dm+cgjjxwd+/znP//E+T1ObzdTiuB683g855lWJ0uGPGJ4Tz/99Np9lJX68Tb3gdcragJ4/3FNMstIbI/2MMYt+rpk5Xr8SZaeJTinRocMj0wvi8dlAWAy1uz55319DX0Puq9ZMm4/Z6iZY4adrJSVwWtLjVP8LXqqdhxeo9FoNBoBOzE8S+l+c2cefGQEhN/YmY2rYhlV2RZpPZbG57LkZQkoYyZkcLRBZB6EVXkb6t+zLCYG5y3zAiNTpjcqbRRZjAvn2n22lJ6Vham8LEcMj+fI4LVDyTvOjaVZ2+ropenvWTHI++67T9KxvcrSMu1y8Zqa8VgyNTN6+OGHJeUekLRJU3pl6RePXVovf8R8j9ROSOtMgrY12hBjOz7W5/d2H/PAAw+c6F/sm8/31re+VZL04IMPSpI++qM/WtLJtUPtCr2szRKyGLjouVpJ6dYssVxTPF+VCanKVCQdrw1rA3wOX++RhyfXsb+//e1vl3QcFxm9HMlgq9Jp8VpWnuq89zKPS2pyKi/ozJ+CmhNqMrxOfK/GY9wHa1s8z/YsznIUUwvAvLpZ0e845k3+A0YzvEaj0WicCvQLr9FoNBqnAjsHnmeG5cxBg8ZjU1a6gkdY1WK1DdV0mbqN/WHAcRbsyFQ7VQXyTKVZqRKpJsgCMumWbGRBqwyGppNMFcwef2N4AkunZGV2ODejJAOGr+VoHzse0KU8Gq193R3cTPWKnSximiGnA7Mq09/pGs9gW2m9TM473/nOE+1lgbRM2m1jvvtkJxl/SrWTCu+RzBnD8+RP3yMMw8gSAFfpp3xt77nnnhP7xX2YDu0d73jHiXF/yId8yNExldrY8+btvq7S8dqL6cE2OR54jrNEDVUyB4ZRxLXDcCd/sqwR25CO5796Lvhax/apVuWxVs/HMJFK7clnCZMaZH3k8yALh6rMSkwj6PWYlTLinHs8DK2J/WeyAo/TcxJVw9ukPazQDK/RaDQapwLX5bQySjdFCZEJgLPAzCodGSVFH5u1TxdiGnez4EqjCizNXIoZjEypPAtep2RXMctM0mJfyVwzJyE6P7hdb6f0np2HzhFZSRay9pGE7uBhBl9Hllm5tfOaWuqT1kMLDCYV8GdkGe6vg9NZxobrLs6DQfdpMr24D4N3mSyYQbdxTqhB4H0VnUj4Gxm4x23njLjuzW7MSu2sQK2LHRLi+XwtqnRbo1SEh4eH5fqZ51mXL19ec36J1zxzguLY3A6P8TwwdIXJESKr9j3tMXuNmIlk4VdVomkm8Y6st7oP3e6o4Kz74H7zOcQE//EYw+0xRCwrxuw++dPjolYiS6zu81fhCJu0R9uiGV6j0Wg0TgV2tuFFjAJK6W5KRhRBXTYlX77dMxd8JmBlCZZ4jioMYmQXY1qzUWCklCeprdKfZdILU4dVAeEcUwTtfWSHI9sNbQRZyEFmN6gwTZP29/fX7Dq2gUnHEiHTgZl1ZKmXWOLEkqLPQTtWZF5cbx4P7ZkRlIrN6Oza7iDzaCuqkulWNojIYFkIs5LsI7MhK2SYjedmZAth0mjaZSILpV0+s89LJ5mLpf3Ioqp1dHh4eGJOsiBrFgVlCAjLSMX/mejA56CmKV5Tz23sV+xTplmqND0MH8qSKxMMu8oSbTCBgsHQqXgtqRXisZlmxmA4Cm2Gmd3Pc0L2S5thVh4orusOPG80Go1GI+C6UotV9qUIMhSywewtT++lykszky6qJM7sD8cT+8iAxiiZ0+5FzzeOK0pNZLCVfnoXr6NRkDfPR/tmJn3Su41eZ1l5p2wcla59b29PFy5cWGPR0Q5DidNsholks+TRZKS+hmYVWZJdFmQ16xjZfXyM++rz28PTDC87vmLptI9mAdVMB8Yk7aNCutS6eF6ze5HzyHtulOCAHtq85yPDYwLlbVB5DkrrHqLUWFSB6fG8fK5UhW3jeZm2a9Rn3lv+jd7T2XOA3pjuK5MxZAHa7DOZZTaPXm8VG8zmpCoBx2PjNeCar7xOI8NjQei24TUajUajAdwQhhff2JQIqsKiGUPhtqoUTwSlVErNmZ2psm2Q5WSS/ajERWwn/k4GW6UYyopFVqxvxK4p/VdFeLfxfKrsgPH4kfQf9z1//vxaouwsKWwlmWYszcdX6ec4j9kaYnkjFtXNpGbaCh2n5u3Roy9LaxZB+0vsIyVcS/RVzFvcRu/Mag6ydU5vXa7RUVJkg+sr2s8yL+pqPfK5k9lWabMnQ6G9NjsmG1v8HrfTV4BrnynN4vnZvlk7Y0YjeCzjdNluNh7OW3YvuA8ssstScNkzhMn43TfaxLO1Si0I282KFsR92obXaDQajUbAdXlpbpN9g2/uqjROhirLxyj+z6C0ST386Py0X2Q6+23Hk+m2K51zxij5G/s+suGR5bKPmTTE8fD6jfTkkbmOpPT9/f3hdSeT5/XOvOWqslOUvLPYQ7JCSpO0Q8c+eJtL69j703FYkRUyds4s0OzJ5xx5hbpPbtdMxV6U2fWpCm9yDcW+Vonb6Z0a2+NcV9qJLLHxKEbP8NrhuDKNSFXANrM5Ufs08iSP5+D/sZ3M/l+153VgT9JRAmgyrCqjVOZ3kCW/jueMxzBGj9oV7heP5XOHcb/Z3PC6V97hWRmxbYu+RjTDazQajcapQL/wGo1Go3EqcF3Jo6lmGbm3Uz1QGbjjtiqgeRt1GI/NVBms21Qlfo6qrEw1Km0XSkCVWRVQH8dbqU4rdegIvBYjlXR1/UaB7dE1fpMzDd3o43iYvoru+nQx5//SugqOYQTZOqgCjOnMEvdxuw44N5jGieOP4/QnVV2xj5UqmTUpo8qnUhNWISfZPgZVxCO1a5XQIXPgyJK6b3JaqeYrnq8KwcnuH6qsqbYbqVupSqTaOptjzrcdQxgOFa8lw6yojq6SZse+EXwOxOtSXbtMvR/Pxf/j+alazcxLHF+VHjH2Kc7BtuEtzfAajUajcSrwrFKLZc4kmVQcv2du+5vYIL9nEnflrEK2EP8ns6NBProaV+3QESAbn0GGVyW6jsdXQctVKEXVdrZvPIZzsoltx32joXuTezDTOGUhLZVzkqVLSpmxn2SDI4ZanYNjjims3LYdDVjuaMS4GHRflXjJnDEIpraK+2WVszNso50wkx2lmCOzo+aH7Cf2NzKzkZS+v7+/lnQ7WzubSsdkSeTJZiotTvYM4VrlustSGtLxiM4cmYPGJuex7J72fPF+YWKPbO1UznJVmEr8n+cYPRNHIWdSrh3gNb7pppua4TUajUajEbFzeaBM/5oVH60krFHC6U3hDtvYk6g7zxgSJZGK2Y3CEipJK2NE1INXAbmZzZDn3aZcxiZQsuX/EaNgfEpwV65c2cikPBe2dWVlohyoSnZBe5y0bluoyjdla6tidAaLrErHUrltdz6fGR5tOrGPZHaU6LM0VfytKr2TlZRh+xz3NiEBDOzPWDhtUCxAPEplF9nNaA3u7e2tubnHtcO55f2yDZsdpXjjd+7LkKMs/SKDur2vr1cWlkCbILd730yTVYUjMPQg2i7dF9rUdgkv43rnms1CGfh8qWyx2W/nzp3bOi1jM7xGo9FonArsbMPb5EFWSYujkjiUVrf9jH2oJPlRmQ5KPvTsGwUc0y5Dm1QW4FrpxX1slMwrWyQ9CjPGt6n80IglUoKnpJodkzGvDPM8rwUER2aySSpnoLa0nhSY80XGn60dtlsVWZXWC36yqKW/x7XFQqL8HAVHsy8cVxaEy9RLXDNMg5WxdqOyO48k6ooxZ8wlu6YZog0vKxnj8fN8ZBWZVqNK0DCygbK/1ZjjfkyGTm/dkYcv/SV4n2b3Z2WXJ0OK65vPs8q2NvLFqOZv9Hzg2hylouR9Os9zpxZrNBqNRiPiumx4lZ0sooqv2CYdWeUJmUlR3LdKa5QVfjQsrVvSyRgeE8iyMOvILkImSWmE3nrSuh3G3niU7EfeYGQujDvMpPRNUm8E52JTeqiYINjji2NmKZ8q2Xamz9+0ZkYMr/Ii85zHdcBSRbbdsdhlVjyYoG2XidfjWN3Ok08+eaJPmQRO2wy95mhTye5f9oVrJxY+9bV0ey7fRNtUJqVHe+3IIzWuHc9F5gnLeEHatjat0fjJORixUP7mfsR58v9cO2Z22TxVz7dsrUjjcj3bFJP2M5AstPISz1DNdZVaMfbba4feznFO6Om9C5rhNRqNRuNUYOfyQNM0rdkaMqnCqOxJmWenUXljZtsrW92mfkjrzM42gczWwQSzlJbIvGJ7nCcy5JHOnrbBqqBupsOu2GcG2mqqecySBkcmOZLSz58/f2THoPQfx+wYN44jY97uA7NlVPMUUWkFLIln9oRbb731RL8trdO7baSFqAqlGtkc0+5Mxp8lAPYceF/aYzPmwjlhHBTtaPG8ZiosB5Otb++TPQ+IeZ517dq1tXUc+0BtA/fJnlUc/6i8FVFpDnyOTDtALUClFchi2xg7VzG+LJMMGRGfVZkdjgnB+XzIUMXUVVqj2DY1PqN2rqd48FFfdj6i0Wg0Go0PQPQLr9FoNBqnAteVWoxqm8x9l0ZVUvNRqqpNQYRZwOkmVVwWAGrabjWb1RBZsDpVJpWjQWZMpsqkUs1kbtsM0OV8buM6XTmrZGqwrM5VbDe2l7k9V2rTvb09XbhwYS24OlNpep5iyIJ0PE+ZE0ilNqb6OJuvynnF313jTlp3MMhUs/Ec0vp6o0MDUz9lIQZcI3S/H6V48jxGN/643zbptjJVpkHnCCYXyFRZdKcfqcN9bBVqEM/nbZ63UaB0lWhimxADqoV9rM0j/ozOZ1SDUwU8clqpwiC4nrN1UKkUR6m+/Ok1s43piM+kKnh8ZMKpnlHZOyEe06nFGo1Go9EIuCGpxSI2JV7NgoqroPGK8WVu26NAc+mkFE3DMj9HCU0rZxFuzxJB032/MiJXbUvrCWGzFEbV/HH7SCqidLuNM86m4M9pmo6cPnhead0VmVKmpeYo1VYBuQxAz0oL0dHA3ymJ33777UfHuMI4GRel29gOK1tbo2DmVaWniv97Dsw2yZDi+qZ0TI0F5zG7n+jowCDpyGi5L9fbKAGwUYVu+DxnzpxZYyZxHdCph5qW0RqtnLuqdIVxn00p7bJQIzM7Mjx/xj5WiQbYtyyZRpZkOZubCLIytjdKncZrSgeULAE5SyJxHNmzis/PXZxXmuE1Go1G41RgZ4aXSZJZILBRJYQe6WS3YQpEVQgx01fTZkLJJHOVrsZljIK6qxRZTDQcpcFMny+thwKM9PHVeLIEwNzGfTO3brY5um5eOxxznNcqWTSTEmdhMOz/iDEQZGtuz0GwZnXxN3+SvTNsJYIss9KGZO7xZGWjMi2VzcbjM5PI2qF2o1qjkUlwTli8c1QyyTg8PCzXzzQtBWCrAPp4vqqMUbZ2Nmk8qnCSeB7a9FkcO9rwyJLJjJliLo6H9n/awbL7idgUNhD/r4LT+Zwb+QFUz5IsAUFlX8z6XBX33QbN8BqNRqNxKnBdDI+SYWZ7quxIo2THmxjDSJ+7idllemNKLZSwsnZYpoXjy+wV9Og0Y7Ck7e+ZXWQTc82ClzlvlWdVlOKqdirPxfh/tGOMWF70tCODiKC07GMYrCytz3dmW4jbo8RdjZUepNk8uU8MdM88fCsvxqrQbQQZ9qVLlyRJFy9ePPF7hPtAhsXkxLRvRlTsY2TDY/DwqCgrWdqm5NF7e3tbJawmk9smAUWVgKDyqub/Wf+rQqqxb7T/ZSmzWKqo8nzM2mOSAq9VllnKEt1X14NJ7EfaNmKXpPU8/zbPqm3QDK/RaDQapwLXFYdHyWdkj6viKOJbObNDZN+z7ZXUMNLPWxI1Y7CE5WSuZBixjz6Wdhgmw82Yi7cxQaol70y3zeK0lHiyMh5VEd6RVEaMUpYR23ppSuvsIzIFpmmrEudGbGKiLHaZeUDyGLdPe2lsj9fB62Lk+ViVXqI07TUUj2G8laX2rLxOJZ1X5YIyCZ92OLK4uL7pnUmWzbUqrbOLg4ODoQ0vFojN5q2ysY+eUVWi8SouLysIXaVFzJhSpbkg44uobMJcF5ltj3NCOzPTh8X/aTOubKKZlyafP6Nnf+VlP3oX8HmwSTsQ0Qyv0Wg0GqcCz8qGl0nNlQ1lpG+tysBk7ROVHWYbhlIxnswri/E1tPd53JSMpXUbIeNhKs+yeH5i5PW6qTzH9ei+jSyDzLbHPfPMM2ssOssqwfjEUVJf2gT9yWTOtGPEY7mOyfhckkdav85s1/FyowTn9HSjdJ5J6ZSSma3F8xqPqeJbK7tn3Leyb2d2Js5Fte6ye7FiShmo7cjOxzU50j7w+jM7S5XsW1q32fKcPlfMFsT73HPI7Czx+tMLuCpwnHm4kx3yOzNLxfMwVq/SsmTHMq6UmpvRs2pbT/14vm33l5rhNRqNRuOUYGcb3sHBwZokHLGJcY08dSjxVt+zYyt9/EiXTpbBPme5+ijFWFqiJDyS0ivPqpEXW+U9tQ3rrWJqdmF4o1Iyo77wd0r7mSdsFbeTlXHhXDLfJtlbPJZ22MrzLkrpLGfCYqeZ3YIlayidM8dmZsut4iIz0H5c5Vsc5bjctEYzOwwZTJZrlX3IbNCE4/DIiDJmShZBT+LM05LzU2VPyRheFdvm/sQCsHx2+Hp7PNmzg2uEfR3Z//jsrdjiKAMO2xmhyj7F+zezN1fZtLKsMFnWrm2fZc3wGo1Go3Eq0C+8RqPRaJwKXJfTSkWVpfVg2k3qtQyVu3ZGWysj9TYqTQZ8MiFvFlBfJdfl+DJnjEqVmrk9U53LcYwM99uEcxCbAmmza72La7nXDvuQqSep7qJqaYRN6qhRFfsqlCZeFyd+diJoq6McCJ452tBJgOWC6OgQUQWrO5RlFzU/HS3oJBTHXn0fJV/eFIKUHRtDGjappUaODVVYyv/f3rn0OHIkSThYbBUkSAKkw573//+sPc9J3YIe/SjOYWBV3h/NPJIU5tBLN6DRVax8REZGJt38Yc774cZAwW++H1xpQHo+kjBB3V9rSIlGWhfsfO7Gn57/JFe31nWyz5Gu4ilpheev9yyJcaT3Xf0sudDdmnAtssalORgMBoNBwc0M7/Pnz1fWUpe8cvR3h7SPs+ySBeICpSm42oGptino3lnaZBSpMLz+nCSTOvabWnik8gu3bbqGLvlnl7RyPp+vLEOXWszxJnHvI+A9dm2i0vy49iNkAzUpof69JrroM7FClTkweaArcKawAWXW6twnzwWTJSg1tdZ1YflOJorjrddBdIlqz8/PrWfi+fn5aq7dObkWXbKSkIrEU4G2Y+C7EqC63pjowrIArY8KeszIHBOTdcfQ/2KWHdMjw0vJgC55iWuWiVZOlCMxOpcUxCSpI+/v130PbzkYDAaDwTeMuxrAMhbQparz804mKm2b/u62TVZbJylFK9BZGykOQavFtcBI8QXOhSs45T4pFtH5ujn2WxhSN49HCsPr+KoAsJMFSkynExNIpRFM5xYj64SSK9tY680SdvE4fSYmx3FUa51jYCyP8mcuzsgx6hi8x/VnSn5pW1dwLPD+sNyjE1LuYvvch8/Jd9991zK88/n8el80j04EYVe+4zwKZE2MsXYSc6ktGO9p/ZleAsrtdQ2OnWekjtmJgLBkpvPIpPdKkg1z7CoJBBwRAeE7qnuvuXZKOwzDGwwGg8FD4B+JR8vycTJDjAkd+ZYX0j7OqkgZkC6DUKDlkeJhLsZFS46W5RGGx5iKaxNDRpcYn8sKTQX7u5heB2chO7mj7v6+e/fuUNx3x4QrksxduqddCyZm4CoTUnJhdRuK7Io1kYGt9ZaVR3bI83WMmQwveQ3Wul5PLhZZz9PFZRmrofVef74ldudaB3Xr8enp6SoW1cVudqLO9Wd6ePjucOsvZc+yKNo1ddba0HkU02WWeB1DEosn83JjTBnlXRzOZWG683XvVV6De8+RyaWs/hpn5HfM+XyeLM3BYDAYDCpuZng1hifrtjbVTNYe2YWzBlNGkEDfd92GGVDJaqvH4e+pnUU97q7FiqtFSgKztKYco9zVEXUxHP5+C7NLMVGXdVaZS2J4p9NpnU6nWAu21psFmtZBl1WbPAhkdpUJa91qn2S117VDq1nHo5hzZXhVfJrHq+PgmOvxdV5at671DrMzOQdk0k5Qu5OsWqv31KSazjrGLgZESFqMMn51jlNNGdeSYyQ7L4Fja65NUtpWYDyUsVwnf6bP6Flgey3tU9eS/kZB+1QvWa85ZZ12MbbkFehqO4+0A6pjr/vXWPUwvMFgMBgMCu6K4TF20/lxE3vqGN5ONaFapGJ7tES7Orzk3xe6+pQUp0hs1B3fKVxwH1pUyRJ2VtRRpYtqFTEmmCzjOs8UaK4qPMTlclmXy+XKmq3jTgyv8wpw/AQzFWtzVc6/s8q5naxlHUdjcpmDgrZRLDAp+jgWqnPrfLLglUHKllP152Q96zyOUTCDs3pT6thcrWAX8+J1UUi5U+nhGLt8gLRGXGZiylYk49dY3Ryn7EK33ug54H3Q+qjXoG0Yb0yi6TVGrRg0m1J3aiZHcy3c2krvDD7HnTcqNUuu10XG+O7du2F4g8FgMBhUzBfeYDAYDB4Cd7k0k9zVWm9uLroFu8SQ5FJICRPVrSaXC4tD6aJzLk3S5+SWqD8zeYVUmi6HI+jSunm+I8dNSSpH5N2SO5GJSvUzurgTai9F505zadI7pLIUwiUTpO7oPHb9/Mcff1xrvc2PXIsqPXAp8ypO/+2339Za19feuSDpqqKrR24rl7TCfXV83UONuZO0Y7JEV7TMuU99Deu2R2WhuiJzN55U0uTW1k6uz41/V3gu1N91n+n+pnhFvRaWgOl3jUXr0b0f+A7mHHVuyVQStJM4rH8TmAjTuTQ5drry67V2PRQThuENBoPB4CFwV3sgtsuojItp9Eyb7VLKyUy4j2vTwXR9HssVc7qgZ93GpfonayIVSrptksXrmEQK/KcCzW4bfu7AuU7s2jG8I4kHl8tlffny5Upyqc4rU7CFLuEppZZzrZDd1M8oqpuEc9d6S+qgODBT/N3a0fEoQkxWuCuyrdu65J9dYhVl1rqELoFsoFt3SaTBJbo4Sax0fiYZubUjJG9NJ6fF+52Sv9xxU5mCe29wm9Seqo6FrYsEiojXfXdrx70b+dzT08OieXdP6f3i8+sS7PQZSyj4fz0u2fsRDMMbDAaDwUPgZobnSgKqdSZLS9/U+ltnNdfjp/Ou1fv96a9O6a5122QFdlZsig04a0lIx+ffXSxlVzR+TxG54O5Bit1RWLduU+OnXTrzy8vLVYzIsTWBzKBLo05yZCzyrsXKKeVeTE/n0e91TFVurO4ri9tZzbS4U2G9Y4e0dFO7lrpNajQrYWsXe01zTUvcMZed/F4FmfnHjx+3ZSeMUzmhht1ad89LijExfs7xVKQmuDWdntsmtuYYS2KofHd0Mo/0SlCAoP6cpBk74QiKbwiMlbvcCIolMGbt9nEydzsMwxsMBoPBQ+CuGJ6+1ZXl9fPPP79uw2JKFv5238a7eFW3Dy0EWkKd35hszTExZ0nXbVNLDHe8bmzCzj99JB7H46ZMtvozrzO1tKk/O9bnxuSkx5wFnFq7uEzLNLeML7KdT91H61isTYxOFqlr26R50fEY23OsieuLbETHUOZdvY6UPSl0sVUKW3ftvVh8T0+D7lfNmhMz2bUScsLj+v+PP/7Yvht0HJ2vsmwy01usfiF5b4SOCTH7WPNY7wvXKOPllLqrP+9k93QsZe3W8TMLmdfVFfUnQQ/HpJOQQxKxrn9jDI/7OIHrKuu3K5R/3ffQVoPBYDAYfOO4i+HJmpDlWC0tWV+KG6RMofqNnOJUyR/v6mFSLVVXf5MEml2NXWJ4R+r+uliAO6YbI9HF41KLj042iJYj5Y5cvJa1QZfLpWV4Toi4y/Jfq75BAAAQXUlEQVRKjNRly6XYncYoFlcbswq6RrE1SjJV1kN5Oz0DOj4Fmuu2vE7Ka3VZyDpvstadOLruma45tbBxGXCs9yN7c/FmPuuJ0ax1LbLdWemn0+mr1lKUyqrHZvxyJyPo/sbnxmUk8nnXdVAI/Oi518q1vWtde65SrM3lKtALxvG4ONyuTtKxRX6W2JvLQk7/O4Z3xPOXMAxvMBgMBg+Bmxjey8vL+vvvv18tAsYx1nqzjvUtLuu2UyBI39jJInIxHFq+u2zB7nNn+XTZpWv17DDVobgmmMIuGzPVHXbbpDZFdRsyGLK4yiQYK+qyNL98+bI+fPhwJXrstk8ZvanB5Fo5LqHxa42+f//+qzHVfanuwNhUBeNjVFqpa5RZcTVTtP69sh1C++r54tqp94XNaZlRyga3XR0TWaBb30ct7hrP0v2oNYHdM/v09HSV7VrjvzoOnzUyIBeH2z0nXTYjM2FZf9w90zwPmT+vv4LxP1fjSW+He4brser1dM/aWn4daNskku1i8Cm+Rw/DEXWWIxiGNxgMBoOHwM0xvM+fP79++8tKqxYkfdlkeMw2q+jibXVf56emr9dpNRI7puesl38Cqr8wI+lIbROtNmeJHam34+c8LjVKu/hSjSd0DO/9+/dXjLRmlbmGq7vr2GkaMquyWsBatxxTasmz1jX71HyI4bmYB9WAOKe8x67hrP7XebpMO8akGX9lvVRtYZPqZllDdUTtRvPIeOda18o9uwxN/atzURleygPosja7rOUK9y5J3hKez8VHBbK0WzwYR5pWC4nBOtbbPb/1Gsjm6t/4O2PhTs+WzwCfZ+cxS++JDsPwBoPBYPAQmC+8wWAwGDwEbm4P9PLyciVVJDfLWmv99NNPa603GsuOva4FTHJHpESXui9pcgo4u+PQDZHSduu4U2CbY3OlEzuZpnq9KWhLGu8EgN346zU4N08Sie5cmrs5qXh5eflqnTj3BtumMLFF21a3JNcIXdt037j0/SQtJRdcdVNqfdONR4GFbp6OylK5z5L70M09XalHkjQ415oLumqdu59rhC7qrrVUV9LC82mua4G+Wi+57dfq3WC7QnNXlpCeZSaz1LlNIhy8D259872S1lKXLMfr4jPfjX+3ZuvPlFVL5Ql12+SKdmuCz+0trs1heIPBYDB4CNzF8GjJ1bIEplZTTFqfd0LJnfAz/05LtCuuJtguIzGxeh4yBY6VVlz9mdfJdPsjEmP3FF0mBlbniIXavH9kemtdW1pde6CXl5f1559/XhVQV4bH0og0L3UMvCZamV0iFJkdC85dMW+SsqOlWtmM5o4MNlm1FUmOjAkvzsolk6AHw4kp6LPkOXFzonOT0SkpyAmPszB8Jzx+Op2uxlaTifR+0Tl3ZT1r7e8Dn3VXeE4pts7bwblMHiXHnp1IgDu2S16hHB2v083N0Xew80akspeukS7XeSeoLtT7M9Jig8FgMBgU3FWWwLYq1boUw9M2tOS69NkkdpysgPo3Wr6db3vHAjv2lKyiTqh5Z3101yUkmbAOKe2aMaW1ru8XGV/X7HcnQ6Txf/jw4ZU9yfpzBdq1VGEtLzBN0OJObUeqhazz6LNff/11rfXGHMjI1sqxG56nPhOMh3btjogUn2Acvd4XxnlSrNUV9fL5JGNmfK5+RvaRrrv+fFTk+XK5tCyG95fvqE4KiyyKY3LPC4+XxOvr+XZMy70HeJzksXDxXyKVJdT7ksTwOXY3VsbomMfhGN7O69WVTtzizXu9vsNbDgaDwWDwDeOuBrAsXHVNNRNj2BWXu21oAXX+3CMxL7JBwmUm3cKs6vm766DF08UZUkaXa/GS2GEqWq8/p4avLtOOWV5dpt3Ly8v666+/Xi1HF2tJEkRkby6Gx/udCllrkbWYnDIvf/nll6/2dVmaXGcpVuSyCms7kw51DrsC84oaz+IcuPjrWj5TNon2cv3XayAjZmsc5x3YxaQqTqfTOp/PV3kATjA9iThQKL5eU3qvdBnfbGrKtdrF8shmungjx5i8XkcypRPjd++qdD36O9fJWm9zkdpFdc1wk1hG8tjVsXSs9up8h7ccDAaDweAbxl0xvJTFtNY1wyMzcNaUs77qNh0bpNVyhBWSoSb/sbOWkhRO54dnTV2yQjtGubPgnLXL4/J+1X1ohVNOyWXa8d6ez+c2Lno+n68apda1I2Fp1u90otfJSmYmnMvs0/yrgbFiep0QOK+dlqiuzzUc5u+uJnWtY16EJKXmjseYHT0LleFpftKzITj5M8qtKXvbxcCEIx6f0+m0fvjhh7beKokQc2zuPUCWkbwq9Z46drxW366HtbS8H05cOT3L6T3g3iFpXzcnO4+F1odjbYyJp0zmLmZ8hNnx+Tyfz4ez1ofhDQaDweAhcHMdXle7tdabhctYEH2+rv6KzNGplnAMKRsz1S+lz9y+DqmGhedzFn7HGNJ5hJ31WcG4FjOeXAyTsTpmcLmGmqzH/PTpU2Qniv+yCWyda60NraFbsjN3qjyuHVGKOdCCdIo0ZDNsitzd41sUaoQU63Jrlq2yGENMzV3rZ6kdkFs7vB4p6uj/LoNQ3oGucerp9B/haJ1HY6zZvMwI1dqhiH1975Ax8hqT2HY9TlLAEdy9TQo/jknyHbirL3Rsje/PIzVuvFeJ2dVnlJ4ZvuuP1JuyPZnLnaD36fn5eRjeYDAYDAYV84U3GAwGg4fAzUkrX758uUrqqC5NdlmWi4dJA10Ppp3brhNKTmnUR4RpO6mnlJ7LYxyR6dn9Xj9LhZhpztw+SUC5uhddcXDdly7PNJZdWYKOwx5ZdV+6p+i2dIF5rgm6XOiSqWNIEk/OZc9idP1OwYW6D8sQksQbXXYVTJJgTzjnQqdbkq5O1w8vuc70uSvG5zPOLvMUE3Zj6BKetD2vq7pB6XpnSKVzS9INqeMzccJJDTIMw/+7InkWxzMUweuvf0tF8q4/XSrZ4Xbub6lruebR9bNM3cu7sivCyRZyn/rOHWmxwWAwGAwK/hHDc0F3pmfLipEVSWu2/pyCq2Qd3bc5ZZU67AKdnUVySyp5SnQRUmp9/VtqMePkgXi8ZC25e8CAMIPxla0ckRQTLpfLV0ktTPpY65ohsCO5LPojDI9dy2srGYFWK0tpyBLqZ/pf61wJGhRPr8dNSQq8L85KJxurrGytr9kOz+M6hNdjdsXfTOQRnCzd77///tX5yWyrQIVKUHTuLuFprf/cIybZ1HnS8bRm9D+7rjuPQmqxlGTj1rp+ll2rHR4zlVC5bYkk+cY1VO8l31UpecmdJyU20VNX1xQ9E+ldXK87tWDiM+Lkz3iMIxiGNxgMBoOHwF1lCZ1lT+tYVp0sbMfa2GqHVntiHWv5MgBus0OS6XHbJOmytL3bt2N0wk5CrIvpJQbO++YKuHds0BWe19jDjlnrmilQsNa1RJXiA4yXudZLZEKyNmX5d9Zsan3TpZRznfP3el1kx2S5HevdWdouvsQyAFrjjIW5mFGSn3IxcW374cOHr/5Ga70yPsc6d6IFfF4qoxDj1bXqvrNMxDEgChykuXWNS1OhtIvHdaVE3edrXc8l35mdHCJ/5/vOFbpzvo7EjgWW83AbFzOkKDnXar0uxgS7tmTEMLzBYDAYPATuagBL37wr5qQFTwHbug+ZYpLvYtv5uk3KsLynyFtw1tLRAkd3HDK7xBrXyu1TaFF2WUypwNntw23J7Jwv3TXzPQrHTCnWLCtd1rvO5xgJx0ArU/JhXfEzY09O5DlJRyXZrrpPiql2Wbs8XmJ8NYbH4mBmozKW44p66V3hPXAeBRbhc127NmI67qdPn6JX5nQ6rXfv3sUMwnpsxm71v+KLToBCc6djMNbZZcKm+HXHOI6ykXr8JBJ9RJ6QjCh5RdbK8oeMZzrvQBIQcaIPBN9JyStWQXH0IxiGNxgMBoOHwF1ZmkT99k1tZZi9Wa2oZNnRT+781LQqGNPrBFJTDIXHdtjV0jkLmFYhLa2uvpAMi1ZNPR/jCYnhOTHeVE/UxQqFXUzy48ePV5ZjXU+q29I2XCuK6dUYFzM4U/2Yk0Kq0kRr5fVWMyJTTVMnR8c1mYRxXUNWjltzoDGptVGthyIzZs1jd5/4jOl/emhcPWaqN3QxUbLoXfz3fD5H0fV6bWRjYheaEzG9ug3nQ8foYoaJzTAO6NbFLi7q3lVCqtVztZuJnTEmWeOaZHD0BjCj13nbyNLS+67unzxoZIlr9VmfOwzDGwwGg8FD4K4YHuGYAq1YZvnVfVILDPqYO5aRGJazsFIWXmJE9fg7VRZaNd11ddmaKfuqY7tCUktJbNEdJ/nOXWZniicQT09PV/NXa7P0maxxxdbE/FzMaXcfEvNfK8cWmKFWx0g1CY2R8bLKCslm2MC0a1bM45GxKPu5MjxmZepvGntqAVXBeyuwvVOdA74H2PTZPROai64W8HQ6refn5yuG4t4hbFwrME5Xt9m1FiNrc9eYaoVdnJFrtovLpWeZ1+3A+G5qyFrHmJhdqvvrMnyZ/erqrdPcutZzAtfrNIAdDAaDwQCYL7zBYDAYPATuSlqhq6KC7sckHeNS4gUWI6ZUVbdtkgfqhKA7V2ZC54ZK50vB1c7tmvprpcLTbvzJTVXHmP7v3AbVRbpLuaZ71RVZ051BcWLXJ09uTyYtdEXkmjsej6ntrjieklWpaL6On2UPqdC9unw0BrpMUxJLHVvqys3nqiabpCJ8SgV2Ls2U0OGSjeq509p5enpa33///dV11O13wsVCLd/gGFwh9lq9+47rjHPrBKfp2usED1yRdf1dcAkhnAs+G5wz9zcel++diiSd14VSurmtf6/gd8stZR7D8AaDwWDwELiZ4X3+/PkqecSxGYFpzO5bmcHzFMB0KeC7lP8du0rXSSTrRWChs0st3hXJd4XnnDeybCdSe881p+ScjhUm8W+3fZewQytSkDBzl3qdWrkwlb2yDBYeKwGEVq6TlGLRq7bR75VxHWV47n6xu7fG2on4MrljV1Bf5yQxFK7Dug8L9xMLqXAtqrrC8+fn5/aZJtOiPJgrg6EAN9mL/t6VYlGgO3lmKrgmU1KZO08qBXKerFR+0LUHSuUUfOe7Z53vAW57ZG449iQduVbvsYrHPbzlYDAYDAbfMG4uS1jrWHwnlRp038r85qf14mKH9IuT6R2JQXGMTrA0FacnxnekHGIXB3Tn7USjOaYufrU7Dz93Vq4rik3+dMV/aQU61iaQtbFh5lpv1muSUaN16cYvy5fp+4KzLimCzaaeNYYnhkrZPa4Dx/SSaG8n8cRrpZeFMbVadsH2NkL3/Nb9HZieXo9XSzSOCj0cid1wfbl4peYuPUtM43d5B4nFHinuT6n+dV++E8kKyYAcw0seBLeu031OZVfdPThS2rTzQnWlSNUzeDSONwxvMBgMBg+B0y0ZLqfT6V9rrf/77w1n8P8A/3u5XP6HH87aGRzArJ3BvbBrh7jpC28wGAwGg28V49IcDAaDwUNgvvAGg8Fg8BCYL7zBYDAYPATmC28wGAwGD4H5whsMBoPBQ2C+8AaDwWDwEJgvvMFgMBg8BOYLbzAYDAYPgfnCGwwGg8FD4N95WEo6VJvZuQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1134,7 +1852,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYZFlZ5t8vt6rKrL2reqFraLpZRMStZVPURkXgcVQEBJmRkRaVxnV0HBkRFPDBZfQRBhjRdqNtRUFURGVYZGnbVlARkKWFZumN7uqlqquyKjOrKrMyz/xx7htx8otzIyMyIyIj4ry/58nnZpy4y7k3zr33vN/3ne9YCAFCCCHEuDOx3RUQQgghBoFeeEIIIYpALzwhhBBFoBeeEEKIItALTwghRBHohSeEEKIIOn7hmdl3mdmNZnafmZ0xs9vN7K/M7Gn9rKDYPszsOjMLZvZFM2tpK2b28ur7YGZTSfltZnbdJo73kGpfVydlr0iOEczsfNX2ft/MLt3kef2kmT1zk9veYGY3dbjuWN4zZvYk95ucMbObzewXzGyXW9fM7HvN7H1mdtzMVqr29GYz+6aa/f9dtd//3uN6P8TVu+7vhh4d75HV/p7bo/09prof9rryndVxfrYXx9kqZvbM6vf9XFWvd21hXx+o9vGyXtRtauNVADP7CQCvBfAHAH4dwCKAhwL4zwC+GcCmT0gMPUsALgHwTQDe5777PgCnAexx5c8AcGoTxzoK4GsBfD7z3dcDWAUwDeBRAF4J4GvM7MoQwlqXx/lJADcB+MtN1LEjCrlnfgLAvwKYBfBUAC8H8DDEdgEzmwTwZsT28IcAXg/gAQD/CcCzAbzPzA6EEOa5QzM7gnh9UO3ntT2sL9tXygcBXAfg2qRsM203x23V8T7bo/09BvEa/x7W1/FcdZw7enScrfIsAF8O4B8R28amMLPvB/DIXlUKABBC2PAP8UK+rea7iU720as/ADsGebyS/xAfBF8E8F4A17nvvh7AWrVOADDVpzq8Ird/AD9YlX/pJvZ5G4A/3mR9bgBwUwfrje09A+BJ1bV/sit/Y1V+sPr8surzs2r28xQAs67sJdU276iWj+7ztQkAXrVd17LLur6oqu+R7apDh/WcSP7/MIB3bWIfhwAcA/BfqnN+WS/q1qlJ8yCAe3JfhKR3bWZXV/LzGyvTzUJlxvjNjKnjlWb2ETM7ZWbHzOz9ZvYEtw5NJ880s981s/sB3Ft99wgze1tlLjprZneY2Vudae2wmf22md1lZufM7NNm9sJOTrja9g1mdme17Z1m9kdmtiNZ52lm9sHKpDNfnfOXuP3cYGY3Vet+rFr3o2b2eDObMrNfNrOjZvaARRPiXLItTTA/Ymavrs51ycz+1swe0sl59IjrATzLzNLe2vcB+AfEl8c6zJk0k3bxBDN7U/Wb321mrzOzncl6LSbNNrCHO51s/1gz+/PKZHbGzD5TXd9dyTq3AbgMwPcmJqy0rl9ZtavjyT5ekjnHJ1ftd8nMPmlmz3CrFHfPIKo9AHiYmc0A+GkA7wgh/EXNdXhPCGHJFT8fwKcQVTg/bwtm9iEze291Lf/dzM4BeEH13U9V358ws5Nm9o9m9hS3fYtJ05qmvsea2T9V7ecWM3vBBnV5EYDfqj7embTdiy1j0jSzX7Vo/n9kdQ5L1X35vOr7F1THXai+v8wdz8zsR83sE1Vbuc/MrjWzfRtdt9C9xSXHqwF8CMDbcl+a2aXVs+Ro1U7vNrO/NrMD7XbakUkTwL8AeL6ZfQHA20MIt2yw/h8D+DMAbwDwOAC/AGAOwNXJOpcCeA2igpgD8DwAN5rZ14QQPuH293oA7wTw3wDwAfkOACcA/DBiT+BSAN+Gyi9p0c59E4BdiCrhVkSzy2+Z2Y4QwuvrKl9dtH9CfGi9CsDHAVwI4OkAZgCcs+iHeQeA9wP4HgC7AfwigJvM7KtCCHclu3wYolnrlwAsAPg1AH9d/U1V1+VLq3XuA/BiV6WXAPgYgO+v6vHLAN5jZl8WQlipO48e8heIv+V3AfiT6iX1bAD/E9E81Sl/BOBPATwT0QTzCsTf8OUdbDtpZkDTpPlziA/GTybrPBjxOl2HaGr9MsS2dwUAPnSeAeD/Afj36vgAcD8AmNnjEBXc5wD8FGLbfDiAr3B1eSiiqe1XENveTwN4q5k9MoTwuWqdou6Zisur5UlE89t+xDbeEWb2eABfAuBnQwifNbMPInZMfjaEsNrpfnrMoxHvy19EVO33V+WXIZpBb0d8JjwDwLvM7FtCCB/YYJ8XIHYif6Pa5wsB/L6Z/UcI4YM12/wl4vV9MYDvTOpxHMBkzTYG4K0AfhvxmfMTAK43sy8D8HUAfgbxt34t4r35jcm2rwHwI9XyfYj3+S8BeJSZXdWjl1q+0mbfAuC7Ea99HW9GvI7/A8BdAC4G8K1otvU8HcrLRyA+9EP1dwzxwfUUt97V1fe/7cpfiuh/eUTN/icRH/yfAfDapPxJ1f7e5tY/VJV/Z5s6/zyAswAe7sp/t6p/rQkOsXGvAvjqNut8GNE2P5WUXQ5gBcCrk7IbqrIrkrLvrOr/XrfPvwRwa/L5IdV6N2O9meCJVfkP9ELmtznH6wB8sfr/elSmCQDPQfTt7UXG5Iio+q7LtItXuv3/LYBbMud7dVLG/fu//wDw0DZ1t6pNPQ/R9HqBq1+LSRPAjQDuhDOzuXX4ez48Kbuwai8/V8I9kxzjKVUd9iI+oBYAfLRa53uqdZ7aRXt7Q3XOl1afr6n28bQ+tvFakyaiwljFBmZzxA7DVNV+3pKUP7La/3OTsjdXZV+blM0CmAfwug2OkzVpIj7kA2JHgWW/WpU9x7XTgKj455LyF1flFyVtdw3Ai91xvqXb3wNdmjSrc/ksKhNmcm4vS9YxAMsAXtjt792RSTPE3ulXA7gK8S3/McQezbstHz3zZ+7zmxEbxeNYUJmEPmBmxwGcR3yIPAKxh+fxsvY4gC8A+FUz+yEze3hmm6cB+GcAt1o0HU5Vppt3I/YMHtXmlJ8C4F9DCB/NfWnR7HglYuM+z/IQwq2Ijtqr3Ca3hBC+kHz+dLV8t1vv0wCOWCVlEv48JD2qEMI/IvbyvQO+LZWZYir5q+sZ5rgewJPN7GJEc+bbQwjdOvff4T5/AlGVdcITADwWwOMRX7iLiCr3Iq5gZnvN7H+b2ecRHfkriD1XQ1RqtVg01z4RwJtCq5nN89kQQiMQIYRwH6Iyf3BSVsI98+6qDvOISuIDiFaArrHoKngugPeHpnXkLYi/Y1uzZqZdd2q56oTPhBD+I3PMx5vZO83sPsSX4gqAb0D+t/CcCImSq9rbF9D5vdAN70yOcx+iwr8phLCYrMPnEa01T0W8Z97krumNiL9HqgR7zcsQX7a/VrdCiG+9fwPwc2b2Y5Vi7YiOhyWEEFZDCDeGEF4WQngyopnoEwBenrGb3lvz+VIAMLMrEc1KCwB+AM2H2b8jL0mPuroERPn6YUSz0i1m9gUz++FktQsRf5gV9/fW6vsL2pzuBYgvlDoOIDaIo5nv7kE0haaccJ+X25RPodVE4a8ny7oNy38+1l+LXDRkHe9HPN+fQrwhru/y2ECM0Es5B2BHbsUM/xZC+HAI4V9CCG9FjHa8HNGkQd6I2At+HWL7eCyAH62+a2/qiL/pBNr/7sSfBxDPZd0xCrhnfrSqw6MB7A4hfEcI4fbquzur5WXojO9A/A3eZmb7zWx/Vf5uAE83F4rvuCpT517Rco+b2RWIgVyziGa/r0W8Du/Hxu0M6LD99IDVEMJpV7aM+ucRj39htfwi1l/TZcT7td2zc9OY2cMQ1eZLAcxWbYA+w51Vu+A76xmIkc4vBfBJi377l2TEwjo23RMKIdxtZr+HaP99OKLPglyE6F9JPwPR1grEsNXzAJ4ZEh9U9RA4mTtc5vhfAPB91Ql+JYAfA/AGM7sthPBOxB7tfQDqxvJ8ps3p0b9Rx4mqThdnvrsY+Qa9FS6qKftYl/v5G8Qbk5zrdMMQwpqZvQnR7n8fgPd0eeyeEkK418yOofKvVX7FpwN4RQihEcpuZl/e4S5PIPYsNzW2rxPG8J65JYTw4Zp1P1zV6zsA/E7NOilUcb9Z/XmegxiOn+PfsL5d95KW64jY2dqNGH16jIVmtrtPdRg0x6vlkxAtKZ77M2W94GGIPvq3Zr57afX3pQA+HUK4B7Fz+yIzexRifMMvIwqON9YdoCOFZ2aX1HzFMRI+Gu057vNzER8m/1x9nkU0AzQak5l9MzYh6UPkY2j29OnofFdVvzsqZeD/fM8n5T0AHmdmX1lzzEXEm+zZqVnQYqTT1yH6eXrJdyc9G5jZEwEcQRxD1DEhhOPuGvhAh434A8SX5qvC9gURAGi0yUNo3nw7EJWx791fndn8HKKzvkFlVroJwPPMRUduoX45xvWe8cdYRgzK+HYze1ZuHTP7VjObNbMLEc2pb0cc7+n/7kEbs2YI4bSva6f13CSMVm64M8zs0YiBOv2EHdQtt88NeA+avsJcO7h9ox1skn9B62//1Oq7P6g+t4w1DCHcHEL4GcS4gnaBLh0rvE+a2XsRTSq3Ijqpvw3xDftnIQRfiW8zs19H9eJAjMK7PvF7vAsx7Pg6M3sjoh/i59HszbbFzL4CsZf8FsSIuknEB9t5RLMCEKOLvgfAP5jZaxB7p3OIN/Q3hBCe3uYQrwHwXwG818xehWiGOoSoIF5U3fg/j+iT+lszewNij++ViP6M3+jkPLpgD4C/MrNrARxGNEl9FolZ0cx+H8DzQwi99F+so/JLbcpH0wMeb2ariJ20yxCV5ipiBBpCCPNm9iEAP21mRxFV+guQV2w3A/gGM/t2xIfpsRDCbYhRp38P4INm9huIJp0rAHxVCOHHu6xvafdMjl9BVJJvsTj0428QrR9HEBXrMxHNmN+L+Cx6TQjh7zN1/0MALzazK5wvfLt4D6Ka+GMzey3i+bwS/R/4fXO1/HEz+xPE365bK8+GhBBuNrP/A+B3qhf5PyC+bB+MGN/w+hDCP9VtX5l8r6w+HkCMsP7u6vOHQghfrNZ7IWKg0hNDCP8cQngATixYc9jSrSGEG6qyixA7R3+C2EZXEYOmdgH4u41OrpPImRchhhffjhjFtQjgo4j21plkvasRewbfWFVoAbGB/yaAXW6fP474IDiDOH7nydXJ3pCs8yTkB7heiJi54RbEt/oDiA+qp7r1DiDexLci2p/vQ/zxfrKDc74Q0RRztNr2zuqYO5J1noaoss4gvujeDuBL3H5ugBuojGY04g+68lcgiXhM1vsRxHEp91fn+w4Al7ttr0PlqunVH5IozTbrrKtzVXYb8lGaD8ttm7kuV2f2z781AHcjPjwfl7mu70QcknAfgP+LaH4KAJ6UrPfIqh0sVd+ldf3qat8nq9/10wD+V7vfs+acx/aeqTtGTfswxEjZ9yOajVcQOxJ/ivgSBeJD+3MArGYfj6iO94petu9q3xtFab635rvnVdfyLGKH+FmIgUafdu0sF6X5uZpjbRjNiBgAdTeaav9i1Edpns9sfw+A33NlT6u2/3pX/oKqnS0h3lOfQvSPX7JBHRlNmvt7bma9J7TZVy5Kcw4xcvjm6n6Zr67fsze6flbtoCdYHDD8RsSw5s9tsLrYAIuDy28F8EMhhDr/hRhhdM8IMTg0W4IQQogi0AtPCCFEEfTUpCmEEEIMK1J4QgghikAvPCGEEEWgF54QQogi6GqQ8uzsbNi/f//GK7aBqc7SlGe+zKdD24yfkdtwX53so906/jv5PvPXYH5+HktLSy357HrRdsR4c/LkSbUdsSnq2o6nqxfe/v37cc0112y+VgmTk838yFNTsRozMzMAgImJiXXrrK7GLFZraxtPwVT3IsqVs4xL7t8vc+uUyrlzzfSbZ8+eXffd1NQUrr8+n1O6l21HjCfXXntttlxtR2xEXdvxyKQphBCiCPqWd3EjqNqApqJbWYl5f72yI1RXuRkgvPLqxJTpVVud0ttoPyWR/ia6TkKIUUIKTwghRBFsm8JL8UrOB5xsMKdflnZKwyu6OmUntdJKqub4//nz5xtLXbPBQmsIrSTp//6+kSVDlI4UnhBCiCLQC08IIUQRDIVJ0wejcOnLc0MDaNLxphgfxJIOg6gLVvHfiya5a8UgI363srIy9MM2UtPfRgzTubDe09PTAJpDeHbujPNj7tixo7Euh/lwG34m/A3pSsj9pjRTLy8vA2gOR1lcXOzJ+QixHUjhCSGEKIKhUHiEPU4fxNLJNr1aT+TJDf7n/+z9b2fQilc6VDVURF71ABtn9MmdM8uohKiAuKQy2sp1SNUa688yLnft2gUA2L17NwBgdna2sQ3Vn1+SuvMEmufFpAJ+SYV38uTJxjbz8/PdnF7PSI+7b9++bamDGC2k8IQQQhTBUCk8MbzkfHgso7oJIQxE4aVqZm5uDkBT8XBJJUTlR6XEJbDer5uDao2qB2gqnTNnzqxbLi0trfue18RvD7RaG1gPX+f0XHmeXO7du3fdkkoPaF4DKjvul+qWx0+HkxCqdX9+VHb8nscFgLvvvhsAcPz4cQySY8eONf6XwhOdIIUnhBCiCKTwREf4yL70/0EN1KeKSXvzLKMq4tL7uHLqiQrIRzF65ZomzKaSO3Xq1LolVRr9gjlfoVd2PvKSdU7ryPpTUfHcOXsAy6n80v3V+fCo6KhGc9GodRHSZM+ePY3/Dx8+DKB5bagK+4X3HQvRKVJ4QgghikAKT3QEVVDq78mpvn5AxePVXFqvujpRBVCB+SmN0m38+E+eaxrNyf1QRfGzjwLNzffoU9kRbuOX6f59CjGvGlOfoS/j+bCc14DXJt2WZVRrrCv9kD46Na0L1We/FR4jRNM6CNEJUnhCCCGKQApPdIQf1wY0VQDVx/Lycl/8eNzn6dOn1y2Bprpg/bwC85MLp/4s7/fjNl6RpWqNZVRCdVGbqZLkunXZgLh/1i1V0X6cn1eoucwnXpX5bfm7cdtUkfnsK3U+vHaTI3cyNddWoMq95JJL+rJ/Mb5I4QkhhCgCvfCEEEIUgUyaoitSkyb/pwlubW1tU3MXbgRNgv0OQ6dp0yddzg1W5zo0Fy4sLKz73A3c5oEHHlh3DKB1QDuHQfD4fqB4ui639QPfRx0OyRCiW6TwhBBCFIEUnugInzQZaAYnUJGsra2N9NRKuSEL20E6zIMJknndGdjCddIAHiFEe6TwhBBCFIEUnugI+ojScPS6gc3DhB/s3c0EsMME/XFcbgX+XqN6LT7ykY8AAK688sptronoF/0a2jKaLV4IIYToEik80RE59eaTDs/MzPQlSpPkBoJ7WE+fxLmf9Ro1RlXZkY9//OMApPBE94x2yxdCCCE6RApPdARVQWpT9ypq165dPVUPHN9HX2Fu6h2OkWMUI7dhNOOoqxnRhBPNXnDBBQDWWx02msxXjBZ9S0vXl70KIYQQQ4YUnugIqqucL6xfUX8cF8eefK4Xz0wjacJlYH12FDEeMEKV7YHZbYD1kwILUYcUnhBCiCKQwhMdQcWU5rOk4qL/bHV1tSe2dypG+u64f9YhPQb/95PEivFhbW0Np0+fbuQR5bRA6ZhEKTzRCVJ4QgghikAvPCGEEEUgk6boCE6VwyXQDP2n6XFqaqonA7y5D5owaeKkaXNubq6xLtfZsWPHlo8rhpPV1VXMz883pk+i2XpYkn2L7WVmZqbjgDkpPCGEEEUghYdm8MUwJj8eFniN0nB/qj0OCZiYmOhJ0AoVnleVuQlZxfiztraGxcVFHDt2DABw4sQJAMCRI0e2s1piSOjGqiSFJ4QQogik8CBlt1mo7FKF10t27drV0/2J0eT8+fM4ceJEQ9kdOHAAQNN3LMqEz5vp6emOVZ4UnhBCiCKQwhNdkab38lPvKIGv6AfLy8u47bbbsLi4CKDpwz169GhjncsvvxyApoEqESk8IYQQwiGFJ7oi9dMxapJj4CYnJ9XDFj3n3LlzuPXWWxvtjT73NI0c/Xkaj1kOadS2FJ4QQgiRIIUntgx7Wv2atFGItbW1Fh/xnj17tqk2YhjYTFS4FJ4QQogi0AtPCCFEEcikKTYNTZhcrqysyKwp+sLExERLYMLx48cb/19xxRWDrpLYZvis6WYeTik8IYQQRVCMwksd3pxuRmqke3jtgNbrd+bMmXXfC9ELJiYmsHPnzsY9TKWXKjxRLktLSx0/d6TwhBBCFMHYKzz2BtMQViWL3jxMFJ3C3pUUnugXU1NTLQovbYu8p5XerhzOnTvX+F8KTwghhEgoRuGtrKxsc03Gg7RXzV4Vy7pJ8SNEp5jZunZFa82ZM2caZeztz87ODrZyYqSQwhNCCFEEY6/w5FPqDVRxaWQmVTPLpPBEPwghYG1traVtpW3x5MmTAKTwRHuk8IQQQhSBXniiK0IIjb/z58/j/PnzmJiYwMTEhBSe6Atra2tYWlpqfF5dXcXq6ipmZmYafydPnmyoPCHq0AtPCCFEEeiFJ4QQogjGPmhF9AYO7E2DgGi+TAf7yqTZPdPT0wCa11aJEdYTQsDZs2cxMzMDoDn/4qlTpxrr8BpqAHp/4PUcxrSMfthKO6TwhBBCFIEUnugI9uhShcee9vLy8rbUaVRhb5kh9F6NpIP7FxYWBlexIcXMMD09jbNnzwIAdu7cCWC9Er7nnnsAAPv37wcAHD58eMC1HG+G2erQzcznUnhCCCGKQApPdERO4fmy8+fPD5Vtf1igf4mKmL6oHTt2rCvPJUUmi4uLAIbLdzIoqPB4XZjwIO3Z33vvvQCAQ4cOAQD27NkDoKkGhQCk8IQQQhSCFJ7oiE4UnqYHakJVBzSVHBUcrxs/U+FRsaTbsozLNDKxFKampnDo0KGGimMbS33H9HVyHSq8Bz3oQQC68/OI0WJ1dbVjy4dagRBCiCKQwhNt8X6TtCfFyC32tJeXl4v0MeVIla73OfmozHZJkan2qBL5uaTprqanp3HkyBEcO3YMQPP6pL5OTg9EpXfHHXcAaF7zgwcPApBPr3Sk8IQQQhSBFJ5oC3vRuSwg/J/Ls2fPyodXkbtOhCqD15bjy3jtctfQ/w4lMTMzg0suuQSf+tSnAOQjVb0/mcsTJ04AaP4Gc3NzjW34P9WzGH+k8IQQQhSBFJ7Iko6tA5p+ulSteNUhH15nUNHRd0eFQb9c6p/zKrpEpqen8aAHPagxfpH+ujTy0ud65PVieyz5+okmUnhCCCGKQC88IYQQRSCTpshCs5E3qeWCMWjuVGqx7jhz5sy6pcgzOTmJgwcPYu/evQCA+fl5AOuHc9Ck6Yd8+Gmt0vY56LbKe0pBMtuHFJ4QQogikMIT62CvN1VtQD5knuuUNAhabB9MDJ0LoGJAi1d6DGzxad3Ssn6S1pFKnnVjSjkxOKTwhBBCFIG6GGIdvvfshyfkhiUQJegV/eTIkSMAgAceeADA+rbIwfxe0fnk24NQdSmp9YPH5rCU3bt3D7QuQgpPCCFEIUjhiXX4aDb2ojtReCWmvRKD4/DhwwCaai5ti3X+MD8FUxrFSb9fP/AD34GmypTvbvuQwhNCCFEE6moIAE1fA1Wbn4LFK710HY29E4Ng//79AIBdu3YBaPrC2kGrg1d6aVk/4HFTvzYnpRXbhxSeEEKIIpDCEwBax915RZdLbOy/kw9P9BNmKLnooosAAHfddVfjO58cOjfubpBwol4xXEjhCSGEKAK98IQQQhSBTJoCQNM86U2aNFfS5MkEuOn/3EYDz8Ug4PCEe++9t+U73wa9aXPQA8/FcKEnlBBCiCKQwiuY3BCDOkXHz+lUNn4Iw9TUlHrQou9Q4aWpuThlEPHKLjdMQJSHfn0hhBBFIIVXMFRtQLMHTIVHZUdFx8/tBvsqZZIYBEwtdvDgwUYZ22mdhWHcLQ+581NCiFak8IQQQhSBuuQF4qf+Scu4pJJbWlpat0xVoaefyXiF8HBCWKA5ZRAtFFQ8HABO68O4qp6cb5L3MhNm130edSYmJjpW8FJ4QgghikAKr0Doj0vThFHR0RdCRcfPi4uLANarQp9KrJuelhBbhSnGAOC+++4D0IzWpIphe+TndHqgcSKn1ujr5DXwVhyvflPSaOxhZ3p6WgpPCCGESJHCKxD64dKIyzpFx3Vy0ZlUePLdie3mwgsvBNBst1QtfllSUmdacHju/Ownd04tPUzQPTc3t25bbnPq1Kl+V7trpPCEEEIIhxReQXi1trCw0PiO/7OHTMXHcqrCtCflJ9XspqclRC+hP+/o0aMAmpPE0vrAdllSphXvs+sEWm2YRYk+T143TmJ7+vTpntVzs/jfthPK+fWFEEIUjV54QgghikAmzYKgeZLDEmi2TP+nqcKvS1NHaj6gSYEmzR07dsikKbaVBz/4wQCa7XgzZq+SYQCLN/3yOrZLPDFoGGAzOTmpoBUhhBAiRQqvABiIwiV7v6nC43dUdlzHDy5PB6nyOyk8MSzs378fQFOJcPC1Ept3R13wSjoB9LDQTSCSFJ4QQogiULdnjGFvjGqNg8r9EIS0jEMW2EOmTZ8DdtPUTByMWlKotxhu2Bap7NhelRxha6TWoGEhHTDfaVJwPamEEEIUgRTeGMNeGZWej85MB4/6QelUeD5KM/WF8H9+Ny7TjYjRhwPP2UbHNWl0vxnmezp9NknhCSGEEAlSeGOIV3ZevfH7NCG0V3KMzuKS0Zep3Zy9aHL27NmWqE4htgOO0RLjC1Xd8vJyx88dKTwhhBBFIIU3JqQ9nI0UHlVaTuHRd0dlx14UP6f4sU3Ly8sd29KFEGLQSOEJIYQoAr3whBBCFIFMmmNCOsSAZkm/pNmTJs005JjmTZYxSIUmSm6bmiy9SXN1dVUmTSHE0CKFJ4QQogik8Eac3FQ/LKOSY8AJP+cGirOM2/qZjjW4XAgx6kjhCSGEKAIpvBGFiosJoNNpO3xaMO/Ly0Hfm/fhkdy0P1SM8tsJIUYBKTwhhBBFIIU3ovg0YWnKLz943KfdqSsHmj47H53J6YHSyEzvGzQzqT0hxNAihSeEEKIIpPBGDB+VmfPLUZV5Bdfu80Y+Oyq/dLJX+vtYBz8uTwghhgkpPCFEQy9jAAAUVElEQVSEEEWgLvmIQDVGNeWjKdtNj9GJX437SRUc0DqBZrovn1hamVaEEMOMFJ4QQogi0AtPCCFEEcikOSJwGIIfUuBNkGkZlzRHerMly3Pf0TTZyQB0mTGFEP0kfVZtJb2hFJ4QQogikMIbcnwi6Nw0PR6v6PiZAShUcalaq9sfy7lMB7jv2LFj3X4UtCKE6AepqvNTl3WDFJ4QQogikMIbUuqGGeR8dnXlfoofnx4sHSjuj8dt/SB2+hBzTE5OZn18QgjRK6TwhBBCiA2wbt6SZnY/gNv7Vx0xBlwWQjjsC9V2RAeo7YjNkm07nq5eeEIIIcSoIpOmEEKIItALTwghRBHohSeEEKII9MITQghRBF2Nw5udnQ379+9vKWc2EACYn59f953P8uE/p2U+B6TGdI0eJ0+exNLSUssPNzk5GaanpxsZE7hkthYA2Lt3L9cdRFXFkFHXduqeO6I9PiDRZ03KrVe3zkb77obcc93n8u32HVDXdjxdvfD279+Pa665pqX8pptuavx/4403AgBmZmYAAAcOHAAAXHjhhY19pEug+aDjcteuXQCAnTt3dlM9MQRce+212fKpqSlceumlOH78OIBmMuzHPOYxjXWuuuoqAM0B8qIs6tpO3XNHdAeTRjA9IOfWTJNJ+OT07JjyBecTUaQJK3zyCv/Zv8yAZueW9/zc3ByAZkeY74KNqGs7Hpk0hRBCFEFPUoudOnWq8T97DVR4fioan9g4VyZT5vgRQsDy8nJLEmz26AApOyH6Cd1IVG0510GdudOrNa/80nU2Mou2S1qf228vkcITQghRBD1ReEtLSy1lfgLROqWXfufXFeNDCAErKystPgL5aYUYLHz21k3yDLQ+g+sUVzptj/f71R033bevg08M3W6i682gN4sQQogi0AtPCCFEEWzJpEnpmpsjzZsw243D8+GqMmmOHzRpese2fmshBktuPkwPn+n+Gc/7l2OvGYSWruPX5TrcJnVn1dWhX88FPW2EEEIUwZYUHocg5OAb2iu7XNCKd2ZqyqLxI4SA8+fPN3qMHIKwe/fu7ayWECKDV4FpRiQA2LNnD4D11j0qubrB63xfpJm5uI1/5vfL2ieFJ4QQogi2pPD49k1DyxlWyp4Be/LtcqTl0tSI8WN1dbWlJyeFJ8Tokvrg2vkEU9JhbCdOnADQ6jPs17tACk8IIUQR9GTgeWpnZUoxbwNmORVfLrVYLoJTjBdsK2wHGnguRFnMzs62lFHp9dvKJ4UnhBCiCLYkpajauASa0Tzsuft1clGa7O37SCAxXphZQ73Td6e574QoF6/2FhcXAfRvAgEpPCGEEEWwJYXHiDtO5gk0x2dw2hd+Zo+eE79ysleg80n+xGhjZo2eG1V9mqlBCDF+MPLSTw0GtI7B9lMY9RopPCGEEEWgF54QQogi2JJJ8/777wcAnD59ulFGUyZNllyy3M+ELsrAzDA5OdkwWbBdKFBJiPHGz3WXc2PQzOmHtbWbs28z6K0jhBCiCLak8BYWFgCsdzAySIVLDk/wqcVSx2WaTDS3Dpc+XZkYHcwMMzMzjd/w0KFDAPKDUIUQ4wOf57Tm5Kw6frqhXArKntSlp3sTQgghhpQtKTw/yDz9nz15PxGsn0AQaNppuQ2HKXAbTRc0+pgZduzY0fj9H/rQh25zjYQQw4JXf0oeLYQQQmyBLSk876cDWv1stMFycDpttLmBhXy78zufhqxf6WZE/2GUJtX6kSNHtrlGQohhpV9R/FJ4QgghimBLCo9TtqeRdlR2HE9BVcY3tp/oD2iqQh+tSV8eFaSiM0cXJo6++OKLAShptNg6qcVHfn7RCVJ4QgghimBLCo8KLE0ETQXnx14QH5EJNJUbe/1MMK0sHOMDozQ5/k6IrSJVJ7pFCk8IIUQRbEnh3XHHHQDWT+9Dvx5VG5d+XEUa2cntmW9TjB+Tk5PYs2ePfmPRF2hR4nOF0eCdTD9FS5KPIRDjhxSeEEKIItALTwghRBH0JLVYaqbiVEE0U9KkyWEIDFZJA1Jk5hp/JiYmMDc31whIEmKrpMMS/BAmPme8SZPDpYBmgJ1MmeUghSeEEKIItqTwmAD4zjvvbJRRyTFkmD0s9qZIOvDYpxIT4wenB9q3b992V0WMCemwBKYupOqrG7LAoDoxGvB3TYMcPbk0lXVI4QkhhCiCLSk8srS01PL/7t27AbT2uPg5fSufOnUKQNPfx1Rl/UogKgbPxMQEdu7cqQlfRV/g84T+uG56/WJ44e+Y+mK3kmJSbxQhhBBF0BOFl9pXaXNNVR/QjJqiny5nS6ei49tcqcXGh6mpKVxwwQXbXQ0x5nQy0FyMDrQMppG0XuF1YwmUwhNCCFEEPVF4i4uLjf/9uDumFKOyo9JLx9D47zQN0PgxPT2NSy65ZLurIYQYAbxSTz/zfz/JeCdI4QkhhCiCnkdpEr51qfBoZ/UTw6bfUekNKjrTR46K/qJxlkKITvCTDaSf/XfdIIUnhBCiCPTCE0IIUQQ9MWkePHiw8f/nP//5ljKgaT6kWSsNTKEJM50FvZ9w6ASPN6jjCiGEqIfvCb4TGPyYpqbcimtECk8IIUQR9ETa5KZ8YeioD1LxASpA66D0fpAmk+X/UnZCCDE8+KTfuQCVusTgnSCFJ4QQogh6InFSfxwVnZ8miG9qP0wBGEy4etorUMoyMW6kQ2u20gMWYjvhe4GpxHLWOL5bNpOgRApPCCFEEfRE4XEqIKCpnvzgcR9tk0bd5NKN9RpNNSTGmbR9a2oc0Wu8pY6fU2uCj9Pwz/Ncog+/X/8uoMUwfV9s5T2ht4AQQogi6InCS9+4Bw4cANB8I/Nt7+2tac/AJ5gWQnRHqup4H0npiV7BZzzbVs5P7CMq6xReThX6iHkeh/vMpaLcDFJ4QgghiqAnCm9hYaHxP22uzGbiozN9T8H/L4TYGlR2vje+laS7Ynyg9a2Tcch1CfZzfrSNnuPdKDPu3/sFga1NHyeFJ4QQogj0whNCCFEEPTFpzs3NNf6/6667ALSaMmlmYcoxmjyBpkTV0AEhegfvOd1XIoWmzFwSEA9NioOeO9QHXm3FjJmiO0EIIUQR9HxYwgUXXLDuO59iLId6ohvje1pCdIqCVUSOdsMEPJ0MIt8MdSrTTyfXq0T/esMIIYQogp7Pj7Nv3z4ATV/d0tISgNaegNRcd0jZiU7xodxM98dw9OXl5e2pWI/geUm5bg5eN7aDVD3lpm8DWlND5tKHdTOEwR+vrrzX7wm9dYQQQhRBzxUeo2mYYoxv6DQqE1jfO1NPbfxZXV3F/Px8wwIg+ofvpXv/B3vro5p6TNaOzeET91PhpSqqTlH5JAbcx2YGoOcm4+Z+Ookcbbe/jZDCE0IIUQQ9V3hk586d65ZMP5bzH6jHNv6sra3h9OnTUngDwI9rzaVnGmVyPjw9QzaGqozWts2oM1oLuMxZCbaSKnIzbbSbSNHxuAOEEEKIDeibwvOkk8SK3jEq4/PW1tZw5syZgWdsKIU0E4XPSuGv9bhMH5T6Jnkuigdoxd9zfpJuft4Mo5b4XwpPCCFEEQxM4YneUjdOZlhZW1trjMkUm8f746hycr6PuuwV9OWMChMTE5iZmWn4/6niUiXLc+W5Dfv9MEi8sisZKTwhhBBFoBeeEEKIIpBJs0d4U1O/QqZpyuTM8jnTDY89TIEsIQSsrKwoaGWL1IVt5wbz+rZBc9+oBXaYWaO9A62JhVNo4qX5kykOhwmf6k3m18EhhSeEEKIIpPB6RF2vOsWnemJPm+U+/VoODuT3+0x77ezV+sl3txszw7lz5wAAu3bt2ubajCb+t+TnVAF5hc/PvPajRggBq6urDWXE9p1aCfxQDK+Eh0np8Z7lkr/LsNyn44wUnhBCiCKQwhsAG4WQ8/Ps7GxLGe38PqTc7yvn2/Hh58Pg2ztx4gQAKbxek6bsG/Xpf+rwPrv0s0+n5u8Hrpsqve1SVByeQ2vNuCQCGAWk8IQQQhSBFN4AqYuOy/VK/bpe6fllbhJHLtlz7CQysp/qz8xw+vTpvu1fjCdmhomJiZZ2nbZnqiSW0afprSu5aE/60AatjNslcRb9QQpPCCFEEUjhDQD2Put8dyS14dcpOSo/+iJydn/2GLlk79ZP2pgbu9UvzAzT09ON+m9mosftIhcBy2s6aslzRxG2HaqznKXEKzyvBvl7pWqqzvIxaKU3TONlx53hf9oIIYQQPUAKr0d4FZfzL7Anx3X82L20p7fRGLo6xQc0I9Z8VhOfBSatY7+zb9APw/OZn58HABw4cKCvx90KXl0DTR+Q/C7bR25CW3/f+SjmXJv3kc9cbkbh+eMr4nI4kcITQghRBHrhCSGEKAKZNHuEN0umqY5yDvPcNjlzC6kzOebmOOO66VCFdP85s+sgTDCpSXNxcRHAcJs0eX0UmLK9hBAa6cWA5oDt9J5gm+Zv5VON5VKLcRuuy+EJuQTwHu/CYNoz1pH34zClNBNSeEIIIQpBCq/H5BSX73XWKa1UZXFdOtA5SLUuhDkX8OJTi+USTQ8KTvHC81hYWACwPqGxZmQWORjwxPZcN8wHaN437dZJ9wu0WmDq7pNcIJo/noJWhhspPCGEEEUghddjctME0Y7vJ670foacSvMDtL2/L5cQ2tfBpxgjg+yFTkxMYGZmpqHo2Fs/c+ZMYx0pPJGD1gHeR95fB7ROteWtKfyc83V7dZYeF8gPT6HlpU51ync3nEjhCSGEKAIpvAFQN9UP1U67lEk+kswPSM8NgK5TgduZxmtiYgKzs7ONc2YPOE0mvXfv3sa6QpDJyUns3r274fdNywnvIZbRWlAXiZn+79PEdZNUwFtixHCjJ4sQQogikMIbAGmvEmi177ez93NSWB85xl6oj8QEWhVep2P6+gn9MDyfU6dOAWhOhgk0/SIcZyUEmZycbLQdPx4PaI14pqLzyi9VhX7MrI+4HNeJdEtGCk8IIUQRSOENOakCStm1axeAZm80p/TIsCQ6npiYaOlppz1u+mik8Jr46FyfGNxHGgKtUcGjTggB586da4mETH293mfHz1SF6b4Irx3HhtKXx2ucRhCL8UAKTwghRBFI4Y0o7H1S6aVj6rw/o86XN0jMDFNTUy0979R/ySmDDh06NPgKDgG5HKfEZwUpKSpwdXUVCwsL2LNnD4DWMXZpGa0DbF+8P3LjY/k/rShsm7y3qCiVNWV8kMITQghRBHrhCSGEKAKZNEcUP2VN+tmbYGgG88MjBomZYXp6ulE3LlPTHE1UNG3u27dvwLXcXnImZ2+6rAtOGmezWwgBy8vLLYE76bCB3bt3A2g1ZXKZS8HHazY3NwegadpkEAs/j8u19Ukr6pLMp9/xueKDf0YVKTwhhBBFIIU3ovgw7BSfUqzdkIVBwgTSQLMXndafSrTUxLu5JMWeEgdDhxCwsrLSEoSVa9dUJGxLbG+5BOpsZ1QvVHoMWmEAzHZaRnoJz9dbWXIJtdkG+ZzJTVI9ikjhCSGEKAIpvBGDPVbSLtFyLhR7u/HTt6Q+KvbKhUgJIaxrw2zXadv394FPE0alkrY3Kjf6+aj0mMR8cXERQDMhwjDdR5uh7v5KVZtX0bw2o67siBSeEEKIIlCXekTwUZk+tVSOYeyR+ki7tGfufY/0OfiJckVZmBnMrOH3pW8tTUFXdz/4NHVULABaJiOmwmO5j/j00xONGj41W27asHFRcnVI4QkhhCgCKbwRw/fAchF9uTFuw4KfkDM9H35HZSeFJ1KovLhM24WPSGbb8YmmUz8W1R8jXxmlSSXpx+eNusIjvOe81agEpPCEEEIUgRTeEJCzm1O5+XFFPhotNz6Gvdxhnh6m3bRG/G6Y6y8GRwihMRYPaCquVK1RldHvRsVH9cby3JRCPhsLt/FRmlwfGJ+xeaUhhSeEEKII9MITQghRBDJpDgCaUWiq8/PTtQsu8aHE3oTJZZpyatRNgSU600V71tbWGm3cm/mBZgAKTZu5tFnA+nvDz47OdX0ias7DR1MqAJw4cQJAuWnwRhUpPCGEEEUghddjvJpL//fBKVR27QZ7+m39Nn6Q9ihTNzBWlA1Ti/m2n943VGO8D5gAmqqNy3ap+Nj+qBY5PVXuHuN+Tp8+ve54arPDjRSeEEKIIpDC6zE51eYHv9b54XKTobbbLzD608X4ZNhC1MH7hm0+lyaMSotDCbiuH3IAtKo9+gTp02MS6Rx+mJBXfGI4kcITQghRBFJ4PSbnw/O9QG/n91GbKT6S009kOYwJoruhnf+ynb9FlItXekAzOnN+fh5AU6Wx3KcaA1qjgana/OSn9OWl6/t71rdjKb3hRE8UIYQQRSCF1yN8bzGnXKjSchNYdgp7qooGE6WTpvdiZKX35XHsHNOEMZozZSN/OZNIp/5mP7my98N7ZSmGAyk8IYQQRSCFt0V875CqrV1CaMLeoF/mth8Xn50QvSK9X6ioOGUQP1Ph0aeWbsMoT+9b96qNvr3UikO/nl/XZ3h54IEHGtvo3t1+pPCEEEIUgV54QgghikAmzS2yFZMmP+fmr/NzwskcIsR60vuF9weHKnDJIBaaNnPzL9YNF2KQSu5eZpDMwYMH19XFux7SfZ48eXLdd2LwSOEJIYQoAim8LcLenx+WkPbsNlJrfrhC+v+oT/UjxCCgcvPDABi8wsCT9N7jvUsl560zXvml97SfWohpyPy6OTUnpbd9SOEJIYQoAim8HuF7a6niq1N0OWVHpOyE6ByfmN0ni+Yy9cf5weLeZ8d9+oln0214b3M4BAepU3G2m5iZk8gqicTgkMITQghRBNaNkjCz+wHc3r/qiDHgshDCYV+otiM6QG1HbJZs2/F09cITQgghRhWZNIUQQhSBXnhCCCGKQC88IYQQRaAXnhBCiCLQC08IIUQR6IUnhBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUwf8H2Asm0S9/E9UAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuUZFdd77+/fs1M98xkZjJ5kbkJCQ8R8RV5KWBQeWR5VQQEWVeuRFSCz6vXK1fwQXDh67oAkSsaFYlRFESNqFweAsYYBRUBeUQIgbzIeyYzPdPdM9M93fv+sc+3avev9qmu6q6qrqr9/azV6/TZdR67Tu1zzv7+fr/92xZCgBBCCDHuTGx3BYQQQohBoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKIKOX3hm9p1mdqOZPWBmJ83sDjP7KzO7op8VFNuHmV1rZsHMvmRmLW3FzF5dfR7MbCopv93Mrt3E+R5eHevKpOzq5BzBzM5Ube8tZnbhJr/XT5jZ8za57w1mdlOH247lPWNmT3e/yUkzu9nMfsHMdrltzcy+x8w+aGZHzGylak9vN7Nvqjn+31XH/R89rvfDXb3r/m7o0fkeUx3vRT063uOr+2GvK99ZnednenGerWJmz6t+31urer13E8d4jpndZGYLZnbczP7VzJ621bpNbbwJYGY/DuCNAP4AwK8DWATwCAD/FcA3A+j6C4mRYQnABQC+CcAH3WffC+AEgD2u/LkAjm/iXPcC+HoAX8h89lQAqwCmATwWwGsAfJ2ZXRZCWOvyPD8B4CYAf7mJOnZEIffMjwP4NwCzAJ4N4NUAHonYLmBmkwDejtge/hDAmwA8BOC/AHgBgA+a2f4QwjwPaGaHEK8PquO8sYf1ZftK+TCAawFck5Rtpu3muL063+d7dLzHI17j38f6Op6uznNnj86zVZ4P4CsB/BNi2+iK6t55HYDfAHA14nvqss0cq4UQwoZ/iBfy+prPJjo5Rq/+AOwY5PlK/kN8EHwJwAcAXOs+eyqAtWqbAGCqT3W4Ond8AD9QlX/5Jo55O4A/3mR9bgBwUwfbje09A+Dp1bV/hit/a1V+oFr/uWr9+TXHeRaAWVf2ymqfd1fLx/X52gQAr92ua9llXV9e1ffQdtWhw3pOJP9/FMB7u9j3UQCWAby8H3Xr1KR5AMB9uQ9C0rs2sysrCfuNlelmoTJj/FbG1PEaM/tYJVcPm9mHzOzJbhuaTp5nZr9nZg8CuL/67NFmdn1lLjplZnea2Tudae0cM/sdM7vbzE6b2WfN7GWdfOFq3zeb2V3VvneZ2R+Z2Y5kmyvM7MOVSWe++s5f5o5zQyXNrzCzT1TbftzMnmRmU2b2y2Z2r5k9ZNGEOJfsSxPMD5vZ66vvumRmf2tmD+/ke/SI6wA838zSHtb3AvhHxJfHOsyZNJN28WQze1v1m99jZr9pZjuT7VpMmm1gD3c62f8JZvbnlcnspJl9rrq+u5JtbgdwMYDvSUxYaV2/umpXR5JjvDLzHZ9Rtd8lM/u0mT3XbVLcPYOo9gDgkWY2A+CnALw7hPAXNdfh/SGEJVf8EgCfQVThXN8WzOwjZvaB6lr+h5mdBvDS6rOfrD4/ambHzOyfzOxZbv8Wk6Y1TX1PMLN/rtrPLWb20g3q8nIAv12t3pW03fMtY9I0s1+1aP5/TPUdlqr78sXV5y+tzrtQfX6xO5+Z2Y+Y2aeqtvKAmV1jZmdtdN1C9xaXlB9EtCq9pd1GZnZh9Sy5t2qn95jZX5vZ/nb7dWTSBPCvAF5iZl8E8K4Qwi0bbP/HAP4MwJsBPBHALwCYA3Blss2FAN6AqCDmALwYwI1m9nUhhE+5470JwHsA/HcAfEC+G8BRAD8E4HB1vG9F5Ze0aOe+CcAuRJVwG6LZ5bfNbEcI4U11la8u2j8jPrReC+CTAM4F8BwAMwBOW/TDvBvAhwB8N4DdAH4RwE1m9jUhhLuTQz4S0az1SwAWAPwfAH9d/U1V1+XLq20eAPAKV6VXAvgEgO+r6vHLAN5vZl8RQlip+x495C8Qf8vvBPAn1UvqBQD+F6J5qlP+CMCfAngeognmasTf8NUd7DtpZkDTpPkqxAfjp5NtLkK8Ttcimlq/ArHtXQqAD53nAvh/AP6jOj8APAgAZvZERAV3K4CfRGybjwLwVa4uj0A0tf0KYtv7KQDvNLPHhBBurbYp6p6puKRaHkM0v+1DbOMdYWZPAvBlAH4mhPB5M/swYsfkZ0IIq50ep8c8DvG+/EVE1f5gVX4xohn0DsRnwnMBvNfMviWE8PcbHPNsxE7k66pjvgzAW8zsP0MIH67Z5y8Rr+8rAHxHUo8jACZr9jEA7wTwO4jPnB8HcJ2ZfQWAbwDw04i/9RsR781vTPZ9A4AfrpYfRLzPfwnAY83s8i2+1NrxVMT7+koze1V13i8C+PUQwu8l270d8Tr+TwB3AzgfwDPRbOt5OpSZj0Z86Ifq7zDig+tZbrsrq89/x5X/LKL/5dE1x59EfPB/DsAbk/KnV8e73m1/sCr/jjZ1/nkApwA8ypX/XlX/WhMcYuNeBfC1bbb5KKJtfiopuwTACoDXJ2U3VGWXJmXfUdX/A+6YfwngtmT94dV2N2O9meApVfn390P2J+e5FsCXqv+vQ2WaAPBCxF7YXmRMjoiq79pMu3iNO/7fArgl832vTMp4fP/3nwAe0abuVrWpFyOaXs929WsxaQK4EcBdcGY2tw1/z0clZedW7eVVJdwzyTmeVdVhL4DvQuzMfbza5rurbZ7dRXt7c/WdL6zWr6qOcUUf23itSRPAR6r6tDWbI3YYpqr2846k/DHV8V+UlL29Kvv6pGwWwDyA39zgPFmTJuJDPiB2FFj2q1XZC107DYiKfy4pf0VVfl7SdtcAvMKd51u6/T3QvUnzdkTrzf2IavpbEH2WAcBV1TaGaPZ8Wbe/d0cmzRB7p18L4HLEt/wnEHs07zOzn8vs8mdu/e2IjeKJLKhMQn9vZkcAnEF8iDwasYfnud6tH0F86/+qmf2gmT0qs88VAP4FwG0WTYdTlenmfYg9g8e2+crPAvBvIYSP5z60aHa8DLFxn2F5COE2REft5W6XW0IIX0zWP1st3+e2+yyAQ1ZJmYQ/D0mPKoTwT4i9fO+Ab0tlpphK/up6hjmuA/AMMzsf0Zz5rhBCt879d7v1TyGqsk54MoAnAHgS4gt3EVHlnscNzGyvmf2amX0B0ZG/gthzNUSlVotFc+1TALwttJrZPJ8PITQCEUIIDyAq84uSshLumfdVdZhHVBJ/j2gF6BqLroIXAfhQaFpH3oH4O7Y1a2badaeWq074XAjhPzPnfJKZvcfMHkB8Ka4AeBryv4XnaEiUXNXevojO74VueE9yngcQFf5NIYTFZBs+j2iteTbiPfM2d01vRPw9UiXYayYQg+C+L4TwByGED4YQfgCxo/mq6nsEAP8O4FVm9qOVYu344B0RQlgNIdwYQvi5EMIzEM1EnwLw6ozd9P6a9QsBwMwuQzQrLQD4fjQfZv+BvCS919UlIMrXjyKalW4xsy+a2Q8lm52L+MOsuL93Vp+f3ebrno34QqljP2KDuDfz2X2IptCUo259uU35FFpNFP56sqzbsPyXYP21yEVD1vEhxO/7k4g3xHVdnhuIEXoppwHsyG2Y4d9DCB8NIfxrCOGdiNGOlyCaNMhbEXvBv4nYPp4A4Eeqz9qbOuJvOoH2vzvx3wOI32XdOQq4Z36kqsPjAOwOIXx7COGO6rO7quXF6IxvR/wNrjezfWa2ryp/H4DnmAvFd1yeqXOvaLnHzexSxECuWUSz39cjXocPYeN2BnTYfnrAagjhhCtbRv3ziOc/t1p+Ceuv6TLi/dru2blVjiCqSx8R/n4AF5kZn63PRYx0/lkAn7bot39lRiysY9M9oRDCPWb2+4j230ch+izIeYh22HQdiLZWIIatngHwvJD4oKqHwLHc6TLn/yKA762+4FcD+FEAbzaz20MI70G8cA8AqBvL87k2X4/+jTqOVnU6P/PZ+cg36K1wXk3ZJ7o8zt8g3pjkdKc7hhDWzOxtiHb/BxAb4LYRQrjfzA6j8q9VfsXnALg6hNAIZTezr+zwkEcRb7RNje3rhDG8Z24JIXy0ZtuPVvX6dgC/W7NNClXcb1V/nhcimrZy/DvWt+te0nIdETtbuxGjTw+z0Mx296kOg+ZItXw6oiXF82CmrFd8Bq0+85Q1AAgh3IfYuX25mT0WMb7hlxEFx1vrdu5I4ZnZBTUfPaZa+mi0F7r1F1UV/ZdqfRbRDNBoTGb2zdiEpA+RT6DZ039ctXxvVb87K2Xg/3zPJ+X9AJ5oZl9dc85FxJvsBalZ0GKk0zcgyu9e8l2WDPw2s6cAOIQ4hqhjQghH3DXwgQ4b8QeIL83Xhu0LIgDQaJMH0bz5diAqY9+7vzKz+2lEZ32Dyqx0E4AXm4uO3EL9cozrPePPsYwYlPFtZvb83DZm9kwzmzWzcxHNqe9CHO/p/+5DG7NmCOGEr2un9dwkjFZuuDPM7HGIgTr9hB3ULbfPDXg/mr7CXDu4Y6MDbIHrEd9Lz3TlzwZwawihpXMXQrg5hPDTiHEFj/Ofp3Sq8D5tZh9ANKnchuik/lbEN+yfhRD8gMdvNbNfR/XiQIzCuy7xe7wXMez4WjN7K6If4ufR7M22xcy+CrGX/A7EiLpJxAfbGUSzAhCji74bwD+a2RsQe6dziDf000IIz2lzijcA+G8APmBmr0U0Qx1EVBAvr278n0f0Sf2tmb0Zscf3GkR/xus6+R5dsAfAX5nZNQDOQTRJfR6JWdHM3gLgJSGEXvov1lH5pTblo+kBTzKzVcSb4WJEpbmKGIGGEMK8mX0EwE+Z2b2IKv2lyCu2mwE8zcy+DfFhejiEcDti1Ok/APiwmb0O0aRzKYCvCSH8WJf1Le2eyfEriEryHRaHfvwNovXjEKJifR6iGfN7EJ9Fbwgh/EOm7n8I4BVmdqnzhW8X70dUE39sZm9E/D6vQf8Hft9cLX/MzP4E8bfr1sqzISGEm83sNwD8bvUi/0fEl+1FiPENbwoh/HPd/pXJ97JqdT9ihPV3VesfCSF8qdruZYiBSk8JIbBjdz1ihPxbLUZp3oH4LL68WqLy278LwJ8gttFVxKCpXQD+bqMv10nkzMsRw4vvQIziWgTwccTonplkuysRewbfWFVoAbGB/xaAXe6YP4b4IDiJOH7nGYjK6IZkm6cjP8D1XMTMDbcgvtUfQnxQPdtttx/xJr4N0f78AOKP9xMdfOdzEU0x91b73lWdc0eyzRWIKusk4ovuXQC+zB3nBriBymhGI/6AK78aScRjst0PA3g9oppZQnzRXuL2vRaVq6ZXf0iiNNtss67OoRlpdW2mXTwyt2/mulyZOT7/1gDcg/jwfGLmur4HcUjCAwD+L6L5KQB4erLdY6p2sFR9ltb1a6tjH6t+188C+N/tfs+a7zy290zdOWrahyFGyn4I0Wy8gtiR+FPElygQH9q3ArCaYzy6Ot/VvWzf1bE3itL8QM1nL66u5SnEDvHzEQONPuvaWS5K89aac20YzYgYAHUPmmr/fNRHaZ7J7H8fgN93ZVdU+z/Vlb+0amdLiPfUZxD94xdsUEdGk+b+XpTZ7slu/32IQz4eRHzRfhzAC5LP5xAjh29GvF/mq+v3gnb1CiHEBtYrLA4YfitiWPOtG2wuNsDi4PLbAPxgCKHOfyFGGN0zQgwOzZYghBCiCPTCE0IIUQQ9NWkKIYQQw4oUnhBCiCLQC08IIUQR6IUnhBCiCLoapDw7Oxv27du38YZtYKqzNOWZL/Pp0DbjZ+Q+PFYnx2i3jf9Mvs/8NZifn8fS0lJLPrtetB0x3hw7dkxtR2yKurbj6eqFt2/fPlx11VWbr1XC5GQzP/LUVKzGzMwMAGBiYmLdNqurMYvV2trGUzDVvYhy5Szjksf3y9w2pXL6dDP95qlTp9Z9NjU1heuuy+eU7mXbEePJNddcky1X2xEbUdd2PDJpCiGEKIK+5V3cCKo2oKnoVlZi3l+v7AjVVW4GCK+8OjFletVWp/Q2Ok5JpL+JrpMQYpSQwhNCCFEE26bwUryS8wEnG8zpl6Wd0vCKrk7ZSa20kqo5/n/mzJnGUtdssNAaQitJ+r+/b2TJEKUjhSeEEKII9MITQghRBENh0vTBKFz68tzQAJp0vCnGB7GkwyDqglX856JJ7loxyIifraysDP2wjdT0txHD9F1Y7+npaQDNITw7d+4EAOzYsaOxLYf5cB+uE/6GdCXkflOaqZeXlwE0h6MsLi725PsIsR1I4QkhhCiCoVB4hD1OH8TSyT692k7kyQ3+5//s/W9n0IpXOlQ1VERe9QAbZ/TJfWeWUQlRAXFJZbSV65CqNdafZVzu2rULALB7924AwOzsbGMfqj+/JHXfE2h+LyYV8EsqvGPHjjX2mZ+f7+br9Yz0vGeddda21EGMFlJ4QgghimCoFJ4YXnI+PJZR3YQQBqLwUjUzNzcHoKl4uKQSovKjUuISWO/XzUG1RtUDNJXOyZMn1y2XlpbWfc5r4vcHWq0NrIevc/pd+T253Lt377ollR7QvAZUdjwu1S3Pnw4nIVTr/vtR2fFznhcA7rnnHgDAkSNHMEgOHz7c+F8KT3SCFJ4QQogikMITHeEj+9L/BzVQnyom7c2zjKqIS+/jyqknKiAfxeiVa5owm0ru+PHj65ZUafQL5nyFXtn5yEvWOa0j609Fxe/O2QNYTuWXHq/Oh0dFRzWai0ati5Ame/bsafx/zjnnAGheG6rCfuF9x0J0ihSeEEKIIpDCEx1BFZT6e3Kqrx9Q8Xg1l9arrk5UAVRgfkqjdB8//pPfNY3m5HGoorjuo0Bz8z36VHaE+/hlenyfQsyrxtRn6Mv4fVjOa8Brk+7LMqo11pV+SB+dmtaF6rPfCo8RomkdhOgEKTwhhBBFIIUnOsKPawOaKoDqY3l5uS9+PB7zxIkT65ZAU12wfl6B+cmFU3+W9/txH6/IUrXGMiqhuqjNVEly27psQDw+65aqaD/OzyvUXOYTr8r8vvzduG+qyHz2lTofXrvJkTuZmmsrUOVecMEFfTm+GF+k8IQQQhSBXnhCCCGKQCZN0RWpSZP/0wS3tra2qbkLN4ImwX6HodO06ZMu5warcxuaCxcWFtatdwP3eeihh9adA2gd0M5hEDy/Hyiebst9/cD3UYdDMoToFik8IYQQRSCFJzrCJ00GmsEJVCRra2sjPbVSbsjCdpAO82CCZF53BrZwmzSARwjRHik8IYQQRSCFJzqCPqI0HL1uYPMw4Qd7dzMB7DBBfxyXW4G/16hei4997GMAgMsuu2ybayL6Rb+GtoxmixdCCCG6RApPdEROvfmkwzMzM32J0iS5geAe1tMnce5nvUaNUVV25JOf/CQAKTzRPaPd8oUQQogOkcITHUFVkNrUvYratWtXT9UDx/fRV5ibeodj5BjFyH0YzTjqakY04USzZ599NoD1VoeNJvMVo0Xf0tL15ahCCCHEkCGFJzqC6irnC+tX1B/HxbEnn+vFM9NImnAZWJ8dRYwHjFBle2B2G2D9pMBC1CGFJ4QQogik8ERHUDGl+SypuOg/W11d7YntnYqRvjsen3VIz8H//SSxYnxYW1vDiRMnGnlEOS1QOiZRCk90ghSeEEKIItALTwghRBHIpCk6glPlcAk0Q/9pepyamurJAG8egyZMmjhp2pybm2tsy2127Nix5fOK4WR1dRXz8/ON6ZNoth6WZN9ie5mZmek4YE4KTwghRBFI4aEZfDGMyY+HBV6jNNyfao9DAiYmJnoStEKF51VlbkJWMf6sra1hcXERhw8fBgAcPXoUAHDo0KHtrJYYErqxKknhCSGEKAIpPEjZbRYqu1Th9ZJdu3b19HhiNDlz5gyOHj3aUHb79+8H0PQdizLh82Z6erpjlSeFJ4QQogik8ERXpOm9/NQ7SuAr+sHy8jJuv/12LC4uAmj6cO+9997GNpdccgkATQNVIlJ4QgghhEMKT3RF6qdj1CTHwE1OTqqHLXrO6dOncdtttzXaG33uaRo5+vM0HrMc0qhtKTwhhBAiQQpPbBn2tPo1aaMQa2trLT7iPXv2bFNtxDCwmahwKTwhhBBFoBeeEEKIIpBJU2wamjC5XFlZkVlT9IWJiYmWwIQjR440/r/00ksHXSWxzfBZ0808nFJ4QgghiqAYhZc6vDndjNRI9/DaAa3X7+TJk+s+F6IXTExMYOfOnY17mEovVXiiXJaWljp+7kjhCSGEKIKxV3jsDaYhrEoWvXmYKDqFvSspPNEvpqamWhRe2hZ5Tyu9XTmcPn268b8UnhBCCJFQjMJbWVnZ5pqMB2mvmr0qlnWT4keITjGzde2K1pqTJ082ytjbn52dHWzlxEghhSeEEKIIxl7hyafUG6ji0shMqmaWSeGJfhBCwNraWkvbStvisWPHAEjhifZI4QkhhCgCvfBEV4QQGn9nzpzBmTNnMDExgYmJCSk80RfW1tawtLTUWF9dXcXq6ipmZmYaf8eOHWuoPCHq0AtPCCFEEeiFJ4QQogjGPmhF9AYO7E2DgGi+TAf7yqTZPdPT0wCa11aJEdYTQsCpU6cwMzMDoDn/4vHjxxvb8BpqAHp/4PUcxrSMfthKO6TwhBBCFIEUnugI9uhShcee9vLy8rbUaVRhb5kh9F6NpIP7FxYWBlexIcXMMD09jVOnTgEAdu7cCWC9Er7vvvsAAPv27QMAnHPOOQOu5XgzzFaHbmY+l8ITQghRBFJ4oiNyCs+XnTlzZqhs+8MC/UtUxPRF7dixY115LikyWVxcBDBcvpNBQYXH68KEB2nP/v777wcAHDx4EACwZ88eAE01KAQghSeEEKIQpPBER3Si8DQ9UBOqOqCp5KjgeN24ToVHxZLuyzIu08jEUpiamsLBgwcbKo5tLPUd09fJbajwHvawhwHozs8jRovV1dWOLR9qBUIIIYpACk+0xftN0p4UI7fY015eXi7Sx5QjVbre5+SjMtslRabao0rkeknTXU1PT+PQoUM4fPgwgOb1SX2dnB6ISu/OO+8E0LzmBw4cACCfXulI4QkhhCgCKTzRFvaic1lA+D+Xp06dkg+vInedCFUGry3Hl/Ha5a6h/x1KYmZmBhdccAE+85nPAMhHqnp/MpdHjx4F0PwN5ubmGvvwf6pnMf5I4QkhhCgCKTyRJR1bBzT9dKla8apDPrzOoKKj744Kg3651D/nVXSJTE9P42EPe1hj/CL9dWnkpc/1yOvF9ljy9RNNpPCEEEIUgV54QgghikAmTZGFZiNvUssFY9DcqdRi3XHy5Ml1S5FncnISBw4cwN69ewEA8/PzANYP56BJ0w/58NNape1z0G2V95SCZLYPKTwhhBBFIIUn1sFeb6ragHzIPLcpaRC02D6YGDoXQMWAFq/0GNji07qlZf0krSOVPOvGlHJicEjhCSGEKAJ1McQ6fO/ZD0/IDUsgStAr+smhQ4cAAA899BCA9W2Rg/m9ovPJtweh6lJS6wfPzWEpu3fvHmhdhBSeEEKIQpDCE+vw0WzsRXei8EpMeyUGxznnnAOgqebStljnD/NTMKVRnPT79QM/8B1oqkz57rYPKTwhhBBFoK6GAND0NVC1+SlYvNJLt9HYOzEI9u3bBwDYtWsXgKYvrB20Onill5b1A5439WtzUlqxfUjhCSGEKAIpPAGgddydV3S5xMb+M/nwRD9hhpLzzjsPAHD33Xc3PvPJoXPj7gYJJ+oVw4UUnhBCiCLQC08IIUQRyKQpADTNk96kSXMlTZ5MgJv+z3008FwMAg5PuP/++1s+823QmzYHPfBcDBd6QgkhhCgCKbyCyQ0xqFN0XE+nsvFDGKamptSDFn2HCi9NzcUpg4hXdrlhAqI89OsLIYQoAim8gqFqA5o9YCo8KjsqOq63G+yrlEliEDC12IEDBxplbKd1FoZxtzzkvp8SQrQihSeEEKII1CUvED/1T1rGJZXc0tLSumWqCj39TMYrhIcTwgLNKYNooaDi4QBwWh/GVfXkfJO8l5kwu2591JmYmOhYwUvhCSGEKAIpvAKhPy5NE0ZFR18IFR3XFxcXAaxXhT6VWDc9LSG2ClOMAcADDzwAoBmtSRXD9sj1dHqgcSKn1ujr5DXwVhyvflPSaOxhZ3p6WgpPCCGESJHCKxD64dKIyzpFx21y0ZlUePLdie3m3HPPBdBst1QtfllSUmdacPjdue4nd04tPUzQPTc3t25f7nP8+PF+V7trpPCEEEIIhxReQXi1trCw0PiM/7OHTMXHcqrCtCflJ9XspqclRC+hP+/ee+8F0JwkltYHtsuSMq14n10n0GrDLEr0efK6cRLbEydO9Kyem8X/tp1Qzq8vhBCiaPTCE0IIUQQyaRYEzZMclkCzZfo/TRV+W5o6UvMBTQo0ae7YsUMmTbGtXHTRRQCa7XgzZq+SYQCLN/3yOrZLPDFoGGAzOTmpoBUhhBAiRQqvABiIwiV7v6nC42dUdtzGDy5PB6nyMyk8MSzs27cPQFOJcPC1Ept3R13wSjoB9LDQTSCSFJ4QQogiULdnjGFvjGqNg8r9EIS0jEMW2EOmTZ8DdtPUTByMWlKotxhu2Bap7NhelRxha6TWoGEhHTDfaVJwPamEEEIUgRTeGMNeGZWej85MB4/6QelUeD5KM/WF8H9+Ni7TjYjRhwPP2UbHNWl0vxnmezp9NknhCSGEEAlSeGOIV3ZevfHzNCG0V3KMzuKS0Zep3Zy9aHLq1KmWqE4htgOO0RLjC1Xd8vJyx88dKTwhhBBFIIU3JqQ9nI0UHlVaTuHRd0dlx14U11P82Kbl5eWObelCCDFopPCEEEIUgV54QgghikAmzTEhHWJAs6Rf0uxJk2YackzzJssYpEITJfdNTZbepLm6uiqTphBiaJHCE0IIUQRSeCNObqofllHJMeCE67mB4izjvn6mYw0uF0KMOlJ4QgghikAKb0Sh4mIC6HTaDp8WzPvyctD35n14JDftDxWj/HZCiFFACk8IIUQRSOGNKD5NWJryyw8e92l36sqBps/OR2dyeqA0MtP7Bs1Mak8IMbR5vCMfAAAUgUlEQVRI4QkhhCgCKbwRw0dl5vxyVGVewbVb38hnR+WXTvZKfx/r4MflCSHEMCGFJ4QQogjUJR8RqMaopnw0ZbvpMTrxq/E4qYIDWifQTI/lE0sr04oQYpiRwhNCCFEEeuEJIYQoApk0RwQOQ/BDCrwJMi3jkuZIb7Zkee4zmiY7GYAuM6YQop+kz6qtpDeUwhNCCFEEUnhDjk8EnZumx+MVHdcZgEIVl6q1uuOxnMt0gPuOHTvWHUdBK0KIfpCqOj91WTdI4QkhhCgCKbwhpW6YQc5nV1fup/jx6cHSgeL+fNzXD2KnDzHH5ORk1scnhBC9QgpPCCGE2ADr5i1pZg8CuKN/1RFjwMUhhHN8odqO6AC1HbFZsm3H09ULTwghhBhVZNIUQghRBHrhCSGEKAK98IQQQhSBXnhCCCGKoKtxeLOzs2Hfvn0t5cwGAgDz8/PrPvNZPvx6WuZzQGpM1+hx7NgxLC0ttfxwk5OTYXp6upExgUtmawGAvXv3cttBVFUMGXVtp+65I9rjAxJ91qTcdnXbbHTsbsg9130u327fAXVtx9PVC2/fvn246qqrWspvuummxv833ngjAGBmZgYAsH//fgDAueee2zhGugSaDzoud+3aBQDYuXNnN9UTQ8A111yTLZ+amsKFF16II0eOAGgmw3784x/f2Obyyy8H0BwgL8qiru3UPXdEdzBpBNMDcm7NNJmET07PjilfcD4RRZqwwiev8Ov+ZQY0O7e85+fm5gA0O8J8F2xEXdvxyKQphBCiCHqSWuz48eON/9lroMLzU9H4xMa5Mpkyx48QApaXl1uSYLNHB0jZCdFP6Eaiasu5DurMnV6teeWXbrORWbRd0vrccXuJFJ4QQogi6InCW1paainzE4jWKb30M7+tGB9CCFhZWWnxEchPK8Rg4bO3bpJnoPUZXKe40ml7vN+v7rzpsX0dfGLodhNdbwa9WYQQQhSBXnhCCCGKYEsmTUrX3Bxp3oTZbhyeD1eVSXP8oEnTO7b1WwsxWHLzYXr4TPfPeN6/HHvNILR0G78tt+E+qTurrg79ei7oaSOEEKIItqTwOAQhB9/QXtnlgla8M1NTFo0fIQScOXOm0WPkEITdu3dvZ7WEEBm8CkwzIgHAnj17AKy37lHJ1Q1e5/sizczFffwzv1/WPik8IYQQRbAlhce3bxpazrBS9gzYk2+XIy2XpkaMH6urqy09OSk8IUaX1AfXzieYkg5jO3r0KIBWn2G/3gVSeEIIIYqgJwPPUzsrU4p5GzDLqfhyqcVyEZxivGBbYTvQwHMhymJ2draljEqv31Y+KTwhhBBFsCUpRdXGJdCM5mHP3W+Ti9Jkb99HAonxwswa6p2+O819J0S5eLW3uLgIoH8TCEjhCSGEKIItKTxG3HEyT6A5PoPTvnCdPXpO/MrJXoHOJ/kTo42ZNXpuVPVppgYhxPjByEs/NRjQOgbbT2HUa6TwhBBCFIFeeEIIIYpgSybNBx98EABw4sSJRhlNmTRZcslyPxO6KAMzw+TkZMNkwXahQCUhxhs/113OjUEzpx/W1m7Ovs2gt44QQogi2JLCW1hYALDewcggFS45PMGnFksdl2ky0dw2XPp0ZWJ0MDPMzMw0fsODBw8CyA9CFUKMD3ye05qTs+r46YZyKSh7UpeeHk0IIYQYUrak8Pwg8/R/9uT9RLB+AkGgaaflPhymwH00XdDoY2bYsWNH4/d/xCMesc01EkIMC179KXm0EEIIsQW2pPC8nw5o9bPRBsvB6bTR5gYW8u3Oz3wasn6lmxH9h1GaVOuHDh3a5hoJIYaVfkXxS+EJIYQogi0pPE7ZnkbaUdlxPAVVGd/YfqI/oKkKfbQmfXlUkIrOHF2YOPr8888HoKTRYuukFh/5+UUnSOEJIYQogi0pPCqwNBE0FZwfe0F8RCbQVG7s9TPBtLJwjA+M0uT4OyG2ilSd6BYpPCGEEEWwJYV35513Alg/vQ/9elRtXPpxFWlkJ/dnvk0xfkxOTmLPnj36jUVfoEWJzxVGg3cy/RQtST6GQIwfUnhCCCGKQC88IYQQRdCT1GKpmYpTBdFMSZMmhyEwWCUNSJGZa/yZmJjA3NxcIyBJiK2SDkvwQ5j4nPEmTQ6XApoBdjJlloMUnhBCiCLYksJjAuC77rqrUUYlx5Bh9rDYmyLpwGOfSkyMH5we6KyzztruqogxIR2WwNSFVH11QxYYVCdGA/6uaZCjJ5emsg4pPCGEEEWwJYVHlpaWWv7fvXs3gNYeF9fTt/Lx48cBNP19TFXWrwSiYvBMTExg586dmvBV9AU+T+iP66bXL4YX/o6pL3YrKSb1RhFCCFEEPVF4qX2VNtdU9QHNqCn66XK2dCo6vs2VWmx8mJqawtlnn73d1RBjTicDzcXoQMtgGknrFV43lkApPCGEEEXQE4W3uLjY+N+Pu2NKMSo7Kr10DI3/TNMAjR/T09O44IILtrsaQogRwCv1dJ3/+0nGO0EKTwghRBH0PEqT8K1LhUc7q58YNv2MSm9Q0Zk+clT0F42zFEJ0gp9sIF33n3WDFJ4QQogi0AtPCCFEEfTEpHngwIHG/1/4whdayoCm+ZBmrTQwhSbMdBb0fsKhEzzfoM4rhBCiHr4n+E5g8GOamnIrrhEpPCGEEEXQE2mTm/KFoaM+SMUHqACtg9L7QZpMlv9L2QkhxPDgk37nAlTqEoN3ghSeEEKIIuiJxEn9cVR0fpogvqn9MAVgMOHqaa9AKcvEuJEOrdlKD1iI7YTvBaYSy1nj+G7ZTIISKTwhhBBF0BOFx6mAgKZ68oPHfbRNGnWTSzfWazTVkBhn0vatqXFEr/GWOq6n1gQfp+Gf57lEH/64/l1Ai2H6vtjKe0JvASGEEEXQE4WXvnH3798PoPlG5tve21vTnoFPMC2E6I5U1fE+ktITvYLPeLatnJ/YR1TWKbycKvQR8zwPj5lLRbkZpPCEEEIUQU8U3sLCQuN/2lyZzcRHZ/qegv9fCLE1qOx8b3wrSXfF+EDrWyfjkOsS7Of8aBs9x7tRZjy+9wsCW5s+TgpPCCFEEeiFJ4QQogh6YtKcm5tr/H/33XcDaDVl0szClGM0eQJNiaqhA0L0Dt5zuq9ECk2ZuSQgHpoUBz13qA+82ooZM0V3ghBCiCLo+bCEs88+e91nPsVYDvVEN8b3tIToFAWriBzthgl4OhlEvhnqVKafTq5Xif71hhFCCFEEPZ8f56yzzgLQ9NUtLS0BaO0JSM11h5Sd6BQfys10fwxHX15e3p6K9Qh+LynXzcHrxnaQqqfc9G1Aa2rIXPqwboYw+PPVlff6PaG3jhBCiCLoucJjNA1TjPENnUZlAut7Z+qpjT+rq6uYn59vWABE//C9dO//YG99VFOPydqxOXzifiq8VEXVKSqfxIDH2MwA9Nxk3DxOJ5Gj7Y63EVJ4QgghiqDnCo/s3Llz3ZLpx3L+A/XYxp+1tTWcOHFCCm8A+HGtufRMo0zOh6dnyMZQldHathl1RmsBlzkrwVZSRW6mjXYTKToed4AQQgixAX1TeJ50kljRO0ZlfN7a2hpOnjw58IwNpZBmovBZKfy1Hpfpg1LfJL+L4gFa8fecn6Sb65th1BL/S+EJIYQogoEpPNFb6sbJDCtra2uNMZli83h/HFVOzvdRl72CvpxRYWJiAjMzMw3/P1VcqmT5Xfndhv1+GCRe2ZWMFJ4QQogi0AtPCCFEEcik2SO8qalfIdM0ZXJm+ZzphucepkCWEAJWVlYUtLJF6sK2c4N5fduguW/UAjvMrNHegdbEwik08dL8yRSHw4RP9Sbz6+CQwhNCCFEEUng9oq5XneJTPbGnzXKffi0HB/L7Y6a9dvZq/eS7242Z4fTp0wCAXbt2bXNtRhP/W3I9VUBe4XOd137UCCFgdXW1oYzYvlMrgR+K4ZXwMCk93rNc8ncZlvt0nJHCE0IIUQRSeANgoxByrs/OzraU0c7vQ8r9sXK+HR9+Pgy+vaNHjwKQwus1acq+UZ/+pw7vs0vXfTo1fz9w21TpbZei4vAcWmvGJRHAKCCFJ4QQogik8AZIXXRcrlfqt/VKzy9zkzhyyZ5jJ5GR/VR/ZoYTJ0707fhiPDEzTExMtLTrtD1TJbGMPk1vXclFe9KHNmhl3C6Js+gPUnhCCCGKQApvALD3Wee7I6kNv07JUfnRF5Gz+7PHyCV7t37SxtzYrX5hZpienm7UfzMTPW4XuQhYXtNRS547irDtUJ3lLCVe4Xk1yN8rVVN1lo9BK71hGi877gz/00YIIYToAVJ4PcKruJx/gT05buPH7qU9vY3G0NUpPqAZseazmvgsMGkd+519g34Yfp/5+XkAwP79+/t63q3g1TXQ9AHJ77J95Ca09fedj2LOtXkf+czlZhSeP78iLocTKTwhhBBFoBeeEEKIIpBJs0d4s2Sa6ijnMM/tkzO3kDqTY26OM26bDlVIj58zuw7CBJOaNBcXFwEMt0mT10eBKdtLCKGRXgxoDthO7wm2af5WPtVYLrUY9+G2HJ6QSwDv8S4Mpj1jHXk/DlNKMyGFJ4QQohCk8HpMTnH5Xmed0kpVFrelA52DVOtCmHMBLz61WC7R9KDgFC/8HgsLCwDWJzTWjMwiBwOe2J7rhvkAzfum3TbpcYFWC0zdfZILRPPnU9DKcCOFJ4QQogik8HpMbpog2vH9xJXez5BTaX6Atvf35RJC+zr4FGNkkL3QiYkJzMzMNBQde+snT55sbCOFJ3LQOsD7yPvrgNaptrw1hes5X7dXZ+l5gfzwFFpe6lSnfHfDiRSeEEKIIpDCGwB1U/1Q7bRLmeQjyfyA9NwA6DoVuJ1pvCYmJjA7O9v4zuwBp8mk9+7d29hWCDI5OYndu3c3/L5pOeE9xDJaC+oiMdP/fZq4bpIKeEuMGG70ZBFCCFEEUngDIO1VAq32/Xb2fk4K6yPH2Av1kZhAq8LrdExfP6Efht/n+PHjAJqTYQJNvwjHWQlBJicnG23Hj8cDWiOeqei88ktVoR8z6yMux3Ui3ZKRwhNCCFEEUnhDTqqAUnbt2gWg2RvNKT0yLImOJyYmWnraaY+bPhopvCY+OtcnBveRhkBrVPCoE0LA6dOnWyIhU1+v99lxnaowPRbhtePYUPryeI3TCGIxHkjhCSGEKAIpvBGFvU8qvXRMnfdn1PnyBomZYWpqqqXnnfovOWXQwYMHB1/BISCX45T4rCAlRQWurq5iYWEBe/bsAdA6xi4to3WA7Yv3R258LP+nFYVtk/cWFaWypowPUnhCCCGKQC88IYQQRSCT5ojip6xJ170JhmYwPzxikJgZpqenG3XjMjXN0URF0+ZZZ5014FpuLzmTszdd1gUnjbPZLYSA5eXllsCddNjA7t27AbSaMrnMpeDjNZubmwPQNG0yiIXr43JtfdKKuiTz6Wd8rvjgn1FFCk8IIUQRSOGNKD4MO8WnFGs3ZGGQMIE00OxFp/WnEi018W4uSbGnxMHQIQSsrKy0BGHl2jUVCdsS21sugTrbGdULlR6DVhgAs52WkV7C7+utLLmE2myDfM7kJqkeRaTwhBBCFIEU3ojBHitpl2g5F4q93fjpW1IfFXvlQqSEENa1YbbrtO37+8CnCaNSSdsblRv9fFR6TGK+uLgIoJkQYZjuo81Qd3+lqs2raF6bUVd2RApPCCFEEahLPSL4qEyfWirHMPZIfaRd2jP3vkf6HPxEuaIszAxm1vD70reWpqCrux98mjoqFgAtkxFT4bHcR3z66YlGDZ+aLTdt2LgouTqk8IQQQhSBFN6I4XtguYi+3Bi3YcFPyJl+H35GZSeFJ1KovLhM24WPSGbb8YmmUz8W1R8jXxmlSSXpx+eNusIjvOe81agEpPCEEEIUgRTeEJCzm1O5+XFFPhotNz6Gvdxhnh6m3bRG/GyY6y8GRwihMRYPaCquVK1RldHvRsVH9cby3JRCPhsL9/FRmtweGJ+xeaUhhSeEEKII9MITQghRBDJpDgCaUWiq8/PTtQsu8aHE3oTJZZpyatRNgSU600V71tbWGm3cm/mBZgAKTZu5tFnA+nvDz47ObX0ias7DR1MqABw9ehRAuWnwRhUpPCGEEEUghddjvJpL//fBKVR27QZ7+n39Pn6Q9ihTNzBWlA1Ti/m2n943VGO8D5gAmqqNy3ap+Nj+qBY5PVXuHuNxTpw4se58arPDjRSeEEKIIpDC6zE51eYHv9b54XKTobY7LjD608X4ZNhC1MH7hm0+lyaMSotDCbitH3IAtKo9+gTp02MS6Rx+mJBXfGI4kcITQghRBFJ4PSbnw/O9QG/n91GbKT6S009kOYwJoruhnf+ynb9FlItXekAzOnN+fh5AU6Wx3KcaA1qjgana/OSn9OWl2/t71rdjKb3hRE8UIYQQRSCF1yN8bzGnXKjSchNYdgp7qooGE6WTpvdiZKX35XHsHNOEMZozZSN/OZNIp/5mP7my98N7ZSmGAyk8IYQQRSCFt0V875CqrV1CaMLeoF/m9h8Xn50QvSK9X6ioOGUQ16nw6FNL92GUp/ete9VG315qxaFfz2/rM7w89NBDjX10724/UnhCCCGKQC88IYQQRSCT5hbZikmT67n56/yccDKHCLGe9H7h/cGhClwyiIWmzdz8i3XDhRikkruXGSRz4MCBdXXxrof0mMeOHVv3mRg8UnhCCCGKQApvi7D354clpD27jdSaH66Q/j/qU/0IMQio3PwwAAavMPAkvfd471LJeeuMV37pPe2nFmIaMr9tTs1J6W0fUnhCCCGKQAqvR/jeWqr46hRdTtkRKTshOscnZvfJorlM/XF+sLj32fGYfuLZdB/e2xwOwUHqVJztJmbmJLJKIjE4pPCEEEIUgXWjJMzsQQB39K86Ygy4OIRwji9U2xEdoLYjNku27Xi6euEJIYQQo4pMmkIIIYpALzwhhBBFoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKAK98IQQQhSBXnhCCCGK4P8DudM0CwfANWAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1144,7 +1862,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Zddd3/nd79VcKpWkQlUqSZbkKWCbtptuSAg0MbAMMW7GrCziACEGuzGBJCQdd0IcBgNmDIOBGENjghtinMU8tzGBmCEOgTSDbcA2llSlkqoklUpVUqkGVdV7p/8493vP733Ob593b1m2pLz9Xeut++655+x57/Obf6XrOjU0NDQ0NPyPjpUnuwENDQ0NDQ0fCbQXXkNDQ0PDlkB74TU0NDQ0bAm0F15DQ0NDw5ZAe+E1NDQ0NGwJtBdeQ0NDQ8OWwFP6hVdKeUUppZv9/bXk9xeH318Srr+llHLkKus8Ukp5S/j+qaEO/91fSvn1Uspfv8o6Pr+U8n9e5bOvm7Vh2yb33YE2Pz5r92+VUv5ZKWVf8syGvi/YnleUUr68cr0rpdyxTHlPRczW071PdjuWQZj/VzzZbckwG1Puq+zvU5+g+v5jKeV9T0RZs/JeU0r53OT6d5RSLj5R9XwoKKW8tJTyU6WUu0opF0opHyyl/GAp5cACzz5/du97SymPlVKOl1J+oZTygo9E2z9cmDw0n0I4K+kfSPp6XP+Hs994eH+LpO+/yrq+QNKjyfV/KumPJBVJt0r6V5L+UynlRV3X3b1kHZ8v6SWSvvcq27gMvl3SL6uf64OS/pakb5b0NaWUv9113QfCvbW+T+EVs7L/Pa7/mqS/KenEVbS54UPHCfXjf+eT3ZAKvkXSD4fvr5L0Skn/m6S1cP0vnqD6vk7S3ieoLEl6jaRfVb+3It4o6eefwHo+FHyVeqbmmyQdkfQxs/8/s5TyP3ddd2Hi2Zepn4sfk/Snkg6oP/P+sJTyiV3XvefD2fAPF54uL7yfl/QlpZRv6Gae8qWU3ZL+rqSfU3/oztF13VVv8q7r/qTy0192XfcH/lJK+RNJfyXppZLedLX1fQRwV2y3pJ8vpbxR0rsk/cxs4XfSZN+XRtd1JyWdfKLKeyJRSlmVVLquu/Jkt2VRlFK2S7rSLRgpouu6xyX9waY3PkmY7dH5Pi2lvHT2739bZF5KKTtnfVy0vg8u38rl0XXdMUnHPhJ1LYBXzvah8TullLsl/YZ64vanJp59S9d13x0vlFJ+W9JRSf9E0lc80Y39SOApLdIM+ElJt6unOIwvUN/+n+PNFGkG8c6rSynfXEo5UUo5U0r5lVLKrXh2UbGeOaHt4dkbSyk/Ukr5QCnlfCnl2EykcEtsm3rO9JYgtjmCMn5o9uzjs8+fLKXsRP3PLKX82kzccLSU8g2llIXms+u6v5L0ekkvlPTpU30vpTxzVv/9s/bcVUr5/tlv75T0YkmfHPryztlvI5FmKWV7KeX1s3ouzT5fPzvMfc8yc/XyUspvl1JOzsbhT0op/5D9nZX3raWUr51t+EuSPmHWhq9J7n/dbP6uX2Q8w3NfUUr5s1LKxVLKQ6WUHyul3IB7/nEp5b+WUh6e9esPSin/O+7xGHxVKeW7SinHJT0u6bowrp9YSnlrKeXRmbjpB0opu5IyXhGuvaWUcm8p5eNKKb836+NflVK+MunLS2bjebH0orBXcV99pFB60VxXSvmcWRtOqT94VUr5mNk4HCm92O7O0ovirkUZG0Sas+e6UsqXlVK+fba+T5dSfrGUcniT9twv6ZCkV4Z1/8Oz3zaINEspu2a/f/1s/R0rpZwrpfxSKeWGUsrhUsrPz+bxaCnlnyf1PWfW/odm8/H/cc1kwMvO+KPZ5y3Jb/HZh5JrD0u6i8+WXrz7vtn4P1xK+cNSymdv1r4nA08XDu+opN9VL9b8vdm1L5X0C5IeW6Kcf62es/ly9eK975H0HyR96gLPrpReb2aR5rdJOi/pV8I9N0i6OKvnpKSbJf0LSf+llPIxXdddVC/KuVHSJ0iyDuBxSZodsO+alfN6Se+etfPzJO3wfTP8gqQfl/R9kj5Hvaji2OzaIvh1SW+Q9MmSfiu7oZTyTEl/OOvnN6jnaG+T9JmzW75K/fitSnr17NqUSPT/kfSF6sfu9yV9kqR/I+lZkr4I9y4yV8+S9LOSvkPSunpx7ZtLKbu7rvthbcQr1G/W10g6N/v/F9VTqnPxd+m5v1dK+umu605P9GUDSinfoX6uf0DS/6X+UHi9pI8tpXxS13UW090h6c3qRUzb1M/dr5ZSPqvrurej2H+j/oD6CvVjHHVDPynpbZL+jnrR5esknZb0jZs09Vr1lP0b1Iu2v0zSm0op7++67j/P+vJ89SLpP5T0cvVr7+sl7Vc/zk8Wflj9fvv7kvxyv0X9XP60pDOSnqN+3P4nLbavv1HS76hfH7dI+m5Jb5H0tyeeeZmk31S/hr99du2BTep5laQ/Ub9PblW/b98i6Sb1EqwfUr8HvreU8mdd1/22JJVSniXpv6nf2/9U0ilJXyLpl0spL+u67jcW6GPEi2eff7nkcyqlHFIvFv3NcO2V6vfz6yT9V0l7JL1I/Rn21EPXdU/ZP/WLsFO/iL9c/YbeJemwpCuSPkP9ou4kvSQ89xZJR8L3O2b3vBPlv2Z2/eZw7Yh6dt7fXT7/zkh62SbtX5X0jNn9X4D23Zvc/83q9RcfN1Hm62blfRmuv0fSO5I+v6pSzs7Z72+a6PtPqCcobp5ozzsl/f7E3N0x+/6xs++vw31fN7v+wmXnCr+vqH+B/KikP8NvnaTjknbjuuf2U8K1z51d+8TN5gtjvSbpG3D9k2dlff4mbX6HpF9K5u6P1Ytes3H9Jlz/VUkfSMp4BfrRSfo0rINTkv7vcO2n1BNse8K1w+pfuEdq4/Ch/IV1vS357aWz3962QDnb1OvHO0nPC9f/o6T3he8fM7vnNyrr8YZN6rlf0puT698h6WL4vmtW3nskrYTrPzS7/ppwbYf6My7uybfO1u5+1PO7kv5gyTG+Tr0Y+U9jW5Z4/ufUnwe3h2tvlvSuD8ea+HD8PV1EmpL0M+o35+dI+mL1Cy7lTCbw6/huxettCzz71eq5sk9QT+G9Xb0O7MXxplLKP5qJtR5T/1K+Z/bTRy9Qx2dK+qNuMV3ar+H7e7VYP4wy+5zSCX2mpF/tuu74EuXW8Ldmn/8B1/39xbi+6VyVUp5bSnlbKeU+SZdnf69SPtZv76Ck77runeqNIl4dLr9a0ru7jXrPzfAZ6l9eby2lbPOfesr8rIa+q5Tyv5ZSfrWU8oD69XF59nzW5l/sZqdKAs7/e7TY/J/vZpycNNf1fQDPfqKkX++67ny474R6jnsSpZTVOAZlQTH7gviFpL5dM3Hh+2eixMsaOJBF9lw2jtJye2kRvKPrusgdW7w659C6rrsk6W71RLLxUvVc7TmsrXeoF8vv0gIopexQzwUfkPT30ZZFnv8m9dKEV3dddzT89EeS/kYp5ftKKZ9eetuKpyyeNi+8ruvOqhdB/QP14sy3Ljtpkh7Gd4sIF1k0H+i67r/P/v5f9WKVuyR9l28opfwT9ZTbf1K/OP66+sNj0ToOSFrU/D3ry0KLfwZvqikrymXasxks4mB99+N3Y3KuSinXqD/YXiTpayV9inpi5N+rJ4yIWj/fJOnvllIOlFJuV3/AUBy6GQ7OPj+o4cXrv33qx1GllGeoJ9JuUK/4/6RZm9+ufO6m5iYbn6zfRCam5do5LOnB5L7NxHZS37/Y/29Y4JlFkY3H96jnyt4i6bPU77mXz35bZD98KGfCMuC4X5q47jW+qn6tfIXG6+pb1J/fm+qZZ+X8lHobiM/pum4pcWYp5Z+pn8fXdF33Vvz8o+pFrZ+i/tx7uJTyMwX69qcKni46POMn1FNkK+pfOE8auq7rSil/qZ7jNF4u6be6rvsXvjDTgy2Kh7SJMvkJhJXevz9xzxPZHh8sN2mjqfxN+H1R/E31hkyf0nXdvA+l7p9Y45R+Qr0e5hXqD4/z6sVIy+DU7PMzlb9Q/PtL1evBvrDrujkhUUrZUyn3ycrddULDSzzi0ALPvlob3YSeCOmAkY3H35P0o13XWZemUspHPYF1Pmnoum6tlPKI+jPv+yq3jYxLIkopRT0R+LmSPq/rut+buj95/lWzur+167rvSdq4rt4V442l9+97qXoi5K0aS22edDzdXni/qZlyuuu6P38yGzIT1bxAG03v92hstPFlyeOPS8pY/3dI+rrS+/b92RPS0ASllOeqp4r/RL0OroZ3SPo7pZTDM5FWhsc19oPM8Luzz5dL+tZw/Ytnn1PtyOCXxGVfmBn9fN4yhXRd92gp5a3qD+pr1OuJlvVF/E31xhy3dV33mxP3ZW3+a+p1fU8lx/Y/kPSyUsoeizVnloufrE38Kruue/9HoH2S5of5boXxnCHbc080anv4icbb1Usx3tMt4YYR8O/U77EvmkmmFkYp5eWSfkTSD3Zd93Wb3d913Sn1Yv1PVk+IPOXwtHrhdb2l25PF2T1vppeTeivLL5X0fEn/Mtzzdkn/qpTyWvUWbp+u3leQ+AtJN5RS/pGk/65eyf0e9ZTUF6l3aH+9en3CR6k/xL9yJtZdFs8qpXyiegOaG9VTXa9UTxl+4YSOSOot2F4m6V2llG9TL7K7RdJLu677ktCXryql/D31nNvZ7NDruu69pZS3SXrdjAt7l3ou7evVv2SWdWR9l3ri4o2llG9U71T8dbN+7V+yrB/SoMeriTN3l1Kyufxg13V/Wkr5Tkn/rpTy0eqt/i6qFxt/hnrjhv+sXuRzRdJPlFK+R73o8JvU63mfSuqF16tft79RSvlu9aLSr1cv0nwyrTQ3YCZleYekV5Xe5eCI+oP2f/kIVP8Xkj6tlPIy9eLfB7uuu2eTZ64Gr1WvC35nKeWH1K+V69W7FN3cdd3IpcSY7YuvUr+m75mdA8YD3SxgRuldns5J+pGu6756du0l6qUffyTpbXj2ggny0rsxnVRPJJ1Ubwz0cgXd5FMJT6sX3pOMHwj/n5b0fvVU09vC9W9Wbwn1z9XL4X9HvXnzXSjrzep1e982u/+oemvGMzPq6PXq9VIH1B8yv61B5r8s/vXs7/Ks3X+uXh7/Y5u9QLuuOzJb6K9XL/a7RtJ9kn4p3Pad6o0D3jz7/XdUNwd/hfqx+HL1L6fjs+e/adlOdV13spTyBerFJz87K+v71es8NjPNZ1nvLqV8QNKjXdf9ceW2G9QbThFvlPSPu6577UzE/dWzv069KflvqXfnUNd1f15K+WL16+SX1RMIX6teDPSpy7T5w4mu6/5i5uf1b9VLVO5TP08vVW/9+VTCV6rnYr5T/cv4V9QTo//lw1zvv1T/IvlZ9Zzej8za8oSi67q7Sikfr96K9TvVE8APqSeGN3NB+qzZ51cmbYvtLeoJ4tXw+0vU+xj/DY2Nld6v/sUm9SqRL1W/t/ep34c/pqvY0x8JlGkCv6Hhf3zMuLK/lPR/dF33Y092e56KmBkJfVDSr3Vd98onuz0NDVeD9sJr2LKYWZI9Rz01+hxJz6HrwlZFKeUH1VP2x9UHUPgaSR8n6RO6rnv3k9m2hoarRRNpNmxlvEq9ePcD6sXT7WU3YJd6Edoh9eL0P1Qf3KG97BqetmgcXkNDQ0PDlsBTyTKsoaGhoaHhw4b2wmtoaGho2BJoL7yGhoaGhi2BpYxWdu3a1e3du9dRsrVjxw5J0srK8N7cti0vsg+KkGPqt+z3TO+4yD018F5/z9rla5uVH3/nvZv1NytnfX19sq1T9W12PWtTbQyytq+urs4/H374YT322GOjm/bv398dOnRIV670uT0vXerdCt2vrH1eVy6f16f6scwY1+q/mnuy+aiNIe+dWlv87Yns3zJ7JauX/fCcrq31GZE857EenxPbt/epEKfWzr59+7oDBw7M593l+VOSLl++vKFOtmlqXq7GjmGzZxeZp6uZwxo8NrFMlj+1b4jN2pb1u9bnuMc3e5bfszJ9Hvja6uqqHn30UV24cGHTAV3qhbd792592qd92vz7bbf1AcWvv36IX3rttdduaIxfiu40Oy9Je/bs2fCMETskDYs5vlS90D0wvtffvSli2dw4vNf1TB3utUPLZbtd8X+XG18Q8TMuSG5cvyAuXuxTovFQ8WfWD/ZvkUOZ85S9fDwPLufw4cP6vu/LQ/4dPHhQb3jDG3TfffdJko4d65NCnz07+L57rRjXXHONJGn//j5wig9Hf8Zn2L7aho199jPuK7/HMTV4jd/9bJx/voS5RjjWcYzZJrffY5AddKyX9XD9xz7wnkVetH7m/Pk+ucKFC72x6yOPPCJJOnWqDyXqtStJe/fulSQ94xl9DPNDhw7pu75rHod9A2644Qa99rWvnZ8Tjz3WBzy6554hsMmJEyc21OF7SFhlL13f4z7zRc2xjuPAMeY4TR3ULMv1xPngHjPcNrdp586dG+qI/3PfuEzXE/cd11ftLMxeWh4D9v3xx/uIaNm+8jXPgdvmNeTrsV/XXXfdhr7v27dPP/dzozzgKZpIs6GhoaFhS2ApDq/rOl26dGlEIUSOq0ZFGlMUKakZUpeZuJQUMKmIjNLivbXPjCvMqH5pzFlOiX5chsvk9awN5A78uym7SD1PUYzxWVNPsf3kPjhfGYdunD17tjo+Xdfp4sWLcy7g0Uf7+Mym/mIbapSw2xLXga+ZSiWXaGTt5vjzuxH7RI6aVC25eGksZeD8sP4IinN5r3+f2htuI7kCw9R01n7uyci5LopsXL1ez507t9DzXucRsS2eX3Ktvsf9ievAbeCapQSEZUXUJD4ZahIr7rE45xQTR+lGVnbsn++ttS1bbzw3PZ618y2WyXU+9Z4wXK7PInKYPh9iPfHcknppwaJi6cbhNTQ0NDRsCSzN4V25cmWSgyCltXt3n0GD1ER825MqJxXjsjLOK7ZNGlMiU7JmUv01/UV2Lyl6IpP3k2JkW+Mz5Iw5BqT8sjHxuNZ0FLFPno9aP309zlum36npztbX13Xx4sW5XsdcRZwfckuE18WuXUNuTv/vdUauqcYpZ/eSE8n0zqY43VZzCTWDjQhy6cYiFDDXpD/N+WScbU0nybZG7slrxdc4JubQY/9q0oApAyLXYx3uhQsXqtKDUop27tw5GrcoHeDeoi4142a8Bjfj7LkXY/lGzc4gzim59dr+nzJa4ielX5lenucNubbYF9ob1Li2TFpAfRvHKJN+kFtjfe5PnGuvda/RZYx/GofX0NDQ0LAl0F54DQ0NDQ1bAksHj+66bqRcjWxtTQFPVtwiKGkseqMIgaLGKE5hW2ruApHVJ2tv1NwV+H9WRk1sGf9nW9xfioj5fPadYt9M1EizZF+ngjiWT8OQKd8njvna2lpVeWyRZjSuic/GNlBE4bZ4zdhdQepNkqXBzD1bk7XrFodS1GKxDk3NpUGkR2OLzMS/Boq2DM5TvMbfvGdsqh/3E/tOUSPNxKMxBkVMhvvl8Y6GLhZLem49RjUDm1iP3QcuXLhQXTsrKyvas2fPaL/EtVgT+VO8FsVsNVcpr7eaCDBe82fNuCf2yevNn3QTyM5Onn21McoMvbxGsvMsIo4jxd+ul2czz7Ssz+4nx8SuaxE8Nxfxp40qgkXFmo3Da2hoaGjYEliawyuljCiFLFpGTWFuSjSj9kw1mgIlVUsz13iP63X5pm5MbWam7KToSV3EemrK4ZohQGbC7LZa2UqqNI4JjUTcH5oFU4kc/6czJ6neKWU8zdL9GTk099H9unjxYtXwYH19XefPn580DCLn47k0RWiHU39KA8dhTsflmrqk8UXmalJTnHsdxnXAeXB/PC5+JjNaqhl1cN1lBl3un+tjvyPX6+dZHjk81xvnlMYKNTP/WB/HIDNIivXHsYjGP7W1Yw6PbgSZBIZr3OPDOZXGHAhN4im1iXNac7vifoxjy/3IZzIsGlnHYxINkMhBcu9lEgX/xnVcc6HK1irXF8/OuJ9q0V+4V6JRlsfRUp1lIsg0Dq+hoaGhYUvgqhLA1hynpbq5NrmqqAOgPoR6EL7BM9NbciSm3jL9AdvgZ8wNkqqJ95CKqTnLZ+bI1LvV4mNKQzgtcsSulxRf5CjdD1K1bjtN2uP/vrfmcBp1RVnYthpKKVpZWRlxG9m8mHI7cOCApD60VPyMOgBT8OTkPP/U7WU6HJqUs18Zt8Y59XrPnqmFm6o5oE+F76IbgvsZ15vv8W+cd7fVaya6eZCTq3GukbPxGHvdUa945swZSRs5aXLIkfsnzOGdPn16Q9uyMGEMU0juM65fOj1zX0zZKpDbrLkLTUlECOrNOQaxPkpDMjsA94NO636WOuzYRkq9LFGo6dpi+ZwfcsFxvXldkSvkWMX17fmqjeMUGofX0NDQ0LAlcFUcHt/gGXfht6+pC1PlpjbjM5T1UtdgqiyT55paqFnn+fdIXZoKJJXiZ02RRqoiUiWxfzUH9Eit1vQ+7pcpoMi5mMMzZeUy7LjNsYj1mRI2B+v+kErPqEHrZmw9Ryu0WE/GzW5mVUUqNraBnJ3Hw9fJxUUwxJi/07k4tj/TYUmD1aElD3FuGSCZYbv8exYAmuuNFKrXR2wPOSpa+GXrj9Qy9yQt7uKcUf9LaQ45fv4vDfNE7joLD+V7Ll26VLUidEAD6rqihII6pVqb4rxw3jNuOSKzaub8T1kxMiAyzzueZVk5tTOLztjScM5R6uXrPJekYe14/1P/5v1DCVccC+9bSj88NrGN/I1rM+Pi/Hymg9wMjcNraGhoaNgSWIrDsyzdlC/f9hF+69qizpyDrzt4sDS85RkeyeVPhR4zJWLULDwz6tK/kUpjHyIYliyj5KSNlI9/cz/MtfnT7Yn6BfoaUdbtT3NDsT7ruqj3MadHyj/2y/NlatAcZU13EOvZzNpsbW1tFH7I1GZsJ8OEUfeQcVxciwxJlK3VWpgmr2+v0SgdcDlx/Wb1Zdan5JY2C14ujS0sDXLr8RnXR27Xnx4z751IcZNDoW7ccxHnjdbHbpvXtyn+qKunnnkKXjvUqUWpSy0EG/00M79Pr31ygdTPxbXv+afuLrMGNXwG+tlaMOdFgjq7rdRdxnnxPuK9RiYx4zjyrKxZYEpj/R+lVJ7/WB+ldx5P6n3jnqfucdHA0VLj8BoaGhoatgiW4vBWV1e1b9++OUWXUWekEPw2NhdHCzFpSCDLKB8137dIAZkD8W+mWslRZpSI20bKOotMQF0KKW5SdpHiJuXoe0hpZ9an1NGQwjK1GCk76gpNLdE/KlLcboPLN0Vs6jxrI6nbbdu2TcrTu66b99ljH/25Mm5FGubLcx3h5KI1f0jqBiJX6zGjzx71dBEul7rUqUg77iM5BXKj9AOL7a75fZpCjmNW08O5P+7f8ePHR/0zyG1T3xR9IclJkAOjzij2MbPWJRy03meHzwNzDrH/7qvH3O3MLGCp2/Qz1Ie57LgeqH93vd5rRuSquHe9/7jOMqtgBsGuBXmPz9LSsWa5nCWcrUW3omV+TOBc88+mDjFKR5jA1tIpnm/ZXuReXwSNw2toaGho2BJoL7yGhoaGhi2BpUWa119//Zxtt/l7FMHQOdhsNTNcR9b74Ycf7hsD527fQ6OWKJZgeXTYzhxlLUqgSJYK1Gi27D66PIqSPBZGFNVR3EqFfS0/X/zNz9KU2nPhcZfGYgmKaDOxq+F5cn9uuukmSYM4IopB6VowFcSVZuU0kZfGinm6Yvj5KN6gcptGMQxhFUWaFu1EYyFpOv8ijYYojsyCMbhfdG2h2IjXY7vdd/fP68Aipcy03H31M77u8fS+i+PpexiyjO4kJ06cmD/DcH7egxQzZgHVs9B4RNd1unTp0rwfrifuMZ5FPn9oABVFpzfeeOOGelxuLSTXQw89NL+XRh0MT5e5pxi1XHp+Jhq8uB/uq8fNotpDhw5JGouPpWFtuD8M1ed1ENVLdDmrBeN2WXFNM8i72+J9lp2VXntuq5+xmivLZ7hIgPYaGofX0NDQ0LAlsLRbQnyj06hEGigPKyGtGKf5eJbd29dMzSziYEiluu+tUe/SQNnSydHURObMbUqE5ZnaIIUXqbRa2Ck6R2cpjFw+TfQ9RlOpV1g/jRkiapm6bRRiajhSg3Qb2b179ySHt2PHjnlf3aYsIC+NLcidReMVl0eOjhQoDVPiPR7TGhcd4d8YJNxtzrKI10JU0QAlC0BAIwXWk0kwmJWdBlXuA7OOSwOH77Hxd8+xOfy4Dg4ePLihPEsF/Ok5ipykx9r9OHv2bJVyL6VodXV1fq/bEPeYuUrve3/SMC1LLUbu3O1k0IVokMJ7OD9T6YFq2eRthBPPGJfrc9XzYA7Ikh2G2IvX3H6eiXQvi+PDFE9eu14r7mfkKP2s28jA85nEhNwfjaJcls9saXyeTQUeJxqH19DQ0NCwJbAUh7dt2zYdPHhwpDeJJsqmBEiFMRhpRs0x4DMdJhnYOJZL1wImRIxcqCkcmgczjE0WhoiBp02p0kE7c4Z0/1g/dZfSQO15bEnRUzcQ62NgW383lWSqPeqzaDLNINkMfxTvjaGyahzelStXdOrUqVSHa1CfY52Jxzhrt+G14nEjRT8VMJsuGJQ4RG7m5MmTksbcEbn4SJEywEAtwMJUmpNaYlH3Ie4nBramG5Gpco9npoehHpXcdhwTuovcc889G8ryvZEjo27aXGKGK1eu6KGHHpq3NwsI8LznPW9D35nOipx47KPv9Vj6GZ8L5HalYd7JBVLHFvepx/KjPuqjNtzLfRn15P7Ne8GcHQM3eA3HM6wWyNpluezIudbca9xPty1bq9Rne8zp9B/HkdIbr0XvmZtvvnlDH+K9cT+1BLANDQ0NDQ0BS3F427dv18GDB/Xud79bUm4ZZArDb/Faenm/9eP/ploYGsnUEvU/0kA1sr7MKsswtXDs2LEN1015ZUGxXSdTCFnHZcsj6hRjP2glVUu2GNvtNpiz8BjQIi7CdTOEEcc5Oh77XlLjMbgvQZ3nIjh8+LCkYbyyBJlMCOx7M07cY2kdo7/TIjJa9BlMhEsdq/ueceumil2GqWXlfdRhAAAgAElEQVSPSaTSWS6tAKdSPVGCQadotjWW57VKKp0phiKFT0tew894fKOlHblp1/vggw9KGgefkMb6zH379lWdzy9fvqyTJ0+OOBVbKEa4T+TAM4kSOV9+0po7SwRMK1bemyVmpqP+Aw88MO+nlOurvFc9V7RC9WeUfvhet9VrhGnR4tqhbYDXga1yuWeyABvU2XkOsiDi7it130xpFN8xrHuR8HRG4/AaGhoaGrYElk4PtLKyMuJQIoVgkKIylWfqM6NI/WlqwpSPrb0yToKcDn2MogWaceutt0oaqCF/N4dnCij63Zj6Mkfn76Z0SU1PpcyhTxWtz+L/5JiZbsllue0RHnOPBRPtmtuK/fG99Eny90ilu+/RGqtmaeewdLTyynSPhueB7Y46Y1P51IvULN+iDo9+nqZmab0bQ1h5TOlnauqV4a+kMQfEYMpTYbW8rpjKhdKQzHfPe4EB1U3F+9k4nm6Tn/UcuPzMGtB7giljMl2b4TZEK9opPcza2tooRFXk2mkjQN1QFnDa/7uPHh9afGbJYxls3XPqe703LJmJ/1N36PHxeMUzK649aWxB7vmiH1tWj5/xuNE6XRqsPv2s7332s58taVgXnvN4jtMGglbCWWhIP29u1P11Pzw21l1Kw7zdf//98341HV5DQ0NDQ0PA0n54O3fuHFkbxrdrzVqS1mWRE/C95ux8r6kK3+u3fLQKM1XJAL1TPjvUqdxyyy2SBi4h0xVRJ0Rfsal0QfTVY5oM3xupM//vNpgKtTWb6zMXHNvnZ8ytmcIidRgpSdeX+QRKA/WZBXD2vJw5c2YyCoLTvMQ2Rq7O40IdlGFqOkbI8DVTiNZ1eJw8Lu6Px0saLMC8Nly/qczMIpZpZzIJgpRzeNSleAxo+ZjpxGktycC8cdy51xi9wsh8E92/D37wgxvq93VLPTKrZ0af4VxH/0KPdQwqP5XmZWVlZeT7lUX9cZ9oPelnos7bXIr75t883x4vn0sxFRl13bS0djuiFIX6Kq9Z98Ptif6KTIXj9U4r0MwSlhFWGB2KwaXjNa9r73dLUtxW9zf2z32/7bbbJA1r5c4775Q07Oe4Dhgc2/Pk/rk/cQ+aez569KikPkXalJQkonF4DQ0NDQ1bAktxeGtra3r00Ufnb2rqvHyPNE4VT31CfCObOjNFxWSG9957r6SBmogU/pEjRyQNlAKTnFLGLg3Uucujv02mh6NPCyl9g9ZFsc8G48O5nzEeJq0YTXGbinLiVz8T9Y2u7wMf+ICkQdb9ghe8QNJAyWZcNv263O8sYae56hg1ZSrSyvbt2+d9dTmRQ6Llnsff7fX6iLoU99W+X7YM9NqkRVeWXJUWnF4r5PyyNnp9ub4s/ZXLZzxW6hCN+J1Wax4vjlHUi5gbp76cPqSM+CKN9TqMTWqu+L777ps/Q/9YUu1MsCqNdYRra2tVDu/y5ct64IEHRpKluHaoc3ZZjEgSpQa+x/PNZKdum6254znnfe9r1OnTF1YabBGod7Nuz2s30+XTKpQWxJlfHOebOlDPR9yzPmv/+I//eEObPW5ujzm+u+++e/6sx5rj6LHnupMGSQz9ZRkzNoJRYM6cObOwpWbj8BoaGhoatgTaC6+hoaGhYUtgKZHm+vq6Hn/88Tl7bRY1iuyYLdqiDytsLZ6KosCP/diPlTSwxBbPmcW3aO6OO+6QtFFcyJRBZuMtrrQ4LzrKmk23iM8iC4tH3bYodqUjqfvnflFcFZ+1GIIBtJlWJRorWDTrMbEoyWPi9viZKKqx8tv3Mj2MxczR4djtp0iTorToGmKRgseW4l1idXV1Lopxe+MzrtufDCCbieCY6oguMgwqa1Fw/I0BDlhPFuzWY+v1bDG7125so8eJ/XBZNPbIAh4wTBPbGMVtvtfiIoo0PZfsS2yD10gtvF+cN67rmjgqcyvy+r18+XJVpLm2tqZTp07p9ttv39DXaKgVx0wa5oOGKHE92LjC/bd4ziJOZgrPjNjcV++5u+66S9IwbrFPnjMbW3gsvX/cjliPzxfvf4+pz5RaEItYt0Xc7i/XWTREe9/73idpUBHQ4Mj1WAwbzzm30W32PQyOEUW2LtciUj/r8fQ6jPvJz7tfZ86cGamNamgcXkNDQ0PDlsBSHF4pRSsrK6PEnNnb15yQKRFTcnYBMJclDdSYy6HBwcd//MdLGqimyAmZIjDVwsSvphyiAYpN05k+g8GkYz10szBqxiyR4jDn4La6TabAqRCOY+JyX/jCF0oaKK/MOMLw/Hz0R3/0hrHw+LmeSH0yZFoMCB37Ew2G6Nh67bXXTpoHd103cheZ4oSMWhDk2F67sDDlCqnLaDjheuiu4T5kYdXcVwcrYIqsuGYMcwNW3tPwyPCcRvN3Ot3TMdf9iYY87jO5M88x3SGypKE0IGPy4sgpkVN1ue6PxyiGzIprRurHvGbwtLq6qgMHDszr8bkTjR/cHo81uVsaUkjDOWBOxH2jcYfHK86FuTLPpcfNnEkW6ICBDTxOlgq4/mi8ZpCj8z0+KxliMfbPe4xcWRaM3f3xGVVzv/AcxP3l+jwXvsfXXW+UDtBlxlInG8+4jVk6Obf70UcfbemBGhoaGhoaIq4qtJipFlMqUZZOk+TIyUnjsEbSQAGQS7PMmSk/IlfAoLbktGga6z7EcpgOhua8sRw6Ars+UyKZ+bMpQzqv02w8o1gZLNicDMc51mcujPpGJi/NOHOGUaJuLwuv5PZfc8011RQ3dktgot4sfYrrqHGx8TvT/tQCM2dBvQ2mQPK69phGKt1108GZfYjXyZVxPVs3TUpYGlPL7K/LztrI0E4M78c1FtvocaSTMrmUCIaD4lzE9Ub3pSm3hN27d+v5z3/+fD14nGIbKK3hGDDkoDTo9713qQ/lvol7zPdSD++xzczk6ZBvzs5t4/xI46St/s75dx+yxNNMvcP9H91y/LzPMd9jDp/7Nu5F3+N6fKYwWW5sIxMYUzpgzjmuDQYGf+yxxyYDXkQ0Dq+hoaGhYUtgKQ6v6zpduXJlTl3QCVcaUxGWMfs7dV7SxlTt0kAR+A1OKipyGaboGBKLQXYjdeY2mSoiRZelomfqEMvwmQjWfcgsSV0urbPcn0gVMixUzSmbnGxsg6keJosk1xifYfoP98vXI1XNOZ0KDeWgBab6Mk6fwW0NOupHHQDDxNWc/I2oy2WKHbYjSz9CTpj1ZUG2aSHI0FK2bmPor9j+WkJTrtn4G3VFnFu3PbaVvzGJsH+P64CO9EziyaDCsdyYlHYqAe7Kysqcs7MeO64TS3g8/tRX0rYggnuM45Sta1rc1vTBkfPwfHvf2zrc93q84pqiPtttcX8YgDyec0xO7N9oyRx1uNRfmvusWWvHM4Rpvci9ZWe/2+SxoB2F64v7ODqcu96psyeicXgNDQ0NDVsCS1tpbt++fU5Vm6qKVBN9qci90Oco3muYMqAc3ojP1qwmGTw2Sxpr7oUUiKmKzMKKlCkpuSydhSkel+d6GTw6Wud5jBlayP3xuLr/kcOL6Xpi+UzJE6l06mwM6mXi2PveGLqoZmm3vr6uCxcujLiczJ+LaWson4+cAHUmpM6ZpDZyeKT2OYdZkktylOSmsrB05IRdBhOmuo2ZHx5DvTGxaWbtWuPS6C8XOQpKW2h5mXFItG41d0B9UxbgOva9tnbW1tZ0+vTpkV9k3NO1UHj8PXKbtP6lVSulRFmyU9/jPRC5DvbZOjtzeB5LW0QytVFsG9eb+06L1UzS4zPEnHHNDkAa5s5rkTpCWrtmc1YL0ci2x3q47twvz2PmX5id05uhcXgNDQ0NDVsCS+vwLl68OH9zU34dYUqB1BE5sPibQd0TqYj4ndQEKT0mWZXGEWJMIZD7jPVQN+m+M/FrpuMgBUIKm7qD2AbqNamzdBsj50VKqjb2kdLyb/Q9sp6EQYuzPm+WhHF9fX1efpaahFwrOYaMmzGoO8ki3tSeJRgJJdPlUpfm8fHvUc/MoMeeQ9/rNmVcqNckdSdcQ3F9U9/LgMoM4D4V6JwcLa2VY/vpA+n+WkqQRcPIuCfiypUrOn369Lxc2hBIwzyYE6lZ9sZ2u121dGfk+OLaoSWvpTOMDBItvc3Z+VlbU1P/FqUejEzl/UgOk22Wxha+7rv1ZdTTSYNUxeX4HvuM0sI3nuO03Mx8hOOzEZTI0N4hnlU8NxfV30mNw2toaGho2CJoL7yGhoaGhi2BpY1WduzYMRKjRBEMFb4M6pzlJaMzcixPGhvCRLEEDQAoZnVbMyMC3+vvZpszc3UqYCkWYj65GIaIz2YiYF63KIHK6syQItYR76FZMB2sY/+YG6uWMyuKW6ygrxm8RKyvr+vixYujwNyZ2Jh9ptl7JsKgCJN9nGpbTYTq+YriaYoYaXzhZ6K4jdcoaqThU1yrNLP3uqLIOXMNoviT4ii6uMT+UOzKtsY5oIsMHdozdwPWPSWWWl9f32CEkjl3M9yU+8FQf7EtFjd6TXqeaUxG8Vosnw75dBOJhmi+h07yPnd8Pa5Vil2zgA2xn5nIlqoaG684KEgcR7qCef97TFhvrI+/0eApmwOGn8syt0sbz1O31+Les2fPttBiDQ0NDQ0NEUtzeNu2bRuZz8aQWaSKaGhABXq8ZiqCIbiMjLqsBXWmE2TMeE7lqqkwchKZs6OfJQVCSjhyLi7f1Dg5vczAggGfaazCdsX6akY+pIIipUVO1VSv255xLjRNvnLlyqYpXmgYEMfRfaWTv+tkVuvY3ppEgZ9Zn2upnXw9BuQ1pWlOgilwWJZU52Io7cjWHdOzODQWA4DHPeP6uK8Y6DozLvB8kDrn+o8SBXLR5GBp3BQRA1nX1o7PHRt90GUn9onGRDSAyzg8BldwWVPBMmrpwhg8Ia6PaMgkDdwUw7nF+eCap+sKxzR+d7k2OGGwfwe6jnA/3FavK57JXA/SeB3QgJBcd4TL8Zwy7Vc89zw/8YzczGBu3saF7mpoaGhoaHiaY2m3hLW1tUnzcOpdGHaKYW3ivTUdAwPYxrc59R7+zdQTqV1pnKCy5iAZYe6DlBVDLmWydOp5mELGZWem5aRceG+mE6XOhBxSxhXXKFa32VRiFlIq6kmnHM8vXbo01/vZ/DlSpKSsyeFl3DNdB7h2yPFlOofas6Y2ox6GOiK6FGR6MeqEyfFN7SePAVNjuR2m0rMg3KSwqYfLwl9x3KgHngI5NO7FjIPLwo4RKysr2rVr1yhxbeSe6LpCt43M8dztYygszhfPH2kYf3J/5uyy+gyvK5r+T3E+tFWgXjGbJ19jAAfvwSx0Gvc9uU/aH2SuVNxHRnbuMEAA0xCR+471eG6vu+66eSDwzdA4vIaGhoaGLYGlODxbS/mtz0DA0phq9XdyfFEmTGdtUrr8Ht/2dD5k0FEHio5gmKyapWek0hnOiMkT2YfoAMrEpW4bnbCzsEC1gLo1DjrWw/4xYWusjw6eWbJGaaPehBaxMewcsbq6qv3798/1MFm4KYZR4zxlVprUh1KHxu9xPEmRUsdpnUfscy3sGMc66msYnLjGabGfsTxyki7TOr2oj2HwZoZbM7Ix8b107qYkI4I6Fa8lpoeJa4MSk6nEwaurq7r22mvn92bptuhYTkfmLIwWz44siIOUO1lzrdAhnM7R0pg7Y6AFI9ob+F7qQw1fd1mxXQxhaKtGhlTMnMcNcmAMWzil0zfIKcfxNbdeswrPLPepVz5w4MDk+tnQloXuamhoaGhoeJrjqtID+Y3NgKnS2IeJVGvGzfh/JlHMQhHFMiPMcZkqN3WbycdJtdLvL9P3kNMyhW2Kq5ZcMd7Lftkf5hnPeIakjZQdLZvoK8TUL5n+j4FZ6VuVjS/1CkaWpoO+YFNJPFdWVrRjx45528jpxT6Ty2RC0UjNkfOgpV2sn8+So6fOyWsq6ooYuopWix7zOJeef3IStRRPUU9C3Qx1eh6TqGc8fvy4pEG6QWvqKZ3oZqHXMh01OaNasOqM+88S5mbYtm2bnvnMZ0qS3vOe90jaaA/g/z0/i5RLfz5y7VwzmWSBwdxZX5wX+lCSKyG3E+tkMGem+poK70gdrss4efKkpDywvoPfe29zTBimLgMtpDMra4+bP+N4Sfn7wvcePnx43oaWHqihoaGhoSFgKQ5vZWVFu3fvnusL/DZ2YkZpkBM7qSX1PJRjx/9ppWfUEldKY87D0QNIVUc9jP+vpY4xBRHroR6GSWnp0xSpJnJC9P9z2pCsPkY8oNVhFgGBVn/kOllG7Dutv6bSwjDo7pQfnq00qVvLrGdZJ8c4s9jK9FGxP7xfGut1vJaYODNbOwzeW0sxE1GzeOT1LHmwyyOHSa4t6w85OfpcRq6OlnQ1nU18hoGSacHq75Gbz/TINXRdpwsXLszXmdPb3HffffN7zFH701Kn2v6M7cvSMkVQT8b/47M8byzJiPVQz2crSp5Z0sD1cb9wXVDyIw3rym11G31GM7WVNOiE6fPoNlKnlln40jKe9hxx/Xs9M7Ey90jkei258NicOHFioaDwUuPwGhoaGhq2CNoLr6GhoaFhS2Bpo5XLly/PnZCt2IwiTYtRbJDBPE4MLOty4zWGQGKA0SzgsNtEVjvLjuw2GsywbZY5GuOYxWawXjq4WqyThUejWMLil0zESHGARQwMYZQFR6bzP0WbdECP/fOzrCcz5KH7AMU8EaUUra6ujtw4Mgd9mrlTRJsZPFFUSoV5Jr7zmrBomUYqWd5At5HKdq8dr/fM4ZgZ1bM8iNLGteP/LWK2yIli3yiWYuBiiiFpcBXHs+buMhWOzOIoiq4oDo2geHr37t2TGc/PnTs370/mwOy96nPAnwwMPxUejC4gFHlmIe2YD28qsD4N9+jUnYn86DzOuaSpf3Qj8Hq2CNUiQIs0XZbXVCyPBjw2BqQTexRTcz1TvZGFaOOZxHPT75hMZHn06FFJ/Rg3o5WGhoaGhoaApTi8tbU1nTlzZmS4YQMVaeyoWKMYI4dXC32VZYCO90cwmCmV7JESMfVHZ1Ffz6h0Gpr4WVItNvXNnIfpaG4KzxRXpGKYKsdlOISOxzlzlqWRQqT+2TaC1DOD7maceeQUalS6AwC7X6a443qpZZynO0c07qGxCF1bGP4sC6PEbOUMXBvroxTC9Zh69rqIa5ShqaiQJ/dpKjre67XifjJodQyuS07L7beUgObvcUyYVZzrL3NWpjSAbaeLTUQtVVaEjVY81+575AY8hw8++KCk8RmRpY9hH2vzYg42rm2G4Kq5MsR6za3QZcJttzFgDD3ouWKoMp9v7oPnOErbfBa5LT6nyUVlbik02HLb3N9MguFrDDjNsziuA3LCDBuWGTe5bf6MgU82Q+PwGhoaGhq2BJYOLfbYY49tSLwnbQw/xZBBBqmKjLIjJ1dz0GSbYr3U+/h7dFJ1+33Nz5pSMDURKQfqD2opfozIFbjvDJ1GrjTjev1JU2JyGnG8WQ/1fBn1SQd9jmMW9srIdJAZzOXFe7PkqtQBTCW7ZTm1xJiZWwVdSOgW4XoiF+o1YQqf9VvXkY0t9b1sEzlmaVh3/qS7SBauyaCeidxutr+yeYn3uv7YRo6bQd17Buuxz58/X03i6aD1XDux3ZSesM5Mh0fdI5+dcqqupc0htxHbaA7P5XtOzT1lyarpHH7DDTdIGqRRPgfcF9+f9cPSIZ/XHgufLbGemjsZEceIgecZYCHT5bIcJtjOJEu+JyY6npJaRTQOr6GhoaFhS2BpK8319fWRQ3CmryK1Rsu7jKqshYWinipSkpRlmxIx95lRTdRLuTxbNWWWnf6f4adMZVjuzhQjsQ1ME+QxMoUXqUUGlvV3cm1+JnILdCj1M6TOIxWcWezF+jNugGmVpih5p3jxGDOMWCyH3AupvQgGh2aw3anA0zULW+pYYr3U93FOs/lnmDu2ldRttCL2b14jtqijJWmkwCl9yPoRy476mFpAdXJIcb3RMtGoOXLHtjHYcwZbh5sTcVuiVXDNKpsBuqdS8DDkoMvPUoyZM6WOiRawEeQgmZ7M3x2IQhq4QoaU85qiRWnkMLm+jx07Jmmsu3WIrlg+QyYy+EfmeM7wfuwX3xvxf1p418LwxfIo1VsEjcNraGhoaNgSWDq02M6dO+eUIS3UIrKgxtnvLjeCVNhUeCvqAt02++WY8rbsWxrk3S7PsnTLv03VRIqOlJz7ZYqbnGumj3N5bospebc1C6TscpiOiPquzJeKFlwMhxVBKozWeeSYOD5ST0lOBY/et2/fKBRcXAduHynFRXxsavpJzltmXRgtHKWNuoFYhjTM94kTJza0jWGjMks7f5o6p0Wa25HpRbhWqO+LbXRbTO1nvnpxTOIepWVvjXrOfDhpbcq1FMuKa9311c6K9fV1nTt3TrfffrukfO2YQyDXRK4i1sE2eO0wnBc55lgf+5b57Bk+X+izt0hqG6YUojVyZndQG3+vIT9jfWBst9eo62NbM/06fWs5Btxnsbwp/W1sa+xH5gu4GRqH19DQ0NCwJbC0lebFixdHQU4zqzm/3UlVMtipNParqQWLznwyaGnHNEHm5jJKlb47ftb9Y/LTWA/1VqZQTMXE+g4ePChpnIyWnEsWFJs6AerlskSxpJaof8t0eNSTZklw+UwWIWKKw9u1a9d8TM2pZgkkqcvj3GVJXEnFss/koqSx35/b5vkyFR2Tq1LPYmrd9TE5cqyTVou1QN0RHieX535QD5NxePSDchmU0MT9SyvdRaJl0MeW92QcDH3cdu7cWV07TktmWJcX9wslLLWko7Gv1FfxfGFZUcdOLtBlMNh7nFNydnw2s3b2erJUyOW6HvrcxjYy6pM5OesfXVZMZUULZdZPXWLsH6Pn0CbD7YhzsFkSZuoopbHf5JRkiWgcXkNDQ0PDlsDSkVYeeeSRUZqbKQurTM/jsgzGkGOEBn6PsnRyPrzXVEaMi+k2mbo0N5j1l+2m/oDWX6Y645hQp+L6fE+UobM+WkORs8ws8GoWl5lllVFLQkoKLNbD6CWbydJLKSNr1jiX5AiY/HEqnU3NurAmAYj3eF5uvPFGSdKhQ4c2tDGzTCWnz7iI0XePvnSMy8r5iuNITpXcxlQEEeqZMos3ttWglIXrIK4t/sb+0LI43mtJRillUw7PnLY58Gg7wIg0jEG6SFoynlXU4UW9bC12L7nGaH3oRM9eZ66fKZ+idMB1Uo9IH7vMnoKWxLfddtuG+ukPKI3TrXG/0kozrgO3m2uViFwhUzPxPPPazM4sc7AtlmZDQ0NDQwPQXngNDQ0NDVsCSxutXLhwYeSEnWXZpUixpkSO/1McyLBgDBAsjUMemdW2AULGepMtt3jC92Rpbug0SnNaP0vlcrzXbbJJu4P5UuQpjZ3F6VJAI5MoQq2FB6uZj2djQofmTDxBsd7ly5cnM57HtZMZW7BvVHpnonOuK/bV45eFlqIJNo0IXH8mymJIu5j13WNhuA0Wz9RcJbLwbTfddJOkQYx3/PjxDf3J0kPRWMWgYQONTGJbauKozIigFnaK6XWyfRtFxDXT9FKKtm/fPhe3Mb2NNA5A4fFnPZkZPQ206OrjfRlVDzQmc1l0H4r1ud3Pe97zJA3npkWBNp6LIk0ax9RcdRjUIMIiTJdFUWY8q3i283zzOp8KJ0gDMq9/OvJn5dBwK3PzskooinEXce2QGofX0NDQ0LBFsHRosUuXLs05FFOdEQy4ytBPmQNoLF8auzaYIshMV8kxMv2MEblQGr/UEo1GaoPcB6lCGkBE8+CY7kUaKCo6r2eGAKSW2NYsDBqdX5nupkZJx/6QOyB3GP93Wy9cuDBZ9vr6+pxKp1FEvEbOp+YCEu9l32puHBGklpnwNTMiYdBeKtddZpx/zwPDctEQwfXEYL6myv2sTcjJ2WXjaNS47oxjroXi4lzHMunuwr2RmfXTIGgqeLTro4FDnNNaGDCaymeSEK47OnV7DiKnzzb4u6U2XkPRiMRz53K8lmxQl7lyeZzcP4YNpAQtuhhwbJjSKAu76Hk1p0qJBQ2fMjclnlVcj1myYoYEpBN7lrjZZ+0NN9zQOLyGhoaGhoaIpXV4jz/++Pxt7zdspCroWE4qMtOpGZul9jC1lJmyk/MixRddD0y9MD2GuY8sdZHLs77HcnZ/uu0uK/bPVB/b6rJMnWQhpWp6GOq1pjivmt4xc2XIEqXGZzJn30iZTpkHl1JG3GdG1XMN+ZlFXFrIbdQoyFguOT1S/pGy9/+WbngOPccek6jv8RrxOvZacRlMTxU5So+Fn3XwAoaci2B/SHFzHTI4RKy3xmVPzXMtldQyIaCmyvU+jbp2hgMkR5Ilu+U4kKOfSlxKNyXPMcuMZwntCph4mk7dsY8MlGz9m9tmKZKDTcffzNEdPXp0QxszLo3h9Bhiribhytpo+BmmNot9ps6T0oEIOszv37+/cXgNDQ0NDQ0RS3F4TuBJuXWmH/Obm5xcJpOtpYWhPoTWdLE+1kurxowrpM6mFpIptpd6CrfF8nGmJYr1+dP1mFsgdxLbT/1lLY1GZvlETs9tmqLsaWXLsYocGcN2TVlpul5a0cXwbbQ8rHGxsQ3kxms6yIxb43y7bdTZRN2TOXj/ZoqaFH60tDM1zlRC1N1lUg+XZ+6Pe4ABD6S6Do36xqmAEZvpT7M9z+/kBjJqPQa4zvrvcnbu3DmX0tgSOuqtac1X0wXFOigtoVUw04fFsHS0ovaYkkuM9VGyQqtzW1NmCYcNP8vgzpYWxHXv8aLlKINHZ9auXt9MmcUxy1LD1SxKs7OfnDKt0rOEw96fkaudSi4b0Ti8hoaGhoYtgaU5vO3bt0+G6yHVyEDFpsoil0ZOkToAv9FNzURqllQKORJTNZEKZdqUmhVR5B5MpZPSZVgtpreP99SsDzN5uPtMKtn1UAcWqV22zc8yPUemz8j0l/H3SGlN6eGy5x977LGq/6JUTz1CrvsrOocAACAASURBVDpL8WIujOG0WF/k1kiFm6p1GSxTGies9D1eUwzYKw2Uu9eVpQC+N+PSDXJPtAaOFrJ8hv59TNviNZPpPzbT+2Zrh5awtSDM0lh/OoWVlRXt3r17zplYdxM5oc3qJjcd20Pdkz+pn497zGcQk99yLuOcMk0T9YzWz2bjlKXWif3LrNPdRj/r9e17aL0d209ph8eX4dcyy1vqKF1+ltaJFrI8s6iTjeX6swWPbmhoaGhoAJZOALtr1645pUWrM2mgIijrp94oUnY1CtFlscxIZfgZWvlQP5dRCEYMQhrbGusxxeEAtuTWaEmacbA1SydSN/H5WuQaUjmR62VQWo5JprshpUpuI+PizOXEwNY1ir3rOq2vr48oscxSlFQyrbtiHdS/sdxFfMHou1ULZi4N42SrTFKxWeJUUsXW+9X8P2P/ahIF6puyJMyef3Mq5N6ngvySo2MfMgkGn2U0mgxMPJzBtgPU12drh0GceW+0KKdFt0EpTRY9x2cgE8x6fdF/UhrOKN/jeWGg6+iHydQ6DOLstt57772SNupWXb7Xqp9hEtkIzwfTULks6kLjOnDQdUZgYhDxuF545jPSSmaZ7TZFjnkRKZPUOLyGhoaGhi2C9sJraGhoaNgSWNpoZceOHaN8clGhanac2W0p+suUuTTppSgzy/lkESPNt80Ku77IElPhTCOSLAwVDRyyfG6xbVkONSqyM0MKo2biWzMLjub9FhlQzOsybK4c54AGQ8yonDnFMjdXKaUadNjtoGgswu1jaC+GmMuU3jRsoSgrE99RpMzs4kY0DfdvVMz7e2YIQFGO59ttottCbCPDQtUcvzODl5rbTS1nnDR2VWEA6Cz3IUWYNTejLKwXQwBm8Lnj9tLYI9ZZC0CRuSXwN+4T7rVsn9bC9WVhtSietqiRhlY+0+K9bqPvzdxfpI3j6fF26EKGI8yCOXttPPTQQxvKZchEO8vHXHpuI9UsNKyJa8z3UFTvObZYPs4b93gzWmloaGhoaACWNlrZvXv3nDKweXVmEl8LdmxMpXqhYzs5r1ifqQYro/3dFArDUkl1h1hyC9HsmcF7GTqI2X4jSP0xwDbNxqVxeh6POY0VMoOfzFBHGhu6eP5iP0ix0rQ9UrmkqkspVedhrx06804ZK5Day4JHk0JkKCZKDaJ0gGbb5IhpcCWNQ3vV1nkcJ5p0k3OtGenEtmUBzWOb457w/zascD8YwowGFtI4KzvnyW2NDvzMul1L9RLnmtz1jh07qmvH99HwLQsmQVcpzk9sQ7aepLHzNbnsrI81w6fMtYnuKTREy0KY2dmeUi+fO1MGVl4HLjea80sb17edud0fS+zI5bod0QiIBlteh/EclTYaCdFh358ea667WK6lWhcvXmwcXkNDQ0NDQ8RSHN727dt1yy23zKmAI0eOSNqo42DYJMrBs6DStWDB1FtkYY1IwdOZ1pRRpDLIUfE7g/1KA+Xjdpu6oGMmqTdpoOxMCZsCIjWVBYC2/N0yc1NWTPERx8TjRgqOJtSZawjD/9B0P3IudBSfCi22fft2HT58eMTtRM70gQce2PBMLXB2po/N9ImxvZwvacwFuizPHb9L0v333y9poGwpfXBZkfL1b26D1wPDRtE1RBrWIrkbOkfHINJuL3VS5GQ4RrE/DINGqUHkXKhX4lhk6Xyo15zS/XZdt4G7yjgTw+V4bNn3uObJKZADJ9cW95jnlxIROrNbTycN8+65ooTBazNKgHie0T2Aeue4/6yrr0l6qP+ThnlxW+hmxeAPkdPnOVZL6xbnmoEB+H7I9jx1eGtra43Da2hoaGhoiFjaSnNlZWXObZiyi1TzPffcIykPTCxtfCvPGwEq2VQLdUSZ3sdUCi2dfJ0Bc2M5NaqADqHSQOGYemY6EqYfiVRazWGW1qHR8s3jVwv0yzBRkRsyBZmVG/sfrzPMGgNDm6LNUnt43s6dO1d1AKWlnSnDSKWbm62tnVgWUZMouB5T/FFPynXldVxL7ikNFDelD5yHOP+kjr2+KNFgAF1pmH9a6xrU7UrjtehnPRbRopdgUlqD6aGyJKXUgZPCz6w0416s7ceVlRXt2bNnpOeJnDcDsdPJmv2I7WO4Pkp+IhdjcH9SepMFr/D4eJ2zLI5bbC/Hy/fQdiDuDUoUGPDcur1YH62/GZKNuuu4lhjGkTpx9y/ThfJMrAXckMZO+Ityd1Lj8BoaGhoatgiuyg+vlihRGutSSJFmVoVRBxTLo6WYyzp58uT8WXJytdA3mc8OLep83Xq/LPTOHXfcIWnQv9GfyNSLrfmkgXPwb+SCTIXGNlKHZmqJug9TWBkXQvk4Aw5nQZiZDsZzMBUyLXJCNWprdXVV+/fvH/nYxTbQR48cMFOVSGNukNz7VJBicudMbOzvXg/SOEQZy8gobVPWXHcec0onMj8lhuniWsr0Y1xnDMLOYMaxz+R+uM8iqNephRrL2hjXbW3t+NyhJXHUsdMK3ONGn8MstRS5WlpgZxwerSStL3MfzD1FPZnH3+uLbaQFc/zfUjWmz6Hv29QYe7ycSijzi6NvMC176Wec+Rmao6R/YxYwnlbuLIsWpfEZY8+ePZM64IjG4TU0NDQ0bAlcVfDoKb8yUyukvGntl/nQ8F76cfit/+CDD87vZYJHWr65Pl6P5dJCKIvkYE6K/laMNmPKLtOPeZyoQ8mCuXIcXX60+pLGAaJjGxltgnqACFK7jLxCvQb/dxk1X6rV1VVdd911c0qYVq2xbraJusKILGWQ65PG3HuWPLgWZcbXM8tO+ydR10FuLl6j/ppcc+b/yeDK1BUx8kt8hvpMcpRZaiFaNVLakvmX+Xlyo6S64/zxnqngv+bw3G5zEFHHXkujlCUaNjwv9E+lXpQWmbFczp33v5EFqybXTH+/yLkyWg0ti12+JU4RlG55fvyM13e08GUUJt9LHTIjaMV6qJOkdX1mB0A7B+sZvRfcLmmsM77uuusah9fQ0NDQ0BCxFIe3vr6uixcvjqilSJGYWiEVxtQnGbVkLozUpa2aTEnG+G2mCEwt2XLLFInbmvm4MfIBKaxIrdEaivJv6hUiReJ+0JeGeoXI7bjuo0ePShpHIDC1lnHM1FvRz4dccQStQekbFCkpyuanZOlOHuw+ZwktPf/Hjx+XNE6ySv+y2EdTgvSL9O9ZX+mHZr0r2xi5J+o6mdop0/syHimvG0yUKQ3riXpX6rczDonrzv2iRCNyR7RypKVdxhXS79OghWTWtixdU4aVlZX5eJn6n7JmZboef8+sw2k9TRsFr8vICRmUljAyScateWypu3NbM11+LWYs938cT+rYKfmh/lka72lGPPF3crjZmHDdZzpKcvpZot5YRhyLlgC2oaGhoaGhgvbCa2hoaGjYElhKpCn17DbTPkRRBsVBZlX9DE1VpbEBA82mzbYznJbbE+upKa8zR9ma+I6hhmK5ZOkpFslcDNivm266aUP5vjeKUC2+oxsCTadpDh9BM/cs27xB1w8qvD1WU4GbV1ZWJkULXdeNxNZxXhhqzX2nk3rmYkLxDR1zeb80Fum4bTQ8ic/UsmBnJtcGxY0eI88xDaGyMWSAZprOR9GZ28uM9Gyrr0cHbqYUoqO5P+O4MuwYHc6z8GFcZ1MGT13X6eLFi/P1YbFh7DPDjTE0lhGziXPP8jxgEInYPu/VEydObHjGfb7vvvs2PBvLY3Z2z6HLzDK5Mzyhn/FnlpaK800Dm8wYjOcAVQJ0J4pGOdwTNAZiKLVYDkW0dICP8+b/6d6xCBqH19DQ0NCwJbC04/nq6uqcsspMihk+htRE5sBM6oSOuAYNUaSBwmG4MxpuZAGHaYJP6jBSdKQG2SYaAkTjBVNu5hwOHTokaaCE6FwqDVyHqRkaR5Bqj0Yyhjli1+t7aaovjalb94NOt5lLg9fDVHJXg+VFQwDPv40SaDTiZ+MzdGWgqwENk6KCnk60VLJn/aKxEjmebHzIufF7FiDXcHkMDsz5yhy4GQ7Mxl9em17L8Vnfy0+2I3KFNH6p9TNKFhjGa8+ePankIcKcAlOCSeO1QlcMBmGI5ZBrYYDuLA3asWPHJA1GZeTS/Ux0MWEYMhqvZfvSbfKzngeGicukbbxGLi0LkuD94t9oOEaDnrh2KHWohVSM5zrdxRg0OnMrYyq4y5cvT6aWimgcXkNDQ0PDlsDSOrzV1dU5xZCZxFP35DBgMVlf/F0am/aTMjSVYbPxSFX4t8OHD0sap/LI9CJ0LKXs2aBprFSXHzM5baQ4HMqH4X/ItcU2Uo/kttF0OtP/MaEodSmk0mL5pHbpbpEF342uAZs5EDPIclw77pvnOQYYkIY1FKlYJshluhRS6ZFDp3uGx8PcMsNFScO8UA9jrjMz0Se3UePspiQmXmd01GWZ0linxhRD5LKzUGaUGJjyz9IRGZuFGIscHLnqffv2Tbq07Nq1a8SZWlISrznxM4M3Z+ls3AaPl8fSY8yzLI6JdXd0/K9Ji2JbPJbkSjhfsY0MmUc9d7Z2GJaLQfmzZxjMmWmVaLMQwWcNnu9xHTCgh+9hAI8o1aPjfAse3dDQ0NDQACzF4TkRY83KSBrezJav3n333ZLGHEmkAmgBaAqI1EQm4/ab35QAOZOMw/O9pr4YoJkBVKVxQlmWQcf02D9SctTD+HsWDJd6HVo10WFTGjt1ZyGyYv18PpZLzjLqJKg/m3IcLqWolDJvv+uLehhT5+aIyan42dgP6oqpS6FEIdOTMQCAuRevwzgvbrep9ZrOeMqSmNbHTKQbOW9y1iw/012QG2R9Hk9KQWIbKPVgWRkHy/5xL0RdKLm1qaAFDmloWLpiXW8sj1bUvsdrK+qCKNUgp+DrXgcxrJ/3O/Wk5KLj/NjK1J/eS7VQirGNLt+/UTqQBQxnsHVKFjKr51qaLYPW8FEq5jmiDpx7Ls6zy/G56jXiZy3tycL7mQNvOryGhoaGhgZg6dBi58+fn79NGWRXGgfpNWXCkF+ZRRZlzbTozKgO6sWYRoftkMZ+IqYyzG3QijPWTcsmJtfMrEJJ+TIQcObjRk6I1Bl1ZZF6pkUffVyMLMwSqXPqNyK3Y6vSU6dOSeqpsSkub3V1dRRmKAtr5Hkw1RctAqWN1B6tuqi3qPmvSWPqmfOT6Rz4m/vhNjNRpjRev7XA3ORSpbHujJxrZhVKa1nqrGkdzHUR28axyfy9yF1wDTC8YIT3zd69eyd1eDt37hxxjHEdkKMzN+Y2ZQmAaWlIXbrnyWMdQxoyEDTnLpP00O+TEiaPcdQV+jxjUGqDutBMKsUg7ORs455g8mCe9Swj0//yDGSoyDgmtTBntpXw+oj7yWMS03g1Dq+hoaGhoSHgqoJH+82apYgg5c40D6bWsxQR/qSFHXUgmWUfU/swcHKkLqkz4ffM14n+MKTamS4oSw9EHSG5nUix0p+PgXlpvRfHhJQrdaGkaGMbmBTXbfYYRR2IxzZyKptRWvTVifoKWmqZyqNfV6RiqScgF5ONj0GdFnVd5K5j22prhv2TxlQq/b24lmJ9lJh4zEmdx2eoZySlPWUdXONuPI70wc3KIZdDLiHC5W0WeHzbtm2jqCKR82YqLOrWsvRg9AXkGVKbH7c3glwzJUCxjbRF4J6JFolek/ahrEl2piQmtGegFCdLLUaJFrnQTNLExNOsJ4tc5PayfKbfylJmxZRwm/lwzvu30F0NDQ0NDQ1Pc7QXXkNDQ0PDlsCHFDzaiOwkRT4W09nU247oUXxHcRRN/C0+oKgr3kP23aC4SspFVbEs5jyTBtFITalr0CE0u5fiB4qRYlsMOm/SLDq21c/S+IZjFA0eKH6iuDIT0Vi5HsMdbSaWoil+7Kd/s3GAxVA0FIlGLJm4SRrG1m3M2s+A5hwLiiBjXyn25DOZYp7rrmbAFfcXxW4US2Wh7DgWXDu136VBXFQziskCC3Bd0QDKe91GSNLYqZuh0oiu60aisuh+Q6OHLJchwbx0HheKw11GFDVyTDm2maEYDZpocJLli3M9N95444Z6uM8y52u6LtG9JzN4qgWtqInFIyhqpIibonapPvbM7xfXBw2FpgyeiMbhNTQ0NDRsCSwdPDpSLJmZsd+09957r6TBnNZvbpuwm2KR6uFs/IypNTonxmdJNZOaiRRQzQyZXE6WSoYKeToAm2KJVDqNIZhiho6asU3uO41lqFjPXCgMUuWZEYHL8zVy2bxPGubfJvlTYcXsPJwZjxim3OhcS4OZrN2ZAYZUTx8kDWNnboPr0HMZy2QQXVLyWYBcgwp/3pNR3gwSzjIyZT2DRzP7NqUwcd3xHhqFuf8x7BslIzRooGFCfCaGHKytn1KKVlZWRtxaNNX3eXL//fdvuIdm7xnnbdBNyX2kBEoaOBAGZsiCVvCZWoBr7m33Pf7G/c7weJkTucFA5zRUi33nvqK7V3b2G8xmT4lZHHcaMvn9YHg87awf4WAC+/bta0YrDQ0NDQ0NEUvr8FZWVkbhuqIOwPo1v6ltTuvvfhNnepgok5XGSTx9X+QO6VRJ89Ys6SmpZZq9u/5IaTGwLHU2dBOIFFAWeDmW5f5FOTV1EOToqDuIz5KCJAdpqjrTbzAsGdsaOVdTZ+a8pqh010eda6TwGHDX9zBsXHyGbic1btaIc0pu3G0zZZqZv9dSrNTcFOK9DMVXC8Qb+0CdCs3eOcfxN+4Fcoseu+hQ7TXChMMeiykOlhwF11c8Jxy0wGtnkQDADLoegyy7POpdfc74XIruQuSEaT7vsigBiOV4LM0B8TyIc8lQbt6H1Blm3GGNi6YeOLaRoepqwTiy1FJeG9SXksPLpB+15LHUXUpj6YPXA4OwxxCEDKSwvr6+cADpxuE1NDQ0NGwJXJUOj5Y6WcJCv9UtZyUVEy22aInjt7UpIFoORoqUwU6pt8goraiziGC/orNjzbLKn3Qqj1STKUSGa5pqj8fC1BkDamdpYdgPUqyk8DN9GvWYbrvLiGlh7rjjDkkbrcBqlNbKyor27NkzssaKnAJDvtECkVS0NE7aSh0HuZ3MuozO6h5r6oVj3bTGrDn3S2Pnd65zg1R17A+tGElhx98Z5oqchceRSUVjWw060pPTk8YcCZMHZ7obS2liG2tBC1ZWVnTNNdeMAhfHPmfrKdbNcyn2zSDnw70X1x33FtOfZalrmEqI0g46usffuFepk5wKT+j+UIeXBeWohWhkQmBzWbF/tKqnXYM/47y5PHKjtUAL8TcHNamd5xkah9fQ0NDQsCWwNIe3uro60nlF/xQGGzaVYV2eZbH2x5OkW265RdKYuiSnR0tPaRxSiLqVTMdR80txf/wMk2BmbaMujdyCNFBLtQSgvjcLQ8RkkeQwmXgy/u/6yIVklp20THS95DCi/yTHLVLhxMrKinbs2DGizrMg2wb9L03RxXkhVU6rPPY5tp8ckL9zHWYcZS2oNy1+4zXXwzBxTA8VqWaGpWPwaM5BvJdWmAwPloUJY59NYdOXKlrN1fzwaJ0XOUHqabuum+Twdu3aNeLW4jgyoLCDR5MLiNyAuUz3kVIbSlky/zj/5vGwRKumt5eGtWJpCfW/8ayqJaeu+WfGPc21w+9c5/EejjGt0bPksUyk7LXiOfH1WK/PGZ7xRiYVy8KoNT+8hoaGhoaGgKU4vEuXLunYsWMjfUnU61B+6wR+9913X19hEjCVKVxqAXpNrUUqwL441Fv4nsziiZZIpA5oCRf7atCakVZTkZKsRWGoJQSNfed3Wglm/likgJjSxc/ENtIytZacMka58TVTtddff30avSG2ixaLsd30ASRFn+ktaRVLa12vx0ynQmtWctxe13ENkYp1mz0WWRQfclJc56Tss6Dl1A2RWo/jTh0k55TcdaaPqwUez9LQUH/t/llP73ujpZ3rjpKgGoe3vr6uxx9/fJSiKtMfmVPIfMxi2+LzXIuMEEJJSdYG983jliVzJcdNC/LMAtbSDI8h/UBruupYTy0NlhHHiFboXCPeT7Ral4axN0dHzt5lxvdFbX6ox4/WtT4fsiD4m6FxeA0NDQ0NWwLthdfQ0NDQsCWwlEhzZWVFu3fvnrPZFmEcPXp0KBAmt8985jMlSe973/skDWzos5/97Pkzd911l6RBLOBPm8Rb3EblcqzPvzELOx3E4/NmzynaZG67+DzFhVTmUtQVf6MCmwY3mREJxS4U72XiV7oh0KAiE/dQJEflNR1EJenWW2/dUE4UWRIOD0VxSpxLmkBTtJ3lw6OojfnxagY7sa+cSzoPZ2bUFKW7jZ7LKGJkuCmuGcNtj+JympbTAIUuL9JYpEnxW6b0NyhGZjsyZAYMsSyPZ3RF8t6Lczpl8BQznhtZfj0akXgss4zndIOhu47PIZ93sX6XRwMQP0MViDQOAMHvWUB6iuyZc45uWbGNXDM00svmmuuZIlPmdoyiRs9HNAyThnXGtRvvreXh8xhlaoXMYGszNA6voaGhoWFL4KoyntMwwYYp0kAN8c38whe+UNJgvBKNH0yR1rITk8uJnBfDNdF8m/dJY+UwA+W6vtgO9odtoglzrK8WJszfTTVlCuca9UxqN1KFtZBpdCKOnETN8MBl2K0kM7c3ZXfmzJkqJ9B1ndbX10fBjyNXy6zRXhem1rMUMl57J06c2PBsZgJdK4NjSSo3PmOOig6zNEiIlC/XaC3UV8YV0HiIYzQVHopGKuwn07hIw3zQGIdcaWYkRedhg0YZ0rC34l6YMi3ftm3bfO/52bjWaERhAwoGK4gcnt2bfBYx5Jv7ms0LuVcayWXBjn1u0cGcxkpZkGq3hSmtatnmIxiUmoZjkXtikAJy4ux/zPxO4x5KZjJDQt7D1GaZgZ0lBXEPNreEhoaGhoaGgKU4vLW1NT388MPzty6dOyNMmdCs9LnPfa6kjZS3HUDf//73SxqoM1NJpuRM8WeUok1dXa9lw1moJ4MUPCngqPejAztNbqmnicGx3Q9yWnQejW0klVQLR0WKiO2WBsqSodoyLrSWPNauB3GMjhw5ImkI3HvbbbdV0/90XacrV66M9IuxP6YWjx8/nvbd1HqkuE3tOZULqfNa6idpnBLJz9J8O7aROjXqZz2XmYN+zayeoZFifbVg3uTw4phk8yuNg/pSTxP7TD0PuZ24Dqh7pYk8U2lJY5ePa6+9dtMULzSNzxLlMvSVy/Q6yVxaKEmoJUjN9NMMkD2lJ3V5dK9iMPu4h8hd8tzJAjiwvZSmTHHk5MbpZuN7PQeZxIfSLnKlU9I26uCzBNfuT7T5YBLnGhqH19DQ0NCwJVCWcdorpZyUdHTTGxu2Mm7vuu5GXmxrp2EBtLXTcLVI1w6x1AuvoaGhoaHh6Yom0mxoaGho2BJoL7yGhoaGhi2B9sJraGhoaNgSaC+8hoaGhoYtgaX88Pbv398dOnRolKomwv4T9LNiwtQIGs5s9n0KtXufiDI+VDwR5dbGZpGyp+7hb/ThyeL8se5Sih555BGdP39+5LB0/fXXdzfffHOavNPwb/QtYvSXDwWxDPaRn1NYNLJDLK82V0wTtAim9gjrqX0u8mytvuhLxfmp+dNlY2//qu3bt+vMmTM6d+7caPB37drVXXPNNaNyY5vo25r5XWb9WPS3RZ/N9knt3kXWG39bZg/U9vQyZ8bV4Gr6x2hXRva+YAzNqXOHWOqFd/DgQX3v937vPGiwwzrFUF92HHSIMTsd0pk3y/nFA4/Xpw5d3jO1yWu/MbxN3NScNG5yTljsHx0y/Z25xiLowMqxsLNqFgia4YGyNsXrsVyGUKsFsY6IGdt//Md/fPS71Ge1/+mf/ul5iLJ777131Hevo5MnT0oanJMZHiw6yjLTOeehFpRWGpyTeVjS2TaOE8Op8RDJ5pSBq+lo7O+ZMz7nt7bO49wykzvrrX3Ge1kWQ6nFPG8OsuBn7RDsQAe1wA7S4IT9rGc9S29605tGv0t9cInP/uzPngeZYI44aQgPdvDgwQ11M3hBPEB5cHKtT507tVyGSwUyRmDzbO0w/yXXJMc0C53Hs2sq7GItNGAtK3s2Jsy+PsUgMTBILXBEbJfPCQdlOH/+vN72trel7SaaSLOhoaGhYUtgKQ5P6t/WzKQdKUSKNEmZ8np8viYOJTUVqZoaF2gwA3a8t4YpNpr9rFEiWRZhcoVMS5RRn6R4GKx6SmzAMGisJwtHxazfpMqyoMGxvCkxycrKyjytDrmQ2LeauNBlR46PFGItrUnWLtZX44zjGHDuSMVyLUv1YN7kplx2Jh1g4F+u67h2GNqLXAI5mWxsyCGzfxEeC/adYdEyzjxmbJ9SR1y6dGmU3Z1BqmN7uT+NjJtxvbUA2dm6pNRkGfEguSWeHXGPUYJEDo/zEb9z37Pt2ZnB32qSLYZUi22bCh/I9tSC8DM4dtZWz9cy6oXG4TU0NDQ0bAksxeGVUrR9+/ZJuTV1dPxk0Ftp0PsxiG6NOp/S4dU4royqyDjG+D3WS4qRcnBygPFZcniLyP2p95gyHqmB3NqUMpnULQO9Mjlm/N/ztr6+XqV019fXdf78+VHA5Ex/RKkAueZMx+Vr5GZoHJGlUaLupKbTieVzvZF7iuuN+lauIVLxkcMjlU4dTWbQUwtSTs5lKkUTnzV3RSpeGnR45Hqpb86SIlsf98gjj1T1X13Xp5ZykGcjkzbUdLdTUhT2nesh01+zjzWJS2ZYw/WVcXZsI+e9xhXGPjGIMzHFGTGgfabPrj3DfWXUzk5prGf22ZIZH7GczSR2EY3Da2hoaGjYEmgvvIaGhoaGLYGlRZqrq6uTYrWaKNMizGhKalhUwTxhFAvUFNHxHooJMnN0GhpQuU9R2lT5NRFTJg41207jiylDh5ofztQc1EyYqdCPxhg114ma0YQ0FpVkJtER6+vrowzGcZxq5vket8xAoGaeTdNoiraydtdcGuIzFPVRLJ6ZltcMJ2iA4jKjKKiW2X5K5PnVkgAAIABJREFUzE/DAvbZ4+ycZlGVwDGuuXXEtercf3YjYX9pxBD/d1suXrxYFU1duXJFp06dmotEMxEdM4Mz59+UasPP2BiP85ON+WauRVPuCTU/xUXcH2rGc1nZNcOjqX7xnppbR3Y+1c6kmk+kNJyBtXKnXFqiaHNRo6HG4TU0NDQ0bAksxeF1Xae1tbUR9xQpezqzmqOzctrfo7M6HVdpoloz685gSo9UbaQKfQ+zIhORmiKlS4X8lOEB7/WnudwsazX7XKN+MxNjjg/HhNRv/I1tpuFLBF0Buq6rUlo2eKoZpMTyyAV6XDLumRmYTaWbW2Kfp1xOagYbGVcQI4TU7o19l8bUKzkVz1M0DKIUguPH3zcrL+tv5hrCT9+TZZ33/+b0/N39y6QDNUf6DF3X6eLFi/Pys/XLNV4z1Inzz3JqWbanAl7QpYVSjsyFphYkYSqiUE1CMWWA5DGh8QiDSmTnHyUXNBzLODyOH42+siAZhsePxmyZsVFmZLhoBJrG4TU0NDQ0bAks7Xi+vr4+4mIiVWMOzg7GDz30kKSBMmSoovg/w49lLgysr2ZqT6rGHIA0UKK+txZKKtPd1Jw4yTlMOQ97LMjtZlRzjRqv6SEz+N4pU19SfVNh1gxyeFOUVilFu3btGpUT++y+msrzvGcuBYbDWF133XWSBq7d/eH4TIVectvoHpPd63LNxTDUWBbqqwbPC7nFWI9RW9cxzBZDpPkZt9Hrz22Mc+C1SJ2ux8S/xz3pur0eLM1x211+dCuoca4ZLDkg5x05ZP/v8GMOLUYHba+X+IzHKQtSIeVuAzwreGZxLUvjMHh0BcrWJoMT1PRkmdTA/3v+/Z3jl0kwDOpNM8kMn63pqGnDIGkeapDh9nw2Znuede/atatxeA0NDQ0NDRFXpcOjk2Ck9qyPs8WWqUnKgKe4GerDpsJD8c1OrtPUTUaRsvypSN2U99PxlLquLJRZLcxaVp9BOTsDzpoCi1xBLYyb54LBarNya9ZfWegic8xXrlyZ1MWsra1Ncu/kgM29kCJ1fdIQfJg6NVP4U+GzyAGROidnLtWDI9DCMlLr7qPH0NQrKXzPQZRGUP/G+Xb/I+dSC0fnsqg7jnvI3Bn3pMswhxd18FwzDzzwgKThLIiWmIafd9Dn3bt3T0oHSilVvak0rAlzeO6rx9Lj5t+ljWMW218L/ZXp8GhFSN17XDuU5PjT64F7QxqPYY0LzQIze7x83vnTY0ApUWw39XDMQuHfs7B71KdSchIt9A32b2rsuQd37NixcHixxuE1NDQ0NGwJLK3DW1tbG3EKmQ6AercpisRUGOXD1FdkvltMW0JkfjJ+hroO6ksyLo0UR83iKsrSTbW4n26Tv5vCi5QLrSKp53QZptZq4YOkYU5cfhb41SDHQt+4LDRXtKbczB/Ga8f6nLh2qOPwvJgLuPHGGyUNXI009J96V4+Hy8+s9KiXMLgOI8fldrsf5AoyyrcWYottoz5QGqe54ae5lMi5uBzq0NxW9yfT4fkaAzVzzcb1xmDyDBqd6W58r+d47969VWtp109OP46T20BOzinMvGb8nc9LYwtE6qgzeD24LEpVMk7f48MA2lMc0GbWixmHQw6L0raMK6xZu7I+2mRI4zPIa5cSh8hZR92zNLZ2zQJ3kwvcvn170+E1NDQ0NDRELM3hSWOrpUjRmeLxW5g6B7+JI3W1WQocv91NVViuHa/5GXKWRqTS2BZSNRmXspk/XC3wcKyPFBcjbES9GanZmmw986WpRWNxP7O0TqTCae2a9Ztjvm3btiql1XWdrly5MvLjyqzY3E5TiLfccoukgTKMHKqfYZQMr0mvFfcrcmsGgx5zDqf0A653ai5rOiH3z8+4bZELMafiZ8i9HThwYNSmmg8dqWcGfZbq0hVLCShZkIa97HZ7Tly/Lbbj2qA17VS0jJWVFe3cuXN+r8uJulxLAQ4fPpy2iT6BsU/UpU3pug1KfFz/VGQQt5/+irRK9nhJdd827nH3L46x73X53lc8U6YC3TNSFhHXDv0+XS8jWEVO0HuANhDU8cc9aPuQ2OYWaaWhoaGhoSGgvfAaGhoaGrYElnZLiDnPLBKwKbM0zkJLEUwWuNjXqIx2PXTqjSy/Rag0saaxRRSdUTznNtdC8cRrNeMEKvejyNbPuK0UlbifUZlbUxYTWU4/X3N9dGyeykvFfHVGFrKNubKmjGEMGihl4jSLfA4ePChJuuGGG6rt9lrwM1wHFtt5LOygLg0iplqQapcRxaAUXbM/mSEAjXtolOO2+zML5muRGeu34262vmkUwaAQHpPTp0/Pn3U5FM0xoHfsp+uheMr9yYJUGx7zc+fOTYbP27Nnz3zuPG9eF5J00003SRqMU3xPLF/K1SG+5vpPnTq1of4s+ALdkbx3fS/DF0qD+JmBL2gkkxmGUQ3hufSZ6d+jcz9dCfzJsuL57fl1+7lHuA7inDKsH9eKxyITRXuevFZsoOa5iOstzqE0nYeTaBxeQ0NDQ8OWwFWFFqNyN1IVpl5N7VHRnL2JTWnUQt5QgRqpJt8THWFjGdl3t9eUgqkWU5B02Iztpwk5lbx0jpXGQZDJ0WamxRwDGpHw2SwAcBbwOfYhttFUPymtWrqY+JuvXbhwoUqlO+M5xzELrkvO9/jx4xvaGPvltUjFuOHyHeIuC71E1AyvpGFcTKXSWMBtjBy3DTxMSXu8TN3SeTwahLhc99Of5AYilc50Ww8++KCkwSHce8Vtj1w23U88FzRpj/3zNUpmPCc2MojcAB3qpzi8bdu26cCBA/PxcT0eP2mYD+/pOB7SmNOThjXBeaHUyH2P64Bpbci9ZBIRukh4LdGQKgu3Z9Bc39/Npcf+uW63zd+9n9wvSwmkcYCLGueUtd3zQ0kJA1REKYvb7TVPFx4jcr0uJ7oPNbeEhoaGhoaGgKsKLWbKLTPB9Vue8nyGKMoSZGYhg+Lvmf7Pv9GsnkFjI0VJ+b6pQobeyeqhC0UtaWmkUBgUm2GoMvPnmu6zpkvM9HHUFfgZ6rtifaRuWX+Uv5MamzLfX1tb06OPPjqn8r0+oj6W1LmpVVOipNpjOxmWjHo5Pxv1pNYBkSun5CKuA7oQWM/oMTbFGqUerqeWWJRUfFwH1EV6TLyWzD1FvZOv3X///RvGxpQ8HcMjdcy1aK6Eupy45+mG4LZ5TXlMzFFJA5XvffnII49UEwj73KErRpxLz5nXE83oPX5xvVH/Sf0bg15H3RGDQzN8VybRMmdlfePNN98saThvXH+sx/3wGDKVmNehn4lO6+Sw3C/Pg/sfOcpaElzXw7Bkce26Da6XkoRsHD0+hw4dkjTsLwbjyM4qr+szZ840HV5DQ0NDQ0PEUhze6uqq9u7dO6IYoi6Eb1o6aGayYVMVtPKjRRJD8mSoOYhHDsjcBSkQhuCJOgdyWEaUf8e+RI6SCTH5maXroQ7PlKmpdz6bUXa1lCukZKVBH8IAw6bGsgSnDOuWOXUbXdfp0qVL87E/efLkhv7EOsnFuA2uL9NT1CyHyUVlloJuk+cpC6ps0PqO64ycpjRwM+aOvYbMHXIu495gMGpy9gwBJY0paQYnYHi6LAkv++H1wVBusVyDc5I5s7uNHoPHHnusqsMzaBEZ59LtNFfLgBS0XM3KdXnkpjIr5Ki3lsZpfDyn0Q6AqZcoYbIkIOoKaSPgc4Dznu1P6tK4v7Kzivpfzr/Hk9IwaTy2TNHFPsR6/JvnlkELYhsZKPyhhx5qHF5DQ0NDQ0PEUhxeKUW7d+8ehV6KHB6tuGjll+n9GBiV1n+kvCP1zPA4DO2UJak1FeF2W0/hNpk7iBwSU3iYernvvvs21OuyMr+oaJ0Uy8wsuhgUupZeKaOaOAcMdF1LMSKNLWbNtWW+SB4n9+vs2bNVKv3KlSs6ffr0iHLL9DZRNi8NY+nxiro8zwNl/S7D+h6HnIpcqNvNtenxYsDu+JupfetDzCW6bVGH5/Vq3yK3wXoLz7/HJlofulxbWNLP1b9HnTHTKHGfur8em6j/s56Jlou1RKTSOGQWOQqviRgGLQuRVvPjXFlZ0d69e+fz5b0Rx5g6LHMx9AmL80/pU417pl5LGtabuTFy1R4/c7BZG209S/1f5PBs0Wm9n+tlIPpMl8+zgTo99zuub7eNKdQ8//R7zYK/8/zx2vR6j+eO20tfSIatjGen95H3zdmzZxfyAZYah9fQ0NDQsEWwNIe3ffv2UVqRKF+lJSJ1TH7bZ74mfvNbls2EnOQApYHiMcVo7o36g8gVmjoy1fCMZzxD0lhXSKpWGigfRr4wmJYmtoGcA4NJR9APhZQPfQgjl00ZPfUAmT6DaTpIGfveqHNzGxzc+c4776xa2tkPjxxD1AHce++9ksb6A7Y3Wor6eVN99Mfz7+bw4rgyfQmD7Fo/Gzkg6gjd5ltvvVVS7odHnzOm06Hlb5wLSwzuuusuScO4eR5chjlAaRg39917wtyG22juIXIUd955pyTpve99r6RBn8U1lAUcdr3uO/dmDIrtuj2Oe/furVr5bt++XYcOHRrp7qLekuuO9gWZ3prz7fLM5TKSUITL9Vj6TGHg7siF0j/WY+t+eXy8lqVhTXgun/Oc50gaziim/rJuPI6J2+91RSvdzM/UY+H2+xlKnqJkyfuS8+Q147bG/Uu9Ns9G12OLVmk4e70v9+/fP5nCKaJxeA0NDQ0NWwJLcXim0kkZRW6G1BJ1KpmVpqkGc3amFI8cObLhWepP3CZpoEBMoTANUZQB+5qpAuoEssS2TLWRJaGMiJwL9ZZMaZONibkLl+MxcVm+bi4r6gwZLYHctq9P6aZIbdNXKbbf3MWUHH3Pnj160YtepBMnTkgauOosPZD1ooyDmkWIYZoZf3odUCcZ9WNMrWIOyPeYq8rifXIMzC1ap5fFUjVXRg6PFnCRana53ldeo6TsYxvdH9/jcs2Neq5db9SJ3n777Rvu8R7wWJiDiGvHa7Fmyey2ZxFkptJPGaurq7ruuuvmfcz0cVy3jNrk3+M4sY/Hjh3b8Kw5FUZkkTbq5mIfPXeMDiUN3IznxffGNSnl4+Tzi5bK/IySLK8Vc9OUftRSQcX+UH9paQ73W2yrx5xWwpllMyNHeT27PzHZs0Hr+tOnT29q4Ws0Dq+hoaGhYUugvfAaGhoaGrYElhZpnj17dhQgNRpdMEyTWXAqmqNYioYYDIRqNj1zbDab7LZY3EExZXRWtjiCaYcYniyCYk6a79JsP4q0aOJLUZ1Z/ixsl9l2i1NqwYOjMQZFaBTdTqWy8Tgy/BXDr0mDuMH9mMp4vnPnTj33uc8dhVyKRjD8zWNuMZpFS1E8bUdjhk179rOfvaEMmpFLw9r0GFu05PmwKXg0dLDY6+6775Y0rEkGgs7Cg7mNFLv7kyJ9adgLtTB0NnCI405jL9frvjMFkPsS+2qDAI/jC17wAknSu9/9bkm5SwDnntnRM6fvKBqrGa2srKxo165d87HIAlVwvzOtThZMwte8vrwvPQ8Wv8d2GAzBR8Mkr+soaqOomS4lcR8ZDMHnev0Mw3nFdrgeqw/8adG25ziOieu2C4nXjOthoI24F2l8yJRMrsf7ShqHjeT7g+dPvBbTEbXg0Q0NDQ0NDQFLuyXs2rVrTk2ZQogcnqkmv+VpPp2lf6CDcU25yqDLsRy+4amYj6DjPOuZ4vTISTLpofufmUy7rQxllYVDY6oV10NjhSxNB8eLKUSyINzkAlyex4hO69KYcymlVCmtlZUV7dy5cxRIObbb42FOzoYSpirpbhHbQ07e/XAf77jjDkkbOUqvY88H15fbGBXndGymsZT7l4U/I0dNrsC/uz0RlkqYw7RBBc3WpXHKGpp8e7/ZOChS+B4fP5MlTmXbXY/Xdy2EWTT68L6MYddqHJ5TknlcXF88dzx27gslCAwbKI2DSXAPu+8MfCGN9wW5DvcvnlVuC1NLMTB4rIfnjdtCYy2fxXEd0KCKqc1oPBV/o9TJ65oBt6OBlctneDCP8//f3pkt2VFdaXhVqSQExg5HYAaBw40jfOn3fxI/AG1LBtxMBoOQVENfOL46f325dlYdIvrCfdZ/U8PJ3LnHPGv8l/dQ1UHrZFx+f9hSmHPREZDch9HwBoPBYHASOErDOz8/rydPnmzsqym5IuU5YXGvKKlt+0gP3OOw52zD3+wu/eNyOtkOP61BdMVJkZqdoA0svWcfV31xYmj20VKnQ7GtcaVk5M8sPXn8CRerdepE9pFrGOteWsLZ2VldXFxspMu9gpXWOk0wW7UtpokWsaJISp+DpWNrKF1ouYvCpt815yD/zzzb523fDekdmXgMkNL5DO23S48xTZPPHHvK+zL7xnzi3zIJQNc3+6aditSVIbIlowMaHlpTZ4Fhbq01e4+mFomfyqkRqTlUbTWjHIvP9IpIO9un305xYj/mc9AKndzPT8aL9SbvdVFc9g7zaNLsfI6LLXPm9tLLTIPI3HBGOyIP2rOlzNaBBO3w8/Hjx6PhDQaDwWCQOLoA7M3NzS5xLRKJC6/aT5aSkAmgXX5oj4LLydSrUivpu3ESqiNJ3a+qbakN/5/nodmmlOjIVNrg+SZ3zvZc0NSSZFcKyNGgjgpk/J2mzE8n+YIVdZj70H32ww8/3GrTe2uJZGqyWfqbWhqSp31oLsnkgqP5memUnMydycpOvEZ6tRbTJUWbGg/J2xpGUnDRX/t/ucf0VFUHadnWFpe7AbnvmBNHNe6VgPL+os+sRednXhVs7nB5eVlff/317bWOEq86rJ2LHrvd9HE54pVr6afnIPf+iu7Q+9oaZ9W2tA5r56jxqi29HX+b8q3zx/Fs+u+o4JVWmuNg75jQobN0WdvlOcyjo6KrDvPH/7yOjsL3GBnfJJ4PBoPBYBA4WsP7+eefNz6JlEjsc7Kk1fn9TLhM+5YUOnuupQpHM7n8RNVBSrGPhn44fy3bA/bHWIrqyKNpz9FYbiP74vmzRrs3N6uiu45grNpKqvztvqXPbVWGqMPV1VV9//33t3lzXSFRS75oCPbDpaTNmJyfZCm2K+rq/jpfyP6TfA57CA3PhXJT4nSupH04SO20mblO+JnYT2iqPIf1yLw4a//+yZp6jqoO68F+6krj5BiyL6bx4qf7nO3xvL3SUjc3N/XmzZvbOUb6z36b1spRlF2kpcs/WePhjPtM5D22ZFkjSc2Ea+k/88Ieou9JBI4vjf/ZKkWbzrGs2tJ/oWm5PFCupYnuAfvM5yvX1LnDK/q4LmfU2p8j6PO94zF/880348MbDAaDwSBxtIZ3eXm51MiqttK+C5Z2/jiXDLJmYm0mJTtL/batdz4CS8cujOko1KptGQtHDlrTzJIyzrNbzUlKZ9aQrdnt+Txsk3eU3p42aDu/I9dS2zG7zFtvvbXsl0tLpR0foNnRXwpkWmNIKd3+NhdzNYFy+h7cV6+PNaWqw7pDsszz8K11vg1bQpzvZzL23Af2HTvXCaSfsSt6nM+3dpVSus+AtUL72bMdRwMznybHzmsZx2effbb0D9/c3NTLly83vrbcQ97TnUZnuGRZPq/qMKddRCLrwLo7WhfkfuAeF8z13sl5cPkvrrXmwz3pJ2VczL+vYb91c2Ttz2fd77CqbXS44zb23lneX56jXCP63VlE7sNoeIPBYDA4CcwX3mAwGAxOAkeZNKv+rXI6yTpVcJv2TGS7F0YPbBJxwmZeb1OcabUczp19s5kSp7id1fk/TForyi2b3/Iz+mpTAm10IfM2P3ncnbnFAQY83+H9nVnZZi+bWbpahEnUuwo8ePToUf3617/eJPFme5iQXInbZrQ023AP15o02PPW0anZBMzfPC9TTKi87KAl76HOdGrTjvvGGqSDnnZ4HmZeAnpMU1e1PQt85iAjBwgkbEqjTea7m0evPeerq7RtE+Tl5eVu4MHFxcUmcCz74Dm16a0LqLLrgmtNCN0FoDj9yc93qkaO2akTDiLLc2liCZtF2ZtOCXE7+XxcBw5eqTqskRP2bW72+z3v8TvZ93R9An4PMc8dOT7z9e233+6mRCVGwxsMBoPBSeBoDe/Ro0cbJ3tKCNY4utDXvC5/d8DLSnvrJFL/z9JEStxOdlxpUV0VaUtFDmywNpqfuYQHUiCSUTq+TWDsuXAQQ5dEbg1spTnncwDtWmrrkvHd1w6Xl5f1zTff3I4ZLSaTyFdkyqxdl0xMe9bWVtW3816XInEAkq0EOX6uZc0oJbOXOsO5cWCVNcDUKLtq4VUHCrU///nPVVX1l7/85fYzl59BY3lIsreJImyx6QK6AJ9xblxuKTU01i1TgO4jHreWkefFxPNOQ3Fl7bzWe9vnZW+eaNcaWBdgxfMcLOS/M4XKQUvWotnnXaASfWQ9rK2T8pJn2ukHJsewdSjH5yDGVWpaB88F7wWnm1UdNOIkQ98jxEiMhjcYDAaDk8DR5NFPnz69pVciNLvz2zi8fe/b3VrLKlnd4eL5bEvWK62tauujs8S7R07b+XW6NrI/TjS3NIj03oW/rzRIa5KddNyR9ub/O23HkiISnqnTqrbh9ntr/Pr163r+/PltGDoJ6Fl6x5RYoEt/AE52Nem2pfj0+1g6p300B67NEiiMH+3F6RB7KR8mjbb/p9uzPHuVyoA28Kc//en2HoilTXhu/3mnBXd+pOyTn1+1Tbdwygn7v5ubJF9Y+fBubm7q+vp6cwbyPeD968R5p5zk794H3n9dwrTXziH/toLlcxxDYML7tCwBn0tbazpfG+15r7Jn0PCePXt2ew/nknZdWsgaXmrt7sPK6tX5NZknp910e4d3I6Wyvvrqq9HwBoPBYDBI/CIND7s7dDdZmsTRcZawVySrVVsf3UNswPb/IXGggXXko362n9slR69KxjgC0rREVQcJzpRSXMMc5T3WrFZUYnvatfsOOg3PUVkrn2FX7oT+v/32220kFu29fPlyQ9hMsVfuz2cbPDv9Bva3+W9+OrqtautroG9o3KxBV5jXBUWdqN2ti8fl0ijWBLvnIPnaV5XPQ2K3785RjqYIzGtWhO4mS8/fTehg2qicezRlfr5+/Xp33Z88ebKxOuR4rD16Tbt3iDVdayL2rXZWFNP1obW5PFXCPnzmDb9s5zNenU//zH3gd6F90ryHKC6cY8aK5/+bpCP7uqLQ2yPYto/a0a/snfTXsr/2iOhXGA1vMBgMBieBozS86+vr+vnnn2+lFqSApDlylJIj76zp7X1mja6T0vifC85ie+ZnamsmjbVkaQqjfI4jLR1Ryj0p2a1ogJC8KAeTmrL7Chyd6WdkH2wXtyTU5ftYM2Jeu8g+j3XPhwfYM4y5o8Ra5St2/iVLk5b0V4S2ea3L19AnUzNlH10Q1T6V3FNI0iu/z0M0PPwu7GekcvLyumLFmXuafbTfMZ/nXE37t6wx5z300Xu2mxP21YsXLzbtGWdnZ3eiNGkfH07VQau1RuX3TOevtBbVRefmOBLOz+WMdwWTeU86t5J7Oqoz++j8zrJvuiu9w7pYo+zG48ha+mTrQJeXax+03wd83vnRnUfLHu2iXdGE0fCePn26S1yfGA1vMBgMBieBo/Pwzs/PN1ITkT1VWzYB+zY6Lc0+tJVNHXS5YABbMD877cbRcmbNQBJKSctRYGarcFRqarYuGeS5QGJJaZD5W/kbu0hSw9GAHkv3v64ET7aRkpT9WRQI7nB5eVnffvvtbTv47roxryJvu/1g350LSdqnlxqA/QWsA+OBzSQl4SQFz88ctdtphexvF/p0cVqKe1YdpHOTYRNhR5Hcv//977f3WPv0WWBcbjPHbo3e/q6upAxamyP6uhwx4gAy8nYlpd/c3NSrV69u28U6kJoC0awuOruK+K26P793z4rC3uF/1m7tD87+2i+LptJFkvp/1spXFqb8zO9g5r7b34A9Sf9djqg756sI8lXUZv6+apc1yEhpcl45J0+fPn2QdalqNLzBYDAYnAjmC28wGAwGJ4GjTJpnZ2f16NGjW/URxzkqctVB9cRkhapvc0VXtTqfU7VNbjSdV9XBRGXSZhPmdqHXpqNCfe/q/HUh3Pn3qg5g/u6kVJP35hw5aZh7bMroiKBXTuM9td8h2A5z7tpchczvgVQW+p9E0JgB+fmHP/zhTvsOXqk6mAcdJOXq6VyXTn36jymOzzAX0kaa7DH/rQINGE8GjNi8bzBv/Mw+2hzepWZkX7u+MSe///3vq2obLt5VrfbZs2kwE8+79I28t7uH3z/55JOq+vd7YmXSJFiO9v76179WVdWnn356e41JCxiTiZo7wmm7CRzA1Zn5V/Rwrm2Xz0vTcdXhXcn8delQdgG5r3b/5DrZDA14HmcxzzTnhH3MWfT8OtAnwWcm4e5MtivyaK6hrzl3divdRzyeGA1vMBgMBieBX5SWgBSDlJZJgasQ33TEV/VlZoC1GIe9p4a3Sk534ntKj6YbspbWSbWmteo0hhxX3osGbK0G7Zf5S+3RCezcY43PlFqJVaV4O7Gzvw79tmaR82ji2lVpIJ757Nmz2zB6a6zZDpoJEijtMgddCL61dUvEnSbsZHSTFCCBd2S+rKkDkDgbGaxAYAnSMtcyB/y/0/BcXmsVvNDR7XFvaqhVh4CELkXI59cpPF7zqvtL89BmziNzTl/evHmzG7Ty+vXrTRh/VrqGos4akDX9LlHawRbWiDridAdDeZ7oW6cVsr4OBKHPHR0Z/+NsoPmsymBle35HsldYj87ywD5mLkzG0FnbfMZWpYW6gEWTcnAv4+0o07i2C8JbYTS8wWAwGJwEjk5LuLq62hDJpuRj6isnFoK8x/4BS3oO+c97nR6wKvmTUoXJoy1xITmkfdqSjcvSWFpMKdEJzbZpe87yM/rkwrO02dnuTeGzKgSa41tJtd0ar665vr5e2tIfP35cH3744e3YvebZB2vlaIUdTZw1UPtY9/yYK8InaHp1AAAgAElEQVRsl0bp9luOK/uGZJy+SX9mPzNaCJp+hmDjT7TFhL7Sdq4lfaT/LtrqxP7cd55HW0qczFx1OC/+SZ86zc3lts7Pz5ca3tXVVX333Xf10Ucf3el/+gR9lqxtohXmMxzK71I0eyXOmFP74dBIOiIENHlbUQB7Jktm+Z3H/NvC0D2PfcVaMT6nbORZdII7c8P87ZGkr2jPVpRt+Ry/7/Zo8Uyo/lD/XdVoeIPBYDA4EfyiArCrRHE+r9oSC5sQ+k4nRF9krcKSXydxW2uzPygTgV06xImySGspQZo81VqIfR8pkVgrQ1ri+V2ZFlOZ8dN26y6R35+BvWKS9n2tivzm3Dtqcs+Hx732X3Y0Si5g6jlPmAKLPvnvvcK8LmDL2DtCAPvOTIZtba1q6/djXey7JbI5950TmN1H+3izD1zDHDCvtmh08+qz3dHtgVXysCOJO39Wai73Seo+y11pGvfBvtyOwox73F9bQnJd2L9oG/TN77DU1mzp4W/Wg/2Qa0kfIDxwNLD3d75DeI4tI/xtCr2qrSbpa1Yl1fJ3l0Hy56nZ2t/nPcvfSezg2Isffvjh3nfPbR8edNVgMBgMBv/hODoPL7WGVb5X1dbHYNLTh5J95j17UWXOCXNJjJQeLcW4nElXbgKJyrRQSHgru3zV1h9iSc+aV9U2v9DRSytfS9VWAqKvSJJ7Ejd9cqRsR9FmLWAvH+bm5qYuLy9vIxGJ2u18j/QBrcZ9yLGu8oG8N7t5srRKPh77gecRLVp1kLQd4cb64G/M/c28u7DniiYux2JJ2tGteyTFK2uArQa5D+zHcgTjng+PeTPNlnOqso/pz1xJ6ZBHo3FzfnKOOe+2xJioO9d/VdSUftunm8WP0dZtBXBeaFdiDMsFfXEUb54xoj0ZM+PkGmjWuuLBtpQx57YwdHRk1vC8z7tz7vNpTa/LC1yVP/LfuUftp98rLWWMhjcYDAaDk8BRGh5SOugKI7pMBZ8h+ezZWh2Naamyu9dMF0ggXMtzU5PgHq5FWkPiMQF1jou+cQ/SLJIeUmD6RZDo6IvbYk4zVxFpzyS1exFP4D4faCcNrnKQViWaqg6SVs75XhHPt99+e0PqnFI/z2IOrZXZB9Vh5VvtCmRaknff2Q8we1RVffbZZ1V1KHP0/vvvV9WBMQR08wQzEWvL85DiuSe1J/vAVxJ4nkuXsKKPzqGzf6t7Dtda4k6fiv3W1oysZVVt80f3inhCHs0+w6qS/jH77OnLyp9Nu/lzlWvI/znjVYfzzxjpC2sLMXPGDjjCm/cCkbiOMM8+sJZoaZwR5zrmHNva5NJtWCtyLXnOKg/T79c9jdIant9hCVtoVsTTVdvz/1D/XdVoeIPBYDA4ERwdpXlvgyqqiQRk/1HnUwMrPj+XrK+6GzlVtWUTcQHNvN+RXS5omlqabeeWKixBJr+oGTWs3ThvKttzXzrmmOx717eVNtjZ7sFqHvdyaO6LtLu4uNj4WNIvYt5I5tB+zC4yzFIfa8r8OSetaivBW+tA80rJHh8dWoYlU6T2jg2Ge/74xz9W1TanDl9h7tVVxKO1hVxz5onP0ArMztEVgHV0NWA/WAvKObD/xfmG2SbPZm5fvXq1lNSvr6/r5cuXG/9hRsKazYN+djmuvsfahKOF2aN5phmTmXX46QjwqsM7hP/hu3Nh1hyLtSbnL7pQap4NR5/yHPrOPGbJK2vKtgKsimZ7rDke/7+7d8XG0kWUM7cZZTwFYAeDwWAwCMwX3mAwGAxOAkcHrWQI6F7AhNVYU4slVomrNjl0yZWYNRzY4jI9WT7FATQeh2l0uj7aEUs/MDmk2dWpEiv6tS4B1E59O/c7Z7+Df2wW6KjFbJ5cVX/OOfGz33rrrd0SROyfbL+jU3P1dSe/Z7/tZMeM4mThLqXBFb/5ybgwaZIQXrWmwcPsxc8ukIufVCfnWlNOERBTtQ3CsGkJE1qGajNPBE44dWEvqMkBJ6uyV13Vapv9HQCTz6Fd5vY3v/lNmxROP6+urjaJ8h25+8os2qUl2ETutBg+Z53SHG7Cee5NE232K2FChVXpsW483tdOdemClwB9ZX9hnnfZonxORxaebSVswlyd3650mr9TbBbvSDnsznoIRsMbDAaDwUngF6UlIFVQkiOlDEuE/ub2N3r+z1KkSWK7EGZrPtZikC7SYe6ES5MEW4pOOBHSztKOLNvOe//fFFfZ7oqeyZJXSlzWKJzYvCd9OmHbUnqOwe3e5zy+vr7ezEWOmXV2wIQlxC4AwRRr1pq7/rPuSOWeYyT71CTY86uiwUjLXYCGC4miESFxOzAkn+0ALmt+GbTjIBUHLTCfXQCCpXATencpHF2Jovy7C3ji/gzKWlkHbm5u7gREdWt5XzpNl5bigCxrt3va1MoahbbeBVg5GAYLAukqSSkGXNDYZ9cpExlY40LAJtzoCC+cxuGke7+rcs397rP1pbMSWYM1zV9nmeGepNeboJXBYDAYDAJHpyWQBFq1LaRadT8BdJesbsnX4eKd/R2saGscrp4aF5IdEtAqBLajIVqRq1rD6Gzc9GWVVJk2fNqxb9JaCH9niLa1XEtNHVmwx+yCql1iurW0PUkLPwz+C7efsJTpwrwpIa4Ssp203iWwOt3F0nPnH7OfxVqSC4NmnwgDNy0Z54gxZLIyUr99g9ZYct591px2AazhdO3ab7rnU3Eqiwnju2T8bHdv71xeXm5I33MtV75t+1xzv/mM2WeH1tQRnXvf2qdnasCqw5yi2fGTdBVTf1VtycltBWMO6GNqoYyD9p1yslfyC3iOeI4L02ZfV4Wn9/z79/le8zyxLqxXxmfch9HwBoPBYHAS+EXlgWyTzW95F1W1r6vzU3TJhVUHKSIpvqr6grMrGp1OinFpF2BtqvMVWmpeFafNsazG56i5lGJW5Y5cPNb9y3bo42ouOq3A0tgebY/7v6fhXV9f1w8//LBJ1M3rrS1bWmbsKcWuCLHdRqdleE2ZN0vrnbaGxG0fXkeozmcuuOpCrJaMs48G4+bebq/ad7ciK8g1NhmDNb1OWrcW5b3LvWlloU/pq9nzw1xdXd0+u4vOM8HFKnqxi9J1GysKrM5PjjbOPmCMphGsOpzHLGtTdbA0oYnlObXWZx++z2BHSwbs+3QR6+ybrVCMh766QGu2nz79qu2+7ggvrLH6vZrrSWRvV/LrPoyGNxgMBoOTwNHlgc7PzzeRY520Z+l5ryyQbf32E+z5xVaRj/688zOu/FSdj8tSpZ+zF8Vm/5g1OmvF+bsjOVc5Tp1fa5XfCFICdCFVS7eO+KzalkI5Pz9fSulnZ2f15MmTW22ti0jD57DKx0KKzrwha76eYxc77frn0i5d5CuAJBifqfPwulwqP9M5qXuRb+4D82aqqaQj6zTvvNbFQxPOv3J+Zjc+n0/vSdacvMDunr0IX6jFGGNHVdb5MrMPq3yyvMc+TefJdXvfpbesGXUljFziCc2ui3ZFs+FeW4u4BwLqxCpi3ZaLfO94DthDzhVlv3dFpFeR5V10td9Vq3w8/J35v9R6pzzQYDAYDAaBozS86+vrO1IhknbHomI/AuhKYFgDsg3YUlTHEGIJ3xGK2W+zI6wImVPysV/ChRD3pJiVz8alf1JiNdGr88k8lr3yKs676XwhK58NcORftkO/98oDEWln/0Gupf1D1hTs98lnr6wArLv9TNme89LQSBx1VnXY8ysNkvF0fka0Q0ed2i/cRQf7jHncqTHbcuHIaWtpOZ98ZsYQn9vOouByO9accu9SCiuLw95XAJYcM9Yn+8B82zJCm/w/97wjue3vtb+8YzGxRcssLZ0/dhVRmiTlBhqVrWB7rCNYRHxOXRi6y490dCZ/r4oyV233iK0te5aTlXbv9222j5VlyKMHg8FgMBDmC28wGAwGJ4Gj0xKurq421C6Z9LxyQq5U8aqtWW4V4NJR4VjlNrFsF2xh8yMmEgdu5D2rsGybTrvkaKc/0Ab/7+pGYaKy6cSmua7Ssefc4wadKcMmGs9nmhbc/l5o+fX1df3444+bpO4k2XZ1egcadAmmNps4PNumno7UmTboC6kT3T5wKg7tMR7aev78+e09Dsu/r/J4t5Y2lXvcuZb0f1VD7yHmd+Y61yc/zzqGdklg9uX59CfXgnYzrWRl0nz06FG9++679cUXX9z5f84T7XFuuuT0qrumYe9FB6c4eTzP5ypoiHt5J3YmfgeLmOow1wUzp9fKQVNOj8n+24Roc2WXbmHzK8/jWta0a9f72kGAnVukcznkeBycmO3fl9Jy554HXTUYDAaDwX84jiaPvr6+vv2GRsrLcONV0vMqiKVq67y/L5Q4pQEHrZiY18/IPljitqSazmVrknbEWorJe3FkW4Ldq8rs/zmAY0XZlmP1NV6LLvzdYemWDnNe7dTfow568+ZNffnll7eSKCTMOWYnkQMHPeQ9DpgADsnunOxoHPy0htVJlaZwYg+hWTj0v2qrmTI+05LtkWPTR2uwtk5UHc6lA11W1pAE84REbwLtPToqJws74CXn3vs2yaGN8/Pz+tWvfnU7Hltbqg5aJYFBwNpUF0Ti5H3+tuaVliyPw9XMuSfD6d9///2qOiST0zfOQheYRpK1UxnQsEwu3Z0n4IAxylTlmXa6EH1l7LZkZDCg3+0+e50G70A6nz2PO8eVleL33j2J0fAGg8FgcBI4OvH84uLiVrr1t3BVn5iasCZR1Yc6V20TF5EmUmqyr6nzaVTdDRN3wUr7OugjCaF743DYrIuI5mf8JImTPlsbrTpIqpaSHkL5Zc3Yc2KtOO+xJO8SSl0pkUyGXfXr9evX9fz58/rkk0+qqpeWV8njqzXO/jqk3ImznV8TqdjJvYTMgw8//PD2d6Rx+s9P1haJOOcJaRwNBb+M6aK6s4E0S1+tLXY+NcL3Tc1mIoKOus+airXuTutdWR+cbpPvCd9zdXW11PDOzs7q0aNHmxSQ3EMr/7/95N3+tBWFfWjqrT3yaKdBdFRmTnNhXdhTvDvSP4ZWyLVYGJza5JiFnBNbvWiL5+Q8ei5ozyV/nBheddiD1qZX5cmyHVs36Ctz0hG4pzY6PrzBYDAYDAJHa3iPHz/eFLtM7cl+ga6se9VdKd10OaskaDQuStNXbUu6IGGbvLqj+nIkkn2FKYkg4VjCdfQkc5HSoH02LmvRSZ9ff/11VW0lIPtDXGIm77FmZ+ltr/yRSV3t58rfcw1WGh7k0UhuaDldxJYT8u1PzPI5aPteS0vlXWQic5bt5XPpBwU683dLmbSPPzvpz3imKb3QxCwBd5qQzwRtOFk+wVmwtcOaXT7vvn3giNa81nPuJOV8jv1L77zzztIPc35+Xu++++7tGaRgbraxSpQ2nVbuN2sVJjhY+faqtkncPmtoYqk9ca2jkO33S82F3z/++OOqqvrb3/5251qXbcr3E++QlQbLXk1tlf3kEkKOBgWpjfLuY8yr93hHrO/vib3ozEw4p/+j4Q0Gg8FgEDg6SvPNmze3EgPf4EmJY2of4G/ulGKQ/Cz5OLKzK7NjqRLtzz6Hrvik85JotyunYrohJDj+b80utV76ZA0SCWuPUNsRkGgjtsPnnNjvYwncOXf5P2CJscuT6fw6Kz/Mo0eP6re//e2S0DZhOjBL76lxEcXGPayLo806GjzWg89YD/qEBJk+PJPnen91fjEXkmWOvHad38c5YSZ85t5cAzQ7+uLoRq9B3ruKIN2jrgOcY/YZ40YLz/3v6MJ33nlnSRpe9e/5ZVy0lxojbbsskLWojjzampytKJ3Vgr3hHD6u7cooOUcQTZU+dbmpPAe/MnvV+4+9lOOzL81z3vnU6KNzYh2B22njzvuzD68ry+a9j9WDdTTNZNVBw0sry97eSYyGNxgMBoOTwNHk0S9fvtzYxVOqQttDE+misaruSgiWNG03tuaXEoKZLzJarWorkVcdpAgkYEsT/N0xkfCTca5yxjqp2Zockpzt5XmtfXf0zYV0s68uO7SyoWd/PA7ap49dwUf+R5+ePn26W7D0008/3eTDdXlDzmGydSD7bUJxS+X0nzXPe53zgxRtVonUQpGwvVfRDjvfjRk1VkVWOz+My8K4SC6fZ3kg2nUemc9Tl+PkNV35mxL2vVvbYI66aMDUnldSOv5fPkfTQ7uvOuwVtAz7tkBqT9aETbq9IjNPrAjhu7VkflxaCNBGRofz3rKv3u+FjmkF0H/W24w4+e6wBcFaqdcotV/Hb7h4NehYtuiby6BxbeZXsr+6PNL7MBreYDAYDE4CR/vwXr16tYlI6hhJ+OmIO/uREv52t/S+4lur6tkpqg5SQPp0zJZhf5x9hlVbCcTMF35+V67D5VmQeJ3PVrVl0rDdeq8A7CryqfPdAWuhzA33Ig2mhOdcmVevXi01vIuLi/rggw82WlpKs0huSHPOJ+vWhRwmItIYI/faf5pjZ05dvJN7+Dvz8lZRoDyf8aVWSPurElbAn1fVJue182lU3bVgfP7551V12DvPnj2rqq0vr+NuZD1WZZW6PWStwJafjj+XteZcXl9f70baXVxcbM5NjtmWCHN1Ouc2+8nc+n3maN2Oh3VVRsvRm1WH94yjc7EWdbED1sb5ydy6H7mnbA3gnLoQbe5V7mF9nENqa1xGIwNrdLYo5ee2Rjli1u+EqsP65x7dy0tOjIY3GAwGg5PAfOENBoPB4CRwtEnz8vJyQ02UKriJpU2503ZCVcmdqOrw9wySsXPYtD1doAtmMJ5naicTUVdtzQGrBFc7iPNaE/O6QnCOi76h0juJd1VCKUG7DuRhLRzCne0xTifldyTVDwXUdFWHcWUQAe299957VbWlxuqCiaBewhRHG4zZCdrZZ9bUSduYnrrAGq8762D6rq5Mi8PPMeeYjq4LDHL4Nm3aTFm1DU7BZOYAmC503kQDdkE4qCX75nJLgPlLM6yD2vaSh9k3rrqd6VAOyLB5kjnNtJRVpXZgYvjcJw6wYq4pYWTi7K59u3lMopGfuZK6g1lM8p39XwWtdCW//E73O8ql4XJN3a5N+XvfAX7ncw9rnS4p+ug9+hCMhjcYDAaDk8DRaQk//fTThsw3k2ztXEdatvSW2tOqrASSgiXTLqXBoc9oECZFzvv9HMZhqabri7UbE+Tm52gfJj+2lpYSJFK/w4I97o46zfRPDj93+Za8x6HEnvO9QJ77woRvbm42FEU5rpUmbK0qJUW0dTQGJ66aEo3Pcz5YK+/V7nm0Z/opwuu7QBDTc5mg2ZRzJCTn/6xh27KQEjD/4+eKJL0L+XaQmcG+TK3ANFsmFXAB3Oz/6u8ElIYAbSaDLVZBZA6w6xLPncrigDC/Y6q2JOvMMWe9Kwnmc7Jqv9Oebe1iHVaE+934bLnq5oK5dbuZ9pIgtaPqcJatOa8o1fx71WG8SUhQdVdT7qjrpjzQYDAYDAaBozS8q6ur+te//rVJbE1pwBI10jMSeCc50h7f6kgZ9h85ITSBJGDNYc9fBVZpAgknsloyWaUCVG3D3q3ZOfG16i4xasLS5x6Zr/0tTvrvwt895x5naq6dX28FSrwgEXaUYmgAjBktnaRiawz5+0cffXTn2lWyevaVOWO/pfaXbXd753e/+11VbTUHlyXKZ66sHKb66q6xBkNb9Lkr20R79hl7D6X2ZKncBN5duoKpuYDJwFPD4558P6yk9LOzs3ry5MkmzD6tA6u9aJKM1BScQmKN3uk8aRGx5cP+OMaa9zhlC9gqkFqT01BWvvW9WAn7Vr3GLhSc7TuVwDSFuXf8bvT7xmQWec0q3colmrIv4KEpCVWj4Q0Gg8HgRHC0D+/777/fUC+lFOMkaqQopJa96EJLDV1JF/rh5+GHsES3J8WaIBd0Nm4kbEf7OarRdFGJVZFa+/SyXcNaommC8nf7KJ003fncTB4MvJ7Zhy6htMPFxcWtVM49WV7EfhH3ryOudXQuEuGKEGDPj7SKSIM2LD8zEa8LcSa8DtYOHC2J9pi/MyeM136flJpN7u7xeG92/jhbSBxB2BXkdEkXn/n09dty8dNPP+1K6hkdbh9Y1WH+TfjAfugo31bJ/N77LoJctS08DNxWfm6yAvvhuxgFazy2gnR0e+6L6fwcfdyVlqIv9vuCztriEmoddVnVXbIJ5skRnSvCg6reF74irTdGwxsMBoPBSeAoDe/y8rK+++67TamItIsj1dle7WjJvdwJEyU7Ii2lOJO2Wlq23ZpxdO05siqlZvsubKe2RJKaxapIJODvzh4OTB1kKTQlPOenWHLuNNhVxNiK0qjqIBkmofJKSseH57GmNuOit9aIve+6/6GNuSSN/cBd+45eZG1TK+SezldXddAgOgorWx3cZkdH5b7YN866ZKSlNQefCfZ156u2b8g5XF3urX13qxJGub/pP+f21atXSyn95ubmTnHhjvQa7dHaNP0kirYr+bUqxGpi9rRumKzcliXQ+aqdS+t+5LvEVg1TJfp5+feq6PYe/ZmfZw1yjwjaz/H71fnACed2PyRyNfO2h1psMBgMBoPA0UwrWR7I+VFVBwnbJLNoAZ2/yhKw7bqW/NIX4NwPk6laE6taSylmmUiJ5D4C6+45fp77aMk+pUFrgZZ4XFRxT3J1JGHn97FvzeVoOqnavpSff/75wbZ0F1mtOuSfOWp1pe1mf7gWSR7CZ69Xrr2ZOzynPDf9PvYJO/Kxi1i0P9Faotc6pfRVjqr9ZbmWzifzPc7dyzmxxuB1554uRxWJm3E6OrOLcnSkcgeYVpg3E1xXHdbQ54P3DpaETgOyNmjfaue/9pn2nulKSzmS01Gg1mATfkfYWtCdT7Cyeu2xNHk/r7ThPU3f88YeTb+918AFj5nPjFGwZeb169fjwxsMBoPBIDFfeIPBYDA4Cfwi8mhCfK12Vh1MSQSvQPCKWYgE9I6mh/ZMnOyw567i+SpBu0sTsInPTn4nnmY7Xe26qq2ZKs0SK5OCzROdKcvBJHbOdqbWjgopn8s9HTk243DF6y75ekUw3AGzlM3gSYnlVAub0ehDmjdsAsF89vHHH1fVlhKpS52wyZH9x3PT7GpTHM8laKRLrHf6js36Nv2kidMmq440IK+r2roaHGhFn32usk8OVmEuOMe5Bk5ZYA7oE2c+18LndS9oBWqxbv3dbxMAOPUo3x28X3BdMA92OXQ0YXZPOLG9IxtwYvaq/l5HnWgqwxURdb6LHbTkvjpdwWOs6tMP8rp8R/q942s6E6oT6t1X1ijfb05+n8TzwWAwGAyEoxPPs6p1F7Ri8lGkOr7BIftNJ/uKfBhpEoc0zuqUSJBW90J73UdLBJawLOXmMy2FORCA/uTz+Z+drSsqnnzein7KBNA5n2BFwdNJn9bkXJZmr1p6JnvvlXh5/PjxRuPOOUaawyrg4ArG2O0d9p0TwaEce/HixZ3xZfv+29J6R1y7SjEBuUcdrOKgAUu3uQ+8F50s3WnXTglymSWe2yUtW+qnXbS27nxZk+A5XgvSTnJOOlorg7QEzj9aZwY/WPMGTtBOiwL3M7dfffXVnWsJwPP7oerwbvK5d/BNF0xmq80eubL3hNfflFxdOlRXBir/7hLdnbrlABunVlQd9rHXHfq7rnSay7ixH/yuzHVzQvvjx493A3DujPlBVw0Gg8Fg8B+OozS8qn9/o68kyKqDpO2yJkh3z549u/P/bMeah4lYO7uxpWZTgHV0VCvfljXMruigQ29t73dB0LzX0p8lr84W7TFbO+iSyO0fQSKyNNj5KJ38bf9mhoIz5vSt7lGivX79ekM/lH4d/GDsIZcK6RJl6YP7z9oRjk6/83lOkPXznHqQ15pyyT7OXA+3Y83K1om81z4pawFdiDmai8sdMSd71Hr8z8Vx+fmPf/zjzuc5djQiW35caDl/Ty1thcvLy/rqq69uNTDQWShcUmplzanarovJyn1vpqc4TWDlH+usRD5L3TnKsee97hPtm3gjx+oz6YT3bLOzbmVbwEVYs6/A7yhbjfIz5n5VDDnnhH2Q3w+j4Q0Gg8FgEDhaw7u+vt74ANIO7+KMjgwjubiLDLJEgk34IWUsgKV1UwDl7/eV6+mislaFX1ckstmuNasuSsr3285uiX8votTSvxPsU6N1Mm9SPmWbXUK1IyU7YBnAH9tFCLK+aGVoEzyTPmW/vWYrHy4J6fgHq7Y+B/tSO6nRY7SPqIuapd8uyOsE586vuSq14jXNOfG13qP2C+caWLL33HTEzdbkgMkLus+Sum4VbffmzZt68eLF7bulG7P9YrRL1DiWpQ7035q9C+d27x/vEUdgJ1ZllLxX986yk9f3CNutwfuMmIi665t9ht4He4VXWS8nlXf+bY+D95GjrxPsq26uVxgNbzAYDAYngaM1vKrtt3FKBUTkrMhc8bHktzLf3p1vqWobLdcVcTTVT15jrOzsqxynHMeq0OJDS8zntc45SWnRUWfW6JjPTrox/c9KAsp1dHkja/FdHqD3weXl5b0UP9aqE8wtviBs9UjpXSFR9lvnM8n+Mg7y86qqvvjiizvj6HKZPM6V1sQcI3Wm1uRoPOd7ed93UXrWYFbr4/5m+47kteSfv6/8S4wh6f08duekskbp7/F++vHHH5ca3tXVVX3//febeUwNj/4wRvYIc4FvKPvta/z/zscFVnEAq3XK/q4KAnfk6I4rsDZo61B+7jzMVcmffJ775vfO3r7zHNg61EU2my7O1hX7knPMmQkw5NGDwWAwGASO0vCQtPbAtzdSkn0qSIHZDhK9i05aUyGSJyUSay/2fXXRTc5hsp/CZUHyM5PTOoewK4XS+b/cp+xPjsssFis2ks5HaUnI0mH6XGyjt5/J1+X9Ga17n6S1p83Qnkmj2SswduQ4VvNiX0eXp4Rf7/nz51W1tRJ0jDUuSrwq4pvrYU3BUrstC5225qg1s7LYt1y1lbTtQ7Em1o15RWK73LoAAAQkSURBVMpOXl7VYX2ICr2vsHI3jj3rABG+9o/le8Aah31c9O2DDz7YtL8q8ePyNnvvEEfc7uU40h77mL5143cpJ7fryOs9C4sjPl1wOa+xv8+WLe/Hqu3720xMXbQ67aDJca0jf7Hy5NizTFBHmt1hNLzBYDAYnATmC28wGAwGJ4GjyaOvr6835qgMO0a1JknTZkJMI2lOI1TcdDmmjeoCHnyPVe4ueMVmsFVtro6OzAENjMNm0YTH4b5bRc9nr8KCbU5MM9mqGrpNGB0hq8frkOw0Rbs22n3Jn2dnZxui5C4k3onKrm2W99jUYxPzKpG2aks/9vnnn995/kPIfFdpMDm3DkdfJfV7P+Q9rpHmCuT5PK+/TU1OsO9o6Vhbk0wwljxXJpmgT5xrTNHpfjDxwF7QF6T1oKudZxOvXSpdCob3CNfw7rKbojvbfpfYbZDnyqZMv0cdPJX3e46dWO+6oPnZKu2hCxL0PcekUtkNQt89z5nA/+WXX7bjwITZEV44PWXIoweDwWAwEI4OWvnnP/+5cWR2IcqWGlelSqoO39guL2Lp3YEoVQcJgHvsdO8cpZZaHJ5r53XVVpPrQrrz767CummwnECbkpi1MTvDV8nlea21UocU7zm4Ldl347KGvJc8fH19XT/++OOtNaCrgv3ee+9V1XYPsbbcm5qygyosCTvUu9MOTHbr/ZZjsqZlrakjgLb0ChyQ0pH83kdSbW0u4YAaBxF0icDW4FgDJ2fn+baWY63URMBVW41rjx6KvZOaQVVPBO40BDTVPZJtrqEv+T7LcaSG2tHAJVwSKvvLc5ljp9TsWT1WVgIHfHV9WZFVJIXiqgzZKhUtLUvWDleECnk2WKdVuhKpSTn3WAVWlI17GA1vMBgMBieBo314XQhofivzbY4UjlRmqbnTFFysE0kLKYI2U9qgffuputBl99HSs8PFUzpblclYJebmvabPsXbWFWS1JsdPk6t6TNk3h0pbQ+6KU3rsDqXPtXZhzL0inpR48Rx0FGwOA7d/pJsn98+2f7TEXONVSoGfm4nu+KVWlEhuK69x6Lyl9s4/Blb+Pv7f3bMqscLzOG+dP87jYQ7oY/pyrUG4aGynIdlfdX5+vrQOQEu3l8ZjomKe6bI9uc9NjWgieL87cm5sMbC23vnj9t6bibzH2hHPM8GBNdy8dlUc22PJ51kL9DtrzzfuPeR3ZqYY+BpbvzhvaR3xGei02hVGwxsMBoPBSeDsPiqoOxefnf1PVf33/113Bv8P8F83Nzfv+5+zdwYPwOydwS9Fu3eMo77wBoPBYDD4T8WYNAeDwWBwEpgvvMFgMBicBOYLbzAYDAYngfnCGwwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUlgvvAGg8FgcBL4XytoTnoBJksQAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZddd3/vdVT1Ud6vVGlC3WpIleQoYEzvwMDjwCDgLiPFjzMoiBBMw4AcEkpC8kIQ42BhjxhfMkIAhmNiBgLMc5pjJDDFDiAM8O9gGbGFJLUvqltSSuqWWukvdXXXeH+d+7/nV5/z2qXvbsiWl9netWrfuuefsee/zm3+l6zo1NDQ0NDT8746VJ7oBDQ0NDQ0NHwm0F15DQ0NDw45Ae+E1NDQ0NOwItBdeQ0NDQ8OOQHvhNTQ0NDTsCLQXXkNDQ0PDjsCT+oVXSnlZKaWb/f2V5PdPD79/Zrj+plLKsUus81gp5U3h+2eEOvx3TynlV0spn3SJdXxhKeX/ucRnXz1rw65t7rsZbX5s1u7fLqX8k1LKweSZLX1fsD0vK6V8VeV6V0q5eZnynoyYrae7nuh2LIMw/y97otuSYTam3FfZ32c8TvX951LK+x6PsmblfVMp5fOT699dSll/vOr5UFBKeWEp5TdKKcdn+/9EKeW/llJesOCzP1FKeX8p5Wwp5Y5Syn8spdz4kWj7hwuTh+aTCGck/X1Jr8T1r5j9xsP72yX94CXW9UWSHk6u/2NJfyypSLpB0r+U9FullOd3XXf7knV8oaTPlPS6S2zjMvguSb+sfq4PS/obkl4j6RtLKX+r67pbwr21vk/hZbOy/wOu/4qkvy7pxCW0ueFDxwn143/rE92QCr5d0o+G7y+X9NWS/k9JG+H6nz9O9X2LpAOPU1mS9E2S3qp+b0X8sKSffxzr+VBwpaT3q9+b90i6VtI/k/QHpZRP7rruf008+1JJz1Z/Rr1P0tMkfaukPymlPK/runs+rC3/MOGp8sL7eUlfVkp5VTfzlC+l7JP0dyT9nPpDd46u6y55k3dd967KT3/Rdd07/KWU8i5JfynpxZJef6n1fQRwW2y3pJ8vpfywpD+U9F9KKX/NYzrR96XRdd1JSScfr/IeT5RSViWVrusuPtFtWRSllN2SLnYLRorouu4xSe/Y9sYnCLM9Ot+npZQXz/79n4vMSyll76yPi9b3geVbuTy6rrtT0p0fibq2Q9d1vybp1+K1Uspvqt+XL5U09cJ7zWwPx2f/SP0L9Kskfefj29qPDJ7UIs2An5J0k3rqz/gi9e3/Od5MkWYQ73xtKeU1M9b+9Iy9vwHPLirWMye0Ozx7TSnlx0opt8zEAHeWUn6mlHJ9bJt6zvT6ILY5hjJ+ZPbsY7PPnyql7EX9Ty+l/Eop5ZGZuOFVpZSF5rPrur+U9FpJz5P0N6f6Xkp5+qz+e2btua2U8oOz394u6dMlfWroy9tnv41EmqWU3aWU187qOT/7fO3sMPc9y8zVl5RSfqeUcnI2Du8qpXwF+zsr7ztKKd9cSrld0nlJL5i14RuT+189m78rFxnP8NzXlFL+tJSyXkq5fyYSugr3/MNSyv8opTw469c7Sin/F+7xGHx9KeV7SynHJT0m6Yowri8spfx0KeXh0ousfqiUspaU8bJw7U2llLtKKR9fSvn9WR//spTydUlfPnM2nuullA+UUl7OffWRQinlxbO+fN6sDQ9IumP228fMxuFYKeVcKeXWUsq/LaVcjjK2iDRnz3WllK8spXzXbH2fKqX8Yinl6DbtuUfSEUlfHdb9j85+2yLSLKWszX5/5Wz93VlKebSU8kullKtKKUdLKT8/m8c7Sin/NKnvWbP23z+bj/+Pa2YJPKx+/U8SFXzZza7dMns+nme7Z+N3W1j3v19K+eRLbN+HFU8VDu8OSb+nXqz5+7NrXy7pFyQ9skQ5/0o9Z/NV6sV73yfpP0n6jAWeXSm93swize+UdFbSfw33XCVpfVbPSUnXqRch/PdSysd0XbeuXpRzjaQXSLIO4DFJmh2wfzgr57WS3j1r5xdI2uP7ZvgFSW+U9P2SPk/St6mnLN+4yEBI+lVJPyDpUyX9dnZDKeXpkv5o1s9Xqedob5T02bNbvl79+K1K+trZtSmR6H+U9MXqx+4PJH2KpH8t6RmSvhT3LjJXz5D0s5K+W9KmenHtG0op+7qu+1Ftxcsk3aZeFPXo7P9flPQ1CuLv0nN/Xy3pLV3XnZroyxaUUr5b/Vz/kKR/rv5QeK2kjyulfErXdRbT3SzpDZKOqd9/nyfpraWUz+m67tdR7L9WL0b/GvVjHHVDPyXpzZL+tnrR5aslnVIvdprC5ZJ+Rv3cv0bSV0p6fSnl/V3X/bdZXz5WvUj6jyR9ifq190pJh9SP8xOFH1W/3/6eJL/cr1c/l2+RdFrSs9SP21/VYvv6WyX9rvr1cb2kfyPpTZL+1sQzL5H0m+rX8HfNrt27TT0vl/Qu9fvkBvX79k3qxYw/L+lH1O+B15VS/rTrut+RpFLKMyT9T/V7+x9LekDSl0n65VLKS7qu+43tOlh6QnhV/Xn0SvXnCFUQ26KU8tfUr5+/CJdfJekb1O/X96pfI5+k/gx78qHruiftn/pF2KlfxF+lfkOvSTqqnkL5LPWLupP0meG5N0k6Fr7fPLvn7Sj/m2bXrwvXjkl6U/ju8vl3WtJLtmn/qnrZdyfpi9C+u5L7X6Nef/HxE2W+elbeV+L6eyS9Lenzyyvl7J39/vqJvv+keoLiuon2vF3SH0zM3c2z7x83+/5q3Pcts+vPW3au8PuK+hfIj0v6U/zWSTouaR+ue24/LVz7/Nm1F243XxjrDUmvwvVPnZX1hdu0+W2SfimZu3eqF71m4/ptuP5WSbckZbwM/egkvQjr4AFJ/z5c+xn1BNv+cO2o+hfusdo4fCh/YV3vSn578ey3Ny9Qzi71+vFO0nPC9f8s6X3h+8fM7vmNynq8apt67pH0huT6d0taD9/XZuW9R9JKuP4js+vfFK7tUX/GxT3507O1ewj1/J6kdyw4tm/VcG4dl/TJlzA/eyT9D0l3SzoYrv+WpJ/5cKyJD8ffU0WkKUn/Rf3m/Dz18ud7VOFMJvCr+P6e2ecilkffoJ4re4F6Cu/X1evAPj3eVEr5BzOx1iPqX8ofnP300QvU8dmS/rhbTJf2K/j+Xi3WD6PMPqd0Qp8t6a1d1x1fotwa/sbs8z/hur9/Oq5vO1ellGeXUt5cSrlb0oXZ38uVj/Wvd113Ll7ouu7t6o0ivjZc/lpJ7+626j23w2epf3n9dClll//UU+ZnNPRdpZT/o5Ty1lLKverXx4XZ81mbf7GbnSoJOP/v0WLzf7abcXLSXNd3C559oaRf7brubLjvhHqOexKllNU4BmVBMfuC+IWkvrWZuPD9M1HiBfXcl7TYnsvGUVpuLy2Ct3VdF7lji1fnHFrXdecl3a6eSDZerJ6rfRRr623qxfJr2h7/RNInq7d5+EtJv1pKef6iDS+lFEn/XtInSHpp13Vnws9/LOkLS69++JQS1BNPRjxlXnizQf5F9WLNL5f001hAi+BBfLeIcJFFc0vXdX8y+/s19WKV2yR9r28opfwj9ZTbb6kXNX2S+sNj0TqulrSo+XvWl0XqMLyppqwol2nPdrCIg/Xdg9+NybkqpVym/mB7vqRvlvRp6omR/6CeMCJq/Xy9pL9TSrm6lHKT+gOG4tDtcHj2+QENL17/HVQ/jiqlPE09kXaVpH+kXqT7AvXEUzZ3U3OTjU/WbyIT03LtHJV0X3LfdmI7qe9f7P+rFnhmUWTj8X3qubI3Sfoc9XvuS2a/LbIfPpQzYRlw3M9PXPcaX1W/Vr5G43X17erP7231zF3XfaDruj/quu7n1Itqz6hXgSyK16k/d//+jEiMeLWk71D/Mv3vku4vpfx4WVL//ZHCU0WHZ/ykeopsRf0L5wlD13VdKeUv1HOcxpdI+u2u6/6ZL8z0YIvifgWF8IcZVnr/wcQ9j2d7fLBcq62m8tfi90Xx19UbMn1a13XzPpS6f2KNU/pJ9XqYl6k/PM6qFyMtgwdmn5+t/IXi31+sXsfxxV3XzQmJUsr+SrlPVO6uExpe4hFHFnj2a7XVTejxkA4Y2Xj8XUk/3nWddWkqpXzU41jnE4au6zZKKQ+pP/O+v3Lb/UuWuV5Kea96NdG2KKV8u3oO8f/uuu4tSXmPqX/hfcfM2Ofz1RMhe9Qb5z2p8FR74f2mZsrpruv+7IlsyExU81xtNb3fr7HRxlcmjz8maV9y/W2SvqX0vn1/+rg0NEEp5dnqqeJ3qdfB1fA2SX+7lHJ0JtLK8JjGfpAZfm/2+SXqN4jx0tnnVDsy+CVxwRdmVOUXLFNI13UPl1J+Wv1BfZl6PdGyvoi/qd6Y48au635z4r6szX9Fva7vyeTY/g5JLyml7LdYc3aYfaq28avsuu79H4H2SZqL2vYpjOcM2Z57vFHbw483fl29FOM93RJuGDWUPuDEJ6gXRW537z9Xf058U9d1b9ju/tkZ8WOllC9Qr7N/0uEp9cLreku3J4qze85MLyf1VpZfLuljJf2LcM+vS/qXpZRXqLdw+5vqWX3izyVdVUr5B5L+RL2S+z3qqbgvVe/Q/lr1+oSPUn+Ifx1k54viGaWUF6o3oLlGva7sq9VThl88oSOSegu2l0j6w1LKd6oX2V0v6cVd131Z6MvXl1L+rnrO7Ux26HVd995SypslvXrGhf2hei7tlepfMu/hM9vgD9UTFz9cSvlW9U7F3zLr16Ely/oRDXq8mjhzXyklm8sPdF33v0op3yPp35VSPlq91d+6erHxZ6k3bvhv6kXdFyX9ZCnl+9SLDr9NvZ73yaReeK36dfsbpZR/o15U+kr1Is0n0kpzC2ZSlrdJennpXQ6Oqef4PuEjUP2fS3pRKeUl6sW/93Vd98FtnrkUvEK9LvjtpZQfUb9WrlTvUnRd13UjlxKjlPJG9UYm71QvQblZvaXnlQp+dLM1+2eSXtF13ffOrn2FenXNL6m3Mn9hKPp013Xvm933a7P2vUu9Id8nqj/3ahzpE4qn1AvvCcYPhf9PqXfA/NKu694crr9G0hWS/ql6OfzvqpeZ34ay3qBet/eds/vvUG/NeLqU8qnqD5xvVq/7uVfS72iQ+S+LfzX7uzBr95+p16v8xHYv0K7rjs0W+mvVi/0uU7+Bfinc9j3qjQPeMPv9d1U3B3+Z+rH4KvUvp+Oz55fRJ7htJ0spX6RefPKzs7J+UL3OYzvTfJb17lLKLZIe7rrunZXbrlJvOEX8sKR/2HXdK2Yi7m+Y/XXqTcl/W72hgLqu+7NSykvVr5NfVk8gfLN6UednLNPmDye6rvvzmZ/X/6teonK3+nl6sfpD88mEr5P079S3b1O9gceXq9cnfTjxL9QTRz+rntP7sVlbHld0XXdbKeUT1evKvkc9AXy/emJ4Oxekd6jndr9evXThLvWWli/tui66FhT1BHEkuj5n9vkFGktNfkP9WpB6yc0Xqn+Rrql/Ifu8eNKhTBP4DQ3/+2NG4f6Fej3FTzzR7XkyYmYk9AFJv9J13Vc/0e1paLgUtBdew45F6SO3PEs9h/ksSc+i68JORSnl36oXGx9X77D8jZI+XtILuq579xPZtoaGS0UTaTbsZLxcvXj3FvXi6fayG7CmXoR2RL04/Y/UB3doL7uGpywah9fQ0NDQsCPwZLIMa2hoaGho+LChvfAaGhoaGnYE2guvoaGhoWFHYCmjlbW1te7AgQOOkq09e/ZIklZWhvfmrl15kX1QhBxTv2W/Z3rHRe6pgff6e9YuX9uu/Pg7792uv1k5m5ubk22dqm+761mbamOQtX11dXX++eCDD+qRRx4Z3XTo0KHuyJEjunixT8N1/nzvVuh+Ze3zunL5vD7Vj2XGuFb/pdyTzUdtDHnv1Nrib49n/5bZK1m97IfndGOjz4jkOY/1+JzYvbuPNTy1dg4ePNhdffXV83l3ef6UpAsXLmypk22ampdLsWPY7tlF5ulS5rAGj00sk+VP7Rtiu7Zl/a71Oe7x7Z7l96xMnwe+trq6qocffljnzp3bdkCXeuHt27dPL3rRi+bfb7yxDyh+5ZVDnNDLL798S2P8UnSn2XlJ2r9//5ZnjNghaVjM8aXqhe6B8b3+7k0Ry+bG4b2uZ+pwrx1aLtvtiv+73PiCiJ9xQXLj+gWxvt6nROOh4s+sH+zfIocy5yl7+XgeXM7Ro0f1/d+fB1g4fPiwfuAHfkB33323JOnOO/uk0GfODL7vXivGZZddJkk6dKgPnOLD0Z/xGbavtmFjn/2M+8rvcUwNXuN3Pxvnny9hrhGOdRxjtsnt9xhkBx3rZT1c/7EPvGeRF62fOXu2T65w7lxv7PrQQw9Jkh54oA8l6rUrSQcOHJAkPe1pfQzzI0eO6Hu/dx6HfQuuuuoqveIVr5ifE4880gc8+uAHh8AmJ06c2FKH7yFhlb10fY/7zBc1xzqOA8eY4zR1ULMs1xPng3vMcNvcpr17926pI/7PfeMyXU/cd1xftbMwe2l5DNj3xx7rI6Jl+8rXPAdum9eQr8d+XXHFFVv6fvDgQf3cz43ygKdoIs2GhoaGhh2BpTi8rut0/vz5EYUQOa4aFWlMUaSkZkhdZuJSUsCkIjJKi/fWPjOuMKP6pTFnOSX6cRkuk9ezNpA78O+m7CL1PEUxxmdNPcX2k/vgfGUcunHmzJnq+HRdp/X19TkX8PDDfXxmU3+xDTVK2G2J68DXTKWSSzSydnP8+d2IfSJHTaqWXLw0ljJwflh/BMW5vNe/T+0Nt5FcgWFqOms/92TkXBdFNq5er48++uhCz3udR8S2eH7Jtfoe9yeuA7eBa5YSEJYVUZP4ZKhJrLjH4pxTTBylG1nZsX++t9a2bL3x3PR41s63WCbX+dR7wnC5PovIYfp8iPXEc0vqpQWLiqUbh9fQ0NDQsCOwNId38eLFSQ6ClNa+fX0GDVIT8W1PqpxUjMvKOK/YNmlMiUzJmkn11/QX2b2k6IlM3k+KkW2Nz5Az5hiQ8svGxONa01HEPnk+av309ThvmX6npjvb3NzU+vr6XK9jriLOD7klwutibW3Izen/vc7INdU45execiKZ3tkUp9tqLqFmsBFBLt1YhALmmvSnOZ+Ms63pJNnWyD15rfgax8QceuxfTRowZUDkeqzDPXfuXFV6UErR3r17R+MWpQPcW9SlZtyM1+B2nD33YizfqNkZxDklt17b/1NGS/yk9CvTy/O8IdcW+0J7gxrXlkkLqG/jGGXSD3JrrM/9iXPtte41uozxT+PwGhoaGhp2BNoLr6GhoaFhR2Dp4NFd142Uq5GtrSngyYpbBCWNRW8UIVDUGMUpbEvNXSCy+mTtjZq7Av/PyqiJLeP/bIv7SxExn8++U+ybiRppluzrVBDH8mkYMuX7xDHf2NioKo8t0ozGNfHZ2AaKKNwWrxm7K0i9SbI0mLlna7J23eJQilos1qGpuTSI9GhskZn410DRlsF5itf4m/eMTfXjfmLfKWqkmXg0xqCIyXC/PN7R0MViSc+tx6hmYBPrsfvAuXPnqmtnZWVF+/fvH+2XuBZrIn+K16KYreYq5fVWEwHGa/6sGffEPnm9+ZNuAtnZybOvNkaZoZfXSHaeRcRxpPjb9fJs5pmW9dn95JjYdS2C5+Yi/rRRRbCoWLNxeA0NDQ0NOwJLc3illBGlkEXLqCnMTYlm1J6pRlOgpGpp5hrvcb0u39SNqc3MlJ0UPamLWE9NOVwzBMhMmN1WK1tJlcYxoZGI+0OzYCqR4/905iTVO6WMp1m6PyOH5j66X+vr61XDg83NTZ09e3bSMIicj+fSFKEdTv0pDRyHOR2Xa+qSxheZq0lNce51GNcB58H98bj4mcxoqWbUwXWXGXS5f66P/Y5cr59neeTwXG+cUxor1Mz8Y30cg8wgKdYfxyIa/9TWjjk8uhFkEhiucY8P51QacyA0iafUJs5pze2K+zGOLfcjn8mwaGQdj0k0QCIHyb2XSRT8G9dxzYUqW6tcXzw7436qRX/hXolGWR5HS3WWiSDTOLyGhoaGhh2BS0oAW3Oclurm2uSqog6A+hDqQfgGz0xvyZGYesv0B2yDnzE3SKom3kMqpuYsn5kjU+9Wi48pDeG0yBG7XlJ8kaN0P0jVuu00aY//+96aw2nUFWVh22oopWhlZWXEbWTzYsrt6quvltSHloqfUQdgCp6cnOefur1Mh0OTcvYr49Y4p17v2TO1cFM1B/Sp8F10Q3A/43rzPf6N8+62es1ENw9ycjXONXI2HmOvO+oVT58+LWkrJ00OOXL/hDm8U6dObWlbFiaMYQrJfcb1S6dn7ospWwVymzV3oSmJCEG9Occg1kdpSGYH4H7Qad3PUocd20iplyUKNV1bLJ/zQy44rjevK3KFHKu4vj1ftXGcQuPwGhoaGhp2BC6Jw+MbPOMu/PY1dWGq3NRmfIayXuoaTJVl8lxTCzXrPP8eqUtTgaRS/Kwp0khVRKok9q/mgB6p1Zrex/0yBRQ5F3N4pqxchh23ORaxPlPC5mDdH1LpGTVo3Yyt52iFFuvJuNntrKpIxcY2kLPzePg6ubgIhhjzdzoXx/ZnOixpsDq05CHOLQMkM2yXf88CQHO9kUL1+ojtIUdFC79s/ZFa5p6kxV2cM+p/Kc0hx8//pWGeyF1n4aF8z/nz56tWhA5oQF1XlFBQp1RrU5wXznvGLUdkVs2c/ykrRgZE5nnHsywrp3Zm0RlbGs45Sr18neeSNKwd73/q37x/KOGKY+F9S+mHxya2kb9xbWZcnJ/PdJDboXF4DQ0NDQ07AktxeJalm/Ll2z7Cb11b1Jlz8HUHD5aGtzzDI7n8qdBjpkSMmoVnRl36N1Jp7EMEw5JllJy0lfLxb+6HuTZ/uj1Rv0BfI8q6/WluKNZnXRf1Pub0SPnHfnm+TA2ao6zpDmI921mbbWxsjMIPmdqM7WSYMOoeMo6La5EhibK1WgvT5PXtNRqlAy4nrt+svsz6lNzSdsHLpbGFpUFuPT7j+sjt+tNj5r0TKW5yKNSNey7ivNH62G3z+jbFH3X11DNPwWuHOrUodamFYKOfZub36bVPLpD6ubj2Pf/U3WXWoIbPQD9bC+a8SFBnt5W6yzgv3ke818gkZhxHnpU1C0xprP+jlMrzH+uj9M7jSb1v3PPUPS4aOFpqHF5DQ0NDww7BUhze6uqqDh48OKfoMuqMFILfxubiaCEmDQlkGeWj5vsWKSBzIP7NVCs5yowScdtIWWeRCahLIcVNyi5S3KQcfQ8p7cz6lDoaUlimFiNlR12hqSX6R0WK221w+aaITZ1nbSR1u2vXrkl5etd18z577KM/V8atSMN8ea4jnFy05g9J3UDkaj1m9Nmjni7C5VKXOhVpx30kp0BulH5gsd01v09TyHHMano498f9O378+Kh/Brlt6puiLyQ5CXJg1BnFPmbWuoSD1vvs8HlgziH23331mLudmQUsdZt+hvowlx3XA/Xvrtd7zYhcFfeu9x/XWWYVzCDYtSDv8VlaOtYsl7OEs7XoVrTMjwmca/7Z1CFG6QgT2Fo6xfMt24vc64ugcXgNDQ0NDTsC7YXX0NDQ0LAjsLRI88orr5yz7TZ/jyIYOgebrWaG68h6P/jgg31j4Nzte2jUEsUSLI8O25mjrEUJFMlSgRrNlt1Hl0dRksfCiKI6ilupsK/l54u/+VmaUnsuPO7SWCxBEW0mdjU8T+7PtddeK2kQR0QxKF0LpoK40qycJvLSWDFPVww/H8UbVG7TKIYhrKJI06KdaCwkTedfpNEQxZFZMAb3i64tFBvxemy3++7+eR1YpJSZlruvfsbXPZ7ed3E8fQ9DltGd5MSJE/NnGM7Pe5BixiygehYaj+i6TufPn5/3w/XEPcazyOcPDaCi6PSaa67ZUo/LrYXkuv/+++f30qiD4eky9xSjlkvPz0SDF/fDffW4WVR75MgRSWPxsTSsDfeHofq8DqJ6iS5ntWDcLiuuaQZ5d1u8z7Kz0mvPbfUzVnNl+QwXCdBeQ+PwGhoaGhp2BJZ2S4hvdBqVSAPlYSWkFeM0H8+ye/uaqZlFHAypVPe9NepdGihbOjmamsicuU2JsDxTG6TwIpVWCztF5+gshZHLp4m+x2gq9QrrpzFDRC1Tt41CTA1HapBuI/v27Zvk8Pbs2TPvq9uUBeSlsQW5s2i84vLI0ZECpWFKvMdjWuOiI/wbg4S7zVkW8VqIKhqgZAEIaKTAejIJBrOy06DKfWDWcWng8D02/u45Nocf18Hhw4e3lGepgD89R5GT9Fi7H2fOnKlS7qUUra6uzu91G+IeM1fpfe9PGqZlqcXInbudDLoQDVJ4D+dnKj1QLZu8jXDiGeNyfa56HswBWbLDEHvxmtvPM5HuZXF8mOLJa9drxf2MHKWfdRsZeD6TmJD7o1GUy/KZLY3Ps6nA40Tj8BoaGhoadgSW4vB27dqlw4cPj/Qm0UTZlACpMAYjzag5BnymwyQDG8dy6VrAhIiRCzWFQ/NghrHJwhAx8LQpVTpoZ86Q7h/rp+5SGqg9jy0peuoGYn0MbOvvppJMtUd9Fk2mGSSb4Y/ivTFUVo3Du3jxoh544IFUh2tQn2Odicc4a7fhteJxI0U/FTCbLhiUOERu5uTJk5LG3BG5+EiRMsBALcDCVJqTWmJR9yHuJwa2phuRqXKPZ6aHoR6V3HYcE7qLfPCDH9xSlu+NHBl10+YSM1y8eFH333//vL1ZQIDnPOc5W/rOdFbkxGMffa/H0s/4XCC3Kw3zTi6QOra4Tz2WH/VRH7XlXu7LqCf3b94L5uwYuMFrOJ5htUDWLstlR8615l7jfrpt2VqlPttjTqf/OI6U3ngtes9cd911W/oQ7437qSWAbWhoaGhoCFiKw9u9e7cOHz6sd7/73ZJyyyBTGH6L19LL+60f/zfVwtBIppao/5EGqpH1ZVZZhqmFO++8c8t1U15ZUGzXyRRC1nHZ8og6xdgPWknVki3GdrsN5iw8BrSIi3DdDGHEcY6Ox76X1HgM7ktQ57kIjh49KmkYryxBJhMC+96ME/dYWseZ30AJAAAgAElEQVTo77SIjBZ9BhPhUsfqvmfcuqlil2Fq2WMSqXSWSyvAqVRPlGDQKZptjeV5rZJKZ4qhSOHTktfwMx7faGlHbtr13nfffZLGwSeksT7z4MGDVefzCxcu6OTJkyNOxRaKEe4TOfBMokTOl5+05s4SAdOKlfdmiZnpqH/vvffO+ynl+irvVc8VrVD9GaUfvtdt9RphWrS4dmgb4HVgq1zumSzABnV2noMsiLj7St03UxrFdwzrXiQ8ndE4vIaGhoaGHYGl0wOtrKyMOJRIIRikqEzlmfrMKFJ/mpow5WNrr4yTIKdDH6NogWbccMMNkgZqyN/N4ZkCin43pr7M0fm7KV1S01Mpc+hTReuz+D85ZqZbcllue4TH3GPBRLvmtmJ/fC99kvw9Uunue7TGqlnaOSwdrbwy3aPheWC7o87YVD71IjXLt6jDo5+nqVla78YQVh5T+pmaemX4K2nMATGY8lRYLa8rpnKhNCTz3fNeYEB1U/F+No6n2+RnPQcuP7MG9J5gyphM12a4DdGKdkoPs7GxMQpRFbl22ghQN5QFnPb/7qPHhxafWfJYBlv3nPpe7w1LZuL/1B16fDxe8cyKa08aW5B7vujHltXjZzxutE6XBqtPP+t7n/nMZ0oa1oXnPJ7jtIGglXAWGtLPmxt1f90Pj411l9Iwb/fcc8+8X02H19DQ0NDQELC0H97evXtH1obx7VqzlqR1WeQEfK85O99rqsL3+i0frcJMVTJA75TPDnUq119/vaSBS8h0RdQJ0VdsKl0QffWYJsP3RurM/7sNpkJtzeb6zAXH9vkZc2umsEgdRkrS9WU+gdJAfWYBnD0vp0+fnoyC4DQvsY2Rq/O4UAdlmJqOETJ8zRSidR0eJ4+L++PxkgYLMK8N128qM7OIZdqZTIIg5RwedSkeA1o+ZjpxWksyMG8cd+41Rq8wMt9E9+8DH/jAlvp93VKPzOqZ0Wc419G/0GMdg8pPpXlZWVkZ+X5lUX/cJ1pP+pmo8zaX4r75N8+3x8vnUkxFRl03La3djihFob7Ka9b9cHuivyJT4Xi90wo0s4RlhBVGh2Jw6XjN69r73ZIUt9X9jf1z32+88UZJw1q59dZbJQ37Oa4DBsf2PLl/7k/cg+ae77jjDkl9irQpKUlE4/AaGhoaGnYEluLwNjY29PDDD8/f1NR5+R5pnCqe+oT4RjZ1ZoqKyQzvuusuSQM1ESn8Y8eOSRooBSY5pYxdGqhzl0d/m0wPR58WUvoGrYtinw3Gh3M/YzxMWjGa4jYV5cSvfibqG13fLbfcImmQdT/3uc+VNFCyGZdNvy73O0vYaa46Rk2ZirSye/fueV9dTuSQaLnn8Xd7vT6iLsV9te+XLQO9NmnRlSVXpQWn1wo5v6yNXl+uL0t/5fIZj5U6RCN+p9Wax4tjFPUi5sapL6cPKSO+SGO9DmOTmiu+++6758/QP5ZUOxOsSmMd4cbGRpXDu3Dhgu69996RZCmuHeqcXRYjkkSpge/xfDPZqdtma+54znnf+xp1+vSFlQZbBOrdrNvz2s10+bQKpQVx5hfH+aYO1PMR96zP2ne+851b2uxxc3vM8d1+++3zZz3WHEePPdedNEhi6C/LmLERjAJz+vTphS01G4fX0NDQ0LAj0F54DQ0NDQ07AkuJNDc3N/XYY4/N2WuzqFFkx2zRFn1YYWvxVBQFftzHfZykgSW2eM4svkVzN998s6St4kKmDDIbb3GlxXnRUdZsukV8FllYPOq2RbErHUndP/eL4qr4rMUQDKDNtCrRWMGiWY+JRUkeE7fHz0RRjZXfvpfpYSxmjg7Hbj9FmhSlRdcQixQ8thTvEqurq3NRjNsbn3Hd/mQA2UwEx1RHdJFhUFmLguNvDHDAerJgtx5br2eL2b12Yxs9TuyHy6KxRxbwgGGa2MYobvO9FhdRpOm5ZF9iG7xGauH94rxxXdfEUZlbkdfvhQsXqiLNjY0NPfDAA7rpppu29DUaasUxk4b5oCFKXA82rnD/LZ6ziJOZwjMjNvfVe+62226TNIxb7JPnzMYWHkvvH7cj1uPzxfvfY+ozpRbEItZtEbf7y3UWDdHe9773SRpUBDQ4cj0Ww8Zzzm10m30Pg2NEka3LtYjUz3o8vQ7jfvLz7tfp06dHaqMaGofX0NDQ0LAjsBSHV0rRysrKKDFn9vY1J2RKxJScXQDMZUkDNeZyaHDwiZ/4iZIGqilyQqYITLUw8asph2iAYtN0ps9gMOlYD90sjJoxS6Q4zDm4rW6TKXAqhOOYuNznPe95kgbKKzOOMDw/H/3RH71lLDx+ridSnwyZFgNCx/5EgyE6tl5++eWT5sFd143cRaY4IaMWBDm21y4sTLlC6jIaTrgeumu4D1lYNffVwQqYIiuuGcPcgJX3NDwyPKfR/J1O93TMdX+iIY/7TO7Mc0x3iCxpKA3ImLw4ckrkVF2u++MxiiGz4pqR+jGvGTytrq7q6quvntfjcycaP7g9HmtytzSkkIZzwJyI+0bjDo9XnAtzZZ5Lj5s5kyzQAQMbeJwsFXD90XjNIEfne3xWMsRi7J/3GLmyLBi7++MzquZ+4TmI+8v1eS58j6+73igdoMuMpU42nnEbs3RybvfDDz/c0gM1NDQ0NDREXFJoMVMtplSiLJ0myZGTk8ZhjaSBAiCXZpkzU35EroBBbclp0TTWfYjlMB0MzXljOXQEdn2mRDLzZ1OGdF6n2XhGsTJYsDkZjnOsz1wY9Y1MXppx5gyjRN1eFl7J7b/sssuqKW7slsBEvVn6FNdR42Ljd6b9qQVmzoJ6G0yB5HXtMY1UuuumgzP7EK+TK+N6tm6alLA0ppbZX5edtZGhnRjej2ssttHjSCdlcikRDAfFuYjrje5LU24J+/bt08d+7MfO14PHKbaB0hqOAUMOSoN+33uX+lDum7jHfC/18B7bzEyeDvnm7Nw2zo80Ttrq75x/9yFLPM3UO9z/0S3Hz/sc8z3m8Llv4170Pa7HZwqT5cY2MoExpQPmnOPaYGDwRx55ZDLgRUTj8BoaGhoadgSW4vC6rtPFixfn1AWdcKUxFWEZs79T5yVtTdUuDRSB3+CkoiKXYYqOIbEYZDdSZ26TqSJSdFkqeqYOsQyfiWDdh8yS1OXSOsv9iVQhw0LVnLLJycY2mOphskhyjfEZpv9wv3w9UtWc06nQUA5aYKov4/QZ3Nago37UATBMXM3J34i6XKbYYTuy9CPkhFlfFmSbFoIMLWXrNob+iu2vJTTlmo2/UVfEuXXbY1v5G5MI+/e4DuhIzySeDCocy41JaacS4K6srMw5O+ux4zqxhMfjT30lbQsiuMc4Ttm6psVtTR8cOQ/Pt/e9rcN9r8crrinqs90W94cByOM5x+TE/o2WzFGHS/2luc+atXY8Q5jWi9xbdva7TR4L2lG4vriPo8O56506eyIah9fQ0NDQsCOwtJXm7t2751S1qapINdGXitwLfY7ivYYpA8rhjfhszWqSwWOzpLHmXkiBmKrILKxImZKSy9JZmOJxea6XwaOjdZ7HmKGF3B+Pq/sfObyYrieWz5Q8kUqnzsagXiaOve+NoYtqlnabm5s6d+7ciMvJ/LmYtoby+cgJUGdC6pxJaiOHR2qfc5gluSRHSW4qC0tHTthlMGGq25j54THUGxObZtauNS6N/nKRo6C0hZaXGYdE61ZzB9Q3ZQGuY99ra2djY0OnTp0a+UXGPV0LhcffI7dJ619atVJKlCU79T3eA5HrYJ+tszOH57G0RSRTG8W2cb2577RYzSQ9PkPMGdfsAKRh7rwWqSOktWs2Z7UQjWx7rIfrzv3yPGb+hdk5vR0ah9fQ0NDQsCOwtA5vfX19/uam/DrClAKpI3Jg8TeDuidSEfE7qQlSekyyKo0jxJhCIPcZ66Fu0n1n4tdMx0EKhBQ2dQexDdRrUmfpNkbOi5RUbewjpeXf6HtkPQmDFmd93i4J4+bm5rz8LDUJuVZyDBk3Y1B3kkW8qT1LMBJKpsulLs3j49+jnplBjz2HvtdtyrhQr0nqTriG4vqmvpcBlRnAfSrQOTlaWivH9tMH0v21lCCLhpFxT8TFixd16tSpebm0IZCGeTAnUrPsje12u2rpzsjxxbVDS15LZxgZJFp6m7Pzs7ampv4tSj0Ymcr7kRwm2yyNLXzdd+vLqKeTBqmKy/E99hmlhW88x2m5mfkIx2cjKJGhvUM8q3huLqq/kxqH19DQ0NCwQ9BeeA0NDQ0NOwJLG63s2bNnJEaJIhgqfBnUOctLRmfkWJ40NoSJYgkaAFDM6rZmRgS+19/NNmfm6lTAUizEfHIxDBGfzUTAvG5RApXVmSFFrCPeQ7NgOljH/jE3Vi1nVhS3WEFfM3iJ2Nzc1Pr6+igwdyY2Zp9p9p6JMCjCZB+n2lYToXq+oniaIkYaX/iZKG7jNYoaafgU1yrN7L2uKHLOXIMo/qQ4ii4usT8Uu7KtcQ7oIkOH9szdgHVPiaU2Nze3GKFkzt0MN+V+MNRfbIvFjV6Tnmcak1G8FsunQz7dRKIhmu+hk7zPHV+Pa5Vi1yxgQ+xnJrKlqsbGKw4KEseRrmDe/x4T1hvr4280eMrmgOHnsszt0tbz1O21uPfMmTMttFhDQ0NDQ0PE0hzerl27RuazMWQWqSIaGlCBHq+ZimAILiOjLmtBnekEGTOeU7lqKoycRObs6GdJgZASjpyLyzc1Tk4vM7BgwGcaq7Bdsb6akQ+poEhpkVM11eu2Z5wLTZMvXry4bYoXGgbEcXRf6eTvOpnVOra3JlHgZ9bnWmonX48BeU1pmpNgChyWJdW5GEo7snXH9CwOjcUA4HHPuD7uKwa6zowLPB+kzrn+o0SBXDQ5WBo3RcRA1rW143PHRh902Yl9ojERDeAyDo/BFVzWVLCMWrowBk+I6yMaMkkDN8VwbnE+uObpusIxjd9drg1OGOzfga4j3A+31euKZzLXgzReBzQgJNcd4XI8p0z7Fc89z088I7czmJu3caG7GhoaGhoanuJY2i1hY2Nj0jyceheGnWJYm3hvTcfAALbxbU69h38z9URqVxonqKw5SEaY+yBlxZBLmSydeh6mkHHZmWk5KRfem+lEqTMhh5RxxTWK1W02lZiFlIp60inH8/Pnz8/1fjZ/jhQpKWtyeBn3TNcBrh1yfJnOofasqc2oh6GOiC4FmV6MOmFyfFP7yWPA1Fhuh6n0LAg3KWzq4bLwVxw36oGnQA6NezHj4LKwY8TKyorW1tZGiWsj90TXFbptZI7nbh9DYXG+eP5Iw/iT+zNnl9VneF3R9H+K86GtAvWK2Tz5GgM4eA9modO478l90v4gc6XiPjKyc4cBApiGiNx3rMdze8UVV8wDgW+HxuE1NDQ0NOwILMXh2VrKb30GApbGVKu/k+OLMmE6a5PS5ff4tqfzIYOOOlB0BMNk1Sw9I5XOcEZMnsg+RAdQJi512+iEnYUFqgXUrXHQsR72jwlbY3108MySNUpb9Sa0iI1h54jV1VUdOnRorofJwk0xjBrnKbPSpD6UOjR+j+NJipQ6Tus8Yp9rYcc41lFfw+DENU6L/YzlkZN0mdbpRX0Mgzcz3JqRjYnvpXM3JRkR1Kl4LTE9TFwblJhMJQ5eXV3V5ZdfPr83S7dFx3I6MmdhtHh2ZEEcpNzJmmuFDuF0jpbG3BkDLRjR3sD3Uh9q+LrLiu1iCENbNTKkYuY8bpADY9jCKZ2+QU45jq+59ZpVeGa5T73y1VdfPbl+trRlobsaGhoaGhqe4rik9EB+YzNgqjT2YSLVmnEz/p9JFLNQRLHMCHNcpspN3WbycVKt9PvL9D3ktExhm+KqJVeM97Jf9od52tOeJmkrZUfLJvoKMfVLpv9jYFb6VmXjS72CkaXpoC/YVBLPlZUV7dmzZ942cnqxz+QymVA0UnPkPGhpF+vns+ToqXPymoq6IoauotWixzzOpeefnEQtxVPUk1A3Q52exyTqGY8fPy5pkG7QmnpKJ7pd6LVMR03OqBasOuP+s4S5GXbt2qWnP/3pkqT3vOc9krbaA/h/z88i5dKfj1w710wmWWAwd9YX54U+lORKyO3EOhnMmam+psI7UofrMk6ePCkpD6zv4Pfe2xwThqnLQAvpzMra4+bPOF5S/r7wvUePHp23oaUHamhoaGhoCFiKw1tZWdG+ffvm+gK/jZ2YURrkxE5qST0P5djxf1rpGbXEldKY83D0AFLVUQ/j/2upY0xBxHqoh2FSWvo0RaqJnBD9/5w2JKuPEQ9odZhFQKDVH7lOlhH7TuuvqbQwDLo75YdnK03q1jLrWdbJMc4stjJ9VOwP75fGeh2vJSbOzNYOg/fWUsxE1CweeT1LHuzyyGGSa8v6Q06OPpeRq6MlXU1nE59hoGRasPp75OYzPXINXdfp3Llz83Xm9DZ33333/B5z1P601Km2P2P7srRMEdST8f/4LM8bSzJiPdTz2YqSZ5Y0cH3cL1wXlPxIw7pyW91Gn9FMbSUNOmH6PLqN1KllFr60jKc9R1z/Xs9MrMw9ErleSy48NidOnFgoKLzUOLyGhoaGhh2C9sJraGhoaNgRWNpo5cKFC3MnZCs2o0jTYhQbZDCPEwPLutx4jSGQGGA0CzjsNpHVzrIju40GM2ybZY7GOGaxGayXDq4W62Th0SiWsPglEzFSHGARA0MYZcGR6fxP0SYd0GP//CzryQx56D5AMU9EKUWrq6sjN47MQZ9m7hTRZgZPFJVSYZ6J77wmLFqmkUqWN9BtpLLda8frPXM4Zkb1LA+itHXt+H+LmC1yotg3iqUYuJhiSBpcxfGsubtMhSOzOIqiK4pDIyie3rdv32TG80cffXTen8yB2XvV54A/GRh+KjwYXUAo8sxC2jEf3lRgfRru0ak7E/nReZxzSVP/6Ebg9WwRqkWAFmm6LK+pWB4NeGwMSCf2KKbmeqZ6IwvRxjOJ56bfMZnI8o477pDUj3EzWmloaGhoaAhYisPb2NjQ6dOnR4YbNlCRxo6KNYoxcni10FdZBuh4fwSDmVLJHikRU390FvX1jEqnoYmfJdViU9/MeZiO5qbwTHFFKoapclyGQ+h4nDNnWRopROqfbSNIPTPobsaZR06hRqU7ALD7ZYo7rpdaxnm6c0TjHhqL0LWF4c+yMErMVs7AtbE+SiFcj6lnr4u4Rhmaigp5cp+mouO9XivuJ4NWx+C65LTcfksJaP4ex4RZxbn+MmdlSgPYdrrYRNRSZUXYaMVz7b5HbsBzeN9990kanxFZ+hj2sTYv5mDj2mYIrporQ6zX3ApdJtx2GwPG0IOeK4Yq8/nmPniOo7TNZ5Hb4nOaXFTmlkKDLbfN/c0kGL7GgNM8i+M6ICfMsGGZcZPb5s8Y+GQ7NA6voaGhoWFHYOnQYo888siWxHvS1vBTDBlkkKrIKDtycjUHTbYp1ku9j79HJ1W339f8rCkFUxORcqD+oJbix4hcgfvO0GnkSjOu1580JSanEceb9VDPl1GfdNDnOGZhr4xMB5nBXF68N0uuSh3AVLJbllNLjJm5VdCFhG4RridyoV4TpvBZv3Ud2dhS38s2kWOWhnXnT7qLZOGaDOqZyO1m+yubl3iv649t5LgZ1L1nsB777Nmz1SSeDlrPtRPbTekJ68x0eNQ98tkpp+pa2hxyG7GN5vBcvufU3FOWrJrO4VdddZWkQRrlc8B98f1ZPywd8nntsfDZEuupuZMRcYwYeJ4BFjJdLsthgu1MsuR7YqLjKalVROPwGhoaGhp2BJa20tzc3Bw5BGf6KlJrtLzLqMpaWCjqqSIlSVm2KRFznxnVRL2Uy7NVU2bZ6f8ZfspUhuXuTDES28A0QR4jU3iRWmRgWX8n1+ZnIrdAh1I/Q+o8UsGZxV6sP+MGmFZpipJ3ihePMcOIxXLIvZDai2BwaAbbnQo8XbOwpY4l1kt9H+c0m3+GuWNbSd1GK2L/5jViizpakkYKnNKHrB+x7KiPqQVUJ4cU1xstE42aI3dsG4M9Z7B1uDkRtyVaBdesshmgeyoFD0MOuvwsxZg5U+qYaAEbQQ6S6cn83YEopIErZEg5rylalEYOk+v7zjvvlDTW3TpEVyyfIRMZ/CNzPGd4P/aL7434Py28a2H4YnmU6i2CxuE1NDQ0NOwILB1abO/evXPKkBZqEVlQ4+x3lxtBKmwqvBV1gW6b/XJMeVv2LQ3ybpdnWbrl36ZqIkVHSs79MsVNzjXTx7k8t8WUvNuaBVJ2OUxHRH1X5ktFCy6Gw4ogFUbrPHJMHB+ppySngkcfPHhwFAourgO3j5TiIj42Nf0k5y2zLowWjtJW3UAsQxrm+8SJE1vaxrBRmaWdP02d0yLN7cj0Ilwr1PfFNrotpvYzX704JnGP0rK3Rj1nPpy0NuVaimXFte76amfF5uamHn30Ud10002S8rVjDoFcE7mKWAfb4LXDcF7kmGN97Fvms2f4fKHP3iKpbZhSiNbImd1Bbfy9hvyM9YGx3V6jro9tzfTr9K3lGHCfxfKm9LexrbEfmS/gdmgcXkNDQ0PDjsDSVprr6+ujIKeZ1Zzf7qQqGexUGvvV1IJFZz4ZtLRjmiBzcxmlSt8dP+v+MflprId6K1MopmJifYcPH5Y0TkZLziULik2dAPVyWaJYUkvUv2U6POpJsyS4fCaLEDHF4a2trc3H1JxqlkCSujzOXZbElVQs+0wuShr7/bltni9T0TG5KvUsptZdH5MjxzpptVgL1B3hcXJ57gf1MBmHRz8ol0EJTdy/tNJdJFoGfWx5T8bB0Mdt79691bXjtGSGdXlxv1DCUks6GvtKfRXPF5YVdezkAl0Gg73HOSVnx2cza2evJ0uFXK7roc9tbCOjPpmTs/7RZcVUVrRQZv3UJcb+MXoObTLcjjgH2yVhpo5SGvtNTkmWiMbhNTQ0NDTsCCwdaeWhhx4apbmZsrDK9Dwuy2AMOUZo4PcoSyfnw3tNZcS4mG6TqUtzg1l/2W7qD2j9Zaozjgl1Kq7P90QZOuujNRQ5y8wCr2ZxmVlWGbUkpKTAYj2MXrKdLL2UMrJmjXNJjoDJH6fS2dSsC2sSgHiP5+Waa66RJB05cmRLGzPLVHL6jIsYfffoS8e4rJyvOI7kVMltTEUQoZ4ps3hjWw1KWbgO4trib+wPLYvjvZZklFK25fDMaZsDj7YDjEjDGKSLpCXjWUUdXtTL1mL3kmuM1odO9Ox15vqZ8ilKB1wn9Yj0scvsKWhJfOONN26pn/6A0jjdGvcrrTTjOnC7uVaJyBUyNRPPM6/N7MwyB9tiaTY0NDQ0NADthdfQ0NDQsCOwtNHKuXPnRk7YWZZdihRrSuT4P8WBDAvGAMHSOOSRWW0bIGSsN9lyiyd8T5bmhk6jNKf1s1Qux3vdJpu0O5gvRZ7S2FmcLgU0Moki1Fp4sJr5eDYmdGjOxBMU6124cGEy43lcO5mxBftGpXcmOue6Yl89flloKZpg04jA9WeiLIa0i1nfPRaG22DxTM1VIgvfdu2110oaxHjHjx/f0p8sPRSNVQwaNtDIJLalJo7KjAhqYaeYXifbt1FEXDNNL6Vo9+7dc3Eb09tI4wAUHn/Wk5nR00CLrj7el1H1QGMyl0X3oVif2/2c5zxH0nBuWhRo47ko0qRxTM1Vh0ENIizCdFkUZcazimc7zzev86lwgjQg8/qnI39WDg23Mjcvq4SiGHcR1w6pcXgNDQ0NDTsES4cWO3/+/JxDMdUZwYCrDP2UOYDG8qWxa4Mpgsx0lRwj088YkQul8Ust0WikNsh9kCqkAUQ0D47pXqSBoqLzemYIQGqJbc3CoNH5leluapR07A+5A3KH8X+39dy5c5Nlb25uzql0GkXEa+R8ai4g8V72rebGEUFqmQlfMyMSBu2lct1lxvn3PDAsFw0RXE8M5muq3M/ahJycXTaORo3rzjjmWiguznUsk+4u3BuZWT8NgqaCR7s+GjjEOa2FAaOpfCYJ4bqjU7fnIHL6bIO/W2rjNRSNSDx3LsdryQZ1mSuXx8n9Y9hAStCiiwHHhimNsrCLnldzqpRY0PApc1PiWcX1mCUrZkhAOrFniZt91l511VWNw2toaGhoaIhYWof32GOPzd/2fsNGqoKO5aQiM52asV1qD1NLmSk7OS9SfNH1wNQL02OY+8hSF7k863ssZ/en2+6yYv9M9bGtLsvUSRZSqqaHoV5rivOq6R0zV4YsUWp8JnP2jZTplHlwKWXEfWZUPdeQn1nEpYXcRo2CjOWS0yPlHyl7/2/phufQc+wxifoerxGvY68Vl8H0VJGj9Fj4WQcvYMi5CPaHFDfXIYNDxHprXPbUPNdSSS0TAmqqXO/TqGtnOEByJFmyW44DOfqpxKV0U/Ics8x4ltCugImn6dQd+8hAyda/uW2WIjnYdPzNHN0dd9yxpY0Zl8ZwegwxV5NwZW00/AxTm8U+U+dJ6UAEHeYPHTrUOLyGhoaGhoaIpTg8J/Ck3DrTj/nNTU4uk8nW0sJQH0Jrulgf66VVY8YVUmdTC8kU20s9hdti+TjTEsX6/Ol6zC2QO4ntp/6ylkYjs3wip+c2TVH2tLLlWEWOjGG7pqw0XS+t6GL4Nloe1rjY2AZy4zUdZMatcb7dNupsou7JHLx/M0VNCj9a2pkaZyoh6u4yqYfLM/fHPcCAB1Jdh0Z941TAiO30p9me53dyAxm1HgNcZ/13OXv37p1LaWwJHfXWtOar6YJiHZSW0CqY6cNiWDpaUXtMySXG+ihZodW5rSmzhMOGn2VwZ0sL4rr3eNFylMGjM2tXr2+mzOKYZanhahal2dlPTplW6VnCYe/PyNVOJZeNaBxeQ0NDQ8OOwNIc3u7duyfD9ZBqZKBiU2WRSyOnSB2A3+imZiI1SyqFHImpmkiFMm1KzYoocg+m0knpMqwW09vHe2rWh5k83H0mlex6qAOL1C7b5meZniPTZ+mB3AEAACAASURBVGT6y/h7pLSm9HDZ84888kjVf1Gqpx4hV52leDEXxnBarC9ya6TCTdW6DJYpjRNW+h6vKQbslQbK3evKUgDfm3HpBrknWgNHC1k+Q/8+pm3xmsn0H9vpfbO1Q0vYWhBmaaw/ncLKyor27ds350ysu4mc0HZ1k5uO7aHuyZ/Uz8c95jOIyW85l3FOmaaJekbrZ7NxylLrxP5l1uluo5/1+vY9tN6O7ae0w+PL8GuZ5S11lC4/S+tEC1meWdTJxnL92YJHNzQ0NDQ0AEsngF1bW5tTWrQ6kwYqgrJ+6o0iZVejEF0Wy4xUhp+hlQ/1cxmFYMQgpLGtsR5THA5gS26NlqQZB1uzdCJ1E5+vRa4hlRO5Xgal5ZhkuhtSquQ2Mi7OXE4MbF2j2Luu0+bm5ogSyyxFSSXTuivWQf0by13EF4y+W7Vg5tIwTrbKJBWbJU4lVWy9X83/M/avJlGgvilLwuz5N6dC7n0qyC85OvYhk2DwWUajycDEwxlsO0B9fbZ2GMSZ90aLclp0G5TSZNFzfAYywazXF/0npeGM8j2eFwa6jn6YTK3DIM5u61133SVpq27V5Xut+hkmkY3wfDANlcuiLjSuAwddZwQmBhGP64VnPiOtZJbZblPkmBeRMkmNw2toaGho2CFoL7yGhoaGhh2BpY1W9uzZM8onFxWqZseZ3Zaiv0yZS5NeijKznE8WMdJ826yw64ssMRXONCLJwlDRwCHL5xbbluVQoyI7M6Qwaia+NbPgaN5vkQHFvC7D5spxDmgwxIzKmVMsc3OVUqpBh90OisYi3D6G9mKIuUzpTcMWirIy8R1FyswubkTTcP9Gxby/Z4YAFOV4vt0mui3ENjIsVM3xOzN4qbnd1HLGSWNXFQaAznIfUoRZczPKwnoxBGAGnztuL409Yp21ABSZWwJ/4z7hXsv2aS1cXxZWi+JpixppaOUzLd7rNvrezP1F2jqeHm+HLmQ4wiyYs9fG/fffv6Vchky0s3zMpec2Us1Cw5q4xnwPRfWeY4vl47xxjzejlYaGhoaGBmBpo5V9+/bNKQObV2cm8bVgx8ZUqhc6tpPzivWZarAy2t9NoTAslVR3iCW3EM2eGbyXoYOY7TeC1B8DbNNsXBqn5/GY01ghM/jJDHWksaGL5y/2gxQrTdsjlUuqupRSdR722qEz75SxAqm9LHg0KUSGYqLUIEoHaLZNjpgGV9I4tFdtncdxokk3OdeakU5sWxbQPLY57gn/b8MK94MhzGhgIY2zsnOe3NbowM+s27VUL3GuyV3v2bOnunZ8Hw3fsmASdJXi/MQ2ZOtJGjtfk8vO+lgzfMpcm+ieQkO0LISZne0p9fK5M2Vg5XXgcqM5v7R1fduZ2/2xxI5crtsRjYBosOV1GM9RaauREB32/emx5rqL5Vqqtb6+3ji8hoaGhoaGiKU4vN27d+v666+fUwHHjh2TtFXHwbBJlINnQaVrwYKpt8jCGpGCpzOtKaNIZZCj4ncG+5UGysftNnVBx0xSb9JA2ZkSNgVEaioLAG35u2XmpqyY4iOOiceNFBxNqDPXEIb/oel+5FzoKD4VWmz37t06evToiNuJnOm999675Zla4OxMH5vpE2N7OV/SmAt0WZ47fpeke+65R9JA2VL64LIi5evf3AavB4aNomuINKxFcjd0jo5BpN1e6qTIyXCMYn8YBo1Sg8i5UK/EscjS+VCvOaX77bpuC3eVcSaGy/HYsu9xzZNTIAdOri3uMc8vJSJ0ZreeThrm3XNFCYPXZpQA8TyjewD1znH/WVdfk/RQ/ycN8+K20M2KwR8ip89zrJbWLc41AwPw/ZDteerwNjY2GofX0NDQ0NAQsbSV5srKypzbMGUXqeYPfvCDkvLAxNLWt/K8EaCSTbVQR5TpfUyl0NLJ1xkwN5ZTowroECoNFI6pZ6YjYfqRSKXVHGZpHRot3zx+tUC/DBMVuSFTkFm5sf/xOsOsMTC0KdostYfn7dFHH606gNLSzpRhpNLNzdbWTiyLqEkUXI8p/qgn5bryOq4l95QGipvSB85DnH9Sx15flGgwgK40zD+tdQ3qdqXxWvSzHoto0UswKa3B9FBZklLqwEnhZ1aacS/W9uPKyor2798/0vNEzpuB2OlkzX7E9jFcHyU/kYsxuD8pvcmCV3h8vM5ZFscttpfj5XtoOxD3BiUKDHhu3V6sj9bfDMlG3XVcSwzjSJ24+5fpQnkm1gJuSGMn/EW5O6lxeA0NDQ0NOwSX5IdXS5QojXUppEgzq8KoA4rl0VLMZZ08eXL+LDm5WuibzGeHFnW+br1fFnrn5ptvljTo3+hPZOrF1nzSwDn4N3JBpkJjG6lDM7VE3YcprIwLoXycAYezIMxMB+M5mAqZFjmhGrW1urqqQ4cOjXzsYhvoo0cOmKlKpDE3SO59KkgxuXMmNvZ3rwdpHKKMZWSUtilrrjuPOaUTmZ8Sw3RxLWX6Ma4zBmFnMOPYZ3I/3GcR1OvUQo1lbYzrtrZ2fO7Qkjjq2GkF7nGjz2GWWopcLS2wMw6PVpLWl7kP5p6inszj7/XFNtKCOf5vqRrT59D3bWqMPV5OJZT5xdE3mJa99DPO/AzNUdK/MQsYTyt3lkWL0viMsX///kkdcETj8BoaGhoadgQuKXj0lF+ZqRVS3rT2y3xoeC/9OPzWv+++++b3MsEjLd9cH6/HcmkhlEVyMCdFfytGmzFll+nHPE7UoWTBXDmOLj9afUnjANGxjYw2QT1ABKldRl6hXoP/u4yaL9Xq6qquuOKKOSVMq9ZYN9tEXWFEljLI9Ulj7j1LHlyLMuPrmWWn/ZOo6yA3F69Rf02uOfP/ZHBl6ooY+SU+Q30mOcostRCtGiltyfzL/Dy5UVLdcf54z1TwX3N4brc5iKhjr6VRyhING54X+qdSL0qLzFgu587738iCVZNrpr9f5FwZrYaWxS7fEqcISrc8P37G6zta+DIKk++lDpkRtGI91EnSuj6zA6Cdg/WM3gtulzTWGV9xxRWNw2toaGhoaIhYisPb3NzU+vr6iFqKFImpFVJhTH2SUUvmwkhd2qrJlGSM32aKwNSSLbdMkbitmY8bIx+QworUGq2hKP+mXiFSJO4HfWmoV4jcjuu+4447JI0jEJhayzhm6q3o50OuOILWoPQNipQUZfNTsnQnD3afs4SWnv/jx49LGidZpX9Z7KMpQfpF+vesr/RDs96VbYzcE3WdTO2U6X0Zj5TXDSbKlIb1RL0r9dsZh8R1535RohG5I1o50tIu4wrp92nQQjJrW5auKcPKysp8vEz9T1mzMl2Pv2fW4bSepo2C12XkhAxKSxiZJOPWPLbU3bmtmS6/FjOW+z+OJ3XslPxQ/yyN9zQjnvg7OdxsTLjuMx0lOf0sUW8sI45FSwDb0NDQ0NBQQXvhNTQ0NDTsCCwl0pR6dptpH6Iog+Igs6p+hqaq0tiAgWbTZtsZTsvtifXUlNeZo2xNfMdQQ7FcsvQUi2QuBuzXtddeu6V83xtFqBbf0Q2BptM0h4+gmXuWbd6g6wcV3h6rqcDNKysrk6KFrutGYus4Lwy15r7TST1zMaH4ho65vF8ai3TcNhqexGdqWbAzk2uD4kaPkeeYhlDZGDJAM03no+jM7WVGerbV16MDN1MK0dHcn3FcGXaMDudZ+DCusymDp67rtL6+Pl8fFhvGPjPcGENjGTGbOPcszwMGkYjt8149ceLElmfc57vvvnvLs7E8Zmf3HLrMLJM7wxP6GX9maak43zSwyYzBeA5QJUB3omiUwz1BYyCGUovlUERLB/g4b/6f7h2LoHF4DQ0NDQ07Aks7nq+urs4pq8ykmOFjSE1kDsykTuiIa9AQRRooHIY7o+FGFnCYJvikDiNFR2qQbaIhQDReMOVmzuHIkSOSBkqIzqXSwHWYmqFxBKn2aCRjmCN2vb6XpvrSmLp1P+h0m7k0eD1MJXc1WF40BPD82yiBRiN+Nj5DVwa6GtAwKSro6URLJXvWLxorkePJxoecG79nAXINl8fgwJyvzIGb4cBs/OW16bUcn/W9/GQ7IldI45daP6NkgWG89u/fn0oeIswpMCWYNF4rdMVgEIZYDrkWBujO0qDdeeedkgajMnLpfia6mDAMGY3Xsn3pNvlZzwPDxGXSNl4jl5YFSfB+8W80HKNBT1w7lDrUQirGc53uYgwanbmVMRXchQsXJlNLRTQOr6GhoaFhR2BpHd7q6uqcYshM4ql7chiwmKwv/i6NTftJGZrKsNl4pCr829GjRyWNU3lkehE6llL2bNA0VqrLj5mcNlIcDuXD8D/k2mIbqUdy22g6nen/mFCUuhRSabF8Urt0t8iC70bXgO0ciBlkOa4d983zHAMMSMMailQsE+QyXQqp9Mih0z3D42FumeGipGFeqIcx15mZ6JPbqHF2UxITrzM66rJMaaxTY4ohctlZKDNKDEz5Z+mIjO1CjEUOjlz1wYMHJ11a1tbWRpypJSXxmhM/M3hzls7GbfB4eSw9xjzL4phYd0fH/5q0KLbFY0muhPMV28iQedRzZ2uHYbkYlD97hsGcmVaJNgsRfNbg+R7XAQN6+B4G8IhSPTrOt+DRDQ0NDQ0NwFIcnhMx1qyMpOHNbPnq7bffLmnMkUQqgBaApoBITWQybr/5TQmQM8k4PN9r6osBmhlAVRonlGUZdEyP/SMlRz2Mv2fBcKnXoVUTHTalsVN3FiIr1s/nY7nkLKNOgvqzKcfhUopKKfP2u76ohzF1bo6YnIqfjf2grpi6FEoUMj0ZAwCYe/E6jPPidptar+mMpyyJaX3MRLqR8yZnzfIz3QW5Qdbn8aQUJLaBUg+WlXGw7B/3QtSFklubClrgkIaGpSvW9cbyaEXte7y2oi6IUg1yCr7udRDD+nm/U09KLjrOj61M/em9VAulGNvo8v0bpQNZwHAGW6dkIbN6rqXZMmgNH6ViniPqwLnn4jy7HJ+rXiN+1tKeLLyfOfCmw2toaGhoaACWDi129uzZ+duUQXalcZBeUyYM+ZVZZFHWTIvOjOqgXoxpdNgOaewnYirD3AatOGPdtGxics3MKpSULwMBZz5u5IRInVFXFqlnWvTRx8XIwiyROqd+I3I7tip94IEHJPXU2BSXt7q6OgozlIU18jyY6osWgdJWao9WXdRb1PzXpDH1zPnJdA78zf1wm5koUxqv31pgbnKp0lh3Rs41swqltSx11rQO5rqIbePYZP5e5C64BhheMML75sCBA5M6vL179444xrgOyNGZG3ObsgTAtDSkLt3z5LGOIQ0ZCJpzl0l66PdJCZPHOOoKfZ4xKLVBXWgmlWIQdnK2cU8weTDPepaR6X95BjJUZByTWpgz20p4fcT95DGJabwah9fQ0NDQ0BBwScGj/WbNUkSQcmeaB1PrWYoIf9LCjjqQzLKPqX0YODlSl9SZ8Hvm60R/GFLtTBeUpQeijpDcTqRY6c/HwLy03otjQsqVulBStLENTIrrNnuMog7EYxs5le0oLfrqRH0FLbVM5dGvK1Kx1BOQi8nGx6BOi7ouctexbbU1w/5JYyqV/l5cS7E+Skw85qTO4zPUM5LSnrIOrnE3Hkf64GblkMshlxDh8rYLPL5r165RVJHIeTMVFnVrWXow+gLyDKnNj9sbQa6ZEqDYRtoicM9Ei0SvSftQ1iQ7UxIT2jNQipOlFqNEi1xoJmli4mnWk0UucntZPtNvZSmzYkq47Xw45/1b6K6GhoaGhoanONoLr6GhoaFhR+BDCh5tRHaSIh+L6WzqbUf0KL6jOIom/hYfUNQV7yH7blBcJeWiqlgWc55Jg2ikptQ16BCa3UvxA8VIsS0GnTdpFh3b6mdpfMMxigYPFD9RXJmJaKxcj+GOthNL0RQ/9tO/2TjAYigaikQjlkzcJA1j6zZm7WdAc44FRZCxrxR78plMMc91VzPgivuLYjeKpbJQdhwLrp3a79IgLqoZxWSBBbiuaADlvW4jJGns1M1QaUTXdSNRWXS/odFDlsuQYF46jwvF4S4jiho5phzbzFCMBk00OMnyxbmea665Zks93GeZ8zVdl+jekxk81YJW1MTiERQ1UsRNUbtUH3vm94vrg4ZCUwZPROPwGhoaGhp2BJYOHh0plszM2G/au+66S9JgTus3t03YTbFI9XA2fsbUGp0T47OkmknNRAqoZoZMLidLJUOFPB2ATbFEKp3GEEwxQ0fN2Cb3ncYyVKxnLhQGqfLMiMDl+Rq5bN4nDfNvk/ypsGJ2Hs6MRwxTbnSupcFM1u7MAEOqpw+ShrEzt8F16LmMZTKILin5LECuQYU/78kobwYJZxmZsp7Bo5l9m1KYuO54D43C3P8Y9o2SERo00DAhPhNDDtbWTylFKysrI24tmur7PLnnnnu23EOz94zzNuim5D5SAiUNHAgDM2RBK/hMLcA197b7Hn/jfmd4vMyJ3GCgcxqqxb5zX9HdKzv7DWazp8QsjjsNmfx+MDyedtaPcDCBgwcPNqOVhoaGhoaGiKV1eCsrK6NwXVEHYP2a39Q2p/V3v4kzPUyUyUrjJJ6+L3KHdKqkeWuW9JTUMs3eXX+ktBhYljobuglECigLvBzLcv+inJo6CHJ01B3EZ0lBkoM0VZ3pNxiWjG2NnKupM3NeU1S666PONVJ4DLjrexg2Lj5Dt5MaN2vEOSU37raZMs3M32spVmpuCvFehuKrBeKNfaBOhWbvnOP4G/cCuUWPXXSo9hphwmGPxRQHS46C6yueEw5a4LWzSABgBl2PQZZdHvWuPmd8LkV3IXLCNJ93WZQAxHI8luaAeB7EuWQoN+9D6gwz7rDGRVMPHNvIUHW1YBxZaimvDepLyeFl0o9a8ljqLqWx9MHrgUHYYwhCBlLY3NxcOIB04/AaGhoaGnYELkmHR0udLGGh3+qWs5KKiRZbtMTx29oUEC0HI0XKYKfUW2SUVtRZRLBf0dmxZlnlTzqVR6rJFCLDNU21x2Nh6owBtbO0MOwHKVZS+Jk+jXpMt91lxLQwN998s6StVmA1SmtlZUX79+8fWWNFToEh32iBSCpaGidtpY6D3E5mXUZndY819cKxblpj1pz7pbHzO9e5Qao69odWjKSw4+8Mc0XOwuPIpKKxrQYd6cnpSWOOhMmDM92NpTSxjbWgBSsrK7rssstGgYtjn7P1FOvmuRT7ZpDz4d6L6457i+nPstQ1TCVEaQcd3eNv3KvUSU6FJ3R/qMPLgnLUQjQyIbC5rNg/WtXTrsGfcd5cHrnRWqCF+JuDmtTO8wyNw2toaGho2BFYmsNbXV0d6byifwqDDZvKsC7Pslj740nS9ddfL2lMXZLTo6WnNA4pRN1KpuOo+aW4P36GSTCztlGXRm5BGqilWgJQ35uFIWKySHKYTDwZ/3d95EIyy05aJrpechjRf5LjFqlwYmVlRXv27BlR51mQbYP+l6bo4ryQKqdVHvsc208OyN+5DjOOshbUmxa/8ZrrYZg4poeKVDPD0jF4NOcg3ksrTIYHy8KEsc+msOlLFa3man54tM6LnCD1tF3XTXJ4a2trI24tjiMDCjt4NLmAyA2Yy3QfKbWhlCXzj/NvHg9LtGp6e2lYK5aWUP8bz6pacuqaf2bc01w7/M51Hu/hGNMaPUsey0TKXiueE1+P9fqc4RlvZFKxLIxa88NraGhoaGgIWIrDO3/+vO68886RviTqdSi/dQK/u+++u68wCZjKFC61AL2m1iIVYF8c6i18T2bxREskUge0hIt9NWjNSKupSEnWojDUEoLGvvM7rQQzfyxSQEzp4mdiG2mZWktOGaPc+Jqp2iuvvDKN3hDbRYvF2G76AJKiz/SWtIqlta7XY6ZToTUrOW6v67iGSMW6zR6LLIoPOSmuc1L2WdBy6oZIrcdxpw6Sc0ruOtPH1QKPZ2loqL92/6yn973R0s51R0lQjcPb3NzUY489NkpRlemPzClkPmaxbfF5rkVGCKGkJGuD++Zxy5K5kuOmBXlmAWtphseQfqA1XXWsp5YGy4hjRCt0rhHvJ1qtS8PYm6MjZ+8y4/uiNj/U40frWp8PWRD87dA4vIaGhoaGHYH2wmtoaGho2BFYSqS5srKiffv2zdlsizDuuOOOoUCY3D796U+XJL3vfe+TNLChz3zmM+fP3HbbbZIGsYA/bRJvcRuVy7E+/8Ys7HQQj8+bPadok7nt4vMUF1KZS1FX/I0KbBrcZEYkFLtQvJeJX+mGQIOKTNxDkRyV13QQlaQbbrhhSzlRZEk4PBTFKXEuaQJN0XaWD4+iNubHqxnsxL5yLuk8nJlRU5TuNnouo4iR4aa4Zgy3PYrLaVpOAxS6vEhjkSbFb5nS36AYme3IkBkwxLI8ntEVyXsvzumUwVPMeG5k+fVoROKxzDKe0w2G7jo+h3zexfpdHg1A/AxVINI4AAS/ZwHpKbJnzjm6ZcU2cs3QSC+ba65nikyZ2zGKGj0f0TBMGtYZ1268t5aHz2OUqRUyg63t0Di8hoaGhoYdgUvKeE7DBBumSAM1xDfz8573PEmD8Uo0fjBFWstOTC4ncl4M10Tzbd4njZXDDJTr+mI72B+2iSbMsb5amDB/N9WUKZxr1DOp3UgV1kKm0Yk4chI1wwOXYbeSzNzelN3p06ernEDXddrc3BwFP45cLbNGe12YWs9SyHjtnThxYsuzmQl0rQyOJanc+Iw5KjrM0iAhUr5co7VQXxlXQOMhjtFUeCgaqbCfTOMiDfNBYxxypZmRFJ2HDRplSMPeinthyrR8165d873nZ+NaoxGFDSgYrCByeHZv8lnEkG/uazYv5F5pJJcFO/a5RQdzGitlQardFqa0qmWbj2BQahqORe6JQQrIibP/MfM7jXsomckMCXkPU5tlBnaWFMQ92NwSGhoaGhoaApbi8DY2NvTggw/O37p07owwZUKz0mc/+9mStlLedgB9//vfL2mgzkwlmZIzxZ9RijZ1db2WDWehngxS8KSAo96PDuw0uaWeJgbHdj/IadF5NLaRVFItHBUpIrZbGihLhmrLuNBa8li7HsQxOnbsmKQhcO+NN95YTf/TdZ0uXrw40i/G/phaPH78eNp3U+uR4ja151QupM5rqZ+kcUokP0vz7dhG6tSon/VcZg76NbN6hkaK9dWCeZPDi2OSza80DupLPU3sM/U85HbiOqDulSbyTKUljV0+Lr/88m1TvNA0PkuUy9BXLtPrJHNpoSShliA1008zQPaUntTl0b2KwezjHiJ3yXMnC+DA9lKaMsWRkxunm43v9RxkEh9Ku8iVTknbqIPPEly7P9Hmg0mca2gcXkNDQ0PDjkBZxmmvlHJS0h3b3tiwk3FT13XX8GJbOw0LoK2dhktFunaIpV54DQ0NDQ0NT1U0kWZDQ0NDw45Ae+E1NDQ0NOwItBdeQ0NDQ8OOQHvhNTQ0NDTsCCzlh3fo0KHuyJEjo1Q1EfafoJ8VE6ZG0HBmu+9TqN37eJTxoeLxKLc2NouUPXUPf6MPTxbnj3WXUvTQQw/p7NmzI4elK6+8srvuuuvS5J2Gf6NvEaO/fCiIZbCP/JzCopEdYnm1uWKaoEUwtUdYT+1zkWdr9UVfKs5PzZ8uG3v7V+3evVunT5/Wo48+Ohr8tbW17rLLLhuVG9tE39bM7zLrx6K/Lfpstk9q9y6y3vjbMnugtqeXOTMuBZfSP0a7MrL3BWNoTp07xFIvvMOHD+t1r3vdPGiwwzrFUF92HHSIMTsd0pk3y/nFA4/Xpw5d3jO1yWu/MbxN3NScNG5yTljsHx0y/Z25xiLowMqxsLNqFgia4YGyNsXrsVyGUKsFsY6IGdvf+MY3jn6X+qz2b3nLW+Yhyu66665R372OTp48KWlwTmZ4sOgoy0znnIdaUFppcE7mYUln2zhODKfGQySbUwaupqOxv2fO+Jzf2jqPc8tM7qy39hnvZVkMpRbzvDnIgp+1Q7ADHdQCO0iDE/YznvEMvf71rx/9LvXBJT73cz93HmSCOeKkITzY4cOHt9TN4AXxAOXBybU+de7UchkuFcgYgc2ztcP8l1yTHNMsdB7Prqmwi7XQgLWs7NmYMPv6FIPEwCC1wBGxXT4nHJTh7NmzevOb35y2m2gizYaGhoaGHYGlODypf1szk3akECnSJGXK6/H5mjiU1FSkampcoMEM2PHeGqbYaPazRolkWYTJFTItUUZ9kuJhsOopsQHDoLGeLBwVs36TKsuCBsfypsQkKysr87Q65EJi32riQpcdOT5SiLW0Jlm7WF+NM45jwLkjFcu1LNWDeZObctmZdICBf7mu49phaC9yCeRksrEhh8z+RXgs2HeGRcs485ixfUodcf78+VF2dwapju3l/jQybsb11gJkZ+uSUpNlxIPklnh2xD1GCRI5PM5H/M59z7ZnZwZ/q0m2GFIttm0qfCDbUwvCz+DYWVs9X8uoFxqH19DQ0NCwI7AUh1dK0e7duyfl1tTR8ZNBb6VB78cgujXqfEqHV+O4Mqoi4xjj91gvKUbKwckBxmfJ4S0i96feY8p4pAZya1PKZFK3DPTK5Jjxf8/b5uZmldLd3NzU2bNnRwGTM/0RpQLkmjMdl6+Rm6FxRJZGibqTmk4nls/1Ru4prjfqW7mGSMVHDo9UOnU0mUFPLUg5OZepFE181twVqXhp0OGR66W+OUuKbH3cQw89VNV/dV2fWspBno1M2lDT3U5JUdh3rodMf80+1iQumWEN11fG2bGNnPcaVxj7xCDOxBRnxID2mT679gz3lVE7O6WxntlnS2Z8xHK2k9hFNA6voaGhoWFHoL3wGhoaGhp2BJYWaa6urk6K1WqiTIswoympYVEF84RRLFBTRMd7KCbIzNFpaEDlPkVpU+XXREyZONRsO40vpgwdan44U3NQM2GmQj8aY9RcJ2pGE9JYVJKZREdsbm6OMhjHcaqZ53vcMgOBmnk2TaMp2sraXXNpORQttgAAIABJREFUiM9Q1EexeGZaXjOcoAGKy4yioFpm+ykxPw0L2GePs3OaRVUCx7jm1hHXqnP/2Y2E/aURQ/zfbVlfX6+Kpi5evKgHHnhgLhLNRHTMDM6cf1OqDT9jYzzOTzbm27kWTbkn1PwUF3F/qBnPZWXXDI+m+sV7am4d2flUO5NqPpHScAbWyp1yaYmizUWNhhqH19DQ0NCwI7AUh9d1nTY2NkbcU6Ts6cxqjs7KaX+Pzup0XKWJas2sO4MpPVK1kSr0PcyKTERqipQuFfJThge815/mcrOs1exzjfrNTIw5PhwTUr/xN7aZhi8RdAXouq5KadngqWaQEssjF+hxybhnZmA2lW5uiX2ecjmpGWxkXEGMEFK7N/ZdGlOv5FQ8T9EwiFIIjh9/3668rL+Zawg/fU+Wdd7/m9Pzd/cvkw7UHOkzdF2n9fX1efnZ+uUarxnqxPlnObUs21MBL+jSQilH5kJTC5IwFVGoJqGYMkDymNB4hEElsvOPkgsajmUcHsePRl9ZkAzD40djtszYKDMyXDQCTePwGhoaGhp2BJZ2PN/c3BxxMZGqMQdnB+P7779f0kAZMlRR/J/hxzIXBtZXM7UnVWMOQBooUd9bCyWV6W5qTpzkHKachz0W5HYzqrlGjdf0kBl875SpL6m+qTBrBjm8KUqrlKK1tbVRObHP7qupPM975lJgOIzVFVdcIWng2t0fjs9U6CW3je4x2b0u11wMQ41lob5q8LyQW4z1GLV1HcNsMUSan3Ebvf7cxjgHXovU6XpM/Hvck67b68HSHLfd5Ue3ghrnmsGSA3LekUP2/w4/5tBidND2eonPeJyyIBVS7jbAs4JnFteyNA6DR1egbG0yOEFNT5ZJDfy/59/fOX6ZBMOg3jSTzPDZmo6aNgyS5qEGGW7PZ2O251n32tpa4/AaGhoaGhoiLkmHRyfBSO1ZH2eLLVOTlAFPcTPUh02Fh+KbnVynqZuMImX5U5G6Ke+n4yl1XVkos1qYtaw+g3J2Bpw1BRa5gloYN88Fg9Vm5dasv7LQReaYL168OKmL2djYmOTeyQGbeyFF6vqkIfgwdWqm8KfCZ5EDInVOzlyqB0eghWWk1t1Hj6GpV1L4noMojaD+jfPt/kfOpRaOzmVRdxz3kLkz7kmXYQ4v6uC5Zu69915Jw1kQLTENP++gz/v27ZuUDpRSqnpTaVgT5vDcV4+lx82/S1vHLLa/Fvor0+HRipC697h2KMnxp9cD94Y0HsMaF5oFZvZ4+bzzp8eAUqLYburhmIXCv2dh96hPpeQkWugb7N/U2HMP7tmzZ+HwYo3Da2hoaGjYEVhah7exsTHiFDIdAPVuUxSJqTDKh6mvyHy3mLaEyPxk/Ax1HdSXZFwaKY6axVWUpZtqcT/dJn83hRcpF1pFUs/pMkyt1cIHScOcuPws8KtBjoW+cVlormhNuZ0/jNeO9Tlx7VDH4XkxF3DNNddIGrgaaeg/9a4eD5efWelRL2FwHUaOy+12P8gVZJRvLcQW20Z9oDROc8NPcymRc3E51KG5re5PpsPzNQZq5pqN643B5Bk0OtPd+F7P8YEDB6rW0q6fnH4cJ7eBnJxTmHnN+Dufl8YWiNRRZ/B6cFmUqmScvseHAbSnOKDtrBczDoccFqVtGVdYs3ZlfbTJkMZnkNcuJQ6Rs466Z2ls7ZoF7iYXuHv37qbDa2hoaGhoiFiaw5PGVkuRojPF47cwdQ5+E0fqarsUOH67m6qwXDte8zPkLI1IpbEtpGoyLmU7f7ha4OFYHykuRtiIejNSszXZeuZLU4vG4n5maZ1IhdPaNes3x3zXrl1VSqvrOl28eHHkx5VZsbmdphCvv/56SQNlGDlUP8MoGV6TXivuV+TWDAY95hxO6Qdc79Rc1nRC7p+fcdsiF2JOxc+Qe7v66qtHbar50JF6ZtBnqS5dsZSAkgVp2Mtut+fE9dtiO64NWtNORctYWVnR3r175/e6nKjLtRTg6NGjaZvoExj7RF3alK7boMTH9U9FBnH76a9Iq2SPl1T3beMed//iGPtel+99xTNlKtA9I2URce3Q79P1MoJV5AS9B2gDQR1/3IO2D4ltbpFWGhoaGhoaAtoLr6GhoaFhR2Bpt4SY88wiAZsyS+MstBTBZIGLfY3KaNdDp97I8luEShNrGltE0RnFc25zLRRPvFYzTqByP4ps/YzbSlGJ+xmVuTVlMZHl9PM110fH5qm8VMxXZ2Qh25gra8oYxqCBUiZOs8jn8OHDkqSrrrqq2m6vBT/DdWCxncfCDurSIGKqBal2GVEMStE1+5MZAtC4h0Y5brs/s2C+FpmxfjvuZuubRhEMCuExOXXq1PxZl0PRHAN6x366Hoqn3J8sSLXhMX/00Ucnw+ft379/PneeN68LSbr22mslDcYpvieWL+XqEF9z/Q888MCW+rPgC3RH8t71vQxfKA3iZwa+oJFMZhhGNYTn0memf4/O/XQl8CfLiue359ft5x7hOohzyrB+XCsei0wU7XnyWrGBmucirrc4h9J0Hk6icXgNDQ0NDTsClxRajMrdSFWYejW1R0Vz9iY2pVELeUMFaqSafE90hI1lZN/dXlMKplpMQdJhM7afJuRU8tI5VhoHQSZHm5kWcwxoRMJnswDAWcDn2IfYRlP9pLRq6WLib7527ty5KpXujOccxyy4Ljnf48ePb2lj7JfXIhXjhst3iLss9BJRM7yShnExlUpjAbcxctw28DAl7fEydUvn8WgQ4nLdT3+SG4hUOtNt3XfffZIGh3DvFbc9ctl0P/Fc0KQ99s/XKJnxnNjIIHIDdKif4vB27dqlq6++ej4+rsfjJw3z4T0dx0Mac3rSsCY4L5Qaue9xHTCtDbmXTCJCFwmvJRpSZeH2DJrr+7u59Ng/1+22+bv3k/tlKYE0DnBR45yytnt+KClhgIooZXG7vebpwmNErtflRPeh5pbQ0NDQ0NAQcEmhxUy5ZSa4fstTns8QRVmCzCxkUPw90//5N5rVM2hspCgp3zdVyNA7WT10oaglLY0UCoNiMwxVZv5c033WdImZPo66Aj9DfVesj9Qt64/yd1JjU+b7Gxsbevjhh+dUvtdH1MeSOje1akqUVHtsJ8OSUS/nZ6Oe1DogcuWUXMR1QBcC6xk9xqZYo9TD9dQSi5KKj+uAukiPideSuaeod/K1e+65Z8vYmJKnY3ikjrkWzZVQlxP3PN0Q3DavKY+JOSppoPK9Lx966KFqAmGfO3TFiHPpOfN6ohm9xy+uN+o/qX9j0OuoO2JwaIbvyiRa5qysb7zuuuskDeeN64/1uB8eQ6YS8zr0M9FpnRyW++V5cP8jR1lLgut6GJYsrl23wfVSkpCNo8fnyJEjkob9xWAc2VnldX369Ommw2toaGhoaIhYisNbXV3VgQMHRhRD1IXwTUsHzUw2bKqCVn60SGJIngw1B/HIAZm7IAXCEDxR50AOy4jy79iXyFEyISY/s3Q91OGZMjX1zmczyq6WcoWUrDToQxhg2NRYluCUYd0yp26j6zqdP39+PvYnT57c0p9YJ7kYt8H1ZXqKmuUwuajMUtBt8jxlQZUNWt9xnZHTlAZuxtyx15C5Q85l3BsMRk3OniGgpDElzeAEDE+XJeFlP7w+GMotlmtwTjJndrfRY/DII49UdXgGLSLjXLqd5moZkIKWq1m5Lo/cVGaFHPXW0jiNj+c02gEw9RIlTJYERF0hbQR8DnDes/1JXRr3V3ZWUf/L+fd4UhomjceWKbrYh1iPf/PcMmhBbCMDhd9///2Nw2toaGhoaIhYisMrpWjfvn2j0EuRw6MVF638Mr0fA6PS+o+Ud6SeGR6HoZ2yJLWmItxu6yncJnMHkUNiCg9TL3ffffeWel1W5hcVrZNimZlFF4NC19IrZVQT54CBrmspRqSxxay5tswXyePkfp05c6ZKpV+8eFGnTp0aUW6Z3ibK5qVhLD1eUZfneaCs32VY3+OQU5ELdbu5Nj1eDNgdfzO1b32IuUS3LerwvF7tW+Q2WG/h+ffYROtDl2sLS/q5+veoM2YaJe5T99djE/V/1jPRcrGWiFQah8wiR+E1EcOgZSHSan6cKysrOnDgwHy+vDfiGFOHZS6GPmFx/il9qnHP1GtJw3ozN0au2uNnDjZro61nqf+LHJ4tOq33c70MRJ/p8nk2UKfnfsf17bYxhZrnn36vWfB3nj9em17v8dxxe+kLybCV8ez0PvK+OXPmzEI+wFLj8BoaGhoadgiW5vB27949SisS5au0RKSOyW/7zNfEb37LspmQkxygNFA8phjNvVF/ELlCU0emGp72tKdJGusKSdVKA+XDyBcG09LENpBzYDDpCPqhkPKhD2Hksimjpx4g02cwTQcpY98bdW5ug4M733rrrVVLO/vhkWOIOoC77rpL0lh/wPZGS1E/b6qP/nj+3RxeHFemL2GQXetnIwdEHaHbfMMNN0jK/fDoc8Z0OrT8jXNhicFtt90maRg3z4PLMAcoDePmvntPmNtwG809RI7i1ltvlSS9973vlTTos7iGsoDDrtd9596MQbFdt8fxwIEDVSvf3bt368iRIyPdXdRbct3RviDTW3O+XZ65XEYSinC5HkufKQzcHblQ+sd6bN0vj4/XsjSsCc/ls571LEnDGcXUX9aNxzFx+72uaKWb+Zl6LNx+P0PJU5QseV9ynrxm3Na4f6nX5tnoemzRKg1nr/floUOHJlM4RTQOr6GhoaFhR2ApDs9UOimjyM2QWqJOJbPSNNVgzs6U4rFjx7Y8S/2J2yQNFIgpFKYhijJgXzNVQJ1AltiWqTayJJQRkXOh3pIpbbIxMXfhcjwmLsvXzWVFnSGjJZDb9vUp3RSpbfoqxfabu5iSo+/fv1/Pf/7zdeLECUkDV52lB7JelHFQswgxTDPjT68D6iSjfoypVcwB+R5zVVm8T46BuUXr9LJYqubKyOHRAi5SzS7X+8prlJR9bKP743tcrrlRz7XrjTrRm266acs93gMeC3MQce14LdYsmd32LILMVPopY3V1VVdcccW8j5k+juuWUZv8exwn9vHOO+/c8qw5FUZkkbbq5mIfPXeMDiUN3IznxffGNSnl4+Tzi5bK/IySLK8Vc9OUftRSQcX+UH9paQ73W2yrx5xWwpllMyNHeT27PzHZs0Hr+lOnTm1r4Ws0Dq+hoaGhYUegvfAaGhoaGnYElhZpnjlzZhQgNRpdMEyTWXAqmqNYioYYDIRqNj1zbDab7LZY3EExZXRWtjiCaYcYniyCYk6a79JsP4q0aOJLUZ1Z/ixsl9l2i1NqwYOjMQZFaBTdTqWy8Tgy/BXDr0mDuMH9mMp4vnfvXj372c8ehVyKRjD8zWNuMZpFS1E8bUdjhk175jOfuaUMmpFLw9r0GFu05PmwKXg0dLDY6/bbb5c0rEkGgs7Cg7mNFLv7kyJ9adgLtTB0NnCI405jL9frvjMFkPsS+2qDAI/jc5/7XEnSu9/9bkm5SwDnntnRM6fvKBqrGa2srKxobW1tPhZZoArud6bVyYJJ+JrXl/el58Hi99gOgyH4aJjkdR1FbRQ106Uk7iODIfhcr59hOK/YDtdj9YE/Ldr2HMcxcd12IfGacT0MtBH3Io0PmZLJ9XhfSeOwkXx/8PyJ12I6ohY8uqGhoaGhIWBpt4S1tbU5NWUKIXJ4ppr8lqf5dJb+gQ7GNeUqgy7HcviGp2I+go7zrGeK0yMnyaSH7n9mMu22MpRVFg6NqVZcD40VsjQdHC+mEMmCcJMLcHkeIzqtS2POpZRSpbRWVla0d+/eUSDl2G6Phzk5G0qYqqS7RWwPOXn3w328+eabJW3lKL2OPR9cX25jVJzTsZnGUu5fFv6MHDW5Av/u9kRYKmEO0wYVNFuXxilraPLt/WbjoEjhe3z8TJY4lW13PV7ftRBm0ejD+zKGXatxeE5J5nFxffHc8di5L/9/e2e2ZEd1peFVpZIQGDscgRkEDjeO8KXf/0n8ALQtGXAzGQxCUg194fjq/PXl2ll1iOgL91n/TQ0nc+ce86zxX7YgmDawaksm4TPM2E18UbU9F9Y6GF++q+iLS0uZGDyf4/cNfXGwFu/i3AcOqHJpMwdP5We2OrGvTbidAVa0b3ow5tl7qOqgdTIuvz9sKcy56AhI7sNoeIPBYDA4CRyl4Z2fn9eTJ0829tWUXJHynLC4V5TUtn2kB+5x2HO24W92l/5xOZ1sh5/WILripEjNTtAGlt6zj6u+ODE0+2ip06HY1rhSMvJnlp48/oSL1Tp1IvvINYx1Ly3h7OysLi4uNtLlXsFKa50mmK3aFtNEi1hRJKXPwdKxNZQutNxFYdPvmnOQ/2ee7fO274b0jkw8BkjpfIb226XHmKbJZ4495X2ZfWM+8W+ZBKDrm33TTkXqyhDZktEBDQ+tqbPAMLfWmr1HU4vET+XUiNQcqraaUY7FZ3pFpJ3t02+nOLEf8zlohU7u5yfjxXqT97ooLnuHeTRpdj7HxZY5c3vpZaZBZG44ox2RB+3ZUmbrQIJ2+Pn48ePR8AaDwWAwSBxdAPbm5maXuBaJxIVX7SdLScgE0C4/tEfB5WTqVamV9N04CdWRpO5X1bbUhv/P89BsU0p0ZCpt8HyTO2d7LmhqSbIrBeRoUEcFMv5OU+ank3zBijrMfeg+++GHH2616b21RDI12Sz9TS0NydM+NJdkcsHR/Mx0Sk7mzmRlJ14jvVqL6ZKiTY2H5G0NIym46K/9v9xjeqqqg7Rsa4vL3YDcd8yJoxr3SkB5f9Fn1qLzM68KNne4vLysr7/++vZaR4lXHdbORY/dbvq4HPHKtfTTc5B7f0V36H1tjbNqW1qHtXPUeNWW3o6/TfnW+eN4Nv13VPBKK81xsHdM6NBZuqzt8hzm0VHRVYf5439eR0fhe4yMbxLPB4PBYDAIHK3h/fzzzxufREok9jlZ0ur8fiZcpn1LCp0911KFo5lcfqLqIKXYR0M/nL+W7QH7YyxFdeTRtOdoLLeRffH8WaPdm5tV0V1HMFZtJVX+dt/S57YqQ9Th6uqqvv/++9u8ua6QqCVfNAT74VLSZkzOT7IU2xV1dX+dL2T/ST6HPYSG50K5KXE6V9I+HKR22sxcJ/xM7Cc0VZ7DemRenLV//2RNPUdVh/VgP3WlcXIM2RfTePHTfc72eN5eaambm5t68+bN7Rwj/We/TWvlKMou0tLln6zxcMZ9JvIeW7KskaRmwrX0n3lhD9H3JALHl8b/bJWiTedYVm3pv9C0XB4o19JE94B95vOVa+rc4RV9XJczau3PEfT53vGYv/nmm/HhDQaDwWCQOFrDu7y8XGpkVVtp3wVLO3+cSwZZM7E2k5KdpX7b1jsfgaVjF8Z0FGrVtoyFIwetaWZJGefZreYkpTNryNbs9nwetsk7Sm9PG7Sd35Frqe2YXeatt95a9sulpdKOD9Ds6C8FMq0xpJRuf5uLuZpAOX0P7qvXx5pS1WHdIVnmefjWOt+GLSHO9zMZe+4D+46d6wTSz9gVPc7nW7tKKd1nwFqh/ezZjqOBmU+TY+e1jOOzzz5b+odvbm7q5cuXG19b7iHv6U6jM1yyLJ9XdZjTLiKRdWDdHa0Lcj9wjwvmeu/kPLj8F9da8+Ge9JMyLubf17Dfujmy9uez7ndY1TY63HEbe+8s7y/PUa4R/e4sIvdhNLzBYDAYnATmC28wGAwGJ4GjTJpV/1Y5nWSdKrhNeyay3QujBzaJOGEzr7cpzrRaDufOvtlMiVPczur8HyatFeWWzW/5GX21KYE2upB5m5887s7c4gADnu/w/s6sbLOXzSxdLcIk6l0FHjx69Kh+/etfb5J4sz1MSK7EbTNamm24h2tNGux56+jUbALmb56XKSZUXnbQkvdQZzq1acd9Yw3SQU87PA8zLwE9pqmr2p4FPnOQkQMEEjal0Sbz3c2j157z1VXatgny8vJyN/Dg4uJiEziWffCc2vTWBVTZdcG1JoTuAlCc/uTnO1Ujx+zUCQeR5bk0sYTNouxNp4S4nXw+rgMHr1Qd1sgJ+zY3+/2e9/id7Hu6PgG/h5jnjhyf+fr22293U6ISo+ENBoPB4CRwtIb36NGjjZM9JQRrHF3oa16XvzvgZaW9dRKp/2dpIiVuJzuutKiuirSlIgc2WBvNz1zCAykQySgd3yYw9lw4iKFLIrcGttKc8zmAdi21dcn47muHy8vL+uabb27HjBaTSeQrMmXWrksmpj1ra6vq23mvS5E4AMlWghw/17JmlJLZS53h3DiwyhpgapRdtfCqA4Xan//856qq+stf/nL7mcvPoLE8JNnbRBG22HQBXYDPODcut5QaGuuWKUD3EY9by8jzYuJ5p6G4snZe673t87I3T7RrDawLsOJ5Dhby35lC5aAla9Hs8y5QiT6yHtbWSXnJM+30A5Nj2DqU43MQ4yo1rYPngveC082qDhpxkqHvEWIkRsMbDAaDwUngaPLop0+f3tIrEZrd+W0c3r737W6tZZWs7nDxfLYl65XWVrX10Vni3SOn7fw6XRvZHyeaWxpEeu/C31capDXJTjruSHvz/522Y0kRCc/UaVXbcPu9NX79+nU9f/78NgydBPQsvWNKLNClPwAnu5p021J8+n0sndM+mgPXZgkUxo/24nSIvZQPk0bb/9PtWZ69SmVAG/jTn/50ew/E0iY8t/+804I7P1L2yc+v2qZbOOWE/d/NTZIvrHx4Nzc3dX19vTkD+R7w/nXivFNO8nfvA++/LmHaa+eQf1vB8jmOITDhfVqWgM+lrTWdr432vFfZM2h4z549u72Hc0m7Li1kDS+1dvdhZfXq/JrMk9Nuur3Du5FSWV999dVoeIPBYDAYJH6RhofdHbqbLE3i6DhL2CuS1aqtj+4hNmD7/5A40MA68lE/28/tkqNXJWMcAWlaoqqDBGdKKa5hjvIea1YrKrE97dp9B52G56islc+wK3dC/99+++02Eov2Xr58uSFsptgr9+ezDZ6dfgP72/w3Px3dVrX1NdA3NG7WoCvM64KiTtTu1sXjcmkUa4Ldc5B87avK5yGx23fnKEdTBOY1K0J3k6Xn7yZ0MG1Uzj2aMj9fv369u+5PnjzZWB1yPNYevabdO8SarjUR+1Y7K4rp+tDaXJ4qYR8+84ZftvMZr86nf+Y+8LvQPmneQxQXzjFjxfP/TdKRfV1R6O0RbNtH7ehX9k76a9lfe0T0K4yGNxgMBoOTwFEa3vX1df3888+3UgtSQNIcOUrJkXfW9PY+s0bXSWn8zwVnsT3zM7U1k8ZasjSFUT7HkZaOKOWelOxWNEBIXpSDSU3ZfQWOzvQzsg+2i1sS6vJ9rBkxr11kn8e658MD7BnG3FFirfIVO/+SpUlL+itC27zW5Wvok6mZso8uiGqfSu4pJOmV3+chGh5+F/YzUjl5eV2x4sw9zT7a75jPc66m/VvWmPMe+ug9280J++rFixeb9oyzs7M7UZq0jw+n6qDVWqPye6bzV1qL6qJzcxwJ5+dyxruCybwnnVvJPR3VmX10fmfZN92V3mFdrFF243FkLX2ydaDLy7UP2u8DPu/86M6jZY920a5owmh4T58+3SWuT4yGNxgMBoOTwNF5eOfn5xupicieqi2bgH0bnZZmH9rKpg66XDCALZifnXbjaDmzZiAJpaTlKDCzVTgqNTVblwzyXCCxpDTI/K38jV0kqeFoQI+l+19XgifbSEnK/iwKBHe4vLysb7/99rYdfHfdmFeRt91+sO/OhSTt00sNwP4C1oHxwGaSknCSgudnjtrttEL2twt9ujgtxT2rDtK5ybCJsKNI7t///vfbe6x9+iwwLreZY7dGb39XV1IGrc0RfV2OGHEAGXm7ktJvbm7q1atXt+1iHUhNgWhWF51dRfxW3Z/fu2dFYe/wP2u39gdnf+2XRVPpIkn9P2vlKwtTfuZ3MHPf7W/AnqT/LkfUnfNVBPkqajN/X7XLGmSkNDmvnJOnT58+yLpUNRreYDAYDE4E84U3GAwGg5PAUSbNs7OzevTo0a36iOMcFbnqoHpiskLVt7miq1qdz6naJjeazqvqYKIyabMJc7vQa9NRob53df66EO78e1UHMH93UqrJe3OOnDTMPTZldETQK6fxntrvEGyHOXdtrkLm90AqC/1PImjMgPz8wx/+cKd9B69UHcyDDpJy9XSuS6c+/ccUx2eYC2kjTfaY/1aBBownA0Zs3jeYN35mH20O71Izsq9d35iT3//+91W1DRfvqlb77Nk0mInnXfpG3tvdw++ffPJJVf37PbEyaRIsR3t//etfq6rq008/vb3GpAWMyUTNHeG03QQO4OrM/Ct6ONe2y+el6bjq8K5k/rp0KLuA3Fe7f3KdbIYGPI+zmGeac8I+5ix6fh3ok+Azk3B3JtsVeTTX0NecO7uV7iMeT4yGNxgMBoOTwC9KS0CKQUrLpMBViG864qv6MjPAWozD3lPDWyWnO/E9pUfTDVlL66Ra01p1GkOOK+9FA7ZWg/bL/KX26AR27rHGZ0qtxKpSvJ3Y2V+HfluzyHk0ce2qNBDPfPbs2W0YvTXWbAfNBAmUdpmDLgTf2rol4k4TdjK6SQqQwDsyX9bUAUicjQxWILAEaZlrmQP+32l4Lq+1Cl7o6Pa4NzXUqkNAQpci5PPrFB6vedX9pXloM+eROacvb9682Q1aef369SaMPytdQ1FnDciafpco7WALa0QdcbqDoTxP9K3TCllfB4LQ546OjP9xNtB8VmWwsj2/I9krrEdneWAfMxcmY+isbT5jq9JCXcCiSTm4l/F2lGlc2wXhrTAa3mAwGAxOAkenJVxdXW2IZFPyMfWVEwtB3mP/gCU9h/znvU4PWJX8SanC5NGWuJAc0j5tycZlaSwtppTohGbbtD1n+Rl9cuFZ2uxs96bwWRUCzfGtpNpujVfXXF9fL23pjx8/rg8//PDT7GvRAAAgAElEQVR27F7z7IO1crTCjibOGqh9rHt+zBVhtkujdPstx5V9QzJO36Q/s58ZLQRNP0Ow8SfaYkJfaTvXkj7SfxdtdWJ/7jvPoy0lTmauOpwX/6RPnebmclvn5+dLDe/q6qq+++67+uijj+70P32CPkvWNtEK8xkO5Xcpmr0SZ8yp/XBoJB0RApq8rSiAPZMls/zOY/5tYeiex75irRifUzbyLDrBnblh/vZI0le0ZyvKtnyO33d7tHgmVH+o/65qNLzBYDAYnAh+UQHYVaI4n1dtiYVNCH2nE6IvslZhya+TuK212R+UicAuHeJEWaS1lCBNnmotxL6PlEislSEt8fyuTIupzPhpu3WXyO/PwF4xSfu+VkV+c+4dNbnnw+Ne+y87GiUXMPWcJ0yBRZ/8915hXhewZewdIYB9ZybDtrZWtfX7sS723RLZnPvOCczuo3282QeuYQ6YV1s0unn12e7o9sAqediRxJ0/KzWX+yR1n+WuNI37YF9uR2HGPe6vLSG5LuxftA365ndYamu29PA368F+yLWkDxAeOBrY+zvfITzHlhH+NoVe1VaT9DWrkmr5u8sg+fPUbO3v857l7yR2cOzFDz/8cO+757YPD7pqMBgMBoP/cBydh5dawyrfq2rrYzDp6UPJPvOevagy54S5JEZKj5ZiXM6kKzeBRGVaKCS8lV2+ausPsaRnzatqm1/o6KWVr6VqKwHRVyTJPYmbPjlStqNosxawlw9zc3NTl5eXt5GIRO12vkf6gFbjPuRYV/lA3pvdPFlaJR+P/cDziBatOkjajnBjffA35v5m3l3Yc0UTl2OxJO3o1j2S4pU1wFaD3Af2YzmCcc+Hx7yZZss5VdnH9GeupHTIo9G4OT85x5x3W2JM1J3rvypqSr/t083ix2jrtgI4L7QrMYblgr44ijfPGNGejJlxcg00a13xYFvKmHNbGDo6Mmt43ufdOff5tKbX5QWuyh/579yj9tPvlZYyRsMbDAaDwUngKA0PKR10hRFdpoLPkHz2bK2OxrRU2d1rpgskEK7lualJcA/XIq0h8ZiAOsdF37gHaRZJDykw/SJIdPTFbTGnmauItGeS2r2IJ3CfD7STBlc5SKsSTVUHSSvnfK+I59tvv70hdU6pn2cxh9bK7IPqsPKtdgUyLcm77+wHmD2qqj777LOqOpQ5ev/996vqwBgCunmCmYi15XlI8dyT2pN94CsJPM+lS1jRR+fQ2b/VPYdrLXGnT8V+a2tG1rKqtvmje0U8IY9mn2FVSf+Yffb0ZeXPpt38uco15P+c8arD+WeM9IW1hZg5Ywcc4c17gUhcR5hnH1hLtDTOiHMdc45tbXLpNqwVuZY8Z5WH6ffrnkZpDc/vsIQtNCvi6art+X+o/65qNLzBYDAYnAiOjtK8t0EV1UQCsv+o86mBFZ+fS9ZX3Y2cqtqyibiAZt7vyC4XNE0tzbZzSxWWIJNf1Iwa1m6cN5XtuS8dc0z2vevbShvsbPdgNY97OTT3RdpdXFxsfCzpFzFvJHNoP2YXGWapjzVl/pyTVrWV4K11oHmlZI+PDi3DkilSe8cGwz1//OMfq2qbU4evMPfqKuLR2kKuOfPEZ2gFZufoCsA6uhqwH6wF5RzY/+J8w2yTZzO3r169Wkrq19fX9fLly43/MCNhzeZBP7scV99jbcLRwuzRPNOMycw6/HQEeNXhHcL/8N25MGuOxVqT8xddKDXPhqNPeQ59Zx6z5JU1ZVsBVkWzPdYcj//f3btiY+kiypnbjDKeArCDwWAwGATmC28wGAwGJ4Gjg1YyBHQvYMJqrKnFEqvEVZscuuRKzBoObHGZniyf4gAaj8M0Ol0f7YilH5gc0uzqVIkV/VqXAGqnvp37nbPfwT82C3TUYjZPrqo/55z42W+99dZuCSL2T7bf0am5+rqT37PfdrJjRnGycJfS4Irf/GRcmDRJCK9a0+Bh9uJnF8jFT6qTc60ppwiIqdoGYdi0hAktQ7WZJwInnLqwF9TkgJNV2auuarXN/g6AyefQLnP7m9/8pk0Kp59XV1ebRPmO3H1lFu3SEmwid1oMn7NOaQ434Tz3pok2+5UwocKq9Fg3Hu9rp7p0wUuAvrK/MM+7bFE+pyMLz7YSNmGuzm9XOs3fKTaLd6Qcdmc9BKPhDQaDweAk8IvSEpAqKMmRUoYlQn9z+xs9/2cp0iSxXQizNR9rMUgX6TB3wqVJgi1FJ5wIaWdpR5Zt573/b4qrbHdFz2TJKyUuaxRObN6TPp2wbSk9x+B273MeX19fb+Yix8w6O2DCEmIXgGCKNWvNXf9Zd6RyzzGSfWoS7PlV0WCk5S5Aw4VE0YiQuB0Yks92AJc1vwzacZCKgxaYzy4AwVK4Cb27FI6uRFH+3QU8cX8GZa2sAzc3N3cCorq1vC+dpktLcUCWtds9bWpljUJb7wKsHAyDBYF0laQUAy5o7LPrlIkMrHEhYBNudIQXTuNw0r3fVbnmfvfZ+tJZiazBmuavs8xwT9LrTdDKYDAYDAaBo9MSSAKt2hZSrbqfALpLVrfk63Dxzv4OVrQ1DldPjQvJDgloFQLb0RCtyFWtYXQ2bvqySqpMGz7t2DdpLYS/M0TbWq6lpo4s2GN2QdUuMd1a2p6khR8G/4XbT1jKdGHelBBXCdlOWu8SWJ3uYum584/Zz2ItyYVBs0+EgZuWjHPEGDJZGanfvkFrLDnvPmtOuwDWcLp27Tfd86k4lcWE8V0yfra7t3cuLy83pO+5livftn2uud98xuyzQ2vqiM69b+3TMzVg1WFO0ez4SbqKqb+qtuTktoIxB/QxtVDGQftOOdkr+QU8RzzHhWmzr6vC03v+/ft8r3meWBfWK+Mz7sNoeIPBYDA4Cfyi8kC2yea3vIuq2tfV+Sm65MKqgxSRFF9VfcHZFY1OJ8W4tAuwNtX5Ci01r4rT5lhW43PUXEoxq3JHLh7r/mU79HE1F51WYGlsj7bH/d/T8K6vr+uHH37YJOrm9daWLS0z9pRiV4TYbqPTMrymzJul9U5bQ+K2D68jVOczF1x1IVZLxtlHg3Fzb7dX7btbkRXkGpuMwZpeJ61bi/Le5d60stCn9NXs+WGurq5un91F55ngYhW92EXpuo0VBVbnJ0cbZx8wRtMIVh3OY5a1qTpYmtDE8pxa67MP32ewoyUD9n26iHX2zVYoxkNfXaA120+fftV2X3eEF9ZY/V7N9SSytyv5dR9GwxsMBoPBSeDo8kDn5+ebyLFO2rP0vFcWyLZ++wn2/GKryEd/3vkZV36qzsdlqdLP2Ytis3/MGp214vzdkZyrHKfOr7XKbwQpAbqQqqVbR3xWbUuhnJ+fL6X0s7OzevLkya221kWk4XNY5WMhRWfekDVfz7GLnXb9c2mXLvIVQBKMz9R5eF0ulZ/pnNS9yDf3gXkz1VTSkXWad17r4qEJ5185P7Mbn8+n9yRrTl5gd89ehC/UYoyxoyrrfJnZh1U+Wd5jn6bz5Lq979Jb1oy6EkYu8YRm10W7otlwr61F3AMBdWIVsW7LRb53PAfsIeeKst+7ItKryPIuutrvqlU+Hv7O/F9qvVMeaDAYDAaDwFEa3vX19R2pEEm7Y1GxHwF0JTCsAdkGbCmqYwixhO8Ixey32RFWhMwp+dgv4UKIe1LMymfj0j8psZro1flkHsteeRXn3XS+kJXPBjjyL9uh33vlgYi0s/8g19L+IWsK9vvks1dWANbdfqZsz3lpaCSOOqs67PmVBsl4Oj8j2qGjTu0X7qKDfcY87tSYbblw5LS1tJxPPjNjiM9tZ1FwuR1rTrl3KYWVxWHvKwBLjhnrk31gvm0ZoU3+n3vekdz299pf3rGY2KJllpbOH7uKKE2ScgONylawPdYRLCI+py4M3eVHOjqTv1dFmau2e8TWlj3LyUq79/s228fKMuTRg8FgMBgI84U3GAwGg5PA0WkJV1dXG2qXTHpeOSFXqnjV1iy3CnDpqHCscptYtgu2sPkRE4kDN/KeVVi2TaddcrTTH2iD/3d1ozBR2XRi01xX6dhz7nGDzpRhE43nM00Lbn8vtPz6+rp+/PHHTVJ3kmy7Or0DDboEU5tNHJ5tU09H6kwb9IXUiW4fOBWH9hgPbT1//vz2Hofl31d5vFtLm8o97lxL+r+qofcQ8ztzneuTn2cdQ7skMPvyfPqTa0G7mVayMmk+evSo3n333friiy/u/D/nifY4N11yetVd07D3ooNTnDye53MVNMS9vBM7E7+DRUx1mOuCmdNr5aApp8dk/21CtLmyS7ew+ZXncS1r2rXrfe0gwM4t0rkccjwOTsz270tpuXPPg64aDAaDweA/HEeTR19fX99+QyPlZbjxKul5FcRStXXe3xdKnNKAg1ZMzOtnZB8scVtSTeeyNUk7Yi3F5L04si3B7lVl9v8cwLGibMux+hqvRRf+7rB0S4c5r3bq71EHvXnzpr788stbSRQS5hyzk8iBgx7yHgdMAIdkd052NA5+WsPqpEpTOLGH0Cwc+l+11UwZn2nJ9six6aM1WFsnqg7n0oEuK2tIgnlCojeB9h4dlZOFHfCSc+99m+TQxvn5ef3qV7+6HY+tLVUHrZLAIGBtqgsicfI+f1vzSkuWx+Fq5tyT4fTvv/9+VR2SyekbZ6ELTCPJ2qkMaFgml+7OE3DAGGWq8kw7XYi+MnZbMjIY0O92n71Og3cgnc+ex53jykrxe++exGh4g8FgMDgJHJ14fnFxcSvd+lu4qk9MTViTqOpDnau2iYtIEyk12dfU+TSq7oaJu2ClfR30kYTQvXE4bNZFRPMzfpLESZ+tjVYdJFVLSQ+h/LJm7DmxVpz3WJJ3CaWulEgmw6769fr163r+/Hl98sknVdVLy6vk8dUaZ38dUu7E2c6viVTs5F5C5sGHH354+zvSOP3nJ2uLRJzzhDSOhoJfxnRR3dlAmqWv1hY7nxrh+6ZmMxFBR91nTcVad6f1rqwPTrfJ94Tvubq6Wmp4Z2dn9ejRo00KSO6hlf/ffvJuf9qKwj409dYeebTTIDoqM6e5sC7sKd4d6R9DK+RaLAxObXLMQs6JrV60xXNyHj0XtOeSP04MrzrsQWvTq/Jk2Y6tG/SVOekI3FMbHR/eYDAYDAaBozW8x48fb4pdpvZkv0BX1r3qrpRuupxVEjQaF6Xpq7YlXZCwTV7dUX05Esm+wpREkHAs4Tp6krlIadA+G5e16KTPr7/+uqq2EpD9IS4xk/dYs7P0tlf+yKSu9nPl77kGKw0P8mgkN7ScLmLLCfn2J2b5HLR9r6Wl8i4ykTnL9vK59IMCnfm7pUzax5+d9Gc805ReaGKWgDtNyGeCNpwsn+As2NphzS6fd98+cERrXus5d5JyPsf+pXfeeWfphzk/P69333339gxSMDfbWCVKm04r95u1ChMcrHx7Vdskbp81NLHUnrjWUcj2+6Xmwu8ff/xxVVX97W9/u3Otyzbl+4l3yEqDZa+mtsp+cgkhR4OC1EZ59zHm1Xu8I9b398RedGYmnNP/0fAGg8FgMAgcHaX55s2bW4mBb/CkxDG1D/A3d0oxSH6WfBzZ2ZXZsVSJ9mefQ1d80nlJtNuVUzHdEBIc/7dml1ovfbIGiYS1R6jtCEi0Edvhc07s97EE7py7/B+wxNjlyXR+nZUf5tGjR/Xb3/52SWibMB2YpffUuIhi4x7WxdFmHQ0e68FnrAd9QoJMH57Jc72/Or+YC8kyR167zu/jnDATPnNvrgGaHX1xdKPXIO9dRZDuUdcBzjH7jHGjhef+d3ThO++8syQNr/r3/DIu2kuNkbZdFshaVEcebU3OVpTOasHecA4f13ZllJwjiKZKn7rcVJ6DX5m96v3HXsrx2ZfmOe98avTRObGOwO20cef92YfXlWXz3sfqwTqaZrLqoOGllWVv7yRGwxsMBoPBSeBo8uiXL19u7OIpVaHtoYl00VhVdyUES5q2G1vzSwnBzBcZrVa1lcirDlIEErClCf7umEj4yThXOWOd1GxNDknO9vK81r47+uZCutlXlx1a2dCzPx4H7dPHruAj/6NPT58+3S1Y+umnn27y4bq8Iecw2TqQ/TahuKVy+s+a573O+UGKNqtEaqFI2N6raIed78aMGqsiq50fxmVhXCSXz7M8EO06j8znqctx8pqu/E0J+96tbTBHXTRgas8rKR3/L5+j6aHdVx32ClqGfVsgtSdrwibdXpGZJ1aE8N1aMj8uLQRoI6PDeW/ZV+/3Qse0Aug/621GnHx32IJgrdRrlNqv4zdcvBp0LFv0zWXQuDbzK9lfXR7pfRgNbzAYDAYngaN9eK9evdpEJHWMJPx0xJ39SAl/u1t6X/GtVfXsFFUHKSB9OmbLsD/OPsOqrQRi5gs/vyvX4fIsSLzOZ6vaMmnYbr1XAHYV+dT57oC1UOaGe5EGU8JzrsyrV6+WGt7FxUV98MEHGy0tpVkkN6Q555N160IOExFpjJF77T/NsTOnLt7JPfydeXmrKFCez/hSK6T9VQkr4M+rapPz2vk0qu5aMD7//POqOuydZ8+eVdXWl9dxN7Ieq7JK3R6yVmDLT8efy1pzLq+vr3cj7S4uLjbnJsdsS4S5Op1zm/1kbv0+c7Rux8O6KqPl6M2qw3vG0blYi7rYAWvj/GRu3Y/cU7YGcE5diDb3KvewPs4htTUuo5GBNTpblPJzW6McMet3QtVh/XOP7uUlJ0bDGwwGg8FJYL7wBoPBYHASONqkeXl5uaEmShXcxNKm3Gk7oarkTlR1+HsGydg5bNqeLtAFMxjPM7WTiairtuaAVYKrHcR5rYl5XSE4x0XfUOmdxLsqoZSgXQfysBYO4c72GKeT8juS6ocCarqqw7gyiID23nvvvaraUmN1wURQL2GKow3G7ATt7DNr6qRtTE9dYI3XnXUwfVdXpsXh55hzTEfXBQY5fJs2baas2ganYDJzAEwXOm+iAbsgHNSSfXO5JcD8pRnWQW17ycPsG1fdznQoB2TYPMmcZlrKqlI7MDF87hMHWDHXlDAycXbXvt08JtHIz1xJ3cEsJvnO/q+CVrqSX36n+x3l0nC5pm7Xpvy97wC/87mHtU6XFH30Hn0IRsMbDAaDwUng6LSEn376aUPmm0m2dq4jLVt6S+1pVVYCScGSaZfS4NBnNAiTIuf9fg7jsFTT9cXajQly83O0D5MfW0tLCRKp32HBHndHnWb6J4efu3xL3uNQYs/5XiDPfWHCNzc3G4qiHNdKE7ZWlZIi2joagxNXTYnG5zkfrJX3avc82jP9FOH1XSCI6blM0GzKORKS83/WsG1ZSAmY//FzRZLehXw7yMxgX6ZWYJotkwq4AG72f/V3AkpDgDaTwRarIDIH2HWJ505lcUCY3zFVW5J15piz3pUE8zlZtd9pz7Z2sQ4rwv1ufLZcdXPB3LrdTHtJkNpRdTjL1pxXlGr+veow3iQkqLqrKXfUdVMeaDAYDAaDwFEa3tXVVf3rX//aJLamNGCJGukZCbyTHGmPb3WkDPuPnBCaQBKw5rDnrwKrNIGEE1ktmaxSAaq2Ye/W7Jz4WnWXGDVh6XOPzNf+Fif9d+HvnnOPMzXXzq+3AiVekAg7SjE0AMaMlk5SsTWG/P2jjz66c+0qWT37ypyx31L7y7a7vfO73/2uqraag8sS5TNXVg5TfXXXWIOhLfrclW2iPfuMvYdSe7JUbgLvLl3B1FzAZOCp4XFPvh9WUvrZ2Vk9efJkE2af1oHVXjRJRmoKTiGxRu90nrSI2PJhfxxjzXucsgVsFUityWkoK9/6XqyEfateYxcKzvadSmCawtw7fjf6fWMyi7xmlW7lEk3ZF/DQlISq0fAGg8FgcCI42of3/fffb6iXUopxEjVSFFLLXnShpYaupAv98PPwQ1ii25NiTZALOhs3Eraj/RzVaLqoxKpIrX162a5hLdE0Qfm7fZROmu58biYPBl7P7EOXUNrh4uLiVirnniwvYr+I+9cR1zo6F4lwRQiw50daRaRBG5afmYjXhTgTXgdrB46WRHvM35kTxmu/T0rNJnf3eLw3O3+cLSSOIOwKcrqki898+vptufjpp592JfWMDrcPrOow/yZ8YD90lG+rZH7vfRdBrtoWHgZuKz83WYH98F2MgjUeW0E6uj33xXR+jj7uSkvRF/t9QWdtcQm1jrqs6i7ZBPPkiM4V4UFV7wtfkdYbo+ENBoPB4CRwlIZ3eXlZ33333aZURNrFkepsr3a05F7uhImSHZGWUpxJWy0t227NOLr2HFmVUrN9F7ZTWyJJzWJVJBLwd2cPB6YOshSaEp7zUyw5dxrsKmJsRWlUdZAMk1B5JaXjw/NYU5tx0VtrxN533f/QxlySxn7grn1HL7K2qRVyT+erqzpoEB2Fla0ObrOjo3Jf7BtnXTLS0pqDzwT7uvNV2zfkHK4u99a+u1UJo9zf9J9z++rVq6WUfnNzc6e4cEd6jfZobZp+EkXblfxaFWI1MXtaN0xWbssS6HzVzqV1P/JdYquGqRL9vPx7VXR7j/7Mz7MGuUcE7ef4/ep84IRzux8SuZp520MtNhgMBoNB4GimlSwP5PyoqoOEbZJZtIDOX2UJ2HZdS37pC3Duh8lUrYlVraUUs0ykRHIfgXX3HD/PfbRkn9KgtUBLPC6quCe5OpKw8/vYt+ZyNJ1UbV/Kzz///GBbuousVh3yzxy1utJ2sz9ciyQP4bPXK9fezB2eU56bfh/7hB352EUs2p9oLdFrnVL6KkfV/rJcS+eT+R7n7uWcWGPwunNPl6OKxM04HZ3ZRTk6UrkDTCvMmwmuqw5r6PPBewdLQqcBWRu0b7XzX/tMe890paUcyekoUGuwCb8jbC3ozidYWb32WJq8n1fa8J6m73ljj6bf3mvggsfMZ8Yo2DLz+vXr8eENBoPBYJCYL7zBYDAYnAR+EXk0Ib5WO6sOpiSCVyB4xSxEAnpH00N7Jk522HNX8XyVoN2lCdjEZye/E0+zna52XdXWTJVmiZVJweaJzpTlYBI7ZztTa0eFlM/lno4cm3G44nWXfL0iGO6AWcpm8KTEcqqFzWj0Ic0bNoFgPvv444+rakuJ1KVO2OTI/uO5aXa1KY7nEjTSJdY7fcdmfZt+0sRpk1VHGpDXVW1dDQ60os8+V9knB6swF5zjXAOnLDAH9Ikzn2vh87oXtAK1WLf+7rcJAJx6lO8O3i+4LpgHuxw6mjC7J5zY3pENODF7VX+vo040leGKiDrfxQ5acl+druAxVvXpB3ldviP93vE1nQnVCfXuK2uU7zcnv0/i+WAwGAwGwtGJ51nVugtaMfkoUh3f4JD9ppN9RT6MNIlDGmd1SiRIq3uhve6jJQJLWJZy85mWwhwIQH/y+fzPztYVFU8+b0U/ZQLonE+wouDppE9rci5Ls1ctPZO990q8PH78eKNx5xwjzWEVcHAFY+z2DvvOieBQjr148eLO+LJ9/21pvSOuXaWYgNyjDlZx0ICl29wH3otOlu60a6cEucwSz+2Sli310y5aW3e+rEnwHK8FaSc5Jx2tlUFaAucfrTODH6x5Aydop0WB+5nbr7766s61BOD5/VB1eDf53Dv4pgsms9Vmj1zZe8Lrb0quLh2qKwOVf3eJ7k7dcoCNUyuqDvvY6w79XVc6zWXc2A9+V+a6OaH98ePHuwE4d8b8oKsGg8FgMPgPx1EaXtW/v9FXEmTVQdJ2WROku2fPnt35f7ZjzcNErJ3d2FKzKcA6OqqVb8saZld00KG3tve7IGjea+nPkldni/aYrR10SeT2jyARWRrsfJRO/rZ/M0PBGXP6Vvco0V6/fr2hH0q/Dn4w9pBLhXSJsvTB/WftCEen3/k8J8j6eU49yGtNuWQfZ66H27FmZetE3muflLWALsQczcXljpiTPWo9/ufiuPz8xz/+cefzHDsakS0/LrScv6eWtsLl5WV99dVXtxoY6CwULim1suZUbdfFZOW+N9NTnCaw8o91ViKfpe4c5djzXveJ9k28kWP1mXTCe7bZWbeyLeAirNlX4HeUrUb5GXO/Koacc8I+yO+H0fAGg8FgMAgcreFdX19vfABph3dxRkeGkVzcRQZZIsEm/JAyFsDSuimA8vf7yvV0UVmrwq8rEtls15pVFyXl+21nt8S/F1Fq6d8J9qnROpk3KZ+yzS6h2pGSHbAM4I/tIgRZX7QytAmeSZ+y316zlQ+XhHT8g1Vbn4N9qZ3U6DHaR9RFzdJvF+R1gnPn11yVWvGa5pz4Wu9R+4VzDSzZe2464mZrcsDkBd1nSV23irZ78+ZNvXjx4vbd0o3ZfjHaJWocy1IH+m/N3oVzu/eP94gjsBOrMkreq3tn2cnre4Tt1uB9RkxE3fXNPkPvg73Cq6yXk8o7/7bHwfvI0dcJ9lU31yuMhjcYDAaDk8DRGl7V9ts4pQIiclZkrvhY8luZb+/Ot1S1jZbrijia6ievMVZ29lWOU45jVWjxoSXm81rnnKS06Kgza3TMZyfdmP5nJQHlOrq8kbX4Lg/Q++Dy8vJeih9r1QnmFl8Qtnqk9K6QKPut85lkfxkH+XlVVV988cWdcXS5TB7nSmtijpE6U2tyNJ7zvbzvuyg9azCr9XF/s31H8lryz99X/iXGkPR+HrtzUlmj9Pd4P/34449LDe/q6qq+//77zTymhkd/GCN7hLnAN5T99jX+f+fjAqs4gNU6ZX9XBYE7cnTHFVgbtHUoP3ce5qrkTz7PffN7Z2/feQ5sHeoim00XZ+uKfck55swEGPLowWAwGAwCR2l4SFp74NsbKck+FaTAbAeJ3kUnrakQyZMSibUX+7666CbnMNlP4bIg+ZnJaZ1D2JVC6fxf7lP2J8dlFosVG0nno7QkZOkwfS620dvP5Ovy/ozWvU/S2tNmaM+k0ewVGDtyHKt5sa+jy1PCr/f8+fOq2loJOsYaFyVeFfHN9bCmYKndlgcdm1YAAAQ6SURBVIVOW3PUmllZ7Fuu2kra9qFYE+vGvCJlJy+v6rA+RIXeV1i5G8eedYAIX/vH8j1gjcM+Lvr2wQcfbNpflfhxeZu9d4gjbvdyHGmPfUzfuvG7lJPbdeT1noXFEZ8uuJzX2N9ny5b3Y9X2/W0mpi5anXbQ5LjWkb9YeXLsWSaoI83uMBreYDAYDE4C84U3GAwGg5PA0eTR19fXG3NUhh2jWpOkaTMhppE0pxEqbroc00Z1AQ++xyp3F7xiM9iqNldHR+aABsZhs2jC43DfraLns1dhwTYnpplsVQ3dJoyOkNXjdUh2mqJdG+2+5M+zs7MNUXIXEu9EZdc2y3ts6rGJeZVIW7WlH/v888/vPP8hZL6rNJicW4ejr5L6vR/yHtdIcwXyfJ7X36YmJ9h3tHSsrUkmGEueK5NM0CfONabodD+YeGAv6AvSetDVzrOJ1y6VLgXDe4RreHfZTdGdbb9L7DbIc2VTpt+jDp7K+z3HTqx3XdD8bJX20AUJ+p5jUqnsBqHvnudM4P/yyy/bcWDC7AgvnJ4y5NGDwWAwGAhHB63885//3DgyuxBlS42rUiVVh29slxex9O5AlKqDBMA9drp3jlJLLQ7PtfO6aqvJdSHd+XdXYd00WE6gTUnM2pid4avk8rzWWqlDivcc3Jbsu3FZQ95LHr6+vq4ff/zx1hrQVcF+7733qmq7h1hb7k1N2UEVloQd6t1pBya79X7LMVnTstbUEUBbegUOSOlIfu8jqbY2l3BAjYMIukRga3CsgZOz83xby7FWaiLgqq3GtUcPxd5JzaCqJwJ3GgKa6h7JNtfQl3yf5ThSQ+1o4BIuCZX95bnMsVNq9qweKyuBA766vqzIKpJCcVWGbJWKlpYla4crQoU8G6zTKl2J1KSce6wCK8rGPYyGNxgMBoOTwNE+vC4ENL+V+TZHCkcqs9TcaQou1omkhRRBmylt0L79VF3osvto6dnh4imdrcpkrBJz817T51g76wqyWpPjp8lVPabsm0OlrSF3xSk9dofS51q7MOZeEU9KvHgOOgo2h4HbP9LNk/tn2z9aYq7xKqXAz81Ed/xSK0okt5XXOHTeUnvnHwMrfx//7+5ZlVjheZy3zh/n8TAH9DF9udYgXDS205Dsrzo/P19aB6Cl20vjMVExz3TZntznpkY0EbzfHTk3thhYW+/8cXvvzUTeY+2I55ngwBpuXrsqju2x5POsBfqdtecb9x7yOzNTDHyNrV+ct7SO+Ax0Wu0Ko+ENBoPB4CRwdh8V1J2Lz87+p6r++/+uO4P/B/ivm5ub9/3P2TuDB2D2zuCXot07xlFfeIPBYDAY/KdiTJqDwWAwOAnMF95gMBgMTgLzhTcYDAaDk8B84Q0Gg8HgJDBfeIPBYDA4CcwX3mAwGAxOAvOFNxgMBoOTwHzhDQaDweAkMF94g8FgMDgJ/C+w5E3PhBpKYgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1154,7 +1872,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu4ZnlV3/n9nXOqqi9Vfb+AzVUgtpdRZx5RMYpEGXCiolEeRQPKqJPRTDRmTKKMt47RoMagmYxGo2aMaESMGhWjiAioo+gYoyjKHYRuuqG7qm9Uddft7Pljv+u863z2Wr+936pumeas7/Oc5z3vvvzue7/r+v21YRhUKBQKhcKHOrY+2A0oFAqFQuGvA/WDVygUCoUDgfrBKxQKhcKBQP3gFQqFQuFAoH7wCoVCoXAgUD94hUKhUDgQeEh+8FprT2utvby19t7W2pnW2vHW2qtaa1/eWtteXfPC1trQWnvCQ1En6n9Ga+2W1tqH7A94a+3zW2v/+we7HReC1fwMq79nBeef0FrbXZ3/Knf8ltbaBeXNtNZe21p7LeoY8HdXa+11rbVnX0S/LmjduefhyQuuHVpr34ljl7bWXtlae7C19tmrY7esrn2gtXZlUM6Xu77P1vtIRjDX0d+7HqK6LlmV900PUXlPXs3l44Jzd7TWfvihqOehQGvtb7XWXr9ac+9trX1va+3Igvs+Z/WMvq+1drq19p7W2s+01j7i4WzvRf9AtNa+XtL/I+kaSd8o6ZmSvkLSWyT9W0mfc7F1LMAzJH27PrQ11s+X9Ij8wXO4X9ILguNfJukDwfEfk/S0C6zr76/+iBevynyapK+UdEbSK1prn3QBdTxDH4R111o7Kum/SPpUSZ87DMOv4pKzkp4b3PrlGufgIOBp+LtD0itx7O88RHWdXpX3kw9ReU/WuK4mP3iS/rak73mI6rkotNY+QdKvS3q3xvf8P5P01ZL+3YLbr5X0B5K+RtKzJH2LpP9B0utbax/2sDRY0s7F3Nxae7qkl0j6v4Zh+Dqc/qXW2kskXX4xdXyw0Fo7MgzD6Q92Ox5OfBD6+AuSnttau3wYhpPu+Ask/bykF/qLh2G4VdKtF1LRMAx/kZx6xzAMr7cvrbVXSbpH0hdofAD/f43W2hWSfk3Sx0r6n4Zh+O3gsl/QOKY/7u57rMYf6P8gjPOHIvwcS1Jr7bSku3g8wybPxjCydywq92IxDMMf/3XUsxD/XNLbJH3JMAznJb16ZZH5kdba9w7D8MbsxmEY/gMOva619ieS/kSjIPKDD0eDL1Yy/UZJJyT90+jkMAxvH4bhDdnNKzPALThmpqcXumNPXZlIj69U53e01n5ode4WjdKQJJ01c4W797LW2ve01t65Mre+s7X2zd4M5UxuX9Ba+9HW2p2S3tfreGvtia21l65MDKdXbfrXuObTW2uvbq3d31o7uTJBfQyueW1r7Xdba89srf1xa+1Ua+3PW2t/x13zExql85sic0xr7frW2g+31m5bteVNrbW/h3rMhPb01trPtdbu0eoF3xvfhxi/IGnQ+ONi7foUSU+S9FJe3AKT5qoP39la+7rVXN7fRrPkR+O6fSbNDh7UqOUdcvde0lr7/tU8fGA1x7/SWrvZt039dXd5a+27W2tvX83JHa21n2+t3Yj6r2ut/XRr7b6VSej/bK1dEjW0tXa1pN+U9NGSnpX82EmjpvH01trj3bEXSPorSeE9q7X/+tX6u2e1Rh6Ha57XWvut1tqdq3H5b621Lw/KWjpHz26t/V5r7d5VeW9urX1b0qeHDa21l7XW3rZ6Nl7fWntA0neszn3Zqu13rvrxX1trX4r7JybN1dyfa609ZfXcn1yNxYtaa63Tls/SKNBI0u+45/2TV+f3mTRba1+9Ov/U1fqy9foNq/Of21r701X9f9Ba+7igzi9urf3hau7vXo3HTTNjdplGa97LVj92hp+RdF7Sc3r3Jzi++jzn6vmo1tovr8b/wdbau1trP3sBZUu6CA2vjb65vyXpPw/D8OCFlrOgnqMaTRF/qFEyvV/SEyR9yuqSH5P0GI3mqU/VONh2787q3o/SKI38maRPlvStGk2w34Dq/o3GxfYCSeFLZ1XuE1ftOSXp2yS9VaP54Vnums+W9EuSflXS81eHv1HjIv7YYRje44p8kqR/rdHcdteqXT/XWrt5GIa3rdp+vaSnar2QTq/quULS70q6VNItkt4p6dmS/m0bpdR/g+b/tMZF+VxJOwvG96HEKY2a3Au0/oH7Mo0m8XdsUM7zJb1Z0j+UdFjSv9RoUbh5GIZz3TulrdW6kKQbJP0TjXP98+6aI5KOSfpOSbdrXCt/X9Lvt9Y+chiGO9Rfd4clvUrSx0n6bo3S/5Ua5+Vq7RemXqpxPr5Ao1nsFkl3a/1jarhO0m9pXGefOQzDf+308XckvUvS35X0L1bHXiDppzQKHPvQWvtqje6H/1vji/7Yqh2vW61VM4N+uKT/tOrTrqSnS/qx1tqlwzDQr9Sdo9bah0v65VV536FR6HjKqo4PBq7TOBffI+kvJJkF4omSXqZRk5HGd95LW2uHh2H4iZkym0Yh78c19v8LNM7HuzTOeYTfl/SPJH2/pP9VkikMfz5T109J+gmN8/h3JX1fa+06jSbQ79Io2H2fpF9srT3FfqTa6JJ6iaQf1bjmrtI4H69prX38MAynkvr+hsbfj33tGobh/tbauzW+c2ex+h3Z1jjO36fRovNzq3NN4/v4Vo1jcVzjM/fZS8oOMQzDBf1JulHjw/Pihde/cHX9E9yxQdItuO4Jq+MvXH3/hNX3j+2Ufcvqmh0cf8Hq+NNx/Js1PmA3rL4/Y3XdLy7sy09q9Dl9WOeat0l6NY5dofEH7Qfcsddq9Lk8xR27QeML9P9wx35C0q1BPd+qcTE/Bcd/dFXXDsb/+3Hd7Phe7J8b32dK+oxV3z5M4w/LCUn/i5v3r+K8oqxBo4BxyB177ur4p2BcXxusK/49KOkrZtq/LekyjcLAP1qw7r5idfw5C56Hf4bjr5D0lqDP9vcZS54DjS+tv1wd/8TV8ae4ep+8OndU0r2S/j3KeqLGZ+Trk7q2VvX8qKQ/3XSO3PcrHq51hza9S9JPJedetmrLs2fKsD6/VNIfuOOXrO7/Jnfsu1fHvsQdaxpjG355pp7PWt37qcG5OyT9sPv+1atr/6k7dlij0PSgpMe441+0uvaTVt+v0vjD/kOo429o1LK+utPGz1iV9Yzg3B9J+tWF8/Lnbm3/pfa/Bx+zOv6sh2odPBKCPN6q0cfyI62157fRF7EUn6XRjPN7rbUd+5P0GxpNWJ+M639xYbnPkvSKYRjeG51srT1Fo9b206j3lEYJ7um45a3DMLzVvgzD8H5J71fstCY+S6Np8p2o65UaHcOUtNjHCxpfX9fqLzXTAK+RdJtGKfRzNWqmL194r+FVwzCcdd//bPW5ZLy+U6Om/FSNGtePSvp3rbXn+Ytaa1+0MgHdo/HhP6nxx2FJFNmzJN0xDMMvL7iWASd/prgfr5H0gEbJ/aoF5f6kpJtba0/VqEW/3q8xh6dpFMS4Vt8j6U1ya3VlnvuZ1tptGoW0s5K+SvGYzM3Rn6zuf1lr7bmttRsW9Gmy7pbcsxCnhmF4ZVDfzW0Vga5xHZzVqL0ujSbcm99hfIu/UcvW6aYwM6iGYTij0dLzxmH0gxvetPq0Z/zTNApynPt3rP74nno48MUa1+DzNQpYr2qtPWZ17g6N2t33tda+srX2pIut7GJ+8I5rfAAfP3fhxWAYhns1mhHeK+mHJL27jb6VL1xw+w2r9p3F3x+uzl+L629f2Kxr1Q+msIf3x4O6Pyeo90RQxml1zKqo6+lBPT/n2uqxr48XMb6s79MXtNUe+p/SqH1/uUZp994l9zpwvCy4YMl4/dUwDH+0+vuNYRi+VqNw8AP2o91a+1xJP6tR4vxSSZ+k8QfyzoV1XKvxR30Jor5EYd2/J+nzNAowr1yZslMMoyn89zWaXJ+nPILQ1upvajqn/51W62dl+jYz7TdpfFk+VdK/T9rbnaNV+56t8R30Ukl3tNF/lq6jNqY07Wtje+jSnO4I6rtK47jcrNH0/aka+/zTWrYOzg/DcB+OLX2uN8Xd+H4mOSZXv83972o690/R9N0R1Xd1cO4axe+0CYZheOMwDK8fhuGnJX2mRtPyP16dO6dRk3yDRpPw29roa/3KJWVHuGAJaRjt8K+V9D+2C4/2O61R/faYDPIwDH8i6QtX0scnSHqRpJe31j5uGIaebfu4Rknni5Lz72JVSxqt0VTYc+qa8/VFGh8Y4kxw7EJxXKM2+A+T82/G90kfL3B8nzpTTw8/uarjo3Vhzu2HGm/U6Ou4QaN/7XmS3jYMwwvtgtbaIY0P8hLcJeljZq/aEMMwvKq19lyNfqH/0lp79rA/2pX4SY3Rbuc0mu0i2Fp9ocZxIMx/9zSNwuOnDcPwu3byYrSsYRheo9FXdETS39Rohv3V1toThmG4K7jlvZquu9DKciHNCY59msbn/POHYfgjO7haCx8KsLn/Uo2WHoI/1h5v1riuPlrOarQSjB6n0XKyEYZhuKuNwXhPdsfeKun5bQwy/HhJX6/Rb/yO1frZCBdrEvhujb6S71Xwwl0Fdxwb8kjNv9L0xZA6JFe/+K9vrX2rxhflR2q0AduP7aXan2f065K+UNIHhmF4kx46/IakL2itPXoYhkgrfLPGH9OPHobhux+iOk9r7B/x65K+VtK7V6bQC0ZnfKNr/yg6vrCeN7XWflBjIM7EjPRBwMdqFEJM07xMLlJshRdo9OV5ZOvuNyQ9r7X2ucMw/MpD2dBhGF6xMr/+rKRfaa199jAMDySX/6xGLeoNwzBQ2jf8nsa2P3mYhop7XLb63DNTtjFq9PM26kCAlbD8W6uX5S9p9B9OfvBWproLXncXgKjPN2gUjh5O+HX1cOK3NVrpPnwYhiyIJsQwDKdaa6/WuM5fPKwjNZ+n8TnZeN23MTL0yZJeHdS3K+mPW2v/WOOz+DEazfwb4aJ+8IZh+O02sn+8pLX2URoDK96tUc39TI32/S/VOtKIeJmkb2mtfbPGSLZPk/Ql/oLW2udI+nuS/rNGbe1ySV+n8SH9/dVllnP1Da21X9NoSvgjjaaH/1ljfsi/kvSnGjXKJ2l8oX/+kEch9fDtGhf977XW/oXGAJWbJH3WMAzPH4ZhaK39bxqj0g5r9FHdpTHQ51M0/ji9ZMM6/0LSNa21r9H40D84DMOfaYzm+mKN0Z/fr/HH9nKNZphPG4ah+0JaOL4POYZh+AcPV9kz+PC2CvHWuE6fo/FH4YeGdbTxr0v6/NV4vkKj1vu1Gn2dHtm6+ymNgTg/01p7sUYf67FVPT9wscLXMAy/0FqzqMtfbK19XmRhWf3IdZOrh2G4r7X2TyT9YGvteo2+oHs1rudP1xj48x81/jDet7ru2zWuk2/RuK4nrC5zaGNk6NM1JtC/R6Mp60UaNba5iMS/LvyORt/tj7TWvkOjr/PbNFoBHtO78SLxJo1RsF/VWjupURj7yxltfmMMw3CijakU/6qNyd6v1Pjc36TRzfFrwzD8p04R36bRHPofW2s/ovHH6l9qDA7am8M2pkj9kKS/OQyDpUK9QuOa+vNVnTdrJNY4KekHVtd8osao1pdLervGuIuv0jger73QTj8UEVCfotFndLtGaeiERin3+ZK2Vte8UNMozUs0huPfvur0z2odUfbC1TUfsTr+To1RR3dqfEg+yZWzrdF0836NC2VAHbdoXESnV237f1fHLILxGas6n7lBn5+kMbT4rlW73i7pJbjmaRpfmBYx9S6NP/JPc9e8VtLvBuW/S9JPuO+Xr+q7e9XWd7lzV2v84XunxsXwfo0P69e7a2z8n4x6Zsf3IVgfs+OrzaI0vzO594UY19cG1/i/eyX9scaUgx137ZbG4Jb3agw0ep2k/z6Yk966O6rx4f+r1ZzcrjEE3yKDs/lY1OfV8S9b1fvLGl8GtyiIGsU9Wb1/W6PEfN+qz2/V6J/7KHfNZ0j6bxq1grdrFIwuaI40Phu/pPHH7vRqfH5O0kc8VOsueJ56UZpvS849W6Og/MBqTL5Go2XrQXdNFqV5LqnrTQva+w9WbT63KvuTV8ezKM3H4P7XS/pNHLt5de3zcfzzVmv8fjf3P7ZkLjQqNn+g8d1xu8bUgktwjbXxk92xb1mtpXtWdb5J44/iY901N2n07751dc3x1Rr9zAtdB21VcKFQKBQKH9J4JKQlFAqFQqFw0agfvEKhUCgcCNQPXqFQKBQOBOoHr1AoFAoHAvWDVygUCoUDgfrBKxQKhcKBwEaJ51dfffVw0003yXiC7XNra/27accs3cE+d3d395Xl0yGYGsF7LyR1YpN7Hspro/MXk/qxdGx69Waffk6yes6dO7fvM4LnjX7ggQd05syZCZH0sWPHhmuvvXZSd7QONmk3753jsH641sXF3PNwYWlbemO2dFyja/h+8Oe3t7cnn8ePH9f9998/qejIkSPDZZddNulPVN7cc9Fbb9E1c+i1icjOLbmH87CkXv9ejq6J7smuydoYvft75fM414h9cn14nD8/krqcPTsS4AzDoBMnTugDH/jA7CLd6Afvpptu0stf/vK9Rlx22WX7Pn0HrFEPPjiSV5w+fXrfcfuUpDNnRmpJe6myQ9HLkZh7OUYL3dqa/Rj7e6xNdszaRkT12b380YheBFm/WBbL9GXb/9ZG+845sO/S+EPlz9m99947sm0dP35833F/ra2HQ4cO6fWvjzd+vu6663TLLbfo5MmRLMLm3Jdn7bExtPLtWjvv+8prDRw3G+voR57jb9dYPZv8KFs7/IuA68vGi9fadf5evrTYDva7h+zZ8HXYOTu25AeP5w4dGqkmDx8+HH6XpCuvHMlZrr565B6+/PLL9V3f9V1h+Zdffrme+cxn7rXF1sEll6w5mO0dxPeOfykSds4+s7GMntOe8OXvmSvHH+fYe8zNw87OzuRe+9/G3e619cd6/TG7huWyTJtbf48d44+lHfdttPJt/o4dOyZpvT6uuOKKffVJ63fV7bePrI6nTp3Si1/84nBciDJpFgqFQuFAYCMNbxgGnTt3LpQMDNRwKAlRg/DHIlXVI5JuWN8SbW2ujWyXv4ZtXWJ2pabAayO13ZBJ2nY8kuzYH/u0evjd/5+ZTqI5Z/lR39gXSop+TjNtxq6xvnrYPHBtLNF82AbW39MKszGO1iglakq8S9po4BrtWQk4F3wGo/7x3sykFWmwkZky6oMvv6fVGFprOnz48J5mF82X/W/WAD6fhuiZZhlLxtiusTnkO4XPk78/e96jfmUaJBE90wZaYqLnltfaO5iaXmZS9feyLbzHP8cc88xy5TU80+yPHj26d29v/XiUhlcoFAqFA4GNNbzz589PpD4vNWUSQCYR+/spccw5TKP66JeL2tOTUvy9ka+IkkgmDfYw50zunaPU3PNvmiQVaYEsOwtO6Wmy0T3ZmLbWtL29nWo7S/sU9UOaSq+c48i3Rmk880VF2mLmO4zWbKbVbuInyzTI3nrj2qTPLpLwOfZsazRWtr7ow7FPno/q2dnZ6QY57OzsTKwrvfGy9trajJ7pyI/cgx+vbO6yzwg2Lr2AFGqK7BcRvedYbmbhitpiY8M5pbYdtc3KMo0sep7tnszKF/nRbdxMw/NWxzmUhlcoFAqFA4H6wSsUCoXCgcDGG8AOwzBRTSNVP1ObezlgVEtphurlmmSmRlOJ/b1zJpFeME52nO2IAkIImvcic1tmGumZbJmWYGYI1mfhvdLa7GDh3FmwUZT+4D97Js2dnZ3JWPjv1l6aOQw9M2gW4LQk6CZbm9G8zQUpRYEJXNcM6ojMrVkbs/p6azZKBZKm5r7omqz8aH1znUXpCCx3aVDG1tbWZD569/L5t+9mxpTW682O8VnuBedlQV694A6G9HOd9+aS6zhLZYnMoXxu+E6M8uKy73xG/HhmQV8MVvFrzNrCNXPppZfuOx+Zao8cOSJpfHctyROVSsMrFAqFwgHBxkEr3sFrv7pe6rdfaJ7LJCF/jNJzFNpLUHrJJNFIC6X0xwCHSPLJnMh05ntpJwvPZiJmJOFnGh7b6Ocgqy/Ttv3/punRKR1pCUzYPXv27OK0BJt/Py/ZfNu1kbRnmNNMonHkfGeBSZH2zDKIniaZSc1RcEyUxuPRCzGnBpOVHY1JL33EX+fPcW7t0yTxSNvxGkNv7USI2p1p6yQv4P9STKTAegyZ1YZaXBTQx3I5xlHqRKZ5Zakg/v8skCbqQ2aBySwm0RzwWj4z/t1PcomMWMOPCd+5W1tbpeEVCoVCoeBxUT48+ojsvJSnGEQhylno+9IE8agefo9ComlDp7Qc1ZPZ7lmPbwdDenl8SYIuJS9qpz1/U5ZyEIWWkzKo5zeh9LW9vd2V0odhmGgOUfJwJmFHoeVZuku2hnz7Mx8X10NPWyMiC0akzfjjSxKBOXdsRxSmnvUjk9b9uSwdobdW57SOJeQIEYZh0JkzZ/a0gEgjniOcsHcVtTp/DYkNrPyI8MDA95k9P5dffrmkOLXJNF4bDyZ5e20+mzv68Jkg7svP2rwkNYjopcWwbXx3RVR2pD2bi8Xw5XrLz1LrQGl4hUKhUDgQ2FjDk6ZSpdcCMlt6L+KJ/pyM4qvne8qk80jypXRJTSVKKs4opLJIqEiKsX7Sdxf5szLNJJOEepFdVj4p26L6qDEywi7yL1i5Ozs7XUlrd3d3r3xrUy/Kq0f1ZqDtn/NN7XbOB+n7lSWX+7ZmCcgmxUtTLZlj1KOeY7uzJOIl5AVco70keWo1WXJ5VA6tBfRr+XZ7f3rPH3r69OnJ+ETzMpdkHVlC6FvLxikCnxP7tPn368DaQEsPrUJ+7LP1S+tH9rxG7c/oEf21Vh/XQeYX9OVwvrl2IsuSkUdn9GeRpuyJIUrDKxQKhULBYWMNb2trayIheCkgI2/tSZWMpJqjmYmk9Oic/96L6DJQmoo0IOawLNHwKPHShs4+eND3YG3m9ieRNprltfUoweh3sbZa9Ob999+/d0+mVUUYhmFfJF7kW6Wmw37we9R/aqgc6yjai3PK71FkcpbLydw6X0/mb8v8c6w7KqtHPJ5RV/Genr+Z4xlpeHPb6kQ+bOYe9si+h2EIox09TJOycydOnNh33p49/8wzojzT8CJfJ9cb10rP18l56VmWbG1wCzVaGKJ1l20D1LMsZVYO+7T3jo1V9OxbDp3BrrV3SBQHQGthL4fU/vfv04rSLBQKhULBYSMNr7Wmra2tLotJZksm+4ePlqKGRz+VHTdmEO/3sXIYwZUxEfjyaVumthD5CukXywiZozxD+vB6dmr7/9SpU/v6yQ11eb1v/5xP1DOtWL+Ys2VtjXwS9913375r51gzPPF45Iex8bc+UurvSc0ZehG+Wd4d11TEBsPNarOIX/9/FmHHNvq5zDSGTMKX8kjbLOIy8qkY5qJR/T2Uxm2Moo0/mXM2l4e3tbU1sbxYJKQ0XbdWl/mGetGH/jnw7eV8Rflj1LiuuuoqSeOGx9L+8bN6OF6R5YL94rPA91CkvV9zzTWStLfpMtdMRI4+tykuNUDfZlt33BiceZl+rqzdfPfTUua1Rrbp8OHDpeEVCoVCoeBRP3iFQqFQOBDYOGiltTYJsoiSh0kZY59mrvJmBKryZjbL9inzKq2ZTUxtNzCIxZuJGDZrzlSrx8yI3hyRBXEwcIeBKf4amglsLOzTq/r2vwWJcNzse2TSYr291AVea9dYPT7lwPdbmjqne6ZGCzygKcvPfTQOvm9RyDWDFcw8RJNvZPLgMQYIMFDAl0uzJ9vq53/O/M3gCT8mvJfzQHORP2efHD+a1KJEZ/ar9wzSZJ+RwEf0d36+5tantYkuAWm9Xu3cox71KEnrPdMYKCKt3xl33XXXvnbSFGz9i9YfA14e97jHSVqbNv1YfOADH9hXj7Xf2mHjY8+BRxTwIU3Xv9UrSceOHdt3z/XXX7+vrfb8+vpsXdO0SZdHZvKU1qbMq6++Omz7Pffcs3ctzd1mpra2Wb9s7KT1PFxxxRV7ZZRJs1AoFAoFhwva8bwXQszQbpO8THKwX2ovVVJCnKMn85KWSRx2jFK5SS+mtfnyWS4DNCJiYybTMiCAmq0vhw5aC522MfH3MGjFPtk/JrpGbeE4RoE8PGblmjRGYl1p6vTe3t5OJa3d3V2dPn16r3ymVUh5MBHXhb8nIzfmPJnE6O9lci0Dn6JwdLuW1FFZEIvvR0YSzgCeiKqPbaEW5zVvBg0wqZdrq7cOsrQID4bkW1ttDiJScGp9rbVu4rmnNLS5jNpidZl2Y+MSUeVZ3XYtUz24pvy8ZFs+URP37yorz6w21FTtXenn0pClwfBaC1SRpHvvvVfSWrMz7ZNtNA13SX29XewzSjmbr8h6wGfePu0e+4yS8W28LrvsssWBbKXhFQqFQuFAYGMN79y5c2HovYHSo0kZ9mvc23qHvq1IwpbiROBeeK4v2//PpEfTtEwSMRuxtJZsGCZOjbaXjH333XdLWo+JaU9e+2Qb6WfJfIkRbZOBbaQfypdPYlumMPhxXRrCbudOnz6dhub7vrB8as3R2mHiLdvSs0oYmFQdJUVT4+Emp1ZGpK1HUnHUxojo3MDQb/q7o2M2RnwGbd15fzrD9+0crSt+7in1s7+Rz410d5FW47G7u5sSN7A90jQlgs+vNNVEM8pBplR5MAmafjnTHj3s/ZZRbkW+To4ttTTrX7QVlL3HaGEwTdOnF9kxvrcNpPXy7x1bd/RJ2xhF1ohMw6OlIdpQ2cb4yiuvLB9eoVAoFAoeG0dpeg3PftG9RGJakv36msRAiqKenTrb6iWSKmh3Z3SeScLe/s7NID1dlm+7lxrpB8nor2xMvDTICFUrnz4b30b6W6KtmKS1jdv78KiV0bdiZUQaHvvOqK1o+xGvFcxpeTaOkb+CidgZ6bWX5khHlmnGkeaXkUPzHt/nOSLoKJouo0jjXEbH6aOkb5Ias293RjzAxOpIozBkZOVR4jmThmmhiWivDHNbvAzDMInsjKwNGW0XSQ38MZI6mOabJdCPbTQtAAAgAElEQVRH7bc+WlQoyTKkqeZt/WBEYkTkQe2SVjGLzvQanj1rfB/wved9eBZXkFnkqK1FNH98v9in+b295czKsTGw/nKsIrJyHzla5NGFQqFQKDhc0PZAlG7M3iutJQDTFEh6zPw1aX7TP9YXSRWRX8p/95IPo/0yyTuK/LH2mwTC7xF9DvtHjYWRf75ualaMNouiz+jXyiLtvHbFcWTOUBbx6ctrrXVt6ZEU5ttAf0GmnUXzws0153LP/DHmGNEnFfWJGgXnNNrOxDQIRhRTY/H5jZT65yjGpGmOHjVYtt1L3PRbmcZCRNF51MB7JPO9uczQ2xIpWtO+zijnkFqYnbPj9JNTI5fyTW6jaF1q5VYfo059G/leoYbFqGf/3rF5tfKOHz8uaWqF8zEE1jbzPdJf6vPh2D9DRkRvbfc+Q1r8oqhzgv7MTVAaXqFQKBQOBDYmj/ZZ7abZRblUZK2gFOjvMQmL0qVpG/ad0o60lhbo82J0j9mzpWk0KCOD7B6f05L5EWmDjrYHMkmKtmdGdnrt1NrEiFUDc1q8lGZtZA4fyb695J/5dWyeon5FPtZMw7PtgbINLH15Wd5gtK0TiZINmUbkx4kSKNdZRDicsW9w2ybvK8q2OmH5EYE3JXmuv8hnzHXFtUPrhO+flWtr0cYr8yH68jm3XKPe9x4xxGRrp7WmI0eOTNZgjxCevseIFcrmyMbDCJ/tvXbllVfu++61WuuracBWD/OMI4Yn+r9IEO0tHRkbFK1QjBPwY2Ewnx3Zm/x1jDa2sbHjzAf2zC533nmnpCnDisG0Rj/P9m60a2n1iqxtfF+fP18bwBYKhUKhsA8XxKVp0p9pTV4iNenEPk0ioI3W23Gp4VE7o7TkpQpKArS3R8wnZFagH8YkIC810O5uklwmkUQRXcyV4ThGUjNhdnjTKO1efz2jzugrIl+mb6ONn0le1Gz9OEYRtz0pfXt7e+IL8HlK9FNkG/X6+qjheH+ytB4nsnT4/tsYMl+NXJTSNJ+LlozIX0XfILda4vYtXhOiv4++L861b1vGfMFovR5HKX020bpkW+hzt+N+TKgZ9aI0t7a2dPjw4UnOmwetA9zc18r2Gr5d+8QnPlGSdMMNN0iS3vnOd0paz4utD68Jcx3Q6kXLj2+TtYF5v1F+JvPtsvORL425s3x38X0g5ZsRMx/Q5sD7eMnve/PNN0tav+vf9773SVozvkg5d6e1gxYO3xbD2bNnS8MrFAqFQsGjfvAKhUKhcCBwQUEr3IrDO8xNRWWIeRYiLa3VVqYUkPiXpKH+Gqq+FpJrarY3zVi77RojV7WkS6Yp+HtI3UNzKAMepKkKTlOgmWi9OcFMJNY2mmYj8l0DgwiY6MrrpPU40Slu3zk3/twSAmCrj5RVPiQ+S+pmyoE3F1vdZkoyx7mNKevzwUtmlsmIxiOTJnegN1j5PWLuLHy/R/ZN0xxJC6L6bC0alZ3VY2NNSq1objkmNA17E2qWnMxgrIj0PQqGysDAmSgsnSZGbvXkSSb4fmFKkb0Prr32WknxFjW2Hhi0Yt99UrcFwXAurT4GiETIaAMjwmu+p5luE5HWW39sHG2bJZqtSR/n223jya2aomR8W5Ncxz0qwIxsYglKwysUCoXCgcDGQSvDMOz9ckehvpROqIFx+wdpLQmY1GhOTgYAcMNRaZrYzjD1KIiC0qQ5XhlE4iUHBhQw3YHksb4OSyg3idu0j4zg1pdvQR0MOPBBP1K8fYbVy/BwSpa+LQyKYLJstHWN1xCixHTfJ5tjpob4Y5TcsoRmaaqNUytjP3yfmbRr42JjbFqjX9McDwaAROsu2/Yok9a9BMwk24xmza83EriTwCHa/spgY2BjYv2KSKoNpE5juD23svLtzoIxIjDFwI9TFuhEi5PXCu2at7zlLZLW1hRrkz2vdo9ZD6TpumI/bOwj6wDTAUzLibaHYhK8ge/Z6Pk0cnrrJwO8uHb9OX63tluZkeXHNFgbR3tH2ZqysjzBBkkEmE7CtDZ/zgcxFXl0oVAoFAoOG28PNAzD3i905IfxWzZIU4JU+/QSCjU5UuxQevOSKbectzJIWh35RZggSwnLSyKUsKhBsD1RAmhGim1SUhTCzKT1nsZisH6YREd/Xxbu7+thkrzBjyMlN79JZ1Tuzs7OJMzdS9z0oVC6i0L+DdZXJm+bRBrRhEU0YNKUyLa3DQ01FVvXUcoHQ7upHURh4kwxmEvZ8OWa9YGh37Y2o2cjIyunv7ZHmZURBXjtgYnGPd9va02HDx+epNnY3EpT/y59eNRCfV+ozZrFx95rpul7/x/nkj5Og0+Toa/Onh+rh3EHvh6OcUbYHdGfZVq7fdp5D1vH9ryS6ou+PGltjbJ5IWkGibWl6Vrh995Gun4Tg9LwCoVCoVBw2EjD297e1uWXX55ua+L/Z/QNSZb9LzLpmDJfTi+KjdFjJoFQMpLyDQoZceWTomnLpnbAeryUxqgyaiGMjPL3UPu0fnFMvF8r2xqF9vlIo+S97F+kDRh6/jsrm7RaS5D59DyijSJ9GyP6Ns4hx9ykSy/d0ndGwucehVm2WSzb4fvHhHn6dKL1TWk309IiEmbOD60Qm0QFM4nYj4lJ+0slc7MQ+HqiuSQVGsv3a5TnGLVIAnJPeEGLS7apr9f0rW4S2pN4wFsRaKXJNGNqRL7dpnFxHZgFYMmmuLR+RduSmUUsoz8zRBqsgWuShB7+muidNIfS8AqFQqFwILBxlObW1tZE8vUSArfUoMQYSbH02TDXbBO/BSWSiLaHFEiUYqOtKbilhoHbz0Sai93DLXcYLeX9W9xwNtvQNNvE1B9jnhTzmXy5mYZH7TDCzs5OV2Lf2trqStzsW3QNv5PyzZBJwNE40W9A7c2D7eezwPxTaRo5TL9MRqkmTTVs5lL1iJSzcYy0NEPkJ/fXMs8ta0N0b2SFiN4HUZvOnz8/iW6N/FVZnix9br5Omx/Ok7XXrFXRdlp8Tng+yq3ltRwf3y9aZ/ge5TMebQBLkn+uuyj6naTV2bZbnlrMjtl4kRYvepdk2hojfaNYhcxv2kNpeIVCoVA4ENg4SvP06dMTKdMj2pBUmuZVeFDipOS5ROKm9Mcyow0rTWqx6Cva6r2PwPplEg1t95TavRTHDSaZExRpaeaLiKRYj2gusm2AMpYWaarlMkctiugju0Mvp6q1tk/Di/qcRYb2vme5bdTsuC6iPlELYFt9eZnEHUW8sTyWMafdSFMtPWK6yEDpOYsWjtqS5ZlFPjwDfXmRn5H37u7uzo4DLTJRpDe19OydEp2j9kJfe+S/zuayZ3Gx59/eM2R68e8qapK0BmRbT/lyLWLeWF+y7dCk6XzzPWcaHzcDkNbvRka/Z33w5XOMaAHwfj+bL2tDj3icKA2vUCgUCgcC9YNXKBQKhQOBjU2au7u7eyo5d/n2x3wIstQPo6f6n4WW98x7VNNN1Y4SMhkSbeqymRgiomgzf9JRmoXg9tIEsjQLbx7I+pqFQUeBDiw/C3jx9xgYQp0l2vu6IzJfD0sg9uX6MWZodZaUGtXNT45P1Gc6zBn4FJmnGDzEBN2IRovl9oJwpDgghOkI2e7w/hqaUDNzZVa3/94zS7INfF6joBW2bXt7uxvw5InHI/o+Bsdl5tTI9EU3S2ZW8y4OJvMzuCgK7rFjZoq75pprJMVBIwb22erhpyGaUyO/5h6ltk68uZDm4qx+fw/rprmXYxOZe/k+5fGeK+Ls2bOLUxNKwysUCoXCgcDGGt65c+f2JKIoeZQSFn/NexpQRrLbS7JlufwkybM0pfax8u0ak9a9lkDHNvuVSSi+LYZMGvH3kmw7CzGPJH0GVDCwJmoHy6fE3AvgWLo9kJQ7tP25TOKO+krJPUthiYKlCLY92iaK6Q8mLTNZ2WvoXBNcDwy4idZHJmlTe/TnWN+SgA62jePY08KyNkVkAyy3RwBsaQlcg1G7GVzTW788xt3jaYmJaMnYR6s/0kxsnk2z84ns/t6e1s4gmSVEDvYuefSjHy1Jes973rOvLJ+GZes5C17pWXPsGLdIs36TxNyXZyApdvQ+4ficPn26glYKhUKhUPDYOPH83LlzE7u1l6qYPGlSU5Y+IM0TyFIz6UmkDC2OwmczwumeH4i+DLaVibm90Pls887Iv5RJPNRcotDyLGWCm736NjHRlaHgUdKoPzcXWk7JMaLgoqSfkV/7/+fSEXrIfGqRNYL1MAWEtGG+nGwLlKy/vp7MUhJJ2kxhyHyThh4tWbZ5cXQP1x3bFhEdeNLnTMNrre2zHkQ+vGyt98Yp8xHzM0rj4VrM2u7njZodKQ57qT8ZIQRTCyIt2s5dffXVktbvZNv+yK8He1/yvcL1ztQNaUrgTmtHlFifpTT1UpE4p0vp6aTS8AqFQqFwQLCRhre7u6vTp09PCHK9f4xSSxbF2KNCogaU0TlJefIzNaMoyodShGk+kRTLNtm9lN4pXUvTrUsoATNR15fPiDdqyCSX9eeyiM4o4TSjgON2N1FUJTc/jTAMw96fv9bfY+uJ0b/09/Xs+pmG2Ut6jvw7/nuUoM9rqWH0rAPZVj92PNo+heQBHOso0i7z3fYsKnNaaOQzyvzaXKPRmHhfdSapb21t6ejRo3sUWVxDHhkRQWRFmfNPZhGD0TXZM+a3TjMNi1YAWlf8/Gfavz2P9u6NxoKWOKv3hhtukLQeE0tIl9bPsk/q9mURkU80G8deHEBmdeiNub0vagPYQqFQKBSAjX14u7u7E5ow/ytMHxqJQyntSvM5Z5TAooikLBor0p7myKgjuiZKOtS8MiJgaS3h2vYZRmVGjdZrEjzW0yDYBxt7apvst5faTKtifhHnz7fRtApPldQjEN7Z2Znk2kVb71iULK0FkT+LGlcWgRhJ+Fn0JMc+0vBYBqX2iAbP+pxRl/U0b7vH2mLzEkm2zJ3MKNPYh6h/vCbSpLM8PFpKfD30sfci7Sw63Ciy3v/+90uKtcxs66Voi6w532ZGVyZN55L5khbBfv311+/dY33NorajNmYaqj17va2Fsr5bO0zTi2IHSG3IMVgaFemvzbYL8sjKj8bexro0vEKhUCgUgI00PGPKuO+++yTFTCsZE4XBJJNIm5kjt41swNkmmiZFcPPVqJyMIcRLWpnUT58BI5J822y8/JYa0tR36EFpeW4rlqgcbqfSy/NiDl9vqx5rt/fH9SLtDh06NInOi8aePuJepCXHIdPsIl8LtUNqT72thOgr7vmoDWQe4dqNCLXp7yWTBzVmaT22ZLMhaXq0pVW2lVQPS/x8/M757xEAD8OgBx98UNddd52kKYuS71v2nPSYgjjPZEkh+4gvj/Ngm0bbM+7XG5+XjAmnx4DE3FBq0X4LI/pyabmy/hgTi6+PLCzZc+Wtc1mUNeMPohiMLNc60vjMQmb+y7ltyTxKwysUCoXCgUD94BUKhULhQOCCdjw3FdWCFbxJgGazJYm5ZnrJ9ofrkeDyGpoWSbrr7zeTWUa2HIUH01TC/ehIuippzwRsMLNDltzN8fFtZHuy8x5ZCH2UzJk5jXtJsTTRRtja2tLhw4f31kwUtEKzsZmASfXU61sW2BT1iwEAGSFvtJciCQ1oUusFgpDKim4A3yeag3hN5CLg2No1TCOJSNm5NnpmRmKOGjAiqMhSj4itra2Ja8CTOTO4J5uPnkmbbSKps3dxWLCIjZ2Z1ywwzWDmN2k9DzYvlmZB82FEzJy9V+0ddfz48X1lSevnkvv5sY2+n0yKt7ZwrVo90drhu5DvZP9scrf5LAE9oiC0cazE80KhUCgUgI0Tz0+dOjWRNry0RydntC2LP+7/n5Mqo7Ii56m/JqIWsjaSUJhajJcc2GdKLUwujwIPGJyS7Q7vj2Wh0Rl9k0dGWRSF6HPbj2gbJ3+vNA0Imgs8GIZhQl3kJbpox2d/PErqz6S7iPbMf4/67Nvqy/btMWk4k16jJGxqjtaWTLP0Y8zgK/bX+mmpHFG7qd32tPlst3JDlICcBepk2rdHZG0gGPCU0VH5chioE4FBHQwIYhv9OrEUCVsPpuHZPDFlx5fD+e5ZGGxdcd1FKSzSfq3X2sR6Io3bYFqhjQW1aVrDImRpZNZWr1Hy+ckozDy5SbT1WwWtFAqFQqHgsLEP7/z585Nf7Mg2n0nW/AX3/2dpCD2JjucobVp7PEmx2d8pXVgZ1mavNXpfky83S0CNNDxKjtwOJEquzCjL7DMK76cUlmkFHtRUMwm5J0nNJaN6DZBjHZW9iVabhXb3JNLsHo6xXwfZPDMUP9LwaFmgPy4iSehtA5X1i1u8sFxu3xL1LyOtjkLn54i6o6ToaKuv3tqKrC1+vfFebp/Dev05rgOuY7vHtDppraWYxaIXes97ON8RpZjBNJuIBD9qo9eEaG3IUqj8euP7LGtjZG3jeuYaYnqUb7eBsR7mb4zWjvcjloZXKBQKhYLDxhvAnj17diJhRVFs1BBIyRUho4HqEQNnGojdYzZ0Hy1lyKSyiB6KvjnzmZhtm3bliMLKys+onzwySZs0PT3Jhj47+jN9G6l1RDRHvn7fRkPPrm/XZyTcHvQtUSLu1cNtW6KtZAyZH4RSpr+XfjhG9EbzQd+TYW6jW183rQGkGouQUZZxTpeQ+RKRZsbnJ0si9uht6kxYmxhlKE3HONICs3p4jWlTGXmBvyYixvbnI+sXrTbUwCPrUOZ3Y+SqJ6smmQTbaG33yerc1o2RvdwWKIp65rPA9RFFh2c+8civz/W1vb1dGl6hUCgUCh4bR2k+8MADe7/GJiFE2kxPsuY9Bko8c1uxRKDNmf4MaS3RmL2bEgjz86Sp/8U0x4zKLMqp85IUy/dlS1PpnLlU9IVFklYWpckcHv+/9d3qW6KZW/96BMBGHt0jEWduD30PUdmZvyWT7COfA/vBCLWIHspyKxnZF0U30o9IPwz93L5d9EVlVoHID0Nth3lLSzZFzXwsUd2ZpaSnVXmLRY+Wbnt7e9ImH+3H+V5iATFkFoNetC7zxjKi+14cAJ/hiNw787tSo7V3S5QTy/VFzcv3iz7J7Bnpge+5jKRd0uS3hO+AKHeP10T+0gyl4RUKhULhQGBjDe/kyZMTyTfa6ifzdUR5cXOkvdH2HAYrj/lj1CS83d/+ZxQbtUKfd0ONh3lktHFH0iAle/MD2mckabI/HEdqw/4a9qvnP2OeTRbl1vMvnTx5clbDo+8pss3zs6cV9nILPZYwg5AI2iwAS/LUetunZMS4c+2Rps+GlUFJPNp6h22kXytiBVq67YufN0Zt9zQ7wtbZ0aNH0+ttA1j6laJ8xSyCPHqHcO1Q8yGRsp8XaiCZf86PbeR7lNbajX369wTr4RhYmdG9tBhEvnt+z6JADT1LD+s1ZDEZvj62n/2OLBh+vZUPr1AoFAoFh42jNM+dO7en7XCjUWnqK8l8QJH/KOPSzGzP0tS3RYk7kqqZC2hl3HPPPZKku+++e9JGsiDQL8c+RBK+jZdJaeYHuvPOO0XQnk97u+USRpGEWf6Lfbe2elYGzhM1vIgFhBrJkSNHZnOpelvGZJoCc4K8tJexiLDMKNcxi4CzObXPyB/L/EeOn38mqFFHa8Qfj3LOrD67J4qwM0RbBkXfo0g7to3zGfkQqeln0ZqRpuwl+mzt7Ozs6Nprr917TqK20YdOrbq3ua6B5dJXFFltaHXgevBMKxZBSa2GLE1+TslmlGn6xoEZ5XDa+41WIW727EGNmXMaPU9LGX38OqBmx+9RTAQjY4tLs1AoFAoFoH7wCoVCoXAgsDG1mLRWgb1JzBDt2uyPRyHxDK6wculcjcJ2aULNwrd9AIrVzU8mqfs2RkmhUb2Rs9qCUqzv3In6xIkTk7LNVBHtKi9NzclRuHBmSrN7emMSbVXDdnDsezsPW2g5TUDezMbd1rMgliiwIkuy75nDmeTKEOheQIjtbM1xi7aWYsAT00V6od4kJ2biOZOkpWkARZYaFKX9ZO4Emiej0PJNTJpWjzfnZe3c2trSpZdeujcGkQkuM0v3kKW7zAXA+GN03dinuRw8paGZZB/72MdKWs8tzbE+lSEjx6BZz8ry9zKQj89mLwgsC5Jj/yMXR4Zofq29NGH2Es+zZ3wJSsMrFAqFwoHABW0AazCNKArQyJI5ewnnGZlvlkAtTTURSi1R4IFJD6Z52UaMvS1+WC61JEpTXgq1c1YfA1yYxOzbmznd6XiOttkxUOuwefNaCB3YnL8oaIXlzyWeHzp0aKJB9iiDMse5bxsd45mWECXZUorMNJNeYiu1jsjCYVK+zXNGfxU9MyRJYHBEpKVwLueCByLiCNKecfyi9ZZR8/W2v+K2XhHOnz+v++67b1GCMce2F7Rk4JrN1mGkZXCs7dmK1retA/u8/vrr99Vv9/h+Wrst4CWycvnrojXEJPJM45OmVii+h7K59tdkZAXReZbHYKNoWyyuxQpaKRQKhUIB2EjDI8VPRJibhVxntmF/jOHyphll201IuTbQI3clOTCT5SOJgVoZ+0X/Y0RLFiW0S2up0Cd9kmpnjjTYS4XsMzU8r5Gxf1H7/T1R4qnVfebMma49fXt7eyLB8XzUR/bDawWUpKlN9PxlmUbX86llWgzTBvwa5T3mIyY9VBRun22T0kvz6SVwS/3EY7aF2x5FY5RJ8JGfh/1aouGdPXtWt9122+SeiEzCpwH4NkRzyvFgu3tWA1qb6MPrpZhkG78eP35c0n56sBtvvFHSdJugaENjgpvRkmax16/M6tZLK8o0457fnmNNDbbX1k00u732bnxHoVAoFAqPQGyceB7REHl/FaVHXhNF/1Gjo/0425hTmkpwTN60z96mpxZxR80rSuKkjTsjWfYSOG3n9MPQH+OvNcnd2pptmTSnWfl66EeL2sh+9zQ8PyYZtZclnfek/4wKq7eVUBY9xmjZSFrnsZ42YJhLyI4ixyjZWr+ocUdgVB7bzjXl28JI3sz3EW08yo2AWW/kU8kk+t52W4zwjLC7u7tvbZkv1DQiae0PIxFDRu7MPvTab/D3ZkQTGeG9v9Y0fIvONtgzeOutt+4ds2hPO3fttdfuu8faGm0EbW2w2AEbL+uX+QX9M9+jyOO1viz/f/Yc8bmWco2uFxXMvveiw4nS8AqFQqFwILBxlOb58+cn0kvkUzOYJkSNJdIuqD3M+QakaTRWRi3UoxSiFE0iaGnq08iiGnv1Ma/LxpE5d9LaZp9JS71IK7Y50z57lFKsh37bqJ5z587N5sRQE/frICP85Xrzaywiz/b3ZJKjryf7ZA6a/z/z99Hn6vvKe5ZsaMv5zcjEe9rvHP2a7wOvIbVTpP1E9H3+uH16LZW+u9Za1/fo8+qi3NrbbrtN0loDIkE8rQUeWd/YniiPMIv+jObF5s58aXfccYekqZ/WvwfMJ2n9szIYtcsocWnql6d2nll1fJsyi13UP45Bpr31Isr5juz5+jMttIfS8AqFQqFwILCxDy/afj6yG2fbZERRmtmvORkVIlaRTLJnGZHGlWk1kcSQ2a4zO7+XYHnM2miSnLXDpDZpLe1RkmKeUaTp8VoS2kbk0dkGsxwrL1VTgpvbpmMYhjRPzpc3twFwVEemBVKqjfwH9HkxPy7y+1G6ZLRe5OvOIh45Jv55YlRmRgge+dSoqdKCEmkymbRMqdrfE62DqH9+7Mmas7u7283hvOSSSybEydEzTf8/+xppaXNMNNG9czmj9Ln6e2yczLdG64m3LNk7wtpqfjh7DrlNlPn8pOlG1lau3RONY2bByKI3PbKx6DHWLI3o9GuX47jEsrRX36KrCoVCoVB4hKN+8AqFQqFwILBx0ErkhPVggi8DNKJyaEajCa63nxKduBlBc0TbxXQAmmSiNpJKjCS4NAH6urPAmmj374jeLCoj2n/NwKCILLHfnzNkwRKR6WCJSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNL7e7u7jPVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw21113naTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQuFAYOOgFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201vba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdOXNGt956614gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5J0+e7JI3eJSGVygUCoUDgY01vHPnzk1Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCwwUlnptEEv36RpFGHlFk2JzPjvBSkxGxMnk7oxyTpiS+jLSLJF8rl4S7di01Ph8BadIXty7JIgx9PZlfgdJ0FEEW0bhFZXlQ62CkVy8ybs6Ht7u7O/FBRiBUE7gAACAASURBVITZGa1VJDlSW7d7uYYimjCeY9RuRKxA6ZySto15LwqZ/cjIGqI2ZhHLESFElszLyOWIjD1DFGmX+VtsrURJ2OxXT4tqrenw4cN7zw+Trn0dNpYkgo98+9k8ZFGaUXkZTVv03qFPmGvXEG31RHIEnjf4sWZsAD+jZyUj+zBftd1jml4U/d6Lqpf2P78cWz6nJBn3/dokOtNQGl6hUCgUDgQ23gB2a2trImFFfhhKQPQfeNBvlEmmBi8xZHRDlKYirYCRVEb1E2mp9Otl0XP23UskjIajBESCbd/eLEeR4+ulHebdURvNNnn1sHtIORb1y+fZzPnwKDX78qjpUsrraT4ZOXAWGenv5Tjwu19v1Fbov+KY+3NZjli29Y+/dy5aMopiy8jYMw3Qt2mOmi3S8DKp3I5HxONeu+pRi21vb0/WQeQnZV3UOny7GZXLvkbarIH0c1nOYTRO/M73QfQ+zSgFe/4y+mP5zrCyvDbMdyC1UK7dyB/H3Osl/jU+pz0Njz7hpf47qTS8QqFQKBwQbKzhHTlyZGJL97+49GFlEoKXPjNNg5JjJKUzR4bSGCPSfBv4yWg5Xw/9XhkBdcRUYX4wRjpSGlwSQZhpyv47fXf2afMW5QpmEZ1LyGI9c0xPw9ve3p702fthOJaRP0yKNZIe0a9HxHyRbbkT5WOyz5nPJmKg4NxlkmqPwSjL2erlKGY5gpkFJTrHXDvfdmp9WWRsz7ozB3v3+P70tnrK/KF+7Vh5zPfMCKD9ONHCQ18u10fUhuydEeV9Zv7FXk4d28QoYOb4RmNi7y6WH8U50JKRRV5GWqGB6yvS8OjHLPLoQqFQKBSAjbk0pfWvvP36eymdEYn0pfV+iTNWFtrnozwsk0juu+8+SVO+Sq/5UZKnv6pnE6ZkRWkzyjki/6aBuYpecqEtm9Ig/Z4ezOux/tlx+7T5k9bjQ/5SQ6S59lhMCPPDUBPyEjj71ONWJOgn5TVRJCw1XW6jEvluMqk1y3XrtTvT6KIoNqs3Yv3wbff3eyaKqA/R88R1l/HARmvVtAM+C1EkKcetl8Npa4eaQ7Q+yDFrz9wVV1yxV5YvV8rZmXrvLPro6HdmBLb/n+XRcuWf6blIR46tr4/vG4JR474t1i/Lv+O4GqI5o3WA7+DIIki/Irk8/W9MxK5UGl6hUCgUCg71g1coFAqFA4GNTZrnz5+fmG28apyFyVL19efp7CSNFlXjyKxGkxUd9d58RxOCtc2SKSOzFIM3sq0voqTuyMErTYMmIoczv9NMZOhRtZlJy0wc0Y7nNI3QfBSFozOo48iRI4vTEmj+itrNeY9o4hgAwrQNzqU3F0XBO758mqmkKSk1aaiiHc95L9NhuKairXeyRPPe9lC9c9LUpO7rM2Smpsh0zyAJG6PItMbx2dramiUeJ6l41C+aaUn5FiVKR8FJHhHhudVtfaMZPjJpMoWKa5RpQ/4YST4YnMPrfX1LyAoyMJWB7+DIHM70BJrJo/WWbSEUrTc+y6dPny6TZqFQKBQKHhcVtBIlSnIbjmxjRo8opHZJ/R6UIighRFKzgcEKURIzA1ysDE/W6s97rdfu9Y5XX29EvhulfERtN3jpk5K9nbMyrW3ROFJTpsRlTmxpKskvIY/OAhx8edyCyRAloDMxlwENvfSNjMaI0nmUNkNptqdJsp6MTinSYPn8kIg8CoRgKhDHoBf0wTbRssAQd19elF4Tfff9iYjas/ZkW0FJ0+A4ak/UzFl21Ba+5/xatbptPozikCkOfoy5VvmOjNI3GHhmzzDXErcc82NhGmO2xViUBkFrWxZM0ks8Zxuj9Z8l+TOtIyLH92lWRR5dKBQKhYLDBW0PRP9B9OtrUoPZ0Hubas5tgULJILI90x/BMiOpgloMQ/wjqZPlkcqMElevf7zHS6xWdxaGzmRy7yfJyKN7lGL0M1Lrjvw9lPrnEs+3trZCzY7lcYx76Q5cC9lWNT2/hdVDAuLIV5TVR00rkjizLXc4H1GqyRwReI+QN/veI4rOpPUoBYXzlNGgeWsFy+m1xd47vZB/+mGpbdp7yG8plG0szPcMLUC+PrvXNDz7ZB2+3bSCZalHvm5qY/xu/YuS8aPnlPUYSAxCqxe3OPL12blM64zqpdbZS2EwcMz9puRzKA2vUCgUCgcCG2t4ESlulAhOQmS7jxFq0lQizEhcWYY/R7qZntTEa9ifSPLm/ZnGENESZXRnPdJY1scoMBtfRjZ6kMiY2kFkuzcwGjSypRu8FJhpeKbdUcuNfACZ1B9J5GxXtn1Sb+NSSpmM8O0lkS/Z5JJjy/JZT2/bpmzboyhy1ZA9Gz0NmpJ2z0+Xncu2UPLlGs6ePZuund3dXT344IN72llEG0bSCL47Ir81taVIa/HX9QgP6LuP+kwNKCMr6Fm/DFnyekQizv5k90bHevRzvu0emXUt8uFR67T3Zo+azTS7u+66a68NpeEVCoVCoeCwkYa3u7urM2fOpBFxHvTvUbvwtllKOplPIPLPZBJIJmX6+rINOHv9yUiKSQ/mpXSOU0aS7CUfto1ap+XWRRoeI/joi+rll7Hv1h+TTv28kXaoh9baPg0wyk2k3Z6+1miu5wjGuYYiiZHaBq0QUe5WFpEYjWNGnE7tLIq4zLSALB/UH8v8PtRoI+k9ox+LohwzzZwRi5H/1z4/8IEPdP2/u7u7E9q7iDDdNCyLnrZxoh9bWufdsrxs/fUiAe35uPrqqyXF0aymvdCP3dO4svcbx3rJOsj8pD2NMtvmLdI8GQnLOe75f7N3fOSvPX78uCTpnnvu2bt3Lsp3r6+LrioUCoVC4RGOjX14p0+f7vpzKLVQI4qkM95DbTCT1v291FooiUfbtWTonc9YMdivKLJv7jPK++M1ZHaIIgmp4XFsorxHSnBZdGbkk/D29rkoTY6Jvz4jbeZ6iPKhqL1EdbLszIezNHLQX5uNX1S+YYn/b47EO3omsnNZrqq/l/3Jcql685z5zyPLiffBzzGtmHbGfFZpuonzlVdeua8tPfJt9pXMK4w899faMdMWs8hI/z+1JmpGkZ+ZY8P5yLbk8eUzCjrSuDJSbFonDFHkLceRYxHVR58d++vzmu++++59bdsEpeEVCoVC4UCgfvAKhUKhcCCwsUkzCgGNHNmmotKEYA7bKC2BDsosET1ylG5CiEonNIMiegnnrJffIxNjtuN0bxdr+z9L72B6QtQ/tp3mgiiUnQ7unvmD1y4h/+W1vq0ZMTGp3vw4zYVnM/UgMqtm5ppev+aCVyKzJMd4LtUg6l+WyhAFIPFctn9hZObN6NZ6Yeo0ZWbpOPzfrs3WjwU8mTk/orUi9RpNm6QGlNbPztGjR7t9ZMqLP8cka5qJfXoSTbE060djS3Mwy7dP1h+10drSS//JzO48HplQM+oyQy+lhdfSRWBmTGmdluCJtHvkFPvKXXRVoVAoFAqPcGxMHm1anjRN7vSYoyaKpL05zS7aCZsO0SxsO+uLr9cQ7ZpNaTwLWY6S1jNNggEpS1ILqNlF1FLZdhwm/UbaDjXHbBuSXuLuHLa2+lvAGEhfxPXAMv0nA5wYKBCNMQnBiSgAJUtHiMZpLnWmZ6XguUzDi8rNAquovUVaQaYp99ZBbxsnab+Gw3W7VEKX1uvYa098hk+cOCFpmjoTaXimBc6Nm+9PpjWx71HQSqZ5R+/TbEf1LJk72omebeml+WRE41ngYC/gKbMW+P7xmWbQjVGm3XnnnXvHTMOzaz2hxRxKwysUCoXCgcBGGl5rTTs7O5Mw8d5GovShRPZ9+jB6YcxSTMFl0ksmAfcSzym19LaDydISKBn5Ptk15oPINuaMtlnitXN0YR7WRm5KGm2k26NPkuJw5yW+T17Pe7yUTuo4rh1DT8tkP3obVjIJPiMk6IU/U1OJfJNck1xf9On6dUGLxRLLxZykzVDwyKdCqTwjQPfHmBpCP4x/5pdQ/3lENGJ+7dACcu+990paa3g33njjpN12j607Sy3gWo/axvHJnoUl89TbHo3lZBs0R7ELfDfy3uiZ57xkz1dk1TPQqrJJcrzB6jdN3ZLNo/ZvgtLwCoVCoXAgcEHbA/XIbilZ+3v9eQ8eo6ZFycBLM0zAptTS8xFkm9JGkj3LzRLso3sz6YyfURuo6VEqNURUVgbTwKl9RFI6y6N/y0ti1BzPnj3bJXH1FEBRhJj9bxI8/XDmAzK7vq878+H1fA4sw8B1F23IyXsvJjo4i9r15zg/PTKGTBrPqNuiOTDtiddSa/PI/PWGaKuXbPsrj2EYNAxDOk/Sejy4cfIdd9whaa3pea2QlhfT8LKISN8f0pxl2nSkrbMf1HIj0ops/jlfvXcW6R7tvH+X2DPG/hh6xONZAj/XQbRVG/trn6bhWdRtVI+tjyUoDa9QKBQKBwIba3gPPvjgnhTgJXuDHSONDCMwoyhG5rtQazNE2lqWQxVpnBl5ryHSBuhXzKI1Df47+26f1JCiftm53uatbCt9RfQvZOPq781yBv04kpB3jkS6tTaRWKOILUqr3DAzkuznojUjKZ1a+Zxv14Nt6+WBZmsjy8OMpOa5/kZaGvMaM00vupfXEtGYsJ6ef8nabXPtqaMieP8vI5h9HaQBM+3ttttuk7TW4nwfMg27t5Fu5hclIkrDzLLUG6+M3J3WMN9Gmw8+PzbmvfXN+qgVRs9vRjjOe3z/+ExbfWbF8fl37LNhbuNpj9LwCoVCoXAgsLGGd/bs2cmvcuRzMLsw81QiKZb5UFnEIG3QvnyDlUENM4pEyqLvojw8nqOU1mOvoPTF7xHBNTXhjN0mkvyyXJqMlNvXR98dxyLyTXofQDamW1tbuuSSSyZEtn7+7F47R4YaRgH6PmW+PN4TsXNkjCCRj5Xrl5r+kvnI8gp7a5VtzRhx/DXU8JhbGW0Qmvk6eyTFcxF80TrhVjnnz5/vSum7u7tpdKv/nz5uK9+2krFNQyXpsY99rKTcMtFj06H2xPdbpMVlFgX2oacVZuvazkcbT2frOdLwqN1mDChRziBzorM8wyjvj/N33333SVpr6FE+I5/9JSgNr1AoFAoHAvWDVygUCoUDgY1NmsMwhPtDGTInPk2dXkU1lddCT6k205wWBWiwfqvHdj5mP6LvvdBWmgMzwt9eyH8WRBIlvFv76aDPEkOjtASaJ2ge6FFY0ewRpUNYud58lJmlWmv7AgasH55uivPO3dyZiuHbkPUjCupgGxgunwXN+Guz0PIlaSlzScpRoMhcakFER0X6Kz/+UmzSygIZlgQFZMEqUbBCRHDdo3aLKOGi5H4+/zSr+fB2o6t6whOeIGm93jI6r+iZ5rrqUczRRJqtoR4tXWZSZAqPr4efXI8RCUiWYpJR9kk50XhWvx8Dm6+TJ09KWps0e8+EJ06ooJVCoVAoFBw2Jo/2kpZJ5xG1WJSUnpVjiBIhpak06yXFLDgmS7b095OOKAt88NcspZ+KkuMzrYnfpWlCLiVGBgj48aTGku3C7BO4M+mTCb2RJuHXQS9o5dJLL00TWX27bBxMO2fyu5eAowTY6NrevZxT0uBFwT3Zdk1LtJm5NIVI42IyNAMB/JwzWCVLF+glrWdtj67jOPKZi9JJOC9zO557UCvwfSF5gZV5xRVXTO65/fbbJUlXX321pPU2QXzWoyC2jAjaPiNrRJY6ZegFy/F5z0L+/XPAeZ+jC4vKp/WhR+SQpXkx0CmyRtn7Lkvo92NFK9pll11W5NGFQqFQKHhs7MPb3d2dhK5HGyPSd0dp0yea0u9HXxol/CjxmNoTtUUvAWeUXj0/HOmm6Efo+dQMWRitHTep1N+fkfZmEqYH7d60sfsxoaZioP8x0ubn0jyiNkQJu9Sw+D0Kwc/GiSQGPc0rkjyl2KKQJbbTahD5HDIfcUZe7TEn4fd8NwwT70nD2Rj0tNC55HRaX6Q8nSPD9vZ212rETWG5IaxpeH4ubZsZ8xeRYJo+8Ii0gFoZLQ7+meYzzGc2mhf6wajhU6uK2kitjPUv8cPRkhDdm1mH2Bc/JlnaVS/VhRaESksoFAqFQgFoS0k3Jam1dqekv3r4mlP4EMDjh2G4ngdr7RQWoNZO4UIRrh1iox+8QqFQKBQeqSiTZqFQKBQOBOoHr1AoFAoHAvWDVygUCoUDgfrBKxQKhcKBwEZ5eNvb28OhQ4cm+XK9wJeMi83ni2RsAZtszJpta8Lr5o5lmLu2d36Ol/Bi2rbkurmxiZAxy/Suba3pzjvv1H333Tep6NChQ4PfuiTKhZzLxYnyyJZyP/bW6MUEbmWMFBGyazaZF0PGarFJfZusi946YC4qOUN7zEV+Lk+ePKnTp09PGnPkyJHh6NGje7lYEY8j8+KY49Zrd9aPjHM3Opc9H9E9S8rPypmbq14bszYvqTdjLIruzcpb8p6L2F+ye/2Ynzp1SmfOnJldyBv94B06dEiPecxj9pI5o0RqJqZawue1114rSTp27Ni+T0m6/PLLJa3JbW1Bc2H3kh15rrc/XbbHE8uMflizF1yWsB3dm+2W7O/JklIzqp+ovuyHokcLxH5YkiepmqQpufP29rZe9KIXKcLhw4f1kR/5kXvzcOLECUnrpF9pmoxs7bX1ceWVV0raTwhu/5OMOtspPFqr1v6MAi7a6dpg9VkbSevmEe0ByPKl/ktyCWVa9oOWJf1HtGSs38bK6Oh88rCNlx0zAmC71vrriZu5f9v29rZe/epXK8KxY8f0nOc8Z2//usc97nGTttr4X3PNNfvOGVGCtcUTJ/A9lhG2c51LUwIKJsPzx1+arrdsx/uIyIM/qBmJeY/Sjus7Ig5hG7i/H/vi6RCz/nD9RXv2sV+kQfRgAvvu7q5e97rXTa6LUCbNQqFQKBwIXNCO5/arHml4kalCyrUcf65Xr//0mDMlRHQ9GdVORhvlr+G5Jeo7yyWVVWSuyOqJKMTYjk3MHjzGenvmL7bN085F5Z89e3YyX5FZKjOf9bb6Mcyth57Jh+MWbQ+UbXnCsqJ+sVzSOM31IepHb+1kZjBK4JTefZtYz5ItwbIyfD0mnXtNJVs7W1tbuuyyy/Y0fJP6/dZSds6sROybfUZbcJnWZ20iqTw1I38u0nSkmJZuzgUU0cQZOEfZO8yXnW1Lxjb2jrGf0TgS1PT4/vN9yWjvejR4Vo5pimfOnKntgQqFQqFQ8HhINLyedpGRnkZ+uCwAISvbo0ei7M/7cuYcwRHZLaWVJVJTdg+lJ9/2pUE4vT7MBXREmnlGhh1JWtzOZ875fe7cucmWSH4dUAKMNA/WM7fVTjZP0T302UT1Rf5dX0Y0XpRaM022N9YZ2XI0RtlGw0uCzbitDQl6I38Wx439ibQBkjtvbW2l62d7e1vHjh3b89faujO/nbTW9qLtsnxfff9MszPfon1y/qN10dNaon56cD303muZps33Q89HzXEl0XlvLm28eG1PwzNYvVyPfn3bOZvTbPPYHnqbBxOl4RUKhULhQKB+8AqFQqFwILCxSfP8+fMTdTcy31A15T5RUQg+w6SzFINeDh/NBNG+a0tyPKRlOUfR/mBZmVlwwhKTRpYOEZlF2Ocs8CQy2bJtND366+zYEuexmcNprvTzYiYrv1eivyYKZrFAg8z0QZNPZE7JENU3F+gSOdu5jjnvPRMX5yrbP8yb6rKdtc2E50PzeS/DxDn2UdACy81MwxH8XpeZ2bm1pksuuWTvvWCmTNuhXNqf3uDBwBPfV0tVsH3x7DNLT+C69OUv2XGbz6W1uZfKwueO9WS5j/5/BvBYPyx9JDJpMqAnS9Hw987tpWd98esi2/uSZfh6+Jxk5uQIpeEVCoVC4UBgIw1PWgcfSNOdZz0yzS7aHZkSLhkVsvP+GLVCSkK9pO4sAGATFoElyLSfSAu1frBfmUYRpQts0h7u3J0lyUaasrWxJ2nt7u7qgQce6AZoUONheDaT4P0x7qrNcYqCGbK0Bwtt7wV3UJOjhuFD5lk+5ywjIvDn2B+TknuJ5+wnNb8oeKmngUf1+2uzoBgGPrBOaVxDvQCt7e3tvXkx0go/xvY/+8jAFNNqpLWGZ8fsGltf1i9qOf4YNa8eqQXfVdYP7pbuQatAlArk2+E1WDtn/bFz7Ld/nnitfVpZHItI88qSx6MgJhsvpppkVpFoDJa+76TS8AqFQqFwQLCxD+/cuXOpH8FjSXqAgX4Bao4Z16a0lgwoVZjEHf36Z4nA1Gai8Hd+UkqPuOCy9vdodKjN2jWZBLlEG2XyepQGwRSDJXx71u7d3d3Z8GArP+M8lHIpnWVIU+3S7iWNVqT5Z9og5ydaQ/TD2KdJqH4us9ByA9vmfTqZz5Yaa+SPzdZqlizfa2tGU+bry7QRuzbSzP2a7JE4HDp0aM/Ha5qep6iydlGLMeo6O+6tENRMOV5Mv/LaU6YB0Vrk146Ng7Wf8x69O2g1ydIQogR4+h7NR2ljc++99+777v+nLy+zEkT94zm7x757OkFDxpNKS6E/5lN1Ki2hUCgUCgWHC4rS3IRd27BJsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktaSRElqt5kv0dedEbFm0bD+nrkI1igaMPPlRfXQ/t7zw1iZGRmurzPzG0a+PUr99p0So60Hf2+2Rugb8JIr1wx90/RB+PKZdG/1WJts7CLNJSP1jmijskRzziWTzP012Wc0f9Zn0w4yH4vvl2kd3heWRWlubW3p8ssvn/hp/fPDKMKM4D7yBXGt8PmP5mCOmJnrwx+jNmprl+3y1/Jclkzuj1t9NsbmszMNyzQ8H31qWniWAJ4R+0tT6xp9klamt9iQzs2+M4K1R7dWPrxCoVAoFICNozSlPims/RKbpG25MibF9CI6DaSkMckximaipkWJN/LdsA2RH4T9oi8ji2YjBZQ/Rm2Q0mdvbOb8gD27Pwlao3EkTVimWfby/XoUP+b/pW3et5X5QlaubTF11VVXSdq/PZBFupE8mD68SPPi2uD4U6r142Jrco6ezpfP73YvLRfR9ilLSMNZfubLM0TrPqPMyjRbfy3z2u655x5JMYWVzVOkZUb9ueSSS7r0hKYZZDRWUR6mjXPmj7fyrV9+HdDHxS2SMsJmKfcvMx7BX8PtlKxcn8foP7NjHvQl+mN8v1i9mSUluiejd/PHbW0wRoHj68eeuYlL8j332rj4ykKhUCgUHsHYSMOzaJhexJZJ4yYBmGRNacbn0HDj1yyKsrcdkZXLnJ+eT4W2dJMYMgJaKbcXZ+S+0tpmTUmS9msPjjG1NGtjtDEr+2nIIj19+zOmDR/JxXPezt/T8M6cObM3BvRbSNNtP0x7u/766yX1Nbyrr75a0nS9McrL948RnQSjaP391gZqTxHLSJarRemZfmh/DeeFUm60aWiWH8f+ey2b/syMTNj7Yaw+kjtbuZbfFrFy2LU91pvWmo4cOdKNwM5yALN17evOIm17G8Bm/mYbF/OLRRos8/DsnWnWsKitXKt8Z1g90Vq2a+2Z6xGp2/zbXGaRsfTleVDb5XffRpsnv5mrb0dkRaTvvTS8QqFQKBSA+sErFAqFwoHAxkErOzs7E/OQNzGZOYCfNB9GjnJTa80skAUeeJU4C1Wm+u5NaBFdjTQN9vAmQQYn0BlOGh+vZmchxAaGP0dtoGmEZjE/JpkZLEtE9+Uz3JgO6Mh8YMeOHDkymwBKsmdvvjNSYBvbG264Yd+nBabYp5SbXKL9z3w/pDzknqa+iLYroz2L0mAy6iia0KIgAgatcF4ikxnNbD1S5uxew9zu3NJ0x3CbRzPVRRRmdi1TgbJ2emoxBm74OkixRRNdtKcdTW1WD82hUSAazdVWL99lvr0MVrJxsk//3onMqb5cOx69G7l+7TvJETwJt/1vnzaXUZCK75PvO6nL7LiVFZnQbcztnowi0iOjW+yhNLxCoVAoHAhspOFtbW3pyJEjkwANL6VTaqDUHEl0dG4yNJVhz74+kzwiuixfVkTMzHPcnsZLDtkO4BnVj5e8M3JlamJLEs8NPacutTC2sUf2zGsYPNPTQud2J26tTZz9XvNm0MM111wjab2W6OT312ZksxEtFMGE9t72UQxOMGmZ29D49U26NmqhHL8oaIGaXRZ45f+ntYFpCNGWMhlpeUaH5usxmJTOd4Ffw/aMLSFj39ra0tGjR/c0BBu/SFNgYBjHy683m8Ns3VLL8O8dA9eVjTWDV/y1do7jw/5F5XAuaWmIqNMYKGj1WBCYBXxJa+sJNTsSfNiYRLRklpZiY29tj943TOC3ueBajSwm/p1U1GKFQqFQKDhsrOFdeumlE40rIhC1Y6RTooQsrSUAbs+SJV1HvrUs5L9nAzYphpKctc1Lb1lysoFalK+XIfjZBq1e0qYWxnGk5hxJyqTpYf+8xJVRFpHiJ/LhmeZ17ty5blqC3wA2Sk+hdkE/MP21vr30qVASpubqy+GGn/SL+vqYYkKfdBReH2l9Uu4HjspgugX9JJbkLU23eJnb9ioK76ekzaR4Xyb9O9xINUqop19+GIZ07ezs7Oi6667b0+ztnmgrHG5Kzblcss0MyQuiZysjls78dP4c3y+0MEXbHmXEy3wv+XnhurJ5sOfVNDz7lNbWE6ZBZeQJvn88xm22ohQRWj/ss2cBiDS8pSgNr1AoFAoHAhcUpUkppkfbRQmo92vMKDUmmlLyl6aRfWwTpXdpKoWRTicij6a0F21g6fvnpRhGqs5t4ihNpUBK2oxyjKjF7JhJ3Fnysi+HEqWht+2Rtf/o0aOzRK6cn14krH1y/CJQ4jYtZ4mPiFoAx6C3TRS15YgmjtfOUX9FY0INlpuTRmQMBruGfsZouy3SXPHTxsbXxy1lrDwjJ7a2RlsmLYm029nZ0VVXXTWh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4hICez25G7h6RVRts7kyTjMbG+uN9j9J6PGl1Z1fSIgAAIABJREFUiSJlmVhvx2nJ8+ey55Sas+9Xpn32UBpeoVAoFA4ELohajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvtw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxuPHz8uaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlrenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwoHABW0PFEW8ZddkOT9eSieJq0ncRhpMzc7/2ptESuaBXqSdSWfU0qhNRVtfUEujP8Ta6MumnZrSOPOzpLWERaYTa5P1oRc9ykgxK//EiRP72uXbRDs7NedIgrRjp06dShkzdnd3dfLkyT1tI2KDoRZNCTgiv7WoNeuTXWO5ReZHePvb3y5JetSjHrV3r91jc/jYxz5237jcdtttkzYy95RRoTYvkXUgy7ujdO6tAxk7DiV/r2lwY9lrr71WknTrrbfuO28SuI/8u+uuuyRJT3rSkySt5+L973//vv5HuXsZqXzkuyFbU49pxaLDeywfVpe9D+iHpd/H32PjYZrcO97xDknS7bffvu+4zzmzck0bJGsKfeLSNCrcvjMCN7L0kBSf33sk4vRN8p3on2krl9avu+++e19bI8uZ9+X7sbBn0SwoUaQ3LXJ8Jny/+AwWeXShUCgUCsBGGp5t4mmg/VjKuexok/V2c/vfsvxNEqBEZ5JKZE+mPZrbAkU5Z9z0lJvX9ngj6X+jlOs1POYjWfmM1vLSIDVJk+RNauLYR7lpJskxJ9HG22sP1jb6uqwf0UakkQ+0FzE1DEOXTcTam/lurWyTNv3/pskZ76ZJlXfccce+dvtxMo3uzW9+s6T12vn4j/94SesxNk1QirfU8ccjRhfPNer7Tv9rtEFmtmmwtdU0DD+e1CRsbFjfJ37iJ0qSXvOa1+zda2vTyr355pv3teN973vfvrb6+jKWoyiam/Pvt46KsLW1NbGq+OeTEZf+WfLXRnlqpvm+8Y1vlLSeb7M0mc/IrztuUUNN3/rMdvh7M4aVSOMiNyc35GUEsDTN/+WYR3lsHFt713JuIiuZjYVZDOxe+27Pt/f108rBPG6+f/w1/jelmFYKhUKhUHCoH7xCoVAoHAhcUNAKTYFedY4SIP13JnlKa5OLmTRpnrzuuuv2leXNBOZI5rYtdFZ71ZumHZK5RrtxZw7fjN7G949beJhKb2aBKJiFAUE0cZq5xcbIxlBam2BI+WTX0nTr67PxzCi6vLmFofdzZgXb5kWKk8mZNEwzq5l1LLBCWpt8Hv3oR0taBzqZSfMtb3nLvjLf/e53791rY2jl2rjZOEWkx2bqM3PNEhKBbK0wxSDazocpJZkpPaJos3abScnutXB7GxuPG2+8UdL0mbSxMpOmN+8ZSBhPc1WUDsMUnQjmSmEAVxSoQxLp3k70FpTyhje8QdJ6zqzv9l6w94QnWaYZmibFqD6aW+3Txi0id+B821rlLvIMavPlZ4TM0fOakSDYs25jY+3w70pSTdrzdOedd0paP1ePf/zj9+5hQA3dFzTh+v97ayZDaXiFQqFQOBDYOGhld3d3EvThpUuG9NPByMRjD5MAssTcKOnV/qf0QrLjKJiCUgXL8iA9FAM2SAvkt7Bhf0w74Fj0KHfsO53INs6R85j1MKHbt9HqpvZJJ3JEI7eE+qu1psOHD0/SEXrUYja2plVFm2raXFlwikmgDJKysTCpU1oHJ1iQlI2LaS/R9jG2Rm18TDrvETTTymD94HpjEJOv2+4hSXKkUZI03NpiGoqlKbznPe/ZV5YfA1sb733veyWtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537bvXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+tNN90kaf3e4fuBGqA/FhEazKE0vEKhUCgcCGys4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJa2l6A/7sA+TNPWt+DaYn9T8XFamzYHfjohtsnq43qPkYW996G0tdebMmYlPN1oHfA6t3dZe0zJ8O03zpdZC61BE1MBUI1q9/DNGGjpq+NHm0SQWYNoAKfSilAYbf1oDSE/n20SNMUvHidJTuD0QfeX+HltPfM/YPVznvhy/QcBSerHS8AqFQqFwILCxhvfggw9ONKDIBswIGmoo3vbLCEsmi5uGR4lRmm51Tzu1p70ykOTW7jFJl5FJUflZf9kXfw+lEPo3vQRMSSojpY18a5FEGh3v0UNlmpofe256eujQoVRKtwhNUpRFUZqkzfJzx7axHG6Qaf4XJvf6cyQ/tk9GAPN/ae0bpN/HX0d/ckYtZ4h8yNQG6f/1Pg5aO0jrZ9eaZmN+SH8No+N6UaF2rVlq+PxQa5CmSfhHjx5NN1c2H17krzSwnTamth7oc5Wm0cAG6wfr8d+tHuuT+eoiyjwDI70ZiR1tPE3Niu8srilfLyM3+a6IrEdZBGdWf0T+TkJ/A58rX64dY7StISLJiMZ4DqXhFQqFQuFA4IKoxTJaJbtGmkoK9N1FUjO1ioxAOYqWYllZHpk0jZLLtqjwZUfb7/g2UmqPSGoZZcb6fBnWJo5fL2rSMEdWbeiRrnJOIt9r5tfMytvZ2Zlo3n5cOT6mPVFS7eUaMeKW681rJsz3tPq4djzsGLcDysjSpfWcRXl2vn+96GDm4y2hsLK2cMsXO25ar28P1yR9YpFVJ9OEuB58PSSMP3LkyGy0Hccv2pg3206H1GP+f0Z0ckspUgFKy59P30bTLjmGGSG0v5/rmM8/tXjWHbU1Ip7P5pkbDVs/ozgH+uk59v79zeco21IqymvNLGc9lIZXKBQKhQOBC2Ja6Wkm0UaL0jQqq7eJI3O0+D0ioaVfilut+Eg0k1YowVPi8n3IWArm/DG+jYx09H5Mf51Hpg0wes+PJ230lDqjts9tsUEp2N/vpbCetLWzs5MyyPj20V9Fic7PS0YaHGnprI/aWcaW4vvMXFG2I+o/fcaMyqOGF+VjMmeLfmcf4cu+Z1J5ROps40gNJWqbIbMk9NiIqJH3/L+8l/X6um2sqZFEjC5RtGeESJuh/51rKLJGZf5+Rhr7NmZrk4iilakdUgvk+vN9zMicWU/0PmCbCD8mtExkGxtHGl5Wbw+l4RUKhULhQKB+8AqFQqFwILCxSTNyUkZmnMhpK8WBBzRZkWC6Z9KMQvql6b5h3qRpocrZTtqmPnvVm/v7ZYjMYAa2nyTcUYIz+8nghcgsFZlg/PdozKL94nr1+/+jPQeJ1lpovvTtzsL22aa5cnxbemayzLTD5HFvJmJABs2UkUmf6ykzw0d94VjQJBwlKzPIh/1kGUtM9wyEisgforXo741C5v2Y9Obq/PnzkwAaj4yAmyZBv365Rvj899wVpAHLzO8eUVCSLyMC+8V3CMfMt5GUhrwmIkkgBWRG7h0F69FEO0eS7kETsWHO3Gz3VOJ5oVAoFAoOFxS0siTwgFIrAw56Sd3UgBjyG4GaFYNVfEIyJR/S53Bn5ajv1GAp8US7VhuysFpfH4MVovDcDJSk6HCO0kCosVAijpzw7HuP4qe1ti8kPJJQM3qojL4tOseAgEiKNWSkzZTEI4mUErwlNkcJwAzGilI8fP3RmHDOmKQfhaMzvSLbsisCxzFKBWA52ZqNtB4GVM0Frfg2RO3PAheszOhZzqjs5jT/6JyBlpKIRJzaDINVIq2J5c0RQ/tyWS/fC1G/GGi1RKPMCBRYhn+H8Z7s98NjifUmQ2l4hUKhUDgQ2EjDM3ooajdeW8t8T74MXkefEz97ZVKy5xYslkzsJTxqkNRiIlLsng/Dt8O0mChJ1c4tSZykj85AzaInpVPa7NGGZZJbT0qn784Ti0dtueqqqybScpQwHZF3+3p6min9RdSEorUzF/IdJeaSCDragNOQjTv7E/lW59JeuIaj8tnWzPoStT/T7Px6oU+SbY0kcR6b8+H58iIrR6a9ZhYLabomsjD+iIiA15I0gRYGfw01q2z7qKgNJBrP1r8HtbXMWuDPZf70KD0pA9sW3UNLAi0K3KTbl5t976E0vEKhUCgcCFwQtZiBNmEP/mJndEP+Gmp6S6Q02sGjTUKl/ZLrHPloFDVJjSGzI1u9XuK0Y0aj4zde9WVGmoRpqLTdUyuI/Khz6PkKsoTnKLKTRLoRtra2dMkll+z5VLOINWleavWSts0Lpdi5qL0eqBn7ebH7bS6tLSRUiEh1+cmIzigiLhsLuybS8Ej0nG0tZPDrhfOS+WE8OE5ZVK0/zvfApZdemq7bYRj2aQfR2skiuVl3RINIK1EWaR1tR0R/f49gg+OTaZA+4pZaH99zJM+PEsHplyNxiEe2zrJo+J52lfl2Ix8eNeUs0jy6Z4m2udemxVcWCoVCofAIxsYa3tmzZydSbE+jyCLRonyRjD4pingyUPMg4XSkdXC7kh4pLdGTQn07vIbJzSi5SWTkQ/LbpkjraFPSIUVSdc9G7xFJ3FluZRQFxvGaoxbb2tqaaIWRtJ5FhvW0C/vkWupJf5nfxz65hY003caE/qtIm8kovahZkM5JyvO8OE/eF+o3xpRiSd6XFdE2UfugFhdFSGb9i2D9sudkzoe3u7vb1TaoWVnfM8J2326+d7JtiCLKL1oMSOsWafqk57Jn27Q2X2ZGqpzljEaWLEby2pgbKXaUE03LQeZLjJ5J+uUMvfXASH1GskZWPf9bUnl4hUKhUCg4XJAPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+CXsJtbNIG8m2eOH2JNEGsHbOtnKhhBdppZn/IsutipBFkPqxj3wEPUmrtTYZ2x5RbpZjFGmmmb83u85fy3pIRB35Og3ZxsAeNneGzE8RbWFDbSZjMPJaHDeHzYiuexJ3lh/V07az5ydaZ7x2bgPY8+fPT3xR/nmhBsz4gshf3yPt9mVF+ZkcO1srnFtfL3109izfc889ktYbz3ptnZsSM2fP2mR5oH590oJkGp21I7qH1q9e7jOR5eHRvxr5NTk/jGT1ZbPvRR5dKBQKhQJQP3iFQqFQOBDYmFrMmxYiUyR37aXaacczR7pHZj6JEmUZDNFrI+8x0OHsTQsZpVhmFusl43MsogAbjp+1mXRrkYOd5XMsaP6J+mGgKTBK3PWmq8ykubW1pcOHD++1k+1nOb4tNKdFxMUZSQFNs9FeekxTMdNPFPjCe1hfRDLOtWNzaPXQ9ORBSiwzdzIIw7eDZjXeQ1NdZLLtmRcJritDjwqMJr+eSdiC5fhcRqkKWWpBLx2K6yzb6y5aO5xTPp9RsjoDdsy0GaX3mJnTPvlMLyE65zxb2yzlyZvQOS989tjGiMiBYHBQ5JLgOs76F91z9uzZClopFAqFQsFjY2qxQ4cOTYIuPOhkZxh9tEv6HH1RRr7rzzGxNEs89v/7kGhpP5Et6+mRIkeI6HoYOs9AmygYh9pab4sU1k2pubcNDY9lgQee9ogaV895vLW1tafR+P5E2nrWt+g4JW0GtmQ7OPtrbU1y3iMp3ULIuaWUScu9wIMrr7xy373Hjh3b10ab2xMnTuzde++99+5rC3d0j4gOuK4YYm73RFI61yKfn2i9M/2FcxE93zbWPkk+e5aGYdDp06cnKSf++eS7KAuAiygG+Z3rMNKEGVSW3RPRxHEe+IxbEIu0ToOhhsd2RJYeakI2vvYcWtt8UBVTcbKE/ig1hM90RpofgWsosxr4cpemQ+2rZ9FVhUKhUCg8wrGxD6+1NtGmoq03TGrIwvijY3MaXqSZzFFIReHolKiIKHw22xiT6KVO0J9k2hIlcf//XBJvNna+3mxrDw/6OijBRRs0RkTZc5IWfWle4+oRIUuxLyXrI32pdtxrAryGGj59utLUf2QamGll1kbT3qQp1ddVV121r1zrL6V59lVaa4uZNurvoRZi9TBk3493Rs3WS0vICA7sWtNk/DrJfOIRdnd3derUqT0NOVrPvXdE1LboWmplbGOkrWXvm4hMgu8b+vBMs4u2MstoyKjZReH7tA7wXeJJMkjRZ8jWRYTMutKzLFFD7m10y76WD69QKBQKBeCCNoDNNkiUpn4qbo0TgVJRL2LL1xu1gZJPlEBJGh5GjNLGLk2lPEZl8TovcWeRT7StRwmZlNIp0UVa2xxZcIS56NOeJG4Sai/ydhiGfVGcPX9slgCcnZdyaTJqB+/hOuglk5uUbFI4qcaYtC5J1113naS11YOaIzX9yKdmfr+MqDmyDli59OlRU/b9zLYsMvSI4nt+PtZj8JRZPSvG7u7u3rNN/6lvL58/am3RPZk2uyT5mXOWRXxKU78rrU+MqvXXMN6APv1Iw7N7jJ7Qxi3bzsmXQ22UVoIlZOzU1qL5Z1v43EZE3owyniO82NemRVcVCoVCofAIx8ZRmj6XqufDY66JfdJPIk1zl6I8MbbDwNwWbu0TRRMZKPn0tmmhRsLoJd4bRR/SV9STjOc2P90kAoro+fSyqMaeNLhUuprL92LUZxYBF2lphkwCjaRarkV+RuTKBjtmmpxpb/Zpa8v/b9dmVGb+HoM9N/S/UJPxzxP9rZn0zGfHX5NF+Bp69FAct4ieyq4xf2Vv/VrcgI1F5FvN2tfzPUbR0VH7SUHm743GUFqPhb1bpDx60a658cYbpf+vvbPbkdw6knB2T2swAxiGJXkAC7rY93+sBQwDgiTII48ka6arai8W0Z39MeKQNYu9kCvjprqriuTh4SErI38i66V3QHE9ZrzKs8B6zH7dtJ4UM9arWLWyNfv1SZ4jl1Xdz38Fxv9Wmb5OGJrbkG2uMtY3xzn8zcFgMBgM/sD4rDo8+o9dtX1q5bHKDEt1MYRT++D+9T+FWvv2tGZlWbk4EMdIZse4j8tE4r6YQejUYPayopyFlRpxHrGwOEbBCewmgeaEu7u7TQyvW5eJ0a2aq9LyTXV4zLzs7/GVFmRXr6A3QlYya+u6Zc8YLsdGz0Zneoy7kEmIUbr2QMlaTxmsfQxkRklgvf+9t4YcI+vqKav7/fHxceNR6nOc4uEcm4vDcbzpGea+y/pUzanzemm8GgubIVPkuer5+jKDkxnNrhZW607ZrX2/Vc9rpr+fvHY832tYlbDKJeD++dxzXr1+Hx31cA3DGwwGg8FN4GqG9/DwsMlectYeWWBqqpiO018Zt3JZmvyfzRXl8+6fUfeTShjdIlGcRa/6jqykbmFX+TiTtmU244oVMltzr0atKmfy7cVJ3Pip5LGq99vb/8PDwyaes4qpcfwu2yuxFWbnuuvkGrz2c2SjzqqXmbt9W1qvWnd9f7LWXU1jH1ufI61btoU50paIzJg1Vq4FFOMtq3uPx0lZj2QhVc/z0/eX1ra0NFn/29fOXszOneveul1tm55nnDfHTPTs+Pbbb6vqeU3xedSPrfc0b/RG8XnUt/3yyy9ffKYxuXuCz02n71nlVZF47zklnz6u/p2Vqg334TLvj2IY3mAwGAxuAvODNxgMBoObwNUuzVevXj3RWSdDQxfIXudzbt/3IazobWqBwXTh7opiQDZJSnXK3IPr/ZVuMZcYkgLoqy7pAhM5UqGpK1bm/6ukAo6b86c56S6cPTknHuuLL76IrUqqtnOr/bnrIaTyECbFrK6p4Dq485zpTtP8yPVI4YOqrSubSSzpHql6TtvX/ukOZzFz1dY1SkmxlJjS97cnWu7EJngP8Fr3uZfYtj77y1/+Et2zp9OpPnz4UO/evXuxjRtDEq525Ra8/9JzaOX6pGSd/meZSj9/ys+pXEAdyLu0nLZXYsmf//znF/ugKH8/HttP0b3vnjssu+ru/I5V6VZyZQpuHlOyiuB+L7qb92jX82F4g8FgMLgJXC0tdn9/vwkaul/XJD+2SrNnCcMeM6raWpFsnOqkadgeRVaMrE4G4fvfqWkrG7U69kSkQuAOnh8ZjCusT3JHRwpAk3V+RCxWBcIJl8tlE5x2CSiyQFMRvAuUk+mReTvZppSow5IWZ10mxkM21b8rlubkx6q2bLHvl5JPLMJ2clQccyoqd+s8eQVcWQIlAbn+nCg4k6G++uqryPDO53N9+PBhI+vX2QfXRvKMHEl0SQXibp4omcgmwk6AguzMiXHwONqf5pBCBLx3qrIcHctgVglvek3iIKtSEz5vnDeK2/J/x0L1mUo1jgpfVA3DGwwGg8GN4LNieLQC3K8vreUV49JnZF57lkIHrSYVgvK4fb9khZRB6/ESbdOtb36nyhdUp9jZqmyAMbTUBmTVPoOskPPnLDuBFpdjZNxm1YhRxcOrYt7UiJdxGSc4nYQAUtysnyNfWY7Q2fNe2ybGTaqeWUAq5uZ16mtKRegs1Uhtafr+91LJXbslgeuL53nEg8GxyoNStW2Z9Pbt22Xh+adPn57u6d56iWNILI0ekX5u9CBQnpAsp7/HOaWnoa+dVFq0EuWgx0L7YCmNuz/3BK31fz8vPiP4jFoJ3ifPnHtOCCn3IXkpqp6f7VpPr1+/nsLzwWAwGAw6Pqs9kCvEFGjFkOExPlK1tZLIymj5ubbyLCandd4tAFphPA+xOOezP9JChu/TSuLcuJhaEuhmRp9j2amx7RErKDGXVfZp32blT7+7u9uMfxV7ZJxkxfBStmZqzeTOjefuimB1zl3Wqn9HjKyzEGXOMQ5CFkK5sj5eMUYWcbsi3LSuOUcrts25WHkAEnMhk+zeERcLT+tTogUqhtarm6fEalxcLrGltM+OPXEEoQsQJPnDFC+r2rYSYsya92m/98mi0/Om74NrgusrPVs6kizYEYk2jkPoY9Q66nM/DG8wGAwGg4arGd7Dw8PSQkwZgWRi3aqiPzxlSTlhU/lzZQnpfzIix0zE0mjhOasjxUxSxptjeLR4aQl1K4YsQ+dHi44Mp+8vSUg5i2uVudnhai6PNJiVlb46HuOvjGm5OJyQmN2RGkFeh9QItO+fGXYakxPqVZ0VM9tSrLUzIWasCrTaXdYk1wFbGq2EebnOGAtzrIDrikyGsmz9vH7++efdBrCqTxO77rFOnRPv91XLsZWnit/l8eR10POMNY+qqevnrOuq9c3ngGugzJyBJL3F/Ieq52cg17Hmj7WDbr/CNTJefH6u2vnwmtNb4BrS0uvRGwPsYRjeYDAYDG4Cn9UeaOXPTf5aMrxuMcg6oXUupLhg/4zqGBxbH0/KBqR6isu00+uKbfRzqcpKKjyv7u+n1eIa2PZxOGaWrCUX99tTu3FZWUdEozsul8umbtGNl2vFtbFJY0jqL6vxJzUO12iU49e2qbaunwezNbV2tP5d6xUySnolUuyoKjN6qoN0q95lF/bjO6a8JwzP69n3r7H8+uuvyxZYnz592syTY2Zkz0mEvb+Xaih5rftzifeU5vLHH3+squd7ud/Hau3De1vjcNmnOrb2x2xN1m728+MzkAyPz73+Xorh8T5zajf8Toqrum2o7OPiw+l5egTD8AaDwWBwE5gfvMFgMBjcBK5yad7f39ebN282LgqXbCEwEcCl18tVQRcLXXCuYJr7Ty7GDro0kyB0DyJrG7q5VgkOQkpsSfuo2lJ8FsOujkc3AVPLk2zUCi5BhWNY9Tq8XC4vXJpObirNS3LnVmVpseTGc3NMlynnZSWjlcR7nZswlTLQzd9dTEz4YAd0wSUEUbSA957rB8i1wbXrrsVeggj7vVV5l9VKtODjx49LsWe6MNN3j0hh0a3n7jWek9yU33333Yt9v3//frNNkpQTXImJEnbk9mTZEvvm9fHLHZpCG0qwqXoWp6brnC70o4LxfVueU0dK5HPCIbxuU3g+GAwGgwHwWQyPXXH7rzwLyykwzaBk1VZeZiUwzW1pcTKFfVX0SGYn60lWdN8mFT+zIH0VUKW0Dy3JbgnpM6YlM4DuimNp1SYRXGcVpWJlZ1VfU4yqsgTN00ryjeNmgohjJP04q3N05Slkh6mLef9M64EF1Co876AAMM9H602v7n5KosHah0tpp6QXk2XcHO1JPK1ExOlJoHfCbbsq7u7fefv2rX12CLwvKNTs1i/XCrfhePu9KEanVwkZs1N4L0tIYvHah2sBlYrEObcU4+5zoblRQg3n0cl2ff3111W1FaDm2uni2bynyfxXz51Vu7M+ZjeWDx8+HBaQHoY3GAwGg5vAZ5UlMJ7Vf335HuV7nCAvY3dJ3oZptf27SQrL/Z9kp2iJuPRwWn3cxonUEkcKMtnuI8kDraxmYsWgk6Awx7gSj17h/v7+heXq2KfWRm9iWbW1GF18LLUTWTF8gayd6emOPTM9nDEvFysiY03z19dyYqgamysXoERVGhtbWrmxEivhca6hJJbg9rMnSff69esNqzlSMM1z788drm0W8XMNdbaWmB2FItg+qB+HrN3J3zHeyqJ1znmfB8qf6bsaqxhlv98o4KFz13fo8XE5E1yz9JQ4jwL/53PdrTeXQ7KHYXiDwWAwuAl8lrQYM9J62w/++tLyZmZa1VbqKPlxXbNLWTEUjSbDdELQZGW0iFy21F42kcboRGoFNhZdxf3IQlNBZreikg/nfB5jAAASsElEQVSdbKfPL/fHGKFrJePifYm13N/f15/+9KenbDPHcmRxSopLoLXnmp0yFsRMNOcJYNyLVqs+d1nIZANsWeLYR1pflNxy8QodV9a5i/cJFGpPMV3Hesg+UmxlxchSrM01Q+0ZpasszcfHx6f7xsl2Kf6eJPIYn63K3hrH0nk+fN6QGWkt92Jyxt/0v56jjhEzNsei9STWULWNJ6ZWRh36ruaYnjnK03W4OGnHKmbM/5nz0b/HsawyfDdjOPStwWAwGAz+4PisBrDMtOsWN7N3KAfkJH5SjIMWGOMX/T0yEX7e398TyJUF4TK6mHVKoWNnAZNhCTxOn8cUZxRoxXdwjITLjEs1R2SQK3mvPZzP5yg71P+WZSrLlw1ZXVuYdG6uMaaQrj/jMK62SdBnWgesy+vvUXA6tfzpzCVJvkmkmkLAfUy858gWOb7+d7LWHYNK9xPvBdcUeZX1KZzP5/r111+fjqn1ofhZ1fNc6hhk76tmt8ye1vwlmbV+PNWtcf+OzWgbZUAye9bdY3wvSSY6b4Rrc9a/64THOX4dT3Oe6l37Z6kW0j0nGKPjXLvYpJ4Dmr+Vd4AYhjcYDAaDm8D/SWnFievqVzfV7zC7rP9NJYIUB+xsJ1kVtBRWdXFiEhSt7vtgzCFZIoLLZqQoMa3NbqUzrsi5pmqGiy84Nt3H47I0yVQdY+E2R2qpHh8f68cff9zE1FzbD7ElXZd0Hn2bpASRWiW591gXxbhMH4O+KyuasV0XM05Zsho7lX6qttddY9Z95rIBGatl7FBYeQkEjtWp6qzquvo++pxQoeSrr76K6+fx8bF++OGHpxpHsdoffvjh6Tt6T8yX87aKdQppPbt4M+tvFavjWnVsjWNmvGz1rKJCEVl7PwaftWm9ubh8mgNmi3ekZrhcu6uYOHMuXFawRLj1end3NwxvMBgMBoOOq2N4b9682Vh7XYEg+e2p79etCll5zAhi3Y09AfiU6Z92rT0Yn2D2p6ulI9NiFiP31VkojyfmQmvKxTjIavm/U3RIdYz8fKU6caS2ZS9+2nE6ner9+/dP45a17qzLpNfnaupSDWWqX3OWKdcZW6309d2z4Po5s/XPqkYxfcc1u6TlyoxmwbGPpPOa2EF/j2OkB8BlIes7zEJ2jEVzqtfHx8fINE+nU/3000+bDNIOMV4xvKSP6Z4lyRvAOe7bMmaXGF4/JzE63auKRXPeujeFc0elnVUdHtnYEa+XQD1hPtdc3JaqQ4np93lkfJ7bUNGm6llXtNdjDsMbDAaDwaBhfvAGg8FgcBO4Omnl9evXT/RR1NwJCouuM0XaBYDplqNLk0We3V3IpAUWj7riyiQouyp8T0KzDES7RB6mnfPVpfiyHIDHSa1NeOz+WUqWcJ/tuXfcGPeSHy6Xy9M1Vjq3C+rTTbMKlPMa7pUp9PNgSQHXoZM1YnIAE51W7mmOma4fJ2XmpPiqtq51d31Sijmxcm2nc+guJro5UzihC1Rw/T4+Pka31Pl8rl9++WUz1z1RJ8mYMYGizwHLQJIb2j1DmPjBBBG3L42BpVps+eSSllL5C59Zq3s6PUuc4LRbi31frqUZ3d4Ur14lPHH9Mqmtrx3eC1dJHB7+5mAwGAwGf2BcnbTy+vXrJwvFWWSpUJpFvX1bWobaPxkfWw45cF8uLZnvkQXIqnAsbSV54/7v+0lCxm4bzh8TDbivPlbKkJGBOVaYCrSTKEA/Tv9sFTy+XC4b9u4C9EeLyft4U9JKEv3u39GrEigo3+REC8heaGG7xJq0DyZrOaFcXhcyGidWzWa0KW3cFQ+TKR2RmKO1zjXb1w7XweVyiUlPp9Opfv7556e1wrKVqq2M1qrQnEj3FD0YXU4ryREyacU9d5SwpbT6VArQx0RG5/bP/8m02ErKPTs4Bzw+RUH6/ZuEwJPAf9X2Ocp7g+Ur7lzfvHlzWPxiGN5gMBgMbgJXM7wuEMzU/KpnK4jtJWjRuxRf+v61D1lv2rdrkMjCxVRk2cdNVrCyBuknTjEVVwrAmF2ygFfCzEkGy8VcaC0dSWEmC6T1tyo56NdtxfBOp9MmbtKvZYpx8pxdGj0tU7bvcdeWBdNcO07onGtFY1QchjGQvk2K76T4hXuPMXDXKiel72tOUjPjvh/O9aqVVWJ4SUqvatvmZnXvqaSF8XPFgau27JzjdjF9eox4fTg/q7UqcD325wSvK+9Pl6PAfIkjzyqOMYlFu1g+kZ57Gle/pvqu7gXGjJ13j940tpaitFn/7lFW1zEMbzAYDAY3gavbA7169WqTXditWf1CUxh3ZfmkWIZeyfBcW/mUPeSs6iRgTIu4W1Fp/4wZpThd/4yWl8syoiXP+NuqCJdjXcUIBO5X86Zs2xSbrXppja0Y3qtXr572K0u8N/PVMfQeYyir7NlkaZPpOTk1vepcGYdZWaT0SlAgoIPXO8ngufj2Kg7Sx9z/plRfyijtx9srUqeXoo+f3haNQ+xLBcP9PV2f1bo5n8/122+/PR3z3bt3VfUcA6t6flbovb/+9a9VtRVVXgkdJC+GY3grMfX+vouTU2aRIh1OeID3cDovx9bd2u/bOKbEuUleo45UlK59uBg150BrR+vDZWmyTZgywI9gGN5gMBgMbgJXM7yqrTXtBHmZUUXLsO+DQsisPRLDY+1R1fOvPK1kxhcpCdXHon2s2lgkSydlMbqaur1tO7ifJBPmWAj3n+oM+3Ujs9trE+O22cvQ7NeIguFV23qkNOfOO5CyMRnD6duyZi7Vw3XL3q0jhx5zoIXL/eseoaXvzof7dELkvE8oi0d2ssrSY6zItTCiJBrXrphdz7Q7ErfsY3p4eNg0gO3PEDE7Hev9+/cvvkMvQT/vVD+616LLwa1RfuZqEPv7q3rTVQ1d30dVvi/T/eW+u7r3Ehj7Ts2zO3iPMDuzewcErbe3b98u10/HMLzBYDAY3ASuZnjn83ljbayaKqaYgMt8S9lxbBvjFBuS8oiLk3H/tHRcKxyyJFpJtCBdzDD5tp3FQ+uMllxicW4MnCPHhqj+IKSYZdXWGjudTpHl3d3d2Rhej8cKrAXjfLlxMx5BMWfXeiW1a2LGbV/f9Cik2IrLgNVnXDPMXHYZvlx3PE/XMosxUcXyyNqPCF2nDMYOxoq0LhzDc4LNq7XzxRdfPM2X2HOf43/84x9V9SweLYanOZC4cx93ajvFmJ3G1TO9ycpSpq/zRlzjRUlempTx6RheUpSid6SfO/eXmvv2+4lemz31pv43GZ3eF3PvcU3Xxm1ieIPBYDAYNMwP3mAwGAxuAp+VtCLQJVO1DVTSBSNquhJ1ZvIKA+WrXnMUGnapt3TTJTky10U6uWrpjnAUOwWEjyR9MBEgdQZ2+0lu3554QIkfJv04dwTdH3tlCXd3dxuXZl87Kb09Xad+DtqfZJvS9erj1/VN7vA+bo6RgsOr5Ai6kOnS7K4ybpvKLZhQ4RLH9Jn2T/fuqqSFY6F7zKX3s4CaxeCuJOSIK4oJT06E+O9//3tVPV9/uTYpPOHcadwvX53bnYX/PB8n2EA3aCrZ4rl3MLWfYZFV8sbKZSwwuYv7W42V/SNTX7x+LVlYz2e/XNMdqbznCIbhDQaDweAmcDXDu1wum3RnJ+bLID4ZirOahMTwVoWSqVRilfJP9kmLxFmDey1+hFVpQxJ8dXJrAllgKsp250m261pypOSUZPGvzifhdDptWFwvHv7222/tOa6YqdaXrEoJCnOtuLTqozJNTiZslWJdtS445r44jj6fTKghg1i1weKa5VjpLejv8Tw5VtfiRaDou5sjbrO6Bio8T/da1XOpgpJX/va3v1XVc8KOG0sSjTjChJO81UqgnXPK5BUnrJDKAXhd+H7/TPtPZRWrZ1U6jis8T16oVTkHS1kEJSa565YS+Y5gGN5gMBgMbgJXMzyll1d5C4gMjkXkK+FPWlJkeg6plEBjZJwmnVMfkxMATowuMYl+Lox/cC7cNkkyTSArdDHKNG8rmS0yl1TQ7z579epVTHFXHIYWW2dryTpObLefoyx8SqGtykUEit2mmGffj5OB6mNz5Rss+Ob8OUHixDbI8Drr2YtFcr05FsLrT7bYSwzErgla7/17Pe5b9b/3b7pHT6dT/etf/3q6xzUGXeuO77///sXr119/XVXPjMG1t0oiy1x/bp4IV5bCbRKzX8XyEztnaVW/N3heia118B5MLHclyk5ml0oaqraxOxaaO6GDVYx9D8PwBoPBYHAT+Kz2QPqFdkK5tJrYzDW1qqh6/pUnW2PmZZdtEmiBrERjEzi2vg3lmSjtlDK+Oui7T5JfVVu2Qeaw8rGTPXH+XIwyFZyvrCfuZ4/hffz4ccM6+3FTXIcWomu5QqbHGLGL6bKY+5omnu78Vp9XbVlSyvB0bJ1rJrGR/l7KhEzZotxP35aehH4PduGBvg0L6ldyW6vCc60djqGPm2P47rvvqqrqm2++qaqqn376qaqeszf7uFjIzFi+Y8J8nui42pbPuw6uu9QEtZ9Xkh1LsT2Ot4NrdcUo9+KcjlHy+By7y1zVfLHQ3LFE3stHJN+EYXiDwWAwuAlcHcN7eHiIsYeqLeNIjRJXcmTcB9udOFky/q/vOEsrWZJ7mXdV+5mJq9gk543isU5cOcXUjtQx8Xisz3L1ZRzTSpqLDGjFbs7nc/373//e7LdbbpQmouXNOq+qbT2fZOcoLaZ4j8vSS7VTrgVMio8lBua2oQeDNY/OMuccr1hhaqfE83MSemR/tNJlefcYHuUCdY15Xk4eSvPmxtL3//vvv29yB3pch0Lc//znP6vqmTGI4TmR7VRjmLwq/Xg8R3qp+vpOTap5j/d5InMVUoZnBxlxal3l2FNqQ5Xq8/p+uf7opXD1v4rZ6ZXsrY+HjPv+/v5wHG8Y3mAwGAxuAlfH8O7v72O2Uf871e+wFU8HLQMK5zpWyLiPLC62JepjlOoCfcv0qa/Oi9lYqX7JIdWZOSuG1iAzoBzTozWeGNiqtiVZkP0acP8rK0tW+oqRaty6dqlOrl/z3ny26qWweB8TM/yqMuPm+TgWSkZCK53stIPxRWYHd9CaZZyRrYb6/jjX6b7t55csa8aDXQZwygp2Y+Q9sBIAvlwu9enTp83ad7FczZPWkBieGH5fo19++eWLc+TYeI87Dwbvdwp3u5jxnuKSux7pOZCucUfKY3DNsXnctFbcM5lxTMXTOUf9ujH2ztrrlNHc99fzSvYwDG8wGAwGN4H5wRsMBoPBTeDqpJX7+/sljaabjkFvuROd+GwqjGVxpaPRqWu6qLJLYWZJQSoI7aB7JqWJdwpOlwGD1a4QPLk96X51hcfJVcdtVmnidOscKU9YQUkrq6C4xqNr2YuS+7id65cJE5wnuRFXguDJHdnnlm6p5D7s++A6olh0+l7fbyo8ptu/jyndT0ckmTiP7JfIUELV1qXF6+jKH3piUFpH5/P5RdKK1kNPnOHa5jhV9L7qDM+EN4oYuBDHniutb8Pz45zqfPrcpj57TNtfyZIJSVBhdf9yvacCdHdeTF7SmHtJC7+bysdcgpJzle9hGN5gMBgMbgKflbQiuMJcgV1vU7Ft1TY4TMuALLFbFUxScQknVS+TGZjKzYA2LeO+DVmHQFa4kiFKAehVgJtMj/JnzrLbY7BOHJvJKdzGFbZybA6Xy+VFR3TX3TsV2VMgumNPEk1JCzofSU1VbZkcr+ER0duUvOKYBPfLe8KxhtRSRtC2nTWmdPpU6uLWjs6P+1K6f2chjsHxO1Uv2TXv8ZWVrsJzeiYc8xYSm+pyZEqBT88BjUnSc/0+TsXp9Gy5hCf+z7l2heecS/7virD3mPyqKJ7g88CVJ5Cpcj3ofVeqQW+Tzm9ViuaSrvYwDG8wGAwGN4GrGN7lcqnz+Rzjc1Vbf/cqHibI8ktWZSpA1pg6ksXQ/cbJZ01/eT8Oz0cWdZLg6eebRINTIWrfLy1HxijcvCZ2loqJOzj+xE779t2aTZa6YjSM66w8Btq/1kdvJZTOmXNL0eA+PqWla/+02l2BPj9LQsz9OIxbM3VdWJWYpHR0F3dM8R1aws5jIkuaBc/av+azx1QYR+a2+r+zUDKEPTZyOp3iXPRzJWsmU3DiDpTvIrPX52J6/bsC2Yab870SA45rtU0Soljd00kucCUtxrngdXK5CnwmsnRo5cnSefI+Xnl3Pn78uPQuvdjm0LcGg8FgMPiD4+6aDJe7u7vvq+q///+GM/gPwH9dLpd3fHPWzuAAZu0MPhd27RBX/eANBoPBYPBHxbg0B4PBYHATmB+8wWAwGNwE5gdvMBgMBjeB+cEbDAaDwU1gfvAGg8FgcBOYH7zBYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE/gfv3VZUE2/cMQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bWlV3vt+e+/TVJ1zqupUCxStQG4Rc9U/RMUodggaFTsexQZFr9dwjV2u1ygBtWJQ1Cia5Go0qJeIDWLUqNgHAfUqEs21QwGlrw6qzqn2nKrT7Xn/mGvsNfZvjvHNtfapkqfY432e/ay9ZvP1c67Rvl8bhkGFQqFQKHywY+MD3YBCoVAoFP4hUD94hUKhUNgXqB+8QqFQKOwL1A9eoVAoFPYF6gevUCgUCvsC9YNXKBQKhX2BB+UHr7X2tNbaq1trt7TWzrbWTrTWfre19uWttc3FNc9vrQ2ttcc/GHWi/k9srd3YWvug/QFvrX1Oa+3//EC3Yy9YzM+w+HtmcP7xrbXtxfmvcsdvbK3tKW+mtfb61trrUceAvztaa29orT3rIvq1p3XnnocnrXDt0Fp7CY5d0lr77dbaA621z1gcu3Fx7f2ttcuDcr7c9X223oczgrmO/t71INV1eFHetz5I5T1pMZePDc7d1lr70QejngcDrbVPaq29cbHmbmmtfV9r7dAeynndYgxf/FC003DRPxCttW+U9P9KulLSt0h6hqSvlPQ2Sf9J0mdebB0r4BMlfYc+uDXWz5H0sPzBc7hX0vOC418m6b7g+I9Letoe6/qaxR/x0kWZT5P0v0k6K+k1rbWP3kMdn6gPwLprrR2V9BuSPk7SZw3D8Ou45Jyk5wS3frnGOdgPeBr+bpP02zj2uQ9SXWcW5f3Ug1TekzSuq8kPnqR/Jul7H6R6LgqttY+U9FuS3qPxPf9vJL1A0n9es5yvkHTDg97AAFsXc3Nr7emSXibp/x6G4etx+ldaay+TdORi6vhAobV2aBiGMx/odjyU+AD08ZckPae1dmQYhlPu+PMk/aKk5/uLh2G4SdJNe6loGIa/SU69YxiGN9qX1trvSrpL0udJ+pO91PUPidbaZZJ+U9KHSfr0YRh+P7jslzSO6U+4+x6j8Qf6vwjj/MEIP8eS1Fo7I+kOHs+wzrMxjOwdK5V7sRiG4X/+Q9SzIv6tpL+X9EXDMFyQ9NqFRebHWmvfNwzDm+cKaK1dLenfSfo6ST/7kLZWFy+Zfoukk5L+VXRyGIa3D8Pwl9nNCxX2Rhwz09Pz3bGnLkykJxaq8ztaaz+yOHejRmlIks6ZucLde2lr7Xtba+9cmFvf2Vp7kTdDOZPb57XWXt5au13S+3odb609obX2yoWJ4cyiTf8e13xCa+21rbV7W2unFiaof4JrXt9a+8PW2jNaa/+ztXa6tfbXrbXPdde8QqN0fn1kjmmtXdNa+9HW2s2LtryltfbVqMdMaE9vrf1Ca+0uLV7wvfF9kPFLkgaNPy7Wro+V9ERJr+TFLTBpLvrwktba1y/m8t42miU/FNftMml28IBGLe+Au/dwa+0HF/Nw32KOf621doO75kb1192R1tr3tNbevpiT21prv9hauw71X91a+5nW2j0Lk9B/aK0djhraWjsu6b9L+lBJz0x+7KRR03h6a+1x7tjzJL1bUnjPYu2/cbH+7lqskcfimue21n6vtXb7Ylz+v9balwdlrTpHz2qt/VFr7e5FeW9trX170qeHDK21V7XW/n7xbLyxtXa/pO9cnPuyRdtvX/Tjz1prX4z7JybNxdyfb609efHcn1qMxQtba63Tlk/TKNBI0h+45/1jFud3mTRbay9YnH/qYn3Zev2mxfnPaq39xaL+P2mtfXhQ5xe21t60mPs7F+Nx/cyYXarRmveqxY+d4eckXZD07N79Di/TKCz8clLP9Yvn49bFc3RLa+1XF8/C2tizhtdG39wnSfpvwzA8sNdyVqjnqEZTxJs0Sqb3Snq8pI9dXPLjkh6t0Tz1cRoH2+7dWtz7jzVKI38l6WMkfZtGE+w3obr/qHGxPU9S+NJZlPuERXtOS/p2SX+n0fzwTHfNZ0j6FUm/LulLF4e/ReMi/rBhGN7rinyipH+v0dx2x6Jdv9Bau2EYhr9ftP0aSU/VciGdWdRzmaQ/lHSJpBslvVPSsyT9pzZKqf8Rzf8ZjYvyOZK2VhjfBxOnNWpyz9PyB+7LNJrE37FGOV8q6a2SvkHSQY0S4q8sxuv8zL0bi3UhSddK+maNc/2L7ppDko5JeomkWzWula+R9MettacMw3Cb+uvuoKTflfThkr5H4wN9ucZ5Oa7dwtQrNc7H52k0i90o6U4tf0wNV0v6PY3r7FOGYfizTh//QNK7JH2JpO9eHHuepJ/WKHDsQmvtBRrdD/+Pxhf9sUU73rBYq2YG/RBJ/3XRp21JT5f04621S4ZhoF+pO0ettQ+R9KuL8r5To9Dx5EUdHwhcrXEuvlfS30gyC8QTJL1KoyYjje+8V7bWDg7D8IqZMptGIe8nNPb/8zTOx7s0znmEP5b0LyX9oKR/LskUhr+eqeunJb1C4zx+iaTvb6P29M8kfZdGwe77Jf1ya+3J9iPVRpfUyyS9XOOau0LjfLyutfYRwzCcTur7Rxp/P3a1axiGe1tr79H4zu2itfYpGt9D/6Rz2askXaXRnXOzpEdI+lR13s9dDMOwpz9J12l8eF664vXPX1z/eHdskHQjrnv84vjzF98/cvH9wzpl37i4ZgvHn7c4/nQcf5HGB+zaxfdPXFz3yyv25ac0+pwe1bnm7yW9Fscu0/iD9kPu2Os1+lye7I5dq/EF+q/dsVdIuimo59s0LuYn4/jLF3VtYfx/ENfNju/F/rnxfYakT1707VEaf1hOSvrf3bx/FecVZQ0aBYwD7thzFsc/FuP6+mBd8e8BSV850/5NSZdqFAb+5Qrr7isXx5+9wvPwb3D8NZLeFvTZ/j55ledA40vrbxfHP2px/Mmu3ictzh2VdLekn0RZT9D4jHxjUtfGop6XS/qLdefIfb/soVp3aNO7JP10cu5Vi7Y8a6YM6/MrJf2JO354cf+3umPfszj2Re5Y0xjb8Ksz9Xza4t6PC87dJulH3fcXLK79V+7YQY1C0wOSHu2Of8Hi2o9efL9C4w/7j6COfyTpvKQXdNr4yYuyPjE496eSfn2mj4cXa+TFGMMXY7zOSvrqB2sdPByCPP5Oo4/lx1prX9pGX8Sq+DSNZpw/aq1t2Z+k39FowvoYXB+q1QGeKek1wzDcEp1srT1Zo9b2M6j3tEYJ7um45e+GYfg7+zIMw/slvV+x05r4NI2myXeirt/WKBlR0mIf9zS+vq7FX2qmAV6nUVL7EkmfpVEzffWK9xp+dxiGc+77Xy0+Vxmvl2jUlJ+qUeN6uaT/3Fp7rr+otfYFCxPQXRof/lMafxz+lxXqeKak24Zh+NUVrmXAyV8p7sfrJN2vUXK/YoVyf0rSDa21p2rUot/o15jD0zQKYlyr75X0Frm1ujDP/Vxr7WaNQto5SV+leEzm5ujPF/e/qrX2nNbatSv0abLuVrlnRZwehuG3g/puaIsIdI3r4JxG7XWVdSC5+R3Gt/ibtdo6XRdmBtUwDGc1WnrePIx+cMNbFp/2jH+8RkGOc/+OxR/fUw8mXqzRSvB92QWL8fozSf+6tfa1DSbxveBifvBOaHwAHzd34cVgGIa7NZoRbpH0I5Le00bfyuevcPu1i/adw9+bFuevwvW3rtisq9QPprCH9yeCuj8zqPdkUMYZraa2X6txYbKeX3Bt9djVx4sYX9b3CSu01RbxT2vUvr9co7R79yr3OnC8LLhglfF69zAMf7r4+51hGL5Oo3DwQ/aj3Vr7LEk/L+lvJX2xpI/W+AN5+4p1XKXxR30VRH2Jwrr/SNJnaxRgfnthyk4xjKbwP9Zocn2u8ghCW6v/XdM5/V+1WD8L07eZab9V48vyqZJ+Mmlvd44W7XuWxnfQKyXd1kb/WbqO2pjStKuN7cFLc7otqO8KjeNyg0bT98dp7PPPaLV1cGEYhntwbNXnel3cie9nk2Ny9dvc/6Gmc/9kTd8dUX2RL+1Kxe80SWPahca4jxdJunQxzpZGc7i1dkVbxlh8rsZI0BdJ+uvW2k1zftAe9iwhDaMd/vWSPrXtPdrvjEb122MyyMMw/Lmkz19IHx8p6YWSXt1a+/BhGHq27RMaJZ0vSM6/i1Wt0miNpsKeU/fE4vOFGh8Y4mxwbK84oVEb/Ibk/FvxfdLHPY7vU2fq6eGnFnV8qFZ3bj+UeLNGX8e1Gv1rz5X098MwPN8uaK0d0Pggr4I71PdL7AnDMPxua+05Gv1Cv9Fae9awO9qV+ClJP6xRM3lVco2t1edrHAfC/HdP0yg8fvwwDH9oJy9GyxqG4XUafUWHJP1TjWbYX2+tPX4YhjuCW27RdN2FVpa9NCc49vEan/PPGYbhT+3gYi18MMDm/os1WnoI/lh7vFXjuvpQOavRQjB6rEbLSYYnabSw/UJw7kWLv6dIessw+stfIOkFrbV/LOkrNPpBb9Poc14LF2sS+B6NvpLvU/DCXQR3HBvySM13a/pi+IyssmEMSHhja+3bNL4on6LRaWo/tpdod57Rb0n6fEn3DcPwFj14+B1Jn9dae+QwDJFW+FaNP6YfOgzD9zxIdZ7R2D/itzSG9L5nYQrdMzrjG137p9HxFet5S2vthzUG4kzMSB8AfJhGIcQ0zUs1Pswez9Poy/PI1t3vSHpua+2zhmH4tQezocMwvGZhfv15Sb/WWvuMYRjuTy7/eY1a1F8Ow0Bp3/BHGtv+pGEY/kun6ksXnztmykWk3Gev1YEAC2H59xYvy1/R6D+c/OAtTHV7Xnd7QNTnazUKRw8l/Lp6KPH7Gq10HzIMQxZEE2IYhtOttddqXOcvHZaRms/V+Jz01v2bNFqVPA5qfBf8pEaN/z1BnX8j6Ztba1+jPQqUF/WDNwzD77eR/eNli1/fVywaelzSp2i073+xlpFGxKskvbi19iKNkWwfL+mL/AWttc+U9NWS/ptGbe2IpK/X+JD+8eIyy7n6ptbab2o0JfypRtPDV2jMD/kBSX+hcWCfqPGF/jlDHoXUw3doXPR/1Fr7bo0BKtdL+rRhGL50GIahtfYvNEalHdToo7pDY6DPx2r8cXrZmnX+jaQrW2v/h8aH/oFhGP5KYzTXF2qM/vxBjT+2RzSaYT5+GIbuC2nF8X3QMQzD1z5UZc/gQ9oixFvjOn22xh+FHxmW0ca/JelzFuP5Go1a79dp9HV6ZOvupzUG4vxca+2lGn2sxxb1/NDFCl/DMPxSa82iLn+5tfbZkYVl8SPXTa4ehuGe1to3S/rh1to1Gn1Bd2tcz5+gMfDnZzX+MN6zuO47NK6TF2tc1xNWlzm0MTL06RoT6N+rMUryhRo1trmIxH8o/IFG3+2Ptda+U6Ov89s1WgEe/RDW+xaN/q2vaq2d0iiM/e2MNr82hmE42cZUih9orT1K4w/OvRrn/pMk/eYwDP+1U8S3azSH/mxr7cc0am7/TmNw0M4ctjFF6kck/dNhGP5kGIaTGhUluWvMzPrOYRhevzh2nUYB6Gc1vtcuaAx2ukSjeX1tXLTTdxiGH2qtvUljKO33a1y492p8Kf9z9X/pX6oxUuhrNfoFfkOjJO0TgP9OoxTybZIeuSj7f0j6VOeQfY3GAf0ajZPQJLVhGM61kTbqWzW+1J+gcQG/XaMzeU+mxWEY3rV4ab5k0YejGn02v+Ku+Y02Jua/SGMI+yUa1fA3apS818WPawyy+W6NY/ZujRGvd7cxl+3bNaY9XK/xxfxW7Q61z7DK+H4w4YWLP2l8gb9d0r/QbnaIl2t07H+lxjX8PzQG2DDgp7funqlRMPrqxecJjekXqW9jHQzD8KqFMPUKjSksq/i0s7J+rLX2Xo1+qi/W+F64WeML/88X19zextzQH9CYSnCLxlSaKzVNoVgFfyHp0zU+P9dqHJc/lPQlHY31HxTDMNyyGNfv0/gs3aQxhP9xkr7xIaz31tbaN0j6vzRqYZsaTcoPenL7MAz/obX2bo1h/1+2qOtmSW/QMtAou/dNrbVP1/hO+g2Nfr2XaxSEPDYW5a7rd7tv0YYXaDSTXtDoV//CYRh+a82yJI0P517uKxQKhULhYYWHQ1pCoVAoFAoXjfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvUD94hUKhUNgXqB+8QqFQKOwLrJWHd/z48eH666+X0ZjZ58bG8nfTjlm6g31ub2/vKsunQzA1gvfuJXVinXsezGuj8xeT+rHq2PTqzT79nGT1nD9/ftdnBE9rd//99+vs2bOTfJtjx44NV1111aTuaB2s027eO0ex91Cti4u556HCqm3pjdmq4xpdw/eDP7+5uTn5PHHihO69995JRYcOHRouvfTSSX+i8uaei956i66ZQ69NRHZulXs4D6vU69/L0TXRPdk1WRujd3+vfB7nGrFPrg+PCxdGUpdz50YCnGEYdPLkSd13332zi3StH7zrr79er371q3cacemll+769B2wRj3wwEhecebMmV3H7VOSzp4d87/tpcoORS9HYu7lGC10a2v2Y+zvsTbZMWsbEdVn9/JHI3oRZP1iWSzTl23/WxvtO+fAvkvjD5U/Z/fefffItnXixIldx/21th4OHDigN74xzo29+uqrdeONN+rUqZEswubcl2ftsTG08u1aO+/7ymsNHDcb6+hHnuNv11g96/woWzv8i4Dry8aL19p1/l6+tNgO9ruH7Nnwddg5O7bKDx7PHTgwUk0ePHgw/C5Jl18+krMcPz5yDx85ckTf9V3fFZZ/5MgRPeMZz9hpi62Dw4eXHMz2DuJ7x78UCTtnn9lYRs9pT/jy98yV449z7D3m5mFra2tyr/1v42732vpjvf6YXcNyWabNrb/HjvHH0o77Nlr5Nn/Hjh2TtFwfl1122a76pOW76tZbR1bH06dP66UvfWk4LkSZNAuFQqGwL7CWhjcMg86fPx9KBgZqOJSEqEH4Y5Gq6hFJN6xvFW1tro1sl7+GbV3F7EpNgddGarshk7TteCTZsT/2afXwu/8/M51Ec87yo76xL5QU/Zxm2oxdY331sHng2lhF82EbWH9PK8zGOFqjlKgp8a7SRgPXaM9KwLngMxj1j/dmJq1Ig43MlFEffPk9rcbQWtPBgwd3NLtovux/swbw+TREzzTLWGWM7RqbQ75T+Dz5+7PnPepXpkES0TNtoCUmem55rb2DqellJlV/L9vCe/xzzDHPLFdewzPN/ujRozv39taPR2l4hUKhUNgXWFvDu3DhwkTq81JTJgFkErG/nxLHnMM0qo9+uag9PSnF3xv5iiiJZNJgD3PO5N45Ss09/6ZJUpEWyLKz4JSeJhvdk41pa02bm5uptrNqn6J+SFPplXMc+dYojWe+qEhbzHyH0ZrNtNp1/GSZBtlbb1yb9NlFEj7Hnm2NxsrWF3049snzUT1bW1vdIIetra2JdaU3XtZeW5vRMx35kXvw45XNXfYZwcalF5BCTZH9IqL3HMvNLFxRW2xsOKfUtqO2WVmmkUXPs92TWfkiP7qNm2l43uo4h9LwCoVCobAvUD94hUKhUNgXWHs/vGEYUme4lJulVskBo1pKM1Qv1yQzNZpK7O+dM4n0gnGy42xHFBBC0LwXmdsy00jPZMu0BDNDsD4L75WWZgcL586CjaL0B//ZM2lubW1NxsJ/t/bSzGHomUGzAKdVgm6ytRnN21yQUhSYwHXNoI7I3Jq1Mauvt2ajVCBpau6LrsnKj9Y311mUjsByVw3K2NjYmMxH714+//bdzJjScr3ZMT7LveC8LMirF9zBkH6u895cch1nqSyROZTPDd+JUV5c9p3PiB/PLOiLwSp+jVlbuGYuueSSXecjU+2hQ4ckje+uVfJEpdLwCoVCobBPsHbQinfw2q+ul/rtF5rnMknIH6P0HIX2EpReMkk00kIp/THAIZJ8Micynfle2snCs5mIGUn4mYbHNvo5yOrLtG3/v2l6dEpHWgITds+dO7dyWoLNv5+XbL7t2kjaM8xpJtE4cr6zwKRIe2YZRE+TzKTmKDgmSuPx6IWYU4PJyo7GpJc+4q/z5zi39mmSeKTteI2ht3YiRO3OtHWSF/B/KSZSYD2GzGpDLS4K6GO5HOModSLTvLJUEP9/FkgT9SGzwGQWk2gOeC2fGf/uJ7lERqzhx4Tv3I2NjdLwCoVCoVDwuCgfHn1Edl7KUwyiEOUs9H3VBPGoHn6PQqJpQ6e0HNWT2e5Zj28HQ3p5fJUEXUpe1E57/qYs5SAKLSdlUM9vQulrc3OzK6UPwzDRHKLk4UzCjkLLs3SXbA359mc+Lq6HnrZGRBaMSJvxx1dJBObcsR1RmHrWj0xa9+eydITeWp3TOlYhR4gwDIPOnj27owVEGvEc4YS9q6jV+WtIbGDlR4QHBr7P7Pk5cuSIpDi1yTReGw8meXttPps7+vCZIO7Lz9q8SmoQ0UuLYdv47oqo7Eh7NheL4cv1lp9VrQOl4RUKhUJhX2BtDU+aSpVeC8hs6b2IJ/pzMoqvnu8pk84jyZfSJTWVKKk4o5DKIqEiKcb6Sd9d5M/KNJNMEupFdln5pGyL6qPGyAi7yL9g5W5tbXUlre3t7Z3yrU29KK8e1ZuBtn/ON7XbOR+k71eWXO7bmiUgmxQvTbVkjlGPeo7tzpKIVyEv4BrtJclTq8mSy6NyaC2gX8u32/vTe/7QM2fOTMYnmpe5JOvIEkLfWjZOEfic2KfNv18H1gZaemgV8mOfrV9aP7LnNWp/Ro/or7X6uA4yv6Avh/PNtRNZlow8OqM/izRlTwxRGl6hUCgUCg5ra3gbGxsTCcFLARl5a0+qZCTVHM1MJKVH5/z3XkSXgdJUpAExh2UVDY8SL23o7IMHfQ/WZm5/EmmjWV5bjxKMfhdrq0Vv3nvvvTv3ZFpVhGEYdkXiRb5VajrsB79H/aeGyrGOor04p/weRSZnuZzMrfP1ZP62zD/HuqOyesTjGXUV7+n5mzmekYY3t61O5MNm7mGP7HsYhjDa0cM0KTt38uTJXeft2fPPPCPKMw0v8nVyvXGt9HydnJeeZcnWBrdQo4UhWnfZNkA9y1Jm5bBPe+/YWEXPvuXQGexae4dEcQC0FvZySO1//z6tKM1CoVAoFBzW0vBaa9rY2OiymGS2ZLJ/+Ggpanj0U9lxYwbxfh8rhxFcGROBL5+2ZWoLka+QfrGMkDnKM6QPr2entv9Pnz69q5/cUJfX+/bP+UQ904r1izlb1tbIJ3HPPffsunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN64orrpA0bngs7R4/q4fjFVku2C8+C3wPRdr7lVdeKUk7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3iEY+QtNwzjYEi0vKdcccdd+xqJ03B1r9o/THg5bGPfaykpWnTj8V99923qx5rv7XDxseeA48o4EOarn+rV5KOHTu2655rrrlmV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bftddd+1cS3O3mamtbdYvGztpOQ+XXXbZThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2tM2fO7JTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT33XdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbr0svvXTlQLbS8AqFQqGwL7C2hnf+/Pkw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+8847JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzpw5k4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+PLLLy8fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych+u4J89AAAgAElEQVQ5WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6SKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67/PLLd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aX22+/XdKUYcVgWqOfZ3s32rW0ekXWNr6vL1yoDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7hCU+QJF177bWSpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95www2Slu/6973vfZKWjC9Szt1p7aCFw7fFcO7cudLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg6uuukpSvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zdve9jZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy5cmES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV55syZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/LKKyXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi3LlzK6cmlIZXKBQKhX2BtTW88+fP70hEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75JHPvKRkqT3vve9u8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz5kzZypopVAoFAoFj7UTz8+fPz+xW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zpw5MyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3muvvVbSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHr/+98vKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPs111yzc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8Y999wjKWZayZgoDCaZRNrMHLltZAPONtE0KYKbr0blZAwhXtLKpH76DBiR5Ntm4+W31JCmvkMPSstzW7FE5XA7lV6eF3P4elv1WLu9P64XaXfgwIFJdF409vQR9yItOQ6ZZhf5WqgdUnvqbSVEX3HPR20g8wjXbkSoTX8vmTyoMUvLsSWbDUnToy2tsq2keljFz8fvnP8eAfAwDHrggQd09dVXS5qyKPm+Zc9JjymI80yWFLKP+PI4D7ZptD3jfr3xecmYcHoMSMwNpRbttzCiL5eWK+uPMbH4+sjCkj1X3jqXRVkz/iCKwchyrSONzyxk5r+c25bMozS8QqFQKOwL1A9eoVAoFPYF9rTjuamoFqzgTQI0m62SmGuml2x/uB4JLq+haZGku/5+M5llZMtReDBNJdyPjqSrknZMwAYzO2TJ3Rwf30a2JzvvkYXQR8mcmdO4lxRLE22EjY0NHTx4cGfNREErNBubCZhUT72+ZYFNUb8YAJAR8kZ7KZLQgCa1XiAIqazoBvB9ojmI10QuAo6tXcM0koiUnWujZ2Yk5qgBI4KKLPWI2NjYmLgGPJkzg3uy+eiZtNkmkjp7F4cFi9jYmXnNAtMMZn6TlvNg82JpFjQfRsTM2XvV3lEnTpzYVZa0fC65nx/b6PvJpHhrC9eq1ROtHb4L+U72zyZ3m88S0CMKQhvHSjwvFAqFQgFYO/H89OnTE2nDS3t0ckbbsvjj/v85qTIqK3Ke+msiaiFrIwmFqcV4yYF9ptTC5PIo8IDBKdnu8P5YFhqd0Td5ZJRFUYg+t/2ItnHy90rTgKC5wINhGCbURV6ii3Z89sejpP5Muotoz/z3qM++rb5s3x6ThjPpNUrCpuZobck0Sz/GDL5if62flsoRtZvabU+bz3YrN0QJyFmgTqZ9e0TWBoIBTxkdlS+HgToRGNTBgCC20a8TS5Gw9WAans0TU3Z8OZzvnoXB1hXXXZTCIu3Weq1NrCfSuA2mFdpYUJumNSxClkZmbfUaJZ+fjMLMk5tEW79V0EqhUCgUCg5r+/AuXLgw+cWObPOZZM1fcP9/lobQk+h4jtKmtceTFJv9ndKFlWFt9lqj9zX5crME1EjDo+TI7UCi5MqMssw+o/B+SmGZVuBBTTWTkHuS1FwyqtcAOdZR2etotVlod08ize7hGPt1kM0zQ/EjDY+WBfrjIpKE3jZQWb+4xQvL5fYtUf8y0uoodH6OqDtKio62+uqtrcja4tcb7+X2OazXn+M64Dq2e0yrk5ZailkseqH3vIfzHVGKGUyziUjwozZ6TYjWhiyFyq83vs+yNkbWNq5nriGmR/l2GxjrYf7GaO14P2JpeIVCoVAoOKy9Aey5c+cmElYUxUYNgZRcETIaqB4xcKaB2D1mQ/fRUoZMKovooeibM5+J2bZpV44orKz8jPrJI5O0SdPTk2zos6M/07eRWkdEc+Tr92009Oz6dn1Gwu1B3xIl4l493LYl2krGkPlBKGX6e+mHY0RvNB/0PRnmNrr1ddMaQKqxCBllGed0FTJfItLM+PxkScQevU2dCWsTowyl6RhHWmBWD68xbSojL/DXRMTY/nxk/aLVhhp4ZB3K/G6MXPVk1SSTYBut7T5Zndu6MbKX2wJFUc98Frg+oujwzCce+fW5vjY3N0vDKxQKhULBY+0ozfvvv3/n19gkhEib6UnWvMdAiWduK5YItDnTnyEtJRqzd1MCYX6eNPW/mOaYUZlFOXVekmL5vmxpKp0zl4q+sEjSyqI0mcPj/7e+W32raObWvx4BsJFH90jEmdtD30NUduZvyST7yOfAfjBCLaKHstxKRvZF0Y30I9IPQz+3bxd9UZlVIPLDUNth3tIqm6JmPpao7sxS0tOqvMWiR0u3ubk5aZOP9uN8r2IBMWQWg160LvPGMqL7XhwAn+GI3Dvzu1KjtXdLlBPL9UXNy/eLPsnsGemB77mMpF3S5LeE74Aod4/XRP7SDKXhFQqFQmFfYG0N79SpUxPJN9rqJ/N1RHlxc6S90fYcBiuP+WPUJLzd3/5nFBu1Qp93Q42HeWS0cUfSICV78wPaZyRpsj8cR2rD/hr2q+c/Y55NFuXW8y+dOnVqVsOj7ymyzfOzpxX2cgs9VmEGIRG0WQBWyVPrbZ+SEePOtUeaPhtWBiXxaOsdtpF+rYgVaNVtX/y8MWq7p9kRts6OHj2aXm8bwNKvFOUrZhHk0TuEa4eaD4mU/bxQA8n8c35sI9+jtNRu7NO/J1gPx8DKjO6lxSDy3fN7FgVq6Fl6WK8hi8nw9bH97HdkwfDrrXx4hUKhUCg4rB2lef78+R1thxuNSlNfSeYDivxHGZdmZnuWpr4tStyRVM1cQCvjrrvukiTdeeedkzaSBYF+OfYhkvBtvExKMz/Q7bffLoL2fNrbLZcwiiTM8l/su7XVszJwnqjhRSwg1EgOHTo0m0vV2zIm0xSYE+SlvYxFhGVGuY5ZBJzNqX1G/ljmP3L8/DNBjTpaI/54lHNm9dk9UYSdIdoyKPoeRdqxbZzPyIdITT+L1ow0ZS/RZ2tna2tLV1111c5zErWNPnRq1b3NdQ0sl76iyGpDqwPXg2dasQhKajVkafJzSjajTNM3Dswoh9Peb7QKcbNnD2rMnNPoeVqV0cevA2p2/B7FRDAytrg0C4VCoVAA6gevUCgUCvsCa1OLSUsV2JvEDNGuzf54FBLP4Aorl87VKGyXJtQsfNsHoFjd/GSSum9jlBQa1Rs5qy0oxfrOnahPnjw5KdtMFdGu8tLUnByFC2emNLunNybRVjVsB8e+t/OwhZbTBOTNbNxtPQtiiQIrsiT7njmcSa4Mge4FhNjO1hy3aGspBjwxXaQX6k1yYiaeM0lamgZQZKlBUdpP5k6geTIKLV/HpGn1eHNe1s6NjQ1dcsklO2MQmeAys3QPWbrLXACMP0bXjX2ay8FTGppJ9jGPeYyk5dzSHOtTGTJyDJr1rCx/LwP5+Gz2gsCyIDn2P3JxZIjm19pLE2Yv8Tx7xldBaXiFQqFQ2BfY0wawBtOIogCNLJmzl3CekflmCdTSVBOh1BIFHpj0YJqXbcTY2+KH5VJLojTlpVA7Z/UxwIVJzL69mdOdjudomx0DtQ6bN6+F0IHN+YuCVlj+XOL5gQMHJhpkjzIoc5z7ttExnmkJUZItpchMM+kltlLriCwcJuXbPGf0V9EzQ5IEBkdEWgrnci54ICKOIO0Zxy9abxk1X2/7K27rFeHChQu65557Vkow5tj2gpYMXLPZOoy0DI61PVvR+rZ1YJ/XXHPNrvrtHt9Pa7cFvERWLn9dtIaYRJ5pfNLUCsX3UDbX/pqMrCA6z/IYbBRti8W1WEErhUKhUCgAa2l4pPiJCHOzkOvMNuyPMVzeNKNsuwkp1wZ65K4kB2ayfCQxUCtjv+h/jGjJooR2aSkV+qRPUu3MkQZ7qZB9pobnNTL2L2q/vydKPLW6z54927Wnb25uTiQ4no/6yH54rYCSNLWJnr8s0+h6PrVMi2HagF+jvMd8xKSHisLts21Semk+vQRuqZ94zLZw26NojDIJPvLzsF+raHjnzp3TzTffPLknIpPwaQC+DdGccjzY7p7VgNYm+vB6KSbZxq8nTpyQtJse7LrrrpM03SYo2tCY4Ga0pFns9SuzuvXSijLNuOe351hTg+21dR3Nbqe9a99RKBQKhcLDEGsnnkc0RN5fRemR10TRf9ToaD/ONuaUphIckzfts7fpqUXcUfOKkjhp485Ilr0ETts5/TD0x/hrTXK3tmZbJs1pVr4e+tGiNrLfPQ3Pj0lG7WVJ5z3pP6PC6m0llEWPMVo2ktZ5rKcNGOYSsqPIMUq21i9q3BEYlce2c035tjCSN/N9RBuPciNg1hv5VDKJvrfdFiM8I2xvb+9aW+YLNY1IWvrDSMSQkTuzD732G/y9GdFERnjvrzUN36KzDfYM3nTTTTvHLNrTzl111VW77rG2RhtBWxssdsDGy/plfkH/zPco8nitL8v/nz1HfK6lXKPrRQWz773ocKI0vEKhUCjsC6wdpXnhwoWJ9BL51AymCVFjibQLag9zvgFpGo2VUQv1KIUoRZMIWpr6NLKoxl59zOuycWTOnbS02WfSUi/Sim3OtM8epRTrod82quf8+fOzOTHUxP06yAh/ud78GovIs/09meTo68k+mYPm/8/8ffS5+r7ynlU2tOX8ZmTiPe13jn7N94HXkNop0n4i+j5/3D69lkrfXWut63v0eXVRbu3NN98saakBkSCe1gKPrG9sT5RHmEV/RvNic2e+tNtuu03S1E/r3wPmk7T+WRmM2mWUuDT1y1M7z6w6vk2ZxS7qH8cg0956EeV8R/Z8/ZkW2kNpeIVCoVDYF1jbhxdtPx/ZjbNtMqIozezXnIwKEatIJtmzjEjjyrSaSGLIbNeZnd9LsDxmbTRJztphUpu0lPYoSTHPKNL0eC0JbSPy6GyDWY6Vl6opwc1t0zEMQ5on58ub2wA4qiPTAinVRv4D+ryYHxf5/ShdMlov8nVnEY8cE/88MSozIwSPfGrUVGlBiTSZTFqmVO3vidZB1D8/9mTN2d7e7uZwHj58eEKcHD3T9P+zr5GWNsdEE907lzNKn6u/x8bJfGu0nnjLkr0jrK3mh7PnkNtEmc9Pmm5kbeXaPdE4ZhaMLHrTIxuLHmPNqhGdfu1yHFexLO3Ut9JVhUKhUCg8zFE/eIVCoVDYF1g7aCVywnowwZcBGlE5NKPRBNfbT4lO3IygOaLtYjoATTJRG0klRhJcmgB93VlgTbT7d0RvFpUR7b9mYFBEltjvzxmyYInIdLCKSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNLbW9v7zLVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw2V199taTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQmFfYO2gFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201nba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdPXtWN910004gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5p06d6pI3eJSGVygUCoV9gbU1vPPnz09Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCw54Sz00iiX59o0gjjygybM5nR3ipyYhYmbydUY5JUxJfRtpFkq+VS8Jdu5Yan4+ANOmLW5dkEYa+nsyvQGk6iiCLaNyisjyodTDSqxcZN+fD297envggI8LsjNYqkhyprdu9XEMRTRjPMWo3IlagdE5J28a8F4XMfmRkDVEbs4jliBAiS+Zl5HJExp4hirTL/C22VqIkbParp6biXQYAACAASURBVEW11nTw4MGd54dJ174OG0sSwUe+/WwesijNqLyMpi1679AnzLVriLZ6IjkCzxv8WDM2gJ/Rs5KRfZiv2u4xTS+Kfu9F1Uu7n1+OLZ9Tkoz7fq0TnWkoDa9QKBQK+wJrbwC7sbExkbAiPwwlIPoPPOg3yiRTg5cYMrohSlORVsBIKqP6ibRU+vWy6Dn77iUSRsNRAiLBtm9vlqPI8fXSDvPuqI1mm7x62D2kHIv65fNs5nx4lJp9edR0KeX1NJ+MHDiLjPT3chz43a83aiv0X3HM/bksRyzb+sffOxctGUWxZWTsmQbo2zRHzRZpeJlUbscj4nGvXfWoxTY3NyfrIPKTsi5qHb7djMplXyNt1kD6uSznMBonfuf7IHqfZpSCPX8Z/bF8Z1hZXhvmO5BaKNdu5I9j7vUq/jU+pz0Njz7hVf13Uml4hUKhUNgnWFvDO3To0MSW7n9x6cPKJAQvfWaaBiXHSEpnjgylMUak+Tbwk9Fyvh76vTIC6oipwvxgjHSkNLhKBGGmKfvv9N3Zp81blCuYRXSuQhbrmWN6Gt7m5uakz94Pw7GM/GFSrJH0iH49IuaLbMudKB+Tfc58NhEDBecuk1R7DEZZzlYvRzHLEcwsKNE55tr5tlPryyJje9adOdi7x/ent9VT5g/1a8fKY75nRgDtx4kWHvpyuT6iNmTvjCjvM/Mv9nLq2CZGATPHNxoTe3ex/CjOgZaMLPIy0goNXF+Rhkc/ZpFHFwqFQqEArM2lKS1/5e3X30vpjEikL633S5yxstA+H+VhmURyzz33SJryVXrNj5I8/VU9mzAlK0qbUc4R+TcNzFX0kgtt2ZQG6ff0YF6P9c+O26fNn7QcH/KXGiLNtcdiQpgfhpqQl8DZpx63IkE/Ka+JImGp6XIblch3k0mtWa5br92ZRhdFsVm9EeuHb7u/3zNRRH2Inieuu4wHNlqrph3wWYgiSTluvRxOWzvUHKL1QY5Ze+Yuu+yynbJ8uVLOztR7Z9FHR78zI7D9/yyPliv/TM9FOnJsfX183xCMGvdtsX5Z/h3H1RDNGa0DfAdHFkH6Fcnl6X9jInal0vAKhUKhUHCoH7xCoVAo7AusbdK8cOHCxGzjVeMsTJaqrz9PZydptKgaR2Y1mqzoqPfmO5oQrG2WTBmZpRi8kW19ESV1Rw5eaRo0ETmc+Z1mIkOPqs1MWmbiiHY8p2mE5qMoHJ1BHYcOHVo5LYHmr6jdnPeIJo4BIEzb4Fx6c1EUvOPLp5lKmpJSk4Yq2vGc9zIdhmsq2nonSzTvbQ/VOydNTeq+PkNmaopM9wySsDGKTGscn42NjVnicZKKR/2imZaUb1GidBSc5BERnlvd1jea4SOTJlOouEaZNuSPkeSDwTm83te3CllBBqYy8B0cmcOZnkAzebTesi2EovXGZ/nMmTNl0iwUCoVCweOiglaiREluw5FtzOgRhdSuUr8HpQhKCJHUbGCwQpTEzAAXK8OTtfrzXuu1e73j1dcbke9GKR9R2w1e+qRkb+esTGtbNI7UlClxmRNbmkryq5BHZwEOvjxuwWSIEtCZmMuAhl76RkZjROk8SpuhNNvTJFlPRqcUabB8fkhEHgVCMBWIY9AL+mCbaFlgiLsvL0qvib77/kRE7Vl7sq2gpGlwHLUnauYsO2oL33N+rVrdNh9GccgUBz/GXKt8R0bpGww8s2eYa4lbjvmxMI0x22IsSoOgtS0LJuklnrON0frPkvyZ1hGR4/s0qyKPLhQKhULBYU/bA9F/EP36mtRgNvTepppzW6BQMohsz/RHsMxIqqAWwxD/SOpkeaQyo8TV6x/v8RKr1Z2FoTOZ3PtJMvLoHqUY/YzUuiN/D6X+ucTzjY2NULNjeRzjXroD10K2VU3Pb2H1kIA48hVl9VHTiiTObMsdzkeUajJHBN4j5M2+94iiM2k9SkHhPGU0aN5awXJ6bbH3Ti/kn35Yapv2HvJbCmUbC/M9QwuQr8/uNQ3PPlmHbzetYFnqka+b2hi/W/+iZPzoOWU9BhKD0OrFLY58fXYu0zqjeql19lIYDBxzvyn5HErDKxQKhcK+wNoaXkSKGyWCkxDZ7mOEmjSVCDMSV5bhz5Fupic18Rr2J5K8eX+mMUS0RBndWY80lvUxCszGl5GNHiQypnYQ2e4NjAaNbOkGLwVmGp5pd9RyIx9AJvVHEjnblW2f1Nu4lFImI3x7SeSrbHLJsWX5rKe3bVO27VEUuWrIno2eBk1Ju+eny85lWyj5cg3nzp1L18729rYeeOCBHe0sog0jaQTfHZHfmtpSpLX463qEB/TdR32mBpSRFfSsX4YseT0iEWd/snujYz36Od92j8y6FvnwqHXae7NHzWaa3R133LHThtLwCoVCoVBwWEvD297e1tmzZ9OIOA/696hdeNssJZ3MJxD5ZzIJJJMyfX3ZBpy9/mQkxaQH81I6xykjSfaSD9tGrdNy6yINjxF89EX18svYd+uPSad+3kg71ENrbZcGGOUm0m5PX2s013ME41xDkcRIbYNWiCh3K4tIjMYxI06ndhZFXGZaQJYP6o9lfh9qtJH0ntGPRVGOmWbOiMXI/2uf9913X9f/u729PaG9iwjTTcOy6GkbJ/qxpWXeLcvL1l8vEtCej+PHj0uKo1lNe6Efu6dxZe83jvUq6yDzk/Y0ymybt0jzZCQs57jn/83e8ZG/9sSJE5Kku+66a+feuSjfnb6udFWhUCgUCg9zrO3DO3PmTNefQ6mFGlEknfEeaoOZtO7vpdZCSTzariVD73zGisF+RZF9c59R3h+vIbNDFElIDY9jE+U9UoLLojMjn4S3t89FaXJM/PUZaTPXQ5QPRe0lqpNlZz6cVSMH/bXZ+EXlG1bx/82ReEfPRHYuy1X197I/WS5Vb54z/3lkOfE++DmmFdPOmM8qTTdxvvzyy3e1pUe+zb6SeYWR5/5aO2baYhYZ6f+n1kTNKPIzc2w4H9mWPL58RkFHGldGik3rhCGKvOU4ciyi+uizY399XvOdd965q23roDS8QqFQKOwL1A9eoVAoFPYF1jZpRiGgkSPbVFSaEMxhG6Ul0EGZJaJHjtJ1CFHphGZQRC/hnPXye2RizHac7u1ibf9n6R1MT4j6x7bTXBCFstPB3TN/8NpVyH95rW9rRkxMqjc/TnPh2Uw9iMyqmbmm16+54JXILMkxnks1iPqXpTJEAUg8l+1fGJl5M7q1Xpg6TZlZOg7/t2uz9WMBT2bOj2itSL1G0yapAaXls3P06NFuH5ny4s8xyZpmYp+eRFMszfrR2NIczPLtk/VHbbS29NJ/MrM7j0cm1Iy6zNBLaeG1dBGYGVNapiV4Iu0eOcWucle6qlAoFAqFhznWJo82LU+aJnd6zFETRdLenGYX7YRNh2gWtp31xddriHbNpjSehSxHSeuZJsGAlFVSC6jZRdRS2XYcJv1G2g41x2wbkl7i7hw2NvpbwBhIX8T1wDL9JwOcGCgQjTEJwYkoACVLR4jGaS51pmel4LlMw4vKzQKrqL1FWkGmKffWQW8bJ2m3hsN1u6qELi3Xsdee+AyfPHlS0jR1JtLwTAucGzffn0xrYt+joJVM847ep9mO6lkyd7QTPdvSS/PJiMazwMFewFNmLfD94zPNoBujTLv99tt3jpmGZ9d6Qos5lIZXKBQKhX2BtTS81pq2trYmYeK9jUTpQ4ns+/Rh9MKYpZiCy6SXTALuJZ5TaultB5OlJVAy8n2ya8wHkW3MGW2zxGvn6MI8rI3clDTaSLdHnyTF4c6r+D55Pe/xUjqp47h2DD0tk/3obVjJJPiMkKAX/kxNJfJNck1yfdGn69cFLRarWC7mJG2Ggkc+FUrlGQG6P8bUEPph/DO/CvWfR0Qj5tcOLSB33323pKWGd911103abffYurPUAq71qG0cn+xZWGWeetujsZxsg+YodoHvRt4bPfOcl+z5iqx6BlpV1kmON1j9pqlbsnnU/nVQGl6hUCgU9gX2tD1Qj+yWkrW/15/34DFqWpQMvDTDBGxKLT0fQbYpbSTZs9wswT66N5PO+Bm1gZoepVJDRGVlMA2c2kckpbM8+re8JEbN8dy5c10SV08BFEWI2f8mwdMPZz4gs+v7ujMfXs/nwDIMXHfRhpy892Kig7OoXX+O89MjY8ik8Yy6LZoD0554LbU2j8xfb4i2esm2v/IYhkHDMKTzJC3Hgxsn33bbbZKWmp7XCml5MQ0vi4j0/SHNWaZNR9o6+0EtNyKtyOaf89V7Z5Hu0c77d4k9Y+yPoUc8niXwcx1EW7Wxv/ZpGp5F3Ub12PpYBaXhFQqFQmFfYG0N74EHHtiRArxkb7BjpJFhBGYUxch8F2pthkhby3KoIo0zI+81RNoA/YpZtKbBf2ff7ZMaUtQvO9fbvJVtpa+I/oVsXP29Wc6gH0cS8s6RSLfWJhJrFLFFaZUbZkaS/Vy0ZiSlUyuf8+16sG29PNBsbWR5mJHUPNffSEtjXmOm6UX38loiGhPW0/MvWbttrj11VATv/2UEs6+DNGCmvd18882Sllqc70OmYfc20s38okREaZhZlnrjlZG70xrm22jzwefHxry3vlkftcLo+c0Ix3mP7x+faavPrDg+/459NsxtPO1RGl6hUCgU9gXW1vDOnTs3+VWOfA5mF2aeSiTFMh8qixikDdqXb7AyqGFGkUhZ9F2Uh8dzlNJ67BWUvvg9IrimJpyx20SSX5ZLk5Fy+/rou+NYRL5J7wPIxnRjY0OHDx+eENn6+bN77RwZahgF6PuU+fJ4T8TOkTGCRD5Wrl9q+qvMR5ZX2FurbGvGiOOvoYbH3Mpog9DM19kjKZ6L4IvWCbfKuXDhQldK397eTqNb/f/0cVv5tpWMbRoqSY95zGMk5ZaJHpsOtSe+3yItLrMosA89rTBb13Y+2ng6W8+RhkftNmNAiXIGmROd5RlGeX+cv3vuuUfSUkOP8hn57K+C0vAKhUKhsC9QP3iFQqFQ2BdY26Q5DEO4P5Qhc+LT1OlVVFN5LfSUajPNaVGABuu3emznY/Yj+t4LbaU5MCP87YX8Z0EkUcK7tZ8O+iwxNEpLoHmC5oEehRXNHlE6hJXrzUeZWaq1titgwPrh6aY479zNnakYvg1ZP6KgDraB4fJZ0Iy/NgstXyUtZS5JOQoUmUstiOioSH/lx1+KTVpZIMMqQQFZsEoUrBARXPeo3SJKuCi5n88/zWo+vN3oqh7/+MdLWq63jM4reqa5rnoUczSRZmuoR0uXmRSZwuPr4SfXY0QCkqWYZJR9Uk40ntXvx8Dm69SpU5KWJs3eM+GJEypopVAoFAoFh7XJo72kZdJ5RC0WJaVn5RiiREhpKs16STELjsmSLf39pCPKAh/8NavST0XJ8ZnWxO/SNCGXEiMDBPx4UmPJdmH2CdyZ9MmE3kiT8OugF7RyySWXpImsvl02DqadM/ndS8BRAmx0be9ezilp8KLgnmy7plW0mbk0hUjjYjI0AwH8nDNYJUsX6CWtZ22PruM48pmL0kk4L3M7nntQK/B9IXmBlXnZZZdN7rn11lslScePH5e03CaIz3oUxJYRQdtnZI3IUqcMvWA5Pu9ZyL9/Djjvc3RhUfm0PvSIHLI0LwY6RdYoe99lCf1+rGhFu/TSS4s8ulAoFAoFj7V9eNvb25PQ9WhjRPruKG36RFP6/ehLo4QfJR5Te6K26CXgjNKr54cj3RT9CD2fmiELo7XjJpX6+zPS3kzC9KDdmzZ2PybUVAz0P0ba/FyaR9SGKGGXGha/RyH42TiRxKCneUWSpxRbFLLEdloNIp9D5iPOyKs95iT8nu+GYeI9aTgbg54WOpecTuuLlKdzZNjc3OxajbgpLDeENQ3Pz6VtM2P+IhJM0wcekRZQK6PFwT/TfIb5zEbzQj8YNXxqVVEbqZWx/lX8cLQkRPdm1iH2xY9JlnbVS3WhBaHSEgqFQqFQANqqpJuS1Fq7XdK7H7rmFD4I8LhhGK7hwVo7hRVQa6ewV4Rrh1jrB69QKBQKhYcryqRZKBQKhX2B+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC+wVh7e5ubmcODAgUm+XC/wJeNi8/kiGVvAOhuzZtua8Lq5Yxnmru2dn+MlvJi2rXLd3NhEyJhlete21nT77bfrnnvumVR04MCBwW9dEuVCzuXiRHlkq3I/9tboxQRuZYwUEbJr1pkXQ8ZqsU5966yL3jpgLio5Q3vMRX4uT506pTNnzkwac+jQoeHo0aM7uVgRjyPz4pjj1mt31o+Mczc6lz0f0T2rlJ+VMzdXvTZmbV6l3oyxKLo3K2+V91zE/pLd68f89OnTOnv27OxCXusH78CBA3r0ox+9k8wZJVIzMdUSPq+66ipJ0rFjx3Z9StKRI0ckLcltbUFzYfeSHXmutz9dtscTy4x+WLMXXJawHd2b7Zbs78mSUjOqn6i+7IeiRwvEfliSJ6mapCm58+bmpl74whcqwsGDB/WUpzxlZx5OnjwpaZn0K02Tka29tj4uv/xySbsJwe1/klFnO4VHa9Xan1HARTtdG6w+ayNp3TyiPQBZvtR/Sa5CmZb9oGVJ/xEtGeu3sTI6Op88bONlx4wA2K61/nriZu7ftrm5qde+9rWKcOzYMT372c/e2b/usY997KStNv5XXnnlrnNGlGBt8cQJfI9lhO1c59KUgILJ8Pzxl6brLdvxPiLy4A9qRmLeo7Tj+o6IQ9gG7u/Hvng6xKw/XH/Rnn3sF2kQPZjAvr29rTe84Q2T6yKUSbNQKBQK+wJ72vHcftUjDS8yVUi5luPP9er1nx5zpoSIriej2sloo/w1PLeK+s5ySWUVmSuyeiIKMbZjHbMHj7HenvmLbfO0c1H5586dm8xXZJbKzGe9rX4Mc+uhZ/LhuEXbA2VbnrCsqF8slzROc32I+tFbO5kZjBI4pXffJtazypZgWRm+HpPOvaaSrZ2NjQ1deumlOxq+Sf1+ayk7Z1Yi9s0+oy24TOuzNpFUnpqRPxdpOlJMSzfnAopo4gyco+wd5svOtiVjG3vH2M9oHAlqenz/+b5ktHc9GjwrxzTFs2fP1vZAhUKhUCh4PCgaXk+7yEhPIz9cFoCQle3RI1H25305c47giOyW0soqUlN2D6Un3/ZVg3B6fZgL6Ig084wMO5K0uJ3PnPP7/Pnzky2R/DqgBBhpHqxnbqudbJ6ie+izieqL/Lu+jGi8KLVmmmxvrDOy5WiMso2GVwk247Y2JOiN/FkcN/Yn0gZI7ryxsZGun83NTR07dmzHX2vrzvx20lLbi7bL8n31/TPNznyL9sn5j9ZFT2uJ+unB9dB7r2WaNt8PPR81x5VE5725tPHitT0Nz2D1cj369W3nbE6zzWN76G0eTJSGVygUCoV9gfrBKxQKhcK+wNomzQsXLkzU3ch8Q9WU+0RFIfgMk85SDHo5fDQTRPuurZLjIa2WcxTtD5aVmQUnrGLSyNIhIrMI+5wFnkQmW7aNpkd/nR1bxXls5nCaK/28mMnK75Xor4mCWSzQIDN90OQTmVMyRPXNBbpEznauY857z8TFucr2D/OmumxnbTPh+dB83sswcY59FLTAcjPTcAS/12Vmdm6t6fDhwzvvBTNl2g7l0u70Bg8Gnvi+WqqC7Ytnn1l6AtelL3+VHbf5XFqbe6ksfO5YT5b76P9nAI/1w9JHIpMmA3qyFA1/79xeetYXvy6yvS9Zhq+Hz0lmTo5QGl6hUCgU9gXW0vCkZfCBNN151iPT7KLdkSnhklEhO++PUSukJNRL6s4CANZhEVgFmfYTaaHWD/Yr0yiidIF12sOdu7Mk2UhTtjb2JK3t7W3df//93QANajwMz2YSvD/GXbU5TlEwQ5b2YKHtveAOanLUMHzIPMvnnGVEBP4c+2NSci/xnP2k5hcFL/U08Kh+f20WFMPAB9YpjWuoF6C1ubm5My9GWuHH2P5nHxmYYlqNtNTw7JhdY+vL+kUtxx+j5tUjteC7yvrB3dI9aBWIUoF8O7wGa+esP3aO/fbPE6+1TyuLYxFpXlnyeBTEZOPFVJPMKhKNwarvO6k0vEKhUCjsE6ztwzt//nzqR/BYJT3AQL8ANceMa1NaSgaUKkzijn79s0RgajNR+Ds/KaVHXHBZ+3s0OtRm7ZpMglxFG2XyepQGwRSDVfj2rN3b29uz4cFWfsZ5KOVSOsuQptql3UsarUjzz7RBzk+0huiHsU+TUP1cZqHlBrbN+3Qyny011sgfm63VLFm+19aMpszXl2kjdm2kmfs12SNxOHDgwI6P1zQ9T1Fl7aIWY9R1dtxbIaiZcryYfuW1p0wDorXIrx0bB2s/5z16d9BqkqUhRAnw9D2aj9LG5u6779713f9PX15mJYj6x3N2j333dIKGjCeVlkJ/zKfqVFpCoVAoFAoOe4rSXIdd27BOsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktYqiZLUbjNfoq87I2LNomH9PXMRrFE0YObLi+qh/b3nh7EyMzJcX2fmN4x8e5T67TslRlsP/t5sjdA34CVXrhn6pumD8OUz6d7qsTbZ2EWaS0bqHdFGZYnmnEsmmftrss9o/qzPph1kPhbfL9M6vC8si9Lc2NjQkSNHJn5a//wwijAjuI98QVwrfP6jOZgjZub68MeojdraZbv8tTyXJZP741afjbH57EzDMg3PR5+aFp4lgGfE/tLUukafpJXpLTakc7PvjGDt0a2VD69QKBQKBWDtKE2pTwprv8QmaVuujEkxvYhOAylpTHKMopmoaVHijXw3bEPkB2G/6MvIotlIAeWPURuk9Nkbmzk/YM/uT4LWaBxJE5Zplr18vx7Fj/l/aZv3bWW+kJVrW0xdccUVknZvD2SRbiQPpg8v0ry4Njj+lGr9uNianKOn8+Xzu91Ly0W0fcoqpOEsP/PlGaJ1n1FmZZqtv5Z5bXfddZekmMLK5inSMqP+HD58uEtPaJpBRmMV5WHaOGf+eCvf+uXXAX1c3CIpI2yWcv8y4xH8NdxOycr1eYz+MzvmQV+iP8b3i9WbWVKiezJ6N3/c1gZjFDi+fuyZm7hKvudOG1e+slAoFAqFhzHW0vAsGqYXsWXSuEkAJllTmvE5NNz4NYui7G1HZOUy56fnU6Et3SSGjIBWyu3FGbmvtLRZU5Kk/dqDY0wtzdoYbczKfhqySE/f/oxpw0dy8Zy38/c0vLNnz+6MAf0W0nTbD9PerrnmGkl9De/48eOSpuuNUV6+f4zoJBhF6++3NlB7ilhGslwtSs/0Q/trOC+UcqNNQ7P8OPbfa9n0Z2Zkwt4PY/WR3NnKtfy2iJXDru2x3rTWdOjQoW4EdpYDmK1rX3cWadvbADbzN9u4mF8s0mCZh2fvTLOGRW3lWuU7w+qJ1rJda89cj0jd5t/mMouMpS/Pg9ouv/s22jz5zVx9OyIrIn3vpeEVCoVCoQDUD16hUCgU9gXWDlrZ2tqamIe8icnMAfyk+TBylJtaa2aBLPDAq8RZqDLVd29Ci+hqpGmwhzcJMjiBznDS+Hg1OwshNjD8OWoDTSM0i/kxycxgWSK6L5/hxnRAR+YDO3bo0KHZBFCSPXvznZEC29hee+21uz4tMMU+pdzkEu1/5vsh5SH3NPVFtF0Z7VmUBpNRR9GEFgURMGiF8xKZzGhm65EyZ/ca5nbnlqY7hts8mqkuojCza5kKlLXTU4sxcMPXQYotmuiiPe1oarN6aA6NAtForrZ6+S7z7WWwko2Tffr3TmRO9eXa8ejdyPVr30mO4Em47X/7tLmMglR8n3zfSV1mx62syIRuY273ZBSRHhndYg+l4RUKhUJhX2AtDW9jY0OHDh2aBGh4KZ1SA6XmSKKjc5OhqQx79vWZ5BHRZfmyImJmnuP2NF5yyHYAz6h+vOSdkStTE1sl8dzQc+pSC2Mbe2TPvIbBMz0tdG534tbaxNnvNW8GPVx55ZWSlmuJTn5/bUY2G9FCEUxo720fxeAEk5a5DY1f36RroxbK8YuCFqjZZYFX/n9aG5iGEG0pk5GWZ3Rovh6DSel8F/g1bM/YKmTsGxsbOnr06I6GYOMXaQoMDON4+fVmc5itW2oZ/r1j4LqysWbwir/WznF82L+oHM4lLQ0RdRoDBa0eCwKzgC9paT2hZkeCDxuTiJbM0lJs7K3t0fuGCfw2F1yrkcXEv5OKWqxQKBQKBYe1NbxLLrlkonFFBKJ2jHRKlJClpQTA7VmypOvIt5aF/PdswCbFUJKztnnpLUtONlCL8vUyBD/boNVL2tTCOI7UnCNJmTQ97J+XuDLKIlL8RD4807zOnz/fTUvwG8BG6SnULugHpr/Wt5c+FUrC1Fx9Odzwk35RXx9TTOiTjsLrI61Pyv3AURlMt6CfxJK8pekWL3PbXkXh/ZS0mRTvy6R/hxupRgn19MsPw5Cuna2tLV199dU7mr3dE22Fw02pOZerbDND8oLo2cqIpTM/nT/H9wstTNG2RxnxMt9Lfl64rmwe7Hk1Dc8+paX1hGlQGXmC7x+PcZutKEWE1g/77FkAIg1vVZSGVygUCoV9gT1FaVKK6dF2UQLq/RozSo2JppT8pWlkH9tE6V2aSmGk04nIoyntRRtY+v55KYaRqnObOEpTKZCSNqMcI2oxO2YSd5a87MuhRGnobXtk7T969OgskSvnpxcJa58cvwiUuE3LWcVHRC2AY9DbJorackQTx2vnqL+iMaEGy81JIzIGg11DP2O03RZprvhpY+Pr45YyVp6RE1tboy2TVom029ra0hVXXDGh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4CgE9n92M3D0iqzbY3JkmGY2N9cf7HqXleNLqEkXKMrHejtOS589lzyk1Z9+vTPvsoTS8QqFQKOwL7IlajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvt5ta3DgAAIABJREFUw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxtPnDghaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlLenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwr7AnrYHiiLesmuynB8vpZPE1SRuIw2mZud/7U0iJfNAL9LOpDNqadSmoq0vqKXRH2Jt9GXTTk1pnPlZ0lLCItOJtcn60IseZaSYlX/y5Mld7fJtop2dmnMkQdqx06dPp4wZ29vbOnXq1I62EbHBUIumBByR31rUmvXJrrHcIvMjvP3tb5ckPeIRj9i51+6xOXzMYx6za1xuvvnmSRuZe8qoUJuXyDqQ5d1ROvfWgYwdh5K/1zS4sexVV10lSbrpppt2nTcJ3Ef+3XHHHZKkJz7xiZKWc/H+979/V/+j3L2MVD7y3ZCtqce0YtHhPZYPq8veB/TD0u/j77HxME3uHe94hyTp1ltv3XXc55xZuaYNkjWFPnFpGhVu3xmBG1l6SIrP7z0Scfom+U70z7SVS+vXnXfeuautkeXM+/L9WNizaBaUKNKbFjk+E75ffAaLPLpQKBQKBWAtDc828TTQfizlXHa0yXq7uf1vWf4mCVCiM0klsifTHs1tgaKcM256ys1re7yR9L9RyvUaHvORrHxGa3lpkJqkSfImNXHso9w0k+SYk2jj7bUHaxt9XdaPaCPSyAfai5gahqHLJmLtzXy3VrZJm/5/0+SMd9Okyttuu21Xu/04mUb31re+VdJy7XzER3yEpOUYmyYoxVvq+OMRo4vnGvV9p/812iAz2zTY2moahh9PahI2Nqzvoz7qoyRJr3vd63butbVp5d5www272vG+971vV1t9fRnLURTNzfn3W0dF2NjYmFhV/PPJiEv/LPlrozw103zf/OY3S1rOt1mazGfk1x23qKGmb31mO/y9GcNKpHGRm5Mb8jICWJrm/3LMozw2jq29azk3kZXMxsIsBnavfbfn2/v6aeVgHjffP/4a/5tSTCuFQqFQKDjUD16hUCgU9gX2FLRCU6BXnaMESP+dSZ7S0uRiJk2aJ6+++updZXkzgTmSuW0LndVe9aZph2Su0W7cmcM3o7fx/eMWHqbSm1kgCmZhQBBNnGZusTGyMZSWJhhSPtm1NN36+mw8M4oub25h6P2cWcG2eZHiZHImDdPMamYdC6yQliafRz7ykZKWgU5m0nzb2962q8z3vOc9O/faGFq5Nm42ThHpsZn6zFyzColAtlaYYhBt58OUksyUHlG0WbvNpGT3Wri9jY3HddddJ2n6TNpYmUnTm/cMJIynuSpKh2GKTgRzpTCAKwrUIYl0byd6C0r5y7/8S0nLObO+23vB3hOeZJlmaJoUo/pobrVPG7eI3IHzbWuVu8gzqM2XnxEyR89rRoJgz7qNjbXDvytJNWnP0+233y5p+Vw97nGP27mHATV0X9CE6//vrZkMpeEVCoVCYV9g7aCV7e3tSdCHly4Z0k8HIxOPPUwCyBJzo6RX+5/SC8mOo2AKShUsy4P0UAzYIC2Q38KG/THtgGPRo9yx73Qi2zhHzmPWw4Ru30arm9onncgRjdwq1F+tNR08eHCSjtCjFrOxNa0q2lTT5sqCU0wCZZCUjYVJndIyOMGCpGxcTHuJto+xNWrjY9J5j6CZVgbrB9cbg5h83XYPSZIjjZKk4dYW01AsTeG9733vrrL8GNjauOWWWyQtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537brXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+v1118vafne4fuBGqA/FhEazKE0vEKhUCjsC6yt4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJS2l6Ec96lGSpr4V3wbzk5qfy8q0OfDbEbFNVg/Xe5Q87K0Pva2lzp49O/HpRuuAz6G129prWoZvp2m+1FpoHYqIGphqRKuXf8ZIQ0cNP9o8msQCTBsghV6U0mDjT2sA6el8m6gxZuk4UXoKtweir9zfY+uJ7xm7h+vcl+M3CFiVXqw0vEKhUCjsC6yt4T3wwAMTDSiyATOChhqKt/0ywpLJ4qbhUWKUplvd007taa8MJLm1e0zSZWRSVH7WX/bF30MphP5NLwFTkspIaSPfWiSRRsd79FCZpubHnpueHjhwIJXSLUKTFGVRlCZps/zcsW0shxtkmv+Fyb3+HMmP7ZMRwPxfWvoG6ffx19GfnFHLGSIfMrVB+n+9j4PWDtL62bWm2Zgf0l/D6LheVKhda5YaPj/UGqRpEv7Ro0fTzZXNhxf5Kw1sp42prQf6XKVpNLDB+sF6/Herx/pkvrqIMs/ASG9GYkcbT1Oz4juLa8rXy8hNvisi61EWwZnVH5G/k9DfwOfKl2vHGG1riEgyojGeQ2l4hUKhUNgX2BO1WEarZNdIU0mBvrtIaqZWkREoR9FSLCvLI5OmUXLZFhW+7Gj7Hd9GSu0RSS2jzFifL8PaxPHrRU0a5siqDT3SVc5J5HvN/JpZeVtbWxPN248rx8e0J0qqvVwjRtxyvXnNhPmeVh/Xjocd43ZAGVm6tJyzKM/O968XHcx8vFUorKwt3PLFjpvW69vDNUmfWGTVyTQhrgdfDwnjDx06NBttx/GLNubNttMh9Zj/nxGd3FKKVIDS6s+nb6NplxzDjBDa3891zOefWjzrjtoaEc9n88yNhq2fUZwD/fQce//+5nOUbSkV5bVmlrMeSsMrFAqFwr7AnphWeppJtNGiNI3K6m3iyBwtfo9IaOmX4lYrPhLNpBVK8JS4fB8yloI5f4xvIyMdvR/TX+eRaQOM3vPjSRs9pc6o7XNbbFAK9vd7KawnbW1tbaUMMr599FdRovPzkpEGR1o666N2lrGl+D4zV5TtiPpPnzGj8qjhRfmYzNmi39lH+LLvmVQekTrbOFJDidpmyCwJPTYiauQ9/y/vZb2+bhtraiQRo0sU7Rkh0mbof+caiqxRmb+fkca+jdnaJKJoZWqH1AK5/nwfMzJn1hO9D9gmwo8JLRPZxsaRhpfV20NpeIVCoVDYF6gfvEKhUCjsC6xt0oyclJEZJ3LaSnHgAU1WJJjumTSjkH5pum+YN2laqHK2k7apz1715v5+GSIzmIHtJwl3lODMfjJ4ITJLRSYY/z0as2i/uF79/v9oz0GitRaaL327s7B9tmmuHN+WnpksM+0wedybiRiQQTNlZNLnesrM8FFfOBY0CUfJygzyYT9ZxiqmewZCReQP0Vr090Yh835MenN14cKFSQCNR0bATZOgX79cI3z+e+4K0oBl5nePKCjJlxGB/eI7hGPm20hKQ14TkSSQAjIj946C9WiinSNJ96CJ2DBnbrZ7KvG8UCgUCgWHPQWtrBJ4QKmVAQe9pG5qQAz5jUDNisEqPiGZkg/pc7izctR3arCUeKJdqw1ZWK2vj8EKUXhuBkpSdDhHaSDUWCgRR0549r1H8dNa2xUSHkmoGT1URt8WnWNAQCTFGjLSZkrikURKCd4Sm6MEYAZjRSkevv5oTDhnTNKPwtGZXpFt2RWB4xilArCcbM1GWg8DquaCVnwbovZngQtWZvQsZ1R2c5p/dM5AS0lEIk5thsEqkdbE8uaIoX25rJfvhahfDLRaRaPMCBRYhn+H8Z7s98NjFetNhtLwCoVCobAvsJaGZ/RQ1G68tpb5nnwZvI4+J372yqRkzy1YLJnYS3jUIKnFRKTYPR+Gb4dpMVGSqp1bJXGSPjoDNYuelE5ps0cblkluPSmdvjtPLB615YorrphIy1HCdETe7evpaab0F1ETitbOXMh3lJhLIuhoA05DNu7sT+RbnUt74RqOymdbM+tL1P5Ms/PrhT5JtjWSxHlszofny4usHJn2mlkspOmayML4IyICXkvSBFoY/DXUrLLto6I2kGg8W/8e1NYya4E/l/nTo/SkDGxbdA8tCbQocJNuX272vYfS8AqFQqGwL7AnajEDbcIe/MXO6Ib8NdT0VpHSaAePNgmVdkuuc+SjUdQkNYbMjmz1eonTjhmNjt941ZcZaRKmodJ2T60g8qPOoecryBKeo8hOEulG2NjY0OHDh3d8qlnEmjQvtXpJ2+aFUuxc1F4P1Iz9vNj9NpfWFhIqRKS6/GREZxQRl42FXRNpeCR6zrYWMvj1wnnJ/DAeHKcsqtYf53vgkksuSdftMAy7tINo7WSR3Kw7okGklSiLtI62I6K/v0ewwfHJNEgfcUutj+85kudHieD0y5E4xCNbZ1k0fE+7yny7kQ+PmnIWaR7ds4q2udOmla8sFAqFQuFhjLU1vHPnzk2k2J5GkUWiRfkiGX1SFPFkoOZBwulI6+B2JT1SWqInhfp2eA2Tm1Fyk8jIh+S3TZGW0aakQ4qk6p6N3iOSuLPcyigKjOM1Ry22sbEx0QojaT2LDOtpF/bJtdST/jK/j31yCxtpuo0J/VeRNpNRelGzIJ2TlOd5cZ68L9RvjCnFkrwvK6JtovZBLS6KkMz6F8H6Zc/JnA9ve3u7q21Qs7K+Z4Ttvt1872TbEEWUX7QYkNYt0vRJz2XPtmltvsyMVDnLGY0sWYzktTE3UuwoJ5qWg8yXGD2T9MsZeuuBkfqMZI2sev63pPLwCoVCoVBw2JMPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+FfYSameRNpJt8cLtSaINYO2cbeVCCS/SSjP/RZZbFSGLIPVjH/kIepJWa20ytj2i3CzHKNJMM39vdp2/lvWQiDrydRqyjYE9bO4MmZ8i2sKG2kzGYOS1OG4OmxFd9yTuLD+qp21nz0+0znjt3AawFy5cmPii/PNCDZjxBZG/vkfa7cuK8jM5drZWOLe+Xvro7Fm+6667JC03nvXaOjclZs6etcnyQP36pAXJNDprR3QPrV+93Gciy8OjfzXya3J+GMnqy2bfizy6UCgUCgWgfvAKhUKhsC+wNrWYNy1Epkju2ku1045njnSPzHwSJcoyGKLXRt5joMPZmxYySrHMLNZLxudYRAE2HD9rM+nWIgc7y+dY0PwT9cNAU2CUuOtNV5lJc2NjQwcPHtxpJ9vPcnxbaE6LiIszkgKaZqO99JimYqafKPCF97C+iGSca8fm0Oqh6cmDlFhm7mQQhm8HzWq8h6a6yGTbMy8SXFeGHhUYTX49k7AFy/G5jFIVstSCXjoU11m21120djinfD6jZHUG7JhpM0rvMTOnffKZXoXonPNsbbOUJ29C57zw2WMbIyIHgsFBkUuC6zjrX3TPuXPnKmilUCgUCgWPtanFDhw4MAm68KCTnWH00S7pc/RFGfmuP8fE0izx2P/vQ6Kl3US2rKdHihwhouth6DwDbaJgHGprvS1SWDel5t42NDyWBR542iNqXD3n8cbGxo5G4/sTaetZ36LjlLQZ2JLt4OyvtTXJeY+kdAsh55ZSJi33Ag8uv/zyXfceO3ZsVxttbk+ePLlz7913372rLdzRPSI64LpiiLndE0npXIt8fqL1zvQXzkX0fNtY+yT57FkahkFnzpyZpJz455PvoiwALqIY5Heuw0gTZlBZdk9EE8d54DNuQSzSMg2GGh7bEVl6qAnZ+NpzaG3zQVVMxckS+qPUED7TGWl+BK6hzGrgy101HWpXPStdVSgUCoXCwxxr+/BaaxNtKtp6w6SGLIw/Ojan4UWayRyFVBSOTomKiMJns40xiV7qBP1Jpi1REvf/zyXxZmPn68229vCgr4MSXLRBY0SUPSdp0ZfmNa4eEbIU+1KyPtKXase9JsBrqOHTpytN/UemgZlWZm007U2aUn1dccUVu8q1/lKaZ1+lpbaYaaP+HmohVg9D9v14Z9RsvbSEjODArjVNxq+TzCceYXt7W6dPn97RkKP13HtHRG2LrqVWxjZG2lr2vonIJPi+oQ/PNLtoK7OMhoyaXRS+T+sA3yWeJIMUfYZsXUTIrCs9yxI15N5Gt+xr+fAKhUKhUAD2tAFstkGiNPVTcWucCJSKehFbvt6oDZR8ogRK0vAwYpQ2dmkq5TEqi9d5iTuLfKJtPUrIpJROiS7S2ubIgiPMRZ/2JHGTUHuRt8Mw7Iri7PljswTg7LyUS5NRO3gP10EvmdykZJPCSTXGpHVJuvrqqyUtrR7UHKnpRz418/tlRM2RdcDKpU+PmrLvZ7ZlkaFHFN/z87Eeg6fM6lkxtre3d55t+k99e/n8UWuL7sm02VWSnzlnWcSnNPW70vrEqFp/DeMN6NOPNDy7x+gJbdyy7Zx8OdRGaSVYhYyd2lo0/2wLn9uIyJtRxnOEF7vatNJVhUKhUCg8zLF2lKbPper58JhrYp/0k0jT3KUoT4ztMDC3hVv7RNFEBko+vW1aqJEweon3RtGH9BX1JOO5zU/XiYAiej69LKqxJw2uKl3N5Xsx6jOLgIu0NEMmgUZSLdciPyNyZYMdM03OtDf7tLXl/7drMyozf4/Bnhv6X6jJ+OeJ/tZMeuaz46/JInwNPXoojltET2XXmL+yt34tbsDGIvKtZu3r+R6j6Oio/aQg8/dGYygtx8LeLVIevWjXXHfddZJ2WwfMr8eIV7MsMB/Tz5utJ/MZ///tnd2O5NaRhLN7WoMZwDAsyQNY0MW+/2MtYBgQJEEeeSRZM11Ve7GI7uyPEYesWeyFXBk31V1VJA8PD1kZ+ROpV7FqZWv265M8Ry6rup//Coz/rTJ9nTA0tyHbXGWsb45z+JuDwWAwGPyB8Vl1ePQfu2r71MpjlRmW6mIIp/bB/et/CrX27WnNyrJycSCOkcyOcR+XicR9MYPQqcHsZUU5Cys14jxiYXGMghPYTQLNCXd3d5sYXrcuE6NbNVel5Zvq8Jh52d/jKy3Irl5Bb4SsZNbWdcueMVyOjZ6NzvQYdyGTEKN07YGStZ4yWPsYyIySwHr/e28NOUbW1VNW9/vj4+PGo9TnOMXDOTYXh+N40zPMfZf1qZpT5/XSeDUWNkOmyHPV8/VlBiczml0trNadslv7fque10x/P3nteL7XsCphlUvA/fO557x6/T466uEahjcYDAaDm8DVDO/h4WGTveSsPbLA1FQxHae/Mm7lsjT5P5sryufdP6PuJ5UwukWiOIte9R1ZSd3CrvJxJm3LbMYVK2S25l6NWlXO5NuLk7jxU8ljVe+3t/+Hh4dNPGcVU+P4XbZXYivMznXXyTV47efIRp1VLzN3+7a0XrXu+v5krbuaxj62Pkdat2wLc6QtEZkxa6xcCyjGW1b3Ho+Tsh7JQqqe56fvL61taWmy/revnb2YnTvXvXW72jY9zzhvjpno2fHtt99W1fOa4vOoH1vvad7ojeLzqG/75ZdfvvhMY3L3BJ+bTt+zyqsi8d5zSj59XP07K1Ub7sNl3h/FMLzBYDAY3ATmB28wGAwGN4GrXZqvXr16orNOhoYukL3O59y+70NY0dvUAoPpwt0VxYBskpTqlLkH1/sr3WIuMSQF0Fdd0gUmcqRCU1eszP9XSQUcN+dPc9JdOHtyTjzWF198EVuVVG3nVvtz10NI5SFMilldU8F1cOc5052m+ZHrkcIHVVtXNpNY0j1S9Zy2r/3THc5i5qqta5SSYikxpe9vT7TciU3wHuC17nMvsW199pe//CW6Z0+nU3348KHevXv3Yhs3hiRc7coteP+l59DK9UnJOv3PMpV+/pSfU7mAOpB3aTltr8SSP//5zy/2QVH+fjy2n6J73z13WHbV3fkdq9Kt5MoU3DymZBXB/V50N+/RrufD8AaDwWBwE7haWuz+/n4TNHS/rkl+bJVmzxKGPWZUtbUi2TjVSdOwPYqsGFmdDML3v1PTVjZqdeyJSIXAHTw/MhhXWJ/kjo4UgCbr/IhYrAqEEy6XyyY47RJQZIGmIngXKCfTI/N2sk0pUYclLc66TIyHbKp/VyzNyY9Vbdli3y8ln1iE7eSoOOZUVO7WefIKuLIESgJy/TlRcCZDffXVV5Hhnc/n+vDhw0bWr7MPro3kGTmS6JIKxN08UTKRTYSdAAXZmRPj4HG0P80hhQh471RlOTqWwawS3vSaxEFWpSZ83jhvFLfl/46F6jOVahwVvqgahjcYDAaDG8FnxfBoBbhfX1rLK8alz8i89iyFDlpNKgTlcft+yQopg9bjJdqmW9/8TpUvqE6xs1XZAGNoqQ3Iqn0GWSHnz1l2Ai0ux8i4zaoRo4qHV8W8qREv4zJOcDoJAaS4WT9HvrIcobPnvbZNjJtUPbOAVMzN69TXlIrQWaqR2tL0/e+lkrt2SwLXF8/ziAeDY5UHpWrbMunt27fLwvNPnz493dO99RLHkFgaPSL93OhBoDwhWU5/j3NKT0NfO6m0aCXKQY+F9sFSGnd/7gla6/9+XnxG8Bm1ErxPnjn3nBBS7kPyUlQ9P9u1nl6/fj2F54PBYDAYdHxWeyBXiCnQiiHDY3ykamslkZXR8nNt5VlMTuu8WwC0wngeYnHOZ3+khQzfp5XEuXExtSTQzYw+x7JTY9sjVlBiLqvs077Nyp9+d3e3Gf8q9sg4yYrhpWzN1JrJnRvP3RXB6py7rFX/jhhZZyHKnGMchCyEcmV9vGKMLOJ2RbhpXXOOVmybc7HyACTmQibZvSMuFp7Wp0QLVAytVzdPidW4uFxiS2mfHXviCEIXIEjyhyleVrVtJcSYNe/Tfu+TRafnTd8H1wTXV3q2dCRZsCMSbRyH0MeoddTnfhjeYDAYDAYNVzO8h4eHpYWYMgLJxLpVRX94ypJywqby58oS0v9kRI6ZiKXRwnNWR4qZpIw3x/Bo8dIS6lYMWYbOjxYdGU7fX5KQchbXKnOzw9VcHmkwKyt9dTzGXxnTcnE4ITG7IzWCvA6pEWjfPzPsNCYn1Ks6K2a2pVhrZ0LMWBVotbusSa4DtjRaCfNynTEW5lgB1xWZDGXZ+nn9/PPPuw1gVZ8mdt1jnTon3u+rlmMrTxW/y+PJ66DnGWseVVPXz1nXVeubzwHXQJk5A0l6i/kPVc/PQK5jzR9rB91+hWtkvPj8XLXz4TWnt8A1pKXXozcG2MMwvMFgMBjcBD6rPdDKn5v8tWR43WKQdULrXEhxwf4Z1TE4tj6elA1I9RSXaafXFdvo51KVlVR4Xt3fT6vFNbDt43DMLFlLLu63p3bjsrKOiEZ3XC6XTd2iGy/Ximtjk8aQ1F9W409qHK7RKMevbVNtXT8PZmtq7Wj9u9YrZJT0SqTYUVVm9FQH6Va9yy7sx3dMeU8Yntez719j+fXXX5ctsD59+rSZJ8fMyJ6TCHt/L9VQ8lr35xLvKc3ljz/+WFXP93K/j9Xah/e2xuGyT3Vs7Y/Zmqzd7OfHZyAZHp97/b0Uw+N95tRu+J0UV3XbUNnHxYfT8/QIhuENBoPB4CYwP3iDwWAwuAlc5dK8v7+vN2/ebFwULtlCYCKAS6+Xq4IuFrrgXME0959cjB10aSZB6B5E1jZ0c60SHISU2JL2UbWl+CyGXR2PbgKmlifZqBVcggrHsOp1eLlcXrg0ndxUmpfkzq3K0mLJjefmmC5TzstKRiuJ9zo3YSploJu/u5iY8MEO6IJLCKJoAe891w+Qa4Nr112LvQQR9nur8i6rlWjBx48fl2LPdGGm7x6RwqJbz91rPCe5Kb/77rsX+37//v1mmyQpJ7gSEyXsyO3JsiX2zevjlzs0hTaUYFP1LE5N1zld6EcF4/u2PKeOlMjnhEN43abwfDAYDAYD4LMYHrvi9l95FpZTYJpByaqtvMxKYJrb0uJkCvuq6JHMTtaTrOi+TSp+ZkH6KqBKaR9akt0S0mdMS2YA3RXH0qpNIrjOKkrFys6qvqYYVWUJmqeV5BvHzQQRx0j6cVbn6MpTyA5TF/P+mdYDC6hVeN5BAWCej9abXt39lESDtQ+X0k5JLybLuDnak3haiYjTk0DvhNt2Vdzdv/P27Vv77BB4X1Co2a1frhVuw/H2e1GMTq8SMman8F6WkMTitQ/XAioViXNuKcbd50Jzo4QazqOT7fr666+raitAzbXTxbN5T5P5r547q3ZnfcxuLB8+fDgsID0MbzAYDAY3gc8qS2A8q//68j3K9zhBXsbukrwN02r7d5MUlvs/yU7REnHp4bT6uI0TqSWOFGSy3UeSB1pZzcSKQSdBYY5xJR69wv39/QvL1bFPrY3exLJqazG6+FhqJ7Ji+AJZO9PTHXtmejhjXi5WRMaa5q+v5cRQNTZXLkCJqjQ2trRyYyVWwuNcQ0kswe1nT5Lu9evXG1ZzpGCa596fO1zbLOLnGupsLTE7CkWwfVA/Dlm7k79jvJVF65zzPg+UP9N3NVYxyn6/UcBD567v0OPjcia4ZukpcR4F/s/nultvLodkD8PwBoPBYHAT+CxpMWak9bYf/PWl5c3MtKqt1FHy47pml7JiKBpNhumEoMnKaBG5bKm9bCKN0YnUCmwsuor7kYWmgsxuRSUfOtlOn1/ujzFC10rGxfsSa7m/v68//elPT9lmjuXI4pQUl0BrzzU7ZSyImWjOE8C4F61Wfe6ykMkG2LLEsY+fUGtBAAAScklEQVS0vii55eIVOq6scxfvEyjUnmK6jvWQfaTYyoqRpViba4baM0pXWZqPj49P942T7VL8PUnkMT5blb01jqXzfPi8ITPSWu7F5Iy/6X89Rx0jZmyORetJrKFqG09MrYw69F3NMT1zlKfrcHHSjlXMmP8z56N/j2NZZfhuxnDoW4PBYDAY/MHxWQ1gmWnXLW5m71AOyEn8pBgHLTDGL/p7ZCL8vL+/J5ArC8JldDHrlELHzgImwxJ4nD6PKc4o0Irv4BgJlxmXao7IIFfyXns4n89Rdqj/LctUli8bsrq2MOncXGNMIV1/xmFcbZOgz7QOWJfX36PgdGr505lLknyTSDWFgPuYeM+RLXJ8/e9krTsGle4n3guuKfIq61M4n8/166+/Ph1T60Pxs6rnudQxyN5XzW6ZPa35SzJr/XiqW+P+HZvRNsqAZPasu8f4XpJMdN4I1+asf9cJj3P8Op7mPNW79s9SLaR7TjBGx7l2sUk9BzR/K+8AMQxvMBgMBjeB/5PSihPX1a9uqt9hdln/m0oEKQ7Y2U6yKmgprOrixCQoWt33wZhDskQEl81IUWJam91KZ1yRc03VDBdfcGy6j8dlaZKpOsbCbY7UUj0+PtaPP/64iam5th9iS7ou6Tz6NkkJIrVKcu+xLopxmT4GfVdWNGO7LmacsmQ1dir9VG2vu8as+8xlAzJWy9ihsPISCByrU9VZ1XX1ffQ5oULJV199FdfP4+Nj/fDDD081jmK1P/zww9N39J6YL+dtFesU0np28WbW3ypWx7Xq2BrHzHjZ6llFhSKy9n4MPmvTenNx+TQHzBbvSM1wuXZXMXHmXLisYIlw6/Xu7m4Y3mAwGAwGHVfH8N68ebOx9roCQfLbU9+vWxWy8pgRxLobewLwKdM/7Vp7MD7B7E9XS0emxSxG7quzUB5PzIXWlItxkNXyf6fokOoY+flKdeJIbcte/LTjdDrV+/fvn8Yta91Zl0mvz9XUpRrKVL/mLFOuM7Za6eu7Z8H1c2brn1WNYvqOa3ZJy5UZzYJjH0nnNbGD/h7HSA+Ay0LWd5iF7BiL5lSvj4+PkWmeTqf66aefNhmkHWK8YnhJH9M9S5I3gHPct2XMLjG8fk5idLpXFYvmvHVvCueOSjurOjyysSNeL4F6wnyuubgtVYcS0+/zyPg8t6GiTdWzrmivxxyGNxgMBoNBw/zgDQaDweAmcHXSyuvXr5/oo6i5ExQWXWeKtAsA0y1HlyaLPLu7kEkLLB51xZVJUHZV+J6EZhmIdok8TDvnq0vxZTkAj5Nam/DY/bOULOE+23PvuDHuJT9cLpena6x0bhfUp5tmFSjnNdwrU+jnwZICrkMna8TkACY6rdzTHDNdP07KzEnxVW1d6+76pBRzYuXaTufQXUx0c6ZwQheo4Pp9fHyMbqnz+Vy//PLLZq57ok6SMWMCRZ8DloEkN7R7hjDxgwkibl8aA0u12PLJJS2l8hc+s1b3dHqWOMFptxb7vlxLM7q9KV69Snji+mVSW187vBeukjg8/M3BYDAYDP7AuDpp5fXr108WirPIUqE0i3r7trQMtX8yPrYccuC+XFoy3yMLkFXhWNpK8sb93/eThIzdNpw/JhpwX32slCEjA3OsMBVoJ1GAfpz+2Sp4fLlcNuzdBeiPFpP38aaklST63b+jVyVQUL7JiRaQvdDCdok1aR9M1nJCubwuZDROrJrNaFPauCseJlM6IjFHa51rtq8droPL5RKTnk6nU/38889Pa4VlK1VbGa1VoTmR7il6MLqcVpIjZNKKe+4oYUtp9akUoI+JjM7tn/+TabGVlHt2cA54fIqC9Ps3CYEngf+q7XOU9wbLV9y5vnnz5rD4xTC8wWAwGNwErmZ4XSCYqflVz1YQ20vQoncpvvT9ax+y3rRv1yCRhYupyLKPm6xgZQ3ST5xiKq4UgDG7ZAGvhJmTDJaLudBaOpLCTBZI629VctCv24rhnU6nTdykX8sU4+Q5uzR6WqZs3+OuLQumuXac0DnXisaoOAxjIH2bFN9J8Qv3HmPgrlVOSt/XnKRmxn0/nOtVK6vE8JKUXtW2zc3q3lNJC+PnigNXbdk5x+1i+vQY8fpwflZrVeB67M8JXlfeny5HgfkSR55VHGMSi3axfCI99zSufk31Xd0LjBk77x69aWwtRWmz/t2jrK5jGN5gMBgMbgJXtwd69erVJruwW7P6haYw7srySbEMvZLhubbyKXvIWdVJwJgWcbei0v4ZM0pxuv4ZLS+XZURLnvG3VREux7qKEQjcr+ZN2bYpNlv10hpbMbxXr1497VeWeG/mq2PoPcZQVtmzydIm03NyanrVuTIOs7JI6ZWgQEAHr3eSwXPx7VUcpI+5/02pvpRR2o+3V6ROL0UfP70tGofYlwqG+3u6Pqt1cz6f67fffns65rt376rqOQZW9fys0Ht//etfq2orqrwSOkheDMfwVmLq/X0XJ6fMIkU6nPAA7+F0Xo6tu7Xft3FMiXOTvEYdqShd+3Axas6B1o7Wh8vSZJswZYAfwTC8wWAwGNwErmZ4VVtr2gnyMqOKlmHfB4WQWXskhsfao6rnX3layYwvUhKqj0X7WLWxSJZOymJ0NXV723ZwP0kmzLEQ7j/VGfbrRma31ybGbbOXodmvEQXDq7b1SGnOnXcgZWMyhtO3Zc1cqofrlr1bRw495kALl/vXPUJL350P9+mEyHmfUBaP7GSVpcdYkWthREk0rl0xu55pdyRu2cf08PCwaQDbnyFidjrW+/fvX3yHXoJ+3ql+dK9Fl4Nbo/zM1SD291f1pqsaur6PqnxfpvvLfXd17yUw9p2aZ3fwHmF2ZvcOCFpvb9++Xa6fjmF4g8FgMLgJXM3wzufzxtpYNVVMMQGX+Zay49g2xik2JOURFyfj/mnpuFY4ZEm0kmhBuphh8m07i4fWGS25xOLcGDhHjg1R/UFIMcuqrTV2Op0iy7u7u7MxvB6PFVgLxvly42Y8gmLOrvVKatfEjNu+vulRSLEVlwGrz7hmmLnsMny57niermUWY6KK5ZG1HxG6ThmMHYwVaV04hucEm1dr54svvniaL7HnPsf/+Mc/qupZPFoMT3Mgcec+7tR2ijE7jatnepOVpUxf5424xouSvDQp49MxvKQoRe9IP3fuLzX37fcTvTZ76k39bzI6vS/m3uOaro3bxPAGg8FgMGiYH7zBYDAY3AQ+K2lFoEumahuopAtG1HQl6szkFQbKV73mKDTsUm/ppktyZK6LdHLV0h3hKHYKCB9J+mAiQOoM7PaT3L498YASP0z6ce4Iuj/2yhLu7u42Ls2+dlJ6e7pO/Ry0P8k2pevVx6/rm9zhfdwcIwWHV8kRdCHTpdldZdw2lVswocIljukz7Z/u3VVJC8dC95hL72cBNYvBXUnIEVcUE56cCPHf//73qnq+/nJtUnjCudO4X746tzsL/3k+TrCBbtBUssVz72BqP8Miq+SNlctYYHIX97caK/tHpr54/VqysJ7PfrmmO1J5zxEMwxsMBoPBTeBqhne5XDbpzk7Ml0F8MhRnNQmJ4a0KJVOpxCrln+yTFomzBvda/Air0oYk+Ork1gSywFSU7c6TbNe15EjJKcniX51Pwul02rC4Xjz87bff2nNcMVOtL1mVEhTmWnFp1UdlmpxM2CrFumpdcMx9cRx9PplQQwaxaoPFNcux0lvQ3+N5cqyuxYtA0Xc3R9xmdQ1UeJ7utarnUgUlr/ztb3+rqueEHTeWJBpxhAkneauVQDvnlMkrTlghlQPwuvD9/pn2n8oqVs+qdBxXeJ68UKtyDpayCEpMctctJfIdwTC8wWAwGNwErmZ4Si+v8hYQGRyLyFfCn7SkyPQcUimBxsg4TTqnPiYnAJwYXWIS/VwY/+BcuG2SZJpAVuhilGneVjJbZC6poN999urVq5jirjgMLbbO1pJ1nNhuP0dZ+JRCW5WLCBS7TTHPvh8nA9XH5so3WPDN+XOCxIltkOF11rMXi+R6cyyE159ssZcYiF0TtN7793rct+p/7990j55Op/rXv/71dI9rDLrWHd9///2L16+//rqqnhmDa2+VRJa5/tw8Ea4shdskZr+K5Sd2ztKqfm/wvBJb6+A9mFjuSpSdzC6VNFRtY3csNHdCB6sY+x6G4Q0Gg8HgJvBZ7YH0C+2Ecmk1sZlralVR9fwrT7bGzMsu2yTQAlmJxiZwbH0byjNR2illfHXQd58kv6q2bIPMYeVjJ3vi/LkYZSo4X1lP3M8ew/v48eOGdfbjprgOLUTXcoVMjzFiF9NlMfc1TTzd+a0+r9qypJTh6dg610xiI/29lAmZskW5n74tPQn9HuzCA30bFtSv5LZWhedaOxxDHzfH8N1331VV1TfffFNVVT/99FNVPWdv9nGxkJmxfMeE+TzRcbUtn3cdXHepCWo/ryQ7lmJ7HG8H1+qKUe7FOR2j5PE5dpe5qvliobljibyXj0i+CcPwBoPBYHATuDqG9/DwEGMPVVvGkRolruTIuA+2O3GyZPxf33GWVrIk9zLvqvYzE1exSc4bxWOduHKKqR2pY+LxWJ/l6ss4ppU0FxnQit2cz+f697//vdlvt9woTUTLm3VeVdt6PsnOUVpM8R6XpZdqp1wLmBQfSwzMbUMPBmsenWXOOV6xwtROiefnJPTI/mily/LuMTzKBeoa87ycPJTmzY2l7//333/f5A70uA6FuP/5z39W1TNjEMNzItupxjB5VfrxeI70UvX1nZpU8x7v80TmKqQMzw4y4tS6yrGn1IYq1ef1/XL90Uvh6n8Vs9Mr2VsfDxn3/f394TjeMLzBYDAY3ASujuHd39/HbKP+d6rfYSueDloGFM51rJBxH1lcbEvUxyjVBfqW6VNfnRezsVL9kkOqM3NWDK1BZkA5pkdrPDGwVW1LsiD7NeD+V1aWrPQVI9W4de1SnVy/5r35bNVLYfE+Jmb4VWXGzfNxLJSMhFY62WkH44vMDu6gNcs4I1sN9f1xrtN9288vWdaMB7sM4JQV7MbIe2AlAHy5XOrTp0+bte9iuZonrSExPDH8vka//PLLF+fIsfEedx4M3u8U7nYx4z3FJXc90nMgXeOOlMfgmmPzuGmtuGcy45iKp3OO+nVj7J211ymjue+v55XsYRjeYDAYDG4C84M3GAwGg5vA1Ukr9/f3SxpNNx2D3nInOvHZVBjL4kpHo1PXdFFll8LMkoJUENpB90xKE+8UnC4DBqtdIXhye9L96gqPk6uO26zSxOnWOVKesIKSVlZBcY1H17IXJfdxO9cvEyY4T3IjrgTBkzuyzy3dUsl92PfBdUSx6PS9vt9UeEy3fx9Tup+OSDJxHtkvkaGEqq1Li9fRlT/0xKC0js7n84ukFa2HnjjDtc1xquh91RmeCW8UMXAhjj1XWt+G58c51fn0uU199pi2v5IlE5Kgwur+5XpPBejuvJi8pDH3khZ+N5WPuQQl5yrfwzC8wWAwGNwEPitpRXCFuQK73qZi26ptcJiWAVlityqYpOISTqpeJjMwlZsBbVrGfRuyDoGscCVDlALQqwA3mR7lz5xlt8dgnTg2k1O4jSts5dgcLpfLi47orrt3KrKnQHTHniSakhZ0PpKaqtoyOV7DI6K3KXnFMQnul/eEYw2ppYygbTtrTOn0qdTFrR2dH/eldP/OQhyD43eqXrJr3uMrK12F5/RMOOYtJDbV5ciUAp+eAxqTpOf6fZyK0+nZcglP/J9z7QrPOZf83xVh7zH5VVE8weeBK08gU+V60PuuVIPeJp3fqhTNJV3tYRjeYDAYDG4CVzG8y+VS5/M5xueqtv7uVTxMkOWXrMpUgKwxdSSLofuNk8+a/vJ+HJ6PLOokwdPPN4kGp0LUvl9ajoxRuHlN7CwVE3dw/Imd9u27NZssdcVoGNdZeQy0f62P3koonTPnlqLBfXxKS9f+abW7An1+loSY+3EYt2bqurAqMUnp6C7umOI7tISdx0SWNAuetX/NZ4+pMI7MbfV/Z6FkCHts5HQ6xbno50rWTKbgxB0o30Vmr8/F9Pp3BbINN+d7JQYc12qbJESxuqeTXOBKWoxzwevkchX4TGTp0MqTpfPkfbzy7nz8+HHpXXqxzaFvDQaDwWDwB8fdNRkud3d331fVf///DWfwH4D/ulwu7/jmrJ3BAczaGXwu7NohrvrBGwwGg8Hgj4pxaQ4Gg8HgJjA/eIPBYDC4CcwP3mAwGAxuAvODNxgMBoObwPzgDQaDweAmMD94g8FgMLgJzA/eYDAYDG4C84M3GAwGg5vA/OANBoPB4CbwPximwMjo/OuiAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1265,7 +1983,6 @@ " chunksize=10,\n", " id2word={idx:idx for idx in range(faces.shape[1])},\n", " num_topics=n_components,\n", - " passes=5,\n", " minimum_probability=0\n", " ),\n", " False),\n", From ed8f29f229a6a69067a17cb9d99dcba4d3c5c4ce Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Thu, 30 Aug 2018 13:06:25 +0300 Subject: [PATCH 044/144] Save corpus & dict, minor fixes --- docs/notebooks/nmf-wikipedia.ipynb | 518 ++++++++++------------------- 1 file changed, 177 insertions(+), 341 deletions(-) diff --git a/docs/notebooks/nmf-wikipedia.ipynb b/docs/notebooks/nmf-wikipedia.ipynb index 1da0dc1a0b..67dd008ae1 100644 --- a/docs/notebooks/nmf-wikipedia.ipynb +++ b/docs/notebooks/nmf-wikipedia.ipynb @@ -2,14 +2,18 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ - "from gensim.corpora import WikiCorpus\n", - "from gensim.models import Nmf, LdaModel\n", + "from gensim.corpora import MmCorpus\n", + "from gensim.models.nmf import Nmf\n", + "from gensim.models import LdaModel\n", "import gensim.downloader as api\n", - "from gensim.parsing.preprocessing import preprocess_documents\n", + "from gensim.parsing.preprocessing import preprocess_string\n", + "from tqdm import tqdm, tqdm_notebook\n", + "\n", + "tqdm.pandas()\n", "\n", "import logging\n", "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)" @@ -17,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -339,154 +343,174 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, + "execution_count": 51, + "metadata": { + "scrolled": true + }, "outputs": [], "source": [ "import itertools\n", "\n", - "ARTICLES_COUNT = 10000\n", - "\n", - "wiki_articles = preprocess_documents(\n", - " \" \".join(\" \".join(section)\n", - " for section\n", - " in zip(article['section_titles'], article['section_texts'])\n", - " )\n", - " for article\n", - " in itertools.islice(data, ARTICLES_COUNT)\n", - ")" + "def wiki_articles_iterator():\n", + " for article in tqdm_notebook(data):\n", + " yield (\n", + " preprocess_string(\n", + " \" \".join(\n", + " \" \".join(section)\n", + " for section\n", + " in zip(article['section_titles'], article['section_texts'])\n", + " )\n", + " )\n", + " )" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9947903b6a064a29a3b12b725dcfeece", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-06-02 20:45:10,808 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-06-02 20:45:28,612 : INFO : built Dictionary(399748 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...) from 10000 documents (total 17815678 corpus positions)\n", - "2018-06-02 20:45:29,275 : INFO : discarding 336501 tokens: [('abdelrahim', 2), ('abstention', 3), ('amoureus', 3), ('amoureux', 1), ('amparo', 3), ('anarchica', 3), ('anarchosyndicalist', 2), ('arbet', 2), ('archo', 1), ('arditi', 4)]...\n", - "2018-06-02 20:45:29,276 : INFO : keeping 63247 tokens which were in no less than 5 and no more than 5000 (=50.0%) documents\n", - "2018-06-02 20:45:29,474 : INFO : resulting dictionary: Dictionary(63247 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" + "2018-08-30 13:05:09,089 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n" ] } ], "source": [ "from gensim.corpora import Dictionary\n", "\n", - "dictionary = Dictionary(wiki_articles)\n", - "dictionary.filter_extremes()" + "dictionary = Dictionary(wiki_articles_iterator())\n", + "dictionary.filter_extremes()\n", + "\n", + "dictionary.save('wiki.dict')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dictionary = Dictionary.load('wiki.dict')" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "corpus = [\n", + "corpus = (\n", " dictionary.doc2bow(article)\n", " for article\n", " in wiki_articles\n", - "]" + ")\n", + "\n", + "MmCorpus.serialize('wiki.mm', corpus)" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-06-02 20:46:12,291 : INFO : Loss (no outliers): 7337.937955083741\tLoss (with outliers): 7337.937955083741\n", - "2018-06-02 20:46:49,539 : INFO : Loss (no outliers): 7465.065080292521\tLoss (with outliers): 7465.065080292521\n", - "2018-06-02 20:47:32,027 : INFO : Loss (no outliers): 7242.137297523558\tLoss (with outliers): 7242.137297523558\n", - "2018-06-02 20:48:15,605 : INFO : Loss (no outliers): 7773.646682256459\tLoss (with outliers): 7773.646682256459\n", - "2018-06-02 20:48:52,218 : INFO : Loss (no outliers): 7251.947542415921\tLoss (with outliers): 7251.947542415921\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 5min 14s, sys: 2min 19s, total: 7min 33s\n", - "Wall time: 3min 10s\n" - ] - } - ], + "outputs": [], "source": [ - "%%time\n", - "\n", - "PASSES=1\n", - "\n", - "gensim_nmf = Nmf(\n", - " corpus,\n", + "corpus = MmCorpus('wiki.mm')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "training_params = dict(\n", + " corpus=corpus,\n", " chunksize=2000,\n", - " passes=PASSES,\n", + " passes=5,\n", " num_topics=20,\n", " id2word=dictionary,\n", - " lambda_=1000,\n", - " kappa=1.,\n", - " normalize=False\n", + " normalize=True\n", ")" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%time\n", + "\n", + "gensim_nmf = Nmf(**training_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.057*\"life\" + 0.047*\"book\" + 0.046*\"centuri\" + 0.033*\"god\" + 0.033*\"publish\" + 0.030*\"women\" + 0.030*\"human\" + 0.029*\"studi\" + 0.027*\"write\" + 0.027*\"london\"'),\n", + " '0.028*\"british\" + 0.019*\"athen\" + 0.014*\"arab\" + 0.012*\"armi\" + 0.012*\"war\" + 0.008*\"north\" + 0.008*\"troop\" + 0.008*\"french\" + 0.007*\"defeat\" + 0.007*\"britain\"'),\n", " (1,\n", - " '0.105*\"war\" + 0.100*\"govern\" + 0.091*\"countri\" + 0.068*\"parti\" + 0.066*\"forc\" + 0.057*\"polit\" + 0.056*\"union\" + 0.055*\"soviet\" + 0.051*\"mexico\" + 0.049*\"econom\"'),\n", + " '0.076*\"lincoln\" + 0.012*\"republican\" + 0.011*\"parti\" + 0.011*\"presid\" + 0.010*\"court\" + 0.008*\"elect\" + 0.008*\"illinoi\" + 0.007*\"slaveri\" + 0.007*\"democrat\" + 0.006*\"polit\"'),\n", " (2,\n", - " '0.169*\"univers\" + 0.152*\"island\" + 0.136*\"school\" + 0.090*\"colleg\" + 0.078*\"student\" + 0.077*\"educ\" + 0.073*\"open\" + 0.071*\"servic\" + 0.069*\"librari\" + 0.067*\"public\"'),\n", + " '0.035*\"armenian\" + 0.028*\"countri\" + 0.024*\"alaska\" + 0.018*\"diplomat\" + 0.018*\"establish\" + 0.009*\"recogn\" + 0.009*\"foreign\" + 0.009*\"russia\" + 0.008*\"republ\" + 0.008*\"honorari\"'),\n", " (3,\n", - " '0.713*\"film\" + 0.135*\"award\" + 0.114*\"best\" + 0.104*\"brando\" + 0.103*\"star\" + 0.103*\"scorses\" + 0.099*\"director\" + 0.084*\"actor\" + 0.083*\"movi\" + 0.080*\"role\"'),\n", + " '0.058*\"film\" + 0.016*\"director\" + 0.009*\"award\" + 0.009*\"bell\" + 0.007*\"critic\" + 0.006*\"best\" + 0.006*\"japanes\" + 0.005*\"plai\" + 0.005*\"stori\" + 0.005*\"academi\"'),\n", " (4,\n", - " '0.647*\"music\" + 0.214*\"band\" + 0.206*\"plai\" + 0.203*\"instrument\" + 0.156*\"perform\" + 0.145*\"jazz\" + 0.142*\"open\" + 0.140*\"record\" + 0.135*\"mandolin\" + 0.125*\"sound\"'),\n", + " '0.069*\"art\" + 0.040*\"angl\" + 0.017*\"bell\" + 0.014*\"artist\" + 0.008*\"paint\" + 0.008*\"athen\" + 0.008*\"measur\" + 0.007*\"turn\" + 0.007*\"aesthet\" + 0.006*\"cultur\"'),\n", " (5,\n", - " '0.770*\"citi\" + 0.171*\"area\" + 0.155*\"mexico\" + 0.152*\"kansa\" + 0.122*\"popul\" + 0.121*\"london\" + 0.109*\"river\" + 0.108*\"district\" + 0.107*\"liverpool\" + 0.099*\"largest\"'),\n", + " '0.014*\"intellig\" + 0.013*\"human\" + 0.012*\"aristotl\" + 0.010*\"machin\" + 0.009*\"research\" + 0.009*\"problem\" + 0.007*\"artifici\" + 0.006*\"scienc\" + 0.006*\"anthropolog\" + 0.006*\"comput\"'),\n", " (6,\n", - " '0.346*\"open\" + 0.298*\"champion\" + 0.254*\"card\" + 0.251*\"player\" + 0.190*\"doubl\" + 0.181*\"winner\" + 0.177*\"wimbledon\" + 0.170*\"titl\" + 0.165*\"grand\" + 0.164*\"slam\"'),\n", + " '0.036*\"church\" + 0.023*\"metal\" + 0.014*\"england\" + 0.013*\"car\" + 0.013*\"race\" + 0.012*\"seri\" + 0.009*\"cathol\" + 0.008*\"english\" + 0.007*\"australia\" + 0.007*\"test\"'),\n", " (7,\n", - " '0.326*\"empir\" + 0.306*\"centuri\" + 0.247*\"king\" + 0.201*\"kingdom\" + 0.197*\"roman\" + 0.175*\"law\" + 0.156*\"rule\" + 0.154*\"europ\" + 0.134*\"emperor\" + 0.127*\"power\"'),\n", + " '0.080*\"alexand\" + 0.015*\"persian\" + 0.013*\"greek\" + 0.013*\"athen\" + 0.012*\"king\" + 0.012*\"philip\" + 0.010*\"battl\" + 0.010*\"empir\" + 0.009*\"campaign\" + 0.009*\"death\"'),\n", " (8,\n", - " '0.720*\"american\" + 0.272*\"english\" + 0.238*\"politician\" + 0.229*\"player\" + 0.156*\"author\" + 0.153*\"footbal\" + 0.136*\"singer\" + 0.125*\"french\" + 0.124*\"actor\" + 0.114*\"german\"'),\n", + " '0.039*\"einstein\" + 0.011*\"egyptian\" + 0.009*\"theori\" + 0.009*\"egypt\" + 0.007*\"ancient\" + 0.007*\"physic\" + 0.007*\"rel\" + 0.005*\"paper\" + 0.005*\"death\" + 0.005*\"god\"'),\n", " (9,\n", - " '0.696*\"brown\" + 0.541*\"game\" + 0.133*\"bear\" + 0.127*\"parti\" + 0.112*\"releas\" + 0.108*\"jame\" + 0.090*\"nfl\" + 0.065*\"black\" + 0.063*\"record\" + 0.061*\"elect\"'),\n", + " '0.049*\"languag\" + 0.025*\"arab\" + 0.023*\"assembl\" + 0.011*\"program\" + 0.011*\"vowel\" + 0.009*\"code\" + 0.008*\"conson\" + 0.008*\"instruct\" + 0.008*\"alphabet\" + 0.008*\"spoken\"'),\n", " (10,\n", - " '0.803*\"languag\" + 0.240*\"word\" + 0.136*\"english\" + 0.135*\"latin\" + 0.113*\"german\" + 0.109*\"mean\" + 0.105*\"linguist\" + 0.096*\"exampl\" + 0.091*\"dialect\" + 0.078*\"noun\"'),\n", + " '0.073*\"apollo\" + 0.023*\"god\" + 0.019*\"greek\" + 0.018*\"templ\" + 0.008*\"moon\" + 0.008*\"earth\" + 0.008*\"crew\" + 0.008*\"mission\" + 0.007*\"roman\" + 0.007*\"lunar\"'),\n", " (11,\n", - " '0.723*\"church\" + 0.417*\"methodist\" + 0.186*\"christian\" + 0.125*\"orthodox\" + 0.125*\"god\" + 0.095*\"method\" + 0.090*\"cathol\" + 0.090*\"holi\" + 0.089*\"council\" + 0.087*\"john\"'),\n", + " '0.078*\"anim\" + 0.020*\"english\" + 0.019*\"player\" + 0.015*\"politician\" + 0.012*\"footbal\" + 0.010*\"french\" + 0.009*\"singer\" + 0.009*\"farm\" + 0.009*\"actor\" + 0.008*\"japanes\"'),\n", " (12,\n", - " '0.580*\"island\" + 0.319*\"river\" + 0.318*\"lake\" + 0.175*\"water\" + 0.168*\"american\" + 0.121*\"north\" + 0.117*\"popul\" + 0.114*\"speci\" + 0.109*\"south\" + 0.103*\"area\"'),\n", + " '0.153*\"acid\" + 0.016*\"reaction\" + 0.015*\"metal\" + 0.013*\"solut\" + 0.012*\"protein\" + 0.012*\"chain\" + 0.012*\"ion\" + 0.012*\"water\" + 0.011*\"hydrogen\" + 0.011*\"carbon\"'),\n", " (13,\n", - " '0.421*\"air\" + 0.363*\"forc\" + 0.247*\"aircraft\" + 0.226*\"engin\" + 0.191*\"oper\" + 0.164*\"militari\" + 0.156*\"war\" + 0.154*\"design\" + 0.121*\"command\" + 0.113*\"armi\"'),\n", + " '0.051*\"atom\" + 0.042*\"electron\" + 0.031*\"metal\" + 0.027*\"orbit\" + 0.021*\"energi\" + 0.018*\"element\" + 0.011*\"nucleu\" + 0.010*\"particl\" + 0.010*\"hydrogen\" + 0.008*\"quantum\"'),\n", " (14,\n", - " '0.444*\"art\" + 0.401*\"paint\" + 0.321*\"jpg\" + 0.260*\"file\" + 0.258*\"color\" + 0.231*\"imag\" + 0.162*\"artist\" + 0.158*\"light\" + 0.130*\"centuri\" + 0.113*\"modern\"'),\n", + " '0.039*\"abort\" + 0.009*\"church\" + 0.008*\"april\" + 0.008*\"law\" + 0.006*\"medic\" + 0.006*\"legal\" + 0.006*\"societi\" + 0.006*\"women\" + 0.006*\"week\" + 0.006*\"angl\"'),\n", " (15,\n", - " '0.473*\"game\" + 0.371*\"team\" + 0.326*\"season\" + 0.255*\"leagu\" + 0.225*\"player\" + 0.215*\"plai\" + 0.157*\"win\" + 0.136*\"club\" + 0.121*\"won\" + 0.111*\"final\"'),\n", + " '0.023*\"album\" + 0.018*\"song\" + 0.018*\"record\" + 0.018*\"releas\" + 0.015*\"music\" + 0.014*\"singl\" + 0.011*\"hit\" + 0.011*\"chart\" + 0.009*\"perform\" + 0.009*\"band\"'),\n", " (16,\n", - " '0.308*\"album\" + 0.211*\"releas\" + 0.179*\"band\" + 0.151*\"record\" + 0.136*\"song\" + 0.119*\"tour\" + 0.116*\"rock\" + 0.108*\"seri\" + 0.102*\"perform\" + 0.100*\"loi\"'),\n", + " '0.020*\"albania\" + 0.010*\"countri\" + 0.007*\"roman\" + 0.007*\"popul\" + 0.006*\"region\" + 0.005*\"largest\" + 0.005*\"church\" + 0.005*\"govern\" + 0.005*\"power\" + 0.005*\"ancient\"'),\n", " (17,\n", - " '0.128*\"theori\" + 0.119*\"function\" + 0.102*\"exampl\" + 0.099*\"light\" + 0.085*\"field\" + 0.082*\"product\" + 0.079*\"space\" + 0.078*\"valu\" + 0.075*\"cell\" + 0.073*\"measur\"'),\n", + " '0.036*\"war\" + 0.021*\"union\" + 0.017*\"confeder\" + 0.013*\"armi\" + 0.013*\"lincoln\" + 0.012*\"civil\" + 0.010*\"south\" + 0.010*\"battl\" + 0.009*\"forc\" + 0.009*\"slaveri\"'),\n", " (18,\n", - " '0.790*\"music\" + 0.226*\"born\" + 0.126*\"mtv\" + 0.112*\"film\" + 0.101*\"countri\" + 0.096*\"song\" + 0.092*\"perform\" + 0.083*\"compos\" + 0.073*\"video\" + 0.072*\"relat\"'),\n", + " '0.093*\"appl\" + 0.019*\"compani\" + 0.014*\"store\" + 0.013*\"job\" + 0.008*\"introduc\" + 0.008*\"market\" + 0.007*\"design\" + 0.007*\"releas\" + 0.006*\"billion\" + 0.006*\"featur\"'),\n", " (19,\n", - " '0.336*\"french\" + 0.295*\"loui\" + 0.275*\"franc\" + 0.239*\"open\" + 0.233*\"war\" + 0.220*\"king\" + 0.204*\"champion\" + 0.183*\"born\" + 0.146*\"grand\" + 0.130*\"titl\"')]" + " '0.050*\"jew\" + 0.026*\"jewish\" + 0.018*\"anti\" + 0.013*\"semit\" + 0.008*\"israel\" + 0.007*\"attack\" + 0.006*\"europ\" + 0.006*\"australia\" + 0.006*\"countri\" + 0.006*\"commun\"')]" ] }, - "execution_count": 7, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -497,254 +521,66 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-06-02 20:48:52,359 : INFO : using symmetric alpha at 0.05\n", - "2018-06-02 20:48:52,361 : INFO : using symmetric eta at 0.05\n", - "2018-06-02 20:48:52,391 : INFO : using serial LDA version on this node\n", - "2018-06-02 20:48:52,634 : INFO : running online (multi-pass) LDA training, 20 topics, 5 passes over the supplied corpus of 10000 documents, updating model once every 2000 documents, evaluating perplexity every 10000 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-06-02 20:48:52,636 : INFO : PROGRESS: pass 0, at document #2000/10000\n", - "2018-06-02 20:48:59,748 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:48:59,962 : INFO : topic #17 (0.050): 0.003*\"american\" + 0.003*\"citi\" + 0.002*\"book\" + 0.002*\"centuri\" + 0.002*\"space\" + 0.002*\"apollo\" + 0.002*\"countri\" + 0.002*\"land\" + 0.002*\"game\" + 0.002*\"oper\"\n", - "2018-06-02 20:48:59,965 : INFO : topic #3 (0.050): 0.003*\"citi\" + 0.002*\"centuri\" + 0.002*\"war\" + 0.002*\"american\" + 0.002*\"book\" + 0.002*\"plai\" + 0.002*\"game\" + 0.002*\"produc\" + 0.001*\"black\" + 0.001*\"countri\"\n", - "2018-06-02 20:48:59,968 : INFO : topic #14 (0.050): 0.003*\"american\" + 0.003*\"citi\" + 0.002*\"church\" + 0.002*\"countri\" + 0.002*\"player\" + 0.002*\"languag\" + 0.002*\"war\" + 0.002*\"area\" + 0.002*\"english\" + 0.002*\"govern\"\n", - "2018-06-02 20:48:59,970 : INFO : topic #2 (0.050): 0.003*\"citi\" + 0.003*\"american\" + 0.002*\"film\" + 0.002*\"centuri\" + 0.002*\"seri\" + 0.002*\"countri\" + 0.002*\"design\" + 0.002*\"product\" + 0.002*\"list\" + 0.002*\"war\"\n", - "2018-06-02 20:48:59,974 : INFO : topic #1 (0.050): 0.005*\"american\" + 0.003*\"acid\" + 0.002*\"centuri\" + 0.002*\"war\" + 0.002*\"south\" + 0.002*\"english\" + 0.002*\"govern\" + 0.002*\"area\" + 0.002*\"british\" + 0.002*\"john\"\n", - "2018-06-02 20:48:59,978 : INFO : topic diff=5.671532, rho=1.000000\n", - "2018-06-02 20:48:59,980 : INFO : PROGRESS: pass 0, at document #4000/10000\n", - "2018-06-02 20:49:07,364 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:49:07,580 : INFO : topic #18 (0.050): 0.005*\"film\" + 0.004*\"plai\" + 0.003*\"record\" + 0.003*\"album\" + 0.003*\"team\" + 0.003*\"season\" + 0.003*\"music\" + 0.003*\"game\" + 0.003*\"band\" + 0.003*\"american\"\n", - "2018-06-02 20:49:07,583 : INFO : topic #9 (0.050): 0.005*\"air\" + 0.005*\"engin\" + 0.004*\"aircraft\" + 0.004*\"forc\" + 0.004*\"oper\" + 0.004*\"design\" + 0.003*\"control\" + 0.003*\"color\" + 0.002*\"product\" + 0.002*\"produc\"\n", - "2018-06-02 20:49:07,586 : INFO : topic #15 (0.050): 0.005*\"languag\" + 0.004*\"exampl\" + 0.003*\"program\" + 0.003*\"univers\" + 0.003*\"function\" + 0.003*\"object\" + 0.003*\"comput\" + 0.003*\"data\" + 0.003*\"theori\" + 0.002*\"law\"\n", - "2018-06-02 20:49:07,589 : INFO : topic #4 (0.050): 0.007*\"function\" + 0.003*\"plant\" + 0.003*\"exampl\" + 0.003*\"cell\" + 0.003*\"deriv\" + 0.003*\"electron\" + 0.002*\"case\" + 0.002*\"languag\" + 0.002*\"speci\" + 0.002*\"water\"\n", - "2018-06-02 20:49:07,591 : INFO : topic #19 (0.050): 0.004*\"star\" + 0.004*\"citi\" + 0.003*\"american\" + 0.003*\"british\" + 0.003*\"univers\" + 0.002*\"area\" + 0.002*\"south\" + 0.002*\"north\" + 0.002*\"govern\" + 0.002*\"war\"\n", - "2018-06-02 20:49:07,595 : INFO : topic diff=2.827430, rho=0.707107\n", - "2018-06-02 20:49:07,600 : INFO : PROGRESS: pass 0, at document #6000/10000\n", - "2018-06-02 20:49:14,794 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:49:15,016 : INFO : topic #9 (0.050): 0.008*\"air\" + 0.007*\"engin\" + 0.006*\"aircraft\" + 0.005*\"forc\" + 0.005*\"oper\" + 0.005*\"design\" + 0.004*\"control\" + 0.003*\"power\" + 0.003*\"product\" + 0.003*\"electron\"\n", - "2018-06-02 20:49:15,019 : INFO : topic #2 (0.050): 0.007*\"citi\" + 0.004*\"countri\" + 0.004*\"river\" + 0.004*\"servic\" + 0.004*\"govern\" + 0.003*\"compani\" + 0.003*\"bank\" + 0.003*\"area\" + 0.003*\"intern\" + 0.003*\"war\"\n", - "2018-06-02 20:49:15,022 : INFO : topic #13 (0.050): 0.010*\"island\" + 0.006*\"war\" + 0.004*\"british\" + 0.003*\"govern\" + 0.003*\"centuri\" + 0.003*\"roman\" + 0.002*\"armi\" + 0.002*\"polit\" + 0.002*\"forc\" + 0.002*\"militari\"\n", - "2018-06-02 20:49:15,025 : INFO : topic #7 (0.050): 0.004*\"food\" + 0.003*\"citi\" + 0.003*\"centuri\" + 0.003*\"jpg\" + 0.003*\"water\" + 0.003*\"area\" + 0.003*\"produc\" + 0.002*\"product\" + 0.002*\"art\" + 0.002*\"file\"\n", - "2018-06-02 20:49:15,028 : INFO : topic #3 (0.050): 0.007*\"music\" + 0.004*\"instrument\" + 0.004*\"plai\" + 0.004*\"bass\" + 0.003*\"guitar\" + 0.003*\"centuri\" + 0.003*\"string\" + 0.003*\"sound\" + 0.003*\"perform\" + 0.002*\"tradit\"\n", - "2018-06-02 20:49:15,033 : INFO : topic diff=2.033462, rho=0.577350\n", - "2018-06-02 20:49:15,038 : INFO : PROGRESS: pass 0, at document #8000/10000\n", - "2018-06-02 20:49:22,698 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:49:22,923 : INFO : topic #16 (0.050): 0.008*\"relat\" + 0.007*\"german\" + 0.006*\"game\" + 0.006*\"war\" + 0.006*\"countri\" + 0.006*\"player\" + 0.005*\"embassi\" + 0.004*\"germani\" + 0.004*\"foreign\" + 0.004*\"citi\"\n", - "2018-06-02 20:49:22,925 : INFO : topic #8 (0.050): 0.012*\"film\" + 0.006*\"stori\" + 0.004*\"novel\" + 0.004*\"publish\" + 0.004*\"fiction\" + 0.004*\"seri\" + 0.003*\"book\" + 0.003*\"john\" + 0.003*\"life\" + 0.003*\"charact\"\n", - "2018-06-02 20:49:22,928 : INFO : topic #19 (0.050): 0.005*\"island\" + 0.004*\"star\" + 0.004*\"earth\" + 0.004*\"citi\" + 0.003*\"area\" + 0.003*\"univers\" + 0.003*\"south\" + 0.003*\"counti\" + 0.003*\"north\" + 0.002*\"climat\"\n", - "2018-06-02 20:49:22,931 : INFO : topic #18 (0.050): 0.008*\"film\" + 0.006*\"plai\" + 0.005*\"record\" + 0.005*\"music\" + 0.005*\"album\" + 0.004*\"award\" + 0.004*\"releas\" + 0.004*\"song\" + 0.004*\"perform\" + 0.003*\"season\"\n", - "2018-06-02 20:49:22,934 : INFO : topic #10 (0.050): 0.004*\"diseas\" + 0.004*\"caus\" + 0.004*\"effect\" + 0.004*\"drug\" + 0.003*\"cell\" + 0.003*\"hors\" + 0.003*\"human\" + 0.003*\"increas\" + 0.003*\"medic\" + 0.003*\"treatment\"\n", - "2018-06-02 20:49:22,938 : INFO : topic diff=1.707723, rho=0.500000\n", - "2018-06-02 20:49:41,744 : INFO : -8.635 per-word bound, 397.4 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", - "2018-06-02 20:49:41,745 : INFO : PROGRESS: pass 0, at document #10000/10000\n", - "2018-06-02 20:49:48,671 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:49:48,893 : INFO : topic #6 (0.050): 0.021*\"languag\" + 0.010*\"popul\" + 0.006*\"english\" + 0.005*\"word\" + 0.004*\"arab\" + 0.004*\"region\" + 0.004*\"latin\" + 0.004*\"centuri\" + 0.004*\"dialect\" + 0.004*\"lebanon\"\n", - "2018-06-02 20:49:48,896 : INFO : topic #1 (0.050): 0.010*\"acid\" + 0.008*\"metal\" + 0.008*\"cell\" + 0.007*\"protein\" + 0.006*\"bond\" + 0.006*\"chemic\" + 0.005*\"molecul\" + 0.005*\"atom\" + 0.005*\"element\" + 0.005*\"structur\"\n", - "2018-06-02 20:49:48,898 : INFO : topic #16 (0.050): 0.008*\"relat\" + 0.007*\"countri\" + 0.006*\"war\" + 0.006*\"german\" + 0.006*\"embassi\" + 0.005*\"game\" + 0.005*\"player\" + 0.004*\"soviet\" + 0.004*\"citi\" + 0.004*\"republ\"\n", - "2018-06-02 20:49:48,901 : INFO : topic #8 (0.050): 0.012*\"film\" + 0.006*\"stori\" + 0.005*\"novel\" + 0.004*\"publish\" + 0.004*\"book\" + 0.004*\"seri\" + 0.004*\"fiction\" + 0.004*\"charact\" + 0.003*\"life\" + 0.003*\"king\"\n", - "2018-06-02 20:49:48,904 : INFO : topic #0 (0.050): 0.006*\"god\" + 0.004*\"book\" + 0.004*\"christian\" + 0.004*\"centuri\" + 0.004*\"life\" + 0.003*\"univers\" + 0.003*\"jewish\" + 0.003*\"human\" + 0.003*\"studi\" + 0.003*\"tradit\"\n", - "2018-06-02 20:49:48,908 : INFO : topic diff=1.408409, rho=0.447214\n", - "2018-06-02 20:49:48,910 : INFO : PROGRESS: pass 1, at document #2000/10000\n", - "2018-06-02 20:49:55,678 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:49:55,903 : INFO : topic #0 (0.050): 0.007*\"god\" + 0.006*\"book\" + 0.005*\"centuri\" + 0.004*\"christian\" + 0.004*\"life\" + 0.003*\"univers\" + 0.003*\"human\" + 0.003*\"jewish\" + 0.003*\"studi\" + 0.003*\"philosophi\"\n", - "2018-06-02 20:49:55,905 : INFO : topic #17 (0.050): 0.012*\"space\" + 0.011*\"game\" + 0.011*\"apollo\" + 0.007*\"moon\" + 0.007*\"lunar\" + 0.006*\"mission\" + 0.005*\"dna\" + 0.005*\"tree\" + 0.004*\"orbit\" + 0.004*\"launch\"\n", - "2018-06-02 20:49:55,907 : INFO : topic #9 (0.050): 0.007*\"air\" + 0.007*\"design\" + 0.007*\"oper\" + 0.006*\"engin\" + 0.006*\"aircraft\" + 0.005*\"forc\" + 0.004*\"control\" + 0.004*\"power\" + 0.003*\"system\" + 0.003*\"product\"\n", - "2018-06-02 20:49:55,909 : INFO : topic #19 (0.050): 0.007*\"island\" + 0.005*\"star\" + 0.005*\"area\" + 0.004*\"lake\" + 0.004*\"sea\" + 0.004*\"north\" + 0.004*\"south\" + 0.004*\"river\" + 0.004*\"citi\" + 0.004*\"earth\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-06-02 20:49:55,911 : INFO : topic #7 (0.050): 0.007*\"art\" + 0.007*\"jpg\" + 0.006*\"paint\" + 0.006*\"file\" + 0.005*\"food\" + 0.004*\"blue\" + 0.004*\"centuri\" + 0.003*\"product\" + 0.003*\"water\" + 0.003*\"produc\"\n", - "2018-06-02 20:49:55,915 : INFO : topic diff=1.105198, rho=0.377964\n", - "2018-06-02 20:49:55,917 : INFO : PROGRESS: pass 1, at document #4000/10000\n", - "2018-06-02 20:50:02,697 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:50:02,920 : INFO : topic #5 (0.050): 0.009*\"centuri\" + 0.005*\"empir\" + 0.004*\"king\" + 0.004*\"citi\" + 0.004*\"china\" + 0.003*\"period\" + 0.003*\"dynasti\" + 0.003*\"chines\" + 0.003*\"muslim\" + 0.003*\"greek\"\n", - "2018-06-02 20:50:02,922 : INFO : topic #18 (0.050): 0.007*\"plai\" + 0.007*\"film\" + 0.006*\"record\" + 0.005*\"game\" + 0.005*\"season\" + 0.005*\"album\" + 0.005*\"team\" + 0.005*\"music\" + 0.005*\"award\" + 0.004*\"seri\"\n", - "2018-06-02 20:50:02,924 : INFO : topic #2 (0.050): 0.011*\"citi\" + 0.006*\"countri\" + 0.005*\"govern\" + 0.005*\"servic\" + 0.005*\"compani\" + 0.005*\"area\" + 0.004*\"intern\" + 0.004*\"river\" + 0.004*\"industri\" + 0.004*\"econom\"\n", - "2018-06-02 20:50:02,930 : INFO : topic #4 (0.050): 0.009*\"function\" + 0.006*\"point\" + 0.005*\"field\" + 0.005*\"energi\" + 0.005*\"space\" + 0.005*\"equat\" + 0.005*\"exampl\" + 0.005*\"measur\" + 0.004*\"mass\" + 0.004*\"particl\"\n", - "2018-06-02 20:50:02,932 : INFO : topic #11 (0.050): 0.020*\"parti\" + 0.009*\"elect\" + 0.009*\"govern\" + 0.007*\"polit\" + 0.005*\"member\" + 0.005*\"german\" + 0.005*\"liber\" + 0.004*\"germani\" + 0.004*\"minist\" + 0.004*\"countri\"\n", - "2018-06-02 20:50:02,936 : INFO : topic diff=1.049597, rho=0.377964\n", - "2018-06-02 20:50:02,938 : INFO : PROGRESS: pass 1, at document #6000/10000\n", - "2018-06-02 20:50:09,792 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:50:10,030 : INFO : topic #10 (0.050): 0.006*\"effect\" + 0.005*\"caus\" + 0.005*\"diseas\" + 0.005*\"human\" + 0.004*\"drug\" + 0.004*\"medic\" + 0.004*\"treatment\" + 0.004*\"increas\" + 0.004*\"bodi\" + 0.003*\"anim\"\n", - "2018-06-02 20:50:10,032 : INFO : topic #14 (0.050): 0.019*\"church\" + 0.008*\"school\" + 0.008*\"law\" + 0.007*\"univers\" + 0.007*\"council\" + 0.006*\"colleg\" + 0.006*\"court\" + 0.005*\"educ\" + 0.005*\"cathol\" + 0.004*\"bishop\"\n", - "2018-06-02 20:50:10,034 : INFO : topic #4 (0.050): 0.009*\"function\" + 0.008*\"field\" + 0.007*\"equat\" + 0.006*\"energi\" + 0.006*\"point\" + 0.005*\"space\" + 0.005*\"particl\" + 0.005*\"exampl\" + 0.005*\"theori\" + 0.004*\"measur\"\n", - "2018-06-02 20:50:10,036 : INFO : topic #8 (0.050): 0.018*\"film\" + 0.007*\"stori\" + 0.005*\"book\" + 0.005*\"charact\" + 0.005*\"publish\" + 0.005*\"seri\" + 0.005*\"novel\" + 0.004*\"fiction\" + 0.003*\"life\" + 0.003*\"edit\"\n", - "2018-06-02 20:50:10,039 : INFO : topic #9 (0.050): 0.009*\"engin\" + 0.009*\"air\" + 0.008*\"design\" + 0.007*\"oper\" + 0.007*\"aircraft\" + 0.005*\"forc\" + 0.005*\"control\" + 0.004*\"power\" + 0.003*\"system\" + 0.003*\"devic\"\n", - "2018-06-02 20:50:10,043 : INFO : topic diff=0.947570, rho=0.377964\n", - "2018-06-02 20:50:10,045 : INFO : PROGRESS: pass 1, at document #8000/10000\n", - "2018-06-02 20:50:17,271 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:50:17,490 : INFO : topic #17 (0.050): 0.028*\"game\" + 0.012*\"space\" + 0.009*\"dna\" + 0.006*\"moon\" + 0.006*\"gene\" + 0.005*\"tree\" + 0.004*\"apollo\" + 0.004*\"genom\" + 0.004*\"mission\" + 0.004*\"orbit\"\n", - "2018-06-02 20:50:17,492 : INFO : topic #11 (0.050): 0.017*\"parti\" + 0.012*\"elect\" + 0.011*\"govern\" + 0.009*\"polit\" + 0.007*\"member\" + 0.007*\"german\" + 0.007*\"germani\" + 0.006*\"minist\" + 0.005*\"european\" + 0.005*\"vote\"\n", - "2018-06-02 20:50:17,495 : INFO : topic #7 (0.050): 0.010*\"jpg\" + 0.009*\"paint\" + 0.008*\"art\" + 0.007*\"file\" + 0.007*\"food\" + 0.006*\"color\" + 0.004*\"centuri\" + 0.004*\"museum\" + 0.003*\"product\" + 0.003*\"water\"\n", - "2018-06-02 20:50:17,498 : INFO : topic #18 (0.050): 0.007*\"plai\" + 0.007*\"film\" + 0.006*\"record\" + 0.005*\"award\" + 0.005*\"album\" + 0.005*\"music\" + 0.005*\"season\" + 0.005*\"game\" + 0.005*\"team\" + 0.004*\"releas\"\n", - "2018-06-02 20:50:17,501 : INFO : topic #15 (0.050): 0.006*\"exampl\" + 0.005*\"theori\" + 0.005*\"inform\" + 0.005*\"program\" + 0.005*\"data\" + 0.005*\"languag\" + 0.005*\"function\" + 0.004*\"code\" + 0.004*\"valu\" + 0.004*\"scienc\"\n", - "2018-06-02 20:50:17,505 : INFO : topic diff=0.889594, rho=0.377964\n", - "2018-06-02 20:50:36,453 : INFO : -8.416 per-word bound, 341.5 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", - "2018-06-02 20:50:36,454 : INFO : PROGRESS: pass 1, at document #10000/10000\n", - "2018-06-02 20:50:43,110 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:50:43,328 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"theori\" + 0.005*\"program\" + 0.005*\"languag\" + 0.005*\"function\" + 0.005*\"inform\" + 0.005*\"data\" + 0.005*\"valu\" + 0.004*\"mathemat\" + 0.004*\"code\"\n", - "2018-06-02 20:50:43,330 : INFO : topic #11 (0.050): 0.019*\"parti\" + 0.012*\"elect\" + 0.012*\"govern\" + 0.009*\"polit\" + 0.007*\"member\" + 0.006*\"german\" + 0.006*\"minist\" + 0.006*\"germani\" + 0.005*\"presid\" + 0.005*\"vote\"\n", - "2018-06-02 20:50:43,333 : INFO : topic #0 (0.050): 0.007*\"god\" + 0.006*\"book\" + 0.005*\"christian\" + 0.005*\"centuri\" + 0.004*\"life\" + 0.004*\"univers\" + 0.004*\"jewish\" + 0.004*\"human\" + 0.003*\"philosophi\" + 0.003*\"studi\"\n", - "2018-06-02 20:50:43,336 : INFO : topic #12 (0.050): 0.033*\"american\" + 0.011*\"english\" + 0.009*\"politician\" + 0.009*\"player\" + 0.007*\"author\" + 0.007*\"french\" + 0.006*\"footbal\" + 0.006*\"presid\" + 0.005*\"singer\" + 0.005*\"actor\"\n", - "2018-06-02 20:50:43,339 : INFO : topic #9 (0.050): 0.008*\"engin\" + 0.008*\"air\" + 0.008*\"design\" + 0.007*\"oper\" + 0.005*\"aircraft\" + 0.005*\"forc\" + 0.005*\"power\" + 0.004*\"control\" + 0.003*\"devic\" + 0.003*\"servic\"\n", - "2018-06-02 20:50:43,343 : INFO : topic diff=0.766872, rho=0.377964\n", - "2018-06-02 20:50:43,347 : INFO : PROGRESS: pass 2, at document #2000/10000\n", - "2018-06-02 20:50:49,947 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:50:50,175 : INFO : topic #10 (0.050): 0.006*\"effect\" + 0.005*\"caus\" + 0.005*\"diseas\" + 0.005*\"human\" + 0.004*\"bodi\" + 0.004*\"treatment\" + 0.004*\"medic\" + 0.004*\"anim\" + 0.004*\"studi\" + 0.004*\"increas\"\n", - "2018-06-02 20:50:50,177 : INFO : topic #6 (0.050): 0.030*\"languag\" + 0.010*\"popul\" + 0.010*\"word\" + 0.009*\"english\" + 0.007*\"arab\" + 0.006*\"dialect\" + 0.005*\"latin\" + 0.005*\"vowel\" + 0.004*\"centuri\" + 0.004*\"letter\"\n", - "2018-06-02 20:50:50,179 : INFO : topic #4 (0.050): 0.008*\"function\" + 0.007*\"field\" + 0.006*\"measur\" + 0.006*\"space\" + 0.006*\"point\" + 0.006*\"energi\" + 0.005*\"theori\" + 0.005*\"equat\" + 0.005*\"light\" + 0.005*\"mass\"\n", - "2018-06-02 20:50:50,182 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"program\" + 0.006*\"languag\" + 0.005*\"theori\" + 0.005*\"function\" + 0.005*\"data\" + 0.005*\"valu\" + 0.004*\"inform\" + 0.004*\"code\" + 0.004*\"comput\"\n", - "2018-06-02 20:50:50,184 : INFO : topic #5 (0.050): 0.009*\"centuri\" + 0.007*\"empir\" + 0.005*\"citi\" + 0.005*\"king\" + 0.005*\"muslim\" + 0.005*\"islam\" + 0.004*\"india\" + 0.004*\"greek\" + 0.004*\"period\" + 0.003*\"kingdom\"\n", - "2018-06-02 20:50:50,187 : INFO : topic diff=0.635099, rho=0.353553\n", - "2018-06-02 20:50:50,189 : INFO : PROGRESS: pass 2, at document #4000/10000\n", - "2018-06-02 20:50:56,864 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:50:57,083 : INFO : topic #6 (0.050): 0.032*\"languag\" + 0.011*\"word\" + 0.010*\"popul\" + 0.010*\"english\" + 0.006*\"dialect\" + 0.006*\"arab\" + 0.005*\"latin\" + 0.005*\"vowel\" + 0.005*\"letter\" + 0.005*\"centuri\"\n", - "2018-06-02 20:50:57,086 : INFO : topic #1 (0.050): 0.011*\"acid\" + 0.010*\"cell\" + 0.009*\"carbon\" + 0.009*\"chemic\" + 0.008*\"metal\" + 0.008*\"atom\" + 0.007*\"reaction\" + 0.007*\"element\" + 0.006*\"water\" + 0.006*\"bond\"\n", - "2018-06-02 20:50:57,088 : INFO : topic #19 (0.050): 0.011*\"island\" + 0.007*\"river\" + 0.006*\"area\" + 0.006*\"north\" + 0.006*\"sea\" + 0.005*\"water\" + 0.005*\"star\" + 0.005*\"south\" + 0.005*\"lake\" + 0.004*\"speci\"\n", - "2018-06-02 20:50:57,090 : INFO : topic #17 (0.050): 0.036*\"game\" + 0.010*\"apollo\" + 0.010*\"space\" + 0.009*\"dna\" + 0.009*\"player\" + 0.008*\"moon\" + 0.007*\"tree\" + 0.006*\"lunar\" + 0.006*\"mission\" + 0.006*\"christma\"\n", - "2018-06-02 20:50:57,092 : INFO : topic #16 (0.050): 0.012*\"countri\" + 0.010*\"relat\" + 0.008*\"soviet\" + 0.008*\"embassi\" + 0.007*\"republ\" + 0.007*\"war\" + 0.005*\"german\" + 0.005*\"union\" + 0.005*\"foreign\" + 0.005*\"intern\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-06-02 20:50:57,096 : INFO : topic diff=0.577383, rho=0.353553\n", - "2018-06-02 20:50:57,097 : INFO : PROGRESS: pass 2, at document #6000/10000\n", - "2018-06-02 20:51:03,678 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:51:03,897 : INFO : topic #19 (0.050): 0.013*\"island\" + 0.007*\"river\" + 0.006*\"area\" + 0.006*\"water\" + 0.006*\"sea\" + 0.005*\"north\" + 0.005*\"lake\" + 0.005*\"star\" + 0.005*\"south\" + 0.005*\"speci\"\n", - "2018-06-02 20:51:03,899 : INFO : topic #17 (0.050): 0.039*\"game\" + 0.012*\"dna\" + 0.011*\"player\" + 0.010*\"space\" + 0.009*\"moon\" + 0.007*\"apollo\" + 0.006*\"christma\" + 0.006*\"gene\" + 0.006*\"tree\" + 0.006*\"mission\"\n", - "2018-06-02 20:51:03,901 : INFO : topic #2 (0.050): 0.013*\"citi\" + 0.007*\"countri\" + 0.006*\"govern\" + 0.006*\"servic\" + 0.006*\"compani\" + 0.005*\"area\" + 0.005*\"econom\" + 0.005*\"intern\" + 0.005*\"industri\" + 0.005*\"bank\"\n", - "2018-06-02 20:51:03,904 : INFO : topic #9 (0.050): 0.010*\"engin\" + 0.009*\"air\" + 0.008*\"design\" + 0.008*\"oper\" + 0.007*\"aircraft\" + 0.005*\"forc\" + 0.005*\"control\" + 0.005*\"power\" + 0.004*\"servic\" + 0.004*\"devic\"\n", - "2018-06-02 20:51:03,907 : INFO : topic #1 (0.050): 0.011*\"acid\" + 0.010*\"cell\" + 0.008*\"carbon\" + 0.008*\"chemic\" + 0.007*\"metal\" + 0.007*\"reaction\" + 0.007*\"atom\" + 0.006*\"element\" + 0.006*\"water\" + 0.006*\"produc\"\n", - "2018-06-02 20:51:03,911 : INFO : topic diff=0.501128, rho=0.353553\n", - "2018-06-02 20:51:03,913 : INFO : PROGRESS: pass 2, at document #8000/10000\n", - "2018-06-02 20:51:11,116 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:51:11,329 : INFO : topic #12 (0.050): 0.040*\"american\" + 0.013*\"english\" + 0.010*\"politician\" + 0.010*\"player\" + 0.009*\"author\" + 0.007*\"footbal\" + 0.007*\"french\" + 0.006*\"singer\" + 0.006*\"john\" + 0.006*\"actor\"\n", - "2018-06-02 20:51:11,331 : INFO : topic #11 (0.050): 0.016*\"parti\" + 0.013*\"govern\" + 0.012*\"elect\" + 0.010*\"polit\" + 0.008*\"member\" + 0.007*\"presid\" + 0.006*\"minist\" + 0.006*\"german\" + 0.006*\"germani\" + 0.005*\"power\"\n", - "2018-06-02 20:51:11,333 : INFO : topic #7 (0.050): 0.011*\"jpg\" + 0.011*\"art\" + 0.010*\"paint\" + 0.009*\"file\" + 0.007*\"color\" + 0.007*\"food\" + 0.005*\"museum\" + 0.005*\"centuri\" + 0.004*\"artist\" + 0.003*\"product\"\n", - "2018-06-02 20:51:11,337 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"inform\" + 0.006*\"data\" + 0.006*\"program\" + 0.005*\"theori\" + 0.005*\"languag\" + 0.005*\"code\" + 0.005*\"function\" + 0.004*\"valu\" + 0.004*\"comput\"\n", - "2018-06-02 20:51:11,339 : INFO : topic #2 (0.050): 0.013*\"citi\" + 0.007*\"countri\" + 0.006*\"govern\" + 0.006*\"compani\" + 0.006*\"servic\" + 0.005*\"industri\" + 0.005*\"intern\" + 0.005*\"area\" + 0.005*\"econom\" + 0.005*\"bank\"\n", - "2018-06-02 20:51:11,342 : INFO : topic diff=0.470330, rho=0.353553\n", - "2018-06-02 20:51:29,890 : INFO : -8.363 per-word bound, 329.3 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", - "2018-06-02 20:51:29,891 : INFO : PROGRESS: pass 2, at document #10000/10000\n", - "2018-06-02 20:51:36,528 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:51:36,746 : INFO : topic #11 (0.050): 0.017*\"parti\" + 0.013*\"govern\" + 0.012*\"elect\" + 0.011*\"polit\" + 0.008*\"member\" + 0.008*\"presid\" + 0.006*\"minist\" + 0.005*\"german\" + 0.005*\"power\" + 0.005*\"germani\"\n", - "2018-06-02 20:51:36,747 : INFO : topic #8 (0.050): 0.017*\"film\" + 0.008*\"stori\" + 0.007*\"book\" + 0.007*\"publish\" + 0.006*\"novel\" + 0.006*\"charact\" + 0.005*\"seri\" + 0.005*\"life\" + 0.005*\"fiction\" + 0.003*\"edit\"\n", - "2018-06-02 20:51:36,749 : INFO : topic #16 (0.050): 0.013*\"countri\" + 0.010*\"relat\" + 0.008*\"soviet\" + 0.007*\"embassi\" + 0.007*\"war\" + 0.006*\"republ\" + 0.006*\"foreign\" + 0.006*\"poland\" + 0.005*\"intern\" + 0.005*\"russian\"\n", - "2018-06-02 20:51:36,752 : INFO : topic #9 (0.050): 0.009*\"engin\" + 0.008*\"air\" + 0.008*\"design\" + 0.008*\"oper\" + 0.006*\"aircraft\" + 0.005*\"power\" + 0.005*\"control\" + 0.005*\"forc\" + 0.004*\"servic\" + 0.003*\"devic\"\n", - "2018-06-02 20:51:36,755 : INFO : topic #6 (0.050): 0.034*\"languag\" + 0.012*\"word\" + 0.011*\"popul\" + 0.011*\"english\" + 0.007*\"latin\" + 0.005*\"dialect\" + 0.005*\"german\" + 0.005*\"vowel\" + 0.005*\"arab\" + 0.005*\"letter\"\n", - "2018-06-02 20:51:36,759 : INFO : topic diff=0.392164, rho=0.353553\n", - "2018-06-02 20:51:36,762 : INFO : PROGRESS: pass 3, at document #2000/10000\n", - "2018-06-02 20:51:43,213 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:51:43,429 : INFO : topic #7 (0.050): 0.013*\"art\" + 0.011*\"jpg\" + 0.010*\"file\" + 0.008*\"paint\" + 0.006*\"food\" + 0.006*\"color\" + 0.005*\"museum\" + 0.005*\"centuri\" + 0.004*\"artist\" + 0.004*\"blue\"\n", - "2018-06-02 20:51:43,431 : INFO : topic #5 (0.050): 0.010*\"centuri\" + 0.007*\"empir\" + 0.006*\"islam\" + 0.006*\"india\" + 0.005*\"muslim\" + 0.005*\"citi\" + 0.005*\"king\" + 0.005*\"greek\" + 0.004*\"arab\" + 0.004*\"period\"\n", - "2018-06-02 20:51:43,433 : INFO : topic #16 (0.050): 0.013*\"countri\" + 0.010*\"relat\" + 0.009*\"soviet\" + 0.007*\"embassi\" + 0.007*\"war\" + 0.006*\"republ\" + 0.006*\"russia\" + 0.005*\"russian\" + 0.005*\"german\" + 0.005*\"foreign\"\n", - "2018-06-02 20:51:43,436 : INFO : topic #18 (0.050): 0.008*\"plai\" + 0.007*\"record\" + 0.007*\"team\" + 0.006*\"game\" + 0.006*\"album\" + 0.006*\"season\" + 0.005*\"award\" + 0.005*\"music\" + 0.005*\"leagu\" + 0.005*\"releas\"\n", - "2018-06-02 20:51:43,439 : INFO : topic #3 (0.050): 0.025*\"music\" + 0.008*\"plai\" + 0.008*\"instrument\" + 0.006*\"compos\" + 0.006*\"perform\" + 0.006*\"style\" + 0.005*\"string\" + 0.005*\"bass\" + 0.005*\"sound\" + 0.005*\"guitar\"\n", - "2018-06-02 20:51:43,442 : INFO : topic diff=0.335519, rho=0.333333\n", - "2018-06-02 20:51:43,444 : INFO : PROGRESS: pass 3, at document #4000/10000\n", - "2018-06-02 20:51:50,178 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:51:50,397 : INFO : topic #17 (0.050): 0.041*\"game\" + 0.015*\"player\" + 0.010*\"apollo\" + 0.009*\"dna\" + 0.009*\"moon\" + 0.008*\"space\" + 0.006*\"lunar\" + 0.006*\"calendar\" + 0.006*\"mission\" + 0.006*\"tree\"\n", - "2018-06-02 20:51:50,400 : INFO : topic #9 (0.050): 0.009*\"engin\" + 0.009*\"design\" + 0.008*\"air\" + 0.008*\"oper\" + 0.006*\"aircraft\" + 0.005*\"control\" + 0.005*\"power\" + 0.005*\"forc\" + 0.004*\"devic\" + 0.004*\"servic\"\n", - "2018-06-02 20:51:50,403 : INFO : topic #3 (0.050): 0.025*\"music\" + 0.008*\"instrument\" + 0.008*\"plai\" + 0.006*\"style\" + 0.006*\"danc\" + 0.006*\"compos\" + 0.006*\"perform\" + 0.005*\"sound\" + 0.005*\"string\" + 0.005*\"guitar\"\n", - "2018-06-02 20:51:50,406 : INFO : topic #10 (0.050): 0.006*\"effect\" + 0.006*\"diseas\" + 0.006*\"caus\" + 0.005*\"human\" + 0.005*\"anim\" + 0.005*\"bodi\" + 0.004*\"treatment\" + 0.004*\"medic\" + 0.004*\"studi\" + 0.004*\"drug\"\n", - "2018-06-02 20:51:50,409 : INFO : topic #0 (0.050): 0.008*\"god\" + 0.007*\"book\" + 0.006*\"christian\" + 0.005*\"centuri\" + 0.004*\"life\" + 0.004*\"human\" + 0.004*\"univers\" + 0.004*\"view\" + 0.003*\"philosophi\" + 0.003*\"believ\"\n", - "2018-06-02 20:51:50,413 : INFO : topic diff=0.311042, rho=0.333333\n", - "2018-06-02 20:51:50,415 : INFO : PROGRESS: pass 3, at document #6000/10000\n", - "2018-06-02 20:51:56,996 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:51:57,213 : INFO : topic #12 (0.050): 0.042*\"american\" + 0.014*\"english\" + 0.010*\"player\" + 0.010*\"politician\" + 0.009*\"born\" + 0.009*\"author\" + 0.008*\"french\" + 0.008*\"footbal\" + 0.007*\"singer\" + 0.006*\"actor\"\n", - "2018-06-02 20:51:57,215 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"program\" + 0.006*\"data\" + 0.006*\"languag\" + 0.005*\"function\" + 0.005*\"theori\" + 0.005*\"inform\" + 0.005*\"comput\" + 0.005*\"code\" + 0.005*\"valu\"\n", - "2018-06-02 20:51:57,217 : INFO : topic #11 (0.050): 0.017*\"parti\" + 0.014*\"govern\" + 0.012*\"elect\" + 0.011*\"polit\" + 0.009*\"presid\" + 0.008*\"member\" + 0.006*\"minist\" + 0.005*\"vote\" + 0.005*\"power\" + 0.005*\"right\"\n", - "2018-06-02 20:51:57,221 : INFO : topic #9 (0.050): 0.010*\"engin\" + 0.010*\"air\" + 0.008*\"design\" + 0.008*\"oper\" + 0.007*\"aircraft\" + 0.005*\"forc\" + 0.005*\"control\" + 0.005*\"power\" + 0.004*\"servic\" + 0.004*\"devic\"\n", - "2018-06-02 20:51:57,223 : INFO : topic #19 (0.050): 0.015*\"island\" + 0.008*\"river\" + 0.007*\"area\" + 0.006*\"water\" + 0.006*\"sea\" + 0.006*\"north\" + 0.006*\"lake\" + 0.005*\"south\" + 0.005*\"speci\" + 0.004*\"star\"\n", - "2018-06-02 20:51:57,228 : INFO : topic diff=0.278801, rho=0.333333\n", - "2018-06-02 20:51:57,230 : INFO : PROGRESS: pass 3, at document #8000/10000\n", - "2018-06-02 20:52:04,170 : INFO : merging changes from 2000 documents into a model of 10000 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-06-02 20:52:04,387 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.006*\"inform\" + 0.006*\"data\" + 0.006*\"program\" + 0.005*\"code\" + 0.005*\"languag\" + 0.005*\"function\" + 0.005*\"theori\" + 0.005*\"comput\" + 0.005*\"valu\"\n", - "2018-06-02 20:52:04,389 : INFO : topic #16 (0.050): 0.014*\"countri\" + 0.012*\"relat\" + 0.009*\"soviet\" + 0.008*\"embassi\" + 0.007*\"war\" + 0.007*\"republ\" + 0.007*\"foreign\" + 0.006*\"german\" + 0.006*\"germani\" + 0.006*\"intern\"\n", - "2018-06-02 20:52:04,391 : INFO : topic #8 (0.050): 0.018*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.007*\"publish\" + 0.005*\"charact\" + 0.005*\"novel\" + 0.005*\"seri\" + 0.005*\"life\" + 0.005*\"fiction\" + 0.003*\"award\"\n", - "2018-06-02 20:52:04,394 : INFO : topic #7 (0.050): 0.012*\"jpg\" + 0.012*\"art\" + 0.010*\"paint\" + 0.010*\"file\" + 0.008*\"color\" + 0.007*\"food\" + 0.005*\"museum\" + 0.005*\"centuri\" + 0.004*\"artist\" + 0.004*\"design\"\n", - "2018-06-02 20:52:04,397 : INFO : topic #9 (0.050): 0.010*\"engin\" + 0.009*\"air\" + 0.009*\"oper\" + 0.008*\"design\" + 0.006*\"aircraft\" + 0.005*\"power\" + 0.005*\"control\" + 0.005*\"forc\" + 0.004*\"servic\" + 0.004*\"devic\"\n", - "2018-06-02 20:52:04,401 : INFO : topic diff=0.273119, rho=0.333333\n", - "2018-06-02 20:52:23,032 : INFO : -8.340 per-word bound, 323.9 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", - "2018-06-02 20:52:23,033 : INFO : PROGRESS: pass 3, at document #10000/10000\n", - "2018-06-02 20:52:29,508 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:52:29,726 : INFO : topic #0 (0.050): 0.008*\"god\" + 0.006*\"book\" + 0.005*\"christian\" + 0.005*\"centuri\" + 0.005*\"life\" + 0.004*\"univers\" + 0.004*\"philosophi\" + 0.004*\"human\" + 0.004*\"jewish\" + 0.003*\"studi\"\n", - "2018-06-02 20:52:29,728 : INFO : topic #13 (0.050): 0.012*\"war\" + 0.007*\"armi\" + 0.007*\"king\" + 0.007*\"forc\" + 0.006*\"british\" + 0.005*\"militari\" + 0.005*\"battl\" + 0.005*\"roman\" + 0.004*\"french\" + 0.004*\"command\"\n", - "2018-06-02 20:52:29,731 : INFO : topic #8 (0.050): 0.018*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.006*\"publish\" + 0.006*\"charact\" + 0.005*\"novel\" + 0.005*\"seri\" + 0.005*\"life\" + 0.004*\"fiction\" + 0.004*\"award\"\n", - "2018-06-02 20:52:29,733 : INFO : topic #19 (0.050): 0.019*\"island\" + 0.009*\"river\" + 0.008*\"lake\" + 0.007*\"area\" + 0.007*\"water\" + 0.006*\"sea\" + 0.006*\"north\" + 0.005*\"south\" + 0.004*\"speci\" + 0.004*\"land\"\n", - "2018-06-02 20:52:29,735 : INFO : topic #17 (0.050): 0.039*\"game\" + 0.015*\"player\" + 0.012*\"moon\" + 0.009*\"space\" + 0.009*\"dna\" + 0.008*\"calendar\" + 0.008*\"mar\" + 0.007*\"earth\" + 0.006*\"card\" + 0.006*\"orbit\"\n", - "2018-06-02 20:52:29,738 : INFO : topic diff=0.226472, rho=0.333333\n", - "2018-06-02 20:52:29,741 : INFO : PROGRESS: pass 4, at document #2000/10000\n", - "2018-06-02 20:52:36,158 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:52:36,375 : INFO : topic #11 (0.050): 0.016*\"parti\" + 0.014*\"govern\" + 0.012*\"elect\" + 0.010*\"polit\" + 0.009*\"presid\" + 0.007*\"member\" + 0.006*\"minist\" + 0.005*\"vote\" + 0.005*\"right\" + 0.005*\"support\"\n", - "2018-06-02 20:52:36,377 : INFO : topic #9 (0.050): 0.009*\"air\" + 0.008*\"design\" + 0.008*\"oper\" + 0.008*\"engin\" + 0.007*\"aircraft\" + 0.005*\"power\" + 0.005*\"forc\" + 0.005*\"control\" + 0.004*\"servic\" + 0.004*\"devic\"\n", - "2018-06-02 20:52:36,380 : INFO : topic #10 (0.050): 0.006*\"effect\" + 0.006*\"human\" + 0.005*\"caus\" + 0.005*\"anim\" + 0.005*\"diseas\" + 0.005*\"bodi\" + 0.005*\"studi\" + 0.004*\"medic\" + 0.004*\"treatment\" + 0.004*\"speci\"\n", - "2018-06-02 20:52:36,383 : INFO : topic #17 (0.050): 0.036*\"game\" + 0.014*\"player\" + 0.013*\"apollo\" + 0.011*\"moon\" + 0.009*\"space\" + 0.009*\"lunar\" + 0.008*\"mission\" + 0.008*\"earth\" + 0.007*\"orbit\" + 0.007*\"dna\"\n", - "2018-06-02 20:52:36,385 : INFO : topic #7 (0.050): 0.013*\"art\" + 0.012*\"jpg\" + 0.010*\"file\" + 0.009*\"paint\" + 0.006*\"color\" + 0.006*\"food\" + 0.006*\"museum\" + 0.005*\"centuri\" + 0.004*\"artist\" + 0.004*\"design\"\n", - "2018-06-02 20:52:36,389 : INFO : topic diff=0.207358, rho=0.316228\n", - "2018-06-02 20:52:36,391 : INFO : PROGRESS: pass 4, at document #4000/10000\n", - "2018-06-02 20:52:42,833 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:52:43,045 : INFO : topic #2 (0.050): 0.016*\"citi\" + 0.008*\"countri\" + 0.007*\"govern\" + 0.006*\"compani\" + 0.006*\"servic\" + 0.006*\"area\" + 0.005*\"industri\" + 0.005*\"econom\" + 0.005*\"intern\" + 0.005*\"popul\"\n", - "2018-06-02 20:52:43,047 : INFO : topic #5 (0.050): 0.010*\"centuri\" + 0.008*\"empir\" + 0.006*\"china\" + 0.006*\"india\" + 0.006*\"chines\" + 0.006*\"citi\" + 0.005*\"islam\" + 0.005*\"greek\" + 0.005*\"muslim\" + 0.004*\"period\"\n", - "2018-06-02 20:52:43,050 : INFO : topic #15 (0.050): 0.007*\"exampl\" + 0.007*\"program\" + 0.007*\"data\" + 0.006*\"languag\" + 0.006*\"comput\" + 0.006*\"code\" + 0.005*\"inform\" + 0.005*\"function\" + 0.005*\"theori\" + 0.005*\"system\"\n", - "2018-06-02 20:52:43,053 : INFO : topic #13 (0.050): 0.012*\"war\" + 0.008*\"armi\" + 0.007*\"king\" + 0.007*\"forc\" + 0.006*\"british\" + 0.006*\"battl\" + 0.005*\"militari\" + 0.005*\"roman\" + 0.004*\"french\" + 0.004*\"command\"\n", - "2018-06-02 20:52:43,056 : INFO : topic #8 (0.050): 0.019*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.006*\"publish\" + 0.006*\"charact\" + 0.006*\"seri\" + 0.005*\"novel\" + 0.005*\"life\" + 0.004*\"fiction\" + 0.004*\"award\"\n", - "2018-06-02 20:52:43,060 : INFO : topic diff=0.197221, rho=0.316228\n", - "2018-06-02 20:52:43,063 : INFO : PROGRESS: pass 4, at document #6000/10000\n", - "2018-06-02 20:52:49,511 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:52:49,727 : INFO : topic #6 (0.050): 0.036*\"languag\" + 0.013*\"word\" + 0.012*\"english\" + 0.010*\"popul\" + 0.008*\"german\" + 0.006*\"dialect\" + 0.006*\"letter\" + 0.006*\"latin\" + 0.006*\"french\" + 0.005*\"vowel\"\n", - "2018-06-02 20:52:49,729 : INFO : topic #5 (0.050): 0.010*\"centuri\" + 0.009*\"empir\" + 0.007*\"greek\" + 0.006*\"india\" + 0.006*\"islam\" + 0.006*\"china\" + 0.006*\"chines\" + 0.005*\"muslim\" + 0.005*\"citi\" + 0.005*\"egypt\"\n", - "2018-06-02 20:52:49,731 : INFO : topic #7 (0.050): 0.012*\"jpg\" + 0.011*\"art\" + 0.010*\"file\" + 0.008*\"paint\" + 0.008*\"color\" + 0.006*\"food\" + 0.006*\"museum\" + 0.006*\"centuri\" + 0.004*\"design\" + 0.004*\"artist\"\n", - "2018-06-02 20:52:49,733 : INFO : topic #10 (0.050): 0.007*\"human\" + 0.006*\"effect\" + 0.006*\"caus\" + 0.005*\"diseas\" + 0.005*\"anim\" + 0.005*\"speci\" + 0.005*\"studi\" + 0.005*\"bodi\" + 0.004*\"medic\" + 0.004*\"drug\"\n", - "2018-06-02 20:52:49,736 : INFO : topic #16 (0.050): 0.016*\"countri\" + 0.013*\"relat\" + 0.009*\"embassi\" + 0.009*\"soviet\" + 0.008*\"republ\" + 0.007*\"war\" + 0.007*\"foreign\" + 0.007*\"germani\" + 0.006*\"russia\" + 0.006*\"german\"\n", - "2018-06-02 20:52:49,739 : INFO : topic diff=0.184708, rho=0.316228\n", - "2018-06-02 20:52:49,742 : INFO : PROGRESS: pass 4, at document #8000/10000\n", - "2018-06-02 20:52:56,712 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:52:56,943 : INFO : topic #16 (0.050): 0.015*\"countri\" + 0.012*\"relat\" + 0.009*\"soviet\" + 0.009*\"embassi\" + 0.008*\"war\" + 0.007*\"republ\" + 0.007*\"foreign\" + 0.007*\"germani\" + 0.007*\"german\" + 0.006*\"russia\"\n", - "2018-06-02 20:52:56,945 : INFO : topic #3 (0.050): 0.026*\"music\" + 0.009*\"plai\" + 0.008*\"instrument\" + 0.007*\"perform\" + 0.007*\"guitar\" + 0.007*\"compos\" + 0.006*\"danc\" + 0.006*\"sound\" + 0.006*\"style\" + 0.006*\"song\"\n", - "2018-06-02 20:52:56,948 : INFO : topic #5 (0.050): 0.010*\"centuri\" + 0.009*\"india\" + 0.009*\"empir\" + 0.007*\"islam\" + 0.006*\"muslim\" + 0.006*\"greek\" + 0.005*\"citi\" + 0.005*\"china\" + 0.005*\"indian\" + 0.005*\"arab\"\n", - "2018-06-02 20:52:56,951 : INFO : topic #4 (0.050): 0.009*\"function\" + 0.008*\"field\" + 0.007*\"space\" + 0.007*\"point\" + 0.007*\"theori\" + 0.006*\"measur\" + 0.006*\"equat\" + 0.005*\"energi\" + 0.005*\"exampl\" + 0.005*\"light\"\n", - "2018-06-02 20:52:56,954 : INFO : topic #9 (0.050): 0.010*\"engin\" + 0.009*\"air\" + 0.009*\"oper\" + 0.008*\"design\" + 0.007*\"aircraft\" + 0.005*\"power\" + 0.005*\"control\" + 0.005*\"forc\" + 0.004*\"servic\" + 0.004*\"devic\"\n", - "2018-06-02 20:52:56,958 : INFO : topic diff=0.188661, rho=0.316228\n", - "2018-06-02 20:53:15,556 : INFO : -8.327 per-word bound, 321.1 perplexity estimate based on a held-out corpus of 2000 documents with 3116350 words\n", - "2018-06-02 20:53:15,557 : INFO : PROGRESS: pass 4, at document #10000/10000\n", - "2018-06-02 20:53:22,034 : INFO : merging changes from 2000 documents into a model of 10000 documents\n", - "2018-06-02 20:53:22,254 : INFO : topic #8 (0.050): 0.019*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.006*\"publish\" + 0.006*\"charact\" + 0.005*\"seri\" + 0.005*\"novel\" + 0.005*\"life\" + 0.004*\"fiction\" + 0.004*\"award\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-06-02 20:53:22,258 : INFO : topic #17 (0.050): 0.040*\"game\" + 0.016*\"player\" + 0.012*\"moon\" + 0.009*\"space\" + 0.009*\"calendar\" + 0.009*\"dna\" + 0.008*\"mar\" + 0.008*\"earth\" + 0.008*\"card\" + 0.007*\"month\"\n", - "2018-06-02 20:53:22,260 : INFO : topic #12 (0.050): 0.046*\"american\" + 0.016*\"english\" + 0.012*\"politician\" + 0.012*\"player\" + 0.010*\"author\" + 0.009*\"footbal\" + 0.009*\"french\" + 0.008*\"singer\" + 0.007*\"actor\" + 0.007*\"canadian\"\n", - "2018-06-02 20:53:22,262 : INFO : topic #11 (0.050): 0.015*\"parti\" + 0.014*\"govern\" + 0.012*\"elect\" + 0.011*\"polit\" + 0.009*\"presid\" + 0.008*\"member\" + 0.006*\"minist\" + 0.006*\"right\" + 0.005*\"power\" + 0.005*\"support\"\n", - "2018-06-02 20:53:22,265 : INFO : topic #14 (0.050): 0.016*\"church\" + 0.014*\"univers\" + 0.012*\"school\" + 0.011*\"law\" + 0.009*\"colleg\" + 0.008*\"court\" + 0.007*\"educ\" + 0.006*\"student\" + 0.005*\"council\" + 0.005*\"institut\"\n", - "2018-06-02 20:53:22,268 : INFO : topic diff=0.155145, rho=0.316228\n" + "2018-08-30 13:04:37,060 : INFO : using symmetric alpha at 0.05\n", + "2018-08-30 13:04:37,063 : INFO : using symmetric eta at 0.05\n", + "2018-08-30 13:04:37,066 : INFO : using serial LDA version on this node\n", + "2018-08-30 13:04:37,077 : INFO : running online (multi-pass) LDA training, 20 topics, 5 passes over the supplied corpus of 402 documents, updating model once every 402 documents, evaluating perplexity every 402 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-08-30 13:04:37,080 : WARNING : too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy\n", + "2018-08-30 13:04:38,949 : INFO : -9.126 per-word bound, 558.6 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", + "2018-08-30 13:04:38,951 : INFO : PROGRESS: pass 0, at document #402/402\n", + "2018-08-30 13:04:39,692 : INFO : topic #18 (0.050): 0.004*\"angola\" + 0.004*\"film\" + 0.003*\"war\" + 0.003*\"countri\" + 0.003*\"court\" + 0.003*\"star\" + 0.003*\"popul\" + 0.003*\"greek\" + 0.003*\"govern\" + 0.003*\"death\"\n", + "2018-08-30 13:04:39,695 : INFO : topic #4 (0.050): 0.003*\"english\" + 0.003*\"film\" + 0.003*\"atom\" + 0.003*\"court\" + 0.003*\"art\" + 0.003*\"player\" + 0.003*\"angl\" + 0.003*\"open\" + 0.003*\"war\" + 0.003*\"electron\"\n", + "2018-08-30 13:04:39,697 : INFO : topic #6 (0.050): 0.011*\"film\" + 0.004*\"award\" + 0.004*\"art\" + 0.003*\"apollo\" + 0.003*\"war\" + 0.003*\"greek\" + 0.003*\"alexand\" + 0.003*\"april\" + 0.002*\"academi\" + 0.002*\"best\"\n", + "2018-08-30 13:04:39,699 : INFO : topic #16 (0.050): 0.009*\"languag\" + 0.005*\"assembl\" + 0.004*\"acid\" + 0.004*\"church\" + 0.003*\"august\" + 0.003*\"art\" + 0.003*\"standard\" + 0.003*\"forc\" + 0.003*\"war\" + 0.003*\"apollo\"\n", + "2018-08-30 13:04:39,701 : INFO : topic #2 (0.050): 0.004*\"english\" + 0.003*\"engin\" + 0.003*\"atom\" + 0.003*\"countri\" + 0.003*\"war\" + 0.003*\"acid\" + 0.003*\"film\" + 0.003*\"element\" + 0.003*\"choic\" + 0.002*\"languag\"\n", + "2018-08-30 13:04:39,703 : INFO : topic diff=1.027076, rho=1.000000\n", + "2018-08-30 13:04:42,127 : INFO : -8.074 per-word bound, 269.4 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", + "2018-08-30 13:04:42,130 : INFO : PROGRESS: pass 1, at document #402/402\n", + "2018-08-30 13:04:42,798 : INFO : topic #14 (0.050): 0.010*\"art\" + 0.010*\"bell\" + 0.007*\"aristotl\" + 0.005*\"philosophi\" + 0.004*\"school\" + 0.004*\"bce\" + 0.003*\"artist\" + 0.003*\"thought\" + 0.003*\"theori\" + 0.003*\"experi\"\n", + "2018-08-30 13:04:42,801 : INFO : topic #1 (0.050): 0.014*\"acid\" + 0.007*\"metal\" + 0.005*\"valu\" + 0.005*\"anim\" + 0.005*\"electron\" + 0.005*\"atom\" + 0.004*\"compound\" + 0.004*\"element\" + 0.004*\"water\" + 0.004*\"reaction\"\n", + "2018-08-30 13:04:42,803 : INFO : topic #13 (0.050): 0.009*\"famili\" + 0.006*\"plai\" + 0.005*\"album\" + 0.005*\"record\" + 0.004*\"speci\" + 0.004*\"music\" + 0.004*\"releas\" + 0.004*\"song\" + 0.004*\"anim\" + 0.004*\"atlant\"\n", + "2018-08-30 13:04:42,805 : INFO : topic #18 (0.050): 0.009*\"angola\" + 0.005*\"star\" + 0.004*\"roman\" + 0.004*\"countri\" + 0.004*\"war\" + 0.004*\"govern\" + 0.004*\"popul\" + 0.003*\"death\" + 0.003*\"power\" + 0.003*\"charact\"\n", + "2018-08-30 13:04:42,807 : INFO : topic #0 (0.050): 0.008*\"jew\" + 0.005*\"forc\" + 0.005*\"man\" + 0.004*\"jewish\" + 0.004*\"stori\" + 0.004*\"countri\" + 0.004*\"publish\" + 0.003*\"issu\" + 0.003*\"anti\" + 0.003*\"war\"\n", + "2018-08-30 13:04:42,809 : INFO : topic diff=0.506116, rho=0.577350\n", + "2018-08-30 13:04:45,047 : INFO : -7.795 per-word bound, 222.2 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", + "2018-08-30 13:04:45,051 : INFO : PROGRESS: pass 2, at document #402/402\n", + "2018-08-30 13:04:46,052 : INFO : topic #17 (0.050): 0.041*\"anim\" + 0.008*\"film\" + 0.006*\"music\" + 0.006*\"charact\" + 0.006*\"grace\" + 0.006*\"song\" + 0.004*\"popular\" + 0.004*\"america\" + 0.004*\"war\" + 0.004*\"book\"\n", + "2018-08-30 13:04:46,063 : INFO : topic #13 (0.050): 0.010*\"famili\" + 0.007*\"plai\" + 0.007*\"album\" + 0.006*\"record\" + 0.006*\"speci\" + 0.005*\"releas\" + 0.005*\"song\" + 0.005*\"music\" + 0.004*\"singl\" + 0.004*\"member\"\n", + "2018-08-30 13:04:46,065 : INFO : topic #16 (0.050): 0.021*\"languag\" + 0.008*\"assembl\" + 0.007*\"arab\" + 0.006*\"standard\" + 0.005*\"program\" + 0.005*\"aircraft\" + 0.005*\"code\" + 0.004*\"type\" + 0.004*\"august\" + 0.004*\"control\"\n", + "2018-08-30 13:04:46,074 : INFO : topic #12 (0.050): 0.018*\"english\" + 0.016*\"player\" + 0.013*\"politician\" + 0.012*\"footbal\" + 0.009*\"french\" + 0.008*\"singer\" + 0.007*\"actor\" + 0.007*\"german\" + 0.007*\"academ\" + 0.006*\"canadian\"\n", + "2018-08-30 13:04:46,077 : INFO : topic #2 (0.050): 0.017*\"engin\" + 0.016*\"choic\" + 0.007*\"analyt\" + 0.007*\"function\" + 0.006*\"model\" + 0.006*\"theori\" + 0.006*\"mathemat\" + 0.005*\"construct\" + 0.005*\"element\" + 0.005*\"comput\"\n", + "2018-08-30 13:04:46,079 : INFO : topic diff=0.540505, rho=0.500000\n", + "2018-08-30 13:04:48,058 : INFO : -7.655 per-word bound, 201.6 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", + "2018-08-30 13:04:48,061 : INFO : PROGRESS: pass 3, at document #402/402\n", + "2018-08-30 13:04:48,858 : INFO : topic #13 (0.050): 0.011*\"famili\" + 0.009*\"album\" + 0.008*\"plai\" + 0.007*\"speci\" + 0.007*\"record\" + 0.006*\"releas\" + 0.006*\"song\" + 0.005*\"music\" + 0.005*\"singl\" + 0.004*\"member\"\n", + "2018-08-30 13:04:48,870 : INFO : topic #8 (0.050): 0.013*\"armi\" + 0.013*\"british\" + 0.012*\"war\" + 0.009*\"anthropolog\" + 0.009*\"atla\" + 0.006*\"forc\" + 0.005*\"america\" + 0.005*\"troop\" + 0.005*\"cultur\" + 0.005*\"french\"\n", + "2018-08-30 13:04:48,873 : INFO : topic #15 (0.050): 0.017*\"church\" + 0.010*\"war\" + 0.008*\"agricultur\" + 0.007*\"union\" + 0.007*\"lincoln\" + 0.006*\"confeder\" + 0.004*\"earth\" + 0.004*\"astronom\" + 0.004*\"civil\" + 0.004*\"cathol\"\n", + "2018-08-30 13:04:48,878 : INFO : topic #2 (0.050): 0.022*\"engin\" + 0.020*\"choic\" + 0.009*\"mathemat\" + 0.009*\"analyt\" + 0.009*\"function\" + 0.008*\"comput\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"machin\" + 0.007*\"construct\"\n", + "2018-08-30 13:04:48,880 : INFO : topic #0 (0.050): 0.016*\"jew\" + 0.009*\"jewish\" + 0.009*\"forc\" + 0.008*\"man\" + 0.007*\"anti\" + 0.007*\"publish\" + 0.006*\"stori\" + 0.006*\"militari\" + 0.005*\"issu\" + 0.005*\"countri\"\n", + "2018-08-30 13:04:48,882 : INFO : topic diff=0.574210, rho=0.447214\n", + "2018-08-30 13:04:50,840 : INFO : -7.580 per-word bound, 191.3 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", + "2018-08-30 13:04:50,853 : INFO : PROGRESS: pass 4, at document #402/402\n", + "2018-08-30 13:04:51,528 : INFO : topic #18 (0.050): 0.012*\"angola\" + 0.009*\"roman\" + 0.006*\"star\" + 0.006*\"countri\" + 0.006*\"power\" + 0.005*\"rome\" + 0.005*\"govern\" + 0.005*\"war\" + 0.005*\"empir\" + 0.004*\"forc\"\n", + "2018-08-30 13:04:51,541 : INFO : topic #3 (0.050): 0.017*\"angl\" + 0.014*\"armenian\" + 0.014*\"countri\" + 0.007*\"oil\" + 0.007*\"establish\" + 0.007*\"diplomat\" + 0.005*\"europ\" + 0.004*\"republ\" + 0.004*\"foreign\" + 0.004*\"type\"\n", + "2018-08-30 13:04:51,543 : INFO : topic #8 (0.050): 0.015*\"armi\" + 0.014*\"british\" + 0.014*\"war\" + 0.010*\"anthropolog\" + 0.009*\"atla\" + 0.006*\"america\" + 0.006*\"forc\" + 0.005*\"troop\" + 0.005*\"french\" + 0.005*\"cultur\"\n", + "2018-08-30 13:04:51,546 : INFO : topic #15 (0.050): 0.019*\"church\" + 0.011*\"war\" + 0.008*\"union\" + 0.008*\"agricultur\" + 0.008*\"lincoln\" + 0.007*\"confeder\" + 0.005*\"astronom\" + 0.005*\"civil\" + 0.004*\"south\" + 0.004*\"cathol\"\n", + "2018-08-30 13:04:51,550 : INFO : topic #4 (0.050): 0.013*\"court\" + 0.008*\"open\" + 0.008*\"seri\" + 0.008*\"australia\" + 0.008*\"england\" + 0.007*\"appeal\" + 0.007*\"test\" + 0.006*\"amphibian\" + 0.006*\"final\" + 0.006*\"plai\"\n", + "2018-08-30 13:04:51,552 : INFO : topic diff=0.615654, rho=0.408248\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 7min 31s, sys: 9min 48s, total: 17min 19s\n", - "Wall time: 4min 29s\n" + "CPU times: user 25.6 s, sys: 26.5 s, total: 52.1 s\n", + "Wall time: 14.5 s\n" ] } ], @@ -763,55 +599,55 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.008*\"god\" + 0.006*\"book\" + 0.005*\"christian\" + 0.005*\"centuri\" + 0.005*\"life\" + 0.004*\"univers\" + 0.004*\"philosophi\" + 0.004*\"human\" + 0.004*\"jewish\" + 0.003*\"theori\"'),\n", + " '0.018*\"jew\" + 0.010*\"jewish\" + 0.010*\"forc\" + 0.008*\"anti\" + 0.008*\"man\" + 0.008*\"publish\" + 0.007*\"militari\" + 0.006*\"stori\" + 0.005*\"issu\" + 0.005*\"countri\"'),\n", " (1,\n", - " '0.009*\"cell\" + 0.009*\"acid\" + 0.008*\"metal\" + 0.008*\"chemic\" + 0.007*\"water\" + 0.007*\"atom\" + 0.007*\"carbon\" + 0.006*\"process\" + 0.006*\"produc\" + 0.006*\"protein\"'),\n", + " '0.019*\"acid\" + 0.014*\"metal\" + 0.007*\"element\" + 0.007*\"water\" + 0.007*\"compound\" + 0.006*\"valu\" + 0.006*\"atom\" + 0.006*\"carbon\" + 0.006*\"reaction\" + 0.005*\"oxid\"'),\n", " (2,\n", - " '0.016*\"citi\" + 0.008*\"countri\" + 0.006*\"govern\" + 0.006*\"compani\" + 0.006*\"servic\" + 0.006*\"industri\" + 0.006*\"area\" + 0.006*\"econom\" + 0.005*\"intern\" + 0.005*\"trade\"'),\n", + " '0.024*\"engin\" + 0.021*\"choic\" + 0.013*\"mathemat\" + 0.011*\"comput\" + 0.011*\"function\" + 0.010*\"machin\" + 0.010*\"theori\" + 0.010*\"analyt\" + 0.009*\"program\" + 0.008*\"model\"'),\n", " (3,\n", - " '0.031*\"music\" + 0.009*\"instrument\" + 0.009*\"plai\" + 0.007*\"perform\" + 0.007*\"compos\" + 0.006*\"guitar\" + 0.006*\"sound\" + 0.006*\"song\" + 0.006*\"style\" + 0.006*\"danc\"'),\n", + " '0.017*\"angl\" + 0.014*\"armenian\" + 0.014*\"countri\" + 0.007*\"oil\" + 0.007*\"establish\" + 0.007*\"diplomat\" + 0.005*\"europ\" + 0.004*\"republ\" + 0.004*\"foreign\" + 0.004*\"type\"'),\n", " (4,\n", - " '0.008*\"field\" + 0.008*\"function\" + 0.007*\"theori\" + 0.007*\"space\" + 0.007*\"measur\" + 0.007*\"point\" + 0.006*\"light\" + 0.006*\"equat\" + 0.005*\"exampl\" + 0.005*\"energi\"'),\n", + " '0.013*\"court\" + 0.008*\"open\" + 0.008*\"seri\" + 0.008*\"australia\" + 0.008*\"england\" + 0.007*\"appeal\" + 0.007*\"test\" + 0.006*\"amphibian\" + 0.006*\"final\" + 0.006*\"plai\"'),\n", " (5,\n", - " '0.010*\"centuri\" + 0.008*\"empir\" + 0.008*\"india\" + 0.007*\"islam\" + 0.006*\"muslim\" + 0.005*\"citi\" + 0.005*\"chines\" + 0.005*\"china\" + 0.005*\"greek\" + 0.005*\"arab\"'),\n", + " '0.023*\"abort\" + 0.017*\"april\" + 0.012*\"anxieti\" + 0.009*\"einstein\" + 0.007*\"signal\" + 0.006*\"john\" + 0.005*\"georg\" + 0.005*\"carrier\" + 0.005*\"week\" + 0.004*\"frequenc\"'),\n", " (6,\n", - " '0.037*\"languag\" + 0.013*\"word\" + 0.012*\"english\" + 0.011*\"popul\" + 0.007*\"latin\" + 0.006*\"german\" + 0.006*\"dialect\" + 0.005*\"letter\" + 0.005*\"vowel\" + 0.005*\"mean\"'),\n", + " '0.018*\"film\" + 0.007*\"alexand\" + 0.007*\"apollo\" + 0.007*\"award\" + 0.006*\"book\" + 0.005*\"death\" + 0.004*\"greek\" + 0.004*\"director\" + 0.004*\"novel\" + 0.004*\"art\"'),\n", " (7,\n", - " '0.013*\"art\" + 0.011*\"jpg\" + 0.010*\"file\" + 0.009*\"paint\" + 0.007*\"color\" + 0.006*\"food\" + 0.006*\"museum\" + 0.006*\"centuri\" + 0.004*\"artist\" + 0.004*\"design\"'),\n", + " '0.009*\"south\" + 0.009*\"north\" + 0.008*\"region\" + 0.007*\"countri\" + 0.007*\"island\" + 0.007*\"sea\" + 0.006*\"alaska\" + 0.006*\"popul\" + 0.005*\"govern\" + 0.005*\"land\"'),\n", " (8,\n", - " '0.019*\"film\" + 0.007*\"stori\" + 0.007*\"book\" + 0.006*\"publish\" + 0.006*\"charact\" + 0.005*\"seri\" + 0.005*\"novel\" + 0.005*\"life\" + 0.004*\"fiction\" + 0.004*\"award\"'),\n", + " '0.015*\"armi\" + 0.014*\"british\" + 0.014*\"war\" + 0.010*\"anthropolog\" + 0.009*\"atla\" + 0.006*\"america\" + 0.006*\"forc\" + 0.005*\"troop\" + 0.005*\"french\" + 0.005*\"cultur\"'),\n", " (9,\n", - " '0.010*\"engin\" + 0.009*\"air\" + 0.009*\"design\" + 0.008*\"oper\" + 0.006*\"aircraft\" + 0.005*\"power\" + 0.005*\"forc\" + 0.005*\"control\" + 0.004*\"servic\" + 0.004*\"devic\"'),\n", + " '0.010*\"albania\" + 0.009*\"alphabet\" + 0.009*\"god\" + 0.008*\"letter\" + 0.007*\"church\" + 0.007*\"german\" + 0.007*\"christian\" + 0.007*\"popul\" + 0.006*\"english\" + 0.005*\"book\"'),\n", " (10,\n", - " '0.007*\"human\" + 0.006*\"effect\" + 0.005*\"caus\" + 0.005*\"diseas\" + 0.005*\"anim\" + 0.005*\"studi\" + 0.005*\"bodi\" + 0.005*\"medic\" + 0.004*\"speci\" + 0.004*\"treatment\"'),\n", + " '0.012*\"lincoln\" + 0.009*\"car\" + 0.009*\"race\" + 0.008*\"intellig\" + 0.006*\"human\" + 0.006*\"machin\" + 0.006*\"parti\" + 0.005*\"research\" + 0.005*\"govern\" + 0.004*\"problem\"'),\n", " (11,\n", - " '0.015*\"parti\" + 0.014*\"govern\" + 0.012*\"elect\" + 0.011*\"polit\" + 0.009*\"presid\" + 0.008*\"member\" + 0.006*\"minist\" + 0.006*\"right\" + 0.005*\"power\" + 0.005*\"support\"'),\n", + " '0.042*\"atom\" + 0.028*\"electron\" + 0.017*\"energi\" + 0.017*\"orbit\" + 0.014*\"particl\" + 0.010*\"element\" + 0.009*\"nucleu\" + 0.008*\"mass\" + 0.008*\"quantum\" + 0.008*\"charg\"'),\n", " (12,\n", - " '0.046*\"american\" + 0.016*\"english\" + 0.012*\"politician\" + 0.012*\"player\" + 0.010*\"author\" + 0.009*\"footbal\" + 0.009*\"french\" + 0.008*\"singer\" + 0.007*\"actor\" + 0.007*\"canadian\"'),\n", + " '0.026*\"english\" + 0.024*\"player\" + 0.020*\"politician\" + 0.018*\"footbal\" + 0.013*\"french\" + 0.013*\"singer\" + 0.011*\"actor\" + 0.010*\"academ\" + 0.010*\"german\" + 0.009*\"canadian\"'),\n", " (13,\n", - " '0.012*\"war\" + 0.008*\"king\" + 0.007*\"armi\" + 0.007*\"forc\" + 0.006*\"british\" + 0.005*\"battl\" + 0.005*\"militari\" + 0.005*\"roman\" + 0.004*\"french\" + 0.004*\"command\"'),\n", + " '0.011*\"famili\" + 0.009*\"album\" + 0.008*\"plai\" + 0.008*\"speci\" + 0.007*\"record\" + 0.006*\"releas\" + 0.006*\"song\" + 0.006*\"music\" + 0.005*\"singl\" + 0.004*\"member\"'),\n", " (14,\n", - " '0.016*\"church\" + 0.014*\"univers\" + 0.012*\"school\" + 0.011*\"law\" + 0.009*\"colleg\" + 0.008*\"court\" + 0.007*\"educ\" + 0.006*\"student\" + 0.005*\"council\" + 0.005*\"institut\"'),\n", + " '0.013*\"art\" + 0.009*\"bell\" + 0.008*\"aristotl\" + 0.008*\"philosophi\" + 0.006*\"school\" + 0.006*\"philosoph\" + 0.006*\"theori\" + 0.005*\"individu\" + 0.005*\"human\" + 0.004*\"idea\"'),\n", " (15,\n", - " '0.007*\"exampl\" + 0.007*\"program\" + 0.006*\"data\" + 0.006*\"inform\" + 0.006*\"code\" + 0.005*\"languag\" + 0.005*\"function\" + 0.005*\"valu\" + 0.004*\"comput\" + 0.004*\"theori\"'),\n", + " '0.019*\"church\" + 0.011*\"war\" + 0.008*\"union\" + 0.008*\"agricultur\" + 0.008*\"lincoln\" + 0.007*\"confeder\" + 0.005*\"astronom\" + 0.005*\"civil\" + 0.004*\"south\" + 0.004*\"cathol\"'),\n", " (16,\n", - " '0.015*\"countri\" + 0.012*\"relat\" + 0.009*\"soviet\" + 0.008*\"embassi\" + 0.008*\"republ\" + 0.007*\"war\" + 0.007*\"russian\" + 0.007*\"foreign\" + 0.006*\"german\" + 0.006*\"poland\"'),\n", + " '0.028*\"languag\" + 0.012*\"arab\" + 0.009*\"assembl\" + 0.007*\"standard\" + 0.006*\"code\" + 0.006*\"vowel\" + 0.006*\"program\" + 0.006*\"aircraft\" + 0.005*\"type\" + 0.004*\"charact\"'),\n", " (17,\n", - " '0.040*\"game\" + 0.016*\"player\" + 0.012*\"moon\" + 0.009*\"space\" + 0.009*\"calendar\" + 0.009*\"dna\" + 0.008*\"mar\" + 0.008*\"earth\" + 0.008*\"card\" + 0.007*\"month\"'),\n", + " '0.054*\"anim\" + 0.010*\"film\" + 0.009*\"music\" + 0.008*\"charact\" + 0.007*\"song\" + 0.007*\"grace\" + 0.007*\"altern\" + 0.006*\"popular\" + 0.006*\"book\" + 0.005*\"america\"'),\n", " (18,\n", - " '0.009*\"plai\" + 0.008*\"team\" + 0.008*\"record\" + 0.007*\"album\" + 0.007*\"game\" + 0.006*\"season\" + 0.005*\"releas\" + 0.005*\"award\" + 0.005*\"leagu\" + 0.005*\"band\"'),\n", + " '0.012*\"angola\" + 0.009*\"roman\" + 0.006*\"star\" + 0.006*\"countri\" + 0.006*\"power\" + 0.005*\"rome\" + 0.005*\"govern\" + 0.005*\"war\" + 0.005*\"empir\" + 0.004*\"forc\"'),\n", " (19,\n", - " '0.020*\"island\" + 0.010*\"river\" + 0.008*\"lake\" + 0.007*\"area\" + 0.007*\"water\" + 0.006*\"sea\" + 0.006*\"north\" + 0.006*\"south\" + 0.005*\"land\" + 0.005*\"mountain\"')]" + " '0.020*\"appl\" + 0.011*\"athen\" + 0.008*\"design\" + 0.008*\"build\" + 0.007*\"compani\" + 0.006*\"park\" + 0.005*\"hous\" + 0.004*\"articl\" + 0.004*\"museum\" + 0.004*\"job\"')]" ] }, - "execution_count": 9, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -844,7 +680,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.7.0" } }, "nbformat": 4, From 2117c90cab75247c0529612bb6dae9ee3e8b5732 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Fri, 31 Aug 2018 17:43:32 +0300 Subject: [PATCH 045/144] Add RandomCorpus --- docs/notebooks/nmf-wikipedia.ipynb | 2759 ++++++++++++++++++++++++++-- 1 file changed, 2635 insertions(+), 124 deletions(-) diff --git a/docs/notebooks/nmf-wikipedia.ipynb b/docs/notebooks/nmf-wikipedia.ipynb index 67dd008ae1..10e25cb8bf 100644 --- a/docs/notebooks/nmf-wikipedia.ipynb +++ b/docs/notebooks/nmf-wikipedia.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 27, + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -12,6 +12,7 @@ "import gensim.downloader as api\n", "from gensim.parsing.preprocessing import preprocess_string\n", "from tqdm import tqdm, tqdm_notebook\n", + "import json\n", "\n", "tqdm.pandas()\n", "\n", @@ -364,6 +365,59 @@ " )" ] }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], + "source": [ + "def save_preprocessed_articles(filename, articles):\n", + " with open(filename, 'w+') as writer:\n", + " for article in tqdm_notebook(articles):\n", + " writer.write(\n", + " json.dumps(\n", + " preprocess_string(\n", + " \" \".join(\n", + " \" \".join(section)\n", + " for section\n", + " in zip(article['section_titles'], article['section_texts'])\n", + " )\n", + " )\n", + " ) + '\\n'\n", + " )\n", + "\n", + "def get_preprocessed_articles(filename):\n", + " with open(filename, 'r') as reader:\n", + " for line in tqdm_notebook(reader):\n", + " yield json.loads(\n", + " line\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2ee9a06771694ac4a9afc80dddfec2f3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "save_preprocessed_articles('wiki_articles.jsonlines', data)" + ] + }, { "cell_type": "code", "execution_count": null, @@ -372,7 +426,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9947903b6a064a29a3b12b725dcfeece", + "model_id": "65e540f94a2242228acc24eba5e8daae", "version_major": 2, "version_minor": 0 }, @@ -387,15 +441,2147 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-30 13:05:09,089 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n" + "2018-08-31 00:24:22,338 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-08-31 00:24:34,891 : INFO : adding document #10000 to Dictionary(399748 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:24:46,430 : INFO : adding document #20000 to Dictionary(591699 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:24:55,712 : INFO : adding document #30000 to Dictionary(731105 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:04,177 : INFO : adding document #40000 to Dictionary(851685 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:10,188 : INFO : adding document #50000 to Dictionary(931675 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:13,951 : INFO : adding document #60000 to Dictionary(952350 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:16,822 : INFO : adding document #70000 to Dictionary(969420 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:19,778 : INFO : adding document #80000 to Dictionary(985378 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:25,894 : INFO : adding document #90000 to Dictionary(1054685 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:34,122 : INFO : adding document #100000 to Dictionary(1154713 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:41,486 : INFO : adding document #110000 to Dictionary(1245897 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:48,275 : INFO : adding document #120000 to Dictionary(1323132 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:25:54,852 : INFO : adding document #130000 to Dictionary(1394796 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:01,754 : INFO : adding document #140000 to Dictionary(1472266 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:08,146 : INFO : adding document #150000 to Dictionary(1556781 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:14,467 : INFO : adding document #160000 to Dictionary(1634683 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:20,461 : INFO : adding document #170000 to Dictionary(1702000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:26,248 : INFO : adding document #180000 to Dictionary(1755381 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:31,597 : INFO : adding document #190000 to Dictionary(1811754 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:36,737 : INFO : adding document #200000 to Dictionary(1868295 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:41,868 : INFO : adding document #210000 to Dictionary(1920805 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:47,026 : INFO : adding document #220000 to Dictionary(1968409 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:53,506 : INFO : discarding 17545 tokens: [('granitzstraß', 1), ('hafenplatz', 1), ('hausvogteiplatz', 1), ('markgrafenstraß', 1), ('markisch', 1), ('niederwallstraß', 1), ('schoeneweid', 1), ('senefelderplatz', 1), ('spittelmarkt', 1), ('thuoff', 1)]...\n", + "2018-08-31 00:26:53,507 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 230000 (=100.0%) documents\n", + "2018-08-31 00:26:55,640 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:26:55,681 : INFO : adding document #230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:02,007 : INFO : discarding 49481 tokens: [('番茄牛肉麵', 1), ('紅燒牛肉麵', 1), ('mienvil', 1), ('dheepesh', 1), ('kantaben', 1), ('khnh', 1), ('nikkhil', 1), ('sankla', 1), ('sarlaben', 1), ('sulbha', 1)]...\n", + "2018-08-31 00:27:02,008 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 240000 (=100.0%) documents\n", + "2018-08-31 00:27:04,034 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:04,072 : INFO : adding document #240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:10,445 : INFO : discarding 48604 tokens: [('score’', 1), ('tzvetkov', 1), ('utemuratov', 1), ('arntner', 1), ('bierschinken', 1), ('bruckfleisch', 1), ('buchteln', 1), ('burgenlandish', 1), ('buschenschanken', 1), ('dobostort', 1)]...\n", + "2018-08-31 00:27:10,446 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 250000 (=100.0%) documents\n", + "2018-08-31 00:27:12,558 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:12,597 : INFO : adding document #250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:18,827 : INFO : discarding 50505 tokens: [('næpæɾvæɾæm', 1), ('pejkæɾæm', 1), ('peykaram', 1), ('pišeam', 1), ('piʃeæm', 1), ('poɾ', 1), ('pâke', 1), ('pâyand', 1), ('pɒjænde', 1), ('pɒke', 1)]...\n", + "2018-08-31 00:27:18,828 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 260000 (=100.0%) documents\n", + "2018-08-31 00:27:20,841 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:20,880 : INFO : adding document #260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:26,946 : INFO : discarding 44106 tokens: [('wnni', 1), ('wnpd', 1), ('wocn', 1), ('womr', 1), ('wozq', 1), ('wpmw', 1), ('wrbb', 1), ('wryp', 1), ('wsdh', 1), ('wsrg', 1)]...\n", + "2018-08-31 00:27:26,946 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 270000 (=100.0%) documents\n", + "2018-08-31 00:27:29,067 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:29,106 : INFO : adding document #270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:35,191 : INFO : discarding 48370 tokens: [('magtalisai', 1), ('sealight', 1), ('tabunok', 1), ('talisaynon', 1), ('teresa–', 1), ('affirmtrust', 1), ('bellekom', 1), ('broadweb', 1), ('humyo', 1), ('identum', 1)]...\n", + "2018-08-31 00:27:35,192 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 280000 (=100.0%) documents\n", + "2018-08-31 00:27:37,226 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:37,264 : INFO : adding document #280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:43,221 : INFO : discarding 50844 tokens: [('tafsifschi', 1), ('taláka', 1), ('talámámchi', 1), ('tamichi', 1), ('tatápi', 1), ('tinihowi', 1), ('tuwátifshi', 1), ('control…', 1), ('east—turkei', 1), ('novels—lik', 1)]...\n", + "2018-08-31 00:27:43,222 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 290000 (=100.0%) documents\n", + "2018-08-31 00:27:45,368 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:45,408 : INFO : adding document #290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:51,332 : INFO : discarding 48668 tokens: [('quinsnicket', 1), ('rhodoclia—peerless', 1), ('saccharissa', 1), ('scribam', 1), ('veteropingui', 1), ('wildrak', 1), ('σφιγγην', 1), ('antoptima', 1), ('antsim', 1), ('asrank', 1)]...\n", + "2018-08-31 00:27:51,332 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 300000 (=100.0%) documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:27:53,376 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:53,415 : INFO : adding document #300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:27:59,163 : INFO : discarding 43531 tokens: [('chalcophaea', 1), ('chamdoensi', 1), ('charchirensi', 1), ('chaudoiri', 1), ('chodjaii', 1), ('cholashanensi', 1), ('chormaensi', 1), ('coiffaiti', 1), ('colasi', 1), ('collivaga', 1)]...\n", + "2018-08-31 00:27:59,164 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 310000 (=100.0%) documents\n", + "2018-08-31 00:28:01,285 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:01,326 : INFO : adding document #310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:07,145 : INFO : discarding 50270 tokens: [('предложения', 1), ('сантальского', 1), ('характерные', 1), ('цейлона', 1), ('черты', 1), ('ᱥᱤᱧᱚᱛ', 1), ('ᱱᱮᱯᱟᱲ', 1), ('ᱵᱟᱝᱞᱟᱫᱮᱥ', 1), ('ᱵᱷᱩᱴᱟᱱ', 1), ('xepolit', 1)]...\n", + "2018-08-31 00:28:07,146 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 320000 (=100.0%) documents\n", + "2018-08-31 00:28:09,176 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:09,215 : INFO : adding document #320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:15,003 : INFO : discarding 48032 tokens: [('centrocelsofurtado', 1), ('cihanyuksel', 1), ('disguisedli', 1), ('domaindlx', 1), ('econometricsocieti', 1), ('enviada', 1), ('externalitylit', 1), ('worldev', 1), ('eskizi', 1), ('kavkazskiy', 1)]...\n", + "2018-08-31 00:28:15,004 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 330000 (=100.0%) documents\n", + "2018-08-31 00:28:17,131 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:17,172 : INFO : adding document #330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:22,705 : INFO : discarding 38389 tokens: [('ultimatechampionshipwrestl', 1), ('bloor–danforthbetween', 1), ('brentcliff', 1), ('electricalfe', 1), ('electricalpickup', 1), ('electricaltyp', 1), ('linesserv', 1), ('lineswhereus', 1), ('ofvehicl', 1), ('passengercapacityp', 1)]...\n", + "2018-08-31 00:28:22,706 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 340000 (=100.0%) documents\n", + "2018-08-31 00:28:24,727 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:24,767 : INFO : adding document #340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:30,305 : INFO : discarding 38286 tokens: [('szarlotka', 1), ('turówka', 1), ('zhubr', 1), ('zubrouka', 1), ('zubroŭka', 1), ('зубрiвка', 1), ('зубровка', 1), ('chakawana', 1), ('icannwatch', 1), ('adonis', 1)]...\n", + "2018-08-31 00:28:30,307 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 350000 (=100.0%) documents\n", + "2018-08-31 00:28:32,419 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:32,461 : INFO : adding document #350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:38,088 : INFO : discarding 38738 tokens: [('euentu', 1), ('excusationem', 1), ('exuta', 1), ('frameaqu', 1), ('grauissima', 1), ('immanibu', 1), ('imperandi', 1), ('incipiebat', 1), ('incitata', 1), ('initiorum', 1)]...\n", + "2018-08-31 00:28:38,089 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 360000 (=100.0%) documents\n", + "2018-08-31 00:28:40,125 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:40,165 : INFO : adding document #360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:45,704 : INFO : discarding 37578 tokens: [('codillo', 1), ('estuch', 1), ('gascaril', 1), ('gascarola', 1), ('lumbur', 1), ('l’hombr', 1), ('ombre”', 1), ('recontruct', 1), ('rocambor', 1), ('spadilla', 1)]...\n", + "2018-08-31 00:28:45,705 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 370000 (=100.0%) documents\n", + "2018-08-31 00:28:47,848 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:47,889 : INFO : adding document #370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:53,317 : INFO : discarding 36405 tokens: [('kamalkahanisaeedbhuttaabookonpunjabifolktal', 1), ('lababdar', 1), ('lalari', 1), ('naiza', 1), ('qoum', 1), ('euseg', 1), ('maxillop', 1), ('“wavefront”', 1), ('cloudco', 1), ('freekin', 1)]...\n", + "2018-08-31 00:28:53,318 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 380000 (=100.0%) documents\n", + "2018-08-31 00:28:55,369 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:28:55,408 : INFO : adding document #380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:00,894 : INFO : discarding 39639 tokens: [('aufdeckung', 1), ('begruoben', 1), ('choufman', 1), ('externsteinen', 1), ('firesit', 1), ('gebain', 1), ('germanomaniac', 1), ('heresburg', 1), ('hiezen', 1), ('irmensiul', 1)]...\n", + "2018-08-31 00:29:00,895 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 390000 (=100.0%) documents\n", + "2018-08-31 00:29:03,046 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:03,089 : INFO : adding document #390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:08,505 : INFO : discarding 39685 tokens: [('rheela', 1), ('selelvian', 1), ('thallonion', 1), ('xenexian', 1), ('yakaba', 1), ('pearlcoat', 1), ('sd²c', 1), ('ghuda', 1), ('nathana', 1), ('tabarhindh', 1)]...\n", + "2018-08-31 00:29:08,506 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 400000 (=100.0%) documents\n", + "2018-08-31 00:29:10,546 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:10,586 : INFO : adding document #400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:16,014 : INFO : discarding 37327 tokens: [('machinewa', 1), ('warsawa', 1), ('wilbär', 1), ('pomphrai', 1), ('pundler', 1), ('—sybil', 1), ('faethorn', 1), ('fernmeldewesen', 1), ('funksendestellen', 1), ('lulatsch', 1)]...\n", + "2018-08-31 00:29:16,015 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 410000 (=100.0%) documents\n", + "2018-08-31 00:29:18,149 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:18,191 : INFO : adding document #410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:23,547 : INFO : discarding 42449 tokens: [('severmorsk', 1), ('shashkova', 1), ('shchukozero', 1), ('vayongg', 1), ('cowessett', 1), ('islands—belong', 1), ('map—rhod', 1), ('massasoit”', 1), ('pauquunaukit', 1), ('pokanoket’', 1)]...\n", + "2018-08-31 00:29:23,547 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 420000 (=100.0%) documents\n", + "2018-08-31 00:29:25,586 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:25,626 : INFO : adding document #420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:29:31,061 : INFO : discarding 41810 tokens: [('deathclaw', 1), ('scatari', 1), ('swoad', 1), ('dragonella', 1), ('isthistomorrow', 1), ('stuporman', 1), ('chepkoya', 1), ('chewanjel', 1), ('kibuk', 1), ('paulmann', 1)]...\n", + "2018-08-31 00:29:31,062 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 430000 (=100.0%) documents\n", + "2018-08-31 00:29:33,208 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:33,251 : INFO : adding document #430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:38,502 : INFO : discarding 35200 tokens: [('subuktigin', 1), ('arkemedia', 1), ('har”', 1), ('jcdc', 1), ('malachismith', 1), ('malachi’', 1), ('reggaeconcept', 1), ('reggaesoca', 1), ('“wiseman”', 1), ('dibromophenol', 1)]...\n", + "2018-08-31 00:29:38,503 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 440000 (=100.0%) documents\n", + "2018-08-31 00:29:40,573 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:40,614 : INFO : adding document #440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:46,219 : INFO : discarding 41826 tokens: [('pacchimiriam', 1), ('padajathi', 1), ('sahithyam', 1), ('syllables—or', 1), ('varṇam', 1), ('viribhoni', 1), ('viriboni', 1), ('jyoen', 1), ('koseski', 1), ('muto—ar', 1)]...\n", + "2018-08-31 00:29:46,220 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 450000 (=100.0%) documents\n", + "2018-08-31 00:29:48,376 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:48,418 : INFO : adding document #450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:53,738 : INFO : discarding 41234 tokens: [('i̇nsanları', 1), ('karaalioğlu', 1), ('karagöz—who', 1), ('kayabaşı', 1), ('kitapçılık', 1), ('kuntai', 1), ('kurumlar', 1), ('kıvılcım', 1), ('largely—in', 1), ('literature—prior', 1)]...\n", + "2018-08-31 00:29:53,739 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 460000 (=100.0%) documents\n", + "2018-08-31 00:29:55,782 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:29:55,823 : INFO : adding document #460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:01,236 : INFO : discarding 40485 tokens: [('with—to', 1), ('owlt', 1), ('anterosuperiorli', 1), ('counterculture—a', 1), ('spitzz', 1), ('stantondal', 1), ('frumpton', 1), ('nintari', 1), ('noidtrix', 1), ('zibelman', 1)]...\n", + "2018-08-31 00:30:01,237 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 470000 (=100.0%) documents\n", + "2018-08-31 00:30:03,374 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:03,417 : INFO : adding document #470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:08,669 : INFO : discarding 38842 tokens: [('laloor', 1), ('nethilakkavu', 1), ('nettipattam', 1), ('nilapaduthara', 1), ('panamukkump', 1), ('panchavadhyam', 1), ('piriy', 1), ('pookattikkara', 1), ('sasthavu', 1), ('upacharam', 1)]...\n", + "2018-08-31 00:30:08,670 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 480000 (=100.0%) documents\n", + "2018-08-31 00:30:10,724 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:10,765 : INFO : adding document #480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:15,897 : INFO : discarding 35417 tokens: [('balenko', 1), ('breliu', 1), ('dialetician', 1), ('mulerr', 1), ('polaroo', 1), ('skilski', 1), ('sliphorn', 1), ('troglo', 1), ('avbrott', 1), ('befjädrad', 1)]...\n", + "2018-08-31 00:30:15,898 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 490000 (=100.0%) documents\n", + "2018-08-31 00:30:18,060 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:18,103 : INFO : adding document #490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:23,276 : INFO : discarding 38896 tokens: [('taken—and', 1), ('beusselkiez', 1), ('huttenstraß', 1), ('kriminalgericht', 1), ('moorjebiet', 1), ('spreebogen', 1), ('stephankiez', 1), ('stephanstraß', 1), ('turmstr', 1), ('zellengefängni', 1)]...\n", + "2018-08-31 00:30:23,277 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 500000 (=100.0%) documents\n", + "2018-08-31 00:30:25,337 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:25,378 : INFO : adding document #500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:30,561 : INFO : discarding 36197 tokens: [('mocquerysia', 1), ('neoptychocarpu', 1), ('olmediella', 1), ('ophiobotri', 1), ('osmelia', 1), ('phyllobotryon', 1), ('phylloclinium', 1), ('pleuranthodendron', 1), ('priamosia', 1), ('pseudoscolopia', 1)]...\n", + "2018-08-31 00:30:30,561 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 510000 (=100.0%) documents\n", + "2018-08-31 00:30:32,706 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:32,749 : INFO : adding document #510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:38,027 : INFO : discarding 41487 tokens: [('dbxl', 1), ('time—dbas', 1), ('xsharp', 1), ('coopet', 1), ('fukaeminami', 1), ('nezammafi', 1), ('rokkodai', 1), ('sazō', 1), ('tomogaoka', 1), ('tsurukabuto', 1)]...\n", + "2018-08-31 00:30:38,028 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 520000 (=100.0%) documents\n", + "2018-08-31 00:30:40,096 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:40,137 : INFO : adding document #520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:45,416 : INFO : discarding 38742 tokens: [('scharzenbach', 1), ('“herzogpark', 1), ('champalimad', 1), ('havenhous', 1), ('hoscar', 1), ('oqg', 1), ('cellprom', 1), ('chemijo', 1), ('chirurgiczna', 1), ('crepuq', 1)]...\n", + "2018-08-31 00:30:45,417 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 530000 (=100.0%) documents\n", + "2018-08-31 00:30:47,572 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:47,616 : INFO : adding document #530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:52,804 : INFO : discarding 37000 tokens: [('iacobbucci', 1), ('ccdrlvt', 1), ('nutsiii', 1), ('göweck', 1), ('brasslei', 1), ('cristsbal', 1), ('dechernei', 1), ('dorrik', 1), ('kalwass', 1), ('kreitzman', 1)]...\n", + "2018-08-31 00:30:52,804 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 540000 (=100.0%) documents\n", + "2018-08-31 00:30:54,857 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:30:54,898 : INFO : adding document #540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:00,012 : INFO : discarding 37685 tokens: [('aptonlin', 1), ('cherrywinkl', 1), ('dittydoodl', 1), ('scientast', 1), ('sheira', 1), ('maxpass', 1), ('parkhopp', 1), ('eemymp', 1), ('kkznova', 1), ('lorsn', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:31:00,013 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 550000 (=100.0%) documents\n", + "2018-08-31 00:31:02,150 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:02,194 : INFO : adding document #550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:07,222 : INFO : discarding 38870 tokens: [('ågå', 1), ('åinakåsz', 1), ('åinasim', 1), ('åtzån', 1), ('funeral—', 1), ('wilef', 1), ('iskuryhmä', 1), ('legorgu', 1), ('phélip', 1), ('pomlt', 1)]...\n", + "2018-08-31 00:31:07,223 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 560000 (=100.0%) documents\n", + "2018-08-31 00:31:09,271 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:09,312 : INFO : adding document #560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:14,358 : INFO : discarding 36242 tokens: [('a͡tʃʰ', 1), ('balafaisi', 1), ('bemari', 1), ('beṭa', 1), ('bhagyô', 1), ('bhaiggô', 1), ('bhalafaici', 1), ('bhalaṭtik', 1), ('bhalkoi', 1), ('bhalopeyechi', 1)]...\n", + "2018-08-31 00:31:14,359 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 570000 (=100.0%) documents\n", + "2018-08-31 00:31:16,492 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:16,537 : INFO : adding document #570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:21,503 : INFO : discarding 37670 tokens: [('abssi', 1), ('bangladesh—ther', 1), ('causes—ultra', 1), ('common—besid', 1), ('countries—jordan', 1), ('countries—princip', 1), ('france—found', 1), ('hereketa', 1), ('hizbula', 1), ('idolaters”', 1)]...\n", + "2018-08-31 00:31:21,504 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 580000 (=100.0%) documents\n", + "2018-08-31 00:31:23,550 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:23,592 : INFO : adding document #580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:28,720 : INFO : discarding 35533 tokens: [('pfeilflieg', 1), ('ëarlier', 1), ('dobrzhani', 1), ('orlitza', 1), ('ezplos', 1), ('seemuppen', 1), ('aviatak', 1), ('castelorizo', 1), ('jagdgeshwad', 1), ('türkenkreuz', 1)]...\n", + "2018-08-31 00:31:28,721 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 590000 (=100.0%) documents\n", + "2018-08-31 00:31:30,877 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:30,922 : INFO : adding document #590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:35,729 : INFO : discarding 32408 tokens: [('kojevnikov', 1), ('astriphytum', 1), ('prismaticum', 1), ('quadricostatum', 1), ('tulens', 1), ('cachiyacui', 1), ('canaanimi', 1), ('caviocricetu', 1), ('contamanensi', 1), ('dicolpomi', 1)]...\n", + "2018-08-31 00:31:35,730 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 600000 (=100.0%) documents\n", + "2018-08-31 00:31:37,772 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:37,814 : INFO : adding document #600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:42,683 : INFO : discarding 33435 tokens: [('languagebutton', 1), ('metadatarepositori', 1), ('mirrorget', 1), ('sesekin', 1), ('newdata', 1), ('prevval', 1), ('chiplitfest', 1), ('cotshil', 1), ('walterbush', 1), ('ls‑', 1)]...\n", + "2018-08-31 00:31:42,683 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 610000 (=100.0%) documents\n", + "2018-08-31 00:31:44,841 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:44,886 : INFO : adding document #610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:49,804 : INFO : discarding 38991 tokens: [('“chim”', 1), ('“haa', 1), ('bulukbasci', 1), ('distruttor', 1), ('dresak', 1), ('feldgeschütz', 1), ('meharisti', 1), ('muntaz', 1), ('ostafrikan', 1), ('sciumbasci', 1)]...\n", + "2018-08-31 00:31:49,805 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 620000 (=100.0%) documents\n", + "2018-08-31 00:31:51,871 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:51,914 : INFO : adding document #620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:56,791 : INFO : discarding 35025 tokens: [('meldei', 1), ('otherwise—don', 1), ('schma', 1), ('smortion', 1), ('b—are', 1), ('channels—such', 1), ('c·s−·v−', 1), ('dependent—in', 1), ('integration—thi', 1), ('ion—in', 1)]...\n", + "2018-08-31 00:31:56,792 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 630000 (=100.0%) documents\n", + "2018-08-31 00:31:58,942 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:31:58,986 : INFO : adding document #630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:03,823 : INFO : discarding 34754 tokens: [('offreçieron', 1), ('ovieron', 1), ('ovieronla', 1), ('ovieront', 1), ('peydro', 1), ('pienssan', 1), ('prisist', 1), ('pusieront', 1), ('quebrantast', 1), ('quebrantest', 1)]...\n", + "2018-08-31 00:32:03,823 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 640000 (=100.0%) documents\n", + "2018-08-31 00:32:05,863 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:05,905 : INFO : adding document #640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:10,720 : INFO : discarding 33143 tokens: [('lcch', 1), ('mavbot', 1), ('quessenberri', 1), ('fobbi', 1), ('dīwānīyah', 1), ('الديوانيه', 1), ('doctorandi', 1), ('schmachtenberg', 1), ('dodecuplet', 1), ('notes—or', 1)]...\n", + "2018-08-31 00:32:10,721 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 650000 (=100.0%) documents\n", + "2018-08-31 00:32:12,864 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:12,908 : INFO : adding document #650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:17,600 : INFO : discarding 35150 tokens: [('kakâ', 1), ('arhitektid', 1), ('basiladz', 1), ('baziladz', 1), ('klassikaraadio', 1), ('maania', 1), ('obydov', 1), ('teletorn', 1), ('tõsine', 1), ('vikerraadio', 1)]...\n", + "2018-08-31 00:32:17,600 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 660000 (=100.0%) documents\n", + "2018-08-31 00:32:19,641 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:19,685 : INFO : adding document #660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:24,459 : INFO : discarding 35616 tokens: [('avenue—four', 1), ('edleson', 1), ('station—includ', 1), ('street–cardozo', 1), ('strikes—both', 1), ('been—unfairly—view', 1), ('granby’', 1), ('bocom’', 1), ('customercontactchannel', 1), ('greenko', 1)]...\n", + "2018-08-31 00:32:24,460 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 670000 (=100.0%) documents\n", + "2018-08-31 00:32:26,631 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:32:26,676 : INFO : adding document #670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:31,331 : INFO : discarding 31718 tokens: [('econbrows', 1), ('mieczkowski', 1), ('pouzèr', 1), ('fodem', 1), ('ouangolé', 1), ('kittrdg', 1), ('zarudnaya', 1), ('hüther', 1), ('iwkoeln', 1), ('ss”', 1)]...\n", + "2018-08-31 00:32:31,331 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 680000 (=100.0%) documents\n", + "2018-08-31 00:32:33,386 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:33,429 : INFO : adding document #680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:38,107 : INFO : discarding 35660 tokens: [('ostravan', 1), ('vigantic', 1), ('swstk', 1), ('xdustmd', 1), ('rastenn', 1), ('lp×lp', 1), ('ssshhhhhh', 1), ('xdustcdx', 1), ('assets—church', 1), ('granor', 1)]...\n", + "2018-08-31 00:32:38,108 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 690000 (=100.0%) documents\n", + "2018-08-31 00:32:40,272 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:40,318 : INFO : adding document #690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:44,974 : INFO : discarding 42712 tokens: [('另眼相看', 1), ('向祖兒狂呼音樂劇', 1), ('壓軸拉闊音樂會李克勤x容祖兒', 1), ('好事多為', 1), ('容祖兒perfect', 1), ('容祖兒x古巨基', 1), ('容祖兒x草蜢', 1), ('容祖兒x陳奕迅', 1), ('容祖兒x黃耀明', 1), ('容祖兒、洪卓立東莞音樂會', 1)]...\n", + "2018-08-31 00:32:44,974 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 700000 (=100.0%) documents\n", + "2018-08-31 00:32:47,027 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:47,071 : INFO : adding document #700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:51,674 : INFO : discarding 29720 tokens: [('falcin', 1), ('subfalcin', 1), ('transcalvari', 1), ('transfalcin', 1), ('transforamin', 1), ('birkedahl', 1), ('burnettebroth', 1), ('electrical”', 1), ('leoppard', 1), ('paulburlison', 1)]...\n", + "2018-08-31 00:32:51,674 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 710000 (=100.0%) documents\n", + "2018-08-31 00:32:53,836 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:53,880 : INFO : adding document #710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:32:58,578 : INFO : discarding 32942 tokens: [('turnboldt', 1), ('neuman’', 1), ('cawthol', 1), ('irelanders”', 1), ('“sourfaces”', 1), ('junglero', 1), ('bernadó', 1), ('constraints—h', 1), ('enclosure—a', 1), ('pool—onc', 1)]...\n", + "2018-08-31 00:32:58,579 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 720000 (=100.0%) documents\n", + "2018-08-31 00:33:00,636 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:00,678 : INFO : adding document #720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:05,459 : INFO : discarding 44138 tokens: [('priđeš', 1), ('produži', 1), ('sretnog', 1), ('titovim', 1), ('vatrom', 1), ('zvao', 1), ('ćatović', 1), ('čarolija', 1), ('čola', 1), ('mazigia', 1)]...\n", + "2018-08-31 00:33:05,460 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 730000 (=100.0%) documents\n", + "2018-08-31 00:33:07,616 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:07,662 : INFO : adding document #730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:12,265 : INFO : discarding 31358 tokens: [('electrofolk', 1), ('presents﹣our', 1), ('rockmuiolog', 1), ('《你安安靜靜地躲起來》', 1), ('《掀起》', 1), ('青春文化', 1), ('assistant–manag', 1), ('sdobwa', 1), ('bergthorson', 1), ('delarossa', 1)]...\n", + "2018-08-31 00:33:12,266 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 740000 (=100.0%) documents\n", + "2018-08-31 00:33:14,315 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:14,358 : INFO : adding document #740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:19,139 : INFO : discarding 33903 tokens: [('kinez', 1), ('kojčinovac', 1), ('koviljuša', 1), ('liplja', 1), ('ljeljenča', 1), ('magnojević', 1), ('mauzer', 1), ('međaši', 1), ('nasalj', 1), ('obrijež', 1)]...\n", + "2018-08-31 00:33:19,140 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 750000 (=100.0%) documents\n", + "2018-08-31 00:33:21,282 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:21,329 : INFO : adding document #750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:25,971 : INFO : discarding 32344 tokens: [('ershisi', 1), ('liuhopafa', 1), ('lǎozǔ', 1), ('xīyí', 1), ('zǔshī', 1), ('希夷祖師', 1), ('陳摶老祖', 1), ('age—mostli', 1), ('knampton', 1), ('phyllite—underli', 1)]...\n", + "2018-08-31 00:33:25,972 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 760000 (=100.0%) documents\n", + "2018-08-31 00:33:28,030 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:28,073 : INFO : adding document #760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:32,913 : INFO : discarding 35176 tokens: [('левое', 1), ('ліворуч', 1), ('нале', 1), ('напра', 1), ('оber', 1), ('обернись', 1), ('плечо', 1), ('праворуч', 1), ('руш', 1), ('смирно', 1)]...\n", + "2018-08-31 00:33:32,914 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 770000 (=100.0%) documents\n", + "2018-08-31 00:33:35,063 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:35,109 : INFO : adding document #770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:39,802 : INFO : discarding 36116 tokens: [('しゃぶしゃぶ', 1), ('しんろ', 1), ('すこし', 1), ('すり身', 1), ('たこ焼', 1), ('たこ焼き', 1), ('たまり', 1), ('ひきこもり', 1), ('ひじき', 1), ('まんが', 1)]...\n", + "2018-08-31 00:33:39,803 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 780000 (=100.0%) documents\n", + "2018-08-31 00:33:41,863 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:41,906 : INFO : adding document #780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:46,524 : INFO : discarding 31930 tokens: [('afrofemcentr', 1), ('afrofemcentrist', 1), ('mexciana', 1), ('michasel', 1), ('plática', 1), ('tesfagiogi', 1), ('tesfagiorgi', 1), ('udderli', 1), ('difficulty″', 1), ('eunicella', 1)]...\n", + "2018-08-31 00:33:46,525 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 790000 (=100.0%) documents\n", + "2018-08-31 00:33:48,669 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:48,715 : INFO : adding document #790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:53,280 : INFO : discarding 30602 tokens: [('govindaa', 1), ('namadhari', 1), ('padakk', 1), ('thimmappa', 1), ('thimmappana', 1), ('historians—except', 1), ('resource…contrari', 1), ('neorim', 1), ('oberältest', 1), ('rominow', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:33:53,280 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 800000 (=100.0%) documents\n", + "2018-08-31 00:33:55,361 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:33:55,404 : INFO : adding document #800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:00,058 : INFO : discarding 34021 tokens: [('mednarodnega', 1), ('miklič', 1), ('szdl', 1), ('vitoslav', 1), ('archeologists’', 1), ('emircanov', 1), ('hacibayov', 1), ('kamanca', 1), ('migachevir', 1), ('niftaliyev', 1)]...\n", + "2018-08-31 00:34:00,058 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 810000 (=100.0%) documents\n", + "2018-08-31 00:34:02,206 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:02,251 : INFO : adding document #810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:06,723 : INFO : discarding 30470 tokens: [('lxwxg', 1), ('leads—balki', 1), ('mypo', 1), ('sheslow', 1), ('thallassia', 1), ('citcom', 1), ('flexibili', 1), ('solomatov', 1), ('anenu', 1), ('autostradowi', 1)]...\n", + "2018-08-31 00:34:06,723 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 820000 (=100.0%) documents\n", + "2018-08-31 00:34:08,763 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:08,806 : INFO : adding document #820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:13,443 : INFO : discarding 34954 tokens: [('suværen', 1), ('manchester…', 1), ('dranag', 1), ('artcan', 1), ('bendika', 1), ('lithuanien', 1), ('orvyda', 1), ('alloys—nam', 1), ('dilver', 1), ('fe–ni–', 1)]...\n", + "2018-08-31 00:34:13,444 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 830000 (=100.0%) documents\n", + "2018-08-31 00:34:15,588 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:15,634 : INFO : adding document #830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:20,192 : INFO : discarding 35248 tokens: [('滘西洲', 1), ('火石洲', 1), ('炸魚排', 1), ('烏蠅排', 1), ('爛頭排', 1), ('牙鷹排', 1), ('牛尾洲', 1), ('牛屎砵', 1), ('牛頭排', 1), ('癩痢仔', 1)]...\n", + "2018-08-31 00:34:20,192 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 840000 (=100.0%) documents\n", + "2018-08-31 00:34:22,240 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:22,284 : INFO : adding document #840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:26,861 : INFO : discarding 31305 tokens: [('鮑紹雄', 1), ('flocompon', 1), ('rusport', 1), ('sungazett', 1), ('aflua', 1), ('carriss', 1), ('foletta', 1), ('pleass', 1), ('sanneman', 1), ('sigmont', 1)]...\n", + "2018-08-31 00:34:26,861 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 850000 (=100.0%) documents\n", + "2018-08-31 00:34:29,002 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:29,048 : INFO : adding document #850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:33,538 : INFO : discarding 32928 tokens: [('κρυφός', 1), ('نیز', 1), ('چیم', 1), ('チムニーズ館の秘密(chimnei', 1), ('烟囱宅之谜', 1), ('artwashington', 1), ('masciulli', 1), ('mchughen', 1), ('drude–lorentz', 1), ('acylcholin', 1)]...\n", + "2018-08-31 00:34:33,538 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 860000 (=100.0%) documents\n", + "2018-08-31 00:34:35,594 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:35,638 : INFO : adding document #860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:40,151 : INFO : discarding 33845 tokens: [('roarchick', 1), ('sfoza', 1), ('shopkeeper–postmistress', 1), ('west—from', 1), ('—capt', 1), ('chew—copyright', 1), ('devoist', 1), ('arbutusunedo', 1), ('madronerefrigeratortre', 1), ('ornithostaphylo', 1)]...\n", + "2018-08-31 00:34:40,151 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 870000 (=100.0%) documents\n", + "2018-08-31 00:34:42,301 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:42,348 : INFO : adding document #870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:46,850 : INFO : discarding 34628 tokens: [('землемер', 1), ('narratives’', 1), ('ranjoo', 1), ('seodu', 1), ('‘globalization’', 1), ('‘post’', 1), ('凡是毛主席作出的决策,我们都坚决维护;凡是毛主席的指示,我们都始终不渝地遵循', 1), ('boasa', 1), ('anthistl', 1), ('indienet', 1)]...\n", + "2018-08-31 00:34:46,850 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 880000 (=100.0%) documents\n", + "2018-08-31 00:34:48,900 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:48,944 : INFO : adding document #880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:53,506 : INFO : discarding 34332 tokens: [('haʼicu', 1), ('haʼicug', 1), ('haṣ', 1), ('haṣaba', 1), ('hebai', 1), ('hehkai', 1), ('hehmapa', 1), ('hejeḍ', 1), ('heubagĭ', 1), ('hewhogĭ', 1)]...\n", + "2018-08-31 00:34:53,507 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 890000 (=100.0%) documents\n", + "2018-08-31 00:34:55,659 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:34:55,705 : INFO : adding document #890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:00,167 : INFO : discarding 33625 tokens: [('herotsc', 1), ('pridepark', 1), ('ajansa', 1), ('apparelknit', 1), ('firatê', 1), ('liquidd', 1), ('nûçeyan', 1), ('pollendin', 1), ('surroundings—albeit', 1), ('acqtc', 1)]...\n", + "2018-08-31 00:35:00,167 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 900000 (=100.0%) documents\n", + "2018-08-31 00:35:02,229 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:02,274 : INFO : adding document #900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:06,827 : INFO : discarding 34469 tokens: [('baharga', 1), ('bprm', 1), ('dmeir', 1), ('drasiah', 1), ('dursunozden', 1), ('fughara', 1), ('issadar', 1), ('jūb', 1), ('kahrez', 1), ('kakuriz', 1)]...\n", + "2018-08-31 00:35:06,828 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 910000 (=100.0%) documents\n", + "2018-08-31 00:35:08,986 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:09,033 : INFO : adding document #910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:13,372 : INFO : discarding 30776 tokens: [('gluecksohn', 1), ('schönheimer', 1), ('schönheimer´', 1), ('sgbm', 1), ('spemann´', 1), ('waelsch´', 1), ('cascanuec', 1), ('confundida', 1), ('impresent', 1), ('nikté', 1)]...\n", + "2018-08-31 00:35:13,373 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 920000 (=100.0%) documents\n", + "2018-08-31 00:35:15,424 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:15,468 : INFO : adding document #920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:35:19,973 : INFO : discarding 33158 tokens: [('squeezeflowmod', 1), ('yucudaa', 1), ('clariscan', 1), ('cliavist', 1), ('combidex', 1), ('endorem', 1), ('ferrotec', 1), ('feruglos', 1), ('lumirem', 1), ('resovist', 1)]...\n", + "2018-08-31 00:35:19,974 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 930000 (=100.0%) documents\n", + "2018-08-31 00:35:22,131 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:22,179 : INFO : adding document #930000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:26,527 : INFO : discarding 29712 tokens: [('bandicoot—dansu', 1), ('dinestein', 1), ('hakik', 1), ('spiralmouth', 1), ('theplay', 1), ('callisen’', 1), ('lotheissen‘', 1), ('mcevedy’', 1), ('narath’', 1), ('retrovascular', 1)]...\n", + "2018-08-31 00:35:26,527 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 940000 (=100.0%) documents\n", + "2018-08-31 00:35:28,588 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:28,632 : INFO : adding document #940000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:33,195 : INFO : discarding 30348 tokens: [('butylzinc', 1), ('iodoanilin', 1), ('ballwork', 1), ('fascion', 1), ('gasbarri', 1), ('mckemmi', 1), ('ridgwel', 1), ('toadie’', 1), ('dgstj', 1), ('lavrec', 1)]...\n", + "2018-08-31 00:35:33,196 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 950000 (=100.0%) documents\n", + "2018-08-31 00:35:35,354 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:35,400 : INFO : adding document #950000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:39,798 : INFO : discarding 32690 tokens: [('napocna', 1), ('navogoh', 1), ('qarashé', 1), ('凤凰乡', 1), ('dennett’', 1), ('brangi', 1), ('icehal', 1), ('jokiv', 1), ('mähr', 1), ('tsutsunen', 1)]...\n", + "2018-08-31 00:35:39,798 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 960000 (=100.0%) documents\n", + "2018-08-31 00:35:41,874 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:41,918 : INFO : adding document #960000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:46,329 : INFO : discarding 30931 tokens: [('köstebek', 1), ('utanmaz', 1), ('changor', 1), ('lovisex', 1), ('sadissimo', 1), ('satarella', 1), ('strictement', 1), ('yandım', 1), ('calavano', 1), ('darukijung', 1)]...\n", + "2018-08-31 00:35:46,330 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 970000 (=100.0%) documents\n", + "2018-08-31 00:35:48,491 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:48,539 : INFO : adding document #970000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:52,824 : INFO : discarding 27285 tokens: [('burkinaonlin', 1), ('n’do', 1), ('paalga', 1), ('salankoloto', 1), ('danshøj', 1), ('frederiksbergcentret', 1), ('kampmannsgad', 1), ('nyelandsvej', 1), ('nørrebroparken', 1), ('reloct', 1)]...\n", + "2018-08-31 00:35:52,825 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 980000 (=100.0%) documents\n", + "2018-08-31 00:35:54,898 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:54,946 : INFO : adding document #980000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:35:59,529 : INFO : discarding 29285 tokens: [('ganshou', 1), ('沮渠乾壽', 1), ('河西王', 1), ('闞伯周', 1), ('bendiwi', 1), ('caraibo', 1), ('caraïbo', 1), ('countsmen', 1), ('worsbough', 1), ('byaverag', 1)]...\n", + "2018-08-31 00:35:59,530 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 990000 (=100.0%) documents\n", + "2018-08-31 00:36:01,705 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:01,755 : INFO : adding document #990000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:06,189 : INFO : discarding 32588 tokens: [('symclosen', 1), ('achiq', 1), ('aghasiyev', 1), ('bagradouni', 1), ('bailoff', 1), ('balakhani', 1), ('bunyat', 1), ('gotsinski', 1), ('gubernskaya', 1), ('hümmet', 1)]...\n", + "2018-08-31 00:36:06,189 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1000000 (=100.0%) documents\n", + "2018-08-31 00:36:08,253 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:08,298 : INFO : adding document #1000000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:12,768 : INFO : discarding 33574 tokens: [('nova–can', 1), ('nova–la', 1), ('paral·lel–badalona', 1), ('sagrera–can', 1), ('sagrera–gorg', 1), ('sarrià–reina', 1), ('t–zona', 1), ('universitària–trinitat', 1), ('“soldier’', 1), ('dogabon', 1)]...\n", + "2018-08-31 00:36:12,769 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1010000 (=100.0%) documents\n", + "2018-08-31 00:36:14,937 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:14,985 : INFO : adding document #1010000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:19,290 : INFO : discarding 37934 tokens: [('arasamaram', 1), ('pendamaran', 1), ('unjur', 1), ('吉令港', 1), ('巴生观音亭', 1), ('chris—in', 1), ('skywalker—th', 1), ('chángfāng朱常淓', 1), ('chángluò朱常洛', 1), ('chángqīng朱常清', 1)]...\n", + "2018-08-31 00:36:19,291 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1020000 (=100.0%) documents\n", + "2018-08-31 00:36:21,357 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:21,403 : INFO : adding document #1020000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:25,878 : INFO : discarding 41262 tokens: [('kaye—to', 1), ('proportions»', 1), ('yes—chri', 1), ('maine–quebec', 1), ('wolastoqiyuk', 1), ('wəlastəkok', 1), ('wələstəq', 1), ('cheeno', 1), ('hindustan—th', 1), ('आपस', 1)]...\n", + "2018-08-31 00:36:25,878 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1030000 (=100.0%) documents\n", + "2018-08-31 00:36:28,044 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:28,092 : INFO : adding document #1030000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:32,485 : INFO : discarding 37728 tokens: [('ice—ha', 1), ('maturity—not', 1), ('oveckhin', 1), ('plutokil', 1), ('necrosound', 1), ('rivao', 1), ('ulaeu', 1), ('marquetteri', 1), ('lochanā', 1), ('panchajnana', 1)]...\n", + "2018-08-31 00:36:32,486 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1040000 (=100.0%) documents\n", + "2018-08-31 00:36:34,557 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:34,602 : INFO : adding document #1040000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:38,998 : INFO : discarding 31907 tokens: [('beedham', 1), ('brodertoft', 1), ('brothertoftborn', 1), ('buttol', 1), ('cromel', 1), ('curtoi', 1), ('gerordot', 1), ('lemanof', 1), ('marrat', 1), ('sempringam', 1)]...\n", + "2018-08-31 00:36:38,999 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1050000 (=100.0%) documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:36:41,160 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:41,208 : INFO : adding document #1050000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:45,452 : INFO : discarding 34086 tokens: [('tangle—wer', 1), ('korsakoff´', 1), ('wernicke´', 1), ('fedorov‘', 1), ('sisyphan', 1), ('smartshroud', 1), ('wormcam', 1), ('modérateur', 1), ('sugrivapithecu', 1), ('yastwant', 1)]...\n", + "2018-08-31 00:36:45,453 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1060000 (=100.0%) documents\n", + "2018-08-31 00:36:47,533 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:47,578 : INFO : adding document #1060000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:51,879 : INFO : discarding 31320 tokens: [('fautré', 1), ('hrwf', 1), ('iclar', 1), ('«focus', 1), ('aradhan', 1), ('auradkar', 1), ('basavanth', 1), ('basawanna', 1), ('belkera', 1), ('bhukari', 1)]...\n", + "2018-08-31 00:36:51,879 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1070000 (=100.0%) documents\n", + "2018-08-31 00:36:54,068 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:54,115 : INFO : adding document #1070000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:36:58,041 : INFO : discarding 38939 tokens: [('ahreea', 1), ('androsgeorgi', 1), ('pakinawatik', 1), ('entoproctan', 1), ('kofiran', 1), ('meilcour', 1), ('neadarn', 1), ('zéokinisul', 1), ('écumoir', 1), ('bianconi’', 1)]...\n", + "2018-08-31 00:36:58,042 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1080000 (=100.0%) documents\n", + "2018-08-31 00:37:00,121 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:00,167 : INFO : adding document #1080000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:04,603 : INFO : discarding 40155 tokens: [('codalema', 1), ('décimétriqu', 1), ('radiotélescop', 1), ('macrophil', 1), ('part—ent', 1), ('releases″', 1), ('″preliminari', 1), ('loathed—sheridan', 1), ('parkerview', 1), ('allbin', 1)]...\n", + "2018-08-31 00:37:04,604 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1090000 (=100.0%) documents\n", + "2018-08-31 00:37:06,756 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:06,804 : INFO : adding document #1090000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:11,026 : INFO : discarding 31177 tokens: [('absorption—for', 1), ('adlaf', 1), ('potashnik', 1), ('regaudi', 1), ('sakellaropoulo', 1), ('urdl', 1), ('zoern', 1), ('greeder', 1), ('paratron', 1), ('bricasti', 1)]...\n", + "2018-08-31 00:37:11,027 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1100000 (=100.0%) documents\n", + "2018-08-31 00:37:13,091 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:13,136 : INFO : adding document #1100000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:17,398 : INFO : discarding 30521 tokens: [('ansigtstyven', 1), ('begyndt', 1), ('borgkælderen', 1), ('brudefærd', 1), ('brænder', 1), ('danskefilm', 1), ('derbyløb', 1), ('dobbeltgæng', 1), ('dollarprinsessen', 1), ('flintesønnern', 1)]...\n", + "2018-08-31 00:37:17,399 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1110000 (=100.0%) documents\n", + "2018-08-31 00:37:19,540 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:19,589 : INFO : adding document #1110000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:23,695 : INFO : discarding 27945 tokens: [('sakuzō', 1), ('yorita', 1), ('borita', 1), ('alicyn', 1), ('fufalla', 1), ('glissandra', 1), ('humidia', 1), ('incanta', 1), ('iridessa', 1), ('kettletre', 1)]...\n", + "2018-08-31 00:37:23,695 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1120000 (=100.0%) documents\n", + "2018-08-31 00:37:25,777 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:25,823 : INFO : adding document #1120000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:30,049 : INFO : discarding 31674 tokens: [('tvguidemag', 1), ('animationvisu', 1), ('assistancekei', 1), ('atwiki', 1), ('beginningep', 1), ('creatordirectorscriptdigit', 1), ('designkei', 1), ('effectsart', 1), ('kattobas', 1), ('liliputian', 1)]...\n", + "2018-08-31 00:37:30,050 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1130000 (=100.0%) documents\n", + "2018-08-31 00:37:32,217 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:32,266 : INFO : adding document #1130000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:36,397 : INFO : discarding 29187 tokens: [('eitchon', 1), ('fricho', 1), ('halbbauern', 1), ('homburgeramt', 1), ('sauriermuseum', 1), ('vollbauern', 1), ('bürersteig', 1), ('gansungen', 1), ('holefehr', 1), ('holekit', 1)]...\n", + "2018-08-31 00:37:36,398 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1140000 (=100.0%) documents\n", + "2018-08-31 00:37:38,464 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:38,510 : INFO : adding document #1140000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:42,857 : INFO : discarding 29644 tokens: [('com–', 1), ('pspvideo', 1), ('sonystyl', 1), ('junkclub', 1), ('omeara', 1), ('zeffira', 1), ('koroseta', 1), ('마이티', 1), ('‘classroom', 1), ('aldoshin', 1)]...\n", + "2018-08-31 00:37:42,857 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1150000 (=100.0%) documents\n", + "2018-08-31 00:37:45,014 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:45,063 : INFO : adding document #1150000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:48,995 : INFO : discarding 25332 tokens: [('baliwasan', 1), ('boalan', 1), ('bunguiao', 1), ('cabaluai', 1), ('cabatangan', 1), ('calarian', 1), ('canelar', 1), ('capisan', 1), ('culianan', 1), ('curuan', 1)]...\n", + "2018-08-31 00:37:48,995 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1160000 (=100.0%) documents\n", + "2018-08-31 00:37:51,070 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:51,116 : INFO : adding document #1160000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:55,293 : INFO : discarding 36793 tokens: [('kakimura', 1), ('kumakatsu', 1), ('mitsumaru', 1), ('yasuiti', 1), ('birgittaklost', 1), ('untaf', 1), ('svivon', 1), ('esseci', 1), ('nicoloini', 1), ('examplevertexfigur', 1)]...\n", + "2018-08-31 00:37:55,293 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1170000 (=100.0%) documents\n", + "2018-08-31 00:37:57,471 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:37:57,520 : INFO : adding document #1170000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:38:01,419 : INFO : discarding 27739 tokens: [('usvba', 1), ('abhiraja', 1), ('ce—or', 1), ('ce—th', 1), ('dhammavilasa', 1), ('elements—art', 1), ('generations—wa', 1), ('guards—', 1), ('hlaung', 1), ('hpyat', 1)]...\n", + "2018-08-31 00:38:01,420 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1180000 (=100.0%) documents\n", + "2018-08-31 00:38:03,482 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:03,529 : INFO : adding document #1180000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:07,579 : INFO : discarding 29505 tokens: [('clift’', 1), ('deer’’', 1), ('kazan’', 1), ('lodan', 1), ('loden”', 1), ('music—everyth', 1), ('pictures…', 1), ('wanda”', 1), ('“kazan', 1), ('“maggie”', 1)]...\n", + "2018-08-31 00:38:07,579 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1190000 (=100.0%) documents\n", + "2018-08-31 00:38:09,744 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:09,792 : INFO : adding document #1190000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:13,786 : INFO : discarding 26867 tokens: [('packetexchang', 1), ('aiyaa', 1), ('azhagam', 1), ('irukkiraai', 1), ('kattradhu', 1), ('paravaiy', 1), ('pattaampoochi', 1), ('poobaal', 1), ('poobal', 1), ('raavar', 1)]...\n", + "2018-08-31 00:38:13,786 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1200000 (=100.0%) documents\n", + "2018-08-31 00:38:15,849 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:15,895 : INFO : adding document #1200000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:20,256 : INFO : discarding 29744 tokens: [('points’', 1), ('reksep', 1), ('lemhous', 1), ('jtbgmt', 1), ('rurubu', 1), ('stand’', 1), ('‘tomb', 1), ('nicolaeva', 1), ('damierlyonnai', 1), ('molimard', 1)]...\n", + "2018-08-31 00:38:20,257 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1210000 (=100.0%) documents\n", + "2018-08-31 00:38:22,420 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:22,469 : INFO : adding document #1210000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:26,599 : INFO : discarding 30192 tokens: [('chicklet', 1), ('tiles’', 1), ('sokolani', 1), ('mahadeorao', 1), ('shivankar', 1), ('sukaji', 1), ('worldwarairfield', 1), ('吳鑑泉', 1), ('bhatkya', 1), ('rojgar', 1)]...\n", + "2018-08-31 00:38:26,599 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1220000 (=100.0%) documents\n", + "2018-08-31 00:38:28,688 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:28,733 : INFO : adding document #1220000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:32,928 : INFO : discarding 29553 tokens: [('bossieux', 1), ('madsol', 1), ('“geomungo”', 1), ('거문고', 1), ('cadet”', 1), ('“gentleman', 1), ('handock', 1), ('hrishita', 1), ('kettavarellam', 1), ('mahabanoo', 1)]...\n", + "2018-08-31 00:38:32,929 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1230000 (=100.0%) documents\n", + "2018-08-31 00:38:35,100 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:35,149 : INFO : adding document #1230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:39,237 : INFO : discarding 28947 tokens: [('khanaqah', 1), ('khaniqah', 1), ('ma‘arif', 1), ('payvan', 1), ('riyasateyn', 1), ('ṣufiyya', 1), ('‘eblis’', 1), ('“prodigi', 1), ('afforment', 1), ('autotour', 1)]...\n", + "2018-08-31 00:38:39,238 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1240000 (=100.0%) documents\n", + "2018-08-31 00:38:41,330 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:41,376 : INFO : adding document #1240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:45,509 : INFO : discarding 31331 tokens: [('abfaltersbach', 1), ('petzenburg', 1), ('tirolerhut', 1), ('doruccio', 1), ('pisa’', 1), ('kargha', 1), ('hemkunj', 1), ('smartpart', 1), ('ejji', 1), ('amendi', 1)]...\n", + "2018-08-31 00:38:45,510 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1250000 (=100.0%) documents\n", + "2018-08-31 00:38:47,703 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:47,752 : INFO : adding document #1250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:51,811 : INFO : discarding 30763 tokens: [('pyreau', 1), ('shquindi', 1), ('tamare', 1), ('teeyhittaan', 1), ('barroetaveña', 1), ('caleidoscopio', 1), ('conciencias”', 1), ('doño', 1), ('ejqfsc', 1), ('esaín', 1)]...\n", + "2018-08-31 00:38:51,811 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1260000 (=100.0%) documents\n", + "2018-08-31 00:38:53,878 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:53,925 : INFO : adding document #1260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:38:58,137 : INFO : discarding 30310 tokens: [('cunundrum', 1), ('nightfriend', 1), ('darbaki', 1), ('abarquez', 1), ('caiban', 1), ('consolabao', 1), ('pagsangjan', 1), ('tancinco', 1), ('tinambacan', 1), ('ubanon', 1)]...\n", + "2018-08-31 00:38:58,137 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1270000 (=100.0%) documents\n", + "2018-08-31 00:39:00,304 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:00,353 : INFO : adding document #1270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:04,481 : INFO : discarding 28848 tokens: [('lajiaomei', 1), ('lankouzi', 1), ('lingda', 1), ('liusheng', 1), ('shenbianshi', 1), ('suifeng', 1), ('xiyangyang', 1), ('xueji', 1), ('yimei', 1), ('yuetong', 1)]...\n", + "2018-08-31 00:39:04,482 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1280000 (=100.0%) documents\n", + "2018-08-31 00:39:06,552 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:06,599 : INFO : adding document #1280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:10,720 : INFO : discarding 29006 tokens: [('koliabor', 1), ('laithapana', 1), ('langisong', 1), ('madhurjya', 1), ('mridupom', 1), ('nirbhoynarayan', 1), ('numali', 1), ('thanunath', 1), ('tonmoi', 1), ('bhorupkar', 1)]...\n", + "2018-08-31 00:39:10,721 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1290000 (=100.0%) documents\n", + "2018-08-31 00:39:12,882 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:12,932 : INFO : adding document #1290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:16,920 : INFO : discarding 34204 tokens: [('hɔ̂ːj', 1), ('hɯ´ːan', 1), ('isan—both', 1), ('iːnɔːŋ', 1), ('jâːŋ', 1), ('jîam', 1), ('jùt', 1), ('kadat', 1), ('kalèm', 1), ('kammandam', 1)]...\n", + "2018-08-31 00:39:16,921 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1300000 (=100.0%) documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:39:18,999 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:19,047 : INFO : adding document #1300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:23,319 : INFO : discarding 29336 tokens: [('hankari', 1), ('hubaira', 1), ('isma‘il', 1), ('jallaluddin', 1), ('jamiyattablighulislam', 1), ('jamālullah', 1), ('mawā', 1), ('muhiyuddin', 1), ('nausha', 1), ('naushahi', 1)]...\n", + "2018-08-31 00:39:23,320 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1310000 (=100.0%) documents\n", + "2018-08-31 00:39:25,498 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:25,547 : INFO : adding document #1310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:29,609 : INFO : discarding 29440 tokens: [('pohronskybukovec', 1), ('kevedobra', 1), ('добрица', 1), ('medzibrod', 1), ('charruana', 1), ('rosengurttii', 1), ('poniki', 1), ('d’eramo', 1), ('karkari', 1), ('merrith', 1)]...\n", + "2018-08-31 00:39:29,609 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1320000 (=100.0%) documents\n", + "2018-08-31 00:39:31,716 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:31,763 : INFO : adding document #1320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:35,885 : INFO : discarding 28345 tokens: [('最佳金句', 1), ('最受欢迎新人奖', 1), ('最惨烂笑容奖', 1), ('最火搭档', 1), ('未来不是梦', 1), ('plead’', 1), ('‘unfit', 1), ('czerchowski', 1), ('czerchów', 1), ('ľubovnianska', 1)]...\n", + "2018-08-31 00:39:35,886 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1330000 (=100.0%) documents\n", + "2018-08-31 00:39:38,054 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:38,103 : INFO : adding document #1330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:42,270 : INFO : discarding 30216 tokens: [('teosk', 1), ('doidals', 1), ('confuchia', 1), ('danzeno', 1), ('iktam', 1), ('koropick', 1), ('tedburrow', 1), ('gymnuru', 1), ('hoplomi', 1), ('leptura', 1)]...\n", + "2018-08-31 00:39:42,270 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1340000 (=100.0%) documents\n", + "2018-08-31 00:39:44,366 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:44,413 : INFO : adding document #1340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:48,554 : INFO : discarding 25284 tokens: [('bisknel', 1), ('groobi', 1), ('sizeland', 1), ('alappatt', 1), ('maliekk', 1), ('thoomkuzhi', 1), ('bremlei', 1), ('childbirth—a', 1), ('chirantan', 1), ('galpomala', 1)]...\n", + "2018-08-31 00:39:48,555 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1350000 (=100.0%) documents\n", + "2018-08-31 00:39:50,752 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:50,801 : INFO : adding document #1350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:54,884 : INFO : discarding 27853 tokens: [('stratodyn', 1), ('leuvilloi', 1), ('royale»', 1), ('«voie', 1), ('bidesi', 1), ('gopendra', 1), ('intellectur', 1), ('daskov', 1), ('daskova', 1), ('feodorova', 1)]...\n", + "2018-08-31 00:39:54,885 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1360000 (=100.0%) documents\n", + "2018-08-31 00:39:56,967 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:39:57,017 : INFO : adding document #1360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:01,232 : INFO : discarding 28340 tokens: [('cukiertort', 1), ('krzyzanovska', 1), ('tnmt', 1), ('transpositions—in', 1), ('chessoia', 1), ('ctenophoran', 1), ('melagiu', 1), ('sikyo', 1), ('sjómannadagurinn', 1), ('tölva', 1)]...\n", + "2018-08-31 00:40:01,232 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1370000 (=100.0%) documents\n", + "2018-08-31 00:40:03,406 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:03,455 : INFO : adding document #1370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:07,719 : INFO : discarding 29524 tokens: [('liucoccu', 1), ('lomatococcu', 1), ('londiania', 1), ('longicoccu', 1), ('macrocepicoccu', 1), ('maculicoccu', 1), ('madacanthococcu', 1), ('madagasia', 1), ('madangiacoccu', 1), ('madeurycoccu', 1)]...\n", + "2018-08-31 00:40:07,720 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1380000 (=100.0%) documents\n", + "2018-08-31 00:40:09,799 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:09,850 : INFO : adding document #1380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:14,150 : INFO : discarding 33316 tokens: [('несу́', 1), ('несу́т', 1), ('несём', 1), ('несёте', 1), ('неё', 1), ('нулево́й', 1), ('нуть', 1), ('нёс', 1), ('нёсший', 1), ('о́чень', 1)]...\n", + "2018-08-31 00:40:14,150 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1390000 (=100.0%) documents\n", + "2018-08-31 00:40:16,316 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:16,367 : INFO : adding document #1390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:20,489 : INFO : discarding 28893 tokens: [('itomu', 1), ('jikukawa', 1), ('kazutak', 1), ('lagross', 1), ('lamphroaig', 1), ('laszo', 1), ('mokania', 1), ('rusuran', 1), ('shilfi', 1), ('shinatom', 1)]...\n", + "2018-08-31 00:40:20,490 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1400000 (=100.0%) documents\n", + "2018-08-31 00:40:22,574 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:22,621 : INFO : adding document #1400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:26,805 : INFO : discarding 35761 tokens: [('krestivka', 1), ('lymanski', 1), ('marynski', 1), ('marïnka', 1), ('shakhtarski', 1), ('shakhtarskyi', 1), ('slovyanski', 1), ('starobeshivski', 1), ('telmanivski', 1), ('velikonovosilkivski', 1)]...\n", + "2018-08-31 00:40:26,805 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1410000 (=100.0%) documents\n", + "2018-08-31 00:40:28,992 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:29,043 : INFO : adding document #1410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:33,048 : INFO : discarding 27479 tokens: [('olten–genèv', 1), ('shorelineneuchâtel', 1), ('terras', 1), ('voilain', 1), ('“shepherd’', 1), ('chriztoph', 1), ('oedipusend', 1), ('paliou', 1), ('paperstrang', 1), ('selaiha', 1)]...\n", + "2018-08-31 00:40:33,049 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1420000 (=100.0%) documents\n", + "2018-08-31 00:40:35,130 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:35,177 : INFO : adding document #1420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:40:39,304 : INFO : discarding 27312 tokens: [('damascus–istr', 1), ('editzioni', 1), ('grafasdiv', 1), ('jalo–giarabub', 1), ('jozza', 1), ('legionaira', 1), ('leproni', 1), ('nauagia', 1), ('scaramanzia', 1), ('thermopila', 1)]...\n", + "2018-08-31 00:40:39,304 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1430000 (=100.0%) documents\n", + "2018-08-31 00:40:41,472 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:41,522 : INFO : adding document #1430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:45,578 : INFO : discarding 28821 tokens: [('ardinari', 1), ('aysle—a', 1), ('below—not', 1), ('comaghaz', 1), ('cyberpapaci', 1), ('cyberpapacy—cov', 1), ('drakacanu', 1), ('ebenuscrux', 1), ('edeino', 1), ('eideno', 1)]...\n", + "2018-08-31 00:40:45,578 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1440000 (=100.0%) documents\n", + "2018-08-31 00:40:47,663 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:47,710 : INFO : adding document #1440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:51,726 : INFO : discarding 25589 tokens: [('aonobuaka', 1), ('borotiam', 1), ('kiribarti', 1), ('koinawa', 1), ('maneab', 1), ('morikao', 1), ('nuotaea', 1), ('riboono', 1), ('tabuiroa', 1), ('tabwiroa', 1)]...\n", + "2018-08-31 00:40:51,727 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1450000 (=100.0%) documents\n", + "2018-08-31 00:40:53,918 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:53,969 : INFO : adding document #1450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:40:58,045 : INFO : discarding 27049 tokens: [('cavezzali', 1), ('cittanòva', 1), ('crònich', 1), ('culodritto', 1), ('diamoci', 1), ('epafànich', 1), ('fatâz', 1), ('filemazio', 1), ('gnicch', 1), ('jachia', 1)]...\n", + "2018-08-31 00:40:58,046 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1460000 (=100.0%) documents\n", + "2018-08-31 00:41:00,131 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:00,178 : INFO : adding document #1460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:04,338 : INFO : discarding 30597 tokens: [('aescularia', 1), ('brephoid', 1), ('cruentaria', 1), ('desmobathrina', 1), ('dichromod', 1), ('immorata', 1), ('leucobrepho', 1), ('lythria', 1), ('marginepunctata', 1), ('nearcha', 1)]...\n", + "2018-08-31 00:41:04,338 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1470000 (=100.0%) documents\n", + "2018-08-31 00:41:06,493 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:06,542 : INFO : adding document #1470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:10,585 : INFO : discarding 32029 tokens: [('бөртэ', 1), ('activeanime—comparison', 1), ('囲まれた世界', 1), ('danniya', 1), ('hinduva', 1), ('hindūg', 1), ('fastpaq', 1), ('arabskikh', 1), ('cherteb', 1), ('dagestanskogo', 1)]...\n", + "2018-08-31 00:41:10,586 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1480000 (=100.0%) documents\n", + "2018-08-31 00:41:12,673 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:12,721 : INFO : adding document #1480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:16,818 : INFO : discarding 28748 tokens: [('wiilko', 1), ('wymarch', 1), ('golfml', 1), ('atia—advanc', 1), ('atic—advanc', 1), ('cmsr—center', 1), ('dsead', 1), ('geometry—relationship', 1), ('irembass', 1), ('ncmr—nation', 1)]...\n", + "2018-08-31 00:41:16,819 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1490000 (=100.0%) documents\n", + "2018-08-31 00:41:19,002 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:19,052 : INFO : adding document #1490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:23,119 : INFO : discarding 30384 tokens: [('वर्ग', 1), ('वहन', 1), ('वहित्र', 1), ('वाच्', 1), ('वाज', 1), ('वार्ता', 1), ('वाशी', 1), ('विचक्षण', 1), ('विचक्ष्', 1), ('विद्याधरी', 1)]...\n", + "2018-08-31 00:41:23,119 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1500000 (=100.0%) documents\n", + "2018-08-31 00:41:25,206 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:25,253 : INFO : adding document #1500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:29,336 : INFO : discarding 31667 tokens: [('kṛttikākārttika', 1), ('laatj', 1), ('langsai', 1), ('langseng', 1), ('laoteng', 1), ('lappai', 1), ('legiun', 1), ('lenspreci', 1), ('lianglong', 1), ('limoen', 1)]...\n", + "2018-08-31 00:41:29,337 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1510000 (=100.0%) documents\n", + "2018-08-31 00:41:31,508 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:31,558 : INFO : adding document #1510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:35,597 : INFO : discarding 29687 tokens: [('ŋɯm', 1), ('ɲaːw', 1), ('ʔĩi', 1), ('กระจับปี่', 1), ('กลอง', 1), ('ขลุ่ย', 1), ('ขับงึม', 1), ('ขับซำเหนือ', 1), ('ขับทุ้มหลวงพระบาง', 1), ('ขับพวน', 1)]...\n", + "2018-08-31 00:41:35,598 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1520000 (=100.0%) documents\n", + "2018-08-31 00:41:37,669 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:37,716 : INFO : adding document #1520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:41,885 : INFO : discarding 29222 tokens: [('peiniot', 1), ('peinkitel', 1), ('platforms—bord', 1), ('ponapé', 1), ('tauach', 1), ('temuen', 1), ('usennamw', 1), ('rhizomop', 1), ('taddarita', 1), ('skiltonianum', 1)]...\n", + "2018-08-31 00:41:41,886 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1530000 (=100.0%) documents\n", + "2018-08-31 00:41:44,048 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:44,097 : INFO : adding document #1530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:48,152 : INFO : discarding 27600 tokens: [('toshitoro', 1), ('nazigold', 1), ('war—notwithstand', 1), ('“mytho', 1), ('centralparkst', 1), ('patscentr', 1), ('lutzelkolb', 1), ('minnik', 1), ('afaha’', 1), ('andomi', 1)]...\n", + "2018-08-31 00:41:48,153 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1540000 (=100.0%) documents\n", + "2018-08-31 00:41:50,249 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:50,296 : INFO : adding document #1540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:54,819 : INFO : discarding 28043 tokens: [('godihk', 1), ('gogháiidá', 1), ('gohtsį', 1), ('golqah', 1), ('got’iné', 1), ('goyide', 1), ('goyíi', 1), ('goyúé', 1), ('goyįde', 1), ('gołį', 1)]...\n", + "2018-08-31 00:41:54,819 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1550000 (=100.0%) documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:41:56,987 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:41:57,037 : INFO : adding document #1550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:01,166 : INFO : discarding 27786 tokens: [('malcadet', 1), ('vicalet', 1), ('agnervil', 1), ('aignervillai', 1), ('aignervillais', 1), ('berigot', 1), ('airannai', 1), ('airannais', 1), ('borgarelli', 1), ('deuzet', 1)]...\n", + "2018-08-31 00:42:01,167 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1560000 (=100.0%) documents\n", + "2018-08-31 00:42:03,250 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:03,298 : INFO : adding document #1560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:07,456 : INFO : discarding 27673 tokens: [('progenitin', 1), ('chernjo', 1), ('grcheto', 1), ('jurukov', 1), ('katardjiev', 1), ('kitinchev', 1), ('michev', 1), ('mysro', 1), ('protogetov', 1), ('sharlo', 1)]...\n", + "2018-08-31 00:42:07,457 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1570000 (=100.0%) documents\n", + "2018-08-31 00:42:09,627 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:09,677 : INFO : adding document #1570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:13,630 : INFO : discarding 27049 tokens: [('oreillyfound', 1), ('“irishman', 1), ('birthplace—wher', 1), ('ndenvirocaucu', 1), ('¹out', 1), ('awarded—fifteen', 1), ('crosses—murrai', 1), ('distiniguish', 1), ('halbisengibb', 1), ('halbrun', 1)]...\n", + "2018-08-31 00:42:13,631 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1580000 (=100.0%) documents\n", + "2018-08-31 00:42:15,731 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:15,779 : INFO : adding document #1580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:19,984 : INFO : discarding 27369 tokens: [('キッコロ', 1), ('モリゾー', 1), ('愛・地球博', 1), ('bangh', 1), ('disposalb', 1), ('divergerg', 1), ('fangla', 1), ('hangzhou–taizhou–wenzh', 1), ('henghui', 1), ('jiekan', 1)]...\n", + "2018-08-31 00:42:19,984 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1590000 (=100.0%) documents\n", + "2018-08-31 00:42:22,151 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:22,203 : INFO : adding document #1590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:26,117 : INFO : discarding 26627 tokens: [('droppo', 1), ('dhimsr', 1), ('doctorji', 1), ('vijayasaradhi', 1), ('oryx—which', 1), ('ciyc', 1), ('darici', 1), ('transmedialidad', 1), ('urbatect', 1), ('murough', 1)]...\n", + "2018-08-31 00:42:26,118 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1600000 (=100.0%) documents\n", + "2018-08-31 00:42:28,213 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:28,261 : INFO : adding document #1600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:32,094 : INFO : discarding 23412 tokens: [('ḳarʿa', 1), ('ḳābila', 1), ('ἄγγος', 1), ('pnucleu', 1), ('“unjustifi', 1), ('karpovag', 1), ('uzzá', 1), ('ʻuzzāʼ', 1), ('الشراة', 1), ('kikudaifu', 1)]...\n", + "2018-08-31 00:42:32,095 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1610000 (=100.0%) documents\n", + "2018-08-31 00:42:34,261 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:34,311 : INFO : adding document #1610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:38,276 : INFO : discarding 30025 tokens: [('oksal', 1), ('pekmezoglu', 1), ('segrid', 1), ('punktperspekt', 1), ('borderstrik', 1), ('shayka', 1), ('gandercanada', 1), ('admantha', 1), ('meurik', 1), ('phycholog', 1)]...\n", + "2018-08-31 00:42:38,276 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1620000 (=100.0%) documents\n", + "2018-08-31 00:42:40,366 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:40,413 : INFO : adding document #1620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:44,539 : INFO : discarding 27516 tokens: [('《寒夜》,', 1), ('《寻找理想的少年朋友》,', 1), ('《将军》,', 1), ('《小人小事》,', 1), ('《巴金书信集》,', 1), ('《巴金自传》,', 1), ('《巴金论创作》,', 1), ('《序跋集》,', 1), ('《废园外》,', 1), ('《心里话》,', 1)]...\n", + "2018-08-31 00:42:44,540 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1630000 (=100.0%) documents\n", + "2018-08-31 00:42:46,711 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:46,761 : INFO : adding document #1630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:50,714 : INFO : discarding 23993 tokens: [('superbounc', 1), ('superjump', 1), ('ethom', 1), ('mitointeractom', 1), ('nutriproteom', 1), ('omicum', 1), ('pharmacomicrobiom', 1), ('tomom', 1), ('“comic”', 1), ('“genome”', 1)]...\n", + "2018-08-31 00:42:50,715 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1640000 (=100.0%) documents\n", + "2018-08-31 00:42:52,803 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:52,851 : INFO : adding document #1640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:56,885 : INFO : discarding 29139 tokens: [('kfhpga', 1), ('kfhpma', 1), ('kfhpnw', 1), ('mapmg', 1), ('scpmg', 1), ('tpmg', 1), ('tspmg', 1), ('goissard', 1), ('ride—design', 1), ('sa—wa', 1)]...\n", + "2018-08-31 00:42:56,886 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1650000 (=100.0%) documents\n", + "2018-08-31 00:42:59,049 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:42:59,099 : INFO : adding document #1650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:02,344 : INFO : discarding 21254 tokens: [('beishengzh', 1), ('kuirong', 1), ('mengmao', 1), ('ming–mong', 1), ('nalou', 1), ('shierguan', 1), ('shisi', 1), ('tehgchong', 1), ('tuguan', 1), ('zhangguan', 1)]...\n", + "2018-08-31 00:43:02,344 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1660000 (=100.0%) documents\n", + "2018-08-31 00:43:04,445 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:04,492 : INFO : adding document #1660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:08,459 : INFO : discarding 26825 tokens: [('chakalov', 1), ('dodunekov', 1), ('kenderov', 1), ('“lie', 1), ('geeno', 1), ('mainquin', 1), ('marveni', 1), ('numarx', 1), ('mackbrown', 1), ('texasfootbal', 1)]...\n", + "2018-08-31 00:43:08,459 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1670000 (=100.0%) documents\n", + "2018-08-31 00:43:10,627 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:10,677 : INFO : adding document #1670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:14,031 : INFO : discarding 21103 tokens: [('feisanna', 1), ('blumenverkäuferin', 1), ('werzel', 1), ('homeaccentstodai', 1), ('progressivebusinessmedia', 1), ('brentanobad', 1), ('ellaver', 1), ('ervita', 1), ('jõeküla', 1), ('kuusna', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:43:14,032 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1680000 (=100.0%) documents\n", + "2018-08-31 00:43:16,121 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:16,169 : INFO : adding document #1680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:19,338 : INFO : discarding 17143 tokens: [('platychilu', 1), ('pleurostriatu', 1), ('haddadu', 1), ('chapin—whom', 1), ('with—to', 1), ('pluvicanoru', 1), ('duffal', 1), ('strawbsweb', 1), ('coqui”', 1), ('bergwaldoffens', 1)]...\n", + "2018-08-31 00:43:19,339 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1690000 (=100.0%) documents\n", + "2018-08-31 00:43:21,507 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:21,558 : INFO : adding document #1690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:24,873 : INFO : discarding 16319 tokens: [('feilach', 1), ('gelni', 1), ('lonauer', 1), ('museveri', 1), ('schizophreni', 1), ('ristor', 1), ('antilless', 1), ('addiet', 1), ('anbesit', 1), ('ereberb', 1)]...\n", + "2018-08-31 00:43:24,874 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1700000 (=100.0%) documents\n", + "2018-08-31 00:43:26,963 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:27,010 : INFO : adding document #1700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:30,687 : INFO : discarding 24608 tokens: [('philaharmon', 1), ('belosludov', 1), ('betpak', 1), ('seleviniida', 1), ('bisindo', 1), ('africasan', 1), ('seecon', 1), ('swedensusana', 1), ('unsgab', 1), ('wsscc', 1)]...\n", + "2018-08-31 00:43:30,687 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1710000 (=100.0%) documents\n", + "2018-08-31 00:43:32,851 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:32,902 : INFO : adding document #1710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:36,239 : INFO : discarding 21837 tokens: [('oxyurichthi', 1), ('cylindricep', 1), ('jaarmani', 1), ('–brown', 1), ('chichiawan', 1), ('aadeez', 1), ('hogaya', 1), ('hungami', 1), ('jayantabhai', 1), ('lamhei', 1)]...\n", + "2018-08-31 00:43:36,240 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1720000 (=100.0%) documents\n", + "2018-08-31 00:43:38,334 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:38,381 : INFO : adding document #1720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:42,194 : INFO : discarding 25936 tokens: [('liocypri', 1), ('oiqi', 1), ('santeurenn', 1), ('sampcd', 1), ('booth–clibborn', 1), ('soleath', 1), ('bonazzo', 1), ('albertsonrobert', 1), ('babcockdai', 1), ('blalah', 1)]...\n", + "2018-08-31 00:43:42,195 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1730000 (=100.0%) documents\n", + "2018-08-31 00:43:44,365 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:44,417 : INFO : adding document #1730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:47,774 : INFO : discarding 22878 tokens: [('avalancheapril', 1), ('brownhenrik', 1), ('bruinsapril', 1), ('burrstev', 1), ('calgarymai', 1), ('canadiensapril', 1), ('canadiensdecemb', 1), ('canadiensmai', 1), ('canucksapril', 1), ('canucksmai', 1)]...\n", + "2018-08-31 00:43:47,774 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1740000 (=100.0%) documents\n", + "2018-08-31 00:43:49,867 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:49,915 : INFO : adding document #1740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:53,027 : INFO : discarding 18745 tokens: [('oouè', 1), ('owoé', 1), ('owui', 1), ('trinití', 1), ('caudatoacuminata', 1), ('bangkulu', 1), ('kebongan', 1), ('kotudan', 1), ('labobo', 1), ('timpau', 1)]...\n", + "2018-08-31 00:43:53,027 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1750000 (=100.0%) documents\n", + "2018-08-31 00:43:55,218 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:55,267 : INFO : adding document #1750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:43:59,254 : INFO : discarding 31073 tokens: [('actionsfor', 1), ('else—for', 1), ('grupocn', 1), ('houshanpi', 1), ('jiangzicui', 1), ('taipeida', 1), ('taipeiwanhua', 1), ('taipeixinyi', 1), ('taipeizhongzheng', 1), ('zhonghsan', 1)]...\n", + "2018-08-31 00:43:59,254 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1760000 (=100.0%) documents\n", + "2018-08-31 00:44:01,362 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:01,411 : INFO : adding document #1760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:05,047 : INFO : discarding 22391 tokens: [('allerheiligenberg', 1), ('spielerid', 1), ('spielerportrait', 1), ('seriesno', 1), ('hsht', 1), ('boswtol', 1), ('إنجيل', 1), ('الديـن', 1), ('العشرون', 1), ('محمـد', 1)]...\n", + "2018-08-31 00:44:05,047 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1770000 (=100.0%) documents\n", + "2018-08-31 00:44:07,253 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:07,303 : INFO : adding document #1770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:11,028 : INFO : discarding 26981 tokens: [('conclsuion', 1), ('cpwl', 1), ('cpwt', 1), ('fietj', 1), ('meurk', 1), ('synlait', 1), ('waiainiwaniwa', 1), ('wainiwaniwa', 1), ('alpert’', 1), ('boudin’', 1)]...\n", + "2018-08-31 00:44:11,029 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1780000 (=100.0%) documents\n", + "2018-08-31 00:44:13,161 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:13,209 : INFO : adding document #1780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:17,023 : INFO : discarding 23617 tokens: [('igumnov', 1), ('xiayin', 1), ('epidemiologi', 1), ('infektionsweg', 1), ('intracellulari', 1), ('körperkonstitut', 1), ('lungenheilstätt', 1), ('meningokokken', 1), ('parasitologi', 1), ('pneumokokkenimmunität', 1)]...\n", + "2018-08-31 00:44:17,023 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1790000 (=100.0%) documents\n", + "2018-08-31 00:44:19,213 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:19,262 : INFO : adding document #1790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:23,023 : INFO : discarding 21653 tokens: [('divan”', 1), ('hafez’', 1), ('moayeri', 1), ('chahriq', 1), ('charik', 1), ('čahrīk', 1), ('aavc', 1), ('aavp', 1), ('aavr', 1), ('chumrark', 1)]...\n", + "2018-08-31 00:44:23,024 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1800000 (=100.0%) documents\n", + "2018-08-31 00:44:25,125 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:44:25,173 : INFO : adding document #1800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:29,124 : INFO : discarding 27925 tokens: [('bhajia', 1), ('celantro', 1), ('upvaa', 1), ('hildegun', 1), ('hungn', 1), ('ingjerd', 1), ('voktor', 1), ('øigarden', 1), ('nanoscientist', 1), ('adifor', 1)]...\n", + "2018-08-31 00:44:29,125 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1810000 (=100.0%) documents\n", + "2018-08-31 00:44:31,298 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:31,348 : INFO : adding document #1810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:35,098 : INFO : discarding 24224 tokens: [('pecsovszki', 1), ('peći', 1), ('sigaudi', 1), ('trémintin', 1), ('nzog', 1), ('branchiura', 1), ('allwörden', 1), ('kumminin', 1), ('bruddersford', 1), ('jolliph', 1)]...\n", + "2018-08-31 00:44:35,098 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1820000 (=100.0%) documents\n", + "2018-08-31 00:44:37,193 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:37,242 : INFO : adding document #1820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:41,070 : INFO : discarding 28616 tokens: [('“itzhak', 1), ('brecenio', 1), ('cantun', 1), ('elryn', 1), ('mastovich', 1), ('chernihov', 1), ('hermanivka', 1), ('liubar', 1), ('radzwiłł', 1), ('trylisi', 1)]...\n", + "2018-08-31 00:44:41,071 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1830000 (=100.0%) documents\n", + "2018-08-31 00:44:43,262 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:43,312 : INFO : adding document #1830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:47,221 : INFO : discarding 38513 tokens: [('genechip®', 1), ('mmjggl', 1), ('refinfo', 1), ('gwenyfyr', 1), ('xibaba', 1), ('legrez', 1), ('marpot', 1), ('nzfsa', 1), ('almiranta', 1), ('canonsl', 1)]...\n", + "2018-08-31 00:44:47,221 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1840000 (=100.0%) documents\n", + "2018-08-31 00:44:49,330 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:49,379 : INFO : adding document #1840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:53,179 : INFO : discarding 24873 tokens: [('uglješići', 1), ('tihovići', 1), ('needle”', 1), ('“numbers”', 1), ('“thread', 1), ('renter’', 1), ('aegistrust', 1), ('kigalimemorialcentr', 1), ('theholocaustcentr', 1), ('mogthrasir', 1)]...\n", + "2018-08-31 00:44:53,180 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1850000 (=100.0%) documents\n", + "2018-08-31 00:44:55,354 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:55,405 : INFO : adding document #1850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:44:59,287 : INFO : discarding 24358 tokens: [('ergb', 1), ('berkerol', 1), ('geisshardt', 1), ('fishingnet', 1), ('ukriversguidebook', 1), ('polnocn', 1), ('diaquoi', 1), ('gorrissen', 1), ('ramjiawan', 1), ('deweerd', 1)]...\n", + "2018-08-31 00:44:59,287 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1860000 (=100.0%) documents\n", + "2018-08-31 00:45:01,387 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:01,435 : INFO : adding document #1860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:05,423 : INFO : discarding 28506 tokens: [('gardenofpeacememori', 1), ('antwork', 1), ('biedrzychowic', 1), ('marpinard', 1), ('bożkowic', 1), ('rayco', 1), ('naglepet', 1), ('thomaspet', 1), ('wheregolf', 1), ('andcom', 1)]...\n", + "2018-08-31 00:45:05,425 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1870000 (=100.0%) documents\n", + "2018-08-31 00:45:07,608 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:07,659 : INFO : adding document #1870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:11,603 : INFO : discarding 26634 tokens: [('barhaan', 1), ('behoshi', 1), ('shaarang', 1), ('carncelyn', 1), ('carnelyn', 1), ('glynarthen', 1), ('electricalmodel', 1), ('löcherbach', 1), ('naturalmodel', 1), ('nossenson', 1)]...\n", + "2018-08-31 00:45:11,604 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1880000 (=100.0%) documents\n", + "2018-08-31 00:45:13,706 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:13,754 : INFO : adding document #1880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:17,600 : INFO : discarding 29965 tokens: [('baldasarr', 1), ('astrith', 1), ('baltsan', 1), ('bempéchat', 1), ('nelsova', 1), ('rachmanninov', 1), ('țapu', 1), ('nantmelin', 1), ('cosmoman', 1), ('freezeman', 1)]...\n", + "2018-08-31 00:45:17,601 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1890000 (=100.0%) documents\n", + "2018-08-31 00:45:19,800 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:19,853 : INFO : adding document #1890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:23,596 : INFO : discarding 26882 tokens: [('beairsto', 1), ('panichkul', 1), ('bentincklaan', 1), ('aluprof', 1), ('jinestra', 1), ('karsiyaka', 1), ('minchanka', 1), ('plantinalonga', 1), ('querard', 1), ('samorodok', 1)]...\n", + "2018-08-31 00:45:23,596 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1900000 (=100.0%) documents\n", + "2018-08-31 00:45:25,726 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:25,774 : INFO : adding document #1900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:29,260 : INFO : discarding 22813 tokens: [('canonad', 1), ('rimert', 1), ('laringotom', 1), ('regoretti', 1), ('ssellini', 1), ('dziwadlo', 1), ('gruzach', 1), ('kaukaz', 1), ('krwia', 1), ('parandzi', 1)]...\n", + "2018-08-31 00:45:29,261 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1910000 (=100.0%) documents\n", + "2018-08-31 00:45:31,435 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:31,485 : INFO : adding document #1910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:35,196 : INFO : discarding 34877 tokens: [('brazavil', 1), ('mavunza', 1), ('punza', 1), ('polywanh', 1), ('chilsag’', 1), ('chisag', 1), ('kaialshnath', 1), ('theatrepasta', 1), ('wanvari', 1), ('‘chilsag', 1)]...\n", + "2018-08-31 00:45:35,197 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1920000 (=100.0%) documents\n", + "2018-08-31 00:45:37,296 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:37,345 : INFO : adding document #1920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:41,092 : INFO : discarding 36764 tokens: [('naivar', 1), ('abandonment—first', 1), ('ann—though', 1), ('assignment—to', 1), ('child—h', 1), ('creostu', 1), ('cresostu', 1), ('erected—also', 1), ('felicity—for', 1), ('felicti', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:45:41,093 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1930000 (=100.0%) documents\n", + "2018-08-31 00:45:43,286 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:43,337 : INFO : adding document #1930000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:47,114 : INFO : discarding 30737 tokens: [('thomton', 1), ('kargów', 1), ('nieciesławic', 1), ('rzędów', 1), ('sieczków', 1), ('hydroclem', 1), ('massachset', 1), ('metereau', 1), ('chotel', 1), ('gluzi', 1)]...\n", + "2018-08-31 00:45:47,115 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1940000 (=100.0%) documents\n", + "2018-08-31 00:45:49,208 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:49,257 : INFO : adding document #1940000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:52,989 : INFO : discarding 24267 tokens: [('batss', 1), ('flössin', 1), ('genres—univers', 1), ('genrifi', 1), ('monitr', 1), ('ydz', 1), ('dratchko', 1), ('dhangara', 1), ('formanjam', 1), ('hirdmaniston', 1)]...\n", + "2018-08-31 00:45:52,990 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1950000 (=100.0%) documents\n", + "2018-08-31 00:45:55,167 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:55,218 : INFO : adding document #1950000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:45:58,970 : INFO : discarding 25290 tokens: [('petomain', 1), ('aggertalklinik', 1), ('allwetterzoo', 1), ('architektenteam', 1), ('fachklinikum', 1), ('landesplanung', 1), ('metallberufsschul', 1), ('reingau', 1), ('schülerinternat', 1), ('stadtkern', 1)]...\n", + "2018-08-31 00:45:58,970 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1960000 (=100.0%) documents\n", + "2018-08-31 00:46:01,075 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:01,125 : INFO : adding document #1960000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:04,800 : INFO : discarding 24249 tokens: [('mukaa', 1), ('gondalpara', 1), ('gundala', 1), ('lehrasib', 1), ('بھلو', 1), ('تحریر', 1), ('صداقت', 1), ('گوندل', 1), ('blaguard', 1), ('apostoloski', 1)]...\n", + "2018-08-31 00:46:04,801 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1970000 (=100.0%) documents\n", + "2018-08-31 00:46:06,977 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:07,029 : INFO : adding document #1970000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:10,757 : INFO : discarding 22305 tokens: [('paraysien', 1), ('prunaysien', 1), ('pirlotchet', 1), ('pussein', 1), ('relló', 1), ('quincéen', 1), ('richarvilloi', 1), ('roinvilloi', 1), ('roinvilliérain', 1), ('saclasien', 1)]...\n", + "2018-08-31 00:46:10,758 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1980000 (=100.0%) documents\n", + "2018-08-31 00:46:12,868 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:12,917 : INFO : adding document #1980000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:16,512 : INFO : discarding 20732 tokens: [('shoester', 1), ('branzig', 1), ('krysz', 1), ('omlett', 1), ('wfyv', 1), ('wybb', 1), ('wieniawski’', 1), ('zendo—join', 1), ('hagemeij', 1), ('o′neil', 1)]...\n", + "2018-08-31 00:46:16,513 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1990000 (=100.0%) documents\n", + "2018-08-31 00:46:18,689 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:18,740 : INFO : adding document #1990000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:22,340 : INFO : discarding 23220 tokens: [('volckhausen', 1), ('blundr', 1), ('cdcdcz', 1), ('kedakpenarik', 1), ('zseez', 1), ('bybee–howel', 1), ('signbybe', 1), ('braylin', 1), ('quartterback', 1), ('spydermann', 1)]...\n", + "2018-08-31 00:46:22,341 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2000000 (=100.0%) documents\n", + "2018-08-31 00:46:24,449 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:24,497 : INFO : adding document #2000000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:28,310 : INFO : discarding 25540 tokens: [('aachar', 1), ('aatisha', 1), ('anuj’', 1), ('bakuben', 1), ('kanchan’', 1), ('shakuben', 1), ('cocomac', 1), ('code—to', 1), ('wedeen', 1), ('doushit', 1)]...\n", + "2018-08-31 00:46:28,310 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2010000 (=100.0%) documents\n", + "2018-08-31 00:46:30,486 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:30,538 : INFO : adding document #2010000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:34,381 : INFO : discarding 25460 tokens: [('collegeknoxlawr', 1), ('hoosieroon', 1), ('normal–pittsburg', 1), ('pondelik', 1), ('mardoni', 1), ('quirri', 1), ('gârbava', 1), ('mtk’', 1), ('swallower’', 1), ('calían', 1)]...\n", + "2018-08-31 00:46:34,382 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2020000 (=100.0%) documents\n", + "2018-08-31 00:46:36,489 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:36,537 : INFO : adding document #2020000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:40,456 : INFO : discarding 23292 tokens: [('nyfw', 1), ('latiflora', 1), ('painful', 1), ('abolencia', 1), ('alaalang', 1), ('amaliang', 1), ('bakasyonista', 1), ('boksingera', 1), ('bumunot', 1), ('clarizza', 1)]...\n", + "2018-08-31 00:46:40,456 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2030000 (=100.0%) documents\n", + "2018-08-31 00:46:42,648 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:42,698 : INFO : adding document #2030000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:46,486 : INFO : discarding 22417 tokens: [('anthí', 1), ('artakian', 1), ('chantava', 1), ('dioti', 1), ('emmanouilid', 1), ('genitsaridi', 1), ('giota', 1), ('imoco', 1), ('kiosi', 1), ('lamprini', 1)]...\n", + "2018-08-31 00:46:46,486 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2040000 (=100.0%) documents\n", + "2018-08-31 00:46:48,598 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:48,647 : INFO : adding document #2040000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:52,502 : INFO : discarding 23943 tokens: [('akentyev', 1), ('alimchev', 1), ('antoshchuk', 1), ('bludnov', 1), ('bobreshov', 1), ('buchnev', 1), ('delkin', 1), ('dobrolovich', 1), ('dolzhenko', 1), ('drobyshev', 1)]...\n", + "2018-08-31 00:46:52,503 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2050000 (=100.0%) documents\n", + "2018-08-31 00:46:54,686 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:46:54,737 : INFO : adding document #2050000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:46:58,502 : INFO : discarding 28306 tokens: [('askimenokonson', 1), ('naseongo', 1), ('nassanongo', 1), ('nassiongo', 1), ('nassiungo', 1), ('engen’', 1), ('missoula’', 1), ('canadiantheatr', 1), ('carmela’', 1), ('cibpa', 1)]...\n", + "2018-08-31 00:46:58,503 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2060000 (=100.0%) documents\n", + "2018-08-31 00:47:00,600 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:00,649 : INFO : adding document #2060000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:04,558 : INFO : discarding 26218 tokens: [('faguo', 1), ('jialü', 1), ('许明龙', 1), ('黃嘉略与早期法囯汉学', 1), ('cotyttia', 1), ('cotytto', 1), ('hoshal', 1), ('mulelland', 1), ('arsv', 1), ('babáková', 1)]...\n", + "2018-08-31 00:47:04,558 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2070000 (=100.0%) documents\n", + "2018-08-31 00:47:06,738 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:06,789 : INFO : adding document #2070000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:10,610 : INFO : discarding 25999 tokens: [('eisenoff', 1), ('hokoah', 1), ('enviasag', 1), ('apouh', 1), ('bagy', 1), ('snyen', 1), ('taaren', 1), ('edicao', 1), ('espeçi', 1), ('infosecur', 1)]...\n", + "2018-08-31 00:47:10,611 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2080000 (=100.0%) documents\n", + "2018-08-31 00:47:12,718 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:12,767 : INFO : adding document #2080000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:16,625 : INFO : discarding 24373 tokens: [('dwimmercrafti', 1), ('esperebl', 1), ('hamsterspeak', 1), ('ohrer', 1), ('voxhumana', 1), ('werewaffl', 1), ('ypsiliform', 1), ('zenzizen', 1), ('aisro', 1), ('albesti', 1)]...\n", + "2018-08-31 00:47:16,626 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2090000 (=100.0%) documents\n", + "2018-08-31 00:47:18,816 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:18,867 : INFO : adding document #2090000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:22,724 : INFO : discarding 24403 tokens: [('graphtech', 1), ('midiax', 1), ('midifli', 1), ('sustainiac', 1), ('tonezon', 1), ('turboton', 1), ('zatti', 1), ('cienciasbiomedica', 1), ('espaçofísicoufu', 1), ('laboratoriosmicroimunoufu', 1)]...\n", + "2018-08-31 00:47:22,724 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2100000 (=100.0%) documents\n", + "2018-08-31 00:47:24,846 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:24,895 : INFO : adding document #2100000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:28,730 : INFO : discarding 24660 tokens: [('bengalspeakseatingonthestreet', 1), ('bengalspeakslastpictur', 1), ('bengalspeaksstarvationfatalitybengalfamin', 1), ('cookroomfaminereliefmadra', 1), ('famineinbengalgrainboatsongang', 1), ('faminereliefahmedabad', 1), ('faminesmapofindia', 1), ('fiveemaciatedchildr', 1), ('graphicfaminenativesbuyinggrain', 1), ('illustratedlondonnewsfamineinindiacov', 1)]...\n", + "2018-08-31 00:47:28,731 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2110000 (=100.0%) documents\n", + "2018-08-31 00:47:30,908 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:30,960 : INFO : adding document #2110000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:34,783 : INFO : discarding 23822 tokens: [('tinei', 1), ('cellut', 1), ('cellutions™', 1), ('immunocolumn', 1), ('lympholyt', 1), ('chiguer', 1), ('jaoid', 1), ('海城市', 1), ('海城街道', 1), ('海城镇', 1)]...\n", + "2018-08-31 00:47:34,783 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2120000 (=100.0%) documents\n", + "2018-08-31 00:47:36,910 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:36,963 : INFO : adding document #2120000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:40,807 : INFO : discarding 22889 tokens: [('duskwort', 1), ('ledroptha', 1), ('pencilla', 1), ('sees—henc', 1), ('sudyka', 1), ('thernbaakagen', 1), ('kämp', 1), ('bayonet’', 1), ('bugle’', 1), ('bremen’', 1)]...\n", + "2018-08-31 00:47:40,807 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2130000 (=100.0%) documents\n", + "2018-08-31 00:47:42,991 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:43,043 : INFO : adding document #2130000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:46,878 : INFO : discarding 25575 tokens: [('medipress', 1), ('amphiceru', 1), ('mardigni', 1), ('teissèdr', 1), ('manmei', 1), ('刘海滨', 1), ('计划调配处', 1), ('fnick', 1), ('kerbridg', 1), ('edinboronow', 1)]...\n", + "2018-08-31 00:47:46,879 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2140000 (=100.0%) documents\n", + "2018-08-31 00:47:48,995 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:49,045 : INFO : adding document #2140000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:52,716 : INFO : discarding 22678 tokens: [('ysleta–zaragoza', 1), ('scorai', 1), ('stakeholder”', 1), ('“marrakech', 1), ('antunovich', 1), ('golner', 1), ('jimmieson', 1), ('matekino', 1), ('mcrichi', 1), ('phebi', 1)]...\n", + "2018-08-31 00:47:52,717 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2150000 (=100.0%) documents\n", + "2018-08-31 00:47:54,909 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:54,961 : INFO : adding document #2150000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:47:58,629 : INFO : discarding 23455 tokens: [('rachcin', 1), ('stage–', 1), ('totalpx', 1), ('lubianki', 1), ('bisschoffsheim', 1), ('holtkott', 1), ('wildno', 1), ('grochowalsk', 1), ('kochoń', 1), ('kamejima', 1)]...\n", + "2018-08-31 00:47:58,630 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2160000 (=100.0%) documents\n", + "2018-08-31 00:48:00,735 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:00,784 : INFO : adding document #2160000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:04,453 : INFO : discarding 23921 tokens: [('geetapriya', 1), ('harathi', 1), ('hasiru', 1), ('hengasarinda', 1), ('hennaru', 1), ('hudga', 1), ('izzatdaar', 1), ('jokali', 1), ('kalisina', 1), ('kanoonu', 1)]...\n", + "2018-08-31 00:48:04,454 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2170000 (=100.0%) documents\n", + "2018-08-31 00:48:06,637 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:06,689 : INFO : adding document #2170000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:10,291 : INFO : discarding 21483 tokens: [('ondraszek', 1), ('wtrt', 1), ('analyn', 1), ('dinolan', 1), ('nebato', 1), ('salinggawi', 1), ('turqueza', 1), ('koutayeb', 1), ('lubnāniya', 1), ('mithliyīn', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:48:10,292 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2180000 (=100.0%) documents\n", + "2018-08-31 00:48:12,414 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:12,462 : INFO : adding document #2180000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:16,174 : INFO : discarding 25352 tokens: [('miętki', 1), ('modryniu', 1), ('prehorył', 1), ('rulikówka', 1), ('szychowic', 1), ('korytyna', 1), ('mołodiatycz', 1), ('nieledew', 1), ('aurelin', 1), ('drohiczani', 1)]...\n", + "2018-08-31 00:48:16,174 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2190000 (=100.0%) documents\n", + "2018-08-31 00:48:18,357 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:18,409 : INFO : adding document #2190000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:21,672 : INFO : discarding 21656 tokens: [('registration—convict', 1), ('chesha', 1), ('hanumadvijaya', 1), ('kalaprapoorna', 1), ('kaluvai', 1), ('kavyathirtha', 1), ('khandam', 1), ('krishnavatara', 1), ('lalitopakhyanam', 1), ('nannaparya', 1)]...\n", + "2018-08-31 00:48:21,672 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2200000 (=100.0%) documents\n", + "2018-08-31 00:48:23,790 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:23,839 : INFO : adding document #2200000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:27,493 : INFO : discarding 20322 tokens: [('marianówek', 1), ('nafin', 1), ('khushaishah', 1), ('chinacustomtour', 1), ('chiqik', 1), ('thebeijingguid', 1), ('iscout', 1), ('microobserv', 1), ('modulevehicl', 1), ('omnisens', 1)]...\n", + "2018-08-31 00:48:27,493 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2210000 (=100.0%) documents\n", + "2018-08-31 00:48:29,668 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:29,720 : INFO : adding document #2210000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:33,220 : INFO : discarding 25017 tokens: [('kettaneh', 1), ('buffelsdrift', 1), ('derdepoort', 1), ('downbern', 1), ('kameeldrift', 1), ('kameelfontein', 1), ('paardefontein', 1), ('pumulani', 1), ('rynou', 1), ('wallmanstahl', 1)]...\n", + "2018-08-31 00:48:33,221 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2220000 (=100.0%) documents\n", + "2018-08-31 00:48:35,335 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:35,385 : INFO : adding document #2220000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:39,334 : INFO : discarding 27535 tokens: [('american—th', 1), ('buscani', 1), ('temachtia', 1), ('upground', 1), ('yaroslavksi', 1), ('attakora', 1), ('nikfar', 1), ('edwini', 1), ('eiysa', 1), ('fetsch', 1)]...\n", + "2018-08-31 00:48:39,335 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2230000 (=100.0%) documents\n", + "2018-08-31 00:48:41,536 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:41,588 : INFO : adding document #2230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:44,510 : INFO : discarding 14758 tokens: [('vanesio', 1), ('dorurtabedul', 1), ('duchelreng', 1), ('kelulul', 1), ('kerruul', 1), ('klebkellel', 1), ('klisicham', 1), ('klisichel', 1), ('klisiich', 1), ('klungiolam', 1)]...\n", + "2018-08-31 00:48:44,511 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2240000 (=100.0%) documents\n", + "2018-08-31 00:48:46,623 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:46,672 : INFO : adding document #2240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:50,214 : INFO : discarding 23681 tokens: [('rongelop', 1), ('ryua', 1), ('shojen', 1), ('simusu', 1), ('torpeod', 1), ('zuikauku', 1), ('kelekhsashvili', 1), ('mdzleve', 1), ('gestatoriam', 1), ('hossiem', 1)]...\n", + "2018-08-31 00:48:50,214 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2250000 (=100.0%) documents\n", + "2018-08-31 00:48:52,395 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:52,447 : INFO : adding document #2250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:56,492 : INFO : discarding 26563 tokens: [('marxtoymuseum', 1), ('botany', 1), ('offspring—a', 1), ('callwork', 1), ('faulduo', 1), ('neoglyph', 1), ('attainment—effect', 1), ('attainment—profession', 1), ('brazil—had', 1), ('facilitated—therefor', 1)]...\n", + "2018-08-31 00:48:56,493 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2260000 (=100.0%) documents\n", + "2018-08-31 00:48:58,602 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:48:58,653 : INFO : adding document #2260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:02,770 : INFO : discarding 33506 tokens: [('posintuwu', 1), ('wirtschaftsanthropologi', 1), ('deadtran', 1), ('burdundi', 1), ('andther', 1), ('belastningsregistret', 1), ('bundeszentralregist', 1), ('coaep', 1), ('dcrem', 1), ('dgaj', 1)]...\n", + "2018-08-31 00:49:02,771 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2270000 (=100.0%) documents\n", + "2018-08-31 00:49:04,970 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:05,025 : INFO : adding document #2270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:08,705 : INFO : discarding 27795 tokens: [('wzcv', 1), ('xcmv', 1), ('yatv', 1), ('ˌmɒnəˌnɛgəviː’rɑ', 1), ('μóνος', 1), ('asuntojen', 1), ('comofi', 1), ('eräiden', 1), ('harjoittavien', 1), ('kiinteistörahastolaki', 1)]...\n", + "2018-08-31 00:49:08,705 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2280000 (=100.0%) documents\n", + "2018-08-31 00:49:10,821 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:10,872 : INFO : adding document #2280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:14,778 : INFO : discarding 27899 tokens: [('sunjia', 1), ('sūnjiā', 1), ('wǔqiáo', 1), ('xiongjia', 1), ('xióngjiā', 1), ('xiǎozhōu', 1), ('zhonggul', 1), ('zhoujiaba', 1), ('zhùshān', 1), ('zhōnggǔlóu', 1)]...\n", + "2018-08-31 00:49:14,779 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2290000 (=100.0%) documents\n", + "2018-08-31 00:49:16,957 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:17,010 : INFO : adding document #2290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:20,756 : INFO : discarding 25680 tokens: [('colyma', 1), ('conflictana', 1), ('evanidana', 1), ('ferrugininotata', 1), ('fractivittana', 1), ('griseicoma', 1), ('heliaspi', 1), ('improvisana', 1), ('jecorana', 1), ('lafauryana', 1)]...\n", + "2018-08-31 00:49:20,757 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2300000 (=100.0%) documents\n", + "2018-08-31 00:49:22,874 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:49:22,923 : INFO : adding document #2300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:26,112 : INFO : discarding 18320 tokens: [('合欢皮', 1), ('大血藤', 1), ('天竺黄', 1), ('宽根藤', 1), ('山葡萄', 1), ('山麻黄', 1), ('川木通', 1), ('川贝母', 1), ('常春藤', 1), ('平贝母', 1)]...\n", + "2018-08-31 00:49:26,113 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2310000 (=100.0%) documents\n", + "2018-08-31 00:49:28,295 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:28,347 : INFO : adding document #2310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:31,867 : INFO : discarding 23407 tokens: [('jhanghuà', 1), ('jhúběi', 1), ('kung¹', 1), ('lan²', 1), ('lien²', 1), ('lin²', 1), ('liu⁴', 1), ('li⁴', 1), ('ma³', 1), ('miao²', 1)]...\n", + "2018-08-31 00:49:31,868 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2320000 (=100.0%) documents\n", + "2018-08-31 00:49:33,994 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:34,044 : INFO : adding document #2320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:37,878 : INFO : discarding 23425 tokens: [('bouyerden', 1), ('l′indiffér', 1), ('l′intellig', 1), ('rhineburg', 1), ('sikkak', 1), ('tijini', 1), ('zouatna', 1), ('trekpuls', 1), ('lesion—includ', 1), ('minimum—du', 1)]...\n", + "2018-08-31 00:49:37,878 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2330000 (=100.0%) documents\n", + "2018-08-31 00:49:40,063 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:40,115 : INFO : adding document #2330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:43,860 : INFO : discarding 27145 tokens: [('saphah', 1), ('whaga', 1), ('turumoan', 1), ('光復鄉', 1), ('卓溪鄉', 1), ('壽豐鄉', 1), ('富里鄉', 1), ('玉里鎮', 1), ('瑞穗鄉', 1), ('秀林鄉', 1)]...\n", + "2018-08-31 00:49:43,861 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2340000 (=100.0%) documents\n", + "2018-08-31 00:49:45,977 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:46,028 : INFO : adding document #2340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:49,767 : INFO : discarding 23579 tokens: [('victorville†', 1), ('waseca††', 1), ('goewai', 1), ('sentences—wer', 1), ('singchair', 1), ('watertorturesings', 1), ('albimaculosu', 1), ('daibod', 1), ('अण्ड', 1), ('ब्रह्माण्ड', 1)]...\n", + "2018-08-31 00:49:49,768 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2350000 (=100.0%) documents\n", + "2018-08-31 00:49:51,960 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:52,014 : INFO : adding document #2350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:55,867 : INFO : discarding 26231 tokens: [('капитализъм', 1), ('карчев', 1), ('комуналният', 1), ('кръстева', 1), ('лазарова', 1), ('нацева', 1), ('полустолетие', 1), ('посетен', 1), ('прозореца', 1), ('розалина', 1)]...\n", + "2018-08-31 00:49:55,868 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2360000 (=100.0%) documents\n", + "2018-08-31 00:49:58,005 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:49:58,056 : INFO : adding document #2360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:01,815 : INFO : discarding 25513 tokens: [('gyulzadyan', 1), ('habousi', 1), ('kotoyan', 1), ('qamancha', 1), ('shahmuradian', 1), ('spitakci', 1), ('stver', 1), ('tgheq', 1), ('tonikyan', 1), ('vanarmenya', 1)]...\n", + "2018-08-31 00:50:01,816 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2370000 (=100.0%) documents\n", + "2018-08-31 00:50:04,011 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:04,063 : INFO : adding document #2370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:07,822 : INFO : discarding 28948 tokens: [('remain—unknown', 1), ('counterpoetri', 1), ('benneil', 1), ('thekitchen', 1), ('autothanatograph', 1), ('kinerot', 1), ('rauffenbart', 1), ('wojnarowicz—janin', 1), ('clarena', 1), ('aspect—their', 1)]...\n", + "2018-08-31 00:50:07,823 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2380000 (=100.0%) documents\n", + "2018-08-31 00:50:09,951 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:10,001 : INFO : adding document #2380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:13,918 : INFO : discarding 25436 tokens: [('ඊලවර්', 1), ('ඊළාම්', 1), ('ඔක්කොම', 1), ('කච්චි', 1), ('කඳුරට', 1), ('කම්කරැ', 1), ('කම්කරු', 1), ('කුට්ටනි', 1), ('කොංග්\\u200dරසය', 1), ('කොංග්\\u200dරස්', 1)]...\n", + "2018-08-31 00:50:13,919 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2390000 (=100.0%) documents\n", + "2018-08-31 00:50:16,112 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:16,165 : INFO : adding document #2390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:19,542 : INFO : discarding 19016 tokens: [('episodesstar', 1), ('gabebarri', 1), ('jeromeralph', 1), ('mannata', 1), ('matuwir', 1), ('pennphil', 1), ('price—even', 1), ('smithken', 1), ('thrallkil', 1), ('trypanosoman', 1)]...\n", + "2018-08-31 00:50:19,542 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2400000 (=100.0%) documents\n", + "2018-08-31 00:50:21,663 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:21,713 : INFO : adding document #2400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:25,454 : INFO : discarding 23312 tokens: [('hidrobiologia', 1), ('hitzilopochco', 1), ('huehua', 1), ('huitzilopohco', 1), ('huixachtécatl', 1), ('iztapalapa”', 1), ('meyehualco', 1), ('nahuyotl', 1), ('nauhyotl', 1), ('nonoalcatl', 1)]...\n", + "2018-08-31 00:50:25,455 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2410000 (=100.0%) documents\n", + "2018-08-31 00:50:27,633 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:27,686 : INFO : adding document #2410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:31,336 : INFO : discarding 23981 tokens: [('dieksanderkoog', 1), ('fedderwardergroden', 1), ('herrenkoog', 1), ('innengroden', 1), ('kleiseerkoog', 1), ('koogshaven', 1), ('kōg', 1), ('morsumkoog', 1), ('neuengroden', 1), ('neuerkoog', 1)]...\n", + "2018-08-31 00:50:31,336 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2420000 (=100.0%) documents\n", + "2018-08-31 00:50:33,454 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:33,505 : INFO : adding document #2420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:37,406 : INFO : discarding 28769 tokens: [('lazutkina', 1), ('oskorbin', 1), ('osmolkina', 1), ('pykhachov', 1), ('shirinkina', 1), ('yalinich', 1), ('zaleyev', 1), ('ajakan', 1), ('contemptari', 1), ('trancedream', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:50:37,407 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2430000 (=100.0%) documents\n", + "2018-08-31 00:50:39,593 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:39,646 : INFO : adding document #2430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:43,436 : INFO : discarding 26802 tokens: [('bayesloop', 1), ('cgarch', 1), ('cowpertwait', 1), ('figarch', 1), ('mann–kendal', 1), ('timeviz', 1), ('北条時頼', 1), ('yāˈqub', 1), ('إِبرَٰهِم', 1), ('إِبْنُ', 1)]...\n", + "2018-08-31 00:50:43,437 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2440000 (=100.0%) documents\n", + "2018-08-31 00:50:45,568 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:45,618 : INFO : adding document #2440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:49,162 : INFO : discarding 22903 tokens: [('falkheim', 1), ('feedback–feedforward', 1), ('individuals—draw', 1), ('product–a', 1), ('society—part', 1), ('janinepommyvega', 1), ('bottermelk', 1), ('funalogu', 1), ('joppiemuffl', 1), ('plasticacid', 1)]...\n", + "2018-08-31 00:50:49,163 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2450000 (=100.0%) documents\n", + "2018-08-31 00:50:51,345 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:51,397 : INFO : adding document #2450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:54,818 : INFO : discarding 26477 tokens: [('ayusuk', 1), ('buasi', 1), ('siripongvutikorn', 1), ('sunanta', 1), ('thummaratwasik', 1), ('usawakesmane', 1), ('ຕົ້ມຂ່າໄກ່', 1), ('xvi—a', 1), ('baronston', 1), ('boswell—a', 1)]...\n", + "2018-08-31 00:50:54,819 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2460000 (=100.0%) documents\n", + "2018-08-31 00:50:56,948 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:50:56,998 : INFO : adding document #2460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:00,466 : INFO : discarding 20272 tokens: [('·beverli', 1), ('·dalla', 1), ('·houston', 1), ('chistovodnoy', 1), ('horoshevski', 1), ('etsip', 1), ('kangulohi', 1), ('nyango', 1), ('ontananga', 1), ('onyuulay', 1)]...\n", + "2018-08-31 00:51:00,466 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2470000 (=100.0%) documents\n", + "2018-08-31 00:51:02,651 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:02,705 : INFO : adding document #2470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:05,641 : INFO : discarding 15776 tokens: [('karschau', 1), ('kremitten', 1), ('krzemiti', 1), ('łankiejmi', 1), ('landkeim', 1), ('łękajni', 1), ('marłuti', 1), ('nunkajmi', 1), ('waldried', 1), ('sandenberg', 1)]...\n", + "2018-08-31 00:51:05,641 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2480000 (=100.0%) documents\n", + "2018-08-31 00:51:07,770 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:07,819 : INFO : adding document #2480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:11,370 : INFO : discarding 23033 tokens: [('qrsag', 1), ('ruscinian', 1), ('aesp', 1), ('articfici', 1), ('bymart', 1), ('bymedia', 1), ('byoir’', 1), ('nowldef', 1), ('nowldef’', 1), ('speechlin', 1)]...\n", + "2018-08-31 00:51:11,371 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2490000 (=100.0%) documents\n", + "2018-08-31 00:51:13,566 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:13,618 : INFO : adding document #2490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:17,287 : INFO : discarding 28014 tokens: [('bullshitin', 1), ('calmdown', 1), ('fakeboyz', 1), ('fakegirlz', 1), ('akuana', 1), ('clusterwink', 1), ('cummingian', 1), ('imperforata', 1), ('gosserand', 1), ('argalista', 1)]...\n", + "2018-08-31 00:51:17,288 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2500000 (=100.0%) documents\n", + "2018-08-31 00:51:19,439 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:19,490 : INFO : adding document #2500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:23,117 : INFO : discarding 35707 tokens: [('простый', 1), ('“belorussian', 1), ('“plurilingu', 1), ('cyberspark', 1), ('intellinx', 1), ('ma’of', 1), ('multinationals’', 1), ('telecommunicationsand', 1), ('tzatam', 1), ('usa–israel', 1)]...\n", + "2018-08-31 00:51:23,117 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2510000 (=100.0%) documents\n", + "2018-08-31 00:51:25,318 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:25,372 : INFO : adding document #2510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:29,255 : INFO : discarding 28285 tokens: [('cristom', 1), ('maddow’', 1), ('marmount', 1), ('strengthsfind', 1), ('abadam', 1), ('damboa', 1), ('gubio', 1), ('guzamala', 1), ('magumeri', 1), ('maidgurui', 1)]...\n", + "2018-08-31 00:51:29,256 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2520000 (=100.0%) documents\n", + "2018-08-31 00:51:31,384 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:31,434 : INFO : adding document #2520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:35,130 : INFO : discarding 27091 tokens: [('duhautlondel', 1), ('dulondel', 1), ('huau', 1), ('laynai', 1), ('pekünlü', 1), ('force\\u200e', 1), ('macmurrari', 1), ('bydgoszczpolonia', 1), ('lesznoalfr', 1), ('manchestern', 1)]...\n", + "2018-08-31 00:51:35,130 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2530000 (=100.0%) documents\n", + "2018-08-31 00:51:37,309 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:37,362 : INFO : adding document #2530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:41,123 : INFO : discarding 26359 tokens: [('‘yep', 1), ('jordanxl', 1), ('austrolimborina', 1), ('badioatra', 1), ('furvella', 1), ('fuscosora', 1), ('globulispora', 1), ('gyrizan', 1), ('gyromuscosa', 1), ('limborina', 1)]...\n", + "2018-08-31 00:51:41,124 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2540000 (=100.0%) documents\n", + "2018-08-31 00:51:43,247 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:43,297 : INFO : adding document #2540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:47,141 : INFO : discarding 26533 tokens: [('fortfreedom', 1), ('zilkowski', 1), ('arch—a', 1), ('czepiel', 1), ('jock”', 1), ('‘jocks’', 1), ('glamorgan’', 1), ('guardiancardiff', 1), ('autei', 1), ('famousvillain', 1)]...\n", + "2018-08-31 00:51:47,142 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2550000 (=100.0%) documents\n", + "2018-08-31 00:51:49,355 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:51:49,408 : INFO : adding document #2550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:53,215 : INFO : discarding 24108 tokens: [('bonisson', 1), ('cibb', 1), ('piuri', 1), ('tzanak', 1), ('ogorek', 1), ('estirao', 1), ('dammitt', 1), ('dalimil´', 1), ('candlelightrecord', 1), ('entrancemperium', 1)]...\n", + "2018-08-31 00:51:53,216 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2560000 (=100.0%) documents\n", + "2018-08-31 00:51:55,345 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:55,399 : INFO : adding document #2560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:51:59,183 : INFO : discarding 23226 tokens: [('macilwraith', 1), ('maclink', 1), ('loueckhot', 1), ('wthout', 1), ('managlor', 1), ('pointwith', 1), ('bobmark', 1), ('mtdx', 1), ('fun…it’', 1), ('madblud', 1)]...\n", + "2018-08-31 00:51:59,183 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2570000 (=100.0%) documents\n", + "2018-08-31 00:52:01,385 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:01,437 : INFO : adding document #2570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:05,327 : INFO : discarding 23817 tokens: [('chyu', 1), ('duī', 1), ('guāngnián', 1), ('gōngchǐ', 1), ('gōngfēn', 1), ('hǎilǐ', 1), ('jiālùn', 1), ('kǔn', 1), ('miǎochājù', 1), ('pāo', 1)]...\n", + "2018-08-31 00:52:05,328 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2580000 (=100.0%) documents\n", + "2018-08-31 00:52:07,453 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:07,503 : INFO : adding document #2580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:11,222 : INFO : discarding 24167 tokens: [('anbuthiru', 1), ('kalvirayanpettai', 1), ('kandithampattu', 1), ('kangeyampatti', 1), ('bizup', 1), ('thiruvar', 1), ('kollangarai', 1), ('abdualla', 1), ('awwp', 1), ('sa’ud', 1)]...\n", + "2018-08-31 00:52:11,223 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2590000 (=100.0%) documents\n", + "2018-08-31 00:52:13,423 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:13,477 : INFO : adding document #2590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:17,466 : INFO : discarding 31789 tokens: [('galleghan', 1), ('gemas–tampin', 1), ('nohon', 1), ('proportion—an', 1), ('tajikam', 1), ('zohiri', 1), ('reemu', 1), ('plichta', 1), ('resdesron', 1), ('barganza', 1)]...\n", + "2018-08-31 00:52:17,467 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2600000 (=100.0%) documents\n", + "2018-08-31 00:52:19,614 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:19,664 : INFO : adding document #2600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:23,592 : INFO : discarding 28102 tokens: [('alchemytodai', 1), ('candidd', 1), ('“tehran', 1), ('makofo', 1), ('raybould’', 1), ('russ’', 1), ('all—retain', 1), ('bill—without', 1), ('insurance—even', 1), ('kennedy–griffith', 1)]...\n", + "2018-08-31 00:52:23,592 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2610000 (=100.0%) documents\n", + "2018-08-31 00:52:25,792 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:25,845 : INFO : adding document #2610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:29,371 : INFO : discarding 22928 tokens: [('mattinal', 1), ('adzé', 1), ('ngoubili', 1), ('ongouori', 1), ('unihopp', 1), ('dadless', 1), ('arenediazonium', 1), ('ferrocenepalladium', 1), ('electrouniqu', 1), ('ozeana', 1)]...\n", + "2018-08-31 00:52:29,372 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2620000 (=100.0%) documents\n", + "2018-08-31 00:52:31,493 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:31,543 : INFO : adding document #2620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:35,303 : INFO : discarding 42342 tokens: [('glavspetsmash', 1), ('glavspetsmontazh', 1), ('lengiprostroi', 1), ('eflyer', 1), ('historicssit', 1), ('azmurai', 1), ('hahsen', 1), ('durów', 1), ('lakiński', 1), ('prostyni', 1)]...\n", + "2018-08-31 00:52:35,303 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2630000 (=100.0%) documents\n", + "2018-08-31 00:52:37,502 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:37,557 : INFO : adding document #2630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:41,346 : INFO : discarding 27529 tokens: [('atrichantha', 1), ('bryomorph', 1), ('dolichothrix', 1), ('plumelik', 1), ('calotesta', 1), ('denekia', 1), ('disparago', 1), ('laxifolia', 1), ('trampwe', 1), ('galeomma', 1)]...\n", + "2018-08-31 00:52:41,347 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2640000 (=100.0%) documents\n", + "2018-08-31 00:52:43,495 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:43,546 : INFO : adding document #2640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:47,442 : INFO : discarding 28981 tokens: [('biswaroop', 1), ('reliablepl', 1), ('smallbiz', 1), ('smartceo', 1), ('thetax', 1), ('wjactv', 1), ('tucaro', 1), ('otherword', 1), ('register‘', 1), ('diffeormorph', 1)]...\n", + "2018-08-31 00:52:47,443 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2650000 (=100.0%) documents\n", + "2018-08-31 00:52:49,641 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:49,695 : INFO : adding document #2650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:53,355 : INFO : discarding 33425 tokens: [('venture—h', 1), ('wildgrass', 1), ('‘absurdli', 1), ('duopark.f', 1), ('igosso', 1), ('nakashinden', 1), ('ragend', 1), ('verdelazzo', 1), ('colonies—loos', 1), ('jhtwachtmanbranchvil', 1)]...\n", + "2018-08-31 00:52:53,356 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2660000 (=100.0%) documents\n", + "2018-08-31 00:52:55,480 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:55,531 : INFO : adding document #2660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:52:59,263 : INFO : discarding 28380 tokens: [('cibotii', 1), ('epimedii', 1), ('spatholobi', 1), ('spur”', 1), ('“hyperplast', 1), ('淫羊藿', 1), ('莱菔子', 1), ('骨碎补', 1), ('鸡血藤', 1), ('schnock', 1)]...\n", + "2018-08-31 00:52:59,264 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2670000 (=100.0%) documents\n", + "2018-08-31 00:53:01,465 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:01,519 : INFO : adding document #2670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:04,972 : INFO : discarding 26493 tokens: [('aceratheriini', 1), ('aceratherini', 1), ('acerorhinu', 1), ('zernowi', 1), ('bot’', 1), ('bridgeig', 1), ('deleec', 1), ('duffbot', 1), ('fatania', 1), ('grusman', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:53:04,972 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2680000 (=100.0%) documents\n", + "2018-08-31 00:53:07,107 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:07,159 : INFO : adding document #2680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:11,209 : INFO : discarding 28087 tokens: [('geil’', 1), ('akweathercam', 1), ('acquaverd', 1), ('doria—wher', 1), ('fassolo', 1), ('genoa–milan', 1), ('genoa–rom', 1), ('genoa–turin', 1), ('mazzucchetti', 1), ('montegalletto', 1)]...\n", + "2018-08-31 00:53:11,210 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2690000 (=100.0%) documents\n", + "2018-08-31 00:53:13,396 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:13,449 : INFO : adding document #2690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:17,361 : INFO : discarding 27940 tokens: [('hydrostratigraphi', 1), ('mchess', 1), ('knipex', 1), ('musäum', 1), ('ukranenland', 1), ('flankmen', 1), ('ruthermor', 1), ('marcourai', 1), ('skytrooop', 1), ('adenizia', 1)]...\n", + "2018-08-31 00:53:17,362 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2700000 (=100.0%) documents\n", + "2018-08-31 00:53:19,503 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:19,554 : INFO : adding document #2700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:23,424 : INFO : discarding 28020 tokens: [('graphentheori', 1), ('übungsaufgaben', 1), ('gaidano', 1), ('somerston', 1), ('butalehja', 1), ('butalja', 1), ('cerinah', 1), ('hyuha', 1), ('nebanda', 1), ('beingth', 1)]...\n", + "2018-08-31 00:53:23,425 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2710000 (=100.0%) documents\n", + "2018-08-31 00:53:25,620 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:25,673 : INFO : adding document #2710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:29,496 : INFO : discarding 32311 tokens: [('peson', 1), ('phansaa', 1), ('baklok', 1), ('lieutent', 1), ('maluan', 1), ('sirkind', 1), ('ahdiat', 1), ('benjang', 1), ('burgerkill’', 1), ('jakartabeat', 1)]...\n", + "2018-08-31 00:53:29,496 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2720000 (=100.0%) documents\n", + "2018-08-31 00:53:31,640 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:31,691 : INFO : adding document #2720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:35,568 : INFO : discarding 29914 tokens: [('mengcun', 1), ('niujinzhuang', 1), ('songzhuangzi', 1), ('xinxian', 1), ('مْعڞٌ', 1), ('孟村镇', 1), ('宋庄子乡', 1), ('新县镇', 1), ('牛进庄乡', 1), ('辛店镇', 1)]...\n", + "2018-08-31 00:53:35,568 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2730000 (=100.0%) documents\n", + "2018-08-31 00:53:37,790 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:37,843 : INFO : adding document #2730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:41,595 : INFO : discarding 26940 tokens: [('lapeir', 1), ('banagalia', 1), ('phantomsit', 1), ('rhatib', 1), ('vandermaark', 1), ('walkers’', 1), ('walker–', 1), ('darriel', 1), ('mandow', 1), ('‘oasis’', 1)]...\n", + "2018-08-31 00:53:41,596 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2740000 (=100.0%) documents\n", + "2018-08-31 00:53:43,741 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:43,794 : INFO : adding document #2740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:47,673 : INFO : discarding 30838 tokens: [('pentylresorcinol', 1), ('synthase’', 1), ('taura’', 1), ('tetraketid', 1), ('greenshard', 1), ('issueof', 1), ('gallequillbox', 1), ('mataraquillbox', 1), ('nicholaswel', 1), ('robsi', 1)]...\n", + "2018-08-31 00:53:47,675 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2750000 (=100.0%) documents\n", + "2018-08-31 00:53:49,866 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:49,920 : INFO : adding document #2750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:53,700 : INFO : discarding 24534 tokens: [('byrda', 1), ('siemiatkowski', 1), ('annalakshmi', 1), ('mahaasamaadhi', 1), ('shivanjali', 1), ('cananew', 1), ('cricon', 1), ('dishworldiptv', 1), ('espnstar', 1), ('hdzee', 1)]...\n", + "2018-08-31 00:53:53,700 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2760000 (=100.0%) documents\n", + "2018-08-31 00:53:55,842 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:55,893 : INFO : adding document #2760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:53:59,893 : INFO : discarding 24471 tokens: [('mcml', 1), ('muntaqim’', 1), ('muntaquim', 1), ('“anthoni', 1), ('“nuh”', 1), ('mucculloh', 1), ('indenvertim', 1), ('—booklist', 1), ('—fredric', 1), ('—rich', 1)]...\n", + "2018-08-31 00:53:59,893 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2770000 (=100.0%) documents\n", + "2018-08-31 00:54:02,100 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:02,153 : INFO : adding document #2770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:05,871 : INFO : discarding 24147 tokens: [('hospício', 1), ('podshivalov', 1), ('tekstilschik', 1), ('zlydnev', 1), ('alexis’', 1), ('incorporated”', 1), ('brandindex', 1), ('burgerbusi', 1), ('entrequinta', 1), ('ansong–pyongtaek', 1)]...\n", + "2018-08-31 00:54:05,871 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2780000 (=100.0%) documents\n", + "2018-08-31 00:54:08,011 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:08,062 : INFO : adding document #2780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:11,803 : INFO : discarding 24603 tokens: [('azizovich', 1), ('compdetail', 1), ('fffbdadbfc', 1), ('spaticchia', 1), ('tgrmotorsport', 1), ('dommergaard', 1), ('kunstakademiet', 1), ('kunstnersamfundet', 1), ('cowardly”', 1), ('cremationthough', 1)]...\n", + "2018-08-31 00:54:11,803 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2790000 (=100.0%) documents\n", + "2018-08-31 00:54:14,010 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:14,063 : INFO : adding document #2790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:18,004 : INFO : discarding 27031 tokens: [('partner—onli', 1), ('mozgó', 1), ('máglya', 1), ('olchvari', 1), ('oroszlánkóru', 1), ('pusztítá', 1), ('carl²', 1), ('eband', 1), ('egyxo', 1), ('kaeloo', 1)]...\n", + "2018-08-31 00:54:18,005 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2800000 (=100.0%) documents\n", + "2018-08-31 00:54:20,155 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:54:20,207 : INFO : adding document #2800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:24,168 : INFO : discarding 26926 tokens: [('ludhaina', 1), ('freeplaneport', 1), ('butzii', 1), ('island′', 1), ('wreck′', 1), ('rdasc', 1), ('wmfe', 1), ('eclaro', 1), ('eclaro’', 1), ('mbeic', 1)]...\n", + "2018-08-31 00:54:24,168 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2810000 (=100.0%) documents\n", + "2018-08-31 00:54:26,364 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:26,417 : INFO : adding document #2810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:30,174 : INFO : discarding 30399 tokens: [('kumbárová', 1), ('lazarchuk', 1), ('liachovičiūtė', 1), ('mossiakova', 1), ('raclavská', 1), ('sydorska', 1), ('uzhylovska', 1), ('volodymyrivna', 1), ('wolfbrandt', 1), ('бондаренко', 1)]...\n", + "2018-08-31 00:54:30,176 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2820000 (=100.0%) documents\n", + "2018-08-31 00:54:32,435 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:32,487 : INFO : adding document #2820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:36,377 : INFO : discarding 27492 tokens: [('coutareagenin', 1), ('hintonia', 1), ('latiflora', 1), ('circumpeduncular', 1), ('middle–upp', 1), ('olisiponensi', 1), ('trancão', 1), ('radjabu', 1), ('upd–zigamibanga', 1), ('oxyrhynchum', 1)]...\n", + "2018-08-31 00:54:36,378 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2830000 (=100.0%) documents\n", + "2018-08-31 00:54:38,578 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:38,633 : INFO : adding document #2830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:42,439 : INFO : discarding 27971 tokens: [('dwyre’', 1), ('aalderen', 1), ('ascj', 1), ('biryanta', 1), ('breewel', 1), ('daleweij', 1), ('gijtenbeek', 1), ('kunstrijden', 1), ('oogjen', 1), ('geumdangsamokbuljwasang', 1)]...\n", + "2018-08-31 00:54:42,440 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2840000 (=100.0%) documents\n", + "2018-08-31 00:54:44,577 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:44,629 : INFO : adding document #2840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:48,636 : INFO : discarding 33821 tokens: [('douglasrichard', 1), ('dudmanroi', 1), ('duejan', 1), ('duguidrod', 1), ('duguidron', 1), ('edinoskar', 1), ('egglerdomin', 1), ('egglerfrédér', 1), ('elmalehjean', 1), ('erikssonchristoff', 1)]...\n", + "2018-08-31 00:54:48,637 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2850000 (=100.0%) documents\n", + "2018-08-31 00:54:50,839 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:50,893 : INFO : adding document #2850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:54,782 : INFO : discarding 27951 tokens: [('arkitektskol', 1), ('arkitekttidningen', 1), ('arkitekturen', 1), ('bearbejdn', 1), ('brudlini', 1), ('byggeri', 1), ('bygningsstatisk', 1), ('bærend', 1), ('dokumentar', 1), ('grandearch', 1)]...\n", + "2018-08-31 00:54:54,782 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2860000 (=100.0%) documents\n", + "2018-08-31 00:54:56,924 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:54:56,976 : INFO : adding document #2860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:00,824 : INFO : discarding 27243 tokens: [('hudderspool', 1), ('lusinghieri', 1), ('phénicienn', 1), ('counterp', 1), ('véneto', 1), ('dorkamania', 1), ('hallèn', 1), ('gatetarn', 1), ('marinelarena', 1), ('mapsi', 1)]...\n", + "2018-08-31 00:55:00,824 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2870000 (=100.0%) documents\n", + "2018-08-31 00:55:03,027 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:03,084 : INFO : adding document #2870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:06,842 : INFO : discarding 24609 tokens: [('baldiva', 1), ('cingovskii', 1), ('daghestana', 1), ('droshica', 1), ('mniszechii', 1), ('panjshira', 1), ('porphyritica', 1), ('schakuhensi', 1), ('thelephassa', 1), ('turkestana', 1)]...\n", + "2018-08-31 00:55:06,843 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2880000 (=100.0%) documents\n", + "2018-08-31 00:55:08,987 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:09,039 : INFO : adding document #2880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:12,787 : INFO : discarding 24586 tokens: [('takamuro', 1), ('elliasson', 1), ('gesundheitshotel', 1), ('åsenfjorden', 1), ('சன்', 1), ('சுன்', 1), ('செங்', 1), ('hibamus', 1), ('khâli', 1), ('lbal', 1)]...\n", + "2018-08-31 00:55:12,788 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2890000 (=100.0%) documents\n", + "2018-08-31 00:55:15,001 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:15,055 : INFO : adding document #2890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:18,859 : INFO : discarding 28816 tokens: [('dietzekatrin', 1), ('dzieniszewskaewelina', 1), ('ganinivan', 1), ('harazhaaleksandr', 1), ('heathjon', 1), ('janicsninetta', 1), ('jouvemaxim', 1), ('kharitonovalexand', 1), ('khudzenkamaryna', 1), ('kirajsebastian', 1)]...\n", + "2018-08-31 00:55:18,859 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2900000 (=100.0%) documents\n", + "2018-08-31 00:55:21,007 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:21,061 : INFO : adding document #2900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:24,539 : INFO : discarding 21470 tokens: [('yabiku', 1), ('staerk', 1), ('jeongcheol', 1), ('klosterfeld', 1), ('ombiji', 1), ('distinguishedalumni', 1), ('getinvolv', 1), ('herkamp', 1), ('musicaltheatersing', 1), ('qvpkzac', 1)]...\n", + "2018-08-31 00:55:24,540 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2910000 (=100.0%) documents\n", + "2018-08-31 00:55:26,752 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:26,805 : INFO : adding document #2910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:30,730 : INFO : discarding 26016 tokens: [('vinnaaraa', 1), ('romagnasport', 1), ('บ้านดอนชัย', 1), ('บ้านผนัง', 1), ('บ้านยางคราม', 1), ('บ้านหนองม่วง', 1), ('บ้านห้วยน้ำขาว', 1), ('บ้านห้วยรากไม้', 1), ('บ้านห้วยรากไม้บน', 1), ('บ้านใหม่ดอนชัย', 1)]...\n", + "2018-08-31 00:55:30,731 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2920000 (=100.0%) documents\n", + "2018-08-31 00:55:32,888 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:32,940 : INFO : adding document #2920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:55:36,844 : INFO : discarding 26899 tokens: [('gamepag', 1), ('giftabl', 1), ('sportsfriend', 1), ('tanysphyra', 1), ('surnâm', 1), ('tuhaf', 1), ('yukh', 1), ('fencholen', 1), ('mediapartn', 1), ('stuckenholtz', 1)]...\n", + "2018-08-31 00:55:36,844 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2930000 (=100.0%) documents\n", + "2018-08-31 00:55:39,040 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:39,093 : INFO : adding document #2930000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:43,095 : INFO : discarding 35965 tokens: [('jarusombat', 1), ('phinij', 1), ('raktapongpisak', 1), ('parents—di', 1), ('scrappit', 1), ('jūliè', 1), ('unfight', 1), ('国史概要', 1), ('秦第一', 1), ('allowances—', 1)]...\n", + "2018-08-31 00:55:43,096 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2940000 (=100.0%) documents\n", + "2018-08-31 00:55:45,239 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:45,291 : INFO : adding document #2940000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:49,114 : INFO : discarding 27696 tokens: [('company—surviv', 1), ('esrailian', 1), ('heraldnet', 1), ('modernluxuri', 1), ('mptf', 1), ('societynewsla', 1), ('uclahealth', 1), ('ellabel', 1), ('haouach', 1), ('stationd', 1)]...\n", + "2018-08-31 00:55:49,115 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2950000 (=100.0%) documents\n", + "2018-08-31 00:55:51,326 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:51,380 : INFO : adding document #2950000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:55,240 : INFO : discarding 26612 tokens: [('droop’', 1), ('clivecussl', 1), ('wondrash', 1), ('bonyin', 1), ('cubether', 1), ('obtm', 1), ('paralz', 1), ('axtar', 1), ('bokrid', 1), ('boxra', 1)]...\n", + "2018-08-31 00:55:55,241 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2960000 (=100.0%) documents\n", + "2018-08-31 00:55:57,400 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:55:57,453 : INFO : adding document #2960000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:01,316 : INFO : discarding 29008 tokens: [('village—found', 1), ('solyent', 1), ('prinetad', 1), ('κλεομένης', 1), ('antiorthogon', 1), ('spectroscopyelectrodynam', 1), ('chenivtsi', 1), ('hertsayiv', 1), ('hlybot', 1), ('novodnistrov', 1)]...\n", + "2018-08-31 00:56:01,317 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2970000 (=100.0%) documents\n", + "2018-08-31 00:56:03,532 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:03,586 : INFO : adding document #2970000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:07,486 : INFO : discarding 28066 tokens: [('ojoru', 1), ('opadotun', 1), ('oyeerind', 1), ('oyètádé', 1), ('ráṣọ', 1), ('rélùweè', 1), ('rẹja', 1), ('rọ́', 1), ('sobowol', 1), ('síbí', 1)]...\n", + "2018-08-31 00:56:07,486 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2980000 (=100.0%) documents\n", + "2018-08-31 00:56:09,646 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:09,697 : INFO : adding document #2980000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:13,486 : INFO : discarding 25001 tokens: [('kurpsi', 1), ('káfej', 1), ('káncÿnał', 1), ('kónik', 1), ('kówera', 1), ('latschen', 1), ('latámi', 1), ('lejduj', 1), ('listkárż', 1), ('listkář', 1)]...\n", + "2018-08-31 00:56:13,486 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2990000 (=100.0%) documents\n", + "2018-08-31 00:56:15,674 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:15,728 : INFO : adding document #2990000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:19,519 : INFO : discarding 25140 tokens: [('mapitagan', 1), ('markeron', 1), ('amatsh', 1), ('amhlop', 1), ('babambeni', 1), ('bulliesberg', 1), ('eloana', 1), ('engibulawayo', 1), ('enhla', 1), ('enqameni', 1)]...\n", + "2018-08-31 00:56:19,519 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3000000 (=100.0%) documents\n", + "2018-08-31 00:56:21,669 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:21,721 : INFO : adding document #3000000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:25,559 : INFO : discarding 29368 tokens: [('kunddhari', 1), ('nagdit', 1), ('pramah', 1), ('pramathe', 1), ('prayaami', 1), ('roudrakarma', 1), ('sahishnu', 1), ('samdukkha', 1), ('saprapta', 1), ('satyasandh', 1)]...\n", + "2018-08-31 00:56:25,559 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3010000 (=100.0%) documents\n", + "2018-08-31 00:56:27,781 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:27,835 : INFO : adding document #3010000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:31,507 : INFO : discarding 28488 tokens: [('centraal–woerden–alphen', 1), ('centraal–zwolle–groningen', 1), ('centrum–amsterdam', 1), ('centrum–zwol', 1), ('centrum–zwolle–groningen', 1), ('eindhoven–deurn', 1), ('enkhuizen–amsterdam', 1), ('groningen–zwol', 1), ('haarlem–alkmaar', 1), ('haarlem–leiden', 1)]...\n", + "2018-08-31 00:56:31,508 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3020000 (=100.0%) documents\n", + "2018-08-31 00:56:33,674 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:33,726 : INFO : adding document #3020000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:37,657 : INFO : discarding 34868 tokens: [('subveni', 1), ('tedeco', 1), ('doorworld', 1), ('futurisit', 1), ('malagarba', 1), ('muzinq', 1), ('alagiyamanavalar', 1), ('andauto', 1), ('appukudaththan', 1), ('srivageesha', 1)]...\n", + "2018-08-31 00:56:37,658 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3030000 (=100.0%) documents\n", + "2018-08-31 00:56:39,863 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:39,917 : INFO : adding document #3030000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:43,753 : INFO : discarding 43060 tokens: [('emetophag', 1), ('“trampling”', 1), ('ethnonot', 1), ('niglaeeedecaaa', 1), ('tlulib', 1), ('“multimethodology”', 1), ('scienfic', 1), ('attempting—despit', 1), ('beverages—tea', 1), ('childhood—about', 1)]...\n", + "2018-08-31 00:56:43,754 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3040000 (=100.0%) documents\n", + "2018-08-31 00:56:45,907 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:45,960 : INFO : adding document #3040000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:49,793 : INFO : discarding 26343 tokens: [('springfieldm', 1), ('wodf', 1), ('wueb', 1), ('brentwood–bel', 1), ('booth—wer', 1), ('—molland', 1), ('starsbob', 1), ('themolin', 1), ('zilara', 1), ('czteroleciu', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:56:49,794 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3050000 (=100.0%) documents\n", + "2018-08-31 00:56:51,998 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:52,052 : INFO : adding document #3050000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:55,792 : INFO : discarding 27065 tokens: [('lappifolia', 1), ('刘积斌', 1), ('nougat’', 1), ('nowga', 1), ('nucatu', 1), ('nucatum', 1), ('لوکا', 1), ('نوقا', 1), ('tschehr', 1), ('王亚平', 1)]...\n", + "2018-08-31 00:56:55,792 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3060000 (=100.0%) documents\n", + "2018-08-31 00:56:57,949 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:56:58,003 : INFO : adding document #3060000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:01,731 : INFO : discarding 26564 tokens: [('wxhxl', 1), ('”calculated”', 1), ('swellfar', 1), ('liaosi', 1), ('d’altérité', 1), ('indiens’', 1), ('tlahtolōyān', 1), ('totonaqu', 1), ('tutunacu', 1), ('«territoir', 1)]...\n", + "2018-08-31 00:57:01,732 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3070000 (=100.0%) documents\n", + "2018-08-31 00:57:03,926 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:03,979 : INFO : adding document #3070000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:07,396 : INFO : discarding 20327 tokens: [('khadachakra', 1), ('kshireshwar', 1), ('kupind', 1), ('lekbeshi', 1), ('mahagadhimai', 1), ('majuwagadhi', 1), ('municipalities−c', 1), ('nalgad', 1), ('panchapuri', 1), ('panchkhapan', 1)]...\n", + "2018-08-31 00:57:07,397 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3080000 (=100.0%) documents\n", + "2018-08-31 00:57:09,550 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:09,601 : INFO : adding document #3080000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:12,807 : INFO : discarding 18870 tokens: [('hoiness', 1), ('lysholt', 1), ('vincart', 1), ('benning’', 1), ('houck’', 1), ('whom”', 1), ('winslow’', 1), ('“slightli', 1), ('coachtran', 1), ('aerotunel', 1)]...\n", + "2018-08-31 00:57:12,807 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3090000 (=100.0%) documents\n", + "2018-08-31 00:57:15,017 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:15,070 : INFO : adding document #3090000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:18,475 : INFO : discarding 20104 tokens: [('framlimgham', 1), ('hrechyshkin', 1), ('cathinka', 1), ('forsørgels', 1), ('trængend', 1), ('badpahari', 1), ('bhathia', 1), ('bhiad', 1), ('daskarma', 1), ('divorcc', 1)]...\n", + "2018-08-31 00:57:18,476 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3100000 (=100.0%) documents\n", + "2018-08-31 00:57:20,622 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:20,673 : INFO : adding document #3100000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:24,438 : INFO : discarding 26459 tokens: [('laussedat', 1), ('basipinacocyt', 1), ('endopinacocyt', 1), ('exopinacocyt', 1), ('covilla', 1), ('fredmann', 1), ('freidann', 1), ('friedann', 1), ('morm', 1), ('pharbin', 1)]...\n", + "2018-08-31 00:57:24,439 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3110000 (=100.0%) documents\n", + "2018-08-31 00:57:26,656 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:26,710 : INFO : adding document #3110000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:30,565 : INFO : discarding 28548 tokens: [('cerisii', 1), ('parasquillida', 1), ('pseudosquillopsi', 1), ('마음의', 1), ('소록도', 1), ('한센인들의', 1), ('affarano', 1), ('wciti', 1), ('xsolo', 1), ('manxi', 1)]...\n", + "2018-08-31 00:57:30,566 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3120000 (=100.0%) documents\n", + "2018-08-31 00:57:32,724 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:32,778 : INFO : adding document #3120000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:36,587 : INFO : discarding 31652 tokens: [('baleegh', 1), ('choote', 1), ('paire', 1), ('parega', 1), ('mepaco', 1), ('“acorn', 1), ('“acorns”', 1), ('“koffi', 1), ('“ko”', 1), ('“mi”', 1)]...\n", + "2018-08-31 00:57:36,587 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3130000 (=100.0%) documents\n", + "2018-08-31 00:57:38,807 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:38,863 : INFO : adding document #3130000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:42,756 : INFO : discarding 26215 tokens: [('bharuchgujarat', 1), ('mceligott', 1), ('aalaththoor', 1), ('aaranmula', 1), ('aaranmulamaahaathmyam', 1), ('aazhuvaancheri', 1), ('achchan', 1), ('achchankovilshaasthaavum', 1), ('adhyaathmaraamaayanam', 1), ('ammannoor', 1)]...\n", + "2018-08-31 00:57:42,757 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3140000 (=100.0%) documents\n", + "2018-08-31 00:57:44,913 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:44,966 : INFO : adding document #3140000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:48,917 : INFO : discarding 27685 tokens: [('rughafa', 1), ('urjuzah', 1), ('krismayr', 1), ('chainel', 1), ('démare', 1), ('pévèlois', 1), ('vichot', 1), ('ashran', 1), ('awinor', 1), ('convulsión', 1)]...\n", + "2018-08-31 00:57:48,917 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3150000 (=100.0%) documents\n", + "2018-08-31 00:57:51,130 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:51,184 : INFO : adding document #3150000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:55,121 : INFO : discarding 29336 tokens: [('dedê', 1), ('korzynietz', 1), ('massimilian', 1), ('razundara', 1), ('tjikuzu', 1), ('alsphotopag', 1), ('plataspida', 1), ('plataspidida', 1), ('plataspina', 1), ('thyreocorida', 1)]...\n", + "2018-08-31 00:57:55,122 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3160000 (=100.0%) documents\n", + "2018-08-31 00:57:57,285 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:57:57,338 : INFO : adding document #3160000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:01,299 : INFO : discarding 27431 tokens: [('kouandijo', 1), ('kouanjio', 1), ('publications—includ', 1), ('evil—intrud', 1), ('hulga', 1), ('is—without', 1), ('stranger—decept', 1), ('bubakir', 1), ('daibani', 1), ('hasairi', 1)]...\n", + "2018-08-31 00:58:01,299 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3170000 (=100.0%) documents\n", + "2018-08-31 00:58:03,522 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:58:03,576 : INFO : adding document #3170000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:08,376 : INFO : discarding 37593 tokens: [('cinecrack', 1), ('cinedict', 1), ('deceault', 1), ('filmspot', 1), ('kempenaar', 1), ('larsenonfilm', 1), ('belonog', 1), ('faaea', 1), ('goncharuk', 1), ('haborák', 1)]...\n", + "2018-08-31 00:58:08,377 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3180000 (=100.0%) documents\n", + "2018-08-31 00:58:10,535 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:10,587 : INFO : adding document #3180000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:14,494 : INFO : discarding 27004 tokens: [('akbaşlı', 1), ('akçevr', 1), ('güveneroğlu', 1), ('hoşfikir', 1), ('olgun', 1), ('taviş', 1), ('ulucan', 1), ('uğurludoğan', 1), ('önatlı', 1), ('özkalp', 1)]...\n", + "2018-08-31 00:58:14,495 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3190000 (=100.0%) documents\n", + "2018-08-31 00:58:16,711 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:16,766 : INFO : adding document #3190000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:20,728 : INFO : discarding 40551 tokens: [('weaponolog', 1), ('reiseatla', 1), ('urlaubsparadi', 1), ('jurcsek', 1), ('proplem', 1), ('sárbogárd', 1), ('aicurzio', 1), ('albiat', 1), ('bellusco', 1), ('mezzago', 1)]...\n", + "2018-08-31 00:58:20,729 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3200000 (=100.0%) documents\n", + "2018-08-31 00:58:22,902 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:22,957 : INFO : adding document #3200000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:27,001 : INFO : discarding 38816 tokens: [('morchen', 1), ('cartograp', 1), ('pashaj', 1), ('teretori', 1), ('aread', 1), ('explum', 1), ('haubrok', 1), ('heikejung', 1), ('leuum', 1), ('misoon', 1)]...\n", + "2018-08-31 00:58:27,001 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3210000 (=100.0%) documents\n", + "2018-08-31 00:58:29,222 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:29,276 : INFO : adding document #3210000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:33,261 : INFO : discarding 35252 tokens: [('clinodactyl', 1), ('cultureunplug', 1), ('pfokhreh', 1), ('triumfetti', 1), ('eonymph', 1), ('beleman', 1), ('venloo', 1), ('zittesj', 1), ('wikiafrica', 1), ('gallgher', 1)]...\n", + "2018-08-31 00:58:33,262 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3220000 (=100.0%) documents\n", + "2018-08-31 00:58:35,446 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:35,500 : INFO : adding document #3220000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:39,552 : INFO : discarding 32923 tokens: [('appmachin', 1), ('bizland', 1), ('aboloc', 1), ('gustong', 1), ('khayce', 1), ('mahanap', 1), ('makulong', 1), ('quemuel', 1), ('tierro', 1), ('trahedyang', 1)]...\n", + "2018-08-31 00:58:39,552 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3230000 (=100.0%) documents\n", + "2018-08-31 00:58:41,769 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:41,824 : INFO : adding document #3230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:45,748 : INFO : discarding 28265 tokens: [('doxia', 1), ('апт', 1), ('biyuda', 1), ('biyudo', 1), ('dadapa', 1), ('iputok', 1), ('labada', 1), ('litsonero', 1), ('m–zet', 1), ('ntonio', 1)]...\n", + "2018-08-31 00:58:45,749 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3240000 (=100.0%) documents\n", + "2018-08-31 00:58:47,925 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:47,977 : INFO : adding document #3240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:51,968 : INFO : discarding 31580 tokens: [('bendlin', 1), ('appur', 1), ('arunattu', 1), ('chinavantikeni', 1), ('eluppaiyur', 1), ('iluppaiyur', 1), ('karattampatti', 1), ('karuppannasami', 1), ('kudiyazhaippu', 1), ('kulathaivam', 1)]...\n", + "2018-08-31 00:58:51,969 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3250000 (=100.0%) documents\n", + "2018-08-31 00:58:54,188 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:54,243 : INFO : adding document #3250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:58:58,173 : INFO : discarding 29700 tokens: [('arculeo', 1), ('obliquefron', 1), ('palapedia', 1), ('pelsartensi', 1), ('rastrip', 1), ('royfdhdei', 1), ('truncatifron', 1), ('yongshuensi', 1), ('mikoczi', 1), ('cinctimana', 1)]...\n", + "2018-08-31 00:58:58,174 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3260000 (=100.0%) documents\n", + "2018-08-31 00:59:00,335 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:00,388 : INFO : adding document #3260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:04,320 : INFO : discarding 30314 tokens: [('choopiniji', 1), ('daraneenuch', 1), ('eternity–and', 1), ('liaorakwong', 1), ('makhin', 1), ('pantewanop', 1), ('phapo', 1), ('phenkul', 1), ('phenphet', 1), ('photipit', 1)]...\n", + "2018-08-31 00:59:04,322 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3270000 (=100.0%) documents\n", + "2018-08-31 00:59:06,526 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:06,581 : INFO : adding document #3270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:10,509 : INFO : discarding 33284 tokens: [('baronz', 1), ('geybridg', 1), ('higgens’', 1), ('iiko', 1), ('centrota', 1), ('maclaran', 1), ('athletes—two', 1), ('brièvement', 1), ('diverssant', 1), ('tezozomac', 1)]...\n", + "2018-08-31 00:59:10,510 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3280000 (=100.0%) documents\n", + "2018-08-31 00:59:12,672 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:12,724 : INFO : adding document #3280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:16,563 : INFO : discarding 30510 tokens: [('wanggom', 1), ('bulgnuu', 1), ('ranellucci', 1), ('saxophone–', 1), ('wirtel', 1), ('“cuban', 1), ('“suite”', 1), ('gřegořek', 1), ('kostroski', 1), ('trusdal', 1)]...\n", + "2018-08-31 00:59:16,564 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3290000 (=100.0%) documents\n", + "2018-08-31 00:59:18,776 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:18,832 : INFO : adding document #3290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:22,742 : INFO : discarding 30136 tokens: [('flustard', 1), ('hoobub', 1), ('kwuggerbug', 1), ('snather', 1), ('fruhner', 1), ('time†', 1), ('buildingsofireland', 1), ('drumhawnagh', 1), ('inventri', 1), ('epomyn', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 00:59:22,743 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3300000 (=100.0%) documents\n", + "2018-08-31 00:59:24,918 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:24,972 : INFO : adding document #3300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:28,775 : INFO : discarding 28970 tokens: [('d’humili', 1), ('entlarg', 1), ('l’émotion', 1), ('ablagh', 1), ('ablaghiat', 1), ('khabriyat', 1), ('rujhanaat', 1), ('zabir', 1), ('aiyekooto', 1), ('ehinlanwo', 1)]...\n", + "2018-08-31 00:59:28,775 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3310000 (=100.0%) documents\n", + "2018-08-31 00:59:30,984 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:31,039 : INFO : adding document #3310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:34,733 : INFO : discarding 36803 tokens: [('kotlui', 1), ('sonajuri', 1), ('hutmura', 1), ('pindra', 1), ('raghabpur', 1), ('sihuli', 1), ('medja', 1), ('pǫtь', 1), ('sladъkъ', 1), ('sǫtь', 1)]...\n", + "2018-08-31 00:59:34,734 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3320000 (=100.0%) documents\n", + "2018-08-31 00:59:36,912 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:36,967 : INFO : adding document #3320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:40,664 : INFO : discarding 24992 tokens: [('bouachon', 1), ('breitman’', 1), ('graveg', 1), ('l’aimai', 1), ('mediterranean’', 1), ('skalli”', 1), ('supéri', 1), ('‘banker', 1), ('‘bullionist', 1), ('‘hour', 1)]...\n", + "2018-08-31 00:59:40,665 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3330000 (=100.0%) documents\n", + "2018-08-31 00:59:42,888 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:42,943 : INFO : adding document #3330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:46,552 : INFO : discarding 25009 tokens: [('castillofiel', 1), ('esperamalo', 1), ('malbiz', 1), ('obaren', 1), ('traspalacio', 1), ('valtracon', 1), ('cachiburrio', 1), ('enecor', 1), ('formerio', 1), ('garsea', 1)]...\n", + "2018-08-31 00:59:46,552 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3340000 (=100.0%) documents\n", + "2018-08-31 00:59:48,733 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:48,786 : INFO : adding document #3340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:52,638 : INFO : discarding 28939 tokens: [('bracav', 1), ('missegh', 1), ('steylaert', 1), ('vyotski', 1), ('luzuloid', 1), ('kissengen', 1), ('lhowp', 1), ('overpumpag', 1), ('revitalz', 1), ('undergroundcavern', 1)]...\n", + "2018-08-31 00:59:52,639 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3350000 (=100.0%) documents\n", + "2018-08-31 00:59:54,843 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:54,898 : INFO : adding document #3350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 00:59:58,756 : INFO : discarding 29664 tokens: [('narashimhika', 1), ('narasina', 1), ('pratyangira', 1), ('omrin', 1), ('claveriei', 1), ('igneusta', 1), ('illusella', 1), ('lateritiali', 1), ('pallidifron', 1), ('pulvereali', 1)]...\n", + "2018-08-31 00:59:58,757 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3360000 (=100.0%) documents\n", + "2018-08-31 01:00:00,934 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:00,986 : INFO : adding document #3360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:04,734 : INFO : discarding 26416 tokens: [('bulanikh', 1), ('charsanjak', 1), ('chmshkatsag', 1), ('dneprovskaya', 1), ('handamej', 1), ('hazro', 1), ('hazzo', 1), ('ispir', 1), ('jahukyan', 1), ('jebrayil', 1)]...\n", + "2018-08-31 01:00:04,734 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3370000 (=100.0%) documents\n", + "2018-08-31 01:00:06,953 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:07,009 : INFO : adding document #3370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:10,803 : INFO : discarding 30058 tokens: [('trandfer', 1), ('agmonia', 1), ('moesorum', 1), ('thermidava', 1), ('clark†', 1), ('krumbhaar', 1), ('schmidt†', 1), ('wildemor', 1), ('donbel', 1), ('tangkai', 1)]...\n", + "2018-08-31 01:00:10,803 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3380000 (=100.0%) documents\n", + "2018-08-31 01:00:12,997 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:13,051 : INFO : adding document #3380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:16,926 : INFO : discarding 31132 tokens: [('perventsev', 1), ('photography»', 1), ('pictures»', 1), ('požerski', 1), ('prekhner', 1), ('prozavod', 1), ('sherstennikov', 1), ('trakhman', 1), ('trankvillicki', 1), ('vakhromeeva', 1)]...\n", + "2018-08-31 01:00:16,927 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3390000 (=100.0%) documents\n", + "2018-08-31 01:00:19,132 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:19,188 : INFO : adding document #3390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:22,969 : INFO : discarding 26463 tokens: [('nominated—irish', 1), ('nominated—milan', 1), ('serafimova', 1), ('theatra', 1), ('наташа', 1), ('khrystoforivka', 1), ('radushn', 1), ('криворізький', 1), ('радушне', 1), ('христофорівка', 1)]...\n", + "2018-08-31 01:00:22,970 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3400000 (=100.0%) documents\n", + "2018-08-31 01:00:25,143 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:25,196 : INFO : adding document #3400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:29,061 : INFO : discarding 28972 tokens: [('μην', 1), ('μπάμπης', 1), ('ντρέπεστε', 1), ('στόκας', 1), ('τραγουδήστε', 1), ('τρελών', 1), ('υψίστης', 1), ('φυλακή', 1), ('mösl', 1), ('solarzeitalt', 1)]...\n", + "2018-08-31 01:00:29,062 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3410000 (=100.0%) documents\n", + "2018-08-31 01:00:31,262 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:31,316 : INFO : adding document #3410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:35,202 : INFO : discarding 29031 tokens: [('marsaux', 1), ('sauzerau', 1), ('weiermul', 1), ('athletes”', 1), ('trustees—w', 1), ('unc–chapel', 1), ('“appal', 1), ('“hardin’', 1), ('‘howthelightgetsin’', 1), ('boniquit', 1)]...\n", + "2018-08-31 01:00:35,203 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3420000 (=100.0%) documents\n", + "2018-08-31 01:00:37,375 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:00:37,428 : INFO : adding document #3420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:41,245 : INFO : discarding 26003 tokens: [('rezāābād', 1), ('institute–commiss', 1), ('ebergéni', 1), ('ebergényi', 1), ('bardvāl', 1), ('bardwāl', 1), ('bārd', 1), ('oldest—perman', 1), ('defensism”', 1), ('afirmo', 1)]...\n", + "2018-08-31 01:00:41,246 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3430000 (=100.0%) documents\n", + "2018-08-31 01:00:43,452 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:43,508 : INFO : adding document #3430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:47,314 : INFO : discarding 26749 tokens: [('altrokradio', 1), ('djjd', 1), ('metallicav', 1), ('nuclearrockradio', 1), ('thepenguinrock', 1), ('computer—thu', 1), ('necracedia', 1), ('nintendo®', 1), ('超任博士', 1), ('homoni', 1)]...\n", + "2018-08-31 01:00:47,314 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3440000 (=100.0%) documents\n", + "2018-08-31 01:00:49,487 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:49,540 : INFO : adding document #3440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:53,322 : INFO : discarding 26396 tokens: [('″roar', 1), ('″sagebrush', 1), ('″shale', 1), ('″stoni', 1), ('″yakama″', 1), ('″yakima″', 1), ('lucasremark', 1), ('mattoxwari', 1), ('recendi', 1), ('reséndiz’', 1)]...\n", + "2018-08-31 01:00:53,323 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3450000 (=100.0%) documents\n", + "2018-08-31 01:00:55,538 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:55,593 : INFO : adding document #3450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:00:59,316 : INFO : discarding 26788 tokens: [('sarandopoulo', 1), ('caween', 1), ('hiihtostadion', 1), ('jalkaranta', 1), ('kivimaa–kiveriö–joutjärvi', 1), ('kolava–kujala', 1), ('mukkula', 1), ('salpau', 1), ('salpauselkä', 1), ('viipurinti', 1)]...\n", + "2018-08-31 01:00:59,317 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3460000 (=100.0%) documents\n", + "2018-08-31 01:01:01,485 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:01,542 : INFO : adding document #3460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:05,368 : INFO : discarding 27112 tokens: [('yangshupo', 1), ('billyjoelvevo', 1), ('unity”through', 1), ('nltsg', 1), ('venaiss', 1), ('evergreentre', 1), ('claoué', 1), ('hedonna', 1), ('tjararu', 1), ('pindemonti', 1)]...\n", + "2018-08-31 01:01:05,368 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3470000 (=100.0%) documents\n", + "2018-08-31 01:01:07,578 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:07,633 : INFO : adding document #3470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:11,500 : INFO : discarding 26707 tokens: [('innishmeela', 1), ('killyburn', 1), ('macaldoo', 1), ('mallinmor', 1), ('comparable—and', 1), ('poset—no', 1), ('jemmina', 1), ('kahanapril', 1), ('lifese', 1), ('robinso', 1)]...\n", + "2018-08-31 01:01:11,501 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3480000 (=100.0%) documents\n", + "2018-08-31 01:01:13,662 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:13,715 : INFO : adding document #3480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:17,614 : INFO : discarding 26770 tokens: [('brandelln', 1), ('encountered—africa', 1), ('filmdirectorexecut', 1), ('producerfin', 1), ('uncreditedarch', 1), ('bicepiru', 1), ('kentrika', 1), ('agioanneia', 1), ('agioannina', 1), ('apsarad', 1)]...\n", + "2018-08-31 01:01:17,615 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3490000 (=100.0%) documents\n", + "2018-08-31 01:01:19,824 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:19,878 : INFO : adding document #3490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:23,593 : INFO : discarding 28463 tokens: [('paragari', 1), ('hoodiez', 1), ('duerwood', 1), ('“acknickulous”', 1), ('czetwertynska', 1), ('забавить', 1), ('pvgc', 1), ('pvgr', 1), ('антоновна', 1), ('нарышкина', 1)]...\n", + "2018-08-31 01:01:23,593 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3500000 (=100.0%) documents\n", + "2018-08-31 01:01:25,774 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:25,828 : INFO : adding document #3500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:29,629 : INFO : discarding 31054 tokens: [('亞東時報', 1), ('國學講習會', 1), ('大元帥府秘書長', 1), ('大共和日報', 1), ('娘日歸泥', 1), ('湯國梨', 1), ('湯志鈞', 1), ('章太炎傳', 1), ('许寿裳', 1), ('children—veronica', 1)]...\n", + "2018-08-31 01:01:29,629 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3510000 (=100.0%) documents\n", + "2018-08-31 01:01:31,853 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:31,909 : INFO : adding document #3510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:35,569 : INFO : discarding 25757 tokens: [('carfrax', 1), ('chameloeid', 1), ('ciceronicu', 1), ('cosmocid', 1), ('cruxwan', 1), ('cwulzenda', 1), ('cyberstructur', 1), ('dangrabad', 1), ('eadrax', 1), ('esflovian', 1)]...\n", + "2018-08-31 01:01:35,570 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3520000 (=100.0%) documents\n", + "2018-08-31 01:01:37,759 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:37,812 : INFO : adding document #3520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:41,546 : INFO : discarding 28593 tokens: [('退道運動', 1), ('artisans—carpent', 1), ('painters—from', 1), ('מלקרת', 1), ('nately’', 1), ('company—top', 1), ('hemisquillida', 1), ('intrarhabdom', 1), ('movement—up', 1), ('ommatidia—a', 1)]...\n", + "2018-08-31 01:01:41,547 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3530000 (=100.0%) documents\n", + "2018-08-31 01:01:43,760 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:43,816 : INFO : adding document #3530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:47,562 : INFO : discarding 27394 tokens: [('capacitance”', 1), ('coils’', 1), ('visho', 1), ('nformativ', 1), ('ombëtar', 1), ('ërbimi', 1), ('ilnygaai', 1), ('koryaks—inhabit', 1), ('kujkynnjaku', 1), ('ėli', 1)]...\n", + "2018-08-31 01:01:47,563 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3540000 (=100.0%) documents\n", + "2018-08-31 01:01:49,747 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:49,802 : INFO : adding document #3540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:53,225 : INFO : discarding 21700 tokens: [('katjimun', 1), ('nelago', 1), ('nkruhma', 1), ('trans‐africa', 1), ('absequip', 1), ('bvequip', 1), ('clumpweight', 1), ('cyscan', 1), ('dnvequip', 1), ('dpoper', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:01:53,226 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3550000 (=100.0%) documents\n", + "2018-08-31 01:01:55,440 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:55,495 : INFO : adding document #3550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:01:59,073 : INFO : discarding 23115 tokens: [('gananita', 1), ('kabushia', 1), ('shereyk', 1), ('ethosc', 1), ('akedami', 1), ('asifia', 1), ('charkaman', 1), ('deccanwood', 1), ('hitex', 1), ('kutubkhana', 1)]...\n", + "2018-08-31 01:01:59,074 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3560000 (=100.0%) documents\n", + "2018-08-31 01:02:01,248 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:01,301 : INFO : adding document #3560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:04,943 : INFO : discarding 25762 tokens: [('cantomundo', 1), ('iptd', 1), ('loglogist', 1), ('tūshan', 1), ('printemps”', 1), ('”bolero”', 1), ('”media', 1), ('”sacr', 1), ('laviña', 1), ('right–wing', 1)]...\n", + "2018-08-31 01:02:04,943 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3570000 (=100.0%) documents\n", + "2018-08-31 01:02:07,156 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:07,211 : INFO : adding document #3570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:10,669 : INFO : discarding 24833 tokens: [('goliardica', 1), ('intellettuali', 1), ('socialità', 1), ('klafter', 1), ('whict', 1), ('bahngesellschaft', 1), ('ashmuqam', 1), ('chandanwari', 1), ('laripora', 1), ('liddar', 1)]...\n", + "2018-08-31 01:02:10,670 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3580000 (=100.0%) documents\n", + "2018-08-31 01:02:12,868 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:12,921 : INFO : adding document #3580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:16,401 : INFO : discarding 23286 tokens: [('qahrman', 1), ('qahrmān', 1), ('nazami', 1), ('naẓamī', 1), ('zahurian', 1), ('zahūrīān', 1), ('shakri', 1), ('shāḵrī', 1), ('dānyāl', 1), ('jarāḥī', 1)]...\n", + "2018-08-31 01:02:16,402 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3590000 (=100.0%) documents\n", + "2018-08-31 01:02:18,632 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:18,687 : INFO : adding document #3590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:22,347 : INFO : discarding 26965 tokens: [('laotianliao', 1), ('mingt', 1), ('touwu', 1), ('chirurgicaux', 1), ('legueu', 1), ('maretheux', 1), ('néphrectomi', 1), ('pyélographi', 1), ('rétrograd', 1), ('urologiqu', 1)]...\n", + "2018-08-31 01:02:22,348 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3600000 (=100.0%) documents\n", + "2018-08-31 01:02:24,515 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:24,568 : INFO : adding document #3600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:28,000 : INFO : discarding 22062 tokens: [('ecogold', 1), ('luhmuehlen', 1), ('majyk', 1), ('smartpak', 1), ('stübben', 1), ('toozac', 1), ('windurra', 1), ('gobbargumpi', 1), ('sahana’', 1), ('nitetim', 1)]...\n", + "2018-08-31 01:02:28,000 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3610000 (=100.0%) documents\n", + "2018-08-31 01:02:30,224 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:30,279 : INFO : adding document #3610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:33,961 : INFO : discarding 26261 tokens: [('kenkoro', 1), ('lilg', 1), ('ftpaccess', 1), ('gadmin', 1), ('proftp', 1), ('utmp', 1), ('vsftpd', 1), ('wtmp', 1), ('musaeb', 1), ('microbullatu', 1)]...\n", + "2018-08-31 01:02:33,962 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3620000 (=100.0%) documents\n", + "2018-08-31 01:02:36,148 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:36,201 : INFO : adding document #3620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:39,896 : INFO : discarding 33103 tokens: [('in‑hous', 1), ('regions—ar', 1), ('states—american', 1), ('traumaccent', 1), ('diphenylketyl', 1), ('peptide–protein', 1), ('phco•−', 1), ('diesel—includ', 1), ('hydrocarbons—raw', 1), ('akulii', 1)]...\n", + "2018-08-31 01:02:39,896 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3630000 (=100.0%) documents\n", + "2018-08-31 01:02:42,110 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:42,165 : INFO : adding document #3630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:45,709 : INFO : discarding 24520 tokens: [('brugita', 1), ('cachuyta', 1), ('caxamarca', 1), ('chachapoia', 1), ('companon', 1), ('donosa', 1), ('guamachuco', 1), ('huicho', 1), ('otusco', 1), ('sapukai', 1)]...\n", + "2018-08-31 01:02:45,709 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3640000 (=100.0%) documents\n", + "2018-08-31 01:02:47,906 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:47,960 : INFO : adding document #3640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:51,700 : INFO : discarding 29669 tokens: [('architect”', 1), ('connecticut”', 1), ('croswell’', 1), ('draft”', 1), ('d’asenzo', 1), ('harwood’', 1), ('itheil', 1), ('ithiel’', 1), ('latchabl', 1), ('mechanic”', 1)]...\n", + "2018-08-31 01:02:51,700 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3650000 (=100.0%) documents\n", + "2018-08-31 01:02:53,917 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:53,973 : INFO : adding document #3650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:57,555 : INFO : discarding 27475 tokens: [('concorden', 1), ('moonsilk', 1), ('tooten', 1), ('aspesæt', 1), ('away»', 1), ('besnæret', 1), ('bewildered»', 1), ('blendet', 1), ('flyr', 1), ('fragile»', 1)]...\n", + "2018-08-31 01:02:57,556 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3660000 (=100.0%) documents\n", + "2018-08-31 01:02:59,746 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:02:59,800 : INFO : adding document #3660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:03,323 : INFO : discarding 24246 tokens: [('europhon', 1), ('makhtutat', 1), ('makhṭūṭāt', 1), ('mubai', 1), ('niyā', 1), ('sinigh', 1), ('sinighāl', 1), ('sīsī', 1), ('السنغال', 1), ('نياس', 1)]...\n", + "2018-08-31 01:03:03,323 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3670000 (=100.0%) documents\n", + "2018-08-31 01:03:05,549 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:05,605 : INFO : adding document #3670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:03:09,401 : INFO : discarding 26999 tokens: [('crowdcube’', 1), ('lovespac', 1), ('annaházi', 1), ('belorv', 1), ('bántalmak', 1), ('coronariaspazmu', 1), ('czapf', 1), ('diagnózi', 1), ('döntően', 1), ('esophagocardiac', 1)]...\n", + "2018-08-31 01:03:09,401 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3680000 (=100.0%) documents\n", + "2018-08-31 01:03:11,588 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:11,641 : INFO : adding document #3680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:15,426 : INFO : discarding 29512 tokens: [('rupayan', 1), ('sohrawardi', 1), ('absec', 1), ('boodjari', 1), ('munyarryun', 1), ('hairoddin', 1), ('cudi—', 1), ('baupolizeilich', 1), ('stadterweiterungen', 1), ('roengpithya', 1)]...\n", + "2018-08-31 01:03:15,426 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3690000 (=100.0%) documents\n", + "2018-08-31 01:03:17,645 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:17,700 : INFO : adding document #3690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:21,553 : INFO : discarding 28710 tokens: [('héligoland', 1), ('ortzen', 1), ('sabalot', 1), ('vulliez', 1), ('eichornia', 1), ('plantedtank', 1), ('berezynski', 1), ('kroczek', 1), ('zuzanski', 1), ('cesant', 1)]...\n", + "2018-08-31 01:03:21,553 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3700000 (=100.0%) documents\n", + "2018-08-31 01:03:23,737 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:23,794 : INFO : adding document #3700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:27,511 : INFO : discarding 28130 tokens: [('kaganoff', 1), ('vivdli', 1), ('helzarin', 1), ('landermer', 1), ('vukšić', 1), ('curiak', 1), ('geax', 1), ('gronewald', 1), ('icycl', 1), ('iditabik', 1)]...\n", + "2018-08-31 01:03:27,512 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3710000 (=100.0%) documents\n", + "2018-08-31 01:03:29,734 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:29,790 : INFO : adding document #3710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:33,587 : INFO : discarding 27280 tokens: [('aaghosham', 1), ('anukudumbam', 1), ('aparenmar', 1), ('bharghavinilayam', 1), ('chekkan', 1), ('chengkotta', 1), ('dineshan', 1), ('evidingananu', 1), ('filmstaar', 1), ('jackiechan', 1)]...\n", + "2018-08-31 01:03:33,588 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3720000 (=100.0%) documents\n", + "2018-08-31 01:03:35,773 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:35,828 : INFO : adding document #3720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:39,705 : INFO : discarding 29140 tokens: [('humaston', 1), ('andrinali', 1), ('affaibliss', 1), ('biétrix', 1), ('christoflour', 1), ('infaillibilité', 1), ('corintian', 1), ('analyta', 1), ('gammali', 1), ('mantegazzi', 1)]...\n", + "2018-08-31 01:03:39,706 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3730000 (=100.0%) documents\n", + "2018-08-31 01:03:41,934 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:41,989 : INFO : adding document #3730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:45,720 : INFO : discarding 27095 tokens: [('housemark', 1), ('kunigliga', 1), ('nordenval', 1), ('serafimerorden', 1), ('acommerc', 1), ('ecomey', 1), ('ecommerceiq', 1), ('ipric', 1), ('itruemart', 1), ('pricepanda', 1)]...\n", + "2018-08-31 01:03:45,720 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3740000 (=100.0%) documents\n", + "2018-08-31 01:03:47,907 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:47,961 : INFO : adding document #3740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:51,740 : INFO : discarding 26408 tokens: [('etüken', 1), ('maliyan', 1), ('ahaf', 1), ('aswoon', 1), ('gorskok', 1), ('infla', 1), ('kumsan', 1), ('porform', 1), ('preeemin', 1), ('서울시립미술관', 1)]...\n", + "2018-08-31 01:03:51,741 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3750000 (=100.0%) documents\n", + "2018-08-31 01:03:53,982 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:54,039 : INFO : adding document #3750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:03:57,820 : INFO : discarding 30792 tokens: [('whisperer”', 1), ('araweelo', 1), ('bartamaha', 1), ('somaliwood', 1), ('wargelin', 1), ('xaaskayga', 1), ('kabacchi', 1), ('camarathon', 1), ('gcecd', 1), ('gepeto', 1)]...\n", + "2018-08-31 01:03:57,821 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3760000 (=100.0%) documents\n", + "2018-08-31 01:04:00,009 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:00,063 : INFO : adding document #3760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:03,868 : INFO : discarding 26649 tokens: [('altantuya', 1), ('americk', 1), ('shaariibuu', 1), ('shariibugin', 1), ('yokeheswarem', 1), ('yokheswarem', 1), ('kuaiwa', 1), ('mahakian', 1), ('christoffersdatt', 1), ('danielssøn', 1)]...\n", + "2018-08-31 01:04:03,869 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3770000 (=100.0%) documents\n", + "2018-08-31 01:04:06,086 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:06,141 : INFO : adding document #3770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:09,715 : INFO : discarding 23153 tokens: [('ssiek', 1), ('bezauri', 1), ('ghurum', 1), ('gitanjana', 1), ('kenyatta’', 1), ('kimemia', 1), ('mottaleb', 1), ('nibigira', 1), ('sezibera', 1), ('sibabrata', 1)]...\n", + "2018-08-31 01:04:09,716 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3780000 (=100.0%) documents\n", + "2018-08-31 01:04:11,895 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:11,949 : INFO : adding document #3780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:15,614 : INFO : discarding 24353 tokens: [('alivenotdead', 1), ('ptu女警之偶然陷阱', 1), ('redgrass', 1), ('youlai', 1), ('マイ★ヒーロー', 1), ('マイ★ボス', 1), ('三不管', 1), ('不再讓你孤單', 1), ('不死心靈', 1), ('中華兒女', 1)]...\n", + "2018-08-31 01:04:15,615 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3790000 (=100.0%) documents\n", + "2018-08-31 01:04:17,839 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:17,895 : INFO : adding document #3790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:21,626 : INFO : discarding 23794 tokens: [('truthclaim', 1), ('dustav', 1), ('hastam', 1), ('luftur', 1), ('jlnf', 1), ('jnmf', 1), ('aeit', 1), ('issotl', 1), ('iswnetwork', 1), ('centerwatch', 1)]...\n", + "2018-08-31 01:04:21,626 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3800000 (=100.0%) documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:04:23,828 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:23,881 : INFO : adding document #3800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:27,657 : INFO : discarding 26588 tokens: [('pinellas”', 1), ('metapsíquico', 1), ('malhstedt', 1), ('cutston', 1), ('astodia', 1), ('hargovanda', 1), ('lakhmichand', 1), ('nathiba', 1), ('nhlmmc', 1), ('saraspur', 1)]...\n", + "2018-08-31 01:04:27,658 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3810000 (=100.0%) documents\n", + "2018-08-31 01:04:29,894 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:29,949 : INFO : adding document #3810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:33,823 : INFO : discarding 28656 tokens: [('ophisoma', 1), ('noctuélit', 1), ('arulik', 1), ('hakafashist', 1), ('արևելք', 1), ('kedou', 1), ('đẩu', 1), ('“蝌蚪书”、“蝌蚪篆”', 1), ('消歧义', 1), ('蝌蚪文', 1)]...\n", + "2018-08-31 01:04:33,824 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3820000 (=100.0%) documents\n", + "2018-08-31 01:04:36,005 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:36,059 : INFO : adding document #3820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:39,794 : INFO : discarding 25327 tokens: [('bedimo', 1), ('djeugoué', 1), ('guémo', 1), ('miscontrol', 1), ('diomandé', 1), ('conmebolafc', 1), ('frickson', 1), ('mažić', 1), ('uchebo', 1), ('uzoenyi', 1)]...\n", + "2018-08-31 01:04:39,795 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3830000 (=100.0%) documents\n", + "2018-08-31 01:04:42,018 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:42,073 : INFO : adding document #3830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:45,976 : INFO : discarding 26127 tokens: [('beyhadh', 1), ('vighnaharta', 1), ('habits”', 1), ('leewis', 1), ('centuries”', 1), ('shillea', 1), ('shillea’', 1), ('“galleri', 1), ('akp’', 1), ('aktihanoglu', 1)]...\n", + "2018-08-31 01:04:45,976 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3840000 (=100.0%) documents\n", + "2018-08-31 01:04:48,169 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:48,222 : INFO : adding document #3840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:52,015 : INFO : discarding 25095 tokens: [('descenz', 1), ('winterclimb', 1), ('tapdk', 1), ('theaterjon', 1), ('contrastandard', 1), ('yutsi', 1), ('playpak', 1), ('undetal', 1), ('rohga', 1), ('wartech', 1)]...\n", + "2018-08-31 01:04:52,016 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3850000 (=100.0%) documents\n", + "2018-08-31 01:04:54,234 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:54,289 : INFO : adding document #3850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:04:57,972 : INFO : discarding 23718 tokens: [('wtcta', 1), ('lecklit', 1), ('dolerosauru', 1), ('trauthi', 1), ('nordicbet', 1), ('ulbjerg', 1), ('chico”', 1), ('“colegio', 1), ('ambei', 1), ('bikta', 1)]...\n", + "2018-08-31 01:04:57,973 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3860000 (=100.0%) documents\n", + "2018-08-31 01:05:00,167 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:00,220 : INFO : adding document #3860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:03,812 : INFO : discarding 23329 tokens: [('բարդուղիմեոսի', 1), ('լիմ', 1), ('խծկոնք', 1), ('մշո', 1), ('նարեկավանք', 1), ('bushelman', 1), ('atatürkün', 1), ('bakıdakı', 1), ('başkomutan', 1), ('başöğretmen', 1)]...\n", + "2018-08-31 01:05:03,812 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3870000 (=100.0%) documents\n", + "2018-08-31 01:05:06,039 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:06,094 : INFO : adding document #3870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:09,868 : INFO : discarding 28582 tokens: [('αθλοπαιδιών', 1), ('εοαπ', 1), ('”groovin', 1), ('feet…it', 1), ('mgbolu', 1), ('captric', 1), ('captricity’', 1), ('“shredded”', 1), ('leadi', 1), ('charfoo', 1)]...\n", + "2018-08-31 01:05:09,868 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3880000 (=100.0%) documents\n", + "2018-08-31 01:05:12,058 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:12,112 : INFO : adding document #3880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:15,660 : INFO : discarding 27492 tokens: [('žuan', 1), ('qājar', 1), ('qarqalu', 1), ('qārqāli', 1), ('qārqālū', 1), ('enriquecarlo', 1), ('pórrez', 1), ('komajin', 1), ('eleiec', 1), ('ermez', 1)]...\n", + "2018-08-31 01:05:15,661 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3890000 (=100.0%) documents\n", + "2018-08-31 01:05:17,878 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:17,935 : INFO : adding document #3890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:21,514 : INFO : discarding 27575 tokens: [('pennix', 1), ('midyan', 1), ('ownerhip', 1), ('wiganthorp', 1), ('blendin', 1), ('cutebik', 1), ('fillbrick', 1), ('mcgucket', 1), ('stanchurian', 1), ('antersijn', 1)]...\n", + "2018-08-31 01:05:21,515 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3900000 (=100.0%) documents\n", + "2018-08-31 01:05:23,707 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:23,761 : INFO : adding document #3900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:27,438 : INFO : discarding 30283 tokens: [('grizzlies—becom', 1), ('nubeo', 1), ('votes—second', 1), ('motorsport—th', 1), ('aisenbrei', 1), ('theatermess', 1), ('alytoi', 1), ('amanédh', 1), ('bayandéra', 1), ('carkad', 1)]...\n", + "2018-08-31 01:05:27,438 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3910000 (=100.0%) documents\n", + "2018-08-31 01:05:29,665 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:29,721 : INFO : adding document #3910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:33,285 : INFO : discarding 27385 tokens: [('琿春廳', 1), ('边境村', 1), ('长图线', 1), ('阳川山屯线', 1), ('青年湖公园', 1), ('도문시', 1), ('돈화시', 1), ('룡정시', 1), ('안도현', 1), ('연길시', 1)]...\n", + "2018-08-31 01:05:33,286 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3920000 (=100.0%) documents\n", + "2018-08-31 01:05:35,481 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:35,534 : INFO : adding document #3920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:39,033 : INFO : discarding 28022 tokens: [('ballghazi', 1), ('bendgat', 1), ('biscuitg', 1), ('blabberg', 1), ('bladeg', 1), ('bridgeghazi', 1), ('briefing', 1), ('chipgat', 1), ('cuntgat', 1), ('deaverg', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:05:39,034 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3930000 (=100.0%) documents\n", + "2018-08-31 01:05:41,269 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:41,324 : INFO : adding document #3930000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:44,831 : INFO : discarding 23651 tokens: [('premur', 1), ('prevajalec', 1), ('prevodoma', 1), ('produkciji', 1), ('protitok', 1), ('provincialn', 1), ('raziskovalno', 1), ('različni', 1), ('razsvetljenska', 1), ('reakcionarni', 1)]...\n", + "2018-08-31 01:05:44,832 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3940000 (=100.0%) documents\n", + "2018-08-31 01:05:47,020 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:47,073 : INFO : adding document #3940000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:50,526 : INFO : discarding 25483 tokens: [('antimarkovnikov', 1), ('disiamyl', 1), ('methylcyclopenten', 1), ('methylcyclpentane—th', 1), ('amrop', 1), ('firm—peat', 1), ('futurestepat', 1), ('pratzer', 1), ('ultracompetit', 1), ('blaah', 1)]...\n", + "2018-08-31 01:05:50,527 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3950000 (=100.0%) documents\n", + "2018-08-31 01:05:52,765 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:52,822 : INFO : adding document #3950000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:56,182 : INFO : discarding 26712 tokens: [('cathedraex', 1), ('cathedrahi', 1), ('cathedrajeffrei', 1), ('consorthi', 1), ('consortjeffrei', 1), ('cornettsconcerto', 1), ('cornettsjeffrei', 1), ('elderandrew', 1), ('evangelisteamonn', 1), ('evangelistgreg', 1)]...\n", + "2018-08-31 01:05:56,183 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3960000 (=100.0%) documents\n", + "2018-08-31 01:05:58,378 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:05:58,431 : INFO : adding document #3960000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:01,886 : INFO : discarding 21158 tokens: [('juanmanueldelmar', 1), ('juanvelascoalvarado', 1), ('justinianoborgoño', 1), ('justofiguerola', 1), ('lizardomonteroflor', 1), ('luisjosédeorbegoso', 1), ('luislapuerta', 1), ('luismiguelsánchezcerro', 1), ('manuelcandamo', 1), ('manuelignaciodevivanco', 1)]...\n", + "2018-08-31 01:06:01,886 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3970000 (=100.0%) documents\n", + "2018-08-31 01:06:04,108 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:04,162 : INFO : adding document #3970000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:07,732 : INFO : discarding 24238 tokens: [('ižoralain', 1), ('līċ', 1), ('jiɸu', 1), ('qiyinlu', 1), ('yùnfù', 1), ('yùntóu', 1), ('aldocumar', 1), ('anasmol', 1), ('anticoag', 1), ('befarin', 1)]...\n", + "2018-08-31 01:06:07,733 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3980000 (=100.0%) documents\n", + "2018-08-31 01:06:09,942 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:09,996 : INFO : adding document #3980000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:13,626 : INFO : discarding 25230 tokens: [('feniksov', 1), ('fenixaren', 1), ('fenixorden', 1), ('filosofau', 1), ('filozofală', 1), ('flammern', 1), ('fruktansvärt', 1), ('fshehtav', 1), ('furien', 1), ('fénixov', 1)]...\n", + "2018-08-31 01:06:13,627 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3990000 (=100.0%) documents\n", + "2018-08-31 01:06:15,847 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:15,902 : INFO : adding document #3990000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:19,660 : INFO : discarding 28551 tokens: [('lynch–bushbi', 1), ('lynch–lee–murdai', 1), ('lyn–li', 1), ('lúe', 1), ('pleonosteosi', 1), ('pseudometachromat', 1), ('inlaat', 1), ('aminoacidopathi', 1), ('broca–boni', 1), ('hypoacousia', 1)]...\n", + "2018-08-31 01:06:19,660 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4000000 (=100.0%) documents\n", + "2018-08-31 01:06:21,872 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:21,927 : INFO : adding document #4000000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:25,621 : INFO : discarding 26595 tokens: [('computexdai', 1), ('skybridgeinterlaken', 1), ('skybridgemunich', 1), ('awxj', 1), ('london—teessid', 1), ('berryno', 1), ('cesenano', 1), ('neuburgno', 1), ('tendano', 1), ('tudorno', 1)]...\n", + "2018-08-31 01:06:25,622 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4010000 (=100.0%) documents\n", + "2018-08-31 01:06:27,849 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:27,904 : INFO : adding document #4010000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:31,249 : INFO : discarding 22417 tokens: [('naudingen', 1), ('“competitor”', 1), ('hkdba', 1), ('phoneticis', 1), ('province—near', 1), ('wcorcom', 1), ('wdbrc', 1), ('sitback', 1), ('camaspostrecord', 1), ('anonyniu', 1)]...\n", + "2018-08-31 01:06:31,250 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4020000 (=100.0%) documents\n", + "2018-08-31 01:06:33,452 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:33,505 : INFO : adding document #4020000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:36,947 : INFO : discarding 22038 tokens: [('ajmn', 1), ('ajplu', 1), ('nowthi', 1), ('fudoshin', 1), ('sadateru', 1), ('stratobu', 1), ('ambala–attari', 1), ('atariwala', 1), ('shabajpur', 1), ('demekhi', 1)]...\n", + "2018-08-31 01:06:36,948 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4030000 (=100.0%) documents\n", + "2018-08-31 01:06:39,178 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:39,233 : INFO : adding document #4030000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:42,754 : INFO : discarding 26370 tokens: [('gazger', 1), ('gāzgar', 1), ('gāzger', 1), ('jodegalabad', 1), ('jodegālābād', 1), ('joghranvaru', 1), ('joghrānvārū', 1), ('joghrāvārū', 1), ('jamig', 1), ('jamīg', 1)]...\n", + "2018-08-31 01:06:42,755 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4040000 (=100.0%) documents\n", + "2018-08-31 01:06:44,953 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:45,008 : INFO : adding document #4040000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:48,930 : INFO : discarding 30108 tokens: [('heterogend', 1), ('ewbb', 1), ('ljubliana', 1), ('multeum', 1), ('observatour', 1), ('polycentropsi', 1), ('guangyong', 1), ('mulligar', 1), ('martello–martellt', 1), ('payol', 1)]...\n", + "2018-08-31 01:06:48,931 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4050000 (=100.0%) documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:06:51,173 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:51,228 : INFO : adding document #4050000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:54,963 : INFO : discarding 25795 tokens: [('hodzyur', 1), ('krasnozhan', 1), ('utsiev', 1), ('affelai', 1), ('choutesioti', 1), ('masuaku', 1), ('strezo', 1), ('pangratio', 1), ('alebrini', 1), ('thadeyn', 1)]...\n", + "2018-08-31 01:06:54,964 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4060000 (=100.0%) documents\n", + "2018-08-31 01:06:57,160 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:06:57,214 : INFO : adding document #4060000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:00,990 : INFO : discarding 24945 tokens: [('buddhanin', 1), ('kobam', 1), ('siripu', 1), ('yaasagan', 1), ('llanar', 1), ('trysav', 1), ('‘beefy’', 1), ('atumpan’', 1), ('elinam', 1), ('hardboi', 1)]...\n", + "2018-08-31 01:07:00,991 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4070000 (=100.0%) documents\n", + "2018-08-31 01:07:03,216 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:03,271 : INFO : adding document #4070000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:07,078 : INFO : discarding 28279 tokens: [('mtun', 1), ('tucn', 1), ('giaguaro', 1), ('martinková', 1), ('sacrestano', 1), ('cronò', 1), ('gaudtvinck', 1), ('gavdtvinck', 1), ('goudtvinck', 1), ('‘ignativ', 1)]...\n", + "2018-08-31 01:07:07,078 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4080000 (=100.0%) documents\n", + "2018-08-31 01:07:09,269 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:09,323 : INFO : adding document #4080000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:13,211 : INFO : discarding 27270 tokens: [('kavarathi', 1), ('mohamma', 1), ('chengfoo', 1), ('tientsen', 1), ('waihaiwei', 1), ('avadhutha', 1), ('haritayana', 1), ('kshattriya', 1), ('parasurama’', 1), ('ramanananda', 1)]...\n", + "2018-08-31 01:07:13,212 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4090000 (=100.0%) documents\n", + "2018-08-31 01:07:15,444 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:15,500 : INFO : adding document #4090000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:19,262 : INFO : discarding 25875 tokens: [('rehabcar', 1), ('gavambodi', 1), ('karnatiqu', 1), ('plannisola', 1), ('agriculturepl', 1), ('glankeen', 1), ('kilcuilawn', 1), ('krickovič', 1), ('navijača', 1), ('podgorelec', 1)]...\n", + "2018-08-31 01:07:19,262 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4100000 (=100.0%) documents\n", + "2018-08-31 01:07:21,467 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:21,521 : INFO : adding document #4100000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:25,331 : INFO : discarding 31683 tokens: [('rentlord', 1), ('seedcamp', 1), ('almerin', 1), ('siriusdecis', 1), ('karzaz', 1), ('maribella', 1), ('cochleocep', 1), ('gobiesocid', 1), ('felderhoff', 1), ('krugalle', 1)]...\n", + "2018-08-31 01:07:25,331 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4110000 (=100.0%) documents\n", + "2018-08-31 01:07:27,556 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:27,612 : INFO : adding document #4110000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:31,433 : INFO : discarding 31773 tokens: [('costria', 1), ('discopuncta', 1), ('okendeni', 1), ('achuth', 1), ('cheluvaraj', 1), ('hemanthkumar', 1), ('shobh', 1), ('froemberg', 1), ('hatziyakouni', 1), ('rabed', 1)]...\n", + "2018-08-31 01:07:31,434 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4120000 (=100.0%) documents\n", + "2018-08-31 01:07:33,643 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:33,698 : INFO : adding document #4120000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:37,348 : INFO : discarding 26180 tokens: [('mattalia', 1), ('climonet', 1), ('bolcer', 1), ('lange–paul', 1), ('“mood', 1), ('“wend', 1), ('cardkei', 1), ('kentakkī', 1), ('kerasin', 1), ('radinov', 1)]...\n", + "2018-08-31 01:07:37,348 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4130000 (=100.0%) documents\n", + "2018-08-31 01:07:39,576 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:39,631 : INFO : adding document #4130000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:43,123 : INFO : discarding 26461 tokens: [('herniman', 1), ('kiwiboot', 1), ('зоро”', 1), ('мајска', 1), ('свијетла', 1), ('„ој', 1), ('dichpal', 1), ('jankampet', 1), ('nizamabad–manoharabad', 1), ('secunderabad–manmad', 1)]...\n", + "2018-08-31 01:07:43,124 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4140000 (=100.0%) documents\n", + "2018-08-31 01:07:45,322 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:45,375 : INFO : adding document #4140000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:49,028 : INFO : discarding 25557 tokens: [('dracularegion', 1), ('foolbroadwai', 1), ('hefner’', 1), ('sarjubala', 1), ('सरजूबाला', 1), ('counties—spokan', 1), ('horsebyt', 1), ('airtre', 1), ('arbolino', 1), ('brandcrowd', 1)]...\n", + "2018-08-31 01:07:49,029 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4150000 (=100.0%) documents\n", + "2018-08-31 01:07:51,262 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:51,318 : INFO : adding document #4150000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:55,039 : INFO : discarding 27656 tokens: [('deschauense', 1), ('ademinokan', 1), ('allahkabo', 1), ('baninla', 1), ('bonlambo', 1), ('bougfen', 1), ('dialemi', 1), ('lesizw', 1), ('l’orphelin', 1), ('mtungi', 1)]...\n", + "2018-08-31 01:07:55,039 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4160000 (=100.0%) documents\n", + "2018-08-31 01:07:57,259 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:07:57,313 : INFO : adding document #4160000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:01,049 : INFO : discarding 27527 tokens: [('badasseri', 1), ('bumpagussi', 1), ('fanback', 1), ('number—venus—trap', 1), ('whore”', 1), ('“gore', 1), ('“zombi', 1), ('allcamarina', 1), ('chachacomayoc', 1), ('chachakuma', 1)]...\n", + "2018-08-31 01:08:01,050 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4170000 (=100.0%) documents\n", + "2018-08-31 01:08:03,272 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:03,328 : INFO : adding document #4170000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:08:07,053 : INFO : discarding 32837 tokens: [('busiess', 1), ('duhoki', 1), ('mehoderet', 1), ('zilberstien', 1), ('“barghouti', 1), ('grosswig', 1), ('beninensi', 1), ('beninensis”', 1), ('pflanzenfam', 1), ('pflanzenw', 1)]...\n", + "2018-08-31 01:08:07,053 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4180000 (=100.0%) documents\n", + "2018-08-31 01:08:09,254 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:09,310 : INFO : adding document #4180000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:13,016 : INFO : discarding 26977 tokens: [('adefesio', 1), ('bellesa', 1), ('bitó', 1), ('cdgc', 1), ('coratg', 1), ('dispersión', 1), ('dramàtic', 1), ('poliorama', 1), ('reposición', 1), ('ridículo', 1)]...\n", + "2018-08-31 01:08:13,017 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4190000 (=100.0%) documents\n", + "2018-08-31 01:08:15,240 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:15,296 : INFO : adding document #4190000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:18,909 : INFO : discarding 26355 tokens: [('asteson', 1), ('bciaev', 1), ('bcmab', 1), ('bcowg', 1), ('bfkss', 1), ('biawm', 1), ('bqcjo', 1), ('buwg', 1), ('mystic”', 1), ('odrun', 1)]...\n", + "2018-08-31 01:08:18,910 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4200000 (=100.0%) documents\n", + "2018-08-31 01:08:21,112 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:21,166 : INFO : adding document #4200000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:24,815 : INFO : discarding 27749 tokens: [('лончар', 1), ('раде', 1), ('olomi', 1), ('crsvr', 1), ('skizzi', 1), ('wentzi', 1), ('حسّون', 1), ('شادي', 1), ('shafgotch', 1), ('avertis', 1)]...\n", + "2018-08-31 01:08:24,816 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4210000 (=100.0%) documents\n", + "2018-08-31 01:08:27,050 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:27,105 : INFO : adding document #4210000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:30,794 : INFO : discarding 27483 tokens: [('gwmpa', 1), ('htv’', 1), ('asdefault', 1), ('datco', 1), ('dncc', 1), ('presentu', 1), ('usebelowbox', 1), ('ataş', 1), ('aycıl', 1), ('formerplay', 1)]...\n", + "2018-08-31 01:08:30,795 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4220000 (=100.0%) documents\n", + "2018-08-31 01:08:33,023 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:33,078 : INFO : adding document #4220000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:37,015 : INFO : discarding 33609 tokens: [('disembarc', 1), ('ddpd', 1), ('dimmension', 1), ('gheitanchi', 1), ('mbdpd', 1), ('mddpd', 1), ('nmse', 1), ('summart', 1), ('petitdemang', 1), ('chekir', 1)]...\n", + "2018-08-31 01:08:37,016 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4230000 (=100.0%) documents\n", + "2018-08-31 01:08:39,252 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:39,309 : INFO : adding document #4230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:43,022 : INFO : discarding 35581 tokens: [('middelstegracht', 1), ('onbeschoten', 1), ('schoorsteen', 1), ('serruij', 1), ('wevershui', 1), ('south–eastward', 1), ('kummerfranziska', 1), ('forest–rich', 1), ('mollebo', 1), ('oud–dijk', 1)]...\n", + "2018-08-31 01:08:43,022 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4240000 (=100.0%) documents\n", + "2018-08-31 01:08:45,223 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:45,277 : INFO : adding document #4240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:49,087 : INFO : discarding 26558 tokens: [('anhammu', 1), ('dalenii', 1), ('albisparsum', 1), ('albomaculatum', 1), ('alboplagiatum', 1), ('annamanum', 1), ('annulicorn', 1), ('basigranulatum', 1), ('chebanum', 1), ('griseolum', 1)]...\n", + "2018-08-31 01:08:49,087 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4250000 (=100.0%) documents\n", + "2018-08-31 01:08:51,322 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:51,378 : INFO : adding document #4250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:55,129 : INFO : discarding 26392 tokens: [('morê', 1), ('mrdulja', 1), ('changkija', 1), ('curdt', 1), ('goslak', 1), ('koelbaek', 1), ('sadena', 1), ('yueer', 1), ('adhibekhon', 1), ('anuhandhan', 1)]...\n", + "2018-08-31 01:08:55,130 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4260000 (=100.0%) documents\n", + "2018-08-31 01:08:57,332 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:08:57,386 : INFO : adding document #4260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:01,109 : INFO : discarding 25433 tokens: [('agherton', 1), ('asscoait', 1), ('botvidarsson', 1), ('hejnum', 1), ('hellvi', 1), ('maadikondu', 1), ('ಮಾಡಿ', 1), ('fourchevil', 1), ('lanjean', 1), ('slubicki', 1)]...\n", + "2018-08-31 01:09:01,110 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4270000 (=100.0%) documents\n", + "2018-08-31 01:09:03,333 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:03,389 : INFO : adding document #4270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:07,204 : INFO : discarding 27722 tokens: [('sarıdaniş', 1), ('saxagan', 1), ('saçlımüsellim', 1), ('sefaalan', 1), ('selinoū̂', 1), ('sestv', 1), ('seyitl', 1), ('seïtàn', 1), ('seïtán', 1), ('siderio', 1)]...\n", + "2018-08-31 01:09:07,205 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4280000 (=100.0%) documents\n", + "2018-08-31 01:09:09,430 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:09,484 : INFO : adding document #4280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:13,206 : INFO : discarding 27241 tokens: [('manipad', 1), ('palasoni', 1), ('pathori', 1), ('satradhikar', 1), ('podwalna', 1), ('zajdensznir', 1), ('yodia', 1), ('hahayyim', 1), ('hayyei', 1), ('paytanim', 1)]...\n", + "2018-08-31 01:09:13,206 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4290000 (=100.0%) documents\n", + "2018-08-31 01:09:15,447 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:15,503 : INFO : adding document #4290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:19,322 : INFO : discarding 26610 tokens: [('clearenathaniel', 1), ('coxgenna', 1), ('darolyn', 1), ('davisalecia', 1), ('favolic', 1), ('guerrerojohn', 1), ('huaesther', 1), ('huntewilan', 1), ('johnsonandr', 1), ('juaun', 1)]...\n", + "2018-08-31 01:09:19,322 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4300000 (=100.0%) documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:09:21,533 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:21,587 : INFO : adding document #4300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:25,439 : INFO : discarding 26271 tokens: [('viestintä', 1), ('shinchireem', 1), ('polyromant', 1), ('alhathloul', 1), ('देओराई', 1), ('abbandon', 1), ('cicarimanah', 1), ('cilopang', 1), ('pamulihan', 1), ('ruhatma', 1)]...\n", + "2018-08-31 01:09:25,440 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4310000 (=100.0%) documents\n", + "2018-08-31 01:09:27,664 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:27,720 : INFO : adding document #4310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:31,502 : INFO : discarding 26757 tokens: [('hagenbezirk', 1), ('oberlohberg', 1), ('bratusehek', 1), ('hundsternperiod', 1), ('intercessiss', 1), ('minoem', 1), ('mondcyclen', 1), ('münzfüsse', 1), ('philolaic', 1), ('philologensammlung', 1)]...\n", + "2018-08-31 01:09:31,503 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4320000 (=100.0%) documents\n", + "2018-08-31 01:09:33,712 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:33,766 : INFO : adding document #4320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:37,543 : INFO : discarding 26110 tokens: [('yermosol', 1), ('frithstreetgalleri', 1), ('‘aquatopia', 1), ('empyriu', 1), ('’toon', 1), ('imogenstuart', 1), ('frēnulum', 1), ('ileocaecali', 1), ('indepthinfo', 1), ('jonpatrick', 1)]...\n", + "2018-08-31 01:09:37,544 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4330000 (=100.0%) documents\n", + "2018-08-31 01:09:39,768 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:39,824 : INFO : adding document #4330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:43,716 : INFO : discarding 29562 tokens: [('shmadderhorn', 1), ('skyboss', 1), ('return—compli', 1), ('byelomory', 1), ('rate—mad', 1), ('resolution—ow', 1), ('beatlesactu', 1), ('catsactu', 1), ('pedmont', 1), ('turneractu', 1)]...\n", + "2018-08-31 01:09:43,716 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4340000 (=100.0%) documents\n", + "2018-08-31 01:09:45,928 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:45,983 : INFO : adding document #4340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:49,760 : INFO : discarding 25286 tokens: [('moriakov', 1), ('nedostupnyi', 1), ('onkuko', 1), ('opasnaga', 1), ('panamushir', 1), ('rakkoshima', 1), ('rasutsua', 1), ('reidovo', 1), ('shimushir', 1), ('tanfilyevka', 1)]...\n", + "2018-08-31 01:09:49,760 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4350000 (=100.0%) documents\n", + "2018-08-31 01:09:51,991 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:52,048 : INFO : adding document #4350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:55,908 : INFO : discarding 25872 tokens: [('cilìa', 1), ('earle—releas', 1), ('everypunk', 1), ('filmed—featur', 1), ('moaningli', 1), ('whigs—vocalist', 1), ('you—now', 1), ('dāʾimā', 1), ('muẓaff', 1), ('zülfe', 1)]...\n", + "2018-08-31 01:09:55,909 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4360000 (=100.0%) documents\n", + "2018-08-31 01:09:58,134 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:09:58,189 : INFO : adding document #4360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:01,940 : INFO : discarding 24639 tokens: [('juglandioidea', 1), ('pecanpi', 1), ('preservation—hom', 1), ('banis', 1), ('boehmischbroda', 1), ('kölving', 1), ('urgrossmutt', 1), ('mixtecah', 1), ('boldest—through', 1), ('craven—drop', 1)]...\n", + "2018-08-31 01:10:01,940 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4370000 (=100.0%) documents\n", + "2018-08-31 01:10:04,164 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:04,220 : INFO : adding document #4370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:07,951 : INFO : discarding 28414 tokens: [('fffeh', 1), ('fontpag', 1), ('jiseucjp', 1), ('microwiz', 1), ('modifoc', 1), ('rajvite', 1), ('ruscii', 1), ('sicgcc', 1), ('barwin’', 1), ('ewrit', 1)]...\n", + "2018-08-31 01:10:07,952 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4380000 (=100.0%) documents\n", + "2018-08-31 01:10:10,164 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:10,219 : INFO : adding document #4380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:13,877 : INFO : discarding 26830 tokens: [('asturya', 1), ('charvonah', 1), ('chrsitian', 1), ('deprazo', 1), ('disengoff', 1), ('eitzah', 1), ('freilichin', 1), ('haitah', 1), ('hayesa', 1), ('khumai', 1)]...\n", + "2018-08-31 01:10:13,877 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4390000 (=100.0%) documents\n", + "2018-08-31 01:10:16,099 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:16,155 : INFO : adding document #4390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:19,776 : INFO : discarding 24195 tokens: [('carocari', 1), ('faustman–ohlin', 1), ('åkerlöf', 1), ('loubet’', 1), ('cinemascope—', 1), ('cinemascope—a', 1), ('cinemascope—on', 1), ('press—bi', 1), ('richard—for', 1), ('roach—wer', 1)]...\n", + "2018-08-31 01:10:19,777 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4400000 (=100.0%) documents\n", + "2018-08-31 01:10:22,002 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:22,057 : INFO : adding document #4400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:25,676 : INFO : discarding 25098 tokens: [('wildenburgisch', 1), ('fedarai', 1), ('fedraei', 1), ('losiap', 1), ('mwagmwog', 1), ('potoangroa', 1), ('yasor', 1), ('axes—keep', 1), ('corona′', 1), ('corona‴', 1)]...\n", + "2018-08-31 01:10:25,677 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4410000 (=100.0%) documents\n", + "2018-08-31 01:10:27,914 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:27,970 : INFO : adding document #4410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:31,541 : INFO : discarding 22613 tokens: [('ʾarbaʿūn', 1), ('ʾithnān', 1), ('иккĕ', 1), ('сорак', 1), ('хĕрĕх', 1), ('четрдесет', 1), ('හතලිස්', 1), ('ორმოცდაორი', 1), ('dialkylaminoanthraquinon', 1), ('diethylaminoazobenzen', 1)]...\n", + "2018-08-31 01:10:31,542 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4420000 (=100.0%) documents\n", + "2018-08-31 01:10:33,767 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:33,821 : INFO : adding document #4420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:10:37,410 : INFO : discarding 25416 tokens: [('udadh', 1), ('umaisi', 1), ('withelector', 1), ('yadlaf', 1), ('yahzin', 1), ('yalhan', 1), ('keïta’', 1), ('millenniumsprei', 1), ('“schicksal', 1), ('biotinctur', 1)]...\n", + "2018-08-31 01:10:37,410 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4430000 (=100.0%) documents\n", + "2018-08-31 01:10:39,643 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:39,699 : INFO : adding document #4430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:43,517 : INFO : discarding 25712 tokens: [('babies—no', 1), ('രണ്ടാമൂഴം', 1), ('mudhakkirâtî', 1), ('haunt–', 1), ('羊をめぐる冒険', 1), ('hiáni', 1), ('年のピンボール', 1), ('bouzaidi', 1), ('fishbook', 1), ('prusakowski', 1)]...\n", + "2018-08-31 01:10:43,518 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4440000 (=100.0%) documents\n", + "2018-08-31 01:10:45,733 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:45,788 : INFO : adding document #4440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:49,638 : INFO : discarding 28233 tokens: [('noisenik', 1), ('sexnois', 1), ('halkevleri', 1), ('insuanc', 1), ('documfest', 1), ('tv“', 1), ('wirtschaftsfilmprei', 1), ('zdftheaterkan', 1), ('„broadview', 1), ('buzzcar', 1)]...\n", + "2018-08-31 01:10:49,639 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4450000 (=100.0%) documents\n", + "2018-08-31 01:10:51,877 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:51,935 : INFO : adding document #4450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:55,646 : INFO : discarding 23373 tokens: [('gonsalensi', 1), ('bp–bp', 1), ('pabalat', 1), ('gonsaloi', 1), ('toxtrot', 1), ('llangari', 1), ('pseudolisten', 1), ('kinderboekenmuseum', 1), ('mauritshau', 1), ('sgravenhag', 1)]...\n", + "2018-08-31 01:10:55,646 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4460000 (=100.0%) documents\n", + "2018-08-31 01:10:57,858 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:10:57,916 : INFO : adding document #4460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:01,710 : INFO : discarding 26196 tokens: [('nislei', 1), ('mulran', 1), ('pakkiam', 1), ('camacúa', 1), ('veshka', 1), ('vishka’', 1), ('aboel', 1), ('maaden', 1), ('albummak', 1), ('chiljip', 1)]...\n", + "2018-08-31 01:11:01,710 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4470000 (=100.0%) documents\n", + "2018-08-31 01:11:03,947 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:04,004 : INFO : adding document #4470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:07,794 : INFO : discarding 25284 tokens: [('xeob', 1), ('xerca', 1), ('xetaa', 1), ('xhtaa', 1), ('deleari', 1), ('eisennagel', 1), ('elsammak', 1), ('lap’', 1), ('xher', 1), ('fùshǔ', 1)]...\n", + "2018-08-31 01:11:07,795 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4480000 (=100.0%) documents\n", + "2018-08-31 01:11:10,008 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:10,062 : INFO : adding document #4480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:13,768 : INFO : discarding 25546 tokens: [('sivrji', 1), ('leatherart', 1), ('stehben', 1), ('eidolf', 1), ('smiercakova', 1), ('xiao’ou', 1), ('epuff', 1), ('xinpei', 1), ('yingmei', 1), ('两大女主角之一', 1)]...\n", + "2018-08-31 01:11:13,769 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4490000 (=100.0%) documents\n", + "2018-08-31 01:11:15,991 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:16,048 : INFO : adding document #4490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:19,727 : INFO : discarding 25155 tokens: [('colafrancessco', 1), ('colafrancesso', 1), ('murworth', 1), ('vinceslao', 1), ('bare’', 1), ('bubbapalooza', 1), ('ccshow', 1), ('cryin’', 1), ('epladi', 1), ('epwatermelon', 1)]...\n", + "2018-08-31 01:11:19,727 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4500000 (=100.0%) documents\n", + "2018-08-31 01:11:21,945 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:22,000 : INFO : adding document #4500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:25,667 : INFO : discarding 25594 tokens: [('bialkonski', 1), ('derfl', 1), ('generalin', 1), ('grodicki', 1), ('heiratsnest', 1), ('henkstein', 1), ('sorner', 1), ('wranow', 1), ('seiford', 1), ('nepoos', 1)]...\n", + "2018-08-31 01:11:25,668 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4510000 (=100.0%) documents\n", + "2018-08-31 01:11:27,911 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:27,967 : INFO : adding document #4510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:31,755 : INFO : discarding 26618 tokens: [('chronei', 1), ('footprintz', 1), ('jesglar', 1), ('brozei', 1), ('cusumba', 1), ('namsŏk', 1), ('sŏnghu', 1), ('estrapron', 1), ('tristeroid', 1), ('trophobolen', 1)]...\n", + "2018-08-31 01:11:31,755 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4520000 (=100.0%) documents\n", + "2018-08-31 01:11:33,974 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:34,029 : INFO : adding document #4520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:37,854 : INFO : discarding 26258 tokens: [('aackerlund', 1), ('hollyann', 1), ('burmanniida', 1), ('cormfyt', 1), ('cormofyt', 1), ('fjälltrakter', 1), ('fylog', 1), ('färder', 1), ('kommunalgymnasium', 1), ('lappmark', 1)]...\n", + "2018-08-31 01:11:37,855 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4530000 (=100.0%) documents\n", + "2018-08-31 01:11:40,093 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:40,148 : INFO : adding document #4530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:43,821 : INFO : discarding 24805 tokens: [('bybi', 1), ('‘groupwork', 1), ('eyhirind', 1), ('komekbaev', 1), ('taimbet', 1), ('zhosali', 1), ('көмекбаев', 1), ('тәйімбет', 1), ('kaipi', 1), ('marstv', 1)]...\n", + "2018-08-31 01:11:43,822 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4540000 (=100.0%) documents\n", + "2018-08-31 01:11:46,049 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:46,103 : INFO : adding document #4540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:49,784 : INFO : discarding 29513 tokens: [('chopek', 1), ('lvng', 1), ('seerman', 1), ('bilkman', 1), ('blisson', 1), ('guenoden', 1), ('mccabewith', 1), ('rabbit—televis', 1), ('schellewald', 1), ('sniz', 1)]...\n", + "2018-08-31 01:11:49,785 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4550000 (=100.0%) documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:11:52,033 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:52,089 : INFO : adding document #4550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:55,843 : INFO : discarding 27946 tokens: [('aristri', 1), ('bitú', 1), ('contratado', 1), ('criou', 1), ('indivisível', 1), ('nosgenti', 1), ('storiei', 1), ('himmeltårnet', 1), ('mannfolk', 1), ('synker', 1)]...\n", + "2018-08-31 01:11:55,843 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4560000 (=100.0%) documents\n", + "2018-08-31 01:11:58,057 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:11:58,114 : INFO : adding document #4560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:01,790 : INFO : discarding 25430 tokens: [('compathi', 1), ('transpathi', 1), ('unipathi', 1), ('hphl', 1), ('jedraniyah', 1), ('kuhaylan', 1), ('samraa', 1), ('zawba', 1), ('boniquez', 1), ('mosoli', 1)]...\n", + "2018-08-31 01:12:01,791 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4570000 (=100.0%) documents\n", + "2018-08-31 01:12:04,024 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:04,081 : INFO : adding document #4570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:07,772 : INFO : discarding 24577 tokens: [('hazera', 1), ('philuppa', 1), ('villiprott', 1), ('subnormality’', 1), ('subnormal’', 1), ('‘incurable’', 1), ('‘psychopath’', 1), ('dolsando', 1), ('huayllani', 1), ('gudlavalleru', 1)]...\n", + "2018-08-31 01:12:07,773 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4580000 (=100.0%) documents\n", + "2018-08-31 01:12:09,986 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:10,041 : INFO : adding document #4580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:13,671 : INFO : discarding 25906 tokens: [('baddamp', 1), ('badvelli', 1), ('bommena', 1), ('buyyaram', 1), ('chamanp', 1), ('godampet', 1), ('gudep', 1), ('jajulpet', 1), ('jakkep', 1), ('jilleda', 1)]...\n", + "2018-08-31 01:12:13,671 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4590000 (=100.0%) documents\n", + "2018-08-31 01:12:15,907 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:15,964 : INFO : adding document #4590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:19,555 : INFO : discarding 26622 tokens: [('buttefield', 1), ('twentysomethings’', 1), ('형제복지원', 1), ('chyqui', 1), ('chyti', 1), ('aussenförd', 1), ('eeeeeeoooooow', 1), ('purrrrr', 1), ('farming’', 1), ('lanefield', 1)]...\n", + "2018-08-31 01:12:19,555 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4600000 (=100.0%) documents\n", + "2018-08-31 01:12:21,783 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:21,837 : INFO : adding document #4600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:25,275 : INFO : discarding 21558 tokens: [('xevjp', 1), ('xhvjp', 1), ('xelu', 1), ('xhlu', 1), ('xeng', 1), ('xheng', 1), ('dostbiliranpstc', 1), ('xeol', 1), ('byarkitekten', 1), ('ålcom', 1)]...\n", + "2018-08-31 01:12:25,276 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4610000 (=100.0%) documents\n", + "2018-08-31 01:12:27,516 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:27,572 : INFO : adding document #4610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:31,214 : INFO : discarding 27511 tokens: [('sfranki', 1), ('rauchenberg', 1), ('freakshift', 1), ('joobeur', 1), ('oubthani', 1), ('abitey', 1), ('agbinibo', 1), ('chanomi', 1), ('ekpemupolo', 1), ('eweleso', 1)]...\n", + "2018-08-31 01:12:31,215 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4620000 (=100.0%) documents\n", + "2018-08-31 01:12:33,438 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:33,492 : INFO : adding document #4620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:37,252 : INFO : discarding 28035 tokens: [('bahnhofsbucht', 1), ('heilbronn–schwäbisch', 1), ('hohenlohebahn', 1), ('kocherbahn', 1), ('operating”', 1), ('zamarián', 1), ('kohlrabizirku', 1), ('lokhal', 1), ('multiversum', 1), ('sachsenarena', 1)]...\n", + "2018-08-31 01:12:37,253 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4630000 (=100.0%) documents\n", + "2018-08-31 01:12:39,498 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:39,555 : INFO : adding document #4630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:43,280 : INFO : discarding 29319 tokens: [('kuehu', 1), ('lahni', 1), ('salanoa', 1), ('shawlina', 1), ('citraperkasa', 1), ('gentabuana', 1), ('halilintar', 1), ('karmapala', 1), ('mayangkara', 1), ('menaragad', 1)]...\n", + "2018-08-31 01:12:43,281 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4640000 (=100.0%) documents\n", + "2018-08-31 01:12:45,509 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:45,563 : INFO : adding document #4640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:49,172 : INFO : discarding 25666 tokens: [('cooperatsiya', 1), ('pisheviki', 1), ('«сборная', 1), ('братьев', 1), ('могилы', 1), ('родословной', 1), ('старостиных', 1), ('футболу»', 1), ('gewachs', 1), ('hieracien', 1)]...\n", + "2018-08-31 01:12:49,172 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4650000 (=100.0%) documents\n", + "2018-08-31 01:12:51,401 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:51,458 : INFO : adding document #4650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:55,095 : INFO : discarding 27899 tokens: [('motalia', 1), ('saltomort', 1), ('dictornari', 1), ('speigelberg', 1), ('teatrar', 1), ('theaterhistori', 1), ('velthen', 1), ('“kwong', 1), ('läski', 1), ('pihlajamaa', 1)]...\n", + "2018-08-31 01:12:55,096 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4660000 (=100.0%) documents\n", + "2018-08-31 01:12:57,320 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:12:57,375 : INFO : adding document #4660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:00,887 : INFO : discarding 22069 tokens: [('cheruvallikkavu', 1), ('dharmashatha', 1), ('kumaranallor', 1), ('kuroor', 1), ('laxmna', 1), ('manarcad', 1), ('mookaambika', 1), ('nagampadom', 1), ('pakkil', 1), ('pallippurathukavu', 1)]...\n", + "2018-08-31 01:13:00,888 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4670000 (=100.0%) documents\n", + "2018-08-31 01:13:03,128 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:03,185 : INFO : adding document #4670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:13:06,836 : INFO : discarding 30694 tokens: [('karisalkalampatti', 1), ('karisalkallampatti', 1), ('maikandan', 1), ('prednli', 1), ('rayapalayam', 1), ('sengapadai', 1), ('sivarakkottai', 1), ('sivarakottai', 1), ('sundrav', 1), ('surayi', 1)]...\n", + "2018-08-31 01:13:06,837 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4680000 (=100.0%) documents\n", + "2018-08-31 01:13:09,061 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:09,116 : INFO : adding document #4680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:12,581 : INFO : discarding 22690 tokens: [('dunnamona', 1), ('owenacharra', 1), ('forsgrini', 1), ('kyranak', 1), ('chemicæ', 1), ('purgantibu', 1), ('as“…an', 1), ('chemicals”', 1), ('cradle”', 1), ('smm’', 1)]...\n", + "2018-08-31 01:13:12,582 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4690000 (=100.0%) documents\n", + "2018-08-31 01:13:14,837 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:14,893 : INFO : adding document #4690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:18,445 : INFO : discarding 26884 tokens: [('aierb', 1), ('auzmendi', 1), ('etxezarreta', 1), ('inguma', 1), ('rubriscoria', 1), ('beinhak', 1), ('optegra', 1), ('jisedaigata', 1), ('sōzōryoku', 1), ('悲劇喜劇', 1)]...\n", + "2018-08-31 01:13:18,445 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4700000 (=100.0%) documents\n", + "2018-08-31 01:13:20,673 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:20,729 : INFO : adding document #4700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:24,351 : INFO : discarding 24855 tokens: [('vanpretti', 1), ('ammunson', 1), ('euon', 1), ('leerschool', 1), ('lulich', 1), ('nimarota', 1), ('manabendranath', 1), ('matlebuddin', 1), ('rakheswar', 1), ('bhimananda', 1)]...\n", + "2018-08-31 01:13:24,351 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4710000 (=100.0%) documents\n", + "2018-08-31 01:13:26,592 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:26,650 : INFO : adding document #4710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:30,265 : INFO : discarding 24534 tokens: [('trenow', 1), ('vksk', 1), ('rapnet', 1), ('“virgo', 1), ('villarutia', 1), ('leboucz', 1), ('sussuru', 1), ('flhb', 1), ('yscu', 1), ('hrajnoha', 1)]...\n", + "2018-08-31 01:13:30,265 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4720000 (=100.0%) documents\n", + "2018-08-31 01:13:32,496 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:32,550 : INFO : adding document #4720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:36,327 : INFO : discarding 27836 tokens: [('udheshichathu', 1), ('ogunjobi', 1), ('rajion', 1), ('season–open', 1), ('dopaldehyd', 1), ('stojmenov', 1), ('jhujuan', 1), ('mizzel', 1), ('nortwest', 1), ('tonyan', 1)]...\n", + "2018-08-31 01:13:36,328 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4730000 (=100.0%) documents\n", + "2018-08-31 01:13:38,569 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:38,625 : INFO : adding document #4730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:42,269 : INFO : discarding 25378 tokens: [('sons—henri', 1), ('bclb', 1), ('further”', 1), ('glader', 1), ('plarium', 1), ('iksten', 1), ('jeremejev', 1), ('lapkovski', 1), ('matjušenko', 1), ('seņ', 1)]...\n", + "2018-08-31 01:13:42,270 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4740000 (=100.0%) documents\n", + "2018-08-31 01:13:44,494 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:44,549 : INFO : adding document #4740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:48,077 : INFO : discarding 23039 tokens: [('covntry', 1), ('dicastu', 1), ('třebič', 1), ('japonard', 1), ('kallyr', 1), ('lesnabi', 1), ('overcomethough', 1), ('appearance—heavi', 1), ('bdniko', 1), ('odilonredon', 1)]...\n", + "2018-08-31 01:13:48,077 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4750000 (=100.0%) documents\n", + "2018-08-31 01:13:50,315 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:50,370 : INFO : adding document #4750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:53,795 : INFO : discarding 24674 tokens: [('ago—dr', 1), ('hawke—continu', 1), ('leftfrom', 1), ('shawhugh', 1), ('buschenreit', 1), ('ganzendorf', 1), ('gunack', 1), ('klangweil', 1), ('lethereberock', 1), ('mühlgang', 1)]...\n", + "2018-08-31 01:13:53,796 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4760000 (=100.0%) documents\n", + "2018-08-31 01:13:56,027 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:56,082 : INFO : adding document #4760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:13:59,690 : INFO : discarding 25555 tokens: [('mcelhonein', 1), ('melvillewith', 1), ('relationshipparticularli', 1), ('—fraiss', 1), ('kategreenawai', 1), ('littledom', 1), ('marigoldgarden', 1), ('trot’', 1), ('turnasid', 1), ('ali—with', 1)]...\n", + "2018-08-31 01:13:59,691 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4770000 (=100.0%) documents\n", + "2018-08-31 01:14:01,930 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:01,986 : INFO : adding document #4770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:05,750 : INFO : discarding 28204 tokens: [('sthlmlab', 1), ('″scandinavian', 1), ('concert—bil', 1), ('flow—h', 1), ('night—you', 1), ('petrossev', 1), ('aviationsoftwar', 1), ('privateavi', 1), ('extravascul', 1), ('intranven', 1)]...\n", + "2018-08-31 01:14:05,750 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4780000 (=100.0%) documents\n", + "2018-08-31 01:14:07,998 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:08,055 : INFO : adding document #4780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:11,656 : INFO : discarding 26331 tokens: [('½nhso', 1), ('½nnaso', 1), ('genderolog', 1), ('tamasailau', 1), ('transfemmebutch', 1), ('nusugbu', 1), ('penfoi', 1), ('barnhardtcotton', 1), ('nnaso', 1), ('ocsnan', 1)]...\n", + "2018-08-31 01:14:11,656 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4790000 (=100.0%) documents\n", + "2018-08-31 01:14:13,915 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:13,972 : INFO : adding document #4790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:17,563 : INFO : discarding 25757 tokens: [('tudorand', 1), ('unreadyand', 1), ('valoiscalai', 1), ('viiiand', 1), ('wendenc', 1), ('wessexand', 1), ('wessexson', 1), ('winchesterag', 1), ('yorknin', 1), ('yorkwestminst', 1)]...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:14:17,564 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4800000 (=100.0%) documents\n", + "2018-08-31 01:14:19,802 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:19,856 : INFO : adding document #4800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:23,379 : INFO : discarding 27394 tokens: [('orders—list', 1), ('biis', 1), ('boncouer', 1), ('conhabit', 1), ('strips–', 1), ('aaron—top', 1), ('brafasco', 1), ('thughliph', 1), ('alsohold', 1), ('hospitals—credit', 1)]...\n", + "2018-08-31 01:14:23,380 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4810000 (=100.0%) documents\n", + "2018-08-31 01:14:25,637 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:25,693 : INFO : adding document #4810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:29,320 : INFO : discarding 26264 tokens: [('genoptix', 1), ('kymriah', 1), ('larvadex', 1), ('lipactin', 1), ('malariam', 1), ('neporex', 1), ('oncologyceo', 1), ('palobiofarma', 1), ('pedestrian—research', 1), ('pharmaceuticalsceo', 1)]...\n", + "2018-08-31 01:14:29,321 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4820000 (=100.0%) documents\n", + "2018-08-31 01:14:31,542 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:31,597 : INFO : adding document #4820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:35,024 : INFO : discarding 22392 tokens: [('haachts', 1), ('clerckschool', 1), ('herentchurch', 1), ('toverveld', 1), ('alpaïdi', 1), ('alpeid', 1), ('gorgoniuskerk', 1), ('freedomtre', 1), ('kerkhuldenberg', 1), ('peuthystraat', 1)]...\n", + "2018-08-31 01:14:35,024 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4830000 (=100.0%) documents\n", + "2018-08-31 01:14:37,276 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:37,333 : INFO : adding document #4830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:40,867 : INFO : discarding 24385 tokens: [('o’neylle’', 1), ('daricau', 1), ('bissamberg', 1), ('bockfluss', 1), ('breintle', 1), ('brzeczinski', 1), ('feldmareschalleutn', 1), ('felmarshalleutn', 1), ('grosshofen', 1), ('hartizsch', 1)]...\n", + "2018-08-31 01:14:40,868 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4840000 (=100.0%) documents\n", + "2018-08-31 01:14:43,094 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:43,149 : INFO : adding document #4840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:46,707 : INFO : discarding 23869 tokens: [('loooouuuuuuuuuuuu', 1), ('rainhat', 1), ('rryyrrybybbrbrryryybrbbybi', 1), ('aktrain', 1), ('arqalıq', 1), ('baikonuriss', 1), ('balqaş', 1), ('jañaözen', 1), ('kostanaycentr', 1), ('kökşetaw', 1)]...\n", + "2018-08-31 01:14:46,708 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4850000 (=100.0%) documents\n", + "2018-08-31 01:14:48,950 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:49,009 : INFO : adding document #4850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:52,583 : INFO : discarding 25415 tokens: [('kubainbo', 1), ('kubianbo', 1), ('malteranium', 1), ('megatron—but', 1), ('obisidian', 1), ('spacecraftt', 1), ('thebes—bor', 1), ('friedenstor', 1), ('merkel—who', 1), ('cloud–grand', 1)]...\n", + "2018-08-31 01:14:52,584 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4860000 (=100.0%) documents\n", + "2018-08-31 01:14:54,829 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:54,884 : INFO : adding document #4860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:14:58,365 : INFO : discarding 25449 tokens: [('lokepara', 1), ('lokeparamahavidyalaya', 1), ('myparlia', 1), ('purbasthalicolleg', 1), ('amnplifi', 1), ('ambodisaina', 1), ('randria', 1), ('rajnagarmahavidyalaya', 1), ('gonnepal', 1), ('lingapalem', 1)]...\n", + "2018-08-31 01:14:58,366 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4870000 (=100.0%) documents\n", + "2018-08-31 01:15:00,622 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:00,678 : INFO : adding document #4870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:04,211 : INFO : discarding 25973 tokens: [('alaban', 1), ('arvoi', 1), ('batoux', 1), ('dicchi', 1), ('djamba', 1), ('harouch', 1), ('moukomel', 1), ('moumini', 1), ('nouriati', 1), ('sinegr', 1)]...\n", + "2018-08-31 01:15:04,212 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4880000 (=100.0%) documents\n", + "2018-08-31 01:15:06,440 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:06,494 : INFO : adding document #4880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:09,968 : INFO : discarding 26297 tokens: [('jyotii', 1), ('kameruniensi', 1), ('cgfp', 1), ('jarlin', 1), ('bhabban', 1), ('hodla', 1), ('tarnah', 1), ('belenot', 1), ('kërtusha', 1), ('xhulieta', 1)]...\n", + "2018-08-31 01:15:09,969 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4890000 (=100.0%) documents\n", + "2018-08-31 01:15:12,220 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:12,276 : INFO : adding document #4890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:15,780 : INFO : discarding 27986 tokens: [('altınyazı', 1), ('barzachanion', 1), ('gariala', 1), ('hypatio', 1), ('pertinentia', 1), ('aphatisch', 1), ('barbakads', 1), ('baukasten', 1), ('bildsatz', 1), ('brenner“', 1)]...\n", + "2018-08-31 01:15:15,781 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4900000 (=100.0%) documents\n", + "2018-08-31 01:15:18,015 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:18,070 : INFO : adding document #4900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:21,522 : INFO : discarding 26228 tokens: [('molio', 1), ('pocketl', 1), ('unigium', 1), ('wegam', 1), ('ranmark', 1), ('archdimens', 1), ('”archdimens', 1), ('osostowicz', 1), ('baalbora', 1), ('belbora', 1)]...\n", + "2018-08-31 01:15:21,523 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4910000 (=100.0%) documents\n", + "2018-08-31 01:15:23,762 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:23,818 : INFO : adding document #4910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:27,197 : INFO : discarding 24806 tokens: [('davenson', 1), ('mozartienn', 1), ('reprend', 1), ('ajiona', 1), ('byhmc', 1), ('fuks’', 1), ('invest”', 1), ('kaluzhskii', 1), ('millionaires’', 1), ('olympiyskii', 1)]...\n", + "2018-08-31 01:15:27,198 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4920000 (=100.0%) documents\n", + "2018-08-31 01:15:29,435 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:15:29,490 : INFO : adding document #4920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", + "2018-08-31 01:15:30,267 : INFO : built Dictionary(2010258 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...) from 4924894 documents (total 1456741401 corpus positions)\n", + "2018-08-31 01:15:30,268 : INFO : saving Dictionary object under wiki.dict, separately None\n", + "2018-08-31 01:15:31,235 : INFO : saved wiki.dict\n" ] } ], "source": [ "from gensim.corpora import Dictionary\n", "\n", - "dictionary = Dictionary(wiki_articles_iterator())\n", - "dictionary.filter_extremes()\n", + "dictionary = Dictionary(get_preprocessed_articles('wiki_articles.jsonlines'))\n", "\n", "dictionary.save('wiki.dict')" ] @@ -404,113 +2590,471 @@ "cell_type": "code", "execution_count": null, "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 01:15:31,248 : INFO : loading Dictionary object from wiki.dict\n", + "2018-08-31 01:15:32,160 : INFO : loaded wiki.dict\n", + "2018-08-31 01:15:34,487 : INFO : discarding 1910258 tokens: [('abdelrahim', 49), ('abstention', 120), ('anarcha', 101), ('anarchica', 40), ('anarchosyndicalist', 20), ('antimilitar', 68), ('arbet', 194), ('archo', 100), ('arkhē', 5), ('autonomedia', 118)]...\n", + "2018-08-31 01:15:34,488 : INFO : keeping 100000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", + "2018-08-31 01:15:34,850 : INFO : resulting dictionary: Dictionary(100000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" + ] + } + ], + "source": [ + "dictionary = Dictionary.load('wiki.dict')\n", + "dictionary.filter_extremes()\n", + "dictionary.compactify()" + ] + }, + { + "cell_type": "code", + "execution_count": 202, + "metadata": {}, "outputs": [], "source": [ - "dictionary = Dictionary.load('wiki.dict')" + "import random\n", + "\n", + "class RandomCorpus(MmCorpus):\n", + " def __init__(self, *args, random_state, **kwargs):\n", + " super().__init__(*args, **kwargs)\n", + "\n", + " def __iter__(self):\n", + " random.seed(42)\n", + " \n", + " shuffled_indices = list(range(self.num_docs))\n", + " random.shuffle(shuffled_indices)\n", + " \n", + " for doc_id in shuffled_indices:\n", + " yield self[doc_id]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 02:09:12,249 : INFO : storing corpus in Matrix Market format to wiki.mm\n", + "2018-08-31 02:09:12,424 : INFO : saving sparse matrix to wiki.mm\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3ba812197aa748909f589c65c4d1d78b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 02:09:12,447 : INFO : PROGRESS: saving document #0\n", + "2018-08-31 02:09:14,303 : INFO : PROGRESS: saving document #1000\n", + "2018-08-31 02:09:15,963 : INFO : PROGRESS: saving document #2000\n", + "2018-08-31 02:09:17,822 : INFO : PROGRESS: saving document #3000\n", + "2018-08-31 02:09:19,552 : INFO : PROGRESS: saving document #4000\n", + "2018-08-31 02:09:21,256 : INFO : PROGRESS: saving document #5000\n", + "2018-08-31 02:09:23,119 : INFO : PROGRESS: saving document #6000\n", + "2018-08-31 02:09:25,152 : INFO : PROGRESS: saving document #7000\n", + "2018-08-31 02:09:27,166 : INFO : PROGRESS: saving document #8000\n", + "2018-08-31 02:09:28,840 : INFO : PROGRESS: saving document #9000\n", + "2018-08-31 02:09:30,784 : INFO : PROGRESS: saving document #10000\n", + "2018-08-31 02:09:32,637 : INFO : PROGRESS: saving document #11000\n", + "2018-08-31 02:09:34,379 : INFO : PROGRESS: saving document #12000\n", + "2018-08-31 02:09:36,092 : INFO : PROGRESS: saving document #13000\n", + "2018-08-31 02:09:37,861 : INFO : PROGRESS: saving document #14000\n", + "2018-08-31 02:09:39,705 : INFO : PROGRESS: saving document #15000\n", + "2018-08-31 02:09:41,549 : INFO : PROGRESS: saving document #16000\n", + "2018-08-31 02:09:43,843 : INFO : PROGRESS: saving document #17000\n", + "2018-08-31 02:09:44,680 : INFO : PROGRESS: saving document #18000\n", + "2018-08-31 02:09:45,960 : INFO : PROGRESS: saving document #19000\n", + "2018-08-31 02:09:47,433 : INFO : PROGRESS: saving document #20000\n", + "2018-08-31 02:09:48,296 : INFO : PROGRESS: saving document #21000\n", + "2018-08-31 02:09:49,296 : INFO : PROGRESS: saving document #22000\n", + "2018-08-31 02:09:50,803 : INFO : PROGRESS: saving document #23000\n", + "2018-08-31 02:09:52,336 : INFO : PROGRESS: saving document #24000\n", + "2018-08-31 02:09:53,816 : INFO : PROGRESS: saving document #25000\n", + "2018-08-31 02:09:55,358 : INFO : PROGRESS: saving document #26000\n", + "2018-08-31 02:09:56,832 : INFO : PROGRESS: saving document #27000\n", + "2018-08-31 02:09:58,202 : INFO : PROGRESS: saving document #28000\n", + "2018-08-31 02:09:59,691 : INFO : PROGRESS: saving document #29000\n", + "2018-08-31 02:10:00,935 : INFO : PROGRESS: saving document #30000\n", + "2018-08-31 02:10:02,143 : INFO : PROGRESS: saving document #31000\n", + "2018-08-31 02:10:03,519 : INFO : PROGRESS: saving document #32000\n", + "2018-08-31 02:10:04,983 : INFO : PROGRESS: saving document #33000\n", + "2018-08-31 02:10:06,180 : INFO : PROGRESS: saving document #34000\n", + "2018-08-31 02:10:07,476 : INFO : PROGRESS: saving document #35000\n", + "2018-08-31 02:10:08,816 : INFO : PROGRESS: saving document #36000\n", + "2018-08-31 02:10:10,027 : INFO : PROGRESS: saving document #37000\n", + "2018-08-31 02:10:11,047 : INFO : PROGRESS: saving document #38000\n", + "2018-08-31 02:10:12,185 : INFO : PROGRESS: saving document #39000\n", + "2018-08-31 02:10:13,158 : INFO : PROGRESS: saving document #40000\n", + "2018-08-31 02:10:13,981 : INFO : PROGRESS: saving document #41000\n", + "2018-08-31 02:10:15,100 : INFO : PROGRESS: saving document #42000\n", + "2018-08-31 02:10:15,966 : INFO : PROGRESS: saving document #43000\n", + "2018-08-31 02:10:16,887 : INFO : PROGRESS: saving document #44000\n", + "2018-08-31 02:10:17,825 : INFO : PROGRESS: saving document #45000\n", + "2018-08-31 02:10:18,588 : INFO : PROGRESS: saving document #46000\n", + "2018-08-31 02:10:19,542 : INFO : PROGRESS: saving document #47000\n", + "2018-08-31 02:10:20,502 : INFO : PROGRESS: saving document #48000\n", + "2018-08-31 02:10:21,432 : INFO : PROGRESS: saving document #49000\n", + "2018-08-31 02:10:22,112 : INFO : PROGRESS: saving document #50000\n", + "2018-08-31 02:10:22,786 : INFO : PROGRESS: saving document #51000\n", + "2018-08-31 02:10:23,661 : INFO : PROGRESS: saving document #52000\n", + "2018-08-31 02:10:24,262 : INFO : PROGRESS: saving document #53000\n", + "2018-08-31 02:10:24,778 : INFO : PROGRESS: saving document #54000\n", + "2018-08-31 02:10:25,255 : INFO : PROGRESS: saving document #55000\n", + "2018-08-31 02:10:25,730 : INFO : PROGRESS: saving document #56000\n", + "2018-08-31 02:10:26,385 : INFO : PROGRESS: saving document #57000\n", + "2018-08-31 02:10:26,808 : INFO : PROGRESS: saving document #58000\n", + "2018-08-31 02:10:27,291 : INFO : PROGRESS: saving document #59000\n", + "2018-08-31 02:10:27,900 : INFO : PROGRESS: saving document #60000\n", + "2018-08-31 02:10:28,268 : INFO : PROGRESS: saving document #61000\n", + "2018-08-31 02:10:28,649 : INFO : PROGRESS: saving document #62000\n", + "2018-08-31 02:10:28,965 : INFO : PROGRESS: saving document #63000\n", + "2018-08-31 02:10:29,210 : INFO : PROGRESS: saving document #64000\n", + "2018-08-31 02:10:29,505 : INFO : PROGRESS: saving document #65000\n", + "2018-08-31 02:10:29,888 : INFO : PROGRESS: saving document #66000\n", + "2018-08-31 02:10:30,295 : INFO : PROGRESS: saving document #67000\n", + "2018-08-31 02:10:31,189 : INFO : PROGRESS: saving document #68000\n", + "2018-08-31 02:10:31,781 : INFO : PROGRESS: saving document #69000\n", + "2018-08-31 02:10:32,393 : INFO : PROGRESS: saving document #70000\n", + "2018-08-31 02:10:32,879 : INFO : PROGRESS: saving document #71000\n", + "2018-08-31 02:10:33,368 : INFO : PROGRESS: saving document #72000\n", + "2018-08-31 02:10:33,831 : INFO : PROGRESS: saving document #73000\n", + "2018-08-31 02:10:34,212 : INFO : PROGRESS: saving document #74000\n", + "2018-08-31 02:10:34,609 : INFO : PROGRESS: saving document #75000\n", + "2018-08-31 02:10:35,031 : INFO : PROGRESS: saving document #76000\n", + "2018-08-31 02:10:35,469 : INFO : PROGRESS: saving document #77000\n", + "2018-08-31 02:10:35,983 : INFO : PROGRESS: saving document #78000\n", + "2018-08-31 02:10:36,519 : INFO : PROGRESS: saving document #79000\n", + "2018-08-31 02:10:37,047 : INFO : PROGRESS: saving document #80000\n", + "2018-08-31 02:10:37,343 : INFO : PROGRESS: saving document #81000\n", + "2018-08-31 02:10:37,871 : INFO : PROGRESS: saving document #82000\n", + "2018-08-31 02:10:38,659 : INFO : PROGRESS: saving document #83000\n", + "2018-08-31 02:10:39,751 : INFO : PROGRESS: saving document #84000\n", + "2018-08-31 02:10:40,849 : INFO : PROGRESS: saving document #85000\n", + "2018-08-31 02:10:42,066 : INFO : PROGRESS: saving document #86000\n", + "2018-08-31 02:10:42,862 : INFO : PROGRESS: saving document #87000\n", + "2018-08-31 02:10:43,967 : INFO : PROGRESS: saving document #88000\n", + "2018-08-31 02:10:44,944 : INFO : PROGRESS: saving document #89000\n", + "2018-08-31 02:10:46,029 : INFO : PROGRESS: saving document #90000\n", + "2018-08-31 02:10:47,239 : INFO : PROGRESS: saving document #91000\n", + "2018-08-31 02:10:48,630 : INFO : PROGRESS: saving document #92000\n", + "2018-08-31 02:10:49,979 : INFO : PROGRESS: saving document #93000\n", + "2018-08-31 02:10:51,285 : INFO : PROGRESS: saving document #94000\n", + "2018-08-31 02:10:52,582 : INFO : PROGRESS: saving document #95000\n", + "2018-08-31 02:10:53,921 : INFO : PROGRESS: saving document #96000\n", + "2018-08-31 02:10:54,963 : INFO : PROGRESS: saving document #97000\n", + "2018-08-31 02:10:56,004 : INFO : PROGRESS: saving document #98000\n", + "2018-08-31 02:10:56,932 : INFO : PROGRESS: saving document #99000\n", + "2018-08-31 02:10:58,141 : INFO : PROGRESS: saving document #100000\n", + "2018-08-31 02:10:59,257 : INFO : PROGRESS: saving document #101000\n", + "2018-08-31 02:11:00,349 : INFO : PROGRESS: saving document #102000\n", + "2018-08-31 02:11:01,459 : INFO : PROGRESS: saving document #103000\n", + "2018-08-31 02:11:02,549 : INFO : PROGRESS: saving document #104000\n", + "2018-08-31 02:11:03,631 : INFO : PROGRESS: saving document #105000\n", + "2018-08-31 02:11:04,695 : INFO : PROGRESS: saving document #106000\n", + "2018-08-31 02:11:05,746 : INFO : PROGRESS: saving document #107000\n", + "2018-08-31 02:11:06,820 : INFO : PROGRESS: saving document #108000\n", + "2018-08-31 02:11:07,835 : INFO : PROGRESS: saving document #109000\n", + "2018-08-31 02:11:08,850 : INFO : PROGRESS: saving document #110000\n", + "2018-08-31 02:11:09,881 : INFO : PROGRESS: saving document #111000\n", + "2018-08-31 02:11:10,885 : INFO : PROGRESS: saving document #112000\n", + "2018-08-31 02:11:11,889 : INFO : PROGRESS: saving document #113000\n", + "2018-08-31 02:11:12,865 : INFO : PROGRESS: saving document #114000\n", + "2018-08-31 02:11:13,835 : INFO : PROGRESS: saving document #115000\n", + "2018-08-31 02:11:14,708 : INFO : PROGRESS: saving document #116000\n", + "2018-08-31 02:11:15,798 : INFO : PROGRESS: saving document #117000\n", + "2018-08-31 02:11:16,783 : INFO : PROGRESS: saving document #118000\n", + "2018-08-31 02:11:17,710 : INFO : PROGRESS: saving document #119000\n", + "2018-08-31 02:11:18,693 : INFO : PROGRESS: saving document #120000\n", + "2018-08-31 02:11:19,758 : INFO : PROGRESS: saving document #121000\n", + "2018-08-31 02:11:20,837 : INFO : PROGRESS: saving document #122000\n", + "2018-08-31 02:11:21,862 : INFO : PROGRESS: saving document #123000\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 02:11:22,868 : INFO : PROGRESS: saving document #124000\n", + "2018-08-31 02:11:23,814 : INFO : PROGRESS: saving document #125000\n", + "2018-08-31 02:11:24,801 : INFO : PROGRESS: saving document #126000\n", + "2018-08-31 02:11:25,360 : INFO : PROGRESS: saving document #127000\n", + "2018-08-31 02:11:26,211 : INFO : PROGRESS: saving document #128000\n", + "2018-08-31 02:11:27,220 : INFO : PROGRESS: saving document #129000\n", + "2018-08-31 02:11:28,276 : INFO : PROGRESS: saving document #130000\n", + "2018-08-31 02:11:29,222 : INFO : PROGRESS: saving document #131000\n", + "2018-08-31 02:11:30,264 : INFO : PROGRESS: saving document #132000\n", + "2018-08-31 02:11:31,561 : INFO : PROGRESS: saving document #133000\n", + "2018-08-31 02:11:32,560 : INFO : PROGRESS: saving document #134000\n", + "2018-08-31 02:11:33,806 : INFO : PROGRESS: saving document #135000\n", + "2018-08-31 02:11:35,091 : INFO : PROGRESS: saving document #136000\n", + "2018-08-31 02:11:36,016 : INFO : PROGRESS: saving document #137000\n", + "2018-08-31 02:11:37,006 : INFO : PROGRESS: saving document #138000\n", + "2018-08-31 02:11:38,062 : INFO : PROGRESS: saving document #139000\n", + "2018-08-31 02:11:39,025 : INFO : PROGRESS: saving document #140000\n", + "2018-08-31 02:11:40,063 : INFO : PROGRESS: saving document #141000\n", + "2018-08-31 02:11:41,001 : INFO : PROGRESS: saving document #142000\n", + "2018-08-31 02:11:41,989 : INFO : PROGRESS: saving document #143000\n", + "2018-08-31 02:11:42,949 : INFO : PROGRESS: saving document #144000\n", + "2018-08-31 02:11:43,950 : INFO : PROGRESS: saving document #145000\n", + "2018-08-31 02:11:44,810 : INFO : PROGRESS: saving document #146000\n", + "2018-08-31 02:11:45,681 : INFO : PROGRESS: saving document #147000\n", + "2018-08-31 02:11:46,339 : INFO : PROGRESS: saving document #148000\n", + "2018-08-31 02:11:47,304 : INFO : PROGRESS: saving document #149000\n", + "2018-08-31 02:11:48,204 : INFO : PROGRESS: saving document #150000\n", + "2018-08-31 02:11:49,088 : INFO : PROGRESS: saving document #151000\n", + "2018-08-31 02:11:49,947 : INFO : PROGRESS: saving document #152000\n", + "2018-08-31 02:11:51,065 : INFO : PROGRESS: saving document #153000\n", + "2018-08-31 02:11:51,902 : INFO : PROGRESS: saving document #154000\n", + "2018-08-31 02:11:52,849 : INFO : PROGRESS: saving document #155000\n", + "2018-08-31 02:11:53,791 : INFO : PROGRESS: saving document #156000\n", + "2018-08-31 02:11:54,742 : INFO : PROGRESS: saving document #157000\n", + "2018-08-31 02:11:55,700 : INFO : PROGRESS: saving document #158000\n", + "2018-08-31 02:11:56,681 : INFO : PROGRESS: saving document #159000\n", + "2018-08-31 02:11:57,567 : INFO : PROGRESS: saving document #160000\n", + "2018-08-31 02:11:58,395 : INFO : PROGRESS: saving document #161000\n", + "2018-08-31 02:11:59,354 : INFO : PROGRESS: saving document #162000\n", + "2018-08-31 02:12:00,275 : INFO : PROGRESS: saving document #163000\n", + "2018-08-31 02:12:01,146 : INFO : PROGRESS: saving document #164000\n", + "2018-08-31 02:12:01,965 : INFO : PROGRESS: saving document #165000\n", + "2018-08-31 02:12:02,804 : INFO : PROGRESS: saving document #166000\n", + "2018-08-31 02:12:03,703 : INFO : PROGRESS: saving document #167000\n", + "2018-08-31 02:12:04,484 : INFO : PROGRESS: saving document #168000\n", + "2018-08-31 02:12:05,353 : INFO : PROGRESS: saving document #169000\n", + "2018-08-31 02:12:06,230 : INFO : PROGRESS: saving document #170000\n", + "2018-08-31 02:12:07,079 : INFO : PROGRESS: saving document #171000\n", + "2018-08-31 02:12:07,909 : INFO : PROGRESS: saving document #172000\n", + "2018-08-31 02:12:08,790 : INFO : PROGRESS: saving document #173000\n", + "2018-08-31 02:12:09,692 : INFO : PROGRESS: saving document #174000\n", + "2018-08-31 02:12:10,494 : INFO : PROGRESS: saving document #175000\n", + "2018-08-31 02:12:11,370 : INFO : PROGRESS: saving document #176000\n", + "2018-08-31 02:12:12,199 : INFO : PROGRESS: saving document #177000\n", + "2018-08-31 02:12:13,020 : INFO : PROGRESS: saving document #178000\n", + "2018-08-31 02:12:13,790 : INFO : PROGRESS: saving document #179000\n", + "2018-08-31 02:12:14,636 : INFO : PROGRESS: saving document #180000\n", + "2018-08-31 02:12:15,422 : INFO : PROGRESS: saving document #181000\n", + "2018-08-31 02:12:16,203 : INFO : PROGRESS: saving document #182000\n", + "2018-08-31 02:12:17,053 : INFO : PROGRESS: saving document #183000\n", + "2018-08-31 02:12:17,866 : INFO : PROGRESS: saving document #184000\n", + "2018-08-31 02:12:18,636 : INFO : PROGRESS: saving document #185000\n", + "2018-08-31 02:12:19,426 : INFO : PROGRESS: saving document #186000\n", + "2018-08-31 02:12:20,108 : INFO : PROGRESS: saving document #187000\n", + "2018-08-31 02:12:20,916 : INFO : PROGRESS: saving document #188000\n", + "2018-08-31 02:12:21,559 : INFO : PROGRESS: saving document #189000\n", + "2018-08-31 02:12:22,512 : INFO : PROGRESS: saving document #190000\n", + "2018-08-31 02:12:23,298 : INFO : PROGRESS: saving document #191000\n", + "2018-08-31 02:12:23,951 : INFO : PROGRESS: saving document #192000\n", + "2018-08-31 02:12:24,640 : INFO : PROGRESS: saving document #193000\n", + "2018-08-31 02:12:25,413 : INFO : PROGRESS: saving document #194000\n", + "2018-08-31 02:12:26,120 : INFO : PROGRESS: saving document #195000\n", + "2018-08-31 02:12:26,855 : INFO : PROGRESS: saving document #196000\n", + "2018-08-31 02:12:27,647 : INFO : PROGRESS: saving document #197000\n", + "2018-08-31 02:12:28,410 : INFO : PROGRESS: saving document #198000\n", + "2018-08-31 02:12:29,274 : INFO : PROGRESS: saving document #199000\n", + "2018-08-31 02:12:29,998 : INFO : PROGRESS: saving document #200000\n", + "2018-08-31 02:12:30,811 : INFO : PROGRESS: saving document #201000\n", + "2018-08-31 02:12:31,460 : INFO : PROGRESS: saving document #202000\n", + "2018-08-31 02:12:32,040 : INFO : PROGRESS: saving document #203000\n", + "2018-08-31 02:12:32,806 : INFO : PROGRESS: saving document #204000\n", + "2018-08-31 02:12:33,580 : INFO : PROGRESS: saving document #205000\n", + "2018-08-31 02:12:34,319 : INFO : PROGRESS: saving document #206000\n", + "2018-08-31 02:12:35,136 : INFO : PROGRESS: saving document #207000\n", + "2018-08-31 02:12:35,901 : INFO : PROGRESS: saving document #208000\n", + "2018-08-31 02:12:36,583 : INFO : PROGRESS: saving document #209000\n", + "2018-08-31 02:12:37,364 : INFO : PROGRESS: saving document #210000\n", + "2018-08-31 02:12:38,074 : INFO : PROGRESS: saving document #211000\n", + "2018-08-31 02:12:38,839 : INFO : PROGRESS: saving document #212000\n", + "2018-08-31 02:12:39,562 : INFO : PROGRESS: saving document #213000\n", + "2018-08-31 02:12:40,295 : INFO : PROGRESS: saving document #214000\n", + "2018-08-31 02:12:41,070 : INFO : PROGRESS: saving document #215000\n", + "2018-08-31 02:12:41,813 : INFO : PROGRESS: saving document #216000\n", + "2018-08-31 02:12:42,442 : INFO : PROGRESS: saving document #217000\n", + "2018-08-31 02:12:43,179 : INFO : PROGRESS: saving document #218000\n", + "2018-08-31 02:12:43,998 : INFO : PROGRESS: saving document #219000\n", + "2018-08-31 02:12:44,822 : INFO : PROGRESS: saving document #220000\n", + "2018-08-31 02:12:45,538 : INFO : PROGRESS: saving document #221000\n", + "2018-08-31 02:12:46,318 : INFO : PROGRESS: saving document #222000\n", + "2018-08-31 02:12:47,131 : INFO : PROGRESS: saving document #223000\n", + "2018-08-31 02:12:47,908 : INFO : PROGRESS: saving document #224000\n", + "2018-08-31 02:12:48,618 : INFO : PROGRESS: saving document #225000\n", + "2018-08-31 02:12:49,292 : INFO : PROGRESS: saving document #226000\n", + "2018-08-31 02:12:49,983 : INFO : PROGRESS: saving document #227000\n", + "2018-08-31 02:12:50,739 : INFO : PROGRESS: saving document #228000\n" + ] + } + ], "source": [ "corpus = (\n", " dictionary.doc2bow(article)\n", " for article\n", - " in wiki_articles\n", + " in get_preprocessed_articles('wiki_articles.jsonlines')\n", ")\n", "\n", - "MmCorpus.serialize('wiki.mm', corpus)" + "RandomCorpus.serialize('wiki.mm')" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 206, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 17:42:54,211 : INFO : loaded corpus index from wiki.mm.index\n", + "2018-08-31 17:42:54,211 : INFO : initializing cython corpus reader from wiki.mm\n", + "2018-08-31 17:42:54,212 : INFO : accepted corpus with 4924894 documents, 100000 features, 683375728 non-zero entries\n" + ] + } + ], "source": [ - "corpus = MmCorpus('wiki.mm')" + "corpus = RandomCorpus('wiki.mm', random_state=42)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 207, "metadata": {}, "outputs": [], "source": [ + "PASSES = 2\n", + "\n", "training_params = dict(\n", - " corpus=corpus,\n", " chunksize=2000,\n", - " passes=5,\n", - " num_topics=20,\n", - " id2word=dictionary,\n", - " normalize=True\n", + " num_topics=100,\n", + " id2word=dictionary\n", ")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 187, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 17:17:30,351 : INFO : Loss (no outliers): 2367.6889968919445\tLoss (with outliers): 2367.6889968919445\n", + "2018-08-31 17:18:59,163 : INFO : Loss (no outliers): 1854.0984036987372\tLoss (with outliers): 1854.0984036987372\n", + "2018-08-31 17:20:26,149 : INFO : Loss (no outliers): 2345.1193574171775\tLoss (with outliers): 2345.1193574171775\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mA\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 276\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mB\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 277\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_solve_w\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 278\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunk_idx\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meval_every\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m_solve_w\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 313\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 314\u001b[0;31m \u001b[0merror_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 315\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror_\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_w_error\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_w_error\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_w_stop_condition\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36merror\u001b[0;34m()\u001b[0m\n\u001b[1;32m 298\u001b[0m return (\n\u001b[1;32m 299\u001b[0m \u001b[0;36m0.5\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mA\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 300\u001b[0;31m \u001b[0;34m-\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mB\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 301\u001b[0m )\n\u001b[1;32m 302\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36mB\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mB\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 95\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_B\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_H\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 96\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mB\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], "source": [ "%%time\n", "\n", - "gensim_nmf = Nmf(**training_params)" + "gensim_nmf = Nmf(**training_params)\n", + "\n", + "for pass_ in range(PASSES):\n", + " gensim_nmf.update(corpus_iter())\n", + " gensim_nmf.save('nmf_%s.model' % pass_)" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-31 17:21:18,926 : INFO : loading Nmf object from nmf_0.model\n", + "2018-08-31 17:21:19,238 : INFO : loading id2word recursively from nmf_0.model.id2word.* with mmap=None\n", + "2018-08-31 17:21:19,240 : INFO : loading _r from nmf_0.model._r.npy with mmap=None\n", + "2018-08-31 17:21:19,625 : INFO : loaded nmf_0.model\n" + ] + } + ], + "source": [ + "gensim_nmf = Nmf.load('nmf_0.model')" ] }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 189, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.028*\"british\" + 0.019*\"athen\" + 0.014*\"arab\" + 0.012*\"armi\" + 0.012*\"war\" + 0.008*\"north\" + 0.008*\"troop\" + 0.008*\"french\" + 0.007*\"defeat\" + 0.007*\"britain\"'),\n", + " '0.023*\"film\" + 0.017*\"documentari\" + 0.011*\"best\" + 0.010*\"product\" + 0.009*\"award\" + 0.008*\"nomin\" + 0.007*\"colombian\" + 0.006*\"time\" + 0.006*\"director\" + 0.005*\"american\"'),\n", " (1,\n", - " '0.076*\"lincoln\" + 0.012*\"republican\" + 0.011*\"parti\" + 0.011*\"presid\" + 0.010*\"court\" + 0.008*\"elect\" + 0.008*\"illinoi\" + 0.007*\"slaveri\" + 0.007*\"democrat\" + 0.006*\"polit\"'),\n", + " '0.039*\"game\" + 0.023*\"team\" + 0.022*\"vike\" + 0.020*\"season\" + 0.012*\"win\" + 0.012*\"playoff\" + 0.010*\"goal\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"score\"'),\n", " (2,\n", - " '0.035*\"armenian\" + 0.028*\"countri\" + 0.024*\"alaska\" + 0.018*\"diplomat\" + 0.018*\"establish\" + 0.009*\"recogn\" + 0.009*\"foreign\" + 0.009*\"russia\" + 0.008*\"republ\" + 0.008*\"honorari\"'),\n", + " '0.033*\"air\" + 0.022*\"squadron\" + 0.021*\"march\" + 0.015*\"wing\" + 0.012*\"unit\" + 0.011*\"servic\" + 0.011*\"base\" + 0.011*\"forc\" + 0.011*\"train\" + 0.010*\"command\"'),\n", " (3,\n", - " '0.058*\"film\" + 0.016*\"director\" + 0.009*\"award\" + 0.009*\"bell\" + 0.007*\"critic\" + 0.006*\"best\" + 0.006*\"japanes\" + 0.005*\"plai\" + 0.005*\"stori\" + 0.005*\"academi\"'),\n", + " '0.018*\"seri\" + 0.016*\"game\" + 0.012*\"point\" + 0.011*\"race\" + 0.009*\"group\" + 0.008*\"win\" + 0.007*\"final\" + 0.007*\"goal\" + 0.007*\"car\" + 0.007*\"score\"'),\n", " (4,\n", - " '0.069*\"art\" + 0.040*\"angl\" + 0.017*\"bell\" + 0.014*\"artist\" + 0.008*\"paint\" + 0.008*\"athen\" + 0.008*\"measur\" + 0.007*\"turn\" + 0.007*\"aesthet\" + 0.006*\"cultur\"'),\n", + " '0.012*\"group\" + 0.011*\"team\" + 0.010*\"men\" + 0.009*\"women\" + 0.008*\"rank\" + 0.008*\"german\" + 0.008*\"resist\" + 0.007*\"final\" + 0.007*\"point\" + 0.007*\"event\"'),\n", " (5,\n", - " '0.014*\"intellig\" + 0.013*\"human\" + 0.012*\"aristotl\" + 0.010*\"machin\" + 0.009*\"research\" + 0.009*\"problem\" + 0.007*\"artifici\" + 0.006*\"scienc\" + 0.006*\"anthropolog\" + 0.006*\"comput\"'),\n", + " '0.016*\"colorado\" + 0.016*\"histori\" + 0.015*\"type\" + 0.010*\"function\" + 0.008*\"class\" + 0.008*\"std\" + 0.007*\"int\" + 0.007*\"car\" + 0.007*\"constructor\" + 0.007*\"templat\"'),\n", " (6,\n", - " '0.036*\"church\" + 0.023*\"metal\" + 0.014*\"england\" + 0.013*\"car\" + 0.013*\"race\" + 0.012*\"seri\" + 0.009*\"cathol\" + 0.008*\"english\" + 0.007*\"australia\" + 0.007*\"test\"'),\n", + " '0.026*\"phoenix\" + 0.022*\"citi\" + 0.014*\"open\" + 0.011*\"area\" + 0.011*\"arizona\" + 0.008*\"road\" + 0.007*\"tucson\" + 0.007*\"valencia\" + 0.007*\"built\" + 0.006*\"popul\"'),\n", " (7,\n", - " '0.080*\"alexand\" + 0.015*\"persian\" + 0.013*\"greek\" + 0.013*\"athen\" + 0.012*\"king\" + 0.012*\"philip\" + 0.010*\"battl\" + 0.010*\"empir\" + 0.009*\"campaign\" + 0.009*\"death\"'),\n", + " '0.012*\"franc\" + 0.009*\"parti\" + 0.008*\"state\" + 0.008*\"econom\" + 0.007*\"tax\" + 0.007*\"nation\" + 0.006*\"govern\" + 0.006*\"phoenix\" + 0.005*\"peopl\" + 0.005*\"french\"'),\n", " (8,\n", - " '0.039*\"einstein\" + 0.011*\"egyptian\" + 0.009*\"theori\" + 0.009*\"egypt\" + 0.007*\"ancient\" + 0.007*\"physic\" + 0.007*\"rel\" + 0.005*\"paper\" + 0.005*\"death\" + 0.005*\"god\"'),\n", + " '0.016*\"leagu\" + 0.010*\"championship\" + 0.010*\"season\" + 0.010*\"club\" + 0.009*\"team\" + 0.009*\"cup\" + 0.008*\"world\" + 0.007*\"plai\" + 0.007*\"footbal\" + 0.006*\"vike\"'),\n", " (9,\n", - " '0.049*\"languag\" + 0.025*\"arab\" + 0.023*\"assembl\" + 0.011*\"program\" + 0.011*\"vowel\" + 0.009*\"code\" + 0.008*\"conson\" + 0.008*\"instruct\" + 0.008*\"alphabet\" + 0.008*\"spoken\"'),\n", + " '0.008*\"armi\" + 0.007*\"attack\" + 0.007*\"german\" + 0.007*\"resist\" + 0.007*\"war\" + 0.006*\"hitler\" + 0.005*\"appear\" + 0.005*\"time\" + 0.004*\"nazi\" + 0.004*\"forc\"'),\n", " (10,\n", - " '0.073*\"apollo\" + 0.023*\"god\" + 0.019*\"greek\" + 0.018*\"templ\" + 0.008*\"moon\" + 0.008*\"earth\" + 0.008*\"crew\" + 0.008*\"mission\" + 0.007*\"roman\" + 0.007*\"lunar\"'),\n", + " '0.019*\"forc\" + 0.019*\"armi\" + 0.019*\"attack\" + 0.016*\"japanes\" + 0.013*\"divis\" + 0.012*\"group\" + 0.011*\"corp\" + 0.011*\"area\" + 0.009*\"war\" + 0.007*\"arrow\"'),\n", " (11,\n", - " '0.078*\"anim\" + 0.020*\"english\" + 0.019*\"player\" + 0.015*\"politician\" + 0.012*\"footbal\" + 0.010*\"french\" + 0.009*\"singer\" + 0.009*\"farm\" + 0.009*\"actor\" + 0.008*\"japanes\"'),\n", + " '0.029*\"new\" + 0.014*\"paywal\" + 0.009*\"york\" + 0.007*\"onlin\" + 0.006*\"content\" + 0.005*\"newspap\" + 0.005*\"time\" + 0.005*\"access\" + 0.005*\"revenu\" + 0.004*\"free\"'),\n", " (12,\n", - " '0.153*\"acid\" + 0.016*\"reaction\" + 0.015*\"metal\" + 0.013*\"solut\" + 0.012*\"protein\" + 0.012*\"chain\" + 0.012*\"ion\" + 0.012*\"water\" + 0.011*\"hydrogen\" + 0.011*\"carbon\"'),\n", + " '0.011*\"german\" + 0.009*\"resist\" + 0.009*\"war\" + 0.007*\"hitler\" + 0.006*\"armi\" + 0.006*\"nazi\" + 0.005*\"french\" + 0.005*\"offic\" + 0.005*\"new\" + 0.004*\"gener\"'),\n", " (13,\n", - " '0.051*\"atom\" + 0.042*\"electron\" + 0.031*\"metal\" + 0.027*\"orbit\" + 0.021*\"energi\" + 0.018*\"element\" + 0.011*\"nucleu\" + 0.010*\"particl\" + 0.010*\"hydrogen\" + 0.008*\"quantum\"'),\n", + " '0.019*\"album\" + 0.017*\"releas\" + 0.016*\"song\" + 0.012*\"singl\" + 0.009*\"music\" + 0.008*\"record\" + 0.007*\"band\" + 0.007*\"featur\" + 0.006*\"year\" + 0.006*\"track\"'),\n", " (14,\n", - " '0.039*\"abort\" + 0.009*\"church\" + 0.008*\"april\" + 0.008*\"law\" + 0.006*\"medic\" + 0.006*\"legal\" + 0.006*\"societi\" + 0.006*\"women\" + 0.006*\"week\" + 0.006*\"angl\"'),\n", + " '0.031*\"histori\" + 0.030*\"colorado\" + 0.011*\"church\" + 0.010*\"franc\" + 0.009*\"state\" + 0.006*\"german\" + 0.006*\"resist\" + 0.006*\"french\" + 0.006*\"war\" + 0.006*\"adventist\"'),\n", " (15,\n", - " '0.023*\"album\" + 0.018*\"song\" + 0.018*\"record\" + 0.018*\"releas\" + 0.015*\"music\" + 0.014*\"singl\" + 0.011*\"hit\" + 0.011*\"chart\" + 0.009*\"perform\" + 0.009*\"band\"'),\n", + " '0.061*\"school\" + 0.024*\"high\" + 0.013*\"state\" + 0.013*\"phoenix\" + 0.010*\"histori\" + 0.010*\"student\" + 0.009*\"public\" + 0.009*\"colorado\" + 0.009*\"club\" + 0.009*\"open\"'),\n", " (16,\n", - " '0.020*\"albania\" + 0.010*\"countri\" + 0.007*\"roman\" + 0.007*\"popul\" + 0.006*\"region\" + 0.005*\"largest\" + 0.005*\"church\" + 0.005*\"govern\" + 0.005*\"power\" + 0.005*\"ancient\"'),\n", + " '0.014*\"type\" + 0.010*\"function\" + 0.008*\"class\" + 0.008*\"std\" + 0.006*\"int\" + 0.006*\"constructor\" + 0.006*\"templat\" + 0.006*\"us\" + 0.005*\"initi\" + 0.005*\"time\"'),\n", " (17,\n", - " '0.036*\"war\" + 0.021*\"union\" + 0.017*\"confeder\" + 0.013*\"armi\" + 0.013*\"lincoln\" + 0.012*\"civil\" + 0.010*\"south\" + 0.010*\"battl\" + 0.009*\"forc\" + 0.009*\"slaveri\"'),\n", + " '0.019*\"march\" + 0.016*\"squadron\" + 0.016*\"air\" + 0.011*\"citi\" + 0.009*\"decemb\" + 0.008*\"octob\" + 0.008*\"wing\" + 0.008*\"novemb\" + 0.008*\"januari\" + 0.007*\"june\"'),\n", " (18,\n", - " '0.093*\"appl\" + 0.019*\"compani\" + 0.014*\"store\" + 0.013*\"job\" + 0.008*\"introduc\" + 0.008*\"market\" + 0.007*\"design\" + 0.007*\"releas\" + 0.006*\"billion\" + 0.006*\"featur\"'),\n", + " '0.102*\"colorado\" + 0.094*\"histori\" + 0.031*\"state\" + 0.016*\"denver\" + 0.015*\"counti\" + 0.010*\"territori\" + 0.009*\"mountain\" + 0.009*\"unit\" + 0.007*\"colleg\" + 0.007*\"park\"'),\n", " (19,\n", - " '0.050*\"jew\" + 0.026*\"jewish\" + 0.018*\"anti\" + 0.013*\"semit\" + 0.008*\"israel\" + 0.007*\"attack\" + 0.006*\"europ\" + 0.006*\"australia\" + 0.006*\"countri\" + 0.006*\"commun\"')]" + " '0.059*\"colorado\" + 0.056*\"histori\" + 0.026*\"univers\" + 0.016*\"colleg\" + 0.012*\"state\" + 0.009*\"denver\" + 0.009*\"phoenix\" + 0.008*\"school\" + 0.007*\"counti\" + 0.007*\"educ\"')]" ] }, - "execution_count": 48, + "execution_count": 189, "metadata": {}, "output_type": "execute_result" } @@ -521,133 +3065,100 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 190, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-30 13:04:37,060 : INFO : using symmetric alpha at 0.05\n", - "2018-08-30 13:04:37,063 : INFO : using symmetric eta at 0.05\n", - "2018-08-30 13:04:37,066 : INFO : using serial LDA version on this node\n", - "2018-08-30 13:04:37,077 : INFO : running online (multi-pass) LDA training, 20 topics, 5 passes over the supplied corpus of 402 documents, updating model once every 402 documents, evaluating perplexity every 402 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-08-30 13:04:37,080 : WARNING : too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy\n", - "2018-08-30 13:04:38,949 : INFO : -9.126 per-word bound, 558.6 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", - "2018-08-30 13:04:38,951 : INFO : PROGRESS: pass 0, at document #402/402\n", - "2018-08-30 13:04:39,692 : INFO : topic #18 (0.050): 0.004*\"angola\" + 0.004*\"film\" + 0.003*\"war\" + 0.003*\"countri\" + 0.003*\"court\" + 0.003*\"star\" + 0.003*\"popul\" + 0.003*\"greek\" + 0.003*\"govern\" + 0.003*\"death\"\n", - "2018-08-30 13:04:39,695 : INFO : topic #4 (0.050): 0.003*\"english\" + 0.003*\"film\" + 0.003*\"atom\" + 0.003*\"court\" + 0.003*\"art\" + 0.003*\"player\" + 0.003*\"angl\" + 0.003*\"open\" + 0.003*\"war\" + 0.003*\"electron\"\n", - "2018-08-30 13:04:39,697 : INFO : topic #6 (0.050): 0.011*\"film\" + 0.004*\"award\" + 0.004*\"art\" + 0.003*\"apollo\" + 0.003*\"war\" + 0.003*\"greek\" + 0.003*\"alexand\" + 0.003*\"april\" + 0.002*\"academi\" + 0.002*\"best\"\n", - "2018-08-30 13:04:39,699 : INFO : topic #16 (0.050): 0.009*\"languag\" + 0.005*\"assembl\" + 0.004*\"acid\" + 0.004*\"church\" + 0.003*\"august\" + 0.003*\"art\" + 0.003*\"standard\" + 0.003*\"forc\" + 0.003*\"war\" + 0.003*\"apollo\"\n", - "2018-08-30 13:04:39,701 : INFO : topic #2 (0.050): 0.004*\"english\" + 0.003*\"engin\" + 0.003*\"atom\" + 0.003*\"countri\" + 0.003*\"war\" + 0.003*\"acid\" + 0.003*\"film\" + 0.003*\"element\" + 0.003*\"choic\" + 0.002*\"languag\"\n", - "2018-08-30 13:04:39,703 : INFO : topic diff=1.027076, rho=1.000000\n", - "2018-08-30 13:04:42,127 : INFO : -8.074 per-word bound, 269.4 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", - "2018-08-30 13:04:42,130 : INFO : PROGRESS: pass 1, at document #402/402\n", - "2018-08-30 13:04:42,798 : INFO : topic #14 (0.050): 0.010*\"art\" + 0.010*\"bell\" + 0.007*\"aristotl\" + 0.005*\"philosophi\" + 0.004*\"school\" + 0.004*\"bce\" + 0.003*\"artist\" + 0.003*\"thought\" + 0.003*\"theori\" + 0.003*\"experi\"\n", - "2018-08-30 13:04:42,801 : INFO : topic #1 (0.050): 0.014*\"acid\" + 0.007*\"metal\" + 0.005*\"valu\" + 0.005*\"anim\" + 0.005*\"electron\" + 0.005*\"atom\" + 0.004*\"compound\" + 0.004*\"element\" + 0.004*\"water\" + 0.004*\"reaction\"\n", - "2018-08-30 13:04:42,803 : INFO : topic #13 (0.050): 0.009*\"famili\" + 0.006*\"plai\" + 0.005*\"album\" + 0.005*\"record\" + 0.004*\"speci\" + 0.004*\"music\" + 0.004*\"releas\" + 0.004*\"song\" + 0.004*\"anim\" + 0.004*\"atlant\"\n", - "2018-08-30 13:04:42,805 : INFO : topic #18 (0.050): 0.009*\"angola\" + 0.005*\"star\" + 0.004*\"roman\" + 0.004*\"countri\" + 0.004*\"war\" + 0.004*\"govern\" + 0.004*\"popul\" + 0.003*\"death\" + 0.003*\"power\" + 0.003*\"charact\"\n", - "2018-08-30 13:04:42,807 : INFO : topic #0 (0.050): 0.008*\"jew\" + 0.005*\"forc\" + 0.005*\"man\" + 0.004*\"jewish\" + 0.004*\"stori\" + 0.004*\"countri\" + 0.004*\"publish\" + 0.003*\"issu\" + 0.003*\"anti\" + 0.003*\"war\"\n", - "2018-08-30 13:04:42,809 : INFO : topic diff=0.506116, rho=0.577350\n", - "2018-08-30 13:04:45,047 : INFO : -7.795 per-word bound, 222.2 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", - "2018-08-30 13:04:45,051 : INFO : PROGRESS: pass 2, at document #402/402\n", - "2018-08-30 13:04:46,052 : INFO : topic #17 (0.050): 0.041*\"anim\" + 0.008*\"film\" + 0.006*\"music\" + 0.006*\"charact\" + 0.006*\"grace\" + 0.006*\"song\" + 0.004*\"popular\" + 0.004*\"america\" + 0.004*\"war\" + 0.004*\"book\"\n", - "2018-08-30 13:04:46,063 : INFO : topic #13 (0.050): 0.010*\"famili\" + 0.007*\"plai\" + 0.007*\"album\" + 0.006*\"record\" + 0.006*\"speci\" + 0.005*\"releas\" + 0.005*\"song\" + 0.005*\"music\" + 0.004*\"singl\" + 0.004*\"member\"\n", - "2018-08-30 13:04:46,065 : INFO : topic #16 (0.050): 0.021*\"languag\" + 0.008*\"assembl\" + 0.007*\"arab\" + 0.006*\"standard\" + 0.005*\"program\" + 0.005*\"aircraft\" + 0.005*\"code\" + 0.004*\"type\" + 0.004*\"august\" + 0.004*\"control\"\n", - "2018-08-30 13:04:46,074 : INFO : topic #12 (0.050): 0.018*\"english\" + 0.016*\"player\" + 0.013*\"politician\" + 0.012*\"footbal\" + 0.009*\"french\" + 0.008*\"singer\" + 0.007*\"actor\" + 0.007*\"german\" + 0.007*\"academ\" + 0.006*\"canadian\"\n", - "2018-08-30 13:04:46,077 : INFO : topic #2 (0.050): 0.017*\"engin\" + 0.016*\"choic\" + 0.007*\"analyt\" + 0.007*\"function\" + 0.006*\"model\" + 0.006*\"theori\" + 0.006*\"mathemat\" + 0.005*\"construct\" + 0.005*\"element\" + 0.005*\"comput\"\n", - "2018-08-30 13:04:46,079 : INFO : topic diff=0.540505, rho=0.500000\n", - "2018-08-30 13:04:48,058 : INFO : -7.655 per-word bound, 201.6 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", - "2018-08-30 13:04:48,061 : INFO : PROGRESS: pass 3, at document #402/402\n", - "2018-08-30 13:04:48,858 : INFO : topic #13 (0.050): 0.011*\"famili\" + 0.009*\"album\" + 0.008*\"plai\" + 0.007*\"speci\" + 0.007*\"record\" + 0.006*\"releas\" + 0.006*\"song\" + 0.005*\"music\" + 0.005*\"singl\" + 0.004*\"member\"\n", - "2018-08-30 13:04:48,870 : INFO : topic #8 (0.050): 0.013*\"armi\" + 0.013*\"british\" + 0.012*\"war\" + 0.009*\"anthropolog\" + 0.009*\"atla\" + 0.006*\"forc\" + 0.005*\"america\" + 0.005*\"troop\" + 0.005*\"cultur\" + 0.005*\"french\"\n", - "2018-08-30 13:04:48,873 : INFO : topic #15 (0.050): 0.017*\"church\" + 0.010*\"war\" + 0.008*\"agricultur\" + 0.007*\"union\" + 0.007*\"lincoln\" + 0.006*\"confeder\" + 0.004*\"earth\" + 0.004*\"astronom\" + 0.004*\"civil\" + 0.004*\"cathol\"\n", - "2018-08-30 13:04:48,878 : INFO : topic #2 (0.050): 0.022*\"engin\" + 0.020*\"choic\" + 0.009*\"mathemat\" + 0.009*\"analyt\" + 0.009*\"function\" + 0.008*\"comput\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"machin\" + 0.007*\"construct\"\n", - "2018-08-30 13:04:48,880 : INFO : topic #0 (0.050): 0.016*\"jew\" + 0.009*\"jewish\" + 0.009*\"forc\" + 0.008*\"man\" + 0.007*\"anti\" + 0.007*\"publish\" + 0.006*\"stori\" + 0.006*\"militari\" + 0.005*\"issu\" + 0.005*\"countri\"\n", - "2018-08-30 13:04:48,882 : INFO : topic diff=0.574210, rho=0.447214\n", - "2018-08-30 13:04:50,840 : INFO : -7.580 per-word bound, 191.3 perplexity estimate based on a held-out corpus of 402 documents with 500981 words\n", - "2018-08-30 13:04:50,853 : INFO : PROGRESS: pass 4, at document #402/402\n", - "2018-08-30 13:04:51,528 : INFO : topic #18 (0.050): 0.012*\"angola\" + 0.009*\"roman\" + 0.006*\"star\" + 0.006*\"countri\" + 0.006*\"power\" + 0.005*\"rome\" + 0.005*\"govern\" + 0.005*\"war\" + 0.005*\"empir\" + 0.004*\"forc\"\n", - "2018-08-30 13:04:51,541 : INFO : topic #3 (0.050): 0.017*\"angl\" + 0.014*\"armenian\" + 0.014*\"countri\" + 0.007*\"oil\" + 0.007*\"establish\" + 0.007*\"diplomat\" + 0.005*\"europ\" + 0.004*\"republ\" + 0.004*\"foreign\" + 0.004*\"type\"\n", - "2018-08-30 13:04:51,543 : INFO : topic #8 (0.050): 0.015*\"armi\" + 0.014*\"british\" + 0.014*\"war\" + 0.010*\"anthropolog\" + 0.009*\"atla\" + 0.006*\"america\" + 0.006*\"forc\" + 0.005*\"troop\" + 0.005*\"french\" + 0.005*\"cultur\"\n", - "2018-08-30 13:04:51,546 : INFO : topic #15 (0.050): 0.019*\"church\" + 0.011*\"war\" + 0.008*\"union\" + 0.008*\"agricultur\" + 0.008*\"lincoln\" + 0.007*\"confeder\" + 0.005*\"astronom\" + 0.005*\"civil\" + 0.004*\"south\" + 0.004*\"cathol\"\n", - "2018-08-30 13:04:51,550 : INFO : topic #4 (0.050): 0.013*\"court\" + 0.008*\"open\" + 0.008*\"seri\" + 0.008*\"australia\" + 0.008*\"england\" + 0.007*\"appeal\" + 0.007*\"test\" + 0.006*\"amphibian\" + 0.006*\"final\" + 0.006*\"plai\"\n", - "2018-08-30 13:04:51,552 : INFO : topic diff=0.615654, rho=0.408248\n" + "2018-08-31 17:21:19,680 : INFO : using symmetric alpha at 0.05\n", + "2018-08-31 17:21:19,681 : INFO : using symmetric eta at 0.05\n", + "2018-08-31 17:21:19,694 : INFO : using serial LDA version on this node\n", + "2018-08-31 17:21:19,932 : WARNING : input corpus stream has no len(); counting documents\n" ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 25.6 s, sys: 26.5 s, total: 52.1 s\n", - "Wall time: 14.5 s\n" + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunksize, decay, offset, passes, update_every, eval_every, iterations, gamma_threshold, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 878\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 879\u001b[0;31m \u001b[0mlencorpus\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 880\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: object of type 'generator' has no len()", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunksize, decay, offset, passes, update_every, eval_every, iterations, gamma_threshold, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 881\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"input corpus stream has no len(); counting documents\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 882\u001b[0;31m \u001b[0mlencorpus\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 883\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlencorpus\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 884\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"LdaModel.update() called with an empty corpus\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 881\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"input corpus stream has no len(); counting documents\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 882\u001b[0;31m \u001b[0mlencorpus\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 883\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlencorpus\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 884\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"LdaModel.update() called with an empty corpus\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mcorpus_iter\u001b[0;34m()\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcorpus_iter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mshuffled_indices\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0;32myield\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/Documents/gensim/gensim/corpora/indexedcorpus.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, docno)\u001b[0m\n\u001b[1;32m 178\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSlicedCorpus\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdocno\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 179\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdocno\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteger_types\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteger\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 180\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdocbyoffset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdocno\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 181\u001b[0m \u001b[0;31m# TODO: no `docbyoffset` method, should be defined in this class\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ "%%time\n", - "# %%prun\n", "\n", - "lda = LdaModel(\n", - " corpus,\n", - " chunksize=2000,\n", - " passes=5,\n", - " num_topics=20,\n", - " id2word=dictionary,\n", - ")" + "gensim_lda = LdaModel(**training_params)\n", + "\n", + "for pass_ in range(PASSES):\n", + " gensim_lda.update(corpus_iter())\n", + " gensim_lda.save('lda_%s.model' % pass_)" ] }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 191, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.018*\"jew\" + 0.010*\"jewish\" + 0.010*\"forc\" + 0.008*\"anti\" + 0.008*\"man\" + 0.008*\"publish\" + 0.007*\"militari\" + 0.006*\"stori\" + 0.005*\"issu\" + 0.005*\"countri\"'),\n", + " '0.040*\"anim\" + 0.039*\"scienc\" + 0.033*\"actual\" + 0.029*\"sens\" + 0.025*\"write\" + 0.020*\"translat\" + 0.020*\"matter\" + 0.019*\"observ\" + 0.018*\"formal\" + 0.017*\"activ\"'),\n", " (1,\n", - " '0.019*\"acid\" + 0.014*\"metal\" + 0.007*\"element\" + 0.007*\"water\" + 0.007*\"compound\" + 0.006*\"valu\" + 0.006*\"atom\" + 0.006*\"carbon\" + 0.006*\"reaction\" + 0.005*\"oxid\"'),\n", + " '0.348*\"letter\" + 0.064*\"capit\" + 0.055*\"write\" + 0.036*\"sign\" + 0.028*\"distinguish\" + 0.027*\"size\" + 0.027*\"commonli\" + 0.027*\"round\" + 0.027*\"semi\" + 0.019*\"earliest\"'),\n", " (2,\n", - " '0.024*\"engin\" + 0.021*\"choic\" + 0.013*\"mathemat\" + 0.011*\"comput\" + 0.011*\"function\" + 0.010*\"machin\" + 0.010*\"theori\" + 0.010*\"analyt\" + 0.009*\"program\" + 0.008*\"model\"'),\n", + " '0.016*\"actual\" + 0.013*\"scienc\" + 0.013*\"anim\" + 0.010*\"activ\" + 0.010*\"sens\" + 0.009*\"earth\" + 0.009*\"write\" + 0.009*\"translat\" + 0.009*\"observ\" + 0.008*\"formal\"'),\n", " (3,\n", - " '0.017*\"angl\" + 0.014*\"armenian\" + 0.014*\"countri\" + 0.007*\"oil\" + 0.007*\"establish\" + 0.007*\"diplomat\" + 0.005*\"europ\" + 0.004*\"republ\" + 0.004*\"foreign\" + 0.004*\"type\"'),\n", + " '0.016*\"court\" + 0.011*\"pass\" + 0.011*\"presid\" + 0.010*\"anim\" + 0.010*\"support\" + 0.010*\"congress\" + 0.009*\"write\" + 0.009*\"armi\" + 0.009*\"movement\" + 0.009*\"held\"'),\n", " (4,\n", - " '0.013*\"court\" + 0.008*\"open\" + 0.008*\"seri\" + 0.008*\"australia\" + 0.008*\"england\" + 0.007*\"appeal\" + 0.007*\"test\" + 0.006*\"amphibian\" + 0.006*\"final\" + 0.006*\"plai\"'),\n", + " '0.082*\"death\" + 0.074*\"island\" + 0.052*\"kill\" + 0.034*\"figur\" + 0.030*\"sea\" + 0.028*\"king\" + 0.023*\"charact\" + 0.023*\"daughter\" + 0.019*\"stori\" + 0.017*\"give\"'),\n", " (5,\n", - " '0.023*\"abort\" + 0.017*\"april\" + 0.012*\"anxieti\" + 0.009*\"einstein\" + 0.007*\"signal\" + 0.006*\"john\" + 0.005*\"georg\" + 0.005*\"carrier\" + 0.005*\"week\" + 0.004*\"frequenc\"'),\n", + " '0.058*\"court\" + 0.026*\"cultur\" + 0.026*\"rate\" + 0.024*\"pass\" + 0.023*\"histor\" + 0.022*\"oper\" + 0.022*\"increas\" + 0.017*\"capit\" + 0.017*\"northern\" + 0.017*\"christian\"'),\n", " (6,\n", - " '0.018*\"film\" + 0.007*\"alexand\" + 0.007*\"apollo\" + 0.007*\"award\" + 0.006*\"book\" + 0.005*\"death\" + 0.004*\"greek\" + 0.004*\"director\" + 0.004*\"novel\" + 0.004*\"art\"'),\n", + " '0.014*\"movement\" + 0.014*\"free\" + 0.013*\"presid\" + 0.011*\"support\" + 0.010*\"congress\" + 0.009*\"commun\" + 0.009*\"argu\" + 0.009*\"slave\" + 0.009*\"social\" + 0.008*\"individu\"'),\n", " (7,\n", - " '0.009*\"south\" + 0.009*\"north\" + 0.008*\"region\" + 0.007*\"countri\" + 0.007*\"island\" + 0.007*\"sea\" + 0.006*\"alaska\" + 0.006*\"popul\" + 0.005*\"govern\" + 0.005*\"land\"'),\n", + " '0.027*\"presid\" + 0.019*\"support\" + 0.018*\"free\" + 0.015*\"slave\" + 0.014*\"armi\" + 0.013*\"movement\" + 0.011*\"congress\" + 0.010*\"issu\" + 0.009*\"court\" + 0.009*\"effort\"'),\n", " (8,\n", - " '0.015*\"armi\" + 0.014*\"british\" + 0.014*\"war\" + 0.010*\"anthropolog\" + 0.009*\"atla\" + 0.006*\"america\" + 0.006*\"forc\" + 0.005*\"troop\" + 0.005*\"french\" + 0.005*\"cultur\"'),\n", + " '0.110*\"music\" + 0.055*\"releas\" + 0.054*\"conduct\" + 0.046*\"perform\" + 0.037*\"composit\" + 0.028*\"featur\" + 0.028*\"arrang\" + 0.028*\"restor\" + 0.027*\"friend\" + 0.020*\"rate\"'),\n", " (9,\n", - " '0.010*\"albania\" + 0.009*\"alphabet\" + 0.009*\"god\" + 0.008*\"letter\" + 0.007*\"church\" + 0.007*\"german\" + 0.007*\"christian\" + 0.007*\"popul\" + 0.006*\"english\" + 0.005*\"book\"'),\n", + " '0.055*\"letter\" + 0.018*\"individu\" + 0.016*\"presid\" + 0.016*\"social\" + 0.015*\"support\" + 0.013*\"commun\" + 0.013*\"capit\" + 0.012*\"free\" + 0.012*\"movement\" + 0.011*\"write\"'),\n", " (10,\n", - " '0.012*\"lincoln\" + 0.009*\"car\" + 0.009*\"race\" + 0.008*\"intellig\" + 0.006*\"human\" + 0.006*\"machin\" + 0.006*\"parti\" + 0.005*\"research\" + 0.005*\"govern\" + 0.004*\"problem\"'),\n", + " '0.042*\"presid\" + 0.039*\"support\" + 0.032*\"slave\" + 0.026*\"armi\" + 0.022*\"court\" + 0.021*\"congress\" + 0.018*\"free\" + 0.016*\"death\" + 0.015*\"issu\" + 0.015*\"argu\"'),\n", " (11,\n", - " '0.042*\"atom\" + 0.028*\"electron\" + 0.017*\"energi\" + 0.017*\"orbit\" + 0.014*\"particl\" + 0.010*\"element\" + 0.009*\"nucleu\" + 0.008*\"mass\" + 0.008*\"quantum\" + 0.008*\"charg\"'),\n", + " '0.017*\"movement\" + 0.014*\"free\" + 0.012*\"court\" + 0.012*\"commun\" + 0.011*\"support\" + 0.010*\"presid\" + 0.009*\"congress\" + 0.009*\"social\" + 0.009*\"countri\" + 0.009*\"establish\"'),\n", " (12,\n", - " '0.026*\"english\" + 0.024*\"player\" + 0.020*\"politician\" + 0.018*\"footbal\" + 0.013*\"french\" + 0.013*\"singer\" + 0.011*\"actor\" + 0.010*\"academ\" + 0.010*\"german\" + 0.009*\"canadian\"'),\n", + " '0.013*\"anim\" + 0.012*\"scienc\" + 0.012*\"actual\" + 0.011*\"court\" + 0.009*\"function\" + 0.009*\"write\" + 0.009*\"commun\" + 0.008*\"activ\" + 0.008*\"sens\" + 0.008*\"christian\"'),\n", " (13,\n", - " '0.011*\"famili\" + 0.009*\"album\" + 0.008*\"plai\" + 0.008*\"speci\" + 0.007*\"record\" + 0.006*\"releas\" + 0.006*\"song\" + 0.006*\"music\" + 0.005*\"singl\" + 0.004*\"member\"'),\n", + " '0.009*\"anim\" + 0.009*\"scienc\" + 0.008*\"actual\" + 0.008*\"write\" + 0.007*\"movement\" + 0.007*\"support\" + 0.007*\"formal\" + 0.007*\"activ\" + 0.007*\"presid\" + 0.006*\"sens\"'),\n", " (14,\n", - " '0.013*\"art\" + 0.009*\"bell\" + 0.008*\"aristotl\" + 0.008*\"philosophi\" + 0.006*\"school\" + 0.006*\"philosoph\" + 0.006*\"theori\" + 0.005*\"individu\" + 0.005*\"human\" + 0.004*\"idea\"'),\n", + " '0.072*\"presid\" + 0.052*\"support\" + 0.038*\"slave\" + 0.032*\"armi\" + 0.029*\"congress\" + 0.026*\"court\" + 0.022*\"thoma\" + 0.020*\"effort\" + 0.019*\"issu\" + 0.019*\"free\"'),\n", " (15,\n", - " '0.019*\"church\" + 0.011*\"war\" + 0.008*\"union\" + 0.008*\"agricultur\" + 0.008*\"lincoln\" + 0.007*\"confeder\" + 0.005*\"astronom\" + 0.005*\"civil\" + 0.004*\"south\" + 0.004*\"cathol\"'),\n", + " '0.058*\"movement\" + 0.054*\"free\" + 0.042*\"commun\" + 0.034*\"societi\" + 0.025*\"activ\" + 0.025*\"social\" + 0.024*\"posit\" + 0.022*\"earth\" + 0.019*\"saw\" + 0.019*\"principl\"'),\n", " (16,\n", - " '0.028*\"languag\" + 0.012*\"arab\" + 0.009*\"assembl\" + 0.007*\"standard\" + 0.006*\"code\" + 0.006*\"vowel\" + 0.006*\"program\" + 0.006*\"aircraft\" + 0.005*\"type\" + 0.004*\"charact\"'),\n", + " '0.162*\"color\" + 0.131*\"thoma\" + 0.077*\"king\" + 0.071*\"stephen\" + 0.030*\"march\" + 0.019*\"sea\" + 0.018*\"stori\" + 0.018*\"hope\" + 0.018*\"christian\" + 0.018*\"west\"'),\n", " (17,\n", - " '0.054*\"anim\" + 0.010*\"film\" + 0.009*\"music\" + 0.008*\"charact\" + 0.007*\"song\" + 0.007*\"grace\" + 0.007*\"altern\" + 0.006*\"popular\" + 0.006*\"book\" + 0.005*\"america\"'),\n", + " '0.124*\"earth\" + 0.092*\"increas\" + 0.091*\"low\" + 0.046*\"observ\" + 0.024*\"vari\" + 0.022*\"mass\" + 0.021*\"rate\" + 0.019*\"greater\" + 0.019*\"condit\" + 0.018*\"actual\"'),\n", " (18,\n", - " '0.012*\"angola\" + 0.009*\"roman\" + 0.006*\"star\" + 0.006*\"countri\" + 0.006*\"power\" + 0.005*\"rome\" + 0.005*\"govern\" + 0.005*\"war\" + 0.005*\"empir\" + 0.004*\"forc\"'),\n", + " '0.072*\"social\" + 0.063*\"individu\" + 0.042*\"commun\" + 0.036*\"evid\" + 0.031*\"increas\" + 0.031*\"function\" + 0.022*\"activ\" + 0.022*\"movement\" + 0.018*\"help\" + 0.018*\"research\"'),\n", " (19,\n", - " '0.020*\"appl\" + 0.011*\"athen\" + 0.008*\"design\" + 0.008*\"build\" + 0.007*\"compani\" + 0.006*\"park\" + 0.005*\"hous\" + 0.004*\"articl\" + 0.004*\"museum\" + 0.004*\"job\"')]" + " '0.070*\"movement\" + 0.057*\"free\" + 0.038*\"commun\" + 0.037*\"societi\" + 0.035*\"social\" + 0.030*\"individu\" + 0.024*\"econom\" + 0.023*\"establish\" + 0.021*\"post\" + 0.021*\"author\"')]" ] }, - "execution_count": 50, + "execution_count": 191, "metadata": {}, "output_type": "execute_result" } From 950115d718e69111c79c13f28993457c87681331 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 31 Aug 2018 17:47:51 +0300 Subject: [PATCH 046/144] Dense -> sparse --- gensim/models/nmf.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 34bbcf21b3..e9dc87da53 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -210,7 +210,7 @@ def get_term_topics(self, word_id, minimum_probability=None): return values def get_document_topics(self, bow, minimum_probability=None): - v = matutils.corpus2dense([bow], len(self.id2word), 1) + v = matutils.corpus2csc([bow], len(self.id2word), 1) h, _ = self._solveproj(v, self._W, v_max=np.inf) if self.normalize: @@ -230,7 +230,7 @@ def get_document_topics(self, bow, minimum_probability=None): def _setup(self, corpus): self._h, self._r = None, None first_doc = next(iter(corpus)) - first_doc = matutils.corpus2dense([first_doc], len(self.id2word), 1)[:, 0] + first_doc = matutils.corpus2csc([first_doc], len(self.id2word), 1)[:, 0] m = len(first_doc) avg = np.sqrt(first_doc.mean() / m) @@ -265,7 +265,7 @@ def update(self, corpus, chunks_as_numpy=False): for chunk in utils.grouper( corpus, self.chunksize, as_numpy=chunks_as_numpy ): - v = matutils.corpus2dense(chunk, len(self.id2word), len(chunk)) + v = matutils.corpus2csc(chunk, len(self.id2word), len(chunk)) self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) h, r = self._h, self._r self._H.append(h) From 54993c6f0b46f71a739fe287fb9fac82542bc649 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 31 Aug 2018 17:54:30 +0300 Subject: [PATCH 047/144] First doc2dense --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index e9dc87da53..e806c183ca 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -230,7 +230,7 @@ def get_document_topics(self, bow, minimum_probability=None): def _setup(self, corpus): self._h, self._r = None, None first_doc = next(iter(corpus)) - first_doc = matutils.corpus2csc([first_doc], len(self.id2word), 1)[:, 0] + first_doc = matutils.corpus2dense([first_doc], len(self.id2word), 1)[:, 0] m = len(first_doc) avg = np.sqrt(first_doc.mean() / m) From 572dc6c44663458a48b460b12e7bc474b40a5e59 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 31 Aug 2018 18:19:34 +0300 Subject: [PATCH 048/144] Fix csc again --- gensim/models/nmf.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index e806c183ca..19fcf67da9 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -210,7 +210,7 @@ def get_term_topics(self, word_id, minimum_probability=None): return values def get_document_topics(self, bow, minimum_probability=None): - v = matutils.corpus2csc([bow], len(self.id2word), 1) + v = matutils.corpus2csc([bow], len(self.id2word)) h, _ = self._solveproj(v, self._W, v_max=np.inf) if self.normalize: @@ -230,7 +230,7 @@ def get_document_topics(self, bow, minimum_probability=None): def _setup(self, corpus): self._h, self._r = None, None first_doc = next(iter(corpus)) - first_doc = matutils.corpus2dense([first_doc], len(self.id2word), 1)[:, 0] + first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] m = len(first_doc) avg = np.sqrt(first_doc.mean() / m) @@ -265,7 +265,7 @@ def update(self, corpus, chunks_as_numpy=False): for chunk in utils.grouper( corpus, self.chunksize, as_numpy=chunks_as_numpy ): - v = matutils.corpus2csc(chunk, len(self.id2word), len(chunk)) + v = matutils.corpus2csc(chunk, len(self.id2word)) self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) h, r = self._h, self._r self._H.append(h) From d40d89fa465df94049e9aed944dc88eda5656603 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 31 Aug 2018 18:22:58 +0300 Subject: [PATCH 049/144] Fix len --- gensim/models/nmf.py | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 19fcf67da9..c9241ff51d 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -231,10 +231,8 @@ def _setup(self, corpus): self._h, self._r = None, None first_doc = next(iter(corpus)) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] - m = len(first_doc) - avg = np.sqrt(first_doc.mean() / m) - - self.n_features = len(first_doc) + self.n_features = first_doc.shape[0] + avg = np.sqrt(first_doc.mean() / self.n_features) self._W = np.abs( avg From 7a3ef47466611b82f198f2463fa0ddf178c7da23 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 12 Sep 2018 18:05:39 +0300 Subject: [PATCH 050/144] Experimenting --- gensim/models/nmf_pgd.pyx | 3 +++ 1 file changed, 3 insertions(+) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 3d825791c9..e1d103598d 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -45,6 +45,9 @@ def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_ with nogil: for sample_idx in range(n_samples): for feature_idx in range(n_features): + if r[feature_idx, sample_idx] == 0: + continue + r_new_element = fabs(r_actual[feature_idx, sample_idx]) - lambda_ r_new_element = fmax(r_new_element, 0) r_new_element = copysign(r_new_element, r_actual[feature_idx, sample_idx]) From f94de09ef8c2bb950effbb4bbcf33e62e164e89c Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 12 Sep 2018 18:13:23 +0300 Subject: [PATCH 051/144] Revert "Experimenting" This reverts commit 7a3ef47466611b82f198f2463fa0ddf178c7da23. --- gensim/models/nmf_pgd.pyx | 3 --- 1 file changed, 3 deletions(-) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index e1d103598d..3d825791c9 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -45,9 +45,6 @@ def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_ with nogil: for sample_idx in range(n_samples): for feature_idx in range(n_features): - if r[feature_idx, sample_idx] == 0: - continue - r_new_element = fabs(r_actual[feature_idx, sample_idx]) - lambda_ r_new_element = fmax(r_new_element, 0) r_new_element = copysign(r_new_element, r_actual[feature_idx, sample_idx]) From 9ed21675d7302814d9bebd6a3a4079b973d5780a Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 12 Sep 2018 20:52:45 +0300 Subject: [PATCH 052/144] Fix evaluation --- gensim/models/nmf.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index c9241ff51d..fd10cbec2a 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -284,12 +284,12 @@ def update(self, corpus, chunks_as_numpy=False): chunk_idx += 1 - logger.info( - "Loss (no outliers): {}\tLoss (with outliers): {}".format( - np.linalg.norm(v - self._W.dot(h)), - np.linalg.norm(v - self._W.dot(h) - r), - ) + logger.info( + "Loss (no outliers): {}\tLoss (with outliers): {}".format( + np.linalg.norm(v - self._W.dot(h)), + np.linalg.norm(v - self._W.dot(h) - r), ) + ) def _solve_w(self): def error(): From ad9443fb7f24bdd788bafa520d28ff125aaabdca Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sun, 23 Sep 2018 20:36:42 +0300 Subject: [PATCH 053/144] Sparse speedup --- gensim/models/nmf.py | 158 ++++++++++++++++++++++++++++---------- gensim/models/nmf_pgd.pyx | 42 +++++----- 2 files changed, 138 insertions(+), 62 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index fd10cbec2a..8dd006a814 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -1,4 +1,5 @@ import numpy as np +import scipy.sparse import logging from scipy.stats import halfnorm from gensim import utils @@ -100,7 +101,7 @@ def B(self, value): def get_topics(self): if self.normalize: - return self._W.T / self._W.T.sum(axis=1).reshape(-1, 1) + return np.asarray(self._W.T / self._W.T.sum(axis=1).reshape(-1, 1)) return self._W.T @@ -123,7 +124,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): (10 words for top 10 topics, by default). """ # TODO: maybe count sparsity in some other way - sparsity = np.count_nonzero(self._W, axis=0) + sparsity = self._W.getnnz(axis=0) if num_topics < 0 or num_topics >= self.num_topics: num_topics = self.num_topics @@ -138,17 +139,24 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): shown = [] - topic = self.get_topics() + topics = self.get_topics() + + print(topics) + for i in chosen_topics: - topic_ = topic[i] - bestn = matutils.argsort(topic_, num_words, reverse=True) - topic_ = [(self.id2word[id], topic_[id]) for id in bestn] + topic = topics[i] + print(type(topic)) + print(topic.shape) + bestn = matutils.argsort(topic, num_words, reverse=True).ravel() + print(type(bestn)) + print(bestn.shape) + topic = [(self.id2word[id], topic[id]) for id in bestn] if formatted: - topic_ = " + ".join(['%.3f*"%s"' % (v, k) for k, v in topic_]) + topic = " + ".join(['%.3f*"%s"' % (v, k) for k, v in topic]) - shown.append((i, topic_)) + shown.append((i, topic)) if log: - logger.info("topic #%i (%.3f): %s", i, sparsity[i], topic_) + logger.info("topic #%i (%.3f): %s", i, sparsity[i], topic) return shown @@ -210,7 +218,7 @@ def get_term_topics(self, word_id, minimum_probability=None): return values def get_document_topics(self, bow, minimum_probability=None): - v = matutils.corpus2csc([bow], len(self.id2word)) + v = matutils.corpus2csc([bow], len(self.id2word)).tocsr() h, _ = self._solveproj(v, self._W, v_max=np.inf) if self.normalize: @@ -234,14 +242,16 @@ def _setup(self, corpus): self.n_features = first_doc.shape[0] avg = np.sqrt(first_doc.mean() / self.n_features) - self._W = np.abs( - avg - * halfnorm.rvs(size=(self.n_features, self.num_topics)) - / np.sqrt(self.num_topics) + self._W = scipy.sparse.csc_matrix( + np.abs( + avg + * halfnorm.rvs(size=(self.n_features, self.num_topics)) + / np.sqrt(self.num_topics) + ) ) - self.A = np.zeros((self.num_topics, self.num_topics)) - self.B = np.zeros((self.n_features, self.num_topics)) + self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) + self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) return corpus def update(self, corpus, chunks_as_numpy=False): @@ -263,22 +273,22 @@ def update(self, corpus, chunks_as_numpy=False): for chunk in utils.grouper( corpus, self.chunksize, as_numpy=chunks_as_numpy ): - v = matutils.corpus2csc(chunk, len(self.id2word)) + v = matutils.corpus2csc(chunk, len(self.id2word)).tocsr() self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) h, r = self._h, self._r self._H.append(h) if self._R is not None: self._R.append(r) - self.A += np.dot(h, h.T) - self.B += np.dot((v - r), h.T) + self.A += h.dot(h.T) + self.B += (v - r).dot(h.T) self._solve_w() if chunk_idx % self.eval_every == 0: logger.info( "Loss (no outliers): {}\tLoss (with outliers): {}".format( - np.linalg.norm(v - self._W.dot(h)), - np.linalg.norm(v - self._W.dot(h) - r), + scipy.sparse.linalg.norm(v - self._W.dot(h)), + scipy.sparse.linalg.norm(v - self._W.dot(h) - r), ) ) @@ -286,19 +296,25 @@ def update(self, corpus, chunks_as_numpy=False): logger.info( "Loss (no outliers): {}\tLoss (with outliers): {}".format( - np.linalg.norm(v - self._W.dot(h)), - np.linalg.norm(v - self._W.dot(h) - r), + scipy.sparse.linalg.norm(v - self._W.dot(h)), + scipy.sparse.linalg.norm(v - self._W.dot(h) - r), ) ) def _solve_w(self): def error(): + # print(type(self._W)) + # print(self._W[:5, :5]) + # print(type(self.A)) + # print(self.A[:5, :5]) + # print(type(self.B)) + # print(self.B[:5, :5]) return ( - 0.5 * np.trace(self._W.T.dot(self._W).dot(self.A)) - - np.trace(self._W.T.dot(self.B)) + 0.5 * (self._W.T.dot(self._W).dot(self.A)).diagonal().sum() + - (self._W.T.dot(self.B)).diagonal().sum() ) - eta = self._kappa / np.linalg.norm(self.A, "fro") + eta = self._kappa / scipy.sparse.linalg.norm(self.A) if not self._w_error: self._w_error = error() @@ -306,7 +322,7 @@ def error(): for iter_number in range(self._w_max_iter): logger.debug("w_error: %s" % self._w_error) - self._W -= eta * (np.dot(self._W, self.A) - self.B) + self._W -= eta * (self._W.dot(self.A) - self.B) self.__transform() error_ = error() @@ -317,18 +333,74 @@ def error(): self._w_error = error_ @staticmethod - def __solve_r(r_actual, lambda_, v_max): - res = np.abs(r_actual) - lambda_ - np.maximum(res, 0.0, out=res) - res *= np.sign(r_actual) - np.clip(res, -v_max, v_max, out=res) - return res + def __solve_r(r, r_actual, lambda_, v_max): + threshold = 1e-1 + + r_actual.data *= np.abs(r_actual.data) > threshold + r_actual.eliminate_zeros() + + r.indices = r_actual.indices + r.indptr = r_actual.indptr + r.data = r_actual.data + + np.abs(r_actual.data, out=r.data) + r.data -= lambda_ + np.maximum(r.data, 0.0, out=r.data) + + r_actual.data *= np.abs(r.data) > threshold + r_actual.eliminate_zeros() + r.data *= np.abs(r.data) > threshold + r.eliminate_zeros() + + r.data *= np.sign(r_actual.data) + + np.clip(r.data, -v_max, v_max, out=r.data) + + return scipy.sparse.linalg.norm(r - r_actual) + + @staticmethod + def __solve_h(h, Wt_v_minus_r, WtW, eta): + threshold = 1e-1 + + # print('h') + # print(h[:5, :5]) + grad = (WtW.dot(h) - Wt_v_minus_r) * eta + # print('grad') + # print(grad[:5, :5]) + grad = scipy.sparse.csr_matrix(grad) + new_h = h - grad + + new_h.data *= np.abs(new_h.data) > threshold + new_h.eliminate_zeros() + # print('new_h') + # print(new_h[:5, :5]) + np.maximum(new_h.data, 0.0, out=new_h.data) + # print('new_h') + # print(new_h[:5, :5]) + new_h.eliminate_zeros() + # print('new_h') + # print(new_h[:5, :5]) + + return new_h, scipy.sparse.linalg.norm(grad) def __transform(self): - np.clip(self._W, 0, self.v_max, out=self._W) - sumsq = np.linalg.norm(self._W, axis=0) + threshold = 1e-2 + + self._W.data *= np.abs(self._W.data) > threshold + self._W.eliminate_zeros() + + np.clip(self._W.data, 0, self.v_max, out=self._W.data) + self._W.eliminate_zeros() + # print(type(self._W)) + # print(self._W[:5, :5]) + sumsq = scipy.sparse.linalg.norm(self._W, axis=0) np.maximum(sumsq, 1, out=sumsq) - self._W /= sumsq + self._W = scipy.sparse.csc_matrix(self._W / sumsq) + + self._W.data *= np.abs(self._W.data) > threshold + self._W.eliminate_zeros() + # print(type(self._W)) + # print(self._W[:5, :5]) def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape @@ -342,14 +414,14 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): hshape = (n, batch_size) if h is None or h.shape != hshape: - h = np.zeros(hshape) + h = scipy.sparse.csr_matrix(hshape) if r is None or r.shape != rshape: - r = np.zeros(rshape) + r = scipy.sparse.csr_matrix(rshape) WtW = W.T.dot(W) - # eta = self._kappa / np.linalg.norm(W, 'fro') ** 2 + eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 _h_r_error = None @@ -360,11 +432,15 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): Wt_v_minus_r = W.T.dot(v - r) - error_ += solve_h(h, Wt_v_minus_r, WtW, self._kappa) + # error_ += solve_h(h, Wt_v_minus_r, WtW, self._kappa) + h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) + error_ += error_h if self.use_r: r_actual = v - W.dot(h) - error_ += solve_r(r, r_actual, self._lambda_, self.v_max) + # error_ += solve_r(r, r_actual, self._lambda_, self.v_max) + error_ += self.__solve_r(r, r_actual, self._lambda_, self.v_max) + # error_ += solve_r(r, v, self._lambda_, self.v_max) error_ /= m diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 3d825791c9..baf087da5e 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -7,6 +7,7 @@ cimport cython from libc.math cimport sqrt, fabs, fmin, fmax, copysign +from cython.parallel import prange def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): cdef Py_ssize_t n_components = h.shape[0] @@ -15,24 +16,23 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou cdef double grad, projected_grad, hessian cdef Py_ssize_t sample_idx, component_idx_1, component_idx_2 - with nogil: - for component_idx_1 in range(n_components): - for sample_idx in range(n_samples): + for component_idx_1 in range(n_components): + for sample_idx in prange(n_samples, nogil=True): - grad = -Wt_v_minus_r[component_idx_1, sample_idx] + grad = -Wt_v_minus_r[component_idx_1, sample_idx] - for component_idx_2 in range(n_components): - grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] + for component_idx_2 in range(n_components): + grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] - hessian = WtW[component_idx_1, component_idx_1] + hessian = WtW[component_idx_1, component_idx_1] - grad *= kappa / hessian + grad = grad * kappa / hessian - projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad - violation += projected_grad ** 2 + violation += projected_grad * projected_grad - h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) return sqrt(violation) @@ -41,18 +41,18 @@ def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_ cdef Py_ssize_t n_samples = r.shape[1] cdef double violation = 0 cdef double r_new_element + cdef Py_ssize_t sample_idx, feature_idx - with nogil: - for sample_idx in range(n_samples): - for feature_idx in range(n_features): - r_new_element = fabs(r_actual[feature_idx, sample_idx]) - lambda_ - r_new_element = fmax(r_new_element, 0) - r_new_element = copysign(r_new_element, r_actual[feature_idx, sample_idx]) - r_new_element = fmax(r_new_element, -v_max) - r_new_element = fmin(r_new_element, v_max) + for sample_idx in prange(n_samples, nogil=True): + for feature_idx in range(n_features): + r_new_element = fabs(r_actual[feature_idx, sample_idx]) - lambda_ + r_new_element = fmax(r_new_element, 0) + r_new_element = copysign(r_new_element, r_actual[feature_idx, sample_idx]) + r_new_element = fmax(r_new_element, -v_max) + r_new_element = fmin(r_new_element, v_max) - violation += (r[feature_idx, sample_idx] - r_new_element) ** 2 + violation += (r[feature_idx, sample_idx] - r_new_element) ** 2 - r[feature_idx, sample_idx] = r_new_element + r[feature_idx, sample_idx] = r_new_element return sqrt(violation) From 1a046608398beae066c3f347b1cb711bf33154a3 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 25 Sep 2018 13:27:11 +0300 Subject: [PATCH 054/144] Improve performance --- docs/notebooks/nmf_benchmark.ipynb | 2773 +++------------------------- gensim/models/nmf.py | 99 +- 2 files changed, 309 insertions(+), 2563 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index a2ed71fca4..233bdbf2b0 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -71,18 +71,18 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 15:14:52,359 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-08-28 15:14:52,951 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", - "2018-08-28 15:14:52,994 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2018-08-28 15:14:52,995 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2018-08-28 15:14:53,019 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2018-09-25 13:20:09,912 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-09-25 13:20:10,539 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", + "2018-09-25 13:20:10,584 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2018-09-25 13:20:10,585 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2018-09-25 13:20:10,600 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], @@ -96,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 7, "metadata": { "scrolled": true }, @@ -152,20 +152,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 15:16:14,096 : INFO : Loss (no outliers): 610.7993350603717\tLoss (with outliers): 610.7993350603717\n", - "2018-08-28 15:16:15,901 : INFO : Loss (no outliers): 589.3419380609587\tLoss (with outliers): 589.3419380609587\n", - "2018-08-28 15:16:17,869 : INFO : Loss (no outliers): 582.4240873528573\tLoss (with outliers): 582.4240873528573\n", - "2018-08-28 15:16:18,994 : INFO : Loss (no outliers): 589.9804705809371\tLoss (with outliers): 589.9804705809371\n", - "2018-08-28 15:16:20,353 : INFO : Loss (no outliers): 575.7308791463116\tLoss (with outliers): 575.7308791463116\n", - "2018-08-28 15:16:22,307 : INFO : Loss (no outliers): 579.0143749047998\tLoss (with outliers): 579.0143749047998\n" + "2018-09-25 13:20:26,354 : INFO : Loss (no outliers): 606.7598004776954\tLoss (with outliers): 532.6664031339877\n", + "2018-09-25 13:20:28,908 : INFO : Loss (no outliers): 625.5678486264283\tLoss (with outliers): 508.448594425845\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 14.1 s, sys: 17.4 s, total: 31.5 s\n", - "Wall time: 10.5 s\n" + "CPU times: user 14.9 s, sys: 1.89 s, total: 16.7 s\n", + "Wall time: 16.8 s\n" ] } ], @@ -174,12 +170,27 @@ "\n", "np.random.seed(42)\n", "\n", - "gensim_nmf = GensimNmf(**training_params)" + "gensim_nmf = GensimNmf(\n", + " **training_params,\n", + " use_r=True,\n", + " lambda_=10\n", + ")" ] }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# %lprun -f GensimNmf._solveproj gensim_nmf = GensimNmf(**training_params, use_r=True, lambda_=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, "metadata": { "scrolled": true }, @@ -188,155 +199,155 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 15:16:22,404 : INFO : using symmetric alpha at 0.2\n", - "2018-08-28 15:16:22,407 : INFO : using symmetric eta at 0.2\n", - "2018-08-28 15:16:22,412 : INFO : using serial LDA version on this node\n", - "2018-08-28 15:16:22,436 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-08-28 15:16:22,437 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2018-08-28 15:16:23,405 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:23,416 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"like\" + 0.005*\"think\" + 0.004*\"host\" + 0.004*\"peopl\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"new\"\n", - "2018-08-28 15:16:23,418 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.003*\"know\" + 0.003*\"new\" + 0.003*\"armenian\" + 0.003*\"right\"\n", - "2018-08-28 15:16:23,420 : INFO : topic #2 (0.200): 0.006*\"right\" + 0.005*\"com\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"israel\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"host\" + 0.004*\"like\" + 0.004*\"think\"\n", - "2018-08-28 15:16:23,422 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"space\" + 0.005*\"know\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"peopl\" + 0.003*\"host\"\n", - "2018-08-28 15:16:23,424 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"said\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenian\"\n", - "2018-08-28 15:16:23,425 : INFO : topic diff=1.649447, rho=1.000000\n", - "2018-08-28 15:16:23,427 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2018-08-28 15:16:24,628 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:24,637 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.007*\"com\" + 0.006*\"graphic\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\" + 0.004*\"know\"\n", - "2018-08-28 15:16:24,643 : INFO : topic #1 (0.200): 0.006*\"nasa\" + 0.006*\"peopl\" + 0.005*\"time\" + 0.005*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"imag\" + 0.003*\"thing\"\n", - "2018-08-28 15:16:24,646 : INFO : topic #2 (0.200): 0.008*\"israel\" + 0.008*\"isra\" + 0.006*\"peopl\" + 0.006*\"right\" + 0.005*\"com\" + 0.005*\"think\" + 0.005*\"arab\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"state\"\n", - "2018-08-28 15:16:24,649 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.009*\"space\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"know\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"host\" + 0.003*\"program\" + 0.003*\"nntp\"\n", - "2018-08-28 15:16:24,651 : INFO : topic #4 (0.200): 0.007*\"armenian\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"think\" + 0.004*\"know\" + 0.004*\"muslim\" + 0.004*\"islam\" + 0.004*\"turkish\" + 0.004*\"time\"\n", - "2018-08-28 15:16:24,653 : INFO : topic diff=0.868179, rho=0.707107\n", - "2018-08-28 15:16:25,802 : INFO : -8.029 per-word bound, 261.2 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-08-28 15:16:25,802 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2018-08-28 15:16:26,685 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-08-28 15:16:26,692 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.007*\"file\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"program\"\n", - "2018-08-28 15:16:26,695 : INFO : topic #1 (0.200): 0.008*\"nasa\" + 0.006*\"space\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"univers\" + 0.004*\"orbit\"\n", - "2018-08-28 15:16:26,696 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"god\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"think\" + 0.005*\"know\" + 0.004*\"com\"\n", - "2018-08-28 15:16:26,698 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.012*\"com\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.003*\"know\"\n", - "2018-08-28 15:16:26,699 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.009*\"peopl\" + 0.007*\"turkish\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenia\" + 0.004*\"islam\"\n", - "2018-08-28 15:16:26,700 : INFO : topic diff=0.663742, rho=0.577350\n", - "2018-08-28 15:16:26,701 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2018-08-28 15:16:27,637 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:27,651 : INFO : topic #0 (0.200): 0.010*\"imag\" + 0.008*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"us\" + 0.005*\"need\"\n", - "2018-08-28 15:16:27,654 : INFO : topic #1 (0.200): 0.007*\"nasa\" + 0.006*\"space\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"univers\" + 0.004*\"moon\" + 0.004*\"time\" + 0.004*\"launch\"\n", - "2018-08-28 15:16:27,660 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"isra\" + 0.007*\"god\" + 0.007*\"peopl\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"state\" + 0.005*\"think\" + 0.005*\"univers\"\n", - "2018-08-28 15:16:27,662 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.012*\"com\" + 0.004*\"bike\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"univers\" + 0.004*\"year\" + 0.004*\"dod\" + 0.004*\"host\" + 0.004*\"like\"\n", - "2018-08-28 15:16:27,663 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.010*\"peopl\" + 0.007*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"greek\" + 0.004*\"islam\"\n", - "2018-08-28 15:16:27,664 : INFO : topic diff=0.449256, rho=0.455535\n", - "2018-08-28 15:16:27,666 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2018-08-28 15:16:28,396 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:28,403 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"file\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"us\"\n", - "2018-08-28 15:16:28,405 : INFO : topic #1 (0.200): 0.009*\"nasa\" + 0.007*\"space\" + 0.005*\"gov\" + 0.005*\"like\" + 0.005*\"orbit\" + 0.005*\"time\" + 0.005*\"peopl\" + 0.004*\"moon\" + 0.004*\"year\" + 0.004*\"univers\"\n", - "2018-08-28 15:16:28,408 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"peopl\" + 0.007*\"god\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"state\" + 0.004*\"know\"\n", - "2018-08-28 15:16:28,410 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.012*\"space\" + 0.005*\"bike\" + 0.004*\"time\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"dod\"\n", - "2018-08-28 15:16:28,412 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.005*\"said\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.004*\"islam\" + 0.004*\"armenia\" + 0.004*\"time\"\n", - "2018-08-28 15:16:28,415 : INFO : topic diff=0.419776, rho=0.455535\n", - "2018-08-28 15:16:29,306 : INFO : -7.774 per-word bound, 218.9 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-08-28 15:16:29,307 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2018-08-28 15:16:29,889 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-08-28 15:16:29,896 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.009*\"file\" + 0.008*\"graphic\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"program\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"univers\" + 0.005*\"host\"\n", - "2018-08-28 15:16:29,897 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.008*\"space\" + 0.005*\"gov\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"year\" + 0.004*\"launch\" + 0.004*\"moon\"\n", - "2018-08-28 15:16:29,898 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"jew\" + 0.006*\"arab\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"exist\" + 0.005*\"state\"\n", - "2018-08-28 15:16:29,900 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.013*\"com\" + 0.005*\"bike\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\" + 0.004*\"like\"\n", - "2018-08-28 15:16:29,901 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.006*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.004*\"time\" + 0.004*\"turkei\" + 0.004*\"muslim\"\n" + "2018-09-25 13:20:29,003 : INFO : using symmetric alpha at 0.2\n", + "2018-09-25 13:20:29,004 : INFO : using symmetric eta at 0.2\n", + "2018-09-25 13:20:29,008 : INFO : using serial LDA version on this node\n", + "2018-09-25 13:20:29,017 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-09-25 13:20:29,019 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2018-09-25 13:20:30,356 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:30,364 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"like\" + 0.005*\"think\" + 0.004*\"host\" + 0.004*\"peopl\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"new\"\n", + "2018-09-25 13:20:30,366 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.003*\"know\" + 0.003*\"new\" + 0.003*\"armenian\" + 0.003*\"right\"\n", + "2018-09-25 13:20:30,368 : INFO : topic #2 (0.200): 0.006*\"right\" + 0.005*\"com\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"israel\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"host\" + 0.004*\"like\" + 0.004*\"think\"\n", + "2018-09-25 13:20:30,370 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"space\" + 0.005*\"know\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"peopl\" + 0.003*\"host\"\n", + "2018-09-25 13:20:30,372 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"said\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenian\"\n", + "2018-09-25 13:20:30,373 : INFO : topic diff=1.649447, rho=1.000000\n", + "2018-09-25 13:20:30,374 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2018-09-25 13:20:31,564 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:31,571 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.007*\"com\" + 0.006*\"graphic\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\" + 0.004*\"know\"\n", + "2018-09-25 13:20:31,573 : INFO : topic #1 (0.200): 0.006*\"nasa\" + 0.006*\"peopl\" + 0.005*\"time\" + 0.005*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"imag\" + 0.003*\"thing\"\n", + "2018-09-25 13:20:31,575 : INFO : topic #2 (0.200): 0.008*\"israel\" + 0.008*\"isra\" + 0.006*\"peopl\" + 0.006*\"right\" + 0.005*\"com\" + 0.005*\"think\" + 0.005*\"arab\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"state\"\n", + "2018-09-25 13:20:31,577 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.009*\"space\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"know\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"host\" + 0.003*\"program\" + 0.003*\"nntp\"\n", + "2018-09-25 13:20:31,579 : INFO : topic #4 (0.200): 0.007*\"armenian\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"think\" + 0.004*\"know\" + 0.004*\"muslim\" + 0.004*\"islam\" + 0.004*\"turkish\" + 0.004*\"time\"\n", + "2018-09-25 13:20:31,580 : INFO : topic diff=0.868179, rho=0.707107\n", + "2018-09-25 13:20:33,265 : INFO : -8.029 per-word bound, 261.2 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-09-25 13:20:33,266 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2018-09-25 13:20:34,318 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-09-25 13:20:34,326 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.007*\"file\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"program\"\n", + "2018-09-25 13:20:34,327 : INFO : topic #1 (0.200): 0.008*\"nasa\" + 0.006*\"space\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"univers\" + 0.004*\"orbit\"\n", + "2018-09-25 13:20:34,328 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"god\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"think\" + 0.005*\"know\" + 0.004*\"com\"\n", + "2018-09-25 13:20:34,329 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.012*\"com\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.003*\"know\"\n", + "2018-09-25 13:20:34,331 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.009*\"peopl\" + 0.007*\"turkish\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenia\" + 0.004*\"islam\"\n", + "2018-09-25 13:20:34,332 : INFO : topic diff=0.663742, rho=0.577350\n", + "2018-09-25 13:20:34,333 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2018-09-25 13:20:35,293 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:35,314 : INFO : topic #0 (0.200): 0.010*\"imag\" + 0.008*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"us\" + 0.005*\"need\"\n", + "2018-09-25 13:20:35,317 : INFO : topic #1 (0.200): 0.007*\"nasa\" + 0.006*\"space\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"univers\" + 0.004*\"moon\" + 0.004*\"time\" + 0.004*\"launch\"\n", + "2018-09-25 13:20:35,319 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"isra\" + 0.007*\"god\" + 0.007*\"peopl\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"state\" + 0.005*\"think\" + 0.005*\"univers\"\n", + "2018-09-25 13:20:35,325 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.012*\"com\" + 0.004*\"bike\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"univers\" + 0.004*\"year\" + 0.004*\"dod\" + 0.004*\"host\" + 0.004*\"like\"\n", + "2018-09-25 13:20:35,327 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.010*\"peopl\" + 0.007*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"greek\" + 0.004*\"islam\"\n", + "2018-09-25 13:20:35,332 : INFO : topic diff=0.449256, rho=0.455535\n", + "2018-09-25 13:20:35,337 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2018-09-25 13:20:36,685 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:36,692 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"file\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"us\"\n", + "2018-09-25 13:20:36,693 : INFO : topic #1 (0.200): 0.009*\"nasa\" + 0.007*\"space\" + 0.005*\"gov\" + 0.005*\"like\" + 0.005*\"orbit\" + 0.005*\"time\" + 0.005*\"peopl\" + 0.004*\"moon\" + 0.004*\"year\" + 0.004*\"univers\"\n", + "2018-09-25 13:20:36,695 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"peopl\" + 0.007*\"god\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"state\" + 0.004*\"know\"\n", + "2018-09-25 13:20:36,697 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.012*\"space\" + 0.005*\"bike\" + 0.004*\"time\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"dod\"\n", + "2018-09-25 13:20:36,702 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.005*\"said\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.004*\"islam\" + 0.004*\"armenia\" + 0.004*\"time\"\n", + "2018-09-25 13:20:36,705 : INFO : topic diff=0.419776, rho=0.455535\n", + "2018-09-25 13:20:37,877 : INFO : -7.774 per-word bound, 218.9 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-09-25 13:20:37,878 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2018-09-25 13:20:38,463 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-09-25 13:20:38,470 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.009*\"file\" + 0.008*\"graphic\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"program\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"univers\" + 0.005*\"host\"\n", + "2018-09-25 13:20:38,473 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.008*\"space\" + 0.005*\"gov\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"year\" + 0.004*\"launch\" + 0.004*\"moon\"\n", + "2018-09-25 13:20:38,474 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"jew\" + 0.006*\"arab\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"exist\" + 0.005*\"state\"\n", + "2018-09-25 13:20:38,475 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.013*\"com\" + 0.005*\"bike\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\" + 0.004*\"like\"\n", + "2018-09-25 13:20:38,476 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.006*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.004*\"time\" + 0.004*\"turkei\" + 0.004*\"muslim\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 15:16:29,902 : INFO : topic diff=0.433169, rho=0.455535\n", - "2018-08-28 15:16:29,903 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2018-08-28 15:16:30,848 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:30,855 : INFO : topic #0 (0.200): 0.012*\"imag\" + 0.009*\"file\" + 0.008*\"graphic\" + 0.008*\"com\" + 0.006*\"univers\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"program\" + 0.006*\"like\" + 0.005*\"us\"\n", - "2018-08-28 15:16:30,856 : INFO : topic #1 (0.200): 0.009*\"nasa\" + 0.008*\"space\" + 0.006*\"orbit\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"gov\" + 0.005*\"earth\" + 0.004*\"year\" + 0.004*\"henri\" + 0.004*\"launch\"\n", - "2018-08-28 15:16:30,858 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.006*\"right\" + 0.006*\"think\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-08-28 15:16:30,860 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.013*\"space\" + 0.006*\"bike\" + 0.005*\"dod\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\"\n", - "2018-08-28 15:16:30,862 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"greek\" + 0.004*\"turk\" + 0.004*\"armenia\"\n", - "2018-08-28 15:16:30,863 : INFO : topic diff=0.348645, rho=0.414549\n", - "2018-08-28 15:16:30,868 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2018-08-28 15:16:31,732 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:31,739 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.007*\"com\" + 0.007*\"program\" + 0.006*\"univers\" + 0.006*\"host\" + 0.005*\"us\" + 0.005*\"nntp\" + 0.005*\"like\"\n", - "2018-08-28 15:16:31,742 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.008*\"space\" + 0.006*\"orbit\" + 0.006*\"gov\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"year\" + 0.005*\"earth\" + 0.005*\"time\" + 0.004*\"new\"\n", - "2018-08-28 15:16:31,743 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"com\"\n", - "2018-08-28 15:16:31,744 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.012*\"space\" + 0.007*\"bike\" + 0.005*\"dod\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"ride\"\n", - "2018-08-28 15:16:31,746 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.004*\"time\"\n", - "2018-08-28 15:16:31,747 : INFO : topic diff=0.322965, rho=0.414549\n", - "2018-08-28 15:16:33,004 : INFO : -7.719 per-word bound, 210.7 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-08-28 15:16:33,005 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2018-08-28 15:16:33,517 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-08-28 15:16:33,524 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.007*\"program\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"color\" + 0.005*\"host\"\n", - "2018-08-28 15:16:33,525 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.010*\"space\" + 0.006*\"orbit\" + 0.006*\"gov\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"earth\" + 0.005*\"moon\" + 0.005*\"launch\" + 0.005*\"new\"\n", - "2018-08-28 15:16:33,527 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"peopl\" + 0.006*\"jew\" + 0.006*\"think\" + 0.006*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"exist\"\n", - "2018-08-28 15:16:33,528 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.013*\"space\" + 0.007*\"bike\" + 0.004*\"dod\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"time\"\n", - "2018-08-28 15:16:33,529 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.006*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"like\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.004*\"muslim\"\n", - "2018-08-28 15:16:33,530 : INFO : topic diff=0.325727, rho=0.414549\n", - "2018-08-28 15:16:33,531 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2018-08-28 15:16:34,355 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:34,368 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"univers\" + 0.006*\"program\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.005*\"need\"\n", - "2018-08-28 15:16:34,373 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.009*\"space\" + 0.007*\"orbit\" + 0.005*\"gov\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"earth\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"henri\"\n", - "2018-08-28 15:16:34,376 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-08-28 15:16:34,379 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.012*\"space\" + 0.008*\"bike\" + 0.006*\"dod\" + 0.005*\"ride\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\"\n", - "2018-08-28 15:16:34,382 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"greek\" + 0.004*\"time\" + 0.004*\"turk\" + 0.004*\"armenia\"\n", - "2018-08-28 15:16:34,386 : INFO : topic diff=0.264433, rho=0.382948\n", - "2018-08-28 15:16:34,392 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2018-08-28 15:16:35,204 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:35,211 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"data\"\n", - "2018-08-28 15:16:35,213 : INFO : topic #1 (0.200): 0.011*\"nasa\" + 0.010*\"space\" + 0.007*\"orbit\" + 0.006*\"gov\" + 0.005*\"moon\" + 0.005*\"like\" + 0.005*\"earth\" + 0.005*\"year\" + 0.004*\"time\" + 0.004*\"new\"\n", - "2018-08-28 15:16:35,214 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.008*\"isra\" + 0.008*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"jew\" + 0.006*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"state\"\n", - "2018-08-28 15:16:35,216 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.011*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"ride\" + 0.004*\"time\" + 0.004*\"new\"\n", - "2018-08-28 15:16:35,217 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.004*\"time\"\n", - "2018-08-28 15:16:35,219 : INFO : topic diff=0.248884, rho=0.382948\n", - "2018-08-28 15:16:36,095 : INFO : -7.692 per-word bound, 206.8 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-08-28 15:16:36,096 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2018-08-28 15:16:36,746 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-08-28 15:16:36,756 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"color\" + 0.005*\"format\"\n", - "2018-08-28 15:16:36,758 : INFO : topic #1 (0.200): 0.011*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"gov\" + 0.005*\"launch\" + 0.005*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"\n", - "2018-08-28 15:16:36,760 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"\n", - "2018-08-28 15:16:36,762 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.012*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"ride\" + 0.004*\"new\" + 0.004*\"time\"\n", - "2018-08-28 15:16:36,763 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"like\" + 0.004*\"turk\"\n", - "2018-08-28 15:16:36,765 : INFO : topic diff=0.251402, rho=0.382948\n", - "2018-08-28 15:16:36,766 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2018-08-28 15:16:37,378 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:37,385 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"program\" + 0.007*\"univers\" + 0.006*\"com\" + 0.006*\"us\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"need\"\n" + "2018-09-25 13:20:38,477 : INFO : topic diff=0.433169, rho=0.455535\n", + "2018-09-25 13:20:38,478 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2018-09-25 13:20:39,415 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:39,421 : INFO : topic #0 (0.200): 0.012*\"imag\" + 0.009*\"file\" + 0.008*\"graphic\" + 0.008*\"com\" + 0.006*\"univers\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"program\" + 0.006*\"like\" + 0.005*\"us\"\n", + "2018-09-25 13:20:39,423 : INFO : topic #1 (0.200): 0.009*\"nasa\" + 0.008*\"space\" + 0.006*\"orbit\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"gov\" + 0.005*\"earth\" + 0.004*\"year\" + 0.004*\"henri\" + 0.004*\"launch\"\n", + "2018-09-25 13:20:39,424 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.006*\"right\" + 0.006*\"think\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-09-25 13:20:39,425 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.013*\"space\" + 0.006*\"bike\" + 0.005*\"dod\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\"\n", + "2018-09-25 13:20:39,426 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"greek\" + 0.004*\"turk\" + 0.004*\"armenia\"\n", + "2018-09-25 13:20:39,428 : INFO : topic diff=0.348645, rho=0.414549\n", + "2018-09-25 13:20:39,429 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2018-09-25 13:20:40,148 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:40,154 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.007*\"com\" + 0.007*\"program\" + 0.006*\"univers\" + 0.006*\"host\" + 0.005*\"us\" + 0.005*\"nntp\" + 0.005*\"like\"\n", + "2018-09-25 13:20:40,157 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.008*\"space\" + 0.006*\"orbit\" + 0.006*\"gov\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"year\" + 0.005*\"earth\" + 0.005*\"time\" + 0.004*\"new\"\n", + "2018-09-25 13:20:40,159 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"com\"\n", + "2018-09-25 13:20:40,160 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.012*\"space\" + 0.007*\"bike\" + 0.005*\"dod\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"ride\"\n", + "2018-09-25 13:20:40,161 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.004*\"time\"\n", + "2018-09-25 13:20:40,162 : INFO : topic diff=0.322965, rho=0.414549\n", + "2018-09-25 13:20:41,251 : INFO : -7.719 per-word bound, 210.7 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-09-25 13:20:41,252 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2018-09-25 13:20:41,800 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-09-25 13:20:41,807 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.007*\"program\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"color\" + 0.005*\"host\"\n", + "2018-09-25 13:20:41,809 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.010*\"space\" + 0.006*\"orbit\" + 0.006*\"gov\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"earth\" + 0.005*\"moon\" + 0.005*\"launch\" + 0.005*\"new\"\n", + "2018-09-25 13:20:41,811 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"peopl\" + 0.006*\"jew\" + 0.006*\"think\" + 0.006*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"exist\"\n", + "2018-09-25 13:20:41,812 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.013*\"space\" + 0.007*\"bike\" + 0.004*\"dod\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"time\"\n", + "2018-09-25 13:20:41,815 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.006*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"like\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.004*\"muslim\"\n", + "2018-09-25 13:20:41,816 : INFO : topic diff=0.325727, rho=0.414549\n", + "2018-09-25 13:20:41,817 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2018-09-25 13:20:42,525 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:42,531 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"univers\" + 0.006*\"program\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.005*\"need\"\n", + "2018-09-25 13:20:42,533 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.009*\"space\" + 0.007*\"orbit\" + 0.005*\"gov\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"earth\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"henri\"\n", + "2018-09-25 13:20:42,534 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-09-25 13:20:42,535 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.012*\"space\" + 0.008*\"bike\" + 0.006*\"dod\" + 0.005*\"ride\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\"\n", + "2018-09-25 13:20:42,536 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"greek\" + 0.004*\"time\" + 0.004*\"turk\" + 0.004*\"armenia\"\n", + "2018-09-25 13:20:42,537 : INFO : topic diff=0.264433, rho=0.382948\n", + "2018-09-25 13:20:42,538 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2018-09-25 13:20:43,212 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:43,220 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"data\"\n", + "2018-09-25 13:20:43,221 : INFO : topic #1 (0.200): 0.011*\"nasa\" + 0.010*\"space\" + 0.007*\"orbit\" + 0.006*\"gov\" + 0.005*\"moon\" + 0.005*\"like\" + 0.005*\"earth\" + 0.005*\"year\" + 0.004*\"time\" + 0.004*\"new\"\n", + "2018-09-25 13:20:43,222 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.008*\"isra\" + 0.008*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"jew\" + 0.006*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"state\"\n", + "2018-09-25 13:20:43,223 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.011*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"ride\" + 0.004*\"time\" + 0.004*\"new\"\n", + "2018-09-25 13:20:43,225 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.004*\"time\"\n", + "2018-09-25 13:20:43,226 : INFO : topic diff=0.248884, rho=0.382948\n", + "2018-09-25 13:20:44,316 : INFO : -7.692 per-word bound, 206.8 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-09-25 13:20:44,316 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2018-09-25 13:20:44,882 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-09-25 13:20:44,892 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"color\" + 0.005*\"format\"\n", + "2018-09-25 13:20:44,894 : INFO : topic #1 (0.200): 0.011*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"gov\" + 0.005*\"launch\" + 0.005*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"\n", + "2018-09-25 13:20:44,896 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"\n", + "2018-09-25 13:20:44,897 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.012*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"ride\" + 0.004*\"new\" + 0.004*\"time\"\n", + "2018-09-25 13:20:44,899 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"like\" + 0.004*\"turk\"\n", + "2018-09-25 13:20:44,900 : INFO : topic diff=0.251402, rho=0.382948\n", + "2018-09-25 13:20:44,901 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2018-09-25 13:20:45,546 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:45,552 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"program\" + 0.007*\"univers\" + 0.006*\"com\" + 0.006*\"us\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"need\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 15:16:37,386 : INFO : topic #1 (0.200): 0.011*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.005*\"earth\" + 0.005*\"moon\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"new\"\n", - "2018-08-28 15:16:37,388 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"believ\"\n", - "2018-08-28 15:16:37,389 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.011*\"space\" + 0.008*\"bike\" + 0.006*\"dod\" + 0.005*\"ride\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"new\" + 0.004*\"time\"\n", - "2018-08-28 15:16:37,390 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"know\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.005*\"time\"\n", - "2018-08-28 15:16:37,391 : INFO : topic diff=0.210808, rho=0.357622\n", - "2018-08-28 15:16:37,392 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2018-08-28 15:16:38,023 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-08-28 15:16:38,030 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"graphic\" + 0.010*\"file\" + 0.008*\"program\" + 0.007*\"univers\" + 0.006*\"com\" + 0.006*\"us\" + 0.005*\"host\" + 0.005*\"data\" + 0.005*\"mail\"\n", - "2018-08-28 15:16:38,031 : INFO : topic #1 (0.200): 0.012*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"earth\" + 0.005*\"moon\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"launch\" + 0.004*\"new\"\n", - "2018-08-28 15:16:38,034 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"state\"\n", - "2018-08-28 15:16:38,035 : INFO : topic #3 (0.200): 0.016*\"com\" + 0.009*\"space\" + 0.009*\"bike\" + 0.006*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"ride\" + 0.005*\"nntp\" + 0.004*\"time\" + 0.004*\"new\"\n", - "2018-08-28 15:16:38,037 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"like\"\n", - "2018-08-28 15:16:38,038 : INFO : topic diff=0.203456, rho=0.357622\n", - "2018-08-28 15:16:38,893 : INFO : -7.675 per-word bound, 204.4 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-08-28 15:16:38,894 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2018-08-28 15:16:39,383 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-08-28 15:16:39,389 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"com\" + 0.006*\"color\" + 0.006*\"format\"\n", - "2018-08-28 15:16:39,390 : INFO : topic #1 (0.200): 0.014*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"launch\" + 0.006*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"\n", - "2018-08-28 15:16:39,392 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"\n", - "2018-08-28 15:16:39,393 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.010*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.004*\"new\" + 0.004*\"time\"\n", - "2018-08-28 15:16:39,394 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"like\"\n", - "2018-08-28 15:16:39,395 : INFO : topic diff=0.205852, rho=0.357622\n" + "2018-09-25 13:20:45,553 : INFO : topic #1 (0.200): 0.011*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.005*\"earth\" + 0.005*\"moon\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"new\"\n", + "2018-09-25 13:20:45,555 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"believ\"\n", + "2018-09-25 13:20:45,556 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.011*\"space\" + 0.008*\"bike\" + 0.006*\"dod\" + 0.005*\"ride\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"new\" + 0.004*\"time\"\n", + "2018-09-25 13:20:45,557 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"know\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.005*\"time\"\n", + "2018-09-25 13:20:45,558 : INFO : topic diff=0.210808, rho=0.357622\n", + "2018-09-25 13:20:45,559 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2018-09-25 13:20:46,362 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-25 13:20:46,369 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"graphic\" + 0.010*\"file\" + 0.008*\"program\" + 0.007*\"univers\" + 0.006*\"com\" + 0.006*\"us\" + 0.005*\"host\" + 0.005*\"data\" + 0.005*\"mail\"\n", + "2018-09-25 13:20:46,371 : INFO : topic #1 (0.200): 0.012*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"earth\" + 0.005*\"moon\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"launch\" + 0.004*\"new\"\n", + "2018-09-25 13:20:46,372 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"state\"\n", + "2018-09-25 13:20:46,374 : INFO : topic #3 (0.200): 0.016*\"com\" + 0.009*\"space\" + 0.009*\"bike\" + 0.006*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"ride\" + 0.005*\"nntp\" + 0.004*\"time\" + 0.004*\"new\"\n", + "2018-09-25 13:20:46,375 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"like\"\n", + "2018-09-25 13:20:46,376 : INFO : topic diff=0.203456, rho=0.357622\n", + "2018-09-25 13:20:47,283 : INFO : -7.675 per-word bound, 204.4 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-09-25 13:20:47,284 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2018-09-25 13:20:47,837 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-09-25 13:20:47,844 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"com\" + 0.006*\"color\" + 0.006*\"format\"\n", + "2018-09-25 13:20:47,845 : INFO : topic #1 (0.200): 0.014*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"launch\" + 0.006*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"\n", + "2018-09-25 13:20:47,847 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"\n", + "2018-09-25 13:20:47,848 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.010*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.004*\"new\" + 0.004*\"time\"\n", + "2018-09-25 13:20:47,849 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"like\"\n", + "2018-09-25 13:20:47,850 : INFO : topic diff=0.205852, rho=0.357622\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 16.7 s, sys: 123 ms, total: 16.9 s\n", - "Wall time: 17 s\n" + "CPU times: user 18.7 s, sys: 110 ms, total: 18.8 s\n", + "Wall time: 18.8 s\n" ] } ], @@ -357,24 +368,24 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 15:16:39,505 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-08-28 15:16:39,531 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + "2018-09-25 13:20:47,926 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-09-25 13:20:47,957 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { "data": { "text/plain": [ - "-1.681936864017396" + "-1.5363353899846062" ] }, - "execution_count": 131, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -391,15 +402,15 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-28 15:16:39,688 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-08-28 15:16:39,716 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + "2018-09-25 13:20:48,133 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-09-25 13:20:48,165 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { @@ -408,7 +419,7 @@ "-1.7217224975861698" ] }, - "execution_count": 132, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -432,7 +443,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -451,16 +462,16 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2836.4596054536123" + "59.05222374757144" ] }, - "execution_count": 134, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -471,16 +482,16 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10928.561522056281" + "323.14210991534367" ] }, - "execution_count": 135, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -498,25 +509,25 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.027*\"space\" + 0.020*\"launch\" + 0.014*\"satellit\" + 0.009*\"nasa\" + 0.006*\"commerci\" + 0.006*\"data\" + 0.006*\"market\" + 0.006*\"orbit\" + 0.006*\"year\" + 0.006*\"new\"'),\n", + " '0.036*\"israel\" + 0.027*\"isra\" + 0.019*\"jew\" + 0.019*\"arab\" + 0.017*\"right\" + 0.017*\"state\" + 0.015*\"peopl\" + 0.013*\"govern\" + 0.013*\"turkish\" + 0.013*\"attack\"'),\n", " (1,\n", - " '0.018*\"peopl\" + 0.017*\"know\" + 0.014*\"said\" + 0.010*\"happen\" + 0.009*\"come\" + 0.009*\"think\" + 0.009*\"went\" + 0.009*\"like\" + 0.009*\"apart\" + 0.009*\"sai\"'),\n", + " '0.020*\"peopl\" + 0.019*\"said\" + 0.017*\"armenian\" + 0.017*\"know\" + 0.012*\"went\" + 0.011*\"like\" + 0.011*\"come\" + 0.010*\"apart\" + 0.010*\"sai\" + 0.010*\"azerbaijani\"'),\n", " (2,\n", - " '0.020*\"god\" + 0.011*\"exist\" + 0.010*\"atheist\" + 0.010*\"believ\" + 0.008*\"argument\" + 0.007*\"atheism\" + 0.007*\"christian\" + 0.006*\"peopl\" + 0.006*\"univers\" + 0.006*\"religion\"'),\n", + " '0.034*\"god\" + 0.020*\"believ\" + 0.020*\"exist\" + 0.015*\"peopl\" + 0.015*\"atheist\" + 0.015*\"christian\" + 0.014*\"atheism\" + 0.013*\"religion\" + 0.012*\"thing\" + 0.011*\"mean\"'),\n", " (3,\n", - " '0.025*\"armenian\" + 0.022*\"turkish\" + 0.015*\"jew\" + 0.011*\"turkei\" + 0.008*\"peopl\" + 0.008*\"nazi\" + 0.006*\"book\" + 0.006*\"armenia\" + 0.005*\"govern\" + 0.005*\"war\"'),\n", + " '0.026*\"imag\" + 0.025*\"jpeg\" + 0.014*\"file\" + 0.012*\"program\" + 0.011*\"format\" + 0.010*\"us\" + 0.009*\"avail\" + 0.009*\"softwar\" + 0.009*\"ftp\" + 0.009*\"graphic\"'),\n", " (4,\n", - " '0.054*\"jpeg\" + 0.039*\"imag\" + 0.029*\"file\" + 0.023*\"gif\" + 0.019*\"color\" + 0.017*\"format\" + 0.011*\"version\" + 0.011*\"program\" + 0.010*\"bit\" + 0.010*\"qualiti\"')]" + " '0.047*\"space\" + 0.019*\"nasa\" + 0.016*\"orbit\" + 0.013*\"satellit\" + 0.013*\"launch\" + 0.011*\"mission\" + 0.010*\"year\" + 0.010*\"new\" + 0.009*\"earth\" + 0.008*\"data\"')]" ] }, - "execution_count": 136, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -527,7 +538,7 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -545,7 +556,7 @@ " '0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"like\"')]" ] }, - "execution_count": 137, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -563,7 +574,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -576,16 +587,16 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8.563342468627981" + "8.624692869468236" ] }, - "execution_count": 139, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -596,15 +607,15 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 31 s, sys: 7.28 s, total: 38.3 s\n", - "Wall time: 11.5 s\n" + "CPU times: user 35.9 s, sys: 8.65 s, total: 44.5 s\n", + "Wall time: 14.5 s\n" ] } ], @@ -619,7 +630,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -628,7 +639,7 @@ "8.300690481807766" ] }, - "execution_count": 143, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -646,7 +657,7 @@ }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -687,1040 +698,6 @@ " return self.nmf.get_topics()" ] }, - { - "cell_type": "code", - "execution_count": 155, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'data': ['From: John Lussmyer \\nSubject: Re: DC-X update???\\nOrganization: Mystery Spot BBS\\nReply-To: dragon@angus.mi.org\\nLines: 12\\n\\nhenry@zoo.toronto.edu (Henry Spencer) writes:\\n\\n> The first flight will be a low hover that will demonstrate a vertical\\n> landing. There will be no payload. DC-X will never carry any kind\\n\\nExactly when will the hover test be done, and will any of the TV\\nnetworks carry it. I really want to see that...\\n\\n--\\nJohn Lussmyer (dragon@angus.mi.org)\\nMystery Spot BBS, Royal Oak, MI --------------------------------------------?--\\n\\n',\n", - " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 25\\n\\nDear Mr. Beyer:\\n\\nIt is never wise to confuse \"freedom of speech\" with \"freedom\"\\nof racism and violent deragatory.\"\\n\\nIt is unfortunate that many fail to understand this crucial \\ndistinction.\\n\\nIndeed, I find the latter in absolute and complete contradiction\\nto the former. Racial invective tends to create an atmosphere of\\nintimidation where certain individuals (who belong to the group\\nunder target group) do not feel the ease and liberty to exercise \\n*their* fundamental \"freedom of speech.\"\\n\\nThis brand of vilification is not sanctioned under \"freedom of\\nspeech.\\n\\nSalam,\\n\\nJohn Absood\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", - " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 16\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n \\n> \"Wait. You just said that humans are rarely reasonable. Doesn\\'t that\\n> contradict atheism, where everything is explained through logic and\\n> reason? This is THE contradiction in atheism that proves it false.\"\\n> --- Bobby Mozumder proving the existence of Allah, #2\\n\\nDoes anybody have Bobby\\'s post in which he said something like \"I don\\'t\\nknow why there are more men than women in islamic countries. Maybe it\\'s\\natheists killing the female children\"? It\\'s my personal favorite!\\n\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", - " \"From: gdoherty@us.oracle.com (Greg Doherty)\\nSubject: BMW '90 K75RT For Sale\\nDistribution: ca\\nOrganization: Oracle Corporation\\nLines: 11\\nOriginator: gdoherty@kr2seq.us.oracle.com\\nNntp-Posting-Host: kr2seq.us.oracle.com\\nX-Disclaimer: This message was written by an unauthenticated user\\n at Oracle Corporation. The opinions expressed are those\\n of the user and not necessarily those of Oracle.\\n\\n[this is posted for a friend, please reply to dschick@holonet.net]\\n\\n1990 BMW K75RT FOR SALE\\n\\nAsking 5900.00 or best offer.\\nThis bike has a full faring and is great for touring or commuting. It has\\nabout 30k miles and has been well cared for. The bike comes with one hard\\nsaddle bag (the left one; the right side bag was stolen), a Harro tank bag\\n(the large one), and an Ungo Box alarm. Interested? Then Please drop me a\\nline.\\nDAS\\n\",\n", - " 'From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: NONE\\nLines: 21\\n\\nIn article <1993Apr17.185118.10792@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n|> In article <1993Apr16.195452.21375@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n|> >04/16/93 1045 ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\n|> >\\n|> \\n|> Ermenistan kasiniyor...\\n|> \\n|> Let me translate for everyone else before the public traslation service gets\\n|> into it\\t: Armenia is getting itchy. \\n|> \\n|> Esin.\\n\\n\\nLet me clearify Mr. Turkish;\\n\\nARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that SHE\\nWILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\ntricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\nCYPRESS WHILE the world simply WATCHED. \\n\\n\\n',\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: End of the Space Age?\\nOrganization: Express Access Online Communications USA\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nOddly, enough, The smithsonian calls the lindbergh years\\nthe golden age of flight. I would call it the granite years,\\nreflecting the primitive nature of it. It was romantic,\\nswashbuckling daredevils, \"those daring young men in their flying\\nmachines\". But in reality, it sucked. Death was a highly likely\\noccurence, and the environment blew. Ever see the early navy\\npressure suits, they were modified diving suits. You were ready to\\nstar in \"plan 9 from outer space\". Radios and Nav AIds were\\na joke, and engines ran on castor oil. They picked and called aviators\\n\"men with iron stomachs\", and it wasn\\'t due to vertigo.\\n\\nOddly enough, now we are in the golden age of flight. I can hop the\\nshuttle to NY for $90 bucks, now that\\'s golden.\\n\\nMercury gemini, and apollo were romantic, but let\\'s be honest.\\nPeeing in bags, having plastic bags glued to your butt everytime\\nyou needed a bowel movement. Living for days inside a VW Bug.\\nRomantic, but not commercial. The DC-X points out a most likely\\nnew golden age. An age where fat cigar smoking business men in\\nloud polyester space suits will fill the skys with strip malls\\nand used space ship lots.\\n\\nhhhmmmmm, maybe i\\'ll retract that golden age bit. Maybe it was\\nbetter in the old days. Of course, then we\\'ll have wally schirra\\ntelling his great grand children, \"In my day, we walked on the moon.\\nEvery day. Miles. no buses. you kids got it soft\".\\n\\npat\\n',\n", - " 'From: dean@fringe.rain.com (Dean Woodward)\\nSubject: Re: Drinking and Riding\\nOrganization: Organization for Mass Confusion.\\nLines: 36\\n\\ncjackson@adobe.com (Curtis Jackson) writes:\\n\\n> In article MJMUISE@1302.wats\\n> }I think the cops and \"Don\\'t You Dare Drink & Drive\" (tm) commercials will \\n> }usually say 1hr/drink in general, but after about 5 drinks and 5 hrs, you \\n> }could very well be over the legal limit. \\n> }Watch yourself.\\n> \\n> Indeed, especially if you are \"smart\" and eat some food with your\\n> drink. The food coating the stomach lining (especially things like\\n> milk) can temporarily retard the absorption of alcohol. When the\\n> food is digested, the absorption will proceed, and you will\\n> actually be drunker (i.e., have a higher instantaneous BAC) than\\n> you would have been if you had drunk 1 drink/hr. on an empty stomach.\\n> \\n> Put another way, food can cause you to be less drunk than drinking on\\n> an empty stomach early on in those five hours, but more drunk than\\n> drinking on an empty stomach later in those five hours.\\n> -- \\n> Curtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\n> DoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\\n> \"There is no justification for taking away individuals\\' freedom\\n> in the guise of public safety.\" -- Thomas Jefferson\\n\\nAgain, from my alcohol server\\'s class:\\nThe absolute *most* that eating before drinking can do is slow the absorption\\ndown by 15 minutes. That gives me time to eat, slam one beer, and ride like\\nhell to try to make it home in the 10 minutes left after paying, donning \\nhelmet & gloves, starting bike...\\n\\n\\n--\\nDean Woodward | \"You want to step into my world?\\ndean@fringe.rain.com | It\\'s a socio-psychotic state of Bliss...\"\\n\\'82 Virago 920 | -Guns\\'n\\'Roses, \\'My World\\'\\nDoD # 0866\\n',\n", - " 'From: klinger@ccu.umanitoba.ca (Jorg Klinger)\\nSubject: Re: Riceburner Respect\\nNntp-Posting-Host: ccu.umanitoba.ca\\nOrganization: University of Manitoba, Winnipeg, Canada\\nLines: 28\\n\\nIn <1993Apr15.192558.3314@icomsim.com> mmanning@icomsim.com (Michael Manning) writes:\\n\\n>In article craig@cellar.org (Saint Craig) \\n>writes:\\n>> shz@mare.att.com (Keeper of the \\'Tude) writes:\\n>> \\n\\n>Most people wave or return my wave when I\\'m on my Harley.\\n>Other Harley riders seldom wave back to me when I\\'m on my\\n>duck. Squids don\\'t wave, or return waves ever, even to each\\n>other, from what I can tell.\\n\\n\\n When we take a hand off the bars we fall down!\\n\\n__\\n Jorg Klinger | GSXR1100 | If you only new who\\n Arch. & Eng. Services |\"Lost Horizons\" CR500 | I think I am. \\n UManitoba, Man. Ca. |\"The Embalmer\" IT175 | - anonymous\\n\\n --Squidonk-- \\n\\n\\n\\n\\n\\n\\n\\n',\n", - " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Israeli Terrorism\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 8\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n As someone who reads Israeli newpapaers every day, I can state\\nwith absolute certainty, that anybody who relies on western media\\nto get a picture of what is happening in Israel is not getting an\\naccurate picture. There is tremendous bias in those stories that\\ndo get reported. And the stories that NEVER get mentioned create\\na completely false picture of the mideast.\\n\\n',\n", - " 'From: dwarner@sceng.ub.com (Dave Warner)\\nSubject: Sabbatical (and future flames)\\nSummary: I\\'m outta here\\nLines: 32\\nNntp-Posting-Host: 128.203.2.156\\nOrganization: Ungermann-Bass SSE\\n\\nSo, I begin my 6 week sabbatical in about 15 minutes. Six wonderful weeks\\nof riding, and no phones or email.\\n\\nI won\\'t have any way to check mail (or setup a vacation agent, no sh*t!), \\nthough I can dial in and get newsfeed, (dont ask), so if there are any \\noutstanding CFC\\'s or such things,please try my compuserve address:\\n\\n72517.3356@compuserve.com\\n\\nAnybody wants to do some WEEKDAY rides around the BA, send me a mail\\nto above or post here.\\n\\nI\\'ll be thinking about all of you stuck if front of your\\nterminals......\"Sheeyaahhh, and monkeys might fly out of my butt...\"\\nride safe,\\ndave\\n\\n\\n\\n-------------------------------------------------------------------------\\n Sense AIN\\'T common....\\n\\nDave Warner Opinions unlikely to be shared\\nAMA 687955/HOG 0588773/DoD 870\\t by my employer or anyone else\\ndwarner@sceng.ub.com _Signature on file_ \\ndwarner@milo.ub.com 72517.3356@compuserve.com \\n\\'93 FXSTS \\'71 T120 (Stolen)\\n\\n-------------------------------------------------------------------------\\n\\n\\n\\n',\n", - " \"From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Anti-Zionism is Racism\\nOrganization: NYSERNet, Inc.\\nLines: 14\\n\\nB8HA000 writes:\\n\\n>In Re:Syria's Expansion, the author writes that the UN thought\\n>Zionism was Racism and that they were wrong. They were correct\\n>the first time, Zionism is Racism and thankfully, the McGill Daily\\n>(the student newspaper at McGill) was proud enough to print an article\\n>saying so. If you want a copy, send me mail.\\n\\n>Steve\\n\\nJust felt it was important to add four letters that Steve left out of\\nhis Subject: header.\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n\",\n", - " 'From: Center for Policy Research \\nSubject: Desertification of the Negev\\nNf-ID: #N:cdp:1483500361:000:5123\\nNf-From: cdp.UUCP!cpr Apr 25 05:25:00 1993\\nLines: 104\\n\\n\\nFrom: Center for Policy Research \\nSubject: Desertification of the Negev\\n\\n\\nThe desertification of the arid Negev\\n------------------------------------- by Moise Saltiel, I&P March\\n1990\\n\\nI. The Negev Bedouin Before and After 1948 II. Jewish\\nAgricultural Settlement in the Negev III. Development of the\\nNegev\\'s Rural Population IV. Economic Situation of Jewish\\nSettlements in 1990 V. Failure in Settling the Arava Valley\\nVI. Failure in Settling the Central Mountains VII. Failure in\\nMaking the Negev \"Bedouinenrein\" (Cleansing the Negev of Bedouins)\\nVIII. Transforming Bedouin into Low-Paid Workers IX.. Failure\\nin Settling the \"Development Towns\" X. Jordan Water to the\\nNegev: A Strategic Asset XI. The Negev Becomes a Dumping\\nGround XII. The Dimona Nuclear Plant XIII. The Negev as a\\nMilitary Base XIV. The Negev in the Year 2000\\n\\nJust after the creation of the State of Israel, the phrase \"the\\nJewish pioneers will make the desert bloom\" was trumpeted\\nthroughout the Western world. After the Six Day War in 1967, David\\nBen-Gurion declared in a letter to Charles de Gaulle: \"It\\'s by our\\npioneering creation that we have transformed a poor and arid land\\ninto a fertile land, created built-up areas, towns and villages in\\nabandoned desert areas\".\\n\\nContrary to Ben-Gurion\\'s assertion, it must be affirmed that\\nduring the 26 years of the British mandate over Palestine and for\\ncenturies previous, a productive human presence was to be found in\\nall parts of the Negev desert - in the very arid hills and valleys\\nof the southern Negev as well as in the more fertile north. These\\nwere the Bedouin Arabs.\\n\\nThe real desertification of the Negev, mainly in the southern\\npart, occurred after Israel\\'s dispossession of the Bedouin\\'s\\ncultivated lands and pastures. Nowadays, the majority of the\\n12,800 square-kilometer Negev, which represents 62 percent of the\\nState of Israel (pre-1967 borders), has been desertified beyond\\nrecognition. The main new occupiers of the formerly Bedouin Negev\\nare the Israeli army; the Nature Reserves Authority, whose chief\\nrole is to prevent Bedouin from roaming their former pasture\\nlands; and vast industrial zones, including nuclear reactors and\\ndumping grounds for chemical, nuclear and other wastes. Israeli\\nJews in the Negev today cultivate less than half the surface area\\ncultivated by the Bedouin before 1948, and there is no Jewish\\npastoral activity.\\n\\nI. Agricultural and pastoral activities of the Negev Bedouin\\nbefore and after 1948\\n-------------------------------------------------- In 1942,\\naccording to British mandatory statistics, the Beersheba\\nsub-district (which corresponds more or less to Israel\\'s Negev, or\\nSouthern, district) had 52,000 inhabitants, almost all Bedouin\\nArabs, who held 11,500 camels, 6,000 cows and oxen, 42,000 sheep\\nand 22,000 goats.\\n\\nThe majority of the Bedouin lived a more or less sedentary life in\\nthe north, where precipitation ranged between 200 and 350 mm per\\nyear. In 1944 they cultivated about 200,000 hectares of the\\nBeersheba district - i.e. 16 percent of its total area and *more\\nthan double the area cultivated by the Negev\\'s Jewish settlers\\nafter 40 years of \"making the desert bloom\"*\\n\\nThe Bedouin had a very low crop yield - 350 to 400 kilograms of\\nbarley per hectare during rainy years - and their farming\\ntechniques were primitive, but production was based solely on\\nanimal and human labor. It must also be underscored that animal\\nproduction, although low, was based entirely on pasturing.\\nProduction increased considerably during the rainy years and\\ndiminished significantly during drought years. All Bedouin pasture\\nanimals - goats, camels and sheep - had the ability to gain weight\\nquickly over the relatively rainy winters and to withstand many\\nwaterless days during the hot summers. These animals were the\\nresult of a centuries-old process of natural selection in harsh\\nlocal conditions.\\n\\nAfter the creation of the State of Israel, 80 percent of the Negev\\nBedouin were expelled to the Sinai or to Southern Jordan. The\\n10,000 who were allowed to remain were confined to a territory of\\n40,000 hectares in a region were annual mean precipiation was 150\\nmm - a quantity low enough to ensure a crop failure two years out\\nof three. The rare water wells in the south and central Negev,\\nspring of life in the desert, were cemented to prevent Bedouin\\nshepherds from roaming.\\n\\nA few Bedouin shepherds were allowed to stay in the central Negev.\\nBut after 1982, when the Sinai was returned to Egypt, these\\nBedouin were also eliminated. At the same time, strong pressure\\nwas applied on the Bedouin to abandon cultivation of their fields\\nin order that the land could be transferred to the army.\\n\\nNo reliable statistics exist concerning the amount of land held\\ntoday by Negev Bedouin. It is a known fact that a large part of\\nthe 40,000 hectares they cultivated in the 1950s has been seized\\nby the Israeli authorities. Indeed, most of the Bedouin are now\\nconfined to seven \"development towns\", or *sowetos*, established\\nfor them.\\n\\n(the rest of the article is available from Elias Davidsson, email:\\nelias@ismennt.is)\\n\\n',\n", - " 'From: mcguire@cs.utexas.edu (Tommy Marcus McGuire)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: CS Dept, University of Texas at Austin\\nLines: 36\\nDistribution: world\\nNNTP-Posting-Host: cash.cs.utexas.edu\\n\\nIn article <1qmetg$g2n@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n[...]\\n>horse\\'s neck in the direction you wish to go. When training a\\n>plow-steering horse to neck-rein, one technique is to cross the reins\\n>under his necks. Thus, when neck-reining to the left, the right rein\\n ^^^^^\\n[...]\\n>Ed Green, former Ninjaite |I was drinking last night with a biker,\\n[...]\\n\\n\\nGiven my desire to stay as far away as possible from farming and ranching\\nequipment, I really hate to jump into this thread. I\\'m going to anyway,\\nbut I really hate it.\\n\\nEd, exactly what kind of mutant horse-like entity do you ride, anyway?\\nDoes countersteering work on the normal, garden-variety, one-necked horse?\\n\\nObmoto: I was flipping through the March (I think) issue of Rider, and I\\nsaw a small pseudo-ad for a book on hand signals appropriate to motorcycling.\\nIt mentioned something about a signal for \"Your passenger is on fire.\" Any\\nbody know the title and author of this book, and where I could get a copy?\\nThis should not be understood as implying that I have grown sociable enough\\nto ride with anyone, but the book sounded cute.\\n\\n\\n\\n\\n-----\\nTommy McGuire\\nmcguire@cs.utexas.edu\\nmcguire@austin.ibm.com\\n\\n\"...I will append an appropriate disclaimer to outgoing public information,\\nidentifying it as personal and as independent of IBM....\"\\n\\n',\n", - " \"From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: Boom! Dog attack!\\nOrganization: the HP Corporate notes server\\nLines: 30\\n\\nSeveral years ago, while driving a cage, a dog darted out at a quiet\\nintersection right in front of me but there was enough distance\\nbetween us so I didn't have to slow down. However, a 2nd dog\\nsuddenly appeared and collided with my right front bumper and\\nthe force of the impact was enough to kill that Scottish Terrier.\\n\\nApparently, it was following the 1st dog. Henceforth, if a dog\\ndecides to cross the street, keep an eye out for a 2nd dog as\\nmany dogs like to travel in pairs or packs. \\n\\nI've yet to experience a dog chasing me on my black GL1200I which\\nhas a pretty loud OEM horn (not as good as Fiamms, but good enuff)\\nbut the bike is large and heavy enough to run right over one of\\nthe smaller nippers while the larger ones would have trouble\\ngetting my leg between the saddlebags and engine guards. I'd\\ndef feel more vulnerable on my '68 Trump as that'd be easier\\nleg chewing target for those mongrels.\\n\\nIf there's a persistent dog running after bikers despite\\ncomplaints to the owner I wouldn't be adverse to running\\nover it with my truck as a dogs life isn't worth much IMHO\\ncompared to a child riding a bike who gets knocked to the\\nground by said dog and dies from a head injury. \\n\\nAny dog in the neighborhood that's vicious or a public menace\\nrunning about unleashed is fair game as road kill candidate.\\n\\nGraeme Harrison\\n(gharriso@hpcc01.corp.hp.com) DoD#649 \\n\\n\",\n", - " 'Subject: Re: Video in/out\\nFrom: djlewis@ualr.edu\\nOrganization: University of Arkansas at Little Rock\\nNntp-Posting-Host: athena.ualr.edu\\nLines: 40\\n\\nIn article <1993Apr18.080719.4773@nwnexus.WA.COM>, mscrap@halcyon.com (Marta Lyall) writes:\\n> Organization: \"A World of Information at your Fingertips\"\\n> Keywords: \\n> \\n> In article <628@toontown.columbiasc.ncr.com> craig@toontown.ColumbiaSC.NCR.COM (Craig S. Williamson) writes:\\n>>\\n>>I\\'m getting ready to buy a multimedia workstation and would like a little\\n>>advice. I need a graphics card that will do video in and out under windows.\\n>>I was originally thinking of a Targa+ but that doesn\\'t work under Windows.\\n>>What cards should I be looking into?\\n>>\\n>>Thanks,\\n>>Craig\\n>>\\n>>-- \\n>> \"To forgive is divine, to be\\n>>-Craig Williamson an airhead is human.\"\\n>> Craig.Williamson@ColumbiaSC.NCR.COM -Balki Bartokomas\\n>> craig@toontown.ColumbiaSC.NCR.COM (home) Perfect Strangers\\n> \\n> \\n> Craig,\\n> \\n> You should still consider the Targa+. I run windows 3.1 on it all the\\n> time at work and it works fine. I think all you need is the right\\n> driver. \\n> \\n> Josh West \\n> email: mscrap@halcyon.com\\n> \\nAT&T also puts out two new products for windows, Model numbers elude me now,\\na 15 bit video board with framegrabber and a 16bit with same. Yesterday I\\nwas looking at a product at a local Software ETC store. Media Vision makes\\na 15bit (32,768 color) frame capture board that is stand alone and doesnot\\nuse the feature connector on your existing video card. It claims upto 30 fps\\nlive capture as well as single frame from either composite NTSC or s-video\\nin and out.\\n\\nDon Lewis\\n\\n',\n", - " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Yeah, Right\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 49\\nDistribution: world\\nNNTP-Posting-Host: agar.engin.umich.edu\\n\\nIn article <66014@mimsy.umd.edu> mangoe@cs.umd.edu (Charley Wingate) writes:\\n>Benedikt Rosenau writes:\\n>\\n>>And what about that revelation thing, Charley?\\n>\\n>If you\\'re talking about this intellectual engagement of revelation, well,\\n>it\\'s obviously a risk one takes.\\n\\n Ah, now here is the core question. Let me suggest a scenario.\\n\\n We will grant that a God exists, and uses revelation to communicate\\nwith humans. (Said revelation taking the form (paraphrased from your\\nown words) \\'This infinitely powerful deity grabs some poor schmuck,\\nmakes him take dictation, and then hides away for a few hundred years\\'.)\\n Now, there exists a human who has not personally experienced a\\nrevelation. This person observes that not only do these revelations seem\\nto contain elements that contradict rather strongly aspects of the\\nobserved world (which is all this person has ever seen), but there are\\nmany mutually contradictory claims of revelation.\\n\\n Now, based on this, can this person be blamed for concluding, absent\\na personal revelation of their own, that there is almost certainly\\nnothing to this \\'revelation\\' thing?\\n\\n>I\\'m not an objectivist, so I\\'m not particularly impressed with problems of\\n>conceptualization. The problem in this case is at least as bad as that of\\n>trying to explain quantum mechanics and relativity in the terms of ordinary\\n>experience. One can get some rough understanding, but the language is, from\\n>the perspective of ordinary phenomena, inconsistent, and from the\\n>perspective of what\\'s being described, rather inexact (to be charitable).\\n>\\n>An analogous situation (supposedly) obtains in metaphysics; the problem is\\n>that the \"better\" descriptive language is not available.\\n\\n Absent this better language, and absent observations in support of the\\nclaims of revelation, can one be blamed for doubting the whole thing?\\n\\n Here is what I am driving at: I have thought a long time about this. I\\nhave come to the honest conclusion that if there is a deity, it is\\nnothing like the ones proposed by any religion that I am familiar with.\\n Now, if there does happen to be, say, a Christian God, will I be held\\naccountable for such an honest mistake?\\n\\n Sincerely,\\n\\n Ray Ingles ingles@engin.umich.edu\\n\\n \"The meek can *have* the Earth. The rest of us are going to the\\nstars!\" - Robert A. Heinlein\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nOrganization: Express Access Online Communications USA\\nLines: 7\\nNNTP-Posting-Host: access.digex.net\\n\\n Besides this was the same line of horse puckey the mining companies claimed\\nwhen they were told to pay for restoring land after strip mining.\\n\\nthey still mine coal in the midwest, but now it doesn't look like\\nthe moon when theyare done.\\n\\npat\\n\",\n", - " 'From: beck@irzr17.inf.tu-dresden.de (Andre Beck)\\nSubject: Re: Fonts in POV??\\nOrganization: Dept. of Computer Science, TU Dresden, Germany.\\nLines: 57\\nDistribution: world\\nReply-To: Andre_Beck@IRS.Inf.TU-Dresden.DE\\nNNTP-Posting-Host: irzr17.inf.tu-dresden.de\\nKeywords: fonts, raytrace\\n\\n\\nIn article <1qg9fc$et9@wampyr.cc.uow.edu.au>, g9134255@wampyr.cc.uow.edu.au (Coronado Emmanuel Abad) writes:\\n|> \\n|> \\n|> \\tI have seen several ray-traced scenes (from MTV or was it \\n|> RayShade??) with stroked fonts appearing as objects in the image.\\n|> The fonts/chars had color, depth and even textures associated with\\n|> them. Now I was wondering, is it possible to do the same in POV??\\n|> \\n\\nHi Noel,\\n\\nI\\'ve made some attempts to write a converter that reads Adobe Type 1 fonts,\\ntriangulates them, bevelizes them and extrudes them to result in a generic\\n3d object which could be used with PoV f.i.\\n\\nThe problem I\\'m currently stuck on is that theres no algorithm which\\ntriangulates any arbitrary polygonal shape. Delaunay seems to be limited\\nto convex hulls. Constrained delaunay may be okay, but I have no code\\nexample of how to do it.\\n\\nAnother way to do the bartman may be\\n\\n- TGA2POV\\n- A selfmade variation of this, using heightfields.\\n\\n Create a b/w picture (BIG) of the text you need, f.i. using a PostScript\\n previewer. Then, use this as a heightfield. If it is white on black,\\n the heightfield is exactly the images white parts (it\\'s still open\\n on the backside). To close it, mirror it and compound it with the original.\\n\\nExample:\\n\\nobject {\\n union {\\n height_field { gif \"abp2.gif\" }\\n height_field { gif \"abp2.gif\" scale <1 -1 1>}\\n }\\n texture {\\n Glass\\n }\\n translate <-0.5 0 -0.5> //center\\n rotate <-90 0 0> // rotate upwards\\n scale <10 5 100> // scale bigger and thicker\\n translate <0 2 0> // final placement\\n}\\n\\n\\nabp2.gif is a GIF of arbitrary size containing \"ABP\" black on white in\\nTimes-Roman 256 points.\\n\\n--\\n+-o-+--------------------------------------------------------------+-o-+\\n| o | \\\\\\\\\\\\- Brain Inside -/// | o |\\n| o | ^^^^^^^^^^^^^^^ | o |\\n| o | Andre\\' Beck (ABPSoft) mehl: Andre_Beck@IRS.Inf.TU-Dresden.de | o |\\n+-o-+--------------------------------------------------------------+-o-+\\n',\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: \"Conventional Proposales\": Israel & Palestinians\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 117\\n\\nIn article <2BCA3DC0.13224@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n>\\n>The latest Israeli \"proposal\", first proposed in February of 1992, contains \\n>the following assumptions concerning the nature of any \"interim status\" refering to the WB and Gaza, the Palestinians, implemented by negotiations. It\\n>states that: \\n> >Israel will remain the existing source of authority until \"final status\"\\n> is agreed upon;\\n> >Israel will negiotiate the delegation of power to the organs of the \\n> Interim Self-Government Arrangements (ISGA);\\n> >The ISGA will apply to the \"Palestinian inhabitants of the territories\"\\n> under Israeli military administration. The arrangements will not have a \\n> territorial application, nor will they apply to the Israeli population \\n> of the territories or to the Palestinian inhabitants of Jerusalem;\\n> >Residual powers not delegated under the ISGA will be reserved by Israel;\\n> >Israelis will continue to live and settle in the territoriesd;\\n> >Israel alone will have responsibility for security in all its aspects-\\n> external, internal- and for the maintenance of public order;\\n> >The organs of the ISGA will be of an administrative-functional nature;\\n> >The exercise of powers under the ISGA will be subject to cooperation and \\n> coordination with Israel. \\n> >Israel will negotiate delegation of powers and responsibilities in the \\n> areas of administration, justice, personnel, agriculture, education,\\n> business, tourism, labor and social welfare, local police,\\n> local transportation and communications, municipal affairs and religious\\n> affairs.\\n>\\n>The Palestinian counterproposal of March 1992:\\n> >The establishment of a Palestinian Interim Self-Governing Authority \\n> (PISGA) whose authority is vested by the Palestinian people;\\n> >Its (PISGA) powers cannot be delegated by Israel;\\n> >In the interim phase the Israeli military government and civil adminis-\\n> tration will be abolished, and the PISGA will asume the powers previous-\\n> ly enjoyed by Israel;\\n> >There will be no limitations on its (PISGA) powers and responsibilities \\n> \"except those which derive from its character as an interim arrangement\";\\n> >By the time PISGA is inaugurated, the Israeli armed forces will have \\n> completed their withdrawal to agreed points along the borders of the \\n> Occupied Palestinian Territory (OPT). The OPT includes Jerusalem;\\n> >The jurisdiction of the PISGA shall extend to all of the OPT, including \\n> its land, water and air space;\\n> >The PISGA shall have legislative powers to enact, amend and abrogate laws;\\n> >It will wield executive power withput foreign control;\\n> >It shall determine the nature of its cooperation with any state or \\n> international body, and shall be empowered to conclude binding coopera-\\n> tive agreements free of any control by Israel;\\n> >The PISGA shall administer justice throughout the OPT and will have sole\\n> and exclusive jruisdiction;\\n> >It will have a strong police force responsible for security and public\\n> order in the OPT;\\n> >It can request the assistance of a UN peacekeeping force;\\n> >Disputes with Israel over self-governing arrangements will be settled by \\n> a committee composed of representatives of the five permanent members of\\n> the UN Security Council, the Secretary General (of the UN), the PISGA, \\n> Jordan, Egypt, Syria and Israel.\\n>\\n>But perhaps the \"bargaining\" attitude behind these very different visions\\n>of the \"interim stage\" is wrong? For two reasons: 1) the present Palestinian \\n>and Israeli leadership are *as moderate* as is likely to exist for many years,\\n>so the present opportunity may be the last for a significant period, 2) since\\n>these negotiations *are not* designed to, or even attempting to, resolve the \\n>conflict, attention to issues dealing with a desired \"final status\" are mis-\\n>placed and potentially destructive.\\n>\\n>Given this, how should proposals (from either side) be altered to temper\\n>their \"maximalist\" approaches as stated above? How can Israeli worries ,and \\n>desire for some \"interim control\", be addressed while providing for a very \\n>*real* interim Palestinian self-governing entity?\\n>\\n>Tim\\n> \\nApril 13, 1993 response by Al Moore (L629159@LMSC5.IS.LMSC.LOCKHEED.COM):\\n\\nBasically the problem is that Israel may remain, or leave, the occupied \\nterritories; it cannot do both, it cannot do neither. So far, Israe \\ncontinues to propose that they remain. The Palestinians propose that they \\nleave. Why should either change their view? It is worth pointing out that \\nthe only area of compromise accomodating both views seems to require a\\nreduction in the Israeli presence. Israel proposes no such reduction....\\nand in fact may be said to *not* be negotiating.\\n------------------------------------------------------------------------\\n\\nTim: \\n\\nThere seem to be two perceptions that **have to be addressed**. The\\nfirst is that of Israel, where there is little trust for Arab groups, so\\nthere is little support for Israel giving up **tangible** assets in \\nexchange for pieces of paper, \"expectations\", \"hopes\", etc. The second\\nis that of the Arab world/Palestinians, where there is the demand that\\nthese \"tangible concessions\" be made by Israel **without** it receiving\\nanything **tangible** back. Given this, the gap between the two stances\\nseems to be the need by Israel of receiving some ***tangible*** returns\\nfor its expected concessions. By \"tangible\" is meant something that\\n1) provides Israel with \"comparable\" protection (from the land it is to \\ngive up), 2) in some way ensures that the Arab states and Palestine \\n**will be** accountable and held actively (not just \"diplomatically) \\nresponsible for the upholding of all actions on its territory (by citizens \\nor \"visitors\").\\n\\nIn essence I do not believe that Israel objections to Palestinian\\nstatehood would be anywhere near as strong as they are now IF Israel\\nwas assured that any new Palestinian state *would be committed to** \\nco-existing with Israel and held responsible for ALL attacks on Israel \\nfrom its territory.\\n\\tAside from some of the rather slanted proposals above,\\n\\thow *could* such \"guarantees\" be instilled? For example,\\n\\thow could such \"guarantees\"/\"controls\" be added to the\\n\\tPalestinian PISGA proposals?\\n\\nIsrael is hanging on largely because it is scared stiff that the minute\\nit lets go (gives lands back to Arab states, no more \"buffer zone\", gives\\nfull autonomy to Palestinians), ANY and/or ALL of the Arab parties\\ncould (and *would*, if not \"controlled\" somehow) EASILY return to the \\ntraditional anti-Israel position. The question then is HOW to *really*\\nensure that that will not happen.\\n\\nTim\\n\\n',\n", - " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: Re: Israel\\'s Expansion\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 34\\n\\n\\nIn article <18APR93.15729846.0076@VM1.MCGILL.CA>, B8HA000 writes:\\n>Just a couple of questions for the pro-Israeli lobby out there:\\n>\\n>1) Is Israel\\'s occupation of Southern Lebanon temporary? For Mr.\\n>Stein: I am working on a proof for you that Israel is diverting\\n>water to the Jordan River (away from Lebanese territory).\\n\\nYes. As long as the goverment over there can force some authority and prevent\\nterrorists attack against Israel. \\n\\n>\\n>2) Is Israel\\'s occupation of the West Bank, Gaza, and Golan\\n>temporary? If so (for those of you who support it), why were so\\n>many settlers moved into the territories? If it is not temporary,\\n>let\\'s hear it.\\n\\nSinai had several big cities that were avcuated when isreal gave it back to\\nEgypth, but for a peace agreement. So it is my opinin that the settlers will not\\nbe an obstacle for withdrawal as long it is combined with a real peace agreement\\nwith the Arabs and the Palastinians.\\n\\n>\\n>Steve\\n>\\n\\n\\nNaftaly\\n\\n---\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", - " \"From: sproulx@bmtlh204.BNR.CA (Stephane Proulx)\\nSubject: Re: Cobra Locks\\nReply-To: sproulx@bmtlh204.BNR.CA (Stephane Proulx)\\nOrganization: Bell-Northern Research Ltd.\\nLines: 105\\n\\n\\nYou may find it useful.\\n(This is a repost. The original sender is at the bottom.)\\n-------------------cut here--------------------------------------------------\\nArticle 39994 of rec.motorcycles:\\nPath:\\nscrumpy!bnrgate!corpgate!news.utdallas.edu!hermes.chpc.utexas.edu!cs.ute\\nexas.edu!swrinde!mips!pacbell.com!iggy.GW.Vitalink.COM!widener!eff!ibmpc\\ncug!pipex!unipalm!uknet!cf-cm!cybaswan!eeharvey\\nFrom: eeharvey@cybaswan.UUCP (i t harvey)\\nNewsgroups: rec.motorcycles\\nSubject: Re: Best way to lock a bike ?\\nMessage-ID: <861@cybaswan.UUCP>\\nDate: 15 Jul 92 09:47:10 GMT\\nReferences: <1992Jul14.165538.9789@usenet.ins.cwru.edu>\\nLines: 84\\n\\n\\nThese are the figures from the Performance Bikes lock test, taken without\\npermission of course. The price is for comparison. All the cable locks\\nhave some sort of armour, the chain locks are padlock and chain. Each\\nlock was tested for a maximum of ten minutes (600 secs) for each test:\\n\\n\\tBJ\\tBottle jack\\n\\tCD\\tCutting disc\\n\\tBC\\tBolt croppers\\n\\tGAS\\tGas flame\\n\\nThe table should really be split into immoblisers (for-a-while) and\\nlock-to-somethings (for-a-short-while) to make comparisons.\\n\\n\\t\\tType\\tWeight\\tBJ\\tCD\\tBC\\tGAS\\tTotal\\tPrice\\n\\t\\t\\t(kg)\\t(sec)\\t(sec)\\t(sec)\\t(sec)\\t(sec)\\t(Pounds)\\n========================================================================\\n=========\\n3-arm\\t\\tFolding\\t.8\\t53\\t5\\t13\\t18\\t89\\t26\\nCyclelok\\tbar\\n\\nAbus Steel-o-\\tCable\\t1.4\\t103\\t4\\t20\\t26\\t153\\t54\\nflex\\n\\nOxford\\t\\tCable\\t2.0\\t360\\t4\\t32\\t82\\t478\\t38\\nRevolver\\n\\nAbus Diskus\\tChain\\t2.8\\t600\\t7\\t40\\t26\\t675\\t77\\n\\n6-arm\\t\\tFolding\\t1.8\\t44\\t10\\t600\\t22\\t676\\t51\\nCyclelok\\tbar\\n\\nAbus Extra\\tU-lock\\t1.2\\t600\\t10\\t120\\t52\\t782\\t44\\n\\nCobra\\t\\tCable\\t6.0(!)\\t382\\t10\\t600\\t22\\t1014\\t150\\n(6ft)\\n\\nAbus closed\\tChain\\t4.0\\t600\\t11\\t600\\t33\\t1244\\t100\\nshackle\\t\\n\\nKryptonite\\tU-lock\\t2.5\\t600\\t22\\t600\\t27\\t1249\\t100\\nK10\\n\\nOxford\\t\\tU-lock\\t2.0\\t600\\t7\\t600\\t49\\t1256\\t38\\nMagnum\\n\\nDisclock\\tDisc\\t.7\\tn/a\\t44\\tn/a\\t38\\t1282\\t43\\n\\t\\tlock\\n\\nAbus 58HB\\tU-lock\\t2.5\\t600\\t26\\t600\\t64\\t1290\\t100\\n\\nMini Block\\tDisc\\t.65\\tn/a\\t51\\tn/a\\t84\\t1335\\t50\\n\\t\\tlock\\n========================================================================\\n=========\\n\\nPretty depressing reading. I think a good lock and some common sense about\\nwhere and when you park your bike is the only answer. I've spent all my\\nspare time over the last two weeks landscaping (trashing) the garden of\\nmy (and two friends with bikes) new house to accommodate our three bikes in\\nrelative security (never underestimate how much room a bike requires to\\nmanouver in a walled area :( ). Anyway, since the weekend there are only two\\nbikes :( and no, he didn't use his Abus closed shackle lock, it was too much\\nhassle to take with him when visiting his parents. A minimum wait of 8\\nweeks (if they don't decide to investigate) for the insurance company\\nto make an offer and for the real haggling to begin.\\n\\nAbus are a German company and it would seem not well represented in the US\\nbut very common in the UK. The UK distributor, given in the above article\\nis:\\n\\tMichael Brandon Ltd,\\n\\t15/17 Oliver Crescent,\\n\\tHawick,\\n\\tRoxburgh TD9 9BJ.\\n\\tTel. 0450 73333\\n\\nThe UK distributors for the other locks can also given if required.\\n\\nDon't lose it\\n\\tIan\\n\\n-- \\n_______________________________________________________________________\\n Ian Harvey, University College Swansea Too old to rock'n'roll\\n eeharvey@uk.ac.swan.pyr Too young to die\\n '79 GS750E \\n\\n\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Morality? (was Re: >>Explain to me\\n>>>how instinctive acts can be moral acts, and I am happy to listen.\\n>>For example, if it were instinctive not to murder...\\n>Then not murdering would have no moral significance, since there\\n>would be nothing voluntary about it.\\n\\nSee, there you go again, saying that a moral act is only significant\\nif it is \"voluntary.\" Why do you think this?\\n\\nAnd anyway, humans have the ability to disregard some of their instincts.\\n\\n>>So, only intelligent beings can be moral, even if the bahavior of other\\n>>beings mimics theirs?\\n>You are starting to get the point. Mimicry is not necessarily the \\n>same as the action being imitated. A Parrot saying \"Pretty Polly\" \\n>isn\\'t necessarily commenting on the pulchritude of Polly.\\n\\nYou are attaching too many things to the term \"moral,\" I think.\\nLet\\'s try this: is it \"good\" that animals of the same species\\ndon\\'t kill each other. Or, do you think this is right? \\n\\nOr do you think that animals are machines, and that nothing they do\\nis either right nor wrong?\\n\\n\\n>>Animals of the same species could kill each other arbitarily, but \\n>>they don\\'t.\\n>They do. I and other posters have given you many examples of exactly\\n>this, but you seem to have a very short memory.\\n\\nThose weren\\'t arbitrary killings. They were slayings related to some sort\\nof mating ritual or whatnot.\\n\\n>>Are you trying to say that this isn\\'t an act of morality because\\n>>most animals aren\\'t intelligent enough to think like we do?\\n>I\\'m saying:\\n>\\t\"There must be the possibility that the organism - it\\'s not \\n>\\tjust people we are talking about - can consider alternatives.\"\\n>It\\'s right there in the posting you are replying to.\\n\\nYes it was, but I still don\\'t understand your distinctions. What\\ndo you mean by \"consider?\" Can a small child be moral? How about\\na gorilla? A dolphin? A platypus? Where is the line drawn? Does\\nthe being need to be self aware?\\n\\nWhat *do* you call the mechanism which seems to prevent animals of\\nthe same species from (arbitrarily) killing each other? Don\\'t\\nyou find the fact that they don\\'t at all significant?\\n\\nkeith\\n',\n", - " \"From: hesh@cup.hp.com (Chris Steinbroner)\\nSubject: Re: Tracing license plates of BDI cagers?\\nArticle-I.D.: cup.C535HL.C6H\\nReply-To: Chris Steinbroner \\nOrganization: HP-UX Kernel Lab, Cupertino, CA\\nLines: 12\\nNntp-Posting-Host: hesh.cup.hp.com\\nX-Newsreader: TIN [version 1.1 PL9.1]\\n\\nCurtis Jackson (cjackson@adobe.com) wrote:\\n: The driver had looked over at me casually a couple of times; I\\n: know he knew I was there.\\n\\noh, okay. then in that case it was\\nattemped vehicular manslaughter.\\nhe definitely wanted to kill you.\\nall cagers want to kill bikers.\\nthat's the only explanation that\\ni can think of.\\n\\n-- hesh\\n\",\n", - " \"From: halat@pooh.bears (Jim Halat)\\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 37\\n\\nIn article <30121@ursa.bear.com>, halat@pooh.bears (Jim Halat) writes:\\n>In article <115288@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n>>\\n>>He'd have to be precise about is rejection of God and his leaving Islam.\\n>>One is perfectly free to be muslim and to doubt and question the\\n>>existence of God, so long as one does not _reject_ God. I am sure that\\n>>Rushdie has be now made his atheism clear in front of a sufficient \\n>>number of proper witnesses. The question in regard to the legal issue\\n>>is his status at the time the crime was committed. \\n>\\n\\nI'll also add that it is impossible to actually tell when one\\n_rejects_ god. Therefore, you choose to punish only those who\\n_talk_ about it. \\n\\n>\\n>-jim halat \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n\",\n", - " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: Newbie\\nOrganization: NASA Science Internet Project Office\\nLines: 16\\n\\nIn article , os048@xi.cs.fsu.edu () writes:\\n|> hey there,\\n|> Yea, thats what I am....a newbie. I have never owned a motorcycle,\\n\\nThis makes 5! It IS SPRING!\\n\\n|> Matt\\n|> PS I am not really sure what the purpose of this article was but...oh well\\n\\nNeither were we. Read for a few days, then try again.\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", - " \"From: valo@cvtstu.cvt.stuba.cs (Valo Roman)\\nSubject: Re: Text Recognition software availability\\nOrganization: Slovak Technical University Bratislava, Slovakia\\nLines: 23\\nNNTP-Posting-Host: sk2eu.eunet.sk\\nReplyTo: valo@cvtstu.cvt.stuba.cs (Valo Roman)\\n\\nIn article , ab@nova.cc.purdue.edu (Allen B) writes:\\n|> One more time: is there any >free< OCR software out there?\\n|>\\n|> I ask this question periodically and haven't found anything. This is\\n|> the last time. If I don't find anything, I'm going to write some\\n|> myself.\\n|> \\n|> Post here or email me if you have any leads or suggestions, else just\\n|> sit back and wait for me. :)\\n|> \\n|> ab\\n\\nI'm not sure if this is free or shareware, but you can try to look to wsmrsimtel20.army.mil,\\ndirectory PD1: file OCR104.ZIP .\\nFrom the file SIMIBM.LST :\\nOCR104.ZIP B 93310 910424 Optical character recognition for scanners.\\n\\nHope this helps.\\n\\nRoman Valo valo@cvt.stuba.cs\\nSlovak Technical University\\nBratislava \\nSlovakia\\n\",\n", - " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: Investment in Yehuda and Shomron\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , horen@netcom.com (Jonathan B. Horen) writes:\\n|> \\n|> While I applaud investing of money in Yehuda, Shomron, v\\'Chevel-Azza,\\n|> in order to create jobs for their residents, I find it deplorable that\\n|> this has never been an active policy of any Israeli administration\\n|> since 1967, *with regard to their Jewish residents*. Past governments\\n|> found funds to subsidize cheap (read: affordable) housing and the\\n|> requisite infrastructure, but where was the investment for creating\\n|> industry (which would have generated income *and* jobs)? \\n\\nThe investment was there in the form of huge tax breaks, and employer\\nbenfits. You are overlooking the difference that these could have\\nmade to any company. Part of the problem was that few industries\\nwere interested in political settling, as much as profit.\\n\\n|> After 26 years, Yehuda and Shomron remain barren, bereft of even \\n|> middle-sized industries, and the Jewish settlements are sterile\\n|> \"bedroom communities\", havens for (in the main) Israelis (both\\n|> secular *and* religious) who work in Tel-Aviv or Jerusalem but\\n|> cannot afford to live in either city or their surrounding suburbs.\\n\\nTrue, which leads to the obvious question, should any investment have\\nbeen made there at the taxpayer\\'s expense. Obviously, the answer was\\nand still is a resounding no.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n',\n", - " \"From: house@helios.usq.EDU.AU (ron house)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nOrganization: University of Southern Queensland\\nLines: 42\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tFirst I want to start right out and say that I'm a Christian. It \\n\\nI _know_ I shouldn't get involved, but... :-)\\n\\n[bit deleted]\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n>\\tSome reasons why he wouldn't be a liar are as follows. Who would \\n>die for a lie? Wouldn't people be able to tell if he was a liar? People \\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy. Very doubtful, in fact rediculous. For example \\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn't a liar or a lunatic, he must have been the \\n>real thing. \\n\\nRighto, DAN, try this one with your Cornflakes...\\n\\nThe book says that Muhammad was either a liar, or he was crazy ( a \\nmodern day Mad Mahdi) or he was actually who he said he was.\\nSome reasons why he wouldn't be a liar are as follows. Who would \\ndie for a lie? Wouldn't people be able to tell if he was a liar? People \\ngathered around him and kept doing it, many gathered from hearing or seeing \\nhow his son-in-law made the sun stand still. Call me a fool, but I believe \\nhe did make the sun stand still. \\nNiether was he a lunatic. Would more than an entire nation be drawn \\nto someone who was crazy. Very doubtful, in fact rediculous. For example \\nanyone who is drawn to the Mad Mahdi is obviously a fool, logical people see \\nthis right away.\\nTherefore since he wasn't a liar or a lunatic, he must have been the \\nreal thing. \\n\\n--\\n\\nRon House. USQ\\n(house@helios.usq.edu.au) Toowoomba, Australia.\\n\",\n", - " \"From: B8HA \\nSubject: Re: Israel's Expansion II\\nLines: 24\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nIn article <1993Apr22.093527.15720@donau.et.tudelft.nl> avi@duteinh.et.tudelft.nl (Avi Cohen Stuart) writes:\\n>From article <93111.225707PP3903A@auvm.american.edu>, by Paul H. Pimentel :\\n>> What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n>> s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n>> k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n>> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n>> ore they have a right to Jerusaleum as much as Isreal does.\\n>\\n>\\n>There is one big difference between Israel and the Arabs, Christians in this\\n>respect.\\n>\\n>Israel allows freedom of religion.\\n>\\n>Avi.\\n>.\\n>.\\nAvi,\\n For your information, Islam permits freedom of religion - there is\\nno compulsion in religion. Does Judaism permit freedom of religion\\n(i.e. are non-Jews recognized in Judaism). Just wondering.\\n\\nSteve\\n\\n\",\n", - " \"From: jk87377@lehtori.cc.tut.fi (Kouhia Juhana)\\nSubject: Re: More gray levels out of the screen\\nOrganization: Tampere University of Technology\\nLines: 21\\nDistribution: inet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn article <1993Apr6.011605.909@cis.uab.edu> sloan@cis.uab.edu\\n(Kenneth Sloan) writes:\\n>\\n>Why didn't you create 8 grey-level images, and display them for\\n>1,2,4,8,16,32,64,128... time slices?\\n\\nBy '8 grey level images' you mean 8 items of 1bit images?\\nIt does work(!), but it doesn't work if you have more than 1bit\\nin your screen and if the screen intensity is non-linear.\\n\\nWith 2 bit per pixel; there could be 1*c_1 + 4*c_2 timing,\\nthis gives 16 levels, but they are linear if screen intensity is\\nlinear.\\nWith 1*c_1 + 2*c_2 it works, but we have to find the best\\ncompinations -- there's 10 levels, but 16 choises; best 10 must be\\nchosen. Different compinations for the same level, varies a bit, but\\nthe levels keeps their order.\\n\\nReaders should verify what I wrote... :-)\\n\\nJuhana Kouhia\\n\",\n", - " \"From: gfk39017@uxa.cso.uiuc.edu (George F. Krumins)\\nSubject: Re: space news from Feb 15 AW&ST\\nOrganization: University of Illinois at Urbana\\nLines: 23\\n\\njbreed@doink.b23b.ingr.com (James B. Reed) writes:\\n\\n>In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>|> [Pluto's] atmosphere will start to freeze out around 2010, and after about\\n>|> 2005 increasing areas of both Pluto and Charon will be in permanent\\n>|> shadow that will make imaging and geochemical mapping impossible.\\n\\nIt's my understanding that the freezing will start to occur because of the\\ngrowing distance of Pluto and Charon from the Sun, due to it's\\nelliptical orbit. It is not due to shadowing effects. \\n\\n>Where does the shadow come from? There's nothing close enough to block\\n>sunlight from hitting them. I wouldn't expect there to be anything block\\n>our view of them either. What am I missing?\\n\\nPluto can shadow Charon, and vice-versa.\\n\\nGeorge Krumins\\n-- \\n--------------------------------------------------------------------------------\\n| George Krumins |\\n| gfk39017@uxa.cso.uiuc.edu |\\n| Pufferfish Observatory |\\n\",\n", - " 'From: Mark A. Cartwright \\nSubject: Re: TIFF: philosophical significance of 42 (SILLY)\\nOrganization: University of Texas @ Austin, Comp. Center\\nLines: 21\\nDistribution: world\\nNNTP-Posting-Host: aliester.cc.utexas.edu\\nX-UserAgent: Nuntius v1.1\\n\\nWell,\\n\\n42 is 101010 binary, and who would forget that its the\\nanswer to the Question of \"Life, the Universe, and Everything else.\"\\nThat is to quote Douglas Adams in a round about way.\\n\\nOf course the Question has not yet been discovered...\\n\\n--\\nMark A. Cartwright, N5SNP\\nUniversity of Texas @ Austin\\nComputation Center, Graphics Facility\\nmarkc@emx.utexas.edu\\nmarkc@sirius.cc.utexas.edu\\nmarkc@hermes.chpc.utexas.edu\\n(512)-471-3241 x 362\\n\\nPP-ASEL 9-92\\n\\na.) \"Often in error, never in doubt.\"\\nb.) \"This situation has no gravity, I would like a refund please.\"\\n',\n", - " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Nazi Eugenic Theories Circulated by CPR => (unconventianal peace)\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 36\\n\\nIn article <1993Apr19.223054.10273@cirrus.com> chrism@cirrus.com (Chris Metcalfe) writes:\\n>Now we have strong evidence of where the CPR really stands.\\n>Unbelievable and disgusting. It only proves that we must\\n>never forget...\\n>\\n>\\n>>A unconventional proposal for peace in the Middle-East.\\n>\\n>Not so unconventional. Eugenic solutions to the Jewish Problem\\n>have been suggested by Northern Europeans in the past.\\n>\\n> Eugenics: a science that deals with the improvement (as by\\n> control of human mating) of hereditory qualities of race\\n> or breed. -- Webster's Ninth Collegiate Dictionary.\\n>\\n>>I would be thankful for critical comments to the above proposal as\\n>>well for any dissemination of this proposal for meaningful\\n>>discussion and enrichment.\\n>>\\n>>Elias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n>\\n>Critical comment: you can take the Nazi flag and Holocaust photos\\n>off of your bedroom wall, Elias; you'll never succeed.\\n>\\n>-- Chris Metcalfe\\n\\nChris, solid job at discussing the inherent Nazism in Mr. Davidsson's post.\\nOddly, he has posted an address for hate mail, which I think we should\\nall utilize. And Elias,\\n\\nWie nur dem Koph nicht alle Hoffnung schwindet,\\nDer immerfort an schalem Zeuge klebt?\\n\\nPeace,\\npete\\n\\n\",\n", - " ' zaphod.mps.ohio-state.edu!wupost!uunet!olivea!sgigate!odin!fido!solntze.wpd.sgi.com!livesey\\nSubject: Re: <1p88fi$4vv@fido.asd.sgi.com> \\n <1993Mar30.051246.29911@blaze.cs.jhu.edu> <1p8nd7$e9f@fido.asd.sgi.com> <1pa0stINNpqa@gap.caltech.edu> <1pan4f$b6j@fido.asd.sgi.com>\\nOrganization: sgi\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\nLines: 20\\n\\nIn article <1pieg7INNs09@gap.caltech.edu>, keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >Now along comes Mr Keith Schneider and says \"Here is an \"objective\\n|> >moral system\". And then I start to ask him about the definitions\\n|> >that this \"objective\" system depends on, and, predictably, the whole\\n|> >thing falls apart.\\n|> \\n|> It only falls apart if you attempt to apply it. This doesn\\'t mean that\\n|> an objective system can\\'t exist. It just means that one cannot be\\n|> implemented.\\n\\nIt\\'s not the fact that it can\\'t exist that bothers me. It\\'s \\nthe fact that you don\\'t seem to be able to define it.\\n\\nIf I wanted to hear about indefinable things that might in\\nprinciple exist as long as you don\\'t think about them too\\ncarefully, I could ask a religious person, now couldn\\'t I?\\n\\njon.\\n',\n", - " \"From: mrf4276@egbsun12.NoSubdomain.NoDomain (Matthew R. Feulner)\\nSubject: Re: Lunar Colony Race! By 2005 or 2010?\\nNntp-Posting-Host: egbsun12.draper.com\\nOrganization: Draper Laboratory\\nLines: 18\\n\\nIn article <1993Apr20.234427.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\\n|> Okay here is what I have so far:\\n|> \\n|> Have a group (any size, preferibly small, but?) send a human being to the moon,\\n|> set up a habitate and have the human(s) spend one earth year on the moon. Does\\n|> that mean no resupply or ?? \\n|> \\n|> Need to find atleast $1billion for prize money.\\n\\n\\nMy first thought is Ross Perot. After further consideration, I think he'd\\nbe more likely to try to win it...but come in a disappointing third.\\n\\nTry Bill Gates. Try Sam Walton's kids.\\n\\nMatt\\n\\nmatthew_feulner@qmlink.draper.com\\n\",\n", - " 'From: wawers@lif.de (Theo Wawers)\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Lahmeyer International, Frankfurt\\nLines: 15\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\n\\nThere is a nice little tool in Lucid emacs. It\\'s called \"calendar\".\\nOn request it shows for given longitude/latitude coordinates times for\\nsunset and sunrise. The code is written in lisp.\\nI don\\'t know if you like the idea that an editor is the right program to\\ncalculate these things.\\n\\n\\nTheo W.\\n\\nTheo Wawers LAHMEYER INTERNATIONAL GMBH\\nemail : wawers@sunny.lif.de Lyonerstr. 22\\nphone : +49 69 66 77 639 D-6000 Frankfurt/Main\\nfax : +49 69 66 77 571 Germany\\n\\n',\n", - " 'From: eder@hsvaic.boeing.com (Dani Eder)\\nSubject: Re: NASP\\nDistribution: sci\\nOrganization: Boeing AI Center, Huntsville, AL\\nLines: 39\\n\\nI have before me a pertinent report from the United States General\\nAccounting Office:\\n\\nNational Aero-Space Plane: Restructuring Future Research and Development\\nEfforts\\nDecember 1992\\nReport number GAO/NSIAD-93-71\\n\\nIn the back it lists the following related reports:\\n\\nNASP: Key Issues Facing the Program (31 Mar 92) GAO/T-NSIAD-92-26\\n\\nAerospace Plane Technology: R&D Efforts in Japan and Australia\\n(4 Oct 91) GAO/NSIAD-92-5\\n\\nAerospace Plane Technology: R&D Efforts in Europe (25 July 91)\\nGAO/NSIAD-91-194\\n\\nAerospace Technology: Technical Data and Information on Foreign\\nTest Facilities (22 Jun 90) GAO/NSIAD-90-71FS\\n\\nInvestment in Foreign Aerospace Vehicle Research and Technological\\nDevelopment Efforts (2 Aug 89) GAO/T-NSIAD-89-43\\n\\nNASP: A Technology Development and Demonstration Program to Build\\nthe X-30 (27 Apr 88) GAO/NSIAD-88-122\\n\\n\\nOn the inside back cover, under \"Ordering Information\" it says\\n\\n\"The first copy of each GAO report is free. . . . Orders\\nmay also be placed by calling (202)275-6241\\n\"\\n\\nDani\\n\\n-- \\nDani Eder/Meridian Investment Company/(205)464-2697(w)/232-7467(h)/\\nRt.1, Box 188-2, Athens AL 35611/Location: 34deg 37\\' N 86deg 43\\' W +100m alt.\\n',\n", - " \"From: jamesf@apple.com (Jim Franklin)\\nSubject: Re: Tracing license plates of BDI cagers?\\nOrganization: Apple Computer, Inc.\\nLines: 30\\n\\nIn article <1993Apr09.182821.28779@i88.isc.com>, jeq@lachman.com (Jonathan\\nE. Quist) wrote:\\n> \\n\\n> You could file a complaint for dangerous operation of a motor vehicle,\\n> and sign it. Be willing to show up in court if it comes to it.\\n\\nNo... you can do this? Really? The other morning I went to do a lane change\\non the freeway and looked in my mirror, theer was a car there, but far\\nenough behind. I looked again about 3-5 seconds later, car still in same\\nposition, i.e. not accelerating. I triple check with a head turn and decide\\nI have plenty of room, so I do it, accelerating. I travel about 1/4 mile\\nstaying ~200\\nfeet off teh bumper of the car ahead, and I do a casual mirror check. This\\nguy is RIGHT on my tail, I mean you couldn't stick a hair between my tire &\\nhis fender. I keep looking in the mirror at him a,d slowly let off teh\\nthrottle. He stays there until I had lost about 15mph and then comes around\\nme and cuts me off big time. I follow him for about 10 miles and finally\\nget bored and turn back into work. \\n\\nI can file a complaint about this? And actually have the chance to have\\nsomething done? How? Who? Where?\\n\\njim\\n\\n* Jim Franklin * jamesf@apple.com Jim Bob & Sons *\\n* 1987 Cagiva Alazzurra 650 | .signature remodling *\\n* 1969 Triumph 650 (slalom champ) | Low price$ Quality workman- * \\n* DoD #469 KotP(un) | ship * \\n Call today for free estimit\\n\",\n", - " 'From: bobc@sed.stel.com (Bob Combs)\\nSubject: Re: Blow up space station, easy way to do it.\\nOrganization: SED, Stanford Telecom, Reston, VA 22090\\nLines: 16\\n\\nIn article <1993Apr5.184527.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>This might a real wierd idea or maybe not..\\n>\\n>\\n>Why musta space station be so difficult?? why must we have girders? why be\\n>confined to earth based ideas, lets think new ideas, after all space is not\\n>earth, why be limited by earth based ideas??\\n>\\nChoose any or all of the following as an answer to the above:\\n \\n\\n1. Politics\\n2. Traditions\\n3. Congress\\n4. Beauracrats\\n\\n',\n", - " 'From: nerone@ccwf.cc.utexas.edu (Michael Nerone)\\nSubject: Re: Newsgroup Split\\nOrganization: The University of Texas at Austin\\nLines: 25\\nDistribution: world\\n\\t<1993Apr19.193758.12091@unocal.com>\\n\\t<1quvdoINN3e7@srvr1.engin.umich.edu>\\nNNTP-Posting-Host: sylvester.cc.utexas.edu\\nIn-reply-to: tdawson@engin.umich.edu\\'s message of 19 Apr 1993 19:43:52 GMT\\n\\nIn article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n\\n CH> Concerning the proposed newsgroup split, I personally am not in\\n CH> favor of doing this. I learn an awful lot about all aspects of\\n CH> graphics by reading this group, from code to hardware to\\n CH> algorithms. I just think making 5 different groups out of this\\n CH> is a wate, and will only result in a few posts a week per group.\\n CH> I kind of like the convenience of having one big forum for\\n CH> discussing all aspects of graphics. Anyone else feel this way?\\n CH> Just curious.\\n\\nI must agree. There is a dizzying number of c.s.amiga.* newsgroups\\nalready. In addition, there are very few issues which fall cleanly\\ninto one of these categories.\\n\\nAlso, it is readily observable that the current spectrum of amiga\\ngroups is already plagued with mega-crossposting; thus the group-split\\nwould not, in all likelihood, bring about a more structured\\nenvironment.\\n\\n--\\n /~~~~~~~~~~~~~~~~~~~\\\\/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\\\\\n / Michael Nerone \\\\\"I shall do so with my customary lack of tact; and\\\\\\n / Internet Address: \\\\since you have asked for this, you will be obliged\\\\\\n/nerone@ccwf.cc.utexas.edu\\\\to pardon it.\"-Sagredo, fictional char of Galileo.\\\\\\n',\n", - " \"From: lmp8913@rigel.tamu.edu (PRESTON, LISA M)\\nSubject: Another CVIEW question (was CView answers)\\nOrganization: Texas A&M University, Academic Computing Services\\nLines: 12\\nDistribution: world\\nNNTP-Posting-Host: rigel.tamu.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\n\\n\\tHas anybody gotten CVIEW to work in 32k or 64k color mode on a Trident\\n8900c hi-color card? At best the colors come out screwed up, and at worst the \\nprogram hangs. I loaded the VESA driver, and the same thing happens on 2 \\ndifferent machines.\\n\\n\\tIf it doesn't work on the Trident, does anybody know of a viewer that \\ndoes?\\n\\nThanx!\\nLISA \\n\\n\",\n", - " 'From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)\\nSubject: Re: New Member\\nNntp-Posting-Host: crchh410\\nOrganization: BNR, Inc.\\nLines: 47\\n\\nIn article , dfuller@portal.hq.videocart.com (Dave Fuller) writes:\\n|> Hello. I just started reading this group today, and I think I am going\\n|> to be a large participant in its daily postings. I liked the section of\\n|> the FAQ about constructing logical arguments - well done. I am an atheist,\\n|> but I do not try to turn other people into atheists. I only try to figure\\n|> why people believe the way they do - I don\\'t much care if they have a \\n|> different view than I do. When it comes down to it . . . I could be wrong.\\n|> I am willing to admit the possibility - something religious followers \\n|> dont seem to have the capability to do.\\n\\nWelcome aboard!\\n\\n|> \\n|> I notice alot of posts from Bobby. Why does anybody ever respond to \\n|> his posts ? He always falls back on the same argument:\\n\\n(I think you just answered your own question, there)\\n\\n|> \\n|> \"If the religion is followed it will cause no bad\"\\n|> \\n|> He is right. Just because an event was explained by a human to have been\\n|> done \"in the name of religion\", does not mean that it actually followed\\n|> the religion. He will always point to the \"ideal\" and say that it wasn\\'t\\n|> followed so it can\\'t be the reason for the event. There really is no way\\n|> to argue with him, so why bother. Sure, you may get upset because his \\n|> answer is blind and not supported factually - but he will win every time\\n|> with his little argument. I don\\'t think there will be any postings from\\n|> me in direct response to one of his.\\n\\nMost responses were against his postings that spouted the fact that\\nall atheists are fools/evil for not seeing how peachy Islam is.\\nI would leave the pro/con arguments of Islam to Fred Rice, who is more\\nlevel headed and seems to know more on the subject, anyway.\\n\\n|> \\n|> Happy to be aboard !\\n\\nHow did you know I was going to welcome you abord?!?\\n\\n|> \\n|> Dave Fuller\\n|> dfuller@portal.hq.videocart.com\\n|> \\n|> \\n\\nBrian /-|-\\\\\\n',\n", - " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Happy Birthday Israel!\\nOrganization: University of Illinois at Urbana\\nLines: 2\\n\\nIsrael - Happy 45th Birthday!\\n\\n',\n", - " 'From: ken@sugra.uucp (Kenneth Ng)\\nSubject: Re: nuclear waste\\nOrganization: Private Computer, Totowa, NJ\\nLines: 18\\n\\nIn article <1993Mar31.191658.9836@mksol.dseg.ti.com: mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n:Just a bit off, Phil. We don\\'t reprocess nuclear fuel because what\\n:you get from the reprocessing plant is bomb-grade plutonium. It is\\n:also cheaper, given current prices of things, to simply fabricate new\\n:fuel rods rather than reprocess the old ones, creating potentially\\n:dangerous materials (from a national security point of view) and then\\n:fabricate that back into fuel rods.\\n\\nFabricating with reprocessed plutonium may result in something that may go\\nkind of boom, but its hardly decent bomb grade plutonium. If you want bomb\\ngrade plutonium use a research reactor, not a power reactor. But if you want\\na bomb, don\\'t use plutonium, use uranium.\\n\\n-- \\nKenneth Ng\\nPlease reply to ken@eies2.njit.edu for now.\\n\"All this might be an elaborate simulation running in a little device sitting\\non someone\\'s table\" -- J.L. Picard: ST:TNG\\n',\n", - " 'From: pmoloney@maths.tcd.ie (Paul Moloney)\\nSubject: Re: THE POPE IS JEWISH!\\nOrganization: Somewhere in the Twentieth Century\\nLines: 47\\n\\nwest@next02cville.wam.umd.edu (Stilgar) writes:\\n\\n>The pope is jewish.... I guess they\\'re right, and I always thought that\\n>the thing on his head was just a fancy hat, not a Jewish headpiece (I\\n>don\\'t remember the name). It\\'s all so clear now (clear as mud.)\\n\\nAs to what that headpiece is....\\n\\n(by chort@crl.nmsu.edu)\\n\\nSOURCE: AP NEWSWIRE\\n\\nThe Vatican, Home Of Genetic Misfits?\\n\\nMichael A. Gillow, noted geneticist, has revealed some unusual data\\nafter working undercover in the Vatican for the past 18 years. \"The\\nPopehat(tm) is actually an advanced bone spur.\", reveals Gillow in his\\ngroundshaking report. Gillow, who had secretly studied the innermost\\nworkings of the Vatican since returning from Vietnam in a wheel chair,\\nfirst approached the scientific community with his theory in the late\\n1950\\'s.\\n\\n\"The whole hat thing, that was just a cover up. The Vatican didn\\'t\\nwant the Catholic Community(tm) to realize their leader was hefting\\nnearly 8 kilograms of extraneous bone tissue on the top of his\\nskull.\", notes Gillow in his report. \"There are whole laboratories in\\nthe Vatican that experiment with tissue transplants and bone marrow\\nexperiments. What started as a genetic fluke in the mid 1400\\'s is now\\nscientifically engineered and bred for. The whole bone transplant idea\\nstarted in the mid sixties inspired by doctor Timothy Leary\\ntransplanting deer bone cells into small white rats.\" Gillow is quick\\nto point out the assassination attempt on Pope John Paul II and the\\ndisappearance of Dr. Leary from the public eye.\\n\\n\"When it becomes time to replace the pope\", says Gillow, \"The old pope\\nand the replacement pope are locked in a padded chamber. They butt\\nheads much like male yaks fighting for dominance of the herd. The\\nvictor emerges and has earned the privilege of inseminating the choir\\nboys.\"\\n\\n\\nP.\\n-- \\n moorcockpratchettdenislearydelasoulu2iainmbanksneworderheathersbatmanpjorourke\\nclive p a u l m o l o n e y Come, let us retract the foreskin of misconception\\njames trinity college dublin and apply the wire brush of enlightenment - GeoffM\\n brownbladerunnersugarcubeselectronicblaylockpowersspikeleekatebushhamcornpizza \\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: HLV for Fred (was Re: Prefab Space Station?)\\nArticle-I.D.: zoo.C51875.67p\\nOrganization: U of Toronto Zoology\\nLines: 28\\n\\nIn article jbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n>>>Titan IV launches ain't cheap \\n>>Granted. But that's because titan IV's are bought by the governemnt. Titan\\n>>III is actually the cheapest way to put a pound in space of all US expendable\\n>>launchers.\\n>\\n>In that case it's rather ironic that they are doing so poorly on the commercial\\n>market. Is there a single Titan III on order?\\n\\nThe problem with Commercial Titan is that MM has made little or no attempt\\nto market it. They're basically happy with their government business and\\ndon't want to have to learn how to sell commercially.\\n\\nA secondary problem is that it is a bit big. They'd need to go after\\nmulti-satellite launches, a la Ariane, and that complicates the marketing\\ntask quite significantly.\\n\\nThey also had some problems with launch facilities at just the wrong time\\nto get them started properly. If memory serves, the pad used for the Mars\\nObserver launch had just come out of heavy refurbishment work that had\\nprevented launches from it for a year or so.\\n\\nThere have been a few CT launches. Mars Observer was one of them. So\\nwas that stranded Intelsat, and at least one of its brothers that reached\\norbit properly.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Unconventional peace proposal\\nOrganization: The Department of Redundancy Department\\nLines: 85\\n\\nIn article <1483500348@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n>\\n>From: Center for Policy Research \\n>\\n>A unconventional proposal for peace in the Middle-East.\\n>---------------------------------------------------------- by\\n>\\t\\t\\t Elias Davidsson\\n\\nOf all the stupid postings you\\'ve brought here recently, it is\\nilluminating that you chose to put your own name on perhaps the\\nstupidest of them.\\n\\n>The following proposal is based on the following assumptions:\\n>\\n>1. Fundamental human rights, such as the right to life, to\\n>education, to establish a family and have children, to human\\n>dignity, the right to free movement, to free expression, etc. are\\n>more important to human existence that the rights of states.\\n\\nDoes this mean that you are calling for the dismantling of the Arab\\nstates? \\n\\n>2. In the event of a conflict between basic human rights and\\n>rights of collectivities, basic human rights should prevail.\\n\\nApparently, your answer is yes.\\n\\n>6. Attempts to solve the Israeli-Arab conflict by traditional\\n>political means have failed.\\n\\nAttempts to solve these problem by traditional military means and\\nnon-traditional terrorist means has also failed. But that won\\'t stop\\nthem from trying again. After all, it IS a Holy War, you know.... \\n\\n>7. As long as the conflict is perceived as that between two\\n>distinct ethnical/religious communities/peoples which claim the\\n>land, there is no just nor peaceful solution possible.\\n\\n\"No just solution possible.\" How very encouraging.\\n\\n>Having stated my assumptions, I will now state my proposal.\\n\\nYou mean that it gets even funnier?\\n\\n>1. A Fund should be established which would disburse grants\\n>for each child born to a couple where one partner is Israeli-Jew\\n>and the other Palestinian-Arab.\\n[...]\\n>3. For the first child, the grant will amount to $18.000. For\\n>the second the third child, $12.000 for each child. For each\\n>subsequent child, the grant will amount to $6.000 for each child.\\n>\\n>4. The Fund would be financed by a variety of sources which\\n>have shown interest in promoting a peaceful solution to the\\n>Israeli-Arab conflict, \\n\\nNo, the Fund should be financed by the Center for Policy Research. It\\nIS a major organization, isn\\'t it? Isn\\'t it?\\n\\n>5. The emergence of a considerable number of \\'mixed\\'\\n>marriages in Israel/Palestine, all of whom would have relatives on\\n>\\'both sides\\' of the divide, would make the conflict lose its\\n>ethnical and unsoluble core and strengthen the emergence of a\\n>truly civil society. \\n\\nYeah, just like marriages among Arabs has strengthened their\\nsocieties. \\n\\n>The existence of a strong \\'mixed\\' stock of\\n>people would also help the integration of Israeli society into the\\n>Middle-East in a graceful manner.\\n\\nThe world could do with a bit less Middle Eastern \"grace\".\\n\\n>Objections to this proposal will certainly be voiced. I will\\n>attempt to identify some of these:\\n\\nBoy, you\\'re a one-man band. Listen, if you\\'d like to Followup on your\\nown postings and debate with yourself, just tell us and we\\'ll leave\\nyou alone.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " \"From: uk02183@nx10.mik.uky.edu (bryan k williams)\\nSubject: Re: CView answers\\nKeywords: Stupid Programming\\nNntp-Posting-Host: nx10.mik.uky.edu\\nOrganization: University of Kentucky\\nLines: 6\\n\\nre: majority of users not readding from floppy.\\nWell, how about those of us who have 1400-picture CD-ROMS and would like to use\\nCVIEW because it is fast and it works well, but can't because the moron lacked\\nthe foresight to create the temp file in the program's path, not the current\\ndidrectory?\\n\\n\",\n", - " 'From: madhaus@netcom.com (Maddi Hausmann)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: Society for Putting Things on Top of Other Things\\nLines: 40\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes: >\\n\\n>OK, you have disproved one thing, but you failed to \"nail\" me.\\n>\\n>See, nowhere in my post did I claim that something _must_ be believed in. Here\\n>are the three possibilities:\\n>\\n>\\t1) God exists. \\n>\\t2) God does not exist.\\n>\\t3) I don\\'t know.\\n>\\n>My attack was on strong atheism, (2). Since I am (3), I guess by what you said\\n>below that makes me a weak atheist.\\n [snip]\\n>First of all, you seem to be a reasonable guy. Why not try to be more honest\\n>and include my sentence afterwards that \\n\\nHonest, it just ended like that, I swear! \\n\\nHmmmm...I recognize the warning signs...alternating polite and\\nrude...coming into newsgroup with huge chip on shoulder...calls\\npeople names and then makes nice...whirrr...click...whirrr\\n\\n\"Clam\" Bake Timmons = Bill \"Shit Stirrer Connor\"\\n\\nQ.E.D.\\n\\nWhirr click whirr...Frank O\\'Dwyer might also be contained\\nin that shell...pop stack to determine...whirr...click..whirr\\n\\n\"Killfile\" Keith Allen Schneider = Frank \"Closet Theist\" O\\'Dwyer =\\n\\nthe mind reels. Maybe they\\'re all Bobby Mozumder.\\n\\n-- \\nMaddi Hausmann madhaus@netcom.com\\nCentigram Communications Corp San Jose California 408/428-3553\\n\\nKids, please don\\'t try this at home. Remember, I post professionally.\\n\\n',\n", - " 'From: simon@dcs.warwick.ac.uk (Simon Clippingdale)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: nin\\nOrganization: Department of Computer Science, Warwick University, England\\nLines: 49\\n\\nIn article <1993Apr5.023044.19580@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n> One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n> because of the love of their mom. It makes for more virile men.\\n> Compare that with how homos are raised. Do a study and you will get my\\n> point.\\n\\nOh, Bobby. You\\'re priceless. Did I ever tell you that?\\n\\nMy policy with Bobby\\'s posts, should anyone give a damn, is to flick\\nthrough the thread at high speed, searching for posts of Bobby\\'s which\\nhave generated a whole pile of followups, then go in and extract the\\nhilarious quote inevitably present for .sig purposes. Works for me.\\n\\nFor the guy who said he\\'s just arrived, and asked whether Bobby\\'s for real,\\nyou betcha. Welcome to alt.atheism, and rest assured that it gets worse.\\nI have a few pearls of wisdom from Bobby which I reproduce below. Is anyone\\n(Keith?) keeping a big file of such stuff?\\n\\n \"In Allah\\'s infinite wisdom, the universe was created from nothing,\\n just by saying \"Be\", and it became. Therefore Allah exists.\"\\n --- Bobby Mozumder proving the existence of Allah, #1\\n\\n \"Wait. You just said that humans are rarely reasonable. Doesn\\'t that\\n contradict atheism, where everything is explained through logic and\\n reason? This is THE contradiction in atheism that proves it false.\"\\n --- Bobby Mozumder proving the existence of Allah, #2\\n\\n \"Plus, to the believer, it would be contradictory\\n to the Quran for Allah not to exist.\"\\n --- Bobby Mozumder proving the existence of Allah, #3\\n\\nand now\\n\\n \"One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n because of the love of their mom. It makes for more virile men. Compare\\n that with how homos are raised. Do a study and you will get my point.\"\\n -- Bobby Mozumder being Islamically Rigorous on alt.atheism\\n\\nMmmmm. Quality *and* quantity from the New Voice of Islam (pbuh).\\n\\nCheers\\n\\nSimon\\n-- \\nSimon Clippingdale simon@dcs.warwick.ac.uk\\nDepartment of Computer Science Tel (+44) 203 523296\\nUniversity of Warwick FAX (+44) 203 525714\\nCoventry CV4 7AL, U.K.\\n',\n", - " 'From: mogal@deadhead.asd.sgi.com (Joshua Mogal)\\nSubject: Re: SGI sales practices (Was: Crimson (Was: Kubota Announcement?))\\nOrganization: Silicon Graphics, Inc.\\nLines: 123\\nNNTP-Posting-Host: deadhead.asd.sgi.com\\n\\n|> My\\n|> comment regarding DEC was to indicate that I might be open to other\\n|> vendors\\n|> that supported OpenGL, rather than deal further with SGI.\\n\\nOpenGL is a graphics programming library and as such is a great, portable\\ninterface for the development of interactive 3D graphics applications. It\\nis not, however, an indicator of performance, as that will vary strongly\\nfrom machine to machine and vendor to vendor. SGI is committed to high\\nperformance interactive graphics systems and software tools, so OpenGL\\nmeans that you can port easily from SGI to other platforms, there is no\\nguarantee that your performance would be comparable.\\n\\n|> \\n|> What I *am* annoyed about is the fact that we were led to believe that\\n|> we *would* be able to upgrade to a multiprocessor version of the\\n|> Crimson without the assistance of a fork lift truck.\\n\\nIf your sales representative truly mislead you, then you should have a\\nvalid grievance against us which you should carry up to your local SGI\\nsales management team. Feel free to contact the local branch manager...we\\nunderstand that repeat sales come from satisfied customers, so give it a\\nshot.\\n\\n|> \\n|> I\\'m also annoyed about being sold *several* Personal IRISes at a\\n|> previous site on the understanding *that* architecture would be around\\n|> for a while, rather than being flushed.\\n\\nAs one of the previous posts stated, the Personal IRIS was introduced in\\n1988 and grew to include the 4D/20, 4D/25, 4D/30 and 4D/35 as clock rates\\nsped up over time. As a rule of thumb, SGI platforms live for about 4-5\\nyears. This was true of the motorola-based 3000 series (\\'85-\\'89), the PI\\n(\\'88-\\'93), the Professional Series (the early 4D\\'s - \\'86-\\'90), the Power\\nSeries parallel systems (\\'88-\\'93). Individual CPU subsystems running at a\\nparticular clock rate usually live for about 2 years. New graphics\\narchitectures at the high end (GT, VGX, RealityEngine) are released every\\n18 months to 2 years.\\n\\nThese are the facts of life. If we look at these machines, they become\\nalmost archaic after four years, and we have to come out with a new\\nplatform (like Indigo, Onyx, Challenge) which has higher bus bandwidths,\\nfaster CPUs, faster graphics and I/O, and larger disk capacities. If we\\ndon\\'t, we become uncompetitive.\\n\\nFrom the user perspective, you have to buy a machine that meets your\\ncurrent needs and makes economic sense today. You can\\'t wait to buy, but\\nif you need a guaranteed upgrade path for the machine, ask the Sales Rep\\nfor one in writing. If it\\'s feasible, they should be able to do that. Some\\nof our upgrade paths have specific programs associated with them, such as\\nthe Performance Protection Program for older R3000-based Power Series\\nmultiprocessing systems which allowed purchasers of those systems to obtain\\na guaranteed upgrade price for moving to the new Onyx or Challenge\\nR4400-based 64-bit multiprocessor systems.\\n\\n|> \\n|> Now I understand that SGI is responsible to its investors and has to\\n|> keep showing a positive quarterly bottom line (odd that I found myself\\n|> pressured on at least two occasions to get the business on the books\\n|> just before the end of the quarter), but I\\'m just a little tired of\\n|> getting boned in the process.\\n|> \\n\\nIf that\\'s happening, it\\'s becausing of misunderstandings or\\nmis-communication, not because SGI is directly attempting to annoy our\\ncustomer base.\\n\\n|> Maybe it\\'s because my lab buys SGIs in onesies and twosies, so we\\n|> aren\\'t entitled to a \"peek under the covers\" as the Big Kids (NASA,\\n|> for instance) are. This lab, and I suspect that a lot of other labs\\n|> and organizations, doesn\\'t have a load of money to spend on computers\\n|> every year, so we can\\'t be out buying new systems on a regular basis.\\n\\nMost SGI customers are onesy-twosey types, but regardless, we rarely give a\\ngreat deal of notice when we are about to introduce a new system because\\nagain, like a previous post stated, if we pre-announced and the schedule\\nslipped, we would mess up our potential customers schedules (when they were\\ncounting on the availability of the new systems on a particular date) and\\nwould also look awfully bad to both our investors and the financial\\nanalysts who watch us most carefully to see if we are meeting our\\ncommitments.\\n\\n|> The boxes that we buy now will have to last us pretty much through the\\n|> entire grant period of five years and, in some case, beyond. That\\n|> means that I need to buy the best piece of equipment that I can when I\\n|> have the money, not some product that was built, to paraphrase one\\n|> previous poster\\'s words, \\'to fill a niche\\' to compete with some other\\n|> vendor. I\\'m going to be looking at this box for the next five years.\\n|> And every time I look at it, I\\'m going to think about SGI and how I\\n|> could have better spent my money (actually *your* money, since we\\'re\\n|> supported almost entirely by Federal tax dollars).\\n|> \\n\\nFive years is an awfully long time in computer years. New processor\\ntechnologies are arriving every 1-2 years, making a 5 year old computer at\\nleast 2 and probably 3 generations behind the times. The competitive nature\\nof the market is demanding that rate of development, so if your timing is\\nreally 5 years between purchases, you have to accept the limited viability\\nof whatever architecture you buy into from any vendor.\\n\\nThere are some realities about the computer biz that we all have to live\\nwith, but keeping customers happy is the most important, so don\\'t give up,\\nwe know it.\\n\\nJosh |:-)\\n\\n-- \\n\\n\\n**************************************************************************\\n**\\t\\t\\t\\t **\\t\\t\\t\\t\\t**\\n**\\tJoshua Mogal\\t\\t **\\tProduct Manager\\t\\t\\t**\\n**\\tAdvanced Graphics Division **\\t Advanced Graphics Systems\\t**\\n**\\tSilicon Graphics Inc.\\t **\\tMarket Manager\\t\\t\\t**\\n**\\t2011 North Shoreline Blvd. **\\t Virtual Reality\\t\\t**\\n**\\tMountain View, CA 94039-7311 **\\t Interactive Entertainment\\t**\\n**\\tM/S 9L-580\\t\\t **\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t *************************************\\n**\\tTel:\\t(415) 390-1460\\t\\t\\t\\t\\t\\t**\\n**\\tFax:\\t(415) 964-8671\\t\\t\\t\\t\\t\\t**\\n**\\tE-mail:\\tmogal@sgi.com\\t\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t\\t\\t\\t\\t\\t**\\n**************************************************************************\\n',\n", - " 'From: buenneke@monty.rand.org (Richard Buenneke)\\nSubject: White House outlines options for station, Russian cooperation\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 71\\n\\n------- Blind-Carbon-Copy\\n\\nTo: spacenews@austen.rand.org, cti@austen.rand.org\\nSubject: White House outlines options for station, Russian cooperation\\nDate: Tue, 06 Apr 93 16:00:21 PDT\\nFrom: Richard Buenneke \\n\\n4/06/93: GIBBONS OUTLINES SPACE STATION REDESIGN GUIDANCE\\n\\nNASA Headquarters, Washington, D.C.\\nApril 6, 1993\\n\\nRELEASE: 93-64\\n\\n Dr. John H. Gibbons, Director, Office of Science and Technology\\nPolicy, outlined to the members-designate of the Advisory Committee on the\\nRedesign of the Space Station on April 3, three budget options as guidance\\nto the committee in their deliberations on the redesign of the space\\nstation.\\n\\n A low option of $5 billion, a mid-range option of $7 billion and a\\nhigh option of $9 billion will be considered by the committee. Each\\noption would cover the total expenditures for space station from fiscal\\nyear 1994 through 1998 and would include funds for development,\\noperations, utilization, Shuttle integration, facilities, research\\noperations support, transition cost and also must include adequate program\\nreserves to insure program implementation within the available funds.\\n\\n Over the next 5 years, $4 billion is reserved within the NASA\\nbudget for the President\\'s new technology investment. As a result,\\nstation options above $7 billion must be accompanied by offsetting\\nreductions in the rest of the NASA budget. For example, a space station\\noption of $9 billion would require $2 billion in offsets from the NASA\\nbudget over the next 5 years.\\n\\n Gibbons presented the information at an organizational session of\\nthe advisory committee. Generally, the members-designate focused upon\\nadministrative topics and used the session to get acquainted. They also\\nreceived a legal and ethics briefing and an orientation on the process the\\nStation Redesign Team is following to develop options for the advisory\\ncommittee to consider.\\n\\n Gibbons also announced that the United States and its\\ninternational partners -- the Europeans, Japanese and Canadians -- have\\ndecided, after consultation, to give \"full consideration\" to use of\\nRussian assets in the course of the space station redesign process.\\n\\n To that end, the Russians will be asked to participate in the\\nredesign effort on an as-needed consulting basis, so that the redesign\\nteam can make use of their expertise in assessing the capabilities of MIR\\nand the possible use of MIR and other Russian capabilities and systems.\\nThe U.S. and international partners hope to benefit from the expertise of\\nthe Russian participants in assessing Russian systems and technology. The\\noverall goal of the redesign effort is to develop options for reducing\\nstation costs while preserving key research and exploration capabilitiaes.\\nCareful integration of Russian assets could be a key factor in achieving\\nthat goal.\\n\\n Gibbons reiterated that, \"President Clinton is committed to the\\nredesigned space station and to making every effort to preserve the\\nscience, the technology and the jobs that the space station program\\nrepresents. However, he also is committed to a space station that is well\\nmanaged and one that does not consume the national resources which should\\nbe used to invest in the future of this industry and this nation.\"\\n\\n NASA Administrator Daniel S. Goldin said the Russian\\nparticipation will be accomplished through the East-West Space Science\\nCenter at the University of Maryland under the leadership of Roald\\nSagdeev.\\n\\n------- End of Blind-Carbon-Copy\\n',\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Second Law (was: Albert Sabin)\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 20\\n\\nJoel Hanes (jjh00@diag.amdahl.com) wrote:\\n\\n: Mr Connor\\'s assertion that \"more complex\" == later in paleontology\\n: is simply incorrect. Many lineages are known in which whole\\n: structures are lost -- for example, snakes have lost their legs.\\n: Cave fish have lost their eyes. Some species have almost completely\\n: lost their males. Kiwis are descended from birds with functional\\n: wings.\\n\\nJoel,\\n\\nThe statements I made were illustrative of the inescapably\\nanthrpomorphic quality of any desciption of an evolutionary process.\\nThere is no way evolution can be described or explained in terms other\\nthan teleological, that is my whole point. Even those who have reason\\nto believe they understand evolution (biologists for instance) tend to\\npersonify nature and I can\\'t help but wonder if it\\'s because of the\\nlimits of the language or the nature of nature.\\n\\nBill\\n',\n", - " \"From: stgprao@st.unocal.COM (Richard Ottolini)\\nSubject: Re: Rumours about 3DO ???\\nOrganization: Unocal Corporation\\nLines: 5\\n\\nThey need a hit software product to encourage software sales of the product,\\ni.e. the Pong, Pacman, VisiCalc, dBase, or Pagemaker of multi-media.\\nThere are some multi-media and digital television products out there already,\\nalbeit, not as capable as 3DO's. But are there compelling reasons to buy\\nsuch yet? Perhaps someone in this news group will write that hit software :-)\\n\",\n", - " 'From: et@teal.csn.org (Eric H. Taylor)\\nSubject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\nSummary: Dong .... Dong .... Do I hear the death-knell of relativity?\\nKeywords: space, curvature, nothing, tesla\\nNntp-Posting-Host: teal.csn.org\\nOrganization: 4-L Laboratories\\nDistribution: World\\nExpires: Wed, 28 Apr 1993 06:00:00 GMT\\nLines: 30\\n\\nIn article metares@well.sf.ca.us (Tom Van Flandern) writes:\\n>crb7q@kelvin.seas.Virginia.EDU (Cameron Randale Bass) writes:\\n>> Bruce.Scott@launchpad.unc.edu (Bruce Scott) writes:\\n>>> \"Existence\" is undefined unless it is synonymous with \"observable\" in\\n>>> physics.\\n>> [crb] Dong .... Dong .... Dong .... Do I hear the death-knell of\\n>> string theory?\\n>\\n> I agree. You can add \"dark matter\" and quarks and a lot of other\\n>unobservable, purely theoretical constructs in physics to that list,\\n>including the omni-present \"black holes.\"\\n>\\n> Will Bruce argue that their existence can be inferred from theory\\n>alone? Then what about my original criticism, when I said \"Curvature\\n>can only exist relative to something non-curved\"? Bruce replied:\\n>\"\\'Existence\\' is undefined unless it is synonymous with \\'observable\\' in\\n>physics. We cannot observe more than the four dimensions we know about.\"\\n>At the moment I don\\'t see a way to defend that statement and the\\n>existence of these unobservable phenomena simultaneously. -|Tom|-\\n\\n\"I hold that space cannot be curved, for the simple reason that it can have\\nno properties.\"\\n\"Of properties we can only speak when dealing with matter filling the\\nspace. To say that in the presence of large bodies space becomes curved,\\nis equivalent to stating that something can act upon nothing. I,\\nfor one, refuse to subscribe to such a view.\" - Nikola Tesla\\n\\n----\\n ET \"Tesla was 100 years ahead of his time. Perhaps now his time comes.\"\\n----\\n',\n", - " 'From: ednobles@sacam.OREN.ORTN.EDU (Edward d Nobles)\\nSubject: windows imagine??!!\\nOrganization: Oak Ridge National Laboratory\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 10\\n\\n\\nI sent off for my copy today... Snail Mail. Hope to get it back in\\nabout ten days. (Impulse said \"a week\".)\\n\\nI hope it\\'s as good as they claim...\\n\\nJim Nobles\\n\\n(Hope I have what it takes to use it... :>)\\n\\n',\n", - " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nOrganization: University of Illinois at Urbana\\nLines: 48\\n\\nanwar+@cs.cmu.edu (Anwar Mohammed) writes:\\n\\n>In article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>>The readers of this forum seemed to be more interested in the contents\\n>>of those files.\\n>>So It will be nice if Yigal will tell us:\\n>>1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\n>ADL authorities seem to view a lot of people as dangerous, including\\n>the millions of Americans of Arab ancestry. Perhaps you can answer\\n>the question as to why the ADL maintained files and spied on ADC members\\n>in California (and elsewhere??)? Friendly rivalry perhaps?\\n\\nCome on! Most if not all Arabs are sympathetic to the Palestinian war \\nagainst Israel. That is why the ADL monitors Arab organizations. That is\\nthe same reason the US monitored communist organizations and Soviet nationals\\nonly a few years ago. \\n\\n>Perhaps Yigal is a Greenpeace member? Or the NAACP? Or a reporter? \\n>Or a member of any of the dozens of other political organizations/ethnic \\n>minorities/occupations that the ADL spied on.\\n\\nAll of these groups have, in the past, associated with or been a part of anti-\\nIsrael activity or propoganda. The ADL is simply monitoring them so that if\\nanything comes up, they won\\'t be caught by surprise.\\n\\n>>2. Why does the ADL have an interest in that person ?\\n\\n>Paranoia?\\n\\nNo, that is why World Trade Center bombings don\\'t happen in Israel (aside from\\nthe fact that there is no world trade center) and why people like Zein Isa (\\nPalestinian whose American group planned to bow up the Israeli Embassy and \\n\"kill many Jews.\") are caught. As Mordechai Levy of the JDL said, Paranoid\\nJews live longer.\\n\\n>>3. If one does trust either the US government or the ADL what an\\n>> additional information should he send them ?\\n\\n>The names of half the posters on this forum, unless they already \\n>have them.\\n\\nThey probably do.\\n\\n>>Gideon Ehrlich\\n>-anwar\\nEd.\\n\\n',\n", - " 'From: n8643084@henson.cc.wwu.edu (owings matthew)\\nSubject: Re: Riceburner Respect\\nArticle-I.D.: henson.1993Apr15.200429.21424\\nOrganization: Western Washington University\\n \\n The 250 ninja and XL 250 got ridden all winter long. I always wave. I\\nLines: 13\\n\\nam amazed at the number of Harley riders who ARE waving even to a lowly\\nbaby ninja. Let\\'s keep up the good attitudes. Brock Yates said in this\\nmonths Car and Driver he is ready for a war (against those who would rather\\nwe all rode busses). We bikers should be too.\\n\\nIt\\'s a freedom that we all wanna know\\nand it\\'s an obsession to some\\nto keep the world in your rearview mirror\\nwhile you try to run down the sun\\n\\n\"Wheels\" by Rhestless Heart\\nMarty O.\\n87 250 ninja\\n73 XL 250 Motosport\\n',\n", - " 'From: todd@phad.la.locus.com (Todd Johnson)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Locus Computing Corporation, Los Angeles, California\\nLines: 28\\n\\nIn article enzo@research.canon.oz.au (Enzo Liguori) writes:\\n;From the article \"What\\'s New\" Apr-16-93 in sci.physics.research:\\n;\\n;........\\n;WHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n;\\n;1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\n;What about light pollution in observations? (I read somewhere else that\\n;it might even be visible during the day, leave alone at night).\\n;Is NASA really supporting this junk?\\n;Are protesting groups being organized in the States?\\n;Really, really depressed.\\n;\\n; Enzo\\n\\nI wouldn\\'t worry about it. There\\'s enough space debris up there that\\na mile-long inflatable would probably deflate in some very short\\nperiod of time (less than a year) while cleaning up LEO somewhat.\\nSort of a giant fly-paper in orbit.\\n\\nHmm, that could actually be useful.\\n\\nAs for advertising -- sure, why not? A NASA friend and I spent one\\ndrunken night figuring out just exactly how much gold mylar we\\'d need\\nto put the golden arches of a certain American fast food organization\\non the face of the Moon. Fortunately, we sobered up in the morning.\\n\\n\\n',\n", - " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: Morality? (was Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>\\n>What I've been saying is that moral behavior is likely the null behavior.\\n\\n Do I smell .sig material here?\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", - " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Hamza Salah, the Humanist\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 13\\n\\nAre you people sure his posts are being forwarded to his system operator???\\nWho is forwarding them???\\n\\nIs there a similar file being kept on Mr. Omran???\\n\\nSalam,\\n\\nJohn Absood\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", - " 'From: kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran)\\nSubject: We don\\'t need no stinking subjects!\\nX-Disclaimer: Nyx is a public access Unix system run by the University\\n\\tof Denver for the Denver community. The University has neither\\n\\tcontrol over nor responsibility for the opinions of users.\\nOrganization: The Loyal Order Of Keiths.\\nLines: 93\\n\\nIn article <1ql1avINN38a@gap.caltech.edu> keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran) writes:\\n>>keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>>>kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran) writes:\\n>\\n>>No, if you\\'re going to claim something, then it is up to you to prove it.\\n>>Think \"Cold Fusion\".\\n>\\n>Well, I\\'ve provided examples to show that the trend was general, and you\\n>(or others) have provided some counterexamples, mostly ones surrounding\\n>mating practices, etc. I don\\'t think that these few cases are enough to\\n>disprove the general trend of natural morality. And, again, the mating\\n>practices need to be reexamined...\\n\\nSo what you\\'re saying is that your mind is made up, and you\\'ll just explain\\naway any differences at being statistically insignificant?\\n\\n>>>Try to find \"immoral\" non-mating-related activities.\\n>>So you\\'re excluding mating-related-activities from your \"natural morality\"?\\n>\\n>No, but mating practices are a special case. I\\'ll have to think about it\\n>some more.\\n\\nSo you\\'ll just explain away any inconsistancies in your \"theory\" as being\\n\"a special case\".\\n\\n>>>Yes, I think that the natural system can be objectively deduced with the\\n>>>goal of species propogation in mind. But, I am not equating the two\\n>>>as you so think. That is, an objective system isn\\'t necessarily the\\n>>>natural one.\\n>>Are you or are you not the man who wrote:\\n>>\"A natural moral system is the objective moral system that most animals\\n>> follow\".\\n>\\n>Indeed. But, while the natural system is objective, all objective systems\\n>are not the natural one. So, the terms can not be equated. The natural\\n>system is a subset of the objective ones.\\n\\nYou just equated them. Re-read your own words.\\n\\n>>Now, since homosexuality has been observed in most animals (including\\n>>birds and dolphins), are you going to claim that \"most animals\" have\\n>>the capacity of being immoral?\\n>\\n>I don\\'t claim that homosexuality is immoral. It isn\\'t harmful, although\\n>it isn\\'t helpful either (to the mating process). And, when you say that\\n>homosexuality is observed in the animal kingdom, don\\'t you mean \"bisexuality?\"\\n\\nA study release in 1991 found that 11% of female seagulls are lesbians.\\n\\n>>>Well, I\\'m saying that these goals are not inherent. That is why they must\\n>>>be postulates, because there is not really a way to determine them\\n>>>otherwise (although it could be argued that they arise from the natural\\n>>>goal--but they are somewhat removed).\\n>>Postulate: To assume; posit.\\n>\\n>That\\'s right. The goals themselves aren\\'t inherent.\\n>\\n>>I can create a theory with a postulate that the Sun revolves around the\\n>>Earth, that the moon is actually made of green cheese, and the stars are\\n>>the portions of Angels that intrudes into three-dimensional reality.\\n>\\n>You could, but such would contradict observations.\\n\\nNow, apply this last sentence of your to YOUR theory. Notice how your are\\ncontridicting observations?\\n\\n>>I can build a mathematical proof with a postulate that given the length\\n>>of one side of a triangle, the length of a second side of the triangle, and\\n>>the degree of angle connecting them, I can determine the length of the\\n>>third side.\\n>\\n>But a postulate is something that is generally (or always) found to be\\n>true. I don\\'t think your postulate would be valid.\\n\\nYou don\\'t know much math, do you? The ability to use SAS to determine the\\nlength of the third side of the triangle is fundemental to geometry.\\n\\n>>Guess which one people are going to be more receptive to. In order to assume\\n>>something about your system, you have to be able to show that your postulates\\n>>work.\\n>\\n>Yes, and I think the goals of survival and happiness *do* work. You think\\n>they don\\'t? Or are they not good goals?\\n\\nGoals <> postulates.\\n\\nAgain, if one of the \"goals\" of this \"objective/natural morality\" system\\nyou are proposing is \"survival of the species\", then homosexuality is\\nimmoral.\\n--\\n=kcochran@nyx.cs.du.edu | B(0-4) c- d- e++ f- g++ k(+) m r(-) s++(+) t | TSAKC=\\n=My thoughts, my posts, my ideas, my responsibility, my beer, my pizza. OK???=\\n',\n", - " 'From: djf@cck.coventry.ac.uk (Marvin Batty)\\nSubject: Re: Moonbase race\\nNntp-Posting-Host: cc_sysk\\nOrganization: Starfleet, Coventry, UK\\nLines: 22\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu> sysmgr@king.eng.umd.edu writes:\\n>In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>\\n>>Apollo was done the hard way, in a big hurry, from a very limited\\n>>technology base... and on government contracts. Just doing it privately,\\n>>rather than as a government project, cuts costs by a factor of several.\\n>\\n>So how much would it cost as a private venture, assuming you could talk the\\n>U.S. government into leasing you a couple of pads in Florida? \\n>\\nWhy use a ground launch pad. It is entirely posible to launch from altitude.\\nThis was what the Shuttle was originally intended to do! It might be seriously\\ncheaper. \\n\\nAlso, what about bio-engineered CO2 absorbing plants instead of many LOX bottles?\\nStick \\'em in a lunar cave and put an airlock on the door.\\n\\n-- \\n**************************************************************************** \\n Marvin Batty - djf@uk.ac.cov.cck\\n\"And they shall not find those things, with a sort of rafia like base,\\nthat their fathers put there just the night before. At about 8 O\\'clock!\"\\n',\n", - " 'From: mlj@af3.mlb.semi.harris.com (Marvin Jaster )\\nSubject: FOR SALE\\nNntp-Posting-Host: sunsol.mlb.semi.harris.com\\nOrganization: Harris Semiconductor, Melbourne FL\\nKeywords: FOR SALE\\nLines: 46\\n\\nI am selling my Sportster to make room for a new FLHTCU.\\nThis scoot is in excellent condition and has never been wrecked or abused.\\nAlways garaged.\\n\\n\\t1990 Sportster 883 Standard (blue)\\n\\n\\tfactory 1200cc conversion kit\\n\\n\\tless than 8000 miles\\n\\n\\tBranch ported and polished big valve heads\\n\\n\\tScreamin Eagle carb\\n\\n\\tScreamin Eagle cam\\n\\n\\tadjustable pushrods\\n\\n\\tHarley performance mufflers\\n\\n\\ttachometer\\n\\n\\tnew Metzeler tires front and rear\\n\\n\\tProgressive front fork springs\\n\\n\\tHarley King and Queen seat and sissy bar\\n\\n\\teverything chromed\\n\\n\\tO-ring chain\\n\\n\\tfork brace\\n\\n\\toil cooler and thermostat\\n\\n\\tnew Die-Hard battery\\n\\n\\tbike cover\\n\\nprice: $7000.00\\nphone: hm 407/254-1398\\n wk 407/724-7137\\nMelbourne, Florida\\n\\n\\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orion drive in vacuum -- how?\\nOrganization: U of Toronto Zoology\\nLines: 12\\n\\nIn article <1993Apr17.053333.15696@sfu.ca> Leigh Palmer writes:\\n>... a high explosive Orion prototype flew (in the atmosphere) in San\\n>Diego back in 1957 or 1958... I feel sure\\n>that someone must have film of that experiment, and I'd really like to\\n>see it. Has anyone out there seen it?\\n\\nThe National Air & Space Museum has both the prototype and the film.\\nWhen I was there, some years ago, they had the prototype on display and\\nthe film continuously repeating.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " \"From: Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado)\\nSubject: Conference on Manned Lunar Exploration. May 7 Crystal City\\nLines: 25\\n\\nReply address: mark.prado@permanet.org\\n\\n > From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\n >\\n > In article <1993Apr19.230236.18227@aio.jsc.nasa.gov>,\\n > daviss@sweetpea.jsc.nasa.gov (S.F. Davis) writes:\\n > > |> AW&ST had a brief blurb on a Manned Lunar Exploration\\n > confernce> |> May 7th at Crystal City Virginia, under the\\n > auspices of AIAA.\\n >\\n > Thanks for typing that in, Steven.\\n >\\n > I hope you decide to go, Pat. The Net can use some eyes\\n > and ears there...\\n\\nI plan to go. It's about 30 minutes away from my home.\\nI can report on some of it (from my perspective ...)\\nAnyone else on sci.space going to be there? If so, send me\\nnetmail. Maybe we can plan to cross paths briefly...\\nI'll maintain a list of who's going.\\n\\nmark.prado@permanet.org\\n\\n * Origin: Just send it to bill.clinton@permanet.org\\n(1:109/349.2)\\n\",\n", - " 'From: wmiler@nyx.cs.du.edu (Wyatt Miler)\\nSubject: Diaspar Virtual Reality Network Announcement\\nOrganization: Nyx, Public Access Unix @ U. of Denver Math/CS dept.\\nLines: 185\\n\\n\\nPosted to the Internet by wmiler@nyx.cs.du.edu\\n \\n000062David42 041493003715\\n \\n The Lunar Tele-operation Model One (LTM1)\\n =========================================\\n By David H. Mitchell\\n March 23, 1993\\n \\nINTRODUCTION:\\n \\nIn order to increase public interest in space-based and lunar operations, a\\nreal miniature lunar-like environment is being constructed on which to test\\ntele-operated models. These models are remotely-controlled by individuals\\nlocated world-wide using their personal computers, for EduTainment\\npurposes.\\nNot only does this provide a test-bed for simple tele-operation and\\ntele-presence activities but it also provides for the sharing of\\ninformation\\non methods of operating in space, including, but not limited to, layout of\\na\\nlunar colony, tele-operating machines for work and play, disseminating\\neducational information, providing contests and awards for creativity and\\nachievement and provides a new way for students worldwide to participate in\\nTwenty-First century remote learning methods.\\n \\nBecause of the nature of the LTM1 project, people of all ages, interests\\nand\\nskills can contribute scenery and murals, models and structures,\\ninterfacing\\nand electronics, software and graphics. In operation LTM1 is an evolving\\nplayground and laboratory that can be used by children, students and\\nprofessionals worldwide. Using a personal computer at home or a terminal at\\na participating institution a user is able to tele-operate real models at\\nthe\\nLTM1 base for experimental or recreational purposes. Because a real\\nfacility\\nexists, ample opportunity is provided for media coverage of the\\nconstruction\\nof the lunar model, its operation and new features to be added as suggested\\nby the users themselves.\\n \\nThis has broad inherent interest for a wide range of groups:\\n - tele-operations and virtual reality research\\n - radio control, model railroad and ham radio operation\\n - astronomy and space planetariums and science centers\\n - art and theater\\n - bbs and online network users\\n - software and game developers\\n - manufacturers and retailers of model rockets, cars and trains\\n - children\\n - the child in all of us\\n \\nLTM1 OVERALL DESIGN:\\n \\nA room 14 feet by 8 feet contains the base lunar layout. The walls are used\\nfor murals of distant moon mountains, star fields and a view of the earth.\\nThe \"floor\" is the simulated lunar surface. A global call for contributions\\nis hereby made for material for the lunar surface, and for the design and\\ncreation of scale models of lunar colony elements, scenery, and\\nmachine-lets.\\n \\n The LTM1 initial design has 3 tele-operated machinelets:\\n 1. An SSTO scale model which will be able to lift off, hover and land;\\n 2. A bulldozerlet which will be able to move about in a quarry area; and\\n 3. A moon-train which will traverse most of the simulated lunar surface.\\n \\n Each machinelet has a small TV camera utilizing a CCD TV chip mounted on\\n it. A personal computer digitizes the image (including reducing picture\\n content and doing data-compression to allow for minimal images to be sent\\n to the operator for control purposes) and also return control signals.\\n \\nThe first machinelet to be set up will be the moon-train since model trains\\nwith TV cameras built in are almost off-the-shelf items and control\\nelectronics for starting and stopping a train are minimal. The user will\\nreceive an image once every 1 to 4 seconds depending on the speed of their\\ndata link to LTM1.\\n \\nNext, an SSTO scale model with a CCD TV chip will be suspended from a\\nservo-motor operated wire frame mounted on the ceiling allowing for the\\nSSTO\\nto be controlled by the operator to take off, hover over the entire lunar\\nlandscape and land.\\n \\nFinally, some tank models will be modified to be CCD TV chip equipped\\nbulldozerlets. The entire initial LTM1 will allow remote operators\\nworldwide\\nto receive minimal images while actually operating models for landing and\\ntakeoff, traveling and doing work. The entire system is based on\\ncommercially\\navailable items and parts that can be easily obtained except for the\\ninterface electronics which is well within the capability of many advanced\\nham radio operator and computer hardware/software developers.\\n \\nBy taking a graphically oriented communications program (Dmodem) and adding\\na tele-operations screen and controls, the necessary user interface can be\\nprovided in under 80 man hours.\\n \\nPLAN OF ACTION:\\n \\nThe Diaspar Virtual Reality Network has agreed to sponsor this project by\\nproviding a host computer network and Internet access to that network.\\nDiaspar is providing the 14 foot by 8 foot facility for actual construction\\nof the lunar model. Diaspar has, in stock, the electronic tanks that can be\\nmodified and one CCD TV chip. Diaspar also agrees to provide \"rail stock\"\\nfor the lunar train model. Diaspar will make available the Dmodem graphical\\ncommunications package and modify it for control of the machines-lets.\\nAn initial \"ground breaking\" with miniature shovels will be performed for\\na live photo-session and news conference on April 30, 1993. The initial\\nmodels will be put in place. A time-lapse record will be started for\\nhistorical purposes. It is not expected that this event will be completely\\nserious or solemn. The lunar colony will be declared open for additional\\nbuilding, operations and experiments. A photographer will be present and\\nthe photographs taken will be converted to .gif images for distribution\\nworld-wide to major online networks and bbs\\'s. A press release will be\\nissued\\ncalling for contributions of ideas, time, talent, materials and scale\\nmodels\\nfor the simulated lunar colony.\\n \\nA contest for new designs and techniques for working on the moon will then\\nbe\\nannounced. Universities will be invited to participate, the goal being to\\nfind instructors who wish to have class participation in various aspects of\\nthe lunar colony model. Field trips to LTM1 can be arranged and at that\\ntime\\nthe results of the class work will be added to the model. Contributors will\\nthen be able to tele-operate any contributed machine-lets once they return\\nto\\ntheir campus.\\n \\nA monthly LTM1 newsletter will be issued both electronically online and via\\nconventional means to the media. Any major new tele-operated equipment\\naddition will be marked with an invitation to the television news media.\\nHaving a large, real model space colony will be a very attractive photo\\nopportunity for the television community. Especially since the \"action\"\\nwill\\nbe controlled by people all over the world. Science fiction writers will be\\ninvited to issue \"challenges\" to engineering and human factors students at\\nuniversities to build and operate the tele-operated equipment to perform\\nlunar tasks. Using counter-weight and pulley systems, 1/6 gravity may be\\nsimulated to some extent to try various traction challenges.\\n \\nThe long term goal is creating world-wide interest, education,\\nexperimentation\\nand remote operation of a lunar colony. LTM1 has the potential of being a\\nlong\\nterm global EduTainment method for space activities and may be the generic\\nexample of how to teach and explore in many other subject areas not limited\\nto space EduTainment. All of this facilitates the kind of spirit which can\\nlead to a generation of people who are ready for the leap to the stars!\\n \\nCONCLUSION:\\n \\nEduTainment is the blending of education and entertainment. Anyone who has\\never enjoyed seeing miniatures will probably see the potential impact of a\\nglobally available layout for recreation, education and experimentation\\npurposes. By creating a tele-operated model lunar colony we not only create\\nworld-wide publicity, but also a method of trying new ideas that require\\nreal\\n(not virtual) skills and open a new method for putting people\\'s minds in\\nspace.\\n \\n \\nMOONLIGHTERS:\\n \\n\"Illuminating the path of knowledge about space and lunar development.\"\\nThe following people are already engaged in various parts of this work:\\nDavid42, Rob47, Dash, Hyson, Jzer0, Vril, Wyatt, The Dark One, Tiggertoo,\\nThe Mad Hatter, Sir Robin, Jogden.\\n \\nCome join the discussion any Friday night from 10:30 to midnight PST in\\n \\nDiaspar Virtual Reality Network. Ideas welcome!\\n \\nInternet telnet to: 192.215.11.1 or diaspar.com\\n \\n(voice) 714-376-1776\\n(2400bd) 714-376-1200\\n(9600bd) 714-376-1234\\n \\nEmail inquiries to LTM1 project leader Jzer@Hydra.unm.edu\\nor directly to Jzer0 on Diaspar.\\n\\n',\n", - " 'From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: Countersteering, to know or not to know - what is the question?\\nOrganization: University of East Anglia\\nDistribution: net\\nLines: 22\\n\\nlotto@husc4.harvard.edu (Jerry Lotto) writes:\\n\\n>There has been a running thread on the need to understand\\n>countersteering. I have seen a lot of opinion, but not much of it has\\n>any basis in fact or study. The bottom line is:\\n\\n>The understanding and ability to swerve was essentially absent among\\n>the accident-involved riders in the Hurt study.\\n\\n>The \"average rider\" does not identify that countersteering alone\\n>provides the primary input to effect motorcycle lean by themselves,\\n>even after many years of practice.\\n\\nI would agree entirely with these three paragraphs. But did the Hurt\\nstudy make any distinction between an *ability* to swerve and a *failure*\\nto swerve? In most of the accidents and near accidents that I\\'ve seen, riders\\nwill almost always stand on the brakes as hard as they dare, simply because\\nthe instinct to brake in the face of danger is so strong that it over-rides\\neverything else. Hard braking and swerving tend to be mutually exclusive\\nmanouvres - did Hurt draw any conclusions on which one is generally preferable?\\n\\n\\n',\n", - " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israel\\'s Expansion II\\nOrganization: University of Virginia\\nLines: 29\\n\\nwaldo@cybernet.cse.fau.edu writes:\\n> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n> \\n> > First of all I never said the Holocaust. I said before the\\n> > Holocaust. I\\'m not ignorant of the Holocaust and know more\\n> > about Nazi Germany than most people (maybe including you). \\n> \\n> Uh Oh! The first sign of an argument without merit--the stating of one\\'s \\n> \"qualifications\" in an area. If you know something about Nazi Germany, \\n> show it. If you don\\'t, shut up. Simple as that.\\n> \\n> > \\tI don\\'t think the suffering of some Jews during WWII\\n> > justifies the crimes commited by the Israeli government. Any\\n> > attempt to call Civil liberterians like myself anti-semetic is\\n> > not appreciated.\\n> \\n> ALL Jews suffered during WWII, not just our beloved who perished or were \\n> tortured. We ALL suffered. Second, the name-calling was directed against\\n> YOU, not civil-libertarians in general. Your name-dropping of a fancy\\n> sounding political term is yet another attempt to \"cite qualifications\" \\n> in order to obfuscate your glaring unpreparedness for this argument. Go \\n> back to the minors, junior.\\n\\tAll humans suffered emotionally, some Jews and many\\nothers suffered physically. It is sad that people like you are\\nso blinded by emotions that they can\\'t see the facts. Thanks\\nfor calling me names, it only assures me of what kind of\\nignorant people I am dealing with. I included your letter since\\nI thought it demonstrated my point more than anything I could\\nwrite. \\n',\n", - " 'From: Thomas.Enblom@eos.ericsson.se (Thomas Enblom)\\nSubject: NAVSTAR positions\\nReply-To: Thomas.Enblom@eos.ericsson.se\\nOrganization: Ericsson Telecom AB\\nLines: 16\\nNntp-Posting-Host: eos8c29.ericsson.se\\n\\nI\\'ve just read Richard Langley\\'s latest \"Navstar GPS Constellation Status\".\\n\\nIt states that the latest satellite was placed in Orbit Plane Position C-3.\\nThere is already one satellite in that position. I know that it\\'s almost\\nten years since that satellite was launched but it\\'s still in operation so\\nwhy not use it until it goes off?\\n\\nWhy not instead place the new satellite at B-4 since that position is empty\\nand by this measure have an almost complete GPS-constellation\\n(23 out of 24)?\\n\\n/Thomas\\n================================================================================\\nEricsson Telecom, Stockholm, Sweden\\n \\nThomas Enblom, just another employee. \\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Arafat (Re: Sampson)\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 61\\n\\nIn article <5897@copper.Denver.Colorado.EDU> aaldoubo@copper.denver.colorado.edu (Shaqeeqa) writes:\\n>In article <1993Apr10.182402.11676@colorado.edu> perlman@qso.Colorado.EDU (Eric S. Perlman) writes:\\n\\n>>Perhaps, though one can argue about whether or not the current\\n>>Palestinian delegation represents the PLO (I would hope it does not, as\\n>>the PLO really doesn\\'t have that kind of legitimacy).\\n\\n>Does it matter to you, Naftaly, Adam, and others, that Arafat\\n>advises the delegation and that the PLO, overall, supports it? Does\\n>it also matter that Arafat, on behalf of the PLO, recognizes Israel\\n>and its right to exist? Further, does Israel\\'s new policy concerning\\n>direct negotiations with the PLO hold any substance to the situation\\n>as a whole?\\n\\nNo, he does not. Arafat explicitly *denies* this claim.\\n\\n\\nfrom a Libyan televison interview with Yasser Arafat 7-19-1991\\nQ: Some people say that the Palestinian revolution has many times changed\\n its strategies and tactics, something which has left its imprint on the\\n Palestinian problem and on the Palestinian Liberation Front. The\\n [strategies and tactics] have not been clear. The question is, is the\\n direction of the Palestinian problem clear? The Palestinian leadership\\n has stopped, or at least this is what has been said in the media, this\\n happened on the way to the dialogue with the United States, the PLO\\n recognized something called \"Israel\"...\\n\\nA: No, no, no! We do not recognize the State of Israel. We said\\n \"recognition\" -- when a Palestinian state is established. It will then\\n decide if to recognize Israel or not. When it is established, its\\n parliament will convene and decide.\\n\\n>policies which it can justify through occupation. Because of this,\\n>you have the grassroot movements that reject Israel\\'s authority and\\n>disregard for human rights; and, if Israel was serious about peace, it\\n>would abandon these policies.\\n\\n\\tAnd replace them with what? If Israel is to withdraw its\\ncontrol of any territory, there must be two prerequsites. One is that\\nit leads to a reduction in deaths. The second is that it should not\\nweaken Israels bargianing position with respect to peace talks.\\n\\n\\tLeaving Gaza unilateraly is a bad idea because it encourages\\narabs to think they can get what they want by killing Jews. The only\\nway Israel should pull out of Gaza is at the end of negotiations.\\nThese negotiations should lead to a mutually agreeable solution with\\nsecurity guarantees for both sides.\\n\\n\\tUntil arabs are ready to sit down at the table and talk again,\\nthey should not expect, or recieve more concessions.\\n\\n\\nAdam\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'Subject: Need rgb data from saved images\\nFrom: \\nOrganization: Penn State University\\nLines: 4\\n\\n Could someone please help me find a program or figure out how to extract a li\\nst of R G B values for each pixel in an image. I can convert between tga and s\\neveral other popular formats but I need the R G B values for use in a program I\\n am writing. Thanks for the help\\n',\n", - " 'From: Center for Policy Research \\nSubject: Symbiotics: Zionism-Antisemitism\\nNf-ID: #N:cdp:1483500355:000:10647\\nNf-From: cdp.UUCP!cpr Apr 23 15:14:00 1993\\nLines: 197\\n\\n\\nFrom: Center for Policy Research \\nSubject: Symbiotics: Zionism-Antisemitism\\n\\n\\nZionism and the Holocaust\\n-------------------------- by Haim Bresheeth\\n\\nThe first point to note regarding the appropriation of the history\\nof the Holocaust by Zionist propaganda is that Zionism without\\nanti-semitism is impossible. Zionism agrees with the basic tenet\\nof anti-Semitism, namely that Jews cannot live with non- Jews.\\n\\nThe history and roots of the Holocaust go back a long way. While\\nthe industru of death and destruction did not operate before 1942,\\nits roots were firmly placed in the 19th Century. Jewish\\naspirations for emancipation emerged out of the national struggles\\nin Europe. When the hopes for liberation through\\nbourgeois-democratic change were dashed, other alternatives for\\nimproving the lot of the Jews of Europe achieved prominence.\\n\\nThe socialist Bund, a mass movement with enormous following, had\\nto contend with opposition from a new and small, almost\\ninsignificant opponent, the political Zionists. In outline these\\ntwo offered diametrically opposed options for Jews in Europe.\\nWhile the Bund was suggesting joining forces with the rest of\\nEurope\\'s workers, the Zionists were proposing a new programme\\naimed at ridding Europe of its Jews by setting up some form of a\\nJewish state.\\n\\nHistorically, nothing is inevitable, all depends on the balance of\\nforces involved in the struggle. History can be seen as an option\\ntree: every time a certain option is chosen, other routes become\\nbarred. Because of that choice, movement backwards to the point\\nbefore that choice was made is impossible. While Zionism as an\\noption was taken by many young Jews, it remained a minority\\nposition until the first days of the 3rd Reich. The Zionist\\nFederation of Germany (ZVfD), an organisation representing a tiny\\nminority of German Jews, was selected by the Nazis as the body to\\nrepresent the Jews of the Reich. Its was the only flag of an\\ninterantional organisation allowed to fly in Berlin, and this was\\nthe only international organisation allowed to operate during this\\nperiod. From a marginal position, the leaders of the Zionist\\nFederation were propelled to a prominence and centrality that\\nsurprised even them. All of a sudden they attained political\\npower, power based not on representation, but from being selected\\nas the choice of the Nazi regime for dealing with the the \\'Jewish\\nproblem\\'. Their position in negotiating with the Nazis agreements\\nthat affected the lives of many tens of thousands of the Jews in\\nGermany transformed them from a utopian, marginal organisation in\\nGermany (and some other countries in Europe) into a real option to\\nbe considered by German Jews.\\n\\nThe best example of this was the \\'Transfer Agreement\\' of 1934.\\nImmediately after the Nazi takeover in 1933, Jews all over the\\nworld supported or were organising a world wide boycott of German\\ngoods. This campaign hurt the Nazi regime and the German\\nauthorities searched frantically for a way disabling the boycott.\\nIt was clear that if Jews and Jewish organisations were to pull\\nout, the campaign would collapse.\\n\\nThis problem was solved by the ZVfD. A letter sent to the Nazi\\nparty as early as 21. June 1933, outlined the degree of agreement\\nthat existed between the two organisations on the question of\\nrace, nation, and the nature of the \\'Jewish problem\\', and it\\noffered to collaborate with the new regime:\\n\\n\"The realisation of Zionism could only be hurt by resentment of\\nJews abroad against the German development. Boycott propaganda -\\nsuch as is currently being carried out against Germany in many\\nways - is in essence unZionist, because Zionism wants not to do\\nbattle but to convince and build.\"\\n\\nIn their eagerness to gain credence and the backing of the new\\nregime, the Zionist organisation managed to undermine the boycott.\\nThe main public act was the signature of the \"Transfer Agreement\"\\nwith the Nazi authorities during the Zionist Congress of 1934. In\\nessence, the agreement was designed to get Germany\\'s Jews out of\\nthe country and into Mandate Palestine. It provided a possibility\\nfor Jews to take a sizeable part of their property out of the\\ncountry, through a transfer of German goods to Palestine. This\\nright was denied to Jews leaving to any other destination. The\\nZionist organisation was the acting agent, through its financial\\norganisations. This agreement operated on a number of fronts -\\n\\'helping\\' Jews to leave the country, breaking the ring of the\\nboycott, exporting German goods in large quantities to Palestine,\\nand last but not least, enabling the regime to be seen as humane\\nand reasonable even towards its avowed enemies, the Jews. After\\nall, they argued, the Jews do not belong in Europe and now the\\nJews come and agree with them.\\n\\nAfter news of the agreement broke, the boycott was doomed. If the\\nZionist Organization found it possible and necessary to deal with\\nthe Nazis, and import their goods, who could argue for a boycott ?\\nThis was not the first time that the interests of both movements\\nwere presented to the German public as complementary. Baron Von\\nMildenstein, the first head of the Jewish Department of the SS,\\nlater followed by Eichmann, was invited to travel to Palestine.\\nThis he did in early 1933, in the company of a Zionist leader,\\nKurt Tuchler. Having spent six months in Palestine, he wrote a\\nseries of favourable articles in Der STURMER describing the \\'new\\nJew\\' of Zionism, a Jew Nazis could accept and understand.\\n\\nThis little-known episode established quite clearly the\\nrelationship during the early days of Nazism, between the new\\nregime and the ZVfD, a relationship that was echoed later in a\\nnumber of key instances, even after the nature of the Final\\nSolution became clear. In many cases this meant a silencing of\\nreports about the horrors of the exterminations. A book\\nconcentrating on this aspect of the Zionist reaction to the\\nHolocaust is Post-Ugandan Zionism in the Crucible of the\\nHolocaust, by S. B. Beth-Zvi.\\n\\nIn the case of the Kastner episode, around which Jim Allen\\'s play\\nPERDITION is based, even the normal excuse of lack of knowledge of\\nthe real nature of events does not exist. It occured near the end\\nof the war. The USSR had advanced almost up to Germany. Italy and\\nthe African bases had been lost. The Nazis were on the run, with a\\nnumber of key countries, such as Rumania, leaving the Axis. A\\nsecond front was a matter of months away, as the western Allies\\nprepared their forces. In the midst of all this we find Eichmann,\\nthe master bureaucrat of industrial murder, setting up his HZ in\\noccupied Budapest, after the German takeover of the country in\\nApril 1944. His first act was to have a conference with the Jewish\\nleadership, and to appoint Zionist Federation members, headed by\\nKastner as the agent and clearing house for all Jews and their\\nrelationship with the SS and the Nazr authorities. Why they did\\nthis is not difficult to see. As opposed to Poland, where its\\nthree and a half million Jews lived in ghettoes and were visibly\\ndifferent from the rest of the Polish population, the Hungarian\\nJews were an integrated part of the community. The middle class\\nwas mainly Jewish, the Jews were mainly middle-class. They enjoyed\\nfreedom of travel, served in the Hungarian (fascist) army in\\nfronline units, as officers and soldiers, their names were\\nHungarian - how was Eichmann to find them if they were to be\\nexterminated ? The task was not easy, there were a million Jews in\\nHungary, most of them resident, the rest being refugees from other\\ncountries. Many had heard about the fate of Jews elsewhere, and\\nwere unlikely to believe any statements by Nazi officials.\\n\\nLike elsewhere, the only people who had the information and the\\near of the frightened Jewish population were the Judenrat. In this\\ncase the Judenrat comprsied mainly the Zionist Federation members.\\nWithout their help the SS, with 19 officers and less than 90 men,\\nplus a few hundred Hungarian police, could not have collected and\\ncontrolled a million Jews, when they did not even know their\\nwhereabouts. Kastner and the others were left under no illusions.\\nEichmann told Joel Brand, one of the members of Kastner\\'s\\ncommittee, that he intended to send all Hungary\\'s Jews to\\nAuschwitz, before he even started the expulsions! He told them\\nclearly that all these Jews will die, 12,000 a day, unless certain\\nconditions were met.\\n\\nThe Committee faced a simple choice - to tell the Jews of Hungary\\nabout their fate, (with neutral Rumania, where many could escape,\\nbeing in most cases a few hours away) or to collaborate with the\\nNazis by assisting in the concentration process. What would not\\nhave been believed when coming from the SS, sounded quite\\nplausible when coming from the mouths of the Zionist leadership.\\nThus it is, that most of the Hungarian Jews went quietly to their\\ndeath, assured by their leadership that they were to be sent to\\nwork camps.\\n\\nTo be sure, there are thirty pieces of silver in this narrative of\\ndestruction: the trains of \\'prominents\\' which Eichmann promised to\\nKastner - a promise he kept to the last detail. For Eichmann it\\nwas a bargain: allowing 1,680 Jews to survive, as the price paid\\nfor the silent collaboration over the death of almost a million\\nJews.\\n\\nThere was no way in which the Jews of Hungary could even be\\nlocated, not to say murdered, without the full collaboration of\\nKastner and his few friends. No doubt the SS would hunt a few Jews\\nhere and there, but the scale of the operation would have been\\nminiscule compared to the half million who died in Auschwitz.\\n\\nIt is important to realise that Kastner was not an aberration,\\nlike say Rumkovsky in Lodz. Kastner acted as a result of his\\nstrongly held Zionist convictions. His actions were a logical\\noutcome of earlier positions. This is instanced when he exposed to\\nthe Gestapo the existence of a British cell of saboteurs, Palgi\\nand Senesh, and persuaded them to give themselves up, so as not to\\ndisrupt his operations. At no point during his trial or elsewhere,\\ndid Kastner deny that he knew exactly what was to happen to those\\nJews.\\n\\nTo conclude, the role played by Zionists in this period, was\\nconnected to another role they could, and should have played, that\\nof alarming the whole world to what was happening in Europe. They\\nhad the information, but politically it was contrary to their\\npriorities. The priorities were, and still are, quite simple: All\\nthat furthers the Zionist enterprise in Palestine is followed,\\nwhatever the price. The lives of individuals, Jews and non-Jews,\\nare secondary. If this process requires dealing with fascists,\\nNazis and other assorted dictatorial regimes across the world, so\\nbe it.\\n\\n',\n", - " \"From: jgarland@kean.ucs.mun.ca\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nLines: 26\\nOrganization: Memorial University. St.John's Nfld, Canada\\n\\nIn article <1993Apr19.020359.26996@sq.sq.com>, msb@sq.sq.com (Mark Brader) writes:\\n>> > Can these questions be answered for a previous\\n>> > instance, such as the Gehrels 3 that was mentioned in an earlier posting?\\n> \\n>> Orbital Elements of Comet 1977VII (from Dance files)\\n>> p(au) 3.424346\\n>> e 0.151899\\n>> i 1.0988\\n>> cap_omega(0) 243.5652\\n>> W(0) 231.1607\\n>> epoch 1977.04110\\n> \\n> \\n>> Also, perihelions of Gehrels3 were:\\n>> \\n>> April 1973 83 jupiter radii\\n>> August 1970 ~3 jupiter radii\\n> \\n> Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. So the\\n> 1970 figure seems unlikely to actually be anything but a perijove.\\n> Is that the case for the 1973 figure as well?\\n> -- \\nSorry, _perijoves_...I'm not used to talking this language.\\n\\nJohn Garland\\njgarland@kean.ucs.mun.ca\\n\",\n", - " 'From: svoboda@rtsg.mot.com (David Svoboda)\\nSubject: Re: Ok, So I was a little hasty...\\nNntp-Posting-Host: corolla18\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 16\\n\\nIn article speedy@engr.latech.edu (Speedy Mercer) writes:\\n|\\n|This was changed here in Louisiana when a girl went to court and won her \\n|case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\nGeez, what happened? She got a ticket for driving too slow???\\n\\n| ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\nOh, are you saying you\\'re not an edu.breath, then? Okay.\\n\\n\\nDave Svoboda (svoboda@void.rtsg.mot.com) | \"I\\'m getting tired of\\n90 Concours 1000 (Mmmmmmmmmm!) | beating you up, Dave.\\n84 RZ 350 (Ring Ding) (Woops!) | You never learn.\"\\nAMA 583905 DoD #0330 COG 939 (Chicago) | -- Beth \"Bruiser\" Dixon\\n',\n", - " \"From: robert@Xenon.Stanford.EDU (Robert Kennedy)\\nSubject: Solar battery chargers -- any good?\\nOrganization: Computer Science Department, Stanford University.\\nLines: 12\\n\\nI've seen solar battery boosters, and they seem to come without any\\nguarantee. On the other hand, I've heard that some people use them\\nwith success, although I have yet to communicate directly with such a\\nperson. Have you tried one? What was your experience? How did you use\\nit (occasional charging, long-term leave-it-for-weeks, etc.)?\\n\\n\\t-- Robert Kennedy\\n\\nRobert Kennedy\\t\\t\\t\\t\\t(415) 723-4532 (office)\\nrobert@cs.stanford.edu\\t\\t\\t\\t(415) 322-7367 (home voice)\\nComputer Science Dept., Stanford University\\t(415) 322-7329 (home tty)\\n\\n\",\n", - " \"From: jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll)\\nSubject: Re: Vandalizing the sky.\\nOrganization: University of Western Ontario, London\\nNntp-Posting-Host: prism.engrg.uwo.ca\\nLines: 15\\n\\nIn article nickh@CS.CMU.EDU (Nick Haines) writes:\\n>\\n>Would they buy it, given that it's a _lot_ more expensive, and not\\n>much more impressive, than putting a large set of several-km\\n>inflatable billboards in LEO (or in GEO, visible 24 hours from your\\n>key growth market). I'll do _that_ for only $5bn (and the changes of\\n>identity).\\n\\n\\tI've heard of sillier things, like a well-known utility company\\nwanting to buy an 'automated' boiler-cleaning system which uses as many\\noperators as the old system, and which rumour has it costs three million\\nmore per unit. Automation is more 'efficient' although by what scale they are\\nnot saying...\\n\\n\\t\\t\\t\\t\\t\\t\\tJames Nicoll\\n\",\n", - " 'From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Absood\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nOrganization: Columbia University\\nLines: 11\\n\\nTo my fellow Columbian, I must ask, why do you say that I engage\\nin fantasies? Arafat is a terrorist, who happens to have\\n a lot of pull among Palestinians. Can we ignore the two facts?\\nI doubt it.\\n\\nPeace, roar lion roar, and other niceties,\\nPete\\n\\n\\n\\n\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: DC-Y trajectory simulation\\nKeywords: SSTO, Delta Clipper\\nOrganization: University of Illinois at Urbana\\nLines: 91\\n\\n\\nI\\'ve been to three talks in the last month which might be of interest. I\\'ve \\ntranscribed some of my notes below. Since my note taking ability is by no means\\ninfallible, please assume that all factual errors are mine. Permission is \\ngranted to copy this without restriction.\\n\\nNote for newbies: The Delta Clipper project is geared towards producing a\\nsingle staget to orbit, reusable launch vehicle. The DC-X vehicle is a 1/3\\nscale vehicle designed to test some of the concepts invovled in SSTO. It is \\ncurrently undergoing tests. The DC-Y vehicle would be a full scale \\nexperimental vehicle capable of reaching orbit. It has not yet been funded.\\n\\nOn April 6th, Rocky Nelson of MacDonnell Douglas gave a talk entitled \\n\"Optimizing Techniques for Advanced Space Missions\" here at the University of\\nIllinois. Mr Nelson\\'s job involves using software to simulate trajectories and\\ndetermine the optimal trajectory within given requirements. Although he is\\nnot directly involved with the Delta Clipper project, he has spent time with \\nthem recently, using his software for their applications. He thus used \\nthe DC-Y project for most of his examples. While I don\\'t think the details\\nof implicit trajectory simulation are of much interest to the readers (I hope\\nthey aren\\'t - I fell asleep during that part), I think that many of you will\\nbe interested in some of the details gleaned from the examples.\\n\\nThe first example given was the maximization of payload for a polar orbit. The\\nmain restriction is that acceleration must remain below 3 Gs. I assume that\\nthis is driven by passenger constraints rather than hardware constraints, but I\\ndid not verify that. The Delta Clipper Y version has 8 engines - 4 boosters\\nand 4 sustainers. The boosters, which have a lower isp, are shut down in \\nmid-flight. Thus, one critical question is when to shut them down. Mr Nelson\\nshowed the following plot of acceleration vs time:\\n ______\\n3 G /| / |\\n / | / | As ASCII graphs go, this is actually fairly \\n / | / |\\t good. The big difference is that the lines\\n2 G / |/ | made by the / should be curves which are\\n / | concave up. The data is only approximate, as\\n / | the graph wasn\\'t up for very long.\\n1 G / |\\n |\\n |\\n0 G |\\n\\n ^ ^\\n ~100 sec ~400 sec\\n\\n\\nAs mentioned before, a critical constraint is that G levels must be kept below\\n3. Initially, all eight engines are started. As the vehicle burns fuel the\\naccelleration increases. As it gets close to 3G, the booster engines are \\nthrotled back. However, they quickly become inefficient at low power, so it\\nsoon makes more sense to cut them off altogether. This causes the dip in \\naccelleration at about 100 seconds. Eventually the remaining sustainer engines\\nbring the G level back up to about 3 and then hold it there until they cut\\nout entirely.\\n\\nThe engine cutoff does not acutally occur in orbit. The trajectory is aimed\\nfor an altitude slightly higher than the 100nm desired and the last vestiges of\\nair drag slow the vehicle slightly, thus lowering the final altitude to \\nthat desired.\\n\\nQuestions from the audience: (paraphrased)\\n\\nQ: Would it make sense to shut down the booster engines in pairs, rather than\\n all at once?\\n\\nA: Very perceptive. Worth considering. They have not yet done the simulation. Shutting down all four was part of the problem as given.\\n\\nQ: So what was the final payload for this trajectory?\\n\\nA: Can\\'t tell us. \"Read Aviation Leak.\" He also apparently had a good \\n propulsion example, but was told not to use it. \\n\\nMy question: Does anyone know if this security is due to SDIO protecting\\nnational security or MD protecting their own interests?\\n\\nThe second example was reentry simulation, from orbit to just before the pitch\\nup maneuver. The biggest constraint in this one is aerodynamic heating, and \\nthe parameter they were trying to maximize was crossrange. He showed graphs\\nof heating using two different models, to show that both were very similar,\\nand I think we were supposed to assume that this meant they were very accurate.\\nThe end result was that for a polar orbit landing at KSC, the DC-Y would have\\nabout 30 degrees of crossrange and would start it\\'s reentry profile about \\n60 degrees south latitude.\\n\\nI would have asked about the landing maneuvers, but he didn\\'t know about that\\naspect of the flight profile.\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " 'From: laszlo@eclipse.cs.colorado.edu (Laszlo Nemeth)\\nSubject: New DoD listing. Membership is at 1148\\nNntp-Posting-Host: eclipse.cs.colorado.edu\\nOrganization: University of Colorado Boulder, Pizza Disposal Group\\nLines: 23\\n\\nThere is a new DoD listing. To get a copy use one of these commands:\\n\\n\\t\\tfinger motohead@cs.colorado.edu\\n\\t\\t\\t\\tOR\\n\\t\\tmail motohead@cs.colorado.edu\\n\\nIf you send mail make sure your \"From\" line is correct (ie \"man vacation\").\\nI will not try at all to fix mail problems (unless they are mine ;-). And I\\nmay just publicly tell the world what a bad mailer you have. I do scan the \\nmail to find bounces but I will not waste my time answering your questions \\nor requests.\\n\\nFor those of you that want to update your entry or get a # contact the KotL.\\nOnly the KotL can make changes. SO STOP BOTHERING ME WITH INANE MAIL\\n\\nI will not tell what \"DoD\" is! Ask rec.motorcycles. I do not give out the #\\'s.\\n\\n\\nLaszlo Nemeth\\nlaszlo@cs.colorado.edu\\n\"hey - my tool works (yeah, you can quote me on that).\" From elef@Sun.COM\\n\"Flashbacks = free drugs.\"\\nDoD #0666 UID #1999\\n',\n", - " 'From: tychay@cco.caltech.edu (Terrence Y. Chay)\\nSubject: TIFF (NeXT Appsoft draw) -> GIF conversion?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 27\\nNNTP-Posting-Host: punisher.caltech.edu\\nSummary: Help!\\nKeywords: TIFF GIF graphics conversion NeXT Appsoft\\n\\nOkay all my friends are bitching at me that the map I made in Appsoft Draw\\ncan\\'t be displayed in \"xv\"... I checked... It\\'s true, at least with version\\n1.0. My readers on the NeXT have very little trouble on it (Preview messes\\nup the .eps, but does fine with the TIFF and ImageViewer0.9a behaves with\\nflying colors except it doesn\\'t convert worth *&^^% ;-) )\\n\\n Please is there any way I can convert this .drw from Appsoft 1.0 on the NeXT\\nto something more reasonable like .gif? I have access to a sun4 and NeXTstep\\n3.0 systems. any good reliable conversion programs would be helpful... please\\nemail, I\\'ll post responses if anyone wants me to... please email that to.\\n\\nYes I used alphachannel... (god i could choke steve jobs right now ;-) )\\n\\nYes i know how to archie, but tell me what to archie for ;-)\\n\\nAlso is there a way to convert to .ps plain format? ImageViiewer0.9 turns\\nout nothing recognizable....\\n\\n terrychay\\n\\n---\\nsmall editorial\\n\\n-rw-r--r-- 1 tychay 2908404 Apr 18 08:03 Undernet.tiff\\n-rw-r--r-- 1 tychay 73525 Apr 18 08:03 Undernet.tiff.Z\\n\\nand not using gzip! is it me or is there something wrong with this format?\\n',\n", - " \"From: deweeset@ptolemy2.rdrc.rpi.edu (Thomas E. DeWeese)\\nSubject: Finding equally spaced points on a sphere.\\nArticle-I.D.: rpi.4615trd\\nOrganization: Rensselaer Polytechnic Institute, Troy, NY\\nLines: 8\\nNntp-Posting-Host: ptolemy2.rdrc.rpi.edu\\n\\n\\n Hello, I know that this has been discussed before. But at the time\\nI didn't need to teselate a sphere. So if any kind soul has the code\\nor the alg, that was finally decided upon as the best (as I recall it\\nwas a nice, iterative subdivision meathod), I would be very \\nappreciative.\\n\\t\\t\\t\\t\\t\\t\\tThomas DeWeese\\ndeweeset@rdrc.rpi.edu\\n\",\n", - " \"From: diablo.UUCP!cboesel (Charles Boesel)\\nSubject: Alias phone number wanted\\nOrganization: Diablo Creative\\nReply-To: diablo.UUCP!cboesel (Charles Boesel)\\nX-Mailer: uAccess LITE - Macintosh Release: 1.6v2\\nLines: 9\\n\\nWhat is the phone number for Alias?\\nA toll-free number is preferred, if available.\\n\\nThanks\\n\\n--\\ncharles boesel @ diablo creative | If Pro = for and Con = against\\ncboesel@diablo.uu.holonet.net | Then what's the opposite of Progress?\\n+1.510.980.1958(pager) | What else, Congress.\\n\",\n", - " 'From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: NEWS YOU MAY HAVE MISSED, Apr 20\\nOrganization: Bellcore, Livingston, NJ\\nSummary: Totally Unbiased Magazine\\nLines: 134\\n\\nIn article <1qu7op$456@genesis.MCS.COM>, arf@genesis.MCS.COM (Jack Schmidling) writes:\\n> \\n> NEWS YOU MAY HAVE MISSED, APR 19, 1993\\n> \\n> Not because you were too busy but because\\n> Israelists in the US media spiked it.\\n> \\n> ................\\n> \\n> \\n> THOSE INTREPID ISRAELI SOLDIERS\\n> \\n> \\n> Israeli soldiers have sexually taunted Arab women in the occupied Gaza Strip \\n> during the three-week-long closure that has sealed Palestinians off from the \\n> Jewish state, Palestinian sources said on Sunday.\\n> \\n> The incidents occurred in the town of Khan Younis and involved soldiers of\\n> the Golani Brigade who have been at the centre of house-to-house raids for\\n> Palestinian activists during the closure, which was imposed on the strip and\\n> occupied West Bank.\\n> \\n> Five days ago girls at the Al-Khansaa secondary said a group of naked\\n> soldiers taunted them, yelling: ``Come and kiss me.\\'\\' When the girls fled, \\n> the soldiers threw empty bottles at them.\\n> \\n> On Saturday, a group of soldiers opened their shirts and pulled down their\\n> pants when they saw girls from Al-Khansaa walking home from school. Parents \\n> are considering keeping their daughters home from the all-girls school.\\n> \\n> The same day, soldiers harassed two passing schoolgirls after a youth\\n> escaped from them at a boys\\' secondary school. Deputy Principal Srur \\n> Abu-Jamea said they shouted abusive language at the girls, backed them \\n> against a wall, and put their arms around them.\\n> \\n> When teacher Hamdan Abu-Hajras intervened the soldiers kicked him and beat\\n> him with the butts of their rifles.\\n> \\n> On Tuesday, troops stopped a car driven by Abdel Azzim Qdieh, a practising\\n> Moslem, and demanded he kiss his female passenger. Qdieh refused, the \\n> soldiers hit him and the 18-year-old passenger kissed him to stop the \\n> beating.\\n> \\n> On Friday, soldiers entered the home of Zamno Abu-Ealyan, 60, blindfolded\\n> him and his wife, put a music tape on a recorder and demanded they dance. As\\n> the elderly couple danced, the soldiers slipped away. The coupled continued\\n> dancing until their grandson came in and asked what was happening.\\n> \\n> The army said it was checking the reports.\\n> \\n> ....................\\n> \\n> \\n> ISRAELI TROOPS BAR CHRISTIANS FROM JERUSALEM\\n> \\n> Israeli troops prevented Christian Arabs from entering Jerusalem on Thursday \\n> to celebrate the traditional mass of the Last Supper.\\n> \\n> Two Arab priests from the Greek Orthodox church led some 30 worshippers in\\n> prayer at a checkpoint separating the occupied West Bank from Jerusalem after\\n> soldiers told them only people with army-issued permits could enter.\\n> \\n> ``Right now, our brothers are celebrating mass in the Church of the Holy\\n> Sepulchre and we were hoping to be able to join them in prayer,\\'\\' said Father\\n> George Makhlouf of the Ramallah Parish.\\n> \\n> Israel sealed off the occupied lands two weeks ago after a spate of\\n> Palestinian attacks against Jews. The closure cut off Arabs in the West Bank\\n> and Gaza Strip from Jerusalem, their economic, spiritual and cultural centre.\\n> \\n> Father Nicola Akel said Christians did not want to suffer the humiliation\\n> of requesting permits to reach holy sites.\\n> \\n> Makhlouf said the closure was discriminatory, allowing Jews free movement\\n> to take part in recent Passover celebrations while restricting Christian\\n> celebrations.\\n> \\n> ``Yesterday, we saw the Jews celebrate Passover without any interruption.\\n> But we cannot reach our holiest sites,\\'\\' he said.\\n> \\n> An Israeli officer interrupted Makhlouf\\'s speech, demanding to see his\\n> identity card before ordering the crowd to leave.\\n> \\n> ...................\\n> \\n> \\n> \\n> If you are as revolted at this as I am, drop Israel\\'s best friend email and \\n> let him know what you think.\\n> \\n> \\n> 75300.3115@compuserve.com (via CompuServe)\\n> clintonpz@aol.com (via America Online)\\n> clinton-hq@campaign92.org (via MCI Mail)\\n> \\n> \\n> Tell \\'em ARF sent ya.\\n> \\n> ..................................\\n> \\n> If you are tired of \"learning\" about American foreign policy from what is \\n> effectively, Israeli controlled media, I highly recommend checking out the \\n> Washington Report. A free sample copy is available by calling the American \\n> Education Trust at:\\n> (800) 368 5788\\n> \\n> Tell \\'em arf sent you.\\n> \\n> js\\n> \\n> \\n> \\n\\nI took your advice and ordered a copy of the Washinton Report. I\\nheartily recommend it to all pro-Israel types for the following \\nreasons:\\n\\n1. It is an excellent absorber of excrement. I use it to line\\n the bottom of my parakeet\\'s cage. A negative side effect is\\n that my bird now has a somewhat warped view of the mideast.\\n\\n2. It makes a great April Fool\\'s joke, i.e., give it to someone\\n who knows nothing about the middle east and then say \"April\\n Fools\".\\n\\nAnyway, I plan to call them up every month just to keep getting\\nthose free sample magazines (you know how cheap we Jews are).\\n\\nBTW, when you call them, tell \\'em barf sent you.\\n\\nJust Kidding,\\n\\nBen.\\n\\n',\n", - " 'From: hernlem@chess.ncsu.edu (Brad Hernlem)\\nSubject: Israeli Media (was Re: Israeli Terrorism)\\nReply-To: hernlem@chess.ncsu.edu (Brad Hernlem)\\nOrganization: NCSU Chem Eng\\nLines: 33\\n\\n\\nIn article <2BD9C01D.11546@news.service.uci.edu>, tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n|> In article <1993Apr24.203620.6531@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n|> >I think the Israeli press might be a tad bit biased in\\n|> >reporting the events. I doubt the Propaganda machine of Goering\\n|> >reported accurately on what was happening in Germany. It is\\n|> >interesting that you are basing the truth on Israeli propaganda.\\n|> \\n|> Since one is also unlikely to get \"the truth\" from either Arab or \\n|> Palestinian news outlets, where do we go to \"understand\", to learn? \\n|> Is one form of propoganda more reliable than another? The only way \\n|> to determine that is to try and get beyond the writer\\'s \"political\\n|> agenda\", whether it is \"on\" or \"against\" our *side*.\\n|> \\n|> Tim \\n\\nTo Andi,\\n\\nI have to disagree with you about the value of Israeli news sources. If you\\nwant to know about events in Palestine it makes more sense to get the news\\ndirectly from the source. EVERY news source is inherently biased to some\\nextent and for various reasons, both intentional and otherwise. However, \\nthe more sources relied upon the easier it is to see the \"truth\" and to discern \\nthe bias. \\n\\nGo read or listen to some Israeli media. You will learn more news and more\\nopinion about Israel and Palestine by doing so. Then you can form your own\\nopinions and hopefully they will be more informed even if your views don\\'t \\nchange.\\n\\nBrad Hernlem (hernlem@chess.ncsu.EDU)\\nJake can call me Doctor Mohandes Brad \"Ali\" Hernlem (as of last Wednesday)\\n',\n", - " \"From: oehler@picard.cs.wisc.edu (Eric Oehler)\\nSubject: Translating TTTDDD to DXF or Swiv3D.\\nArticle-I.D.: cs.1993Apr6.020751.13389\\nDistribution: usa\\nOrganization: University of Wisconsin, Madison -- Computer Sciences Dept.\\nLines: 8\\n\\nI am a Mac-user when it comes to graphics (that's what I own software and hardware for) and\\nI've recently come across a large number of TTTDDD format modeling databases. Is there any\\nsoftware, mac or unix, for translating those to something I could use, like DXF? Please\\nreply via email.\\n\\nThanx.\\nEric Oehler\\noehler@picard.cs.wisc.edu\\n\",\n", - " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Re: Vulcan? No, not Spock or Haphaestus\\nOrganization: NASA Langley Research Center\\nLines: 16\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\n> Another legend with the name Vulcan was the planet, much like Earth,\\n> in the same orbit\\n\\nThere was a Science fiction movie sometime ago (I do not remember its \\nname) about a planet in the same orbit of Earth but hidden behind the \\nSun so it could never be visible from Earth. Turns out that that planet \\nwas the exact mirror image of Earth and all its inhabitants looked like \\nthe Earthings with the difference that their organs was in the opposite \\nside like the heart was in the right side instead in the left and they \\nwould shake hands with the left hand and so on...\\n\\n C.O.EGALON@LARC.NASA.GOV\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", - " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Re: Space Station Redesign Chief Resigns for Health Reasons\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: tm0006.lerc.nasa.gov\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article , xrcjd@mudpuppy.gsfc.nasa.gov (Charles J. Divine) writes...\\n>Writer Kathy Sawyer reported in today\\'s Washington Post that Joseph Shea, the \\n>head of the space station redesign has resigned for health reasons.\\n> \\n>Shea was hospitalized shortly after his selection in February. He returned\\n>yesterday to lead the formal presentation to the independent White House panel.\\n>Shea\\'s presentation was rambling and almost inaudible.\\n\\nI missed the presentations given in the morning session (when Shea gave\\nhis \"rambling and almost inaudible\" presentation), but I did attend\\nthe afternoon session. The meeting was in a small conference room. The\\nspeaker was wired with a mike, and there were microphones on the table for\\nthe panel members to use. Peons (like me) sat in a foyer outside the\\nconference room, and watched the presentations on closed circuit TV. In\\ngeneral, the sound system was fair to poor, and some of the other\\nspeakers (like the committee member from the Italian Space Agency)\\nalso were \"almost inaudible.\"\\n\\nShea didn\\'t \"lead the formal presentation,\" in the sense of running\\nor guiding the presentation. He didn\\'t even attend the afternoon\\nsession. Vest ran the show (President of MIT, the chair of the\\nadvisory panel).\\n\\n> \\n>Shea\\'s deputy, former astronaut Bryan O\\'Connor, will take over the effort.\\n\\nNote that O\\'Connor has been running the day-to-day\\noperations of the of the redesign team since Shea got sick (which\\nwas immediately after the panel was formed).\\n\\n',\n", - " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 47\\n\\nIn emarsh@hernes-sun.Eng.Sun.COM (Eric \\nMarsh) writes:\\n\\n>In article lis450bw@ux1.cso.uiuc.edu (lis450 \\nStudent) writes:\\n>>Hmmmm. Define objective morality. Well, depends upon who you talk to.\\n>>Some say it means you can\\'t have your hair over your ears, and others say\\n>>it means Stryper is acceptable. _I_ would say that general principles\\n>>of objective morality would be listed in one or two places.\\n\\n>>Ten Commandments\\n\\n>>Sayings of Jesus\\n\\n>>the first depends on whether you trust the Bible, \\n\\n>>the second depends on both whether you think Jesus is God, and whether\\n>> you think we have accurate copies of the NT.\\n\\n>Gong!\\n\\n>Take a moment and look at what you just wrote. First you defined\\n>an \"objective\" morality and then you qualified this \"objective\" morality\\n>with subjective justifications. Do you see the error in this?\\n\\n>Sorry, you have just disqualified yourself, but please play again.\\n\\n>>MAC\\n>>\\n\\n>eric\\n\\nHuh? Please explain. Is there a problem because I based my morality on \\nsomething that COULD be wrong? Gosh, there\\'s a heck of a lot of stuff that I \\nbelieve that COULD be wrong, and that comes from sources that COULD be wrong. \\nWhat do you base your belief on atheism on? Your knowledge and reasoning? \\nCOuldn\\'t that be wrong?\\n\\nMAC\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: He has risen!\\nOrganization: Case Western Reserve University\\nLines: 16\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\n\\n\\n\\tOur Lord and Savior David Keresh has risen!\\n\\n\\n\\tHe has been seen alive!\\n\\n\\n\\tSpread the word!\\n\\n\\n\\n\\n--------------------------------------------------------------------------------\\n\\t\\t\\n\\t\\t\"My sole intention was learning to fly.\"\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: While Armenians destroyed all the Moslem villages in the plain...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 48\\n\\nIn article <1pol62INNa5u@cascade.cs.ubc.ca> kvdoel@cs.ubc.ca (Kees van den Doel) writes:\\n\\n>>See, you are a pathological liar.\\n\\n>You got a crack in your record I think. \\n\\nThis is the point we seem to disagree about. Not a chance.\\n\\n>I keep seeing that line over and over. That\\'s pathetic, even for \\n>Serdar Argic!\\n\\nWell, \"Arromdian\" of ASALA/SDPA/ARF Terrorism and Revisionism Triangle\\nis a compulsive liar. Now try dealing with the rest of what I wrote.\\n\\nU.S. Ambassador Bristol:\\n\\nSource: \"U.S. Library of Congress:\" \\'Bristol Papers\\' - General Correspondence\\nContainer #34.\\n\\n \"While the Dashnaks were in power they did everything in the world to keep the\\n pot boiling by attacking Kurds, Turks and Tartars; by committing outrages\\n against the Moslems; by massacring the Moslems; and robbing and destroying\\n their homes;....During the last two years the Armenians in Russian Caucasus\\n have shown no ability to govern themselves and especially no ability to \\n govern or handle other races under their power.\"\\n\\nA Kurdish scholar:\\n\\nSource: Hassan Arfa, \"The Kurds,\" (London, 1968), pp. 25-26.\\n\\n \"When the Russian armies invaded Turkey after the Sarikamish disaster \\n of 1914, their columns were preceded by battalions of irregular \\n Armenian volunteers, both from the Caucasus and from Turkey. One of \\n these was commanded by a certain Andranik, a blood-thirsty adventurer.\\n These Armenian volunteers committed all kinds of excesses, more\\n than six hundred thousand Kurds being killed between 1915 and 1916 in \\n the eastern vilayets of Turkey.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " \"From: tdawson@llullaillaco.engin.umich.edu (Chris Herringshaw)\\nSubject: Re: Sun IPX root window display - background picture\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 15\\nDistribution: world\\nNNTP-Posting-Host: llullaillaco.engin.umich.edu\\nKeywords: sun ipx background picture\\nOriginator: tdawson@llullaillaco.engin.umich.edu\\n\\n\\nI'm not sure if you got the information you were looking for, so I'll\\npost it anyway for the general public. To load an image on your root\\nwindow add this line to the end of your .xsession file:\\n\\n xloadimage -onroot -fullscreen &\\n\\nThis is assuming of course you have the xloadimage client, and as\\nfor the switches, I think they pretty much explain what is going on.\\nIf you leave out the <&>, the terminal locks till you kill it.\\n(You already knew that though...)\\n\\nHope this helps.\\n\\nDaemon\\n\",\n", - " \"From: arthurc@sfsuvax1.sfsu.edu (Arthur Chandler)\\nSubject: Stereo Pix of planets?\\nOrganization: California State University, Sacramento\\nLines: 5\\n\\nCan anyone tell me where I might find stereo images of planetary and\\nplanetary satellite surfaces? GIFs preferred, but any will do. I'm\\nespecially interested in stereos of the surfaces of Phobos, Deimos, Mars\\nand the Moon (in that order).\\n Thanks. \\n\",\n", - " 'Subject: Re: If You Feed Armenians Dirt -- You Will Bite Dust!\\nFrom: senel@vuse.vanderbilt.edu (Hakan)\\nOrganization: Vanderbilt University\\nSummary: Armenians correcting the geo-political record.\\nNntp-Posting-Host: snarl02\\nLines: 18\\n\\nIn article <1993Apr5.194120.7010@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n\\n>In article <1993Apr5.064028.24746@kth.se> hilmi-er@dsv.su.se (Hilmi Eren) \\n>writes:\\n\\n>David Davidian says: Armenians have nothing to lose! They lack food, fuel, and\\n>warmth. If you fascists in Turkey want to show your teeth, good for you! Turkey\\n>has everything to lose! You can yell and scream like barking dogs along the \\n\\nDavidian, who are fascists? Armenians in Azerbaijan are killing Azeri \\npeople, invading Azeri soil and they are not fascists, because they \\nlack food ha? Strange explanation. There is no excuse for this situation.\\n\\nHerkesi fasist diye damgala sonra, kendileri fasistligin alasini yapinca,\\n\"ac kaldilar da, yiyecekleri yok amcasi, bu seferlik affedin\" de. Yurrruuu, \\nyuru de plaka numarani alalim......\\n\\nHakan\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Level 5?\\nOrganization: Texas Instruments Inc\\nDistribution: sci\\nLines: 33\\n\\nIn 18084TM@msu.edu (Tom) writes:\\n\\n\\n>Nick Haines sez;\\n>>(given that I\\'ve heard the Shuttle software rated as Level 5 in\\n>>maturity, I strongly doubt that this [having lots of bugs] is the case).\\n\\n>Level 5? Out of how many? What are the different levels? I\\'ve never\\n>heard of this rating system. Anyone care to clue me in?\\n\\nSEI Level 5 (the highest level -- the SEI stands for Software\\nEngineering Institute). I\\'m not sure, but I believe that this rating\\nonly applies to the flight software. Also keep in mind that it was\\n*not* achieved through the use of sophisticated tools, but rather\\nthrough a \\'brute force and ignorance\\' attack on the problem during the\\nChallenger standdown - they simply threw hundreds of people at it and\\ndid the whole process by hand. I would not consider receiving a \\'Warning\\'\\nstatus on systems which are not yet in use would detract much (if\\nanything) from such a rating -- I\\'ll have to get the latest copy of\\nthe guidelines to make sure (they just issued new ones, I think).\\n\\nAlso keep in mind that the SEI levels are concerned primarily with\\ncontrol of the software process; the assumption is that a\\nwell controlled process will produce good software. Also keep in mind\\nthat SEI Level 5 is DAMNED HARD. Most software in this country is\\nproduced by \\'engineering practicies\\' that only rate an SEI Level 1 (if\\nthat). \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Deriving Pleasure from Death\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 13\\n\\n\\n>them. (By the way, I do not applaud the killing of _any_ human being,\\n>including prisoners sentenced to death by our illustrious justice department)\\n>\\n>Peace.\\n>-marc\\n>\\n\\nBoy, you really are a stupid person. Our justice department does\\nnot sentence people to death. That's up to state courts. Again,\\nget a brain.\\n\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Method employed by the Armenians in \\'Genocide of the Muslim People\\'.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 28\\n\\nSource: \"Men Are Like That\" by Leonard Ramsden Hartill. The Bobbs-Merrill\\nCompany, Indianapolis (1926). (305 pages). \\n(Memoirs of an Armenian officer who participated in the genocide of 2.5 \\n million Muslim people)\\n\\n\\np. 133 (first paragraph)\\n\\n\"In this movement we took with us three thousand Turkish soldiers who\\n had been captured by the Russians and left on our hands when the Russians\\n abandoned the struggle. During our retreat to Karaklis two thousand of\\n these poor devils were cruelly put to death. I was sickened by the\\n brutality displayed, but could not make any effective protest. Some,\\n mercifully, were shot. Many of them were burned to death. The method\\n employed was to put a quantity of straw into a hut, and then after\\n crowding the hut with Turks, set fire to the straw.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: jbrown@batman.bmd.trw.com\\nSubject: Re: Gulf War and Peace-niks\\nLines: 67\\n\\nIn article <1993Apr20.062328.19776@bmerh85.bnr.ca>, \\ndgraham@bmers30.bnr.ca (Douglas Graham) writes:\\n\\n[...]\\n> \\n> Wait a minute. You said *never* play a Chamberlain. Since the US\\n> *is* playing Chamberlain as far as East Timor is concerned, wouldn\\'t\\n> that lead you to think that your argument is irrelevant and had nothing\\n> to do with the Gulf War? Actually, I rather like your idea. Perhaps\\n> the rest of the world should have bombed (or maybe missiled) Washington\\n> when the US invaded Nicaragua, Grenada, Panama, Vietnam, Mexico, Hawaii,\\n> or any number of other places.\\n\\nWait a minute, Doug. I know you are better informed than that. The US \\nhas never invaded Nicaragua (as far as I know). We liberated Grenada \\nfrom the Cubans\\tto protect US citizens there and to prevent the completion \\nof a strategic air strip. Panama we invaded, true (twice this century). \\nVietnam? We were invited in by the government of S. Vietnam. (I guess \\nwe \"invaded\" Saudi Arabia during the Gulf War, eh?) Mexico? We have \\ninvaded Mexico 2 or 3 times, once this century, but there were no missiles \\nfor anyone to shoot over here at that time. Hawaii? We liberated it from \\nSpain.\\n\\nSo if you mean by the word \"invaded\" some sort of military action where\\nwe cross someone\\'s border, you are right 5 out of 6. But normally\\n\"invaded\" carries a connotation of attacking an autonomous nation.\\n(If some nation \"invades\" the U.S. Virgin Islands, would they be\\ninvading the Virgin Islands or the U.S.?) So from this point of\\nview, your score falls to 2 out of 6 (Mexico, Panama).\\n\\n[...]\\n> \\n> What\\'s a \"peace-nik\"? Is that somebody who *doesn\\'t* masturbate\\n> over \"Guns\\'n\\'Ammo\" or what? Is it supposed to be bad to be a peace-nik?\\n\\nNo, it\\'s someone who believes in \"peace-at-all-costs\". In other words,\\na person who would have supported giving Hitler not only Austria and\\nCzechoslakia, but Poland too if it could have averted the War. And one\\nwho would allow Hitler to wipe all *all* Jews, slavs, and political \\ndissidents in areas he controlled as long as he left the rest of us alone.\\n\\n\"Is it supposed to be bad to be a peace-nik,\" you ask? Well, it depends\\non what your values are. If you value life over liberty, peace over\\nfreedom, then I guess not. But if liberty and freedom mean more to you\\nthan life itself; if you\\'d rather die fighting for liberty than live\\nunder a tyrant\\'s heel, then yes, it\\'s \"bad\" to be a peace-nik.\\n\\nThe problem with most peace-niks it they consider those of us who are\\nnot like them to be \"bad\" and \"unconscionable\". I would not have any\\nargument or problem with a peace-nik if they held to their ideals and\\nstayed out of all conflicts or issues, especially those dealing with \\nthe national defense. But no, they are not willing to allow us to\\nlegitimately hold a different point-of-view. They militate and \\nmany times resort to violence all in the name of peace. (What rank\\nhypocrisy!) All to stop we \"warmongers\" who are willing to stand up \\nand defend our freedoms against tyrants, and who realize that to do\\nso requires a strong national defense.\\n\\nTime to get off the soapbox now. :)\\n\\n[...]\\n> --\\n> Doug Graham dgraham@bnr.ca My opinions are my own.\\n\\nRegards,\\n\\nJim B.\\n',\n", - " 'From: geigel@seas.gwu.edu (Joseph Geigel)\\nSubject: Looking for AUTOCAD .DXF file parser\\nOrganization: George Washington University\\nLines: 16\\n\\n\\n Hello...\\n\\n Does anyone know of any C or C++ function libraries in the public domain\\n that assist in parsing an AUTOCAD .dxf file? \\n\\n Please e-mail.\\n\\n\\n Thanks,\\n\\n-- \\n\\n -- jogle\\n geigel@seas.gwu.edu\\n\\n',\n", - " 'From: JDB1145@tamvm1.tamu.edu\\nSubject: Re: A Little Too Satanic\\nOrganization: Texas A&M University\\nLines: 21\\nNNTP-Posting-Host: tamvm1.tamu.edu\\n\\nIn article <65934@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n>\\n>Nanci Ann Miller writes:\\n>\\n]The \"corrupted over and over\" theory is pretty weak. Comparison of the\\n]current hebrew text with old versions and translations shows that the text\\n]has in fact changed very little over a space of some two millennia. This\\n]shouldn\\'t be all that suprising; people who believe in a text in this manner\\n]are likely to makes some pains to make good copies.\\n \\nTell it to King James, mate.\\n \\n]C. Wingate + \"The peace of God, it is no peace,\\n] + but strife closed in the sod.\\n]mangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\n]tove!mangoe + the marv\\'lous peace of God.\"\\n \\n \\nJohn Burke, jdb1145@summa.tamu.edu\\n',\n", - " 'From: mau@herky.cs.uiowa.edu (Mau Napoleon)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nNntp-Posting-Host: herky.cs.uiowa.edu\\nOrganization: University of Iowa, Iowa City, IA, USA\\nLines: 63\\n\\nFrom article <1993Apr15.092101@IASTATE.EDU>, by tankut@IASTATE.EDU (Sabri T Atan):\\n> Well, Panos, Mr. Tamamidis?, the way you put it it is only the Turks\\n> who bear the responsibility of the things happening today. That is hard to\\n> believe for somebody trying to be objective.\\n> When it comes to conflicts like our countries having you cannot\\n> blame one side only, there always are bad guys on both sides.\\n> What were you doing on Anatolia after the WW1 anyway?\\n> Do you think it was your right to be there?\\n\\nThere were a couple millions of Greeks living in Asia Minor until 1923.\\nSomeone had to protect them. If not us who??\\n\\n> I am not saying that conflicts started with that. It is only\\n> not one side being the aggressive and the ither always suffering.\\n> It is sad that we (both) still are not trying to compromise.\\n> I remember the action of the Turkish government by removing the\\n> visa requirement for greeks to come to Turkey. I thought it\\n> was a positive attempt to make the relations better.\\n> \\nCompromise on what, the invasion of Cyprus, the involment of Turkey in\\nGreek politics, the refusal of Turkey to accept 12 miles of territorial\\nwaters as stated by international law, the properties of the Greeks of \\nKonstantinople, the ownership of the islands in the Greek lake,sorry, Aegean.\\n\\nThere are some things on which there can not be a compromise.\\n\\n\\n> The Greeks I mentioned who wouldn\\'t talk to me are educated\\n> people. They have never met me but they know! I am bad person\\n> because I am from Turkey. Politics is not my business, and it is\\n> not the business of most of the Turks. When it comes to individuals \\n> why the hatred?\\n\\nAny person who supports the policies of the Turkish goverment directly or\\nindirecly is a \"bad\" person.\\nIt is not your nationality that makes you bad, it is your support of the\\nactions of your goverment that make you \"bad\".\\nPeople do not hate you because of who you are but because of what you\\nare. You are a supporter of the policies of the Turkish goverment and\\nas a such you must pay the price.\\n\\n> So that makes me think that there is some kind of\\n> brainwashing going on in Greece. After all why would an educated person \\n> treat every person from a nation the same way? can you tell me about your \\n> history books and things you learn about Greek-Turkish\\n> encounters during your schooling. \\n> take it easy! \\n> \\n> --\\n> Tankut Atan\\n> tankut@iastate.edu\\n> \\n> \"Achtung, baby!\"\\n\\nYou do not need brainwashing to turn people against the Turks. Just talk to\\nGreeks, Arabs, Slavs, Kurds and all other people who had the luck to be under\\nTurkish occupation.\\nThey will talk to you about murders,rapes,distruction.\\n\\nYou do not learn about Turks from history books, you learn about them from\\npeople who experienced first hand Turkish friendliness.\\n\\nNapoleon\\n',\n", - " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 8\\n\\nKeith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n\\n: \\tNice cop out bill.\\n\\nI'm sure you're right, but I have no idea to what you refer. Would you\\nmind explaining how I copped out?\\n\\nBill\\n\",\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: Final Solution for Gaza ?\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 66\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: Final Solution for Gaza ?\\n>\\n>While Israeli Jews fete the uprising of the Warsaw ghetto,\\n\\n\"fete\"??? Since this word both formally and commonly refers to\\npositive/joyous events, your misuse of it here is rather unsettling.\\n \\n>they repress by violent means the uprising of the Gaza ghetto \\n>and attempt to starve the Gazans.\\n\\nI certainly abhor those Israeli policies and attitudes that are\\nabusive towards the Palestinians/Gazans. Given that, however, there \\n*is no comparison* between the reality of the Warsaw Ghetto and in \\nGaza. \\n>\\n>The right of the Gazan population to resist occupation is\\n>recognized in international law and by any person with a sense of\\n>justice. \\n\\nJust as international law recognizes the right of the occupying \\nentity to maintain order, especially in the face of elements\\nthat are consciously attempting to disrupt the civil structure. \\nIronically, international law recognizes each of these focusses\\n(that of the occupied and the occupier) even though they are \\ninherently in conflict.\\n>\\n>As Israel denies Gazans the only two options which are compatible\\n>with basic human rights and international law, that of becoming\\n>Israeli citizens with full rights or respecting their right for\\n>self-determination, it must be concluded that the Israeli Jewish\\n>society does not consider Gazans full human beings.\\n\\nIsrael certainly cannot, and should not, continue its present\\npolicies towards Gazan residents. There is, however, a third \\nalternative- the creation and implementation of a jewish \"dhimmi\"\\nsystem with Gazans/Palestinians as benignly \"protected\" citizens.\\nWould you find THAT as acceptable in that form as you do with\\nregard to Islam\\'s policies towards its minorities?\\n \\n>Whether they have some Final Solution up their sleeve ?\\n\\nIt is a race, then? Between Israel\\'s anti-Palestinian/Gazan\\n\"Final Solution\" and the Arab World\\'s anti-Israel/jewish\\n\"Final Solution\". Do you favor one? neither? \\n>\\n>I urge all those who have slight human compassion to do whatever\\n>they can to help the Gazans regain their full human, civil and\\n>political rights, to which they are entitled as human beings.\\n\\nSince there is justifiable worry by various parties that Israel\\nand Arab/Palestinian \"final solution\" intentions exist, isn\\'t it\\nimportant that BOTH Israeli *and* Palestinian/Gazan \"rights\"\\nbe secured?\\n>\\n>Elias Davidsson Iceland\\n>\\n\\n\\n--\\nTim Clock Ph.D./Graduate student\\nUCI tel#: 714,8565361 Department of Politics and Society\\n fax#: 714,8568441 University of California - Irvine\\nHome tel#: 714,8563446 Irvine, CA 92717\\n',\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: thoughts on christians\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 24\\n\\nKent Sandvik (sandvik@newton.apple.com) wrote:\\n\\n\\n: > This is a good point, but I think \"average\" people do not take up Christianity\\n: > so much out of fear or escapism, but, quite simply, as a way to improve their\\n: > social life, or to get more involved with American culture, if they are kids of\\n: > immigrants for example. Since it is the overwhelming major religion in the\\n: > Western World (in some form or other), it is simply the choice people take if\\n: > they are bored and want to do something new with their lives, but not somethong\\n: > TOO new, or TOO out of the ordinary. Seems a little weak, but as long as it\\n: > doesn\\'t hurt anybody...\\n\\n: The social pressure is indeed a very important factor for the majority\\n: of passive Christians in our world today. In the case of early Christianity\\n: the promise of a heavenly afterlife, independent of your social status,\\n: was also a very promising gift (reason slaves and non-Romans accepted\\n: the religion very rapidly).\\n\\nIf this is a hypothetical proposition, you should say so, if it\\'s\\nfact, you should cite your sources. If all this is the amateur\\nsociologist sub-branch of a.a however, it would suffice to alert the\\nunwary that you are just screwing around ...\\n\\nBill\\n',\n", - " \"From: neideck@nestvx.enet.dec.com (Burkhard Neidecker-Lutz)\\nSubject: Re: Rumours about 3DO ???\\nOrganization: CEC Karlsruhe\\nLines: 17\\nNNTP-Posting-Host: NESTVX\\n\\nIn article <1993Apr15.164940.11632@mercury.unt.edu> Sean McMains writes:\\n>Wow! A 68070! I'd be very interested to get my hands on one of these,\\n>especially considering the fact that Motorola has not yet released the\\n>68060, which is supposedly the next in the 680x0 lineup. 8-D\\n\\nThe 68070 is a variation of the 68010 that was done a few years ago by\\nthe European partners of Motorola. It has some integrated I/O controllers\\nand half a MMU, but otherwise it's a 68010. Think of it the same as\\nthe 8086 and 80186 were.\\n\\n\\t\\tBurkhard Neidecker-Lutz\\n\\nDistributed Multimedia Group, CEC Karlsruhe EERP Portfolio Manager\\nSoftware Motion Pictures & BERKOM II Project Multimedia Base Technology\\nDigital Equipment Corporation\\nneidecker@nestvx.enet.dec.com\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: DESTROYING ETHNIC IDENTITY: TURKS OF GREECE (& Macedonians...)\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 145\\n\\nIn article ptg2351@uxa.cso.uiuc.edu (Panos Tamamidis ) writes:\\n\\n>> Sure your memory is weak. \\n>> Let me refresh your memory (if that\\'s not to late):\\n\\n>> First of all: it is called ISTANBUL. \\n>> Let me even spell it for you: I S T A N B U L\\n\\n> When my grandfather came in Greece, the official name of the city was\\n> Constantinoupolis. \\n\\nAre you related to \\'Arromdian\\' of ASALA/SDPA/ARF Terrorism and Revisionism \\nTriangle?\\n\\n>Now, read carefully the following, and then speak:\\n>The recent Helsinki Watch 78 page report, Broken Promises: Torture and\\n\\nDitto.\\n\\n|1|\\n\\nHELSINKI WATCH: \"PROBLEMS OF TURKS IN WESTERN THRACE CONTINUE\"\\n\\nAnkara (A.A) In a 15-page report of the \"Helsinki Watch\" it is\\nstated that the Turkish minority in Western Thrace is still faced\\nwith problems and stipulated that the discriminatory policy being\\nimplemented by the Greek Government be brought to an end.\\n\\nThe report on Western Thrace emphasized that the Greek government\\nshould grant social and political rights to all the members of\\nminorities that are equal to those enjoyed by Greek citizens and\\nin addition they must recognize the existence of the \"Turkish\\nMinority\" in Western Thrace and grant them the right to identify\\nthemselves as \\'Turks\\'.\\n\\nNEWSPOT, May 1992\\n\\n|2|\\n\\nGREECE ISOLATES WEST THRACE TURKS\\n\\nThe Xanthi independent MP Ahmet Faikoglu said that the Greek\\nstate is trying to cut all contacts and relations of the Turkish\\nminority with Turkey.\\n\\nPointing out that while the Greek minority living in Istanbul is\\ncalled \"Greek\" by ethnic definition, only the religion of the\\nminority in Western Thrace is considered. In an interview with\\nthe Greek newspaper \"Ethnos\" he said: \"I am a Greek citizen of\\nTurkish origin. The individuals of the minority living in Western\\nTrace are also Turkish.\"\\n\\nEmphasizing the education problem for the Turkish minority in\\nWestern Thrace Faikoglu said that according to an agreement\\nsigned in 1951 Greece must distribute textbooks printed in Turkey\\nin Turkish minority schools in Western Thrace.\\n\\nRecalling his activities and those of Komotini independent MP Dr.\\nSadIk Ahmet to defend the rights of the Turkish minority,\\nFaikoglu said. \"In fact we helped Greece. Because we prevented\\nGreece, the cradle of democracy, from losing face before European\\ncountries by forcing the Greek government to recognize our legal\\nrights.\"\\n\\nOn Turco-Greek relations, he pointed out that both countries are\\npredestined to live in peace for geographical and historical\\nreasons and said that Turkey and Greece must resist the foreign\\npowers who are trying to create a rift between them by\\ncooperating, adding that in Turkey he observed that there was\\nwill to improve relations with Greece.\\n\\nNEWSPOT, January 1993\\n\\n|3|\\n\\nMACEDONIAN HUMAN RIGHTS ACTIVISTS TO FACE TRIAL IN GREECE.\\n\\nTwo ethnic Macedonian human rights activists will face trial in\\nAthens for alleged crimes against the Greek state, according to a\\nCourt Summons (No. 5445) obtained by MILS.\\n\\n Hristos Sideropoulos and Tashko Bulev (or Anastasios Bulis)\\nhave been charged under Greek criminal law for making comments in\\nan Athenian magazine.\\n\\n Sideropoulos and Bulev gave an interview to the Greek weekly\\nmagazine \"ENA\" on March 11, 1992, and said that they as\\nMacedonians were denied basic human rights in Greece and would\\nfield an ethnic Macedonian candidate for the up-coming Greek\\ngeneral election.\\n\\n Bulev said in the interview: \"I am not Greek, I am Macedonian.\"\\nSideropoulos said in the article that \"Greece should recognise\\nMacedonia. The allegations regarding territorial aspirations\\nagainst Greece are tales... We are in a panic to secure the\\nborder, at a time when the borders and barriers within the EEC\\nare falling.\"\\n\\n The main charge against the two, according to the court\\nsummons, was that \"they have spread...intentionally false\\ninformation which might create unrest and fear among the\\ncitizens, and might affect the public security or harm the\\ninternational interests of the country (Greece).\"\\n\\n The Greek state does not recognise the existence of a\\nMacedonian ethnicity. There are believed to be between 350,000 to\\n1,000,000 ethnic Macedonians living within Greece, largely\\nconcentrated in the north. It is a crime against the Greek state\\nif anyone declares themselves Macedonian.\\n\\n In 1913 Greece, Serbia-Yugoslavia and Bulgaria partioned\\nMacedonia into three pieces. In 1919 Albania took 50 Macedonian\\nvillages. The part under Serbo-Yugoslav occupation broke away in\\n1991 as the independent Republic of Macedonia. There are 1.5\\nmillion Macedonians in the Republic; 500,000 in Bulgaria; 150,000\\nin Albania; and 300,000 in Serbia proper.\\n\\n Sideropoulos has been a long time campaigner for Macedonian\\nhuman rights in Greece, and lost his job as a forestry worker a\\nfew years ago. He was even exiled to an obscure Greek island in\\nthe mediteranean. Only pressure from Amnesty International forced\\nthe Greek government to allow him to return to his home town of\\nFlorina (Lerin) in Northern Greece (Aegean Macedonia), where the\\nmajority of ethnic Macedonians live.\\n\\n Balkan watchers see the Sideropoulos affair as a show trial in\\nwhich Greece is desperate to clamp down on internal dissent,\\nespecially when it comes to the issue of recognition for its\\nnorthern neighbour, the Republic of Macedonia.\\n\\n Last year the State Department of the United States condemned\\nGreece for its bad treatment of ethnic Macedonians and Turks (who\\nlargely live in Western Thrace). But it remains to be seen if the\\nUS government will do anything until the Presidential elections\\nare over.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " 'From: perry@dsinc.com (Jim Perry)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: Decision Support Inc.\\nLines: 80\\nNNTP-Posting-Host: dsi.dsinc.com\\n\\n(References: deleted to move this to a new thread)\\n\\nIn article <114133@bu.edu> jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n>In article <1phkf7INN86p@dsi.dsinc.com> perry@dsinc.com (Jim Perry) writes:\\n\\n>>}Rushdie is, however, as I understand, a muslim.\\n>>}The fact that he\\'s a British citizen does not preclude his being muslim.\\n>\\n>>Rushdie was an atheist (to use local terminology, not to put words in\\n>>his mouth) at the time of writing TSV and at the time of the fatwa in\\n>>February 1989.[...]\\n>\\n>Well, if he was born muslim (I am fairly certain he was) then he _is_ \\n>muslim until he explicitly renounces Islam. So far as I know he has never\\n>explicitly renounced Islam, though he may have been in extreme doubt\\n>about the existence of God. Being muslim is a legal as well as\\n>intellectual issue, according to Islam.\\n\\n\"To put it as simply as possible: *I am not a Muslim*.[...] I do not\\n accept the charge of apostacy, because I have never in my adult life\\n affirmed any belief, and what one has not affirmed one can not be\\n said to have apostasized from. The Islam I know states clearly that\\n \\'there can be no coercion in matters of religion\\'. The many Muslims\\n I respect would be horrified by the idea that they belong to their\\n faith *purely by virtue of birth*, and that a person who freely chose\\n not to be a Muslim could therefore be put to death.\"\\n \\t \\t \\t \\tSalman Rushdie, \"In Good Faith\", 1990\\n\\n\"God, Satan, Paradise, and Hell all vanished one day in my fifteenth\\n year, when I quite abruptly lost my faith. [...]and afterwards, to\\n prove my new-found atheism, I bought myself a rather tasteless ham\\n sandwich, and so partook for the first time of the forbidden flesh of\\n the swine. No thunderbolt arrived to strike me down. [...] From that\\n day to this I have thought of myself as a wholly seculat person.\"\\n \\t \\t \\t \\tSalman Rushdie, \"In God We Trust\", 1985\\n \\n>>[I] think the Rushdie affair has discredited Islam more in my eyes than\\n>>Khomeini -- I know there are fanatics and fringe elements in all\\n>>religions, but even apparently \"moderate\" Muslims have participated or\\n>>refused to distance themselves from the witch-hunt against Rushdie.\\n>\\n>Yes, I think this is true, but there Khomenei\\'s motivations are quite\\n>irrelevant to the issue. The fact of the matter is that Rushdie made\\n>false statements (fiction, I know, but where is the line between fact\\n>and fiction?) about the life of Mohammad. \\n\\nOnly a functional illiterate with absolutely no conception of the\\nnature of the novel could think such a thing. I\\'ll accept it\\n(reluctantly) from mobs in Pakistan, but not from you. What is\\npresented in the fictional dream of a demented character cannot by the\\nwildest stretch of the imagination be considered a reflection on the\\nactual Mohammad. What\\'s worse, the novel doesn\\'t present the\\nMahound/Mohammed character in any worse light than secular histories\\nof Islam; in particular, there is no \"lewd\" misrepresentation of his\\nlife or that of his wives.\\n\\n>That is why\\n>few people rush to his defense -- he\\'s considered an absolute fool for \\n>his writings in _The Satanic Verses_. \\n\\nDon\\'t hold back; he\\'s considered an apostate and a blasphemer.\\nHowever, it\\'s not for his writing in _The Satanic Verses_, but for\\nwhat people have accepted as a propagandistic version of what is\\ncontained in that book. I have yet to find *one single muslim* who\\nhas convinced me that they have read the book. Some have initially\\nclaimed to have done so, but none has shown more knowledge of the book\\nthan a superficial Newsweek story might impart, and all have made\\nfactual misstatements about events in the book.\\n\\n>If you wish to understand the\\n>reasons behind this as well has the origin of the concept of \"the\\n>satanic verses\" [...] see the\\n>Penguin paperback by Rafiq Zakariyah called _Mohammad and the Quran_.\\n\\nI\\'ll keep an eye out for it. I have a counter-proposal: I suggest\\nthat you see the Viking hardcover by Salman Rushdie called _The\\nSatanic Verses_. Perhaps then you\\'ll understand.\\n-- \\nJim Perry perry@dsinc.com Decision Support, Inc., Matthews NC\\nThese are my opinions. For a nominal fee, they can be yours.\\n',\n", - " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Re: Space Debris\\nOrganization: NASA Langley Research Center\\nLines: 7\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\nThere is a guy in NASA Johnson Space Center that might answer \\nyour question. I do not have his name right now but if you follow \\nup I can dig that out for you.\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", - " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: Rejetting carbs..\\nKeywords: air pump\\nDistribution: na\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 58\\n\\nIn article jburney@hydra.nodc.noaa.gov (Jeff Burney) writes:\\n>\\n>If we are only talking about 4-stroke (I think I can understand exhaust\\n>pulse affect in a 2-stroke), the intake valve is closed on the\\n>exhaust stroke and the gas is pushed out by the cyclinder. I guess\\n>there is some gas compression that may affect the amount pushed out\\n>but the limiting factor seems to be the header pipe and not the \\n>canister. Meaning: would gases \"so far\" down the line (the canister)\\n>really have an effect on the exhaust stroke? Do the gases really \\n>compress that much?\\n\\n For discussion purposes, I will ignore dynamic effects like pulses\\nin the exhaust pipe, and try to paint a useful mental picture.\\n\\n1. Unless an engine is supercharged, the pressure available to force\\nair into the intake tract is _atmospheric_. At the time the intake\\nvalve is opened, the pressure differential available to move air is only\\nthe difference between the combustion chamber pressure (left over after\\nthe exhaust stroke) and atmospheric. As the piston decends on the\\nintake stroke, combustion chamber pressure is decreased, allowing\\natmospheric pressure to move more air into the intake tract. At no time\\ndoes the pressure ever become \"negative\", or even approach a good\\nvacuum.\\n\\n2. At the time of the exhaust valve closing, the pressure in the\\ncombustion chamber is essentially the pressure of the exhaust system up\\nto the first major flow restriction (the muffler). Note that the volume\\nof gas that must flow through the exhaust is much larger than the volume\\nthat must flow through the intake, because of the temperature\\ndifference and the products of combustion.\\n\\n3. In the last 6-8 years, the Japanese manufacturers have started\\npaying attention to exhaust and intake tuning, in pursuit of almighty\\nhorsepower. At this point in time, on high-performance bikes,\\nsubstitution of an aftermarket free-flow air filter will have almost\\nzero affect on performance, because the stock intake system flows very\\nwell anyway. Substitution of an aftermarket exhaust system will make\\nvery little difference, unless (in general) the new exhaust system is\\n_much_ louder than the stocker.\\n\\n4. On older bikes, exhaust back-pressure was the dominating factor.\\nIf free-flowing air filters were substituted, very little difference\\nwas noted, unless a free-flowing exhaust system was installed as well.\\n\\n5. In general, an engine can be visualized as an air pump. At any\\ngiven RPM, anything that will cause the engine to pump more air, be it\\non the intake or exhaust side, will cause it to produce more horsepower.\\nPumping more air will require recalibration (rejetting) of the carburetor.\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", - " \"From: ari@tahko.lpr.carel.fi (Ari Suutari)\\nSubject: Any graphics packages available for AIX ?\\nOrganization: Carelcomp Oy\\nLines: 24\\nNNTP-Posting-Host: tahko.lpr.carel.fi\\nKeywords: gks graphics\\n\\n\\n\\tDoes anybody know if there are any good 2d-graphics packages\\n\\tavailable for IBM RS/6000 & AIX ? I'm looking for something\\n\\tlike DEC's GKS or Hewlett-Packards Starbase, both of which\\n\\thave reasonably good support for different output devices\\n\\tlike plotters, terminals, X etc.\\n\\n\\tI have tried also xgks from X11 distribution and IBM's implementation\\n\\tof Phigs. Both of them work but we require more output devices\\n\\tthan just X-windows.\\n\\n\\tOur salesman at IBM was not very familiar with graphics and\\n\\tI am not expecting for any good solutions from there.\\n\\n\\n\\t\\tAri\\n\\n---\\n\\n\\tAri Suutari\\t\\t\\tari@carel.fi\\n\\tCarelcomp Oy\\n\\tLappeenranta\\n\\tFINLAND\\n\\n\",\n", - " 'From: jaskew@spam.maths.adelaide.edu.au (Joseph Askew)\\nSubject: Re: Small Astronaut (was: Budget Astronaut)\\nOrganization: Statistics, Pure & Applied Mathematics, University of Adelaide\\nLines: 25\\n\\nIn article <1pfkf5$7ab@access.digex.com> prb@access.digex.com (Pat) writes:\\n\\n>Only one problem with sending a corp of Small astronauts.\\n>THey may want to start a galactic empire:-) Napoleon\\n>complex you know. Genghis Khan was a little guy too. I\\'d bet\\n>Julius caesar never broke 5\\'1\".\\n\\nI think you would lose your money. Julius was actually rather tall\\nfor a Roman. He did go on record as favouring small soldiers though.\\nThought they were tougher and had more guts. He was probably right\\nif you think about it. As for Napoleon remember that the French\\navergae was just about 5 feet and that height is relative! Did he\\nreally have a complex?\\n\\nObSpace : We have all seen the burning candle from High School that goes\\nout and relights. If there is a large hot body placed in space but in an\\natmosphere, exactly how does it heat the surroundings? Diffusion only?\\n\\nJoseph Askew\\n\\n-- \\nJoseph Askew, Gauche and Proud In the autumn stillness, see the Pleiades,\\njaskew@spam.maths.adelaide.edu Remote in thorny deserts, fell the grief.\\nDisclaimer? Sue, see if I care North of our tents, the sky must end somwhere,\\nActually, I rather like Brenda Beyond the pale, the River murmurs on.\\n',\n", - " 'From: mt90dac@brunel.ac.uk (Del Cotter)\\nSubject: Re: Crazy? or just Imaginitive?\\nOrganization: Brunel University, West London, UK\\nLines: 26\\n\\n<1993Apr21.205403.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n\\n>So some of my ideas are a bit odd, off the wall and such, but so was Wilbur and\\n>Orville Wright, and quite a few others.. Sorry if I do not have the big degrees\\n>and such, but I think (I might be wrong, to error is human) I have something\\n>that is in many ways just as important, I have imagination, dreams. And without\\n>dreams all the knowledge is worthless.. \\n\\nOh, and us with the big degrees don\\'t got imagination, huh?\\n\\nThe alleged dichotomy between imagination and knowledge is one of the most\\npernicious fallacys of the New Age. Michael, thanks for the generous\\noffer, but we have quite enough dreams of our own, thank you.\\n\\nYou, on the other hand, are letting your own dreams go to waste by\\nfailing to get the maths/thermodynamics/chemistry/(your choices here)\\nwhich would give your imagination wings.\\n\\nJust to show this isn\\'t a flame, I leave you with a quote from _Invasion of \\nthe Body Snatchers_:\\n\\n\"Become one of us; it\\'s not so bad, you know\"\\n-- \\n \\',\\' \\' \\',\\',\\' | | \\',\\' \\' \\',\\',\\'\\n \\', ,\\',\\' | Del Cotter mt90dac@brunel.ac.uk | \\', ,\\',\\' \\n \\',\\' | | \\',\\' \\n',\n", - " 'From: rlennip4@mach1.wlu.ca (robert lennips 9209 U)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nX-Newsreader: TIN [version 1.1 PL6]\\nOrganization: Wilfrid Laurier University\\nLines: 2\\n\\nPlease get a REAL life.\\n\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Final Solution for Gaza ?\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 31\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n\\n\\tOther people have commented on most of this swill, I figured\\nI\\'d add a few comments of my own.\\n\\n>The Gaza strip, this tiny area of land with the highest population\\n>density in the world, has been cut off from the world for weeks.\\n\\n\\tHong Kong, and Cairo both have higher population densities.\\n\\n>The Israeli occupier has decided to punish the whole population of\\n>Gaza, some 700.000 people, by denying them the right to leave the\\n>strip and seek work in Israel.\\n\\n\\tThere is no fundamental right to work in another country. And\\nthe closing of the strip is not a punishment, it is a security measure\\nto stop people from stabbing Israelis.\\n\\n\\n>The only help given to Gazans by Israeli\\n>Jews, only dozens of people, is humanitarian assistance.\\n\\n\\tDozens minus one, since one of them was stabbed to death a few\\ndays ago.\\n\\n\\tAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: lochem@fys.ruu.nl (Gert-Jan van Lochem)\\nSubject: Dutch: symposium compacte objecten\\nSummary: U wordt uitgenodigd voor het symposium compacte objecten 26-4-93\\nKeywords: compacte objecten, symposium\\nOrganization: Physics Department, University of Utrecht, The Netherlands\\nLines: 122\\n\\nSterrenkundig symposium \\'Compacte Objecten\\'\\n op 26 april 1993\\n\\n\\nIn het jaar 1643, zeven jaar na de oprichting van de\\nUniversiteit van Utrecht, benoemde de universiteit haar\\neerste sterrenkundige waarnemer. Hiermee ontstond de tweede\\nuniversiteitssterrenwacht ter wereld. Aert Jansz, de eerste\\nwaarnemer, en zijn opvolgers voerden de Utrechtse sterrenkunde\\nin de daaropvolgende jaren, decennia en eeuwen naar de\\nvoorhoede van het astronomisch onderzoek. Dit jaar is het 350\\njaar geleden dat deze historische benoeming plaatsvond.\\n\\nDe huidige generatie Utrechtse sterrenkundigen en studenten\\nsterrenkunde, verenigd in het Sterrekundig Instituut Utrecht,\\nvieren de benoeming van hun \\'oervader\\' middels een breed scala\\naan feestelijke activiteiten. Zo is er voor scholieren een\\nplanetenproject, programmeert de Studium Generale een aantal\\nvoordrachten met een sterrenkundig thema en wordt op de Dies\\nNatalis aan een astronoom een eredoctoraat uitgereikt. Er\\nstaat echter meer op stapel.\\n\\nStudenten natuur- en sterrenkunde kunnen op 26 april aan een\\nsterrenkundesymposium deelnemen. De onderwerpen van het\\nsymposium zijn opgebouwd rond een van de zwaartepunten van het\\nhuidige Utrechtse onderzoek: het onderzoek aan de zogeheten\\n\\'compacte objecten\\', de eindstadia in de evolutie van sterren.\\nBij de samenstelling van het programma is getracht de\\ndeelnemer een zo aktueel en breed mogelijk beeld te geven van\\nde stand van zaken in het onderzoek aan deze eindstadia. In de\\neerste, inleidende lezing zal dagvoorzitter prof. Lamers een\\nbeknopt overzicht geven van de evolutie van zware sterren,\\nwaarna de zeven overige sprekers in lezingen van telkens een\\nhalf uur nader op de specifieke evolutionaire eindprodukten\\nzullen ingaan. Na afloop van elke lezing is er gelegenheid tot\\nhet stellen van vragen. Het dagprogramma staat afgedrukt op\\neen apart vel.\\nHet niveau van de lezingen is afgestemd op tweedejaars\\nstudenten natuur- en sterrenkunde. OOK ANDERE BELANGSTELLENDEN\\nZIJN VAN HARTE WELKOM!\\n\\nTijdens de lezing van prof. Kuijpers zullen, als alles goed\\ngaat, de veertien radioteleskopen van de Radiosterrenwacht\\nWesterbork worden ingezet om via een directe verbinding tussen\\nhet heelal, Westerbork en Utrecht het zwakke radiosignaal van\\neen snel roterende kosmische vuurtoren, een zogeheten pulsar,\\nin de symposiumzaal door te geven en te audiovisualiseren.\\nProf. Kuijpers zal de binnenkomende signalen (elkaar snel\\nopvolgende scherp gepiekte pulsen radiostraling) bespreken en\\ntrachten te verklaren.\\nHet slagen van dit unieke experiment staat en valt met de\\ntechnische haalbaarheid ervan. De op te vangen signalen zijn\\nnamelijk zo zwak, dat pas na een waarnemingsperiode van 10\\nmiljoen jaar genoeg energie is opgevangen om een lamp van 30\\nWatt een seconde te laten branden! Tijdens het symposium zal\\ner niet zo lang gewacht hoeven te worden: de hedendaagse\\ntechnologie stelt ons in staat live het heelal te beluisteren.\\n\\nDeelname aan het symposium kost f 4,- (exclusief lunch) en\\nf 16,- (inclusief lunch). Inschrijving geschiedt door het\\nverschuldigde bedrag over te maken op ABN-AMRO rekening\\n44.46.97.713 t.n.v. stichting 350 JUS. Het gironummer van de\\nABN-AMRO bank Utrecht is 2900. Bij de inschrijving dient te\\nworden aangegeven of men lid is van de NNV. Na inschrijving\\nwordt de symposiummap toegestuurd. Bij inschrijving na\\n31 maart vervalt de mogelijkheid een lunch te reserveren.\\n\\nHet symposium vindt plaats in Transitorium I,\\nUniversiteit Utrecht.\\n\\nVoor meer informatie over het symposium kan men terecht bij\\nHenrik Spoon, p/a S.R.O.N., Sorbonnelaan 2, 3584 CA Utrecht.\\nTel.: 030-535722. E-mail: henriks@sron.ruu.nl.\\n\\n\\n\\n******* DAGPROGRAMMA **************************************\\n\\n\\n 9:30 ONTVANGST MET KOFFIE & THEE\\n\\n10:00 Opening\\n Prof. dr. H.J.G.L.M. Lamers (Utrecht)\\n\\n10:10 Dubbelster evolutie\\n Prof. dr. H.J.G.L.M. Lamers\\n\\n10:25 Radiopulsars\\n Prof. dr. J.M.E. Kuijpers (Utrecht)\\n\\n11:00 Pulsars in dubbelster systemen\\n Prof. dr. F. Verbunt (Utrecht)\\n\\n11:50 Massa & straal van neutronensterren\\n Prof. dr. J. van Paradijs (Amsterdam)\\n\\n12:25 Theorie van accretieschijven\\n Drs. R.F. van Oss (Utrecht)\\n\\n13:00 LUNCH\\n\\n14:00 Hoe zien accretieschijven er werkelijk uit?\\n Dr. R.G.M. Rutten (Amsterdam)\\n\\n14:35 Snelle fluktuaties bij accretie op neutronensterren\\n en zwarte gaten\\n Dr. M. van der Klis (Amsterdam)\\n\\n15:10 THEE & KOFFIE\\n\\n15:30 Zwarte gaten: knippen en plakken met ruimte en tijd\\n Prof. dr. V. Icke (leiden)\\n\\n16:05 afsluiting\\n\\n16:25 BORREL\\n\\n-- \\nGert-Jan van Lochem\\t \\\\\\\\\\t\\t\"What is it?\"\\nFysische informatica\\t \\\\\\\\\\t\"Something blue\"\\nUniversiteit Utrecht \\\\\\\\\\t\"Shapes, I need shapes!\"\\n030-532803\\t\\t\\t\\\\\\\\\\t\\t\\t- HHGG -\\n',\n", - " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: GGRRRrrr!! Cages double-parking motorc\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 32\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 1@cs.cmu.edu, jfriedl+@RI.CMU.EDU (Jeffrey Friedl) writes:\\n>egreen@east.sun.com (Ed Green - Pixel Cruncher) writes:\\n>|> \\n>|> An apartment complex where I used to live tried this, only they put the\\n>|> thing over the driver\\'s window, \"so they couldn\\'t miss it.\" \\n>\\n>I can see the liability of putting stickers on the car while it was moving,\\n>or something, but it\\'s the BDI that chooses to start and then drive the car\\n>in a known unsafe condition that would (seem to be) liable. \\n\\nAn effort was made to remove the sticker. It came to pieces, leaving\\nmost of it firmly attached to the window. It was dark, and around\\n10:00 pm. The sticker (before being mangled in an ineffective attempt\\nto be torn off) warned the car would be towed if not removed. A\\n\"reasonable person\" would arguably have driven the car. Had an\\naccident occured, I don\\'t think my friend\\'s attorney would have much\\ntrouble fixing blame on the apartment mangement.\\n\\nAs a practical matter, even without a conviction, the cost and\\ninconvenience of defending against the suit would be considerable.\\n\\nAs a moral matter, it was a pretty fucking stupid thing to do for so\\npaltry a violation as parking without an authorization sticker (BTW, it\\nwasn\\'t \"somebody\\'s\" spot, it was resident-only, but unassigned,\\nparking).\\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", - " 'From: enzo@research.canon.oz.au (Enzo Liguori)\\nSubject: Vandalizing the sky.\\nOrganization: Canon Information Systems Research Australia\\nLines: 38\\n\\nFrom the article \"What\\'s New\" Apr-16-93 in sci.physics.research:\\n\\n........\\nWHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n\\n1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\nIn 1950, science fiction writer Robert Heinlein published \"The\\nMan Who Sold the Moon,\" which involved a dispute over the sale of\\nrights to the Moon for use as billboard. NASA has taken the firsteps toward this\\n hideous vision of the future. Observers were\\nstartled this spring when a NASA launch vehicle arrived at the\\npad with \"SCHWARZENEGGER\" painted in huge block letters on the\\nside of the booster rockets. Space Marketing Inc. had arranged\\nfor the ad to promote Arnold\\'s latest movie. Now, Space Marketing\\nis working with University of Colorado and Livermore engineers on\\na plan to place a mile-long inflatable billboard in low-earth\\norbit. NASA would provide contractual launch services. However,\\nsince NASA bases its charge on seriously flawed cost estimates\\n(WN 26 Mar 93) the taxpayers would bear most of the expense. This\\nmay look like environmental vandalism, but Mike Lawson, CEO of\\nSpace Marketing, told us yesterday that the real purpose of the\\nproject is to help the environment! The platform will carry ozone\\nmonitors he explained--advertising is just to help defray costs.\\n..........\\n\\nWhat do you think of this revolting and hideous attempt to vandalize\\nthe night sky? It is not even April 1 anymore.\\nWhat about light pollution in observations? (I read somewhere else that\\nit might even be visible during the day, leave alone at night).\\nIs NASA really supporting this junk?\\nAre protesting groups being organized in the States?\\nReally, really depressed.\\n\\n Enzo\\n-- \\nVincenzo Liguori | enzo@research.canon.oz.au\\nCanon Information Systems Research Australia | Phone +61 2 805 2983\\nPO Box 313 NORTH RYDE NSW 2113 | Fax +61 2 805 2929\\n',\n", - " 'From: mscrap@halcyon.com (Marta Lyall)\\nSubject: Re: Video in/out\\nOrganization: Northwest Nexus Inc. (206) 455-3505\\nLines: 29\\n\\nOrganization: \"A World of Information at your Fingertips\"\\nKeywords: \\n\\nIn article <628@toontown.columbiasc.ncr.com> craig@toontown.ColumbiaSC.NCR.COM (Craig S. Williamson) writes:\\n>\\n>I\\'m getting ready to buy a multimedia workstation and would like a little\\n>advice. I need a graphics card that will do video in and out under windows.\\n>I was originally thinking of a Targa+ but that doesn\\'t work under Windows.\\n>What cards should I be looking into?\\n>\\n>Thanks,\\n>Craig\\n>\\n>-- \\n> \"To forgive is divine, to be\\n>-Craig Williamson an airhead is human.\"\\n> Craig.Williamson@ColumbiaSC.NCR.COM -Balki Bartokomas\\n> craig@toontown.ColumbiaSC.NCR.COM (home) Perfect Strangers\\n\\n\\nCraig,\\n\\nYou should still consider the Targa+. I run windows 3.1 on it all the\\ntime at work and it works fine. I think all you need is the right\\ndriver. \\n\\nJosh West \\nemail: mscrap@halcyon.com\\n\\n',\n", - " \"From: adams@bellini.berkeley.edu (Adam L. Schwartz)\\nSubject: Re: Final Solution in Palestine ?\\nNntp-Posting-Host: bellini.berkeley.edu\\nOrganization: U.C. Berkeley -- ERL\\nLines: 27\\n\\nIn article hm@cs.brown.edu (Harry Mamaysky) writes:\\n>In article <1993Apr25.171003.10694@thunder.mcrcim.mcgill.edu> ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed) writes:\\n>\\n>\\t DRIVING THE JEWS INTO THE SEA ?!\\n>\\n> I am sick and tired of this 'DRIVING THE JEWS INTO THE SEA' sentance attributed\\n> to Islamic movements and the PLO; it simply can't be proven as part of their\\n> plan !\\n>\\n\\nProven? Maybe not. But it can certainly be verified beyond a reasonable doubt. This\\nstatement and statements like it are a matter of public record. Before the Six Day War (1967)\\nI think Nasser and some other Arab leaders were broadcasting these statements on\\nArab radio. You might want to check out some old newspapers Ahmed.\\n\\n\\n> What Hamas and Islamic Jihad believe in, as far as I can get from the Arab media,\\n> is an Islamic state that protects the rights of all its inhabitants under Koranic\\n> Law.\\n\\nI think if you take a look at the Hamas covenant (written in 1988) you might get a \\ndifferent impression. I have the convenant in the original arabic with a translation\\nthat I've verified with Arabic speakers. The document is rife with calls to kill jews\\nand spread Islam and so forth.\\n\\n-Adam Schwartz\\n\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: First, I\\'ll make the assumption that you agree that a murderer is one\\n>who has commited murder.\\n\\nWell, I\\'d say that a murderer is one who intentionally committed a murder.\\nFor instance, if you put a bullet into a gun that was thought to contain\\nblanks, and someone was killed with such a gun, the person who actually\\nperformed the action isn\\'t the murderer (but I guess this is actually made\\nclear in the below definition).\\n\\n>I\\'d be interested to see a more reasonable definition. \\n\\nWhat do you mean by \"reasonable?\"\\n\\n>Otherwise, your inductive definition doesn\\'t bottom out:\\n>Your definition, in essence, is that\\n>>Murder is the intentional killing of someone who has not commited \\n>>murder, against his will.\\n>Expanding the second occurence of `murder\\' in the above, we see that\\n[...]\\n\\nYes, it is bad to include the word being defined in the definition. But,\\neven though the series is recursively infinite, I think the meaning can\\nstill be deduced.\\n\\n>I assume you can see the problem here. To do a correct inductive\\n>definition, you must define something in terms of a simpler case, and\\n>you must have one or several \"bottoming out\" cases. For instance, we\\n>can define the factorial function (the function which assigns to a\\n>positive integer the product of the positive integers less than or\\n>equal to it) on the positive integers inductively as follows:\\n\\n[math lesson deleted]\\n\\nOkay, let\\'s look at this situation: suppose there is a longstanding\\nfeud between two families which claim that the other committed some\\ntravesty in the distant past. Each time a member of the one family\\nkills a member of the other, the other family thinks that it is justified\\nin killing a that member of the first family. Now, let\\'s suppose that this\\nsequence has occurred an infinite number of times. Or, if you don\\'t\\nlike dealing with infinities, suppose that one member of the family\\ngoes back into time and essentially begins the whole thing. That is, there\\nis a never-ending loop of slayings based on some non-existent travesty.\\nHow do you resolve this?\\n\\nWell, they are all murders.\\n\\nNow, I suppose that this isn\\'t totally applicable to your \"problem,\" but\\nit still is possible to reduce an uninduced system.\\n\\nAnd, in any case, the nested \"murderer\" in the definition of murder\\ncannot be infintely recursive, given the finite existence of humanity.\\nAnd, a murder cannot be committed without a killing involved. So, the\\nfirst person to intentionally cause someone to get killed is necessarily\\na murderer. Is this enough of an induction to solve the apparently\\nunreducable definition? See, in a totally objective system where all the\\ninformation is available, such a nested definition isn\\'t really a problem.\\n\\nkeith\\n',\n", - " 'From: dwestner@cardhu.mcs.dundee.ac.uk (Dominik Westner)\\nSubject: need a viewer for gl files\\nOrganization: Maths & C.S. Dept., Dundee University, Scotland, UK\\nLines: 10\\nNNTP-Posting-Host: cardhu.mcs.dundee.ac.uk\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nHi, \\n\\nthe subject says it all. Is there a PD viewer for gl files (for X)?\\n\\nThanks\\n\\n\\nDominik\\n\\n\\n',\n", - " 'From: msb@sq.sq.com (Mark Brader)\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nOrganization: SoftQuad Inc., Toronto, Canada\\nLines: 34\\n\\n> > Can these questions be answered for a previous\\n> > instance, such as the Gehrels 3 that was mentioned in an earlier posting?\\n\\n> Orbital Elements of Comet 1977VII (from Dance files)\\n> p(au) 3.424346\\n> e 0.151899\\n> i 1.0988\\n> cap_omega(0) 243.5652\\n> W(0) 231.1607\\n> epoch 1977.04110\\n\\nThanks for the information!\\n\\nI assume p is the semi-major axis and e the eccentricity. The peri-\\nhelion and aphelion are then given by p(1-e) and p(1+e), i.e., about\\n2.90 and 3.95 AU respectively. For Jupiter, they are 4.95 and 5.45 AU.\\nIf 1977 was after the temporary capture, this means that the comet\\nended up in an orbit that comes no closer than 1 AU to Jupiter\\'s --\\nwhich I take to be a rough indication of how far from Jupiter it could\\nget under Jupiter\\'s influence.\\n\\n> Also, perihelions of Gehrels3 were:\\n> \\n> April 1973 83 jupiter radii\\n> August 1970 ~3 jupiter radii\\n\\nWhere 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. So the\\n1970 figure seems unlikely to actually be anything but a perijove.\\nIs that the case for the 1973 figure as well?\\n-- \\nMark Brader, SoftQuad Inc., Toronto\\t\\t\"Remember the Golgafrinchans\"\\nutzoo!sq!msb, msb@sq.com\\t\\t\\t\\t\\t-- Pete Granger\\n\\nThis article is in the public domain.\\n',\n", - " 'From: ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky)\\nSubject: Re: Ten questions about Israel\\nLines: 66\\nNntp-Posting-Host: taupe.cc.utexas.edu\\nOrganization: University of Texas @ Austin\\nLines: 66\\n\\nIn article <1483500349@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n> \\n> From: Center for Policy Research \\n> Subject: Ten questions about Israel\\n> \\n> \\n> Ten questions to Israelis\\n> -------------------------\\n> \\n> I would be thankful if any of you who live in Israel could help to\\n> provide\\n> accurate answers to the following specific questions. These are\\n> indeed provocative questions but they are asked time and again by\\n> people around me. \\n> \\n> 1. Is it true that the Israeli authorities don\\'t recognize\\n> Israeli nationality ? And that ID cards, which Israeli citizens\\n> must carry at all times, identify people as Jews or Arabs, not as\\n> Israelis ?\\n\\n\\n\\tThat\\'s true. Israeli ID cards do not identify people\\n\\tas Israelies. Smart huh?\\n\\n\\n> 3. Is it true that Israeli stocks nuclear weapons ? If so,\\n> could you provide any evidence ?\\n\\n\\tYes. There\\'s one warhead in my parent\\'s backyard in\\n\\tBeer Sheva (that\\'s only some 20 miles from Dimona,\\n\\tyou know). Evidence? I saw it!\\n\\n \\n> 4. Is it true that in Israeli prisons there are a number of\\n> individuals which were tried in secret and for which their\\n> identities, the date of their trial and their imprisonment are\\n> state secrets ?\\n\\n\\tYes. But unfortunately I can\\'t give you more details.\\n\\tThat\\'s _secret_, you see.\\n\\n\\n\\t\\t\\t[...]\\n\\n> \\n> Thanks,\\n> \\n> Elias Davidsson Iceland email: elias@ismennt.is\\n\\n\\n\\tYou\\'re welcome. Now, let me ask you a few questions, if you\\n\\tdon\\'t mind:\\n\\n\\t1. Is it true that the Center for Policy Research is a \\n\\t one-man enterprise?\\n\\n\\t2. Is it true that your questions are not being asked\\n\\t bona fide?\\n\\n\\t3. Is it true that your statement above, \"These are indeed \\n\\t provocative questions but they are asked time and again by\\n\\t people around me\" is not true?\\n\\n\\nNoam\\n\\n',\n", - " 'From: Club@spektr.msk.su (Koltovoy Nikolay Alexeevich)\\nSubject: [NEWS]Re:List or image processing systems?\\nDistribution: eunet\\nReply-To: Club@spektr.msk.su\\nOrganization: Moscow Scientific Industrial Ass. Spectrum\\nLines: 137\\n\\n\\n Moscow Scientific Inductrial Association \"Spectrum\" offer\\n VIDEOSCAN vision system for PC/AT,wich include software and set of\\n controllers.\\n\\n SOFTWARE\\n\\n For support VIDEOSCAN family program kit was developed. Kit\\n includes more then 200 different functions for image processing.\\n Kit works in the interactive regime, and has include Help for\\n non professional users.\\n There are next possibility:\\n - input frame by any board of VIDEOSCAN family;\\n - read - white image to - from disk;\\n - print image on the printer;\\n - makes arithmetic with 2 frames;\\n - filter image;\\n - work with gistogramme;\\n - edit image.\\n - include users exe modules.\\n\\n CONTROLLER VS9\\n\\n The function of VS-9 controller is to load TV-images into PC/AT.\\n VS-9 controller allows one to load a fragment of the TV-frame from\\n a field of 724x600 pixels.\\n The clock rate is 14,7 MHz when loading an image with 512 pixel in\\n the line and 7,4 MHz when loading a 256 pixels image. This\\n provides the equal pixel size of input image in both horizontal\\n and vertical directions.\\n The number of gray levels in any input modes is 256.\\n Video signal capture time - 2.5s.\\n\\n CONTROLLER VS52\\n\\n The purpose of the controller is to enter the TV images into a IBM\\n PC AT or any other machine of that type. The controller was\\n created on the base of modern elements, including user\\n programmable gate arrays.\\n The controller allows to digitize a input signal with different\\n resolutions. Its flexible architecture makes possible to change\\n technical parameters. Instead of TV signal one can process any\\n other analog signal (including signals from slow-speed scanning\\n devices).\\n The controller has the following technical characteristics:\\n - memory volume - from 256 K to 2 Mb ;\\n - resolution when working with standard video signal - from 64x64\\n to 1024x512 pixels ;\\n - resolution when working in slow input regime - up to 2048x1024\\n pixels;\\n - video signal capture time - 40 ms.\\n - maximum size of a screen when memory volume is 2Mb - 2048x1024\\n pixels ;\\n - number of gray level - 256 ;\\n - clock rate for input - up to 30 MHz ;\\n - 4 input video multiplexer ;\\n - input/output lookup table (LUT);\\n - possibility to realize \"scroll\" and \"zoom\";\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - 8 lines for external synchronization (an input using external\\n controlling signal) ;\\n - electronic adjustment of black and white reference for analog -\\n digital converter;\\n - possibility output image to the color RGB monitor.\\n One can change all listed above functions and parameters of the\\n controller by reprogramming it.\\n\\n\\n IMAGE PROCESSOR VS100\\n\\n\\n Image processor VS100 allows to digitize and process TV\\n signal in real time. It is possible digitize TV signal with\\n 512*512*8 resolution and realize arithmetic and logic operation\\n with two images.\\n Processor was created on the base of modern elements\\n including user programmable gate arrays and designed as a board\\n for PC.\\n Memory volume allows write to the 256 frames with 512*512*8\\n format. It is possible to accumulate until 16 images.\\n The processor has the following technical characteristics:\\n - memory volume to 64 Mb;\\n - number of the gray level - 256;\\n - 4 input video multiplexer;\\n - input/output lookup table;\\n - electronic adjustment for black and white ADC reference;\\n - image size from 256*256 to 8192*8192;\\n - possibility color and black / white output;\\n - possibility input from slow-scan video sources.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Morality? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>So, you are saying that it isn\\'t possible for an instinctive act\\n|> >>to be moral one?\\n|> >\\n|> >I like to think that many things are possible. Explain to me\\n|> >how instinctive acts can be moral acts, and I am happy to listen.\\n|> \\n|> For example, if it were instinctive not to murder...\\n\\nThen not murdering would have no moral significance, since there\\nwould be nothing voluntary about it.\\n\\n|> \\n|> >>That is, in order for an act to be an act of morality,\\n|> >>the person must consider the immoral action but then disregard \\n|> >>it?\\n|> >\\n|> >Weaker than that. There must be the possibility that the\\n|> >organism - it\\'s not just people we are talking about - can\\n|> >consider alternatives.\\n|> \\n|> So, only intelligent beings can be moral, even if the bahavior of other\\n|> beings mimics theirs?\\n\\nYou are starting to get the point. Mimicry is not necessarily the \\nsame as the action being imitated. A Parrot saying \"Pretty Polly\" \\nisn\\'t necessarily commenting on the pulchritude of Polly.\\n\\n|> And, how much emphasis do you place on intelligence?\\n\\nSee above.\\n\\n|> Animals of the same species could kill each other arbitarily, but \\n|> they don\\'t.\\n\\nThey do. I and other posters have given you many examples of exactly\\nthis, but you seem to have a very short memory.\\n\\n|> Are you trying to say that this isn\\'t an act of morality because\\n|> most animals aren\\'t intelligent enough to think like we do?\\n\\nI\\'m saying:\\n\\n\\t\"There must be the possibility that the organism - it\\'s not \\n\\tjust people we are talking about - can consider alternatives.\"\\n\\nIt\\'s right there in the posting you are replying to.\\n\\njon.\\n',\n", - " 'From: rubery@saturn.aitc.rest.tasc.com. (Dan Rubery)\\nSubject: Graphic Formats\\nOrganization: TASC\\nLines: 7\\nNNTP-Posting-Host: saturn.aitc.rest.tasc.com\\n\\nI am writing some utilies to convert Regis and Tektonic esacpe sequences \\ninto some useful formats. I would rather not have to goto a bitmap format. \\nI can convert them to Window Meta FIles easily enough, but I would rather \\nconvert them to Corel Draw, .CDR, or MS Power Point, .PPT, files. \\nMicrosoft would not give me the format. I was wondering if anybody out \\nthere knows the formats for these two applications.\\n\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>\\n>>>Well, chimps must have some system. They live in social groups\\n>>>as we do, so they must have some \"laws\" dictating undesired behavior.\\n>>So, why \"must\" they have such laws?\\n>\\n>The quotation marks should enclose \"laws,\" not \"must.\"\\n>\\n>If there were no such rules, even instinctive ones or unwritten ones,\\n>etc., then surely some sort of random chance would lead a chimp society\\n>into chaos.\\n\\t\\n\\n\\tThe \"System\" refered to a \"moral system\". You havn\\'t shown any \\nreason that chimps \"must\" have a moral system. \\n\\tExcept if you would like to redefine everything.\\n\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: For JOHS@dhhalden.no (3) - Last\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 33\\n\\n: un021432@wvnvms.wvnet.edu writes:\\n\\n: >DUCATI3.UUE\\n: >QUUNCD Ver. 1.4, by Theodore A. Kaldis.\\n: >BEGIN--cut here--CUT HERE--Part 3\\n: >MG@NH)C1M+AV4)I;^**3NYR7,*(.H&\"3V\\'!X12(&E+AFKIN0@APYT;C[#LI2T\\n\\nThis GIF was GREAT!! I have it as the backdrop on my Apollo thingy and many\\npeople stop by and admire it. Of course I tell them that I did it myself....\\n\\nIt\\'s far too much trouble to contact archive sites to get stuff like this, so\\nif anybody else has any good GIFs, please, please don\\'t hesitate to post them.\\n\\nIs the bra thing still going?\\n--\\n\\nNick (the Idiot Biker) DoD 1069 Concise Oxford No Bras\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 16\\n\\nKeith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n: \\n: \\tWild and fanciful claims require greater evidence. If you state that \\n: one of the books in your room is blue, I certainly do not need as much \\n: evidence to believe than if you were to claim that there is a two headed \\n: leapard in your bed. [ and I don\\'t mean a male lover in a leotard! ]\\n\\nKeith, \\n\\nIf the issue is, \"What is Truth\" then the consequences of whatever\\nproposition argued is irrelevent. If the issue is, \"What are the consequences\\nif such and such -is- True\", then Truth is irrelevent. Which is it to\\nbe?\\n\\n\\nBill\\n',\n", - " 'From: arens@ISI.EDU (Yigal Arens)\\nSubject: Re: Ten questions about Israel\\nOrganization: USC/Information Sciences Institute\\nLines: 184\\nDistribution: world\\nNNTP-Posting-Host: grl.isi.edu\\nIn-reply-to: backon@vms.huji.ac.il\\'s message of 20 Apr 93 21:38:19 GMT\\n\\nIn article <1993Apr20.213819.664@vms.huji.ac.il> backon@vms.huji.ac.il writes:\\n>\\n> In article <1483500349@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n> >\\n> > 4. Is it true that in Israeli prisons there are a number of\\n> > individuals which were tried in secret and for which their\\n> > identities, the date of their trial and their imprisonment are\\n> > state secrets ?\\n>\\n>\\n> Apart from Mordechai Vanunu who had a trial behind closed doors, there\\n> was one other espionage case (the nutty professor at the Nes Ziona\\n> Biological Institute who was a K.G.B. mole) who was tried \"in camera\".\\n> I wouldn\\'t exactly call it a state secret. The trial was simply tried\\n> behind closed doors. I hate to disappoint you but the United States\\n> has tried a number of espionage cases in camera.\\n\\nAt issue was not a trial behind closed doors, but arrest, trial and\\nimprisonment in complete secrecy. This was appraently attempted in the\\ncase of Vanunu and failed. It has happened before, and there is reason\\nto believe it still goes on.\\n\\nRead this:\\n\\nFrom Ma\\'ariv, February 18 (possibly 28), 1992\\n\\nPUBLICATION BAN\\n\\n The State of Israel has never officially admitted that for many\\n years there have been in its prisons Israeli citizens who were\\n sentenced to long prison terms without either the fact of\\n their arrest or the crimes of which they were accused ever\\n being made public.\\n\\nBy Baruch Me\\'iri\\n\\nAll those involved in this matter politely refused my request, one way\\nor another: \"Look, the subject is too delicate. If I comment on it, I\\nwill be implicitly admitting that it is true; If I mention a specific\\ncase, even hint at it, I might be guilty of making public something\\nwhich may legally not be published\".\\n\\nThe State of Israel has never officially admitted that for many years\\nthere have been in its prisons Israeli citizens who were sentenced to\\nlong prison terms without either the fact of their arrest or the\\ncrimes of which they were accused ever being made public. More\\nprecisely: A court ordered publication ban was placed on the fact of\\ntheir arrest, and later on their imprisonment.\\n\\nIn Israel of 1993, citizens are imprisoned without us, the citizens of\\nthis country, knowing anything about it. Not knowing anything about\\nthe fact that one person or another were tried and thrown in prison,\\nfor security offenses, in complete secrecy.\\n\\nIn the distant past -- for example during the days of the [Lavon - YA]\\naffair -- we heard about \"the third man\" being in prison. But many\\nyears have passed since then, and what existed then can today no\\nlonger be found even in South American countries, or in the former\\nCommunist countries.\\n\\nBut it appears that this is still possible in Israel of 1993.\\n\\nThe Chair of the Knesset Committee on Law, the Constitution and\\nJustice, MK David Zucker, sent a letter on this subject early this\\nweek to the Prime Minister, the Minister of Justice, and the Cabinet\\nLegal Advisor. Ma\\'ariv has obtained the content of the letter:\\n\\n\"During the past several years a number of Israeli citizens have been\\nimprisoned for various periods for security offenses. In some of\\nthese cases a legal publication ban was imposed not only on the\\nspecifics of the crimes for which the prisoners were convicted, but\\neven on the mere fact of their imprisonment. In those cases, after\\nbeing legally convicted, the prisoners spend their term in prison\\nwithout public awareness either of the imprisonment or of the\\nprisoner\", asserts MK Zucker.\\n\\nOn the other hand Zucker agrees in his letter that, \"There is\\nabsolutely no question that it is possible, and in some cases it is\\nimperative, that a publication ban be imposed on the specifics of\\nsecurity offenses and the course of trials. But even in such cases\\nthe Court must weigh carefully and deliberately the circumstances\\nunder which a trial will not be held in public.\\n\\n\"However, one must ask whether the imposition of a publication ban on\\nthe mere fact of a person\\'s arrest, and on the name of a person\\nsentenced to prison, is justified and appropriate in the State of\\nIsrael. The principle of public trial and the right of the public to\\nknow are not consistent with the disappearance of a person from public\\nsight and his descent into the abyss of prison.\"\\n\\nZucker thus decided to turn to the Prime Minister, the Minister of\\nJustice and the Cabinet Legal Advisor and request that they consider\\nthe question. \"The State of Israel is strong enough to withstand the\\ncost incurred by abiding by the principle of public punishment. The\\nState of Israel cannot be allowed to have prisoners whose detention\\nand its cause is kept secret\", wrote Zucker.\\n\\nThe legal counsel of the Civil Rights Union, Attorney Mordechai\\nShiffman said that, \"We, as the Civil Rights Union, do not know of any\\ncases of security prisoners, Citizens of Israel, who are imprisoned,\\nand whose imprisonment cannot be made public. This is a situation\\nwhich, if it actually exists, is definitely unhealthy. Just like\\ncensorship is an unhealthy matter\".\\n\\n\"The Union is aware\", says Shiffman, \"of cases where notification of a\\nsuspect\\'s arrest to family members and lawyers is withheld. I am\\nspeaking only of several days. I know also of cases where a detainee\\nwas not allowed to meet with an attorney -- sometimes for the whole\\nfirst month of arrest. That is done because of the great secrecy.\\n\\n\"The suspect himself, his family, his lawyer -- or even a journalist --\\ncan challenge the publication ban in court. But there are cases where\\nthe family members themselves are not interested in publicity. The\\njournalist knows nothing of the arrest, and so almost everyone is\\nhappy...\"\\n\\nAttorney Yossi Arnon, an official of the Bar, claims that given the\\nlaws as they exist in Israel today, a situation where the arrest of a\\nperson for security offenses is kept secret is definitely possible. \\n\"Nothing is easier. The court orders a publication ban, and that\\'s\\nthat. Someone who has committed security offenses can spend long\\nyears in prison without us knowing anything about it.\"\\n\\n-- Do you find this situation acceptable?\\n\\nAttorney Arnon: \"Definitely not. We live in a democratic country, and\\nsuch a state of affairs is impermissible. I am well aware that\\npublication can be damaging -- from the standpoint of security -- but\\ntotal non-publication, silence, is unacceptable. Consider the trial of\\nMordechai Vanunu: at least in his case we know that he was charged\\nwith aggravated espionage and sentenced to 18 years in prison. The\\ntrial was held behind closed doors, nobody knew the details except for\\nthose who were authorized to. It is somehow possible to understand,\\nthough not to accept, the reasons, but, as I have noted, we at least\\nare aware of his imprisonment.\"\\n\\n-- Why is the matter actually that serious? Can\\'t we trust the\\ndiscretion of the court?\\n\\nAttorney Arnon: \"The judges have no choice but to trust the\\npresentations made to them. The judges do not have the tools to\\ninvestigate. This gives the government enormous power, power which\\nthey can misuse.\"\\n\\n-- And what if there really is a security issue?\\n\\nAttorney Arnon: \"I am a man of the legal system, not a security expert.\\n Democracy stands in opposition to security. I believe it is possible\\nto publicize the matter of the arrest and the charges -- without\\nentering into detail. We have already seen how the laws concerning\\npublication bans can be misused, in the case of the Rachel Heller\\nmurder. A suspect in the murder was held for many months without the\\nmatter being made public.\"\\n\\nAttorney Shiffman, on the other hand, believes that state security can\\nbe a legitimate reason for prohibiting publication of a suspect\\'s\\narrest, or of a convicted criminal\\'s imprisonment. \"A healthy\\nsituation? Definitely not. But I am aware of the fact that mere\\npublication may be harmful to state security\".\\n\\nA different opinion is expressed by attorney Uri Shtendal, former\\nadvisor for Arab affairs to Prime Ministers Levi Eshkol and Golda\\nMeir. \"Clearly, we are speaking of isolated special cases. Such\\nsituations contrast with the principle that a judicial proceeding must\\nbe held in public. No doubt this contradicts the principle of freedom\\nof expression. Definitely also to the principle of individual freedom\\nwhich is also harmed by the prohibition of publication.\\n\\n\"Nevertheless\", adds Shtendal, \"the legislator allowed for the\\npossibility of such a ban, to accommodate special cases where the\\ndamage possible as a consequence of publication is greater than that\\nwhich may follow from an abridgment of the principles I\\'ve mentioned.\\nThe authority to decide such matters of publication does not rest with\\nthe Prime Minister or the security services, but with the court, which\\nwe may rest assured will authorize a publication ban only if it has\\nbeen convinced of its need beyond a shadow of a doubt.\"\\n\\nNevertheless, attorney Shtendal agrees: \"As a rule, clearly such a\\nphenomenon is undesirable. Such an extreme step must be taken only in\\nthe most extreme circumstances.\"\\n--\\nYigal Arens\\nUSC/ISI TV made me do it!\\narens@isi.edu\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: A visit from the Jehovah\\'s Witnesses\\nOrganization: Case Western Reserve University\\nLines: 48\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article suopanki@stekt6.oulu.fi (Heikki T. Suopanki) writes:\\n>:> God is eternal. [A = B]\\n>:> Jesus is God. [C = A]\\n>:> Therefore, Jesus is eternal. [C = B]\\n>\\n>:> This works both logically and mathematically. God is of the set of\\n>:> things which are eternal. Jesus is a subset of God. Therefore\\n>:> Jesus belongs to the set of things which are eternal.\\n>\\n>Everything isn\\'t always so logical....\\n>\\n>Mercedes is a car.\\n>That girl is Mercedes.\\n>Therefore, that girl is a car?\\n\\n\\tThis is not strickly correct. Only by incorrect application of the \\nrules of language, does it seem to work.\\n\\n\\tThe Mercedes in the first premis, and the one in the second are NOT \\nthe same Mercedes. \\n\\n\\tIn your case, \\n\\n\\tA = B\\n\\tC = D\\n\\t\\n\\tA and D are NOT equal. One is a name of a person, the other the\\nname of a object. You can not simply extract a word without taking the \\ncontext into account. \\n\\n\\tOf course, your case doesn\\'t imply that A = D.\\n\\n\\tIn his case, A does equal D.\\n\\n\\n\\tTry again...\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n\\n',\n", - " 'From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Vast Bandwidth Over-runs on NASA thread (was Re: NASA \"Wraps\")\\nIn-Reply-To: wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov\\'s message of 18 Apr 1993 13:56 CDT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<17APR199316423628@judy.uh.edu> <1993Apr18.034101.21934@iti.org>\\n\\t<18APR199313560620@judy.uh.edu>\\nLines: 12\\n\\nIn article <18APR199313560620@judy.uh.edu>, Dennis writes about a\\nzillion lines in response to article <1993Apr18.034101.21934@iti.org>,\\nin which Allen wrote a zillion lines in response to article\\n<17APR199316423628@judy.uh.edu>, in which Dennis wrote another zillion\\nlines in response to Allen.\\n\\nHey, can it you guys. Take it to email, or talk.politics.space, or\\nalt.flame, or alt.music.pop.will.eat.itself.the.poppies.are.on.patrol,\\nor anywhere, but this is sci.space. This thread lost all scientific\\ncontent many moons ago.\\n\\nNick Haines nickh@cmu.edu\\n',\n", - " \"From: jr0930@eve.albany.edu (REGAN JAMES P)\\nSubject: Re: Pascal-Fractals\\nOrganization: State University of New York at Albany\\nLines: 10\\n\\nApparently, my editor didn't do what I wanted it to do, so I'll try again.\\n\\ni'm looking for any programs or code to do simple animation and/or\\ndrawing using fractals in TurboPascal for an IBM\\n Thanks in advance\\n-- \\n ||||||||||| \\t\\t \\t ||||||||||| \\n_|||||||||||_______________________|||||||||||_ jr0930@eve.albany.edu\\n-|||||||||||-----------------------|||||||||||- jr0930@Albnyvms.bitnet\\n ||||||||||| GO HEAVY OR GO HOME |||||||||||\\n\",\n", - " 'From: davec@silicon.csci.csusb.edu (Dave Choweller)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: California State University, San Bernardino\\nLines: 45\\nNntp-Posting-Host: silicon.csci.csusb.edu\\n\\nIn article <1qif1g$fp3@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n>In article <1qialf$p2m@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>|In article <1qi921$egl@horus.ap.mchp.sni.de>, frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n[stuff deleted...]\\n>||> To the newsgroup at large, how about this for a deal: recognise that what \\n>||> happened in former Communist Russia has as much bearing on the validity \\n>||> of atheism as has the doings of sundry theists on the validity of their \\n>||> theism. That\\'s zip, nada, none. The fallacy is known as ad hominem, and \\n>||> it\\'s an old one. It should be in the Holy FAQ, in the Book of Constructing\\n>||> a Logical Argument :-)\\n>|\\n>|Apart from not making a lot of sense, this is wrong. There\\n>|is no \"atheist creed\" that taught any communist what to do \"in\\n>|the name of atheism\". There clearly are theistic creeds and\\n>|instructions on how to act for theists. They all madly\\n>|conflict with one another, but that\\'s another issue.\\n>\\n>Lack of instructions on how to act might also be evil.\\n\\nThat\\'s like saying that, since mathematics includes no instructions on\\nhow to act, it is evil. Atheism is not a moral system, so why should\\nit speak of instructions on how to act? *Atheism is simply lack of\\nbelief in God*.\\n\\n Plenty of theists\\n>think so. So one could argue the case for \"atheism causes whatever\\n>I didn\\'t like about the former USSR\" with as much validity as \"theism\\n>causes genocide\" - that is to say, no validity at all.\\n\\nI think the argument that a particular theist system causes genocide\\ncan be made more convincingly than an argument that atheism causes genocide.\\nThis is because theist systems contain instructions on how to act,\\nand one or more of these can be shown to cause genocide. However, since\\nthe atheist set of instructions is the null set, how can you show that\\natheism causes genocide?\\n--\\nDavid Choweller (davec@silicon.csci.csusb.edu)\\n\\nThere are scores of thousands of human insects who are\\nready at a moment\\'s notice to reveal the Will of God on\\nevery possible subject. --George Bernard Shaw.\\n-- \\nThere are scores of thousands of human insects who are\\nready at a moment\\'s notice to reveal the Will of God on\\nevery possible subject. --George Bernard Shaw.\\n',\n", - " 'From: todd@psgi.UUCP (Todd Doolittle)\\nSubject: Fork Seals \\nDistribution: world\\nOrganization: Not an Organization\\nLines: 23\\n\\nI\\'m about to undertake changing the fork seals on my \\'88 EX500. My Clymer\\nmanual says I need the following tools from Kawasaki:\\n\\n57001-183 (T handle looking thing in illustration)\\n57001-1057 (Some type of adapter for the end of the T handle)\\n57001-1091 No illustration of this tool and the manual just refers to it\\n as \"the kawasaki tool.\"\\n57001-1058 Oil seal and bearing remover.\\n\\nHow necessary are these tools? Considering the dealers around here didn\\'t\\nhave the Clymer manual, fork seals, and a turn signal assembly in stock I\\nreally doubt they have these tools in stock and I\\'d really like to get this\\ndone this week. Any help would be appreciated as always.\\n\\n--\\n\\n--------------------------------------------------------------------------\\n ..vela.acs.oakland.edu!psgi!todd | \\'88 RM125 The only bike sold without\\n Todd Doolittle | a red-line. \\n Troy, MI | \\'88 EX500 \\n DoD #0832 | \\n--------------------------------------------------------------------------\\n\\n',\n", - " 'From: abdkw@stdvax (David Ward)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nNews-Software: VAX/VMS VNEWS 1.4-b1 \\nOrganization: Goddard Space Flight Center - Robotics Lab\\nLines: 34\\n\\nIn article <20APR199321040621@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes...\\n>In article <1993Apr20.204335.157595@zeus.calpoly.edu>, jgreen@trumpet.calpoly.edu (James Thomas Green) writes...\\n>>Why do spacecraft have to be shut off after funding cuts. For\\n>>example, Why couldn\\'t Magellan just be told to go into a \"safe\"\\n>>mode and stay bobbing about Venus in a low-power-use mode and if\\n>>maybe in a few years if funding gets restored after the economy\\n>>gets better (hopefully), it could be turned on again. \\n> \\n>It can be, but the problem is a political one, not a technical one.\\n\\nAlso remember that every dollar spent keeping one spacecraft in safe mode\\n(probably a spin-stabilized sun-pointing orientation) is a dollar not\\nspent on mission analysis for a newer spacecraft. In order to turn the\\nspacecraft back on, you either need to insure that the Ops guys will be\\navailable, or you need to retrain a new team.\\n\\nHaving said that, there are some spacecraft that do what you have proposed.\\nMany of the operational satellites Goddard flies (like the Tiros NOAA \\nseries) require more than one satellite in orbit for an operational set.\\nExtras which get replaced on-orbit are powered into a \"standby\" mode for\\nuse in an emergency. In that case, however, the same ops team is still\\nrequired to fly the operational birds; so the standby maintenance is\\nrelatively cheap.\\n\\nFinally, Pat\\'s explanation (some spacecraft require continuous maintenance\\nto stay under control) is also right on the mark. I suggested a spin-\\nstabilized control mode because it would require little power or \\nmaintenance, but it still might require some momentum dumping from time\\nto time.\\n\\nIn the end, it *is* a political decision (since the difference is money),\\nbut there is some technical rationale behind the decision.\\n\\nDavid W. @ GSFC \\n',\n", - " \"From: ruca@pinkie.saber-si.pt (Rui Sousa)\\nSubject: Re: Potential World-Bearing Stars?\\nIn-Reply-To: dan@visix.com's message of Mon, 12 Apr 1993 19:52:23 GMT\\nLines: 17\\nOrganization: SABER - Sistemas de Informacao, Lda.\\n\\nIn article dan@visix.com (Daniel Appelquist) writes:\\n\\n\\n I'm on a fact-finding mission, trying to find out if there exists a list of\\n potentially world-bearing stars within 100 light years of the Sun...\\n Is anyone currently working on this sort of thing? Thanks...\\n\\n Dan\\n -- \\n\\nIn principle, any star resembling the Sun (mass, luminosity) might have planets\\nlocated in a suitable orbit. There several within 100 ly of the sun. They are\\nsingle stars, for double or multiple systems might be troublesome. There's a\\nlist located at ames.arc.nasa.gov somewhere in pub/SPACE. I think it is called\\nstars.dat. By the way, what kind of project, if I may know?\\n\\nRui\\n-- \\n*** Infinity is at hand! Rui Sousa\\n*** If yours is big enough, grab it! ruca@saber-si.pt\\n\\n All opinions expressed here are strictly my own\\n\",\n", - " \"From: decay@cbnewsj.cb.att.com (dean.kaflowitz)\\nSubject: Re: some thoughts.\\nOrganization: AT&T\\nDistribution: na\\nLines: 13\\n\\nIn article , edm@twisto.compaq.com (Ed McCreary) writes:\\n> >>>>> On Thu, 15 Apr 1993 04:54:38 GMT, bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) said:\\n> \\n> DLB> \\tFirst I want to start right out and say that I'm a Christian. It \\n> DLB> makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n> DLB>lunatic, or the real thing? (I might be a little off on the title, but he \\n> DLB>writes the book. Anyway he was part of an effort to destroy Christianity, \\n> DLB> in the process he became a Christian himself.\\n> \\n> Here we go again...\\n\\nJust the friendly folks at Christian Central, come to save you.\\n\\n\",\n", - " \"From: mjw19@cl.cam.ac.uk (M.J. Williams)\\nSubject: Re: Rumours about 3DO ???\\nKeywords: 3DO ARM QT Compact Video\\nReply-To: mjw19@cl.cam.ac.uk\\nOrganization: The National Society for the Inversion of Cuddly Tigers\\nLines: 32\\nNntp-Posting-Host: earith.cl.cam.ac.uk\\n\\nIn article <2BD07605.18974@news.service.uci.edu> rbarris@orion.oac.uci.edu (Robert C. Barris) writes:\\n> We\\n>got to see the unit displaying full-screen movies using the CompactVideo codec\\n>(which was nice, very little blockiness showing clips from Jaws and Backdraft)\\n>... and a very high frame rate to boot (like 30fps).\\n\\nAcorn Replay running on a 25MHz ARM 3 processor (the ARM 3 is about 20% slower\\nthan the ARM 6) does this in software (off a standard CD-ROM). 16 bit colour at\\nabout the same resolution (so what if the computer only has 8 bit colour\\nsupport, real-time dithering too...). The 3D0/O is supposed to have a couple of\\nDSPs - the ARM being used for housekeeping.\\n\\n>I'm not sure how a Centris/20MHz 040 stacks up against the 25 MHz ARM in\\n>the 3DO box. Obviously the ARM is faster, but how much?\\n\\nA 25MHz ARM 6xx should clock around 20 ARM MIPS, say 18 flat out. Depends\\nreally on the surrounding system and whether you are talking ARM6x or ARM6xx\\n(the latter has a cache, and so is essential to run at this kind of speed with\\nslower memory).\\n\\nI'll stop saying things there 'cos I'll hopefully be working for ARM after\\ngraduation...\\n\\nMike\\n\\nPS Don't pay heed to what reps from Philips say; if the 3D0/O doesn't beat the\\n pants off 3DI then I'll eat this postscript.\\n--\\n____________________________________________________________________________\\n\\\\ / / Michael Williams Part II Computer Science Tripos\\n|\\\\/|\\\\/\\\\ MJW19@phx.cam.ac.uk University of Cambridge\\n| |(__)Cymdeithas Genedlaethol Traddodiad Troi Teigrod Mwythus Ben I Waered\\n\",\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 159\\n\\n>In article <1993Apr16.130037.18830@ncsu.edu>, hernlem@chess.ncsu.edu \\n (Brad Hernlem) writes:\\n>|> \\n>|> In article <2BCE0918.6105@news.service.uci.edu>, tclock@orion.oac.uci.edu \\n (Tim Clock) writes:\\n>|> \\n>|> Are you suggesting that, when guerillas use the population for cover, \\n>|> Israel should totally back down? So...the easiest way to get away with \\n>|> attacking another is to use an innocent as a shield and hope that the \\n>|> other respects innocent lives?\\n\\n> Tell me Tim, what are these guerillas doing wrong? Assuming that they are \\n> using civilians for cover, \\n\\n\"Assuming\"? Also: come on, Brad. If we are going to get anywhere in \\nthis (or any) discussion, it doesn\\'t help to bring up elements I never \\naddressed, *nor commented on in any way*. I made no comment on who is \\n\"right\" or who is \"wrong\", only that civilians ARE being used as cover \\nand that, having been placed \"in between\" the Israelis and the guerillas,\\nthey *will* be injured as both parties continue their fight.\\n \\n\\t[The *purpose* of an army\\'s use of military uniforms \\n\\tis *to set its members apart* from the civilians so that \\n\\tcivilians will not be thought of by the other side as\\n\\t\"combatants\". So, what do you think is the \"meaning behind\", \\n\\tthe intention and the effect when an \"army\" purposely \\n\\t*does not were uniforms but goes out of its way to *look \\n\\tlike civilians\\'? *They are judging that the benefit they will \\n\\treceive from this \"cover\" is more important that the harm\\n\\tthat will come to civilians.*\\n\\nThis is a comment on the Israeli experience and is saying\\nthat the guerillas *do* have some responsibility in putting civilians\\nin \"the middle\" of this fight. By putting on uniforms and living apart\\nfrom civilians (barracks, etc.), the guerillas would significantly lower\\nthe risk to civilians.\\n\\n\\tBut if the guerillas do this aren\\'t *they* putting themselves\\n\\tat greater risk? Absolutely, they ask themselves \"why set \\n\\tourselves apart (by wearing uniforms) when there is a ready-made \\n\\tcover for us (civilians)? That makes sense from their point of \\n\\tview, BUT when this cover is used, the guerillas should accept \\n\\tsome of the responsibility for subsequent harm to civilians.\\n\\n> If the buffer zone is to prevent attacks on Israel, is it not working? Why\\n> is it further neccessary for Israeli guns to pound Lebanese villages? Why \\n> not just kill those who try to infiltrate the buffer zone? You see, there \\n> is more to the shelling of the villages.... it is called RETALIATION... \\n> \"GETTING BACK\"...\"GETTING EVEN\". It doesn\\'t make sense to shell the \\n> villages. The least it shows is a reckless disregard by the Israeli \\n> government for the lives of civilians.\\n\\nI agree with you here. I have always thought that Israel\\'s bombing\\nsortees and bombing policy is stupid, thoughtless, inhumane AND\\nineffective. BUT, there is no reason that Israel should passive wait \\nuntil attackers chose to act; there is every reason to believe that\\n\"taking the fight *to* the enemy\" will do more to stop attacks. \\n\\nAs I said previously, Israel spent several decades \"sitting passively\"\\non its side of a border and only acting to stop these attacks *after*\\nthe attackers had entered Israeli territory. It didn\\'t work very well.\\nThe \"host\" Arab state did little/nothing to try and stop these attacks \\nfrom its side of the border with Israel so the number of attacks\\nwere considerably higher, as was their physical and psychological impact \\non the civilians caught in their path. \\n>\\n>|> What?So the whole bit about attacks on Israel from neighboring Arab states \\n>|> can start all over again? While I also hope for this to happen, it will\\n>|> only occur WHEN Arab states show that they are *prepared* to take on the \\n>|> responsibility and the duty to stop guerilla attacks on Israel from their \\n>|> soil. They have to Prove it (or provide some \"guaratees\"), there is no way\\n>|> Israel is going to accept their \"word\"- not with their past attitude of \\n>|> tolerance towards \"anti-Israel guerillas in-residence\".\\n>|> \\n> If Israel is not willing to accept the \"word\" of others then, IMHO, it has\\n> no business wasting others\\' time coming to the peace talks. \\n\\nThis is just another \"selectively applied\" statement.\\n \\nThe reason for this drawn-out impasse between Ababs/Palestinians and Israelis\\nis that NEITHER side is willing to accept the Word of the other. By your\\ncriteria *everyone* should stay away from the negotiations.\\n\\nThat is precisely why the Palestinians (in their recent PISGA proposal for \\nthe \"interim\" period after negotiations and leading up to full autonomy) are\\ndemanding conditions that essentially define \"autonomy\" already. They DO\\nNOT trust that Israel will \"follow through\" the entire process and allow\\nPalestinians to reach full autonomy. \\n\\nDo you understand and accept this viewpoint by the Palestinians? \\nIf you do, then why should Israel\\'s view of Arabs/Palestinians \\nbe any different? Why should they trust the Arab/Palestinians\\' words?\\nSince they don\\'t, they are VERY reluctant to give up \"tangible assets \\n(land, control of areas) in exchange for \"words\". For this reason,\\nthey are also concerned about the sorts of \"guarantees\" they will have \\nthat the Arabs WILL follow through on their part of any agreement reached.\\n>\\n>But don\\'t you see that the same statement can be made both ways?\\n>If Lebanon was interested in peace then it should accept the word\\n>of Israel that the attacks were the cause for war and disarming the\\n>Hizbollah will remove the cause for its continued occupancy. \\n\\nAbsolutely, so are the Arabs/Palestinians asking FIRST for the\\nIsraelis \"word\" in relation to any agreement? NO, what is being\\ndemanded FIRST is LAND. When the issue is LAND, and one party\\nfinally gets HOLD of this \"land\", what the \"other party\" does\\nis totally irrelevent. If I NOW have possession of this land,\\nyour words have absolutely no power; whether Israel chooses to\\nkeeps its word does NOT get the land back.\\n\\n>Afterall, Israel has already staged two parts of the withdrawal from \\n>areas it occupied in Lebanon during SLG.\\n>\\n> Tim, you are ignoring the fact that the Palestinians in Lebanon have been\\n> disarmed. Hezbollah remains the only independent militia. Hezbollah does\\n> not attack Israel except at a few times such as when the IDF burned up\\n> Sheikh Mosavi, his wife, and young son. \\n\\nWhile the \"major armaments\" (those allowing people to wage \"civil wars\")\\nhave been removed, the weapons needed to cross-border attacks still\\nremain to some extent. Rocket attacks still continue, and \"commando\"\\nraids only require a few easily concealed weapons and a refined disregard\\nfor human life (yours of that of others). Such attacks also continue.\\n\\n> Of course, if Israel would withdraw from Lebanon\\n> and stop assassinating people and shelling villages they wouldn\\'t\\n> make the Lebanese so mad as to do that.\\n\\nBat guano. The situation you call for existed in the 1970s and attacks\\nwere commonplace.\\n\\n>Furthermore, with Hezbollah subsequently disarmed, it would not be possible.\\n\\nThere is NO WAY these groups can be effectively \"disarmed\" UNLESS the state\\nis as authoritarian is Syria\\'s. The only other way is for Lebanon to take\\nit upon itself to constantly patrol the entire border with Israel, essentially\\nmirroring Israel\\'s border secirity on its side. It HAS TO PROVE TO ISREAL that\\nit is this committed to protecting Israel from attack from Lebanese territory.\\n>\\n>|> Once Syria leaves who is to say that Lebanon will be able to retain \\n>|> control? If Syria stays thay may be even more dangerous for Israel.\\n>|> \\n> Tim, when is the last time that you recall any trouble on the Syrian border?\\n> Not lately, eh?\\n\\nThat\\'s what I said, ok? But, doesn\\'t that mean that Syria has to \"take over\"\\nLebanon? I don\\'t think Israel or Lebanon would like that.\\n> \\nWhat both \"sides\" need is to receive something \"tangible\". The Arabs/\\nPalestinians are looking for \"land\" and demanding that they receive it\\nprior to giving anything to Israel. Israel has two problems: 1) if it\\ngives up real *land* it IS exposing itself to a changed geostrategic\\nsituation (and that change doesn\\'t help Israel\\'s position), and 2) WHEN\\nit gives up this land IT NEEDS to receive something in return to\\ncompensate for the increased risks\\n\\nTim\\n\\n\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Rights Violations in Azerbaijan #013\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 339\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #013\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +---------------------------------------------------------------------+\\n | |\\n | I said that on February 27, when those people were streaming down |\\n | our street, they were shouting, \"Long live Turkey!\" and \"Glory to |\\n | Turkey!\" And during the trial I said to that Ismailov, \"What does |\\n | that mean, \\'Glory to Turkey\\'?\" I still don\\'t understand what Turkey |\\n | has to do with this, we live in the Soviet Union. That Turkey told |\\n | you to or is going to help you kill Armenians? I still don\\'t |\\n | understand why \"Glory to Turkey!\" I asked that question twice and |\\n | got no answer . . . No one answered me . . . |\\n | |\\n +---------------------------------------------------------------------+\\n\\nDEPOSITION OF EMMA SETRAKOVNA SARGISIAN\\n\\n Born 1933\\n Cook\\n Sumgait Emergency Hospital\\n\\n Resident at Building 16/13, Apartment 14\\n Block 5\\n Sumgait [Azerbaijan]\\n\\n\\nTo this day I can\\'t understand why my husband, an older man, was killed. What \\nwas he killed for. He hadn\\'t hurt anyone, hadn\\'t said any word he oughtn\\'t \\nhave. Why did they kill him? I want to find out--from here, from there, from \\nthe government--why my husband was killed.\\n\\nOn the 27th, when I returned from work--it was a Saturday--my son was at home.\\nHe doesn\\'t work. I went straight to the kitchen, and he called me, \"Mamma, is \\nthere a soccer game?\" There were shouts from Lenin Street. That\\'s where we \\nlived. I say, \"I don\\'t know, Igor, I haven\\'t turned on the TV.\" He looked \\nagain and said, \"Mamma, what\\'s going on in the courtyard?!\" I look and see so \\nmany people, it\\'s awful, marching, marching, there are hundreds, thousands, \\nyou can\\'t even tell how many there are. They\\'re shouting, \"Down with the \\nArmenians! Kill the Armenians! Tear the Armenians to pieces!\" My God, why is \\nthat happening, what for? I had known nothing at that point. We lived together\\nwell, in friendship, and suddenly something like this. It was completely \\nunexpected. And they were shouting, \"Long live Turkey!\" And they had flags,\\nand they were shouting. There was a man walking in front well dressed, he\\'s \\naround 40 or 45, in a gray raincoat. He is walking and saying something, I \\ncan\\'t make it out through the vent window. He is walking and saying something,\\nand the children behind him are shouting, \"Tear the Armenians to pieces!\" and \\n\"Down with the Armenians!\" They shout it again, and then shout, \"Hurrah!\" The \\npeople streamed without end, they were walking in groups, and in the groups I \\nsaw that there were women, too. I say, \"My God, there are women there too!\" \\nAnd my son says, \"Those aren\\'t women, Mamma, those are bad women.\" Well we \\ndidn\\'t look a long time. They were walking and shouting and I was afraid, I \\nsimply couldn\\'t sit still. I went out onto the balcony, and my Azerbaijani \\nneighbor is on the other balcony, and I say, \"Khalida, what\\'s going on, what \\nhappened?\" She says, \"Emma, I don\\'t know, I don\\'t know, I don\\'t know what \\nhappened.\" Well she was quite frightened too. They had these white sticks, \\neach second or third one had a white rod. They\\'re waving the rods above their \\nheads as they walk, and the one who\\'s out front, like a leader, he has a white\\nstick too. Well maybe it was an armature shaft, but what I saw was white, I \\ndon\\'t know.\\n\\nMy husband got home 10 or 15 minutes later. He comes home and I say, \"Oh \\ndear, I\\'m frightened, they\\'re going to kill us I bet.\" And he says, \"What are \\nyou afraid of, they\\'re just children.\" I say, \"Everything that happens comes \\nfrom children.\" There had been 15- and 16-year kids from the Technical and \\nVocational School. \"Don\\'t fear,\" he said, \"it\\'s nothing, nothing all that \\nbad.\" He didn\\'t eat, he just lay on the sofa. And just then on television they\\nbroadcast that two Azerbaijanis had been killed in Karabakh, near Askeran. \\nWhen I heard that I couldn\\'t settle down at all, I kept walking here and \\nthere and I said, \"They\\'re going to kill us, the Azerbaijanis are going to \\nkill us.\" And he says, \"Don\\'t be afraid.\" Then we heard--from the central \\nsquare, there are women shouting near near the stage, well, they\\'re shouting\\ndifferent things, and you couldn\\'t hear every well. I say, \"You speak\\nAzerbaijani well, listen to what they\\'re saying.\" He says \"Close the window\\nand go to bed, there s nothing happening there.\" He listened a bit and then \\nclosed the window and went to bed, and told us, \"Come on, go to sleep, it\\'s\\nnothing.\" Sleep, what did he mean sleep? My Son and I stood at the window\\nuntil two in the morning watching. Well he\\'s sick, and all of this was\\naffecting him. I say, \"Igor, you go to bed, I\\'m going to go to bed in a minute\\ntoo.\" He went and I sat at the window until three, and then went to bed. \\nThings had calmed down slightly.\\n\\nThe 28th, Sunday, was my day off. My husband got up and said, \"Come on, Emma, \\nget up.\" I say, \"Today\\'s my day off, let me rest.\" He says, \"Aren\\'t you going \\nto make me some tea?\" Well I felt startled and got up, and said, \"Where are \\nyou going?\" He says, \"I\\'m going out, I have to.\" I say, \"Can you really go \\noutside on a day like today? Don\\'t go out, for God\\'s sake. You never listen to\\nme, I know, and you\\'re not going to listen to me now, but at least don\\'t take \\nthe car out of the garage, go without the car.\" And he says, \"Come on, close \\nthe door!\" And then on the staircase he muttered something, I couldn\\'t make it\\nout, he probably said \"coward\" or something.\\n\\nI closed the door and he left. And I started cleaning . . . picking things up\\naround the house . . . Everything seemed quiet until one o\\'clock in the after-\\nnoon, but at the bus station, my neighbor told me, cars were burning. I said,\\n\"Khalida, was it our car?\" She says, \"No, no, Emma, don\\'t be afraid, they\\nwere government cars and Zhigulis.\\'\\' Our car is a GAZ-21 Volga. And I waited,\\nit was four o\\'clock, five o\\'clock . . . and when he wasn\\'t home at seven I\\nsaid, \"Oh, they\\'ve killed Shagen!\"\\n\\nTires are burning in town, there\\'s black smoke in town, and I\\'m afraid, I\\'m \\nstanding on the balcony and I\\'m all . . . my whole body is shaking. My God, \\nthey\\'ve probably killed him! So basically I waited like that until ten \\no\\'clock and he still hadn\\'t come home. And I\\'m afraid to go out. At ten\\no\\'clock I look out: across from our building is a building with a bookstore,\\nand from upstairs, from the second floor, everything is being thrown outside. \\nI\\'m looking out of one window and Igor is looking out of the other, and I \\ndon\\'t want him to see this, and he, as it turns out, doesn\\'t want me to see \\nit. We wanted to hide it from one another. I joined him. \"Mamma,\" he says,\\n\"look what they\\'re doing over there!\" They were burning everything, and there \\nwere police standing there, 10 or 15 of them, maybe twenty policemen standing \\non the side, and the crowd is on the other side, and two or three people are \\nthrowing everything down from the balcony. And one of the ones on the balcony \\nis shouting, \"What are you standing there for, burn it!\" When they threw the \\ntelevision, wow, it was like a bomb! Our neighbor on the third floor came out \\non her balcony and shouted, \"Why are you doing that, why are you burning those\\nthings, those people saved with such difficulty to buy those things for their \\nhome. Why are you burning them?\" And from the courtyard they yell at her, \"Go \\ninside, go inside! Instead why don\\'t you tell us if they are any of them in \\nyour building or not?\" They meant Armenians, but they didn\\'t say Armenians, \\nthey said, \"of them.\" She says, \"No, no, no, none!\" Then she ran downstairs to\\nour place, and says, \"Emma, Emma, you have to leave!\" I say, \"They\\'ve killed\\nShagen anyway, what do we have to live for? It won\\'t be living for me without \\nShagen. Let them kill us, too!\" She insists, saying, \"Emma, get out of here, \\ngo to Khalida\\'s, and give me the key. When they come I\\'ll say that it\\'s my \\ndaughter\\'s apartment, that they\\'re off visiting someone.\" I gave her the key \\nand went to the neighbor\\'s, but I couldn\\'t endure it. I say, \"Igor, you stay \\nhere, I\\'m going to go downstairs, and see, maybe Papa\\'s . . . Papa\\'s there.\"\\n\\nMeanwhile, they were killing the two brothers, Alik and Valery [Albert and \\nValery Avanesians; see the accounts of Rima Avanesian and Alvina Baluian], in \\nthe courtyard. There is a crowd near the building, they\\'re shouting, howling, \\nand I didn\\'t think that they were killing at the time. Alik and Valery lived\\nin the corner house across from ours. When I went out into the courtyard I saw\\nan Azerbaijani, our neighbor, a young man about 30 years old. I say, \"Madar, \\nUncle Shagen\\'s gone, let\\'s go see, maybe he\\'s dead in the garage or near the \\ngarage, let\\'s at least bring the corpse into the house. \"He shouts, \"Aunt \\nEmma, where do you think you\\'re going?! Go back into the house, I\\'ll look for \\nhim.\" I say, \"Something will happen to you, too, because of me, no, Madar, \\nI\\'m coming too.\" Well he wouldn\\'t let me go all the same, he says, \"You stay \\nhere with us, I\\'m go look.\" He went and looked, and came back and said, \"Aunt \\nEmma, there\\'s no one there, the garage is closed. \"Madar went off again and \\nthen returned and said, \"Aunt Emma, they\\'re already killed Alik, and Valery\\'s \\nthere . . . wheezing.\"\\n\\nMadar wanted to go up to him, but those scoundrels said, \"Don\\'t go near him, \\nor we\\'ll put you next to him.\" He got scared--he\\'s young--and came back and \\nsaid, \"I\\'m going to go call, maybe an ambulance will come, at least to take \\nAlik, maybe he\\'ll live . . . \" They grew up together in our courtyard, they \\nknew each other well, they had always been on good terms. He went to call, but\\nnot a single telephone worked, they had all been shut off. He called, and \\ncalled, and called, and called--nothing.\\n\\nI went upstairs to the neighbor\\'s. Igor says, \"Two police cars drove up over \\nthere, their headlights are on, but they\\'re not touching them, they are still \\nlying where they were, they\\'re still lying there . . . \"We watched out the\\nwindow until four o\\'clock, and then went downstairs to our apartment. I didn\\'t\\ntake my clothes off. I lay on the couch so as not to go to bed, and at six\\no\\'clock in the morning I got up and said, \"Igor, you stay here at home, don\\'t\\ngo out, don\\'t go anywhere, I\\'m going to look, I have to find Papa, dead or\\nalive . . . let me go . . . I\\'ve got the keys from work.\"\\n\\nAt six o\\'clock I went to the Emergency Hospital. The head doctor and another \\ndoctor opened the door to the morgue. I run up to them and say, \"Doctor, is \\nShagen there?\" He says, \"What do you mean? Why should Shagen be here?!\" I \\nwanted to go in, but he wouldn\\'t let me. There were only four people in there,\\nthey said. Well, they must have been awful because they didn\\'t let me in. They\\nsaid, \"Shagen\\'s not here, he\\'s alive somewhere, he\\'ll come back.\"\\n\\nIt\\'s already seven o\\'clock in the morning. I look and there is a panel truck\\nwith three policemen. Some of our people from the hospital were there with\\nthem. I say, \"Sara Baji [\"Sister\" Sara, term of endearment], go look, they\\'ve\\nprobably brought Shagen.\" I said it, shouted it, and she went and came back\\nand says, \"No, Emma, he has tan shoes on, it\\'s a younger person.\" Now Shagen \\njust happened to have tan shoes, light tan, they were already old. When they \\nsaid it like that I guessed immediately. I went and said, \"Doctor, they\\'ve \\nbrought Shagen in dead.\" He says, \"Why are you carrying on like that, dead, \\ndead . . . he\\'s alive.\" But then he went all the same, and when he came back \\nthe look on his face was . . . I could tell immediately that he was dead. They\\nknew one another well, Shagen had worked for him a long time. I say, \"Doctor, \\nis it Shagen?\" He says, \"No, Emma, it\\'s not he, it\\'s somebody else entirely.\" \\nI say, \"Doctor, why are you deceiving me, I\\'ll find out all the same anyway, \\nif not today, then tomorrow.\" And he said . . . I screamed, right there in the\\noffice. He says, \"Emma, go, go calm down a little.\" Another one of our \\ncolleagues said that the doctor had said it was Shagen, but . . . in hideous \\ncondition. They tried to calm me down, saying it wasn\\'t Shagen. A few minutes \\nlater another colleague comes in and says, \"Oh, poor Emma!\" When she said it \\nlike that there was no hope left.\\n\\n That day was awful. They were endlessly bringing in dead and injured \\npeople.\\n\\nAt night someone took me home. I said, \"Igor, Papa\\'s been killed.\"\\n\\nOn the morning of the 1st I left Igor at home again and went to the hospital: \\nI had to bury him somehow, do something. I look and see that the hospital is \\nsurrounded by soldiers. They are wearing dark clothes. \"Hey, citizen, where \\nare you going?\" I say, \"I work here,\" and from inside someone shouts, \"Yes, \\nyes, that\\'s our cook, let her in.\" I went right to the head doctor\\'s office\\nand there is a person from the City Health Department there, he used to\\nwork with us at the hospital. He says, \"Emma, Shagen\\'s been taken to Baku.\\nIn the night they took the wounded and the dead, all of them, to Baku.\" I\\nsay, \"Doctor, how will I bury him?\" He says, \"We\\'re taking care of all that,\\ndon\\'t you worry, we\\'ll do everything, we\\'ll tell you about it. Where did you\\nspend the night?\" I say, \"I was at home.\" He says, \"What do you mean you\\nwere at home?! You were at home alone?\" I say, \"No, Igor was there too.\" He\\nsays, \"You can\\'t stay home, we\\'re getting an ambulance right now, wait just\\none second, the head doctor is coming, we\\'re arranging an ambulance right\\nnow, you put on a lab coat and take one for Igor, you go and bring Igor here\\nlike a patient, and you\\'ll stay here and we\\'ll se~ later what to do next ...\"\\nHis last name is Kagramanov. The head doctor\\'s name is Izyat Jamalogli\\nSadukhov.\\n\\nThe \"ambulance\" arrived and I went home and got Igor. They admitted him as a \\npatient, they gave us a private room, an isolation room. We stayed in the \\nhospital until the 4th.\\n\\nSome police car came and they said, \"Emma, let\\'s go.\" And the women, our \\ncolleagues, then they saw the police car, became anxious and said, \"Where are \\nyou taking her?\" I say, \"They\\'re going to kill me, too . . . \" And the\\ninvestigator says, \"Why are you saying that, we\\'re going to make a positive\\nidentification.\" We went to Baku and they took me into the morgue . . . I\\nstill can\\'t remember what hospital it was . . . The investigator says, \"Let\\'s \\ngo, we need to be certain, maybe it\\'s not Shagen.\" And when I saw the caskets,\\nlying on top of one another, I went out of my mind. I say, \"I can\\'t look, no.\"\\nThe investigator says, \"Are there any identifying marks?\" I say, \"Let me see\\nthe clothes, or the shoes, or even a sock, I\\'ll recognize them.\" He says, \\n\"Isn\\'t they\\'re anything on his body?\" I say he has seven gold teeth and his \\nfinger, he only has half of one of his fingers. Shagen was a carpenter, he had\\nbeen injured at work . . .\\n\\nThey brought one of the sleeves of the shirt and sweater he was wearing, they \\nbrought them and they were all burned . . . When I saw them I shouted, \"Oh, \\nthey burned him!\" I shouted, I don\\'t know, I fell down . . . or maybe I sat \\ndown, I don\\'t remember. And that investigator says, \"Well fine, fine, since \\nwe\\'ve identified that these are his clothes, and since his teeth . . . since\\nhe has seven gold teeth . . . \"\\n\\nOn the 4th they told me: \"Emma, it\\'s time to bury Shagen now.\" I cried, \"How, \\nhow can I bury Shagen when I have only one son and he\\'s sick? I should inform \\nhis relatives, he has three sisters, I can\\'t do it by myself.\" They say, \"OK, \\nyou know the situation. How will they get here from Karabagh? How will they \\nget here from Yerevan? There\\'s no transportation, it s impossible.\"\\n\\nHe was killed on February 28, and I buried him on March 7. We buried him in \\nSumgait. They asked me, \"Where do you want to bury him?\" I said, \"I want to \\nbury him in Karabagh, where we were born, let me bury him in Karabagh,\" I\\'m \\nshouting, and the head of the burial office, I guess, says, \"Do you know what \\nit means, take him to Karabagh?! It means arson!\" I say, \"What do you mean, \\narson? Don\\'t they know what\\'s going on in Karabagh? The whole world knows that\\nthey killed them, and I want to take him to Karabagh, I don\\'t have anyone \\nanymore.\" I begged, I pleaded, I grieved, I even got down on my knees. He\\nsays, \"Let\\'s bury him here now, and in three months, in six months, a year, \\nif it calms down, I\\'ll help you move him to Karabagh . . . \"\\n\\nOur trial was the first in Sumgait. It was concluded on May 16. At the\\ninvestigation the murderer, Tale Ismailov, told how it all happened, but then\\nat the trial he . . . tried to wriggle . . . he tried to soften his crime. \\nThen they brought a videotape recorder, I guess, and played it, and said, \\n\"Ismailov, look, is that you?\" He says, \"Yes.\" \"Well look, here you\\'re \\ndescribing everything as it was on the scene of the crime, right?\" He says, \\n\"Yes.\" \"And now you\\'re telling it differently?\" He says, \"Well maybe I \\nforgot!\" Like that.\\n\\nThe witnesses and that criminal creep himself said that when the car was going\\nalong Mir Street, there was a crowd of about 80 people . . . Shagen had a \\nVolga GAZ-21. The 80 people surrounded his car, and all 80 of them were \\ninvolved. One of them was this Ismailov guy, this Tale. They--it\\'s unclear\\nwho--started pulling Shagen out of the car. Well, one says from the left side\\nof the car, another says from the right side. They pulled off his sports \\njacket. He had a jacket on. Well they ask him, \"What\\'s your nationality?\" He \\nsays, \"Armenian.\" Well they say from the crowd they shouted, \"If he\\'s an\\nArmenian, kill him, kill him!\" They started beating him, they broke seven of\\nhis ribs, and his heart . . . I don\\'t know, they did something there, too \\n. . . it\\'s too awful to tell about. Anyway, they say this Tale guy . . . he \\nhad an armature shaft. He says, \"I picked it up, it was lying near a bush, \\nthat\\'s where I got it.\" He said he picked it up, but the witnesses say that he\\nhad already had it. He said, \"I hit him twice,\" he said, \" . . . once or twice\\non the head with that rod.\" And he said that when he started to beat him \\nShagen was sitting on the ground, and when he hit him he fell over. He said, \\n\"I left, right nearby they were burning things or something in an apartment,\\nkilling someone,\" he says, \"and I came back to look, is that Shagen alive or\\nnot?\" I said, \"You wanted to finish him, right, and if he was still alive, you\\ncame back to hit him again?\" He went back and looked and he was already dead.\\n\"After that,\" that bastard Tale said, \"after that I went home.\"\\n\\nI said, \"You . . . you . . . little snake,\" I said, \"Are you a thief and a \\nmurderer?\" Shagen had had money in his jacket, and a watch on his wrist. They\\nwere taken. He says he didn\\'t take them\\n\\nWhen they overturned and burned the car, that Tale was no longer there, it was\\nother people who did that. Who it was, who turned over the car and who burned\\nit, that hasn\\'t been clarified as yet. I told the investigator, \"How can you \\nhave the trial when you don\\'t know who burned the car?\" He said something, but\\nI didn\\'t get what he was saying. But I said, \"You still haven\\'t straightened \\neverything out, I think that\\'s unjust.\"\\n\\nWhen they burned the car he was lying next to it, and the fire spread to him. \\nIn the death certificate it says that he had third-degree burns over 80\\npercent of his body . . .\\n\\nAnd I ask again, why was he killed? My husband was a carpenter; he was a good \\ncraftsman, he knew how to do everything, he even fixed his own car, with his \\nown hands. We have three children. Three sons. Only Igor was with me at the \\ntime. The older one was in Pyatigorsk, and the younger one is serving in the \\nArmy. And now they\\'re fatherless...\\n\\nI couldn\\'t sit all the way through it. When the Procurator read up to 15\\nyears\\' deprivation of freedom, I just . . . I went out of my mind, I didn\\'t\\nknow what to do with myself, I said, \"How can that be? You,\" I said, \"you are \\nsaying that it was intentional murder and the sentence is 15 years\\' \\ndeprivation of freedom?\" I screamed, I had my mind! I said, \"Let me at that\\ncreep, with my bare hands I\\'ll . . . \" A relative restrained me, and there\\nwere all those military people there . . . I lest. I said,\" This isn\\'t a \\nSoviet trial, this is unjust!\" That\\'s what I shouted, l said it and left . . .\\n\\nI said that on February 27, when those people were streaming down our street, \\nthey were shouting, \"Long live Turkey!\" and \"Glory to Turkey!\" And during the \\ntrial I said to that Ismailov, \"What does that mean, \\'Glory to Turkey\\'?\" I \\nstill don\\'t understand what Turkey has to do with this, we live in the Soviet \\nUnion. That Turkey told you to or is going to help you kill Armenians? I still\\ndon\\'t understand why \"Glory to Turkey!\" I asked that question twice and got no\\nanswer . . . No one answered me . . .\\n\\n May 19, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 178-184\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: Ivanov Sergey \\nSubject: Re: Re: VGA 640x400 graphics mode\\nDistribution: world\\nOrganization: Commercial and Industrial Group ARGUS\\nReply-To: serge@argus.msk.su\\nLines: 7\\n\\n> My 8514/a VESA TSR supports this\\n\\n Can You report CRT and other register state in this mode ?\\n Thank's.\\n\\n Serge Ivanov (serge@argus.msk.su)\\n\\n\",\n", - " 'From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Surface normal orientations\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 42\\n\\nIn article <1pscti$aqe@travis.csd.harris.com> srp@travis.csd.harris.com (Stephen Pietrowicz) writes:\\n>...\\n>How do you go about orienting all normals in the same direction, given a \\n>set of points, edges and faces? \\n\\nLook for edge inconsistencies. Consider two vertices, p and q, which\\nare connected by at least one edge.\\n\\nIf (p,q) is an edge, then (q,p) should *not* appear. \\n\\nIf *both* (p,q) and (q,p) appear as edges, then the surface \"flips\" when\\nyou travel across that edge. This is bad. \\n\\nAssuming (warning...warning...warning) that you have an otherwise\\nacceptable surface - you can pick an edge, any edge, and traverse the\\nsurface enforcing consistency with that edge. \\n\\n 0) pick an edge (p,q), and mark it as \"OK\"\\n 1) for each face, F, containing this edge (if more than 2, oops)\\n make sure that all edges in F are consistent (i.e., the Face\\n should be [(p,q),(q,r),(r,s),(s,t),(t,p)]). Flip those which\\n are wrong. Mark all of the edges in F as \"OK\",\\n and add them to a queue (check for duplicates, and especially\\n inconsistencies - don\\'t let the queue have both (p,q) and (q,p)). \\n 2) remove an edge from the queue, and go to 1).\\n\\nIf a *marked* edge is discovered to be inconsistent, then you lose.\\n\\nIf step 1) finds more than one face sharing a particular edge, then you\\nlose. \\n \\nOtherwise, when done, all of the edges will be consistent. Which means\\nthat all of the surface normals will either point IN or OUT. Deciding\\nwhich way is OUT is left as an exercise...\\n\\n\\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n',\n", - " 'From: kimd@rs6401.ecs.rpi.edu (Daniel Chungwan Kim)\\nSubject: WANTED: Super 8mm Projector with SOUNDS\\nKeywords: projector\\nNntp-Posting-Host: rs6401.ecs.rpi.edu\\nLines: 9\\n\\n\\tI am looking for Super 8mm Projector with SOUNDS.\\nIf anybody out there has one for sale, send email with\\nthe name of brand, condition of the projector, and price\\nfor sale to kimd@rpi.edu\\n(IT MUST HAVE SOUND CAPABILITY)\\n\\nDanny\\nkimd@rpi.edu\\n\\n',\n", - " 'From: mac@utkvx.bitnet (Richard J. McDougald)\\nSubject: Re: Why does Illustrator AutoTrace so poorly?\\nOrganization: University of Tennessee \\nLines: 22\\n\\nIn article <0010580B.vmcbrt@diablo.UUCP> diablo.UUCP!cboesel (Charles Boesel) writes:\\n\\nYeah, Corel Draw and WordPerfect Presentations pretty limited here, too.\\n\\tSince there\\'s no (not really) such thing as a decent raster to\\nvector conversion program, this \"tracing\" technique is about it. Simple\\nstuff, like b&w logos, etc. do pretty well, while more complicated stuff\\ngoes haywire. I suspect (even though I don\\'t write code) that a good\\nbitmapped to vector conversion program would probably be as big as most\\nof these application softwares we\\'re using -- but even so, how come one\\nhasn\\'t been written? (to my knowledge). I mean, even Hijaak, one of the\\ncommercial industry standards of file conversion, hasn\\'t attempted it yet.\\n\\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\\n Mac McDougald * Any opinions expressed herein \\n The Photography Center * are not necessarily (actually,\\n Univ. of Tenn. Knoxville 37996 * are almost CERTAINLY NOT) those\\n mac@utkvx.utk.edu * of The University of Tennessee. \\n mac@utkvx.bitnet * \\n (615-974-3449) * \"Things are more like they are now \\n (615-974-6435) FAX * than they\\'ve ever been before.\"\\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\\n \\n',\n", - " 'From: vdp@mayo.edu (Vinayak Dutt)\\nSubject: Re: Islamic Banks (was Re: Slavery\\nReply-To: vdp@mayo.edu\\nOrganization: Mayo Foundation/Mayo Graduate School :Rochester, MN\\nLines: 39\\n\\nIn article 28833@monu6.cc.monash.edu.au, darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n#In <1993Apr14.143121.26376@bmw.mayo.edu> vdp@mayo.edu (Vinayak Dutt) writes:\\n#>So instead of calling it interest on deposits, you call it *returns on investements*\\n#>and instead of calling loans you call it *investing in business* (that is in other words\\n#>floating stocks in your company). \\n#\\n#No, interest is different from a return on an investment. For one\\n#thing, a return on an investment has greater risk, and not a set return\\n#(i.e. the amount of money you make can go up or down, or you might even\\n#lose money). The difference is, the risk of loss is shared by the\\n#investor, rather than practically all the risk being taken by the\\n#borrower when the borrower borrows from the bank.\\n#\\n\\nBut is it different from stocks ? If you wish to call an investor in stocks as\\na banker, well then its your choice .....\\n\\n#>Relabeling does not make it interest free !!\\n#\\n#It is not just relabeling, as I have explained above.\\n\\nIt *is* relabeling ...\\nAlso its still not interest free. The investor is still taking some money ... as\\ndividend on his investment ... ofcourse the investor (in islamic *banking*, its your\\nso called *bank*) is taking more risk than the usual bank, but its still getting some\\nthing back in return .... \\n\\nAlso have you heard of junk bonds ???\\n\\n\\n---Vinayak\\n-------------------------------------------------------\\n vinayak dutt\\n e-mail: vdp@mayo.edu\\n\\n standard disclaimers apply\\n-------------------------------------------------------\\n\\n\\n',\n", - " 'From: grw@HQ.Ileaf.COM (Gary Wasserman)\\nSubject: Stuff For Sale is GONE!!!\\nNntp-Posting-Host: ars\\nReply-To: grw@HQ.Ileaf.COM (Gary Wasserman)\\nOrganization: Interleaf, Inc.\\nDistribution: usa\\nLines: 10\\n\\n\\nThanks to all who responded. The three items (electric vest,\\nAerostitch Suit, and Scarf) are all spoken for.\\n\\n-Gary\\n\\n-- \\nGary Wasserman \"A completely irrational attraction to BMW bikes\"\\nInterleaf, Inc. Prospect Place, 9 Hillside Ave, Waltham, MA 02154\\ngrw@ileaf.com 617-290-4990x3423 FAX 617-290-4970 DoD#0216\\n',\n", - " 'From: Nanci Ann Miller \\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: Sponsored account, School of Computer Science, Carnegie Mellon, Pittsburgh, PA\\nLines: 56\\n\\t<1993Apr5.084042.822@batman.bmd.trw.com>\\nNNTP-Posting-Host: po5.andrew.cmu.edu\\nIn-Reply-To: <1993Apr5.084042.822@batman.bmd.trw.com>\\n\\n\\njbrown@batman.bmd.trw.com writes:\\n> > Sorry, but there are no supernatural\\n> > forces necessary to create a pathogen. You are saying, \"Since\\n> > diseases are bad, the bad entity must have created it.\" So\\n> > what would you say about acid rain, meteors falling from the\\n> > sky, volcanoes, earthquakes, and other QUOTE UNQUOTE \"Acts\\n> > of God?\" \\n> \\n> I would say that they are not \"acts of God\" but natural\\n> occurrences.\\n\\nIt amazes me that you have the audacity to say that human creation was not\\nthe result of the natural process of evolution (but rather an \"act of God\")\\nand then in the same post say that these other processes (volcanos et al.)\\nare natural occurrences. Who gave YOU the right to choose what things are\\nnatural processes and what are direct acts of God? How do you know that\\nGod doesn\\'t cause each and every natural disaster with a specific purpose\\nin mind? It would certainly go along with the sadistic nature I\\'ve seen in\\nthe bible.\\n\\n> >>Even if Satan had nothing to do with the original inception of\\n> >>disease, evolution by random chance would have produced them since\\n> >>humanity forsook God\\'s protection. If we choose to live apart from\\n> >>God\\'s law (humanity collectively), then it should come as no surprise\\n> >>that there are adverse consequences to our (collective) action. One\\n> >>of these is that we are left to deal with disease and disorders which\\n> >>inevitably result in an entropic universe.\\n> > \\n> > May I ask, where is this \\'collective\\' bullcrap coming from? \\n>\\n> By \"collective\" I was referring to the idea that God works with\\n> humanity on two levels, individually and collectively. If mankind\\n> as a whole decides to undertake a certain action (the majority of\\n> mankind), then God will allow the consequences of that action to\\n> affect mankind as a whole.\\n\\nAdam & Eve (TWO PEOPLE), even tho they had the honor (or so you christians\\nclaim) of being the first two, definitely do NOT represent a majority in\\nthe billions and trillions (probably more) of people that have come after\\nthem. Perhaps they were the majority then, but *I* (and YOU) weren\\'t\\naround to vote, and perhaps we might have voted differently about what to\\ndo with that tree. But your god never asked us. He just assumes that if\\nyou have two bad people then they ALL must be bad. Hmm. Sounds like the\\nsame kind of false generalization that I see many of the theists posting\\nhere resorting to. So THAT\\'s where they get it... shoulda known.\\n\\n> Jim B.\\n\\nNanci\\n\\n.........................................................................\\nIf you know (and are SURE of) the author of this quote, please send me\\nemail (nm0w+@andrew.cmu.edu):\\nLying to ourselves is more deeply ingrained than lying to others.\\n\\n',\n", - " \"From: chico@ccsun.unicamp.br (Francisco da Fonseca Rodrigues)\\nSubject: New planet/Kuiper object found?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 28\\n\\n\\n\\tTonigth a TV journal here in Brasil announced that an object,\\nbeyond Pluto's orbit, was found by an observatory at Hawaii. They\\nnamed the object Karla.\\n\\n\\tThe program said the object wasn't a gaseous giant planet, and\\nshould be composed by rocks and ices.\\n\\n\\tCan someone confirm these information? Could this object be a\\nnew planet or a Kuiper object?\\n\\n\\tThanks in advance.\\n\\n\\tFrancisco.\\n\\n-----------------------=====================================----the stars,----\\n| ._, | Francisco da Fonseca Rodrigues | o o |\\n| ,_| |._/\\\\ | | o o |\\n| | |o/^^~-._ | COTUCA-Colegio Tecnico da UNICAMP | o |\\n|/-' BRASIL | ~| | o o o |\\n|\\\\__/|_ /' | Depto de Processamento de Dados | o o o o |\\n| \\\\__ Cps | . | | o o o o |\\n| | * __/' | InterNet : chico@ccsun.unicamp.br | o o o |\\n| > /' | cotuca@ccvax.unicamp.br| o |\\n| /' /' | Fone/Fax : 55-0192-32-9519 | o o |\\n| ~~^\\\\/' | Campinas - SP - Brasil | o o |\\n-----------------------=====================================----like dust.----\\n\\n\",\n", - " 'From: blgardne@javelin.sim.es.com (Dances With Bikers)\\nSubject: FAQ - What is the DoD?\\nSummary: Everything you always wanted to know about DoD, but were afraid to ask\\nKeywords: DoD FAQ\\nArticle-I.D.: javelin.DoD.monthly_733561501\\nExpires: Sun, 30 May 1993 07:05:01 GMT\\nReply-To: blgardne@javelin.sim.es.com\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 849\\nSupersedes: \\n\\nThis is a periodic posting intended to answer the Frequently Asked\\nQuestion: What is the DoD? It is posted the first of each month, with\\nan expiration time of over a month. Thus, unless your site\\'s news\\nsoftware is ill-mannered, this posting should always be available.\\nThis WitDoDFAQ is crossposted to all four rec.motorcycles groups in an\\nattempt to catch most new users, and followups are directed to\\nrec.motorcycles.\\n\\nLast changed 9-Feb-93 to add a message from the KotL, and a bit of\\nHalon.\\n\\n\\t\\t\\tVERSION 1.1\\n\\nThis collection was originally assembled by Lissa Shoun, from the\\noriginal postings. With Lissa\\'s permission, I have usurped the title of\\nKotWitDoDFAQ. Any corrections, additions, bribes, etc. should be aimed at\\nblgardne@javelin.sim.es.com.\\n\\n------------------------------------------------------------------------\\n\\nContents:\\nHow do I get a DoD number?\\tby Blaine Gardner\\tDoD #46\\nDoD \"Road Rider\" article\\tby Bruce Tanner\\t\\tDoD #161\\nWhat is the DoD?\\t\\tby John Sloan\\t\\tDoD #11\\nThe DoD Logo\\t\\t\\tby Chuck Rogers\\t\\tDoD #3\\nThe DoD (this started it all)\\tby The Denizen of Doom\\tDoD #1\\nThe DoD Anthem\\t\\t\\tby Jonathan Quist\\tDoD #94\\nWhy you have to be killed\\tby Blaine Gardner\\tDoD #46\\nThe rec.moto.photo.archive\\tcourtesy of Bruce Tanner DoD #161\\nPatches? What patches?\\t\\tby Blaine Gardner\\tDoD #46\\nLetter from the AMA museum by Jim Rogers, Director DoD #395\\nThe DoD Rules\\t\\t\\tby consensus\\nOther rec.moto resources\\tby various Keepers\\tDoD #misc\\nThe rec.moto.reviews.archive\\tcourtesy of Loki Jorgenson DoD #1210\\nUpdated stats & rides info\\tby Ed Green (DoD #111) and others\\n\\n------------------------------------------------------------------------\\n\\t\\t\\tHow do I get a DoD number?\\n\\nIf the most Frequently Asked Question in rec.motorcycles is \"What is the\\nDoD?\", then the second most Frequently Asked Question must be \"How do I\\nget a DoD number?\" That is as simple as asking the Keeper of the List\\n(KotL, accept no substitue Keepers) for a number. If you\\'re feeling\\ncreative, and your favorite number hasn\\'t been taken already, you can\\nmake a request, subject to KotL approval. (Warning, non-numeric, non-\\nbase-10 number requests are likely to earn a flame from the KotL. Not\\nthat you won\\'t get it, but you _will_ pay for it.)\\n\\nOh, and just one little, tiny suggestion. Ask the KotL in e-mail. You\\'ll\\njust be playing the lightning rod for flames if you post to the whole\\nnet, and you\\'ll look like a clueless newbie too.\\n\\nBy now you\\'re probably asking \"So who\\'s the KotL already?\". Well, as\\nJohn Sloan notes below, that\\'s about the only real \"secret\" left around\\nhere, but a few (un)subtle hints can be divulged. First, it is not myself,\\nnor anyone mentioned by name in this posting (maybe :-), though John was\\nthe original KotL. Second, in keeping with the true spirit of Unix, the\\nKotL\\'s first name is only two letters long, and can be spelled entirely\\nwith hexadecimal characters. (2.5, the KotL shares his name with a line-\\noriented text utility.) Third, he has occasionally been seen posting\\nmessages bestowing new DoD numbers (mostly to boneheads with \"weenie\\nmailers\"). Fourth, there is reason to suspect the KotL of being a\\nDead-Head.\\n\\n***************** Newsflash: A message from the KotL ******************\\n\\nOnce you have surmounted this intellectual pinnacle and electronically\\ngroveled to the KotL, please keep in mind that the KotL does indeed\\nwork for a living, and occasionally must pacify its boss by getting\\nsomething done. Your request may languish in mailer queue for (gasp!)\\ndays, perhaps even (horrors!) a week or two. During such times of\\neconomic activity on the part of the KotL\\'s employers, sending yet\\nanother copy of your request will not speed processing of the queue (it\\njust makes it longer, verification of this phenominon is left as an\\nexcersize for the reader). If you suspect mailer problems, at least\\nannotate subsequent requests with an indication that a former request\\nwas submitted, lest you be assigned multiple numbers (what, you think\\nthe KotL *memorizes* the list?!?).\\n\\n***********************************************************************\\n\\nOne more thing, the KotL says that its telepathic powers aren\\'t what\\nthey used to be. So provide some information for the list, will ya?\\nThe typical DoD List entry contains number, name, state/country, &\\ne-mail address. For example:\\n\\n0111:Ed Green:CA:ed.green@East.Sun.COM\\n\\n(PS: While John mentions below that net access and a bike are the only\\nrequirements for DoD membership, that\\'s not strictly true these days, as\\nthere are a number of Denizens who lack one or both.)\\n\\nBlaine (Dances With Bikers) Gardner blgardne@javelin.sim.es.com\\n\\n------------------------------------------------------------------------\\n\\n \"Denizens of Doom\", by Bruce Tanner (DoD 0161)\\n\\n [Road Rider, August 1991, reprinted with Bruce\\'s permission]\\n\\nThere is a group of motorcyclists that gets together and does all the normal \\nthings that a bunch of bikers do. They discuss motorcycles and \\nmotorcycling, beverages, cleaning fluids, baklavah, balaclava, caltrops, \\nhelmets, anti-fog shields, spine protectors, aerodynamics, three-angle valve\\nseats, bird hits, deer whistles, good restaurants, racing philosophy, \\ntraffic laws, tickets, corrosion control, personalities, puns, double \\nentendres, culture, absence of culture, first rides and friendship. They \\nargue with each other and plan rides together.\\n\\nThe difference between this group and your local motorcycle club is that, \\nalthough they get together just about everyday, most have never seen each \\nother face to face. The members of this group live all over the known world \\nand communicate with each other electronically via computer.\\n\\nThe computers range from laptops to multi-million dollar computer centers; \\nthe people range from college and university students to high-tech industry \\nprofessionals to public-access electronic bulletin-board users. Currently, \\nrec.motorcycles (pronounced \"wreck-dot-motorcycles,\" it\\'s the file name for \\nthe group\\'s primary on-line \"meeting place\") carries about 2250 articles per \\nmonth; it is read by an estimated 29,000 people. Most of the frequent \\nposters belong to a motorcycle club, the Denizens of Doom, usually referred \\nto as the DoD.\\n\\nThe DoD started when motorcyclist John R. Nickerson wrote a couple of \\nparodies designed to poke fun at motorcycle stereotypes. Fellow computer \\nenthusiast Bruce Robinson posted these articles under the pen name, \"Denizen \\nof Doom.\" A while later Chuck Rogers signed off as DoD nr. 0003 Keeper of \\nthe Flame. Bruce was then designated DoD nr. 0002, retroactively and, of \\ncourse, Nickerson, the originator of the parodies, was given DoD nr. 0001.\\n\\nThe idea of a motorcycle club with no organization, no meetings and no rules \\nappealed to many, so John Sloan -- DoD nr. 0011 -- became Keeper of the \\nList, issuing DoD numbers to anyone who wanted one. To date there have been \\nalmost 400 memberships issued to people all over the United States and \\nCanada, as well as Australia, New Zealand, the United Kingdom, France, \\nGermany, Norway and Finland.\\n\\nKeeper of the List Sloan eventually designed a club patch. The initial run \\nof 300 patches sold out immediately. The profits from this went to the \\nAmerican Motorcycle Heritage Foundation. Another AMHF fund raiser -- \\nselling Denizens of Doom pins to members -- was started by Arnie Skurow a \\nfew months later. Again, the project was successful and the profits were \\ndonated to the foundation. So far, the Denizens have contributed over $1500 \\nto the AMA museum. A plaque in the name of the Denizens of Doom now hangs \\nin the Motorcycle Heritage Museum.\\n\\nAs often as possible, the DoD\\'ers crawl out from behind their CRTs and go \\nriding together. It turns out that the two largest concentrations of \\nDoD\\'ers are centered near Denver/Boulder, Colorado, and in California\\'s \\n\"Silicon Valley.\" Consequently, two major events are the annual Assault on \\nRollins Pass in Colorado, and the Northern versus Southern California \\n\"Joust.\"\\n\\nThe Ride-and-Feed is a bike trip over Rollins Pass, followed by a big \\nbarbecue dinner. The concept for the Joust is to have riders from Northern \\nCalifornia ride south; riders from Southern California to ride north, \\nmeeting at a predesignated site somewhere in the middle. An additional plan \\nfor 1991 is to hold an official Denizens of Doom homecoming in conjunction \\nwith the AMA heritage homecoming in Columbus, Ohio, in July.\\n\\nThough it\\'s a safe bet the the Denizens of Doom and their collective \\ncommunications hub, rec.motorcycles, will not replace the more traditional \\nmotorcycle organizations, for those who prowl the electronic pathways in \\nsearch of two-wheeled camaraderie, it\\'s a great way for kindred spirits to \\nget together. Long may they flame.\\n\\n\\n\"Live to Flame -- Flame to Live\"\\t[centerbar]\\n\\nThis official motto of the Denizens of Doom refers to the ease with which \\nyou can gratuitously insult someone electronically, when you would not do \\nanything like that face to face. These insults are known as \"flames\"; \\nissuing them is called \"flaming.\" Flames often start when a member \\ndisagrees with something another member has posted over the network. A \\ntypical, sophisticated, intelligent form of calm, reasoned rebuttal would be \\nsomething like: \"What an incredibly stupid statement, you Spandex-clad \\nposeur!\" This will guarantee that five other people will reply in defense \\nof the original poster, describing just what they think of you, your riding \\nability and your cat.\\n\\n------------------------------------------------------------------------\\n\\n _The Denizens of Doom: The Saga Unfolds_\\n\\n by John Sloan DoD #0011\\n\\nPeriodically the question \"What is DoD?\" is raised. This is one of\\nthose questions in the same class as \"Why is the sky blue?\", \"If there\\nis a God, why is there so much suffering in the world?\" and \"Why do\\nwomen inevitably tell you that you\\'re such a nice guy just before they\\ndump you?\", the kinds of questions steeped in mysticism, tradition,\\nand philosophy, questions that have inspired research and discussion\\nby philosophers in locker rooms, motorcycle service bays, and in the\\nhalls of academe for generations. \\n\\nA long, long time ago (in computer time, where anything over a few\\nminutes is an eternity and the halting problem really is a problem) on\\na computer far, far away on the net (topologically speaking; two\\nmachines in the same room in Atlanta might route mail to one another\\nvia a system in Chicago), a chap who wished to remain anonymous (but\\nwho was eventually assigned the DoD membership #1) wrote a satire of\\nthe various personalities and flame wars of rec.motorcycles, and\\nsigned it \"The Denizen of Doom\". Not wishing to identify himself, he\\nasked that stalwart individual who would in the fullness of time\\nbecome DoD #2 to post it for him. DoD #2, not really giving a whit\\nabout what other people thought and generally being a right thinking\\nindividual, did so. Flaming and other amusements followed. \\n\\nHe who would become the holder of DoD membership #3 thought this was\\nthe funniest thing he\\'d seen in a while (being the sort that is pretty\\neasily amused), so he claimed membership in the Denizens of Doom\\nMotorcycle Club, and started signing his postings with his membership\\nnumber. \\n\\nPerhaps readers of rec.motorcycles were struck with the vision of a\\nmotorcycle club with no dues, no rules, no restrictions as to brand or\\nmake or model or national origin of motorcycle, a club organized\\nelectronically. It may well be that readers were yearning to become a\\npart of something that would provide them with a greater identity, a\\ngestalt personality, something in which the whole was greater than the\\nsum of its parts. It could also be that we\\'re all computer nerds who\\nwear black socks and sneakers and pocket protectors, who just happen\\nto also love taking risks on machines with awesome power to weight\\nratios, social outcasts who saw a clique that would finally be open\\nminded enough to accept us as members. \\n\\nIn a clear case of self fulfilling prophesy, The Denizens of Doom\\nMotorcycle Club was born. A club in which the majority of members have\\nnever met one another face to face (and perhaps like it that way), yet\\nfeel that they know one another pretty well (or well enough given some\\nof the electronic personalities in the newsgroup). A club organized\\nand run (in the loosest sense of the word) by volunteers through the\\nnetwork via electronic news and mail, with a membership/mailing list\\n(often used to organize group rides amongst members who live in the\\nsame region), a motto, a logo, a series of photo albums circulating\\naround the country (organized by DoD #9), club patches (organized by\\n#11), and even an MTV-style music video (produced by #47 and\\ndistributed on VHS by #18)! \\n\\nWhere will it end? Who knows? Will the DoD start sanctioning races,\\nplacing limits on the memory and clock rate of the on-board engine\\nmanagement computers? Will the DoD organize poker runs where each\\nparticipant collects a hand of hardware and software reference cards?\\nWill the DoD have a rally in which the attendees demand a terminal\\nroom and at least a 386-sized UNIX system? Only time will tell. \\n\\nThe DoD has no dues, no rules, and no requirements other than net\\naccess and a love for motorcycles. To become a member, one need only\\nask (although we will admit that who you must ask is one of the few\\nreally good club secrets). New members will receive via email a\\nmembership number and the latest copy of the membership list, which\\nincludes name, state, and email address. \\n\\nThe Denizens of Doom Motorcycle Club will live forever (or at least\\nuntil next year when we may decided to change the name). \\n\\n Live to Flame - Flame to Live\\n\\n------------------------------------------------------------------------\\n\\n The DoD daemon as seen on the patches, pins, etc. by\\n\\n\\tChuck Rogers, car377@druhi.att.com, DoD #0003\\n \\n\\n :-( DoD )-: \\n :-( x __ __ x )-: \\n :-( x / / \\\\ \\\\ x )-: \\n :-( x / / -\\\\-----/- \\\\ \\\\ x )-: \\n :-( L | \\\\/ \\\\ / \\\\/ | F )-: \\n :-( I | / \\\\ / \\\\ | L )-: \\n :-( V \\\\/ __ / __ \\\\/ A )-: \\n :-( E / / \\\\ / \\\\ \\\\ M )-: \\n :-( | | \\\\ / | | E )-: \\n :-( T | | . | _ | . | | )-: \\n :-( O | \\\\___// \\\\\\\\___/ | T )-: \\n :-( \\\\ \\\\_/ / O )-: \\n :-( F \\\\___ ___/ )-: \\n :-( L \\\\ \\\\ / / L )-: \\n :-( A \\\\ vvvvv / I )-: \\n :-( M | ( ) | V )-: \\n :-( E | ^^^^^ | E )-: \\n :-( x \\\\_______/ x )-: \\n :-( x x )-: \\n :-( x rec.motorcycles x )-:\\n :-( USENET )-:\\n\\n\\n------------------------------------------------------------------------\\n\\n The DoD\\n\\n by the Denizen of Doom DoD #1\\n \\nWelcome one and all to the flamingest, most wonderfullest newsgroup of\\nall time: wreck.mudder-disciples or is it reak.mudder-disciples? The\\nNames have been changes to protect the Guilty (riders) and Innocent\\n(the bikes) alike. If you think you recognize a contorted version of\\nyour name, you don\\'t. It\\'s just your guilt complex working against\\nyou. Read \\'em and weep. \\n\\nWe tune in on a conversation between some of our heros. Terrible\\nBarbarian is extolling the virtues of his Hopalonga Puff-a-cane to\\nReverend Muck Mudgers and Stompin Fueling-Injection: \\n\\nTerrible: This Hopalonga is the greatest... Beats BMWs dead!! \\n\\nMuck: I don\\'t mean to preach, Terrible, but lighten up on the BMW\\n crowd eh? I mean like I like riding my Yuka-yuka Fudgeo-Jammer\\n 11 but what the heck. \\n\\nStompin: No way, the BMW is it, complete, that\\'s all man.\\n\\nTerrible: Nahhhh, you\\'re sounding like Heritick Ratatnack! Hey, at\\n least he is selling his BMW and uses a Hopalonga Intercorruptor!\\n Not as good as a Puff-a-cane, should have been called a\\n Woosh-a-stream.\\n\\nStompin: You mean Wee-Stream.\\n\\nTerrible: Waddya going to do? Call in reinforcements???\\n\\nStompin: Yehh man. Here comes Arlow Scarecrow and High Tech. Let\\'s see\\n what they say, eh? \\n\\nMuck: Now men, let\\'s try to be civil about this.\\n\\nHigh Tech: Hi, I\\'m a 9 and the BMW is the greatest.\\n\\nArlow: Other than my B.T. I love my BMW!\\n\\nTerrible: B.T.???\\n\\nArlow: Burley Thumpison, the greatest all American ride you can own.\\n\\nMuck: Ahhh, look, you\\'re making Terrible gag.\\n\\nTerrible: What does BMW stand for anyway??? \\n\\nMuck, Arlow, High: Beats Me, Wilhelm.\\n\\nTerrible: Actually, my name is Terrible. Hmmm, I don\\'t know either.\\n\\nMuck: Say, here comes Chunky Bear.\\n\\nChunky: Hey, Hey, Hey! Smarter than your average bear!\\n\\nTerrible: Hey, didn\\'t you drop your BMW???\\n\\nChunky: All right eh, a little BooBoo, but I left him behind. I mean \\n even Villy Ogle flamed me for that! \\n\\nMuck: It\\'s okay, we all makes mistakes.\\n\\nOut of the blue the West coasters arrive, led by Tread Orange with\\nDill Snorkssy, Heritick Ratatnack, Buck Garnish, Snob Rasseller and\\nthe perenial favorite: Hooter Boobin Brush! \\n\\nHeritick: Heya Terrible, how\\'s yer front to back bias?\\n\\nTerrible: Not bad, sold yer BMW?\\n\\nHeritick: Nahhh.\\n\\nHooter: Hoot, Hoot.\\n\\nBuck: Nice tree Hooter, how\\'d ya get up there?\\n\\nHooter: Carbujectors from Hell!!!\\n\\nMuck: What\\'s a carbujector?\\n\\nHooter: Well, it ain\\'t made of alumican!!! Made by Tilloslert!!\\n\\nMuck: Ahh, come on down, we aren\\'t going to flame ya, honest!!\\n\\nDill: Well, where do we race?\\n\\nSnob: You know, Chunky, we know about about your drop and well, don\\'t\\n ride! \\n\\nMuck: No! No! Quiet!\\n\\nTread: BMW\\'s are the greatest in my supreme level headed opinion.\\n They even have luggage made by Sourkraut!\\n\\nHigh: My 9 too!\\n\\nTerrible, Heritick, Dill, Buck: Nahhhhh!!!\\n\\nStompin, Tread, High, Chunky, Snob: Yesss Yessssss!!!\\n\\nBefore this issue could be resolved the Hopalonga crew called up more\\ncohorts from the local area including Polyanna Stirrup and the\\ninfamous Booster Robiksen on his Cavortin! \\n\\nPolyanna: Well, men, the real bikers use stirrups on their bikes like\\n I use on my Hopalonga Evening-Bird Special. Helpful for getting\\n it up on the ole ventral stand! \\n\\nTerrible: Hopalonga\\'s are great like Polyanna says and Yuka-Yuka\\'s and\\n Sumarikis and Kersnapis are good too! \\n\\nBooster: I hate Cavortin.\\n\\nAll: WE KNOW, WE KNOW.\\n\\nBooster: I love Cavortin.\\n\\nAll: WE KNOW WE KNOW.\\n\\nMuck: Well, what about Mucho Guzlers and Lepurras?\\n\\nSnob, Tread: Nawwwwww.\\n\\nMuck: What about a Tridump?\\n\\nTerrible: Isn\\'t that a chewing gum?\\n\\nMuck: Auggggg, Waddda about a Pluck-a-kity?\\n\\nHeritick: Heyya Muck, you tryin\\' to call up the demon rider himself?\\n\\nMuck: No, no. There is more to Mudder-Disciples than arguing about make.\\n\\nTwo more riders zoom in, in the form of Pill Turret and Phalanx Lifter.\\nPill: Out with dorsal stands and ventral stands forever.\\n\\nPhalanx: Hey, I don\\'t know about that.\\n\\nAnd Now even more west coasters pour in.\\nRoad O\\'Noblin: Hopalonga\\'s are the greatest!\\n\\nMaulled Beerstein: May you sit on a bikejector!\\n\\nSuddenly more people arrived from the great dark nurth:\\nKite Lanolin: Hey, BMW\\'s are great, men.\\n\\nRobo-Nickie: I prefer motorcycle to robot transformers, personally.\\n\\nMore riders from the west coast come into the discussion:\\nAviator Sourgas: Get a Burley-Thumpison with a belted-rigged frame.\\n\\nGuess Gasket: Go with a BMW or Burley-Thumpison.\\n\\nWith a roar and a screech the latest mudder-disciple thundered in. It\\nwas none other that Clean Bikata on her Hopalonga CaBammerXorn. \\nClean: Like look, Hopalonga are it but only CaBammerXorns. \\n\\nMuck: Why??\\n\\nClean: Well, like it\\'s gotta be a 6-banger or nothin.\\n\\nMuck: But I only have a 4-banger.\\n\\nClean: No GOOD!\\n\\nChunky: Sob, some of us only have 2-bangers!\\n\\nClean: Inferior!\\n\\nStompin: Hey, look, here\\'s proof BMW\\'s are better. The Bimmer-Boys\\nburst into song: (singing) Beemer Babe, Beemer Babe give me a\\nthrill... \\n\\nRoad, Terrible, Polyanna, Maulled, Dill etc.: Wadddoes BMW stand for? \\n\\nHeritick, Stompin, Snob, Chunky, Tread, Kite, High, Arlow: BEAT\\'S ME,\\n WILHEM! \\n\\nRoad, Terrible, Polyanna, Maulled, Dill etc.: Oh, don\\'t you mean BMW? \\n\\nAnd so the ensuing argument goes until the skies clouded over and the\\nthunder roared and the Greatest Mudder-Disciple (G.M.D.) of them all\\nboomed out.\\nG.M.D.: Enough of your bickering! You are doomed to riding\\n Bigot & Suction powered mini-trikes for your childish actions. \\n\\nAll: no, No, NO!!! Puhlease.\\n\\nDoes this mean that all of the wreck.mudder-disciples will be riding\\nmini-trikes? Are our arguing heros doomed? Tune in next week for the\\nnext gut wretching episode of \"The Yearning and Riderless\" with its\\never increasing cast of characters. Where all technical problems will\\nbe flamed over until well done. Next week\\'s episode will answer the\\nquestion of: \"To Helmet or Not to Helmet\" will be aired, this is heady\\nmaterial and viewer discretion is advised. \\n\\n------------------------------------------------------------------------\\n\\n Script for the Denizens of Doom Anthem Video\\n\\n by Jonathan E. Quist DoD #94\\n\\n\\n[Scene: A sterile engineering office. A lone figure, whom we\\'ll call\\nChuck, stands by a printer output bin, wearing a white CDC lab coat,\\nwith 5 mechanical pencils in a pocket protector.] \\n\\n(editor\\'s note: For some reason a great deal of amusement was had at\\nthe First Annual DoD Uni-Coastal Ironhorse Ride & Joust by denizens\\nreferring to each other as \"Chuck\". I guess you had to be there. I\\nwasn\\'t.) \\n\\nChuck: I didn\\'t want to be a Software Systems Analyst,\\n cow-towing to the whims of a machine, and saying yessir, nosir,\\n may-I-have-another-sir. My mother made me do it. I wanted\\n to live a man\\'s life,\\n[Music slowly builds in background]\\n riding Nortons and Triumphs through the highest mountain passes\\n and the deepest valleys,\\n living the life of a Motorcyclist;\\n doing donuts and evading the police;\\n terrorizing old ladies and raping small children;\\n eating small dogs for tea (and large dogs for dinner). In short,\\n\\n\\tI Want to be A Denizen!\\n\\n[Chuck rips off his lab coat, revealing black leather jacket (with\\nfringe), boots, and cap. Scene simultaneously changes to the top of\\nan obviously assaulted Rollins Pass. A small throng of Hell\\'s Angels\\nsit on their Harleys in the near background, gunning their engines,\\nshowering lookers-on with nails as they turn donuts, and leaking oil\\non the tarmac. Chuck is standing in front of a heavily chromed Fat\\nBoy.] \\n\\nChuck [Sings to the tune of \"The Lumberjack Song\"]:\\n\\nI\\'m a Denizen and I\\'m okay,\\nI flame all night and I ride all day.\\n\\n[Hell\\'s Angels Echo Chorus, surprisingly heavy on tenors]:\\nHe\\'s a Denizen and he\\'s okay,\\nHe flames all night and he rides all day.\\n\\nI ride my bike;\\nI eat my lunch;\\nI go to the lavat\\'ry.\\nOn Wednesdays I ride Skyline,\\nRunning children down with glee.\\n\\n[Chorus]:\\nHe rides his bike;\\nHe eats his lunch;\\nHe goes to the lavat\\'ry.\\nOn Wednesdays he rides Skyline,\\nRunning children down with glee.\\n\\n[Chorus refrain]:\\n\\'Cause He\\'s a Denizen...\\n\\nI ride real fast,\\nMy name is Chuck,\\nIt somehow seems to fit.\\nI over-rate the worst bad f*ck,\\nBut like a real good sh*t.\\n\\nOh, I\\'m a Denizen and I\\'m okay!\\nI flame all night and I ride all day.\\n\\n[Chorus refrain]:\\nOh, He\\'s a Denizen...\\n\\nI wear high heels\\nAnd bright pink shorts,\\n full leathers and a bra.\\nI wish I rode a Harley,\\n just like my dear mama.\\n\\n[Chorus refrain]\\n\\n------------------------------------------------------------------------\\n\\n Why you have to be killed.\\n\\nWell, the first thing you have to understand (just in case you managed\\nto read this far, and still not figure it out) is that the DoD started\\nas a joke. And in the words of one Denizen, it intends to remain one.\\n\\nSometime in the far distant past, a hapless newbie asked: \"What does DoD\\nstand for? It\\'s not the Department of Defense is it?\" Naturally, a\\nDenizen who had watched the movie \"Top Gun\" a few times too many rose\\nto the occasion and replied:\\n\\n\"That\\'s classified, we could tell you, but then we\\'d have to kill you.\"\\n\\nAnd the rest is history.\\n\\nA variation on the \"security\" theme is to supply disinformation about\\nwhat DoD stands for. Notable contributions (and contributers, where\\nknown) include:\\n\\nDaughters of Democracy (DoD 23)\\t\\tDoers of Donuts\\nDancers of Despair (DoD 9)\\t\\tDebasers of Daughters\\nDickweeds of Denver\\t\\t\\tDriveway of Death\\nDebauchers of Donuts\\t\\t\\tDumpers of Dirtbikes\\n\\nNote that this is not a comprehensive list, as variations appear to be\\nlimited only by the contents of one\\'s imagination or dictionary file.\\n\\n------------------------------------------------------------------------\\n\\n The rec.moto.photo archive\\n\\nFirst a bit of history, this all started with Ilana Stern and Chuck\\nRogers organizing a rec.motorcycles photo album. Many copies were made,\\nand several sets were sent on tours around the world, only to vanish in\\nunknown locations. Then Bruce Tanner decided that it would be appropriate\\nfor an electronic medium to have an electronic photo album. Bruce has not\\nonly provided the disk space and ftp & e-mail access, but he has taken\\nthe time to scan most of the photos that are available from the archive.\\n\\nNot only can you see what all these folks look like, you can also gawk\\nat their motorcycles. A few non-photo files are available from the\\nserver too, they include the DoD membership list, the DoD Yellow Pages,\\nthe general rec.motorcycles FAQ, and this FAQ posting.\\n\\nHere are a couple of excerpts from from messages Bruce posted about how\\nto use the archive.\\n\\n**********************************************************\\n\\nVia ftp:\\n\\ncerritos.edu [130.150.200.21]\\n\\nVia e-mail:\\n\\nThe address is server@cerritos.edu. The commands are given in the body of the\\nmessage. The current commands are DIR and SEND, given one per line. The\\narguments to the commands are VMS style file specifications. For\\nrec.moto.photo the file spec is [DOD]file. For example, you can send:\\n\\ndir [dod]\\nsend [dod]bruce_tanner.gif\\nsend [dod]dodframe.ps\\n\\nand you\\'ll get back 5 mail messages; a directory listing, 3 uuencoded parts\\nof bruce_tanner.gif, and the dodframe.ps file in ASCII.\\n\\nOh, wildcards (*) are allowed, but a maximum of 20 mail messages (rounded up to\\nthe next whole file) are send. A \\'send [dod]*.gif\\' would send 150 files of\\n50K each; not a good idea.\\n-- \\nBruce Tanner (213) 860-2451 x 596 Tanner@Cerritos.EDU\\nCerritos College Norwalk, CA cerritos!tanner\\n\\n**********************************************************\\n\\nA couple of comments: Bruce has put quite a bit of effort into this, so\\nwhy not drop him a note if you find the rec.moto.photo archive useful?\\nSecond, since Bruce has provided the server as a favor, it would be kind\\nof you to access it after normal working hours (California time). \\n\\n------------------------------------------------------------------------\\n\\n Patches? What patches?\\n\\nYou may have heard mention of various DoD trinkets such as patches &\\npins. And your reaction was probably: \"I want!\", or \"That\\'s sick!\", or\\nperhaps \"That\\'s sick! I want!\"\\n\\nWell, there\\'s some good news and some bad news. The good news is that\\nthere\\'s been an amazing variety of DoD-labeled widgets created. The bad\\nnews is that there isn\\'t anywhere you can buy any of them. This isn\\'t\\nbecause of any \"exclusivity\" attempt, but simply because there is no\\n\"DoD store\" that keeps a stock. All of the creations have been done by\\nindividual Denizens out of their own pockets. The typical procedure is\\nsomeone says \"I\\'m thinking of having a DoD frammitz made, they\\'ll cost\\n$xx.xx, with $xx.xx going to the AMA museum. Anyone want one?\" Then\\norders are taken, and a batch of frammitzes large enough to cover the\\npre-paid orders is produced (and quickly consumed). So if you want a\\nDoD doodad, act quickly the next time somebody decides to do one. Or\\nproduce one yourself if you see a void that needs filling, after all\\nthis is anarchy in action.\\n\\nHere\\'s a possibly incomplete list of known DoD merchandise (and\\nperpetrators). Patches (DoD#11), pins (DoD#99), stickers (DoD#99),\\nmotorcycle license plate frames (DoD#216), t-shirts (DoD#99), polo shirts\\n(DoD#122), Zippo lighters (DoD#99) [LtF FtL], belt buckles (DoD#99), and\\npatches (DoD#99) [a second batch was done (and rapidly consumed) by\\npopular demand].\\n\\nAll \"profits\" have been donated to the American Motorcyclist Association\\nMotorcycle Heritage Museum. As of June 1992, over $5500 dollars has been\\ncontributed to the museum fund by the DoD. If you visit the museum,\\nyou\\'ll see a large plaque on the Founders\\' Wall in the name of \"Denizens\\nof Doom, USENET, The World\", complete with a DoD pin.\\n\\n------------------------------------------------------------------------\\n\\nHere\\'s a letter from the AMA to the DoD regarding our contributions.\\n\\n~Newsgroups: rec.motorcycles\\n~From: Arnie Skurow \\n~Subject: A letter from the Motorcycle Heritage Museum\\n~Date: Mon, 13 Apr 1992 11:04:58 GMT\\n\\nI received the following letter from Jim Rogers, director of the Museum,\\nthe other day.\\n\\n\"Dear Arnie and all members of the Denizens of Doom:\\n\\nCongratulations and expressions of gratitude are in order for you and the\\nDenizens of Doom! With your recent donation, the total amount donated is\\nnow $5,500. On behalf of the AMHF, please extend my heartfeld gratitude\\nto all the membership of the Denizens. The club\\'s new plaque is presently\\nbeing prepared. Of course, everyone is invited to come to the museum to \\nsee the plaque that will be installed in our Founders Foyer. By the way,\\nI will personally mount a Denizens club pin on the plaque. Again, thank \\nyou for all your support, which means so much to the foundation, the\\nmuseum, and the fulfillment of its goals.\\n\\n Sincerely,\\n\\n\\n Jim Rogers, D.O.D. #0395\\n Director\\n\\nP.S. Please post on your computer bulletin board.\"\\n\\nAs you all know, even though the letter was addressed to me personally,\\nit was meant for all of you who purchased DoD goodies that made this\\namount possible.\\n\\nArnie\\n\\n------------------------------------------------------------------------\\n\\nThe Rules, Regulations, & Bylaws of the Denizens of Doom Motorcycle Club\\n\\nFrom time to time there is some mention, discussion, or flame about the\\nrules of the DoD. In order to fan the flames, here is the complete text\\nof the rules governing the DoD.\\n\\n\\t\\t\\tRule #1. There are no rules.\\n\\t\\t\\tRule #0. Go ride.\\n\\n------------------------------------------------------------------------\\n\\n\\t\\tOther rec.motorcycles information resources.\\n\\nThere are several general rec.motorcycles resources that may or may not\\nhave anything to do with the DoD. Most are posted on a regular basis,\\nbut they can also be obtained from the cerritos ftp/e-mail server (see\\nthe info on the photo archive above).\\n\\nA general rec.motorcycles FAQ is maintained by Dave Williams.\\nCerritos filenames are FAQn.TXT, where n is currently 1-5.\\n\\nThe DoD Yellow Pages, a listing of motorcycle industry vendor phone\\nnumbers & addresses, is maintained by bob pakser.\\nCerritos filename is YELLOW_PAGES_Vnn, where n is the rev. number.\\n\\nThe List of the DoD membership is maintained by The Keeper of the List.\\nCerritos filename is DOD.LIST.\\n\\nThis WitDoD FAQ (surprise, surprise!) is maintained by yours truly.\\nCerritos filename is DOD_FAQ.TXT.\\n\\nAdditions, corrections, etc. for any of the above should be aimed at\\nthe keepers of the respective texts.\\n\\n------------------------------------------------------------------------\\n\\n(Loki Jorgenson loki@Physics.McGill.CA) has provided an archive site\\nfor motorcycle and accessory reviews, here\\'s an excerpt from his\\nperiodic announcement.\\n\\n**********************************************************\\n\\n\\tThe Rec.Motorcycles.Reviews Archives (and World Famous Llama\\n Emporium) contains a Veritable Plethora (tm) of bike (and accessories)\\n reviews, written by rec.moto readers based on their own experiences.\\n These invaluable gems of opinion (highly valued for their potential to\\n reduce noise on the list) can be accessed via anonymous FTP, Email\\n server or by personal request:\\n\\n Anonymous FTP:\\t\\tftp.physics.mcgill.ca (132.206.9.13)\\n\\t\\t\\t\\t\\tunder ~ftp/pub/DoD\\n Email archive server:\\t\\trm-reviews@ftp.physics.mcgill.ca\\n Review submissions/questions:\\trm-reviews@physics.mcgill.ca\\n\\n NOTE: There is a difference in the addresses for review submission\\n and using the Email archive server (ie. an \"ftp.\").\\n\\n To get started with the Email server, send an Email message with a line\\n containing only \"send help\". \\n\\n NOTE: If your return address appears like\\n\\tdomain!subdomain!host!username\\n in your mail header, include a line like (or something similar)\\n\\tpath username@host.subdomain.domain \\n\\n\\tIf you are interested in submitting a review of a bike that you\\n already own(ed), PLEASE DO! There is a template of the format that the\\n reviews are kept in (more or less) available at the archive site .\\n For those who have Internet access but are unsure of how anonymous\\n FTP works, an example script is available on request.\\n\\n**********************************************************\\n\\nReviews of any motorcycle related accessory or widget are welcome too.\\n\\n------------------------------------------------------------------------\\n\\n Updated stats & rec.motorcycles rides info\\n\\nSome of the info cited above in various places tends to be a moving\\ntarget. Rather than trying to catch every occurence, I\\'m just sticking\\nthe latest info down here.\\n\\nEstimated rec.motorcycles readership: 35K [news.groups]\\n \\nApproximate DoD Membership: 975 [KotL]\\n\\nDoD contributions to the American Motorcyclist Association Motorcycle\\nHeritage Museum. Over $5500 [Arnie]\\n \\n Organized (?) Rides:\\n\\nSummer 1992 saw more organized rides, with the Joust in its third\\nyear, and the Ride & Feed going strong, but without the Rollins Pass\\ntrip due to the collapse of a tunnel. The East Coast Denizens got\\ntogether for the Right Coast Ride (RCR), with bikers from as far north\\nas NH, and as far south as FL meeting in the Blueridge Mountains of\\nNorth Carolina. The Pacific Northwest crew organized the first Great\\nPacific Northwest Dryside Gather (GPNDG), another successful excuse for\\nriding motorcycles, and seeing the faces behind the names we all have\\ncome to know so well. [Thanks to Ed Green for the above addition.]\\n\\nAlso worth mentioning are: The first rec.moto.dirt ride, held in the\\nMoab/Canyonlands area of southern Utah. Riders from 5 states showed up,\\nriding everything from monster BMWs to itty-bitty XRs to almost-legal\\n2-strokes. And though it\\'s not an \"official\" (as if anything could be\\nofficial with this crowd) rec.moto event, the vintage motorcycle races\\nin Steamboat Springs, Colorado always provides a good excuse for netters\\nto gather. There\\'s also been the occasional Labor Day gather in Utah.\\nEuropean Denizens have staged some gathers too. (Your ad here,\\nreasonable rates!)\\n------------------------------------------------------------------------\\n-- \\nBlaine Gardner @ Evans & Sutherland 580 Arapeen Drive, SLC, Utah 84108\\n blgardne@javelin.sim.es.com BIX: blaine_g@bix.com FJ1200\\nHalf of my vehicles and all of my computers are Kickstarted. DoD#46\\n-- \\nBlaine Gardner @ Evans & Sutherland 580 Arapeen Drive, SLC, Utah 84108\\n blgardne@javelin.sim.es.com BIX: blaine_g@bix.com FJ1200\\nHalf of my vehicles and all of my computers are Kickstarted. DoD#46\\n',\n", - " 'From: frank@marvin.contex.com (Frank Perdicaro)\\nSubject: ST1100 ride\\nKeywords: heavy\\nLines: 95\\n\\nSixteen days I had put off test driving the Honda ST1100. Finally,\\nthe 17th was a Saturday without much rain. In fact it cleared up, \\nbecame warm and sunny, and the wind died. About three weeks ago, I\\ntook a long cool ride on the Hawk down to Cycles! 128 for a test ride.\\nThey had sold, and delivered, the demo ST1100 about fifteen hours\\nbefore I arrived. And the demo VFR was bike-locked in the showroom --\\nsurrounded by 150 other bikes, and not likely to move soon.\\n\\nToday was different. There were even more bikes. 50 used dirt bikes,\\n50 used street bikes, 35 cars, and a big tent full of Outlandishly Fat\\nTouring Bikes With Trailers were all squeezed in the parking lot.\\nSome sort of fat bike convention. Shelly and Dave were running one\\nMSF course each, at the same time. One in the classroom and one on\\nthe back lot. Plus, there was the usuall free cookout food that\\nCycles! gives away every weekend in the summer. Hmmm, it seemed like\\na big moto party.\\n\\nAfter about ten minutes of looking for Rob C, cheif of sales slime,\\nand another 5 minutes reading and signing a long disclosure/libility/\\npray-to-god form I helped JT push the ST out into the mess in the\\nparking lot. We went over the the controls, I put the tank bag from \\nthe Hawk into the right saddlebag, and my wife put everything else\\ninto the left saddlebag. ( Thats nice.... ) Having helped push the \\nST out to the lot, I thought it best to have JT move it to the edge of\\nthe road, away from the 100+ bikes and 100+ people. He rode it like a\\nbicycle! \\'It cant be that heavy\\' I thought.\\n\\nWell I was wrong. As I sat on the ST, both feet down, all I could \\nthink was \"big\". Then I put one foot up. \"Heavy\" came to mind very\\nquickly. With Cindy on the back -- was she on the back? Hard to \\ntell with seat three times as large as a Hawk seat -- the bike seemed\\nnearly out of control just idling on the side of the road.\\n\\nBy 3000 rpm in second gear, all the weight seemed to dissappear. Even\\non bike with 4.1 miles on the odometer, slippery new tires, and pads that \\ndid not yet bite the disks, things seems smooth and sure. Cycles! is\\non a section of 128 that few folks ever ride. About 30 miles north\\nof the computer concentration, about five miles north of where I95\\nsplits away, 128 is a lighly travelled, two lane limited access\\nhighway. It goes through heavily forested sections of Hamilton, \\nManchester-by-the-Sea and Newbury on its way to Gloucester.\\nOn its way there, it meets 133, a road that winds from the sea about\\n30 miles inland to Andover. On its way it goes through many\\nthoroughly New England spots. Perfect, if slow, sport touring sections.\\n\\nCindy has no difficulty with speed. 3rd gear, 4th gear, purring along\\nin top gear. This thing has less low rpm grunt that my Hawk. Lane \\nchanges were a new experience. A big heft is required to move this \\nthing. Responds well though. No wallowing or complaint. Behind the\\nfairing it was fairly quiet, but the helmet buffeting was\\nnon-trivial. Top gear car passing at 85mph was nearly effortless.\\nSmooth, smooth, smooth. Not sure what the v4 sound reminds me of,\\nbut it is pleasant. If only the bars were not transmitting an endless\\nbuzz.\\n\\nThe jump on to 133 caused me to be less than impressed with the\\nbrakes. Its a down hill, reversing camber, twice-reversing radius,\\ndecreasing radius turn. A real squeeze is needed on the front binder. \\nThe section of 133 we were on was tight, but too urban. The ST works ok\\nin this section, but it shows its weight. We went by the clam shack\\noft featured in \"Spencer for Hire\" -- a place where you could really \\nfind \"Spencer\", his house was about 15 miles down 133. After putting\\nthrough traffic for a while, we turned and went back to 128.\\n\\nAbout half way through the onramp, I yanked Cindy\\'s wrist, our singal\\nfor \"hold on tight\". Head check left, time to find redline. Second\\ngear gives a good shove. Third too. Fourth sees DoD speed with a \\nshort shift into top. On the way to 133 we saw no cops and very light\\ntraffic. Did not cross into DoD zone because the bike was too new.\\nWell, now it had 25 miles on it, so it was ok. Tried some high effort\\nlane changes, some wide sweeping turns. Time to wick it up? I went \\nuntil the buffeting was threating to pull us off the seat. And stayed\\nthere. When I was comfortable with the wind and the steering, \\nI looked down to find an indicated 135mph. Not bad for 2-up touring.\\n\\nBeverly comes fast at more than twice the posted limit. At the \"get\\noff in a mile\" sign, I rolled off the throttle and coasted. I wanted\\nto re-adjust to the coming slowness. It was a good idea: there were\\nseveral manhole-sized patches of sand on the exit ramp. Back to the \\nslow and heavy behavior. Cycles! is about a mile from 128. I could \\nsee even more cars stacked up outside right when I got off. I managed\\nto thread the ST through the cars to the edge of the concrete pad\\nout front. Heavy. It took way too much effort for Cindy and I to put\\nthe thing on the center stand. I am sure that if I used the side\\nstand the ST would have been on its side within a minute.\\n\\n\\nMy demo opinion? Heavy. Put it on a diet. Smooth, comfortable,\\nhardly notices the DoD speed. I\\'d buy on for about $3000 less than \\nlist, just like it is. Too much $ for the bike as it is.\\n-- \\n\\t Frank Evan Perdicaro \\t\\t\\t\\tXyvision Color Systems\\n Legalize guns, drugs and cash...today.\\t\\t101 Edgewater Drive\\n inhouse: frank@marvin, x5572\\t\\t\\t\\tWakefield MA\\nouthouse: frank@contex.com, 617-245-4100x5572\\t\\t018801285\\n',\n", - " \"From: havardn@edb.tih.no (Haavard Nesse,o92a)\\nSubject: HELP!!! GRASP\\nReply-To: havardn@edb.tih.no\\nPosting-Front-End: Winix Conference v 92.05.15 1.20 (running under MS-Windows)\\nLines: 13\\n\\nHi!\\n\\nCould anyone tell me if it's possible to save each frame\\nof a .gl (grasp) animation to .gif, .jpg, .iff or any other\\npicture formats.\\n\\n(I've got some animations that I'd like to transfer to my Amiga)\\n \\nI really hope that someone can help me.\\n\\nCheers\\n\\nHaavard Nesse - Trondheim College of Engineering, Trondheim, Norway\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Let the Turks speak for themselves.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 95\\n\\nIn article <1993Apr16.142935.535@cs.yale.edu> karage@scus1.ctstateu.edu (Angelos Karageorgiou) writes:\\n\\n>\\tIf Turks in Greece were so badly mistreated how come they\\n>elected two,m not one but two, representatives in the Greek government?\\n\\nPardon me?\\n\\n\"Greece Government Rail-Roads Two Turkish Ethnic Deputies\"\\n\\nWhile World Human Rights Organizations Scream, Greeks \\nPersistently Work on Removing the Parliamentary Immunity\\nof Dr. Sadik Ahmet and Mr. Ahmet Faikoglu.\\n\\n\\nDr. Sadik Ahmet, Turkish Ethnic Member of Greek Parliament, Visits US\\n\\nWashington DC, July 7- Doctor Sadik Ahmet, one of the two ethnic\\nTurkish members of the Greek parliament visited US on june 24 through\\nJuly 5th and held meetings with human rights organizations and\\nhigh-level US officials in Washington DC and New York.\\n\\nAt his press conference at the National Press Club in Washington DC,\\nSadik Ahmet explained the plight of ethnic Turks in Greece and stated\\nsix demands from Greek government.\\n\\nAhmet said \"our only hope in Greece is the pressure generated from\\nWestern capitals for insisting that Greece respects the human rights.\\nWhat we are having done to ethnic Turks in Greece is exactly the same\\nas South African Apartheid.\" He added: \"What we are facing is pure\\nGreek hatred and racial discrimination.\"\\n\\nSpelling out the demands of the Turkish ethnic community in Greece\\nhe said \"We want the restoration of Greek citizenship of 544 ethnic\\nTurks. Their citizenship was revoked by using the excuse that this\\npeople have stayed out of Greece for too long. They are Greek citizens\\nand are residing in Greece, even one of them is actively serving in\\nthe Greek army. Besides, other non-Turkish citizens of Greece are\\nnot subject to this kind of interpretation at an extent that many of\\nGreek-Americans have Greek citizenship and they permanently live in\\nthe United States.\"\\n\\n\"We want guarantee for Turkish minority\\'s equal rights. We want Greek\\ngovernment to accept the Turkish minority and grant us our civil rights.\\nOur people are waiting since 25 years to get driving licenses. The Greek\\ngovernment is not granting building permits to Turks for renovating\\nour buildings or building new ones. If your name is Turkish, you are\\nnot hired to the government offices.\"\\n\\n\"Furthermore, we want Greek government to give us equal opportunity\\nin business. They do not grant licenses so we can participate in the\\neconomic life of Greece. In my case, they denied me a medical license\\nnecessary for practicing surgery in Greek hospitals despite the fact\\nthat I have finished a Greek medical school and followed all the\\nnecessary steps in my career.\"\\n\\n\"We want freedom of expression for ethnic Turks. We are not allowed\\nto call ourselves Turks. I myself have been subject of a number of\\nlaw suits and even have been imprisoned just because I called myself\\na Turk.\"\\n\\n\"We also want Greek government to provide freedom of religion.\"\\n\\nIn separate interview with The Turkish Times, Dr. Sadik Ahmet stated\\nthat the conditions of ethnic Turks are deplorable and in the eyes of\\nGreek laws, ethnic Greeks are more equal than ethnic Turks. As an example,\\nhe said there are about 20,000 telephone subscribers in Selanik (Thessaloniki)\\nand only about 800 of them are Turks. That is not because Turks do not\\nwant to have telephone services at their home and businesses. He said\\nthat Greek government changed the election law just to keep him out\\nof the parliament as an independent representative and they stated\\nthis fact openly to him. While there is no minimum qualification\\nrequirement for parties in terms of receiving at least 3% of the votes,\\nthey imposed this requirement for the independent parties, including\\nthe Turkish candidates.\\n\\nAhmet was born in a small village at Gumulcine (Komotini), Greece 1947.\\nHe earned his medical degree at University of Thessaloniki in 1974.\\nhe served in the Greek military as an infantryman.\\n\\nIn 1985 he got involved with community affairs for the first time\\nby collecting 15,000 signatures to protest the unjust implementation\\nof laws against ethnic Turks. In 1986, he was arrested by the police\\nfor collecting signatures.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " \"From: gwh@soda.berkeley.edu (George William Herbert)\\nSubject: Re: Moonbase race\\nOrganization: Retro Aerospace\\nLines: 14\\nNNTP-Posting-Host: soda.berkeley.edu\\nSummary: Hmm...\\n\\nHmm. $1 billion, lesse... I can probably launch 100 tons to LEO at\\n$200 million, in five years, which gives about 20 tons to the lunar\\nsurface one-way. Say five tons of that is a return vehicle and its\\nfuel, a bigger Mercury or something (might get that as low as two\\ntons), leaving fifteen tons for a one-man habitat and a year's supplies?\\nGee, with that sort of mass margins I can build the systems off\\nthe shelf for about another hundred million tops. That leaves\\nabout $700 million profit. I like this idea 8-) Let's see\\nif you guys can push someone to make it happen 8-) 8-)\\n\\n[slightly seriously]\\n\\n-george william herbert\\nRetro Aerospace\\n\",\n", - " \"From: jk87377@lehtori.cc.tut.fi (Kouhia Juhana)\\nSubject: XV problems\\nOrganization: Tampere University of Technology\\nLines: 113\\nDistribution: world\\nNNTP-Posting-Host: cc.tut.fi\\n\\n[Please, note the Newsgroups.]\\n\\nRecent discussion about XV's problems were held in some newsgroup.\\nHere is some text users of XV might find interesting.\\nI have added more to text to this collection article, so read on, even\\nyou so my articles a while ago.\\n\\nI hope author of XV corrects those problems as best he can, so fine\\nprogram XV is that it is worth of improving.\\n(I have also minor ideas for 24bit XV, e-mail me for them.)\\n\\nAny misundertanding of mine is understandable.\\n\\n\\nJuhana Kouhia\\n\\n\\n==clip==\\n\\n[ ..deleted..]\\n\\nNote that 'xv' saves only 8bit/rasterized images; that means that\\nthe saved jpegs are just like jpeg-to-gif-to-jpeg quality.\\nAlso, there's three kind of 8bit quantizers; your final image quality\\ndepends on them too.\\n \\nThis were the situation when I read jpeg FAQ a while ago.\\n \\nIMHO, it is design error of 'xv'; there should not be such confusing\\nerrors in programs.\\nThere's two errors:\\n -xv allows the saving of 8bit/rasterized image as jpeg even the\\n original is 24bit -- saving 8bit/rasterized image instead of\\n original 24bit should be a special case\\n -xv allows saving the 8bit/rasterized image made with any quantizer\\n -- the main case should be that 'xv' quantizes the image with the\\n best quantizer available before saving the image to a file; lousier\\n quantizers should be just for viewing purposes (and a special cases\\n in saving the image, if at all)\\n \\n==clip==\\n\\n==clip==\\n\\n[ ..deleted..]\\n\\nIt is limit of *XV*, but not limit of design.\\nIt is error in design.\\nIt is error that 8bit/quantized/rasterized images are stored as jpegs;\\njpeg is not designed to that.\\n\\nAs matter of fact, I'm sure when XV were designed 24bit displays were\\nknown. It is not bad error to program a program for 8bit images only\\nat that time, but when 24bit image formats are included to program the\\nwhole design should be changed to support 24bit images.\\nThat were not done and now we have\\n -the program violate jpeg design (and any 24bit image format)\\n -the program has human interface errors.\\n\\nOtherway is to drop saving images as jpegs or any 24bit format without\\nclearly saying that it is special case and not expected in normal use.\\n\\n[ ..deleted.. ]\\n\\n==clip==\\n\\nSome new items follows.\\n\\n==clip==\\n\\nI have seen that XV quantizes the image sometimes poorly with -best24\\noption than with default option we have.\\nThe reason surely is the quantizer used as -best24; it is (surprise)\\nthe same than used in ppmquant.\\n\\nIf you remember, I have tested some quantizers. In that test I found\\nthat rlequant (with default) is best, then comes djpeg, fbmquant, xv\\n(our default) in that order. In my test ppmquant suggeeded very poorly\\n-- it actually gave image with bad artifacts.\\n\\nI don't know is ppmquant improved any, but I expect no.\\nSo, use of XV's -best24 option is not very good idea.\\n\\nI suggest that author of XV changes the quantizer to the one used in\\nrlequant -- I'm sure rle-people gives permission.\\n(Another could be one used in ImageMagick; I have not tested it, so I\\ncan say nothing about it.)\\n\\n==clip==\\n\\n==clip==\\n\\nSome minor bugs in human interface are:\\n\\nKey pressings and cursor clicks goes to a buffer; Often it happens\\nthat I make click errors or press keyboard when cursor is in the wrong\\nplace. It is very annoying when you have waited image to come about\\nfive minutes and then it is gone away immediately.\\nThe buffer should be cleaned when the image is complete.\\n\\nAlso, good idea is to wait few seconds before activating keyboard\\nand mouse for XV after the image is completed.\\nOften it happens that image pops to the screen quickly, just when\\nI'm writing something with editor or such. Those key pressings\\nthen go to XV and image has gone or something weird.\\n\\nIn the color editor, when I turn a color meter and release it, XV\\nupdates the images. It is impossible to change all RGB values first\\nand then get the updated image. It is annoying wait image to be\\nupdated when the setting are not ready yet.\\nI suggest of adding an 'apply' button to update the exchanges done.\\n\\n==clip==\\n\",\n", - " 'From: mvp@netcom.com (Mike Van Pelt)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: Netcom - Online Communication Services (408 241-9760 guest)\\nLines: 17\\n\\nIn article <1r64pb$nkk@genesis.MCS.COM> arf@genesis.MCS.COM (Jack Schmidling) writes:\\n>Neither the Times nor the trained seals who have responded thus far seem to\\n>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>otherwords, American taxpayers put up at least 30% of the money.\\n\\nDammit, how did ArfArf\\'s latest excretion escape my kill file?\\n\\nOh, he changed sites. Again. *sigh* OK, I assume no other person\\non this planet will ever use the login name of arf.\\n\\n/arf@/aK:j \\n\\n-- \\nMike Van Pelt mvp@netcom.com\\n\"... Local prohibitions cannot block advances in military and commercial\\ntechnology.... Democratic movements for local restraint can only restrain\\nthe world\\'s democracies, not the world as a whole.\" -- K. Eric Drexler\\n',\n", - " \"From: nancyo@fraser.sfu.ca (Nancy Patricia O'Connor)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: Simon Fraser University, Burnaby, B.C., Canada\\nLines: 11\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes:\\n\\n>Rule #4: Don't mix apples with oranges. How can you say that the\\n>extermination by the Mongols was worse than Stalin? Khan conquered people\\n>unsympathetic to his cause. That was atrocious. But Stalin killed millions of\\n>his own people who loved and worshipped _him_ and his atheist state!! How can\\n>anyone be worse than that?\\n\\nYou're right. And David Koresh claimed to be a Christian.\\n\\n\\n\",\n", - " 'From: lpzsml@unicorn.nott.ac.uk (Steve Lang)\\nSubject: Re: Objective Values \\'v\\' Scientific Accuracy (was Re: After 2000 years, can we say that Christian Morality is)\\nOrganization: Nottingham University\\nLines: 38\\n\\nIn article , tk@dcs.ed.ac.uk (Tommy Kelly) wrote:\\n> In article <1qjahh$mrs@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n> \\n> >Science (\"the real world\") has its basis in values, not the other way round, \\n> >as you would wish it. \\n> \\n> You must be using \\'values\\' to mean something different from the way I\\n> see it used normally.\\n> \\n> And you are certainly using \\'Science\\' like that if you equate it to\\n> \"the real world\".\\n> \\n> Science is the recognition of patterns in our perceptions of the Universe\\n> and the making of qualitative and quantitative predictions concerning\\n> those perceptions.\\n\\nScience is the process of modeling the real world based on commonly agreed\\ninterpretations of our observations (perceptions).\\n\\n> It has nothing to do with values as far as I can see.\\n> Values are ... well they are what I value.\\n> They are what I would have rather than not have - what I would experience\\n> rather than not, and so on.\\n\\nValues can also refer to meaning. For example in computer science the\\nvalue of 1 is TRUE, and 0 is FALSE. Science is based on commonly agreed\\nvalues (interpretation of observations), although science can result in a\\nreinterpretation of these values.\\n\\n> Objective values are a set of values which the proposer believes are\\n> applicable to everyone.\\n\\nThe values underlaying science are not objective since they have never been\\nfully agreed, and the change with time. The values of Newtonian physic are\\ncertainly different to those of Quantum Mechanics.\\n\\nSteve Lang\\nSLANG->SLING->SLINK->SLICK->SLACK->SHACK->SHANK->THANK->THINK->THICK\\n',\n", - " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: some thoughts.\\nIn-Reply-To: healta@saturn.wwc.edu\\'s message of Fri, 16 Apr 1993 02: 51:29 GMT\\nOrganization: Compaq Computer Corp\\n\\t\\nLines: 47\\n\\n>>>>> On Fri, 16 Apr 1993 02:51:29 GMT, healta@saturn.wwc.edu (Tammy R Healy) said:\\nTRH> I hope you\\'re not going to flame him. Please give him the same coutesy you\\'\\nTRH> ve given me.\\n\\nBut you have been courteous and therefore received courtesy in return. This\\nperson instead has posted one of the worst arguments I have ever seen\\nmade from the pro-Christian people. I\\'ve known several Jesuits who would\\nlaugh in his face if he presented such an argument to them.\\n\\nLet\\'s ignore the fact that it\\'s not a true trilemma for the moment (nice\\nword Maddi, original or is it a real word?) and concentrate on the\\nliar, lunatic part.\\n\\nThe argument claims that no one would follow a liar, let alone thousands\\nof people. Look at L. Ron Hubbard. Now, he was probably not all there,\\nbut I think he was mostly a liar and a con-artist. But look at how many\\nthousands of people follow Dianetics and Scientology. I think the \\nBaker\\'s and Swaggert along with several other televangelists lie all\\nthe time, but look at the number of follower they have.\\n\\nAs for lunatics, the best example is Hitler. He was obviously insane,\\nhis advisors certainly thought so. Yet he had a whole country entralled\\nand came close to ruling all of Europe. How many Germans gave their lives\\nfor him? To this day he has his followers.\\n\\nI\\'m just amazed that people still try to use this argument. It\\'s just\\nso obviously *wrong*.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", - " 'From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Why is sex only allowed in marriage: Rationality (was: Islamic marriage)?\\nOrganization: Monash University, Melb., Australia.\\nLines: 115\\n\\nIn <1993Apr4.093904.20517@proxima.alt.za> lucio@proxima.alt.za (Lucio de Re) writes:\\n\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n\\n>>My point of view is that the argument \"all sexism is bad\" just simply\\n>>does not hold. Let me give you an example. How about permitting a\\n>>woman to temporarily leave her job due to pregnancy -- should that be\\n>>allowed? It happens to be sexist, as it gives a particular right only\\n>>to women. Nevertheless, despite the fact that it is sexist, I completely \\n>>support such a law, because I think it is just.\\n\\n>Fred, you\\'re exasperating... Sexism, like racialism, is a form of\\n>discrimination, using obvious physical or cultural differences to deny\\n>one portion of the population the same rights as another.\\n\\n>In this context, your example above holds no water whatsoever:\\n>there\\'s no discrimination in \"denying\" men maternity leave, in fact\\n>I\\'m quite convinced that, were anyone to experiment with male\\n>pregnancy, it would be possible for such a future father to take\\n>leave on medical grounds.\\n\\nOkay... I argued this thoroughly about 3-4 weeks ago. Men and women are\\ndifferent ... physically, physiologically, and psychologically. Much\\nrecent evidence for this statement is present in the book \"Brainsex\" by\\nAnne Moir and David Jessel. I recommend you find a copy and read it.\\nTheir book is an overview of recent scientific research on this topic\\nand is well referenced. \\n\\nNow, if women and men are different in some ways, the law can only\\nadequately take into account their needs in these areas where they are\\ndifferent by also taking into account the ways in which men and women\\nare different. Maternity leave is an example of this -- it takes into\\naccount that women get pregnant. It does not give women the same rules\\nit would give to men, because to treat women like it treats men in this\\ninstance would be unjust. This is just simply an obvious example of\\nwhere men and women are intrinsically different!!!!!\\n\\nNow, people make the _naive_ argument that sexism = oppression.\\nHowever, maternity leave is sexist because MEN DO NOT GET PREGNANT. \\nMen do not have the same access to leave that women do (not to the same\\nextent or degree), and therefore IT IS SEXIST. No matter however much a\\nman _wants_ to get pregnant and have maternity leave, HE NEVER CAN. And\\ntherefore the law IS SEXIST. No man can have access to maternity leave,\\nNO MATTER HOW HARD HE TRIES TO GET PREGNANT. I hope this is clear.\\n\\nMaternity leave is an example where a sexist law is just, because the\\nsexism here just reflects the \"sexism\" of nature in making men and women\\ndifferent. There are many other differences between men and women which\\nare far more subtle than pregnancy, and to find out more of these I\\nrecommend you have a look at the book \"Brainsex\".\\n\\nYour point that perhaps some day men can also be pregnant is fallacious.\\nIf men can one day become pregnant it will be by having biologically\\nbecome women! To have a womb and the other factors required for\\npregnancy is usually wrapped up in the definition of what a woman is --\\nso your argument, when it is examined, is seen to be fallacious. You\\nare saying that men can have the sexist maternity leave privilege that \\nwomen can have if they also become women -- which actually just supports\\nmy statement that maternity leave is sexist.\\n\\n>The discrimination comes in when a woman is denied opportunities\\n>because of her (legally determined) sexual inferiorities. As I\\n>understand most religious sexual discrimination, and I doubt that\\n>Islam is exceptional, the female is not allowed into the priestly\\n>caste and in general is subjugated so that she has no aspirations to\\n>rights which, as an equal human, she ought to be entitled to.\\n\\nThere is no official priesthood in Islam -- much of this function is\\ntaken by Islamic scholars. There are female Islamic scholars and\\nfemale Islamic scholars have always existed in Islam. An example from\\nearly Islamic history is the Prophet\\'s widow, Aisha, who was recognized\\nin her time and is recognized in our time as an Islamic scholar.\\n\\n>No matter how sweetly you coat it, part of the role of religions\\n>seems, historically, to have served the function of oppressing the\\n>female, whether by forcing her to procreate to the extent where\\n>there is no opportunity for self-improvement, or by denying her\\n>access to the same facilities the males are offered.\\n\\nYou have no evidence for your blanket statement about all religions, and\\nI dispute it. I could go on and on about women in Islam, etc., but I\\nrecently reposted something here under the heading \"Islam and Women\" --\\nif it is still at your news-site I suggest you read it. It is reposted\\nfrom soc.religion.islam, so if it has disappeared from alt.atheism it\\nstill might be in soc.religion.islam (I forgot what its original title\\nwas though). I will email it to you if you like. \\n\\n>The Roman Catholic Church is the most blatant of the culprit,\\n>because they actually istitutionalised a celibate clergy, but the\\n>other religious are no different: let a woman attempt to escape her\\n>role as child bearer and the wrath of god descends on her.\\n\\nYour statement that \"other religions are no different\" is, I think, a\\nstatement based simply on lack of knowledge about religions other than\\nChristianity and perhaps Judaism.\\n\\n>I\\'ll accept your affirmation that Islam grants women the same rights\\n>as men when you can show me that any muslim woman can aspire to the\\n>same position as (say) Khomeini and there are no artificial religious\\n>or social obstacles on her path to achieve this.\\n\\nAisha, who I mentioned earlier, was not only an Islamic scholar but also\\nwas, at one stage, a military leader.\\n\\n>Show me the equivalent of Hillary Rhodam-Clinton within Islam, and I\\n>may consider discussing the issue with you.\\n\\nThe Prophet\\'s first wife, who died just before the \"Hijra\" (the\\nProphet\\'s journey from Mecca to Medina) was a successful businesswoman.\\n\\nLucio, you cannot make a strong case for your viewpoint when your\\nviewpoint is based on ignorance about world religions.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n',\n", - " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Israeli Terrorism\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 7\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n How many of you readers know anything about Jews living in the\\nArab countries? How many of you know if Jews still live in these\\ncountries? How many of you know what the circumstances of Arabic\\nJews leaving their homelands were? Just curious.\\n\\n\\n',\n", - " 'Organization: Penn State University\\nFrom: Andrew Newell \\nSubject: Re: free moral agency\\nDistribution: na\\n \\nLines: 119\\n\\nIn article , bil@okcforum.osrhe.edu (Bill\\nConner) says:\\n>\\n>dean.kaflowitz (decay@cbnewsj.cb.att.com) wrote:\\n>\\n>: Now, what I am interested in is the original notion you were discussing\\n>: on moral free agency. That is, how can a god punish a person for\\n>: not believing in him when that person is only following his or her\\n>: nature and it is not possible for that person to deny what his or\\n>: her reason tells him or her, which is that there is no god?\\n>\\n>I think you\\'re letting atheist mythology confuse you on the issue of\\n\\n(WEBSTER: myth: \"a traditional or legendary story...\\n ...a belief...whose truth is accepted uncritically.\")\\n\\nHow does that qualify?\\nIndeed, it\\'s almost oxymoronic...a rather amusing instance.\\nI\\'ve found that most atheists hold almost no atheist-views as\\n\"accepted uncritically,\" especially the few that are legend.\\nMany are trying to explain basic truths, as myths do, but\\nthey don\\'t meet the other criterions.\\nAlso...\\n\\n>Divine justice. According to the most fundamental doctrines of\\n>Christianity, When the first man sinned, he was at that time the\\n\\nYou accuse him of referencing mythology, then you procede to\\nlaunch your own xtian mythology. (This time meeting all the\\nrequirements of myth.)\\n\\n>salvation. The idea of punishment is based on the proposition that\\n>everyone knows (instinctively?) that God exists, is their creator and\\n\\nAh, but not everyone \"knows\" that god exists. So you have\\na fallacy.\\n\\n>There\\'s nothing terribly difficult in all this and is well known to\\n>any reasonably Biblically literate Christian. The only controversy is\\n\\nAnd that makes it true? Holding with the Bible rules out controversy?\\nRead the FAQ. If you\\'ve read it, you missed something, so re-read.\\n(Not a bad suggestion for anyone...I re-read it just before this.)\\n\\n>with those who pretend not to know what is being said and what it\\n>means. When atheists claim that they do -not- know if God exists and\\n>don\\'t know what He wants, they contradict the Bible which clearly says\\n>that -everyone- knows. The authority of the Bible is its claim to be\\n\\n...should I repeat what I wrote above for the sake of getting\\nit across? You may trust the Bible, but your trusting it doesn\\'t\\nmake it any more credible to me.\\n\\nIf the Bible says that everyone knows, that\\'s clearly reason\\nto doubt the Bible, because not everyone \"knows\" your alleged\\ngod\\'s alleged existance.\\n\\n>refuted while the species-wide condemnation is justified. Those that\\n>claim that there is no evidence for the existence of God or that His will is\\n>unknown, must deliberately ignore the Bible; the ignorance itself is\\n>no excuse.\\n\\n1) No, they don\\'t have to ignore the Bible. The Bible is far\\nfrom universally accepted. The Bible is NOT a proof of god;\\nit is only a proof that some people have thought that there\\nwas a god. (Or does it prove even that? They might have been\\nwriting it as series of fiction short-stories. As in the\\ncase of Dionetics.) Assuming the writers believed it, the\\nonly thing it could possibly prove is that they believed it.\\nAnd that\\'s ignoring the problem of whether or not all the\\ninterpretations and Biblical-philosophers were correct.\\n\\n2) There are people who have truly never heard of the Bible.\\n\\n3) Again, read the FAQ.\\n\\n>freedom. You are free to ignore God in the same way you are free to\\n>ignore gravity and the consequences are inevitable and well known\\n>in both cases. That an atheist can\\'t accept the evidence means only\\n\\nBzzt...wrong answer!\\nGravity is directly THERE. It doesn\\'t stop exerting a direct and\\nrationally undeniable influence if you ignore it. God, on the\\nother hand, doesn\\'t generally show up in the supermarket, except\\non the tabloids. God doesn\\'t exert a rationally undeniable influence.\\nGravity is obvious; gods aren\\'t.\\n\\n>Secondly, human reason is very comforatble with the concept of God, so\\n>much so that it is, in itself, intrinsic to our nature. Human reason\\n>always comes back to the question of God, in every generation and in\\n\\nNo, human reason hasn\\'t always come back to the existance of\\n\"God\"; it has usually come back to the existance of \"god\".\\nIn other words, it doesn\\'t generally come back to the xtian\\ngod, it comes back to whether there is any god. And, in much\\nof oriental philosophic history, it generally doesn\\'t pop up as\\nthe idea of a god so much as the question of what natural forces\\nare and which ones are out there. From a world-wide view,\\nhuman nature just makes us wonder how the universe came to\\nbe and/or what force(s) are currently in control. A natural\\ntendancy to believe in \"God\" only exists in religious wishful\\nthinking.\\n\\n>I said all this to make the point that Christianity is eminently\\n>reasonable, that Divine justice is just and human nature is much\\n>different than what atheists think it is. Whether you agree or not\\n\\nXtianity is no more reasonable than most other religions, and\\nit\\'s reasonableness certainly doesn\\'t merit eminence.\\nDivine justice...well, it only seems just to those who already\\nbelieve in the divinity.\\nFirst, not all atheists believe the same things about human\\nnature. Second, whether most atheists are correct or not,\\nYOU certainly are not correct on human nature. You are, at\\nthe least, basing your views on a completely eurocentric\\napproach. Try looking at the outside world as well when\\nyou attempt to sum up all of humanity.\\n\\nAndrew\\n',\n", - " 'From: thester@nyx.cs.du.edu (Uncle Fester)\\nSubject: Re: CView answers\\nX-Disclaimer: Nyx is a public access Unix system run by the University\\n\\tof Denver for the Denver community. The University has neither\\n\\tcontrol over nor responsibility for the opinions of users.\\nOrganization: Nyx, Public Access Unix at U. of Denver Math/CS dept.\\nLines: 36\\n\\nIn article <5103@moscom.com> mz@moscom.com (Matthew Zenkar) writes:\\n>Cyberspace Buddha (cb@wixer.bga.com) wrote:\\n>: renew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n>: >over where it places its temp files: it just places them in its\\n>: >\"current directory\".\\n>\\n>: I have to beg to differ on this point, as the batch file I use\\n>: to launch cview cd\\'s to the dir where cview resides and then\\n>: invokes it. every time I crash cview, the 0-byte temp file\\n>: is found in the root dir of the drive cview is on.\\n>\\n>I posted this as well before the cview \"expert\". Apparently, he thought\\nhe\\n>knew better.\\n>\\n>Matthew Zenkar\\n>mz@moscom.com\\n\\n\\n Are we talking about ColorView for DOS here? \\n I have version 2.0 and it writes the temp files to its own\\n current directory.\\n What later versions do, I admit that I don\\'t know.\\n Assuming your \"expert\" referenced above is talking about\\n the version that I have, then I\\'d say he is correct.\\n Is the ColorView for unix what is being discussed?\\n Just mixed up, confused, befuddled, but genuinely and\\n entirely curious....\\n\\n Uncle Fester\\n\\n--\\n : What God Wants : God wants gigolos :\\n : God gets : God wants giraffes :\\n : God help us all : God wants politics :\\n : *thester@nyx.cs.du.edu* : God wants a good laugh :\\n',\n", - " 'From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES \\nOrganization: NONE\\nLines: 52\\n\\nIn article <1993Apr20.110021.5746@kth.se>, hilmi-er@dsv.su.se (Hilmi Eren) writes:\\n\\n\\nhenrik] The Armenians in Nagarno-Karabagh are simply DEFENDING their \\nhenrik] RIGHTS to keep their homeland and it is the AZERIS that are \\nhenrik] INVADING their homeland.\\n\\n\\nHE] Homeland? First Nagarno-Karabagh was Armenians homeland today\\nHE] Fizuli, Lacin and several villages (in Azerbadjan)\\nHE] are their homeland. Can\\'t you see the\\nHE] the \"Great Armenia\" dream in this? With facist methods like\\nHE] killing, raping and bombing villages. The last move was the\\nHE] blast of a truck with 60 kurdish refugees, trying to\\nHE] escape the from Lacin, a city that was \"given\" to the Kurds\\nHE] by the Armenians.\\n\\nNagorno-Karabakh is in Azerbaijan not Armenia. Armenians have lived in Nagorno-\\nKarabakh ever since there were Armenians. Armenians used to live in the areas\\nbetween Armenia and Nagorno-Karabakh and this area is being used to invade \\nNagorno- Karabakh. Armenians are defending themselves. If Azeris are dying\\nbecause of a policy of attacking Armenians, then something is wrong with this \\npolicy.\\n\\nIf I recall correctly, it was Stalin who caused all this problem with land\\nin the first place, not the Armenians.\\n\\nhenrik] However, I hope that the Armenians WILL force a TURKISH airplane\\nhenrik] to LAND for purposes of SEARCHING for ARMS similar to the one\\nhenrik] that happened last SUMMER. Turkey searched an AMERICAN plane\\nhenrik] (carrying humanitarian aid) bound to ARMENIA.\\n\\nHE] Don\\'t speak about things you don\\'t know: 8 U.S. Cargo planes\\nHE] were heading to Armenia. When the Turkish authorities\\nHE] announced that they were going to search these cargo\\nHE] planes 3 of these planes returned to it\\'s base in Germany.\\nHE] 5 of these planes were searched in Turkey. The content of\\nHE] of the other 3 planes? Not hard to guess, is it? It was sure not\\nHE] humanitarian aid.....\\n\\nWhat story are you talking about? Planes from the U.S. have been sending\\naid into Armenian for two years. I would not like to guess about what were in\\nthe 3 planes in your story, I would like to find out.\\n\\n\\nHE] Search Turkish planes? You don\\'t know what you are talking about.\\nHE] Turkey\\'s government has announced that it\\'s giving weapons\\nHE] to Azerbadjan since Armenia started to attack Azerbadjan\\nHE] it self, not the Karabag province. So why search a plane for weapons\\nHE] since it\\'s content is announced to be weapons?\\n\\nIt\\'s too bad you would want Turkey to start a war with Armenia.\\n',\n", - " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 14\\n\\nMr. Freeman:\\n\\nPlease find something more constructive to do with your time rather\\nthan engaging in fantasy..... Not that I have a particular affinty\\nto Arafat or anything.\\n\\nJohn\\n\\n\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Rejetting carbs..\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nDistribution: na\\nLines: 53\\n\\nMark Kromer, on the Thu, 15 Apr 1993 00:42:46 GMT wibbled:\\n: In an article rtaraz@bigwpi (Ramin Taraz) wrote:\\n\\n: >Does the \"amount of exhaust allowed to leave the engine through the\\n: >exhaust pipe\" make that much of a difference? the amount of air/fuel\\n: >mixture that a cylender sucks in (tries to suck in) depends on the\\n: >speed of the piston when it goes down. \\n\\n: ...and the pressure in the cylinder at the end of the exhaust stroke.\\n\\n: With a poor exhaust system, this pressure may be above atmospheric.\\n: With a pipe that scavenges well this may be substantially below\\n: atmospheric. This effect will vary with rpm depending on the tune of\\n: the pipe; some pipes combined with large valve overlap can actually\\n: reverse the intake flow and blow mixture out of the carb when outside\\n: the pipes effective rev range.\\n\\n: >Now, my question is which one provides more resistence as far as the\\n: >engine is conserned:\\n: >) resistance that the exhaust provides \\n: >) or the resistance that results from the bike trying to push itself and\\n: > the rider\\n\\n: Two completely different things. The state of the pipe determines how\\n: much power the motor can make. The load of the bike determines how\\n: much power the motor needs to make.\\n\\n: --\\n: - )V(ark)< FZR400 Pilot / ZX900 Payload / RD400 Mechanic \\n: You\\'re welcome.\\n\\nWell I, for one, am so very glad that I have fuel injection! All those \\nneedles and orifices and venturi and pressures... It\\'s worse than school human\\nbiology reproduction lessons (sex). Always made me feel a bit queasy.\\n--\\n\\nNick (the Simple Minded Biker) DoD 1069 Concise Oxford Tube Rider\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", - " \"From: ralph.buttigieg@f635.n713.z3.fido.zeta.org.au (Ralph Buttigieg)\\nSubject: Why not give $1 billion to first year-lo\\nOrganization: Fidonet. Gate admin is fido@socs.uts.edu.au\\nLines: 34\\n\\nOriginal to: keithley@apple.com\\nG'day keithley@apple.com\\n\\n21 Apr 93 22:25, keithley@apple.com wrote to All:\\n\\n kc> keithley@apple.com (Craig Keithley), via Kralizec 3:713/602\\n\\n\\n kc> But back to the contest goals, there was a recent article in AW&ST\\nabout a\\n kc> low cost (it's all relative...) manned return to the moon. A General\\n kc> Dynamics scheme involving a Titan IV & Shuttle to lift a Centaur upper\\n kc> stage, LEV, and crew capsule. The mission consists of delivering two\\n kc> unmanned payloads to the lunar surface, followed by a manned mission.\\n kc> Total cost: US was $10-$13 billion. Joint ESA(?)/NASA project was\\n$6-$9\\n kc> billion for the US share.\\n\\n kc> moon for a year. Hmmm. Not really practical. Anyone got a\\n kc> cheaper/better way of delivering 15-20 tonnes to the lunar surface\\nwithin\\n kc> the decade? Anyone have a more precise guess about how much a year's\\n kc> supply of consumables and equipment would weigh?\\n\\nWhy not modify the GD plan into Zurbrin's Compact Moon Direct scheme? let\\none of those early flight carry an O2 plant and make your own.\\n\\nta\\n\\nRalph\\n\\n--- GoldED 2.41+\\n * Origin: VULCAN'S WORLD - Sydney Australia (02) 635-1204 3:713/6\\n(3:713/635)\\n\",\n", - " \"From: naren@tekig1.PEN.TEK.COM (Naren Bala)\\nSubject: Re: Slavery (was Re: Why is sex only allowed in marriage: ...)\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 21\\n\\nIn article sandvik@newton.apple.com (Kent Sandvik) writes:\\n>Looking at historical evidence such 'perfect utopian' islamic states\\n>didn't survive. I agree, people are people, and even if you might\\n>start an Islamic revolution and create this perfect state, it takes \\n>some time and the internal corruption will destroy the ground rules --\\n>again.\\n>\\n\\nNothing is perfect. Nothing is perpetual. i.e. even if it is perfect,\\nit isn't going to stay that way forever. \\n\\nPerpetual machines cannot exist. I thought that there\\nwere some laws in mechanics or thermodynamics stating that.\\n\\nNot an atheist\\nBN\\n--\\n---------------------------------------------------------------------\\n- Naren Bala (Software Evaluation Engineer)\\n- HOME: (503) 627-0380\\t\\tWORK: (503) 627-2742\\n- All standard disclaimers apply. \\n\",\n", - " 'From: g9134255@wampyr.cc.uow.edu.au (Coronado Emmanuel Abad)\\nSubject: Fonts in POV??\\nOrganization: University of Wollongong, NSW, Australia.\\nLines: 11\\nNNTP-Posting-Host: wampyr.cc.uow.edu.au\\nKeywords: fonts, raytrace\\n\\n\\n\\n\\tI have seen several ray-traced scenes (from MTV or was it \\nRayShade??) with stroked fonts appearing as objects in the image.\\nThe fonts/chars had color, depth and even textures associated with\\nthem. Now I was wondering, is it possible to do the same in POV??\\n\\n\\nThanks,\\n\\nNoel\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Space Research Spin Off\\nOrganization: Express Access Online Communications USA\\nLines: 30\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article henry@zoo.toronto.edu (Henry Spencer) writes:\\n>In article <1ppm7j$ip@access.digex.net> prb@access.digex.com (Pat) writes:\\n|>I thought the area rule was pioneered by Boeing.\\n|>NASA guys developed the rule, but no-one knew if it worked\\n|>until Boeing built the hardware 727 and maybe the FB-111?????\\n|\\n|Nope. The decisive triumph of the area rule was when Convair's YF-102 --\\n|contractually commmitted to being a Mach 1.5 fighter and actually found\\n|to be incapable of going supersonic in level flight -- was turned into\\n|the area-ruled YF-102A which met the specs. This was well before either\\n|the 727 or the FB-111; the 102 flew in late 1953, and Convair spent most\\n|of the first half of 1954 figuring out what went wrong and most of the\\n|second half building the first 102A.\\n|-- \\n|All work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n| - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\\n\\n\\nGood thing i stuck in a couple of question marks up there.\\n\\nI seem to recall, somebody built or at least proposed a wasp waisetd\\nPassenger civil transport. I thought it was a 727, but maybe it\\nwas a DC- 8,9??? Sure it had a funny passenger compartment,\\nbut on the other hand it seemed to save fuel.\\n\\nI thought Area rules applied even before transonic speeds, just\\nnot as badly.\\n\\npat\\n\",\n", - " 'From: jgreen@amber (Joe Green)\\nSubject: Re: Weitek P9000 ?\\nOrganization: Harris Computer Systems Division\\nLines: 14\\nDistribution: world\\nNNTP-Posting-Host: amber.ssd.csd.harris.com\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nRobert J.C. Kyanko (rob@rjck.UUCP) wrote:\\n> abraxis@iastate.edu writes in article :\\n> > Anyone know about the Weitek P9000 graphics chip?\\n> As far as the low-level stuff goes, it looks pretty nice. It\\'s got this\\n> quadrilateral fill command that requires just the four points.\\n\\nDo you have Weitek\\'s address/phone number? I\\'d like to get some information\\nabout this chip.\\n\\n--\\nJoe Green\\t\\t\\t\\tHarris Corporation\\njgreen@csd.harris.com\\t\\t\\tComputer Systems Division\\n\"The only thing that really scares me is a person with no sense of humor.\"\\n\\t\\t\\t\\t\\t\\t-- Jonathan Winters\\n',\n", - " 'From: yohan@citation.ksu.ksu.edu (Jonathan W Newton)\\nSubject: Re: Societally acceptable behavior\\nOrganization: Kansas State University\\nLines: 35\\nDistribution: world\\nNNTP-Posting-Host: citation.ksu.ksu.edu\\n\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n>Merely a question for the basis of morality\\n>\\n>Moral/Ethical behavior = _Societally_ _acceptable_ _behavior_.\\n\\nI disagree with these. What society thinks should be irrelevant. What the\\nindividual decides is all that is important.\\n\\n>\\n>1)Who is society\\n\\nI think this is fairly obvious\\n\\n>\\n>2)How do \"they\" define what is acceptable?\\n\\nGenerally by what they \"feel\" is right, which is the most idiotic policy I can\\nthink of.\\n\\n>\\n>3)How do we keep from a \"whatever is legal is what is \"moral\" \"position?\\n\\nBy thinking for ourselves.\\n\\n>\\n>MAC\\n>--\\n>****************************************************************\\n> Michael A. Cobb\\n> \"...and I won\\'t raise taxes on the middle University of Illinois\\n> class to pay for my programs.\" Champaign-Urbana\\n> -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n> \\n>With new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", - " 'From: bleve@hoggle2.uucp (Bennett Lee Leve)\\nSubject: Re: Choking Ninja Problem\\nIn-Reply-To: starr@kuhub.cc.ukans.edu\\'s message of 13 Apr 93 15:34:41 CST\\nOrganization: Organized?? Surely you jest!\\nLines: 22\\n\\nIn article <1993Apr13.153441.49118@kuhub.cc.ukans.edu> starr@kuhub.cc.ukans.edu writes:\\n\\n\\n > I need help with my \\'85 ZX900A, I put Supertrapp slip-on\\'s on it and\\n > had the carbs re-jetted to match a set of K&N filters that replaced\\n > the stock airbox. Now I have a huge flat spot in the carburation at\\n > about 5 thousand RPM in most any gear. This is especially frustrating\\n > on the highway, the bike likes to cruise at about 80mph which happens\\n > to be 5,0000 RPM in sixth gear. I\\'ve had it \"tuned\" and this doesn\\'t\\n > seem to help. I am thinking about new carbs or the injection system\\n > from a GPz 1100. Does anyone have any suggestions for a fix besides\\n > restoring it to stock?\\n > Starr@kuhub.ukans.cc.edu\\t the brain dead.\" -Ted Nugent\\n\\nIt sound like to me that your carbs are not jetted properly.\\nIf you did it yourself, take it to a shop and get it done right.\\nIf a shop did it, get your money back, and go to another shop.\\n-- \\n-----------------------------------------------------------------------\\n|Bennett Leve 84 V-65 Sabre | I\\'m drowning, throw |\\n|Orlando, FL 73 XL 250 | me a bagel. |\\n|hoggle!hoggle2!bleve@peora.sdc.ccur.com | |\\n',\n", - " \"From: steel@hal.gnu.ai.mit.edu (Nick Steel)\\nSubject: Re: F*CK OFF TSIEL, logic of Mr. Emmanuel Huna\\nKeywords: Conspiracy, Nutcase\\nOrganization: /etc/organization\\nLines: 24\\nNNTP-Posting-Host: hal.ai.mit.edu\\n\\nIn article <4806@bimacs.BITNET> huna@bimacs.BITNET (Emmanuel Huna) writes:\\n>\\n> Mr. Steel, from what I've read Tsiel is not a racist, but you\\n>are an anti semitic. And stop shouting, you fanatic,\\n\\nMr. Emmanuel Huna,\\n\\nGive logic a break will you. Gosh, what kind of intelligence do\\nyou have, if any?\\n\\n\\nTesiel says : Be a man not an arab for once.\\nI say : Fuck of Tsiel (for saying the above).\\n\\nI get tagged as a racist, and he gets praised?\\nWell Mr. logicless, Tsiel has apologized for his racist remark.\\nI praise him for that courage, but I tell Take a hike to whoever calls me\\na racist without a proof because I am not.\\n\\nYou have proven to us that your brain has been malfunctioning\\nand you are just a moron that's loose on the net.\\n\\nAbout being fanatic: I am proud to be a fanatic about my rights and\\nfreedom, you idiot.\\n\",\n", - " \"From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)\\nSubject: header paint\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: relva.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 8\\n\\nit seems the 200 miles of trailering in the rain has rusted my bike's headers.\\nthe metal underneath is solid, but i need to sand off the rust coating and\\nrepaint the pipes black. any recommendations for paint and application\\nof said paint?\\n\\nthanks!\\n\\naxel\\n\",\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race\\nOrganization: U of Toronto Zoology\\nLines: 11\\n\\nIn article 18084TM@msu.edu (Tom) writes:\\n>On the other hand, if Apollo cost ~25billion, for a few days or weeks\\n>in space, in 1970 dollars, then won't the reward have to be a lot more\\n>than only 1 billion to get any takers?\\n\\nApollo was done the hard way, in a big hurry, from a very limited\\ntechnology base... and on government contracts. Just doing it privately,\\nrather than as a government project, cuts costs by a factor of several.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: sigma@rahul.net (Kevin Martin)\\nSubject: Re: XV under MS-DOS ?!?\\nNntp-Posting-Host: bolero\\nOrganization: a2i network\\nLines: 11\\n\\nIn <1993Apr20.083731.260@eicn.etna.ch> NO E-MAIL ADDRESS@eicn.etna.ch writes:\\n>Do somenone know the solution to run XV ??? any help would be apprecied..\\n\\nI would guess that it requires X, almost certainly DV/X, which commonly\\nuses the GO32 (DJGPP) setup for its programs. If you don\\'t have DV/X\\nrunning, you can\\'t get anything which requires interfacing with X.\\n\\n-- \\nKevin Martin\\nsigma@rahul.net\\n\"I gotta get me another hat.\"\\n',\n", - " 'From: mcelwre@cnsvax.uwec.edu\\nSubject: LARSONIAN Astronomy and Physics\\nOrganization: University of Wisconsin Eau Claire\\nLines: 552\\n\\n\\n\\n LARSONIAN Astronomy and Physics\\n\\n Orthodox physicists, astronomers, and astrophysicists \\n CLAIM to be looking for a \"Unified Field Theory\" in which all \\n of the forces of the universe can be explained with a single \\n set of laws or equations. But they have been systematically \\n IGNORING or SUPPRESSING an excellent one for 30 years! \\n\\n The late Physicist Dewey B. Larson\\'s comprehensive \\n GENERAL UNIFIED Theory of the physical universe, which he \\n calls the \"Reciprocal System\", is built on two fundamental \\n postulates about the physical and mathematical natures of \\n space and time: \\n \\n (1) \"The physical universe is composed ENTIRELY of ONE \\n component, MOTION, existing in THREE dimensions, in DISCRETE \\n UNITS, and in two RECIPROCAL forms, SPACE and TIME.\" \\n \\n (2) \"The physical universe conforms to the relations of \\n ORDINARY COMMUTATIVE mathematics, its magnitudes are \\n ABSOLUTE, and its geometry is EUCLIDEAN.\" \\n \\n From these two postulates, Larson developed a COMPLETE \\n Theoretical Universe, using various combinations of \\n translational, vibrational, rotational, and vibrational-\\n rotational MOTIONS, the concepts of IN-ward and OUT-ward \\n SCALAR MOTIONS, and speeds in relation to the Speed of Light \\n (which Larson called \"UNIT VELOCITY\" and \"THE NATURAL \\n DATUM\"). \\n \\n At each step in the development, Larson was able to \\n MATCH objects in his Theoretical Universe with objects in the \\n REAL physical universe, (photons, sub-atomic particles \\n [INCOMPLETE ATOMS], charges, atoms, molecules, globular star \\n clusters, galaxies, binary star systems, solar systems, white \\n dwarf stars, pulsars, quasars, ETC.), even objects NOT YET \\n DISCOVERED THEN (such as EXPLODING GALAXIES, and GAMMA-RAY \\n BURSTS). \\n \\n And applying his Theory to his NEW model of the atom, \\n Larson was able to precisely and accurately CALCULATE inter-\\n atomic distances in crystals and molecules, compressibility \\n and thermal expansion of solids, and other properties of \\n matter. \\n\\n All of this is described in good detail, with-OUT fancy \\n complex mathematics, in his books. \\n \\n\\n\\n BOOKS of Dewey B. Larson\\n \\n The following is a complete list of the late Physicist \\n Dewey B. Larson\\'s books about his comprehensive GENERAL \\n UNIFIED Theory of the physical universe. Some of the early \\n books are out of print now, but still available through \\n inter-library loan. \\n \\n \"The Structure of the Physical Universe\" (1959) \\n \\n \"The Case AGAINST the Nuclear Atom\" (1963)\\n \\n \"Beyond Newton\" (1964) \\n \\n \"New Light on Space and Time\" (1965) \\n \\n \"Quasars and Pulsars\" (1971) \\n \\n \"NOTHING BUT MOTION\" (1979) \\n [A $9.50 SUBSTITUTE for the $8.3 BILLION \"Super \\n Collider\".] \\n [The last four chapters EXPLAIN chemical bonding.]\\n\\n \"The Neglected Facts of Science\" (1982) \\n \\n \"THE UNIVERSE OF MOTION\" (1984)\\n [FINAL SOLUTIONS to most ALL astrophysical\\n mysteries.] \\n \\n \"BASIC PROPERTIES OF MATTER\" (1988)\\n\\n All but the last of these books were published by North \\n Pacific Publishers, P.O. Box 13255, Portland, OR 97213, and \\n should be available via inter-library loan if your local \\n university or public library doesn\\'t have each of them. \\n\\n Several of them, INCLUDING the last one, are available \\n from: The International Society of Unified Science (ISUS), \\n 1680 E. Atkin Ave., Salt Lake City, Utah 84106. This is the \\n organization that was started to promote Larson\\'s Theory. \\n They have other related publications, including the quarterly \\n journal \"RECIPROCITY\". \\n\\n \\n\\n Physicist Dewey B. Larson\\'s Background\\n \\n Physicist Dewey B. Larson was a retired Engineer \\n (Chemical or Electrical). He was about 91 years old when he \\n died in May 1989. He had a Bachelor of Science Degree in \\n Engineering Science from Oregon State University. He \\n developed his comprehensive GENERAL UNIFIED Theory of the \\n physical universe while trying to develop a way to COMPUTE \\n chemical properties based only on the elements used. \\n \\n Larson\\'s lack of a fancy \"PH.D.\" degree might be one \\n reason that orthodox physicists are ignoring him, but it is \\n NOT A VALID REASON. Sometimes it takes a relative outsider \\n to CLEARLY SEE THE FOREST THROUGH THE TREES. At the same \\n time, it is clear from his books that he also knew ORTHODOX \\n physics and astronomy as well as ANY physicist or astronomer, \\n well enough to point out all their CONTRADICTIONS, AD HOC \\n ASSUMPTIONS, PRINCIPLES OF IMPOTENCE, IN-CONSISTENCIES, ETC.. \\n \\n Larson did NOT have the funds, etc. to experimentally \\n test his Theory. And it was NOT necessary for him to do so. \\n He simply compared the various parts of his Theory with OTHER \\n researchers\\' experimental and observational data. And in \\n many cases, HIS explanation FIT BETTER. \\n \\n A SELF-CONSISTENT Theory is MUCH MORE than the ORTHODOX \\n physicists and astronomers have! They CLAIM to be looking \\n for a \"unified field theory\" that works, but have been \\n IGNORING one for over 30 years now! \\n \\n \"Modern physics\" does NOT explain the physical universe \\n so well. Some parts of some of Larson\\'s books are FULL of \\n quotations of leading orthodox physicists and astronomers who \\n agree. And remember that \"epicycles\", \"crystal spheres\", \\n \"geocentricity\", \"flat earth theory\", etc., ALSO once SEEMED \\n to explain it well, but were later proved CONCEPTUALLY WRONG. \\n \\n \\n Prof. Frank H. Meyer, Professor Emeritus of UW-Superior, \\n was/is a STRONG PROPONENT of Larson\\'s Theory, and was (or \\n still is) President of Larson\\'s organization, \"THE \\n INTERNATIONAL SOCIETY OF UNIFIED SCIENCE\", and Editor of \\n their quarterly Journal \"RECIPROCITY\". He moved to \\n Minneapolis after retiring. \\n \\n\\n\\n \"Super Collider\" BOONDOGGLE!\\n \\n I am AGAINST contruction of the \"Superconducting Super \\n Collider\", in Texas or anywhere else. It would be a GROSS \\n WASTE of money, and contribute almost NOTHING of \"scientific\" \\n value. \\n \\n Most physicists don\\'t realize it, but, according to the \\n comprehensive GENERAL UNIFIED Theory of the late Physicist \\n Dewey B. Larson, as described in his books, the strange GOOFY \\n particles (\"mesons\", \"hyperons\", ALLEGED \"quarks\", etc.) \\n which they are finding in EXISTING colliders (Fermi Lab, \\n Cern, etc.) are really just ATOMS of ANTI-MATTER, which are \\n CREATED by the high-energy colliding beams, and which quickly \\n disintegrate like cosmic rays because they are incompatible \\n with their environment. \\n \\n A larger and more expensive collider will ONLY create a \\n few more elements of anti-matter that the physicists have not \\n seen there before, and the physicists will be EVEN MORE \\n CONFUSED THAN THEY ARE NOW! \\n \\n Are a few more types of anti-matter atoms worth the $8.3 \\n BILLION cost?!! Don\\'t we have much more important uses for \\n this WASTED money?! \\n \\n \\n Another thing to consider is that the primary proposed \\n location in Texas has a serious and growing problem with some \\n kind of \"fire ants\" eating the insulation off underground \\n cables. How much POISONING of the ground and ground water \\n with insecticides will be required to keep the ants out of \\n the \"Supercollider\"?! \\n \\n \\n Naming the \"Super Collider\" after Ronald Reagon, as \\n proposed, is TOTALLY ABSURD! If it is built, it should be \\n named after a leading particle PHYSICIST. \\n \\n\\n\\n LARSONIAN Anti-Matter\\n \\n In Larson\\'s comprehensive GENERAL UNIFIED Theory of the \\n physical universe, anti-matter is NOT a simple case of \\n opposite charges of the same types of particles. It has more \\n to do with the rates of vibrations and rotations of the \\n photons of which they are made, in relation to the \\n vibrational and rotational equivalents of the speed of light, \\n which Larson calls \"Unit Velocity\" and the \"Natural Datum\". \\n \\n In Larson\\'s Theory, a positron is actually a particle of \\n MATTER, NOT anti-matter. When a positron and electron meet, \\n the rotational vibrations (charges) and rotations of their \\n respective photons (of which they are made) neutralize each \\n other. \\n \\n In Larson\\'s Theory, the ANTI-MATTER half of the physical \\n universe has THREE dimensions of TIME, and ONLY ONE dimension \\n of space, and exists in a RECIPROCAL RELATIONSHIP to our \\n MATERIAL half. \\n \\n\\n\\n LARSONIAN Relativity\\n \\n The perihelion point in the orbit of the planet Mercury \\n has been observed and precisely measured to ADVANCE at the \\n rate of 574 seconds of arc per century. 531 seconds of this \\n advance are attributed via calculations to gravitational \\n perturbations from the other planets (Venus, Earth, Jupiter, \\n etc.). The remaining 43 seconds of arc are being used to \\n help \"prove\" Einstein\\'s \"General Theory of Relativity\". \\n \\n But the late Physicist Dewey B. Larson achieved results \\n CLOSER to the 43 seconds than \"General Relativity\" can, by \\n INSTEAD using \"SPECIAL Relativity\". In one or more of his \\n books, he applied the LORENTZ TRANSFORMATION on the HIGH \\n ORBITAL SPEED of Mercury. \\n \\n Larson TOTALLY REJECTED \"General Relativity\" as another \\n MATHEMATICAL FANTASY. He also REJECTED most of \"Special \\n Relativity\", including the parts about \"mass increases\" near \\n the speed of light, and the use of the Lorentz Transform on \\n doppler shifts, (Those quasars with red-shifts greater than \\n 1.000 REALLY ARE MOVING FASTER THAN THE SPEED OF LIGHT, \\n although most of that motion is away from us IN TIME.). \\n \\n In Larson\\'s comprehensive GENERAL UNIFIED Theory of the \\n physical universe, there are THREE dimensions of time instead \\n of only one. But two of those dimensions can NOT be measured \\n from our material half of the physical universe. The one \\n dimension that we CAN measure is the CLOCK time. At low \\n relative speeds, the values of the other two dimensions are \\n NEGLIGIBLE; but at high speeds, they become significant, and \\n the Lorentz Transformation must be used as a FUDGE FACTOR. \\n [Larson often used the term \"COORDINATE TIME\" when writing \\n about this.] \\n \\n \\n In regard to \"mass increases\", it has been PROVEN in \\n atomic accelerators that acceleration drops toward zero near \\n the speed of light. But the formula for acceleration is \\n ACCELERATION = FORCE / MASS, (a = F/m). Orthodox physicists \\n are IGNORING the THIRD FACTOR: FORCE. In Larson\\'s Theory, \\n mass STAYS CONSTANT and FORCE drops toward zero. FORCE is \\n actually a MOTION, or COMBINATIONS of MOTIONS, or RELATIONS \\n BETWEEN MOTIONS, including INward and OUTward SCALAR MOTIONS. \\n The expansion of the universe, for example, is an OUTward \\n SCALAR motion inherent in the universe and NOT a result of \\n the so-called \"Big Bang\" (which is yet another MATHEMATICAL \\n FANTASY). \\n \\n \\n \\n THE UNIVERSE OF MOTION\\n\\n I wish to recommend to EVERYONE the book \"THE UNIVERSE \\n OF MOTION\", by Dewey B. Larson, 1984, North Pacific \\n Publishers, (P.O. Box 13255, Portland, Oregon 97213), 456 \\n pages, indexed, hardcover. \\n \\n It contains the Astrophysical portions of a GENERAL \\n UNIFIED Theory of the physical universe developed by that \\n author, an UNrecognized GENIUS, more than thirty years ago. \\n \\n It contains FINAL SOLUTIONS to most ALL Astrophysical \\n mysteries, including the FORMATION of galaxies, binary and \\n multiple star systems, and solar systems, the TRUE ORIGIN of \\n the \"3-degree\" background radiation, cosmic rays, and gamma-\\n ray bursts, and the TRUE NATURE of quasars, pulsars, white \\n dwarfs, exploding galaxies, etc.. \\n \\n It contains what astronomers and astrophysicists are ALL \\n looking for, if they are ready to seriously consider it with \\n OPEN MINDS! \\n \\n The following is an example of his Theory\\'s success: \\n In his first book in 1959, \"THE STRUCTURE OF THE PHYSICAL \\n UNIVERSE\", Larson predicted the existence of EXPLODING \\n GALAXIES, several years BEFORE astronomers started finding \\n them. They are a NECESSARY CONSEQUENCE of Larson\\'s \\n comprehensive Theory. And when QUASARS were discovered, he \\n had an immediate related explanation for them also. \\n \\n\\n \\n GAMMA-RAY BURSTS\\n\\n Astro-physicists and astronomers are still scratching \\n their heads about the mysterious GAMMA-RAY BURSTS. They were \\n originally thought to originate from \"neutron stars\" in the \\n disc of our galaxy. But the new Gamma Ray Telescope now in \\n Earth orbit has been detecting them in all directions \\n uniformly, and their source locations in space do NOT \\n correspond to any known objects, (except for a few cases of \\n directional coincidence). \\n \\n Gamma-ray bursts are a NECESSARY CONSEQUENCE of the \\n GENERAL UNIFIED Theory of the physical universe developed by \\n the late Physicist Dewey B. Larson. According to page 386 of \\n his book \"THE UNIVERSE OF MOTION\", published in 1984, the \\n gamma-ray bursts are coming from SUPERNOVA EXPLOSIONS in the \\n ANTI-MATTER HALF of the physical universe, which Larson calls \\n the \"Cosmic Sector\". Because of the relationship between the \\n anti-matter and material halves of the physical universe, and \\n the way they are connected together, the gamma-ray bursts can \\n pop into our material half anywhere in space, seemingly at \\n random. (This is WHY the source locations of the bursts do \\n not correspond with known objects, and come from all \\n directions uniformly.) \\n \\n I wonder how close to us in space a source location \\n would have to be for a gamma-ray burst to kill all or most \\n life on Earth! There would be NO WAY to predict one, NOR to \\n stop it! \\n \\n Perhaps some of the MASS EXTINCTIONS of the past, which \\n are now being blamed on impacts of comets and asteroids, were \\n actually caused by nearby GAMMA-RAY BURSTS! \\n \\n\\n\\n LARSONIAN Binary Star Formation\\n \\n About half of all the stars in the galaxy in the \\n vicinity of the sun are binary or double. But orthodox \\n astronomers and astrophysicists still have no satisfactory \\n theory about how they form or why there are so many of them. \\n \\n But binary star systems are actually a LIKELY \\n CONSEQUENCE of the comprehensive GENERAL UNIFIED Theory of \\n the physical universe developed by the late Physicist Dewey \\n B. Larson. \\n \\n I will try to summarize Larsons explanation, which is \\n detailed in Chapter 7 of his book \"THE UNIVERSE OF MOTION\" \\n and in some of his other books. \\n \\n First of all, according to Larson, stars do NOT generate \\n energy by \"fusion\". A small fraction comes from slow \\n gravitational collapse. The rest results from the COMPLETE \\n ANNIHILATION of HEAVY elements (heavier than IRON). Each \\n element has a DESTRUCTIVE TEMPERATURE LIMIT. The heavier the \\n element is, the lower is this limit. A star\\'s internal \\n temperature increases as it grows in mass via accretion and \\n absorption of the decay products of cosmic rays, gradually \\n reaching the destructive temperature limit of lighter and \\n lighter elements. \\n \\n When the internal temperature of the star reaches the \\n destructive temperature limit of IRON, there is a Type I \\n SUPERNOVA EXPLOSION! This is because there is SO MUCH iron \\n present; and that is related to the structure of iron atoms \\n and the atom building process, which Larson explains in some \\n of his books [better than I can]. \\n \\n When the star explodes, the lighter material on the \\n outer portion of the star is blown outward in space at less \\n than the speed of light. The heavier material in the center \\n portion of the star was already bouncing around at close to \\n the speed of light, because of the high temperature. The \\n explosion pushes that material OVER the speed of light, and \\n it expands OUTWARD IN TIME, which is equivalent to INWARD IN \\n SPACE, and it often actually DISAPPEARS for a while. \\n \\n Over long periods of time, both masses start to fall \\n back gravitationally. The material that had been blown \\n outward in space now starts to form a RED GIANT star. The \\n material that had been blown OUTWARD IN TIME starts to form a \\n WHITE DWARF star. BOTH stars then start moving back toward \\n the \"MAIN SEQUENCE\" from opposite directions on the H-R \\n Diagram. \\n \\n The chances of the two masses falling back into the \\n exact same location in space, making a single lone star \\n again, are near zero. They will instead form a BINARY \\n system, orbiting each other. \\n \\n According to Larson, a white dwarf star has an INVERSE \\n DENSITY GRADIENT (is densest at its SURFACE), because the \\n material at its center is most widely dispersed (blown \\n outward) in time. This ELIMINATES the need to resort to \\n MATHEMATICAL FANTASIES about \"degenerate matter\", \"neutron \\n stars\", \"black holes\", etc.. \\n \\n\\n\\n LARSONIAN Solar System Formation\\n\\n If the mass of the heavy material at the center of the \\n exploding star is relatively SMALL, then, instead of a single \\n white dwarf star, there will be SEVERAL \"mini\" white dwarf \\n stars (revolving around the red giant star, but probably \\n still too far away in three-dimensional TIME to be affected \\n by its heat, etc.). These will become PLANETS! \\n \\n In Chapter 7 of THE UNIVERSE OF MOTION, Larson used all \\n this information, and other principles of his comprehensive \\n GENERAL UNIFIED Theory of the physical universe, to derive \\n his own version of Bode\\'s Law. \\n \\n\\n\\n \"Black Hole\" FANTASY!\\n\\n I heard that physicist Stephen W. Hawking recently \\n completed a theoretical mathematical analysis of TWO \"black \\n holes\" merging together into a SINGLE \"black hole\", and \\n concluded that the new \"black hole\" would have MORE MASS than \\n the sum of the two original \"black holes\". \\n \\n Such a result should be recognized by EVERYone as a RED \\n FLAG, causing widespread DOUBT about the whole IDEA of \"black \\n holes\", etc.! \\n \\n After reading Physicist Dewey B. Larson\\'s books about \\n his comprehensive GENERAL UNIFIED Theory of the physical \\n universe, especially his book \"THE UNIVERSE OF MOTION\", it is \\n clear to me that \"black holes\" are NOTHING more than \\n MATHEMATICAL FANTASIES! The strange object at Cygnus X-1 is \\n just an unusually massive WHITE DWARF STAR, NOT the \"black \\n hole\" that orthodox astronomers and physicists so badly want \\n to \"prove\" their theory. \\n \\n \\n By the way, I do NOT understand why so much publicity is \\n being given to physicist Stephen Hawking. The physicists and \\n astronomers seem to be acting as if Hawking\\'s severe physical \\n problem somehow makes him \"wiser\". It does NOT! \\n \\n I wish the same attention had been given to Physicist \\n Dewey B. Larson while he was still alive. Widespread \\n publicity and attention should NOW be given to Larson\\'s \\n Theory, books, and organization (The International Society of \\n Unified Science). \\n \\n \\n \\n ELECTRO-MAGNETIC PROPULSION\\n\\n I heard of that concept many years ago, in connection \\n with UFO\\'s and unorthodox inventors, but I never was able to \\n find out how or why they work, or how they are constructed. \\n \\n I found a possible clue about why they might work on \\n pages 112-113 of the book \"BASIC PROPERTIES OF MATTER\", by \\n the late Physicist Dewey B. Larson, which describes part of \\n Larson\\'s comprehensive GENERAL UNIFIED Theory of the physical \\n universe. I quote one paragraph: \\n \\n \"As indicated in the preceding chapter, the development \\n of the theory of the universe of motion arrives at a totally \\n different concept of the nature of electrical resistance. \\n The electrons, we find, are derived from the environment. It \\n was brought out in Volume I [Larson\\'s book \"NOTHING BUT \\n MOTION\"] that there are physical processes in operation which \\n produce electrons in substantial quantities, and that, \\n although the motions that constitute these electrons are, in \\n many cases, absorbed by atomic structures, the opportunities \\n for utilizing this type of motion in such structures are \\n limited. It follows that there is always a large excess of \\n free electrons in the material sector [material half] of the \\n universe, most of which are uncharged. In this uncharged \\n state the electrons cannot move with respect to extension \\n space, because they are inherently rotating units of space, \\n and the relation of space to space is not motion. In open \\n space, therefore, each uncharged electron remains permanently \\n in the same location with respect to the natural reference \\n system, in the manner of a photon. In the context of the \\n stationary spatial reference system the uncharged electron, \\n like the photon, is carried outward at the speed of light by \\n the progression of the natural reference system. All \\n material aggregates are thus exposed to a flux of electrons \\n similar to the continual bombardment by photons of radiation. \\n Meanwhile there are other processes, to be discussed later, \\n whereby electrons are returned to the environment. The \\n electron population of a material aggregate such as the earth \\n therefore stabilizes at an equilibrium level.\" \\n \\n Note that in Larson\\'s Theory, UNcharged electrons are \\n also massLESS, and are basically photons of light of a \\n particular frequency (above the \"unit\" frequency) spinning \\n around one axis at a particular rate (below the \"unit\" rate). \\n (\"Unit velocity\" is the speed of light, and there are \\n vibrational and rotational equivalents to the speed of light, \\n according to Larson\\'s Theory.) [I might have the \"above\" and \\n \"below\" labels mixed up.] \\n \\n Larson is saying that outer space is filled with mass-\\n LESS UN-charged electrons flying around at the speed of \\n light! \\n \\n If this is true, then the ELECTRO-MAGNETIC PROPULSION \\n fields of spacecraft might be able to interact with these \\n electrons, or other particles in space, perhaps GIVING them a \\n charge (and mass) and shooting them toward the rear to \\n achieve propulsion. (In Larson\\'s Theory, an electrical charge \\n is a one-dimensional rotational vibration of a particular \\n frequency (above the \"unit\" frequency) superimposed on the \\n rotation of the particle.) \\n \\n The paragraph quoted above might also give a clue to \\n confused meteorologists about how and why lightning is \\n generated in clouds. \\n\\n\\n\\n SUPPRESSION of LARSONIAN Physics\\n\\n The comprehensive GENERAL UNIFIED Theory of the physical \\n universe developed by the late Physicist Dewey B. Larson has \\n been available for more than 30 YEARS, published in 1959 in \\n his first book \"THE STRUCTURE OF THE PHYSICAL UNIVERSE\". \\n \\n It is TOTALLY UN-SCIENTIFIC for Hawking, Wheeler, Sagan, \\n and the other SACRED PRIESTS of the RELIGION they call \\n \"science\" (or \"physics\", or \"astronomy\", etc.), as well as \\n the \"scientific\" literature and the \"education\" systems, to \\n TOTALLY IGNORE Larson\\'s Theory has they have. \\n \\n Larson\\'s Theory has excellent explanations for many \\n things now puzzling orthodox physicists and astronomers, such \\n as gamma-ray bursts and the nature of quasars. \\n \\n Larson\\'s Theory deserves to be HONESTLY and OPENLY \\n discussed in the physics, chemistry, and astronomy journals, \\n in the U.S. and elsewhere. And at least the basic principles \\n of Larson\\'s Theory should be included in all related courses \\n at UW-EC, UW-Madison, Cambridge, Cornell University, and \\n elsewhere, so that students are not kept in the dark about a \\n worthy alternative to the DOGMA they are being fed. \\n \\n \\n\\n For more information, answers to your questions, etc., \\n please consult my CITED SOURCES (especially Larson\\'s BOOKS). \\n\\n\\n\\n UN-altered REPRODUCTION and DISSEMINATION of this \\n IMPORTANT partial summary is ENCOURAGED. \\n\\n\\n Robert E. McElwaine\\n B.S., Physics and Astronomy, UW-EC\\n \\n\\n',\n", - " 'Subject: Technical Help Sought\\nFrom: jiu1@husc11.harvard.edu (Haibin Jiu)\\nOrganization: Harvard University Science Center\\nNntp-Posting-Host: husc11.harvard.edu\\nLines: 9\\n\\nHi! I am in immediate need for details of various graphics compression\\ntechniques. So if you know where I could obtain descriptions of algo-\\nrithms or public-domain source codes for such formats as JPEG, GIF, and\\nfractals, I would be immensely grateful if you could share the info with\\nme. This is for a project I am contemplating of doing.\\n\\nThanks in advance. Please reply via e-mail if possible.\\n\\n--hBJ\\n',\n", - " 'From: keith@hydra.unm.edu ()\\nSubject: Where can I AFFORD a Goldwing mirror?\\nOrganization: University of New Mexico, Albuquerque\\nLines: 9\\nDistribution: usa\\nNNTP-Posting-Host: hydra.unm.edu\\n\\nSearched without luck for a FAQ here. I need a left 85 Aspencade\\nmirror and Honda wants $75 for it. Now if this were another piece\\nof chrome to replace the black plastic that wings come so liberally\\nsupplied with I might be able to see that silly price, but a mirror\\nis a piece of SAFETY EQUIPMENT. The fact that Honda clearly places\\nconcern for their profits ahead of concern for my safety is enough\\nto convince me that this (my third) wing will likely be my last.\\nIn the mean time, anyboby have a non-ripoff source for a mirror?\\nkeith smith keith@hydra.unm.edu\\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 06/15 - Constants and Equations\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.constants_733694246\\nExpires: 6 May 1993 19:57:26 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 189\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/constants\\nLast-modified: $Date: 93/04/01 14:39:04 $\\n\\nCONSTANTS AND EQUATIONS FOR CALCULATIONS\\n\\n This list was originally compiled by Dale Greer. Additions would be\\n appreciated.\\n\\n Numbers in parentheses are approximations that will serve for most\\n blue-skying purposes.\\n\\n Unix systems provide the \\'units\\' program, useful in converting\\n between different systems (metric/English, etc.)\\n\\n NUMBERS\\n\\n\\t7726 m/s\\t (8000) -- Earth orbital velocity at 300 km altitude\\n\\t3075 m/s\\t (3000) -- Earth orbital velocity at 35786 km (geosync)\\n\\t6371 km\\t\\t (6400) -- Mean radius of Earth\\n\\t6378 km\\t\\t (6400) -- Equatorial radius of Earth\\n\\t1738 km\\t\\t (1700) -- Mean radius of Moon\\n\\t5.974e24 kg\\t (6e24) -- Mass of Earth\\n\\t7.348e22 kg\\t (7e22) -- Mass of Moon\\n\\t1.989e30 kg\\t (2e30) -- Mass of Sun\\n\\t3.986e14 m^3/s^2 (4e14) -- Gravitational constant times mass of Earth\\n\\t4.903e12 m^3/s^2 (5e12) -- Gravitational constant times mass of Moon\\n\\t1.327e20 m^3/s^2 (13e19) -- Gravitational constant times mass of Sun\\n\\t384401 km\\t ( 4e5) -- Mean Earth-Moon distance\\n\\t1.496e11 m\\t (15e10) -- Mean Earth-Sun distance (Astronomical Unit)\\n\\n\\t1 megaton (MT) TNT = about 4.2e15 J or the energy equivalent of\\n\\tabout .05 kg (50 gm) of matter. Ref: J.R Williams, \"The Energy Level\\n\\tof Things\", Air Force Special Weapons Center (ARDC), Kirtland Air\\n\\tForce Base, New Mexico, 1963. Also see \"The Effects of Nuclear\\n\\tWeapons\", compiled by S. Glasstone and P.J. Dolan, published by the\\n\\tUS Department of Defense (obtain from the GPO).\\n\\n EQUATIONS\\n\\n\\tWhere d is distance, v is velocity, a is acceleration, t is time.\\n\\tAdditional more specialized equations are available from:\\n\\n\\t ames.arc.nasa.gov:pub/SPACE/FAQ/MoreEquations\\n\\n\\n\\tFor constant acceleration\\n\\t d = d0 + vt + .5at^2\\n\\t v = v0 + at\\n\\t v^2 = 2ad\\n\\n\\tAcceleration on a cylinder (space colony, etc.) of radius r and\\n\\t rotation period t:\\n\\n\\t a = 4 pi**2 r / t^2\\n\\n\\tFor circular Keplerian orbits where:\\n\\t Vc\\t = velocity of a circular orbit\\n\\t Vesc = escape velocity\\n\\t M\\t = Total mass of orbiting and orbited bodies\\n\\t G\\t = Gravitational constant (defined below)\\n\\t u\\t = G * M (can be measured much more accurately than G or M)\\n\\t K\\t = -G * M / 2 / a\\n\\t r\\t = radius of orbit (measured from center of mass of system)\\n\\t V\\t = orbital velocity\\n\\t P\\t = orbital period\\n\\t a\\t = semimajor axis of orbit\\n\\n\\t Vc\\t = sqrt(M * G / r)\\n\\t Vesc = sqrt(2 * M * G / r) = sqrt(2) * Vc\\n\\t V^2 = u/a\\n\\t P\\t = 2 pi/(Sqrt(u/a^3))\\n\\t K\\t = 1/2 V**2 - G * M / r (conservation of energy)\\n\\n\\t The period of an eccentric orbit is the same as the period\\n\\t of a circular orbit with the same semi-major axis.\\n\\n\\tChange in velocity required for a plane change of angle phi in a\\n\\tcircular orbit:\\n\\n\\t delta V = 2 sqrt(GM/r) sin (phi/2)\\n\\n\\tEnergy to put mass m into a circular orbit (ignores rotational\\n\\tvelocity, which reduces the energy a bit).\\n\\n\\t GMm (1/Re - 1/2Rcirc)\\n\\t Re = radius of the earth\\n\\t Rcirc = radius of the circular orbit.\\n\\n\\tClassical rocket equation, where\\n\\t dv\\t= change in velocity\\n\\t Isp = specific impulse of engine\\n\\t Ve\\t= exhaust velocity\\n\\t x\\t= reaction mass\\n\\t m1\\t= rocket mass excluding reaction mass\\n\\t g\\t= 9.80665 m / s^2\\n\\n\\t Ve\\t= Isp * g\\n\\t dv\\t= Ve * ln((m1 + x) / m1)\\n\\t\\t= Ve * ln((final mass) / (initial mass))\\n\\n\\tRelativistic rocket equation (constant acceleration)\\n\\n\\t t (unaccelerated) = c/a * sinh(a*t/c)\\n\\t d = c**2/a * (cosh(a*t/c) - 1)\\n\\t v = c * tanh(a*t/c)\\n\\n\\tRelativistic rocket with exhaust velocity Ve and mass ratio MR:\\n\\n\\t at/c = Ve/c * ln(MR), or\\n\\n\\t t (unaccelerated) = c/a * sinh(Ve/c * ln(MR))\\n\\t d = c**2/a * (cosh(Ve/C * ln(MR)) - 1)\\n\\t v = c * tanh(Ve/C * ln(MR))\\n\\n\\tConverting from parallax to distance:\\n\\n\\t d (in parsecs) = 1 / p (in arc seconds)\\n\\t d (in astronomical units) = 206265 / p\\n\\n\\tMiscellaneous\\n\\t f=ma -- Force is mass times acceleration\\n\\t w=fd -- Work (energy) is force times distance\\n\\n\\tAtmospheric density varies as exp(-mgz/kT) where z is altitude, m is\\n\\tmolecular weight in kg of air, g is local acceleration of gravity, T\\n\\tis temperature, k is Bolztmann\\'s constant. On Earth up to 100 km,\\n\\n\\t d = d0*exp(-z*1.42e-4)\\n\\n\\twhere d is density, d0 is density at 0km, is approximately true, so\\n\\n\\t d@12km (40000 ft) = d0*.18\\n\\t d@9 km (30000 ft) = d0*.27\\n\\t d@6 km (20000 ft) = d0*.43\\n\\t d@3 km (10000 ft) = d0*.65\\n\\n\\t\\t Atmospheric scale height\\tDry lapse rate\\n\\t\\t (in km at emission level)\\t (K/km)\\n\\t\\t -------------------------\\t--------------\\n\\t Earth\\t 7.5\\t\\t\\t 9.8\\n\\t Mars\\t 11\\t\\t\\t 4.4\\n\\t Venus\\t 4.9\\t\\t\\t 10.5\\n\\t Titan\\t 18\\t\\t\\t 1.3\\n\\t Jupiter\\t 19\\t\\t\\t 2.0\\n\\t Saturn\\t 37\\t\\t\\t 0.7\\n\\t Uranus\\t 24\\t\\t\\t 0.7\\n\\t Neptune\\t 21\\t\\t\\t 0.8\\n\\t Triton\\t 8\\t\\t\\t 1\\n\\n\\tTitius-Bode Law for approximating planetary distances:\\n\\n\\t R(n) = 0.4 + 0.3 * 2^N Astronomical Units (N = -infinity for\\n\\t Mercury, 0 for Venus, 1 for Earth, etc.)\\n\\n\\t This fits fairly well except for Neptune.\\n\\n CONSTANTS\\n\\n\\t6.62618e-34 J-s (7e-34) -- Planck\\'s Constant \"h\"\\n\\t1.054589e-34 J-s (1e-34) -- Planck\\'s Constant / (2 * PI), \"h bar\"\\n\\t1.3807e-23 J/K\\t(1.4e-23) - Boltzmann\\'s Constant \"k\"\\n\\t5.6697e-8 W/m^2/K (6e-8) -- Stephan-Boltzmann Constant \"sigma\"\\n 6.673e-11 N m^2/kg^2 (7e-11) -- Newton\\'s Gravitational Constant \"G\"\\n\\t0.0029 m K\\t (3e-3) -- Wien\\'s Constant \"sigma(W)\"\\n\\t3.827e26 W\\t (4e26) -- Luminosity of Sun\\n\\t1370 W / m^2\\t (1400) -- Solar Constant (intensity at 1 AU)\\n\\t6.96e8 m\\t (7e8)\\t -- radius of Sun\\n\\t1738 km\\t\\t (2e3)\\t -- radius of Moon\\n\\t299792458 m/s\\t (3e8) -- speed of light in vacuum \"c\"\\n\\t9.46053e15 m\\t (1e16) -- light year\\n\\t206264.806 AU\\t (2e5) -- \\\\\\n\\t3.2616 light years (3)\\t -- --> parsec\\n\\t3.0856e16 m\\t (3e16) -- /\\n\\n\\nBlack Hole radius (also called Schwarzschild Radius):\\n\\n\\t2GM/c^2, where G is Newton\\'s Grav Constant, M is mass of BH,\\n\\t\\tc is speed of light\\n\\n Things to add (somebody look them up!)\\n\\tBasic rocketry numbers & equations\\n\\tAerodynamical stuff\\n\\tEnergy to put a pound into orbit or accelerate to interstellar\\n\\t velocities.\\n\\tNon-circular cases?\\n\\n\\nNEXT: FAQ #7/15 - Astronomical Mnemonics\\n',\n", - " 'From: B8HA \\nSubject: RE: Jews/Islam Dr. Frankenstien\\nLines: 99\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nSome of your article was cut off on the right margin, but I will try\\nand answer from what I can read.\\n\\nIn article kaveh@gate-koi.corp.sgi.com (Kaveh Smith ) writes:\\n>I have found Jewish people very imagentative and creative. Jewish religion was the foundation for Christianity and\\n>Islam. In other words Judaism has fathered both religions. Now Islam has turned against its father I may say.\\n>It is Ironic that after communizem threat is almost gone, religion wars are going to be on the raise.\\n>I thought the idea of believing on one God, was to Unite all man kind. How come both Jews and Islam which believe\\n>on the same God, \"the God of Ebrahim\" are killing each other? Is this like Dr. Frankenstien\\'s story?\\n>How are you going to stop this from happening? How are you going to deal with so many Muslims. Nuking them\\n>would distroy the whole world? Would God get mad, since you have killed his followers, you believe on the same\\n>God, same heaven and the same hell after all? What is the peacefull way of ending this Saga?\\n>\\nJudaism did not father Islam. We had many of the same prophets, but\\nJudaism ignores prophets later prophets including Jesus Christ (who\\nChristians and Muslims believe in) and Mohammed. The idea of believing\\nin one God should unite all peoples. However, note that Christianity\\nand Islam reflect the fact that there are people with different views\\nand the rights of non-Christians and non-Muslims are stated in each\\nreligion.\\n\\n\\n>Man kind needs religion, since it sets up the rules and the regulations which keeps the society in a healthy state.\\n>A religion is mostly a sets of rules which people have experienced and know it works for the society.\\n>The praying, keeps the sole healthy and meditates it. God does not care for man kinds pray, but man kind hopes\\n>that God will help him when he prays.\\n>Religion works mostly on the moral issues and trys to put away the materialistic things in the life. But the\\n>religious leaders need to make a living through religion? So they may corrupt it, or turn it to their own way to\\n>make their living. i.e Muslims have to pay %20 percent of their income to the Mullahs. I guess the rabie gets his\\n>cut too!\\n>\\nWe are supposed to pay 6% of our income after all necessities are\\npaid. Please note that this 6% is on a personal basis - if you are\\npoor, there is no need to pay (quite the contrary, this money most\\noften goes to the poor in each in country and to the poor Muslims\\naround the world). Also, this money is not required in the human\\nsense (i.e. a Muslim never knocks at your door to ask for money\\nand nobody makes a list at the mosque to make sure you have paid\\n(and we surely don\\'t pass money baskets around during our prayer\\nservices)).\\n\\n>Is in it that religion should be such that everybody on planet earth respects each other, be good toward each other\\n>helps one another, respect the mother nature. Is in that heaven and hell are created on earth through the acts\\n>that we take today? Is in it that within every man there is good and bad, he could choose either one, then he will\\n>see the outcome of his choice. How can we prevent man kind from going crazy over religion. How can we stop\\n>another religious killing field, under poor Gods name? What are your thoughts? Do you think man kind would\\n>to come its senses, before it is too late?\\n>\\n>\\n>P.S. on the side\\n>\\n>Do you think that Moses saw the God on mount Sina? Why would God go to top of the mountain? He created\\n>the earth, he could have been anywhere? why on top the mountain? Was it because people thought to see God\\n>you have to reach to the skies/heavens? Why God kept coming back to Middle East? Was it because they created\\n>God through their imagination? Is that why Jewish people were told by God, they were the chosen ones?\\n>\\nGod\\'s presence is certainly on Earth, but since God is everywhere,\\nGod may show signs of existence in other places as well. We can not\\nsay for sure where God has shown signs of his existence and where\\nhe has not/.\\n\\n>Profit Mohammad was married to Khadijeh. She was a Jewish. She taught him how to trade. She probably taught\\n>him about Judaism. Quran is mostly copy right of Taurah (sp? old testement). Do you think God wrote Quran?\\n>Makeh was a trade city before Islam. Do you think it was made to be the center of Islamic world because Mohammad\\n>wanted to expand his trade business? Is that why God has put his house in there?\\n>\\nThe Qur\\'an is not a copyright of the Taurah. Muslims believe that\\nthe Taurah, the Bible, and the Qur\\'an originally contained much the same\\nmessage, thus the many similiarities. However, the Taurah and the\\nBible have been \\'translated\\' into other languages which has changed\\ntheir meaning over time (a translation also reflects some of the\\npersonal views of the translator(s). The Qur\\'an still exists in the\\nsame language that it was revealed in - Arabic. Therefore, we know\\nthat mankind has not changed its meaning. It is truly what was revealed\\nto Mohammed at that time. There are many scientific facts which\\nwere not discovered by traditional scientific methods until much later\\nsuch as the development of the baby in the mother\\'s womb.\\n\\n\\n>I think this religious stuff has gone too far. All man kind are going to hurt from it if they do not wise up.\\n>Look at David Koresh, how that turned out? I am afraid in the bigger scale, the Jews and the Muslims will\\n>have the same ending!!!!!!!!\\n>\\nOnly God knows for sure how it will turn out. I hope it won\\'t, but if\\nthat happens, it was the will of God.\\n\\n>Religion is needed in the sense to keep people in harmony and keep them doing good things, rather than\\n>plotting each others distruction. There is one earth, One life and one God. Let\\'s all man kind be good toward\\n>each other.\\n>\\n>God help us all.\\n>Peace\\n>.\\n>.\\nPlease send this mail to me again so I can read the rest of what\\nyou said. And yes, may God help us all.\\n\\nSteve\\n\\n',\n", - " \"From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Commercial mining activities on the moon\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 10\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article , steinly@topaz.ucsc.edu (Steinn Sigurdsson) writes:\\n\\n>Very cost effective if you use the right accounting method :-)\\n\\nSherzer Methodology!!!!!!\\n\\n\\n\\n Software engineering? That's like military intelligence, isn't it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\",\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: space food sticks\\nOrganization: Express Access Online Communications USA\\nLines: 9\\nNNTP-Posting-Host: access.digex.net\\nKeywords: food\\n\\ndillon comments that Space Food Sticks may have bad digestive properties.\\n\\nI don't think so. I think most NASA food products were designed to\\nbe low fiber 'zero-residue' products so as to minimize the difficulties\\nof waste disposal. I'd doubt they'd deploy anything that caused whole sale\\nGI distress. There aren't enough plastic baggies in the world for\\na bad case of GI disease.\\n\\npat\\n\",\n", - " 'From: mogal@deadhead.asd.sgi.com (Joshua Mogal)\\nSubject: Re: Hollywood Hits, Virtual Reality\\nOrganization: Silicon Graphics, Inc.\\nLines: 137\\nNNTP-Posting-Host: deadhead.asd.sgi.com\\n\\nSorry I missed you Raymond, I was just out in Dahlgren last month...\\n\\nI\\'m the Virtual Reality market manager for Silicon Graphics, so perhaps I\\ncan help a little.\\n\\nIn article <1993Mar17.185725.13487@relay.nswc.navy.mil>,\\nrchui@nswc-wo.nswc.navy.mil (Raymond Chui) writes:\\n|> Hello, the real reality. Our agency started to express interest in\\n|> virtual reality(VR). So far, we do not know much about VR. All we\\n|> know about are the Hollywood movies \"The Terminater 2\" and \"Lawnmover\\n|> Man\". We also know something about VR from ABC news magazine and\\n|> Computer Graphics World magazine.\\n\\n\\nUnfortunately, while SGI systems were used to create the special effects\\nfor both Terminator 2 and Lawnmower Man, those are film-quality computer\\ngraphics, rendered in software and written to film a frame at a time. Each\\nframe of computer animation for those films took hours to render on\\nhigh-end parallel processing computer systems. Thus, that level of graphics\\nwould be difficult, if not impossible, to acheive in real time (30 frames\\nper second).\\n\\n\\n|> \\n|> We certainly want to know more about VR. Who are the leading\\n|> companies,\\n|> agencies, universities? What machines support VR (i.e. SGI, Sun4,\\n|> HP-9000, BIM-6000, etc.)?\\n\\n\\nIt depends upon how serious you are and how advanced your application is.\\nTrue immersive visualization (VR), requires the rendering of complex visual\\ndatabases at anywhere from 20 to 60 newly rendered frames per second. This\\nis a similar requirement to that of traditional flight simulators for pilot\\ntraining. If the frame rate is too low, the user notices the stepping of\\nthe frames as they move their head rapidly around the scene, so the motion\\nof the graphics is not smooth and contiguous. Thus the graphics system\\nmust be powerful enough to sustain high frame rates while rendering complex\\ndata representations.\\n\\nAdditionally, the frame rate must be constant. If the system renders 15\\nframes per second at one point, then 60 frames per second the next (perhaps\\ndue to the scene in the new viewing direction being simpler than what was\\nvisible before), the user can get heavily distracted by the medium (the\\ngraphics computer) rather than focusing on the data. To maintain a constant\\nframe rate, the system must be able to run in real-time. UNIX in general\\ndoes not support real-time operation, but Silicon Graphics has modified the\\nUNIX kernel for its multi-processor systems to be able to support real-time\\noperation, bypassing the usual UNIX process priority-management schemes. \\nUniprocessor systems running UNIX cannot fundamentally support real-time\\noperation (not Sun SPARC10, not HP 700 Series systems, not IBM RS-6000, not\\neven SGI\\'s uniprocessor systems like Indigo or Crimson). Only our\\nmultiprocessor Onyx and Challenge systems support real-time operation due\\nto their Symmetric Multi-Processing (SMP) shared-memory architecture.\\n\\nFrom a graphics perspective, rendering complex virtual environments\\nrequires advanced rendering techniques like texture mapping and real-time\\nmulti-sample anti-aliasing. Of all of the general purpose graphics systems\\non the market today, only Crimson RealityEngine and Onyx RealityEngine2\\nsystems fully support these capabilities. The anti-aliasing is particularly\\nimportant, as the crawling jagged edges of aliased polygons is an\\nunfortunate distraction when immersed in a virtual environment.\\n\\n\\n|> What kind of graphics languages are used with VR\\n|> (GL, opengl, Phigs, PEX, GKS, etc.)?\\n\\nYou can use the general purpose graphics libraries listed above to develop\\nVR applications, but that is starting at a pretty low level. There are\\noff-the- shelf software packages available to get you going much faster,\\nbeing targeted directly at the VR application developer. Some of the most\\npopular are (in no particular order):\\n\\n\\t- Division Inc.\\t\\t (Redwood City, CA) - dVS\\n\\t- Sens8 Inc.\\t\\t (Sausalito, CA) - WorldToolKit\\n\\t- Naval Postgraduate School (Monterey, CA) - NPSnet (FREE!)\\n\\t- Gemini Technology Corp (Irvine, CA) - GVS Simation Series\\n\\t- Paradigm Simulation Inc. (Dallas, TX) - VisionWorks, AudioWorks\\n\\t- Silicon Graphics Inc.\\t (Mountain View,CA) - IRIS Performer\\n\\nThere are some others, but not off the top of my head...\\n\\n\\t\\n|> What companies are making\\n|> interface devices for VR (goggles or BOOM (Binocular Omni-Orientational\\n|> Monitor), hamlets, gloves, arms, etc.)?\\n\\nThere are too many to list here, but here is a smattering:\\n\\n\\t- Fake Space Labs\\t (Menlo Park,CA) - BOOM\\n\\t- Virtual Technologies Inc. (Stanford, CA) - CyberGlove\\n\\t- Digital Image Design\\t (New York, NY) - The Cricket (3D input)\\n\\t- Kaiser Electro Optics\\t (Carlsbad, CA) - Sim Eye Helmet Displays\\n\\t- Virtual Research\\t (Sunnyvale, CA) - Flight Helmet display\\n\\t- Virtual Reality Inc.\\t (Pleasantville,NY) - Head Mtd Displays, s/w\\n\\t- Software Systems\\t (San Jose, CA) - 3D Modeling software\\n\\t- etc., etc., etc.\\n\\n\\n|> What are those company\\'s\\n|> addresses and phone numbers? Where we can get a list name of VR\\n|> experts\\n|> and their phone numbers and Email addresses?\\n\\n\\nRead some of the VR books on the market:\\n\\n\\t- Virtual Reality - Ken Pimental and Ken Texiera (sp?)\\n\\t- Virtual Mirage\\n\\t- Artificial Reality - Myron Kreuger\\n\\t- etc.\\n\\nOr check out the newsgroup sci.virtual_worlds\\n\\nFeel free to contact me for more info.\\n\\nRegards,\\n\\nJosh\\n\\n-- \\n\\n\\n**************************************************************************\\n**\\t\\t\\t\\t **\\t\\t\\t\\t\\t**\\n**\\tJoshua Mogal\\t\\t **\\tProduct Manager\\t\\t\\t**\\n**\\tAdvanced Graphics Division **\\t Advanced Graphics Systems\\t**\\n**\\tSilicon Graphics Inc.\\t **\\tMarket Manager\\t\\t\\t**\\n**\\t2011 North Shoreline Blvd. **\\t Virtual Reality\\t\\t**\\n**\\tMountain View, CA 94039-7311 **\\t Interactive Entertainment\\t**\\n**\\tM/S 9L-580\\t\\t **\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t *************************************\\n**\\tTel:\\t(415) 390-1460\\t\\t\\t\\t\\t\\t**\\n**\\tFax:\\t(415) 964-8671\\t\\t\\t\\t\\t\\t**\\n**\\tE-mail:\\tmogal@sgi.com\\t\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t\\t\\t\\t\\t\\t**\\n**************************************************************************\\n',\n", - " \"From: amehdi@src.honeywell.com (Hossien Amehdi)\\nSubject: Re: was: Go Hezbollah!!\\nNntp-Posting-Host: tbilisi.src.honeywell.com\\nOrganization: Honeywell Systems & Research Center\\nLines: 26\\n\\nIn article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>\\n>What the hell do you know about Israeli policy? What gives you the fiat\\n>to look into the minds of Israeli generals? Has this 'policy of intimidation'\\n>been published somewhere? For your information, the actions taken by Arabs,\\n>specifically the PLO, were not uncommon in the Lebanon Campaign of 1982. My\\n>brain is full of shit? At least I don't look into the minds of others and \\n>make Israeli policy for them!\\n>\\n... deleted\\n\\nI am not in the business of reading minds, however in this case it would not\\nbe necessary. Israelis top leaders in the past and present, always come across\\nas arrogant with their tough talks trying to intimidate the Arabs. \\n\\nThe way I see it, Israelis and Arabs have not been able to achieve peace\\nafter almost 50 years of fighting because of the following two major reasons:\\n\\n 1) Arab governments are not really representative of their people, currently\\n most of their leaders are stupid, and/or not independent, and/or\\n dictators.\\n\\n 2) Israeli government is arrogant and none comprising.\\n\\n\\n\\n\",\n", - " 'From: mlee@eng.sdsu.edu (Mike Lee)\\nSubject: MPEG for x-windows MONO needed.\\nOrganization: San Diego State University Computing Services\\nLines: 4\\nNNTP-Posting-Host: eng.sdsu.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nHello, and thank you for reading this request. I have a Mpeg viewer for x-windows and it did not run because I was running it on a monochrome monitor. I need the mono-driver for mpeg_play. \\n\\nPlease post the location of the file or better yet, e-mail me at mlee@eng.sdsu.edu.\\n\\n',\n", - " 'From: jaeger@buphy.bu.edu (Gregg Jaeger)\\nSubject: Re: An Anecdote about Islam\\nOrganization: Boston University Physics Department\\nLines: 117\\n\\nIn article <16BB112949.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n>In article <115287@bu.edu> jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n\\n \\n>>>>>A brutal system filtered through \"leniency\" is not lenient.\\n\\n\\n>>>>Huh?\\n\\n\\n>>>How do you rate public floggings or floggings at all? Chopping off the\\n>>>hands, heads, or other body parts? What about stoning?\\n\\n\\n>>I don\\'t have a problem with floggings, particularly, when the offenders\\n>>have been given a chance to change their behavior before floggings are\\n>>given. I do have a problem with maiming in general, by whatever means.\\n>>In my opinion no-one who has not maimed another should be maimed. In\\n>>the case of rape the victim _is_ maimed, physically and emotionally,\\n>>so I wouldn\\'t have a problem with maiming rapists. Obviously I wouldn\\'t\\n>>have a problem with maiming murderers either.\\n\\n\\n>May I ask if you had the same opinion before you became a Muslim?\\n\\n\\n\\nSure. Yes, I did. You see I don\\'t think that rape and murder should\\nbe dealt with lightly. You, being so interested in leniency for\\nleniency\\'s sake, apparently think that people should simply be\\ntold the \"did a _bad_ thing.\"\\n\\n\\n>And what about the simple chance of misjudgements?\\n\\nMisjudgments should be avoided as much as possible.\\nI suspect that it\\'s pretty unlikely that, given my requirement\\nof repeated offenses, that misjudgments are very likely.\\n\\n \\n>>>>>>\"Orient\" is not a place having a single character. Your ignorance\\n>>>>>>exposes itself nicely here.\\n\\n\\n>>>>>Read carefully, I have not said all the Orient shows primitive machism.\\n\\n\\n>>>>Well then, why not use more specific words than \"Orient\"? Probably\\n>>>>because in your mind there is no need to (it\\'s all the same).\\n\\n\\n>>>Because it contains sufficient information. While more detail is possible,\\n>>>it is not necessary.\\n\\n\\n>>And Europe shows civilized bullshit. This is bullshit. Time to put out\\n>>or shut up. You\\'ve substantiated nothing and are blabbering on like\\n>>\"Islamists\" who talk about the West as the \"Great Satan.\" You\\'re both\\n>>guilty of stupidities.\\n\\n\\n>I just love to compare such lines to the common plea of your fellow believers\\n>not to call each others names. In this case, to substantiate it: The Quran\\n>allows that one beATs one\\'s wife into submission. \\n\\n\\nReally? Care to give chapter and verse? We could discuss it.\\n\\n\\n>Primitive Machism refers to\\n>that. (I have misspelt that before, my fault).\\n \\n\\nAgain, not all of the Orient follows the Qur\\'an. So you\\'ll have to do\\nbetter than that.\\n\\n\\nSorry, you haven\\'t \"put out\" enough.\\n\\n \\n>>>Islam expresses extramarital sex. Extramarital sex is a subset of sex. It is\\n>>>suppressedin Islam. That marial sexis allowed or encouraged in Islam, as\\n>>>it is in many branches of Christianity, too, misses the point.\\n\\n>>>Read the part about the urge for sex again. Religions that run around telling\\n>>>people how to have sex are not my piece of cake for two reasons: Suppressing\\n>>>a strong urge needs strong measures, and it is not their business anyway.\\n\\n>>Believe what you wish. I thought you were trying to make an argument.\\n>>All I am reading are opinions.\\n \\n>It is an argument. That you doubt the validity of the premises does not change\\n>it. If you want to criticize it, do so. Time for you to put up or shut up.\\n\\n\\n\\nThis is an argument for why _you_ don\\'t like religions that suppress\\nsex. A such it\\'s an irrelevant argument.\\n\\nIf you\\'d like to generalize it to an objective statement then \\nfine. My response is then: you have given no reason for your statement\\nthat sex is not the business of religion (one of your \"arguments\").\\n\\nThe urge for sex in adolescents is not so strong that any overly strong\\nmeasures are required to suppress it. If the urge to have sex is so\\nstrong in an adult then that adult can make a commensurate effort to\\nfind a marriage partner.\\n\\n\\n\\nGregg\\n\\n\\n\\n\\n\\n\\n',\n", - " \"From: cpr@igc.apc.org (Center for Policy Research)\\nSubject: Ten questions about Israel\\nLines: 55\\nNf-ID: #N:cdp:1483500349:000:1868\\nNf-From: cdp.UUCP!cpr Apr 19 14:38:00 1993\\n\\n\\nFrom: Center for Policy Research \\nSubject: Ten questions about Israel\\n\\n\\nTen questions to Israelis\\n-------------------------\\n\\nI would be thankful if any of you who live in Israel could help to\\nprovide\\n accurate answers to the following specific questions. These are\\nindeed provocative questions but they are asked time and again by\\npeople around me.\\n\\n1. Is it true that the Israeli authorities don't recognize\\nIsraeli nationality ? And that ID cards, which Israeli citizens\\nmust carry at all times, identify people as Jews or Arabs, not as\\nIsraelis ?\\n\\n2. Is it true that the State of Israel has no fixed borders\\nand that Israeli governments from 1948 until today have refused to\\nstate where the ultimate borders of the State of Israel should be\\n?\\n\\n3. Is it true that Israeli stocks nuclear weapons ? If so,\\ncould you provide any evidence ?\\n\\n4. Is it true that in Israeli prisons there are a number of\\nindividuals which were tried in secret and for which their\\nidentities, the date of their trial and their imprisonment are\\nstate secrets ?\\n\\n5. Is it true that Jews who reside in the occupied\\nterritories are subject to different laws than non-Jews?\\n\\n6. Is it true that Jews who left Palestine in the war 1947/48\\nto avoid the war were automatically allowed to return, while their\\nChristian neighbors who did the same were not allowed to return ?\\n\\n7. Is it true that Israel's Prime Minister, Y. Rabin, signed\\nan order for ethnical cleansing in 1948, as is done today in\\nBosnia-Herzegovina ?\\n\\n8. Is it true that Israeli Arab citizens are not admitted as\\nmembers in kibbutzim?\\n\\n9. Is it true that Israeli law attempts to discourage\\nmarriages between Jews and non-Jews ?\\n\\n10. Is it true that Hotel Hilton in Tel Aviv is built on the\\nsite of a muslim cemetery ?\\n\\nThanks,\\n\\nElias Davidsson Iceland email: elias@ismennt.is\\n\",\n", - " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 42\\n\\nIn <1qjahh$mrs@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) \\nwrites:\\n\\n>In article pww@spacsun.rice.edu \\n(Peter Walker) writes:\\n>#In article <1qie61$fkt@horus.ap.mchp.sni.de>, frank@D012S658.uucp (Frank\\n>#O\\'Dwyer) wrote:\\n>#> Objective morality is morality built from objective values.\\n>#\\n>#But where do those objective values come from? How can we measure them?\\n>#What mediated thair interaction with the real world, a moralon? Or a scalar\\n>#valuino field?\\n\\n>Science (\"the real world\") has its basis in values, not the other way round, \\n>as you would wish it. If there is no such thing as objective value, then \\n>science can not objectively be said to be more useful than a kick in the head.\\n>Simple theories with accurate predictions could not objectively be said\\n>to be more useful than a set of tarot cards. You like those conclusions?\\n>I don\\'t.\\n\\n>#And how do we know they exist in the first place?\\n\\n>One assumes objective reality, one doesn\\'t know it. \\n\\n>-- \\n>Frank O\\'Dwyer \\'I\\'m not hatching That\\'\\n>odwyer@sse.ie from \"Hens\", by Evelyn Conlon\\n\\nHow do we measure truth, beauty, goodness, love, friendship, trust, honesty, \\netc.? If things have no basis in objective fact then aren\\'t we limited in what\\nwe know to be true? Can\\'t we say that we can examples or instances of reason,\\nbut cannot measure reason, or is that semantics?\\n\\nMAC\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", - " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: rec\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 9\\n\\n>>>>> On 19 Apr 93 21:48:42 GMT, xlyx@vax5.cit.cornell.edu said:\\n> Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\n\\tYes, but the _rear_ wheel comes off the ground, not the front.\\n See, it just HOPS into the air! Figure.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: Gospel Dating\\nOrganization: Case Western Reserve University\\nLines: 26\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1993Apr6.021635.20958@wam.umd.edu> west@next02cville.wam.umd.edu (Stilgar) writes:\\n\\n>Fine... THE ILLIAD IS THE WORD OF GOD(tm) (disputed or not, it is)\\n>\\n>Dispute that. It won\\'t matter. Prove me wrong.\\n\\n\\tThe Illiad contains more than one word. Ergo: it can not be\\nthe Word of God. \\n\\n\\tBut, if you will humbly agree that it is the WORDS of God, I \\nwill conceed.\\n\\n\\t:-D\\n\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n\\n',\n", - " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Ontario Hydro - Research Division\\nLines: 12\\n\\nIn article <1993Apr15.200857.10631@adobe.com> cjackson@adobe.com (Curtis Jackson) writes:\\n>\\n>So perhaps it is only *some* waterski bikes on which one countersteers...\\n\\nA Sea Doo is a boat. It turns by changing the angle of the duct behind the\\npropeller. A waterski bike looks like a motorcycle but has a ski where each\\nwheel should be. Its handlebars are connected through a familiar looking\\nsteering head to the front ski. It handles like a motorcycle.\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", - " \"From: ukrphil@prlhp1.prl.philips.co.uk (M.J.Phillips)\\nSubject: Re: Rumours about 3DO ???\\nReply-To: ukrphil@prlhp1.UUCP (M.J.Phillips)\\nOrganization: Philips Research Laboratories, Redhill, UK\\nLines: 7\\n\\nThe 68070 _does_ exist. It's number was licensed to Philips to make their\\nown variant. This chip includes extra featurfes such as more I/O ports, \\nI2C bus... making it more microcontroller like.\\n\\nBecause of the confusion with numbering (!), Philips other products in the\\n[range with the 68??? core have been given differend numbers like PCF...\\nor PCD7.. or something.\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Turkish Government Agents on UseNet Lie Through Their Teeth!\\nArticle-I.D.: urartu.1993Apr15.204512.11971\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 63\\n\\nIn revision of history <9304131827@zuma.UUCP> as posted by Turkish Government\\nAgents under the guise of sera@zuma.UUCP (Serdar Argic) LIE in response to\\narticle <1993Apr13.033213.4148@urartu.sdpa.org> hla@urartu.sdpa.org and\\nscribed: \\n\\n[(*] Orhan Gunduz is blown up. Gunduz receives an ultimatum: Either \\n[(*] he gives up his honorary position or he will be \"executed\". He \\n[(*] refuses. \"Responsibility\" is claimed by JCAG and SDPA.\\n\\n[(*] May 4, 1982 - Cambridge, Massachusetts\\n[(*]\\tOrhan Gunduz, the Turkish honorary consul in Boston, would not bow \\n[(*]\\tto the Armenian terrorist ultimatum that he give up his title of \\n[(*]\\t\"honorary consul\". Now he is attacked and murdered in cold blood.\\n[(*]\\tPresident Reagan orders an all-out manhunt-to no avail. An eye-\\n[(*]\\twitness who gave a description of the murderer is shot down. He \\n[(*]\\tsurvives... but falls silent. One of the most revolting \"triumphs\" in \\n[(*]\\tthe senseless, mindless history of Armenian terrorism. Such a murder \\n[(*]\\tbrings absolutely nothing - except an ego boost for the murderer \\n[(*]\\twithin the Armenian terrorist underworld, which is already wallowing \\n[(*]\\tin self-satisfaction.\\n[(*] \\n[(*] Were you involved in the murder of Sarik Ariyak? \\n\\n[(*] \\tDecember 17, 1980 - Sydney\\n[(*]\\tTwo Nazi Armenians massacre Sarik Ariyak and his bodyguard, Engin \\n[(*] Sever. JCAG and SDPA claim responsibility.\\n\\nMr. Turkish Governmental Agent: prove that the SDPA even existed in 1980 or\\n1982! Go ahead, provide us the newspaper accounts of the assassinations and \\nshow us the letters SDPA! The Turkish government is good at excising text from\\ntheir references, let\\'s see how good thay are at adding text to verifiable \\nnewspaper accounts! \\n\\nThe Turkish government can\\'t support any of their anti-Armenian claims as\\ntypified in the above scribed garbage! That government continues to make \\nfalse and libelous charges for they have no recourse left after having made \\nfools out of through their attempt at a systematic campaign at denying and \\ncovering up the Turkish genocide of the Armenians. \\n\\nJust like a dog barking at a moving bus, it barks, jumps, yells, until the\\nbus stops, at which point it just walks away! Such will be with this posting!\\nTurkish agents level the most ridiculous charges, and when brought to answer, \\nthey are silent, like the dog after the bus stops!\\n\\nThe Turkish government feels it can funnel a heightened state of ultra-\\nnationalism existing in Turkey today onto UseNet and convince people via its \\nrevisionist, myopic, and incidental view of themselves and their place in the \\nworld. \\n\\nThe resulting inability to address Armenian and Greek refutations of Turkey`s\\nre-write of history is to refer to me as a terrorist, and worse, claim --\\nas part of the record -- I took responsibility for the murder of 2 people!\\n\\nWhat a pack of raging fools, blinded by anti-Armenian fascism. It\\'s too bad\\nthe socialization policies of the Republic of Turkey requires it to always \\nfind non-Turks to de-humanize! Such will be their downfall! \\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: apryan@vax1.tcd.ie\\nSubject: Order MOORE\\'s book to restore Great Telescope\\nLines: 41\\nNntp-Posting-Host: vax1.tcd.ie\\nOrganization: Trinity College Dublin\\nLines: 41\\n\\nSeveral people have enquired about the availability of the book about the\\nGreat 72\" reflector built at Birr Castle, Ireland in 1845 which remained the\\nlargest in the world until the the start of the 20th century.\\n\\n\"The Astronomy of Birr Castle\" was written by Patrick Moore who now sits on\\nthe committee which is going to restore the telescope. (The remains are on\\npublic display all year round - the massive support walls, the 60 foot long\\ntube, and other bits and pieces). This book is the definitivie history of\\nhow one man, the Third Earl of Rosse, pulled off the most impressive\\ntechnical achievement, perhaps ever, in the history of the telescope, and\\nthe discoveries made with the instrument.\\n\\nPatrick Moore is donating all proceeds from the book\\'s sale to help restore\\nthe telescope. Astronomy Ireland is making the book available world wide by\\nmail order. It\\'s a fascinating read and by ordering a copy you bring the day\\nwhen we can all look through it once again that little bit nearer.\\n\\n=====ORDERING INFORMATION=====\\n\"The Astronomy of Birr Castle\" Dr. Patrick Moore, xii, 90pp, 208mm x 145mm.\\nPrice:\\nU.S.: US$4.95 + US$2.95 post & packing (add $3.50 airmail)\\nU.K. (pounds sterling): 3.50 + 1.50 post & packing\\nEUROPE (pounds sterling): 3.50 + 2.00 post and packing\\nREST OF WORLD: as per U.S. but funds payable in US$ only.\\n\\nPAYMENT:\\nMake all payments to \"Astronomy Ireland\".\\nCREDIT CARD: MASTERCARD/VISA/EUROCARD/ACCESS accepted by email or snail\\nmail: give card number, name & address, expiration date, and total amount.\\nPayments otherwise must be by money order or bank draft.\\nSend to our permanent address: P.O.Box 2888, Dublin 1, Ireland.\\n\\nYou can also subscribe to \"Astronomy & Space\" at the same time. See below:\\n----------------------------------------------------------------------------\\nTony Ryan, \"Astronomy & Space\", new International magazine, available from:\\n Astronomy Ireland, P.O.Box 2888, Dublin 1, Ireland.\\n6 issues (one year sub.): UK 10.00 pounds, US$20 surface (add US$8 airmail).\\nACCESS/VISA/MASTERCARD accepted (give number, expiration date, name&address).\\n\\n (WORLD\\'S LARGEST ASTRO. SOC. per capita - unless you know better? 0.033%)\\nTel: 0891-88-1950 (UK/N.Ireland) 1550-111-442 (Eire). Cost up to 48p per min\\n',\n", - " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 30\\n\\nIn article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>The readers of this forum seemed to be more interested in the contents\\n>of those files.\\n>So It will be nice if Yigal will tell us:\\n>1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\nADL authorities seem to view a lot of people as dangerous, including\\nthe millions of Americans of Arab ancestry. Perhaps you can answer\\nthe question as to why the ADL maintained files and spied on ADC members\\nin California (and elsewhere??)? Friendly rivalry perhaps?\\n\\nPerhaps Yigal is a Greenpeace member? Or the NAACP? Or a reporter? \\nOr a member of any of the dozens of other political organizations/ethnic \\nminorities/occupations that the ADL spied on.\\n\\n>2. Why does the ADL have an interest in that person ?\\n\\nParanoia?\\n\\n>3. If one does trust either the US government or the ADL what an\\n> additional information should he send them ?\\n\\nThe names of half the posters on this forum, unless they already \\nhave them.\\n\\n>\\n>\\n>Gideon Ehrlich\\n\\n-anwar\\n',\n", - " 'From: wats@scicom.AlphaCDC.COM (Bruce Watson)\\nSubject: Quotation Was:(Re: , nerone@ccwf.cc.utexas.edu (Michael Nerone) writes:\\n|> In article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n|> \\n|> CH> Concerning the proposed newsgroup split, I personally am not in\\n|> CH> favor of doing this. I learn an awful lot about all aspects of\\n|> CH> graphics by reading this group, from code to hardware to\\n|> CH> algorithms. I just think making 5 different groups out of this\\n|> CH> is a wate, and will only result in a few posts a week per group.\\n|> CH> I kind of like the convenience of having one big forum for\\n|> CH> discussing all aspects of graphics. Anyone else feel this way?\\n|> CH> Just curious.\\n|> \\n|> I must agree. There is a dizzying number of c.s.amiga.* newsgroups\\n|> already. In addition, there are very few issues which fall cleanly\\n|> into one of these categories.\\n|> \\n|> Also, it is readily observable that the current spectrum of amiga\\n|> groups is already plagued with mega-crossposting; thus the group-split\\n|> would not, in all likelihood, bring about a more structured\\n|> environment.\\n|> \\n|> --\\n|> /~~~~~~~~~~~~~~~~~~~\\\\/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\\\\\n|> / Michael Nerone \\\\\"I shall do so with my customary lack of tact; and\\\\\\n|> / Internet Address: \\\\since you have asked for this, you will be obliged\\\\\\n|> /nerone@ccwf.cc.utexas.edu\\\\to pardon it.\"-Sagredo, fictional char of Galileo.\\\\\\n\\nHi,\\nIt might be nice to know, what\\'s possible on different hard ware platforms.\\nBut usually the hard ware is fixed ( in my case either Unix or DOS- PC ).\\nSo I\\'m not much interested in Amiga news. \\n\\nIn the case of Software, I won\\'t get any comercial software mentioned in this\\nnewgroup to run on a Unix- platform, so I\\'m not interested in this information.\\n\\nI would suggest to split the group. I don\\'t see the problem of cross-posting.\\nThen you need to read just 2 newgroups with half the size. \\n\\nBUT WHAT WOULD BE MORE IMPORTANT IS TO HAVE A FAQ. THIS WOULD REDUCE THE\\nTRAFFIC A LOT.\\n\\nSincerely, Gerhard\\n-- \\nI\\'m writing this as a privat person, not reflecting any opinions of the Inst.\\nof Hydromechanics, the University of Karlsruhe, the Land Baden-Wuerttemberg,\\nthe Federal Republic of Germany and the European Community. The address and\\nphone number below are just to get in touch with me. Everything I\\'m saying, \\nwriting and typing is always wrong ! (Statement necessary to avoid law suits)\\n=============================================================================\\n- Dipl.-Ing. Gerhard Bosch M.Sc. voice:(0721) - 608 3118 -\\n- Institute for Hydromechanic FAX:(0721) - 608 4290 -\\n- University of Karlsruhe, Kaiserstrasse 12, 7500-Karlsruhe, Germany -\\n- Internet: bosch@ifh-hp2.bau-verm.uni-karlsruhe.de -\\n- Bitnet: nd07@DKAUNI2.BITNET -\\n=============================================================================\\n',\n", - " \"From: amann@iam.unibe.ch (Stephan Amann)\\nSubject: Re: more on radiosity\\nReply-To: amann@iam.unibe.ch\\nOrganization: University of Berne, Institute of Computer Science and Applied Mathematics, Special Interest Group Computer Graphics\\nLines: 80\\n\\nIn article 66319@yuma.ACNS.ColoState.EDU, xz775327@longs.LANCE.ColoState.Edu (Xia Zhao) writes:\\n>\\n>\\n>In article <1993Apr19.131239.11670@aragorn.unibe.ch>, you write:\\n>|>\\n>|>\\n>|> Let's be serious... I'm working on a radiosity package, written in C++.\\n>|> I would like to make it public domain. I'll announce it in c.g. the minute\\n>|> I finished it.\\n>|>\\n>|> That were the good news. The bad news: It'll take another 2 months (at least)\\n>|> to finish it.\\n>\\n>\\n> Are you using the traditional radiosity method, progressive refinement, or\\n> something else in your package?\\n>\\n\\nMy package is based on several articles about non-standard radiosity and\\nsome unpublished methods.\\n\\nThe main articles are:\\n\\n- Cohen, Chen, Wallace, Greenberg : \\n A Progressive Refinement Approach to fast Radiosity Image Generation\\n Computer Graphics (SIGGRAPH), V. 22(No. 4), pp 75-84, August 1988\\n\\n- Silion, Puech\\n A General Two-Pass Method Integrating Specular and Diffuse Reflection\\n Computer Graphics (SIGGRAPH), V23(No. 3), pp335-344, July 1989 \\n\\n> If you need to project patches on the hemi-cube surfaces, what technique are\\n> you using? Do you have hardware to facilitate the projection?\\n>\\n\\nI do not use hemi-cubes. I have no special hardware (SUN SPARCstation).\\n\\n>\\n>|>\\n>|> In the meantime you may have a look at the file\\n>|> Radiosity_code.tar.Z\\n>|> located at\\n>|> compute1.cc.ncsu.edu\\n>\\n>\\n> What are the guest username and password for this ftp site?\\n>\\n\\nUse anonymous as username and your e-mail address as password.\\n\\n>\\n>|>\\n>|> (there are some other locations; have a look at archie to get the nearest)\\n>|>\\n>|> Hope that'll help.\\n>|>\\n>|> Yours\\n>|>\\n>|> Stephan\\n>|>\\n>\\n>\\n> Thanks, Stephan.\\n>\\n>\\n> Josephine\\n\\n\\nStephan.\\n\\n\\n----------------------------------------------------------------------------\\n\\n Stephan Amann SIG Computer Graphics, University of Berne, Switzerland\\n amann@iam.unibe.ch\\n\\t Tel +41 31 65 46 79\\t Fax +41 31 65 39 65\\n\\n Projects: Radiosity, Raytracing, Computer Graphics\\n\\n----------------------------------------------------------------------------\\n\",\n", - " 'Subject: Re: Request for Support\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 16\\n\\nIn article <1993Apr5.095148.5730@sei.cmu.edu> dpw@sei.cmu.edu (David Wood) writes:\\n\\n>2. If you must respond to one of his articles, include within it\\n>something similar to the following:\\n>\\n> \"Please answer the questions posed to you in the Charley Challenges.\"\\n\\n\\tAgreed.\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", - " 'From: hasan@McRCIM.McGill.EDU \\nSubject: Re: Water on the brain (was Re: Israeli Expansion-lust)\\nOriginator: hasan@lightning.mcrcim.mcgill.edu\\nNntp-Posting-Host: lightning.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 15\\n\\n\\nIn article <1993Apr15.055341.6075@nysernet.org>, astein@nysernet.org (Alan Stein) writes:\\n|> I guess Hasan finally revealed the source of his claim that Israel\\n|> diverted water from Lebanon--his imagination.\\n|> -- \\n|> Alan H. Stein astein@israel.nysernet.org\\nMr. water-head,\\ni never said that israel diverted lebanese rivers, in fact i said that\\nisrael went into southern lebanon to make sure that no \\nwater is being used on the lebanese\\nside, so that all water would run into Jordan river where there\\nisrael will use it !#$%^%&&*-head.\\n\\nHasan \\n',\n", - " 'From: tffreeba@indyvax.iupui.edu\\nSubject: Death and Taxes (was Why not give $1 billion to...\\nArticle-I.D.: indyvax.1993Apr22.162501.747\\nLines: 10\\n\\nIn my first posting on this subject I threw out an idea of how to fund\\nsuch a contest without delving to deep into the budget. I mentioned\\ngranting mineral rights to the winner (my actual wording was, \"mining\\nrights.) Somebody pointed out, quite correctly, that such rights are\\nnot anybody\\'s to grant (although I imagine it would be a fait accompli\\nsituation for the winner.) So how about this? Give the winning group\\n(I can\\'t see one company or corp doing it) a 10, 20, or 50 year\\nmoratorium on taxes.\\n\\nTom Freebairn \\n',\n", - " 'From: sts@mfltd.co.uk (Steve Sherwood (x5543))\\nSubject: Re: Virtual Reality for X on the CHEAP!\\nReply-To: sts@mfltd.co.uk\\nOrganization: Micro Focus Ltd, Newbury, England\\nLines: 39\\n\\nIn article <1r6v3a$rj2@fg1.plk.af.mil>, ridout@bink.plk.af.mil (Brian S. Ridout) writes:\\n|> In article <1993Apr15.134802.21995@mfltd.co.uk>, sts@mfltd.co.uk (Steve Sherwood (x5543)) writes:\\n|> |> Has anyone got multiverse to work ?\\n|> |> \\n|> |> I have built it on 486 svr4, mips svr4s and Sun SparcStation.\\n|> |> \\n|> |> There seems to be many bugs in it. The \\'dogfight\\' and \\'dactyl\\' simply do nothing\\n|> |> (After fixing a bug where a variable is defined twice in two different modules - One needed\\n|> |> setting to static - else the client core-dumped)\\n|> |> \\n|> |> Steve\\n|> |> -- \\n|> |> \\n|> |> Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n|> |> +-----------------------------------+------------------------+ Micro Focus\\n|> |> | Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n|> |> | Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n|> |> | Need courage to survive the day. | | Berkshire\\n|> |> +-----------------------------------+------------------------+ England\\n|> |> (A)bort (R)etry (I)nfluence with large hammer\\n|> I built it on a rs6000 (my only Motif machine) works fine. I added some objects\\n|> into dogfight so I could get used to flying. This was very easy. \\n|> All in all Cool!. \\n|> Brian\\n\\nThe RS6000 compiler is so forgiving, I think that if you mixed COBOL & pascal\\nthe C compiler still wouldn\\'t complain. :-)\\n\\nSteve\\n-- \\n\\n Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n+-----------------------------------+------------------------+ Micro Focus\\n| Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n| Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n| Need courage to survive the day. | | Berkshire\\n+-----------------------------------+------------------------+ England\\n (A)bort (R)etry (I)nfluence with large hammer\\n\\n',\n", - " 'From: arnie@magnus.acs.ohio-state.edu (Arnie Skurow)\\nSubject: Re: Live Free, but Quietly, or Die\\nArticle-I.D.: magnus.1993Apr6.184322.18666\\nOrganization: The Ohio State University\\nLines: 14\\nNntp-Posting-Host: bottom.magnus.acs.ohio-state.edu\\n\\nIn article Russell.P.Hughes@dartmouth.edu (R\\nussell P. Hughes) writes:\\n>What a great day! Got back home last night from some fantastic skiing\\n>in Colorado, and put the battery back in the FXSTC. Cleaned the plugs,\\n>opened up the petcock, waited a minute, hit the starter, and bingo it\\n>started up like a charm! Spent a restless night anticipating the first\\n>ride du saison, and off I went this morning to get my state inspection\\n>done. Now my bike is stock (so far) except for HD slash-cut pipes, and\\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nTherein lies the rub. The HD slash cut, or baloney cuts as some call\\nthem, ARE NOT STOCK mufflers. They\\'re sold for \"off-road use only,\"\\nand are much louder than stock mufflers.\\n\\nArnie\\n',\n", - " 'From: lcd@umcc.umcc.umich.edu (Leon Dent)\\nSubject: Re: MPEG for x-windows MONO needed.\\nOrganization: UMCC, Ann Arbor, MI\\nLines: 20\\nNNTP-Posting-Host: umcc.umcc.umich.edu\\n\\nOn sunsite.unc.edu in pub/multimedia/utilities/unix find \\n mpeg_play-2.0.tar.Z.\\n\\nI find for mono it works best as mpeg_play -dither threshold \\n though you can use mpeg_play -dither mono\\n\\nFace it, this is not be the best viewing situation.\\n\\nAlso someone has made a patch for mpeg_play that gives two more mono\\nmodes (mono2 and halftone).\\n\\nThey are by jan@pandonia.canberra.edu.au (Jan Newmarch).\\nAnd the patch can be found on csc.canberra.edu.au (137.92.1.1) under\\n/pub/motif/mpeg2.0.mono.patch.\\n\\n\\nLeon Dent\\nlcd@umcc.umich.edu\\n \\n\\n',\n", - " \"From: robert@Xenon.Stanford.EDU (Robert Kennedy)\\nSubject: Battery storage -- why not charge and store dry?\\nOrganization: Computer Science Department, Stanford University.\\nLines: 24\\n\\nSo it looks like I'm going to have to put a couple of bikes in storage\\nfor a few months, starting several months from now, and I'm already\\ncontemplating how to do it so they're as easy to get going again as\\npossible. I have everything under control, I think, besides the\\nbatteries. I know that if I buy a $50.00 Battery Tender for each one\\nand leave them plugged in the whole time the bikes are in storage,\\nthey'll be fine. But I'm not sure that's necessary. I've never heard\\nanyone discussing this idea, so maybe there's some reason why it isn't\\nso great. But maybe someone can tell me.\\n\\nWould it be a mistake to fully charge the batteries, drain the\\nelectrolyte into separate containers (one for each battery), seal the\\ncontainer, close up the batteries, and leave them that way? Then it\\nwould seem that when the bikes come out of storage, I could put the\\nelectrolyte back in the batteries and they should still be fully\\ncharged. What's wrong with this?\\n\\nOn a related, but different note for you Bay Area Denizens, wasn't\\nthere someone who had a bunch of spare EDTA a few months back? Who was\\nit? Is there still any of it left?\\n\\nThanks for any and all help!\\n\\n\\t-- Robert\\n\",\n", - " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: Need advice for riding with someone on pillion\\nKeywords: advice, pillion, help!\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nDistribution: na\\nLines: 44\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n\\t<...>\\t<...>\\n>This person is <100 lbs. and fairly small, so I don\\'t see weight as too much\\n>of a problem, but what sort of of advice should I give her before we go?\\n>I want her to hold onto me :-) rather than the grab rail out back, and\\n>I\\'ve heard that she should look over my shoulder in the direction we\\'re\\n>turning so she leans *with* me, but what else? Are there traditional\\n>signals for SLOW DOWN!! or GO FASTER!! or I HAFTA GO PEE!! etc.???\\n\\n\\tI\\'ve never liked my passengers to try and shift their weight with the\\n\\tturns at all... I find the weight shift can be very sudden and\\n\\tunnerving. It\\'s one thing if they\\'re just getting comfortable or\\n\\tdecide to look over your other shoulder, but I don\\'t recommend having\\n\\thim/her shift her weight with each turn... too violent.\\n\\t\\n\\tAlso (I think someone already said this) make sure your passenger\\n\\twears good gear. I sometimes choose to ride without a helmet or\\n\\tlacking other safety gear (depends on how squidly I feel) but I\\n\\twon\\'t let passengers do it. What I do to myself I can handle, but\\n\\tI wouldn\\'t want to hurt anyone else, so I don\\'t let them on without\\n\\tgloves, jacket, (at least) jeans, heavy boots, and a helmet that *fits*\\n\\n>I really want this to be a positive experience for us both, mainly so that\\n>she\\'ll want to go with me again, so any help will be appreciated...\\n\\n\\tGo *real* easy. It\\'s amazing how solid a grip you have on the\\n\\thandle bars that your passenger does not. Don\\'t make her feel like\\n\\tshe\\'s going to slide off the back, and \"snappy\" turns for you are\\n\\tsickening lurches for her. In general, it feels much less controlled\\n\\tand smooth as a passenger. I can\\'t stand being on the back of my\\n\\tbrother\\'s bike, and I ride aggressively when i ride and I know he\\'s\\n\\ta good pilot... still, everything feels very unsteady when you\\'re\\n\\ta passenger. \\n\\n\\n>Thanks,\\n> -Bob-\\n\\n\\tShow off by not showing off the first time out...\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", - " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: Happy Easter!\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 17\\n\\nIn article <1993Apr15.171757.10890@i88.isc.com> jeq@lachman.com (Jonathan E. Quist) writes:\\n>Rolls-Royce owned by a non-British firm?\\n>\\n>Ye Gods, that would be the end of civilization as we know it.\\n\\n Why not? Ford owns Aston-Martin and Jaguar, General Motors owns Lotus\\nand Vauxhall. Rover is only owned 20% by Honda.\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", - " \"From: tom@inferno.UUCP (Tom Sherwin)\\nSubject: Re: XV under MS-DOS ?!?\\nOrganization: Periphonics Corporation\\nLines: 30\\nNNTP-Posting-Host: ablaze\\n\\n|> Hi ... Recently I found XV for MS-DOS in a subdirectory of GNU-CC (GNUISH). I \\n|> use frequently XV on a Sun Spark Station 1 and I never had problems, but when I\\n|> start it on my computer with -h option, it display the help menu and when I\\n|> start it with a GIF-File my Hard disk turns 2 or 3 seconds and the prompt come\\n|> back.\\n|> \\n|> My computer is a little 386/25 with copro, 4 Mega rams, Tseng 4000 (1M) running\\n|> MS-DOS 5.0 with HIMEM.SYS and no EMM386.SYS. I had the GO32.EXE too... but no\\n|> driver who run with it.\\n|> \\n|> Do somenone know the solution to run XV ??? any help would be apprecied..\\n|> \\t\\t\\n\\nYou probably need an X server running on top of MS DOS. I use Desqview/X\\nbut any MS-DOS X server should do.\\n\\n-- \\n\\n XX X Technical documentation is writing 90% of the words\\n XX X for 10% of the features that only 1% of the customers\\n XX X actually use.\\n XX X -------------------------------------------------------\\n A PC to XX X I don't have opinions, I have factual interpretations...\\n the power XX X -Me\\n of X XX ---------------------------------------------------------\\n X XX ...uunet!rutgers!mcdhup!inferno!tom can be found at\\n X XX Periphonics Corporation\\n X XX 4000 Veterans Memorial Highway Bohemia, NY 11716\\n X XX ----------------------------------------------------\\n X XX They pay me to write, not express their opinions...\\n\",\n", - " \"From: kardank@ERE.UMontreal.CA (Kardan Kaveh)\\nSubject: Re: Newsgroup Split\\nOrganization: Universite de Montreal\\nLines: 8\\n\\nI haven't been following this thread, so appologies if this has already been\\nmentioned, but how about\\n\\n\\tcomp.graphics.3d\\n\\n-- \\nKaveh Kardan\\nkardank@ERE.UMontreal.CA\\n\",\n", - " 'From: svoboda@rtsg.mot.com (David Svoboda)\\nSubject: Re: edu breaths\\nNntp-Posting-Host: corolla18\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 29\\n\\nIn article <1993Apr15.214910.5676@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n|In article <1993Apr15.003749.15710@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n|>In article <1993Apr14.220252.14731@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n|>|\\n|>|The difference of opinion, and difference in motorcycling between the sport-bike\\n|>|riders and the cruiser-bike riders. \\n|>\\n|>That difference is only in the minds of certain closed-minded individuals. I\\n|>have had the very best motorcycling times with riders of \"cruiser\" \\n|>bikes (hi Don, Eddie!), yet I ride anything but.\\n|\\n|Continuously, on this forum, and on the street, you find quite a difference\\n|between the opinions of what motorcycling is to different individuals.\\n\\nYes, yes, yes. Motorcycling is slightly different to each and every one of us. This\\nis the nature of people, and one of the beauties of the sport. \\n\\n|Cruiser-bike riders have a different view of motorcycling than those of sport bike riders\\n|(what they like and dislike about motorcycling). This is not closed-minded. \\n\\nAnd what view exactly is it that every single rider of cruiser bikes holds, a veiw\\nthat, of course, no sport-bike rider could possibly hold? Please quantify your\\ngeneralization for us. Careful, now, you\\'re trying to pigeonhole a WHOLE bunch\\nof people.\\n\\nDave Svoboda (svoboda@void.rtsg.mot.com) | \"I\\'m getting tired of\\n90 Concours 1000 (Mmmmmmmmmm!) | beating you up, Dave.\\n84 RZ 350 (Ring Ding) (Woops!) | You never learn.\"\\nAMA 583905 DoD #0330 COG 939 (Chicago) | -- Beth \"Bruiser\" Dixon\\n',\n", - " \"From: nicho@vnet.IBM.COM (Greg Stewart-Nicholls)\\nSubject: Re: Vandalizing the sky.\\nReply-To: nicho@vnet.ibm.com\\nDisclaimer: This posting represents the poster's views, not those of IBM\\nNews-Software: UReply 3.1\\nX-X-From: nicho@vnet.ibm.com\\n \\nLines: 9\\n\\nIn George F. Krumins writes:\\n>It is so typical that the rights of the minority are extinguished by the\\n>wants of the majority, no matter how ridiculous those wants might be.\\n Umm, perhaps you could explain what 'rights' we are talking about\\nhere ..\\n -----------------------------------------------------------------\\nGreg Nicholls ... : Vidi\\nnicho@vnet.ibm.com or : Vici\\nnicho@olympus.demon.co.uk : Veni\\n\",\n", - " \"From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: bikes with big dogs\\nOrganization: AT&T\\nDistribution: na\\nLines: 20\\n\\nIn article <1993Apr14.234835.1@cua.edu> 84wendel@cua.edu writes:\\n>Has anyone ever heard of a rider giving a big dog such as a great dane a ride \\n>on the back of his bike. My dog would love it if I could ever make it work.\\n>\\tThanks\\n>\\t\\t\\t84wendel@cua.edu\\n \\n If a large Malmute counts then yes someone has heard(and seen) such\\nan irresponsible childish stunt. The dog needed assistance straightening\\nout once on board. The owner would lift the front legs of dog and throw\\nthem over the driver/pilots shoulders. Said dog would get shit eating\\ngrin on its face and away they'd go. The dogs ass was firmly planted\\non the seat.\\n \\n My dog and this dog actively seek each other out at camping party's.\\nThey hate each other. I think it's something personal.\\n \\n================================================================================\\n Steatopygias's 'R' Us. doh#0000000005 That ain't no Hottentot.\\n Sesquipedalian's 'R' Us. ZX-10. AMA#669373 DoD#564. There ain't no more.\\n================================================================================\\n\",\n", - " 'Subject: Quotation? Lowest bidder...\\nFrom: bioccnt@otago.ac.nz\\nOrganization: University of Otago, Dunedin, New Zealand\\nNntp-Posting-Host: thorin.otago.ac.nz\\nLines: 12\\n\\n\\nCan someone please remind me who said a well known quotation? \\n\\nHe was sitting atop a rocket awaiting liftoff and afterwards, in answer to\\nthe question what he had been thinking about, said (approximately) \"half a\\nmillion components, each has to work perfectly, each supplied by the lowest\\nbidder.....\" \\n\\nAttribution and correction of the quote would be much appreciated. \\n\\nClive Trotman\\n\\n',\n", - " 'From: mlj@af3.mlb.semi.harris.com (Marvin Jaster )\\nSubject: FOR SALE \\nNntp-Posting-Host: sunsol.mlb.semi.harris.com\\nOrganization: Harris Semiconductor, Melbourne FL\\nKeywords: FOR SALE\\nLines: 44\\n\\nI am selling my Sportster to make room for a new FLHTCU.\\nThis scoot is in excellent condition and has never been wrecked or abused.\\nAlways garaged.\\n\\n\\t1990 Sportster 883 Standard (blue)\\n\\n\\tfactory 1200cc conversion kit\\n\\n\\tless than 8000 miles\\n\\n\\tBranch ported and polished big valve heads\\n\\n\\tScreamin Eagle carb\\n\\n\\tScreamin Eagle cam\\n\\n\\tadjustable pushrods\\n\\n\\tHarley performance mufflers\\n\\n\\ttachometer\\n\\n\\tnew Metzeler tires front and rear\\n\\n\\tProgressive front fork springs\\n\\n\\tHarley King and Queen seat and sissy bar\\n\\n\\teverything chromed\\n\\n\\tO-ring chain\\n\\n\\tfork brace\\n\\n\\toil cooler and thermostat\\n\\n\\tnew Die-Hard battery\\n\\n\\tbike cover\\n\\nprice: $7000.00\\nphone: hm 407/254-1398\\n wk 407/724-7137\\nMelbourne, Florida\\n',\n", - " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: Fundamentalism - again.\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , khan0095@nova.gmi.edu (Mohammad Razi Khan) writes:\\n|> One of my biggest complaints about using the word \"fundamentalist\"\\n|> is that (at least in the U.S.A.) people speak of muslime\\n|> fundamentalists ^^^^^^^muslim\\n|> but nobody defines what a jewish or christan fundamentalist is.\\n|> I wonder what an equal definition would be..\\n|> any takers..\\n\\nWell, I would go as far as saying that Naturei Karta are definitely\\nJewish fundamentalists. Other ultra-orthodox Jewish groups might very\\nwell be, though I am hesitant of making such a broad generalization.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n',\n", - " \"From: howard@netcom.com (Howard Berkey)\\nSubject: Re: Shipping a bike\\nOrganization: Netcom Online Communications Services (408-241-9760 login: guest)\\nLines: 23\\n\\nIn article mellon@ncd.com (Ted Lemon) writes:\\n>\\n>>Can someone recommend how to ship a motorcycle from San Francisco\\n>>to Seattle? And how much might it cost?\\n>\\n>I'd recommend that you hop on the back of it and cruise - that's a\\n>really nice ride, if you choose your route with any care at all.\\n>Shouldn't cost more than about $30 in gas, and maybe a night's motel\\n>bill...\\n>\\n\\nYes! Up the coast, over to Portland, then up I-5. Really nice most\\nof the way, and I'm sure there's even better ways.\\n\\nWatch the weather, though... I got about as good a drenching as\\npossible in the Oregon coast range once... \\n\\n\\n-- \\n::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\\nHoward Berkey \\t\\t\\t\\t\\t\\t howard@netcom.com\\n\\t\\t\\t\\t Help!\\n... .. ... ... .. ... ... .. ... ... .. ... ... .. ... ... .. ...\\n\",\n", - " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: free moral agency and Jeff Clark\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 21\\n\\nIn article sandvik@newton.apple.com (Kent Sandvik) writes:\\n>\\n>This is the reason I like the controversy of post-modernism, the\\n>issues of polarities -- evil and good -- are just artificial \\n>constructs, and they fall apart during a closer inspection.\\n>\\n>The more I look into the notion of a constant struggle between\\n>the evil and good forces, the more it sounds like a metaphor\\n>that people just assume without closer inspection.\\n>\\n\\n More info please. I'm not well exposed to these ideas.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", - " \"From: bob1@cos.com (Bob Blackshaw)\\nSubject: Re: No humanity in Bosnia\\nKeywords: Barbarism\\nOrganization: Corporation for Open Systems\\nDistribution: world \\nLines: 47\\n\\nIn <1993Apr15.135934.23814@julian.uwo.ca> mrizvi@gfx.engga.uwo.ca (Mr. Mubashir Rizvi) writes:\\n\\n>It is very encouraging that a number of people took so interest in my posting.I recieved a couple of letters too,some has debated the statement that events in Bosnia are unprecedented in the history of the modern world.Those who contest this statement present the figures of the World War II.However we must keep in mind that it was a World War and no country had the POWER to stop it,today is the matter not of the POWER but of the WILL.It\\n>seems to be that what we lack is the will.\\n\\nThe idea of the U.S, or any other nation, taking action, i.e., military\\nintervention, in Bosnia has not been well thought out by those who \\nadvocate such action. After the belligerants are subdued, it would require\\nan occupation force for one or two generations. If you will stop and\\nthink about it, you will realize that these people have never forgotten\\na single slight or injury, they have imbibed hatred with their mother's\\nmilk. If we stop the fighting, seize and destroy all weapons, they will\\nsimply go back to killing each other with clubs. And the price for this\\nfutility will be the lives of the young men and women we send there to\\ndie. A price I am unwilling to even consider.\\n\\n>Second point of difference (which makes it different from the holocast(sp?) ) is that at that time international community\\n>didnot have enough muscle to prevent the unfortunate event,\\n\\nThere is no valid comparison to the Holocaust. All of the Jewish people\\nthat I have known as friends were not brought up to hate. To be wary of\\nothers, most certainly, but not to hate. And except for the Warsaw\\nuprising, they were unarmed (and even in Warsaw badly out-gunned).\\nIt is very easy to speak of muscle when they are someone else's muscles.\\nSuppose we do this thing, what will you tell the parents, wives, children,\\nlovers of those we are sending to die? That they gave their lives in some noble cause? Noble cause, separating some mad dogs who will turn on them.\\n\\nWell, I will offer you some muscle. Suppose we tell them that they have\\none week (this will give foreign nationals time to leave) to cease\\ntheir bloodshed. At the end of that week, bring in the Tomahawk firing\\nships and destroy Belgrade as they destroyed the Bosnian cities. Perhaps\\nwhen some of their cities are reduced to rubble they will have a sudden\\nattack of brains. Send in missiles by all means, but do not send in\\ntroops.\\n\\n>today inspite of all the might,the international community is not just standing neutral but has placed an arms embargo which\\n\\nBy all means lift the embargo.\\n\\n>is to the obvious disadvantage of the weeker side and therefore to the advantage of the bully.Hence indirecltly and possibly\\n>unintentionally, mankind has sided with the killers.And this,I think is unprecedented in the history of the modern world.\\n\\nWhich killers? Do you honestly believe they are all on one side?\\n\\n>M.Rizvi\\n> \\nREB\\n\",\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Alaska Pipeline and Space Station!\\nOrganization: Express Access Online Communications USA\\nLines: 25\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr5.160550.7592@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n|\\n|I think this would be a great way to build it, but unfortunately\\n|current spending rules don't permit it to be workable. For this to\\n|work it would be necessary for the government to guarantee a certain\\n|minimum amount of business in order to sufficiently reduce the risk\\n|enough to make this attractive to a private firm. Since they\\n|generally can't allocate money except one year at a time, the\\n|government can't provide such a tenant guarantee.\\n\\n\\nFred.\\n\\n\\tTry reading a bit. THe government does lots of multi year\\ncontracts with Penalty for cancellation clauses. They just like to be\\ndamn sure they know what they are doing before they sign a multi year\\ncontract. THe reason they aren't cutting defense spending as much\\nas they would like is the Reagan administration signed enough\\nMulti year contracts, that it's now cheaper to just finish them out.\\n\\nLook at SSF. THis years funding is 2.2 Billion, 1.8 of which will\\ncover penalty clauses, due to the re-design.\\n\\npat\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian slaughter of defenseless Muslim children and pregnant women.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 81\\n\\nIn article <1993Apr20.232449.22318@kpc.com> henrik@quayle.kpc.com writes:\\n\\nBM] Gimme a break. CAPITAL letters, or NOT, the above is pure nonsense. \\nBM] It seems to me that short sighted Armenians are escalating the hostilities\\n\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n> Again, Armenians in KARABAKH are SIMPLY defending themselves. What do\\n\\nThe winding down of winter puts you in a heavy \\'Arromdian\\' mood? I\\'ll \\nsee if I can get our dear \"Mehmetcik\" to write you a letter giving\\nyou and your criminal handlers at the ASALA/SDPA/ARF Terrorism and\\nRevisionism Triangle some military pointers, like how to shoot armed\\nadult males instead of small Muslim children and pregnant women.\\n\\n\\nSource: \\'The Times,\\' 3 March 1992\\n\\nMASSACRE UNCOVERED....\\n\\nBy ANATOL LIEVEN,\\n\\nMore than sixty bodies, including those of women and children, have \\nbeen spotted on hillsides in Nagorno-Karabakh, confirming claims \\nthat Armenian troops massacred Azeri refugees. Hundreds are missing.\\n\\nScattered amid the withered grass and bushes along a small valley \\nand across the hillside beyond are the bodies of last Wednesday\\'s \\nmassacre by Armenian forces of Azerbaijani refugees.\\n\\nFrom that hill can be seen both the Armenian-controlled town of \\nAskeran and the outskirts of the Azerbaijani military headquarters \\nof Agdam. Those who died very nearly made it to the safety of their \\nown lines.\\n\\nWe landed at this spot by helicopter yesterday afternoon as the last \\ntroops of the Commonwealth of Independent states began pulling out. \\nThey left unhindered by the warring factions as General Boris Gromov, \\nwho oversaw the Soviet withdrawal from Afghanistan, flew to Stepanakert \\nto ease their departure.\\n\\nA local truce was enforced to allow the Azerbaijaines to collect their \\ndead and any refugees still hiding in the hills and forest. All the \\nsame, two attack helicopters circled continuously the nearby Armenian \\npositions.\\n\\nIn all, 31 bodies could be counted at the scene. At least another \\n31 have been taken into Agdam over the past five days. These figures \\ndo not include civilians reported killed when the Armenians stormed \\nthe Azerbaijani town of Khodjaly on Tuesday night. The figures also \\ndo not include other as yet undiscovered bodies\\n\\nZahid Jabarov, a survivor of the massacre, said he saw up to 200 \\npeople shot down at the point we visited, and refugees who came \\nby different routes have also told of being shot at repeatedly and \\nof leaving a trail of bodies along their path. Around the bodies \\nwe saw were scattered possessions, clothing and personnel documents. \\nThe bodies themselves have been preserved by the bitter cold which\\nkilled others as they hid in the hills and forest after the massacre. \\nAll are the bodies of ordinary people, dressed in the poor, ugly \\nclothing of workers.\\n\\nOf the 31 we saw, only one policeman and two apparent national \\nvolunteers were wearing uniform. All the rest were civilians, \\nincluding eight women and three small children. TWO GROUPS, \\nAPPARENTLY FAMILIES, HAD FALLEN TOGETHER, THE CHILDREN CRADLED \\nIN THE WOMEN\\'S ARMS.\\n\\nSEVERAL OF THEM, INCLUDING ONE SMALL GIRL, HAD TERRIBLE HEAD \\nINJURIES: ONLY HER FACE WAS LEFT. SURVIVORS HAVE TOLD HOW THEY \\nSAW ARMENIANS SHOOTING THEM POINT BLANK AS THEY LAY ON THE GROUND.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: The Israeli Press\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 48\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , benali@alcor.concordia.ca ( ILYESS B. BDIRA ) writes:\\n|> \\n|> Of course you never read Arab media,\\n\\nI don\\'t, though when I was in Israel I did make a point of listening\\nto JTV news, as well as Monte Carlo Radio. In the United States,\\nI generally read the NYT, and occasionally, a mainstream Israeli\\nnewpaper.\\n\\n|> I read Arab, ISRAELI (Jer. Post, and this network is more than enough)\\n|> and Western (American, French, and British) reports and I can say\\n|> that if we give Israel -10 and Arabs +10 on the bias scale (of course\\n|> you can switch the polarities) Israeli newspapers will get either\\n|> a -9 or -10, American leading newspapers and TV news range from -6\\n|> to -10 (yes there are some that are more Israelis than Israelis)\\n|> The Montreal suburban (a local free newspaper) probably is closer\\n|> to Kahane\\'s views than some Israeli right wing newspapers, British\\n|> range from 0 (neutral) to -10, French (that Iknow of, of course) range\\n|> from +2 (Afro-french magazines) to -10, Arab official media range from\\n|> 0 to -5 (Egyptian) to +9 in SA. Why no +10? Because they do not want to\\n|> overdo it and stir people against Israel and therefore against them since \\n|> they are doing nothing.\\n\\nWhat you may not be taking into account is that the JP is no longer\\nrepresentative of the mainstream in Israel. It was purchased a few\\nyears ago and in the battle for control, most of the liberal and\\nleft-wing reporters walked out. The new owner stated in the past,\\nmore than once, that the JP\\'s task should be geared towards explaining\\nand promoting Israel\\'s position, more than attacking the gov\\'t (Likud\\nat the time). The paper that I would recommend reading, being middle\\nstream and factual is \"Ha-Aretz\" - or at least this was the case two\\nyears ago.\\n\\n|> the average bias of what you read would be probably around -9,\\n|> while that of the average American would be the same if they do\\n|> not read or read the new-york times and similar News-makers, and\\n|> -8 if they read some other RELATIVELY less biased newspapers.\\n\\nAnd what about the \"Nat\\'l Enquirer\"? 8^)\\nBut seriously, if one were to read some of the leftist newspapers\\none could arrive at other conclusions. The information you received\\nwas highly selective and extrapolating from it is a bad move.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninja of the skies.\\nCambridge, MA |\\n',\n", - " 'From: dpw@sei.cmu.edu (David Wood)\\nSubject: Re: Gospel Dating\\nIn-Reply-To: mangoe@cs.umd.edu\\'s message of 4 Apr 93 10:56:03 GMT\\nOrganization: Software Engineering Institute\\nLines: 33\\n\\n\\n\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n\\n>>David Wood writes:\\n>>\\n>> \"Extraordinary claims require extraordinary evidence.\"\\n>\\n>More seriously, this is just a high-falutin\\' way of saying \"I don\\'t believe\\n>what you\\'re saying\".\\n\\nAre you making a meta-argument here? In any case, you are wrong. \\nThink of those invisible pink unicorns.\\n\\n>Also, the existence if Jesus is not an extradinary claim. \\n\\nI was responding to the \"historical accuracy... of Biblical claims\",\\nof which the existence of Jesus is only one, and one that was not even\\nmentioned in my post.\\n\\n>You may want to\\n>complain that the miracles attributed to him do constitute such claims (and\\n>I won\\'t argue otherwise), but that is a different issue.\\n\\nWrong. That was exactly the issue. Go back and read the context\\nincluded within my post, and you\\'ll see what I mean.\\n\\nNow that I\\'ve done you the kindness of responding to your questions,\\nplease do the same for me. Answer the Charley Challenges. Your claim\\nthat they are of the \"did not!/ did so!\" variety is a dishonest dodge\\nthat I feel certain fools only one person.\\n\\n--Dave Wood\\n',\n", - " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Observation re: helmets\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 40\\n\\nIn article <211353@mavenry.altcit.eskimo.com>,\\nmaven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n|> \\n|> Grf. Dropped my Shoei RF-200 off the seat of my bike while trying to\\n|> rock \\n|> it onto it\\'s centerstand, chipped the heck out of the paint on it...\\n|> \\n|> So I cheerfully spent $.59 on a bottle of testor\\'s model paint and \\n|> repainted the scratches and chips for 20 minutes.\\n|> \\n|> The question for the day is re: passenger helmets, if you don\\'t know\\n|> for \\n|> certain who\\'s gonna ride with you (like say you meet them at a ....\\n|> church \\n|> meeting, yeah, that\\'s the ticket)... What are some guidelines? Should\\n|> I just \\n|> pick up another shoei in my size to have a backup helmet (XL), or\\n|> should I \\n|> maybe get an inexpensive one of a smaller size to accomodate my\\n|> likely \\n|> passenger? \\n\\n My rule of thumb is \"Don\\'t give rides to people that wear\\na bigger helmet than you\", unless your taste runs that way,\\nor they are family.friends.\\nGee, reminds me of a *dancer* in Hull, just over the river \\nfrom Ottowa, that I saw a few years ago, for her I would a\\nbought a bigger helmet (or even her own bike) or anything \\nelse she wanted ;->\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", - " 'From: csc3phx@vaxa.hofstra.edu\\nSubject: Color problem.\\nLines: 8\\n\\n\\nI am scanning in a color image and it looks fine on the screen. When I \\nconverted it into PCX,BMP,GIF files so as to get it into MS Windows the colors\\ngot much lighter. For example the yellows became white. Any ideas?\\n\\nthanks\\nDan\\ncsc3phx@vaxc.hofstra.edu\\n',\n", - " \"From: weber@sipi.usc.edu (Allan G. Weber)\\nSubject: Need help with Mitsubishi P78U image printer\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 26\\nDistribution: na\\nNNTP-Posting-Host: sipi.usc.edu\\n\\nOur group recently bought a Mitsubishi P78U video printer and I could use some\\nhelp with it. We bought this thing because it (1) has a parallel data input in\\naddition to the usual video signal inputs and (2) claimed to print 256 gray\\nlevel images. However, the manual that came with it only describes how to\\nformat the parallel data to print 1 and 4 bit/pixel images. After some initial\\nproblems with the parallel interface I now have this thing running from a\\nparallel port of an Hewlett-Packard workstation and I can print 1 and 4\\nbit/pixel images just fine. I called the Mitsubishi people and asked about the\\n256 level claim and they said that was only available when used with the video\\nsignal inputs. This was not mentioned in the sales literature. However they\\ndid say the P78U can do 6 bit/pixel (64 level) images in parallel mode, but\\nthey didn't have any information about how to program it to do so, and they\\nwould call Japan, etc.\\n\\nFrankly, I find it hard to believe that if this thing can do 8 bit/pixel images\\nfrom the video source, it can't store 8 bits/pixel in the memory. It's not\\nlike memory is that expensive any more. If anybody has any information on\\ngetting 6 bit/pixel (or even 8 bit/pixel) images out of this thing, I would\\ngreatly appreciate your sending it to me.\\n\\nThanks.\\n\\nAllan Weber\\nSignal & Image Processing Institute\\nUniversity of Southern California\\nweber@sipi.usc.edu\\n\",\n", - " 'From: shag@aero.org (Rob Unverzagt)\\nSubject: Re: space food sticks\\nKeywords: food\\nArticle-I.D.: news.1pscc6INNebg\\nOrganization: Organization? You must be kidding.\\nLines: 35\\nNNTP-Posting-Host: aerospace.aero.org\\n\\nIn article <1pr5u2$t0b@agate.berkeley.edu> ghelf@violet.berkeley.edu (;;;;RD48) writes:\\n> I had spacefood sticks just about every morning for breakfast in\\n> first and second grade (69-70, 70-71). They came in Chocolate,\\n> strawberry, and peanut butter and were cylinders about 10cm long\\n> and 1cm in diameter wrapped in yellow space foil (well, it seemed\\n> like space foil at the time). \\n\\nWasn\\'t there a \"plain\" flavor too? They looked more like some\\nkind of extruded industrial product than food -- perfectly\\nsmooth cylinders with perfectly smooth ends. Kinda scary.\\n\\n> The taste is hard to describe, although I remember it fondly. It was\\n> most certainly more \"candy\" than say a modern \"Power Bar.\" Sort of\\n> a toffee injected with vitamins. The chocolate Power Bar is a rough\\n> approximation of the taste. Strawberry sucked.\\n\\nAn other post described it as like a \"microwaved Tootsie Roll\" --\\nwhich captures the texture pretty well. As for taste, they were\\nlike candy, only not very sweet -- does that make sense? I recall\\nliking them for their texture, not taste. I guess I have well\\ndeveloped texture buds.\\n\\n> Man, these were my \"60\\'s.\"\\n\\nIt was obligatory to eat a few while watching \"Captain Scarlet\".\\nDoes anybody else remember _that_, as long as we\\'re off the\\ntopic of space?\\n\\nShag\\n\\n-- \\n----------------------------------------------------------------------\\n Rob Unverzagt |\\n shag@aerospace.aero.org | Tuesday is soylent green day.\\nunverzagt@courier2.aero.org | \\n',\n", - " 'From: pbd@runyon.cim.cdc.com (Paul Dokas)\\nSubject: Big amateur rockets\\nOrganization: ICEM Systems, Inc.\\nLines: 23\\n\\nI was reading Popular Science this morning and was surprised by an ad in\\nthe back. I know that a lot of the ads in the back of PS are fringe\\nscience or questionablely legal, but this one really grabbed my attention.\\nIt was from a company name \"Personal Missle, Inc.\" or something like that.\\n\\nAnyhow, the ad stated that they\\'d sell rockets that were up to 20\\' in length\\nand engines of sizes \"F\" to \"M\". They also said that some rockets will\\nreach 50,000 feet.\\n\\nNow, aside from the obvious dangers to any amateur rocketeer using one\\nof these beasts, isn\\'t this illegal? I can\\'t imagine the FAA allowing\\npeople to shoot rockets up through the flight levels of passenger planes.\\nNot to even mention the problem of locating a rocket when it comes down.\\n\\nAnd no, I\\'m not going to even think of buying one. I\\'m not that crazy.\\n\\n\\n-Paul \"mine\\'ll do 50,000 feet and carries 50 pounds of dynamite\" Dokas\\n-- \\n#include \\n#define FULL_NAME \"Paul Dokas\"\\n#define EMAIL \"pbd@runyon.cim.cdc.com\"\\n/* Just remember, you *WILL* die someday. */\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n|> \\n|> >>But chimps are almost human...\\n|> >Does this mean that Chimps have a moral will?\\n|> \\n|> Well, chimps must have some system. They live in social groups\\n|> as we do, so they must have some \"laws\" dictating undesired behavior.\\n\\nAh, the verb \"to must\". I was warned about that one back\\nin Kindergarten.\\n\\nSo, why \"must\" they have such laws?\\n\\njon.\\n',\n", - " \"From: jfreund@taquito.engr.ucdavis.edu (Jason Freund)\\nSubject: Info on Medical Imaging systems\\nOrganization: College of Engineering - University of California - Davis\\nLines: 10\\n\\n\\n\\tHi, \\n\\n\\tIs anyone into medical imaging? I have a good ray tracing background,\\nand I'm interested in that field. Could you point me to some sources? Or\\nbetter yet, if you have any experience, do you want to talk about what's\\ngoing on or what you're working on?\\n\\nThanks,\\nJason Freund\\n\",\n", - " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: So, do any XXXX, I mean police officers read this stuff?\\nOrganization: Louisiana Tech University\\nLines: 22\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr20.163629.29153@iscnvx.lmsc.lockheed.com> jrlaf@sgi502.msd.lmsc.lockheed.com (J. R. Laferriere) writes:\\n\\n>I was just wondering if there were any law officers that read this. I have\\n>several questions I would like to ask pertaining to motorcycles and cops.\\n>And please don't say get a vehicle code, go to your local station, or obvious\\n>things like that. My questions would not be found in those places nor\\n>answered face to face with a real, live in the flesh, cop.\\n>If your brother had a friend who had a cousin whos father was a cop, etc.\\n>don't bother writing in. Thanks.\\n\\nI just gotta ask... What ARE these questions you want to ask an active cop?\\nWorking on your DoD qualfications? B-)\\n\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", - " \"From: mmadsen@bonnie.ics.uci.edu (Matt Madsen)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nNntp-Posting-Host: bonnie.ics.uci.edu\\nReply-To: mmadsen@ics.uci.edu (Matt Madsen)\\nOrganization: Univ. of Calif., Irvine, Info. & Computer Sci. Dept.\\nLines: 27\\n\\nRobert G. Carpenter writes:\\n\\n>Hi Netters,\\n>\\n>I'm building a CAD package and need a 3D graphics library that can handle\\n>some rudimentry tasks, such as hidden line removal, shading, animation, etc.\\n>\\n>Can you please offer some recommendations?\\n>\\n>I'll also need contact info (name, address, email...) if you can find it.\\n>\\n>Thanks\\n>\\n>(Please Post Your Responses, in case others have same need)\\n>\\n>Bob Carpenter\\n>\\n\\nI too would like a 3D graphics library! How much do C libraries cost\\nanyway? Can you get the tools used by, say, RenderMan, and can you get\\nthem at a reasonable cost?\\n\\nSorry that I don't have any answers, just questions...\\n\\nMatt Madsen\\nmmadsen@ics.uci.edu\\n\\n\",\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: pushing the envelope\\nOrganization: Texas Instruments Inc\\nDistribution: na\\nLines: 35\\n\\nIn <1993Apr3.233154.7045@Princeton.EDU> lije@cognito.Princeton.EDU (Elijah Millgram) writes:\\n\\n\\n>A friend of mine and I were wondering where the expression \"pushing\\n>the envelope\" comes from. Anyone out there know?\\n\\nEvery aircraft has flight constraints for speed/AOA/power. When\\ngraphed, these define the \\'flight envelope\\' of that aircraft,\\npresumably so named because the graphed line encloses (envelopes) the\\narea on the graph that represents conditions where the aircraft\\ndoesn\\'t fall out of the sky. Hence, \\'pushing the envelope\\' becomes\\n\\'operating at (or beyond) the edge of the flight (or operational)\\nenvelope\\'. \\n\\nNote that the envelope isn\\'t precisely known until someone actually\\nflies the airplane in those regions -- up to that point, all there are\\nare the theoretical predictions. Hence, one of the things test pilots\\ndo for a living is \\'push the envelope\\' to find out how close the\\ncorrespondence between the paper airplane and the metal one is -- in\\nessence, \\'pushing back\\' the edges of the theoretical envelope to where\\nthe airplane actually starts to fail to fly. Note, too, that this is\\ndone is a quite calculated and careful way; flight tests are generally\\ncarefully coreographed and just what is going to be \\'pushed\\' and how\\nfar is precisely planned (despite occasional deviations from plans,\\nsuch as the \\'early\\' first flight of the F-16 during its high-speed\\ntaxi tests).\\n\\nI\\'m sure Mary can tell you everything you ever wanted to know about\\nthis process (and then some).\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: gawne@stsci.edu\\nSubject: Re: Vulcan? (No, not the guy with the ears!)\\nDistribution: na\\nOrganization: Space Telescope Science Institute\\nLines: 42\\n\\nIn article , victor@inqmind.bison.mb.ca \\n(Victor Laking) writes:\\n> Does anyone have any info on the apparent sightings of Vulcan?\\n> \\n> All that I know is that there were apparently two sightings at \\n> drastically different times of a small planet that was inside Mercury\\'s \\n> orbit. Beyond that, I have no other info.\\n\\nThe sightings were apparently spurious. There is no planet inside of\\nthe orbit of Mercury.\\n\\nThe idea of Vulcan came from the differences between Mercury\\'s observed\\nperihelion precession and the value it should have had according to\\nNewtonian physics. Leverrier made an extensive set of observations\\nand calculations during the mid 19th century, and Simon Newcombe later\\nimproved on the observations and re-calculated using Leverrier\\'s system\\nof equations. Now Leverrier was one of the co-discoverers of Neptune\\nand since he had predicted its existence based on anomalies in the orbit\\nof Uranus his inclination was to believe the same sort of thing was\\nafoot with Mercury.\\n\\nBut alas, \\'twere not so. Mercury\\'s perihelion precesses at the rate\\nit does because the space where it resides near the sun is significantly\\ncurved due to the sun\\'s mass. This explanation had to wait until 1915\\nand Albert Einstein\\'s synthesis of his earlier theory of the electrodynamics\\nof moving bodies (commonly called Special Relativity) with Reimanian \\ngeometry. The result was the General Theory of Relativity, and one of\\nit\\'s most noteworthy strengths is that it accounts for the precession\\nof Mercury\\'s perihelion almost exactly. (Exactly if you use Newcomb\\'s\\nnumbers rather than Leverrier\\'s.)\\n\\nOf course not everybody believes Einstein, and that\\'s fine. But subsequent\\nefforts to find any planets closer to the sun than Mercury using radar\\nhave been fruitless.\\n\\n-Bill Gawne\\n\\n \"Forgive him, he is a barbarian, who thinks the customs of his tribe\\n are the laws of the universe.\" - G. J. Caesar\\n\\nAny opinions are my own. Nothing in this post constitutes an official\\nstatement from any person or organization.\\n',\n", - " \"From: rytg7@fel.tno.nl (Q. van Rijt)\\nSubject: Re: Sphere from 4 points?\\nOrganization: TNO Physics and Electronics Laboratory\\nLines: 26\\n\\nThere is another useful method based on Least Sqyares Estimation of the sphere equation parameters.\\n\\nThe points (x,y,z) on a spherical surface with radius R and center (a,b,c) can be written as \\n\\n (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2\\n\\nThis equation can be rewritten into the following form: \\n\\n 2ax + 2by + 2cz + R^2 - a^2 - b^2 -c^2 = x^2 + y^2 + z^2\\n\\nApproximate the left hand part by F(x,y,z) = p1.x + p2.x + p3.z + p4.1\\n\\nFor all datapoints, i.c. 4, determine the 4 parameters p1..p4 which minimise the average error |F(x,y,z) - x^2 - y^2 - z^2|^2.\\n\\nIn 'Numerical Recipes in C' can be found algorithms to solve these parameters.\\n\\nThe best fitting sphere will have \\n- center (a,b,c) = (p1/2, p2/2, p3/2)\\n- radius R = sqrt(p4 + a.a + b.b + c.c).\\n\\nSo, at last, will this solve you sphere estination problem, at least for the most situations I think ?.\\n\\nQuick van Rijt, rytg7@fel.tno.nl\\n\\n\\n\\n\",\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Jews can\\'t hide from keith@cco.\\nOrganization: sgi\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article , karner@austin.ibm.com (F. Karner) writes:\\n>\\n> So, you consider the german poster\\'s remark anti-semitic? \\n\\nWhen someone says:\\n\\n\\t\"So after 1000 years of sightseeing and roaming around its \\n\\tok to come back, kill Palastinians, and get their land back, \\n\\tright?\"\\n\\nYes, that\\'s casual antisemitism. I can think of plenty of ways\\nto criticize Israeli policy without insulting Jews or Jewish history.\\n\\nCan\\'t you?\\n\\njon \\n',\n", - " \"From: nicho@vnet.IBM.COM (Greg Stewart-Nicholls)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nReply-To: nicho@vnet.ibm.com\\nDisclaimer: This posting represents the poster's views, not those of IBM\\nNews-Software: UReply 3.1\\nX-X-From: nicho@vnet.ibm.com\\n \\nLines: 15\\n\\nIn Greg Hennessy writes:\\n>In article <1r6aqr$dnv@access.digex.net> prb@access.digex.com (Pat) writes:\\n>#The better question should be.\\n>#Why not transfer O&M of all birds to a separate agency with continous funding\\n>#to support these kind of ongoing science missions.\\n>\\n>Since we don't have the money to keep them going now, how will\\n>changing them to a seperate agency help anything?\\n>\\nHow about transferring control to a non-profit organisation that is\\nable to accept donations to keep craft operational.\\n -----------------------------------------------------------------\\nGreg Nicholls ... : Vidi\\nnicho@vnet.ibm.com or : Vici\\nnicho@olympus.demon.co.uk : Veni\\n\",\n", - " 'From: joerg@sax.sax.de (Joerg Wunsch)\\nSubject: About the various DXF format questions\\nOrganization: SaxNet, Dresden, Germany\\nLines: 25\\nDistribution: world\\nNNTP-Posting-Host: sax.sax.de\\nSummary: List of sites holding documentation of DXF format\\nKeywords: DXF, graphics formats\\n\\nArchie told me the following sites holding documentation about DXF:\\n\\nHost nic.funet.fi (128.214.6.100)\\nLast updated 15:11 7 Apr 1993\\n\\n Location: /pub/csc/graphics/format\\n FILE rwxrwxr-- 95442 Dec 4 1991 dxf.doc\\n\\nHost rainbow.cse.nau.edu (134.114.64.24)\\nLast updated 17:09 1 Jun 1992\\n\\n Location: /graphics/formats\\n FILE rw-r--r-- 95442 Mar 23 23:31 dxf.doc\\n\\nHost ftp.waseda.ac.jp (133.9.1.32)\\nLast updated 00:47 5 Apr 1993\\n\\n Location: /pub/data/graphic\\n FILE rw-r--r-- 39753 Nov 18 1991 dxf.doc.Z\\n\\n-- \\nJ\"org Wunsch, ham: dl8dtl : joerg_wunsch@uriah.sax.de\\nIf anything can go wrong... : ...or:\\n .o .o : joerg@sax.de,wutcd@hadrian.hrz.tu-chemnitz.de,\\n <_ ... IT WILL! : joerg_wunsch@tcd-dresden.de\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Shuttle oxygen (was Budget Astronaut)\\nOrganization: Express Access Online Communications USA\\nLines: 11\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nI thought that under emergency conditions, the STS can\\nput down at any good size Airport. IF it could take a C-5 or a\\n747, then it can take an orbiter. You just need a VOR/TAC\\n\\nI don't know if they need ILS.\\n\\npat\\n\\nANyone know for sure.\\n\",\n", - " 'From: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nSubject: Re: How many israeli soldiers does it take to kill a 5 yr old child?\\nReply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nOrganization: The National Capital Freenet\\nLines: 27\\n\\n\\nIn a previous article, steel@hal.gnu.ai.mit.edu (Nick Steel) says:\\n\\n>Q: How many occupying israeli soldiers (terrorists) does it \\n> take to kill a 5 year old native child?\\n>\\n>A: Four\\n>\\n>Two fasten his arms, one shoots in the face,\\n>and one writes up a false report.\\n\\nThis newsgroup is for intelligent discussion. I want you to either smarten\\nup and stop this bullshit posting or get the fuck out of my face and this\\nnet.\\n\\n Steve\\n\\n-- \\n------------------------------------------------------------------------------\\n| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\\n| Mossad@qube.ocunix.on.ca |\\n| <> |\\n',\n", - " \"From: tony@morgan.demon.co.uk (Tony Kidson)\\nSubject: Re: Info on Sport-Cruisers \\nDistribution: world\\nOrganization: The Modem Palace\\nReply-To: tony@morgan.demon.co.uk\\nX-Newsreader: Simple NEWS 1.90 (ka9q DIS 1.21)\\nLines: 25\\n\\nIn article <4foNhvm00WB4E5hUxB@andrew.cmu.edu> jae+@CMU.EDU writes:\\n\\n>I'm looking for a sport-cruiser - factory installed fairings (\\n>full/half ), hard saddle bags, 750cc and above, and all that and still\\n>has that sporty look.\\n>\\n>I particularly like the R100RS and K75 RT or S, or any of the K series\\n>BMW bikes.\\n>\\n>I was wondering if there are any other comparable type bikes being\\n>produced by companies other than BMW.\\n\\n\\nThe Honda ST1100 was designed by Honda in Germany, originally for the \\nEuropean market, as competition for the BMW 'K' series. Check it out.\\n\\nTony\\n\\n+---------------+------------------------------+-------------------------+\\n|Tony Kidson | ** PGP 2.2 Key by request ** |Voice +44 81 466 5127 |\\n|Morgan Towers, | The Cat has had to move now |E-Mail(in order) |\\n|Morgan Road, | as I've had to take the top |tony@morgan.demon.co.uk |\\n|Bromley, | off of the machine. |tny@cix.compulink.co.uk |\\n|England BR1 3QE|Honda ST1100 -=<*>=- DoD# 0801|100024.301@compuserve.com|\\n+---------------+------------------------------+-------------------------+\\n\",\n", - " 'Subject: Cornerstone DualPage driver wanted\\nFrom: tkelder@ebc.ee (Tonis Kelder)\\nNntp-Posting-Host: kask.ebc.ee\\nX-Newsreader: TIN [version 1.1 PL8]Lines: 12\\nLines: 12\\n\\n\\n\\nI am looking for a WINDOW 3.1 driver for \\n Cornerstone DualPage (Cornerstone Technology, Inc) \\nvideo card. Does anybody know, that has these? Is there one?\\n\\nThanks for any info,\\n\\nTo~nis\\n-- \\nTo~nis Kelder Estonian Biocentre (tkelder@kask.ebc.ee)\\n\\n',\n", - " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: YOU WILL ALL GO TO HELL!!!\\nOrganization: Technical University Braunschweig, Germany\\nLines: 18\\n\\nIn article <93108.020701TAN102@psuvm.psu.edu>\\nAndrew Newell writes:\\n \\n>>In article <93106.155002JSN104@psuvm.psu.edu> writes:\\n>>>YOU BLASHEPHEMERS!!! YOU WILL ALL GO TO HELL FOR NOT BELIEVING IN GOD!!!! BE\\n>>>PREPARED FOR YOUR ETERNAL DAMNATION!!!\\n>>\\n>>readers of the group. How convenient that he doesn't have a real name...\\n>>Let's start up the letters to the sysadmin, shall we?\\n>\\n>His real name is Jeremy Scott Noonan.\\n>vmoper@psuvm.psu.edu should have at least some authority,\\n>or at least know who to email.\\n>\\n \\nPOSTMAST@PSUVM.BITNET respectively P_RFOWLES or P_WVERITY (the sys admins)\\nat the same node are probably a better idea than the operator.\\n Benedikt\\n\",\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Ten questions about Israel\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 64\\n\\nIn article <1483500349@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\nTen Questions about arab countries\\n----------------------------------\\n\\nI would be thankful if any of you who live in arab countries could\\nhelp to provide accurate answers to the following specific questions.\\nThese are indeed provocative questions but they are asked time and\\nagain by people around me.\\n\\n1. Is it true that many arab countries don\\'t recognize\\nIsraeli nationality ? That people with Israeli stamps on their\\npassports can\\'t enter arabic countries?\\n\\n2. Is it true that arabic countries such as Jordan and Syria\\nhave undefined borders and that arab governments from 1948 until today\\nhave refused to state where the ultimate borders of their states\\nshould be?\\n\\n3. Is it true that arab countires refused to sign the Chemical\\nweapon convention treaty in Paris in 1993?\\n\\n4. Is it true that in arab prisons there are a number of\\nindividuals which were tried in secret and for which their\\nidentities, the date of their trial and their imprisonment are\\nstate secrets ?\\n\\n4a.\\tIs it true that some arab countries, like Syria, harbor Nazi\\nwar criminals, and refuse to extradite them?\\n\\n4b.\\tIs it true that some arab countries, like Saudi Arabia,\\nprohibit women from driving cars?\\n\\n5. Is it true that Jews who reside in the Muslim\\ncountries are subject to different laws than Muslims?\\n\\n6. Is it true that arab countries confiscated the property of\\nentire Jewish communites forced to flee by anti-Jewish riots?\\n\\n7. Is it true that Israel\\'s Prime Minister, Y. Rabin, signed\\na chemical weapons treaty that no arab nation was willing to sign?\\n\\n8. Is it true that Syrian Jews are required to leave a $10,000\\ndeposit before leaving the country, and are no longer allowed to\\nemmigrate, despite promises made by Hafez Assad to George Bush?\\n\\n9.\\t Is it true that Jews in Muslim lands are required to pay a\\nspecial tax, for being Jews?\\n\\n10. Is it true that Intercontinental Hotel in Jerusalem was built\\non a Jewish cemetary, with roads being paved over grave sites, and\\ngravestones being used in Jordanian latrines?\\n\\n11.\\tIs it really cheesy and inappropriate to post lists of biased\\nleading questions?\\n\\n11a.\\tIs it less appropriate if information implied in Mr.\\nDavidsson\\'s questions is highly misleading?\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 162\\n\\nC.Wainwright (eczcaw@mips.nott.ac.uk) wrote:\\n: I\\n: |> Jim,\\n: |> \\n: |> I always thought that homophobe was only a word used at Act UP\\n: |> rallies, I didn\\'t beleive real people used it. Let\\'s see if we agree\\n: |> on the term\\'s definition. A homophobe is one who actively and\\n: |> militantly attacks homosexuals because he is actually a latent\\n: |> homosexual who uses his hostility to conceal his true orientation.\\n: |> Since everyone who disapproves of or condemns homosexuality is a\\n: |> homophobe (your implication is clear), it must necessarily follow that\\n: |> all men are latent homosexuals or bisexual at the very least.\\n: |> \\n: \\n: Crap crap crap crap crap. A definition of any type of \\'phobe comes from\\n: phobia = an irrational fear of. Hence a homophobe (not only in ACT UP meetings,\\n: the word is apparently in general use now. Or perhaps it isn\\'t in the bible? \\n: Wouldst thou prefer if I were to communicate with thou in bilespeak?)\\n: \\n: Does an arachnophobe have an irrational fear of being a spider? Does an\\n: agoraphobe have an irrational fear of being a wide open space? Do you\\n: understand English?\\n: \\n: Obviously someone who has phobia will react to it. They will do their best\\n: to avoid it and if that is not possible they will either strike out or\\n: run away. Or do gaybashings occur because of natural processes? People\\n: who definately have homophobia will either run away from gay people or\\n: cause them (or themselves) violence.\\n: \\n\\nIsn\\'t that what I said ...\\nWhat are you taking issue with here, your remarks are merely\\nparenthetical to mine and add nothing useful.\\n\\n: [...]\\n: \\n: |> It would seem odd if homosexuality had any evolutionary function\\n: |> (other than limiting population growth) since evolution only occurs\\n: |> when the members of one generation pass along their traits to\\n: |> subsequent generations. Homosexuality is an evolutionary deadend. If I\\n: |> take your usage of the term, homophobe, in the sense you seem to\\n: |> intend, then all men are really homosexual and evolution of our\\n: |> species at least, is going nowhere.\\n: |> \\n: \\n: So *every* time a man has sex with a woman they intend to produce children?\\n: Hmm...no wonder the world is overpopulated. Obviously you keep to the\\n: Monty Python song: \"Every sperm is sacred\". And if, as *you* say, it has\\n: a purpose as a means to limit population growth then it is, by your own \\n: arguement, natural.\\n\\nConsider the context, I\\'m talking about an evolutionary function. One\\nof the most basic requirements of evolution is that members of a\\nspecies procreate, those who don\\'t have no purpose in that context.\\n\\n: \\n: |> Another point is that if the offspring of each generation is to\\n: |> survive, the participation of both parents is necessary - a family must\\n: |> exist, since homosexuals do not reproduce, they cannot constitute a\\n: |> family. Since the majority of humankind is part of a family,\\n: |> homosexuality is an evolutionary abberation, contrary to nature if you\\n: |> will.\\n: |> \\n: \\n: Well if that is true, by your own arguements homosexuals would have \\n: vanished *years* ago due to non-procreation. Also the parent from single\\n: parent families should put the babies out in the cold now, cos they must,\\n: by your arguement, die.\\n\\nBy your argument, homosexuality is genetically determined. As to your\\nsecond point, you prove again that you have no idea what context\\nmeans. I am talking about evolution, the preservation of the species,\\nthe fundamental premise of the whole process.\\n: \\n: |> But it gets worse. Since the overwhelming majority of people actually\\n: |> -prefer- a heterosexual relationship, homosexuality is a social\\n: |> abberation as well. The homosexual eschews the biological imperative\\n: |> to reproduce and then the social imperative to form and participate in\\n: |> the most fundamental social element, the family. But wait, there\\'s\\n: |> more.\\n: |> \\n: \\n: Read the above. I expect you to have at least ten children by now, with\\n: the family growing. These days sex is less to do with procreation (admittedly\\n: without it there would be no-one) but more to do with pleasure. In pre-pill\\n: and pre-condom days, if you had sex there was the chance of producing children.\\n: These days is just ain\\'t true! People can decide whether or not to have \\n: children and when. Soon they will be able to choose it\\'s sex &c (but that\\'s \\n: another arguement...) so it\\'s more of a \"lifestyle\" decision. Again by\\n: your arguement, since homosexuals can not (or choose not) to reproduce they must\\n: be akin to people who decide to have sex but not children. Both are \\n: as \"unnatural\" as each other.\\n\\nYet another non-sequitur. Sex is an evolutionary function that exists\\nfor procreation, that it is also recreation is incidental. That\\nhomosexuals don\\'t procreate means that sex is -only- recreation and\\nnothing more; they serve no -evolutionary- purpose.\\n\\n: \\n: |> Since homosexuals have come out the closet and have convinced some\\n: |> policy makers that they have civil rights, they are now claiming that\\n: |> their sexuality is a preference, a life-style, an orientation, a\\n: |> choice that should be protected by law. Now if homosexuality is a mere\\n: |> choice and if it is both contrary to nature and anti-social, then it\\n: |> is a perverse choice; they have even less credibility than before they\\n: |> became prominent. \\n: |> \\n: \\n: People are people are people. Who are you to tell anyone else how to live\\n: their life? Are you god(tm)? If so, fancy a date?\\n\\nHere\\'s pretty obvious dodge, do you really think you\\'ve said anything\\nor do you just feel obligated to respond to every statement? I am not\\ntelling anyone anything, I am demonstrating that there are arguments\\nagainst the practice of homosexuality (providing it\\'s a merely an\\nalternate lifestlye) that are not homophobic, that one can reasonably\\ncall it perverse in a context even a atheist can understand. I realize\\nof course that this comes dangerously close to establishing a value,\\nand that atheists are compelled to object on that basis, but if you\\nare to be consistent, you have no case in this regard.\\n: \\n: |> To characterize any opposition to homosexuality as homophobic is to\\n: |> ignore some very compelling arguments against the legitimization of\\n: |> the homosexual \"life-style\". But since the charge is only intended to\\n: |> intimidate, it\\'s really just demogoguery and not to be taken\\n: |> seriously. Fact is, Jim, there are far more persuasive arguments for\\n: |> suppressing homosexuality than those given, but consider this a start.\\n: |> \\n: \\n: Again crap. All your arguments are based on outdated ideals. Likewise the\\n: bible. Would any honest Christian condemn the ten generations spawned by\\n: a \"bastard\" to eternal damnation? Or someone who crushes his penis (either\\n: accidently or not..!). Both are in Deuteronomy.\\n\\nI\\'m sure your comment pertains to something, but you\\'ve disguised it\\nso well I can\\'t see what. Where did I mention ideals, out-dated or\\notherwise? Your arguments are very reactionary; do you have anything\\nat all to contribute?\\n\\n: \\n: |> As to why homosexuals should be excluded from participation in\\n: |> scouting, the reasons are the same as those used to restrict them from\\n: |> teaching; by their own logic, homosexuals are deviates, social and\\n: |> biological. Since any adult is a role model for a child, it is\\n: |> incumbent on the parent to ensure that the child be isolated from\\n: |> those who would do the child harm. In this case, harm means primarily\\n: |> social, though that could be extended easily enough.\\n: |> \\n: |> \\n: \\n: You show me *anyone* who has sex in a way that everyone would describe as\\n: normal, and will take of my hat (Puma baseball cap) to you. \"One man\\'s meat\\n: is another man\\'s poison\"!\\n: \\n\\nWhat has this got to do with anything? Would you pick a single point\\nthat you find offensive and explain your objections, I would really\\nlike to believe that you can discuss this issue intelligibly.\\n\\nBill\\n\\n\\n',\n", - " 'From: tcora@pica.army.mil (Tom Coradeschi)\\nSubject: Re: \"Beer\" unto bicyclists\\nOrganization: Elect Armts Div, US Army Armt RDE Ctr, Picatinny Arsenal, NJ\\nLines: 23\\nNntp-Posting-Host: b329-gator-3.pica.army.mil\\n\\nIn article <31MAR199308594057@erich.triumf.ca>, ivan@erich.triumf.ca (Ivan\\nD. Reid) wrote:\\n> \\n> In article ,\\n> \\t tcora@pica.army.mil (Tom Coradeschi) writes...\\n> >mxcrew@PROBLEM_WITH_INEWS_DOMAIN_FILE (The MX-Crew) wrote:\\n> >> just an information (no flame war please): Budweiser is a beer from the\\n> >> old CSFR (nowadays ?Tschechien? [i just know the german word]).\\n> \\n> >Czechoslovakia. Budweiser Budwar (pronounced bud-var).\\n> ^^^^^^^^^^^^^^\\n> \\tNot any more, a short while ago (Jan 1st?) it split into The Czech\\n> Republic and Slovakia. Actually, I think for a couple of years its official\\n> name was \"The Czech and Slovak Republics\". Sheesh! Don\\'t you guys get CNN??\\n\\nCNN=YuppieTV\\n\\n tom coradeschi <+> tcora@pica.army.mil\\n \\n \"Usenet is like a herd of performing elephants with diarrhea -- massive,\\ndifficult to redirect, awe-inspiring, entertaining, and a source of mind-\\nboggling amounts of excrement when you least expect it.\"\\n --gene spafford, 1992\\n',\n", - " \"From: ()\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: nstlm66\\nOrganization: Bell-Northern Research, Ottawa, Canada\\nLines: 21\\n\\nIn article <115561@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) wrote:\\n\\n>Khomeini advocates the view that\\n> there was a series of twelve Islamic leaders (the Twelve Imams) who\\n> are free of error or sin. This makes him a heretic.\\n> \\n\\nWow, you're quicker to point out heresy than the Church in the\\nMiddle ages. Seriously though, even the Sheiks at Al-Azhar don't\\nclaim that the Shi'ites are heretics. Most of the accusations\\nand fabrications about Shi'ites come out of Saudi Arabia from the\\nWahabis. For that matter you should read the original works of\\nthe Sunni Imams (Imams of the four madhabs). The teacher of\\nat least two of them was Imam Jafar Sadiq (the sixth Imam of the\\nShi'ites). \\n\\nAlthough there is plenty of false propaganda floating around\\nabout the Shi'ites (esp. since the revolution), there are also\\nmany good works by Shi'ites which present the views and teachings\\nof their school. Why make assumptions and allegations (like\\npeople in this group have done about Islam in general) about Shi'ites.\\n\",\n", - " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: Re: rejoinder. Questions to Israelis\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 25\\n\\n\\nIn article <1483500352@igc.apc.org>, Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: rejoinder. Questions to Israelis\\n>\\n>\\n>To: shaig@Think.COM\\n>\\n>Subject: Ten questions to Israelis\\n>\\n>Dear Shai,\\n>\\n>Your answers to my questions are unsatisfactory.\\n\\n\\n\\nSo why don\\'t ypu sue him.\\n\\n----\\n\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", - " \"From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Ancient islamic rituals\\nOrganization: Monash University, Melb., Australia.\\nLines: 21\\n\\nIn <16BA6C947.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n\\n>In article <1993Apr3.081052.11292@monu6.cc.monash.edu.au>\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n> \\n>>There has been some discussion on the pros and cons about sex outside of\\n>>marriage.\\n>>\\n>>I personally think that part of the value of having lasting partnerships\\n>>between men and women is that this helps to provide a stable and secure\\n>>environment for children to grow up in.\\n>(Deletion)\\n> \\n>As an addition to Chris Faehl's post, what about homosexuals?\\n\\nWell, from an Islamic viewpoint, homosexuality is not the norm for\\nsociety. I cannot really say much about the Islamic viewpoint on homosexuality \\nas it is not something I have done much research on.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n\",\n", - " \"From: robert@cpuserver.acsc.com (Robert Grant)\\nSubject: Virtual Reality for X on the CHEAP!\\nOrganization: USCACSC, Los Angeles\\nLines: 187\\nDistribution: world\\nReply-To: robert@cpuserver.acsc.com (Robert Grant)\\nNNTP-Posting-Host: cpuserver.acsc.com\\n\\nHi everyone,\\n\\nI thought that some people may be interested in my VR\\nsoftware on these groups:\\n\\n*******Announcing the release of Multiverse-1.0.2*******\\n\\nMultiverse is a multi-user, non-immersive, X-Windows based Virtual Reality\\nsystem, primarily focused on entertainment/research.\\n\\nFeatures:\\n\\n Client-Server based model, using Berkeley Sockets.\\n No limit to the number of users (apart from performance).\\n Generic clients.\\n Customizable servers.\\n Hierachical Objects (allowing attachment of cameras and light sources).\\n Multiple light sources (ambient, point and spot).\\n Objects can have extension code, to handle unique functionality, easily\\n attached.\\n\\nFunctionality:\\n\\n Client:\\n The client is built around a 'fast' render loop. Basically it changes things\\n when told to by the server and then renders an image from the user's\\n viewpoint. It also provides the server with information about the user's\\n actions - which can then be communicated to other clients and therefore to\\n other users.\\n\\n The client is designed to be generic - in other words you don't need to\\n develop a new client when you want to enter a new world. This means that\\n resources can be spent on enhancing the client software rather than adapting\\n it. The adaptations, as will be explained in a moment, occur in the servers.\\n\\n This release of the client software supports the following functionality:\\n\\n o Hierarchical Objects (with associated addressing)\\n\\n o Multiple Light Sources and Types (Ambient, Point and Spot)\\n\\n o User Interface Panels\\n\\n o Colour Polygonal Rendering with Phong Shading (optional wireframe for\\n\\tfaster frame rates)\\n\\n o Mouse and Keyboard Input\\n\\n (Some people may be disappointed that this software doesn't support the\\n PowerGlove as an input device - this is not because it can't, but because\\n I don't have one! This will, however, be one of the first enhancements!)\\n\\n Server(s):\\n This is where customization can take place. The following basic support is\\n provided in this release for potential world server developers:\\n\\n o Transparent Client Management\\n\\n o Client Message Handling\\n\\n This may not sound like much, but it takes away the headache of\\naccepting and\\n terminating clients and receiving messages from them - the\\napplication writer\\n can work with the assumption that things are happening locally.\\n\\n Things get more interesting in the object extension functionality. This is\\n what is provided to allow you to animate your objects:\\n\\n o Server Selectable Extension Installation:\\n What this means is that you can decide which objects have extended\\n functionality in your world. Basically you call the extension\\n initialisers you want.\\n\\n o Event Handler Registration:\\n When you develop extensions for an object you basically write callback\\n functions for the events that you want the object to respond to.\\n (Current events supported: INIT, MOVE, CHANGE, COLLIDE & TERMINATE)\\n\\n o Collision Detection Registration:\\n If you want your object to respond to collision events just provide\\n some basic information to the collision detection management software.\\n Your callback will be activated when a collision occurs.\\n\\n This software is kept separate from the worldServer applications because\\n the application developer wants to build a library of extended objects\\n from which to choose.\\n\\n The following is all you need to make a World Server application:\\n\\n o Provide an initWorld function:\\n This is where you choose what object extensions will be supported, plus\\n any initialization you want to do.\\n\\n o Provide a positionObject function:\\n This is where you determine where to place a new client.\\n\\n o Provide an installWorldObjects function:\\n This is where you load the world (.wld) file for a new client.\\n\\n o Provide a getWorldType function:\\n This is where you tell a new client what persona they should have.\\n\\n o Provide an animateWorld function:\\n This is where you can go wild! At a minimum you should let the objects\\n move (by calling a move function) and let the server sleep for a bit\\n (to avoid outrunning the clients).\\n\\n That's all there is to it! And to prove it here are the line counts for the\\n three world servers I've provided:\\n\\n generic - 81 lines\\n dactyl - 270 lines (more complicated collision detection due to the\\n stairs! Will probably be improved with future\\n versions)\\n dogfight - 72 lines\\n\\nLocation:\\n\\n This software is located at the following site:\\n ftp.u.washington.edu\\n\\n Directory:\\n pub/virtual-worlds\\n\\n File:\\n multiverse-1.0.2.tar.Z\\n\\nFutures:\\n\\n Client:\\n\\n o Texture mapping.\\n\\n o More realistic rendering: i.e. Z-Buffering (or similar), Gouraud shading\\n\\n o HMD support.\\n\\n o Etc, etc....\\n\\n Server:\\n\\n o Physical Modelling (gravity, friction etc).\\n\\n o Enhanced Object Management/Interaction\\n\\n o Etc, etc....\\n\\n Both:\\n\\n o Improved Comms!!!\\n\\nI hope this provides people with a good understanding of the Multiverse\\nsoftware,\\nunfortunately it comes with practically zero documentation, and I'm not sure\\nwhether that will ever be able to be rectified! :-(\\n\\nI hope people enjoy this software and that it is useful in our explorations of\\nthe Virtual Universe - I've certainly found fascinating developing it, and I\\nwould *LOVE* to add support for the PowerGlove...and an HMD :-)!!\\n\\nFinally one major disclaimer:\\n\\nThis is totally amateur code. By that I mean there is no support for this code\\nother than what I, out the kindness of my heart, or you, out of pure\\ndesperation, provide. I cannot be held responsible for anything good or bad\\nthat may happen through the use of this code - USE IT AT YOUR OWN RISK!\\n\\nDisclaimer over!\\n\\nOf course if you love it, I would like to here from you. And anyone with\\nPOSITIVE contributions/criticisms is also encouraged to contact me. Anyone who\\nhates it: > /dev/null!\\n\\n************************************************************************\\n*********\\nAnd if anyone wants to let me do this for a living: you know where to\\nwrite :-)!\\n************************************************************************\\n*********\\n\\nThanks,\\n\\nRobert.\\n\\nrobert@acsc.com\\n^^^^^^^^^^^^^^^\\n\",\n", - " 'From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Need advice for riding with someone on pillion\\nKeywords: advice, pillion, help!\\nOrganization: NEC Systems Laboratory, Inc.\\nDistribution: na\\nLines: 40\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n>I need some advice on having someone ride pillion with me on my 750 Ninja.\\n>This will be the the first time I\\'ve taken anyone for an extended ride\\n>(read: farther than around the block :-). We\\'ll be riding some twisty, \\n>fairly bumpy roads (the Mines Road-Mt.Hamilton Loop for you SF Bay Areans).\\n\\n\\tYou sonuvabitch. Rub it in, why don\\'t you? \"We have great weather\\nand great roads here, unlike the rest of you putzes in the U.S. Nyah, nyah,\\nnyah.\"\\n\\n\\t:-) for the severely humor-impaired.\\n\\n>This person is <100 lbs. and fairly small, so I don\\'t see weight as too much\\n>of a problem, but what sort of of advice should I give her before we go?\\n>I want her to hold onto me :-) rather than the grab rail out back, and\\n>I\\'ve heard that she should look over my shoulder in the direction we\\'re\\n>turning so she leans *with* me, but what else? Are there traditional\\n>signals for SLOW DOWN!! or GO FASTER!! or I HAFTA GO PEE!! etc.???\\n\\n\\tYou\\'ll likely not notice her weight too much. A piece of advice\\nfor you: don\\'t be abrupt with the throttle. No wheelies, accelerate a\\nwee bit more slowly than usual. Consciously worry about spitting her off\\nthe back. It\\'s as much your job to keep her on the pillion as it is hers,\\nand I guarantee she\\'ll be put off by the bike ripping out from under her\\nwhen you whack it open. Keep the lean angles pretty tame the first time\\nout too. You and her need to learn each other\\'s body English. She needs\\nto learn what your idea is about how to take the turn, and you need to\\nlearn her idea of \"shit! Don\\'t crash now!\" so you don\\'t work at cross\\npurposes while leaned over. You can work up to more aggressive riding over\\ntime.\\n\\n\\tA very important thing: tell her to put her hand against the tank\\nwhen you brake--this could save you some severely crushed cookies.\\n\\nHave fun,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n',\n", - " \"From: bgardner@bambam.es.com (Blaine Gardner)\\nSubject: Re: Why I won't be getting my Low Rider this year\\nKeywords: congratz\\nArticle-I.D.: dsd.1993Apr6.044018.23281\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 23\\nNntp-Posting-Host: bambam\\n\\nIn article <1993Apr5.182851.23410@cbnewsj.cb.att.com> car377@cbnewsj.cb.att.com (charles.a.rogers) writes:\\n>In article <1993Mar30.214419.923@pb2esac.uucp>, prahren@pb2esac.uucp (Peter Ahrens) writes:\\n \\n>> That would be low drag bars and way rad rearsets for the FJ, so that the \\n>> ergonomic constraints would have contraceptive consequences?\\n>\\n>Ouch. :-) This brings to mind one of the recommendations in the\\n>Hurt Study. Because the rear of the gas tank is in close proximity\\n>to highly prized and easily damaged anatomy, Hurt et al recommended\\n>that manufacturers build the tank so as to reduce the, er, step function\\n>provided when the rider's body slides off of the seat and onto the\\n>gas tank in the unfortunate event that the bike stops suddenly and the \\n>rider doesn't. I think it's really inspiring how the manufacturers\\n>have taken this advice to heart in their design of bikes like the \\n>CBR900RR and the GTS1000A.\\n\\nI dunno, on my old GS1000E the tank-seat junction was nice and smooth.\\nBut if you were to travel all the way forward, you'd collect the top\\ntriple-clamp in a sensitive area. I'd hate to have to make the choice,\\nbut I think I'd prefer the FJ's gas tank. :-)\\n-- \\nBlaine Gardner @ Evans & Sutherland\\nbgardner@dsd.es.com\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The wholesale extermination of the Muslim population by the Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 82\\n\\nIn article arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>But some of this is verifiable information. For instance, the person who\\n>knows about the buggy product may be able to tell you how to reproduce the\\n>bug on your own, but still fears retribution if it were to be known that he\\n>was the one who told the public how to do so.\\n\\nTypical \\'Arromdian\\' of the ASALA/SDPA/ARF Terrorism and Revisionism \\nTriangle. Well, does it change the fact that during the period of 1914 \\nto 1920, the Armenian Government ordered, incited, assisted and participated \\nin the genocide of 2.5 million Muslim people because of race, religion\\nand national origin?\\n\\n\\n1) Armenians did slaughter the entire Muslim population of Van.[1,2,3,4,5]\\n2) Armenians did slaughter 42% of Muslim population of Bitlis.[1,2,3,4]\\n3) Armenians did slaughter 31% of Muslim population of Erzurum.[1,2,3,4]\\n4) Armenians did slaughter 26% of Muslim population of Diyarbakir.[1,2,3,4]\\n5) Armenians did slaughter 16% of Muslim population of Mamuretulaziz.[1,2,3,4]\\n6) Armenians did slaughter 15% of Muslim population of Sivas.[1,2,3,4]\\n7) Armenians did slaughter the entire Muslim population of the x-Soviet\\n Armenia.[1,2,3,4]\\n8) .....\\n\\n[1] McCarthy, J., \"Muslims and Minorities, The Population of Ottoman \\n Anatolia and the End of the Empire,\" New York \\n University Press, New York, 1983, pp. 133-144.\\n\\n[2] Karpat, K., \"Ottoman Population,\" The University of Wisconsin Press,\\n 1985.\\n\\n[3] Hovannisian, R. G., \"Armenia on the Road to Independence, 1918. \\n University of California Press (Berkeley and \\n Los Angeles), 1967, pp. 13, 37.\\n\\n[4] Shaw, S. J., \\'On Armenian collaboration with invading Russian armies \\n in 1914, \"History of the Ottoman Empire and Modern Turkey \\n (Volume II: Reform, Revolution & Republic: The Rise of \\n Modern Turkey, 1808-1975).\" (London, Cambridge University \\n Press 1977). pp. 315-316.\\n\\n[5] \"Gochnak\" (Armenian newspaper published in the United States), May 24, \\n 1915.\\n\\n\\nSource: \"Adventures in the Near East\" by A. Rawlinson, Jonathan Cape, \\n30 Bedford Square, London, 1934 (First published 1923) (287 pages).\\n(Memoirs of a British officer who witnessed the Armenian genocide of 2.5 \\n million Muslim people)\\n\\np. 178 (first paragraph)\\n\\n\"In those Moslem villages in the plain below which had been searched for\\n arms by the Armenians everything had been taken under the cloak of such\\n search, and not only had many Moslems been killed, but horrible tortures \\n had been inflicted in the endeavour to obtain information as to where\\n valuables had been hidden, of which the Armenians were aware of the \\n existence, although they had been unable to find them.\"\\n\\np. 175 (first paragraph)\\n\\n\"The arrival of this British brigade was followed by the announcement\\n that Kars Province had been allotted by the Supreme Council of the\\n Allies to the Armenians, and that announcement having been made, the\\n British troops were then completely withdrawn, and Armenian occupation\\n commenced. Hence all the trouble; for the Armenians at once commenced\\n the wholesale robbery and persecution of the Muslem population on the\\n pretext that it was necessary forcibly to deprive them of their arms.\\n In the portion of the province which lies in the plains they were able\\n to carry out their purpose, and the manner in which this was done will\\n be referred to in due course.\"\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Objective morality (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >In another part of this thread, you\\'ve been telling us that the\\n|> >\"goal\" of a natural morality is what animals do to survive.\\n|> \\n|> That\\'s right. Humans have gone somewhat beyond this though. Perhaps\\n|> our goal is one of self-actualization.\\n\\nHumans have \"gone somewhat beyond\" what, exactly? In one thread\\nyou\\'re telling us that natural morality is what animals do to\\nsurvive, and in this thread you are claiming that an omniscient\\nbeing can \"definitely\" say what is right and what is wrong. So\\nwhat does this omniscient being use for a criterion? The long-\\nterm survival of the human species, or what?\\n\\nHow does omniscient map into \"definitely\" being able to assign\\n\"right\" and \"wrong\" to actions?\\n\\n|> \\n|> >But suppose that your omniscient being told you that the long\\n|> >term survival of humanity requires us to exterminate some \\n|> >other species, either terrestrial or alien.\\n|> \\n|> Now you are letting an omniscient being give information to me. This\\n|> was not part of the original premise.\\n\\nWell, your \"original premises\" have a habit of changing over time,\\nso perhaps you\\'d like to review it for us, and tell us what the\\ndifference is between an omniscient being be able to assign \"right\"\\nand \"wrong\" to actions, and telling us the result, is. \\n\\n|> \\n|> >Does that make it moral to do so?\\n|> \\n|> Which type of morality are you talking about? In a natural sense, it\\n|> is not at all immoral to harm another species (as long as it doesn\\'t\\n|> adversely affect your own, I guess).\\n\\nI\\'m talking about the morality introduced by you, which was going to\\nbe implemented by this omniscient being that can \"definitely\" assign\\n\"right\" and \"wrong\" to actions.\\n\\nYou tell us what type of morality that is.\\n\\njon.\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Happy Easter!\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 37\\n\\nkevinh, on the Tue, 20 Apr 1993 13:23:01 GMT wibbled:\\n\\n: In article <1993Apr19.154020.24818@i88.isc.com>, jeq@lachman.com (Jonathan E. Quist) writes:\\n: |> In article <2514@tekgen.bv.tek.com> davet@interceptor.cds.tek.com (Dave Tharp CDS) writes:\\n: |> >In article <1993Apr15.171757.10890@i88.isc.com> jeq@lachman.com (Jonathan E. Quist) writes:\\n: |> >>Rolls-Royce owned by a non-British firm?\\n: |> >>\\n: |> >>Ye Gods, that would be the end of civilization as we know it.\\n: |> >\\n: |> > Why not? Ford owns Aston-Martin and Jaguar, General Motors owns Lotus\\n: |> >and Vauxhall. Rover is only owned 20% by Honda.\\n: |> \\n: |> Yes, it\\'s a minor blasphemy that U.S. companies would ?? on the likes of A.M.,\\n: |> Jaguar, or (sob) Lotus. It\\'s outright sacrilege for RR to have non-British\\n: |> ownership. It\\'s a fundamental thing\\n\\n\\n: I think there is a legal clause in the RR name, regardless of who owns it\\n: it must be a British company/owner - i.e. BA can sell the company but not\\n: the name.\\n\\n: kevinh@hasler.ascom.ch\\n\\nI don\\'t believe that BA have anything to do with RR. It\\'s a seperate\\ncompany from the RR Aero-Engine company. I think that the government\\nown a stake. Unfortunately they owned a stake of Jaguar too, until\\nthey decided to make a quick buck and sold it to Ford. Bastards.\\nThis is definitely the ultimate Arthur-Daley government.\\n--\\n\\nNick (the Cynical Biker) DoD 1069 Concise Oxford Leaky Gearbox\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n',\n", - " 'From: pashdown@slack.sim.es.com (Pete Ashdown)\\nSubject: Need parts/info for 1963 Maicoletta scooter\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 15\\nNNTP-Posting-Host: slack\\n\\n\\nPosted for a friend:\\n\\nLooking for tires, dimensions 14\" x 3.25\" or 3.35\"\\n\\nAlso looking for brakes or info on relining existing shoes.\\n\\nAlso any other Maicoletta owners anywhere to have contact with.\\n\\nCall Scott at 801-583-1354 or email me.\\n-- \\n I saw fops by the thousand sew themselves together round the Lloyds building.\\n\\nDISCLAIMER: My writings have NOTHING to do with my employer. Keep it that way.\\nPete Ashdown pashdown@slack.sim.es.com Salt Lake City, Utah\\n',\n", - " 'From: mikec@sail.LABS.TEK.COM (Micheal Cranford)\\nSubject: Disney Animation\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 5\\n\\n------------------------------------\\n\\n Can anyone tell me anything about the Disney Animation software package?\\nNote the followup line (this is not for me but for a colleague).\\n\\n',\n", - " \"From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Israeli Expansion-lust\\nOrganization: The Department of Redundancy Department\\nLines: 13\\n\\nIn article <1993Apr14.224726.15612@bnr.ca> zbib@bnr.ca writes:\\n>Jake Livni writes\\n>> Sam Zbib writes\\n\\n[all deleted...]\\n\\nSam Zbib's posting is so confused and nonsensical as not to warrant a\\nreasoned response. We're getting used to this, too.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n\",\n", - " 'From: karish@gondwana.Stanford.EDU (Chuck Karish)\\nSubject: Re: Living\\nOrganization: Mindcraft, Inc.\\nLines: 31\\n\\nIn article amc@crash.wpd.sgi.com\\n(Allan McNaughton) writes:\\n>In article <1993Mar27.040606.4847@eos.arc.nasa.gov>, phil@eos.arc.nasa.gov\\n(Phil Stone) writes:\\n>|> Alan, nothing personal, but I object to the \"we all\" in that statement.\\n>|> (I was on many of those rides that Alan is describing.) Pushing the\\n>|> envelope does not necessarily equal taking insane chances.\\n\\nMoreover, if two riders are riding together at the same speed,\\none might be riding well beyond his abilities and the other\\nmay have a safety margin left.\\n\\n>Oh come on Phil. You\\'re an excellent rider, but you still take plenty of\\n>chances. Don\\'t tell me that it\\'s just your skill that keeps you from \\n>getting wacked. There\\'s a lot of luck thrown in there too. You\\'re a very\\n>good rider and a very lucky one too. Hope your luck holds.... \\n\\nAllan, I know the circumstances of several of your falls.\\nOn the ride when you fell while I was next behind you,\\nyou made an error of judgement by riding too fast when\\nyou knew the road was damp, and you reacted badly when\\nyou were surprised by an oncoming car. That crash was\\ndue to factors that were subject to your control.\\n\\nI won\\'t deny that there\\'s a combination of luck and skill\\ninvolved for each of us, but it seems that you\\'re blaming\\nbad luck for more of your own pain than is warranted.\\n--\\n\\n Chuck Karish karish@mindcraft.com\\n (415) 323-9000 x117 karish@pangea.stanford.edu\\n',\n", - " \"From: alaa@peewee.unx.dec.com (Alaa Zeineldine)\\nSubject: Re: THE HAMAS WAY of DEATH\\nOrganization: Digital Equipment Corp.\\nX-Newsreader: Tin 1.1 PL3\\nLines: 12\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n: \\n: While you brought up the separate question of Israel's unjustified\\n: policies and practices, I am still unclear about your reaction to\\n: the practices and polocies reflected in the article above.\\n: \\n: Tim\\n\\nNot a separate question Mr. Clock. It is deceiving to judge the \\nresistance movement out of the context of the occupation.\\n\\nAlaa Zeineldine\\n\",\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: Express Access Online Communications USA\\nLines: 12\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.164801.7530@julian.uwo.ca> jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll) writes:\\n>\\tHmmm. I seem to recall that the attraction of solid state record-\\n>players and radios in the 1960s wasn't better performance but lower\\n>per-unit cost than vacuum-tube systems.\\n>\\n\\n\\nI don't think so at first, but solid state offered better reliabity,\\nid bet, and any lower costs would be only after the processes really scaled up.\\n\\npat\\n\\n\",\n", - " \"From: jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: University of Western Ontario, London\\nNntp-Posting-Host: prism.engrg.uwo.ca\\nLines: 9\\n\\n\\tHmmm. I seem to recall that the attraction of solid state record-\\nplayers and radios in the 1960s wasn't better performance but lower\\nper-unit cost than vacuum-tube systems.\\n\\n\\tMind you, my father was a vacuum-tube fan in the 60s (Switched\\nto solid-state in the mid-seventies and then abruptly died; no doubt\\nthere's a lesson in that) and his account could have been biased.\\n\\n\\t\\t\\t\\t\\t\\t\\tJames Nicoll\\n\",\n", - " 'From: \"danny hawrysio\" \\nSubject: radiosity\\nReply-To: \"danny hawrysio\" \\nOrganization: Canada Remote Systems\\nDistribution: comp\\nLines: 9\\n\\n\\n-> I am looking for source-code for the radiosity-method.\\n\\n I don\\'t know what kind of machine you want it for, but the program\\nRadiance comes with \\'C\\' source code - I don\\'t have ftp access so I\\ncouldn\\'t tell you where to get it via that way.\\n--\\nCanada Remote Systems - Toronto, Ontario\\n416-629-7000/629-7044\\n',\n", - " 'From: dkusswur@falcon.depaul.edu (Daniel C. Kusswurm)\\nSubject: Siggraph 1987 Course Notes\\nNntp-Posting-Host: falcon.depaul.edu\\nOrganization: DePaul University, Chicago\\nDistribution: usa\\nLines: 7\\n\\nI am looking for a copy of the following Siggraph publication: Gomez, J.E.\\n\"Comments on Event Driven Annimation,\" Siggraph Course Notes, 10, 1987.\\n\\nIf anyone knows of a location where I can obtain a copy of these notes, I\\nwould appreciate if they could let me know. Thanks.\\n\\ndkusswur@falcon.depaul.edu\\n',\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nOrganization: Express Access Online Communications USA\\nLines: 54\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.003719.101323@zeus.calpoly.edu> jgreen@trumpet.calpoly.edu (James Thomas Green) writes:\\n>prb@access.digex.com (Pat) Pontificated: \\n>>\\n>>\\n>\\n>I heard once that the voyagers had a failsafe routine built in\\n>that essentially says \"If you never hear from Earth again,\\n>here\\'s what to do.\" This was a back up in the event a receiver\\n>burnt out but the probe could still send data (limited, but\\n>still some data). \\n>\\n\\nVoyager has the unusual luck to be on a stable trajectory out of the\\nsolar system. All it\\'s doing is collecting fields data, and routinely\\nsquirting it down. One of the mariners is also in stable\\nsolar orbit, and still providing similiar solar data. \\n\\nSomething in a planetary orbit, is subject to much more complex forces.\\n\\nComsats, in \"stable \" geosynch orbits, require almost daily\\nstationkeeping operations. \\n\\nFor the occasional deep space bird, like PFF after pluto, sure\\nit could be left on \"auto-pilot\". but things like galileo or\\nmagellan, i\\'d suspect they need enough housekeeping that\\neven untended they\\'d end up unusable after a while.\\n\\nThe better question should be.\\n\\nWhy not transfer O&M of all birds to a separate agency with continous funding\\nto support these kind of ongoing science missions.\\n\\npat\\n\\n\\tWhen ongoing ops are mentioned, it seems to always quote Operations\\nand Data analysis. how much would it cost to collect the data\\nand let it be analyzed whenever. kinda like all that landsat data\\nthat sat around for 15 years before someone analyzed it for the ozone hole.\\n\\n>>Even if you let teh bird drift, it may get hosed by some\\n>>cosmic phenomena. \\n>>\\n>Since this would be a shutdown that may never be refunded for\\n>startup, if some type of cosmic BEM took out the probe, it might\\n>not be such a big loss. Obviously you can\\'t plan for\\n>everything, but the most obvious things can be considered.\\n>\\n>\\n>/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n>| \"I know you believe you understand what it is that you | \\n>| think I said. But I am not sure that you realize that |\\n>| what I said is not what I meant.\" |\\n\\n\\n',\n", - " 'From: jaeger@buphy.bu.edu (Gregg Jaeger)\\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nOrganization: Boston University Physics Department\\nLines: 63\\n\\nIn article <1993Apr14.121134.12187@monu6.cc.monash.edu.au> darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n\\n>>In article khan@itd.itd.nrl.navy.mil (Umar Khan) writes:\\n\\n>I just borrowed a book from the library on Khomeini\\'s fatwa etc.\\n\\n>I found this useful passage regarding the legitimacy of the \"fatwa\":\\n\\n>\"It was also common knowledge as prescribed by Islamic law, that the\\n>sentence was only applicable where the jurisdiction of Islamic law\\n>applies. Moreover, the sentence has to be passed by an Islamic court\\n>and executed by the state machinery through the due process of the law.\\n>Even in Islamic countries, let alone in non-Muslim lands, individuals\\n>cannot take the law into their own hands. The sentence when passed,\\n>must be carried out by the state through the usual machinery and not by\\n>individuals. Indeed it becomes a criminal act to take the law into\\n>one\\'s own hands and punish the offender unless it is in the process of\\n>self-defence. Moreover, the offender must be brought to the notice of\\n>the court and it is the court who shoud decide how to deal with him.\\n>This law applies equally to Muslim as well as non-Muslim territories.\\n\\n\\nI agree fully with the above statement and is *precisely* what I meant\\nby my previous statements about Islam not being anarchist and the\\nlaw not being _enforcible_ despite the _law_ being applicable. \\n\\n\\n>Hence, on such clarification from the ulama [Islamic scholars], Muslims\\n>in Britain before and after Imam Khomeini\\'s fatwa made it very clear\\n>that since Islamic law is not applicable to Britain, the hadd\\n>[compulsory] punishment cannot be applied here.\"\\n\\n\\nI disagree with this conclusion about the _applicability_ of the \\nIslamic law to all muslims, wherever they may be. The above conclusion \\ndoes not strictly follow from the foregoing, but only the conclusion \\nthat the fatwa cannot be *enforced* according to Islamic law. However, \\nI do agree that the punishment cannot be applied to Rushdie even *were*\\nit well founded.\\n\\n>Wow... from the above, it looks like that from an Islamic viewpoint\\n>Khomeini\\'s \"fatwa\" constitutes a \"criminal act\" .... perhaps I could\\n>even go out on a limb and call Khomeini a \"criminal\" on this basis....\\n\\n\\nCertainly putting a price on the head of Rushdie in Britain is a criminal \\nact according to Islamic law. \\n\\n\\n>Anyhow, I think it is understood by _knowledgeable_ Muslims that\\n>Khomeini\\'s \"fatwa\" is Islamically illegitimate, at least on the basis\\n>expounded above. Others, such as myself and others who have posted here\\n>(particularly Umar Khan and Gregg Jaeger, I think) go further and say\\n>that even the punishment constituted in the fatwa is against Islamic law\\n>according to our understanding.\\n\\nYes.\\n\\n\\n\\n\\n\\nGregg\\n',\n", - " 'From: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nSubject: Boom! Dog attack!\\nReply-To: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nDistribution: world\\nOrganization: Computer Dynamics-Vancouver B.C.-(604)986-9937 (604)255-9937\\nLines: 59\\n\\nMy previous posting on dog attacks must have generated some bad karma or\\nsomething. I\\'ve weathered attempted dog attacks before using the\\napproved method: Slow down to screw up dog\\'s triangulation of target,\\nthen take off and laugh at the dog, now far behind you. This time, it\\ndidn\\'t work because I didn\\'t have time. Riding up the hill leading to my\\nhouse, I encountered a liver-and-white Springer Spaniel (no relation to\\nthe Springer Softail, or the Springer Spagthorpe, a close relation to\\nthe Spagthorpe Viking). Actually, the dog encountered me with intent to\\nharm.\\n\\nBut I digress: I was riding near the (unpainted) centerline of the\\nroughly 30-foot wide road, doing between forty and sixty clicks (30 mph\\nfor the velocity-impaired). The dog shot at me from behind bushes on the\\nleft side of the road at an impossibly high speed. I later learned he\\nhad been accelerating from the front porch, about thirty feet away,\\nheading down the very gently sloped approach to the side of the road. I\\nsaw the dog, and before you could say SIPDE, he was on me. Boom! I took\\nthe dog in the left leg, and from the marks on the bike my leg was\\ndriven up the side of the bike with considerable force, making permanent\\nmarks on the plastic parts of the bike, and cracking one panel. I think\\nI saw the dog spin around when I looked back, but my memory of this\\nmoment is hazy.\\n\\nI next turned around, and picked the most likely looking house. The\\napologetic woman explained that the dog was not seriously hurt (cut\\nmouth) and hoped I was not hurt either. I could feel the pain in my\\nshin, and expected a cool purple welt to form soon. Sadly, it has not.\\nSo I\\'m left with a tender shin, and no cool battle scars!\\n\\nInterestingly, the one thing that never happened was that the bike never\\nmoved off course. The not inconsiderable impact did not push the bike\\noff course, nor did it cause me to put the bike out of control from some\\ngut reaction to the sudden impact. Delayed pain may have helped me\\nhere, as I didn\\'t feel a sudden sharp pain that I can remember.\\n\\nWhat worries me about the accident is this: I don\\'t think I could have\\nprevented it except by traveling much slower than I was. This is not\\nnecessarily an unreasonable suggestion for a residential area, but I was\\nriding around the speed limit. I worry about what would have happened if\\nit had been a car instead of a dog, but I console myself with the\\nthought that it would take a truly insane BDI cager to whip out of a\\nblind driveway at 15-30 mph. For that matter, how many driveways are\\nlong enough for a car to hit 30 mph by the end?\\n\\nI eagerly await comment.\\n\\nRyan Cousinetc.|1982 Yamaha Vision XZ550 -Black Pig of Inverness|Live to Ride\\nKotRB |1958 AJS 500 C/S -King Rat |to Work to\\nDoD# 0863 |I\\'d be a squid if I could afford the bike... |Flame to\\nryan.cousineau@compdyn.questor.org | Vancouver, BC, Canada |Live . . .\\n\\n\\n * SLMR 2.1a * \"He\\'s hurt.\" \"Dammit Jim, I\\'m a Doctor -- oh, right.\"\\n \\n----\\n+===============================================================+\\n|COMPUTER DYNAMICS BBS 604-255-9937(HST) 604-986-9937(V32)|\\n|Vancouver, BC, Canada - Easy Access, Low Rates, Friendly Sysop|\\n+===============================================================+\\n',\n", - " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Re: rejoinder. Questions to Israelis\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 22\\n\\nIn article <1483500353@igc.apc.org> Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: rejoinder. Questions to Israelis\\n>\\n>\\n>Dear Josh\\n>\\n>I appreciate the fact that you sought to answer my questions.\\n>\\n>Having said that, I am not totally happy with your answers.\\n>\\n>1. You did not fully answer my question whether Israeli ID cards\\n>identify the holders as Jews or Arabs. You imply that U.S.\\n>citizens must identify themselves by RACE. Is that true ? Or are\\n>just trying to mislead the reader ? \\n\\nI think he is trying to mislead people. In cases where race\\ninformation is sought, it is completely voluntary (the census\\npossibly excepted).\\n\\n-anwar\\n',\n", - " \"From: cheinan@access.digex.com (Cheinan Marks)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nOrganization: Express Access Online Communications, Greenbelt, MD USA\\nLines: 100\\nNNTP-Posting-Host: access.digex.net\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\n: Robert G. Carpenter writes:\\n\\n: >Hi Netters,\\n: >\\n: >I'm building a CAD package and need a 3D graphics library that can handle\\n: >some rudimentry tasks, such as hidden line removal, shading, animation, etc.\\n: >\\n: >Can you please offer some recommendations?\\n: >\\n: >I'll also need contact info (name, address, email...) if you can find it.\\n: >\\n: >Thanks\\n: >\\n: >(Please Post Your Responses, in case others have same need)\\n: >\\n: >Bob Carpenter\\n: >\\n\\nThe following is extracted from sumex-aim.stanford.edu. It should also be on\\nthe mirrors. I think there is source for some applications that may have some\\nbearing on your project. Poke around the source directory. I've never used\\nthis package, nor do I know anyone who did, but the price is right :-)\\n\\nHope this helps.\\n\\n\\t\\t\\t\\t\\tCheinan\\n\\nAbstracts of files as of Thu Apr 1 03:11:39 PST 1993\\nDirectory: info-mac/source\\n\\n#### BINHEX 3d-grafsys-121.hqx ****\\n\\nDate: Fri, 5 Mar 93 14:13:07 +0100\\nFrom: Christian Steffen Ove Franz \\nTo: questions@mac.archive.umich.edu\\nSubject: 3d GrafSys 1.21 in incoming directory\\nA 3d GrafSys short description follows:\\n\\nProgrammers 3D GrafSys Vers 1.21 now available. \\n\\nVersion 1.21 is mainly a bugfix for THINK C users. THIS VERSION\\nNOW RUNS WITH THINK C, I PROMISE! The Docs now contain a chapter for\\nC programmers on how to use the GrafSys. If you have problems, feel free \\nto contact me.\\nThe other change is that I removed the FastPerfTrig calls from\\nthe FPU version to make it run faster.\\n\\nThose of you who don't know what all this is about, read on.\\n\\n********\\n\\nProgrammers 3D GrafSys -- What it is:\\n-------------------------------------\\n\\nDidn't you always have this great game in mind where you needed some way of \\ndrawing three-dimensional scenes? \\n\\nDidn't you always want to write this program that visualized the structure \\nof three-dimensional molecules?\\n\\nAnd didn't the task of writing your 3D conversions routines keep you from \\nactually doing it?\\n\\nWell if the answer to any of the above questions is 'Yes, but what has it to \\ndo with this package???' , read on.\\n\\nGrafSys is a THINK Pascal/C library that provides you with simple routines \\nfor building, saving, loading (as resources), and manipulating \\n(independent rotating around arbitrary achses, translating and scaling) \\nthree dimensional objects. Objects, not just simple single-line drawings.\\n\\nGrafSys supports full 3D clipping, animation and some (primitive) hidden-\\nline/hidden-surface drawing with simple commands from within YOUR PROGRAM.\\n\\nGrafSys also supports full eye control with both perspective and parallel\\nprojections (If you can't understand a word, don't worry, this is just showing\\noff for those who know about it. The docs that come with it will try to explain\\nwhat it all means later on). \\n\\nGrafSys provides a powerful interface to supply your own drawing routines with\\ndata so you can use GrafSys to do the 3D transformations and your own routines\\nto do the actual drawing. (Note that GrafSys also provides drawing routines so\\nyou don't have to worry about that if you don't want to)\\n\\nGrafSys 1.11 comes in two versions. One for the 881 and 020 or above \\nprocessors. The other version uses fixed-point arithmetic and runs on any Mac.\\nBoth versions are *100% source compatibel*. \\n\\nGrafSys comes with an extensive manual that teaches you the fundamentals of 3D\\ngraphics and how to use the package.\\n\\nIf demand is big enough I will convert the GrafSys to an object-class library. \\nHowever, I feelt that the way it is implemented now makes it easier to use for\\na lot more people than the select 'OOP-Guild'.\\n\\nGrafSys is free for any non-commercial usage. Read the documentation enclosed.\\n\\n\\nEnjoy,\\nChristian Franz\\n\",\n", - " 'Subject: Re: Looking for Tseng VESA drivers\\nFrom: t890449@patan.fi.upm.es ()\\nOrganization: /usr/local/lib/organization\\nNntp-Posting-Host: patan.fi.upm.es\\nLines: 10\\n\\nHi, this is my first msg to the Net (actually the 3rd copy of it, dam*ed VI!!).\\n\\n Look for the new VPIC6.0, it comes with updated VESA 1.2 drivers for almost every known card. The VESA level is 1.2, and my Tseng4000 24-bit has a nice affair with the driver. \\n\\n Hope it is useful!!\\n\\n\\n\\t\\t\\t\\t\\t\\t\\tBye\\n\\n\\n',\n", - " 'From: pww@spacsun.rice.edu (Peter Walker)\\nSubject: Re: Rawlins debunks creationism\\nOrganization: I didn\\'t do it, nobody saw me, you can\\'t prove a thing.\\nLines: 30\\n\\nIn article <1993Apr15.223844.16453@rambo.atlanta.dg.com>,\\nwpr@atlanta.dg.com (Bill Rawlins) wrote:\\n> \\n> We are talking about origins, not merely science. Science cannot\\n> explain origins. For a person to exclude anything but science from\\n> the issue of origins is to say that there is no higher truth\\n> than science. This is a false premise.\\n\\nSays who? Other than a hear-say god.\\n\\n> By the way, I enjoy science.\\n\\nYou sure don\\'t understand it.\\n\\n> It is truly a wonder observing God\\'s creation. Macroevolution is\\n> a mixture of 15 percent science and 85 percent religion [guaranteed\\n> within three percent error :) ]\\n\\nBill, I hereby award you the Golden Shovel Award for the biggist pile of\\nbullshit I\\'ve seen in a whils. I\\'m afraid there\\'s not a bit of religion in\\nmacroevolution, and you\\'ve made a rather grand statement that Science can\\nnot explain origins; to a large extent, it already has!\\n\\n> // Bill Rawlins //\\n\\nPeter W. Walker \"Yu, shall I tell you what knowledge is? When \\nDept. of Space Physics you know a thing, say that you know it. When \\n and Astronomy you do not know a thing, admit you do not know\\nRice University it. This is knowledge.\"\\nHouston, TX - K\\'ung-fu Tzu\\n',\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Lunar Colony Race! By 2005 or 2010?\\nArticle-I.D.: aurora.1993Apr20.234427.1\\nOrganization: University of Alaska Fairbanks\\nLines: 27\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nOkay here is what I have so far:\\n\\nHave a group (any size, preferibly small, but?) send a human being to the moon,\\nset up a habitate and have the human(s) spend one earth year on the moon. Does\\nthat mean no resupply or ?? \\n\\nNeed to find atleast $1billion for prize money.\\n\\nContest open to different classes of participants.\\n\\nNew Mexico State has semi-challenged University of Alaska (any branch) to put a\\nteam together and to do it..\\nAny other University/College/Institute of Higher Learning wish to make a\\ncounter challenge or challenge another school? Say it here.\\n\\nI like the idea of having atleast a russian team.\\n\\n\\nSome prefer using new technology, others old or ..\\n\\nThe basic idea of the New Moon Race is like the Solar Car Race acrossed\\nAustralia.. Atleast in that basic vein of endevour..\\n\\nAny other suggestions?\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", - " \"From: dgraham@bmers30.bnr.ca (Douglas Graham)\\nSubject: Re: Jews can't hide from keith@cco.\\nOrganization: Bell-Northern Research, Ottawa, Canada\\nLines: 40\\n\\nIn article <1pqdor$9s2@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>In article <1993Apr3.071823.13253@bmerh85.bnr.ca>, dgraham@bmers30.bnr.ca (Douglas Graham) writes:\\n>The poster casually trashed two thousand years of Jewish history, and \\n>Ken replied that there had previously been people like him in Germany.\\n\\nI think the problem here is that I pretty much ignored the part\\nabout the Jews sightseeing for 2000 years, thinking instead that\\nthe important part of what the original poster said was the bit\\nabout killing Palestinians. In retrospect, I can see how the\\nsightseeing thing would be offensive to many. I originally saw\\nit just as poetic license, but it's understandable that others\\nmight see it differently. I still think that Ken came on a bit\\nstrong though. I also think that your advice to Masud Khan:\\n\\n #Before you argue with someone like Mr Arromdee, it's a good idea to\\n #do a little homework, or at least think.\\n\\nwas unnecessary.\\n\\n>That's right. There have been. There have also been people who\\n>were formally Nazis. But the Nazi party would have gone nowhere\\n>without the active and tacit support of the ordinary man in the\\n>street who behaved as though casual anti-semitism was perfectly\\n>acceptable.\\n>\\n>Now what exactly don't you understand about what I wrote, and why\\n>don't you see what it has to do with the matter at hand?\\n\\nThroughout all your articles in this thread there is the tacit\\nassumption that the original poster was exhibiting casual\\nanti-semitism. If I agreed with that, then maybe your speech\\non why this is bad might have been relevant. But I think you're\\nreading a lot into one flip sentence. While probably not\\ntrue in this case, too often the charge of anti-semitism gets\\nthrown around in order to stifle legitimate criticism of the\\nstate of Israel.\\n\\nAnyway, I'd rather be somewhere else, so I'm outta this thread.\\n--\\nDoug Graham dgraham@bnr.ca My opinions are my own.\\n\",\n", - " \"From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: Recommendation for a front tire.\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 11\\n\\nHey folks--\\n\\nI've got a pair of Dunlop sportmax radials of my ZX-10, and they've been\\nvery sticky (ie no slides yet), but all this talk about the Metzelers has\\nme wondering if my next set should be a Lazer comp K and a radial Metzeler\\nrear...for hard sport-touring, how do the choices stack up?\\n\\nNathaniel\\nZX-10\\nDoD 0812\\nAMA\\n\",\n", - " 'From: tmc@spartan.ac.BrockU.CA (Tim Ciceran)\\nSubject: Re: Newsgroup Split\\nOrganization: Brock University, St. Catharines Ontario\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 19\\n\\nChris Herringshaw (tdawson@engin.umich.edu) wrote:\\n: Concerning the proposed newsgroup split, I personally am not in favor of\\n: doing this. I learn an awful lot about all aspects of graphics by reading\\n: this group, from code to hardware to algorithms. I just think making 5\\n: different groups out of this is a wate, and will only result in a few posts\\n: a week per group. I kind of like the convenience of having one big forum\\n: for discussing all aspects of graphics. Anyone else feel this way?\\n: Just curious.\\n\\n\\n: Daemon\\n\\nWhat he said...\\n\\n-- \\n\\nTMC\\n(tmc@spartan.ac.BrockU.ca)\\n\\n',\n", - " 'From: tjohnson@tazmanian.prime.com (Tod Johnson (617) 275-1800 x2317)\\nSubject: Re: Live Free, but Quietly, or Die\\nDistribution: The entire Nugent family\\nOrganization: Computervision\\nLines: 29\\n\\n\\n In article <1qc2fu$c1r@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n >Loud pipes are a biligerent exercise in ego projection,\\n\\nNo arguements following, just the facts.\\n\\nI was able to avoid an accident by revving my engine and having my\\n*stock* Harley pipes make enough noise to draw someones attention.\\n\\nI instinctively revved my engine before I went for my horn. Don\\'t know\\nwhy, but I did it and it worked. Thats rather important.\\n\\nI am not saying \"the louder the pipes the better\". My Harley is loud\\nand it gets me noticed on the road for that reason. I personally do\\nnot feel it is to loud. If you do, well thats to bad; welcome to \\nAmerica - \"Home of the Free, Land of the Atlanta Braves\".\\n\\nIf you really want a fine tuned machine like our federal government\\nto get involved and pass Db restrictions; it should be generous\\nenough so that a move like revving your engine will get you noticed.\\nSure there are horns but my hand is already on the throttle. Should we\\nget into how many feet a bike going 55mph goes in .30 seconds; or\\nhow long it would take me to push my horn button??\\n\\nAnd aren\\'t you the guy that doesn\\'t even have a bike???\\n\\nTod J. Johnson\\nDoD #883\\n\"Go Slow, Take Geritol\"\\n',\n", - " 'From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Cobra Locks\\nOrganization: NEC Systems Laboratory, Inc.\\nDistribution: usa\\nLines: 55\\n\\nIn article <1r1b3rINNale@cronkite.Central.Sun.COM> doc@webrider.central.sun.com writes:\\n>I was posting to Alt.locksmithing about the best methods for securing \\n>a motorcycle. I got several responses referring to the Cobra Lock\\n>(described below). Has anyone come across a store carrying this lock\\n>in the Chicago area?\\n\\n\\tIt is available through some dealerships, who in turn have to back\\norder it from the manufacturer directly. Each one is made to order, at least\\nif you get a nonstandard length (standard is 5\\', I believe).\\n\\n>Any other feedback from someone who has used this?\\n\\n\\tSee below\\n\\n>In article 1r1534INNraj@shelley.u.washington.edu, basiji@stein.u.washington.edu (David Basiji) writes:\\n>> \\n>> Incidentally, the best lock I\\'ve found for bikes is the Cobra Lock.\\n>> It\\'s a cable which is shrouded by an articulated, hardened steel sleeve.\\n>> The lock itself is cylindrical and the locking pawl engages the joints\\n>> at the articulation points so the chain can be adjusted (like handcuffs).\\n>> You can\\'t get any leverage on the lock to break it open and the cylinder\\n>> is well-protected. I wouldn\\'t want to cut one of these without a torch\\n>> and/or a vice and heavy duty cutting wheel.\\n\\n\\tI have a 6\\' long CobraLinks lock that I used to use for my Harley (she\\ndoesn\\'t get out much anymore, so I don\\'t use the lock that often anymore). It\\nis made of 3/4\" articulated steel shells covering seven strands of steel cable.\\nIt is probably enough to stop all the joyriders, but, unfortunately,\\nprofessionals can open it rather easily:\\n\\n\\t1) Freeze a link.\\n\\n\\t2) Break frozen link with your favorite method (hammers work well).\\n\\n\\t3) Snip through the steel cables (which, I have on authority, are\\n\\t\\tfrightfully thin) with a set of boltcutters.\\n\\n\\tFor the same money, you can get a Kryptonite cable lock, which is\\nanywhere from 1/2\" to 7/8\" thick steel cable (looks like steel rope), shielded\\nin a flexible covering to protect your bike\\'s finish, and has a barrel-type\\nlocking mechanism. I don\\'t know if it\\'s adjustable, but my source says it\\'s\\nmore difficult to pick than most locks, and the cable tends to squish flat\\nin bolt-cutter jaws rather than shear (5/8\" model).\\n\\n\\tAll bets are off if the thief has a die grinder with a cutoff wheel.\\nEven the most durable locks tested yield to this tool in less than one minute.\\n\\n\\tFYI, I\\'ll be getting a Krypto cable next paycheck.\\n\\nLater,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n',\n", - " \"From: roland@sics.se (Roland Karlsson)\\nSubject: Re: Magellan Venus Maps (Thanks)\\nIn-Reply-To: baalke@kelvin.jpl.nasa.gov's message of 30 Mar 1993 00:34 UT\\nLines: 14\\nOrganization: Swedish Institute of Computer Science, Kista\\n\\n\\nThanks Ron and Peter for some very nice maps.\\n\\nI have an advice though. You wrote that the maps were reduced to 256\\ncolors. As far ad I understand JPEG pictures gets much better (and\\nthe compressed files smaller) if you use the original 3 color 24 bit\\ndata when converting to JPEG.\\n\\nThanks again,\\n\\n--\\nRoland Karlsson SICS, PO Box 1263, S-164 28 KISTA, SWEDEN\\nInternet: roland@sics.se Tel: +46 8 752 15 40 Fax: +46 8 751 72 30\\nTelex: 812 6154 7011 SICS Ttx: 2401-812 6154 7011=SICS\\n\",\n", - " 'From: glover@casbah.acns.nwu.edu (Eric Glover)\\nSubject: Re: What if the USSR had reached the Moon first?\\nNntp-Posting-Host: unseen1.acns.nwu.edu\\nOrganization: Northwestern University, Evanston Illinois.\\nLines: 45\\n\\nIn article <1993Apr06.020021.186145@zeus.calpoly.edu> jgreen@trumpet.calpoly.edu (James Thomas Green) writes:\\n>Suppose the Soviets had managed to get their moon rocket working\\n>and had made it first. They could have beaten us if either:\\n>* Their rocket hadn\\'t blown up on the pad thus setting them back,\\n>and/or\\n>* A Saturn V went boom.\\n\\nThe Apollo fire was harsh, A Saturn V explosion would have been\\nhurtful but The Soviets winning would have been crushing. That could have\\nbeen *the* technological turning point for the US turning us\\nfrom Today\\'s \"We can do anything, we\\'re *the* Super Power\" to a much more\\nreserved attitude like the Soviet Program today.\\n\\nKennedy was gone by 68\\\\69, the war was still on is the east, I think\\nthe program would have stalled badly and the goal of the moon\\nby 70 would have been dead with Nasa trying to figure were they went wrong.\\n \\n>If they had beaten us, I speculate that the US would have gone\\n>head and done some landings, but we also would have been more\\n>determined to set up a base (both in Earth Orbit and on the\\n>Moon). Whether or not we would be on Mars by now would depend\\n>upon whether the Soviets tried to go. Setting up a lunar base\\n>would have stretched the budgets of both nations and I think\\n>that the military value of a lunar base would outweigh the value\\n>of going to Mars (at least in the short run). Thus we would\\n>have concentrated on the moon.\\n\\nI speulate that:\\n+The Saturn program would have been pushed into\\nthe 70s with cost over runs that would just be too evil. \\nNixon still wins.\\n+The Shuttle was never proposed and Skylab never built.\\n+By 73 the program stalled yet again under the fuel crisis.\\n+A string of small launches mark the mid seventies.\\n+By 76 the goal of a US man on the moon is dead and the US space program\\ndrifts till the present day.\\n\\n\\n>/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n>| \"I believe that this nation should commit itself to achieving\\t| \\n>| the goal, before this decade is out, of landing a man on the \\t|\\n>| Moon and returning him safely to the Earth.\" \\t\\t|\\n>| \\t\\t|\\n\\n\\n',\n", - " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: thoughts on christians\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 19\\n\\nIn article pl1u+@andrew.cmu.edu (Patrick C Leger) writes:\\n>EVER HEAR OF\\n>BAPTISM AT BIRTH? If that isn't preying on the young, I don't know what\\n>is...\\n>\\n \\n No, that's praying on the young. Preying on the young comes\\n later, when the bright eyed little altar boy finds out what the\\n priest really wears under that chasible.\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", - " 'From: gnb@leo.bby.com.au (Gregory N. Bond)\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nIn-Reply-To: gene@theporch.raider.net\\'s message of Sun, 18 Apr 1993 19:29:40 GMT\\nNntp-Posting-Host: leo-gw\\nOrganization: Burdett, Buckeridge & Young, Melbourne, Australia\\nLines: 32\\n\\nIn article <6ZV82B2w165w@theporch.raider.net> gene@theporch.raider.net (Gene Wright) writes:\\n\\n Announce that a reward of $1 billion would go to the first corporation \\n who successfully keeps at least 1 person alive on the moon for a\\n year. \\n\\nAnd with $1B on offer, the problem of \"keeping them alive\" is highly\\nlikely to involve more than just the lunar environment! \\n\\n\"Oh Dear, my freighter just landed on the roof of ACME\\'s base and they\\nall died. How sad. Gosh, that leaves us as the oldest residents.\"\\n\\n\"Quick Boss, the slime from YoyoDyne are back, and this time they\\'ve\\ngot a tank! Man the guns!\"\\n\\nOne could imagine all sorts of technologies being developed in that\\nsort of environment.....\\n\\nGreg.\\n\\n(I\\'m kidding, BTW, although the problem of winner-takes-all prizes is\\nthat it encourages all sorts of undesirable behaviour - witness\\nmilitary procurement programs. And $1b is probably far too small a\\nreward to encourage what would be a very expensive and high risk\\nproposition.)\\n\\n\\n--\\nGregory Bond Burdett Buckeridge & Young Ltd Melbourne Australia\\n Knox\\'s 386 is slick. Fox in Sox, on Knox\\'s Box\\n Knox\\'s box is very quick. Plays lots of LSL. He\\'s sick!\\n(Apologies to John \"Iron Bar\" Mackin.)\\n',\n", - " 'From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: OPINIONS WANTED -- HELP\\nNntp-Posting-Host: amhux3.amherst.edu\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 9\\n\\nWhat size dirtbikes did you ride? and for how long? You might be able to\\nslip into a 500cc bike. Like I keep telling people, though, buy an older,\\ncheaper bike and ride that for a while first...you might like a 500 Interceptor\\nas an example\\n\\nNathaniel\\nZX-10\\nDoD 0812\\nAMA\\n',\n", - " 'From: viking@iastate.edu (Dan Sorenson)\\nSubject: Re: Flashing anyone?\\nKeywords: flashing\\nOrganization: Iowa State University, Ames IA\\nLines: 29\\n\\nbehanna@syl.nj.nec.com (Chris BeHanna) writes:\\n\\n>>Just before arriving at a toll booth I\\n>>switch the hazards on. I do thisto warn other motorists that I will\\n>>be taking longer than the 2 1/2 seconds to make the transaction.\\n>>My question, is this a good/bad thing to do?\\n\\n>\\tThis sounds like a VERY good thing to do.\\n\\n\\tI\\'ll second that. In addition, I find my hazards to be more\\noften used than my horn. At speeds below 40mph on the interstates,\\nquite common in mountains with trucks, some states require flashers.\\nIn rural areas, flashers let the guy behind you know there is a tractor\\nwith a rather large implement behind it in the way. Use them whenever \\nyou need to communicate that things will deviate from the norm. \\n\\n>-- \\n>Chris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\n>behanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\n>Disclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\n\\n\\tIs that ZX-11 painted green? Since the green Triumph 650 that\\na friend owned was sold off, her name is now free for adoption. How\\ndoes the name \"Thunderpickle\" grab you?\\n\\n< Dan Sorenson, DoD #1066 z1dan@exnet.iastate.edu viking@iastate.edu >\\n< ISU only censors what I read, not what I say. Don\\'t blame them. >\\n< USENET: Post to exotic, distant machines. Meet exciting, >\\n< unusual people. And flame them. >\\n',\n", - " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: uh, der, whassa deltabox?\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 21\\n\\nIn article <5227@unisql.UUCP> ray@unisql.UUCP (Ray Shea) writes:\\n>\\n>Can someone tell me what a deltabox frame is, and what relation that has,\\n>if any, to the frame on my Hawk GT? That way, next time some guy comes up\\n>to me in some parking lot and sez \"hey, dude, nice bike, is that a deltabox\\n>frame on there?\" I can say something besides \"duh, er, huh?\"\\n\\n Deltabox (tm) is a registered trademark of Yamaha, used to describe\\ntheir aluminum perimeter frame design, used on the FZR400 and FZR1000.\\nIn cross-section, it has a five-sided appearance, so it probably really\\nshould be called a \"Pentabox\".\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", - " \"From: palmer@cco.caltech.edu (David M. Palmer)\\nSubject: Re: Gamma Ray Bursters. WHere are they.\\nOrganization: California Institute of Technology, Pasadena\\nLines: 53\\nNNTP-Posting-Host: alumni.caltech.edu\\n\\nprb@access.digex.com (Pat) writes:\\n\\n> What evidence indicates that Gamma Ray bursters are very far away?\\n\\n>Given the enormous power, i was just wondering, what if they are\\n>quantum black holes or something like that fairly close by?\\n\\n>Why would they have to be at galactic ranges? \\n\\nGamma Ray Bursts (GRBs) are seen coming equally from all directions.\\nHowever, given the number of bright ones, there are too few faint\\nones to be consistent with being equally dense for as far\\nas we can see--it is as if they are all contained within\\na finite sphere (or a sphere with fuzzy edges) with us at the\\ncenter. (These measurements are statistical, and you can\\nalways hide a sufficiently small number of a different\\ntype of GRB with a different origin in the data. I am assuming\\nthat there is only one population of GRBs).\\n\\nThe data indicates that we are less than 10% of the radius of the center\\nof the distribution. The only things the Earth is at the exact center\\nof are the Solar system (at the scale of the Oort cloud of comets\\nway beyond Pluto) and the Universe. Cosmological theories, placing\\nGRBs throughout the Universe, require supernova-type energies to\\nbe released over a timescale of milliseconds. Oort cloud models\\ntend to be silly, even by the standards of astrophysics.\\n\\nIf GRBs were Galactic (i.e. distributed through the Milky Way Galaxy)\\nyou would expect them to be either concentrated in the plane of\\nthe Galaxy (for a 'disk' population), or towards the Galactic center\\n(for a spherical 'halo' population). We don't see this, so if they\\nare Galactic, they must be in a halo at least 250,000 light years in\\nradius, and we would probably start to see GRBs from the Andromeda\\nGalaxy (assuming that it has a similar halo.) For comparison, the\\nEarth is 25,000 light-years from the center of the Galaxy.\\n\\n>my own pet theory is that it's Flying saucers entering\\n>hyperspace :-)\\n\\nThe aren't concentrated in the known spacelanes, and we don't\\nsee many coming from Zeta Reticuli and Tau Ceti.\\n\\n>but the reason i am asking is that most everyone assumes that they\\n>are colliding nuetron stars or spinning black holes, i just wondered\\n>if any mechanism could exist and place them closer in.\\n\\nThere are more than 130 GRB different models in the refereed literature.\\nRight now, the theorists have a sort of unofficial moratorium\\non new models until new observational evidence comes in.\\n\\n-- \\n\\t\\tDavid M. Palmer\\t\\tpalmer@alumni.caltech.edu\\n\\t\\t\\t\\t\\tpalmer@tgrs.gsfc.nasa.gov\\n\",\n", - " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Keith Schneider - Stealth Poster?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 12\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\nsandvik@newton.apple.com (Kent Sandvik) writes:\\n\\n>>To borrow from philosophy, you don't truly understand the color red\\n>>until you have seen it.\\n>Not true, even if you have experienced the color red you still might\\n>have a different interpretation of it.\\n\\nBut, you wouldn't know what red *was*, and you certainly couldn't judge\\nit subjectively. And, objectivity is not applicable, since you are wanting\\nto discuss the merits of red.\\n\\nkeith\\n\",\n", - " 'From: buenneke@monty.rand.org (Richard Buenneke)\\nSubject: DC-X Rollout Report\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 124\\n\\n\\nMcDonnell Douglas rolls out DC-X\\n\\n HUNTINGTON BEACH, Calif. -- On a picture-perfect Southern\\nCalifornia day, McDonnell Douglas rolled out its DC-X rocket ship last\\nSaturday. The company hopes this single-stage rocket technology\\ndemonstrator will be the first step towards a single-stage-to-orbit (SSTO)\\nrocket ship.\\n\\n The white conical vehicle was scheduled to go to the White Sands\\nMissile Range in New Mexico this week. Flight tests will start in\\nmid-June.\\n\\n Although there wasn\\'t a cloud in the noonday sky, the forecast for\\nSSTO research remains cloudy. The SDI Organization -- which paid $60\\nmillion for the DC-X -- can\\'t itself afford to fund full development of a\\nfollow-on vehicle. To get the necessary hundreds of millions required for\\na sub-orbital DC-XA, SDIO is passing a tin cup among its sister government\\nagencies.\\n\\n SDIO originally funded SSTO research as a way to cut the costs for\\norbital deployments of space-based sensors and weapns. However, recent\\nchanges in SDI\\'s political marching orders and budget cuts have made SSTO\\nless of a priority. Today, the agency is more interested in using DC-X as\\na step towards a low-cost, reusable sounding rocket.\\n\\n SDIO has already done 50 briefings to other government agencies,\\nsaid Col. Simon \"Pete\" Worden, SDIO\\'s deputy for technology. But Worden\\ndeclined to say how much the agencies would have to pony up for the\\nprogram. \"I didn\\'t make colonel by telling my contractors how much money I\\nhave available to spend,\" he quipped at a press conference at McDonnell\\nDouglas Astronautics headquarters.\\n\\n While SDIO has lowered its sights on the program\\'s orbital\\nobjective, agency officials hail the DC-X as an example of the \"better,\\nfaster, cheaper\" approach to hardware development. The agency believes\\nthis philosophy can produce breakthroughs that \"leapfrog\" ahead of\\nevolutionary technology developments.\\n\\n Worden said the DC-X illustrates how a \"build a little, test a\\nlittle\" approach can produce results on time and within budget. He said\\nthe program -- which went from concept to hardware in around 18 months --\\nshowed how today\\'s engineers could move beyond the \"miracles of our\\nparents\\' time.\"\\n\\n \"The key is management,\" Worden said. \"SDIO had a very light hand\\non this project. We had only one overworked major, Jess Sponable.\"\\n\\n Although the next phase may involve more agencies, Worden said\\nlean management and a sense of government-industry partnership will be\\ncrucial. \"It\\'s essential we do not end up with a large management\\nstructure where the price goes up exponentially.\"\\n\\n SDIO\\'s approach also won praise from two California members of the\\nHouse Science, Space and Technology Committee. \"This is the direction\\nwe\\'re going to have to go,\" said Rep. George Brown, the committee\\'s\\nDemocratic chairman. \"Programs that stretch aout 10 to 15 years aren\\'t\\nsustainable....NASA hasn\\'t learned it yet. SDIO has.\"\\n\\n Rep. Dana Rohrbacher, Brown\\'s Republican colleague, went further.\\nJoking that \"a shrimp is a fish designed by a NASA design team,\"\\nRohrbacher doubted that the program ever would have been completed if it\\nwere left to the civil space agency.\\n\\n Rohrbacher, whose Orange County district includes McDonnell\\nDouglas, also criticized NASA-Air Force work on conventional, multi-staged\\nrockets as placing new casings around old missile technology. \"Let\\'s not\\nbuild fancy ammunition with capsules on top. Let\\'s build a spaceship!\"\\n\\n Although Rohrbacher praised SDIO\\'s sponsorship, he said the\\nprivate sector needs to take the lead in developing SSTO technology.\\n\\n McDonnell Douglas, which faces very uncertain prospects with its\\nC-17 transport and Space Station Freedom programs, were more cautious\\nabout a large private secotro commitment. \"On very large ventures,\\ncompanies put in seed money,\" said Charles Ordahl, McDonnell Douglas\\'\\nsenior vice president for space systems. \"You need strong government\\ninvestments.\"\\n\\n While the government and industry continue to differ on funding\\nfor the DC-XA, they agree on continuing an incremental approach to\\ndevelopment. Citing corporate history, they liken the process to Douglas\\nAircraft\\'s DC aircraft. Just as two earlier aircraft paved the way for\\nthe DC-3 transport, a gradual evolution in single-stage rocketry could\\neventually lead to an orbital Delta Clipper (DC-1).\\n\\n Flight tests this summer at White Sands will \"expand the envelope\"\\nof performance, with successive tests increasing speed and altitude. The\\nfirst tests will reach 600 feet and demonstrate hovering, verticle\\ntake-off and landing. The second series will send the unmanned DC-X up to\\n5,000 feet. The third and final series will take the craft up to 20,000\\nfeet.\\n\\n Maneuvers will become more complex on third phase. The final\\ntests will include a \"pitch-over\" manever that rotates the vehicle back\\ninto a bottom-down configuration for a soft, four-legged landing.\\n\\n The flight test series will be supervised by Charles \"Pete\"\\nConrad, who performed similar maneuvers on the Apollo 12 moon landing.\\nNow a McDonnell Douglas vice president, Conrad paised the vehicles\\naircraft-like approach to operations. Features include automated\\ncheck-out and access panels for easy maintainance.\\n\\n If the program moves to the next stage, engine technology will\\nbecome a key consideration. This engine would have more thrust than the\\nPratt & Whitney RL10A-5 engines used on the DC-X. Each motor uses liquid\\nhydrogen and liquid oxygen propellants to generate up to 14,760 pounds of\\nthrust\\n\\n Based on the engine used in Centaur upper stages, the A-5 model\\nhas a thrust champer designed for sea level operation and three-to-on\\nthrottling capability. It also is designed for repeat firings and rapid\\nturnaround.\\n\\n Worden said future single-stage rockets could employ\\ntri-propellant engine technology developed in the former Soviet Union.\\nThe resulting engines could burn a dense hydrocarbon fuel at takeoff and\\nthen switch to liquid hydrogen at higher altitudes.\\n\\n The mechanism for the teaming may already be in place. Pratt has\\na technology agreement with NPO Energomash, the design bureau responsible\\nfor the tri-propellant and Energia cryogenic engines.\\n\\n\\n',\n", - " 'From: mancus@sweetpea.jsc.nasa.gov (Keith Mancus)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: MDSSC\\nLines: 60\\n\\njbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n>mancus@sweetpea.jsc.nasa.gov (Keith Mancus) writes:\\n>>cook@varmit.mdc.com (Layne Cook) writes:\\n>>> The $25k Orteig prize helped Lindbergh sell his Spirit\\n>>> of Saint Louis venture to his financial backers. But I strongly suspect\\n>>> that his Saint Louis backers had the foresight to realize that much more\\n>>> was at stake than $25,000. Could it work with the moon? Who are the\\n>>> far-sighted financial backers of today?\\n \\n>> The commercial uses of a transportation system between already-settled-\\n>>and-civilized areas are obvious. Spaceflight is NOT in this position.\\n>>The correct analogy is not with aviation of the \\'30\\'s, but the long\\n>>transocean voyages of the Age of Discovery.\\n> Lindbergh\\'s flight took place in \\'27, not the thirties.\\n \\n Of course; sorry for the misunderstanding. I was referring to the fact\\nthat far more aeronautical development took place in the \\'30\\'s. For much\\nof the \\'20\\'s, the super-abundance of Jennies and OX-5 engines held down the\\nindustry. By 1926, many of the obsolete WWI aircraft had been retired\\nand Whirlwind had their power/weight ratio and reliability up to the point\\nwhere long-distance flights became practical. It\\'s important to note that\\nthe Atlantic was flown not once but THREE times in 1927: Lindbergh,\\nChamberlin and Levine, and Byrd\\'s _America_. \"When it\\'s time to railroad,\\nyou railroad.\"\\n\\n>>It didn\\'t require gov\\'t to fund these as long as something was known about\\n>>the potential for profit at the destination. In practice, some were gov\\'t\\n>>funded, some were private.\\n>Could you give examples of privately funded ones?\\n\\n Not off the top of my head; I\\'ll have to dig out my reference books again.\\nHowever, I will say that the most common arrangement in Prince Henry the\\nNavigator\\'s Portugal was for the prince to put up part of the money and\\nmerchants to put up the rest. They profits from the voyage would then be\\nshared.\\n\\n>>But there was no way that any wise investor would spend a large amount\\n>>of money on a very risky investment with no idea of the possible payoff.\\n>A person who puts up $X billion for a moon base is much more likely to do\\n>it because they want to see it done than because they expect to make money\\n>off the deal.\\n\\n The problem is that the amount of prize money required to inspire a\\nMoon Base is much larger than any but a handful of individuals or corporations\\ncan even consider putting up. The Kremer Prizes (human powered aircraft),\\nOrteig\\'s prize, Lord Northcliffe\\'s prize for crossing the Atlantic (won in\\n1919 by Alcock and Brown) were MUCH smaller. The technologies required were\\nwithin the reach of individual inventors, and the prize amounts were well\\nwithin the reach of a large number of wealthy individuals. I think that only\\na gov\\'t could afford to set up a $1B+ prize for any purpose whatsoever.\\n Note that Burt Rutan suggested that NASP could be built most cheaply by\\ntaking out an ad in AvWeek stating that the first company to build a plane\\nthat could take off and fly the profile would be handed $3B, no questions\\nasked.\\n\\n-- \\n Keith Mancus |\\n N5WVR |\\n \"Black powder and alcohol, when your states and cities fall, |\\n when your back\\'s against the wall....\" -Leslie Fish |\\n',\n", - " 'From: neal@cmptrc.lonestar.org (Neal Howard)\\nSubject: Do Splitfires Help Spagthorpe Diesels ?\\nKeywords: Using Splitfire plugs for performance.\\nDistribution: rec.motorcycles\\nOrganization: CompuTrac Inc., Richardson TX\\nLines: 34\\n\\nIn article wcd82671@uxa.cso.uiuc.edu (daniel warren c) writes:\\n>Earlier, I was reading on the net about using Splitfire plugs. One\\n>guy was thinking about it and almost everybody shot him to hell. Well,\\n>I saw one think that someone said about \"Show me a team that used Split-\\n>fires....\" Well, here\\'s some additional insight and some theories\\n>about splitfire plugs and how they boost us as oppossed to cages.\\n>\\n>Splitfires were originally made to burn fuel more efficiently and\\n>increased power for the 4x4 cages. Well, for these guys, splitfires\\n>\\n>Now I don\\'t know about all of this (and I\\'m trying to catch up with\\n>somebody about it now), but Splitfires should help twins more than\\n\\nSplitfires work mainly by providing a more-or-less unshrouded spark to the\\ncombustion chamber. If an engine\\'s cylinder head design can benefit from this,\\nthen the splitfires will yield a slight performance increase, most noticeably\\nin lower rpm range torque. Splitfires didn\\'t do diddly-squat for my 1992 GMC\\npickup (4.3l V6) but do give a noticeable performance boost in my 1991 Harley\\nSportster 1200 and my best friend\\'s 1986 Sportster 883. Folks I know who\\'ve\\ntried them in 1340 Evo motors can\\'t tell any performance boost over plain\\nplugs (which is interesting since the XLH and big twin EVO combustion chambers\\nare pretty much the same shape, just different sizes). Two of my friends who\\nhave shovelhead Harleys swear by the splitfires but if I had a shovelhead,\\nI\\'d dual-plug it instead since they respond well enough to dual plugs to make\\nthe machine work and extra ignition system worth the expense (plus they look\\nreally cool with a spark plug on each side of each head)\\n-- \\n=============================================================================\\nNeal Howard \\'91 XLH-1200 DoD #686 CompuTrac, Inc (Richardson, TX)\\n\\t doh #0000001200 |355o33| neal@cmptrc.lonestar.org\\n\\t Std disclaimer: My opinions are mine, not CompuTrac\\'s.\\n \"Let us learn to dream, gentlemen, and then perhaps\\n we shall learn the truth.\" -- August Kekule\\' (1890)\\n=============================================================================\\n',\n", - " 'From: MANDTBACKA@FINABO.ABO.FI (Mats Andtbacka)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Unorganized Usenet Postings UnInc.\\nLines: 24\\nIn-Reply-To: frank@D012S658.uucp\\'s message of 15 Apr 1993 23:15:09 GMT\\nX-News-Reader: VMS NEWS 1.24\\n\\nIn <1qkq9t$66n@horus.ap.mchp.sni.de> frank@D012S658.uucp writes:\\n\\n(Attempting to define \\'objective morality\\'):\\n\\n> I\\'ll take a wild guess and say Freedom is objectively valuable. I base\\n> this on the assumption that if everyone in the world were deprived utterly\\n> of their freedom (so that their every act was contrary to their volition),\\n> almost all would want to complain.\\n\\n So long as you keep that \"almost\" in there, freedom will be a\\nmostly valuable thing, to most people. That is, I think you\\'re really\\nsaying, \"a real big lot of people agree freedom is subjectively valuable\\nto them\". That\\'s good, and a quite nice starting point for a moral\\nsystem, but it\\'s NOT UNIVERSAL, and thus not \"objective\".\\n\\n> Therefore I take it that to assert or\\n> believe that \"Freedom is not very valuable\", when almost everyone can see\\n> that it is, is every bit as absurd as to assert \"it is not raining\" on\\n> a rainy day.\\n\\n It isn\\'t in Sahara.\\n\\n-- \\n Disclaimer? \"It\\'s great to be young and insane!\"\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Biosphere II\\nOrganization: Express Access Online Communications USA\\nLines: 22\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <19930419.062802.166@almaden.ibm.com> nicho@vnet.ibm.com writes:\\n|In <1q77ku$av6@access.digex.net> Pat writes:\\n|>The Work is privately funded, the DATA belongs to SBV. I don't see\\n|>either george or Fred, scoriating IBM research division for\\n|>not releasing data.\\n| We publish plenty kiddo,you just have to look.\\n\\n\\nNever said you didn't publish, merely that there is data you don't\\npublish, and that no-one scoriates you for those cases. \\n\\nIBM research publishes plenty, it's why you ended up with 2 Nobel\\nprizes in the last 10 years, but that some projects are deemed\\ncompany confidential. ATT Bell Labs, keeps lots of stuff private,\\nLike Karamankars algorithm. Private moeny is entitled to do what\\nit pleases, within the bounds of Law, and For all the keepers of the\\ntemple of SCience, should please shove their pointy little heads\\nup their Conically shaped Posterior Orifices. \\n\\npat\\n\\n\\twho just read the SA article on Karl Fehrabend(sp???)\\n\",\n", - " 'From: alaa@peewee.unx.dec.com (Alaa Zeineldine)\\nSubject: Re: WTC bombing\\nOrganization: Digital Equipment Corp.\\nX-Newsreader: Tin 1.1 PL3\\nLines: 13\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n: \\n: \"But Hadas might be a fictitious character invented by the two men for \\n: billing purposes, said Mohammed Mehdi, head of the Arab-American Relations Committee.\"\\n: \\n: Tim\\n\\nI would remind readers of the fact that the NY Daily News on March 5th \\nreported the arrest of Joise Hadas. Foreign newspapers reported her\\nrelease shortly afterwards. I can provide copies of the articles \\nupon request.\\n\\nAlaa Zeineldine\\n',\n", - " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Re: Gospel Dating\\nLines: 73\\n\\nBenedikt Rosenau writes:\\n\\n>The argument goes as follows: Q-oid quotes appear in John, but not in\\n>the almost codified way they were in Matthew or Luke. However, they are\\n>considered to be similar enough to point to knowledge of Q as such, and\\n>not an entirely different source.\\n\\nAssuming you are presenting it accurately, I don\\'t see how this argument\\nreally leads to any firm conclusion. The material in John (I\\'m not sure\\nexactly what is referred to here, but I\\'ll take for granted the similarity\\nto the Matt./Luke \"Q\" material) IS different; hence, one could have almost\\nany relationship between the two, right up to John getting it straight from\\nJesus\\' mouth.\\n\\n>We are talking date of texts here, not the age of the authors. The usual\\n>explanation for the time order of Mark, Matthew and Luke does not consider\\n>their respective ages. It says Matthew has read the text of Mark, and Luke\\n>that of Matthew (and probably that of Mark).\\n\\nThe version of the \"usual theory\" I have heard has Matthew and Luke\\nindependently relying on Mark and \"Q\". One would think that if Luke relied\\non Matthew, we wouldn\\'t have the grating inconsistencies in the geneologies,\\nfor one thing.\\n\\n>As it is assumed that John knew the content of Luke\\'s text. The evidence\\n>for that is not overwhelming, admittedly.\\n\\nThis is the part that is particularly new to me. If it were possible that\\nyou could point me to a reference, I\\'d be grateful.\\n\\n>>Unfortunately, I haven\\'t got the info at hand. It was (I think) in the late\\n>>\\'70s or early \\'80s, and it was possibly as old as CE 200.\\n\\n>When they are from about 200, why do they shed doubt on the order on\\n>putting John after the rest of the three?\\n\\nBecause it closes up the gap between (supposed) writing and the existing\\ncopy quit a bit. The further away from the original, the more copies can be\\nwritten, and therefore survival becomes more probable.\\n\\n>>And I don\\'t think a \"one step removed\" source is that bad. If Luke and Mark\\n>>and Matthew learned their stories directly from diciples, then I really\\n>>cannot believe in the sort of \"big transformation from Jesus to gospel\" that\\n>>some people posit. In news reports, one generally gets no better\\n>>information than this.\\n\\n>>And if John IS a diciple, then there\\'s nothing more to be said.\\n\\n>That John was a disciple is not generally accepted. The style and language\\n>together with the theology are usually used as counterargument.\\n\\nI\\'m not really impressed with the \"theology\" argument. But I\\'m really\\npointing this out as an \"if\". And as I pointed out earlier, one cannot make\\nthese arguments about I Peter; I see no reason not to accept it as an\\nauthentic letter.\\n\\n\\n>One step and one generation removed is bad even in our times. Compare that\\n>to reports of similar events in our century in almost illiterate societies.\\n\\nThe best analogy would be reporters talking to the participants, which is\\nnot so bad.\\n\\n>In other words, one does not know what the original of Mark did look like\\n>and arguments based on Mark are pretty weak.\\n\\nBut the statement of divinity is not in that section, and in any case, it\\'s\\nagreed that the most important epistles predate Mark.\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", - " 'From: u1452@penelope.sdsc.edu (Jeff Bytof - SIO)\\nSubject: End of the Space Age?\\nOrganization: San Diego Supercomputer Center @ UCSD\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: penelope.sdsc.edu\\n\\nWe are not at the end of the Space Age, but only at the end of Its\\nbeginning.\\n\\nThat space exploration is no longer a driver for technical innovation,\\nor a focus of American cultural attention is certainly debatable; however,\\ntechnical developments in other quarters will always be examined for\\npossible applications in the space area and we can look forward to\\nmany innovations that might enhance the capabilities and lower the\\ncost of future space operations. \\n\\nThe Dream is Alive and Well.\\n\\n-Jeff Bytof\\nmember, technical staff\\nInstitute for Remote Exploration\\n\\n',\n", - " \"From: clarke@acme.ucf.edu (Thomas Clarke)\\nSubject: Re: Vandalizing the sky.\\nOrganization: University of Central Florida\\nLines: 19\\n\\nI posted this over in sci.astro, but it didn't make it here.\\nThought you all would like my wonderful pithy commentary :-)\\n\\nWhat? You guys have never seen the Goodyear blimp polluting\\nthe daytime and nightime skies?\\n\\nActually an oribital sign would only be visible near\\nsunset and sunrise, I believe. So pollution at night\\nwould be minimal.\\n\\nIf it pays for space travel, go for it. Those who don't\\nlike spatial billboards can then head for the pristine\\nenvironment of Jupiter's moons :-)\\n\\n---\\nThomas Clarke\\nInstitute for Simulation and Training, University of Central FL\\n12424 Research Parkway, Suite 300, Orlando, FL 32826\\n(407)658-5030, FAX: (407)658-5059, clarke@acme.ucf.edu\\n\",\n", - " 'From: sieferme@stein.u.washington.edu (Eric Sieferman)\\nSubject: Re: some thoughts.\\nOrganization: University of Washington, Seattle\\nLines: 75\\nNNTP-Posting-Host: stein.u.washington.edu\\nKeywords: Dan Bissell\\n\\nIn article bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\nIt appears that Walla Walla College will fill the same role in alt.atheist\\nthat Allegheny College fills in alt.fan.dan-quayle.\\n\\n>\\tFirst I want to start right out and say that I\\'m a Christian. It \\n>makes sense to be one. Have any of you read Tony Campollo\\'s book- liar, \\n>lunatic, or the real thing? (I might be a little off on the title, but he \\n>writes the book. Anyway he was part of an effort to destroy Christianity, \\n>in the process he became a Christian himself.\\n\\nConverts to xtianity have this tendency to excessively darken their\\npre-xtian past, frequently falsely. Anyone who embarks on an\\neffort to \"destroy\" xtianity is suffering from deep megalomania, a\\ndefect which is not cured by religious conversion.\\n\\n>\\tThe arguements he uses I am summing up. The book is about whether \\n>Jesus was God or not. I know many of you don\\'t believe, but listen to a \\n>different perspective for we all have something to gain by listening to what \\n>others have to say. \\n\\nDifferent perspective? DIFFERENT PERSPECTIVE?? BWAHAHAHAHAHAHAHAH!!!\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n\\n(sigh!) Perhaps Big J was just mistaken about some of his claims.\\nPerhaps he was normally insightful, but had a few off days. Perhaps\\nmany (most?) of the statements attributed to Jesus were not made by\\nhim, but were put into his mouth by later authors. Other possibilities\\nabound. Surely, someone seriously examining this question could\\ncome up with a decent list of possible alternatives, unless the task\\nis not serious examination of the question (much less \"destroying\"\\nxtianity) but rather religious salesmanship.\\n\\n>\\tSome reasons why he wouldn\\'t be a liar are as follows. Who would \\n>die for a lie?\\n\\nHow many Germans died for Nazism? How many Russians died in the name\\nof the proletarian dictatorship? How many Americans died to make the\\nworld safe for \"democracy\". What a silly question!\\n\\n>Wouldn\\'t people be able to tell if he was a liar? People \\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n\\nIs everyone who performs a healing = God?\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy.\\n\\nIt\\'s probably hard to \"draw\" an entire nation to you unless you \\nare crazy.\\n\\n>Very doubtful, in fact rediculous. For example \\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn\\'t a liar or a lunatic, he must have been the \\n>real thing. \\n\\nAnyone who is convinced by this laughable logic deserves\\nto be a xtian.\\n\\n>\\tSome other things to note. He fulfilled loads of prophecies in \\n>the psalms, Isaiah and elsewhere in 24 hrs alone. This in his betrayal \\n>and Crucifixion. I don\\'t have my Bible with me at this moment, next time I \\n>write I will use it.\\n\\nDon\\'t bother. Many of the \"prophecies\" were \"fulfilled\" only in the\\neyes of xtian apologists, who distort the meaning of Isaiah and\\nother OT books.\\n\\n\\n\\n',\n", - " \"From: lmh@juliet.caltech.edu (Henling, Lawrence M.)\\nSubject: Re: Americans and Evolution\\nOrganization: California Institute of Technology\\nLines: 13\\nDistribution: world\\nNNTP-Posting-Host: juliet.caltech.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr3.195642.25261@njitgw.njit.edu>, dmu5391@hertz.njit.edu (David Utidjian Eng.Sci.) writes...\\n>In article <31MAR199321091163@juliet.caltech.edu> lmh@juliet.caltech.edu (Henling, Lawrence M.) writes:\\n>\\tFor a complete description of what is, and is not atheism\\n>or agnosticism see the FAQ for alt.atheism in alt.answers... I think.\\n>utidjian@remarque.berkeley.edu\\n\\n I apologize for posting this. I thought it was only going to talk.origins.\\nI also took my definitions from a 1938 Websters.\\n Nonetheless, the apparent past arguments over these words imply that like\\n'bimonthly' and 'biweekly' they have no commonly accepted definitions and\\nshould be used with care.\\n\\nlarry henling lmh@shakes.caltech.edu\\n\",\n", - " \"From: gunning@cco.caltech.edu (Kevin J. Gunning)\\nSubject: stolen CBR900RR\\nOrganization: California Institute of Technology, Pasadena\\nLines: 12\\nDistribution: usa\\nNNTP-Posting-Host: alumni.caltech.edu\\nSummary: see above\\n\\nStolen from Pasadena between 4:30 and 6:30 pm on 4/15.\\n\\nBlue and white Honda CBR900RR california plate KG CBR. Serial number\\nJH2SC281XPM100187, engine number 2101240.\\n\\nNo turn signals or mirrors, lights taped over for track riders session\\nat Willow Springs tomorrow. Guess I'll miss it. :-(((\\n\\nHelp me find my baby!!!\\n\\nkjg\\n\\n\",\n", - " 'Subject: E-mail of Michael Abrash?\\nFrom: gmontem@eis.calstate.edu (George A. Montemayor)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 0\\n\\n',\n", - " \"From: James Leo Belliveau \\nSubject: First Bike??\\nOrganization: Freshman, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA\\nLines: 17\\nNNTP-Posting-Host: andrew.cmu.edu\\n\\n Anyone, \\n\\n I am a serious motorcycle enthusiast without a motorcycle, and to\\nput it bluntly, it sucks. I really would like some advice on what would\\nbe a good starter bike for me. I do know one thing however, I need to\\nmake my first bike a good one, because buying a second any time soon is\\nout of the question. I am specifically interested in racing bikes, (CBR\\n600 F2, GSX-R 750). I know that this may sound kind of crazy\\nconsidering that I've never had a bike before, but I am responsible, a\\nfast learner, and in love. Please give me any advice that you think\\nwould help me in my search, including places to look or even specific\\nbikes that you want to sell me.\\n\\n Thanks :-)\\n\\n Jamie Belliveau (jbc9@andrew.cmu.edu) \\n\\n\",\n", - " 'From: Wingert@vnet.IBM.COM (Bret Wingert)\\nSubject: Re: Level 5?\\nOrganization: IBM, Federal Systems Co. Software Services\\nDisclaimer: This posting represents the poster\\'s views, not those of IBM\\nNews-Software: UReply 3.1\\n <1993Apr23.124759.1@fnalf.fnal.gov>\\nLines: 29\\n\\nIn <1993Apr23.124759.1@fnalf.fnal.gov> Bill Higgins-- Beam Jockey writes:\\n>In article <19930422.121236.246@almaden.ibm.com>, Wingert@vnet.IBM.COM (Bret Wingert) writes:\\n>> 3. The Onboard Flight Software project was rated \"Level 5\" by a NASA team.\\n>> This group generates 20-40 KSLOCs of verified code per year for NASA.\\n>\\n>Will someone tell an ignorant physicist where the term \"Level 5\" comes\\n>from? It sounds like the RISKS Digest equivalent of Large, Extra\\n>Large, Jumbo... Or maybe it\\'s like \"Defcon 5...\"\\n>\\n>I gather it means that Shuttle software was developed with extreme\\n>care to have reliablility and safety, and almost everything else in\\n>the computing world is Level 1, or cheesy dime-store software. Not\\n>surprising. But who is it that invents this standard, and how come\\n>everyone but me seems to be familiar with it?\\n\\nLevel 5 refers to the Carnegie-Mellon Software Engineering Institute\\'s\\nCapability Maturity Model. This model rates software development\\norg\\'s from1-5. with 1 being Chaotic and 5 being Optimizing. DoD is\\nbeginning to use this rating system as a discriminator in contracts. I\\nhave more data on thifrom 1 page to 1000. I have a 20-30 page\\npresentation that summarizes it wethat I could FAX to you if you\\'re\\ninterested...\\nBret Wingert\\nWingert@VNET.IBM.COM\\n\\n(713)-282-7534\\nFAX: (713)-282-8077\\n\\n\\n',\n", - " 'From: jcopelan@nyx.cs.du.edu (The One and Only)\\nSubject: Re: New Member\\nOrganization: Salvation Army Draft Board\\nLines: 28\\n\\nIn article dfuller@portal.hq.videocart.com (Dave Fuller) writes:\\n>\\n> Hello. I just started reading this group today, and I think I am going\\n>to be a large participant in its daily postings. I liked the section of\\n>the FAQ about constructing logical arguments - well done. I am an atheist,\\n>but I do not try to turn other people into atheists. I only try to figure\\n>why people believe the way they do - I don\\'t much care if they have a \\n>different view than I do. When it comes down to it . . . I could be wrong.\\n>I am willing to admit the possibility - something religious followers \\n>dont seem to have the capability to do.\\n>\\n> Happy to be aboard !\\n>\\n>Dave Fuller\\n>dfuller@portal.hq.videocart.com\\n\\nWelcome. I am the official keeper of the list of nicknames that people\\nare known by on alt.atheism (didn\\'t know we had such a list, did you).\\nYour have been awarded the nickname of \"Buckminster.\" So the next time\\nyou post an article, sign with your nickname like so:\\nDave \"Buckminster\" Fuller. Thanks again.\\n\\nJim \"Humor means never having to say you\\'re sorry\" Copeland\\n--\\nIf God is dead and the actor plays his part | -- Sting,\\nHis words of fear will find their way to a place in your heart | History\\nWithout the voice of reason every faith is its own curse | Will Teach Us\\nWithout freedom from the past things can only get worse | Nothing\\n',\n", - " \"From: 18084TM@msu.edu (Tom)\\nSubject: Space Clippers launched\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 14\\n\\n\\n\\n> SPACE CLIPPERS LAUNCHED SUCCESSFULLY\\n\\nWhen I first saw this, I thought for a second that it was a headline from\\nThe Star about the pliers found in the SRB recently.\\n\\nY'know, sometimes they have wire-cutters built in :-)\\n\\n-Tommy Mac\\n-------------------------------------------------------------------------\\nTom McWilliams 517-355-2178 wk \\\\\\\\ As the radius of vision increases,\\n18084tm@ibm.cl.msu.edu 336-9591 hm \\\\\\\\ the circumference of mystery grows.\\n-------------------------------------------------------------------------\\n\",\n", - " 'From: jimh@carson.u.washington.edu (James Hogan)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nKeywords: slander calumny\\nOrganization: University of Washington, Seattle\\nLines: 60\\nNNTP-Posting-Host: carson.u.washington.edu\\n\\nIn article <1993Apr16.222525.16024@bnr.ca> (Rashid) writes:\\n>In article <1993Apr16.171722.159590@zeus.calpoly.edu>,\\n>jmunch@hertz.elee.calpoly.edu (John Munch) wrote:\\n>> \\n>> In article <1993Apr15.212943.15118@bnr.ca> (Rashid) writes:\\n>> >P.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\n>> >applies to Rushdie and may be encompassed under the umbrella\\n>> >of the \"fasad\" ruling.\\n>> \\n>> Please define the words \"shatim\" and \"fasad\" before you use them again.\\n>\\n>My apologies. \"Shatim\", I believe, refers to slandering or spreading\\n>slander and lies about the Prophets(a.s) - any of the Prophets.\\n\\nBasically, any prophet I\\'ve ever dealt with has either been busy \\nhawking stolen merchandise or selling swampland house lots in \\nFlorida. Then you hear all the stories of sexual abuse by prophets\\nand how the families of victims were paid to keep quiet about it.\\n\\n>It\\'s a kind of willful caulmny and \"cursing\" that\\'s indicated by the\\n>word. This is the best explanation I can come up with off the top\\n>of my head - I\\'ll try and look up a more technical definition when I\\n>have the time.\\n\\nNever mind that, but let me tell you about this Chevelle I bought \\nfrom this dude (you guessed it, a prophet) named Mohammed. I\\'ve\\ngot the car for like two days when the tranny kicks, then Manny, \\nmy mechanic, tells me it was loaded with sawdust! Take a guess\\nwhether \"Mohammed\" was anywhere to be found. I don\\'t think so.\\n\\n>\\n>\"Fasad\" is a little more difficult to describe. Again, this is not\\n>a technical definition - I\\'ll try and get that later. Literally,\\n\\nOh, Mohammed!\\n\\n>the word \"fasad\" means mischief. But it\\'s a mischief on the order of\\n>magnitude indicated by the word \"corruption\". It\\'s when someone who\\n>is doing something wrong to begin with, seeks to escalate the hurt,\\n\\nYeah, you, Mohammed!\\n\\n>disorder, concern, harm etc. (the mischief) initially caused by their \\n>actions. The \"wrong\" is specifically related to attacks against\\n>\"God and His Messenger\" and mischief, corruption, disorder etc.\\n\\nYou slimy mass of pond scum!\\n\\n>resulting from that. The attack need not be a physical attack and there\\n>are different levels of penalty proscribed, depending on the extent\\n>of the mischief and whether the person or persons sought to \\n>\"make hay\" of the situation. The severest punishment is death.\\n\\nYeah, right! You\\'re the one should be watching your butt. You and\\nyour buddy Allah. The stereo he sold me croaked after two days.\\nYour ass is grass!\\n\\nJim\\n\\nYeah, that\\'s right, Jim.\\n',\n", - " \"From: pes@hutcs.cs.hut.fi (Pekka Siltanen)\\nSubject: Re: detecting double points in bezier curves\\nNntp-Posting-Host: hutcs.cs.hut.fi\\nOrganization: Helsinki University of Technology, Finland\\nLines: 26\\n\\nIn article <1993Apr19.234409.18303@kpc.com> jbulf@balsa.Berkeley.EDU (Jeff Bulf) writes:\\n>In article , ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck) writes:\\n>|> I'm looking for any information on detecting and/or calculating a double\\n>|> point and/or cusp in a bezier curve.\\n>|> \\n>|> An algorithm, literature reference or mail about this is very appreciated,\\n>\\n>There was a very useful article in one of the 1989 issues of\\n>Transactions On Graphics. I believe Maureen Stone was one of\\n>the authors. Sorry not to be more specific. I don't have the\\n>reference here with me.\\n\\n\\nStone, DeRose: Geometric characterization of parametric cubic curves.\\nACM Trans. Graphics 8 (3) (1989) 147 - 163.\\n\\n\\nManocha, Canny: Detecting cusps and inflection points in curves.\\nComputer aided geometric design 9 (1992) 1-24.\\n\\nPekka Siltanen\\n\\n\\n\\n\\n\\n\",\n", - " \"Subject: Re: Deriving Pleasure from Death\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 30\\n\\n> Brad Hernlem writes...\\n> >\\n> >Congratulations to the brave men of the Lebanese resistance! With every\\n> >Israeli son that you place in the grave you are underlining the moral\\n> >bankruptcy of Israel's occupation and drawing attention to the Israeli\\n> >government's policy of reckless disregard for civilian life.\\n> >\\n> >Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nTo which Mark Ira Kaufman responds:\\n> \\n> Your delight in the death of human beings says more about you\\n> than anything that I could say.\\n\\nMark,\\nWere you one of the millions of Americans cheering the slaughter of Iraqi\\ncivilians by US forces in 1991? Your comment could also apply to all of\\nthem. (By the way, I do not applaud the killing of _any_ human being,\\nincluding prisoners sentenced to death by our illustrious justice department)\\n\\nPeace.\\n-marc\\n\\n\\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", - " 'From: Mike_Peredo@mindlink.bc.ca (Mike Peredo)\\nSubject: Re: \"Fake\" virtual reality\\nOrganization: MIND LINK! - British Columbia, Canada\\nLines: 11\\n\\nThe most ridiculous example of VR-exploitation I\\'ve seen so far is the\\n\"Virtual Reality Clothing Company\" which recently opened up in Vancouver. As\\nfar as I can tell it\\'s just another \"chic\" clothes spot. Although it would be\\ninteresting if they were selling \"virtual clothing\"....\\n\\nE-mail me if you want me to dig up their phone # and you can probably get\\nsome promotional lit.\\n\\nMP\\n(8^)-\\n\\n',\n", - " 'From: lotto@laura.harvard.edu (Jerry Lotto)\\nSubject: Re: where to put your helmet\\nOrganization: Chemistry Dept., Harvard University\\nLines: 25\\nDistribution: world\\nNNTP-Posting-Host: laura.harvard.edu\\nIn-reply-to: ryan_cousineau@compdyn.questor.org\\'s message of 19 Apr 93 18:25:00 GMT\\n\\n>>>>> On 19 Apr 93 18:25:00 GMT, ryan_cousineau@compdyn.questor.org (Ryan Cousineau) said:\\nCB> DON\\'T BE SO STUPID AS TO LEAVE YOUR HELMET ON THE SEAT WHERE IT CAN\\nCB> FALL DOWN AND GO BOOM!\\n\\nRyan> Another good place for your helmet is your mirror (!). I kid you not.\\n\\nThis is very bad advice. Helmets have two major impact absorbing\\nlayers... a hard outer shell and a closed-cell foam impact layer.\\nMost helmets lose their protective properties because the inner liner\\ncompacts over time, long before the outer shell is damaged or\\ndelaminates from age. Dr. Hurt tested helmets for many years\\nfollowing his landmark study and has estimated that a helmet can lose\\nup to 80% of it\\'s effectiveness from inner liner compression. I have\\na video he produced that discusses this phenomenon in detail.\\n\\nPuncture compression of the type caused by mirrors, sissy bars, and\\nother relatively sharp objects is the worst offender. Even when the\\ncomfort liner is unaffected, dents and holes in the foam can seriously\\ndegrade the effectiveness of a helmet. If you are in the habit of\\n\"parking your lid\" on the mirrors, I suggest you look under the\\ncomfort liner at the condition of the foam. If it is significantly\\ndamaged (or missing :-), replace the helmet.\\n--\\nJerry Lotto MSFCI, HOGSSC, BCSO, AMA, DoD #18\\nChemistry Dept., Harvard Univ. \"It\\'s my Harley, and I\\'ll ride if I want to...\"\\n',\n", - " 'From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Drinking and Riding\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 30\\n\\nIn article maven@eskimo.com (Norman Hamer) writes:\\n\\n> What is a general rule of thumb for sobriety and cycling? Couple hours after\\n>you \"feel\" sober? What? Or should I just work with \"If I drink tonight, I\\n>don\\'t ride until tomorrow\"?\\n\\nInteresting discussion.\\n\\nI limit myself to *one* \\'standard serving\\' of alcohol if I\\'m\\ngoing to ride. And mostly, unless the alcohol is something\\nspecial (fine ale, good wine, or someone else\\'s vsop), I usually\\njust don\\'t drink *any*.\\n\\nBut then alcohol just isn\\'t really important to me, mainly\\nfor financial reasons...\\n\\nAt least one of the magazines claims to follow the\\naviation guideline of \"no alcohol whatsoever\" within\\n24hrs of riding a \\'company\\' bike.\\n\\nDon\\'t remember which mag though, it was a few years ago.\\n\\nRegards, Charles (hicc.)\\nDoD:0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Though his book was dealing with the Genocide of Muslims by Armenians..\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 45\\n\\nIn article arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>Then repeat everything I said before with the word \"race-related\" \\n>substituted for \"racist\". All that changes is the phrasing; complaining \\n>that I used the wrong word is a quibble.\\n\\nWell, your Armenian grandparents were fascist. As early as 1934, K. S. \\nPapazian asserted in \\'Patriotism Perverted\\' that the Armenians\\n\\n \\'lean toward Fascism and Hitlerism.\\'[1]\\n\\nAt that time, he could not have foreseen that the Armenians would\\nactively assume a pro-German stance and even collaborate in World\\nWar II. His book was dealing with the Armenian genocide of Turkish\\npopulation of eastern Anatolia. However, extreme rightwing ideological\\ntendencies could be observed within the Dashnagtzoutune long before\\nthe outbreak of the Second World War.\\n\\nIn 1936, for example, O. Zarmooni of the \\'Tzeghagrons\\' was quoted\\nin the \\'Hairenik Weekly:\\' \\n\\n\"The race is force: it is treasure. If we follow history we shall \\n see that races, due to their innate force, have created the nations\\n and these have been secure only insofar as they have reverted to\\n the race after becoming a nation. Today Germany and Italy are\\n strong because as nations they live and breath in terms of race.\\n On the other hand, Russia is comparatively weak because she is\\n bereft of social sanctities.\"[2]\\n\\n[1] K. S. Papazian, \\'Patriotism Perverted,\\' (Boston, Baikar Press\\n 1934), Preface.\\n[2] \\'Hairenik Weekly,\\' Friday, April 10, 1936, \\'The Race is our\\n Refuge\\' by O. Zarmooni.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " \"From: dannyb@panix.com (Daniel Burstein)\\nSubject: japanese moon landing?\\nOrganization: PANIX Public Access Unix, NYC\\nLines: 17\\n\\nAfraid I can't give any more info on this.. and hoping someone in greter\\nNETLAND has some details.\\n\\nA short story in the newspaper a few days ago made some sort of mention\\nabout how the Japanese, using what sounded like a gravity assist, had just\\nmanaged to crash (or crash-land) a package on the moon.\\n\\nthe article was very vague and unclear. and, to make matters worse, I\\ndidn't clip it.\\n\\ndoes this jog anyone's memory?\\n\\n\\nthanks\\ndannyb@panix.com\\n\\n\\n\",\n", - " \"From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Fat Boy versus ZX-11 (new math)\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 32\\n\\nIn article <1pimfd$cre@agate.berkeley.edu> robinson@cogsci.Berkeley.EDU (Michael Robinson) writes:\\n>In article klinger@ccu.umanitoba.ca (Jorg Klinger) writes:\\n>>In <1993Apr1.130432.11009@bnr.ca> npet@bnr.ca (Nick Pettefar) writes:\\n>>>Manual Velcro, on the 31 Mar 93 09:19:29 +0200 wibbled:\\n>>>: But 14 is greater than 11, or 180 is greater than 120, or ...\\n>>>No! 10 is the best of all.\\n>>No No No!\\n>> It should be obvious that 8 is the best number by far. Last year 10\\n>>was hot but with the improvements to 8 this year there can be no\\n>>question.\\n>\\n>Hell, my Dad used to have an old 5 that would beat out today's 8 without \\n>breaking a sweat.\\n>\\n>(Well, in the twisties, anyway.)\\n>\\n>This year's 8 is just too cumbersome for practical use in anything other \\n>than repeating decimals.\\n>\\nRemember the good old days, when Hexadecimals, and even Binaries\\nwere still legal? Sure, they smoked a little blue stuff out the\\npipes, but I had a hex 7 that could slaughter any decimal 10 on\\nthe road. Sigh, such nostalgia!\\n\\nRegards, Charles\\nDoD0,001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n\",\n", - " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: some thoughts.\\nOrganization: Technical University Braunschweig, Germany\\nLines: 12\\n\\nIn article \\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n \\n> The arguements he uses I am summing up. The book is about whether\\n>Jesus was God or not. I know many of you don't believe, but listen to a\\n>different perspective for we all have something to gain by listening to what\\n>others have to say.\\n \\nRead the FAQ first, watch the list fr some weeks, and come back then.\\n \\nAnd read some other books on the matter in order to broaden your view first.\\n Benedikt\\n\",\n", - " 'From: ivan@erich.triumf.ca (Ivan D. Reid)\\nSubject: Re: Carrying crutches (was Re: Living\\nOrganization: TRIUMF: Tri-University Meson Facility\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: erich.triumf.ca\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1pqhkl$g48@usenet.INS.CWRU.Edu>,\\n\\t ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes...\\n>\\tWhen I got my knee rebuilt I got back on the street bike ASAP. I put\\n>the crutches on the rack and the passenger seat and they hung out back a\\n>LONG way. Just make sure they\\'re tied down tight in front and no problemo.\\n ^^^^\\n\\tHmm, sounds like a useful trick -- it\\'d keep the local cagers at least\\na crutch-length off my tail-light, which is more than they give me now. But\\ndo I have to break a leg to use it?\\n\\n\\t(When I broke my ankle dirt-biking, I ended up strapping the crutches\\nto the back of the bike & riding to the lab. It was my right ankle, but the\\nbike was a GT380 and started easily by hand.)\\n\\nIvan Reid, Paul Scherrer Institute, CH. \\t\\t\\tivan@cvax.psi.ch\\nGSX600F, RG250WD. \"Beware drainage ditches on firetrails\"\\tDoD #484\\n',\n", - " 'From: cliff@watson.ibm.com (cliff)\\nSubject: Reprints\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM.\\nNntp-Posting-Host: cliff.watson.ibm.com\\nOrganization: A\\nLines: 17\\n\\nI have a few reprints left of chapters from my book \"Visions of the \\nFuture\". These include reprints of 3 chapters probably of interest to \\nreaders of this forum, including: \\n \\n1. Current Techniques and Development of Computer Art, by Franz Szabo \\n \\n2. Forging a Career as a Sculptor from a Career as Computer Programmer, \\nby Stewart Dickson \\n \\n3. Fractals and Genetics in the Future by H. Joel Jeffrey \\n \\nI\\'d be happy to send out free reprints to researchers for scholarly \\npurposes, until the reprints run out. \\n \\nJust send me your name and address. \\n \\nThanks, Cliff cliff@watson.ibm.com \\n',\n", - " \"From: friedenb@silver.egr.msu.edu (Gedaliah Friedenberg)\\nSubject: Re: Zionism is Racism\\nOrganization: College of Engineering, Michigan State University\\nLines: 26\\nDistribution: world\\nReply-To: friedenb@silver.egr.msu.edu (Gedaliah Friedenberg)\\nNNTP-Posting-Host: silver.egr.msu.edu\\n\\nIn article <20APR93.23565659.0109@VM1.MCGILL.CA>, B8HA000 writes:\\n|> In Re:Syria's Expansion, the author writes that the UN thought\\n|> Zionism was Racism and that they were wrong. They were correct\\n|> the first time, Zionism is Racism and thankfully, the McGill Daily\\n|> (the student newspaper at McGill) was proud enough to print an article\\n|> saying so. If you want a copy, send me mail.\\n\\nIf you want info claiming that blacks were brought to earth 60 trillion\\nyears ago by Aliens from the plante Shabazz, I can send you literature from\\nthe Nation of Islam (Farrakhan's group) who believe this.\\n\\nIf you want info claiming that the Holocaust never happened, I can send you\\ninfo from IHR (Institute for Historical Review - David Irving's group), or\\njust read Dan Gannon's posts on alt.revisionism.\\n\\nI just wanted to put Steve's post in with the company that it deserves.\\n\\n|> Steve\\n\\nGedaliah Friedenberg\\n-=-Department of Mechanical Engineering\\n-=-Department of Metallurgy, Mechanics and Materials Science\\n-=-Michigan State University\\n\\n\\n \\n\",\n", - " 'From: bandy@catnip.berkeley.ca.us (Andrew Scott Beals -- KC6SSS)\\nSubject: Re: Your opinion and what it means to me.\\nOrganization: The San Jose, California, Home for Perverted Hackers\\nLines: 10\\n\\ninfante@acpub.duke.edu (Andrew Infante) writes:\\n\\n>Since the occurance, I\\'ve paid many\\n>dollars in renumerance, taken the drunk class, \\n>and, yes, listened to all the self-righteous\\n>assholes like yourself that think your SO above the\\n>rest of the world because you\\'ve never had your\\n>own little DD suaree.\\n\\n\"The devil made me do it!\"\\n',\n", - " \"From: rwf2@ns1.cc.lehigh.edu (ROBERT WILLIAM FUSI)\\nSubject: Bike advice\\nOrganization: Lehigh University\\nLines: 11\\n\\nI have an '89 Kawasaki KX 80. It is in mint condition and starts on the first\\nkick EVERY time. I have outgrown the bike, and am considering selling it. I\\nwas told I should ask around $900. Does that sound right or should it be\\nhigher/lower?\\n Also, I am looking for a used ZX-7. How much do I have to spend, and what\\nyear should I look for to get a bike without paying an arm and a leg????\\n Thanks for the help!\\n\\n Rob Fusi\\n rwf2@lehigh.edu\\n-- \\n\",\n", - " 'From: randy@megatek.com (Randy Davis)\\nSubject: Re: A Miracle in California\\nArticle-I.D.: megatek.1993Apr5.223941.11539\\nReply-To: randy@megatek.com\\nOrganization: Megatek Corporation, San Diego, California\\nLines: 15\\n\\nIn article <1ppvof$92a@seven-up.East.Sun.COM> egreen@East.Sun.COM writes:\\n|Bikers wave to bikers the world over. Whether or not Harley riders\\n|wave to other bikers is one of our favorite flame wars...\\n\\n I am happy to say that some Harley riders in our area are better than most\\nthat are flamed about here: I (riding a lowly sport bike, no less) and my\\ngirlfriend were the recipient of no less than twenty waves from a group of\\nat least twenty-five Harley riders. I was leading a group of about four\\nsport bikes at the time (FJ1200/CBR900RR/VFR750). I initiated *some* of the\\nwaves, but not all. It was a perfect day, and friendly riders despite some\\nbrand differences made it all the better...\\n\\nRandy Davis Email: randy@megatek.com\\nZX-11 #00072 Pilot {uunet!ucsd}!megatek!randy\\nDoD #0013\\n',\n", - " 'From: jamshid@cgl.ucsf.edu (J. Naghizadeh)\\nSubject: PR Campaign Against Iran (PBS Frontline)\\nOrganization: Computer Graphics Laboratory, UCSF\\nLines: 51\\nOriginator: jamshid@socrates.ucsf.edu\\n\\nThere have been a number of articles on the PBS frontline program\\nabout Iranian bomb. Here is my $0.02 on this and related subjects.\\n\\nOne is curious to know the real reasons behind this and related\\npublic relations campaign about Iran in recent months. These include:\\n\\n1) Attempts to implicate Iran in the bombing of the New York Trade\\n Center. Despite great efforts in this direction they have not\\n succeeded in this. They, however, have indirectly created\\n the impression that Iran is behind the rise of fundamentalist\\n Islamic movements and thus are indirectly implicated in this matter.\\n\\n2) Public statements by the Secretary of State Christoffer and\\n other official sources regarding Iran being a terrorist and\\n outlaw state.\\n\\n3) And finally the recent broadcast of the Frontline program. I \\n suspect that this PR campaign against Iran will continue and\\n perhaps intensify.\\n\\nWhy this increased pressure on Iran? A number of factors may have\\nbeen behind this. These include:\\n\\n1) The rise of Islamic movements in North-Africa and radical\\n Hamas movement in the Israeli occupied territories. This\\n movement is basically anti-western and is not necessarily\\n fueled by Iran. The cause for accelerated pace of this \\n movement is probably the Gulf War which sought to return\\n colonial Shieks and Amirs to their throne in the name of\\n democracy and freedom. Also, the obvious support of Algerian\\n military coup against the democratically elected Algerian\\n Islamic Front which clearly exposed the democracy myth.\\n A further cause of this may be the daily broadcast of the news\\n on the slaughter of Bosnian Moslems.\\n\\n2) Possible future implications of this movement in Saudi Arabia\\n and other US client states and endangerment of the cheap oil\\n sources from this region.\\n\\n3) A need to create an enemy as an excuse for huge defense\\n expenditures. This has become necessary after the demise of\\n Soveit Union.\\n\\nThe recent PR campaign against Iran, however, seems to be directed\\nfrom Israel rather than Washington. There is no fundamental conflict\\nof interest between Iran and the US and in my opinion, it is in the\\ninterest of both countries to affect reestablishment of normal\\nand friendly relations. This may have a moderating effect on the\\nrise of radical movements within the Islamic world and Iran .\\n\\n--jamshid\\n',\n", - " \"From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: Reasons : was Re: was: Go Hezbollah!!\\nOrganization: Unocal Corporation\\nLines: 35\\n\\n\\n\\nHossien Amehdi writes:\\n\\n>I am not in the business of reading minds, however in this case it would not\\n>be necessary. Israelis top leaders in the past and present, always come across\\n>as arrogant with their tough talks trying to intimidate the Arabs. \\n\\n>The way I see it, Israelis and Arabs have not been able to achieve peace\\n>after almost 50 years of fighting because of the following two major reasons:.\\n\\n> 1) Arab governments are not really representative of their people, currently\\n > most of their leaders are stupid, and/or not independent, and/or\\n> dictators.\\n\\n> 2) Israeli government is arrogant and none comprising.\\n\\n\\n\\nIt's not relevant whether I agree with you or not, there is some reasonable\\nthought in what you say here an I appreciate your point. However, I would make 2\\nremarks: \\n\\n - you forgot about hate, and this is not only at government level.\\n - It's not only 'arab' governments.\\n\\nNow, about taugh talk and arrogance, we are adults, aren't we ? Do you listen \\nto tough talk of american politicians ? or switch the channel ? \\nI would rather be 'intimidated' by some dummy 'talking tough' then by a \\nbomb ready to blow under my seat in B747.\\n\\n\\n\\nDorin\\n\\n\",\n", - " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Portuguese Launch Complex (was:*Doppelganger*)\\nOrganization: NASA Langley Research Center\\nLines: 14\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\n> Portugese launch complex were *wonderful\\n\\nPortuguese launch complex??? Gosh.... Polish are for American in the \\nsame way as Portuguese are for Brazilians (I am from Brazil). There is \\na joke about the Portuguese Space Agency that wanted to send a \\nPortuguese astronaut to the surface of the Sun (if there is such a thing).\\nHow did they solve all problems of sending a man to the surface of the \\nSun??? Simple... their astronauts travelled during the night...\\n\\n C.O.EGALON@LARC.NASA.GOV\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", - " 'From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: Yeah, Right\\nOrganization: Technical University Braunschweig, Germany\\nLines: 54\\n\\nIn article <66014@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n>>And what about that revelation thing, Charley?\\n>\\n>If you\\'re talking about this intellectual engagement of revelation, well,\\n>it\\'s obviously a risk one takes.\\n>\\n \\nI see, it is not rational, but it is intellectual. Does madness qualify\\nas intellectual engagement, too?\\n \\n \\n>>Many people say that the concept of metaphysical and religious knowledge\\n>>is contradictive.\\n>\\n>I\\'m not an objectivist, so I\\'m not particularly impressed with problems of\\n>conceptualization. The problem in this case is at least as bad as that of\\n>trying to explain quantum mechanics and relativity in the terms of ordinary\\n>experience. One can get some rough understanding, but the language is, from\\n>the perspective of ordinary phenomena, inconsistent, and from the\\n>perspective of what\\'s being described, rather inexact (to be charitable).\\n>\\n \\nExactly why science uses mathematics. QM representation in natural language\\nis not supposed to replace the elaborate representation in mathematical\\nterminology. Nor is it supposed to be the truth, as opposed to the\\nrepresentation of gods or religions in ordinary language. Admittedly,\\nnot every religion says so, but a fancy side effect of their inept\\nrepresentations are the eternal hassles between religions.\\n \\nAnd QM allows for making experiments that will lead to results that will\\nbe agreed upon as being similar. Show me something similar in religion.\\n \\n \\n>An analogous situation (supposedly) obtains in metaphysics; the problem is\\n>that the \"better\" descriptive language is not available.\\n>\\n \\nWith the effect that the models presented are useless. And one can argue\\nthat the other way around, namely that the only reason metaphysics still\\nflourish is because it makes no statements that can be verified or falsified -\\nshowing that it is bogus.\\n \\n \\n>>And in case it holds reliable information, can you show how you establish\\n>>that?\\n>\\n>This word \"reliable\" is essentially meaningless in the context-- unless you\\n>can show how reliability can be determined.\\n \\nHaven\\'t you read the many posts about what reliability is and how it can\\nbe acheived respectively determined?\\n Benedikt\\n',\n", - " 'From: Center for Policy Research \\nSubject: conf:mideast.levant\\nNf-ID: #N:cdp:1483500358:000:1967\\nNf-From: cdp.UUCP!cpr Apr 24 14:55:00 1993\\nLines: 47\\n\\n\\nFrom: Center for Policy Research \\nSubject: conf:mideast.levant\\n\\n\\nRights of children violated by the State of Israel (selected\\narticles of the IV Geneva Convention of 1949)\\n-------------------------------------------------------------\\nArticle 31: No physical or moral coercion shall be exercised\\nagainst protected persons, in particular to obtain information\\nfrom them or from third parties.\\n\\nArticle 32: The High Contracting Parties specifically agree that\\neach of them is prohibited from taking any measure of such a\\ncharacter as to cause the physical suffering or extermination of\\nprotected persons in their hands. This prohibition applies not\\nonly to murder, torture, corporal punishment (...) but also to any\\nother measures of brutality whether applied by civilian or\\nmilitary agents.\\n\\nArticle 33: No protected person may be punished for an offence he\\nor she has not personally committed. Collective penalties and\\nlikewise measures of intimidation or of terrorism are prohibited.\\n\\nArticle 34: Taking of hostages is prohibited.\\n\\nArticle 49: Individual or mass forcible transfers, as well as\\ndeportations of protected persons from occupied territory to the\\nterritory of the Occupying Power or to that of any other country,\\noccupied or not, are prohibited, regardless of their motive.\\n\\nArticle 50: The Occupying Power shall, with the cooperation of\\nthe national and local authorities, facilitate the proper working\\nof all institutions devoted to the care and education of\\nchildren.\\n\\nArticle 53: Any destruction by the Occupying Power of real or\\npersonal property belonging individually or collectively to\\nprivate persons, or to the State, or to other public authorities,\\nor to social or cooperative organizations, is prohibited, except\\nwhere such destruction is rendered absolutely necessary by\\nmilitary operations.\\n\\nPS: It is obvious that violations of the above articles are also\\nviolations of the International Convention of the Rights of the\\nChild.\\n\\n',\n", - " 'From: twpierce@unix.amherst.edu (Tim Pierce)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nArticle-I.D.: unix.C52Cw7.I6t\\nOrganization: Blasny Blasny, Consolidated (Amherst, MA Offices)\\nLines: 37\\n\\nIn article <1993Apr6.041343.24997@cbnewsl.cb.att.com> stank@cbnewsl.cb.att.com (Stan Krieger) writes:\\n\\n>Roger and I have\\n>clearly stated our support of the BSA position on the issue;\\n>specifically, that homosexual behavior constitutes a violation of\\n>the Scout Oath (specifically, the promise to live \"morally straight\").\\n>\\n>There is really nothing else to discuss.\\n\\nApparently not.\\n\\nIn response to his claim that it \"terrifies\" gay people not to be able\\nto \"indoctrinate children to our lifestyle\" (or words to that effect),\\nI sent Roger a very calm, carefully-written, detailed letter\\nexplaining simply why the BSA policy does, indeed terrify me. I did\\nnot use inflammatory language and left myself extremely open for an\\nanswer. Thus far, I have not received an answer. I can conclude only\\nthat Roger considers his position either indefensible or simply not\\nworth defending.\\n\\n>Trying to cloud the issue\\n>with comparisons to Blacks or other minorities is also meaningless\\n>because it\\'s like comparing apples to oranges (i.e., people can\\'t\\n>control their race but they can control their behavior).\\n\\nIn fact, that\\'s exactly the point: people can control their behavior.\\nBecause of that fact, there is no need for a blanket ban on\\nhomosexuals.\\n\\n>What else is there to possibly discuss on rec.scouting on this issue?\\n\\nYou tell me.\\n\\n-- \\n____ Tim Pierce / ?Usted es la de la tele, eh? !La madre\\n\\\\ / twpierce@unix.amherst.edu / del asesino! !Ay, que graciosa!\\n \\\\/ (BITnet: TWPIERCE@AMHERST) / -- Pedro Almodovar\\n',\n", - " 'From: crash@ckctpa.UUCP (Frank \"Crash\" Edwards)\\nSubject: Re: forms for curses\\nReply-To: crash%ckctpa@myrddin.sybus.com (Frank \"Crash\" Edwards)\\nOrganization: Edwards & Edwards Consulting\\nLines: 40\\n\\nNote the Followup-To: header ...\\n\\nsteelem@rintintin.Colorado.EDU (STEELE MARK A) writes:\\n>Is there a collection of forms routines that can be used with curses?\\n>If so where is it located?\\n\\nOn my SVR4 Amiga Unix box, I\\'ve got -lform, -lmenu, and -lpanel for\\nuse with the curses library. Guess what they provide? :-)\\n\\nUnix Press, ie. Prentice-Hall, has a programmer\\'s guide for these\\ntools, referred to as the FMLI (Forms Mgmt Language Interface) and\\nETI (Extended Terminal Interface), now in it\\'s 2nd edition. It is\\nISBN 0-13-020637-7.\\n\\nParaphrased from the outside back cover:\\n\\n FMLI is a high-level programming tool for creating menus, forms,\\n and text frames. ETI is a set of screen management library\\n subroutines that promote fast development of application programs\\n for window, panel, menu, and form manipulation.\\n\\nThe FMLI is a shell package which reads ascii text files and produces\\nscreen displays for data entry and presentation. It consists of a\\n\"shell-like\" environment of the \"fmli\" program and it\\'s database\\nfiles. It is section 1F in the Unix Press manual.\\n\\nThe ETI are subroutines, part of the 3X manual section, provide\\nsupport for a multi-window capability on an ordinary ascii terminal\\nwith controls built on top of the curses library.\\n\\n>Thanks\\n>-Mark Steele\\n>steelem@rintintin.colorado.edu\\n\\n-- \\nFrank \"Crash\" Edwards Edwards & Edwards Consulting\\nVoice: 813/786-3675 crash%ckctpa@myrddin.sybus.com, but please\\nData: 813/787-3675 don\\'t ask UUNET to route it -- it\\'s sloooow.\\n There will be times in life when everyone you meet smiles and pats you on\\n the back and tells you how great you are ... so hold on to your wallet.\\n',\n", - " \"From: ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky)\\nSubject: Go Hizbollah II!\\nLines: 28\\nNntp-Posting-Host: purple.cc.utexas.edu\\nOrganization: University of Texas @ Austin\\nLines: 28\\n\\n\\nFrom Israel Line, Thursday, April 22, 1993:\\n \\nToday's HA'ARETZ reports that three women were injured when a\\nKatyusha rocket fell in the center of their community. The rocket\\nwas one of several dozen fired at the communities of the Galilee in\\nnorthern Israel yesterday by the terrorist Hizbullah organization [...] \\n\\n\\nIn article <1993Apr14.125813.21737@ncsu.edu> hernlem@chess.ncsu.edu \\n(Brad Hernlem) wrote:\\n\\nCongratulations to the brave men of the Lebanese resistance! With every\\nIsraeli son that you place in the grave you are underlining the moral\\nbankruptcy of Israel's occupation and drawing attention to the Israeli\\ngovernment's policy of reckless disregard for civilian life.\\n\\n\\n\\tApparently, the Hizbollah were encouraged by Brad's cheers\\n\\t(good job, Brad). Someone forgot to tell them, though, that \\n\\tBrad asks them to place only Israeli _sons_ in the grave, \\n\\tnot daughters. Paraphrasing a bit, with every rocket that \\n\\tthe Hizbollah fires on the Galilee, they justify Israel's \\n\\tholding to the security zone. \\n\\nNoam\\n \\n \\n\",\n", - " \"From: SHICKLEY@VM.TEMPLE.EDU\\nSubject: For Sale (sigh)\\nOrganization: Temple University\\nLines: 34\\nNntp-Posting-Host: vm.temple.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\n\\n FOR SALE (RELUCTANTLY)\\n ---- Classic Bike -----\\n 1972 YAMAHA XS-2 650 TWIN\\n \\n<6000 Original miles. Always stored inside. 1979 front end with\\naftermarket tapered steering head bearings. Racer's supply rear\\nbronze swingarm bushings, Tsubaki chain, Pirrhana 1/4 fairing\\nwith headlight cutout, one-up Carrera racing seat, superbike bars,\\nvelo stacks on twin carbs. Also have original seat. Tank is original\\ncherry/white paint with no scratches, dents or dings. Needs a\\nnew exhaust as original finally rusted through and was discarded.\\nI was in process of making Kenney Roberts TT replica/ cafe racer\\nwhen graduate school, marriage, child precluded further effort.\\nWife would love me to unload it. It does need re-assembly, but\\nI think everything is there. I'll also throw in manuals, receipts,\\nand a collection of XS650 Society newsletters and relevant mag\\narticles. Great fun, CLASSIC bike with over 2K invested. Will\\nconsider reasonable offers.\\n___________________________________________________________________________\\n \\nTimothy J. Shickley, Ph.D. Director, Neurourology\\nDepartments of Urology and Anatomy/Cell Biology\\nTemple University School of Medicine\\n3400 North Broad St.\\nPhiladelphia, PA 19140\\n(voice/data) 215-221-8966; (voice) 21-221-4567; (fax) 21-221-4565\\nINTERNET: shickley@vm.temple.edu BITNET: shickley@templevm.bitnet\\nICBM: 39 57 08N\\n 75 09 51W\\n_________________________________________________________________________\\n \\n \\nw\\n\",\n", - " 'From: pearson@tsd.arlut.utexas.edu (N. Shirlene Pearson)\\nSubject: Re: Sunrise/ sunset times\\nNntp-Posting-Host: wren\\nOrganization: Applied Research Labs, University of Texas at Austin\\nLines: 13\\n\\njpw@cbis.ece.drexel.edu (Joseph Wetstein) writes:\\n\\n\\n>Hello. I am looking for a program (or algorithm) that can be used\\n>to compute sunrise and sunset times.\\n\\nWould you mind posting the responses you get?\\nI am also interested, and there may be others.\\n\\nThanks,\\n\\nN. Shirlene Pearson\\npearson@titan.tsd.arlut.utexas.edu\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: For JOHS@dhhalden.no (3) - Last \\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 37\\n\\nPete Young, on the Tue, 20 Apr 93 08:29:21 GMT wibbled:\\n: Nick Pettefar (npet@bnr.ca) wrote:\\n\\n: : Tsk, tsk, tsk. Another newbie bites the dust, eh? They\\'ll learn.\\n\\n: Newbie. Sorry to disappoint you, but as far as the Internet goes I was\\n: in Baghdad while you were still in your dads bag.\\nIs this bit funny?\\n\\n: Most of the people who made this group interesting 3 or 4 years ago\\n: are no longer around and I only have time to make a random sweep\\n: once a week or so. Hence I missed most of this thread. \\nI\\'m terribly sorry.\\n\\n: Based on your previous postings, apparently devoid of humour, sarcasm,\\n: wit, or the apparent capacity to walk and chew gum at the same time, I\\n: assumed you were serious. Mea culpa.\\nI know, I know. Subtlety is sort of, you know, subtle, isn\\'t it.\\n\\n: Still, it\\'s nice to see that BNR are doing so well that they can afford\\n: to overpay some contractors to sit and read news all day.\\nThat\\'s foreign firms for you.\\n\\n\\n..and a touchy newbie, at that.\\n\\nWhat\\'s the matter, too much starch in the undies?\\n--\\n\\nNick (the Considerate Biker) DoD 1069 Concise Oxford None Gum-Chewer\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n (-\\n',\n", - " 'From: ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck)\\nSubject: Re: detecting double points in bezier curves\\nOrganization: My own node in Groningen, NL.\\nLines: 34\\n\\nrenner@adobe.com (John Renner) writes:\\n\\n> In article <19930420.090030.915@almaden.ibm.com> capelli@vnet.IBM.COM (Ron Ca\\n> >In Ferdinand Oeinck writes:\\n> >>I\\'m looking for any information on detecting and/or calculating a double\\n> >>point and/or cusp in a bezier curve.\\n> >\\n> >See:\\n> > Maureen Stone and Tony DeRose,\\n> > \"A Geometric Characterization of Parametric Cubic Curves\",\\n> > ACM TOG, vol 8, no 3, July 1989, pp. 147-163.\\n> \\n> I\\'ve used that reference, and found that I needed to go to their\\n> original tech report:\\n> \\n> \\tMaureen Stone and Tony DeRose,\\n> \\t\"Characterizing Cubic Bezier Curves\"\\n> \\tXerox EDL-88-8, December 1988\\n> \\n\\nFirst, thanks to all who replied to my original question.\\n\\nI\\'ve implemented the ideas from the article above and I\\'m very satisfied\\nwith the results. I needed it for my bezier curve approximation routine.\\nIn some cases (generating offset curves) loops can occur. I now have a\\nfast method of detecting the generation of a curve with a loop. Although\\nI did not follow the article above strictly. The check if the fourth control\\npoint lies in the the loop area, which is bounded by two parabolas and\\none ellips is too complicated. Instead I enlarged the loop-area and\\nsurrounded it by for straight lines. The check is now simple and fast and\\nmy approximation routine never ever outputs self-intersecting bezier curves\\nagain!\\nFerdinand.\\n\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: U of Toronto Zoology\\nLines: 10\\n\\nIn article <23APR199317452695@tm0006.lerc.nasa.gov> dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock) writes:\\n> - Man-Tended Capability (Griffin has not yet adopted non-sexist\\n> language) ...\\n\\nGlad to see Griffin is spending his time on engineering rather than on\\nritual purification of the language. Pity he got stuck with the turkey\\nrather than one of the sensible options.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: backon@vms.huji.ac.il\\nSubject: Re: From Israeli press. Madness.\\nDistribution: world\\nOrganization: The Hebrew University of Jerusalem\\nLines: 165\\n\\nIn article <1483500342@igc.apc.org>, Center for Policy Research writes:\\n>\\n> From: Center for Policy Research \\n> Subject: From Israeli press. Madness.\\n>\\n> /* Written 4:34 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n> /* ---------- \"From Israeli press. Madness.\" ---------- */\\n> FROM THE ISRAELI PRESS.\\n>\\n> Paper: Zman Tel Aviv (Tel Aviv\\'s time). Friday local Tel Aviv\\'s\\n> paper, affiliated with Maariv.\\n>\\n> Date: 19 February 1993\\n>\\n> Journalist: Guy Ehrlich\\n>\\n> Subject: Interview with soldiers who served in the Duvdevan\\n> (Cherry) units, which disguise themselves as Arabs and operate\\n> within the occupied territories.\\n>\\n> Excerpts from the article:\\n>\\n> \"A lot has been written about the units who disguise themselves as\\n> Arabs, things good and bad, some of the falsehoods. But the most\\n> important problem of those units has been hardly dealt with. It is\\n> that everyone who serves in the Cherry, after a time goes in one\\n> way or another insane\".\\n\\n\\nGee, I\\'d better tell this to the Mental Health Branch of the Israeli Army\\nMedical Corps ! Where would we be without you, Davidson ?\\n\\n\\n\\n\\n\\n>\\n> A man who said this, who will here be called Danny (his full name\\n> is known to the editors) served in the Cherry. After his discharge\\n> from the army he works as delivery boy. His pal, who will here be\\n> called Dudu was also serving in the Cherry, and is now about to\\n> depart for a round-the-world tour. They both look no different\\n> from average Israeli youngsters freshly discharged from conscript\\n> service. But in their souls, one can notice something completely\\n> different....It was not easy for them to come out with disclosures\\n> about what happened to them. And they think that to most of their\\n> fellows from the Cherry it woundn\\'t be easy either. Yet after they\\n> began to talk, it was nearly impossible to make them stop talking.\\n> The following article will contain all the horror stories\\n> recounted with an appalling openness.\\n>\\n> (...) A short time ago I was in command of a veteran team, in\\n> which some of the fellows applied for release from the Cherry. We\\n> called such soldiers H.I. \\'Hit by the Intifada\\'. Under my command\\n> was a soldier who talked to himself non-stop, which is a common\\n> phenomenon in the Cherry. I sent him to a psychiatrist. But why I\\n> should talk about others when I myself feel quite insane ? On\\n> Fridays, when I come home, my parents know I cannot be talked to\\n> until I go to the beach, surf a little, calm down and return. The\\n> keys of my father\\'s car must be ready for in advance, so that I\\n> can go there. I they dare talk to me before, or whenever I don\\'t\\n> want them to talk to me, I just grab a chair and smash it\\n> instantly. I know it is my nerve: Smashing chairs all the time\\n> and then running away from home, to the car and to the beach. Only\\n> there I become normal.(...)\\n>\\n> (...) Another friday I was eating a lunch prepared by my mother.\\n> It was an omelette of sorts. She took the risk of sitting next to\\n> me and talking to me. I then told my mother about an event which\\n> was still fresh in my mind. I told her how I shot an Arab, and how\\n> exactly his wound looked like when I went to inspect it. She began\\n> to laugh hysterically. I wanted her to cry, and she dared laugh\\n> straight in my face instead ! So I told her how my pal had made a\\n> mincemeat of the two Arabs who were preparing the Molotov\\n> cocktails. He shot them down, hitting them beautifully, exactly as\\n> they deserved. One bullet had set a Molotov cocktail on fire, with\\n> the effect that the Arab was burning all over, just beautifully. I\\n> was delighted to see it. My pal fired three bullets, two at the\\n> Arab with the Molotov cocktail, and the third at his chum. It hit\\n> him straight in his ass. We both felt that we\\'d pulled off\\n> something.\\n>\\n> Next I told my mother how another pal of mine split open the guts\\n> in the belly of another Arab and how all of us ran toward that\\n> spot to take a look. I reached the spot first. And then that Arab,\\n> blood gushing forth from his body, spits at me. I yelled: \\'Shut\\n> up\\' and he dared talk back to me in Hebrew! So I just laughed\\n> straight in his face. I am usually laughing when I stare at\\n> something convulsing right before my eyes. Then I told him: \\'All\\n> right, wait a moment\\'. I left him in order to take a look at\\n> another wounded Arab. I asked a soldier if that Arab could be\\n> saved, if the bleeding from his artery could be stopped with the\\n> help of a stone of something else like that. I keep telling all\\n> this to my mother, with details, and she keeps laughing straight\\n> into my face. This infuriated me. I got very angry, because I felt\\n> I was becoming mad. So I stopped eating, seized the plate with he\\n> omelette and some trimmings still on, and at once threw it over\\n> her head. Only then she stopped laughing. At first she didn\\'t know\\n> what to say.\\n>\\n> (...) But I must tell you of a still other madness which falls\\n> upon us frequently. I went with a friend to practice shooting on a\\n> field. A gull appeared right in the middle of the field. My friend\\n> shot it at once. Then we noticed four deer standing high up on the\\n\\n\\nSigh.\\n\\nFour (4) deer in Tel Aviv ?? Well, this is probably as accurate as the rest of\\nthis fantasy.\\n\\n\\n\\n\\n\\n> hill above us. My friend at once aimed at one of them and shot it.\\n> We enjoyed the sight of it falling down the rock. We shot down two\\n> deer more and went to take a look. When we climbed the rocks we\\n> saw a young deer, badly wounded by our bullet, but still trying to\\n> such some milk from its already dead mother. We carefully\\n> inspected two paths, covered by blood and chunks of torn flesh of\\n> the two deer we had hit. We were just delighted by that sight. We\\n> had hit\\'em so good ! Then we decided to kill the young deer too,\\n> so as spare it further suffering. I approached, took out my\\n> revolver and shot him in the head several times from a very short\\n> distance. When you shoot straight at the head you actually see the\\n> bullets sinking in. But my fifth bullet made its brains fall\\n> outside onto the ground, with the effect of splattering lots of\\n> blood straight on us. This made us feel cured of the spurt of our\\n> madness. Standing there soaked with blood, we felt we were like\\n> beasts of prey. We couldn\\'t explain what had happened to us. We\\n> were almost in tears while walking down from that hill, and we\\n> felt the whole day very badly.\\n>\\n> (...) We always go back to places we carried out assignments in.\\n> This is why we can see them. When you see a guy you disabled, may\\n> be for the rest of his life, you feel you got power. You feel\\n> Godlike of sorts.\"\\n>\\n> (...) Both Danny and Dudu contemplate at least at this moment\\n> studying the acting. Dudu is not willing to work in any\\n> security-linked occupation. Danny feels the exact opposite. \\'Why\\n> shouldn\\'t I take advantage of the skills I have mastered so well ?\\n> Why shouldn\\'t I earn $3.000 for each chopped head I would deliver\\n> while being a mercenary in South Africa ? This kind of job suits\\n> me perfectly. I have no human emotions any more. If I get a\\n> reasonable salary I will have no problem to board a plane to\\n> Bosnia in order to fight there.\"\\n>\\n> Transl. by Israel Shahak.\\n>\\n\\nYisrael Shahak the crackpot chemist ? Figures. I often see him in the\\nRechavia (Jerusalem) post office. A really sad figure. Actually, I feel sorry\\nfor him. He was in a concentration camp during the Holocaust and it must have\\naffected him deeply.\\n\\n\\n\\n\\nJosh\\nbackon@VMS.HUJI.AC.IL\\n\\n\\n\\n',\n", - " 'From: un034214@wvnvms.wvnet.edu\\nSubject: M-MOTION VIDEO CARD: YUV to RGB ?\\nOrganization: West Virginia Network for Educational Telecomputing\\nLines: 21\\n\\nI am trying to convert an m-motion (IBM) video file format YUV to RGB \\ndata...\\n\\nTHE Y portion is a byte from 0-255\\nTHE V is a byte -127-127\\nTHe color is U and V\\nand the intensity is Y\\n\\nDOes anyone have any ideas for algorhtyms or programs ?\\n\\nCan someone tell me where to get info on the U and V of a television signal ?\\n\\nIF you need more info reply at the e-mail address...\\nBasically what I am doing is converting a digital NTSC format to RGB (VGA)\\nfor displaying captured video pictures.\\n\\nThanks.\\n\\n\\nTHE U is a byte -127-127\\n\\n',\n", - " \"From: sherry@a.cs.okstate.edu (SHERRY ROBERT MICH)\\nSubject: Re: .SCF files, help needed\\nOrganization: Oklahoma State University\\nLines: 27\\n\\nFrom article <1993Apr21.013846.1374@cx5.com>, by tlc@cx5.com:\\n> \\n> \\n> I've got an old demo disk that I need to view. It was made using RIX Softworks. \\n> The files on the two diskette set end with: .scf\\n> \\n> The demo was VGA resolution (256 colors), but I don't know the spatial \\n> resolution.\\n> \\n\\nAccording to my ColoRIX manual .SCF files are 640x480x256\\n\\n> First problem: When I try to run the demo, the screen has two black bars that \\n> cut across (horizontally) the screen, in the top third and bottom third of the \\n> screen. The bars are about 1-inch wide. Other than this, the demo (the \\n> animation part) seems to be running fine.\\n> \\n> Second problem: I can't find any graphics program that will open and display \\n> these files. I have a couple of image conversion programs, none mention .scf \\n> files.\\n> \\n\\nYou may try VPIC, I think it handles the 256 color RIX files OK..\\n\\n\\nRob Sherry\\nsherry@a.cs.okstate.edu\\n\",\n", - " \"From: nick@sfb256.iam.uni-bonn.de ( Nikan B Firoozye )\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Applied Math, University of Bonn, Germany\\nLines: 15\\n\\nA related question (which I haven't given that much serious thought \\nto): at what lattitude is the average length of the day (averaged \\nover the whole year) maximized? Is this function a constant=\\n12 hours? Is it truly symmetric about the equator? Or is\\nthere some discrepancy due to the fact that the orbit is elliptic\\n(or maybe the difference is enough to change the temperature and\\nmake the seasons in the southern hemisphere more bitter, but\\nis far too small to make a sizeable difference in daylight\\nhours)?\\n\\nI want to know where to move.\\n\\n\\t-Nick Firoozye\\n\\tnick@sfb256.iam.uni-bonn.de\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Given the massacre of the Muslim population of Karabag by Armenians...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nLines: 124\\n\\nIn article <1993Apr19.155856.8260@kpc.com> henrik@quayle.kpc.com writes:\\n\\n>Let me clearify Mr. Turkish;\\n>ARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that \\n>SHE WILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\n>tricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\n>CYPRESS WHILE the world simply WATCHED. \\n\\nAnd the \\'Turkish Karabag\\' is next. As for \\'Cyprus\\', In 1974, Turkiye \\nstepped into Cyprus to preserve the lives of the Turkish population \\nthere. This is nothing but a simple historical fact. Unfortunately, \\nthe intervention was too late at least for some of the victims. Mass \\ngraves containing numerous bodies of women and children already showed \\nwhat fate had been planned for a peaceful minority.\\n\\nThe problems in Cyprus have their origin in decades of \\noppression of the Turkish population by the Greek Cypriot \\nofficials and their violation of the co-founder status of \\nthe Turks set out in the constitution. The coup d\\'etat \\nengineered by Greece in 1974 to execute a final solution \\nto the Turkish problem was the savage blow that invoked \\nTurkiye\\'s intervention. Turkiye intervened reluctantly and \\nonly as a last resort after exhausting all other avenues \\nconsulting with Britain and Greece as the other two signatories \\nto the treaty to protect the integrity of Cyprus. There simply \\nwas not any expansionist motivation in the Turkish action at \\nall. This is in dramatic contrast to the Greek motivation which \\nwas openly expansionist, stated as \\'Enosis,\\' union with Greece. \\nSince the creation of independent Cyprus in 1960, the Turkish \\npopulation, although smaller, legally had status as the co-founder\\nof the republic with the Greek population.\\n\\nThe Greek Cypriots, with the support of \\'Enosis\\'-minded\\nGreeks in the mainland, have consistently ignored that\\nstatus and portrayed the Island as a Greek island with\\na minority population of Turks. The Turks of Cyprus are\\nnot a minority in a Greek Republic and they found the\\nonly way they could show that was to assert their \\nautonomy in a separate republic.\\n\\nTurkiye is not satisfied with the status quo. She would\\nrather not be involved with the island. But, given the\\ndismal record of brutal Greek oppression of the Turkish\\npopulation in Cyprus, she simply cannot leave the fate\\nof the island\\'s Turks in the hands of the Greeks until\\nthe Turkish side is satisfied with whatever accord\\nthe two communities finally reach to guarantee that\\nhistory will not repeat itself to rob Turkish Cypriots\\nof their rights, liberties and their very lives.\\n\\n\\n Source: \\'Cyprus: The Tale Of An Island,\\' A. H. Rizvi, p. 42\\n\\n 21-12-1963 Throughout Cyprus\\n \"Following the Greek Cypriot premeditated onslaught of 21 December,\\n 1963, the Turkish Sectors all over Cyprus were completely besieged\\n by Greeks; all telephonic, telegraphic and postal communications\\n between these sectors were cut off and the Turkish Cypriot\\n Community\\'s contact with each other and with the outside world\\n was thus prevented.\"\\n\\n 21-12-63 -- 31-12-63 Turkish Quarter of Nicosia and suburbs\\n \"Greek Cypriot armed elements broke into hundreds of Turkish\\n homes and fired at the unarmed occupants with automatic\\n weapons killing at random many Turks, including women, children\\n and elderly persons (51 Turks were killed and 82 wounded). They\\n also carried away as hostages more than 700 Turks, including\\n women and children, whom they forced to walk bare-footed and\\n in night-dresses across rough fields and river beds.\"\\n\\n 21-12-63 -- 12-12-64 Throughout Cyprus\\n \"The Greek Cypriot Administration deprived Turkish Cypriots \\n including Ministers, MPs, and Turkish members of the Public\\n services of the republic, of their right to freedom of movement.\"\\n\\n In his report No. S/6102 of 12 December, 1964 to the Security\\n Council, the UN Secretary-General stated in this respect the\\n following:\\n\\n \"Restrictions on the free movement of civilians have been one of\\n the major features of the situation in Cyprus since the early\\n stages of the disturbances, these restrictions have inflicted\\n considerable hardship on the population, especially the Turkish\\n Cypriot Community, and have kept tension high.\"\\n\\n 25-9-1964 -- 31-3-1968 Throughout Cyprus\\n \\n \"Supply of petrol was completely denied to the Turkish sections.\"\\n\\n Makarios Addresses UN Security Council On 19 July 1974\\n After being Ousted by the Greek Junta Coup\\n\\n \"In the beginning I wish to express my sincere thanks to all the\\n members of the Security Council for the great interest they have\\n shown in the critical situation which has been created in Cyprus\\n after the coup organized by the military regime in Greece and\\n carried out by the Greek army officers who were serving in the\\n National Guard and were commanding it.\\n\\n [..]\\n\\n 13-3-1975 On the road travelling to the South to the freedom of\\n the North\\n\\n \"A Turkish woman was seriously wounded and her four-month old\\n baby was riddled with bullets from an automatic weapon fired by\\n a Greek Cypriot mobile patrol which had ambushed the car in which\\n the mother and her baby were travelling to the Turkish region.\\n The baby died in her mother\\'s arms.\\n\\n This wanton murder of a four-month-old baby, which shocked foreign\\n observers as much as the Turkish Community, was not committed by\\n irresponsible persons, but by members of the Greek Cypriot security\\n forces. According to the mother\\'s statement the Greek police patrol\\n had chased their car and deliberately fired upon it.\"\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n',\n", - " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Enough Freeman Bashing! Was: no-Free man propaganda machine: Freemanwith blood greetings from Israel\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 18\\n\\nIn article mafifi@eis.calstate.edu (Marc A Afifi) writes:\\n>pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman) writes:\\n>\\n>\\n>Peter,\\n>\\n>I believe this is your most succinct post to date. Since you have nothing\\n>to say, you say nothing! It's brilliant. Did you think of this all by\\n>yourself?\\n>\\n>-marc \\n>--\\n\\nHey tough guy, read the topic. That's the message. Get a brain. Go to \\na real school.\\n\\n\\n\\n\",\n", - " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 22\\n\\nJim Perry (perry@dsinc.com) wrote:\\n\\n: The Bible says there is a God; if that is true then our atheism is\\n: mistaken. What of it? Seems pretty obvious to me. Socrates said\\n: there were many gods; if that is true then your monotheism (and our\\n: atheism) is mistaken, even if Socrates never existed.\\n\\n\\nJim,\\n\\nI think you must have come in late. The discussion (on my part at\\nleast) began with Benedikt's questioning of the historical acuuracy of\\nthe NT. I was making the point that, if the same standards are used to\\nvalidate secular history that are used here to discredit NT history,\\nthen virtually nothing is known of the first century.\\n\\nYou seem to be saying that the Bible -cannot- be true because it\\nspeaks of the existence of God as it it were a fact. Your objection\\nhas nothing to do with history, it is merely another statement of\\natheism.\\n\\nBill\\n\",\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Level 5?\\nOrganization: U of Toronto Zoology\\nLines: 18\\n\\nIn article <1raejd$bf4@access.digex.net> prb@access.digex.com (Pat) writes:\\n>what ever happened to the hypothesis that the shuttle flight software\\n>was a major factor in the loss of 51-L. to wit, that during the\\n>wind shear event, the Flight control software indicated a series\\n>of very violent engine movements that shocked and set upa harmonic\\n>resonance leading to an overstress of the struts.\\n\\nThis sounds like another of Ali AbuTaha\\'s 57 different \"real causes\" of\\nthe Challenger accident. As far as I know, there has never been the\\nslightest shred of evidence for a \"harmonic resonance\" having occurred.\\n\\nThe windshear-induced maneuvering probably *did* contribute to opening\\nup the leak path in the SRB joint again -- it seems to have sealed itself\\nafter the puffs of smoke during liftoff -- but the existing explanation\\nof this and related events seems to account for the evidence adequately.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: Where are they now?\\nOrganization: Case Western Reserve University\\nLines: 34\\nDistribution: world\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1ql0d3$5vo@dr-pepper.East.Sun.COM> geoff@East.Sun.COM (Geoff Arnold @ Sun BOS - R.H. coast near the top) writes:\\n\\n>Your posting provoked me into checking my save file for memorable\\n>posts. The first I captured was by Ken Arromdee on 19 Feb 1990, on the\\n>subject \"Re: atheist too?\". That was article #473 here; your question\\n>was article #53766, which is an average of about 48 articles a day for\\n>the last three years. As others have noted, the current posting rate is\\n>such that my kill file is depressing large...... Among the posting I\\n>saved in the early days were articles from the following notables:\\n\\n\\tHey, it might to interesting to read some of these posts...\\nEspecially from ones who still regularly posts on alt.atheism!\\n\\n\\n>>From: loren@sunlight.llnl.gov (Loren Petrich)\\n>>From: jchrist@nazareth.israel.rel (Jesus Christ of Nazareth)\\n>>From: mrc@Tomobiki-Cho.CAC.Washington.EDU (Mark Crispin)\\n>>From: perry@apollo.HP.COM (Jim Perry)\\n>>From: lippard@uavax0.ccit.arizona.edu (James J. Lippard)\\n>>From: minsky@media.mit.edu (Marvin Minsky)\\n>\\n>An interesting bunch.... I wonder where #2 is?\\n\\n\\tHee hee hee.\\n\\n\\t*I* ain\\'t going to say....\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", - " \"Subject: Re: Traffic morons\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 28\\n\\nIn article <10326.97.uupcb@compdyn.questor.org>,\\nryan_cousineau@compdyn.questor.org (Ryan Cousineau) wrote:\\n> \\n> NMM>From: nielsmm@imv.aau.dk (Niels Mikkel Michelsen)\\n> NMM>Subject: How to act in front of traffic jerks\\n> \\n> NMM>The other day, it was raining cats and dogs, therefor I was going only to\\n> NMM>the speed limit, on nothing more, on my bike. This guy in his BMW was\\n> NMM>driving 1-2 meters behind me for 7-800 meters and at the next red light I\\n> NMM>calmly put the bike on its leg, walked back to this car, he rolled down the\\n> NMM>window, and I told him he was a total idiot (and the reason why).\\n> \\n> NMM>Did I do the right thing?\\n\\n\\timho, you did the wrong thing. You could have been shot\\n or he could have run over your bike or just beat the shit\\n out of you. Consider that the person is foolish enough\\n to drive like a fool and may very well _act_ like one, too.\\n\\n Just get the heck away from the idiot.\\n\\n IF the driver does something clearly illegal, you _can_\\n file a citizens arrest and drag that person into court.\\n It's a hassle for you but a major hassle for the perp.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n\",\n", - " \"From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Re: Vandalizing the sky.\\nIn-Reply-To: todd@phad.la.locus.com's message of Wed, 21 Apr 93 16:28:00 GMT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<1993Apr21.162800.168967@locus.com>\\nLines: 33\\n\\nIn article <1993Apr21.162800.168967@locus.com> todd@phad.la.locus.com (Todd Johnson) writes:\\n\\n As for advertising -- sure, why not? A NASA friend and I spent one\\n drunken night figuring out just exactly how much gold mylar we'd need\\n to put the golden arches of a certain American fast food organization\\n on the face of the Moon. Fortunately, we sobered up in the morning.\\n\\nHmmm. It actually isn't all that much, is it? Like about 2 million\\nkm^2 (if you think that sounds like a lot, it's only a few tens of m^2\\nper burger that said organization sold last year). You'd be best off\\nwith a reflective substance that could be sprayed thinly by an\\nunmanned craft in lunar orbit (or, rather, a large set of such craft).\\nIf you can get a reasonable albedo it would be visible even at new\\nmoon (since the moon itself is quite dark), and _bright_ at full moon.\\nYou might have to abandon the colour, though.\\n\\nBuy a cheap launch system, design reusable moon -> lunar orbit\\nunmanned spraying craft, build 50 said craft, establish a lunar base\\nto extract TiO2 (say: for colour you'd be better off with a sulphur\\ncompound, I suppose) and some sort of propellant, and Bob's your\\nuncle. I'll do it for, say, 20 billion dollars (plus changes of\\nidentity for me and all my loved ones). Delivery date 2010.\\n\\nCan we get the fast-food chain bidding against the fizzy-drink\\nvendors? Who else might be interested?\\n\\nWould they buy it, given that it's a _lot_ more expensive, and not\\nmuch more impressive, than putting a large set of several-km\\ninflatable billboards in LEO (or in GEO, visible 24 hours from your\\nkey growth market). I'll do _that_ for only $5bn (and the changes of\\nidentity).\\n\\nNick Haines nickh@cmu.edu\\n\",\n", - " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Boom! Hubcap attack!\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nLines: 57\\n\\nIn article , speedy@engr.latech.edu (Speedy\\nMercer) writes:\\n|> I was attacked by a rabid hubcap once. I was going to work on a\\n|> Yamaha\\n|> 750 Twin (A.K.A. \"the vibrating tank\") when I heard a wierd noise off\\n|> to my \\n|> left. I caught a glimpse of something silver headed for my left foot\\n|> and \\n|> jerked it up about a nanosecond before my bike was hit HARD in the\\n|> left \\n|> side. When I went to put my foot back on the peg, I found that it\\n|> was not \\n|> there! I pulled into the nearest parking lot and discovered that I\\n|> had been \\n|> hit by a wire-wheel type hubcap from a large cage! This hubcap\\n|> weighed \\n|> about 4-5 pounds! The impact had bent the left peg flat against the\\n|> frame \\n|> and tweeked the shifter in the process. Had I not heard the\\n|> approaching \\n|> cap, I feel certian that I would be sans a portion of my left foot.\\n|> \\n|> Anyone else had this sort of experience?\\n|> \\n\\n Not with a hub cap but one of those \"Lumber yard delivery\\ntrucks\" made life interesting when he hit a \\'dip\\' in the road\\nand several sheets of sheetrock and a dozen 5 gallon cans of\\nspackle came off at 70 mph. It got real interesting for about\\n20 seconds or so. Had to use a wood mallet to get all the dried\\nspackle off Me, the Helmet and the bike when I got home. Thanks \\nto the bob tail Kenworth between me and the lumber truck I had\\na \"Path\" to drive through he made with his tires (and threw up\\nthe corresponding monsoon from those tires as he ran over\\nwhat ever cans of spackle didn\\'t burst in impact). A car in\\nfront of me in the right lane hit her brakes, did a 360 and\\nnailed a bridge abutment half way through the second 360.\\n\\nThe messiest time was in San Diego in 69\\' was on my way\\nback to the apartment in ocean beach on my Sportster and\\nhad just picked up a shake, burger n fries from jack in\\nthe box and stuffed em in my foul weather jacket when the\\nmilk shake opened up on Nimitz blvd at 50 mph, nothing\\nlike the smell of vanilla milk shake cooking on the\\nengine as it runs down your groin and legs and 15 people\\nwaiting in back of you to make the same left turn you are.\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Camping question?\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 46\\n\\nSanjay Sinha, on the 12 Apr 93 00:23:19 GMT wibbled:\\n\\n: Thanks to everyone who posted in my previous quest for camping info..\\n\\n: Another question. \\n: Well, not strictly r.m. stuff\\n\\n: I am looking for a thermos/flask to keep coffee hot. I mean real\\n: hot! Of course it must be the unbreakable type. So far, what ever\\n: metal type I have wasted money on has not matched the vacuum/glass \\n: type.\\n\\n: Any info appreciated.\\n\\n: Sanjay\\n\\n\\nBack in my youth (ahem) the wiffy and moi purchased a gadget which heated up\\nwater from a 12V source. It was for car use but we thought we\\'d try it on my\\nRD350B. It worked OK apart from one slight problem: we had to keep the revs \\nabove 7000. Any lower and the motor would die from lack of electron movement.\\n\\nIt made for interesting cups of coffee, anyhow. We would plot routes that\\ncontained straights of over three miles so that we had sufficient time to\\nget the water to boiling point. This is sometimes difficult in England.\\n\\nGood luck on your quest.\\n--\\n\\nNick (the Biker) DoD 1069 Concise Oxford\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", - " 'From: arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee)\\nSubject: Re: American Jewish Congress Open Letter to Clinton\\nOrganization: Johns Hopkins University CS Dept.\\nLines: 46\\n\\nIn article <22APR199307534304@vxcrna.cern.ch> casper@vxcrna.cern.ch (CASPER,DAVI./PPE) writes:\\n>> [I said the fixation on Bosnia is due to it being in a European country,\\n>> rather than the third world]\\n>>I recall, before we did anything for Somalia, (apparent) left-wingers saying\\n>>that the reason everyone was more willing to send troops to Bosnia than to\\n>>Somalia was because the Somalis are third-worlders who Americans consider\\n>>unworthy of help. They suddenly shut up when the US decided to send troops to\\n>>the opposite place than that predicted by the theory.\\n>I am a staunch Republican, BTW. The irony of arguing against military\\n>intervention with arguments based on Vietnam has not escaped me. I was opposed\\n>to US intervention in Somalia for the same reasons, although clearly it was\\n>not nearly as risky.\\n\\nBased on the same reasons? You mean you were opposed to US intervention in\\nSomalia because since Somalia is a European country instead of the third world,\\nthe desire to help Somalia is racist? I don\\'t think this \"same reason\" applies\\nto Somalia at all.\\n\\nThe whole point is that Somalia _is_ a third world country, and we were more\\nwilling to send troops there than to Bosnia--exactly the _opposite_ of what\\nthe \"fixation on European countries\" theory would predict. (Similarly, the\\ndesire to help Muslims being fought by Christians is also exactly the opposite\\nof what that theory predicts.)\\n\\n>>For that matter, this theory of yours suggests that Americans should want to\\n>>help the Serbs. After all, they\\'re Christian, and the Muslims are not. If\\n>>the desire to intervene in Bosnia is based on racism against people that are\\n>>less like us, why does everyone _want_ to help the side that _is_ less like us?\\n>>Especially if both of the sides are equal as you seem to think?\\n>Well, one thing you have to remember is, the press likes a good story. Good\\n>for business, don\\'t you know. And BTW, not \"everyone\" wants to help the\\n>side that is less like us.\\n\\nI\\'m referring to people who want to help at all, of course. You don\\'t see\\npeople sending out press releases \"help Bosnian Serbs with ethnic cleansing!\\nThe Muslim presence in the Balkans should be eliminated now!\" (Well, except\\nfor some Serbs, but I admit that the desire of Serbs in America to help the\\nSerbian side probably _is_ because those are people more like them.)\\n--\\n\"On the first day after Christmas my truelove served to me... Leftover Turkey!\\nOn the second day after Christmas my truelove served to me... Turkey Casserole\\n that she made from Leftover Turkey.\\n[days 3-4 deleted] ... Flaming Turkey Wings! ...\\n -- Pizza Hut commercial (and M*tlu/A*gic bait)\\n\\nKen Arromdee (arromdee@jyusenkyou.cs.jhu.edu)\\n',\n", - " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Should liability insurance be required?\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 13\\n\\nIf I have one thing to say about \"No Fault\" it would be\\n\"It isn\\'t\"\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", - " 'From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: BMW MOA members read this!\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 10\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nAs a new BMW owner I was thinking about signing up for the MOA, but\\nright now it is beginning to look suspiciously like throwing money\\ndown a rathole.\\n When you guys sort this out let me know.\\n\\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n',\n", - " \"From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: M-MOTION VIDEO CARD: YUV to RGB ?\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM UK Labs\\nLines: 3\\n\\nI'll contact you offline about this.\\n\\nRick\\n\",\n", - " \"From: delilah@next18pg2.wam.umd.edu (Romeo DeVerona)\\nSubject: Re: New to Motorcycles...\\nNntp-Posting-Host: next18pg2.wam.umd.edu\\nOrganization: Workstations at Maryland, University of Maryland, College Park\\nLines: 10\\n\\n> > Motorcycle Safety Foundation riding course (a must!)\\t$140\\n> ^^^\\n> Wow! Courses in Georgia are much cheaper. $85 for both.\\n> >\\n> \\nin maryland, they were $25 each when i learned to ride 3 years ago. now,\\nit's $125 (!) for the beginner riders' course and $60 for the experienced\\nriders' course (which, admittedly, takes only about half the time ).\\n\\n-D-\\n\",\n", - " 'From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Shaft-drives and Wheelies\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 15\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, xlyx@vax5.cit.cornell.edu () says:\\n\\nMike Terry asks:\\n\\n>Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n>\\nNo Mike. It is imposible due to the shaft effect. The centripital effects\\nof the rotating shaft counteract any tendency for the front wheel to lift\\noff the ground.\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n',\n", - " 'From: yamauchi@ces.cwru.edu (Brian Yamauchi)\\nSubject: DC-X: Choice of a New Generation (was Re: SSRT Roll-Out Speech)\\nOrganization: Case Western Reserve University\\nLines: 27\\nDistribution: world\\nNNTP-Posting-Host: yuggoth.ces.cwru.edu\\nIn-reply-to: jkatz@access.digex.com\\'s message of 21 Apr 1993 22:09:32 -0400\\n\\nIn article <1r4uos$jid@access.digex.net> jkatz@access.digex.com (Jordan Katz) writes:\\n\\n>\\t\\t Speech Delivered by Col. Simon P. Worden,\\n>\\t\\t\\tThe Deputy for Technology, SDIO\\n>\\n>\\tMost of you, as am I, are \"children of the 1960\\'s.\" We grew\\n>up in an age of miracles -- Inter-Continental Ballistic Missiles,\\n>nuclear energy, computers, flights to the moon. But these were\\n>miracles of our parent\\'s doing. \\n\\n> Speech by Pete Worden\\n> Delivered Before the U.S. Space Foundation Conference\\n\\n> I\\'m embarrassed when my generation is compared with the last\\n>generation -- the giants of the last great space era, the 1950\\'s\\n>and 1960\\'s. They went to the moon - we built a telescope that\\n>can\\'t see straight. They soft-landed on Mars - the least we\\n>could do is soft-land on Earth!\\n\\nJust out of curiousity, how old is Worden?\\n--\\n_______________________________________________________________________________\\n\\nBrian Yamauchi\\t\\t\\tCase Western Reserve University\\nyamauchi@alpha.ces.cwru.edu\\tDepartment of Computer Engineering and Science\\n_______________________________________________________________________________\\n\\n',\n", - " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nIn-Reply-To: nicho@vnet.IBM.COM\\'s message of Fri, 23 Apr 93 09: 06:09 BST\\nOrganization: Compaq Computer Corp\\n\\t<1r6aqr$dnv@access.digex.net> \\n\\t<19930423.010821.639@almaden.ibm.com>\\nLines: 14\\n\\n>>>>> On Fri, 23 Apr 93 09:06:09 BST, nicho@vnet.IBM.COM (Greg Stewart-Nicholls) said:\\nGS> How about transferring control to a non-profit organisation that is\\nGS> able to accept donations to keep craft operational.\\n\\nI seem to remember NASA considering this for some of the Apollo\\nequipment left on the moon, but that they decided against it.\\n\\nOr maybe not...\\n\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", - " 'From: MUNIZB%RWTMS2.decnet@rockwell.com (\"RWTMS2::MUNIZB\")\\nSubject: How do they ignite the SSME?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 21\\n\\non Date: Sat, 3 Apr 1993 12:38:50 GMT, Paul Dietz \\nwrites:\\n\\n/in essence, holding a match under the nozzle, is just *nuts*. One\\n/thing you absolutely must do in such an engine is to guarantee that\\n/the propellants ignite as soon as they mix, within milliseconds. To\\n/do otherwise is to fill your engine with a high explosive mixture\\n/which, when it finally does ignite, blows everything to hell.\\n\\nDefinitely! In one of the reports of an early test conducted by Rocketdyne at \\ntheir Santa Susanna Field Lab (\"the Hill\" above the San Fernando and Simi \\nValleys), the result of a hung start was described as \"structural failure\" of \\nthe combustion chamber. The inspection picture showed pumps with nothing below\\n, the CC had vaporized! This was described in a class I took as a \"typical\\nengineering understatement\" :-)\\n\\nDisclaimer: Opinions stated are solely my own (unless I change my mind).\\nBen Muniz MUNIZB%RWTMS2.decnet@consrt.rockwell.com w(818)586-3578\\nSpace Station Freedom:Rocketdyne/Rockwell:Structural Loads and Dynamics\\n \"Man will not fly for fifty years\": Wilbur to Orville Wright, 1901\\n\\n',\n", - " \"From: lulagos@cipres.cec.uchile.cl (admirador)\\nSubject: OAK VGA 1Mb. Please, I needd VESA TSR!!! 8^)\\nOriginator: lulagos@cipres\\nNntp-Posting-Host: cipres.cec.uchile.cl\\nOrganization: Centro de Computacion (CEC), Universidad de Chile\\nLines: 15\\n\\n\\n\\tHi there!...\\n\\t\\tWell, i have a 386/40 with SVGA 1Mb. (OAK chip 077) and i don't\\n\\t\\thave VESA TSR program for this card. I need it . \\n\\t\\t\\tPlease... if anybody can help me, mail me at:\\n\\t\\t\\tlulagos@araucaria.cec.uchile.cl\\n\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tThanks.\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tMackk. \\n _ /| \\n \\\\'o.O' \\n =(___)=\\n U \\n Ack!\\n\",\n", - " \"From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: FAQs\\nArticle-I.D.: mojo.1pst9uINN7tj\\nReply-To: sysmgr@king.eng.umd.edu\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 10\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article <10505.2BBCB8C3@nss.org>, freed@nss.org (Bev Freed) writes:\\n>I was wondering if the FAQ files could be posted quarterly rather than monthly\\n>. Every 28-30 days, I get this bloated feeling.\\n\\nOr just stick 'em on sci.space.news every 28-30 days? \\n\\n\\n\\n Software engineering? That's like military intelligence, isn't it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\",\n", - " 'From: revans@euclid.ucsd.edu ( )\\nSubject: Himmler\\'s speech on the extirpation of the Jewish race\\nLines: 42\\nNntp-Posting-Host: euclid.ucsd.edu\\n\\n\\n WASHINGTON - A stark reminder of the Holocaust--a speech by Nazi \\nSS leader Heinrich Himmler that refers to \"the extermination of the\\nJewish race\"--went on display Friday at the National Archives.\\n\\tThe documents, including handwritten notes by Himmler, are\\namong the best evidence that exists to rebut claims that the\\nHolocaust is a myth, archivists say.\\n\\t\"The notes give them their authenticity,\" said Robert Wolfe,\\na supervisory archivist for captured German records. \"He was\\nsupposed to destroy them. Like a lot of bosses, he didn\\'t obey his\\nown rules.\"\\n\\tThe documents, moved out of Berlin to what Himmler hoped\\nwould be a safe hiding place, were recovered by Allied forces after\\nWorld War II from a salt mine near Salzburg, Austria.\\n\\tHimmler spoke on Oct.4, 1943, in Posen, Poland, to more than\\n100 German secret police generals. \"I also want to talk to you,\\nquite frankly, on a very grave matter. Among ourselves it should be\\nmentioned quite frankly, and yet we will never speak of it publicly.\\nI mean the clearing out of the Jew, the extermination of the Jewish\\nrace. This is a page of GLORY in our history which has never been\\nwritten and is never to be written.\" [Emphasis mine--rje]\\n\\tThe German word Himmler uses that is translated as\\n\"extermination\" is *Ausrottung*.\\n\\tWolfe said a more precise translation would be \"extirpation\"\\nor \"tearing up by the roots.\"\\n\\tIn his handwritten notes, Himmler used a euphemism,\\n\"Judenevakuierung\" or \"evacuation of the Jews.\" But archives\\nofficials said \"extermination\" is the word he actually\\nspoke--preserved on an audiotape in the archives.\\n\\tHimmler, who oversaw Adolf Hitler\\'s \"final solution of the\\nJewish question,\" committed suicide after he was arrested in 1945.\\n\\tThe National Archives exhibit, on display through May 16, is\\na preview of the opening of the United States Holocaust Memorial\\nMuseum here on April 26.\\n\\tThe National Archives exhibit includes a page each of\\nHimmler\\'s handwritten notes, a typed transcript from the speech and\\nan offical translation made for the Nuremberg war crimes trials.\\n\\n\\t---From p.A10 of Saturday\\'s L.A. Times, 4/17/93\\n\\t(Associated Press)\\n-- \\n(revans@math.ucsd.edu)\\n',\n", - " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Fortune-guzzler barred from bars!\\nOrganization: Louisiana Tech University\\nLines: 19\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr16.104158.27890@reed.edu> mblock@reed.edu (Matt Block) writes:\\n\\n>(assuming David didn't know that it can be done one-legged,) I too would \\n\\nIn New Orleans, LA, there was a company making motorcycles for WHEELCHAIR \\nbound people! The rig consists of a flat-bed sidecar rig that the \\nwheelchair can be clamped to. The car has a set of hand controls mounted on \\nconventional handlebars! Looks wierd as hell to see this legless guy \\ndriving the rig from the car while his girlfriend sits on the bike as a \\npassenger!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", - " 'From: robinson@cogsci.Berkeley.EDU (Michael Robinson)\\nSubject: Passenger helmet sizing\\nOrganization: Institute of Cognitive Studies, U.C. Berkeley\\nLines: 32\\nNNTP-Posting-Host: cogsci.berkeley.edu\\n\\nIn article <1qk5oi$d0i@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n>In article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n>> \\n>> The question for the day is re: passenger helmets, if you don\\'t know for \\n>>certain who\\'s gonna ride with you (like say you meet them at a .... church \\n>>meeting, yeah, that\\'s the ticket)... What are some guidelines? Should I just \\n>>pick up another shoei in my size to have a backup helmet (XL), or should I \\n>>maybe get an inexpensive one of a smaller size to accomodate my likely \\n>>passenger? \\n>\\n>If your primary concern is protecting the passenger in the event of a\\n>crash, have him or her fitted for a helmet that is their size. If your\\n>primary concern is complying with stupid helmet laws, carry a real big\\n>spare (you can put a big or small head in a big helmet, but not in a\\n>small one).\\n\\nWhile shopping for a passenger helmet, I noticed that in many cases the\\nexternal dimensions of the helmets were the same from S through XL. The\\ndifference was the amount of inside padding.\\n\\nMy solution was to buy a large helmet, and construct a removable liner \\nfrom a sheet of .5\" closed-cell foam and some satin (glued to the inside\\nsurface). The result is a reasonably snug fit on my smallest-headed pillion\\nwith the liner in, and a comfortable fit on my largest-headed pillion with\\nthe liner out. Everyone else gets linered or not by best fit.\\n\\n\\n\\n-- \\n ----------------------------------------------------------------------------\\n Michael Robinson UUCP: ucbvax!cogsci!robinson\\n INTERNET: robinson@cogsci.berkeley.edu\\n',\n", - " \"From: khan0095@nova.gmi.edu (Mohammad Razi Khan)\\nSubject: Looking for a good book for beginners\\nOrganization: GMI Engineering&Management Institute, Flint, MI\\nLines: 10\\n\\nI wanted to know if any of you out there can recommend a good\\nbook about graphics, still and animated, and in VGA/SVGA.\\n\\nThanks in advance\\n\\n--\\nMohammad R. Khan / khan0095@nova.gmi.edu\\nAfter July '93, please send mail to mkhan@nyx.cs.du.edu\\n\\n\\n\",\n", - " 'From: marshall@csugrad.cs.vt.edu (Kevin Marshall)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Virginia Tech Computer Science Dept, Blacksburg, VA\\nLines: 42\\nNNTP-Posting-Host: csugrad.cs.vt.edu\\n\\nsnm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>If Saddam believed in God, he would pray five times a\\n>day.\\n>\\n>Communism, on the other hand, actually committed genocide in the name of\\n>atheism, as Lenin and Stalin have said themselves. These two were die\\n>hard atheist (Look! A pun!) and believed in atheism as an integral part\\n>of communism.\\n\\nNo, Bobby. Stalin killed millions in the name of Socialism. Atheism was a\\ncharacteristic of the Lenin-Stalin version of Socialism, nothing more.\\nAnother characteristic of Lenin-Stalin Socialism was the centralization of\\nfood distribution. Would you therefore say that Stalin and Lenin killed\\nmillions in the name of rationing bread? Of course not.\\n\\n\\n>More horrible deaths resulted from atheism than anything else.\\n\\nIn earlier posts you stated that true (Muslim) believers were incapable of\\nevil. I suppose if you believe that, you could reason that no one has ever\\nbeen killed in the name of religion. What a perfect world you live in,\\nBobby. \\n\\n\\n>One of the reasons that you are atheist is that you limit God by giving\\n>God a form. God does not have a \"face\".\\n\\nBobby is referring to a rather obscure law in _The Good Atheist\\'s \\nHandbook_:\\n\\nLaw XXVI.A.3: Give that which you do not believe in a face. \\n\\nYou must excuse us, Bobby. When we argue against theism, we usually argue\\nagainst the Christian idea of God. In the realm of Christianity, man was\\ncreated in God\\'s image. \\n\\n-- \\n|\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"|\\n| Kevin Marshall Sophomore, Computer Science |\\n| Virginia Tech, Blacksburg, VA USA marshall@csugrad.cs.vt.edu |\\n|____________________________________________________________________|\\n',\n", - " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 19\\n\\nIn article <1r16ja$dpa@news.ysu.edu>, ak296@yfn.ysu.edu (John R. Daker)\\nwrote:\\n> \\n> \\n> In a previous article, xlyx@vax5.cit.cornell.edu () says:\\n> \\n> Mike Terry asks:\\n> \\n> >Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n> >\\n> No Mike. It is imposible due to the shaft effect. The centripital effects\\n> of the rotating shaft counteract any tendency for the front wheel to lift\\n> off the ground.\\n\\n\\tThis is true as evinced by the popularity of shaft-drive drag bikes.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orbital RepairStation\\nOrganization: U of Toronto Zoology\\nLines: 21\\n\\nIn article collins@well.sf.ca.us (Steve Collins) writes:\\n>The difficulties of a high Isp OTV include...\\n>If you go solar, you have to replace the arrays every trip, with\\n>current technology.\\n\\nYou\\'re assuming that \"go solar\" = \"photovoltaic\". Solar dynamic power\\n(turbo-alternators) doesn\\'t have this problem. It also has rather less\\nair drag due to its higher efficiency, which is a non-trivial win for big\\nsolar plants at low altitude.\\n\\nNow, you might have to replace the *rest* of the electronics fairly often,\\nunless you invest substantial amounts of mass in shielding.\\n\\n>Nuclear power sources are strongly restricted\\n>by international treaty.\\n\\nReferences? Such treaties have been *proposed*, but as far as I know,\\nnone of them has ever been negotiated or signed.\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: djmst19@unixd2.cis.pitt.edu (David J Madura)\\nSubject: Re: Rumours about 3DO ???\\nLines: 13\\nX-Newsreader: Tin 1.1 PL3\\n\\ndave@optimla.aimla.com (Dave Ziedman) writes:\\n\\n: 3DO is still a concept.\\n: The software is what sells and what will determine its\\n: success.\\n\\n\\nApparantly you dont keep up on the news. 3DO was shown\\nat CES to developers and others at private showings. Over\\n300 software licensees currently developing software for it.\\n\\nI would say that it is a *LOT* more than just a concept.\\n\\n',\n", - " 'From: sgoldste@aludra.usc.edu (Fogbound Child)\\nSubject: Re: \"Fake\" virtual reality\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 31\\nNNTP-Posting-Host: aludra.usc.edu\\n\\nMike_Peredo@mindlink.bc.ca (Mike Peredo) writes:\\n\\n>The most ridiculous example of VR-exploitation I\\'ve seen so far is the\\n>\"Virtual Reality Clothing Company\" which recently opened up in Vancouver. As\\n>far as I can tell it\\'s just another \"chic\" clothes spot. Although it would be\\n>interesting if they were selling \"virtual clothing\"....\\n\\n>E-mail me if you want me to dig up their phone # and you can probably get\\n>some promotional lit.\\n\\nI understand there have been a couple of raves in LA billing themselves as\\n\"Virtual Reality\" parties. What I hear they do is project .GIF images around\\non the walls, as well as run animations through a Newtek Toaster.\\n\\nSeems like we need to adopt the term Really Virtual Reality or something, except\\nfor the non-immersive stuff which is Virtually Really Virtual Reality.\\n\\n\\netc.\\n\\n\\n\\n>MP\\n>(8^)-\\n\\n___Samuel___\\n-- \\n_________Pratice Safe .Signature! Prevent Dangerous Signature Virii!_______\\nGuildenstern: Our names shouted in a certain dawn ... a message ... a\\n summons ... There must have been a moment, at the beginning,\\n where we could have said -- no. But somehow we missed it.\\n',\n", - " 'From: mayne@pipe.cs.fsu.edu (William Mayne)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nOrganization: Florida State University Computer Science Department\\nReply-To: mayne@cs.fsu.edu\\nLines: 21\\n\\nIn article jvigneau@cs.ulowell.edu (Joe Vigneau) writes:\\n>\\n>If anything, the BSA has taught me, I don\\'t know, tolerance or something.\\n>Before I met this guy, I thought all gays were \\'faries\\'. So, the BSA HAS\\n>taught me to be an antibigot.\\n\\nI could give much the same testimonial about my experience as a scout\\nback in the 1960s. The issue wasn\\'t gays, but the principles were the\\nsame. Thanks for a well put testimonial. Stan Krieger and his kind who\\nthink this discussion doesn\\'t belong here and his intolerance is the\\nonly acceptable position in scouting should take notice. The BSA has\\nbeen hijacked by the religious right, but some of the core values have\\nsurvived in spite of the leadership and some scouts and former scouts\\nhaven\\'t given up. Seeing a testimonial like this reminds me that\\nscouting is still worth fighting for.\\n\\nOn a cautionary note, you must realize that if your experience with this\\ncamp leader was in the BSA you may be putting him at risk by publicizing\\nit. Word could leak out to the BSA gestapo.\\n\\nBill Mayne\\n',\n", - " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: What is it with Cats and Dogs ???!\\nOrganization: NASA Science Internet Project Office\\nLines: 29\\n\\nIn article , \\nryang@ryang1.pgh.pa.us (Robert H. Yang) writes:\\n|> Hi,\\n|> \\n|> \\tSorry, just feeling silly.\\n|> \\n|> Rob\\n\\n\\nNo need to appologise, as a matter of fact\\nthis reminds me to bring up something I\\nhave found consistant with dogs-\\n\\nMost of the time, they do NOT like having\\nme and my bike anywhere near them, and will\\nchase as if to bite and kill. \\n\\nAn instructor once said it was because the \\nsound from a bike was painfull to their \\nears. As silly as this seams, no other options\\nhave arrizen. \\n\\nnet.wisdom?\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nOrganization: U of Toronto Zoology\\nLines: 22\\n\\nIn article <1993Apr21.212202.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>Here is a way to get the commericial companies into space and mineral\\n>exploration.\\n>\\n>Basically get the eco-freaks to make it so hard to get the minerals on earth.\\n\\nThey aren't going to leave a loophole as glaring as space mining. Quite a\\nfew of those people are, when you come right down to it, basically against\\nindustrial civilization. They won't stop with shutting down the mines here;\\nthat is only a means to an end for them now.\\n\\nThe worst thing you can say to a true revolutionary is that his revolution\\nis unnecessary, that the problems can be corrected without radical change.\\nTelling people that paradise can be attained without the revolution is\\ntreason of the vilest kind.\\n\\nTrying to harness these people to support spaceflight is like trying to\\nharness a buffalo to pull your plough. He's got plenty of muscle, all\\nright, but the furrow will go where he wants, not where you want.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: Used Bikes, East vs. West Coasts\\nOrganization: the HP Corporate notes server\\nLines: 16\\n\\n/ hpcc01:rec.motorcycles / groverc@gold.gvg.tek.com (Grover Cleveland) / 9:07 am Apr 14, 1993 /\\nShop for your bike in Sacramento - the Bay area prices are\\nalways much higher than elsewhere in the state.\\n\\nGC\\n----------\\nAffirmative! Check Sacramento Bee, Fresno Bee, Modesto, Stockton,\\nBakersfield and other newspapers for prices of motos in the\\nclassifieds...a large main public library ought to have a\\nnumber of out-of-town papers. \\n\\n--------------------------------------------------------------------------\\nGraeme Harrison, Hewlett-Packard Co., Communications Components Division,\\n350 W Trimble Rd, San Jose, CA 95131 (gharriso@hpcc01.corp.hp.com) DoD#649 \\n--------------------------------------------------------------------------\\n\\n',\n", - " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Re: LONG TRIPS\\nOrganization: Duke University; Durham, N.C.\\nLines: 27\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nIn article <18859.1076.uupcb@freddy.ersys.edmonton.ab.ca> mark.harrison@freddy.ersys.edmonton.ab.ca (Mark Harrison) writes:\\n>I am new to motorcycliing (i.e. Don't even have a bike yet) and will be\\n>going on a long trip from Edmonton to Vancouver. Any tips on bare\\n>essentials for the trip? Tools, clothing, emergency repairs...?\\n\\nEr, without a bike (Ed, maybe you ought to respond to this...), how\\nyou gonna get there?\\n\\nIf yer going by cage, what's this got to do with r.m?\\n\\n>\\n>I am also in the market for a used cycle. Any tips on what to look for\\n>so I don't get burnt?\\n>\\n>Much appreciated\\n>Mark\\n> \\n\\nMaybe somebody oughta gang-tool-FAQ this guy, hmmm?\\n\\n\\n\\n-- \\nAndy Infante | You can listen to what everybody says, but the fact remains |\\n'71 BMW R60/5 | that you've got to get out there and do the thing yourself. | \\nDoD #2426 | -- Joan Sutherland | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", - " \"From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Thoughts on a 1982 Yamaha Seca Turbo?\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 18\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, howp@skyfox () says:\\n\\n>I was wondering if anybody knows anything about a Yamaha Seca Turbo. I'm \\n>considering buying a used 1982 Seca Turbo for $1300 Canadian (~$1000 US)\\n>with 30,000 km on the odo. This will be my first bike. Any comments?\\n\\t\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nBecause of this I cannot in good faith recommend a Seca Turbo. Power\\ndelivery is too uneven for a novice. The Official (tm) Dod newbie\\nbike of choice would be more appropriate because the powerband is so wide\\nand delivery is very smooth. Perfect for the beginner.\\n\\n\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n\",\n", - " 'From: todd@psgi.UUCP (Todd Doolittle)\\nSubject: Re: Motorcycle Courier (Summer Job)\\nDistribution: world\\nOrganization: Not an Organization\\nLines: 37\\n\\nIn article <1poj23INN9k@west.West.Sun.COM> gaijin@ale.Japan.Sun.COM (John Little - Nihon Sun Repair Depot) writes:\\n>In article <8108.97.uupcb@compdyn.questor.org> \\\\\\n>ryan_cousineau@compdyn.questor.org (Ryan Cousineau) writes:\\n>%\\n>% I think I\\'ve found the ultimate summer job: It\\'s dangerous, involves\\n>% motorcycles, requires high speeds in traffic, and it pays well.\\n>% \\n>% So my question is as follows: Has anyone here done this sort of work?\\n>% What was your experience?\\n>% \\n[Stuff deleted]\\n> Get a -good- \"AtoZ\" type indexed streetmap for all of the areas you\\'re\\n> likely to work. Always carry plenty of black-plastic bin liners to\\n\\nCheck with the local fire department. My buddy is a firefighter and they\\nhave these small map books which are Amazing! They are compact, easy to\\nuse (no folding). They even have a cross reference section in which you\\nmatch your current cross streets with the cross streets you want to go to\\nand it details the quickest route. They gave me an extra they had laying\\naround. But then again I know all those people I\\'m not really sure if they\\nare supposed to give/sell them. (The police may also have something\\nsimilar).\\n \\n>-- \\n> ------------------------------------------------------------------------\\n> | John Little - gaijin@Japan.Sun.COM - Sun Microsystems. Atsugi, Japan | \\n> ------------------------------------------------------------------------\\n\\n--\\n\\n--------------------------------------------------------------------------\\n ..vela.acs.oakland.edu!psgi!todd | \\'88 RM125 The only bike sold without\\n Todd Doolittle | a red-line. \\n Troy, MI | \\'88 EX500 \\n DoD #0832 | \\n--------------------------------------------------------------------------\\n\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: The systematic genocide of the Muslim population by the Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 226\\n\\nIn article <1993Apr5.091410.4108@massey.ac.nz> CBlack@massey.ac.nz (C.K. Black) writes:\\n\\n>Mr. Furr does it again,\\n\\nVery sensible.\\n\\n> He says \\n\\n>>>How many Mutlus can dance on the head of a pin?\\n\\n>And lo and behold, he invokes the Mr.666 of the net himself, our beloved\\n>Serdar, a program designed to seek out the words TERRX and GHEX in the\\n>same sentence and gets the automated reply....\\n\\nMust you rave so? Fascist x-Soviet Armenian Government engaged in \\ndisgusting cowardly massacres of Azeri women and children. I am\\nreally sorry if that fact bothers you.\\n\\n>>Our \"Mutlu\"? Oboy, this is exciting. First you discuss your literature \\n>>tastes, then your fantasies, and now your choices of entertainment. Have \\n>>you considered just turning on the TV and leaving those of us who aren\\'t\\n>>brain dead to continue to discuss the genocide of 2.5 million Muslim \\n>>people by the x-Soviet Armenian Government? \\n\\n>etc. etc. etc........\\n\\nMore ridicule, I take it? Still not addressing the original points made.\\n\\n>Joel, don\\'t do this to me mate! I\\'m only a poor plant scientist, I don\\'t\\n>know how to make \\'kill\\' files. My \\'k\\' key works overtime as it is just to\\n\\nThen what seems to be the problem? Did you ever read newspaper at all?\\n\\n\\n\"PAINFUL SEARCH ..\"\\n\\nTHE GRUESOME extent of February\\'s killings of Azeris by Armenians\\nin the town of Hojali is at last emerging in Azerbaijan - about\\n600 men, women and children dead in the worst outrage of the\\nfour-year war over Nagorny Karabakh.\\n\\nThe figure is drawn from Azeri investigators, Hojali officials\\nand casualty lists published in the Baku press. Diplomats and aid\\nworkers say the death toll is in line with their own estimates.\\n\\nThe 25 February attack on Hojali by Armenian forces was one of\\nthe last moves in their four-year campaign to take full control\\nof Nagorny Karabakh, the subject of a new round of negotiations\\nin Rome on Monday. The bloodshed was something between a fighting\\nretreat and a massacre, but investigators say that most of the\\ndead were civilians. The awful number of people killed was first\\nsuppressed by the fearful former Communist government in Baku.\\nLater it was blurred by Armenian denials and grief-stricken\\nAzerbaijan\\'s wild and contradictory allegations of up to 2,000\\ndead.\\n\\nThe State Prosecuter, Aydin Rasulov, the cheif investigator of a\\n15-man team looking into what Azerbaijan calls the \"Hojali\\nDisaster\", said his figure of 600 people dead was a minimum on\\npreliminary findings. A similar estimate was given by Elman\\nMemmedov, the mayor of Hojali. An even higher one was printed in\\nthe Baku newspaper Ordu in May - 479 dead people named and more\\nthan 200 bodies reported unidentified. This figure of nearly 700\\ndead is quoted as official by Leila Yunusova, the new spokeswoman\\nof the Azeri Ministry of Defence.\\n\\nFranCois Zen Ruffinen, head of delegation of the International\\nRed Cross in Baku, said the Muslim imam of the nearby city of\\nAgdam had reported a figure of 580 bodies received at his mosque\\nfrom Hojali, most of them civilians. \"We did not count the\\nbodies. But the figure seems reasonable. It is no fantasy,\" Mr\\nZen Ruffinen said. \"We have some idea since we gave the body bags\\nand products to wash the dead.\"\\n\\nMr Rasulov endeavours to give an unemotional estimate of the\\nnumber of dead in the massacre. \"Don\\'t get worked up. It will\\ntake several months to get a final figure,\" the 43-year-old\\nlawyer said at his small office.\\n\\nMr Rasulov knows about these things. It took him two years to\\nreach a firm conclusion that 131 people were killed and 714\\nwounded when Soviet troops and tanks crushed a nationalist\\nuprising in Baku in January 1990.\\n\\nThose nationalists, the Popular Front, finally came to power\\nthree weeks ago and are applying pressure to find out exactly\\nwhat happened when Hojali, an Azeri town which lies about 70\\nmiles from the border with Armenia, fell to the Armenians.\\n\\nOfficially, 184 people have so far been certified as dead, being\\nthe number of people that could be medically examined by the\\nrepublic\\'s forensic department. \"This is just a small percentage\\nof the dead,\" said Rafiq Youssifov, the republic\\'s chief forensic\\nscientist. \"They were the only bodies brought to us. Remember the\\nchaos and the fact that we are Muslims and have to wash and bury\\nour dead within 24 hours.\"\\n\\nOf these 184 people, 51 were women, and 13 were children under 14\\nyears old. Gunshots killed 151 people, shrapnel killed 20 and\\naxes or blunt instruments killed 10. Exposure in the highland\\nsnows killed the last three. Thirty-three people showed signs of\\ndeliberate mutilation, including ears, noses, breasts or penises\\ncut off and eyes gouged out, according to Professor Youssifov\\'s\\nreport. Those 184 bodies examined were less than a third of those\\nbelieved to have been killed, Mr Rasulov said.\\n\\nFiles from Mr Rasulov\\'s investigative commission are still\\ndisorganised - lists of 44 Azeri militiamen are dead here, six\\npolicemen there, and in handwriting of a mosque attendant, the\\nnames of 111 corpses brought to be washed in just one day. The\\nmost heartbreaking account from 850 witnesses interviewed so far\\ncomes from Towfiq Manafov, an Azeri investigator who took a\\nhelicopter flight over the escape route from Hojali on 27\\nFebruary.\\n\\n\"There were too many bodies of dead and wounded on the ground to\\ncount properly: 470-500 in Hojali, 650-700 people by the stream\\nand the road and 85-100 visible around Nakhchivanik village,\" Mr\\nManafov wrote in a statement countersigned by the helicopter\\npilot.\\n\\n\"People waved up to us for help. We saw three dead children and\\none two-year-old alive by one dead woman. The live one was\\npulling at her arm for the mother to get up. We tried to land but\\nArmenians started a barrage against our helicopter and we had to\\nreturn.\"\\n\\nThere has been no consolidation of the lists and figures in\\ncirculation because of the political upheavals of the last few\\nmonths and the fact that nobody knows exactly who was in Hojali\\nat the time - many inhabitants were displaced from other villages\\ntaken over by Armenian forces.\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\n\\nHEROES WHO FOUGHT ON AMID THE BODIES\\n\\nAREF SADIKOV sat quietly in the shade of a cafe-bar on the\\nCaspian Sea esplanade of Baku and showed a line of stitches in\\nhis trousers, torn by an Armenian bullet as he fled the town of\\nHojali just over three months ago, writes Hugh Pope.\\n\\n\"I\\'m still wearing the same clothes, I don\\'t have any others,\"\\nthe 51-year-old carpenter said, beginning his account of the\\nHojali disaster. \"I was wounded in five places, but I am lucky to\\nbe alive.\"\\n\\nMr Sadikov and his wife were short of food, without electricity\\nfor more than a month, and cut off from helicopter flights for 12\\ndays. They sensed the Armenian noose was tightening around the\\n2,000 to 3,000 people left in the straggling Azeri town on the\\nedge of Karabakh.\\n\\n\"At about 11pm a bombardment started such as we had never heard\\nbefore, eight or nine kinds of weapons, artillery, heavy\\nmachine-guns, the lot,\" Mr Sadikov said.\\n\\nSoon neighbours were pouring down the street from the direction\\nof the attack. Some huddled in shelters but others started\\nfleeing the town, down a hill, through a stream and through the\\nsnow into a forest on the other side.\\n\\nTo escape, the townspeople had to reach the Azeri town of Agdam\\nabout 15 miles away. They thought they were going to make it,\\nuntil at about dawn they reached a bottleneck between the two\\nArmenian villages of Nakhchivanik and Saderak.\\n\\n\"None of my group was hurt up to then ... Then we were spotted by\\na car on the road, and the Armenian outposts started opening\\nfire,\" Mr Sadikov said.\\n\\nAzeri militiamen fighting their way out of Hojali rushed forward\\nto force open a corridor for the civilians, but their efforts\\nwere mostly in vain. Mr Sadikov said only 10 people from his\\ngroup of 80 made it through, including his wife and militiaman\\nson. Seven of his immediate relations died, including his\\n67-year-old elder brother.\\n\\n\"I only had time to reach down and cover his face with his hat,\"\\nhe said, pulling his own big flat Turkish cap over his eyes. \"We\\nhave never got any of the bodies back.\"\\n\\nThe first groups were lucky to have the benefit of covering fire.\\nOne hero of the evacuation, Alif Hajief, was shot dead as he\\nstruggled to change a magazine while covering the third group\\'s\\ncrossing, Mr Sadikov said.\\n\\nAnother hero, Elman Memmedov, the mayor of Hojali, said he and\\nseveral others spent the whole day of 26 February in the bushy\\nhillside, surrounded by dead bodies as they tried to keep three\\nArmenian armoured personnel carriers at bay.\\n\\nAs the survivors staggered the last mile into Agdam, there was\\nlittle comfort in a town from which most of the population was\\nsoon to flee.\\n\\n\"The night after we reached the town there was a big Armenian\\nrocket attack. Some people just kept going,\" Mr Sadikov said. \"I\\nhad to get to the hospital for treatment. I was in a bad way.\\nThey even found a bullet in my sock.\"\\n\\nVictims of war: An Azeri woman mourns her son, killed in the\\nHojali massacre in February (left). Nurses struggle in primitive\\nconditions (centre) to save a wounded man in a makeshift\\noperating theatre set up in a train carriage. Grief-stricken\\nrelatives in the town of Agdam (right) weep over the coffin of\\nanother of the massacre victims. Calculating the final death toll\\nhas been complicated because Muslims bury their dead within 24\\nhours.\\n\\nPhotographs: Liu Heung / AP\\n Frederique Lengaigne / Reuter\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Fundamentalism - again.\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 19\\n\\nIn article khan0095@nova.gmi.edu (Mohammad Razi Khan) writes:\\n>One of my biggest complaints about using the word \"fundamentalist\"\\n>is that (at least in the U.S.A.) people speak of muslime\\n>fundamentalists ^^^^^^^muslim\\n>but nobody defines what a jewish or christan fundamentalist is.\\n>I wonder what an equal definition would be..\\n>any takers..\\n\\n\\tThe American press routinely uses the word fundamentalist to\\nrefer to both Christians and Jews. Christian fundementalists are\\noften refered to in the context of anti-abortion protests. The\\nAmerican media also uses fundamentalist to refer to Jews who live in\\nJudea, Samaria or Gaza, and to any Jew who follows the torah.\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: sturges@oasys.dt.navy.mil (Richard Sturges)\\nSubject: Re: DOT Tire date codes\\nReply-To: sturges@oasys.dt.navy.mil (Richard Sturges)\\nDistribution: usa\\nOrganization: Carderock Division, NSWC, Bethesda, MD\\nLines: 12\\n\\nIn rec.motorcycles, cookson@mbunix.mitre.org (Cookson) writes:\\n>To the nedod mailing list, and Jack Tavares suggested I check out\\n>how old the tire is as one tactic for getting it replaced. Does\\n>anyone have the file on how to read the date codes handy?\\n\\nIt\\'s quite simple; the code is the week and year of manufacture.\\n\\n\\t<================================================> \\n / Rich Sturges (h) 703-536-4443 \\\\\\n / NSWC - Carderock Division (w) 301-227-1670 \\\\\\n / \"I speak for no one else, and listen to the same.\" \\\\\\n <========================================================>\\n',\n", - " \"From: mbeaving@bnr.ca (M Beavington)\\nSubject: Re: Insurance and lotsa points...\\nNntp-Posting-Host: bmerh824\\nReply-To: MBEAVING@BNR.CA\\nOrganization: BNR Ottawa, DMS Software Design\\nLines: 15\\n\\nIn article <13386@news.duke.edu>, infante@acpub.duke.edu (Andrew Infante) writes:\\n|> Well, it looks like I'm F*cked for insurance.\\n|> \\n|> I had a DWI in 91 and for the beemer, as a rec.\\n|> vehicle, it'll cost me almost $1200 bucks to insure/year.\\n|> \\n|> Now what do I do?\\n|> \\n\\nGo bikeless. You drink and drive, you pay. No smiley.\\n\\n\\nMike Beavington\\nmbeaving@bnr.ca\\n*opinions are my own and not my companies'.\\n\",\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nOrganization: sgi\\nLines: 31\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <115565@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n|> In article <1qi3l5$jkj@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >I hope an Islamic Bank is something other than BCCI, which\\n|> >ripped off so many small depositors among the Muslim\\n|> >community in the Uk and elsewhere.\\n|> \\n|> >jon.\\n|> \\n|> Grow up, childish propagandist.\\n\\nGregg, I\\'m really sorry if having it pointed out that in practice\\nthings aren\\'t quite the wonderful utopia you folks seem to claim\\nthem to be upsets you, but exactly who is being childish here is \\nopen to question.\\n\\nBBCI was an example of an Islamically owned and operated bank -\\nwhat will someone bet me they weren\\'t \"real\" Islamic owners and\\noperators? - and yet it actually turned out to be a long-running\\nand quite ruthless operation to steal money from small and often\\nquite naive depositors.\\n\\nAnd why did these naive depositors put their life savings into\\nBCCI rather than the nasty interest-motivated western bank down\\nthe street? Could it be that they believed an Islamically owned \\nand operated bank couldn\\'t possibly cheat them? \\n\\nSo please don\\'t try to con us into thinking that it will all \\nwork out right next time.\\n\\njon.\\n',\n", - " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Victims of various \\'Good Fight\\'s\\nIn-Reply-To: 9051467f@levels.unisa.edu.au\\'s message of 12 Apr 93 21: 36:33 +0930\\nOrganization: Compaq Computer Corp\\n\\t<9454@tekig7.PEN.TEK.COM> <1993Apr12.213633.20143@levels.unisa.edu.au>\\nLines: 12\\n\\n>>>>> On 12 Apr 93 21:36:33 +0930, 9051467f@levels.unisa.edu.au (The Desert Brat) said:\\n\\nTDB> 12. Disease introduced to Brazilian * oher S.Am. tribes: x million\\n\\nTo be fair, this was going to happen eventually. Given time, the Americans\\nwould have reached Europe on their own and the same thing would have \\nhappened. It was just a matter of who got together first.\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", - " 'From: weston@ucssun1.sdsu.edu (weston t)\\nSubject: graphical representation of vector-valued functions\\nOrganization: SDSU Computing Services\\nLines: 13\\nNNTP-Posting-Host: ucssun1.sdsu.edu\\n\\ngnuplot, etc. make it easy to plot real valued functions of 2 variables\\nbut I want to plot functions whose values are 2-vectors. I have been \\ndoing this by plotting arrays of arrows (complete with arrowheads) but\\nbefore going further, I thought I would ask whether someone has already\\ndone the work. Any pointers??\\n\\nthanx in advance\\n\\n\\nTom Weston | USENET: weston@ucssun1.sdsu.edu\\nDepartment of Philosophy | (619) 594-6218 (office)\\nSan Diego State Univ. | (619) 575-7477 (home)\\nSan Diego, CA 92182-0303 | \\n',\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Moraltiy? (was Re: >>>What if I act morally for no particular reason? Then am I moral? What\\n>>>>if morality is instinctive, as in most animals?\\n>>>Saying that morality is instinctive in animals is an attempt to \\n>>>assume your conclusion.\\n>>Which conclusion?\\n>You conclusion - correct me if I err - that the behaviour which is\\n>instinctive in animals is a \"natural\" moral system.\\n\\nSee, we are disagreeing on the definition of moral here. Earlier, you said\\nthat it must be a conscious act. By your definition, no instinctive\\nbehavior pattern could be an act of morality. You are trying to apply\\nhuman terms to non-humans. I think that even if someone is not conscious\\nof an alternative, this does not prevent his behavior from being moral.\\n\\n>>You don\\'t think that morality is a behavior pattern? What is human\\n>>morality? A moral action is one that is consistent with a given\\n>>pattern. That is, we enforce a certain behavior as moral.\\n>You keep getting this backwards. *You* are trying to show that\\n>the behaviour pattern is a morality. Whether morality is a behavior \\n>pattern is irrelevant, since there can be behavior pattern, for\\n>example the motions of the planets, that most (all?) people would\\n>not call a morality.\\n\\nI try to show it, but by your definition, it can\\'t be shown.\\n\\nAnd, morality can be thought of a large class of princples. It could be\\ndefined in terms of many things--the laws of physics if you wish. However,\\nit seems silly to talk of a \"moral\" planet because it obeys the laws of\\nphyics. It is less silly to talk about animals, as they have at least\\nsome free will.\\n\\nkeith\\n',\n", - " \"From: edimg@willard.atl.ga.us (Ed pimentel)\\nSubject: HELP! Need JPEG / MPEG encod-decode \\nOrganization: Willard's House BBS, Atlanta, GA -- +1 (404) 664 8814\\nLines: 41\\n\\nI am involve in a Distant Learning project and am in need\\nof Jpeg and Mpeg encode/decode source and object code.\\nThis is a NOT-FOR PROFIT project that once completed I\\nhope to release to other educational and institutional\\nlearning centers.\\nThis project requires that TRUE photographic images be sent\\nover plain telephone lines. In addition if there is a REAL Good\\nGUI lib with 3D objects and all types of menu classes that can\\nbe use at both end of the transaction (Server and Terminal End)\\nI would like to hear about it.\\n \\nWe recently posted an RFD announcing the OTG (Open Telematic Group)\\nthat will concern itself with the developement of such application\\nand that it would incorporate NAPLPS, JPEG, MPEG, Voice, IVR, FAX\\nSprites, Animation(fli, flc, etc...).\\nAt present only DOS and UNIX environment is being worked on and it\\nour hope that we can generate enough interest where all the major\\nplatform can be accomodated via a plaform independent API/TOOLKIT/SDK\\nWe are of the mind that it is about time that such project and group\\nbe form to deal with these issues.\\nWe want to setup a repository where these files may be access such as\\nSimte20 and start putting together a OTG FAQ.\\nIf you have some or any information that in your opinion would be \\nof interest to the OTG community and you like to see included in our\\nfirst FAQ please send it email to the address below.\\n \\nThanks in Advance\\n \\nEd\\nP.O. box 95901\\nAtlanta Ga. 30347-0901\\n(404)985-1198 zyxel 14.4\\nepimntl@world.std.com \\ned.pimentel@gisatl.fidonet.org\\n\\n\\n-- \\nedimg@willard.atl.ga.us (Ed pimentel)\\ngatech!kd4nc!vdbsan!willard!edimg\\nemory!uumind!willard!edimg\\nWillard's House BBS, Atlanta, GA -- +1 (404) 664 8814\\n\",\n", - " 'From: tankut@IASTATE.EDU (Sabri T Atan)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: tankut@IASTATE.EDU (Sabri T Atan)\\nOrganization: Iowa State University\\nLines: 43\\n\\nIn article , ptg2351@uxa.cso.uiuc.edu (Panos\\nTamamidis ) writes:\\n> Yeah, too much Mutlu/Argic isn\\'t helping. I could, one day, proceed and\\n\\nYou shouldn\\'t think many Turks read Mutlu/Argic stuff.\\nThey are in my kill file, likewise any other fanatic.\\n \\n> >(I have nothing against Greeks but my problem is with fanatics. I have met\\n> >so many Greeks who wouldn\\'t even talk to me because I am Turkish. From my\\n> >experience, all my friends always were open to Greeks)\\n> \\n> Well, the history, wars, current situations, all of them do not help.\\n\\nWell, Panos, Mr. Tamamidis?, the way you put it it is only the Turks\\nwho bear the responsibility of the things happening today. That is hard to\\nbelieve for somebody trying to be objective.\\nWhen it comes to conflicts like our countries having you cannot\\nblame one side only, there always are bad guys on both sides.\\nWhat were you doing on Anatolia after the WW1 anyway?\\nDo you think it was your right to be there?\\nI am not saying that conflicts started with that. It is only\\nnot one side being the aggressive and the ither always suffering.\\nIt is sad that we (both) still are not trying to compromise.\\nI remember the action of the Turkish government by removing the\\nvisa requirement for greeks to come to Turkey. I thought it\\nwas a positive attempt to make the relations better.\\n\\nThe Greeks I mentioned who wouldn\\'t talk to me are educated\\npeople. They have never met me but they know! I am bad person\\nbecause I am from Turkey. Politics is not my business, and it is\\nnot the business of most of the Turks. When it comes to individuals \\nwhy the hatred? So that makes me think that there is some kind of\\nbrainwashing going on in Greece. After all why would an educated person \\ntreat every person from a nation the same way? can you tell me about your \\nhistory books and things you learn about Greek-Turkish\\nencounters during your schooling. \\ntake it easy! \\n\\n--\\nTankut Atan\\ntankut@iastate.edu\\n\\n\"Achtung, baby!\"\\n',\n", - " 'From: maxg@microsoft.com (Max Gilpin)\\nSubject: HONDA CBR600 For Sale\\nOrganization: Microsoft Corp.\\nKeywords: CBR Hurricane \\nDistribution: usa\\nLines: 8\\n\\nFor Sale 1988 Honda CBR600 (Hurricane). I bought the bike at the end of\\nlast summer and although I love it, the bills are forcing me to part with\\nit. The bike has a little more than 6000 miles on it and runs very strong.\\nIt is in nead of a tune-up and possibly break pads but the rubber is good.\\nI am also tossing in a TankBag and a KIWI Helmet. Asking $3000.00 or best\\noffer. Add hits newspaper 04-20-93 and Micronews 04-23-93. Interested \\nparties can call 206-635-2006 during the day and 889-1510 in the evenings\\nno later than 11:00PM. \\n',\n", - " \"Subject: Re: How many israeli soldiers does it take to kill a 5 yr old child?\\nFrom: jhsegal@wiscon.weizmann.ac.il (Livian Segal)\\nOrganization: Weizmann Institute of Science, Computation Center\\nLines: 16\\n\\nIn article <1qhv50$222@bagel.cs.huji.ac.il> ranen@falafel.cs.huji.ac.il (Ranen Goren) writes:\\n>Q: How many Nick Steel's does it take to twist any truth around?\\n>A: Only one, and thank God there's only one.\\n>\\n>\\tRanen.\\n\\nAbsolutely not true!\\nThere are lots of them!\\n\\n _____ __Livian__ ______ ___ __Segal__ __ __ __ __ __\\n *\\\\ /* | | \\\\ \\\\ \\\\ | | | | \\\\ |\\n***\\\\ /*** | | |__ | /_ \\\\ \\\\ | | | | \\\\ |\\n|---O---| | | / | \\\\ | | | | \\\\ |\\n\\\\ /*\\\\ / \\\\___ / | \\\\ | | | \\\\ | | \\\\___ / | / |\\n \\\\/***\\\\/ / | \\\\ | | | | | / | |\\nVM/CMS: JhsegalL@Weizmann.weizmann.ac.il UNIX: Jhsegal@wiscon.weizmann.ac.il\\n\",\n", - " 'From: CGKarras@world.std.com (Christopher G Karras)\\nSubject: Need Maintenance tips\\nOrganization: The World Public Access UNIX, Brookline, MA\\nLines: 29\\n\\n\\nAfter reading the service manual for my bike (Suzuki GS500E--1990) I have\\na couple of questions I hope you can answer:\\n\\nWhen checking the oil level with the dip stick built into the oil fill\\ncap, does one check it with the cap screwed in or not? I am more used to\\nthe dip stick for a cage where the stick is extracted fully, wiped clean\\nand reinserted fully, then withdrawn and read. The dip stick on my bike\\nis part of the oil filler cap and has about 1/2 inch of threads on it. Do\\nI remove the cap, wipe the stick clean and reinsert it with/without\\nscrewing it down before reading?\\n\\nThe service manual calls for the application of Suzuki Bond No. 1207B on\\nthe head cover. I guess this is some sort of liquid gasket material. do\\nyou know of a generic (cheaper) substitute?\\n\\nMy headlight is a Halogen 60/55 W bulb. Is there an easy, brighter\\nreplacement bulb available? Where should I look for one?\\n\\nAs always, I very much appreciate your help. The weather in Philadelphia\\nhas finally turned WARM. This weekend I saw lotsa bikes, and the riders\\nALL waved. A nice change of tone from what Philadelphia can be like. . . .\\n\\nChris\\n\\n-- \\n*******************************************************************\\nChristopher G. Karras\\nInternet: CGKarras@world.std.com\\n',\n", - " \"From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Bikes vs. Horses (was Re: insect impac\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 27\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nNNTP-Posting-Host: slc4.ins.cwru.edu\\n\\n\\nIn a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n\\n>In article sda@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes:\\n\\n> The only people who train for years to jump a horse 2 feet\\n>are equistrian posers who wear velvet tails and useless helmets.\\n>\\n\\n\\tWhich, as it turns out, is just about everybody that's serious about\\nhorses. What a bunch of weenie fashion nerds. And the helmets suck. I'm wearing\\nmy Shoei mountain bike helmet - fuck em.>>>\\n\\n\\n>>\\tOr I'm permanently injured.\\n>\\n>Oops. too late.\\n>\\n\\n\\tNah, I can still walk unaided.\\n\\n\\n\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n\",\n", - " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Louisiana Tech University\\nLines: 17\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article csundh30@ursa.calvin.edu (Charles Sundheim) writes:\\n\\n\\n\\n>Moral: I'm not really sure, but more and more I believe that bikers ought \\n> to be allowed to carry handguns.\\n\\nCome to Louisiana where it is LEGAL to carry concealed weapons on a bike!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", - " 'From: freed@nss.org (Bev Freed)\\nSubject: FAQs\\nOrganization: The NSS BBS, Pittsburgh PA (412) 366-5208\\nLines: 8\\n\\nI was wondering if the FAQ files could be posted quarterly rather than monthly. Every 28-30 days, I get this bloated feeling.\\n \\n\\n\\n-- \\nBev Freed - via FidoNet node 1:129/104\\nUUCP: ...!pitt!nss!freed\\nINTERNET: freed@nss.org\\n',\n", - " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Mars Observer Update - 04/23/93\\nOrganization: Jet Propulsion Laboratory\\nLines: 48\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Mars Observer, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from the Mars Observer Project\\n\\n MARS OBSERVER STATUS REPORT\\n April 23, 1993\\n 10:00 AM PDT\\n\\nFlight Sequence C8 is active, the Spacecraft subsystems and instrument\\npayload performing well in Array Normal Spin and outer cruise\\nconfiguration, with uplink and downlink via the High Gain Antenna; uplink\\nat 125 bps, downlink at the 2 K Engineering data rate.\\n\\nAs a result of the spacecraft entering Contingency Mode on April 9, all\\npayload instruments were automatically powered off by on-board fault\\nprotection software. Gamma Ray Spectrometer Random Access Memory\\nwas successfully reloaded on Monday, April 19. To prepare for\\nMagnetometer Calibrations which were rescheduled for execution in Flight\\nSequence C9 on Tuesday and Wednesday of next week, a reload of Payload\\nData System Random Access Memory will take place this morning\\nbeginning at 10:30 AM.\\n\\nOver this weekend, the Flight Team will send real-time commands to\\nperform Differential One-Way Ranging to obtain additional data for\\nanalysis by the Navigation Team. Radio Science Ultra Stable Oscillator\\ntesting will take place on Monday .\\n\\nThe Flight Sequence C9 uplink will occur on Sunday, April 25, with\\nactivation at Midnight, Monday evening April 26. C9 has been modified to\\ninclude Magnetometer Calibrations which could not be performed in C8 due\\nto Contingency Mode entry on April 9. These Magnetometer instrument\\ncalibrations will allow the instrument team to better characterize the\\nspacecraft-generated magnetic field and its effect on their instrument.\\nThis information is critical to Martian magnetic field measurements\\nwhich occur during approach and mapping phases. MAG Cals will require\\nthe sequence to command the spacecraft out of Array Normal Spin state\\nand perform slew and roll maneuvers to provide the MAG team data points\\nin varying spacecraft attitudes and orientations.\\n\\nToday, the spacecraft is 22,971,250 km (14,273,673 mi.) from Mars\\ntravelling at a velocity of 2.09 kilometers/second (4,677 mph) with\\nrespect to Mars. One-way light time is approximately 10 minutes, 38\\nseconds.\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n',\n", - " \"Organization: Penn State University\\nFrom: \\nSubject: scanned grey to color equations?\\nLines: 7\\n\\nA while back someone had several equations which could be used for changing 3 f\\niltered grey scale images into one true color image. This is possible because\\nit's the same theory used by most color scanners. I am not looking for the obv\\nious solution which is to buy a color scanner but what I do need is those equat\\nions becasue I am starting to write software which will automate the conversion\\n process. I would really appreciate it if someone would repost the 3 equations\\n/3 unknowns. Thanks for the help!!!\\n\",\n", - " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 48\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn <1993Apr9.154316.19778@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>In article kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n \\n>>\\tIf I state that I know that there is a green marble in a closed box, \\n>>which I have _never_ seen, nor have any evidence for its existance; I would\\n>>be guilty of deceit, even if there is, in fact, a green marble inside.\\n>>\\n>>\\tThe question of whether or not there is a green marble inside, is \\n>>irrelevent.\\n\\n>You go ahead and play with your marbles.\\n\\nI love it, I love it, I love it!! Wish I could fit all that into a .sig\\nfile! (If someone is keeping a list of Bobby quotes, be sure to include\\nthis one!)\\n\\n>>\\n>>\\tStating an unproven opinion as a fact, is deceit. And, knowingly \\n>>being decietful is a falsehood and a lie.\\n\\n>So why do you think its an unproven opinion? If I said something as\\n>fact but you think its opinion because you do not accept it, then who\\'s\\n>right?\\n\\nThe Flat-Earthers state that \"the Earth is flat\" is a fact. I don\\'t accept\\nthis, I think it\\'s an unproven opinion, and I think the Round-Earthers are\\nright because they have better evidence than the Flat-Earthers do.\\n\\nAlthough I can\\'t prove that a god doesn\\'t exist, the arguments used to\\nsupport a god\\'s existence are weak and often self-contradictory, and I\\'m not\\ngoing to believe in a god unless someone comes over to me and gives me a\\nreason to believe in a god that I absolutely can\\'t ignore.\\n\\nA while ago, I read an interesting book by a fellow called Von Daenicken,\\nin which he proved some of the wildest things, and on the last page, he\\nwrote something like \"Can you prove it isn\\'t so?\" I certainly can\\'t, but\\nI\\'m not going to believe him, because he based his \"proof\" on some really\\nquestionable stuff, such as old myths (he called it \"circumstancial\\nevidence\" :] ).\\n\\nSo far, atheism hasn\\'t made me kill anyone, and I\\'m regarded as quite an\\nagreeable fellow, really. :)\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", - " 'From: mmaser@engr.UVic.CA (Michael Maser)\\nSubject: Re: extraordinary footpeg engineering\\nNntp-Posting-Host: uglv.uvic.ca\\nReply-To: mmaser@engr.UVic.CA\\nOrganization: University of Victoria, Victoria, BC, Canada\\nLines: 38\\n\\n--In a previous article, exb0405@csdvax.csd.unsw.edu.au () says:\\n--\\n-->Okay DoD\\'ers, here\\'s a goddamn mystery for ya !\\n-->\\n-->Today I was turning a 90 degree corner just like on any other day, but there\\n-->was a slight difference- a rough spot right in my path caused the suspension\\n-->to compress in mid corner and some part of the bike hit the ground with a very\\n-->tangible \"thunk\". I pulled over at first opportunity to sus out the damage. \\n--== some deleted\\n-->\\n-->Barry Manor DoD# 620 confused accidental peg-scraper\\n-->\\n-->\\n--Check the bottom of your pipes Barry -- suspect that is what may\\n--have hit. I did the same a few years past & thought it was the\\n--peg but found the bottom of my pipe has made contact & showed a\\n--good sized dent & scratch.\\n\\n-- Believe you\\'d feel the suddent change on your foot if the peg\\n--had bumped. As for the piece missing -- contribute that to \\n--vibration loss.\\n\\nYep, the same thing happened to me on my old Honda 200 Twinstar.\\n\\n\\n*****************************************************************************\\n* Mike Maser | DoD#= 0536 | SQUID RATING: 5.333333333333333 *\\n* 9235 Pinetree Rd. |----------------------------------------------*\\n* Sidney, B.C., CAN. | Hopalonga Twinfart Yuka-Yuka EXCESS 400 *\\n* V8L-1J1 | wish list: Tridump, Mucho Guzler, Burley *\\n* home (604) 656-6131 | Thumpison, or Bimotamoeba *\\n* work (604) 721-7297 |***********************************************\\n* mmaser@sirius.UVic.CA |JOKE OF THE MONTH: What did the gay say to the*\\n* University of Victoria | Indian Chief ? *\\n* news: rec.motorcycles | ANSWER: Can I bum a couple bucks ? *\\n*****************************************************************************\\n\\n\\n',\n", - " 'From: David.Rice@ofa123.fidonet.org\\nSubject: islamic authority [sic] over women\\nX-Sender: newtout 0.08 Feb 23 1993\\nLines: 62\\n\\n \\nwho: kmr4@po.CWRU.edu (Keith M. Ryan)\\nwhat: \\nwith: rush@leland.Stanford.EDU \\nwhat: <1993Apr5.050524.9361@leland.Stanford.EDU>\\n \\n>>> Other readers: I just joined, but is this guy for real?\\n>>> I\\'m simply amazed.\\n \\nKR> \"Sadly yes. Don\\'t loose any sleep over Old \\'Zlumber. Just\\nKR> have some fun with him, but he is basically harmless. \\nKR> At least, if you don\\'t work in NY city.\"\\n \\nI don\\'t find it hard to believe that \"Ole \\'Zlumber\" really believes\\nthe hate and ignorant prattle he writes. The frightening thought is,\\nthere are people even worse than he! To say that feminism equals\\n\"superiority\" over men is laughable as long as he doesn\\'t then proceed\\nto pick up a rifle and start to shoot women as a preemptive strike---\\naka the Canada slaughter that occured a few years ago. But then, men\\nkilling women is nothing new. Islamic Fundamentalists just have a\\n\"better\" excuse (Qu\\'ran).\\n \\n from the Vancouver Sun, Thursday, October 4, 1990\\n by John Davidson, Canadian Press\\n \\n MONTREAL-- Perhaps it\\'s the letter to the five-year old\\n daughter that shocks the most.\\n \\n \"I hope one day you will be old enough to understand what\\n happened to your parents,\" wrote Patrick Prevost. \"I loved\\n your mother with a passion that went as far as hatred.\"\\n \\n Police found the piece of paper near Prevost\\'s body in his\\n apartment in northeast Montreal.\\n \\n They say the 39-year-old mechanic committed suicide after\\n killing his wife, Jocelyne Parent, 31.\\n \\n The couple had been separated for a month and the woman had\\n gone to his apartment to talk about getting some more money\\n for food. A violent quarrel broke out and Prevost attacked\\n his wife with a kitchen knife, cutting her throat, police said.\\n \\n She was only the latest of 13 women slain by a husband or\\n lover in Quebec in the last five weeks.\\n \\n Five children have also been slain as a result of the same\\n domestic \"battles.\"\\n \\n Last year in Quebec alone, 29 [women] were slain by their\\n husbands. That was more than one-third of such cases across\\n Canada, according to statistics from the Canadian Centre for\\n Justice. [rest of article ommited]\\n \\nThen to say that women are somehow \"better\" or \"should\" be the\\none to \"stay home\" and raise a child is also laughable. Women\\nhave traditionally done hard labor to support a family, often \\nmore than men in many cultures, throughout history. Seems to me\\nit takes at least two adults to raise a child, and that BOTH should\\nstay home to do so!\\n\\n--- Maximus 2.01wb\\n',\n", - " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Hamza Salah, the Humanist\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 8\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\nMr. Salah, why are you such a homicidal racist? Do you feel this\\nsame hatred towards Christans, or is it only Jews? Are you from\\na family of racists? Did you learn this racism in your home? Or\\nare you a self-made bigot? How does one become such a racist? I\\nwonder what you think your racism will accomplish. Are you under\\nthe impression that your racism will help bring peace in the mid-\\neast? I would like to know your thoughts on this.\\n',\n", - " 'From: laszlo@eclipse.cs.colorado.edu (Laszlo Nemeth)\\nSubject: Re: Protective gear\\nNntp-Posting-Host: eclipse.cs.colorado.edu\\nOrganization: University of Colorado Boulder, Pizza Disposal Group\\nLines: 19\\n\\nIn article , maven@eskimo.com (Norman Hamer) writes:\\n|> Question for the day:\\n|> \\n|> What protective gear is the most important? I\\'ve got a good helmet (shoei\\n|> rf200) and a good, thick jacket (leather gold) and a pair of really cheap\\n|> leather gloves... What should my next purchase be? Better gloves, boots,\\n|> leather pants, what?\\n\\ncondom\\n\\n\\nduring wone of the 500 times i had to go over my accident i\\nwas asked if i was wearing \"protection\" my responces was\\n\"yes i was wearing a condom\"\\n\\n\\n\\nlaz\\n\\n',\n", - " 'From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: Georgia Institute of Technology\\nLines: 21\\n\\nWho the hell is this guy David Davidian. I think he talks too much..\\n\\n\\nYo , DAVID you would better shut the f... up.. O.K ?? I don\\'t like \\n\\nyour attitute. You are full of lies and shit. Didn\\'t you hear the \\n\\nsaying \"DON\\'T MESS WITH A TURC!!\"...\\n\\nSee ya in hell..\\n\\nTimucin.\\n\\n\\n\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n',\n", - " \"From: ernie@woody.apana.org.au (Ernie Elu)\\nSubject: MGR NAPLPS & GUI BBS Frontends\\nOrganization: Woody - Public Access Linux - Melbourne\\nLines: 28\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\n\\n\\nHi all,\\nI am looking into methods I can use to turn my Linux based BBS into a full color\\nGraphical BBS that supports PC, Mac, Linux, and Amiga callers. \\nOriginally I was inspired by the NAPLPS graphics standard (a summary of \\nwhich hit this group about 2 weeks ago). \\nFollowing up on software availability of NAPLPS supporting software I find\\nthat most terminal programs are commercial the only resonable shareware one being\\nPP3 which runs soley on MSDOS machines leaving Mac and Amiga users to buy full\\ncommercial software if they want to try out the BBS (I know I wouldn't)\\n\\nNext most interesting possibility is to port MGR to PC, Mac, Amiga. I know there\\nis an old version of a Mac port on bellcore.com that doesn't work under System 7\\nBut I can't seem to find the source anywhere to see if I can patch it.\\n\\nIs there a color version of MGR for Linux? \\nI know there was an alpha version of the libs out last year but I misplaced it.\\n\\nDoes anyone on this group know if MGR as been ported to PC or Amiga ?\\nI can't seem to send a message to the MGR channel without it bouncing.\\n\\nDoes anyone have any other suggestions for a Linux based GUI BBS ?\\n\\nThanks in advan\\n\",\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1r6ub0$mgl@access.digex.net> prb@access.digex.com (Pat) writes:\\n\\n>In article <1993Apr22.164801.7530@julian.uwo.ca> jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll) writes:\\n>>\\tHmmm. I seem to recall that the attraction of solid state record-\\n>>players and radios in the 1960s wasn\\'t better performance but lower\\n>>per-unit cost than vacuum-tube systems.\\n>>\\n\\n\\n>I don\\'t think so at first, but solid state offered better reliabity,\\n>id bet, and any lower costs would be only after the processes really scaled up.\\n\\nCareful. Making statements about how solid state is (generally) more\\nreliable than analog will get you a nasty follow-up from Tommy Mac or\\nPat. Wait a minute; you *are* Pat. Pleased to see that you\\'re not\\nsuffering from the bugaboos of a small mind. ;-)\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: andersen@me.udel.edu (Stephen Andersen)\\nSubject: Riding Jacket Recommendations\\nNntp-Posting-Host: me.udel.edu\\nOrganization: Center for Composite Materials/University of Delaware\\nLines: 36\\n\\nMy old jacket is about to bite the dust so I\\'m in the market for a new riding\\njacket. I\\'m looking for recommendations for a suitable replacement. I would\\nlike to buy a full Aerostich suit but I can\\'t afford $700 for it right now.\\n\\nI\\'m considering two basic options:\\n\\n1) Buy the Aerostich jacket only. Dunno how much it costs\\n due to recent price increases, but I\\'d imagine over $400.\\n That may be pushing my limit. Advantages include the fact\\n that I can later add the pants, and that it nearly eliminates\\n the need for the jacket portion of a rainsuit.\\n\\n2) Buy some kind of leather jacket. I like a few of the new \\n Hein-Gericke FirstGear line, however they may be a bit pricey\\n unless I can work some sort of deal. Advantages of leather\\n are potentially slightly better protection, enhanced pose\\n value (we all know how important that is :-), possibly cheaper\\n than upper Aerostich.\\n\\nRequirements for a jacket are that it must fit over a few other \\nlayers (mainly a sizing thing), if leather i\\'d prefer a zip-out \\nlining, it MUST have some body armor similar to aerostich (elbows, \\nshoulders, forearms, possibly back/kidney protection, etc.), a \\nreasonable amount of pocket space would be nice, ventilation would \\nbe a plus, however it must be wearable in cold weather (below\\nfreezing) with layers or perhaps electrics.\\n\\nPlease fire away with suggestions, comments, etc...\\n\\nSteve\\n--\\n-- \\n Steve Andersen DoD #0239 andersen@me.udel.edu\\n (302) 832-0136 andersen@zr1.ccm.udel.edu\\n 1992 Ducati 907 I.E. 1987 Yamaha SRX250\\n \"Life is simply a consequence of the complexities of carbon chemistry...\"\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 B\\nSummary: Part B \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 912\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 Part B\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n\\t\\t\\t\\t(Part B of #008)\\n\\n +------------------------------------------------------------------+\\n | |\\n | \"Oh, yes, I just remembered. While they were raping me they |\\n | repeated quite frequently, \"Let the Armenian women have babies |\\n | for us, Muslim babies, let them bear Azerbaijanis for the |\\n | struggle against the Armenians.\" Then they said, \"Those |\\n | Muslims can carry on our holy cause. Heroes!\" They repeated |\\n | it very often.\" |\\n | |\\n +------------------------------------------------------------------+\\n\\n...continued from PART A:\\n\\nThe six of them left. They left and I had an attack. I realized that the dan-\\nger was past, and stopped controlling myself. I relaxed for a moment and the \\nphysical pain immediately made itself felt. My heart and kidneys hurt. I had \\nan awful kidney attack. I rolled back and forth on top of those Christmas\\nornaments, howling and howling. I didn\\'t know where I was or how long this \\nwent on. When we figured out the time, later it turned out that I howled and \\nwas in pain for around an hour. Then all my strength was gone and I burst into\\ntears, I started feeling sorry for myself, and so on and so forth . . .\\n\\nThen someone came into the room. I think I hear someone calling my name. I \\nwant to respond and restrain myself, I think that I\\'m hallucinating. I am \\nsilent, and then it continues: it seems that first a man\\'s voice is calling\\nme, then a woman\\'s. Later I found out that Mamma had sent our neighbor, the\\none whose apartment she was hiding in, Uncle Sabir Kasumov, to our place, \\ntelling him, \"I know that they\\'ve killed Lyuda. Go there and at least bring \\nher corpse to me so they don\\'t violate her corpse.\" He went and returned empty\\nhanded, but Mamma thought he just didn\\'t want to carry the corpse into his \\napartment. She sent him another time, and then sent his wife, and they were \\nwalking through the rooms looking for me, but I didn\\'t answer their calls. \\nThere was no light, they had smashed the chandeliers and lamps.\\n\\nThey started the pogrom in our apartment around five o\\'clock, and at 9:30 I \\nwent down to the Kasumovs\\'. I went down the stairs myself. I walked out of the\\napartment: how long can you wait for your own death, how long can you be \\ncowardly, afraid? Come what will. I walked out and started knocking on the \\ndoors one after the next. No one, not on the fifth floor, not on the fourth, \\nopened the door. On the third floor, on the landing of the stairway, Uncle \\nSabir\\'s son started to shout, \"Aunt Roza, don\\'t cry, Lyuda\\'s alive!\" He \\nknocked on his own door and out came Aunt Tanya, Igor, and after them, Mamma. \\nAunt Tanya, Uncle Sabir\\'s wife, is an Urdmurt. All of us were in their \\napartment. I didn\\'t see Karina, but she was in their home, too, Lying\\ndelirious, she had a fever. Marina was there too, and my father and mother.\\nAll of my family had gathered there.\\n \\nAt the door I lost consciousness. Igor and Aunt Tanya carried me into the\\napartment.\\n\\nLater I found out what they had done to our Karina. Mamma said, \"Lyuda, \\nKarina\\'s in really serious condition, she\\'s probably dying. If she recognizes \\nyou, don\\'t cry, don\\'t tell her that her face looks so awful.\" It was as though\\nher whole face was paralyzed, you know, everything was pushed over to one \\nside, her eye was all swollen, and everything flowed together, her lips, her \\ncheeks . . . It was as though they had dragged her right side around the whole\\nmicrodistrict, that\\'s how disfigured her face was. I said, \"Fine.\" Mamma was \\nafraid to go into the room, because she went in and hugged Karina and started \\nto cry. I went in. As soon as I saw her my legs gave way. I fell down near the\\nbed, hugged her legs and started kissing them and crying. She opened the eye \\nthat was intact, looked at me, and said, \"Who is it?\" But I could barely talk, \\nmy whole face was so badly beaten. I didn\\'t say, but rather muttered something\\ntender, something incomprehensible, but tender, \"My Karochka, my Karina, my \\nlittle golden one . . . \" She understood me.\\n\\nThen Igor brought me some water, I drank it down and moistened Karina\\'s lips. \\nShe started to groan. She was saying something to me, but I couldn\\'t \\nunderstand it. Then I made out, \"It hurts, I hurt all over.\" Her hair was \\nglued down with blood. I stroked her forehead, her head, she had grit on her \\nforehead, and on her lips . . . She was groaning again, and I don\\'t know how \\nto help her. She calls me over with her hand, come closer. I go to her. She\\'s\\nsaying something to me, but I can\\'t understand her. Igor brings her a pencil \\nand paper and says, \"Write it down.\" She shakes her head as if to say, no, I \\ncan\\'t write. I can\\'t understand what she\\'s saying. She wanted to tell me \\nsomething, but she couldn\\'t. I say, \"Karina, just lie there a little while,\\nthen maybe you\\'ll feel better and you can tell me then.\" And then she says,\\n\"Maybe it\\'ll be too late.\" And I completely . . . just broke down, I couldn\\'t\\ncontrol myself.\\n\\nThen I moistened my hand in the water and wiped her forehead and eye. I dipped\\na handkerchief into the water and squeezed a little water onto her lips. She \\nsays, \"Lyuda, we\\'re not saved yet, we have to go somewhere else. Out of this \\ndamned house. They want to kill us, I know. They\\'ll find us here, too. We need\\nto call Urshan.\" She repeated this to me for almost a whole hour, Until I \\nunderstood her every word. I ask, \"What\\'s his number?\" Urshan Feyruzovich, \\nthat\\'s the head of the administration where she works. \"We have to call him.\" \\nBut I didn\\'t know his home number. I say, \"Karina, what\\'s his number?\" She \\nsays, \"I can\\'t remember.\" I say, \"Who knows his number? Who can I call?\" She \\nsays, \"I don\\'t know anything, leave me alone.\"\\n\\nI went out of the room. Igor stayed to watch over her and sat there, he was \\ncrying, too. I say, \"Mamma, Karina says that we have to call Urshan. How can \\nwe call him? Who knows his telephone number?\" I tell Marina, \"Think, think, \\nwho can we call to find out?\" She started calling; several people didn\\'t \\nanswer. She called a girlfriend, her girlfriend called another girlfriend and \\nfound out the number and called us back. The boss\\'s wife answered and said he \\nwas at the dacha. My voice keeps cracking, I can\\'t talk normally. She says, \\n\"Lyuda, don\\'t panic, get a hold of yourself, go out to those hooligans and \\ntell them that they just can\\'t do that.\" She still didn\\'t know what was really\\ngoing on. I said, \"It\\'s easy for you to say that, you don\\'t understand what\\'s \\nhappening. They are killing people here. I don\\'t think there is a single \\nArmenian left in the building, they\\'ve cut them all up. I\\'m even surprised \\nthat we managed to save ourselves. \"She says, \"Well, OK, if it\\'s that serious \\n. . . \" And all the same she\\'s thinking that my emotions are all churned up \\nand that I\\'m fearing for my life, that in fact it\\'s not all that bad. \"OK, \\nfine, fine,\" she says, \"if you\\'re afraid, OK, as soon as Urshan comes back \\nI\\'ll send him over.\"\\n\\nWe called again because they had just started robbing the apartment directly \\nunder Aunt Tanya\\'s, on the second floor, Asya Dallakian\\'s apartment. She \\nwasn\\'t home, she was staying with her daughter in Karabagh. They destroyed \\neverything there . . . We realized that they still might come back. We kept on\\ntrying to get through to Aunt Tanya--Urshan\\'s wife is named Tanya too and \\nfinally we get through. She says, \"Yes, he\\'s come home, he\\'s leaving for your \\nplace now.\" He came. Of course he didn\\'t know what was happening, either, \\nbecause he brought two of his daughters with him. He came over in his jeep \\nwith his two daughters, like he was going on an outing. He came and saw what \\nshape we were in and what was going on in town and got frightened. He has \\ngrown up daughters, they\\'re almost my age.\\n\\nThe three of us carried out Karina, tossed a coat on her and a warm scarf, and\\nwent down to his car. He took Karina and me to the Maternity Home. . . No, \\nfirst they took us to the po]ice precinct. They had stretchers ready. As\\nsoon as we got out of the car they put Karina and me on stretchers and said\\nthat we were in serious condition and that we mustn\\'t move, we might have\\nfractures. From the stretcher I saw about 30 soldiers sitting and lying on the\\nfirst floor, bandaged, on the concrete floor, groaning . . . This was around\\neleven o\\'clock at night. We had left the house somewhere around 1:30. When I \\nsaw those soldiers I realized that a war was going on: soldiers, enemies\\n. . . everything just like a war.\\n\\nThey carried me into some office on the stretcher. The emergency medical\\npeople from Baku were there. The medical attendant there was an older \\nArmenian. Urshan told him what they had done to Karina because she\\'s so proud \\nshe would never have told. And this aging Armenian . . . his name was Uncle \\nArkady, I think, because someone said \"Arkady, get an injection ready,\" he \\nstarted to fill a syringe, and turned around so as to give Karina a shot. But \\nwhen he looked at her face he became ill. And he was an old man, in his \\nsixties, his hair was all grey, and his moustache, too. He hugged Karina and \\nstarted to cry: \"What have they done to you?!\" He was speaking Armenian. \"What\\nhave they done to you?!\" Karina didn\\'t say anything. Mamma came in then, and \\nshe started to cry, too. The man tried to calm her. \"I\\'ll give you a shot.\" \\nMamma tells him, \"I don\\'t need any shot. Where is the government? Just what \\nare they doing? Look what they\\'ve done to my children! They\\'re killing people,\\nand you\\'re just sitting here!\" Some teacups were standing on the table in \\nthere. \"You\\'re sitting here drinking tea! Look what they\\'ve done to my \\ndaughters! Look what they\\'ve turned them into!\" They gave her something to \\ndrink, some heart medicine, I think. They gave Karina an injection and the\\ndoctor said that she had to be taken to the Maternity Home immediately. Papa \\nand Urshan, I think, even though Papa was in bad shape, helped carry Karina \\nout. When they put her on the stretcher, none of the medics got near her. I \\ndon\\'t know, maybe there weren\\'t any orderlies. Then they came to me: \"What\\'s \\nthe matter with you?\" Their tone was so official that I wrapped myself tighter\\nin the half-length coat. I had a blanket on, too, an orange one, Aunt Tanya\\'s.\\nI said, \"I\\'m fine.\" Uncle Arkady came over and was soothing me, and then told \\nthe doctor, \"You leave, let a woman examine her.\" A woman came, an \\nAzerbaijani, I believe, and said, \"What\\'s wrong with you?\" I was wearing my \\nsister Lyuda\\'s nightshirt, the sister who at this time was in Yerevan. When \\nshe was nursing her infant she had cut out a big hole in it so that it would \\nbe easier to breast feed the baby. I tore the night shirt some more and showed\\nher. I took it off my shoulders and turned my back to her. There was a huge \\nwound, about the size of a hand, on my back, from the Indian vase. She said \\nsomething to them and they gave me two shots. She said that it should be \\ndressed with something, but that they\\'d do that in the hospital.\\n\\nThey put me on a stretcher, too. They started looking for people to carry me. \\nI raised up my head a little and wanted to sit up, and this woman, I don\\'t \\nknow if she was a doctor or a nurse, said, \"Lie still, you mustn\\'t move.\" When\\nI was lying back down I saw two policemen leading a man. His profile seemed \\nvery familiar to me. I shouted, \"Stop!\" One of the policemen turned and says, \\n\"What do you want?\" I say, \"Bring him to me, I want to look at him.\" They \\nbrought him over and I said, \"That person was just in our apartment and he \\njust raped me and my sister. I recognize him, note it down.\" They said, \\n\"Fine,\" but didn\\'t write it down and led him on. I don\\'t know where they were \\ntaking him.\\n\\nThen they put my stretcher near where the injured and beaten soldiers were \\nsitting. They went to look for the ambulance driver so he would bring the car \\nup closer. One of the soldiers started talking to me, \"Sister . . . \" I don\\'t \\nremember the conversation exactly, but he asked me were we lived and what they\\ndid to us. I asked him, \"Where are you from?\" He said that he was from Ufa. \\nApparently they were the first that were brought in. The Ufa police. Later I \\nlearned that they suffered most of all. He says, \"OK, you\\'re Armenians, they \\ndidn\\'t get along with you, but I\\'m a Russian,\" he says, \"what are they trying \\nto kill me for?\" Oh, I remembered something else. When I went out onto the \\nbalcony with Kuliyev for a hammer and nails I looked out the window and saw \\ntwo Azerbaijanis beating a soldier near the kindergarten. He was pressed \\nagainst the fence and he covered his head with his arms, they were beating him\\nwith his own club. The way he cried \"Mamma\" made my skin crawl. I don\\'t know \\nwhat they did to him, if he\\'s still alive or not. And something else. Before \\nhe attack on our house we saw sheets, clothes, and some dishes flying from the\\nthird or fourth floor of the neighboring building, but I didn\\'t think it was \\nAzerbaijanis attacking Armenians. I thought that something was on fire or they\\nwere throwing something they didn\\'t need out, or someone was fighting with \\nsomeone. It was only later, when they were burning a passenger car in the \\nyard, when the neighbors said that they were doing that to the Armenians, that\\nI realized that this was serious, that it was anti-Armenian.\\n\\nThey took Karina and me to the Sumgait Maternity Home. Mamma went to them too \\nand said, \"I\\'ve been beaten too, help me.\" But they just ignored her. My \\nfather went to them and said in a guilty voice, as though it was his fault \\nthat he\\'d been beaten, and says, \"My ribs hurt so much, those creeps have \\nprobably broken my ribs. Please look at them.\" The doctor says, \"That\\'s not my\\njob.\" Urshan said, \"Fine, I\\'ll take you to my place and if we need a doctor, \\nI\\'ll find you one. I\\'ll bring one and have him look at you. And he drove them \\nto his apartment.\\n\\nMarina and I stayed there. They examined us. I was more struck by what the \\ndoctor said than by what those Azerbaijanis in our apartment did to us. I \\nwasn\\'t surprised when they beat us they wanted to beat us, but I was very\\nsurprised that in a Soviet medical facility a woman who had taken the\\nHippocratic Oath could talk to victims like that. By happy--or unhappy--\\ncoincidence we were seen by the doctor that had delivered our Karina. And she,\\nhaving examined Karina, said, \"No problem, you got off pretty good. Not like \\nthey did in Kafan, when you Armenians were killing and raping our women.\\n\"Karina was in such terrible condition that she couldn\\'t say anything--she\\nwould certainly have had something to say! Then they examined me. The same \\nstory. They put us in a separate ward. No shots, no medicinal powders, no \\ndrugs. Absolutely none! They didn\\'t even give us tea. All the women there soon\\nfound out that in ward such and such were Armenians who had been raped. And\\nthey started coming and peering through the keyhole, the way people look at \\nzoo animals. Karina didn\\'t see this, she was lying there, and I kept her from \\nseeing it.\\n\\nThey put Ira B. in our ward. She had also been raped. True, she didn\\'t have \\nany serious bodily injuries, but when she told me what had happened at their \\nplace, I felt worse for them than I did for us. Because when they raped Ira \\nher daughter was in the room, she was under the bed on which it happened. And\\nIra was holding her daughter\\'s hand, the one who was hiding under the bed.\\nWhen they were beating Ira or taking her earrings off, gold, when she \\ninvoluntarily let go of her daughter\\'s hand, her daughter took her hand again.\\nHer daughter is in the fourth grade, she\\'s 11 years old. I felt really awful \\nwhen I heard that. Ira asked them not to harm her daughter, she said, \"Do what\\nyou want with me, just leave my daughter alone.\" Well, they did what they \\nwanted. They threatened to kill her daughter if she got in their way. Now I \\nwould be surprised if the criminals had behaved any other way that night. It \\nwas simply Bartholomew\\'s Night, I say, they did what they would love to do \\nevery day: steal, kill, rape . . .\\n\\nMany are surprised that those animals didn\\'t harm the children. The beasts \\nexplained it like this: this would be repeated in 15 to 20 years, and those \\nchildren would be grown, and then, as they put it, \"we\\'ll come take the \\npleasure out of their lives, those children.\" This was about the girls that\\nwould be young women in 15 years. They were thinking about their tomorrow \\nbecause they were sure that there would be no trial and no investigation, just\\nas there was no trial or investigation in 1915, and that those girls could be \\nof some use in 15 years. This I heard from the investigators; one of the \\nvictims testified to it. That\\'s how they described their own natures, that\\nthey would still be bloodthirsty in 15 to 20 years, and in 100 years--they\\nthemselves said that.\\n\\nAnd this, too. Everyone is surprised that they didn\\'t harm our Marina. Many \\npeople say that they either were drunk or had smoked too much. I don\\'t know \\nwhy their eyes were red. Maybe because they hadn\\'t slept the night before, \\nmaybe for some other reason, I don\\'t know. But they hadn\\'t been smoking and \\nthey weren\\'t drunk, I\\'m positive, because someone who has smoked will stop at \\nnothing he has the urge to do. And they spoke in a cultured fashion with \\nMarina: \"Little sister, don\\'t be afraid, we won\\'t harm you, don\\'t look over \\nthere [where I was], you might be frightened. You\\'re a Muslim, a Muslim woman \\nshouldn\\'t see such things.\" So they were really quite sober . . .\\n\\nSo we came out of that story alive. Each every day we have lived since it all \\nhappened bears the mark of that day. It wasn\\'t even a day, of those several \\nhours. Father still can\\'t look us in the eyes. He still feels guilty for what\\nhappened to Karina, Mother, and me. Because of his nerves he\\'s started talk-\\ning to himself, I\\'ve heard him argue with himself several times when he\\nthought no one is listening: \"Listen,\" he\\'ll say, \"what could I do? What could\\nI do alone, how could I protect them?\" I don\\'t know where to find the words,\\nit\\'s not that I\\'m happy, but I am glad that he didn\\'t see it all happen. \\nThat\\'s the only thing they spared us . . . or maybe it happened by chance. Of \\ncourse he knows it all, but there\\'s no way you could imagine every last detail\\nof what happened. And there were so many conversations: Karina and I spoke\\ntogether in private, and we talked with Mamma, too. But Father was never\\npresent at those conversations. We spare him that, if you can say that. And\\nwhen the investigator comes to the house, we don\\'t speak with Father present.\\n\\nOn February 29, the next clay, Karina and I were discharged from the hospital.\\nFirst they released me, but since martial law had been declared in the city, \\nthe soldiers took me to the police precinct in an armored personnel carrier. \\nThere were many people there, Armenian victims. I met the Tovmasian family \\nthere. From them I learned that Rafik and their Uncle Grant had died. They \\nwere sure that both had died. They were talking to me and Raya, Rafik\\'s wife \\nand Grant\\'s daughter, and her mother, were both crying.\\n\\nThen they took us all out of the office on the first floor into the yard.\\nThere\\'s a little one-room house outside there, a recreation and reading area.\\nThey took us in there. The women were afraid to go because they thought\\nthat they were shooing us out of the police precinct because it had become\\nso dangerous that even the people working at the precinct wanted to hide.\\nThe women were shouting. They explained to them: \"We want to hide you\\nbetter because it\\'s possible there will be an attack on the police precinct.\"\\n\\nWe went into the little house. There were no chairs or tables in there. We\\nhad children with us and they were hungry; we even had infants who needed to \\nhave their diapers changed. No one had anything with them. It was just awful. \\nThey kept us there for 24 hours. From the window of the one room house you \\ncould see that there were Azerbaijanis standing on the fences around the \\npolice precinct, as though they were spying on us. The police precinct is \\nsurrounded by a wall, like a fence, and it\\'s electrified, but if they were \\nstanding on the wall, it means the electricity was shut off. This brought \\ngreat psychological pressure to bear on us, particularly on those who hadn\\'t \\njust walked out of their apartments, but who hadn\\'t slept for 24 hours, or 48,\\nor those who had suffered physically and spiritually, the ones who had lost \\nfamily members. For us it was another ordeal. We were especially frightened \\nwhen all the precinct employees suddenly disappeared. We couldn\\'t see a single\\nperson, not in the courtyard and not in the windows. We thought that they must\\nhave already been hiding under the building, that they must have some secret \\nroom down there. People were panicking: they started throwing themselves at\\none another . . . That\\'s the way it is on a sinking ship. We heard those \\npeople, mainly young people, whistling and whopping on the walls. We felt that\\nthe end was approaching. I was completely terrified: I had left Karina in the \\nhospital and didn\\'t know where my parents were. I was sort of calm about my \\nparents, I was thinking only about Karina, if, Heaven forbid, they should \\nattack the hospital, they would immediately tell them that there was an \\nArmenian in there, and something terrible would happen to Karina again, and \\nshe wouldn\\'t be able to take it.\\n\\nThen soldiers with dogs appeared. When they saw the dogs some of the people \\nclimbed down off the fence. Then they brought in about another 30 soldiers.\\nThey all had machine guns in readiness, their fingers on the triggers. We \\ncalmed down a little. They brought us chairs and brought the children some \\nlittle cots and showed us where we could wash our hands, and took the children\\nto the toilet. But we all sat there hungry, but to be honest, it would never \\nhave occurred to any of us that we hadn\\'t eaten for two days and that people \\ndo eat.\\n\\nThen, closer to nightfall, they brought a group of detained criminals. They \\nwere being watched by soldiers with guard dogs. One of the men came back from \\nthe courtyard and told us about it. Raya Tovmasian . . . it was like a \\ndifferent woman had been substituted. Earlier she had been crying, wailing, \\nand calling out: \"Oh, Rafik!,\" but when she heard about this such a rage came \\nover her! She jumped up, she had a coat on, and she started to roll up her \\nsleeves like she was getting ready to beat someone. And suddenly there were \\nsoldiers, and dogs, and lots of people. She ran over to them. The bandits were\\nstanding there with their hands above their heads facing the wall. She went up\\nto one of them and grabbed him by the collar and started to shake and thrash \\nhim! Then, on to a second, and a third. Everyone was rooted to the spot. Not \\none of the soldiers moved, no one went up to help or made her stop her from \\ndoing it. And the bandits fell down and covered their heads with their hands, \\nmuttering something. She came back and sat down, and something akin to a smile\\nappeared on her face. She became so quiet: no tears, no cries. Then that round\\nwas over and she went back to beat them again. She was walking and cursing \\nterribly: take that, and that, they killed my husband, the bastards, the \\ncreeps, and so on. Then she came back again and sat down. She probably did \\nthis the whole night through, well, it wasn\\'t really night, no one slept. She \\nwent five or six times and beat them and returned. And she told the women, \\n\"What are you sitting there for? They killed your husbands and children, they \\nraped, and you\\'re just sitting there. You\\'re sitting and talking as though \\nnothing had happened. Aren\\'t you Armenians?\" She appealed to everyone, but no \\none got up. I was just numb, I didn\\'t have the strength to beat anyone, I \\ncould barely hold myself up, all the more so since I had been standing for so \\nmany hours--I was released at eleven o\\'clock in the morning and it was already\\nafter ten at night because there weren\\'t enough chairs, really it was the \\nelderly and women with children who sat. I was on my feet the whole time. \\nThere was nothing to breathe, the door was closed, and the men were smoking. \\nThe situation was deplorable.\\n\\nAt eleven o\\'clock at night policemen came for us, local policemen, \\nAzerbaijanis. They said, \"Get up. They\\'ve brought mattresses, you can wash up\\nand put the children to bed.\" Now the women didn\\'t want to leave this place, \\neither. The place had become like home, it was safe, there were soldiers with \\ndogs. If anyone went outside, the soldiers would say, \"Oh, it\\'s our little \\nfamily,\" and things like that. The soldiers felt this love, and probably, for \\nthe first time in their lives perceived themselves as defenders. Everyone\\nspoke from the heart, cried, and hugged them and they, with their loaded\\nmachine guns in their hands, said, \"Grandmother, you mustn\\'t approach me,\\nI\\'m on guard.\" Our people would say, \"Oh, that\\'s all right.\" They hugged\\nthem, one woman even kissed one of the machine guns. This was all terribly\\nmoving for me. And the small children kept wanting to pet the dogs.\\n\\nThey took us up to the second floor and said, \"You can undress and sleep in \\nhere. Don\\'t be afraid, the precinct is on guard, and it\\'s quiet in the city.\"\\nThis was the 29th, when the killing was going on in block 41A and in other\\nplaces. Then we were told that all the Armenians were being gathered at the\\nSK club and at the City Party Committee. They took us there. On the way I \\nasked them to stop at the Maternity Home: I wanted to take Karina with me.\\nI didn\\'t know what was happening there. They told me, \"Don\\'t worry, the\\nMaternity Home is full of soldiers, more than mothers-to-be. So you can rest\\nassured. I say, \"Well, I won\\'t rest assured regardless, because the staff in\\nthere is capable of anything.\"\\n\\nWhen I arrived at the City Party Committee it turned out that Karina had\\nalready been brought there. They had seen fit to release her from the hospi-\\ntal, deciding that she felt fine and was no longer in need of any care. Once\\nwe were in the City Party Committee we gave free reign to our tears. We met \\nacquaintances, but everyone was somehow divided into two groups, those who \\nhadn\\'t been injured, who were clothed, who had brought a pot of food with \\nthem, and so on, and those, like me, like Raya, who were wearing whatever had \\ncome their way. There were even people who were all made up, dolled up like \\nthey had come from a wedding. There were people without shoes, naked people, \\nhungry people, those who were crying, and those who had lost someone. And of \\ncourse the stories and the talk were flying: \"Oh, I heard that they killed \\nhim!\" \"What do you mean they killed him!\" \"He stayed at work!\" \"Do you know \\nwhat\\'s happening at this and such a plant? Talk like that.\\n\\nAnd then I met Aleksandr Mikhailovich Gukasian, the teacher. I know him very \\nwell and respect him highly. I\\'ve known him for a long time. They had a small \\nroom, well really it was more like a study-room. We spent a whole night \\ntalking in that study once. On March 1 we heard that Bagirov [First Secretary \\nof the Communist Party of Azerbaijan SSR] had arrived. Everyone ran to see \\nBagirov, what news he had brought with him and how this was all being viewed \\nfrom outside. He arrived and everyone went up to him to talk to him and ask \\nhim things. Everyone was in a tremendous rage. But he was protected by \\nsoldiers, and he went up to the second floor and didn\\'t deign to speak with \\nthe people. Apparently he had more important things to do.\\n\\nSeveral hours passed. Gukasian called me and says, \"Lyudochka, find another \\ntwo or three. We\\'re going to make up lists, they asked for them upstairs, \\nlists of the dead, those whose whereabouts are unknown, and lists of people \\nwho had pogroms of their apartments and of those whose cars were burned.\" I \\nhad about 50 people in my list when they called me and said, \"Lyuda, your \\nMamma has arrived, she\\'s looking for you, she doesn\\'t believe that you are \\nalive and well and that you\\'re here.\" I gave the lists to someone and asked \\nthem to continue what I was doing and went off.\\n\\nThe list was imprecise, of course. It included Grant Adamian, Raya Tovmasian\\'s\\nfather, who was alive, but at the time they thought him dead. There was Engels\\nGrigorian\\'s father and aunt, Cherkez and Maria. The list also included the \\nname of my girlfriend and neighbor, Zhanna Agabekian. One of the guys said \\nthat he had been told that they chopped her head off in the courtyard in front\\nof the Kosmos movie theater. We put her on the list too, and cried, but later \\nit turned out that that was just a rumor, that in fact an hour earlier she had\\nsomehow left Sumgait for the marina and from there had set sail for \\nKrasnovodsk, where, thank God, she was alive and well. I should also say that \\nin addition to those who died that list contained people who were rumored \\nmissing or who were so badly wounded that they were given up for dead. 3\\n\\nAll the lists were taken to Bagirov. I don\\'t remember how many dead were \\ncontained in the list, but it\\'s a fact that when Gukasian came in a couple \\nof minutes later he was cursing and was terribly irate. I asked, \"What\\'s \\ngoing on?\" He said, \"Lyuda, can you imagine what animals, what scoundrels\\nthey are! They say that they lost the list of the dead. Piotr Demichev\\n[Member of the Politburo of the Central Committee of the Communist Party\\nof the USSR] has just arrived, and we were supposed to submit the list to\\nhim, so that he\\'d see the scope of the slaughter, of the tragedy, whether it\\nwas one or fifty.\" They told him that the list had disappeared and they\\nshould ask everyone who hadn\\'t left for the Khimik boarding house all over\\nagain. There were 26 people on our second list. I think that the number 26\\nwas the one that got into the press and onto television and the radio, because\\nthat\\'s the list that Demichev got. I remember exactly that there were 26 \\npeople on the list, I had even told Aleksandr Mikhailovich that that was only \\na half of those that were on the first list. He said, \"Lyuda, please, try to\\nremember at least one more.\" But I couldn\\'t remember anyone else. But there\\nwere more than 30 dead. Of that I am certain. The government and the Procuracy\\ndon\\'t count the people who died of fright, like sick people and old people \\nwhose lives are threatened by any shock. They weren\\'t registered as victims of\\nthe Sumgait tragedy. And then there may be people we didn\\'t know. So many \\npeople left Sumgait between March 1 and 8! Most of them left for smaller towns\\nin Russia, and especially to the Northern Caucasus, to Stavropol, and the \\nKrasnodarsk Territory. We don\\'t have any information on them. I know that \\nthere are people who set out for parts around Moscow. In the periodical \\nKrestyanka [Woman Farmer] there was a call for people who know how to milk \\ncows, and for mechanics, and drivers, and I know a whole group of people went \\nto help out. Also clearly not on our list are those people who died entering\\nthe city, who were burned in their cars. No one knows about them, except the \\nAzerbaijanis, who are hardly likely to say anything about it. And there\\'s\\nmore. A great many of the people who were raped were not included in the list \\ndrawn up at the Procuracy. I know of three instances for sure, and I of course\\ndon\\'t know them all. I\\'m thinking of three women whose parents chose not to \\npublicize what had happened, that is, they didn\\'t take the matter to court, \\nthey simply left. But in so doing they didn\\'t cease being victims. One of them\\nis the first cousin of my classmate Kocharian. She lived in Microdistrict No. \\n8, on the fifth floor. I can\\'t tell you the building number and I don\\'t know \\nher name. Then comes the neighbor of one of my relatives, she lived in \\nMicrodistrict 1 near the gift shop. I don\\'t know her name, she lives on the \\nsame landing as the Sumgait procurator. They beat her father, he was holding \\nthe door while his daughter hid, but he couldn\\'t hold the door forever, and \\nwhen she climbed over the balcony to the neighbors\\' they seized her by her \\nbraid. Like the Azerbaijanis were saying, it was a very cultured mob, because \\nthey didn\\'t kill anyone, they only raped them and left. And the third one \\n. . . I don\\'t remember who the third one was anymore.\\n\\nThey transferred us on March 1. Karina still wasn\\'t herself. Yes, we lived for\\ndays in the SK, in the cultural facility, and at the Khimik. They lived there \\nand I lived at the City Party Committee because I couldn\\'t stay with Karina; \\nit was too difficult for me, but I was at peace: she had survived. I could \\nalready walk, but really it was honest words that held me up. Thanks to the \\nsocial work I did there, I managed to persevere. Aleksandr Mikhailovich said, \\n\"If it weren\\'t for the work I would go insane.\" He and I put ourselves in gear\\nand took everything upon ourselves: someone had an infant and needed diapers \\nand free food, and we went to get them. The first days we bought everything, \\nalthough we should have received it for free. They were supposed to have been \\ndispensed free of charge, and they sold it to us. Then, when we found out it \\nwas free, we went to Krayev. At the time, fortunately, you could still drop by\\nto see him like a neighbor, all the more so since everything was still clearly\\nvisible on our faces. Krayev sent a captain down and he resolved the issue.\\n\\nOn March 2 they sent two investigators to see us: Andrei Shirokov and Vladimir\\nFedorovich Bibishev. The way it worked out, in our family they had considered \\nonly Karina and me victims, maybe because she and I wound up in the hospital.\\nMother and Father are considered witnesses, but not victims.\\n\\nShirokov was involved with Karina\\'s case, and Bibishev, with mine. After I \\ntold him everything, he and I planned to sit down with the identikit and\\nrecord everyone I could remember while everything was still fresh in my mind. \\nWe didn\\'t work with the identikit until the very last day because the\\nconditions weren\\'t there. The investigative group worked slowly and did poor \\nquality work solely because the situation wasn\\'t conducive to working: there \\nweren\\'t enough automobiles, especially during the time when there was a \\ncurfew, and there were no typewriters for typing transcripts, and no still or \\nvideo cameras. I think that this was done on purpose. We\\'re not so poor that \\nwe can\\'t supply our investigators with all that stuff. It was done especially \\nto draw out the investigation, all the more so since the local authorities saw\\nthat the Armenians were leaving at the speed of light, never to return to \\nSumgait. And the Armenians had a lot to say I came to an agreement with \\nBibishev, I told him myself, \"Don\\'t you worry, if it takes us a month or two \\nmonths, I\\'ll be here. I\\'m not afraid, I looked death in the eyes five times in\\nthose two days, I\\'ll help you conduct the investigation.\"\\n\\nHe and I worked together a great deal, and I used this to shelter Karina, I\\ngave them so much to do that for a while they didn\\'t have the time to get to\\nher, so that she would at least have a week or two to get back to being her-\\nself. She was having difficulty breathing so we looked for a doctor to take x-\\nrays. She couldn\\'t eat or drink for nine days, she was nauseous. I didn\\'t eat\\nand drank virtually nothing for five days. Then, on the fifth day, when we\\nwere in Baku already, the investigator told me, \"How long can you go on like \\nthis? Well fine, so you don\\'t want to eat, you don\\'t love yourself, you\\'re\\nnot taking care of yourself, but you gave your word that you would see this\\ninvestigation through. We need you.\" Then I started eating, because in fact I\\nwas exhausted. It wasn\\'t enough that I kept seeing those faces in our apart-\\nment in my mind, every day I went to the investigative solitary confinement\\ncells and prisons. I don\\'t know . . . we were just everywhere! Probably in\\nevery prison in the city of Baku and in all the solitary confinement cells of\\nSumgait. At that time they had even turned the drunk tank into solitary \\nconfinement.\\n\\nThus far I have identified 31 of the people who were in our apartment. Mamma \\nidentified three, and Karina, two. The total is 36. Marina didn\\'t identify \\nanyone, she remembers the faces of two or three, But they weren\\'t among the \\nphotographs of those detained. I told of the neighbor I recognized. The one \\nwho went after the axe. He still hasn\\'t been detained, he\\'s still on the \\nloose. He\\'s gone, and it\\'s not clear if he will be found or not. I don\\'t know \\nhis first or last name. I know which building he lived in and I know his \\nsisters\\' faces. But he\\'s not in the city. The investigators informed me that \\neven if the investigation is closed and even if the trial is over they will \\ncontinue looking for him.\\n\\nThe 31 people I identified are largely blue-collar workers from various \\nplants, without education, and of the very lowest level in every respect.\\nMostly their ages range from 20 to 30 years; there was one who was 48. Only\\none of them was a student. He was attending the Azerbaijan Petroleum and\\nChemical Institute in Sumgait, his mother kept trying to bribe the investiga-\\ntor. Once, thinking that I was an employee and not a victim, she said in front\\nof me \"I\\'ll set you up a restaurant worth 500 rubles and give you 600 in cash\\nsimply for keeping him out of Armenia,\" that is, to keep him from landing in\\na prison on Armenian soil. They\\'re all terribly afraid of that, because if the\\ninvestigator is talking with a criminal and the criminal doesn\\'t confess even\\nthough we identified him, they tell him--in order to apply psychological\\npressure--they say, \"Fine, don\\'t confess, just keep silent. When you\\'re in an\\nArmenian prison, when they find out who you are, they\\'ll take care of you\\nin short order.\" That somehow gets to them. Many give in and start to talk.\\n\\nThe investigators and I were in our apartment and videotaped the entire\\npogrom of our apartment, as an investigative experiment. It was only then\\nthat I saw the way they had left our apartment. Even without knowing who was \\nin our apartment, you could guess. They stole, for example, all the money and \\nall the valuables, but didn\\'t take a single book. They tore them up, burned \\nthem, poured water on them, and hacked them with axes. Only the Materials\\nfrom the 27th Congress of the Communist Party of the Soviet Union and James \\nFenimore Cooper\\'s Last of the Mohigans. Oh yes, lunch was ready, we were \\nboiling a chicken, and there were lemons for tea on the table. After they had \\nbeen in our apartment, both the chicken and the lemons were gone. That\\'s \\nenough to tell you what kind of people were in our apartment, people who don\\'t\\neven know anything about books. They didn\\'t take a single book, but they did \\ntake worn clothing, food, and even the cheapest of the cheap, worn-out \\nslippers.\\n\\nOf those whom I identified, four were Kafan Azerbaijanis living in Sumgait. \\nBasically, the group that went seeking \"revenge\"--let\\'s use their word for \\nit--was joined by people seeking easy gain and thrill-seekers. I talked with \\none of them. He had gray eyes, and somehow against the back-drop of all that \\nblack I remembered him specifically because of his of his eyes. Besides taking\\npart in the pogrom of our apartment, he was also involved in the murder of \\nTamara Mekhtiyeva from Building 16. She was an older Armenian who had recently\\narrived from Georgia, she lived alone and did not have anyone in Sumgait. I \\ndon\\'t know why she had a last name like that, maybe she was married to an \\nAzerbaijani. I had laid eyes on this woman only once or twice, and know \\nnothing about her. I do know that they murdered her in her apartment with an \\naxe. Murdering her wasn\\'t enough for them. They hacked her into pieces and \\nthrew them into the tub with water.\\n\\nI remember another guy really well too, he was also rather fair-skinned. You \\nknow, all the people who were in our apartment were darker than dark, both \\ntheir hair and their skin. And in contrast with them, in addition to the grey-\\neyed one, I remember this one fellow, the one l took to be a Lezgin. I \\nidentified him. As it turned out he was Eduard Robertovich Grigorian, born\\nin the city of Sumgait, and he had been convicted twice. One of our own. How \\ndid I remember him? The name Rita was tattooed on his left or right hand. I \\nkept thinking, is that Rita or \"puma,\" which it would be if you read the word \\nas Latin characters instead of Cyrillic, because the Cyrillic \"T\" was the one \\nthat looks like a Latin \"M.\" When they led him in he sat with his hands behind\\nhis back. This was at the confrontation. He swore on every holy book, tried to\\nput in an Armenian word here and there to try and spark my compassion, and \\ntold me that I was making a mistake, and called me \"dear sister.\" He said, \\n\"You\\'re wrong, how could I, an Armenian, raise my hand against my own, an \\nArmenian,\" and so on. He spoke so convincingly that even the investigator \\nasked me, \"Lyuda, are you sure it was he?\" I told him, \"I\\'ll tell you one more\\nidentifying mark. If I\\'m wrong I shall apologize and say I was mistaken. The \\nname Rita is tattooed on his left or right hand.\" He went rigid and became \\npale. They told him, \"Put your hands on the table.\" He put his hands on the\\ntable with the palms up. I said, \"Now turn your hands over,\" but he didn\\'t \\nturn his hands over. Now this infuriated me. If he had from the very start\\nacknowledged his guilt and said that he hadn\\'t wanted to do it, that they \\nforced him or something else, I would have treated him somewhat differently.\\nBut he insolently stuck to his story, \"No, I did not do anything, it wasn\\'t \\nme.\" When they turned his hands over the name Rita was in fact tattooed on his\\nhand. His face distorted and he whispered something wicked. I immediately flew\\ninto a rage. There was an ashtray on the table, a really heavy one, made out \\nof granite or something, very large, and it had ashes and butts in it. \\nCatching myself quite by surprise, I hurled that ashtray at him. But he ducked\\nand the ashtray hit the wall, and ashes and butts rained down on his head and \\nback. And he smiled. When he smiled it provoked me further. I don\\'t know how, \\nbut I jumped over the table between us and started either pounding him or \\nstrangling him; I no longer remember which. When I jumped I caught the \\nmicrophone cord. The investigator was there, Tolya . . .I no longer recall his\\nlast name, and he says, \"Lyudochka, it\\'s a Japanese microphone! Please . . .\\n\" And shut off all the equipment on the spot, it was all being video taped. \\nThey took him away. I stayed, and they talked to me a little to calm me down, \\nbecause we needed to go on working, I only remember Tolya telling me, \"You\\'re \\nsome actress! What a performance!\" I said, \"Tolya, honestly . . . \" Beforehand\\nthey would always tell me, \"Lyuda, more emotion. You speak as calmly as if \\nnothing had happened to you.\" I say, \"I don\\'t have any more strength or \\nemotion. All my emotions are behind me now, I no longer have the strength \\n. . . I don\\'t have the strength to do anything.\" And he says, \"Lyuda, how were\\nyou able to do that?\" And when I returned to normal, drinking tea and watching\\nthe tape, I said, \"Can I really have jumped over that table? I never jumped \\nthat high in gym class.\"\\n\\nSo you could say the gang that took over our apartment was international. Of \\nthe 36 we identified there was an Armenian, a Russian, Vadim Vorobyev, who \\nbeat Mamma, and 34 Azerbaijanis.\\n\\nAt the second meeting with Grigorian, when he had completely confessed his \\nguilt, he told of how on February 27 the Azerbaijanis had come knocking. Among\\nthem were guys--if you can call them guys--he knew from prison. They said, \\n\"Tomorrow we\\'re going after the Armenians. Meet us at the bus station at three\\no\\'clock.\" He said, \"No, I\\'m not coming.\" They told him, \"If you don\\'t come \\nwe\\'ll kill you.\" He said, \"Alright, I\\'ll come.\" And he went.\\n\\nThey also went to visit my classmate from our microdistrict, Kamo Pogosian. He\\nhad also been in prison; I think that together they had either stolen a \\nmotorcycle or dismantled one to get some parts they needed. They called him \\nout of his apartment and told him the same thing: \"Tomorrow we\\'re going to get\\nthe Armenians. Be there.\" He said, \"No.\" They pulled a knife on him. He said, \\n\"I\\'m not going all the same.\" And in the courtyard on the 27th they stabbed \\nhim several times, in the stomach. He was taken to the hospital. I know he was\\nin the hospital in Baku, in the Republic hospital. If we had known about that \\nwe would have had some idea of what was to come on the 28th.\\n\\nI\\'ll return to Grigorian, what he did in our apartment. I remember that he\\nbeat me along with all the rest. He spoke Azerbaijani extremely well. But he\\nwas very fair-skinned, maybe that led me to think that they had it out for\\nhim, too. But later it was proved that he took part in the beating and burning\\nof Shagen Sargisian. I don\\'t know if he participated in the rapes in our \\napartment; I didn\\'t see, I don\\'t remember. But the people who were in our \\napartment who didn\\'t yet know that he was an Armenian said that he did. I \\ndon\\'t know if he confessed or not, and I myself don\\'t recall because I blacked\\nout very often. But I think that he didn\\'t participate in the rape of Karina\\nbecause he was in the apartment the whole time. When they carried her into the\\ncourtyard, he remained in the apartment.\\n\\nAt one point I was talking with an acquaintance about Edik Grigorian. From her\\nI learned that his wife was a dressmaker, his mother is Russian, he doesn\\'t \\nhave a father, and that he\\'s been convicted twice. Well this will be his third\\nand, I hope, last sentence. He beat his wife, she was eternally coming to work\\nwith bruises. His wife was an Armenian by the name of Rita.\\n\\nThe others who were detained . . . well they\\'re little beasts. You really can\\'t\\ncall them beasts, they\\'re just little beasts. They were robots carrying out\\nsomeone else\\'s will, because at the investigation they all said, \"I don\\'t \\nunderstand how I could have done that, I was out of my head.\" But we know that\\nthey were won around to it and prepared for it, that\\'s why they did it. In the\\nname of Allah, in the name of the Koran, in the name of propagating Islam--\\nthat\\'s holy to them--that\\'s why they did everything they were commanded to do.\\nBecause I saw they didn\\'t have minds of their own, I\\'m not talking about their\\nlevel of cultural sophistication or any higher values. No education, they\\nwork, have a slew of children without the means to raise them properly, they \\ncrowd them in, like at the temporary housing, and apparently, they were \\npromised that if they slaughtered the Armenians they would receive apartments.\\nSo off they went. Many of them explained their participation saying, \"they \\npromised us apartments.\"\\n\\nAmong them was one who genuinely repented. I am sure that he repented from the\\nheart and that he just despised himself after the incident. He worked at a \\nchildren\\'s home, an Azerbaijani, he has two children, and his wife works at \\nthe children\\'s home too. Everything that they acquired, everything that they \\nhave they earned by their own labor, and wasn\\'t inherited from parents or \\ngrandparents. And he said, \"I didn\\'t need anything I just don\\'t know . . . how\\nI ended up in that; it was like some hand was guiding me. I had no will of my \\nown, I had no strength, no masculine dignity, nothing.\" And the whole time I\\nkept repeating, \"Now you imagine that someone did the same to your young wife \\nright before your own eyes.\" He sat there and just wailed.\\n\\nBut that leader in the Eskimo dogskin coat was not detained. He performed a \\nmarvelous disappearing act, but I think that they\\'ll get onto him, they just \\nhave to work a little, because that Vadim, that boy, according to his\\ngrandfather, is in touch with the young person who taught him what to do, how \\nto cover his tracks. He was constantly exchanging jackets with other boys he \\nknew and those he didn\\'t, either, and other things as well, and changed \\nhimself like a chameleon so they wouldn\\'t get onto him, but he was detained.\\n\\nThat one in the Eskimo dogskin coat was at the Gambarians\\' after Aleksandr \\nGambarian was murdered. He came in and said, \"Let\\'s go, enough, you\\'ve spilled\\nenough blood here.\"\\n\\nMaybe Karina doesn\\'t know this but the reason they didn\\'t finish her off was \\nthat they were hoping to take her home with them. I heard this from Aunt Tanya\\nand her sons, the Kasumovs, who were in the courtyard near the entryway. They \\nliked her very much, and they had decided to take her to home with them. When \\nKarina came to at one point--she doesn\\'t remember this yet, this the neighbors \\nold me--and she saw that there was no one around her, she started crawling to \\nthe entryway. They saw that she was still alive and came back, they were \\nalready at the third entryway, on their way to the Gambarians\\'. They came back\\nand started beating her to finish her. If she had not come to she would have \\nsustained lesser bodily injuries, they would have beat her less. An older \\nwoman from our building, Aunt Nazan, an Azerbaijani, all but lay on top of \\nKarina, crying and pleading that they leave her alone, but they flung her off.\\nThe woman\\'s grown sons were right nearby; they picked her up in their hands \\nand led her home. She howled and cried out loudly and swore: God is on Earth, \\nhe sees everything, and He won\\'t forgive this.\\n\\nThere was another woman, too, Aunt Fatima, a sick, aging woman from the first \\nfloor, she\\'s already retired. Mountain dwellers, and Azerbaijanis, too, have a\\ncustom: If men are fighting, they throw a scarf under their feet to stop them.\\nBut they trampled her scarf and sent her home. To trample a scarf is \\ntantamount to trampling a woman\\'s honor.\\n\\nNow that the investigation is going on, now that a lot is behind us and we \\nhave gotten back to being ourselves a little, I think about how could these \\nevents that are now called the Sumgait tragedy happen? How did they come \\nabout? How did it start? Could it have been avoided? Well, it\\'s clear that \\nwithout a signal, without permission from the top leadership, it would not \\nhave happened. All the same, I\\'m not afraid to say this, the Azerbaijanis,\\nlet other worthy people take no offense, the better representatives of their \\nnations, let them take no offense, but the Azerbaijanis in their majority are \\na people who are kept in line only by fear of the law, fear of retribution for\\nwhat they have done. And when the law said that they could do all that, like\\nunleashed dogs who were afraid they wouldn\\'t have time to do everything, they \\nthrew themselves from one thing to the next so as to be able to get more done,\\nto snatch a bit more. The smell of the danger was already in the air on\\nFebruary 27. You could tell that something was going to happen. And everyone \\nwho had figured it out took steps to avoid running into those gangs. Many left\\nfor their dachas, got plane tickets for the other end of the country, just got\\nas far away as their legs would carry them.\\n\\nFebruary 27 was a Saturday. I was teaching my third class. The director came \\ninto my classroom and said that I should let the children out, that there had \\nbeen a call from the City Party Committee asking that all teachers gather for \\na meeting at Lenin Square. Well, I excused the children, and there were few \\nteachers left at school, altogether three women, the director, and six or \\nseven men. The rest had already gone home. We got to Lenin Square and there \\nwere a great many people there. This was around five-thirty or six in the \\nevening, no later. They were saying all kinds of rubbish up on the podium and \\nthe crowd below was supporting them stormily, roaring. They spoke over the \\nmicrophone about what had happened in Kafan a few days earlier and that the \\ndriver of a bus going to some district had recently thrown a small Azerbaijani\\nchild off the bus. The speaker affirmed that he was an eyewitness, that he had\\nseen it himself..The crowd started to rage: \"Death to the Armenians! They must\\nbe killed!\" Then a woman went up on stage. I didn\\'t see the woman because \\npeople were clinging to the podium like flies. I could only hear her. The \\nwoman introduced herself as coming from Kafan, and said that the Armenians \\ncut her daughters\\' breasts off, and called, \"Sons, avenge my daughters!\" That \\nwas enough. A portion of the people on the square took off running in the \\ndirection of the factories, toward the beginning of Lenin Street.\\n\\nWe stood there about an hour. Then the director of School 25 spoke, he gave a \\nvery nationalist speech. He said, \"Brother Muslims, kill the Armenians!\" This \\nhe repeated every other sentence. When he said this the crowd supported him \\nstormily, whistling and shouting \"Karabagh!\" He said, \"Karabagh has been our \\nterritory my whole life long, Karabagh is my soul. How can you tear out my \\nheart?\" As though an Azerbaijani would die without Karabagh. \"It\\'s our \\nterritory, the Armenians will never see it. The Armenians must be eliminated. \\nFrom time immemorial Muslims have cleansed the land of infidel Armenians, from\\ntime immemorial, that\\'s the way nature created it, that every 20 to 30 years \\nthe Azerbaijanis should cleanse the land of filth.\" By filth he meant \\nArmenians.\\n\\nI heard this. Before that I hadn\\'t been listening to the speeches closely.\\nMany people spoke and I stood with my back to the podium, talking shop with \\nthe other teachers, and somehow it all went right by, it didn\\'t penetrate,\\nthat in fact something serious was taking place. Then, when one of our\\nteachers said, \"Listen to what he\\'s saying, listen to what idiocy he\\'s \\nspouting,\" we listened. That was the speech of that director. Before that we \\nlistened to the woman\\'s speech.\\n\\nRight then in our group--there were nine of us--the mood changed, and the \\nsubject of conversation and all school matters were forgotten. Our director of\\nstudies, for whom I had great respect, he\\'s an Azerbaijani . . . Before that I\\nhad considered him an upstanding and worthy person, if there was a need to \\nobtain leave we had asked him, he seemed like a good person. So he tells me,\\n\"Lyuda, you know that besides you there are no Armenians on the square? If \\nthey find out that you\\'re an Armenian they\\'ll tear you to pieces. Should I \\ntell them you\\'re an Armenian? Should I tell them you\\'re an Armenian?\" When he \\nsaid it the first time I pretended not to hear it, and then he asked me a \\nsecond time. I turned to the director, Khudurova, and said that it was already\\nafter eight, I was expected at home, and I should be leaving. She answered, \\n\"No, they said that women should stay here until ten o\\'clock,.and men, until \\ntwelve. Stay here.\" There was a young teacher with us, her children were in \\nkindergarten and her husband worked shifts. She asked to leave: \"I left my \\nchildren at the kindergarten.\" The director excused her. When she let her go I\\nturned around, said, \"Good-bye,\" and left with the young teacher, the \\nAzerbaijani. I didn\\'t see them after that.\\n\\nWhen we were walking the buses weren\\'t running, and a crowd from the rally ran\\nnearby us. They had apparently gotten all fired up. It must have become too \\nmuch for them, and they wanted to seek vengeance immediately, so they rushed \\noff. I wasn\\'t afraid this time because I was sure that the other teacher \\nwouldn\\'t say that I was an Armenian.\\n\\nTo make it short, we reached home. Then Karina told of how they had been at \\nthe movies and what had happened there. I started telling of my experience and\\nagain my parents didn\\'t understand that we were in danger. We watched \\ntelevision as usual, and didn\\'t even imagine that tomorrow would be our last \\nday. That\\'s how it all was.\\n\\nAt the City Party Committee I met an acquaintance, we went to school together,\\nZhanna, I don\\'t remember her last name, she lives above the housewares store \\non Narimanov Street. She was there with her father, for some reason she \\ndoesn\\'t have a mother. The two of them were at home alone. While her father \\nheld the door she jumped from the third floor, and she was lucky that the \\nground was wet and that there wasn\\'t anyone behind the building when she went \\nout on the balcony, there was no one there, they were all standing near the \\nentryway. That building was also a lucky one in that there were no murders \\nthere. She jumped. She jumped and didn\\'t feel any pain in the heat of the \\nmoment. A few days later I found out that she couldn\\'t stand up, she had been \\ninjured somehow. That\\'s how people in Sumgait saved their lives, their honor, \\nand their children: any way they could. \\n\\nWhere it was possible, the Armenians fought back. My father\\'s first cousin, \\nArmen M., lives in Block 30. They found out by phone from one of the victims \\nwhat was going on in town. The Armenians in that building all called one \\nanother immediately and all of them armed themselves with axes, knives, even \\nwith muskets and went up to the roof. They took their infants with them, and \\ntheir old women who had been in bed for God knows how many months, they got \\nthem right out of their beds and took everyone upstairs. They hooked \\nelectricity up to the trap door to the roof and waited, ready to fight. Then \\nthey took the daughter of the school board director hostage, she\\'s an \\nAzerbaijani who lived in their building. They called the school board director\\nand told her that if she didn\\'t help them, the 17 Armenians on the roof, to \\nescape alive and unharmed, she\\'d never see her daughter again. I\\'m sure, of \\ncourse, that Armenians would never lay a hand on a woman, it was just the only\\nthing that could have saved them at the time. She called the police. The \\nArmenians made a deal with the local police to go into town. Two armored \\npersonnel carriers and soldiers were summoned They surrounded the entryway and\\nled everyone down from the roof, and off to the side from the armored \\npersonnel carriers was a crowd that was on its way to the building at that \\nvery moment, into Block 30. That\\'s how they defended themselves.\\n\\nI heard that our neighbors, Roman and Sasha Gambarian, resisted. They\\'re big, \\nstrong guys. Their father was killed. And I heard that the brothers put up a \\nstrong defense and lost their father, but were able to save their mother.\\n\\nOne of the neighbors told me that after it happened, when they were looking \\nfor the criminals on March 1 to 2 and detaining everyone they suspected, \\npeople hid people in our entryway, maybe people who were injured or perhaps \\ndead. The neighbors themselves were afraid to go there, and when they went \\nwith the soldiers into our basement they are supposed to have found \\nAzerbaijani corpses. I don\\'t know how many. Even if they had been wounded and \\nput down there, after two days they would have died from loss of blood or \\ninfection--that basement was filled with water. I heard this from the \\nneighbors. And later when I was talking with the investigators the subject \\ncame up and they confirmed it. I know, too, that for several hours the \\nbasement was used to store objects stolen from our apartment. And our neighbor\\ncarried out our carpet, along with the rest: he stole it for himself, posing \\nas one of the criminals. Everyone was taking his own share, and the neighbor \\ntook his, too, and carried it home. And when we came back, when everything \\nseemed to have calmed down, he returned it, saying that it was the only thing \\nof ours he had managed to \"save.\"\\n\\nRaya\\'s husband and father defended themselves. The Trdatovs defended \\nthemselves, and so did other Armenian families. To be sure there were\\nAzerbaijani victims, although we\\'ll never hear anything about them. For some \\nreason our government doesn\\'t want to say that the Armenians were not just \\nvictims, but that they defended the honor of their sisters and mothers, too. \\nIn the TV show \"Pozitsiya\" [Viewpoint] a military man, an officer, said that \\nthe Armenians did virtually nothing to defend themselves. But that\\'s not \\nimportant, the truth will come out regardless.\\n\\nSo that\\'s the price we paid those three days. For three days our courage, our \\nbravery, and our humanity was tested. It was those three days, and not the \\nyears and dozens of years we had lived before them, that showed what we\\'ve \\nbecome, what we grew up to be. Those three days showed who was who.\\n\\nOn that I will conclude my narrative on the Sumgait tragedy. It should be said\\nthat it\\'s not over yet, the trials are still ahead of us, and the punishments\\nreceived by those who so violated us, who wanted to make us into nonhumans \\nwill depend on our position and on the work of the investigators, the \\nProcuracy, and literally of every person who lent his hand to the investiga-\\ntion. That\\'s the price we paid to live in Armenia, to not fear going out on \\nthe street at night, to not be afraid to say we\\'re Armenians, and to not fear\\nspeaking our native tongue.\\n\\n October 15,1988\\n Yerevan\\n\\n\\t\\t\\t- - - reference for #008 - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 118-145\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 A\\nSummary: Part A \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 501\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 Part A\\n Prelude to Current Events in Nagorno-Karabakh\\n\\t\\n\\t\\t\\t\\t(Part A of #008)\\n\\n +------------------------------------------------------------------+\\n | |\\n | \"Oh, yes, I just remembered. While they were raping me they |\\n | repeated quite frequently, \"Let the Armenian women have babies |\\n | for us, Muslim babies, let them bear Azerbaijanis for the |\\n | struggle against the Armenians.\" Then they said, \"Those |\\n | Muslims can carry on our holy cause. Heroes!\" They repeated |\\n | it very often.\" |\\n | |\\n +------------------------------------------------------------------+\\n\\nDEPOSITION OF LYUDMILA GRIGOREVNA M.\\n\\n Born 1959\\n Teacher\\n Sumgait Secondary School No. 10\\n Secretary of the Komsomol Organization at School No. 10\\n Member of the Sumgait City Komsomol Committee Office\\n\\n Resident at Building 17/33B, Apartment 15\\n Microdistrict No. 3\\n Sumgait [Azerbaijan]\\n\\n[Note: The events in Kafan, used as a pretext to attack Armenians in \\n Azerbaijan are false, as verified by independent International Human Rights\\n organizations - DD]\\n\\nI\\'m thinking about the price the Sumgait Armenians paid to be living in\\nArmenia now. We paid for it in human casualties and crippled fates--the\\nprice was too great! Now, after the Sumgait tragedy, we, the victims, divide\\nour lives into \"before\" and \\'\\'after.\" We talk like that: that was before the\\nwar. Like the people who went through World War II and considered it a whole\\nepoch, a fate. No matter how many years go by, no matter how long we live,\\nit will never be forgotten. On the contrary, some of the moments become even \\nsharper: in our rage, in our sorrow, we saw everything differently, but now\\n. . . They say that you can see more with distance, and we can see those\\ninhuman events with more clarity now . . . we more acutely perceive our\\nlosses and everything that happened.\\n\\nNineteen eighty-eight was a leap year. Everyone fears a leap year and wants it\\nto pass as quickly as possible. Yet we never thought that that leap year would\\nbe such a black one for every Sumgait Armenian: those who lost someone and \\nthose who didn\\'t.\\n\\nThat second to last day of winter was ordinary for our family, although you \\ncould already smell danger in the air. But we didn\\'t think that the danger was\\nnear and possible, so we didn\\'t take any steps to save ourselves. At least, as\\nmy parents say, at least we should have done something to save the children. \\nMy parents themselves are not that old, 52 and 53 years. But then they thought\\nthat they had already lived enough, and did everything they could to save us.\\n\\nIn our apartment the tragedy started on February 28, around five in the\\nafternoon. I call it a tragedy, and I repeat: it was a tragedy even though all\\nour family survived. When I recall how they broke down our door my skin\\ncrawls; even now, among Armenians, among people who wish me only well, I feel\\nlike it\\'s all starting over again. I remember how that mob broke into our \\napartment . . . My parents were standing in the hall. My father had an axe in \\nhis hands and had immediately locked both of the doors. Our door was rarely \\nlocked since friends and neighbors often dropped by. We\\'re known as a \\nhospitable family, and we just never really thought about whether the people \\nwho were coming to see us were Azerbaijanis, Jews, or Russians. We had friends\\nof many nationalities, even a Turkmen woman.\\n\\nMy parents were in the hall, my father with an axe. I remember him telling my \\nmother, \"Run to the kitchen for a knife.\" But Mother was detached, pale, as \\nthough she had decided to sell her life a bit dearer. To be honest I never \\nexpected it of her, she\\'s afraid of getting shot and afraid of the dark. A \\ngirlfriend was at the house that day, a Russian girl, Lyuda, and Mamma said, \\n\"No matter what happens, no matter what they do to us, you\\'re not to come out \\nof the bedroom. We\\'re going to tell them that we\\'re alone in the apartment.\"\\n\\nWe went into the bedroom. There were four of us. Marina and the Russian girl \\ncrawled under the bed, and we covered them up with a rug, boxes of dishes, and\\nKarina and I are standing there and looking at one another. The idea that \\nperhaps we were seeing each other for the last time flashed somewhere inside \\nme. I\\'m an emotional person and I express my emotions immediately. I wanted to\\nembrace her and kiss her, as though it were the last second. And maybe Karina \\nwas thinking the same thing, but she\\'s quite reserved. We didn\\'t have time to \\nsay anything to each other because we immediately heard Mamma raise a shout. \\nThere was so much noise from the tramping of feet, from the shouting, and from\\nexcited voices. I couldn\\'t figure what was going on out there because the door\\nto the bedroom was only open a crack. But when Mamma shouted the second time\\nKarina ran out of the bedroom. I ran after her, I had wanted to hold her back,\\nbut when she opened the door and ran out into the hall they saw us \\nimmediately. The only thing I managed to do was close the door behind me, at \\nleast so as to save Marina and her friend. The mob was shouting, all of their \\neyes were shining, all red, like from insomnia. At first about 40 people burst\\nin, but later I was standing with my back to the door and couldn\\'t see. They \\ncame into the hall, into the kitchen, and dragged my father into the other \\nroom. He didn\\'t utter a word, he just raised the axe to hit them, but Mamma \\nsnatched the axe from behind and said, \"Tell them not to touch the children. \\nTell them they can do as they want with us, but not to harm the children.\" She\\nsaid this to Father in Armenian.\\n\\nThere were Azerbaijanis from Armenia among the mob who broke in. They \\nunderstood Armenian perfectly. The local Azerbaijanis don\\'t know Armenian, \\nthey don\\'t need to speak it. And one of them responded in Armenian: \"You and \\nyour children both . . . we\\'re going to do the same thing to you and your \\nchildren that you Armenians did in Kafan. They killed our women, our girls, \\nour mothers, they cut their breasts off, and burned our houses . . . ,\" and \\nso on and so forth, \"and we came to do the same thing to you.\" This whole time\\nsome of them are destroying the house and the others are shouting at us. They \\nwere mostly young people, under 30. At first there weren\\'t any older people \\namong them. And all of their faces were unfamiliar. Sumgait is a small town, \\nall the same, and we know a lot of people by their faces, especially me, I\\'m \\na teacher.\\n\\nSo they dragged my father into the other room. They twisted his arms and took \\nhim in there, no they didn\\'t take him in there, they dragged him in there,\\nbecause he was already unable to walk. They closed the door to that room all \\nbut a crack. We couldn\\'t see what was happening to Father, what they were \\ndoing to him. Then a young man, about 26 years old, started to tear off \\nMamma\\'s sarafan, and Mamma shouted at him in Azerbaijani: \"I\\'m old enough to \\nbe your mother! What are you doing?!\" He struck her. Now he\\'s being held, \\nMamma identified him. I hope he\\'s convicted. Then they went after Karina, \\nwho\\'s been talking to them like a Komsomol leader, as though she were trying \\nto lead them down a different path, as they say, to influence their \\nconsciousness. She told them that what they were doing was wrong, that they \\nmustn\\'t do it. She said, \"Come on, let\\'s straighten this out, without \\nemotions. What do you want? Who are you? Why did you come here? What did we \\never do to you?\" Someone tried to explain who they were and why they had come \\ninto our home, but then the ones in the back--more of them kept coming and \\ncoming--said, \"What are you talking to, them for. You should kill them. We \\ncame here to kill them.\"\\n\\nThey pushed Karina, struck her, and she fell down. They beat her, but she \\ndidn\\'t cry out. Even when they tore her clothes off, she kept repeating, \"What\\ndid we do to you? What did we do to you?\" And even later, when she came to, \\nshe said, \"Mamma, what did we do to them? Why did they do that to us?\"\\n\\nThat group was prepared, I know this because I noticed that some of them only \\nbroke up furniture, and others only dealt with us. I remember that when they \\nwere beating me, when they were tearing my clothes off, I felt neither pain \\nnor shame because my entire attention was riveted to Karina. All I could do \\nwas watch how much they beat her and how painful it was for her, and what they\\ndid to her. That\\'s why I felt no pain. Later, when they carried Karina off, \\nthey beat her savagely . . . It\\'s really amazing that she not only lived, but \\ndidn\\'t lose her mind . She is very beautiful and they did everything they \\ncould to destroy her beauty. Mostly they beat her face, with their fists, \\nkicking her, using anything they could find.\\n\\nMamma, Karina, and I were all in one room. And again I didn\\'t feel any pain, \\njust didn\\'t feel any, no matter how much they beat me, no matter what they \\ndid. Then one of those creeps said that there wasn\\'t enough room in the\\napartment. They broke up the beds and the desk and moved everything into the \\ncorners so there would be more room. Then someone suggested, \"Let\\'s take her \\noutside.\"\\n\\nThose beasts were in Heaven. They did what they would do every day if they \\nweren\\'t afraid of the authorities. Those were their true colors. At the time \\nI thought that in fact they would always behave that way if they weren\\'t \\nafraid of what would happen to them.\\n\\nWhen they carried Karina out and beat Mamma-her face was completely covered \\nwith blood--that\\'s when I started to feel the pain. I blacked out several \\ntimes from the pain, but each moment that I had my eyes open it was as though \\nI were recording it all on film. I think I\\'m a kind person by nature, but I\\'m \\nvengeful, especially if someone is mean to me, and I don\\'t deserve it. I hold \\na grudge a long time if someone intentionally causes me pain. And every time \\nI would come to and see one of those animals on top of me, I\\'d remember them, \\nand I\\'ll remember them for the rest of my life, even though people tell me \\n\"forget,\" you have to forget, you have to go on living.\\n\\nAt some point I remember that they stood me up and told me something, and \\ndespite the fact that I hurt all over--I had been beaten terribly--I found\\nthe strength in myself to interfere with their tortures. I realized that I had\\nto do something: resist them or just let them kill me to bring my suffering \\nto an end. I pushed one of them away, he was a real horse. I remember now that\\nhe\\'s being held, too. As though they were all waiting for it, they seized me\\nand took me out onto the balcony. I had long hair, and it was stuck all over\\nme. One of the veranda shutters to the balcony was open, and I realized that\\nthey planned to throw me out the window, because they had already picked me up\\nwith their hands, I was up in the air. As though for the last time I took a \\nreally deep breath and closed my eyes, and somehow braced myself inside, I \\nsuddenly became cold, as though my heart had sunk into my feet. And suddenly \\nI felt myself flying. I couldn\\'t figure out if I was really flying or if I \\njust imagined it. When I came to I thought now I\\'m going to smash on the \\nground. And when it didn\\'t happen I opened my eyes and realized that I was \\nstill lying on the floor. And since I didn\\'t scream, didn\\'t beg them at all,\\nthey became all the more wild, like wolves. They started to trample me with\\ntheir feet. Shoes with heels on them, and iron horseshoes, like they had spe-\\ncially put them on. Then I lost consciousness.\\n\\nI came to a couple of times and waited for death, summoned it, beseeched it. \\nSome people ask for good health, life, happiness, but at that moment I didn\\'t \\nneed any of those things. I was sure that none of us would survive, and I had \\neven forgotten about Marina; and if none of us was alive, it wasn\\'t worth \\nliving.\\n\\nThere was a moment when the pain was especially great. I withstood inhuman \\npain, and realized that they were going to torment me for a long time to come \\nbecause I had showed myself to be so tenacious. I started to strangle myself, \\nand when I started to wheeze they realized that with my death I was going to\\nput an end to their pleasures, and they pulled my hands from my throat. The \\nperson who injured and insulted me most painfully I remember him very well, \\nbecause he was the oldest in the group. He looked around 48. I know that he \\nhas four children and that he considers himself an ideal father and person, \\none who would never do such a thing. Something came over him then, you see, \\neven during the investigation he almost called me \"daughter,\" he apologized, \\nalthough, of course, he knew that I\\'d never forgive him. Something like that \\nI can never forgive. I have never injured anyone with my behavior, with my \\nwords, or with my deeds, I have always put myself in the other person\\'s shoes,\\nbut then, in a matter of hours, they trampled me entirely. I shall never \\nforget it.\\n\\nI wanted to do myself in then, because I had nothing to lose, because no one \\ncould protect me. My father, who tried to do something against that hoard of \\nbeasts by himself, could do nothing and wouldn\\'t be able to do anything.\\nI knew that I was even sure that he was no longer alive.\\n\\nAnd Ira Melkumian, my acquaintance I knew her and had been to see her family a\\ncouple of times--her brother tried to save her and couldn\\'t, so he tried to \\nkill her, his very own sister. He threw an axe at her to kill her and put an \\nend to her suffering. When they stripped her clothes off and carried her into \\nthe other room, her brother knew what awaited her. I don\\'t know which one it \\nwas, Edik or Igor. Both of them were in the room from which the axe was \\nthrown. But the axe hit one of the people carrying her and so they killed her \\nand made her death even more excruciating, maybe the most excruciating of all \\nthe deaths of those days in Sumgait. I heard about it all from the neighbor \\nfrom the Melkumians\\' landing. His name is Makhaddin, he knows my family a \\nlittle. He came to see how we had gotten settled in the new apartment in Baku,\\nhow we were feeling, and if we needed anything. He\\'s a good person. He said, \\n\"You should praise God that you all survived. But what I saw with my own eyes,\\nI, a man, who has seen so many people die, who has lived a whole life, I,\" he\\nsays, \"nearly lost my mind that day. I had never seen the likes of it and \\nthink I never shall again.\" The door to his apartment was open and he saw \\neverything. One of the brothers threw the axe, because they had already taken \\nthe father and mother out of the apartment. Igor, Edik, and Ira remained. He \\nsaw Ira, naked, being carried into the other room in the hands of six or seven\\npeople. He told us about it and said he would never forget it. He heard the \\nbrothers shouting something, inarticulate from pain, rage, and the fact that \\nthey were powerless to do anything. But all the same they tried to \\ndo something. The guy who got hit with the axe lived. I I\\n\\nAfter I had been unsuccessful at killing myself I saw them taking Marina and \\nLyuda out of the bedroom. I was in such a state that I couldn\\'t even \\nremember my sister\\'s name. I wanted to cry \"Marina!\" out to her, but could\\nnot. I looked at her and knew that it was a familiar, dear face, but couldn\\'t\\nfor the life of me remember what her name was and who she was. And thus\\nI saved her, because when they were taking her out, she, as it turns out, had\\ntold them that she had just been visiting and that she and Lyuda were both\\nthere by chance, that they weren\\'t Armenians. Lyuda\\'s a Russian, you can tell \\nright away, and Marina speaks Azerbaijani wonderfully and she told them that\\nshe was an Azerbaijani. And I almost gave her away and doomed her. I\\'m glad \\nthat at least Marina came out of this all in good physical health . . . \\nalthough her spirit was murdered . . .\\n\\nAt some point I came to and saw Igor, Igor Agayev, my acquaintance, in that \\nmob. He lives in the neighboring building. For some reason I remembered his \\nname, maybe I sensed my defense in him. I called out to him in Russian, \"Igor,\\nhelp!\" But he turned away and went into the bedroom. Just then they were \\ntaking Marina and Lyuda out of the bedroom. Igor said he knew Marina and \\nLyuda, that Marina in fact was Azerbaijani, and he took both of them to the \\nneighbors.\\n\\nAnd the idea stole through me that maybe Igor had led them to our apartment, \\nsomething like that, but if he was my friend, he was supposed to save me.\\n \\nThen they were striking me very hard--we have an Indian vase, a metal one, \\nthey were hitting me on the back with it and I blacked out--they took me out \\nonto the balcony a second time to throw me out the window. They were already \\nsure that I was dead because I didn\\'t react at all to the new blows. Someone \\nsaid, \"She\\'s already dead, let\\'s throw her out.\" When they carried me out onto\\nthe balcony for the second time, when I was about to die the second time, I \\nheard someone say in Azerbaijani: \"Don\\'t kill her, I know her, she\\'s a \\nteacher.\" I can still hear that voice ringing in my ears, but I can\\'t remember\\nwhose voice it was. It wasn\\'t Igor, because he speaks Azerbaijani with an \\naccent: his mother is Russian and they speak Russian at home. He speaks\\nAzerbaijani worse than our Marina does. I remember when they carried me in and\\nthrew me on the bed he came up to me, that person, and \\tI having opened my \\neyes, saw and recognized that person, but immediately passed out cold. I had \\nbeen beaten so much that I didn\\'t have the strength to remember him. I only \\nremember that this person was older and he had a high position. Unfortunately \\nI can\\'t remember anything more.\\n\\nWhat should I say about Igor? He didn\\'t treat me badly. I had heard a lot \\nabout him, that he wasn\\'t that good a person, that he sometimes drank too\\nmuch. Once he boasted to me that he had served in Afghanistan. He knew that \\nwomen usually like bravery in a man. Especially if a man was in Afghanistan,\\nif he was wounded, then it\\'s about eighty percent sure that he will be treated\\nvery sympathetically, with respect. Later I found out that he had served in \\nUfa, and was injured, but that\\'s not in Afghanistan, of course. I found that \\nall out later.\\n\\nAmong the people who were in our apartment, my Karina also saw the Secretary \\nof the Party organization. I don\\'t know his last name, his first name is \\nNajaf, he is an Armenian-born Azerbaijani. But later Karina wasn\\'t so sure,\\nshe was no longer a hundred percent sure that it was he she saw, and she \\ndidn\\'t want to endanger him. She said, \"He was there,\" and a little while \\nlater, \"Maybe they beat me so much that I am confusing him with someone else. \\nNo, it seems like it was he.\" I am sure it was he because when he came to see \\nus the first time he said one thing, and the next time he said something \\nentirely different. The investigators haven\\'t summoned him yet. He came to see\\nus in the Khimik boarding house where we were living at the time. He brought \\ngroceries and flowers, this was right before March 8th; he almost started \\ncrying, he was so upset to see our condition. I don\\'t know if he was putting \\nus on or not, but later, after we had told the investigator and they summoned \\nhim to the Procuracy, he said that he had been in Baku, he wasn\\'t in Sumgait. \\nThe fact that he changed his testimony leads me to believe that Karina is \\nright, that in fact it was he who was in our apartment. I don\\'t know how the \\ninvestigators are now treating him. At one point I wondered and asked, and was\\ntold that he had an alibi and was not in our apartment. Couldn\\'t he have gone \\nto Baku and arranged an alibi? I\\'m not ruling out that possibility.\\n\\nIll now return to our apartment. Mamma had come to. You could say that she \\nbought them off with the gold Father gave her when they were married: her \\nwedding band and her watch were gold. She bought her own and her husband\\'s \\nlives with them. She gave the gold to a 14-year old boy. Vadim Vorobyev. A \\nRussian boy, he speaks Azerbaijani perfectly. He\\'s an orphan who was raised by\\nhis grandfather and who lives in Sumgait on Nizami Street. He goes to a \\nspecial school, one for mentally handicapped children. But I\\'ll say this--I\\'m \\na teacher all the same and in a matter of minutes I can form an opinion--that\\nboy is not at all mentally handicapped. He\\'s healthy, he can think just fine, \\nand analyze, too . . . policemen should be so lucky. And he\\'s cunning, too. \\nAfter that he went home and tore all of the pictures out of his photo album.\\n\\nHe beat Mamma and demanded gold, saying, \"Lady, if you give us all the gold \\nand money in your apartment we\\'ll let you live.\" And Mamma told them where \\nthe gold was. He brought in the bag and opened it, shook out the contents, and \\neveryone who was in the apartment jumped on it, started knocking each other \\nover and taking the gold from one another. I\\'m surprised they didn\\'t kill one \\nanother right then.\\n\\nMamma was still in control of herself. She had been beaten up, her face was\\nblack and blue from the blows, and her eyes were filled with blood, and she \\nran into the other room. Father was lying there, tied up, with a gag in his\\nmouth and a pillow over his face. There was a broken table on top of the pil-\\nlow. Mamma grabbed Father and he couldn\\'t walk; like me, he was half dead, \\nhalfway into the other world. He couldn\\'t comprehend anything, couldn\\'t see, \\nand was covered with black and blue. Mamma pulled the gag out of his mouth, \\nit was some sort of cloth, I think it was a slipcover from an armchair.\\n\\nThe bandits were still in our apartment, even in the room Mamma pulled Father \\nout of, led him out of, carried him out of. We had two armchairs in that room,\\na small magazine table, a couch, a television, and a screen. Three people \\nwere standing next to that screen, and into their shirts, their pants, \\neverywhere imaginable, they were shoving shot glasses and cups from the coffee\\nservice--Mamma saw them out of the corner of her eye. She said, \"I was afraid \\nto turn around, I just seized Father and started pulling him, but at the \\nthreshold I couldn\\'t hold him up, he fell down, and I picked him up again and \\ndragged him down the stairs to the neighbors\\'.\" Mamma remembered one of the \\ncriminals, the one who had watched her with his face half-turned toward her, \\nout of one eye. She says, \"I realized that my death would come from that \\nperson. I looked him in the eyes and he recoiled from fear and went stealing.\"\\nLater they caught that scoundrel. Meanwhile, Mamma grabbed Father and left.\\n\\nI was alone. Igor had taken Marina away, Mamma and Father were gone, Karina \\nwas already outside, I didn\\'t know what they were doing to her. I was left all\\nalone, and at that moment . . . I became someone else, do you understand? Even\\nthough I knew that neither Mother and Father in the other room, nor Marina and\\nLyuda under the bed could save me, all the same I somehow managed to hold out.\\nI went on fighting them, I bit someone, I remember, and I scratched another. \\nBut when I was left alone I realized what kind of people they were, the ones \\nI had observed, the ones who beat Karina, what kind of people they were, the \\nones who beat me, that it was all unnecessary, that I was about to die and \\nthat all of that would die with me.\\n\\nAt some point I took heart when I saw the young man from the next building. I \\ndidn\\'t know his name, but we would greet one another when we met, we knew that\\nwe were from the same microdistrict. When I saw him I said, \"Neighbor, is that\\nyou?\" In so doing I placed myself in great danger. He realized that if I lived\\nI would remember him. That\\'s when he grabbed the axe. The axe that had been \\ntaken from my father. I automatically fell to my knees and raised my hands to \\ntake the blow of the axe, although at the time it would have been better if he\\nhad struck me in the head with the axe and put me out of my misery. When he \\nstarted getting ready to wind back for the blow, someone came into the room. \\nThe newcomer had such an impact on everyone that my neighbor\\'s axe froze in \\nthe air. Everyone stood at attention for this guy, like soldiers in the \\npresence of a general. Everyone waited for his word: continue the atrocities \\nor not. He said, \"Enough, let\\'s go to the third entryway.\" In the third \\nentryway they killed Uncle Shurik, Aleksandr Gambarian. This confirms once \\nagain that they had prepared in advance. Almost all of them left with him, as \\nthey went picking up pillows, blankets, whatever they needed, whatever they \\nfound, all the way up to worn out slippers and one boot, someone else had \\nalready taken the other.\\n\\nFour people remained in the room, soldiers who didn\\'t obey their general. They\\nhad to have come recently, because other faces had flashed in front of me over\\nthose 2 to 3 hours, but I had never seen those three. One of them, Kuliyev (I \\nidentified him later), a native of the Sisian District of Armenia, an \\nAzerbaijani, had moved to Azerbaijan a year before. He told me in Armenian:\\n\"Sister, don\\'t be afraid, I\\'ll drive those three Azerbaijanis out of here.\"\\nThat\\'s just what he said, \"those Azerbaijanis,\" as though he himself were not \\nAzerbaijani, but some other nationality, he said with such hatred, \"I\\'ll drive\\nthem out of here now, and you put your clothes on, and find a hammer and nails\\nand nail the door shut, because they\\'ll be coming back from Apartment 41.\" \\nThat\\'s when I found out that they had gone to Apartment 41. Before that, the \\nperson in the Eskimo dogskin coat, the one who came in and whom they listened \\nto, the \"general,\" said that they were going to the third entryway.\\n\\nKuliyev helped me get some clothes on, because l couldn\\'t do it by myself. \\nMarina\\'s old fur coat was lying on the floor. He threw it over my shoulders, I\\nwas racked with shivers, and he asked where he could find nails and a hammer. \\nHe wanted to give them to me so that when he left I could nail the door shut. \\nBut the door was lying on the floor in the hall.\\n\\nI went out onto the balcony. There were broken windows, and flowers and dirt \\nfrom flowerpots were scattered on the floor. It was impossible to find \\nanything. He told me, \"Well, fine, I won\\'t leave you here. Would any of the \\nneighbors let you in? They\\'ll be back, they won\\'t calm down, they know you\\'re \\nalive.\" He told me all this in Armenian.\\n\\nThen he returned to the others and said, \"What are you waiting for? Leave!\" \\nThey said, \"Ah, you just want to chase us out of here and do it with her \\nyourself. No, we want to do it to.\" He urged them on, but gently, not \\ncoarsely, because he was alone against them, although they were still just\\nboys, not old enough to be drafted. He led them out of the room, and went\\ndown to the third floor with them himself, and said, \"Leave. What\\'s the mat-\\nter, aren\\'t you men? Go fight with the men. What do you want of her?\" And\\nhe came back upstairs. They wanted to come up after him and he realized that \\nhe couldn\\'t hold them off forever. Then he asked me where he could hide me. I \\ntold him at the neighbors\\' on the fourth floor, Apartment 10, we were on really\\ngood terms with them.\\n\\nWe knocked on the door, and he explained in Azerbaijani. The neighbor woman \\nopened the door and immediately said, \"I\\'m an Azerbaijani.\" He said, \"I know. \\nLet her sit at your place a while. Don\\'t open the door to anyone, no one knows\\nabout this, I won\\'t tell anyone. Let her stay at your place.\" She says, \"Fine,\\nhave her come in.\" I went in. She cried a bit and gave me some stockings, I \\nhad gone entirely numb and was racked with nervous shudders. I burst into \\ntears. Even though I was wearing Marina\\'s old fur coat, it\\'s a short one, a \\nhalf-length, I was cold all the same. I asked, \"Do you know where my family \\nis, what happened to them?\" She says, \"No, I don\\'t know anything. I\\'m afraid \\nto go out of the apartment, now they\\'re so wild that they don\\'t look to see \\nwho\\'s Azerbaijani and who\\'s Armenian.\" Kuliyev left. Ten minutes later my \\nneighbor says, \"You know, Lyuda, I don\\'t want to lose my life because of you, \\nor my son and his wife. Go stay with someone else.\" During the butchery in our\\napartment one of the scum, a sadist, took my earring in his mouth--I had pearl\\nearrings on--and ripped it out, tearing the earlobe. The other earring was \\nstill there. When I\\'m nervous I fix my hair constantly, and then, when I \\ntouched my ear, I noticed that I had one earring on. I took it out and gave it\\nto her. She took the earring, but she led me out of the apartment.\\n\\nI went out and didn\\'t know where to go. I heard someone going upstairs. I \\ndon\\'t know who it was but assumed it was them. With tremendous difficulty I \\nend up to our apartment, I wanted to die in my own home. I go into the \\napartment and hear that they are coming up to our place, to the fifth floor. \\nI had to do something. I went into the bedroom where Marina and Lyuda had \\nhidden and saw that the bed was overturned. Instead of hiding I squatted near \\nsome broken Christmas ornaments, found an unbroken one, and started sobbing. \\nThen they came in. Someone said that there were still some things to take. I \\nthink that someone pushed me under the bed. I lay on the floor, and there were\\nbroken ornaments on it, under my head and legs. I got all cut up, but I lay \\nthere without moving. My heart was beating so hard it seemed the whole town \\ncould hear it. There were no lights on. Maybe that\\'s what saved me. They were \\nburning matches, and toward the end they brought in a candle. They started\\npicking out the clothes that could still be worn. They took Father\\'s sport \\njacket and a bedspread, the end of which was under my head. They pulled on the\\none end, and it felt like they were pulling my hair out. I almost cried out. \\nAnd again I realized I wasn\\'t getting out of there alive, and I started to \\nstrangle myself again. I took my throat in one hand, and pressed the other on \\nmy mouth, so as not to wheeze, so that I would die and they would only find me\\nafterward. They were throwing the burned matches under the bed, and I got \\nburned, but I withstood it. Something inside of me held on, someone\\'s hand was\\nprotecting me to the end. I knew that I was going to die, but I didn\\'t know \\nhow. I knew that if I survived I would walk out of that apartment, but if \\nI found out that one of my family had died, I would die for sure, because I \\nhad never been so close to death and couldn\\'t imagine how you could go on \\nliving without your mother or father, or without your sister. Marina, I \\nthought, was still alive: she went to Lyuda\\'s place or someone is hiding her. \\nI tried to think that Igor wouldn\\'t let them be killed. He served in \\nAfghanistan, he should protect her.\\n\\nWhile I was strangling myself I said my good-byes to everyone. And then I\\nthought, how could Marina survive alone. If they killed all of us, how would \\nshe live all by herself? There were six people in the room. They talked among \\nthemselves and smoked. One talked about his daughter, saying that there was no\\nchildren\\'s footwear in our apartment that he could take for his daughter. \\nAnother said that he liked the apartment--recently we had done a really good \\njob fixing everything up--and that he would live there after everything was \\nall over. They started to argue. A third one says, \"How come you get it? I \\nhave four children, and there are three rooms here, that\\'s just what I need. \\nAll these years I\\'ve been living in God-awful places.\" Another one says, \\n\"Neither of you gets it. We\\'ll set fire to it and leave.\" Then someone said \\nthat Azerbaijanis live right next door, the fire could move over to their\\nplace. And they, to my good fortune, didn\\'t set fire to the apartment, and\\nleft.\\n\\nOh, yes, I just remembered. While they were raping me they repeated quite \\nfrequently, \"Let the Armenian women have babies for us, Muslim babies, let \\nthem bear Azerbaijanis for the struggle against the Armenians.\" Then they \\nsaid, \"Those Muslims can carry on our holy cause. Heroes!\" They repeated it \\nvery often.\\n\\n\\t\\t - - - reference for #008 - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 118-145\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: A1RODRIG@vma.cc.nd.edu\\nSubject: What a HATE filled newsgroup!!!!\\nOrganization: Bullwinkle Fan Club\\nLines: 5\\n\\nIs this group for real? I honestly can't believe that most of you expect you\\nor your concerns to be taken remotely seriously if you behave this way in a\\nforum for discussion. Doesn't it ever occur to those of you who write letters\\nlike the majority of those in this group that you're being mind-bogglingly\\nhypocritical?\\n\",\n", - " 'From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: Should liability insurance be required?\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 14\\nDistribution: usa\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nTommy Marcus McGuire (mcguire@cs.utexas.edu) wrote:\\n: You know, it sounds suspiciously like no fault doesn\\'t even do what it\\n: was advertised as doing---getting the lawyers out of the loop.\\n\\n: Sigh. Another naive illusion down the toilet....\\n\\nSince most legislators are lawyers it is very difficult to get any\\nlaw passed that would cut down on lawyers\\' business. That is why\\n\"No-fault\" insurance laws always backfire. \\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race, NASA resources, why?\\nOrganization: U of Toronto Zoology\\nLines: 33\\n\\nIn article <1993Apr21.210712.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>> So how much would it cost as a private venture, assuming you could talk the\\n>> U.S. government into leasing you a couple of pads in Florida? \\n>\\n>Why must it be a US Government Space Launch Pad? Directly I mean...\\n\\nIn fact, you probably want to avoid US Government anything for such a\\nproject. The pricetag is invariably too high, either in money or in\\nhassles.\\n\\nThe important thing to realize here is that the big cost of getting to\\nthe Moon is getting into low Earth orbit. Everything else is practically\\ndown in the noise. The only part of getting to the Moon that poses any\\nnew problems, beyond what you face in low orbit, is the last 10km --\\nthe actual landing -- and that is not immensely difficult. Of course,\\nyou *can* spend sagadollars (saga- is the metric prefix for beelyuns\\nand beelyuns) on things other than the launches, but you don't have to.\\n\\nThe major component of any realistic plan to go to the Moon cheaply (for\\nmore than a brief visit, at least) is low-cost transport to Earth orbit.\\nFor what it costs to launch one Shuttle or two Titan IVs, you can develop\\na new launch system that will be considerably cheaper. (Delta Clipper\\nmight be a bit more expensive than this, perhaps, but there are less\\nambitious ways of bringing costs down quite a bit.) Any plan for doing\\nsustained lunar exploration using existing launch systems is wasting\\nmoney in a big way.\\n\\nGiven this, questions like whose launch facilities you use are *not* a\\nminor detail; they are very important to the cost of the launches, which\\ndominates the cost of the project.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: ucer@ee.rochester.edu (Kamil B. Ucer)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: University of Rochester Department of Electrical Engineering\\n\\nIn article <1993Apr16.142935.535@cs.yale.edu> karage@scus1.ctstateu.edu (Angelos Karageorgiou Greek and Macedon the only combination) writes:\\n>\\n>\\tOk. My Aykut., what about the busload of Greek turists that was\\n>torched, and all the the people in the buis died. Happened oh, about 5\\n>years ago in Instanbul.\\n>\\tWhat about the Greeks in the islands of Imbros and tenedos, they\\n>are not allowed to have churches any more, instead momama turkey has\\n>turned the church into a warehouse, I got a picture too.\\n>\\tWhat about the pontian Greeks of Trapezounta and Sampsounta,\\n>what you now call Trabzon and Sampson, they spoke a 2 thousand year alod\\n>language, are there any left that still speek or were they Islamicised?\\n>\\tBefore we start another flamefest , and before you start quoting\\n>Argic all over again, or was it somebody else?, please think. I know it\\n>is a hard thing to do for somebody not equipped , but try nevertheless.\\n>\\tIf Turks in Greece were so badly mistreated how come they\\n>elected two,m not one but two, representatives in the Greek government?\\n>How come they have free(absolutely free) hospitalization and education?\\n>Do the Turks in Turkey have so much?If they do then you have every right\\n>to shout, untill then you can also move to Greece and enjoy those\\n>privileges. But I forget , for you do study in a foreign university,\\n>some poor shod is tiling the earth with his own sweat.\\n>\\tBTW is Aziz Nessin still writing poetry? I\\'d like to read some\\n>of his new stuff. Also who was the guy that wrote \"On the mountains of\\n>Tayros.\" ? please respond kindly to the last two questions, I am\\n>interested in finding more books from these two people.\\n>\\t\\n>\\n>-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n>Yeian kai Eytyxeian | The opinions expressed above are nobody else\\'s but\\n>Angelos Karageorgiou | mine,MINE,MIIINNE,MIIINNEEEE,aaaarrgghhhh..(*&#$$*((+_$%\\n>Live long & Prosper | NO CARRIER\\n>-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n>> Any and all mail sent to me , can and will be used in any manner <\\n>> whatsoever. I may repost or publicise parts of messages or whole <\\n>> messages. If you disagree, please exercise your freedom of speech <\\n>> and don\\'t send me anything. <\\n\\nDear Mr. Karageorgiou,\\nI would like to clarify several misunderstandings in your posting. First the bus incident which I believe was in Canakkale three years ago, was done by a mentally ill person who killed himself afterwards. The Pontus Greeks were ex- changedwith Turks in Greece in 1923. I have to logout now since my Greek friend\\nYiorgos here wants to use the computer. Well, I\\'ll be back.Asta la vista baby.\\n\\n',\n", - " \"From: bss2p@kelvin.seas.Virginia.EDU (Brent S. Stone)\\nSubject: Wanted: Advice for New Cylist (Ditto)\\nOrganization: University of Virginia\\nLines: 21\\n\\nIn article blaisec@sr.hp.com (Blaise Cirelli) writes:\\n>\\n\\n\\n\\tI'm thinking about becoming a bike owner this year\\nw/o any bike experience thus far. I figure that getting a \\ndecent used bike for under $1K the thing would pay for itself\\nwhile I'm at grad school (car permits are $$$ where I'm going\\nand who want's to ride a bus). I'm looking for advice\\non a first bike - best models/years. I'm NOT looking for\\nan old loud roaring thing that sounds like a monster. The\\nquit whirring of newer engines is more to my liking.\\n\\nApprec any advice.\\n\\nThanks,\\n\\nBS\\n\\n\\n\\n\",\n", - " 'From: pgf@srl02.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 8\\n\\nThe only ether I see here is the stuff you must\\nhave been breathing before you posted...\\n\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", - " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Keith IS a relativist!\\nOrganization: California Institute of Technology, Pasadena\\nLines: 10\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\n9051467f@levels.unisa.edu.au (The Desert Brat) writes:\\n\\n>Keith, if you start wafffling on about how it is different for a human\\n>to maul someone thrown into it's cage (so to speak), you'd better start\\n>posting tome decent evidence or retract your 'I think there is an absolute\\n>morality' blurb a few weeks ago.\\n\\nDid I claim that there was an absolute morality, or just an objective one?\\n\\nkeith\\n\",\n", - " 'From: dragon@access.digex.com (Covert C Beach)\\nSubject: Re: Mars Observer Update - 03/29/93\\nOrganization: Express Access Online Communications, Greenbelt, MD USA\\nLines: 33\\nDistribution: world\\nNNTP-Posting-Host: access.digex.net\\nKeywords: Mars Observer, JPL\\n\\nIn article <1pcgaa$do1@access.digex.com> prb@access.digex.com (Pat) writes:\\n>Now isn\\'t that always the kicker. It does seem stupid to drop\\n>a mission like Magellan, because there isn\\'t 70 million a year\\n>to keep up the mission. You\\'d think that ongoing science could\\n>justify the money. JPL gets accused of spending more then neccessary,\\n>probably some validity in that, but NASA does put money into some\\n>things that really are Porcine. Oh well.\\n\\nI attended a colloquium at Goddard last fall where the head of the \\noperations section of NASA was talking about what future missions\\nwere going to be funded. I don\\'t remember his name or title off hand\\nand I have discarded the colloquia announcement. In any case, he was \\nasked about that very matter: \"Why can\\'t we spend a few million more\\nto keep instruments that we already have in place going?\"\\n\\nHis responce was that there are only so many $ available to him and\\nthe lead time on an instrument like a COBE, Magellan, Hubble, etc\\nis 5-10 years minumum. If he spent all that could be spent on using\\ncurrent instruments in the current budget enviroment he would have\\nvery little to nothing for future projects. If he did that, sure\\nin the short run the science would be wonderful and he would be popular,\\nhowever starting a few years after he had retired he would become\\none of the greatest villans ever seen in the space community for not\\nfunding the early stages of the next generation of instruments. Just\\nas he had benefited from his predicessor\\'s funding choices, he owed it\\nto whoever his sucessor would eventually be to keep developing new\\nmissions, even at the expense of cutting off some instruments before\\nthe last drop of possible science has been wrung out of them.\\n\\n\\n-- \\nCovert C Beach\\ndragon@access.digex.com\\n',\n", - " 'From: maverick@wpi.WPI.EDU (T. Giaquinto)\\nSubject: General Information Request\\nOrganization: Worcester Polytechnic Institute, Worcester, MA 01609-2280\\nLines: 11\\nNNTP-Posting-Host: wpi.wpi.edu\\n\\n\\n\\tI am looking for any information about the space program.\\nThis includes NASA, the shuttles, history, anything! I would like to\\nknow if anyone could suggest books, periodicals, even ftp sites for a\\nnovice who is interested in the space program.\\n\\n\\n\\n\\t\\t\\t\\t\\tTodd Giaquinto\\n\\t\\t\\t\\t\\tmaverick@wpi.WPI.EDU\\n\\t\\t\\t\\t\\t\\n',\n", - " 'From: ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck)\\nSubject: Re: Distance between two Bezier curves\\nOrganization: My own node in Groningen, NL.\\nLines: 14\\n\\npes@hutcs.cs.hut.fi (Pekka Siltanen) writes:\\n\\n> Suppose two cubic Bezier curves (control points V1,..,V4 and W1,..,W4)\\n> which have equal first and last control points (V1 = W1, V4 = W4). How do I \\n> get upper bound for distance between these curves. \\n\\nWhich distance? The distance between one point (t = ti) on the first curve\\nand a point on the other curve with same parameter (u = ti)?\\n\\n> \\n> Any references appreciated. Thanks in anvance.\\n> \\n> Pekka Siltanen\\n\\n',\n", - " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Freedom In U.S.A.\\nOrganization: University of Virginia\\nLines: 11\\n\\n\\tI have just started reading the articles in this news\\ngroup. There seems to be an attempt by some members to quiet\\nother members with scare tactics. I believe one posting said\\nthat all postings by one person are being forwarded to his\\nserver who keeps a file on him in hope that \"Appropriate action\\nmight be taken\". \\n\\tI don\\'t know where you guys are from but in America\\nsuch attempts to curtail someones first amendment rights are\\nnot appreciated. Here, we let everyone speak their mind\\nregardless of how we feel about it. Take your fascistic\\nrepressive ideals back to where you came from.\\n',\n", - " 'From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: Twit Bicyclists (was RE: Oh JOY!)\\nOrganization: AT&T\\nDistribution: na\\nLines: 20\\n\\nIn article <1993Apr2.045903.6066@spectrum.xerox.com> cooley@xerox.com writes:\\n>Yo, ASSHOLES. I hope you are all just kidding\\n>because it\\'s exactly that kind of attidue that gets\\n>many a MOTORcyclist killed: \"Look at the leather\\n>clad poseurs! Watch how they swirve and\\n>swear as I pretend that they don\\'t exist while\\n>I change lanes.\"\\n>\\n>If you really find it necesary to wreck others\\n>enjoyment of the road to boost your ego, then\\n>it is truely you who are the poseur.\\n>\\n>--aaron\\n\\nDisgruntled Volvo drivers. What are they rebelling against?\\n \\n================================================================================\\n Steatopygias\\'s \\'R\\' Us. doh#0000000005 That ain\\'t no Hottentot.\\n Sesquipedalian\\'s \\'R\\' Us. ZX-10. AMA#669373 DoD#564. There ain\\'t no more.\\n================================================================================\\n',\n", - " 'From: kjenks@gothamcity.jsc.nasa.gov\\nSubject: Space Station Redesign, JSC Alternative #4\\nOrganization: NASA/JSC/GM2, Space Shuttle Program Office \\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 71\\n\\nI have 19 (2 MB worth!) uuencode\\'d GIF images contain charts outlining\\none of the many alternative Space Station designs being considered in\\nCrystal City. Mr. Mark Holderman works down the hall from me, and can\\nbe reached for comment at (713) 483-1317, or via e-mail at\\nmholderm@jscprofs.nasa.gov.\\n\\nMark proposed this design, which he calls \"Geode\" (\"rough on the\\noutside, but a gem on the inside\") or the \"ET Strongback with\\nintegrated hab modules and centrifuge.\" As you can see from file\\ngeodeA.gif, it uses a Space Shuttle External Tank (ET) in place of much\\nof the truss which is currently part of Space Station Freedom. The\\nwhite track on the outside of the ET is used by the Station Remonte\\nManipulator System (SRMS) and by the Reaction Control System (RCS)\\npod. This allows the RCS pod to move along the track so that thrusting\\ncan occur near the center of gravity (CG) of the Station as the mass\\nproperties of the Station change during assembly.\\n\\nThe inline module design allows the Shuttle to dock more easily because\\nit can approach closer to the Station\\'s CG and at a structurally strong\\npart of the Station. In the current SSF design, docking forces are\\nlimited to 400 pounds, which seriously constrains the design of the\\ndocking system.\\n\\nThe ET would have a hatch installed pre-flight, with little additional\\nlaunch mass. We\\'ve always had the ability to put an ET into orbit\\n(contrary to some rumors which have circulated here), but we\\'ve never\\nhad a reason to do it, while we have had some good reasons not to\\n(performance penalties, control, debris generation, and eventual\\nde-orbit and impact footprint). Once on-orbit, we would vent the\\nresidual H2. The ET insulation (SOFI) either a) erodes on-orbit from\\nimpact with atomic Oxygen, or b) stays where it is, and we deploy a\\nKevlar sheath around it to protect it and keep it from contaminating\\nthe local space environment. Option b) has the advantage of providing\\nfurther micrometeor protection. The ET is incredibly strong (remember,\\nit supports the whole stack during launch), and could serve as the\\nnucleus for a much more ambitious design as budget permits.\\n\\nThe white module at the end of ET contains a set of Control Moment\\nGyros to be used for attitude control, while the RCS will be used\\nfor gyro desaturation. The module also contains a de-orbit system\\nwhich can be used at the end of the Station\\'s life to perform a\\ncontrolled de-orbit (so we don\\'t kill any more kangaroos, like we\\ndid with Skylab).\\n\\nThe centrifuge, which has the same volume as a hab module, could be\\nused for long-term studies of the effects of lunar or martian gravity\\non humans. The centrifuge will be used as a momentum storage device\\nfor the whole attitude control system. The centrifuge is mounted on\\none of the modules, opposite the ET and the solar panels.\\n\\nThis design uses most of the existing SSF designs for electrical,\\ndata and communication systems, getting leverage from the SSF work\\ndone to date.\\n\\nMark proposed this design at Joe Shea\\'s committee in Crystal City,\\nand he reports that he was warmly received. However, the rumors\\nI hear say that a design based on a wingless Space Shuttle Orbiter\\nseems more likely.\\n\\nPlease note that this text is my interpretation of Mark\\'s design;\\nyou should see his notes in the GIF files. \\n\\nInstead of posting a 2 MB file to sci.space, I tried to post these for\\nanon-FTP in ames.arc.nasa.gov, but it was out of storage space. I\\'ll\\nlet you all know when I get that done.\\n\\n-- Ken Jenks, NASA/JSC/GM2, Space Shuttle Program Office\\n kjenks@gothamcity.jsc.nasa.gov (713) 483-4368\\n\\n \"...Development of the space station is as inevitable as \\n the rising of the sun.\" -- Wernher von Braun\\n',\n", - " 'Subject: Re: islamic authority over women\\nFrom: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 46\\n\\nIn article <1993Apr5.023044.19580@ultb.isc.rit.edu) snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n)\\n)That\\'s your mistake. It would be better for the children if the mother\\n)raised the child.\\n)\\n)One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n)because of the love of their mom. It makes for more virile men.\\n)Compare that with how homos are raised. Do a study and you will get my\\n)point.\\n)\\n)But in no way do you have a claim that it would be better if the men\\n)stayed home and raised the child. That is something false made up by\\n)feminists that seek a status above men. You do not recognize the fact\\n)that men and women have natural differences. Not just physically, but\\n)mentally also.\\n) [...]\\n)Your logic. I didn\\'t say americans were the cause of worlds problems, I\\n)said atheists.\\n) [...]\\n)Becuase they have no code of ethics to follow, which means that atheists\\n)can do whatever they want which they feel is right. Something totally\\n)based on their feelings and those feelings cloud their rational\\n)thinking.\\n) [...]\\n)Yeah. I didn\\'t say that all atheists are bad, but that they could be\\n)bad or good, with nothing to define bad or good.\\n)\\n\\n Awright! Bobby\\'s back, in all of his shit-for-brains glory. Just\\n when I thought he\\'d turned the corner of progress, his Thorazine\\n prescription runs out. \\n\\n I\\'d put him in my kill file, but man, this is good stuff. I wish\\n I had his staying power.\\n\\n Fortunately, I learned not to take him too seriously long,long,long\\n ago.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n',\n", - " 'From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: free moral agency and Jeff Clark\\nOrganization: Technical University Braunschweig, Germany\\nLines: 30\\n\\nIn article \\nhealta@saturn.wwc.edu (TAMMY R HEALY) writes:\\n \\n(Deletion)\\n>You also said,\"Why did millions suffer for what Adam and Ee did? Seems a\\n>pretty sick way of going about creating a universe...\"\\n>\\n>I\\'m gonna respond by giving a small theology lesson--forgive me, I used\\n>to be a theology major.\\n>First of all, I believe that this planet is involved in a cosmic struggle--\\n>\"the Great Controversy betweed Christ and Satan\" (i borrowed a book title).\\n>God has to consider the interests of the entire universe when making\\n>decisions.\\n(Deletion)\\n \\nAn universe it has created. By the way, can you tell me why it is less\\ntyrannic to let one of one\\'s own creatures do what it likes to others?\\nBy your definitions, your god has created Satan with full knowledge what\\nwould happen - including every choice of Satan.\\n \\nCan you explain us what Free Will is, and how it goes along with omniscience?\\nDidn\\'t your god know everything that would happen even before it created the\\nworld? Why is it concerned about being a tyrant when noone would care if\\neverything was fine for them? That the whole idea comes from the possibility\\nto abuse power, something your god introduced according to your description?\\n \\n \\nBy the way, are you sure that you have read the FAQ? Especially the part\\nabout preaching?\\n Benedikt\\n',\n", - " 'From: cptully@med.unc.edu (Christopher P. Tully,Pathology,62699)\\nSubject: Re: TIFF: philosophical significance of 42\\nNntp-Posting-Host: helix.med.unc.edu\\nReply-To: cptully@med.unc.edu\\nOrganization: UNC-CH School of Medicine\\nLines: 40\\n\\nIn article 8HC@mentor.cc.purdue.edu, ab@nova.cc.purdue.edu (Allen B) writes:\\n>In article <1993Apr10.160929.696@galki.toppoint.de> ulrich@galki.toppoint.de \\n>writes:\\n>> According to the TIFF 5.0 Specification, the TIFF \"version number\"\\n>> (bytes 2-3) 42 has been chosen for its \"deep philosophical \\n>> significance\".\\n>> Last week, I read the Hitchhikers Guide To The Galaxy,\\n>> Is this actually how they picked the number 42?\\n>\\n>I\\'m sure it is, and I am not amused. Every time I read that part of the\\n>TIFF spec, it infuriates me- and I\\'m none too happy about the\\n>complexity of the spec anyway- because I think their \"arbitrary but\\n>carefully chosen number\" is neither. Additionally, I find their\\n>choice of 4 bytes to begin a file with meaningless of themselves- why\\n>not just use the letters \"TIFF\"?\\n>\\n>(And no, I don\\'t think they should have bothered to support both word\\n>orders either- and I\\'ve found that many TIFF readers actually\\n>don\\'t.)\\n>\\n>ab\\n\\nWhy so up tight? FOr that matter, TIFF6 is out now, so why not gripe\\nabout its problems? Also, if its so important to you, volunteer to\\nhelp define or critique the spec.\\n\\nFinally, a little numerology: 42 is 24 backwards, and TIFF is a 24 bit\\nimage format...\\n\\nChris\\n---\\n*********************************************************************\\nChristopher P. Tully\\t\\t\\t\\tcptully@med.unc.edu\\nUniv. of North Carolina - Chapel Hill\\nCB# 7525\\t\\t\\t\\t\\t(919) 966-2699\\nChapel Hill, NC 27599\\n*********************************************************************\\nI get paid for my opinions, but that doesn\\'t mean that UNC or anybody\\n else agrees with them.\\n\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Re: Killer\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 95\\n\\nIn article <1993Apr21.032746.10820@doug.cae.wisc.edu> yamen@cae.wisc.edu\\n(Soner Yamen) responded to article <1r20kr$m9q@nic.umass.edu> BURAK@UCSVAX.\\nUCS.UMASS.EDU (AFS) who wrote:\\n\\n[AFS] Just a quick comment::\\n[AFS]\\n[AFS] Armenians killed Turks------Turks killed Armenians.\\n[AFS]\\n[AFS] Simple as that. Can anybody deny these facts?\\n\\nJews killed Germans in WWII -- Germans killed Jews in WWII, BUT there was \\nquite a difference in these two statements, regardless of what Nazi \\nrevisionists say!\\n\\n[SY] My grand parents were living partly in todays Armenia and partly in\\n[SY] todays Georgia. There were villages, Kurd/Turk (different Turkic groups)\\n[SY] Georgian (muslim/christian) Armenian and Farsi... Very near to eachother.\\n[SY] The people living there were aware of their differences. They were \\n[SY] different people. For example, my grandfather would not have been happy \\n[SY] if his doughter had willed to marry an Armenian guy. But that did not \\n[SY] mean that they were willing to kill eachother. No! They were neighbors.\\n\\nOK.\\n\\n[SY] Armenians killed Turks. Which Armenians? Their neoghbors? As far as my\\n[SY] grandparents are concerned, the Armenians attacked first but these \\n[SY] Armenians were not their neighbors. They came from other places. Maybe \\n[SY] first they had a training at some place. They were taught to kill people,\\n[SY] to hate Turks/Kurds? It seems so...\\n\\nThere is certainly a difference between the planned extermination of the\\nArmenians of eastern Turkey beginning in 1915, with that of the Armeno-\\nGeorgian conflicts of late 1918! The argument is not whether Armenians ever \\nkilled in their collective existence, but rather the wholesale destruction of\\nAnatolian Armenians under orders of the Turkish government. An Armenian-\\nGeorgian dispute over the disposition of Akhalkalak, Lori, and Pambak after\\nthe Turkish Third Army evacuated the region, cannot be equated with the\\nextermination of Anatolian Armenians. Many Armenians and Georgians died\\nin this area in the scramble to re-occupy these lands and the lack of\\npreparation for the winter months. This is not the same as the Turkish \\ngenocide of the Armenians nearly four years earlier, hundreds of kilometers\\naway!\\n\\n[SY] Anyway, but after they killed/raped/... Turks and other muslim people\\n[SY] around, people assumed that \\'Armenians killed us, raped our women\\',\\n[SY] not a particular group of people trained in some camps, maybe backed\\n[SY] by some powerful states... After that step, you cannot explain these \\n[SY] people not to hate all Armenians. \\n\\nI don\\'t follow, perhaps the next paragraph will shed some light.\\n\\n[SY] So what am I trying to point out? First, at least for that region,\\n[SY] you cannot blame Turks/Kurds etc since it was a self defense situation.\\n[SY] Most of the Armenians, I think, are not to blame either. But since some\\n[SY] people started that fire, it is not easy to undo it. There are facts.\\n[SY] People cannot trust eachother easily. It is very difficult to establish\\n[SY] a good relation based on mutual respect and trust between nations with\\n[SY] different ethnic/cultural/religious backgrounds but it is unfortunately\\n[SY] very easy to start a fire!\\n\\nAgain, the fighting between Armenians and Georgians in 1918/19 had little to\\ndo with the destruction of the Armenians in Turkey. It is interesting that\\nthe Georgian leaders of the Transcaucasian Federation (Armenia, Azerbaijan, \\nand Georgia) made special deals with Turkish generals not to pass through \\nTiflis on their way to Baku, in return for Georgians not helping the Armenians \\nmilitarily. Of course, as Turkish troops marched across what was left of\\nCaucasian Armenia, many Armenians went north and such population movement \\ncaused problems with the locals. This is in no comparison with events 4 years \\nearlier in eastern Anatolia. My father\\'s mother\\'s family escaped Cemiskezek -> \\nErzinka -> Erzerum -> Nakhitchevan -> Tiflis -> Constantinople -> \\nMassachusetts. \\n\\n[SY] My grandparents were *not* bloodthirsty people. We did not experience\\n[SY] what they had to endure... They had to leave their lands, there were\\n[SY] ladies, old ladies, all of her children killed while she forced to\\n[SY] witness! Young women put dirt at their face to make themselves\\n[SY] unattractive! I don\\'t want to go into any graphic detail.\\n\\nMy grandmother\\'s brother was forced to dress up as a Kurdish women, and paste\\npotato skins on his face to look ugly. The Turks would kill any Armenian\\nyoung man on sight in Dersim. Because their family was rather influential,\\nlocal Kurds helped them escape before it was too late. This is why I am alive \\ntoday.\\n\\n[SY] You may think that my sources are biased. They were biased in some sense.\\n[SY] They experienced their own pain, of course. That is the way it is. But\\n[SY] as I said they were living in peace with their neighbors before. Why \\n[SY] should they become enemies?\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Commercial mining activities on the moon\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 27\\n\\nIn article steinly@topaz.ucsc.edu (Steinn Sigurdsson) writes:\\n\\n>Seriously though. If you were to ask the British government\\n>whether their colonisation efforts in the Americas were cost\\n>effective, what answer do you think you\\'d get? What if you asked\\n>in 1765, 1815, 1865, 1915 and 1945 respectively? ;-)\\n\\nWhat do you mean? Are you saying they thought the effort was\\nprofitable or that the money was efficiently spent (providing max\\nvalue per money spent)?\\n\\nI think they would answer yes on ballance to both questions. Exceptions\\nwould be places like the US from the French Indian War to the end of\\nthe US Revolution. \\n\\nBut even after the colonies revolted or where given independance the\\nBritish engaged in very lucrative trading with the former colonies.\\nFive years after the American Revolution England was still the largest\\nUS trading partner.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------55 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " \"Subject: Re: was:Go Hezbollah!!\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 43\\n\\nstssdxb@st.unocal.com (Dorin Baru) writes:\\n> Even the most extemist, one sided (jewish/israeli) postings (with which I \\n> certainly disagree), did not openly back plain murder. You do.\\n> \\n> The 'Lebanese resistance' you are talking about is a bunch of lebanese \\n> farmers who detonate bombs after work, or is an organized entity of not-\\n> only-lebanese well trained mercenaries ? I do not know, just curious.\\n> \\n> I guess you also back the killings of hundreds of marines in Beirut, right?\\n> \\n> What kind of 'resistance' movement killed jewish attlets in Munich 1972 ?\\n> \\n> You liked it, didn't you ?\\n> \\n> \\n> You posted some other garbage before, so at least you seem to be consistent.\\n> \\n> Dorin\\n\\nDorin,\\nLet's not forget that the soldiers were killed not murdered. The\\ndistinction is not trivial. Murder happens to innocent people, not people\\nwhose line of work is to kill or be killed. It just so happened that these\\nsoldiers, in the line of duty, were killed by the opposition. And\\nresistance is different from terrorism. Certainly the athletes in Munich\\nwere victims of terrorists (though some might call them freedom fighters).\\nTheir deaths cannot be compared to those of soldiers who are killed by\\nresistance fighters. Don't forget that it was the French Resistance to the\\nNazi occupying forces which eventually succeeded in driving out the\\nhostile occupiers in WWII. Diplomacy has not worked with Israel and the\\nLebanese people are tired of being occupied! They are now turning to the\\nonly option they see as viable. (Don't forget that it worked in driving\\nout the US)\\n\\n-marc\\n\\n\\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", - " \"From: lau@auriga.rose.brandeis.edu (frankie t. k. lau)\\nSubject: PC fastest line/circle drawing routines: HELP!\\nOrganization: Brandeis University\\nLines: 41\\n\\nhi all,\\n\\nIN SHORT: looking for very fast assembly code for line/circle drawing\\n\\t on SVGA graphics.\\n\\nCOMPLETE:\\n\\tI am thinking of a simple but fast molecular\\ngraphics program to write on PC or clones. (ball-and-stick type)\\n\\nReasons: programs that I've seen are far too slow for this purpose.\\n\\nPlatform: 386/486 class machine.\\n\\t 800x600-16 or 1024x728-16 VGA graphics\\n\\t\\t(speed is important, 16-color for non-rendering\\n\\t\\t purpose is enough; may stay at 800x600 for\\n\\t\\t speed reason.)\\n (hope the code would be generic enough for different SVGA\\n cards. My own card is based on Trident 8900c, not VESA?)\\n\\nWhat I'm looking for?\\n1) fast, very fast routines to draw lines/circles/simple-shapes\\n on above-mentioned SVGA resolutions.\\n Presumably in assembly languagine.\\n\\tYes, VERY FAST please.\\n2) related codes to help rotating/zooming/animating the drawings on screen.\\n Drawings for beginning, would be lines, circles mainly, think of\\n text, else later.\\n (you know, the way molecular graphics rotates, zooms a molecule)\\n2) and any other codes (preferentially in C) that can help the \\n project.\\n\\nFinal remarks;-\\nnon-profit. expected to become share-, free-ware.\\n\\n\\tAny help is appreciated.\\n\\tthanks\\n\\n-Frankie\\nlau@tammy.harvard.edu\\n\\nPS pls also email, I may miss reply-post.\\n\",\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: U of Toronto Zoology\\nLines: 17\\n\\nIn article <1993Apr23.103038.27467@bnr.ca> agc@bmdhh286.bnr.ca (Alan Carter) writes:\\n>|> ... a NO-OP command was sent to reset the command loss timer ...\\n>\\n>This activity is regularly reported in Ron's interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n\\nIf I'm not mistaken, this is the usual sort of precaution against loss of\\ncommunications. That timer is counting down continuously; if it ever hits\\nzero, that means Galileo hasn't heard from Earth in a suspiciously long\\ntime and it may be Galileo's fault... so it's time to go into a fallback\\nmode that minimizes chances of spacecraft damage and maximizes chances\\nof restoring contact. I don't know exactly what-all Galileo does in such\\na situation, but a common example is to switch receivers, on the theory\\nthat maybe the one you're listening with has died.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Re: Ten questions about Israel\\nOrganization: Brown University Department of Computer Science\\nLines: 21\\n\\ncpr@igc.apc.org (Center for Policy Research) writes:\\n\\n# 3. Is it true that Israeli stocks nuclear weapons ? If so,\\n# could you provide any evidence ?\\n\\nYes, Israel has nuclear weapons. However:\\n\\n1) Their use so far has been restricted to killing deer, by LSD addicted\\n \"Cherrie\" soldiers.\\n\\n2) They are locked in the cellar of the \"Garinei Afula\" factory, and since\\n the Gingi lost the key, no one can use them anymore.\\n\\n3) Even if the Gingi finds the key, the chief Rabbis have a time lock\\n on the bombs that does not allow them to be activated on the Sabbath\\n and during weeks which follow victories of the Betar Jerusalem soccer\\n team. A quick glance at the National League score table will reveal\\n the strategic importance of this fact.\\n\\n-Danny Keren.\\n\\n',\n", - " 'From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: Studies on Book of Mormon\\nLines: 31\\nOrganization: Walla Walla College\\nLines: 31\\n\\nIn article <735023059snx@enkidu.mic.cl> agrino@enkidu.mic.cl (Andres Grino Brandt) writes:\\n>From: agrino@enkidu.mic.cl (Andres Grino Brandt)\\n>Subject: Studies on Book of Mormon\\n>Date: Sun, 18 Apr 1993 14:15:33 CST\\n>Hi!\\n>\\n>I don\\'t know much about Mormons, and I want to know about serious independent\\n>studies about the Book of Mormon.\\n>\\n>I don\\'t buy the \\'official\\' story about the gold original taken to heaven,\\n>but haven\\'t read the Book of Mormon by myself (I have to much work learning\\n>Biblical Hebrew), I will appreciate any comment about the results of study\\n>in style, vocabulary, place-names, internal consistency, and so on.\\n>\\n>For example: There is evidence for one-writer or multiple writers?\\n>There are some mention about events, places, or historical persons later\\n>discovered by archeologist?\\n>\\n>Yours in Collen\\n>\\n>Andres Grino Brandt Casilla 14801 - Santiago 21\\n>agrino@enkidu.mic.cl Chile\\n>\\n>No hay mas realidad que la realidad, y la razon es su profeta\\nI don\\'t think the Book of Mormon was supposedly translated from Biblical \\nHebrew. I\\'ve read that \"prophet Joseph Smith\" traslated the gold tablets \\nfrom some sort of Egyptian-ish language. \\nFormer Mormons, PLEASE post.\\n\\nTammy \"no trim\" Healy\\n\\n',\n", - " 'From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Freedom In U.S.A.\\nOrganization: NYSERNet, Inc.\\nLines: 23\\n\\nab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>\\tI have just started reading the articles in this news\\n>group. There seems to be an attempt by some members to quiet\\n>other members with scare tactics. I believe one posting said\\n>that all postings by one person are being forwarded to his\\n>server who keeps a file on him in hope that \"Appropriate action\\n>might be taken\". \\n>\\tI don\\'t know where you guys are from but in America\\n>such attempts to curtail someones first amendment rights are\\n>not appreciated. Here, we let everyone speak their mind\\n>regardless of how we feel about it. Take your fascistic\\n>repressive ideals back to where you came from.\\n\\nFreedom of speech does not mean that others are compelled to give one\\nthe means to speak publicly. Some systems have regulations\\nprohibiting the dissemination of racist and bigoted messages from\\naccounts they issue.\\n\\nApparently, that\\'s not the case with virginia.edu, since you are still\\nposting.\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n',\n", - " 'From: dab@vuse.vanderbilt.edu (David A. Braun)\\nSubject: Wrecked BMW\\nOriginator: dab@necs\\nNntp-Posting-Host: necs\\nOrganization: Vanderbilt University School of Engineering, Nashville, TN, USA\\nDistribution: na\\nLines: 13\\n\\n\\nDo you or does anyone you know have a wrecked 1981 or later R80(anything)\\nor R100(anything) that they are interested in getting rid of? I need\\na motor, but will buy a whole bike.\\n\\nemail replies to:\\tDavid.Braun@FtCollinsCO.NCR.com\\n\\tor:\\t\\tdab@vuse.vanderbilt.edu\\n\\nor phone:\\t303/223-5100 x9487 (voice mail)\\n\\t\\t303/229-0952\\t (home)\\n\\n\\n\\n',\n", - " \"From: jaskew@spam.maths.adelaide.edu.au (Joseph Askew)\\nSubject: Re: the call to space (was Re: Clueless Szaboisms )\\nKeywords: trumpet calls, infrastructure, public perception\\nOrganization: Statistics, Pure & Applied Mathematics, University of Adelaide\\nLines: 32\\n\\nIn article <1pfj8k$6ab@access.digex.com> prb@access.digex.com (Pat) writes:\\n>In article <1993Mar31.161814.11683@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n\\n>>It isn't feasible for Japan to try to stockpile the amount of oil they\\n>>would need to run their industries if they did no use nuclear power.\\n\\n>Of course, Given they export 50 % of the GNP, What do they do.\\n\\nWell they don't export anywhere near 50% of their GNP. Mexico's perhaps\\nbut not their own. They actually export around the 9-10% mark. Similar\\nto most developed countries actually. Australia exports a larger share\\nof GNP as does the United States (14% I think off hand. Always likely to\\nbe out by a factor of 12 or more though) This would be immediately obvious\\nif you thought about it.\\n\\n>Anything serious enough to disrupt the sea lanes for oil will\\n>also hose their export routes.\\n\\nIt is their import routes that count. They can do without exports but\\nthey couldn't live without imports for any longer than six months if that.\\n\\n>Given they import everything, oil is just one more critical commodity.\\n\\nToo true! But one that is unstable and hence a source of serious worry.\\n\\nJoseph Askew\\n\\n-- \\nJoseph Askew, Gauche and Proud In the autumn stillness, see the Pleiades,\\njaskew@spam.maths.adelaide.edu Remote in thorny deserts, fell the grief.\\nDisclaimer? Sue, see if I care North of our tents, the sky must end somwhere,\\nActually, I rather like Brenda Beyond the pale, the River murmurs on.\\n\",\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race\\nOrganization: U of Toronto Zoology\\nLines: 23\\n\\nIn article <3HgF3B3w165w@shakala.com> dante@shakala.com (Charlie Prael) writes:\\n>Doug-- Actually, if memory serves, the Atlas is an outgrowth of the old \\n>Titan ICBM...\\n\\nNope, you're confusing separate programs. Atlas was the first-generation\\nUS ICBM; Titan I was the second-generation one; Titan II, which all the\\nTitan launchers are based on, was the third-generation heavy ICBM. There\\nwas essentially nothing in common between these three programs.\\n\\n(Yes, *three* programs. Despite the similarity of names, Titan I and\\nTitan II were completely different missiles. They didn't even use the\\nsame fuels, never mind the same launch facilities.)\\n\\n>If so, there's probably quite a few old pads, albeit in need \\n>of some serious reconditioning. Still, Being able to buy the turf and \\n>pad (and bunkers, including prep facility) at Midwest farmland prices \\n>strikes me as pretty damned cheap.\\n\\nSorry, the Titan silos (a) can't handle the Titan launchers with their\\nlarge SRBs, (b) can't handle *any* sort of launcher without massive\\nviolations of normal range-safety rules (nobody cares about such things\\nin the event of a nuclear war, but in peacetime they matter), and (c) were\\nscrapped years ago.\\n\",\n", - " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Ok, So I was a little hasty...\\nOrganization: Duke University; Durham, N.C.\\nLines: 16\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nApparently that last post was a little hasy, since I\\ncalled around to more places and got quotes for less\\nthan 600 and 425. Liability only, of course.\\n\\nPlus, one palced will give me C7C for my car + liab on the bike for\\nonly 1350 total, which ain't bad at all.\\n\\nSo I won't go with the first place I called, that's\\nfer sure.\\n\\n\\n-- \\nAndy Infante | You can listen to what everybody says, but the fact remains |\\n'71 BMW R60/5 | that you've got to get out there and do the thing yourself. | \\nDoD #2426 | -- Joan Sutherland | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", - " 'From: osinski@chtm.eece.unm.edu (Marek Osinski)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: University of New Mexico, Albuquerque\\nLines: 12\\nDistribution: world\\nNNTP-Posting-Host: chtm.eece.unm.edu\\n\\nIn article <1993Apr15.174657.6176@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>Compromise on what, the invasion of Cyprus, the involment of Turkey in\\n>Greek politics, the refusal of Turkey to accept 12 miles of territorial\\n>waters as stated by international law, the properties of the Greeks of \\n>Konstantinople, the ownership of the islands in the Greek lake,sorry, Aegean.\\n\\nWell, it did not take long to see how consequent some Greeks are in\\nrequesting that Thessaloniki are not called Solun by Bulgarian netters. \\nSo, Napoleon, why do you write about Konstantinople and not Istanbul?\\n\\nMarek Osinski\\n',\n", - " 'From: mbh2@engr.engr.uark.edu (M. Barton Hodges)\\nSubject: Stereoscopic imaging\\nSummary: Stereoscopic imaging\\nKeywords: stereoscopic\\nNntp-Posting-Host: engr.engr.uark.edu\\nOrganization: University of Arkansas\\nLines: 8\\n\\nI am interested in any information on stereoscopic imaging on a sun\\nworkstation. For the most part, I need to know if there is any hardware\\navailable to interface the system and whether the refresh rates are\\nsufficient to produce quality image representations. Any information\\nabout the subject would be greatly appreciated.\\n\\n Thanks!\\n\\n',\n", - " 'From: ktt3@unix.brighton.ac.uk (Koon Tang)\\nSubject: PostScript driver for GINO\\nOrganization: The Univerity of Brighton, U.K.\\nLines: 15\\n\\nDoes anybody know where I can get, via anonymous ftp or otherwise, a PostScript\\ndriver for the graphics libraries GINO verison 3.0A ?\\n\\nWe are runnining on a VAX/VMS and are looking for a way outputing our plots to a\\nPostScript file...\\n\\n\\nThanks in advance...\\n-- \\nKoon Tang, internet: ktt3@unix.bton.ac.uk\\nDepartment of Mathematical Sciences, uucp: uknet!itri!ktt3\\nUniversity of Brighton,\\nBrighton,\\nBN2 4GJ,\\nU.K.\\n',\n", - " 'From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Boom! Hubcap attack!\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 21\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, speedy@engr.latech.edu (Speedy Mercer) says:\\n\\n>I was attacked by a rabid hubcap once. I was going to work on a Yamaha\\n>750 Twin (A.K.A. \"the vibrating tank\") when I heard a wierd noise off to my \\n>left. I caught a glimpse of something silver headed for my left foot and \\n>jerked it up about a nanosecond before my bike was hit HARD in the left \\n>side. When I went to put my foot back on the peg, I found that it was not \\n>there! I pulled into the nearest parking lot and discovered that I had been \\n>hit by a wire-wheel type hubcap from a large cage! This hubcap weighed \\n>about 4-5 pounds! The impact had bent the left peg flat against the frame \\n>and tweeked the shifter in the process. Had I not heard the approaching \\n>cap, I feel certian that I would be sans a portion of my left foot.\\n>\\nHmmmm.....I wondered where that hubcap went.\\n\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n',\n", - " 'From: rbemben@timewarp.prime.com (Rich Bemben)\\nSubject: Re: Riceburner Respect\\nExpires: 15 May 93 05:00:00 GMT\\nOrganization: Computervision Corp., Bedford, Ma.\\nLines: 19\\n\\nIn article <1993Apr9.172953.12408@cbnewsm.cb.att.com> shz@mare.att.com (Keeper of the \\'Tude) writes:\\n>The rider (pilot?) of practically every riceburner I\\'ve passed recently\\n>has waved to me and I\\'m wondering if it will last. Could they simply be \\n>overexuberant that their \\'burners have been removed from winter moth-balls \\n>and the novelty will soon dissipate? Perhaps the gray beard that sprouted\\n>since the last rice season makes them think I\\'m a friendly old fart that\\n>deserves a wave...\\n\\nMaybe...then again did you get rid of that H/D of yorn and buy a rice rocket \\nof your own? That would certainly explain the friendliness...unless you \\nmaybe had a piece of toilet paper stuck on the bottom of your boot...8-).\\n\\nRich\\n\\n\\nRich Bemben - DoD #0044 rbemben@timewarp.prime.com\\n1977 750 Triumph Bonneville (617) 275-1800 x 4173\\n\"Fear not the evil men do in the name of evil, but heaven protect\\n us from the evil men do in the name of good\"\\n',\n", - " \"From: nelson@seahunt.imat.com (Michael Nelson)\\nSubject: Re: Why I won't be getting my Low Rider this year\\nKeywords: congratz\\nArticle-I.D.: myrddin.C52EIp.71x\\nOrganization: SeaHunt, San Francisco CA\\nLines: 29\\nNntp-Posting-Host: seahunt.imat.com\\n\\nIn article <1993Apr5.182851.23410@cbnewsj.cb.att.com> car377@cbnewsj.cb.att.com (charles.a.rogers) writes:\\n>\\n>Ouch. :-) This brings to mind one of the recommendations in the\\n>Hurt Study. Because the rear of the gas tank is in close proximity\\n>to highly prized and easily damaged anatomy, Hurt et al recommended\\n>that manufacturers build the tank so as to reduce the, er, step function\\n>provided when the rider's body slides off of the seat and onto the\\n>gas tank in the unfortunate event that the bike stops suddenly and the \\n>rider doesn't. I think it's really inspiring how the manufacturers\\n>have taken this advice to heart in their design of bikes like the \\n>CBR900RR and the GTS1000A.\\n\\n\\tWhen I'm riding my 900RR, my goodies are already up\\n\\tagainst the tank, because the design of the Corbin seat\\n\\ttends to move you forward.\\n\\n\\tWouldn't the major danger to one's cajones be due to\\n\\taccelerating into and then being stopped by the tank? If\\n\\tyou're already there, there wouldn't be an impact\\n\\tproblem, would there?\\n\\n\\t\\t\\t\\t- Michael -\\n\\n\\n-- \\n+-------------------------------------------------------------+\\n| Michael Nelson 1993 CBR900RR |\\n| Internet: nelson@seahunt.imat.com Dod #0735 |\\n+-------------------------------------------------------------+\\n\",\n", - " \"From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: Happy Easter!\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 23\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nKaren Black (karen@angelo.amd.com) wrote:\\n: ranck@joesbar.cc.vt.edu (Wm. L. Ranck) writes:\\n: >Nick Pettefar (npet@bnr.ca) wrote:\\n: >: English cars:-\\n: >\\n: >: Rover, Reliant, Morgan, Bristol, Rolls Royce, etc.\\n: > ^^^^^^\\n: > Talk about Harleys using old technology, these\\n: >Morgan people *really* like to use old technology.\\n\\n: Well, if you want to pick on Morgan, why not attack its ash (wood)\\n: frame or its hand-bent metal skin (just try and get a replacement :-)). \\n: I thought the kingpost suspension was one of the Mog's better features.\\n\\nHey! I wasn't picking on Morgan. They use old technology. That's all\\nI said. There's nothing wrong with using old technology. People still\\nuse shovels to dig holes even though there are lots of new powered implements\\nto dig holes with. \\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Political Atheists?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 57\\nNNTP-Posting-Host: lloyd.caltech.edu\\n\\nmmwang@adobe.com (Michael Wang) writes:\\n\\n>I was looking for a rigorous definition because otherwise we would be\\n>spending the rest of our lives arguing what a \"Christian\" really\\n>believes.\\n\\nI don\\'t think we need to argue about this.\\n\\n>KS>Do you think that the motto points out that this country is proud\\n>KS>of its freedom of religion, and that this is something that\\n>KS>distinguishes us from many other countries?\\n>MW>No.\\n>KS>Well, your opinion is not shared by most people, I gather.\\n>Perhaps not, but that is because those seeking to make government\\n>recognize Christianity as the dominant religion in this country do not\\n>think they are infringing on the rights of others who do not share\\n>their beliefs.\\n\\nYes, but also many people who are not trying to make government recognize\\nChristianity as the dominant religion in this country do no think\\nthe motto infringes upon the rights of others who do not share their\\nbeliefs.\\n\\nAnd actually, I think that the government already does recognize that\\nChristianity is the dominant religion in this country. I mean, it is.\\nDon\\'t you realize/recognize this?\\n\\nThis isn\\'t to say that we are supposed to believe the teachings of\\nChristianity, just that most people do.\\n\\n>Like I\\'ve said before I personally don\\'t think the motto is a major\\n>concern.\\n\\nIf you agree with me, then what are we discussing?\\n\\n>KS>Since most people don\\'t seem to associate Christmas with Jesus much\\n>KS>anymore, I don\\'t see what the problem is.\\n>Can you prove your assertion that most people in the U.S. don\\'t\\n>associate Christmas with Jesus anymore?\\n\\nNo, but I hear quite a bit about Christmas, and little if anything about\\nJesus. Wouldn\\'t this figure be more prominent if the holiday were really\\nassociated to a high degree with him? Or are you saying that the\\nassociation with Jesus is on a personal level, and that everyone thinks\\nabout it but just never talks about it?\\n\\nThat is, can *you* prove that most people *do* associate Christmas\\nmost importantly with Jesus?\\n\\n>Anyways, the point again is that there are people who do associate\\n>Christmas with Jesus. It doesn\\'t matter if these people are a majority\\n>or not.\\n\\nI think the numbers *do* matter. It takes a majority, or at least a\\nmajority of those in power, to discriminate. Doesn\\'t it?\\n\\nkeith\\n',\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Blow up space station, easy way to do it.\\nArticle-I.D.: aurora.1993Apr5.184527.1\\nOrganization: University of Alaska Fairbanks\\nLines: 28\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nThis might a real wierd idea or maybe not..\\n\\nI have seen where people have blown up ballons then sprayed material into them\\nthat then drys and makes hard walls...\\n\\nWhy not do the same thing for a space station..\\n\\nFly up the docking rings and baloon materials and such, blow up the baloons,\\nspin then around (I know a problem in micro gravity) let them dry/cure/harden?\\nand cut a hole for the docking/attaching ring and bingo a space station..\\n\\nOf course the ballons would have to be foil covered or someother radiation\\nprotective covering/heat shield(?) and the material used to make the wals would\\nhave to meet the out gasing and other specs or atleast the paint/covering of\\nthe inner wall would have to be human safe.. Maybe a special congrete or maybe\\nthe same material as makes caplets but with some changes (saw where someone\\ninstea dof water put beer in the caplet mixture, got a mix that was just as\\nstrong as congret but easier to carry around and such..)\\n\\nSorry for any spelling errors, I missed school today.. (grin)..\\n\\nWhy musta space station be so difficult?? why must we have girders? why be\\nconfined to earth based ideas, lets think new ideas, after all space is not\\nearth, why be limited by earth based ideas??\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\ngoing crazy in Nome Alaska, break up is here..\\n\",\n", - " \"From: mmanning@icomsim.com (Michael Manning)\\nSubject: Re: Bikes And Contacts\\nOrganization: Icom Simulations\\nLines: 30\\n\\nIn article <1993Apr13.163450.1@skcla.monsanto.com> \\nmpmena@skcla.monsanto.com writes:\\n\\n> Michael (Manning)...Must be that blockhead of yours....the gargoyles\\n> are the ONLY thing that work for me! ;*}\\n> \\n> \\n> Michael (Menard)\\n> \\n> P.S. When you showin' up at Highland House? We'll compare sunglasses...\\n\\nLet's see how the weather is Saturday or Sunday. It sucks\\ntoday. What time is good?\\nYou're welcome to give any of the ones I have a try. As\\nfor the gargoyles, if you want mine you can have 'em. I\\nthink the bridge of my nose holds them too far from my face.\\nSame deal for the two of my friends who tried them. For\\npeople who use them with a full face helmet, all bets are\\noff. Sorry if they fit you well and took my complaint\\npersonally. Yes the Oakleys are much more desirable squid\\nattire. Also the gargoyles aren't that ugly, even in my\\nopinion, or I wouldn't have tried them.\\n\\n--\\nMichael Manning\\nmmanning@icomsim.com (NeXTMail accepted.)\\n\\n`92 FLSTF FatBoy\\n`92 Ducati 900SS\\n\\n\",\n", - " 'From: karish@gondwana.Stanford.EDU (Chuck Karish)\\nSubject: Re: Recommended bike for a tall beginner.\\nOrganization: Mindcraft, Inc.\\nDistribution: usa\\nLines: 13\\n\\nIn article <47116@sdcc12.ucsd.edu> jtozer@sdcc3.ucsd.edu (John Tozer) writes:\\n>\\tI am looking for advice on what bikes I should check out. I\\n>am 6\\'4\" tall, and find my legs/hips uncomfortably bent on most of\\n>the bikes I have ridden (not many admittedly). Are there any bikes\\n>out there built for a taller rider?\\n\\nThere\\'s plenty of legroom on the Kawasaki KLR650. A bit\\nshort in the braking department for spirited street riding,\\nbut enough for dirt and for less-agressive street stuff.\\n--\\n\\n Chuck Karish karish@mindcraft.com\\n (415) 323-9000 x117 karish@pangea.stanford.edu\\n',\n", - " \"From: adams@bellini.berkeley.edu (Adam L. Schwartz)\\nSubject: Re: Israel's Expansion II\\nNntp-Posting-Host: bellini.berkeley.edu\\nOrganization: U.C. Berkeley -- ERL\\nLines: 9\\n\\nIn article <93111.225707PP3903A@auvm.american.edu> Paul H. Pimentel writes:\\n>What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n>s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n>k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n>ore they have a right to Jerusaleum as much as Isreal does.\\n\\n\\nWhat gives the United States the right to keep Washington D.C.? \\n\",\n", - " 'From: higgins@fnala.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: NASA Ames server (was Re: Space Station Redesign, JSC Alternative #4)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 14\\nNNTP-Posting-Host: fnala.fnal.gov\\n\\nIn article <1993Apr26.152722.19887@aio.jsc.nasa.gov>, kjenks@jsc.nasa.gov (Ken Jenks [NASA]) writes:\\n> I just posted the GIF files out for anonymous FTP on server ics.uci.edu.\\n[...]\\n> Sorry it took\\n> me so long to get these out, but I was trying for the Ames server,\\n> but it\\'s out of space.\\n\\nHow ironic.\\n\\nBill Higgins, Beam Jockey | \"Treat your password like\\nFermi National Accelerator Laboratory | your toothbrush. Don\\'t let\\nBitnet: HIGGINS@FNAL.BITNET | anybody else use it--\\nInternet: HIGGINS@FNAL.FNAL.GOV | and get a new one every\\nSPAN/Hepnet: 43011::HIGGINS | six months.\" --Cliff Stoll\\n',\n", - " 'From: hdsteven@solitude.Stanford.EDU (H. D. Stevens)\\nSubject: Re: Inflatable Mile-Long Space Billboards (was Re: Vandalizing the sky.)\\nOrganization: stanford\\nLines: 38\\n\\nIn article , yamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n|> >NASA would provide contractual launch services. However,\\n|> >since NASA bases its charge on seriously flawed cost estimates\\n|> >(WN 26 Mar 93) the taxpayers would bear most of the expense. This\\n|> >may look like environmental vandalism, but Mike Lawson, CEO of\\n|> >Space Marketing, told us yesterday that the real purpose of the\\n|> >project is to help the environment! The platform will carry ozone\\n|> >monitors he explained--advertising is just to help defray costs.\\n|> \\n|> This may be the purpose for the University of Colorado people. My\\n|> guess is that the purpose for the Livermore people is to learn how to\\n|> build large, inflatable space structures.\\n|> \\n\\nThe CU people have been, and continue to be big ozone scientists. So \\nthis is consistent. It is also consistent with the new \"Comercial \\napplications\" that NASA and Clinton are pushing so hard. \\n|> \\n|> >Is NASA really supporting this junk?\\n\\nDid anyone catch the rocket that was launched with a movie advert \\nall over it? I think the rocket people got alot of $$ for painting \\nup the sides with the movie stuff. What about the Coke/Pepsi thing \\na few years back? NASA has been trying to find ways to get other \\npeople into the space funding business for some time. Frankly, I\\'ve \\nthought about trying it too. When the funding gets tight, only the \\ninnovative get funded. One of the things NASA is big on is co-funding. \\nIf a PI can show co-funding for any proposal, that proposal has a SIGNIFICANTLY\\nhigher probability of being funded than a proposal with more merit but no \\nco-funding. Once again, money talks!\\n\\n\\n-- \\nH.D. Stevens\\nStanford University\\t\\t\\tEmail:hdsteven@sun-valley.stanford.edu\\nAerospace Robotics Laboratory\\t\\tPhone:\\t(415) 725-3293 (Lab)\\nDurand Building\\t\\t\\t\\t\\t(415) 722-3296 (Bullpen)\\nStanford, CA 94305\\t\\t\\tFax:\\t(415) 725-3377\\n',\n", - " 'Subject: Re: Bill Conner:\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 17\\n\\nIn article bil@okcforum.osrhe.edu (Bill Conner) writes:\\n\\n>Could you explain what any of this pertains to? Is this a position\\n>statement on something or typing practice? And why are you using my\\n>name, do you think this relates to anything I\\'ve said and if so, what.\\n>\\n>Bill\\n\\n Could you explain what any of the above pertains to? Is this a position \\nstatement on something or typing practice? \\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", - " \"From: edb9140@tamsun.tamu.edu (E.B.)\\nSubject: POV problems with tga outputs\\nOrganization: Texas A&M University, College Station, TX\\nLines: 9\\nDistribution: world\\nNNTP-Posting-Host: tamsun.tamu.edu\\n\\nI can't fiqure this out. I have properly compiled pov on a unix machine\\nrunning SunOS 4.1.3 The problem is that when I run the sample .pov files and\\nuse the EXACT same parameters when compiling different .tga outputs. Some\\nof the .tga's are okay, and other's are unrecognizable by any software.\\n\\nHelp!\\ned\\nedb9140@tamsun.tamu.edu\\n\\n\",\n", - " 'From: zowie@daedalus.stanford.edu (Craig \"Powderkeg\" DeForest)\\nSubject: Re: Cold Gas tanks for Sounding Rockets\\nOrganization: Stanford Center for Space Science and Astrophysics\\nLines: 29\\nNNTP-Posting-Host: daedalus.stanford.edu\\nIn-reply-to: rdl1@ukc.ac.uk\\'s message of 16 Apr 93 14:28:07 GMT\\n\\nIn article <3918@eagle.ukc.ac.uk> rdl1@ukc.ac.uk (R.D.Lorenz) writes:\\n >Does anyone know how to size cold gas roll control thruster tanks\\n >for sounding rockets?\\n\\n Well, first you work out how much cold gas you need, then make the\\n tanks big enough.\\n\\nOur sounding rocket payload, with telemetry, guidance, etc. etc. and a\\ntelescope cluster, weighs around 1100 pounds. It uses freon jets for\\nsteering and a pulse-width-modulated controller for alignment (ie\\nduring our eight minutes in space, the jets are pretty much\\ncontinuously firing on a ~10% duty cycle or so...). The jets also\\nneed to kill residual angular momentum from the spin stabilization, and\\nflip the payload around to look at the Sun.\\n\\nWe have two freon tanks, each holding ~5 liters of freon (I\\'m speaking\\nonly from memory of the last flight). The ground crew at WSMR choose how\\nmuch freon to use based on some black-magic algorithm. They have\\nextra tank modules that just bolt into the payload stack.\\n\\nThis should give you an idea of the order of magnitude for cold gas \\nquantity. If you really need to know, send me email and I\\'ll try to get you\\nin touch with our ground crew people.\\n\\nCheers,\\nCraig\\n\\n--\\nDON\\'T DRINK SOAP! DILUTE DILUTE! OK!\\n',\n", - " \"From: rgc3679@bcstec.ca.boeing.com (Robert G. Carpenter)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nOrganization: Boeing\\nLines: 24\\n\\nIn article John_Shepardson.esh@qmail.slac.stanford.edu (John Shepardson) writes:\\n>> Can you please offer some recommendations? (3d graphics)\\n>\\n>\\n>There has been a fantastic 3d programmers package for some years that has\\n>been little advertised, and apparently nobody knows about, called 3d\\n>Graphic Tools written by Mark Owen of Micro System Options in Seattle WA. \\n>I reviewed it a year or so ago and was really awed by it's capabilities. \\n>It also includes tons of code for many aspects of Mac programming\\n>(including offscreen graphics). It does Zbuffering, 24 bit graphics, has a\\n>database for representing graphical objects, and more.\\n>It is very well written (MPW C, Think C, and HyperCard) and the code is\\n>highly reusable. Last time I checked the price was around $150 - WELL\\n>worth it.\\n>\\n>Their # is (206) 868-5418.\\n\\n I've talked with Mark and he faxed some literature, though it wasn't very helpful-\\n just a list of routine names: _BSplineSurface, _DrawString3D... 241 names.\\n There was a Product Info sheet that explained some of the package capabilities.\\n I also found a review in April/May '92 MacTutor.\\n\\n It does look like a good package. The current price is $295 US.\\n\\n\",\n", - " 'From: jscotti@lpl.arizona.edu (Jim Scotti)\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 33\\n\\nIn article <1993Apr21.170817.15845@sq.sq.com> msb@sq.sq.com (Mark Brader) writes:\\n>\\n>> > > Also, peri[jove]s of Gehrels3 were:\\n>> > > \\n>> > > April 1973 83 jupiter radii\\n>> > > August 1970 ~3 jupiter radii\\n>\\n>> > Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. ...\\n>\\n>> Sorry, _perijoves_...I\\'m not used to talking this language.\\n>\\n>Thanks again. One final question. The name Gehrels wasn\\'t known to\\n>me before this thread came up, but the May issue of Scientific American\\n>has an article about the \"Inconstant Cosmos\", with a photo of Neil\\n>Gehrels, project scientist for NASA\\'s Compton Gamma Ray Observatory.\\n>Same person?\\n\\nNeil Gehrels is Prof. Tom Gehrels son. Tom Gehrels was the discoverer\\nof P/Gehrels 3 (as well as about 4 other comets - the latest of which\\ndoes not bear his name, but rather the name \"Spacewatch\" since he was\\nobserving with that system when he found the latest comet). \\n\\n>-- \\n>Mark Brader, SoftQuad Inc., Toronto\\t\"Information! ... We want information!\"\\n>utzoo!sq!msb, msb@sq.com\\t\\t\\t\\t-- The Prisoner\\n\\n---------------------------------------------\\nJim Scotti \\n{jscotti@lpl.arizona.edu}\\nLunar & Planetary Laboratory\\nUniversity of Arizona\\nTucson, AZ 85721 USA\\n---------------------------------------------\\n',\n", - " 'From: mcguire@cs.utexas.edu (Tommy Marcus McGuire)\\nSubject: Re: Countersteering_FAQ please post\\nArticle-I.D.: earth.ls1v14INNjml\\nOrganization: CS Dept, University of Texas at Austin\\nLines: 54\\nNNTP-Posting-Host: earth.cs.utexas.edu\\n\\nIn article <12739@news.duke.edu> infante@acpub.duke.edu (Andrew Infante) writes:\\n>In article <05APR93.02678944.0049@UNBVM1.CSD.UNB.CA> C70A@UNB.CA (C70A000) writes:\\n>>In article Eric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n>>>Would someone please post the countersteering FAQ...i am having this awful\\n[...]\\n>>\\n>> Ummm, if you push on the right handle of your bike while at speed and\\n>>your bike turns left, methinks your bike has a problem. When I do it\\n>\\n>Really!?\\n>\\n>Methinks somethings wrong with _your_ bike.\\n>\\n>Perhaps you meant _pull_?\\n>\\n>Pushing the right side of my handlebars _will_ send me left.\\n>\\n>It should. \\n>REally.\\n>\\n>>on MY bike, I turn right. No wonder you need that FAQ. If I had it\\n>>I\\'d send it.\\n>\\n>I\\'m sure others will take up the slack...\\n>\\n[...]\\n>-- \\n>Andy Infante | I sometimes wish that people would put a little more emphasis |\\n\\n\\nOh, lord. This is where I came in.\\n\\nObcountersteer: For some reason, I\\'ve discovered that pulling on the\\nwrong side of the handlebars (rather than pushing on the other wrong\\nside, if you get my meaning) provides a feeling of greater control. For\\nexample, rather than pushing on the right side to lean right to turn \\nright (Hi, Lonny!), pulling on the left side at least until I get leaned\\nover to the right feels more secure and less counter-intuitive. Maybe\\nI need psychological help.\\n\\nObcountersteer v2.0:Anyone else find it ironic that in the weekend-and-a-\\nnight MSF class, they don\\'t mention countersteering until after the\\nfirst day of riding?\\n\\n\\n\\n-----\\nTommy McGuire, who\\'s going to hit his head on door frames the rest of\\n the evening, leaning into those tight turns....\\nmcguire@cs.utexas.edu\\nmcguire@austin.ibm.com\\n\\n\"...I will append an appropriate disclaimer to outgoing public information,\\nidentifying it as personal and as independent of IBM....\"\\n',\n", - " \"From: ednobles@sacam.OREN.ORTN.EDU (Edward d Nobles)\\nSubject: windows imagine??!!\\nOrganization: Oak Ridge National Laboratory\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 10\\n\\n\\nHas ANYONE who has ordered the new PC version of Imagine ACTUALLY recieved\\nit yet? I'm just about ready to order but reading posts about people still\\nawaiting delivery are making me a little paranoid. Has anyone actually \\nheld this piece of software in their own hands?\\n\\nLater,\\n\\nJim Nobles\\n\\n\",\n", - " 'From: ma170saj@sdcc14.ucsd.edu (System Operator)\\nSubject: A Moment Of Silence\\nOrganization: University of California, San Diego\\nLines: 14\\nNntp-Posting-Host: sdcc14.ucsd.edu\\n\\n\\n April 24th is approaching, and Armenians around the world\\nare getting ready to remember the massacres of their family members\\nby the Turkish government between 1915 and 1920. \\n At least 1.5 Million Armenians perished during that period,\\nand it is important to note that those who deny that this event\\never took place, either supported the policy of 1915 to exterminate\\nthe Armenians, or, as we have painfully witnessed in Azerbaijan,\\nwould like to see it happen again...\\n Thank you for taking the time to read this post.\\n\\n -Helgge\\n\\n\\n',\n", - " 'From: cervi@oasys.dt.navy.mil (Mark Cervi)\\nSubject: Re: ++BIKE SOLD OVER NET 600 MILES AWAY!++\\nOrganization: NSWC, Carderock Division, Annapolis, MD, USA\\nLines: 15\\n\\nIn article <6130331@hplsla.hp.com> kens@hplsla.hp.com (Ken Snyder) writes:\\n>\\n>> Any other bikes sold long distances out there...I\\'d love to hear about\\n>it!\\n\\nI bought my Moto Guzzi from a Univ of Va grad student in Charlottesville\\nlast spring.\\n\\n\\t Mark Cervi, cervi@oasys.dt.navy.mil, (w) 410-267-2147\\n\\t\\t DoD #0603 MGNOC #12998 \\'87 Moto Guzzi SP-II\\n \"What kinda bikes that?\" A Moto Guzzi. \"What\\'s that?\" Its Italian.\\n-- \\n\\n\\tMark Cervi, CARDEROCKDIV, NSWC Code 852, Annapolis, MD 21402\\n\\t\\t cervi@oasys.dt.navy.mil, (w) 410-267-2147\\n',\n", - " \"From: nelson@seahunt.imat.com (Michael Nelson)\\nSubject: Re: Protective gear\\nNntp-Posting-Host: seahunt.imat.com\\nOrganization: SeaHunt, San Francisco CA\\nLines: 15\\n\\nIn article <1993Apr5.151323.7183@rd.hydro.on.ca> jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n>\\n>I'm still looking for good gloves, myself,\\n>as the ones I have now are too loose.\\n\\n\\tWhen you find some new ones, I suggest donating the ones\\n\\tyou have now to the Lautrec family in France... \\n\\n\\t\\t\\t\\tMichael\\n\\n-- \\n+-------------------------------------------------------------+\\n| Michael Nelson 1993 CBR900RR |\\n| Internet: nelson@seahunt.imat.com Dod #0735 |\\n+-------------------------------------------------------------+\\n\",\n", - " \"From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Science News article on Federal R&D\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 24\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , xrcjd@resolve.gsfc.nasa.gov (Charles J. Divine) writes:\\n> Just a pointer to the article in the current Science News article\\n> on Federal R&D funding.\\n> \\n> Very briefly, all R&D is being shifted to gaining current \\n> competitive advantage from things like military and other work that\\n> does not have as much commercial utility.\\n> -- \\n> Chuck Divine\\n\\nGulp.\\n\\n[Disclaimer: This opinion is mine and does not represent the views of\\nFermilab, Universities Research Association, the Department of Energy,\\nor the 49th Ward Regular Science Fiction Organization.]\\n \\n-- \\n O~~* /_) ' / / /_/ ' , , ' ,_ _ \\\\|/\\n - ~ -~~~~~~~~~~~/_) / / / / / / (_) (_) / / / _\\\\~~~~~~~~~~~zap!\\n / \\\\ (_) (_) / | \\\\\\n | | Bill Higgins Fermi National Accelerator Laboratory\\n \\\\ / Bitnet: HIGGINS@FNAL.BITNET\\n - - Internet: HIGGINS@FNAL.FNAL.GOV\\n ~ SPAN/Hepnet: 43011::HIGGINS \\n\",\n", - " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Sixty-two thousand (was Re: How many read sci.space?)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 67\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article <1993Apr15.072429.10206@sol.UVic.CA>, rborden@ugly.UVic.CA (Ross Borden) writes:\\n> In article <734850108.F00002@permanet.org> Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado) writes:\\n>>\\n>>One could go on and on and on here, but I wonder ... how\\n>>many people read sci.space and of what power/influence are\\n>>these individuals?\\n>>\\n> \\tQuick! Everyone who sees this, post a reply that says:\\n> \\n> \\t\\t\\t\"Hey, I read sci.space!\"\\n> \\n> Then we can count them, and find out how many there are! :-)\\n> (This will also help answer that nagging question: \"Just what is\\n> the maximum bandwidth of the Internet, anyways?\")\\n\\nA practical suggestion, to be sure, but one could *also* peek into\\nnews.lists, where Brian Reid has posted \"USENET Readership report for\\nMar 93.\" Another posting called \"USENET READERSHIP SUMMARY REPORT FOR\\nMAR 93\" gives the methodology and caveats of Reid\\'s survey. (These\\npostings failed to appear for a while-- I wonder why?-- but they are\\nnow back.)\\n\\nReid, alas, gives us no measure of the \"power/influence\" of readers...\\nSorry, Mark.\\n\\nI suspect Mark, dangling out there on Fidonet, may not get news.lists\\nso I\\'ve mailed him copies of these reports.\\n\\nThe bottom line?\\n\\n +-- Estimated total number of people who read the group, worldwide.\\n | +-- Actual number of readers in sampled population\\n | | +-- Propagation: how many sites receive this group at all\\n | | | +-- Recent traffic (messages per month)\\n | | | | +-- Recent traffic (kilobytes per month)\\n | | | | | +-- Crossposting percentage\\n | | | | | | +-- Cost ratio: $US/month/rdr\\n | | | | | | | +-- Share: % of newsrders\\n | | | | | | | | who read this group.\\n V V V V V V V V\\n 88 62000 1493 80% 1958 4283.9 19% 0.10 2.9% sci.space \\n\\nThe first figure indicates that sci.space ranks 88th among most-read\\nnewsgroups.\\n\\nI\\'ve been keeping track sporadically to watch the growth of traffic\\nand readership. You might be entertained to see this.\\n\\nOct 91 55 71000 1387 84% 718 1865.2 21% 0.04 4.2% sci.space\\nMar 92 43 85000 1741 82% 1207 2727.2 13% 0.06 4.1% sci.space\\nJul 92 48 94000 1550 80% 1044 2448.3 12% 0.04 3.8% sci.space\\nMay 92 45 94000 2023 82% 834 1744.8 13% 0.04 4.1% sci.space\\n(some kind of glitch in estimating number of readers happens here)\\nSep 92 45 51000 1690 80% 1420 3541.2 16% 0.11 3.6% sci.space \\nNov 92 78 47000 1372 81% 1220 2633.2 17% 0.08 2.8% sci.space \\n(revision in ranking groups happens here(?))\\nMar 93 88 62000 1493 80% 1958 4283.9 19% 0.10 2.9% sci.space \\n\\nPossibly old Usenet hands could give me some more background on how to\\ninterpret these figures, glitches, or the history of Reid\\'s reporting\\neffort. Take it to e-mail-- it doesn\\'t belong in sci.space.\\n\\nBill Higgins, Beam Jockey | In a churchyard in the valley\\nFermi National Accelerator Laboratory | Where the myrtle doth entwine\\nBitnet: HIGGINS@FNAL.BITNET | There grow roses and other posies\\nInternet: HIGGINS@FNAL.FNAL.GOV | Fertilized by Clementine.\\nSPAN/Hepnet: 43011::HIGGINS |\\n',\n", - " \"From: cywang@ux1.cso.uiuc.edu (Crying Freeman)\\nSubject: What's a good assembly VGA programming book?\\nOrganization: University of Illinois at Urbana\\nLines: 9\\n\\nCan someone give me the title of a good VGA graphics programming book?\\nPlease respond by email. Thanks!\\n\\n\\t\\t\\t--Yuan\\n\\n-- \\nChe-Yuan Wang\\ncw21219@uxa.cso.uiuc.edu\\ncywang@ux1.cso.uiuc.edu\\n\",\n", - " 'From: CBW790S@vma.smsu.edu.Ext (Corey Webb)\\nSubject: Re: HELP!!! GRASP\\nOrganization: SouthWest Mo State Univ\\nLines: 29\\nNNTP-Posting-Host: vma.smsu.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\nIn article <1993Apr19.160944.20236W@baron.edb.tih.no>\\nhavardn@edb.tih.no (Haavard Nesse,o92a) writes:\\n>\\n>Could anyone tell me if it\\'s possible to save each frame\\n>of a .gl (grasp) animation to .gif, .jpg, .iff or any other\\n>picture formats.\\n>\\n \\n If you have the GRASP animation system, then yes, it\\'s quite easy.\\nYou simply use GLIB to extract the image (each \"frame\" in a .GL is\\nactually a complete .PCX or .CLP file), then use one of MANY available\\nutilities to convert it. If you don\\'t have the GRASP package, I\\'m afraid\\nI can\\'t help you. Sorry.\\n By the way, before you ask, GRASP (GRaphics Animation System for\\nProfessionals) is a commercial product that sells for just over US$300\\nfrom most mail-order companies I\\'ve seen. And no, I don\\'t have it. :)\\n \\n \\n Corey Webb\\n \\n \\n ____________________________________________________________________\\n | Corey Webb | \"For in much wisdom is much grief, and |\\n | cbw790s@vma.smsu.edu | he that increaseth knowledge increaseth |\\n | Bitnet: CBW790S@SMSVMA | sorrow.\" -- Ecclesiastes 1:18 |\\n |-------------------------|------------------------------------------|\\n | The \"S\" means I am only | \"But first, are you experienced?\" |\\n | speaking for myself. | -- Jimi Hendrix |\\n \\n',\n", - " \"From: n4hy@harder.ccr-p.ida.org (Bob McGwier)\\nSubject: Re: NAVSTAR positions\\nOrganization: IDA Center for Communications Research\\nLines: 11\\nDistribution: world\\nNNTP-Posting-Host: harder.ccr-p.ida.org\\nIn-reply-to: Thomas.Enblom@eos.ericsson.se's message of 19 Apr 93 06:34:55 GMT\\n\\n\\nYou have missed something. There is a big difference between being in\\nthe SAME PLANE and in exactly the same state (positions and velocities\\nequal). IN addition to this, there has always been redundancies proposed.\\n\\nBob\\n--\\n------------------------------------------------------------------------------\\nRobert W. McGwier | n4hy@ccr-p.ida.org\\nCenter for Communications Research | Interests: amateur radio, astronomy,golf\\nPrinceton, N.J. 08520 | Asst Scoutmaster Troop 5700, Hightstown\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: \"Cruel\" (was Re: >This whole thread started because of a discussion about whether\\n>>or not the death penalty constituted cruel punishment, which is forbidden\\n>>by the US Constitution.\\n>Yes, but they didn\\'t say what they meant by \"cruel\", which is why\\n>a) you have the Supreme Court, and b) it makes no sense to refer\\n>to the Constitution, which is quite silent on the meaning of the\\n>word \"cruel\".\\n\\nThey spent quite a bit of time on the wording of the Constitution. They\\npicked words whose meanings implied the intent. We have already looked\\nin the dictionary to define the word. Isn\\'t this sufficient?\\n\\n>>Oh, but we were discussing the death penalty (and that discussion\\n>>resulted from the one about murder which resulted from an intial\\n>>discussion about objective morality--so this is already three times\\n>>removed from the morality discussion).\\n>Actually, we were discussing the mening of the word \"cruel\" and\\n>the US Constitution says nothing about that.\\n\\nBut we were discussing it in relation to the death penalty. And, the\\nConstitution need not define each of the words within. Anyone who doesn\\'t\\nknow what cruel is can look in the dictionary (and we did).\\n\\nkeith\\n',\n", - " \"From: dennisn@ecs.comm.mot.com (Dennis Newkirk)\\nSubject: Re: Proton/Centaur?\\nOrganization: Motorola\\nNntp-Posting-Host: 145.1.146.43\\nLines: 31\\n\\nIn article <1r54to$oh@access.digex.net> prb@access.digex.com (Pat) writes:\\n>The question i have about the proton, is could it be handled at\\n>one of KSC's spare pads, without major malfunction, or could it be\\n>handled at kourou or Vandenberg? \\n\\nSeems like a lot of trouble to go to. Its probably better to \\ninvest in newer launch systems. I don't think a big cost advantage\\nfor using Russian systems will last for very long (maybe a few years). \\nLockheed would be the place to ask, since you would probably have to buy \\nthe Proton from them (they market the Proton world wide except Russia). \\nThey should know a lot about the possibilities, I haven't heard them\\npropose US launches, so I assume they looked into it and found it \\nunprofitable. \\n\\n>Now if it uses storables, \\n\\nYes...\\n\\n>then how long would it take for the russians\\n>to equip something at cape york?\\n\\nComparable to the Zenit I suppose, but since it looks like\\nnothing will be built there, you might just as well pick any\\nspot.\\n\\nThe message is: to launch now while its cheap and while Russia and\\nKazakstan are still cooperating. Later, the story may be different.\\n\\nDennis Newkirk (dennisn@ecs.comm.mot.com)\\nMotorola, Land Mobile Products Sector\\nSchaumburg, IL\\n\",\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: was:Go Hezbollah!!\\nOrganization: The Department of Redundancy Department\\nLines: 39\\n\\nIn article <1993Apr14.210636.4253@ncsu.edu> hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n>Hezbollah and other Lebanese Resistance fighters are skilled at precision\\n>bombing of SLA and Israeli targets. \\n\\nIt\\'s hard to beat a car-bomb with a suicidal driver in getting \\nright up to the target before blowing up. Even booby-traps and\\nradio-controlled bombs under cars are pretty efficient killers. \\nYou have a point. \\n\\n>I find such methods to be far more\\n>restrained and responsible \\n\\nIs this part of your Islamic value-system?\\n\\n>than the Israeli method of shelling and bombing\\n>villages with the hope that a Hezbollah member will be killed along with\\n>the civilians murdered. \\n\\nHad Israeli methods been anything like this, then Iraq wouldn\\'ve been\\nnuked long ago, entire Arab towns deported and executions performed by\\nthe tens of thousands. The fact is, though, that Israeli methods\\naren\\'t even 1/10,000th as evil as those which are common and everyday\\nin Arab states.\\n\\n>Soldiers are trained to die for their country. Three IDF soldiers\\n>did their duty the other day. These men need not have died if their government\\n>had kept them on Israeli soil. \\n\\n\"Israeli soil\"???? Brad/Ali! Just wait until the Ayatollah\\'s\\nthought-police get wind of this. It\\'s all \"Holy Muslim Soil (tm)\".\\nHave you forgotten? May Allah have mercy on you now.\\n\\n>Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: Steve_Mullins@vos.stratus.com\\nSubject: Re: Bible Quiz\\nOrganization: Stratus Computer, Marlboro Ma.\\nLines: 20\\nNNTP-Posting-Host: m72.eng.stratus.com\\n\\n\\nIn article <1993Apr16.130430.1@ccsua.ctstateu.edu> kellyb@ccsua.ctstateu.edu wrote: \\n>In article , kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n>> Only when the Sun starts to orbit the Earth will I accept the Bible. \\n>> \\n> Since when does atheism mean trashing other religions?There must be a God\\n ^^^^^^^^^^^^^^^\\n> of inbreeding to which you are his only son.\\n\\n\\na) I think that he has a rather witty .sig file. It sums up a great\\n deal of atheistic thought (IMO) in one simple sentence.\\nb) Atheism isn\\'t an \"other religion\".\\n\\n\\nsm\\n=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=\\nSteve_Mullins@vos.stratus.com () \"If a man empties his purse into his\\nMy opinions <> Stratus\\' opinions () head, no one can take it from him\\n------------------------------ () ---------------Benjamin Franklin\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1993Apr20.101044.2291@iti.org> aws@iti.org (Allen W. Sherzer) writes:\\n\\n>Depends. If you assume the existance of a working SSTO like DC, on billion\\n>$$ would be enough to put about a quarter million pounds of stuff on the\\n>moon. If some of that mass went to send equipment to make LOX for the\\n>transfer vehicle, you could send a lot more. Either way, its a lot\\n>more than needed.\\n\\n>This prize isn\\'t big enough to warrent developing a SSTO, but it is\\n>enough to do it if the vehicle exists.\\n\\nBut Allen, if you can assume the existence of an SSTO there is no need\\nto have the contest in the first place. I would think that what we\\nwant to get out of the contest is the development of some of these\\n\\'cheaper\\' ways of doing things; if they already exist, why flush $1G\\njust to get someone to go to the Moon for a year?\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " \"From: oz@ursa.sis.yorku.ca (Ozan S. Yigit)\\nSubject: Re: Turkish Government Agents on UseNet Lie Through Their Teeth! \\nIn-Reply-To: dbd@urartu.sdpa.org's message of Thu, 15 Apr 1993 20: 45:12 GMT\\nOrganization: York U. Student Information Systems Project\\nLines: 15\\n\\nDavidian-babble:\\n\\n>The Turkish government feels it can funnel a heightened state of ultra-\\n>nationalism existing in Turkey today onto UseNet and convince people via its \\n>revisionist, myopic, and incidental view of themselves and their place in the \\n>world. \\n\\nTurkish government on usenet? How long are you going to keep repeating\\nthis utterly idiotic [and increasingly saddening] drivel?\\n\\noz\\n---\\n life of a people is a sea, and those that look at it from the shore \\n cannot know its depths.\\t\\t\\t -Armenian proverb \\n\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violatins in Azerbaijan #009\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 262\\n\\n Accounts of Anti-Armenian Human Right Violatins in Azerbaijan #009\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +-----------------------------------------------------------------+\\n | |\\n | There were about six burned people in there, and the small |\\n | corpse of a burned child. It was gruesome. I suffered a |\\n | tremendous shock. There were about ten people there, but the |\\n | doctor on duty said that because of the numbers they were being |\\n | taken to Baku. There was a woman\\'s corpse there too, she had |\\n | been . . . well, there was part of a body there . . . a |\\n | hacked-off part of a woman\\'s body. It was something terrible. |\\n | |\\n +-----------------------------------------------------------------+\\n\\nDEPOSITION OF ROMAN ALEKSANDROVICH GAMBARIAN\\n\\n Born 1954\\n Senior Engineer\\n Sumgait Automotive Transport Production Association\\n\\n Resident at Building 17/33B, Apartment 40\\n Microdistrict No. 3\\n Sumgait [Azerbaijan]\\n\\n\\nWhat happened in Sumgait was a great tragedy, an awful tragedy for us, the \\nArmenian people, and for all of mankind. A genocide of Armenians took place\\nduring peacetime.\\n\\nAnd it was a great tragedy for me personally, because I lost my father in\\nthose days. He was still young. Born in 1926.\\n\\nOn that day, February 28, we were at home. Of course we had heard that there \\nwas unrest in town, my younger brother Aleksandr had told us about it. But we \\ndidn\\'t think . . . we thought that everything would happen outdoors, that they\\nwouldn\\'t go into people\\'s apartments. About five o\\'clock we saw a large crowd \\nnear the Kosmos movie theater in our microdistrict. We were sitting at home \\nwatching television. We go out on the balcony and see the crowd pour into Mir \\nStreet. This is right near downtown, next to the airline ticket office, our \\nhouse is right nearby. That day there was a group of policeman with shields\\nthere. They threw rocks at those policemen. Then they moved off in the \\ndirection of our building. They burned a motorcycle in our courtyard and \\nstarted shouting for Armenians to come out of the building. We switched off \\nthe light. As it turns out, their signal was just the opposite: to turn on the\\nlight. That meant that it was an Azerbaijani home. We, of course, didn\\'t know \\nand thought that if they saw lights on they would come to our apartment.\\n\\nSuddenly there\\'s pounding on the door. We go to the door, all four of us:\\nthere were four of us in the apartment. Father, Mother, my younger brother\\nAleksandr, and I. He was born in 1959. My father was a veteran of World War \\nII and had fought in China and in the Soviet Far East; he was a pilot.\\n\\nWe went to the door and they started pounding on it harder, breaking it down \\nwith axes. We start to talk to them in Azerbaijani, \"What\\'s going on? What\\'s \\nhappened?\" They say, \"Armenians, get out of here!\" We don\\'t open the door, we \\nsay, \"If we have to leave, we\\'ll leave, we\\'ll leave tomorrow.\" They say, \"No, \\nleave now, get out of here, Armenian dogs, get out of here!\" By now they\\'ve \\nbroken the door both on the lock and the hinge sides. We hold them off as best\\nwe can, my father and I on one side, and my mother and brother on the other. \\nWe had prepared ourselves: we had several hammers and an axe in the apartment,\\nand grabbed what we could find to defend ourselves. They broke in the door and\\nwhen the door gave way, we held it for another half-hour. No neighbors, no\\npolice and no one from the city government came to our aid the whole time. We \\nheld the door. They started to smash the door on the lock side, first with an \\naxe, and then with a crowbar.\\n\\nWhen the door gave way--they tore it off its hinges--Sasha hit one of them \\nwith the axe. The axe flew out of his hands. They also had axes, crowbars, \\npipes, and special rods made from armature shafts. One of them hit my father \\nin the head. The pressure from the mob was immense. When we retreated into the\\nroom, one of them hit my mother, too, in the left part of her face. My brother\\nSasha and I fought back, of course. Sasha is quite strong and hot-tempered, he\\nwas the judo champion of Sumgait. We had hammers in our hands, and we injured \\nseveral of the bandits--in the heads and in the eyes, all that went on. But \\nthey, the injured ones, fell back, and others came to take their places, there\\nwere many of them.\\n\\nThe door fell down at an angle. The mob tried to remove the door, so as to go \\ninto the second room and to continue . . . to finish us off. Father brought \\nskewers and gave them to Sasha and me--we flew at them when we saw Father \\nbleeding: his face was covered with blood, he had been wounded in the head, \\nand his whole face was bloody. We just threw ourselves on them when we saw \\nthat. We threw ourselves at the mob and drove back the ones in the hall, drove\\nthem down to the third floor. We came out on the landing, but a group of the \\nbandits remained in one of the rooms they were smashing all the furniture in \\nthere, having closed the door behind them. We started tearing the door off to \\nchase away the remaining ones or finish them. Then a man, an imposing man of \\nabout 40, an Azerbaijani, came in. When he was coming in, Father fell down and\\nMother flew to him, and started to cry out. I jumped out onto the balcony and \\nstarted calling an ambulance, but then the mob started throwing stones through\\nthe windows of our veranda and kitchen. We live on the fourth floor. And no \\none came. I went into the room. It seemed to me that this man was the leader \\nof the group. He was respectably dressed in a hat and a trench coat with a \\nfur collar. And he addressed my mother in Azerbaijani: \"What\\'s with you, \\nwoman, why are you shouting? What happened? Why are you shouting like that?\"\\nShe says, \"What do you mean, what happened? You killed somebody!\" My father \\nwas a musician, he played the clarinet, he played at many weddings, Armenian \\nand Azerbaijani, he played for many years. Everyone knew him. Mother says, \\n\"The person who you killed played at thousands of Azerbaijani weddings, he \\nbrought so much joy to people, and you killed that person.\" He says, \"You \\ndon\\'t need to shout, stop shouting.\" And when they heard the voice of this \\nman, the 15 to 18 people who were in the other room opened the door and \\nstarted running out. We chased after them, but they ran away. That man left, \\ntoo. As we were later told, downstairs one of them told the others, I don\\'t \\nknow if it was from fright or what, told them that we had firearms, even\\nthough we only fought with hammers and an axe. We raced to Father and started \\nto massage his heart, but it was already too late. We asked the neighbors to \\ncall an ambulance. The ambulance never came, although we waited for it all \\nevening and all through the night.\\n\\nSomewhere around midnight about 15 policemen came. They informed us they were \\nfrom Khachmas. They said, \"We heard that a group was here at your place, you \\nhave our condolences.\" They told us not to touch anything and left. Father lay\\nin the room.\\n\\nSo we stayed home. Each of us took a hammer and a knife. We sat at home. Well,\\nwe say, if they descend on us again we\\'ll defend ourselves. Somewhere around \\none o\\'clock in the morning two people came from the Sumgait Procuracy, \\ninvestigators. They say, \"Leave everything just how it is, we\\'re coming back \\nhere soon and will bring an expert who will record and photograph everything.\"\\nThen people came from the Republic Procuracy too, but no one helped us take \\nFather away. The morning came and the neighbors arrived. We wanted to take \\nFather away somehow. We called the Procuracy and the police a couple of times,\\nbut no one came. We called an ambulance, and nobody came. Then one of the \\nneighbors said that the bandits were coming to our place again and we should \\nhide. We secured the door somehow or other. We left Father in the room and \\nwent up to the neighbor\\'s.\\n\\nThe excesses began again in the morning. The bandits came in several vehicles,\\nZIL panel trucks, and threw themselves out of the vehicles like . . . a \\nlanding force near the center of town. Our building was located right there. A\\ncrowd formed. Then they started fighting with the soldiers. Then, in Buildings\\n19 and 20, that\\'s next to the airline ticket office, they started breaking \\ninto Armenian apartments, destroying property, and stealing. The Armenians \\nweren\\'t at home, they had managed to flee and hide somewhere. And again they \\npoured in the direction of our building. They were shouting that there were \\nsome Armenians left on the fourth floor, meaning us. \"They\\'re up there, still,\\nup there. Let\\'s go kill them!\" They broke up all the furniture remaining in \\nthe two rooms, threw it outside, and burned it in large fires. We were hiding \\none floor up. Something heavy fell. Sasha threw himself toward the door \\nshouting that it was probably Father, they had thrown Father, were defiling \\nthe corpse, probably throwing it in the fire, going to burn it. I heard it, \\nand the sound was kind of hollow, and I said, \"No, that\\'s from some of the \\nfurniture.\" Mother and I pounced on Sasha and stopped him somehow, and calmed \\nhim down.\\n\\nThe mob left somewhere around eight o\\'clock. They smashed open the door and \\nwent into the apartment of the neighbors across from us. They were also\\nArmenians, they had left for another city.\\n\\nThe father of the neighbor who was concealing us came and said, \"Are you \\ncrazy? Why are you hiding Armenians? Don\\'t you now they\\'re checking all the \\napartments? They could kill you and them!\" And to us :\" . . . Come on, leave \\nthis apartment!\" We went down to the third floor, to some other neighbors\\'. At\\nfirst the man didn\\'t want to let us in, but then one of his sons asked him and\\nhe relented. We stayed there until eleven o\\'clock at night. We heard the sound\\nof motors. The neighbors said that it was armored personnel carriers. We went \\ndownstairs. There was a light on in the room where we left Father. In the \\nother rooms, as we found out later, all the chandeliers had been torn down. \\nThey left only one bulb. The bulb was burning, which probably was a signal \\nthey had agreed on because there was a light burning in every apartment in our\\nMicrodistrict 3 where there had been a pogrom.\\n\\nWith the help of the soldiers we made it to the City Party Committee and were \\nsaved. Our salvation--my mother\\'s, my brother\\'s, and mine,--was purely \\naccidental, because, as we later found out from the neighbors, someone in the \\ncrowd shouted that we had firearms up there. Well, we fought, but we were only\\nable to save Mother. We couldn\\'t save Father. We inflicted many injuries on \\nthe bandits, some of them serious. But others came to take their places. We \\nwere also wounded, there was blood, and we were scratched all over--we got our\\nshare. It was a miracle we survived. We were saved by a miracle and the \\ntroops. And if troops hadn\\'t come to Sumgait, the slaughter would have been \\neven greater: probably all the Armenians would have been victims of the \\ngenocide.\\n\\nThrough an acquaintance at the City Party Committee I was able to contact the \\nleadership of the military unit that was brought into the city, and at their \\norders we were assigned special people to accompany us, experts. We went to \\'\\npick up Father\\'s corpse. We took it to the morgue. This was about two o\\'clock \\nin the morning, it was already March 1, it was raining very hard and it was \\nquite cold, and we were wearing only our suits. When my brother and I carried \\nFather into the morgue we saw the burned and disfigured corpses. There were \\nabout six burned people in there, and the small corpse of a burned child. It \\nwas gruesome. I suffered a tremendous shock. There were about ten people \\nthere, but the doctor on duty said that because of the numbers they were being\\ntaken to Baku. There was a woman\\'s corpse there too, she had been . . . well, \\nthere was part of a body there . . . a hacked-off part of a woman\\'s body. It \\nwas something terrible. The morgue was guarded by the landing force . . . The \\nchild that had been killed was only ten or twelve years old. It was impossible\\nto tell if it was a boy or a girl because the corpse was burned. There was a \\nman there, too, several men. You couldn\\'t tell anything because their faces \\nwere disfigured, they were in such awful condition...\\n\\nNow two and a half months have passed. Every day I recall with horror what \\nhappened in the city of Sumgait. Every day: my father, and the death of my \\nfather, and how we fought, and the people\\'s sorrow, and especially the morgue.\\n\\nI still want to say that 70 years have passed since Soviet power was\\nestablished, and up to the very last minute we could not conceive of what \\nhappened in Sumgait. It will go down in history.\\n\\nI\\'m particularly surprised that the mob wasn\\'t even afraid of the troops. They\\neven fought the soldiers. Many soldiers were wounded. The mob threw fuel \\nmixtures onto the armored personnel carriers, setting them on fire. They \\nweren\\'t afraid. They were so sure of their impunity that they attacked our \\ntroops. I saw the clashes on February 29 near the airline ticket office, right\\nacross from our building. And that mob was fighting with the soldiers. The \\ninhabitants of some of the buildings, also Azerbaijanis, threw rocks at the \\nsoldiers from windows, balconies, even cinder blocks and glass tanks. They \\nweren\\'t afraid of them. I say they were sure of their impunity. When we were \\nat the neighbors\\' and when they were robbing homes near the airline ticket \\noffice I called the police at number 3-20-02 and said that they were robbing \\nArmenian apartments and burning homes. And they told me that they knew that \\nthey were being burned. During those days no one from the police department \\ncame to anyone\\'s aid. No one came to help us, either, to our home, even though\\nperhaps they could have come and saved us.\\n\\nAs we later found out the mob was given free vodka and drugs, near the bus \\nstation. Rocks were distributed in all parts of town to be thrown and used in \\nfighting. So I think all of it was arranged in advance. They even knew in \\nwhich buildings and apartments the Armenians lived, on which floors--they had\\nlists, the bandits. You can tell that the \"operation\" was planned in advance.\\n\\nThanks, of course, to our troops, to the country\\'s leadership, and to the\\nleadership of the Ministry of Defense for helping us, thanks to the Russian\\npeople, because the majority of the troops were Russians, and the troops \\nsuffered losses, too. I want to express this gratitude in the name of my \\nfamily and in the name of all Armenians, and in the name of all Sumgait\\nArmenians. For coming in time and averting terrible things: worse would\\nhave happened if that mob had not been stopped on time.\\n\\nAt present an investigation is being conducted on the part of the USSR\\nProcuracy. I want to say that those bandits should receive the severest\\npossible punishment, because if they don\\'t, the tragedy, the genocide, could \\nhappen again. Everyone should see that the most severe punishment is meted\\nout for such deeds.\\n\\nVery many bandits and hardened hooligans took part in the unrest, in the mass \\ndisturbances. The mobs were huge. At present not all of them have been caught,\\nvery few of them have been, I think, judging by the newspaper reports. There \\nwere around 80 people near our building alone, that\\'s how many people took \\npart in the pogrom of our building all in all.\\n\\nThey should all receive the most severe punishment so that others see that \\nretribution awaits those who perform such acts.\\n\\n May 18, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 153-157\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Bikes vs. Horses (was Re: insect impacts f\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 41\\n\\nJonathan E. Quist, on the Thu, 15 Apr 1993 14:26:42 GMT wibbled:\\n: In article txd@ESD.3Com.COM (Tom Dietrich) writes:\\n: >>In a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n\\n: [lots of things, none of which are quoted here]\\n\\n: >>>In article rgu@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes:\\n: >>> You think your *average* dirt biker can jump\\n: >>>a 3 foot log? \\n: >\\n: >How about an 18\" log that is suspended about 18\" off of the ground?\\n: >For that matter, how about a 4\" log that is suspended 2.5\\' off of the\\n: >ground?\\n\\n: Oh, ye of little imagination.\\n\\n:You don\\'t jump over those -that\\'s where you lay the bike down and slide under!\\n: -- \\n: Jonathan E. Quist\\n\\nThe nice thing about horses though, is that if they break down in the middle of\\nnowhere, you can eat them. Fuel\\'s a bit cheaper, too.\\n--\\n\\nNick (the 90 HP Biker) DoD 1069 Concise Oxford Giddy-Up!\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", - " 'From: nelson_p@apollo.hp.com (Peter Nelson)\\nSubject: Re: Remember those names come election time.\\nNntp-Posting-Host: c.ch.apollo.hp.com\\nOrganization: Hewlett-Packard Corporation, Chelmsford, MA\\nKeywords: usa federal, government, international, non-usa government\\nLines: 34\\n\\nIn article anwar+@cs.cmu.edu (Anwar Mohammed) writes:\\n>I said:\\n> In article nelson_p@apollo.hp.com (Peter Nelson) writes:\\n> >\\n> > Besides, there\\'s no case that can be made for US military involvement\\n> > there that doesn\\'t apply equally well to, say, Liberia, Angola, or\\n> > (it appears with the Khmer Rouge\\'s new campaign) Cambodia. Non-whites\\n> > don\\'t count?\\n>\\n> Hmm...some might say Kuwaitis are non-white. Ooops, I forgot, Kuwaitis are\\n> \"oil rich\", \"loaded with petro-dollars\", etc so they don\\'t count.\\n>\\n>...and let\\'s not forget Somalia, which is about as far from white as it\\n>gets.\\n\\n And why are we in Somalia? When right across the Gulf of Aden are\\n some of the wealthiest Arab nations on the planet? Why does the \\n US always become the point man for this stuff? I don\\'t mind us\\n helping out; but what invariably happens is that everybody expects\\n us to do most of the work and take most of the risks, even when these\\n events are occuring in other people\\'s back yards, and they have the\\n resources to deal with them quite well, thank you. I mean, it\\'s \\n not like either Serbia, or Somalia represent some overwhelming\\n military force that their neighbors can\\'t handle. Nor are the \\n logistics a big deal -- it\\'s a lot bigger logistical challenge \\n to get troops and supplies from New York to Somalia, than from \\n Saudi Arabia; harder to go from Texas to Serbia, than Turkey or \\n Austria to Serbia.\\n\\n\\n---peter\\n\\n\\n\\n',\n", - " \"From: halat@pooh.bears (Jim Halat)\\nSubject: Islam is caused by believing (was Re: Genocide is Caused by Theism)\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 40\\n\\n\\n\\nIn article <1993Apr13.173100.29861@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>>I'm only saying that anything can happen under atheism. Being a\\n>>beleiver, a knowledgeable one in religion, only good can happen.\\n\\nThis is becoming a tiresome statement. Coming from you it is \\na definition, not an assertion:\\n\\n Islam is good. Belief in Islam is good. Therefore, being a \\n believer in Islam can produce only good...because Islam is\\n good. Blah blah blah.\\n\\nThat's about as circular as it gets, and equally meaningless. To\\nsay that something produces only good because it is only good that \\nit produces is nothing more than an unapplied definition. And\\nall you're application is saying that it's true if you really \\nbelieve it's true. That's silly.\\n\\nConversely, you say off-handedly that _anything_ can happen under\\natheism. Again, just an offshoot of believe-it-and-it-becomes-true-\\ndon't-believe-it-and-it-doesn't. \\n\\nLike other religions I'm aquainted with, Islam teaches exclusion and\\ncaste, and suggests harsh penalties for _behaviors_ that have no\\nlogical call for punishment (certain limits on speech and sex, for\\nexample). To me this is not good. I see much pain and suffering\\nwithout any justification, except for the _waving of the hand_ of\\nsome inaccessible god.\\n\\nBy the by, you toss around the word knowledgable a bit carelessly.\\nFor what is a _knowledgeable believer_ except a contradiction of\\nterms. I infer that you mean believer in terms of having faith.\\nAnd If you need knowledge to believe then faith has nothing\\nto do with it, does it?\\n\\n-jim halat\\n \\n\\n\",\n", - " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Cultural Enquiries\\nOrganization: University College of Wales, Aberystwyth\\nLines: 35\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\nIn article <1pcl6i$e4i@bigboote.WPI.EDU> ravi@vanilla.WPI.EDU (Ravi Narayan) writes:\\n>In a previous article, groh@nu.cs.fsu.edu said:\\n>= azw@aber.ac.uk (Andy Woodward) writes:\\n>= \\n>= >2) Why do they ride Harleys?\\n>= \\n>= 'cause we can.\\n>= \\n>\\n> you sure are lucky! i am told that there are very few people out\\n> there who can actually get their harley to ride ;-) (the name tod\\n> johnson jumps to the indiscreet mind... laz whats it you used to\\n> ride???).\\n>\\n>\\n>-- \\n>----------_________----------_________----------_________----------_________\\n>sig (n): a piece of mail with a fool at one | Ravi Narayan, CS, WPI\\n> end and flames at the other. (C). | 89 SuzukiGS500E - Phaedra ;)\\n>__________---------__________---------__________---------__________---------\\n\\nHi, Ravi\\n\\nIf you need a Harley, we have lots to spare here. All the yuppies\\nbought 'the best' a couple of years ago to pose at the (s)wine\\nbar. They 'rode a mile and walked the rest'. Called a taxi home and \\nwent back to the porsche. So there's are loads going cheap with about\\n1 1/2 miles on the clock (takes a while to coast to a halt).\\n\\nCheers\\n\\nAndy\\n\\nP.S. You get a better class of people on GS500's anyway\\n\",\n", - " 'From: ivan@erich.triumf.ca (Ivan D. Reid)\\nSubject: Re: Accident report\\nNews-Software: VAX/VMS VNEWS 1.41 \\nNntp-Posting-Host: erich.triumf.ca\\nOrganization: TRIUMF: Tri-University Meson Facility\\nLines: 36\\n\\nIn article <1992Jun25.132424.20760@prl.philips.nl>, mcardle@prl.philips.nl (Owen McArdle) writes...\\n>In article ranck@vtvm1.cc.vt.edu (Wm. L. Ranck) writes:\\n>--In article <1992Jun23.214330.18592@bcrka451.bnr.ca> whitton@bnr.ca (Mark Whitton) writes:\\n>--\\n>-->It turns out that the trailer lights were not hooked up\\n>-->to the truck. \\n>--\\n>--Yep, basic rule: *Never* expect or believe turn signals completely.\\n>--Around here, and many other places, people just don\\'t signal at all.\\n>--And, sometimes the signals aren\\'t working. Sometimes they get left on.\\n> \\n>\\tThe scary bit about this is the is the non-availability of rear-\\n>lights at all. Now living in the Netherlands I\\'ve learned that the only\\n>reliable indicators are those red ones which go on at both sides at once -\\n>some people call them brake lights. Once they light up, expect ANYTHING\\n>to occur in front of you :-). (It\\'s not just the Dutch though)\\n> \\n>\\tHowever I never realised how much I relied on this until I got \\n>caught a few times behind someone whose lights didn\\'t work AT ALL. Once \\n>I\\'d sussed it out it wasn\\'t so bad (knowing it is half the battle), but \\n>it\\'s a great way to find out that you\\'ve been following someone too \\n>closely :-). Now I try to check for lights all the time, \\'cos that split \\n>second can make all the difference (though it shouldn\\'t be necessary, I \\n>know),\\n> \\n>Owen.\\n\\tWhat used to peeve me in Canada was the cars with bloody _red_ rear\\nindicators. You\\'d see a single red light come on and think, \"Now, is he\\nstopping but one brake-lamp is not working, or does he have those dumb bloody\\n_red_ rear indicators?\" This being Survival 101, you have to assume he\\'s\\nbraking and take the appropriate actions, until such time as the light goes\\nout and on again, after which you can be reasonably certain it\\'s a bloody _red_\\nrear indicator.\\n\\nIvan Reid, Paul Scherrer Institute, CH. \\t\\t\\tivan@cvax.psi.ch\\nGSX600F, RG250WD.\\tSI=2.66 \"You Porsche. Me pass!\"\\tDoD #484\\n',\n", - " 'From: tankut@IASTATE.EDU (Sabri T Atan)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: tankut@IASTATE.EDU (Sabri T Atan)\\nOrganization: Iowa State University\\nLines: 36\\n\\nIn article <1993Apr20.143453.3127@news.uiowa.edu>, mau@herky.cs.uiowa.edu (Mau\\nNapoleon) writes:\\n> From article <1qvgu5INN2np@lynx.unm.edu>, by osinski@chtm.eece.unm.edu (Marek\\nOsinski):\\n> \\n> > Well, it did not take long to see how consequent some Greeks are in\\n> > requesting that Thessaloniki are not called Solun by Bulgarian netters. \\n> > So, Napoleon, why do you write about Konstantinople and not Istanbul?\\n> > \\n> > Marek Osinski\\n> \\n> Thessaloniki is called Thessaloniki by its inhabitants for the last 2300\\nyears.\\n> The city was never called Solun by its inhabitants.\\n> Instabul was called Konstantinoupolis from 320 AD until about the 1920s.\\n> That\\'s about 1600 years. There many people alive today who were born in a\\ncity\\n> called Konstantinoupolis. How many people do you know that were born in a city\\n> called Solun.\\n> \\n> Napoleon\\n\\nAre you one of those people who were born when Istanbul was called \\nKonstantinopolis? I don\\'t think so! If those people use it because\\nthey are used to do so, then I understand. But open any map\\ntoday (except a few that try to be political) you will see that the name \\nof the city is printed as Istanbul. So, don\\'t try to give\\nany arguments to using Konstantinopolis except to cause some\\nflames, to make some political statement. \\n\\n\\n--\\nTankut Atan\\ntankut@iastate.edu\\n\\n\"Achtung, baby!\"\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Investment in Yehuda and Shomron\\nOrganization: Division of Applied Sciences, Harvard University\\nLines: 29\\n\\n\\nIn article <1483500346@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n\\n>Those who wish to learn something about the perversion of Judaism,\\n>should consult the masterly work by Yehoshua Harkabi, who was many\\n>years the head of Israeli Intelligence and an opponent of the PLO. His\\n>latest book was published in English and includes a very detailed analysis\\n>of Judeo-Nazism.\\n\\n\\tYou mean he talks about those Jews, who, because of their self\\nhatred, spend all their time attacking Judaism, Jews, and Israel,\\nusing the most despicable of anti-Semetic stereotypes?\\n\\n\\tI don\\'t think we need to coin a term like \"Jedeo-Nazism\" to\\nrefer to those Jews who, in their endless desire to be accepted by the\\nNazis, do their dirty work for them. We can just call them house\\nJews, fools, or anti-Semites from Jewish families.\\n\\n\\tI think \"house Jews,\" a reference to a person of Jewish\\nancestry who issues statements for a company or organization that\\ncondemn Judaism is perfectly sufficeint. I think a few years free of\\ntheir anti-Semetic role models would do wonders for most of them.\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: zeno@phylo.genetics.washington.edu (Sean Lamont)\\nSubject: Closed-curve intersection\\nArticle-I.D.: shelley.1ra2paINN68s\\nOrganization: Abstract Software\\nLines: 10\\nNNTP-Posting-Host: phylo.genetics.washington.edu\\n\\nI would like a reference to an algorithm that can detect whether \\none closed curve bounded by some number of bezier curves lies completely\\nwithin another closed curve bounded by bezier curves.\\n\\nThanks.\\n-- \\nSean T. Lamont | Ask me about the WSI-Fonts\\nzeno@genetics.washington.edu | Professional collection for NeXT \\nlamont@abstractsoft.com |____________________________________\\nAbstract Software \\n',\n", - " 'From: mz@moscom.com (Matthew Zenkar)\\nSubject: Re: CView answers\\nOrganization: Moscom Corp., E. Rochester, NY\\nLines: 15\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nCyberspace Buddha (cb@wixer.bga.com) wrote:\\n: renew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n: >over where it places its temp files: it just places them in its\\n: >\"current directory\".\\n\\n: I have to beg to differ on this point, as the batch file I use\\n: to launch cview cd\\'s to the dir where cview resides and then\\n: invokes it. every time I crash cview, the 0-byte temp file\\n: is found in the root dir of the drive cview is on.\\n\\nI posted this as well before the cview \"expert\". Apparently, he thought he\\nknew better.\\n\\nMatthew Zenkar\\nmz@moscom.com\\n',\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nArticle-I.D.: aurora.1993Apr23.123433.1\\nOrganization: University of Alaska Fairbanks\\nLines: 43\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1r96hb$kbi@access.digex.net>, prb@access.digex.com (Pat) writes:\\n> In article <1993Apr23.001718.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>>In article <1r6b7v$ec5@access.digex.net>, prb@access.digex.com (Pat) writes:\\n>>> Besides this was the same line of horse puckey the mining companies claimed\\n>>> when they were told to pay for restoring land after strip mining.\\n>>===\\n>>I aint talking the large or even the \"mining companies\" I am talking the small\\n>>miners, the people who have themselves and a few employees (if at all).The\\n>>people who go out every year and set up thier sluice box, and such and do\\n>>mining the semi-old fashion way.. (okay they use modern methods toa point).\\n> \\n> \\n> Lot\\'s of these small miners are no longer miners. THey are people living\\n> rent free on Federal land, under the claim of being a miner. The facts are\\n> many of these people do not sustaint heir income from mining, do not\\n> often even live their full time, and do fotentimes do a fair bit\\n> of environmental damage.\\n> \\n> These minign statutes were created inthe 1830\\'s-1870\\'s when the west was\\n> uninhabited and were designed to bring people into the frontier. Times change\\n> people change. DEAL. you don\\'t have a constitutional right to live off\\n> the same industry forever. Anyone who claims the have a right to their\\n> job in particular, is spouting nonsense. THis has been a long term\\n> federal welfare program, that has outlived it\\'s usefulness.\\n> \\n> pat\\n> \\n\\nHum, do you enjoy putting words in my mouth? \\nCome to Nome and meet some of these miners.. I am not sure how things go down\\nsouth in the lower 48 (I used to visit, but), of course to believe the\\nmedia/news its going to heck (or just plain crazy). \\nWell it seems that alot of Unionist types seem to think that having a job is a\\nright, and not a priviledge. Right to the same job as your forbearers, SEE:\\nKennedy\\'s and tel me what you see (and the families they have married into).\\nThere is a reason why many historians and poli-sci types use unionist and\\nsocialist in the same breath.\\nThe miners that I know, are just your average hardworking people who pay there\\ntaxes and earn a living.. But taxes are not the answer. But maybe we could move\\nthis discussion to some more appropriate newsgroup..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", - " 'From: djf@cck.coventry.ac.uk (Marvin Batty)\\nSubject: Re: Moon Colony Prize Race! $6 billion total?\\nNntp-Posting-Host: cc_sysk\\nOrganization: Starfleet, Coventry, UK\\nLines: 49\\n\\nIn article <1993Apr20.020259.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>I think if there is to be a prize and such.. There should be \"classes\"\\n>such as the following:\\n>\\n>Large Corp.\\n>Small Corp/Company (based on reported earnings?)\\n>Large Government (GNP and such)\\n>Small Governemtn (or political clout or GNP?)\\n>Large Organization (Planetary Society? and such?)\\n>Small Organization (Alot of small orgs..)\\n\\nWhatabout, Schools, Universities, Rich Individuals (around 250 people \\nin the UK have more than 10 million dollars each). I reecieved mail\\nfrom people who claimed they might get a person into space for $500\\nper pound. Send a skinny person into space and split the rest of the money\\namong the ground crew!\\n>\\n>The organization things would probably have to be non-profit or liek ??\\n>\\n>Of course this means the prize might go up. Larger get more or ??\\n>Basically make the prize (total purse) $6 billion, divided amngst the class\\n>winners..\\n>More fair?\\n>\\n>There would have to be a seperate organization set up to monitor the events,\\n>umpire and such and watch for safety violations (or maybe not, if peopel want\\n>to risk thier own lives let them do it?).\\n>\\nAgreed. I volunteer for any UK attempts. But one clause: No launch methods\\nwhich are clearly dangerous to the environment (ours or someone else\\'s). No\\nusage of materials from areas of planetary importance.\\n\\n>Any other ideas??\\n\\nYes: We should *do* this rather than talk about it. Lobby people!\\nThe major problem with the space programmes is all talk/paperwork and\\nno action!\\n\\n>==\\n>Michael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n>\\n>\\n\\n\\n-- \\n**************************************************************************** \\n Marvin Batty - djf@uk.ac.cov.cck\\n\"And they shall not find those things, with a sort of rafia like base,\\nthat their fathers put there just the night before. At about 8 O\\'clock!\"\\n',\n", - " \"From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)\\nSubject: Re: ++BIKE SOLD OVER NET 600 MILES AWAY!++\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: relva.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 14\\n\\nIn article <6130331@hplsla.hp.com>, kens@hplsla.hp.com (Ken Snyder) writes:\\n|> \\n|> > Any other bikes sold long distances out there...I'd love to hear about\\n|> it!\\n|> \\n|> I bought my VFR750 from a guy in San Jose via the net. That's 825 miles\\n|> according to my odometer!\\n|> \\n\\nmark andy (living in pittsburgh) bought his RZ350 from a dude in\\nmassachusetts (or was it connecticut?).\\n\\naxel\\n\\n\",\n", - " 'From: cdw2t@dayhoff.med.Virginia.EDU (Dances With Federal Rangers)\\nSubject: Re: Misc./buying info. needed\\nOrganization: University of Virginia\\nLines: 28\\n\\nIn article <1993Apr18.160449.1@hamp.hampshire.edu> jyaruss@hamp.hampshire.edu writes:\\n\\n>Is there a buying guide for new/used motorcycles (that lists reliability, how\\n>to go about the buying process, what to look for, etc...)?\\n\\n_Cycle World_ puts one out, but I\\'m sure it\\'s not very objective. Try talking\\nwith dealers and the people that hang out there, as well as us. We love to\\ngive advice.\\n\\n>Is there a pricing guide for new/used motorcycles (Blue Book)?\\n\\nMost of the bigger banks have a blue book which includes motos -- ask for the\\none with RVs in it.\\n\\n>Are there any books/articles on riding cross country, motorcycle camping, etc?\\n\\nCouldn\\'t help you here.\\n\\n>Is there an idiots\\' guide to motorcycles?\\n\\nYou\\'re reading it.\\n\\n----------------------------------------------------------------------------\\n| Cliff Weston DoD# 0598 \\'92 Seca II (Tem) |\\n| |\\n| \"the female body is a beautiful work of art, while the male body |\\n| is lumpy and hairy and should not be seen by the light of day.\" |\\n----------------------------------------------------------------------------\\n',\n", - " 'From: Howard Frederick \\nSubject: Re: Turkish Government Agents on UseNet\\nNf-ID: #R:1993Apr15.204512.11971@urartu.sd:1238805668:cdp:1483500341:000:1042\\nNf-From: cdp.UUCP!hfrederick Apr 16 14:31:00 1993\\nLines: 20\\n\\n\\nI don\\'t know anything about this particular case, but *other*\\ngovernments have been known to follow events on the Usenet. For\\nexample after Tienanmien Square in Beijing the Chinese government\\nbegan monitoring cyberspace. As the former Director of PeaceNet,\\nI am aware of many incidents of local, state, national and\\ninternational authorities monitoring Usenet and other conferences\\nsuch as those on the Institute for Global Communications. But\\nwhat\\'s the big deal? You shouldn\\'t advocate illegal acts in this\\nmedium in any case. If you are concerned about being monitored,\\nyou should use encyrption software (available in IGC\\'s \"micro\"\\nconference). I know for a fact that human rights activists in the\\nBalkan-Mideast area use encryption software to send out their\\nreports to international organizations. Such message *can* be\\ndecoded however by large computers consuming much CPU time, which\\nprobably the Turkish government doesn\\'t have access to.\\n\\nHoward Frederick, University of California, Irvine Department of\\nPolitics and Society\\n\\n',\n", - " \"From: dls@aeg.dsto.gov.au (David Silver)\\nSubject: Re: Fractal Generation of Clouds\\nOrganization: Defence Science and Technology Organisation\\nLines: 14\\nNNTP-Posting-Host: kestrel.dsto.gov.au\\n\\nhaabn@nye.nscee.edu (Frederick J. Haab) writes:\\n\\n\\n>I need to implement an algorithm to fractally generate clouds\\n>as sort of a benchmark for some algorithms I'm working on.\\n\\nJust as a matter of interest, a self-promo computer graphics sequence \\nthat one of the local TV stations used to play quite a lot a couple of\\nyears ago showed a 3D flyover of Australia from the West coast to the\\nEast. The clouds were quite recognisable as fuzzy, flat, white\\nMandlebrot sets!!\\n\\nDavid Silver\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: This year the Turkish Nation is mourning and praying again for...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 207\\n\\nReferring to notes from the personal diary of Russian General L. \\nOdishe Liyetze on the Turkish front, he wrote,\\n\\n\"On the nights 11-12 March, 1918 alone Armenian butchers \\n bayoneted and axed to death 3000 Muslims in areas surrounding\\n Erzincan. These barbars threw their victims into pits, most\\n likely dug according to their sinister plans to extinguish \\n Muslims, in groups of 80. My adjutant counted and unearthed\\n 200 such pits. This is an act against our world of civilization.\"\\n\\nOn March 12, 1918 Lieut-colonel Griyaznof wrote (from an official\\nRussian account of the Turkish genocide),\\n\\n\"Roads leading to villages were littered with bayoneted torsos,\\n dismembered joints and carved out organs of Muslim peasants...\\n alas! mainly of women and children.\"\\n\\nSource: Doc. Dr. Azmi Suslu, \"Russian View on the Atrocities Committed\\n by the Armenians Against the Turks,\" Ankara Universitesi, Ankara,\\n 1987, pp. 45-53.\\n \"Document No: 77,\" Archive No: 1-2, Cabin No: 10, Drawer \\n No: 4, File No: 410, Section No: 1578, Contents No: 1-12, 1-18.\\n (Acting Commander of Erzurum and Deveboynu regions and Commander\\n of the Second Erzurum Artillery Regiment Prisoner of War,\\n Lieutenant Colonel Toverdodleyov)\\n\\n\"The things I have heard and seen during the two months, until the\\n liberation of Erzurum by the Turks, have surpassed all the\\n allegations concerning the vicious, degenerate characteristic of\\n the Armenians. During the Russian occupation of Erzurum, no Armenian\\n was permitted to approach the city and its environs.\\n\\n While the Commander of the First Army Corps, General Kaltiyin remained\\n in power, troops including Armenian enlisted men, were not sent to the\\n area. When the security measures were lifted, the Armenians began to \\n attack Erzurum and its surroundings. Following the attacks came the\\n plundering of the houses in the city and the villages and the murder\\n of the owners of these houses...Plundering was widely committed by\\n the soldiers. This plunder was mainly committed by Armenian soldiers\\n who had remained in the rear during the war.\\n\\n One day, while passing through the streets on horseback, a group of\\n soldiers including an Armenian soldier began to drag two old men of\\n seventy years in a certain direction. The roads were covered with mud,\\n and these people were dragging the two helpless Turks through the mud\\n and dirt...\\n\\n It was understood later that all these were nothing but tricks and\\n traps. The Turks who joined the gendarmarie soon changed their minds\\n and withdrew. The reason was that most of the Turks who were on night\\n patrol did not return, and no one knew what had happened to them. The \\n Turks who had been sent outside the city for labour began to disappear\\n also. Finally, the Court Martial which had been established for the\\n trials of murderers and plunderers, began to liquidate itself for\\n fear that they themselves would be punished. The incidents of murder\\n and rape, which had decreased, began to occur more frequently.\\n\\n Sometime in January and February, a leading Turkish citizen Haci Bekir\\n Efendi from Erzurum, was killed one night at his home. The Commander\\n in Chief (Odiselidge) gave orders to find murderers within three days.\\n The Commander in Chief has bitterly reminded the Armenian intellectuals\\n that disobedience among the Armenian enlisted men had reached its\\n highest point, that they had insulted and robbed the people and half\\n of the Turks sent outside the city had not returned.\\n\\n ...We learnt the details this incident from the Commander-in-Chief,\\n Odishelidge. They were as follows:\\n\\n The killings were organized by the doctors and the employers, and the\\n act of killing was committed solely by the Armenian renegades...\\n More than eight hundred unarmed and defenceless Turks have been\\n killed in Erzincan. Large holes were dug and the defenceless \\n Turks were slaughtered like animals next to the holes. Later, the\\n murdered Turks were thrown into the holes. The Armenian who stood \\n near the hole would say when the hole was filled with the corpses:\\n \\'Seventy dead bodies, well, this hole can take ten more.\\' Thus ten\\n more Turks would be cut into pieces, thrown into the hole, and when\\n the hole was full it would be covered over with soil.\\n\\n The Armenians responsible for the act of murdering would frequently\\n fill a house with eighty Turks, and cut their heads off one by one.\\n Following the Erzincan massacre, the Armenians began to withdraw\\n towards Erzurum... The Armenian renegades among those who withdrew\\n to Erzurum from Erzincan raided the Moslem villages on the road, and\\n destroyed the entire population, together with the villages.\\n\\n During the transportation of the cannons, ammunition and the carriages\\n that were outside the war area, certain people were hired among the \\n Kurdish population to conduct the horse carriages. While the travellers\\n were passing through Erzurum, the Armenians took advantage of the time\\n when the Russian soldiers were in their dwellings and began to kill\\n the Kurds they had hired. When the Russian soldiers heard the cries\\n of the dying Kurds, they attempted to help them. However, the \\n Armenians threatened the Russian soldiers by vowing that they would\\n have the same fate if they intervened, and thus prevented them from\\n acting. All these terrifying acts of slaughter were committed with\\n hatred and loathing.\\n\\n Lieutenant Medivani from the Russian Army described an incident that\\n he witnessed in Erzurum as follows: An Armenian had shot a Kurd. The\\n Kurd fell down but did not die. The Armenian attempted to force the\\n stick in his hand into the mouth of the dying Kurd. However, since\\n the Kurd had firmly closed his jaws in his agony, the Armenian failed\\n in his attempt. Having seen this, the Armenian ripped open the abdomen\\n of the Kurd, disembowelled him, and finally killed him by stamping\\n him with the iron heel of his boot.\\n\\n Odishelidge himself told us that all the Turks who could not escape\\n from the village of Ilica were killed. Their heads had been cut off\\n by axes. He also told us that he had seen thousands of murdered\\n children. Lieutenant Colonel Gryaznov, who passed through the village\\n of Ilica, three weeks after the massacre told us the following:\\n\\n There were thousands of dead bodies hacked to pieces, on the roads.\\n Every Armenian who happened to pass through these roads, cursed and\\n spat on the corpses. In the courtyard of a mosque which was about\\n 25x30 meter square, dead bodies were piled to a height of 140 \\n centimeters. Among these corpses were men and women of every age,\\n children and old people. The women\\'s bodies had obvious marks of\\n rape. The genitals of many girls were filled with gun-powder.\\n\\n A few educated Armenian girls, who worked as telephone operators\\n for the Armenian troops were called by Lieutenant Colonel Gryaznov\\n to the courtyard of the mosque and he bitterly told them to be \\n proud of what the Armenians had done. To the lieutenant colonel\\'s\\n disgusted amazement, the Armenian girls started to laugh and giggle,\\n instead of being horrified. The lieutenant colonel had severely\\n reprimanded those girls for their indecent behaviour. When he told\\n the girls that the Armenians, including women, were generally more\\n licentious than even the wildest animals, and that their indecent\\n and shameful laughter was the most obvious evidence of their inhumanity\\n and barbarity, before a scene that appalled even veteran soldiers,\\n the Armenian girls finally remembered their sense of shame and\\n claimed they had laughed because they were nervous.\\n\\n An Armenian contractor at the Alaca Communication zone command\\n narrated the following incident which took place on February 20:\\n\\n The Armenians had nailed a Turkish women to the wall. They had cut\\n out the women\\'s heart and placed the heart on top of her head.\\n The great massacre in Erzurum began on February 7... The enlisted men \\n of the artillery division caught and stripped 270 people. Then they\\n took these people into the bath to satisfy their lusts. 100 people\\n among this group were able to save their lives as the result of\\n my decisive attempts. The others, the Armenians claimed, were \\n released when they learnt that I understood what was going on. \\n Among those who organized this treacherous act was the envoy to the\\n Armenian officers, Karagodaviev. Today, some Turks were murdered\\n on the streets.\\n\\n On February 12, some Armenians have shot more than ten innocent\\n Moslems. The Russian soldiers who attempted to save these people were\\n threatened with death. Meanwhile I imprisoned an Armenian for\\n murdering an innocent Turk. \\n\\n When an Armenian officer told an Armenian murderer that he would \\n be hanged for his crime, the killer shouted furiously: \\'How dare\\n you hang an Armenian for killing a Turk?\\' In Erzurum, the \\n Armenians burned down the Turkish market. On February 17, I heard\\n that the entire population of Tepekoy village, situated within\\n the artillery area, had been totally annihilated. On the same \\n day when Antranik entered Erzurum, I reported the massacre to\\n him, and asked him to track down the perpetrators of this horrible\\n act. However no result was achieved.\\n\\n In the villages whose inhabitants had been massacred, there was a\\n natural silence. On the night of 26/27 February, the Armenians deceived\\n the Russians, perpetrated a massacre and escaped for fear of the \\n Turkish soldiers. Later, it was understood that this massacre had\\n been based upon a method organized and planned in a circular. \\n The population had been herded in a certain place and then killed\\n one by one. The number of murders committed on that night reached\\n three thousand. It was the Armenians who bragged to about the details\\n of the massacre. The Armenians fighting against the Turkish soldiers\\n were so few in number and so cowardly that they could not even\\n withstand the Turkish soldiers who consisted of only five hundred\\n people and two cannons, for one night, and ran away. The leading\\n Armenians of the community could have prevented this massacre.\\n However, the Armenian intellectuals had shared the same ideas with\\n the renegades in this massacre, just as in all the others. The lower\\n classes within the Armenian community have always obeyed the orders\\n of the leading Armenian figures and commanders. \\n\\n I do not like to give the impression that all Armenian intellectuals\\n were accessories to these murders. No, for there were people who\\n opposed the Armenians for such actions, since they understood that\\n it would yield no result. However, such people were only a minority.\\n Furthermore, such people were considered as traitors to the Armenian\\n cause. Some have seemingly opposed the Armenian murders but have\\n supported the massacres secretly. Some, on the other hand, preferred\\n to remain silent. There were certain others, who, when accused by\\n the Russians of infamy, would say the following: \\'You are Russians.\\n You can never understand the Armenian cause.\\' The Armenians had a\\n conscience. They would commit massacres and then would flee in fear\\n of the Turkish soldiers.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: ldaddari@polaris.cv.nrao.edu (Larry D\\'Addario)\\nSubject: Re: Russian Email Contacts.\\nIn-Reply-To: nsmca@aurora.alaska.edu\\'s message of Sat, 17 Apr 1993 12: 52:09 GMT\\nOrganization: National Radio Astronomy Observatory\\nLines: 32\\n\\nIt is usually possible to reach people at IKI (Institute for Space\\nResearch) in Moscow by writing to\\n\\n\\tIKIMAIL@esoc1.bitnet\\n\\nThis is a machine at ESA in Darmstadt, Germany; IKI has a dedicated\\nphone line to this machine and someone there logs in regularly to\\nretrieve mail.\\n\\nIn addition, there are several user accounts belonging to Russian\\nscientific institutions on\\n\\n\\t@sovam.com\\n\\nwhich is a commercial enterprise based in San Francisco that provides\\nemail services to the former USSR. For example, fian@sovam.com is the\\n\"PHysics Institute of the Academy of Sciences\" (initials transliterated\\nfrom Russian, of course). These connections cost the Russians real\\ndollars, even for *received* messages, so please don\\'t send anything\\nvoluminous or frivilous.\\n\\n=====================================================================\\nLarry R. D\\'Addario\\nNational Radio Astronomy Observatory\\n\\nAddresses (INTERNET) LDADDARI@NRAO.EDU\\n\\t (FAX) +1/804/296-0324 Charlottesville\\n\\t\\t +1/304/456-2200 Green Bank\\n\\t (MAIL) 2015 Ivy Road, Charlottesville, VA 22903, USA\\n\\t (PHONE) +1/804/296-0245 office, 804/973-4983 home CHO\\n\\t\\t +1/304/456-2226 off., -2106 lab, -2256 apt. GB\\n=====================================================================\\n',\n", - " 'From: txd@ESD.3Com.COM (Tom Dietrich)\\nSubject: Re: Ducati 400 opinions wanted\\nLines: 51\\nNntp-Posting-Host: able.mkt.3com.com\\n\\nfrankb@sad.hp.com (Frank Ball) writes:\\n\\n>Godfrey DiGiorgi (ramarren@apple.com) wrote:\\n>& \\n>& The Ducati 400 model is essentially a reduced displacement 750, which\\n>& means it weighs the same and is the same size as the 750 with far less\\n>& power. It is produced specifically to meet a vehicle tax restriction\\n>& in certain markets which makes it commercially viable. It\\'s not sold\\n>& in the US where it is unneeded and unwanted.\\n>& \\n>& As such, it\\'s somewhat large and overweight for its motor. It will \\n>& still handle magnificently, it just won\\'t be very fast. There are\\n>& very few other flaws to mention; the limited steering lock is the \\n>& annoyance noted by most testers. And the mirrors aren\\'t perfect.\\n\\n>The Ducati 750 model is essentially a reduced displacement 900, which\\n>means it weighs the same and is the same size as the 900 with far less\\n\\nNope, it\\'s 24 lbs. lightrer than the 900.\\n\\n>power. And less brakes.\\n\\nA single disk that is quite impressive. WIth two fingers on the lever,\\nmuch to Beth\\'s horror I lifted the rear wheel about 8\" in a fine Randy\\nMamola impression. ;{>\\n\\n>As such, it\\'s somewhat large and overweight for its motor. It will \\n>still handle magnificently, it just won\\'t be very fast. There are\\n\\nI have a feeling that it\\'s going to be fast enough that Beth will give\\na few liter bike riders fits in the future.\\n\\n>very few other flaws to mention; the limited steering lock is the \\n\\nThe steering locks are adjustable.\\n\\n>annoyance noted by most testers. And the mirrors aren\\'t perfect.\\n\\nBeth sees fine out of them... I see 2/3 of them filled with black\\nleather.\\n\\n*********************************************************************\\n\\'86 Concours.....Sophisticated Lady Tom Dietrich \\n\\'72 1000cc Sportster.....\\'Ol Sport-For sale DoD # 055\\n\\'79 SR500.....Spike, the Garage Rat AMA #524245\\nQueued for an M900!! FSSNOC #1843\\nTwo Jousts and a Gather, *BIG fun!* 1KSPT=17.28% \\nMa Bell (408) 764-5874 Cool as a rule, but sometimes...\\ne-mail txd@Able.MKT.3Com.COM (H. Lewis) \\nDisclaimer: 3Com takes no responsibility for opinions preceding this.\\n*********************************************************************\\n',\n", - " 'From: (Rashid)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: 47.252.4.179\\nOrganization: NH\\nLines: 76\\n\\nIn article <1993Apr14.131032.15644@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n> \\n> It is my understanding that it is generally agreed upon by the ulema\\n> [Islamic scholars] that Islamic law applies only in an Islamic country,\\n> of which the UK is not. Furthermore, to take the law into one\\'s own\\n> hands is a criminal act, as these are matters for the state, not for\\n> individuals. Nevertheless, Khomeini offered a cash prize for people to\\n> take the law into their own hands -- something which, to my\\n> understanding, is against Islamic law.\\n\\nYes, this is also my understanding of the majority of Islamic laws.\\nHowever, I believe there are also certain legal rulings which, in all\\nfive schools of law (4 sunni and 1 jaffari), can be levelled against\\nmuslim or non-muslims, both within and outside dar-al-islam. I do\\nnot know if apostasy (when accompanied by active, persistent, and\\nopen hostility to Islam) falls into this category of the law. I do know\\nthat\\nhistorically, apostasy has very rarely been punished at all, let alone\\nby the death penalty.\\n\\nMy understanding is that Khomeini\\'s ruling was not based on the\\nlaw of apostasy (alone). It was well known that Rushdie was an apostate\\nlong before he wrote the offending novel and certainly there is no\\nprecedent in the Qur\\'an, hadith, or in Islamic history for indiscriminantly\\nlevelling death penalties for apostasy.\\n\\nI believe the charge levelled against Rushdie was that of \"fasad\". This\\nruling applies both within and outside the domain of an\\nIslamic state and it can be carried out by individuals. The reward was\\nnot offered by Khomeini but by individuals within Iran.\\n\\n\\n> Stuff deleted\\n> Also, I think you are muddying the issue as you seem to assume that\\n> Khomeini\\'s fatwa was issued due to the _distribution_ of the book. My\\n> understanding is that Khomeini\\'s fatwa was issued in response to the\\n> _writing_ and _publishing_ of the book. If my view is correct, then\\n> your viewpoint that Rushdie was sentenced for a \"crime in progress\" is\\n> incorrect.\\n> \\nI would concur that the thrust of the fatwa (from what I remember) was\\nlevelled at the author and all those who assisted in the publication\\nof the book. However, the charge of \"fasad\" can encompass a\\nnumber of lesser charges. I remember that when diplomatic relations\\nbroke off between Britain and Iran over the fatwa - Iran stressed that\\nthe condemnation of the author, and the removal of the book from\\ncirculation were two preliminary conditions for resolving the\\n\"crisis\". But you are correct to point out that banning the book was not\\nthe main thrust behind the fatwa. Islamic charges such as fasad are\\nlevelled at people, not books.\\n\\nThe Rushdie situation was followed in Iran for several months before the\\nissuance of the fatwa. Rushdie went on a media blitz,\\npresenting himself as a lone knight guarding the sacred values of\\nsecular democracy and mocking the foolish concerns of people\\ncrazy enough to actually hold their religious beliefs as sacred. \\nFanning the flames and milking the controversy to boost\\nhis image and push the book, he was everywhere in the media. Then\\nMuslim demonstrators in several countries were killed while\\nprotesting against the book. Rushdie appeared momentarily\\nconcerned, then climbed back on his media horse to once again\\nattack the Muslims and defend his sacred rights. It was at this\\npoint that the fatwa on \"fasad\" was issued.\\n\\nThe fatwa was levelled at the person of Rushdie - any actions of\\nRushdie that feed the situation contribute to the legitimization of\\nthe ruling. The book remains in circulation not by some independant\\nwill of its own but by the will of the author and the publishers. The fatwa\\nagainst the person of Rushdie encompasses his actions as well. The\\ncrime was certainly a crime in progress (at many levels) and was being\\nplayed out (and played up) in the the full view of the media.\\n\\nP.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\napplies to Rushdie and may be encompassed under the umbrella\\nof the \"fasad\" ruling.\\n',\n", - " 'From: dean@fringe.rain.com (Dean Woodward)\\nSubject: Re: Comments on a 1984 Honda Interceptor 1000?\\nOrganization: Organization for Mass Confusion.\\nLines: 30\\n\\njearls@tekig6.PEN.TEK.COM (Jeffrey David Earls) writes:\\n\\n> In article <19APR93.15421177@skyfox> howp@skyfox writes:\\n> >Hi.\\n> > I am considering the purchase of a 1984 Honda 1000cc Interceptor for\\n> >$2095 CDN (about $1676 US). I don\\'t know the mileage on this bike, but from\\n> >the picture in the \\'RV Trader\\' magazine, it looks to be in good shape.\\n> >Can anybody enlighten me as to whether this is a good purchase? \\n> \\n> Oog. I hate to jump in on this type of thread but ....\\n> \\n> pass on the VF1000. It\\'s big, top heavy, and carries lots of\\n> expensive parts. \\n\\nWhat he said. Most of my friends refer to them as \"ground magnets.\" One\\n\\n\\n> =============================================================================\\n> |Jeff Earls jearls@tekig6.pen.tek.com | DoD #0530 KotTG KotSPT WMTC AMA\\n> |\\'89 FJ1200 - Millennium Falcon | Squid Factor: 16.99 \\n> |\\'93 KLR650 - Thumpy | \"Hit the button Chewie!\"... Han Solo\\n> \\n> \"There ain\\'t nothin\\' like a 115 mph sweeper in the Idaho rockies.\" - me\\n\\n\\n--\\nDean Woodward | \"You want to step into my world?\\ndean@fringe.rain.com | It\\'s a socio-psychotic state of Bliss...\"\\n\\'82 Virago 920 | -Guns\\'n\\'Roses, \\'My World\\'\\nDoD # 0866\\n',\n", - " 'From: MUNIZB%RWTMS2.decnet@rockwell.com (\"RWTMS2::MUNIZB\")\\nSubject: Space Activities in Tucson, AZ ?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 7\\n\\nI would like to find out about space engineering employment and educational\\nopportunities in the Tucson, Arizona area. E-mail responses appreciated.\\nMy mail feed is intermittent, so please try one or all of these addresses.\\n\\nBen Muniz w(818)586-3578 MUNIZB%RWTMS2.decnet@beach.rockwell.com \\nor: bmuniz@a1tms1.remnet.ab.com MUNIZB%RWTMS2.decnet@consrt.rockwell.com\\n\\n',\n", - " \"Subject: Re: Enough Freeman Bashing! Was: no-Free man propaganda machine: Freemanwith blood greetings from Israel\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 16\\n\\npgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman) writes:\\n\\n\\nPeter,\\n\\nI believe this is your most succinct post to date. Since you have nothing\\nto say, you say nothing! It's brilliant. Did you think of this all by\\nyourself?\\n\\n-marc \\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Turkey Admits to Sending Arms to Azerbaijan/Turkish Pilot Caught\\nSummary: Oh, yes...neutral Turkey \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 57\\n\\n4/15/93 1242 Turkey sends light weapons as aid to Azerbaijan\\n\\nBy SEVA ULMAN\\n \\nANKARA, Turkey (UPI) -- Turkey is arming Azerbaijan with light weapons to help\\nit fight Armenian forces in the struggle for the Nagorno- Karabakh enclave, \\nthe newspaper Hurriyet said Thursday.\\n\\nDeputy Prime Minister Erdal Inonu told reporters in Ankara that Turkey was\\nresponding positively to a request from Azerbaijan for assistance.\\n\\n\"We are giving a positive response to all requests\" from Azerbaijan, \"within\\nthe limits of our capabilities,\" he said.\\n\\nForeign Ministry spokesman Vural Valkan declined to elaborate on the nature\\nof the aid being sent to Azerbaijan, but said they were within the framework \\nof the Council for Security and Cooperation in Europe.\\n\\nHurriyet, published in Istanbul, said Turkey was sending light weapons to\\nAzerbaijan, including rockets, rocket launchers and ammunition.\\n\\nAnkara began sending the hardware after a visit to Turkey last week by a\\nhigh-ranking Azerbaijani official. Turkey has however ruled out, for the second\\ntime in one week, that it would intervene militarily in Azerbaijan.\\n\\nWednesday, Inonu told reporters Ankara would not allow Azerbaijan to suffer\\ndefeat at the hands of the Armenians. \"We feel ourselves bound to help\\nAzerbaijan, but I am not in a position right now to tell you what form (that)\\nhelp may take in the future,\" he said.\\n\\nHe said Turkish aid to Azerbaijan was continuing, \"and the whole world knows\\nabout it.\"\\n\\nPrime Minister Suleyman Demirel reiterated that Turkey would not get\\nmilitarily involved in the conflict. Foreign policy decisions could not be \\nbased on street-level excitement, he said.\\n\\nThere was no immediate reaction in Ankara to regional reports, based on\\nArmenian sources in Yerevan, saying Turkish pilots and other officers were\\ncaptured when they were shot down flying Azerbaijani warplanes and \\nhelicopters.\\n\\nThe newspaper Cumhuriyet said Turkish troops were digging in along the border\\nwith Armenia, but military sources denied reports based on claims by local\\npeople that gunfire was heard along the border. No military action has \\noccurred, the sources said.\\n\\nThe latest upsurge in fighting between the Armenians and Azerbaijanis flared\\nearly this month when Armenian forces seized the town of Kelbajar and later\\npositioned themselves outside Fizuli, near the Iranian border.\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: dietz@cs.rochester.edu (Paul Dietz)\\nSubject: Re: Terraforming Venus: can it be done \"cheaply\"?\\nOrganization: University of Rochester\\nLines: 9\\n\\nWould someone please send me James Oberg\\'s email address, if he has\\none and if someone reading this list knows it? I wanted to send\\nhim a comment on something in his terraforming book.\\n\\n\\tPaul F. Dietz\\n\\tdietz@cs.rochester.edu\\n\\n\\tPotential explosive yield of the annual global\\n\\tproduction of borax: 5 million megatons\\n',\n", - " 'From: 9051467f@levels.unisa.edu.au (The Desert Brat)\\nSubject: Victims of various \\'Good Fight\\'s\\nOrganization: Cured, discharged\\nLines: 30\\n\\nIn article <9454@tekig7.PEN.TEK.COM>, naren@tekig1.PEN.TEK.COM (Naren Bala) writes:\\n\\n> LIST OF KILLINGS IN THE NAME OF RELIGION \\n> 1. Iran-Iraq War: 1,000,000\\n> 2. Civil War in Sudan: 1,000,000\\n> 3, Riots in India-Pakistan in 1947: 1,000,000\\n> 4. Massacares in Bangladesh in 1971: 1,000,000\\n> 5. Inquistions in America in 1500s: x million (x=??)\\n> 6. Crusades: ??\\n\\n7. Massacre of Jews in WWII: 6.3 million\\n8. Massacre of other \\'inferior races\\' in WWII: 10 million\\n9. Communist purges: 20-30 million? [Socialism is more or less a religion]\\n10. Catholics V Protestants : quite a few I\\'d imagine\\n11. Recent goings on in Bombay/Iodia (sp?) area: ??\\n12. Disease introduced to Brazilian * oher S.Am. tribes: x million\\n\\n> -- Naren\\n\\nThe Desert Brat\\n-- \\nJohn J McVey, Elc&Eltnc Eng, Whyalla, Uni S Australia, ________\\n9051467f@levels.unisa.edu.au T.S.A.K.C. \\\\/Darwin o\\\\\\nFor replies, mail to whjjm@wh.whyalla.unisa.edu.au /\\\\________/\\nDisclaimer: Unisa hates my opinions. bb bb\\n+------------------------------------------------------+-----------------------+\\n|\"It doesn\\'t make a rainbow any less beautiful that we | \"God\\'s name is smack |\\n|understand the refractive mechanisms that chance to | for some.\" |\\n|produce it.\" - Jim Perry, perry@dsinc.com | - Alice In Chains |\\n+------------------------------------------------------+-----------------------+\\n',\n", - " 'From: frank@D012S658.uucp (Frank O\\'Dwyer)\\nSubject: Re: Societally acceptable behavior\\nOrganization: Siemens-Nixdorf AG\\nLines: 87\\nNNTP-Posting-Host: d012s658.ap.mchp.sni.de\\n\\nIn article cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n#In <1qvabj$g1j@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) \\n#writes:\\n#\\n#>In article cobb@alexia.lis.uiuc.edu (Mike \\n#Cobb) writes:\\n#\\n#Am I making a wrong assumption for the basis of morals? Where do they come \\n#from? The question came from the idea that I heard that morals come from\\n#whatever is societally mandated.\\n\\nIt\\'s only one aspect of morality. Societal morality is necessarily\\nvery crude and broad-brush stuff which attempts to deal with what\\nis necessary to keep that society going - and often it\\'s a little\\nover-enthusiastic about doing so. Individual morality is a different\\nthing, it often includes societal mores (or society is in trouble),\\nbut is stronger. For example, some people are vegetarian, though eating\\nmeat may be perfectly legal.\\n\\n#\\n#>#Merely a question for the basis of morality\\n#>#\\n#>#Moral/Ethical behavior = _Societally_ _acceptable_ _behavior_.\\n#>#\\n#>#1)Who is society\\n#\\n#>Depends on the society.\\n#\\n#Doesn\\'t help. Is the point irrelevant?\\n\\nNo. Often the answer is \"we are\". But if society is those who make\\nthe rules, that\\'s a different question. If society is who should\\nmake the rules, that\\'s yet another. I don\\'t claim to have the answers, either,\\nbut I don\\'t think we do it very well in Ireland, and I like some things\\nabout the US system, at least in principle.\\n\\n#\\n#>#2)How do \"they\" define what is acceptable?\\n#\\n#>Depends.\\n#On.... Again, this comes from a certain question (see above).\\n\\nWell, ideally they don\\'t, but if they must they should do it by consensus, IMO.\\n#\\n#>#3)How do we keep from a \"whatever is legal is what is \"moral\" \"position?\\n#\\n#>By adopting a default position that people\\'s moral decisions\\n#>are none of society\\'s business,\\n#\\n#So how can we put people in jail? How can we condemn other societies?\\n\\nBecause sometimes that\\'s necessary. The hard trick is to recognise when\\nit is, and equally importantly, when it isn\\'t.\\n\\n# and only interfering when it\\'s truly\\n#>necessary.\\n#\\n#Why would it be necessary? What right do we have to interfere?\\n\\nIMO, it isn\\'t often that interference (i.e. jail, and force of various\\nkinds and degrees) is both necessary and effective. Where you derive \\nthe right to interfere is a difficult question - it\\'s a sort of\\nliar\\'s paradox: \"force is necessary for freedom\". One possible justification\\nis that people who wish to take away freedom shouldn\\'t object if\\ntheir own freedom is taken away - the paradox doesn\\'t arise if\\nwe don\\'t actively wish to take way anyone\\'s freedom.\\n#\\n# The introduction of permissible interference causes the problem\\n#>that it can be either too much or too little - but most people seem\\n#>to agree that some level of interference is necessary.\\n#\\n#They see the need for a \"justice\" system. How can we even define that term?\\n\\nOnly by consensus, I guess.\\n\\n# Thus you\\n#>get a situation where \"The law often allows what honour forbids\", which I\\'ve\\n#>come to believe is as it should be. \\n#\\n#I admit I don\\'t understand that statement.\\n\\nWhat I mean is that, while thus-and-such may be legal, thus-and-such may\\nalso be seen as immoral. The law lets you do it, but you don\\'t let yourself\\ndo it. Eating meat, for example.\\n-- \\nFrank O\\'Dwyer \\'I\\'m not hatching That\\'\\nodwyer@sse.ie from \"Hens\", by Evelyn Conlon\\n',\n", - " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: writes:\\n\\n>>>As for rape, surely there the burden of guilt is solely on the rapist?\\n>>Unless you force someone to live with the rapist against his will, in which\\n>>case part of the responsibility is yours.\\n>I'm sorry, but I can't accept that. Unless the rapist was hypnotized or\\n>something, I view him as solely responsible for his actions.\\n\\nNot necessarily, especially if the rapist is known as such. For instance,\\nif you intentionally stick your finger into a loaded mousetrap and get\\nsnapped, whose fault is it?\\n\\nkeith\\n\",\n", - " \"From: bio1@navi.up.ac.za (Fourie Joubert)\\nSubject: Image Analysis for PC\\nOrganization: University of Pretoria\\nLines: 18\\nNNTP-Posting-Host: zeno.up.ac.za\\n\\nHi\\n\\nI am looking for Image Analysis software running in DOS or Windows. I'd like \\nto be able to analyze TIFF or similar files to generate histograms of \\npatterns, etc. \\n\\nAny help would be appreciated!\\n\\n__________________________________________________________________________\\n\\n _/_/_/_/ _/_/_/_/_/ Fourie Joubert \\n _/ _/ Department of Biochemistry\\n _/ _/ University of Pretoria\\n _/_/_/_/ _/ bio1@navi.up.ac.za\\n _/ _/\\n_/ _/_/_/_/\\n__________________________________________________________________________\\n\\n\",\n", - " \"From: wdm@world.std.com (Wayne Michael)\\nSubject: Re: XV under MS-DOS ?!?\\nOrganization: n/a\\nLines: 12\\n\\nNO E-MAIL ADDRESS@eicn.etna.ch writes:\\n\\n>Hi ... Recently I found XV for MS-DOS in a subdirectory of GNU-CC (GNUISH). I \\n\\nplease tell me where you where you FTP'd this from? I would like to have\\na copy of it. (I would have mailed you, but your post indicates you have no mail\\naddress...)\\n\\n> \\n-- \\nWayne Michael\\nwdm@world.std.com\\n\",\n", - " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Duke University; Durham, N.C.\\nLines: 37\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nIn article <05APR93.02678944.0049@UNBVM1.CSD.UNB.CA> C70A@UNB.CA (C70A000) writes:\\n>In article Eric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n>>Would someone please post the countersteering FAQ...i am having this awful\\n>>time debating with someone on why i push the right handle of my motorcycle\\n>>foward when i am turning left...and i can't explain (well at least) why this\\n>>happens...please help...post the faq...i need to convert him.\\n>\\n> Ummm, if you push on the right handle of your bike while at speed and\\n>your bike turns left, methinks your bike has a problem. When I do it\\n\\nReally!?\\n\\nMethinks somethings wrong with _your_ bike.\\n\\nPerhaps you meant _pull_?\\n\\nPushing the right side of my handlebars _will_ send me left.\\n\\nIt should. \\nREally.\\n\\n>on MY bike, I turn right. No wonder you need that FAQ. If I had it\\n>I'd send it.\\n>\\n\\nI'm sure others will take up the slack...\\n\\n\\n>\\n>\\n>\\n\\n-- \\nAndy Infante | I sometimes wish that people would put a little more emphasis |\\n'71 BMW R60/5 | upon the observance of the law than they do upon it's | \\nDoD #2426 | enforcement. -Calvin Coolidge | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Alaska Pipeline and Space Station!\\nOrganization: Texas Instruments Inc\\nLines: 45\\n\\nIn <1pq7rj$q2u@access.digex.net> prb@access.digex.com (Pat) writes:\\n\\n>In article <1993Apr5.160550.7592@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n>|\\n>|I think this would be a great way to build it, but unfortunately\\n>|current spending rules don\\'t permit it to be workable. For this to\\n>|work it would be necessary for the government to guarantee a certain\\n>|minimum amount of business in order to sufficiently reduce the risk\\n>|enough to make this attractive to a private firm. Since they\\n>|generally can\\'t allocate money except one year at a time, the\\n>|government can\\'t provide such a tenant guarantee.\\n\\n\\n>Fred.\\n\\n>\\tTry reading a bit. THe government does lots of multi year\\n>contracts with Penalty for cancellation clauses. They just like to be\\n>damn sure they know what they are doing before they sign a multi year\\n>contract. THe reason they aren\\'t cutting defense spending as much\\n>as they would like is the Reagan administration signed enough\\n>Multi year contracts, that it\\'s now cheaper to just finish them out.\\n\\nI don\\'t have to \"try reading a bit\", Pat. I *work* as a government\\ncontractor and know what the rules are like. Yes, they sign some\\n(damned few -- which is why everyone is always having to go to\\nWashington to see about next week\\'s funding) multi-year contracts;\\nthey also aren\\'t willing to include sufficient cancellation penalties\\nwhen they *do* decide to cut the multi-year contract and not pay on it\\n(which can happen arbitrarily at any time, no matter what previous\\nplans were) to make the risk acceptable of something like putting up a\\nprivate space station with the government as the expected prime\\noccupant.\\n\\nI\\'d like a source for that statement about \"the reason they aren\\'t\\ncutting defense spending as much as they would like\"; I just don\\'t buy\\nit. The other thing I find a bit \\'funny\\' about your posting, Pat, is\\nthat several other people answered the question pretty much the same\\nway I did; mine is the one you comment (and incorrectly, I think) on.\\nI think that says a lot. You and Tommy should move in together.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " \"From: games@max.u.washington.edu\\nSubject: SSTO Senatorial (aide) breifing recollections.\\nArticle-I.D.: max.1993Apr6.125512.1\\nDistribution: world\\nLines: 78\\nNNTP-Posting-Host: max.u.washington.edu\\n\\nThe following are my thoughts on a meeting that I, Hugh Kelso, and Bob Lilly\\nhad with an aide of Sen. Patty Murrays. We were there to discuss SSTO, and\\ncommercial space. This is how it went...\\n\\n\\n\\nAfter receiving a packet containing a presentation on the benifits of SSTO,\\nI called and tried to schedule a meeting with our local Senator (D) Patty\\nMurray, Washington State. I started asking for an hour, and when I heard\\nthe gasp on the end of the phone, I quickly backed off to 1/2 an hour.\\nLater in that conversation, I learned that a standard appointment is 15 minutes.\\n\\nWe got the standard bozo treatment. That is, we were called back by an aide,\\nwho scheduled a meeting with us, in order to determine that we were not\\nbozos, and to familiarize himself with the material, and to screen it, to \\nmake sure that it was appropriate to take the senators time with that material.\\n\\nWell, I got allocated 1/2 hour with Sen. Murrays aide, and we ended up talking\\nto him for 45 minutes, with us ending the meeting, and him still listening.\\nWe covered a lot of ground, and only a little tiny bit was DCX specific. \\nMost of it was a single stage reusable vehicle primer. There was another\\nwoman there who took copius quantities of notes on EVERY topic that\\nwe brought up.\\n\\nBut, with Murray being new, we wanted to entrench ourselves as non-corporate\\naligned (I.E. not speaking for boeing) local citizens interentested in space.\\nSo, we spent a lot of time covering the benifits of lower cost access to\\nLEO. Solar power satellites are a big focus here, so we hit them as becoming \\nfeasible with lower cost access, and we hit the environmental stand on that.\\nWe hit the tourism angle, and I left a copy of the patric Collins Tourism\\npaper, with side notes being that everyone who goes into space, and sees the\\natmosphere becomes more of an environmentalist, esp. after SEEING the smog\\nover L.A. We hit on the benifits of studying bone decalcification (which is \\nmore pronounced in space, and said that that had POTENTIAL to lead to \\nunderstanding of, and MAYBE a cure for osteoporosis. We hit the education \\nwhereby kids get enthused by space, but as they get older and find out that\\nthey havent a hop in hell of actually getting there, they go on to other\\nfields, with low cost to orbit, the chances they might get there someday \\nwould provide greater incentive to hit the harder classes needed.\\n\\nWe hit a little of the get nasa out of the operational launch vehicle business\\nangle. We hit the lower cost of satellite launches, gps navigation, personal\\ncommunicators, tellecommunications, new services, etc... Jobs provided\\nin those sectors.\\n\\nJobs provided building the thing, balance of trade improvement, etc..\\nWe mentioned that skypix would benifit from lower launch costs.\\n\\nWe left the paper on what technologies needed to be invested in in order\\nto make this even easier to do. And he asked questions on this point.\\n\\nWe ended by telling her that we wanted her to be aware that efforts are\\nproceeding in this area, and that we want to make sure that the\\nresults from these efforts are not lost (much like condor, or majellan),\\nand most importantly, we asked that she help fund further efforts along\\nthe lines of lowering the cost to LEO.\\n\\nIn the middle we also gave a little speal about the Lunar Resource Data \\nPurchase act, and the guy filed it separately, he was VERY interested in it.\\nHe asked some questions about it, and seemed like he wanted to jump on it,\\nand contact some of the people involved with it, so something may actually\\nhappen immediatly there.\\n\\nThe last two things we did were to make sure that they knew that we\\nknew a lot of people in the space arena here in town, and that they\\ncould feel free to call us any time with questions, and if we didn't know\\nthe answers, that we would see to it that they questions got to people who\\nreally did know the answers.\\n\\nThen finally, we asked for an appointment with the senator herself. He\\nsaid that we would get on the list, and he also said that knowing her, this\\nwould be something that she would be very interested in, although they\\ndo have a time problem getting her scheduled, since she is only in the\\nstate 1 week out of 6 these days.\\n\\nAll in all we felt like we did a pretty good job.\\n\\n\\t\\t\\tJohn.\\n\",\n", - " 'From: na4@vax5.cit.cornell.edu\\nSubject: Aerostitch: 1- or 2-piece?\\nDistribution: rec\\nOrganization: Cornell University\\nLines: 11\\n\\nRequest for opinions:\\t\\n\\nWhich is better - a one-piece Aerostitch or a two-piece Aerostitch?\\n\\n\\nWe\\'re looking for more than \"Well, the 2-pc is more versatile, but the \\n1-pc is better protection,...\"\\t\\n\\nThanks in advance,\\nNadine\\n\\n',\n", - " \"From: cds7k@Virginia.EDU (Christopher Douglas Saady)\\nSubject: Re: Looking for MOVIES w/ BIKES\\nOrganization: University of Virginia\\nLines: 4\\n\\nThere's also Billy Jack, The Wild One, Smokey and the Bandit\\n(Where Jerry Reed runs his truck over Motorcycle Gangs Bikes),\\nand a video tape documentary on the Hell's Angels I\\nfound in a rental store once\\n\",\n", - " \"From: bclarke@galaxy.gov.bc.ca\\nSubject: Fortune-guzzler barred from bars!\\nOrganization: BC Systems Corporation\\nLines: 20\\n\\nSaw this in today's newspaper:\\n------------------------------------------------------------------------\\nFORTUNE-GUZZLER BARRED FROM BARS\\n--------------------------------\\nBarnstaple, England/Reuter\\n\\n\\tA motorcyclist said to have drunk away a $290,000 insurance payment in\\nless than 10 years was banned Wednesday from every pub in England and Wales.\\n\\n\\tDavid Roberts, 29, had been awarded the cash in compensation for\\nlosing a leg in a motorcycle accident. He spent virtually all of it on cider, a\\ncourt in Barnstaple in southwest England was told.\\n\\n\\tJudge Malcolm Coterill banned Roberts from all bars in England and\\nWales for 12 months and put on two years' probation after he started a brawl in\\na pub.\\n\\n-- \\nBruce Clarke B.C. Environment\\n e-mail: bclarke@galaxy.gov.bc.ca\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: The Orders for the Turkish Extermination of the Armenians #17\\nSummary: To the children of genocide: \"Send them away into the Desert\"\\nArticle-I.D.: urartu.1993Apr6.115347.10660\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 145\\n\\n\\n The Orders for the Turkish Extermination of the Armenians #17\\n To the children of genocide: \"Send them away into the Desert\"\\n\\nThis is part of a continuing series of articles containing official Turkish \\nwartime (WW1) governmental telegrams, in translation, entailing the orders \\nfor the extermination of the Armenian people in Turkey. Generally, these\\ntelegrams were issued by the Turkish Minister of the Interior, Talaat Pasha,\\nfor example, we have the following set regarding children:\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t November 5, 1915. We are informed that the little ones belonging to\\n\\t the Armenians from Sivas, Mamuret-ul-Aziz, Diarbekir and Erzeroum\\n\\t [hundreds of km distance from Aleppo] are adopted by certain Moslem\\n\\t families and received as servants when they are left alone through\\n\\t the death of their parents. We inform you that you are to collect\\n\\t all such children in your province and send them to the places of\\n\\t deportation, and also to give the necessary orders regarding this to\\n\\t the people.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [1]\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t September 21, 1915. There is no need for an orphanage. It is not the\\n\\t time to give way to sentiment and feed the orphans, prolonging their\\n\\t lives. Send them away to the desert and inform us.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\t\\t\\t\\t\\t\\tTalaat\" [2]\\n\\n\\t\"To the General Committee for settling and deportees.\\n\\n\\t November 26, 1915. There were more than four hundred children in the\\n\\t orphanage. They will be added to the caravans and sent to their\\n\\t places of exile.\\n\\n\\t \\t\\t\\t\\tAbdullahad Nuri. [3]\\n\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t January 15, 1916. We hear that certain orphanages which have been\\n\\t opened receive also the children of the Armenians. Whether this is\\n\\t done through the ignorance of our real purpose, or through contempt\\n\\t of it, the Government will regard the feeding of such children or\\n\\t any attempt to prolong their lives as an act entirely opposed to it\\n\\t purpose, since it considers the survival of these children as\\n\\t detrimental. I recommend that such children shall not be received\\n\\t into the orphanages, and no attempts are to be made to establish\\n\\t special orphanages for them.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat.\" [4]\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\n\\t Collect and keep only those orphans who cannot remember the tortures\\n\\t to which their parents have been subjected. Send the rest away with\\n\\t the caravans.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [5]\\n\\n\\t\"From the Ministry of the Interior to the Government of Aleppo.\\n\\n\\t At a time when there are thousands of Moslem refugees and the widows\\n\\t of Shekid [fallen soldiers] are in need of food and protection, it is\\n\\t not expedient to incur extra expenses by feeding the children left by\\n\\t Armenians, who will serve no purpose except that of giving trouble\\n\\t in the future. It is necessary that these children should be turned\\n\\t out of your vilayet and sent with the caravans to the place of\\n\\t deportation. Those that have been kept till now are also to be sent\\n\\t away, in compliance with our previous orders, to Sivas.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [6]\\n\\nIn 1926, Halide Edip (a pioneer Turkish nationalist) wrote in her memoirs\\nabout a conversation with Talaat Pasha, verifying and \"rationalizing\" this\\nultra-national fascist anti-Armenian mentality, the following:\\n\\n\\t\"I have the conviction that as long as a nation does the best for\\n\\t its own interest, and succeeds, the world admires it and thinks\\n\\t it moral. I am ready to die for what I have done, and I know I\\n\\t shall die for it.\" [7]\\n\\n\\nThese telegrams were entered as unquestioned evidence during the 1923 trial of\\nTalaat Pasha\\'s, assassin, Soghomon Tehlerian. The Turkish government never\\nquestioned these \"death march orders\" until 1986, during a time when the world\\nwas again reminded of the genocide of the Armenians.\\n\\nFor reasons known to those who study the psychology of genocide denial, the\\nTurkish government and their supporters in crime deny that such orders were\\never issued, and further claim that these telegrams were forgeries based on a\\nstudy by S. Orel and S. Yuca of the Turkish Historical Society.\\n\\nIf one were to examine the sample \"authentic text\" provided in the Turkish \\nHistorical Society study and use their same forgery test on that sample, it \\ntoo would be a forgery!. In fact, if any of the tests delineated by the \\nTurkish Historical Society are performed an any piece of Ottoman Turkish or \\nPersian/Arabic script, one finds that anything handwritten in such language is\\na forgery. \\n\\nToday, the body of Talaat Pasha lies in a tomb on Liberty Hill, Istanbul,\\nTurkey, just next to the Yildiz University campus. The body of this genocide \\narchitect was returned to Turkey from Germany during WW2 when Turkey was in a \\nheightened state of proto-fascism. Recently, this monument has served as a\\nfocal point for anti-Armenianism in Turkey.\\n\\nThis monument represents the epitome of the Turkish government\\'s pathological\\ndenial of a clear historical event and is an insult to a people whose only\\ncrime was to be born Armenian.\\n\\n\\t\\t\\t- - - references - - -\\n\\n[1] _The Memoirs of Naim Bey_, Aram Andonian, 1919, pages 59-60\\n\\n[2] ibid, page 60\\n\\n[3] ibid, page 60\\n\\n[4] ibid, page 61\\n\\n[5] ibid, page 61\\n\\n[6] ibid, page 62\\n\\n[7] _Memoirs of Halide Edip_, Halide Edip, The Century Press, New York (and\\n London), 1926, page 387\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: drunen@nucleus.ps.uci.edu (Eric Van Drunen)\\nSubject: Re: Big amateur rockets\\nNntp-Posting-Host: nucleus.ps.uci.edu\\nOrganization: University of California, Irvine\\nLines: 30\\n\\nActually, they are legal! I not familiar with the ad you are speaking of\\nbut knowing Popular Science it is probably on the fringe. However, you\\nmay be speaking of \"Public Missle, Inc.\", which is a legitimate company\\nthat has been around for a while.\\n\\nDue to advances in composite fuels, engines are now available for model\\nrockets using similar composites to SRB fuel, roughly 3 times more \\npowerful than black powder motors. They are even available in a reloadable\\nform, i.e. aluminum casing, end casings, o-rings (!). The engines range\\nfrom D all the way to M in common manufacture, N and O I\\'ve heard of\\nused at special occasions.\\n\\nTo be a model rocket, however, the rocket can\\'t contain any metal \\nstructural parts, amongst other requirements. I\\'ve never heard of a\\nmodel rocket doing 50,000. I have heard of > 20,000 foot flights.\\nThese require FAA waivers (of course!). There are a few large national\\nlaunches (LDRS, FireBALLS), at which you can see many > K sized engine\\nflights. Actually, using a > G engine constitutes the area of \"High\\nPower Rocketry\", which is seperate from normal model rocketry. Purchase\\nof engines like I have been describing require membership in the National\\nAssociation of Rocketry, the Tripoli Rocketry Assoc., or you have to\\nbe part of an educational institute or company involved in rocketry.\\n\\nAmatuer rocketry is another area. I\\'m not really familiar with this,\\nbut it is an area where metal parts are allowed, along with liquid fuels\\nand what not. I don\\'t know what kind of regulations are involved, but\\nI\\'m sure they are numerous.\\n\\nHigh power rocketry is very exciting! If you are interested or have \\nmore questions, there is a newsgroup rec.model.rockets.\\n',\n", - " \"From: avi@duteinh.et.tudelft.nl (Avi Cohen Stuart)\\nSubject: Re: Israel's Expansion II\\nOriginator: avi@duteinh.et.tudelft.nl\\nNntp-Posting-Host: duteinh.et.tudelft.nl\\nOrganization: Delft University of Technology, Dept. of Electrical Engineering\\nLines: 14\\n\\nFrom article <93111.225707PP3903A@auvm.american.edu>, by Paul H. Pimentel :\\n> What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n> s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n> k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n> ore they have a right to Jerusaleum as much as Isreal does.\\n\\n\\nThere is one big difference between Israel and the Arabs, Christians in this\\nrespect.\\n\\nIsrael allows freedom of religion.\\n\\nAvi.\\n\",\n", - " \"From: denis@apldbio.com (Denis Concordel)\\nSubject: *** For sale: 1988 Husqvarna 510TE ***\\nDistribution: ba,ca\\nOrganization: Applied Biosystems, Inc\\nLines: 42\\n\\nFor sale:\\n\\n Model : Husqvarna 510 TE (enduro model)\\n Year : 1988\\n Engine : 500 cc Four Stroke\\n\\n Extras : - 1992 ignition (for easy starting)\\n - Suspension by Aftershock\\n - Custom carbon fiber/Kevlar skid plate\\n - Quick steering geometry\\n - Stock (EPA legal and quiet) exhaust system\\n - Bark busters and hand guards\\n - Motion Pro clutch cable\\n\\n Price : $2200\\n\\n Contact: Denis Concordel E-Mail: denis@apldbio.com\\n MaBell: (415) 570 6667 (work)\\n (415) 494 7109 (home)\\n\\n I am selling my trusty Husky... hopefully to buy a Husaberg... This is\\n a very good dirt bike and has been maintained perfectly. I never had\\n any problems with it.\\n\\n It's a four stroke, 4 valves, liquid cooled engine. It is heavier than \\n a 250 2 stroke but still lighter than a Honda XR600 and has a lot better \\n suspension (Ohlins shock, Husky fork) than the XR. For the casual or non\\n competitive rider, the engine is much better than any two stroke.\\n You can easily lug up hills and blast through trails with minimum gear\\n changes.\\n \\n The 1992 ignition and the carefully tuned carburation makes this bike\\n very easy to start (starts of first kick when cold or hot). There is a\\n custom made carbon/kevlar (light 1 pound) wrap around skid plate to protect\\n the engine cases and the water pump. The steering angle has been reduced \\n by 2 degree to increase steering quickness. This with the suspension tune-up\\n by Phil Douglas of Aftershock (Multiple time ISDE rider) gives it a better\\n ride than most bike: plush suspension, responsive steering with no head shake.\\n\\n So if it is such a good bike why sell it???? Gee, I want to buy a Husaberg,\\n which just a husky but 25 pounds lighter... and a tad more $$$.\\n\\n\",\n", - " \"From: g.coulter@daresbury.ac.uk (G. Coulter)\\nSubject: SHADOW Optical Raytracing Package?\\nReply-To: g.coulter@daresbury.ac.uk\\nOrganization: SERC Daresbury Laboratory, UK\\nLines: 17\\nNNTP-Posting-Host: dlsg.dl.ac.uk\\n\\nHi Everyone ::\\n\\nI am looking for some software called SHADOW as \\nfar as I know its a simple raytracer used in\\nthe visualization of synchrotron beam lines.\\nNow we have an old version of the program here\\n,but unfortunately we don't have any documentation\\nif anyone knows where I can get some docs, or\\nmaybe a newer version of the program or even \\nanother program that does the same sort of thing\\nI would love to hear from you.\\n\\nPS I think SHADOW was written by a F Cerrina?\\n\\nAnyone any ideas?\\n\\nThanks -Gary- SERC Daresbury Lab.\\n\",\n", - " 'From: rwf2@ns1.cc.lehigh.edu (ROBERT WILLIAM FUSI)\\nSubject: Re: Recommendation for a front tire.\\nOrganization: Lehigh University\\nLines: 37\\n\\nIn article , nrmendel@unix.amherst.edu (Nathaniel M\\nendell) writes:\\n>Ken Orr (orr@epcot.spdc.ti.com) wrote:\\n>: In article nrmendel@unix.amherst.edu (Nathaniel\\nMendell) writes:\\n>: >Steve Mansfield (smm@rodan.UU.NET) wrote:\\n>: >: Yes, my front tire is all but dead. It has minimal tread left, so it\\'s\\n>: >: time for a new one. Any recommendations on a good tire in front? I\\'m\\n>: >: riding on an almost brand new ME55A in back.\\n>: >:\\n>: >: Steve Mansfield | The system we\\'ve learned says we\\'re equal under la\\nw\\n>: >: smm@uunet.uu.net | But the streets are reality, the weak and poor will\\nfall\\n>: >: 1983 Suzuki GS550E | Let\\'s tip the power balance and tear down the crown\\n>: >: DoD# 1718 | Educate the masses, we\\'ll burn the White House down.\\n>: >: Queensryche - Speak the Word.\\n>: >\\n>: >The best thing is to match front and back, no? Given that the 99A (\"Perfect\"\\n?)\\n>: >is such a good tire, just go with that one\\n>: >\\n>: The Me99a perfect is a rear. The match for the front is the Me33 laser.\\n>:\\n>: DOD #306 K.O.\\n>: AMA #615088 Orr@epcot.spdc.ti.com\\n>\\n>Yeah, what *he* said....<:)\\n>\\n>Nathaniel\\n>ZX-10\\n>DoD 0812\\n>AM\\n\\n>Yes, you definitely need a front tire on a motorcycle....\\n\\n-- \\n',\n", - " \"From: zellner@stsci.edu\\nSubject: Re: HST Servicing Mission\\nLines: 19\\nOrganization: Space Telescope Science Institute\\nDistribution: world,na\\n\\nIn article <1rd1g0$ckb@access.digex.net>, prb@access.digex.com (Pat) writes: \\n > \\n > \\n > SOmebody mentioned a re-boost of HST during this mission, meaning\\n > that Weight is a very tight margin on this mission.\\n > \\n\\nI haven't heard any hint of a re-boost, or that any is needed.\\n\\n > \\n > why not grapple, do all said fixes, bolt a small liquid fueled\\n > thruster module to HST, then let it make the re-boost. it has to be\\n > cheaper on mass then usingthe shuttle as a tug. \\n\\nNasty, dirty combustion products! People have gone to monumental efforts to\\nkeep HST clean. We certainly aren't going to bolt any thrusters to it.\\n\\nBen\\n\\n\",\n", - " \"From: jyaruss@hamp.hampshire.edu\\nSubject: Misc./buying info. needed\\nOrganization: Hampshire College\\nLines: 15\\nNNTP-Posting-Host: hamp.hampshire.edu\\n\\nHi. I have been thinking about buying a Motorcycle or a while now and I have\\nsome questions:\\n\\n-Is there a buying guide for new/used motorcycles (that lists reliability, how\\nto go about the buying process, what to look for, etc...)?\\n-Is there a pricing guide for new/used motorcycles (Blue Book)?\\n\\nAlso\\n-Are there any books/articles on riding cross country, motorcycle camping, etc?\\n-Is there an idiots' guide to motorcycles?\\n\\nANY related information is helpful. Please respond directly to me.\\n\\nThanks a lot.\\n-Jordan\\n\",\n", - " 'From: sigma@rahul.net (Kevin Martin)\\nSubject: Re: Stay Away from MAG Innovision!!!\\nNntp-Posting-Host: bolero\\nOrganization: a2i network\\nLines: 10\\n\\nIn <16BB58B33.D1SAR@VM1.CC.UAKRON.EDU> D1SAR@VM1.CC.UAKRON.EDU (Steve Rimar) writes:\\n>My Mag MX15F works fine....................\\n\\nMine was beautiful for a year and a half. Then it went . I bought\\na ViewSonic 6FS instead. Another great monitor, IMHO.\\n\\n-- \\nKevin Martin\\nsigma@rahul.net\\n\"I gotta get me another hat.\"\\n',\n", - " 'From: lusky@ccwf.cc.utexas.edu (Jonathan R. Lusky)\\nSubject: Kawasaki ZX-6 engine needed\\nReply-To: lusky@ccwf.cc.utexas.edu (Jonathan R. Lusky)\\nDistribution: usa\\nOrganization: UT SAE / Longhorn Racing Team\\nLines: 14\\nOriginator: lusky@sylvester.cc.utexas.edu\\n\\nI\\'m looking for a 1990-91 Kawasaki ZX-6 engine. Just the engine,\\nno intake, exhaust, ignition, etc. Preferably in the central texas\\narea, but we haven\\'t had much luck around here so we\\'ll take whatever we\\ncan get. Please reply via mail or call (512) 471-5399 if you have one\\n(or more... really need a spare).\\n\\nThanx\\n\\n-- \\n--=< Jonathan Lusky ----- lusky@ccwf.cc.utexas.edu >=-- \\n \\\\ \"Turbos are nice, but I\\'d rather be blown!\" /\\n \\\\ 89 Jeep Wrangler - 258/for sale! / \\n \\\\ 79 Rx-7 - 12A/Holley 4bbl / \\n \\\\________67 Camaro RS - 350/4spd________/ \\n',\n", - " 'From: ed@cwis.unomaha.edu (Ed Stastny)\\nSubject: The OTIS Project (FTP sites for original art and images)\\nKeywords: Mr.Owl, how many licks...\\nOrganization: University of Nebraska at Omaha\\nLines: 227\\n\\n\\n\\t-------------------------------------\\n\\t+ ............The OTIS Project \\'93 + \\n\\t+ \"The Operative Term Is STIMULATE\" + \\n\\t-------------------------------------\\n\\t---this file last updated..4-21-93---\\n\\n\\nWHAT IS OTIS?\\n\\nOTIS is here for the purpose of distributing original artwork\\nand photographs over the network for public perusal, scrutiny, \\nand distribution. Digital immortality.\\n\\nThe basic idea behind \"digital immortality\" is that computer networks \\nare here to stay and that anything interesting you deposit on them\\nwill be around near-forever. The GIFs and JPGs of today will be the\\nartifacts of a digital future. Perhaps they\\'ll be put in different\\nformats, perhaps only surviving on backup tapes....but they\\'ll be\\nthere...and someone will dig them up. \\n \\nIf that doesn\\'t interest you... OTIS also offers a forum for critique\\nand exhibition of your works....a virtual art gallery that never closes\\nand exists in an information dimension where your submissions will hang\\nas wallpaper on thousands of glowing monitors. Suddenly, life is \\nbreathed into your work...and by merit of it\\'s stimulus, it will \\ntravel the globe on pulses of light and electrons.\\n \\nSpectators are welcome also, feel free to browse the gallery and \\nlet the artists know what you think of their efforts. Keep your own\\ncopies of the images to look at when you\\'ve got the gumption...\\nthat\\'s what they\\'re here for.\\n\\n---------------------------------------------------------------\\n\\nWHERE? \\n\\nOTIS currently (as of 4/21/93) has two FTP sites. \\n \\n \\t141.214.4.135 (projects/otis), the UWI site\\n\\t\\t\\n\\tsunsite.unc.edu (/pub/multimedia/pictures/OTIS), the SUNsite \\n\\t(you can also GOPHER to this site for OTIS as well)\\n\\nMerely \"anonymous FTP\" to either site on Internet and change to the\\nappropriate directory. Don\\'t forget to get busy and use the \"bin\"\\ncommand to make sure you\\'re in binary.\\n\\nOTIS has also been spreading to some dial-up BBS systems around North\\nAmerica....the following systems have a substancial supply of\\nOTIStuff...\\n\\tUnderground Cafe (Omaha) (402.339.0179) 2 lines\\n\\tCyberDen (SanFran?) (415.472.5527) Usenet Waffle-iron\\n\\n--------------------------------------------------------------\\n \\nHOW DO YOU CONTRIBUTE?\\n \\nWhat happens is...you draw a pretty picture or take a lovely \\nphoto, get it scanned into an image file, then either FTP-put\\nit in the CONTRIB/Incoming directory or use UUENCODE to send it to me\\n(email addresses at eof) in email. After the image is received,\\nit will be put into the correct directory. Computer originated works\\nare also welcome.\\n\\nOTIS\\' directories house two types of image files, GIF and JPG. \\nGIF and JPG files require, oddly enough, a GIF or JPG viewer to \\nsee. These viewers are available for all types of computers at \\nmost large FTP sites around Internet. JPG viewers are a bit\\ntougher to find. If you can\\'t find one, but do have a GIF viewer, \\nyou can obtain a JPG-to-GIF conversion program which will change \\nJPG files to a standard GIF format. \\n\\nOTIS also accepts animation files. \\n\\nWhen you submit image files, please send me email at the same time\\nstating information about what you uploaded and whether it is to be\\nused (in publications or other projects) or if it is merely for people\\nto view. Also, include some biographical information on yourself, we\\'ll\\nbe having info-files on each contributing artist and their works. You \\ncan also just upload a text-file of info about yourself (instead of \\nemailing).\\n\\nIf you have pictures, but no scanner, there is hope. Merely send\\ncopies to:\\n\\nThe OTIS Project\\nc/o Ed Stastny\\nPO BX 241113\\nOmaha, NE 68124-1113\\n\\nI will either scan them myself or get them to someone who will \\nscan them. Include an ample SASE if you want your stuff back. \\nAlso include information on each image, preferably a 1-3 line \\ndescription of the image that we can include in the infofile in the\\ndirectory where it\\'s finally put. If you have preferences as to what\\nthe images are to be named, include those as well. \\n \\nConversely, if you have a scanner and would like to help out, please\\ncontact me and we\\'ll arrange things.\\n\\nIf you want to submit your works by disk, peachy. Merely send a 3.5\"\\ndisk to the above address (Omaha) and a SASE if you want your disk back.\\nThis is good for people who don\\'t have direct access to encoders or FTP,\\nbut do have access to a scanner. We accept disks in either Mac or IBM\\ncompatible format. If possible, please submit image files as GIF or\\nJPG. If you can\\'t...we can convert from most formats...we\\'d just rather\\nnot have to.\\n\\nAt senders request, we can also fill disks with as much OTIS as they\\ncan stand. Even if you don\\'t have stuff to contribute, you can send\\na blank disk and an SASE (or $2.50 for disk, postage and packing) to \\nget a slab-o-OTIS.\\n\\nAs of 04/21/93, we\\'re at about 18 megabytes of files, and growing. \\nEmail me for current archive size and directory.\\n\\n--------------------------------------------------------------------\\n\\nDISTRIBUTION?\\n\\nThe images distributed by the OTIS project may be distributed freely \\non the condition that the original filename is kept and that it is\\nnot altered in any way (save to convert from one image format to\\nanother). In fact, we encourage files to be distributed to local \\nbulletin boards and such. If you could, please transport the\\nappropriate text files along with the images. \\n \\nIt would also be nice if you\\'d send me a note when you did post images\\nfrom OTIS to your local bbs. I just want to keep track of them so\\nparticipants can have some idea how widespread their stuff is.\\n\\nIt\\'s the purpose of OTIS to get these images spread out as much as\\npossible. If you have the time, please upload a few to your favorite\\nBBS system....or even just post this \"info-file\" there. It would be\\nkeen of you.\\n\\n--------------------------------------------------------------------\\n\\nUSE?\\n\\nIf you want to use any of the works you find on the OTIS directory,\\nyou\\'ll have to check to see if permission has been granted and the \\nstipulations of the permission (such as free copy of publication, or\\nfull address credit). You will either find this in the \".rm\" file for \\nthe image or series of images...or in the \"Artists\" directory under the \\nArtists name. If permission isn\\'t explicitly given, then you\\'ll have \\nto contact the artist to ask for it. If no info is available, email\\nme (ed@cwis.unomaha.edu), and I\\'ll get in contact with the artist for \\nyou, or give you their contact information.\\n \\nWhen you DO use permitted work, it\\'s always courteous to let the artist\\nknow about it, perhaps even send them a free copy or some such\\ncompensation for their files.\\n\\n---------------------------------------------------------------------\\n\\nNAMING IMAGES?\\n\\nPlease keep the names of your files in \"dos\" format. That means, keep\\nthe filename (before .jpg or .gif) to eight characters or less. The way\\nI usually do it is to use the initials of the artist, plus a three or\\nfour digit \"code\" for the series of images, plus the series number.\\nThus, Leonardo DeVinci\\'s fifth mechanical drawing would be something\\nlike:\\n \\n\\tldmek5.gif OR ldmek5.jpg OR ldmech5.gif ETC\\n\\nKeeping the names under 8 characters assures that the filename will\\nremain intact on all systems. \\n\\n\\n---------------------------------------------------------------------- \\n\\nCREATING IMAGE FILES?\\n\\nWhen creating image files, be sure to at least include your name\\nsomewhere on or below the picture. This gives people a reference in\\ncase they\\'d like to contact you. You may also want to include a title,\\naddress or other information you\\'d like people to know.\\n\\n-----------------------------------------------------------------------\\n\\nHMMM?!\\n\\nThat\\'s about it for now. More \"guidelines\" will be added as needed.\\nYour input is expected.\\n\\n-----------------------------------------------------------------------\\n\\nDISCLAIMER: The OTIS Project has no connection to the Church of OTIS \\n \\t (a sumerian deity) or it\\'s followers, be they pope, priest,\\n\\t or ezine administrator. We do take sacrifices and donations\\n\\t however.\\n\\n-----------------------------------------------------------------------\\n\\nDISCLAIMER: The OTIS Project is here for the distribution of original \\n \\t image files. The files will go to the public at large. \\n\\t It\\'s possible, as with any form of mass-media, that someone\\n\\t could unscrupulously use your images for financial gain. \\n \\t Unless you\\'ve given permission for that, it\\'s illegal. OTIS\\n\\t takes no responsibility for this. In simple terms, all rights\\n\\t revert to the author/artist. To leave an image on OTIS is to \\n\\t give permission for it to be viewed, copied and distributed \\n\\t electronically. If you don\\'t want your images distributed \\n\\t all-over, don\\'t upload them. To leave an image on OTIS is\\n\\t NOT giving permission to have it used in any publication or\\n\\t broadcast that incurs profit (this includes, but is not \\n\\t limited to, magazines, newsletters, clip-art software, \\n\\t screen-printed clothing, etc). You must give specific\\n\\t permission for this sort of usage. \\n\\n-----------------------------------------------------------------------\\n\\nRemember, the operative term is \"stimulate\". If you know of people\\nthat\\'d be interested in this sort of thing...get them involved...kick\\'m\\nin the booty....offer them free food...whatever...\\n\\n....e (ed@cwis.unomaha.edu)\\n (ed@sunsite.unc.edu)\\n\\n--\\nEd Stastny | OTIS Project, END PROCESS, SOUND News and Arts \\nPO BX 241113\\t | FTP: sunsite.unc.edu (/pub/multimedia/pictures/OTIS)\\nOmaha, NE 68124-1113 | 141.214.4.135 (projects/otis)\\n---------------------- EMail: ed@cwis.unomaha.edu, ed@sunsite.unc.edu\\n',\n", - " 'From: amjad@eng.umd.edu (Amjad A Soomro)\\nSubject: Gamma-Law Correction\\nOrganization: Project GLUE, University of Maryland, College Park\\nLines: 22\\nDistribution: USA\\nExpires: 05/15/93\\nNNTP-Posting-Host: filter.eng.umd.edu\\n\\nHi:\\n\\nI am digitizing a NTSC signal and displaying on a PC video monitor.\\nIt is known that the display response of tubes is non-linear and is\\nsometimes said to follow Gamma-Law. I am not certain if these\\nnon-linearities are \"Gamma-corrected\" before encoding NTSC signals\\nor if the TV display is supposed to correct this.\\n \\nAlso, if 256 grey levels, for example, are coded in a C program do\\nthese intensity levels appear with linear brightness on a PC\\nmonitor? In other words does PC monitor display circuitry\\ncorrect for \"gamma errrors\"?\\n \\nYour response is much appreciated.\\n \\nAmjad.\\n\\nAmjad Soomro\\nCCS, Computer Science Center\\nU. of Maryland at College Park\\nemail: amjad@wam.umd.edu\\n\\n',\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: How many Mutlus can dance on the head of a pin?\\nArticle-I.D.: news.2BC0D53B.20378\\nOrganization: University of California, Irvine\\nLines: 28\\nNntp-Posting-Host: orion.oac.uci.edu\\n\\nIn article <1993Apr5.211146.3662@mnemosyne.cs.du.edu> jfurr@nyx.cs.du.edu (Joel Furr) writes:\\n>In article <3456@israel.nysernet.org> warren@nysernet.org writes:\\n>>In jfurr@polaris.async.vt.edu (Joel Furr) writes:\\n>>>How many Mutlus can dance on the head of a pin?\\n>>\\n>>That reminds me of the Armenian massacre of the Turks.\\n>>\\n>>Joel, I took out SCT, are we sure we want to invoke the name of he who\\n>>greps for Mason Kibo\\'s last name lest he include AFU in his daily\\n>>rounds?\\n>\\n>I dunno, Warren. Just the other day I heard a rumor that \"Serdar Argic\"\\n>(aka Hasan Mutlu and Ahmed Cosar and ZUMABOT) is not really a Turk at all,\\n>but in fact is an Armenian who is attempting to make any discussion of the\\n>massacres in Armenia of Turks so noise-laden as to make serious discussion\\n>impossible, thereby cloaking the historical record with a tremendous cloud\\n>of confusion. \\n\\n\\nDIs it possible to track down \"zuma\" and determine who/what/where \"seradr\" is?\\nIf not, why not? I assu\\\\me his/her/its identity is not shielded by policies\\nsimilar to those in place at \"anonymous\" services.\\n\\nTim\\nD\\nD\\nD\\nVery simpl\\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Boom! Whoosh......\\nOrganization: U of Toronto Zoology\\nLines: 21\\n\\nIn article <1r46ofINNdku@gap.caltech.edu> palmer@cco.caltech.edu (David M. Palmer) writes:\\n>>orbiting billboard...\\n>\\n>I would just like to point out that it is much easier to place an\\n>object at orbital altitude than it is to place it with orbital\\n>velocity. For a target 300 km above the surface of Earth,\\n>you need a delta-v of 2.5 km/s. Assuming that rockets with specific\\n>impulses of 300 seconds are easy to produce, a rocket with a dry\\n>weight of 50 kg would require only about 65 kg of fuel+oxidizer...\\n\\nUnfortunately, if you launch this from the US (or are a US citizen),\\nyou will need a launch permit from the Office of Commercial Space\\nTransportation, and I think it may be difficult to get a permit for\\nan antisatellite weapon... :-)\\n\\nThe threshold at which OCST licensing kicks in is roughly 100km.\\n(The rules are actually phrased in more complex ways, but that is\\nthe result.)\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: jgreen@trumpet.calpoly.edu (James Thomas Green)\\nSubject: Re: Vulcan? (No, not the guy with the ears!)\\nOrganization: California Polytechnic State University, San Luis Obispo\\nLines: 31\\n\\n>In article victor@inqmind.bison.mb.ca (Victor Laking) writes:\\n>>From: victor@inqmind.bison.mb.ca (Victor Laking)\\n>>Subject: Vulcan? (No, not the guy with the ears!)\\n>>Date: Sun, 04 Apr 93 19:31:54 CDT\\n>>Does anyone have any info on the apparent sightings of Vulcan?\\n>> \\n>>All that I know is that there were apparently two sightings at \\n>>drastically different times of a small planet that was inside Mercury\\'s \\n>>orbit. Beyond that, I have no other info.\\n>>\\n>>Does anyone know anything more specific?\\n>>\\n\\nAs I heard the story, before Albert came up the the theory\\no\\'relativity and warped space, nobody could account for\\nMercury\\'s orbit. It ran a little fast (I think) for simple\\nNewtonian physics. With the success in finding Neptune to\\nexplain the odd movments of Uranus, it was postulated that there\\nmight be another inner planet to explain Mercury\\'s orbit. \\n\\nIt\\'s unlikely anything bigger than an asteroid is closer to the\\nsun than Mercury. I\\'m sure we would have spotted it by now.\\nPerhaps some professionals can confirm that.\\n\\n\\n/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n| Heaven, n.: |\\n| A place where the wicked cease from troubling you with talk | \\n| of their own personal affairs, and the good listen with |\\n| attention while you expound your own. |\\n| Ambrose Bierce, \"The Devil\\'s Dictionary\" |\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The museum of \\'BARBARISM\\'.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 215\\n\\nIn article v999saum@ubvmsb.cc.buffalo.edu (Varnavas A. Lambrou) writes:\\n\\n>What about Cyprus?? The majority of the population is christian, but \\n>your fellow Turkish friends DID and STILL DOING a \\'good\\' job for you \\n>by cleaning the area from christians.\\n\\nAll your article reflects is your abundant ignorance. The people of \\nTurkiye know quite well that Greece and the Greek Cypriots will never \\nabandon the idea of hellenizing Cyprus and will remain eternally \\nhopeful of uniting it with Greece, someday, whatever the cost to the\\nparties involved. The history speaks for itself. Greece was the sole \\nperpetrator of invasion on that island when it sent its troops on July \\n15, 1974 in an attempt to topple the legitimate government of Archibishop \\nMakarios.\\n\\nFollowing the Greek Cypriot attempt to annex the island to Greece with \\nthe aid of the Greek army, Turkiye intervened by using her legal right \\ngiven by two international agreements. Turkiye did it for the frequently \\nand conveniently forgotten people of the island, Turkish Cypriots. For \\nthose Turkish Cypriots whose grandparents have been living on the island \\nsince 1571. \\n\\nThe release of Nikos Sampson, a member of EOKA [National Organization\\nof Cypriot Fighters] and a convicted terrorist, shows that the\\n\\'enosis\\' mentality continues to survive in Greece. One should not\\nforget that Sampson dedicated his life to annihilating the Turks\\nin Cyprus, committed murder to achieve this goal, and tried to\\ndestroy the island\\'s independence by annexing it to Greece. Of\\ncourse, the Greek governments will have to bear the consequences \\nfor this irresponsible conduct.\\n\\n\\n THE MUSEUM OF BARBARISM\\n\\n2 Irfan Bey Street, Kumsal Area, Nicosia, Cyprus\\n\\nIt is the house of Dr. Nihat Ilhan, a major who was serving at\\nthe Cyprus Turkish Army Contingent. During the attacks launched\\nagainst the Turks by the Greeks, on 20th December 1963, Dr. Nihat\\nIlhan\\'s wife and three children were ruthlessly and brutally\\nkilled in the bathroom, where they had tried to hide, by savage\\nGreeks. Dr. Nihat Ilhan happened to be on duty that night, the\\n24th December 1963. Pictures reflecting Greek atrocities\\ncommitted during and after 1963 are exhibited in this house which\\nhas been converted into a museum.\\n\\nAN EYE-WITNESS ACCOUNT OF HOW A TURKISH FAMILY WAS BUTCHERED BY\\nGREEK TERRORISTS\\n\\nThe date is the 24th of December, 1963... The onslaught of the\\nGreeks against the Turks, which started three days ago, has been\\ngoing on with all its ferocity; and defenseless women, old men\\nand children are being brutally killed by Greeks. And now Kumsal\\nArea of Nicosia witnesses the worst example of the Greeks savage\\nbloodshed...\\n\\nThe wife and the three infant children of Dr. Nihat Ilhan, a\\nmajor on duty at the camp of the Cyprus Turkish Army Contingent,\\nare mercilessly and dastardly shot dead while hiding in the\\nbathroom of their house, by maddened Greeks who broke into their\\nhome. A glaring example of Greek barbarism.\\n\\nLet us now listen to the relating of the said incident told by\\nMr. Hasan Yusuf Gudum, an eye witness, who himself was wounded\\nduring the same terrible event.\\n\\n\"On the night of the 24th of December, 1963 my wife Feride Hasan\\nand I were paying a visit to the family of Major Dr. Nihat Ilhan.\\nOur neighbours Mrs. Ayshe of Mora, her daughter Ishin and Mrs.\\nAyshe\\'s sister Novber were also with us. We were all sitting\\nhaving supper. All of a sudden bullets from the Pedieos River\\ndirection started to riddle the house, sounding like heavy rain.\\nThinking that the dining-room where we were sitting was\\ndangerous, we ran to the bathroom and toilet which we thought\\nwould be safer. Altogether we were nine persons. We all hid in\\nthe bathroom except my wife who took refuge in the toilet. We\\nwaited in fear. Mrs. Ilhan the wife of Major Doctor, was standing\\nin the bath with her three children Murat, Kutsi and Hakan in her\\narms. Suddenly with a great noise we heard the front door open.\\nGreeks had come in and were combing, every corner of the house\\nwith their machine gun bullets. During these moments I heard\\nvoices saying, in Greek, \"You want Taksim eh!\" and then bullets\\nstarted flying in the bathroom. Mrs. Ilhan and her three children\\nfell into the bath. They were shot. At this moment the Greeks,\\nwho broke into the bathroom, emptied their guns on us again. I\\nheard one of the Major\\'s children moan, then I fainted.\\n\\nWhen I came to myself 2 or 3 hours later, I saw Mrs. Ilhan and\\nher three children lying dead in the bath. I and the rest of the\\nneighbours in the bathroom were all seriously wounded. But what\\nhad happened to my wife? Then I remembered and immediately ran to\\nthe toilet, where, in the doorway, I saw her body. She was\\nbrutally murdered.\\n\\nIn the street admist the sound of shots I heard voices crying\\n\"Help, help. Is there no one to save us?\" I became terrified. I\\nthought that if the Greeks came again and found that I was not\\ndead they would kill me. So I ran to the bedroom and hid myself\\nunder the double-bed.\\n\\nAn our passed by. In the distance I could still hear shots. My\\nmouth was dry, so I came out from under the bed and drank some\\nwater. Then I put some sweets in my pocket and went back to the\\nbathroom, which was exactly as I had left in an hour ago. There I\\noffered sweets to Mrs. Ayshe, her daughter and Mrs. Novber who\\nwere all wounded.\\n\\nWe waited in the bathroom until 5 o\\'clock in the morning. I\\nthought morning would never come. We were all wounded and needed\\nto be taken to hospital. Finally, as we could walk, Mrs. Novber\\nand I, went out into the street hoping to find help, and walked\\nas far as Koshklu Chiftlik.\\n\\nThere, we met some people who took us to hospital where we were\\noperated on. When I regained my consciousness I said that there\\nwere more wounded in the house and they went and brought Mrs.\\nAyshe and her daughter.\\n\\nAfter staying three days in the hospital I was sent by plane to\\nAnkara for further treatment. There I have had four months\\ntreatment but still I cannot use my arm. On my return to Cyprus,\\nGreeks arrested me at the Airport.\\n\\nAll I have related to you above I told the Greeks during my\\ndetention. They then released me.\"\\n\\nON FOOT INTO CYPRUS\\'S DEVASTATED TURKISH QUARTER\\n\\nWe went tonight into the sealed-off Turkish quarter of Nicosia in\\nwhich 200 to 300 people have been slaughtered in the last five\\ndays.\\n\\nWe were the first Western reporters there, and we saw some\\nterrible sights.\\n\\nIn the Kumsal quarter at No. 2, Irfan Bey Sokagi, we made our way\\ninto a house whose floors were covered with broken glass. A\\nchild\\'s bicycle lay in a corner.\\n\\nIn the bathroom, looking like a group of waxworks, were three\\nchildren piled on top of their murdered mother.\\n\\nIn a room next to it we glimpsed the body of a woman shot in the\\nhead.\\n\\nThis, we were told, was the home of a Turkish Army major whose\\nfamily had been killed by the mob in the first violence.\\n\\nToday was five days later, and still they lay there.\\n\\nRene MacCOLL and Daniel McGEACHIE, (From the \"DAILY EXPRESS\")\\n\\n\"...I saw in a bathroom the bodies of a mother and three infant\\nchildren murdered because their father was a Turkish Officer...\"\\n\\nMax CLOS, LE FIGARO 25-26 January, 1964\\n\\n\\n Peter Moorhead reporting from the village of Skyloura, Cyprus. \\n Date : 1 January, 1964. \\n\\n IL GIARNO (Italy)\\n \\n THEY ARE TURK-HUNTING, THEY WANT TO EXTERMINATE THEM.\\n\\n Discussions start in London; in Cyprus terror continues. Right now we\\n are witnessing the exodus of Turks from the villages. Thousands of people\\n abandoning homes, land, herds; Greek Cypriot terrorism is relentless. This \\n time, the rhetoric of the Hellenes and the bust of Plato do not suffice to \\n cover up barbaric and ferocious behaviors.\\n\\n Article by Giorgo Bocca, Correspondent of Il Giorno\\n Date: 14 January 1964\\n\\n DAILY HERALD (London)\\n\\n AN APPALLING SIGHT\\n\\nAnd when I came across the Turkish homes they were an appalling sight.\\nApart from the walls, they just did not exist. I doubt if a napalm bomb\\nattack could have created more devastation. I counted 40 blackened brick\\nand concrete shells that had once been homes. Each house had been deliberately\\nfired by petrol. Under red tile roofs which had caved in, I found a twisted\\nmass of bed springs, children\\'s conts and cribs, and ankle deep grey\\nashes of what had once been chairs, tables and wardrobes.\\n\\nIn the neighbouring village of Ayios Vassilios, a mile away, I counted 16 \\nwrecked and burned out homes. They were all Turkish Cypriot homes. From\\nthis village more than 100 Turkish Cypriots had also vanished.In neither village\\ndid I find a scrap of damage to any Greek Cypriot house.\\n\\n\\n DAILY TELEGRAPH (London)\\n \\n GRAVES OF 12 SHOT TURKISH CYPRIOTS FOUND IN CYPRUS VILLAGE\\n\\n Silent crowds gathered tonight outside the Red Crescent hospital in the\\n Turkish Sector of Nicosia, as the bodies of 9 Turkish Cypriots found\\n crudely buried outside the village of Ayios Vassilios, 13 miles away, were\\n brought to the hospital under the escort of the Parachute Regiment. Three \\n more bodies, including one of a woman, were discovered nearby but could\\n not be removed. Turkish Cypriots guarded by paratroops are still trying to \\n locate the bodies of 20 more believed to have been buried on the same site.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: Wayne.Orwig@AtlantaGA.NCR.COM (Wayne Orwig)\\nSubject: Re: Shaft-drives and Wheelies\\nLines: 21\\nNntp-Posting-Host: worwig.atlantaga.ncr.com\\nOrganization: NCR Corporation\\nX-Newsreader: FTPNuz (DOS) v1.0\\n\\nIn Article <1r16ja$dpa@news.ysu.edu> \"ak296@yfn.ysu.edu (John R. Daker)\" says:\\n> \\n> In a previous article, xlyx@vax5.cit.cornell.edu () says:\\n> \\n> Mike Terry asks:\\n> \\n> >Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n> >\\n> No Mike. It is imposible due to the shaft effect. The centripital effects\\n> of the rotating shaft counteract any tendency for the front wheel to lift\\n> off the ground.\\n> -- \\n> DoD #650<----------------------------------------------------------->DarkMan\\nWell my last two motorcycles have been shaft driven and they will wheelie.\\nThe rear gear does climb the ring gear and lift the rear which gives an\\nodd feel, but it still wheelies.\\n',\n", - " 'Subject: Re: Traffic morons\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 16\\n\\nIn article , ahatcher@athena.cs.uga.edu\\n(Allan Hatcher) wrote:\\n> \\n\\n> You can\\'t make a Citizens arrest on anything but a felony.\\n\\n\\tI\\'m not sure that\\'s true. Let me rephrase; \"You can file a complaint\\n which will bring the person into court.\" As I understand it, a\\n \"citizens arrest\" does not have to be the physical detention of\\n the person.\\n\\n Better now?\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", - " 'From: orourke@sophia.smith.edu (Joseph O\\'Rourke)\\nSubject: Re: Delaunay Triangulation\\nOrganization: Smith College, Northampton, MA, US\\nLines: 22\\n\\nIn article zyeh@caspian.usc.edu (zhenghao yeh) writes:\\n>\\n>Does anybody know what Delaunay Triangulation is?\\n>Is there any reference to it? \\n>Is it useful for creating 3-D objects? If yes, what\\'s the advantage?\\n\\nThere is a vast literature on Delaunay triangulations, literally\\nhundreds of papers. A program is even provided with every copy of \\nMathematica nowadays. You might look at this if you are interested in \\nusing it for creating 3D objects:\\n\\n@article{Boissonnat5,\\n author = \"J.D. Boissonnat\",\\n title = \"Geometric Structures for Three-Dimensional Shape Representation\",\\n journal = \"ACM Transactions on Graphics\",\\n month = \"October\",\\n year = {1984},\\n volume = {3},\\n number = {4},\\n pages = {266-286}\\n}\\n\\n',\n", - " \"From: johnsw@wsuvm1.csc.wsu.edu (William E. Johns)\\nSubject: Need a wheel\\nOriginator: bill@wsuaix.csc.wsu.edu\\nKeywords: '92\\nOrganization: Washington State University\\nDistribution: na\\nLines: 18\\n\\n\\nDoes anyone have a rear wheel for a PD they'd like to part with?\\n\\nDoes anyone know where I might find one salvage?\\n\\nAs long as I'm getting the GIVI luggage for Brunnhilde and have\\nthe room, I thought I'd carry a spare.\\n\\nRide Free,\\n\\nBill\\n___________________________________________________________________ \\njohnsw@wsuvm1.csc.wsu.edu prez=BIMC KotV KotRR \\nDoD #00314 AMA #580924 SPI = 7.18 WMTC #0002 KotD #0001 \\nYamabeemer fj100gs1200pdr650 Special and a Volvo. What more could anyone ask? \\n \\nPain is inevitable, suffering is optional.\\n \\n\",\n", - " \"From: Clarke@bdrc.bd.com (Richard Clarke)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Becton Dickinson Research Center R.T.P. NC USA\\nLines: 27\\nNntp-Posting-Host: polymr4.bdrc.bd.com\\n\\n>I eagerly await comment.\\n\\nThe ice princess next door makes a habit of flooring her cage out of the \\ndriveway when she sees me coming. Probably only hits 25mph, or so. (I made \\nthe mistake of waving to a neighbor. She has some sort of grudge, now.)\\n\\nI was riding downhill at ~60mph on a local backroad when a brown dobie came \\nflashing through the brush at well over 30mph, on an intercept course with \\nmy front wheel. The dog had started out at the top of the hill when it heard \\nme and still had a lead when it hit the road. The dog was approaching from \\nmy left, and was running full tilt to get to my bike on the other side of \\nthe road before I went by. Rover was looking back at me to calculate the \\nfinal trajectory. Too bad it didn't notice the car approaching at 50+mph \\nfrom the other direction.\\n\\nI got a closeup view of the our poor canine friend's noggin careening off \\nthe front bumper, smacking the asphalt, and getting runover by the front \\ntire. It managed a pretty good yelp, just before impact. (peripheral \\nimminent doom?) I guess the driver didn't see me or they probably would have \\nswerved into my lane. The squeegeed pup actually got up and headed back \\nhome, but I haven't seen it since. \\n\\nSniff. \\n\\nSometimes Fate sees you and smiles.\\n\\n-Rick\\n\",\n", - " \"From: bgardner@pebbles.es.com (Blaine Gardner)\\nSubject: Re: Ducati 400 opinions wanted\\nNntp-Posting-Host: 130.187.85.70\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 29\\n\\nIn article <1qmnga$s9q@news.ysu.edu> ak954@yfn.ysu.edu (Albion H. Bowers) writes:\\n>In a previous article, bgardner@pebbles.es.com (Blaine Gardner) says:\\n\\n>>I guess I'm out of touch, but what exactly is the Ducati 400? A v-twin\\n>>desmo, or is it that half-a-v-twin with the balance weight where the 2nd\\n>>cylinder would go? A 12 second 1/4 for a 400 isn't bad at all.\\n>\\n>Sorry, I should have been more specific. The 750 SS ran the quater in\\n>12.10 @ 108.17. The last small V-twin Duc we got in the US (and the 400 is\\n>a Pantah based V-twin) was the 500SL Pantah, and it ran a creditable 13.0 @\\n>103. Modern carbs and what not should put the 400 in the high 12s at 105.\\n>\\n>BTW, FZR 400s ran mid 12s, and the latest crop of Japanese 400s will out\\n>run that. It's hard to remember, but but a new GOOF2 will clobber an old\\n>KZ1000 handily, both in top end and roll-on. Technology stands still for\\n>no-one...\\n\\nNot too hard to remember, I bought a GS1000 new in '78. :-) It was\\n3rd place in the '78 speed wars (behind the CBX & XS Eleven) with a\\n11.8 @ 113 1/4 mile, and 75 horses. That wouldn't even make a good 600\\nthese days. Then again, I paid $2800 for it, so technology isn't the\\nonly thing that's changed. Of course I'd still rather ride the old GS\\nacross three states than any of the 600's.\\n\\nI guess it's an indication of how much things have changed that a 12\\nsecond 400 didn't seem too far out of line.\\n-- \\nBlaine Gardner @ Evans & Sutherland\\nbgardner@dsd.es.com\\n\",\n", - " \"From: bryanw@rahul.net (Bryan Woodworth)\\nSubject: Re: CView answers\\nOrganization: a2i network\\nLines: 13\\nNntp-Posting-Host: bolero\\n\\nIn <1993Apr17.113223.12092@imag.fr> schaefer@imag.imag.fr (Arno Schaefer) writes:\\n\\n>Sorry, Bryan, this is not quite correct. Remember the VGALIB package that comes\\n>with Linux/SLS? It will switch to VGA 320x200x256 mode *without* Xwindows.\\n>So at least it is *possible* to write a GIF viewer under Linux. However I don't\\n>think that there exists a similar SVGA package, and viewing GIFs in 320x200 is\\n>not very nice.\\n\\nNo, VGALIB? Amazing.. I guess it was lost in all those subdirs :-)\\nThanks for correcting me. It doesn't sound very appealing though, only\\n320x200? I'm glad it wasn't something major I missed.\\n\\nThanks,\\n\",\n", - " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: NASA Science Internet Project Office\\nLines: 12\\n\\nIn article , \\nEric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n|> Would someone please post the countersteering FAQ...\\n|> \\t\\t\\t\\teric\\n\\nLike, there\\'s a FAQ for this?\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Final Solution for Gaza ?\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 13\\n\\nIn article <2BDC2931.17498@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>Certainly, the Israeli had a legitimate worry behind the action they took,\\n>but isn\\'t that action a little draconian?\\n\\n\\tWhat alternative would you suggest be taken to safeguard the\\nlives of Israeli citizens?\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Serdar\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nYou are quite the loser\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", - " 'Subject: A word of advice\\nFrom: jcopelan@nyx.cs.du.edu (The One and Only)\\nOrganization: Nyx, Public Access Unix at U. of Denver Math/CS dept.\\nSummary: was Re: Yeah, Right\\nLines: 14\\n\\nIn article <65882@mimsy.umd.edu> mangoe@cs.umd.edu (Charley Wingate) writes:\\n>\\n>I\\'ve said enough times that there is no \"alternative\" that should think you\\n>might have caught on by now. And there is no \"alternative\", but the point\\n>is, \"rationality\" isn\\'t an alternative either. The problems of metaphysical\\n>and religious knowledge are unsolvable-- or I should say, humans cannot\\n>solve them.\\n\\nHow does that saying go: Those who say it can\\'t be done shouldn\\'t interrupt\\nthose who are doing it.\\n\\nJim\\n--\\nHave you washed your brain today?\\n',\n", - " 'From: kempmp@phoenix.oulu.fi (Petri Pihko)\\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: University of Oulu, Finland\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 215\\n\\nThis kind of argument cries for a comment...\\n\\njbrown@batman.bmd.trw.com wrote:\\n: In article <1993Apr3.095220.24632@leland.Stanford.EDU>, galahad@leland.Stanford.EDU (Scott Compton) writes:\\n\\nJim, you originally wrote:\\n \\n: >>...God did not create\\n: >>disease nor is He responsible for the maladies of newborns.\\n: > \\n: >>What God did create was life according to a protein code which is\\n: >>mutable and can evolve. Without delving into a deep discussion of\\n: >>creationism vs evolutionism, God created the original genetic code\\n: >>perfect and without flaw. \\n: > ~~~~~~~ ~~~~~~~ ~~~~\\n\\nDo you have any evidence for this? If the code was once perfect, and\\nhas degraded ever since, we _should_ have some evidence in favour\\nof this statement, shouldn\\'t we?\\n\\nPerhaps the biggest \"imperfection\" of the code is that it is full\\nof non-coding regions, introns, which are so called because they\\nintervene with the coding regions (exons). An impressive amount of\\nevidence suggests that introns are of very ancient origin; it is\\nlikely that early exons represented early protein domains.\\n\\nIs the number of introns decreasing or increasing? It appears that\\nintron loss can occur, and species with common ancestry usually\\nhave quite similar exon-intron structure in their genes. \\n\\nOn the other hand, the possibility that introns have been inserted\\nlater, presents several logical difficulties. Introns are removed\\nby a splicing mechanism - this would have to be present, but unused,\\nif introns are inserted. Moreover, intron insertion would have\\nrequired _precise_ targeting - random insertion would not be tolerated,\\nsince sequences for intron removal (self-splicing of mRNA) are\\nconserved. Besides, transposition of a sequence usually leaves a\\ntrace - long terminal repeats and target - site duplications, and\\nthese are not found in or near intron sequences. \\n\\nI seriously recommend reading textbooks on molecular biology and\\ngenetics before posting \"theological arguments\" like this. \\nTry Watson\\'s Molecular Biology of the Gene or Darnell, Lodish\\n& Baltimore\\'s Molecular Biology of the Cell for starters.\\n\\n: Remember, the question was posed in a theological context (Why does\\n: God cause disease in newborns?), and my answer is likewise from a\\n: theological perspective -- my own. It is no less valid than a purely\\n: scientific perspective, just different.\\n\\nScientific perspective is supported by the evidence, whereas \\ntheological perspectives often fail to fulfil this criterion.\\n \\n: I think you misread my meaning. I said God made the genetic code perfect,\\n: but that doesn\\'t mean it\\'s perfect now. It has certainly evolved since.\\n\\nFor the worse? Would you please cite a few references that support\\nyour assertion? Your assertion is less valid than the scientific\\nperspective, unless you support it by some evidence.\\n\\nIn fact, it has been claimed that parasites and diseases are perhaps\\nmore important than we\\'ve thought - for instance, sex might\\nhave evolved as defence against parasites. (This view is supported by\\ncomputer simulations of evolution, eg Tierra.) \\n \\n: Perhaps. I thought it was higher energy rays like X-rays, gamma\\n: rays, and cosmic rays that caused most of the damage.\\n\\nIn fact, it is thermal energy that does most of the damage, although\\nit is usually mild and easily fixed by enzymatic action. \\n\\n: Actually, neither of us \"knows\" what the atmosphere was like at the\\n: time when God created life. According to my recollection, most\\n: biologists do not claim that life began 4 billion years ago -- after\\n: all, that would only be a half billion years or so after the earth\\n: was created. It would still be too primitive to support life. I\\n: seem to remember a figure more like 2.5 to 3 billion years ago for\\n: the origination of life on earth. Anyone with a better estimate?\\n\\nI\\'d replace \"created\" with \"formed\", since there is no need to \\ninvoke any creator if the Earth can be formed without one.\\nMost recent estimates of the age of the Earth range between 4.6 - 4.8\\nbillion years, and earliest signs of life (not true fossils, but\\norganic, stromatolite-like layers) date back to 3.5 billion years.\\nThis would leave more than billion years for the first cells to\\nevolve.\\n\\nI\\'m sorry I can\\'t give any references, this is based on the course\\non evolutionary biochemistry I attended here. \\n\\n: >>dominion, it was no great feat for Satan to genetically engineer\\n: >>diseases, both bacterial/viral and genetic. Although the forces of\\n: >>natural selection tend to improve the survivability of species, the\\n: >>degeneration of the genetic code tends to more than offset this. \\n\\nAgain, do you _want_ this be true, or do you have any evidence for\\nthis supposed \"degeneration\"? \\n\\nI can understand Scott\\'s reaction:\\n\\n: > Excuse me, but this is so far-fetched that I know you must be\\n: > jesting. Do you know what pathogens are? Do you know what \\n: > Point Mutations are? Do you know that EVERYTHING CAN COME\\n: > ABOUT SPONTANEOUSLY?!!!!! \\n: \\n: In response to your last statement, no, and neither do you.\\n: You may very well believe that and accept it as fact, but you\\n: cannot *know* that.\\n\\nI hope you don\\'t forget this: We have _evidence_ that suggests \\neverything can come about spontaneously. Do you have evidence against\\nthis conclusion? In science, one does not have to _believe_ in \\nanything. It is a healthy sign to doubt and disbelieve. But the \\nright path to walk is to take a look at the evidence if you do so,\\nand not to present one\\'s own conclusions prior to this. \\n\\nTheology does not use this method. Therefore, I seriously doubt\\nit could ever come to right conclusions.\\n\\n: >>Human DNA, being more \"complex\", tends to accumulate errors adversely\\n: >>affecting our well-being and ability to fight off disease, while the \\n: >>simpler DNA of bacteria and viruses tend to become more efficient in \\n: >>causing infection and disease. It is a bad combination. Hence\\n: >>we have newborns that suffer from genetic, viral, and bacterial\\n: >>diseases/disorders.\\n\\nYou are supposing a purpose, not a valid move. Bacteria and viruses\\ndo not exist to cause disease. They are just another manifests of\\na general principle of evolution - only replication saves replicators\\nfrom degradiation. We are just an efficient method for our DNA to \\nsurvive and replicate. The less efficient methods didn\\'t make it \\nto the present. \\n\\nAnd for the last time. Please present some evidence for your claim that\\nhuman DNA is degrading through evolutionary processes. Some people have\\nclaimed that the opposite is true - we have suppressed our selection,\\nand thus are bound to degrade. I haven\\'t seen much evidence for either\\nclaim.\\n \\n: But then I ask, So? Where is this relevant to my discussion in\\n: answering John\\'s question of why? Why are there genetic diseases,\\n: and why are there so many bacterial and viral diseases which require\\n: babies to develop antibodies. Is it God\\'s fault? (the original\\n: question) -- I say no, it is not.\\n\\nOf course, nothing \"evil\" is god\\'s fault. But your explanation does\\nnot work, it fails miserably.\\n \\n: You may be right. But the fact is that you don\\'t know that\\n: Satan is not responsible, and neither do I.\\n: \\n: Suppose that a powerful, evil being like Satan exists. Would it\\n: be inconceivable that he might be responsible for many of the ills\\n: that affect mankind? I don\\'t think so.\\n\\nHe could have done a much better Job. (Pun intended.) The problem is,\\nit seems no Satan is necessary to explain any diseases, they are\\njust as inevitable as any product of evolution.\\n\\n: Did I say that? Where? Seems to me like another bad inference.\\n: Actually what you\\'ve done is to oversimplify what I said to the\\n: point that your summary of my words takes on a new context. I\\n: never said that people are \"meant\" (presumably by God) \"to be\\n: punished by getting diseases\". Why I did say is that free moral\\n: choices have attendent consequences. If mankind chooses to reject\\n: God, as people have done since the beginning, then they should not\\n: expect God to protect them from adverse events in an entropic\\n: universe.\\n\\nI am not expecting this. If god exists, I expect him to leave us alone.\\nI would also like to hear why do you believe your choices are indeed\\nfree. This is an interesting philosophical question, and the answer\\nis not as clear-cut as it seems to be.\\n\\nWhat consequences would you expect from rejecting Allah?\\n \\n: Oh, I admit it\\'s not perfect (yet). But I\\'m working on it. :)\\n\\nA good library or a bookstore is a good starting point.\\n\\n: What does this have to do with the price of tea in China, or the\\n: question to which I provided an answer? Biology and Genetics are\\n: fine subjects and important scientific endeavors. But they explain\\n: *how* God created and set up life processes. They don\\'t explain\\n: the why behind creation, life, or its subsequent evolution.\\n\\nWhy is there a \"why behind\"? And your proposition was something\\nthat is not supported by the evidence. This is why we recommend\\nthese books.\\n\\nIs there any need to invoke any why behind, a prime mover? Evidence\\nfor this? If the whole universe can come into existence without\\nany intervention, as recent cosmological theories (Hawking et al)\\nsuggest, why do people still insist on this?\\n \\n: Thanks Scotty, for your fine and sagely advice. But I am\\n: not highly motivated to learn all the nitty-gritty details\\n: of biology and genetics, although I\\'m sure I\\'d find it a\\n: fascinating subject. For I realize that the details do\\n: not change the Big Picture, that God created life in the\\n: beginning with the ability to change and adapt to its\\n: environment.\\n\\nI\\'m sorry, but they do. There is no evidence for your big picture,\\nand no need to create anything that is capable of adaptation.\\nIt can come into existence without a Supreme Being.\\n\\nTry reading P.W. Atkins\\' Creation Revisited (Freeman, 1992).\\n\\nPetri\\n--\\n ___. .\\'*\\'\\'.* Petri Pihko kem-pmp@ Mathematics is the Truth.\\n!___.\\'* \\'.\\'*\\' \\' . Pihatie 15 C finou.oulu.fi Physics is the Rule of\\n \\' *\\' .* \\'* SF-90650 OULU kempmp@ the Game.\\n *\\' * .* FINLAND phoenix.oulu.fi -> Chemistry is The Game.\\n',\n", - " 'From: gary@ke4zv.uucp (Gary Coffman)\\nSubject: Re: What if the USSR had reached the Moon first?\\nReply-To: gary@ke4zv.UUCP (Gary Coffman)\\nOrganization: Destructive Testing Systems\\nLines: 30\\n\\nIn article <93107.144339SAUNDRSG@QUCDN.QueensU.CA> Graydon writes:\\n>This is turning into \\'what\\'s a moonbase good for\\', and I ought\\n>not to post when I\\'ve a hundred some odd posts to go, but I would\\n>think that the real reason to have a moon base is economic.\\n>\\n>Since someone with space industry will presumeably have a much\\n>larger GNP than they would _without_ space industry, eventually,\\n>they will simply be able to afford more stuff.\\n\\nIf I read you right, you\\'re saying in essence that, with a larger\\neconomy, nations will have more discretionary funds to *waste*\\non a lunar facility. That was certainly partially the case with Apollo, \\nbut real Lunar colonies will probably require a continuing military,\\nscientific, or commercial reason for being rather than just a \"we have \\nthe money, why not?\" approach.\\n\\nIt\\'s conceivable that Luna will have a military purpose, it\\'s possible\\nthat Luna will have a commercial purpose, but it\\'s most likely that\\nLuna will only have a scientific purpose for the next several hundred\\nyears at least. Therefore, Lunar bases should be predicated on funding\\nlevels little different from those found for Antarctic bases. Can you\\nput a 200 person base on the Moon for $30 million a year? Even if you\\nuse grad students?\\n\\nGary\\n-- \\nGary Coffman KE4ZV | You make it, | gatech!wa4mei!ke4zv!gary\\nDestructive Testing Systems | we break it. | uunet!rsiatl!ke4zv!gary\\n534 Shannon Way | Guaranteed! | emory!kd4nc!ke4zv!gary \\nLawrenceville, GA 30244 | | \\n',\n", - " 'From: se92psh@brunel.ac.uk (Peter Hauke)\\nSubject: Re: Grayscale Printer\\nOrganization: Brunel University, Uxbridge, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nDistribution: na\\nLines: 13\\n\\nJian Lu (jian@coos.dartmouth.edu) wrote:\\n: We are interested in purchasing a grayscale printer that offers a good\\n: resoltuion for grayscale medical images. Can anybody give me some\\n: recommendations on these products in the market, in particular, those\\n: under $5000?\\n\\n: Thank for the advice.\\n-- \\n***********************************\\n* Peter Hauke @ Brunel University *\\n*---------------------------------*\\n* se92psh@brunel.ac.uk *\\n***********************************\\n',\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Moonbase race, NASA resources, why?\\nLines: 32\\nNntp-Posting-Host: acad3.alaska.edu\\nOrganization: University of Alaska Fairbanks\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu>, sysmgr@king.eng.umd.edu (Doug Mohney) writes:\\n> In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n> \\n>>Apollo was done the hard way, in a big hurry, from a very limited\\n>>technology base... and on government contracts. Just doing it privately,\\n>>rather than as a government project, cuts costs by a factor of several.\\n> \\n> So how much would it cost as a private venture, assuming you could talk the\\n> U.S. government into leasing you a couple of pads in Florida? \\n> \\n> \\n> \\n> Software engineering? That\\'s like military intelligence, isn\\'t it?\\n> -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\\n\\nWhy must it be a US Government Space Launch Pad? Directly I mean..\\nI know of a few that could launch a small package into space.\\nNot including Ariadne, and the Russian Sites.. I know \"Poker Flats\" here in\\nAlaska, thou used to be only sounding rockets for Auroral Borealous(sp and\\nother northern atmospheric items, is at last I heard being upgraded to be able\\nto put sattelites into orbit. \\n\\nWhy must people in the US be fixed on using NASAs direct resources (Poker Flats\\nis runin part by NASA, but also by the Univesity of Alaska, and the Geophysical\\nInstitute). Sounds like typical US cultural centralism and protectionism..\\nAnd people wonder why we have the multi-trillion dollar deficite(sp).\\nYes, I am working on a spell checker..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n\\n',\n", - " 'From: pgf@srl02.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 16\\n\\nJeff.Cook@FtCollinsCO.NCR.COM (Jeff Cook) writes:\\n...\\n>people in primitive tribes out in the middle of nowhere as they look up\\n>and see a can of Budweiser flying across the sky... :-D\\n\\nSeen that movie already. Or one just like it.\\nCome to think of it, they might send someone on\\na quest to get rid of the dang thing...\\n\\n>Jeff Cook Jeff.Cook@FtCollinsCO.NCR.com\\n\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 15/15 - Orbital and Planetary Launch Services\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 195\\nDistribution: world\\nExpires: 6 May 1993 20:02:47 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/launchers\\nLast-modified: $Date: 93/04/01 14:39:11 $\\n\\nORBITAL AND PLANETARY LAUNCH SERVICES\\n\\nThe following data comes from _International Reference Guide to Space Launch\\nSystems_ by Steven J. Isakowitz, 1991 edition.\\n\\nNotes:\\n * Unless otherwise specified, LEO and polar paylaods are for a 100 nm\\n\\torbit.\\n * Reliablity data includes launches through Dec, 1990. Reliabity for a\\n\\tfamiliy of vehicles includes launches by types no longer built when\\n\\tapplicable\\n * Prices are in millions of 1990 $US and are subject to change.\\n * Only operational vehicle families are included. Individual vehicles\\n\\twhich have not yet flown are marked by an asterisk (*) If a vehicle\\n\\thad first launch after publication of my data, it may still be\\n\\tmarked with an asterisk.\\n\\n\\nVehicle | Payload kg (lbs) | Reliability | Price | Launch Site\\n(nation) | LEO\\t Polar GTO |\\t\\t|\\t| (Lat. & Long.)\\n--------------------------------------------------------------------------------\\n\\nAriane\\t\\t\\t\\t\\t 35/40 87.5%\\t Kourou\\n(ESA)\\t\\t\\t\\t\\t\\t\\t\\t (5.2 N, 52.8 W)\\n AR40\\t\\t4,900\\t 3,900 1,900 1/1\\t\\t $65m\\n\\t (10,800) (8,580) (4,190)\\n AR42P\\t\\t6,100\\t 4,800 2,600 1/1\\t\\t $67m\\n\\t (13,400) (10,600) (5,730)\\n AR44P\\t\\t6,900\\t 5,500 3,000 0/0 ?\\t $70m\\n\\t (15,200) (12,100) (6,610)\\n AR42L\\t\\t7,400\\t 5,900 3,200 0/0 ?\\t $90m\\n\\t (16,300) (13,000) (7,050)\\n AR44LP\\t8,300\\t 6,600 3,700 6/6\\t\\t $95m\\n\\t (18,300) (14,500) (8,160)\\n AR44L\\t\\t9,600\\t 7,700 4,200 3/4\\t\\t $115m\\n\\t (21,100) (16,900) (9,260)\\n\\n* AR5\\t 18,000\\t ???\\t 6,800 0/0\\t\\t $105m\\n\\t (39,600)\\t\\t (15,000)\\n\\t [300nm]\\n\\n\\nAtlas\\t\\t\\t\\t\\t 213/245 86.9%\\t Cape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\t (28.5 N, 81.0W)\\n Atlas E\\t --\\t 820\\t -- 15/17\\t $45m\\t Vandeberg AFB\\n\\t\\t\\t (1,800)\\t\\t\\t\\t(34.7 N, 120.6W)\\n\\n Atlas I\\t5,580\\t 4,670 2,250 1/1\\t\\t $70m\\n\\t (12,300) (10,300) (4,950)\\n\\n Atlas II\\t6,395\\t 5,400 2,680 0/0\\t\\t $75m\\n\\t (14,100) (11,900) (5,900)\\n\\n Atlas IIA\\t6,760\\t 5,715 2,810 0/0\\t\\t $85m\\n\\t (14,900) (12,600) (6,200)\\n\\n* Atlas IIAS\\t8,390\\t 6,805 3,490 0/0\\t\\t $115m\\n\\t (18,500) (15,000) (7,700)\\n\\n\\nDelta\\t\\t\\t\\t\\t 189/201 94.0%\\t Cape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\t Vandenberg AFB\\n Delta 6925\\t3,900\\t 2,950 1,450 14/14\\t $45m\\n\\t (8,780)\\t (6,490) (3,190)\\n\\n Delta 7925\\t5,045\\t 3,830 1,820 1/1\\t\\t $50m\\n\\t (11,100) (8,420) (2,000)\\n\\n\\nEnergia\\t\\t\\t\\t\\t 2/2 100%\\t\\t Baikonur\\n(Russia)\\t\\t\\t\\t\\t\\t\\t (45.6 N 63.4 E)\\n Energia 88,000\\t 80,000 ??? 2/2\\t\\t $110m\\n\\t (194,000) (176,000)\\n\\n\\nH series\\t\\t\\t\\t 22/22 100%\\t\\t Tangeshima\\n(Japan)\\t\\t\\t\\t\\t\\t\\t\\t(30.2 N 130.6 E)\\n* H-2\\t 10,500\\t 6,600\\t 4,000 0/0\\t\\t $110m\\n\\t (23,000)\\t(14,500) (8,800)\\n\\n\\nKosmos\\t\\t\\t\\t\\t 371/377 98.4%\\t Plestek\\n(Russia)\\t\\t\\t\\t\\t\\t\\t (62.8 N 40.1 E)\\n Kosmos 1100 - 1350 (2300 - 3000)\\t\\t $???\\t Kapustin Yar\\n\\t [400 km orbit ??? inclination]\\t\\t\\t (48.4 N 45.8 E)\\n\\n\\nLong March\\t\\t\\t\\t 23/25 92.0%\\t\\t Jiquan SLC\\n(China)\\t\\t\\t\\t\\t\\t\\t\\t (41 N\\t100 E)\\n* CZ-1D\\t\\t 720\\t ???\\t 200 0/0\\t\\t $10m\\t Xichang SLC\\n\\t\\t(1,590)\\t\\t (440)\\t\\t\\t (28 N\\t102 E)\\n\\t\\t\\t\\t\\t\\t\\t\\t Taiyuan SLC\\n CZ-2C\\t\\t3,200\\t 1,750 1,000 12/12\\t $20m\\t (41 N\\t100 E)\\n\\t (7,040)\\t (3,860) (2,200)\\n\\n CZ-2E\\t\\t9,200\\t ???\\t 3,370 1/1\\t\\t $40m\\n\\t (20,300)\\t\\t (7,430)\\n\\n* CZ-2E/HO 13,600\\t ???\\t 4,500 0/0\\t\\t $???\\n\\t (29,900)\\t\\t (9,900)\\n\\n CZ-3\\t\\t???\\t ???\\t 1,400 6/7\\t\\t $33m\\n\\t\\t\\t\\t (3,100)\\n\\n* CZ-3A\\t\\t???\\t ???\\t 2,500 0/0\\t\\t $???m\\n\\t\\t\\t\\t (5,500)\\n\\n CZ-4\\t\\t4,000\\t ???\\t 1,100 2/2\\t\\t $???m\\n\\t (8,800)\\t\\t (2,430)\\n\\n\\nPegasus/Taurus\\t\\t\\t\\t 2/2 100%\\t\\tPeg: B-52/L1011\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tTaur: Canaveral\\n Pegasus\\t 455\\t 365\\t 125 2/2\\t\\t $10m\\t or Vandenberg\\n\\t\\t(1,000) (800) (275)\\n\\n* Taurus\\t1,450\\t 1,180 375 0/0\\t\\t $15m\\n\\t (3,200)\\t (2,600) (830)\\n\\n\\nProton\\t\\t\\t\\t\\t 164/187 87.7%\\t Baikonour\\n(Russia)\\n Proton 20,000\\t ???\\t 5,500 164/187\\t $35-70m\\n\\t (44,100)\\t\\t (12,200)\\n\\n\\nSCOUT\\t\\t\\t\\t\\t 99/113 87.6%\\tVandenberg AFB\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tWallops FF\\n SCOUT G-1\\t 270\\t 210\\t 54\\t 13/13\\t $12m\\t(37.9 N 75.4 W)\\n\\t\\t(600)\\t (460) (120)\\t\\t\\tSan Marco\\n\\t\\t\\t\\t\\t\\t\\t\\t(2.9 S\\t40.3 E)\\n* Enhanced SCOUT 525\\t 372\\t 110\\t 0/0\\t\\t $15m\\n\\t\\t(1,160) (820) (240)\\n\\n\\nShavit\\t\\t\\t\\t\\t 2/2 100%\\t\\tPalmachim AFB\\n(Israel)\\t\\t\\t\\t\\t\\t\\t( ~31 N)\\n Shavit\\t ???\\t 160\\t ???\\t 2/2\\t\\t $22m\\n\\t\\t\\t (350)\\n\\nSpace Shuttle\\t\\t\\t\\t 37/38 97.4%\\tKennedy Space\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tCenter\\n Shuttle/SRB 23,500\\t ???\\t 5,900 37/38\\t $248m (28.5 N 81.0 W)\\n\\t (51,800)\\t\\t (13,000)\\t\\t [FY88]\\n\\n* Shuttle/ASRM 27,100\\t ???\\t ???\\t 0/0\\n\\t (59,800)\\n\\n\\nSLV\\t\\t\\t\\t\\t 2/6 33.3%\\tSHAR Center\\n(India) (400km) (900km polar)\\t\\t\\t\\t(13.9 N 80.4 E)\\n ASLV\\t\\t150\\t ???\\t ??? 0/2\\t\\t $???m\\n\\t (330)\\n\\n* PSLV\\t\\t3,000\\t 1,000 450 0/0\\t\\t $???m\\n\\t (6,600)\\t (2,200) (990)\\n\\n* GSLV\\t\\t8,000\\t ???\\t 2,500 0/0\\t\\t $???m\\n\\t (17,600)\\t\\t (5,500)\\n\\n\\nTitan\\t\\t\\t\\t\\t 160/172 93.0%\\tCape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tVandenberg\\n Titan II\\t ???\\t 1,905 ??? 2/2\\t\\t $43m\\n\\t\\t\\t (4,200)\\n\\n Titan III 14,515\\t ???\\t 5,000 2/3\\t\\t $140m\\n\\t (32,000)\\t\\t (11,000)\\n\\n Titan IV/SRM 17,700\\t 14,100 6,350 3/3\\t\\t $154m-$227m\\n\\t (39,000)\\t(31,100) (14,000)\\n\\n Titan IV/SRMU 21,640\\t 18,600 8,620 0/0\\t\\t $???m\\n\\t (47,700)\\t(41,000) (19,000)\\n\\n\\nVostok\\t\\t\\t\\t\\t 1358/1401 96.9%\\tBaikonur\\n(Russia)\\t\\t [650km]\\t\\t\\t\\tPlesetsk\\n Vostok\\t4,730\\t 1,840 ??? ?/149\\t $14m\\n\\t (10,400)\\t(4,060)\\n\\n Soyuz\\t\\t7,000\\t ???\\t ??? ?/944\\t $15m\\n\\t (15,400)\\n\\n Molniya\\t1500kg (3300 lbs) in\\t ?/258\\t $???M\\n\\t\\tHighly eliptical orbit\\n\\n\\nZenit\\t\\t\\t\\t\\t 12/13 92.3%\\tBaikonur\\n(Russia)\\n Zenit 13,740\\t 11,380 4,300 12/13\\t $65m\\n\\t (30,300)\\t(25,090) (9,480)\\n',\n", - " \"From: jhwitten@cs.ruu.nl (Jurriaan Wittenberg)\\nSubject: Re: images of earth\\nOrganization: Utrecht University, Dept. of Computer Science\\nLines: 27\\n\\nIn <1993Apr18.230732.27804@kakwa.ucs.ualberta.ca> ken@cs.UAlberta.CA (Huisman Kenneth M) writes:\\n\\n>I am looking for some graphic images of earth shot from space. \\n>( Preferably 24-bit color, but 256 color .gif's will do ).\\n>\\n>Anyways, if anyone knows an FTP site where I can find these, I'd greatly\\n>appreciate it if you could pass the information on. Thanks.\\n>\\n>\\nTry FTP-ing at\\n pub-info.jpl.nasa.gov (128.149.6.2) (simple dir-structure)\\n\\nand ames.arc.nasa.gov\\nat /pub/SPACE/GIF and /pub/SPACE/JPEG\\nsorry only 8 bits gifs and jpegs :-( great piccy's though (try the *x.gif\\nfiles they're semi-huge gif89a files)\\n ^^-watch out gif89a dead ahead!!!\\nGood-luck (good software to be found out-there too)\\n\\nJurriaan\\n\\nJHWITTEN@CS.RUU.NL \\n-- \\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n|----=|=-<- - - - - - JHWITTEN@CS.RUU.NL- - - - - - - - - - - - ->-=|=----|\\n|----=|=-<-Jurriaan Wittenberg- - -Department of ComputerScience->-=|=----|\\n|____/|\\\\_________Utrecht_________________The Netherlands___________/|\\\\____|\\n\",\n", - " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: note to Bobby M.\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 14\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn <1993Apr10.191100.16094@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>Insults about the atheistic genocide was totally unintentional. Under\\n>atheism, anything can happen, good or bad, including genocide.\\n\\nAnd you know why this is? Because you\\'ve conveniently _defined_ a theist as\\nsomeone who can do no wrong, and you\\'ve _defined_ people who do wrong as\\natheists. The above statement is circular (not to mention bigoting), and,\\nas such, has no value.\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", - " 'Organization: Penn State University\\nFrom: \\nSubject: Re: Tools Tools Tools\\n <1993Apr1.162709.16643@osf.org> <1993Apr2.235809.3241@kronos.arc.nasa.gov>\\n <1993Apr5.165548.21479@research.nj.nec.com>\\nLines: 1\\n\\nWHAT IS THE FLANK DRIVE EVERYONES TALKING ABOUT?\\n',\n", - " \"From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: CorelDraw Bitmap to SCODAL\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM T.J. Watson Research\\nLines: 4\\n\\nMy CorelDRAW 3.0.whatever write SCODL files directly. Look under File|Export\\non the main menu. \\n\\nRick\\n\",\n", - " 'From: cb@wixer.bga.com (Cyberspace Buddha)\\nSubject: Re: CView answers\\nKeywords: Stupid Programming\\nOrganization: Real/Time Communications\\nLines: 15\\n\\nrenew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n>over where it places its temp files: it just places them in its\\n>\"current directory\".\\n\\nI have to beg to differ on this point, as the batch file I use\\nto launch cview cd\\'s to the dir where cview resides and then\\ninvokes it. every time I crash cview, the 0-byte temp file\\nis found in the root dir of the drive cview is on.\\n\\njust my $0.13,\\ncb\\n-- \\n Cyberspace Buddha { Why are you looking for more knowledge when you } /(o\\\\\\n cb@wixer.bga.com \\\\ do not pay attention to what you already know? / \\\\o)/\\n cb@wixer.cactus.org } \"get out of my chair!\" -- Hillary to god { peace...\\n',\n", - " \"From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: Jet Propulsion Laboratory\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Galileo, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr23.103038.27467@bnr.ca>, agc@bmdhh286.bnr.ca (Alan Carter) writes...\\n>In article <22APR199323003578@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes:\\n>|> 3. On April 19, a NO-OP command was sent to reset the command loss timer to\\n>|> 264 hours, its planned value during this mission phase.\\n> \\n>This activity is regularly reported in Ron's interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n> \\n\\nThe Command Loss Timer is part of the fault protection scheme of the\\nspacecraft. If the Command Loss Timer ever countdowns to zero, then the\\nspacecraft assumes it has lost communications with Earth and will go \\nthrough a set of predetermined steps to try to regain contact. The\\nCommand Loss Timer is set to 264 hours and reset about once a week during \\nthe cruise phase, and is set to a lower value during an encounter phase. \\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian-Nazi Collaboration During World War II.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 51\\n\\nIn article <2BC0D53B.20378@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>Is it possible to track down \"zuma\" and determine who/what/where \"seradr\" \\n>is? \\n\\nDone. But did it change the fact that during the period of 1914 to 1920, \\nthe Armenian Government ordered, incited, assisted and participated \\nin the genocide of 2.5 million Muslim people because of race, religion\\nand national origin? By the way, you still haven\\'t corrected yourself.\\nDuring World War II Armenians were carried away with the German might and\\ncringing and fawning over the Nazis. In that zeal, the Armenian publication\\nin Germany, Hairenik, carried statements as follows:[1]\\n\\n\"Sometimes it is difficult to eradicate these poisonous elements (the Jews)\\n when they have struck deep root like a chronic disease, and when it \\n becomes necessary for a people (the Nazis) to eradicate them in an uncommon\\n method, these attempts are regarded as revolutionary. During the surgical\\n operation, the flow of blood is a natural thing.\" \\n\\nNow for a brief view of the Armenian genocide of the Muslims and Jews -\\nextracts from a letter dated December 11, 1983, published in the San\\nFrancisco Chronicle, as an answer to a letter that had been published\\nin the same journal under the signature of one B. Amarian.\\n\\n \"...We have first hand information and evidence of Armenian atrocities\\n against our people (Jews)...Members of our family witnessed the \\n murder of 148 members of our family near Erzurum, Turkey, by Armenian \\n neighbors, bent on destroying anything and anybody remotely Jewish \\n and/or Muslim. Armenians should look to their own history and see \\n the havoc they and their ancestors perpetrated upon their neighbors...\\n Armenians were in league with Hitler in the last war, on his premise \\n to grant them self government if, in return, the Armenians would \\n help exterminate Jews...Armenians were also hearty proponents of\\n the anti-Semitic acts in league with the Russian Communists. Mr. Amarian!\\n I don\\'t need your bias.\" \\n\\n Signed Elihu Ben Levi, Vacaville, California.\\n\\n[1] James G. Mandalian, \\'Dro, Drastamat Kanayan,\\' in the \\'Armenian\\n Review,\\' a Quarterly by the Hairenik Association, Inc., Summer:\\n June 1957, Vol. X, No. 2-38.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: A moment of silence for the perpetrators of the Turkish Genocide?\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 115\\n\\nIn article <48299@sdcc12.ucsd.edu> ma170saj@sdcc14.ucsd.edu (System Operator) writes:\\n\\n> April 24th is approaching, and Armenians around the world\\n>are getting ready to remember the massacres of their family members\\n\\nCelebrating in joy the cold-blooded genocide of 2.5 million Muslim \\npeople by your criminal grandparents between 1914 and 1920? Did you \\nthink that you could cover up the genocide perpetrated by your fascist\\ngrandparents against my grandparents in 1914? You\\'ve never heard of \\n\\'April 23rd\\'? \\n\\n\\n \"In Soviet Armenia today there no longer exists a single Turkish soul.\\n It is in our power to tear away the veil of illusion that some of us\\n create for ourselves. It certainly is possible to severe the artificial\\n life-support system of an imagined \\'ethnic purity\\' that some of us\\n falsely trust as the only structure that can support their heart beats \\n in this alien land.\"\\n (Sahak Melkonian - 1920 - \"Preserving the Armenian purity\") \\n\\n\\nDuring the First World War and the ensuing years - 1914-1920, \\nthe Armenian Dictatorship through a premeditated and systematic \\ngenocide, tried to complete its centuries-old policy of \\nannihilation against the Turks and Kurds by savagely murdering \\n2.5 million Muslims and deporting the rest from their 1,000 year \\nhomeland.\\n\\nThe attempt at genocide is justly regarded as the first instance\\nof Genocide in the 20th Century acted upon an entire people.\\nThis event is incontrovertibly proven by historians, government\\nand international political leaders, such as U.S. Ambassador Mark \\nBristol, William Langer, Ambassador Layard, James Barton, Stanford \\nShaw, Arthur Chester, John Dewey, Robert Dunn, Papazian, Nalbandian, \\nOhanus Appressian, Jorge Blanco Villalta, General Nikolayef, General \\nBolkovitinof, General Prjevalski, General Odiselidze, Meguerditche, \\nKazimir, Motayef, Twerdokhlebof, General Hamelin, Rawlinson, Avetis\\nAharonian, Dr. Stephan Eshnanie, Varandian, General Bronsart, Arfa,\\nDr. Hamlin, Boghos Nubar, Sarkis Atamian, Katchaznouni, Rachel \\nBortnick, Halide Edip, McCarthy, W. B. Allen, Paul Muratoff and many \\nothers.\\n\\nJ. C. Hurewitz, Professor of Government Emeritus, Former Director of\\nthe Middle East Institute (1971-1984), Columbia University.\\n\\nBernard Lewis, Cleveland E. Dodge Professor of Near Eastern History,\\nPrinceton University.\\n\\nHalil Inalcik, University Professor of Ottoman History & Member of\\nthe American Academy of Arts & Sciences, University of Chicago.\\n\\nPeter Golden, Professor of History, Rutgers University, Newark.\\n\\nStanford Shaw, Professor of History, University of California at\\nLos Angeles.\\n\\nThomas Naff, Professor of History & Director, Middle East Research\\nInstitute, University of Pennsylvania.\\n\\nRonald Jennings, Associate Professor of History & Asian Studies,\\nUniversity of Illinois.\\n\\nHoward Reed, Professor of History, University of Connecticut.\\n\\nDankwart Rustow, Distinguished University Professor of Political\\nScience, City University Graduate School, New York.\\n\\nJohn Woods, Associate Professor of Middle Eastern History, \\nUniversity of Chicago.\\n\\nJohn Masson Smith, Jr., Professor of History, University of\\nCalifornia at Berkeley.\\n\\nAlan Fisher, Professor of History, Michigan State University.\\n\\nAvigdor Levy, Professor of History, Brandeis University.\\n\\nAndreas G. E. Bodrogligetti, Professor of History, University of California\\nat Los Angeles.\\n\\nKathleen Burrill, Associate Professor of Turkish Studies, Columbia University.\\n\\nRoderic Davison, Professor of History, George Washington University.\\n\\nWalter Denny, Professor of History, University of Massachusetts.\\n\\nCaesar Farah, Professor of History, University of Minnesota.\\n\\nTom Goodrich, Professor of History, Indiana University of Pennsylvania.\\n\\nTibor Halasi-Kun, Professor Emeritus of Turkish Studies, Columbia University.\\n\\nJustin McCarthy, Professor of History, University of Louisville.\\n\\nJon Mandaville, Professor of History, Portland State University (Oregon).\\n\\nRobert Olson, Professor of History, University of Kentucky.\\n\\nMadeline Zilfi, Professor of History, University of Maryland.\\n\\nJames Stewart-Robinson, Professor of Turkish Studies, University of Michigan.\\n\\n.......so the list goes on and on and on.....\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: john@goshawk.mcc.ac.uk (John Heaton)\\nSubject: POV reboots PC after memory upgrade\\nReply-To: john@nessie.mcc.ac.uk\\nOrganization: MCC Network Unit\\nLines: 13\\n\\nUp until last week, I have been running POVray v1.0 on my 486/33 under DOS5\\nwithout any major problems. Over Easter I increased the memory from 4Meg to\\n8Meg, and found that POVray reboots the system every time under DOS5. I had\\na go at running POVray in a DOS window when running Win3.1 on the same system\\nand it now works fine, even if a lot slower. I would like to go back to \\nusing POVray directly under DOS, anyone any ideas???\\n\\nJohn\\n-- \\n John Heaton - NRS Central Administrator\\n MCC Network Unit, The University, Oxford Road, Manchester, M13-9PL\\n Phone: (+44) 61 275 6011 - FAX: (+44) 61 275 6040\\n Packet: G1YYH @ G1YYH.GB7PWY.#16.GBR.EU\\n',\n", - " 'Subject: Re: Gospel Dating\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 64\\n\\nIn article bil@okcforum.osrhe.edu (Bill Conner) writes:\\n\\n>Keith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n>: \\n>: \\tWild and fanciful claims require greater evidence. If you state that \\n>: one of the books in your room is blue, I certainly do not need as much \\n>: evidence to believe than if you were to claim that there is a two headed \\n>: leapard in your bed. [ and I don\\'t mean a male lover in a leotard! ]\\n>\\n>Keith, \\n>\\n>If the issue is, \"What is Truth\" then the consequences of whatever\\n>proposition argued is irrelevent. If the issue is, \"What are the consequences\\n>if such and such -is- True\", then Truth is irrelevent. Which is it to\\n>be?\\n\\n\\tI disagree: every proposition needs a certain amount of evidence \\nand support, before one can believe it. There are a miriad of factors for \\neach individual. As we are all different, we quite obviously require \\ndifferent levels of evidence.\\n\\n\\tAs one pointed out, one\\'s history is important. While in FUSSR, one \\nmay not believe a comrade who states that he owns five pairs of blue jeans. \\nOne would need more evidence, than if one lived in the United States. The \\nonly time such a statement here would raise an eyebrow in the US, is if the \\nindividual always wear business suits, etc.\\n\\n\\tThe degree of the effect upon the world, and the strength of the \\nclaim also determine the amount of evidence necessary. When determining the \\nlevel of evidence one needs, it is most certainly relevent what the \\nconsequences of the proposition are.\\n\\n\\n\\n\\tIf the consequences of a proposition is irrelvent, please explain \\nwhy one would not accept: The electro-magnetic force of attraction between \\ntwo charged particles is inversely proportional to the cube of their \\ndistance apart. \\n\\n\\tRemember, if the consequences of the law are not relevent, then\\nwe can not use experimental evidence as a disproof. If one of the \\nconsequences of the law is an incongruency between the law and the state of \\naffairs, or an incongruency between this law and any other natural law, \\nthey are irrelevent when theorizing about the \"Truth\" of the law.\\n\\n\\tGiven that any consequences of a proposition is irrelvent, including \\nthe consequence of self-contradiction or contradiction with the state of \\naffiars, how are we ever able to judge what is true or not; let alone find\\n\"The Truth\"?\\n\\n\\n\\n\\tBy the way, what is \"Truth\"? Please define before inserting it in \\nthe conversation. Please explain what \"Truth\" or \"TRUTH\" is. I do think that \\nanything is ever known for certain. Even if there IS a \"Truth\", we could \\nnever possibly know if it were. I find the concept to be meaningless.\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", - " \"From: asper@calvin.uucp (Alan E. Asper)\\nSubject: Re: V-max handling request\\nOrganization: /usr/lib/news/organization\\nLines: 12\\nNNTP-Posting-Host: calvin.sbc.com\\n\\nIn article <1993Apr15.222224.1@ntuvax.ntu.ac.sg> ba7116326@ntuvax.ntu.ac.sg writes:\\n>hello there\\n>ican anyone who has handson experience on riding the Yamaha v-max, pls kindly\\n>comment on its handling .\\n\\nI've ridden one twice. It was designed to be a monster in a straight line,\\nwhich it is. It has nothing on an FZR400 in the corners. In fact, it just\\ndidn't handle that well at all in curves. But hey, that's not what it\\nwas designed to do.\\nMy two cents,\\nAlan\\n\\n\",\n", - " \"From: sichase@csa2.lbl.gov (SCOTT I CHASE)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Lawrence Berkeley Laboratory - Berkeley, CA, USA\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: 128.3.254.197\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article , pgf@srl02.cacs.usl.edu (Phil G. Fraering) writes...\\n>Jeff.Cook@FtCollinsCO.NCR.COM (Jeff Cook) writes:\\n>....\\n>>people in primitive tribes out in the middle of nowhere as they look up\\n>>and see a can of Budweiser flying across the sky... :-D\\n> \\n>Seen that movie already. Or one just like it.\\n>Come to think of it, they might send someone on\\n>a quest to get rid of the dang thing...\\n\\nActually, the idea, like most good ideas, comes from Jules Verne, not\\n_The Gods Must Be Crazy._ In one of his lesser known books (I can't\\nremember which one right now), the protagonists are in a balloon gondola,\\ntravelling over Africa on their way around the world in the balloon, when\\none of them drops a fob watch. They then speculate about the reaction\\nof the natives to finding such a thing, dropped straight down from heaven.\\nBut the notion is not pursued further than that.\\n\\n-Scott\\n-------------------- New .sig under construction\\nScott I. Chase Please be patient\\nSICHASE@CSA2.LBL.GOV Thank you \\n\",\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nDistribution: na\\nOrganization: University of Illinois at Urbana\\nLines: 33\\n\\nhiggins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey) writes:\\n\\n>(Josh Hopkins) writes:\\n>> I remeber reading the comment that General Dynamics was tied into this, in \\n>> connection with their proposal for an early manned landing. \\n\\n>The General Chairman is Paul Bialla, who is some official of General\\n>Dynamics.\\n\\n>The emphasis seems to be on a scaled-down, fast plan to put *people*\\n>on the Moon in an impoverished spaceflight-funding climate. You\\'d\\n>think it would be a golden opportunity to do lots of precusor work for\\n>modest money using an agressive series of robot spacecraft, but\\n>there\\'s not a hint of this in the brochure.\\n\\nIt may be that they just didn\\'t mention it, or that they actually haven\\'t \\nthought about it. I got the vague impression from their mission proposal\\nthat they weren\\'t taking a very holistic aproach to the whole thing. They\\nseemed to want to land people on the Moon by the end of the decade without \\nexplaining why, or what they would do once they got there. The only application\\nI remember from the Av Week article was placing a telescope on the Moon. That\\'s\\ngreat, but they don\\'t explain why it can\\'t be done robotically. \\n\\n>> Hrumph. They didn\\'t send _me_ anything :(\\n\\n>You\\'re not hanging out with the Right People, apparently.\\n\\nBut I\\'m a _member_. Besides Bill, I hang out with you :) \\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Freeman\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nWatch your language ASSHOLE!!!!\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", - " 'From: joe@rider.cactus.org (Joe Senner)\\nSubject: Re: Shaft-drives and Wheelies\\nReply-To: joe@rider.cactus.org\\nDistribution: rec\\nOrganization: NOT\\nLines: 9\\n\\nxlyx@vax5.cit.cornell.edu (From: xlyx@vax5.cit.cornell.edu) writes:\\n]Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\nyes.\\n\\n-- \\nJoe Senner joe@rider.cactus.org\\nAustin Area Ride Mailing List ride@rider.cactus.org\\nTexas SplatterFest Mailing List fest@rider.cactus.org\\n',\n", - " \"From: tdawson@engin.umich.edu (Chris Herringshaw)\\nSubject: WingCommanderII Graphics\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 8\\nDistribution: world\\nNNTP-Posting-Host: antithesis.engin.umich.edu\\n\\n I was wondering if anyone knows where I can get more information about\\nthe graphics in the WingCommander series, and the RealSpace system they use.\\nI think it's really awesome, and wouldn't mind being able to use similar\\nfeatures in programs. Thanks in advance.\\n\\n\\nDaemon\\n\\n\",\n", - " 'From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Zionism is Racism\\nOrganization: NYSERNet, Inc.\\nLines: 10\\n\\n\"D. C. Sessions\" writes:\\n\\n># So Steve: Lets here, what IS zionism?\\n\\n> Assuming that you mean \\'hear\\', you weren\\'t \\'listening\\': he just\\n> told you, \"Zionism is Racism.\" This is a tautological statement.\\n\\nI think you are confusing \"tautological\" with \"false and misleading.\"\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n',\n", - " 'From: adam@sw.stratus.com (Mark Adam)\\nSubject: Re: space food sticks\\nOrganization: Stratus Computer, Inc.\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: paix.sw.stratus.com\\nKeywords: food\\n\\nIn article <1pr5u2$t0b@agate.berkeley.edu>, ghelf@violet.berkeley.edu (;;;;RD48) writes:\\n> The taste is hard to describe, although I remember it fondly. It was\\n> most certainly more \"candy\" than say a modern \"Power Bar.\" Sort of\\n> a toffee injected with vitamins. The chocolate Power Bar is a rough\\n> approximation of the taste. Strawberry sucked.\\n> \\n\\nPeanut butter was definitely my favorite. I don\\'t think I ever took a second bite\\nof the strawberry.\\n\\nI recently joined Nutri-System and their \"Chewy Fudge Bar\" is very reminicent of\\nthe chocolate Space Food. This is the only thing I can find that even comes close\\nthe taste. It takes you back... your taste-buds are happy and your\\nintestines are in knots... joy!\\n\\n-- \\n\\nmark ----------------------------\\n(adam@paix.sw.stratus.com)\\t|\\tMy opinions are not those of Stratus.\\n\\t\\t\\t\\t|\\tHell! I don`t even agree with myself!\\n\\n\\t\"Logic is a wreath of pretty flowers that smell bad.\"\\n',\n", - " 'From: jrwaters@eos.ncsu.edu (JACK ROGERS WATERS)\\nSubject: Re: The quest for horndom\\nOrganization: North Carolina State University, Project Eos\\nLines: 30\\n\\nIn article <1993Apr5.171807.22861@research.nj.nec.com> behanna@phoenix.syl.nj.nec.com (Chris BeHanna) writes:\\n>In article <1993Apr4.010533.26294@ncsu.edu> jrwaters@eos.ncsu.edu (JACK ROGERS WATERS) writes:\\n>>No laughing, please. I have a few questions. First of all, do I\\n>>need a relay? Are there different kinds, and if so, what kind should\\n>>I get? Both horns are 12 Volt.\\n>\\n>\\tI did some back-of-the-eyelids calculations last night, and I figure\\n>these puppies suck up about 10 amps to work at maximum efficiency (i.e., the\\n>cager might need a shovel to clean out his seat). Assumptions: 125dBA at one\\n>meter. Neglecting solid angle considerations and end effects and other\\n>acoustic niceties from the shape of the horn itself, this is a power output\\n>of 125 Watts. 125Watts/12Volts is approx. 10 Amps.\\n>\\n>\\tYes, get a relay.\\n>\\n>\\tYes, tell me how you did it (I want to do it on the ZX).\\n>\\n>Later,\\n\\nI\\'ll post a summary after I get enough information. I\\'ll include\\ntips like \"how to know when the monkey is pulling your leg\". Shouldn\\'t\\nmonkey\\'s have to be bonded and insured before they work on bikes?\\n\\nJack Waters II\\nDoD#1919\\n\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n~ I don\\'t fear the thief in the night. Its the one that comes in the ~\\n~ afternoon, when I\\'m still asleep, that I worry about. ~\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n',\n", - " 'From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Boom! Whoosh......\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 24\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>In article <1r46ofINNdku@gap.caltech.edu> palmer@cco.caltech.edu (David M. Palmer) writes:\\n>>>orbiting billboard...\\n>>\\n>>I would just like to point out that it is much easier to place an\\n>>object at orbital altitude than it is to place it with orbital\\n>>velocity. For a target 300 km above the surface of Earth,\\n>>you need a delta-v of 2.5 km/s. \\n>Unfortunately, if you launch this from the US (or are a US citizen),\\n>you will need a launch permit from the Office of Commercial Space\\n>Transportation, and I think it may be difficult to get a permit for\\n>an antisatellite weapon... :-)\\n\\nWell Henry, we are often reminded how CANADA is not a part of the United States\\n(yet). You could have quite a commercial A-SAT, er sky-cleaning service going\\nin a few years. \\n\\n\"Toronto SkySweepers: Clear skies in 48 hours, or your money back.\"\\n\\t Discount rates available for astro-researchers. \\n\\n\\n\\n Software engineering? That\\'s like military intelligence, isn\\'t it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n',\n", - " \"From: dgempey@ucscb.UCSC.EDU (David Gordon Empey)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: University of California, Santa Cruz\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: ucscb.ucsc.edu\\n\\n\\nIn <1993Apr23.165459.3323@coe.montana.edu> uphrrmk@gemini.oscs.montana.edu (Jack Coyote) writes:\\n\\n>In sci.astro, dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n>[ a nearly perfect parody -- needed more random CAPS]\\n\\n\\n>Thanks for the chuckle. (I loved the bit about relevance to people starving\\n>in Somalia!)\\n\\n>To those who've taken this seriously, READ THE NAME! (aloud)\\n\\nWell, I thought it must have been a joke, but I don't get the \\njoke in the name. Read it aloud? David MACaloon. David MacALLoon.\\nDavid macalOON. I don't geddit.\\n\\n-Dave Empey (speaking for himself)\\n>-- \\n>Thank you, thank you, I'll be here all week. Enjoy the buffet! \\n\\n\\n\",\n", - " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Lawsuit against ADL\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 142\\n\\n[It looks like Yigal has been busy...]\\n\\nRTw 04/14 2155 JEWISH GROUP SUED FOR PASSING OFFICIAL INFORMATION\\n\\n By Adrian Croft\\n SAN FRANCISCO, April 14, Reuter - Nineteen people, including the son of\\nformer Israeli Defence Minister Moshe Arens, sued the Anti-Defamation League\\n(ADL) on Wednesday, accusing the Jewish group of disclosing confidential\\nofficial information about them.\\n Richard Hirschhaut, director of the San Francisco branch of the ADL, art\\ndealer Roy Bullock and former policeman Tom Gerard were also named as defendants\\nin the suit, filed in San Francisco County Superior Court.\\n The 19 accuse the ADL of B\\'nai B\\'rith, a group dedicated to fighting\\nanti-Semitism, and the other defendants of secretly gathering information on\\nthem, including data from state and federal agencies.\\n The suit alleges they disclosed the information to others, including the\\ngovernments of Israel and South Africa, in what it alleges was a \"a massive\\nspying operation.\"\\n The action is a class-action suit. It was filed on behalf of about 12,000\\nanti-apartheid activists or opponents of Israeli policies about whom the\\nplaintiffs believe the ADL, Bullock and Gerard gathered information.\\n Representatives of the ADL in San Francisco were not immediately available\\nfor comment on Wednesday.\\n The civil suit is the first legal action arising out of allegations that\\nGerard, a former inspector in the San Francisco police intelligence unit, passed\\nconfidential police files on California political activists to a spy ring.\\n The FBI and San Francisco police are investigating the ADL, Bullock and\\nGerard over the affair and last week searched the ADL\\'s offices in San Francisco\\nand Los Angeles.\\n The suit alleges invasion of privacy under the Civil Code of California,\\nwhich prohibits the publication of information obtained from official sources.\\nIt seeks exemplary damages of at least $2,500 per person as well as other\\nunspecified damages.\\n Lawyer Pete McCloskey, a former Congresmen who is representing the\\nplaintiffs, said the 19 plaintiffs included Arab-Americans and Jews -- and his\\nwife Helen, who also had information gathered about her.\\n One of the plaintiffs is Yigal Arens, a research scientist at the\\nUniversity of Southern California who is a son of the former Israeli Defence\\nMinister.\\n Arens told the San Francisco Examiner he had seen a file the ADL kept on\\nhim in the 1980s, presumably because of his criticism of the treatment of\\nPalestinians and his position on the Israeli-occupied territories.\\n According to court documents released last week, Bullock and Gerard both\\nkept information on thousands of California political activists.\\n In the documents, a police investigator said he believed the ADL paid\\nBullock for many years to provide information and that both the league and\\nBullock received confidential information from the authorities.\\n No criminal charges have yet been filed in the case. The ADL, Bullock and\\nGerard have all denied any wrongdoing.\\n REUTER AC KG CM\\n\\n\\n\\nAPn 04/14 2202 ADL Lawsuit\\n\\nCopyright, 1993. The Associated Press. All rights reserved.\\n\\nBy CATALINA ORTIZ\\n Associated Press Writer\\n SAN FRANCISCO (AP) -- Arab-Americans and critics of Israel sued the\\nAnti-Defamation League on Wednesday, saying it invaded their privacy by\\nillegally gathering information about them through a nationwide spy network.\\n The ADL, a national group dedicated to fighting anti-Semitism, intended to\\nuse the data to discredit them because of their political views, according to\\nthe class-action lawsuit filed in San Francisco Superior Court.\\n \"None of us has been guilty of racism or Nazism or anti-Semitism or hate\\ncrimes, or any of the other `isms\\' that the ADL claims to protect against. None\\nof us is violent or criminal in any way,\" said Carol El-Shaieb, an education\\nconsultant who develops programs on Arab culture.\\n The 19 plaintiffs include Yigal Arens, son of former Israel Defense Minister\\nMoshe Arens. The younger Arens, a research scientist at the University of\\nSouthern California, said the ADL kept a file on him in the 1980s presumably\\nbecause he has criticized Israel\\'s treatment of Palestinians.\\n \"The ADL believes that anyone who is an Arab American ... or speaks\\npolitically against Israel is at least a closet anti-Semite,\" Arens said.\\n The ADL has denied any wrongdoing, but couldn\\'t comment on the lawsuit\\nbecause it hasn\\'t reviewed it, said a spokesman at the ADL\\'s New York\\nheadquarters.\\n The FBI and local police and prosecutors are investigating allegations that\\nthe ADL spied on thousands of individuals and hundreds of groups, including\\nwhite supremacist and anti-Semitic organizations, Arab-Americans, Greenpeace,\\nthe National Association for the Advancement of Colored People and San Francisco\\npublic television station KQED.\\n Some information allegedly came from confidential police and government\\nrecords, according to court documents filed in the probe and the civil lawsuit.\\nNo charges have been filed in the criminal investigation.\\n The lawsuit accuses the ADL of violating California\\'s privacy law, which\\nforbids the intentional disclosure of personal information \"not otherwise\\npublic\" from state or federal records.\\n The lawsuit claims the ADL disclosed the information to \"persons and\\nentities\" who had no compelling need to receive it. It didn\\'t elaborate.\\n Defendants include Richard Hirschhaut, director of the ADL\\'s office in San\\nFrancisco. He did not immediately return a phone call seeking comment.\\n Other defendants are San Francisco art dealer Roy Bullock, an alleged ADL\\ninformant over the past four decades, and former police officer Tom Gerard.\\nGerard allegedly tapped into law enforcement and government computers and passed\\ninformation on to Bullock.\\n Gerard, who has retired from the police force, has moved to the Philippines.\\nBullock\\'s lawyer, Richard Breakstone, said he could not comment on the lawsuit\\nbecause he had not yet studied it.\\n\\n\\n\\n\\n\\nUPwe 04/14 1956 ADL sued for allegedly spying on U.S. residents\\n\\n SAN FRANCISCO (UPI) -- A group of California residents filed suit Wednesday\\ncharging the Anti-Defamation League of B\\'nai Brith with violating their privacy\\nby spying on them for the Israeli and South African governments.\\n The class-action suit, filed in San Francisco Superior Court, charges the ADL\\nand its leadership conspired with a local police official to obtain information\\non outspoken opponents of Israeli policies towards the Occupied Territories and\\nSouth Africa\\'s apartheid policy.\\n The ADL refused to comment on the suit.\\n The suit also took aim at two top local ADL officials and retired San\\nFrancicso police officer Tom Gerard, claiming they violated privacy guarantees\\nin the state constitution and violated state confidentiality laws.\\n According to the suit, Gerard helped the ADL obtain access to confidential\\nfiles in law enforcement and government computers. Information from these files\\nwere passed to the foreign governments, the suit charges.\\n \"The whole concept of an organized collection of information based on\\npolitical viewpoints and using government agencies as a source of information is\\nabsolutely repugnant,\" said former Rep. Pete McCloskey, who is representing the\\nplaintiffs.\\n The ADL\\'s information-gathering network was revealed publicly last week when\\nthe San Francisco District Attorney\\'s Office released documents indicating the\\ngroup had spied on 12,000 people and 500 political and ethnic groups for more\\nthan 30 years.\\n \"My understanding is that they (the ADL) consider all activity that is in\\nsome sense opposed to Israel or Israeli action to be part of their responsbility\\nto investigate,\" said Arens, a research scientist at the University of Southern\\nCalifornia.\\n \"The ADL believes that anyone who is Arab American...or speaks politically\\nagainst Israel is at least a closet anti-Semite.\"\\n The FBI and the District Attorney\\'s Office have been investigating the\\noperation for four months.\\n The 19 plaintiffs in the case include Arens, the son of former Israeli\\nDefense Minister Moshe Arens.\\n In a press release, the plaintiffs said the alleged spying had damaged them\\npsychologically and economically and accused the ADL of trying to interfere with\\ntheir freedom of speech.\\n',\n", - " 'From: bds@uts.ipp-garching.mpg.de (Bruce d. Scott)\\nSubject: Re: News briefs from KH # 1026\\nOrganization: Rechenzentrum der Max-Planck-Gesellschaft in Garching\\nLines: 21\\nDistribution: world\\nNNTP-Posting-Host: uts.ipp-garching.mpg.de\\n\\nMack posted:\\n\\n\"I know nothing about statistics, but what significance does the\\nrelatively small population growth rate have where the sampling period\\nis so small (at the end of 1371)?\"\\n\\nThis is not small. A 2.7 per cent annual population growth rate implies\\na doubling in 69/2.7 \\\\approx 25 years. Can you imagine that? Most people\\nseem not able to, and that is why so many deny that this problem exists,\\nfor me most especially in the industrialised countries (low growth rates,\\nbut large environmental impact). Iran\\'s high growth rate threatens things\\nlike accelerated desertification due to intensive agriculture, deforestation,\\nand water table drop. Similar to what is going on in California (this year\\'s\\nrain won\\'t save you in Stanford!). This is probably more to blame than \\nthe current government\\'s incompetence for dropping living standards\\nin Iran.\\n-- \\nGruss,\\nDr Bruce Scott The deadliest bullshit is\\nMax-Planck-Institut fuer Plasmaphysik odorless and transparent\\nbds at spl6n1.aug.ipp-garching.mpg.de -- W Gibson\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: DC-X: Vehicle Nears Flight Test\\nArticle-I.D.: news.C51rzx.AC3\\nOrganization: University of Illinois at Urbana\\nLines: 34\\n\\nnsmca@aurora.alaska.edu writes:\\n\\n[Excellent discussion of DC-X landing techniques by Henry deleted]\\n\\n>Since the DC-X is to take off horizontal, why not land that way??\\n\\nThe DC-X will not take of horizontally. It takes of vertically. \\n\\n>Why do the Martian Landing thing.. \\n\\nFor several reasons. Vertical landings don\\'t require miles of runway and limit\\nnoise pollution. They don\\'t require wheels or wings. Just turn on the engines\\nand touch down. Of course, as Henry pointed out, vetical landings aren\\'t quite\\nthat simple.\\n\\n>Or am I missing something.. Don\\'t know to\\n>much about DC-X and such.. (overly obvious?).\\n\\nWell, to be blunt, yes. But at least you\\'re learning.\\n\\n>Why not just fall to earth like the russian crafts?? Parachute in then...\\n\\nThe Soyuz vehicles use parachutes for the descent and then fire small rockets\\njust before they hit the ground. Parachutes are, however, not especially\\npractical if you want to reuse something without much effort. The landings\\nare also not very comfortable. However, in the words of Georgy Grechko,\\n\"I prefer to have bruises, not to sink.\"\\n\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n \"Tout ce qu\\'un homme est capable d\\'imaginer, d\\'autres hommes\\n \\t seront capable de la realiser\"\\n\\t\\t\\t -Jules Verne\\n',\n", - " 'From: landis@stsci.edu (Robert Landis,S202,,)\\nSubject: Re: Space Debris\\nReply-To: landis@stsci.edu\\nOrganization: Space Telescope Science Institute, Baltimore MD\\nLines: 14\\n\\nAnother fish to check out is Richard Rast -- he works\\nfor Lockheed Missiles, but is on-site at NASA Johnson.\\n\\nNick Johnson at Kaman Sciences in Colo. Spgs and his\\nfriend, Darren McKnight at Kaman in Alexandria, VA.\\n\\nGood luck.\\n\\nR. Landis\\n\\n\"Behind every general is his wife.... and...\\n behind every Hillary is a Bill . .\"\\n\\n\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Legality of the Jewish Purchase\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 104\\n\\nIn article <1993Apr16.225910.16670@bnr.ca> zbib@bnr.ca writes:\\n>Adam Shostack writes: \\n>> Sam Zbib writes\\n> >>I\\'m surprised that you don\\'t consider the acquisition of land by\\n> >>the Jews from arabs, for the purpose of establishing an exclusive\\n> >>state, as a hostile action leading to war.\\n\\n>>\\tIt was for the purpose of establishing a state, not an\\n>> exclusive state. If the state was to be exclusive, it would not have\\n>> 400 000 arab citizens.\\n\\n>Could you please tell me what was the ethnic composition of \\n>Israel right after it was formed. \\n\\n\\t100% Israeli citizens. The ethnic composition depends on what\\nyou mean by formed. What the UN deeded to Israel? What it won in war?\\n\\n>> \\tAnd no, I do not consider the purchase of land a hostile\\n>> action. When someone wants to buy land, and someone else is willing\\n>> to sell it, at a mutually agreeable price, then that is commerce. It\\n>> is not a hostile action leading to war.\\n\\n>No one in his right mind would sell his freedom and dignity.\\n>Palestinians are no exception. Perhaps you heard about\\n>anti-trust in the business world.\\n\\n\\tWere there anti-trust laws in place in mandatory Palestine?\\nSince the answer is no, you\\'re argument, while interestingly\\nconstructed, is irrelevant. I will however, respond to a few points\\nyou assert in the course of talking about anti-trust laws.\\n\\n\\n>They were establishing a bridgehead for the European Jews.\\n\\n\\tAnd those fleeing Arab lands, where Jews were second class\\ncitizens. \\n\\n>Plus they paid fair market value, etc...\\n\\n\\tJews often paid far more than fair market value for the land\\nthey bought.\\n\\n>They did not know they were victims of an international conspiracy.\\n\\n\\tYou know, Sam, when people start talking about an\\nInternational Jewish conspiracy, its really begins to sound like\\nanti-Semitic bull.\\n\\n\\tThe reason there is no conspiracy here is quite simple.\\nZionists made no bones about what was going on. There were\\nconferences, publications, etc, all talking about creating a National\\nhome for the Jews.\\n\\n>>>Israel gave citizenship to the remaining arabs because it\\n>>>had to maintain a democratic facade (to keep the western aid\\n>>>flowing).\\n\\n>>\\tIsrael got no western aid in 1948, nor in 1949 or 50...It\\n>>still granted citizenship to those arabs who remained. And how\\n>>is granting citizenship a facade?\\n\\n>Don\\'t get me wrong. I beleive that Israel is democratic\\n>within the constraints of one dominant ethnic group (Jews).\\n[...]\\n>\\'bad\\' arabs. Personaly, I\\'ve never heard anything about the\\n>arab community in Isreal. Except that they\\'re there. So\\n>yes, they\\'re there. But as a community with history and\\n>roots, its dead.\\n\\n\\tBecause you\\'ve never heard of it, its dead? The fact is, you\\nclaimed Israel had to give arabs rights because of (non-existant)\\nInternational aid. Then you see that that argument has a hole you\\ncould drive a truck through, and again assert that Israel is only\\ndemocratic within the (unexplained) constraints of one ethnic group.\\nThe problem with that argument is that Arabs are allowed to vote for\\nwhoever they please. So, please tell me, Sam, what constraints are\\nthere on Israeli democracy that don\\'t exist in other democratic\\nstates?\\n\\n\\tI\\'ve never heard anything about the Khazakistani arab\\npopulation. Does that mean that they have no history or roots? When\\nI was at Ben Gurion university in Israel, one of my neighbors was an\\nIsraeli arab. He wasn\\'t really all that different from my other\\nneighbors. Does that make him dead or oppressed?\\n\\n\\n>I stand corrected. I meant that the jewish culture was not\\n>predominant in Palestine in recent history. I have no\\n>problem with Jerusalem having a jewish character if it were\\n>predominantly Jewish. So there. what to make of the rest\\n>Palestine?\\n\\n\\tHow recent is recent? I can probably build a case for a\\nJewish Gaza city. It would be pretty silly, but I could do it. I\\'m\\narguing not that Jerusalem is Jewish, but that land has no ethnicity.\\n\\nAdam\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: hm@cs.brown.edu (Harry Mamaysky)\\nSubject: Re: Final Solution for Gaza ?\\nIn-Reply-To: Center for Policy Research\\'s message of 23 Apr 93 15:10 PDT\\nOrganization: Dept. of Computer Science, Brown University\\nLines: 30\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n\\n Final Solution for the Gaza ghetto ?\\n ------------------------------------\\n\\n While Israeli Jews fete the uprising of the Warsaw ghetto, they\\n repress by violent means the uprising of the Gaza ghetto and\\n attempt to starve the Gazans.\\n\\n [...]\\n\\nElias should the families of the children who were stabbed in their\\nhigh school by a Palestinian \"freedom fighter\" be the ones who offer\\ntheir help to the Gazans. Perhaps it should be the families of the 18\\nIsraelis who were murdered last month by Palestinian \"freedom\\nfighters\".\\n\\nThe Jews in the Warsaw ghetto were fighting to keep themselves and\\ntheir families from being sent to Nazi gas chambers. Groups like Hamas\\nand the Islamic Jihad fight with the expressed purpose of driving all\\nJews into the sea. Perhaps, we should persuade Jewish people to help\\nthese wnderful \"freedom fighters\" attain this ultimate goal.\\n\\nMaybe the \"freedom fighters\" will choose to spare the co-operative Jews.\\nIs that what you are counting on, Elias - the pity of murderers.\\n\\nYou say your mother was Jewish. How ashamed she must be of her son. I\\nam sorry, Mrs. Davidsson.\\n\\nHarry.\\n',\n", - " 'From: DKELO@msmail.pepperdine.edu (Dan Kelo)\\nSubject: M-81 Supernova\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 7\\n\\n\\nHow \\'bout some more info on that alleged supernova in M-81?\\nI might just break out the scope for this one.\\n____________________________________________________\\n\"No sir, I don\\'t like it! \"-- Mr. Horse\\nDan Kelo dkelo@pepvax.pepperdine.edu\\n____________________________________________________\\n',\n", - " 'From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: Question: Arai Quantum-S\\nOrganization: AT&T\\nDistribution: na\\nLines: 30\\n\\nIn article amir@ms.uky.edu (Amir Sadr) writes:\\n>they way I want it to. However, I have the following problem: My chin hangs\\n>out from the bottom of the helmet. I am curious to know whether I would still\\n>have this problem if I were to switch to the extra large size? In particular,\\n>can anyone tell me \"for certain\", if the outer shell of the \"Arai Quantum-S\" in\\n>size X-large is any different (larger-rounder-etc.) than the same helmet in size\\n>large? Or if the inner padding/foam on the X-large is such that one\\'s head\\n>fits a little deeper in the helmet, and thus one\\'s chin would not stick out?\\n>This is true for the very old Arthur-Fulmer helmets that I have. Namely, my\\n>chin hangs out a little from the bottom of the Large helmet, and not at all\\n>from the X-large (but the X-large is not as snug as the large). The dealer\\n>is willing to replace the helmet at no additional cost (i.e. shipping), but\\n>I want to make sure that 1) the X-large is in fact a little bigger or linered\\n>such that my chin will not hang out and 2) how much looser will my head fit in\\n>the X-large? If anyone has recent experience with this helmet, please let me\\n>hear (E-mail) from you ASAP. Thank you so much. Amir-\\n\\nI\\'m not sure about the helmet but for chin questions you might\\nwant to write to a:\\n\\n Jay Leno\\n c/o Tonight Show \\n Burbank Calif.\\n \\nGood luck.\\n \\n================================================================================\\n Steatopygias\\'s \\'R\\' Us. doh#0000000005 That ain\\'t no Hottentot.\\n Sesquipedalian\\'s \\'R\\' Us. ZX-10. AMA#669373 DoD#564. There ain\\'t no more.\\n================================================================================\\n',\n", - " 'From: sprattli@azores.crd.ge.com (Rod Sprattling)\\nSubject: Re: Kawi Zephyr? (was Re: Vision vs GpZ 550)\\nArticle-I.D.: crdnns.C52M30.5yI\\nReply-To: sprattli@azores.crd.ge.com (Rod Sprattling)\\nOrganization: GE Corp R&D Center, Schenectady NY\\nLines: 31\\nNntp-Posting-Host: azores.crd.ge.com\\n\\nIn article <1993Apr4.135829.28141@pro-haven.cts.com>,\\nshadow@pro-haven.cts.com writes:\\n|>In <1993Apr3.094509.11448@organpipe.uug.arizona.edu>\\n|>asphaug@lpl.arizona.edu (Erik Asphaug x2773) writes:\\n|>\\n|>% By the way, the short-lived Zephyr is essentially a GpZ 550,\\n|>\\n|>Why was the \"Zephyr\" discontinued? I heard something about a problem with\\n|>the name, but I never did hear anything certain... \\n\\nFord had an anemic mid-sized car by that name back in the last decade.\\nI rented one once. That car would ruin the name \"Zephyr\" for any other\\nuse.\\n\\nRod\\n--- \\nRoderick Sprattling\\t\\t| No job too great, no time too small\\nsprattli@azores.crd.ge.com\\t| With feet to fire and back to wall.\\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n\\n \\n',\n", - " 'From: bill@xpresso.UUCP (Bill Vance)\\nSubject: TRUE \"GLOBE\", Who makes it?\\nOrganization: (N.) To be organized. But that\\'s not important right now.....\\nLines: 11\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nIt has been known for quite a while that the earth is actually more pear\\nshaped than globular/spherical. Does anyone make a \"globe\" that is accurate\\nas to actual shape, landmass configuration/Long/Lat lines etc.?\\nThanks in advance.\\n\\n--\\n\\nbill@xpresso.UUCP (Bill Vance), Bothell, WA\\nrwing!xpresso!bill\\n\\nYou listen when I xpresso, I listen When uuxpresso.......:-)\\n',\n", - " 'From: ghasting@vdoe386.vak12ed.edu (George Hastings)\\nSubject: Re: Space on other nets\\nOrganization: Virginia\\'s Public Education Network (Richmond)\\nLines: 17\\n\\n We run \"SpaceNews & Views\" on our STAREACH BBS, a local\\noperation running WWIV software with the capability to link to\\nover 1500 other BBS\\'s in the U.S.A. and Canada through WWIVNet.\\n Having just started this a couple of months ago, our sub us\\ncurrently subscribed by only about ten other boards, but more\\nare being added.\\n We get our news articles re on Internet, via ftp from NASA\\nsites, and from a variety of aerospace related periodicals. We\\nget a fair amount of questions on space topics from students\\nwho access the system.\\n ____________________________________________________________\\n| George Hastings\\t\\tghasting@vdoe386.vak12ed.edu | \\n| Space Science Teacher\\t\\t72407.22@compuserve.com | If it\\'s not\\n| Mathematics & Science Center \\tSTAREACH BBS: 804-343-6533 | FUN, it\\'s\\n| 2304 Hartman Street\\t\\tOFFICE: 804-343-6525 | probably not\\n| Richmond, VA 23223\\t\\tFAX: 804-343-6529 | SCIENCE!\\n ------------------------------------------------------------\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Lezgians Astir in Azerbaijan and Daghestan\\nSummary: asking not to fight against Armenians in Karabakh & for unification\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 106\\n\\n\\n04/19/1993 0000 Lezghis Astir\\n\\nBy NEJLA SAMMAKIA\\n Associated Press Writer\\n \\nGUSSAR, Azerbaijan (AP) -- The 600,000 Lezghis of Azerbaijan and Russia have\\nbegun clamoring for their own state, threatening turmoil in a tranquil corner \\nof the Caucasus.\\n\\nThe region has escaped the ethnic warfare of neighboring Nagorno-Karabakh,\\nAbkhazia and Ossetia, but Lezhgis could become the next minority in the former\\nSoviet Union to fight for independence.\\n\\nLezghis, who are Muslim descendents of nomadic shepherds, are angry about the\\nconscription of their young men to fight in Azerbaijan\\'s 5-year-old undeclared\\nwar with Armenia.\\n\\nThey also want to unite the Lezghi regions of Azerbaijan and Russia, which\\nwere effectively one until the breakup of the Soviet Union created national\\nborders that had been only lines on a map.\\n\\nA rally of more than 3,000 Lezghis in March to protest conscription and\\ndemand a separate \"Lezghistan\" alarmed the Azerbaijani government.\\n\\nOfficials in Baku, the capital, deny rumors that police shot six\\ndemonstrators to death. But the government announced strict security measures\\nand began cooperating with Russian authorities to control the movement of\\nLezhgis living across the border in the Dagestan region of Russia.\\n\\nVisitors to Gussar, the center of Lezhgi life, found the town quiet soon\\nafter the protest. Children played outdoors in the crisp mountain air.\\n\\nAt the Sunday bazaar, men in heavy coats and dark fur hats gathered to\\ndiscuss grievances ranging from high customs duties at the Russian border to a\\nwar they say is not theirs.\\n\\n\"I have been drafted, but I won\\'t go,\" said Shamil Kadimov, gold teeth\\nglinting in the sun. \"Why must I fight a war for the Azerbaijanis? I have\\nnothing to do with Armenia.\"\\n\\nMore than 3,000 people have died in the war, which centers on the disputed\\nterritory of Nagorno-Karabakh, about 150 miles to the southeast.\\n\\nMalik Kerimov, an official in the mayor\\'s office, said only 11 of 300 locals\\ndrafted in 1992 had served.\\n\\n\"The police don\\'t force people to go,\" he said. \"They are afraid of an\\nuprising that could be backed by Lezghis in Dagestan.\"\\n\\nAll the men agreed that police had not fired at the demonstrators, but\\ndisagreed on how the protest came about.\\n\\nSome said it occurred spontaneously when rumors spread that Azerbaijan was\\nabout to draft 1,500 men from the Gussar region, where 75,000 Lezghis live.\\n\\nOthers said the rally was ordered by Gen. Muhieddin Kahramanov, leader of the\\nLezhgi underground separatist movement, Sadval, based in Dagestan.\\n\\n\"We organized the demonstration when families came to us distraught about\\ndraft orders,\" said Kerim Babayev, a mathematics teacher who belongs to Sadval.\\n\\n\"We hope to reunite peacefully, by approaching everyone -- the Azerbaijanis, \\nthe Russians.\"\\n\\nIn the early 18th century, the Lezhgis formed two khanates, or sovereignties,\\nin what are now Azerbaijan and Dagestan. They roamed freely with their sheep\\nover the green hills and mountains between the two khanates.\\n\\nBy 1812, the Lezghi areas were joined to czarist Russia. After 1917, they\\ncame under Soviet rule. With the disintegration of the Soviet Union, the \\n600,000 Lezghis were faced for the first time with strict borders.\\n\\nAbout half remained in Dagestan and half in newly independent Azerbaijan.\\n\\n\"We have to pay customs on all this, on cars, on wine,\" complained Mais\\nTalibov, a small trader. His goods, laid out on the ground at the bazaar,\\nincluded brandy, stomach medication and plastic shoes from Dagestan.\\n\\n\"We want our own country,\" he said. \"We want to be able to move about easily.\\nBut Baku won\\'t listen to us.\"\\n\\nPhysically, it is hard for outsiders to distinguish Lezhgis from other\\nAzerbaijanis. In many villages, they live side by side, working at the same \\njobs and intermarrying to some degree.\\n\\nBut the Lezhgis have a distinctive language, a mixture of Arabic, Turkish and\\nPersian with strong guttural vowels.\\n\\nAzerbaijan officially supports the cultural preservation of its 10 largest\\nethnic minorities. The Lezghis have weekly newspapers and some elementary \\nschool classes in their language.\\n\\nAutonomy is a different question. If the Lezghis succeeded in separating from\\nAzerbaijan, they would set a precedent for other minorities, such as the \\nTalish in the south, the Tats in the nearby mountains and the Avars of eastern\\nAzerbaijan.\\n\\n\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: shz@mare.att.com (Keeper of the 'Tude)\\nSubject: Re: Riceburner Respect\\nOrganization: Office of 'Tude Licensing\\nNntp-Posting-Host: binky\\nLines: 14\\n\\nIn article <1993Apr14.190210.8996@megatek.com>, randy@megatek.com (Randy Davis) writes:\\n> |The rider (pilot?)\\n> \\n> I'm happy I've had such an effect on your choice of words, Seth.. :-)\\n\\n:-)\\n\\nT'was a time when I could get a respectable response with a posting like that.\\nRandy's post doesn't count 'cause he saw the dearth of responses and didn't \\nwant me to feel ignored (thanks Randy!).\\n\\nI was curious about this DoD thing. How do I get a number? (:-{)}\\n\\n- Roid\\n\",\n", - " \"From: jar2e@faraday.clas.Virginia.EDU (Virginia's Gentleman)\\nSubject: Re: was:Go Hezbollah!!\\nOrganization: University of Virginia\\nLines: 4\\n\\nWe really should try to be as understanding as we can for Brad, because it\\nappears killing is all he knows.\\n\\nJesse\\n\",\n", - " \"From: tmc@spartan.ac.BrockU.CA (Tim Ciceran)\\nSubject: Re: Hijaak\\nOrganization: Brock University, St. Catharines Ontario\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 15\\n\\nHaston, Donald Wayne (haston@utkvx.utk.edu) wrote:\\n: Currently, I use a shareware program called Graphics Workshop.\\n: What kinds of things will Hijaak do that these shareware programs\\n: will not do?\\n\\nI also use Graphic Workshop and the only differences that I know of are that\\nHijaak has screen capture capabilities and acn convert to/from a couple of\\nmore file formats (don't know specifically which one). In the April 13\\nissue of PC Magazine they test the twelve best selling image capture/convert\\nutilities, including Hijaak.\\n\\nTMC.\\n(tmc@spartan.ac.brocku.ca)\\n\\n\\n\",\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Abyss: breathing fluids\\nArticle-I.D.: access.1psghn$s7r\\nOrganization: Express Access Online Communications USA\\nLines: 19\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article enf021@cck.coventry.ac.uk (Achurist) writes:\\n|\\n|I believe the reason is that the lung diaphram gets too tired to pump\\n|the liquid in and out and simply stops breathing after 2-3 minutes.\\n|So if your in the vehicle ready to go they better not put you on \\n|hold, or else!! That's about it. Remember a liquid is several more times\\n|as dense as a gas by its very nature. ~10 I think, depending on the gas\\n|and liquid comparision of course!\\n\\n\\nCould you use some sort of mechanical chest compression as an aid.\\nSorta like the portable Iron Lung? Put some sort of flex tubing\\naround the 'aquanauts' chest. Cyclically compress it and it will\\npush enough on the chest wall to support breathing?????\\n\\nYou'd have to trust your breather, but in space, you have to trust\\nyour suit anyway.\\n\\npat\\n\",\n", - " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: Observation re: helmets\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 12\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 734919391@u.washington.edu, moseley@u.washington.edu (Steve L. Moseley) writes:\\n>\\n>So what should I carry if I want to comply with intelligent helmet laws?\\n\\nTake up residence in a fantasy world. \\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", - " \"From: bdunn@cco.caltech.edu (Brendan Dunn)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: California Institute of Technology, Pasadena\\nLines: 8\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\nThanks to whoever posted this wonderful parody of people who post without \\nreading the FAQ! I was laughing for a good 5 minutes. Were there any \\nparts of the FAQ that weren't mentioned? I think there might have been one\\nor two...\\n\\nPlease don't tell me this wasn't a joke. I'm not ready to hear that yet...\\n\\nBrendan\\n\",\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Syria\\'s Expansion\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 95\\n\\nIn article hallam@zeus02.desy.de writes:\\n>\\n>In article <1993Apr18.212610.5933@das.harvard.edu>, adam@endor.uucp (Adam Shostack) writes:\\n\\n>|>In article <18APR93.15729846.0076@VM1.MCGILL.CA> B8HA000 writes:\\n\\n>|>>1) Is Israel\\'s occupation of Southern Lebanon temporary?\\n\\n>|>\\tIsrael has repeatedly stated that it will leave Lebanon when\\n>|>the Lebanese government can provide guarantees that Israel will not be\\n>|>attacked from Lebanese soil, and when the Syrians leave.\\n\\n>Not acceptable. Syria and Lebanon have a right to determine if\\n>they wish to return to the situation prior to the French invasion\\n>where they were both part of the same \"mandate territory\" - read\\n>colony.\\n\\n\\tAnd Lebanon has a right to make this decision without Syrian\\ntroops controlling the country. Until Syria leaves, and free\\nelections take place, its is rediculous to claim that the Lebanese\\nwould even be involved in determining what happens to their country.\\n\\n>Israel has no right to determine what happens in Lebanon. Invading another\\n>country because you consider them a threat is precisely the way that almost\\n>all wars of aggression have started.\\n\\n\\tI expect you will agree that the same holds true for Syria\\nhaving no right to be in Lebanon?\\n\\n>|>\\tIsrael has already annexed areas taken over in the 1967 war.\\n>|>These areas are not occupied, but disputed, since there is no\\n>|>legitamate governing body. Citizenship was given to those residents\\n>|>in annexed areas who wanted citizenship.\\n\\n>The UN defines them as occupied. They are recognised as such by every\\n>nation on earth (excluding one small caribean island).\\n\\n\\tThe UN also thought Zionism is racism. That fails to make it true.\\n\\n>|>\\tThe first reason was security. A large Jewish presense makes\\n>|>it difficult for terrorists to infiltrate. A Jewish settlements also\\n>|>act as fortresses in times of war.\\n>\\n>Theyu also are a liability. We are talking about civilian encampments that\\n>would last no more than hours against tanks,\\n\\n\\tThey lasted weeks against tanks in \\'48, and stopped those\\ntanks from advancing. They also lasted days in \\'73. There is little\\nevidence for the claim that they are military liabilities.\\n\\n\\tThey evidence is there to show that when infiltrations take\\nplace over the Jordan river, the existance of large, patrolled\\nkibutzim forces terrorists into a very small area, where they are\\nusually picked up in the morning.\\n\\n>|>\\tA second reason was political. Creating \"settlements\" brought\\n>|>the arabs to the negotiation table. Had the creation of new towns and\\n>|>cities gone on another several years, there would be no place left in\\n>|>Israel where there was an arab majority. There would have been no\\n>|>land left that could be called arab.\\n\\n>Don\\'t fool yourself. It was the gulf war that brought the Israelis to the\\n>negotiating table. Once their US backers had a secure base in the gulf\\n>they insrtructed Shamir to negotiate or else.\\n\\n\\tNonsense. Israel has been trying to get its neighbors to the\\nnegotiating table for 40 years. It was the gulf war that brought the\\narabs to the table, not the Israelis.\\n\\n>|>\\tThe point is, there are many reasons people moved over the\\n>|>green line, and many reasons the government wanted them to. Whatever\\n>|>status is negotiated for disputed territories, it will not be an \"all\\n>|>or nothing\" deal. New boundaries will be drawn up by negotiation, not\\n>|>be the results of a war.\\n\\n>Unless the new boundaries drawn up are those of 48 there will be no peace.\\n>Araffat has precious little authority to agree to anything else.\\n\\n\\tNonsense. According to Arafat, Israel must be destroyed. He\\nhas never come clean and denied that this is his plan. He always\\nwaffles on what he means.\\n\\n\\t``When the Arabs set off their volcano, there will only be Arabs in\\n\\tthis part of the world. Our people will continue to fuel the torch\\n\\tof the revolution with rivers of blood until the whole of the\\n\\toccupied homeland is liberated...\\'\\'\\n\\t--- Yasser Arafat, AP, 3/12/79\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 57\\n\\nIn article bh437292@lance.colostate.edu writes:\\n\\n[most of Brads post deleted.]\\n\\n>we have come to accept and deal with, the Lebanese Resistance\\n>on the other hand is not going to stop its attacks on OCCUPYING \\n>ISRAELI SOLDIERS until they withdraw, this is the only real \\n>leverage that they have to force Israel to withdraw.\\n\\n\\tTell me, do these young men also attack Syrian troops?\\n\\n\\n>with the blood of its soldiers. If Israel is interested in peace,\\n>than it should withdraw from OUR land.\\n\\n\\tThere must be a guarantee of peace before this happens. It\\nseems that many of these Lebanese youth are unable to restrain\\nthemselves from violence, and unable to to realize that their actions\\nprolong Israels stay in South Lebanon.\\n\\n\\tIf the Lebanese army was able to maintain the peace, then\\nIsrael would not have to be there. Until it is, Israel prefers that\\nits soldiers die rather than its children.\\n\\n\\n>If Israel really wants to save some Israeli lives it would withdraw \\n>unilaterally from the so-called \"Security Zone\" before the conclusion\\n>of the peace talks. Such a move would save Israeli lives,\\n>advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n>public image abroad and give it an edge in the peace negociations \\n>since Israel can rightly claim that it is genuinely interested in \\n>peace and has already offered some important concessions.\\n\\n\\tIsrael should withdraw from Lebanon when a peace treaty is\\nsigned. Not a day before. Withdraw because of casualties would tell\\nthe Lebanese people that all they need to do to push Israel around is\\nkill a few soldiers. Its not gonna happen.\\n\\n>Along with such a withdrawal Israel could demand that Hizbollah\\n>be disarmed by the Lebanese government and warn that it will not \\n>accept any attacks against its northern cities and that if such a\\n>shelling occurs than it will consider re-taking the buffer zone\\n>and will hold the Lebanese and Syrian government responsible for it.\\n\\n\\n\\tWhy should Israel not demand this while holding the buffer\\nzone? It seems to me that the better bargaining position is while\\nholding your neighbors land. If Lebanon were willing to agree to\\nthose conditions, Israel would quite probably have left already.\\nUnfortunately, it doesn\\'t seem that the Lebanese can disarm the\\nHizbolah, and maintain the peace.\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: eylerken@stein.u.washington.edu (Ken Eyler)\\nSubject: stand alone editing suite.\\nArticle-I.D.: shelley.1qvkaeINNgat\\nDistribution: world\\nOrganization: University of Washington, Seattle\\nLines: 12\\nNNTP-Posting-Host: stein.u.washington.edu\\n\\nI need some help. We are upgrading our animation/video editing stand. We\\nare looking into the different type of setups for A/B roll and a cuts only\\nstation. We would like this to be controlled by a computer ( brand doesnt matter but maybe MAC, or AMIGA). Low end to high end system setups would be very\\nhelpful. If you have a system or use a system that might be of use, could you\\nmail me your system requirements, what it is used for, and all the hardware and\\nsoftware that will be necessary to set the system up. If you need more \\ninfo, you can mail me at eylerken@u.washington.edu\\n\\nthanks in advance.\\n\\n:ken\\n:eylerken@u.washington.edu\\n',\n", - " 'From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: RE: was:Go Hezbollah!\\nOrganization: Unocal Corporation\\nLines: 68\\n\\n\\nhernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n\\n>I just thought that I would make it clear, in case you are not familiar with\\n>my past postings on this subject; I do not condone attacks on civilians. \\n>Hezbollah and other Lebanese Resistance fighters are skilled at precision\\n>bombing of SLA and Israeli targets. I find such methods to be far more\\n>restrained and responsible than the Israeli method of shelling and bombing\\n>villages with the hope that a Hezbollah member will be killed along with\\n>the civilians murdered. I do not consider the killing of combatants to be\\n>murder. Soldiers are trained to die for their country. Three IDF soldiers\\n>did their duty the other day. These men need not have died if their government\\n>had kept them on Israeli soil. \\n\\nIs there any Israeli a civilian, in your opinion ?\\n\\nNow, I do not condone myself bombing villages, any kind of villages.\\nBut you claim these are villages with civilians, and Iraelis claim they are \\ncamps filled with terrorists. You claim that israelis shell the villages with the\\n\\'hope\\' of finding a terrorist or so. If they kill one, fine, if not, too bad, \\ncivilians die, right ? I am not so sure. \\n\\nAs somebody wrote, Saddam Hussein had no problems using civilians in disgusting\\nmanner. And he also claimed \\'civilians murdered\\'. Let me ask you, isn\\'t there \\nat least a slight chance that you (not only, and the question is very general, \\nno insult) are doing a similar type of propaganda in respect to civilians in\\nsouthern Lebanon ?\\n\\nNow, a lot people who post here consider \\'Israeli soil\\' kind of Mediteranean sea.\\nHow do you define Israeli soil ? From what you say, if you do not clearly \\nrecognize the state of Israel, you condone killing israelis anywhere.\\n\\n>Dorin, are you aware that the IDF sent helicopters and gun-boats up the\\n>coast of Lebanon the other day and rocketted a Palestinian refugee north of\\n>Beirut. Perhaps I should ask YOU \"what qualifies a person for murder?\":\\n\\nI do not know what was the pupose of the action you describe. If it was \\nto kill civilians (I doubt), I certainly DO NOT CONDONE IT. If civilians were \\nkilled, i do not condone it. \\n\\n>That they are Palestinian?\\n\\n>That they are children and may grow up to be \"terrorists\"?\\n\\n>That they are female and may give birth to little terrorists?\\n\\n>Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nMr. Hernlem, it was YOU, not ME, who was showing a huge satisfaction for 3 \\nisraelis (human beings by most standards, Don\\'t know about your standards) killed.\\n\\nIf you ask me those questions, I will have no problem answering (not with a \\nquestion, as you did) : No, NOBODY is qualified candidate for murder, nothing\\njustifies murder. I have the feeling that you may be able yourself to make\\nsimilar statements, maybe after eliminating all Israelis, jews, ? Am I wrong ?\\n\\n\\nNow tell me, did you also condone Saddam\\'s scuds on israeli \\'soldiers\\' in, let\\'s\\nsay, Tel Aviv ? From what I understand, a lot of palestineans cheered. What does\\nit show? It does not qualify for freedom fighting to me ? But again, I may be \\nwrong, and the jewish controlled media distorted the information, and I am just\\nan ignorant victim of the media, like most of us.\\n\\n\\nDorin\\n\\n\\n',\n", - " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Dreams and Degrees (was Re: Crazy? or just Imaginitive?)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 47\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , mt90dac@brunel.ac.uk (Del Cotter) writes:\\n> <1993Apr21.205403.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>> Sorry if I do not have the big degrees\\n>>and such, but I think (I might be wrong, to error is human) I have something\\n>>that is in many ways just as important, I have imagination, dreams. And without\\n>>dreams all the knowledge is worthless.. \\n> \\n> Oh, and us with the big degrees don\\'t got imagination, huh?\\n> \\n> The alleged dichotomy between imagination and knowledge is one of the most\\n> pernicious fallacys of the New Age. Michael, thanks for the generous\\n> offer, but we have quite enough dreams of our own, thank you.\\n\\nWell said.\\n \\n> You, on the other hand, are letting your own dreams go to waste by\\n> failing to get the maths/thermodynamics/chemistry/(your choices here)\\n> which would give your imagination wings.\\n> \\n> Just to show this isn\\'t a flame, I leave you with a quote from _Invasion of \\n> the Body Snatchers_:\\n> \\n> \"Become one of us; it\\'s not so bad, you know\"\\n\\nOkay, Del, so Michael was being unfair, but you are being unfair back. \\nHe is taking college courses now, I presume he is studying hard, and\\nhis postings reveal that he is *somewhat* hip to the technical issues\\nof astronautics. Plus, he is attentively following the erudite\\ndiscourse of the Big Brains who post to sci.space; is it not\\ninevitable that he will get a splendid technical education from\\nreading the likes of you and me? [1]\\n\\nLike others involved in sci.space, Mr. Adams shows symptoms of being a\\nfledgling member of the technoculture, and I think he\\'s soaking it up\\nfast. I was a young guy with dreams once, and they led me to get a\\ntechnical education to follow them up. Too bad I wound up in an\\nassembly-line job stamping out identical neutrinos day after day...\\n(-:\\n\\n[1] Though rumors persist that Del and I are both pseudonyms of Fred\\nMcCall.\\n\\nBill Higgins, Beam Jockey | \"We\\'ll see you\\nFermi National Accelerator Laboratory | at White Sands in June. \\nBitnet: HIGGINS@FNAL.BITNET | You bring your view-graphs, \\nInternet: HIGGINS@FNAL.FNAL.GOV | and I\\'ll bring my rocketship.\" \\nSPAN/Hepnet: 43011::HIGGINS | --Col. Pete Worden on the DC-X\\n',\n", - " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Bill Conner:\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 6\\n\\n\\nCould you explain what any of this pertains to? Is this a position\\nstatement on something or typing practice? And why are you using my\\nname, do you think this relates to anything I've said and if so, what.\\n\\nBill\\n\",\n", - " 'From: bsaffo01@cad.gmeds.com (Brian H. Safford)\\nSubject: IGES Viewer for DOS/Windows\\nOrganization: EDS/Cadillac\\nLines: 10\\nNNTP-Posting-Host: ccadmn1.cad.gmeds.com\\n\\nAnybody know of an IGES Viewer for DOS/Windows? I need to be able to display \\nComputerVision IGES files on a PC running Windows 3.1. Thanks in advance.\\n\\n+-----------------------------------------------------------+\\n| Brian H. Safford EMAIL: bsaffo01@cad.gmeds.com |\\n| Electronic Data Systems PHONE: (313) 696-6302 |\\n+-----------------------------------------------------------+\\n| NOTE: The views and opinions expressed herein are mine, |\\n| and DO NOT reflect those of Electronic Data Systems Corp. |\\n+-----------------------------------------------------------+\\n',\n", - " \"From: geoffrey@cosc.canterbury.ac.nz (Geoff Thomas)\\nSubject: Re: Help! 256 colors display in C.\\nKeywords: graphics\\nArticle-I.D.: cantua.C533EM.Cv7\\nOrganization: University of Canterbury, Christchurch, New Zealand\\nLines: 21\\nNntp-Posting-Host: huia.canterbury.ac.nz\\n\\n\\nYou'll probably have to set the palette up before you try drawing\\nin the new colours.\\n\\nUse the bios interrupt calls to set the r g & b values (in the range\\nfrom 0-63 for most cards) for a particular palette colour (in the\\nrange from 0-255 for 256 colour modes).\\n\\nThen you should be able to draw pixels in those palette values and\\nthe result should be ok.\\n\\nYou might have to do a bit of colourmap compressing if you have\\nmore than 256 unique rgb triplets, for a 256 colour mode.\\n\\n\\nGeoff Thomas\\t\\t\\tgeoffrey@cosc.canterbury.ac.nz\\nComputer Science Dept.\\nUniversity of Canterbury\\nPrivate Bag\\t\\t\\t\\t+-------+\\nChristchurch\\t\\t\\t\\t| Oook! |\\nNew Zealand\\t\\t\\t\\t+-------+\\n\",\n", - " 'From: joachim@kih.no (joachim lous)\\nSubject: Re: XV for MS-DOS !!!\\nOrganization: Kongsberg Ingeniorhogskole\\nLines: 20\\nNNTP-Posting-Host: samson.kih.no\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\nNOE-MAILADDRESS@eicn.etna.ch wrote:\\n> I\\'m sorry for...\\n\\n> 1) The late of the answer but I couldn\\'t find xv221 for msdos \\'cause \\n> \\tI forgot the address...but I\\'ve retrieve it..\\n\\n> 2) Posting this answer here in comp.graphics \\'cause I can\\'t use e-mail,\\n> ^^^ not yet....\\n\\n> 2) My bad english \\'cause I\\'m a Swiss and my language is french....\\n ^^^\\nIf french is your language, try counting in french in stead, maybe\\nit will work better.... :-)\\n\\n _______________________________\\n / _ L* / _ / . / _ /_ \"One thing is for sure: The sheep\\n / _) /()(/(/)//)) /_ ()(/_) / / Is NOT a creature of the earth.\"\\n / \\\\_)~ (/ Joachim@kih.no / / \\n/_______________________________/ / -The back-masking on \\'Haaden II\\'\\n /_______________________________/ from \\'Exposure\\' by Robert Fripp.\\n',\n", - " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Cookamunga Tourist Bureau\\nLines: 26\\n\\nIn article <1993Apr19.113255.27550@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n> >Fred, the problem with such reasoning is that for us non-believers\\n> >we need a better measurement tool to state that person A is a\\n> >real Muslim/Christian, while person B is not. As I know there are\\n> >no such tools, and anyone could believe in a religion, misuse its\\n> >power and otherwise make bad PR. It clearly shows the sore points\\n> >with religion -- in other words show me a movement that can\\'t spin\\n> >off Khomeinis, Stalins, Davidians, Husseins... *).\\n> \\n> I don\\'t think such a system exists. I think the reason for that is an\\n> condition known as \"free will\". We humans have got it. Anybody, using\\n> their free-will, can tell lies and half-truths about *any* system and\\n> thus abuse it for their own ends.\\n\\nI don\\'t think such tools exist either. In addition, there\\'s no such\\nthing as objective information. All together, it looks like religion\\nand any doctrines could be freely misused to whatever purpose.\\n\\nThis all reminds me of Descartes\\' whispering deamon. You can\\'t trust\\nanything. So why bother.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", - " 'From: pbenson@ecst.csuchico.edu (Paul A. Benson)\\nSubject: CD-ROM Indexes available\\nOrganization: California State University, Chico\\nLines: 6\\nNNTP-Posting-Host: cscihp.ecst.csuchico.edu\\n\\nThe file and contents listings for:\\n\\nKnowledge Media Resource Library: Graphics 1\\nKnowledge Media Resource Library: Audio 1\\n\\nare now available for anonymous FTP from cdrom.com\\n',\n", - " 'From: terziogl@ee.rochester.edu (Esin Terzioglu)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: Univ of Rochester, College of Engineering and Applied Science\\nLines: 33\\n\\nIn article <1993Apr19.155856.8260@kpc.com> henrik@quayle.kpc.com writes:\\n>In article <1993Apr17.185118.10792@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n>|> In article <1993Apr16.195452.21375@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>|> >04/16/93 1045 ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\n>|> >\\n>|> \\n>|> Ermenistan kasiniyor...\\n>|> \\n>|> Let me translate for everyone else before the public traslation service gets\\n>|> into it\\t: Armenia is getting itchy. \\n>|> \\n>|> Esin.\\n>\\n>\\n>Let me clearify Mr. Turkish;\\n>\\n>ARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that SHE\\n>WILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\n>tricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n>CYPRESS WHILE the world simply WATCHED. \\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\nYour ignorance is obvious from your posting. \\n\\n1) Cyprus was an INDEPENDENT country with Turkish/Greek inhabitants (NOT a \\n Greek island like your ignorant posting claims)\\n\\n2) The name should be Cyprus (in English)\\n\\nnext time read and learn before you post. \\n\\nEsin.\\n',\n", - " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 30\\n\\nSCOTT D. SAUYET (SSAUYET@eagle.wesleyan.edu) wrote:\\n\\n: Regardless of people's hidden motivations, the stated reasons for many\\n: wars include religion. Of course you can always claim that the REAL\\n: reason was economics, politics, ethnic strife, or whatever. But the\\n: fact remains that the justification for many wars has been to conquer\\n: the heathens.\\n\\n: If you want to say, for instance, that economics was the chief cause\\n: of the Crusades, you could certainly make that point. But someone\\n: could come along and demonstrate that it was REALLY something else, in\\n: the same manner you show that it was REALLY not religion. You could\\n: in this manner eliminate all possible causes for the Crusades.\\n: \\n\\nScott,\\n\\nI don't have to make outrageous claims about religion's affecting and\\neffecting history, for the purpsoe of a.a, all I have to do point out\\nthat many claims made here are wrong and do nothing to validate\\natheism. At no time have I made any statement that religion was the\\nsole cause of anything, what I have done is point out that those who\\ndo make that kind of claim are mistaken, usually deliberately. \\n\\nTo credit religion with the awesome power to dominate history is to\\nmisunderstand human nature, the function of religion and of course,\\nhistory. I believe that those who distort history in this way know\\nexaclty what they're doing, and do it only for affect.\\n\\nBill\\n\",\n", - " 'From: declrckd@rtsg.mot.com (Dan J. Declerck)\\nSubject: Re: edu breaths\\nNntp-Posting-Host: corolla17\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 53\\n\\nIn article <1993Apr15.221024.5926@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>In article <1993Apr15.214910.5676@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n>|In article <1993Apr15.003749.15710@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>|>In article <1993Apr14.220252.14731@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n>|>|\\n>|>|The difference of opinion, and difference in motorcycling between the sport-bike\\n>|>|riders and the cruiser-bike riders. \\n>|>\\n>|>That difference is only in the minds of certain closed-minded individuals. I\\n>|>have had the very best motorcycling times with riders of \"cruiser\" \\n>|>bikes (hi Don, Eddie!), yet I ride anything but.\\n>|\\n>|Continuously, on this forum, and on the street, you find quite a difference\\n>|between the opinions of what motorcycling is to different individuals.\\n>\\n>Yes, yes, yes. Motorcycling is slightly different to each and every one of us. This\\n>is the nature of people, and one of the beauties of the sport. \\n>\\n>|Cruiser-bike riders have a different view of motorcycling than those of sport bike riders\\n>|(what they like and dislike about motorcycling). This is not closed-minded. \\n>\\n>And what view exactly is it that every single rider of cruiser bikes holds, a veiw\\n>that, of course, no sport-bike rider could possibly hold? Please quantify your\\n>generalization for us. Careful, now, you\\'re trying to pigeonhole a WHOLE bunch\\n>of people.\\n>\\nThat plastic bodywork is useless. That torque, and an upright riding position is\\nbetter than a slightly or radically forward riding position combined with a high-rpm\\nlow torque motor.\\n\\nTo a cruiser-motorcyclist, chrome has some importance. To sport-bike motorcyclists\\nchrome has very little impact on buying choice.\\n\\nUnless motivated solely by price, these are the criteria each rider uses to select\\nthe vehicle of choice. \\n\\nTo ignore these, as well as other criteria, would be insensitive. In other words,\\nno one motorcycle can fufill the requirements that a sport-bike rider and a cruiser\\nrider may have.(sometimes it\\'s hard for *any* motorcycle to fufill a person\\'s requirements)\\n \\nYou\\'re fishing for flames, Dave.\\n\\nThis difference of opinion is analogous to the difference\\nbetween Sports-car owners, and luxury-car owners. \\n\\nThis is a moot conversation.\\n\\n\\n-- \\n=> Dan DeClerck | EMAIL: declrckd@rtsg.mot.com <=\\n=> Motorola Cellular APD | <=\\n=>\"Friends don\\'t let friends wear neon\"| Phone: (708) 632-4596 <=\\n----------------------------------------------------------------------------\\n',\n", - " 'From: rj3s@Virginia.EDU (\"Get thee to a nunnery.....\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 32\\n\\neshneken@ux4.cso.uiuc.edu writes:\\n> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n> \\n> >I think the Israeli press might be a tad bit biased in\\n> >reporting the events. I doubt the Propaganda machine of Goering\\n> >reported accurately on what was happening in Germany. It is\\n> >interesting that you are basing the truth on Israeli propaganda.\\n> \\n> If you consider Israeli reporting of events in Israel to be propoganda, then \\n> consider the Washington Post\\'s handling of American events to be propoganda\\n> too. What makes the Israeli press inherently biased in your opinion? I\\n> wouldn\\'t compare it to Nazi propoganda either. Unless you want to provide\\n> some evidence of Israeli inaccuracies or parallels to Nazism, I suggest you \\n> keep your mouth shut. I\\'m sick and tired of all you anti-semites comparing\\n> Israel to the Nazis (and yes, in my opinion, if you compare Israel to the Nazis\\n> you are an anti-semite because you know damn well it isn\\'t true and you are\\n> just trying to discredit Israel).\\n> \\n> Ed.\\n> \\nYou know ed,... You\\'re right! Andi shouldn\\'t be comparing\\nIsrael to the Nazis. The Israelis are much worse than the\\nNazis ever were anyway. The Nazis did a lot of good for\\nGermany, and they would have succeeded if it weren\\'t for the\\ndamn Jews. The Holocaust never happened anyway. Ample\\nevidence given by George Schafer at Harvard, Dept. of History,\\nand even by Randolph Higgins at NYU, have shown that the\\nHolocaust was just a semitic conspiracy created to obtain\\nsympathy to piush for the creation of Israel.\\n\\n\\n\\t\\t\\t\\t\\t\\n',\n", - " 'From: aa429@freenet.carleton.ca (Terry Ford)\\nSubject: A flawed propulsion system: Space Shuttle\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 13\\n\\n\\n\\nFor an essay, I am writing about the space shuttle and a need for a better\\npropulsion system. Through research, I have found that it is rather clumsy \\n(i.e. all the checks/tests before launch), the safety hazards (\"sitting\\non a hydrogen bomb\"), etc.. If you have any beefs about the current\\nspace shuttle program Re: propulsion, please send me your ideas.\\n\\nThanks a lot.\\n\\n--\\nTerry Ford [aa429@freenet.carleton.ca]\\nNepean, Ontario, Canada.\\n',\n", - " 'From: IMAGING.CLUB@OFFICE.WANG.COM (\"Imaging Club\")\\nSubject: Re: WANTED: Info on Image Databases\\nOrganization: Mail to News Gateway at Wang Labs\\nLines: 14\\n\\nPadmini Srivathsa in Wisconsin writes:\\n\\n>I would like references to any introductory material on image\\n>databases.\\n\\nI\\'d be happy to US (international) Snail mail technical information on\\nimaging databases to anyone who needs it, if you can provide me with your\\naddress for hard copy (not Email). We\\'re focusing mostly on Open PACE,\\nOracle, Ingres, Adabas, Sybase, and Gupta, regarding our imaging\\ndatabases installed. (We have over 1,000 installed and in production now;\\nmost of the new ones going in are on Novell LANs, the RS/6000, and now HP\\nUnix workstations.) We work with Visual Basic too.\\n\\nMichael.Willett@OFFICE.Wang.com\\n',\n", - " 'From: inu530n@lindblat.cc.monash.edu.au (I Rachmat)\\nSubject: Fractal compression\\nSummary: looking for good reference\\nKeywords: fractal\\nOrganization: Monash University, Melb., Australia.\\nLines: 6\\n\\nHi... can anybody give me book or reference title to give me a start at \\nfractal image compression technique. Helps will be appreciated... thanx\\n\\ninu530n@lindblat.cc.monash.edu.au\\ninu530n@aurora.cc.monash.edu.au\\n\\n',\n", - " 'From: isaackuo@skippy.berkeley.edu (Isaac Kuo)\\nSubject: Re: Abyss--breathing fluids\\nOrganization: U.C. Berkeley Math. Department.\\nLines: 19\\nNNTP-Posting-Host: skippy.berkeley.edu\\n\\nAre breathable liquids possible?\\n\\nI remember seeing an old Nova or The Nature of Things where this idea was\\ntouched upon (it might have been some other TV show). If nothing else, I know\\nsuch liquids ARE possible because...\\n\\nThey showed a large glass full of this liquid, and put a white mouse (rat?) in\\nit. Since the liquid was not dense, the mouse would float, so it was held down\\nby tongs clutching its tail. The thing struggled quite a bit, but it was\\ncertainly held down long enough so that it was breathing the liquid. It never\\ndid slow down in its frantic attempts to swim to the top.\\n\\nNow, this may not have been the most humane of demonstrations, but it certainly\\nshows breathable liquids can be made.\\n-- \\n*Isaac Kuo (isaackuo@math.berkeley.edu)\\t* ___\\n*\\t\\t\\t\\t\\t* _____/_o_\\\\_____\\n*\\tTwinkle, twinkle, little .sig,\\t*(==(/_______\\\\)==)\\n*\\tKeep it less than 5 lines big.\\t* \\\\==\\\\/ \\\\/==/\\n',\n", - " 'From: dkennett@fraser.sfu.ca (Daniel Kennett)\\nSubject: [POV] Having trouble bump mapping a gif to a sphere\\nSummary: Having trouble bump mapping a gif to a spher in POVray\\nKeywords: bump map\\nOrganization: Simon Fraser University, Burnaby, B.C., Canada\\nLines: 44\\n\\n\\nHello,\\n I\\'ve been trying to bump map a gif onto a sphere for a while and I\\ncan\\'t seem to get it to work. Image mapping works, but not bump\\nmapping. Here\\'s a simple file I was working with, could some kind\\nsoul tell me whats wrong with this.....\\n\\n#include \"colors.inc\"\\n#include \"shapes.inc\"\\n#include \"textures.inc\"\\n \\ncamera {\\n location <0 1 -3>\\n direction <0 0 1.5>\\n up <0 1 0>\\n right <1.33 0 0>\\n look_at <0 1 2>\\n}\\n \\nobject { light_source { <2 4 -3> color White }\\n }\\n \\nobject {\\n sphere { <0 1 2> 1 }\\n texture {\\n bump_map { 1 <0 1 2> gif \"surf.gif\"}\\n }\\n}\\n\\nNOTE: surf.gif is a plasma fractal from Fractint that is using the\\nlandscape palette map.\\n\\n \\n\\tThanks in advance\\n\\t -Daniel-\\n\\n*======================================================================* \\n| Daniel Kennett\\t \\t\\t |\\n| dkennett@sfu.ca \\t\\t \\t\\t\\t |\\n| \"Our minds are finite, and yet even in those circumstances of |\\n| finitude, we are surrounded by possibilities that are infinite, and |\\n| the purpose of human life is to grasp as much as we can out of that |\\n| infinitude.\" - Alfred North Whitehead | \\n*======================================================================*\\n',\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: The Department of Redundancy Department\\nLines: 39\\n\\nIn article bh437292@lance.colostate.edu writes:\\n\\n>Most of the \\n>people in my village are regular inhabitants that go about their daily\\n>business, some work in the fields, some own small shops, others are\\n>older men that go to the coffe shop and drink coffee. Is that so hard to\\n>imagine ????\\n\\n...quickly followed by...\\n\\n>SOME young men, usually aged between 17 to 30 years are members of\\n>the Lebanese resistance. Even the inhabitants of the village do not \\n>know who these are, they are secretive about it, but most people often\\n>suspect who they are and what they are up to. \\n\\nThis is the standard method for claiming non-combatant status, even\\nfor the commanders of combat.\\n\\n>These young men are\\n>supported financially by Iran most of the time. They sneak arms and\\n>ammunitions into the occupied zone where they set up booby traps\\n>for Israeli patrols. Every time an Israeli soldier is killed or injured\\n>by these traps, Israel retalliates by indiscriminately bombing villages\\n>of their own choosing often killing only innocent civilians. \\n\\n\"Innocent civilians\"??? Like the ones who set up the booby traps or\\nengaged in shoot-outs with soldiers or attack them with grenades or\\naxes? \\n\\n>We are now accustomed to Israeli tactics, and we figure that this is \\n\\nAnd the rest of the world is getting used to Arab tactics of claiming\\ninnocence for even the most guilty of the vile murderers among them.\\nKeep it up long enough and it will backfire but good.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: ddeciacco@cix.compulink.co.uk (David Deciacco)\\nSubject: Re: Another CVIEW question (wa\\nReply-To: ddeciacco@cix.compulink.co.uk\\nLines: 5\\n\\n\\nIn-Reply-To: <20APR199312262902@rigel.tamu.edu> lmp8913@rigel.tamu.edu (PRESTON, LISA M)\\n\\nI have a trident card and fullview works real gif jpg try it#\\ndave\\n',\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Morality? (was Re: I don\\'t expect the lion to know, or not know anything of the kind.\\n>In fact, I don\\'t have any evidence that lions ever consider such \\n>issues.\\n>And that, of course, is why I don\\'t think you can assign moral\\n>significance to the instinctive behaviour of lions.\\n\\nWhat I\\'ve been saying is that moral behavior is likely the null behavior.\\nThat is, it doesn\\'t take much work to be moral, but it certainly does to\\nbe immoral (in some cases). Also, I\\'ve said that morality is a remnant\\nof evolution. Our moral system is based on concepts well practiced in\\nthe animal kingdom.\\n\\n>>So you are basically saying that you think a \"moral\" is an undefinable\\n>>term, and that \"moral systems\" don\\'t exist? If we can\\'t agree on a\\n>>definition of these terms, then how can we hope to discuss them?\\n>No, it\\'s perfectly clear that I am saying that I know what a moral\\n>is in *my* system, but that I can\\'t speak for other people.\\n\\nBut, this doesn\\'t get us anywhere. Your particular beliefs are irrelevant\\nunless you can share them or discuss them...\\n\\nkeith\\n',\n", - " 'From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: SSAUYET@eagle.wesleyan.edu (SCOTT D. SAUYET) writes:\\n>In <1qabe7INNaff@gap.caltech.edu> keith@cco.caltech.edu writes:\\n>\\n>>> Chimpanzees fight wars over land.\\n>> \\n>> But chimps are almost human...\\n>> \\n>> keith\\n>\\n>Could it be? This is the last message from Mr. Schneider, and it\\'s\\n>more than three days old!\\n>\\n>Are these his final words? (And how many here would find that\\n>appropriate?) Or is it just that finals got in the way?\\n>\\n\\n No. The christians were leary of having an atheist spokesman\\n (seems so clandestine, and all that), so they had him removed. Of\\n course, Keith is busy explaining to his fellow captives how he\\n isn\\'t really being persecuted, since (after all) they *are*\\n feeding him, and any resistance on his part would only be viewed\\n as trouble making. \\n\\n I understand he did make a bit of a fuss when they tatooed \"In God\\n We Trust\" on his forehead, though.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n',\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Orbital RepairStation\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 20\\n\\nIn article henry@zoo.toronto.edu (Henry Spencer) writes:\\n\\n>The biggest problem with this is that all orbits are not alike. It can\\n>actually be more expensive to reach a satellite from another orbit than\\n>from the ground. \\n\\nBut with cheaper fuel from space based sources it will be cheaper to \\nreach more orbits than from the ground.\\n\\nAlso remember, that the presence of a repair/supply facility adds value\\nto the space around it. If you can put your satellite in an orbit where it\\ncan be reached by a ready source of supply you can make it cheaper and gain\\nbenefit from economies of scale.\\n\\n Allen\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------58 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " \"From: joth@ersys.edmonton.ab.ca (Joe Tham)\\nSubject: Where can I find SIPP?\\nOrganization: Edmonton Remote Systems #2, Edmonton, AB, Canada\\nLines: 11\\n\\n I recently got a file describing a library of rendering routines \\ncalled SIPP (SImple Polygon Processor). Could anyone tell me where I can \\nFTP the source code and which is the newest version around?\\n Also, I've never used Renderman so I was wondering if Renderman \\nis like SIPP? ie. a library of rendering routines which one uses to make \\na program that creates the image...\\n\\n Thanks, Joe Tham\\n\\n--\\nJoe Tham joth@ersys.edmonton.ab.ca \\n\",\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Russian Email Contacts.\\nLines: 15\\nNntp-Posting-Host: acad3.alaska.edu\\nOrganization: University of Alaska Fairbanks\\n\\nDoes anyone have any Russian Contacts (Space or other) or contacts in the old\\nUSSR/SU or Eastern Europe?\\n\\nPost them here so we all can talk to them and ask questions..\\nI think the cost of email is high, so we would have to keep the content to\\nspecific topics and such..\\n\\nBasically if we want to save Russia and such, then we need to make contacts,\\ncontacts are a form of info, so lets get informing.\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\\nAlive in Nome, Alaska (once called Russian America).\\n\\n\",\n", - " 'From: warren@nysernet.org (Warren Burstein)\\nSubject: Re: To be exact, 2.5 million Muslims were exterminated by the Armenians.\\nOrganization: NYSERNet, Inc.\\nLines: 34\\n\\nac = In <9304202017@zuma.UUCP> sera@zuma.UUCP (Serdar Argic)\\npl = linden@positive.Eng.Sun.COM (Peter van der Linden)\\n\\npl: 1. So, did the Turks kill the Armenians?\\n\\nac: So, did the Jews kill the Germans? \\nac: You even make Armenians laugh.\\n\\nac: \"An appropriate analogy with the Jewish Holocaust might be the\\nac: systematic extermination of the entire Muslim population of \\nac: the independent republic of Armenia which consisted of at \\nac: least 30-40 percent of the population of that republic. The \\nac: memoirs of an Armenian army officer who participated in and \\nac: eye-witnessed these atrocities was published in the U.S. in\\nac: 1926 with the title \\'Men Are Like That.\\' Other references abound.\"\\n\\nTypical Mutlu. PvdL asks if X happened, the response is that Y\\nhappened. Even if we grant that the Armenians *did* do what Cosar\\naccuses them of doing, this has no bearing on whether the Turks did\\nwhat they are accused of.\\n\\nWhile I can understand how an AI could be this stupid, I\\ncan\\'t understand how a human could be such a moron as to either let\\nsuch an AI run amok or to compose such pointless messages himself.\\n\\nI do not expect any followup to this article from Argic to do anything\\nto alleviate my puzzlement. But maybe I\\'ll see a new line from his\\nlist of insults.\\n\\n-- \\n/|/-\\\\/-\\\\ This article is supplied without longbox\\n |__/__/_/ and uses recycled 100% words, characters and ideas.\\n |warren@ \\n/ nysernet.org \\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 11/15 - Upcoming Planetary Probes\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 243\\nDistribution: world\\nExpires: 6 May 1993 20:00:01 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/new_probes\\nLast-modified: $Date: 93/04/01 14:39:17 $\\n\\nUPCOMING PLANETARY PROBES - MISSIONS AND SCHEDULES\\n\\n Information on upcoming or currently active missions not mentioned below\\n would be welcome. Sources: NASA fact sheets, Cassini Mission Design\\n team, ISAS/NASDA launch schedules, press kits.\\n\\n\\n ASUKA (ASTRO-D) - ISAS (Japan) X-ray astronomy satellite, launched into\\n Earth orbit on 2/20/93. Equipped with large-area wide-wavelength (1-20\\n Angstrom) X-ray telescope, X-ray CCD cameras, and imaging gas\\n scintillation proportional counters.\\n\\n\\n CASSINI - Saturn orbiter and Titan atmosphere probe. Cassini is a joint\\n NASA/ESA project designed to accomplish an exploration of the Saturnian\\n system with its Cassini Saturn Orbiter and Huygens Titan Probe. Cassini\\n is scheduled for launch aboard a Titan IV/Centaur in October of 1997.\\n After gravity assists of Venus, Earth and Jupiter in a VVEJGA\\n trajectory, the spacecraft will arrive at Saturn in June of 2004. Upon\\n arrival, the Cassini spacecraft performs several maneuvers to achieve an\\n orbit around Saturn. Near the end of this initial orbit, the Huygens\\n Probe separates from the Orbiter and descends through the atmosphere of\\n Titan. The Orbiter relays the Probe data to Earth for about 3 hours\\n while the Probe enters and traverses the cloudy atmosphere to the\\n surface. After the completion of the Probe mission, the Orbiter\\n continues touring the Saturnian system for three and a half years. Titan\\n synchronous orbit trajectories will allow about 35 flybys of Titan and\\n targeted flybys of Iapetus, Dione and Enceladus. The objectives of the\\n mission are threefold: conduct detailed studies of Saturn\\'s atmosphere,\\n rings and magnetosphere; conduct close-up studies of Saturn\\'s\\n satellites, and characterize Titan\\'s atmosphere and surface.\\n\\n One of the most intriguing aspects of Titan is the possibility that its\\n surface may be covered in part with lakes of liquid hydrocarbons that\\n result from photochemical processes in its upper atmosphere. These\\n hydrocarbons condense to form a global smog layer and eventually rain\\n down onto the surface. The Cassini orbiter will use onboard radar to\\n peer through Titan\\'s clouds and determine if there is liquid on the\\n surface. Experiments aboard both the orbiter and the entry probe will\\n investigate the chemical processes that produce this unique atmosphere.\\n\\n The Cassini mission is named for Jean Dominique Cassini (1625-1712), the\\n first director of the Paris Observatory, who discovered several of\\n Saturn\\'s satellites and the major division in its rings. The Titan\\n atmospheric entry probe is named for the Dutch physicist Christiaan\\n Huygens (1629-1695), who discovered Titan and first described the true\\n nature of Saturn\\'s rings.\\n\\n\\t Key Scheduled Dates for the Cassini Mission (VVEJGA Trajectory)\\n\\t -------------------------------------------------------------\\n\\t 10/06/97 - Titan IV/Centaur Launch\\n\\t 04/21/98 - Venus 1 Gravity Assist\\n\\t 06/20/99 - Venus 2 Gravity Assist\\n\\t 08/16/99 - Earth Gravity Assist\\n\\t 12/30/00 - Jupiter Gravity Assist\\n\\t 06/25/04 - Saturn Arrival\\n\\t 01/09/05 - Titan Probe Release\\n\\t 01/30/05 - Titan Probe Entry\\n\\t 06/25/08 - End of Primary Mission\\n\\t (Schedule last updated 7/22/92)\\n\\n\\n GALILEO - Jupiter orbiter and atmosphere probe, in transit. Has returned\\n the first resolved images of an asteroid, Gaspra, while in transit to\\n Jupiter. Efforts to unfurl the stuck High-Gain Antenna (HGA) have\\n essentially been abandoned. JPL has developed a backup plan using data\\n compression (JPEG-like for images, lossless compression for data from\\n the other instruments) which should allow the mission to achieve\\n approximately 70% of its original objectives.\\n\\n\\t Galileo Schedule\\n\\t ----------------\\n\\t 10/18/89 - Launch from Space Shuttle\\n\\t 02/09/90 - Venus Flyby\\n\\t 10/**/90 - Venus Data Playback\\n\\t 12/08/90 - 1st Earth Flyby\\n\\t 05/01/91 - High Gain Antenna Unfurled\\n\\t 07/91 - 06/92 - 1st Asteroid Belt Passage\\n\\t 10/29/91 - Asteroid Gaspra Flyby\\n\\t 12/08/92 - 2nd Earth Flyby\\n\\t 05/93 - 11/93 - 2nd Asteroid Belt Passage\\n\\t 08/28/93 - Asteroid Ida Flyby\\n\\t 07/02/95 - Probe Separation\\n\\t 07/09/95 - Orbiter Deflection Maneuver\\n\\t 12/95 - 10/97 - Orbital Tour of Jovian Moons\\n\\t 12/07/95 - Jupiter/Io Encounter\\n\\t 07/18/96 - Ganymede\\n\\t 09/28/96 - Ganymede\\n\\t 12/12/96 - Callisto\\n\\t 01/23/97 - Europa\\n\\t 02/28/97 - Ganymede\\n\\t 04/22/97 - Europa\\n\\t 05/31/97 - Europa\\n\\t 10/05/97 - Jupiter Magnetotail Exploration\\n\\n\\n HITEN - Japanese (ISAS) lunar probe launched 1/24/90. Has made\\n multiple lunar flybys. Released Hagoromo, a smaller satellite,\\n into lunar orbit. This mission made Japan the third nation to\\n orbit a satellite around the Moon.\\n\\n\\n MAGELLAN - Venus radar mapping mission. Has mapped almost the entire\\n surface at high resolution. Currently (4/93) collecting a global gravity\\n map.\\n\\n\\n MARS OBSERVER - Mars orbiter including 1.5 m/pixel resolution camera.\\n Launched 9/25/92 on a Titan III/TOS booster. MO is currently (4/93) in\\n transit to Mars, arriving on 8/24/93. Operations will start 11/93 for\\n one martian year (687 days).\\n\\n\\n TOPEX/Poseidon - Joint US/French Earth observing satellite, launched\\n 8/10/92 on an Ariane 4 booster. The primary objective of the\\n TOPEX/POSEIDON project is to make precise and accurate global\\n observations of the sea level for several years, substantially\\n increasing understanding of global ocean dynamics. The satellite also\\n will increase understanding of how heat is transported in the ocean.\\n\\n\\n ULYSSES- European Space Agency probe to study the Sun from an orbit over\\n its poles. Launched in late 1990, it carries particles-and-fields\\n experiments (such as magnetometer, ion and electron collectors for\\n various energy ranges, plasma wave radio receivers, etc.) but no camera.\\n\\n Since no human-built rocket is hefty enough to send Ulysses far out of\\n the ecliptic plane, it went to Jupiter instead, and stole energy from\\n that planet by sliding over Jupiter\\'s north pole in a gravity-assist\\n manuver in February 1992. This bent its path into a solar orbit tilted\\n about 85 degrees to the ecliptic. It will pass over the Sun\\'s south pole\\n in the summer of 1993. Its aphelion is 5.2 AU, and, surprisingly, its\\n perihelion is about 1.5 AU-- that\\'s right, a solar-studies spacecraft\\n that\\'s always further from the Sun than the Earth is!\\n\\n While in Jupiter\\'s neigborhood, Ulysses studied the magnetic and\\n radiation environment. For a short summary of these results, see\\n *Science*, V. 257, p. 1487-1489 (11 September 1992). For gory technical\\n detail, see the many articles in the same issue.\\n\\n\\n OTHER SPACE SCIENCE MISSIONS (note: this is based on a posting by Ron\\n Baalke in 11/89, with ISAS/NASDA information contributed by Yoshiro\\n Yamada (yamada@yscvax.ysc.go.jp). I\\'m attempting to track changes based\\n on updated shuttle manifests; corrections and updates are welcome.\\n\\n 1993 Missions\\n\\to ALEXIS [spring, Pegasus]\\n\\t ALEXIS (Array of Low-Energy X-ray Imaging Sensors) is to perform\\n\\t a wide-field sky survey in the \"soft\" (low-energy) X-ray\\n\\t spectrum. It will scan the entire sky every six months to search\\n\\t for variations in soft-X-ray emission from sources such as white\\n\\t dwarfs, cataclysmic variable stars and flare stars. It will also\\n\\t search nearby space for such exotic objects as isolated neutron\\n\\t stars and gamma-ray bursters. ALEXIS is a project of Los Alamos\\n\\t National Laboratory and is primarily a technology development\\n\\t mission that uses astrophysical sources to demonstrate the\\n\\t technology. Contact project investigator Jeffrey J Bloch\\n\\t (jjb@beta.lanl.gov) for more information.\\n\\n\\to Wind [Aug, Delta II rocket]\\n\\t Satellite to measure solar wind input to magnetosphere.\\n\\n\\to Space Radar Lab [Sep, STS-60 SRL-01]\\n\\t Gather radar images of Earth\\'s surface.\\n\\n\\to Total Ozone Mapping Spectrometer [Dec, Pegasus rocket]\\n\\t Study of Stratospheric ozone.\\n\\n\\to SFU (Space Flyer Unit) [ISAS]\\n\\t Conducting space experiments and observations and this can be\\n\\t recovered after it conducts the various scientific and\\n\\t engineering experiments. SFU is to be launched by ISAS and\\n\\t retrieved by the U.S. Space Shuttle on STS-68 in 1994.\\n\\n 1994\\n\\to Polar Auroral Plasma Physics [May, Delta II rocket]\\n\\t June, measure solar wind and ions and gases surrounding the\\n\\t Earth.\\n\\n\\to IML-2 (STS) [NASDA, Jul 1994 IML-02]\\n\\t International Microgravity Laboratory.\\n\\n\\to ADEOS [NASDA]\\n\\t Advanced Earth Observing Satellite.\\n\\n\\to MUSES-B (Mu Space Engineering Satellite-B) [ISAS]\\n\\t Conducting research on the precise mechanism of space structure\\n\\t and in-space astronomical observations of electromagnetic waves.\\n\\n 1995\\n\\tLUNAR-A [ISAS]\\n\\t Elucidating the crust structure and thermal construction of the\\n\\t moon\\'s interior.\\n\\n\\n Proposed Missions:\\n\\to Advanced X-ray Astronomy Facility (AXAF)\\n\\t Possible launch from shuttle in 1995, AXAF is a space\\n\\t observatory with a high resolution telescope. It would orbit for\\n\\t 15 years and study the mysteries and fate of the universe.\\n\\n\\to Earth Observing System (EOS)\\n\\t Possible launch in 1997, 1 of 6 US orbiting space platforms to\\n\\t provide long-term data (15 years) of Earth systems science\\n\\t including planetary evolution.\\n\\n\\to Mercury Observer\\n\\t Possible 1997 launch.\\n\\n\\to Lunar Observer\\n\\t Possible 1997 launch, would be sent into a long-term lunar\\n\\t orbit. The Observer, from 60 miles above the moon\\'s poles, would\\n\\t survey characteristics to provide a global context for the\\n\\t results from the Apollo program.\\n\\n\\to Space Infrared Telescope Facility\\n\\t Possible launch by shuttle in 1999, this is the 4th element of\\n\\t the Great Observatories program. A free-flying observatory with\\n\\t a lifetime of 5 to 10 years, it would observe new comets and\\n\\t other primitive bodies in the outer solar system, study cosmic\\n\\t birth formation of galaxies, stars and planets and distant\\n\\t infrared-emitting galaxies\\n\\n\\to Mars Rover Sample Return (MRSR)\\n\\t Robotics rover would return samples of Mars\\' atmosphere and\\n\\t surface to Earch for analysis. Possible launch dates: 1996 for\\n\\t imaging orbiter, 2001 for rover.\\n\\n\\to Fire and Ice\\n\\t Possible launch in 2001, will use a gravity assist flyby of\\n\\t Earth in 2003, and use a final gravity assist from Jupiter in\\n\\t 2005, where the probe will split into its Fire and Ice\\n\\t components: The Fire probe will journey into the Sun, taking\\n\\t measurements of our star\\'s upper atmosphere until it is\\n\\t vaporized by the intense heat. The Ice probe will head out\\n\\t towards Pluto, reaching the tiny world for study by 2016.\\n\\n\\nNEXT: FAQ #12/15 - Controversial questions\\n',\n", - " 'From: bprofane@netcom.com (Gert Niewahr)\\nSubject: Re: Rumours about 3DO ???\\nArticle-I.D.: netcom.bprofaneC51wHz.HIo\\nOrganization: Netcom Online Communications Services (408-241-9760 login: guest)\\nLines: 39\\n\\nIn article lex@optimla.aimla.com (Lex van Sonderen) writes:\\n>In article erik@westworld.esd.sgi.com (Erik Fortune) writes:\\n>>> better than CDI\\n>>*Much* better than CDI.\\n>Of course, I do not agree. It does have more horsepower. Horsepower is not\\n>the only measurement for \\'better\\'. It does not have full motion, full screen\\n>video yet. Does it have CD-ROM XA?\\n>\\n>>> starting in the 4 quarter of 1993\\n>>The first 3DO \"multiplayer\" will be manufactured by panasonic and will be \\n>>available late this year. A number of other manufacturers are reported to \\n>>have 3DO compatible boxes in the works.\\n>Which other manufacturers?\\n>We shall see about the date.\\n\\nA 3DO marketing rep. recently offered a Phillips marketing rep. a $100\\nbet that 3DO would have boxes on the market on schedule. The Phillips\\nrep. declined the bet, probably because he knew that 3DO players are\\nalready in pre-production manufacturing runs, 6 months before the\\ncommercial release date.\\n\\nBy the time of commercial release, there will be other manufacturers of\\n3DO players announced and possibly already tooling up production. Chip\\nsets will be in full production. The number of software companies\\ndesigning titles for the box will be over 300.\\n\\nHow do I know this? I was at a bar down the road from 3DO headquarters\\nlast week. Some folks were bullshitting a little too loudly about\\ncompany business.\\n\\n>>All this information is third hand or so and worth what you paid for it:-).\\n>This is second hand, but it still hard to look to the future ;-).\\n>\\n>Lex van Sonderen\\n>lex@aimla.com\\n>Philips Interactive Media\\n ^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n What an impartial source!\\n',\n", - " 'From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 33\\n\\nIn article cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n>In <11825@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>\\n>\\n>> Actually, my atheism is based on ignorance. Ignorance of the\\n>> existence of any god. Don\\'t fall into the \"atheists don\\'t believe\\n>> because of their pride\" mistake.\\n>\\n>How do you know it\\'s based on ignorance, couldn\\'t that be wrong? Why would it\\n>be wrong \\n>to fall into the trap that you mentioned? \\n>\\n\\n If I\\'m wrong, god is free at any time to correct my mistake. That\\n he continues not to do so, while supposedly proclaiming his\\n undying love for my eternal soul, speaks volumes.\\n\\n As for the trap, you are not in a position to tell me that I don\\'t\\n believe in god because I do not wish to. Unless you can know my\\n motivations better than I do myself, you should believe me when I\\n say that I earnestly searched for god for years and never found\\n him.\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n',\n", - " 'From: ba7116326@ntuvax.ntu.ac.sg\\nSubject: V-max handling request\\nLines: 5\\nNntp-Posting-Host: v9001.ntu.ac.sg\\nOrganization: Nanyang Technological University - Singapore\\n\\nhello there\\nican anyone who has handson experience on riding the Yamaha v-max, pls kindly\\ncomment on its handling .\\n\\n\\n',\n", - " 'From: lioness@maple.circa.ufl.edu\\nSubject: Re: comp.graphics.programmer\\nOrganization: Center for Instructional and Research Computing Activities\\nLines: 68\\nReply-To: LIONESS@ufcc.ufl.edu\\nNNTP-Posting-Host: maple.circa.ufl.edu\\n\\nIn article , andreasa@dhhalden.no (ANDREAS ARFF) writes:\\n|>Hello netters\\n|>\\n|>Sorry, I don\\'t know if this is the right way of doing this kind of thing,\\n|>probably should be a CFV, but since I don\\'t have tha ability to create a \\n|>news group myself, I just want to start the discussion. \\n|>\\n|>I enjoy reading c.g very much, but I often find it difficult to sort out what\\n|>I\\'m interested in. Everything from screen-drivers, graphics cards, graphics\\n|>programming and graphics programs are discused here. What I\\'d like is a \\n|>comp.graphics.programmer news group.\\n|>What do you other think.\\n\\nThis sounds wonderful, but it seems no one either wants to spend time doing\\nthis, or they don\\'t have the power to do so. For example, I would like\\nto see a comp.graphics architecture like this:\\n\\ncomp.graphics.algorithms.2d\\ncomp.graphics.algorithms.3d\\ncomp.graphics.algorithms.misc\\ncomp.graphics.hardware\\ncomp.graphics.misc\\ncomp.graphics.software/apps\\n\\nHowever, that is almost overkill. Something more like this would probably\\nmake EVERYONE a lot happier:\\n\\ncomp.graphics.programmer\\ncomp.graphics.hardware\\ncomp.graphics.apps\\ncomp.graphics.misc\\n\\nIt would be nice to see specialized groups devote to 2d, 3d, morphing,\\nraytracing, image processing, interactive graphics, toolkits, languages,\\nobject systems, etc. but these could be posted to a relevant group or\\nhave a mailing list organized.\\n\\nThat way when someone reads news they don\\'t have to see these subject\\nheadings, which are rather disparate:\\n\\nSystem specific stuff ( should be under comp.sys or comp.os.???.programmer ):\\n\\n\\t\"Need help programming GL\"\\n\\t\"ModeX programming information?\"\\n\\t\"Fast sprites on PC\"\\n\\nHardware technical stuff:\\n\\n\\t\"Speed of Weitek P9000\"\\n\\t\"Drivers for SpeedStar 24X\"\\n\\nApplications oriented stuff:\\n\\n\\t\"VistaPro 3.0 help\"\\n\\t\"How good is 3dStudio?\"\\n\\t\"Best image processing program for Amiga\"\\n\\nProgramming oriented stuff:\\n\\n\\t\"Fast polygon routine needed\"\\n\\t\"Good morphing alogirhtm wanted\"\\n\\t\"Best depth sort for triangles?\"\\n\\t\"Which C++ library to get?\"\\n\\nI wish someone with the power would get a CFD and then a CFV going on\\nthis stuff....this newsgroup needs it.\\n\\nBrian\\n',\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: 30826\\nArticle-I.D.: aurora.1993Apr25.151108.1\\nOrganization: University of Alaska Fairbanks\\nLines: 14\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nI like option C of the new space station design.. \\nIt needs some work, but it is simple and elegant..\\n\\nIts about time someone got into simple construction versus overly complex...\\n\\nBasically just strap some rockets and a nose cone on the habitat and go for\\nit..\\n\\nMight be an idea for a Moon/Mars base to.. \\n\\nWhere is Captain Eugenia(sp) when you need it (reference to russian heavy\\nlifter, I think).\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", - " 'From: ramarren@apple.com (Godfrey DiGiorgi)\\nSubject: Re: uh, der, whassa deltabox?\\nOrganization: Apple Computer\\nLines: 15\\n\\n>Can someone tell me what a deltabox frame is, and what relation that has,\\n>if any, to the frame on my Hawk GT? That way, next time some guy comes up\\n>to me in some parking lot and sez \"hey, dude, nice bike, is that a deltabox\\n>frame on there?\" I can say something besides \"duh, er, huh?\"\\n\\nThe Yammie Deltabox and the Hawk frame are conceptually similar\\nbut Yammie has a TM on the name. The Hawk is a purer \\'twin spar\\' \\nframe design: investment castings at steering head and swing arm\\ntied together with aluminum extruded beams. The Yammie solution is\\na bit more complex.\\n------------------------------------------------------------------\\nGodfrey DiGiorgi - ramarren@apple.com | DoD #0493 AMA#489408\\n Rule #1: Never sell a Ducati. | \"The street finds its own\\n Rule #2: Always obey Rule #1. | uses for things.\" -WG\\n------ Ducati Cinelli Toyota Krups Nikon Sony Apple Telebit ------\\n',\n", - " 'Subject: Re: A visit from the Jehovah\\'s Witnesses\\nFrom: lippard@skyblu.ccit.arizona.edu (James J. Lippard)\\nDistribution: world,local\\nOrganization: University of Arizona\\nNntp-Posting-Host: skyblu.ccit.arizona.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\nLines: 27\\n\\nIn article , chrisb@tafe.sa.edu.au (Chris BELL) writes...\\n>jbrown@batman.bmd.trw.com writes:\\n> \\n>>My syllogism is of the form:\\n>>A is B.\\n>>C is A.\\n>>Therefore C is B.\\n> \\n>>This is a logically valid construction.\\n> \\n>>Your syllogism, however, is of the form:\\n>>A is B.\\n>>C is B.\\n>>Therefore C is A.\\n> \\n>>Therefore yours is a logically invalid construction, \\n>>and your comments don\\'t apply.\\n\\nIf all of those are \"is\"\\'s of identity, both syllogisms are valid.\\nIf, however, B is a predicate, then the second syllogism is invalid.\\n(The first syllogism, as you have pointed out, is valid--whether B\\nis a predicate or designates an individual.)\\n\\nJim Lippard Lippard@CCIT.ARIZONA.EDU\\nDept. of Philosophy Lippard@ARIZVMS.BITNET\\nUniversity of Arizona\\nTucson, AZ 85721\\n',\n", - " 'From: hahm@fossi.hab-weimar.de (peter hahm)\\nSubject: Radiosity\\nKeywords: radiosity, raytracing, rendering\\nNntp-Posting-Host: fossi.hab-weimar.de\\nOrganization: Hochschule fuer Architektur und Bauwesen Weimar, Germany\\nLines: 17\\n\\n\\n\\nRADIOSITY SOURCES WANTED !!!\\n============================\\n\\nWhen I read the comp.graphics group, I never found something about \\nradiosity. Is there anybody interested in out there? I would be glad \\nto hear from somebody.\\nI am looking for source-code for the radiosity-method. I have already\\nread common literature, e. g.Foley ... . I think little examples could \\nhelp me to understand how radiosity works. Common languages ( C, C++, \\nPascal) prefered.\\nI hope you will help me!\\n\\nYours\\nPeter \\n\\n',\n", - " 'From: hilmi-er@dsv.su.se (Hilmi Eren)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik)\\nLines: 95\\nNntp-Posting-Host: viktoria.dsv.su.se\\nReply-To: hilmi-er@dsv.su.se (Hilmi Eren)\\nOrganization: Dept. of Computer and Systems Sciences, Stockholm University\\n\\n\\n\\n\\n|>The student of \"regional killings\" alias Davidian (not the Davidian religios sect) writes:\\n\\n\\n|>Greater Armenia would stretch from Karabakh, to the Black Sea, to the\\n|>Mediterranean, so if you use the term \"Greater Armenia\" use it with care.\\n\\n\\n\\tFinally you said what you dream about. Mediterranean???? That was new....\\n\\tThe area will be \"greater\" after some years, like your \"holocaust\" numbers......\\n\\n\\n\\n\\n|>It has always been up to the Azeris to end their announced winning of Karabakh \\n|>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to \\n|>power last year, he announced he would be be \"swimming in Lake Sevan [in \\n|>Armeniaxn] by July\".\\n\\t\\t*****\\n\\tIs\\'t July in USA now????? Here in Sweden it\\'s April and still cold.\\n\\tOr have you changed your calendar???\\n\\n\\n|>Well, he was wrong! If Elchibey is going to shell the \\n|>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey \\n\\t\\t\\t\\t\\t\\t ****************\\n|>is going to shell Karabakh from Fizuli his people will pay the price! If \\n\\t\\t\\t\\t\\t\\t ******************\\n|>Elchibey thinks he can get away with bombing Armenia from the hills of \\n|>Kelbajar, his people will pay the price. \\n\\t\\t\\t ***************\\n\\n\\n\\tNOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT\\'s TRUE.\\n\\t\\n\\tSHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH\\n\\t\\t\\t\\t\\t\\t **************\\n\\tBEING RAPED, KILLED AND TORTURED BY THE ARMENIANS??????????\\n\\t\\n\\tHAVE YOU HEARDED SOMETHING CALLED: \"GENEVA CONVENTION\"???????\\n\\tYOU FACIST!!!!!\\n\\n\\n\\n\\tOhhh i forgot, this is how Armenians fight, nobody has forgot\\n\\tyou killings, rapings and torture against the Kurds and Turks once\\n\\tupon a time!\\n \\n \\n\\n|>And anyway, this \"60 \\n|>Kurd refugee\" story, as have other stories, are simple fabrications sourced in \\n|>Baku, modified in Ankara. Other examples of this are Armenia has no border \\n|>with Iran, and the ridiculous story of the \"intercepting\" of Armenian military \\n|>conversations as appeared in the New York Times supposedly translated by \\n|>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed \\n|>\"special correspondent\" to the NY Times from Baku. Real accurate!\\n\\nOhhhh so swedish RedCross workers do lie they too? What ever you say\\n\"regional killer\", if you don\\'t like the person then shoot him that\\'s your policy.....l\\n\\n\\n|>[HE]\\tSearch Turkish planes? You don\\'t know what you are talking about.<-------\\n|>[HE]\\tsince it\\'s content is announced to be weapons? \\t\\t\\t\\ti\\t \\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n|>Well, big mouth Ozal said military weapons are being provided to Azerbaijan\\ti\\n|>from Turkey, yet Demirel and others say no. No wonder you are so confused!\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\tConfused?????\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\tYou facist when you delete text don\\'t change it, i wrote:\\t\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n Search Turkish planes? You don\\'t know what you are talking about.\\ti\\n Turkey\\'s government has announced that it\\'s giving weapons <-----------i\\n to Azerbadjan since Armenia started to attack Azerbadjan\\t\\t\\n it self, not the Karabag province. So why search a plane for weapons\\t\\n since it\\'s content is announced to be weapons? \\n\\n\\tIf there is one that\\'s confused then that\\'s you! We have the right (and we do)\\n\\tto give weapons to the Azeris, since Armenians started the fight in Azerbadjan!\\n \\n\\n|>You are correct, all Turkish planes should be simply shot down! Nice, slow\\n|>moving air transports!\\n\\n\\tShoot down with what? Armenian bread and butter? Or the arms and personel \\n\\tof the Russian army?\\n\\n\\n\\n\\nHilmi Eren\\nStockholm University\\n',\n", - " 'From: borst@cs.utwente.nl (Pim Borst)\\nSubject: PBM-PLUS sources, where?\\nNntp-Posting-Host: utis116.cs.utwente.nl\\nOrganization: University of Twente, Dept. of Computer Science\\nLines: 7\\n\\nHi everybody,\\n\\nCan anyone name an anonymous ftp-site where I can find the sources\\nof the PBM-PLUS package (portable bit/gray/pixel map).\\nI would like to compile and run it on a Sun Sparcstation.\\n\\nThanks!\\n',\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: About this \\'Center for Policy Resea\\nOrganization: The Department of Redundancy Department\\nLines: 85\\n\\nIn article <1483500350@igc.apc.org> Center for Policy Research writes:\\n\\n>It seems to me that many readers of this conference are interested\\n>who is behind the Center for Polict Research. I will oblige.\\n\\nTrumpets, please.\\n\\n>My name is Elias Davidsson, Icelandic citizen, born in Palestine. My\\n>mother was thrown from Germany because she belonged to the \\'undesirables\\'\\n>(at that times this group was defined as \\'Jews\\'). She was forced to go\\n>to Palestine due to many cynical factors. \\n\\n\"Forced to go to Palestine.\" How dreadful. Unlike other\\nundesirables/Jews, she wasn\\'t forced to go into a gas chamber, forced\\nunder a bulldozer, thrown into a river, forced into a \"Medical\\nexperiment\" like a rat, forced to march until she dropped dead, burned\\nto nothingness in a crematorium. Your mother was \"forced to go to\\nPalestine.\" You have our deepest sympathies.\\n\\n>I have meanwhile settled in Iceland (30 years ago) \\n\\nWe are pleased to hear of your escape. At least you won\\'t have to\\nsuffer the same fate that your mother did.\\n\\n>and met many people who were thrown out from\\n>my homeland, Palestine, \\n\\nYour homeland, Palestine? \\n\\n>because of the same reason (they belonged to\\n>the \\'indesirables\\'). \\n\\nShould we assume that you are refering here to Jews who were kicked\\nout of their homes in Jerusalem during the Jordanian Occupation of\\nEast Jerusalem? These are the same people who are now being called\\nthieves for re-claiming houses that they once owned and lived in and\\nnever sold to anyone?\\n\\n>These people include my neighbors in Jerusalem\\n>with the children of whom I played as child. Their crime: Theyare\\n>not Jews. \\n\\nI have never heard of NOT being a Jew as a crime. Certainly in\\nIsrael, there is no such crime. In some times and places BEING a Jew\\nis a crime, but NOT being a Jew??!!\\n\\n>My conscience does not accept such injustice, period. \\n\\nOur brains do not accept your logic, yet, either.\\n\\n>My\\n>work for justice is done in the name of my principled opposition to racism\\n>and racial discrimination. Those who protest against such practices\\n>in Arab countries have my support - as long as their protest is based\\n>on a principled position, but not as a tactic to deflect criticism\\n>from Israel. \\n\\nThe way you\\'ve written this, you seem to accept criticism in the Arab\\nworld UNLESS it deflects criticism from Israel, in which case, we have\\nto presume, you no longer support criticism of the Arab world.\\n\\n>The struggle against discrimination and racism is universal.\\n\\nLook who\\'s taling about discrimination now!\\n\\n>The Center for Policy Research is a name I gave to those activities\\n>undertaken under my guidance in different domains, and which command\\n>the support of many volunteers in Iceland. It is however not a formal\\n>institution and works with minimal funds.\\n\\nBe careful. You are starting to sound like Barfling.\\n\\n>Professionally I am music teacher and composer. I have published \\n>several pieces and my piano music is taught widely in Europe.\\n>\\n>I would hope that discussion about Israel/Palestine be conducted in\\n>a more civilized manner. Calling names is not helpful.\\n\\nGood. Don\\'t call yourself \"ARF\" or \"the Center for Policy Research\",\\neither. \\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: kshin@stein.u.washington.edu (Kevin Shin)\\nSubject: thinning algorithm\\nOrganization: University of Washington, Seattle\\nLines: 10\\nNNTP-Posting-Host: stein.u.washington.edu\\n\\nHi, netters\\n\\nI am looking for source code that can reads the ascii file\\nor bitmap file and produced the thinned image.\\nFor example, to preprocess the character image I want to\\napply thinning algorithm.\\n\\nthanks\\nkevin\\n.\\n',\n", - " \"From: wrs@wslack.UUCP (Bill Slack)\\nSubject: Re: Shaft-drives and Wheelies\\nDistribution: world\\nOrganization: W. R. Slack\\nLines: 20\\n\\n\\nVarious posts about shafties can't do wheelies:\\n\\n>: > No Mike. It is imposible due to the shaft effect. The centripital effects\\n>: > of the rotating shaft counteract any tendency for the front wheel to lift\\n>: > off the ground\\n>\\n>Good point John...a buddy of mine told me that same thing when I had my\\n>BMW R80GS; I dumped the clutch at 5,000rpm (hey, ito nly revved to 7 or so) and\\n>you know what? He was right!\\n\\nUh, folks, the shaft doesn't have diddleysquatpoop to do with it. I can get\\nthe front wheel off the ground on my /5, ferchrissake!\\n\\nBill \\n__\\nwrs@gozer.mv.com (Bill Slack) DoD #430\\nBut her tears were shed in vain and her every word was lost\\nIn the rumble of his engine and the smoke from his exhaust! Oo..o&o\\n \\n\",\n", - " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Re: Who Says the Apostles Were Tortured?\\nLines: 9\\n\\nThe traditions of the church hold that all the \"apostles\" (meaning the 11\\nsurviving disciples, Matthias, Barnabas and Paul) were martyred, except for\\nJohn. \"Tradition\" should be understood to read \"early church writings other\\nthan the bible and heteroorthodox scriptures\".\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", - " \"From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Insurance and lotsa points...\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 39\\n\\nIn article <1993Apr18.230531.11329@bcars6a8.bnr.ca> keithh@bnr.ca (Keith Hanlan) writes:\\n>In article <13386@news.duke.edu> infante@acpub.duke.edu (Andrew Infante) writes:\\n>>Well, it looks like I'm F*cked for insurance.\\n>>\\n>>I had a DWI in 91 and for the beemer, as a rec.\\n>>vehicle, it'll cost me almost $1200 bucks to insure/year.\\n>>\\n>>Now what do I do?\\n>\\n>Sell the bike and the car and start taking the bus. That way you can\\n>keep drinking which seems to be where your priorities lay.\\n>\\n>I expect that enough of us on this list have lost friends because of\\n>driving drunks that our collective sympathy will be somewhat muted.\\n\\nLook, guy, I doubt anyone here approves of Drunk Driving, but if\\nhe's been caught and convicted and punished maybe you ought to\\nlighten up? I mean, it isn't like most of us haven't had a few\\nand then ridden or driven home. *We* just didn't get caught.\\nAnd I can speak for myself and say it will *never* happen again,\\nbut that is beside the point.\\n\\nIn answer to the original poster: I'd insure whatever vehicle\\nis cheapest, and can get you to and from work, and suffer\\nthrough it for a few years, til your rates drop.\\n\\nAnd *don't* drink and drive. I had one friend killed by a \\ndrunk, and I was rear ended by one, totaling my bike (bent\\nframe), and only failing to kill me because I had an eye\\non my mirror while I waited at the stoplight.\\n\\nRegards, Charles\\nDoD0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n\",\n", - " 'From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Ed must be a Daemon Child!!\\nArticle-I.D.: usenet.1pqhvu$go8\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 22\\nNNTP-Posting-Host: slc10.ins.cwru.edu\\n\\n\\nIn a previous article, svoboda@rtsg.mot.com (David Svoboda) says:\\n\\n>In article <1993Apr2.163021.17074@linus.mitre.org> cookson@mbunix.mitre.org (Cookson) writes:\\n>|\\n>|Wait a minute here, Ed is Noemi AND Satan? Wow, and he seemed like such\\n>|a nice boy at RCR I too.\\n>\\n>And Noemi makes me think of \"cuddle\", not \"KotL\".\\n>\\n\\n\\tYou talking bout the same Noemi I know? She makes me think of big bore\\nhand guns and extreme weirdness. This babe rode a CSR300 across the desert! And\\na borrowed XL100 on the Death Ride. Don\\'t fuck with her man, your making a big\\nmistake.\\n\\n\\n\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n',\n", - " \"From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: ISLAM BORDERS vs Israeli borders\\nOrganization: University of Illinois at Urbana\\nLines: 46\\n\\nhasan@McRCIM.McGill.EDU writes:\\n\\n\\n>In article <1993Apr5.202800.27705@wam.umd.edu>, spinoza@next06wor.wam.umd.edu (Yon Bonnie Laird of Cairn Robbing) writes:\\n>|> In article ilyess@ECE.Concordia.CA \\n>|> (Ilyess Bdira) writes:\\n>|> > > 1)why do jews who don't even believe in God (as is the case with many\\n>|> > of the founders of secular zionism) have a right in Palestine more\\n>|> > than the inhabitants of Palestine, just because God gave you the land?\\n>|> G-d has nothing to do with it. Some of the land was in fact given to the \\n>|> Jews by the United Nations, quite a bit of it was purchased from Arab \\n>|> absentee landlords. Present claims are based on prior ownership (purchase \\n>|> from aforementioned absentee landlords) award by the United Nations in the \\n>|> partition of the Palestine mandate territory, and as the result of \\n>|> defensive wars fought against the Egyptians, Syrians, Jordanians, et al.\\n>|> \\n>|> ***\\n>|> > 2)Why do most of them speak of the west bank as theirs while most of\\n>|> > the inhabitants are not Jews and do not want to be part of Israel?\\n>|> First, I should point out that many Jews do not in fact agree with the \\n>|> idea that the West Bank is theirs. Since, however, I agree with those who \\n>|> claim the West Bank, I think I can answer your question thusly: the West \\n>|> bank was what is called the spoils of war. Hussein ordered the Arab Legion \\n\\n>\\t\\t\\t^^^^^^^^^^^^^^^^^^^^\\n>This is very funny.\\n>Anyway, suppose that in fact israel didnot ATTACK jordan till jordan attacked\\n>israel. Now, how do you explain the attack on Syria in 1967, Syria didnot\\n>enter the war with israel till the 4th day .\\n\\nSyria had been bombing Israeli settlements from the Golan and sending\\nterrorist squads into Israel for years. Do you need me to provide specifics?\\nI can.\\n\\nWhy don't you give it up, Hasan? I'm really starting to get tired of your \\nempty lies. You can defend your position and ideology with documented facts\\nand arguments rather than the crap you regularly post. Take an example from\\nsomeone like Brendan McKay, with whom I don't agree, but who uses logic and\\ndocumentation to argue his position. Why must you insist on constantly spouting\\nbaseless lies? You may piss some people off, but that's about it. You won't\\nprove anything or add anything worthy to a discussion. Your arguments just \\nprove what a poor debater you are and how weak your case really is.\\n\\nAll my love,\\nEd.\\n\\n\",\n", - " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: Route Suggestions?\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nDistribution: usa\\nLines: 27\\n\\nIn article <1993Apr20.173413.29301@porthos.cc.bellcore.com> mdc2@pyuxe.cc.bellcore.com (corrado,mitchell) writes:\\n>In article <1qmm5dINNnlg@cronkite.Central.Sun.COM>, doc@webrider.central.sun.com (Steve Bunis - Chicago) writes:\\n>> 55E -> I-81/I-66E. After this point the route is presently undetermined\\n>> into Pennsylvania, New York?, and back to Chicago (by 6/6). Suggestions \\n>\\n>If you do make it into New York state, the Palisades Interstate Parkway is a\\n>pleasant ride (beautiful scenery, good road surface, minimal traffic). You\\n\\t\\t\\t\\t ^^^^^^^^^^^^^^^^^\\n\\n\\tBeen a while since you hit the PIP? The pavement (at least until around\\n\\texit 9) is for sh*t these days. I think it must have taken a beating\\n\\tthis winter, because I don\\'t remember it being this bad. It\\'s all\\n\\tbreaking apart, and there are some serious potholes now. Of course\\n\\tthere are also the storm drains that are *in* your lane as opposed\\n\\tto on the side of the road (talk about annoying cost saving measures).\\n\\t\\t\\n\\tAs for traffic, don\\'t try it around 5:15 - 6:30 on weekdays (outbound,\\n\\trush hour happens inbound too) as there are many BDC\\'s...\\n\\n\\t<...> <...>\\n> \\'\\\\ Mitch Corrado\\n> / DEC \\\\======== mdc2@panther.tnds.bellcore.com\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", - " 'From: joe@rider.cactus.org (Joe Senner)\\nSubject: Re: BMW MOA members read this!\\nReply-To: joe@rider.cactus.org\\nDistribution: world\\nOrganization: NOT\\nLines: 25\\n\\nvech@Ra.MsState.Edu (Craig A. Vechorik) writes:\\n]I wrote the slash two blues for a bit of humor which seems to be lacking\\n]in the MOA Owners News, when most of the stuff is \"I rode the the first\\n]day, I saw that, I rode there the second day, I saw this\" \\n\\nI admit it was a surprise to find something interesting to read in \\nthe most boring and worthless mag of all the ones I get.\\n\\n]any body out there know were the sense if humor went in people?\\n]I though I still had mine, but I dunno... \\n\\nI think most people see your intended humor, I do, I liked the article.\\nyou seem to forget that you\\'ve stepped into the political arena. as well\\nintentioned as you may intend something you\\'re walking through a china\\nstore carrying that /2 on your head. everything you say or do says something\\nabout how you would represent the membership on any given day. you don\\'t\\nhave to look far in american politics to see what a few light hearted\\njokes about one segment of the population can do to someone in the limelight.\\n\\nOBMoto: I did manage to squeak in a reference to a /2 ;-)\\n\\n-- \\nJoe Senner joe@rider.cactus.org\\nAustin Area Ride Mailing List ride@rider.cactus.org\\nTexas SplatterFest Mailing List fest@rider.cactus.org\\n',\n", - " \"From: Center for Policy Research \\nSubject: Final Solution for Gaza ?\\nNf-ID: #N:cdp:1483500354:000:5791\\nNf-From: cdp.UUCP!cpr Apr 23 15:10:00 1993\\nLines: 126\\n\\n\\nFrom: Center for Policy Research \\nSubject: Final Solution for Gaza ?\\n\\n\\nFinal Solution for the Gaza ghetto ?\\n------------------------------------\\n\\nWhile Israeli Jews fete the uprising of the Warsaw ghetto, they\\nrepress by violent means the uprising of the Gaza ghetto and\\nattempt to starve the Gazans.\\n\\nThe Gaza strip, this tiny area of land with the highest population\\ndensity in the world, has been cut off from the world for weeks.\\nThe Israeli occupier has decided to punish the whole population of\\nGaza, some 700.000 people, by denying them the right to leave the\\nstrip and seek work in Israel.\\n\\nWhile Polish non-Jews risked their lives to save Jews from the\\nGhetto, no Israeli Jew is known to have risked his life to help\\nthe Gazan resistance. The only help given to Gazans by Israeli\\nJews, only dozens of people, is humanitarian assistance.\\n\\nThe right of the Gazan population to resist occupation is\\nrecognized in international law and by any person with a sense of\\njustice. A population denied basic human rights is entitled to\\nrise up against its tormentors.\\n\\nAs is known, the Israeli regime is considering Gazans unworthy of\\nIsraeli citizenship and equal rights in Israel, although they are\\nconsidered worthy to do the dirty work in Israeli hotels, shops\\nand fields. Many Gazans are born in towns and villages located in\\nIsrael. They may not live there, for these areas are reserved for\\nthe Master Race.\\n\\nThe Nazi regime accorded to the residents of the Warsaw ghetto the\\nright to self- administration. They selected Jews to pacify the\\noccupied population and preventing any form of resistance. Some\\nJewish collaborators were killed. Israel also wishes to rule over\\nGaza through Arab collaborators.\\n\\nAs Israel denies Gazans the only two options which are compatible\\nwith basic human rights and international law, that of becoming\\nIsraeli citizens with full rights or respecting their right for\\nself-determination, it must be concluded that the Israeli Jewish\\nsociety does not consider Gazans full human beings. This attitude\\nis consistent with the attitude of the Nazis towards Jews. The\\ncurrent policies by the Israeli government of cutting off Gaza are\\nconsistent with the wish publicly expressed by Prime Mininister\\nYitzhak Rabin that 'Gaza sink into the sea'. One is led to ask\\noneself whether Israeli leaders entertain still more sinister\\ngoals towards the Gazans ? Whether they have some Final Solution\\nup their sleeve ?\\n\\nI urge all those who have slight human compassion to do whatever\\nthey can to help the Gazans regain their full human, civil and\\npolitical rights, to which they are entitled as human beings.\\n\\nElias Davidsson Iceland\\n\\nFrom elias@ismennt.is Fri Apr 23 02:30:21 1993 Received: from\\nisgate.is by igc.apc.org (4.1/Revision: 1.77 )\\n\\tid AA00761; Fri, 23 Apr 93 02:30:13 PDT Received: from\\nrvik.ismennt.is by isgate.is (5.65c8/ISnet/14-10-91); Fri, 23 Apr\\n1993 09:29:41 GMT Received: by rvik.ismennt.is\\n(16.8/ISnet/11-02-92); Fri, 23 Apr 93 09:30:23 GMT From:\\nelias@ismennt.is (Elias Davidsson) Message-Id:\\n<9304230930.AA11852@rvik.ismennt.is> Subject: no subject (file\\ntransmission) To: cpr@igc.org Date: Fri, 23 Apr 93 9:30:22 GMT\\nX-Charset: ASCII X-Char-Esc: 29 Status: RO\\n\\nFinal Solution for the Gaza ghetto ?\\n------------------------------------\\n\\nWhile Israeli Jews fete the uprising of the Warsaw ghetto, they\\nrepress by violent means the uprising of the Gaza ghetto and\\nattempt to starve the Gazans.\\n\\nThe Gaza strip, this tiny area of land with the highest population\\ndensity in the world, has been cut off from the world for weeks.\\nThe Israeli occupier has decided to punish the whole population of\\nGaza, some 700.000 people, by denying them the right to leave the\\nstrip and seek work in Israel.\\n\\nWhile Polish non-Jews risked their lives to save Jews from the\\nGhetto, no Israeli Jew is known to have risked his life to help\\nthe Gazan resistance. The only help given to Gazans by Israeli\\nJews, only dozens of people, is humanitarian assistance.\\n\\nThe right of the Gazan population to resist occupation is\\nrecognized in international law and by any person with a sense of\\njustice. A population denied basic human rights is entitled to\\nrise up against its tormentors.\\n\\nAs is known, the Israeli regime is considering Gazans unworthy of\\nIsraeli citizenship and equal rights in Israel, although they are\\nconsidered worthy to do the dirty work in Israeli hotels, shops\\nand fields. Many Gazans are born in towns and villages located in\\nIsrael. They may not live there, for these areas are reserved for\\nthe Master Race.\\n\\nThe Nazi regime accorded to the residents of the Warsaw ghetto the\\nright to self- administration. They selected Jews to pacify the\\noccupied population and preventing any form of resistance. Some\\nJewish collaborators were killed. Israel also wishes to rule over\\nGaza through Arab collaborators.\\n\\nAs Israel denies Gazans the only two options which are compatible\\nwith basic human rights and international law, that of becoming\\nIsraeli citizens with full rights or respecting their right for\\nself-determination, it must be concluded that the Israeli Jewish\\nsociety does not consider Gazans full human beings. This attitude\\nis consistent with the attitude of the Nazis towards Jews. The\\ncurrent policies by the Israeli government of cutting off Gaza are\\nconsistent with the wish publicly expressed by Prime Mininister\\nYitzhak Rabin that 'Gaza sink into the sea'. One is led to ask\\noneself whether Israeli leaders entertain still more sinister\\ngoals towards the Gazans ? Whether they have some Final Solution\\nup their sleeve ?\\n\\nI urge all those who have slight human compassion to do whatever\\nthey can to help the Gazans regain their full human, civil and\\npolitical rights, to which they are entitled as human beings.\\n\\nElias Davidsson Iceland\\n\\n\",\n", - " 'From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Ontario Hydro - Research Division\\nLines: 18\\n\\nIn article mcguire@cs.utexas.edu (Tommy Marcus McGuire) writes:\\n>\\n>Obcountersteer: For some reason, I\\'ve discovered that pulling on the\\n>wrong side of the handlebars (rather than pushing on the other wrong\\n>side, if you get my meaning) provides a feeling of greater control. For\\n>example, rather than pushing on the right side to lean right to turn \\n>right (Hi, Lonny!), pulling on the left side at least until I get leaned\\n>over to the right feels more secure and less counter-intuitive. Maybe\\n>I need psychological help.\\n\\nI told a newbie friend of mine, who was having trouble from the complicated\\nexplanations of his rider course, to think of using the handlebars to lean,\\nnot to turn. Push the right handlebar \"down\" (or pull left up or whatever)\\nto lean right. It worked for him, he stopped steering with his tuchus.\\n\\nI\\'ve bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n',\n", - " 'From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Islam & Dress Code for women\\nOrganization: Monash University, Melb., Australia.\\nLines: 120\\n\\nIn <16BA7103C3.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n\\n>In article <1993Apr5.091258.11830@monu6.cc.monash.edu.au>\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n> \\n>(Deletion)\\n>>>>Of course people say what they think to be the religion, and that this\\n>>>>is not exactly the same coming from different people within the\\n>>>>religion. There is nothing with there existing different perspectives\\n>>>>within the religion -- perhaps one can say that they tend to converge on\\n>>>>the truth.\\n>>\\n>>>My point is that they are doing a lot of harm on the way in the meantime.\\n>>>\\n>>>And that they converge is counterfactual, religions appear to split and\\n>>>diverge. Even when there might be a \\'True Religion\\' at the core, the layers\\n>>>above determine what happens in practise, and they are quite inhumane\\n>>>usually.\\n>>>\\n> \\n>What you post then is supposed to be an answer, but I don\\'t see what is has\\n>got to do with what I say.\\n> \\n>I will repeat it. Religions as are harm people. And religions don\\'t\\n>converge, they split. Giving more to disagree upon. And there is a lot\\n>of disagreement to whom one should be tolerant or if one should be\\n>tolerant at all.\\n\\nIdeologies also split, giving more to disagree upon, and may also lead\\nto intolerance. So do you also oppose all ideologies?\\n\\nI don\\'t think your argument is an argument against religion at all, but\\njust points out the weaknesses of human nature.\\n\\n>(Big deletion)\\n>>(2) Do women have souls in Islam?\\n>>\\n>>People have said here that some Muslims say that women do not have\\n>>souls. I must admit I have never heard of such a view being held by\\n>>Muslims of any era. I have heard of some Christians of some eras\\n>>holding this viewpoint, but not Muslims. Are you sure you might not be\\n>>confusing Christian history with Islamic history?\\n> \\n>Yes, it is supposed to have been a predominant view in the Turkish\\n>Caliphate.\\n\\nI would like a reference if you have got one, for this is news to me.\\n\\n>>Anyhow, that women are the spiritual equals of men can be clearly shown\\n>>from many verses of the Qur\\'an. For example, the Qur\\'an says:\\n>>\\n>>\"For Muslim men and women, --\\n>>for believing men and women,\\n>>for devout men and women,\\n>>for true men and women,\\n>>for men and women who are patient and constant,\\n>>for men and women who humble themselves,\\n>>for men and women who give in charity,\\n>>for men and women who fast (and deny themselves),\\n>>for men and women who guard their chastity,\\n>>and for men and women who engage much in God\\'s praise --\\n>>For them has God prepared forgiveness and a great reward.\"\\n>>\\n>>[Qur\\'an 33:35, Abdullah Yusuf Ali\\'s translation]\\n>>\\n>>There are other quotes too, but I think the above quote shows that men\\n>>and women are spiritual equals (and thus, that women have souls just as\\n>>men do) very clearly.\\n>>\\n> \\n>No, it does not. It implies that they have souls, but it does not say they\\n>have souls. And it is not given that the quote above is given a high\\n>priority in all interpretations.\\n\\nOne must approach the Qur\\'an with intelligence. Any thinking approach\\nto the Qur\\'an cannot but interpret the above verse and others like it\\nthat women and men are spiritual equals.\\n\\nI think that the above verse does clearly imply that women have\\nsouls. Does it make any sense for something without a soul to be\\nforgiven? Or to have a great reward (understood to be in the\\nafter-life)? I think the usual answer would be no -- in which case, the\\npart saying \"For them has God prepared forgiveness and a great reward\"\\nsays they have souls. \\n\\n(If it makes sense to say that things without souls can be forgiven, then \\nI have no idea _what_ a soul is.)\\n\\nAs for your saying that the quote above may not be given a high priority\\nin all interpretations, any thinking approach to the Qur\\'an has to give\\nall verses of the Qur\\'an equal priority. That is because, according to\\nMuslim belief, the _whole_ Qur\\'an is the revelation of God -- in fact,\\ndenying the truth of any part of the Qur\\'an is sufficient to be\\nconsidered a disbeliever in Islam.\\n\\n>Quite similar to you other post, even when the Quran does not encourage\\n>slavery, it is not justified to say that iit forbids or puts an end to\\n>slavery. It is a non sequitur.\\n\\nLook, any approach to the Qur\\'an must be done with intelligence and\\nthought. It is in this fashion that one can try to understand the\\nQuran\\'s message. In a book of finite length, it cannot explicitly\\nanswer every question you want to put to it, but through its teachings\\nit can guide you. I think, however, that women are the spiritual equals\\nof men is clearly and unambiguously implied in the above verse, and that\\nsince women can clearly be \"forgiven\" and \"rewarded\" they _must_ have\\nsouls (from the above verse).\\n\\nLet\\'s try to understand what the Qur\\'an is trying to teach, rather than\\ntry to see how many ways it can be misinterpreted by ignoring this\\npassage or that passage. The misinterpretations of the Qur\\'an based on\\nignoring this verse or that verse are infinite, but the interpretations \\nfully consistent are more limited. Let\\'s try to discuss these\\ninterpretations consistent with the text rather than how people can\\nignore this bit or that bit, for that is just showing how people can try\\nto twist Islam for their own ends -- something I do not deny -- but\\nprovides no reflection on the true teachings of Islam whatsoever.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n',\n", - " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: THE HAMAS WAY of DEATH\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 104\\n\\n\\n THE HAMAS WAY of DEATH\\n \\n (Following is a transcript of a recruitment and training\\nvideotape made last summer by the Qassam Battalions, the military\\narm of Hamas, an Islamic Palestinian group. Hamas figures\\nsignificantly in the Middle East equation. In December, Israel\\ndeported more than 400 Palestinians to Lebanon in response to\\nHamas\\'s kidnapping and execution of an Israeli soldier. A longer\\nversion appears in the May issue of Harper\\'s Magazine, which\\nobtained and translated the tape.)\\n \\n My name is Yasir Hammad al-Hassan Ali. I live in Nuseirat [a\\nrefugee camp in the Gaza Strip]. I was born in 1964. I finished\\nhigh school, then attended Gaza Polytechnic. Later, I went to work\\nfor Islamic University in Gaza as a clerk. I\\'m married and I have\\ntwo daughters.\\n The Qassam Battalions are the only group in Palestine\\nexplicitly dedicated to jihad [holy war]. Our primary concern is\\nPalestinians who collaborate with the enemy. Many young men and\\nwomen have fallen prey to the cunning traps laid by the [Israeli]\\nSecurity Services.\\n Since our enemies are trying to obliterate our nation,\\ncooperation with them is clearly a terrible crime. Our most\\nimportant objective must be to put an end to the plague of\\ncollaboration. To do so, we abduct collaborators, intimidate and\\ninterrogate them in order to uncover other collaborators and expose\\nthe methods that the enemy uses to lure Palestinians into\\ncollaboration in the first place. In addition to that, naturally,\\nwe confront the problem of collaborators by executing them.\\n We don\\'t execute every collaborator. After all, about 70\\npercent of them are innocent victims, tricked or black-mailed into\\ntheir misdeeds. The decision whether to execute a collaborator is\\nbased on the seriousness of his crimes. If, like many\\ncollaborators, he has been recruited as an agent of the Israeli\\nBorder Guard then it is imperative that he be executed at once.\\nHe\\'s as dangerous as an Israeli soldier, so we treat him like an\\nIsraeli soldier.\\n There\\'s another group of collaborators who perform an even\\nmore loathsome role -- the ones who help the enemy trap young men\\nand women in blackmail schemes that force them to become\\ncollaborators. I regard the \"isqat\" [the process by which a\\nPalestinians is blackmailed into collaboration] of single person as\\ngreater crime than the killing of a demonstrator. If someone is\\nguilty of causing repeated cases of isqat, than it is our religious\\nduty to execute him.\\n A third group of collaborators is responsible for the\\ndistribution of narcotics. They work on direct orders from the\\nSecurity Services to distribute drugs as widely as possible. Their\\nvictims become addicted and soon find it unbearable to quit and\\nimpossible to afford more. They collaborate in order to get the\\ndrugs they crave. The dealers must also be executed.\\n In the battalions, we have developed a very careful method of\\nuncovering collaborators, We can\\'t afford to abduct an innocent\\nperson, because once we seize a person his reputation is tarnished\\nforever. We will abduct and interrogate a collaborator only after\\nevidence of his guilt has been established -- never before. If\\nafter interrogation the collaborator is found guilty beyond any\\ndoubt, then he is executed.\\n In many cases, we don\\'t have to make our evidence against\\ncollaborators public, because everyone knows that they\\'re guilty.\\nBut when the public isn\\'t aware that a certain individual is a\\ncollaborator, and we accuse him, people are bound to ask for\\nevidence. Many people will proclaim his innocence, so there must be\\nirrefutable proof before he is executed. This proof is usually\\nobtained in the form of a confession.\\n At first, every collaborator denies his crimes. So we start\\noff by showing the collaborator the testimony against him. We tell\\nhim that he still has a chance to serve his people, even in the\\nlast moment of his life, by confessing and giving us the\\ninformation we need.\\n We say that we know his repentance in sincere and that he has\\nbeen a victim. That kind of talk is convincing. Most of them\\nconfess after that. Others hold out; in those cases, we apply\\npressure, both psychological and physical. Then the holdouts\\nconfess as well.\\n Only one collaborator has ever been executed without an\\ninterrogation. In that case, the collaborator had been seen working\\nfor the Border Guard since before the intifada, and he himself\\nconfessed his involvement to a friend, who disclosed the\\ninformation to us. In addition, three members of his network of\\ncollaborators told us that he had caused their isqat. With this\\nmuch evidence, there was no need to interrogate him. But we are\\nvery careful to avoid wrongful executions. In every case, our\\nprincipal is the same: the accused should be interrogated until he\\nhimself confesses his crimes. \\n A few weeks ago, we sat down and complied a list of\\ncollaborators to decide whether there were any who could be\\nexecuted without interrogation. An although we had hundreds of\\nnames, still, because of our fear of God and of hell, we could not\\nmark any of these men, except for the one I just mentioned, for\\nexecution.\\n When we execute a collaborator in public, we use a gun. But\\nafter we abduct and interrogate a collaborator, we can\\'t shoot him\\n-- to do so might give away our locations. That\\'s why collaborators\\nare strangled. Sometimes we ask the collaborator, \"What do you\\nthink? How should we execute you?\" One collaborator told us,\\n\"Strangle me.\" He hated the sight of blood.\\n\\n-----\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n\\n>mathew writes:\\n>>As for rape, surely there the burden of guilt is solely on the rapist?\\n>\\n>Not so. If you are thrown into a cage with a tiger and get mauled, do you\\n>blame the tiger?\\n\\n\\tA human has greater control over his/her actions, than a \\npredominately instictive tiger.\\n\\n\\tA proper analogy would be:\\n\\n\\tIf you are thrown into a cage with a person and get mauled, do you \\nblame that person?\\n\\n\\tYes. [ providing that that person was in a responsible frame of \\nmind, eg not clinicaly insane, on PCB\\'s, etc. ]\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n',\n", - " \"Subject: Re: univesa driver\\nFrom: djlewis@ualr.edu\\nOrganization: University of Arkansas at Little Rock\\nNntp-Posting-Host: athena.ualr.edu\\nLines: 13\\n\\nIn article <13622@news.duke.edu>, seth@north13.acpub.duke.edu (Seth Wandersman) writes:\\n> \\n> \\tI got the univesa driver available over the net. I thought that finally\\n> my 1-meg oak board would be able to show 680x1024 256 colors. Unfortunately a\\n> program still says that I can't do this. Is it the fault of the program (fractint)\\n> or is there something wrong with my card.\\n> \\tunivesa- a free driver available over the net that makes many boards\\n> vesa compatible. \\nWHATS THIS 680x1024 256 color mode? Asking a lot of your hardware ?\\n\\nDon Lewis\\n\\n\\n\",\n", - " \"From: mathew \\nSubject: Re: KORESH IS GOD!\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 5\\n\\nThe latest news seems to be that Koresh will give himself up once he's\\nfinished writing a sequel to the Bible.\\n\\n\\nmathew\\n\",\n", - " 'From: arp@cooper!osd (Andrew Pinkowitz)\\nSubject: SIGGRAPH -- Conference on Understanding Images\\nKeywords: graphics animation nyc acm siggraph\\nOrganization: Online Systems Development ( NY, NY)\\nLines: 140\\n\\n======================================================================\\n NYC ACM/SIGGRAPH: UNDERSTANDING IMAGES\\n======================================================================\\n\\n SUBJECT:\\n\\n Pace University/SIGGRAPH Conference on UNDERSTANDING IMAGES\\n ===========================================================\\n\\n The purpose of this conference is to bring together a breadth of\\n disciplines, including the physical, biological and computational\\n sciences, technology, art, psychology, philosophy, and education,\\n in order to define and discuss the issues essential to image\\n understanding within the computer graphics context.\\n\\n FEATURED TOPICS INCLUDE:\\n\\n Psychology/Perception\\n Image Analysis\\n Design\\n Text\\n Sound\\n Philosophy\\n\\n DATE: Friday & Saturday, 21-22 May 1993\\n\\n TIME: 9:00 am - 6:00 pm\\n\\n PLACE: The Pace Downtown Theater\\n One Pace Plaza\\n (on Spruce Street between Park Row & Gold Street)\\n NY, NY 10038\\n\\n FEES:\\n\\n PRE-REGISTRATION (Prior to 1 May 1993):\\n Members $55.00\\n Non-Members $75.00\\n Students $40.00 (Proof of F/T Status Required)\\n\\n REGISTRATION (After 1 May 1993 or On-Site):\\n All Attendees $95.00\\n\\n (Registration Fee Includes Brakfast, Breaks & Lunch)\\n\\n\\n SEND REGISTRATION INFORMATION & FEES TO:\\n\\n Dr. Francis T. Marchese\\n Computer Science Department\\n NYC/ACM SIGGRAPH Conference\\n Pace University\\n 1 Pace Plaza (Room T-1704)\\n New York NY 10036\\n\\n voice: (212) 346-1803 fax: (212) 346-1933\\n email: MARCHESF@PACEVM.bitnet\\n\\n======================================================================\\nREGISTRATION INFORMATION:\\n\\nName _________________________________________________________________\\n\\nTitle ________________________________________________________________\\n\\nCompany ______________________________________________________________\\n\\nStreet Address _______________________________________________________\\n\\nCity ________________________________State____________Zip_____________\\n\\nDay Phone (___) ___-____ Evening Phone (___) ___-____\\n\\nFAX Phone (___) ___-____ Email_____________________________________\\n======================================================================\\n\\nDETAILED DESCRIPTION:\\n=====================\\n\\n Artists, designers, scientists, engineers and educators share the\\n problem of moving information from one mind to another.\\n Traditionally, they have used pictures, words, demonstrations,\\n music and dance to communicate imagery. However, expressing\\n complex notions such as God and infinity or a seemingly well\\n defined concept such as a flower can present challenges which far\\n exceed their technical skills.\\n\\n The explosive use of computers as visualization and expression\\n tools has compounded this problem. In hypermedia, multimedia and\\n virtual reality systems vast amounts of information confront the\\n observer or participant. Wading through a multitude of\\n simultaneous images and sounds in possibly unfamiliar\\n representions, a confounded user asks: \"What does it all mean?\"\\n\\n Since image construction, transmission, reception, decipherment and\\n ultimate understanding are complex tasks, strongly influenced by\\n physiology, education and culture; and, since electronic media\\n radically amplify each processing step, then we, as electronic\\n communicators, must determine the fundamental paradigms for\\n composing imagery for understanding.\\n\\n Therefore, the purpose of this conference is to bring together a\\n breadth of disciplines, including, but not limited to, the\\n physical, biological and computational sciences, technology, art,\\n psychology, philosophy, and education, in order to define and\\n discuss the issues essential to image understanding within the\\n computer graphics context.\\n\\n\\n FEATURED SPEAKERS INCLUDE:\\n\\n Psychology/Perception:\\n Marc De May, University of Ghent\\n Beverly J. Jones, University of Oregon\\n Barbara Tversky, Standfor University\\n Michael J. Shiffer, MIT\\n Tom Hubbard, Ohio State University\\n Image Analysis:\\n A. Ravishankar Rao, IBM Watson Research Center\\n Nalini Bhusan, Smith College\\n Xiaopin Hu, University of Illinois\\n Narenda Ahuja, University of Illinois\\n Les M. Sztander, University of Toledo\\n Design:\\n Mark Bajuk, University of Illinois\\n Alyce Kaprow, MIT\\n Text:\\n Xia Lin, Pace University\\n John Loustau, Hunter College\\n Jong-Ding Wang, Hunter College\\n Judson Rosebush, Judson Rosebush Co.\\n Sound:\\n Matthew Witten, University of Texas\\n Robert Wyatt, Center for High Performance Computing\\n Robert S. Williams, Pace University\\n Rory Stuart, NYNEX\\n Philosophy\\n Michael Heim, Education Foundation of DPMA\\n\\n======================================================================\\n',\n", - " \"From: mbeaving@bnr.ca (Michael Beavington)\\nSubject: Re: Ok, So I was a little hasty...\\nNntp-Posting-Host: bmerh824\\nReply-To: MBEAVING@BNR.CA\\nOrganization: BNR Ottawa, DMS Software Design\\nLines: 18\\n\\nIn article <13394@news.duke.edu>, infante@acpub.duke.edu (Andrew Infante) writes:\\n|> Apparently that last post was a little hasy, since I\\n|> called around to more places and got quotes for less\\n|> than 600 and 425. Liability only, of course.\\n|> \\n|> Plus, one palced will give me C7C for my car + liab on the bike for\\n|> only 1350 total, which ain't bad at all.\\n|> \\n|> So I won't go with the first place I called, that's\\n|> fer sure.\\n|> \\n\\nNevertheless, DWI is F*ckin serious. Hope you've got some \\nbrains now.\\n\\nMike Beavington\\nmbeaving@bnr.ca\\n* these opinions are my own and not my companies'.\\n\",\n", - " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Benediktine Metaphysics\\nLines: 24\\n\\nBenedikt Rosenau writes, with great authority:\\n\\n> IF IT IS CONTRADICTORY IT CANNOT EXIST.\\n\\n\"Contradictory\" is a property of language. If I correct this to\\n\\n\\n THINGS DEFINED BY CONTRADICTORY LANGUAGE DO NOT EXIST\\n\\nI will object to definitions as reality. If you then amend it to\\n\\n THINGS DESCRIBED BY CONTRADICTORY LANGUAGE DO NOT EXIST\\n\\nthen we\\'ve come to something which is plainly false. Failures in\\ndescription are merely failures in description.\\n\\n(I\\'m not an objectivist, remember.)\\n\\n\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Space Research Spin Off\\nOrganization: Express Access Online Communications USA\\nLines: 29\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article shafer@rigel.dfrf.nasa.gov (Mary Shafer) writes:\\n>Dryden flew the first digital fly by wire aircraft in the 70s. No\\n>mechnaical or analog backup, to show you how confident we were.\\n\\nConfident, or merely crazed? That desert sun :-)\\n\\n\\n>successful we were. (Mind you, the Avro Arrow and the X-15 were both\\n>fly-by-wire aircraft much earlier, but analog.)\\n>\\n\\nGee, I thought the X-15 was Cable controlled. Didn't one of them have a\\ntotal electrical failure in flight? Was there machanical backup systems?\\n\\n|\\n|The NASA habit of acquiring second-hand military aircraft and using\\n|them for testbeds can make things kind of confusing. On the other\\n|hand, all those second-hand Navy planes give our test pilots a chance\\n|to fold the wings--something most pilots at Edwards Air Force Base\\n|can't do.\\n|\\n\\nWhat do you mean? Overstress the wings, and they fail at teh joints?\\n\\nYou'll have to enlighten us in the hinterlands.\\n\\n\\npat\\n\\n\",\n", - " \"From: uphrrmk@gemini.oscs.montana.edu (Jack Coyote)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nReply-To: uphrrmk@gemini.oscs.montana.edu (Jack Coyote)\\nOrganization: Never Had It, Never Will\\nLines: 14\\n\\nIn sci.astro, dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n[ a nearly perfect parody -- needed more random CAPS]\\n\\n\\nThanks for the chuckle. (I loved the bit about relevance to people starving\\nin Somalia!)\\n\\nTo those who've taken this seriously, READ THE NAME! (aloud)\\n\\n-- \\nThank you, thank you, I'll be here all week. Enjoy the buffet! \\n\\n\\n\",\n", - " \"Organization: Queen's University at Kingston\\nFrom: Graydon \\nSubject: Re: What if the USSR had reached the Moon first?\\n <1993Apr7.124724.22534@yang.earlham.edu>\\n <1993Apr12.161742.22647@yang.earlham.edu>\\nLines: 9\\n\\nThis is turning into 'what's a moonbase good for', and I ought\\nnot to post when I've a hundred some odd posts to go, but I would\\nthink that the real reason to have a moon base is economic.\\n\\nSince someone with space industry will presumeably have a much\\nlarger GNP than they would _without_ space industry, eventually,\\nthey will simply be able to afford more stuff.\\n\\nGraydon\\n\",\n", - " 'From: fischer@iesd.auc.dk (Lars Peter Fischer)\\nSubject: Re: Rumours about 3DO ???\\nIn-Reply-To: archer@elysium.esd.sgi.com\\'s message of 6 Apr 93 18:18:30 GMT\\nOrganization: Mathematics and Computer Science, Aalborg University\\n\\t <1993Apr6.144520.2190@unocal.com>\\n\\t\\nLines: 11\\n\\n\\n>>>>> \"Archer\" == Archer (Bad Cop) Surly (archer@elysium.esd.sgi.com)\\n\\nArcher> How about \"Interactive Sex with Madonna\"?\\n\\nor \"Sexium\" for short.\\n\\n/Lars\\n--\\nLars Fischer, fischer@iesd.auc.dk | It takes an uncommon mind to think of\\nCS Dept., Aalborg Univ., DENMARK. | these things. -- Calvin\\n',\n", - " \"From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Bikes vs. Horses (was Re: insect impacts f\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 34\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nNNTP-Posting-Host: slc4.ins.cwru.edu\\n\\n\\nIn a previous article, npet@bnr.ca (Nick Pettefar) says:\\n\\n>Jonathan E. Quist, on the Thu, 15 Apr 1993 14:26:42 GMT wibbled:\\n>: In article txd@ESD.3Com.COM (Tom Dietrich) writes:\\n>: >>In a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n>\\n>: [lots of things, none of which are quoted here]\\n>\\n>The nice thing about horses though, is that if they break down in the middle of\\n>nowhere, you can eat them.\\n\\n\\tAnd they're rather tasty.\\n\\n\\n> Fuel's a bit cheaper, too.\\n>\\n\\n\\tPer gallon (bushel) perhaps. Unfortunately they eat the same amount\\nevery day no matter how much you ride them. And if you don't fuel them they\\ndie. On an annual basis, I spend much less on bike stuff than Amy the Wonder\\nWife does on horse stuff. She has two horses, I've got umm, lesseee, 11 bikes.\\nI ride constantly, she rides four or five times a week. Even if you count \\ninsurance and the cost of the garage I built, I'm getting off cheaper than \\nshe is. And having more fun (IMHO).\\n\\n\\n\\n>\\n>\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n\",\n", - " 'From: chrisb@seachg.com (Chris Blask)\\nSubject: Re: A silly question on x-tianity\\nReply-To: chrisb@seachg.com (Chris Blask)\\nOrganization: Sea Change Corporation, Mississauga, Ontario, Canada\\nLines: 44\\n\\nwerdna@cco.caltech.edu (Andrew Tong) writes:\\n>mccullou@snake2.cs.wisc.edu (Mark McCullough) writes:\\n>\\n>>Question 2: This attitude god character seems awfully egotistical\\n>>and proud. But Christianity tells people to be humble. What\\'s the deal?\\n>\\n>Well, God pretty much has a right to be \"egotistical and proud.\" I\\n>mean, he created _you_, doesn\\'t he have the right to be proud of such\\n>a job?\\n>\\n>Of course, people don\\'t have much of a right to be proud. What have\\n>they accomplished that can match God\\'s accomplishments, anyways? How\\n>do their abilities compare with those of God\\'s. We\\'re an \"imbecile\\n>worm of the earth,\" to quote Pascal.\\n\\nGrumblegrumble... \\n\\n>If you were God, and you created a universe, wouldn\\'t you be just a\\n>little irked if some self-organizing cell globules on a tiny planet\\n>started thinking they were as great and awesome as you?\\n\\nunfortunately the logic falls apart quick: all-perfect > insulted or\\nthreatened by the actions of a lesser creature > actually by offspring >\\n???????????????????\\n\\nHow/why shuold any all-powerful all-perfect feel either proud or offended?\\nAnything capable of being aware of the relationship of every aspect of every \\nparticle in the universe during every moment of time simultaneously should\\nbe able to understand the cause of every action of every \\'cell globule\\' on\\neach tniy planet...\\n\\n>Well, actually, now that I think of it, it seems kinda odd that God\\n>would care at all about the Earth. OK, so it was a bad example. But\\n>the amazing fact is that He does care, apparently, and that he was\\n>willing to make some grand sacrifices to ensure our happiness.\\n\\n\"All-powerful, Owner Of Everything in the Universe Makes Great Sacrifices\"\\nmakes a great headline but it doesn\\'t make any sense. What did he\\nsacrifice? Where did it go that he couldn\\'t get it back? If he gave\\nsomething up, who\\'d he give it up to?\\n\\n-chris\\n\\n[you guys have fun, I\\'m agoin\\' to Key West!!]\\n',\n", - " 'From: deniz@mandolin.ctr.columbia.edu (Deniz Akkus)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: Columbia University Center for Telecommunications Research\\nX-Posted-From: mandolin.ctr.columbia.edu\\nNNTP-Posting-Host: sol.ctr.columbia.edu\\nLines: 43\\n\\nIn article <1993Apr20.164517.20876@kpc.com> henrik@quayle.kpc.com writes:\\n>In article <1993Apr20.000413.25123@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n>My response to the \"shooting down\" of a Turkish airplane over the Armenian\\n>air space was because of the IGNORANT posting of the person from your \\n>Country. Turks and Azeris consistantly WANT to drag ARMENIA into the\\n>KARABAKH conflict with Azerbaijan. The KARABAKHI-ARMENIANS who have lived\\n>in their HOMELAND for 3000 years (CUT OFF FROM ARMENIA and GIVEN TO AZERIS \\n>BY STALIN) are the ones DIRECTLY involved in the CONFLICT. They are defending \\n>themselves against AZERI AGGRESSION. Agression that has NO MERCY for INOCENT \\n>people that are costantly SHELLED with MIG-23\\'s and othe Russian aircraft. \\n>\\n>At last, I hope that the U.S. insists that Turkey stay out of the KARABAKH \\n>crisis so that the repeat of the CYPRUS invasion WILL NEVER OCCUR again.\\n>\\n\\nArmenia is involved in fighting with Azarbaijan. It is Armenian\\nsoldiers from mainland Armenia that are shelling towns in Azarbaijan.\\nYou might wish to read more about whether or not it is Azeri aggression\\nonly in that region. It seems to me that the Armenians are better\\norganized, have more success militarily and shell Azeri towns\\nrepeatedly. \\n\\nI don\\'t wish to get into the Cyprus discussion. Turkey had the right to\\nintervene, and it did. Perhaps the intervention was not supposed to\\nlast for so long, but the constant refusal of the Greek governments both\\non the island and in Greece to deal with reality is also to be blamed\\nfor the ongoing standoff in the region. \\n\\nLastly, why is there not a soc.culture.armenia? I vote yes for it.\\nAfter all, it is now free. \\n\\nregards,\\nDeniz\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n',\n", - " 'From: chrisb@tafe.sa.edu.au (Chris BELL)\\nSubject: Re: Don\\'t more innocents die without the death penalty?\\nOrganization: South Australian Regional Academic and Research Network\\nLines: 19\\nDistribution: world\\nNNTP-Posting-Host: baarnie.tafe.sa.edu.au\\n\\n\"James F. Tims\" writes:\\n\\n>By maintaining classes D and E, even in prison, it seems as if we \\n>place more innocent people at a higher risk of an unjust death than \\n>we would if the state executed classes D and E with an occasional error.\\n\\nI would rather be at a higher risk of being killed than actually killed by\\n ^^^^ ^^^^^^^^\\nmistake. Though I do agree with the concept that the type D and E murderers\\nare a massive waste of space and resources I don\\'t agree with the concept:\\n\\n\\tkilling is wrong\\n\\tif you kill we will punish you\\n\\tour punishment will be to kill you.\\n\\nSeems to be lacking in consistency.\\n\\n--\\n\"I know\" is nothing more than \"I believe\" with pretentions.\\n',\n", - " \"From: Leigh Palmer \\nSubject: Re: Orion drive in vacuum -- how?\\nX-Xxmessage-Id: \\nX-Xxdate: Fri, 16 Apr 93 06:33:17 GMT\\nOrganization: Simon Fraser University\\nX-Useragent: Nuntius v1.1.1d17\\nLines: 15\\n\\nIn article <1qn4bgINN4s7@mimi.UU.NET> James P. Goltz, goltz@mimi.UU.NET\\nwrites:\\n> Background: The Orion spacedrive was a theoretical concept.\\n\\nIt was more than a theoretical concept; it was seriously pursued by\\nFreeman Dyson et al many years ago. I don't know how well-known this is,\\nbut a high explosive Orion prototype flew (in the atmosphere) in San\\nDiego back in 1957 or 1958. I was working at General Atomic at the time,\\nbut I didn't learn about the experiment until almost thirty years later,\\nwhen \\nTed Taylor visited us and revealed that it had been done. I feel sure\\nthat someone must have film of that experiment, and I'd really like to\\nsee it. Has anyone out there seen it?\\n\\nLeigh\\n\",\n", - " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Israel does not kill reporters.\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 12\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n Anas Omran has claimed that, \"the Israelis used to arrest, and\\nsometime to kill some of these neutral reporters.\" The assertion\\nby Anas Omran is, of course, a total fabrication. If there is an\\nonce of truth iin it, I\\'m sure Anas Omran can document such a sad\\nand despicable event. Otherwise we may assume that it is another\\npiece of anti-Israel bullshit posted by someone whose family does\\nnot know how to teach their children to tell the truth. If Omran\\nwould care to retract this \\'error\\' I would be glad to retract the\\naccusation that he is a liar. If he can document such a claim, I\\nwould again be glad to apologize for calling him a liar. Failing\\nto do either of these would certainly show what a liar he is.\\n',\n", - " \"From: coburnn@spot.Colorado.EDU (Nicholas S. Coburn)\\nSubject: Re: Shipping a bike\\nNntp-Posting-Host: spot.colorado.edu\\nOrganization: University of Colorado, Boulder\\nLines: 31\\n\\nIn article <1qkhrm$7go@agate.berkeley.edu> manish@uclink.berkeley.edu (Manish Vij) writes:\\n>\\n>Can someone recommend how to ship a motorcycle from San Francisco\\n>to Seattle? And how much might it cost?\\n>\\n>I remember a thread on shipping. If someone saved the instructions\\n>on bike prep, please post 'em again, or email.\\n>\\n>Thanks,\\n>\\n>Manish\\n\\nStep 1) Join the AMA (American Motorcycling Association). Call 1-800-AMA-JOIN.\\n\\nStep 2) After you become a member, they will ship your bike, UNCRATED to \\njust about anywhere across the fruited plain for a few hundred bucks.\\n\\nI have used this service and have been continually pleased. They usually\\nonly take a few days for the whole thing, and you do not have to prepare\\nthe bike in any way (other than draining the gas). Not to mention that\\nit is about 25% of the normal shipping costs (by the time you crate a bike\\nand ship it with another company, you can pay around $1000)\\n\\n\\n________________________________________________________________________\\nNick Coburn DoD#6425 AMA#679817\\n '88CBR1000 '89CBR600\\n coburnn@spot.colorado.edu\\n________________________________________________________________________\\n\\n\\n\",\n", - " 'From: brody@eos.arc.nasa.gov (Adam R. Brody )\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: NASA Ames Research Center\\nDistribution: na\\nLines: 14\\n\\nprb@access.digex.com (Pat) writes:\\n\\n\\n>AW&ST had a brief blurb on a Manned Lunar Exploration confernce\\n>May 7th at Crystal City Virginia, under the auspices of AIAA.\\n\\n>Does anyone know more about this? How much, to attend????\\n\\n>Anyone want to go?\\n\\n>pat\\n\\nI got something in the mail from AIAA about it. Cost is $75.\\nSpeakers include John Pike, Hohn Young, and Ian Pryke.\\n',\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: $1bil space race ideas/moon base on the cheap.\\nArticle-I.D.: aurora.1993Apr25.150437.1\\nOrganization: University of Alaska Fairbanks\\nLines: 28\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nThat is an idea.. The most efficient moon habitat.. \\n\\nalso the idea of how to get the people off the moon once the prize was won..\\n\\nAlso the idea of how to rescue someone who is \"dying\" on the moon.\\n\\nMaybe have a area where they can all \"see\" each other, and can help each other\\nif something happens.. \\n\\nI liek the idea of one prize for the first moon landing and return, by a\\nnon-governmental body..\\n\\nAlso the idea of then having a moon habitat race.. \\n\\nI know we need to do somthing to get people involved..\\n\\nEccentric millionaire/billionaire would be nice.. We see how old Ross feels\\nabout it.. After all it would be a great promotional thing and a way to show he\\ndoes care about commericalization and the people.. Will try to broach the\\nsubject to him.. \\n\\nMoonbase on the cheap is a good idea.. NASA and friends seem to take to much\\ntime and give us to expensive stuff that of late does not work (hubble and\\nsuch). Basically what is the difference between a $1mil peice of junk and a\\nmulti $1mil piece of junk.. I know junk..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", - " 'From: jcm@head-cfa.harvard.edu (Jonathan McDowell)\\nSubject: Re: Shuttle Launch Question\\nOrganization: Smithsonian Astrophysical Observatory, Cambridge, MA, USA\\nDistribution: sci\\nLines: 23\\n\\nFrom article , by tombaker@world.std.com (Tom A Baker):\\n>>In article , ETRAT@ttacs1.ttu.edu (Pack Rat) writes...\\n>>>\"Clear caution & warning memory. Verify no unexpected\\n>>>errors. ...\". I am wondering what an \"expected error\" might\\n>>>be. Sorry if this is a really dumb question, but\\n> \\n> Parity errors in memory or previously known conditions that were waivered.\\n> \"Yes that is an error, but we already knew about it\"\\n> I\\'d be curious as to what the real meaning of the quote is.\\n> \\n> tom\\n\\n\\nMy understanding is that the \\'expected errors\\' are basically\\nknown bugs in the warning system software - things are checked\\nthat don\\'t have the right values in yet because they aren\\'t\\nset till after launch, and suchlike. Rather than fix the code\\nand possibly introduce new bugs, they just tell the crew\\n\\'ok, if you see a warning no. 213 before liftoff, ignore it\\'.\\n\\n - Jonathan\\n\\n\\n',\n", - " 'Subject: Re: There must be a creator! (Maybe)\\nFrom: halat@pooh.bears (Jim Halat)\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 24\\n\\nIn article <16BA1E927.DRPORTER@SUVM.SYR.EDU>, DRPORTER@SUVM.SYR.EDU (Brad Porter) writes:\\n>\\n> Science is wonderful at answering most of our questions. I\\'m not the type\\n>to question scientific findings very often, but... Personally, I find the\\n>theory of evolution to be unfathomable. Could humans, a highly evolved,\\n>complex organism that thinks, learns, and develops truly be an organism\\n>that resulted from random genetic mutations and natural selection?\\n\\n[...stuff deleted...]\\n\\nComputers are an excellent example...of evolution without \"a\" creator.\\nWe did not \"create\" computers. We did not create the sand that goes\\ninto the silicon that goes into the integrated circuits that go into\\nprocessor board. We took these things and put them together in an\\ninteresting way. Just like plants \"create\" oxygen using light through \\nphotosynthesis. It\\'s a much bigger leap to talk about something that\\ncreated \"everything\" from nothing. I find it unfathomable to resort\\nto believing in a creator when a much simpler alternative exists: we\\nsimply are incapable of understanding our beginnings -- if there even\\nwere beginnings at all. And that\\'s ok with me. The present keeps me\\nperfectly busy.\\n\\n-jim halat\\n\\n',\n", - " 'From: loss@fs7.ECE.CMU.EDU (Doug Loss)\\nSubject: Re: Death and Taxes (was Why not give $1 billion to...\\nOrganization: Electrical and Computer Engineering, Carnegie Mellon\\nLines: 7\\n\\nIn my last post I referred to Michael Adams as \"Nick.\" Completely my\\nerror; Nick Adams was a film and TV actor from the \\'50\\'s and early \\'60\\'s\\n(remember Johnny Yuma, The Rebel?). He was from my part of the country,\\nand Michael\\'s email address of \"nmsca[...]\" probably helped confuse things\\nin my mind. Purely user headspace error on my part. Sorry.\\n\\nDoug Loss\\n',\n", - " 'From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Shuttle oxygen (was Budget Astronaut)\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 19\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article <1993Apr16.151729.8610@aio.jsc.nasa.gov>, kjenks@gothamcity.jsc.nasa.gov writes:\\n\\n>Josh Hopkins (jbh55289@uxa.cso.uiuc.edu) replied:\\n>: Double wow. Can you land a shuttle with a 5cm hole in the wall?\\n>Personnally, I don\\'t know, but I\\'d like to try it sometime.\\n\\nAre you volunteering? :)\\n\\n> But a\\n>hole in the pressure vessel would cause us to immediately de-orbit\\n>to the next available landing site.\\n\\nWill NASA have \"available landing sites\" in the Russian Republic, now that they\\nare Our Friends and Comrades?\\n\\n\\n\\n Software engineering? That\\'s like military intelligence, isn\\'t it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n',\n", - " \"From: tony@morgan.demon.co.uk (Tony Kidson)\\nSubject: Re: Insurance and lotsa points... \\nDistribution: world\\nOrganization: The Modem Palace\\nReply-To: tony@morgan.demon.co.uk\\nX-Newsreader: Simple NEWS 1.90 (ka9q DIS 1.21)\\nLines: 16\\n\\nIn article <1993Apr19.211340.12407@adobe.com> cjackson@adobe.com writes:\\n\\n>I am very glad to know that none of you judgemental little shits has\\n\\nHey Pal! Who're you calling litte?\\n\\n\\nTony\\n\\n+---------------+------------------------------+-------------------------+\\n|Tony Kidson | ** PGP 2.2 Key by request ** |Voice +44 81 466 5127 |\\n|Morgan Towers, | The Cat has had to move now |E-Mail(in order) |\\n|Morgan Road, | as I've had to take the top |tony@morgan.demon.co.uk |\\n|Bromley, | off of the machine. |tny@cix.compulink.co.uk |\\n|England BR1 3QE|Honda ST1100 -=<*>=- DoD# 0801|100024.301@compuserve.com|\\n+---------------+------------------------------+-------------------------+\\n\",\n", - " 'From: dmatejka@netcom.com (Daniel Matejka)\\nSubject: Re: Speeding ticket from CHP\\nOrganization: Netcom - Online Communication Services\\nLines: 47\\n\\nIn article <1pq4t7$k5i@agate.berkeley.edu> downey@homer.CS.Berkeley.EDU (Allen B. Downey) writes:\\n> Fight your ticket : California edition by David Brown 1st ed.\\n> Berkeley, CA : Nolo Press, 1982\\n>\\n>The second edition is out (but not in UCB\\'s library). Good luck; let\\n>us know how it goes.\\n>\\n Daniel Matejka writes:\\n The fourth edition is out, too. But it\\'s probably also not\\nvery high on UCB\\'s \"gotta have that\" list.\\n\\nIn article <65930405053856/0005111312NA1EM@mcimail.com> 0005111312@mcimail.com (Peter Nesbitt) writes:\\n>Riding to work last week via Hwy 12 from Suisun, to I-80, I was pulled over by\\n>a CHP black and white by the 76 Gas station by Jameson Canyon Road. The\\n>officer stated \"...it like you were going kinda fast coming down\\n>highway 12. You been going at least 70 or 75.\" I just said okay,\\n>and did not agree or disagree to anything he said. \\n\\n Can you beat this ticket? Personally, I think it\\'s your Duty As a Citizen\\nto make it as much trouble as possible for them, so maybe they\\'ll Give Up\\nand Leave Us Alone Someday Soon.\\n The cop was certainly within his legal rights to nail you by guessing\\nyour speed. Mr. Brown (the author of Fight Your Ticket) mentions an\\nOakland judge who convicted a speeder \"on the officer\\'s testimony that\\nthe driver\\'s car sounded like it was being driven at an excessive speed.\"\\n You can pay off the State and your insurance company, or you can\\ntake it to court and be creative. Personally, I\\'ve never won that way\\nor seen anyone win, but the judge always listens politely. And I haven\\'t\\nseen _that_ many attempts.\\n You could try the argument that since bikes are shorter than the\\ncars whose speed the nice officer is accustomed to guessing, they therefore\\nappear to be further away, and so their speed appears to be greater than\\nit actually is. I left out a step or two, but you get the idea. If you\\ncan make it convincing, theoretically you\\'re supposed to win.\\n I\\'ve never tried proving the cop was mistaken. I did get to see\\nsome other poor biker try it. He was mixing up various facts like\\nthe maximum acceleration of a (cop) car, and the distance at which\\nthe cop had been pacing him, and end up demonstrating that he couldn\\'t\\npossibly have been going as fast as the cop had suggested. He\\'d\\nbrought diagrams and a calculator. He was Prepared. He lost. Keep\\nin mind cops do this all the time, and their word is better than yours.\\nMaybe, though, they don\\'t guess how fast bikes are going all the time.\\nBesides, this guy didn\\'t speak English very well, and ended up absolutely\\nconfounding the judge, the cop, and everyone else in the room who\\'d been\\nrecently criminalized by some twit with a gun and a quota.\\n Ahem. OK, I\\'m better now. Maybe he\\'d have won had his presentation\\nbeen more polished. Maybe not. He did get applause.\\n',\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Space Station Redesign (30826) Option C\\nArticle-I.D.: aurora.1993Apr25.214653.1\\nOrganization: University of Alaska Fairbanks\\nLines: 22\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1993Apr25.151108.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\\n> I like option C of the new space station design.. \\n> It needs some work, but it is simple and elegant..\\n> \\n> Its about time someone got into simple construction versus overly complex...\\n> \\n> Basically just strap some rockets and a nose cone on the habitat and go for\\n> it..\\n> \\n> Might be an idea for a Moon/Mars base to.. \\n> \\n> Where is Captain Eugenia(sp) when you need it (reference to russian heavy\\n> lifter, I think).\\n> ==\\n> Michael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n> \\n> \\n> \\n> \\n\\n\\nThis is a report, I got the subject messed up..\\n\",\n", - " 'From: oberto@genes.icgeb.trieste.it (Jacques Oberto)\\nSubject: Re: HELP!!! GRASP\\nOrganization: ICGEB\\nLines: 33\\n\\nCBW790S@vma.smsu.edu.Ext (Corey Webb) writes:\\n\\n>In article <1993Apr19.160944.20236W@baron.edb.tih.no>\\n>havardn@edb.tih.no (Haavard Nesse,o92a) writes:\\n>>\\n>>Could anyone tell me if it\\'s possible to save each frame\\n>>of a .gl (grasp) animation to .gif, .jpg, .iff or any other\\n>>picture formats.\\n>>\\n> \\n> If you have the GRASP animation system, then yes, it\\'s quite easy.\\n>You simply use GLIB to extract the image (each \"frame\" in a .GL is\\n>actually a complete .PCX or .CLP file), then use one of MANY available\\n>utilities to convert it. If you don\\'t have the GRASP package, I\\'m afraid\\n>I can\\'t help you. Sorry.\\n> By the way, before you ask, GRASP (GRaphics Animation System for\\n>Professionals) is a commercial product that sells for just over US$300\\n>from most mail-order companies I\\'ve seen. And no, I don\\'t have it. :)\\n> \\n> \\n> Corey Webb\\n> \\n\\nThere are several public domain utilities available at your usual\\narchive site that allow \\'extraction\\' of single frames from a .gl\\nfile, check in the \\'graphics\\' directories under *grasp. The problem \\nis that the .clp files you generate cannot be decoded by any of \\nthe many pd format converters I have used. Any hint welcome!\\nLet me know if you have problems locating the utilities.\\nHope it helps.\\n\\n-- \\nJacques Oberto \\n',\n", - " 'From: clump@acaps.cs.mcgill.ca (Clark VERBRUGGE)\\nSubject: Re: BGI Drivers for SVGA\\nOrganization: SOCS, McGill University, Montreal, Canada\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 29\\n\\nDominic Lai (cs_cylai@cs.ust.hk) wrote:\\n: Simon Crowe (scrowe@hemel.bull.co.uk) wrote:\\n: 8~> I require BGI drivers for Super VGA Displays and Super XVGA Displays. Does \\n: 8~> anyone know where I could obtain the relevant drivers ? (FTP sites ??)\\n\\n: \\tI would like to know too!\\n\\n: Regards,\\n: Dominic\\n\\ngarbo.uwasa.fi (or one of its many mirrors) has a file\\ncalled \"svgabg40\" in the programming subdirectory.\\nThese are svga bgi drivers for a variety of cards.\\n\\n[from the README]:\\n\"Card types supported: (SuperVGA drivers)\\n Ahead, ATI, Chips & Tech, Everex, Genoa, Paradise, Oak, Trident (both 8800 \\n and 8900, 9000), Tseng (both 3000 and 4000 chipsets) and Video7.\\n These drivers will also work on video cards with VESA capability.\\n The tweaked drivers will work on any register-compatible VGA card.\"\\n\\nenjoy,\\nClark Verbrugge\\nclump@cs.mcgill.ca\\n\\n--\\n\\n HONK HONK BLAT WAK WAK WAK WAK WAK UNGOW!\\n\\n',\n", - " 'From: pooder@rchland.vnet.ibm.com (Don Fearn)\\nSubject: Re: Antifreeze/coolant\\nReply-To: pooder@msus1.msus.edu\\t\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM\\nNntp-Posting-Host: garnet.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 34\\n\\nIn article <1993Apr15.193938.8569@research.nj.nec.com>, behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n|> \\tFor those of you with motorcycles of the liquid-cooled persuasion,\\n|> what brand of coolant do you use and why? I am looking for aluminum-safe\\n|> coolant, preferably phosphate-free, and preferably cheaper than $13/gallon.\\n|> (Can you believe it: the Kaw dealer wants $4.95 a QUART for the Official\\n|> Blessed Holy Kawasaki Coolant!!! No way I\\'m paying that usury...)\\n|> \\n\\nPrestone. I buy it at ShopKo for less \\nthan that a _gallon_. BMW has even more\\nexpensive stuff than Kawasaki (must be \\nfrom grapes only grown in certain parts of\\nthe fatherland), but BMW Dave* said \"Don\\'t \\nworry about it -- just change it yearly and\\nkeep it topped off\". It\\'s been keeping \\nGretchen happy since \\'87, so I guess it\\'s OK.\\n\\nKept my Rabbit\\'s aluminum radiator hoppy for\\n12 years and 130,000 miles, too, so I guess\\nit\\'s aluminum safe. \\n\\n*Former owner of the late lamented Rochester \\nBMW Motorcycles and all around good guy.\\n\\n-- \\n\\n\\n Pooder - Rochester, MN - DoD #591 \\n -------------------------------------------------------------------------\\n \"What Do *You* Care What Other People Think?\" -- Richard Feynman \\n -------------------------------------------------------------------------\\n I share garage space with: Gretchen - \\'86 K75 Harvey - \\'72 CB500 \\n -------------------------------------------------------------------------\\n << Note the different \"Reply-To:\" address if you want to send me e-mail>>\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Vandalizing the sky\\nOrganization: University of Illinois at Urbana\\nLines: 50\\n\\nyamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n\\n>enzo@research.canon.oz.au (Enzo Liguori) writes:\\n>>WHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n\\n>>1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\n>>In 1950, science fiction writer Robert Heinlein published \"The\\n>>Man Who Sold the Moon,\" which involved a dispute over the sale of\\n>>rights to the Moon for use as billboard. NASA has taken the firsteps toward this\\n>>hideous vision of the future. Observers were\\n>>startled this spring when a NASA launch vehicle arrived at the\\n>>pad with \"SCHWARZENEGGER\" painted in huge block letters on the\\n>>side of the booster rockets. Space Marketing Inc. had arranged\\n>>for the ad to promote Arnold\\'s latest movie.\\n\\n>Well, if you\\'re going to get upset with this, you might as well direct\\n>some of this moral outrage towards Glavcosmos as well. They pioneered\\n>this capitalist application of booster adverts long before NASA.\\n\\nIn fact, you can all direct your ire at the proper target by ingoring NASA \\naltogether. The rocket is a commercial launch vechicle - a Conestoga flying \\na COMET payload. NASA is simply the primary customer. I believe SDIO has a\\nsmall payload as well. The advertising space was sold by the owners of the\\nrocket, who can do whatever they darn well please with it. In addition, these\\nanonymous \"observers\" had no reason to be startled. The deal made Space News\\nat least twice. \\n\\n>>Now, Space Marketing\\n>>is working with University of Colorado and Livermore engineers on\\n>>a plan to place a mile-long inflatable billboard in low-earth\\n>>orbit.\\n>>NASA would provide contractual launch services. However,\\n>>since NASA bases its charge on seriously flawed cost estimates\\n>>(WN 26 Mar 93) the taxpayers would bear most of the expense. \\n\\n>>Is NASA really supporting this junk?\\n\\n>And does anyone have any more details other than what was in the WN\\n>news blip? How serious is this project? Is this just in the \"wild\\n>idea\" stage or does it have real funding?\\n\\nI think its only fair to find that out before everyone starts having a hissy\\nfit. The fact that they bothered to use the conditional tense suggests that\\nit has not yet been approved.\\n\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " 'From: dewey@risc.sps.mot.com (Dewey Henize)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nOrganization: Motorola, Inc. -- Austin,TX\\nLines: 48\\nNNTP-Posting-Host: rtfm.sps.mot.com\\n\\nIn article <1993Apr15.212943.15118@bnr.ca> (Rashid) writes:\\n[deletions]\\n>\\n>The fatwa was levelled at the person of Rushdie - any actions of\\n>Rushdie that feed the situation contribute to the legitimization of\\n>the ruling. The book remains in circulation not by some independant\\n>will of its own but by the will of the author and the publishers. The fatwa\\n>against the person of Rushdie encompasses his actions as well. The\\n>crime was certainly a crime in progress (at many levels) and was being\\n>played out (and played up) in the the full view of the media.\\n>\\n>P.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\n>applies to Rushdie and may be encompassed under the umbrella\\n>of the \"fasad\" ruling.\\n\\nIf this is grounded firmly in Islam, as you claim, then you have just\\nexposed Islam as the grounds for terrorism, plain and simple.\\n\\nWhether you like it or not, whether Rushdie acted like a total jerk or\\nnot, there is no acceptable civilized basis for putting someone in fear\\nof their life for words.\\n\\nIt simply does not matter whether his underlying motive was to find the\\nworst possible way he could to insult Muslims and their beliefs, got that?\\nYou do not threaten the life of someone for words - when you do, you\\nquite simply admit the backruptcy of your position. If you support\\nthreatening the life of someone for words, you are not yet civilized.\\n\\nThis is exactly where I, and many of the people I know, have to depart\\nfrom respecting the religions of others. When those beliefs allow and\\nencourage (by interpretation) the killing of non-physical opposition.\\n\\nYou, or I or anyone, are more than privledged to believe that someone,\\nwhether it be Rushdie or Bush or Hussien or whover, is beyond the pale\\nof civilized society and you can condemn his/her soul, refuse to allow\\nany members of your association to interact with him/her, _peacably_\\ndemonstrate to try to convince others to disassociate themselves from\\nthe \"miscreants\", or whatever, short of physical force.\\n\\nBut once you physically threaten, or support physical threats, you get\\nmuch closer to your earlier comparison of rape - with YOU as the rapist\\nwho whines \"She asked for it, look how she was dressed\".\\n\\nBlaming the victim when you are unable to be civilized doesn\\'t fly.\\n\\nDew\\n-- \\nDewey Henize Sys/Net admin RISC hardware (512) 891-8637 pager 928-7447 x 9637\\n',\n", - " \"Subject: Re: Bikes vs. Horses (was Re: insect impac\\nFrom: emd@ham.almanac.bc.ca\\nDistribution: world\\nOrganization: Robert Smits\\nLines: 21\\n\\ncooper@mprgate.mpr.ca (Greg Cooper) writes:\\n\\n> In article <1qeftj$d0i@sixgun.East.Sun.COM>, egreen@east.sun.com (Ed Green - \\n> >In article sda@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturde\\n> >>\\n> >>\\tOnly exceptional ones like me. Average ones like you can barely fart\\n> >>by themselves.\\n> >\\n> >Fuck you very much, Mike.\\n> >\\n> \\n> Gentlemen _please_. \\n> -- \\n\\n\\nGreg's obviously confused. There aren't many (any) gentlemen on this \\nnewsgroup. Well, maybe. One or two.\\n\\n\\nRobert Smits Ladysmith BC | If Lucas built weapons, wars\\nemd@ham.almanac.bc.ca | would never start, either.\\n\",\n", - " \"From: collins@well.sf.ca.us (Steve Collins)\\nSubject: Re: Orbital RepairStation\\nNntp-Posting-Host: well.sf.ca.us\\nOrganization: Whole Earth 'Lectronic Link\\nLines: 29\\n\\n\\nThe difficulties of a high Isp OTV include:\\nLong transfer times (radiation damage from VanAllen belts for both\\n the spacecraft and OTV\\nArcjets or Xenon thrusters require huge amounts of power so you have\\nto have either nuclear power source (messy, dangerous and source of\\nradiation damage) or BIG solar arrays (sensitive to radiation, or heavy)\\nthat make attitude control and docking a big pain.\\n\\nIf you go solar, you have to replace the arrays every trip, with\\ncurrent technology. Nuclear power sources are strongly restricted\\nby international treaty.\\n\\nRefueling (even for very high Isp like xenon) is still required and]\\nturn out to be a pain.\\n\\nYou either have to develop autonomous rendezvous or long range teleoperation\\nto do docking or ( and refueling) .\\n\\nYou still can't do much plane change because the deltaV required is so high!\\n\\nThe Air Force continues to look at doing things this way though. I suppose\\nthey are biding their time till the technology becomes available and\\nthe problems get solved. Not impossible in principle, but hard to\\ndo and marginally cheaper than one shot rockets, at least today.\\n\\nJust a few random thoughts on high Isp OTV's. I designed one once...\\n\\n Steve Collins\\n\",\n", - " \"From: lm001@rrz.Uni-Koeln.DE (Erwin H. Keeve)\\nSubject: Marchin Cubes\\nOrganization: Regional Computing Center, University of Cologne\\nLines: 27\\nDistribution: world\\nNNTP-Posting-Host: rs1.rrz.uni-koeln.de\\nKeywords: Polygon Reduction\\n\\n\\n\\nHi there,\\n\\nis there anybody who know a polygon_reduction algorithm for\\nmarching cube surfaces. e.g. the algirithm of Schroeder,\\nSiggraph'92.\\n\\nFor any hints, hugs and kisses.\\n\\n- Erwin\\n\\n ,,,\\n (o o)\\n ___________________________________________oOO__(-)__OOo_____________\\n|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|_|\\n|_|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|\\n| | |\\n| Erwin Keeve | adress: Peter-Welter-Platz 2 |\\n| | W-5000 Cologne 1, Germany |\\n| | |\\n| Dept. of Computergraphics & | phone: +49-221-20189-132 (-192) |\\n| Computeranimation | FAX: +49-221-20189-17 |\\n| | |\\n| Academy of Media Arts Cologne | Email: keeve@khm.uni-koeln.de |\\n|_______________________________|_____________________________________|\\n\\n\",\n", - " \"From: shaig@Think.COM (Shai Guday)\\nSubject: Basil, opinions? (Re: Water on the brain)\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 40\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article <1993Apr15.204930.9517@thunder.mcrcim.mcgill.edu>, hasan@McRCIM.McGill.EDU writes:\\n|> \\n|> In article <1993Apr15.055341.6075@nysernet.org>, astein@nysernet.org (Alan Stein) writes:\\n|> |> I guess Hasan finally revealed the source of his claim that Israel\\n|> |> diverted water from Lebanon--his imagination.\\n|> |> -- \\n|> |> Alan H. Stein astein@israel.nysernet.org\\n|> Mr. water-head,\\n|> i never said that israel diverted lebanese rivers, in fact i said that\\n|> israel went into southern lebanon to make sure that no \\n|> water is being used on the lebanese\\n|> side, so that all water would run into Jordan river where there\\n|> israel will use it !#$%^%&&*-head.\\n\\nOf course posting some hard evidence or facts is much more\\ndifficult. You have not bothered to substantiate this in\\nany way. Basil, do you know of any evidence that would support\\nthis?\\n\\nI can just imagine a news report from ancient times, if Hasan\\nhad been writing it.\\n\\nNewsflash:\\nCairo AP (Ancient Press). Israel today denied Egypt acces to the Red\\nSea. In a typical display of Israelite agressiveness, the leader of\\nthe Israelite slave revolt, former prince Moses, parted the Red Sea.\\nThe action is estimated to have caused irreparable damage to the environment.\\nEgyptian authorities have said that thousands of fisherman have been\\ndenied their livelihood by the parted waters. Pharaoh's brave charioteers\\nwere successful in their glorious attempt to cause the waters of the\\nRed Sea to return to their normal state. Unfortunately they suffered\\nheavy casualties while doing so.\\n\\n|> Hasan \\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n\",\n", - " 'From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: images of earth\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM UK Labs\\nLines: 6\\n\\nLook in the /pub/SPACE directory on ames.arc.nasa.gov - there are a number\\nof earth images there. You may have to hunt around the subdirectories as\\nthings tend to be filed under the mission (ie, \"APOLLO\") rather than under\\t\\nthe image subject.\\t\\n\\nRick\\n',\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: DC-X update???\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 25\\n\\nIn article schumach@convex.com (Richard A. Schumacher) writes:\\n\\n>Would the sub-orbital version be suitable as-is (or \"as-will-be\") for use\\n>as a reuseable sounding rocket?\\n\\nDC-X as is today isn\\'t suitable for this. However, the followon SDIO\\nfunds will. A reusable sounding rocket was always SDIO\\'s goal.\\n\\n>Thank Ghod! I had thought that Spacelifter would definitely be the\\n>bastard Son of NLS.\\n\\nSo did I. There is a lot going on now and some reports are due soon \\nwhich should be very favorable. The insiders have been very bush briefing\\nthe right people and it is now paying off.\\n\\nHowever, public support is STILL critical. In politics you need to keep\\nconstant pressure on elected officials.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " 'From: moseley@u.washington.edu (Steve L. Moseley)\\nSubject: Re: Observation re: helmets\\nOrganization: Microbial Pathogenesis and Motorcycle Maintenance\\nLines: 20\\nDistribution: world\\nNNTP-Posting-Host: microb0.biostat.washington.edu\\n\\nIn article <1qk5oi$d0i@sixgun.East.Sun.COM>\\n egreen@east.sun.com (Ed Green - Pixel Cruncher) writes:\\n\\n>If your primary concern is protecting the passenger in the event of a\\n>crash, have him or her fitted for a helmet that is their size. If your\\n>primary concern is complying with stupid helmet laws, carry a real big\\n>spare (you can put a big or small head in a big helmet, but not in a\\n>small one).\\n\\nSo what should I carry if I want to comply with intelligent helmet laws?\\n\\n(The above comment in no way implies support for any helmet law, nor should \\nsuch support be inferred. A promise is a promise.)\\n\\nSteve\\n__________________________________________________________________________\\nSteve L. Moseley moseley@u.washington.edu\\nMicrobiology SC-42 Phone: (206) 543-2820\\nUniversity of Washington FAX: (206) 543-8297\\nSeattle, WA 98195\\n',\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Objective morality (was Re: Humans have \"gone somewhat beyond\" what, exactly? In one thread\\n>you\\'re telling us that natural morality is what animals do to\\n>survive, and in this thread you are claiming that an omniscient\\n>being can \"definitely\" say what is right and what is wrong. So\\n>what does this omniscient being use for a criterion? The long-\\n>term survival of the human species, or what?\\n\\nWell, that\\'s the question, isn\\'t it? The goals are probably not all that\\nobvious. We can set up a few goals, like happiness and liberty and\\nthe golden rule, etc. But these goals aren\\'t inherent. They have to\\nbe defined before an objective system is possible.\\n\\n>How does omniscient map into \"definitely\" being able to assign\\n>\"right\" and \"wrong\" to actions?\\n\\nIt is not too difficult, one you have goals in mind, and absolute\\nknoweldge of everyone\\'s intent, etc.\\n\\n>>Now you are letting an omniscient being give information to me. This\\n>>was not part of the original premise.\\n>Well, your \"original premises\" have a habit of changing over time,\\n>so perhaps you\\'d like to review it for us, and tell us what the\\n>difference is between an omniscient being be able to assign \"right\"\\n>and \"wrong\" to actions, and telling us the result, is. \\n\\nOmniscience is fine, as long as information is not given away. Isn\\'t\\nthis the resolution of the free will problem? An interactive omniscient\\nbeing changes the situation.\\n\\n>>Which type of morality are you talking about? In a natural sense, it\\n>>is not at all immoral to harm another species (as long as it doesn\\'t\\n>>adversely affect your own, I guess).\\n>I\\'m talking about the morality introduced by you, which was going to\\n>be implemented by this omniscient being that can \"definitely\" assign\\n>\"right\" and \"wrong\" to actions.\\n>You tell us what type of morality that is.\\n\\nWell, I was speaking about an objective system in general. I didn\\'t\\nmention a specific goal, which would be necessary to determine the\\nmorality of an action.\\n\\nkeith\\n',\n", - " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Serdar\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nWhat are you, retarded?\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", - " 'From: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nSubject: Re: rejoinder. Questions to Israelis\\nReply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nOrganization: The National Capital Freenet\\nLines: 34\\n\\n\\nIn a previous article, cpr@igc.apc.org (Center for Policy Research) says:\\n\\n>today ? Finally, if Israel wants peace, why can\\'t it declare what\\n>it considers its legitimate and secure borders, which might be a\\n>base for negotiations? Having all the above facts in mind, one\\n>cannot blame Arab countries to fear Israeli expansionism, as a\\n>number of wars have proved (1948, 1956, 1967, 1982).\\n\\nOh yeah, Israel was really ready to \"expand its borders\" on the holiest day\\nof the year (Yom Kippur) when the Arabs attacked in 1973. Oh wait, you\\nchose to omit that war...perhaps because it 100% supports the exact \\nOPPOSITE to the point you are trying to make? I don\\'t think that it\\'s\\nbecause it was the war that hit Israel the hardest. Also, in 1967 it was\\nEgypt, not Israel who kicked out the UN force. In 1948 it was the Arabs\\nwho refused to accept the existance of Israel BASED ON THE BORDERS SET\\nBY THE UNITED NATIONS. In 1956, Egypt closed off the Red Sea to Israeli\\nshipping, a clear antagonistic act. And in 1982 the attack was a response\\nto years of constant shelling by terrorist organizations from the Golan\\nHeights. Children were being murdered all the time by terrorists and Israel\\nfinally retaliated. Nowhere do I see a war that Israel started so that \\nthe borders could be expanded.\\n \\n Steve\\n-- \\n------------------------------------------------------------------------------\\n| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\\n| Mossad@qube.ocunix.on.ca |\\n| <> |\\n',\n", - " 'From: yamauchi@ces.cwru.edu (Brian Yamauchi)\\nSubject: Griffin / Office of Exploration: RIP\\nOrganization: Case Western Reserve University\\nLines: 19\\nDistribution: world\\nNNTP-Posting-Host: yuggoth.ces.cwru.edu\\n\\nAny comments on the absorbtion of the Office of Exploration into the\\nOffice of Space Sciences and the reassignment of Griffin to the \"Chief\\nEngineer\" position? Is this just a meaningless administrative\\nshuffle, or does this bode ill for SEI?\\n\\nIn my opinion, this seems like a Bad Thing, at least on the surface.\\nGriffin seemed to be someone who was actually interested in getting\\nthings done, and who was willing to look an innovative approaches to\\ngetting things done faster, better, and cheaper. It\\'s unclear to me\\nwhether he will be able to do this at his new position.\\n\\nDoes anyone know what his new duties will be?\\n--\\n_______________________________________________________________________________\\n\\nBrian Yamauchi\\t\\t\\tCase Western Reserve University\\nyamauchi@alpha.ces.cwru.edu\\tDepartment of Computer Engineering and Science\\n_______________________________________________________________________________\\n\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: sgi\\nLines: 24\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <115468@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n|> In article <1qg79g$kl5@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >You are amazed that I find it difficult to grasp it when\\n|> >people justify death-threats against Rushdie with the \\n|> >claim \"he was born Muslim?\"\\n|> \\n|> This is empty rhetoric. I am amazed at your inability to understand what\\n|> I am saying not that you find it difficult to \"grasp it when people\\n|> justify death-threats...\". I find it amazing that your ability to\\n|> consider abstract questions in isolation. You seem to believe in the\\n|> falsity of principles by the consequence of their abuse. You must *hate*\\n|> physics!\\n\\nYou\\'re closer than you might imagine. I certainly despised living\\nunder the Soviet regime when it purported to organize society according\\nto what they fondly imagined to be the \"objective\" conclusions of\\nMarxist dialectic.\\n\\nBut I don\\'t hate Physics so long as some clown doesn\\'t start trying\\nto control my life on the assumption that we are all interchangeable\\natoms, rather than individual human beings.\\n\\njon. \\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Metric vs English\\nArticle-I.D.: mksol.1993Apr6.131900.8407\\nOrganization: Texas Instruments Inc\\nLines: 31\\n\\nIn <1993Apr5.195215.16833@pixel.kodak.com> dj@ekcolor.ssd.kodak.com (Dave Jones) writes:\\n\\n>Keith Mancus (mancus@sweetpea.jsc.nasa.gov) wrote:\\n>> Bruce_Dunn@mindlink.bc.ca (Bruce Dunn) writes:\\n>> > SI neatly separates the concepts of \"mass\", \"force\" and \"weight\"\\n>> > which have gotten horribly tangled up in the US system.\\n>> \\n>> This is not a problem with English units. A pound is defined to\\n>> be a unit of force, period. There is a perfectly good unit called\\n>> the slug, which is the mass of an object weighing 32.2 lbs at sea level.\\n>> (g = 32.2 ft/sec^2, of course.)\\n>> \\n\\n>American Military English units, perhaps. Us real English types were once \\n>taught that a pound is mass and a poundal is force (being that force that\\n>causes 1 pound to accelerate at 1 ft.s-2). We had a rare olde tyme doing \\n>our exams in those units and metric as well.\\n\\nAmerican, perhaps, but nothing military about it. I learned (mostly)\\nslugs when we talked English units in high school physics and while\\nthe teacher was an ex-Navy fighter jock the book certainly wasn\\'t\\nproduced by the military.\\n\\n[Poundals were just too flinking small and made the math come out\\nfunny; sort of the same reason proponents of SI give for using that.] \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: arf@genesis.MCS.COM (Jack Schmidling)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: MCSNet Contributor, Chicago, IL\\nLines: 26\\nNNTP-Posting-Host: localhost.mcs.com\\n\\nIn article jim@specialix.com (Jim Maurer) writes:\\n>arf@genesis.MCS.COM (Jack Schmidling) writes:\\n>>>\\n>\\n>\\n>>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>\\n>The donations are tax deductible like any donations to a non-profit\\n>organization. I\\'ve donated money to a group restoring streetcars\\n>and it was tax deductible. Why don\\'t you contribute to a group\\n>helping the homeless if you so concerned?\\n\\nI do (did) contribute to the ARF mortgage fund but when interest\\nrates plumetted, I just paid it off.\\n\\nThe problem is, I couldn\\'t convince Congress to move my home to \\na nicer location on Federal land.\\n\\nBTW, even though the building is alleged to be funded by tax exempt\\nprivate funds, the maintainence and operating costs will be borne by \\ntaxpayers forever.\\n\\nWould anyone like to guess how much that will come to and tell us why\\nthis point is never mentioned?\\n\\njs\\n',\n", - " \"From: camter28@astro.ocis.temple.edu (Carter Ames)\\nSubject: Re: alt.raytrace (potential group)\\nOrganization: Temple University\\nLines: 7\\nNntp-Posting-Host: astro.ocis.temple.edu\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\n\\n\\n\\n Yes, please create the group alt.raytrace soon!!\\nI'm hooked on pov.\\ngeez. like I don't have anything better to do....\\nOH!! dave letterman is on...\\n\",\n", - " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Magellan Update - 04/23/93\\nOrganization: Jet Propulsion Laboratory\\nLines: 34\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Magellan, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from Doug Griffith, Magellan Project Manager\\n\\n MAGELLAN STATUS REPORT\\n April 23, 1993\\n\\n1. The Magellan spacecraft continues to operate normally, gathering\\ngravity data to plot the density variations of Venus in the\\nmid-latitudes. The solar panel offpoint was returned to zero degrees\\nand spacecraft temperatures dropped 2-3 degrees C.\\n\\n2. An end-to-end test of the Delayed Aerobraking Data readout\\nprocess was conducted this week in preparation for the Transition\\nExperiment. There was some difficulty locking up to the data frames,\\nand engineers are presently checking whether the problem was in\\nequipment at the tracking station.\\n\\n3. Magellan has completed 7277 orbits of Venus and is now 32 days\\nfrom the end of Cycle 4 and the start of the Transition Experiment.\\n\\n4. Magellan scientists were participating in the Brown-Vernadsky\\nMicrosymposium at Brown University in Providence, RI, this week. This\\njoint meeting of U.S. and Russian Venus researchers has been\\ncontinuing for many years.\\n\\n5. A three-day simulation of Transition Experiment aerobraking\\nactivities is planned for next week, including Orbit Trim Maneuvers\\nand Starcal (Star calibration) Orbits.\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n',\n", - " 'From: hasan@McRCIM.McGill.EDU\\nSubject: Re: ISLAM BORDERS. ( was :Israel: misisipi to ganges)\\nOriginator: hasan@lightning.mcrcim.mcgill.edu\\nNntp-Posting-Host: lightning.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 26\\n\\n\\nIn article <4805@bimacs.BITNET>, ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n|> \\n|> Hassan and some other seemed not to be a ware that Jews celebrating on\\n|> these days Thje Passover holliday the holidy of going a way from the\\n|> Nile.\\n|> So if one let his imagination freely work it seemed beter to write\\n|> that the Zionist drean is \"from the misisipi to the Nile \".\\n\\nthe question is by going East or West from the misisipi. on either choice\\nyou would loose Palestine or Broklyn, N.Y.\\n\\nI thought you\\'re gonna say fromn misisipi back to the misisipi !\\n\\n|> By the way :\\n|> \\n|> What are the borders the Islamic world dreams about ??\\n|> \\n|> Islamic readers, I am waiting to your honest answer.\\n\\nLet\\'s say : \" let\\'s establish the islamic state first\" or \"let\\'s free our\\noccupied lands first\". And then we can dream about expansion, Mr. Gideon\\n\\n\\nhasan\\n',\n", - " 'From: qpliu@phoenix.Princeton.EDU (q.p.liu)\\nSubject: Re: free moral agency\\nOriginator: news@nimaster\\nNntp-Posting-Host: phoenix.princeton.edu\\nReply-To: qpliu@princeton.edu\\nOrganization: Princeton University\\nLines: 26\\n\\nIn article kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n>In article <1993Apr15.000406.10984@Princeton.EDU> qpliu@phoenix.Princeton.EDU (q.p.liu) writes:\\n>\\n>>>So while Faith itself is a Gift, obedience is what makes Faith possible.\\n>>What makes obeying different from believing?\\n\\n>\\tI am still wondering how it is that I am to be obedient, when I have \\n>no idea to whom I am to be obedient!\\n\\nIt is all written in _The_Wholly_Babble:_the_Users_Guide_to_Invisible_\\n_Pink_Unicorns_.\\n\\nTo be granted faith in invisible pink unicorns, you must read the Babble,\\nand obey what is written in it.\\n\\nTo obey what is written in the Babble, you must believe that doing so is\\nthe way to be granted faith in invisible pink unicorns.\\n\\nTo believe that obeying what is written in the Babble leads to believing\\nin invisible pink unicorns, you must, essentially, believe in invisible\\npink unicorns.\\n\\nThis bit of circular reasoning begs the question:\\nWhat makes obeying different from believing?\\n-- \\nqpliu@princeton.edu Standard opinion: Opinions are delta-correlated.\\n',\n", - " \"From: hugo@hydra.unm.edu (patrice cummings)\\nSubject: polygon orientation in DXF?\\nOrganization: University of New Mexico, Albuquerque\\nLines: 21\\nNNTP-Posting-Host: hydra.unm.edu\\n\\n\\nHi. I'm writing a program to convert .dxf files to a database\\nformat used by a 3D graphics program I've written. My program stores\\nthe points of a polygon in CCW order. I've used 3D Concepts a \\nlittle and it seems that the points are stored in the order\\nthey are drawn.\\n\\nDoes the DXF format have a way of indicating which order the \\npoints are stored in, CW or CCW? Its easy enough to convert,\\nbut if I don't know which way they are stored, I dont know \\nwhich direction the polygon should be visible from.\\n\\nIf DXF doesn't handle this, can anyone recommend a workaround?\\nThe best I can think of is to create two polygons for each one\\nin the DXF file, one stored CW and the other CCW. But that\\ndoubles the number of polygons and decreases speed...\\n\\nThanks in advance for any help,\\n\\nPatrice\\nhugo@hydra.unm.edu \\n\",\n", - " \"From: ricardo@rchland.vnet.ibm.com (Ricardo Hernandez Muchado)\\nSubject: Re: Rumours about 3DO ???\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: rs43873.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 74\\n\\nIn article <1993Apr15.164940.11632@mercury.unt.edu>, Sean McMains writes:\\n|> In article <1993Apr15.144843.19549@rchland.ibm.com> Ricardo Hernandez\\n|> Muchado, ricardo@rchland.vnet.ibm.com writes:\\n|> > And CD-I's CPU doesn't help much either. I understand it is\\n|> >a 68070 (supposedly a variation of a 68000/68010) running at something\\n|> >like 7Mhz. With this speed, you *truly* need sprites.\\n|> \\n|> Wow! A 68070! I'd be very interested to get my hands on one of these,\\n|> especially considering the fact that Motorola has not yet released the\\n|> 68060, which is supposedly the next in the 680x0 lineup. 8-D\\n\\n Sean, the 68070 exists! :-)\\n\\n|> \\n|> Ricardo, the animation playback to which Lawrence was referring in an\\n|> earlier post is plain old Quicktime 1.5 with the Compact Video codec.\\n|> I've seen digitized video (some of Apple's early commercials, to be\\n|> precise) running on a Centris 650 at about 30fps very nicely (16-bit\\n|> color depth). I would expect that using the same algorithm, a RISC\\n|> processor should be able to approach full-screen full-motion animation,\\n|> though as you've implied, the processor will be taxed more with highly\\n|> dynamic material.\\n|> ========================================================================\\n|> Sean McMains | Check out the Gopher | Phone:817.565.2039\\n|> University of North Texas | New Bands Info server | Fax :817.565.4060\\n|> P.O. Box 13495 | at seanmac.acs.unt.edu | E-Mail:\\n|> Denton TX 76203 | | McMains@unt.edu\\n\\n\\n Sean, I don't want to get into a 'mini-war' by what I am going to say,\\nbut I have to be a little bit skeptic about the performance you are\\nclaiming on the Centris, you'll see why (please, no-flames, I reserve\\nthose for c.s.m.a :-) )\\n\\n I was in Chicago in the last consumer electronics show, and Apple had a\\nbooth there. I walked by, and they were showing real-time video capture\\nusing a (Radious or SuperMac?) card to digitize and make right on the spot\\nquicktime movies. I think the quicktime they were using was the old one\\n(1.5).\\n\\n They digitized a guy talking there in 160x2xx something. It played back quite\\nnicely and in real time. The guy then expanded the window (resized) to 25x by\\n3xx (320 in y I think) and the frame rate decreased enough to notice that it\\nwasn't 30fps (or about 30fps) anymore. It dropped to like 15 fps. Then he\\nincreased it just a bit more, and it dropped to 10<->12 fps. \\n\\n Then I asked him what Mac he was using... He was using a Quadra (don't know\\nwhat model, 900?) to do it, and he was telling the guys there that the Quicktime\\ncould play back at the same speed even on an LCII.\\n\\n Well, I spoiled his claim so to say, since a 68040 Quadra Mac was having\\na little bit of trouble. And this wasn't even from the hardisk! This was\\nfrom memory!\\n\\n Could it be that you saw either a newer version of quicktime, or some\\nhardware assisted Centris, or another software product running the \\nanimation (like supposedly MacroMind's Accelerator?)?\\n\\n Don't misunderstand me, I just want to clarify this.\\n\\n But for the sake of the posting about a computer doing it or not, I can\\nclaim 320x200 (a tad more with overscan) being done in 256,000+ colors in \\nmy computer (not from the hardisk) at 30fps with Scala MM210.\\n\\n But I agree, if we consider MPEG stuff, I think a multimedia consumer\\nlow-priced box has a lot of market... I just think 3DO would make it, \\nno longer CD-I.\\n\\n--------------------------------------\\nRaist New A1200 owner 320<->1280 in x, 200<->600 in y\\nin 256,000+ colors from a 24-bit palette. **I LOVE IT!**<- New Low Fat .sig\\n*don't e-mail me* -> I don't have a valid address nor can I send e-mail\\n\\n \\n\",\n", - " 'Reply-To: dcs@witsend.tnet.com\\nFrom: \"D. C. Sessions\" \\nOrganization: Nobody but me -- really\\nX-Newsposter: TMail version 1.20R\\nSubject: Re: Zionism is Racism\\nDistribution: world\\nLines: 23\\n\\nIn <1993Apr21.104330.16704@ifi.uio.no>, michaelp@ifi.uio.no (Michael Schalom Preminger) wrote:\\n# \\n# In article <20APR93.23565659.0109@VM1.MCGILL.CA>, B8HA000 writes:\\n# > In Re:Syria\\'s Expansion, the author writes that the UN thought\\n# > Zionism was Racism and that they were wrong. They were correct\\n# > the first time, Zionism is Racism and thankfully, the McGill Daily\\n# > (the student newspaper at McGill) was proud enough to print an article\\n# > saying so. If you want a copy, send me mail.\\n# > \\n# Was the article about zionism? or about something else. The majority\\n# of people I heard emitting this ignorant statement, do not really\\n# know what zionism is. They have just associated it with what they think\\n# they know about the political situation in the middle east. \\n# \\n# So Steve: Lets here, what IS zionism?\\n\\n Assuming that you mean \\'hear\\', you weren\\'t \\'listening\\': he just\\n told you, \"Zionism is Racism.\" This is a tautological statement.\\n\\n--- D. C. Sessions Speaking for myself ---\\n--- Note new network address: dcs@witsend.tnet.com ---\\n--- Author (and everything else!) of TMail (DOS mail/news shell) ---\\n',\n", - " \"From: aron@tikal.ced.berkeley.edu (Aron Bonar)\\nSubject: Re: 3d-Studio V2.01 : Any differences with previous version\\nOrganization: University of California, Berkeley\\nLines: 18\\nDistribution: world\\nNNTP-Posting-Host: tikal.ced.berkeley.edu\\n\\nIn article <1993Apr22.021708.13381@hparc0.aus.hp.com>, doug@hparc0.aus.hp.com (Doug Parsons) writes:\\n|> FOMBARON marc (fombaron@ufrima.imag.fr) wrote:\\n|> : Are there significant differences between V2.01 and V2.00 ?\\n|> : Thank you for helping\\n|> \\n|> \\n|> No. As I recall, the only differences are in the 3ds.set parameters - some\\n|> of the defaults have changed slightly. I'll look when I get home and let\\n|> you know, but there isn't enough to actually warrant upgrading.\\n|> \\n|> douginoz\\n\\nWrong...the major improvements for 2.01 and 2.01a are in the use of IPAS routines\\nfor 3d studio. They have increased in speed anywhere from 30-200% depending\\non which ones you use.\\n\\nAll the Yost group IPAS routines that you can buy separate from the 3d studio\\npackage require the use of 2.01 or 2.01a. They are too slow with 2.00.\\n\",\n", - " 'From: cbrooks@ms.uky.edu (Clayton Brooks)\\nSubject: Re: Changing sprocket ratios (79 Honda CB750)\\nOrganization: University Of Kentucky, Dept. of Math Sciences\\nLines: 15\\n\\nkarish@gondwana.Stanford.EDU (Chuck Karish) writes:\\n\\n>That\\'s a twin-cam, right? \\n\\nYep...I think it\\'s the only CB750 with a 630 chain.\\nAfter 14 years, it\\'s finally stretching into the \"replace\" zone.\\n\\n>Honda 750s don\\'t have the widest of power bands.\\n\\n I know .... I know.\\n-- \\n Clayton T. Brooks _,,-^`--. From the heart cbrooks@ms.uky.edu\\n 722 POT U o\\'Ky .__,-\\' * \\\\ of the blue cbrooks@ukma.bitnet\\n Lex. KY 40506 _/ ,/ grass and {rutgers,uunet}!ukma!cbrooks\\n 606-257-6807 (__,-----------\\'\\' bourbon country AMA NMA MAA AMS ACBL DoD\\n',\n", - " 'From: Dave Dal Farra \\nSubject: Re: CB750 C with flames out the exhaust!!!!---->>>\\nX-Xxdate: Tue, 20 Apr 93 14:15:17 GMT\\nNntp-Posting-Host: bcarm41a\\nOrganization: BNR Ltd.\\nX-Useragent: Nuntius v1.1.1d9\\nLines: 49\\n\\n\\nIn article <1993Apr20.045032.9199@research.nj.nec.com> Chris BeHanna,\\nbehanna@syl.nj.nec.com writes:\\n>In article <1993Apr19.204159.17534@bnr.ca> Dave Dal Farra \\nwrites:\\n>>Reminds me of a great editorial by Bruce Reeve a couple months ago\\n>>in Cycle Canada.\\n>>\\n>>He was so pissed off with cops pulling over speeders in dangerous\\n>>spots (and often blind corners) that one day he decided to get\\n>>revenge.\\n>>\\n>>Cruising on a factory loaner ZZR1100 test bike, he noticed a cop \\n>>had pulled over a motorist on an on or off ramp with almost no\\n>>shoulder. Being a bright lad, he hit his bike\\'s kill switch\\n>>just before passing the cop, who happened to be bending towards\\n>>the offending motorist there-by exposing his glutes to the\\n>>passing world.\\n>>\\n>>With his ignition system now dead, he pumped his throtle two\\n>>or three times to fill his exhaust canister\\'s with volatile raw fuel.\\n>>\\n>>All it took was a stab at the kill switch to re-light the ignition\\n>>and send a 10\\' flame in Sargeant Swell\\'s direction.\\n>>\\n>>I wonder if any cycle cops read Cycle Canada?\\n>\\n>\\tAlthough I agree with the spirit of the action, I do hope that\\n>the rider ponied up the $800 or so it takes to replace the exhaust system\\n>he just destroyed. The owner\\'s manual explicitly warns against such\\n>behavior for exactly that reason: you can destroy your muflers that way.\\n>\\n>Later,\\n>-- \\n>Chris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\n>behanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\n>Disclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\n>agree with any of this anyway? I was raised by a pack of wild corn dogs.\\n\\nYa, Fat Chance. The \"offending\" rider was a moto journalist. Those\\nguys can sell hundreds of bikes with one stroke of the pen and\\nas such get away with murder when it comes to test bikes.\\n\\nOne way or the other, it was probably worth the early expiration of \\none mufler to see a bone head get his butt baked.\\n\\nDave D.F.\\n\"It\\'s true they say that money talks. When mine spoke it said\\n\\'Buy me a Drink!\\'.\"\\n',\n", - " \"From: eder@hsvaic.boeing.com (Dani Eder)\\nSubject: Re: Elevator to the top floor\\nOrganization: Boeing AI Center, Huntsville, AL\\nLines: 56\\n\\n\\nReading from a Amoco Performance Products data sheet, their\\nERL-1906 resin with T40 carbon fiber reinforcement has a compressive\\nstrength of 280,000 psi. It has a density of 0.058 lb/cu in,\\ntherefore the theoretical height for a constant section column\\nthat can just support itself is 4.8 million inches, or 400,000 ft,\\nor 75 Statute miles.\\n\\nNow, a real structure will have horizontal bracing (either a truss\\ntype, or guy wires, or both) and will be used below the crush strength.\\nLet us assume that we will operate at 40% of the theoretical \\nstrength. This gives a working height of 30 miles for a constant\\nsection column. \\n\\nA constant section column is not the limit on how high you can\\nbuild something if you allow a tapering of the cross section\\nas you go up. For example, let us say you have a 280,000 pound\\nload to support at the top of the tower (for simplicity in\\ncalculation). This requires 2.5 square inches of column cross\\nsectional area to support the weight. The mile of structure\\nbelow the payload will itself weigh 9,200 lb, so at 1 mile \\nbelow the payload, the total load is now 289,200 lb, a 3.3% increase.\\n\\nThe next mile of structure must be 3.3% thicker in cross section\\nto support the top mile of tower plus the payload. Each mile\\nof structure must increase in area by the same ratio all the way\\nto the bottom. We can see from this that there is no theoretical\\nlimit on area, although there will be practical limits based\\non how much composites we can afford to by at $40/lb, and how\\nmuch load you need to support on the ground (for which you need\\na foundation that the bedrock can support.\\n\\nLet us arbitrarily choose $1 billion as the limit in costruction\\ncost. With this we can afford perhaps 10,000,000 lb of composites,\\nassuming our finished structure costs $100/lb. The $40/lb figure\\nis just for materials cost. Then we have a tower/payload mass\\nratio of 35.7:1. At a 3.3% mass ratio per mile, the tower\\nheight becomes 111 miles. This is clearly above the significant\\natmosphere. A rocket launched from the top of the tower will still\\nhave to provide orbital velocity, but atmospheric drag and g-losses\\nwill be almost eliminated. G-losses are the component of\\nrocket thrust in the vertical direction to counter gravity,\\nbut which do not contribute to horizontal orbital velocity. Thus\\nthey represent wasted thrust. Together with drag, rockets starting\\nfrom the ground have a 15% velocity penalty to contend with.\\n\\nThis analysis is simplified, in that it does not consider wind\\nloads. These will require more structural support over the first\\n15 miles of height. Above that, the air pressure drops to a low\\nenough value for it not to be a big factor.\\n\\nDani Eder\\n\\n-- \\nDani Eder/Meridian Investment Company/(205)464-2697(w)/232-7467(h)/\\nRt.1, Box 188-2, Athens AL 35611/Location: 34deg 37' N 86deg 43' W +100m alt.\\n\",\n", - " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 15\\n\\nWell i\\'m not sure about the story nad it did seem biased. What\\nI disagree with is your statement that the U.S. Media is out to\\nruin Israels reputation. That is rediculous. The U.S. media is\\nthe most pro-israeli media in the world. Having lived in Europe\\nI realize that incidences such as the one described in the\\nletter have occured. The U.S. media as a whole seem to try to\\nignore them. The U.S. is subsidizing Israels existance and the\\nEuropeans are not (at least not to the same degree). So I think\\nthat might be a reason they report more clearly on the\\natrocities.\\n\\tWhat is a shame is that in Austria, daily reports of\\nthe inhuman acts commited by Israeli soldiers and the blessing\\nreceived from the Government makes some of the Holocaust guilt\\ngo away. After all, look how the Jews are treating other races\\nwhen they got power. It is unfortunate.\\n',\n", - " 'From: cpr@igc.apc.org (Center for Policy Research)\\nSubject: Re: From Israeli press. Madness.\\nLines: 8\\nNf-ID: #R:cdp:1483500342:cdp:1483500347:000:151\\nNf-From: cdp.UUCP!cpr Apr 17 15:37:00 1993\\n\\n\\nBefore getting excited and implying that I am posting\\nfabrications, I would suggest the readers to consult the\\nnewspaper in question. \\n\\nTahnks,\\n\\nElias\\n',\n", - " \"Subject: Re: Vandalizing the sky.\\nFrom: thacker@rhea.arc.ab.ca\\nOrganization: Alberta Research Council\\nNntp-Posting-Host: rhea.arc.ab.ca\\nLines: 13\\n\\nIn article , enzo@research.canon.oz.au (Enzo Liguori) writes:\\n\\n<<>>\\n\\n> What about light pollution in observations? (I read somewhere else that\\n> it might even be visible during the day, leave alone at night).\\n\\n> Really, really depressed.\\n> \\n> Enzo\\n\\nNo need to be depressed about this one. Lights aren't on during the day\\nso there shouldn't be any daytime light pollution.\\n\",\n", - " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Motorcycle Security\\nKeywords: nothing will stop a really determined thief\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 24\\n\\nIn article <2500@tekgen.bv.tek.com>, davet@interceptor.cds.tek.com (Dave\\nTharp CDS) writes:\\n|> I saw his bike parked in front of a bar a few weeks later without\\n|> the\\n|> dog, and I wandered in to find out what had happened.\\n|> \\n|> He said, \"Somebody stole m\\' damn dog!\". They left the Harley\\n|> behind.\\n|> \\n\\nAnimal Rights people have been know to do that to other\\n\"Bike riding dogs.cats and Racoons. \\n\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", - " 'From: Patrick C Leger \\nSubject: Re: thoughts on christians\\nOrganization: Sophomore, Electrical and Computer Engineering, Carnegie Mellon, Pittsburgh, PA\\nLines: 51\\nNNTP-Posting-Host: po3.andrew.cmu.edu\\nIn-Reply-To: \\n\\nExcerpts from netnews.alt.atheism: 15-Apr-93 Re: thoughts on christians\\nby Dave Fuller@portal.hq.vi \\n> I\\'m sick of religious types being pampered, looked out for, and WORST\\n> OF ALL . . . . respected more than atheists. There must be an end\\n> in sight.\\n> \\nI think it\\'d help if we got a couple good atheists (or even some good,\\nsteadfast agnostics) in some high political offices. When was the last\\ntime we had an (openly) atheist president? Have we ever? (I don\\'t\\nactually know; these aren\\'t rhetorical questions.) How \\'bout some\\nSupreme court justices? \\n\\nOne thing that really ticked me off a while ago was an ad for a news\\nprogram on a local station...The promo said something like \"Who are\\nthese cults, and why do they prey on the young?\" Ahem. EVER HEAR OF\\nBAPTISM AT BIRTH? If that isn\\'t preying on the young, I don\\'t know what\\nis...\\n\\nI used to be (ack, barf) a Catholic, and was even confirmed...Shortly\\nthereafter I decided it was a load of BS. My mom, who really insisted\\nthat I continue to go to church, felt it was her duty (!) to bring me up\\nas a believer! That was one of the more presumptuous things I\\'ve heard\\nin my life. I suggested we go talk to the priest, and she agreed. The\\npriest was amazingly cool about it...He basically said that if I didn\\'t\\nbelieve it, there was no good in forcing it on me. Actually, I guess he\\nwasn\\'t amazingly cool about it--His response is what you\\'d hope for\\n(indeed, expect) from a human being. I s\\'pose I just _didn\\'t_ expect\\nit... \\n\\nI find it absurd that religion exists; Yet, I can also see its\\nusefulness to people. Facing up to the fact that you\\'re just going to\\nbe worm food in a few decades, and that there isn\\'t some cosmic purpose\\nto humanity and the universe, can be pretty difficult for some people. \\nHaving a readily-available, pre-digested solution to this is pretty\\nattractive, if you\\'re either a) gullible enough, b) willing to suspend\\nyour reasoning abilities for the piece of mind, or c) have had the stuff\\nrammed down your throat for as long as you can remember. Religion in\\ngeneral provides a nice patch for some human weaknesses; Organized\\nreligion provides a nice way to keep a population under control. \\n\\nBlech.\\n\\nChris\\n\\n\\n----------------------\\nChris Leger\\nSophomore, Carnegie Mellon Computer Engineering\\nRemember...if you don\\'t like what somebody is saying, you can always\\nignore them!\\n\\n',\n", - " \"From: maler@vercors.imag.fr (Oded Maler)\\nSubject: Re: Unconventional peace proposal\\nNntp-Posting-Host: pelvoux\\nOrganization: IMAG, University of Grenoble, France\\nLines: 43\\n\\nIn article <1483500348@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n|> \\n|> From: Center for Policy Research \\n|> Subject: Unconventional peace proposal\\n|> \\n|> \\n|> A unconventional proposal for peace in the Middle-East.\\n|> ---------------------------------------------------------- by\\n|> \\t\\t\\t Elias Davidsson\\n\\n|> \\n|> 1. A Fund should be established which would disburse grants\\n|> for each child born to a couple where one partner is Israeli-Jew\\n|> and the other Palestinian-Arab.\\n|> \\n|> 2. To be entitled for a grant, a couple will have to prove\\n|> that one of the partners possesses or is entitled to Israeli\\n|> citizenship under the Law of Return and the other partner,\\n|> although born in areas under current Isreali control, is not\\n|> entitled to such citizenship under the Law of Return.\\n|> \\n|> 3. For the first child, the grant will amount to $18.000. For\\n|> the second the third child, $12.000 for each child. For each\\n|> subsequent child, the grant will amount to $6.000 for each child.\\n...\\n\\n|> I would be thankful for critical comments to the above proposal as\\n|> well for any dissemination of this proposal for meaningful\\n|> discussion and enrichment.\\n|> \\n|> Elias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n\\nMaybe I'm a bit old-fashioned, but have you heard about something\\ncalled Love? It used to play some role in people's considerations\\nfor getting married. Of course I know some people who married \\nfictitiously in order to get a green card, but making a common\\nchild for 18,000$? The power of AA is limited. Your proposal is\\nindeed unconventional. \\n\\n===============================================================\\nOded Maler, LGI-IMAG, Bat D, B.P. 53x, 38041 Grenoble, France\\nPhone: 76635846 Fax: 76446675 e-mail: maler@imag.fr\\n===============================================================\\n\",\n", - " 'From: \"Robert Knowles\" \\nSubject: Re: Suggestion for \"resources\" FAQ\\nIn-Reply-To: \\nNntp-Posting-Host: 127.0.0.1\\nOrganization: Kupajava, East of Krakatoa\\nX-Mailer: PSILink-DOS (3.3)\\nLines: 34\\n\\n>DATE: Mon, 19 Apr 1993 15:01:10 GMT\\n>FROM: Bruce Stephens \\n>\\n>I think a good book summarizing and comparing religions would be good.\\n>\\n>I confess I don\\'t know of any---indeed that\\'s why I checked the FAQ to see\\n>if it had one---but I\\'m sure some alert reader does.\\n>\\n>I think the list of books suffers far too much from being Christian based;\\n>I agree that most of the traffic is of this nature (although a few Islamic\\n>references might be good) but I still think an overview would be nice.\\n\\nOne book I have which presents a fairly unbiased account of many religions\\nis called _Man\\'s Religions_ by John B. Noss. It was a textbook in a class\\nI had on comparative religion or some such thing. It has some decent\\nbibliographies on each chapter as a jumping off point for further reading.\\n\\nIt doesn\\'t \"compare\" religions directly but describes each one individually\\nand notes a few similarities. But nothing I have read in it could be even\\nremotely described as preachy or Christian based. In fact, Christianity\\nmercifully consumes only 90 or so of its nearly 600 pages. The book is\\ndivided according to major regions of the world where the biggies began \\n(India, East Asia, Near East). There is nothing about New World religions\\nfrom the Aztecs, Mayas, Incas, etc. Just the stuff people kill each\\nother over nowadays. And a few of the older religions snuffed out along\\nthe way. \\n\\nIf you like the old stuff, then a couple of books called \"The Ancient Near\\nEast\" by James B. Pritchard are pretty cool. Got the Epic of Gilgamesh,\\nCode of Hammurabi, all the stuff from way back when men were gods and gods\\nwere men. Essential reading for anyone who wishes to make up their own\\nreligion and make it sound real good.\\n\\n\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: \"Cruel\" (was Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n\\n>>>This whole thread started because of a discussion about whether\\n>>>or not the death penalty constituted cruel punishment, which is forbidden\\n>>>by the US Constitution.\\n>>Yes, but they didn\\'t say what they meant by \"cruel\", which is why\\n>>a) you have the Supreme Court, and b) it makes no sense to refer\\n>>to the Constitution, which is quite silent on the meaning of the\\n>>word \"cruel\".\\n>\\n>They spent quite a bit of time on the wording of the Constitution. They\\n>picked words whose meanings implied the intent. We have already looked\\n>in the dictionary to define the word. Isn\\'t this sufficient?\\n\\n\\tWe only need to ask the question: what did the founding fathers \\nconsider cruel and unusual punishment?\\n\\n\\tHanging? Hanging there slowing being strangled would be very \\npainful, both physically and psychologicall, I imagine.\\n\\n\\tFiring squad ? [ note: not a clean way to die back in those \\ndays ], etc. \\n\\n\\tAll would be considered cruel under your definition.\\n\\tAll were allowed under the constitution by the founding fathers.\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", - " 'From: (Rashid)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: 47.252.4.179\\nOrganization: NH\\nLines: 34\\n\\n> What about the Twelve Imams, who he considered incapable of error\\n> or sin? Khomeini supports this view of the Twelve Imans. This is\\n> heresy for the very reasons I gave above. \\n\\nI would be happy to discuss the issue of the 12 Imams with you, although\\nmy preference would be to move the discussion to another\\nnewsgroup. I feel a philosophy\\nor religion group would be more appropriate. The topic is deeply\\nembedded in the world view of Islam and the\\nesoteric teachings of the Prophet (S.A.). Heresy does not enter\\ninto it at all except for those who see Islam only as an exoteric\\nreligion that is only nominally (if at all) concerned with the metaphysical\\nsubstance of man\\'s being and nature.\\n\\nA good introductory book (in fact one of the best introductory\\nbooks to Islam in general) is Murtaza Mutahhari\\'s \"Fundamental\\'s\\nof Islamic Thought - God, Man, and the Universe\" - Mizan Press,\\ntranslated by R. Campbell. Truly a beautiful book. A follow-up book\\n(if you can find a decent translation) is \"Wilaya - The Station\\nof the Master\" by the same author. I think it also goes under the\\ntitle of \"Master and Mastership\" - It\\'s a very small book - really\\njust a transcription of a lecture by the author.\\nThe introduction to the beautiful \"Psalms of Islam\" - translated\\nby William C. Chittick (available through Muhammadi Trust of\\nGreat Britain) is also an excellent introduction to the subject. We\\nhave these books in our University library - I imagine any well\\nstocked University library will have them.\\n\\nFrom your posts, you seem fairly well versed in Sunni thought. You\\nshould seek to know Shi\\'ite thought through knowledgeable \\nShi\\'ite authors as well - at least that much respect is due before the\\ncharge of heresy is levelled.\\n\\nAs salaam a-laikum\\n',\n", - " 'From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Ok, So I was a little hasty...\\nOrganization: Louisiana Tech University\\nLines: 30\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr20.010734.18225@megatek.com> randy@megatek.com (Randy Davis) writes:\\n\\n>In article speedy@engr.latech.edu (Speedy Mercer) writes:\\n>|In article jnmoyne@lbl.gov (Jean-Noel Moyne) writes:\\n>|> What does \"DWI\" stand for ? I thought it was \"DUI\" for Driving Under\\n>|>Influence, so here what does W stand for ?\\n>|\\n>|Driving While Intoxicated.\\n\\n> Actually, I beleive \"DWI\" normally means \"Driving While Impaired\" rather\\n>than \"Intoxicated\", at least it does in the states I\\'ve lived in...\\n\\n>|This was changed here in Louisiana when a girl went to court and won her \\n>|case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\n> One can be imparied without necessarily being impaired by liquor - drugs,\\n>not enough sleep, being a total moron :-), all can impair someone etc... I\\'m\\n>surprised this got her off the hook... Perhaps DWI in Lousiana *is* confined\\n>to liquor?\\n\\nLets just say it is DUI here now!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n',\n", - " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Concerning God\\'s Morality (was: Americans and Evolution)\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 110\\nDistribution: world\\nNNTP-Posting-Host: syndicoot.engin.umich.edu\\n\\nIn article <1993Apr2.155057.808@batman.bmd.trw.com> jbrown@batman.bmd.trw.com writes:\\n[why do babies get diseases, etc.]\\n>What God did create was life according to a protein code which is\\n>mutable and can evolve. Without delving into a deep discussion of\\n>creationism vs evolutionism,\\n\\n Here\\'s the (main) problem. The scenario you outline is reasonably \\nconsistent, but all the evidence that I am familiar with not only does\\nnot support it, but indicates something far different. The Earth, by\\nlatest estimates, is about 4.6 billion years old, and has had life for\\nabout 3.5 billion of those years. Humans have only been around for (at\\nmost) about 200,000 years. But, the fossil evidence inidcates that life\\nhas been changing and evolving, and, in fact, disease-ridden, long before\\nthere were people. (Yes, there are fossils that show signs of disease...\\nmostly bone disorders, of course, but there are some.) Heck, not just\\nfossil evidence, but what we\\'ve been able to glean from genetic study shows\\nthat disease has been around for a long, long time. If human sin was what\\nbrought about disease (at least, indirectly, though necessarily) then\\nhow could it exist before humans?\\n\\n> God created the original genetic code\\n>perfect and without flaw. And without getting sidetracked into\\n>the theological ramifications of the original sin, the main effect\\n>of the so-called original sin for this discussion was to remove\\n>humanity from God\\'s protection since by their choice A&E cut\\n>themselves off from intimate fellowship with God. In addition, their\\n>sin caused them to come under the dominion of Satan, who then assumed\\n>dominion over the earth...\\n[deletions]\\n>Since humanity was no longer under God\\'s protection but under Satan\\'s\\n>dominion, it was no great feat for Satan to genetically engineer\\n>diseases, both bacterial/viral and genetic. Although the forces of\\n>natural selection tend to improve the survivability of species, the\\n>degeneration of the genetic code tends to more than offset this. \\n\\n Uh... I know of many evolutionary biologists, who know more about\\nbiology than you claim to, who will strongly disagree with this. There\\nis no evidence that the human genetic code (or any other) \\'started off\\'\\nin perfect condition. It seems to adapt to its envionment, in a\\ncollective sense. I\\'m really curious as to what you mean by \\'the\\ndegeneration of the genetic code\\'.\\n\\n>Human DNA, being more \"complex\", tends to accumulate errors adversely\\n>affecting our well-being and ability to fight off disease, while the \\n>simpler DNA of bacteria and viruses tend to become more efficient in \\n>causing infection and disease. It is a bad combination.\\n\\n Umm. Nah, we seem to do a pretty good job of adapting to viruses and\\nbacteria, and they to us. Only a very small percentage of microlife is\\nharmful to humans... and that small percentage seems to be reasonalby\\nconstant in size, but the ranks keep changing. For example, bubonic\\nplague used to be a really nasty disease, I\\'m sure you\\'ll agree. But\\nit still pops up from time to time, even today... and doesn\\'t do as\\nmuch damage. Part of that is because of better sanitation, but even\\nwhen people get the disease, the symptoms tend to be less severe than in\\nthe past. This seems to be partly because people who were very susceptible\\ndied off long ago, and because the really nasty variants \\'overgrazed\\',\\n(forgive the poor terminology, I\\'m an engineer, not a doctor! :-> ) and\\ndied off for lack of nearby hosts.\\n I could be wrong on this, but from what I gather acne is only a few\\nhundred years old, and used to be nastier, though no killer. It seems to\\nbe getting less nasty w/age...\\n\\n> Hence\\n>we have newborns that suffer from genetic, viral, and bacterial\\n>diseases/disorders.\\n\\n Now, wait a minute. I have a question. Humans were created perfect, right?\\nAnd, you admit that we have an inbuilt abiliy to fight off disease. It\\nseems unlikely that Satan, who\\'s making the diseases, would also gift\\nhumans with the means to fight them off. Simpler to make the diseases less\\nlethal, if he wants survivors. As far as I can see, our immune systems,\\nimperfect though they may (presently?) be, must have been built into us\\nby God. I want to be clear on this: are you saying that God was planning\\nahead for the time when Satan would be in charge by building an immune\\nsystem that was not, at the time of design, necessary? That is, God made\\nour immune systems ahead of time, knowing that Adam and Eve would sin and\\ntheir descendents would need to fight off diseases?\\n\\n>This may be more of a mystical/supernatural explanation than you\\n>are prepared to accept, but God is not responsible for disease.\\n>Even if Satan had nothing to do with the original inception of\\n>disease, evolution by random chance would have produced them since\\n>humanity forsook God\\'s protection.\\n\\n Here\\'s another puzzle. What, exactly, do you mean by \\'perfect\\' in the\\nphrase, \\'created... perfect and without flaw\\'? To my mind, a \\'perfect\\'\\nsystem would be incapable of degrading over time. A \\'perfect\\' system\\nthat will, without constant intervention, become imperfect is *not* a\\nperfect system. At least, IMHO.\\n Or is it that God did something like writing a masterpiece novel on a\\nbunch of gum wrappers held together with Elmer\\'s glue? That is, the\\noriginal genetic \\'instructions\\' were perfect, but were \\'written\\' in\\ninferior materials that had to be carefully tended or would fall apart?\\nIf so, why could God not have used better materials?\\n Was God *incapable* of creating a system that could maintain itself,\\nof did It just choose not to?\\n\\n[deletions]\\n>In summary, newborns are innocent, but God does not cause their suffering.\\n\\n My main point, as I said, was that there really isn\\'t any evidence for\\nthe explanation you give. (At least, that I\\'m aware of.) But, I couldn\\'t\\nhelp making a few nitpicks here and there. :->\\n\\nSincerely,\\n\\nRay Ingles || The above opinions are probably\\n || not those of the University of\\ningles@engin.umich.edu || Michigan. Yet.\\n',\n", - " 'From: backon@vms.huji.ac.il\\nSubject: Re: Go Hezbollah!!\\nDistribution: world\\nOrganization: The Hebrew University of Jerusalem\\nLines: 23\\n\\nIn article <1993Apr14.125813.21737@ncsu.edu>, hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n>\\n> Lebanese resistance forces detonated a bomb under an Israeli occupation\\n> patrol in Lebanese territory two days ago. Three soldiers were killed and\\n> two wounded. In \"retaliation\", Israeli and Israeli-backed forces wounded\\n> 8 civilians by bombarding several Lebanese villages. Ironically, the Israeli\\n> government justifies its occupation in Lebanon by claiming that it is\\n> necessary to prevent such bombardments of Israeli villages!!\\n>\\n> Congratulations to the brave men of the Lebanese resistance! With every\\n> Israeli son that you place in the grave you are underlining the moral\\n> bankruptcy of Israel\\'s occupation and drawing attention to the Israeli\\n> government\\'s policy of reckless disregard for civilian life.\\n>\\n> Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\n\\nI\\'m sure the Federal Bureau of Investigation (fbi.gov on the Internet) is going\\nto *love* reading your incitement to murder.\\n\\n\\nJosh\\nbackon@VMS.HUJI.AC.IL\\n',\n", - " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: islamic authority over women\\nOrganization: Cookamunga Tourist Bureau\\nLines: 21\\n\\nIn article <1993Apr19.120352.1574@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n>> The problem with your argument is that you do not _know_ who is a _real_\\n> believer and who may be \"faking it\". This is something known only by\\n> the person him/herself (and God). Your assumption that anyone who\\n> _claims_ to be a \"believer\" _is_ a \"believer\" is not necessarily true.\\n\\nSo that still leaves the door totally open for Khomeini, Hussein\\net rest. They could still be considered true Muslims, and you can\\'t\\njudge them, because this is something between God and the person.\\n\\nYou have to apply your rule as well with atheists/agnostics, you\\ndon\\'t know their belief, this is something between them and God.\\n\\nSo why the hoopla about Khomeini not being a real Muslim, and the\\nhoopla about atheists being not real human beings?\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", - " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Gibbons Outlines SSF Redesign Guidance\\nNews-Software: VAX/VMS VNEWS 1.41 \\nNntp-Posting-Host: tm0006.lerc.nasa.gov\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 76\\n\\nNASA Headquarters distributed the following press\\nrelease today (4/6). I\\'ve typed it in verbatim, for you\\nfolks to chew over. Many of the topics recently\\ndiscussed on sci.space are covered in this.\\n\\nGibbons Outlines Space Station Redesign Guidance\\n\\nDr. John H. Gibbons, Director, Office of Science and\\nTechnology Policy, outlined to the members-designate of\\nthe Advisory Committee on the Redesign of the Space\\nStation on April 3, three budget options as guidance to\\nthe committee in their deliberations on the redesign of\\nthe space station.\\n\\nA low option of $5 billion, a mid-range option of $7\\nbillion and a high option of $9 billion will be\\nconsidered by the committee. Each option would cover\\nthe total expenditures for space station from fiscal\\nyear 1994 through 1998 and would include funds for\\ndevelopment, operations, utilization, Shuttle\\nintegration, facilities, research operations support,\\ntransition cost and also must include adequate program\\nreserves to insure program implementation within the\\navailable funds.\\n\\nOver the next 5 years, $4 billion is reserved within\\nthe NASA budget for the President\\'s new technology\\ninvestment. As a result, station options above $7\\nbillion must be accompanied by offsetting reductions in\\nthe rest of the NASA budget. For example, a space\\nstation option of $9 billion would require $2 billion\\nin offsets from the NASA budget over the next 5 years.\\n\\nGibbons presented the information at an organizational\\nsession of the advisory committee. Generally, the\\nmembers-designate focused upon administrative topics\\nand used the session to get acquainted. They also\\nreceived a legal and ethics briefing and an orientation\\non the process the Station Redesign Team is following\\nto develop options for the advisory committee to\\nconsider.\\n\\nGibbons also announced that the United States and its\\ninternational partners -- the Europeans, Japanese, and\\nCanadians -- have decided, after consultation, to give\\n\"full consideration\" to use of Russian assets in the\\ncourse of the space station redesign process.\\n\\nTo that end, the Russians will be asked to participate\\nin the redesign effort on an as-needed consulting\\nbasis, so that the redesign team can make use of their\\nexpertise in assessing the capabilities of MIR and the\\npossible use of MIR and other Russian capabilities and\\nsystems. The U.S. and international partners hope to\\nbenefit from the expertise of the Russian participants\\nin assessing Russian systems and technology. The\\noverall goal of the redesign effort is to develop\\noptions for reducing station costs while preserving key\\nresearch and exploration capabilities. Careful\\nintegration of Russian assets could be a key factor in\\nachieving that goal.\\n\\nGibbons reiterated that, \"President Clinton is\\ncommitted to the redesigned space station and to making\\nevery effort to preserve the science, the technology\\nand the jobs that the space station program represents.\\nHowever, he also is committed to a space station that\\nis well managed and one that does not consume the\\nnational resources which should be used to invest in\\nthe future of this industry and this nation.\"\\n\\nNASA Administrator Daniel S. Goldin said the Russian\\nparticipation will be accomplished through the East-\\nWest Space Science Center at the University of Maryland\\nunder the leadership of Roald Sagdeev.\\n\\n',\n", - " 'From: looper@cco.caltech.edu (Mark D. Looper)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: California Institute of Technology, Pasadena\\nLines: 23\\nNNTP-Posting-Host: sandman.caltech.edu\\nKeywords: Galileo, JPL\\n\\nprb@access.digex.com (Pat) writes:\\n\\n>Galileo\\'s HGA is stuck. \\n\\n>The HGA was left closed, because galileo had a venus flyby.\\n\\n>If the HGA were pointed att he sun, near venus, it would\\n>cook the foci elements.\\n\\n>question: WHy couldn\\'t Galileo\\'s course manuevers have been\\n>designed such that the HGA did not ever do a sun point.?\\n\\nThe HGA isn\\'t all that reflective in the wavelengths that might \"cook the\\nfocal elements\", nor is its figure good on those scales--the problem is\\nthat the antenna _itself_ could not be exposed to Venus-level sunlight,\\nlest like Icarus\\' wings it melt. (I think it was glues and such, as well\\nas electronics, that they were worried about.) Thus it had to remain\\nfurled and the axis _always_ pointed near the sun, so that the small\\nsunshade at the tip of the antenna mast would shadow the folded HGA.\\n(A larger sunshade beneath the antenna shielded the spacecraft bus.)\\n\\n--Mark Looper\\n\"Hot Rodders--America\\'s first recyclers!\"\\n',\n", - " 'From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Ellipse from Its Offset\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\nKeywords: ellipse\\n\\n\\nHi! Everyone,\\n\\nSince some people quickly solved the problem of determining a sphere from\\n4 points, I suddenly recalled a problem which is how to find the ellipse\\nfrom its offset. For example, given 5 points on the offset, can you find\\nthe original ellipse analytically?\\n\\nI spent two months solving this problem by using analytical method last year,\\nbut I failed. Under the pressure, I had to use other method - nonlinear\\nprogramming technique to deal with this problem approximately.\\n\\nAny ideas will be greatly appreciated. Please post here, let the others\\nshare our interests.\\n\\nYeh\\nUSC\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Unconventional peace proposal\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 22\\n\\nIn article <1483500348@igc.apc.org> Center for Policy Research writes:\\n\\n>1. The idea of providing financial incentives to selected\\n>forms of partnership and marriage, is not conventional. However,\\n>it is based on the concept of affirmative action, which is\\n>recognized as a legitimate form of public policy to reverse the\\n>perverse effects of segregation and discrimination.\\n\\n\\tOther people have already shown this to be a rediculous\\nproposal. however, I wanted to point out that there are many people\\nwho do not think that affirmative action is a either intelligent or\\nproductive. It is demeaning to those who it supposedly helps and it\\nis discriminatory.\\n\\n\\tAny proposal based on it is likely bunk as well.\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " \"From: arens@ISI.EDU (Yigal Arens)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nOrganization: USC/Information Sciences Institute\\nLines: 43\\nNNTP-Posting-Host: grl.isi.edu\\nIn-reply-to: ehrlich@bimacs.BITNET's message of 19 Apr 93 14:58:49 GMT\\n\\nIn article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>\\n> In article arens@ISI.EDU (Yigal\\n> Arens) writes:\\n>\\n> >Los Angeles Times, Tuesday, April 13, 1993. P. A1.\\n> > ........\\n>\\n> The problem if transffering US government files about Yigal Arens\\n> and some other similar persons does or does not violate a federal\\n> or a local American law seemed to belong to some local american law\\n> forum not to this forum.\\n> The readers of this forum seemed to be more interested in the contents\\n> of those files.\\n> So It will be nice if Yigal will tell us:\\n> 1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\nI'm not aware that the US government considers me dangerous. In any\\ncase, that has nothing to do with the current case. The claim against\\nthe ADL is that it illegally obtained and disseminated information that\\nwas gathered by state and/or federal agencies in the course of their\\nstandard interaction with citizens such as myself. By that I refer to\\nthings such as: address and phone number, vehicle registration and\\nlicense information, photographs, etc.\\n\\n> 2. Why does the ADL have an interest in that person ?\\n\\nYou should ask the ADL, if you want an authoritative answer. My guess\\nis that they collected information on anyone who did or might engage in\\npolitical criticism of Israel. I further believe that they did this as\\nagents of the Israeli government, or at least in agreement with them.\\nAt least some of the information collected by the ADL was passed on to\\nIsraeli officials. In some cases it was used to influence, or attempt\\nto influence, people's access to jobs or public forums. These matters\\nwill be brought out as the court case unfolds, since California law\\nentitles people to compensation if such actions can be proven. As my\\nprevious posting shows, California law entitles people to compensation\\neven in the absence of any specific consequences -- just for the further\\ndissemination of certain types of private information about them.\\n--\\nYigal Arens\\nUSC/ISI TV made me do it!\\narens@isi.edu\\n\",\n", - " 'From: Center for Policy Research \\nSubject: Assistance to Palest.people\\nNf-ID: #N:cdp:1483500359:000:3036\\nNf-From: cdp.UUCP!cpr Apr 24 15:00:00 1993\\nLines: 78\\n\\n\\nFrom: Center for Policy Research \\nSubject: Assistance to Palest.people\\n\\n\\nU.N. General Assembly Resolution 46/201 of 20 December 1991\\n\\nASSISTANCE TO THE PALESTINIAN PEOPLE\\n---------------------------------------------\\nThe General Assembly\\n\\nRecalling its resolution 45/183 of 21 December 1990\\n\\nTaking into account the intifadah of the Palestinian people in the\\noccupied Palestinian territory against the Israeli occupation,\\nincluding Israeli economic and social policies and practices,\\n\\nRejecting Israeli restrictions on external economic and social\\nassistance to the Palestinian people in the occupied Palestinian\\nterritory,\\n\\nConcerned about the economic losses of the Palestinian people as a\\nresult of the Gulf crisis,\\n\\nAware of the increasing need to provide economic and social\\nassistance to the Palestinian people,\\n\\nAffirming that the Palestinian people cannot develop their\\nnational economy as long as the Israeli occupation persists,\\n\\n1. Takes note of the report of the Secretary-General on assistance\\nto the Palestinian people;\\n\\n2. Expresses its appreciation to the States, United Nations bodies\\nand intergovernmental and non-governmental organizations that have\\nprovided assistance to the Palestinian people,\\n\\n3. Requests the international community, the United Nations system\\nand intergovernmental and non-governmental organizations to\\nsustain and increase their assistance to the Palestinian people,\\nin close cooperation with the Palestine Liberation Organization\\n(PLO), taking in account the economic losses of the Palestinian\\npeople as a result of the Gulf crisis;\\n\\n4. Calls for treatment on a transit basis of Palestinian exports\\nand imports passing through neighbouring ports and points of exit\\nand entry;\\n\\n5. Also calls for the granting of trade concessions and concrete\\npreferential measures for Palestinian exports on the basis of\\nPalestinian certificates of origin;\\n\\n6. Further calls for the immediate lifting of Israeli restrictions\\nand obstacles hindering the implementation of assistance projects\\nby the United Nations Development Programme, other United Nations\\nbodies and others providing economic and social assistance to the\\nPalestinian people in the occupied Palestinian territory;\\n\\n7. Reiterates its call for the implementation of development\\nprojects in the occupied Palestinian territory, including the\\nprojects mentioned in its resolution 39/223 of 18 December 1984;\\n\\n8. Calls for facilitation of the establishment of Palestinian\\ndevelopment banks in the occupied Palestinian territory, with a\\nview to promoting investment, production, employment and income\\ntherein;\\n\\n9. Requests the Secretary-General to report to the General\\nThe General Assembly at its 47th session, through the Economic and Social\\nCouncil, on the progress made in the implementation of the present\\nresolution.\\n-----------------------------------------------\\n\\nIn favour 137 countries (Europe, Canada, Australia, New Zealand,\\nJapan, Africa, South America, Central America and Asia) Against:\\nUnited States and Israel Abstaining: None\\n\\n\\n',\n", - " \"From: daviss@sweetpea.jsc.nasa.gov (S.F. Davis)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: NSPC\\nDistribution: na\\nLines: 107\\n\\nIn article <1quule$5re@access.digex.net>, prb@access.digex.com (Pat) writes:\\n|> \\n|> AW&ST had a brief blurb on a Manned Lunar Exploration confernce\\n|> May 7th at Crystal City Virginia, under the auspices of AIAA.\\n|> \\n|> Does anyone know more about this? How much, to attend????\\n|> \\n|> Anyone want to go?\\n|> \\n|> pat\\n\\nHere are some selected excerpts of the invitation/registration form they\\nsent me. Retyped without permission, all typo's are mine.\\n\\n---------------------------------------------------------------------\\nLow-Cost Lunar Access: A one-day conference to explore the means and \\nbenefits of a rejuvenated human lunar program.\\n\\nFriday, May 7, 1993\\nHyatt Regency - Crystal City Hotel\\nArlington, VA\\n\\nABOUT THE CONFERENCE\\nThe Low-Cost Lunar Access conference will be a forum for the exchange of\\nideas on how to initiate and structure an affordable human lunar program.\\nInherent in such low-cost programs is the principle that they be \\nimplemented rapidly and meet their objectives within a short time\\nframe.\\n\\n[more deleted]\\n\\nCONFERENCE PROGRAM (Preliminary)\\n\\nIn the Washington Room:\\n\\n 9:00 - 9:10 a.m. Opening Remarks\\n Dr. Alan M. Lovelace\\n\\n 9:10 - 9:30 a.m. Keynote Address\\n Mr. Brian Dailey\\n\\n 9:30 - 10:00 a.m. U.S. Policy Outlook\\n John Pike, American Federation of Scientists\\n\\n A discussion of the prospects for the introduction of a new low-cost\\n lunar initiative in view of the uncertain direction the space\\n program is taking.\\n\\n 10:00 - 12:00 noon Morning Plenary Sessions\\n\\n Presentations on architectures, systems, and operational concepts.\\n Emphasis will be on mission approaches that produce significant\\n advancements beyond Apollo yet are judged to be affordable in the\\n present era of severely constrained budgets\\n\\n\\nIn the Potomac Room\\n\\n 12:00 - 1:30 p.m. Lunch\\n Guest Speaker: Mr. John W. Young,\\n NASA Special Assistant and former astronaut\\n\\nIn the Washington Room\\n\\n 1:30 - 2:00 p.m. International Policy Outlook\\n Ian Pryke (invited)\\n ESA, Washington Office\\n\\n The prevailing situation with respect to international space \\n commitments, with insights into preconditions for European \\n entry into new agreements, as would be required for a cooperative\\n lunar program.\\n\\n 2:00 - 3:30 p.m. Afternoon Plenary Sessions\\n\\n Presentations on scientific objectives, benefits, and applications.\\n Emphasis will be placed on the scientific and technological value\\n of a lunar program and its timeliness.\\n\\n\\n---------------------------------------------------------------------\\n\\nThere is a registration form and the fee is US$75.00. The mail address\\nis \\n\\n American Institute of Aeronautics and Astronautics\\n Dept. No. 0018\\n Washington, DC 20073-0018\\n\\nand the FAX No. is: \\n\\n (202) 646-7508\\n\\nor it says you can register on-site during the AIAA annual meeting \\nand on Friday morning, May 7, from 7:30-10:30\\n\\n\\nSounds interesting. Too bad I can't go.\\n\\n|--------------------------------- ******** -------------------------|\\n| * _!!!!_ * |\\n| Steven Davis * / \\\\ \\\\ * |\\n| daviss@sweetpea.jsc.nasa.gov * () * | \\n| * \\\\>_db_ Dale.James@cs.cmu.edu writes:\\n>GS1100E. It\\'s a great bike, but you\\'d better be damn careful! \\n>I got a 1983 as my third motorcycle, \\n[...deleta...]\\n>The bike is light for it\\'s size (I think it\\'s 415 pounds); but heavy for a\\n>beginner bike.\\n\\nHeavy for a beginner bike it is; 415 pounds it isn\\'t, except maybe in\\nsome adman\\'s dream. With a full tank, it\\'s in the area of 550 lbs,\\ndepending on year etc.\\n\\n>You\\'re 6\\'4\" -- you should have no problem physically managing\\n>it. The seat is roughly akin to a plastic-coated 2by6. Very firm to very\\n>painful, depending upon time in the saddle.\\n\\nThe 1980 and \\'81 versions had a much better seat, IMO.\\n\\n>The bike suffers from the infamous Suzuki regulator problem. I have so far\\n>avoided forking out the roughly $150 for the Suzuki part by kludging in\\n>different Honda regulator/rectifier units from junkyards. The charging system\\n>consistently overcharges the battery. I have to refill it nearly weekly.\\n>This in itself is not so bad, but battery access is gained only after removing\\n>the seat, the tank, and the airbox.\\n\\nMy regulator lasted over 100,000 miles, and didn\\'t overcharge the battery.\\nThe wiring connectors in the charging path did get toasty though,\\ntending to melt their insulation. I suspect they were underspecified;\\nit didn\\'t help that they were well removed from cool air.\\n\\nBattery access on the earlier bikes doesn\\'t require tank removal.\\nAfter you learn the drill, it\\'s pretty straightforward.\\n\\n[...]\\n>replacement parts, like all Suzuki parts, are outrageously expensive.\\n\\nHaving bought replacement parts for several brands of motorcycles,\\nI\\'ll offer a grain of salt to be taken with Dale\\'s assessment.\\n\\n[...]\\n>Good luck, and be careful!\\n>--Dale\\n\\nSentiments I can\\'t argue with...or won\\'t...\\n-- Dean Deeds\\n\\tdeeds@vulcan1.edsg.hac.com\\n',\n", - " \"From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Surface normal orientations\\nArticle-I.D.: cis.1993Apr6.181509.1973\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 16\\n\\nIn article <1993Apr6.175117.1848@cis.uab.edu> sloan@cis.uab.edu (Kenneth Sloan) writes:\\n\\nA brilliant algorithm. *NOT*\\n\\nSeriously - it's correct, up to a sign change. The flaw is obvious, and\\nwill therefore not be shown.\\n\\nsorry about that.\\n\\n\\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n\",\n", - " 'From: IMAGING.CLUB@OFFICE.WANG.COM (\"Imaging Club\")\\nSubject: Re: Signature Image Database\\nOrganization: Mail to News Gateway at Wang Labs\\nLines: 21\\n\\nContact Signaware Corp\\n800-4583820\\n800 6376564\\n\\n-------------------------------- Original Memo --------------------------------\\nBCC: Vincent Wall From: Imaging Club\\nSubject: Signature verification ? Date Sent: 05/04/93\\n\\nsci.image.processing\\nFrom: yyqi@ece.arizona.edu (Yingyong Qi)\\nSubject: Signature Image Database\\nOrganization: U of Arizona Electrical and Computer Engineering\\n\\nHi, All:\\n\\nCould someone tell me if there is a database of handwriting signature\\nimages available for evaluating signature verification systems.\\n\\nThanks.\\n\\nYY\\n',\n", - " \"From: David.Anderman@ofa123.fidonet.org\\nSubject: LRDPA news\\nX-Sender: newtout 0.08 Feb 23 1993\\nLines: 28\\n\\n Many of you at this point have seen a copy of the \\nLunar Resources Data Purchase Act by now. This bill, also known as the Back to \\nthe Moon bill, would authorize the U.S. \\ngovernment to purchase lunar science data from private \\nand non-profit vendors, selected on the basis of competitive bidding, with an \\naggregate cap on bid awards of $65 million. \\n If you have a copy of the bill, and can't or don't want to go through \\nall of the legalese contained in all Federal legislation,don't both - you have \\na free resource to evaluate the bill for you. Your local congressional office, \\nlisted in the phone book,is staffed by people who can forward a copy of the\\nbill to legal experts. Simply ask them to do so, and to consider supporting\\nthe Lunar Resources Data Purchase Act. \\n If you do get feedback, negative or positive, from your congressional \\noffice, please forward it to: David Anderman\\n3136 E. Yorba Linda Blvd., Apt G-14, Fullerton, CA 92631,\\nor via E-Mail to: David.Anderman@ofa123.fidonet.org. \\n Another resource is your local chapter of the National Space Society. \\nMembers of the chapter will be happy to work with you to evaluate and support \\nthe Back to the Moon bill. For the address and telephone number of the nearest \\nchapter to you, please send E-mail, or check the latest issue of Ad Astra, in \\na library near you.\\n Finally, if you have requested, and not received, information about\\nthe Back to the Moon bill, please re-send your request. The database for the\\nbill was recently corrupted, and some information was lost. The authors of the \\nbill thank you for your patience.\\n\\n\\n--- Maximus 2.01wb\\n\",\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: HST Servicing Mission Scheduled for 11 Days\\nOrganization: U of Toronto Zoology\\nLines: 35\\n\\nIn article <1rd1g0$ckb@access.digex.net> prb@access.digex.com (Pat) writes:\\n>How will said re-boost be done?\\n>Grapple, HST, stow it in Cargo bay, do OMS burn to high altitude, \\n>unstow HST, repair gyros, costar install, fix solar arrays,\\n>then return to earth?\\n\\nActually, the reboost will probably be done last, so that there is a fuel\\nreserve during the EVAs (in case they have to chase down an adrift\\nastronaut or something like that). But yes, you've got the idea -- the\\nreboost is done by taking the whole shuttle up.\\n\\n>My guess is why bother with usingthe shuttle to reboost?\\n>why not grapple, do all said fixes, bolt a small liquid fueled\\n>thruster module to HST, then let it make the re-boost...\\n\\nSomebody has to build that thruster module; it's not an off-the-shelf\\nitem. Nor is it a trivial piece of hardware, since it has to include\\nattitude control (HST's own is not strong enough to compensate for things\\nlike thruster imbalance), guidance (there is no provision to feed gyro\\ndata from HST's own gyros to an external device), and separation (you\\ndon't want it left attached afterward, if only to avoid possible\\ncontamination after the telescope lid is opened again). You also get\\nto worry about whether the lid is going to open after the reboost is\\ndone and HST is inaccessible to the shuttle (the lid stays closed for\\nthe duration of all of this to prevent mirror contamination from\\nthrusters and the like).\\n\\nThe original plan was to use the Orbital Maneuvering Vehicle to do the\\nreboost. The OMV was planned to be a sort of small space tug, well\\nsuited to precisely this sort of job. Unfortunately, it was costing\\na lot to develop and the list of definitely-known applications was\\nrelatively short, so it got cancelled.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " \"From: rm03@ic.ac.uk (Mr R. Mellish)\\nSubject: Re: university violating separation of church/state?\\nOrganization: Imperial College\\nLines: 33\\nNntp-Posting-Host: 129.31.80.14\\n\\nIn article <199304041750.AA17104@kepler.unh.edu> dmn@kepler.unh.edu (...until kings become philosophers or philosophers become kings) writes:\\n>\\n>\\n>\\n> Recently, RAs have been ordered (and none have resisted or cared about\\n>it apparently) to post a religious flyer entitled _The Soul Scroll: Thoughts\\n>on religion, spirituality, and matters of the soul_ on the inside of bathroom\\n>stall doors. (at my school, the University of New Hampshire) It is some sort\\n>of newsletter assembled by a Hall Director somewhere on campus.\\n[most of post deleted]\\n>\\n> Please respond as soon as possible. I'd like these religious postings to\\n>stop, NOW! \\n>\\n> \\n>Thanks,\\n>\\n> Dana\\n>\\n> \\n> \\nThere is an easy way out....\\nPost the flyers on the stall doors, but add at the bottom, in nice large\\ncapitals,\\n\\n EMERGENCY TOILET PAPER\\n\\n:)\\n\\n-- \\n------ Robert Mellish, FOG, IC, UK ------\\n Email: r.mellish@ic.ac.uk Net: rm03@sg1.cc.ic.ac.uk IRC: HobNob\\n------ and also the mrs joyful prize for rafia work. ------\\n\",\n", - " \"From: SRUHL@MECHANICAL.watstar.uwaterloo.ca (Stefan Ruhl)\\nSubject: crappy Honda CX650\\nLines: 24\\nOrganization: University of Waterloo\\n\\nHi, I just have a small question about my bike. \\nBeing a fairly experienced BMW and MZ-Mechanic, I just don't know what to \\nthink about my Honda. \\nShe was using too much oil for the last 5000 km (on my trip to Daytona bike \\nweek this spring), and all of a sudden, she trailed smoke like hell and \\nwas running only on one cylinder. \\nI towed the bike home and took it apart, but everything looks in perfect \\nworking order. No cracks in the heads or pistons, the cylinder walls look \\nvery clean, and the wear of pistons and cylinders is not measurable. All \\nstill within factory specs. The only thing I could find, however, was a \\nslightly bigger ring gap on the right cylinder (the one with the problem), \\nbut it is still way below the wear-limit given in the Clymer-manual for \\nthis bike. \\nAny syggestions??? What else could cause my problem??? Do I have to hone \\nthe cylinder walls (make them a little rougher in a criss-cross-pattern) in \\norder to get better breaking in of my new rings??? Won't that increase the \\nwear of my pistons??\\nPlease send comments to \\n\\tsruhl@mechanical.watstar.uwaterloo.ca\\nThanks in advance. Stef. \\n------------------------------------------------------------------------------ \\nStefan Ruhl \\ngerman exchange student. \\nDon't poke into my privacy ! \\n\",\n", - " \"From: george@ccmail.larc.nasa.gov (George M. Brown)\\nSubject: QC/MSC code to view/save images\\nOrganization: Client Specific Systems, Inc.\\nLines: 12\\nNNTP-Posting-Host: thrasher.larc.nasa.gov\\n\\nDear Binary Newsers,\\n\\nI am looking for Quick C or Microsoft C code for image decoding from file for\\nVGA viewing and saving images from/to GIF, TIFF, PCX, or JPEG format. I have\\nscoured the Internet, but its like trying to find a Dr. Seuss spell checker \\nTSR. It must be out there, and there's no need to reinvent the wheel.\\n\\nThanx in advance.\\n\\n//////////////\\n\\n The Internet is like a Black Hole....\\n\",\n", - " \"From: mtrost@convex.com (Matthew Trost)\\nSubject: Re: The best of times, the worst of times\\nNntp-Posting-Host: eugene.convex.com\\nOrganization: CONVEX Computer Corporation, Richardson, Tx., USA\\nX-Disclaimer: This message was written by a user at CONVEX Computer\\n Corp. The opinions expressed are those of the user and\\n not necessarily those of CONVEX.\\nLines: 17\\n\\nIn <1993Apr20.161357.20354@ttinews.tti.com> paulb@harley.tti.com (Paul Blumstein) writes:\\n\\n>(note: this is not about the L.A. or NY Times)\\n\\n\\n>Turned out to be a screw unscrewed inside my Mikuni HS40 \\n>carb. I keep hearing that one should keep all of the screws\\n>tight on a bike, but I never thought that I had to do that\\n>on the screws inside of a carb. At least it was roadside\\n>fixable and I was on my way in hardly any time.\\n\\nYou better check all the screws in that carb before you suck\\none into a jug and munge a piston, or valve. I've seen it\\nhappen before.\\n\\nMatthew\\n\\n\",\n", - " \"From: ken@cs.UAlberta.CA (Huisman Kenneth M)\\nSubject: images of earth\\nNntp-Posting-Host: cab101.cs.ualberta.ca\\nOrganization: University of Alberta\\nLines: 14\\n\\nI am looking for some graphic images of earth shot from space. \\n( Preferably 24-bit color, but 256 color .gif's will do ).\\n\\nAnyways, if anyone knows an FTP site where I can find these, I'd greatly\\nappreciate it if you could pass the information on. Thanks.\\n\\n\\n( please send email ).\\n\\n\\nKen Huisman\\n\\nken@cs.ualberta.ca\\n\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: An Iranian Azeri Who Would Drop an Atomic Bomb on Armenia\\nSummary: fool\\nArticle-I.D.: urartu.1993Apr15.231047.13120\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 70\\n\\nIn article <93104.101314FHM100F@ODUVM.BITNET> FARID \\nwrites:\\n\\n[FARID] In support of the preservation of the territorial integrity of \\n[FARID] Azerbaijan and its independence from Russian rule, the Iranians which \\n[FARID] includes millions of Azerbaijanis will have Armenia retreat from the \\n[FARID] territory of Azerbaijan. \\n\\nOh, they will? This should prove quite interesting!\\n\\n[FARID] To count on Iranian help to supposedly counter Turkish influence will \\n[FARID] be a fatal error on the part of Armenia as long as Armenia in \\n[FARID] violation of international law has Azerbaijani lands in occupation. \\n\\nArmenia is not counting on Iranian help. As far as violations of international\\nlaws, which international law gives Azerbaijan the right to attack and \\ndepopulate the Armenians in Karabakh?\\n\\n[FARID] If Armenian aggression continues in the territory of Azerbaijan, not \\n[FARID] only there won\\'t be any aid from Iran to Armenia but also steps will \\n[FARID] be taken to have Armenian army back in Armenia. \\n\\nAnd who do you speak for? Rafsanjani?\\n\\n[FARID] The Azerbaijanis of Iran will be the guarantors of this policy. As for \\n[FARID] scaring Iranians or Turks from the Russian power, experts on present \\n[FARID] and future military potentials of these people would not put much \\n[FARID] stock on the Russain power as the sole power in the region for long!!! \\n\\nWell, Farid, your supposed experts are not expert! The Russians have had\\nnon-stop influence in the Caucasus since the Treaty of Turkmanchay in 1828.\\nHmm... that makes it 1993-1828 = 165 years! \\n\\nOh, I see the Azeris from Iran are going to force out the Armenians from \\nKarabakh! That will be a real good trick! \\n\\n[FARID] Iran is not alian to developing the capability to produce the A bomb \\n[FARID] and a reliable delivery system (refer to recent news releases \\n[FARID] regarding the potential of Iran). \\n\\nSo the Azeris from Iran are going to force the Armenians from Karabakh by\\nforcing the Iranian government to drop an atomic bomb on these Armenians.\\n\\n[FARID] The moral of the story is that, you don\\'t go invading your neighbor\\'s \\n[FARID] home (Azerbaijan) and flash Russia\\'s guns when questioned about it. \\n\\nOh, but it\\'s just fine if you drop an atomic bomb on your neighbor! You are\\na damn fool, Farid!\\n\\n[FARID] (Marshal Shapashnikov may have to eat his words regarding Turkey in a \\n[FARID] few short years!). \\n\\nSo you are going to drop an atomic bomb on Russia as well. \\n\\n[FARID] Peaceful resolution of the Armenian-Azerbaijani conflict is the only \\n[FARID] way to go. Armenia may soon find the fruits of Aggression very bitter \\n[FARID] indeed.\\n\\nAnd the Armenians will take your \"peaceful\" dropping of an atomic bomb as\\nan example of Iranian Azeri benevolence! You sir are a poor example of an \\nIranian Azeri! \\n\\nHa! And to think I had a nice two day stay in Tabriz back in 1978! \\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orion drive in vacuum -- how?\\nOrganization: U of Toronto Zoology\\nLines: 15\\n\\nIn article <1qn4bgINN4s7@mimi.UU.NET> goltz@mimi.UU.NET (James P. Goltz) writes:\\n> Would this work? I can't see the EM radiation impelling very much\\n>momentum (especially given the mass of the pusher plate), and it seems\\n>to me you're going to get more momentum transfer throwing the bombs\\n>out the back of the ship than you get from detonating them once\\n>they're there.\\n\\nThe Orion concept as actually proposed (as opposed to the way it has been\\nsomewhat misrepresented in some fiction) included wrapping a thick layer\\nof reaction mass -- probably plastic of some sort -- around each bomb.\\nThe bomb vaporizes the reaction mass, and it's that which transfers\\nmomentum to the pusher plate.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Hell-mets.\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 56\\n\\nIn article <217766@mavenry.altcit.eskimo.com> maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n>\\n> \\n> Having talked to a couple people about helmets & dropping, I\\'m getting \\n>about 20% \"Don\\'t sweat it\", 78% \"You might think about replacing it\" and the \\n>other 2% \"DON\\'T RIDE WITH IT! GO WITHOUT A HELMET FIRST!\"\\n> \\n> Is there any way to tell if a helmet is damaged structurally? I dropped it \\n>about 2 1/2 feet to cement off my seat, chipped the paint. Didn\\'t seem to \\n>screw up the actual shell. \\n\\nI\\'d bet the price of the helmet that it\\'s okay...From 6 feet\\nor higher, maybe not.\\n\\n> If I don\\'t end up replacing it in the real near future, would I do better \\n>to wear my (totally nondamaged) 3/4 face DOT-RATED cheapie which doesn\\'t fit \\n>as well or keep out the wind as well, or wearing the Shoei RF-200 which is a \\n>LOT more comfortable, keeps the wind out better, is quieter... but might \\n>have some minor damage?\\n\\nI\\'d wear the full facer, but then, I\\'d be *way* more worried\\nabout wind blast in the face, and inability to hear police\\nsirens, than the helmet being a little damaged.\\n\\n\\n> Also, what would you all reccomend as far as good helmets? I\\'m slightly \\n>disappointed by how badly the shoei has scratched & etc from not being \\n>bloody careful about it, and how little impact it took to chip the paint \\n>(and arguably mess it up, period)... Looking at a really good full-face with \\n>good venting & wind protection... I like the Shoei style, kinda like the \\n>Norton one I saw awhile back too... But suspect I\\'m going to have to get a \\n>much more expensive helmet if I want to not replace it every time I\\'m not \\n>being careful where I set it down.\\n\\nWell, my next helmet will be, subject to it fitting well, an AGV\\nsukhoi. That\\'s just because I like the looks. My current one is\\na Shoei task5, and it\\'s getting a little old, and I crashed in\\nit once a couple of years ago (no hard impact to head...My hip\\ntook care of that.). If price was a consideration I\\'d get\\na Kiwi k21, I hear they are both good and cheap.\\n\\n> Christ, I don\\'t treat my HEAD as carefully as I treated the shoei as far as \\n>tossing it down, and I don\\'t have any bruises on it. \\n\\nBe *mildly* mildly paranoid about the helmet, but don\\'t get\\ncarried away. There are people on the net (like those 2% you\\nmentioned) that do not consistently live on our planet...\\n\\nRegards, Charles\\nDoD0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n',\n", - " \"From: asphaug@lpl.arizona.edu (Erik Asphaug x2773)\\nSubject: Insurance discount\\nSummary: Two or more vehicles... discount?\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 26\\n\\nHola amigos,\\n\\nQuiero... I need an answer to a pressing question. I now own two\\nbikes and would love to keep them both. One is a capable and\\nsmooth street bike, low and lightweight with wide power and great\\nbrakes; the other is a Beemer G/S, kind of rough for the city but\\ngreat on the long road and backroad. A good start at a stable, but\\nI don't think it's going to work. Unfortunately, insurance is going\\nto pluck me by the short hairs. \\n\\nUnless... some insurance agent offers a multi-vehicle discount. They\\ndo this all the time for cars, assuming that you're only capable of \\ndriving one of the things at a time. I don't think I'll ever manage\\nto straddle both bikes and ride them tandem down the street. (Turn left...\\naccelerate the Zephyr; turn right... accelerate the Beemer.) Does\\nanybody know of an agency that makes use of this simple fact to\\ndiscount your rates? State Farm doesn't.\\n\\nBy the way, I'm moving to the Bay area so I'll be insuring the bikes\\nthere, and registering them. To ease me of the shock, can somebody\\nguesstimate the cost of insuring a ZR550 and a R800GS? Here in Tucson\\nthey only cost me $320 (full) and $200 (liability only) for the two,\\nper annum.\\n\\nMuchas gracias,\\n\\t\\t\\tEnrique\\n\",\n", - " 'From: jburnside@ll.mit.edu (jamie w burnside)\\nSubject: Re: GOT MY BIKE! (was Wanted: Advice on CB900C Purchase)\\nKeywords: CB900C, purchase, advice\\nReply-To: jburnside@ll.mit.edu (jamie w burnside)\\nOrganization: MIT Lincoln Laboratory\\nLines: 29\\n\\n--\\nIn article <1993Apr16.005131.29830@ncsu.edu>, jrwaters@eos.ncsu.edu \\n(JACK ROGERS WATERS) writes:\\n|>>\\n|>>>Being a reletively new reader, I am quite impressed with all the usefull\\n|>>>info available on this newsgroup. I would ask how to get my own DoD number,\\n|>>>but I\\'ll probably be too busy riding ;-).\\n|>>\\n|>>\\tDoes this count?\\n|>\\n|>Yes. He thought about it.\\n|>>\\n|>>$ cat dod.faq | mailx -s \"HAHAHHA\" jburnside@ll.mit.edu (waiting to press\\n|>>\\t\\t\\t\\t\\t\\t\\t return...)\\n\\nHey, c\\'mon guys (and gals), I chose my words very carefully and even \\ntried to get my FAQ\\'s straight. Don\\'t holler BOHICA at me!\\n \\n----------------------------------------------------------------------\\n| |\\\\/\\\\/\\\\/| ___________________ |\\n| | | / \\\\ |\\n| | | / Jamie W. Burnside \\\\ 1980 CB900 Custom |\\n| | (o)(o) ( jburnside@ll.mit.edu ) 1985 KDX200 (SOLD!) |\\n| C _) / \\\\_____________________/ 1978 CB400 (for sale) |\\n| | ,___| / |\\n| | / |\\n| / __\\\\ |\\n| / \\\\ |\\n----------------------------------------------------------------------\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Traditional and Historical Armenian Barbarism (Was Re: watch OUT!!).\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 106\\n\\nIn article <21APR199314025948@elroy.uh.edu> st156@elroy.uh.edu (Fazia Begum Rizvi) writes:\\n\\n>Seems to me that a lot of good muslims would care about those terms.\\n>Especially those affected by the ideology and actions that such terms\\n>decscribe. The Bosnians suffering from such bigotry comes to mind. They\\n>get it from people who call them \\'dirty descendants of Turks\\', from\\n>people who hate their religion, and from those who don\\'t think they are\\n>really muslims at all since they are white. The suffering that they are\\n\\nLet us not forget about the genocide of the Azeri people in \\'Karabag\\' \\nand x-Soviet Armenia by the Armenians. Between 1914 and 1920, Armenians \\ncommitted unheard-of crimes, resorted to all conceivable methods of \\ndespotism, organized massacres, poured petrol over babies and burned \\nthem, raped women and girls in front of their parents who were bound \\nhand and foot, took girls from their mothers and fathers and appropriated \\npersonal property and real estate. And today, they put Azeris in the most \\nunbearable conditions any other nation had ever known in history.\\n \\n\\nAREF SADIKOV sat quietly in the shade of a cafe-bar on the\\nCaspian Sea esplanade of Baku and showed a line of stitches in\\nhis trousers, torn by an Armenian bullet as he fled the town of\\nHojali just over three months ago, writes Hugh Pope.\\n\\n\"I\\'m still wearing the same clothes, I don\\'t have any others,\"\\nthe 51-year-old carpenter said, beginning his account of the\\nHojali disaster. \"I was wounded in five places, but I am lucky to\\nbe alive.\"\\n\\nMr Sadikov and his wife were short of food, without electricity\\nfor more than a month, and cut off from helicopter flights for 12\\ndays. They sensed the Armenian noose was tightening around the\\n2,000 to 3,000 people left in the straggling Azeri town on the\\nedge of Karabakh.\\n\\n\"At about 11pm a bombardment started such as we had never heard\\nbefore, eight or nine kinds of weapons, artillery, heavy\\nmachine-guns, the lot,\" Mr Sadikov said.\\n\\nSoon neighbours were pouring down the street from the direction\\nof the attack. Some huddled in shelters but others started\\nfleeing the town, down a hill, through a stream and through the\\nsnow into a forest on the other side.\\n\\nTo escape, the townspeople had to reach the Azeri town of Agdam\\nabout 15 miles away. They thought they were going to make it,\\nuntil at about dawn they reached a bottleneck between the two\\nArmenian villages of Nakhchivanik and Saderak.\\n\\n\"None of my group was hurt up to then ... Then we were spotted by\\na car on the road, and the Armenian outposts started opening\\nfire,\" Mr Sadikov said.\\n\\nAzeri militiamen fighting their way out of Hojali rushed forward\\nto force open a corridor for the civilians, but their efforts\\nwere mostly in vain. Mr Sadikov said only 10 people from his\\ngroup of 80 made it through, including his wife and militiaman\\nson. Seven of his immediate relations died, including his\\n67-year-old elder brother.\\n\\n\"I only had time to reach down and cover his face with his hat,\"\\nhe said, pulling his own big flat Turkish cap over his eyes. \"We\\nhave never got any of the bodies back.\"\\n\\nThe first groups were lucky to have the benefit of covering fire.\\nOne hero of the evacuation, Alif Hajief, was shot dead as he\\nstruggled to change a magazine while covering the third group\\'s\\ncrossing, Mr Sadikov said.\\n\\nAnother hero, Elman Memmedov, the mayor of Hojali, said he and\\nseveral others spent the whole day of 26 February in the bushy\\nhillside, surrounded by dead bodies as they tried to keep three\\nArmenian armoured personnel carriers at bay.\\n\\nAs the survivors staggered the last mile into Agdam, there was\\nlittle comfort in a town from which most of the population was\\nsoon to flee.\\n\\n\"The night after we reached the town there was a big Armenian\\nrocket attack. Some people just kept going,\" Mr Sadikov said. \"I\\nhad to get to the hospital for treatment. I was in a bad way.\\nThey even found a bullet in my sock.\"\\n\\nVictims of war: An Azeri woman mourns her son, killed in the\\nHojali massacre in February (left). Nurses struggle in primitive\\nconditions (centre) to save a wounded man in a makeshift\\noperating theatre set up in a train carriage. Grief-stricken\\nrelatives in the town of Agdam (right) weep over the coffin of\\nanother of the massacre victims. Calculating the final death toll\\nhas been complicated because Muslims bury their dead within 24\\nhours.\\n\\nPhotographs: Liu Heung / AP\\n Frederique Lengaigne / Reuter\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " 'From: rdl1@ukc.ac.uk (R.D.Lorenz)\\nSubject: Cold Gas tanks for Sounding Rockets\\nOrganization: Computing Lab, University of Kent at Canterbury, UK.\\nLines: 14\\nNntp-Posting-Host: eagle.ukc.ac.uk\\n\\n>Does anyone know how to size cold gas roll control thruster tanks\\n>for sounding rockets?\\n\\nWell, first you work out how much cold gas you need, then make the\\ntanks big enough.\\n\\nWorking out how much cold gas is another problem, depending on\\nvehicle configuration, flight duration, thruster Isp (which couples\\ninto storage pressure, which may be a factor in selecting tank\\nwall thickness etc.)\\n\\nRalph Lorenz\\nUnit for Space Sciences\\nUniversity of Kent, UK\\n',\n", - " \"From: osprey@ux4.cso.uiuc.edu (Lucas Adamski)\\nSubject: Fast polygon routine needed\\nKeywords: polygon, needed\\nOrganization: University of Illinois at Urbana-Champaign\\nLines: 6\\n\\nThis may be a fairly routine request on here, but I'm looking for a fast\\npolygon routine to be used in a 3D game. I have one that works right now, but\\nits very slow. Could anyone point me to one, pref in ASM that is fairly well\\ndocumented and flexible?\\n\\tThanx,\\n //Lucas.\\n\",\n", - " 'From: jbatka@desire.wright.edu\\nSubject: Re: Gamma Ray Bursters. WHere are they.\\nOrganization: Wright State University \\nLines: 16\\n\\nI assume that can only be guessed at by the assumed energy of the\\nevent and the 1/r^2 law. So, if the 1/r^2 law is incorrect (assume\\nsome unknown material [dark matter??] inhibits Gamma Ray propagation),\\ncould it be possible that we are actually seeing much less energetic\\nevents happening much closer to us? The even distribution could\\nbe caused by the characteristic propagation distance of gamma rays \\nbeing shorter then 1/2 the thickness of the disk of the galaxy.\\n\\nJust some idle babbling,\\n-- \\n\\n Jim Batka | Work Email: BATKAJ@CCMAIL.DAYTON.SAIC.COM | Elvis is\\n | Home Email: JBATKA@DESIRE.WRIGHT.EDU | DEAD!\\n\\n 64 years is 33,661,440 minutes ...\\n and a minute is a LONG time! - Beatles: _ Yellow Submarine_\\n',\n", - " 'From: west@next02cville.wam.umd.edu (Stilgar)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: next15csc.wam.umd.edu\\nReply-To: west@next02.wam.umd.edu\\nOrganization: Workstations at Maryland, University of Maryland, College Park\\nLines: 35\\n\\nIn article kmr4@po.CWRU.edu (Keith M. \\nRyan) writes:\\n> In article <1993Apr5.163050.13308@wam.umd.edu> \\nwest@next02cville.wam.umd.edu (Stilgar) writes:\\n> >In article kmr4@po.CWRU.edu (Keith M. \\n> >Ryan) writes:\\n> >> In article <1993Apr5.025924.11361@wam.umd.edu> \\n> >west@next02cville.wam.umd.edu (Stilgar) writes:\\n> >> \\n> >> >THE ILLIAD IS THE UNDISPUTED WORD OF GOD(tm) *prove me wrong*\\n> >> \\n> >> \\tI dispute it.\\n> >> \\n> >> \\tErgo: by counter-example: you are proven wrong.\\n> >\\n> >\\tI dispute your counter-example\\n> >\\n> >\\tErgo: by counter-counter-example: you are wrong and\\n> >\\tI am right so nanny-nanny-boo-boo TBBBBBBBTTTTTTHHHHH\\n> \\n> \\tNo. The premis stated that it was undisputed. \\n> \\n\\nFine... THE ILLIAD IS THE WORD OF GOD(tm) (disputed or not, it is)\\n\\nDispute that. It won\\'t matter. Prove me wrong.\\n\\nBrian West\\n--\\nTHIS IS NOT A SIG FILE * -\"To the Earth, we have been\\nTHIS IS NOT A SIG FILE * here but for the blink of an\\nOK, SO IT\\'S A SIG FILE * eye, if we were gone tomorrow, \\nposted by west@wam.umd.edu * we would not be missed.\"- \\nwho doesn\\'t care who knows it. * (Jurassic Park) \\n** DICLAIMER: I said this, I meant this, nobody made me do it.**\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: How many read sci.space?\\nOrganization: Texas Instruments Inc\\nLines: 16\\n\\nIn <1993Apr15.204210.26022@mksol.dseg.ti.com> pyron@skndiv.dseg.ti.com (Dillon Pyron) writes:\\n\\n\\n>There are actually only two of us. I do Henry, Fred, Tommy and Mary. Oh yeah,\\n>this isn\\'t my real name, I\\'m a bald headed space baby.\\n\\nYes, and I do everyone else. Why, you may wonder, don\\'t I do \\'Fred\\'?\\nWell, that would just be too *obvious*, wouldn\\'t it? Oh yeah, this\\nisn\\'t my real name, either. I\\'m actually Elvis. Or maybe a lemur; I\\nsometimes have difficulty telling which is which.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 102\\nDistribution: world\\nNNTP-Posting-Host: tm0006.lerc.nasa.gov\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr23.184732.1105@aio.jsc.nasa.gov>, kjenks@gothamcity.jsc.nasa.gov writes...\\n\\n {Description of \"External Tank\" option for SSF redesign deleted}\\n\\n>Mark proposed this design at Joe Shea\\'s committee in Crystal City,\\n>and he reports that he was warmly received. However, the rumors\\n>I hear say that a design based on a wingless Space Shuttle Orbiter\\n>seems more likely.\\n\\nYo Ken, let\\'s keep on-top of things! Both the \"External Tank\" and\\n\"Wingless Orbiter\" options have been deleted from the SSF redesign\\noptions list. Today\\'s (4/23) edition of the New York Times reports\\nthat O\\'Connor told the panel that some redesign proposals have\\nbeen dropped, such as using the \"giant external fuel tanks used\\nin launching space shuttles,\" and building a \"station around\\nan existing space shuttle with its wings and tail removed.\"\\n\\nCurrently, there are three options being considered, as presented\\nto the advisory panel meeting yesterday (and as reported in\\ntoday\\'s Times).\\n\\nOption \"A\" - Low Cost Modular Approach\\nThis option is being studied by a team from MSFC. {As an aside,\\nthere are SSF redesign teams at MSFC, JSC, and LaRC supporting\\nthe SRT (Station Redesign Team) in Crystal City. Both LeRC and\\nReston folks are also on-site at these locations, helping the respective\\nteams with their redesign activities.} Key features of this\\noption are:\\n - Uses \"Bus-1\", a modular bus developed by Lockheed that\\'s\\n qualified for STS and ELV\\'s. The bus provides propulsion, GN&C\\n Communications, & Data Management. Lockheed developed this\\n for the Air Force.\\n - A \"Power Station Capability\" is obtained in 3 Shuttle Flights.\\n SSF Solar arrays are used to provide 20 kW of power. The vehicle\\n flies in an \"arrow mode\" to optimize the microgravity environment.\\n Shuttle/Spacelab missions would utilize the vehilce as a power\\n source for 30 day missions.\\n - Human tended capability (as opposed to the old SSF sexist term\\n of man-tended capability) is achieved by the addition of the\\n US Common module. This is a modified version of the existing\\n SSF Lab module (docking ports are added for the International\\n Partners\\' labs, taking the place of the nodes on SSF). The\\n Shuttle can be docked to the station for 60 day missions.\\n The Orbiter would provide crew habitability & EVA capability.\\n - International Human Tended. Add the NASDA & ESA modules, and\\n add another 20 kW of power\\n - Permanent Human Presence Capability. Add a 3rd power module,\\n the U.S. habitation module, and an ACRV (Assured Crew Return\\n Vehicle).\\n\\nOption \"B\" - Space Station Freedom Derived\\nThe Option \"B\" team is based at LaRC, and is lead by Mike Griffin.\\nThis option looks alot like the existing SSF design, which we\\nhave all come to know and love :)\\n\\nThis option assumes a lightweight external tank is available for\\nuse on all SSF assembly flights (so does option \"A\"). Also, the \\nnumber of flights is computed for a 51.6 inclination orbit,\\nfor both options \"A\" and \"B\".\\n\\nThe build-up occurs in six phases:\\n - Initial Research Capability reached after 3 flights. Power\\n is transferred from the vehicle to the Orbiter/Spacelab, when\\n it visits.\\n - Man-Tended Capability (Griffin has not yet adopted non-sexist\\n language) is achieved after 8 flights. The U.S. Lab is\\n deployed, and 1 solar power module provides 20 kW of power.\\n - Permanent Human Presence Capability occurs after 10 flights, by\\n keeping one Orbiter on-orbit to use as an ACRV (so sometimes\\n there would be two Orbiters on-orbit - the ACRV, and the\\n second one that comes up for Logistics & Re-supply).\\n - A \"Two Fault Tolerance Capability\" is achieved after 14 flights,\\n with the addition of a 2nd power module, another thermal\\n control system radiator, and more propulsion modules.\\n - After 20 flights, the Internationals are on-board. More power,\\n the Habitation module, and an ACRV are added to finish the\\n assembly in 24 flights.\\n\\nMost of the systems currently on SSF are used as-is in this option, \\nwith the exception of the data management system, which has major\\nchanges.\\n\\nOption C - Single Core Launch Station.\\nThis is the JSC lead option. Basically, you take a 23 ft diameter\\ncylinder that\\'s 92 ft long, slap 3 Space Shuttle Main Engines on\\nthe backside, put a nose cone on the top, attached it to a \\nregular shuttle external tank and a regular set of solid rocket\\nmotors, and launch the can. Some key features are:\\n - Complete end-to-end ground integration and checkout\\n - 4 tangentially mounted fixed solar panels\\n - body mounted radiators (which adds protection against\\n micrometeroid & orbital debris)\\n - 2 centerline docking ports (one on each end)\\n - 7 berthing ports\\n - a single pressurized volume, approximately 26,000 cubic feet\\n (twice the volume of skylab).\\n - 7 floors, center passageway between floors\\n - 10 kW of housekeeping power\\n - graceful degradation with failures (8 power channels, 4 thermal\\n loops, dual environmental control & life support system)\\n - increased crew time for utilization\\n - 1 micro-g thru out the core module\\n',\n", - " \"Organization: Queen's University at Kingston\\nFrom: Graydon \\nSubject: Re: Gamma Ray Bursters. Where are they?\\n <1993Apr24.221344.1@vax1.mankato.msus.edu>\\nLines: 8\\n\\nIf all of these things have been detected in space, has anyone\\nlooked into possible problems with the detectors?\\n\\nThat is, is there some mechanism (cosmic rays, whatever) that\\ncould cause the dector to _think_ it was seeing one of these\\nthings?\\n\\nGraydon\\n\",\n", - " 'From: loss@fs7.ECE.CMU.EDU (Doug Loss)\\nSubject: Jemison on Star Trek\\nOrganization: Electrical and Computer Engineering, Carnegie Mellon\\nLines: 7\\n\\n I saw in the newspaper last night that Dr. Mae Jemison, the first\\nblack woman in space (she\\'s a physician and chemical engineer who flew\\non Endeavour last year) will appear as a transporter operator on the\\n\"Star Trek: The Next Generation\" episode that airs the week of May 31.\\nIt\\'s hardly space science, I know, but it\\'s interesting.\\n\\nDoug Loss\\n',\n", - " 'From: dgf1@quads.uchicago.edu (David Farley)\\nSubject: Re: Photoshop for Windows\\nReply-To: dgf1@midway.uchicago.edu\\nOrganization: University of Chicago\\nLines: 25\\n\\nIn article beaver@rot.qc.ca (Andre Boivert) writes:\\n>\\n>\\n>I am looking for comments from people who have used/heard about PhotoShop\\n>for Windows. Is it good? How does it compare to the Mac version? Is there\\n>a lot of bugs (I heard the Windows version needs \"fine-tuning)?\\n>\\n>Any comments would be greatly appreciated..\\n>\\n>Thank you.\\n>\\n>Andre Boisvert\\n>beaver@rot.qc.ca\\n>\\nAn review of both the Mac and Windows versions in either PC Week or Info\\nWorld this week, said that the Windows version was considerably slower\\nthan the Mac. A more useful comparison would have been between PhotoStyler\\nand PhotoShop for Windows. David\\n\\n\\n-- \\nDavid Farley The University of Chicago Library\\n312 702-3426 1100 East 57th Street, JRL-210\\ndgf1@midway.uchicago.edu Chicago, Illinois 60637\\n\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: nuclear waste\\nOrganization: Texas Instruments Inc\\nLines: 78\\n\\nIn <1993Apr2.150038.2521@cs.rochester.edu> dietz@cs.rochester.edu (Paul Dietz) writes:\\n\\n>In article <1993Apr1.204657.29451@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n\\n>>>This system would produce enough energy to drive the accelerator,\\n>>>perhaps with some left over. A very high power (100\\'s of MW CW or\\n>>>quasi CW), very sharp proton beam would be required, but this appears\\n>>>achievable using a linear accelerator. The biggest question mark\\n>>>would be the lead target chemistry and the on-line processing of all\\n>>>the elements being incinerated.\\n>>\\n>>Paul, quite frankly I\\'ll believe that this is really going to work on\\n>>the typical trash one needs to process when I see them put a couple\\n>>tons in one end and get (relatively) clean material out the other end,\\n>>plus be able to run it off its own residual power. Sounds almost like\\n>>perpetual motion, doesn\\'t it?\\n\\n>Fred, the honest thing to do would be to admit your criticism on\\n>scientific grounds was invalid, rather than pretend you were actually\\n>talking about engineering feasibility. Given you postings, I can\\'t\\n>say I am surprised, though.\\n\\nWell, pardon me for trying to continue the discussion rather than just\\ntugging my forelock in dismay at having not considered actually trying\\nto recover the energy from this process (which is at least trying to\\ngo the \\'right\\' way on the energy curve). Now, where *did* I put those\\nsackcloth and ashes?\\n\\n[I was not and am not \\'pretending\\' anything; I am *so* pleased you are\\nnot surprised, though.]\\n\\n>No, it is nothing like perpetual motion. \\n\\nNote that I didn\\'t say it was perpetual motion, or even that it\\nsounded like perpetual motion; the phrase was \"sounds almost like\\nperpetual motion\", which I, at least, consider a somewhat different\\npropposition than the one you elect to criticize. Perhaps I should\\nbeg your pardon for being *too* precise in my use of language?\\n\\n>The physics is well\\n>understood; the energy comes from fission of actinides in subcritical\\n>assemblies. Folks have talked about spallation reactors since the\\n>1950s. Pulsed spallation neutron sources are in use today as research\\n>tools. Accelerator design has been improving, particularly with\\n>superconducting accelerating cavities, which helps feasibility. Los\\n>Alamos has expertise in high current accelerators (LAMPF), so I\\n>believe they know what they are talking about.\\n\\nI will believe that this process comes even close to approaching\\ntechnological and economic feasibility (given the mixed nature of the\\ntrash that will have to be run through it as opposed to the costs of\\nseparating things first and having a different \\'run\\' for each\\nactinide) when I see them dump a few tons in one end and pull\\n(relatively) clean material out the other. Once the costs,\\ntechnological risks, etc., are taken into account I still class this\\none with the idea of throwing waste into the sun. Sure, it\\'s possible\\nand the physics are well understood, but is it really a reasonable\\napproach? \\n\\nAnd I still wonder at what sort of \\'burning\\' rate you could get with\\nsomething like this, as opposed to what kind of energy you would\\nreally recover as opposed to what it would cost to build and power\\nwith and without the energy recovery. Are we talking ounces, pounds,\\nor tons (grams, kilograms, or metric tons, for you SI fans) of\\nmaterial and are we talking days, weeks, months, or years (days,\\nweeks, months or years, for you SI fans -- hmmm, still using a\\nnon-decimated time scale, I see ;-))?\\n\\n>The real reason why accelerator breeders or incinerators are not being\\n>built is that there isn\\'t any reason to do so. Natural uranium is\\n>still too cheap, and geological disposal of actinides looks\\n>technically reasonable.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'Subject: Vonnegut/atheism\\nFrom: dmn@kepler.unh.edu (...until kings become philosophers or philosophers become kings)\\nOrganization: UTexas Mail-to-News Gateway\\nNNTP-Posting-Host: cs.utexas.edu\\nLines: 21\\n\\n\\n\\n Yesterday, I got the chance to hear Kurt Vonnegut speak at the\\nUniversity of New Hampshire. Vonnegut succeeded Isaac Asimov as the \\n(honorary?) head of the American Humanist Association. (Vonnegut is\\nan atheist, and so was Asimov) Before Asimov\\'s funeral, Vonnegut stood up\\nand said about Asimov, \"He\\'s in heaven now,\" which ignited uproarious \\nlaughter in the room. (from the people he was speaking to around the time\\nof the funeral)\\n\\n\\t \"It\\'s the funniest thing I could have possibly said\\nto a room full of humanists,\" Vonnegut said at yesterday\\'s lecture. \\n\\n If Vonnegut comes to speak at your university, I highly recommend\\ngoing to see him even if you\\'ve never read any of his novels. In my opinion,\\nhe\\'s the greatest living humorist. (greatest living humanist humorist as well)\\n\\n\\n Peace,\\n\\n Dana\\n',\n", - " 'From: ajackson@cch.coventry.ac.uk (Alan Jackson)\\nSubject: MPEG Location\\nNntp-Posting-Host: cc_sysh\\nOrganization: Coventry University\\nLines: 11\\n\\n\\nCan anyone tell me where to find a MPEG viewer (either DOS or\\nWindows).\\n\\nThanks in advance.\\n\\n-- \\nAlan M. Jackson Mail : ajackson@cch.cov.ac.uk\\n\\n Liverpool Football Club - Simply The Best\\n \"You\\'ll Never Walk Alone\"\\n',\n", - " \"From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Delaunay Triangulation\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 9\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\n\\n\\nDoes anybody know what Delaunay Triangulation is?\\nIs there any reference to it? \\nIs it useful for creating 3-D objects? If yes, what's the advantage?\\n\\nThanks in advance.\\n\\nYeh\\nUSC\\n\",\n", - " \"From: pnakada@oracle.com (Paul Nakada)\\nSubject: Eating and Riding was Re: Drinking and Riding\\nArticle-I.D.: pnakada.PNAKADA.93Apr5140811\\nOrganization: Oracle Corporation, Redwood Shores, CA\\nLines: 14\\nNntp-Posting-Host: pnakada.us.oracle.com\\nX-Disclaimer: This message was written by an unauthenticated user\\n at Oracle Corporation. The opinions expressed are those\\n of the user and not necessarily those of Oracle.\\n\\n\\nWhat's the feeling about eating and riding? I went out riding this\\nweekend, and got a little carried away with some pecan pie. The whole\\nride back I felt sluggish. I was certainly much more alert on the\\nride in. I'm sure others have the same feeling, but the strangest\\nthing is that eating is usually the turnaround point of weekend rides.\\n\\nFrom now on, a little snack will do. I'd much rather have a get that\\nfull/sluggish feeling closer to home.\\n\\n-Paul\\n--\\nPaul Nakada | Oracle Corporation | pnakada@oracle.com\\nDoD #7773 | '91 R100C | '90 K75S\\n\",\n", - " \"From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: Georgia Institute of Technology\\nLines: 19\\n\\nI see that our retarded translator, David, is still writing things that\\ndon't make sense. Hey David I can see where you are.. May be one day,\\nWe will have the chance to talk deeply about that freedom of speach of\\nyours.. And you now, killing or torture, these things are only easy\\nways out.. I have different plans for you and all empty headeds like \\nyou...\\n\\nLets get serious, DAVE, don't ever write bad things about Turkish people\\nor especially Cyprus.. If I hear a word from you again that I consider\\nto be a curse to my people I will retalliate...\\n\\nMuccccukkk..\\nTIMUCIN.\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n\",\n", - " 'From: srlnjal@grace.cri.nz\\nSubject: CorelDraw BITMAP to SCODAL (2)\\nOrganization: Industrial Research Ltd., New Zealand.\\nLines: 22\\nNNTP-Posting-Host: grv.grace.cri.nz\\n\\n\\nYes I am aware CorelDraw exports in SCODAL.\\nVersion 2 did it quite well, apart from a\\nfew hassles with radial fills. Version 3 RevB\\nis better but if you try to export in SCODAL\\nwith a bitmap image included in the drawing\\nit will say something like \"cannot export\\nSCODAL with bitmap\"- at least it does on my\\nversion.\\n If anyone out there knows a way around this\\nI am all ears.\\n Temporal images make a product called Filmpak\\nwhich converts Autocad plots to SCODAL, postscript\\nto SCODAL and now GIF to SCODAL but it costs $650\\nand I was just wondering if there was anything out\\nthere that just did the bitmap to SCODAL part a tad\\ncheaper.\\n\\nJeff Lyall\\nInst.Geo.&.Nuc.Sci.Ltd\\nLower Hutt New Zealand\\n\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: 2.5 million Muslims perished of butchery at the hands of Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 92\\n\\nIn article <1993Apr25.015551.23259@husc3.harvard.edu> verbit@brauer.harvard.edu (Mikhail S. Verbitsky) writes:\\n\\n>\\tActually, Jarmo is a permanent resident of my killfile\\n\\nAnyone care to speculate on this? I\\'ll let the rest of the net judge\\nthis on its own merits. Between 1914 and 1920, 2.5 million Turks perished \\nof butchery at the hands of Armenians. The genocide involved not only \\nthe killing of innocents but their forcible deportation from the Russian \\nArmenia. They were persecuted, banished, and slaughtered while much of \\nOttoman Army was engaged in World War I. The Genocide Treaty defines \\ngenocide as acting with a \\n\\n \\'specific intent to destroy, in whole or in substantial part, a \\n national, ethnic, racial or religious group.\\' \\n\\nHistory shows that the x-Soviet Armenian Government intended to eradicate \\nthe Muslim population. 2.5 million Turks and Kurds were exterminated by the \\nArmenians. International diplomats in Ottoman Empire at the time - including \\nU.S. Ambassador Bristol - denounced the x-Soviet Armenian Government\\'s policy \\nas a massacre of the Kurds, Turks, and Tartars. The blood-thirsty leaders of \\nthe x-Soviet Armenian Government at the time personally involved in the \\nextermination of the Muslims. The Turkish genocide museums in Turkiye honor \\nthose who died during the Turkish massacres perpetrated by the Armenians. \\n\\nThe eyewitness accounts and the historical documents established,\\nbeyond any doubt, that the massacres against the Muslim people\\nduring the war were planned and premeditated. The aim of the policy\\nwas clearly the extermination of all Turks in x-Soviet Armenian \\nterritories.\\n\\nThe Muslims of Van, Bitlis, Mus, Erzurum and Erzincan districts and\\ntheir wives and children have been taken to the mountains and killed.\\nThe massacres in Trabzon, Tercan, Yozgat and Adana were organized and\\nperpetrated by the blood-thirsty leaders of the x-Soviet Armenian \\nGovernment.\\n\\nThe principal organizers of the slaughter of innocent Muslims were\\nDro, Antranik, Armen Garo, Hamarosp, Daro Pastirmadjian, Keri,\\nKarakin, Haig Pajise-liantz and Silikian.\\n\\nSource: \"Bristol Papers\", General Correspondence: Container #32 - Bristol\\n to Bradley Letter of September 14, 1920.\\n\\n\"I have it from absolute first-hand information that the Armenians in \\n the Caucasus attacked Tartar (Turkish) villages that are utterly \\n defenseless and bombarded these villages with artillery and they murder\\n the inhabitants, pillage the village and often burn the village.\"\\n\\n\\nSources: (The Ottoman State, the Ministry of War), \"Islam Ahalinin \\nDucar Olduklari Mezalim Hakkinda Vesaike Mustenid Malumat,\" (Istanbul, 1918). \\nThe French version: \"Documents Relatifs aux Atrocites Commises par les Armeniens\\nsur la Population Musulmane,\" (Istanbul, 1919). In the Latin script: H. K.\\nTurkozu, ed., \"Osmanli ve Sovyet Belgeleriyle Ermeni Mezalimi,\" (Ankara,\\n1982). In addition: Z. Basar, ed., \"Ermenilerden Gorduklerimiz,\" (Ankara,\\n1974) and, edited by the same author, \"Ermeniler Hakkinda Makaleler -\\nDerlemeler,\" (Ankara, 1978). \"Askeri Tarih Belgeleri ...,\" Vol. 32, 83\\n(December 1983), document numbered 1881.\\n\"Askeri Tarih Belgeleri ....,\" Vol. 31, 81 (December 1982), document\\n numbered 1869.\\n\\n\"Those who were capable of fighting were taken away at the very beginning\\n with the excuse of forced labor in road construction, they were taken\\n in the direction of Sarikamis and annihilated. When the Russian army\\n withdrew, a part of the remaining people was destroyed in Armenian\\n massacres and cruelties: they were thrown into wells, they were locked\\n in houses and burned down, they were killed with bayonets and swords, in places\\n selected as butchering spots, their bellies were torn open, their lungs\\n were pulled out, and girls and women were hanged by their hair after\\n being subjected to every conceivable abominable act. A very small part \\n of the people who were spared these abominations far worse than the\\n cruelty of the inquisition resembled living dead and were suffering\\n from temporary insanity because of the dire poverty they had lived\\n in and because of the frightful experiences they had been subjected to.\\n Including women and children, such persons discovered so far do not\\n exceed one thousand five hundred in Erzincan and thirty thousand in\\n Erzurum. All the fields in Erzincan and Erzurum are untilled, everything\\n that the people had has been taken away from them, and we found them\\n in a destitute situation. At the present time, the people are subsisting\\n on some food they obtained, impelled by starvation, from Russian storages\\n left behind after their occupation of this area.\"\\n \\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'Subject: Re: islamic authority over women\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 29\\n\\nIn article <1993Apr6.124112.12959@dcs.warwick.ac.uk> simon@dcs.warwick.ac.uk (Simon Clippingdale) writes:\\n\\n>For the guy who said he\\'s just arrived, and asked whether Bobby\\'s for real,\\n>you betcha. Welcome to alt.atheism, and rest assured that it gets worse.\\n>I have a few pearls of wisdom from Bobby which I reproduce below. Is anyone\\n>(Keith?) keeping a big file of such stuff?\\n\\n\\tSorry, I was, but I somehow have misplaced my diskette from the last \\ncouple of months or so. However, thanks to the efforts of Bobby, it is being \\nreplenished rather quickly! \\n\\n\\tHere is a recent favorite:\\n\\n\\t--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", - " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 36\\n\\nIn kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n\\n>In article <1qj9gq$mg7@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank \\nO\\'Dwyer) writes:\\n\\n>>Is good logic *better* than bad? Is good science better than bad? \\n\\n> By definition.\\n\\n\\n> great - good - okay - bad - horrible\\n\\n> << better\\n> worse >>\\n\\n\\n> Good is defined as being better than bad.\\n\\n>---\\nHow do we come up with this setup? Is this subjective, if enough people agreed\\nwe could switch the order? Isn\\'t this defining one unknown thing by another? \\nThat is, good is that which is better than bad, and bad is that which is worse\\nthan good? Circular?\\n\\nMAC\\n> Only when the Sun starts to orbit the Earth will I accept the Bible. \\n> \\n\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", - " 'From: jfw@ksr.com (John F. Woods)\\nSubject: Re: A WRENCH in the works?\\nOrganization: Kendall Square Research Corp.\\nLines: 15\\n\\nnanderso@Endor.sim.es.com (Norman Anderson) writes:\\n>jmcocker@eos.ncsu.edu (Mitch) writes:\\n>>effect that one of the SSRBs that was recovered after the\\n>>recent space shuttle launch was found to have a wrench of\\n>>some sort rattling around apparently inside the case.\\n>I heard a similar statement in our local news (UTAH) tonight. They referred\\n>to the tool as \"...the PLIERS that took a ride into space...\". They also\\n>said that a Thiokol (sp?) employee had reported missing a tool of some kind\\n>during assembly of one SRB.\\n\\nI assume, then, that someone at Thiokol put on their \"manager\\'s hat\" and said\\nthat pissing off the customer by delaying shipment of the SRB to look inside\\nit was a bad idea, regardless of where that tool might have ended up.\\n\\nWhy do I get the feeling that Thiokol \"manager\\'s hats\" are shaped like cones?\\n',\n", - " \"From: rbarris@orion.oac.uci.edu (Robert C. Barris)\\nSubject: Re: Rumours about 3DO ???\\nNntp-Posting-Host: orion.oac.uci.edu\\nSummary: 3DO demonstration\\nOrganization: University of California, Irvine\\nKeywords: 3DO ARM QT Compact Video\\nLines: 73\\n\\nIn article <1993Apr16.212441.34125@rchland.ibm.com> ricardo@rchland.vnet.ibm.com (Ricardo Hernandez Muchado) writes:\\n>In article <1993Apr15.164940.11632@mercury.unt.edu>, Sean McMains writes:\\n>|> In article <1993Apr15.144843.19549@rchland.ibm.com> Ricardo Hernandez\\n>|> Muchado, ricardo@rchland.vnet.ibm.com writes:\\n>|> > And CD-I's CPU doesn't help much either. I understand it is\\n>|> >a 68070 (supposedly a variation of a 68000/68010) running at something\\n>|> >like 7Mhz. With this speed, you *truly* need sprites.\\n[snip]\\n(the 3DO is not a 68000!!!)\\n>|> \\n>|> Ricardo, the animation playback to which Lawrence was referring in an\\n>|> earlier post is plain old Quicktime 1.5 with the Compact Video codec.\\n>|> I've seen digitized video (some of Apple's early commercials, to be\\n>|> precise) running on a Centris 650 at about 30fps very nicely (16-bit\\n>|> color depth). I would expect that using the same algorithm, a RISC\\n>|> processor should be able to approach full-screen full-motion animation,\\n>|> though as you've implied, the processor will be taxed more with highly\\n>|> dynamic material.\\n[snip]\\n>booth there. I walked by, and they were showing real-time video capture\\n>using a (Radious or SuperMac?) card to digitize and make right on the spot\\n>quicktime movies. I think the quicktime they were using was the old one\\n>(1.5).\\n>\\n> They digitized a guy talking there in 160x2xx something. It played back quite\\n>nicely and in real time. The guy then expanded the window (resized) to 25x by\\n>3xx (320 in y I think) and the frame rate decreased enough to notice that it\\n>wasn't 30fps (or about 30fps) anymore. It dropped to like 15 fps. Then he\\n>increased it just a bit more, and it dropped to 10<->12 fps. \\n>\\n> Then I asked him what Mac he was using... He was using a Quadra (don't know\\n>what model, 900?) to do it, and he was telling the guys there that the Quicktime\\n>could play back at the same speed even on an LCII.\\n>\\n> Well, I spoiled his claim so to say, since a 68040 Quadra Mac was having\\n>a little bit of trouble. And this wasn't even from the hardisk! This was\\n>from memory!\\n>\\n> Could it be that you saw either a newer version of quicktime, or some\\n>hardware assisted Centris, or another software product running the \\n>animation (like supposedly MacroMind's Accelerator?)?\\n>\\n> Don't misunderstand me, I just want to clarify this.\\n>\\n\\n\\nThe 3DO box is based on an ARM RISC processor, one or two custom graphics\\nchips, a DSP, a double-speed CDROM, and 2MB of RAM/VRAM. (I'm a little\\nfuzzy on the breakdown of the graphics chips and RAM/VRAM capacity).\\n\\nIt was demonstrated at a recent gathering at the Electronic Cafe in\\nSanta Monica, CA. From 3DO, RJ Mical (of Amiga/Lynx fame) and Hal\\nJosephson (sp?) were there to talk about the machine and their plan. We\\ngot to see the unit displaying full-screen movies using the CompactVideo codec\\n(which was nice, very little blockiness showing clips from Jaws and Backdraft)\\n... and a very high frame rate to boot (like 30fps).\\n\\nNote however that the 3DO's screen resolution is 320x240.\\n\\nCompactVideo is pretty amazing... I also wanted to point out that QuickTime\\ndoes indeed slow down when one dynamically resizes material as was stated\\nabove... I'm sure if the material had been compressed at the large size\\nthen it would play back fine (I have a Q950 and do this quite a bit). The\\nprice of generality... personally I don't use the dynamic sizing of movies\\noften, if ever. But playing back stuff at its original size is plenty quick\\non the latest 040 machines.\\n\\nI'm not sure how a Centris/20MHz 040 stacks up against the 25 MHz ARM in\\nthe 3DO box. Obviously the ARM is faster, but how much?\\n\\nRob Barris\\nQuicksilver Software Inc.\\nrbarris@orion.oac.uci.edu\\n\",\n", - " \"From: charlie@elektro.cmhnet.org (Charlie Smith)\\nSubject: Re: Internet Discussion List\\nOrganization: Why do you suspect that?\\nLines: 17\\n\\nIn article <1qc5f0$3ad@moe.ksu.ksu.edu> bparker@uafhp..uark.edu (Brian Parker) writes:\\n> Hello world of Motorcyles lovers/soon-to-be-lovers!\\n>I have started a discussion list on the internet for people interested in\\n>talking Bikes! We discuss anything and everything. If you are interested in\\n>joining, drop me a line. Since it really isn't a 'list', what we do is if you \\n>have a post, you send it to me and I distribute it to everyone. C'mon...join\\n>and enjoy!\\n\\nHuh? Did this guy just invent wreck.motorcycles?\\n\\n\\tCurious minds want to know.\\n\\n\\nCharlie Smith charlie@elektro.cmhnet.org KotdohL KotWitDoDL 1KSPI=22.85\\n DoD #0709 doh #0000000004 & AMA, MOA, RA, Buckey Beemers, BK Ohio V\\n BMW K1100-LT, R80-GS/PD, R27, Triumph TR6 \\n Columbus, Ohio USA\\n\",\n", - " \"From: ktj@beach.cis.ufl.edu (kerry todd johnson)\\nSubject: army in space\\nOrganization: Univ. of Florida CIS Dept.\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: beach.cis.ufl.edu\\n\\n\\nIs anybody out there willing to discuss with me careers in the Army that deal\\nwith space? After I graduate, I will have a commitment to serve in the Army, \\nand I would like to spend it in a space-related field. I saw a post a long\\ntime ago about the Air Force Space Command which made a fleeting reference to\\nits Army counter-part. Any more info on that would be appreciated. I'm \\nlooking for things like: do I branch Intelligence, or Signal, or other? To\\nwhom do I voice my interest in space? What qualifications are necessary?\\nEtc, etc. BTW, my major is computer science engineering.\\n\\nPlease reply to ktj@reef.cis.ufl.edu\\n\\nThanks for ANY info.\\n=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=\\n= Whether they ever find life there or not, I think Jupiter should be =\\n= considered an enemy planet. -- Jack Handy =\\n---ktj@reef.cis.ufl.edu---cirop59@elm.circa.ufl.edu---endeavour@circa.ufl.edu--\\n\",\n", - " 'From: Chris W. Johnson \\nSubject: Re: New DC-x gif\\nOrganization: University of Texas at Austin Computation Center\\nLines: 20\\nDistribution: world\\nNNTP-Posting-Host: gargravarr.cc.utexas.edu\\nX-UserAgent: Nuntius v1.1.1d20\\nX-XXMessage-ID: \\nX-XXDate: Thu, 15 Apr 93 19:42:41 GMT\\n\\nIn article Andy Cohen,\\nCohen@ssdgwy.mdc.com writes:\\n> I just uploaded \"DCXart2.GIF\" to bongo.cc.utexas.edu...after Chris Johnson\\n> moves it, it\\'ll probably be in pub/delta-clipper.\\n\\nThanks again Andy.\\n\\nThe image is in pub/delta-clipper now. The name has been changed to \\n\"dcx-artists-concept.gif\" in the spirit of verboseness. :-)\\n\\n----Chris\\n\\nChris W. Johnson\\n\\nInternet: chrisj@emx.cc.utexas.edu\\nUUCP: {husc6|uunet}!cs.utexas.edu!ut-emx!chrisj\\nCompuServe: >INTERNET:chrisj@emx.cc.utexas.edu\\nAppleLink: chrisj@emx.cc.utexas.edu@internet#\\n\\n...wishing the Delta Clipper team success in the upcoming DC-X flight tests.\\n',\n", - " 'From: pmoloney@maths.tcd.ie (Paul Moloney)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nOrganization: Somewhere in the Twentieth Century\\nLines: 14\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy.\\n\\nFind an encyclopedia. Volume H. Now look up Hitler, Adolf. He had\\nmany more people than just Germans enamoured with him.\\n\\nP.\\n-- \\n moorcockpratchettdenislearydelasoulu2iainmbanksneworderheathersbatmanpjorourke\\nclive p a u l m o l o n e y Come, let us retract the foreskin of misconception\\njames trinity college dublin and apply the wire brush of enlightenment - GeoffM\\n brownbladerunnersugarcubeselectronicblaylockpowersspikeleekatebushhamcornpizza \\n',\n", - " \"From: wlm@wisdom.attmail.com (Bill Myers)\\nSubject: Re: graphics libraries\\nIn-Reply-To: ch41@prism.gatech.EDU's message of 21 Apr 93 12:56:08 GMT\\nOrganization: /usr1/lib/news/organization\\nLines: 28\\n\\n\\n> Does anyone out there have any experience with Figaro+ form TGS or\\n> HOOPS from Ithaca Software? I would appreciate any comments.\\n\\nYes, I do. A couple of years ago, I did a comparison of the two\\nproducts. Some of this may have changed, but here goes.\\n\\nAs far as a PHIGS+ implementation, Figaro+ is fine. But, its PHIGS!\\nPersonally, I hate PHIGS because I find it is too low level. I also\\ndislike structure editing, which I find impossible, but enough about\\nPHIGS.\\n\\nI have found HOOPS to be a system that is full-featured and easy to\\nuse. They support all of their rendering methods in software when\\nthere is no hardware support, their documentation is good, and they\\nare easily portable to other systems.\\n\\nI would be happy to elaborate further if you have more specific\\nquestions. \\n--\\n|------------------------------------------------------|\\n ~~~ Here's lookin' at ya.\\n ~~_ _~~\\n |`O-@'| Bill | wlm@wisdom.attmail.com\\n @| > |@ Phone: (216) 831-2880 x2002\\n |\\\\___/|\\n |_____|\\n|______________________________________________________|\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: >Natural morality may specifically be thought of as a code of ethics that\\n>>a certain species has developed in order to survive.\\n>Wait. Are we talking about ethics or morals here?\\n\\nIs the distinction important?\\n\\n>>We see this countless\\n>>times in the animal kingdom, and such a \"natural\" system is the basis for\\n>>our own system as well.\\n>Huh?\\n\\nWell, our moral system seems to mimic the natural one, in a number of ways.\\n\\n>>In order for humans to thrive, we seem to need\\n>>to live in groups,\\n>Here\\'s your problem. \"we *SEEM* to need\". What\\'s wrong with the highlighted\\n>word?\\n\\nI don\\'t know. What is wrong? Is it possible for humans to survive for\\na long time in the wild? Yes, it\\'s possible, but it is difficult. Humans\\nare a social animal, and that is a cause of our success.\\n\\n>>and in order for a group to function effectively, it\\n>>needs some sort of ethical code.\\n>This statement is not correct.\\n\\nIsn\\'t it? Why don\\'t you think so?\\n\\n>>And, by pointing out that a species\\' conduct serves to propogate itself,\\n>>I am not trying to give you your tautology, but I am trying to show that\\n>>such are examples of moral systems with a goal. Propogation of the species\\n>>is a goal of a natural system of morality.\\n>So anybody who lives in a monagamous relationship is not moral? After all,\\n>in order to ensure propogation of the species, every man should impregnate\\n>as many women as possible.\\n\\nNo. As noted earlier, lack of mating (such as abstinence or homosexuality)\\nisn\\'t really destructive to the system. It is a worst neutral.\\n\\n>For that matter, in herds of horses, only the dominate stallion mates. When\\n>he dies/is killed/whatever, the new dominate stallion is the only one who\\n>mates. These seems to be a case of your \"natural system of morality\" trying\\n>to shoot itself in the figurative foot.\\n\\nAgain, the mating practices are something to be reexamined...\\n\\nkeith\\n',\n", - " 'From: globus@nas.nasa.gov (Al Globus)\\nSubject: Space Colony Size Preferences Summary\\nOrganization: Applied Research Office, NASA Ames Research Center\\nReply-To: globus@nas.nasa.gov\\nDistribution: sci.space\\nLines: 92\\n\\n\\nSome time ago I sent the following message:\\n Every once in a while I design an orbital space colony. I\\'m gearing up to\\n do another one. I\\'d some info from you. If you were to move\\n onto a space colony to live permanently, how big would the colony have\\n to be for you to view a permanent move as desirable? Specifically,\\n\\n How many people do you want to share the colony with?\\n \\n\\n What physical dimensions does the living are need to have? \\n\\n\\n Assume 1g living (the colony will rotate). Assume that you can leave\\n from time to time for vacations and business trips. If you\\'re young\\n enough, assume that you\\'ll raise your children there.\\n\\nI didn\\'t get a lot of responses, and they were all over the block.\\nThanx muchly to all those who responded, it is good food for thought.\\n\\n\\n\\n\\nHere\\'s the (edited) responses I got:\\n\\n\\n How many people do you want to share the colony with?\\n \\n100\\n\\n What physical dimensions does the living are need to have? \\n\\nCylinder 200m diameter x 1 km long\\n\\nRui Sousa\\nruca@saber-si.pt\\n\\n=============================================================================\\n\\n> How many people do you want to share the colony with?\\n\\n100,000 - 250,000\\n\\n> What physical dimensions does the living are need to have? \\n\\n100 square kms surface, divided into city, towns, villages and\\ncountryside. Must have lakes, rivers amd mountains.\\n\\n=============================================================================\\n\\n> How many\\n1000. 1000 people really isn\\'t that large a number;\\neveryone will know everyone else within the space of a year, and will probably\\nbe sick of everyone else within another year.\\n\\n>What physical dimensions does the living are need to have? \\n\\nHm. I am not all that great at figuring it out. But I would maximize the\\npercentage of colony-space that is accessible to humans. Esecially if there\\nwere to be children, since they will figure out how to go everywhere anyways.\\nAnd everyone, especially me, likes to \"go exploring\"...I would want to be able\\nto go for a walk and see something different each time...\\n\\n=============================================================================\\n\\nFor population, I think I would want a substantial town -- big enough\\nto have strangers in it. This helps get away from the small-town\\n\"everybody knows everything\" syndrome, which some people like but\\nI don\\'t. Call it several thousand people.\\n\\nFor physical dimensions, a somewhat similar criterion: big enough\\nto contain surprises, at least until you spent considerable time\\ngetting to know it. As a more specific rule of thumb, big enough\\nfor there to be places at least an hour away on foot. Call that\\n5km, which means a 10km circumference if we\\'re talking a sphere.\\n\\n Henry Spencer at U of Toronto Zoology\\n henry@zoo.toronto.edu utzoo!henry\\n\\n=============================================================================\\nMy desires, for permanent move to a space colony, assuming easy communication\\nand travel:\\n\\nSize: About a small-town size, say 9 sq. km. \\'Course, bigger is better :-)\\nPopulation: about 100/sq km or less. So, ~1000 for 9sqkm. Less is\\nbetter for elbow room, more for interest and sanity, so say max 3000, min 300.\\n\\n-Tommy Mac\\n-------------------------------------------------------------------------\\nTom McWilliams | 517-355-2178 (work) \\\\\\\\ Inhale to the Chief!\\n18084tm@ibm.cl.msu.edu | 336-9591 (hm)\\\\\\\\ Zonker Harris in 1996!\\n-------------------------------------------------------------------------\\n',\n", - " 'From: wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov\\nSubject: Re: NASA \"Wraps\"\\nOrganization: University of Houston\\nLines: 160\\nDistribution: world\\nNNTP-Posting-Host: judy.uh.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr18.034101.21934@iti.org>, aws@iti.org (Allen W. Sherzer) writes...\\n>In article <17APR199316423628@judy.uh.edu> wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov writes:\\n> \\n>>I don\\'t care who told you this it is not generally true. I see EVERY single\\n>>line item on a contract and I have to sign it. There is no such thing as\\n>>wrap at this university. \\n> \\n>Dennis, I have worked on or written proposals worth tens of millions\\n>of $$. Customers included government (including NASA), for profit and\\n>non-profit companies. All expected a wrap (usually called a fee). Much\\n>of the work involved allocating and costing the work of subcontractors.\\n>The subcontractors where universities, for-profits, non-profits, and\\n>even some of the NASA Centers for the Commercialization of Space. ALL\\n>charged fees as part of the work. Down the street is one of the NASA\\n>commercialization centers; they charge a fee.\\n> \\n\\nYou totally forgot the original post that you posted Allen. In that post\\nyou stated that the \"wrap\" was on top of and in addition to any overhead.\\nGeez in this post you finally admit that this is not true.\\n\\n>Now, I\\'m sure your a competent engineer Dennis, but you clearly lack\\n>experience in several areas. Your posts show that you don\\'t understand\\n>the importance of integration in large projects. You also show a lack\\n>of understanding of costing efforts as shown by your belief that it\\n>is reasonable to charge incremental costs for everything. This isn\\'t\\n>a flame, jsut a statement.\\n\\nCome your little ol buns down here and you will find out who is doing\\nwhat and who is working on integration. This is simply an ad hominum\\nattack and you know it.\\n\\n> \\n>Your employer DOES charge a fee. You may not see it but you do.\\n>\\n\\nOf course there is a fee. It is for administration. Geez Allen any\\norganization has costs but there is a heck of a difference in legitimate\\ncosts, such as libraries and other things that must be there to support\\na program and \"wrap\" as you originally stated it.You stated that wrap\\nwas on top of all of the overhead which a couple of sentences down you\\nsay is not true. Which is it Allen?\\n\\n>>>Sounds like they are adding it to their overhead rate. Go ask your\\n>>>costing people how much fee they add to a project.\\n> \\n>>I did they never heard of it but suggest that, like our president did, that\\n>>any percentage number like this is included in the overhead.\\n> \\n>Well there you are Dennis. As I said, they simply include the fee in\\n>their overhead. Many seoparate the fee since the fee structure can\\n>change depending on the customer.\\n>\\n\\nAs you have posted on this subject Allen, you state that wrap is over and\\nabove overhead and is a seperate charge. You admit here that this is wrong.\\nNasa has a line item budget every year. I have seen it Allen. Get some\\nnumbers from that detailed NASA budget and dig out the wrap numbers and then\\nhowl to high heaven about it. Until you do that you are barking in the wind.\\n\\n>>No Allen you did not. You merely repeated allegations made by an Employee\\n>>of the Overhead capital of NASA. \\n> \\n>Integration, Dennis, isn\\'t overhead.\\n> \\n>>Nothing that Reston does could not be dont\\n>>better or cheaper at the Other NASA centers where the work is going on.\\n>\\n\\nIntegration could be done better at the centers. Apollo integration was \\ndone here at Msfc and that did not turn out so bad. The philosophy of\\nReston is totally wrong Allen. There you have a bunch of people who are\\ncompletely removed from the work that they are trying to oversee. There\\nis no way that will ever work. It has never worked in any large scale project\\nthat it was ever tried on. Could you imagine a Reston like set up for \\nApollo?\\n\\n>Dennis, Reston has been the only NASA agency working to reduce costs. When\\n>WP 02 was hemoraging out a billion $$, the centers you love so much where\\n>doing their best to cover it up and ignore the problem. Reston was the\\n>only place you would find people actually interested in solving the\\n>problems and building a station.\\n>\\n\\nOh you are full of it Allen on this one. I agree that JSC screwed up big.\\nThey should be responsible for that screw up and the people that caused it\\nreplaced. To make a stupid statement like that just shows how deep your\\nbias goes. Come to MSFC for a couple of weeks and you will find out just\\nhow wrong you really are. Maybe not, people like you believe exactly what\\nthey want to believe no matter what the facts are contrary to it. \\n\\n>>Kinda funny isn\\'t it that someone who talks about a problem like this is\\n>>at a place where everything is overhead.\\n> \\n>When you have a bit more experience Dennis, you will realize that\\n>integration isn\\'t overhead. It is the single most important part\\n>of a successful large scale effort.\\n>\\n\\nI agree that integration is the single most important part of a successful\\nlarge scale effort. What I completly disagree with is seperating that\\nintegration function from the people that are doing the work. It is called\\nleadership Allen. That is what made Apollo work. Final responsibility for\\nthe success of Apollo was held by less than 50 people. That is leadership\\nand responsibility. There is neither when you have any organization set up\\nas Reston is. You could take the same people and move them to JSC or MSFC\\nand they could do a much better job. Why did it take a year for Reston to\\nfinally say something about the problem? If they were on site and part of the\\nprocess then the problem would have never gotten out of hand in the first place.\\n\\nThere is one heck of a lot I do not know Allen, but one thing I do know is that\\nfor a project to be successful you must have leadership. I remember all of the\\nturn over at Reston that kept SSF program in shambles for years do you? It is\\nlack of responsibility and leadership that is the programs problem. Lack of\\nleadership from the White House, Congress and at Reston. Nasa is only a\\nsymptom of a greater national problem. You are so narrowly focused in your\\nefforts that you do not see this.\\n\\n>>Why did the Space News artice point out that it was the congressionally\\n>>demanded change that caused the problems? Methinks that you are being \\n>>selective with the facts again.\\n> \\n>The story you refer to said that some NASA people blamed it on\\n>Congress. Suprise suprise. The fact remains that it is the centers\\n>you support so much who covered up the overheads and wouldn\\'t address\\n>the problems until the press published the story.\\n> \\n>Are you saying the Reston managers where wrong to get NASA to address\\n>the overruns? You approve of what the centers did to cover up the overruns?\\n>\\n\\nNo, I am saying that if they were located at JSC it never would have \\nhappened in the first place.\\n\\n>>If it takes four flights a year to resupply the station and you have a cost\\n>>of 500 million a flight then you pay 2 billion a year. You stated that your\\n>>\"friend\" at Reston said that with the current station they could resupply it\\n>>for a billion a year \"if the wrap were gone\". This merely points out a \\n>>blatent contridiction in your numbers that understandably you fail to see.\\n> \\n>You should know Dennis that NASA doesn\\'t include transport costs for\\n>resuply. That comes from the Shuttle budget. What they where saying\\n>is that operational costs could be cut in half plus transport.\\n> \\n>>Sorry gang but I have a deadline for a satellite so someone else is going\\n>>to have to do Allen\\'s math for him for a while. I will have little chance to\\n>>do so.\\n> \\n>I do hope you can find the time to tell us just why it was wrong of\\n>Reston to ask that the problems with WP 02 be addressed.\\n> \\nI have the time to reitereate one more timet that if the leadership that is\\nat reston was on site at JSC the problem never would have happened, totally\\nignoring the lack of leadership of congress. This many headed hydra that\\nhas grown up at NASA is the true problem of the Agency and to try to \\nchange the question to suit you and your bias is only indicative of\\nyour position.\\n\\nDennis, University of Alabama in Huntsville\\n\\n',\n", - " \"From: raible@nas.nasa.gov (Eric Raible)\\nSubject: Re: Need advice for riding with someone on pillion\\nIn-Reply-To: rwert@well.sf.ca.us's message of 21 Apr 93 01:07:56 GMT\\nOrganization: Applied Research Office, NASA Ames Research Center\\nReply-To: raible@nas.nasa.gov\\nDistribution: na\\nLines: 22\\n\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n\\n I need some advice on having someone ride pillion with me on my 750 Ninja.\\n This will be the the first time I've taken anyone for an extended ride\\n (read: farther than around the block :-). We'll be riding some twisty, \\n fairly bumpy roads (the Mines Road-Mt.Hamilton Loop for you SF Bay Areans).\\n\\nI'd say this is a very bad idea - you should start out with something\\nmuch mellower so that neither one of you get in over your head.\\nThat particular road requires full concentration - not the sort of\\nthing you want to take a passenger on for the first time.\\n\\nOnce you both decide that you like riding together, and want to do\\nsomething longer and more challenging, *then* go for a hard core road\\nlike Mines-Mt. Hamilton.\\n\\nIn any case, it's *your* (moral) responsibility to make sure that she\\nhas proper gear that fits - especially if you're going sport\\nriding.\\n\\n- Eric\\n\",\n", - " 'From: klf@druwa.ATT.COM (FranklinKL)\\nSubject: Re: Hell-mets.\\nSummary: Visual damage is NOT an indicator.\\nLines: 50\\n\\nIn article <1993Apr18.035125.29930@freenet.carleton.ca>, aa963@Freenet.carleton.ca (Lloyd Carr) writes:\\n> \\n> In a previous article, maven@mavenry.altcit.eskimo.com (Norman Hamer) says:\\n> \\n> >\\n> > \\n> > If I don\\'t end up replacing it in the real near future, would I do better \\n> >to wear my (totally nondamaged) 3/4 face DOT-RATED cheapie which doesn\\'t fit \\n> >as well or keep out the wind as well, or wearing the Shoei RF-200 which is a \\n> >LOT more comfortable, keeps the wind out better, is quieter... but might \\n> >have some minor damage?\\n> \\n> == Wear the RF200. Even after a few drops & paint chips, it is FAR better\\n> than no helmet or a poorly fitting one. I\\'ve had many scratches & bangs\\n> which have been repaired plus I\\'m still confident of the protection the\\n> helmet will continue to give me. Only when you actually see depressions\\n \\n> or actual cracks (using a magnifying glass) should you consider replacement.\\n\\n> -- \\n\\nThis is not good advice. A couple of years I was involved in a low-speed\\ngetoff in which I landed on my back on the pavement. My head (helmeted)\\nhit the pavement with a \"clunk\", leaving a couple of dings and chips in the\\npaint at the point of impact, but no other visible damage. I called the\\nhelmet manufacturer and inquired about damage. They said that the way a\\nfiberglass shell works is to first give, then delaminate, then crack.\\nThis is the way fiberglass serves to spread the force of the impact over a\\nwider area. After the fiberglass has done its thing, the crushable foam\\nliner takes care of absorbing (hopefully) the remaining impact force.\\nThey told me that the second stage of fiberglass functionality (delamination\\nof the glass/resin layers) can occur with NO visible signs, either inside or\\noutside of the helmet. They suggested that I send them the helmet and they\\nwould inspect it (including X-raying). I did so. They sent back the helmet\\nwith a letter stating that that they could find no damage that would\\ncompromise the ability of the helmet to provide maximum protection.\\n(I suspect that this letter would eliminate their being able to claim\\nprior damage to the helmet in the event I were to sue them.)\\n\\nThe bottom line, though, is that it appears that a helmets integrity\\ncan be compromised with no visible signs. The only way to know for sure\\nis to send it back and have it inspected. Note that some helmet\\nmanufacturers provide inspections services and some do not. Another point\\nto consider when purchasing a lid.\\n\\n--\\nKen Franklin \\tThey say there\\'s a heaven for people who wait\\nAMA \\tAnd some say it\\'s better but I say it ain\\'t\\nGWRRA I\\'d rather laugh with the sinners than cry with the saints\\nDoD #0126 The sinners are lots more fun, Y\\'know only the good die young\\n',\n", - " 'From: spl@ivem.ucsd.edu (Steve Lamont)\\nSubject: SGI sales practices (Was: Crimson (Was: Kubota Announcement?))\\nOrganization: University of Calif., San Diego/Microscopy and Imaging Resource\\nLines: 49\\nNNTP-Posting-Host: ivem.ucsd.edu\\n\\nIn article <30523@hacgate.SCG.HAC.COM> lee@luke.rsg.hac.com (C. Lee) writes:\\n>The original posting complained (1) about SGI coming out with newer (and\\n>better) architectures and not having an upgrade path from the older ones,\\n>and (2) that DEC did.\\n\\nNo. That\\'s *not* what I was complaining about, nor did I intend to\\nsuggest that DEC was any better than SGI (let me tell you about the\\nLynx some day, but be prepared with a large sedative if you do...). My\\ncomment regarding DEC was to indicate that I might be open to other vendors\\nthat supported OpenGL, rather than deal further with SGI.\\n\\nWhat I *am* annoyed about is the fact that we were led to believe that\\nwe *would* be able to upgrade to a multiprocessor version of the\\nCrimson without the assistance of a fork lift truck.\\n\\nI\\'m also annoyed about being sold *several* Personal IRISes at a\\nprevious site on the understanding *that* architecture would be around\\nfor a while, rather than being flushed.\\n\\nNow I understand that SGI is responsible to its investors and has to\\nkeep showing a positive quarterly bottom line (odd that I found myself\\npressured on at least two occasions to get the business on the books\\njust before the end of the quarter), but I\\'m just a little tired of\\ngetting boned in the process.\\n\\nMaybe it\\'s because my lab buys SGIs in onesies and twosies, so we\\naren\\'t entitled to a \"peek under the covers\" as the Big Kids (NASA,\\nfor instance) are. This lab, and I suspect that a lot of other labs\\nand organizations, doesn\\'t have a load of money to spend on computers\\nevery year, so we can\\'t be out buying new systems on a regular basis.\\nThe boxes that we buy now will have to last us pretty much through the\\nentire grant period of five years and, in some case, beyond. That\\nmeans that I need to buy the best piece of equipment that I can when I\\nhave the money, not some product that was built, to paraphrase one\\nprevious poster\\'s words, \\'to fill a niche\\' to compete with some other\\nvendor. I\\'m going to be looking at this box for the next five years.\\nAnd every time I look at it, I\\'m going to think about SGI and how I\\ncould have better spent my money (actually *your* money, since we\\'re\\nsupported almost entirely by Federal tax dollars).\\n\\nNow you\\'ll have to pardon me while I go off and hiss and fume in a\\ncorner somewhere and think dark, libelous thoughts.\\n\\n\\t\\t\\t\\t\\t\\t\\tspl\\n-- \\nSteve Lamont, SciViGuy -- (619) 534-7968 -- spl@szechuan.ucsd.edu\\nSan Diego Microscopy and Imaging Resource/UC San Diego/La Jolla, CA 92093-0608\\n\"My other car is a car, too.\"\\n - Bumper strip seen on I-805\\n',\n", - " \"From: santac@aix.rpi.edu (Christopher James Santarcangelo)\\nSubject: FORSALE: 1982 Yamaha Seca 650 Turbo\\nKeywords: forsale seca turbo\\nNntp-Posting-Host: aix.rpi.edu\\nDistribution: usa\\nLines: 17\\n\\nI don't want to do this, but I need money for school. This is\\na very snappy bike. It needs a little work and I don't have the\\nmoney for it. Some details:\\n\\n\\t~19000 miles\\n\\tMitsubishi turbo\\n\\tnot asthetically beautiful, but very fast!\\n\\tOne of the few factory turboed bikes... not a kit!\\n\\tMust see and ride to appreciate how fun this bike is!\\n\\nI am asking $700 or best offer. The bike can be seen in\\nBennington, Vermont. E-mail for more info!\\n\\nThanks,\\nChris\\nsantac@rpi.edu\\n\\n\",\n", - " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 25\\nDistribution: na\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , jbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n> I remeber reading the comment that General Dynamics was tied into this, in \\n> connection with their proposal for an early manned landing. Sorry I don\\'t \\n> rember where I heard this, but I\\'m fairly sure it was somewhere reputable. \\n> Anyone else know anything on this angle?\\n\\nThe General Chairman is Paul Bialla, who is some official of General\\nDynamics.\\n\\nThe emphasis seems to be on a scaled-down, fast plan to put *people*\\non the Moon in an impoverished spaceflight-funding climate. You\\'d\\nthink it would be a golden opportunity to do lots of precusor work for\\nmodest money using an agressive series of robot spacecraft, but\\nthere\\'s not a hint of this in the brochure.\\n\\n> Hrumph. They didn\\'t send _me_ anything :(\\n\\nYou\\'re not hanging out with the Right People, apparently.\\n\\nBill Higgins, Beam Jockey | \"I\\'m gonna keep on writing songs\\nFermilab | until I write the song\\nBitnet: HIGGINS@FNAL.BITNET | that makes the guys in Detroit\\nInternet: HIGGINS@FNAL.FNAL.GOV | who draw the cars\\nSPAN/Hepnet: 43011::HIGGINS | put tailfins on \\'em again.\"\\n --John Prine\\n',\n", - " 'From: arf@genesis.MCS.COM (Jack Schmidling)\\nSubject: NEWS YOU MAY HAVE MISSED, Apr 20\\nOrganization: MCSNet Contributor, Chicago, IL\\nLines: 111\\nDistribution: world\\nNNTP-Posting-Host: localhost.mcs.com\\n\\n \\n NEWS YOU MAY HAVE MISSED, APR 19, 1993\\n \\n Not because you were too busy but because\\n Israelists in the US media spiked it.\\n \\n ................\\n \\n \\n THOSE INTREPID ISRAELI SOLDIERS\\n \\n \\n Israeli soldiers have sexually taunted Arab women in the occupied Gaza Strip \\n during the three-week-long closure that has sealed Palestinians off from the \\n Jewish state, Palestinian sources said on Sunday.\\n \\n The incidents occurred in the town of Khan Younis and involved soldiers of\\n the Golani Brigade who have been at the centre of house-to-house raids for\\n Palestinian activists during the closure, which was imposed on the strip and\\n occupied West Bank.\\n \\n Five days ago girls at the Al-Khansaa secondary said a group of naked\\n soldiers taunted them, yelling: ``Come and kiss me.\\'\\' When the girls fled, \\n the soldiers threw empty bottles at them.\\n \\n On Saturday, a group of soldiers opened their shirts and pulled down their\\n pants when they saw girls from Al-Khansaa walking home from school. Parents \\n are considering keeping their daughters home from the all-girls school.\\n \\n The same day, soldiers harassed two passing schoolgirls after a youth\\n escaped from them at a boys\\' secondary school. Deputy Principal Srur \\n Abu-Jamea said they shouted abusive language at the girls, backed them \\n against a wall, and put their arms around them.\\n \\n When teacher Hamdan Abu-Hajras intervened the soldiers kicked him and beat\\n him with the butts of their rifles.\\n \\n On Tuesday, troops stopped a car driven by Abdel Azzim Qdieh, a practising\\n Moslem, and demanded he kiss his female passenger. Qdieh refused, the \\n soldiers hit him and the 18-year-old passenger kissed him to stop the \\n beating.\\n \\n On Friday, soldiers entered the home of Zamno Abu-Ealyan, 60, blindfolded\\n him and his wife, put a music tape on a recorder and demanded they dance. As\\n the elderly couple danced, the soldiers slipped away. The coupled continued\\n dancing until their grandson came in and asked what was happening.\\n \\n The army said it was checking the reports.\\n \\n ....................\\n \\n \\n ISRAELI TROOPS BAR CHRISTIANS FROM JERUSALEM\\n \\n Israeli troops prevented Christian Arabs from entering Jerusalem on Thursday \\n to celebrate the traditional mass of the Last Supper.\\n \\n Two Arab priests from the Greek Orthodox church led some 30 worshippers in\\n prayer at a checkpoint separating the occupied West Bank from Jerusalem after\\n soldiers told them only people with army-issued permits could enter.\\n \\n ``Right now, our brothers are celebrating mass in the Church of the Holy\\n Sepulchre and we were hoping to be able to join them in prayer,\\'\\' said Father\\n George Makhlouf of the Ramallah Parish.\\n \\n Israel sealed off the occupied lands two weeks ago after a spate of\\n Palestinian attacks against Jews. The closure cut off Arabs in the West Bank\\n and Gaza Strip from Jerusalem, their economic, spiritual and cultural centre.\\n \\n Father Nicola Akel said Christians did not want to suffer the humiliation\\n of requesting permits to reach holy sites.\\n \\n Makhlouf said the closure was discriminatory, allowing Jews free movement\\n to take part in recent Passover celebrations while restricting Christian\\n celebrations.\\n \\n ``Yesterday, we saw the Jews celebrate Passover without any interruption.\\n But we cannot reach our holiest sites,\\'\\' he said.\\n \\n An Israeli officer interrupted Makhlouf\\'s speech, demanding to see his\\n identity card before ordering the crowd to leave.\\n \\n ...................\\n \\n \\n \\n If you are as revolted at this as I am, drop Israel\\'s best friend email and \\n let him know what you think.\\n \\n \\n 75300.3115@compuserve.com (via CompuServe)\\n clintonpz@aol.com (via America Online)\\n clinton-hq@campaign92.org (via MCI Mail)\\n \\n \\n Tell \\'em ARF sent ya.\\n \\n ..................................\\n \\n If you are tired of \"learning\" about American foreign policy from what is \\n effectively, Israeli controlled media, I highly recommend checking out the \\n Washington Report. A free sample copy is available by calling the American \\n Education Trust at:\\n (800) 368 5788\\n \\n Tell \\'em arf sent you.\\n \\n js\\n \\n \\n\\n',\n", - " 'From: watson@madvax.uwa.oz.au (David Watson)\\nSubject: Re: Sphere from 4 points?\\nOrganization: Maths Dept UWA\\nLines: 23\\nDistribution: world\\nNNTP-Posting-Host: xanthorrhoea.maths.uwa.edu.au\\n\\nIn article <1qkgbuINNs9n@shelley.u.washington.edu>, \\nbolson@carson.u.washington.edu (Edward Bolson) writes:\\n \\n|> Given 4 points (non coplanar), how does one find the sphere, that is,\\n|> center and radius, exactly fitting those points? \\n\\nFinding the circumcenter of a tetrahedron is discussed on page 33 in\\n\\nCONTOURING: A guide to the analysis and display of spatial data,\\nby Dave Watson, Pergamon Press, 1992, ISBN 0 08 040286 0, 321p.\\n\\nEach pair of tetrahedral vertices define a plane which is a \\nperpendicular bisector of the line between that pair. Express each\\nplane in the form Ax + By + Cz = D\\nand solve the set of simultaneous equations from any three of those\\nplanes that have a vertex in common (all vertices are used). \\nThe solution is the circumcenter.\\n\\n-- \\nDave Watson Internet: watson@maths.uwa.edu.au\\nDepartment of Mathematics \\nThe University of Western Australia Tel: (61 9) 380 3359\\nNedlands, WA 6009 Australia. FAX: (61 9) 380 1028\\n',\n", - " 'From: keithley@apple.com (Craig Keithley)\\nSubject: Re: Moonbase race, NASA resources, why?\\nOrganization: Apple Computer, Inc.\\nLines: 44\\n\\nIn article , henry@zoo.toronto.edu (Henry\\nSpencer) wrote:\\n> \\n> The major component of any realistic plan to go to the Moon cheaply (for\\n> more than a brief visit, at least) is low-cost transport to Earth orbit.\\n> For what it costs to launch one Shuttle or two Titan IVs, you can develop\\n> a new launch system that will be considerably cheaper. (Delta Clipper\\n> might be a bit more expensive than this, perhaps, but there are less\\n> ambitious ways of bringing costs down quite a bit.) \\n\\nAh, there\\'s the rub. And a catch-22 to boot. For the purposes of a\\ncontest, you\\'ll probably not compete if\\'n you can\\'t afford the ride to get\\nthere. And although lower priced delivery systems might be doable, without\\ndemand its doubtful that anyone will develop a new system. Course, if a\\nlow priced system existed, there might be demand... \\n\\nI wonder if there might be some way of structuring a contest to encourage\\nlow cost payload delivery systems. The accounting methods would probably\\nbe the hardest to work out. For example, would you allow Rockwell to\\n\\'loan\\' you the engines? And so forth...\\n\\n> Any plan for doing\\n> sustained lunar exploration using existing launch systems is wasting\\n> money in a big way.\\n> \\n\\nThis depends on the how soon the new launch system comes on line. In other\\nwords, perhaps a great deal of worthwhile technology (life support,\\nnavigation, etc.) could be developed prior to a low cost launch system. \\nYou wouldn\\'t want to use the expensive stuff forever, but I\\'d hate to see\\nfolks waiting to do anything until a low cost Mac, oops, I mean launch\\nsystem comes on line.\\n\\nI guess I\\'d simplify this to say that \\'waste\\' is a slippery concept. If\\nyour goal is manned lunar exploration in the next 5 years, then perhaps its\\nnot \\'wasted\\' money. If your goal is to explore the moon for under $500\\nmillion, then you should put of this exploration for a decade or so.\\n\\nCraig\\n\\n\\nCraig Keithley |\"I don\\'t remember, I don\\'t recall, \\nApple Computer, Inc. |I got no memory of anything at all\"\\nkeithley@apple.com |Peter Gabriel, Third Album (1980)\\n',\n", - " 'From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Griffin / Office of Exploration: RIP\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 43\\n\\nyamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n\\n>Any comments on the absorbtion of the Office of Exploration into the\\n>Office of Space Sciences and the reassignment of Griffin to the \"Chief\\n>Engineer\" position? Is this just a meaningless administrative\\n>shuffle, or does this bode ill for SEI?\\n\\n>In my opinion, this seems like a Bad Thing, at least on the surface.\\n>Griffin seemed to be someone who was actually interested in getting\\n>things done, and who was willing to look an innovative approaches to\\n>getting things done faster, better, and cheaper. It\\'s unclear to me\\n>whether he will be able to do this at his new position.\\n\\n>Does anyone know what his new duties will be?\\n\\nFirst I\\'ve heard of it. Offhand:\\n\\nGriffin is no longer an \"office\" head, so that\\'s bad.\\n\\nOn the other hand:\\n\\nRegress seemed to think: we can\\'t fund anything by Griffin, because\\nthat would mean (and we have the lies by the old hardliners about the\\n$ 400 billion mars mission to prove it) that we would be buying into a\\nmission to Mars that would cost 400 billion. Therefore there will be\\nno Artemis or 20 million dollar lunar orbiter et cetera...\\n\\nThey were killing Griffin\\'s main program simply because some sycophants\\nsomewhere had Congress beleivin that to do so would simply be to buy into\\nthe same old stuff. Sorta like not giving aid to Yeltsin because he\\'s\\na communist hardliner.\\n\\nAt least now the sort of reforms Griffin was trying to bring forward\\nwon\\'t be trapped in their own little easily contained and defunded\\nghetto. That Griffin is staying in some capacity is very very very\\ngood. And if he brings something up, noone can say \"why don\\'t you go\\nback to the OSE where you belong\" (and where he couldn\\'t even get money\\nfor design studies).\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", - " 'Subject: Re: Gamma Ray Bursters. Where are they? \\nFrom: belgarath@vax1.mankato.msus.edu\\nOrganization: Mankato State University\\nNntp-Posting-Host: vax1.mankato.msus.edu\\nLines: 67\\n\\nIn article <1radsr$att@access.digex.net>, prb@access.digex.com (Pat) writes:\\n> What evidence indicates that Gamma Ray bursters are very far away?\\n> \\n> Given the enormous power, i was just wondering, what if they are\\n> quantum black holes or something like that fairly close by?\\n> \\n> Why would they have to be at galactic ranges? \\n> \\n> my own pet theory is that it\\'s Flying saucers entering\\n> hyperspace :-)\\n> \\n> but the reason i am asking is that most everyone assumes that they\\n> are colliding nuetron stars or spinning black holes, i just wondered\\n> if any mechanism could exist and place them closer in.\\n> \\n> pat \\n Well, lets see....I took a class on this last fall, and I have no\\nnotes so I\\'ll try to wing it... \\n Here\\'s how I understand it. Remember from stellar evolution that \\nblack holes and neutron stars(pulsars) are formed from high mass stars,\\nM(star)=1.4M(sun). High mass stars live fast and burn hard, taking\\nappoximately 10^5-10^7 years before going nova, or supernova. In this time,\\nthey don\\'t live long enough to get perturbed out of the galactic plane, so any\\nof these (if assumed to be the sources of GRB\\'s) will be in the plane of the\\ngalaxy. \\n Then we take the catalog of bursts that have been recieved from the\\nvarious satellites around the solar system, (Pioneer Venus has one, either\\nPion. 10 or 11, GINGA, and of course BATSE) and we do distribution tests on our\\ncatalog. These tests all show, that the bursts have an isotropic\\ndistribution(evenly spread out in a radial direction), and they show signs of\\nhomogeneity, i.e. they do not clump in any one direction. So, unless we are\\nsampling the area inside the disk of the galaxy, we are sampling the UNIVERSE.\\nNot cool, if you want to figure out what the hell caused these things. Now, I\\nsuppose you are saying, \"Well, we stil only may be sampling from inside the\\ndisk.\" Well, not necessarily. Remember, we have what is more or less an\\ninterplanetary network of burst detectors with a baseline that goes waaaay out\\nto beyond Pluto(pioneer 11), so we should be able, with all of our detectors de\\ntect some sort of difference in angle from satellite to satellite. Here\\'s an \\nanalogy: You see a plane overhead. You measure the angle of the plane from\\nthe origin of your arbitrary coordinate system. One of your friends a mile\\naway sees the same plane, and measures the angle from the zero point of his\\narbitrary system, which is the same as yours. The two angles are different,\\nand you should be able to triangulate the position of your burst, and maybe\\nfind a source. To my knowledge, no one has been able to do this. \\n I should throw in why halo, and corona models don\\'t work, also. As I\\nsaid before, looking at the possible astrophysics of the bursts, (short\\ntimescales, high energy) black holes, and pulsars exhibit much of this type of\\nbehavior. If this is the case, as I said before, these stars seem to be bound\\nto the disk of the galaxy, especially the most energetic of the these sources.\\nWhen you look at a simulated model, where the bursts are confined to the disk,\\nbut you sample out to large distances, say 750 mpc, you should definitely see\\nnot only an anisotropy towards you in all direction, but a clumping of sources \\nin the direction of the galactic center. As I said before, there is none of\\nthese characteristics. \\n \\n I think that\\'s all of it...if someone needs clarification, or knows\\nsomething that I don\\'t know, by all means correct me. I had the honor of\\ntaking the Bursts class with the person who has done the modeling of these\\ndifferent distributions, so we pretty much kicked around every possible\\ndistribution there was, and some VERY outrageous sources. Colliding pulsars,\\nblack holes, pulsars that are slowing down...stuff like that. It\\'s a fun\\nfield. \\n Complaints and corrections to: belgarath@vax1.mankato.msus.edu or \\npost here. \\n -jeremy\\n\\n \\n',\n", - " 'From: prange@nickel.ucs.indiana.edu (Henry Prange)\\nSubject: Re: (tangentially) Re: Live Free, but Quietly, or Die\\nNntp-Posting-Host: nickel.ucs.indiana.edu\\nOrganization: Indiana University\\nLines: 20\\n\\nIn article <1993Apr15.035406.29988@rd.hydro.on.ca> jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n\\nimpertinent stuff deleted\\n>\\n>Am I showing my Canadian University-ness here, of does anyone else know\\n>what I\\'m talking about?\\n>\\n>I\\'ve bike like | Jody Levine DoD #275 kV\\n> got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n> ride it | Toronto, Ontario, Canada\\n\\nThere you go again, you edu-breath poser! \"University-ness\" indeed!\\nLeave that stuff to us professionals.\\n\\nHenry Prange biker/professional edu-breath\\nPhysiology/IU Sch. Med., Blgtn., 47405\\nDoD #0821; BMWMOA #11522; GSI #215\\nride = \\'92 R100GS; \\'91 RX-7 conv = cage/2; \\'91 Explorer = cage*2\\nThe unifying trait of our species is the relentless pursuit of folly.\\nHypocrisy is the only national religion of this country.\\n',\n", - " \"From: af774@cleveland.Freenet.Edu (Chad Cipiti)\\nSubject: Good shareware paint and/or animation software for SGI?\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 15\\nReply-To: af774@cleveland.Freenet.Edu (Chad Cipiti)\\nNNTP-Posting-Host: hela.ins.cwru.edu\\n\\n\\nDoes anyone know of any good shareware animation or paint software for an SGI\\n machine? I've exhausted everyplace on the net I can find and still don't hava\\n a nice piece of software.\\n\\nThanks alot!\\n\\nChad\\n\\n\\n-- \\nKnock, knock. Chad Cipiti\\nWho's there? af774@cleveland.freenet.edu\\n cipiti@bobcat.ent.ohiou.edu\\nIt might be Heisenberg. chad@voxel.zool.ohiou.edu\\n\",\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Moonbase race\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 16\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu> sysmgr@king.eng.umd.edu writes:\\n\\n>So how much would it cost as a private venture, assuming you could talk the\\n>U.S. government into leasing you a couple of pads in Florida? \\n\\nWhy would you want to do that? The goal is to do it cheaper (remember,\\nthis isn\\'t government). Instead of leasing an expensive launch pad,\\njust use a SSTO and launch from a much cheaper facility.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------56 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " \"Subject: So what is Maddi?\\nFrom: madhaus@netcom.com (Maddi Hausmann)\\nOrganization: Society for Putting Things on Top of Other Things\\nLines: 12\\n\\nAs I was created in the image of Gaea, therefore I must\\nbe the pinnacle of creation, She which Creates, She which\\nBirths, She which Continues.\\n\\nOr, to cut all the religious crap, I'm a woman, thanks.\\nAnd it's sexism that started me on the road to atheism.\\n\\n-- \\nMaddi Hausmann madhaus@netcom.com\\nCentigram Communications Corp San Jose California 408/428-3553\\n\\nKids, please don't try this at home. Remember, I post professionally.\\n\",\n", - " 'From: ridout@bink.plk.af.mil (Brian S. Ridout)\\nSubject: Re: Virtual Reality for X on the CHEAP!\\nOrganization: Air Force Phillips Lab.\\nLines: 23\\nDistribution: world\\nNNTP-Posting-Host: bink.plk.af.mil\\n\\nIn article <1993Apr15.134802.21995@mfltd.co.uk>, sts@mfltd.co.uk (Steve Sherwood (x5543)) writes:\\n|> Has anyone got multiverse to work ?\\n|> \\n|> I have built it on 486 svr4, mips svr4s and Sun SparcStation.\\n|> \\n|> There seems to be many bugs in it. The \\'dogfight\\' and \\'dactyl\\' simply do nothing\\n|> (After fixing a bug where a variable is defined twice in two different modules - One needed\\n|> setting to static - else the client core-dumped)\\n|> \\n|> Steve\\n|> -- \\n|> \\n|> Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n|> +-----------------------------------+------------------------+ Micro Focus\\n|> | Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n|> | Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n|> | Need courage to survive the day. | | Berkshire\\n|> +-----------------------------------+------------------------+ England\\n|> (A)bort (R)etry (I)nfluence with large hammer\\nI built it on a rs6000 (my only Motif machine) works fine. I added some objects\\ninto dogfight so I could get used to flying. This was very easy. \\nAll in all Cool!. \\nBrian\\n',\n", - " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: lotto@laura.harvard.edu (Jerry Lotto)\\nDistribution: rec\\nOrganization: Chemistry Dept., Harvard University\\nNNTP-Posting-Host: laura.harvard.edu\\nIn-reply-to: xlyx@vax5.cit.cornell.edu\\'s message of 19 Apr 93 21:48:42 GMT\\nLines: 10\\n\\n>>>>> On 19 Apr 93 21:48:42 GMT, xlyx@vax5.cit.cornell.edu said:\\nMike> Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\nSure. In fact, you can do a wheelie on a shaft-drive motorcycle\\nwithout even moving. Just don\\'t try countersteering.\\n\\n:-)\\n--\\nJerry Lotto MSFCI, HOGSSC, BCSO, AMA, DoD #18\\nChemistry Dept., Harvard Univ. \"It\\'s my Harley, and I\\'ll ride if I want to...\"\\n',\n", - " \"From: bh437292@longs.LANCE.ColoState.Edu (Basil Hamdan)\\nSubject: Re: Go Hizbollah II!\\nReply-To: bh437292@lance.colostate.edu\\nNntp-Posting-Host: traver.lance.colostate.edu\\nOrganization: Engineering College, Colorado State University\\nLines: 15\\n\\nIn article <1993Apr24.202201.1@utxvms.cc.utexas.edu>, ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky) writes:\\n|> Paraphrasing a bit, with every rocket that \\n|> \\tthe Hizbollah fires on the Galilee, they justify Israel's \\n|> \\tholding to the security zone. \\n|> \\n|> Noam\\n\\n\\n\\nI only want to say that I agree with Noam on this point\\nand I hope that all sides stop targeting civilians.\\n\\nBasil \\n\\n\\n\",\n", - " 'From: hl7204@eehp22 (H L)\\nSubject: Re: Graphics Library Package\\nOrganization: University of Illinois at Urbana\\nLines: 2\\n\\n \\n\\n',\n", - " \"From: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nSubject: Re: Motorcycle Courier (S\\nReply-To: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nDistribution: world\\nOrganization: Computer Dynamics-Vancouver B.C.-(604)986-9937 (604)255-9937\\nLines: 19\\n\\nJL-NS>Subject: Re: Motorcycle Courier (Summer Job)\\n\\nI'd like to thank everyone who replied. I will probably start looking in\\nearnest after May, when I return from my trip down the Pacific Coast\\n(the geographical feature, not the bike).\\n\\nRyan Cousinetc.|1982 Yamaha Vision XZ550 -Black Pig of Inverness|Live to Ride\\nKotRB |1958 AJS 500 C/S -King Rat |to Work to\\nDoD# 0863 |I'd be a squid if I could afford the bike... |Flame to\\nryan.cousineau@compdyn.questor.org | Vancouver, BC, Canada |Live . . .\\n\\n\\n * SLMR 2.1a * Have bike, will travel. Quickly. Very quickly.\\n \\n----\\n+===============================================================+\\n|COMPUTER DYNAMICS BBS 604-255-9937(HST) 604-986-9937(V32)|\\n|Vancouver, BC, Canada - Easy Access, Low Rates, Friendly Sysop|\\n+===============================================================+\\n\",\n", - " 'From: sugarman@ra.cs.umb.edu (Steven R. Garman)\\nSubject: WANTED - Optical Shaft Encoders for Telescope\\nNntp-Posting-Host: ra.cs.umb.edu\\nOrganization: University of Massachusetts at Boston\\nLines: 23\\n\\n\\n[Also posted in misc.forsale.wanted,misc.wanted,ne.wanted,ny.wanted,nj.wanted]\\n\\nWANTED: Optical Shaft Encoders\\n\\nQuantity 2\\nSingle-ended\\nIncremental\\n\\nNeeded to encode the movements of a 16\" Cassegrain telescope. The telescope\\nis in the observatory of the Univ. of Mass. at Boston. The project is being\\nmanaged by Mr. George Tucker, a graduate student at UMB. Please call him, or\\nemail/call me, if you have one or two of the specified type of encoder. Of\\ncourse, due to our low funding level we are looking for a price that is\\nsufficiently lower than that given for new encoders. :)\\n\\nGeorge Tucker\\n617-965-3408\\n\\nME:\\n-- \\nsugarman@cs.umb.edu | 6172876077 univ | 6177313637 home | Standard Disclaimer\\nBoston Massachusetts USA\\n',\n", - " 'From: schultz@schultz.kgn.ibm.com (Karl Schultz)\\nSubject: Re: VESA standard VGA/SVGA programming???\\nReply-To: schultz@vnet.ibm.com\\nOrganization: IBM AWS Graphics Systems\\nKeywords: vga\\nLines: 45\\n\\n|> 1. How VESA standard works? Any documentation for VESA standard?\\n\\n\\tThe VESA standard can be requested from VESA:\\n\\tVESA\\n\\t2150 North First Street, Suite 440\\n\\tSan Jose, CA 95131-2029\\n\\n\\tAsk for the VESA VBE and Super VGA Programming starndards. VESA\\n\\talso defines local bus and other standards.\\n\\n\\tThe VESA standard only addresses ways in which an application\\n\\tcan find out info and capabilities of a specific super VGA\\n\\timplementation and to control the video mode selection\\n\\tand video memory access.\\n\\n\\tYou still have to set your own pixels.\\n\\n|> 2. At a higher resolution than 320x200x256 or 640x480x16 VGA mode,\\n|> where the video memory A0000-AFFFF is no longer sufficient to hold\\n|> all info, what is the trick to do fast image manipulation? I\\n|> heard about memory mapping or video memory bank switching but know\\n|> nothing on how it is implemented. Any advice, anyone? \\n\\n\\tVESA defines a \"window\" that is used to access video memory.\\n\\tThis window is anchored at the spot where you want to write,\\n\\tand then you can write as far as the window takes you (usually\\n\\t64K). Windows have granularities, so you can\\'t just anchor \\n\\tthem anywhere. Also, some implementations allow two windows.\\n\\n|> 3. My interest is in 640x480x256 mode. Should this mode be called\\n|> SVGA mode? What is the technique for fast image scrolling for the\\n|> above mode? How to deal with different SVGA cards?\\n\\n\\tThis is VESA mode 101h. There is a Set Display Start function\\n\\tthat might be useful for scrolling.\\n\\n|> Your guidance to books or any other sources to the above questions\\n|> would be greatly appreciated. Please send me mail.\\n\\n\\tYour best bet is to write VESA for the info. There have also\\n\\tbeen announcements on this group of VESA software.\\n\\n-- \\nKarl Schultz schultz@vnet.ibm.com\\nThese statements or opinions are not necessarily those of IBM\\n',\n", - " \"From: csundh30@ursa.calvin.edu (Charles Sundheim)\\nSubject: Looking for MOVIES w/ BIKES\\nSummary: Bike movies\\nKeywords: movies\\nNntp-Posting-Host: ursa\\nOrganization: Calvin College\\nLines: 21\\n\\nFolks,\\n\\nI am assembling info for a Film Criticism class final project.\\n\\nEssentially I need any/all movies that use motos in any substantial\\ncapacity (IE; Fallen Angles, T2, H-D & the Marlboro Man,\\nRaising Arizona, etc). \\nAny help you fellow r.m'ers could give me would be much `preciated.\\n(BTW, a summary of bike(s) or plot is helpful but not necessary)\\n\\nThanx\\n\\n-Erc.\\n\\n\\n_______________________________________________________________________________\\nC Eric Sundheim csundh30@ursa.Calvin.edu\\nGrandRapids, MI, USA\\n`90 Hondo VFR750f\\nDoD# 1138\\n-------------------------------------------------------------------------------\\n\",\n", - " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: ISLAM BORDERS vs Israeli borders\\nOrganization: University of Illinois at Urbana\\nLines: 15\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>I too strongly object to those that justify Israeli \"rule\" \\n>of those who DO NOT WANT THAT. The \"occupied territories\" are not\\n>Israel\\'s to control, to keep, or to dominate.\\n\\nThey certainly are until the Arabs make peace. Only the most leftist/Arabist\\nlunatics call upon Israel to withdraw now. Most moderates realize that an \\nIsraeli withdrawl will be based on the Camp David/242/338/Madrid formulas\\nwhich make full peace a prerequisite to territorial concessions.\\n\\n>Tim\\n\\nEd\\n\\n',\n", - " \"From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 153\\n\\nIn article <1993Apr20.143453.3127@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>Instabul was called Konstantinoupolis from 320 AD until about the 1920s.\\n>That's about 1600 years. There many people alive today who were born in \\n>a city called Konstantinoupolis. \\n\\nI know it doesn't make sense, but since when is 'Napoleon' about\\nsense, anyway? Further striking bigoted and racist attitude of \\ncertain Greeks still exists in our day. Most Greeks insist even \\ntoday, that the 537 year-old capital of the Ottoman Empire should \\nbe called not by its rightful name of Istanbul, but by its half \\na millennium-old moniker 'Cons*(whatever).'\\n\\nEveryone knows that New York City was once called 'New Amsterdam'\\nbut Dutch people do not persist on calling it that today. The name \\nof Stalingrad too is long gone, replaced by Volgagrad. China's\\nPeking traded its name for Beiging long ago. Ciudad Trujillo\\nof the Dominican Republic is now Santa Domingo. Zimbabve's\\nold colonial capital Salisburry became Harrare. These changes\\nhave all been accepted officially by everyone in the world.\\n\\nBut, Greeks are still determined on calling the Turkish Istanbul \\nby the name of 'Cons*.'\\n\\nHow can one explain this total intransigence? What makes Greeks\\nso different from other mortals? 18-year-old questionable\\ndemocracy? Why don't they seem to reconcile with the fact,\\nfor instance, that Istanbul changed hands 537 years ago in\\n1453 AD, and that this predates the discovery of the New \\nWorld, by 39 years. The declaration of U.S. independence\\nin 1776 will come 284 years later.\\n\\nShouldn't then, half a millennium be considered enough time for \\n'Cons*' to be called a Turkish city? Where is the logic in the \\nGreek reasoning, if there is any? How long can one sit on the \\nlaurels of an ancient civilization? Ancient Greece does not exist, \\nany more than any other 16 civilizations that existed on the soil \\nof Anatolia.\\n\\nThese undereducated 'wieneramus' live with an illusion. It \\nis the same mentality which allows them to rationalize\\nthat Cyprus is a Greek Island. No history book shows\\nthat it ever was. It belonged to the Ottoman Turks 'lock,\\nstock and barrel' for a period of well over 300 years.\\n\\nIn fact, prior to the Turks' acquisition of it, following\\nbloody naval battles with the Venetians in 1570 AD, the\\nisland of Cyprus belonged, invariably, to several nations:\\n\\nThe Assyrians, the Sumerians, the Phoenicians, the Egyptians,\\nthe Ottoman Turks, of course in that order, owned it as \\ntheir territory. But, it has never been the possession\\nof the government of Greece - not even for one day -\\nin the history of the world. Moreover, Cyprus is\\nlocated 1500 miles from the Greek mainland, but only \\n40 miles from Turkiye's southern coastline.\\n\\nSaddam Hussein claims that Kuwait was once Iraqi\\nterritory and the Greek Cypriot government and \\nthe terrorist Greek governments think that Cyprus\\nalso was once part of the Greek hegemony.\\n\\nThose 'Arromdians' involved in this grandiose hallucination\\nshould wake up from their sweet daydreams and confront \\nreality. Again, wishful thinking is unproductive, only \\nfacts count.\\n\\nAs for Selanik,\\n\\n <>\\n\\n <>\\n\\n[47] Robert Mantran, 'La structure sociale de la communaute juive de\\n Salonqiue a la fin du dix-neuvieme siecle', RH no.534 (1980), 391-92;\\n Nehama VII, 762; Joseph Nehama (Salonica) to AIU (Paris) no.2868/2,\\n 12 May 1903 (AIU Archives I-C-43); and no.2775, 10 January 1900 (AIU\\n Archives I-C-41), describing daily battles between Jewish and Greek\\n children in the streets of Salonica. Benghiat, Director of Ecole Moise\\n Allatini, Salonica, to AIU (Paris), no.7784, 1 December 1909 (AIU\\n Archives I-C-48), describing Greek attacks on Jews, boycotts of Jewish\\n shops and manufacturers, and Greek press campaigns leading to blood libel\\n attacks. Cohen, Ecole Secondaire Moise Allatini, Salonica, to AIU (Paris),\\n no.7745/4, 4 December 1912 (AIU Archives I-C-49) describes a week of terror\\n that followed the Greek army occupation of Salonica in 1912, with the\\n soldiers pillaging the Jewish quarters and destroying Jewish synagogues,\\n accompanied by what he described as an 'explosion of hatred' by local\\n Greek population against local Jews and Muslims. Mizrahi, President of the\\n AIU at Salonica, reported to the AIU (Paris), no.2704/3, 25 July 1913\\n (AIU Archives I-C-51) that 'It was not only the irregulars (Comitadjis)\\n that massacred, pillaged and burned. The Army soldiers, the Chief of\\n Police, and the high civil officials also took an active part in the\\n horrors...', Moise Tovi (Salonica) to AIU (Paris) no.3027 (20 August 1913)\\n (AIU Archives I-C-51) describes the Greek pillage of the Jewish quarter\\n during the night of 18-19 August 1913.\\n\\n(AIU = Alliance Israelite Universelle, Paris.)\\n\\nSerdar Argic\\n\\n 'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.'\\n (Ohanus Appressian - 1919)\\n 'In Soviet Armenia today there no longer exists \\n a single Turkish soul.' (Sahak Melkonian - 1920)\\n\\n\",\n", - " 'From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: r.m split (was: Re: insect impacts)\\nOrganization: the HP Corporate notes server\\nLines: 30\\n\\n/ hpcc01:rec.motorcycles / cookson@mbunix.mitre.org (Cookson) / 2:02 pm Apr 2, 1993 /\\n\\nAll right people, this inane bug wibbling is just getting to much. I\\npropose we split off a new group.\\nrec.motorcycles.nutrition \\nto deal with the what to do with squashed bugs thread.\\n\\n-- \\n| Dean Cookson / dcookson@mitre.org / 617 271-2714 | DoD #207 AMA #573534 |\\n| The MITRE Corp. Burlington Rd., Bedford, Ma. 01730 | KotNML / KotB |\\n| \"If I was worried about who saw me, I\\'d never get | \\'92 VFR750F |\\n| nekkid at all.\" -Ed Green, DoD #0111 | \\'88 Bianchi Limited |\\n----------\\nWhat?!?!? Haven\\'t you heard about cross-posting??!?!? Leave it intact and\\nsimply ignore the basenotes and/or responses which have zero interest for\\na being of your stature and discriminating taste. ;-)\\n\\nYesterday, while on Lonoak Rd, a wasp hit my faceshield with just\\nenough force to glue it between my eyes, but not enough to kill it as\\nthe legs were frantically wiggling away and I found that rather, shall\\nwe say, distracting. I flicked it off and wiped off the residue at the\\nnext gas stop in Greenfield. :-) BTW, Lonoak Rd leads from #25 into\\nKing City although we took Metz from KC into Greenfield. \\n \\n--------------------------------------------------------------------------\\nGraeme Harrison, Hewlett-Packard Co., Communications Components Division,\\n350 W Trimble Rd, San Jose, CA 95131 (gharriso@hpcc01.corp.hp.com) DoD#649 \\n--------------------------------------------------------------------------\\n\\n\\n',\n", - " \"From: rob@rjck.UUCP (Robert J.C. Kyanko)\\nSubject: Re: VGA 640x400 graphics mode\\nDistribution: world\\nOrganization: Neptune Software Inc\\nLines: 15\\n\\ngchen@essex.ecn.uoknor.edu writes in article :\\n> \\n> Greetings!\\n> \\n> Does anybody know if it is possible to set VGA graphics mode to 640x400\\n> instead of 640x480? Any info is appreciated!\\n\\nSome VESA bios's support this mode (0x100). And *any* VGA should be able to\\nsupport this (640x480 by 256 colors) since it only requires 256,000 bytes.\\nMy 8514/a VESA TSR supports this; it's the only VESA mode by card can support\\ndue to 8514/a restrictions. (A WD/Paradise)\\n\\n--\\nI am not responsible for anything I do or say -- I'm just an opinion.\\n Robert J.C. Kyanko (rob@rjck.UUCP)\\n\",\n", - " 'From: jack@shograf.com (Jack Ritter)\\nSubject: Help!!\\nArticle-I.D.: shograf.C531E6.7uo\\nDistribution: usa\\nOrganization: SHOgraphics, Sunnyvale\\nLines: 9\\n\\nI need a complete list of all the polygons\\nthat there are, in order.\\n\\nI\\'ll summarize to the net.\\n\\n\\n--------------------------------------------------------\\n \"If only I had been compiled with the \\'-g\\' option.\"\\n---------------------------------------------------------\\n',\n", - " 'From: doc@webrider.central.sun.com (Steve Bunis - Chicago)\\nSubject: Route Suggestions?\\nOrganization: Sun Microsystems, Inc.\\nLines: 33\\nDistribution: usa\\nReply-To: doc@webrider.central.sun.com\\nNNTP-Posting-Host: webrider.central.sun.com\\n\\nAs I won\\'t be able to make the Joust this summer (Job related time \\nconflict :\\'^{ ), I plan instead on going to the Rider Rally in \\nKnoxville.\\n\\nI\\'ll be leaving from Chicago. and generally plan on going down along\\nthe Indiana/Illinois border into Kentucky and then Tennessee. I would \\nbe very interested in hearing suggestions of roads/routes/areas that \\nyou would consider \"must ride\" while on the way to Knoxville.\\n\\nI can leave as early as 5/22 and need to arrive in Knoxville by 6PM\\non 5/25. That leaves me a pretty good stretch of time to explore on \\nthe way.\\n\\nBy the way if anyone else is going, and would like to partner for the \\nride down, let me know. I\\'ll be heading east afterward to visit family, \\nbut sure don\\'t mind company on the ride down to the Rally. Depending on \\nweather et al. my plan is motelling/tenting thru the trip.\\n\\nFrom the Rally I\\'ll be heading up the Blue Ridge Parkway, then jogging\\ninto West Va (I-77) to run up 219 -> Marlington, 28 -> Petersburg, \\n55E -> I-81/I-66E. After this point the route is presently undetermined\\ninto Pennsylvania, New York?, and back to Chicago (by 6/6). Suggestions \\nfor these areas would be of great interest also.\\n\\nMany thanks for your ideas,\\n\\nEnjoy,\\n\\n---\\nSteve Bunis, Sun Microsystems ***DoD #0795***\\t93-ST1100\\n Itasca, IL\\t ***AMA #682049***\\t78-KZ650\\n\\t(ARE YOU SURE THIS IS APRIL?????? B^| )\\n\\n',\n", - " 'From: KINDER@nervm.nerdc.ufl.edu (JIM COBB)\\nSubject: ET 4000 /W32 VL-Bus Cards\\nOrganization: University of Florida, NERDC\\nLines: 3\\nNNTP-Posting-Host: nervm.nerdc.ufl.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\nDoes anyone know of a VL-Bus video card based on the ET4000 /W32 card?\\nIf so: how much will it cost, where can I get one, does it come with more\\nthan 1MB of ram, and what is the windows performance like?\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Fortune-guzzler barred from bars!\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 44\\n\\nCharles Parr, on the Tue, 20 Apr 93 21:25:10 GMT wibbled:\\n: In article <1993Apr19.141959.4057@bnr.ca> npet@bnr.ca (Nick Pettefar) writes:\\n\\n: >If Satan rode a bike (CB1000?) would you stop to help him?\\n\\n: Of course! We riders have to stick together, you know...Besides,\\n: he\\'d stop for me.\\n\\n: Satan, by the way, rides a Vincent. So does God.\\n\\n: Jesus rides an RZ350, the Angels get Ariels, and the demons\\n: all ride Matchless 500s.\\n\\n: I know, because they talk to me through the fillings in my teeth.\\n\\n: Regards, Charles\\n: DoD0.001\\n: RZ350\\n: -- \\n: Within the span of the last few weeks I have heard elements of\\n: separate threads which, in that they have been conjoined in time,\\n: struck together to form a new chord within my hollow and echoing\\n: gourd. --Unknown net.person\\n\\n\\nI think that the Vincent is the wrong sort of bike for Satan to ride.\\nHonda have just brought out the CB1000 (look in BIKE Magazine) which\\nlooks so evil that Satan would not hesitate to ride it. 17-hole DMs,\\nLevi 501s and a black bomber jacket. I\\'m not sure about the helmet,\\noh, I know, one of those Darth Vader ones. There you go. Satan.\\nAnybody seen him lately? Just a cruisin\\'?\\n\\nGod would ride a Vincent White Lightning with rightous injection.\\nHe\\'d wear a one-piece leather suit with matching boots, helmet and gloves.\\n--\\n\\nNick (the Righteous Biker) DoD 1069 Concise Oxford New (non-leaky) gearbox\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n (-\\n',\n", - " \"From: kv07@IASTATE.EDU (Warren Vonroeschlaub)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nReply-To: kv07@IASTATE.EDU (Warren Vonroeschlaub)\\nOrganization: Ministry of Silly Walks\\nLines: 28\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nwrites:\\n>In <1qlapk$d7v@morrow.stanford.edu> salem@pangea.Stanford.EDU (Bruce Salem) \\n>writes:\\n>>In article cobb@alexia.lis.uiuc.edu (Mike \\n>Cobb) writes:\\n>>>Theory of Creationism: MY theistic view of the theory of creationism, (there\\n>>>are many others) is stated in Genesis 1. In the beginning God created\\n>>>the heavens and the earth.\\n>\\n>> Wonderful, now try alittle imaginative thinking!\\n>\\n>Huh? Imaginative thinking? What did that have to do with what I said? Would it\\n>have been better if I said the world has existed forever and never was created\\n>and has an endless supply of energy and there was spontaneous generation of \\n>life from non-life? WOuld that make me all-wise, and knowing, and\\nimaginative?\\n\\n No, but at least it would be a theory.\\n\\n | __L__\\n-|- ___ Warren Kurt vonRoeschlaub\\n | | o | kv07@iastate.edu\\n |/ `---' Iowa State University\\n/| ___ Math Department\\n | |___| 400 Carver Hall\\n | |___| Ames, IA 50011\\n J _____\\n\",\n", - " 'From: jim@specialix.com (Jim Maurer)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: Specialix Inc.\\nLines: 25\\n\\narf@genesis.MCS.COM (Jack Schmidling) writes:\\n\\n>In article jake@bony1.bony.com (Jake Livni) writes:\\n>>through private contributions on Federal land\". Your hate-mongering\\n>>article is devoid of current and historical fact, intellectual content\\n>>and social value. Down the toilet it goes.....\\n>>\\n\\n>And we all know what an unbiased source the NYT is when it comes to things\\n>concerning Israel.\\n\\n>Neither the Times nor the trained seals who have responded thus far seem to\\n>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>otherwords, American taxpayers put up at least 30% of the money. And\\n>finalyy, how does \"Federal land\" mitigate the offensiveness of this alien\\n>monument dedicated to perpetuating pitty and the continual flow of tax money\\n>to a foreign entity?\\n\\n>That \"Federal land\" and tax money could have been used to commerate\\n>Americans or better yet, to house homeless Americans.\\n\\nThe donations are tax deductible like any donations to a non-profit\\norganization. I\\'ve donated money to a group restoring streetcars\\nand it was tax deductible. Why don\\'t you contribute to a group\\nhelping the homeless if you so concerned?\\n',\n", - " \"Organization: Penn State University\\nFrom: Andrew Newell \\nSubject: Re: Christian Morality is\\n \\nLines: 32\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nsays:\\n>\\n>In <11836@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>\\n>>In article cobb@alexia.lis.uiuc.edu (Mike\\n>Cobb) writes:\\n>\\n>> If I'm wrong, god is free at any time to correct my mistake. That\\n>> he continues not to do so, while supposedly proclaiming his\\n>> undying love for my eternal soul, speaks volumes.\\n>\\n>What are the volumes that it speaks besides the fact that he leaves your\\n>choices up to you?\\n\\nLeaves the choices up to us but gives us no better reason\\nto believe than an odd story of his alleged son getting\\nkilled for us? And little new in the past few thousand\\nyears, leaving us with only the texts passed down through\\ncenturies of meddling with the meaning and even wording.\\n...most of this passing down and interpretation of course\\ncoming from those who have a vested interest in not allowing\\nthe possibility that it might not be the ultimate truth.\\nWhat about maybe talking to us directly, eh?\\nHe's a big god, right? He ought to be able to make time\\nfor the creations he loves so much...at least enough to\\ngive us each a few words of direct conversation.\\nWhat, he's too busy to get around to all of us?\\nOr maybe a few unquestionably-miraculous works here and\\nthere?\\n...speaks volumes upon volumes to me that I've never\\ngotten a chance to meet the guy and chat with him.\\n\",\n", - " 'From: bowmanj@csn.org (Jerry Bowman)\\nSubject: Re: Women\\'s Jackets? (was Ed must be a Daemon Child!!)\\nNntp-Posting-Host: fred.colorado.edu\\nOrganization: University of Colorado Boulder, OCS\\nDistribution: usa\\nLines: 48\\n\\nIn article bethd@netcom.com (Beth Dixon) writes:\\n>In article <1993Apr14.141637.20071@mnemosyne.cs.du.edu> jhensley@nyx.cs.du.edu (John Hensley) writes:\\n>>Beth Dixon (bethd@netcom.com) wrote:\\n>>: new Duc 750SS doesn\\'t, so I\\'ll have to go back to carrying my lipstick\\n>>: in my jacket pocket. Life is _so_ hard. :-)\\n>>\\n>>My wife is looking for a jacket, and most of the men\\'s styles she\\'s tried\\n>>don\\'t fit too well. If they fit the shoulders and arms, they\\'re too\\n>>tight across the chest, or something like that. Anyone have any \\n>>suggestions? I\\'m assuming that the V-Pilot, in addition to its handy\\n>>storage facilities, is a pretty decent fit. Is there any company that\\n>>makes a reasonable line of women\\'s motorcycling stuff? More importantly,\\n>>does anyone in Boulder or Denver know of a shop that bothers carrying any?\\n>\\n>I was very lucky I found a jacket I liked that actually _fits_.\\n>HG makes the v-pilot jackets, mine is a very similar style made\\n>by Just Leather in San Jose. I bought one of the last two they\\n>ever made.\\n>\\n>Finding decent womens motorcycling gear is not easy. There is a lot\\n>of stuff out there that\\'s fringed everywhere, made of fashion leather,\\n>made to fit men, etc. I don\\'t know of a shop in your area. There\\n>are some women rider friendly places in the San Francisco/San Jose\\n>area, but I don\\'t recommend buying clothing mail order. Too hard\\n>to tell if it\\'ll fit. Bates custom makes leathers. You might want\\n>to call them (they\\'re in L.A.) and get a cost estimate for the type\\n>of jacket your wife is interested in. Large manufacturers like\\n>BMW and H.G. sell women\\'s lines of clothing of decent quality, but\\n>fit is iffy.\\n>\\n>A while ago, Noemi and Lisa Sieverts were talking about starting\\n>a business doing just this sort of thing. Don\\'t know what they\\n>finally decided.\\n>\\n>Beth\\n Seems to me that Johns H.D. in Ft Collins used to carry some\\n honest to god womens garb.>\\n>=================================================================\\n>Beth [The One True Beth] Dixon bethd@netcom.com\\n>1981 Yamaha SR250 \"Excitable Girl\" DoD #0384\\n>1979 Yamaha SR500 \"Spike the Garage Rat\" FSSNOC #1843\\n>1992 Ducati 750SS AMA #631903\\n>1963 Ducati 250 Monza -- restoration project 1KQSPT = 1.8\\n>\"I can keep a handle on anything just this side of deranged.\"\\n> -- ZZ Top\\n>=================================================================\\n\\n\\n',\n", - " 'From: howard@sharps.astro.wisc.edu (Greg Howard)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: University of Wisconsin - Astronomy Department\\nLines: 10\\nNNTP-Posting-Host: uwast.astro.wisc.edu\\n\\n\\nActually, the \"ether\" stuff sounded a fair bit like a bizzare,\\nqualitative corruption of general relativity. nothing to do with\\nthe old-fashioned, ether, though. maybe somebody could loan him\\na GR text at a low level.\\n\\ndidn\\'t get much further than that, tho.... whew.\\n\\n\\ngreg\\n',\n", - " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: bikes with big dogs\\nOrganization: Ontario Hydro - Research Division\\nLines: 17\\n\\nIn article <1993Apr14.212827.2277@galaxy.gov.bc.ca> bclarke@galaxy.gov.bc.ca writes:\\n>In article <1993Apr14.234835.1@cua.edu>, 84wendel@cua.edu writes:\\n>> Has anyone ever heard of a rider giving a big dog such as a great dane a ride \\n>> on the back of his bike. My dog would love it if I could ever make it work.\\n>\\n>!!! Post of the month !!!\\n>Actually, I've seen riders carting around a pet dog in a sidecar....\\n>A great Dane on the back though; sounds a bit hairy to me.\\n\\nYeah, I'm sure that our lab would love a ride (he's the type that sticks his\\nhead out car windows) but I didn't think that he would enjoy being bungee-\\ncorded to the gas tank, and 65 lbs or squirming beast is a bit much for a\\nbackpack (ok who's done it....).\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", - " \"From: hap@scubed.com (Hap Freiberg)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nNntp-Posting-Host: s3saturn\\nOrganization: S-CUBED, A Division of Maxwell Labs; San Diego CA\\nLines: 26\\n\\nIn article smith@minerva.harvard.edu (Steven Smith) writes:\\n>dgannon@techbook.techbook.com (Dan Gannon) writes:\\n>> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>>\\n>> by Theodore J. O'Keefe\\n>> [Holocaust revisionism]\\n>> \\n>> Theodore J. O'Keefe is an editor with the Institute for Historical\\n>> Review. Educated at Harvard University . . .\\n>\\n>According to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\n>graduate. You may decide for yourselves if he was indeed educated\\n>anywhere.\\n>\\n>Steven Smith\\n\\nIs any education a prerequisite for employment at IHR ?\\nIs it true that IHR really stands for Institution of Hysterical Reviews?\\nCurious minds would like to know...\\n\\nHap\\n\\n--\\n****************************************************************************************************\\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Omnia Extares >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\\n****************************************************************************************************\\n\",\n", - " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Where are they now?\\nIn-Reply-To: acooper@mac.cc.macalstr.edu\\'s message of 15 Apr 93 11: 17:13 -0600\\nOrganization: Compaq Computer Corp\\n\\t<1993Apr15.111713.4726@mac.cc.macalstr.edu>\\nLines: 18\\n\\na> In article <1qi156INNf9n@senator-bedfellow.MIT.EDU>, tcbruno@athena.mit.edu (Tom Bruno) writes:\\n> \\n..stuff deleted...\\n> \\n> Which brings me to the point of my posting. How many people out there have \\n> been around alt.atheism since 1990? I\\'ve done my damnedest to stay on top of\\n...more stuff deleted...\\n\\nHmm, USENET got it\\'s collective hooks into me around 1987 or so right after I\\nswitched to engineering. I\\'d say I started reading alt.atheism around 1988-89.\\nI\\'ve probably not posted more than 50 messages in the time since then though.\\nI\\'ll never understand how people can find the time to write so much. I\\ncan barely keep up as it is.\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", - " 'From: jonas-y@isy.liu.se (Jonas Yngvesson)\\nSubject: Re: Point within a polygon\\nKeywords: point, polygon\\nOrganization: Dept of EE, University of Linkoping\\nLines: 129\\n\\nscrowe@hemel.bull.co.uk (Simon Crowe) writes:\\n\\n>I am looking for an algorithm to determine if a given point is bound by a \\n>polygon. Does anyone have any such code or a reference to book containing\\n>information on the subject ?\\n\\nWell, it\\'s been a while since this was discussed so i take the liberty of\\nreprinting (without permission, so sue me) Eric Haines reprint of the very\\ninteresting discussion of this topic...\\n\\n /Jonas\\n\\n O / \\\\ O\\n------------------------- X snip snip X ------------------------------\\n O \\\\ / O\\n\\n\"Give a man a fish, and he\\'ll eat one day.\\nGive a man a fishing rod, and he\\'ll laze around fishing and never do anything.\"\\n\\nWith that in mind, I reprint (without permission, so sue me) relevant\\ninformation posted some years ago on this very problem. Note the early use of\\nPostScript technology, predating many of this year\\'s papers listed in the\\nApril 1st SIGGRAPH Program Announcement posted here a few days ago.\\n\\n-- Eric\\n\\n\\nIntersection Between a Line and a Polygon (UNDECIDABLE??),\\n\\tby Dave Baraff, Tom Duff\\n\\n\\tFrom: deb@charisma.graphics.cornell.edu\\n\\tNewsgroups: comp.graphics\\n\\tKeywords: P, NP, Jordan curve separation, Ursyhon Metrization Theorem\\n\\tOrganization: Program of Computer Graphics\\n\\nIn article [...] ncsmith@ndsuvax.UUCP (Timothy Lyle Smith) writes:\\n>\\n> I need to find a formula/algorithm to determine if a line intersects\\n> a polygon. I would prefer a method that would do this in as little\\n> time as possible. I need this for use in a forward raytracing\\n> program.\\n\\nI think that this is a very difficult problem. To start with, lines and\\npolygons are semi-algebraic sets which both contain uncountable number of\\npoints. Here are a few off-the-cuff ideas.\\n\\nFirst, we need to check if the line and the polygon are separated. Now, the\\nJordan curve separation theorem says that the polygon divides the plane into\\nexactly two open (and thus non-compact) regions. Thus, the line lies\\ncompletely inside the polygon, the line lies completely outside the polygon,\\nor possibly (but this will rarely happen) the line intersects the polyon.\\n\\nNow, the phrasing of this question says \"if a line intersects a polygon\", so\\nthis is a decision problem. One possibility (the decision model approach) is\\nto reduce the question to some other (well known) problem Q, and then try to\\nsolve Q. An answer to Q gives an answer to the original decision problem.\\n\\nIn recent years, many geometric problems have been successfully modeled in a\\nnew language called PostScript. (See \"PostScript Language\", by Adobe Systems\\nIncorporated, ISBN # 0-201-10179-3, co. 1985).\\n\\nSo, given a line L and a polygon P, we can write a PostScript program that\\ndraws the line L and the polygon P, and then \"outputs\" the answer. By\\n\"output\", we mean the program executes a command called \"showpage\", which\\nactually prints a page of paper containing the line and the polygon. A quick\\nexamination of the paper provides an answer to the reduced problem Q, and thus\\nthe original problem.\\n\\nThere are two small problems with this approach. \\n\\n\\t(1) There is an infinite number of ways to encode L and P into the\\n\\treduced problem Q. So, we will be forced to invoke the Axiom of\\n\\tChoice (or equivalently, Zorn\\'s Lemma). But the use of the Axiom of\\n\\tChoice is not regarded in a very serious light these days.\\n\\n\\t(2) More importantly, the question arises as to whether or not the\\n\\tPostScript program Q will actually output a piece of paper; or in\\n\\tother words, will it halt?\\n\\n\\tNow, PostScript is expressive enough to encode everything that a\\n\\tTuring Machine might do; thus the halting problem (for PostScript) is\\n\\tundecidable. It is quite possible that the original problem will turn\\n\\tout to be undecidable.\\n\\n\\nI won\\'t even begin to go into other difficulties, such as aliasing, finite\\nprecision and running out of ink, paper or both.\\n\\nA couple of references might be:\\n\\n1. Principia Mathematica. Newton, I. Cambridge University Press, Cambridge,\\n England. (Sorry, I don\\'t have an ISBN# for this).\\n\\n2. An Introduction to Automata Theory, Languages, and Computation. Hopcroft, J\\n and Ulman, J.\\n\\n3. The C Programming Language. Kernighan, B and Ritchie, D.\\n\\n4. A Tale of Two Cities. Dickens, C.\\n\\n--------\\n\\nFrom: td@alice.UUCP (Tom Duff)\\nSummary: Overkill.\\nOrganization: AT&T Bell Laboratories, Murray Hill NJ\\n\\nThe situation is not nearly as bleak as Baraff suggests (he should know\\nbetter, he\\'s hung around The Labs for long enough). By the well known\\nDobbin-Dullman reduction (see J. Dullman & D. Dobbin, J. Comp. Obfusc.\\n37,ii: pp. 33-947, lemma 17(a)) line-polygon intersection can be reduced to\\nHamiltonian Circuit, without(!) the use of Grobner bases, so LPI (to coin an\\nacronym) is probably only NP-complete. Besides, Turing-completeness will no\\nlonger be a problem once our Cray-3 is delivered, since it will be able to\\ncomplete an infinite loop in 4 milliseconds (with scatter-gather.)\\n\\n--------\\n\\nFrom: deb@svax.cs.cornell.edu (David Baraff)\\n\\nWell, sure its no worse than NP-complete, but that\\'s ONLY if you restrict\\nyourself to the case where the line satisfies a Lipschitz condition on its\\nsecond derivative. (I think there\\'s an \\'89 SIGGRAPH paper from Caltech that\\ndeals with this).\\n\\n--\\n------------------------------------------------------------------------------\\n J o n a s Y n g v e s s o n email: jonas-y@isy.liu.se\\nDept. of Electrical Engineering\\t voice: +46-(0)13-282162 \\nUniversity of Linkoping, Sweden fax : +46-(0)13-139282\\n',\n", - " \"From: ednclark@kraken.itc.gu.edu.au (Jeffrey Clark)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nNntp-Posting-Host: kraken.itc.gu.edu.au\\nOrganization: ITC, Griffith University, Brisbane, Australia\\nLines: 70\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n\\nOr he was just convinced by religious fantasies of the time that he was the\\nMessiah, or he was just some rebel leader that an organisation of Jews built\\ninto Godhood for the purpose off throwing of the yoke of Roman oppression,\\nor.......\\n\\n>\\tSome reasons why he wouldn't be a liar are as follows. Who would \\n>die for a lie? \\n\\nAre the Moslem fanatics who strap bombs to their backs and driving into\\nJewish embassies dying for the truth (hint: they think they are)? Were the\\nNAZI soldiers in WWII dying for the truth? \\n\\nPeople die for lies all the time.\\n\\n\\n>Wouldn't people be able to tell if he was a liar? People \\n\\nWas Hitler a liar? How about Napoleon, Mussolini, Ronald Reagan? We spend\\nmillions of dollars a year trying to find techniques to detect lying? So the\\nanswer is no, they wouldn't be able to tell if he was a liar if he only lied\\nabout some things.\\n\\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n\\nWhy do you think he healed people, because the Bible says so? But if God\\ndoesn't exist (the other possibility) then the Bible is not divinely\\ninspired and one can't use it as a piece of evidence, as it was written by\\nunbiased observers.\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy. Very doubtful, in fact rediculous. For example \\n\\nWere Hitler or Mussolini lunatics? How about Genghis Khan, Jim Jones...\\nthere are thousands of examples through history of people being drawn to\\nlunatics.\\n\\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn't a liar or a lunatic, he must have been the \\n>real thing. \\n\\nSo we obviously cannot rule out liar or lunatic not to mention all the other\\npossibilities not given in this triad.\\n\\n>\\tSome other things to note. He fulfilled loads of prophecies in \\n>the psalms, Isaiah and elsewhere in 24 hrs alone. This in his betrayal \\n\\nPossibly self-fulfilling prophecy (ie he was aware what he should do in\\norder to fulfil these prophecies), possibly selective diting on behalf of\\nthose keepers of the holy bible for a thousand years or so before the\\ngeneral; public had access. possibly also that the text is written in such\\nriddles (like Nostradamus) that anything that happens can be twisted to fit\\nthe words of raving fictional 'prophecy'.\\n\\n>and Crucifixion. I don't have my Bible with me at this moment, next time I \\n>write I will use it.\\n [stuff about how hard it is to be a christian deleted]\\n\\nI severely recommend you reconsider the reasons you are a christian, they\\nare very unconvincing to an unbiased observer.\\n\\nJeff.\\n\\n\",\n", - " 'From: s127@ii.uib.no (Torgeir Veimo)\\nSubject: Re: sources for shading wanted\\nOrganization: Institutt for Informatikk UIB Norway\\nLines: 24\\n\\nIn article <1r3ih5INNldi@irau40.ira.uka.de>, S_BRAUN@IRAV19.ira.uka.de \\n(Thomas Braun) writes:\\n|> I\\'m looking for shading methods and algorithms.\\n|> Please let me know if you know where to get source codes for that.\\n\\n\\'Illumination and Color in Computer Generated Imagery\\' by Roy Hall contains c\\nsource for several famous illumination models, including Bouknight, Phong,\\nBlinn, Whitted, and Hall illumination models. If you want an introduction to\\nshading you might look through the book \\'Writing a Raytracer\\' edited by\\nGlassner. Also, the book \\'Procedural elements for Computer Graphics\\' by Rogers\\nis a good reference. Source for code in these book are available on the net i \\nbelieve, you might check out nic.funet.fi or some site closer to you carrying \\ngraphics related stuff. \\n\\nHope this is what you were asking for.\\n-- \\nTorgeir Veimo\\n\\nStudying at the University of Bergen\\n\\n\"...I\\'m gona wave my freak flag high!\" (Jimi Hendrix)\\n\\n\"...and it would be okay on any other day!\" (The Police)\\n\\n',\n", - " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: bike for sale in MA, USA\\nKeywords: wicked-sexist\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nLines: 18\\n\\nIn article <1993Apr19.194630.102@zorro.tyngsboro.ma.us> jd@zorro.tyngsboro.ma.us (Jeff deRienzo) writes:\\n>I\\'ve recently become father of twins! I don\\'t think I can afford\\n> to keep 2 bikes and 2 babies. Both babies are staying, so 1 of\\n> the Harleys is going.\\n>\\n>\\t1988 883 XLHD\\n>\\t~4000 mi. (hey, it was my wife\\'s bike :-)\\n\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n\\tWell that was pretty uncalled for. (No smile)\\n\\tIs our Harley manhood feeling challenged?\\n\\n> Jeff deRienzo\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", - " \"From: ahatcher@athena.cs.uga.edu (Allan Hatcher)\\nSubject: Re: Traffic morons\\nOrganization: University of Georgia, Athens\\nLines: 37\\n\\nIn article Stafford@Vax2.Winona.MSUS.Edu (John Stafford) writes:\\n>In article <10326.97.uupcb@compdyn.questor.org>,\\n>ryan_cousineau@compdyn.questor.org (Ryan Cousineau) wrote:\\n>> \\n>> NMM>From: nielsmm@imv.aau.dk (Niels Mikkel Michelsen)\\n>> NMM>Subject: How to act in front of traffic jerks\\n>> \\n>> NMM>The other day, it was raining cats and dogs, therefor I was going only to\\n>> NMM>the speed limit, on nothing more, on my bike. This guy in his BMW was\\n>> NMM>driving 1-2 meters behind me for 7-800 meters and at the next red light I\\n>> NMM>calmly put the bike on its leg, walked back to this car, he rolled down the\\n>> NMM>window, and I told him he was a total idiot (and the reason why).\\n>> \\n>> NMM>Did I do the right thing?\\n>\\n>\\timho, you did the wrong thing. You could have been shot\\n> or he could have run over your bike or just beat the shit\\n> out of you. Consider that the person is foolish enough\\n> to drive like a fool and may very well _act_ like one, too.\\n>\\n> Just get the heck away from the idiot.\\n>\\n> IF the driver does something clearly illegal, you _can_\\n> file a citizens arrest and drag that person into court.\\n> It's a hassle for you but a major hassle for the perp.\\n>\\n>====================================================\\n>John Stafford Minnesota State University @ Winona\\nYou can't make a Citizens arrest on anything but a felony.\\n.\\n \\n\\n\\n>\\n> All standard disclaimers apply.\\n\\n\\n\",\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: The Area Rule\\nOrganization: Express Access Online Communications USA\\nLines: 20\\nDistribution: sci\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nI am sure Mary or Henry can describe this more aptly then me.\\nBut here is how i understand it.\\n\\nAt Speed, Near supersonic. The wind behaves like a fluid pipe.\\nIt becomes incompressible. So wind has to bend away from the\\nwing edges. AS the wing thickens, the more the pipes bend.\\n\\nIf they have no place to go, they begin to stall, and force\\ncompression, stealing power from the vehicle (High Drag).\\n\\nIf you squeeze the fuselage, so that these pipes have aplace to bend\\ninto, then drag is reduced. \\n\\nEssentially, teh cross sectional area of the aircraft shoulf\\nremain constant for all areas of the fuselage. That is where the wings are\\nsubtract, teh cross sectional area of the wings from the fuselage.\\n\\npat\\n',\n", - " 'From: william.vaughan@uuserv.cc.utah.edu (WILLIAM DANIEL VAUGHAN)\\nSubject: Re: A silly question on x-tianity\\nLines: 9\\nOrganization: University of Utah Computer Center\\n\\nIn article pww@spacsun.rice.edu (Peter Walker) writes:\\n>From: pww@spacsun.rice.edu (Peter Walker)\\n>Subject: Re: A silly question on x-tianity\\n>Date: Mon, 12 Apr 1993 07:06:33 GMT\\n>In article <1qaqi1INNgje@gap.caltech.edu>, werdna@cco.caltech.edu (Andrew\\n>Tong) wrote:\\n>> \\n\\nso what\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Big amateur rockets\\nOrganization: U of Toronto Zoology\\nLines: 30\\n\\nIn article pbd@runyon.cim.cdc.com (Paul Dokas) writes:\\n>Anyhow, the ad stated that they\\'d sell rockets that were up to 20\\' in length\\n>and engines of sizes \"F\" to \"M\". They also said that some rockets will\\n>reach 50,000 feet.\\n>\\n>Now, aside from the obvious dangers to any amateur rocketeer using one\\n>of these beasts, isn\\'t this illegal? I can\\'t imagine the FAA allowing\\n>people to shoot rockets up through the flight levels of passenger planes.\\n\\nThe situation in this regard has changed considerably in recent years.\\nSee the discussion of \"high-power rocketry\" in the rec.models.rockets\\nfrequently-asked-questions list.\\n\\nThis is not hardware you can walk in off the street and buy; you need\\nproper certification. That can be had, mostly through Tripoli (the high-\\npower analog of the NAR), although the NAR is cautiously moving to extend\\nthe upper boundaries of what it considers proper too.\\n\\nYou need special FAA authorization, but provided you aren\\'t doing it under\\none of the LAX runway approaches or something stupid like that, it\\'s not\\nespecially hard to arrange.\\n\\nAs with model rocketry, this sort of hardware is reasonably safe if handled\\nproperly. Proper handling takes more care, and you need a lot more empty\\nair to fly in, but it\\'s basically just model rocketry scaled up. As with\\nmodel rocketry, the high-power people use factory-built engines, which\\neliminates the major safety hazard of do-it-yourself rocketry.\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: University of Illinois at Urbana\\nLines: 42\\n\\nmancus@sweetpea.jsc.nasa.gov (Keith Mancus) writes:\\n\\n>cook@varmit.mdc.com (Layne Cook) writes:\\n>> All of this talk about a COMMERCIAL space race (i.e. $1G to the first 1-year \\n>> moon base) is intriguing. Similar prizes have influenced aerospace \\n>>development before. The $25k Orteig prize helped Lindbergh sell his Spirit of \\n>> Saint Louis venture to his financial backers.\\n>> But I strongly suspect that his Saint Louis backers had the foresight to \\n>> realize that much more was at stake than $25,000.\\n>> Could it work with the moon? Who are the far-sighted financial backers of \\n>> today?\\n\\n> The commercial uses of a transportation system between already-settled-\\n>and-civilized areas are obvious. Spaceflight is NOT in this position.\\n>The correct analogy is not with aviation of the \\'30\\'s, but the long\\n>transocean voyages of the Age of Discovery.\\n\\nLindbergh\\'s flight took place in \\'27, not the thirties.\\n\\n>It didn\\'t require gov\\'t to\\n>fund these as long as something was known about the potential for profit\\n>at the destination. In practice, some were gov\\'t funded, some were private.\\n\\nCould you give examples of privately funded ones?\\n\\n>But there was no way that any wise investor would spend a large amount\\n>of money on a very risky investment with no idea of the possible payoff.\\n\\nYour logic certainly applies to standard investment strategies. However, the\\nconcept of a prize for a difficult goal is done for different reasons, I \\nsuspect. I\\'m not aware that Mr Orteig received any significant economic \\nbenefit from Lindbergh\\'s flight. Modern analogies, such as the prize for a\\nhuman powered helicopter face similar arguments. There is little economic\\nbenefit in such a thing. The advantage comes in the new approaches developed\\nand the fact that a prize will frequently generate far more work than the \\nequivalent amount of direct investment would. A person who puts up $ X billion\\nfor a moon base is much more likely to do it because they want to see it done\\nthan because they expect to make money off the deal.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 133\\n\\nIn article bh437292@lance.colostate.edu writes:\\n>\\n>It is NOT a \"terrorist camp\" as you and the Israelis like \\n>to view the villages they are small communities with kids playing soccer\\n>in the streets, women preparing lunch, men playing cards, etc.....\\n>SOME young men, usually aged between 17 to 30 years are members of\\n>the Lebanese resistance. Even the inhabitants of the village do not \\n>know who these are, they are secretive about it, but most people often\\n>suspect who they are and what they are up to. These young men are\\n>supported financially by Iran most of the time. They sneak arms and\\n>ammunitions into the occupied zone where they set up booby traps\\n>for Israeli patrols. Every time an Israeli soldier is killed or injured\\n>by these traps, Israel retalliates by indiscriminately bombing villages\\n>of their own choosing often killing only innocent civilians. \\n\\nThis a \"tried and true\" method utilized by guerilla and terrorists groups:\\nto conduct operations in the midst of the local populace, thus forcing the\\nopposing \"state\" to possible harm innocent civilians in their search or,\\nin order to avoid the deaths of civilians, abandon the search. Certainly the\\npeople who use the population for cover are *also* to blaim for dragging the\\ninnocent civilians into harm\\'s way.\\n\\nAre you suggesting that, when guerillas use the population for cover, Israel\\nshould totally back down? So...the easiest way to get away with attacking\\nanother is to use an innocent as a shield and hope that the other respects\\ninnocent lives?\\n\\n>If Israel insists that\\n>the so called \"Security Zone\" is necessary for the protection of \\n>Northern Israel, than it will have to pay the price of its occupation\\n>with the blood of its soldiers. \\n\\nYour damn right Israel insists on some sort of \"demilitarized\" or \"buffer\"\\nzone. Its had to put up with too many years of attacks from the territory\\nof Arab states and watched as the states did nothing. It is not exactly\\nsurprizing that Israel decided that the only way to stop such actions is to \\ndo it themselves.\\n\\n>If Israel is interested in peace, than it should withdraw from OUR land. \\n\\nWhat? So the whole bit about attacks on Israel from neighboring Arab states \\ncan start all over again? While I also hope for this to happen, it will\\nonly occur WHEN Arab states show that they are *prepared* to take on the \\nresponsibility and the duty to stop guerilla attacks on Israel from their \\nsoil. They have to Prove it (or provide some \"guaratees\"), there is no way\\nIsrael is going to accept their \"word\"- not with their past attitude of \\ntolerance towards \"anti-Israel guerillas in-residence\".\\n>\\n>I have written before on this very newsgroup, that the only\\n>real solution will come as a result of a comprehensive peace\\n>settlement whereby Israel withdraws to its own borders and\\n>peace keeping troops are stationed along the border to insure\\n>no one on either side of the border is shelled.\\n\\nGood lord, Brad. What in the world goves you the idea that UN troops stop\\nanything? They are ONLY stationed in a country because that country allows\\nthem in. It can ask them to leave *at any time*; as Nasser did in \\'56 and\\n\\'67. Somehow, with that \"limitation\" on the troops \"powers\" I don\\'t\\nthink that Israel is going to be any more comfortable. Without a *genuine* commitment to peace from the Arab states, and concrete (not intellectual or political exercises in jargon) \"guarantees\" by other parties, the UN is worthless\\nto Israel (but, perhaps useful as a \"ruse\"?).\\n\\n>This is the only realistic solution, it is time for Israel to\\n>realize that the concept of a \"buffer zone\" aimed at protecting\\n>its northern cities has failed. In fact it has caused much more\\n>Israeli deaths than the occasional shelling of Northern Israel\\n>would have resulted in. \\n\\nPerhaps you are aware that, to most communities of people, there is\\nthe feeling that it is better that \"many of us die fighting\\nagainst those who attack us than for few to die while we silently \\naccept our fate.\" If,however, you call on Israel to see the sense of \\nsuffering fewer casualties, I suggest you apply the same to Palestinian,\\nArab and Islamic groups.\\n\\n>If Israel really wants to save some Israeli lives it would withdraw \\n>unilaterally from the so-called \"Security Zone\" before the conclusion\\n>of the peace talks. Such a move would save Israeli lives,\\n>advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n>public image abroad and give it an edge in the peace negociations \\n>since Israel can rightly claim that it is genuinely interested in \\n>peace and has already offered some important concessions.\\n>Along with such a withdrawal Israel could demand that Hizbollah\\n>be disarmed by the Lebanese government and warn that it will not \\n>accept any attacks against its northern cities and that if such a\\n>shelling occurs than it will consider re-taking the buffer zone\\n>and will hold the Lebanese and Syrian government responsible for it.\\n\\nFrom Israel\\'s perspective, \"concessions\" gets it NOTHING...except the \\nrealization that it has given \"something\" up and now *can only \\nhope* that the other side decides to do likewise. Words *can be taken\\nback* by merely doing so; to \"take back\" tangible items (land,\\ncontrol of land) requires the sort of action you say Israel should\\nstay away from.\\n \\nIsrael put up with attacks from Arab state territories for decades \\nbefore essentially putting a stop to it through its invasion of Lebanon.\\nThe entire basis of that reality was exactly as you state above: 1) Israel \\nwould express outrage at these attacks and protest to the Arab state \\ninvolved, 2) that state promptly ignored the entire matter, secure \\nin the knowledge that IT could not be held responsible for the acts \\ncommitted by \"private groups\", 3) Israel would prepare for the next \\nround of attacks. What would Israel want to return to those days (and\\ndon\\'t be so idiotic as to suggest \"trust\" for the motivations of\\npresent-day Arab states)?\\n\\n>There seems to be very little incentive for the Syrian and Lebanese\\n>goovernment to allow Hizbollah to bomb Israel proper under such \\n>circumstances, \\n>\\nAh, ok...what is \"different\" about the present situation that tells\\nus that the Arab states will *not* pursue their past antagonistic \\npolicies towards Israel? Now, don\\'t talk about vague \"political factors\"\\nbut about those \"tangible\" (just like that which Israel gave up)\\nfactors that \"guarantee\" the responsibility of those states. Your\\nassessment of \"difference\" here is based on a whole lot of assumptions,\\nand most states don\\'t feel confortable basing their existence on that\\nsort of thing.\\n\\n>and now the Lebanese government has proven that it is\\n>capable of controlling and disarming all militias as they did\\n>in all other parts of Lebanon.\\n>\\n>Basil\\n\\nIt has not. Without the support, and active involvement, of Syria,\\nLebanon would not have been able to accomplish all that has occurred.\\nOnce Syria leaves who is to say that Lebanon will be able to retain \\ncontrol? If Syria stays thay may be even more dangerous for Israel.\\n> \\nTim\\n\\nYour view of this entire matter is far too serenely one-sided and\\nselectively naive.\\n',\n", - " 'From: waldo@cybernet.cse.fau.edu (Todd J. Dicker)\\nSubject: Re: Hamza Salah, the Humanist\\nOrganization: Cybernet BBS, Boca Raton, Florida\\nLines: 19\\n\\ndzk@cs.brown.edu (Danny Keren) writes:\\n\\n> He-he. The great humanist speaks. One has to read Mr. Salah\\'s posters,\\n> in which he decribes Jews as \"sons of pigs and monkeys\", keeps\\n> promising the \"final battle\" between Muslims and Jews (in which the\\n> stons and the trees will \"cry for the Muslims to come and kill the\\n> Jews hiding behind them\"), makes jokes about Jews dying from heart\\n> attacks etc, to realize his objective stance on the matters involved.\\n> \\n> -Danny Keren.\\n----------\\nDon\\'t worry, Danny, every blatantly violent and abusive posting made by \\nHamzah is immediately forwarded to the operator of the system in which he \\nhas an account. I\\'d imagine they have quite a file started on this \\nfruitcake--and have already indicated that they have rules governing \\nracist and threatening use of their resources. I\\'d imagine he\\'ll be out \\nof our hair in a short while.\\n\\nTodd\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: , mathew@mantis.co.uk (mathew) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> > And we, meaning people who drive,\\n|> > accept the risks of doing so, and contribute tax money to design systems\\n|> > to minimize those risks.\\n|> \\n|> Eh? We already have systems to minimize those risks. It\\'s just that you car\\n|> drivers don\\'t want to use them.\\n|> \\n|> They\\'re called bicycles, trains and buses.\\n\\nPoor Matthew. A million posters to call \"you car drivers\" and he\\nchooses me, a non car owner.\\n\\njon.\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nKeywords: Galileo, JPL\\nOrganization: Texas Instruments Inc\\nLines: 25\\n\\nIn <1993Apr23.103038.27467@bnr.ca> agc@bmdhh286.bnr.ca (Alan Carter) writes:\\n\\n>In article <22APR199323003578@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes:\\n>|> 3. On April 19, a NO-OP command was sent to reset the command loss timer to\\n>|> 264 hours, its planned value during this mission phase.\\n\\n>This activity is regularly reported in Ron\\'s interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n\\nThe Command Loss Timer is a timer that does just what its name says;\\nit indicates to the probe that it has lost its data link for receiving\\ncommands. Upon expiration of the Command Loss Timer, I believe the\\nprobe starts a \\'search for Earth\\' sequence (involving antenna pointing\\nand attitude changes which consume fuel) to try to reestablish\\ncommunications. No-ops are sent periodically through those periods\\nwhen there are no real commands to be sent, just so the probe knows\\nthat we haven\\'t forgotten about it.\\n\\nHope that\\'s clear enough to be comprehensible. \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 66\\n\\n\\nJames Hogan writes:\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes:\\n>>Jim Hogan quips:\\n\\n>>... (summary of Jim\\'s stuff)\\n\\n>>Jim, I\\'m afraid _you\\'ve_ missed the point.\\n\\n>>>Thus, I think you\\'ll have to admit that atheists have a lot\\n>>more up their sleeve than you might have suspected.\\n\\n>>Nah. I will encourage people to learn about atheism to see how little atheists\\n>>have up their sleeves. Whatever I might have suspected is actually quite\\n>>meager. If you want I\\'ll send them your address to learn less about your\\n>>faith.\\n\\n>Faith?\\n\\nYeah, do you expect people to read the FAQ, etc. and actually accept hard\\natheism? No, you need a little leap of faith, Jimmy. Your logic runs out\\nof steam!\\n\\n>>>Fine, but why do these people shoot themselves in the foot and mock\\n>>>the idea of a God? ....\\n\\n>>>I hope you understand now.\\n\\n>>Yes, Jim. I do understand now. Thank you for providing some healthy sarcasm\\n>>that would have dispelled any sympathies I would have had for your faith.\\n\\n>Bake,\\n\\n>Real glad you detected the sarcasm angle, but am really bummin\\' that\\n>I won\\'t be getting any of your sympathy. Still, if your inclined\\n>to have sympathy for somebody\\'s *faith*, you might try one of the\\n>religion newsgroups.\\n\\n>Just be careful over there, though. (make believe I\\'m\\n>whispering in your ear here) They\\'re all delusional!\\n\\nJim,\\n\\nSorry I can\\'t pity you, Jim. And I\\'m sorry that you have these feelings of\\ndenial about the faith you need to get by. Oh well, just pretend that it will\\nall end happily ever after anyway. Maybe if you start a new newsgroup,\\nalt.atheist.hard, you won\\'t be bummin\\' so much?\\n\\n>Good job, Jim.\\n>.\\n\\n>Bye, Bake.\\n\\n\\n>>[more slim-Jim (tm) deleted]\\n\\n>Bye, Bake!\\n>Bye, Bye!\\n\\nBye-Bye, Big Jim. Don\\'t forget your Flintstone\\'s Chewables! :) \\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", - " \"From: karr@cs.cornell.edu (David Karr)\\nSubject: Re: Fortune-guzzler barred from bars!\\nOrganization: Cornell Univ. CS Dept, Ithaca NY 14853\\nLines: 23\\n\\nIn article Russell.P.Hughes@dartmouth.edu (Knicker Twister) writes:\\n>In article <1993Apr19.141959.4057@bnr.ca>\\n>npet@bnr.ca (Nick Pettefar) writes:\\n>\\n>> With regards to the pub brawl, he might have a history of such things.\\n>> Just because he was a biker doesn't make him out to be a reasonable\\n>> person. Even the DoD might object to him joining, who knows?\\n\\nIf he had a history of such things, why was it not mentioned in the\\narticle, and why did they present the irrelevant detail of where he\\ngot his drinking money from?\\n\\nI can't say exactly who is at fault here, but from where I sit is\\nlooks like we're seeing the results either of the law going way out\\nof hand or of shoddy journalism.\\n\\nIf the law wants to attach strings to how you spend a settlement, they\\nshould put the money in trust. They don't, so I would assume it's\\nperfectly legitimate to drink it away, though I wouldn't spend it that\\nway myself.\\n\\n-- David Karr (karr@cs.cornell.edu)\\n\\n\",\n", - " 'From: S901924@mailserv.cuhk.hk\\nSubject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\nSummary: Dong .... Dong .... Do I hear the death-knell of relativity?\\nKeywords: space, curvature, nothing, tesla\\nNntp-Posting-Host: wksb14.csc.cuhk.hk\\nOrganization: Computer Services Centre, C.U.H.K.\\nDistribution: World\\nLines: 36\\n\\nIn article et@teal.csn.org (Eric H. Taylor) writes:\\n>From: et@teal.csn.org (Eric H. Taylor)\\n>Subject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\n>Summary: Dong .... Dong .... Do I hear the death-knell of relativity?\\n>Keywords: space, curvature, nothing, tesla\\n>Date: Sun, 28 Mar 1993 20:18:04 GMT\\n>In article metares@well.sf.ca.us (Tom Van Flandern) writes:\\n>>crb7q@kelvin.seas.Virginia.EDU (Cameron Randale Bass) writes:\\n>>> Bruce.Scott@launchpad.unc.edu (Bruce Scott) writes:\\n>>>> \"Existence\" is undefined unless it is synonymous with \"observable\" in\\n>>>> physics.\\n>>> [crb] Dong .... Dong .... Dong .... Do I hear the death-knell of\\n>>> string theory?\\n>>\\n>> I agree. You can add \"dark matter\" and quarks and a lot of other\\n>>unobservable, purely theoretical constructs in physics to that list,\\n>>including the omni-present \"black holes.\"\\n>>\\n>> Will Bruce argue that their existence can be inferred from theory\\n>>alone? Then what about my original criticism, when I said \"Curvature\\n>>can only exist relative to something non-curved\"? Bruce replied:\\n>>\"\\'Existence\\' is undefined unless it is synonymous with \\'observable\\' in\\n>>physics. We cannot observe more than the four dimensions we know about.\"\\n>>At the moment I don\\'t see a way to defend that statement and the\\n>>existence of these unobservable phenomena simultaneously. -|Tom|-\\n>\\n>\"I hold that space cannot be curved, for the simple reason that it can have\\n>no properties.\"\\n>\"Of properties we can only speak when dealing with matter filling the\\n>space. To say that in the presence of large bodies space becomes curved,\\n>is equivalent to stating that something can act upon nothing. I,\\n>for one, refuse to subscribe to such a view.\" - Nikola Tesla\\n>\\n>----\\n> ET \"Tesla was 100 years ahead of his time. Perhaps now his time comes.\"\\n>----\\n',\n", - " 'From: charlie@elektro.cmhnet.org (Charlie Smith)\\nSubject: Re: Where\\'s The Oil on my K75 Going?\\nOrganization: Why do you suspect that?\\nLines: 35\\n\\nIn article tim@intrepid.gsfc.nasa.gov (Tim Seiss) writes:\\n>\\n> After both oil changes, the oil level was at the top mark in the\\n>window on the lower right side of the motor, but I\\'ve been noticing\\n>that the oil level seen in the window gradually decreases over the\\n>miles. I\\'m always checking the window with the bike on level ground\\n>and after it has sat idle for awhile, so the oil has a chance to drain\\n>back into the pan. The bike isn\\'t leaking oil any place, and I don\\'t\\n>see any smoke coming out of the exhaust.\\n>\\n> My owner\\'s manual says the amount of oil corresponding to the\\n>high and low marks in the oil level window is approx. .5 quart. It\\n>looks like my bike has been using about .25 quarts/1000 miles. The\\n>owner\\'s manual also gives a figure for max. oil consumption of about\\n>.08oz/mile or .15L/100km.\\n>\\n> My question is whether the degree of \"oil consumption\" I\\'m seeing on\\n>my bike is normal? Have any other K75 owners seen their oil level\\n>gradually and consistently go down? Should I take the bike in for\\n>work? I\\'m asking local guys also, to get as many data points as I\\n>can. \\n\\n\\nIt\\'s normal for the BMW K bikes to use a little oil in the first few thousand \\nmiles. I don\\'t know why. I\\'ve had three new K bikes, and all three used a\\nbit of oil when new - max maybe .4 quart in first 1000 miles; this soon quits\\nand by the time I had 10,000 miles on them the oil consumption was about zero.\\nI\\'ve been told that the harder you run the bike (within reason) the sooner\\nit stops using any oil.\\n\\n\\nCharlie Smith charlie@elektro.cmhnet.org KotdohL KotWitDoDL 1KSPI=22.85\\n DoD #0709 doh #0000000004 & AMA, MOA, RA, Buckey Beemers, BK Ohio V\\n BMW K1100-LT, R80-GS/PD, R27, Triumph TR6 \\n Columbus, Ohio USA\\n',\n", - " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Re: Himmler\\'s speech on the extirpation of the Jewish race\\nOrganization: Brown University Department of Computer Science\\nLines: 56\\n\\nIt is appropriate to add what Himmler said other \"inferior races\" \\nand \"human animals\" in his speech at Posen and elsewhere:\\n\\n\\nFrom the speech of Reichsfuehrer-SS Himmler, before SS\\nMajor-Generals, Posen, October 4 1943\\n[\"Nazi Conspiracy and Aggression\", Vol. IV, p. 559]\\n-------------------------------------------------------------------\\nOne basic principal must be the absolute rule for the SS man: we\\nmust be honest, decent, loyal, and comradely to members of our own\\nblood and to nobody else. What happens to a Russian, to a Czech,\\ndoes not interest me in the slightest. What the nations can offer\\nin good blood of our type, we will take, if necessary by kidnapping\\ntheir children and raising them with us. Whether nations live in\\nprosperity or starve to death interests me only in so far as we\\nneed them as slaves for our culture; otherwise, it is of no interest\\nto me. Whether 10,000 Russian females fall down from exhaustion\\nwhile digging an anti-tank ditch interest me only in so far as\\nthe anti-tank ditch for Germany is finished. We shall never be rough\\nand heartless when it is not necessary, that is clear. We Germans,\\nwho are the only people in the world who have a decent attitude\\ntowards animals, will also assume a decent attitude towards these\\nhuman animals. But it is a crime against our own blood to worry\\nabout them and give them ideals, thus causing our sons and\\ngrandsons to have a more difficult time with them. When someone\\ncomes to me and says, \"I cannot dig the anti-tank ditch with women\\nand children, it is inhuman, for it will kill them\", then I\\nwould have to say, \"you are a murderer of your own blood because\\nif the anti-tank ditch is not dug, German soldiers will die, and\\nthey are the sons of German mothers. They are our own blood\".\\n\\n\\n\\nExtract from Himmler\\'s address to party comrades, September 7 1940\\n[\"Trials of Wa Criminals\", Vol. IV, p. 1140]\\n------------------------------------------------------------------\\nIf any Pole has any sexual dealing with a German woman, and by this\\nI mean sexual intercourse, then the man will be hanged right in\\nfront of his camp. Then the others will not do it. Besides,\\nprovisions will be made that a sufficient number of Polish women\\nand girls will come along as well so that a necessity of this\\nkind is out of the question.\\n\\nThe women will be brought before the courts without mercy, and\\nwhere the facts are not sufficiently proved - such borderline\\ncases always happen - they will be sent to a concentration camp.\\nThis we must do, unless these one million Poles and those\\nhundreds of thousands of workers of alien blood are to inflict\\nuntold damage on the German blood. Philosophizing is of no avail\\nin this case. It would be better if we did not have them at all -\\nwe all know that - but we need them.\\n\\n\\n\\n-Danny Keren.\\n\\n',\n", - " \"From: prestonm@cs.man.ac.uk (Martin Preston)\\nSubject: Problems grabbing a block of a Starbase screen.\\nKeywords: Starbase, HP\\nLines: 26\\n\\nAt the moment i'm trying to grab a portion of a Starbase screen, and store it\\nin an area of memory. The data needs to be in a 24-bit format (which\\nshouldn't be a problem as the app is running on a 24 bit screen), though\\ni'm not too fussy about the exact format.\\n\\n(I actually intend to write the data out as a TIFF but that bits not the\\nproblem)\\n\\nDoes anyone out there know how to grab a portion of the screen? The\\nblock_read call seems to grab the screen, but not in 24 bit colour,\\nwhatever the screen/window type i get 1 byte per pixel. \\n\\nthanks in advance,\\n\\nMartin\\n\\n\\n\\n\\n--\\n---------------------------------------------------------------------------\\n|Martin Preston, (m.preston@manchester.ac.uk) | Computer Graphics |\\n|Computer Graphics Unit, Manchester Computing Centre, | is just |\\n|University of Manchester, | a load of balls. |\\n|Manchester, U.K., M13 9PL Phone : 061 275 6095 | |\\n---------------------------------------------------------------------------\\n\",\n", - " \"From: B8HA000 \\nSubject: Zionism is Racism\\nLines: 8\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nIn Re:Syria's Expansion, the author writes that the UN thought\\nZionism was Racism and that they were wrong. They were correct\\nthe first time, Zionism is Racism and thankfully, the McGill Daily\\n(the student newspaper at McGill) was proud enough to print an article\\nsaying so. If you want a copy, send me mail.\\n\\nSteve\\n\\n\",\n", - " 'From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: Bellcore, Livingston, NJ\\nSummary: An Untried Approach\\nLines: 59\\n\\nIn article <1993Apr20.114746.3364@ncsu.edu>, hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n> \\n> In article <1993Apr19.214300.17989@unocal.com>, stssdxb@st.unocal.com (Dorin Baru) writes:\\n> \\n> |> (Brad Hernlem writes:\\n> |> \\n> |> \\n> |> >Well, you should have noted that I was cheering an attack on an Israeli \\n> |> >patrol INSIDE Lebanese territory while I was condemning the \"retaliatory\"\\n> |> >shelling of Lebanese villages by Israeli and Israeli-backed forces. My \"team\",\\n> |> >you see, was \"playing fair\" while the opposing team was rearranging the\\n> |> >faces of the spectators in my team\\'s viewing stands, so to speak. \\n> |> \\n> |> >I think that you should try to find more sources of news about what goes on\\n> |> >in Lebanon and try to see through the propaganda. There are no a priori\\n> |> >black and white hats but one sure wonders how the IDF can bombard villages in \\n> |> >retaliation to pin-point attacks on its soldiers in Lebanon and then call the\\n> |> >Lebanese terrorists.\\n> |> \\n> |> If the attack was justified or not is at least debatable. But this is not the\\n> |> issue. The issue is that you were cheering DEATH. [...]\\n> |> \\n> |> Dorin\\n> \\n> Dorin, of all the criticism of my post expressed on t.p.m., this one I accept.\\n> I regret that aspect of my post. It is my hope that the occupation will end (and\\n> the accompanying loss of life) but I believe that stiff resistance can help to \\n> achieve that end. Despite what some have said on t.p.m., I think that there is \\n> a point when losses are unacceptable. The strategy drove U.S. troops out of \\n> Lebanon, at least.\\n> \\n> Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nHi Brad,\\n\\nI have two comments: Regarding your hope that the \"occupation will end... \\nbelive that stiff resistance..etc. - how about an untried approach, i.e.,\\npeace and cooperation. I can\\'t help but wonder what would happen if all\\nviolence against Israelis stopped. Hopefully, violence against Arabs\\nwould stop at the same time. If a state of non-violence could be \\nmaintained, perhaps a state of cooperation could be achieved, i.e.,\\ngreater economic opportunities for both peoples living in the\\n\"territories\". \\n\\nOf course, given the current leadership of Israel, your way may work\\nalso - but if that leadership changes, e.g., to someone with Ariel\\nSharon\\'s mentality, then I would predict a considerable loss of life,\\ni.e., no winners.\\n\\nSecondly, regarding your comment about the U.S. troops responding\\nto \"stiff resistance\" - the analogy is not quite valid. The U.S.\\ntroops could get out of the neighborhood altogether. The Israelis\\ncould not.\\n\\nJust my $.02 worth, no offense intended.\\n\\nRespectfully, \\n\\nBen.\\n',\n", - " 'From: arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee)\\nSubject: Re: American Jewish Congress Open Letter to Clinton\\nOrganization: Johns Hopkins University CS Dept.\\nLines: 30\\n\\nIn article <22APR199300513566@vxcrna.cern.ch> casper@vxcrna.cern.ch (CASPER,DAVI./PPE) writes:\\n>>Are you aware that there is an arms embargo on all of what is/was\\n>>Yugoslavia, including Bosnia, which guarantees massive military\\n>>superiority of Serbian forces and does not allow the Bosnians to\\n>>try to defend themselves? \\n>Should we sell weapons to all sides, or just the losing one, then?\\n\\nEnding an embargo does not _we_ must sell anything at all.\\n\\n>If the Europeans want to sell weapons to one or both sides, they are welcome\\n>as far as I\\'m concerned.\\n\\nYou seem to oppose ending the embargo. You know, it is difficult for Europeans\\nto sell weapons when there is an embargo in place.\\n\\n>I do not automatically accept the argument that Bosnia is any worse than\\n>other recent civil wars, say Vietnam for instance. The difference is it is\\n>happening to white people inside Europe, with lots of TV coverage.\\n\\nBut if this was the reason, and if furthermore both sides are equal, wouldn\\'t\\nall us racist Americans be favoring the good Christians (Serbs) instead\\nof the non-Christians we really seem to favor?\\n--\\n\"On the first day after Christmas my truelove served to me... Leftover Turkey!\\nOn the second day after Christmas my truelove served to me... Turkey Casserole\\n that she made from Leftover Turkey.\\n[days 3-4 deleted] ... Flaming Turkey Wings! ...\\n -- Pizza Hut commercial (and M*tlu/A*gic bait)\\n\\nKen Arromdee (arromdee@jyusenkyou.cs.jhu.edu)\\n',\n", - " 'Subject: Re: Surviving Large Accelerations?\\nFrom: lpham@eis.calstate.edu (Lan Pham)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 25\\n\\nAmruth Laxman writes:\\n> Hi,\\n> I was reading through \"The Spaceflight Handbook\" and somewhere in\\n> there the author discusses solar sails and the forces acting on them\\n> when and if they try to gain an initial acceleration by passing close to\\n> the sun in a hyperbolic orbit. The magnitude of such accelerations he\\n> estimated to be on the order of 700g. He also says that this is may not\\n> be a big problem for manned craft because humans (and this was published\\n> in 1986) have already withstood accelerations of 45g. All this is very\\n> long-winded but here\\'s my question finally - Are 45g accelerations in\\n> fact humanly tolerable? - with the aid of any mechanical devices of\\n> course. If these are possible, what is used to absorb the acceleration?\\n> Can this be extended to larger accelerations?\\n\\nare you sure 45g is the right number? as far as i know, pilots are\\nblackout in dives that exceed 8g - 9g. 45g seems to be out of human\\ntolerance. would anybody clarify this please.\\n\\nlan\\n\\n\\n> \\n> Thanks is advance...\\n> -Amruth Laxman\\n> \\n',\n", - " 'From: stefan@prague (Stefan Fielding-Isaacs)\\nSubject: Racelist: WHO WHAT WHERE\\nDistribution: rec\\nOrganization: Gain Technology, Palo Alto, CA.\\nLines: 111\\nNntp-Posting-Host: prague.gain.com\\n\\n\\n Greetings fellow motorcycle roadracing enthusiasts!\\n\\n BACKGROUND\\n ----------\\n\\n The racing listserver (boogie.EBay.sun.com) contains discussions \\n devoted to racing and racing-related topics. This is a pretty broad \\n interest group. Individuals have a variety of backgrounds: motojournalism, \\n roadracing from the perspective of pit crew and racers, engineering,\\n motosports enthusiasts.\\n\\n The size of the list grows weekly. We are currently at a little\\n over one hundred and eighty-five members, with contributors from\\n New Zealand, Australia, Germany, France, England, Canada\\n Finland, Switzerland, and the United States.\\n\\n The list was formed (October 1991) in response to a perceived need \\n to both provide technical discussion of riding at the edge of \\n performance (roadracing) and to improve on the very low signal-to-noise \\n ratio found in rec.motorcycles. Anyone is free to join.\\n\\n Discussion is necessarily limited by the rules of the list to \\n issues related to racing motorcycles and is to be \"flame-free\". \\n\\n HOW TO GET THE DAILY DISTRIBUTION\\n ---------------------------------\\n\\n You are welcome to subscribe. To subscribe send your request to:\\n\\n\\n race-request@boogie.EBay.Sun.COM\\n\\n\\n Traffic currently runs between five and twenty-five messages per day\\n (depending on the topic). \\n\\n NB: Please do _not_ send your subscription request to the\\n list directly.\\n \\n After you have contacted the list administrator, you will receive\\n an RSVP request. Please respond to this request in a timely manner\\n so that you can be added to the list. The request is generated in\\n order to insure that there is a valid mail pathway to your site.\\n \\n Upon receipt of your RSVP, you will be added to either the daily\\n or digest distribution (as per your initial request).\\n\\n HOW TO GET THE DIGEST DISTRIBUTION\\n ----------------------------------\\n\\n It is possible to receive the list in \\'digest\\'ed form (ie. a\\n single email message). The RoadRacing Digest is mailed out \\n whenever it contains enough interesting content. Given the\\n frequency of postings this appears to be about every other\\n day.\\n\\n Should you wish to receive the list via digest (once every \\n 30-40K or so), please send a subscription request to:\\n\\n\\n digest-request@boogie.EBay.Sun.COM\\n\\n\\n HOW TO POST TO THE LIST\\n -----------------------\\n\\n This is an open forum. To post an article to the list, send to:\\n\\n\\n race@boogie.EBay.Sun.COM\\n\\n\\n Depending on how mail is set up at your site you may or may\\n not see the mail that you have posted. If you want to see it\\n (though this isn\\'t necessarily a guarantee that it went out)\\n you can include a \"metoo\" line in your .mailrc file (on UNIX\\n based mail systems). \\n\\n BOUNCES\\n -------\\n\\n Because I haven\\'t had the time (or the inclination to replace\\n the list distribution mechanism) we still have a problem with\\n bounces returning to the poster of a message. Occasionally,\\n sites or users go off-line (either leaving their place of\\n employment prematurely or hardware problems) and you will receive\\n bounces from the race list. Check the headers carefully, and\\n if you find that the bounce originated at Sun (from whence I\\n administer this list) contact me through my administration\\n hat (race-request@boogie.EBay.sun.com). If not, ignore the bounce. \\n\\n OTHER LISTS \\n -----------\\n\\n Two-strokes: 2strokes@microunity.com\\n Harleys: harley-request@thinkage.on.ca\\n or uunet!watmath!thinkage!harley-request\\n European bikes: majordomo@onion.rain.com\\n (in body of message write: subscribe euro-moto)\\n\\n\\n thanks, be seeing you, \\n Rich (race list administrator)\\n\\n rich@boogie.EBay.Sun.COM\\n-- \\nStefan Fielding-Isaacs 415.822.5654 office/fax\\ndba Art & Science \"Books By Design\" 415.599.4876 voice/pager\\nAMA/CCS #14\\n* currently providing consulting writing services to: Gain Technology, Verity *\\n',\n", - " \"From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Riceburner Respect\\nOrganization: NEC Systems Laboratory, Inc.\\nLines: 14\\n\\nIn article <1993Apr15.141927.23722@cbnewsm.cb.att.com> shz@mare.att.com (Keeper of the 'Tude) writes:\\n>Huh?\\n>\\n>- Roid\\n\\n\\tOn a completely different tack, what was the eventual outcome of\\nBabe vs. the Bad-Mouthed Biker?\\n\\nLater,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee's Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n\",\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Americans and Evolution\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 30\\n\\nRobert Singleton (bobs@thnext.mit.edu) wrote:\\n\\n: > Sure it isn\\'t mutually exclusive, but it lends weight to (i.e. increases\\n: > notional running estimates of the posterior probability of) the \\n: > atheist\\'s pitch in the partition, and thus necessarily reduces the same \\n: > quantity in the theist\\'s pitch. This is because the `divine component\\' \\n: > falls prey to Ockham\\'s Razor, the phenomenon being satisfactorily \\n: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n: > explained without it, and there being no independent evidence of any \\n: ^^^^^^^^^^^^^^^^^^^^\\n: > such component. More detail in the next post.\\n: > \\n\\nOccam\\'s Razor is not a law of nature, it is way of analyzing an\\nargument, even so, it interesting how often it\\'s cited here and to\\nwhat end. \\nIt seems odd that religion is simultaneously condemned as being\\nprimitive, simple-minded and unscientific, anti-intellectual and\\nchildish, and yet again condemned as being too complex (Occam\\'s\\nrazor), the scientific explanation of things being much more\\nstraightforeward and, apparently, simpler. Which is it to be - which\\nis the \"non-essential\", and how do you know?\\nConsidering that even scientists don\\'t fully comprehend science due to\\nits complexity and diversity. Maybe William of Occam has performed a\\nlobotomy, kept the frontal lobe and thrown everything else away ...\\n\\nThis is all very confusing, I\\'m sure one of you will straighten me out\\ntough.\\n\\nBill\\n',\n", - " \"From: u895027@franklin.cc.utas.edu.au (Mark Mackey)\\nSubject: Raytracers: which is best?\\nOrganization: University of Tasmania, Australia.\\nLines: 15\\n\\nHi all!\\n\\tI've just recently become seriously hooked on POV, but there are a few\\nthing that I want to do that POV won't do (penumbral shadows, dispersion\\netc.). I was just wondering: what other shareware/freeware raytracers are\\nout there, and what can they do? I've heard of Vivid and Polyray and \\nRayshade and so on, but I'd rather no wade through several hundred pages of \\nmanual for each trying to work out what their capabilities are. Can anyone\\nhelp? A comparison of tracing speed between each program would also be \\nmucho useful.\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tMark.\\n\\n-------------------------------------------------------------------------------\\nMark Mackey | Life is a terminal disease and oxygen is \\nmmackey@aqueous.ml.csiro.au | addictive. Are _you_ hooked? \\n-------------------------------------------------------------------------------\\n\",\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Moraltiy? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>>>What if I act morally for no particular reason? Then am I moral? What\\n|> >>>>if morality is instinctive, as in most animals?\\n|> >>>\\n|> >>>Saying that morality is instinctive in animals is an attempt to \\n|> >>>assume your conclusion.\\n|> >>\\n|> >>Which conclusion?\\n|> >\\n|> >You conclusion - correct me if I err - that the behaviour which is\\n|> >instinctive in animals is a \"natural\" moral system.\\n|> \\n|> See, we are disagreeing on the definition of moral here. Earlier, you said\\n|> that it must be a conscious act. By your definition, no instinctive\\n|> behavior pattern could be an act of morality. You are trying to apply\\n|> human terms to non-humans.\\n\\nPardon me? *I* am trying to apply human terms to non-humans?\\n\\nI think there must be some confusion here. I\\'m the guy who is\\nsaying that if animal behaviour is instinctive then it does *not*\\nhave any moral sugnificance. How does refusing to apply human\\nterms to animals get turned into applying human terms?\\n\\n|> I think that even if someone is not conscious of an alternative, \\n|> this does not prevent his behavior from being moral.\\n\\nI\\'m sure you do think this, if you say so. How about trying to\\nconvince me?\\n\\n|> \\n|> >>You don\\'t think that morality is a behavior pattern? What is human\\n|> >>morality? A moral action is one that is consistent with a given\\n|> >>pattern. That is, we enforce a certain behavior as moral.\\n|> >\\n|> >You keep getting this backwards. *You* are trying to show that\\n|> >the behaviour pattern is a morality. Whether morality is a behavior \\n|> >pattern is irrelevant, since there can be behavior pattern, for\\n|> >example the motions of the planets, that most (all?) people would\\n|> >not call a morality.\\n|> \\n|> I try to show it, but by your definition, it can\\'t be shown.\\n\\nI\\'ve offered, four times, I think, to accept your definition if\\nyou allow me to ascribe moral significence to the orbital motion\\nof the planets.\\n\\n|> \\n|> And, morality can be thought of a large class of princples. It could be\\n|> defined in terms of many things--the laws of physics if you wish. However,\\n|> it seems silly to talk of a \"moral\" planet because it obeys the laws of\\n|> phyics. It is less silly to talk about animals, as they have at least\\n|> some free will.\\n\\nAh, the law of \"silly\" and \"less silly\". what Mr Livesey finds \\nintuitive is \"silly\" but what Mr Schneider finds intuitive is \"less \\nsilly\".\\n\\nNow that\\'s a devastating argument, isn\\'t it.\\n\\njon.\\n',\n", - " \"From: seth@north1.acpub.duke.edu (Seth Wandersman)\\nSubject: Oak Driver NEEDED (30d studio)\\nReply-To: seth@north1.acpub.duke.edu (Seth Wandersman)\\nLines: 8\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\n\\n\\tHi, I'm looking for the 3-D studio driver for the\\n\\tOak card with 1 M of RAM.\\n\\tThis would be GREATLY (and I mean that) appreciated\\n\\n\\tMaybe I should have just gotten a more well know card.\\nthanks\\nseth@acpub.duke.edu\\n\",\n", - " 'From: raymaker@bcm.tmc.edu (Mark Raymaker)\\nSubject: graphics driver standards\\nOrganization: Baylor College of Medicine, Houston, Tx\\nLines: 21\\nNNTP-Posting-Host: bcm.tmc.edu\\nKeywords: graphics,standards\\n\\nI have a researcher who collecting electical impulses from\\nthe human heart through a complex Analog to Digital system\\nhe has designed and inputting this information into his EISA\\nbus HP Vectra Computer running DOS and the Phar Lap DOS extender. \\n\\nHe want to purchase a very high-performance video card for\\n3-D modeling. He is aware of a company called Matrox but\\nhe is concerned about getting married to a company and their\\nvideo routine library. He would hope some more flexibility:\\nto choose between several card manufacturers with a standard\\nvideo driver. He would like to write more generic code- \\ncode that could be easily moved to other cards or computer operating\\nsystems in the future. Is there any hope?\\nAny information would be greatly appreciated-\\nPlease, if possible, respond directly to internet mail \\nto raymaker@bcm.tmc.edu\\n\\nThanks\\n\\n\\n\\n',\n", - " 'From: thomsonal@cpva.saic.com\\nSubject: Cosmos 2238: an EORSAT\\nArticle-I.D.: cpva.15337.2bc16ada\\nOrganization: Science Applications Int\\'l Corp./San Diego\\nLines: 48\\n\\n>Date: Tue, 6 Apr 1993 15:40:47 GMT\\n\\n>I need as much information about Cosmos 2238 and its rocket fragment (1993-\\n>018B) as possible. Both its purpose, launch date, location, in short,\\n>EVERYTHING! Can you help?\\n\\n>-Tony Ryan, \"Astronomy & Space\", new International magazine, available from:\\n\\n------------------------------------------------------------------------------\\n\\nOcean Reconnaissance Launch Surprises West\\nSpace News, April 5-11, 1993, p.2\\n[Excerpts]\\n Russia launched its first ocean reconnaissance satellite in 26 months \\nMarch 30, confounding Western analysts who had proclaimed the program dead. \\n The Itar-TASS news agency announced the launch of Cosmos 2238 from \\nPlesetsk Cosmodrome, but provided little description of the payload\\'s mission. \\n However, based on the satellite\\'s trajectory, Western observers \\nidentified it as a military spacecraft designed to monitor electronic \\nemissions from foreign naval ships in order to track their movement. \\n Geoff Perry of the Kettering Group in England... [said] Western \\nobservers had concluded that no more would be launched. But days after the \\nlast [such] satellite re-entered the Earth\\'s atmosphere, Cosmos 2238 was \\nlaunched. \\n\\n\"Cosmos-2238\" Satellite Launched for Defense Ministry\\nMoscow ITAR-TASS World Service in Russian 1238 GMT 30 March 1993\\nTranslated in FBIS-SOV-93-060, p.27\\nby ITAR-TASS correspondent Veronika Romanenkova\\n Moscow, 30 March -- The Cosmos-2238 satellite was launched at 1600 Moscow \\ntime today from the Baykonur by a \"Tsiklon-M\" carrier rocket. An ITAR-TASS \\ncorrespondent was told at the press center of Russia\\'s space-military forces \\nthat the satellite was launched in the interests of the Russian Defense \\nMinistry. \\n\\nParameters Given\\nMoscow ITAR-TASS World Service in Russian 0930 GMT 31 March 1993\\nTranslated in FBIS-SOV-93-060, p.27\\n Moscow, 31 March -- Another artificial Earth satellite, Cosmos-2238, was \\nlaunched on 30 March from the Baykonur cosmodrome. \\n The satellite carries scientific apparatus for continuing space research. \\nThe satellite has been placed in an orbit with the following parameters: \\ninitial period of revolution--92.8 minutes; apogee--443 km; perigee--413 km; \\norbital inclination--65 degrees. \\n Besides scientific apparatus the satellite carries a radio system for the \\nprecise measurement of orbital elements and a radiotelemetry system for \\ntransmitting to Earth data about the work of the instruments and scientific \\napparatus. The apparatus aboard the satellite is working normally. \\n',\n", - " 'From: holler@holli.augs1.adsp.sub.org (Jan Holler)\\nSubject: Re: Newsgroup Split\\nReply-To: holli!holler@augs1.adsp.sub.org\\nOrganization: private\\nLines: 24\\nX-NewsSoftware: GRn 1.16f (10.17.92) by Mike Schwartz & Michael B. Smith\\n\\nIn article nerone@ccwf.cc.utexas.edu (Michael Nerone) writes:\\n> In article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n> \\n> CH> Concerning the proposed newsgroup split, I personally am not in\\n\\n> Also, it is readily observable that the current spectrum of amiga\\n> groups is already plagued with mega-crossposting; thus the group-split\\n> would not, in all likelihood, bring about a more structured\\n> environment.\\n\\nAm I glad you write that. I got flamed all along because I begged NOT to\\ncrosspost some nonsense articles.\\n\\nThe problem with crossposting is on the first poster. I am aware that this\\nposting is a crossposting too, but what else should one do. You never know\\nwhere the interested people stay in.\\n\\nTo split up newsgroups brings even more crossposting.\\n\\n-- \\n\\nJan Holler, Bern, Switzerland Good is not good enough, make it better!\\nholli!holler@augs1.adsp.sub.org ((Second chance: holler@iamexwi.unibe.ch))\\n-------------------------------------------------------------------------------\\n (( fast mail: cbmehq!cbmswi!augs1!holli!holler@cbmvax.commodore.com )) \\n',\n", - " 'From: sean@whiting.mcs.com (Sean Gum)\\nSubject: Re: CView answers\\nOrganization: -*- Whiting Corporation, Harvey, Illinois -*-\\nX-Newsreader: Tin 1.1 PL4\\nLines: 23\\n\\nbryanw@rahul.net (Bryan Woodworth) writes:\\n: In <1993Apr16.114158.2246@whiting.mcs.com> sean@whiting.mcs.com (Sean Gum) writes:\\n: \\n: >A stupid question, but what will CView run on and where can I get it? I\\n: >am still in need of a GIF viewer for Linux. (Without X-Windows.)\\n: >Thanks!\\n: > \\n: \\n: Ho boy. There is no way in HELL you are going to be able to view GIFs or do\\n: any other graphics in Linux without X windows! I love Linux because it is\\n: so easy to learn.. You want text? Okay. Use Linux. You want text AND\\n: graphics? Use Linux with X windows. Simple. Painless. REQUIRED to have\\n: X Windows if you want graphics! This includes fancy word processors like\\n: doc, image viewers like xv, etc.\\n:\\nUmmm, I beg to differ. A kind soul sent me a program called DPG-VIEW that\\nwill do exactly what I want, view GIF images under Linux without X-Windows.\\nAnd, it does support all the way up to 1024x768. The biggest complaint I\\nhave is it is painfully SLOW. It takes about 1 minute to display an image.\\nI am use to CSHOW under DOS which takes a split second. Any idea why it\\nis so slow under Linux? Anybody have anything better? Plus, anybody have\\nthe docs to DPG-View? Thanks!\\n \\n',\n", - " \"From: Nanci Ann Miller \\nSubject: Re: Bible Quiz\\nOrganization: Sponsored account, School of Computer Science, Carnegie Mellon, Pittsburgh, PA\\nLines: 14\\n\\t\\nNNTP-Posting-Host: andrew.cmu.edu\\nIn-Reply-To: \\n\\nkmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n> Would you mind e-mailing me the questions, with the pairs of answers?\\n> I would love to have them for the next time a Theist comes to my door!\\n\\nI'd like this too... maybe you should post an answer key after a while?\\n\\nNanci\\n\\n.........................................................................\\nIf you know (and are SURE of) the author of this quote, please send me\\nemail (nm0w+@andrew.cmu.edu):\\nIt is better to be a coward for a minute than dead for the rest of your\\nlife.\\n\\n\",\n", - " 'From: hm@cs.brown.edu (Harry Mamaysky)\\nSubject: Dir Yassin (was Re: no-Free man propaganda machine: Freeman, with blood greetings from Israel)\\nIn-Reply-To: hasan@McRCIM.McGill.EDU \\'s message of Tue, 13 Apr 93 14:15:18 GMT\\nOrganization: Dept. of Computer Science, Brown University\\nLines: 85\\n\\nIn article <1993Apr13.141518.13900@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n CHECK MENAHEM BEGIN DAIRIES (published book) you\\'ll find accounts of the\\n massacres there including Deir Yassen,\\n though with the numbers of massacred men, children and women are \\n greatly minimized.\\n\\nAs per request of Hasan:\\n\\nFrom _The Revolt_, by Menachem Begin, Dell Publishing, NY, 1977:\\n\\n[pp. 225-227]\\n\\n \"Apart from the military aspect, there is a moral aspect to the\\nstory of Dir Yassin. At that village, whose name was publicized\\nthroughout the world, both sides suffered heavy casualties. We had\\nfour killed and nearly forty wounded. The number of casualties was\\nnearly forty percent of the total number of the attackers. The Arab\\ntroops suffered casualties neraly three times as heavy. The fighting\\nwas thus very severe. Yet the hostile propaganda, disseminated\\nthroughout the world, deliberately ignored the fact that the civilian\\npopulation of Dir Yassin was actually given a warning by us before the\\nbattle began. One of our tenders carrying a loud speaker was stationed\\nat the entrance to the village and it exhorted in Arabic all women,\\nchildren and aged to leave their houses and to take shelter on the\\nslopes of the hill. By giving this humane warning our fighters threw\\naway the element of complete surprise, and thus increased their own\\nrisk in the ensuing battle. A substantial number of the inhabitants\\nobeyed the warning and they were unhurt. A few did not leave their\\nstone houses - perhaps because of the confusion. The fire of the enemy\\nwas murderous - to which the number of our casualties bears eloquent\\ntestimony. Our men were compelled to fight for every house; to\\novercome the enemy they used large numbers of hand grenades. And the\\ncivilians who had disregarded our warnings suffered inevitable\\ncasualties.\\n\\n \"The education which we gave our soldiers throughout the years of\\nrevolt was based on the observance of the traditional laws of war. We\\nnever broke them unless the enemy first did so and thus forced us, in\\naccordance with the accepted custom of war, to apply reprisals. I am\\nconvinced, too, that our officers and men wished to avoid a single\\nunnecessary casualty in the Dir Yassin battle. But those who throw\\nstones of denunciation at the conquerors of Dir Yassin [1] would do\\nwell not to don the cloak of hypocrisy [2].\\n\\n \"In connection with the capture of Dir Yassin the Jewish Agency\\nfound it necessary to send a letter of apology to Abdullah, whom Mr.\\nBen Gurion, at a moment of great political emotion, called \\'the wise\\nruler who seeks the good of his people and this country.\\' The \\'wise\\nruler,\\' whose mercenary forces demolished Gush Etzion and flung the\\nbodies of its heroic defenders to birds of prey, replied with feudal\\nsuperciliousness. He rejected the apology and replied that the Jews\\nwere all to blame and that he did not believe in the existence of\\n\\'dissidents.\\' Throughout the Arab world and the world at large a wave\\nof lying propaganda was let loose about \\'Jewish attrocities.\\'\\n\\n \"The enemy propaganda was designed to besmirch our name. In the\\nresult it helped us. Panic overwhelmed the Arabs of Eretz Israel.\\nKolonia village, which had previously repulsed every attack of the\\nHaganah, was evacuated overnight and fell without further fighting.\\nBeit-Iksa was also evacuated. These two places overlooked the main\\nroad; and their fall, together with the capture of Kastel by the\\nHaganah, made it possible to keep open the road to Jerusalem. In the\\nrest of the country, too, the Arabs began to flee in terror, even\\nbefore they clashed with Jewish forces. Not what happened at Dir\\nYassin, but what was invented about Dir Yassin, helped to carve the\\nway to our decisive victories on the battlefield. The legend of Dir\\nYassin helped us in particular in the saving of Tiberias and the\\nconquest of Haifa.\"\\n\\n\\n[1] (A footnote from _The Revolt_, pp.226-7.) \"To counteract the loss\\nof Dir yassin, a village of strategic importance, Arab headquarters at\\nRamallah broadcast a crude atrocity story, alleging a massacre by\\nIrgun troops of women and children in the village. Certain Jewish\\nofficials, fearing the Irgun men as political rivals, seized upon this\\nArab gruel propaganda to smear the Irgun. An eminent Rabbi was induced\\nto reprimand the Irgun before he had time to sift the truth. Out of\\nevil, however, good came. This Arab propaganda spread a legend of\\nterror amongst Arabs and Arab troops, who were seized with panic at\\nthe mention of Irgun soldiers. The legend was worth half a dozen\\nbattalions to the forces of Israel. The `Dir Yassin Massacre\\' lie\\nis still propagated by Jew-haters all over the world.\"\\n\\n[2] In reference to denunciation of Dir Yassin by fellow Jews.\\n',\n", - " 'From: mathew \\nSubject: Alt.Atheism FAQ: Introduction to Atheism\\nSummary: Please read this file before posting to alt.atheism\\nKeywords: FAQ, atheism\\nExpires: Thu, 6 May 1993 12:22:45 GMT\\nDistribution: world\\nOrganization: Mantis Consultants, Cambridge. UK.\\nSupersedes: <19930308134439@mantis.co.uk>\\nLines: 646\\n\\nArchive-name: atheism/introduction\\nAlt-atheism-archive-name: introduction\\nLast-modified: 5 April 1993\\nVersion: 1.2\\n\\n-----BEGIN PGP SIGNED MESSAGE-----\\n\\n An Introduction to Atheism\\n by mathew \\n\\nThis article attempts to provide a general introduction to atheism. Whilst I\\nhave tried to be as neutral as possible regarding contentious issues, you\\nshould always remember that this document represents only one viewpoint. I\\nwould encourage you to read widely and draw your own conclusions; some\\nrelevant books are listed in a companion article.\\n\\nTo provide a sense of cohesion and progression, I have presented this article\\nas an imaginary conversation between an atheist and a theist. All the\\nquestions asked by the imaginary theist are questions which have been cropped\\nup repeatedly on alt.atheism since the newsgroup was created. Some other\\nfrequently asked questions are answered in a companion article.\\n\\nPlease note that this article is arguably slanted towards answering questions\\nposed from a Christian viewpoint. This is because the FAQ files reflect\\nquestions which have actually been asked, and it is predominantly Christians\\nwho proselytize on alt.atheism.\\n\\nSo when I talk of religion, I am talking primarily about religions such as\\nChristianity, Judaism and Islam, which involve some sort of superhuman divine\\nbeing. Much of the discussion will apply to other religions, but some of it\\nmay not.\\n\\n\"What is atheism?\"\\n\\nAtheism is characterized by an absence of belief in the existence of God.\\nSome atheists go further, and believe that God does not exist. The former is\\noften referred to as the \"weak atheist\" position, and the latter as \"strong\\natheism\".\\n\\nIt is important to note the difference between these two positions. \"Weak\\natheism\" is simple scepticism; disbelief in the existence of God. \"Strong\\natheism\" is a positive belief that God does not exist. Please do not\\nfall into the trap of assuming that all atheists are \"strong atheists\".\\n\\nSome atheists believe in the non-existence of all Gods; others limit their\\natheism to specific Gods, such as the Christian God, rather than making\\nflat-out denials.\\n\\n\"But isn\\'t disbelieving in God the same thing as believing he doesn\\'t exist?\"\\n\\nDefinitely not. Disbelief in a proposition means that one does not believe\\nit to be true. Not believing that something is true is not equivalent to\\nbelieving that it is false; one may simply have no idea whether it is true or\\nnot. Which brings us to agnosticism.\\n\\n\"What is agnosticism then?\"\\n\\nThe term \\'agnosticism\\' was coined by Professor Huxley at a meeting of the\\nMetaphysical Society in 1876. He defined an agnostic as someone who\\ndisclaimed (\"strong\") atheism and believed that the ultimate origin of things\\nmust be some cause unknown and unknowable.\\n\\nThus an agnostic is someone who believes that we do not and cannot know for\\nsure whether God exists.\\n\\nWords are slippery things, and language is inexact. Beware of assuming that\\nyou can work out someone\\'s philosophical point of view simply from the fact\\nthat she calls herself an atheist or an agnostic. For example, many people\\nuse agnosticism to mean \"weak atheism\", and use the word \"atheism\" only when\\nreferring to \"strong atheism\".\\n\\nBeware also that because the word \"atheist\" has so many shades of meaning, it\\nis very difficult to generalize about atheists. About all you can say for\\nsure is that atheists don\\'t believe in God. For example, it certainly isn\\'t\\nthe case that all atheists believe that science is the best way to find out\\nabout the universe.\\n\\n\"So what is the philosophical justification or basis for atheism?\"\\n\\nThere are many philosophical justifications for atheism. To find out why a\\nparticular person chooses to be an atheist, it\\'s best to ask her.\\n\\nMany atheists feel that the idea of God as presented by the major religions\\nis essentially self-contradictory, and that it is logically impossible that\\nsuch a God could exist. Others are atheists through scepticism, because they\\nsee no evidence that God exists.\\n\\n\"But isn\\'t it impossible to prove the non-existence of something?\"\\n\\nThere are many counter-examples to such a statement. For example, it is\\nquite simple to prove that there does not exist a prime number larger than\\nall other prime numbers. Of course, this deals with well-defined objects\\nobeying well-defined rules. Whether Gods or universes are similarly\\nwell-defined is a matter for debate.\\n\\nHowever, assuming for the moment that the existence of a God is not provably\\nimpossible, there are still subtle reasons for assuming the non-existence of\\nGod. If we assume that something does not exist, it is always possible to\\nshow that this assumption is invalid by finding a single counter-example.\\n\\nIf on the other hand we assume that something does exist, and if the thing in\\nquestion is not provably impossible, showing that the assumption is invalid\\nmay require an exhaustive search of all possible places where such a thing\\nmight be found, to show that it isn\\'t there. Such an exhaustive search is\\noften impractical or impossible. There is no such problem with largest\\nprimes, because we can prove that they don\\'t exist.\\n\\nTherefore it is generally accepted that we must assume things do not exist\\nunless we have evidence that they do. Even theists follow this rule most of\\nthe time; they don\\'t believe in unicorns, even though they can\\'t conclusively\\nprove that no unicorns exist anywhere.\\n\\nTo assume that God exists is to make an assumption which probably cannot be\\ntested. We cannot make an exhaustive search of everywhere God might be to\\nprove that he doesn\\'t exist anywhere. So the sceptical atheist assumes by\\ndefault that God does not exist, since that is an assumption we can test.\\n\\nThose who profess strong atheism usually do not claim that no sort of God\\nexists; instead, they generally restrict their claims so as to cover\\nvarieties of God described by followers of various religions. So whilst it\\nmay be impossible to prove conclusively that no God exists, it may be\\npossible to prove that (say) a God as described by a particular religious\\nbook does not exist. It may even be possible to prove that no God described\\nby any present-day religion exists.\\n\\nIn practice, believing that no God described by any religion exists is very\\nclose to believing that no God exists. However, it is sufficiently different\\nthat counter-arguments based on the impossibility of disproving every kind of\\nGod are not really applicable.\\n\\n\"But what if God is essentially non-detectable?\"\\n\\nIf God interacts with our universe in any way, the effects of his interaction\\nmust be measurable. Hence his interaction with our universe must be\\ndetectable.\\n\\nIf God is essentially non-detectable, it must therefore be the case that he\\ndoes not interact with our universe in any way. Many atheists would argue\\nthat if God does not interact with our universe at all, it is of no\\nimportance whether he exists or not.\\n\\nIf the Bible is to be believed, God was easily detectable by the Israelites.\\nSurely he should still be detectable today?\\n\\nNote that I am not demanding that God interact in a scientifically\\nverifiable, physical way. It must surely be possible to perceive some\\neffect caused by his presence, though; otherwise, how can I distinguish him\\nfrom all the other things that don\\'t exist?\\n\\n\"OK, you may think there\\'s a philosophical justification for atheism, but\\n isn\\'t it still a religious belief?\"\\n\\nOne of the most common pastimes in philosophical discussion is \"the\\nredefinition game\". The cynical view of this game is as follows:\\n\\nPerson A begins by making a contentious statement. When person B points out\\nthat it can\\'t be true, person A gradually re-defines the words he used in the\\nstatement until he arrives at something person B is prepared to accept. He\\nthen records the statement, along with the fact that person B has agreed to\\nit, and continues. Eventually A uses the statement as an \"agreed fact\", but\\nuses his original definitions of all the words in it rather than the obscure\\nredefinitions originally needed to get B to agree to it. Rather than be seen\\nto be apparently inconsistent, B will tend to play along.\\n\\nThe point of this digression is that the answer to the question \"Isn\\'t\\natheism a religious belief?\" depends crucially upon what is meant by\\n\"religious\". \"Religion\" is generally characterized by belief in a superhuman\\ncontrolling power -- especially in some sort of God -- and by faith and\\nworship.\\n\\n[ It\\'s worth pointing out in passing that some varieties of Buddhism are not\\n \"religion\" according to such a definition. ]\\n\\nAtheism is certainly not a belief in any sort of superhuman power, nor is it\\ncategorized by worship in any meaningful sense. Widening the definition of\\n\"religious\" to encompass atheism tends to result in many other aspects of\\nhuman behaviour suddenly becoming classed as \"religious\" as well -- such as\\nscience, politics, and watching TV.\\n\\n\"OK, so it\\'s not a religion. But surely belief in atheism (or science) is\\n still just an act of faith, like religion is?\"\\n\\nFirstly, it\\'s not entirely clear that sceptical atheism is something one\\nactually believes in.\\n\\nSecondly, it is necessary to adopt a number of core beliefs or assumptions to\\nmake some sort of sense out of the sensory data we experience. Most atheists\\ntry to adopt as few core beliefs as possible; and even those are subject to\\nquestioning if experience throws them into doubt.\\n\\nScience has a number of core assumptions. For example, it is generally\\nassumed that the laws of physics are the same for all observers. These are\\nthe sort of core assumptions atheists make. If such basic ideas are called\\n\"acts of faith\", then almost everything we know must be said to be based on\\nacts of faith, and the term loses its meaning.\\n\\nFaith is more often used to refer to complete, certain belief in something.\\nAccording to such a definition, atheism and science are certainly not acts of\\nfaith. Of course, individual atheists or scientists can be as dogmatic as\\nreligious followers when claiming that something is \"certain\". This is not a\\ngeneral tendency, however; there are many atheists who would be reluctant to\\nstate with certainty that the universe exists.\\n\\nFaith is also used to refer to belief without supporting evidence or proof.\\nSceptical atheism certainly doesn\\'t fit that definition, as sceptical atheism\\nhas no beliefs. Strong atheism is closer, but still doesn\\'t really match, as\\neven the most dogmatic atheist will tend to refer to experimental data (or\\nthe lack of it) when asserting that God does not exist.\\n\\n\"If atheism is not religious, surely it\\'s anti-religious?\"\\n\\nIt is an unfortunate human tendency to label everyone as either \"for\" or\\n\"against\", \"friend\" or \"enemy\". The truth is not so clear-cut.\\n\\nAtheism is the position that runs logically counter to theism; in that sense,\\nit can be said to be \"anti-religion\". However, when religious believers\\nspeak of atheists being \"anti-religious\" they usually mean that the atheists\\nhave some sort of antipathy or hatred towards theists.\\n\\nThis categorization of atheists as hostile towards religion is quite unfair.\\nAtheist attitudes towards theists in fact cover a broad spectrum.\\n\\nMost atheists take a \"live and let live\" attitude. Unless questioned, they\\nwill not usually mention their atheism, except perhaps to close friends. Of\\ncourse, this may be in part because atheism is not \"socially acceptable\" in\\nmany countries.\\n\\nA few atheists are quite anti-religious, and may even try to \"convert\" others\\nwhen possible. Historically, such anti-religious atheists have made little\\nimpact on society outside the Eastern Bloc countries.\\n\\n(To digress slightly: the Soviet Union was originally dedicated to separation\\nof church and state, just like the USA. Soviet citizens were legally free to\\nworship as they wished. The institution of \"state atheism\" came about when\\nStalin took control of the Soviet Union and tried to destroy the churches in\\norder to gain complete power over the population.)\\n\\nSome atheists are quite vocal about their beliefs, but only where they see\\nreligion encroaching on matters which are not its business -- for example,\\nthe government of the USA. Such individuals are usually concerned that\\nchurch and state should remain separate.\\n\\n\"But if you don\\'t allow religion to have a say in the running of the state,\\n surely that\\'s the same as state atheism?\"\\n\\nThe principle of the separation of church and state is that the state shall\\nnot legislate concerning matters of religious belief. In particular, it\\nmeans not only that the state cannot promote one religion at the expense of\\nanother, but also that it cannot promote any belief which is religious in\\nnature.\\n\\nReligions can still have a say in discussion of purely secular matters. For\\nexample, religious believers have historically been responsible for\\nencouraging many political reforms. Even today, many organizations\\ncampaigning for an increase in spending on foreign aid are founded as\\nreligious campaigns. So long as they campaign concerning secular matters,\\nand so long as they do not discriminate on religious grounds, most atheists\\nare quite happy to see them have their say.\\n\\n\"What about prayer in schools? If there\\'s no God, why do you care if people\\n pray?\"\\n\\nBecause people who do pray are voters and lawmakers, and tend to do things\\nthat those who don\\'t pray can\\'t just ignore. Also, Christian prayer in\\nschools is intimidating to non-Christians, even if they are told that they\\nneed not join in. The diversity of religious and non-religious belief means\\nthat it is impossible to formulate a meaningful prayer that will be\\nacceptable to all those present at any public event.\\n\\nAlso, non-prayers tend to have friends and family who pray. It is reasonable\\nto care about friends and family wasting their time, even without other\\nmotives.\\n\\n\"You mentioned Christians who campaign for increased foreign aid. What about\\n atheists? Why aren\\'t there any atheist charities or hospitals? Don\\'t\\n atheists object to the religious charities?\"\\n\\nThere are many charities without religious purpose that atheists can\\ncontribute to. Some atheists contribute to religious charities as well, for\\nthe sake of the practical good they do. Some atheists even do voluntary work\\nfor charities founded on a theistic basis.\\n\\nMost atheists seem to feel that atheism isn\\'t worth shouting about in\\nconnection with charity. To them, atheism is just a simple, obvious everyday\\nmatter, and so is charity. Many feel that it\\'s somewhat cheap, not to say\\nself-righteous, to use simple charity as an excuse to plug a particular set\\nof religious beliefs.\\n\\nTo \"weak\" atheists, building a hospital to say \"I do not believe in God\" is a\\nrather strange idea; it\\'s rather like holding a party to say \"Today is not my\\nbirthday\". Why the fuss? Atheism is rarely evangelical.\\n\\n\"You said atheism isn\\'t anti-religious. But is it perhaps a backlash against\\n one\\'s upbringing, a way of rebelling?\"\\n\\nPerhaps it is, for some. But many people have parents who do not attempt to\\nforce any religious (or atheist) ideas upon them, and many of those people\\nchoose to call themselves atheists.\\n\\nIt\\'s also doubtless the case that some religious people chose religion as a\\nbacklash against an atheist upbringing, as a way of being different. On the\\nother hand, many people choose religion as a way of conforming to the\\nexpectations of others.\\n\\nOn the whole, we can\\'t conclude much about whether atheism or religion are\\nbacklash or conformism; although in general, people have a tendency to go\\nalong with a group rather than act or think independently.\\n\\n\"How do atheists differ from religious people?\"\\n\\nThey don\\'t believe in God. That\\'s all there is to it.\\n\\nAtheists may listen to heavy metal -- backwards, even -- or they may prefer a\\nVerdi Requiem, even if they know the words. They may wear Hawaiian shirts,\\nthey may dress all in black, they may even wear orange robes. (Many\\nBuddhists lack a belief in any sort of God.) Some atheists even carry a copy\\nof the Bible around -- for arguing against, of course!\\n\\nWhoever you are, the chances are you have met several atheists without\\nrealising it. Atheists are usually unexceptional in behaviour and\\nappearance.\\n\\n\"Unexceptional? But aren\\'t atheists less moral than religious people?\"\\n\\nThat depends. If you define morality as obedience to God, then of course\\natheists are less moral as they don\\'t obey any God. But usually when one\\ntalks of morality, one talks of what is acceptable (\"right\") and unacceptable\\n(\"wrong\") behaviour within society.\\n\\nHumans are social animals, and to be maximally successful they must\\nco-operate with each other. This is a good enough reason to discourage most\\natheists from \"anti-social\" or \"immoral\" behaviour, purely for the purposes\\nof self-preservation.\\n\\nMany atheists behave in a \"moral\" or \"compassionate\" way simply because they\\nfeel a natural tendency to empathize with other humans. So why do they care\\nwhat happens to others? They don\\'t know, they simply are that way.\\n\\nNaturally, there are some people who behave \"immorally\" and try to use\\natheism to justify their actions. However, there are equally many people who\\nbehave \"immorally\" and then try to use religious beliefs to justify their\\nactions. For example:\\n\\n \"Here is a trustworthy saying that deserves full acceptance: Jesus Christ\\n came into the world to save sinners... But for that very reason, I was\\n shown mercy so that in me... Jesus Christ might display His unlimited\\n patience as an example for those who would believe in him and receive\\n eternal life. Now to the king eternal, immortal, invisible, the only God,\\n be honor and glory forever and ever.\"\\n\\nThe above quote is from a statement made to the court on February 17th 1992\\nby Jeffrey Dahmer, the notorious cannibal serial killer of Milwaukee,\\nWisconsin. It seems that for every atheist mass-murderer, there is a\\nreligious mass-murderer. But what of more trivial morality?\\n\\n A survey conducted by the Roper Organization found that behavior\\n deteriorated after \"born again\" experiences. While only 4% of respondents\\n said they had driven intoxicated before being \"born again,\" 12% had done\\n so after conversion. Similarly, 5% had used illegal drugs before\\n conversion, 9% after. Two percent admitted to engaging in illicit sex\\n before salvation; 5% after.\\n [\"Freethought Today\", September 1991, p. 12.]\\n\\nSo it seems that at best, religion does not have a monopoly on moral\\nbehaviour.\\n\\n\"Is there such a thing as atheist morality?\"\\n\\nIf you mean \"Is there such a thing as morality for atheists?\", then the\\nanswer is yes, as explained above. Many atheists have ideas about morality\\nwhich are at least as strong as those held by religious people.\\n\\nIf you mean \"Does atheism have a characteristic moral code?\", then the answer\\nis no. Atheism by itself does not imply anything much about how a person\\nwill behave. Most atheists follow many of the same \"moral rules\" as theists,\\nbut for different reasons. Atheists view morality as something created by\\nhumans, according to the way humans feel the world \\'ought\\' to work, rather\\nthan seeing it as a set of rules decreed by a supernatural being.\\n\\n\"Then aren\\'t atheists just theists who are denying God?\"\\n\\nA study by the Freedom From Religion Foundation found that over 90% of the\\natheists who responded became atheists because religion did not work for\\nthem. They had found that religious beliefs were fundamentally incompatible\\nwith what they observed around them.\\n\\nAtheists are not unbelievers through ignorance or denial; they are\\nunbelievers through choice. The vast majority of them have spent time\\nstudying one or more religions, sometimes in very great depth. They have\\nmade a careful and considered decision to reject religious beliefs.\\n\\nThis decision may, of course, be an inevitable consequence of that\\nindividual\\'s personality. For a naturally sceptical person, the choice\\nof atheism is often the only one that makes sense, and hence the only\\nchoice that person can honestly make.\\n\\n\"But don\\'t atheists want to believe in God?\"\\n\\nAtheists live their lives as though there is nobody watching over them. Many\\nof them have no desire to be watched over, no matter how good-natured the\\n\"Big Brother\" figure might be.\\n\\nSome atheists would like to be able to believe in God -- but so what? Should\\none believe things merely because one wants them to be true? The risks of\\nsuch an approach should be obvious. Atheists often decide that wanting to\\nbelieve something is not enough; there must be evidence for the belief.\\n\\n\"But of course atheists see no evidence for the existence of God -- they are\\n unwilling in their souls to see!\"\\n\\nMany, if not most atheists were previously religious. As has been explained\\nabove, the vast majority have seriously considered the possibility that God\\nexists. Many atheists have spent time in prayer trying to reach God.\\n\\nOf course, it is true that some atheists lack an open mind; but assuming that\\nall atheists are biased and insincere is offensive and closed-minded.\\nComments such as \"Of course God is there, you just aren\\'t looking properly\"\\nare likely to be viewed as patronizing.\\n\\nCertainly, if you wish to engage in philosophical debate with atheists it is\\nvital that you give them the benefit of the doubt and assume that they are\\nbeing sincere if they say that they have searched for God. If you are not\\nwilling to believe that they are basically telling the truth, debate is\\nfutile.\\n\\n\"Isn\\'t the whole of life completely pointless to an atheist?\"\\n\\nMany atheists live a purposeful life. They decide what they think gives\\nmeaning to life, and they pursue those goals. They try to make their lives\\ncount, not by wishing for eternal life, but by having an influence on other\\npeople who will live on. For example, an atheist may dedicate his life to\\npolitical reform, in the hope of leaving his mark on history.\\n\\nIt is a natural human tendency to look for \"meaning\" or \"purpose\" in random\\nevents. However, it is by no means obvious that \"life\" is the sort of thing\\nthat has a \"meaning\".\\n\\nTo put it another way, not everything which looks like a question is actually\\na sensible thing to ask. Some atheists believe that asking \"What is the\\nmeaning of life?\" is as silly as asking \"What is the meaning of a cup of\\ncoffee?\". They believe that life has no purpose or meaning, it just is.\\n\\n\"So how do atheists find comfort in time of danger?\"\\n\\nThere are many ways of obtaining comfort; from family, friends, or even pets.\\nOr on a less spiritual level, from food or drink or TV.\\n\\nThat may sound rather an empty and vulnerable way to face danger, but so\\nwhat? Should individuals believe in things because they are comforting, or\\nshould they face reality no matter how harsh it might be?\\n\\nIn the end, it\\'s a decision for the individual concerned. Most atheists are\\nunable to believe something they would not otherwise believe merely because\\nit makes them feel comfortable. They put truth before comfort, and consider\\nthat if searching for truth sometimes makes them feel unhappy, that\\'s just\\nhard luck.\\n\\n\"Don\\'t atheists worry that they might suddenly be shown to be wrong?\"\\n\\nThe short answer is \"No, do you?\"\\n\\nMany atheists have been atheists for years. They have encountered many\\narguments and much supposed evidence for the existence of God, but they have\\nfound all of it to be invalid or inconclusive.\\n\\nThousands of years of religious belief haven\\'t resulted in any good proof of\\nthe existence of God. Atheists therefore tend to feel that they are unlikely\\nto be proved wrong in the immediate future, and they stop worrying about it.\\n\\n\"So why should theists question their beliefs? Don\\'t the same arguments\\n apply?\"\\n\\nNo, because the beliefs being questioned are not similar. Weak atheism is\\nthe sceptical \"default position\" to take; it asserts nothing. Strong atheism\\nis a negative belief. Theism is a very strong positive belief.\\n\\nAtheists sometimes also argue that theists should question their beliefs\\nbecause of the very real harm they can cause -- not just to the believers,\\nbut to everyone else.\\n\\n\"What sort of harm?\"\\n\\nReligion represents a huge financial and work burden on mankind. It\\'s not\\njust a matter of religious believers wasting their money on church buildings;\\nthink of all the time and effort spent building churches, praying, and so on.\\nImagine how that effort could be better spent.\\n\\nMany theists believe in miracle healing. There have been plenty of instances\\nof ill people being \"healed\" by a priest, ceasing to take the medicines\\nprescribed to them by doctors, and dying as a result. Some theists have died\\nbecause they have refused blood transfusions on religious grounds.\\n\\nIt is arguable that the Catholic Church\\'s opposition to birth control -- and\\ncondoms in particular -- is increasing the problem of overpopulation in many\\nthird-world countries and contributing to the spread of AIDS world-wide.\\n\\nReligious believers have been known to murder their children rather than\\nallow their children to become atheists or marry someone of a different\\nreligion.\\n\\n\"Those weren\\'t REAL believers. They just claimed to be believers as some\\n sort of excuse.\"\\n\\nWhat makes a real believer? There are so many One True Religions it\\'s hard\\nto tell. Look at Christianity: there are many competing groups, all\\nconvinced that they are the only true Christians. Sometimes they even fight\\nand kill each other. How is an atheist supposed to decide who\\'s a REAL\\nChristian and who isn\\'t, when even the major Christian churches like the\\nCatholic Church and the Church of England can\\'t decide amongst themselves?\\n\\nIn the end, most atheists take a pragmatic view, and decide that anyone who\\ncalls himself a Christian, and uses Christian belief or dogma to justify his\\nactions, should be considered a Christian. Maybe some of those Christians\\nare just perverting Christian teaching for their own ends -- but surely if\\nthe Bible can be so readily used to support un-Christian acts it can\\'t be\\nmuch of a moral code? If the Bible is the word of God, why couldn\\'t he have\\nmade it less easy to misinterpret? And how do you know that your beliefs\\naren\\'t a perversion of what your God intended?\\n\\nIf there is no single unambiguous interpretation of the Bible, then why\\nshould an atheist take one interpretation over another just on your say-so?\\nSorry, but if someone claims that he believes in Jesus and that he murdered\\nothers because Jesus and the Bible told him to do so, we must call him a\\nChristian.\\n\\n\"Obviously those extreme sorts of beliefs should be questioned. But since\\n nobody has ever proved that God does not exist, it must be very unlikely\\n that more basic religious beliefs, shared by all faiths, are nonsense.\"\\n\\nThat does not hold, because as was pointed out at the start of this dialogue,\\npositive assertions concerning the existence of entities are inherently much\\nharder to disprove than negative ones. Nobody has ever proved that unicorns\\ndon\\'t exist, but that doesn\\'t make it unlikely that they are myths.\\n\\nIt is therefore much more valid to hold a negative assertion by default than\\nit is to hold a positive assertion by default. Of course, \"weak\" atheists\\nwould argue that asserting nothing is better still.\\n\\n\"Well, if atheism\\'s so great, why are there so many theists?\"\\n\\nUnfortunately, the popularity of a belief has little to do with how \"correct\"\\nit is, or whether it \"works\"; consider how many people believe in astrology,\\ngraphology, and other pseudo-sciences.\\n\\nMany atheists feel that it is simply a human weakness to want to believe in\\ngods. Certainly in many primitive human societies, religion allows the\\npeople to deal with phenomena that they do not adequately understand.\\n\\nOf course, there\\'s more to religion than that. In the industrialized world,\\nwe find people believing in religious explanations of phenomena even when\\nthere are perfectly adequate natural explanations. Religion may have started\\nas a means of attempting to explain the world, but nowadays it serves other\\npurposes as well.\\n\\n\"But so many cultures have developed religions. Surely that must say\\n something?\"\\n\\nNot really. Most religions are only superficially similar; for example, it\\'s\\nworth remembering that religions such as Buddhism and Taoism lack any sort of\\nconcept of God in the Christian sense.\\n\\nOf course, most religions are quick to denounce competing religions, so it\\'s\\nrather odd to use one religion to try and justify another.\\n\\n\"What about all the famous scientists and philosophers who have concluded\\n that God exists?\"\\n\\nFor every scientist or philosopher who believes in a god, there is one who\\ndoes not. Besides, as has already been pointed out, the truth of a belief is\\nnot determined by how many people believe it. Also, it is important to\\nrealize that atheists do not view famous scientists or philosophers in the\\nsame way that theists view their religious leaders.\\n\\nA famous scientist is only human; she may be an expert in some fields, but\\nwhen she talks about other matters her words carry no special weight. Many\\nrespected scientists have made themselves look foolish by speaking on\\nsubjects which lie outside their fields of expertise.\\n\\n\"So are you really saying that widespread belief in religion indicates\\n nothing?\"\\n\\nNot entirely. It certainly indicates that the religion in question has\\nproperties which have helped it so spread so far.\\n\\nThe theory of memetics talks of \"memes\" -- sets of ideas which can propagate\\nthemselves between human minds, by analogy with genes. Some atheists view\\nreligions as sets of particularly successful parasitic memes, which spread by\\nencouraging their hosts to convert others. Some memes avoid destruction by\\ndiscouraging believers from questioning doctrine, or by using peer pressure\\nto keep one-time believers from admitting that they were mistaken. Some\\nreligious memes even encourage their hosts to destroy hosts controlled by\\nother memes.\\n\\nOf course, in the memetic view there is no particular virtue associated with\\nsuccessful propagation of a meme. Religion is not a good thing because of\\nthe number of people who believe it, any more than a disease is a good thing\\nbecause of the number of people who have caught it.\\n\\n\"Even if religion is not entirely true, at least it puts across important\\n messages. What are the fundamental messages of atheism?\"\\n\\nThere are many important ideas atheists promote. The following are just a\\nfew of them; don\\'t be surprised to see ideas which are also present in some\\nreligions.\\n\\n There is more to moral behaviour than mindlessly following rules.\\n\\n Be especially sceptical of positive claims.\\n\\n If you want your life to have some sort of meaning, it\\'s up to you to\\n find it.\\n\\n Search for what is true, even if it makes you uncomfortable.\\n\\n Make the most of your life, as it\\'s probably the only one you\\'ll have.\\n\\n It\\'s no good relying on some external power to change you; you must change\\n yourself.\\n\\n Just because something\\'s popular doesn\\'t mean it\\'s good.\\n\\n If you must assume something, assume something it\\'s easy to test.\\n\\n Don\\'t believe things just because you want them to be true.\\n\\nand finally (and most importantly):\\n\\n All beliefs should be open to question.\\n\\nThanks for taking the time to read this article.\\n\\n\\nmathew\\n\\n-----BEGIN PGP SIGNATURE-----\\nVersion: 2.2\\n\\niQCVAgUBK8AjRXzXN+VrOblFAQFSbwP+MHePY4g7ge8Mo5wpsivX+kHYYxMErFAO\\n7ltVtMVTu66Nz6sBbPw9QkbjArbY/S2sZ9NF5htdii0R6SsEyPl0R6/9bV9okE/q\\nnihqnzXE8pGvLt7tlez4EoeHZjXLEFrdEyPVayT54yQqGb4HARbOEHDcrTe2atmP\\nq0Z4hSSPpAU=\\n=q2V5\\n-----END PGP SIGNATURE-----\\n\\nFor information about PGP 2.2, send mail to pgpinfo@mantis.co.uk.\\nÿ\\n',\n", - " \"From: markus@octavia.anu.edu.au (Markus Buchhorn)\\nSubject: HDF readers/viewers\\nOrganization: Australian National University, Canberra\\nLines: 33\\nDistribution: world\\nNNTP-Posting-Host: 150.203.5.35\\nOriginator: markus@octavia\\n\\n\\n\\nG'day all,\\n\\nCan anybody point me at a utility which will read/convert/crop/whatnot/\\ndisplay HDF image files ? I've had a look at the HDF stuff under NCSA \\nand it must take an award for odd directory structure, strange storage\\napproaches and minimalist documentation :-)\\n\\nPart of the problem is that I want to look at large (5MB+) HDF files and\\ncrop out a section. Ideally I would like a hdftoppm type of utility, from\\nwhich I can then use the PBMplus stuff quite merrily. I can convert the cropped\\npart into another format for viewing/animation.\\n\\nOtherwise, can someone please explain how to set up the NCSA Visualisation S/W\\nfor HDF (3.2.r5 or 3.3beta) and do the above cropping/etc. This is for\\nSuns with SunOS 4.1.2.\\n\\nAny help GREATLY appreciated. Ta muchly !\\n\\nCheers,\\n\\tMarkus\\n\\n-- \\nMarkus Buchhorn, Parallel Computing Research Facility\\nemail = markus@octavia.anu.edu.au\\nAustralian National University, Canberra, 0200 , Australia.\\n[International = +61 6, Australia = 06] [Phone = 2492930, Fax = 2490747]\\n-- \\nMarkus Buchhorn, Parallel Computing Research Facility\\nemail = markus@octavia.anu.edu.au\\nAustralian National University, Canberra, 0200 , Australia.\\n[International = +61 6, Australia = 06] [Phone = 2492930, Fax = 2490747]\\n\",\n", - " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: New Member\\nOrganization: Cookamunga Tourist Bureau\\nLines: 20\\n\\nIn article ,\\ndfuller@portal.hq.videocart.com (Dave Fuller) wrote:\\n> He is right. Just because an event was explained by a human to have been\\n> done \"in the name of religion\", does not mean that it actually followed\\n> the religion. He will always point to the \"ideal\" and say that it wasn\\'t\\n> followed so it can\\'t be the reason for the event. There really is no way\\n> to argue with him, so why bother. Sure, you may get upset because his \\n> answer is blind and not supported factually - but he will win every time\\n> with his little argument. I don\\'t think there will be any postings from\\n> me in direct response to one of his.\\n\\nHey! Glad to have some serious and constructive contributors in this\\nnewsgroup. I agree 100% on the statement above, you might argue with\\nBobby for eons, and he still does not get it, so the best thing is\\nto spare your mental resources to discuss more interesting issues.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", - " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 76\\n\\n\\nChris Faehl writes:\\n\\n> >Many atheists do not mock the concept of a god, they are shocked that\\n> >so many theists have fallen to such a low level that they actually\\n> >believe in a god. You accuse all atheists of being part of a conspiracy,\\n> >again without evidence.\\n>\\n>> Rule *2: Condescending to the population at large (i.e., theists) will >not\\n>> win many people to your faith anytime soon. It only ruins your credibility.\\n\\n>Fallacy #1: Atheism is a faith. Lo! I hear the FAQ beckoning once again...\\n>[wonderful Rule #3 deleted - you\\'re correct, you didn\\'t say anything >about\\n>a conspiracy]\\n\\nCorrection: _hard_ atheism is a faith.\\n\\n>> Rule #4: Don\\'t mix apples with oranges. How can you say that the\\n>> extermination by the Mongols was worse than Stalin? Khan conquered people\\n>> unsympathetic to his cause. That was atrocious. But Stalin killed millions of\\n>> his own people who loved and worshipped _him_ and his atheist state!! How can\\n>> anyone be worse than that?\\n\\n>I will not explain this to you again: Stalin did nothing in the name of\\n>atheism. Whethe he was or was not an atheist is irrelevant.\\n\\nGet a grip, man. The Stalin example was brought up not as an\\nindictment of atheism, but merely as another example of how people will\\nkill others under any name that\\'s fit for the occasion.\\n\\n>> Rule #6: If you rely on evidence, state it. We\\'re waiting.\\n\\n>As opposed to relying on a bunch of black ink on some crumbling old paper...\\n>Atheism has to prove nothing to you or anyone else. It is the burden of\\n>dogmatic religious bullshit to provide their \\'evidence\\'. Which \\'we\\'\\n>might you be referring to, and how long are you going to wait?\\n\\nSo hard atheism has nothing to prove? Then how does it justify that\\nGod does not exist? I know, there\\'s the FAQ, etc. But guess what -- if\\nthose justifications were so compelling why aren\\'t people flocking to\\n_hard_ atheism? They\\'re not, and they won\\'t. I for one will discourage\\npeople from hard atheism by pointing out those very sources as reliable\\nstatements on hard atheism.\\n\\nSecond, what makes you think I\\'m defending any given religion? I\\'m merely\\nrecognizing hard atheism for what it is, a faith.\\n\\nAnd yes, by \"we\" I am referring to every reader of the post. Where is the\\nevidence that the poster stated that he relied upon?\\n>\\n>> Oh yes, though I\\'m not a theist, I can say safely that *by definition* many\\n>> theists are not arrogant, since they boast about something _outside_\\n>> themselves, namely, a god or gods. So in principle it\\'s hard to see how\\n>> theists are necessarily arrogant.\\n\\n>Because they say, \"Such-and-such is absolutely unalterably True, because\\n ^^^^\\n>my dogma says it is True.\" I am not prepared to issue blanket statements\\n>indicting all theists of arrogance as you are wont to do with atheists.\\n\\nBzzt! By virtue of your innocent little pronoun, \"they\", you\\'ve just issued\\na blanket statement. At least I will apologize by qualifying my original\\nstatement with \"hard atheist\" in place of atheist. Would you call John the\\nBaptist arrogant, who boasted of one greater than he? That\\'s what many\\nChristians do today. How is that _in itself_ arrogant?\\n>\\n>> I\\'m not worthy!\\n>Only seriously misinformed.\\nWith your sophisticated put-down of \"they\", the theists, _your_ serious\\nmisinformation shines through.\\n\\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", - " \"From: alan@saturn.cs.swin.OZ.AU (Alan Christiansen)\\nSubject: Re: Sphere from 4 points?\\nOrganization: Swinburne University of Technology\\nLines: 71\\nNNTP-Posting-Host: saturn.cs.swin.oz.au\\n\\nspworley@netcom.com (Steve Worley) writes:\\n\\n>bolson@carson.u.washington.edu (Edward Bolson) writes:\\n\\n>>Boy, this will be embarassing if it is trivial or an FAQ:\\n\\n>>Given 4 points (non coplanar), how does one find the sphere, that is,\\n>>center and radius, exactly fitting those points? I know how to do it\\n>>for a circle (from 3 points), but do not immediately see a \\n>>straightforward way to do it in 3-D. I have checked some\\n>>geometry books, Graphics Gems, and Farin, but am still at a loss?\\n>>Please have mercy on me and provide the solution? \\n\\n>It's not a bad question: I don't have any refs that list this algorithm\\n>either. But thinking about it a bit, it shouldn't be too hard.\\n\\n>1) Take three of the points and find the plane they define as well as\\n>the circle that they lie on (you say you have this algorithm already)\\n\\n>2) Find the center of this circle. The line passing through this center\\n>perpendicular to the plane of the three points passes through the center of\\n>the sphere.\\n\\n>3) Repeat with the unused point and two of the original points. This\\n>gives you two different lines that both pass through the sphere's\\n>origin. Their interection is the center of the sphere.\\n\\n>4) the radius is easy to compute, it's just the distance from the center to\\n>any of the original points.\\n\\n>I'll leave the math to you, but this is a workable algorithm. :-)\\n\\nGood I had a bad feeling about this problem because of a special case\\nwith no solution that worried me.\\n\\nFour coplanar points in the shape of a square have no unique sphere \\nthat they are on the surface of.\\nSimilarly 4 colinear point have no finite sized sphere that they are on the\\nsurface of.\\n\\nThese algorithms being geometrical designed rather than algebraically design\\nmeet these problems neatly.\\n\\nWhen determining which plane the 3 points are on if they are colinear\\nthe algorithm should afil or return infinite R.\\nWhen intersecting the two lines there are 2 possibilities\\nthey are the same line (the 4 points were on a planar circle)\\nthey are different lines but parallel. There is a sphere of in radius.\\n\\nThis last case can be achieved with 3 colinier points and any 4th point\\nby taking the 4th point and pairs of the first 3 parallel lines will be produced\\n\\nit can also be achieved by\\n\\nIf all 4 points are coplanar but are not on one circle. \\n\\nIt seems to me that the algorithm only fails when the 4 points are coplanar.\\nThe algorithm always fails when the points are coplanar.\\n(4 points being colinear => coplanar)\\n\\nTesting if the 4th point is coplanar when the plane of the first 3 points\\nhas been found is trivial.\\n\\n\\n>An alternate method would be to take pairs of points: the plane formed\\n>by the perpendicular bisector of each line segment pair also contains the\\n>center of the sphere. Three pairs will form three planes, intersecting\\n>at a point. This might be easier to implement.\\n\\n>-Steve\\n>spworley@netcom.com\\n\",\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Eco-Freaks forcing Space Mining.\\nArticle-I.D.: aurora.1993Apr21.212202.1\\nOrganization: University of Alaska Fairbanks\\nLines: 24\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nHere is a way to get the commericial companies into space and mineral\\nexploration.\\n\\nBasically get the eci-freaks to make it so hard to get the minerals on earth..\\nYou think this is crazy. Well in a way it is, but in a way it is reality.\\n\\nThere is a billin the congress to do just that.. Basically to make it so\\nexpensive to mine minerals in the US, unless you can by off the inspectors or\\ntax collectors.. ascially what I understand from talking to a few miner friends \\nof mine, that they (the congress) propose to have a tax on the gross income of\\nthe mine, versus the adjusted income, also the state governments have there\\nnormal taxes. So by the time you get done, paying for materials, workers, and\\nother expenses you can owe more than what you made.\\nBAsically if you make a 1000.00 and spend 500. ofor expenses, you can owe\\n600.00 in federal taxes.. Bascially it is driving the miners off the land.. And\\nthe only peopel who benefit are the eco-freaks.. \\n\\nBasically to get back to my beginning statement, is space is the way to go\\ncause it might just get to expensive to mine on earth because of either the\\neco-freaks or the protectionist.. \\nSuch fun we have in these interesting times..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", - " 'From: mancus@sweetpea.jsc.nasa.gov (Keith Mancus)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: MDSSC\\nLines: 32\\n\\nIn article <1r3nuvINNjep@lynx.unm.edu>, cook@varmit.mdc.com (Layne Cook) writes:\\n> All of this talk about a COMMERCIAL space race (i.e. $1G to the first 1-year \\n> moon base) is intriguing. Similar prizes have influenced aerospace \\n> development before. The $25k Orteig prize helped Lindbergh sell his Spirit of \\n> Saint Louis venture to his financial backers.\\n> But I strongly suspect that his Saint Louis backers had the foresight to \\n> realize that much more was at stake than $25,000.\\n> Could it work with the moon? Who are the far-sighted financial backers of \\n> today?\\n\\n The commercial uses of a transportation system between already-settled-\\nand-civilized areas are obvious. Spaceflight is NOT in this position.\\nThe correct analogy is not with aviation of the \\'30\\'s, but the long\\ntransocean voyages of the Age of Discovery. It didn\\'t require gov\\'t to\\nfund these as long as something was known about the potential for profit\\nat the destination. In practice, some were gov\\'t funded, some were private.\\nBut there was no way that any wise investor would spend a large amount\\nof money on a very risky investment with no idea of the possible payoff.\\n I am sure that a thriving spaceflight industry will eventually develop,\\nand large numbers of people will live and work off-Earth. But if you ask\\nme for specific justifications other than the increased resource base, I\\ncan\\'t give them. We just don\\'t know enough. The launch rate demanded by\\nexisting space industries is just too low to bring costs down much, and\\nwe are very much in the dark about what the revolutionary new space industries\\nwill be, when they will practical, how much will have to be invested to\\nstart them, etc.\\n\\n-- \\n Keith Mancus |\\n N5WVR |\\n \"Black powder and alcohol, when your states and cities fall, |\\n when your back\\'s against the wall....\" -Leslie Fish |\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Lunar Colony Race! By 2005 or 2010?\\nOrganization: U of Toronto Zoology\\nLines: 18\\n\\nIn article <1993Apr21.140804.15028@draper.com> mrf4276@egbsun12.NoSubdomain.NoDomain (Matthew R. Feulner) writes:\\n>|> Need to find atleast $1billion for prize money.\\n>\\n>My first thought is Ross Perot. After further consideration, I think he\\'d\\n>be more likely to try to win it...but come in a disappointing third.\\n>Try Bill Gates. Try Sam Walton\\'s kids.\\n\\nWhen the Lunar Society\\'s $500M estimate of the cost of a lunar colony was\\nmentioned at Making Orbit, somebody asked Jerry Pournelle \"have you talked\\nto Bill Gates?\". The answer: \"Yes. He says that if he were going to\\nsink that much money into it, he\\'d want to run it -- and he doesn\\'t have\\nthe time.\"\\n\\n(Somebody then asked him about Perot. Answer: \"Having Ross Perot on your\\nboard may be a bigger problem than not having the money.\")\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " \"From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: FJ1100/1200 Owners: Tankbag Suggestions Wanted\\nOrganization: University of East Anglia\\nLines: 14\\n\\nmartenm@chess.ncsu.edu (Mark Marten) writes:\\n\\n\\n\\n>I am looking for a new tank bag now, and I wondered if you, as follow \\n>FJ1100/1200 owners, could make some suggestions as to what has, and has \\n>not worked for you. If there is already a file on this I apologize for \\n>asking and will gladly accept any flames that are blown my way!\\n\\nI've got a Belstaff tankbag on my FJ1100, and it ain't too good. It's\\ndifficult to fix it securely cos of the the tank/fairing/sidepanel layout,\\nand also with the bars on full lock the bag touches the handlebar switches,\\nso you get the horn on full left lock and the starter motor on full right!!\\nIf I was buying another I think I'd go for a magnetic one.\\n\",\n", - " \"From: smith@minerva.harvard.edu (Steven Smith)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nIn-Reply-To: dgannon@techbook.techbook.com's message of 21 Apr 1993 07:55:09 -0700\\nOrganization: Applied Mathematics, Harvard University\\nLines: 15\\n\\ndgannon@techbook.techbook.com (Dan Gannon) writes:\\n> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>\\n> by Theodore J. O'Keefe\\n>\\n> [Holocaust revisionism]\\n> \\n> Theodore J. O'Keefe is an editor with the Institute for Historical\\n> Review. Educated at Harvard University . . .\\n\\nAccording to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\ngraduate. You may decide for yourselves if he was indeed educated\\nanywhere.\\n\\nSteven Smith\\n\",\n", - " 'From: MAILRP%ESA.BITNET@vm.gmd.de\\nSubject: message from Space Digest\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 62\\n\\n\\n\\n\\n\\nPress Release No.19-93\\nParis, 22 April 1993\\n\\nUsers of ESA\\'s Olympus satellite report on the outcome of\\ntheir experiments\\n\\n\"Today Europe\\'s space telecommunications sector would not\\nbe blossoming as it now does, had OLYMPUS not provided\\na testbed for the technologies and services of the 1990s\". This\\nsummarises the general conclusions of 135 speakers and 300\\nparticipants at the Conference on Olympus Utilisation held in\\nSeville on 20-22-April 1993. The conference was organised by\\nthe European Space Agency (ESA) and the Spanish Centre for\\nthe Development of Industrial Technology (CDTI).\\n\\nOLYMPUS has been particularly useful :\\n- in bringing satellite telecommunications to thousands of\\n new users, thanks to satellite terminals with very small\\n antennas (VSATs). OLYMPUS experiments have tested\\n data transmission, videoconferencing, business television,\\n distance teaching and rural telephony, to give but a few\\n examples.\\n\\n- in opening the door to new telecommunications services\\n which could not be accommodated on the crowded lower-\\n frequency bands; OLYMPUS was the first satellite over\\n Europe to offer capacity in the 20/30 GHz band.\\n\\n- in establishing two-way data relay links OLYMPUS\\n received for the first time in Europe, over several months,\\n high-volume data from a low-Earth orbiting spacecraft and\\n then distributed it to various centres in Europe.\\n\\nWhen OLYMPUS was launched on 12 July 1989 it was the\\nworld\\'s largest telecommunications satellite; and no other\\nsatellite has yet equalled its versatility in combining four\\ndifferent payloads in a wide variety of frequency bands.\\n\\nOLYMPUS users range from individual experimenters to some\\nof the world\\'s largest businesses. Access to the satellite is\\ngiven in order to test new telecommunications techniques or\\nservices; over the past four years some 200 companies and\\norganisations made use of this opportunity, as well as over\\n100 members of the EUROSTEP distance-learning\\norganisation.\\n\\n\\n\\nAs the new technologies and services tested by these\\nOLYMPUS users enter the commercial market, they then\\nmake use of operational satellites such as those of\\nEUTELSAT.\\n\\nOLYMPUS utilisation will continue through 1993 and 1994,\\nwhen the spacecraft will run out of fuel as it approaches the\\nend of its design life.\\n\\n \\n',\n", - " \"From: sas58295@uxa.cso.uiuc.edu (Lord Soth )\\nSubject: MPEG for MS-DOS\\nOrganization: University of Illinois at Urbana\\nLines: 13\\n\\nDoes anyone know where I can FTP MPEG for DOS from? Thanks for any\\nhelp in advance. Email is preferred but posting is fine.\\n\\n\\t\\t\\t\\tScott\\n\\n\\n---------------------------------------------------------------------------\\n| Lord Soth, Knight |||| email to --> LordSoth@uiuc ||||||||\\n| of the Black Rose |||| NeXT to ---> sas58295@sumter.cso.uiuc.edu ||||||||\\n| @}--'-,--}-- |||||||||||||||||||||||||||||||||||||||||||||||||||||||\\n|-------------------------------------------------------------------------|\\n| I have no clue what I want to say in here so I won't say anything. |\\n---------------------------------------------------------------------------\\n\",\n", - " \"From: ezzie@lucs2.lancs.ac.uk (One of those daze...)\\nSubject: Borland turbo C libraries for S3 graphics card\\nOrganization: Lancaster University Computer Society\\nLines: 5\\n\\nI've recently got hold of a PC with an S3 card in it, and I'd like to do some\\nC programming with it, are there any libraries out there that will let me\\naccess the high resolution modes available via Borland Turbo C?\\n\\n\\tAndy\\n\",\n", - " \"From: renouar@amertume.ufr-info-p7.ibp.fr (Renouard Olivier)\\nSubject: Re: POV previewer\\nNntp-Posting-Host: amertume.ufr-info-p7.ibp.fr\\nOrganization: Universite PARIS 7 - UFR d'Informatique\\nLines: 10\\n\\nActually I am trying to write something like this but I encounter some\\nproblems, amongst them:\\n\\n- drawing a 3d wireframe view of a quadric/quartic requires that you have\\nthe explicit equation of the quadric/quartic (x, y, z functions of some\\nparameters). How to convert the implicit equation used by PoV to an\\nexplicit one? Is it mathematically always possible?\\n\\nI don't have enough math to find out by myself, has anybody heard about\\nuseful books on the subject?\\n\",\n", - " 'From: lucio@proxima.alt.za (Lucio de Re)\\nSubject: A fundamental contradiction (was: A visit from JWs)\\nReply-To: lucio@proxima.Alt.ZA\\nOrganization: MegaByte Digital Telecommunications\\nLines: 35\\n\\njbrown@batman.bmd.trw.com writes:\\n\\n>\"Will\" is \"self-determination\". In other words, God created conscious\\n>beings who have the ability to choose between moral choices independently\\n>of God. All \"will\", therefore, is \"free will\".\\n\\nThe above is probably not the most representative paragraph, but I\\nthought I\\'d hop on, anyway...\\n\\nWhat strikes me as self-contradicting in the fable of Lucifer\\'s\\nfall - which, by the way, I seem to recall to be more speculation\\nthan based on biblical text, but my ex RCism may be showing - is\\nthat, as Benedikt pointed out, Lucifer had perfect nature, yet he\\nhad the free will to \"choose\" evil. But where did that choice come\\nfrom?\\n\\nWe know from Genesis that Eve was offered an opportunity to sin by a\\ntempter which many assume was Satan, but how did Lucifer discover,\\ninvent, create, call the action what you will, something that God\\nhad not given origin to?\\n\\nAlso, where in the Bible is there mention of Lucifer\\'s free will?\\nWe make a big fuss about mankind having free will, but it strikes me\\nas being an after-the-fact rationalisation, and in fact, like\\nsalvation, not one that all Christians believe in identically.\\n\\nAt least in my mind, salvation and free will are very tightly\\ncoupled, but then my theology was Roman Catholic...\\n\\nStill, how do theologian explain Lucifer\\'s fall? If Lucifer had\\nperfect nature (did man?) how could he fall? How could he execute an\\nact that (a) contradicted his nature and (b) in effect cause evil to\\nexist for the first time?\\n-- \\nLucio de Re (lucio@proxima.Alt.ZA) - tab stops at four.\\n',\n", - " 'From: prange@nickel.ucs.indiana.edu (Henry Prange)\\nSubject: Re: BMW MOA members read this!\\nNntp-Posting-Host: nickel.ucs.indiana.edu\\nOrganization: Indiana University\\nLines: 21\\n\\nI first heard it about academic politics but the same thought seems to\\napply to the BMWMOA\\n\\n\"The politics is so dirty because the stakes are so small.\"\\n\\nWho cares? I get my dues-worth from the ads and occasional technical\\narticles in the \"News\". I skip the generally drab articles about someone\\'s\\ntrek across Iowa. If some folks get thrilled by the power of the BMWMOA,\\nthey deserve whatever thrills their sad lives provide.\\n\\nBTW, I voted for new blood just to keep things stirred up.\\n\\nHenry Prange\\nPhysiology/IU Sch. Med., Blgtn., 47405\\nDoD #0821; BMWMOA #11522; GSI #215\\nride = \\'92 R100GS; \\'91 RX-7 conv = cage/2; \\'91 Explorer = cage*2\\nThe four tenets of all major religions:\\n1. I am right.\\n2. You are wrong.\\n3. Hence, you deserve to be punished.\\n4. By me.\\n',\n", - " \"From: suopanki@stekt6.oulu.fi (Heikki T. Suopanki)\\nSubject: Re: A visit from the Jehovah's Witnesses\\nIn-Reply-To: jbrown@batman.bmd.trw.com's message of 5 Apr 93 11:24:30 MST\\nLines: 17\\nReply-To: suopanki@stekt.oulu.fi\\nOrganization: Unixverstas Olutensin, Finlandia\\n\\t<1993Apr3.183519.14721@proxima.alt.za>\\n\\t<1993Apr5.112430.825@batman.bmd.trw.com>\\n\\n>>>>> On 5 Apr 93 11:24:30 MST, jbrown@batman.bmd.trw.com said:\\n\\n:> God is eternal. [A = B]\\n:> Jesus is God. [C = A]\\n:> Therefore, Jesus is eternal. [C = B]\\n\\n:> This works both logically and mathematically. God is of the set of\\n:> things which are eternal. Jesus is a subset of God. Therefore\\n:> Jesus belongs to the set of things which are eternal.\\n\\nEverything isn't always so logical....\\n\\nMercedes is a car.\\nThat girl is Mercedes.\\nTherefore, that girl is a car?\\n\\n-Heikki\\n\",\n", - " \"From: stjohn@math1.kaist.ac.kr (Ryou Seong Joon)\\nSubject: WANTED: Multi-page GIF!!\\nOrganization: Korea Advanced Institute of Science and Technology\\nX-Newsreader: Tin 1.1 PL3\\nLines: 12\\n\\nHi!... \\n\\nI am searching for packages that could handle Multi-page GIF\\nfiles... \\n\\nAre there any on some ftp servers?\\n\\nI'll appreciate one which works on PC (either on DOS or Windows 3.0/3.1).\\nBut any package works on Unix will be OK..\\n\\nThanks in advance...\\n\",\n", - " 'From: bean@ra.cgd.ucar.edu (Gregory Bean)\\nSubject: Help! Which bikes are short?\\nOrganization: Climate and Global Dynamics Division/NCAR, Boulder, CO\\nLines: 18\\n\\nHelp! I\\'ve got a friend shopping for her first motorcycle. This is great!\\nUnfortunately, she needs at most a 28\" seat. This is not great. So far,\\nthe only thing we\\'ve found was an old and unhappy-looking KZ440.\\n\\nSo, it\\'s time to tap the collective memory of all the denizens out there.\\nAnybody know of models (old models and used bikes are not a problem)\\nwith a 28\" or lower seat? And, since she has to make this difficult ( 8-) ),\\nshe would prefer not to end up with a cruiser. So there\\'s bonus points\\nfor listing tiny standards.\\n\\nI seem to remember a thread with a point similar to this passing through\\nseveral months ago. Did anybody keep that list?\\n\\nThanks!\\n\\n--\\nGregory Bean DoD #580\\nbean@ncar.ucar.edu \"In fact, everything\\'s got that big reverb sound...\"\\n',\n", - " 'From: pinky@tamu.edu (The Man behind The Curtain)\\nSubject: Views on isomorphic perspectives?\\nOrganization: Texas A&M University\\nLines: 87\\nNNTP-Posting-Host: tamsun.tamu.edu\\nKeywords: isomorphic perspectives\\n\\n \\nI\\'m working upon a game using an isometric perspective, similar to\\nthat used in Populous. Basically, you look into a room that looks\\nsimilar to the following:\\n\\n xxxx\\n xxxxx xxxx\\n xxxx x xxxx\\n xxxx x xxxx\\n xxxx 2 xxxx 1 xxxx\\n x xxxx xxxx x\\n x xxxx xxxx x\\n x xxxx o xxxx x\\n xxxx 3 /|\\\\ xxxx\\n xxxx /~\\\\ xxxx\\n xxxx xxxx\\n xxxx xxxx\\n xxxx\\n\\nThe good thing about this perspective is that you can look and move\\naround in three dimensions and still maintain your peripheral vision. [*]\\n\\nSince your viewpoint is always the same, the routines can be hard-coded\\nfor a particular vantage. In my case, wall two\\'s rising edge has a slope\\nof 1/4. (I\\'m also using Mode X, 320x240).\\n\\nI\\'ve run into two problems; I\\'m sure that other readers have tried this\\nbefore, and have perhaps formulated their own opinions:\\n\\n1) The routines for drawing walls 1 & 2 were trivial, but when I ran a\\npacked->planar image through them, I was dismayed by the \"jaggies.\" I\\'m\\nnow considered some anti-aliasing routines (speed is not really necessary).\\nIs it worth the effort to have the artist draw the wall already skewed,\\nthus being assured of nice image, or is this too much of a burden?\\n\\n2) Wall 3 presents a problem; the algorithm I used tends to overly distort\\nthe original. I tried to decide on paper what pixels go where, and failed.\\nHas anyone come up with method for mapping a planar to crosswise sheared\\nshape?\\n\\nCurrently I take:\\n\\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16\\n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32\\n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48\\n 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64\\n\\nand produce:\\n \\n 1 2 3 4\\n33 34 35 36 17 18 19 20 5 6 7 8\\n49 50 51 52 37 38 39 40 21 22 23 24 9 10 11 12\\n 53 54 55 56 41 42 43 44 25 26 27 28 13 14 15 16\\n 57 58 59 60 45 46 47 48 29 30 31 32\\n 61 62 63 64\\n\\nLine 1 follows the slope. Line 2 is directly under line 1.\\nLine 3 moves up a line and left 4 pixels. Line 4 is under line 3.\\nThis fills the shape exactly without any unfilled pixels. But\\nit causes distortions. Has anyone come up with a better way?\\nPerhaps it is necessary to simply draw the original bitmap\\nalready skewed?\\n\\nAre there any other particularly sticky problems with this perspective?\\nI was planning on having hidden plane removal by using z-buffering.\\nLocations are stored in (x,y,z) form.\\n\\n[*] For those of you who noticed, the top lines of wall 2 (and wall 1)\\n*are* parallel with its bottom lines. This is why there appears to\\nbe an optical illusion (ie. it appears to be either the inside or outside\\nof a cube, depending on your mood). There are no vanishing points.\\nThis simplifies the drawing code for objects (which don\\'t have to\\nchange size as they move about in the room). I\\'ve decided that this\\napproximation is alright, since small displacements at a large enough\\ndistance cause very little change in the apparent size of an object in\\na real perspective drawing.\\n\\nHopefully the \"context\" of the picture (ie. chairs on the floor, torches\\nhanging on the walls) will dispell any visual ambiguity.\\n\\nThanks in advance for any help.\\n\\n-- \\nTill next time, \\\\o/ \\\\o/\\n V \\\\o/ V email:pinky@tamu.edu\\n<> Sam Inala <> V\\n\\n',\n", - " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 32\\nDistribution: world\\nNNTP-Posting-Host: syndicoot.engin.umich.edu\\n\\nIn article <1993Apr5.084042.822@batman.bmd.trw.com> jbrown@batman.bmd.trw.com writes:\\n>In article <1993Apr3.095220.24632@leland.Stanford.EDU>, galahad@leland.Stanford.EDU (Scott Compton) writes:\\n[deletions]\\n>> Now, back to your post. You have done a fine job at using \\n>> your seventh grade \\'life science\\' course to explain why\\n>> bad diseases are caused by Satan and good things are a \\n>> result of God. But I want to let you in on a little secret.\\n>> \"We can create an amino acid sequence in lab! -- And guess\\n>> what, the sequence curls into a helix! Wow! That\\'s right,\\n>> it can happen without a supernatural force.\" \\n>\\n>Wow! All it takes is a few advanced science degrees and millions\\n>of dollars of state of the art equipment. And I thought it took\\n>*intelligence* to create the building blocks of life. Foolish me!\\n\\n People with advanced science degrees use state of the art equipment\\nand spend millions of dollars to simulate tornadoes. But tornadoes\\ndo not require intelligence to exist.\\n Not only that, the equipment needed is not really \\'state of the art.\\'\\nTo study the *products*, yes, but not to generate them.\\n\\n>If you want to be sure that I read your post and to provide a\\n>response, send a copy to Jim_Brown@oz.bmd.trw.com. I can\\'t read\\n>a.a. every day, and some posts slip by. Thanks.\\n \\n Oh, I will. :->\\n\\nSincerely,\\n\\nRay Ingles || The above opinions are probably\\n || not those of the University of\\ningles@engin.umich.edu || Michigan. Yet.\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: U of Toronto Zoology\\nLines: 14\\n\\nIn article <1ralibINNc0f@cbl.umd.edu> mike@starburst.umd.edu (Michael F. Santangelo) writes:\\n>... The only thing\\n>that scares me is the part about simply strapping 3 SSME\\'s and\\n>a nosecone on it and \"just launching it.\" I have this vision\\n>of something going terribly wrong with the launch resulting in the\\n>complete loss of the new modular space station (not just a peice of\\n>it as would be the case with staged in-orbit construction).\\n\\nIt doesn\\'t make a whole lot of difference, actually, since they weren\\'t\\nbuilding spares of the station hardware anyway. (Dumb.) At least this\\nis only one launch to fail.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " \"From: rick@trystro.uucp (Richard Nickle)\\nSubject: Re: How to read sci.space without netnews\\nOrganization: The Trystro System (617) 625-7155 v.32/v.42bis\\nLines: 27\\n\\nIn article mwm+@cs.cmu.edu (Mark Maimone) writes:\\n>In article <734975852.F00001@permanet.org> Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado) writes:\\n>>If anyone knows anyone else who would like to get sci.space,\\n>>but doesn't have an Internet feed (or has a cryptic Internet\\n>>feed), I would be willing to feed it to them.\\t\\n>\\n>\\tKudos to Mark for his generous offer, but there already exists a\\n>large (email-based) forwarding system for sci.space posts: Space Digest.\\n>It mirrors sci.space exactly, and provides simple two-way communication.\\n>\\nI think Mark was talking about making it available to people who didn't\\nhave email in the first place.\\n\\nIf anybody in the Boston area wants a sci.space feed by honest-to-gosh UUCP\\n(no weird offline malreaders), let me know. I'll also hand out logins to\\nanyone who wants one, especially the Boston Chapter of NSS (which I keep forgetting\\nto re-attend).\\n\\n>Questions, comments to space-request@isu.isunet.edu\\n>-- \\n>Mark Maimone\\t\\t\\t\\tphone: +1 (412) 268 - 7698\\n>Carnegie Mellon Computer Science\\temail: mwm@cmu.edu\\n\\n\\n-- \\nrichard nickle\\t\\trick@trystro.uucp\\t617-625-7155 v.32/v.42bis\\n\\t\\t\\tthink!trystro!rick\\tsomerville massachusetts\\n\",\n", - " 'From: car377@cbnewsj.cb.att.com (charles.a.rogers)\\nSubject: Re: dogs\\nOrganization: AT&T\\nSummary: abnormal canine psychology\\nLines: 21\\n\\nIn article , mrc@Ikkoku-Kan.Panda.COM (Mark Crispin) writes:\\n> \\n> With a hostile dog, or one which you repeatedly encounter, stronger measures\\n> may be necessary. This is the face off. First -- and there is very important\\n> -- make sure you NEVER face off a dog on his territory. Face him off on the\\n> road, not on his driveway. If necessary, have a large stick, rolled up\\n> newspaper, etc. (something the beast will understand is something that will\\n> hurt him). Stand your ground, then slowly advance. Your mental attitude is\\n> that you are VERY ANGRY and are going to dispense TERRIBLE PUNISHMENT. The\\n> larger the dog, the greater your anger.\\n\\nThis tactic depends for its effectiveness on the dog\\'s conformance to\\na \"psychological norm\" that may not actually apply to a particular dog.\\nI\\'ve tried it with some success before, but it won\\'t work on a Charlie Manson\\ndog or one that\\'s really, *really* stupid. A large Irish Setter taught me\\nthis in *my* yard (apparently HIS territory) one day. I\\'m sure he was playing \\na game with me. The game was probably \"Kill the VERY ANGRY Neighbor\" Before \\nHe Can Dispense the TERRIBLE PUNISHMENT.\\n\\nChuck Rogers\\ncar377@torreys.att.com\\n',\n", - " 'From: horen@netcom.com (Jonathan B. Horen)\\nSubject: Investment in Yehuda and Shomron\\nLines: 40\\n\\nIn today\\'s Israeline posting, at the end (an afterthought?), I read:\\n\\n> More Money Allocated to Building Infrastructure in Territories to\\n> Create Jobs for Palestinians\\n> \\n> KOL YISRAEL reports that public works geared at building\\n> infrastructure costing 140 million New Israeli Shekels (about 50\\n> million dollars) will begin Sunday in the Territories. This was\\n> announced last night by Prime Minister Yitzhak Rabin and Finance\\n> Minister Avraham Shohat in an effort to create more jobs for\\n> Palestinian residents of the Territories. This infusion of money\\n> will bring allocations given to developing infrastructure in the\\n> Territories this year to 450 million NIS, up from last year\\'s\\n> figure of 120 million NIS.\\n\\nWhile I applaud investing of money in Yehuda, Shomron, v\\'Chevel-Azza,\\nin order to create jobs for their residents, I find it deplorable that\\nthis has never been an active policy of any Israeli administration\\nsince 1967, *with regard to their Jewish residents*. Past governments\\nfound funds to subsidize cheap (read: affordable) housing and the\\nrequisite infrastructure, but where was the investment for creating\\nindustry (which would have generated income *and* jobs)? \\n\\nAfter 26 years, Yehuda and Shomron remain barren, bereft of even \\nmiddle-sized industries, and the Jewish settlements are sterile\\n\"bedroom communities\", havens for (in the main) Israelis (both\\nsecular *and* religious) who work in Tel-Aviv or Jerusalem but\\ncannot afford to live in either city or their surrounding suburbs.\\n\\nThere\\'s an old saying: \"bli giboosh, ayn kivoosh\" -- just living there\\nwasn\\'t enough, we had to *really* settle it. But instead, we \"settled\"\\nfor Potemkin villages, and now we are paying the price (and doing\\nfor others what we should have done for ourselves).\\n\\n\\n-- \\nYonatan B. Horen | Jews who do not base their advocacy of Jewish positions and\\n(408) 736-3923 | interests on Judaism are essentially racists... the only \\nhoren@netcom.com | morally defensible grounds for the preservation of Jews as a\\n | separate people rest on their religious identity as Jews.\\n',\n", - " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: Observation re: helmets\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 21\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n> \\n> The question for the day is re: passenger helmets, if you don\\'t know for \\n>certain who\\'s gonna ride with you (like say you meet them at a .... church \\n>meeting, yeah, that\\'s the ticket)... What are some guidelines? Should I just \\n>pick up another shoei in my size to have a backup helmet (XL), or should I \\n>maybe get an inexpensive one of a smaller size to accomodate my likely \\n>passenger? \\n\\nIf your primary concern is protecting the passenger in the event of a\\ncrash, have him or her fitted for a helmet that is their size. If your\\nprimary concern is complying with stupid helmet laws, carry a real big\\nspare (you can put a big or small head in a big helmet, but not in a\\nsmall one).\\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #010\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 170\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #010\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +-------------------------------------------------------+\\n | |\\n | On the way the driver says, \"In fact there aren\\'t any |\\n | Armenians left. \\'They burned them all, beat them all, |\\n | and stabbed them.\" |\\n |\\t\\t\\t\\t\\t\\t\\t|\\n +-------------------------------------------------------+\\n\\nDEPOSITION OF VANYA BAGRATOVICH BAZIAN\\n\\n Born 1940\\n Foreman\\n Baku Spetsmontazh Administration (UMSMR-1)\\n\\n Resident at Building 36/7, Apartment 9\\n Block 14\\n Sumgait [Azerbaijan]\\n\\n\\nDuring the first days of the events, the 27th and the 28th [of February], I\\nwas away on a business trip. On the 10th I had got my crew, done the paper-\\nwork, and left for the Zhdanov District. That\\'s in Azerbaijan, near the\\nNagorno Karabagh region.\\n\\nAfter the 14th, rumors started to the effect that in Karabagh, specifically\\nin Stepanakert, an uprising had taken place. They said \"uprising\" in\\nAzerbaijani, but I don\\'t think it was really an uprising, just a \\ndemonstration. After that the unrest started. Several Armenians living in the \\nZhdanov District were injured. How were they injured? They were beaten, even \\nwomen; it was said that they were at the demonstrations, but they live here, \\nand went from here to Karabagh to demonstrate. After that I felt uneasy. There\\nwere some conversations about Armenians among the local population: the\\nArmenians had done this, the Armenians had done that. Right there at the site.\\nI was attacked a couple of times by kids. Well true, the guys from my crew \\nwouldn\\'t let them come at me with cables and knives. After that I felt really \\nbad. I didn\\'t know where to go. I up and called home. And my children tell me,\\n\"There\\'s unrest everywhere, be careful.\" Well I had a project going on. I told\\nthe Second Secretary of the District Party Committee what had been going on \\nand said I wanted to take my crew off the site. They wouldn\\'t allow it, they \\nsaid, \"Nothing\\'s going to happen to you, we\\'ve entrusted the matter to the \\npolice, we\\'ve warned everyone in the district, nothing will happen to you.\" \\nWell, in fact they did especially detail us a policeman to look after me, he \\nknows all the local people and would protect me if something happened. This\\nman didn\\'t leave me alone for five minutes: he was at work the whole time and \\nafterward he spent the night with us, too.\\n\\nI sense some disquiet and call home; my wife also tells me, \"The situation is\\nvery tense, be careful.\"\\n\\nWe finished the job at the site, and I left for Sumgait first thing on the\\nmorning of the 29th. When we left the guys warned me, they told me that I\\nshouldn\\'t tell anyone on the way that I was an Armenian. I took someone else\\'s\\nbusiness travel documents, in the name of Zardali, and hid my own. I hid it \\nand my passport in my socks. We set out for Baku. Our guys were on the bus, \\nthey sat behind, and I sat up front. In Baku they had come to me and said that\\nthey had to collect all of our travel documents just in case. As it turns out \\nthey knew what was happening in Sumgait.\\n\\nI arrive at the bus station and there they tell me that the city of Sumgait is\\nclosed, there is no way to get there. That the city is closed off and the \\nbuses aren\\'t running. Buses normally leave Baku for Sumgait almost every two\\nminutes. And suddenly--no buses. Well, we tried to get there via private\\ndrivers. One man, an Azerbaijani, said, \"Let\\'s go find some other way to get\\nthere.\" They found a light transport vehicle and arranged for the driver to\\ntake us to Sumgait.\\n\\nHe took us there. But the others had said, \"I wouldn\\'t go if you gave me a\\nthousand rubles.\" \"Why?\" \"Because they\\'re burning the city and killing the\\nArmenians. There isn\\'t an Armenian left.\" Well I got hold of myself so I could\\nstill stand up. So we squared it away, the four of us got in the car, and we \\nset off for Sumgait. On the way the driver says, \"In fact there aren\\'t any\\nArmenians left. \\'They burned them all, beat them all, and stabbed them.\" Well \\nI was silent. The whole way--20-odd miles--I was silent. The driver asks me, \\n\"How old are you, old man?\" He wants to know: if I\\'m being that quiet, not \\nsaying anything, maybe it means I\\'m an Armenian. \"How old are you?\" he asks \\nme. I say, \"I\\'m 47.\" \"I\\'m 47 too, but I call you \\'old man\\'.\" I say, \"It \\ndepends on God, each person\\'s life in this world is different.\" I look much\\nolder than my years, that\\'s why he called me old man. Well after that he was\\nsilent, too.\\n\\nWe\\'re approaching the city, I look and see tanks all around, and a cordon.\\nBefore we get to the Kavkaz store the driver starts to wave his hand. Well, he\\nwas waving his hand, we all start waving our hands. I\\'m sitting there with\\nthem, I start waving my hand, too. I realized that this was a sign that meant\\nthere were no Armenians with us.\\n\\nI look at the city--there is a crowd of people walking down the middle of the \\nstreet, you know, and there\\'s no traffic. Well probably I was scared. They\\nstopped our car. People were standing on the sidewalks. They have armature \\nshafts, and stones . . . And they stopped us . . .\\n\\nAlong the way the driver tells us how they know who\\'s an Armenian and who\\'s \\nnot. The Armenians usually . . . For example, I\\'m an Armenian, but I speak \\ntheir language very well. Well Armenians usually pronounce the Azeri word for \\n\"nut,\" or \"little nut,\" as \"pundukh,\" but \"fundukh\" is actually correct. The \\npronunciations are different. Anyone who says \"pundukh,\" even if they\\'re not \\nArmenian, they immediately take out and start to slash. Another one says, \\n\"There was a car there, with five people inside it,\" he says. \"They started \\nhitting the side of it with an axe and lit it on fire. And they didn\\'t let the\\npeople out,\" he says, \"they wouldn\\'t let them get out of the car.\" I only saw \\nthe car, but the driver says that he saw everything. Well he often drives from\\nBaku to Sumgait and back . . .\\n\\nWhen they stop us we all get out of the car. I look and there\\'s a short guy,\\nhis eyes are gleaming, he has an armature shaft in one hand and a stone in\\nthe other and asks the guys what nationality they are one by one. \"We\\'re\\nAzerbaijani,\\' they tell him, \\'no Armenians here.\" He did come up to me when \\nwe were pulling our things out and says, \"Maybe you\\'re an Armenian, old man?\" \\nBut in Azerbaijani I say, \"You should be ashamed of yourself!\" And . . . he \\nleft. Turned and left. That was all that happened. What was I to do? I had \\nto . . . the city was on fire, but I had to steal my children out of my own \\nhome.\\n\\nThey stopped us at the entrance to Mir Street, that\\'s where the Kavkaz store \\nand three large, 12-story buildings are. That\\'s the beginning of down-town. I \\nsaw that burned automobile there, completely burned, only metal remained. I \\ncouldn\\'t figure out if it was a Zhiguli or a Zaporozhets. Later I was told it \\nwas a Zhiguli. And the people in there were completely incinerated. Nothing \\nremained of them, not even any traces. That driver had told me about it, and I\\nsaw the car myself. The car was there. The skeleton, a metallic carcass. About\\n30 to 40 yards from the Kavkaz store.\\n\\nI see a military transport, an armored personnel carrier. The hatches are\\nclosed. And people are throwing armature shafts and pieces of iron at it, the\\ncrowd is. And I hear shots, not automatic fire, it\\'s true, but pistol shots.\\nSeveral shots. There were Azerbaijanis crowded around that personnel carrier. \\nSomeone in the crowd was shooting. Apparently they either wanted to kill the \\nsoldiers or get a machine gun or something. At that point there was only one \\narmored personnel carrier. And all the tanks were outside the city, cordoning \\noff Sumgait.\\n\\nI walked on. I see two Azerbaijanis going home from the plant. I can tell by \\ntheir gait that they\\'re not bandits, they\\'re just people, walking home. I\\njoined them so in case something happened, in case someone came up to us\\nand asked questions, either of us would be in a position to answer, you see.\\nBut I avoided the large groups because I\\'m a local and might be quickly \\nrecognized. I tried to keep at a distance, and walked where there were fewer\\npeople. Well so I walked into Microdistrict 2, which is across from our block.\\nI can\\'t get into our block, but I walked where there were fewer people, so as \\nto get around. Well there I see a tall guy and 25 to 30 people are walking \\nbehind him. And he\\'s shouting into a megaphone: \"Comrades, the Armenian-\\nAzerbaijani war has begun!\"\\n\\nThe police have megaphones like that. So they\\'re talking and walking around \\nthe second microdistrict. I see that they\\'re coming my way, and turn off \\nbehind a building. I noticed that they walked around the outside buildings, \\nand inside the microdistricts there were about 5 or 6 people standing on every\\ncorner, and at the middles of the buildings, and at the edges. What they were \\ndoing I can\\'t say, because I couldn\\'t get up close to them, I was afraid. But \\nthe most important thing was to get away from there, to get home, and at least\\nfind out if my children were alive or not . . .\\n\\n April 20, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 158-160\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Argic\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 6\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nHey Serdar:\\n Man without a brain, yare such a LOSER!!!\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", - " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Observation re: helmets\\nOrganization: Ontario Hydro - Research Division\\nDistribution: usa\\nLines: 19\\n\\nIn article <1993Apr15.220511.11311@research.nj.nec.com> behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n>\\tDo I have to be the one to say it?\\n>\\n>\\tDON'T BE SO STUPID AS TO LEAVE YOUR HELMET ON THE SEAT WHERE IT CAN\\n>\\tFALL DOWN AND GO BOOM!\\n\\nTrue enough. I put it on the ground if it's free of spooge, or directly\\non my head otherwise.\\n\\n>\\tThat kind of fall is what the helmet is designed to protect against.\\n\\nNot exactly. The helmet has a lot less energy if your head isn't in it, and\\nthere's no lump inside to compress the liner against the shell. Is a drop\\noff the seat enough to crack the shell? I doubt it, but you can always\\nsend it to be inspected.\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", - " \"From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: rejoinder. Questions to Israelis\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 38\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n Although I realize that principle is not one of your strongest\\npoints, I would still like to know why do do not ask any question\\nof this sort about the Arab countries.\\n\\n If you want to continue this think tank charade of yours, your\\nfixation on Israel must stop. You might have to start asking the\\nsame sort of questions of Arab countries as well. You realize it\\nwould not work, as the Arab countries' treatment of Jews over the\\nlast several decades is so bad that your fixation on Israel would\\nbegin to look like the biased attack that it is.\\n\\n Everyone in this group recognizes that your stupid 'Center for\\nPolicy Research' is nothing more than a fancy name for some bigot\\nwho hates Israel.\\n\\n Why don't you try being honest about your hatred of Israel? I\\nhave heard that your family once lived in Israel, but the members\\nof your family could not cut the competition there. Is this true\\nabout your family? Is this true about you? Is this actually not\\nabout Israel, but is really a personal vendetta? Why are you not\\nthe least bit objective about Israel? Do you think that the name\\nof your phony-baloney center hides your bias in the least? Get a\\nclue, Mr. Davidsson. Haven't you realized yet that when you post\\nsuch stupidity in this group, you are going to incur answers from\\npeople who are armed with the truth? Haven't you realized that a\\npiece of selective data here and a piece there does not make up a\\ntruth? Haven't you realized that you are in over your head? The\\npeople who read this group are not as stupid as you would hope or\\nneed them to be. This is not the place for such pseudo-analysis.\\nYou will be continually ripped to shreds, until you start to show\\nsome regard for objectivity. Or you can continue to show what an\\nanti-Israel zealot you are, trying to disguise your bias behind a\\npompous name like the 'Center for Policy Research.' You ought to\\nknow that you are a laughing stock, your 'Center' is considered a\\njoke, and until you either go away, or make at least some attempt\\nto be objective, you will have a place of honor among the clowns,\\nbigots, and idiots of Usenet.\\n\",\n", - " 'From: \"james kewageshig\" \\nSubject: articles on flocking?\\nReply-To: \"james kewageshig\" \\nOrganization: Canada Remote Systems\\nDistribution: comp\\nLines: 17\\n\\nHI All,\\nCan someone point me towards some articles on \\'boids\\' or\\nflocking algorithms... ?\\n\\nAlso, articles on particle animation formulas would be nice...\\n ________________________________________________________________________\\n|0 ___ ___ ____ ____ ____ 0|\\\\\\n| \\\\ \\\\// || || || James Kewageshig |\\\\|\\n| _\\\\//_ _||_ _||_ _||_ UUCP: james.kewageshig@canrem.com |\\\\|\\n| N E T W O R K V I I I FIDONET: James Kewageshig - 1:229/15 |\\\\|\\n|0______________________________________________________________________0|\\\\|\\n \\\\________________________________________________________________________\\\\|\\n---\\n þ DeLuxeý 1.25 #8086 þ Head of Co*& XV$# Hi This is a signature virus. Co\\n--\\nCanada Remote Systems - Toronto, Ontario\\n416-629-7000/629-7044\\n',\n", - " \"From: Center for Policy Research \\nSubject: Unconventional peace proposal\\nNf-ID: #N:cdp:1483500348:000:5967\\nNf-From: cdp.UUCP!cpr Apr 18 07:24:00 1993\\nLines: 131\\n\\n\\nFrom: Center for Policy Research \\nSubject: Unconventional peace proposal\\n\\n\\nA unconventional proposal for peace in the Middle-East.\\n---------------------------------------------------------- by\\n\\t\\t\\t Elias Davidsson\\n\\nThe following proposal is based on the following assumptions:\\n\\n1. Fundamental human rights, such as the right to life, to\\neducation, to establish a family and have children, to human\\ndignity, the right to free movement, to free expression, etc. are\\nmore important to human existence that the rights of states.\\n\\n2. In the event of a conflict between basic human rights and\\nrights of collectivities, basic human rights should prevail.\\n\\n3. Between the collectivities defining themselves as\\nJewish-Israeli and Palestinian-Arab, however labelled, an\\nunresolved conflict exists.\\n\\n4. This conflict has caused great sufferings for millions of\\npeople. It moreover poisons relations between communities, peoples\\nand nations.\\n\\n5. Each year, the United States expends billions of dollars\\nin economic and military aid to the conflicting parties.\\n\\n6. Attempts to solve the Israeli-Arab conflict by traditional\\npolitical means have failed.\\n\\n7. As long as the conflict is perceived as that between two\\ndistinct ethnical/religious communities/peoples which claim the\\nland, there is no just nor peaceful solution possible.\\n\\n8. Love between human beings can be capitalized for the sake\\nof peace and justice. When people love, they share.\\n\\nHaving stated my assumptions, I will now state my proposal.\\n\\n1. A Fund should be established which would disburse grants\\nfor each child born to a couple where one partner is Israeli-Jew\\nand the other Palestinian-Arab.\\n\\n2. To be entitled for a grant, a couple will have to prove\\nthat one of the partners possesses or is entitled to Israeli\\ncitizenship under the Law of Return and the other partner,\\nalthough born in areas under current Isreali control, is not\\nentitled to such citizenship under the Law of Return.\\n\\n3. For the first child, the grant will amount to $18.000. For\\nthe second the third child, $12.000 for each child. For each\\nsubsequent child, the grant will amount to $6.000 for each child.\\n\\n\\n4. The Fund would be financed by a variety of sources which\\nhave shown interest in promoting a peaceful solution to the\\nIsraeli-Arab conflict, including the U.S. Government, Jewish and\\nChristian organizations in the U.S. and a great number of\\ngovernments and international organizations.\\n\\n5. The emergence of a considerable number of 'mixed'\\nmarriages in Israel/Palestine, all of whom would have relatives on\\n'both sides' of the divide, would make the conflict lose its\\nethnical and unsoluble core and strengthen the emergence of a\\ntruly civil society. The existence of a strong 'mixed' stock of\\npeople would also help the integration of Israeli society into the\\nMiddle-East in a graceful manner.\\n\\nObjections to this proposal will certainly be voiced. I will\\nattempt to identify some of these:\\n\\n1. The idea of providing financial incentives to selected\\nforms of partnership and marriage, is not conventional. However,\\nit is based on the concept of affirmative action, which is\\nrecognized as a legitimate form of public policy to reverse the\\nperverse effects of segregation and discrimination. International\\nlaw clearly permits affirmative action when it is aimed at\\nreducing racial discrimination and segregation.\\n\\n2. It may be objected that the Israeli-Palestinian conflict\\nis not primarily a religious or ethnical conflict, but that it is\\na conflict between a colonialist settler society and an indigenous\\ncolonized society that can only regain its freedom by armed\\nstruggle. This objection is based on the assumption that the\\n'enemy' is not Zionism as ideology and practice, but\\nIsraeli-Jewish society and its members which will have to be\\ndefeated. This objection has no merit because it does not fulfill\\nthe first two assumptions concerning the primacy of fundamental\\nhuman rights over collective rights (see above)\\n\\n3. Fundamentalist Jews would certainly object to the use of\\nfinancial incentives to encourage 'mixed marriages'. From their\\npoint of view, the continued existence of a specific Jewish People\\noverrides any other consideration, be it human love, peace of\\nhuman rights. The President of the World Jewish Congress, Edgar\\nBronfman, reflected this view a few years ago in an interview he\\ngave to Der Spiegel, a German magazine. He called the increasing\\nassimilation of Jews in the world a , comparable in its\\neffects only with the Holocaust. This objection has no merit\\neither because it does not fulfill the first two assumptions (see\\nabove)\\n\\n4. It may objected that only a few people in\\nIsrael/Palestine, would request such grants and that it would thus\\nnot serve its purpose. To this objection one might respond that\\nalthough it is not possible to determine with certainty the effect\\nof such a proposal, the existence of such a Fund would help mixed\\ncouples to resist the pressure of their respective societies and\\nencourage young couples to reject fundamentalist and racist\\nattitudes.\\n\\n5. It may objected that such a Fund would need great sums to\\nbring about substantial demographic changes. This objection has\\nmerits. However, it must be remembered that huge sums, more than\\n$3 billion, are expended each year by the United States government\\nand by U.S. organizations to maintain an elusive peace in the\\nMiddle-East through armaments. A mere fraction of these sums would\\nsuffice to launch the above proposal and create a more favorable\\nclimate towards the existence of 'mixed' marriages in\\nIsrael/Palestine, thus encouraging the emergence of a\\nnon-segregated society in that worn-torn land.\\n\\nI would be thankful for critical comments to the above proposal as\\nwell for any dissemination of this proposal for meaningful\\ndiscussion and enrichment.\\n\\nElias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n\\n\",\n", - " \"From: lipman@oasys.dt.navy.mil (Robert Lipman)\\nSubject: Call for presentations: Navy SciViz/VR seminar\\nReply-To: lipman@oasys.dt.navy.mil (Robert Lipman)\\nOrganization: Carderock Division, NSWC, Bethesda, MD\\nLines: 74\\n\\n**********************************************************************\\n\\n\\t\\t 2ND CALL FOR PRESENTATIONS\\n\\t\\n NAVY SCIENTIFIC VISUALIZATION AND VIRTUAL REALITY SEMINAR\\n\\n\\t\\t\\tTuesday, June 22, 1993\\n\\n\\t Carderock Division, Naval Surface Warfare Center\\n\\t (formerly the David Taylor Research Center)\\n\\n\\t\\t\\t Bethesda, Maryland\\n\\n**********************************************************************\\n\\nSPONSOR: NESS (Navy Engineering Software System) is sponsoring a \\none-day Navy Scientific Visualization and Virtual Reality Seminar. \\nThe purpose of the seminar is to present and exchange information for\\nNavy-related scientific visualization and virtual reality programs, \\nresearch, developments, and applications.\\n\\nPRESENTATIONS: Presentations are solicited on all aspects of \\nNavy-related scientific visualization and virtual reality. All \\ncurrent work, works-in-progress, and proposed work by Navy \\norganizations will be considered. Four types of presentations are \\navailable.\\n\\n 1. Regular presentation: 20-30 minutes in length\\n 2. Short presentation: 10 minutes in length\\n 3. Video presentation: a stand-alone videotape (author need not \\n\\tattend the seminar)\\n 4. Scientific visualization or virtual reality demonstration (BYOH)\\n\\nAccepted presentations will not be published in any proceedings, \\nhowever, viewgraphs and other materials will be reproduced for \\nseminar attendees.\\n\\nABSTRACTS: Authors should submit a one page abstract and/or videotape to:\\n\\n Robert Lipman\\n Naval Surface Warfare Center, Carderock Division\\n Code 2042\\n Bethesda, Maryland 20084-5000\\n\\n VOICE (301) 227-3618; FAX (301) 227-5753 \\n E-MAIL lipman@oasys.dt.navy.mil\\n\\nAuthors should include the type of presentation, their affiliations, \\naddresses, telephone and FAX numbers, and addresses. Multi-author \\npapers should designate one point of contact.\\n\\n**********************************************************************\\nDEADLINES: The abstact submission deadline is April 30, 1993. \\nNotification of acceptance will be sent by May 14, 1993. \\nMaterials for reproduction must be received by June 1, 1993.\\n**********************************************************************\\n\\nFor further information, contact Robert Lipman at the above address.\\n\\n**********************************************************************\\n\\n\\t PLEASE DISTRIBUTE AS WIDELY AS POSSIBLE, THANKS.\\n\\n**********************************************************************\\n\\n\\nRobert Lipman | Internet: lipman@oasys.dt.navy.mil\\nDavid Taylor Model Basin - CDNSWC | or: lip@ocean.dt.navy.mil\\nComputational Signatures and | Voicenet: (301) 227-3618\\n Structures Group, Code 2042 | Factsnet: (301) 227-5753\\nBethesda, Maryland 20084-5000 | Phishnet: stockings@long.legs\\n\\t\\t\\t\\t \\nThe sixth sick shiek's sixth sheep's sick.\\n\\n\",\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nArticle-I.D.: mksol.1993Apr22.213815.12288\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1993Apr22.130923.115397@zeus.calpoly.edu> dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n> ETHER IMPLODES 2 EARTH CORE, IS GRAVITY!!!\\n\\nIf not for the lack of extraneously capitalized words, I\\'d swear that\\nMcElwaine had changed his name and moved to Cal Poly. I also find the\\nchoice of newsgroups \\'interesting\\'. Perhaps someone should tell this\\nguy that \\'sci.astro\\' doesn\\'t stand for \\'astrology\\'?\\n\\nIt\\'s truly frightening that posts like this are originating at what\\nare ostensibly centers of higher learning in this country. Small\\nwonder that the rest of the world thinks we\\'re all nuts and that we\\nhave the problems that we do.\\n\\n[In case you haven\\'t gotten it yet, David, I don\\'t think this was\\nquite appropriate for a posting to \\'sci\\' groups.]\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " \"From: lynn@pacesetter.com (Lynn E. Hall)\\nSubject: Re: story \\nKeywords: PARTY!!!!\\nNntp-Posting-Host: camellia\\nOrganization: Siemens Pacesetter, Inc.\\nLines: 20\\n\\n>lynn@pacesetter.com (Lynn E. Hall) writes:\\n>\\n>>allowed (yes, there is a God). No open containers on the street was the\\n>>signs in the bars. Yeah, RIGHT! The 20 or so cops on hand for the couple of\\n>>thousand of bikers in a 1 block main street were not citing anyone. The\\n>>street was filled with empty cans at least 2 feet deep in the gutter. The\\n>>crowd was raisin' hell - tittie shows everywhere. Can you say PARTY?\\n>\\n>\\n>And still we wonder why they stereotype us...\\n>\\n>-Erc.\\n\\n Whacha mean 'we'...ifin they (whom ever 'they' are) want to stereotype me\\nas one that likes to drink beer and watch lovely ladies display their\\nbeautiful bodies - I like that stereotype.\\n If you were refering 'stereotype' to infer a negative - you noticed we\\ndidn't rape, pillage, or burn down the town. We also left mucho bucks as in\\nMONEY with the town. Me thinks the town LIKES us. Least they said so.\\n Lynn Hall - NOS Bros\\n\",\n", - " 'From: mikej@PROBLEM_WITH_INEWS_GATEWAY_FILE (Mike Johnson)\\nSubject: Re: Paris-Dakar BMW touring???\\nNntp-Posting-Host: mikej.mentorg.com\\nOrganization: Mentor Graphics\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 8\\n\\n\\n--\\n-----------------------------------------------------------------------------\\n mike_johnson@mentorg.com\\n-----------------------------------------------------------------------------\\n Mentor Graphics | 8005 SW Boeckman Rd | Software Support \\n Corporation | Wilsonville, OR 97070-7777 | Framework Products Division \\n_____________________________________________________________________________\\n',\n", - " \"From: erick@andr.UB.com (Eric A. Kilpatrick)\\nSubject: Re: Drinking and Riding\\nNntp-Posting-Host: pixel.andr.ub.com\\nReply-To: erick@andr.UB.com\\nOrganization: Ungermann-Bass Inc./Andover, MA\\nLines: 7\\n\\nPersonally, I follow the no alcohol rule when I'm on a bike. My view is that you have to be in such a high degree of control that any alcohol could be potentially hazardous to my bike! If I get hurt it's my own fault, but I don't want to wreck my Katana. I developed this philosophy from an impromptu *experiment*. I had one beer at 6:00 in the evening and had volleyball practice at 7:00. I wasn't even close to leagle intoxication, but I couldn't perform even the most basic things until 8:30! This made\\n\\n\\n\\n me think about how I viewed alcohol and intoxication. You may seem fine, but your reactions may be affected such that you'll be unable to recover from hitting a rock or even just a gust of wind. I greatly enjoy social drinking but, for me, it just doesn't mix with riding.\\n\\nMax enjoyment!\\nEric\\n\\n\",\n", - " 'From: yoo@engr.ucf.edu (Hoi Yoo)\\nSubject: Ribbon Information ?\\nOrganization: engineering, University of Central Florida, Orlando\\nDistribution: usa\\nLines: 20\\n\\n\\n\\nDoes anyone out there have or know of, any kind of utility program for\\n\\nRibbons?\\n\\n\\nRibbons are a popular representation for 2D shape. I am trying to\\nfind symmetry axis in a given any 2D shape using ribbons.\\n\\n\\nAny suggestions will be greatly appreciated how to start program. \\n\\n\\nThanks very much in advance,\\nHoi\\n\\n\\nyoo@engr.ucf.edu\\n\\n',\n", - " \"From: small@tornado.seas.ucla.edu (James F. Small)\\nSubject: Re: Here's to the assholes\\nOrganization: School of Engineering and Applied Sciences, UCLA\\nLines: 26\\n\\nIn article you rambled on about:\\n)In article <9953@lee.SEAS.UCLA.EDU> small@thunder.seas.ucla.edu (James F. Small) writes:\\n)> Here's to the 3 asshole scooter owners who TRIPLE PARKED behind my\\n)> bike today. \\n)\\n)Jim calling other prople assholes, what's next?\\n ^^^^^^\\n\\nIf you're going to flame, learn to spell.\\n\\n)Besides, assholeism is endemic to the two-wheeled motoring community.\\n\\nWhy I do believe that Jason, the wise, respected (hahahha), has just made a\\nstereotypical remark. How unsophisticated of you. I'm so sorry you had to\\ncome out of your ivory tower and stoop (as you would say), to my , obviously,\\nlower level.\\n\\nBesides, geekism is endemic to the albino-phoosball playing community (and\\nthose who drive volvos)\\n\\n\\nRemember ,send your flames to jrobbins@cs.ucla.edu\\n-- \\nI need what a formal education can not provide.\\n---\\nDoD# 2024\\n\",\n", - " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: islamic genocide\\nOrganization: Technical University Braunschweig, Germany\\nLines: 23\\n\\nIn article <1qi83b$ec4@horus.ap.mchp.sni.de>\\nfrank@D012S658.uucp (Frank O'Dwyer) writes:\\n \\n(Deletion)\\n>#>Few people can imagine dying for capitalism, a few\\n>#>more can imagine dying for democracy, but a lot more will die for their\\n>#>Lord and Savior Jesus Christ who Died on the Cross for their Sins.\\n>#>Motivation, pure and simple.\\n>\\n>Got any cites for this nonsense? How many people will die for Mom?\\n>Patriotism? Freedom? Money? Their Kids? Fast cars and swimming pools?\\n>A night with Kim Basinger or Mel Gibson? And which of these things are evil?\\n>\\n \\nRead a history book, Fred. And tell me why so many religions command to\\ncommit genocide when it has got nothing to do with religion. Or why so many\\nreligions say that not living up to the standards of the religion is worse\\nthan dieing? Coincidence, I assume. Or ist part of the absolute morality\\nyou describe so often?\\n \\nTheism is strongly correlated with irrational belief in absolutes. Irrational\\nbelief in absolutes is strongly correlated with fanatism.\\n Benedikt\\n\",\n", - " 'From: flax@frej.teknikum.uu.se (Jonas Flygare)\\nSubject: Re: 18 Israelis murdered in March\\nOrganization: Dept. Of Control, Teknikum, Uppsala\\nLines: 184\\n\\t\\n\\t<1993Apr5.125419.8157@thunder.mcrcim.mcgill.edu>\\nNNTP-Posting-Host: frej.teknikum.uu.se\\nIn-reply-to: hasan@McRCIM.McGill.EDU\\'s message of Mon, 5 Apr 93 12:54:19 GMT\\n\\nIn article <1993Apr5.125419.8157@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n\\n[After a small refresh Hasan got on the track again.]\\n\\n In article , flax@frej.teknikum.uu.se (Jonas Flygare) writes:\\n\\n |> In article <1993Apr3.182738.17587@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n |> In article , flax@frej.teknikum.uu.se (Jonas Flygare) writes:\\n\\n |> |> I get the impression Hasan realized he goofed and is now\\n |> |> trying to drop the thread. Let him. It might save some\\n |> |> miniscule portion of his sorry face.\\n\\n |> Not really. since i am a logical person who likes furthering himself\\n |> from any \"name calling\", i started trashing any article that contains\\n |> such abuses without responding to, and sometimes not even reading articles \\n |> written by those who acquired such bad habits from bad company!\\n |> \\n |> Ah, but in my followup on the subject (which you, by the way, never bothered\\n |> responding to..) there was no name-calling. Hence the assumption.\\n |> Do you feel more up to it now, so that we might have an answer?\\n |> Or, to refresh your memory, does the human right issue in the area\\n |> apply to Palestinians only? Also, do you claim there is such a thing as \\n |> forfeiting a human right? If that\\'s possible, then explain to the rest of \\n |> us how there can exist any such thing?\\n |> \\n |> Use your logic, and convince us! This is your golden chance!\\n\\n |> Jonas Flygare,\\n\\n\\n well , ok. let\\'s see what Master of Wisdom, Mr. Jonas Flygare,\\n wrote that can be wisdomely responded to :\\n\\nAre you calling names, or giving me a title? If the first, read your \\nparagraph above, if not I accept the title, in order to let you get into the\\num, well, debate again.\\n\\n\\n Master of Wisdom writes in <1993Mar31.101957@frej.teknikum.uu.se>:\\n\\n |> [hasan]\\n\\n |> |> [flax]\\n\\n |> |> |> [hasan]\\n\\n |> |> |> In case you didNOT know, Palestineans were there for 18 months. \\n |> |> |> and they are coming back\\n |> |> |> when you agree to give Palestineans their HUMAN-RIGHTS.\\n\\n |> |> |> Afterall, human rights areNOT negotiable.\\n\\n |> |> |> Correct me if I\\'m wrong, but isn\\'t the right to one\\'s life _also_\\n |> |> |> a \\'human right\\'?? Or does it only apply to palestinians?\\n\\n |> |> No. it is EVERYBODY\\'s right. However, when a killer kills, then he is giving\\n |> |> up -willingly or unwillingly - his life\\'s right to the society. \\n |> |> the society represented by the goverment would exercise its duty by \\n |> |> depriving the killer off his life\\'s right.\\n\\n |> So then it\\'s all right for Israel to kill the people who kill Israelis?\\n |> The old \\'eye for an eye\\' thinking? Funny, I thought modern legal systems\\n |> were made to counter exactly that.\\n\\n So what do you expect me to tell you to tell you, Master of Wsidom, \\n\\t\\t\\t\\t\\t\\t\\t ^^^\\n------------------------------------------------------------------\\nIf you insist on giving me names/titles I did not ask for you could at\\nleast spell them correctly. /sigh.\\n\\n when you are intentionally neglecting the MOST important fact that \\n the whole israeli presence in the occupied territories is ILLEGITIMATE, \\n and hence ALL their actions, their courts, their laws are illegitimate on \\n the ground of occupied territories.\\n\\nNo, I am _not_ neglecting that, I\\'m merely asking you whether the existance\\nof Israeli citicens in the WB or in Gaza invalidates those individuals right\\nto live, a (as you so eloquently put it) human right. We can get back to the \\nquestion of which law should be used in the territories later. Also, you have \\nnot adressed my question if the israelis also have human rights.\\n\\n What do you expect me to tell you, Master of Wisdom, when I did explain my\\n point in the post, that you \"responded to\". The point is that since Israel \\n is occupying then it is automatically depriving itself from some of its rights \\n to the Occupied Palestineans, which is exactly similar the automatic \\n deprivation of a killer from his right of life to the society.\\n\\nIf a state can deprive all it\\'s citizens of human rights by its actions, then \\ntell me why _any_ human living today should have any rights at all?\\n\\n |> |> In conjugtion with the above, when a group of people occupies others \\n |> |> territories and rule them by force, then this group would be -willingly or \\n |> |> unwillingly- deprived from some of its rights. \\n\\n |> Such as the right to live? That\\'s nice. The swedish government is a group\\n |> of people that rule me by force. Does that give me the right to kill\\n |> them?\\n\\n Do you consider yourself that you have posed a worthy question here ?\\n\\nWorthy or not, I was just applying your logic to a related problem.\\nAm I to assume you admit it wouldn\\'t hold?\\n\\n |> |> What kind of rights and how much would be deprived is another issue?\\n |> |> The answer is to be found in a certain system such as International law,\\n |> |> US law, Israeli law ,...\\n\\n |> And now it\\'s very convenient to start using the legal system to prove a \\n |> point.. Excuse me while I throw up.\\n\\n ok, Master of Wisdom is throwing up. \\n You people stay away from the screen while he is doing it !\\n\\nOh did you too watch that comedy where they pipe water through the telephone?\\nI\\'ll let you in on a secret... It\\'s not for real.. Take my word for it.\\n\\n |> |> It seems that the US law -represented by US State dept in this case-\\n |> |> is looking to the other way around when violence occurs in occupied territories.\\n |> |> Anyway, as for Hamas, then obviously they turned to the islamic system.\\n\\n |> And which system do you propose we use to solve the ME problem?\\n\\n The question is NOT which system would solve the ME problem. Why ? because\\n any system can solve it. \\n The laws of minister Sharon says kick Palestineans out of here (all palestine). \\n\\nI asked for which system should be used, that will preserve human rights for \\nall people involved. I assumed that was obvious, but I won\\'t repeat that \\nmistake. Now that I have straightened that out, I\\'m eagerly awaiting your \\nreply.\\n\\n Joseph Weitz (administrator responsible for Jewish colonization) \\n said it best when writing in his diary in 1940:\\n\\t \"Between ourselves it must be clear that there is no room for both\\n\\t peoples together in this country.... We shall not achieve our goal\\n\\t\\t\\t\\t\\t\\t^^^ ^^^\\n\\t of being an independent people with the Arabs in this small country.\\n\\t The only solution is a Palestine, at least Western Palestine (west of\\n\\t the Jordan river) without Arabs.... And there is no other way than\\n\\t to transfer the Arabs from here to the neighbouring countries, to\\n\\t transfer all of them; not one village, not one tribe, should be \\n\\t left.... Only after this transfer will the country be able to\\n\\t absorb the millions of our own brethren. There is no other way out.\"\\n\\t\\t\\t\\t DAVAR, 29 September, 1967\\n\\t\\t\\t\\t (\"Courtesy\" of Marc Afifi)\\n\\nJust a question: If we are to disregard the rather obvious references to \\ngetting Israel out of ME one way or the other in both PLO covenant and HAMAS\\ncharter (that\\'s the english translations, if you have other information I\\'d\\nbe interested to have you translate it) why should we give any credence to \\na _private_ paper even older? I\\'m not going to get into the question if he\\nwrote the above, but it\\'s fairly obvious all parties in the conflict have\\ntheir share of fanatics. Guess what..? Those are not the people that will\\nmake any lasting peace in the region. Ever. It\\'s those who are willing to \\nmake a tabula rasa and start over, and willing to give in order to get \\nsomething back.\\n\\n\\n \"We\" and \"our\" either refers to Zionists or Jews (i donot know which). \\n\\n Well, i can give you an answer, you Master of Wisdom, I will NOT suggest the \\n imperialist israeli system for solving the ME problem !\\n\\n I think that is fair enough .\\n\\nNo, that is _not_ an answer, since I asked for a system that could solve \\nthe problem. You said any could be used, then you provided a contradiction.\\nGuess where that takes your logic? To never-never land. \\n\\n\\n \"The greatest problem of Zionism is Arab children\".\\n\\t\\t\\t -Rabbi Shoham.\\n\\nOh, and by the way, let me add that these cute quotes you put at the end are\\na real bummer, when I try giving your posts any credit.\\n--\\n\\n--------------------------------------------------------\\nJonas Flygare, \\t\\t+ Wherever you go, there you are\\nV{ktargatan 32 F:621\\t+\\n754 22 Uppsala, Sweden\\t+\\n',\n", - " 'From: cjackson@adobe.com (Curtis Jackson)\\nSubject: Re: New to Motorcycles...\\nOrganization: Adobe Systems Incorporated, Mountain View\\nLines: 26\\n\\nIn article <1993Apr20.131800.16136@alw.nih.gov> gregh@niagara.dcrt.nih.gov (Gregory Humphreys) writes:\\n}1) I only have about $1200-1300 to work with, so that would have \\n}to cover everything (bike, helmet, anything else that I\\'m too \\n}ignorant to know I need to buy)\\n\\nThe following numbers are approximate, and will no doubt get me flamed:\\n\\nHelmet (new, but cheap)\\t\\t\\t\\t\\t$100\\nJacket (used or very cheap)\\t\\t\\t\\t$100\\nGloves (nothing special)\\t\\t\\t\\t$ 20\\nMotorcycle Safety Foundation riding course (a must!)\\t$140\\n\\nThat leaves you between $900 and $1000 (depending on the accuracy\\nof my numbers) to buy a used bike, get it registered, get it\\ninsured, and get it running properly. I\\'d say you\\'re cutting\\nit close. Perhaps if your parents are reasonable, and you indicated\\nyour wish to learn to ride safely, you could get them to pick up\\nthe cost of the MSF course and some of the safety gear. Early\\nholiday presents or whatever. Those are one-time (well, long-term\\nanyway) investments, and you could spend your money on the actual\\nbike, insurance, registration, and maintenance.\\n-- \\nCurtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\nDoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\"\\n\"There is no justification for taking away individuals\\' freedom\\n in the guise of public safety.\" -- Thomas Jefferson\\n',\n", - " 'From: wallacen@CS.ColoState.EDU (nathan wallace)\\nSubject: ORION test film\\nReply-To: wallacen@CS.ColoState.EDU\\nNntp-Posting-Host: sor.cs.colostate.edu\\nOrganization: Colorado State University -=- Computer Science Dept.\\nLines: 11\\n\\nIs the film from the \"putt-putt\" test vehicle which used conventional\\nexplosives as a proof-of-concept test, or another one?\\n\\n---\\nC/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/\\nC/ Nathan F. Wallace C/C/ \"Reality Is\" C/\\nC/ e-mail: wallacen@cs.colostate.edu C/C/ ancient Alphaean proverb C/\\nC/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/\\n \\n\\n\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Case Western Reserve University\\nLines: 26\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1qkq9t$66n@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n\\n>I\\'ll take a wild guess and say Freedom is objectively valuable. I base\\n>this on the assumption that if everyone in the world were deprived utterly\\n>of their freedom (so that their every act was contrary to their volition),\\n>almost all would want to complain. Therefore I take it that to assert or\\n>believe that \"Freedom is not very valuable\", when almost everyone can see\\n>that it is, is every bit as absurd as to assert \"it is not raining\" on\\n>a rainy day. I take this to be a candidate for an objective value, and it\\n>it is a necessary condition for objective morality that objective values\\n>such as this exist.\\n\\n\\tYou have only shown that a vast majority ( if not all ) would\\nagree to this. However, there is nothing against a subjective majority.\\n\\n\\tIn any event, I must challenge your assertion. I know many \\nsocieties- heck, many US citizens- willing to trade freedom for \"security\".\\n\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", - " 'From: mini@csd4.csd.uwm.edu (Padmini Srivathsa)\\nSubject: WANTED : Info on Image Databases\\nOrganization: Computing Services Division, University of Wisconsin - Milwaukee\\nLines: 15\\nDistribution: world\\nNNTP-Posting-Host: 129.89.7.4\\nOriginator: mini@csd4.csd.uwm.edu\\n\\n Guess the subject says it all.\\n I would like references to any introductory material on Image\\n Databases.\\n Please send any pointers to mini@point.cs.uwm.edu\\n\\n Thanx in advance!\\n \\n\\n\\n\\n-- \\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n-< MINI >- mini@point.cs.uwm.edu | mini@csd4.csd.uwm.edu \\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n\\n',\n", - " 'From: Center for Policy Research \\nSubject: From Israeli press. Madness.\\nNf-ID: #N:cdp:1483500342:000:6673\\nNf-From: cdp.UUCP!cpr Apr 16 16:49:00 1993\\nLines: 130\\n\\n\\nFrom: Center for Policy Research \\nSubject: From Israeli press. Madness.\\n\\n/* Written 4:34 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n/* ---------- \"From Israeli press. Madness.\" ---------- */\\nFROM THE ISRAELI PRESS.\\n\\nPaper: Zman Tel Aviv (Tel Aviv\\'s time). Friday local Tel Aviv\\'s\\npaper, affiliated with Maariv.\\n\\nDate: 19 February 1993\\n\\nJournalist: Guy Ehrlich\\n\\nSubject: Interview with soldiers who served in the Duvdevan\\n(Cherry) units, which disguise themselves as Arabs and operate\\nwithin the occupied territories.\\n\\nExcerpts from the article:\\n\\n\"A lot has been written about the units who disguise themselves as\\nArabs, things good and bad, some of the falsehoods. But the most\\nimportant problem of those units has been hardly dealt with. It is\\nthat everyone who serves in the Cherry, after a time goes in one\\nway or another insane\".\\n\\nA man who said this, who will here be called Danny (his full name\\nis known to the editors) served in the Cherry. After his discharge\\nfrom the army he works as delivery boy. His pal, who will here be\\ncalled Dudu was also serving in the Cherry, and is now about to\\ndepart for a round-the-world tour. They both look no different\\nfrom average Israeli youngsters freshly discharged from conscript\\nservice. But in their souls, one can notice something completely\\ndifferent....It was not easy for them to come out with disclosures\\nabout what happened to them. And they think that to most of their\\nfellows from the Cherry it woundn\\'t be easy either. Yet after they\\nbegan to talk, it was nearly impossible to make them stop talking.\\nThe following article will contain all the horror stories\\nrecounted with an appalling openness.\\n\\n(...) A short time ago I was in command of a veteran team, in\\nwhich some of the fellows applied for release from the Cherry. We\\ncalled such soldiers H.I. \\'Hit by the Intifada\\'. Under my command\\nwas a soldier who talked to himself non-stop, which is a common\\nphenomenon in the Cherry. I sent him to a psychiatrist. But why I\\nshould talk about others when I myself feel quite insane ? On\\nFridays, when I come home, my parents know I cannot be talked to\\nuntil I go to the beach, surf a little, calm down and return. The\\nkeys of my father\\'s car must be ready for in advance, so that I\\ncan go there. I they dare talk to me before, or whenever I don\\'t\\nwant them to talk to me, I just grab a chair and smash it\\ninstantly. I know it is my nerve: Smashing chairs all the time\\nand then running away from home, to the car and to the beach. Only\\nthere I become normal.(...)\\n\\n(...) Another friday I was eating a lunch prepared by my mother.\\nIt was an omelette of sorts. She took the risk of sitting next to\\nme and talking to me. I then told my mother about an event which\\nwas still fresh in my mind. I told her how I shot an Arab, and how\\nexactly his wound looked like when I went to inspect it. She began\\nto laugh hysterically. I wanted her to cry, and she dared laugh\\nstraight in my face instead ! So I told her how my pal had made a\\nmincemeat of the two Arabs who were preparing the Molotov\\ncocktails. He shot them down, hitting them beautifully, exactly as\\nthey deserved. One bullet had set a Molotov cocktail on fire, with\\nthe effect that the Arab was burning all over, just beautifully. I\\nwas delighted to see it. My pal fired three bullets, two at the\\nArab with the Molotov cocktail, and the third at his chum. It hit\\nhim straight in his ass. We both felt that we\\'d pulled off\\nsomething.\\n\\nNext I told my mother how another pal of mine split open the guts\\nin the belly of another Arab and how all of us ran toward that\\nspot to take a look. I reached the spot first. And then that Arab,\\nblood gushing forth from his body, spits at me. I yelled: \\'Shut\\nup\\' and he dared talk back to me in Hebrew! So I just laughed\\nstraight in his face. I am usually laughing when I stare at\\nsomething convulsing right before my eyes. Then I told him: \\'All\\nright, wait a moment\\'. I left him in order to take a look at\\nanother wounded Arab. I asked a soldier if that Arab could be\\nsaved, if the bleeding from his artery could be stopped with the\\nhelp of a stone of something else like that. I keep telling all\\nthis to my mother, with details, and she keeps laughing straight\\ninto my face. This infuriated me. I got very angry, because I felt\\nI was becoming mad. So I stopped eating, seized the plate with he\\nomelette and some trimmings still on, and at once threw it over\\nher head. Only then she stopped laughing. At first she didn\\'t know\\nwhat to say.\\n\\n(...) But I must tell you of a still other madness which falls\\nupon us frequently. I went with a friend to practice shooting on a\\nfield. A gull appeared right in the middle of the field. My friend\\nshot it at once. Then we noticed four deer standing high up on the\\nhill above us. My friend at once aimed at one of them and shot it.\\nWe enjoyed the sight of it falling down the rock. We shot down two\\ndeer more and went to take a look. When we climbed the rocks we\\nsaw a young deer, badly wounded by our bullet, but still trying to\\nsuch some milk from its already dead mother. We carefully\\ninspected two paths, covered by blood and chunks of torn flesh of\\nthe two deer we had hit. We were just delighted by that sight. We\\nhad hit\\'em so good ! Then we decided to kill the young deer too,\\nso as spare it further suffering. I approached, took out my\\nrevolver and shot him in the head several times from a very short\\ndistance. When you shoot straight at the head you actually see the\\nbullets sinking in. But my fifth bullet made its brains fall\\noutside onto the ground, with the effect of splattering lots of\\nblood straight on us. This made us feel cured of the spurt of our\\nmadness. Standing there soaked with blood, we felt we were like\\nbeasts of prey. We couldn\\'t explain what had happened to us. We\\nwere almost in tears while walking down from that hill, and we\\nfelt the whole day very badly.\\n\\n(...) We always go back to places we carried out assignments in.\\nThis is why we can see them. When you see a guy you disabled, may\\nbe for the rest of his life, you feel you got power. You feel\\nGodlike of sorts.\"\\n\\n(...) Both Danny and Dudu contemplate at least at this moment\\nstudying the acting. Dudu is not willing to work in any\\nsecurity-linked occupation. Danny feels the exact opposite. \\'Why\\nshouldn\\'t I take advantage of the skills I have mastered so well ?\\nWhy shouldn\\'t I earn $3.000 for each chopped head I would deliver\\nwhile being a mercenary in South Africa ? This kind of job suits\\nme perfectly. I have no human emotions any more. If I get a\\nreasonable salary I will have no problem to board a plane to\\nBosnia in order to fight there.\"\\n\\nTransl. by Israel Shahak.\\n\\n',\n", - " \"Subject: Re: Americans and Evolution\\nFrom: rfox@charlie.usd.edu (Rich Fox, Univ of South Dakota)\\nReply-To: rfox@charlie.usd.edu\\nOrganization: The University of South Dakota Computer Science Dept.\\nNntp-Posting-Host: charlie\\nLines: 26\\n\\nIn article <1pik3i$1l4@fido.asd.sgi.com>, livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>In article , bil@okcforum.osrhe.edu (Bill Conner) writes:\\n>|>\\n>|> \\n>|> Why do you spend so much time posting here if your atheism is so\\n>|> incidental, if the question of God is trivial? Fess up, it matters to\\n>|> you a great deal.\\n>\\n>Ask yourself two questions.\\n>\\n>\\t1. How important is Mithras in your life today?\\n>\\n>\\t2. How important would Mithras become if there was a\\n>\\t well funded group of fanatics trying to get the\\n>\\t schools system to teach your children that Mithras\\n>\\t was the one true God?\\n>\\n>jon.\\n\\nRight on, Jon! Who cares who or whose, as long as it works for the individual.\\nBut don't try to impose those beliefs on us or our children. I would add the\\nwell-funded group tries also to purge science, to deny children access to great\\nwonders and skills. And how about the kids born to creationists? What a\\nburden with which to begin adult life. It must be a cruel awakening for those\\nwho finally see the light, provided it is possible to escape from the depths of\\nthis type of ignorance.\\n\",\n", - " 'From: kempmp@phoenix.oulu.fi (Petri Pihko)\\nSubject: Re: Idle questions for fellow atheists\\nOrganization: University of Oulu, Finland\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 59\\n\\nacooper@mac.cc.macalstr.edu wrote:\\n \\n: I wonder how many atheists out there care to speculate on the face of\\n: the world if atheists were the majority rather than the minority group\\n: of the population. \\n\\nI\\'ve been thinking about this every now and then since I cut my ties\\nwith Christianity. It is surprising to note that a large majority of\\npeople, at least in Finland, seem to be apatheists - even though\\n90 % of the population are members of the Lutheran Church of Finland,\\nreligious people are actually a minority. \\n\\nCould it be possible that many people believe in god \"just in case\"?\\nIt seems people do not want to seek the truth; they fall prey to Pascal\\'s\\nWager or other poor arguments. A small minority of those who do believe\\nreads the Bible regularly. The majority doesn\\'t care - it believes,\\nbut doesn\\'t know what or how. \\n\\nPeople don\\'t usually allow their beliefs to change their lifestyle,\\nthey only want to keep the virtual gate open. A Christian would say\\nthat they are not \"born in the Spirit\", but this does not disturb them.\\nReligion is not something to think about. \\n\\nI\\'m afraid a society with a true atheist majority is an impossible\\ndream. Religions have a strong appeal to people, nevertheless - \\na promise of life after death is something humans eagerly listen to.\\nCoupled with threats of eternal torture and the idea that our\\nmorality is under constant scrutiny of some cosmic cop, too many\\npeople take the poison with a smile. Or just pretend to swallow\\n(and unconsciously hope god wouldn\\'t notice ;-) )\\n\\n: Also, how many atheists out there would actually take the stance and accor a\\n: higher value to their way of thinking over the theistic way of thinking. The\\n: typical selfish argument would be that both lines of thinking evolved from the\\n: same inherent motivation, so one is not, intrinsically, different from the\\n: other, qualitatively. But then again a measuring stick must be drawn\\n: somewhere, and if we cannot assign value to a system of beliefs at its core,\\n: than the only other alternative is to apply it to its periphery; ie, how it\\n: expresses its own selfishness.\\n\\nIf logic and reason are valued, then I would claim that atheistic thinking\\nis of higher value than the theistic exposition. Theists make unnecessary\\nassumptions they believe in - I\\'ve yet to see good reasons to believe\\nin gods, or to take a leap of faith at all. A revelation would do.\\n\\nHowever, why do we value logic and reasoning? This questions bears\\nsome resemblance to a long-disputed problem in science: why mathematics\\nworks? Strong deep structuralists, like Atkins, have proposed that\\nperhaps, after all, everything _is_ mathematics. \\n\\nIs usefulness any criterion?\\n\\nPetri\\n\\n--\\n ___. .\\'*\\'\\'.* Petri Pihko kem-pmp@ Mathematics is the Truth.\\n!___.\\'* \\'.\\'*\\' \\' . Pihatie 15 C finou.oulu.fi Physics is the Rule of\\n \\' *\\' .* \\'* SF-90650 OULU kempmp@ the Game.\\n *\\' * .* FINLAND phoenix.oulu.fi -> Chemistry is The Game.\\n',\n", - " 'From: perlman@qso.Colorado.EDU (Eric S. Perlman)\\nSubject: Re: Final Solution for Gaza ?\\nSummary: Davidsson can\\'t even get the most basic facts right.\\nNntp-Posting-Host: qso.colorado.edu\\nOrganization: University of Colorado, Boulder\\nLines: 27\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n>\\n>[...]\\n>The Gaza strip, this tiny area of land with the highest population\\n>density in the world, has been cut off from the world for weeks.\\n>The Israeli occupier has decided to punish the whole population of\\n>Gaza, some 700.000 people, by denying them the right to leave the\\n>strip and seek work in Israel.\\n\\nAnyone who can repeate this choice piece of tripe without checking\\nhis/her sources does not deserve to be believed. The Gaza strip does\\nnot possess the highest population density in the world. In fact, it\\nisn\\'t even close. Just one example will serve to illustrate the folly\\nof this statement: the city of Hong Kong has nearly ten times the\\npopulation of the Gaza strip in a roughly comparable land area. The\\ncenters of numerous cities also possess comparable, if not far higher,\\npopulation densities. Examples include Manhattan Island (NY City), Sao\\nPaolo, Ciudad de Mexico, Bombay,... \\n\\nNeed I go on? The rest of Mr. Davidsson\\'s message is no closer to the\\ntruth than this oft-repeated statement is.\\n\\n-- \\n\"How sad to see/A model of decorum and tranquillity/become like any other sport\\nA battleground for rival ideologies to slug it out with glee.\" -Tim Rice,\"Chess\"\\n Eric S. Perlman \\t\\t\\t\\t \\n Center for Astrophysics and Space Astronomy, University of Colorado, Boulder\\n',\n", - " 'From: ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed)\\nSubject: Re: Desertification of the Negev\\nOriginator: ahmeda@ice.mcrcim.mcgill.edu\\nNntp-Posting-Host: ice.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 23\\n\\n\\nIn article <1993Apr26.021105.25642@cs.brown.edu>, dzk@cs.brown.edu (Danny Keren) writes:\\n|> This is nonsense. I lived in the Negev for many years and I can say\\n|> for sure that no Beduins were \"moved\" or harmed in any way. On the\\n|> contrary, their standard of living has climbed sharply; many of them\\n|> now live in rather nice, permanent houses, and own cars. There are\\n|> quite a few Beduin students in the Ben-Gurion university. There are\\n|> good, friendly relations between them and the rest of the population.\\n|> \\n|> All the Beduins I met would be rather surprised to read Mr. Davidson\\'s\\n|> poster, I have to say.\\n|> \\n|> -Danny Keren.\\n|> \\n\\nIt is nonsense, Danny, if you can refute it with proof. If you are citing your\\nexperience then you should have been there in the 1940\\'s (the article is\\ncomparing the condition then with that now).\\n\\nOtherwise, it is you who is trying to change the facts.\\n\\n-Ahmed.\\n',\n", - " \"From: lm001@rrz.Uni-Koeln.DE (Erwin H. Keeve)\\nSubject: Polygon Reduction for Marching Cubes\\nOrganization: Regional Computing Center, University of Cologne\\nLines: 36\\nDistribution: world\\nNNTP-Posting-Host: rs1.rrz.uni-koeln.de\\nKeywords: Polygon Reduction, Marching Cubes, Surfaces, Midical Visualisation\\n\\n\\nDear Reader,\\n\\n\\nI'am searching for an implementation of a polygon reduction algorithm\\nfor marching cubes surfaces. I think the best one is the reduction algorithm\\nfrom Schroeder et al., SIGGRAPH '92. So, is there any implementation of this \\nalgorithm, it would be very nice if you could leave it to me.\\n\\nAlso I'am looking for a fast !!! connectivity\\ntest for marching cubes surfaces.\\n\\nAny help or hints will be very useful.\\nThanks a lot\\n\\n\\n ,,,\\n (o o)\\n ___________________________________________oOO__(-)__OOo_____________\\n|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|_|\\n|_|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|\\n| | |\\n| Erwin Keeve | adress: Peter-Welter-Platz 2 |\\n| | W-5000 Cologne 1, Germany |\\n| | |\\n| Dept. of Computergraphics & | phone: +49-221-20189-132 (-192) |\\n| Computeranimation | FAX: +49-221-20189-17 |\\n| | |\\n| Academy of Media Arts Cologne | Email: keeve@khm.uni-koeln.de |\\n|_______________________________|_____________________________________|\\n\\n\\n\\n\\n\\n\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 36\\n\\nIn article <93332@hydra.gatech.EDU> gt1091a@prism.gatech.EDU (gt1091a gt1091a\\nKAAN,TIMUCIN) wrote:\\n\\n[KAAN] Who the hell is this guy David Davidian. I think he talks too much..\\n\\nI am your alter-ego!\\n\\n[KAAN] Yo , DAVID you would better shut the f... up.. O.K ??\\n\\nNo, its\\' not OK! What are you going to do? Come and get me? \\n\\n[KAAN] I don\\'t like your attitute. You are full of lies and shit. \\n\\nIn the United States we refer to it as Freedom of Speech. If you don\\'t like \\nwhat I write either prove me wrong, shut up, or simply fade away! \\n\\n[KAAN] Didn\\'t you hear the saying \"DON\\'T MESS WITH A TURC!!\"...\\n\\nNo. Why do you ask? What are you going to do? Are you going to submit me to\\nbodily harm? Are you going to kill me? Are you going to torture me?\\n\\n[KAAN] See ya in hell..\\n\\nWrong again!\\n\\n[KAAN] Timucin.\\n\\nAll I did was to translate a few lines from Turkish into English. If it was\\nso embarrassing in Turkish, it shouldn\\'t have been written in the first place!\\nDon\\'t kill the messenger!\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: szabo@techbook.com (Nick Szabo)\\nSubject: SSF Redesign: Constellation\\nSummary: decentralize & automate functions\\nKeywords: space station, constellation\\nArticle-I.D.: techbook.C51z6E.CL1\\nOrganization: TECHbooks --- Public Access UNIX --- (503) 220-0636\\nLines: 89\\n\\nSSF is up for redesign again. Let's do it right this\\ntime! Let's step back and consider the functionality we want:\\n\\n[1] microgravity/vacuum process research\\n[2] life sciences research (adaptation to space)\\n[3] spacecraft maintenence \\n\\nThe old NASA approach, explified by Shuttle and SSF so far, was to\\ncentralize functionality. These projects failed to meet\\ntheir targets by a wide margin: the military and commercial users \\ntook most of their payloads off Shuttle after wasting much effort to \\ntie their payloads to it, and SSF has crumbled into disorganization\\nand miscommunication. Over $50 billion has been spent on these\\ntwo projects with no reduction in launch costs and littel improvement\\nin commercial space industrialization. Meanwhile, military and commercial \\nusers have come up with a superior strategy for space development: the \\nconstellation. \\n\\nFirstly, different functions are broken down into different \\nconstellations placed in the optimal orbit for each function:\\nthus we have the GPS/Navstar constellation in 12-hour orbits,\\ncomsats in Clarke and Molniya orbits, etc. Secondly, the task\\nis distributed amongst several spacecraft in a constellation,\\nproviding for redundancy and full coverage where needed.\\n\\nSSF's 3 main functions require quite different environments\\nand are also prime candidates for constellization.\\n\\n[1] We have the makings of a microgravity constellation now:\\nCOMET and Mir for long-duration flights, Shuttle/Spacelab for\\nshort-duration flights. The best strategy for this area is\\ninexpensive, incremental improvement: installation of U.S. facilities \\non Mir, Shuttle/Mir linkup, and transition from Shuttle/Spacelab\\nto a much less expensive SSTO/Spacehab/COMET or SSTO/SIF/COMET.\\nWe might also expand the research program to take advantage of \\ninteresting space environments, eg the high-radiation Van Allen belt \\nor gas/plasma gradients in comet tails. The COMET system can\\nbe much more easily retrofitted for these tasks, where a \\nstation is too large to affordably launch beyond LEO.\\n\\n[2] We need to study life sciences not just in microgravity,\\nbut also in lunar and Martian gravities, and in the radiation\\nenvironments of deep space instead of the protected shelter\\nof LEO. This is a very long-term, low-priority project, since\\nastronauts will have little practical use in the space program\\nuntil costs come down orders of magnitude. Furthermore, using\\nastronauts severely restricts the scope of the investigation,\\nand the sample size. So I propose LabRatSat, a constellation\\ntether-bolo satellites that test out various levels of gravity\\nin super-Van-Allen-Belt orbits that are representative of the\\nradiation environment encountered on Earth-Moon, Earth-Mars,\\nEarth-asteroid, etc. trips. The miniaturized life support\\nmachinery might be operated real-time from earth thru a VR\\ninterface. AFter several orbital missions have been flown,\\nfollow-ons can act as LDEFs on the lunar and Martian surface,\\ntesting out the actual environment at low cost before $billions\\nare spent on astronauts.\\n\\n[3] By far the largest market for spacecraft servicing is in \\nClarke orbit. I propose a fleet of small teleoperated\\nrobots and small test satellites on which ground engineers can\\npractice their skills. Once in place, robots can pry stuck\\nsolar arrays and antennas, attach solar battery power packs,\\ninject fuel, etc. Once the fleet is working, it can be\\nspun off to commercial company(s) who can work with the comsat\\ncompanies to develop comsat replaceable module standards.\\n\\nBy applying the successful constellation strategy, and getting\\nrid of the failed centralized strategy of STS and old SSF, we\\nhave radically improved the capability of the program while\\ngreatly cutting its cost. For a fraction of SSF's pricetag,\\nwe can fix satellites where the satellites are, we can study\\nlife's adaptation to a much large & more representative variety \\nof space environments, and we can do microgravity and vacuum\\nresearch inexpensively and, if needed, in special-purpose\\norbits.\\n\\nN.B., we can apply the constellation strategy to space exploration\\nas well, greatly cutting its cost and increasing its functionality. \\nMars Network and Artemis are two good examples of this; more ambitiously \\nwe can set up a network of native propellant plants on Mars that can be used\\nto fuel planet-wide rover/ballistic hopper prospecting and\\nsample return. The descendants of LabRatSat's technology can\\nbe used as a Mars surface LDEF and to test out closed-ecology\\ngreenhouses on Mars at low cost.\\n\\n\\n-- \\nNick Szabo\\t\\t\\t\\t\\t szabo@techboook.com\\n\",\n", - " 'From: jennise@opus.dgi.com (Milady Printcap the goddess of peripherals)\\nSubject: RE: Looking for a little research help\\nOrganization: Dynamic Graphics Inc.\\nLines: 6\\nDistribution: usa\\nNNTP-Posting-Host: opus.dgi.com\\n\\nFound it! Thanks. I got several offers for help. I appreciate it and\\nwill be contacting those people via e-mail.\\n\\nThanks again...\\n\\njennise\\n',\n", - " \"From: nraclaw@jade.tufts.edu (Nissan Raclaw)\\nSubject: Re: Go Hezbollah!!\\nOrganization: Tufts University - Medford, MA\\nLines: 13\\n\\nCongratulations also are due to the Hamas activists who blew up the \\nWorld Trade Center, no? After all, with every American that they put\\n\\nin the grave they are underlining the USA's bankrupt imperialist\\npolicies. Go HAmas!\\n\\nBlah blah blah blah blah\\n\\nBrad, you are only asking that that violence that you love so much\\ncome back to haunt you...............\\n\\nNissan\\n\\n\",\n", - " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Protective gear\\nOrganization: University College of Wales, Aberystwyth\\nLines: 19\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\nIn article <1993Apr3.200829.2207@galaxy.gov.bc.ca> bclarke@galaxy.gov.bc.ca writes:\\n>In article , maven@eskimo.com (Norman Hamer) writes:\\n>> What protective gear is the most important? I've got a good helmet (shoei\\n>> rf200) and a good, thick jacket (leather gold) and a pair of really cheap\\n>> leather gloves... What should my next purchase be? Better gloves, boots,\\n>> leather pants, what?\\n\\nIF you can remember to tuck properly, the bits that are going to take most \\npunishment with the gear you have will probably be your feet, then hips and \\nknees. Get boots then trousers. The gloves come last, as long as you've the \\nself control to pull your arms in when you tuck. If not, get good gloves \\nfirst - Hands are VERY easily wrecked if you put one down to steady your \\nfall at 70mph!! The other bits heal easier.\\n\\nOnce you are fully covered, you no longer tuck, just lie back and enjoy the \\nride.\\n\\nBest of all, take a mean of all the contradictory answers you get.\\n\",\n", - " 'From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: note to Bobby M.\\nLines: 52\\nOrganization: Walla Walla College\\nLines: 52\\n\\nIn article <1993Apr14.190904.21222@daffy.cs.wisc.edu> mccullou@snake2.cs.wisc.edu (Mark McCullough) writes:\\n>From: mccullou@snake2.cs.wisc.edu (Mark McCullough)\\n>Subject: Re: note to Bobby M.\\n>Date: Wed, 14 Apr 1993 19:09:04 GMT\\n>In article <1993Apr14.131548.15938@monu6.cc.monash.edu.au> darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n>>In madhaus@netcom.com (Maddi Hausmann) writes:\\n>>\\n>>>Mark, how much do you *REALLY* know about vegetarian diets?\\n>>>The problem is not \"some\" B-vitamins, it\\'s balancing proteins. \\n>>>There is also one vitamin that cannot be obtained from non-animal\\n>>>products, and this is only of concern to VEGANS, who eat no\\n>>>meat, dairy, or eggs. I believe it is B12, and it is the only\\n>>>problem. Supplements are available for vegans; yes, the B12\\n>>>does come from animal by-products. If you are on an ovo-lacto\\n>>>vegetarian diet (eat dairy and eggs) this is not an issue.\\n>\\n>I didn\\'t see the original posting, but...\\n>Yes, I do know about vegetarian diets, considering that several of my\\n>close friends are devout vegetarians, and have to take vitamin supplements.\\n>B12 was one of the ones I was thinking of, it has been a long time since\\n>I read the article I once saw talking about the special dietary needs\\n>of vegetarians so I didn\\'t quote full numbers. (Considering how nice\\n>this place is. ;)\\n>\\n>>B12 can also come from whole-grain rice, I understand. Some brands here\\n>>in Australia (and other places too, I\\'m sure) get the B12 in the B12\\n>>tablets from whole-grain rice.\\n>\\n>Are you sure those aren\\'t an enriched type? I know it is basically\\n>rice and soybeans to get almost everything you need, but I hadn\\'t heard\\n>of any rice having B12. \\n>\\n>>Just thought I\\'d contribute on a different issue from the norm :)\\n>\\n>You should have contributed to the programming thread earlier. :)\\n>\\n>> Fred Rice\\n>> darice@yoyo.cc.monash.edu.au \\n>\\n>M^2\\n>\\nIf one is a vegan (a vegetarian taht eats no animal products at at i.e eggs, \\nmilk, cheese, etc., after about 3 years of a vegan diet, you need to start \\ntaking B12 supplements because b12 is found only in animals.) Acutally our \\nbodies make B12, I think, but our bodies use up our own B12 after 2 or 3 \\nyears. \\nLacto-oveo vegetarians, like myself, still get B12 through milk products \\nand eggs, so we don\\'t need supplements.\\nAnd If anyone knows more, PLEASE post it. I\\'m nearly contridicting myself \\nwith the mish-mash of knowledge I\\'ve gleaned.\\n\\nTammy\\n',\n", - " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Solar Sail Data\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 56\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article <1993Apr15.051746.29848@news.duc.auburn.edu>, snydefj@eng.auburn.edu (Frank J. Snyder) writes:\\n> I am looking for any information concerning projects involving Solar\\n> Sails. [...]\\n> Are there any groups out there currently involved in such a project ?\\n\\nSure. Contact the World Space Foundation. They\\'re listed in the sci.space\\nFrequently Asked Questions file, which I\\'ll excerpt.\\n\\n WORLD SPACE FOUNDATION - has been designing and building a solar-sail\\n spacecraft for longer than any similar group; many JPL employees lend\\n their talents to this project. WSF also provides partial funding for the\\n Palomar Sky Survey, an extremely successful search for near-Earth\\n asteroids. Publishes *Foundation News* and *Foundation Astronautics\\n Notebook*, each a quarterly 4-8 page newsletter. Contributing Associate,\\n minimum of $15/year (but more money always welcome to support projects).\\n\\n\\tWorld Space Foundation\\n\\tPost Office Box Y\\n\\tSouth Pasadena, California 91301\\n\\nWSF put together a little paperback anthology of fiction and\\nnonfiction about solar sails: *Project Solar Sail*. I think Robert\\nStaehle, David Brin, or Arthur Clarke may be listed as editor.\\n\\nAlso there is a nontechnical book on solar sailing by Louis Friedman,\\na technical one by a guy whose name escapes me (help me out, Josh),\\nand I would expect that Greg Matloff and Eugene Mallove have something\\nto say about the subject in *The Starflight Handbook*, as well as\\nquite a few references.\\n\\n\\nCheck the following articles in *Journal of the British Interplanetary\\nSociety*:\\n\\nV36 p. 201-209 (1983)\\nV36 p. 483-489 (1983)\\nV37 p. 135-141 (1984)\\nV37 p. 491-494 (1984)\\nV38 p. 113-119 (1984)\\nV38 p. 133-136 (1984)\\n\\n(Can you guess that Matloff visited Fermilab and gave me a bunch of\\nreprints? I just found the file.)\\n\\nAnd K. Eric Drexler\\'s paper \"High Performance Solar Sails and Related\\nReflecting Devices,\" AIAA paper 79-1418, probably in a book called\\n*Space Manufacturing*, maybe the proceedings of the Second (?)\\nConference on Space Manufacturing. The 1979 one, at any rate.\\n\\nSubmarines, flying boats, robots, talking Bill Higgins\\npictures, radio, television, bouncing radar Fermilab\\nvibrations off the moon, rocket ships, and HIGGINS@FNAL.BITNET\\natom-splitting-- all in our time. But nobody HIGGINS@FNAL.FNAL.GOV\\nhas yet been able to figure out a music SPAN: 43011::HIGGINS\\nholder for a marching piccolo player. \\n --Meredith Willson, 1948\\n',\n", - " 'Organization: Ryerson Polytechnical Institute\\nFrom: Mike Mychalkiw \\nSubject: Re: Cobra Locks\\nDistribution: usa\\nLines: 33\\n\\nGreetings netters,\\n\\nSteve writes ... \\n\\nWell I have the mother of all locks. On Friday the 16th of April I took\\npossesion of a 12\\' Cobra Links lock, 1\" diameter. This was a special order.\\n\\nI weighs a lot. I had to carry it home and it was digging into my shoulder\\nafter about two blocks.\\n\\nI have currently a Kryptonite Rock Lock through the front wheel, a HD\\npadlock for the steering lock, a Master padlock to lock the cover to two\\nfront spokes, and the Cobra Links through the rear swing arm and around a\\npost in an underground parking garage.\\n\\nNext Friday the 30th I have an appointment to have an alarm installed on\\nme bike.\\n\\nWhen I travel the Cobra Links and the cover and padlock stay at home.\\n\\nBy the way. I also removed the plastic mesh that is on the Cobra Links\\nand encased the lock from end to end using bicycle inner tubes (two of\\nthem) I got the from bicycle dealer that sold me the Cobra Links. The\\nguys were really great and didn\\'t mark up the price of the lock much\\nand the inner tubes were free.\\n\\nLater.\\n\\n-------------------------------------------------------------------------------\\n1992 FXSTC Rock \\'N Roll Mike Mychalkiw\\nHOG Ryerson Polytechnical Institute -\\nDoD #665 Just THIS side of HELL. Academic Computing Information Centre\\ndoh #0000000667 Just the OTHER side. EMAIL : ACAD8059@RYEVM.RYERSON.CA\\n',\n", - " 'From: Dave Dal Farra \\nSubject: Re: Eating and Riding was Re: Drinking and Riding\\nX-Xxdate: Tue, 6 Apr 93 15:22:03 GMT\\nNntp-Posting-Host: bcarm41a\\nOrganization: BNR Ltd.\\nX-Useragent: Nuntius v1.1.1d9\\nLines: 30\\n\\nIn article Paul Nakada,\\npnakada@oracle.com writes:\\n>\\n>What\\'s the feeling about eating and riding? I went out riding this\\n>weekend, and got a little carried away with some pecan pie. The whole\\n>ride back I felt sluggish. I was certainly much more alert on the\\n>ride in. I\\'m sure others have the same feeling, but the strangest\\n>thing is that eating is usually the turnaround point of weekend rides.\\n>\\n>From now on, a little snack will do. I\\'d much rather have a get that\\n>full/sluggish feeling closer to home.\\n>\\n>-Paul\\n>--\\n>Paul Nakada | Oracle Corporation | pnakada@oracle.com\\n>DoD #7773 | \\'91 R100C | \\'90 K75S\\n>\\n\\nTo maintain my senses at their sharpest, I never eat a full meal\\nwithin 24 hrs of a ride. I\\'ve tried Slim Fast Lite before a \\nride but found that my lap times around the Parliament Buildings suffered \\n0.1 secs. The resultant 70 pound weight loss over the summer\\njust sharpens my bike\\'s handling and I can always look\\nforward to a winter of carbo-loading.\\n\\nObligatory 8:)\\n\\nDave D.F.\\n\"It\\'s true they say that money talks. When mine spoke it said\\n\\'Buy me a Drink!\\'.\"\\n',\n", - " 'From: wcd82671@uxa.cso.uiuc.edu (daniel warren c)\\nSubject: Hard Copy --- Hot Pursuit!!!!\\nSummary: SHIT!!!!!!!\\nKeywords: Running from the Police.\\nArticle-I.D.: news.C5J34y.2t4\\nDistribution: rec.motorcycles\\nOrganization: University of Illinois at Urbana\\nLines: 44\\n\\n\\nYo, did anybody see this run of HARD COPY?\\n\\nI guy on a 600 Katana got pulled over by the Police (I guess for\\nspeeding or something). But just as the cop was about to step\\nout of the car, the dude punches it down an interstate in Georgia.\\nAng then, the cop gives chase.\\n\\nNow this was an interesting episode because it was all videotaped!!!\\nEverything from the dramatic takeoff and 135mph chase to the sidestreet\\nbattle at about 100mph. What happened at the end? The guy (who is\\nbeing relentless chased down box the cage with the disco lights)\\nslows a couple of times to taunt the cop. After blowing a few stop\\nsigns and making car jump to the side, he goes up a dead end street.\\n\\nThe Kat, although not the latest machine, is still a high performance\\nmachine and he slams on the brakes. Of couse, we all know that cages,\\nespecially the ones with the disco lights, can\\'t stop as fast as our\\nhigh performance machines. So what happens?... The cage plows into the\\nKat.\\n\\nLuckily for this dude, he was wearing a helmet and was not hurt. But\\ndude, how crazy can you get!?! Yeah, we\\'ve all went out and played\\ncat and mouse with our friends but, with a cop!!???!!! How crazy can\\nyou get!?!?! It took just one look at a ZX-7 who tried this crap\\nto convince me not to try any shit like that. (Although the dude\\ncollided with a car head on at 140 mph, the Kawasaki team colors\\nstill looked good!!! Just a few scratches, like no front end....\\n3 inch long engine and other \"minor\" scratches...)\\n\\nIf you guys are out there, please, slow it down. I not being\\nan advocate for the cages (especially the ones that make that \\nannoying ass noises...), but just think... The next time you\\npunched it (whether you have an all mighty ZX-11 or a \"I can\\ndo it\" 250 Ninja), just remember, a kid could step out at any \\ntime.\\n\\nPeace & ride (kinda) safe.\\n\\nWarren -- \"Have Suzuki, Will travel...\"\\nWCD82671@uxa.cso.uiuc.edu\\n\\n\"What\\'s the big deal about riding one of these. I\\'m only going...\\n95!?!?!\" - Annie (Robotech)\\n',\n", - " 'From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 30\\n\\nIn article <1993Apr25.182253.1449@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>\\tI don\\'t know where you guys are from but in America\\n>such attempts to curtail someones first amendment rights are\\n>not appreciated. Here, we let everyone speak their mind\\n>regardless of how we feel about it. Take your fascistic\\n>repressive ideals back to where you came from.\\n\\n\\nHey tough guy, freedom necessitates responsibility, and\\nno freedom is absolute. \\nBTW, to anyone who defends Arafat, read on:\\n\\n\"Open fire on the new Jewish immigrants, be they from the Soviet\\nUnion, Ethiopia or anywhere else....I give you my instructions to\\nuse violence against the immigrants. I willjail anyone who\\nrefuses to do this.\"\\n\\t\\t\\t\\tYassir Arafat, Al-Muharar, 4/10/90\\n\\nAt least he\\'s not racist!\\nJust anti-Jewish\\n\\n\\nPete\\n\\n\\n\\n\\n\\n\\n',\n", - " 'From: dchien@hougen.seas.ucla.edu (David H. Chien)\\nSubject: Orbit data - help needed\\nOrganization: SEASnet, University of California, Los Angeles\\nLines: 43\\n\\nI have the \"osculating elements at perigee\" of an orbit, which I need\\nto convert to something useful, preferably distance from the earth\\nin evenly spaced time intervals. A GSM coordinate system is preferable,\\nbut I convert from other systems. C, pascal, or fortran code, or\\nif you can point me to a book or something that\\'d be great.\\n\\nhere\\'s the first few lines of the file.\\n\\n0 ()\\n1 (2X, A3, 7X, A30)\\n2 (2X, I5, 2X, A3, 2X, E24.18)\\n3 (4X, A3, 7X, E24.18)\\n1 SMA SEMI-MAJOR AXIS\\n1 ECC ECCENTRICITY\\n1 INC INCLINATION\\n1 OMG RA OF ASCENDING NODE\\n1 POM ARGUMENT OF PERICENTRE\\n1 TRA TRUE ANOMALY\\n1 HAP APOCENTRE HEIGHT\\n1 HPE PERICENTRE HEIGHT\\n2 3 BEG 0.167290000000000000E+05\\n3 SMA 0.829159999999995925E+05\\n3 ECC 0.692307999999998591E+00\\n3 INC 0.899999999999999858E+02\\n3 OMG 0.184369999999999994E+03\\n3 POM 0.336549999999999955E+03\\n3 TRA 0.359999999999999943E+03\\n3 HAP 0.133941270127999174E+06\\n3 HPE 0.191344498719999910E+05\\n2 1 REF 0.167317532658774153E+05\\n3 SMA 0.829125167527418671E+05\\n3 ECC 0.691472268118590319E+00\\n3 INC 0.899596754214342091E+02\\n3 OMG 0.184377521828175002E+03\\n3 POM 0.336683788851850579E+03\\n3 TRA 0.153847166458030088E-05\\n3 HAP 0.133866082767180880E+06\\n3 HPE 0.192026707383028306E+05\\n\\nThanks in advance,\\n\\nlarry kepko\\nlkepko@igpp.ucla.edu\\n',\n", - " ' howland.reston.ans.net!europa.eng.gtefsd.com!uunet!mcsun!Germany.EU.net!news.dfn.de!tubsibr!dbstu1.rz.tu-bs.de!I3150101\\nSubject: Re: Gospel Dating\\nFrom: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nOrganization: Technical University Braunschweig, Germany\\nLines: 35\\n\\nIn article <66015@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n(Deletion)\\n>I cannot see any evidence for the V. B. which the cynics in this group would\\n>ever accept. As for the second, it is the foundation of the religion.\\n>Anyone who claims to have seen the risen Jesus (back in the 40 day period)\\n>is a believer, and therefore is discounted by those in this group; since\\n>these are all ancients anyway, one again to choose to dismiss the whole\\n>thing. The third is as much a metaphysical relationship as anything else--\\n>even those who agree to it have argued at length over what it *means*, so\\n>again I don\\'t see how evidence is possible.\\n>\\n \\nNo cookies, Charlie. The claims that Jesus have been seen are discredited\\nas extraordinary claims that don\\'t match their evidence. In this case, it\\nis for one that the gospels cannot even agree if it was Jesus who has been\\nseen. Further, there are zillions of other spook stories, and one would\\nhardly consider others even in a religious context to be some evidence of\\na resurrection.\\n \\nThere have been more elaborate arguments made, but it looks as if they have\\nnot passed your post filtering.\\n \\n \\n>I thus interpret the \"extraordinary claims\" claim as a statement that the\\n>speaker will not accept *any* evidence on the matter.\\n \\nIt is no evidence in the strict meaning. If there was actual evidence it would\\nprobably be part of it, but the says nothing about the claims.\\n \\n \\nCharlie, I have seen Invisible Pink Unicorns!\\nBy your standards we have evidence for IPUs now.\\n Benedikt\\n',\n", - " 'From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Ok, So I was a little hasty...\\nOrganization: Ontario Hydro - Research Division\\nLines: 17\\n\\nIn article speedy@engr.latech.edu (Speedy Mercer) writes:\\n>In article jnmoyne@lbl.gov (Jean-Noel Moyne) writes:\\n>> Ok, hold on a second and clarify something for me:\\n>\\n>> What does \"DWI\" stand for ? I thought it was \"DUI\" for Driving Under\\n>>Influence, so here what does W stand for ?\\n>\\n>Driving While Intoxicated.\\n>\\n>This was changed here in Louisiana when a girl went to court and won her \\n>case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\nHere it\\'s driving while impaired. That about covers everything.\\n\\nI\\'ve bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n',\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: FLAME and a Jewish home in Palestine\\nOrganization: The Department of Redundancy Department\\nLines: 41\\n\\nIn article maler@vercors.imag.fr (Oded Maler) writes:\\n>In article , jake@bony1.bony.com (Jake Livni) writes:\\n\\n>|> Typical Arabic thinking. If we are guilty of something, so is\\n>|> everyone else. Unfortunately for you, Nabil, Jewish tribes are not\\n>|> nearly as susceptible to the fratricidal murdering that is still so\\n>|> common among Arabs in the Middle East. There were no \" killings\\n>|> between the Jewish tribes on the way.\"\\n\\n>I don\\'t like this comment about \"Typical\" thinking. You could state\\n>your interpretation of Exodus without it. As I read Exodus I can see \\n>a lot of killing there, which is painted by the author of the bible\\n>in ideological/religious colors. The history in the desert can be seen\\n>as an ethos of any nomadic people occupying a land. That\\'s why I think\\n>it is a great book with which descendants Arabs, Turks and Mongols can \\n>unify as well.\\n\\nYou somehow missed Nabil\\'s comments, even though you included it in\\nyour followup: \\n\\n >The number which could have arrived to the Holy Lands must have been\\n >substantially less ude to the harsh desert and the killings between the\\n >Jewish tribes on the way..\\n\\nI am not aware of \"killings between Jewish tribes\" in the desert.\\n\\nThe point of \"typical thinking\" here is that while Arabs STILL TODAY\\nact in the manner you describe, like \"any nomadic people occupying a \\nland\", killing and plundering each other with regularity, others have\\nsomehow progressed over time. It is not surprising then that Arabs\\noften accuse others (infidels) of things that they are quite familiar\\nwith: civil rights violations, religious discrimination, ethnic\\ncleansing, land theft, torture and murder. It is precisely this \\nmechanism at work that leads people to say that Jewish tribes were\\nkilling each other in the desert, even without support for such a\\nludicrous suggestion.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " \"From: roell@informatik.tu-muenchen.de (Thomas Roell)\\nSubject: Re: 24 bit Graphics cards\\nIn-Reply-To: rjs002c@parsec.paradyne.com's message of Wed, 14 Apr 1993 21:59:34 GMT\\nOrganization: Inst. fuer Informatik, Technische Univ. Muenchen, Germany\\nLines: 20\\n\\n>I am looking for EISA or VESA local bus graphic cards that support at least \\n>1024x786x24 resolution. I know Matrox has one, but it is very\\n>expensive. All the other cards I know of, that support that\\n>resoultion, are striaght ISA. \\n\\nWhat about the ELSA WINNER4000 (S3 928, Bt485, 4MB, EISA), or the\\nMetheus Premier-4VL (S3 928, Bt485, 4MB, ISA/VL) ?\\n\\n>Also are there any X servers for a unix PC that support 24 bits?\\n\\nAs it just happens, SGCS has a Xserver (X386 1.4) that does\\n1024x768x24 on those cards. Please email to info@sgcs.com for more\\ndetails.\\n\\n- Thomas\\n--\\n-------------------------------------------------------------------------------\\nDas Reh springt hoch, \\t\\t\\t\\te-mail: roell@sgcs.com\\ndas Reh springt weit,\\t\\t\\t\\t#include \\nwas soll es tun, es hat ja Zeit ...\\n\",\n", - " \"From: M. Burnham \\nSubject: Re: How to act in front of traffic jerks\\nX-Xxdate: Thu, 15 Apr 93 16:39:59 GMT\\nNntp-Posting-Host: 130.57.72.65\\nOrganization: Novell Inc.\\nX-Useragent: Nuntius v1.1.1d12\\nLines: 16\\n\\nIn article Robert Mugele,\\nrmugele@oracle.com writes:\\n>Absolutely, unless you are in the U.S. Then the cager will pull a gun\\n>and blow you away.\\n\\nWell, I would guess the probability of a BMW driver having a gun would\\nbe lower than some other vehicles. At least, I would be more likely \\nto say something to someone in a luxosedan, than a hopped-up pickup\\ntruck, for example.\\n\\n- Mark\\n\\n------------------------------------------------------------------------\\nMark S. Burnham (markb@wc.novell.com) AMA#668966 DoD#0747 \\nAlfa Romeo GTV-6 '90 Ninja 750\\n------------------------------------------------------------------------\\n\",\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 09/15 - Mission Schedules\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 177\\nDistribution: world\\nExpires: 6 May 1993 19:59:07 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/schedule\\nLast-modified: $Date: 93/04/01 14:39:23 $\\n\\nSPACE SHUTTLE ANSWERS, LAUNCH SCHEDULES, TV COVERAGE\\n\\n SHUTTLE LAUNCHINGS AND LANDINGS; SCHEDULES AND HOW TO SEE THEM\\n\\n Shuttle operations are discussed in the Usenet group sci.space.shuttle,\\n and Ken Hollis (gandalf@pro-electric.cts.com) posts a compressed version\\n of the shuttle manifest (launch dates and other information)\\n periodically there. The manifest is also available from the Ames SPACE\\n archive in SPACE/FAQ/manifest. The portion of his manifest formerly\\n included in this FAQ has been removed; please refer to his posting or\\n the archived copy. For the most up to date information on upcoming\\n missions, call (407) 867-INFO (867-4636) at Kennedy Space Center.\\n\\n Official NASA shuttle status reports are posted to sci.space.news\\n frequently.\\n\\n\\n WHY DOES THE SHUTTLE ROLL JUST AFTER LIFTOFF?\\n\\n The following answer and translation are provided by Ken Jenks\\n (kjenks@gothamcity.jsc.nasa.gov).\\n\\n The \"Ascent Guidance and Flight Control Training Manual,\" ASC G&C 2102,\\n says:\\n\\n\\t\"During the vertical rise phase, the launch pad attitude is\\n\\tcommanded until an I-loaded V(rel) sufficient to assure launch tower\\n\\tclearance is achieved. Then, the tilt maneuver (roll program)\\n\\torients the vehicle to a heads down attitude required to generate a\\n\\tnegative q-alpha, which in turn alleviates structural loading. Other\\n\\tadvantages with this attitude are performance gain, decreased abort\\n\\tmaneuver complexity, improved S-band look angles, and crew view of\\n\\tthe horizon. The tilt maneuver is also required to start gaining\\n\\tdownrange velocity to achieve the main engine cutoff (MECO) target\\n\\tin second stage.\"\\n\\n This really is a good answer, but it\\'s couched in NASA jargon. I\\'ll try\\n to interpret.\\n\\n 1)\\tWe wait until the Shuttle clears the tower before rolling.\\n\\n 2)\\tThen, we roll the Shuttle around so that the angle of attack\\n\\tbetween the wind caused by passage through the atmosphere (the\\n\\t\"relative wind\") and the chord of the wings (the imaginary line\\n\\tbetween the leading edge and the trailing edge) is a slightly\\n\\tnegative angle (\"a negative q-alpha\").\\tThis causes a little bit of\\n\\t\"downward\" force (toward the belly of the Orbiter, or the +Z\\n\\tdirection) and this force \"alleviates structural loading.\"\\n\\tWe have to be careful about those wings -- they\\'re about the\\n\\tmost \"delicate\" part of the vehicle.\\n\\n 3)\\tThe new attitude (after the roll) also allows us to carry more\\n\\tmass to orbit, or to achieve a higher orbit with the same mass, or\\n\\tto change the orbit to a higher or lower inclination than would be\\n\\tthe case if we didn\\'t roll (\"performance gain\").\\n\\n 4)\\tThe new attitude allows the crew to fly a less complicated\\n\\tflight path if they had to execute one of the more dangerous abort\\n\\tmaneuvers, the Return To Launch Site (\"decreased abort maneuver\\n\\tcomplexity\").\\n\\n 5)\\tThe new attitude improves the ability for ground-based radio\\n\\tantennae to have a good line-of-sight signal with the S-band radio\\n\\tantennae on the Orbiter (\"improved S-band look angles\").\\n\\n 6)\\tThe new attitude allows the crew to see the horizon, which is a\\n\\thelpful (but not mandatory) part of piloting any flying machine.\\n\\n 7)\\tThe new attitude orients the Shuttle so that the body is\\n\\tmore nearly parallel with the ground, and the nose to the east\\n\\t(usually). This allows the thrust from the engines to add velocity\\n\\tin the correct direction to eventually achieve orbit. Remember:\\n\\tvelocity is a vector quantity made of both speed and direction.\\n\\tThe Shuttle has to have a large horizontal component to its\\n\\tvelocity and a very small vertical component to attain orbit.\\n\\n This all begs the question, \"Why isn\\'t the launch pad oriented to give\\n this nice attitude to begin with? Why does the Shuttle need to roll to\\n achieve that attitude?\" The answer is that the pads were leftovers\\n from the Apollo days. The Shuttle straddles two flame trenches -- one\\n for the Solid Rocket Motor exhaust, one for the Space Shuttle Main\\n Engine exhaust. (You can see the effects of this on any daytime\\n launch. The SRM exhaust is dirty gray garbage, and the SSME exhaust is\\n fluffy white steam. Watch for the difference between the \"top\"\\n [Orbiter side] and the \"bottom\" [External Tank side] of the stack.) The\\n access tower and other support and service structure are all oriented\\n basically the same way they were for the Saturn V\\'s. (A side note: the\\n Saturn V\\'s also had a roll program. Don\\'t ask me why -- I\\'m a Shuttle\\n guy.)\\n\\n I checked with a buddy in Ascent Dynamics.\\tHe added that the \"roll\\n maneuver\" is really a maneuver in all three axes: roll, pitch and yaw.\\n The roll component of that maneuver is performed for the reasons\\n stated. The pitch component controls loading on the wings by keeping\\n the angle of attack (q-alpha) within a tight tolerance. The yaw\\n component is used to determine the orbital inclination. The total\\n maneuver is really expressed as a \"quaternion,\" a grad-level-math\\n concept for combining all three rotation matrices in one four-element\\n array.\\n\\n\\n HOW TO RECEIVE THE NASA TV CHANNEL, NASA SELECT\\n\\n NASA SELECT is broadcast by satellite. If you have access to a satellite\\n dish, you can find SELECT on Satcom F2R, Transponder 13, C-Band, 72\\n degrees West Longitude, Audio 6.8, Frequency 3960 MHz. F2R is stationed\\n over the Atlantic, and is increasingly difficult to receive from\\n California and points west. During events of special interest (e.g.\\n shuttle missions), SELECT is sometimes broadcast on a second satellite\\n for these viewers.\\n\\n If you can\\'t get a satellite feed, some cable operators carry SELECT.\\n It\\'s worth asking if yours doesn\\'t.\\n\\n The SELECT schedule is found in the NASA Headline News which is\\n frequently posted to sci.space.news. Generally it carries press\\n conferences, briefings by NASA officials, and live coverage of shuttle\\n missions and planetary encounters. SELECT has recently begun carrying\\n much more secondary material (associated with SPACELINK) when missions\\n are not being covered.\\n\\n\\n AMATEUR RADIO FREQUENCIES FOR SHUTTLE MISSIONS\\n\\n The following are believed to rebroadcast space shuttle mission audio:\\n\\n\\tW6FXN - Los Angeles\\n\\tK6MF - Ames Research Center, Mountain View, California\\n\\tWA3NAN - Goddard Space Flight Center (GSFC), Greenbelt, Maryland.\\n\\tW5RRR - Johnson Space Center (JSC), Houston, Texas\\n\\tW6VIO - Jet Propulsion Laboratory (JPL), Pasadena, California.\\n\\tW1AW Voice Bulletins\\n\\n\\tStation VHF\\t 10m\\t 15m\\t 20m\\t 40m\\t 80m\\n\\t------\\t ------ ------ ------ ------ -----\\t-----\\n\\tW6FXN\\t 145.46\\n\\tK6MF\\t 145.585\\t\\t\\t 7.165\\t3.840\\n\\tWA3NAN\\t 147.45 28.650 21.395 14.295 7.185\\t3.860\\n\\tW5RRR\\t 146.64 28.400 21.350 14.280 7.227\\t3.850\\n\\tW6VIO\\t 224.04\\t\\t 21.340 14.270\\n\\tW6VIO\\t 224.04\\t\\t 21.280 14.282 7.165\\t3.840\\n\\tW1AW\\t\\t 28.590 21.390 14.290 7.290\\t3.990\\n\\n W5RRR transmits mission audio on 146.64, a special event station on the\\n other frequencies supplying Keplerian Elements and mission information.\\n\\n W1AW also transmits on 147.555, 18.160. No mission audio but they\\n transmit voice bulletins at 0245 and 0545 UTC.\\n\\n Frequencies in the 10-20m bands require USB and frequencies in the 40\\n and 80m bands LSB. Use FM for the VHF frequencies.\\n\\n [This item was most recently updated courtesy of Gary Morris\\n (g@telesoft.com, KK6YB, N5QWC)]\\n\\n\\n SOLID ROCKET BOOSTER FUEL COMPOSITION\\n\\n Reference: \"Shuttle Flight Operations Manual\" Volume 8B - Solid Rocket\\n Booster Systems, NASA Document JSC-12770\\n\\n Propellant Composition (percent)\\n\\n Ammonium perchlorate (oxidizer)\\t\\t\\t69.6\\n Aluminum\\t\\t\\t\\t\\t\\t16\\n Iron Oxide (burn rate catalyst)\\t\\t\\t0.4\\n Polybutadiene-acrilic acid-acrylonitrile (a rubber) 12.04\\n Epoxy curing agent\\t\\t\\t\\t\\t1.96\\n\\n End reference\\n\\n Comment: The aluminum, rubber, and epoxy all burn with the oxidizer.\\n\\nNEXT: FAQ #10/15 - Historical planetary probes\\n',\n", - " 'From: mdennie@xerox.com (Matt Dennie)\\nSubject: Re: Flashing anyone?\\nKeywords: flashing\\nOrganization: Xerox\\n\\nIn <1993Apr15.123539.2228@news.columbia.edu> rdc8@cunixf.cc.columbia.edu (Robert D Castro) writes:\\n\\n>Hello all,\\n\\n>On my bike I have hazard lights (both front and back turn signals\\n>flash). Since I live in NJ and commute to NYC there are a number of\\n>tolls one must pay on route. Just before arriving at a toll booth I\\n>switch the hazards on. I do thisto warn other motorists that I will\\n>be taking longer than the 2 1/2 seconds to make the transaction.\\n>Taking gloves off, getting money out of coin changer/pocket, making\\n>transaction, putting gloves back on takes a little more time than the\\n>average cager takes to make the same transaction of paying the toll.\\n>I also notice that when I do this cagers tend to get the message and\\n>usually go to another booth.\\n\\n>My question, is this a good/bad thing to do?\\n\\n>Any others tend to do the same?\\n\\n>Just curious\\n\\n>o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o>\\n> Rob Castro | email - rdc8@cunixf.cc.columbia.edu | Live for today\\n> 1983 KZ550LTD | phone - (212) 854-7617 | For today you live!\\n> DoD# NYC-1 | New York, New York, USA | RC (tm)\\n\\nBeleive it or not: NY state once considered eliminating tolls for motor-\\ncycles based simply on the fact that motos clog up toll booths. But then\\nMario realized the foolishness of trading a few hundred K $`s a year for\\nsome relief in traffic congestion.\\n\\nToo bad he won`t take that Sumpreme Court Justice job - I thought we might\\nbe rid of him forever.\\n--\\n--Matt Dennie Internet: mmd.wbst207v@xerox.com\\nXerox Corporation, Rochester, NY (USA)\\n\"Reaching consensus in a group often\\n is confused with finding the right answer.\" -- Norman Maier\\n',\n", - " 'From: ray@unisql.UUCP (Ray Shea)\\nSubject: Re: What is it with Cats and Dogs ???!\\nOrganization: UniSQL, Inc., Austin, Texas, USA\\nLines: 17\\n\\nIn article <1993Apr14.200933.15362@cbnewsj.cb.att.com> jimbes@cbnewsj.cb.att.com (james.bessette) writes:\\n>In article <6130328@hplsla.hp.com> kens@hplsla.hp.com (Ken Snyder) writes:\\n>>ps. I also heard from a dog breeder that the chains of bicycles and\\n>>motorcycles produced high frequency squeaks that dogs loved to chase.\\n>\\n>Ask the breeder why they also chase BMWs also.\\n\\n\\nSqueaky BMW riders.\\n\\n\\n\\n-- \\nRay Shea \\t\\t \"they wound like a very effective method.\"\\nUniSQL, Inc.\\t\\t --Leah\\nunisql!ray@cs.utexas.edu some days i miss d. boon real bad. \\nDoD #0372 : Team Twinkie : \\'88 Hawk GT \\n',\n", - " \"From: leavitt@cs.umd.edu (Mr. Bill)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: The Cafe at the Edge of the Universe\\nLines: 43\\n\\nmjs@sys.uea.ac.uk (Mike Sixsmith) writes:\\nmjs>Secondly, it is the adhesion of the\\nmjs>tyre on the road, the suspension geometry and the ground clearance of the\\nmjs> motorcycle which dictate how quickly you can swerve to avoid obstacles, and\\nmjs>not the knowledge of physics between the rider's ears. Are you seriously\\n ^^^^^^^^^^^^^^^^^^^^\\nmjs>suggesting that countersteering knowledge enables you to corner faster\\nmjs>or more competentlY than you could manage otherwise??\\n\\negreen@east.sun.com writes:\\ned>If he's not, I will. \\n\\nHey Ed, you didn't give me the chance! Sheesh!\\n\\nThe answer is, absolutely!, as Ed so eloquently describes:\\n\\ned>Put two riders on identical machines. It's the\\ned>one who knows what he's doing, and why, that will be faster. It *may*\\ned>be possible to improve your technique if you have no idea what it is,\\ned>through trial and error, but it is not very effective methodology.\\ned>Only by understanding the technique of steering a motorcycle can one\\n ^^^^^^^^^^^^^^^^^^^^^\\ned>improve on that technique (I hold that this applies to any human\\ned>endeavor).\\n\\nHerein lies the key to this thread:\\n\\nKindly note the difference in the responses. Ed (and I) are talking\\nabout knowing riding technique, while Mike is arguing knowing the physics\\nbehind it. It *is* possible to be taught the technique of countersteering\\n(ie: push the bar on the inside of the turn to go that way) *without*\\nhaving to learn all the fizziks about gyroscopes and ice cream cones\\nand such as seen in the parallel thread. That stuff is mainly of interest\\nto techno-motorcycle geeks like the readers of rec.motorcycles ;^),\\nbut doesn't need to be taught to the average student learning c-steering.\\nMike doesn't seem to be able to make the distinction. I know people\\nwho can carve circles around me who couldn't tell you who Newton was.\\nOn the other hand, I know very intelligent, well-educated people who\\nthink that you steer a motorcycle by either: 1) leaning, 2) steering\\na la bicycles, or 3) a combination of 1 and 2. Knowledge of physics\\ndoesn't get you squat - knowledge of technique does!\\n\\nMr. Bill\\n\",\n", - " \"From: vwelch@ncsa.uiuc.edu (Von Welch)\\nSubject: Re: MOTORCYCLE DETAILING TIP #18\\nOrganization: Nat'l Ctr for Supercomp App (NCSA) @ University of Illinois\\nLines: 22\\n\\nIn article <1993Apr15.164644.7348@hemlock.cray.com>, ant@palm21.cray.com (Tony Jones) writes:\\n|> \\n|> How about someone letting me know MOTORCYCLE DETAILING TIP #19 ?\\n|> \\n|> The far side of my instrument panel was scuffed when the previous owner\\n|> dumped the bike. Same is true for one of the turn signals.\\n|> \\n|> Both of the scuffed areas are black plastic.\\n|> \\n|> I recall reading somewhere, that there was some plastic compound you could coat\\n|> the scuffed areas with, then rub it down, ending with a nice smooth shiny \\n|> finish ?\\n|> \\n\\nIn the May '93 Motorcyclist (pg 15-16), someone writes in and recomends using\\nrubberized undercoating for this. \\n\\n-- \\nVon Welch (vwelch@ncsa.uiuc.edu)\\tNCSA Networking Development Group\\n'93 CBR600F2\\t\\t\\t'78 KZ650\\t\\t'83 Subaru GL 4WD\\n\\n- I speak only for myself and those who think exactly like me -\\n\",\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: A Little Too Satanic\\nOrganization: sgi\\nLines: 16\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <66486@mimsy.umd.edu>, mangoe@cs.umd.edu (Charley Wingate) writes:\\n|> Jeff West writes:\\n|> \\n|> >You claimed that people that took the time to translate the bible would\\n|> >also take the time to get it right. But here in less than a couple\\n|> >generations you\\'ve been given ample proof (agreed to by yourself above)\\n|> >that the \"new\" versions \"tends to be out of step with other modern\\n|> >translations.\"\\n|> \\n|> What I said was that people took time to *copy* *the* *text* correctly.\\n|> Translations present completely different issues.\\n\\nSo why do I read in the papers that the Qumram texts had \"different\\nversions\" of some OT texts. Did I misunderstand?\\n\\njon. \\n',\n", - " 'From: harley-request@thinkage.on.ca (Harley Mailing List Digest)\\nSubject: Harley-Davidson Mailing List -- an Email taste sensation!\\nSummary: a sort of bi-monthly not really automated announcement\\nOriginator: hogreq@hog.thinkage.on.ca\\nKeywords: digests, lists, harley-davidson, hogaholics\\nSupersedes: <93mar09-hog-announce@hog.thinkage.on.ca>\\nOrganization: Thinkage Ltd.\\nExpires: Fri, 30 Apr 1993 11:00:00 GMT\\nLines: 36\\n\\n Anyone interesting in a mailing list for Harley-Davidson bikes, lifestyle,\\npolitics, H.O.G. and whatever over 310 members from 14 countries make it,\\nmay subscribe by sending a request to:\\n\\n harley-request@thinkage.on.ca\\n or uunet.ca!thinkage!harley-request\\n\\n***\\n* Your request to join should have a signature or something giving your full\\n* Email address. Do not RELY on the header \"From:\" field being useful to me.\\n*\\n* This is not an automated \"listserv\" facility. Do not expect instant\\n* gratification.\\n***\\n\\nThe list is a digest format scheduled for twice a day.\\n\\nMembers of the harley list may obtain back-issues and subject-index\\n listings, pictures, etc. via an Email archive server. \\nServer access is restricted to list subscribers only.\\nFTP access \"real soon\".\\n\\nOther motorcycle related lists i\\'ve heard of (not run by me),\\n these addresses may or may not be current:\\n\\n 2-stroke: 2strokes-request@microunity.com\\n Dirt: dirt-request@zygot.ati.com\\n European: listserv@frigg.isc-br.com\\n Racing: race-request@formula1.corp.sun.com\\n digest-request@formula1.corp.sun.com\\n Short Riding: short-request@smarmy.sun.com\\n Wet Leather: listserv@frigg.isc-br.com\\n\\n---\\nIt climbs the hills like a Matchless \\'cause my Honda\\'s built really light...\\n -Brian Wilson (Honda Honda)\\n',\n", - " 'From: cjackson@adobe.com (Curtis Jackson)\\nSubject: Re: Cultural Enquiries\\nOrganization: Adobe Systems Incorporated, Mountain View\\nLines: 32\\n\\n}>More like those who use their backs instead of their minds to make\\n}>their living who are usually ignorant and intolerant of anything outside\\n}>of their group or level of understanding.\\n\\nThere seems to be some confusion between rednecks and white trash.\\nThe confusion is understandable, as there is substantial overlap\\nbetween the two sets. Let me see if I can clarify:\\n\\nRednecks: Primarily use their backs instead of their minds to make a\\n\\tliving. Usually somewhat ignorant (by somebody\\'s standards,\\n\\tanyway) because they have never held education above basic\\n\\treading/writing/math skills to be that important to their\\n\\teventual vocation. Note I did not say stupid, just ignorant.\\n\\t(They might be stupid, but then so are some high percentage\\n\\tof any group).\\n\\nWhite trash: \"White trash fit the stereotype referred to by the\\n\\tword \\'nigger\\' better than any black person I ever met, only\\n\\twith the added \\'bonus\\' that white trash are mean as hell.\"\\n\\t-- my father. Genuinely lazy (not just out of work or under-\\n\\tqualified), good-for-nothing, dishonest, white people who are\\n\\tmean as snakes. The \"squeal like a pig\" boys in _Deliverance_\\n\\tmay or may not have been rednecks, but they were sure as hell\\n\\twhite trash.\\n\\nWhite trash are assuredly intolerant of anything outside of their\\ngroup or level of understanding. Rednecks may or may not be.\\n-- \\nCurtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\nDoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\"\\n\"There is no justification for taking away individuals\\' freedom\\n in the guise of public safety.\" -- Thomas Jefferson\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: How many read sci.space?\\nOrganization: Express Access Online Communications USA\\nLines: 9\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.184650.4833@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n>isn't my real name, either. I'm actually Elvis. Or maybe a lemur; I\\n>sometimes have difficulty telling which is which.\\n\\ndefinitely a lemur.\\n\\nElvis couldn't spell, just listen to any of his songs.\\n\\npat\\n\",\n", - " 'From: Center for Policy Research \\nSubject: From Israeli press. Short notes.\\nNf-ID: #N:cdp:1483500345:000:1466\\nNf-From: cdp.UUCP!cpr Apr 16 16:51:00 1993\\nLines: 39\\n\\n\\nFrom: Center for Policy Research \\nSubject: From Israeli press. Short notes.\\n\\n/* Written 4:43 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n/* ---------- \"From Israeli press. Short notes.\" ---------- */\\nFROM THE ISRAELI PRESS\\n\\nHadashot, 14 March 1993:\\n\\nThe Israeli Police Department announced on the evening of Friday,\\nMarch 12 that it is calling upon [Jewish] Israeli citizens with\\ngun permits to carry them at all times \"so as to contribute to\\ntheir security and that of their surroundings\".\\n\\nHa\\'aretz, 15 March 1993:\\n\\nYehoshua Matza (Likud), Chair of the Knesset Interior Committee,\\nstated that he intends to demand that the police department make\\nit clear to the public that anyone who wounds or kills\\n[non-Jewish] terrorists will not be put on trial.\\n\\nHa\\'aretz, 16 March1993:\\n\\nToday a private security firm and units from the IDF Southern\\nCommand will begin installation of four magnetic gates in the Gaza\\nstrip, as an additional stage in the upgrading of security\\nmeasures in the Strip.\\n\\nThe gates will aid in the searching of [non-Jewish] Gaza residents\\nas they leave for work in Israel. They can be used to reveal the\\npresence of knives, axes, weapons and other sharp objects.\\n\\nIn addition to the gates, which will be operated by a private\\ncivilian company, large quantities of magnetic-card reading\\ndevices are being brought to the inspection points, to facilitate\\nthe reading of the magnetic cards these [non-Jewish] workers must\\ncarry.\\n\\n',\n", - " 'From: mathew \\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 13\\n\\nfrank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n> In article <1993Apr15.125245.12872@abo.fi> MANDTBACKA@FINABO.ABO.FI (Mats\\n> Andtbacka) writes:\\n> | \"And these objective values are ... ?\"\\n> |Please be specific, and more importantly, motivate.\\n> \\n> I\\'ll take a wild guess and say Freedom is objectively valuable.\\n\\nYes, but whose freedom? The world in general doesn\\'t seem to value the\\nfreedom of Tibetans, for example.\\n\\n\\nmathew\\n',\n", - " \"From: cbrooks@ms.uky.edu (Clayton Brooks)\\nSubject: Re: V-max handling request\\nOrganization: University Of Kentucky, Dept. of Math Sciences\\nLines: 13\\n\\nbradw@Newbridge.COM (Brad Warkentin) writes:\\n\\n>............. Seriously, handling is probably as good as the big standards\\n>of the early 80's but not compareable to whats state of the art these days.\\n\\nI think you have to go a little further back.\\nThis opinion comes from riding CB750's GS1000's KZ1300's and a V-Max.\\nI find no enjoyment in riding a V-Max fast on a twisty road.\\n-- \\n Clayton T. Brooks _,,-^`--. From the heart cbrooks@ms.uky.edu\\n 722 POT U o'Ky .__,-' * \\\\ of the blue cbrooks@ukma.bitnet\\n Lex. KY 40506 _/ ,/ grass and {rutgers,uunet}!ukma!cbrooks\\n 606-257-6807 (__,-----------'' bourbon country AMA NMA MAA AMS ACBL DoD\\n\",\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 13/15 - Interest Groups & Publications\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.groups_733694492\\nExpires: 6 May 1993 20:01:32 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 354\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/groups\\nLast-modified: $Date: 93/04/01 14:39:08 $\\n\\nSPACE ACTIVIST/INTEREST/RESEARCH GROUPS AND SPACE PUBLICATIONS\\n\\n GROUPS\\n\\n AIA -- Aerospace Industry Association. Professional group, with primary\\n\\tmembership of major aerospace firms. Headquartered in the DC area.\\n\\tActs as the \"voice of the aerospace industry\" -- and it\\'s opinions\\n\\tare usually backed up by reams of analyses and the reputations of\\n\\tthe firms in AIA.\\n\\n\\t [address needed]\\n\\n AIAA -- American Institute of Aeronautics and Astronautics.\\n\\tProfessional association, with somewhere about 30,000-40,000\\n\\tmembers. 65 local chapters around the country -- largest chapters\\n\\tare DC area (3000 members), LA (2100 members), San Francisco (2000\\n\\tmembers), Seattle/NW (1500), Houston (1200) and Orange County\\n\\t(1200), plus student chapters. Not a union, but acts to represent\\n\\taviation and space professionals (engineers, managers, financial\\n\\ttypes) nationwide. Holds over 30 conferences a year on space and\\n\\taviation topics publishes technical Journals (Aerospace Journal,\\n\\tJournal of Spacecraft and Rockets, etc.), technical reference books\\n\\tand is _THE_ source on current aerospace state of the art through\\n\\ttheir published papers and proceedings. Also offers continuing\\n\\teducation classes on aerospace design. Has over 60 technical\\n\\tcommittees, and over 30 committees for industry standards. AIAA acts\\n\\tas a professional society -- offers a centralized resume/jobs\\n\\tfunction, provides classes on job search, offers low-cost health and\\n\\tlife insurance, and lobbies for appropriate legislation (AIAA was\\n\\tone of the major organizations pushing for IRAs - Individual\\n\\tRetirement Accounts). Very active public policy arm -- works\\n\\tdirectly with the media, congress and government agencies as a\\n\\tlegislative liaison and clearinghouse for inquiries about aerospace\\n\\ttechnology technical issues. Reasonably non-partisan, in that they\\n\\trepresent the industry as a whole, and not a single company,\\n\\torganization, or viewpoint.\\n\\n\\tMembership $70/yr (student memberships are less).\\n\\n\\tAmerican Institute of Aeronautics and Astronautics\\n\\tThe Aerospace Center\\n\\t370 L\\'Enfant Promenade, SW\\n\\tWashington, DC 20077-0820\\n\\t(202)-646-7400\\n\\n AMSAT - develops small satellites (since the 1960s) for a variety of\\n\\tuses by amateur radio enthusiasts. Has various publications,\\n\\tsupplies QuickTrak satellite tracking software for PC/Mac/Amiga etc.\\n\\n\\tAmateur Satellite Corporation (AMSAT)\\n\\tP.O. Box 27\\n\\tWashington, DC 20044\\n\\t(301)-589-6062\\n\\n ASERA - Australian Space Engineering and Research Association. An\\n\\tAustralian non-profit organisation to coordinate, promote, and\\n\\tconduct space R&D projects in Australia, involving both Australian\\n\\tand international (primarily university) collaborators. Activities\\n\\tinclude the development of sounding rockets, small satellites\\n\\t(especially microsatellites), high-altitude research balloons, and\\n\\tappropriate payloads. Provides student projects at all levels, and\\n\\tis open to any person or organisation interested in participating.\\n\\tPublishes a monthly newsletter and a quarterly technical journal.\\n\\n\\tMembership $A100 (dual subscription)\\n\\tSubscriptions $A25 (newsletter only) $A50 (journal only)\\n\\n\\tASERA Ltd\\n\\tPO Box 184\\n\\tRyde, NSW, Australia, 2112\\n\\temail: lindley@syd.dit.csiro.au\\n\\n BIS - British Interplanetary Society. Probably the oldest pro-space\\n\\tgroup, BIS publishes two excellent journals: _Spaceflight_, covering\\n\\tcurrent space activities, and the _Journal of the BIS_, containing\\n\\ttechnical papers on space activities from near-term space probes to\\n\\tinterstellar missions. BIS has published a design study for an\\n\\tinterstellar probe called _Daedalus_.\\n\\n\\tBritish Interplanetary Society\\n\\t27/29 South Lambeth Road\\n\\tLondon SW8 1SZ\\n\\tENGLAND\\n\\n\\tNo dues information available at present.\\n\\n ISU - International Space University. ISU is a non-profit international\\n\\tgraduate-level educational institution dedicated to promoting the\\n\\tpeaceful exploration and development of space through multi-cultural\\n\\tand multi-disciplinary space education and research. For further\\n\\tinformation on ISU\\'s summer session program or Permanent Campus\\n\\tactivities please send messages to \\'information@isu.isunet.edu\\' or\\n\\tcontact the ISU Executive Offices at:\\n\\n\\tInternational Space University\\n\\t955 Massachusetts Avenue 7th Floor\\n\\tCambridge, MA 02139\\n\\t(617)-354-1987 (phone)\\n\\t(617)-354-7666 (fax)\\n\\n L-5 Society (defunct). Founded by Keith and Carolyn Henson in 1975 to\\n\\tadvocate space colonization. Its major success was in preventing US\\n\\tparticipation in the UN \"Moon Treaty\" in the late 1970s. Merged with\\n\\tthe National Space Institute in 1987, forming the National Space\\n\\tSociety.\\n\\n NSC - National Space Club. Open for general membership, but not well\\n\\tknown at all. Primarily comprised of professionals in aerospace\\n\\tindustry. Acts as information conduit and social gathering group.\\n\\tActive in DC, with a chapter in LA. Monthly meetings with invited\\n\\tspeakers who are \"heavy hitters\" in the field. Annual \"Outlook on\\n\\tSpace\" conference is _the_ definitive source of data on government\\n\\tannual planning for space programs. Cheap membership (approx\\n\\t$20/yr).\\n\\n\\t [address needed]\\n\\n NSS - the National Space Society. NSS is a pro-space group distinguished\\n\\tby its network of local chapters. Supports a general agenda of space\\n\\tdevelopment and man-in-space, including the NASA space station.\\n\\tPublishes _Ad Astra_, a monthly glossy magazine, and runs Shuttle\\n\\tlaunch tours and Space Hotline telephone services. A major sponsor\\n\\tof the annual space development conference. Associated with\\n\\tSpacecause and Spacepac, political lobbying organizations.\\n\\n\\tMembership $18 (youth/senior) $35 (regular).\\n\\n\\tNational Space Society\\n\\tMembership Department\\n\\t922 Pennsylvania Avenue, S.E.\\n\\tWashington, DC 20003-2140\\n\\t(202)-543-1900\\n\\n Planetary Society - founded by Carl Sagan. The largest space advocacy\\n\\tgroup. Publishes _Planetary Report_, a monthly glossy, and has\\n\\tsupported SETI hardware development financially. Agenda is primarily\\n\\tsupport of space science, recently amended to include an\\n\\tinternational manned mission to Mars.\\n\\n\\tThe Planetary Society\\n\\t65 North Catalina Avenue\\n\\tPasadena, CA 91106\\n\\n\\tMembership $35/year.\\n\\n SSI - the Space Studies Institute, founded by Dr. Gerard O\\'Neill.\\n\\tPhysicist Freeman Dyson took over the Presidency of SSI after\\n\\tO\\'Neill\\'s death in 1992. Publishes _SSI Update_, a bimonthly\\n\\tnewsletter describing work-in-progress. Conducts a research program\\n\\tincluding mass-drivers, lunar mining processes and simulants,\\n\\tcomposites from lunar materials, solar power satellites. Runs the\\n\\tbiennial Princeton Conference on Space Manufacturing.\\n\\n\\tMembership $25/year. Senior Associates ($100/year and up) fund most\\n\\t SSI research.\\n\\n\\tSpace Studies Institute\\n\\t258 Rosedale Road\\n\\tPO Box 82\\n\\tPrinceton, NJ 08540\\n\\n SEDS - Students for the Exploration and Development of Space. Founded in\\n\\t1980 at MIT and Princeton. SEDS is a chapter-based pro-space\\n\\torganization at high schools and universities around the world.\\n\\tEntirely student run. Each chapter is independent and coordinates\\n\\tits own local activities. Nationally, SEDS runs a scholarship\\n\\tcompetition, design contests, and holds an annual international\\n\\tconference and meeting in late summer.\\n\\n\\tStudents for the Exploration and Development of Space\\n\\tMIT Room W20-445\\n\\t77 Massachusetts Avenue\\n\\tCambridge, MA 02139\\n\\t(617)-253-8897\\n\\temail: odyssey@athena.mit.edu\\n\\n\\tDues determined by local chapter.\\n\\n SPACECAUSE - A political lobbying organization and part of the NSS\\n\\tFamily of Organizations. Publishes a bi-monthly newsletter,\\n\\tSpacecause News. Annual dues is $25. Members also receive a discount\\n\\ton _The Space Activist\\'s Handbook_. Activities to support pro-space\\n\\tlegislation include meeting with political leaders and interacting\\n\\twith legislative staff. Spacecause primarily operates in the\\n\\tlegislative process.\\n\\n\\tNational Office\\t\\t\\tWest Coast Office\\n\\tSpacecause\\t\\t\\tSpacecause\\n\\t922 Pennsylvania Ave. SE\\t3435 Ocean Park Blvd.\\n\\tWashington, D.C. 20003\\t\\tSuite 201-S\\n\\t(202)-543-1900\\t\\t\\tSanta Monica, CA 90405\\n\\n SPACEPAC - A political action committee and part of the NSS Family of\\n\\tOrganizations. Spacepac researches issues, policies, and candidates.\\n\\tEach year, updates _The Space Activist\\'s Handbook_. Current Handbook\\n\\tprice is $25. While Spacepac does not have a membership, it does\\n\\thave regional contacts to coordinate local activity. Spacepac\\n\\tprimarily operates in the election process, contributing money and\\n\\tvolunteers to pro-space candidates.\\n\\n\\tSpacepac\\n\\t922 Pennsylvania Ave. SE\\n\\tWashington, DC 20003\\n\\t(202)-543-1900\\n\\n UNITED STATES SPACE FOUNDATION - a public, non-profit organization\\n\\tsupported by member donations and dedicated to promoting\\n\\tinternational education, understanding and support of space. The\\n\\tgroup hosts an annual conference for teachers and others interested\\n\\tin education. Other projects include developing lesson plans that\\n\\tuse space to teach other basic skills such as reading. Publishes\\n\\t\"Spacewatch,\" a monthly B&W glossy magazine of USSF events and\\n\\tgeneral space news. Annual dues:\\n\\n\\t\\tCharter\\t\\t$50 ($100 first year)\\n\\t\\tIndividual\\t$35\\n\\t\\tTeacher\\t\\t$29\\n\\t\\tCollege student $20\\n\\t\\tHS/Jr. High\\t$10\\n\\t\\tElementary\\t $5\\n\\t\\tFounder & $1000+\\n\\t\\t Life Member\\n\\n\\tUnited States Space Foundation\\n\\tPO Box 1838\\n\\tColorado Springs, CO 80901\\n\\t(719)-550-1000\\n\\n WORLD SPACE FOUNDATION - has been designing and building a solar-sail\\n spacecraft for longer than any similar group; many JPL employees lend\\n their talents to this project. WSF also provides partial funding for the\\n Palomar Sky Survey, an extremely successful search for near-Earth\\n asteroids. Publishes *Foundation News* and *Foundation Astronautics\\n Notebook*, each a quarterly 4-8 page newsletter. Contributing Associate,\\n minimum of $15/year (but more money always welcome to support projects).\\n\\n\\tWorld Space Foundation\\n\\tPost Office Box Y\\n\\tSouth Pasadena, California 91301\\n\\n\\n PUBLICATIONS\\n\\n Aerospace Daily (McGraw-Hill)\\n\\tVery good coverage of aerospace and space issues. Approx. $1400/yr.\\n\\n Air & Space / Smithsonian (bimonthly magazine)\\n\\tBox 53261\\n\\tBoulder, CO 80332-3261\\n\\t$18/year US, $24/year international\\n\\n ESA - The European Space Agency publishes a variety of periodicals,\\n\\tgenerally available free of charge. A document describing them in\\n\\tmore detail is in the Ames SPACE archive in\\n\\tpub/SPACE/FAQ/ESAPublications.\\n\\n Final Frontier (mass-market bimonthly magazine) - history, book reviews,\\n\\tgeneral-interest articles (e.g. \"The 7 Wonders of the Solar System\",\\n\\t\"Everything you always wanted to know about military space\\n\\tprograms\", etc.)\\n\\n\\tFinal Frontier Publishing Co.\\n\\tPO Box 534\\n\\tMt. Morris, IL 61054-7852\\n\\t$14.95/year US, $19.95 Canada, $23.95 elsewhere\\n\\n Space News (weekly magazine) - covers US civil and military space\\n\\tprograms. Said to have good political and business but spotty\\n\\ttechnical coverage.\\n\\n\\tSpace News\\n\\tSpringfield VA 22159-0500\\n\\t(703)-642-7330\\n\\t$75/year, may have discounts for NSS/SSI members\\n\\n Journal of the Astronautical Sciences and Space Times - publications of\\n\\tthe American Astronautical Society. No details.\\n\\n\\tAAS Business Office\\n\\t6352 Rolling Mill Place, Suite #102\\n\\tSpringfield, VA 22152\\n\\t(703)-866-0020\\n\\n GPS World (semi-monthly) - reports on current and new uses of GPS, news\\n\\tand analysis of the system and policies affecting it, and technical\\n\\tand product issues shaping GPS applications.\\n\\n\\tGPS World\\n\\t859 Willamette St.\\n\\tP.O. Box 10460\\n\\tEugene, OR 97440-2460\\n\\t(503)-343-1200\\n\\n\\tFree to qualified individuals; write for free sample copy.\\n\\n Innovation (Space Technology) -- Free. Published by the NASA Office of\\n\\tAdvanced Concepts and Technology. A revised version of the NASA\\n\\tOffice of Commercial Programs newsletter.\\n\\n Planetary Encounter - in-depth technical coverage of planetary missions,\\n\\twith diagrams, lists of experiments, interviews with people directly\\n\\tinvolved.\\n World Spaceflight News - in-depth technical coverage of near-Earth\\n\\tspaceflight. Mostly covers the shuttle: payload manifests, activity\\n\\tschedules, and post-mission assessment reports for every mission.\\n\\n\\tBox 98\\n\\tSewell, NJ 08080\\n\\t$30/year US/Canada\\n\\t$45/year elsewhere\\n\\n Space (bi-monthly magazine)\\n\\tBritish aerospace trade journal. Very good. $75/year.\\n\\n Space Calendar (weekly newsletter)\\n\\n Space Daily/Space Fax Daily (newsletter)\\n\\tShort (1 paragraph) news notes. Available online for a fee\\n\\t(unknown).\\n\\n Space Technology Investor/Commercial Space News -- irregular Internet\\n\\tcolumn on aspects of commercial space business. Free. Also limited\\n\\tfax and paper edition.\\n\\n\\t P.O. Box 2452\\n\\t Seal Beach, CA 90740-1452.\\n\\n All the following are published by:\\n\\n\\tPhillips Business Information, Inc.\\n\\t7811 Montrose Road\\n\\tPotomac, MC 20854\\n\\n\\tAerospace Financial News - $595/year.\\n\\tDefense Daily - Very good coverage of space and defense issues.\\n\\t $1395/year.\\n\\tSpace Business News (bi-weekly) - Very good overview of space\\n\\t business activities. $497/year.\\n\\tSpace Exploration Technology (bi-weekly) - $495/year.\\n\\tSpace Station News (bi-weekly) - $497/year.\\n\\n UNDOCUMENTED GROUPS\\n\\n\\tAnyone who would care to write up descriptions of the following\\n\\tgroups (or others not mentioned) for inclusion in the answer is\\n\\tencouraged to do so.\\n\\n\\tAAS - American Astronautical Society\\n\\tOther groups not mentioned above\\n\\nNEXT: FAQ #14/15 - How to become an astronaut\\n',\n", - " \"From: arnie@magnus.acs.ohio-state.edu (Arnie Skurow)\\nSubject: Re: Solar battery chargers -- any good?\\nNntp-Posting-Host: photon.magnus.acs.ohio-state.edu\\nOrganization: The Ohio State University\\nLines: 28\\n\\nIn article <1993Apr16.061736.8785@CSD-NewsHost.Stanford.EDU> robert@Xenon.Stanf\\nord.EDU (Robert Kennedy) writes:\\n>I've seen solar battery boosters, and they seem to come without any\\n>guarantee. On the other hand, I've heard that some people use them\\n>with success, although I have yet to communicate directly with such a\\n>person. Have you tried one? What was your experience? How did you use\\n>it (occasional charging, long-term leave-it-for-weeks, etc.)?\\n>\\n> -- Robert Kennedy\\n\\nI have a cheap solar charger that I keep in my car. I purchased it via\\nsome mail order catalog when the 4 year old battery in my Oldsmobile would\\nrun down during Summer when I was riding my bike more than driving my car.\\nKnowing I'd be selling the car in a year or so, I purchased the charger.\\nBelieve it or not, the thing worked. The battery held a charge and\\nenergetically started the car, many times after 4 or 5 weeks of just\\nsitting.\\n\\nEventually I had to purchase a new battery anyway because the Winter sun\\nwasn't strong enough due to its low angle.\\n\\nI think I paid $29 or $30 for the charger. There are more powerful, more\\nexpensive ones, but I purchased the cheapest one I could find.\\n\\nI've never used it on the bike because I have an E-Z Charger on it and\\nkeep it plugged in all the time the bike is garaged.\\n\\nArnie Skurow\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenians serving in the Wehrmacht and the SS.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 63\\n\\nIn article <735426299@amazon.cs.duke.edu> wiener@duke.cs.duke.edu (Eduard Wiener) writes:\\n\\n>\\t I can see how little taste you actually have in the\\n>\\t cheap shot you took at me when I did nothing more\\n>\\t than translate Kozovski\\'s insulting reference\\n>\\t to Milan Pavlovic.\\n\\nC\\'mon, you still haven\\'t corrected yourself, \\'wieneramus\\'. In April \\n1942, Hitler was preparing for the invasion of the Caucasus. A \\nnumber of Nazi Armenian leaders began submitting plans to German\\nofficials in spring and summer 1942. One of them was Souren Begzadian\\nPaikhar, son of a former ambassador of the Armenian Republic in Baku.\\nPaikhar wrote a letter to Hitler, asking for German support to his\\nArmenian national socialist movement Hossank and suggesting the\\ncreation of an Armenian SS formation in order \\n\\n\"to educate the youth of liberated Armenia according to the \\n spirit of the Nazi ideas.\"\\n\\nHe wanted to unite the Armenians of the already occupied territories\\nof the USSR in his movement and with them conquer historic Turkish\\nhomeland. Paikhar was confined to serving the Nazis in Goebbels\\nPropaganda ministry as a speaker for Armenian- and French-language\\nradio broadcastings.[1] The Armenian-language broadcastings were\\nproduced by yet another Nazi Armenian Viguen Chanth.[2]\\n\\n[1] Patrick von zur Muhlen (Muehlen), p. 106.\\n[2] Enno Meyer, A. J. Berkian, \\'Zwischen Rhein und Arax, 900\\n Jahre Deutsch-Armenische beziehungen,\\' (Heinz Holzberg\\n Verlag-Oldenburg 1988), pp. 124 and 129.\\n\\n\\nThe establishment of Armenian units in the German army was favored\\nby General Dro (the Butcher). He played an important role in the\\nestablishment of the Armenian \\'legions\\' without assuming any \\nofficial position. His views were represented by his men in the\\nrespective organs. An interesting meeting took place between Dro\\nand Reichsfuehrer-SS Heinrich Himmler toward the end of 1942.\\nDro discussed matters of collaboration with Himmler and after\\na long conversation, asked if he could visit POW camp close to\\nBerlin. Himmler provided Dro with his private car.[1] \\n\\nA minor problem was that some of the Soviet nationals were not\\n\\'Aryans\\' but \\'subhumans\\' according to the official Nazi philosophy.\\nAs such, they were subject to German racism. However, Armenians\\nwere the least threatened and indeed most privileged. In August \\n1933, Armenians had been recognized as Aryans by the Bureau of\\nRacial Investigation in the Ministry for Domestic Affairs.\\n\\n[1] Meyer, Berkian, ibid., pp. 112-113.\\n\\nNeed I go on?\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Suicide Bomber Attack in the Territories \\nOrganization: Brown University Department of Computer Science\\nLines: 22\\n\\n Attention Israel Line Recipients\\n \\n Friday, April 16, 1993\\n \\n \\nTwo Arabs Killed and Eight IDF Soldiers Wounded in West Bank Car\\nBomb Explosion\\n \\nIsrael Defense Forces Radio, GALEI ZAHAL, reports today that a car\\nbomb explosion in the West Bank today killed two Palestinians and\\nwounded eight IDF soldiers. The blast is believed to be the work of\\na suicide bomber. Radio reports said a car packed with butane gas\\nexploded between two parked buses, one belonging to the IDF and the\\nother civilian. Both busses went up in flames. The blast killed an\\nArab man who worked at a nearby snack bar in the Mehola settlement.\\nAn Israel Radio report stated that the other man who was killed may\\nhave been the one who set off the bomb. According to officials at\\nthe Haemek Hospital in Afula, the eight IDF soldiers injured in the\\nblast suffered light to moderate injuries.\\n \\n\\n-Danny Keren\\n',\n", - " 'Subject: [ANNOUNCE] Ivan Sutherland to speak at Harvard\\nFrom: eekim@husc11.harvard.edu (Eugene Kim)\\nDistribution: harvard\\nOrganization: Harvard University Science Center\\nNntp-Posting-Host: husc11.harvard.edu\\nLines: 21\\n\\nThe Harvard Computer Society is pleased to announce its third lecture of\\nthe spring. Ivan Sutherland, the father of computer graphics and an\\ninnovator in microprocessing, will be speaking at Harvard University on\\nTuesday, April 20, 1993, at 4:00 pm in Aiken Computations building, room\\n101. The title of his talk is \"Logical Effort and the Conflict over the\\nControl of Information.\"\\n\\nCookies and tea will be served at 3:30 pm in the Aiken Lobby. Admissions\\nis free, and all are welcome.\\n\\nAiken is located north of the Science Center near the Law School.\\n\\nFor more information, send e-mail to eekim@husc.harvard.edu.\\n\\nThe lecture will be videotaped, and a tape will be made available.\\n\\nThanks.\\n\\n-- \\nEugene Kim \\'96 | \"Give me a place to stand, and I will\\nINTERNET: eekim@husc.harvard.edu | move the earth.\" --Archimedes\\n',\n", - " 'From: tom@igc.apc.org\\nSubject: computer cult\\nNf-ID: #N:cdp:1469100033:000:2451\\nNf-From: cdp.UUCP!tom Apr 24 09:26:00 1993\\nLines: 59\\n\\n\\nFrom: \\nSubject: computer cult\\n\\nFrom scott Fri Apr 23 16:31:21 1993\\nReceived: by igc.apc.org (4.1/Revision: 1.77 )\\n\\tid AA16121; Fri, 23 Apr 93 16:31:09 PDT\\nDate: Fri, 23 Apr 93 16:31:09 PDT\\nMessage-Id: <9304232331.AA16121@igc.apc.org>\\nFrom: Scott Weikart \\nSender: scott\\nTo: cdplist\\nSubject: Next stand-off?\\nStatus: R\\n\\nRedwood City, CA (API) -- A tense stand-off entered its third week\\ntoday as authorities reported no progress in negotiations with\\ncharismatic cult leader Steve Jobs.\\n\\nNegotiators are uncertain of the situation inside the compound, but\\nsome reports suggest that half of the hundreds of followers inside\\nhave been terminated. Others claim to be staying of their own free\\nwill, but Jobs\\' persuasive manner makes this hard to confirm.\\n\\nIn conversations with authorities, Jobs has given conflicting\\ninformation on how heavily prepared the group is for war with the\\nindustry. At times, he has claimed to \"have hardware which will blow\\nanything else away\", while more recently he claims they have stopped\\nmanufacturing their own.\\n\\nAgents from the ATF (Apple-Taligent Forces) believe that the group is\\nequipped with serious hardware, including 486-caliber pieces and\\npossibly Canon equipment.\\n\\nThe siege has attracted a variety of spectators, from the curious to\\nother cultists. Some have offered to intercede in negotiations,\\nincluding a young man who will identify himself only as \"Bill\" and\\nclaims to be the \"MS-iah\".\\n\\nFormer members of the cult, some only recently deprogrammed, speak\\nhesitantly of their former lives, including being forced to work\\n20-hour days, and subsisting on Jolt and Twinkies. There were\\nfrequent lectures in which they were indoctrinated into a theory of\\n\"interpersonal computing\" which rejects traditional roles.\\n\\nLate-night vigils on Chesapeake Drive are taking their toll on\\nfederal marshals. Loud rock and roll, mostly Talking Heads, blares\\nthroughout the night. Some fear that Jobs will fulfill his own\\napocalyptic prophecies, a worry reinforced when the loudspeakers\\ncarry Jobs\\' own speeches -- typically beginning with a chilling \"I\\nwant to welcome you to the \\'Next World\\' \".\\n\\n- - -- \\nRoland J. Schemers III | Networking Systems\\nSystems Programmer | G16 Redwood Hall (415) 723-6740\\nDistributed Computing Group | Stanford, CA 94305-4122\\nStanford University | schemers@Slapshot.Stanford.EDU\\n\\n\\n',\n", - " 'From: harmons@.WV.TEK.COM (Harmon Sommer)\\nSubject: Re: Countersteering_FAQ please post\\nLines: 15\\n\\nSender: \\nReply-To: harmons@gyro.WV.TEK.COM (Harmon Sommer)\\nDistribution: \\nOrganization: /usr/ens/etc/organization\\nKeywords: \\n\\n\\n>Hey Ed, how do you explain the fact that you pull on a horse\\'s reins\\n>left to go left? :-) Or am I confusing two threads here?\\n\\nUnless they have been taught to \"neck rein\". Then the left rein is brought\\nto bear on the left side of horse\\'s neck to go right.\\n\\nEquestrian counter steering?\\n',\n", - " \"From: viking@iastate.edu (Dan Sorenson)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Iowa State University, Ames IA\\nLines: 36\\n\\nryan_cousineau@compdyn.questor.org (Ryan Cousineau) writes:\\n\\n>Riding up the hill leading to my\\n>house, I encountered a liver-and-white Springer Spaniel (no relation to\\n>the Springer Softail, or the Springer Spagthorpe, a close relation to\\n>the Spagthorpe Viking).\\n\\n\\tI must have missed the article on the Spagthorpe Viking. Was\\nthat the one with the little illuminated Dragon's Head on the front\\nfender, a style later copied by Indian, and the round side covers?\\n\\n[accident deleted]\\n\\n>What worries me about the accident is this: I don't think I could have\\n>prevented it except by traveling much slower than I was. This is not\\n>necessarily an unreasonable suggestion for a residential area, but I was\\n>riding around the speed limit.\\n\\n\\tYou can forget this line of reasoning. When an animal\\ndecides to take you, there's nothing you can do about it. It has\\nsomething to do with their genetics. I was putting along at a\\nmere 20mph or so, gravel road with few loose rocks on it (as in,\\njust like bad concrete), and 2200lbs of swinging beef jumped a\\nfence, came out of the ditch, and rammed me! When I saw her jump\\nthe fence I went for the gas, since she was about 20 feet ahead\\nof me but a good forty to the side. Damn cow literally chased me\\ndown and nailed me. No damage to cow, a bent case guard and a\\nseverely annoyed rider were the only casualties. If I had my\\nshotgun I'd still be eating steak. Nope, if 2200lbs of cow\\ncan hit me when I'm actively evading, forget a much more\\nmanueverable dog. Just run them over.\\n\\n< Dan Sorenson, DoD #1066 z1dan@exnet.iastate.edu viking@iastate.edu >\\n< ISU only censors what I read, not what I say. Don't blame them. >\\n< USENET: Post to exotic, distant machines. Meet exciting, >\\n< unusual people. And flame them. >\\n\",\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Israeli Terrorism\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 46\\n\\nIn article <1rd7eo$1a4@usenet.INS.CWRU.Edu> cy779@cleveland.Freenet.Edu (Anas Omran) writes:\\n>\\n>In a previous article, tclock@orion.oac.uci.edu (Tim Clock) says:\\n\\n>>In article <1993Apr24.203620.6531@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>>Since one is also unlikely to get \"the truth\" from either Arab or \\n>>Palestinian news outlets, where do we go to \"understand\", to learn? \\n>>Is one form of propoganda more reliable than another?\\n\\n>There are many neutral human rights organizations which always report\\n>on the situation in the O.T.\\n\\n\\tA neutral organization would report on the situation in\\nIsrael, where the elderly and children are the victims of stabbings by\\nHamas \"activists.\" A neutral organization might also report that\\nIsraeli arabs have full civil rights.\\n\\n>The Israelis used to arrest and sometimes to kill some of these\\n>neutral reporters.\\n\\n\\tCare to name names, or is this yet another unsubstantiated\\nslander? \\n\\n>So, this is another kind of terrorism committed by the Jews in Palestine.\\n>They do not allow fair and neutral coverage of the situation in Palestine.\\n\\n\\tTerrorism, as you would know if you had a spine that allowed\\nyou to stand up, is random attacks on civilians. Terorism includes\\nsuch things as shooting a cripple and thowing him off the side of a\\nboat because he happens to be Jewish. Not allowing people to go where\\nthey are likely to be stabbed and killed, like a certain lawyer killed\\nlast week, is not terorism.\\n\\nAdam\\n\\n\\n\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 92\\n\\nIn article <1993Apr17.153728.12152@ncsu.edu> hernlem@chess.ncsu.edu \\n(Brad Hernlem) writes:\\n>\\n>In article <2BCF287A.25524@news.service.uci.edu>, tclock@orion.oac.uci.edu \\n(Tim Clock) writes:\\n>|\\n>|> \"Assuming\"? Also: come on, Brad. If we are going to get anywhere in \\n>|> this (or any) discussion, it doesn\\'t help to bring up elements I never \\n>|> addressed, *nor commented on in any way*. I made no comment on who is \\n>|> \"right\" or who is \"wrong\", only that civilians ARE being used as cover \\n>|> and that, having been placed \"in between\" the Israelis and the guerillas,\\n>|> they *will* be injured as both parties continue their fight.\\n>\\n>Pardon me Tim, but I do not see how it can be possible for the IDF to fail\\n>to detect the presence of those responsible for planting the bomb which\\n>killed the three IDF troops and then later know the exact number and \\n>whereabouts of all of them. Several villages were shelled. How could the IDF\\n>possibly have known that there were guerrillas in each of the targetted\\n>villages? You see, it was an arbitrary act of \"retaliation\".\\n>\\nI will again *repeat* my statement: 1) I *do not* condone these \\n*indiscriminate* Israeli acts (nor have I *ever*, 2) If the villagers do not know who these \"guerillas\" are (which you stated earlier), how do you expect the\\nIsraelis to know? It is **very** difficult to \"identify\" who they are (this\\n*is why* the \"guerillas\" prefer to lose themselves in the general population \\nby dressing the same, acting the same, etc.).\\n>\\n>|> The \"host\" Arab state did little/nothing to try and stop these attacks \\n>|> from its side of the border with Israel \\n>\\n>The problem, Tim, is that the original reason for the invasion was Palestinian\\n>attacks on Israel, NOT Lebanese attacks. \\n>\\nI agree; but, because Lebanon was either unwilling or unable to stop these\\nattacks from its territory should Israel simply sit quietly and accept its\\nsituation? Israel asked the Lebanese government over and over to control\\nthis \"third party state\" within Lebanese territory and the attacks kept\\noccuring. At **what point** does Israel (or ANY state) have the right to do\\nsomething ITSELF to stop such attacks? Never?\\n>|> >\\n>|> While the \"major armaments\" (those allowing people to wage \"civil wars\")\\n>|> have been removed, the weapons needed to cross-border attacks still\\n>|> remain to some extent. Rocket attacks still continue, and \"commando\"\\n>|> raids only require a few easily concealed weapons and a refined disregard\\n>|> for human life (yours of that of others). Such attacks also continue.\\n>\\n>Yes, I am afraid that what you say is true but that still does not justify\\n>occupying your neighbor\\'s land. Israel must resolve its disputes with the\\n>native Palestinians if it wants peace from such attacks.\\n>\\nIt is also the responsibility of *any* state to NOT ALLOW *any* outside\\nparty to use its territory for attacks on a neighboring state. If 1) Angola\\nhad the power, and 2) South Africa refused (or couldn\\'t) stop anti-Angolan\\nguerillas based on SA soil from attacking Angola, and 3) South Africa\\nrefused to have UN troops stationed on its territory between it and Angola,\\nwould Angola be justified in entering SA? If not, are you saying that\\nAngola HAD to accept the situation, do NOTHING and absorb the attacks?\\n>|> \\n>|> Bat guano. The situation you call for existed in the 1970s and attacks\\n>|> were commonplace.\\n>\\n>Not true. Lebanese were not attacking Israel in the 1970s. With a strong\\n>Lebanese government (free from Syrian and Israeli interference) I believe\\n>that the border could be adequately patrolled. The Palestinian heavy\\n>weapons have been siezed in past years and I do not see as significant a\\n>threat as once existed.\\n>\\nI refered above *at all times* to the Palestinian attacks on Israel from\\nLebanese soil, NOT to Lebanese attacks on Israel. \\n\\nOne hopes that a Lebanese government will be strong enough to patrol its \\nborder but there is NO reason to believe it will be any stronger. WHAT HAS \\nCHANGED is that the PLO was largely *driven out* of Lebanon (not by the \\nLebanese, not by Syria) and THAT is by far the most important making it \\nEASIER to control future Palestinian attacks from Lebanese soil. That\\n**change** was brought about by Israeli action; the PLO would *never*\\nhave been ejected by Lebanese, Arab state or UN actions. \\n>\\n>Please, Tim, don\\'t fall into the trap of treating Lebanese and Palestinians\\n>as all part of the same group. There are too many who think all Arabs or all\\n>Muslims are the same. Too many times I have seen people support the bombing\\n>of Palestinian camps in \"retaliation\" for an IDF death at the hands of the\\n>Lebanese Resistance or the shelling of Lebanese villages in \"retaliation\" for\\n>a Palestinian attack. \\n>|>\\nI fully recognize that the Lebanese do NOT WANT to be \"used\" by EITHER side,\\nand have been (and continue to be). But the most fundamental issue is that\\nif a state cannot control its borders and make REAL efforts to do so, it\\nshould expect others to do it for them. Hopefully that \"other\" will be\\nthe UN but it is (as we see in its cowardice regarding Bosnia) weak.\\n\\nTim \\n\\n',\n", - " ' zaphod.mps.ohio-state.edu!wupost!uunet!olivea!sgigate!odin!fido!solntze.wpd.sgi.com!livesey\\nSubject: Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> (reference line trimmed)\\n|> \\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> [...]\\n|> \\n|> >There is a good deal more confusion here. You started off with the \\n|> >assertion that there was some \"objective\" morality, and as you admit\\n|> >here, you finished up with a recursive definition. Murder is \\n|> >\"objectively\" immoral, but eactly what is murder and what is not itself\\n|> >requires an appeal to morality.\\n|> \\n|> Yes.\\n|> \\n|> >Now you have switch targets a little, but only a little. Now you are\\n|> >asking what is the \"goal\"? What do you mean by \"goal?\". Are you\\n|> >suggesting that there is some \"objective\" \"goal\" out there somewhere,\\n|> >and we form our morals to achieve it?\\n|> \\n|> Well, for example, the goal of \"natural\" morality is the survival and\\n|> propogation of the species. \\n\\n\\nI got just this far. What do you mean by \"goal\"? I hope you\\ndon\\'t mean to imply that evolution has a conscious \"goal\".\\n\\njon.\\n',\n", - " \"From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: Clintons views on Jerusalem\\nOrganization: Bellcore, Livingston, NJ\\nSummary: Verify statements\\nLines: 21\\n\\nIn article <16BB28ABD.DSHAL@vmd.cso.uiuc.edu>, DSHAL@vmd.cso.uiuc.edu writes:\\n> It seems that President Clinton can recognize Jerusalem as Israels capitol\\n> while still keeping his diplomatic rear door open by stating that the Parties\\n> concerned should decide the city's final status. Even as I endorse Clintons vie\\n> w (of course), it is definitely a matter to be decided upon by Israel (and\\n> other participating neighboring contries).\\n> I see no real conflict in stating both views, nor expect any better from\\n> politicians.\\n> -----\\n> David Shalhevet / dshal@vmd.cso.uiuc.edu / University of Illinois\\n> Dept Anim Sci / 220 PABL / 1201 W. Gregory Dr. / Urbana, IL 61801\\n\\nI was trying to avoid a discussion of the whether Clintons views\\nshould be endorsed or not. All I was trying to find out was \\nwhether the newspaper article was correct in making these\\nstatements about the President by obtaining some information\\nabout when and where he made these statements.\\n\\nThank you.\\n\\nBen.\\n\",\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nArticle-I.D.: aurora.1993Apr20.141137.1\\nOrganization: University of Alaska Fairbanks\\nLines: 33\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1993Apr20.101044.2291@iti.org>, aws@iti.org (Allen W. Sherzer) writes:\\n> In article <1qve4kINNpas@sal-sun121.usc.edu> schaefer@sal-sun121.usc.edu (Peter Schaefer) writes:\\n> \\n>>|> > Announce that a reward of $1 billion would go to the first corporation \\n>>|> > who successfully keeps at least 1 person alive on the moon for a year. \\n> \\n>>Oh gee, a billion dollars! That\\'d be just about enough to cover the cost of the\\n>>feasability study! Happy, Happy, JOY! JOY!\\n> \\n> Depends. If you assume the existance of a working SSTO like DC, on billion\\n> $$ would be enough to put about a quarter million pounds of stuff on the\\n> moon. If some of that mass went to send equipment to make LOX for the\\n> transfer vehicle, you could send a lot more. Either way, its a lot\\n> more than needed.\\n> \\n> This prize isn\\'t big enough to warrent developing a SSTO, but it is\\n> enough to do it if the vehicle exists.\\n> \\n> Allen\\n> \\n> -- \\n> +---------------------------------------------------------------------------+\\n> | Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n> | W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n> +----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n\\nOr have different classes of competetors.. and made the total purse $6billion\\nor $7billion (depending on how many different classes there are, as in auto\\nracing/motocycle racing and such)..\\n\\nWe shall see how things go..\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", - " 'From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Removing Distortion From Bitmapped Drawings?\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 135\\n\\nIn article <1993Apr19.141034.24731@sctc.com> boebert@sctc.com (Earl Boebert) writes:\\n>Let\\'s say you have a scanned image of a line drawing; in this case a\\n>boat, but it could be anything. On the drawing you have a set of\\n>reference points whose true x,y positions are known. \\n>\\n>Now you digitize the drawing manually (in this case, using Yaron\\n>Danon\\'s excellent Digitize program). That is, you use a program which\\n>converts cursor positions to x,y and saves those values when you click\\n>the mouse.\\n>\\n>Upon digitizing you notice that the reference point values that come\\n>out of the digitizing process differ in small but significant ways\\n>from the known true values. This is understandable because the\\n>scanned drawing is a reproduction of the original and there are\\n>successive sources of distortion such as differential expansion and\\n>contraction of paper, errors introduced in the printing process,\\n>scanner errors and what have you.\\n>\\n>The errors are not uniform over the entire drawing, so \"global\"\\n>adjustments such as stretching/contracting uniformly over x or y, or\\n>rotating the whole drawing, are not satisfactory.\\n>\\n>So the question is: does any kind soul know of an algorithm for\\n>removing such distortion? In particular, if I have three sets of\\n>points \\n>\\n>Reference(x,y) (the known true values)\\n>\\n>DistortedReference(x,y) (the same points, with known errors)\\n>\\n>DistortedData(x,y) (other points, with unknown errors)\\n>\\n>what function of Reference and Distorted could I apply to\\n>DistortedData to remove the errors.\\n>\\n>I suspect the problem could be solved by treating the distorted\\n>reference points as resulting from the projection of a \"bumpy\" 3d\\n>surface, solving for the surface and then \"flattening\" it to remove\\n>the errors in the other data points.\\n\\nIt helps to have some idea of the source of the distortion - or at least\\na reasonable model of the class of distortion. Below is a very short\\ndescription of the process which we use; if you have further questions,\\nfeel free to poke me via e-mail.\\n\\n================================================================\\n*ASSUME: locally smooth distortion\\n\\n0) Compute the Delaunay Triangulation of your (x,y) points. This\\n defines the set of neighbors for each point. If your data are\\n not naturally convex, you may have very long edges on the convex hull.\\n Consider deleting these edges.\\n\\n1) Now, there are two goals:\\n\\n a) move the DistortedData(x,y) to the Reference(x,y)\\n b) keep the Length(e) (as measured from the current (x,y)\\'s)\\n as close as possible to the DigitizedLength(e) (as measured \\n using the digitized (x,y)\\'s).\\n\\n2) For every point, compute a displacement based on a) and b). For\\n example:\\n\\n a) For (x,y) points for which you know the Reference(x,y), you\\n can move alpha0*(Reference(x,y) - Current(x,y)). This will\\n slowly move the DistortedReference(x,y) towards the\\n Reference(x,y). \\n b) For all other points, examine the current length of each edge.\\n For each edge, compute a displacement which would make that edge\\n the correct length (where \"correct\" is the DigitizedLength). \\n Take the vector sum of these edge displacements, and move the\\n point alpha1*SumOfEdgeDisplacements. This will keep the\\n triangulated mesh consistent with your Digitized mesh.\\n\\n3) Iterate 2) until you are happy (for example, no point moves very much).\\n\\nalpha0 and alpha1 need to be determined by experimentation. Consider\\nhow much you believe the Reference(x,y) - i.e., do you absolutely insist\\non the final points exactly matching the References, or do you want to\\nbalance some error in matching the Reference against changes in length\\nof the edges.\\n\\nWARNING: there are a couple of geometric invariants which must be\\nobserved (essentially, you can\\'t allow the convex hull to change, and\\nyou can\\'t allow triangles to \"fold over\" neighboring triangles. Both of\\nthese can be handled either by special case checks on the motion of\\nindividual points, or by periodically re-triangulating the points (using \\nthe current positions - but still calculating DigitizedLength from the\\noriginal positions. When we first did this, the triangulation time was\\nprohibitive, so we only did it once. If I were motivated to try and\\nchange code that has been working in production mode for 5 years, I\\n*might* go back and re-triangulate on every iteration. If you have more\\ncompute power than you know what to do with, you might consider having\\nevery point interact with every other point....but first read up on\\nlinear solutions to the n-body problem.\\n\\nThere are lots of papers in the last 10 years of SIGGRAPH proceedings on\\nsprings, constraints, and energy calculations which are relevant. The\\nabove method is described, in more or less detail in:\\n\\n@inproceedings{Sloan86,\\nauthor=\"Sloan, Jr., Kenneth R. and David Meyers and Christine A.~Curcio\",\\ntitle=\"Reconstruction and Display of the Retina\",\\nbooktitle=\"Proceedings: Graphics Interface \\'86 Vision Interface \\'86\",\\naddress=\"Vancouver, Canada\",\\npages=\"385--389\",\\nmonth=\"May\",\\nyear=1986 }\\n\\n@techreport{Curcio87b,\\nauthor=\"Christine A.~Curcio and Kenneth R.~Sloan and David Meyers\",\\ntitle=\"Computer Methods for Sampling, Reconstruction, Display, and\\nAnalysis of Retinal Whole Mounts\",\\nnumber=\"TR 87-12-03\",\\ninstitution=\"Department of Computer Science, University of Washington\",\\naddress=\"Seattle, WA\",\\nmonth=\"December\",\\nyear=1987 }\\n\\n@article{Curcio89,\\nauthor=\"Christine A.~Curcio and Kenneth R.~Sloan and David Meyers\",\\ntitle=\"Computer Methods for Sampling, Reconstruction, Display, and\\nAnalysis of Retinal Whole Mounts\",\\njournal=\"Vision Research\",\\nvolume=29,\\nnumber=5,\\npages=\"529--540\",\\nyear=1989 }\\n \\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n',\n", - " \"From: richter@fossi.hab-weimar.de (Axel Richter)\\nSubject: True Color Display in POV\\nKeywords: POV, Raytracing\\nNntp-Posting-Host: fossi.hab-weimar.de\\nOrganization: Hochschule fuer Architektur und Bauwesen Weimar, Germany\\nLines: 6\\n\\n\\nHallo POV-Renderers !\\nI've got a BocaX3 Card. Now I try to get POV displaying True Colors\\nwhile rendering. I've tried most of the options and UNIVESA-Driver\\nbut what happens isn't correct.\\nCan anybody help me ?\\n\",\n", - " \"From: add@sciences.sdsu.edu (James D. Murray)\\nSubject: Need specs/info on Apple QuickTime\\nOrganization: San Diego State University, College of Sciences\\nLines: 12\\nNNTP-Posting-Host: sciences.sdsu.edu\\nKeywords: quicktime\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nI need to get the specs, or at least a very verbose interpretation of the\\nspecs, for QuickTime. Technical articles from magazines and references to\\nbooks would be nice too.\\n\\nI also need the specs in a format usable on a Unix or MS-DOS system. I can't\\ndo much with the QuickTime stuff they have on ftp.apple.com in its present\\nformat.\\n\\nThanks in advance.\\n\\nJames D. Murray\\nadd@sciences.sdsu.edu\\n\",\n", - " 'From: morley@suncad.camosun.bc.ca (Mark Morley)\\nSubject: VGA Mode 13h Routines Available\\nNntp-Posting-Host: suncad.camosun.bc.ca\\nOrganization: Camosun College, Victoria B.C, Canada\\nX-Newsreader: Tin 1.1 PL4\\nLines: 31\\n\\nHi there,\\n\\nI\\'ve made a VGA mode 13h graphics library available via FTP. I originally\\nwrote the routines as a kind of exercise for myself, but perhaps someone\\nhere will find them useful. They are certainly useable as they are, but\\nare missing some higher-level functionality. They\\'re intended more as an\\nintro to mode 13h programming, a starting point.\\n\\n*** The library assumes a 386 processor, but it is trivial to modify it\\n*** for a 286. If enough people ask, I\\'ll make the mods and re-post it as a\\n*** different version.\\n\\nThe routines are written in assembly (TASM) and are callable from C. They\\nare fairly simple, but I\\'ve found them to be very fast (for my purposes,\\nanyway). Routines are included to enter and exit mode 13h, define a\\n\"virtual screen\", put and get pixels, put a pixmap (rectangular image with\\nno transparent spots), put a sprite (image with see-thru areas), copy\\nareas of the virtual screen into video memory, etc. I\\'ve also included a\\nsimple C routine to draw a line, as well as a C routine to load a 256\\ncolor GIF image into a buffer. I also wrote a quick\\'n\\'dirty(tm) demo program\\nthat bounces a bunch of sprites around behind three \"windows\".\\n\\nThe whole package is available on spang.camosun.bc.ca in /pub/dos/vgl.zip \\nIt is zipped with pkzip 2.04g\\n\\nIt is completely in the public domain, as far as I\\'m concerned. Do with\\nit whatever you like. However, it\\'d be nice to get credit where it\\'s due,\\nand maybe an e-mail telling me you like it (if you don\\'t like it don\\'t bother)\\n\\nMark\\nmorley@camosun.bc.ca\\n',\n", - " 'From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Re: What if the USSR had reached the Moon first?\\nIn-Reply-To: gary@ke4zv.uucp\\'s message of Sun, 18 Apr 1993 09:10:51 GMT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<1993Apr7.124724.22534@yang.earlham.edu> \\n\\t<1993Apr12.161742.22647@yang.earlham.edu>\\n\\t<93107.144339SAUNDRSG@QUCDN.QueensU.CA>\\n\\t<1993Apr18.091051.14496@ke4zv.uucp>\\nLines: 35\\n\\nIn article <1993Apr18.091051.14496@ke4zv.uucp> gary@ke4zv.uucp (Gary Coffman) writes:\\n\\n In article <93107.144339SAUNDRSG@QUCDN.QueensU.CA> Graydon writes:\\n\\n >This is turning into \\'what\\'s a moonbase good for\\', and I ought not\\n >to post when I\\'ve a hundred some odd posts to go, but I would\\n >think that the real reason to have a moon base is economic.\\n >\\n >Since someone with space industry will presumeably have a much\\n >larger GNP than they would _without_ space industry, eventually,\\n >they will simply be able to afford more stuff.\\n\\n If I read you right, you\\'re saying in essence that, with a larger\\n economy, nations will have more discretionary funds to *waste* on a\\n lunar facility. That was certainly partially the case with Apollo,\\n but real Lunar colonies will probably require a continuing\\n military, scientific, or commercial reason for being rather than\\n just a \"we have the money, why not?\" approach.\\n\\nAh, but the whole point is that money spent on a lunar base is not\\nwasted on the moon. It\\'s not like they\\'d be using $1000 (1000R?) bills\\nto fuel their moon-dozers. The money to fund a lunar base would be\\nspent in the country to which the base belonged. It\\'s a way of funding\\nhigh-tech research, just like DARPA was a good excuse to fund various\\nfields of research, under the pretense that it was crucial to the\\ndefense of the country, or like ESPRIT is a good excuse for the EC to\\nfund research, under the pretense that it\\'s good for pan-European\\ncooperation.\\n\\nNow maybe you think that government-funded research is a waste of\\nmoney (in fact, I\\'m pretty sure you do), but it does count as\\ninvestment spending, which does boost the economy (and just look at\\nthe size of that multiplier :->).\\n\\nNick Haines nickh@cmu.edu\\n',\n", - " \"From: srlnjal@grace.cri.nz\\nSubject: CorelDraw Bitmap to SCODAL\\nOrganization: Industrial Research Ltd., New Zealand.\\nLines: 10\\nNNTP-Posting-Host: grv.grace.cri.nz\\n\\n\\nDoes anyone know of software that will allow\\nyou to convert CorelDraw (.CDR) files\\ncontaining bitmaps to SCODAL, as this is the\\nonly format our bureau's filmrecorder recognises.\\n\\nJeff Lyall\\nInst.Geo.Nuc.Sci.Ltd\\nLower Hutt New Zealand\\n\\n\",\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Solar Sail Data\\nOrganization: University of Illinois at Urbana\\nLines: 24\\n\\nhiggins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey) writes:\\n\\n>snydefj@eng.auburn.edu (Frank J. Snyder) writes:\\n\\n>> I am looking for any information concerning projects involving Solar\\n>> Sails. [...]\\n>> Are there any groups out there currently involved in such a project ?\\n\\nBill says ...\\n\\n>Also there is a nontechnical book on solar sailing by Louis Friedman,\\n>a technical one by a guy whose name escapes me (help me out, Josh),\\n\\nI presume the one you refer to is \"Space Sailing\" by Jerome L. Wright. He \\nworked on solar sails while at JPL and as CEO of General Astronautics. I\\'ll\\nfurnish ordering info upon request.\\n\\nThe Friedman book is called \"Starsailing: Solar Sails and Interstellar Travel.\"\\nIt was available from the Planetary Society a few years ago, I don\\'t know if\\nit still is.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " \"From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: NONE\\nLines: 100\\n\\nIn article , mucit@cs.rochester.edu (Bulent Murtezaoglu) writes:\\n|> In article <1993Apr20.164517.20876@kpc.com> henrik@quayle.kpc.com writes:\\n|> [stuff deleted]\\n|> \\nhenrik] Country. Turks and Azeris consistantly WANT to drag ARMENIA into the\\nhenrik] KARABAKH conflict with Azerbaijan. \\n\\nBM] Gimme a break. CAPITAL letters, or NOT, the above is pure nonsense. It\\nBM] seems to me that short sighted Armenians are escalating the hostilities\\n\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n Again, Armenians in KARABAKH are SIMPLY defending themselves. What do\\n want them to do. Lay down their ARMS and let Azeris walk all over them.\\n\\nBM] while hoping that Turkey will stay out. Stop and think for a moment,\\nBM] will you? Armenia doesn't need anyone to drag her into the conflict, it\\nBM] is a part of it. \\n\\nArmenians KNEW from the begining that TURKS were FULLY engaged \\ntraining AZERIS militarily to fight against KARABAKHI-Armenians.\\n\\t\\nhenrik] The KARABAKHI-ARMENIANS who have lived in their HOMELAND for 3000 \\nhenrik] years (CUT OFF FROM ARMENIA and GIVEN TO AZERIS BY STALIN) are the \\nhenrik] ones DIRECTLY involved in the CONFLICT. They are defending \\nhenrik] themselves against AZERI AGGRESSION. \\n\\nBM] Huh? You didn't expect Azeri's to be friendly to forces fighting with them\\nBM] within their borders? \\n\\n\\tWell, history is SAD. Remember, those are relocated Azeris into \\n the Armenian LAND of KARABAKH by the STALIN regime.\\n\\nhenrik] At last, I hope that the U.S. insists that Turkey stay out of the \\nhenrik] KARABAKH crisis so that the repeat of the CYPRUS invasion WILL NEVER \\nhenrik] OCCUR again.\\n\\nBM] You're not playing with a full deck, are you? Where would Turkey invade?\\n\\n It is not up to me to speculate but I am sure Turkey would have stepped\\n into Armenia if SHE could.\\n \\nBM] Are you throwing the Cyprus buzzword around with s.c.g. in the header\\nBM] in hopes that the Greek netters will jump the gun? \\n\\n\\tAbsolutely NOT ! I am merely trying to emphasize that in many\\n cases, HISTORY repeats itself. \\n\\nBM] Yes indeed Turkey has the military prowess to intervene, what she wishes \\nBM] she had, however, is the diplomatic power to stop the hostilities and bring\\nBM] the parties to the negotiating table. That's hard to do when Armenians \\nBM] are attacking Azeri towns.\\n\\n\\tSo, let me understand in plain WORDS what you are saying; Turkey\\n wants a PEACEFUL END to this CONFLICT. NOT !!\\n\\n\\tI will believe it when I see it.\\n\\n\\tNow, as far as attacking, what do you do when you see a GUN pointing\\n to your HEAD ? Do you sit there and WATCH or DEFEND yoursef(fat chance)?\\n\\tDo you remember what Azeris did to the Armenians in BAKU ? All the\\n\\tBARBERIAN ACTS especially against MOTHERS and their CHILDREN. I mean\\n\\tBURNING people ALIVE !\\n\\nBM] Armenian leaders are lacking the statesmanship to recognize the \\nBM] futility of armed conflict and convince their nation that a compromise that \\nBM] leads to stability is much better than a military faits accomplis that's \\nBM] going to cause incessant skirmishes. \\n\\n\\tArmenians in KARABAKH want PEACE and their own republic. They are \\n NOT asking much. They simply want to get back what was TAKEN AWAY \\n\\tfrom them and GIVEN to AZERIS by STALIN. \\n\\nBM] Think of 10 or 20 years down the line -- both of the newly independent \\nBM] countries need to develop economically and neither one is going to wipe \\nBM] the other out. These people will be neighbors, would it not be better \\nBM] to keep the bad blood between them minimal?\\n\\n\\tDon't get me WRONG. I also want PEACEFUL solution to the\\n\\tconflict. But until Azeris realize that, the Armenians in\\n\\tKARABAKH will defend themselves against aggresion.\\n\\nBM] If you belong to the Armenian diaspora, keep in mind that what strikes\\nBM] your fancy on the map is costing the local Armenians dearly in terms of \\nBM] their blood and future. \\n\\n\\tAgain, you are taking different TURNS. Armenia HAS no intension\\n to GRAB any LAND from Azerbaijan. The Armenians in KARABAKH\\n are simply defending themselves UNTIL a solution is SET.\\n\\nBM] It's easy to be comfortable abroad and propagandize \\nBM] craziness to have your feelings about Turks tickled. The Armenians\\nBM] in Armenia and N-K will be there, with the same people you seem to hate \\nBM] as their neighbors, for maybe 3000 years more. The sooner there's peace in\\nBM] the region the better it is for them and everyone else. I'd push for\\nBM] compromise if I were you instead of hitting the caps-lock and spreading\\nBM] inflammatory half-truths.\\n\\n\\tIt is NOT up to me to decide the PEACE initiative. I am absolutely\\n for it. But, in the meantime, if you do not take care of yourself,\\n you will be WIPED out. Such as the case in the era of 1915-20 of\\n\\tThe Armenian Massacres.\\n\",\n", - " 'From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 49\\n\\nhoover@mathematik.uni-bielefeld.de (Uwe Schuerkamp) writes:\\n\\n>In article enzo@research.canon.oz.au \\n>(Enzo Liguori) writes:\\n\\n>> hideous vision of the future. Observers were\\n>>startled this spring when a NASA launch vehicle arrived at the\\n>>pad with \"SCHWARZENEGGER\" painted in huge block letters on the\\n\\n>This is ok in my opinion as long as the stuff *returns to earth*.\\n\\n>>What do you think of this revolting and hideous attempt to vandalize\\n>>the night sky? It is not even April 1 anymore.\\n\\n>If this turns out to be true, it\\'s time to get seriously active in\\n>terrorism. This is unbelievable! Who do those people think they are,\\n>selling every bit that promises to make money? I guess we really\\n>deserve being wiped out by uv radiation, folks. \"Stupidity wins\". I\\n>guess that\\'s true, and if only by pure numbers.\\n\\n>\\tAnother depressed planetary citizen,\\n>\\thoover\\n\\n\\nThis isn\\'t inherently bad.\\n\\nThis isn\\'t really light pollution since it will only\\nbe visible shortly before or after dusk (or during the\\nday).\\n\\n(Of course, if night only lasts 2 hours for you, you\\'re probably going\\nto be inconvienenced. But you\\'re inconvienenced anyway in that case).\\n\\nFinally: this isn\\'t the Bronze Age, and most of us aren\\'t Indo\\nEuropean; those people speaking Indo-Eurpoean languages often have\\nmuch non-indo-european ancestry and cultural background. So:\\nplease try to remember that there are more human activities than\\nthose practiced by the Warrior Caste, the Farming Caste, and the\\nPriesthood.\\n\\nAnd why act distressed that someone\\'s found a way to do research\\nthat doesn\\'t involve socialism?\\n\\nIt certianly doesn\\'t mean we deserve to die.\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", - " 'From: warren@itexjct.jct.ac.il (Warren Burstein)\\nSubject: Re: To be exact, 2.5 million Muslims were exterminated by the Armenians.\\nOrganization: ITEX, Jerusalem, Israel\\nLines: 33\\n\\nac = In <9304202017@zuma.UUCP> sera@zuma.UUCP (Serdar Argic)\\npl = linden@positive.Eng.Sun.COM (Peter van der Linden)\\n\\npl: 1. So, did the Turks kill the Armenians?\\n\\nac: So, did the Jews kill the Germans? \\nac: You even make Armenians laugh.\\n\\nac: \"An appropriate analogy with the Jewish Holocaust might be the\\nac: systematic extermination of the entire Muslim population of \\nac: the independent republic of Armenia which consisted of at \\nac: least 30-40 percent of the population of that republic. The \\nac: memoirs of an Armenian army officer who participated in and \\nac: eye-witnessed these atrocities was published in the U.S. in\\nac: 1926 with the title \\'Men Are Like That.\\' Other references abound.\"\\n\\nTypical Mutlu. PvdL asks if X happened, the response is that Y\\nhappened. Even if we grant that the Armenians *did* do what Cosar\\naccuses them of doing, this has no bearing on whether the Turks did\\nwhat they are accused of.\\n\\nWhile I can understand how an AI could be this stupid, I\\ncan\\'t understand how a human could be such a moron as to either let\\nsuch an AI run amok or to compose such pointless messages himself.\\n\\nI do not expect any followup to this article from Argic to do anything\\nto alleviate my puzzlement. But maybe I\\'ll see a new line from his\\nlist of insults.\\n-- \\n/|/-\\\\/-\\\\ \\n |__/__/_/ \\n |warren@ \\n/ nysernet.org\\n',\n", - " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 22\\n\\ntclock@orion.oac.uci.edu writes:\\n> Since one is also unlikely to get \"the truth\" from either Arab or \\n> Palestinian news outlets, where do we go to \"understand\", to learn? \\n> Is one form of propoganda more reliable than another? The only way \\n> to determine that is to try and get beyond the writer\\'s \"political\\n> agenda\", whether it is \"on\" or \"against\" our *side*.\\n> \\n> Tim \\n\\tFirst let me correct myself in that it was Goerbels and\\nnot Goering (Airforce) who ran the Nazi propaganda machine. I\\nagree that Arab news sources are also inherently biased. But I\\nbelieve the statement I was reacting to was that since the\\namerican accounts of events are not fully like the Israeli\\naccounts, the Americans are biased. I just thought that the\\nIsraelis had more motivation for bias.\\n\\tThe UN has tried many times to condemn Israel for its\\ngross violation of human rights. However the US has vetoed most\\nsuch attempts. It is interesting to note that the U.S. is often\\nthe only country opposing such condemnation (well the U.S. and\\nIsrael). It is also interesting to note that that means\\nother western countries realize these human rights violations.\\nSo maybe there are human rights violations going on after all. \\n',\n", - " 'Subject: Re: Drinking and Riding\\nFrom: bclarke@galaxy.gov.bc.ca\\nOrganization: BC Systems Corporation\\nLines: 11\\n\\nIn article , manes@magpie.linknet.com (Steve Manes) writes:\\n{drinking & riding}\\n> It depends on how badly you want to live. The FAA says \"eight hours, bottle\\n> to throttle\" for pilots but recommends twenty-four hours. The FARs specify\\n> a blood/alcohol level of 0.4 as legally drunk, I think, which is more than\\n> twice as strict as DWI minimums.\\n\\n0.20 is DWI in New York? Here the limit is 0.08 !\\n-- \\nBruce Clarke B.C. Environment\\n e-mail: bclarke@galaxy.gov.bc.ca\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: After all, Armenians exterminated 2.5 million Muslim people there.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 297\\n\\nIn article hovig@uxa.cso.uiuc.edu (Hovig Heghinian) writes:\\n\\n>article. I have no partisan interests --- I would just like to know\\n>what conversations between TerPetrosyan and Demirel sound like. =)\\n\\nVery simple.\\n\\n\"X-Soviet Armenian government must pay for their crime of genocide \\n against 2.5 million Muslims by admitting to the crime and making \\n reparations to the Turks and Kurds.\"\\n\\nAfter all, your criminal grandparents exterminated 2.5 million Muslim\\npeople between 1914 and 1920.\\n\\n\\n\\nhovig@uxa.cso.uiuc.edu (Hovig Heghinian)\\n\\n>To which I say:\\n>Hear, hear. Motion seconded.\\n\\nYou must be a new Armenian clown. You are counting on ASALA/SDPA/ARF \\ncrooks and criminals to prove something for you? No wonder you are in \\nsuch a mess. That criminal idiot and \\'its\\' forged/non-existent junk has \\nalready been trashed out by Mutlu, Cosar, Akgun, Uludamar, Akman, Oflazer \\nand hundreds of people. Moreover, ASALA/SDPA/ARF criminals are responsible \\nfor the massacre of the Turkish people that also prevent them from entering \\nTurkiye and TRNC. SDPA has yet to renounce its charter which specifically \\ncalls for the second genocide of the Turkish people. This racist, barbarian \\nand criminal view has been touted by the fascist x-Soviet Armenian government \\nas merely a step on the road to said genocide. \\n\\nNow where shall I begin?\\n\\n#From: ahmet@eecg.toronto.edu (Parlakbilek Ahmet)\\n#Subject: YALANCI, LIAR : DAVIDIAN\\n#Keywords: Davidian, the biggest liar\\n#Message-ID: <1991Jan10.122057.11613@jarvis.csri.toronto.edu>\\n\\nFollowing is the article that Davidian claims that Hasan Mutlu is a liar:\\n\\n>From: dbd@urartu.SDPA.org (David Davidian)\\n>Message-ID: <1154@urartu.SDPA.org>\\n\\n>In article <1991Jan4.145955.4478@jarvis.csri.toronto.edu> ahmet@eecg.toronto.\\n>edu (Ahmet Parlakbilek) asked a simple question:\\n\\n>[AP] I am asking you to show me one example in which mutlu,coras or any other\\n>[AP] Turk was proven to lie.I can show tens of lies and fabrications of\\n>[AP] Davidian, like changing quote , even changing name of a book, Anna.\\n\\n>The obvious ridiculous \"Armenians murdered 3 million Moslems\" is the most\\n>outragious and unsubstantiated charge of all. You are obviously new on this \\n>net, so read the following sample -- not one, but three proven lies in one\\n>day!\\n\\n>\\t\\t\\t- - - start yalanci.txt - - -\\n\\n[some parts are deleted]\\n\\n>In article <1990Aug5.142159.5773@cbnewsd.att.com> the usenet scribe for the \\n>Turkish Historical Society, hbm@cbnewsd.att.com (hasan.b.mutlu), continues to\\n>revise the history of the Armenian people. Let\\'s witness the operational\\n>definition of a revisionist yalanci (or liar, in Turkish):\\n\\n>[Yalanci] According to Leo:[1]\\n>[Yalanci]\\n>[Yalanci] \"The situation is clear. On one side, we have peace-loving Turks\\n>[Yalanci] and on the other side, peace-loving Armenians, both sides minding\\n>[Yalanci] their own affairs. Then all was submerged in blood and fire. Indeed,\\n>[Yalanci] the war was actually being waged between the Committee of \\n>[Yalanci] Dashnaktsutiun and the Society of Ittihad and Terakki - a cruel and \\n>[Yalanci] savage war in defense of party political interests. The Dashnaks \\n>[Yalanci] incited revolts which relied on Russian bayonets for their success.\"\\n>[Yalanci] \\n>[Yalanci] [1] L. Kuper, \"Genocide: Its Political Use in the Twentieth Century,\"\\n>[Yalanci] New York 1981, p. 157.\\n\\n>This text is available not only in most bookstores but in many libraries. On\\n>page 157 we find a discussion of related atrocities (which is title of the\\n>chapter). The topic on this page concerns itself with submissions to the Sub-\\n>Commission on Prevention of Discrimination of Minorities of the Commission on\\n>Human Rights of the United Nations with respect to the massacres in Cambodia.\\n>There is no mention of Turks nor Armenians as claimed above.\\n\\n\\t\\t\\t\\t- - -\\n\\n>Vay sarsak, vay yobaz, vay yalanci! Vay Turk milletinin yuz karasi Mutlu vay!\\n\\n>The depth of foolishness the Turkish Historical Society engages in, while\\n>covering up the Turkish genocide of the Armenians, is only surpassed by the \\n>ridiculous \"historical\" material publicly displayed!\\n\\n>David Davidian | The life of a people is a sea, and \\n\\nReceiving this message, I checked the reference, L.Kuper,\"Genocide...\" and\\nwhat I have found was totally consistent with what Davidian said.The book\\nwas like \"voice of Armenian revolutionists\" and although I read the whole book,\\nI could not find the original quota.\\nBut there was one more thing to check:The original posting of Mutlu.I found \\nthe original article of Mutlu.It is as follows:\\n\\n> According to Leo:[1]\\n\\n>\"The situation is clear. On one side, we have peace-loving Turks and on\\n> the other side, peace-loving Armenians, both sides minding their own \\n> affairs. Then all was submerged in blood and fire. Indeed, the war was\\n> actually being waged between the Committee of Dashnaktsutiun and the\\n> Society of Ittihad and Terakki - a cruel and savage war in defense of party\\n> political interests. The Dashnaks incited revolts which relied on Russian\\n> bayonets for their success.\" \\n\\n>[1] B. A. Leo. \"The Ideology of the Armenian Revolution in Turkey,\" vol II,\\n ======================================================================\\n> p. 157.\\n ======\\n\\nQUATO IS THE SAME, REFERENCE IS DIFFERENT !\\n\\nDAVIDIAN LIED AGAIN, AND THIS TIME HE CHANGED THE ORIGINAL POSTING OF MUTLU\\nJUST TO ACCUSE HIM TO BE A LIAR.\\n\\nDavidian, thank you for writing the page number correctly...\\n\\nYou are the biggest liar I have ever seen.This example showed me that tomorrow\\nyou can lie again, and you may try to make me a liar this time.So I decided\\nnot to read your articles and not to write answers to you.I also advise\\nall the netters to do the same.We can not prevent your lies, but at least\\nwe may save time by not dealing with your lies.\\n\\nAnd for the following line:\\n>Vay sarsak, vay yobaz, vay yalanci! Vay Turk milletinin yuz karasi Mutlu vay!\\n\\nI also return all the insults you wrote about Mutlu to you.\\nI hope you will be drowned in your lies.\\n\\nAhmet PARLAKBILEK\\n\\n#From: vd8@cunixb.cc.columbia.edu (Vedat Dogan)\\n#Message-ID: <1993Apr8.233029.29094@news.columbia.edu>\\n\\nIn article <1993Apr7.225058.12073@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>In article <1993Apr7.030636.7473@news.columbia.edu> vd8@cunixb.cc.columbia.edu\\n>(Vedat Dogan) wrote in response to article <1993Mar31.141308.28476@urartu.\\n>11sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>\\n \\n>[(*] Source: \"Adventures in the Near East, 1918-1922\" by A. Rawlinson,\\n>[(*] Jonathan Cape, 30 Bedford Square, London, 1934 (First published 1923) \\n>[(*] (287 pages).\\n>\\n>[DD] Such a pile of garbage! First off, the above reference was first published\\n>[DD] in 1924 NOT 1923, and has 353 pages NOT 287! Second, upon checking page \\n>[DD] 178, we are asked to believe:\\n> \\n>[VD] No, Mr.Davidian ... \\n> \\n>[VD] It was first published IN 1923 (I have the book on my desk,now!) \\n>[VD] ********\\n> \\n>[VD] and furthermore,the book I have does not have 353 pages either, as you\\n>[VD] claimed, Mr.Davidian..It has 377 pages..Any question?..\\n> \\n>Well, it seems YOUR book has its total page numbers closer to mine than the \\nn>crap posted by Mr. [(*]!\\n \\n o boy! \\n \\n Please, can you tell us why those quotes are \"crap\"?..because you do not \\n like them!!!...because they really exist...why?\\n \\n As I said in my previous posting, those quotes exactly exist in the source \\n given by Serdar Argic .. \\n \\n You couldn\\'t reject it...\\n \\n>\\n>In addition, the Author\\'s Preface was written on January 15, 1923, BUT THE BOOK\\n>was published in 1924.\\n \\n Here we go again..\\n In the book I have, both the front page and the Author\\'s preface give \\n the same year: 1923 and 15 January, 1923, respectively!\\n (Anyone can check it at her/his library,if not, I can send you the copies of\\n pages, please ask by sct) \\n \\n \\nI really don\\'t care what year it was first published(1923 or 1924)\\nWhat I care about is what the book writes about murders, tortures,et..in\\nthe given quotes by Serdar Argic, and your denial of these quotes..and your\\ngroundless accussations, etc. \\n \\n>\\n[...]\\n> \\n>[DD] I can provide .gif postings if required to verify my claim!\\n> \\n>[VD] what is new?\\n> \\n>I will post a .gif file, but I am not going go through the effort to show there \\n>is some Turkish modified re-publication of the book, like last time!\\n \\n \\n I claim I have a book in my hand published in 1923(first publication)\\n and it exactly has the same quoted info as the book published\\n in 1934(Serdar Argic\\'s Reference) has..You couldn\\'t reject it..but, now you\\n are avoiding the real issues by twisting around..\\n \\n Let\\'s see how you lie!..(from \\'non-existing\\' quotes to re-publication)\\n \\n First you said there was no such a quote in the given reference..You\\n called Serdar Argic a liar!..\\n I said to you, NO, MR.Davidian, there exactly existed such a quote...\\n (I even gave the call number, page numbers..you could\\'t reject it.)\\n \\n And now, you are lying again and talking about \"modified,re-published book\"\\n(without any proof :how, when, where, by whom, etc..)..\\n (by the way, how is it possible to re-publish the book in 1923 if it was\\n first published in 1924(your claim).I am sure that you have some \\'pretty \\n well suited theories\\', as usual)\\n \\n And I am ready to send the copies of the necessary pages to anybody who\\n wants to compare the fact and Mr.Davidian\\'s lies...I also give the call number\\n and page numbers again for the library use, which are: \\n 949.6 R 198\\n \\n and the page numbers to verify the quotes:218 and 215\\n \\n \\n \\n> \\n>It is not possible that [(*]\\'s text has 287 pages, mine has 353, and yours has\\n>377!\\n \\n Now, are you claiming that there can\\'t be such a reference by saying \"it is\\n not possible...\" ..If not, what is your point?\\n \\n Differences in the number of pages?\\n Mine was published in 1923..Serdar Argic\\'s was in 1934..\\n No need to use the same book size and the same letter \\n charachter in both publications,etc, etc.. does it give you an idea!!\\n \\n The issue was not the number of pages the book has..or the year\\n first published.. \\n And you tried to hide the whole point..\\n the point is that both books have the exactly the same quotes about\\n how moslems are killed, tortured,etc by Armenians..and those quotes given \\n by Serdar Argic exist!! \\n It was the issue, wasn\\'t-it? \\n \\n you were not able to object it...Does it bother you anyway? \\n \\n You name all these tortures and murders (by Armenians) as a \"crap\"..\\n People who think like you are among the main reasons why the World still\\n has so many \"craps\" in the 1993. \\n \\n Any question?\\n \\n\\n\\nhovig@uxa.cso.uiuc.edu (Hovig Heghinian)\\n\\n> Hmm ... Turks sure know how to keep track of deaths, but they seem to\\n>lose count around 1.5 million.\\n\\nWell, apparently we have another son of Dro \\'the Butcher\\' to contend with. \\nYou should indeed be happy to know that you rekindled a huge discussion on\\ndistortions propagated by several of your contemporaries. If you feel \\nthat you can simply act as an Armenian governmental crony in this forum \\nyou will be sadly mistaken and duly embarrassed. This is not a lecture to \\nanother historical revisionist and a genocide apologist, but a fact.\\n\\nI will dissect article-by-article, paragraph-by-paragraph, line-by-line, \\nlie-by-lie, revision-by-revision, written by those on this net, who plan \\nto \\'prove\\' that the Armenian genocide of 2.5 million Turks and Kurds is \\nnothing less than a classic un-redressed genocide. We are neither in \\nx-Soviet Union, nor in some similar ultra-nationalist fascist dictatorship, \\nthat employs the dictates of Hitler to quell domestic unrest. Also, feel \\nfree to distribute all responses to your nearest ASALA/SDPA/ARF terrorists,\\nthe Armenian pseudo-scholars, or to those affiliated with the Armenian\\ncriminal organizations.\\n\\nArmenian government got away with the genocide of 2.5 million Turkish men,\\nwomen and children and is enjoying the fruits of that genocide. You, and \\nthose like you, will not get away with the genocide\\'s cover-up.\\n\\nNot a chance.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Morality? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>>Explain to me\\n|> >>>how instinctive acts can be moral acts, and I am happy to listen.\\n|> >>For example, if it were instinctive not to murder...\\n|> >\\n|> >Then not murdering would have no moral significance, since there\\n|> >would be nothing voluntary about it.\\n|> \\n|> See, there you go again, saying that a moral act is only significant\\n|> if it is \"voluntary.\" Why do you think this?\\n\\nIf you force me to do something, am I morally responsible for it?\\n\\n|> \\n|> And anyway, humans have the ability to disregard some of their instincts.\\n\\nWell, make up your mind. Is it to be \"instinctive not to murder\"\\nor not?\\n\\n|> \\n|> >>So, only intelligent beings can be moral, even if the bahavior of other\\n|> >>beings mimics theirs?\\n|> >\\n|> >You are starting to get the point. Mimicry is not necessarily the \\n|> >same as the action being imitated. A Parrot saying \"Pretty Polly\" \\n|> >isn\\'t necessarily commenting on the pulchritude of Polly.\\n|> \\n|> You are attaching too many things to the term \"moral,\" I think.\\n|> Let\\'s try this: is it \"good\" that animals of the same species\\n|> don\\'t kill each other. Or, do you think this is right? \\n\\nIt\\'s not even correct. Animals of the same species do kill\\none another.\\n\\n|> \\n|> Or do you think that animals are machines, and that nothing they do\\n|> is either right nor wrong?\\n\\nSigh. I wonder how many times we have been round this loop.\\n\\nI think that instinctive bahaviour has no moral significance.\\nI am quite prepared to believe that higher animals, such as\\nprimates, have the beginnings of a moral sense, since they seem\\nto exhibit self-awareness.\\n\\n|> \\n|> \\n|> >>Animals of the same species could kill each other arbitarily, but \\n|> >>they don\\'t.\\n|> >\\n|> >They do. I and other posters have given you many examples of exactly\\n|> >this, but you seem to have a very short memory.\\n|> \\n|> Those weren\\'t arbitrary killings. They were slayings related to some \\n|> sort of mating ritual or whatnot.\\n\\nSo what? Are you trying to say that some killing in animals\\nhas a moral significance and some does not? Is this your\\nnatural morality>\\n\\n\\n|> \\n|> >>Are you trying to say that this isn\\'t an act of morality because\\n|> >>most animals aren\\'t intelligent enough to think like we do?\\n|> >\\n|> >I\\'m saying:\\n|> >\\t\"There must be the possibility that the organism - it\\'s not \\n|> >\\tjust people we are talking about - can consider alternatives.\"\\n|> >\\n|> >It\\'s right there in the posting you are replying to.\\n|> \\n|> Yes it was, but I still don\\'t understand your distinctions. What\\n|> do you mean by \"consider?\" Can a small child be moral? How about\\n|> a gorilla? A dolphin? A platypus? Where is the line drawn? Does\\n|> the being need to be self aware?\\n\\nAre you blind? What do you think that this sentence means?\\n\\n\\t\"There must be the possibility that the organism - it\\'s not \\n\\tjust people we are talking about - can consider alternatives.\"\\n\\nWhat would that imply?\\n\\n|> \\n|> What *do* you call the mechanism which seems to prevent animals of\\n|> the same species from (arbitrarily) killing each other? Don\\'t\\n|> you find the fact that they don\\'t at all significant?\\n\\nI find the fact that they do to be significant. \\n\\njon.\\n',\n", - " \"From: benali@alcor.concordia.ca ( ILYESS B. BDIRA )\\nSubject: Re: The Israeli Press\\nNntp-Posting-Host: alcor.concordia.ca\\nOrganization: Concordia University, Montreal, Canada\\nLines: 41\\n\\nbc744@cleveland.Freenet.Edu (Mark Ira Kaufman) writes:\\n\\n\\n...\\n>for your information on Israel. Since I read both American media\\n>and Israeli media, I can say with absolute certainty that anybody\\n>who reliesx exclusively on the American press for knowledge about\\n>Israel does not have a true picture of what is going on.\\n\\nOf course you never read Arab media,\\n\\nI read Arab, ISRAELI (Jer. Post, and this network is more than enough)\\nand Western (American, French, and British) reports and I can say\\nthat if we give Israel -10 and Arabs +10 on the bias scale (of course\\nyou can switch the polarities) Israeli newspapers will get either\\na -9 or -10, American leading newspapers and TV news range from -6\\nto -10 (yes there are some that are more Israelis than Israelis)\\nThe Montreal suburban (a local free newspaper) probably is closer\\nto Kahane's views than some Israeli right wing newspapers, British\\nrange from 0 (neutral) to -10, French (that Iknow of, of course) range\\nfrom +2 (Afro-french magazines) to -10, Arab official media range from\\n0 to -5 (Egyptian) to +9 in SA. Why no +10? Because they do not want to\\noverdo it and stir people against Israel and therefore against them since \\nthey are doing nothing.\\n\\n \\n> As to the claim that Israeli papers are biased, of course they\\n>are. Some may lean to the right or the left, just like the media\\n>here in America. But they still report events about which people\\n>here know nothing. I choose to form my opinions about Israel and\\n>the mideast based on more knowledge than does an average American\\n>who relies exclusively on an American media which does not report\\n>on events in the mideast with any consistency or accuracy.\\n\\nthe average bias of what you read would be probably around -9,\\nwhile that of the average American would be the same if they do\\nnot read or read the new-york times and similar News-makers, and\\n-8 if they read some other RELATIVELY less biased newspapers.\\n\\nso you are not better off.\\n\\n\",\n", - " 'From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: Maxima Chain wax\\nNntp-Posting-Host: amhux3.amherst.edu\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 31\\n\\nTom Dietrich (txd@ESD.3Com.COM) wrote:\\n: parr@acs.ucalgary.ca (Charles Parr) writes:\\n: \\n: >I bought it, I tried it:\\n: \\n: >It is, truly, the miracle spooge.\\n: \\n: >My chain is lubed, my wheel is clean, after 1000km.\\n: \\n: Good, glad to hear it, I\\'m still studying it.\\n: \\n: >I think life is now complete...The shaft drive weenies now\\n: >have no comeback when I discuss shaft effect.\\n: \\n: Sure I do, even though I don\\'t consider myself a weenie... \\n\\n---------------- rip! pithy \"I\\'m afraid to work on my bike\" stuff deleted ---\\n\\n: There is also damn little if any shaft effect\\n: with a Concours. So there! :{P PPPpppphhhhhttttttt!!!\\n: \\nHeh, heh...that\\'s pretty funny. So what do you call it instead of shaft\\neffect?\\n\\n\\nNathaniel\\nZX-10 <--- damn little if any shaft effect\\nDoD 0812\\nAMA\\n\\np.s. okay, so it\\'s flame bait, so what\\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 14/15 - How to Become an Astronaut\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.astronaut_733694515\\nExpires: 6 May 1993 20:01:55 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 313\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/astronaut\\nLast-modified: $Date: 93/04/01 14:39:02 $\\n\\nHOW TO BECOME AN ASTRONAUT\\n\\n First the short form, authored by Henry Spencer, then an official NASA\\n announcement.\\n\\n Q. How do I become an astronaut?\\n\\n A. We will assume you mean a NASA astronaut, since it\\'s probably\\n impossible for a non-Russian to get into the cosmonaut corps (paying\\n passengers are not professional cosmonauts), and the other nations have\\n so few astronauts (and fly even fewer) that you\\'re better off hoping to\\n win a lottery. Becoming a shuttle pilot requires lots of fast-jet\\n experience, which means a military flying career; forget that unless you\\n want to do it anyway. So you want to become a shuttle \"mission\\n specialist\".\\n\\n If you aren\\'t a US citizen, become one; that is a must. After that,\\n the crucial thing to remember is that the demand for such jobs vastly\\n exceeds the supply. NASA\\'s problem is not finding qualified people,\\n but thinning the lineup down to manageable length.\\tIt is not enough\\n to be qualified; you must avoid being *dis*qualified for any reason,\\n many of them in principle quite irrelevant to the job.\\n\\n Get a Ph.D. Specialize in something that involves getting your hands\\n dirty with equipment, not just paper and pencil. Forget computer\\n programming entirely; it will be done from the ground for the fore-\\n seeable future. Degree(s) in one field plus work experience in\\n another seems to be a frequent winner.\\n\\n Be in good physical condition, with good eyesight.\\t(DO NOT get a\\n radial keratomy or similar hack to improve your vision; nobody knows\\n what sudden pressure changes would do to RKed eyes, and long-term\\n effects are poorly understood. For that matter, avoid any other\\n significant medical unknowns.) If you can pass a jet-pilot physical,\\n you should be okay; if you can\\'t, your chances are poor.\\n\\n Practise public speaking, and be conservative and conformist in\\n appearance and actions; you\\'ve got a tough selling job ahead, trying\\n to convince a cautious, conservative selection committee that you\\n are better than hundreds of other applicants. (And, also, that you\\n will be a credit to NASA after you are hired: public relations is\\n a significant part of the job, and NASA\\'s image is very prim and\\n proper.) The image you want is squeaky-clean workaholic yuppie.\\n Remember also that you will need a security clearance at some point,\\n and Security considers everybody guilty until proven innocent.\\n Keep your nose clean.\\n\\n Get a pilot\\'s license and make flying your number one hobby;\\n experienced pilots are known to be favored even for non-pilot jobs.\\n\\n Work for NASA; of 45 astronauts selected between 1984 and 1988,\\n 43 were military or NASA employees, and the remaining two were\\n a NASA consultant and Mae Jemison (the first black female astronaut).\\n If you apply from outside NASA and miss, but they offer you a job\\n at NASA, ***TAKE IT***; sometimes in the past this has meant \"you\\n do look interesting but we want to know you a bit better first\".\\n\\n Think space: they want highly motivated people, so lose no chance\\n to demonstrate motivation.\\n\\n Keep trying. Many astronauts didn\\'t make it the first time.\\n\\n\\n\\n\\n NASA\\n National Aeronautics and Space Administration\\n Lyndon B. Johnson Space Center\\n Houston, Texas\\n\\n Announcement for Mission Specialist and Pilot Astronaut Candidates\\n ==================================================================\\n\\n Astronaut Candidate Program\\n ---------------------------\\n\\n The National Aeronautics and Space Administration (NASA) has a need for\\n Pilot Astronaut Candidates and Mission Specialist Astronaut Candidates\\n to support the Space Shuttle Program. NASA is now accepting on a\\n continuous basis and plans to select astronaut candidates as needed.\\n\\n Persons from both the civilian sector and the military services will be\\n considered.\\n\\n All positions are located at the Lyndon B. Johnson Space Center in\\n Houston, Texas, and will involved a 1-year training and evaluation\\n program.\\n\\n Space Shuttle Program Description\\n ---------------------------------\\n\\n The numerous successful flights of the Space Shuttle have demonstrated\\n that operation and experimental investigations in space are becoming\\n routine. The Space Shuttle Orbiter is launched into, and maneuvers in\\n the Earth orbit performing missions lastling up to 30 days. It then\\n returns to earth and is ready for another flight with payloads and\\n flight crew.\\n\\n The Orbiter performs a variety of orbital missions including deployment\\n and retrieval of satellites, service of existing satellites, operation\\n of specialized laboratories (astronomy, earth sciences, materials\\n processing, manufacturing), and other operations. These missions will\\n eventually include the development and servicing of a permanent space\\n station. The Orbiter also provides a staging capability for using higher\\n orbits than can be achieved by the Orbiter itself. Users of the Space\\n Shuttle\\'s capabilities are both domestic and foreign and include\\n government agencies and private industries.\\n\\n The crew normally consists of five people - the commander, the pilot,\\n and three mission specialists. On occasion additional crew members are\\n assigned. The commander, pilot, and mission specialists are NASA\\n astronauts.\\n\\n Pilot Astronaut\\n\\n Pilot astronauts server as both Space Shuttle commanders and pilots.\\n During flight the commander has onboard responsibility for the vehicle,\\n crew, mission success and safety in flight. The pilot assists the\\n commander in controlling and operating the vehicle. In addition, the\\n pilot may assist in the deployment and retrieval of satellites utilizing\\n the remote manipulator system, in extra-vehicular activities, and other\\n payload operations.\\n\\n Mission Specialist Astronaut\\n\\n Mission specialist astronauts, working with the commander and pilot,\\n have overall responsibility for the coordination of Shuttle operations\\n in the areas of crew activity planning, consumables usage, and\\n experiment and payload operations. Mission specialists are required to\\n have a detailed knowledge of Shuttle systems, as well as detailed\\n knowledge of the operational characteristics, mission requirements and\\n objectives, and supporting systems and equipment for each of the\\n experiments to be conducted on their assigned missions. Mission\\n specialists will perform extra-vehicular activities, payload handling\\n using the remote manipulator system, and perform or assist in specific\\n experimental operations.\\n\\n Astronaut Candidate Program\\n ===========================\\n\\n Basic Qualification Requirements\\n --------------------------------\\n\\n Applicants MUST meet the following minimum requirements prior to\\n submitting an application.\\n\\n Mission Specialist Astronaut Candidate:\\n\\n 1. Bachelor\\'s degree from an accredited institution in engineering,\\n biological science, physical science or mathematics. Degree must be\\n followed by at least three years of related progressively responsible,\\n professional experience. An advanced degree is desirable and may be\\n substituted for part or all of the experience requirement (master\\'s\\n degree = 1 year, doctoral degree = 3 years). Quality of academic\\n preparation is important.\\n\\n 2. Ability to pass a NASA class II space physical, which is similar to a\\n civilian or military class II flight physical and includes the following\\n specific standards:\\n\\n\\t Distant visual acuity:\\n\\t 20/150 or better uncorrected,\\n\\t correctable to 20/20, each eye.\\n\\n\\t Blood pressure:\\n\\t 140/90 measured in sitting position.\\n\\n 3. Height between 58.5 and 76 inches.\\n\\n Pilot Astronaut Candidate:\\n\\n 1. Bachelor\\'s degree from an accredited institution in engineering,\\n biological science, physical science or mathematics. Degree must be\\n followed by at least three years of related progressively responsible,\\n professional experience. An advanced degree is desirable. Quality of\\n academic preparation is important.\\n\\n 2. At least 1000 hours pilot-in-command time in jet aircraft. Flight\\n test experience highly desirable.\\n\\n 3. Ability to pass a NASA Class I space physical which is similar to a\\n military or civilian Class I flight physical and includes the following\\n specific standards:\\n\\n\\t Distant visual acuity:\\n\\t 20/50 or better uncorrected\\n\\t correctable to 20/20, each eye.\\n\\n\\t Blood pressure:\\n\\t 140/90 measured in sitting position.\\n\\n 4. Height between 64 and 76 inches.\\n\\n Citizenship Requirements\\n\\n Applications for the Astronaut Candidate Program must be citizens of\\n the United States.\\n\\n Note on Academic Requirements\\n\\n Applicants for the Astronaut Candidate Program must meet the basic\\n education requirements for NASA engineering and scientific positions --\\n specifically: successful completion of standard professional curriculum\\n in an accredited college or university leading to at least a bachelor\\'s\\n degree with major study in an appropriate field of engineering,\\n biological science, physical science, or mathematics.\\n\\n The following degree fields, while related to engineering and the\\n sciences, are not considered qualifying:\\n - Degrees in technology (Engineering Technology, Aviation Technology,\\n\\tMedical Technology, etc.)\\n - Degrees in Psychology (except for Clinical Psychology, Physiological\\n\\tPsychology, or Experimental Psychology which are qualifying).\\n - Degrees in Nursing.\\n - Degrees in social sciences (Geography, Anthropology, Archaeology, etc.)\\n - Degrees in Aviation, Aviation Management or similar fields.\\n\\n Application Procedures\\n ----------------------\\n\\n Civilian\\n\\n The application package may be obtained by writing to:\\n\\n\\tNASA Johnson Space Center\\n\\tAstronaut Selection Office\\n\\tATTN: AHX\\n\\tHouston, TX 77058\\n\\n Civilian applications will be accepted on a continuous basis. When NASA\\n decides to select additional astronaut candidates, consideration will be\\n given only to those applications on hand on the date of decision is\\n made. Applications received after that date will be retained and\\n considered for the next selection. Applicants will be notified annually\\n of the opportunity to update their applications and to indicate\\n continued interest in being considered for the program. Those applicants\\n who do not update their applications annually will be dropped from\\n consideration, and their applications will not be retained. After the\\n preliminary screening of applications, additional information may be\\n requested for some applicants, and person listed on the application as\\n supervisors and references may be contacted.\\n\\n Active Duty Military\\n\\n Active duty military personnel must submit applications to their\\n respective military service and not directly to NASA. Application\\n procedures will be disseminated by each service.\\n\\n Selection\\n ---------\\n\\n Personal interviews and thorough medical evaluations will be required\\n for both civilian and military applicants under final consideration.\\n Once final selections have been made, all applicants who were considered\\n will be notified of the outcome of the process.\\n\\n Selection rosters established through this process may be used for the\\n selection of additional candidates during a one year period following\\n their establishment.\\n\\n General Program Requirements\\n\\n Selected applicants will be designated Astronaut Candidates and will be\\n assigned to the Astronaut Office at the Johnson Space Center, Houston,\\n Texas. The astronaut candidates will undergo a 1 year training and\\n evaluation period during which time they will be assigned technical or\\n scientific responsibilities allowing them to contribute substantially to\\n ongoing programs. They will also participate in the basic astronaut\\n training program which is designed to develop the knowledge and skills\\n required for formal mission training upon selection for a flight. Pilot\\n astronaut candidates will maintain proficiency in NASA aircraft during\\n their candidate period.\\n\\n Applicants should be aware that selection as an astronaut candidate does\\n not insure selection as an astronaut. Final selection as an astronaut\\n will depend on satisfactory completion of the 1 year training and\\n evaluation period. Civilian candidates who successfully complete the\\n training and evaluation and are selected as astronauts will become\\n permanent Federal employees and will be expected to remain with NASA for\\n a period of at least five years. Civilian candidates who are not\\n selected as astronauts may be placed in other positions within NASA\\n depending upon Agency requirements and manpower constraints at that\\n time. Successful military candidates will be detailed to NASA for a\\n specified tour of duty.\\n\\n NASA has an affirmative action program goal of having qualified\\n minorities and women among those qualified as astronaut candidates.\\n Therefore, qualified minorities and women are encouraged to apply.\\n\\n Pay and Benefits\\n ----------------\\n\\n Civilians\\n\\n Salaries for civilian astronaut candidates are based on the Federal\\n Governments General Schedule pay scales for grades GS-11 through GS-14,\\n and are set in accordance with each individuals academic achievements\\n and experience.\\n\\n Other benefits include vacation and sick leave, a retirement plan, and\\n participation in group health and life insurance plans.\\n\\n Military\\n\\n Selected military personnel will be detailed to the Johnson Space Center\\n but will remain in an active duty status for pay, benefits, leave, and\\n other similar military matters.\\n\\n\\nNEXT: FAQ #15/15 - Orbital and Planetary Launch Services\\n',\n", - " \"From: clldomps@cs.ruu.nl (Louis van Dompselaar)\\nSubject: Re: images of earth\\nOrganization: Utrecht University, Dept. of Computer Science\\nLines: 16\\n\\nIn <1993Apr19.193758.12091@unocal.com> stgprao@st.unocal.COM (Richard Ottolini) writes:\\n\\n>Beware. There is only one such *copyrighted* image and the company\\n>that generated is known to protect that copyright. That image took\\n>hundreds of man-hours to build from the source satellite images,\\n>so it is unlikely that competing images will appear soon.\\n\\nSo they should sue the newspaper I got it from for printing it.\\nThe article didn't say anything about copyrights.\\n\\nLouis\\n\\n-- \\nI'm hanging on your words, Living on your breath, Feeling with your skin,\\nWill I always be here? -- In Your Room [ DM ]\\n\\n\",\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Symbiotics: Zionism-Antisemitism\\nOrganization: The Department of Redundancy Department\\nLines: 21\\n\\nIn article <1483500355@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n\\n>The first point to note regarding the appropriation of the history\\n>of the Holocaust by Zionist propaganda is that Zionism without\\n>anti-semitism is impossible. Zionism agrees with the basic tenet\\n>of anti-Semitism, namely that Jews cannot live with non- Jews.\\n\\nThat\\'s why the Zionists decided that Zion must be Gentile-rein.\\nWhat?! They didn\\'t?! You mean to tell me that the early Zionists\\nactually granted CITIZENSHIP in the Jewish state to Christian and\\nMuslim people, too? \\n\\nIt seems, Elias, that your \"first point to note\" is wrong, so the rest\\nof your posting isn\\'t worth much, either.\\n\\nTa ta...\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: rws@cs.arizona.edu (Ronald W. Schmidt)\\nSubject: outlining of spline surface\\nKeywords: spline rasterization\\nLines: 38\\n\\n\\n\\tAbout a year ago I started work on a problem that appeared to\\nbe very simple and turned out to be quite difficult. I am wondering if\\nanyone on the net has seen this problem and (hopefully) some published \\nsolutions to it.\\n\\n\\tThe problem is to draw an outline of a surface defined by two\\nroughly parallel cubic splines. For inputs the problem essentially\\nstarts with two sets of points where each set of points is on the \\nedge of an object which we treat as two dimensional, i.e. only extant\\nbetween the edges, but which exists in three dimensional space. To draw \\nthe object we \\n\\n1) fit a cubic spline through the points. Each spline is effectively\\n\\tcomputed as a sequence of line segments approximating the\\n curve. Each spline has an equal number of segments. We assume\\n\\tthat the nth segment along each spline is roughly, but not\\n\\texactly, the same distance along each spline by any reasonable\\n\\tmeasure.\\n2) Take each segment (n) along each spline and match it to the nth segment\\n\\tof the opposing spline. Use the pair of segments to form two\\n\\ttriangles which will be filled in to color the surface.\\n3) Depth sort the triangles\\n4) Take each triangle in sorted order, project onto a 2D pixmap, draw\\n\\tand color the triangle. Take the edge of the triangle that is\\n\\talong the edge of the surface and draw a line along that edge\\n\\tcolored with a special \"edge color\"\\n\\n\\tIt is the edge coloring in step 4 that is at the heart of the\\nproblem. The idea is to effectively outline the edge of the surface.\\nThe net result however generally has lots of breaks and gaps in\\nthe edge of the surface. The reasons for this are fairly complicated.\\nThey involve both rasterization problems and problems resulting\\nfrom the projecting the splines. If anything about this problem\\nsounds familiar we would appreciate knowing about other work in this\\narea.\\n\\n-Thanks\\n',\n", - " 'From: daviss@sweetpea.jsc.nasa.gov (S.F. Davis)\\nSubject: Re: japanese moon landing/temporary orbit\\nOrganization: NSPC\\nLines: 46\\n\\nIn article , pgf@srl03.cacs.usl.edu (Phil G. Fraering) writes:\\n|> rls@uihepa.hep.uiuc.edu (Ray Swartz (Oh, that guy again)) writes:\\n|> \\n|> >The gravity maneuvering that was used was to exploit \\'fuzzy regions\\'. These\\n|> >are described by the inventor as exploiting the second-order perturbations in a\\n|> >three body system. The probe was launched into this region for the\\n|> >earth-moon-sun system, where the perturbations affected it in such a way as to\\n|> >allow it to go into lunar orbit without large expenditures of fuel to slow\\n|> >down. The idea is that \\'natural objects sometimes get captured without\\n|> >expending fuel, we\\'ll just find the trajectory that makes it possible\". The\\n|> >originator of the technique said that NASA wasn\\'t interested, but that Japan\\n|> >was because their probe was small and couldn\\'t hold a lot of fuel for\\n|> >deceleration.\\n|> \\n|> \\n|> I should probably re-post this with another title, so that\\n|> the guys on the other thread would see that this is a practical\\n|> use of \"temporary orbits...\"\\n|> \\n|> Another possible temporary orbit:\\n|> \\n|> --\\n|> Phil Fraering |\"Seems like every day we find out all sorts of stuff.\\n|> pgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n|> \\n|> \\n\\nIf you are really interested in these orbits and how they are obtained\\nyou should try and find the following paper:\\n\\n Hiroshi Yamakawa, Jun\\'ichiro Kawaguchi, Nobuaki Ishii, \\n and Hiroki Matsuo, \"A Numerical Study of Gravitational Capture\\n Orbit in the Earth-Moon System,\" AAS-92-186, AAS/AIAA Spaceflight\\n Mechanics Meeting, Colorado Springs, Colorado, 1992.\\n\\nThe references included in this paper are quite interesting also and \\ninclude several that are specific to the HITEN mission itself. \\n\\n|--------------------------------- ******** -------------------------|\\n| * _!!!!_ * |\\n| Steven Davis * / \\\\ \\\\ * |\\n| daviss@sweetpea.jsc.nasa.gov * () * | \\n| * \\\\>_db_ jar2e@faraday.clas.Virginia.EDU (Virginia's Gentleman) writes:\\n\\n This post has all the earmarks of a form program, where the user types in\\n a nationality or ethnicity and it fills it in in certain places in the story. \\n If this is true, I condemn it. If it's a fabrication, then the posters have\\n horrible morals and should be despised by everyone on tpm who values truth.\\n\\n Jesse\\n\\nAgreed.\\n\\nHarry.\\n\",\n", - " \"From: amehdi@src.honeywell.com (Hossien Amehdi)\\nSubject: Re: was: Go Hezbollah!!\\nNntp-Posting-Host: tbilisi.src.honeywell.com\\nOrganization: Honeywell Systems & Research Center\\nLines: 25\\n\\nIn article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>amehdi@src.honeywell.com (Hossien Amehdi) writes:\\n>\\n>>You know when Israelis F16 (thanks to General Dynamics) fly high in the sky\\n>>and bomb the hell out of some village in Lebanon, where civilians including\\n>>babies and eldery getting killed, is that plain murder or what?\\n>\\n>If you Arabs wouldn't position guerilla bases in refugee camps, artillery \\n>batteries atop apartment buildings, and munitions dumps in hospitals, maybe\\n>civilians wouldn't get killed. Kinda like Saddam Hussein putting civilians\\n>in a military bunker. \\n>\\n>Ed.\\n\\nWho is the you Arabs here. Since you are replying to my article you\\nare assuming that I am an Arab. Well, I'm not an Arab, but I think you\\nare brain is full of shit if you really believe what you said. The\\nbombardment of civilian and none civilian areas in Lebanon by Israel is\\nvery consistent with its policy of intimidation. That is the only\\npolicy that has been practiced by the so called only democracy in\\nthe middle east!\\n\\nI was merley pointing out that the other side is also suffering.\\nLike I said, I'm not an Arab but if I was, say a Lebanese, you bet\\nI would defende my homeland against any invader by any means.\\n\",\n", - " \"From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nLines: 31\\nOrganization: Walla Walla College\\nLines: 31\\n\\nIn article <11820@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\n>Subject: Re: some thoughts.\\n>Keywords: Dan Bissell\\n>Date: 15 Apr 93 18:21:21 GMT\\n>In article bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n>>\\n>>\\tFirst I want to start right out and say that I'm a Christian. It \\n>>makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n>>lunatic, or the real thing? (I might be a little off on the title, but he \\n>>writes the book. Anyway he was part of an effort to destroy Christianity, \\n>>in the process he became a Christian himself.\\n>\\n> This should be good fun. It's been a while since the group has\\n> had such a ripe opportunity to gut, gill, and fillet some poor\\n> bastard. \\n>\\n> Ah well. Off to get the popcorn...\\n>\\n>/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n>\\n>Bob Beauchaine bobbe@vice.ICO.TEK.COM \\n>\\n>They said that Queens could stay, they blew the Bronx away,\\n>and sank Manhattan out at sea.\\n>\\n>^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nI hope you're not going to flame him. Please give him the same coutesy you'\\nve given me.\\n\\nTammy\\n\",\n", - " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Freezing and Riding\\nOrganization: University College of Wales, Aberystwyth\\nLines: 14\\nNntp-Posting-Host: 144.124.112.30\\n\\n>every spec of alertness to keep from getting squished, otherwise it's not\\n>only dangerous, it's unpleasant. The same goes for cold and fatigue, as I\\n>once took a half hour nap at a gas station to insure that I would make it\\n\\nYeah, hypothermia is MUCH more detrimemtal to your judgement and reactions\\nthan people realise. I wish I had the patience to stop when I should. One\\nday I'll pay for it....\\n\\nIf you begin to shiver - STOP and warm up thoroughly. If you leave it\\ntill the shivering stops, this doesnt mean you're OK again, it means \\nyou're a danger to yourself and everyone else on the road - your brain\\nand body are working about as fast as a tree grows. You will not realise\\nthis yourself till you hit something. The next stage is passing out. \\nThis usually means falling off.\\n\",\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Express Access Online Communications USA\\nLines: 18\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1r6f3a$2ai@news.umbc.edu> rouben@math9.math.umbc.edu (Rouben Rostamian) writes:\\n>how the length of the daylight varies with the time of the year.\\n>Experiment with various choices of latitudes and tilt angles.\\n>Compare the behavior of the function at locations above and below\\n>the arctic circle.\\n\\n\\n\\nIf you want to have some fun.\\n\\nPlug the basic formulas into Lotus.\\n\\nUse the spreadsheet auto re-calc, and graphing functions\\nto produce bar graphs based on latitude, tilt and hours of day light avg.\\n\\n\\npat\\n\\n',\n", - " 'From: mathew \\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 32\\n\\njaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n> Why would the Rushdie case be particularly legitimate? As I\\'ve said\\n> elsewhere on this issue, Rushdie\\'s actions had effects in Islamic\\n> countries so that it is not so simple to say that he didn\\'t commit\\n> a crime in an Islamic country.\\n\\nActually, it is simple.\\n\\nA person P has committed a crime C in country X if P was within the borders\\nof X at the time when C was committed. It doesn\\'t matter if the physical\\nmanifestation of C is outside X.\\n\\nFor instance, if I hack into NASA\\'s Ames Research Lab and delete all their\\nfiles, I have committed a crime in the United Kingdom. If the US authorities\\nwish to prosecute me under US law rather than UK law, they have no automatic\\nright to do so.\\n\\nThis is why the net authorities in the US tried to put pressure on some sites\\nin Holland. Holland had no anti-cracking legislation, and so it was viewed\\nas a \"hacker haven\" by some US system administrators.\\n\\nSimilarly, a company called Red Hot Television is broadcasting pornographic\\nmaterial which can be received in Britain. If they were broadcasting in\\nBritain, they would be committing a crime. But they are not, they are\\nbroadcasting from Denmark, so the British Government is powerless to do\\nanything about it, in spite of the apparent law-breaking.\\n\\nOf course, I\\'m not a lawyer, so I could be wrong. More confusingly, I could\\nbe right in some countries but not in others...\\n\\n\\nmathew\\n',\n", - " 'From: der10@cus.cam.ac.uk (David Rourke)\\nSubject: xs1100 timing\\nOrganization: U of Cambridge, England\\nLines: 4\\nNntp-Posting-Host: bootes.cus.cam.ac.uk\\n\\nCould some kind soul tell me the advance timing/revs for a 1981 xs1100 special\\n(bought in Canada).\\n\\nthanks.\\n',\n", - " 'From: u7711501@bicmos.ee.nctu.edu.tw (jih-shin ho)\\nSubject: disp135 [0/7]\\nOrganization: National Chiao Tung University\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 285\\n\\n\\n\\nI have posted disp135.zip to alt.binaries.pictures.utilities\\n\\n\\n****** You may distribute this program freely for non-commercial use\\n if no fee is gained.\\n****** There is no warranty. The author is not responsible for any\\n damage caused by this program.\\n\\n\\nImportant changes since version 1.30:\\n Fix bugs in file management system (file displaying).\\n Improve file management system (more user-friendly).\\n Fix bug in XPM version 3 reading.\\n Fix bugs in TARGA reading/writng.\\n Fix bug in GEM/IMG reading.\\n Add support for PCX and GEM/IMG writing.\\n Auto-skip macbinary header.\\n\\n\\n(1) Introduction:\\n This program can let you READ, WRITE and DISPLAY images with different\\n formats. It also let you do some special effects(ROTATION, DITHERING ....)\\n on image. Its main purpose is to let you convert image among different\\n formts.\\n Include simple file management system.\\n Support \\'slide show\\'.\\n There is NO LIMIT on image size.\\n Currently this program supports 8, 15, 16, 24 bits display.\\n If you want to use HiColor or TrueColor, you must have VESA driver.\\n If you want to modify video driver, please read section (8).\\n\\n\\n(2) Hardware Requirement:\\n PC 386 or better. MSDOS 3.3 or higher.\\n min amount of ram is 4M bytes(Maybe less memory will also work).\\n (I recommend min 8M bytes for better performance).\\n Hard disk for swapping(virtual memory).\\n\\n The following description is borrowed from DJGPP.\\n\\n Supported Wares:\\n\\n * Up to 128M of extended memory (expanded under VCPI)\\n * Up to 128M of disk space used for swapping\\n * SuperVGA 256-color mode up to 1024x768\\n * 80387\\n * XMS & VDISK memory allocation strategies\\n * VCPI programs, such as QEMM, DESQview, and 386MAX\\n\\n Unsupported:\\n\\n * DPMI\\n * Microsoft Windows\\n\\n Features: 80387 emulator, 32-bit unix-ish environment, flat memory\\n model, SVGA graphics.\\n\\n\\n(3) Installation:\\n Video drivers, emu387 and go32.exe are borrowed from DJGPP.\\n (If you use Western Digital VGA chips, read readme.wd)\\n (This GO32.EXE is a modified version for vesa and is COMPLETELY compatible\\n with original version)\\n+ *** But some people report that this go32.exe is not compatible with\\n+ other DJGPP programs in their system. If you encounter this problem,\\n+ DON\\'T put go32.exe within search path.\\n\\n *** Please read runme.bat for how to run this program.\\n\\n If you choose xxxxx.grn as video driver, add \\'nc 256\\' to environment\\n GO32.\\n\\n For example, go32=driver x:/xxxxx/xxxxx.grn nc 256\\n\\n If you don\\'t have 80x87, add \\'emu x:/xxxxx/emu387\\' to environment GO32.\\n\\n For example, go32=driver x:/xxxxx/xxxxx.grd emu x:/xxxxx/emu387\\n\\n **** Notes: 1. I only test tr8900.grn, et4000.grn and vesa.grn.\\n Other drivers are not tested.\\n 2. I have modified et4000.grn to support 8, 15, 16, 24 bits\\n display. You don\\'t need to use vesa driver.\\n If et4000.grn doesn\\'t work, please try vesa.grn.\\n 3. For those who want to use HiColor or TrueColor display,\\n please use vesa.grn(except et4000 users).\\n You can find vesa BIOS driver from :\\n wuarchive.wustl.edu: /mirrors/msdos/graphics\\n godzilla.cgl.rmit.oz.au: /kjb/MGL\\n\\n\\n(4) Command Line Switch:\\n\\n+ Usage : display [-d|--display initial_display_type]\\n+ [-s|--sort sort_method]\\n+ [-h|-?]\\n\\n Display type: 8(SVGA,default), 15, 16(HiColor), 24(TrueColor)\\n+ Sort method: \\'name\\', \\'ext\\'\\n\\n\\n(5) Function Key:\\n\\n F2 : Change disk drive\\n\\n+ CTRL-A -- CTRL-Z : change disk drive.\\n\\n F3 : Change filename mask (See match.doc)\\n\\n F4 : Change parameters\\n\\n F5 : Some effects on picture, eg. flip, rotate ....\\n\\n F7 : Make Directory\\n\\n t : Tag file\\n\\n + : Tag group files (See match.doc)\\n\\n T : Tag all files\\n\\n u : Untag file\\n\\n - : Untag group files (See match.doc)\\n\\n U : Untag all files\\n\\n Ins : Change display type (8,15,16,24) in \\'read\\' & \\'screen\\' menu.\\n\\n F6,m,M : Move file(s)\\n\\n F8,d,D : Delete file(s)\\n\\n r,R : Rename file\\n\\n c,C : Copy File(s)\\n\\n z,Z : Display first 10 bytes in Ascii, Hex and Dec modes.\\n\\n+ f,F : Display disk free space.\\n\\n Page Up/Down : Move one page\\n\\n TAB : Change processing target.\\n\\n Arrow keys, Home, End, Page Up, Page Down: Scroll image.\\n Home: Left Most.\\n End: Right Most.\\n Page Up: Top Most.\\n Page Down: Bottom Most.\\n in \\'screen\\' & \\'effect\\' menu :\\n Left,Right arrow: Change display type(8, 15, 16, 24 bits)\\n\\n s,S : Slide Show. ESCAPE to terminate.\\n\\n ALT-X : Quit program without prompting.\\n\\n+ ALT-A : Reread directory.\\n\\n Escape : Abort function and return.\\n\\n\\n(6) Support Format:\\n\\n Read: GIF(.gif), Japan MAG(.mag), Japan PIC(.pic), Sun Raster(.ras),\\n Jpeg(.jpg), XBM(.xbm), Utah RLE(.rle), PBM(.pbm), PGM(.pgm),\\n PPM(.ppm), PM(.pm), PCX(.pcx), Japan MKI(.mki), Tiff(.tif),\\n Targa(.tga), XPM(.xpm), Mac Paint(.mac), GEM/IMG(.img),\\n IFF/ILBM(.lbm), Window BMP(.bmp), QRT ray tracing(.qrt),\\n Mac PICT(.pct), VIS(.vis), PDS(.pds), VIKING(.vik), VICAR(.vic),\\n FITS(.fit), Usenix FACE(.fac).\\n\\n the extensions in () are standard extensions.\\n\\n Write: GIF, Sun Raster, Jpeg, XBM, PBM, PGM, PPM, PM, Tiff, Targa,\\n XPM, Mac Paint, Ascii, Laser Jet, IFF/ILBM, Window BMP,\\n+ Mac PICT, VIS, FITS, FACE, PCX, GEM/IMG.\\n\\n All Read/Write support full color(8 bits), grey scale, b/w dither,\\n and 24 bits image, if allowed for that format.\\n\\n\\n(7) Detail:\\n\\n Initialization:\\n Set default display type to highest display type.\\n Find allowable screen resolution(for .grn video driver only).\\n\\n 1. When you run this program, you will enter \\'read\\' menu. Whthin this\\n menu you can press any function key except F5. If you move or copy\\n files, you will enter \\'write\\' menu. the \\'write\\' menu is much like\\n \\'read\\' menu, but only allow you to change directory.\\n+ The header line in \\'read\\' menu includes \"(d:xx,f:xx,t:xx)\".\\n+ d : display type. f: number of files. t: number of tagged files.\\n pressing SPACE in \\'read\\' menu will let you select which format to use\\n for reading current file.\\n pressing RETURN in \\'read\\' menu will let you reading current file. This\\n program will automatically determine which format this file is.\\n The procedure is: First, check magic number. If fail, check\\n standard extension. Still fail, report error.\\n pressing s or S in \\'read\\' menu will do \\'Slide Show\\'.\\n If delay time is 0, program will wait until you hit a key\\n (except ESCAPE).\\n If any error occurs, program will make a beep.\\n ESCAPE to terminate.\\n pressing Ins in \\'read\\' menu will change display type.\\n pressing ALT-X in \\'read\\' menu will quit program without prompting.\\n\\n 2. Once image file is successfully read, you will enter \\'screen\\' menu.\\n Within this menu F5 is turn on. You can do special effect on image.\\n pressing RETURN: show image.\\n in graphic mode, press RETURN, SPACE or ESCAPE to return to text\\n mode.\\n pressing TAB: change processing target. This program allows you to do\\n special effects on 8-bit or 24-bit image.\\n pressing Left,Right arrow: change display type. 8, 15, 16, 24 bits.\\n pressing SPACE: save current image to file.\\n B/W Dither: save as black/white image(1 bit).\\n Grey Scale: save as grey image(8 bits).\\n Full Color: save as color image(8 bits).\\n True Color: save as 24-bit image.\\n\\n This program will ask you some questions if you want to write image\\n to file. Some questions are format-dependent. Finally This program\\n will prompt you a filename. If you want to save file under another\\n directory other than current directory, please press SPACE. after\\n pressing SPACE, you will enter \\'write2\\' menu. You can change\\n directory to what you want. Then,\\n\\n pressing SPACE: this program will prompt you \\'original\\' filename.\\n pressing RETURN: this program will prompt you \\'selected\\' filename\\n (filename under bar).\\n\\n\\n 3. This program supports 8, 15, 16, 24 bits display.\\n\\n 4. This Program is MEMORY GREEDY. If you don\\'t have enough memory,\\n the performance is poor.\\n\\n 5. If you want to save 8 bits image :\\n try GIF then TIFF(LZW) then TARGA then Sun Raster then BMP then ...\\n\\n If you want to save 24 bits image (lossless):\\n try TIFF(LZW) or TARGA or ILBM or Sun Raster\\n (No one is better for true 24bits image)\\n\\n 6. I recommend Jpeg for storing 24 bits images, even 8 bits images.\\n\\n 7. Not all subroutines are fully tested\\n\\n 8. This document is not well written. If you have any PROBLEM, SUGGESTION,\\n COMMENT about this program,\\n Please send to u7711501@bicmos.ee.nctu.edu.tw (140.113.11.13).\\n I need your suggestion to improve this program.\\n (There is NO anonymous ftp on this site)\\n\\n\\n(8) Tech. information:\\n Program (user interface and some subroutines) written by Jih-Shin Ho.\\n Some subroutines are borrowed from XV(2.21) and PBMPLUS(dec 91).\\n Tiff(V3.2) and Jpeg(V4) reading/writing are through public domain\\n libraries.\\n Compiled with DJGPP.\\n You can get whole DJGPP package from SIMTEL20 or mirror sites.\\n For example, wuarchive.wustl.edu: /mirrors/msdos/djgpp\\n\\n\\n(9) For Thoese who want to modify video driver:\\n 1. get GRX source code from SIMTEL20 or mirror sites.\\n 2. For HiColor and TrueColor:\\n 15 bits : # of colors is set to 32768.\\n 16 bits : # of colors is set to 0xc010.\\n 24 bits : # of colors is set to 0xc018.\\n\\n\\nAcknowledgment:\\n I would like to thank the authors of XV and PBMPLUS for their permission\\n to let me use their subroutines.\\n Also I will thank the authors who write Tiff and Jpeg libraries.\\n Thank DJ. Without DJGPP I can\\'t do any thing on PC.\\n\\n\\n Jih-Shin Ho\\n u7711501@bicmos.ee.nctu.edu.tw\\n',\n", - " 'From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: Re: No land for peace - No negotiatians\\nOrganization: Unocal Corporation\\nLines: 52\\n\\n\\n\\nhasan@McRCIM.McGill.EDU writes:\\n\\n\\n>Ok. I donot know why there are israeli voices against negotiations. However,\\n>i would guess that is because they refuse giving back a land for those who\\n>have the right for it.\\n\\nSounds like wishful guessing.\\n\\n\\n>As for the Arabian and Palestinean voices that are against the\\n>current negotiations and the so-called peace process, they\\n>are not against peace per se, but rather for their well-founded predictions\\n>that Israel would NOT give an inch of the West bank (and most probably the same\\n>for Golan Heights) back to the Arabs. An 18 months of \"negotiations\" in Madrid,\\n>and Washington proved these predictions. Now many will jump on me saying why\\n>are you blaming israelis for no-result negotiations.\\n>I would say why would the Arabs stall the negotiations, what do they have to\\n>loose ?\\n\\n\\n\\'So-called\\' ? What do you mean ? How would you see the peace process?\\n\\nSo you say palestineans do not negociate because of \\'well-founded\\' predictions ?\\nHow do you know that they are \\'well founded\\' if you do not test them at the \\ntable ? 18 months did not prove anything, but it\\'s always the other side at \\nfault, right ?\\n\\nWhy ? I do not know why, but if, let\\'s say, the Palestineans (some of them) want\\nALL ISRAEL, and these are known not to be accepted terms by israelis.\\n\\nOr, maybe they (palestinenans) are not yet ready for statehood ?\\n\\nOr, maybe there is too much politics within the palestinean leadership, too many\\nfractions aso ?\\n\\nI am not saying that one of these reasons is indeed the real one, but any of\\nthese could make arabs stall the negotiations.\\n\\n>Arabs feel that the current \"negotiations\" is ONLY for legitimizing the current\\n>status-quo and for opening the doors of the Arab markets for israeli trade and\\n>\"oranges\". That is simply unacceptable and would be revoked.\\n \\nI like California oranges. And the feelings may get sharper at the table.\\n\\n\\n\\nRegards,\\n\\nDorin\\n',\n", - " 'From: robinson@cogsci.Berkeley.EDU (Michael Robinson)\\nSubject: Krypto cables (was Re: Cobra Locks)\\nOrganization: Institute of Cognitive Studies, U.C. Berkeley\\nLines: 51\\nDistribution: usa\\nNNTP-Posting-Host: cogsci.berkeley.edu\\n\\nIn article <1993Apr20.184432.21485@research.nj.nec.com> behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n>\\tFor the same money, you can get a Kryptonite cable lock, which is\\n>anywhere from 1/2\" to 7/8\" thick steel cable (looks like steel rope), shielded\\n>in a flexible covering to protect your bike\\'s finish, and has a barrel-type\\n>locking mechanism. I don\\'t know if it\\'s adjustable, but my source says it\\'s\\n>more difficult to pick than most locks, and the cable tends to squish flat\\n>in bolt-cutter jaws rather than shear (5/8\" model).\\n>\\n>\\tFYI, I\\'ll be getting a Krypto cable next paycheck.\\n\\nA word of warning, though: Kryptonite also sells almost useless cable\\nlocks under the Kryptonite name.\\n\\nWhen I obtained my second motorcycle, I migrated one of my Kryptonite \\nU-locks from my bicycle to the new bike. I then went out shopping for\\na new lock for the bicycle.\\n\\nFor about the same money ($20) I had the choice of a Kryptonite cable lock\\n(advantages: lock front and back wheels on bicycle and keep them both,\\nKryptonite name) or a cheesy no-name U-lock (advantages: real steel).\\nI chose the Kryptonite cable. After less than a week, I took it back in\\ndisgust and exchanged it for the cheesy no-name U-lock.\\n\\nFirst, the Krypto cable I bought is not made by Kryptonite, is not covered by\\nthe Kryptonite guarantee, and doesn\\'t even approach Kryptonite standards of\\nquality and quality assurance. It is just some generic made-in-Taiwan cable\\nlock with the Kryptonite name on it.\\n\\nSecondly, the latch engagement mechanism is something of a joke. I\\ndon\\'t know if mine was a particularly poor example, but it was often\\nquite frustrating to get the latch to positively engage, and sometimes\\nit would seem to engage, only to fall open when I went to unlock it.\\n\\nThirdly, the lock has a little plastic door on the keyway which serves\\nthe sole purpose of frustrating any attempt to insert the key in the \\ndark. I didn\\'t try it (obviously), but I have my doubts that the \\nlock mechanism would stand up to an \"insert screwdriver and TORQUE\"\\nattack.\\n\\nFourthly, the cable was not, in my opinion, of sufficient thickness to \\ndeter theft (for my piece of crap bicycle, that is). All cables suffer the\\nweakness that they can be cut a few strands at a time. If you are patient\\nyou can cut cables with fingernail clippers. Aviation snips would go \\nthrough the cable in well under a minute.\\n\\n\\n\\n-- \\n ----------------------------------------------------------------------------\\n Michael Robinson UUCP: ucbvax!cogsci!robinson\\n INTERNET: robinson@cogsci.berkeley.edu\\n',\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: DC-X: Vehicle Nears Flight Test\\nArticle-I.D.: aurora.1993Apr5.191011.1\\nOrganization: University of Alaska Fairbanks\\nLines: 53\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n> In article <2736@snap> paj@uk.co.gec-mrc (Paul Johnson) writes:\\n>>This bit interests me. How much automatic control is there? Is it\\n>>purely autonomous or is there some degree of ground control?\\n> \\n> The \"stick-and-rudder man\" is always the onboard computer. The computer\\n> normally gets its orders from a stored program, but they can be overridden\\n> from the ground.\\n> \\n>>How is\\n>>the transition from aerodynamic flight (if thats what it is) to hover\\n>>accomplished? This is the really new part...\\n> \\n> It\\'s also one of the tricky parts. There are four different ideas, and\\n> DC-X will probably end up trying all of them. (This is from talking to\\n> Mitch Burnside Clapp, who\\'s one of the DC-X test pilots, at Making Orbit.)\\n> \\n> (1) Pop a drogue chute from the nose, light the engines once the thing\\n> \\tstabilizes base-first. Simple and reliable. Heavy shock loads\\n> \\ton an area of structure that doesn\\'t otherwise carry major loads.\\n> \\tNeeds a door in the \"hot\" part of the structure, a door whose\\n> \\toperation is mission-critical.\\n> \\n> (2) Switch off pitch stability -- the DC is aerodynamically unstable at\\n> \\tsubsonic speeds -- wait for it to flip, and catch it at 180\\n> \\tdegrees, then light engines. A bit scary.\\n> \\n> (3) Light the engines and use thrust vectoring to push the tail around.\\n> \\tProbably the preferred method in the long run. Tricky because\\n> \\tof the fuel-feed plumbing: the fuel will start off in the tops\\n> \\tof the tanks, then slop down to the bottoms during the flip.\\n> \\tKeeping the engines properly fed will be complicated.\\n> \\n> (4) Build up speed in a dive, then pull up hard (losing a lot of speed,\\n> \\tthis thing\\'s L/D is not that great) until it\\'s headed up and\\n> \\tthe vertical velocity drops to zero, at which point it starts\\n> \\tto fall tail-first. Light engines. Also a bit scary, and you\\n> \\tprobably don\\'t have enough altitude left to try again.\\n> -- \\n> All work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n> - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\\nSince the DC-X is to take off horizontal, why not land that way??\\nWhy do the Martian Landing thing.. Or am I missing something.. Don\\'t know to\\nmuch about DC-X and such.. (overly obvious?).\\n\\nWhy not just fall to earth like the russian crafts?? Parachute in then...\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n\\nPlease enlighten me... Ignorance is easy to correct. make a mistake and\\neveryone will let you know you messed up..\\n',\n", - " \"From: alanf@eng.tridom.com (Alan Fleming)\\nSubject: Re: New to Motorcycles...\\nNntp-Posting-Host: tigger.eng.tridom.com\\nReply-To: alanf@eng.tridom.com (Alan Fleming)\\nOrganization: AT&T Tridom, Engineering\\nLines: 22\\n\\nIn article <1993Apr20.163315.8876@adobe.com>, cjackson@adobe.com (Curtis Jackson) writes:\\n|> In article <1993Apr20.131800.16136@alw.nih.gov> gregh@niagara.dcrt.nih.gov (Gregory Humphreys) writes:\\n> }1) I only have about $1200-1300 to work with, so that would have \\n> }to cover everything (bike, helmet, anything else that I'm too \\n> }ignorant to know I need to buy)\\n> \\n> The following numbers are approximate, and will no doubt get me flamed:\\n> \\n> Helmet (new, but cheap)\\t\\t\\t\\t\\t$100\\n> Jacket (used or very cheap)\\t\\t\\t\\t$100\\n> Gloves (nothing special)\\t\\t\\t\\t$ 20\\n> Motorcycle Safety Foundation riding course (a must!)\\t$140\\n ^^^\\nWow! Courses in Georgia are much cheaper. $85 for both.\\n>\\n\\nThe list looks good, but I'd also add:\\n Heavy Boots (work, hiking, combat, or similar) $45\\n\\nThink Peace.\\n-- Alan (alanf@eng.tridom.com)\\nKotBBBB (1988 GSXR1100J) AMA# 634578 DOD# 4210 PGP key available\\n\",\n", - " \"From: astein@nysernet.org (Alan Stein)\\nSubject: Re: was: Go Hezbollah!\\nOrganization: NYSERNet, Inc.\\nLines: 21\\n\\nhernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n>Tell me Tim, what are these guerillas doing wrong? Assuming that they are using\\n>civilians for cover, are they not killing SOLDIERS in THEIR country?\\n\\nSo, it's okay to use civilians for cover if you're attacking soldiers\\nin your country. (Of course, many of those attacking claim that they\\naren't Lebanese, so it's not their country.)\\n\\nGot it. I think. Hmm. This is confusing.\\n\\nCould you perhaps repeat your rules explaining exactly when it is\\npermissible to use civilians as shields? Also please explain under\\nwhat conditions it is permissible for soldiers to defend themselves.\\nAlso please explain the particular rules that make it okay for\\nterrorists to launch missiles from Lebanon against Israeli civilians,\\nbut not okay for the Israelis to try to defend themselves against\\nthose missiles.\\n\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n\",\n", - " 'From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Ellipse Again\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 39\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\nKeywords: ellipse\\n\\n\\nHi! Everyone,\\n\\nBecause no one has touched the problem I posted last week, I guess\\nmy question was not so clear. Now I\\'d like to describe it in detail:\\n\\nThe offset of an ellipse is the locus of the center of a circle which\\nrolls on the ellipse. In other words, the distance between the ellipse\\nand its offset is same everywhere.\\n\\nThis problem comes from the geometric measurement when a probe is used.\\nThe tip of the probe is a ball and the computer just outputs the\\npositions of the ball\\'s center. Is the offset of an ellipse still\\nan ellipse? The answer is no! Ironically, DMIS - an American Indutrial\\nStandard says it is ellipse. So almost all the software which was\\nimplemented on the base of DMIS was wrong. The software was also sold\\ninternationaly. Imagine, how many people have or will suffer from this bug!!!\\nHow many qualified parts with ellipse were/will be discarded? And most\\nimportantly, how many defective parts with ellipse are/will be used?\\n\\nI was employed as a consultant by a company in Los Angeles last year\\nto specially solve this problem. I spent two months on analysis of this\\nproblem and six months on programming. Now my solution (nonlinear)\\nis not ideal because I can only reconstruct an ellipse from its entire\\nor half offset. It is very difficult to find the original ellipse from\\na quarter or a segment of its offset because the method I used is not\\nanalytical. I am now wondering if I didn\\'t touch the base and make things\\ncomplicated. Please give me a hint.\\n\\nI know you may argue this is not a CG problem. You are right, it is not.\\nHowever, so many people involved in the problem \"sphere from 4 poits\".\\nWhy not an ellipse? And why not its offset?\\n\\nPlease post here and let the others share our interests \\n(I got several emails from our netters, they said they need the\\nsummary of the answers).\\n\\nYeh\\nUSC\\n',\n", - " \"From: avi@duteinh.et.tudelft.nl (Avi Cohen Stuart)\\nSubject: Re: was: Go Hezbollah!!\\nOriginator: avi@duteinh.et.tudelft.nl\\nNntp-Posting-Host: duteinh.et.tudelft.nl\\nOrganization: Delft University of Technology, Dept. of Electrical Engineering\\nLines: 35\\n\\nFrom article <1993Apr15.031349.21824@src.honeywell.com>, by amehdi@src.honeywell.com (Hossien Amehdi):\\n> In article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>>amehdi@src.honeywell.com (Hossien Amehdi) writes:\\n>>\\n>>>You know when Israelis F16 (thanks to General Dynamics) fly high in the sky\\n>>>and bomb the hell out of some village in Lebanon, where civilians including\\n>>>babies and eldery getting killed, is that plain murder or what?\\n>>\\n>>If you Arabs wouldn't position guerilla bases in refugee camps, artillery \\n>>batteries atop apartment buildings, and munitions dumps in hospitals, maybe\\n>>civilians wouldn't get killed. Kinda like Saddam Hussein putting civilians\\n>>in a military bunker. \\n>>\\n>>Ed.\\n> \\n> Who is the you Arabs here. Since you are replying to my article you\\n> are assuming that I am an Arab. Well, I'm not an Arab, but I think you\\n> are brain is full of shit if you really believe what you said. The\\n> bombardment of civilian and none civilian areas in Lebanon by Israel is\\n> very consistent with its policy of intimidation. That is the only\\n> policy that has been practiced by the so called only democracy in\\n> the middle east!\\n> \\n> I was merley pointing out that the other side is also suffering.\\n> Like I said, I'm not an Arab but if I was, say a Lebanese, you bet\\n> I would defende my homeland against any invader by any means.\\n\\nTell me then, would you also fight the Syrians in Lebanon?\\n\\nOh, no of course not. They would be your brothers and you would\\ntell that you invited them. \\n\\nAvi.\\n\\n\\n\",\n", - " \"From: ednclark@kraken.itc.gu.edu.au (Jeffrey Clark)\\nSubject: Re: mathew writes:\\n\\n>>>Perhaps we shouldn't imprision people if we could watch them closely\\n>>>instead. The cost would probably be similar, especially if we just\\n>>>implanted some sort of electronic device.\\n>>Why wait until they commit the crime? Why not implant such devices in\\n>>potential criminals like Communists and atheists?\\n\\n>Sorry, I don't follow your reasoning. You are proposing to punish people\\n>*before* they commit a crime? What justification do you have for this?\\n\\nNo, Mathew is proposing a public defence mechanism, not treating the\\nelectronic device as an impropriety on the wearer. What he is saying is that\\nthe next step beyond what you propose is the permanent bugging of potential\\ncriminals. This may not, on the surface, sound like a bad thing, but who\\ndefines what a potential criminal is? If the government of the day decides\\nthat being a member of an opposition party makes you a potential criminal\\nthen openly defying the government becomes a lethal practice, this is not\\nconducive to a free society.\\n\\nMathew is saying that implanting electronic surveillance devices upon people\\nis an impropriety upon that person, regardless of what type of crime or\\nwhat chance of recidivism there is. Basically you see the criminal justice\\nsystem as a punishment for the offender and possibly, therefore, a deterrant\\nto future offenders. Mathew sees it, most probably, as a means of\\nrehabilitation for the offender. So he was being cynical at you, okay?\\n\\nJeff.\\n\\n\",\n", - " 'From: full_gl@pts.mot.com (Glen Fullmer)\\nSubject: Needed: Plotting package that does...\\nNntp-Posting-Host: dolphin\\nReply-To: glen_fullmer@pts.mot.com\\nOrganization: Paging and Wireless Data Group, Motorola, Inc.\\nComments: Hyperbole mail buttons accepted, v3.07.\\nLines: 27\\n\\nLooking for a graphics/CAD/or-whatever package on a X-Unix box that will\\ntake a file with records like:\\n\\nn a b p\\n\\nwhere n = a count - integer \\n a = entity a - string\\n b = entity b - string\\n p = type - string\\n\\nand produce a networked graph with nodes represented with boxes or circles\\nand the vertices represented by lines and the width of the line determined by\\nn. There would be a different line type for each type of vertice. The boxes\\nneed to be identified with the entity\\'s name. The number of entities < 1000\\nand vertices < 100000. It would be nice if the tool minimized line\\ncross-overs and did a good job of layout. ;-)\\n\\n I have looked in the FAQ for comp.graphics and gnuplot without success. Any\\nideas would be appreciated?\\n\\nThanks,\\n--\\nGlen Fullmer, glen_fullmer@pts.mot.com, (407)364-3296\\n*******************************************************************************\\n* \"For a successful technology, reality must take precedence *\\n* over public relations, for Nature cannot be fooled.\" - Richard P. Feynman *\\n*******************************************************************************\\n',\n", - " 'From: ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed)\\nSubject: Re: Final Solution in Palestine ?\\nOriginator: ahmeda@celeborn.mcrcim.mcgill.edu\\nNntp-Posting-Host: celeborn.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 59\\n\\n\\nIn article , hm@cs.brown.edu (Harry Mamaysky) writes:\\n|> In article <1483500354@igc.apc.org> Center for Policy Research writes:\\n|> \\n|> Final Solution for the Gaza ghetto ?\\n|> ------------------------------------\\n|> \\n|> While Israeli Jews fete the uprising of the Warsaw ghetto, they\\n|> repress by violent means the uprising of the Gaza ghetto and\\n|> attempt to starve the Gazans.\\n|> \\n|> [...]\\n|> \\n|> The Jews in the Warsaw ghetto were fighting to keep themselves and\\n|> their families from being sent to Nazi gas chambers. Groups like Hamas\\n|> and the Islamic Jihad fight with the expressed purpose of driving all\\n|> Jews into the sea. Perhaps, we should persuade Jewish people to help\\n ^^^^^^^^^^^^^^^^^^\\n|> these wnderful \"freedom fighters\" attain this ultimate goal.\\n|> \\n|> Maybe the \"freedom fighters\" will choose to spare the co-operative Jews.\\n|> Is that what you are counting on, Elias - the pity of murderers.\\n|> \\n|> You say your mother was Jewish. How ashamed she must be of her son. I\\n|> am sorry, Mrs. Davidsson.\\n|> \\n|> Harry.\\n\\nO.K., its my turn:\\n\\n DRIVING THE JEWS INTO THE SEA ?!\\n\\nI am sick and tired of this \\'DRIVING THE JEWS INTO THE SEA\\' sentance attributed\\nto Islamic movements and the PLO; it simply can\\'t be proven as part of their\\nplan !\\n\\n(Pro Israeli activists repeat it like parrots without checking its authenticity\\nsince it was coined by Bnai Brith)\\n\\nWhat Hamas and Islamic Jihad believe in, as far as I can get from the Arab media,\\nis an Islamic state that protects the rights of all its inhabitants under Koranic\\nLaw. This would be a reversal of the 1948 situation in which the Jews in\\nPalestine took control of the land and its (mostly Muslim) inhabitants.\\n\\nHowever, whoever committed crimes against humanity (torture, blowing up their\\nhomes, murders,...) must be treated and tried as a war criminal. The political\\nthought of these movements shows that a freedom of choice will be given to the\\nJews in living under the new law or leaving to the destintion of their choice.\\n\\nAs for the PLO, I am at a loss to explain what is going inside Arafat\\'s mind.\\n\\nAlthough their political thinking seems far fetched with Israel acting as a true\\nsuper-power in the region, the Islamic movements are using the same weapon the\\nJews used to establish their state : Religion.\\n\\n\\nAhmed.\\n\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: TRUE \"GLOBE\", Who makes it?\\nOrganization: U of Toronto Zoology\\nLines: 12\\n\\nIn article bill@xpresso.UUCP (Bill Vance) writes:\\n>It has been known for quite a while that the earth is actually more pear\\n>shaped than globular/spherical. Does anyone make a \"globe\" that is accurate\\n>as to actual shape, landmass configuration/Long/Lat lines etc.?\\n\\nI don\\'t think you\\'re going to be able to see the differences from a sphere\\nunless they are greatly exaggerated. Even the equatorial bulge is only\\nabout 1 part in 300 -- you\\'d never notice a 1mm error in a 30cm globe --\\nand the other deviations from spherical shape are much smaller.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Space Advertising (2 of 2)\\nOrganization: University of Illinois at Urbana\\nLines: 24\\n\\nWales.Larrison@ofa123.fidonet.org writes:\\n\\n>the \"Environmental\\n>Billboard\" is a large inflatable outer support structure of up to\\n>804x1609 meters. Advertising is carried by a mylar reflective area,\\n>deployed by the inflatable \\'frame\\'.\\n> To help sell the concept, the spacecraft responsible for\\n>maintaining the billboard on orbit will carry \"ozone reading\\n>sensors\" to \"continuously monitor the condition of the Earth\\'s\\n>delicate protective ozone layer,\" according to Mike Lawson, head of\\n>SMI. Furthermore, the inflatable billboard has reached its minimum\\n>exposure of 30 days it will be released to re-enter the Earth\\'s\\n>atmosphere. According to IMI, \"as the biodegradable material burns,\\n>it will release ozone-building components that will literally\\n>replenish the ozone layer.\"\\n ^^^^^^^^^ ^^^ ^^^^^ ^^^^^\\n\\n Can we assume that this guy studied advertising and not chemistry? Granted \\nit probably a great advertising gimic, but it doesn\\'t sound at all practical.\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " \"From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: Minority Abuses in Greece.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 201\\n\\nIn article mpoly@panix.com (Michael S. Polymenakos) writes:\\n\\n> Well, ZUMABOT claims just the opposite: That Greeks are not allowing\\n>Turks to exit the country. Now, explain this: The number of Turks in\\n>Thrace has steadily risen from 50,000 in 23 to 80,000, while the Greeks of\\n\\nDr. Goebels thought that a lie repeated enough times could finally \\nbe believed. I have been observing that 'Poly' has been practicing \\nGoebels' rule quite loyally. 'Poly's audience is mostly made of Greeks \\nwho are not allowed to listen to Turkish news. However, in today's \\ninformed world Greek propagandists can only fool themselves. For \\ninstance, those who lived in 1974 will remember the TV news they \\nwatched and the newspapers they read and the younger generation can \\nread the American newspapers of July and August 1974 to find out what \\nreally happened. \\n\\nThere are in Turkiye the Greek Hospital, The Greek Girls' Lycee \\nAlumni Association, the Principo Islands Greek Benevolent Society, \\nthe Greek Medical Foundation, the Principo Greek Orphanage Foundation, \\nthe Yovakimion Greek Girls' Lycee Foundation, and the Fener Greek \\nMen's Lycee Foundation. \\n\\nAs for Greece, the longstanding use of the adjective 'Turkish' \\nin titles and on signboards is prohibited. The Greek courts \\nhave ordered the closure of the Turkish Teachers' Association, \\nthe Komotini Turkish Youth Association and the Ksanti \\nTurkish Association on grounds that there are no Turks\\nin Western Thrace. Such community associations had been \\nactive until 1984. But they were first told to remove\\nthe word 'Turkish' on their buildings and on their official\\npapers and then eventually close down. This is also the \\nfinal verdict (November 4, 1987) of the Greek High Court.\\n\\nIn the city of Komotini, a former Greek Parliamentarian of Turkish\\nparentage, was sentenced recently to 18 months of imprisonment\\nwith no right to appeal, just for saying outloud that he was\\nof Turkish descent. This duly-elected ethnic Turkish official\\nwas also deprived of his political rights for a period of three \\nyears. Each one of these barbaric acts seems to be none other than \\na vehicle, used by the Greek governments, to cover-up their inferiority \\ncomplex they display, vis-a-vis, the people of Turkiye. \\n\\nThe Agreement on the Exchange of Minorities uses the term 'Turks,' \\nwhich demonstrates what is actually meant by the previous reference \\nto 'Muslims.' The fact that the Greek governments also mention the \\nexistence of a few thousand non-Turkish Muslims does not change the \\nessential reality that there lives in Western Thrace a much bigger \\nTurkish minority. The 'Pomaks' are also a Muslim people, whom all the \\nthree nations (Bulgarians, Turks, and Greeks) consider as part of \\nthemselves. Do you know how the Muslim Turkish minority was organized \\naccording to the agreements? Poor 'Poly.'\\n\\nIt also proves that the Turkish people are trapped in Greece \\nand the Greek people are free to settle anywhere in the world.\\nThe Greek authorities deny even the existence of a Turkish\\nminority. They pursue the same denial in connection with \\nthe Macedonians of Greece. Talk about oppression. In addition,\\nin 1980 the 'democratic' Greek Parliament passed Law No. 1091,\\nvirtually taking over the administration of the vakiflar and\\nother charitable trusts. They have ceased to be self-supporting\\nreligious and cultural entities. Talk about fascism. The Greek \\ngovernments are attempting to appoint the muftus, irrespective\\nof the will of the Turkish minority, as state official. Although\\nthe Orthodox Church has full authority in similar matters in\\nGreece, the Muslim Turkish minority will have no say in electing\\nits religious leaders. Talk about democracy.\\n\\nThe government of Greece has recently destroyed an Islamic \\nconvention in Komotini. Such destruction, which reflects an \\nattitude against the Muslim Turkish cultural heritage, is a \\nviolation of the Lausanne Convention as well as the 'so-called' \\nGreek Constitution, which is supposed to guarantee the protection \\nof historical monuments. \\n\\nThe government of Greece, on the other hand, is building new \\nchurches in remote villages as a complementary step toward \\nHellenizing the region.\\n\\nAnd you pondered. Sidiropoulos, the president of the Macedonian Human \\nRights Committee, became the latest victim of a tactic long used by \\nthe Greeks to silence critics of policies of forced assimilation \\nof the Macedonian minority. A forestry official by occupation, \\nSidiropoulos has been sent to 'internal exile' on the island of \\nKefalonia, hundreds of kilometers away from his native Florina. \\nHis employer, the Florina City Council, asked him to depart in \\n24 hours. The Greek authorities are trying to punish him for his \\ninvolvement in Copenhagen. He returned to Florina by his own choice \\nand remains without a job. \\n\\nHelsinki Watch, a well-known Human Rights group, had been investigating \\nthe plight of the Turkish Minority in Greece. In August 1990, their \\nfindings were published in a report titled \\n\\n 'Destroying Ethnic Identity: Turks of Greece.'\\n\\nThe report confirmed gross violations of the Human Rights of the \\nTurkish minority by the Greek authorities. It says for instance, \\nthe Greek government recently destroyed an Islamic convent in \\nKomotini. Such destruction, which reflects an attitude against \\nthe Muslim Turkish cultural heritage, is a violation of the \\nLausanne Convention. \\n\\nThe Turkish cemeteries in the village of Vafeika and in Pinarlik\\nwere attacked, and tombstones were broken. The cemetery in\\nKarotas was razed by bulldozers.\\n\\nShall I go on? Why not? The people of Turkiye are not going \\nto take human rights lessons from the Greek Government. The \\ndiscussion of human rights violations in Greece does not \\nstop at the Greek frontier. In several following articles \\nI shall dwell on and expose the Greek treatment of Turks\\nin Western Thrace and the Aegean Macedonians.\\n\\nIt has been reported that the Greek Cypriot administration \\nhas an intense desire for arms and that Greece has made \\nplans to supply it with the tanks and armored vehicles it \\nhas to destroy in accordance with the agreement reached on \\nconventional arms reductions in Europe. Meanwhile, Greek \\nand Greek Cypriot officials are reported to have planned \\nto take ostentatious measures aimed at camouflaging the \\ntransfer of these tanks and armored vehicles to southern \\nCyprus, a process that will conflict with the spirit of \\nthe agreement on conventional arms reduction in Europe.\\n\\nAn acceptable method may certainly be found when there\\nis a will. But we know of various kinds of violent\\nbehaviors ranging from physical attacks to the burning\\nof buildings. The rugs at the Amfia village mosque were \\ndragged out to the front of the building and burnt there. \\nShots were fired on the mosque in the village of Aryana.\\n\\nNow wait, there is more.\\n\\n 'Greek Atrocities in the Vilayet of Smyrna (May to July 1919), Inedited\\n Documents and Evidence of English and French Officers,' Published by\\n The Permanent Bureau of the Turkish Congress at Lausanne, Lausanne,\\n Imprimerie Petter, Giesser & Held, Caroline, 5 (1919).\\n\\n pages 82-83:\\n\\n<< 1. The train going from Denizli to Smyrna was stopped at Ephesus\\n and the 90 Turkish travellers, men and women who were in it ordered\\n to descend. And there in the open street, under the eyes of their\\n husbands, fathers and brothers, the women without distinction of age\\n were violated, and then all the travellers were massacred. Amongst\\n the latter the Lieutenant Salih Effendi, a native of Tripoli, and a\\n captain whose name is not known, and to whom the Hellenic authorities\\n had given safe conduct, were killed with specially atrocious tortures.\\n\\n 2. Before the battle, the wife of the lawyer Enver Bey coming from\\n her garden was maltreated by Greek soldiers, she was even stript\\n of her garments and her servant Assie was violated.\\n\\n 3. The two tax gatherers Mustapha and Ali Effendi were killed in the\\n following manner: Their arms were bound behind their backs with wire\\n and their heads were battered and burst open with blows from the butt\\n end of a gun.\\n\\n 4. During the firing of the town, eleven children, six little girls\\n and five boys, fleeing from the flames, were stopped by Greek soldiers\\n in the Ramazan Pacha quarter, and thrown into a burning Jewish house\\n near bridge, where they were burnt alive. This fact is confirmed on oath\\n by the retired commandant Hussein Hussni Effendi who saw it.\\n\\n 5. The clock-maker Ahmed Effendi and his son Sadi were arrested and\\n dragged out of their shop. The son had his eyes put out and was then\\n killed in the court of the Greek Church, but Ahmed Effendi has been\\n no more heard of.\\n\\n 6. At the market, during the fire, two unknown people were wounded\\n by bayonets, then bound together, thrown into the fire and burnt alive.\\n\\n The Greeks killed also many Jews. These are the names of some:\\n\\n Moussa Malki, shoemaker killed\\n Bohor Levy, tailor killed\\n Bohor Israel, cobbler killed\\n Isaac Calvo, shoemaker killed\\n David Aroguete killed\\n Moussa Lerosse killed\\n Gioia Katan killed\\n Meryem Malki killed\\n Soultan Gharib killed\\n Isaac Sabah wounded\\n Moche Fahmi wounded\\n David Sabah wounded\\n Moise Bensignor killed\\n Sarah Bendi killed\\n Jacob Jaffe wounded\\n Aslan Halegna wounded....>>\\n\\nSerdar Argic\\n\\n 'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.'\\n (Ohanus Appressian - 1919)\\n 'In Soviet Armenia today there no longer exists \\n a single Turkish soul.' (Sahak Melkonian - 1920)\\n\\n\\n\",\n", - " 'From: wats@scicom.AlphaCDC.COM (Bruce Watson)\\nSubject: Re: First Spacewalk\\nDistribution: sci\\nOrganization: Alpha Science Computer Network, Denver, Co.\\nLines: 13\\n\\nIn article , frank@D012S658.uucp (Frank\\nO\\'Dwyer) wrote:\\n> (1) Does the term \"hero-worship\" mean anything to you? \\n\\nYes, worshipping Jesus as the super-saver is indeed hero-worshipping\\nof the grand scale. Worshipping Lenin that will make life pleasant\\nfor the working people is, eh, somehow similar, or what.\\n \\n> (2) I understand that gods are defined to be supernatural, not merely\\n> superhuman.\\nThe notion of Lenin was on the borderline of supernatural insights\\ninto how to change the world, he wasn\\'t a communist God, but he was\\nthe man who gave presents to kids during Christmas.\\n \\n> #Actually, I agree. Things are always relative, and you can\\'t have \\n> #a direct mapping between a movement and a cause. However, the notion\\n> #that communist Russia was somewhat the typical atheist country is \\n> #only something that Robertson, Tilton et rest would believe in.\\n> \\n> Those atheists were not True Unbelievers, huh? :-)\\n\\nDon\\'t know what they were, but they were fanatics indeed.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: xSoviet Armenia denies the historical fact of the Turkish Genocide.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 52\\n\\nIn article <1993Apr17.172014.663@hellgate.utah.edu> tolman%asylum.cs.utah.edu@cs.utah.edu (Kenneth Tolman) writes:\\n\\n>>I sure hope so. Because, the unspeakable crimes of the Armenians must \\n>>be righted. Armenian invaders burned and sacked the fatherland of \\n\\n>No! NO! no no no no no. It is not justifiable to right wrongs of\\n>previous years. My ancestors tortured, enslaved, and killed blacks. I\\n>do not want to take responsibility for them. I may not have any direct\\n>relatives who did such things, but how am I to know?\\n>There is enough CURRENT torture, enslavement and genocide to go around.\\n>Lets correct that. Lets forget and forgive, each and every one of us has\\n>a historical reason to kill, torture or take back things from those around\\n>us. Pray let us not be infantile arbiters for past injustice.\\n\\nAre you suggesting that we should forget the cold-blooded genocide of\\n2.5 million Muslim people by the Armenians between 1914 and 1920? But \\nmost people aren\\'t aware that in 1939 Hitler said that he would pattern\\nhis elimination of the Jews based upon what the Armenians did to Turkish\\npeople in 1914.\\n\\n\\n \\'After all, who remembers today the extermination of the Tartars?\\'\\n (Adolf Hitler, August 22, 1939: Ruth W. Rosenbaum (Durusoy), \\n \"The Turkish Holocaust - Turk Soykirimi\", p. 213.)\\n\\n\\nI refer to the Turks and Kurds as history\\'s forgotten people. It does\\nnot serve our society well when most people are totally unaware of\\nwhat happened in 1914 where a vicious society, run by fascist Armenians,\\ndecided to simply use the phoniest of pretexts as an excuse, for wiping \\nout a peace-loving, industrious, and very intelligent and productive \\nethnic group. What we have is a demand from the fascist government of\\nx-Soviet Armenia to redress the wrongs that were done against our\\npeople. And the only way we can do that is if we can catch hold of and \\nnot lose sight of the historical precedence in this very century. We \\ncannot reverse the events of the past, but we can and we must strive to \\nkeep the memory of this tragedy alive on this side of the Atlantic, so as\\nto help prevent a recurrence of the extermination of a people because \\nof their religion or their race. Which means that I support the claims \\nof the Turks and Kurds to return to their lands in x-Soviet Armenia, \\nto determine their own future as a nation in their own homeland.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " \"From: sprattli@azores.crd.ge.com (Rod Sprattling)\\nSubject: Self-Insured (was: Should liability insurance be required?)\\nNntp-Posting-Host: azores.crd.ge.com\\nReply-To: sprattli@azores.crd.ge.com (Rod Sprattling)\\nOrganization: GE Corp R&D Center, Schenectady NY\\nLines: 27\\n\\nIn article ,\\nviking@iastate.edu (Dan Sorenson) writes:\\n|>\\tI get annoyed at insurance. Hence, I'm self-insured above\\n|>liability. Mandating that I play their game is silly if I've a better\\n|>game to play and everybody is still financially secure.\\n\\nWhat's involved in getting bonded? Anyone know if that's an option\\nrecognized by NYS DMV?\\n\\nRod\\n---\\nRoderick Sprattling\\t\\t| No job too great, no time too small\\nsprattli@azores.crd.ge.com\\t| With feet to fire and back to wall.\\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n\\n \\n\\n\",\n", - " 'From: echen@burn.ee.washington.edu (Ed Chen)\\nSubject: Windows BMP to Sun raster or others?\\nArticle-I.D.: shelley.1r49iaINNc3k\\nDistribution: world\\nOrganization: University of Washington\\nLines: 11\\nNNTP-Posting-Host: burn.ee.washington.edu\\n\\nHi,\\n\\n\\nAnyone has a converter from BMP to any format that xview or xv can\\n\\nhandle? This converter must run Unix.. I looked at the FAQ and downloaded\\nseveral packages but had no luck... thanks in advance.\\n\\ned\\n\\nechen@burn.ee.washington.edu\\n',\n", - " 'From: sp1marse@kristin (Marco Seirio)\\nSubject: Flat globe\\nLines: 13\\nX-Newsreader: Tin 1.1 PL3\\n\\n\\nDoes anybody have an algorithm for \"flattening\" out a globe, or any other\\nparametric surface, that is definied parametrically. \\nThat is, I would like to take a sheet of paper and a knife and to be\\nable to calculate how I must cut in the paper so I can fold it to a\\nglobe (or any other object).\\n\\n\\n Marco Seirio - In real life sp1marse@caligula.his.se\\n\\n \\n\\n \\n',\n", - " \"From: Center for Policy Research \\nSubject: Re: Final Solution for Gaza ?\\nNf-ID: #R:cdp:1483500354:cdp:1483500364:000:1767\\nNf-From: cdp.UUCP!cpr Apr 26 17:36:00 1993\\nLines: 38\\n\\n\\nDear folks,\\n\\nI am still awaiting for some sensible answer and comment.\\n\\nIt is a fact that the inhabitants of Gaza are not entitled to a normal\\ncivlized life. They habe been kept under occupation by Israel since 1967\\nwithout civil and political rights. \\n\\nIt is a fact that Gazans live in their own country, Palestine. Gaza is\\nnot a foriegn country. Nor is TelAviv, Jaffa, Askalon, BeerSheba foreign\\ncountry for Gazans. All these places are occupied as far as Palestinians\\nare concerned and as far as common sense has it. \\n\\nIt is a fact that Zionists deny Gazans equal rights as Israeli citizens\\nand the right to determine by themsevles their government. When Zionists\\nwill begin to consider Gazans as human beings who deserve the same\\nrights as themselves, there will be hope for peace. Not before.\\n\\nSomebody mentioned that Gaza is 'foreign country' and therefore Israel\\nis entitled to close its borders to Gaza. In this case, Gaza should be\\nentitled to reciprocate, and deny Israeli civilians and military personnel\\nto enter the area. As the relation is not symmetrical, but that of a master\\nand slave, the label 'foreign country' is inaccurate and misleading.\\n\\nTo close off 700,000 people in the Strip, deny them means of subsistence\\nand means of defending themselves, is a collective punishment and a\\ncrime. It is neither justifiable nor legal. It just reflects the abyss \\nto which Israeli society has degraded. \\n\\nI would like to ask any of those who heap foul langauge on me to explain\\nwhy Israel denies Gazans who were born and brought up in Jaffa to return\\nand live there ? Would they be allowed to, if they converted to Judaism ?\\nIs their right to live in their former town depdendent upon their\\nreligion or ethnic origin ? Please give an honest answer.\\n\\nElias\\n\\n\",\n", - " \"From: SITUNAYA@IBM3090.BHAM.AC.UK\\nSubject: (None set)\\nOrganization: The University of Birmingham, United Kingdom\\nLines: 5\\nNNTP-Posting-Host: ibm3090.bham.ac.uk\\n\\n==============================================================================\\nBear with me i'm new at this game, but could anyone explain exactly what DMORF\\ndoes, does it simply fade one bitmap into another or does it re shape one bitma\\np into another. Please excuse my ignorance, i' not even sure if i've posted thi\\ns message correctly.\\n\",\n", - " 'From: mas@Cadence.COM (Masud Khan)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: Cadence Design Systems, Inc.\\nLines: 48\\n\\nIn article <16BAFA9D9.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n> \\n> \\n>Yes, but, fortunately, religions have been replaced by systems\\n>that value Human Rights higher.\\n\\nSecular laws seem to value criminal life more than the victims life,\\nIslam places the rights of society and every member in it above \\nthe rights of the individual, this is what I call true human rights.\\n\\n> \\n>By the way, do you actually support the claim of precedence of Islamic\\n>Law? In case you do, what about the laws of other religions?\\n\\nAs a Muslim living in a non-Muslim land I am bound by the laws of the land\\nI live in, but I do not disregard Islamic Law it still remains a part of my \\nlife. If the laws of a land conflict with my religion to such an extent\\nthat I am prevented from being allowed to practise my religion then I must \\nleave the land. So in a way Islamic law does take precendence over secular law\\nbut we are instructed to follow the laws of the land that we live in too.\\n\\nIn an Islamic state (one ruled by a Khaliphate) religions other than Islam\\nare allowed to rule by their own religious laws provided they don\\'t affect\\nthe genral population and don\\'t come into direct conflict with state \\nlaws, Dhimmis (non-Muslim population) are exempt from most Islamic laws\\non religion, such as fighting in a Jihad, giving Zakat (alms giving)\\netc but are given the benefit of these two acts such as Military\\nprotection and if they are poor they will receive Zakat.\\n\\n> \\n>If not, what has it got to do with Rushdie? And has anyone reliable\\n>information if he hadn\\'t left Islam according to Islamic law?\\n>Or is the burden of proof on him?\\n> Benedikt\\n\\nAfter the Fatwa didn\\'t Rushdie re-affirm his faith in Islam, didn\\'t\\nhe go thru\\' a very public \"conversion\" to Islam? If so he is binding\\nhimself to Islamic Laws. He has to publicly renounce in his belief in Islam\\nso the burden is on him.\\n\\nMas\\n\\n\\n-- \\nC I T I Z E N +-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+\\n_____ _____ | C A D E N C E D E S I G N S Y S T E M S Inc. |\\n \\\\_/ | Masud Ahmed Khan mas@cadence.com All My Opinions|\\n_____/ \\\\_____ +-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+\\n',\n", - " 'From: dingebre@imp.sim.es.com (David Ingebretsen)\\nSubject: Re: images of earth\\nOrganization: Evans & Sutherland Computer Corp., Salt Lake City, UT\\nLines: 20\\nDistribution: world\\nReply-To: dingebre@imp.sim.es.com (David Ingebretsen)\\nNNTP-Posting-Host: imp.sim.es.com\\n\\nI downloaded an image of the earth re-constructed from elevation data taken\\nat 1/2 degree increments. The author (not me) wrote some c-code (included)\\nthat read in the data file and generated b&w and pseudo color images. They\\nwork very well and are not incumbered by copyright. They are at an aminet\\nsite near you called earth.lha in the amiga/pix/misc area...\\n\\nI refer you to the included docs for the details on how the author (sorry, I\\nforget his name) created these images. The raw data is not included.\\n\\n-- \\n\\tDavid\\n\\n\\tDavid M. Ingebretsen\\n\\tEvans & Sutherland Computer Corp.\\n\\tdingebre@thunder.sim.es.com\\n\\n\\tDisclaimer: The content of this message in no way reflects the\\n\\t opinions of my employer, nor are my actions\\n\\t\\t encouraged, supported, or acknowledged by my\\n\\t\\t employer.\\n',\n", - " \"From: bates@spica.ucsb.edu (Andrew M. Bates)\\nSubject: Renderman Shaders/Discussion?\\nOrganization: University of California, Santa Barbara\\nLines: 12\\n\\n\\n Does anyone know of a site where I could ftp some RenderMan shaders?\\nOr of a newsgroup which has discussion or information about RenderMan? I'm\\nnew to the RenderMan (Mac) family, and I'd like to get as much info I can\\nlay my hands on. Thanks!\\n\\n Andy Bates.\\n\\n\\n---------------------------------------------------------------------------\\nAndy Bates.\\n---------------------------------------------------------------------------\\n\",\n", - " 'From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Lezgians Astir in Azerbaijan and Daghestan\\nOrganization: Georgia Institute of Technology\\nLines: 16\\n\\nHELLO, shit face david, I see that you are still around. I dont want to \\nsee your shitty writings posted here man. I told you. You are getting\\nitchy as your fucking country. Hey , and dont give me that freedom\\nof speach bullshit once more. Because your freedom has ended when you started\\nwriting things about my people. And try to translate this \"ebenin donu\\nbutti kafa David.\".\\n\\nBYE, ANACIM HADE.\\nTIMUCIN\\n\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n',\n", - " \"From: mblock@reed.edu (Matt Block)\\nSubject: Re: Fortune-guzzler barred from bars!\\nArticle-I.D.: reed.1993Apr16.104158.27890\\nOrganization: Reed College, Portland, Oregon\\nLines: 37\\n\\nbclarke@galaxy.gov.bc.ca writes:\\n>Saw this in today's newspaper:\\n>------------------------------------------------------------------------\\n>FORTUNE-GUZZLER BARRED FROM BARS\\n>--------------------------------\\n>Barnstaple, England/Reuter\\n>\\n>\\tA motorcyclist said to have drunk away a $290,000 insurance payment in\\n>less than 10 years was banned Wednesday from every pub in England and Wales.\\n>\\n>\\tDavid Roberts, 29, had been awarded the cash in compensation for\\n>losing a leg in a motorcycle accident. He spent virtually all of it on cider, a\\n>court in Barnstaple in southwest England was told.\\n>\\n>\\tJudge Malcolm Coterill banned Roberts from all bars in England and\\n>Wales for 12 months and put on two years' probation after he started a brawl in\\n>a pub.\\n\\n\\tIs there no JUSTICE?!\\n\\n\\tIf I lost my leg when I was 19, and had to give up motorcycling\\n(assuming David didn't know that it can be done one-legged,) I too would want\\nto get swamped.... maybe even for ten years! I'll admit, I'd probably prefer\\nhomebrew to pubbrew, but still...\\n\\n\\tJudge Coterill is in some serious trouble, I can tell you that. Any\\nchance you can get to him and convince him his ruling was backward, Nick?\\n\\n\\tPerhaps the lad deserved something for starting a brawl (bad form...\\nhorribly bad form,) but for getting drunk? That, I thought, was ones natural\\nborn right! And for spending his own money? My goodness, who cares what one\\ndoes with one's own moolah, even if one spends it recklessly?\\n\\n\\tI'm ashamed of humanity.\\n\\n\\tMatt Block & Koch\\n\\tDoD# #007\\t\\t\\t1980 Honda CB650\\n\",\n", - " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Drinking and Riding\\nOrganization: University College of Wales, Aberystwyth\\nLines: 10\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\n>So, you can't ride the bike, but you will drive truck home? The\\n>judgement and motor skills needed to pilot a moto are not required in a\\n>cage? This scares the sh*t out of me.\\n> \\nThis is a piece of psychology its essential for any long term biker to\\nunderstand. People do NOT think 'if I do this will someone else suffer?'.\\nThey assess things purely on' if I do this will I suffer?.\\n\\nThis is a vital concept in bike-cage interaction.\\n\",\n", - " 'From: maven@eskimo.com (Norman Hamer)\\nSubject: Re: A Miracle in California\\nOrganization: -> ESKIMO NORTH (206) For-Ever <-\\nLines: 22\\n\\nRe: Waving...\\n\\nI must say, that the courtesy of a nod or a wave as I meet other bikers while\\nriding does a lot of good things to my mood... While riding is a lot of fun by\\nitself, there\\'s something really special about having someone say to you \"Hey,\\nit\\'s a great day for a ride... Isn\\'t it wonderful that we can spend some time\\non the road on days like this...\" with a gesture.\\n\\nWas sunny today for the first time in a week, took my bike out for a spin down\\nto the local salvage yard/bike shop... ran into about 20 other people who were\\ndown there for similar reasons (there\\'s this GREAT stretch of road on the way\\ndown there... no side streets, lotsa leaning bends... ;) ... Went on an\\nimpromptu coffee and bullshit run down to puyallup with a batch of people who \\nI didn\\'t know, but who were my kinda people nonetheless.\\n\\nAs a fellow commented to me while I was admiring his bike... \"Hey, it\\'s not\\nwhat you ride, it\\'s that you ride... As long as it has 2 wheels and an engine\\nit\\'s the same thing...\"\\n-- \\n----\\nmaven@eskimo.com (InterNet) maven@mavenry.altcit.eskimo.com (UseNet)\\nThe Maven@The Mavenry (AlterNet)\\n',\n", - " 'From: asphaug@lpl.arizona.edu (Erik Asphaug x2773)\\nSubject: Re: CAMPING was Help with backpack\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 24\\n\\nIn article <1993Apr14.193739.13359@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>In article <1993Apr13.152706.27518@bnr.ca> Dave Dal Farra writes:\\n>|My crafty girfriend makes campfire/bbq starters a la McGiver:\\n>Well, heck, if you\\'re going to make them yourself, you can buy\\n>candle-wax by the pound--much cheper than the candles themselves.\\n\\nHell, just save your candle stubs and bring them. Light them up, and\\ndribble the wax all over the kindling wood and light _that_. Although\\nI like the belly-button lint / eggshell case idea the best, if you\\'re\\nfeeling particularly industrious some eventful evening. Or you can\\ndo what I did one soggy summer: open the fuel line, drain some onto a \\npiece of rough or rotten wood, stick that into the middle of the soon-to-\\nbe inferno and CAREFULLY strike a match... As Kurt Vonnegut titled one\\nof the latter chapters in Cat\\'s Cradle, \"Ah-Whoom!\"\\n\\nWorks like a charm every time :-)\\n\\n\\n/-----b-o-d-y---i-s---t-h-e---b-i-k-e----------------------------\\\\\\n| |\\n| DoD# 88888 asphaug@hindmost.lpl.arizona.edu |\\n| \\'90 Kawi Zephyr (Erik Asphaug) |\\n| \\'86 BMW R80GS |\\n\\\\-----------------------s-o-u-l---i-s---t-h-e---r-i-d-e-r--------/\\n',\n", - " 'From: hasan@McRCIM.McGill.EDU \\nSubject: Re: No land for peace - No negotiatians\\nOriginator: hasan@haley.mcrcim.mcgill.edu\\nNntp-Posting-Host: haley.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 45\\n\\n\\nIn article <1993Apr5.175047.17368@unocal.com>, stssdxb@st.unocal.com (Dorin Baru) writes:\\n\\n|> Alan Stein writes:\\n|> \\n|> >What are you talking about? The Rabin government has clearly\\n|> >indicated its interest in a territorial compromise that would leave\\n|> >the vast majority of the Arabs in Judea, Samaria and Gaza outside\\n|> >Israeli control.\\n\\n(just an interrupting comment here) Since EARLY 1980\\'s , israelis said they are \\nwilling to give up the Adminstration rule of the occupied terretories to\\nPalestineans. Palestineans refused and will refuse such settlement that denies\\nthem their right of SELF-DETERMINATION. period.\\n\\n|> I know. I was just pointing out that not compromising may be a bad idea. And\\n|> there are, in Israel, voices against negotiations. And I think there are many\\n|> among palestineans also against any negociations. \\n|> \\n|> Just an opinion\\n|>\\n|> Dorin\\n\\nOk. I donot know why there are israeli voices against negotiations. However,\\ni would guess that is because they refuse giving back a land for those who\\nhave the right for it.\\n\\nAs for the Arabian and Palestinean voices that are against the\\ncurrent negotiations and the so-called peace process, they\\nare not against peace per se, but rather for their well-founded predictions\\nthat Israel would NOT give an inch of the West bank (and most probably the same\\nfor Golan Heights) back to the Arabs. An 18 months of \"negotiations\" in Madrid,\\nand Washington proved these predictions. Now many will jump on me saying why\\nare you blaming israelis for no-result negotiations.\\nI would say why would the Arabs stall the negotiations, what do they have to\\nloose ?\\n\\nArabs feel that the current \"negotiations\" is ONLY for legitimizing the current\\nstatus-quo and for opening the doors of the Arab markets for israeli trade and\\n\"oranges\". That is simply unacceptable and would be revoked. \\n\\nJust an opinion.\\n\\nHasan\\n',\n", - " 'From: cdw2t@dayhoff.med.Virginia.EDU (Dances With Federal Rangers)\\nSubject: Re: BMW MOA members read this!\\nOrganization: University of Virginia\\nLines: 19\\n\\nIn article <1993Apr15.065731.23557@cs.cornell.edu> karr@cs.cornell.edu (David Karr) writes:\\n\\n [riveting BMWMOA election soap-opera details deleted]\\n\\n>Well, there doesn\\'t seem to be any shortage of alternative candidates.\\n>Obviously you\\'re not voting for Mr. Vechorik, but what about the\\n>others?\\n\\nI\\'m going to buy a BMW just to cast a vote for Groucho.\\n\\nRide safe,\\n----------------------------------------------------------------------------\\n| Cliff Weston DoD# 0598 \\'92 Seca II (Tem) |\\n| |\\n| This bike is in excellent condition. |\\n| I\\'ve done all the work on it myself. |\\n| |\\n| -- Glen \"CRASH\" Stone |\\n----------------------------------------------------------------------------\\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 10/15 - Planetary Probe History\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 527\\nDistribution: world\\nExpires: 6 May 1993 19:59:36 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/probe\\nLast-modified: $Date: 93/04/01 14:39:19 $\\n\\nPLANETARY PROBES - HISTORICAL MISSIONS\\n\\n This section was lightly adapted from an original posting by Larry Klaes\\n (klaes@verga.enet.dec.com), mostly minor formatting changes. Matthew\\n Wiener (weemba@libra.wistar.upenn.edu) contributed the section on\\n Voyager, and the section on Sakigake was obtained from ISAS material\\n posted by Yoshiro Yamada (yamada@yscvax.ysc.go.jp).\\n\\nUS PLANETARY MISSIONS\\n\\n\\n MARINER (VENUS, MARS, & MERCURY FLYBYS AND ORBITERS)\\n\\n MARINER 1, the first U.S. attempt to send a spacecraft to Venus, failed\\n minutes after launch in 1962. The guidance instructions from the ground\\n stopped reaching the rocket due to a problem with its antenna, so the\\n onboard computer took control. However, there turned out to be a bug in\\n the guidance software, and the rocket promptly went off course, so the\\n Range Safety Officer destroyed it. Although the bug is sometimes claimed\\n to have been an incorrect FORTRAN DO statement, it was actually a\\n transcription error in which the bar (indicating smoothing) was omitted\\n from the expression \"R-dot-bar sub n\" (nth smoothed value of derivative\\n of radius). This error led the software to treat normal minor variations\\n of velocity as if they were serious, leading to incorrect compensation.\\n\\n MARINER 2 became the first successful probe to flyby Venus in December\\n of 1962, and it returned information which confirmed that Venus is a\\n very hot (800 degrees Fahrenheit, now revised to 900 degrees F.) world\\n with a cloud-covered atmosphere composed primarily of carbon dioxide\\n (sulfuric acid was later confirmed in 1978).\\n\\n MARINER 3, launched on November 5, 1964, was lost when its protective\\n shroud failed to eject as the craft was placed into interplanetary\\n space. Unable to collect the Sun\\'s energy for power from its solar\\n panels, the probe soon died when its batteries ran out and is now in\\n solar orbit. It was intended for a Mars flyby with MARINER 4.\\n\\n MARINER 4, the sister probe to MARINER 3, did reach Mars in 1965 and\\n took the first close-up images of the Martian surface (22 in all) as it\\n flew by the planet. The probe found a cratered world with an atmosphere\\n much thinner than previously thought. Many scientists concluded from\\n this preliminary scan that Mars was a \"dead\" world in both the\\n geological and biological sense.\\n\\n MARINER 5 was sent to Venus in 1967. It reconfirmed the data on that\\n planet collected five years earlier by MARINER 2, plus the information\\n that Venus\\' atmospheric pressure at its surface is at least 90 times\\n that of Earth\\'s, or the equivalent of being 3,300 feet under the surface\\n of an ocean.\\n\\n MARINER 6 and 7 were sent to Mars in 1969 and expanded upon the work\\n done by MARINER 4 four years earlier. However, they failed to take away\\n the concept of Mars as a \"dead\" planet, first made from the basic\\n measurements of MARINER 4.\\n\\n MARINER 8 ended up in the Atlantic Ocean in 1971 when the rocket\\n launcher autopilot failed.\\n\\n MARINER 9, the sister probe to MARINER 8, became the first craft to\\n orbit Mars in 1971. It returned information on the Red Planet that no\\n other probe had done before, revealing huge volcanoes on the Martian\\n surface, as well as giant canyon systems, and evidence that water once\\n flowed across the planet. The probe also took the first detailed closeup\\n images of Mars\\' two small moons, Phobos and Deimos.\\n\\n MARINER 10 used Venus as a gravity assist to Mercury in 1974. The probe\\n did return the first close-up images of the Venusian atmosphere in\\n ultraviolet, revealing previously unseen details in the cloud cover,\\n plus the fact that the entire cloud system circles the planet in four\\n Earth days. MARINER 10 eventually made three flybys of Mercury from 1974\\n to 1975 before running out of attitude control gas. The probe revealed\\n Mercury as a heavily cratered world with a mass much greater than\\n thought. This would seem to indicate that Mercury has an iron core which\\n makes up 75 percent of the entire planet.\\n\\n\\n PIONEER (MOON, SUN, VENUS, JUPITER, and SATURN FLYBYS AND ORBITERS)\\n\\n PIONEER 1 through 3 failed to meet their main objective - to photograph\\n the Moon close-up - but they did reach far enough into space to provide\\n new information on the area between Earth and the Moon, including new\\n data on the Van Allen radiation belts circling Earth. All three craft\\n had failures with their rocket launchers. PIONEER 1 was launched on\\n October 11, 1958, PIONEER 2 on November 8, and PIONEER 3 on December 6.\\n\\n PIONEER 4 was a Moon probe which missed the Moon and became the first\\n U.S. spacecraft to orbit the Sun in 1959. PIONEER 5 was originally\\n designed to flyby Venus, but the mission was scaled down and it instead\\n studied the interplanetary environment between Venus and Earth out to\\n 36.2 million kilometers in 1960, a record until MARINER 2. PIONEER 6\\n through 9 were placed into solar orbit from 1965 to 1968: PIONEER 6, 7,\\n and 8 are still transmitting information at this time. PIONEER E (would\\n have been number 10) suffered a launch failure in 1969.\\n\\n PIONEER 10 became the first spacecraft to flyby Jupiter in 1973. PIONEER\\n 11 followed it in 1974, and then went on to become the first probe to\\n study Saturn in 1979. Both vehicles should continue to function through\\n 1995 and are heading off into interstellar space, the first craft ever\\n to do so.\\n\\n PIONEER Venus 1 (1978) (also known as PIONEER Venus Orbiter, or PIONEER\\n 12) burned up in the Venusian atmosphere on October 8, 1992. PVO made\\n the first radar studies of the planet\\'s surface via probe. PIONEER Venus\\n 2 (also known as PIONEER 13) sent four small probes into the atmosphere\\n in December of 1978. The main spacecraft bus burned up high in the\\n atmosphere, while the four probes descended by parachute towards the\\n surface. Though none were expected to survive to the surface, the Day\\n probe did make it and transmitted for 67.5 minutes on the ground before\\n its batteries failed.\\n\\n\\n RANGER (LUNAR LANDER AND IMPACT MISSIONS)\\n\\n RANGER 1 and 2 were test probes for the RANGER lunar impact series. They\\n were meant for high Earth orbit testing in 1961, but rocket problems\\n left them in useless low orbits which quickly decayed.\\n\\n RANGER 3, launched on January 26, 1962, was intended to land an\\n instrument capsule on the surface of the Moon, but problems during the\\n launch caused the probe to miss the Moon and head into solar orbit.\\n RANGER 3 did try to take some images of the Moon as it flew by, but the\\n camera was unfortunately aimed at deep space during the attempt.\\n\\n RANGER 4, launched April 23, 1962, had the same purpose as RANGER 3, but\\n suffered technical problems enroute and crashed on the lunar farside,\\n the first U.S. probe to reach the Moon, albeit without returning data.\\n\\n RANGER 5, launched October 18, 1962 and similar to RANGER 3 and 4, lost\\n all solar panel and battery power enroute and eventually missed the Moon\\n and drifted off into solar orbit.\\n\\n RANGER 6 through 9 had more modified lunar missions: They were to send\\n back live images of the lunar surface as they headed towards an impact\\n with the Moon. RANGER 6 failed this objective in 1964 when its cameras\\n did not operate. RANGER 7 through 9 performed well, becoming the first\\n U.S. lunar probes to return thousands of lunar images through 1965.\\n\\n\\n LUNAR ORBITER (LUNAR SURFACE PHOTOGRAPHY)\\n\\n LUNAR ORBITER 1 through 5 were designed to orbit the Moon and image\\n various sites being studied as landing areas for the manned APOLLO\\n missions of 1969-1972. The probes also contributed greatly to our\\n understanding of lunar surface features, particularly the lunar farside.\\n All five probes of the series, launched from 1966 to 1967, were\\n essentially successful in their missions. They were the first U.S.\\n probes to orbit the Moon. All LOs were eventually crashed into the lunar\\n surface to avoid interference with the manned APOLLO missions.\\n\\n\\n SURVEYOR (LUNAR SOFT LANDERS)\\n\\n The SURVEYOR series were designed primarily to see if an APOLLO lunar\\n module could land on the surface of the Moon without sinking into the\\n soil (before this time, it was feared by some that the Moon was covered\\n in great layers of dust, which would not support a heavy landing\\n vehicle). SURVEYOR was successful in proving that the lunar surface was\\n strong enough to hold up a spacecraft from 1966 to 1968.\\n\\n Only SURVEYOR 2 and 4 were unsuccessful missions. The rest became the\\n first U.S. probes to soft land on the Moon, taking thousands of images\\n and scooping the soil for analysis. APOLLO 12 landed 600 feet from\\n SURVEYOR 3 in 1969 and returned parts of the craft to Earth. SURVEYOR 7,\\n the last of the series, was a purely scientific mission which explored\\n the Tycho crater region in 1968.\\n\\n\\n VIKING (MARS ORBITERS AND LANDERS)\\n\\n VIKING 1 was launched from Cape Canaveral, Florida on August 20, 1975 on\\n a TITAN 3E-CENTAUR D1 rocket. The probe went into Martian orbit on June\\n 19, 1976, and the lander set down on the western slopes of Chryse\\n Planitia on July 20, 1976. It soon began its programmed search for\\n Martian micro-organisms (there is still debate as to whether the probes\\n found life there or not), and sent back incredible color panoramas of\\n its surroundings. One thing scientists learned was that Mars\\' sky was\\n pinkish in color, not dark blue as they originally thought (the sky is\\n pink due to sunlight reflecting off the reddish dust particles in the\\n thin atmosphere). The lander set down among a field of red sand and\\n boulders stretching out as far as its cameras could image.\\n\\n The VIKING 1 orbiter kept functioning until August 7, 1980, when it ran\\n out of attitude-control propellant. The lander was switched into a\\n weather-reporting mode, where it had been hoped it would keep\\n functioning through 1994; but after November 13, 1982, an errant command\\n had been sent to the lander accidentally telling it to shut down until\\n further orders. Communication was never regained again, despite the\\n engineers\\' efforts through May of 1983.\\n\\n An interesting side note: VIKING 1\\'s lander has been designated the\\n Thomas A. Mutch Memorial Station in honor of the late leader of the\\n lander imaging team. The National Air and Space Museum in Washington,\\n D.C. is entrusted with the safekeeping of the Mutch Station Plaque until\\n it can be attached to the lander by a manned expedition.\\n\\n VIKING 2 was launched on September 9, 1975, and arrived in Martian orbit\\n on August 7, 1976. The lander touched down on September 3, 1976 in\\n Utopia Planitia. It accomplished essentially the same tasks as its\\n sister lander, with the exception that its seisometer worked, recording\\n one marsquake. The orbiter had a series of attitude-control gas leaks in\\n 1978, which prompted it being shut down that July. The lander was shut\\n down on April 12, 1980.\\n\\n The orbits of both VIKING orbiters should decay around 2025.\\n\\n\\n VOYAGER (OUTER PLANET FLYBYS)\\n\\n VOYAGER 1 was launched September 5, 1977, and flew past Jupiter on March\\n 5, 1979 and by Saturn on November 13, 1980. VOYAGER 2 was launched\\n August 20, 1977 (before VOYAGER 1), and flew by Jupiter on August 7,\\n 1979, by Saturn on August 26, 1981, by Uranus on January 24, 1986, and\\n by Neptune on August 8, 1989. VOYAGER 2 took advantage of a rare\\n once-every-189-years alignment to slingshot its way from outer planet to\\n outer planet. VOYAGER 1 could, in principle, have headed towards Pluto,\\n but JPL opted for the sure thing of a Titan close up.\\n\\n Between the two probes, our knowledge of the 4 giant planets, their\\n satellites, and their rings has become immense. VOYAGER 1&2 discovered\\n that Jupiter has complicated atmospheric dynamics, lightning and\\n aurorae. Three new satellites were discovered. Two of the major\\n surprises were that Jupiter has rings and that Io has active sulfurous\\n volcanoes, with major effects on the Jovian magnetosphere.\\n\\n When the two probes reached Saturn, they discovered over 1000 ringlets\\n and 7 satellites, including the predicted shepherd satellites that keep\\n the rings stable. The weather was tame compared with Jupiter: massive\\n jet streams with minimal variance (a 33-year great white spot/band cycle\\n is known). Titan\\'s atmosphere was smoggy. Mimas\\' appearance was\\n startling: one massive impact crater gave it the Death Star appearance.\\n The big surprise here was the stranger aspects of the rings. Braids,\\n kinks, and spokes were both unexpected and difficult to explain.\\n\\n VOYAGER 2, thanks to heroic engineering and programming efforts,\\n continued the mission to Uranus and Neptune. Uranus itself was highly\\n monochromatic in appearance. One oddity was that its magnetic axis was\\n found to be highly skewed from the already completely skewed rotational\\n axis, giving Uranus a peculiar magnetosphere. Icy channels were found on\\n Ariel, and Miranda was a bizarre patchwork of different terrains. 10\\n satellites and one more ring were discovered.\\n\\n In contrast to Uranus, Neptune was found to have rather active weather,\\n including numerous cloud features. The ring arcs turned out to be bright\\n patches on one ring. Two other rings, and 6 other satellites, were\\n discovered. Neptune\\'s magnetic axis was also skewed. Triton had a\\n canteloupe appearance and geysers. (What\\'s liquid at 38K?)\\n\\n The two VOYAGERs are expected to last for about two more decades. Their\\n on-target journeying gives negative evidence about possible planets\\n beyond Pluto. Their next major scientific discovery should be the\\n location of the heliopause.\\n\\n\\nSOVIET PLANETARY MISSIONS\\n\\n Since there have been so many Soviet probes to the Moon, Venus, and\\n Mars, I will highlight only the primary missions:\\n\\n\\n SOVIET LUNAR PROBES\\n\\n LUNA 1 - Lunar impact attempt in 1959, missed Moon and became first\\n\\t craft in solar orbit.\\n LUNA 2 - First craft to impact on lunar surface in 1959.\\n LUNA 3 - Took first images of lunar farside in 1959.\\n ZOND 3 - Took first images of lunar farside in 1965 since LUNA 3. Was\\n\\t also a test for future Mars missions.\\n LUNA 9 - First probe to soft land on the Moon in 1966, returned images\\n\\t from surface.\\n LUNA 10 - First probe to orbit the Moon in 1966.\\n LUNA 13 - Second successful Soviet lunar soft landing mission in 1966.\\n ZOND 5 - First successful circumlunar craft. ZOND 6 through 8\\n\\t accomplished similar missions through 1970. The probes were\\n\\t unmanned tests of a manned orbiting SOYUZ-type lunar vehicle.\\n LUNA 16 - First probe to land on Moon and return samples of lunar soil\\n\\t to Earth in 1970. LUNA 20 accomplished similar mission in\\n\\t 1972.\\n LUNA 17 - Delivered the first unmanned lunar rover to the Moon\\'s\\n\\t surface, LUNOKHOD 1, in 1970. A similar feat was accomplished\\n\\t with LUNA 21/LUNOKHOD 2 in 1973.\\n LUNA 24 - Last Soviet lunar mission to date. Returned soil samples in\\n\\t 1976.\\n\\n\\n SOVIET VENUS PROBES\\n\\n VENERA 1 - First acknowledged attempt at Venus mission. Transmissions\\n\\t lost enroute in 1961.\\n VENERA 2 - Attempt to image Venus during flyby mission in tandem with\\n\\t VENERA 3. Probe ceased transmitting just before encounter in\\n\\t February of 1966. No images were returned.\\n VENERA 3 - Attempt to place a lander capsule on Venusian surface.\\n\\t Transmissions ceased just before encounter and entire probe\\n\\t became the first craft to impact on another planet in 1966.\\n VENERA 4 - First probe to successfully return data while descending\\n\\t through Venusian atmosphere. Crushed by air pressure before\\n\\t reaching surface in 1967. VENERA 5 and 6 mission profiles\\n\\t similar in 1969.\\n VENERA 7 - First probe to return data from the surface of another planet\\n\\t in 1970. VENERA 8 accomplished a more detailed mission in\\n\\t 1972.\\n VENERA 9 - Sent first image of Venusian surface in 1975. Was also the\\n\\t first probe to orbit Venus. VENERA 10 accomplished similar\\n\\t mission.\\n VENERA 13 - Returned first color images of Venusian surface in 1982.\\n\\t\\tVENERA 14 accomplished similar mission.\\n VENERA 15 - Accomplished radar mapping with VENERA 16 of sections of\\n\\t\\tplanet\\'s surface in 1983 more detailed than PVO.\\n VEGA 1 - Accomplished with VEGA 2 first balloon probes of Venusian\\n\\t atmosphere in 1985, including two landers. Flyby buses went on\\n\\t to become first spacecraft to study Comet Halley close-up in\\n\\t March of 1986.\\n\\n\\n SOVIET MARS PROBES\\n\\n MARS 1 - First acknowledged Mars probe in 1962. Transmissions ceased\\n\\t enroute the following year.\\n ZOND 2 - First possible attempt to place a lander capsule on Martian\\n\\t surface. Probe signals ceased enroute in 1965.\\n MARS 2 - First Soviet Mars probe to land - albeit crash - on Martian\\n\\t surface. Orbiter section first Soviet probe to circle the Red\\n\\t Planet in 1971.\\n MARS 3 - First successful soft landing on Martian surface, but lander\\n\\t signals ceased after 90 seconds in 1971.\\n MARS 4 - Attempt at orbiting Mars in 1974, braking rockets failed to\\n\\t fire, probe went on into solar orbit.\\n MARS 5 - First fully successful Soviet Mars mission, orbiting Mars in\\n\\t 1974. Returned images of Martian surface comparable to U.S.\\n\\t probe MARINER 9.\\n MARS 6 - Landing attempt in 1974. Lander crashed into the surface.\\n MARS 7 - Lander missed Mars completely in 1974, went into a solar orbit\\n\\t with its flyby bus.\\n PHOBOS 1 - First attempt to land probes on surface of Mars\\' largest\\n\\t moon, Phobos. Probe failed enroute in 1988 due to\\n\\t human/computer error.\\n PHOBOS 2 - Attempt to land probes on Martian moon Phobos. The probe did\\n\\t enter Mars orbit in early 1989, but signals ceased one week\\n\\t before scheduled Phobos landing.\\n\\n While there has been talk of Soviet Jupiter, Saturn, and even\\n interstellar probes within the next thirty years, no major steps have\\n yet been taken with these projects. More intensive studies of the Moon,\\n Mars, Venus, and various comets have been planned for the 1990s, and a\\n Mercury mission to orbit and land probes on the tiny world has been\\n planned for 2003. How the many changes in the former Soviet Union (now\\n the Commonwealth of Independent States) will affect the future of their\\n space program remains to be seen.\\n\\n\\nJAPANESE PLANETARY MISSIONS\\n\\n SAKIGAKE (MS-T5) was launched from the Kagoshima Space Center by ISAS on\\n January 8 1985, and approached Halley\\'s Comet within about 7 million km\\n on March 11, 1986. The spacecraft is carrying three instru- ments to\\n measure interplanetary magnetic field/plasma waves/solar wind, all of\\n which work normally now, so ISAS made an Earth swingby by Sakigake on\\n January 8, 1992 into an orbit similar to the earth\\'s. The closest\\n approach was at 23h08m47s (JST=UTC+9h) on January 8, 1992. The\\n geocentric distance was 88,997 km. This is the first planet-swingby for\\n a Japanese spacecraft.\\n\\n During the approach, Sakigake observed the geotail. Some geotail\\n passages will be scheduled in some years hence. The second Earth-swingby\\n will be on June 14, 1993 (at 40 Re (Earth\\'s radius)), and the third\\n October 28, 1994 (at 86 Re).\\n\\n\\n HITEN, a small lunar probe, was launched into Earth orbit on January 24,\\n 1990. The spacecraft was then known as MUSES-A, but was renamed to Hiten\\n once in orbit. The 430 lb probe looped out from Earth and made its first\\n lunary flyby on March 19, where it dropped off its 26 lb midget\\n satellite, HAGOROMO. Japan at this point became the third nation to\\n orbit a satellite around the Moon, joining the Unites States and USSR.\\n\\n The smaller spacecraft, Hagoromo, remained in orbit around the Moon. An\\n apparently broken transistor radio caused the Japanese space scientists\\n to lose track of it. Hagoromo\\'s rocket motor fired on schedule on March\\n 19, but the spacecraft\\'s tracking transmitter failed immediately. The\\n rocket firing of Hagoromo was optically confirmed using the Schmidt\\n camera (105-cm, F3.1) at the Kiso Observatory in Japan.\\n\\n Hiten made multiple lunar flybys at approximately monthly intervals and\\n performed aerobraking experiments using the Earth\\'s atmosphere. Hiten\\n made a close approach to the moon at 22:33 JST (UTC+9h) on February 15,\\n 1992 at the height of 423 km from the moon\\'s surface (35.3N, 9.7E) and\\n fired its propulsion system for about ten minutes to put the craft into\\n lunar orbit. The following is the orbital calculation results after the\\n approach:\\n\\n\\tApoapsis Altitude: about 49,400 km\\n\\tPeriapsis Altitude: about 9,600 km\\n\\tInclination\\t: 34.7 deg (to ecliptic plane)\\n\\tPeriod\\t\\t: 4.7 days\\n\\n\\nPLANETARY MISSION REFERENCES\\n\\n I also recommend reading the following works, categorized in three\\n groups: General overviews, specific books on particular space missions,\\n and periodical sources on space probes. This list is by no means\\n complete; it is primarily designed to give you places to start your\\n research through generally available works on the subject. If anyone can\\n add pertinent works to the list, it would be greatly appreciated.\\n\\n Though naturally I recommend all the books listed below, I think it\\n would be best if you started out with the general overview books, in\\n order to give you a clear idea of the history of space exploration in\\n this area. I also recommend that you pick up some good, up-to-date\\n general works on astronomy and the Sol system, to give you some extra\\n background. Most of these books and periodicals can be found in any good\\n public and university library. Some of the more recently published works\\n can also be purchased in and/or ordered through any good mass- market\\n bookstore.\\n\\n General Overviews (in alphabetical order by author):\\n\\n J. Kelly Beatty et al, THE NEW SOLAR SYSTEM, 1990.\\n\\n Merton E. Davies and Bruce C. Murray, THE VIEW FROM SPACE:\\n PHOTOGRAPHIC EXPLORATION OF THE PLANETS, 1971\\n\\n Kenneth Gatland, THE ILLUSTRATED ENCYCLOPEDIA OF SPACE\\n TECHNOLOGY, 1990\\n\\n Kenneth Gatland, ROBOT EXPLORERS, 1972\\n\\n R. Greeley, PLANETARY LANDSCAPES, 1987\\n\\n Douglas Hart, THE ENCYCLOPEDIA OF SOVIET SPACECRAFT, 1987\\n\\n Nicholas L. Johnson, HANDBOOK OF SOVIET LUNAR AND PLANETARY\\n EXPLORATION, 1979\\n\\n Clayton R. Koppes, JPL AND THE AMERICAN SPACE PROGRAM: A\\n HISTORY OF THE JET PROPULSION LABORATORY, 1982\\n\\n Richard S. Lewis, THE ILLUSTRATED ENCYCLOPEDIA OF THE\\n UNIVERSE, 1983\\n\\n Mark Littman, PLANETS BEYOND: DISCOVERING THE OUTER SOLAR\\n SYSTEM, 1988\\n\\n Eugene F. Mallove and Gregory L. Matloff, THE STARFLIGHT\\n HANDBOOK: A PIONEER\\'S GUIDE TO INTERSTELLAR TRAVEL, 1989\\n\\n Frank Miles and Nicholas Booth, RACE TO MARS: THE MARS\\n FLIGHT ATLAS, 1988\\n\\n Bruce Murray, JOURNEY INTO SPACE, 1989\\n\\n Oran W. Nicks, FAR TRAVELERS, 1985 (NASA SP-480)\\n\\n James E. Oberg, UNCOVERING SOVIET DISASTERS: EXPLORING THE\\n LIMITS OF GLASNOST, 1988\\n\\n Carl Sagan, COMET, 1986\\n\\n Carl Sagan, THE COSMIC CONNECTION, 1973\\n\\n Carl Sagan, PLANETS, 1969 (LIFE Science Library)\\n\\n Arthur Smith, PLANETARY EXPLORATION: THIRTY YEARS OF UNMANNED\\n SPACE PROBES, 1988\\n\\n Andrew Wilson, (JANE\\'S) SOLAR SYSTEM LOG, 1987\\n\\n Specific Mission References:\\n\\n Charles A. Cross and Patrick Moore, THE ATLAS OF MERCURY, 1977\\n (The MARINER 10 mission to Venus and Mercury, 1973-1975)\\n\\n Joel Davis, FLYBY: THE INTERPLANETARY ODYSSEY OF VOYAGER 2, 1987\\n\\n Irl Newlan, FIRST TO VENUS: THE STORY OF MARINER 2, 1963\\n\\n Margaret Poynter and Arthur L. Lane, VOYAGER: THE STORY OF A\\n SPACE MISSION, 1984\\n\\n Carl Sagan, MURMURS OF EARTH, 1978 (Deals with the Earth\\n information records placed on VOYAGER 1 and 2 in case the\\n probes are found by intelligences in interstellar space,\\n as well as the probes and planetary mission objectives\\n themselves.)\\n\\n Other works and periodicals:\\n\\n NASA has published very detailed and technical books on every space\\n probe mission it has launched. Good university libraries will carry\\n these books, and they are easily found simply by knowing which mission\\n you wish to read about. I recommend these works after you first study\\n some of the books listed above.\\n\\n Some periodicals I recommend for reading on space probes are NATIONAL\\n GEOGRAPHIC, which has written articles on the PIONEER probes to Earth\\'s\\n Moon Luna and the Jovian planets Jupiter and Saturn, the RANGER,\\n SURVEYOR, LUNAR ORBITER, and APOLLO missions to Luna, the MARINER\\n missions to Mercury, Venus, and Mars, the VIKING probes to Mars, and the\\n VOYAGER missions to Jupiter, Saturn, Uranus, and Neptune.\\n\\n More details on American, Soviet, European, and Japanese probe missions\\n can be found in SKY AND TELESCOPE, ASTRONOMY, SCIENCE, NATURE, and\\n SCIENTIFIC AMERICAN magazines. TIME, NEWSWEEK, and various major\\n newspapers can supply not only general information on certain missions,\\n but also show you what else was going on with Earth at the time events\\n were unfolding, if that is of interest to you. Space missions are\\n affected by numerous political, economic, and climatic factors, as you\\n probably know.\\n\\n Depending on just how far your interest in space probes will go, you\\n might also wish to join The Planetary Society, one of the largest space\\n groups in the world dedicated to planetary exploration. Their\\n periodical, THE PLANETARY REPORT, details the latest space probe\\n missions. Write to The Planetary Society, 65 North Catalina Avenue,\\n Pasadena, California 91106 USA.\\n\\n Good luck with your studies in this area of space exploration. I\\n personally find planetary missions to be one of the more exciting areas\\n in this field, and the benefits human society has and will receive from\\n it are incredible, with many yet to be realized.\\n\\n Larry Klaes klaes@verga.enet.dec.com\\n\\nNEXT: FAQ #11/15 - Upcoming planetary probes - missions and schedules\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The religious persecution, cultural oppression and economical...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 161\\n\\nIn article <1993Apr21.202728.29375@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>You may not be afraid of anything but you act as if you are.\\n\\nI always like your kind of odds. The Greek governments must be held \\nto account for the sub-human conditions of the Turkish minority living \\nin the Western Thrace under the brutal Greek domination. The religious \\npersecution, cultural oppression and economical ex-communication applied \\nto the Turkish population in that area are the dimensions of the human \\nrights abuse widespread in Greece.\\n\\n\"Greece\\'s Housing Policies Worry Western Thrace Turks\"\\n\\n...Newly built houses belonging to members of the minority\\ncommunity in Dedeagac province, had, he said, been destroyed\\nby Evros province public works department on Dec. 4.\\n\\nSungar added that they had received harsh treatment by the\\nsecurity forces during the demolition.\\n\\n\"This is not the first demolition in Dedeagac province; more\\nthan 40 houses were destroyed there between 1979-1984 and \\nmembers of that minority community were made homeless,\" he\\ncontinued. \\n\\n\"Greece Government Rail-Roads Two Turkish Ethnic Deputies\"\\n\\nWhile World Human Rights Organizations Scream, Greeks \\nPersistently Work on Removing the Parliamentary Immunity\\nof Dr. Sadik Ahmet and Mr. Ahmet Faikoglu.\\n\\nIn his 65-page confession, Salman Demirok, a former chief of PKK\\noperations in Hakkari confessed that high-level relations between\\nPKK, Greece and Greek Cypriot administration existed.\\n\\nAccording to Demirok, Greek Cypriot administration not only \\ngives shelter to PKK guerillas but also supplies them with \\nfood and weapons at the temporary camps set up in its territory. \\nDemirok disclosed that PKK has three safe houses in South Cyprus, \\nused by terrorists such as Ferhat. In the camps, he added, \\nterrorists were trained to use various weapons including RPG\\'s \\nand anti-aircraft guns which had been purchased directly from \\nthe Greek government. Greek Cypriot government has gone to the \\nextent of issuing special identification cards to PKK members so \\nthat they can travel from one region to another without being \\nconfronted by legal obstacles. Demirok\\'s account was confirmed \\nby another PKK defector, Fatih Tan, who gave himself over to \\npolice in Hakkari after spending four years with PKK. Tan explained\\nthat the terrorists went through a training in camps in South Cyprus, \\nsometimes for a period of 12 weeks or more.\\n\\n \"Torture in Greece: Hidden Reality\"\\n\\nCase 1: Kostas Andreadis and Dimitris Voglis.\\n\\n...Andreadis\\' head was covered with a hood and he was tortured\\nby falanga (beating on the soles of the feet), electric shocks,\\nand was threatened with being thrown out of the window. An \\nofficial medical report clearly documented this torture....\\n\\nCase 2: Horst Bosniatzki, a West German Citizen.\\n\\n...At midnight he was taken to the beach, chains were put to his \\nfeet and he was threatened to be thrown to the sea. He was dragged\\nalong the beach for about a 1.5 Km while being punched on the \\nhead and kidneys...Back on the police station, he was beaten\\non the finger tips with a thin stick until one of the fingertips\\nsplit open....\\n\\nCase 3: Torture of Dimitris Voglis.\\n\\nCase 4: Brothers Vangelis (16) and Christos Arabatzis (12),\\n Vasilis Papadopoulos (13), and Kostas Kiriazis (13).\\n\\nCase 5: Torture of Eight Students at Thessaloniki Police\\n Headquarters.\\n\\n SOURCE: The British Broadcasting Corporation, Summary of\\n World Broadcasting -July 6, 1987: Part 4-A: The\\n Middle East, ME/8612/A/1.\\n\\n \"Abu Nidal\\'s Advisers\" Reportedly Training\\n \"PKK & ASALA Militants\" in Cyprus\\n\\n Nicosia, Ankara, Tel Aviv. The Israeli secret service,\\n Mossad, is reported to have acquired significant\\n information in connection with the camps set up in the\\n Troodos mountains in Cyprus for the training of\\n militants of the PKK and ASALA {Armenian Secret Army for\\n the Liberation of Armenia}. According to sources close\\n to Mossad, about 700 Kurdish, Greek Cypriot and Armenian\\n militants are undergoing training in the Troodos\\n mountains in southern Cyprus. The same sources stated\\n that Abu Nidal\\'s special advisers are giving military\\n training to the PKK and ASALA militants in the camps.\\n They added that the militants leave southern Cyprus for\\n Libya, Lebanon, Syria, Greece and Iran after completing\\n their training. Mossad has established that due to the\\n clashes which were taking place among the terrorist\\n groups based in Syria, the PKK and ASALA organisations\\n moved to the Greek Cypriot part of Cyprus, where they\\n would be more comfortable. They also transferred a\\n number of their camps in northern Syria to the Troodos\\n mountains.\\n\\n Mossad revealed that the Armenian National Movement,\\n which is known as the MNA, has opened liaison offices in\\n Nicosia, Athens and Tripoli in order to meet the needs\\n of the camps. The offices are used to provide material\\n support for the Armenian camps. Meanwhile, the leader\\n of the Popular Front for the Liberation of Palestine,\\n George Habash, is reported to have ordered his men\\n not to participate in the operations carried out\\n by the PKK & ASALA, which he described as \"extreme\\n racist, extreme nationalist and fascist.\" Reliable\\n sources have said that Habash believed that the recent\\n operations carried out by the PKK militants show that\\n organisation to be a band of irregulars engaged in\\n extreme nationalist operations. They added that he\\n instructed his militants to sever their links with the\\n PKK and avoid clashing with it. It has been established\\n that George Habash expelled ASALA militants from his\\n camp after ASALA\\'s connections with drug trafficking\\n were exposed.\\n\\nSource: Alan Cowell, \\'U.S. & Greece in Dispute on Terror,\\' The New\\n York Times, June 27, 1987, p. 4.\\n\\n Special to The New York Times\\n\\nATHENS, June 26 - A dispute developed today between Athens and \\nWashington over United States intelligence reports saying that \\nAthens, for several months, conducted negotiations with the\\nterrorist known as Abu Nidal...\\n\\nThey said the contacts were verified in what were termed hard\\nintelligence reports.\\n\\nAbu Nidal leads the Palestinian splinter group Al Fatah \\nRevolutionary Council, implicated in the 1985 airport \\nbombings at Rome and Vienna that contributed to the Reagan \\nAdministration\\'s decision to bomb Tripoli, Libya, last year.\\n\\nIn Washington, State Department officials said that when\\nAdministration officials learned about the contacts, the\\nState Department drafted a strongly worded demarche. The\\nofficials also expressed unhappiness with Greece\\'s dealings\\nwith ASALA, the Armenian Liberation Army, which has carried\\nout terrorist acts against Turks....\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: DC-X update???\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 122\\n\\nIn article dragon@angus.mi.org writes:\\n\\n>Exactly when will the hover test be done, \\n\\nEarly to mid June.\\n\\n>and will any of the TV\\n>networks carry it. I really want to see that...\\n\\nIf they think the public wants to see it they will carry it. Why not\\nwrite them and ask? You can reach them at:\\n\\n\\n F: NATIONAL NEWS MEDIA\\n\\n\\nABC \"World News Tonight\" \"Face the Nation\"\\n7 West 66th Street CBS News\\nNew York, NY 10023 2020 M Street, NW\\n212/887-4040 Washington, DC 20036\\n 202/457-4321\\n\\nAssociated Press \"Good Morning America\"\\n50 Rockefeller Plaza ABC News\\nNew York, NY 10020 1965 Broadway\\nNational Desk (212/621-1600) New York, NY 10023\\nForeign Desk (212/621-1663) 212/496-4800\\nWashington Bureau (202/828-6400)\\n Larry King Live TV\\n\"CBS Evening News\" CNN\\n524 W. 57th Street 111 Massachusetts Avenue, NW\\nNew York, NY 10019 Washington, DC 20001\\n212/975-3693 202/898-7900\\n\\n\"CBS This Morning\" Larry King Show--Radio\\n524 W. 57th Street Mutual Broadcasting\\nNew York, NY 10019 1755 So. Jefferson Davis Highway\\n212/975-2824 Arlington, VA 22202\\n 703/685-2175\\n\"Christian Science Monitor\"\\nCSM Publishing Society \"Los Angeles Times\"\\nOne Norway Street Times-Mirror Square\\nBoston, MA 02115 Los Angeles, CA 90053\\n800/225-7090 800/528-4637\\n\\nCNN \"MacNeil/Lehrer NewsHour\"\\nOne CNN Center P.O. Box 2626\\nBox 105366 Washington, DC 20013\\nAtlanta, GA 30348 703/998-2870\\n404/827-1500\\n \"MacNeil/Lehrer NewsHour\"\\nCNN WNET-TV\\nWashington Bureau 356 W. 58th Street\\n111 Massachusetts Avenue, NW New York, NY 10019\\nWashington, DC 20001 212/560-3113\\n202/898-7900\\n\\n\"Crossfire\" NBC News\\nCNN 4001 Nebraska Avenue, NW\\n111 Massachusetts Avenue, NW Washington, DC 20036\\nWashington, DC 20001 202/885-4200\\n202/898-7951 202/362-2009 (fax)\\n\\n\"Morning Edition/All Things Considered\" \\nNational Public Radio \\n2025 M Street, NW \\nWashington, DC 20036 \\n202/822-2000 \\n\\nUnited Press International\\n1400 Eye Street, NW\\nWashington, DC 20006\\n202/898-8000\\n\\n\"New York Times\" \"U.S. News & World Report\"\\n229 W. 43rd Street 2400 N Street, NW\\nNew York, NY 10036 Washington, DC 20037\\n212/556-1234 202/955-2000\\n212/556-7415\\n\\n\"New York Times\" \"USA Today\"\\nWashington Bureau 1000 Wilson Boulevard\\n1627 Eye Street, NW, 7th Floor Arlington, VA 22229\\nWashington, DC 20006 703/276-3400\\n202/862-0300\\n\\n\"Newsweek\" \"Wall Street Journal\"\\n444 Madison Avenue 200 Liberty Street\\nNew York, NY 10022 New York, NY 10281\\n212/350-4000 212/416-2000\\n\\n\"Nightline\" \"Washington Post\"\\nABC News 1150 15th Street, NW\\n47 W. 66th Street Washington, DC 20071\\nNew York, NY 10023 202/344-6000\\n212/887-4995\\n\\n\"Nightline\" \"Washington Week In Review\"\\nTed Koppel WETA-TV\\nABC News P.O. Box 2626\\n1717 DeSales, NW Washington, DC 20013\\nWashington, DC 20036 703/998-2626\\n202/887-7364\\n\\n\"This Week With David Brinkley\"\\nABC News\\n1717 DeSales, NW\\nWashington, DC 20036\\n202/887-7777\\n\\n\"Time\" magazine\\nTime Warner, Inc.\\nTime & Life Building\\nRockefeller Center\\nNew York, NY 10020\\n212/522-1212\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian admission to the crime of Turkish Genocide.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 34\\n\\nSource: \"Men Are Like That\" by Leonard Ramsden Hartill. The Bobbs-Merrill\\nCompany, Indianapolis (1926). (305 pages). \\n(Memoirs of an Armenian officer who participated in the genocide of 2.5 \\n million Muslim people)\\n\\n\\np. 19 (first paragraph)\\n\\n\"The Tartar section of the town no longer existed, except as a pile of\\n ruins. It had been destroyed and its inhabitants slaughtered. The same \\n fate befell the Tartar section of Khankandi.\"\\n\\np. 130 (third paragraph)\\n\\n\"The city was a scene of confusion and terror. During the early days of \\n the war, when the Russian troops invaded Turkey, large numbers of the \\n Turkish population abandoned their homes and fled before the Russian \\n advance.\"\\n\\np. 181 (first paragraph)\\n\\n\"The Tartar villages were in ruins.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Successful Balloon Flight Measures Ozone Layer\\nOrganization: Jet Propulsion Laboratory\\nLines: 96\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from:\\nPUBLIC INFORMATION OFFICE\\nJET PROPULSION LABORATORY\\nCALIFORNIA INSTITUTE OF TECHNOLOGY\\nNATIONAL AERONAUTICS AND SPACE ADMINISTRATION\\nPASADENA, CALIF. 91109. (818) 354-5011\\n\\nContact: Mary A. Hardin\\n\\nFOR IMMEDIATE RELEASE April 15, 1993\\n#1506\\n\\n Scientists at NASA\\'s Jet Propulsion Laboratory report the\\nsuccessful flight of a balloon carrying instruments designed to\\nmeasure and study chemicals in the Earth\\'s ozone layer.\\n\\n The April 3 flight from California\\'s Barstow/Daggett Airport\\nreached an altitude of 37 kilometers (121,000 feet) and took\\nmeasurements as part of a program established to correlate data\\nwith the Upper Atmosphere Research Satellite (UARS). \\n\\n The data from the balloon flight will also be compared to\\nreadings from the Atmospheric Trace Molecular Spectroscopy\\n(ATMOS) experiment which is currently flying onboard the shuttle\\nDiscovery.\\n\\n \"We launch these balloons several times a year as part of an\\nongoing ozone research program. In fact, JPL is actively\\ninvolved in the study of ozone and the atmosphere in three\\nimportant ways,\" said Dr. Jim Margitan, principal investigator on\\nthe balloon research campaign. \\n\\n \"There are two JPL instruments on the UARS satellite,\" he\\ncontinued. \"The ATMOS experiment is conducted by JPL scientists,\\nand the JPL balloon research provides collaborative ground truth\\nfor those activities, as well as data that is useful in its own\\nright.\"\\n\\n The measurements taken by the balloon payload will add more\\npieces to the complex puzzle of the atmosphere, specifically the\\nmid-latitude stratosphere during winter and spring. \\nUnderstanding the chemistry occurring in this region helps\\nscientists construct more accurate computer models which are\\ninstrumental in predicting future ozone conditions.\\n\\n The scientific balloon payload consisted of three JPL\\ninstruments: an ultraviolet ozone photometer which measures\\nozone as the balloon ascends and descends through the atmosphere;\\na submillimeterwave limb sounder which looks at microwave\\nradiation emitted by molecules in the atmosphere; and a Fourier\\ntransform infrared interferometer which monitors how the\\natmosphere absorbs sunlight. \\n\\n Launch occurred at about noontime, and following a three-\\nhour ascent, the balloon floated eastward at approximately 130\\nkilometers per hour (70 knots). Data was radioed to ground\\nstations and recorded onboard. The flight ended at 10 p.m.\\nPacific time in eastern New Mexico when the payload was commanded\\nto separate from the balloon.\\n\\n \"We needed to fly through sunset to make the infrared\\nmeasurements,\" Margitan explained, \"and we also needed to fly in\\ndarkness to watch how quickly some of the molecules disappear.\"\\n\\n It will be several weeks before scientists will have the\\ncompleted results of their experiments. They will then forward\\ntheir data to the UARS central data facility at the Goddard Space\\nFlight Center in Greenbelt, Maryland for use by the UARS\\nscientists. \\n\\n The balloon was launched by the National Scientific Balloon\\nFacility, normally based in Palestine, Tex., operating under a\\ncontract from NASA\\'s Wallops Flight Facility. The balloon was\\nlaunched in California because of the west-to-east wind direction\\nand the desire to keep the operation in the southwest.\\n\\n The balloons are made of 20-micron (0.8 mil, or less than\\none-thousandth of an inch) thick plastic, and are 790,000 cubic\\nmeters (28 million cubic feet) in volume when fully inflated with\\nhelium (120 meters (400 feet) in diameter). The balloons weigh\\nbetween 1,300 and 1,800 kilograms (3,000 and 4,000 pounds). The\\nscientific payload weighs about 1,300 kilograms (3,000) pounds\\nand is 1.8 meters (six feet) square by 4.6 meters (15 feet) high.\\n\\n The JPL balloon research is sponsored by NASA\\'s Upper\\nAtmosphere Research Program and the UARS Correlative Measurements\\nProgram. \\n\\n #####\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | Being cynical never helps \\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | to correct the situation \\n|_____|/ |_|/ |_____|/ | and causes more aggravation\\n | instead.\\n',\n", - " 'From: bh437292@longs.LANCE.ColoState.Edu (Basil Hamdan)\\nSubject: Re: was:Go Hezbollah!\\nReply-To: bh437292@lance.colostate.edu\\nNntp-Posting-Host: parry.lance.colostate.edu\\nOrganization: Engineering College, Colorado State University\\nLines: 95\\n\\nIn article <1993Apr15.224353.24945@das.harvard.edu>, adam@endor.uucp (Adam Shostack) writes:\\n\\n|> \\tTell me, do these young men also attack Syrian troops?\\n\\nIn the South Lebanon area, only Israeli (and SLA) and Lebanese troops \\nare present.\\nSyrian troops are deployed north of the Awali river. Between the \\nAwali river and the \"Security Zone\" only Lebanese troops are stationed.\\n\\n|> \\n|> >with the blood of its soldiers. If Israel is interested in peace,\\n|> >than it should withdraw from OUR land.\\n|> \\n|> \\tThere must be a guarantee of peace before this happens. It\\n|> seems that many of these Lebanese youth are unable to restrain\\n|> themselves from violence, and unable to to realize that their actions\\n|> prolong Israels stay in South Lebanon.\\n\\nThat is your opinion and the opinion of the Israeli government.\\nI agree peace guarantees would be better for all, but I am addressing\\nthe problem as it stands now. Hopefully a comprehensive peace settlement\\nwill be concluded soon, and will include security guarantees for\\nboth sides. My proposal was aimed at decreasing the casualties\\nin the interim period. In my opinion, if Israel withdraws\\nunilaterally it would still be better off than staying.\\nThe Israeli gov\\'t obviously agrees with you and is not willing\\nto do such a move. I hope to be be able to change your opinion\\nand theirs, that\\'s why I post to tpm.\\n\\n|> \\tIf the Lebanese army was able to maintain the peace, then\\n|> Israel would not have to be there. Until it is, Israel prefers that\\n|> its soldiers die rather than its children.\\n\\nAs I explained, I contend that if Israel does withdraw unilaterally\\nI believe no attacks would ensue against northern Israel. I also\\nexplained why I believe that to be the case. My suggestion\\nis aimed at reducing the level of tension and casualties on all sides.\\nIt is unfortunate that Israel does not agree with my opinion.\\n\\n\\n|> \\n|> >If Israel really wants to save some Israeli lives it would withdraw \\n|> >unilaterally from the so-called \"Security Zone\" before the conclusion\\n|> >of the peace talks. Such a move would save Israeli lives,\\n|> >advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n|> >public image abroad and give it an edge in the peace negociations \\n|> >since Israel can rightly claim that it is genuinely interested in \\n|> >peace and has already offered some important concessions.\\n|> \\n|> \\tIsrael should withdraw from Lebanon when a peace treaty is\\n|> signed. Not a day before. Withdraw because of casualties would tell\\n|> the Lebanese people that all they need to do to push Israel around is\\n|> kill a few soldiers. Its not gonna happen.\\n\\n\\nThat is too bad.\\n \\n|> >Along with such a withdrawal Israel could demand that Hizbollah\\n|> >be disarmed by the Lebanese government and warn that it will not \\n|> >accept any attacks against its northern cities and that if such a\\n|> >shelling occurs than it will consider re-taking the buffer zone\\n|> >and will hold the Lebanese and Syrian government responsible for it.\\n|> \\n|> \\n|> \\tWhy should Israel not demand this while holding the buffer\\n|> zone? It seems to me that the better bargaining position is while\\n|> holding your neighbors land.\\n\\nBecause Israel is not occupying the \"Security Zone\" free of charge.\\nIt is paying the price for that. Once Israel withdraws it may have\\nlost a bargaining chip at the negociating table but it would save\\nsome soldiers\\' lives, that is my contention.\\n\\n If Lebanon were willing to agree to\\n|> those conditions, Israel would quite probably have left already.\\n|> Unfortunately, it doesn\\'t seem that the Lebanese can disarm the\\n|> Hizbolah, and maintain the peace.\\n\\nThat is completely untrue. Hizbollah is now a minor force in Lebanese\\npolitics. The real heavy weights are Syria\\'s allies. The gov\\'t is \\nsupported by Syria. The Lebanese Army is over 30,000 troops and\\nunified like never before. Hizbollah can have no moral justification\\nin attacking Israel proper, especially after Israeli withdrawal.\\nThat would draw the ire of the Lebanese the Syrian and the\\nIsraeli gov\\'ts. If Israel does withdraw and such an act \\n(Hizbolllah attacking Israel) would be akin to political and moral \\nsuicide.\\n\\nBasil\\n \\n|> Adam\\n|> Adam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n|> \\n|> \"If we had a budget big enough for drugs and sexual favors, we sure\\n|> wouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: gregh@niagara.dcrt.nih.gov (Gregory Humphreys)\\nSubject: New to Motorcycles...\\nOrganization: National Institutes of Health, Bethesda, MD\\nLines: 39\\n\\nHello everyone. I\\'m new to motorcycles so no flames please. I don\\'t\\nhave my bike yet so I need a few pieces of information:\\n\\n1) I only have about $1200-1300 to work with, so that would have \\nto cover everything (bike, helmet, anything else that I\\'m too \\nignorant to know I need to buy)\\n\\n2) What is buying a bike going to do to my insurance? I turn 18 in \\nabout a month so my parents have been taking care of my insurance up\\ntill now, and I need a comprehensive list of costs that buying a \\nmotorcycle is going to insure (I live in Washington DC if that makes\\na difference)\\n\\n3) Any recommendations on what I should buy/where I should look for it?\\n\\n4) In DC, as I imagine it is in every other state (OK, OK, we\\'re not a \\nstate - we\\'re not bitter ;)), you take the written test first and then\\nget a learners permit. However, I\\'m wondering how one goes about \\nlearning to ride the bike proficiently enough so as to a) get a liscence\\nand b) not kill oneself. I don\\'t know anyone with a bike who could \\nteach me, and the most advice I\\'ve heard is either \"do you live near a\\nfield\" or \"do you have a friend with a pickup truck\", the answers to both\\nof which are NO. Do I just ride around my neighborhood and hope for \\nthe best? I kind of live in a residential area but it\\'s not suburbs.\\nIt\\'s still the big city and I\\'m about a mile from downtown so that \\ndoesn\\'t seem too viable. Any stories on how you all learned?\\n\\nThanks for any replies in advance.\\n\\n\\t-Greg Humphreys\\n\\t:wq\\n\\t^^^\\n\\tMeant to do that. (Damn autoindent)\\n\\n--\\nGreg Humphreys | \"This must be Thursday. I never\\nNational Institutes of Health| could get the hang of Thursdays.\"\\ngregh@alw.nih.gov |\\n(301) 402-1817\\t | -Arthur Dent\\n',\n", - " 'From: joachim@kih.no (joachim lous)\\nSubject: Re: TIFF: philosophical significance of 42\\nOrganization: Kongsberg Ingeniorhogskole\\nLines: 30\\nNNTP-Posting-Host: samson.kih.no\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\nulrich@galki.toppoint.de wrote:\\n\\n> According to the TIFF 5.0 Specification, the TIFF \"version number\"\\n> (bytes 2-3) 42 has been chosen for its \"deep philosophical \\n> significance\".\\n\\n> When I first read this, I rotfl. Finally some philosphy in a technical\\n> spec. But still I wondered what makes 42 so significant.\\n\\n> Last week, I read the Hitchhikers Guide To The Galaxy, and rotfl the\\n> second time. (After millions of years of calculation, the second-best\\n> computer of all time reveals that 42 is the answer to the question\\n> about life, the universe and everything)\\n\\n> Is this actually how they picked the number 42?\\n\\nYes.\\n\\n> Does anyone have any other suggestions where the 42 came from?\\n\\nI don\\'t know where Douglas Adams took it from, but I\\'m pretty sure he\\'s\\nthe one who launched it (in the Guide). Since then it\\'s been showing up \\nall over the place.\\n\\n _______________________________\\n / _ L* / _ / . / _ /_ \"One thing is for sure: The sheep\\n / _) /()(/(/)//)) /_ ()(/_) / / Is NOT a creature of the earth.\"\\n / \\\\_)~ (/ Joachim@kih.no / / \\n/_______________________________/ / -The back-masking on \\'Haaden II\\'\\n /_______________________________/ from \\'Exposure\\' by Robert Fripp.\\n',\n", - " 'From: steinly@topaz.ucsc.edu (Steinn Sigurdsson)\\nSubject: Re: DC-X Rollout Report\\nArticle-I.D.: topaz.STEINLY.93Apr6170313\\nDistribution: sci\\nOrganization: Lick Observatory/UCO\\nLines: 29\\nNNTP-Posting-Host: topaz.ucsc.edu\\nIn-reply-to: buenneke@monty.rand.org\\'s message of Tue, 6 Apr 1993 22:34:39 GMT\\n\\nIn article buenneke@monty.rand.org (Richard Buenneke) writes:\\n\\n McDonnell Douglas rolls out DC-X\\n\\n ...\\n\\n\\n SSTO research remains cloudy. The SDI Organization -- which paid $60\\n million for the DC-X -- can\\'t itself afford to fund full development of a\\n follow-on vehicle. To get the necessary hundreds of millions required for\\n\\nThis is a little peculiar way of putting it, SDIO\\'s budget this year\\nwas, what, $3-4 billion? They _could_ fund all of the DC development\\nout of one years budget - of course they do have other irons in the\\nfire ;-) and launcher development is not their primary purpose, but\\nthe DC development could as easily be paid for by diverting that money\\nas by diverting the comparable STS ops budget...\\n\\n- oh, and before the flames start. I applaud the SDIO for funding DC-X\\ndevlopment and I hope it works, and, no, launcher development is not\\nNASAs primary goal either, IMHO they are supposed to provide the\\nenabling technology research for others to do launcher development,\\nand secondarily operate such launchers as they require - but that\\'s\\njust me.\\n\\n| Steinn Sigurdsson\\t|I saw two shooting stars last night\\t\\t|\\n| Lick Observatory\\t|I wished on them but they were only satellites\\t|\\n| steinly@lick.ucsc.edu |Is it wrong to wish on space hardware?\\t\\t|\\n| \"standard disclaimer\"\\t|I wish, I wish, I wish you\\'d care - B.B. 1983\\t|\\n',\n", - " \"From: rogerc@discovery.uk.sun.com (Roger Collier)\\nSubject: Re: Camping question?\\nOrganization: Sun Microsystems (UK) Ltd\\nLines: 26\\nDistribution: world\\nReply-To: rogerc@discovery.uk.sun.com\\nNNTP-Posting-Host: discovery.uk.sun.com\\n\\nIn article 10823@bnr.ca, npet@bnr.ca (Nick Pettefar) writes:\\n\\n>\\n>Back in my youth (ahem) the wiffy and moi purchased a gadget which heated up\\n>water from a 12V source. It was for car use but we thought we'd try it on my\\n>RD350B. It worked OK apart from one slight problem: we had to keep the revs \\n>above 7000. Any lower and the motor would die from lack of electron movement.\\n\\nOn my LC (RZ to any ex-colonists) I replaced the bolt at the bottom of the barrel\\nwith a tap. When I wanted a coffee I could just rev the engine until boiling\\nand pour out a cup of hot water.\\nI used ethylene glycol as antifreeze rather than methanol as it tastes sweeter.\\n\\n(-:\\n\\n #################################\\n _ # Roger.Collier@Uk.Sun.COM #\\no_/_\\\\_o # #\\n (O_O) # Sun Microsystems, #\\n \\\\H/ # Coventry, England. #\\n U # (44) 203 692255 #\\n # DoD#226 GSXR1100L #\\n #################################\\n Keeper of the GSXR1100 list.\\n\\n\\n\",\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Russian Operation of US Space Missions.\\nOrganization: University of Illinois at Urbana\\nLines: 10\\n\\nI know people hate it when someone says somethings like \"there was an article \\nabout that somewhere a while ago\" but I\\'m going to say it anyway. I read an\\narticle on this subject, almost certainly in Space News, and something like\\nsix months ago. If anyone is really interested in the subject I can probably\\nhunt it down given enough motivation.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n \"Tout ce qu\\'un homme est capable d\\'imaginer, d\\'autres hommes\\n \\t seront capable de le realiser\"\\n\\t\\t\\t -Jules Verne\\n',\n", - " 'From: r0506048@cml3 (Chun-Hung Lin)\\nSubject: Re: JPEG file format?\\nNntp-Posting-Host: cml3.csie.ntu.edu.tw\\nReply-To: r0506048@csie.ntu.edu.tw\\nOrganization: Communication & Multimedia Lab, NTU, Taiwan\\nX-Newsreader: Tin 1.1 PL3\\nLines: 20\\n\\npeterbak@microsoft.com (Peter Bako) writes:\\n: \\n: Where could I find a description of the JPG file format? Specifically\\n: I need to know where in a JPG file I can find the height and width of \\n: the image, and perhaps even the number of colors being used.\\n: \\n: Any suggestions?\\n: \\n: Peter\\n\\nTry ftp.uu.net, in /graphics/jpeg.\\n--\\n--------------------------------\\n=================================================================\\nChun-Hung Lin ( ªL«T§» ) \\nr0506048@csie.ntu.edu.tw \\nCommunication & Multimedia Lab.\\nDept. of Comp. Sci. & Info. Eng.\\nNational Taiwan University, Taipei, Taiwan, R.O.C.\\n=================================================================\\n',\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: H.R. violations by Israel/Arab st.\\nOrganization: The Department of Redundancy Department\\nLines: 37\\n\\nIn article <1483500360@igc.apc.org> Center for Policy Research writes:\\n\\n>I am born in Palestine (now Israel). I have family there. The lack of\\n>peace and utter injustice in my home country has affected me all my life.\\n\\nBullshit. You\\'ve been in Iceland for the past 30 years. You told us\\nso yourself. It had something to do with not wanting to suffer the\\nfate of your mother, who has lived with Jews for a long time or\\nsomesuch. Sounded awful.\\n\\n>I am concerned by Palestine (Israel) because I want peace to come to\\n>it. Peace AND justice. \\n\\nAre you as concerned about peace and justice in Palestine (Jordan)?\\n\\n>Israeli trights and Palestinian rights are not symmetrical. The first\\n>party has a state and the other has none. The first is an occupier and\\n>the second the occupied. \\n\\nLet\\'s say that Israel grants the PLO _EVERYTHING THEY EVER ASKED FOR_.\\nThat Israel goes back to the 1967 borders. What will the \"Palestinean\\nArabs\" in Tel-Aviv call themselves? The Palestineans in West\\nJerusalem? In Haifa? Will they still claim to be \"occupied\"?\\n\\nOr do you suggest that Israel expell or kill off any remaining Arabs,\\nmuch as the Arabs did to their Jews?\\n\\nIndeed, there is much which is not symmetrical about the conflict in\\nthe M.E. And most of this lack of symmetry does NOT favor Israel.\\n\\n>Elias Davidsson\\n>Iceland\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 29\\n\\n\\nRobert Knowles writes:\\n\\n>>\\n>>My my, there _are_ a few atheists with time on their hands. :)\\n>>\\n>>OK, first I apologize. I didn\\'t bother reading the FAQ first and so fired an\\n>>imprecise flame. That was inexcusable.\\n>>\\n\\n>How about the nickname Bake \"Flamethrower\" Timmons?\\n\\nSure, but Robert \"Koresh-Fetesh\" (sic) Knowles seems good, too. :) \\n>\\n>You weren\\'t at the Koresh compound around noon today by any chance, were you?\\n>\\n>Remember, Koresh \"dried\" for your sins.\\n>\\n>And pass that beef jerky. Umm Umm.\\n\\nThough I wasn\\'t there, at least I can rely on you now to keep me posted on what\\nwhat he\\'s doing.\\n\\nHave you any other fetishes besides those for beef jerky and David Koresh? \\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nArticle-I.D.: po.kmr4.1447.734101641\\nOrganization: Case Western Reserve University\\nLines: 28\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1993Apr6.041343.24997@cbnewsl.cb.att.com> stank@cbnewsl.cb.att.com (Stan Krieger) writes:\\n\\n>The point has been raised and has been answered. Roger and I have\\n>clearly stated our support of the BSA position on the issue;\\n>specifically, that homosexual behavior constitutes a violation of\\n>the Scout Oath (specifically, the promise to live \"morally straight\").\\n\\n\\tPlease define \"morally straight\". \\n\\n\\t\\n\\t\\n\\tAnd, don\\'t even try saying that \"straight\", as it is used here, \\nimplies only hetersexual behavior. [ eg: \"straight\" as in the slang word \\nopposite to \"gay\" ]\\n\\n\\n\\tThis is alot like \"family values\". Everyone is talking about them, \\nbut misteriously, no one knows what they are.\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n',\n", - " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Political Atheists?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 11\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\narromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>>The motto originated in the Star-Spangled Banner. Tell me that this has\\n>>something to do with atheists.\\n>The motto _on_coins_ originated as a McCarthyite smear which equated atheism\\n>with Communism and called both unamerican.\\n\\nNo it didn't. The motto has been on various coins since the Civil War.\\nIt was just required to be on *all* currency in the 50's.\\n\\nkeith\\n\",\n", - " 'From: manes@magpie.linknet.com (Steve Manes)\\nSubject: Re: Oops! Oh no!\\nOrganization: Manes and Associates, NYC\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 53\\n\\nWm. L. Ranck (ranck@joesbar.cc.vt.edu) wrote:\\n: I hate to admit this, and I\\'m still mentally kicking myself for it.\\n: I rode the brand new K75RT home last Friday night. 100 miles in rain\\n: and darkness. No problems. Got it home and put it on the center stand.\\n: The next day I pushed it off the center stand in preparation for going\\n: over to a friend\\'s house to pose. You guessed it. It got away from me\\n: and landed on its right side. \\n: Scratched the lower fairing, cracked the right mirror, and cracked the\\n: upper fairing. \\n: *DAMN* am I stupid! It\\'s going to cost me ~$200 to get the local\\n: body shop to fix it. And that is after I take the fairing off for them.\\n: Still, that\\'s probably cheaper than the mirror alone if I bought a \\n: replacement from BMW.\\n\\nYou got off cheap. My sister\\'s ex-boyfriend was such an incessant pain\\nin the ass about wanting to ride my bikes (no way, Jose) that I\\nfinally took him to Lindner\\'s BMW in New Canaan, CT last fall where\\nI had seen a nice, used K100RS in perfect condition. After telling\\neveryone in the shop his Norton war stories from fifteen years ago,\\nsigning the liability waiver, and getting his pre-flight, off he went...\\n\\nWell, not quite. I walked out of a pizza shop up the street,\\nfeeling good about myself (made my sister\\'s boyfriend happy and got\\nthe persistent wanker off my ass for good), heard the horrendous\\nracket of an engine tortured to its red line and then a crash. I\\nsaw people running towards the obvious source of the disturbance...\\nJeff laying under the BMW with the rear wheel spinning wildly and\\nsomeone groping for the kill switch. I stared in disbelief with\\na slice hanging out of my mouth as Matty, the shop manager, slid\\nup beside me and asked, \"Friend of yours, Steve?\". \"Shit, Matty,\\nit could have been worse. That could been my FLHS!\"\\n\\nJeff hadn\\'t made it 10 inches. Witnesses said he lifted his feet\\nbefore letting out the clutch and gravity got the best of him.\\nJeff claimed that the clutch didn\\'t engage. Matty was quick.\\nWhile Jeff was still stuttering in embarrassed shock he managed\\nto snatch Jeff\\'s credit card for a quick imprint and signature. Twenty\\nminutes later, when Jeff\\'s color had paled to a flush, Matty\\npresented him with an estimate of $580 for a busted right mirror\\nand a hairline crack in the fairing. That was for fixing the crack\\nand masking the damaged area, not a new fairing. Or he could buy the\\nbike.\\n\\nI\\'m not sure what happened later as my sister split up with Jeff shortly\\nafterwards (to hook up with another piece of work) except that Matty\\ntold me he ran the charge through in December and that it went\\nuncontested.\\n\\n\\n-- \\nStephen Manes\\t\\t\\t\\t\\t manes@magpie.linknet.com\\nManes and Associates\\t\\t\\t\\t New York, NY, USA =o&>o\\n\\n',\n", - " \"From: pmm7@ellis.uchicago.edu (peggy boucher murphy (you had to ask?))\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nReply-To: pmm7@midway.uchicago.edu\\nOrganization: University of Chicago\\nLines: 21\\n\\nIn article Steven Smith writes:\\n>dgannon@techbook.techbook.com (Dan Gannon) writes:\\n>> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>>\\n>> by Theodore J. O'Keefe\\n>>\\n>> [Holocaust revisionism]\\n>> \\n>> Theodore J. O'Keefe is an editor with the Institute for Historical\\n>> Review. Educated at Harvard University . . .\\n>\\n>According to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\n>graduate. You may decide for yourselves if he was indeed educated\\n>anywhere.\\n\\n(forgive any inaccuracies, i deleted the original post)\\nisn't this the same person who wrote the book, and was censured\\nin canada a few years back? \\n\\npeg\\n\\n\",\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Jemison on Star Trek (Better Ideas)\\nOrganization: Express Access Online Communications USA\\nLines: 11\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr25.154449.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n|\\n|Better idea for use of NASA Shuttle Astronauts and Crew is have them be found\\n|lost in space after a accident with a worm hole or other space/time glitch..\\n|\\n|Maybe age Jemison a few years (makeup and such) and have her as the only\\n>survivour of a failed shuttle mission that got lost.. \\n\\n\\nOf course that asumes the mission was able to launch :-)\\n\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: Express Access Online Communications USA\\nLines: 20\\nNNTP-Posting-Host: access.digex.net\\nKeywords: Galileo, JPL\\n\\n\\n\\nINteresting question about Galileo.\\n\\nGalileo's HGA is stuck. \\n\\nThe HGA was left closed, because galileo had a venus flyby.\\n\\nIf the HGA were pointed att he sun, near venus, it would\\ncook the foci elements.\\n\\nquestion: WHy couldn't Galileo's course manuevers have been\\ndesigned such that the HGA did not ever do a sun point.?\\n\\nAfter all, it would normally be aimed at earth anyway?\\n\\nor would it be that an emergency situation i.e. spacecraft safing\\nand seek might have caused an HGA sun point?\\n\\npat\\n\",\n", - " \"From: perrakis@embl-heidelberg.de\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: EMBL, European Molecular Biology Laboratory\\nLines: 76\\n\\nIn article <93105.134708FINAID2@auvm.american.edu>, writes:\\n>> Look Mr. Atakan: I have repeated it in the past, and I shall repeat it once\\n>> more, that when it comes to how Greeks are treating the Turks in Greece,\\n>> you and your copatriots should simply shut up.\\n>>\\n>> Because what you are hearing is simply a form of propaganda from your ethnic\\n>> fellows who studied at the Greek universities without paying any money for\\n>> tuition, food, and helth insurance.\\n>>\\n>> And any high school graduate can put down some simple math and compare the\\n>> grouth of the Turkish community in Greece with the destruction of the Greek\\n>> minority in Turkey.\\n>>\\n>> >Aykut Atalay Atakan\\n>>\\n>> Panos Tamamidis\\n> \\n> Mr. Tamamidis:\\n> \\n> Before repling your claims, I suggest you be kind to individuals\\n> who are trying to make some points abouts human rights, discriminations,\\n> and unequal treatment of Turkish minority in GREECE.I want the World\\n> know how bad you treat these people. You will deny anything I say but\\n> It does not make any difrence because I will write things that I saw with\\n> my eyes.You prove yourself prejudice by saying free insurance, school\\n> etc. Do you Greeks only give these things to Turkish minority or\\n> everybody has rights to get them.Your words even discriminate\\n> these people. You think that you are giving big favor to these\\n> people by giving these thing that in reality they get nothing.\\n> If you do not know unhuman practices that are being conducted\\n> by the Government of the Greece, I suggest that you investigate\\n> to see the facts. Then, we can discuss about the most basic\\n> human rights like fredom of religion,\\nIf you did not see with your 'eyes' freedom of religion you\\nmust ne at least blind !\\n> fredom of press of Turkish\\n2 weeks ago I read the interview of a Turkish journalist in a GReek magazine,\\nhe said nothing about being forbiden to have Turkish press in Greece !\\n> minority, ethnic cleansing of all Turks in Greece,\\nGive as a brake. You call athnic cleansing of apopulation when it doubles?\\n> freedom of\\n> right to have property without government intervention,\\nWhat do you mean by that ? Anyway in Greece, as in every country if you want\\nsome property you 'inform' the goverment .\\n> fredom of right to vote to choose your community leaders,\\nWell well well. When Turkish in Area of Komotini elect 1 out of 3\\nrepresenatives of this area to GReek parliament, if not freedom what is it?\\n3 out of 3 ? Maybe there are only Turks living there ....\\n> how Greek Government encourages people to destroy\\n> religious places, houses, farms, schools for Turkish minority then\\n> forcing them to go to turkey without anything with them.\\nI cannot deny that actions of fanatics from both sides were reported.\\nA minority of Greek idiots indeed attack religious places, which\\nwere protected by the Greek police. Photographs of Greek policemen \\npreventing Turks from this non brain minority were all over Greek press.\\n> Before I conclude my writing, let me point out how Greeks are\\n> treated in Turkey. We do not consider them Greek minority, instead\\n> we consider a part of our society. There is no difference among people in\\n> Turkey. We do not state that Greek minority go to Turkish universities,\\n> get free insurance, food, and health insurance because these are basic\\n> human needs and they are a part of turkish community. All big businesses\\n> belong to Greeks in Turkey and we are proud to have them.unlike the\\n> Greece which tries to destroy Turkish minority, We encourage all\\n> minorities in Turkey to be a part of Turkish society.\\n\\n\\nOh NO. PLEASE DO GIVE AS A BRAKE !\\nMinorities in Turkish treated like that ? YOur own countrymen die\\nin the prisons every day bacause of their political beliefs, an this\\nis reported by Turks, and you want us to believe tha Turkey is the paradise\\nof Human rights ? Business of Greeks i Turkey? Yes 80 years ago !\\nYou seem to be intelligent, so before presenting Turkey as the paradise of\\nHuman rights just invastigate this matter a bit more.\\n> \\n> Aykut Atalay Atakan\\n> \\n\",\n", - " \"From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: some thoughts.\\nOrganization: Cookamunga Tourist Bureau\\nLines: 24\\n\\nIn article , bissda@saturn.wwc.edu (DAN\\nLAWRENCE BISSELL) wrote:\\n> \\n> \\tFirst I want to start right out and say that I'm a Christian. It \\n> makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n> lunatic, or the real thing? (I might be a little off on the title, but he \\n> writes the book. Anyway he was part of an effort to destroy Christianity, \\n> in the process he became a Christian himself.\\n\\nSeems he didn't understand anything about realities, liar, lunatic\\nor the real thing is a very narrow view of the possibilities of Jesus\\nmessage.\\n\\nSigh, it seems religion makes your mind/brain filter out anything\\nthat does not fit into your personal scheme. \\n\\nSo anyone that thinks the possibilities with Jesus is bound to the\\nclassical Lewis notion of 'liar, lunatic or saint' is indeed bound\\nto become a Christian.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n\",\n", - " \"From: farzin@apollo3.ntt.jp (Farzin Mokhtarian)\\nSubject: News briefs from KH # 1026\\nOriginator: sehari@vincent1.iastate.edu\\nOrganization: NTT Corp. Japan\\nLines: 31\\n\\n\\nFrom: Kayhan Havai # 1026\\n--------------------------\\n \\n \\no Dr. Namaki, deputy minister of health stated that infant\\n mortality (under one year old) in Iran went down from 120 \\n per thousand before the revolution to 33 per thousand at\\n the end of 1371 (last month).\\n \\no Dr Namaki also stated that before the revolution only\\n 254f children received vaccinations to protect them\\n from various deseases but this figure reached 93at\\n the end of 1371.\\n \\no Dr. Malekzadeh, the minister of health mentioned that\\n the population growth rate in Iran at the end of 1371\\n went below 2.7\\n \\no During the visit of Mahathir Mohammad, the prime minister\\n of Malaysia, to Iran, agreements for cooperation in the\\n areas of industry, trade, education and tourism were\\n signed. According to one agreement, Iran will be in\\n charge of building Malaysia's natural gas network.\\n \\n----------------------------------------------------------\\n \\n - Farzin Mokhtarian\\n \\n\\n-- \\n\",\n", - " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: insect impacts\\nOrganization: Ontario Hydro - Research Division\\nLines: 64\\n\\nI feel childish.\\n\\nIn article <1ppvds$92a@seven-up.East.Sun.COM> egreen@East.Sun.COM writes:\\n>In article 7290@rd.hydro.on.ca, jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n>>>>\\n>>>>how _do_ the helmetless do it?\\n>>>\\n>>>Um, the same way people do it on \\n>>>horseback\\n>>\\n>>not as fast, and they would probably enjoy eating bugs, anyway\\n>\\n>Every bit as fast as a dirtbike, in the right terrain. And we eat\\n>flies, thank you.\\n\\nWho mentioned dirtbikes? We're talking highway speeds here. If you go 70mph\\non your dirtbike then feel free to contribute.\\n\\n>>>jeeps\\n>>\\n>>you're *supposed* to keep the windscreen up\\n>\\n>then why does it go down?\\n\\nBecause it wouldn't be a Jeep if it didn't. A friend of mine just bought one\\nand it has more warning stickers than those little 4-wheelers (I guess that's\\nbecuase it's a big 4 wheeler). Anyway, it's written in about ten places that\\nthe windshield should remain up at all times, and it looks like they've made\\nit a pain to put it down anyway, from what he says. To be fair, I do admit\\nthat it would be a similar matter to drive a windscreenless Jeep on the \\nhighway as for bikers. They may participate in this discussion, but they're\\nprobably few and far between, so I maintain that this topic is of interest\\nprimarily to bikers.\\n\\n>>>snow skis\\n>>\\n>>NO BUGS, and most poeple who go fast wear goggles\\n>\\n>So do most helmetless motorcyclists.\\n\\nNotice how Ed picked on the more insignificant (the lower case part) of the \\ntwo parts of the statement. Besides, around here it is quite rare to see \\nbikers wear goggles on the street. It's either full face with shield, or \\nopen face with either nothing or aviator sunglasses. My experience of \\nbicycling with contact lenses and sunglasses says that non-wraparound \\nsunglasses do almost nothing to keep the crap out of ones eyes.\\n\\n>>The question still stands. How do cruiser riders with no or negligible helmets\\n>>stand being on the highway at 75 mph on buggy, summer evenings?\\n>\\n>helmetless != goggleless\\n\\nOk, ok, fine, whatever you say, but lets make some attmept to stick to the\\npoint. I've been out on the road where I had to stop every half hour to clean\\nmy shield there were so many bugs (and my jacket would be a blood-splattered\\nmess) and I'd see guys with shorty helmets, NO GOGGLES, long beards and tight\\nt-shirts merrily cruising along on bikes with no windscreens. Lets be really\\nspecific this time, so that even Ed understands. Does anbody think that \\nsplattering bugs with one's face is fun, or are there other reasons to do it?\\nImage? Laziness? To make a point about freedom of bug splattering?\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", - " 'From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: UEA School of Information Systems, Norwich, UK.\\nLines: 86\\nNntp-Posting-Host: zen.sys.uea.ac.uk\\n\\nleavitt@cs.umd.edu (Mr. Bill) writes:\\n\\n>mjs@sys.uea.ac.uk (Mike Sixsmith) writes:\\n>mjs>Also, IMHO, telling newbies about countersteering is, er, counter-productive\\n>mjs>cos it just confuses them. I rode around quite happily for 10 years \\n>mjs>knowing nothing about countersteering. I cannot say I ride any differently\\n>mjs>now that I know about it.\\n\\n>I interpret this to mean that you\\'re representative of every other\\n>motorcyclist in the world, eh Mike? Rather presumptive of you!\\n\\nIMHO = in my humble opinion!!\\n\\n>leavitt@cs.umd.edu (Mr. Bill) writes:\\n>leavitt>The time to learn countersteering techniques is when you are first\\n>leavitt>starting to learn, before you develop any bad habits. I rode for\\n>leavitt>five years before taking my first course (MSF ERC) and learning\\n>leavitt>about how to countersteer. It\\'s now eight years later, and I *still*\\n>leavitt>have to consciously tell myself \"Don\\'t steer, COUNTERsteer!\" Old\\n>leavitt>habits die hard, and bad habits even harder.\\n\\n>mjs>Sorry Bill, but this is complete bollocks. You learned how to countersteer \\n>mjs>the first time you rode the bike, it\\'s natural and intuitive. \\n\\n>Sorry Mike, I\\'m not going to kick over the \"can you _not_ countersteer\\n>over 5mph?\" stone. That one\\'s been kicked around enough. For the sake of\\n>argument, I\\'ll concede that it\\'s countersteering (sake of argument only).\\n\\n>mjs>MSF did not teach you *how* to countersteer, it only told you what\\n>mjs>you were already doing.\\n\\n>And there\\'s no value in that? \\n\\n\\nI didn\\'t say there was no value - all I said was that it is very confusing\\nto newbies. \\n\\n> There\\'s a BIG difference in: 1) knowing\\n>what\\'s happening and how to make it do it, especially in the extreme\\n>case of an emergency swerve, and: 2) just letting the bike do whatever\\n>it does to make itself turn. Once I knew precisely what was happening\\n>and how to make it do it abruptly and on command, my emergency avoidance\\n>abilities improved tenfold, not to mention a big improvement in my normal\\n>cornering ability. I am much more proficient \"knowing\" how to countersteer\\n>the motorcycle rather than letting the motorcycle steer itself. That is,\\n>when I *remember* to take cognitive command of the bike rather than letting\\n>it run itself through the corners. Whereupon I return to my original\\n>comment - better to learn what\\'s happening right from the start and how\\n>to take charge of it, rather than developing the bad habit of merely going\\n>along for the ride.\\n\\nBill, you are kidding yourself here. Firstly, motorcycles do not steer\\nthemselves - only the rider can do that. Secondly, it is the adhesion of the\\ntyre on the road, the suspension geometry and the ground clearance of the\\n motorcycle which dictate how quickly you can swerve to avoid obstacles, and\\nnot the knowledge of physics between the rider\\'s ears. Are you seriously\\nsuggesting that countersteering knowledge enables you to corner faster\\nor more competentlY than you could manage otherwise??\\n\\n\\n>Mike, I\\'m extremely gratified for you that you have such a natural\\n>affinity and prowess for motorcycling that formal training was a total\\n>waste of time for you (assuming your total \"training\" hasn\\'t come from\\n>simply from reading rec.motorcycles). However, 90%+ of the motorcyclists\\n>I\\'ve discussed formal rider education with have regarded the experience\\n>as overwhelmingly positive. This regardless of the amount of experience\\n>they brought into the course (ranging from 10 minutes to 10+ years).\\n\\nFormal training in this country (as far as I am aware) does not include\\ncountersteering theory. I found out about countersteering about six years ago,\\nfrom a physics lecturer who was also a motorcyclist. I didn\\'t believe him\\nat first when he said I steered my bike to the right to make it turn left,\\nbut I went out and analysed closely what I was doing, and realized he was \\nright! It\\'s an interesting bit of knowledge, and I\\'ve had a lot of fun since\\nthen telling others about it, who were at first as sceptical as I was. But\\nthat\\'s all it is - an interesting bit of knowledge, and to claim that\\nit is essential for all bikers to know it, or that you can corner faster\\nor better as a result, is absurd.\\n\\nFormal training is in my view absolutely essential if you\\'re going to\\nbe able to ride a bike properly and safely. But by including countersteering\\ntheory in newbie courses we are confusing people unnecessarily, right at\\nthe time when there are *far* more important matters for them to learn.\\nAnd that was my original point.\\n\\nMike\\n',\n", - " \"From: frahm@ucsu.colorado.edu (Joel A. Frahm)\\nSubject: Re: Identify this bike for me\\nArticle-I.D.: colorado.1993Apr6.153132.27965\\nReply-To: frahm@ucsu.colorado.edu\\nOrganization: Department of Rudeness and Pomposity\\nLines: 17\\nNntp-Posting-Host: sluggo.colorado.edu\\n\\n\\nIn article <1993Apr6.002937.9237@adobe.com> cjackson@adobe.com (Curtis Jackson) writes:\\n>In article <1993Apr5.193804.18482@ucsu.Colorado.EDU> coburnn@spot.Colorado.EDU (Nicholas S. Coburn) writes:\\n>}first I thought it was an 'RC31' (a Hawk modified by Two Brothers Racing),\\n>}but I did not think that they made this huge tank for it. Additionally,\\n>\\nI think I've seen this bike. Is it all white, with a sea-green stripe\\nand just 'HONDA' for decals, I've seen such a bike numerous times over\\nby Sewall hall at CU, and I thought it was a race-prepped CBR. \\nI didn't see it over at the EC parking lot (I buzzed over there on my \\nway home, all of 1/2 block off my route!) but it was gone.\\n\\nIs a single sided swingarm available for the CBR? I would imagine so, \\nkinda neccisary for quick tire changes. When I first saw it, I assumed it\\nwas a bike repainted to cover crash damage.\\n\\nJoel.\\n\",\n", - " 'From: nanderso@Endor.sim.es.com (Norman Anderson)\\nSubject: COMET...when did/will she launch?\\nOrganization: Evans & Sutherland Computer Corp.\\nLines: 12\\n\\nCOMET (Commercial Experiment Transport) is to launch from Wallops Island\\nVirginia and orbit Earth for about 30 days. It is scheduled to come down\\nin the Utah Test & Training Range, west of Salt Lake City, Utah. I saw\\na message in this group toward the end of March that it was to launch \\non March 27. Does anyone know if it launched on that day, or if not, \\nwhen it is scheduled to launch and/or when it will come down.\\n\\nI would also be interested in what kind(s) of payload(s) are onboard.\\n\\nThanks for your help.\\n\\nNorman Anderson nanderso@endor.sim.es.com\\n',\n", - " ...],\n", - " 'filenames': array(['/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/sci.space/60862',\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76238',\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/alt.atheism/53093',\n", - " ...,\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/sci.space/60155',\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76058',\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76304'],\n", - " dtype='" ] @@ -1822,7 +809,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm8ZllZHvqsU1U9VHX1KDKZK4omRqOSK0S8KqBRNDhEI2FQQaKJcEkUZ1FypcFZf45BIo4E2ojGCWcmbQFnnOIEOHRzUbql6aaHquqp6uz8sfdb5z3P9z7vXt+pU3X2h+/z+53fd749rHmtbz3vtNowDCgUCoVCobB8bB10AQqFQqFQKPShfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAjqR7tQKBQKhQ3B7I92a+0ZrbWhtXZ7a+0qund4unfteSvhhqK19rjW2rWttS26/rCpzZ5xQEUr7AOmefH5B5T3MP2t5N9au661diNdu3F6/n+K9H59uv9GkQ//XddRxq3W2h+31r6Crn9Ga+31rbV3ttbubq29rbX2c621T3bP2JrzAR3tcO1cWQ4SU91evM9pqn7xfzfuU16XTOk9d5/S+4BpXfy/gns3t9a+fz/y2Q+01j6utfY70zh9R2vt21prF3e89ztJv/zcuZbr8BrPXgHgqwHsS+f9I8DjADwfwDcA2HbXbwLwUQD+5gDKVNg/PAPj/PmRAyzD81tr1w3DcF/Hs3cB+IzW2vFhGO6yi6219wXw2Ol+hJcCeAldu6Ujv88F8GAAZ3+wWmtfDOB7MLbZtwM4CeDhAD4FwMcD+NWOdDcNLwDwe6217x6G4a37lOZH0fefBfAnAK511+7dp7zunfL7//cpvQ/AuC6+NkjzCQDevU/5nBNaa4/EOB5fCeB5GMv97QAeCODzZl7/AgDH6dpjAXwLgJ8/17Kt86P9agBf1Fr7rmEY/uFcM/7HimEY7gXwOwddjsLG49UAHg/gmQD+W8fzrwHwiQA+C+MPseFpAG4E8HYAh4L3/n4Yhr2M168A8LJhGE7RtZ8bhuEL3LVfA/CDLJFaKlprF09zuAvDMPxRa+2PAHwJgGfvRxm4P1pr9wJ4V28/rVOHYYy+dUHWq2EY/vBC5NOJrwfw1wCeOgzDGQCva60NAF7SWvu2YRj+XL0Y3WutfRGAUwD+17kWbJ2J8g3T53+de7C19q9aa69trZ1orZ1srb2utfav6JmXttb+rrX2L1trb2itnWqt/VVr7Vk9hVnn/dba+7XWfqy1dktr7d5JbPeZwXNPba29ubV2T2vtT1trn95au761dr175pLW2ne11v5sqt/NrbVfaK19kHvmWoy7SQC430Qj071d4vHW2le21u5rrV0TlOcvWmuvdN+Ptta+tbV2w/TODa215/UseK21Y621b2mt/c3UBje31n66tfZA98w6/fbI1tpvTaKjt7TWPmW6/2VtFMfe2Vp7ZWvtAfT+0Fr7xqncfze9//rW2iPoudZa+9Ip7ftaaze11l7UWrs8SO8bWmtfPLXHXa2132itfUjQBv+ujaKrU21U9/yvRmK6qezXtdae0lr7y6kd3tRa+xj3zPUYd84f3XbEXtdP9x7UWvsfbRSn3TuV+xdba+8910dr4vcB/ByA57XWjnY8fzeAn8L4I+3xNAAvB7BvoRFbax8J4EMBsDj+agA3R+8Mw7AdXXdpPrK19g+ttZ9prV2SPPfhrbWfb629expbv9la+1h65lGttZ9y4+8trbVvaq1dSs9d31p7Y2vt01prf9TGH8dnT/e6xx2AVwD4HE7/QqC19orW2l+31h4zjf27Abxwuvf0qcy3TOX/g9baZ9P7K+LxaR053Vr7wNbaq6Y5ckNr7Wtaay0pyycD+JXp6xvc3Hn0dH+XeLy19qzp/qPauFbZevvl0/1Pa639yZT/77bWPjzI88mttd+b5vy7p/Z46EybHQXwCQBeMf1gG34cwBkAn569H6R3OYDPBPCzJOV6aBt/l26a1op3TGP3Kp0agGEY0j+MYsABo3jgWzGKS953und4unete/7DMC4QfwDgiRh39r8/Xftw99xLAdwJ4C8xsoVPxDjJBwAf11GurvcB/BMA7wTwZxhFdp+EUTy3DeDT3XOfOF37OYxims8D8LcA3gHgevfcFQB+CMBTMC7cn4mRxbwbwIOmZ95nemYA8NEAHg3g0dO9h03XnzF9fyjGgfBsqt9HTM99lmvrNwC4FeOu/V9jFNvcA+A7ZtrqIgC/hVEc+f9NdX0igB8E8EF77Le/APD5AD55Ktc9AL4DwC9gFHd+/vTcT1JZBoys7jcBfAaAJwN4y1Svq91z3zQ9+6Kpz74UwIkpry1K70YAr8I4mZ4I4AaMu+TD7rlnTc/+yNS/T8Y4dm4AcNw9dyOAt011fyKATwXwRwBuB3Dl9MwHA/hDjCLJR09/Hzzdew2AtwL4HACPAfDvAXw/gIfNjenev6ke3wDgQ6ax81x37zoAN9LzN07XHzc9/z7T9UdPaT0cwPUA3hjk840Yx97Zv47yPX/q+y26/msY2cZXAvinPWvO9P3xGMX33w/gEJXPrz3/N8Yx/sap756AURx5L4CPcM99Fkby8akY5/CzMW4mXkHluB7j2nEDxvH8OAAfts64m5595PT8x+/XGIj6V9x7xTR23zbV83EAHuX66f/FuB58IsY5dwbT2jQ9c8lUdj/GvmV67k8xrkWfgFENMmBkpqqcV0zPDwC+EDtz57Lp/s0Avj+Ys28B8DVTPj86XftmjPPvSVP7vxXjeu3Hx5dgXNNfAuDfAHgqgL+anj2alPMRUx6fGdz7WwAvX7N/vmBK7xPp+hswrqNPxbhWPAnjmvzgNL2ODJ+BnR/tq6cB8CPTvehH+6fgFrjp2uUAbgPwM+7aS7H6A3sxxsX7BzrK1fU+gB/GqIO7ht5/DYA/dt9/C+MPe3PX7Ifz+qQchwAcxbiofKm7fu30Lk/gh8H9aLuy/DY9990YNwIXT9+fNr33GHrueQDuA/DeSRk/f3r305Nn1u23x7hrH4adyeUnzXcCuB+rC+27AByjNrkfwNdP36/GuNC+lMr4uVyP6ftfATjirj1xuv7/TN8vA3AHpnHrnnu/qe2+xF27cWr3q9w1W3Q/2127HvQjN10/AeCL15nU6/5NZfmG6f+XT310xfQ9+9Fu0//Pna6/GMBvqvpM+UR/HzBTvl+xdOn6PwXwv10678LIXh5Pzz0DO2vO50x99ALRDn7teR3GjdhFND//EqNYPiprw7iOfS7GBf4ad+/66dojRN7puHPXj2D8kfva8zQebkT+oz0A+KSZNLamdng5gN9119WP9q4f6Kkd3wrg52fy+eTp3Y8J7qkf7a9y1y7COD/vwbT5nK4/aXr2I6fvV2LcwL04GIOnATwrKePHT2k9Lrj3JgC/tGb//AZGouLJRpvG9Reu299r6ZGGYbgNI5t6emvtn4nHHgPgF4dhuN29dyfGHe9j6dlTwzD8unvuXowdf1Zk2UYL9bN/676PcZD8MoA7KJ1XAfjw1trlrbVDGBfmnx6mFp3S+wOMu+ddaK09aRLH3I5xAJzE+MOg2mQOLwPw6DZZy07leypGlmq6p0/GuFv+LarHqzEuCo9O0n88gJuHYciMINbpt5PDMLzefX/z9PnaYbc46c0YF4IH0/u/PAzDSZfPjRj1ZmZg82iMk5OtlF+Bsb25PK8ZhuF+9/1Pp08bBx+FcQPyY9R2b5/K+BhK77eHYfAGMZxeht8H8JWttee01j40ExcaWmuHaJyvMy+fj3HsfeXcg9PYvg7A01prF2GUNrxs5rUfAfAo+nv7zDsPQWCsNoyGWP8SY/99I4A/xiipelVrLVK7fQnGTeJzhmF4fpbhJHp+LEad4bbr44bR6Okx7tnL26hm+huMm8P7Mf5YNQAfSEnfOAzDH4ts58ad1ft+jJvGh8zUIVvrzgWnhmF4VZDfB7XWfrK19g6M8+p+jJuX3nXsl+yfaWz9OfrmyLowkTqG0ejyBgB/PgzD37lnbA36J9Pnx2IkUzzn/3b64zl/XtBae7+pLC8fnApoaq8/APC1rbX/ItQqIfZi/PFdGHf2LxT3r8ZoIc24GQDL6iNLwXsx7u7QWnsYxoF09m+61vX+hPcG8HROB6MlIABcA+C9MP7wvTNIb5fRXWvt0wD8BMbd+2cD+EiMC9ktlO86+BmMP/ymb3z8VG6/oL43gPcN6vF7rh4K1wD4+5kyrNNvt/svw471MveHXed2iQwZ/wGjqsDKAi7PMAynMYnR6d3b6LttdCxf0ye/Fqvt96FYbbtd6bmNU0//PhnjRuerMLLKv2+tfd3MD/HrqExf15GPle1vMUqTntPIfkDgZRjF+88HcAzjWM5w0zAMb6K/OSOmSyCsl4dhODMMw+uHYfivwzB8AoD3x/hj9/xAl/cUjOP2p2fyA8YxcQij+of7+L8AuMr1wY9iZHHfi1Es/CgA/9mV3SOaE4a5cedxNwCp0+5Y684FK3YErbUrMc6HD8K44fsYjO3wY+gb52emTb0Hr737hWhdmVtrbM6/Eavj4QORr5eWdqRbvhqr/Z7haRg3g/8juPeZGC3Unwfgz9poY5HaBQDrWY8DAIZhONFa+2aMjPvbg0duA/Cg4PqDsL45/zswDiS+tg5uxag7+NYkD9tlRsZCD8Ru14SnAPjrYRieYRdaa0ew+kPSjWEYTrbWfhajKPD5GHe7fzsMw2+6x27FuMN8kkjmxiSLdwH4FzPF2M9+m8MDxTXbWNikeBDG3TuAsxKIa7DepAHGtgNGsWtk9ancndbGMAzvxPgD8J8nadTnYXT7uQXAfxevPRO7XUTWHeNfP+XztR3le2tr7Xcxum7+jJes7CNuRbzgReV5R2vthzC6gn0gdjahwKh7/gEA17fWPn4YhtCIbcLtGEXZ3wchPRiGYbuNRmz/FqNY/XvsXmvtQ1URe+rRgasxzkOF/VjrFKI6fCzGTfJnDMPwJrs4rWXvCbA5/9kY1RgM3nB4vAXjb8KHYHSnAwC01i7DKEn4wTXK8XSM6oa38I1pPD8LwLNaax8M4D9gtCu4GePGMsReRTAvBvBl2LEo9/gNAE9ozh+0tXYcwKdh1BF1Y2Jwb5p9MMevYhSP/vkwDHerh1prbwLwWa21a01E3lr7CIx6T/+jfRRjh3o8DavuMrbrvhR9PwovA/C5rbVPwmigxRuiX8W4iJ0YhuHN/PIMXg3gKa21TxuG4RfEM/vWbx14QmvtmInIJ0bxaIy6MmAUld+HcYP0OvfekzGO2XXL81sY++ADhmGIdrx7wb1Y9cXchWmifm0bPRrkpima0Otg+uH7PgBfhD73nG/DuJi86FzyTRCpHNBae/AwDBFzNc8L/lH+e4yGU78O4NenH+6Q+U4b3zcA+HAAfzhoa/SLMc7V++n6M8Tz54zW2oMwMkDZz/u01q0D8zg42w5t9HB4wnnO16+L5xOvxyjdeP9hGH58nReHYTjVWnsdxjXzm53K7ykYx45aQ3ehjR4nD8dIcOfy/AuMarVnY4Zg7elHexiGe1trL8S4C2Z8PUarzNe11r4V4y7vqzEOEiVSP5/4Ooy799e31l6EkZFehbFh3n8YBosq9XyMP24/21r7AYwi82sxLiR+AfhVjEEqvgvAL2LUhX8RSGSM0SoQAL68tfYrGMVJ2aR8Hcad9Q9jHNAvp/s/hnEn9rrW2ndgtJy8COOg+HSMO+ZTiHEdgP8E4McnKcnvYvzB+SQA3z1tAi5kv90N4NWttW/HuIi+AOPO97uA0XZiquPXtNZOYrRJ+OcYN4lvhNOl9WAYhjtba18J4PsmEfKvYNQxPhSjHvT6YRjCaGEJ/gLAs1trT8YYKOcujGPltRj76s0YF8R/i3G8vXrN9NfFt2C0yH0sRtsHiWEYfgajSuZ84fUA/kNr7ZphGG511/+stfZajP15A0Y7gydgZBs/OQzDSgCPYRhuaq09DqPluf1wKwb6ZVPer2qt/TBG0fZ7YbQqPzQMw3OHYbijtfY7GOflTRjZ7+djRzVzPvCR0+fr06cuLN6AUSX3kmktvxzjWvkPGL1fzhfejHE9/Y/T3L4PwF96G5f9wLSGPBfAd7TWHoLRhukujP38cQB+ZRiGn0qS+DqMa83/bK29BDvBVa4bhuHP7KHW2hdiJLEfPQzD71IaT8e4SXkFJ95GV9tXYvR4egtGQ8UnYlz7X5PV7VwCGvwoArHDMAz/G+Pu+E6McvyXY7SofewwDH9yDvntCdNC8EiMP3LfhLFB/jvGxe3X3HOvwSie/ucYRSJfDeDLMS7Ed7gkfxCjEc2TMe64noCRjfpngPEH/cUY3Sx+G6OBUlbObYwd+FCMhlB/Tffvx/gj+4MYF+dfxvjj8HkYmaSMijW9+/ip3vbuizEuaLdNz1zIfnsZxh/eF0153QLgX0+GjobnYVyE/w3Gtnzu9N6nJCxKYhiGl2Dc3PwzjHX7ZYybssMYDaLWxbdi3Gj9EMa+fQlGi9Y/xLhB+imM4+ijAHzOMAyvFOnsC6Yfx+88n3msgVdibItPpevPw7govRDjJuYnMLbPc7HqP34WkxjxcRg3Qdc34Wc7jME5HoVRNPq9Ux7fg9Fuwf9gPhWjEdD3YTR0uxnAc/qrtzY+FcAf8Jw+SEwbn8/C2B8/jXHT/t8wjtvzme9NGNv6IzH2ye9j7J/zkdf3Yvwh/BcY18pfwkjOBuwYDap3fw/j2vMwjGvFCzCuvf+JHt3CyL536aEnNcyTAPwCGbUaTkxleBbG9v9pjK5mTx6GIY0M2JyxdIHQWnsfjH6X3zgMw9cfdHneE9DGIDPfOAzDbJCewuaitfZSjC45n3DQZTlITIv3TQC+YhiGHz7o8hQ2H/vpVrDRmFxGvhOjePNdGK1avwpjMIgfOsCiFQqbiBcA+MvW2iNn1ELv6XgmRq+U/bKlKPwjR/1o7+AMRmvlF2G0UD6JUe/z75XxS6FQiDEMww1tDNW73+FbNw33YgykxMarhcKeUOLxQqFQKBQ2BBtxsk6hUCgUCoX60S4UCoVCYWNQP9qFQqFQKGwIFmWIdvTo0eHKK6/cl7R8+FYO5Tr3vTfdcynTuT4b3d/LO+fy7PluC37G7C/e+ta3vmsYhl1xtq+66qrhwQ9+MLa2ts65bN7Ow/7nz553e++t885ebFDWeacnv94yZW22Tlvsp93NTTfdtDJ2jh07tmvdsbFjYwkADh06tOvT7vH1aN3hz3PBUtI4X1hnvK8zVre3t3d9njlzZtdnzxi74YYbVsbOQWBRP9pXXnklnvnMZ55TGjaZLrroorPXDh8eq8mTce67h7rXMyHVJiGb4FEZ1Lu8kHB9evKb+/TlUe22TluoNrG+ivKxCfaYxzxmJeLXQx7yEPzET/zE2X63z6wvbaKePn16V/r23f9///3373rGPnkx8OCFgJ/hBcS/oxYb+8w2Fir/6Lm5/HxbGFTd+bq96+vN1zhf/u7f2Y8f72uvvXZl7Ni6Y+lffPHFAIBjx46dfeayyy4DAFx++eUAgOPHj599FwCOHh2jgl566U50ThvLR46M4bz5h53HYQQ1D3vmmqWbzU+1zsylGaXPZc7y4LmgNsf+uWi++Gej+XvffWPMKZu/J0+OgddOnRqDR95yyy27vvt8uNxPf/rT00iDFwolHi8UCoVCYUOwKKa9H4iYITNQJULNRKvr7HB7xfF7EaXtl2hrXdbid7zGGNROex1k7bpumx85cuQsu4nElVxu3rFHmBPjKvYcPbtOm88xLF/2ufbvEfFzfSx9Szuq11y/WHtn1zgfThvYqbtq83PFMAy72iSSZsxJonxaDGZu68xtnmOc/jpzLyubyo/zzcaO6kOfB6/Bdm9OAhc9w/0UlcPGm40zWx9YImsM3D9rjD0axweJYtqFQqFQKGwI3uOYNut3o2sRC5vD3A57HcO37Hqv0UqkY14H677jd9i2E1X6/UyPrK7zDtzfs0/TDap0jhw5Ig2GfDqKafcwYsXyoneZRShWsxf06CIVC/Tl2IsUYC/vqLKxvYLB14/ZOLOn/UaUbo+elp/rnWPr6JXPxbgt6jfFXvfTiC5bD5jF9uj37R2l4/Y67bl+Y3snn65K/6BRTLtQKBQKhQ1B/WgXCoVCobAheI8Rj7N41Ytd7BobIeyHWGodg7Se9OcQGbP0iu6zdwzK8MU/x2LWvbifqPpkhmiZQUhrDYcOHVrp66hMXG5135ebjV5YZBa5filDGU67x32L70dQ46BHjL2XfJWbWOa2o4yGsrFjfZm51+0n9mJ0F4HHrTIu5Of9/9xOmTHbnKGWIXPb6jWiVWWYK+ucuDozvOOxo8TWXo3Gz6j6RGuL5WPuYktBMe1CoVAoFDYE7zFMOzNAYjcgFcUo2m32MsTIAImxl2hZPZhzuViHaffuuIH+oC49ZY+MA9dh2vZ8Ng7mGG/ETDiYCgcHySIrqSAkmQuWYj49UiH1TMaiVfCWLMgKX+PgNMyEIumDQRmXZWz3fLuAqbL6MqxjkKqkgD1MW+Ubgd2oOP1IUqHWjjnXrww9UQnn3G8zCZmSlFnZskh2/E6UVhbIaAkopl0oFAqFwobgPYZpG5tmvTWwuuPlnS7v9rN3+XrkzjMXGtLQE4hD7QwzHQzvOKPd7Bxz20vQE6XDi8rIaWUuX4qZMMztC8hdOVRZstCJfE+xTK9DUyFP+XvmgqOYQo/LHzOvSBfI5VdlzOplOj8lscjqx2W161EoWca5uCGtC66TYp7r2BzMXY/uZbYaXDblmhlJdlS+GZilrhPiWUkhMijpUya5sjLaGFXrTZT/OnHJLySKaRcKhUKhsCHYeKZtYeiYYXkLwnV1rhGrVEynh2n3nCjTqwfPdEt8T7FaD6Unzna+cxbmkW5J7Yq57JHVf08wnNYaDh8+vPJOxCqUPYKSbgA64IIdSBAdVmC7e9aDcxoRE2UreKtPJEniunLAEqV/j8rNbcFM3Kc314eZ5wG3fcbaVH043wvBiDL7B18WQEv0mDUbeg7lyfTgc7pYlrxE9eJ0FXv393huqzQzZO0490zWRiypUlLPqN/2I4jQ+UAx7UKhUCgUNgQby7Q54DszkohhsVVlxqwUlH482o0pP8LIulNZ7faAGVu2G+drvTvsCIo1RYyOGb2yCYikHL36rq2trS4rVMXYovwy/3+ffuTLye1jz3BdM2t1tdv3R8/O5cvjP9Jp87tKHx+VxebenL43Autd12E159tf20NJe5REJHpW+RdHdY+YbZRW5lHBfZv1i9LZW9n4iFr/DrdBxmIjmwVfD8ufx1QEZTsUSYWsjCaBzex99mIxfyFRTLtQKBQKhQ3BxjFt1gcxA1rHAlwxg0zHyMww2oEra8Ys+hCz5Dkdd7QDt92r8s+M9MWKzarDNKLy9wTh72VUXs/Hz875afuIaFG5jSUoxhvVh/WOtlNnK/JIp816b/u85557dn33fc1W6UoC0yORUNb9Pf6z3ObeRkRZ76p0M2bHuvSoHVU8BW6j/YYfbxdffDGAnXYwSQdL+jyUnp5ZdObjryJ6RXOC10BOl/W6/v/ongfbOAA784jzYxuEyJrboDx6rF2jOa/Wt2gecH6W3iWXXAJgZy5G0jV7VnkvHBSKaRcKhUKhsCGoH+1CoVAoFDYEGyEez0SBLK6OjLxYXMNGQyxy9yIZFSqRRTQ9RmUq2IHPh0WJymgpEwn2iNrnQgH2GF9wQJvMVUIZuPD96CzcHrGu3ed0oyAdbHRj75gI1LcXG2Ip4xS7byLv6Nq9994LADh16hQA4O677155h4NAGNjYJ3JrUa5FLO7zom42HlIqnCw/Q4/hFRs0sVg5a0elxtrvIBhWPxsP/v+jR48CAI4dO7ar/NkZ3Ly+sIolctGy/zlwjSFzF2QxeQ/m1pdIbaFUhJaGiZ4zNzETg/MYtfY2MTaw6taryhq5b6k1mNP077Cb5VJQTLtQKBQKhQ3BsrYQApmjfc8BB7ZbzcJHAvHO1HZ87GJjzxojiFxwePfIu72oXnOGWufinhYZhjGUq48vD+9SPSPxz/o8eHfMLJ3L7J+1MniGqKDCjgKr/cBtnbnbKRabufzZuPNsAdDGZlE6cwElojIqlp4dGKH6m/sa0AfvGNjgLwvMosZ55DqlpGxzRlTrImJfNsYvvfTSXXnyfImCnbB0Qbkw+uuZyx2ws+74dU4ZbFo9rOw9B4ZwfpHLF9+z8ptE6eTJkyvPGqyNrR4sjeAx5O8pQzRD1AfM7K1sUVAnK9v5NnTcK4ppFwqFQqGwIdgIpu13Opku2T8b7UCVXoh3yX6npnbJvDP0bIIZNrPKKMCAYlCsL4r04j07d85PHafI7lARI+c626eVNXODYYYSsRp+NtoNRxiGQYYq9Xkws+ZQpL7OzECU+4elaSwDWGUlzDwjlqOCw/TotJXuX+nf/f/M3DKJj5Wf21O5v0UBOfheD5tRzDqSqihJkkr30KFDK+M30qdaGayfeT76cWx1ZFsJ5Srn+5Rd4ayd2H3Q19mYNNvwGKs0W4rLLrvs7DssKWJ7BR6r0djhcL3s6hjZCPH8tLZWLnUZLE22HfHXeA1mCVPkDhtJJpaAYtqFQqFQKGwINoJpe+ZgOzHWbzKr6TngQFmdRuxMWX6zHse/wzv2TH/L7EiFTYyYntJzs+7Ul5GZgtILKitzD2Ze9t3vklkfybq6iBnP6a48zHKcx4XfQXNdlH41YgY8RpgpWn2iXT4zAbOqjcYls0ked5HUYe7oUma3fgxZedlKObPE5jZWAY4ij4BM/6jyVUxehdH06GXcUUCdaOyYxb+yh4ks87mOLF2KpCc2d+bmn29be0c9a0zb18us4TmYiZIK+Pa0scNSAcufLcP9PV4jzRqf13dvL8PjeM6jB9iZc1Z3ZbmfBeNim52DRjHtQqFQKBQ2BBvBtP1Oh3fVavcdMdI5S9Uen1TlF+79SpV1OO88/U5xLkB+ZnmuwjvaZ6brYcts5Xsb6ZOZmbLe3efH6Vmfso4r2i1HbRzB6yUjXZXSuapQkT5vHhvKB9tYtL/H+kgfr1rAAAAgAElEQVR1WEKUD7O+zFKa68y6RWZE/n/lf97j4WB1Z7/diBGxHpSt06P8slCx/p29Mm3Tadv8jHSZmZW4r0dkp8LlVTYgke2O0mFH65xJAQz2jB+TPm3/v2LarFOP2pPnRCb54bWBP9lbx6/9rN+es7D35ed8s+NjbSxanXv06hcSxbQLhUKhUNgQLJppZzoRxZYyH2hmjcpX2DM6ZqC8m8usa61sXJaMVXNZFFuKpAHZEXVcDuVjyzpn3on7fNjSk/P39WPWzyyDGbf/v+eIvNYaWmsr+vVI4sKR8ZQeP8rT2My73/1uAMBdd921Ky3PaqLDCIDcKp51bsxAIyteYw/sA6902ZE+3KDsLrKDUJjFmJ40ahOrD+vOWX8Y6ZiVTYNdjw6biaQ9jNYaDh8+nFrMW125L1V9gJ12ufPOO3d9V7Yafr6yH7M9Y1KATLrA6fFc83p37ktl32HfIx0zM2zLJ5K02DWbR2xLYfWyMvo2sXHF67aysfDPqNgBVh8/D1hXvzQU0y4UCoVCYUOwSKbNbDqKxqSsUKMdqNoxRXpPID7OkZ+x3Rhbznoov+JIh8W7VbbE5h1wZHHM9Yz0bPyOgXfWbB3td9j8bBYVjMESEc4ninqmrKK5/MMwrFjsRlIaQxb72WDlMl/XW2+9FcCq9f0dd9yxqz7ADpu44oorAOx4EViakV+1ihxniDweOI43s3SWPmVHj6q43p6xsp7T0mPd6YkTJwDsbhMbR+YrbG2UxedXNidWdmaJe0Fkue3TU/NdxSwAdiyW7dPKaZbS3G5ZGVgqE3kCWFnYL5yZqV932EaH7S9YYhXZxRiUn7hfBzmGg+VrkisVvdLnd/z4cQDALbfcAmBnnHO0Ot8W9sk6bZYK+Daxe+v4/F8IFNMuFAqFQmFDUD/ahUKhUChsCBYpHjewwROgwzyyA7wXd8wFn2Axos9PHVLA4sPMVUUdBRrlw64XBhaXRWIxdZxeZLzEIk4WodlndLweH0DA4vnIRUKFaVUHvvgy9ojHLbiK5RMdbMBgUXSkTjDR5m233QZgR0xuRjH2rol57ToAXH755QBWA0bwYQXROFCGRpFBpHKb4zEVtSeLW+cO1fHvs+jWxoOVmdUBXFdAG/1ERpNs9MWi3Sj8cA9s7LDo26fHaiKeJ5EIlUXmlr61Cx8kE6VhfWcqFss/cn9j1QO3SzQ3VH24n6LgKgbLz8T+PX2pjru0eWTjwreRvXP11VcD2BGXm2rKymjl8HW1+rBYPAvqtM76cyGxrNIUCoVCoVCQWCTTZoadhZjjnVvkFqLcMpSDfeRoz+/y8W0ezLqV61W025wL6xgZR1id7Z4KpuDzYxcWliDYs8Yco50oH0tq7Wm748h4jY0MVbCaqCwZWms4cuTIiguJhwp3mfWX1cmMX6xOPFayY0M5yAUfkhAdAcmSFnb1iyQ7yniJ3V4iKRSPUW6jKEgNS6hsrFgd7Ls3WGJJERszRu6QSrrFxlh+nVjnkAczYlShhH1ded1hxha5fJkEwspp340RRmEyme3bO4ZI4sJhk9Wxq1noU54jPJa8IRrPd87f+j8KUsPlv+aaa3aVjY01fZnsGksf+KAPnz6v2zy+vXRQhTpdCoppFwqFQqGwIVgk02ZkwU6YeWTBQNQRnPzpd9i8u1OHTngwy+Pg99GuXLmHWf7scpIxO+WClYWk5HdV8BX/jpJ2RExbMeoojKCBQ3hmh5YY0+Z0o0Mf1DiI3M6MYVudTOdmum51sIK/x3YD6nAE/38k9Ynq4N9RwUFUCNYIKhRldBCGXePgLqwLjNwv7Z61b3aMrJKM8Wd0BGgvhmFY0e97+wSeb/adD9zw9WCGyy5yPF8iiaLSS0flUoflMHv1emJ1QIgKVuX7Utmj9KwhbG/DOucoyI7B6mNjx2xHInCAF+6T7CjnTGp3kCimXSgUCoXChmDRTDsKUj93wEVmKc6Mg3evmb5Q6Ql7wFajVkbPDPh4PnWUZaTn5V2yskSPwlcqKQPXMzoknhlDphtW/ZQdWJFZMEfY2tpKw3KyHpXbNGqn6NhE/w4HnfB1VvYIhuj4Qc5PHcIRQVnmZ3VRx6oaovnE84RZGQfdyA4omQsTDPQzHq9vzaQyDAtjmoXLZakSW4Bn644KQsReHZl0gPOP1j8e+5yutaMxVF8Gbn8V1MnPJxV0hKUDkX0CSxJ6jurlNNS648H1ioLScF3UurAUFNMuFAqFQmFDsGimHYXsVFanvNONQvWp3bDSF/m8s2f4utLpZUcWqiNAVf491tEcji8K3K9290pvHd1jRKE25yQJWTpW1l4rco/Impfbrke/ruwfDJE+mX1feRyyj6y/x3p2PtwkO86T65eNYdZZsn1Cj22DgaUNkaQka2OPyLdXHYjTY1cyl9ehQ4fSOW55sL0Gh/mMDlbhdYzziQ4WYjbJ4TizuaD0tfau132rELicVsQ6VQhnvh7NQQa3edSeypZBeSD4sqi+yNqe01gKllWaQqFQKBQKEotm2oZsp65YdMR8FVvKdlKKGfQwOmVpnkUO43fUDjHTMSqW7negyv+8R4+srJOVnjxLQ0k91i0TvxNJJObS69EpWhuytXDkP89lUdHOIlsDZkumJ448HJQuW0ll/LtKr8pW3pGenxmOtQEf2ZlJO+bmZlSv7ICfvWAYBmxvb6/EO8ikWdzm0VGwLPlQ4ytiiFYGZsecZja+OcodH1SSlUmtb5EOXUmwsmhjSjrENkseyvNErX9R+TlmQbS+r7MuHASKaRcKhUKhsCGoH+1CoVAoFDYEGyEe92DRnzKY8mIcJYpToi4vHpkTPUfuGhxEwZC5EigRmvoeiVT5mSytOZHSOu4ncy500TNKlBaJJHuNlyJRYeRCpuoWvWPgOrFBUBakgdMwREZeyvWGDca8+FCdLd9TDg5J23NgiCo/j4soDXUwSWQQpMBjaD+CX5w5c2ZlfPiysCqLx3NkdKWM+JRqL1NB8PyIzu82cNhcVuFYgCAPZeSljBp92dgAkUOVRoaWyhUrU1Wq9YyvRy5mPDbZ5Styg+wJRnQQKKZdKBQKhcKGYFFM21wvePcYMd/eEHr+/Tnmw3n4ZxTDjgJKcMAKdi+IwnIqpt3DIpTzf3Y0J+ej3Day/FQo2Yi9q7bmsvldOacz5/IV1S9j7iqkYXRoyZy7UWSMo4ziMjbJ6fERo9HYUVIKFQIzktJwPXlcRxILdmVTxppZcA3FVLN+m2OD62IYhl1M2xCtA7z+cN5R+GR1QE0m8ZsL5hMFnFFugmaAFo0plhSptozGLo87Y9xslBcdaqIkpFyOzNBOGW1G76gDntglLEJ27yBQTLtQKBQKhQ3B4pj24cOHz+6gOBwioFllpo/qcUFS95WbEAf+iI5zVO4ZWVi8OV1SVEZm9sxamK1l9WJ2lLnQcRpZUALl2qMOqIiwTjhB7qeonHOHCPQ8kzEDpWvO9PvMqHjM9LSBauvMfcvuMRPhcgA7bcFhcuekKf5/1W4RW+K2ZqlGFnCoF8OwejRnVB8VTCUKK5q5M0b3PZS+Vtk4+Gf5WEt2c4rSM6i+jOY4jydbr6OjRg32DB8QwlKbbD6tIyljWwnLX4Xtjeoc/Q4dJIppFwqFQqGwIVgU0wbG3Ruzr4wtMTOJmGHP0Y4eETPg/FWA+ygd9Yyvlwo20KMHZXakDv3wO+05/SfnH9VPBffnwDDR+1zGrI969E727jo7dYPaufv/mXHOpeX/Vwwu04NnB4MAuXeE0vX1hFo1vaSSSvD//t11wj3OMewoPyVN6x0fWVm2t7f3FK6S+ymS8GWeEf56ZKXMY1PNW18WDvur1ocoPSUNipg2s2TL58SJEwCAyy67bCU/g/JSWEeSxIjaWVmAs447Wic4dPBSUEy7UCgUCoUNweKYNrDq3xfpiViPa4h2rXO6pQy801Q65yg/ZY3KfoBReup6VD+2GuX8IsanGIKyko3KwPXJ2pXrrHTnUfk5jQyqv/z/ijVnOm1OQ0lCeqyeDdkuf873OvIr5WfnfOP9M+pQmwjKK0FZk2chIhkZ6zT02qisA2PbPu9ojnFdrZ3M99kstf2zc8wwq6uSAkUSGRV6lpl3ZHFuUGFm+b7Ph6VlzLh9HkePHg3rx8cwZ2NW2ZNE71idrX/UoU3RnI9sAJaAYtqFQqFQKGwIFsW0h2HAfffdFx6k4Z/xsN0QvxOxl94jOTNr1zlrTv+O8mNex7+0x29b6Z8MGTNRvrw9DHiOZWb1y3SmnA/bESj4+pnOKtLjz7HJ6PocA1nHxzvr/16fZ98Wql0UK4uet/RtHrE/cOSzzDo/bt9zPUpV1UO167nA5xsdC2l1tXHFdjeZp4s6SGed+aIYqe9L6zs+uMUQMXvF9ufWO18mXn947hnj9s8oC/OevpwbB1EaisFzuwKrsQn2U6KzHyimXSgUCoXChqB+tAuFQqFQ2BAsTjx+5syZFQf4LFCKCi/qMRfUIBNTKXFNFlxlziAnCluoghlkIV35XSXGWSekpwpyEL2jgqr0GNawWC4LGsMuTAre5SsKJMJqEvXpxbpsLLaOqxKPkTnjP583h3vMAsBwuiwOV58e3AaWP7u8AaviXhUIhsP2RnVXhlaRgRW353664mxvb6+4mPoyqPa38meqANXvmTic24zF4hxAxZfB1k9z31Nnf0dlUa6fUZk5/Wj++OeAHVG5tYmNsx41yZwYPBNnq/DXrAYC+gxrDxLFtAuFQqFQ2BAsimm31nYFV8lcLwzrBE6ZM1zJ0mDmy6zFp6mYtu32OIRfVLasDRjcBsrIKzo2ktO3XTrvmiM3EfWZhTxUxnlcLp9OL9M+c+bMyo46chdUhxRw/aJr3F7MfHxado3HCDMCb0TJoUE5/czVRwX+YTYbGU3NBY2JDN/mwpZm/abYZmRgpYwA1zHo7EFmKKja1sBzPIOaL5HbERtK8ecll1xy9h1za+JxxxIr/w4bHvKzPE89Iz116tSuMppxmbl1RdIHXmd4jmdr8FzbRhIdHtc8V+x7dODTUlFMu1AoFAqFDcGimDYw7paYtUQ7H96ZZbuwdV2TsoAc/Mk7U/9/r7tYlLdy/me3iugZzjcLz8ksjFkAB2YA+lgyf++VJGQ6+7mDVk6fPi3dazxU+VU9onvMgJnd+P/n2Jmvlz1rrOmee+7Z9Zkd4MFlUno8S8tf4zHLaUVSGu5TdjkyZLYbaqxGc6Pnmb3AbGn4EImI7fe47TFUmF9GND+5LKxD9/mfPHkSwA5rVLrtK6644uw7xrrtWcvH1hc+CMW7b1l+VtZLL71017OWtu9/lkIq98Aevf+c+6X/X9kE8PUonaXptotpFwqFQqGwIVgU0/bWv0DuJK9CzWX6SMUms2ANzJbUjjeyUs52cQzFwlj3EtVvTjfbc/wc71Y5JGKUH0swVECQKP3Igp6h3sme79H985jJLMCVLYPSG/awM2Ze/h1j2MZ8jM0YW1pHH63075aHLz+HDOZxF7Flu8b6dk47syvgOmRSofNlPW5Mm4MGRRbF/MkW8pGnC0uIVP9E0hO2zWBpgJeaWL8aG2a9sbFm/47laePL9NSmnza2bHWw+z59Xgst/cj7x6Qwyksl0/MriWkm4VNSKJYsRB4VmffDQaKYdqFQKBQKG4JFMW1g3NX06DMUa84ON58LWxqFiOR7nEa0w2aGzX6rGYtVOvqMifBOkC0/DRlTVaFWM+bDVtjKWj66Nse4ImS6JWbZWdtyXuuExZyzYO7xo+fjMD2M8RhbYqYdsdpemwalW/f3FCLvAQMzVGUv4aGshaN3mPWrYyrPFYqVATvMLPL88GWJxmBvHIOIVfIcY122bye2ZbB32Bc6Yuds78CSpEiHztIZbhNm+P5ZHjM9NgPrzFODlZ/nD+v7s7DA+z3OzhXFtAuFQqFQ2BAsimm31nDRRRet6GKinc7cbt6zGHUspKFn56YsQDNmpXRXGdOODnL372bsRR3kkUWWY39glV+kJ1L5R3VQLJx1WB5zkewY29vbK3n36Myz/lc6zLkIWR58cARb5vqxatdUPIDsgBrlF74OlCQpiimgfOIzbw0luWKs4yO9X+Bx4Jk2MzQ1/zNpD7eTfUb6VI6Ip+xIfL/Y2GH/f9Zbe6Yd2Uj4NJiJ+rFqem/Ll79zdL+ojEoqlI1hNeeiPlFW4vw98o7okfgeBIppFwqFQqGwIVgc0z58+HBXBCzFbCKrQ3X8nDrEPWOIvPuKdsms97JnmWl5KAtIZYGasWbWmUb5KT2kik8d6dvmdqBZRLR1WXTPM8MwdPmKqz41RPp75TevdvvAKktl5mF+rf6YwuPHjwPYiSp12WWXAQDuuusuAKv+28CO3juKyjYHK6+VQdkeRF4dc94DnId/R3k6RGNqHR3mfiBaW9hrQNXZS0AybwqfPkvEfDps98D6fM9iFVvt8dRg2Ji1cRH5U9v/bGnOYybyHlDzSHlpeLDXBftT+z5QceszP20eg+WnXSgUCoVCYU+oH+1CoVAoFDYEixOPb21tdYlx5lxtIrGoQQXDj55X4sIew7AojB+waozh31cBRXrCcrIBCAdkiN7l9lNGMpn4yKDayv8fGTap+imXsgjm8pUd57kXV6F1xhlDicdZTG6icH/t8ssvB7AjLmcXMB9Okg9o4HCWmZiWRZvZeDbMuZjNhbeNrmXteFCGQJGYlQ232JAycm+aCwbCoUJ93nOHpWQGnLzuRCJutd6o4CrZ2szi+MjIVbmUstg6C1bEZeA26hGPc36ZEWqJxwuFQqFQKOwJi2LawO5Qpuu4Ve2HmX7G9hRbiXZhvGubM/KJ0p0zvvH5MnNjJm/3I2MyZk3MyiO3FN7RqiMvI6MVZp89EoReAxrv8hXtyucC5URQzyrmE6U1Z9wVhXnkwBjGeMx4zT4B4NixYwB2xtmdd94JYMddh/vY56eMJpWhEBAbB0V1z+YtG0Jm8/VCGaBlLJYDl3A9ojLOuTVy//v7bDyqgqr4eRkdXuTfycabMgxlthnNRZM+WFnYbTEKyKIMejO3RRU6lvstY9rKhTNbG5eGYtqFQqFQKGwIFsm0M5eBObedjJXt5R2lp1PBNqJ37ZN3tX5HrNhX5lJkYNcLZrGRbkkFL+C2yCQJKpBJptNWfRv1RQ9z47JmwS7myhmVey4oTFbGORaZMQOWVni9N4P1jXxwQ08YUwYHGPGMTh2Aotigz2/ODcqQ2aSc76AXkT6VXf84NHE0P+eCqPAcjwLYGJTLYXT4h60zyi3W56P6gyUIfDiIf4a/c1v4dlTrAAc9YRcwny63gWLc/v05l7Js3lZwlUKhUCgUCnvC4pg20KfDnNshRsFH1OEUvIPLdvkG3rH559hyWbGnLB+2CGf4urC+WO0Q/U6fd+5zbDDTOfP36AABZX3a0289umcr6zq2DVymiGnPHXuaQY27LEAPh/DldzPmrRgIsxivk+axwuMiOjxDhQXm/DJ9r5q/kT4xC6l7PhD1C+tps/lvUGFMDdwGkTRjLlxu1Jecj7JX8f8rG5NM98vrjvI4iSSKap4qNh09y/U2+DZR7chW6lEgHRVS+qBRTLtQKBQKhQ3Boph2aw2HDh1a8TeOrFUzBphd9+8aIh3W3LPRTpDzVgeFRIeqq13k3G49uqd8bCOmPWd938NueKcdsWplCZ7ZF2TMnWEsO/MZVnkpy3Z/j9lrFL6W81PSBd7tZ7v8uQMW/DUlMVC+vv6efRrT5+/rhLHlflon7kL0/UJb8/J8jfLmcKZRGeesuFXaPm/uQzXufPpcNkvDrvvQpxzTQdkMZWXkT26LSIee2QJ4RPYlyrLdEPl2K3/tzB88W28OEsW0C4VCoVDYECyKaRtT6tEX7kXPwLvF6IAQfo51SJkOy6AsInlXGR2rx3oh5R8cWbaqMkcMvPf4xh6LauWHnOm0lRV2pKtnNqAQWal6qHIzw47KraLosd42ypd1vKxPi45HVLrGiOXa++wva37adt0sjT1bmzuyMJMo9fqqZ94fimEvwUc28tNmexSe25EFuPKBtzaIonLxGOVnovbrGc/8Dkvl1IEe0brDjJ4RjVVeG5UnSjTneT1QtiGZn7bNBfaKiCQYS9NlG4ppFwqFQqGwIagf7UKhUCgUNgSLEo8D+Xm0EfYiwlCuSpHRhRJxs5jPp8mGLGzYEBk6mHicxeQcPjFzjVJn00ZBLviaqk92FrdBvRu5eqjPKPQpi6Szvh6GAadPn06fVe9nrmVzYvHMSE71hzL28f8rlU1UBxaP2zMsCoxcvlikrly+ony5bexZDo0azWOuZyb+XwKsneYMtzzmXJMMkYhWGQiqgDb+f+tfcwvMAigpcTU/y+uRf4efZXF1JHpmNSO3a2TExmBVRaQG5LVYhUuNyhittUtAMe1CoVAoFDYEi2PaQB5Kk3eCPa5JczulnrCmc8zDv8PsVJXN7yKZSfkddJRPtANVO84sYAXvsK0NlKtThoyxKobKn77ePa4xHt7lK2pzZincHxkj5O/KUCwKu2ifbAgWGa+xNIaZAtfB32O2YGzi7rvv3pVWZEzErl494LHBgWh6QtNyuy3JEM2Dw3ny/MjC/c6F28zGqgq/aW5bWVAXnssGvz71rjPRnJnrS0Mm4eNnMunMnOQqGt8sKVWuXhHTZsO3paCYdqFQKBQKG4JFbSGGYZjVabPOg/XDGTNULkOKBUbvMquJjoBUu+8s8EcWvs9/79n18S4y2skrZq3cKjL99Bwbje4xs452tXMHLnjw2Ikw1y9cxrlr0f1sHKiAFb7cxoqzMIsqH64P67CjQx8id6Ne8NhRbny+T+d09dF8yvr9QoPd82xemHtddM+gJEd23Y5fBVb1wnYYEPdhxpqtb1nyl62rKkRtNqf3IpXjfOfcMQE9drJAKazDZjuPKHgQSxWWZl9RTLtQKBQKhQ3Boph2a+OxnMwq/e5WsST+jHZOKgAGW0r73R0fc8c6kMihXzG+SG87Vy/1XBQakIM5ZJa/hrlDM3pYswqmkeXLOrOo7VlXGoWz9dje3u7SMSqJS08gGX5GBeyJ8rHvxpqYBQA7jI29FXhMRWNMHdiggu1E5e8B14PDDjPDjqzxmT1n83dpTAfYWZOywCXWPsoim9lyxJrZOr03/Kd/hudaFKZ3LsRvtGYpSRu3iQ+bqg6ZMbC9RySNVJKqyLaDbTVsXpl9SRY0iL0hloJi2oVCoVAobAgWxbSBcSem9KyA1vUqvZ7/X+lemWlnFszMBKLdHbMG3un2+P2pHXyPP7Mh88/M/MwjRPpwA++asxCiimGzf7p/ptdf//Tp0ys2Dpm/tpIUZDq/HvsHLj+zFGUfAezoNe2TdXAR8+b6sC5TWaT79JXEILNwV77qmc3DnOV05o++RLDEw0tNmK0yw+Z2M2bu/1dpGCJrbrZpYD21H4+WD49reyc7TIfXJGUlHx2iwpIqji0QhVlWoXbtWX4XWGXUJsnK7F+WPvaKaRcKhUKhsCFYJNNmnbbXKajA+YYeiz9mD1lULtZnqAhikQ6O82H2nOkTey3dfRlVZLce/Renz+0XWWSqMkX6KpZicFtHrLpHN24wps0sMzpERFmLZ9Hm1DOZvYQ9w6yJyxGxCaWLi5gos3B7l/1mI/sLTpePO4zGd3YvaqPM/1jp25fOdhQiS3eeD1ZH0/VGVvYscbFn7TOyqZiLiBiNb5YC8ZjhMkYSt0hKFn334DHDNgJ82A2gjwJVkf98PaJ7Cr3Sx4PCMktVKBQKhUJhBYti2q01HDp0SO5MgZ2dEutNVCxjfy2KJsXPZmUDdnaVmbW3YguKnUVQ+txoF6jiY2esZc5nNIvWZLtz1h9zOaK4yNZ+toNn69WIqfawr2EYcN99963oyiM9PkNZzvs6qaNSGVmf8riOLHLtfWNYfMxm1Basp1O2DdGxsuwPzDpAJXnxYP1gZgmubFDWicS2ZPh2Yu8Anic90RxtjFx66aUA9Lzx+bFEhXXPHopVMtPOIjDyfOd6RDZJKjKakixF9WIdNvtez6U3h4o9XigUCoVC4ZxQP9qFQqFQKGwIFiUeB0aRROauw6LAHnGHCqrBor8orKQSAWVGZb2HmkQBYLiM3BaR2FyFAOwx5FKi5yxsJoPFvexC559RwVSi+rN7U9bX29vbuOeee86K87LwsnNGfr5vOR2liohgYjvOz+oelYdF5iyWj0SpqgxK7Bq9y+Mqc4Oz8vIhDCr8Y2akqQzSNtUQzYMNA9Vcjg5r6T3YIgvXrNQWfrxlAZ/8O5laSLn4ZXPanuGwsDznfX2V+J/F45Fh5zqhcLNgNEtAMe1CoVAoFDYEi2LaZoiWsTpjUmqHFhlWKKbBn5m7BrtCZME1FCNkxhi50ahgCmyUFTH7zKDK19P/r47m5HJFzF4FpYmC1KiDQeYYni/r3G759OnT8lCBCCpITMQqFcNWBn2+3KptI8kOv8usggNLRPcUm40CVjCDV2FafbtGBzP47xlbVgeEZOFnNx1WN3XYCAe/AVbZoxkIsvGnl2apoCrctpGhJRuR8ZoSSY3YGI5ddbP+V6FHlaujf4bLqIKt+P/PJVzv0ly/llWaQqFQKBQKEotj2keOHFnR+fkdqLnCZHozf93S9df4e+Zuog7jMKyzG+vR0arj/DKmraQM7DKXtclcaNKIfSo9f8S0VQAYdTCCR4+ecxiGVJLg81aSlh6pQsaOgLhP52wM1nFrse9Z0Ak1VrIDZJQ0Khurqh7Krcu/o8qUMW0lBdoLizoIWDnt+FUe+xGrZBc8llT50KcG7jOWwHiwKytDuXNG9/hgn2jt4Lpa/axNbFyb7VIk4WFmrXTb/t46yOxsloBllaZQKBQKhYLE4pj2RRddtMJIonCYyiowCgYxZ13LoRsz3elcyEZf3jlL3OyA9zmrzSiYC99bJ4ypCqIR7c4V61R66+ydTEe8DmpEEQ4AACAASURBVINqbTzWlZlqdPjLOoFDGHNHmUaYO8glgmKkEYtVR3AqKUCW/xwTBjTDnQuc0ZN+ZtvAOtRNC8iibADYCh/YYZxsgc7HoUaSJG4f7g//Dq95PJ7teuQ1o0LQZnYeXBZm2CdPngSww7R9m3A7qTnh69e7hkRH6qrw0weNYtqFQqFQKGwIFse0Dx8+vMKw/SHqBmZzPfo6xayYaUeY201mzEAdpBHpenrCls6VlS0/o93mXHoZA+49mtHvULnOPW3C/TKnW/JMmxkCoHXYjB6JxJxvKrDaD8yAo3Io/3jVP/7/OeYZ2QYo25DMRmTuYIqM0c/pvSNfYgOPKx4f0dxfGkvyMOZo5Td7HWD1yFTFfDO7Ee7bnngHKn6CIbKl4XZnSUzmf25M29rCGLZdz+w9+LPnMJAesERnaR4NxbQLhUKhUNgQLI5pHzp0KGVCyk+xx7ra58PPALkuW1loR/rpqF7RO5GVsvqeHXvHO2v1bsSw+LsqY6Tz4Xvq0z87x8qzyHLKwtWDfZIjf2ZmEwzfNoq1KJ12Jg1gH/9snPdKJvw9ZqDKDzySBvAzPEeiuaGOSuT7ERTbszaJ7CG4nbj/Ir07H4u6JBirZBYNrM4HPriGI//5/3vmiUH54/fYfWTSGF8e/xwfo2nW43zYRxbdTI3vHompQjSfVL0OGssbyYVCoVAoFELUj3ahUCgUChuCRYnHgfiwBi+e4FCZLBIxkVNk3MMin7lwo5yOTysTGylRaWa0NCf6Y3F1FOyEoQKnRFBlzsqqjFUy47UeAz4uf8+zwFhPDv/pg5Aod7Meoyu+p1QQkch9TozooQzd2CgzM9Rid0juj8hgTblv9YQxVa5mmaEdqxn42UxcqcJyZgaXSzZIszFqomJA143HXRTGdK5No3eUuqpH1KzUICbijoKd2DrNwVTYrSsSj88ZTa6DzGi2J/jWQaCYdqFQKBQKG4JFMW02RIsMC5hx8O4rYiBzoU6Vm030rmLLmUsMu375+nK9el2vIiO2uQAtPVC786isCll+6jCBqN+yOitwf9kOHthhGOxCyEY/WVCQOYO0KJgLM5F1wuYamM1GxnIq8I9i0VF6yiDJQzGdngNDlJTB6s3uNr4eBm7PjE0vNRSlB7s/eXBQE2V06KHCiPJ65NF72FBkxMjf2TDRSxDmmDYfCpJJhXjcnUuwpMho1lCGaIVCoVAoFPaERTFtQ8RaDLbrMdZkOzXeqXtkgVeAPiaiWFjGfNVOMNPBMVvgd3vcxbjsPbpt3qVm+ncuayZ14PTnWHN0IAGnoTAMQ8pIVfAP1mFlwU4UIrckbkulA45cldRuvydghZIKRHVi/bR6N3LFU8/O5Q/o8RUxPTV2evTgyu5iifD2F1Y3dlljqV0moVJtHEkxenXZWcAc1mFHroCsv1fvRDp8FZY30/sruxh2LcxsA5aGZZaqUCgUCoXCChbHtLe2ttbSXZp+kp3xe8J88jMq0IS/l7EHLpu6Hung1jncw6cRXVP5R/ViFqhYp99hqzB//E5UBxWkJtrBR7tghWEYwkATEZiZZuxC9QeXNwoOo4KCZIdxzOXHzDi6pnR+2dGFzHCywz9UGEmuQ4a54DHZ+FfPRBbA50unvRf96Trg4yejAzuAWDLF61s2dpXumq3Ko/lk6Rp75nCikfU467DVEbRRkB0V8GUd63EVNCrT1S/N86CYdqFQKBQKG4JFMW2zHvffo2eAVQtJ25GxnsP/73VGHipUpU9vTrcdMVGlh7Q6eCtmZrSKvfLz0bWeHbZKnxlPjyWwYtg9esmsnuxXmrHnYRh26c4yfTGzy0xPOMfQeLxlOkYuW8S01fhSbNrXQ1mpc30jlj53CEhURmUrkrFQttZVjDq6Hs1tn0+mq+1BdjiGgSVR59uy2Mpga1fmgRIdIuLTiOYRr5/MQHt0zPwMW4L7ddd02cys+YCUnvgNyhsoY8Ys2Yusxy9U3+4VxbQLhUKhUNgQLIppA+NOqOdABd4p2S4y293zu2z1GOlX5/xXM90LM5IsElfmF+3Rw7Cz3bhB+bZy2aOdb2+Er56y9vhrKwbBiCyco133nIV0Zv3Oaajv/h0ltYhsKNQBHcyS/f1ethzpoFXksywimhobPR4BNk+tL60emU6by9RjD5EdRMNorWFra6vrWf+OR6Qb3a+jIj2sbJFPNx/NyeuOSfb8PGKGzVbqKl6AT9/eNRbNY9gzbT6Ck3X3XC6fH/cPz5FornM9lE47isRpWJoV+bJKUygUCoVCQaJ+tAuFQqFQ2BAsSjy+tbWFiy66aMUIIjLHZ/GaiYayUJQmHlKiPz5gwd9Tbi1RYHsWybDbRiTW4zN15w7hyAw1lKtR5B6iRI0qfGt0TYmeMkMOVb/IIKTXqOjQoUOpekEZ2XG9MqM7JaJdxxWQP/3YYjcZfiYSj7MhmjJ04/tRnXuMb+Zc+1iM2SOOzdpRBfwx9KjP5saOicj9u1kAIy4vi6D9O8oAdj/gxeR8WBKLjy1QS+RCyaJltVZF6yobB7Prl3+HxeNKFB3NUR6bXObMAE2J37P1dGliccMyS1UoFAqFQmEFi2LarTVcdNFFqdGPctex67aLVMfF+WdVIBG/K2PWwrvwaAeqDjTw9eR85oJN8LsZC1AGaZE7He9Ae1y9FLLwlcrQiA1BPCtbxyCktbbLZVAd0uLL1cOS5w5S4LaPjLyU0VrEJjjYxJxRmf+fjdWUUWFkaDkXujFy3+NnuY+jwz+Ui1/WJgzlYhaFMVVlZfigTj3BNJiBWl090+YyWJ+eL1ciZsEnTpzY9d3YbXSojVoreI2Mxg6nxfWMQu6qNsgMYA1zblvR0cpZYCuVfibNPEgU0y4UCoVCYUOwKKYNjDugLEyd2jGxHi0KqjEXIlTpgvy7KtxjpCe0Z3m3Gu3kVJCOHqat7mWsnXflSi+5DtZhrJxvFuSgF14v2XPwhCq/h+oXZQMQ2UNEthIqP25D1ldnblusU1RBKDK2NBdsB1iVCil3xahNFPPhdoz6TY3ZHmaUjSWT0GRMmyV79qwx68zdiMvA9goXClFYUQWrHwdkycas6qe9IAqUotZGtluIAsCooD5zoZ+XiGLahUKhUChsCNqSdhittVsAvO2gy1FYPN53GIYH+As1dgqdqLFT2CtWxs5BYFE/2oVCoVAoFDRKPF4oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ7AoP+3jx48P11xzTRrVas6POYLyH+45XnHu3rm8s98Rd9bxP57LO7s/5zueRW2bi9kdxRrmqGBvfvOb38VWnEePHh2uvPLKtE57QU/dou9ZWuvku5d3Dxrr+Eur79k4UJG4sjjVhptuumll7Fx11VXDQx7yEFnmCOejP9aZc+cLezFM3kvUxP1MY514+XOfgI7B8fa3v31l7BwEFvWj/YAHPAAvfOELYYuvfR47duzsM0ePHgWwE/xeBQHxnWCBETi4AId7NGRhHtUBC1Ho0953M3BglizcJP8Q9pwPrQJUZIEreOPEmyzrG/sEdoJQXHLJJbu+W/AGPosX2Om3u+66a9fnIx7xiBX3nCuvvBLPfOYzV+p5rrDy8VnEvKGMwkHOLbQ9AWDUASjZAS4qgElPIAl1GEjPDyLXIUuf5w0HkYkORLHDMfiwCeubnoM5rr322pWx8+AHPxjXXXedbLeoTnzudNZOPXNK5bfOISm9m/ZsfeslOP4ahxtWaasy+GeiM+bVM+r8+OwH2NZ+GytRwJlTp07t+rTx95znPGcRboElHi8UCoVCYUOwKKbdWsORI0fOMjRmY8DOzlYxkEzcwcyad2Y9orksH18PVb+5dxkqcH70rgpf2ZOPYowRG5zblUfv8HGlButHY+DGonxZLr300pV7Fxpz0hOWiPQgOxRBjaHowAOWNs0dutGT317ElXPhRjPMhZjN7vWE5cwwDANOnz69MgeyYyjVASQ9KqE5qVZ0by/oYc29TJvL5Z/pXe88WOrD4Ubt3UiCqdperdX+nvqM6pAdR3qQKKZdKBQKhcKGYFFMGxgZGQd398fdMdNmNhkdqMB6C3Wwwjo6GEam85vT30Tg3T4frJCVQel6Ij2oQbGAiDVzgH51RKO/bn2oym/SlEjfZtf8OLhQUG1oei7ul8hoUtU5us9Meu5IU3/NMMcm/PjsPUQlY2d83RC1Cd9Tx4hm6a57vwdnzpxZaYtIr6oOvInaT0mr1ulTZaeQrVFz0sHomurLczGwzCQ6Sjqn7DP8PZZQ9dhQqANPsuNq+ZmloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8XibzkM20YiJTP25tGx0w+KPyITfzPvNkMm+K3+8zABFuXGs804kwlfvstgoMi6bE4v3nIVrn+q8WS+CYrcn6ydO37+jVBIGdqHx9YgMEi8UuI+UG1UkqmNjG+W2ExmV8TusForS4TL2iC3nxJ/RnLA2USJbficz8uHz6aOz7LN5sh8YhmFX/TK3o7kYBZF6hFUdPMf4fpSeEl9H6wD3D9cj638lUs9E3VzGbE4wVL2idY7dA9cZZ6os0fjei2vuhUQx7UKhUCgUNgSLYtqGLCKagXfDzKYtWAewE5TBnlFMO2OkCpkBCtdH1SGCcmuIGAkHDuAdaRRERu0m51gBsNMvxoD5k8vh0+NgJRy0JDOw8iz8QkNJR+ZcgPw9xc4jFmtuj2wAF+3+56RA67gn8rM8lnx51bM9rjJKChTNwR7DzXNBaw2ttS7XT4XMYJMlUz1ulXPMMGLAzCoVI/XoCdoSlTkrY2bE2sN0/XU/39hAmde3CHNjJ3NLK6ZdKBQKhULhnLBIph3p+gzMio3VGZu20HMnT548+45dMxbOYRB5xxaxCsWkot2ksUn7tHvGKqPdLOuDuO5cby9J4DCtVj+7bpKFKDSk2kUqlgDssEALiMKhSSO7AquzPctljqQq2Y59KYgYAYMDR2RSDGZJbC+QsSVmWsrVy48tZTOhpFD+fw45qmwrMr2r0mFG9Tyfuu3IHTJzjcskHwxuDx7ras77e3N968FrSc8YVdIZvu7zmwuxG83bOR09SxL9uyo4lvreU7913G+XguWtgoVCoVAoFEIsjmlnO0dglT0a4zxx4gSAHYZt34EdFs7B4pVV+TphEW236S2bjU1a+E0OBKOsrQGtt1X19v+r+uwFrHP0IURNcmGHt9g9+27t55k9SxvYIjwKnJJZo28i5oKR+GvMAJTXhP9/Th/JOkF/T5XNxpD1ub/GEh1mg5med66+qq7nC6bXVvmyHQKz1sjWhOvPdhs29jOJyzpjXkk6MtuW3kAime7XwJKwzLZhTrIT6atZusrjLpIKWXntWcW4I+xHKNnzgWLahUKhUChsCBbHtIdhkPpc/7/tnJhp26exa2BVx8pMO9LB9iIKEco7Wrtn11nXDWjGYZ+Zdbxdszqfb79WtQONfGz5HbYiZz2vSSf8O0uz3oywTlnnfHD9NWbRPB78PeVb3+NLzHrc7PhaZjTK3ziyh1CSpMw/Vx2ruJ/IfHyB1XayMmRxGjjtnoNCVHmU/jvztuB69MSHULpspb/2ZZqzbYjKoo5kjexweGzyWInWJe4XNScyT4Fi2oVCoVAoFPaExTHt1lrXwfK22zLGaTsye9f0q9E7rPNVuz1gdVfK7CKK2sa6K2VN6XfJzMp5t8r+6H4H2eOvuFccP34cwO72ZJ0c+21nukxr+7vuumtXGlFUKGPdSwjYrw5S6dmxs9Uwj28P1bbcppleUpUxGncsBeJxaH0a6XetjEqKEkkQlCeAPWvjI2LazNL3k3EPw5DaHCg9qpUh0xczw42kCQz23lDjwbcJe60wO+7xn5/zIY+kNPYOtxGvWf6ZOamn2VBETFuVP5PssGQii9qWMfcloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8XhrDYcOHVoR60SGBWz0ZG5WkXGHOpyAxSB83//P4jATu2QiGxY1WlCS6OALrs9c0JPo3Sh86BwsPQ6UcuzYMQA7YnH77t9RoiYO7uD/t08OimOicO9alqlJLhTYEEeNoSzULn+3NKKDUPgMeTZajETrLDpl1Q3XJRJ127s2RvngEhsXvh7qMBX+Hs2N6CAan6+fD6wSuuyyywDsqFj2YkDKGIZhpX98ukrky2JdX26ej+ozMuDkPrR+USGE/f+8zvCa4dt87mxv1U/+GrsHsug7ck/lIFg271l8vo4oPxKP8zyycazaJqqrCkN9UCimXSgUCoXChmBxTPvIkSMy3COw25ULWGXYUQhUtePnnRk74vt3bFfMblXRDtvXx6druztjr35HZztN5U6THWbALI93uhxCFNjZgZqhmX0aizHmyztUDxXcIGJibGClXGh8PhwQIXMp2w8wy/XXeLetDrzwfcrsjMd1xJaYAbAhkiELDakOcMiMbni8eckKsJt1KrbJ7o+Z8ZKSHLB7F7DDzph92Vi1OekZ3brwhmjWbz6gDJeB68yuSv6e+uxhkwZmzzw//f8ZGwd2j2VlPKoYeHS4jYHdcK39/Jpt/xvDPtc+8+XIDnqxstk6ywcVRcGdlopi2oVCoVAobAgWxbSBcYeXmdrbLtF2nuzYHzEj5fqgdvter2q7YdbX2U4xOkqQy227OGbY3o3K6sM7wp4A91xuS8N248ZefX5W56uuugoAcM011+x6xsrDoVh9+swYWKcV7aKZ0Vk5IobFDPV86bStzpH7nkEd+pIdlciMje0HokNSlEuUtY+9mx2zamVU49zD2tjS5Xyjg2W4jOwqyWF7fb7qsBSWxHjmY+/beGI3TxurHpFrpMIwDDh9+vTZZy19zxB5vmdSJQOvA/xO5kqkQqpm7yhbFp5z0RhVbqo853we3LbsrhWFUz6XQFYG1vfzmI1cTXm8sZTIl5FdFpcW3KmYdqFQKBQKG4LFMe0oqEIUSJ91f2wlGFloG1Toxii4iu26Wfea6VfnghgYe40CwNiO3naiSqcUBYBhNshsObI0Nd2l6Qd5x50xCEvf0jK2Zjtsr59mFs59y+zM532+drpskRsFLmEo9s9sxoPZI9thZEdAGvgI04ypWHpsER5ZzKqAH8ry2f9vc4OtuHl8RAFAlN1KxJ7sf5svbINi5fD5cFl6xhDPf9/GLHFTXgORZbbyIlD6Y5++CsyShXvlYCd8PbME53s8rqN1x9JXBy9FUsFsfZmDpaHC6EZ9wOOM+9qXg/tjCcGdPIppFwqFQqGwIVgc0/a7pExfzLptQ8QmWB9o4OM8+RPQuo/MJ5r1QVYmKwdbLgKrx2uyXpgZvte7K6t4pRf1ZTP907ve9a5dz7D1su8X1pEbS2fpRhQuk3e6KiSmrzPrzs8VLJGwvHsOx2CPA3WABLAqBbL2YqYdeSsonbnpWb0OjseTkmJEc8PawsYZ+75GTJvH9eWXXw5gZyyxztn3m5XbHwzj87NxHVk4W9lYkpRZINuzWcjTYRhw5syZFU8Q3y/Kup3ZdCQp4jnM99m+w99jXTan6fNjC2glBfDPscSA1w6WKPm1WK2NbFvjsZdYEgxe71jS2ON7rSQK/v0o9sISsMxSFQqFQqFQWMEimTb7YkcRo9jSV/lc+3dsl3f77bcDAG677TYAwK233gpgNToPsOorzDo/zgPYYRFcJmYIXkpgLMV2q9YGpi9kpu13m6w7MiZn6fMu3dfRrlk+toNnnZOXPphPtzEss0B/0IMeBGDVxxfYaTfuC2bynm1wm/t+UbBxEVk9G6wfTEKgrOD9Nfax5wNQrN28nQKXxfrF2i06UMH6nSUSKk4AsDre2F6Bddo+P2ZY6tCHSMds+Vx55ZUAVueTwUu4TLrFemo+UjeydFc+7GwR7MudHSnpMQyD9C7xeSk7mCi6Gc8xlmJYWpEdDre78tePIseptTCLC8BjhRHZbFhfsX+2Xc/sCGwN4Xpwvf06x5I3RiTt4LnHkoRIb93jdXGQKKZdKBQKhcKGYFlbCIy7HNvt264vs+yLGBqwm5XZDvCWW24BALz73e8GsLML5zi4tuv3eRubtLIZM7Vdq7Enny77SfPON/JJVlbqrDPN4pezVTdbd3oww2JG8s53vhNArN+x3fLb3vY2ADsM6+EPfziAHQbm0+WdLrPNKKb2Oug59tD6w9qHdaJ+121t+cAHPhAAcPXVVwPY6X9rc/b1Bnbax8ab1dnSMomPHwdsRc/eAqxbB+YtpJU/tX+XwWlFvtZsDe/nDbDTVnfcccdKOlb3hz70oQB25so73vGOlTKytEsdTxmN0Z7jO+3MA7aviGwoWCfLfsfRO9an7/Ve77WrHjZfbIxF0QDZj94YsY0L3+Y8h5WHgwd7lnCEtMyzRh3NybY7EZhpWz2i6I0Gtpmw9cWYvY9gZ2APA449HsVFYA+apaGYdqFQKBQKG4L60S4UCoVCYUOwKPH4MAy4//77z4oyTLziRXWRYYz/buIwL5K78847AewYyrBRlMHEIl6sy0Yd6lAEb8DBwVPs0+oTidJU0HsVJtPXn0VbLKpl4zKfDqfHB4RkoShNVGf1sHa++eabV97hvmSRpvVbdARoJPZS4H7ysDpxaFY27vMibiuPqUdYrGfjjF2nfJ3YbYqDj0SH27ARkwqgA+ggGsrILzLuYWPFLCywGpscBpSNKH2d2eXP1Es2huzTl8ne5fysLbJAQJm6pLWGw4cPr6jl/PzkUMEsNs7E4raeWKhgbh+DHztsVGpz2tKy9olcW9kdVqlafD24fdhAKxoHyo2KRdA+P+srawsWX1v7mqrSr3Os6rC2sLFz00037UrLQ62jUb1YrF9hTAuFQqFQKOwJi2PafjcVGSPYjlMF7I9YLB+gwQzLdlbsSuKvcXhRDhEZ7dSUu0kUIIXzY5bEafgdKAe7YNefyHjJoIKH8A4/CnpibWHPGguNXL64v9iIKNrxqnCzGZglReVWRzDysX3AjpELB59hthyFQ7Rr1h42/oxhRf3P45eNfay9fHCSKOCKrwczfj8OlKEWu15FbmIshWEpjRkX+TaxMWIsydrImGPkdjk3DtjQLro3F4ry0KFDK/PDjwOWRCnXQi+lMZdCqzP33RVXXAFghxlGIUltfBmbtLaNQrdyGVkyEc0JlrSpA0MyNzh7h+d99I7V3fJlqSS7vvp3LT0bO2yobPn7scr9zusOl8fXZ2nhSw3FtAuFQqFQ2BAsimkzooMn+J7tHu0762CAnZ0Z63RsV2+7LWMXEQNitxN7Jzq6Uun8OPSgZwbM/plNsI4xelcdsMEBTQAdSJ91qpH7A1+z/jFmwS5uvmwGdkOJ2BKXO9v5mtuOpafcuXyezJpZJ+v/t/awMWLMh/Xg2UEXBhUwJwKzIw656p9hhqBCYPp+YXbJ7CiyIeH24zFk881YU+QmZGUzN0xj5fbp+9rqzPOSpRC+na2fIv10hO3t7RXplk9PHRiS6T85qI3B5scDHvCAXWlHx14ys+c1xKdt7aFcTFmK5svPoXBZ5xsxX3b5M7DtRmRrwAFYjCXbd5aK+fSsXyxdGxfRfOM5zu0ZuaWx9CGbnweBYtqFQqFQKGwIFsW0W2u49NJLV8IVen0DBwrhgPeRdS0fRsE6WT4IPgrsYGBmHR3+oQKIsDQgCgahjv5jNh0dP2ew+mUBBPhd3nHy7tgzHw5OwmFTo0NGlD6aw016NsX9nwXw50MfovyYUXNbRiyWy28MgfWHPB78PbbEz0JfquAdzNp8GVWAFLYjiEI2cruzbUHW9ip9Y03WFhFTUWyd9bC+zirMqH2ajji6l0lphmHA9vb2Sp9GkiJmpux5EOlTebxxG2frHKfLa1e0DvB4ZlbumSjPVZbOGKIxxvY3LN2KJGQ85q0+LLWzskZ6fpZccrt63bryMmLGHbX9uRxqcj5RTLtQKBQKhQ3Bopj21tbWLqvYiLFFB2b475kehfV37M8YMVLlh5lZj3N6tiM0fR2HOfX5qN0d+5T7MiqmxXopX3/eyfMulneoka88Wzqzz292zCqXLWJCzCbmDn3w6fN4AFbDurKeznb5kS+q8mPndoo8D9hegA+F8exMHWvIh4JkoUhZWsN6aT+WeU6wX3gU00Ad9clSm0jawf1sZWHvjEgaoPqfGSawevTnHGs6c+ZMehwtW8hzP7BdAbBqs6BsM6J6KT9wrkc03tSBIdE6wPkpf+0oP5Yosu1BFj6Zy5xJHbgsSmoShbNVVvEsHYgOYIqkmktAMe1CoVAoFDYEi2LaZgGsLDX5WSDeZQO7d6TMOFifpqyt/T3eqbEuxKfBu2RjEWx5HO3guD68M4x0jMyO7Rnlh+7TU22TRWDjfJlpR2xd7eB515/pznp2vCyR8Dto3qmrSGheL630dtymkS6QpT7cTtEhDCxxYS8FPg7RP8v1UxHL/LvsCcBeCpGFO0tHWOqk9KQRuL8iiRNLWlQEuOg4XqWjZVhUNCBeU7hto+NAuQzc/uwvn8UfULYtzPR9JEaOiMj6/EhixUyU1zlDFmmQ241jO/g+ZhbLn1yujHErD5go1gNLH3heZ1E3i2kXCoVCoVDYE+pHu1AoFAqFDcGixOPAKIrIDA7Y9YnFOJG5vnL1YVFclh+LZDityDXBwG4NLEaM3mHRknJdyN5RoUO5vP4dFitGbcJiNjbsYheMqNycTyaK4nCcGbhsPj12n+JANlF5lRGcap9oHLBrIYsCIzGsCg0ZGSSxCFiJ8yIxLIfl5QAsLNr19WL1gr3LqqNIHKvEv5ExEddPGZ1GoumeELimlmNxq39HjU9VD/8/i2LXGQfcLqzC8eJxNorldS4yzuR6rWPsx2VTIYojIy9Wu2RrsIIyvMsMSdmIMjo7nfupxOOFQqFQKBT2hMUxbWA1KIAH75gMmbEN77bV7q5nl8esiQOz+DIqo6KITShGoJhjFOBeGZNkAUd4d6wMz7LgGtz2n3zBjAAAIABJREFUkWuJ6jdmZ5FrETOHHkTGScwIVbAWnw8HyOHQqqo+Pm9uJ2axEaNjoyJ2o4kM7PZiOGOMh9kKH1gRGRMp1sn3s6A+jGh8c1+y9CuSerCB5VxwFftTZVDlZoNE3/9stDhngNbDtC0tZor+HZ7vLNXKjtecQxRWlD/VeuSfsbZQga6iNmJJgXLn6pFCWjtGY5THVR3NWSgUCoVCYU9YHNPe2tpaCREYhcNURzBGO2uly2adZra7U3rwKAwe7x6Vm1hULy5LpIfiMjIbNDAjiXTCSieX6dQVK+d3ojIqxpPlo1h6BLYfiGBuU3xIgSFz/7D+VyFPo115xDh8WlEAGCsbs6fIRUa5Kqm+zcY3u35FjG6uLzMGzO8qG4dIksTuaNaPe9GHMnwI3GhOM9SYj9YdW6sUw+7Rh6tPn5bSXWdzuTdwUTSuFdPlcR0FnlJ6dx7nUXsq6WDmYqjaYGksugfFtAuFQqFQ2BAsjmlvb2+vBBCImIHSX0QWi8yslWN/ZHmunuFdXnSsnkHt3KN8VHhRfi5isfbJR9VFrDAK0gHoQCaZrlntXnt0mVz2jNH3MCnuL19upRPncme2FIopZpbSysMh0kGzVbCy0PZQTGMuNK1/hm0z+DhJb59g9+Ysf3uCq6g6ZAFAuOxZv0XlZ9iBIZmluQq3y9eVrl7lC8R6Va6rsuHJdL4qMFRmPc75cdv6MvL6zM9ktjQ2hszOR63J0bqqPDai/ldSDSXRjFDW44VCoVAoFPaExTFtb8UZWVmzlSHvdKNd65wvIrMNv7tjvbeBdY3ez499AZkp8uEjUb1YL658oT2YnXFZIxbALEkd0hGxAGbyxhKjgym4LGzFGYVaNZyL3ilrJwNLZyIrXi6LKlPmI8rf+ehU/z7r+jK9tNL9K9bnyzjnAZBJA+yT9ZBZf/WwYi4769ftAB51mI8Hh2PNysXhZjMrZMW4M33q3Pd14gRkXgR70d9m8z3KP4Lq/8hGhOMBsHQ1qp+SIEVH3Bo4HS5jj/SumHahUCgUCoU9YXFM+9ChQyv6tSgAvOltmYFEhzDYs3yQvNJ1+3cVw1aHuAPA8ePHd73Duzt7N2ITfGyjffK72SET3BaGqB05XXXAQiS5iA6q94gOcGApBEtTPDPOju3cDzA7Yl9YXy4VsSvzb2f7AGZAkSTp1KlTAFb71N7Noj7xM+z7njE6ZbOhLN+BVZ9hZfmbxQfgexGzZ7sR5SXhkbE9RmsNW1tbK37mXq/PFtE8fyIbinWjjEVW3ar8mQW/PcuSnEwKoCKvcZqZ9MHWKkNkX8TtxeM7izmgIuPx/I3y47Jm4Lqer/VnryimXSgUCoXChqB+tAuFQqFQ2BAsSjze2nimbRYMwKAOkchC57FRggp92hMOkQ3DLrnkkpV3DEoU5MtoInwTMZmY1D7ZSMob37CLh5WFjXAitxd7xox7+EzsqKxsaMaiNBa1eagQhHyf/wf6xFQ9Ii1ray8GB/JgJyzSVu5u0bhT79j1yEhKGfVkoTW5DGwYmInHDawusXf8+FYqA8svCynM88nA/ZWJfZWRlL9uz1pf90CpioBVVQOroqIwpsp9ci5/QBvWcrv4Oqt7KuwroA3BlMuXn9NcL1sPrM0j9QCvxUrtELWZ+l1g1Vp2WJSBDUp9mygV4VJQTLtQKBQKhQ3Bopi2gQ0oImMEu8chT5nN+mf5+EHFxrLgKipAR3Q4Bu/yuGyeLdvu9OTJk7s+12EKxsrZJSfaYds1a2t2g+LACNG7aicf9RuzzJ4Qi8w2eph2j/Ga9YNJNZhtZEFvFPPlAzd8WZjFMGvLXFWU1CaaE0oawP0fMRHlphexRTagUyFdo7kyx6ij8TZ3lG7GlqK2ZZibaWasNhcoh5/z5TTMGZdlz6p28v3Fa6P1E4cOjQxE7Rk2Ls36i+c/Sx+zIEVzQaTWCVLDiOaGkrL2sPOlhTotpl0oFAqFwoZgUUx7GAbcd999Z3d9rHO0Z/yngXeR0fGKc0EnVJk8mEVaWb3Oj9mJlcX0xtGunXep6zBsAzMQxWazMipEOm1ml9ZfkesUh+fkZyNGt04ghNba2joodr2LjuxkKQm79nCeXr/PUgylF/VQbIkZYxTe0Z61sajYWjQOmAFlAY74XQ4ixDrhSHLB9iMZ81LvKJ0mvx+1Bd/b2tpKmfvcAT4RK2MJB89D5cLkMWcfE0kSrD/s0JnLLrsMQNxOfCAMs+ZsXWB7Dw52Y5IsLw1Qx+Kq8Zb1mwq2Eh0ywn3Ka0skpVknAMuFRDHtQqFQKBQ2BIti2sC4q2G9mtcTKhbJYfE85kIA9hwUwDsz1glHh9ErqUBPmMdzAbdftltlXTPrwSNLWpZczFlU+/RUeMys3r1HL25tbXWlOxfkJLNcVZbTkXSIbQv4gIWIdShLfLYwj6yUVTjZuUN2ojKyZ0AUcIbHjLKO93OSgwgxc8xCiHKI3ay/eo5MZSgvkyi9nuA6nDffy1isYtgmgYsYv0lYjh49uuvTrkdl43HMbcBjNrJT4WBYbGfk1yOWDKi1mMdwVDbl2RMFnmLJgQpr6u8tFcW0C4VCoVDYECyOaQOr7M7v1FUIQ9Y/RL6BvDtW1o+RfkP5E0dsgnVH/Eyme2Fmow468OVhpsiW4JkuPwq/6BHpwZipKr/JyIKfGQS3eVTGyH9egfs6YjNsxc36PN+XzKSNtdiRgsywvW0DSy2YTUQH1LAESUmDfBmVzjwK6wjsZj7sJaD85yOmyuyMv0dhbpmVcVjeqN/sf2tP1s1H9gU8BlmCwXW7//77U8tpHr9q3GY6bZZ4ROXgOvNYMaZt9329bOxxP6hDgPyzXGYlLfQslg85UodzZOONQ99afZhxA9ruQjHuqEw83iLdvTpEaSkopl0oFAqFwoZgUUzbdrx85J/pZvYzH2CVGWZ+rKw3U9aP0T225uXdJbCzq7Nn+VATZuKeTfPBDeyXyZbuUbmVnjWyPGf9lpJgZIdnqPwj3dI6Om0uf8S0mYmyH3XEYq1fzCKXWbrdj5gBs5SMiRiTili4L090jSOSMctkxuXLYvmqaHbm+eDv8bMZ8+V3ORoc67IjCdPcYS090eIi2LqjbA6i91kSkUn45thrNPa5XVg/HOndLU6D1YP7NJI6qBgCKsaE7xdL3/K96667dn0/ceLErud8PZQERPlV+3ooRBb1yvMg83BgNj53rOuFRjHtQqFQKBQ2BItj2tvb22lEGtZrzO1mIyj9VASlh1I7UWBnN8xWvcxEonpxnHDW42UxrlV+7CPt02crXkbEXpQFeMZ4+F2lQ/flYHuCLGY2EO/KIz0np5e1k/1vn8paPLJ2Zbav9GqRzm9ufPt8LG/TsyvdLFuI+/85XjQz7cjXVrUfs6ce7w9DNG+j6F9AzrxUpK0ILOHjNAAdKz2zGjfwfFFs0jNEPkZYrWeeBd5xxx0AVo/I5LL6epqEiD957EbxI0z6YoyaozhmawuPrx49/5zvdhTdjKWaPcfHMvvuiap3IVFMu1AoFAqFDUH9aBcKhUKhsCFYnHj83nvvlcZRwKqIqSfcHUOFpsxC2ikxeeTqwWJPM6Rj8ZuvlwoJqoxVeoy8TFzKRib+fbvGxhYsNsqC8PcErlBGalzmSDyu3MU8Wms4dOiQNJIDVg3QWBTMom5/j13x+DsbY0V1Ui5AHuympUI0RvmosLX8TnSoiUEdiBGV1ca3cmnkds7qx6L2vQS4iAzsogNWFLJgJ1GQIZ9uNJ5VeFKey2xs5v9n0SyLlf19E1ffeuutMl1g9zpga4R9KvG4peXXCTM4M3E8h16O1lMeI3PGi77t5tRvkXicRdyRETCXcS/r24VEMe1CoVAoFDYEi2LawLirUeb5wOruXTHuiBkalPFLFr5QBZuIDn/gstkOlMP7eTcadvFRQV0iKOamDGB8fiqoBu/0I7bEBnX8mQW44bJnBkg9bTEMA86cOZMe68rlnnNdArRLjApRGgUCYrbH0gYfkIXDx3KABzb68mC3qbmjOqNnmP1xOEv+3z+jAh/5Plfulplr1pyrVMRo93LYwzoHhnDZovGtGCGXLWLEXBYV3Ck63MaY7+23374rfYPvPx7HZmCppEKRe6Jy22PDWH+P02dXzWhMzbnOZSFJ1foauepl42AJKKZdKBQKhcKGYHFMu7WWukJE7lL8vrqmdnes7/D5RWEjo3wi53wDhx60ekVM257lgwGYCXnwbpHTisJZMmOIdpw+v4ixMIPv0RsqnSnnF92bS397ezvV37KURqUX6cGZjTMzicJk2jvMQJgleaZt6fmxAazaHJgO0uetGDbbL0TMd07S49uKXcrmXCijwDwcttSQzd91GFAm9Yme3d7eXkkvkrjNrTs9c0BJ9qIQqMqtLtL9c9hkDuZk8N+NlWcSHF+2LNynIXNPZZsQ5Tqb2bGodTxz3+LxzflGktm9SGsuBIppFwqFQqGwIVgc0wZW9SeeZaiwd1mAD6X7UMHj/c5K6W15x+Z3ryoE4Z133rkrTV8vDlsaWYlH5fDPWFnYipPZoX9HSTV4h+u/q51tZjvQa90f7Wp7mZXptYGYVe4FrJfjTxVaE1hlx3MH1lg9gB2PA9ZlZsd5sl6d2zy6rvTQLGGIgvkwMstffkYxnR7bBnU/uzanl4yYNt/3n+cy5lVIZN/G6vhTtq2IAn/w+mZlNFYd1dPe4cAsXOZMEqLsPrxUiMP9KklL1L52T+mlsyAoyhI8GzvrBOi5kCimXSgUCoXChmCRTJt1zFEYRENP2FJ+t5cpRmVilsT6Y/+/MS3TT/KuMjowZC7/yF9cHS3Kh4xE/u6KQWS+61x+5dOdWdJyepF+LNNVKWRWt8o3k9ONrNTn/My5PQHdZ2xjkFlMc/psW+GfUSzZ7pu+PCqjsk/oOfxFWfn3sDMlSYoswTmddUIXZ8crmoSG7SEyD5SetUMxaiVp8ZIwlvAopu3bSUlc7NOsyf1axV4CCtH442tKCuXrxTYgSncdzXleq9R63uM5lNk8KGnqUlBMu1AoFAqFDcHimPYwDCu67Mj3Ve26o52v2g0rfZp/jnXNkV82fzdmzdF3sohLc8jyUzoe3jF6tpEdLeq/R/7Oyrqyx9p7znfVI/NjVVBRwVQePp/suTnfYOWrDKyyiix6GteD84use9UxqiryW2QPodo2Ytqsx1f66YhFKQkFI5u/yoc4Y4tzY8fbQ0TlnmPz6/jycj2iiIV8zC4/E81LvqeYsB3sAeysVcqDJjsMhn28+aCiKHaBsgHhNSs6DnMukmWPJThfj77P+cgfNIppFwqFQqGwIagf7UKhUCgUNgSLEo8PwxjC1MQTJnaJ3KlYzJIZhLD4RInYIyMYFh/xs5G4XIlXzkU83gN1FnNmWDMnso1cz9Yx/ut9J2p7FtWt0349Yt11DsdQRk/ZO2yQowwEo7Oqo3tR/r4eKmwpG+pkxkQGNT58utx+VtYe98u9qEn4GRWi0j/TY2Rq5VGGTsCqGFepL+bcEqPv0RxTYum5UL7+HQOPQx/Mx9Y3/uRyWP0iEb4K5RuJx1X5WRXGqj1/bc79LlKtGJRxYCQen1PhHBSWVZpCoVAoFAoSi2La29vbuOeee1aOizRjDGDHXUHt5jOXEbVjZ4MGz25UsBM2+vC7W3vWymrfbRcbufrshwO/Cq1q+fsdr9q18pF80Q5bufL0HP6gyhodSMBGgJFxCkOFVARWDbPU4QVRmM85l7XoYBWFzAiGJTpsEGT18W1hfcXHuaq+jcba3BGd0T1mKYqBRxISxZYyyQXP18wVcJ2woq01tNbkOuHT4Tr31HWuDBwMBViVkqi2jUIT85zlsePXAQumYmussXBlhJVJrpiVR6xazROb92y8G7nqKelGJu2Ym78ZOy+mXSgUCoVCYU9YJNPmwPdeB8OuCWrXn+m2DcptJzoiz3atFpKPw5t6aQDvUnl3GQWNsTobg1pHX6wOkleHgPj68C6SmXYEtZNeh2mr4CqRa461lwqxaGXa2tpKd8kscegJkMLvKruI6B0eTyy1icLO2jPGmhV7yAJkqOAqEftUUgY+0CFiIiqoD8+N6GhdDjzTw7SVK2M0vjMXvAieaUfpRi5Wc9+VzlpJmTj8sL/HEr3o4CQlSeI1LHJlY3aeBZoxKD2/IQuYxJ+syzZEhzdlYYD5HcWw1foT3SuXr0KhUCgUCnvCopj2MAy49957z+66oqD4zMiyIyt9uhl6wi0qpm2I9NMcNjI6FN7AbGkujKjPjy18VbCN6H3WnfXocDl93uFH+jd1MACz0MiewBhIxrQtTT5UIDr8RYX97LEWVUw7smC2/7n8mS6Wg0vwwQpmFxExSCsDh5PMdKqWLlt+c59Gh80oPa/Sv/pyK/10Fr6S2XiPZIR1wj2I3lFrCLPMLISmKmMUCvnUqVO7yqCCBkXHXnqpX1RWP8ciexdfpkxPzJIj7p/IApwDZ6lQv1Hfzs1bQzTu5mwoIukq57sUFNMuFAqFQmFDsCimbTptPrrS70BNv826MXVkJ//voXb9fmdlu1Zm2MyAIgtge4ZZUaRbYuZrdbey2HfW9/t32B9T6bj9tcxi1pcr0+/NMa/ongpJ6NvK+t1255HOT8He8ayDdbBcn6yuClwPv2M3Zn3ixIld35lxRxIJZrjZISNsFcxjlJlJpCdkxsPvRKEouWxK4hNZHCt7kkg/qvTc6+i/e2xEFJMHVtcK9U50j6VXyhMg81oxZHYjPGYUS4/WAS4zM+1IsjN3RGbEYjn2Auupo/HGdVdHz0bgdY7LqnTpvekfBIppFwqFQqGwIVgc0z5x4sRZdmQ7UNPvADtMOwucD+Q6sbnIRBEDVtbpEatUPpaGzG9VlUVZefv/eZeqInL5/HhXrOrt66CskrMdsLKYzQ4K4ChNPX7anH5UBsWAIr3knAV2xuBYV2n1sAMb2I/f56ekJ4YoqhmzYxXdKophoA7U4L71ZTJGx3OSpVBRfAAVJY6fA7R9R2ZxrnSXChGrjuapsm6O5qmKnqY8ETzT5uN9OX8+3MT/ryQdmQU4P6NYdGYJruxysrbnMcvP+rEzZ3OSSVx4PLA/eJTm0vyzDcssVaFQKBQKhRUsimkPw3g8njHryBrS2IPt7tlStcc3WFlIZ36fytfakOlgmGlHUX5YZ80MOLPMVjGAlW4LWN1BR/pOVQfFOrMdvYHZC+98vd7a2sT6fE6nvb29vdL/vj7s+zzHKvy1uYhKUd2VtwBLOTybYmZrZeMjGn292LeWpT8Z81kn2pyB4ydYemb3wbELokhfzIrUuOD/o/pE0qIe62eD+fjzuPDl5vgFc9bIHsrKvccjZM7LIpLw8XyM1iZ+h8vEn5H0QUnpzgWsd4/isas4FJnEhcvP61zkZcJr41JQTLtQKBQKhQ1B/WgXCoVCobAhWJR4nGGuMZFxkolKVRCIzAVjzqgoMrZQhjqcNrAqrjRY2TiwgMrbg8WmkWGQOl4zE9kZVEjKzKhMGZ5lRjkcftauR8ZmfIhApFbweZp6xdfHp3fs2LFd5eVyRiLAOTGugV2ygB3xsJXb6shBg/zYYWMeX78oP19X5XrHbR2JkecCSmRGTCqUaySSnhMnZ4Zxap5moXd73XZ8GNOoPlyuzHjVoMJ8shouUkGx+k+Jx6N2YmO/zEBUHXiynyLvCBy0issaGWAqd0FDFMyF1x2e45lKbx13wQuJYtqFQqFQKGwIFs20jU17ly9jq8bC2cgnCqQ/x16zMKZsyMCuKlH4SmVgwrtnzxyZGSrmw8ft8f+qHr4cPn2VD++4ozTZxSxj58wulAGaZw7MLtYxlvo/7Z27cuNKEkSbY46/9v7/Z629/hgzIXKtilt7mFkNkpKGiMjjiCLAxqtBIus5FYNwJVV5rftrBqVQpfP69M+U4maKVH22B1ryGKmiVflKl5bIc6DuA9e+sZhSvuo46rj4dypnSuUzBcvtggDVdXuE2+22rtfrnSWnb3dXslOVX3XBsS5YdkrjPBpQ1Ze5ssYqINWltPIe7OeY31W8p6djrDlPRc35qOa5s9JMwXKuMcl0Tqbfhb9JlHYIIYRwEt5aaRe9SEQpMhasOJLyVTzSUpJPWfS9KCVKv+SujGF/zZQePnGrAgNTAYS+rkprqGW1PddApON8ce5pvY9PGKOgfNqf5Wej0laNW7gdPr27kpBUNf015wyLj/RUNu4T91Xt+1TidHd8hVMvSi1TfTPlkMc3Fb2gT13NO+c/nvzKvPd25+Tj4+OudDCXd3i+pnRBZ61yjXfUOhxTxT7stqfUq7MgubS6fh447/gdUqhiRa7krovL6bhzPzXtcal6al5EaYcQQgjhUziF0u4+7fKFVCRwPR1T6agn0MKp8qlYPX0wVKTKX7xTiKodnPPfcXlfb+fDpsLn/vbx3ZO3KhriLBaqUYDy4691r7C70qY/7ZkoTnVdXMS0uk6upCWv+5F9Y3tXtsPs4/A6T0qb18plD6hCI061OCuKOh6qI+dj79vh+VQqyX2GVpsp2ptjKG632/r9+/ddLID6HnA+bbVdXktaa6j2VJwK72GX8bDWvXXOFSHp7DJNprgffpbfjdN3FSPBOZeORHO7wi/qnPCeP3Ktud13IUo7hBBCOAmnUNr9SYftDSuCtRSa8lPuVOwRRUqlc8RX5kpqulzc/hmnYo/kyx5Z7tblk69S2lPrxbW00nZKhzEKXYnT3/1MdHAfj0qn5kz50wq137tIbKqptbzP8ufPn/83Ro8ed1YA+o+na+mi41U8BI+L6yqlzXuiLAeTWimokp1inXLJqXxezae93W7rz58/4728i2BX++DyvqnuJhVL1TodI9Ujt7+rBTGNodh970xKm98dtNbQktn3m8fB+dHveb7nzomK+lfjvQNR2iGEEMJJOIXS7lCZ0c9VT0WqHSBxVZ/6E/eu4foUGeu2pxTDrpqUiwhf696/6iJx1XERF7U5NTPY5Xiuda/cS+VSYav2hJNl4hFcm8PaN1XJzkWP1/8uxqGPU+enFD3VTD/n9V7tq8s86Di/usvPVdG83I6LfO/7wKhxHrdSdryGzpc9XQPCLINHqTxt0t9jNcMj1RT7+GrZroVvH5/3tqpH4e4/vj/FULi88yk63s0v9X3qLDhHsn/cvDoSPc7PuEYpanu7apjfTZR2CCGEcBLyox1CCCGchNOZxxkcUH+nFKyCpnRnmpnMyK50njJTue2qAIdH05p6wB3NhzRpqmYWDnceVYCfcxlM5qT6TK0zBaKxx/irqRe1DaZGMbirX39nYpwCHwu6JdjMRvXGnnp7O5yplu+z3Gxf5lweqtgF5xXTj2hyV4F9zqSpSrDuUvVeDUTjdlSAFV0nrvHNVIyIAbFH0gYZiOaWq/13+za5Alxa1XR8PM6pEYpb5lLPlGvFuf+UG8WVY3aBhGo7r7rlPpso7RBCCOEknE5pF1RoDHRShT3cUyLVpAr/L1hG8EjZRVe0XqUjMeCJqOMrxcN94d+pyURx9El4La+aONZa94FVdewsqtJLerrmKa9S47JJiwq6YnEGF+ynLCUueGwKQKL6OpJuoiwEantKabvrS9XUg804d3YWF9WCtuDxqYJE/MwuaOoZrtfrmDpXY9NqNW2byncKJuXyo0GFCs6HKWXOKeldmmx/7awzan44i45rBqKUtit0dKS1rrtH+nrOYvUuRGmHEEIIJ+G0SpvKrAo8qCdE52OlEmJKzlq+3KJSEYXzvbhG9tym+p+op0nnlypUSc+CvnsqMKU6aBXgGOo80k/Nv705zFcXNaht1hyqIic9NaysL/Rh0mpSxX6m1DieU/rH17pPSaE6PlIYYzeX+nVS1oW+z8paQD+r882qFCzGNDh/pLJCcQxabV7hx48fo6p0avKZZjbOV6ru6UfabFK11jmeCons0sO4PxOu6NIjBaHcd2d/zTnjSpUqGE/Csfs+fVasxGcTpR1CCCGchNMq7Xq6LmXGp66uDFxktmvKoHx+LKowKR+nIqmwP+sJjorDRfMqn9nObzMVcaBqmnxBu6fi+l81DNm1VXyV2qbaHi0EnCuTf7qUO5vNOFW7lleeUwSw80vymqr2oSws44q5qDgP1ajD7SOX8XxOUfOuLOdnRfdeLpfRQqK27YqEHCnEQQuVKupT49D6N8WaOH80/fAqUlq1C1ZM0fGu2JK6f933KL+Xpjabz7Tu5famgkpFosdDCCGE8BSnVdoFo5DrCbXnz7qnORfJqKASmdblUyLV5Ff7SHaNFfo6rowl1+vvu3zWSfnUeywlyrxXlbNcfJXirn0ov7SKeqfCcTENysfImInJ908F4hpsqHiIXXYE/bF936ZWrDtoyeH86DCLwOUDK582x6dl5NkypjWG89H3/ds1vOjz21kc3DErtcc6FK78pxr3kdznqTVq346Kst6hLBY7ha38084K9UyZ0emecXPzXYjSDiGEEE7C6ZU2faGqYQiVDRXv5INhpCyffEs9TbmBxXc9sTnFOz1V0rdFP6JqwMLx6ePu55FNP7jupJK+y6dEVd1fuwhwFzm/1j/xFjVG+bbZbKR/lttx+eHKkuRUsot8VsfHzx6p+Mf5QIXdr62LUuYYU263iyZ/hcvlcqganTu3jPZfy7eDLKaYE0ZPu+8d1YyDTJYIWjF2kfiTVYjrqPPorICu6p3KQDkSFX+UI5HmydMOIYQQwlPkRzuEEEI4Cac3j7vSoFVspXOkNB+ZTItqrL5PzpT21WZyV3r1CM4cp1J+ilqHJvBu4nRBeDTZHTHhfzW9wAvTcqoQiyvzqcyVNR7XUQ0VWFKXgUfqXOzm2dTf2M0V3itTQJC7n6bAJ67Deafm266v9it8fHzYnul9P12/+aKfC+dq2pnJ+/b41wWmqfd4bVXjIKZ68X8XsKrYBZWpdZw5fJo7xStmcTfP+fodidIOIYQQTsKCBA6FAAAB30lEQVTplTafQI883U9lFvvyTj19VTDRFATB0oNMwfiuVAKXVtGhkqLimYpG7AJRVGEEt28cczqer0LNh0oDK+XrGq3UcajGGnUuf/36NY6x1n2Am9uusjq40pC8TpPS5n3EgLj+2gVuUUX18+rmvksJ7Ms4R6d5/Qi3221dr9e7AKepRa9L9VOBWq6QiGs+08dnudQaS52nyaIyvd+XubHUfblLE51KkbriQdNnd9t/ZB5M1rtXLJXfQZR2CCGEcBJOr7SLqUjAzm93hF0ZQeUncv6h4qsaYhzx/fB8uafl2kf1pM0SgNzu5I9y73dF8xW+y0dhIxMq30KdAyqbGkOlB7nPuLaePeWLn3XWClV0wymsqYCFi0tgydep2A6VKtdVc3Wnzl7her3eqdm+D/QHu8YnqgQucTEHqriK8+NPVhNeH3eN1bpuX49YwFycgrIguHWmkqSTv/tV1Hk4Gsfw3URphxBCCCfh8k72+svl8t+11n/+9n6Et+fft9vtX/2NzJ1wkMyd8Cx3c+dv8FY/2iGEEELwxDweQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEvKjHUIIIZyE/GiHEEIIJyE/2iGEEMJJyI92CCGEcBLyox1CCCGchP8BQ1/B0WsHM94AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWmYZdlVHbhORGapKrOyRoQm3My2bDcgMwobhEyDoAViMBiBACHjbhfgBgEGIYZ2FQJhaH0MbguaUZZBTLIYDLSFhGQKSciAxNQMEmKokjWUpFKVasjMmjLj9o97d8aO9fba97yIyIz7xF7fF9+Ld8dzzj33vLP2XnufNgwDCoVCoVAoLB9bR12AQqFQKBQKfagf7UKhUCgUNgT1o10oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQzD7o91ae0ZrbWit3dVau5b2HZv23XTRSrihaK09sbV2U2tti7Z/wNRmzziiohUOAdN78eVHdO9h+lu5f2vtRa21W2nbrdPxPyOu95vT/teI+/DfizrKuNVa+6PW2jfQ9s9prb2qtfau1tp9rbU3t9Z+ubX26e4YG3M+pKMdbpory1FiqtsPHfI11XPxf7ce0r0un6737EO63odM4+L/FOx7R2vthw/jPgfFNH7/p9ban7XWzrfW3rjGuZ/eWvuZ1trfTH38r1pr/6G1dv1hlO3YGsdeDeCbABzKw/tbgCcCuBHAdwLYcdtvA/DxAP76CMpUODw8A+P784IjLMONrbUXDcPwYMex9wL4nNbaqWEY7rWNrbX3B/BJ0/4ILwTwI7Tt9o77fQmARwG48IPVWvsaAP8eY5s9D8AZAB8M4DMAfDKAX++47qbh2wH8XmvtB4ZheNMhXfPj6fsvAfhjADe5bQ8c0r0emO73Pw7peh+CcVx8RXDNJwN4zyHd56B4EoB/DOD1GMltW+Pcr5rO+XYAtwJ47PT/k1prjxuG4b6DFGydH+2XA/jq1tr3D8PwzoPc9G8zhmF4AMDvHHU5ChuPl2McWG4A8B86jv8NAJ8K4PMw/hAbvhTjwPIWANvBeW8bhmE//fUbAPzkMAxnadsvD8PwL922/wbgx9gitVS01h42vcNdGIbhD1trfwjgazEO5gcGP4/W2gMA3t37nNapwzBm37ok49UwDH9wKe7TiW8bhuFbAKC19hIA//Ma5/7LYRj8xPa3Wmu3AHgZgM8FEFq8erHOi/Kd0+e3zR3YWvvY1torWmunW2tnWmuvbK19LB3zwtbaW1tr/6i19urW2tnW2l+21r6ipzDrnN9a+8DW2k+31m5vrT0wme0+Nzjui1prb2yt3d9a+5PW2me11m5urd3sjrm8tfb9rbU/ner3jtbar7bWHuuOuQnjbBIAHjKT1bRvj3m8tfaNrbUHI9NJa+3PW2v/xX0/0Vr7ntbaLdM5t7TWvrVnwGutnWytfXdr7a+nNnhHa+0XWmuPcMes89w+urX22sn88xettc+Y9n99G82x97TW/ktr7eF0/tBae+5U7rdO57+qtfY4Oq611r5uuvaDrbXbWmvPb61dFVzvO1trXzO1x72ttd9qrf3DoA3+WWvtd6a+cldr7T83MtNNZX9Ra+0LW2tvmNrh9a21T3DH3IyRnf6TtmuOvHna98g2mtXePrXzba21X2utve/cM1oTrwPwywC+tbV2ouP4+wC8BOOPtMeXAvgpAIeWGrG19nEAPgyrg9N1AN4RnTMMw0603V3zo1tr72yt/WJr7fLkuI9orf1Ka+09U9/67dbaJ9IxH9Nae4nrf3/RWvuu1toVdNzNrbXXtNae0lr7wzb+OH7VtK+73wH4OQBfzNe/FGit/VwbzbNPmPr+fQCeM+17+lTm26fy/35r7Wl0/op5fBpHzrXWPrS19rLpHbmltfbNrTXJSNvoAnnp9PXV7t15/LR/j3m8tfYV0/6PaeNYZePtv5n2P6W19sfT/X+3tfYRwT2f2lr7vemdf8/UHo+Za7e5/jhzbmSJet30eeHerbWrW2s/1Fp7yzRWvLO19vI24xbCMAzpH0Yz4IDRrPE9GM0l7z/tOzbtu8kd/+EYB4jfB/D5GGf2r5u2fYQ77oUA7gHwBoxs4VMxvuQDgH/aUa6u8wH8HQDvAvCnGE12n4bRPLcD4LPccZ86bftljGaaLwPwNwDeDuBmd9zVAH4cwBdiHLg/FyOLeQ+AR07HvN90zADgnwB4PIDHT/s+YNr+jOn7YwCcB/BVVL+Pmo77PNfWrwZwB8ZZ+/8C4FsB3A/ge2fa6jIAr8Vojvw/p7p+PoAfA/DYfT63Pwfw5QA+fSrX/QC+F8CvYjR3fvl03IupLANGVvfbAD4HwFMB/MVUr+vccd81Hfv86Zl9HYDT07226Hq3YpzFftZU9lsA/BWAY+64r5iOfcH0fJ+Kse/cAuCUO+5WAG+e6v75AD4TwB8CuAvANdMx/wDAH2A0ST5++vsH077fAPAmAF8M4AkA/jmAHwbwAXN9uvdvqsd3AviHU995ttv3IgC30vG3TtufOB3/ftP2x0/X+mAANwN4TXCf52Lsexf+Osp34/Tst2j7fwNwFsA3Avi7PWPO9P1JGM33Pwxgm8rnx56PxNjHXzM9uycD+BWMY9ZHueM+DyP5+EyM7/BXYZxM/ByV42aMY8ctGPvzEwF8+Dr9bjr2o6fjP/mw+kD0fMW+n5v67punej4RwMe45/SVGMeDT8X4zp3HNDZNx1w+ld33se+ejvsTjGPRp2B0gwwAvigp59XT8QOAf4Xdd+fKaf87APxw8M7+BYBvnu7zH6dt/w7j+/cFU/u/CeN47fvH12Ic038EwP8K4IsA/OV07Ik12vclAN54wGf0OVO5P9Nt+ykAbwPwLzCOFf8MwA8A+Mj0Wh03ewZ2f7SvmzrAC6Z90Y/2S+AGuGnbVQDuBPCLbtsLsfoD+zCMg/ePdpSr63wAP4HRB3c9nf8bAP7IfX8txh/25rbZD+fNSTm2AZzAOKh8ndt+03Quv8AfAPej7cry3+m4H8A4EXjY9P1Lp/OeQMd9K4AHAbxvUsYvn879rOSYdZ/bE9y2D8fuy+Vfmu8D8BBWB9p3AzhJbfIQgO+Yvl+HcaB9IZXxS7ge0/e/BHDcbfv8afs/nr5fCeBuTP3WHfeBU9t9rdt269Tu17ptNug+zW27GfQjN20/DeBrDvKCd/T9AcB3Tv//1PSMrp6+Zz/abfr/2dP2HwLw26o+032ivw+ZKd9L7bq0/e8C+P/cdd4N4GcBPImOewZ2x5wvnp7Rt4t28GPPKzFOxC6j9/MNGM3yUVkbxnHsSzAO8Ne7fTdP2x4n7p32O7f9OMYfuW+5SP3hVuQ/2gOAT5u5xtbUDj8F4HfddvWjvecHemrHNwH4lZn7fPp07icE+9SP9rPctsswvp/3Y5p8Ttu/YDr246bv12CcwP1Q0AfPAfiKNdr3QD/aU1n+GsAfYS/h+CsA37Xu9dbyIw3DcCdGNvX01trfE4c9AcCvDcNwlzvvHowz3k+iY88Ow/Cb7rgHMD74CybLNirUL/ytez7GTvJfAdxN13kZgI9orV3VWtvGODD/wjC15nS938c4e96D1toXTOaYuzB2gDMYfxhUm8zhJwE83swiU/m+CCNLNd/Tp2OcLb+W6vFyjIPC45PrPwnAO4Zh+JXkmHWe25lhGF7lvpuy8hXDMJyn7ccwCpI8/uswDGfcfW7F6Dczgc3jMb6crFL+OYztzeX5jWEYHnLf/2T6tH7w8RgnID9NbfeWqYxPoOv992EYvCCGr5fhdQC+sbX2zNbah2XmQkNrbZv6+Trv5Y0Y+943zh049e0XAfjS1tplGK0NPzlz2gsAfAz9vWXmnEcjEKsNoxDrH2F8fs/FOIh9LoCXtdYit9vXYpwkPnMYhhuzG06m508C8J8B7Lhn3DCKnp7gjr2qjW6mv8Y4OXwI449VA/ChdOlbh2H4I3HbuX5n9X4I46Tx0TN1yMa6g+DsMAwvC+732Nbai1trb8f4Xj2EcfLSO479v/bP1Lf+DH3vyLowkzqGUXR5C4A/G4bhre4YG4P+zvT5iRjJFL/zfzP98Tt/UTC9Zy8GcD3GSY43u78OwL9qrX1Ta+0je9/7/Yg/vh/jzP45Yv91GBXSjHcAuJa2RUrBBzDO7tBa+wCMHenC37St6/wJ7wvg6XwdjOpVYGzM98H4w/eu4Hp7RHettacA+HmMs/enAfg4jAPZ7XTfdfCLGH/4zd/4pKncfkB9XwDvH9Tj91w9FK7HaIbJsM5zu8t/GXbVy/w8bDu3SyRkfCd2/T3XTZ97yjMMwzlMZnQ69076bhMdu6/5k1+B1fb7MKy23Z7ruYlTz/N9KsaJzrMwssq3tdb+7cwL+Uoq07/tuI+V7W8wWpOe2Ug/IPCTGM37NwI4ibEvZ7htGIbX09+ciOlyCPXyMAznh2F41TAM3zYMw6cA+CCMP3Y3NgopxeiCehuAX5i5HzD2iW2M7h9+xv8HgGvdM/iPGFnc/43RLPwxAP61K7tH9E4Y5vqdx30ApE+7Y6w7CFZ0BK21azC+D4/FOOH7BIzt8NPo6+fnp0m9B4+9h4VoXJkba+ydfw1W+8OHIh8vDwUTGfwZjG37lGEY3kCH3IBxUnwDRrfkO1trz2uJZgNYTz0OABiG4XRr7d9hZNzPCw65E8Ajg+2PxPpy/rdj7Ei8bR3cgdEP+j3JPWyWGYmFHoG9oQlfCOCvhmF4hm1orR3H6g9JN4ZhONNa+yWMpsAbMc52/2YYht92h92BcYb5BeIytya3eDfm1Y+H+dzm8AixzSYWNhg+EuPsHcAFC8T1WB0s53DH9PkMfz0HFe60NoZheBfGH4B/PVmjvgxjuMftAP4fcdoNAE657+v28e+Y7vMtHeV7U2vtdzGGbv6it6wcIu7A6kRPleftrbUfxxgK9qHYnYQCo+/5RwHc3Fr75GEYQhHbhLswmrJ/EMJ6MAzDzjQgfjZGs/q/t32ttQ9TReypRweuw/geKhzGWKcQ1eETMU6SP2cYhtfbxmkse2+AvfNPw+jGYPCE41AxWdhegNHf/tnDMLyaj5kmPc8C8KzW2gdiHNufi1H3IS1L+zXB/BCAr8euotzjtwA8ubl40NbaKQBPwegj6sbE4F4/e2COX8doHv2zIYmPa629HsDntdZuMhN5a+2jMPo9/Y/2CYw/8h5fitVwGZt1X4G+H4WfBPAlrbVPwyha4AnRr2McxE4Pw9Ad6D/h5QC+sLX2lGEYflUcc2jPrQNPbq2dNBP5xCgej9FXBoym8gcxTpBe6c57KsY+u255XovxGXzIMAz/ad+l3osHsPeHdgXDMPwFgG9pY0SDnDRNx+0b0w/fDwL4avSF5/xfGK1Pzz/IfRNELge01h41DEPEXC3ygn+U34ZROPWbAH5z+uEOme808X01gI8A8AeDVv8+DOO7+hBtf4Y4/sBorT0SIwOUz/mQxrp1YBEHF9qhjREOT77I9/Xj4sXEqzBaNz5oGIafvcj3ivB8jCTsacMwvHTu4GEYbgHwPa21L8MMwdrXj/YwDA+01p6DcRbM+A6MqsxXtta+B+Ms75swdhJlUr+Y+LcYZ++vaq09HyMjvRZjw3zQMAyWVepGjD9uv9Ra+1GMJvObMA4kfgD4dYxJKr4fwK9h9IV/NchkjFFdDQD/prX2UozmpOylfCXGmfVPYOzQP0X7fxqjyvCVrbXvxaicvAyj8vezMM6YzyLGiwD87wB+drKS/C7GH5xPA/AD0yTgUj63+wC8vLX2PIyD6LdjnPl+PzBqJ6Y6fnNr7QxGTcLfxzhJfA2cL60HwzDc01r7RgA/OJmQX4rRx/gYjH7Qm4dhWDd28s8BfFVr7akYRSb3Yuwrr8D4rN6IcUD8bIz97eVrXn9dfDdGRe4nYdQ+SAzD8IsYXTIXC68C8C9aa9cPw3CH2/6nrbVXYHyet2DUGTwZo6n6xcMwrCTwGIbhttbaEzEqz+2HWzHQr5/u/bLW2k9gNG2/D0ZV+fYwDM8ehuHu1trvYHwvb8PIfr8cLhTnIuDjps9XpUddWrwao0vuR6ax/CqMY+U7MUa/XCy8EeN4+r9N7/aDAN7gNS6HgWkMeTaA722tPRqjhulejM/5nwJ46TAML1HntzEU1kIFHwPgVGvt86fvf2IT7dbakzD256cNw/DiaduNGJX6Pwzgf7QppG3CO6cfaCOKL8Zo/TuDUR3/WIxWp7Ryc8q3ZyBQjGL8wX8TSME57fs4jIPX6akwrwTwsXTMCwG8NbjfzUjU2vs5H7shWG/D2Eluw6jY/hI67mkYZ8MPTA35uRjDfX7JHbOF8cfj7RjNGL+FUVxzK5zaGeNs/gcx+sl3cEGrsaoed+c8b9r3WlHnyzFOJN44lfFOjGKGmzATioNRrPQ8jAO6tcFL4FTnB3xuFxTNWd/BbhjRtwB4K0YV6KtBCl2MoqCvm56HlfcHAVzVcd+wjTH+QPwmxgnCWYxmsxdgCteajrkVgRIXq0rlR2J8We+d9t2McQLyI1PfOT3d53VwqvPD+IvqPG2/cdp3K20P6xS8N5F6fOU+HeW7FuPE7Mto+1dg9Pe/eXruZzC+X8/CXsV31G/eF6Pv+00AHhM9k2nb38coWHwXxnfkrdM9n0z946XTs3sXRlb0GdP1npi1yT773Y8BeP1h9oHe5zu1xV+JfZ+GcfJ/3/QufCXGyd/97hilHj8n7jWrssaoMbgVo8VywG44rFKPvx+d/zsYRa9+22OnY3lM/2yMY/S92H3nfxzA35spo6nco79nB8d9IZVPnevr930YxZh3Yxwv/hjAV861X5tOLgRorb0fRln+c4dh+I6jLs97A9qYZOa5wzDMJukpbC5aay/EONh+ylGX5Sgx+dBvA/ANwzD8xFGXp7D5OMywgo3GFDLyfRiZ5rsxqlqfhXF29uNHWLRCYRPx7QDe0Fr76CF3C7234waMbP6wtBSFv+WoH+1dnMdo8nw+RoXyGYxm238+CPFLoVCIMQzDLW1M1XvY6Vs3DQ9gNJezeLVQ2BfKPF4oFAqFwoZgI1bWKRQKhUKhUD/ahUKhUChsDOpHu1AoFAqFDcGihGgnTpwYrrnmmkO5ll+ngddsmPvee92DlOmgx0b793POQY692G3Bx5j+4k1vetO7h2HYk2f72muvHR71qEdha2vrwGXzOg/7nz97zu3dt845+9GgrHNOz/16y5S12TptcZi6m9tuu22l75w8eXLPuGN9x/oSAGxvb+/5tH28PRp3+PMgWMo1LhbW6e/r9NWdnZ09n+fPn9/z2dPHbrnllpW+cxRY1I/2NddcgxtuuOFA17CX6bLLLruw7dixsZr8Ms5991D7el5INUnIXvCoDOpcHki4Pj33m/v05VHttk5bqDaxZxXdx16wJzzhCSsZvx796Efj53/+5y88d/vMnqW9qOfOndtzffvu/3/ooYf2HGOfPBh48EDAx/AA4s9Rg419ZhMLdf/ouLn7+bYwqLrzdjvX15u38X35uz/nMH68b7rpppW+Y+OOXf9hD3sYAODkyZMXjrnyyisBAFdddRUA4NSpUxfOBYATJ8asoFdcsZud0/ry8eNjOm/+Yed+GEG9hz3vml03ez/VODN3zej6XObsHvwuqMmxPy56X/yx0fv74IPjOiL2/p45MyZeO3t2TB55++237/nu78PlfvrTn55mGrxUKPN4oVAoFAobgkUx7cNAxAyZgSoTamZaXWeG22uO348p7bBMW+uyFj/jNcagZtrrIGvXddv8+PHjF9hNZK7kcvOMPcKcGVex5+jYddp8jmH5ss+1f4+Jn+tj17drR/Waey4Rw7JnYOD78LX9dVSbHxQureSe6/ttc5Yofy0GM7d13m1+x/j667x7WdnU/fi+Wd9Rz9Dfg8dg2zdngYuO4ecUlcP6m/UzGx/YImsM3B9rjJ377FGjmHahUCgUChuC9zqmzf7daFvEwuYwN8NeR/iWbe8VrUQ+5nWw7jl+hm0zUeXfz/zIajvPwP0++zTfoLrO8ePHpWDIX0cx7R5GrFhedC6zCMVq9oMeX6Rigb4c+7EC9J7TY41ivYLB14/ZOLOnw0Z03R4/LR/X+46t41c+iLgtem6KvR6miC4bD5jF9vj37Rzl4/Y+7bnnxnonf111/aNGMe1CoVAoFDYE9aNdKBQKhcKG4L3GPM7mVW92sW0sQjgMs9Q6grSe688hErP0mu6zcwxK+OKPYzPrfsJPVH0yIVomCGmtYXt7e+VZR2Xicqv9vtwsemGTWRT6pYQyfO2e8C3eH0H1gx7T937uq8LEsrAdJRrK+o49yyy87jCxH9FdBO63SlzIx/v/uZ0yMducUMuQhW31imhVGebKOjc2ZcI77jvKbO3daHyMun80tth9LFxsKSimXSgUCoXChuC9hmlnAiQOA1JZjKLZZi9DjARIjP1ky+rBXMjFOky7d8YN9Cd16Sl7JA5ch2nb8Vk/mGO8ETPhZCqcHCTLrKSSkGQhWIr59FiF1DEZi1bJW7IkK7yNk9MwE4qsDwYlLsvY7sUOAVNl9WVYR5CqrIA9TFvdNwKHUfH1I0uFGjvmQr8y9GQlnAu/zSxkylJmZcsy2fE50bWyREZLQDHtQqFQKBQ2BO81TNvYNPutgdUZL890ebafncvbo3CeudSQhp5EHGpmmPlgeMYZzWbnmNt+kp4oH15URr5WFvKlmAmjtXbBn5WFcqiyZKkTeZ9imd6HplKe8vcsBEcxhZ6QP2ZekS+Qy6/KmNXLfH7KYpHVj8tq26NUsoyDhCGtC66TYp7raA7mtkf7Mq0Gl02FZkaWHXXfDMxS10nxrKwQGZT1KbNcWRmtj6rxJrr/OnnJLyWKaRcKhUKhsCHYeKZtaeiYYXkF4bo+14hVKqbTw7R7VpTp9YP3zLCVD7MnrWR27Nz9+HuUSlaVLfJbr5MMp7WGY8eOrZwTsQqlR1DWDUAnXLAFCaLFCmx2z35wvkbERFkFb/WJLElcV05YovzvUbm5LZiJ++vNPcMs8oDbPmNtqj5830vBiDL9gy8LoC16zJoNPYvyZH7wOV8sW16ievF1FXv3+/jdVtfMsM44x8dkbcSWKmX1jJ7bfhIPXQoU0y4UCoVCYUOwsUybE74zI4kYFqsqM2aloPzj0WxMxRFG6k6l2lWI/DYRw/Vljrb1zrCzMvA5EaNjRq80AZGVo9fftbW11aVCVYwtul8W/++vH8VycvvYMVzXTK2uZvt+6dm5+3L/j3zafK7yx0dlsXdvzt8bgf2u67Caix2v7aGsPcoiEh2r4oujukfMNrpWFlHBzzZ7Lspnb2XjJWr9OdwGGYuNNAu+HnZ/7lMRlHYosgpZGc0Cm+l99qOYv5Qopl0oFAqFwoZg45g2+4OYAa2jAO/xBc/5sKMZuFIzqthHvy/zO/njohm4zV5VfGbkL1ZsVi2mEZW/Jwl/L6Pyfj4+di5O22dEi8ptLEEx3qg+7He0mToz0cinzX5v+7z//vv3fPfPmlXpygLTY5FQ6v6e+Fluc68RUepddd2M2bEvPWpHlU+B2+iw4fvbwx72MAC77WCWDrb0eSg/PbPoLMZfZfSK3gkeA/m67Nf1/0f7PFjjAOy+R3w/1iBEVkGDiuixdo3eeTW+Re8B38+ud/nllwPYfRcj65odq6IXjgrFtAuFQqFQ2BDUj3ahUCgUChuCjTCPZ6ZANldHIi8217BoiE3u3iSjUiWyiaZHVKaSHfj7sClRiZYyk2CPqX0uFWCP+IIT2mShEkrgwvujtXB7zLq2n68bJelQwj0zgfr2YiGWEqfYfjN5R9seeOABAMDZs2cBAPfdd9/KOZwEwsBinyisRYUWsbnPm7pZPKRM3ZEZdk7wmCVzsXqyWTlrR+XGOuwkGFY/6w/+/xMnTgAATp48uaf82RrcPL5Y+2chWvY/J64xZOGCbCbvwdz4ErktlIvQrmGm5yxMzMzg3Eetvc2MDayG9aqyRuFbagzma/pzOMxyKSimXSgUCoXChmBZUwiBLNC+Z4EDm61m6SOBeGZqMz4OsbFjjRFEITg8e+TZXlSvOaHWQcLTImEYQ4X6+PLwLNUzEn+svwfPjpmlc5n9sVYGzxAVVNpRYPU5cFtn4XaKxWYhf9bvPFsAtNgsus5cQomojIqlZwtGqOcdsXO18I6BBX9ZYhbVz6PQKWVlmxNRrYuIfVkfv+KKK/bck9+XKNkJWxdUCKPfnoXcAbvjjh/nlGDT6mFl71kwhO8XhXzxPiu/WZTOnDmzcqzB2tjqwdYI7kN+nxKiGaJnwMzeyhYldbKyXWyh435RTLtQKBQKhQ3BRjBtP9PJfMn+2GgGqvxCPEv2MzU1S+aZoWcTzLCZVUYJBhSDYn9R5Bfvmbnz/dRyihwOFTFyrrN9WlmzMBhmKBGr4WOj2XCEYRhkqlJ/D2bWnIrU15kZiAr/sGsaywBWWQkzz4jlqOQwPT5t5ftX/nf/PzO3zOJj5ef25D6VJeTgfT1sRjHryKqiLEnqutvb2yv9N/KnWhnsOfP76Pux1ZG1EipUzj9TDoWzduLwQV9nY9Ks4TFWaVqKK6+88sI5bClivQL31ajvcLpeDnWMNEL8flpbq5C6DHZN1o74bTwGs4UpCoeNLBNLQDHtQqFQKBQ2BBvBtD1zsJkY+zeZ1fQscKBUpxE7U8pv9uP4c3jGnvlvlVq3h+kpPzf7Tn0ZmSkov6BSmXsw87LvfpbM/kj21UXMeM535WHKce4XfgbNdVH+1YgZcB9hpmj1iWb5zARMVRv1S2aT3O8iq8Pc0qXMbn0fsvKySjlTYnMbqwRHUURA5n9U91VMXqXR9Ohl3FFCnajvmOJf6WEiZT7Xka1LkfXE3p2598+3rZ2jjjWm7etlanhOZqKsAr49re+wVcDuz8pwv4/HSFPj8/ju9TLcj+cieoDdd87qrpT7WTIu1uwcNYppFwqFQqGwIdgIpu1nOjyrVrPviJHOKVUj35KKgeWZmo8rVepwnnn6meJcgvxMea7SO9pn5uthZbaKvY38ycxM2e/u78fXs2fKPq5othy1cQTvl4x8VcrnqlJF+ntz31Ax2Mai/T72R6pN3WDlAAAgAElEQVTFEqL7MOvLlNJcZ/YtMiPy/6v4854IB6s7x+1GjIj9oByJEN1PPTcu436Ztvm07f2MfJmZStzXI9KpcHmVBiTS7igfdjTOmRXAYMf4Pumv7f9XTJt96lF78juRWX54bOBPjtbxYz/7t+cU9r78fN9s+Vjri1bnHr/6pUQx7UKhUCgUNgSLZtqZT0SxpSwGmlmjihX2jI4ZKM/mMnWtlY3LkrFqLotiS5E1IFuijsuhYmzZ58wzcX8fVnry/X39mPUzy2DG7f/vWSKvtYbW2op/PbK4cGY85ceP7mls5j3veQ8A4N57791zLc9qosUIgFwVzz43ZqCRitfYA8fAK1925A83KN1FthAKsxjzk0ZtYvVh3zn7DyMfs9I02PZosZnI2sNoreHYsWOpYt7qys9S1QfYbZd77rlnz3el1fDvK8cx2zFmBcisC3w9fte8352fpdJ32PfIx8wM2+4TWVpsm71HrKWwevHCPMBuv+JxW2ks/DEqd4DVx78H7KtfGoppFwqFQqGwIVgk02Y2HWVjUirUaAaqZkyR3xOIl3PkY2w2xspZDxVXHPmweLbKSmyeAUeKY65n5Gfjcww8s2Z1tJ9h87FZVjCGWsrS7hNlPVOqaC7/MAwrit3ISmPIcj8brFwW63rHHXcAWFXf33333XvqA+yyiauvvhrAbhSBXTOKq1aZ4wxRxAPn8WaWztanbOlRldfbM1b2c9r12Hd6+vRpAHvbxPqRxQpbG2X5+ZXmxMrOLHE/iJTb/nrqfVc5C4BdxbJ9WjlNKc3tlpWBrTJRJICVhePCmZn6cYc1Oqy/YItVpIsxqDhxPw5yDge7r1muVPZKf79Tp04BAG6//XYAu/2cs9X5trBP9mmzVcC3ie1bJ+b/UqCYdqFQKBQKG4L60S4UCoVCYUOwSPO4gQVPgE7zyAHw3twxl3yCzYj+fmqRAjYfZqEqainQ6D4cemFgc1lkFlPL6UXiJTZxsgnNPqPl9XgBAjbPRyESKk2rWvDFl7HHPG7JVew+0cIGDDZFR+4EM23eeeedAHbN5CaKsXPNzGvbAeCqq64CsJowghcriPqBEhpFgkgVNsd9KmpPNrfOLarjz2fTrfUHKzO7A7iugBb9RKJJFn2xaTdKP9wD6zts+vbXYzcRvyeRCZVN5nZ9axdeSCa6hj07c7HY/aPwN3Y9cLtE74aqDz+nKLmKwe5nZv+eZ6mWu7T3yPqFbyM757rrrgOway4315SV0crh62r1YbN4ltRpnfHnUmJZpSkUCoVCoSCxSKbNDDtLMccztygsRIVlqAD7KNCez+Xl2zyYdavQq2i2OZfWMRJHWJ1tn0qm4O/HISxsQbBjjTlGM1FeltTa02bHkXiNRYYqWU1UlgytNRw/fnwlhMRDpbvMnpfVycQvVifuK9myoZzkghdJiJaAZEsLh/pFlh0lXuKwl8gKxX2U2yhKUsMWKusrVgf77gVLbCliMWMUDqmsWyzG8uPEOos8mIhRpRL2deVxhxlbFPJlFggrp303RhilyWS2b+cYIosLp01Wy65mqU/5HeG+5IVo/L7z/e35R0lquPzXX3/9nrKxWNOXybax9YEX+vDX53Gb+7e3DqpUp0tBMe1CoVAoFDYEi2TajCzZCTOPLBmIWoKTP/0Mm2d3atEJD2Z5nPw+mpWr8DC7P4ecZMxOhWBlKSn5XJV8xZ+jrB0R01aMOkojaOAUntmiJca0+brRog+qH0RhZ8awrU7mczNft1pYwe9j3YBaHMH/H1l9ojr4c1RyEJWCNYJKRRkthGHbOLkL+wKj8EvbZ+2bLSOrLGP8GS0B2othGFb8+16fwO+bfecFN3w9mOFyiBy/L5FFUfmlo3KpxXKYvXo/sVogRCWr8s9S6VF6xhDW27DPOUqyY7D6WN8x7UgETvDCzyRbyjmz2h0limkXCoVCobAhWDTTjpLUzy1wkSnFmXHw7DXzFyo/YQ9YNWpl9MyAl+dTS1lGfl6eJSslepS+UlkZuJ7RIvHMGDLfsHpO2YIVmYI5wtbWVpqWk/2o3KZRO0XLJvpzOOmEr7PSIxii5Qf5fmoRjghKmc/X9s9JLatqiN4nfk+YlXHSjWyBkrk0wUA/4/H+1swqw7A0plm6XLYqsQI8G3dUEiKO6sisA3z/aPzjvs/XtXY0hurLwO2vkjr590klHWHrQKRPYEtCz1K9fA017nhwvaKkNFwXNS4sBcW0C4VCoVDYECyaaUcpO5XqlGe6Uao+NRtW/iJ/7+wY3q58etmShWoJUHX/HnU0p+OLEver2b3yW0f7GFGqzTlLQnYdK2uvitwjUvNy2/X415X+wRD5kzn2lfshx8j6fexn58VNsuU8uX5cL9/mrNJlfUKPtsHA1obIUpK1sUcU26sWxOnRlczda3t7O33H7R6s1+A0n9HCKjyO8X2ihYWYTXI6zuxdUP5aO9f7vlUKXL5WxDpVCmfeHr2DDG7zqD2VlkFFIPiyqGeRtT1fYylYVmkKhUKhUChILJppG7KZumLREfNVbCmbSSlm0MPolNI8yxzG56gZYuZjVCzdz0BV/HmPH1mpk5WfPLuGsnqsWyY+J7JIzF2vx6dobchq4Sh+XjHcTC/Aal77ND9xFOGgfNnKKuPPVX5VVnlHfn5mONYGvGRnZu2YezejemUL/OwHwzBgZ2dnJd9BZs3iNo+WgmXLh+pfEUO0MjA75mtm/Zuz3PFCJVmZ1PgW+dCVBSvLNqasQ6xZ8lCRJ2r8i8qvFpmJxh2+71JQTLtQKBQKhQ1B/WgXCoVCobAh2AjzuAeb/pRgyptxlClOmbq8eWTO9ByFa3ASBUMWSqBMaOp7ZFLlY7JrzZmU1gk/mQuhi45RprTIJNkrXopMhVEImapbdA7DysmCoCxJg0GlyYxM3Sy24iQXWRhK5rrh/ZyStmfBEFV+7hfRNdTCJJEgSIH70GEkvzh//vxK//BlYVcW9+dIdKVEfMq1l7kg+P2I1u82cNpcduFYgiAPJfJSokZfNhYgcqrSSGipQrEyV6Uaz3h7FGLGfZPbLUqK05OM6ChQTLtQKBQKhQ3Bopi2hV7wLChivr0p9Pz5c8yH7+GPUQw7SijBCSs4vCBKy6mYdg+LUKwrW5qT76PCNrL7qVSyEXtX7chl87NyPmcu5CuqX8bcVUrDaNGSuXCjSIyjRHEZm+Tr8RKjWUpXJaBRzM7/z/Xkfh1ZLDiUTYk1s+Qaiqlmz22ODa6LYRj2MG1DNA7w+MP3jtInqwVqMovfXDKfKOGMChM0AVrUp9hSpNoy6rvM/o1xsygvWtREWUi5HJnQTok2o3PUAk8cEhYh23cUKKZdKBQKhcKGYHFM+9ixYxdmUJwOEdCsMvNH9YQgqf0qTIgTf0TLOarwjMwfOedLisrIzJ5ZC7O1rF7MjrIQOr5GlpRAhfaoBSoirJNOkJ9TVM65RQR6jsmYATM3FfoVMQPrV9xnetpAtXUWvmX7mIlwOYDdtuA0uer96gm7y8LxuK3ZqpElHOrFMKwuzRnVRyVTidKKZuGM0X4P5a9VGgd/LCfM4aVZo+sZ1LOM3nHuTzZeR0uNGuwYXiCErTbZ+7SOpYy1EnZ/lbY3qnP0O3SUKKZdKBQKhcKGYFFMGxhnb8y+MrbEzCRihj1LO3pEzIDvrxLcR9dRx/h6qWQDPX5QZkdq0Q8/057zf/L9o/qp5P6cGCY6n8uYPaMev5Odu85M3aBm7v5/Zpxz1/L/KwaX+cGzhUGAPDpC+fp6Uq2aX1JZJfh/f+466R7nGHZ0P2VN6+0fWVl2dnb2la6Sn1Nk4csiI/z2SKXMfVO9t74snPZXjQ/R9ZQ1KGLazJLtPqdPnwYAXHnllSv3M6gohXUsSYyonZUCnH3c0TjBqYOXgmLahUKhUChsCBbHtIHV+L7IT8R+XEM0a53zLWXgmabyOUf3U2pUjgOMrqe2R/Vj1SjfL2J8iiEolWxUBq5P1q5cZ+U7j8rP18ignpf/X7HmzKfN11CWkB7VsyGb5St/uCGKK+Vj52Lj/TFqUZsIKipBqcmzFJGMjHUaejUq68DYtr939I5xXa2dLPbZlNr+2DlmmNVVWYEii4xKPcvMO1KcG1SaWd7v78PWMmbc/h4nTpwI68fLMGd9VulJonOszvZ81KJN0TsfaQCWgGLahUKhUChsCBbFtIdhwIMPPhgupOGP8bDZEJ8TsZfeJTkzteucmtOfo+KY14kv7YnbVv4nQ8ZMVCxvDwOeY5lZ/TKfKd+HdQQKvn7ms4r8+HNsMto+x0DWifHOnn9vzLNvC9UuipVFx9v17T3ieOAoZpl9fty+B11KVdVDtetB4O8bLQtpdbV+xbqbLNJFLaSzzvuiGKl/lvbseOEWQ8TsFdufG+98mXj84XfPGLc/RinMe57lXD+IrqEYPLcrkC8msgQU0y4UCoVCYUNQP9qFQqFQKGwIFmceP3/+/EoAfJYoRaUX9ZhLapCZqZS5JkuuMifIidIWqmQGWUpXPleZcdZJ6amSHETnqKQqPcIaNstlSWM4hEnBh3xFiUTYTaI+vVmXxWLrhCpxH5kT//l7c7rHLAEMX5fN4erTg9vA7s8hb8CquVclguG0vVHdldAqElhxex5mKM7Ozs5KiKkvg2p/K3/mClDPPTOHc5uxWZwTqPgy2Php4Xtq7e+oLCr0MyozXz96f/xxwK6p3NrE+lmPm2TODJ6Zs1X6aytHlIZ6aWZxQzHtQqFQKBQ2BIti2q21PclVstALwzqJU+aEK9k1mPkya/HXVEzbZnucwi8qW9YGDG4DJfKKlo3k69uMk2fNUZiI+sxSHipxHpfLX6eXaZ8/f35lRh2FC6pFCrh+0TZuL2Y+/lq2jfsIMwIvouTUoHz9LNRHJf5hNhuJpuaSxkTCt7m0pdlzU2wzElgpEeA6gs4eZEJB1bYGfsczqPclCjtioRR/Xn755RfOsbAm7ndssfLnsPCQj+X31Au2zp49u6eMJi6zsK7I+sDjDL/j2Rg817aRRYf7Nb8rLLgElrdACKOYdqFQKBQKG4JFMW1gnC0xa4lmPjwzy2Zh64YmZQk5+JNnpv7/3nCx6N4q+J/DKqJj+L5Zek5mYcwCODED0MeS+XuvJSHz2c8ttHLu3DkZXuOhyq/qEe1jBszsxv8/x858vexYY03333//ns9sAQ8uk/Lj2bX8Nu6zfK3ISsPPlEOODJl2Q/XV6N3oOWY/MC0NLyIRsf2esD2GSvPLiN5PLgv70P39z5w5A2CXxSrf9tVXX33hHGPddqzdx8YXXgjFh2/Z/aysV1xxxZ5j7dr++bMVUoUH9vj958Iv/f9KE8Dbo+sszbddTLtQKBQKhQ3Bopi2V/8CeZC8SjWX+SMVm8ySNTBbUjPeSKWczeIYioWx7yWq35xvtmf5OZ6tckrE6H5swVAJQaLrRwp6hjonO77H9899JlOAKy2D8hv2sDNmXv4cY9jGfIzNGFtaxx+t/O92D19+ThnM/S5iy7aN/e187UxXwHXIrEIXSz1uTJuTBkV+Tv5khXwU6cIWIvV8IusJazPYGuCtJvZcjQ2z39hYsz/H7mn9y/zU5p82tmx1sP3++jwW2vWj6B+zwqgolczPryymmYVPWaHYshBFVGTRD0eJYtqFQqFQKGwIFsW0gXFW0+PPUKw5W9x8Lm1plCKS9/E1ohk2M2yOW81YrPLRZ0yEZ4Ks/DRkTFWlWs2YD6uwlVo+2jbHuCJkviVm2Vnb8r3WSYs5p2DuiaPn5TA9jPEYW2KmHbHaXk2D8q37fQpR9ICBGarSS3gotXB0DrN+tUzlQaFYGbDLzKLID1+WqA/25jGIWCW/Y+zL9u3EWgY7h2OhI3bOege2JEU+dLbOcJsww/fHcp/p0Qys854arPz8/rC/P0sLfNj97KAopl0oFAqFwoZgUUy7tYbLLrtsxRcTzXTmZvOexahlIQ09MzelAM2YlfJdZUw7Wsjdn5uxF7WQR5ZZjuOB1f0iP5G6f1QHxcLZh+Uxl8mOsbOzs3LvHp959vyVD3MuQ5YHLxzBylzfV22bygeQLVCj4sLXgbIkRTkFVEx8Fq2hLFeMdWKkDwvcDzzTZoam3v/M2sPtZJ+RP5Uz4ikdiX8u1nc4/p/91p5pRxoJfw1mor6vmt/b7svfObtfVEZlFcr6sHrnomeiVOL8PYqO6LH4HgWKaRcKhUKhsCFYHNM+duxYVwYsxWwi1aFafk4t4p4xRJ59RbNk9nvZscy0PJQCUilQM9bMPtPofsoPqfJTR/62uRlolhFtXRbdc8wwDF2x4uqZGiL/vYqbV7N9YJWlMvOwuFa/TOGpU6cA7GaVuvLKKwEA9957L4DV+G1g1+8dZWWbg5XXyqC0B1FUx1z0AN/Dn6MiHaI+tY4P8zAQjS0cNaDq7C0gWTSFvz5bxPx1WPfA/nzPYhVb7YnUYFiftX4RxVPb/6w05z4TRQ+o90hFaXhw1AXHU/tnoPLWZ3Ha3AcrTrtQKBQKhcK+UD/ahUKhUChsCBZnHt/a2uoy48yF2kRmUYNKhh8dr8yFPcKwKI0fsCrG8OerhCI9aTlZAMIJGaJzuf2USCYzHxlUW/n/I2GTqp8KKYtgIV/Zcp77CRVap58xlHmczeRmCvfbrrrqKgC75nIOAfPpJHmBBk5nmZlp2bSZ9WfDXIjZXHrbaFvWjkclBIrMrCzcYiFlFN40lwyEU4X6e88tlhK5DJQ5PDJxq/FGJVfJxmY2x0ciVxVSymbrLFkRl4HbqMc8zvfLRKhlHi8UCoVCobAvLIppA3tTma4TVnUYMv2M7Sm2Es3CeNY2J/KJrjsnvvH3ZebGTN72R2IyZk3MyqOwFJ7RqiUvI9EKs88eC0KvgMaHfEWz8rlEORHUsYr5RNeaE3dFaR45MYYxHhOv2ScAnDx5EsBuP7vnnnsA7Ibr8DP291OiSSUUAmJxUFT37L1lIWT2vl4qAVrGYjlxCdcjY7wqrJGfv9/P4lGVVMW/l9zne9INc+IVLjuzzehdNOuDlYXDFqOELErQm4UtqtSx/Nwypq1COLOxcWkopl0oFAqFwoZgkUw7CxmYC9vJWNl+zlF+OpVsIzrXPnlW6/26in1lIUUGDr1gFhv5llTyAm6LzJKgEplkPm31bKNn0cPcuKxZsou5ckblnksKw8gSiahjo+fC1grv92awv5EXbuhJY8rgBCOe0akFUBQb9PebC4MyZJqUi530IvKncugfpyaO3s+5JCr8jkcJbAwq5DBa/MPGGRUW6++jngdbEHhxEH8Mf+e28O2oxgFOesIhYP663AaKcfvz50LKsve2kqsUCoVCoVDYFxbHtIE+H+bcDDFKPqIWp+AZXDbLN/CMzR/HymXFnrL7sCKc4evC/mI1Q/QzfZ65z7HBzOfM36MFBJT6tOe59fierazraBu4TBHTnlv2NCuT6ndZgh5O4cvnZsxbMRBmMd4nzX2F+0W0eIZKC8z3y/y96v2N/IlZSt2Lgei5sJ82e/8NKo2pgdsgsmbMpcuNniXfh/Uq0fiqNCaZ75fHHRVxElkU1Xuq2HR0LNfb4NtEtSOr1KNEOiql9FGjmHahUCgUChuCRTHt1hq2t7dX4o0jtWrGALPt/lxD5MOaOzaaCfK91UIh0aLqahY5N1uP9qkY24hpz6nve9gNz7QjVq2U4Jm+IGPuDGPZWcywupdStvt9zF6j9LV8P2Vd4Nl+NsufW2DBb1MWAxXr6/fZpzF9/r5OGlt+TuvkXYi+X2o1L7+v0b05nWlURrV8J49NUb24H0RqcQazb+7ntt2nPmX2rTRDWRn5k9si8qFnWgCPSF+ilO2GKLZbxWtn8eDZeHOUKKZdKBQKhcKGYFFM25hSTwaa/fgZeLYYLRDCx7EPKfNhGZQikmeV0bJ67BdS8cGRslWVOWLgvcs39iiqVRxy5tNWavnIV5/54jwilaqHKjcz7KjcKose+22j+7KPl/1p0fKIXDZlAfHnc7ysxWnbdlMae7Y2t2RhZlHqjVX3baIiD/iaS4iRjeK0WY/C73akAFcx8NZOUVYu7qN8TGSZ6+nPfA5b5bg/Z5kfmdEzor7KY6PqD9E7z+OB0oZkcdr2LnBURJSHYmm+bEMx7UKhUCgUNgT1o10oFAqFwoZgUeZxIF+PNsJ+TBgqVCkSXSgTN5sCIxOgCn2IhA5mHmczOadPzEKj1Nq0UZIL3qbqk63FbVDnRqEe6jNKfcom6exZD8OAc+fOpceq87PQsjmzeCaSU89DiX38/8plE9WBzeN2DJsCo5AvNqmrkK/ovtw2diynRo0SjnA9M/P/EmDtNCfc8pgLTTJEJlolEFQJbfz/9nwtLDBLoKTM1Xwsj0f+HD6WzdWReI7djNyukYiNwa6KyA3IY7FKlxqVcU4kd1Qopl0oFAqFwoZgcUwbyFNp8kywJzRpbqbUk9Z0jnn4c5idqrL5WSQzKT+Dju4TzUDVjDNLWMEzbGsDFeqUIWOsiqHyp693T2iMhw/5itqcWQo/j6ifqCQgSigWpV20TxaCReI1tsYwU+A6+H3MFoxN3HfffXuuFYmJONSrB9w3OBFNT2pabrclCdE8OJ0nvx9Zut+5dJtZX1XpNy1sK0vqwu+ywY9PveNM9M7MPUtDZuHjY7JleOcsV1H/ZkupCvWKmDYL35aCYtqFQqFQKGwIFjWFGIZh1qfNPg/2D2fMUIUMKRYYncusJloCUs2+s8QfWfo+/71n1sezyGgmr5i1CqvI/NNzbDTax8w6mtXOLbjgwX0nwtxz4TLObYv2Z/1AJazw5TZWnKVZVPfh+rAPO1r0IQo36gX3HRXG55/pnK8+ep+y536pweF59l5YeF20z6AsR7bdll8FVv3CthgQP8OMNduzZctfNq6qFLXZO70fqxzfdy4cE9B9J0uUwj5s1nlEyYPYqrA0fUUx7UKhUCgUNgSLYtqtjctyMqv0s1vFkvgzmjmpBBislPazO17mjn0gUUC/YnyR33auXuq4KDUgJ3PIlL+GuUUzelizSqaR3Zd9ZlHbs680SmfrsbOz0+VjVBaXnkQyfIxK2BPdx74ba2IWAOwyNo5W4D4V9TG1YINKthOVvwdcD047zAw7UuMze87e36UxHWB3TMoSl1j7KEU2s+WINbOCuTf9pz+G37UoTe9cit9ozFKWNm4TnzaVz+FjWe8RWSOVpSrSdrBWw94r05dkSYM4GmIpKKZdKBQKhcKGYFFMGxhnYsrPCmhfr/Lr+f+V75WZdqZgZibQkwaPZ7o9cX9qBt8Tz2zI4jOzOPMIkT/cwLPmLIWoYtgcn+6P6Y3XP3fu3IrGIYvXVpaCzOfXo3/g8jNLUfoIYNevaZ/sg4uYN9eHfZlKke6vrywGmcJdxapnmoc55XQWj75EsMXDW02YrTLD5nYzZu7/V9cwRGpu1jSwn9r3R7sP92s7J1tMh8ckpZKPFlFhSxXnFojSLKtUu3YsnwusMmqzZGX6l6X3vWLahUKhUChsCBbJtNmn7X0KKnG+oUfxx+why8rF/gyVQSzywfF9mD1n/sRepbsvo8rstk5mH5WRK1JkqjJF/iq2YnBbZ9mzema+xrSZZUaLMCi1eJZtTh2T6SXsGGZNXK+ITShfXMREmYXbuRw3G+kv+Lq83GHUv7N9URtl8cfK3750tqMQKd35fbA6mq83UtmzxcWOtc9IUzGXETHq32wF4j7DZYwsbpGVLPruwX2GNQK82A2glwJVmf98PfiYDL3Wx6PCMktVKBQKhUJhBYti2q01bG9vy5kpsDtTYr+JymXst0XZpPjYrGzA7qwyU3srtqDYWQTlz41mgSo/dsZa5mJGs2xNNjtn/zGXI8qLbO1nM3hWr0ZMtYd9DcOABx98MFWjq/OVct6fr5ZKZWTPlPt1pMi1841h8TKbUVuwn05pG6JlZTkemH2Ayjrhwf7BTAmuNCjrZGJbMnw7cXQAvyc92Rytj1xxxRUA9Hvj78cWFfY9eyhWyUw7y8DI7zvXI9IkqcxoyrIU1Yt92Bx77Y/tXYrYY+5dPyoU0y4UCoVCYUNQP9qFQqFQKGwIFmUeB0ZTSxauw6bAHnOHSqrBpr8oraQyAWWist5FTaIEMFxGbovIbK5SAPYIuZTpOUubyWBzL4fQ+WOU+TqqP4c3Zc96Z2cH999//wVzXmQqVu4RQySg4+soV0QEM8nx/Vgk5/ezyZzN8pEpVZVBmV2jc7lfZWFwVl5ehEGlf8xEmkqQtqlCNA8WBqp3OVqspXdhiyxds3Jb+P6WJXzy52SmYhXil73TdgynheV33tdXmf/ZPB4JO9dJhTs31h81imkXCoVCobAhWBTTNiFaxuqMSakZWiSsUEyDP7NwDQ6FyJJrKEbIjDEKo1HJFFiUFTH7TFDl6+n/V0tzcrkiZq+S0kRJajhRDjPtbCafPR+Pc+fOyUUFIqgkMRGrVAxbCfp8uVXbRpYdPpdZBSeWiPYpNhuJcZjBqzStvl2jhRn894wtqwVCsvSzmw6rm1pshJPfAKvs0QSCLP701iyVVIXbNhJasoiMx5TIasRiOA7VzZ6/Sj2qQh39MVxGlWzF/3+QdL1LC/1aVmkKhUKhUChILI5pHz9+fMXn52egFgqT+c38druu38bfs3ATtRiHYZ3ZWI+PVi3nlzFtZWXgkLmsTeZSk0bsU/l+IqatEjCohRE8evycwzCklgR/b2Vp6bEqZOwIiJ/pnMZgnbAW+54lnVB9JVtARlmjsr6q6qHCuvw5qkwZ01ZWoP2wqKOAldOWX+W+H7FKDsFji5VPfWrgZ8YWGA8OZWWocM5oHy/sE40dXFern7WJ9WvTLkUWHmbWyrft962DTGezBCyrNIVCoVAoFCQWx7Qvu+yyFUYSpcNUqsAoGcScupZTN2a+07mUjb68c0rcLPHHnGozSubC+9ZJY6qSaESzc8U6mQV4pq3OySgwEUUAACAASURBVHzE6yZC2NraWmGq0eIv6yQOYcwtZRphbiGXCIqRRixWLcGprADZ/eeYMKAZ7lzijJ7rZ9oG9qFuWkIWpQFgFT6wyzhZgc7LoUaWJG4fldbUH8s+a/ZlR0pqlYI203lwmZhhnzlzBsAu0/Ztwu2k3glfv94xJFpSV6WfPmoU0y4UCoVCYUOwOKZ97NixFYbtF1E3MJvr8dcpZsVMO8LcbDJjBmohjcjX05O2dK6srPyMZptz18sYcO/SjH6GynXuaRN+LnO+Jc+0mSEA2ofN6LFIzMWmAqvPgRlwVA4VH6+ej/9/jnlG2gClDck0InMLU2SMfs7vncXSc7/i/hG9+0tjSR7GHK38ptcBVpdMVcw3043ws+3Jd6DyJxgiLQ23O1tisvhzY9rWFsawbXum9+DPnsVAesAWnaVFNBTTLhQKhUJhQ7A4pr29vZ0yIRWn2KOu9vfhY4Dcl60U2pF/OqpXdE6kUlbfs2XveGatzo0YFn9XZYx8PrxPffpj51h5lllOKVw9OCY5imeOFhPx8G2jWIvyaWfWAI7xz/p5r2XC72MGquLAI2sAH8PvSPRuqKUSeX8ExfasTSI9BLcTP7/I787Loi4JxiqZRQOr7wMvXMOZ//z/Pe+JQcXj9+g+MmuML48/jpfINPU4L/aRZTeb89XvhxlH75Oq11FjeT25UCgUCoVCiPrRLhQKhUJhQ7Ao8zgQL9bgzROcBpNNImZyisQ9bPKZSzfK1/HXysxGylSaiZbmTH9sro6SnTBU4pQIqsxZWZVYJROv9Qj4uPw9xwJjPTn9p09CosLNekRXvE+5ICKT+5wZ0UMJ3ViUmQm1OBySn0ckWFPhWz1pTFWoWSa0YzcDH5uZK1VazkxwuWRBmvVRMxUDum7c76I0pnNtGp2j3FU9pmblBjETd5TsxMZpTqbCYV2ReXxONLkOMtFsT/Kto0Ax7UKhUCgUNgSLYtosRIuEBcw4ePYVMZC5VKcqzCY6V7HlLCSGQ798fblevaFXkYhtLkFLD9TsPCqrQnY/tZhA9NyyOivw87IZPLDLMDiEkEU/WVIQxRSjNlHJetZJm2tgNhuJ5VTiH8Wio+spQZKHYjo9C4YoK4PVm8NtfD0M3J7ZM1hqKkoPDn/y4KQmSnToodKI8njk0bvYUCRi5O8sTPQWhDmmzYuCZFYh7ncHSZYUiWYNJUQrFAqFQqGwLyyKaRt4IQoPm/UYa7KZGs/UPbLEK0AfE1EsLGO+aiaY+eCYLfC5PeFiXPYe3zbPUjP/O5c1szrw9edYc7QgAV9DYRiGlJGq5B/sw8qSnShEvlhuS+UDjkKV1Gy/J2GFsgpEdWL/tDo3CsVTx87dH9D9K2J6qu/0+MGV7mKJ8PoLqxuHrLHVLrNQqTaOrBi9vuwsYQ77sKNQQPbfq3MiH75Ky5v5/ZUuhkMLM23A0rDMUhUKhUKhUFjB4pj21tbWWr5L809yMH5Pmk8+RiWa8Psy9sBlU9sjH9w6i3v4a0Tb1P2jejELVKzTz7BVmj8+J6qDSlITzeCjWbDCMAxhookIzEwzdqGeB5c3Sg6jkoJki3HM3S9a9GEujWjP0oXMcLLFP1QaSa5DhrnkMVn/V8dECuCL5dPej/90HfDyk9GCHUBsmeLxLeu7ynfNqvLofbLrGnvmdKKRepx92GoJ2ijJjkr4so56XCWNynz1S4s8KKZdKBQKhcKGYFFM29Tj/nt0DLCqkLQZGfs5/P/eZ+ShUlX66835tiMmqvyQVgevYmZGq9grHx9t65lhq+sz4+lRAiuG3eOXzOrJcaUZex6GYY/vLPMXM7vM/IRzDI37W+Zj5LJFTFv1L8WmfT2USp3rG7H0uUVAojIqrUjGQlmtqxh1tD16t/19Ml9tD7LFMQxsibrYymIrg41dWQRKtIiIv0b0HvH4yQy0x8fMx7AS3I+75stmZs0LpPTkb1DRQBkzZstepB6/VM92vyimXSgUCoXChmBRTBsYZ0I9CyrwTMlmkdnsns9l1WPkX52LX818L8xIskxcWVy0Rw/DzmbjBhXbymWPZr69Gb56ytoTr60YBCNSOEez7jmFdKZ+52uo7/4cZbWINBRqgQ5myX5/L1uOfNAq81mWEU31jZ6IAHtP7VlaPTKfNpepRw+RLUTDaK1ha2ur61h/jkfkGz2spSI9rGxRTDcvzcnjjln2/HvEDJtV6ipfgL++nWssmvuwZ9q8BCf77rlc/n78fPgdid51rofyaUeZOA1LU5EvqzSFQqFQKBQk6ke7UCgUCoUNwaLM41tbW7jssstWRBCRHJ/Na2YaylJRmnlImf54gQW/T4W1RInt2STDYRuRWY/X1J1bhCMTaqhQoyg8RJkaVfrWaJsyPWVCDlW/LDnJnJlqe3s7dS8okR3XKxPdKRPtOqGA/On7FofJ8DGReZyFaEroxvujOveIb+ZC+9iM2WOOzdpRJfwx9LjP5vqOmcj9uVkCIy4vm6D9OUoAexjwZnJeLInNx5aoJQqhZNOyGquicZXFwRz65c9h87gyRUfvKPdNLnMmQFPm92w8XZpZ3LDMUhUKhUKhUFjBoph2aw2XXXZZKvpR4Tq23WaRark4f6xKJOJnZcxaeBYezUDVgga+nnyfuWQTfG7GApQgLQqn4xloT6iXQpa+UgmNWAjiWdk6gpDW2p6QQbVIiy9XD0ueW0iB2z4SeSnRWsQmmKX0iMlUSJcSFUZCy7nUjVH4Hh/Lzzha/EOF+GVtwlAhZlEaU1VWhk/q1JNMgxmo1dUzbS6DMe6LFUrELPj06dN7vhu79e/Y3FjBY2TUd/haXM8o5a5qg0wAa5gL24qWVs4SW6nrZ9bMo0Qx7UKhUCgUNgSLYtrAOANiFpv5t3iWFZ0zl6iEj4tYuvJhZyExdizPVqOZnErS0cO01b6MtfOsXPkl18E6jJXvmyU56IX3S/YsPKHK76Gei9IARHqISCuh7seMhv3VWdgWs3OVhCJjS3PJdoBVq5AKV4zaRDEfbsfouak+28OMsr5kFpqMabNlz441Zp2FG3EZWK9wqRClFVWw+nFClqzPque0H0SJUtTYyLqFKAHMXFKfpSZSiVBMu1AoFAqFDUFb0gyjtXY7gDcfdTkKi8f7D8PwcL+h+k6hE9V3CvvFSt85CizqR7tQKBQKhYJGmccLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAgWFad96tSp4frrr0+zWs3FMUdQ8cM9yyvO7TvIOYedcWed+OO5e2f752LHs6xtczm7o5h8XmryjW9847tZxXnixInhmmuuSeu0H/TULfqeXWud++7n3KPGOvHS6nvWD1QmrixPteG2225b6TvXXnvt8OhHP1qWOcLFeB7rvHMXC/sRJu8na+JhXmOdfPlzn4DOwfGWt7xlpe8cBRb1o/3whz8cz3nOc2CDr32ePHnywjEnTpwAsJv8XiUB8Q/BEiNwcgFO92jI0jyqBRai1Ke952bgxCxZukn+IexZH1olqMgSV/DEiSdZ9mzsE9hNQnH55Zfv+W7JG3gtXmD3ud177717Ph/3uMethOdcc801uOGGG1bqeVBY+XgtYp5QRukg5wbangQwKhlEtoCLSmDC/SOCWgyk5weR65Bdn98bTiITLYhii2PwYhP2bHoW5rjppptW+s6jHvUovOhFL5LtFtWJ153O2qnnnVL3W2eRlN5Jeza+9RIcv43TDatrqzL4Y6I15tUxav347AfYxn7rK1HCmbNnz+75tP73zGc+cxFhgWUeLxQKhUJhQ7Aopt1aw/Hjxy8wNGZjwO7Mdi4dXTTbYmbNM7Me01x2H18PVb+5cxkqcX50rkpf2XMfxRgjNjg3K4/O4eVKDfYcjYEbi/JlueKKK1b2XWrMWU/YItKDbFEE1YeiBQ/Y2jS36EbP/fZjrpxLN5phLsVstq8nLWeGYRhw7ty5lXcgW4ZSLUDS4xKas2pF+/aDHtbcy7S5XP6Y3vHOg60+nG7Uzo0smKrt1Vjt96nPqA7ZcqRHiWLahUKhUChsCBbFtIGRkXFyd7/cHTNtZpPRggrst1ALK6zjg2FkPr85/00Enu3zwgpZGZSvJ/KDGhQLiFgzJ+hXSzT67fYMVfnNmhL522yb7weXCqoNzc/FzyUSTao6R/uZSc8taeq3GebYhO+fvYuoZOyMtxuiNuF9ahnR7Lrr7u/B+fPnV9oi8quqBW+i9lPWqnWeqdIpZGPUnHUw2qae5UEElplFR1nnlD7D72MLVY+GQi14ki1Xy8csBcW0C4VCoVDYENSPdqFQKBQKG4JFmcfbtB6ymUbMZOrXpWXRDZs/Igm/yftNyGTfVTxeJkBRYRzrnBOZ8NW5bDbK1hhXZvGetXDtk4UgkZmKw57sOfH1/TnKJWHgEBpfj0iQeKnAz0iFUUWmOhbbqLCdSFTG57BbKLoOl7HHbDln/ozeCWsTZbLlczKRD69PH61ln70nh4FhGPbULws7mstRELlH2NXB7xjvj66nzNfROMDPh+uRPX9lUs9M3VzG7J1gqHpF4xyHB67Tz1RZov69n9DcS4li2oVCoVAobAgWxbQNWUY0A8+GmU1bsg5gNymDHaOYdsZIFTIBCtdH1SGCCmuIGAknDuAZaZRERs0m51gBsPtcjAHzJ5fDX4+TlXDSkkxg5Vn4pYayjsyFAPl9ip1HLNbCHlkAF83+56xA64Qn8rHcl3x51bE9oTLKChS9gz3CzYOgtYbWWlfop0Im2GTLVE9Y5RwzjBgws0rFSD16krZEZc7KmIlYe5iu3+7fNxYo8/gWYa7vZGFpxbQLhUKhUCgcCItk2pGvz8Cs2FidsWlLPXfmzJkL59g2Y+GcBpFnbBGrUEwqmk0am7RP22esMprNsj+I68719pYETtNq9bPtZlmIUkOqWaRiCcAuC7SEKJyaNNIVWJ3tWC5zZFXJZuxLQcQIGJw4IrNiMEtivUDGlphpqVAv37eUZkJZofz/nHJUaSsyv6vyYUb1vJi+7SgcMguNyywfDG4P7uvqnff75p6tB48lPX1UWWd4u7/fXIrd6L2d89GzJdGfq5Jjqe899Vsn/HYpWN4oWCgUCoVCIcTimHY2cwRW2aMxztOnTwPYZdj2Hdhl4ZwsXqnK10mLaLNNr2w2NmnpNzkRjFJbA9pvq+rt/1f12Q/Y5+hTiJrlwhZvsX323drPM3u2NrAiPEqckqnRNxFzyUj8NmYAKmrC/z/nj2SfoN+nymZ9yJ6538YWHWaDmZ93rr6qrhcL5tdW92UdArPWSGvC9WfdhvX9zOKyTp9Xlo5M29KbSCTz/RrYEpZpG+YsO5G/mq2r3O8iq5CV145VjDvCYaSSvRgopl0oFAqFwoZgcUx7GAbpz/X/28yJmbZ9GrsGVn2szLQjH2wvohShPKO1fbadfd2AZhz2manjbZvV+WLHtaoZaBRjy+ewipz9vGad8OcsTb0ZYZ2yzsXg+m3Mork/+H0qtr4nlpj9uNnytcxoVLxxpIdQlqQsPlctq3iYyGJ8gdV2sjJkeRr42j0LhajyKP93Fm3B9ejJD6F82cp/7cs0p22IyqKWZI10ONw3ua9E4xI/F/VOZJECxbQLhUKhUCjsC4tj2q21roXlbbZljNNmZHau+Vejc9jnq2Z7wOqslNlFlLWNfVdKTelnyczKebbK8eh+BtkTr7hfnDp1CsDe9mSfHMdtZ75Ma/t77713zzWirFDGupeQsF8tpNIzY2fVMPdvD9W23KaZX1KVMep3bAXifmjPNPLvWhmVFSWyIKhIADvW+kfEtJmlHybjHoYh1RwoP6qVIfMXM8ONrAkMjt5Q/cG3CUetMDvuiZ+fiyGPrDR2DrcRj1n+mDmrp2koIqatyp9ZdtgykWVty5j7ElBMu1AoFAqFDUH9aBcKhUKhsCFYlHm8tYbt7e0Vs04kLGDRk4VZReIOtTgBm0F4v/+fzWFmdslMNmxqtKQk0cIXXJ+5pCfRuVH60DnY9ThRysmTJwHsmsXtuz9HmZo4uYP/3z45KY6Zwn1oWeYmuVRgIY7qQ1mqXf5u14gWQuE15Fm0GJnW2XTKrhuuS2TqtnOtj/LCJdYvfD3UYir8PXo3ooVo/H39+8AuoSuvvBLArotlPwJSxjAMK8/HX1eZfNms68vN76P6jASc/AztuagUwv5/Hmd4zPBtPre2t3pOfhuHB7LpOwpP5SRY9t6z+XwdU35kHuf3yPqxapuorioN9VGhmHahUCgUChuCxTHt48ePy3SPwN5QLmCVYUcpUNWMn2dmHIjvz7FZMYdVRTNsXx9/XZvdGXv1MzqbaapwmmwxA2Z5PNPlFKLA7gzUhGb2aSzGmC/PUD1UcoOIibHASoXQ+PtwQoQspOwwwCzXb+PZtlrwwj9TZmfcryO2xKyZhUiGLDWkWsAhE91wf/OWFWAv61Rsk8MfM/GSshxweBewy86YfVlftXfSM7p14YVo9tx8QhkuA9eZQ5X8PvXZwyYNzJ75/fT/Z2wc2NuXlXhUMfBocRsDh+Fa+/kx2/43hn3QZ+bLkS30YmWzcZYXKoqSOy0VxbQLhUKhUNgQLIppA+MML5Pa2yzRZp4c2B8xIxX6oGb73q9qs2H219lMMVpKkMttszhm2D6MyurDM8KeBPdcbruGzcaNvfr7WZ2vvfZaAMD111+/5xgrD6di9ddnxsA+rWgWzYzOyhExLGaoF8unbXWOwvcMatGXbKlEZmysH4gWSVEhUdY+dm62zKqVUfVzD2tjuy7fN1pYhsvIoZKcttffVy2WwpYYz3zsfOtPHOZpfdUjCo1UGIYB586du3CsXd8zRH7fM6uSgccBPicLJVIpVbNzlJaF37moj6owVX7n/D24bTlcK0qnfJBEVgb293OfjUJNub+xlciXkUMWl5bcqZh2oVAoFAobgsUx7SipQpRIn9V/rBKMFNoGlboxSq5is272vWb+1bkkBsZeowQwNqO3majyKUUJYJgNMluOlKbmuzT/IM+4MwZh17drGVuzGbb3TzML52fL7Mzf+2LNdFmRGyUuYSj2z2zGg9kj6zCyJSANvIRpxlTseqwIjxSzKuGHUj77/+3dYBU3948oAYjSrUTsyf6394U1KFYOfx8uS08f4vfftzFb3FTUQKTMVlEEyn/sr68Ss2TpXjnZCW/PlOC8j/t1NO7Y9dXCS5FVMBtf5mDXUGl0o2fA/YyftS8HP48lJHfyKKZdKBQKhcKGYHFM28+SMn8x+7YNEZuw8/lYXs6TPwHt+8hiotkfZGWyGRsrF4HV5TXZL8wM3/vdlSpe+UV92cz/9O53v3vPMcy4/XNhH7mxdLZuROkyeaarUmL6OrPv/KBgi4Tdu2dxDFZ1qwUkgFUrkLUXM+0oWkH5zM3P6n1w3J+UFSN6N6wtrJ9x7GvEtLlfX3XVVQB2+xL7nP1zs3L7hWH8/axfRwpnKxtbkjIFsh2bpTwdhgHnz59fiQTxz0Wp25lNR5Yifod5P+s7/D72ZfM1/f1YAa2sAP44thjw2MEWJT8Wq7GRtTUe+8klweDxji2NPbHXyqLgz49yLywByyxVoVAoFAqFFSySaXMsdpQxSsWzsr/Lw2Z5d911FwDgzjvvBADccccdAFaz8wCrscLs8+NyAbssgsvEDMEzf2MpNlu1NjB/ITNtP9tk35ExObs+z9J9HW2b3cdm8Oxz8tYHi+k2hmUK9Ec+8pEAVmN8gd12s+uyjzZiG9zm/rkoWL+IVM8Gew5mIVAqeL+NY+x5ARRrN69T4LLYc7F2ixZUsOfOFgmVJwBY7W+sV2Cftr8fMyy16EPkY7b7XHPNNQBW3yeD1zaYdYv91LykbqR0Z0sB950oRjpbUtJjGAYZXeLvpXQwUXYzfsfYimHXinQ43O4qXj/KHKfGwiwvAPcVRqTZsGfF8dm2PdMR2BjC9eB6+3GOLW+MyNrB7x5bEiK/dU/UxVGimHahUCgUChuCZU0hMM5ybLZvs75M2RcxNGAvK7MZ4O233w4AeM973gNgdxbOeXBt1u/vbWzSZm7GTG3WauzJX5fjpHnmG8UkK5U6+0yz/OWs6mZ1pwczLGYk73rXuwDE/h2bLb/5zW8GsMuwPviDPxjALgPz1+WZLrPNKKf2OuhZ9tCeh7UP+0T9rNva8hGPeAQA4LrrrgOw+/ytzTnWG9htH+tvVme7lll8fD9gFT1HC7BvHZhXSKt4an8ug68VxVqzGt6/N8BuW919990r17G6P+YxjwGw+668/e1vXykjW7vU8pRRH+1ZvtPWPGB9RaShYJ8sxx1H59gzfZ/3eZ899bD3xfpYlA2Q4+iNEVu/8G3O77CKcPDgyBLOkJZF1qilOVm7E4GZttUjyt5oYM2EjS/G7H0GOwNHGHDu8SgvAut5loZi2oVCoVAobAjqR7tQKBQKhQ3BoszjwzDgoYceumDKMPOKN9VFwhj/3cxh3iR3zz33ANgVyrAoymBmEW/WZVGHmUXZrOIFHJw8xT6tPpEpTSW9V2kyff3ZtMWmWhaX+evw9XiBkCwVpZnqrB7Wzu94xztWzuFnySZNe27REqCR2UvBrhuZAq1OnJqVxX3exG3lMfcIm/Wsn3HolK8Th01x8pEoPJFFTCqBDqCTaCiRXyTuYbFilhZY9U1OA8oiSl9nDvkz95L1Ifv0ZbJz+X7WFlkioMxd0lrDsWPHVtxy/v3kVMFsNs7M4jaeWKpgbh+D7zssKrV32q5l7eOfi53D4bDK1eLrwe3DAq2oH6gwKjZB+/vZs7K2YPO1ta+5Kv04x64OawvrO7fddtuea3mocTSqF5v1K41poVAoFAqFfWFxTNvPpiIxgs04VcL+iMXyAhrMsGxmxaEkfhunF+UUkdFMTYWbRAlS+H7MkvgafgbKyS449CcSLxlU8hCe4UdJT6wt7FhjoVHIFz8vFhFFM16VbjYDs6So3GoJRl62D9gVuXDyGWbLUTpE22btYf3PGFb0/Ln/stjH2ssnJ4kSrvh6MOP3/UAJtTj0KgoTYysMW2lMXOTbxPqIsSRrI2OOUdjlXD9goV20by4V5fb29sr74fsBW6JUaKG30lhIodWZn93VV18NYJcZRilJrX8Zm7S2jVK3chnZMhG9E2xpUwuGZGFwdg6/99E5Vne7L1slOfTVn2vXs77DQmW7v++r/Nx53OHy+PosLX2poZh2oVAoFAobgkUxbUa08ATvs9mjfWcfDLA7M2Ofjs3qbbZl7CJiQBx2YudES1cqnx+nHvTMgNk/swn2MUbnqgU2OKEJoBPps081Cn/gbfZ8jFlwiJsvm4HDUCK2xOXOZr4WtmPXU+Fc/p7Mmtkn6/+39rA+YsyH/eDZQhcGlTAnArMjTrnqj2GGoFJg+ufC7JLZUaQh4fbjPmTvm7GmKEzIymZhmMbK7dM/a6szv5dshfDtbM8p8k9H2NnZWbFu+eupBUMy/ycntTHY+/Hwhz98z7WjZS+Z2fMY4q9t7aFCTNmK5svPqXDZ5xsxXw75M7B2I9IacAIWY8n2na1i/nr2XOy61i+i943fcW7PKCyNrQ/Z+3kUKKZdKBQKhcKGYFFMu7WGK664YiVdofc3cKIQTngfqWt5MQr2yfJC8FFiBwMz62jxD5VAhK0BUTIItfQfs+lo+TmD1S9LIMDn8oyTZ8ee+XByEk6byrN1Xx8Gp5v0bIqff5bAnxd9iO7HjJrbMmKxXH5jCOw/5P7g97ESP0t9qZJ3MGvzZVQJUlhHEKVs5HZnbUHW9ur6xpqsLSKmotg6+2F9nVWaUfs0H3G0L7PSDMOAnZ2dlWcaWYqYmXLkQeRP5f7GbZyNc3xdHruicYD7M7Nyz0T5XWXrjCHqY6y/YetWZCHjPm/1YaudlTXy87PlktvV+9ZVlBEz7qjtD7KoycVEMe1CoVAoFDYEi2LaW1tbe1SxEWOLFszw3zM/CvvvOJ4xYqQqDjNTj/P1bEZo/jpOc+rvo2Z3HFPuy6iYFvulfP15Js+zWJ6hRrHyrHTmmN9smVUuW8SEmE3MLfrgr8/9AVhN68p+OpvlR7GoKo6d2ymKPGC9AC8K49mZWtaQFwXJUpGytYb90r4v8zvBceFRTgO11CdbbSJrBz9nKwtHZ0TWAPX8mWECq0t/zrGm8+fPy8gNv41ZOI8Pvp1Ys6C0GVG9VBw41yPqb2rBkGgc4PupeO3ofmxRZO1Blj6Zy5xZHbgsymoSpbNVqni2DkQLMEVWzSWgmHahUCgUChuCRTFtUwArpSYfC8SzbGDvjJQZB/vTlNra7+OZGvtC/DV4lmwsgpXH0QyO68Mzw8jHyOzYjlFx6P56qm2yDGx8X2baEVtXM3ie9We+s54ZL1sk/AyaZ+oqE5r3Syu/Hbdp5Atkqw+3U7QIA1tcOEqBl0P0x3L9VMYyfy5HAnCUQqRwZ+sIW52UnzQCP6/I4sSWFpUBzt8ney4RLCsaEI8p3LbRcqBcBm5/jpfP8g8obQszfZ+JkTMisj8/slgxE+VxzpBlGuR249wO/hkzi+VPLlfGuFUETJTrga0P/F5nWTeLaRcKhUKhUNgX6ke7UCgUCoUNwaLM48BoisgEBxz6xGacSK6vQn3YFJfdj00yfK0oNMHAYQ1sRozOYdOSCl3IzlGpQ7m8/hw2K0ZtwmY2FnZxCEZUbr5PZoridJwZuGz+ehw+xYlsovIqEZxqn6gfcGghmwIjM6xKDRkJktgErMx5kRmW0/JyAhY27fp6sXvBzmXXUWSOVebfSEzE9VOi08g03ZMC19xybG7156j+qerh/2dT7Dr9gNuFXTjePM6iWB7nInEm12sdsR+XTaUojkRe7HbJxmAFJbzLhKQsoozWTufnVObxQqFQKBQK+8LimDawmhTAg2dMhkxsw7NtNbvrmeUxa+LELL6MSlQUsQnFCBRzjBLcKzFJlnCEZ8dKeJYl1+C2j0JLxng+XgAAIABJREFU1HNjdhaFFjFz6EEkTmJGqJK1+PtwghxOrarq4+/N7cQsNmJ0LCriMJpIYLcf4YwxHmYrvGBFJCZSrJP3Z0l9GFH/5mfJ1q/I6sECy7nkKvanyqDKzYJE//xZtDgnQOth2nYtZor+HH7f2aqVLa85hyitKH+q8cgfY22hEl1FbcSWAhXO1WOFtHaM+ij3q1qas1AoFAqFwr6wOKa9tbW1kiIwSoeplmCMZtbKl80+zWx2p/zgURo8nj2qMLGoXlyWyA/FZWQ2aGBGEvmElU8u86krVs7nRGVUjCe7j2LpEVg/EMHCpniRAkMW/mHPX6U8jWblEePw14oSwFjZmD1FITIqVEk926x/c+hXxOjmnmXGgPlcpXGILEkcjmbPcT/+UIZPgRu90wzV56Nxx8YqxbB7/OHq019L+a6zd7k3cVHUrxXT5X4dJZ5Sfnfu51F7KutgFmKo2mBpLLoHxbQLhUKhUNgQLI5p7+zsrCQQiJiB8l9EikVm1iqwP1Keq2N4lhctq2dQM/foPiq9KB8XsVj75KXqIlYYJekAdCKTzNesZq89vkwue8boe5gUPy9fbuUT53JnWgrFFDOltIpwiHzQrApWCm0PxTTmUtP6Y1ibwctJen2C7ZtT/vYkV1F1yBKAcNmz5xaVn2ELhmRKc5Vul7crX726LxD7VbmuSsOT+XxVYqhMPc7347b1ZeTxmY/JtDTWh0zno8bkaFxVERvR81dWDWXRjFDq8UKhUCgUCvvC4pi2V3FGKmtWGfJMN5q1zsUiMtvwszv2exvY1+jj/DgWkJkiLz4S1Yv94ioW2oPZGZc1YgHMktQiHRELYCZvLDFamILLwirOKNWq4SB+p6ydDGydiVS8XBZVpixGlL/z0qn+fPb1ZX5p5ftXrM+XcS4CILMG2Cf7IbPn1cOKuezsX7cFeNRiPh6cjjUrF6ebzVTIinFn/tS575mvWY1ZURTBfvy32fse3T+Cev6RRoTzAbB1NaqfsiBFS9wa+Dpcxh7rXTHtQqFQKBQK+8LimPb29vaKfy1KAG9+W2Yg0SIMdiwvJK983f5cxbDVIu4AcOrUqT3n8OzOzo3YBC/baJ98brbIBLeFIWpHvq5CZLmIFqr3iBZwYCsEW1M8M86W7TwMMDviWFhfLpWxK4tvZ30AM6DIknT27FkAq8/Uzs2yPvExHPseqXkNSrOhlO/AasywUv5m+QF4X8TsWTeioiQ8MrbHaK1ha2trJc7c+/VZEc3vT6ShWDfLWMS0VfkzBb8dy5aczAqgMq/xNTPrg41VhkhfxO3F/TvLOaAy4/H7G92Py5qB63qxxp/9oph2oVAoFAobgvrRLhQKhUJhQ7Ao83hr45q2WTIAg1pEIkudx6IElfo0Sz7B17D7X3755RfOYZOMMgX5MpoJ30xMZia1TxZJefENh3hYWViEE4W92DEm7uE1saOystCMTWlsavNQKQh5P/8P9Jmpekxa1tbeDA7kyU7YpK3C3aJ+p86x7ZFISol6stSaXAYWBmbmcQO7S+wc37+Vy8Dul6UUZvOogZ9XZvZVIim/3Y61Z90Drrtve3Y1sCsqSmOqwifn7g9oYS23i6+z2qfSvgJaCKZCvvw7zfWy8cDaPHIP8Fis3A5Rm6nfBXatZYtFGVhQ6tskSvCzJBTTLhQKhUJhQ7Aopm1gAUUkRrB9nPKU2aw/lpcfVGzMM4Ms2N8jWhyDZ3lcNs+WbXZ65syZPZ/rMAVj5RySE82wbZu1NYdBcWKE6Fw1k4+eG7PMnhSLzDZ6mHaPeM2eg1k1mG1kSW8U8+UFN3xZmMUwa8tCVZTVJnonlDWAn3/ERFSYXsQWWUCnUrpG78oco47629xSuhlbmhNY2rE+1DTCXKIcPs6X0zAnLsuOVe3knxePjfacOHVoJBC1Y1hcmj0vfv/Z+pglKZpLIrVOkhpG9G4oK2sPO19aqtNi2oVCoVAobAgWxbSHYcCDDz54YdbHPkc7xn8aeBYZLa84l3RClcmDWaSV1fv8mJ1YWcxvHM3aeZa6DsM2MANRbDYro0Lk02Z2ac8rCp3i9Jx8bMTo1kmE0Fpb2wfFoXfRkp1sJeHQHr6n9++zFUP5RT0UW2LGGKV3tGOtLyq2FvUDZkBZgiM+l5MIsU84slxwetaMealzlE+Tz4/agvdtbW2lzH1uAZ+IlbGFg99DFcLkMaePiSwJ9jxs0Zkrr7wSQNxOvCAMs+ZsXGC9Bye7MUuWtwaoZXFVf8uem0q2Ei0yws+Ux5bISrNOApZLiWLahUKhUChsCBbFtIFxVsN+Ne8nVCyS0+J5zKUA7FkogGdm7BOOFqNXVoGeNI8HAbdfNltlXzP7wSMlLVsu5hTV/noqPWZW796lF7e2trquO5fkJFOuKuV0ZB1ibQEvsBCxDqXEZ4V5pFJW6WTnFtmJysiRAVHCGe4zSh3v30lOIsTMMUshyil2s+fVs2QqQ0WZRNfrSa7D9+Z9GYtVDNsscBHjNwvLiRMn9nza9qhs3I+5DbjPRjoVTobFOiM/HrFlQI3F3IejsvF7FEUrqAV3VFpTv2+pKKZdKBQKhcKGYHFMG1hld36mrlIYsv8hig3k2bFSP0b+DRVPHLEJ9h3xMZnvhZmNWujAl4eZIivBM19+lH7RI/KDMVNVcZORgp8ZBLd5VEaeLWfgZx2xGVZxsz/PP0tm0sZabElBZthe28BWC2YT0QI1bEFS1iBfRuUzj9I6AnuZD0cJqPj5iKkyO+PvUZpbZmWcljd6bva/tSf75iN9AfdBtmBw3R566KFUOc39V/XbzKfNFo+oHFxn7ivGtG2/r5f1PX4OahEgfyyXWVkLPYvlRY7U4hxZf+PUt1YfZtyA1l0oxh2Viftb5LtXiygtBcW0C4VCoVDYECyKaduMl5f8M9/MYd4HWGWGWRwr+82U+jHax2penl0Cu7M6O5YXNWEm7tk0L9zAcZmsdI/KrfyskfKc/VvKgpEtnqHu35ONTmFra2ul/BHTZibKcdQRi7XnYopcZum2P2IGzFIyJmJMKmLhvjzRNs5IxiyTGZcvi91XZbOzyAe/j4/NmC+fy9ng2JcdWZjmFmvpyRYXwcYdpTmIzmdLRGbhm2OvUd/ndmH/cOR3tzwNVg9+ppHVQeUQUDkm/HOx69t977333j3fT58+vec4Xw9lAVFx1b4eCpGiXkUeZBEOzMbnlnW91CimXSgUCoXChmBxTHtnZyfNSMN+jbnZbATln4qg/FBqJgrszoZZ1ctMJKoX5wlnP16W41rdj2Ok/fVZxcuI2ItSgGeMh89VPnRfDtYTZDmzgXhWHvk5+XpZO9n/9qnU4pHaldm+8qtFPr+5/u3vY/c2P7vyzbJC3P/P+aKZaUextqr9mD31RH8Yovc2yv4F5MxLZdqKwBY+vgagc6VnqnEDvy+KTXqGyMsIq/HMs8C7774bwOoSmVxWX0+zEPEn990of4RZX4xRcxbHbGzh/tXj55+L3Y6ym7FVs2f5WGbfPVn1LiWKaRcKhUKhsCGoH+1CoVAoFDYEizOPP/DAA1IcBayamHrS3TFUasospZ0yk0ehHmz2NCEdm998vVRKUCVW6RF5mbmURSb+fNvGYgs2G2VJ+HsSVyiRGpc5Mo+rcDGP1hq2t7elSA5YFaCxKZhN3X4fh+LxdxZjRXVSIUAeHKalUjRG91Fpa/mcaFETg1oQIyqr9W8V0sjtnNWPTe37SXARCeyiBVYUsmQnUZIhf92oP6v0pPwus9jM/8+mWTYr+/1mrr7jjjvkdYG944CNEfzJSavsWn6cMMGZmeM59XI0nnIfmRMv+rabc79F5nE2cUciYC7jfsa3S4li2oVCoVAobAgWxbSBcVaj5PnA6uxdMe6IGRqU+CVLX6iSTUSLP3DZbAbK6f18GA2H+KikLhEUc1MCGH8/lVSDZ/oRW2JBHX9mCW647JkAqacthmHA+fPn02VdudxzoUuADolRKUqjREDM9tja4BOycPpYTvDAoi8PDpuaW6ozOobZH6ez5P/9MSrxkX/mKtwyC82aC5WKGO1+FntYZ8EQLlvUvxUj5LJFjJjLopI7RYvbGPO966679lzf4J8f92MTWCqrUBSeqML2WBjr9/H1OVQz6lNzoXNZSlI1vkahelk/WAKKaRcKhUKhsCFYHNNuraWhEFG4FJ+vtqnZHfs7/P2itJHRfaLgfAOnHrR6RUzbjuWFAZgJefBska8VpbNkxhDNOP39IsbCDL7Hb6h8pny/aN/c9Xd2dlL/LVtp1PUiPzizcWYmUZpMO4cZCLMkz7Tter5vAKuaA/M9+nsrhs36hYj5zll6fFtxSNlcCGWUmIfTlhqy93cdBpRZfaJjd3Z2Vq4XWdzmxp2ed0BZ9qIUqCqsLvL9c9pkTuZk8N+NlWcWHF+2LN2nIQtPZU2ICp3NdCxqHM/Ct7h/830jy+x+rDWXAsW0C4VCoVDYECyOaQOr/hPPMlTauyzBh/J9qOTxfmal/LY8Y/OzV5WC8J577tlzTV8vTlsaqcSjcvhjrCys4mR26M9RVg2e4frvamabaQd61f3RrLaXWZlfG4hZ5X7Afjn+VKk1gVV2PLdgjdUD2I04YF9mtpwn+9W5zaPtyg/NFoYomQ8jU/7yMYrp9Ggb1P5s25xfMmLavN9/HqTPq5TIvo3V8qesrYgSf/D4ZmU0Vh3V087hxCxc5swSonQf3irE6X6VpSVqX1a0MxPOkqAoJXjWd9ZJ0HMpUUy7UCgUCoUNwSKZNvuYozSIhp60pXxuL1OMysQsif3H/n9jWuaf5FlltGDI3P2jeHG1tCgvMhLFuysGkcWuc/lVTHempOXrRf6xzFelkKluVWwmXzdSqc/FmXN7AvqZscYgU0zz9Vlb4Y9RLNn2m788KqPSJ/Qs/qJU/j3sTFmSIiU4X2ed1MXZ8opmoWE9RBaB0jN2KEatLC3eEsYWHsW0fTspi4t9mprcj1UcJaAQ9T/epqxQvl6sAVG+6+id57FKjec9kUOZ5kFZU5eCYtqFQqFQKGwIFse0h2FY8WVHsa9q1h3NfNVsWPnT/HHsa47isvm7MWvOvpNlXJpDdj/l4+EZo2cb2dKi/nsU76zUlT1q77nYVY8sjlVBZQVT9/D3yY6biw1WscrAKqvIsqdxPfh+kbpXLaOqMr9FegjVthHTZj++8k9HLEpZKBjZ+6tiiDO2ONd3vB4iKvccm18nlpfrEWUs5GV2+ZjoveR9ignbwh7A7lilImiyxWA4xpsXKopyFygNCI9Z0XKYc5kse5TgvD36Phcjf9Qopl0oFAqFwoagfrQLhUKhUNgQLMo8PgxjClMzT5jZJQqnYjNLJghh84kysUciGDYf8bGRuVyZVw5iHu+BWos5E9bMmWyj0LN1xH+950Rtz6a6ddqvx6y7zuIYSvSUncOCHCUQjNaqjvZF9/f1UGlLWaiTiYkMqn/463L7WVl7wi/34ybhY1SKSn9Mj8jUyqOETsCqGVe5L+bCEqPv0TumzNJzqXz9OQbuhz6Zj41v/MnlsPpFJnyVyjcyj6vysyuMXXt+W2/4nT/GoMSBkXl8zoVzVFhWaQqFQqFQKEgsimnv7Ozg/vvvX1ku0sQYwG64gprNZyEjasbOggbPblSyExZ9+NmtHWtlte82i41CfQ4jgF+lVrX7+xmvmrVamdga4WfYKpSnZ/EHVdZoQQIWAUbiFIZKqQisCrPU4gVRms+5kLVoYRWFTATDFh0WBFl9fFvYs+LlXNWzjfra3BKd0T5mKYqBRxYSxZYyywW/r1ko4DppRVtraK3JccJfh+vcU9e5MnAyFGDVSqLaNkpNzO8s9x0/DlgyFRtjjYUrEVZmuWJWHrFq9Z7Ye8/i3ShUT1k3MmvH3PsbCR8NxbQLhUKhUCjsC4tk2pz43vtgODRBzfoz37ZBhe1ES+TZrNVS8nF6U28N4Fkqzy6jpDFWZ2NQ6/iL1ULyahEQXx+eRTLTjqBm0uswbZVcJQrNsfZSKRatTFtbW+ksmS0OPQlS+Fyli4jO4f7EVpso7awdY6xZsYcsQYZKrhKxT2Vl4AUdIiaikvrwuxEtrcuJZ3qYtgpljPp3FoIXwTPt6LpRiNXcd+WzVlYmTj/s97FFL1o4SVmSeAyLQtmYnWeJZgzKz2/IEibxJ/uyDdHiTVkaYD5HMWw1/kT7KuSrUCgUCoXCvrAopj0MAx544IELs64oKT4zsmzJSn/dDD3pFhXTNkT+aU4bGS0Kb2C2NJdG1N+PFb4q2UZ0PvvOeny4fH2e4Uf+N7UwALPQSE9gDCRj2nZNXlQgWvxFpf3sUYsqph0pmO1/Ln/mi+XkErywgukiIgZpZeB0kplP1a7Lym9+ptFiM8rPq/yvvtzKP52lr2Q23mMZYZ9wD6Jz5hLzZEp5BbZEeKZ99uzZPWVQSYOiZS+91S8qq3/HIr2LL1PmJ2bLET+fSAHOibNUqt/o2c69t4ao381pKCLrKt93KSimXSgUCoXChmBRTNt82rx0pZ+Bmn+bfWNqyU7+30PN+v3MymatzLCZAUUKYDuGWVHkW2Lma3W3sth39vf7czgeU/m4/bZMMevLlfn35phXtE+lJPRtZc/dZueRz0/BzvGsg32wXJ+srgpcDz9jN2Z9+vTpPd+ZcUcWCWa42SIjrArmPsrMJPITMuPhc6JUlFw2ZfGJFMdKTxL5R5Wfex3/d49GRDF5YHWsUOdE+9h6pSIBsqgVQ6Yb4T6jWHo0DnCZmWlHlp25JTIjFsu5F9hPHfU3rrtaejYCj3NcVuVL773+UaCYdqFQKBQKG4LFMe3Tp09fYEc2AzX/DrDLtLPE+UDuE5vLTBQxYKVOj1ilirE0ZHGrqixK5e3/51mqysjl78ezYlVvXwelSs5mwEoxmy0UwFmaeuK0+fpRGRQDivyScwrsjMGxr9LqYQs2cBy/v5+ynhiirGbMjlV2qyiHgVpQg5+tL5MxOn4n2QoV5QdQWeL4OEDrOzLFufJdKkSsOnpPlbo5ek9V9jQVieCZNi/vy/fnxU38/8rSkSnA+RjFojMluNLlZG3PfZaP9X1nTnOSWVy4P3A8eHTNpcVnG5ZZqkKhUCgUCitYFNMehnF5PGPWkRrS2IPN7lmp2hMbrBTSWdynirU2ZD4YZtpRlh/2WTMDzpTZKgew8m0BqzPoyN+p6qBYZzajNzB74Zmv91tbm9gzn/Np7+zsrDx/Xx+OfZ5jFX7bXEalqO4qWoCtHJ5NMbO1svESjb5eHFvL1p+M+ayTbc7A+RPseqb74NwFUaYvZkWqX/D/UX0ia1GP+tlgMf7cL3y5OX/BnBrZQ6nceyJC5qIsIgsfv4/R2MTncJn4M7I+KCvdQcB+9ygfu8pDkVlcuPw8zkVRJjw2LgXFtAuFQqFQ2BDUj3ahUCgUChuCRZnHGRYaE4mTzFSqkkBkIRhzoqJIbKGEOnxtYNVcabCycWIBdW8PNptGwiC1vGZmsjOolJSZqEwJzzJRDqefte2R2IwXEYjcCv6e5l7x9fHXO3ny5J7ycjkjE+CcGdfAIVnArnnYym115KRBvu+wmMfXL7qfr6sKveO2jszIcwklMhGTSuUamaTnzMmZME69p1nq3d6wHZ/GNKoPlysTrxpUmk92w0UuKHb/KfN41E4s9ssEomrBk8M0eUfgpFVc1kiAqcIFDVEyFx53+B3PXHrrhAteShTTLhQKhUJhQ7Bopm1s2od8GVs1Fs4inyiR/hx7zdKYspCBQ1Wi9JVKYMKzZ88cmRkq5sPL7fH/qh6+HP766j48446uySFmGTtndqEEaJ45MLtYRyyVJYNQKVX5Wfv/WZTCLJ2fjz/HGDeHSNm5XmjJdWQWHaWvVGGJ/397567cuJIE0eaY46+9//9Za68/xkyIXKvi1h5mVoOkpCEi8jiiCLDxapDIevIcqPvAtW8sppSvOo46Lv6dyplS+UzBcrsgQHXdHuF2u63r9Xpnyenb3ZXsVOVXXXCsC5ad0jiPBlT1Za6ssQpIdSmtvAf7OeZ3Fe/p6RhrzlNRcz6qee6sNFOwnGtMMp2T6XfhbxKlHUIIIZyEt1baRS8SUYqMBSuOpHwVj7SU5FMWfS9KidIvuStj2F8zpYdP3KrAwFQAoa+r0hpqWW3PNRDpOF+ce1rv4xPGKCif9mf52ai0VeMWbodP764kJFVNf805w+IjPZWN+8R9Vfs+lTjdHV/h1ItSy1TfTDnk8U1FL+hTV/PO+Y8nvzLvvd05+fj4uCsdzOUdnq8pXdBZq1zjHbUOx1SxD7vtKfXqLEgura6fB847focUqliRK7nr4nI67txPTXtcqp6aF1HaIYQQQvgUTqG0u0+7fCEVCVxPx1Q66gm0cKp8KlZPHwwVqfIX7xSiagfn/Hdc3tfb+bCp8Lm/fXz35K2KhjiLhWoUoPz4a90r7K606U97JopTXRcXMa2ukytpyet+ZN/Y3pXtMPs4vM6T0ua1ctkDqtCIUy3OiqKOh+rI+dj7dng+lUpyn6HVZor25hiK2+22fv/+fRcLoL4HnE9bbZfXktYaqj0Vp8J72GU8rHVvnXNFSDq7TJMp7oef5Xfj9F3FSHDOpSPR3K7wizonvOePXGtu912I0g4hhBBOwimUdn/SYXvDimAthab8lDsVe0SRUukc8ZW5kpouF7d/xqnYI/myR5a7dfnkq5T21HpxLa20ndJhjEJX4vR3PxMd3Mej0qk5U/60Qu33LhKbamot77P8+fPn/43Ro8edFYD+4+lauuh4FQ/B4+K6SmnznijLwaRWCqpkp1inXHIqn1fzaW+32/rz5894L+8i2NU+uLxvqrtJxVK1TsdI9cjt72pBTGModt87k9LmdwetNbRk9v3mcXB+9Hue77lzoqL+1XjvQJR2CCGEcBJOobQ7VGb0c9VTkWoHSFzVp/7EvWu4PkXGuu0pxbCrJuUiwte696+6SFx1XMRFbU7NDHY5nmvdK/dSuVTYqj3hZJl4BNfmsPZNVbJz0eP1v4tx6OPU+SlFTzXTz3m9V/vqMg86zq/u8nNVNC+34yLf+z4wapzHrZQdr6HzZU/XgDDL4FEqT5v091jN8Eg1xT6+WrZr4dvH572t6lG4+4/vTzEULu98io5380t9nzoLzpHsHzevjkSP8zOuUYra3q4a5ncTpR1CCCGchPxohxBCCCfhdOZxBgfU3ykFq6Ap3ZlmJjOyK52nzFRuuyrA4dG0ph5wR/MhTZqqmYXDnUcV4OdcBpM5qT5T60yBaOwx/mrqRW2DqVEM7urX35kYp8DHgm4JNrNRvbGn3t4OZ6rl+yw325c5l4cqdsF5xfQjmtxVYJ8zaaoSrLtUvVcD0bgdFWBF14lrfDMVI2JA7JG0QQaiueVq/92+Ta4Al1Y1HR+Pc2qE4pa51DPlWnHuP+VGceWYXSCh2s6rbrnPJko7hBBCOAmnU9oFFRoDnVRhD/eUSDWpwv8LlhE8UnbRFa1X6UgMeCLq+ErxcF/4d2oyURx9El7LqyaOtdZ9YFUdO4uq9JKernnKq9S4bNKigq5YnMEF+ylLiQsemwKQqL6OpJsoC4HanlLa7vpSNfVgM86dncVFtaAteHyqIBE/swuaeobr9TqmztXYtFpN26bynYJJufxoUKGC82FKmXNKepcm218764yaH86i45qBKKXtCh0daa3r7pG+nrNYvQtR2iGEEMJJOK3SpjKrAg/qCdH5WKmEmJKzli+3qFRE4XwvrpE9t6n+J+pp0vmlClXSs6DvngpMqQ5aBTiGOo/0U/Nvbw7z1UUNaps1h6rISU8NK+sLfZi0mlSxnyk1jueU/vG17lNSqI6PFMbYzaV+nZR1oe+zshbQz+p8syoFizENzh+prFAcg1abV/jx48eoKp2afKaZjfOVqnv6kTabVK11jqdCIrv0MO7PhCu69EhBKPfd2V9zzrhSpQrGk3Dsvk+fFSvx2URphxBCCCfhtEq7nq5LmfGpqysDF5ntmjIonx+LKkzKx6lIKuzPeoKj4nDRvMpntvPbTEUcqJomX9Duqbj+Vw1Ddm0VX6W2qbZHCwHnyuSfLuXOZjNO1a7llecUAez8krymqn0oC8u4Yi4qzkM16nD7yGU8n1PUvCvL+VnRvZfLZbSQqG27IiFHCnHQQqWK+tQ4tP5NsSbOH00/vIqUVu2CFVN0vCu2pO5f9z3K76WpzeYzrXu5vamgUpHo8RBCCCE8xWmVdsEo5HpC7fmz7mnORTIqqESmdfmUSDX51T4SF9GqIjFdGUuu1993+ayT8qn3WEqUea8qZ7n4KsVd+1B+aRX1ToXjYhqUj5ExE5PvnwrENdhQ8RC77Aj6Y/u+Ta1Yd9CSw/nRYRaBywdWPm2OT8vIs2VMawzno+/7t2t40ee3szi4Y1Zqj3UoXPlPNe4juc9Ta9S+HRVlvUNZLHYKW/mnnRXqmTKj0z3j5ua7EKUdQgghnITTK236QlXDECobKt7JB8NIWT75lnqacgOL73pie8TXxyde+miZn6o+U9DH3c8jm35w3UklfZdPiaq6v3YR4C5yfq1/4i1qjPJts9lI/yy34/LDlSXJqWQX+ayOj589UvGP84EKu19bF6XMMabcbhdN/gqXy+VQNTp3bhntv5ZvB1lMMSeMnnbfO6oZB5ksEbRi7CLxJ6sQ11HncWcFnHLKqaw/I8r7SKR58rRDCCGE8BT50Q4hhBBOwunN4640aBVb6RwpzUcm06Iaq++TM6V9tZnclV49gjPHqZSfotahCbybOF0QHk12U2DId5nJe4EXpuVUIRZX5lOZK2s8rqMaKrCkLgOP1LnYzbOpv7GbK7xXpoAgdz9NgU9ch/NOzbddX+1X+Pj4sD3T+366fvNFPxfO1bQzk/ft8a8LTFPv8dqqxkFM9eL/LmBVsQsqU+s4c/g0d4pXzOJunvP1OxKlHUIIIZyE0yttPoGks0t3AAAB2klEQVQeebqfyiz25Z16+qpgoikIgqUHmYLxXakELq2iQyVFxTMVjdgFoqjCCG7fOOZ0PF+Fmg+VBlbK1zVaqeNQjTXqXP769WscY637ADe3XWV1cKUheZ0mpc37iAFx/bUL3KKK6ufVzX2XEtiXcY5O8/oRbrfbul6vdwFOU4tel+qnArVcIRHXfKaPz3KpNZY6T5NFZXq/L3NjqftylyY6lSJ1xYOmz+62/8g8mKx3r1gqv4Mo7RBCCOEknF5pF1ORgJ3f7gi7MoLKT+T8Q8VXNcQ44vvh+XJPy7WP6kmbJQC53ckf5d7viuYrfJePwkYmVL6FOgdUNjWGSg9yn3FtPXvKFz/rrBWq6IZTWFMBCxeXwJKvU+ohlSrXVXN1p85e4Xq93qnZvg/0B7vGJ6oELnExB6q4ivPjT1YTXh93jdW6bl+PWMBcnIKyILh1ppKkk7/7VdR5OBrH8N1EaYcQQggn4fJO9vrL5fLftdZ//vZ+hLfn37fb7V/9jcydcJDMnfAsd3Pnb/BWP9ohhBBC8MQ8HkIIIZyE/GiHEEIIJyE/2iGEEMJJyI92CCGEcBLyox1CCCGchPxohxBCCCchP9ohhBDCSciPdgghhHAS8qMdQgghnIT/Acb5l6lzmi67AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1832,7 +819,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZedZ3vl895ZKUpVK1lSSbBnkgU4TCIGsOExJGNJgaAeS0BlMAg4OSQNtyEAbEwwBGwzEOEy9MIQhcYNj0oEEHCBhMHhhJgeCAQfCIIMt2bIGa7RkTaWqurv/2Oe5572/8377nDuU6hx4n7Vqnbr77P3tb9r7vM87tmEYVCgUCoVCYf2xdbE7UCgUCoVCYTXUj3ahUCgUChuC+tEuFAqFQmFDUD/ahUKhUChsCOpHu1AoFAqFDUH9aBcKhUKhsCFY+qPdWntxa21orb2/tXY1vjs2++6VF6yHG4rW2ie11l7ZWtvC8WfN5uzFF6lrhSPA7Ln4/It072H2b+H+rbU3tNZuw7HbZuf/+057Pz/7/pc79+G/N6zQx63W2ttba1+WfPdxrbX/0Fp7b2vtydbaw621X2+tvaq19vSlE3AB0Vp7S2vtLUfY3re31n7yqNqbtXnbxNrs/jvC+93dWvvuI2rrutl78c8m3/1qa+2nj+I+h0Vr7R+01t7aWruvtXamtXZra+17Wms3rXj9s1prb5zt7Ydaaz+86rXLcGwf5z5N0j+X9BVHceM/AfgkSa+Q9PWSdsLxuyR9nKR3XoQ+FY4OL9b4/LzuIvbhFa21NwzD8OQK535A0t9orZ0ahuEDPthau1nSJ86+z/D9kr4Hx+5d4X6fK+npkr4rHmytvVTSv5L085L+haR3SbpC0sdL+gJJz5P0v6/Q/oXCS464vW+S9K7W2icPw/DzR9TmZ0m6NPz9XZK2JX3hEbVPvEDSg0fU1nUa34t/JOm38d0/lHT+iO5zWFwr6U0a1+/9kj5M0ldLen5r7cOHYXisd2Fr7UqN+/shjc/BMUnfIOnNrbWPGobhicN0bD8/2m+S9I9ba982DMP7DnPTP8kYhuGMpF+92P0obDzeJOn5Gl/U37HC+T8r6VMl/U2NP8TGiyTdJul2jS9+4o5hGA6yX79M0uvjy6219skaf7D/n2EYvhTn/2Rr7V9K+tsHuNeRYRiG3zvi9u5qrf2EpJdpfJEfRZu/Ff9urT0s6diq69Rau3T2Hlr1fr+5zy4eCMMw/O5TcZ9VMAzDN+PQL7TW7pT0nyV9sqT/OnH5/yXpJkmfOAzDeySptfZ7kn5P0ucLguxBOjf5TyOjGCT9ZUmPSvqO8N2x2XevxDUfLennJD0yu+bNkj4a53y/pPdK+nOSfknSY5L+UNIXLevTfq+X9GxJP6iRIZyR9HZJn5Wc93cl/YGkJyT9jqS/Juktkt4SzrlM0rdJ+p+z8d0t6SckfWg455Wzednzb/bds2Z/v3j298skPSnp2qQ/vyfpx8LfJzRKfrfOrrlV0ldJ2lphvk5KerVGhn9m1u8fkXTDAdfteZLeKulxSbdI+quz7/9vjT8CD0v6MUmncf2gUer8qlk7j0v6RUkfhfOapC+dtf2kRg3FayVdmbT39ZL+yWw+PiDpFyR9eDIH/4dGgekxjdLzf5T0wTjnNklvkPTZkn5/Ng9vk/SXwjlvSdb3LbPvbpT0A5LunM3zXZL+i6TrV9nXK+59j/mNs3U8Eb57g6TbOmN6naQ347tbJH3tbEy/nN3nAP37mNm1fw7Hf1rSPZKO76OtpXteo1Zr0Pi8vlbSfbN/b5B0Fdr7p7N1fVwje3ybwrtAi8+72/4bGjUOD8z2zrdrFHL+gqRfnu2T35X0aZ19d17SBx3VHkD7C2sXvnu1pHOS/ozG5/kRST80++4FszW5e9b/39H4HG2hjbslfXf4+4tmc/LnJf2wxmfuDknfMrW2kj40eW4GSZ89+/5XJf10OP/TZ9+/QNK/na3XA5Jeo9G0+/GS/pvG5/l3JP2V5J6fMpufR2b//qukP33Aef5Ls/4srDHO+xXhOZsd/zVJPxP+vknj79JdGt8Vd0r6cUlXT7a/QkdfPOvoh2h8eM5Iunn23cKPtqQ/O3sgfkPS39Io2f/67NhHhvO+X+OL/fc1soVPlfTvZ+198gr9Wul6SR+k8UXxPzWqKj5N48trR9JfC+d96uzYf55tks/TqLq7U3sf4qdJ+jcaX+qfqFFV9bOzDXXj7Jxnzs4ZJP1FSR8r6WNn3z1Le3+0b9L4QL8E4/vzs/P+ZpjrX5J0v6R/Jul/0/jyekLStyyZq+Maf2Af1aji+dTZ2nyfZsLGAdbNUuOnz/r1hMaH9ick/dXZdw9L+mH0ZdDI6n5F44vwhRp/OO6XdE047xtn5752tmZfqvGh+yXtfWEPGn+UfkbjS/tvaXyx/5FG9sEXzetm6/tCjXvnVkmnwnm3SXr3bOx/S9JnSPotjS/qq2bnfJik35T0P7y2kj5s9t3PSnqHpM+R9AkameN3S3rWQV4UnfX0j/aHz/bOV4Tvpn60P2l2/jNnxz921tZz1f/R/gaNe2/33wr9e8Vs7eM6HZvtpR/cxzhX2vOa/7DeqlHr8HxJ/3h2vx8I532Oxh+wr9HIll6g0dz3D8M5b1H+o32bpG/V+Oy8anbsO2Z76PM17tFf0viMXYdxnJ6d//lHtQfQ/sLahe9ePVvzd2o0b36ypE+Yffcls3n9dEl/ZTYXj2mRhPV+tG+ZzeWnaBT8Bkkvn+jnZRqfu2G2R/zsXDv7vvejfavG355PnX0OGoWm39f4nv702bUPKQhpmgtL/0nju+GzJP13jeTt6SvO7fas3x+lUUB4u6RLllzzfo3aJB5/naTbw9+/pPE9+nc1viv+jsZ38mTfVun0izX/0b5m1qHXhYeKP9r/SeEFNzt2pUYJ6UfDse/X4g/spRof0O9doV8rXa9RQrtXYLIaX65vD3+/VeMPewvH/MP5lol+bGtkAx+Q9KXh+Ctn1x7D+c9S+NEOfflvOO/bNQoCl87+ftHsuk/AeV+lkYF0mZzGl8qgIKQk5+x33T4hHPuzmj/E2+H4t0o6i2ODRhZ0EnNyVtKrZn9fo1E4/H708XM5jtnff6jwIGn8sR0kffzs7ys0PtCvQ3vPns3dPwvHbpvN+9Xh2PNm7f29cOwtSl6UGgWLf7Js/x7mnwIDlvTvZmv0tNnfUz/abfb/r5gd/y5Jv9Ibj3JWNEj6kCX9+ym3G47dMLv2Xybnp0LBqnte8x/WH8B5r9X4A9/C37+5pO9vUf6jzb3zm7PjUQPj5+DzknZv1wrvtQPuh3Qvzr579axPX7ikjTab/1dJeh++6/1ovxzn/Zyk315yH7Ptz02+6/1ofxfO+73Z8eeFYx89O/bC2d9bszn/SVzr37BXrzi3j4R9/1Yt0ZjN7rvnNzF8982SHg3z/aSkL9jveu8r5GsYhgc0sqm/31r7XzunfYKk/zIMw/vDdQ9rpP2fiHMfG4JzxjDaWd4h6YN9bOahvvtvv9drXPiflPQQ2vkZSR/ZWruytbat8cX8I8NsRmft/YZGKW8PWmt/p7X2a62192uU3B/V+MPQm5NleL2kj22tfYjHrFH6+uFhbnv6dI0M8K0Yx5skXaJRYu3h+ZLuHobhxyfO2c+6PToMwy+Gv/9g9vlzwzCcx/FjGh2SIn5yGIZHw31u0/jAftzs0Mdq1A7QS/k/aJxv9udnh2E4G/7+ndmn98HHaRRAfhBzd/usj5+A9v7bMAzR8YbtTeHXJb2stfZPW2sf0Vpryy5orW1jn+/nuXyFxr33smUnzvb2GyS9qLV2XCPref2Sy16nUQUc/92+5JpnaDVnNbXWbtQosO3+C8/5fvc87Yy/o1GQv2H2969L+qjW2ne01j6ltXZilT7O8FP4+w80Pge/jGPSqN0j7tU4L13wXbfK3tkH3pjc75mttX/bWnuP5vP/LyRd31q7aoU2s/le5RnZL7K5f2AYhrfhmDSf+w/XqPF8A/bOwxr3AZ/5Hv6yRm3pF2h8j72ptXbFAcawB7Nn8TckfWVr7Utaax++6rUHidP+No2S/dd1vr9Go46euFvS1TiWeSSe0aiOUGvtWVp8oJ+16vUzXC/p77MdjQ4x0ugleJ3Gl8A9SXt7nO5aa58p6Yc0qmb+nkb73V/Q+FBetnD1avhRjT/8L5r9/fxZv+ML9XpJNyfj+O9hHD1cq9HmNIX9rNv74x/D3HuZ6+HjnJfMkfF9Gk0F7ovYn2EYzmmmRse1D+BvCzq+7/Wzz5/T4vx9hBbnbk97QXBaZX1fqFHQ+XKN3rF3tNa+ZskP8ZvRp69Z4T7u27s0apP+aWvt9AqXvF6jev8VGv0cfmjJ+XcNw/A2/FvmxHSZ5mtg3K+R9fKlfp/mwsD34bv97vll++D1Gp2EPkaj0P5Aa+1H8U7pIdvbvecg2yePS7p8yT04TgqnB8XOMAx73m2zH7D/qrlq+5M0roHfi6vs9Wy+D/oOnEI298veNX7mf1CL8/opmn5f7mIYht8ahuGtwzB8n0ZzykdK+kcT5+9oFAz4zpTG91acs8/S6FPwVZL+5ywE8uXLhLX9eI+7U4/MvDy/RfMFjnhAozMOcaP2HzZwp8aNxGP7wf0abQffNHGPcxoX8/rk+xskvSf8/dmS/mgYhhf7QGvtEi3+kKyMYRgeba29UaPN7RUa1cDvGobhV8Jp92tk/X+n08xtE7e4T6MjyhSOct2W4YbOMQsW3tg3anTukbT7orlWiy+LZbh/9vni2F5AL9xp35i9HL9Y0hfPtFGfp/GleK+kf9257AslnQp/73ePv2p2n69coX/vaK39mkb75Y9GzcoR4n7hpTUMw7nW2i9K+tTW2nH/wM0EsbdJUmvtM5J2DrrnFzBjN98j6XvamHPi+RrfYz+k8Yf8QuIaLYY4EXzX3XJE9x6SY39aozr/bw/D8J98sLV2Ub33jxB+5l+q0dGV2HfY1TAMv99ae1SjqXgKv6uR6RMfplG17/bu1mhq+KLW2odJ+gcafXnulvT/9hrf94/2DN+l0Uv465PvfkHSC2I8aGvtlKTP1Gh7WRmzB/ttS0+cxk9rVI/+7jAMj/dOaq29TdLfbK290iry1tqf12j3jD/aJzT+yEe8SIvhMpbyL9dqPwqvl/S5rbVP0+igRYHopzU6hz0yDMMf8OIleJOkz26tfeYwDD/ROefI1m0FvKC1dtIq8hnT+ViN9jdpVJU/qVFAenO47oUa9+x++/NWjWvwIcMw/MCBe70XZ7T3h3YBwzDcolH99UWaEJpm5x0YwzDc2Vr7To3OV6uE/bxGo/bptYe57wQyk4Pv+7MaBWiGfGU4zJ6fxMz88UOttY/RhYtvljSaPzRqGP7jkj4d9l23H9g0sGtWaq1dqtEsdyER34sXEr+jUfj908MwfOtRNDj7PTip5Tk2flzS17XWPmgYhttn1/4pjULZP8kuGMZQw5e11l6iJQTrQD/awzCcaa19naTvTb5+lUaP2ze31uzp9881bpKeSv1C4ms0qtN+sbX2Wo3S+dUaJ+Y5wzA4q9QrNP64vbG19r0aVeav1Cj1xOQoP60xScW3aQzleZ7GlyUZiyWql7bWfkrS+SUP5Zs1brJ/q3FD/zt8/4MaJbE3t9a+RaPn8nGNnr9/TdLfGPoB/2+Q9H9K+v9mWpJf0/iD82mSvn32Qnwq1+1xjbahf6XR5vi1GlVK3yaNvhOzMb58Jtn+pEZm8PUaw2umYiQXMAzDw621l0n6zpkK+ac0OqbdpFEF+ZZhGNJsYRP4PUkvaa29UOND/AGNe+XnNK7VH2h8If51jfvtTftsf794tUa72ydqtAN3MQzDj2o0yVwo/KKkf9Bau3YYBjMeDcPw5tbaV0h6dRszYr1eI5O+TNKf0iikPao5MzzMnl/A7Ln+gEYv4Htm93yRLvza/BmNz1HG+C4Wflvj++Y1wXTzUs3VzBcK79X4rH9Oa+0Wjd7q74QPyaExDMP51tqXSPqPM9+FH9HIvm/UaKN+xzAMXaF1po36D5qHnH6kxtwDtymw4NbaF2gksX9xGIZfmx3+1xrNMD/eWvsajYTuGzW+J143u+4GjSGx/352j/MaHWgv1yjYdnFQpq1Zx18m6X+JB4dh+O3W2idpDBX5AY1ecr+qMdD8fxzifgfCMAzvaa09T+MP8DdqDL+4X6On+A+E8362tWb19Bs1hgy9VOOP/kOhye/T6Ozw+Rol9F/XyEbp6PFfNC7mS2ZttNm/Xj932phm8ss0OkL9Eb4/O2PhX6Hx5fxsjS+4d2r8Ees+bLNrnz8b2xfMPu/XGHb1wOycp3LdXj/r+2s1Cke/rjFWM6q9v0qjSvmLNM7h/bPrXj6zG+0LwzB8T2vtdo179u9p3Pt3aDSdvP0AY/gmjY6H/0ajI9gvaBSCflOjgHSzRmHvFkmfMwzDjx3gHitjGIb7W2vfqnGfX2z8mEb142coPGOSNAzDa1prv6IxXtrP4xMa5+mHNHopn5+de+A938GvaBQCXqQxdPNOjQLtK/Y/xH3hMzQKdG+5wPdZGcMwPN5a++saw9Z+ULOom9nnd17A+55trf0jjSThzRqfw7+r8QfyqO/1xjYm9PlKzcnQXRqFtmWpeP+7Rtu1fTDeozFy5pthUtrS+KO8+24fhuGh2bv02zUPQ36TxigVa3sf0agN+KLZPc5r9JN64TAMk6lcHQpRSNBae6bGH+9vGIbhVRe7P38c0MacyN8wDMO/uNh9KVw4tNa+X2M8+Kdc7L5cbLQxG9aPDMPw1Re7L4XNx2GY9h8rtNYu1xhX/HMaHbeeo9ED+DGNbKpQKKyOr5X0+6215z3Fttq1wozN3qDR4a1QODTqR3uO8xrtHa/V6KH8qEbV6d8ehiELhSoUCh0Mw3BrGyvZZREZf5JwucZEIhfCS7/wJxClHi8UCoVCYUNwkOQqhUKhUCgULgLqR7tQKBQKhQ1B/WgXCoVCobAhWCtHtBMnTgxXXXWVtrfH5GJOwXrs2LybtsHv7OShuj5+/vy8boXb2dra2vPJFK9Zylcf69n+fTx+32uXbcVr2L7/5rUHwbIxTPU562sPPCdbI7Z3EJ+Ku+66675hGPbk2T558uRwzTXXLOwZr3X8f28fTM31sn5n4+iNbWotl+2zVdo4CuxnXbhXjannqXc8eza5F3vPb9xv586NSQvPnh0Tfvl9cOutty7snSuvvHK4/vq5v1y2xsveGew/r18FU++Q3v32M8cH6ctBntNV3jOHef6PEt4f2buY74l3vvOdC3vnYmCtfrSvvvpqffEXf7GuuGIsouLJuu6663bP8SQ//vjejKTeDHxYIy67bMwlf/z4cUl7hYEICw38vzRfULfvF8XUi97fXXLJJXuudV+zdvi3++E5yR5wX8MHIb5Ien3cz/fut+/rF6I/3Y/sJepjTz455sXI1mkZXvnKVy5k/Lr22mv10pe+VJdfPmZHPHFizNLotZakq64aCxddeeWVkqRLL71U0nxdKCxK87lzfz0OfhpxvjgffNF6/2XCDddySohzH9mOj7uP2Xn+v/vCPmfrz/XuCcWZ4OS5zn7kpPkz6nXMxuM19afbjON69NGxiNytt45F+h57bEyc9oIXvGBh75w+fVrf9E3ftDtPHnNcW/eH8+Exsk/x3GXCRrYuvfXmuyu+wzj/3M+9+8djfH+6T/w7okegMmHOxyKpypC9V3vkI3sn8n5+fvk+vffesRid94skPfLII5K0+zvk/fV5n/d5k5kGnyqUerxQKBQKhQ3BWjHt1pq2trZ2pSFLOpHtkuXFa6W55BmvsbTl78hMKe1nzJTSHFlSJiXzb/bdElzWl17fprBMPR3/pgTPcy0JZ2osSslkZ2Rg8f9kAZk54yAYZgXiOR5L2BG9PvD7CJ/TU7tm/adWpqctyRhC75yMJfWYL9eFY4ngPHE88RqyFsP7mcwye37j3pfmDNJtxv5wnXpM1ZqT2H+/Q5aZJM6cOTO5DzI1aryPEdtwv30NmW9Pq5Yd45waU+PiHsreKey/14d7J9OIURvDZzxj1b3xcLx+v2YaRb7HOb64Blw3/+395/vH8bHfF1uFTxTTLhQKhUJhQ7BWTFsapVFLzLZL0q6cgbaKKKn37MWUPDPbiKU62i6JKL2SUfcktcx23rtmFSbaY45G1g8ySM4Nv4996Um6GSsgy9yPBmEVDMOgs2fPLrDOzG/B9/Y5/DvC4z5zZqwo+MQTT+w5l9J4HNcyB0RL95l9Oo4ru1/cO+wDmXbv73hNz4aeaUJ6+4tr7Gsiq/Y5Zta0U2cMq+d8Sg1GvI9t0P5c9vzu7OwsjD2O2W3z2V7FebGnGehpn+KxZc/JlIanh/g9130V/xSC71Hav7Nngs+nx04WPTUnvT2b7dWeJil7v9G34bBawKNGMe1CoVAoFDYE9aNdKBQKhcKGYO3U4+fPn99Vi2eq4l4YDdUcUyqSnrotU3FR5cdzMlUUVTu9kKxM9bPM2SZTOfVUV725if/3PFn9u4rKmH3k3GTzSwc+juuwKqidnR099thju3Pqz5MnTy7ci+EtDI2KTik+xpCvnmpuyomxN09xrXsOelTZZeAcr2JiWWZKyUK/emalXujNlOOb1c6Z2t/geHrPb3bN1VdfLWlvSA/RWtOll166EIoZx0GVL53M+BzFsVH1S3U43zH8f4YsPJH7ius95VTqa+m41XvfZuC8ZWp//9+hff60SZRq8/i+4HPbM+nFPrrdnkNatr/dB5vCHCK6LiimXSgUCoXChmCtmPbW1pZOnjy5IGVGidH/7yXlyJi2pbue88FU9p8emyBrilK/v7OkHUNR4veR+ZKd9xIITIWYcVxkjpYcpXlymsNkJuol1TCihE0p+UKFUXiMp06d2nPfCDIqamKciCMe8zlmUj2mnWXv49pOZfxjOCDXdCq5So/hTjmVkY31tBCZVoihjHwms9DG3tjtMOZzzcCkuUMqE7Nw3eJz5j762im2ZCdGsrHs+ewlrPE8xuQqdJDzmMgiOa7Ybi9ca5WsfTw+pZnoOZ5xD2eOnWT4HrfXI17DY1mI7qrj5Hsu03b4mO/LZCt8D8Z7fuADH0j7drFRTLtQKBQKhQ3BWjHt1pq2t7e79mqpn2bPkllkk7HdeG0vNGlKEl2GLKzBErSlOqY8zKS7ZcgC/snGLGmaMWZzchTohYkYGXOgVH6QNKZTIIuOUrePWYL2vHl+fG4MD7EtlAyb+y6zT/dsvdwfGRPtMY9VcqpzHfisZOlzs3Cw2I/4bHi+ekx+ipW5LxyPGbH/dlIUaW6XNluOLDz2PQvrcl+cwjbDzs6OnnjiiZXst73ETEypKs21B2Z5PodrTNt3/P9UCJSU293JJnthnbH/DMXqPa9xfL10qR5vlhzL12c269hm9jyxjz2NWZb/vRfytcr75+GHH156zlOJYtqFQqFQKGwI1oppS6NURqk72hjJjjLpkVjGpA/DsKfaoBciJetog2PSCUqgPTtOvLelSSYAuVjIklMYq2oWDgoz4yh1k6EZnjcXCohzy3S1Dz300IH7lBW2YL/IpDlP2f7oFYroRVTEdaHmiqlIs3XyPLnf/runaYnFP+KzHPG0pz1tz7mxLT8nHo/PpSYrsikmrpl6xodh0JNPPrnwbGU2cmrnyLDjuiyzadNrPGPa9IdhUhqOI/afTDRbf7Jxt99Lo5wxbfbJ72++x+O5Ux7m8ftMG+k+U7OUpe31/6nNYOKfzOufzH5dUEy7UCgUCoUNwdoxbWkuSRvR7kB72SpS0FEw6aMAJcJoa/a4LJ2SFVri9DXRS9WS9FQs6sVAXBv27ajTmBK0nUpzj3KmpHz/+98vaT7nUbqnN/9hmHbPfrbKutHGGdmL+00WQbud7xPtu95PB/F7iOwkg+esx66lRV8Uz+/dd9+9e47LJ3rdbr75Zkl95irN19px+vfdd99kP8+dO5d6EhO+lxnw1Lr0/BJ6tuzIYulZ3msjs/myL1MpO1kuuFc8yeON2gzGWrstz3lmq+/luejlLsjeIV4naliy3wL3we9L7zNGK0S7NZ+f+K5dBxTTLhQKhUJhQ7BWTNu2JUpbUaJflvVnU8E4X0rwngMfN5OQ5jbFTcKF0n5YcqaHszRnBJbMafc2A41syRK5Pc7NBC3tHwUiuzFLYWy9+3HNNddIkh588MHda+hVTc/5Bx54QNL82YmarEzrE8F9GPt2FGt4+vRpSXMmx8iH2Dc/I+9+97slzceR+XB4TnzOsvfEzs7O7r1pR5bmY/Y6ULuRxUIztp77jXM7VdCH9tupcp5sx/c1U43svVcIh7km+B6K39HeT43SVLlSguw57ksyaj+T3I9Tc0KNZpad0s+2r+35wlwsFNMuFAqFQmFDUD/ahUKhUChsCNZKPS6N6gumo4tOJFbxMFj+jwt6oRAME8uc86wStNroQqUKJaxWdl+tXooqZKqhemr/w5o73G6WutUOZ6zT7uQddjjJEqS4n0x20avtOwWGc914442737lv3uc+x85Ynh/3WVpM3sNEHF4HXxPnxO15De2Q43G4P1mI4WHgvj3jGc/Y0+Y999yzZyyxLz3HKu/7973vfbvXXHfddZKk66+/XtK04+MwDDp//vxCopkYqsa+9ApqZMVmeklnGKoXr/V+4z7j+yG+B/ks8X6Zytnn9pJV+b1jc0WcR4/9/vvvlzRPpkKzQObIxSRR/mSCoyxhjr+jc2FWeIVFonxfPxPuW1SBuw8+J0sSdDFRTLtQKBQKhQ3BWokQrTUdP358gU1HCbTHsCkZmiFIiyn4LG3ZgStzeDsMGEbRQ3R+oMTOcAmP239HadlSovtv5xvfnyEZ0pyNG70kFEz6Ii1Krddee+2ec/y92WHWf4PJHA4btsb9EZ2uPGYzTjvzsTxghMfic8y+3vWud0la1IRElt4raGAJ3m0997nP3b3G+9jncA29Z80kpbmjGR1neF/30WxWmj8nTNVoh7csIUzPCc/j4bzGfedrPc6nP/3pkuZ712vj+ZXme4KskNqP+Mx7TjwHy8J2dnZ2FphvfB/4ejr5MU1mlozZev6uAAAgAElEQVSGWjPPrZFpZ5jUp5eEJDrskVkzqYv3d3Rc9TE6+7GQi+c8OsCSrTK0LysOxJTSvbCtzNmRWi06WFI7FNtjml7PQbYvqNVYN61uMe1CoVAoFDYEa8e0t7e3dyW2LJ0gw5ss+Vlism0uSlsOoyGrc/iOpVdLz5kdhXZ2StbRxkg2YabAwgbuVzyHzI6pAikBx2Meh21LvaIW0twORSbF8BCWtov3I9tg2cjYR4aHMPwlK4RBbcAUtre3dcUVVyxI+1FSt03b9/rgD/5gSfM9lZXztMTvOfW+YmpaH482eZ/DdJLuo/thu6u0yJI9Bx/0QR8kaa69iIzH82zmQZZmm7n7GstUer59X5/L/RfZhveOWbKfOWs13L77Fdmh193j8rz603MWE8D0imfQVpylg/XezOzThm3atHvHvcNiH9SEZBoiMnfalsnap+zuXCf3Iyb76aVN5bsjvt/INJnMxaGFPh5DDfkOZNhgxlDdJ68//W+oxcsSHZFxk2nHeWTaa4O/I3HvUJO0bmHFxbQLhUKhUNgQrBXTlkapqZe6z99Lc6Zhqd7HLbFnxTiYSN+MgXaieH9KcbTTZQH9TEjg+zEZQLQt9qRhpg9kso3YHkv+eS5oJ43HLOWTYUeJOvYjzoHv63bNNjObvsfFRAVkoZkNelVsbW0t2OQjk6CfgFmKpW7PyU033bR7DctoMq0j7eCRGdCm7L/J1t7znvfsXmPW7ft5PXxfr2n0lHYf/EzQv8NzfMcdd0jay7Q9Pmt9yM4ym5/XyL4M/nQb/mSqT2m+R9wH982fnqtos+cce1/Qwzrz3H7nO98paa4V6CGuG73xpcWoFd/L88PCG9Ji6VUybhYFyUpKkuXxeFwf2vrpY+I+Zp7SZKT0oM/s1iwFyqQk/ozrTz8Pet27P1MpUKlZyTSJBouoMG2vP63Jin1aVxTTLhQKhUJhQ7BWTHtra0vHjx9f8ByM0pal0l7BEDOQaC+2JMYCEZSoM29v349J8A2yJmkxXpKekVMpMOkha1Baj23EscZx0jcgeghTKjUDotSaFVFwu7SZ0wM1Axm323CbU7bHKWxvb+vUqVMLXtBRaqaHvtfFLMI24chEzAjpeW1p3/32PEXtAO1oLDZBj3BpvneokaBNNWp2WDhjiq1Ie/eBWbLngrZaj89zI839N2ij7RVTyZ5fs3X6AsSIA15PrYCRMS3v+bvuumvPfTMMw6CzZ88ueGhnvi2MQaafQFaMw58sUsFIl7j3maqT6V3JaqXFdyK1A95DcS68zrRPMy0rx5t9xz1Kj22p7+fBveq2Mt8dluh0P7wv4hr4Pr2St/RWz86tgiGFQqFQKBQOhLVj2qdOndq1p1q6jGyaNjdmosqkfp9je6A9U+ndTUYizSVdt2vvWkuGWXxmL1tSFsNp0B7NDGiWIt32e9/73t1ro6etNJfGyRjiPJrduV3PjSV42wBdnCHCUqn7ZpbhNj1ncbxmE73YdfZ5v7AH8BSorWAGNEvY0V7sNr3vyJ5tj848V81obWs2WyUjietHT1yWEzWcSUyaz619NLwnyei8TpFp+xnzPvDYp5g9wbh8/+19kGmhXCjEnzfccIOkuW3x9ttv373G/TXr6mVIi3HVnhOP49Zbb53s//nz5xfGHL2fGXPM55UahHi9NXt+r/lZ83r4++x5sWbHNn7OQVxLemuzz75vlveCnuscn9cyjo9e3O6b14Mx2LFPft7df7Jofx+fRT8nzLtBDarHKS36Zrgvfq5oW+f8sL11QDHtQqFQKBQ2BGvFtHd2dvT444/vSuZmDtHblXYhxmzSk1pazC/LWFSzVkt30Tbmdp3F6DnPec6e45bu/CnNpWKyftsP6U3M/8dr6VnqPsc4XbMk2otoN4r2VsZf0hPT51LiluZrYKn72c9+tqQ5K7CXcrwfveIZc+lP2qRXxdmzZ3X33XcvHM/sUbTFx5h+aZHVStptm8zA2gVL49E+7T1BG5/3lzU8kb3TM9v74JnPfKak+fz5e2m+lowZ5j7IxkV7sPcSbeuRifj/3oOMo6bGIu5Vt+s95Dm68847JUkf8REfIWnOvGP79Bb3fbzPoq2WNsvMPh3P3d7e3t0rXsu4F+lVTduv+5Zdw7h5vw/8PTPkSdLNN9+8pz33if4Ece963Tkf/pv28HhPj4uaLvc5Y6Tuv+fN7XLuowbM/faeoE2Z44raE4+H9/Fx76WopWE0Bj3QremZKv98lGV4jwLFtAuFQqFQ2BDUj3ahUCgUChuCtVKPnz9/Xg899NCC41SW4J4hCEwkEOHvrFqyyo9hTm47qpyYrIVhBmxLmquprI6ik4rHFxOY0MGF46B6akotRnUciydIi450dGLyNUzbKc2doOhow/SsWflQJlFgQYejVkVFFb3Xmf3zOnmM0XGG4W1eS//tPUVzgzRfbzpO+T4+N4YwcV9xv2VpRX1vqtsZasgwstie18Nry8Q5US3KOfAaMn2uz4uOdlb32kTlvt5yyy2SlJo4vHeWOTNmaUDd/2zs8bqTJ08uvFPiNSwYwsIXHkcWguV2bNLwuV4v76GoWrdTn+fOJjd/WgUcVc9WBfecOd23+IwxSYv3IsPfModEr4fH6X3IENtotqBjrfeb3yHum/+OJgP/33Pg+/hd5ecp7rdlDoS+xu+/eK7B1MgXG8W0C4VCoVDYEKwV07YjGouOR2nS/7f0w7SiluQi47HTg50OGG5A5hUZKROGmAmwsEOUXu1o4mN2qmEoWGSv7q+1CgzF8N+WzqODVUyDGeeAzjEZE6EjHx3gMuc8S8Hug+fEbXncmROJ26OzyoVy9shKZVoy5xwznCteQ1ZMZ5WsOAa1FCyRyaQU0mKiFJ9LbUbmVOi9Qw2C++j7xJSNbteOT14HO3+SNcf/06GKCTLifQw71NEpilqwyKaZ4pQsl59xftzelIPj1taWTpw4sTDWLEkHn3sWusj2EDUdLExDZ8zYB7Nns0umcc5KV0bHv4gsWZXH1UvP6zW1FiXOidfM+87nMq1x5hTs9t0uHROzZDh0gDV8P++p+HtBR14WN8ocFZmiugqGFAqFQqFQOBDWimkPw6Ann3xyITwjsiVLP0w1x2uipG5GwPSitOeZRcUye7T9Wtpjic4ojTGMioXkKe3F/9OWxHM9zmjrscRrdkH7sM+N17B4AVmMv/c1U+VKDc9FJvGyjCeT5FwoZGkXvb4xTC/2KTIVM04WeeC6ZAUeWLaTJRhZZjG2Y/ZiLY1tnGYm99133+41Ppe+INxvTC4T++A2vJe4DyKDZOEJ2lC5t7Lnl6yWxWailobJOgyfw/SwsT1q5HqIhYqYFCn+v5f8iPs7HnN71vD4b68lw5/cn3gfaloyO2uPITLxVFz/XigU7boed5wTanKoUTLi/fydNR/0w+kVEsnmwuNhIabsvcqwS9/P/cj8bxhiti4opl0oFAqFwoZgrZi2kxywQHlmo7F0RzZh6Sgr08eSdfG+0pyRR1ZJyZpelBnTJ8NiOj/ajaVFxkvmQdtMZDeen8hOpDlLdl8j0+6xI7KMLOl/lqQjtklPzaxdJlO4UIiMgeUFyQiYEldanH+W+mNK1NgmC7bwmswL2vNhux3t77TfRXBv0l8hs4f7HJewNLN3MqHM/yLzjYhguceI3rU9jVnsA/vMNK1x3cximQa0h52dnYVnPCuzSfsz+xLRK/7DJDhZCtxeOWFqUeK7jH4jTDPqa7MSoPSdoZd1dj/3jUl16JeTlYLleKj9nErmwiIn1GjE9xzf9Rwv1yD+f6rw0cVEMe1CoVAoFDYEa8W0pVHiov0hSk60eVF6JDOO3/UKd/TsuFm7lu7oPZoVK2Aie0rpUeKlHaWX+pJFLmI7ttuxnGZmE7T9nlIy08RmfWVaSTM3+htEKZksMCuJdxhYS0NWFv+mrZXM12OOfbLNy3NL9spUjZGR9rQVZOdRs2RWwphr9y3zgiZLItMmu43aDeYqsK3cfcs0OwY9j3vxwXE+e9oArk20QVM70/PmnfINcFx4D1tbW5OFfXqaIWpNYt96uRfYfmaLzZhmbD9ry3uF7xL2NdOA8b7UjLHcazyH+4A27jgGPv9Gz1cpY/Y9zQHjxuP96Nfh8TA1bjw30xStA4ppFwqFQqGwIVgrpr21taXLLrtsIc40graPXlL+LDaQ3qwZi5Ty+Exm8vLfmTTme9vj19fYzub7R3ZODQGlVsb4RnsLvXmZxSvTBnC+aB9ijGWcT/afHvT+PrKlnn3Nc7QKpsp2ttZ07NixruYl/p/skhmw4twy41W8X/yeXqoR9DxnmdUsBtoZmnoZ8iID6TFq9oX9iNea4fu+jv2/6aabFu7v/mde1ll/Ijvr+YgwLjgyH7IyXsMY6thfZlPr4dy5cwvzl2lpetEcU+hlNyRDjWPme85rx+x6sc/MTGeQycc+8/1CTQI9z+Nak1Ez25n9MTIvfGobyG6piYngnPCa7N3ItY1+Hfz+qLWAR41i2oVCoVAobAjqR7tQKBQKhQ3BWqnHpVHFYWcoOlZIfccMOuFEdQfVN3T7p+o2a5/3oeo5hqU5dIyhXVbnWH0dVVHL1ONUH2WOdlR1slBIpgKiGo5pYrMwEaqlWCObTlvx3Avl5OHkGAx7i31wvxkGwuNZ2lyuAxNZcB7j/2licJt2Not7x7XIjV5ilqk64Vxvznl0SPQ53jN22HJ9a9YEj/+n2pdhi0Y8j/uObTDkKPabfabKOM4jk8VMhakNw6CdnZ1JEwTfGVx/9ile35sPmlSyPvK+3KtxLWNolbSY8IXPeETPZEj1eZY8iIVI/PzzfZvdj+p+zmtUUWchmdl4smeQ6JkQIyrkq1AoFAqFwqGwdkxbmjtSZIk9GFhvkEVk4R90nOkl9shCLxjixVJ2MfWpmb3PoVTs+0dJnmw5S/AQ287GnpXtlOYFPSILpQTKRBUMBcsKE9AJh/2IkuqUE1lEFnqxShtbW1u64oorFtJWxjX2MRZH8Dpk7L8XAjOVXCf2SVp0aOGcvvvd714Yo5OBcA58TdwHvrf3F5NQEJGZuC8+1+Uj3ff3vve9e/oV78PkPdzDmTMRQ+ao5eLzFdErE8mENNI8NM5lGpcVfTh//vyC01XcO352mOQoS9XKsfbC3IyM0XGs1Ez4M7JrHzPj5fszS3rUK1nZS6scQXbsOWf4aHxXs8Qp98HUXDFcrKflytg1GXzv3bUJKKZdKBQKhcKGYK2Y9tbWli699NJdKcj2qCh191JQGkxrGv/fs19Q+s+uNShdMrEI+ystsvVMOmcITM8+mNmWmACBITFmILZTSnPpl2FHtN1nTJvzxXnL/ApoI+thimlPsSXbtK2lIWOM15MtM6lK1m+OkXbCzG+A4WBMguK9E8dsZtgLfcmSeDBExUybWgLagKXFYgieN3/63Ghrd7/9LHrOqbniXo4gK1olKQ7b5fGstKWfxal9t7OzoyeffHL3XIYDRfQKamTPCb/jM95jwvHcXr+ztWTBjp7NPAvbopak93cWLmhG7f3gfmR2fq5Lr4hTNie90qzGFNN2+97vflbI7HnPdUQx7UKhUCgUNgRrx7RPnDixm0oxs+taQmNC/dgGr+nZkii5kUFKiwkpfD/ajTKbTy/lqRGvYTKTXupV240y+7SPsXynvWqj/cs2+AcffFDSYllKSq1RWibrZF+zpBq0nfUk6inb0pQEfP78eT300EMLGoOYuMRrlnnexnOn7JO9vzNvaLIlzznvG9eFdnCzPvplZMlOuA96xSAifB97W/taa7my9J9m3e6LoyU8jikv5WVargw9ps2ER04ME+8z5TXeQ/ZuYZlGP6+9fZD1oZcEp3c8a7entYnwvmNSKTJ8aTGBFd9jZNPRX4Zli/3p+zp6Ja55rxCS+zGVVGWZb0BPCxKPRd8jKdd6MgJl3VBMu1AoFAqFDcFaMm1L7Ja+ohesJSMzQtrtWMg+/r8XzzflIclCEPQ8zqRy95dsnF7rkYn6O8Y4UxKkvTK27/kiY7TNMaZ5pL2VzI6FQ7JCCOzjlNaBDCEridfDVBx97NO5c+d2x26JPrZPaZ6sNis40CvFyb5laUw9H2Yc/s5z689Ma+K9k0ULZGOP7VHjscxzOsKaHF9rFh9TY3qOyUh8rfcMn9HYN7IkssGp1JcZu5T2skZGUiyL0z5z5szu85HZOVlkplckI95nVW/xqThmzz/9R+iTEuH1oa9Blp6TtuVeWcrsHcmiMv7b7TPfRq8daa6lobYwnkf/EWq3pjQ7fI75/VTK0oz1X0wU0y4UCoVCYUOwVkx7GAadPXt2N0bVxSSyuFIfo3RHBul24zHGgrpNS6/Ro5ax1mS+Wdwss4iRrZKtS8vL9/m+Zg6RbTBLGr11Lb1aao99cR88bz6XXpaRQZiRuD3a7LOCKJRwpzx0jSmvV8Le42QTcY7tmU2P/17pzNiHqBWR9s6lNM8cds899+we8717WbkyVrMqK87Wkva6w8SeUksQY6BZ+IbaAM89NQyx314LMivGSsf2qN1yW9QwSP2sd1PwOLLCMbb5M38B3ynxGjLtnh8OtUMRvQIl2T5h36h9zPIGMIKCn7SDZ1oT3oflVWNfGZXC957XLfOeZz4CxpZnxaIIFjfy/qs47UKhUCgUCkeO+tEuFAqFQmFDsFbq8fPnz+vhhx/edUpwgoeourAKiyoShq5k6e96dW2pvs6KIxCsqx3VeW7H6iGPh0lQYh/pNMQ0f+xbVP8xxIOhP+yPtFhzl6on3j+Ozw5HVHFTPRbH1wuzohkgqrNZYGUZzp8/v1BnOK450256HG7fJoEsVM37znNKlbCvjWpkqmTpTJSZVuhoec011+w5N1PDOuRqPw5nPVCF73FFdbxV2+6r18zjmCoy4Tn3p8G615npyN/5eWJK0ayoDVNfZmitaXt7eyFxTWYmYegizWdZqClrhfM9xBSb2Tl8L2TpXulsRVNXZrbiu8N9pTNrlq63l+KZzrRxfzONaM8RleZPaXFvMEw0exfzGeO7ZJnJbaqPFwvFtAuFQqFQ2BCsFdPe2dnRY489tsuWM1ZJlsLEElmyhiwhRTyXqTwj01qW7ITJXqTF4gJkk5l0R0bPEAw6e2TOPQxHmUqTSGcbS7GUnungF/tP9kd2E+eRITN0HsnYku+9ipNIa03Hjh1bSCcZx+y2GdplKZxajXiMIXAcY+ZExDn0mjK0KCsc43P8yb5Fp7NVnWhWDZ2TFkMcIzvzfvMnC0TQeWmVUqe+xhqGuL/Zfs+pLM6j540ao96Yh2FYcEjNUnYaDBFiqth4PR3PliV5yr6b6jvb5TPcS4YU++v54hwzrDOOj452LBuaacroLJY5uEXEee6lKaVzXvb82lF0Pw5nLKazLiimXSgUCoXChmDtmPaZM2cm7XcsCMJgfUuKEb6G9hnaP2nfidfQNkZJNEqTbI8SL1lUPJfMmkkUbJ+K46Ska1bE8qGRLXEeaTeknSheuyzlKG158RoWfKEWYEqqXVbec3t7e8H2GNtjAQt/MoQp7reeHZoaAs59PIchN9yjcb8xEY/XmxqfOLdeX7MJwtd6nLGPvZSnHMNUch3vmR4rzLQdy8orxjnhs90rNZmlH+6VYoxoram1tsCwM5s22+cYs3nq7RlqB9mn2EbPrhrHxftx301p+KgxzDR68bz4Hd+r7EdWRGeZLTvTpvQKE/X8f+J3DIdcBesaBlZMu1AoFAqFDcFaMW0nV2G6zyiJkgFmbcRr4zFK5pREeY/YDm2NU2ypZ4ekJBrHRSm/x9KzEoA91kcWE9lZz/5lTBXPMLLEK9nfcXyZvTAi86hnGb3edceOHVtgKFmq2F75wWysZIZM+0oNTJzHXjEJakuYqEVaTC9JbUoW4eC57TEtr2l8NrxXqR1i36NWiPusVzY0Y+9MiGFkaWA5F/QWZxKROI+9c3rY3t6eTIdJjV4vzXBWWIdz2ht79p7jc2pfA9qNpfm+8j7w/uK8xXcHfVao6eC7JHvvGIxAYeKc+H9q+sjOMzs/NRR8v/H9HvvSS307hXXzGjeKaRcKhUKhsCFYK6YtjZKYJTSmjpQWvUJ5PGNljIMk86T0nzEu2+0szTNNYmTejkFl3Col06kScCxdRxaTlQDktb6GnsDxHHq40m6U2bYoJRPZcRbrYAlNahLiPbPvMuzs7Cx4dWcewFm50XicbcZ2qMmh70HG0sguPBe2szkWW5p7T9O/omc/lOb7iMymxzIzZk8WSI2F+xW/W7ZXMptgr0xlphkxOAcZo4rjzfq/LB73+PHjCxqDzJeGfeilSI796Wl02Kd4rf/PNfVamlVHDYj76E9qUbhP4n2olWG6UX9maUVpN+Z7J6aFZvRIT+uVFZbhXPOc7L3Nd/AqyMrsrhOKaRcKhUKhsCFYK6bteEmylihB0dvRUh2ZSeaxOsUepZzJ9bzUmf0rk0BpD2UxhCz2mRneekw0y4hGKZxSc5xHSta0oZOdZZnKGGvJrElxTizdcy2mpFmyv1UkX7KXzHOV7MHXZHb8Xgw3fSsyhk07p9tiPOn73ve+3Ws8TzfddJOkOVvKyrkazFXw4IMP7ukb+zOV6cvn+L4s85iNnWwms++yD9w7PVuxtOg/QibPIhdxjFMx0LFPW1tbC2wv8wSnL8Mqe7Nnt433711jcMws+xv/b8bLZznTBvjd4Kx67BNt3FkMtO/jPlmTxKyRUt/rPvM0j8eza+jzkuVmOIjXeFZYZZ1QTLtQKBQKhQ3BWjFtewCTqWZZf8wAKIllZfWWxWdTyosMmMcsRbJvMb+uJTTn5qb06HOj1ElJluycY4iswu05k5wl3Kk83LRzm631PFujhO17mwExx3mWCapXcrSXHSpiVZt27IuZYWYnpNd7z56X9YGMm9J4XBfu48xmHtuS5rHWtiF7HPapyNafTK63/zJWyL55HziHepbxj3nXPV8+Tm1A5hHes/Nmmbd6tmHut4xp97KSEcMwTEYnZCwutpvFXPdYJNchy3XOcfB+GQMlk/b6+xo/r1N5LzhftEFH9Hx0zG69L+K6+L3tfUX7dC9uX1p8J/Y0CNFmfxCmbVTu8UKhUCgUCodC/WgXCoVCobAhWCv1uDSqJOjskalFGcZF9U6WfKKnpqRzUeb4ZvSSu0QVJ9XuVltbdZ8ltmeKzV74WaYCytqL988cK6iSozMPnfViP+j8Z5UXw1Pi/ZYVCmExjXjPnlo5YhiGPSrQLB1ilpjG18ZrppJr0JmQ32dqWO6VnhNW/D/Dwuj4GEFVplWPXMNsfD7X6nd/MrVrHAPV0z0VbrZ3eipoqpLjeb0QvanwPl67DNvb2wvrkTld9dLtZuafnhNrps5nX3uFNfx3ZgZkeVA7JMaQq3he7K9V6VRpc/5i6J+f+15q0iyZT3Ys9qMXAhav6Tl/em6ykLb9gPvqIIlZLiSKaRcKhUKhsCFYK6btxP10rMkkUEpDU+y8lzqxlzgjS/fZS+5vKTNew7SLZk1OupI5PNmJx0yHUjOZXpT0GZZD5sXC77FdOrawqEUWBkXGxjnKJN5eoZUeY4ntMVSrB4cMxj5EVr0snGQq1WUvrIT3yZLQGB4z1zZLCuK+mC2ZCWVpTMlS3YbnP2OOhvcd7zsV0kRmxeeUmqsI7iem6TTiWvUcuKidigyS7HIVxj3lOEgHRGoZpkL+6GxFjQ+1hvEaMsWptKL+zk6E1GJ5fFPFf/yu4Jqy7Gpsz/A5fg9N7QPOhe/j/ZilO+6FavIze98dBCzVui4opl0oFAqFwoZgrZi2NEqYdO2PktpU6bZ4bmZHI9PuJZ7PpLue5JvZsmz3sbTPhP3+O7ZFqdTMqpd0ICac6CU1oQSahcHRhu2++e+s7CIZJCVunxsl3t789Yp4xHayknvEMAx70piyaEJsuxdWl+03MlCmMfVeYeKUbEw9e26mDbAt25/c91khlN44aVueSi9qtnrllVfu+ZxKlDKVRjL2Q5rPE9kg7ZVRc9XrK/uc7Z39hO1MlfHs+WJM2cF7PhnLirNk5/bC3eK6sF0marKmLytqw6RU1GK4zehz4ncDS6e6H/blyd7fvg/TQRtMoxqv8TH60rht3/egoA/UspLATzWKaRcKhUKhsCFYO6YtTdsue/a5nsQW0UvsMWXvolRnqZF2jii9uo9mE5ZAKWXGa3qpSJ1ekKwz2uzITnqpUCN78f/96b46uUYvAU085nNoF89sZ8ayAg5ZecIp21jEzs7OQpKauE69PeL+UvsgzeeQY+2lr8yiCHoFXTINAj3vuc99PK4/2SRT/TKRTtSU9FgE/TCixsLsu6fBIvuM93MfzdKo0fH4I6PjniH7o49AhmWlOaM/RMZie0lUeoU14rmMtugh7s+ettF/e36ygjj0Tndb1gBmSY+4d2izz8r7sg/0U2EilTiOnn+R58/7LVtTJkfyNX4mlr0nloHajSmtz8VAMe1CoVAoFDYEa8W0W2u65JJLuh6aPkda9KKmV2rmhUxm3bMFZ+k+mbqT0l2E2zUj6dma47U9L2SycrKBOC5qKFjI3mxGmnt4mln7k0XjmbIy3o9996ftsFHipQRPyT6Lc56y9RFbW1s6derUri+A1ym212Nk3kOZbZTSPG3wtM1laVN7a0qPdGk5I1wFbqNXbnWVa820vQ+i1sTt0abJqIUpz2q3z/hwa3wiesVzyOwyDZ2/myqDOwyDzpw5M+ll34t+yJ5Ho5dGmP4QWUy0+835930zb+5ee/QEj/fhd6umfI7/53rTPyYrjMQ96mtZqCbLLcEUwu7j1BrvB2T9q6RPfipRTLtQKBQKhQ3BeokQmvYAlfqFJygJZ7Y62vp4T0tu0euZntK0c2RZn6ZiheP3U6XfzHAz1hrbiN9R0mSJ0zhuMxtKtKtk+qIGhBoKsgJpsYRpj7lkhUlok83QWtP29lxfigsAACAASURBVPZuO74mlpQk86SXbWaDJlv2Ncs0PbEPhL1bWawhomcvzspQMtaZTIuMN7PtM7bb59imHQsvuP/XXnvtQl9iW1Nla8me/Zll+lpWTIL7PF7vY8uY9rlz5xbmJfPj4D7IzjW4dr1iPMxyFr8jI+U7JWOiPc1O9u7kXqE/Ao9nMdCeW3qPT2W09Jr1GH3mB0C/Epb+9L7M3sX7QU8buC4opl0oFAqFwoagfrQLhUKhUNgQrJV63CpOqraypCB0FugV3IjHqC7sJS7I0tZZJcNa2HY2i6o1qjB74TtRpebrrYakAw3VPFEF5HOoonNt5uz+vsbOcJwDOtxF9NKYem78mYWjUB1GlVc2Rq5thmEYdP78+W64W3YPr7NNBVlKTYaXMOTP65U5XVG13CtwMOX41DueqfB76RapAo0qVX5nh8SrrrpK0ty8cP/99+9e4zDEe++9d7KNTB1LtW9PpRuxzCkqWzeq4adMK1aP85ypuuO91K2ZgyjHxLSimRmt967weOjAFb/rpfucMkHR3EjHVCP+7X7b+dOqc6aVzUJN6bjJ8LTMVEXnP5/j58zq8czEuh/Q0e2wIWRHjWLahUKhUChsCNaKaQ/DoLNnz+5KY5kjGtkrHcGy4gF0qmDpQkqTmaNOr4RhVkiE7fuTBTwyVkHnJCajyNL79UJgfI0l0Mypw1KypX86Z2XOe14XOoix2ECWKIUFVshQskIYq6QTdLEZ99PjypgPw+jYl4zF+tNjdvsPPPDAnu+nigsw3SOTn8T/Z4lJIvYT3sI24rVcXxZnycIFmWqX7XsOnMwjXtvTrDCNaeZoR8c2atuysLSeporY2tqaXLtegRBqCjKnO84t311ZCCi1Ikxrm6U3Zvhh790YnyM6S/LZmEoIw4RTbpeOgTGtqM+57rrr9vS1V3wmSynMd66Zdi/l835B579MC3gxUUy7UCgUCoUNwVoxbWMq7R+D8HvFPqI0yTR0TMnH0Ih4XybcoLRvST5K6WQrZEUeX2QovdJ4tGVlbMCMx+glLsmYtm2Xvsb3p9Sa2d9p32VIURaCQymYKUQjo6eNblkayK2trd1SlkaWVpTts/9Tdnz316xoFcbrMfHT94lhacsSwBw1uEcMaoPiPLqPZtJeW88J5yr2vVc8g/fNmH2vWEeWDpZpbKdYtH1peG2GZXbOyLR9T+5bMm0j7qUY/iUt2pinCtT4O7/fmBI03pchjGTavdDD2D6fYdqEM7u7NQb0qaFtO84dtRtM9ZwlxzoM1s2WbRTTLhQKhUJhQ7BWTHsYBj355JO7kts111yzezyeIy0y354tVlpkNsuSHESmRanR9hlLilMB+EzAQTtVlP57RTF6xRey0oy0XVGyztKC0s5LTUJmQydz8FzQDpbZ99i3XiGG2G9jynt8Z2dHjz/++AKLyRgW+0d7/lTRErMYS/m9dKaxv26X3s9Z8hGmBjUL9znef3Fc+/VyzfYqbdi9tJZSv1iPr13GauN4qK3Jkpf0CsdM2T9X0Z7EPm1vb+8yRzO3KaxS+pPPOeel59cR26OmbWqN2QdqOjJNovvP8sH0/8l8LHqaqqkUr14H+m5QK5mtKd9JjmiYiso5DI4ipfCFQDHtQqFQKBQ2BGvFtHd2dvTYY48t2FcdCy0tenZbquNnZAa029H20kvDKc2lbtuN7anYKzqS9Y1MJLOD9wq803M6k/6YipSsialC4zFKvL37ZeyMHrpksFlxAYNpDDOPT2oQprxCz507tyeWOPME76UNdf+zcptM30iP+Skva9olaWv0Z7wfY1u5V506NO5R983sv8fsstKjvp8ZPdfQbUwVfaAHOvdOZLlZSck4Bttf4/h6BX162qF4/VT6TcNRB5yfVfwIVrGfLvN78HxG3xvaiam1ydg54e+sCcv2t7/je5VlT+ndLy1q4ViCOPOlYTGRXiEh2tbjMb+D4/N+IbGfwkVPBYppFwqFQqGwIVgrph0L0UtzSer06dO7x+jVSPacSb5k4bS90js1y2rl7E/33XefpAvvzWvmY+ZGO15WUIHSuZEVo+/FtVta9jVk5LGPnhuy5ixeknNNe2QWG8/7HSReMq5lr/AE90XGtM1i/Z3nycepGYnt+j5eS1/rNc48l8kee6VapUV2zP1Or/6oASDj4VxzzuL19PD1pz2djUxD4vuYAfe0EnEuemVSs3wOtI1O2dmlce74TBzVM87+MdtXZoPlM0uPfWc7jIVcGHPdY4hxf3Of0Q5OLVRWRKVXIjXbD5xj+hn1/I2k+bPmd/BThaPyRj8qFNMuFAqFQmFDsFZM21mtpkplWiLvxTpmHov0UObfZKpZHGPPAzuzt/a81SnFRqmVffI5zDrl76OdjOybrCzz6vW4HKd99dVX7+lHz6YuzSVeS/ts3/eNNjqzALLBXvnAOOYsZ/KqiFmmmCPbcLtZeU3aDt0/sk3GrEqLNj/vC44ni0V1v90e53aqDCXthkYWC8/verm1I1tyX6iV6UV0ZPkI4rpI8/n0eK3FibDGjTZTxifH/7tdZ67L4Lz1F9p2ScY2VZaW5Tr5TuF58Zxejvss3wGZNnOb+/tMm0EfBr7nMi0HI096+TWy2gFm2FP+CX8SUEy7UCgUCoUNQf1oFwqFQqGwIVgr9XgPUR1iRwwmYaAzR5ZoYSosTJo7CmXJB+g8ZMe0DFZpUbVOxPtYXdgrN8jwmqx8ZK/MHYuOxHPo8EZ1dRZa4rHTRNErV5iNi3M/VQwkMwmsirgP6EzDPWOValQF0+TgMTO5Spays5fe1Xs4K5XJfnNts/vQuae3zzM1rO/jvjHFLvdfvMbwuvTSWGZFH6jCnXJ44lw77I3hQlS5S/M1WJYwJTrB+tnI2jtK9IqQSItOZXY4oxNefIfQ+Y6heHwvRSwrV+z+ZGGjLKxBVX4009DxlE5sTGIU1+2ee+5Z6PdTgal308VAMe1CoVAoFDYEa8m0KYFGpxSnNqVT2VSoAJ03mFaSif0zRw3D0iyZSGS+vjelYX7GMBczeaZzJFvL0n1OFWiI58Y58v/pLESG5+/jGvj/LKtH5hPZAp186KSXMXqu8UGYdnT+IQPtJXzxWsTrs9KL0vQ+4Dh8bQzTif2RFvcb+5qFnzDUj+GPdKLMUkNS+8A9FP/mXuT4vO6ex6jh4f5mMhV/H69x+2RfdqI04v7wPFKDlcGOaHwPxD4cpfNTLy1r5lzYK5WaaYsYBss9k13Tc87kNZmTHveIGXWWxtjopTGmo6rX7Y477lho46lGMe1CoVAoFAoHwtox7a2trW5KO2nRjtorBBClQEqTDCWitDeVUJ9pJo2sRJ7BZCNZ6lOyILMGMrcpqa9XvN1sJpsrhpJxzl2gwuFdsZ2e/cthalmhgF7iF483Y9NHlbif4Wa9lIlx7/QSK9C3wMwgm+Mes/LcxhCsXnrXXrGMCGqdyLRX0QbwO85Z/D+T1HA+s6IP3L/UsHhOsiQehjUVPsc+CFna3CnfkzjGM2fOLMztVJGRw4AslmFV0vw56BUkmiqVSa0C1yE+Y9xvDL3iuzgrHETfHd4/SwRl0GfDn163dUhssg59iCimXSgUCoXChmCtmHZrTceOHVuQ7qJt1JI4PWYpqUWJzpKlGY1ZY88DOEqilh7JAFfxfu7ZI6eSONCzs9dGlmqz16fMVs/iCCxL6bl58MEH99xfmnuc0842Va60x+SohYjfM9XlYeF2nva0p0la9IilPU2a7xl6WdPWlzFgrjMjAMxyMu0Cbf5c26yAB/dxz3afeXMzzSe1J1N2UM8JbcL0SI/j4njo6R6ToVx//fV7zvUce296HaPGwnPtc6bS5Mb7S4t25AsF7pn4vNA/gZrFrBgHi7wYZNqZPwy1j0ycwvdtbJdaIO7ZLNFVr2iTU1dbW3cxwSicdUEx7UKhUCgUNgRrxbQN2lOipG4JjLZleh9mBQ7MtOjB2rPnxnv702VCfX/fN7MT0ZbJFKFTZSN7dnFK4LF9pg/1PNqmHb3V2Q7nkTGfZtfxXMZp0gM9ModeMROyg2xOjgq0XffsdlGy7tmYGVdKlptdY3DeppjIMnthbK+XxnYK2VrF+2flNXvpK33cNuYpb38+cz3PZ2kxfp7+HmbTTsUr9Z/BVcDokti/o2RdXJ+4T7hnPAcs45ldw3cg7dWZpq+XrtdrSg9+aVEbRL+VqZS7BtPW3n333Qt9u1jIYuHXAcW0C4VCoVDYEKwd026tLXgUR0nN9mhLgJaCLFmbTUZmSK9m2t56HprxGG1IZq+240YJlF66/i7THBhkbmTnU4U1erG9tH9lhVA4TttzfX+zm8jSOW+MXc9sWdQgMB6YzCh+d9Qsh/3kGkf20vMw73lKxz5yLVnsJgPbZTa/TBPDwiS9KIWMpdNWb/RyG8TvyLC8V5iBL/NJ4Fr2ND9xfPGZjuPKynuafa+C1pqOHz8+aYv1/BxlljQ+A1lZV6O3hhnT7kV10Mclfue562n0uOZZ+72ojDgW2vH9brzrrru0LuDvzzJ/iKcaxbQLhUKhUNgQ1I92oVAoFAobgrVSjzvky+oUq9cy93+rlByEnzlbGU576BSoVqexfrKvnVKP0nHHKsHogER1MVWoUw4avcQEdEyZSl9ItW8WZtMLZ6GqMavNTMezLAVp7HvsL80ZBucs4qjV476X90yv4EY85j3I+sasQ5yFfNEByGNfZVyZOUTau5Y9h0diKpUnayC7b1QVSotj79WFzhIgMS1vLwVrVMN6bm2KYtid24rFJbi/pubY6nGmVM3SvV4Ih7Rs3fhM03SXhaX1nn+qxeP+Xpa8pReiF9vpJS3K9huTxjiEt7A6imkXCoVCobAhWCumLY0SHiXGLHG/HU3MdOl0Q0lbmkt1dibphZtkpeR6sHRJJ5kMdGaakuR7hVCM6BzBMnc9pp0VDKGDm9uaSn3KUCWOi/eI55CV98pkRhx16JdBp5up9JVZ2VZp0YEushhfw9Cb3hzsBxnTm0pxump7vZKZ8Rk0emGJdFDMNDx+Bn2ONRh+9rICJWbSTrbS6+t+YQ0fNSLZ/j1ICNmqiO8st8/wSiN7LzDZDc/NQtmYSpWfXONVUvzy/Rb3N7UKLJ6zDmCJ1qlkWBcDxbQLhUKhUNgQrB3TlvrhNBlYPMASfJQ2mTiEYTQMd8hSNpJhMcl/7KPTZLpd98lSqvuR2c4ZgkM2m6UvpG2e48pSUbr/TDxjhs2CKFOFPFiekow//r9XAnQVu+5RgyxyqkSi54XjoO030wpQUmfaz2zsWZKRZTjKeaLNNLOD0pZJuzht3NJ8zExaREaZ3Y9M3u36WTgs0zZYPlKaa/T2E0p2GHhs2ftMytkfz+Hz73HFZ7tXvpXahsz2Tc1az9clnsdxZRrRiw33KUuCtQ4opl0oFAqFwoZg7Zj2uXPnFqTIrCwgpR+zVyecj17ktBMbvbKUkSFaeqVdmIkyMs9PepabzZLxS4ssn+y45xEsLTJt+gJkNmePi0ybPgJkxvE+7j9TLGbpEjm+ng01Y1gXGp4XM7aYDIR+AZ5resFPpRk1mBKUhTfiOQexc18IZFoTMt1eSld/xsRD9LJnG2bL8dmg9sLtHVVhj9aatre3J9eQz1T0VL+QoH8A+zO1dzw/TEUa0SsqY0yV2eQ7gr4umeaDKWjXZZ9ncF8rjWmhUCgUCoUDYa2Y9s7Ojp544olueUopTzEYz3E8bZSE6Yntvy010y4dmYFtmZYmae9iQYfYjo/5WsaBZkybaTJp0860AfQEz2xy0l6bFz2a6UVK1hztYPbCd/9pl8pKBDJtIddvFaZ6oeB+WsuQ9YHrzzS6XtPI+lYpxcprWM7yKNNmrgJ6ILO4SXYuyzqy5Gh2LVkh90xkabRpe056BVn2i2EY9jBIPoOxv9RQMe74qYLvm2khmUaZ44nPJX0IemlMM40LGTXTNjMlcrzfxWLY+/EV6ZUTvtgopl0oFAqFwoZgrZi2NEpA9MyNTKRXmJylDGOmHXoDskQmPYMj0zZzZ+wemXaWoYolMhnTHSU42gV7sc/0mI0g46D0H7UBbof26F6R+iiZUkpln+lZH9tdJuFmkvxThSz7U68IAlkMz5f62gPGxGdsiXvGc5GVMD1K0NM4iz/3nuHeZ9GZTEvgc8lQabuN88r54xwddp9sbW3p8ssvX9ijsV0/nyyg4/FkRVEuJNzHeF9qe5i9j2Vm47k9cG2nIgHItBlFEP9/UE//w2I/DD8rg7wOKKZdKBQKhcKGoH60C4VCoVDYEKydery11i3SIS06vfSSjkTHqSzESprX5qbaOqqPmGbP31E9FvvIY71awbGPWSKKbLwsxhDvQzU1HVMi6ETi9liMgeE10uI80qxwkLClgyQTOWqwhrg0N7PYTGJ1IkPhMgdBOvcsM+1EUFVPtfFRmw7o1DVlpvE57iP3g+eMzozS8mQ6WV11g/NEk9VBE3UMw6AzZ84smIqyutP+ziY1nnuhUu6uAoZRui/um8eXFRkx+O7g93Ef0JRGZ82s2AmLv6wzVnUkfapRTLtQKBQKhQ3BWjJtJqHIpHIybUtwZsDxGkvFlgzNWuwow1R9MTEL2YQdPyh9RWmSzmp0nGGqUmkx1IYsmdJz5vhGtkdnouhg5/+zqAMZBR3W4ncMG+P3+8Fhil0cFax5OXXq1O4xhjz5HGtJmJgnCxMiI+H8xX1AJ0zO5VR40zL23UtMlPVpqjCG9zcdD6fKq/b6uEqhH96X2g4WxFjWB2IYBp09e3ZBC5A5e/I7vyuyfl9M1i3N19DrQq2alDuLRTCcNI6J+4n7IoMZ9rqlBs2wrn0spl0oFAqFwoZg7Zi2tFoxdTMdFqy3JGx2Lc0ZdS8BvBOxWNq/+uqrd79jMg3eJ0tjSgbCazM7IUvi0cZoSX4qRKNXSs5SchYeQjZIjUIWvuNzfWwVmw9LCTKhzTokMvD6RNZEPwT32/NDlpetaY9FMoGJNN8bDCFapYTpFJOeOp5hirX3CsT0+jbVFud8P3uJcz+V+nQKwzDo3LlzKxWt6ZWfJfuXFkOt1gVxnMu0MyxbnK0x9znT18bwrsP4Ylwsv5eyaRcKhUKhUDgQ2jrp7Vtr90p698XuR2HtcfMwDKfjgdo7hRVRe6dwUCzsnYuBtfrRLhQKhUKh0EepxwuFQqFQ2BDUj3ahUCgUChuC+tEuFAqFQmFDUD/ahUKhUChsCNYqTvvKK68cTp8+neZxJnp5iLNYPp7buzZDlulq2d+8Ztm1U33rfT91PyI7zry6vTk5SIxi1kdmhzuIA6TX9o477riPXpwnTpwYrrrqqn31j2M7SPwnxzM1X70yn6v0jefuZ1328xyt0m5vrKvsv4PEkPfu08vtP9XenXfeubB3Tp48OVx99dWT69Kbw2XPXgZmIZsqAbnsvlPtEvvZM72+ZWU2V/17P31Z5Z3F41PXsPTwVNY7X8MaCrfffvvC3rkYWKsf7dOnT+s1r3lNmmje8IKdOHFC0mKBAx+PCQ2YkISJ9adSNvJc98mL72QK8X5MwNArpBF/JLjh3OdegpnsB5EJKng8K2bRS9Yy9SPUezj5GeeB9XPdl/0kwXCCk5e//OUL4TlXXXWVvvALv3Dy+izdpbRYy/mo0EsocxhkhRyY3IJpbJnEJfbLx1jMhPW8M4GGAjLT2mYJSVgQhPubSYti/90nt8F63X72Yx94zld/9Vene+clL3nJ5F5kQhfuddYHz+D969SnXJ+4L7kuvYJC8fnt9Y1JT7L3Kp8N7hXuqex+vWsiOJ7eXsneyb0fZ5/LIj4Rfgc/8MADkub7wkWisvZcJOj++++XJH35l3/5WoQFlnq8UCgUCoUNwVox7a2tLZ04cWKBxUYJ1NI0CzZQuorlFckaWe6SJeUiM2C7vSIgUXqlhGtJmpJixrw4ZqZA9H3itT4WC53EczIp2d8tU4tzvBkocVN6juOhNLyf1ISxsMZhQC0GC8asknayp6mI4/CYqVXwvjiIiSDbOz1W5vnisxLB9Llcy4yVESzjSdYU9477xPS4vecq6wPbyMB2lmk5lu2/nsaNc5/tHX/nd1ePaU8VEGLxn1VUwYavnVJxu49k3FS5x/3O+/TeKVlxI/aZ32cphXtmR2pnsr3jfnsNqA2I13hf8XdoXVBMu1AoFAqFDcHaMe3LLrtsV9LJnAUsMVlapbSVObGx6AYZIctvxjKUtlWReVJ6zaS7/Uj7tFmx6AgZcLwfpVNKzz4er6FUzPuSCUfpmZqJnl08rhvb3U+BiKMGSwmS1URwrGQrLHgSpfKeFiErLrEMXIc4t/4/mbbXmzbh2B+yPZbFzbRPZEdkJGQ+GVt6+OGHVxp3HA/3mfucFZnp2YB72K8TIp8pj8tajdg/a/38Sa0Gy3xm37ktagnj+Ohk1dPkZEybGsNMgyjtfa/2bMw9zUu8H32RuGfoKxDb4Xe+xu/t+Bx7rr0u/uSzEZ9F+l081QVKlqGYdqFQKBQKG4L60S4UCoVCYUOwVurx1pqOHTu24EgTVTSuk201B9WsWUgM1XcM7WHIwFQMdOYgEe8b7011IVVqcVx02qHa1aBDV2zfbTBsY8qZrOfcQaepqILs1TtnX+P9eiFF+4lzPaxDCPvbU23GWuxUQ/acb6hWju33wqZovojt0LmQZpI41+43Vfi8D/dD/I6OSBx3fGb4PD366KOS5nXpDxOLn8G1xelQN2V22o9pahiGffeVJpXsmXY4kT9jSJo0Xw/vt8zMtExNHcdFcwRDAKfC93qOp1Ox1zS39PJRZPHzVKHTATdT8fOdRLW492h8N/veNk3QFJHNr9vpmf0uNoppFwqFQqGwIVgrUaK1puPHj8uZrSxhx/AthkdYerX0ZSkpOpNZ8nJ7DBUhU42SaI/dZQlLDErBZNGUgCMYokB2mDlHkA33sihFJ5netf7sJcGIYF8oeWdhcGSDnN8pp4+4pgcBHc2oIaA0np3r/lLqz7QZZCtsNwuRYQgRHWYybQnP7X16nFFrkjmnSYvPzIMPPrj73SOPPLLQh4gLVe6XGjIzVLOmODceD5nbUYHhdO5D3GOnTp2SNH9H+ZNsbyokj5qPqeyKXleGLJG1xrngvCzLpja1/4gsnIpOmOyb+8yEVPEcPmtT4XDUBvEdcM0110jau7c8Hr8PVs20+FShmHahUCgUChuCtWLaTq5CNh2lI///aU97mqS5lGV7mlPPRWbQC0VhKJgRGR3Dz/zp4xmrsORMCZR2oyhZM1zH6OXBjX2mLd7nMrzB0ma8hoyKIT5M0JKNx2vSSwQT/99Lfeg5XyWxyUGRJX2R5ozIn3HdljEB95f2cWlxrXohSxl7Ybtk4BG0d64anha/I+PyXrnrrrvS79cBniPbjDM/llX6vbW1pUsvvXSlNLaea7J8z3lMi+m14nPpdeczlb0PDO6djDVzfXt7Ne5RnsuEQ0R2be/c7P3q9yZ9kfh+NTKbPefCa5AlQ/HYqYm11oOhtXE8XoMs1enFRDHtQqFQKBQ2BGvFtLe3t3Xq1KldScdMMUpblnBtb7DkZqboz8yusSxtJe258d60F2We5galN0qzq9glyXB7xUBiu2TwZOeZTXhKso2YsjVPed8TZCrUBhw10452fLJ926quu+46SfM9Fcfq/viTbMzXeDyRLflc70na8TOPdNrMmZox8xrmmi0r+hDRK9gRtTIXAmQzTDwyZZf0WlDrFW2P+0lB6agV7mOeE/vH+2SaFq4/31XUJE4VcvE+5jrFvcP1pcYle7+xAFLPxyE7Tk0O58/jjPNJRk9t1FSKZ9/nyiuvTPuWJanhb4j7NKUFm4rUWAesV28KhUKhUCh0sVZMe2trS1dcccVuisNMurXt2udY+vbflmbjNTHuNoLehpaMo8RrycygvdptREZHpp2xB2lv3KaZBm2nTOWaeQB7zO4Dr+3FGK8C3je27/sx1Wtm6+qxI9uRs3KeXtvDpBGM/hDXX3+9pPlc04btz7jm1M5wjqdKtHpMtE97DnolJiN6DCHuJWtQuDc8djMPr1N8HtyO23efOPdZrO1BcO211+7pg713Gasc59H/f//737+nry6zyL0lLWpVpjQ4wzDo/Pnzuwwus4f3CltQyxX3jteFqTmZitnvgTjH3mc+xr+zflFrxfh977OocevlgTB67654n17cdJYXg1qmLA9A/DuyZu9n+y0xSoUpeeP11HqyVOeNN97YnYNi2oVCoVAoFA6EtWLatmlbGnM8aJR87BVOmwdt3fF7xhxT+mZ2oyj1+Vx6nJO9xj6ScbKwgdsy05PmkqwlQCbFpy3LGocI2k5XKXvZiwem9D9lYyI78n2nvHHdnjUkp0+fljRnXvEcajumwJjoKHU//elPl7TISLwu7ku8H8fAeWC8dtTw9LLaea29ZzONBO2E3te2v5shSIvxv8wGxvWJ3rA+ZkZCDZLHH8dN2zztlB6v2zS7luZ73ud43ckks2xUvp/X6Q//8A8lSe973/sk7WWQvs8qe2dnZ0dPPPHEwp6JGgnao1lS9EKBrNl94nMbz3H/qUGirVla1IpRO0hP9ywjGn2DyLSzqBX6CvkcPl9Rg+k+kAmzGEh85qlx4bNP7/I4xnVj2MZ69qpQKBQKhcIC6ke7UCgUCoUNwVqpx1truuSSSxZCVKKqzOoNqoKpLsocghhGtUq4Awta9FJTZmEiVtOw4EHmMEH1OI8b/j6rjW1wfFndYZoTemryLHSGCVjsIOS/ra6N6Wc9dqv16fDk+bS6NPZxP+pxj93Jd2J4iFWmnlOrOO+///49fcsKnTAxC5NEeF3i/RiKQvWe24rX9JwIjSxFrNfD886iIx4PE0pI83W2ytzj8jXZnHB8DNexWtxrcPXVV+9e43myGcRrwgQdWS127ye35/G8/e1vl7RXDcu696uEEtKRKvbpsCl0DwqaiPgsxHeIggsN4QAAIABJREFU15D7gXMbx+J5orMin/Es6QrfTQzx8rUx7S2Leixzalzl2adJJXs2/P7xnDg8kIlZYv99jR3f1gXFtAuFQqFQ2BCsFdOWRjZi6dIMLjoj+P9mBGYplrYsRcYwGkp3lvwsbVkysxQWHVDs+MaQJLdpqSzej84pZgh0cInSP8NN3C4Zg/sRQyHsiGOQaWfOMpbKzXQy9h8RJV6mHmVCBEumZlpxzO6TGRxDZqJU3itEMAXPo8O77LgVx+A5vO+++yTNnbqyYizUsLj/DNPyNTF9Lsv/0ZmHYU/SItN2nz2nZpPxGrfvtbSjFhNIZGklb7jhhj33Y8ihxxAZEVmrx8E2vMZxTekMRe0DHaHiOLw3PXb3/TnPeY4k6d3vfvfuNXToXAU9rdY6IhsXnVZ9jp91aoXi/70evUQlmSMatUBM+ZyVysxKbh4WvVTPWR/pCOe9G50zmZAlvmvXAcW0C4VCoVDYEKwV097Z2dEjjzzSTeEozSUj2z4tzdHWGKVJsgezIdoHab+JYJgOpdcYGsRwHTMgJlOIdhQfM1M0WyKjN6IEaY0B07G6jyyUIs3ZCot++H4M/Ynw3Po738csMGNLlMIZpjFV+nMV2B/Cc+F5jGEbnlMzbGpNssIALBFIO/uUrZRrxtSNRmSi9LtgOJoRx+V+m9naRs/EPF6DqE1h6JL/vueeeyTlJRl9DkN+euuVJWZhkp2p8pTur9fU11qD5ecq2s75jK+CVQqG7AdMpnMQ9EpiZsVmmEiEiVH8jonvRrJTt8trszKyLEhCpm/ENT2KwjP0EZkKF/TzSk0pQ9xcGEeSnvWsZ+25XxZ+eDFRTLtQKBQKhQ3BeokQGiUgJmfIElZEe6m0mFYwJh+hlEXPbzNE2w0zSZRSMxMYxJSklDhp//T9Y3IVpvyjXch98n0j8/I5vg8LX9g3IGos6BHJ4gVmb7QDx3Y9n5Rms8QmLFZAT+NMmnV/vdZZQhmjtabW2oK2IbNL0vObaSYzxs1Ut6t4I6/KKqIdnB6/3u/WjGTJINxf2++pJaHfQEx2Ynbq8d1xxx2SFgspZDbUVceXaVHot0Iv73iN95efUybG8F6O+4PlYnu+GgcFI1uyeZpKT7sqGL1iZIUuekWGPE+ex8zmSy1jL2omS1rFIk3cw3EejoJpU/vAtMoZmDTK7x1rb6x9i/3tzf3FRjHtQqFQKBQ2BGvFtFtr2t7eXmAZ0YuYTLpnR4mskgVI7HVqyZ0l9KItkiyM6SqZJk+aS7SW5mhzpo09HmNxCd/fbCxLfWnJkHZQ2zaNGDcd7ahxPPTCz1IR+lyWAmV5xchuepqEXkGUOEZLx7TrRgzDoHPnzi2U0szsW9Zw+N4ca8YGPMeHYU+99Ihxnhgn633xjGc8Y8/3cY+6Pc8TyzqyFGm03XpOmB7Y2g2v8SqlOsnGs3Kl3N8sS5kV6yDzsWaB5V0jI/IcUFN2VKBnfi+u/kKBKWv5/wimcY7vHaZapn8CNW3x2p53PZ/xo0712tNyZT4JfL8Y1CxkRaWy2PR1QDHtQqFQKBQ2BGvFtM+fP6+HHnpoV+ojk4v/J+Ng4vnIsGy3YPJ7etmSeUmLGXQcE21pjxnF4v/dHu21vn9WApKSOjUJvibaXWlXp50tYyKM5aad8D3vec+e8cU1oERLtsTsQ3FcXiePw/fzusWYSNq7M1tzHM/ll1++q0HISkr63p4v2npZkCIeWxVxHyzzHs/WnHuefhjZ3DKW2vZvep6ztKE0tynffffde871uuwnVpnPQsbs/R3t0czalmWhokbEDNzevpHRMdvdKj4Ih8GFYti0nbMkbKbNYr4BFq6J7yNqfzIv8fj9Kh72+31mpPke5n5zkR9p/o7wHvGz7k9GpkjzfcTYa+9Da2zju9H7NtMurAOKaRcKhUKhsCFYK6bdWtOll166K/WYjUUva8YV+xwzhCkbFlm5r3H7jAOVFj2MLaVaurPkGe3FtNcZlup8nyj9MzadMcRmDszvLS3a0CmFZ2UjKbF7Xi3N0vM8i5818zWbcWzvzTffvNBHrynt3b5v5rlv2AdhKjPR1taWTpw4sdtfS9IZM6B9neUWD8OaVpHKaSvLWCA1E2YKmaes/29Wwlh/g9oNaT7/zgpHX4oMvXz7nj/vIfc1suZe7DI93qONkXZw+n8Yz33uc3f/f/vtt0s6+vzR9Fw+iL3W3vv0OYk56N3fqX0s5T4W7pvnyW34eY3PMkuy0tZLH4OjKlfptWS+CO9N+p3E/1Oj50/v4bgv/R33EOc1vqvp3xPfY+uAYtqFQqFQKGwI6ke7UCgUCoUNwdqpx48dO7YQXhJVgUwrafWU1R1WMU05pfiTCVJ8nh0RsvbpuJUVtbBa0kUr6DSXFYrwmK3iofqQasXoOGG1F53J6LSWJe6n2o1ObJljiueEoR2GCzdkairPzbLUlxG+JqapJBzyxTCgCCaD8Fz3nAAPgv0kYvBezQpqMEzH59DMIM3NB3E/xWup0oxmBptsmBqUjjtxbmhScXvso/d/HJ/HHBPKxDZ8bbzGfbrxxhv3tOFrGGoY/5/N8VHA7479OOrx+SSyPh4ktSr3IB33ormRhUEYauh9eJiQxywszc8pHRI5hpgwx8fuvffePeNweKLH4u/j/fh74b/93nVIZbyPn5ssHOxioph2oVAoFAobgrVj2tvb27tSV8YGLSnZOcCSoNmkpe7oiMai5j7XjMEMxQw8SoZ0PHMbLFkXnUjo3OE+UpqNzNft+zs6pjH0Kya4t+OXz7HkyQQwkXHRYcpzbemVYWSREbs9r5Odv+isEtmU54fJQ1ZJXGDpPoZ/EA4XNBtzu1lBBTvMmblbmp9yvqLzSwzX2y+4Hpm2gcfMSLwecS5uuukmSfN97b3kc+ns9+xnP3v32ltuuUXSPAWqWQZL3sa17DnHsc8OG4wMuMew/QwydW3sk/em7+s9aiYUmSoZ1VElyMieh2XgersNahRXafMwRUi8h6IWimGwfn/6OWVI2LJUwrF9lu6N7fQKoRhTmhGvOzUsvq81T7EPdHxlXyObprZhP+VdnwoU0y4UCoVCYUOwVkxbGqUbluLLwqkMBs8zkYA0l7JcztOSlBkiy3tGyZBlKNmmpb5o22aSCbdPphDZGtN4+hpK1rTpx3MZikPmFedkqhRibIsMU1pMx+r70F4V14o27P0whanQqNj+zs7Ogg0+S7voPpitun2GKsV2zI7I6twnz1ecJybEYZKYLM2ntT2+luUn7W9hdh3bdZ+8rz1e2vWysp7UYLEYTNzfbMfPgm3Y9PuITMV7lWGJHp/vlyWc4XzR/h/76HZ9zlS44CqgH4rn2PNFrZq0GPrpeWDZWLPXrGgOWd5Uqt1lyIp+GLRts29Z2Uu+i/13L1FKBNOHMsQ1u4fn0UyaCWGy5DFM/OS/ybDjfXw999m6oJh2oVAoFAobgrVi2q01XXbZZQtsOUpBtLGYvfp4xsZox6BXIL2go62Jkp+lfhZejzYRsxe3Z8m6l8AgnsM+mz35WqdRjdeS8WapXGPfpUXvZBZGITvMShuyKIfPoaQa22XSkFW8Uc1uVklFyX5mXu899uq9FCVrzpPHxhSdHmtk2r6378d0ul7TLK2k27Hd3eeazUYPYJcVZHITJiMh+4z9NnyO++z7xL1DBu/7UIuSjc99Y+IPj3fK14H2V8NsN5uToyrNyb3NNcw0YGST9Dj385olPWGSG5aE9frEdxV9d+h3kTF539s+BExbbE0m93m81s8yNSxuKz63vp4RG0wdSu1EhMfH/ZYVYjJYfIgaxDiP7stUWdqLiWLahUKhUChsCNaKae/s7Ojxxx9fKEw+lRTf0pyl18ymzbhFSoRkF1GyYgq7Xgq9yJR79m/GT8dxmfVZKiWboF0vSpOMm2b8auZx6j74frQBM31qZD5klWRLmcTLsoC+7yppP93uFCvf3t7WyZMnFzQG0a5mydme0h4TbYxRu8LCGSxmw88I2nzJSDL7pNmiWQz9OhxPGlmUtTFmCx57L91oFglAduF+0L9Emu9BsiX6Org/mQ3V92U+AOYJiOPpadmy1KtMFXvY9JuM6mDsblZa1ufSl8Lnen6yvvU8mFnCNLPF9uzd9F6PffEzxvniuyu+s6h98jX0Us9yWfAdTF8U7qX4f+/9Xu6KOCeMguG+y7Q37O9htTRHjWLahUKhUChsCNaOaT/22GO7Nkx6/knLy0JmHuD0lKbdkHaimFmKmXQsodG7OsvA5vbcFx+nDZpzEEEJm8UA4jUeB+2DWfJ9xghT2ifDjv2iVOy5oB0q2rJYeMXS8pS9iOs15cW5tbWlkydPLkjdccwcC4vAZDYsMmlqIqjFiWNmu76W44rREdxfXjt7zLKkoLRYvIY2P3ruZ5EVnievOz1x4zPIZ43PBtlgtgbL/CAiu+EzTpsp/T/iMbK/g4KMl88PM8jFe1Kr1HsfxTnme4DaK2ali+f0nulMC8lIF74/p/IT9DSV9qzPxkUtQC8z4tSzTi0ExxX3DssVuy9890bNifvCvBrrgmLahUKhUChsCOpHu1AoFAqFDcFa8f5hGHT27NmFMKosrMEqDKrbMuebXqgQ1VRUm8b2CV4TnaSsnmHSfauW7NQTHUKoOjd6yeujmoohZG6r54QRr2EIFlXeWfIBJnqhExvbjH3Lkp7E8UU1mfvtgiFTqvTWmi655JJdtXFWQ5zJGLzOdDTJalUz9GtKDW9QPc619DVZQhar5rxXHPrlNKAxHeiyOuC+bzZe94Wqe65P1keDoYz+3n3PktUw9Gcq1KsXlkanwHgfq8q9f5el32ytLaTfjFjmeOj+RzUrk4wsq1Ed2+T8EH42ormQzy4LIRlxLWky4nPKpCvRSYvhdP6MKWilvc8g9yifRar/4/jpNMd3YhYmxjrtLHKTOfTRNHTYxDxHjWLahUKhUChsCNaSaTuVoyWcKCUzqQkdaCz9RQmUrIiS+VRKQIabsA2GnklzCc19sGMGQ4yy0ASmLyWbYLL8rI+WWlk4IktS03ME8dwwvCJ+R2cVsvUsFSU1JSzJGFmO23Ufpkpz+r6eH7PzKPV7Ll26z/ekM06UrMkAe5oCIzIDMk+OPdMKuY92QHMBFMPj8jMS+0RW1tsXmVNhr7BGdtzjYvKUzNEpthHvzb5NFcLoOSX5Pt4fkVH2CuL0cOzYsUmm7WPeG9QYkJnGMfEa9mkqXJBMmIw4Y4juK51JmTI2gu1RS5RpaRiW1dN+ZqUt+Q7m3sw0DCyHzGcycxjjXuSzkqU+5XytG4ppFwqFQqGwIVg7pn3u3Dk98MADkqRrr71W0l6bdBYmI82lS5aUkxaZjtujrZupFeMx2i4toTl0IEqGWeEJaTEZf5Tu3BdKqT6X9rEoLdNGangubP+MrJN2VoPJSabs05ktMX4fGRLP5RxkbMNjZThKDzs7O7tjNCON4XvWODB8hawmrgsZB89lUpBMU0CGwIQtcb9ZCxP7Lc21TU44FO/TS8TDNcxK3TLMrWerjeA+o02b6xVtqAT7mtkyyb44Xj87USNHO/Gy0MLLL798IWlQnCcmG7ImhAw184fp+cV4nsja4/+5hrSLx3eY+0hfExaqyVglfYK4HiwgE+eCzwSvieNiiFzP74PjjX0iA+aezd4l7gtDwHyfOC724ajKuh4VimkXCoVCobAhWCumvbW1pUsvvXShOHxklZQws+Qf8XtpUXLqeYBm6TfJPHslNCMoofkaS7pMRiItJhvplTdk0YnYF0vYTvLva8y0MzusJU8m2eC8ZteSvfS8YmM7ZEtTUqzn1qxzKuXp+fPn9eijj+7OsVlXTLjhfrnoxh133LHnOBlCHCOZD1n/KvPDvcTEItLeohdxHLfddpsk6e6775Y0X2NpMQ0rmbCfBWuwWEhCms+J548+AZGJkFF5jlmiNWOQPZsi911krH5efI7njQw7rgn9OrJERoaZtvdbpv1hwqBekpUsWoEezNQy0YM+a5eMO9McMIkL0/ayUI60+I4iA6aWJmpNmNyG19BeHe/dS4FKjU/cy705J/PO2Hlv7rP3D4tQxXfIOqCYdqFQKBQKG4K1YtqtNR0/fnyX/ZlxRynZ0qTZI9NjMt4vopc2kGwys4n4Gttx6E0ZY655vSVSj2MqnpDFF9jHzOOY6UrpVUtGFK/3HLN8qO/LQizSIjMgs8sYHxmD58RzYWY3halzHHngfcGyq9JisQd7o5PdZT4NHMdUP3g/rmXP1hj75jm85ZZbJEnveMc7JM3XI+7vnh8EfTnMSKMmy/313vjQD/1QSYulHzO7NGP43bepcq696Asyx4wBkcGRPcX7ud9+Xk+fPr3QXsTOzs7C+yH2ifZulh/NNEe9EsM9W3emkTB6kQHxPcB3np9p+wZlaaG9hszLwL2bMV+uB+37fvZiH7ln9rMPuHd6Wq8sXfOyAjJRy8Gyu9ZQrQuKaRcKhUKhsCFYK6YtjdKT7WiWkiO7sfRjqdF/9zLrSP1sXLT9Mjl+bN/Slv9m2cuMiVIaZ8xjZL5mKWR9LO+X2dDJ3JjtJ4td933MXhkLzQxIkX26L+5/L6F+ZD5ZEZFl46Ltclk8/dbW1i6bzGJu///2zr03kvJq4me8yy2AFClZSILQy/f/VLwICWlBIG7JAmtP/kDlKf+6Ts94bO/2KKekldeevjy37nnqXOrIEqFxoZVBP33n3imEMQaAa8rPpRVFY6917uyCfdW6U245i2VULUuzkuHpc/rLqw5zyDWp/ukZ9LVKS5HYk8acsQFrZV1ZeCX5ahkrQa0GrT+3xGi8UllI4vr6un766adbhqW+ertZwpGWhxTZ3mUcdIU8kupgZ9nRuCWLotqm/qR1JlCbgH52rvNUbIYWA2YNeB9Ylrjzg6/FunCtMF5m7V3SxfC4pVTPltr60GIzj41h2oPBYDAYXAjmS3swGAwGgwvBpszjEleRaYTmzKqDGY+iFkxZSAFINGGlQImquyINMpHomC5lIBUloeiEzLGp5jfNQzJL0kXAlBMHi47Q7ObmQ5qH6GagOdBTfvSZzG8sjMI0Ee+XjqFJnaIO/n+mACaonrbGQAFpKV2QMoUsgOJmZJ3P8aH5kkFufh8GwVDkwte3riuZUl1X7UgmVj4TXT1tmQD9XK4ZrlXBzcwMHlKfKddJMZmqg/uAEphcq26uZCoW3Vzqv9Lh/Jy1VC/vz2+//bYwNfszTVGOTobVTcFcb116WxK2YUpUVwPezfT6TH3WZ3Qn+DOmOaPLg3OoNidRJ44bC5Q4WDyFQWU0z6f0Lbod+EymGuPqHwMJk7uD70S6M942ttWawWAwGAwGLTbFtHe7XT179mxR6MJ3Tvobd1Xc7Tkz6IKgKHqgXaAzRAZMkFUKzuzVRgU0kEUzYKfqEPwiNiymw+ArBqj5sakcpR+bJA8FsiLu6JPYRReM01kwqpbsU0gyoMfSqwixbb+PX0PjRJZCNuYWCTHDTu6zs974/7tArSQkIoYt1sgyq0nsRvPalbDkmPu5bJOK21AIRlYVv57apn7qGKZO+TrhPDOlSOemtUrGSKuUrx2KhHRFRxy0pqX0Js5ZSt8UmPK2luLF3ykFy2I8ScZUfdYzwBKWlAytOqx9ndOJKekcBWtWHZ4nygGvWSzItLuCHkKyPnSpeUk2lUyb1xB8rvX8q91rMrxvA8O0B4PBYDC4EGyKaV9dXdVf/vKX2x1OSvkStLsj46bvsWop70efBYsBODoBewp9uC/z008/rarDLpa+N93Hd6Tyo4vpsC1kdp5aJOh68smq317GsQOZCEVe3HJBH1InSek77E5ululK92XXwn6/r99//31R8jOlndFfz3742pHVhJ+lQioEU66YqsJ0vqrD/ItpMyUuzYeuxzKnHEuuPz+GKZNiUWJgSdqVLF1rUuNL5urncr7Z5lQ8Q3ORJEO7Ngop5qRD8mGS6XYlRZ1Ns1QlU0DXwJgJlh/VWHufmeJFmVH1y591lgJmfwn3aTNdj/OvY1PJVBYb4c8kgUt0aYKp2AzngIVLvL8U7zllvt4khmkPBoPBYHAh2BzTfu+9907y31Gik2w2lYXkZyzRmXyDLDOpY8iAxJDS9difJJfJnXvnH16TWhVbp5zkY8DH8xT/YAfu6NcEU3jO2rE3Nzf166+/LsZ2TSCjK+iRoqsZbdpJt/qc0oeon2KM9Ov6dRlj0MU2+LFqa5IPTf3ldaqW/tBUPIMMpItTSIyfkedkS8nv3jHqNfEgfXYfgQwy+JS1wmIp9Lf7PHVMsJPqXJMIpd+emSjefrWVlsTkf2epUWa8MIbHi83I2qh4HGVsaCxoGfF7M+OhyxTx5ymVNPa2pdK9jEniutPna+x8oscHg8FgMBichU0x7f1+Xzc3Nwu/VmJLAtkzc251XT+Gv3O35ztD+jKZt52gz77++us77ZePJ0Uj0rei9uvnfXy93E2ewlTfFM7xWZ96zn6/X0QL+05dPjeNC4uvsLBH1XLnT98mdQKcxTDiXNC6FquV5Ka3RXKyZJNpDhnJTHZOxpskfsW0VAZV/eHv3h8ykq5sZcq15bO3VgRC8SJ69vRTx9Df69f3fO9jYLSwt6FjXYwJWCv60flrk3WBhZA6C4W/h2Rp4xhqfOTzdr80Yxa0DjgvWlMeyyOJXTFsWRs15qmMMCO8uXZpYfJnn+PFjJ70/tbaITvnePpzxe+U8WkPBoPBYDA4C5ti2lV/7ni4Y0oqWVQT4s4zsQn6g7lDS4pBZFaCdn3amXoeq3ayjKakD9MZHaN23Xd0X2h3Sf+o77BPURl7CiS/02Oe06kkVS0j1WlhSQVjyKCYC7+miMX28xo8t+rAUrQeyIR03zR/aqsYju7H3Htng7q+zmFxEUUiu9+dFivmT5O9pAIOVLxi9LXPOX32fI6T35rlatfW+263q91ut2px43oi+6LP26/DLAKOASPqvS8dI0yxLcc0HpRF4rnWKlmqtlDzQX9n1HrVIcOB99F8pCh/rRW9Exkb0BXZ8f8zE4AM3Nc3tT5ofUpgNlEqtPM2MUx7MBgMBoMLwaaY9s3NTb169epeuY8pIrbq7u6OClTcRTJHMLF0/aTilhi2crOrDrtE+SVZZpF56H5MYiWnQm2i4hf9iN6Gh0SCPwY6FvKQa1Vl9pKigv28xF7oh+zyzNcipbnumOngVhUy6i7DwZ8JHUvNaVlWqPiWsgrEfMS0qB7n55C1sA5AZ9HwzzpWmxiWLEfMC2Y50TTXp5R1VTs63QH/G/OaGW3dXduv17HnlM/MfGKxPh2bLHLH+up+aV2fedPdGl3TFSdSJk+n6cC4n2T1FNS2FEdSdddSprXDeA5auXyuef2JHh8MBoPBYHAW5kt7MBgMBoMLwabM49fX1/XLL7/cmkiSeVxgaUzCTSY0YdEc3pVbrFqmscjUqGumQDSaCynrp2AOlxdV23QshV6YPpHKhwo0eSeRh05E4U3jPvc9JtyfAhaT2T0FZPk5awIZXTnFZM6jGZQBLkzJ8c+0VrS+tGZSKUEF2yioiG6SNUlIBvHweVJAVDIf0rSo+1EIxAPEOrMnXTjeP5q46fpQqpGvJZ3zzTff3GlTwtXVVX3wwQeLICxPVdJnqciLt2lt7XTBa0leluI2lOXVe+ghAatVB9eCftI8/VB54arT0gU7IRpHZ7rvCuX4Z0zrpNvHg9t0jsa4+455WximPRgMBoPBhWBTTHu/39erV69udziJhbEspAINtEtlwn3Vkg1RVIMpYR7QwkAQimkk4RIWTNBnCkwTM/IULO2YFSSiMdCuj9YHvx+Ddxigo8/XikwcCzBJQTmPwc7XrtEV3Fi71pqQTBc0pnPW0rbYFjKrVMZPx5LNaKwpSuLH6Lq63t/+9rc791VAZNXymaB4DEsnelAZA6oYuJPK2lLcpCvGkFiT+qdzdT9aMHytdsVEGLzp88Znbw273a7efffdWzbNkqqOrjRvCu7rxGcYmJjSyMh4dX0K8zw22Hf9TJarFGjo0HvOx0bvxq6sb5di63+jVYYWjCTjy/fmWmlOphG/LStkh2Hag8FgMBhcCDbFtKvusqU1+Tj6ibudW9WyWAD9eNyVe/oGGQj9ePrdfUtsG3dsSVRD9xHDZilGChWspbR1fhzHMQZC9unjST/QqUz4vuD1jpVXlEiGt8l31GSAHfP2XT4ZNtkRf/d5IbOmb1bH+lx0Fg+tJf6sOqw3MjiulZTKpL7yvvSLO+iDpa+e90spdLIo6bmR7179Svdl+p2ea4p5pHOO+SWT/Gy6nv5G1syx9791MrJ8H/ic0vJAi4d+/+STT27Pefny5WofT4Heo7QkJotLJz2qcySB63OpPmpeOHd8xtO8UTRI12Dbq3qZa7VD13frKt+fj5GO+pgYpj0YDAaDwYVgU0xbBUMYvZmS87VDoo8kFUWgNJ6uR9+FdmHuy5JfhvfhTi2xTO7YWCrPGQ+jQLm7o/iBgz4zXV/97fxwqa2MOKZ/1O9HxkhhmCSKIzyFn2i/3y/mNjEfFkFgeT4fY/2fc0driX5+9913t+cq4ruT0EzWAEZP08JDK07VsiiG5pnnpuIIjIM4pVRmt57ZnhRfwmdR65plRX29dKxT47vGiDsBDsdut6vnz58v2PIphSJorUmxNHy/dJaQVIaSLJ3Po8+9JGcpl9zNaQL7ofumwhucD8Vd6FhlvPg5FAmiiAxjRfwdQn+32qh1sOZ3Z8Q5342pfGj6LtkChmkPBoPBYHAh2BzT/u233253itqxOUNkzql25iyS4bsj5nce8+e67KMYDxkCfTy+S1apRfk0O7F/30WKabOtOlZsTYzEd9hkvsxH53FVy903c8oZGZrOJQvltRz0DT92mdDdblfvvPPOSfKsbAPZhbef0eG8vtaH/p4kIo8hjUXHYoVUFIFRyIowXivAw7Z2UqEPE+l+AAAWpklEQVTejsROqg5jQT9kGk/9TexQbIl+cj+WvlPlZyfQInfKXMivrjk85Rw+/0kroHumuzx3h8ZBfVa/9Jz62pH1Re9C5jWndyMtU1wHtEKtWU2kVcGiII7O6qf7M3shMWBaG+jnTznXzM9mNk4qH8pztoJh2oPBYDAYXAg2tYXY7/f1+vXrW9YppuAsln4N7YLWmHaX5ynQf+Tl5wSWbWROd1J9UnH4zpecfC/0Ielc+kWdSYqdyEKQcrmPgWxAWMt7pyIRmV7yRx2LAH8o1DaW/vP2CV10vfeVOaGaB/p6H9tycAy+dmTR6ZTQaK0Ru606sFXNoa71ENBq5DEi9FnzOdY5/gxqXesYPVeuCngMx2Iodrvd7X103fsU70l9FdRXjb/6rLHQ7x7XwkhoncuIZn/GGF9D9TzGLaQ2MgefBVL8PSRmzeuxuEh6BnWO/N60/KXIbb6/dawsTeqnjyMzAfidkqyDa3EKW8Aw7cFgMBgMLgTzpT0YDAaDwYVgU+bxqj9NEzQVJzGIruAA67JWLc22TAdhaowLTdC8wmskYYdkmvU2UZTEj6W4BAMlkhmWpu1OZOUUyMzfBfz59Wg2YvqTm+7OMdnf1yx1fX29kHv0OejSztRnuj78HAYCCXQNPDVSqo/aqLUjEyBlRfV3f544LzSx38dEzCC2NREhuqiYtpaKZ2jdyXx9SqDYWl1mHtcVEloD3STeJhblUfu5RpMpWM8bC4QwXTQF+bEfNJev1W/vnrlk6uZ9FYCrNiZxFQX70YXT1fVO4PrS2pGp3U34ahtN6GuiO0wxHPP4YDAYDAaDs7Appi1xFSbeO1Mka2YKhHZZzrR5bhIMqVqmSvj1tANUOU0GIGkHyf74fcTWUjpPFzzUpSOlgC6mwJzD/jrBGb8WmTt3rWln+tRM9Obmpl69erWQjk0pIwJFaVh4paoPoKOVhsU5HgssCdsVXPC26FgWH0nFOMS+GeR1jnQjhV8SY6UcL4WUEhvUOWJyLmDTQX0ls+qOff78+YK5pYDUY0hiPgyc6litv7PIkj140K+dCl2Q9XfCJVWHcRZL7Z5hjqf/jUG6+ql16MVN9J7UfVm+lXKjqX+8rwoxrT2DGj++45MlppOf3QqGaQ8Gg8FgcCHYFNO+ubmpf//737c7XTFH96dSGIO7oiSDyNKUZH0sg+i7Lu229Rl9vrqm78rFysR0mIqQfFj0E3N3fB+/9EOg3TGlAdek/NhW+smq7ucbPQf7/b6ur69v5ycxK64ZzV1XnIX/r1rOO/2HqegDWQNTSny9iQkwNYXlan090OpDSxULeqTSs51PO6XveZEKP1ZWqa7IiveV8Srdz6qD2IkY9n3SBk9hSVdXV/XBBx/ctjP5RoUuDSj57+ljpmzpmtgNRXwY88JyrH6OwHgMvVd9/tQPrTf1nddQm9O66wSukjjWV199dadNXRpX8ifzva3ri0VTZMX7o2MoCJPEnro2bQXDtAeDwWAwuBBsimnv9/v6/fffb3c9yTehHZ92atwxrfmuBDJuFljwXReZh44ho5cvUP2oOuzydAzl/XzXSp/eOf60Y1iTMaWwjHb09ylPJwanMerKTD4luBv3djOKljvpZA1gdKnGhTEMuo/8a1XLiGjeL0Wwduu3E/fx/5O90HIktu7MQetOz4D6xQIR3hf6Pyk8o3aoXWuCLZSVTGxJcSQssbsGxq8cg0ePa5xcKIUxJrx+ikImQ6OsbFc2smo5DnpnaSy5htL9kiWn6q4FjNYmxvms9VNtZOyC3ttqq7/LOobNdZYkUPncqkCJxlVtdOuD1ipjQBgzkApMHSvn+rYwTHswGAwGgwvBppj21dVVffTRRwu/g++wKT9HXw93wn4Moyn5kz7HqsOum2UcmU+tXZ+3Tedox0nfqe+StVtk/rfYKtmg74jpd9LOlv5xHxPmwlOSlLmKSXK1w9tg2ESKguXaYB8TmB3AsoOMh/Advc7RGtJnHHs/p9MoSMVMBK5NXY++dJavrTqwY0Y0s/iHr9WOyVNaM60DRup7cR5vq7OzrrTpGtQmteEY45aVr+rQD7cucF74d7+OwHgAWucoHesWCcqHMm875YXrWBb7YUyPrzdG12sMWFCD7wdvC2VrGbPh66B7N7Bfun+K6taz9+LFi6o6rF31RfnhVUuLEZ+fZI2gVetNxROdimHag8FgMBhcCDbFtKv+3KUxotF33V1h+c5P6ccy55bRlvS3VB12XV25tlTUROyBu1fmJPqulTtARc5rZ6rrJ/8X2bLOoYqb7xgZ2UymlaJhu3PfFE6JVxA05mssdq2AgsDcXTJDKlZ5TiqVr5ibqvu775TrjQp/aV64dsTw6WtUv1PpQqrY0Srga0fnU51Lx6z5NNUGxnvomjr2odkGSRGvw263q2fPni2i3VMGSodUoldjqbXD4h9CV66y6jB3eqbPsWJRF2ItxoDFTBh/k+IvaH3gnJ7ynmD/dF9/nhQvIoatiHAyYY83oaWiK0iyFpOwNd/2MO3BYDAYDC4Em2Ta2olqd5R2ucxfFHtJPj+yCCqt0ceUInOZk7hWjF6fiUGxnGjy1bP0HiNwdX0xLve3KY9V16CfMuXadhH0nX70m2bVCans4UNwjra0GGj3d28j1Zfo+9PvSUWL0bo6JmnBMwKbzwaZo9+PLEXX5dpJpUA73QF9TmtB1YEdiUFpnStCXGvZGZbW+suXL+tUUHHt2Fw/f/58oeTmY6PnolNYY3zMWpt0Lp81f3e9LT8qlf4Yw+MWzK4/jKE5592h95HKf1ZV/fOf/6yqqn/961932korqz8bjBrvVOL8O4btnTztwWAwGAwGZ2G+tAeDwWAwuBBsyjx+fX1dv/7660JK0wMLaI6UKVh/l1nHg4uYEiATHNMZBP+d0o8s8aaAMTcBMhWGgWiUmfRjGTTCdC797oE67Af7k4ItaB6ncMWbLjl5Cs4JCElBhef0iSZgBqloTr2NWitavzr3yy+/vPO7m+Y07hQqofvHTalsSwoe82un9BaKCNH06dAzpjYx4Irz5O3Qs63niv1joKmfwwC3NagNKd0xHfvxxx8vUiTdRM/r0EyegsmYPqVj9DtT53ysuZ40HzL9pqJDNG13ZX4dTO3T73QzpmePwWl0m6g9HjzHwEAGq+m+emZkEq+q+uKLL6pqKenL4DJvO8dW3ylM+/SxZxneKRgyGAwGg8HgLGyKaV9dXdX7779/G9qv3ZCnSDB9icUK9LvvDBlIwN8ZjJUKeTCoRn+nsL+DEoHa5ZFd8J5PhSST2GFru8uq85h2SnMTupSVtetoDsXCaHlJKT8UGxFT0LkevKb7iFFxrWgOnbGwiIXWt65LC4PPvdjYscAjZy8sRMJiKSy/6IFBtCDoGrqmzk3FZpK0pcOf6/sGD+ndU7VM66xaWtyYrpdkU7muGNTHwDe3INB6whSsJGfLPjNolRZH/z8DDxmAmvrHYFmmCSYxHwoaMdWURUA+//zz23NZRpbrK8n00jKm9bUmiUsL2H0K1LwJDNMeDAaDweBCsCmm/fz583rx4sXtjko7nCQoQOlE7dS0y/PdFv2z3FF3pRr9OmRNOob+j6rDDlA7Qh2bCqD8ryIJvhxDSud7CHS9tZ004xLop9Tn+t1ZjNaK5v3777+/cw6lUauWYkFkWGKqvr7pD+z6mVL/yMb0k7K6bqVR28isKJ+paycZy07yUqIr/jzJukEpTVoY3MpxX3/kzc3NIkXT3wO00tA/zFRA/z/fFfSjpvgBxh/Q95wklwU+W0wXTOUuGQOQfL1+rarDs6AYIa4Dfe7347uWcRBa55999llV3S0jyvgRtV1jxO8N/4yxCIyTSNYAXU8lYbeCYdqDwWAwGFwINsW0d7tdFDlIu6AUZVqVZQspW6ndHH09SXaPOzRB16JPzv9P6dPBAZqTU8p40pf1WDjFR065XJZopHCOMxOtEfkqxZLV53QOizvo+hofsXNfb4z45rmUKk2lZ7uoYTGR5CekBanzU3pMCn3zFCnSmHnGiCwUZJWMDPY20me55uO+ubmp//znP7fjliLBGTHfiba41YQRy4zDIXNMRYDYNwrkuDWA5Yr188cff7xzP78Po9IF3Y+le/1+fK/xGVnLjmCZYrVDxT4koOLjuRbX4fC+0BLKc1ia1tumY7dmIR2mPRgMBoPBhWCTTFv44YcfquruDls7r67sHf1cVQeWQp8YReSTfCFzH3Vd7b5kFUj+L/raWNDjfxmcp7VIbsYgnAuyomPlGhOYLcA5TTmpYlqUqqUFqOpgVdBuX31noRIfJzJt/UxlVb1djk4nIOXxM/KbZSR1PzE8nzf6YikDnHy1tByQhcoP7mOfnuUO+/2+Xr9+vShS4e0mS+VcMvbAz2dJTPqJyWqrltYYzmWyNNICovGgdSihi8zvCjJ5mzr/t/qdrk1rgKLF//GPf1RVnoMup1v9pWyw/1/WLlqUKBfs0Bzfp1DRm8C2WjMYDAaDwaDFppj29fV1/fzzz/Xtt99W1WFH7yyDuzsWORcDdj8EmTT9QmTCXowjCcpXLRm2szgyGfquWNjDz6EPdYv50uegi3rV7ymanGP+WOpsZC/0p64xEs0Z87LVHynkVR2Yjnb5p0TXck0yKp3+aQdZWOez97+TSXPtaoySX1o/1U+1kT5oZyqM+FX/6D/0Z1DHsKQln01fH2L5p+Dq6qree++923WQxpiKi8w31/vHy5CqPSzrSmtdyoVnRDnfWczJr1oqren6p1iUjlmx0rNHa+cpUfF8F2ts5MNmzIZbeLpId1rr/B3CvmuOaeXyuWYsypTmHAwGg8FgcBbmS3swGAwGgwvBpszjr1+/ru++++7WLCFTSTIf6m8KWKDJMZlkhDXBgKp1MxVNcmvBazQFCjTt+7FMVdHfZe47J3hqC+iKdWjcGPBX1QcePRQaQ8os3ifQTWZQmTxTeohEJzqTM+Us/TO1jebXFNzDtB0GDdHcmwpT8PnRz1Skg2Zx/c41murGM5CUKTdMl/R283pMnTq37vFut6t33313MU9pvTGQSXPIIkRVh+AqfSahEAbWMZjN75OknP3cFHTF8dL1dY37uNxozvb7dcVluB79fapj1Da945XqxcBObytdR4KeH42VBwWz1jy/H1IBHrWB9eK3gmHag8FgMBhcCDbFtK+vr+v777+/3Q0laUAyMwZxpIIh3EEzzJ+fO9s7xmy5c/Q2qh+UwiSrcXRBSpfKsIlOvpQiH46nKpHHsqenFBBhEAwZkO/yKanbFV/w4CWxSK59poCl8oOUuuQY677O6MhsdX+xDP0utpiO0X2YipOYL9MsGcTEsapapgcJtFicy7SFtYAmMk6xaKWlJgufxofSxxSUSe8QQedo3rn+3LLDZ0hBXhpLFjfx//N9Q0tCSksTaAXSffW7r1VaGcW0O7lgfxa78qhCYuddf5jylVLnpjTnYDAYDAaDB2FTTFtygtwVOTOg/0dlPJVqQ5m8ql5UoysYkXwYOvaYjKVfr/MTJnlTCiNsGZ1/eg3cHXOMuQOuOsQriIk+duqF2KNYE8thJnD3rWOZJlK1TInRuTpHLCPt5NlXsRdK/Hq7KcjBtlJcyI/RuuM65E/vI0WCeN9OGKZqyc4YI+JQux/KpI+hEz2pWlpNKOjCZ7tqGXdDyxulPD3NjUxTbaOAyJo1g0yUrLZqWVSks84knzZlStkfIZWrVT/4PuA7058NplmqH+xDkmmlpZJznay5w7QHg8FgMBg8CJti2vv9/vZfVfb1dOxObClJhJINUw6PfrU1n49AKUpniGTWFKNI5TzfNo6x54eyHI4xkZgW2eVjiasQinpOPkWC46A5TsVMyM7IVmQdckEW+te1RjQWjHj361M4gmwsFU2gD5n+3CS9S2uQ5ofrOcWX0J+rcyla4nPdxXXQgvEQRrTb7Rb+4lQkRWOn9ivqWZ8ncRWOIaP4U9EKjh1jD8T0nU13xTD47KX3Kd9nQjfmfiyjxbtYEf+/xpaxFBQI8swKjgWPZZyE/59WAT4T3k++n4dpDwaDwWAwOAubYtqSE9RuSP5q94npM7Jl+o98d0R5P+0AtfPlriuxSu3uyAR0LfeDslxnlzf7VMzxPmDBFfo2uVN1nBJtzft0xyZJT41tymN9CqT5ULvJGliEZk12ltK0a/Pefab1tZarznVLBvJUjIEsRs/gmtSmLAfqD/29CV2GwSl5tGvjpvcO2Z8zNmovsFTqX//610Vb+Cwx953WJZ8fymtq7bMdKedeoMUy5STz+l2BElp+OD5+DmM5UtEPPjcsf5msa4zNYM4/LRcOvnP1u+6TCuKkXPgtYFutGQwGg8Fg0GJTTPv6+rp+/PHHevHiRVXlaET9X37ATnXMfSECix/Qx6ydnO/kmT+qHSGL0Kfdq7AW6fkm4fenehJ3yWQbKWr0WH+Sb+k+6kLc9T+1cH9iotyZa21w3h9aNvRUnMOW31TsBIub0A9fdWBH+kyR6FoXKTaALIkR9Orf2hwcG7fdbre6ntUHRs6rveqXv6vog6VVUGuI+fVVSz+4jlmLHqdPm9YfvucczK3v/LmpZGoXs6H7+byoz5p/RoBzrj1+gqxfFlgy4bV3sdrCUqoes9FltmwFw7QHg8FgMLgQzJf2YDAYDAYXgk2Zx3e7Xb3//vu3AWgyv7hgBesKv3z5sqqq/v73v1fVwazipiJdR+kZNFN1xTqqlgFZDLJJQhMMrmFAyFOjC6zzVA8GbXQiCqx3XbWUE+yQCgV0pto0b6ee+1hYS3tj8AsDd1hfvWpbKX1PgWP1umkurzqMn+ZZAjcUW/FnRc8W1wHNpfcJ0kttpgvH+6fz1X65yZjWp4A07xtTrZh6p+N8nChxykDENPZqG6/P90Ay99I8zTFO0rQ0/+t3jU0KMuNY8F2i+2tcPYWOIkJ8Xlmb3fvB+zPNLqX5vmnX16kYpj0YDAaDwYVgU0z72bNn9eGHH94GKaTSnAx60C5Iu9UU7s8dJq9L4QIPRODOloFvup/v7rqCIZR3ZLGJh0I79U44wHfnDNSjRYE7bd+dn5qqlsr4deeuBccIqZjIY+KUfjF4iOshydluIbXvMcGgPMpyCl2hj6pDICmfgcQgKY7EoDX9fU0CeM3qIWEVBmUmIRGxPN1LDDiV22VpTr3XUnqj/93vR2GUNflkjgell4UkY9tZLzgfSSiHxUsohevPtsaA6Vtkt0m6VvdmuiD751ZPWUb1vuvSIlOgbXpvbgHDtAeDwWAwuBBsimnLp00RipSqREEH7u78HO5o6Yck3IdOFk6GlXyw3L2RabG8qB9zanqBsxr6yjhGlI7kvf0YpnN1u/VT4DvUU4RF/H6OVCrxbYEsSVabJA6y5je7NPh66UpKslAFRT2qDuPGdCEyryQ0QgnXriDKsfYT+/2+/vjjj8Wz7aBlTe8O+m/9OSGrFBR/o3icJNfMPp6SLtqNLdM4k9WBliI+/xpb90+zjWyrfortVi1Flvh+5TvT1w5ZOduezmFamCwjFNLxa2odUGJ1KximPRgMBoPBhWC3pQjX3W73bVX9/9tux2Dz+L/9fv/C/zBrZ3AiZu0MzsVi7bwNbOpLezAYDAaDQY8xjw8Gg8FgcCGYL+3BYDAYDC4E86U9GAwGg8GFYL60B4PBYDC4EMyX9mAwGAwGF4L50h4MBoPB4EIwX9qDwWAwGFwI5kt7MBgMBoMLwXxpDwaDwWBwIfgvtzF+Jty7kuwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAE9CAYAAADnDXB4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXncnVV1738770tGCIRZioKCVEUGKyogMkMCYRQoKCJcvbf2OvS29Xprq5ZYrVfbol6rtNKCgGARREQgzBISJkVEQBEiSurAIDMZIGR47h/P8z37d9Z53iEhmJO3e30+fMJ7zjPsvfba+6zfb629dqqqSkWKFClSpEiRsSXj1nYDihQpUqRIkSJrXsoPfJEiRYoUKTIGpfzAFylSpEiRImNQyg98kSJFihQpMgal/MAXKVKkSJEiY1DKD3yRIkWKFCkyBmXEH/iU0ikppSql9HRKaVr4brD5btZL1sJ1VFJK+6aUZqWUxoXPt210dspaalqRNSDNvHjPWnp31fzX8/6U0nkppQXhswXN9d8Y4nk3NN/fNMR74n/njaKN41JKP04p/e+W7/ZIKV2QUvpNSumFlNKzKaXbU0qfSim9bEQFvISSUpqTUpqzBp/3xZTS7DX1vOaZC4YZm85/a/B9j6SU/nUNPWvTZl3cueW721JKV62J97xYSSntmlL6t5TSnY2NPj/EddNSSp9PKc1NKS1sdL/7Kr7rAyml+Sml51NK96WU3rtmeiENrsK1G0r6K0kfXVMvH+Oyr6RTJX1a0kr7/GFJe0j6xVpoU5E1J6eonj9nrcU2nJpSOq+qqhdGce1CSUellDaoqmohH6aUtpG0T/N9m5wt6avhs8dG8b53SXqZpNP9w5TShyX9o6QbJH1c0i8lrS9pT0l/Imk3SYeM4vkvlbx/DT/vc5J+mVLar6qqG9bQM4+WNMH+Pl3SgKT3raHnRzlU0lNr6Fmbql4XH5B0d/juvZJWrKH3vFh5i6SDJd0h6QVJuwxx3RaSTpb0I0nXSzpyVV6SUvqQpC+q/p2YI2m6pH9PKa2oqurs1Wm4y6r8wF8j6UMppS9UVfXoi33xf1WpqmqppNvWdjuKrPNyjeoF6H2S/nkU118r6SBJx6j+0UZOkrRA0q9V/0hE+W1VVatjr/9b0rlVVS3hg5TSfqp/3P9fVVV/Ea6fnVL6v5KOW413rTGpqureNfy8h1NKl0n6iGqnZk08807/O6X0rKTB0Y5TSmlCsw6N9n0/WsUmrpZUVfXT38d7Rin/VlXVVyUppfRPGvoH/v6qqjZprjtMq/ADn1KaKOnvJP17VVWnNh/fkFJ6haTPpJS+XlXVi3J4ViUG/+nm34+PdGFK6c0ppetSSotSSotTStenlN4crjm7oejekFKal1JaklL6eUrpT0fTmFW5P6X0ypTS+Smlx1JKSxvq8OiW697RUCTPp5TuSSkdESm7lNLElNIXUko/afr3SErpspTSa+yaWaq9VEla5pRZChR9SukjDQW0SUt77k0pXWp/T04pfS6l9GBzz4MppY+lEAYYQl9TUkqfTSn9otHBIymli1NKW9g1qzJuu6WUbkkpPZdSuj+lNLP5/i9TTSE+m1K6NKW0Wbi/Sin9fdPu3zT3z00p7RquSymlv2ie/UJK6eGU0pdTSlNbnvfplNKfNfpYmFK6MaW0Y4sO3p5qGnBJqkNOFzWTya9ZkGqa+4SU0s8aPfwwpbSXXTNHNep9a8qU6Jzmuy1TSueklB5q9PxwSunylNLmI43RKsrtkr4j6WMppcmjuP45Sd9S/YPucpKkr0tak5TuWyTtJCmGBP5K0uPNvz1SVdXiiFpGY/OpDodVzXz9ckrp8ea/81JKG4Xn/a9mXJ9LKT3VjO3R9n2c7zz7qJTSV1NKTza288WU0kBK6U0ppZsaO/lpSml6S9cukDQ9pfTyUSlwDUoz55enlF7fzOdFks5tvjs0pXRVsxYsTvWa92dxPUmBok8p/WmjkzemlC5s5txvU0qnpZTGD9OW10j6WfPn123unNB830XRp5RmNN8fmlI6sxmvJ1NK/5DqENCeKaVbm/l8T0pp/5Z3HtiM6aLmvytSSq8dSW9VVa0c6Zrmuhczb94maSNJMeT1ddXsV2ftTXVI8K5mnJ5p/n/kEGFVVcP+p5qKrCRtr5puWippm+a7wea7WXb9zqoXkzskHasaMdzefLaLXXe2pGdVD/j7VKOLbzTP228U7RrV/ZJeLul3kn6imjacrppWXSnpCLvuoOaz76impE5WTR8+JGmOXbehpH+XdILqRf5o1ejoKUlbNtds3VxTSXqrpN0l7d58t23z+SnN33+gmpZ6f+jfG5vrjjFdz5P0hKQ/l3SApI9Jel7SaSPoarykWyQtlvSJpq/HSvo3Sa9ZzXG7V9J7JM1o2vW8pNMkXSZpZvPds5IuDG2pVKPFmyUdJel4Sfc3/drYrvtMc+2XmzH7C0mLmneNC89bIOlqSUc0bX9QNQU4aNf9aXPtWc34Hq/adh6UtIFdt0DSfzZ9P1bSYZLulPS0pI2aa16nmpK7i7GV9Lrmu2slzZd0oqS9VSPSf5W07Ug2Pdr/mn58WtKOje181L47T9KCcP2C5vN9m+u3bj7fvXnWdqrpwZta3vP3qm2v898o2ndqM/Y+ToONLZ2/Cv0clc03/aqasfxn1czGh5r3nWPXnShpuaS/lbRfYwcflfReu2aOuuc7z14g6fOq586nms/+ubGh96i20Xmq59imoR+bNde/Z03ZQHh+z9jZd59txvwXqh2r/STt3Xz3wUavMyTt3+hiiWw9b657RNK/tsyl+xtdHijpk81nfz1MOyeqnndVYyPMnU2a72+TdJVdP8PG9XON7j/XfPbFRvcnN9fdJukZNXO0uf/tTd+/pXptOFrSD1SHmF62Cvr9J0nPj+K6w5q27T7K5/55c/208Pkrms/f2/x9QPP3PzX/z3r4lyO+YxSNOEX5B35j1QvdWTYB4w/8t2SLYfPZVElPSvq2fXa2en+MJ6iezGeMol2jul/Smc2AbhLuv1bSj+3vW1Q7Ack+40d2zjDtGJA0WXUM8y/s81nNvYPh+m1lP/DWllvDdV9U7TRMaP4+qblv73Ddx1THiDYfpo3vae49YphrVnXc9rbPdlae8AP2+eclLQufVapR3JSgk2WSPtX8vbFqR/Ls0MZ3xX40f/9c0nr22bHN53s2f6+vevKfFZ73ykZ3f26fLWj0Ps0+26153jvtszlqWVRVOyF/NpoJvrr/NW35dPP/X2/GaMPm7+F+4FPz/x9tPj9d0s1D9ad5T9t/24/Qvit5rn22RXPv/225vtWBGK3NK/8InxOu+7JqZyDZ3z8aoe1z1P4DH23nR83ne7XMg5NbnvtrjWJdW017aLXF5rvPNm163wjPSI3+PyXp0fDdUD/wfx2uu07S3SO85zXNve9q+W6oH/jTw3X3Np/vZp+9ufns+ObvcY3OZ4d7+Q377Cro96X6gf+75voUPl+/+fwjzd8fl/TQ6tjGKm2Tq6rqSdUo7d0ppT8c4rK9JV1eVdXTdt+zkr6rGvG6LKks8aSq40LzVXswkjqZ+p3/VvV+1UYyW9Iz4TlXS9olpTQ1pTSgehG/uGo02jzvDtXeY5eklP44pfT9lNLTqhHBYtWDMpRORpJzJe2eUtqePkt6h2r0S6xshmpkeUvoxzWS1lPtCQ8lB0t6pKqq7w5zzaqM2+Kqquba3/c1/15XdceM7lO9aMTM6NlVVS229yxQPbn3aD7aXTXrEKmrC1TrO7bn2qqqltnf9zT/Ygd7qHZWzg+6+3XTxr3D826tqsqTiuLzhpPbJX2koYJ3SimlkW5oqF6381WZl6eqtr2PjHRhY9vnSTqpoVKPV0PXDiNnSXpT+O/XI9yzlUaXiKeU0paqnbvOfzbPV9Xmrwh/36Pa6ScMdbukXVNK/9xQt6MJbSBXhr/vUz0PbgqfSTVrGOUx1XoZUuJaNxrbWQW5pOV9WzfU96+U9f9xSZvH0MYQ0qbv0cyRVZU23T9ZVdUPw2dS1v2OqpnU84LtPKvaDuKc72e5XdLLUh0ePTSFMOVwsjr74L+gGjH83RDfb6w6UzzKI5Kmhc/aMjOXqqZylFLaVr2Tf9vR3t/I5pLeHZ+jOtlHkjZRndm5nmoqP0pXQmFK6XBJ31RND71Tdbblm1RP4Ik9d49Ovq3aSSA+enDTbl98N5e0TUs/fmD9GEo2kfTbEdqwKuP2tP9R5SzuOB58HvXSlqT5qOpwBW1RbE9VVcvVUPnh3ifD3zhFvJf493Xq1d9O6tVd1/PMyRrN+B6v2in6P6qzhH+bUvrbEX60rw9t+ttRvIe2/VI1S/W/Ush3GELOVR1iOFXSFNW2PJw8XFXVD8N/IyVoTVQeA+QJ1Wg6/gA8ruw4/Fv4blVtfiQ7OFfS/1Q9Z6+W9GRK6dthTRlK2mx7qHnQZifPSZo0wjtiP6Mju7qysqqqrrWt+bG7Qple31f1GLAujsbW2/S9umvgcNKm+5HWGub8+erV64Eafr38fQl9iM4U69uTklRV1dWqAd92ki6V9ERK6erUkmcUZVWy6NW8bFGqs11PUzYGlyclbdny+ZZa9a0WD6k2uvjZqsgTqmNjnxvmHctVD3xbItQWkn5lf58g6YGqqk7hg5TSeur90Rm1VFW1OKV0ieoY4amqqehfVlV1s132hGo24Y+HeMyCYV7xuKTXj9CMNTluI8kWQ3yGE8LCsaWkTmZtsyhtot6FZSR5ovn3FH+eyVBbxFZZmoX0A5I+0LBcJ6teQB+T9C9D3PY+SRvY36tq459q3vM3o2jf/JTS91XHW7/tjM0alCcUnMKqqpanlOZKOiilNJ4fw8Zp+6HUyUKOz1ldm++RhsH4qqSvprqmx8Gq17Fvqv7RfyllY/VuC4sS17r719C7q5bPXqs6pHBcVVXf4sOU0lrdxbAGhTn/YUlzW75v3df+exbWoh0lORP0uubfzo6OqqoukHRBSmkD1fkS/6DaQdt2uBes8g98I6dL+kvlzHqXGyUdmmy/bdOow1XHikYtzSLwwxEvHF6uUk3R/rSqqueGuiil9ENJx6SUZkHTp5TeqDpO6z/wk1U7BC4nqXeLEehhkkb3A3KupHelOgv3KPU6T1epTnxbVFXVffHmEeQaSSeklA6vquqyIa5ZY+M2Cjk0pTQFmr5BULurjhdKNV3/gmpn6nq773jVNruq7blF9RhsX1XVOavd6m5Zqu4f5R6pqup+SX+T6p0dQzpYzXWrLVVVPZRS+orqxLLRbJX6B9Ws1pdfzHuHkbawB++9VrWzHbfJtcmLsflhpQnBfDPVGf8v1f5xSXUIRjVzcdEIbXqxa92qCOGJTmgrpTRBNVJ8KcXXxZdS7lHtKL+2qqrPv8TvWl2Zqzo36ER1/8C/SzWj+YN4Q7M2X9qAh8+llKY2odRWWa0f+KqqlqaU/k7SGS1ff0p1ssH1KSUyHv9KtUENReu/lPK3qhU1N6X0ZdVe/zTVC+6rqqpiq8Gpqn8IL0kpnaGatp+lmqL2LRNXqS4Y8gVJl6uO3X9Iga5T9r4+nFK6UtKKESbw9aoN8kzVxv/18P35kv6bar2epjqDe7xq2uYISUdVtuc4yHmS/oek/2jYl++r/nGaLumLzeL5+xy35yRdk1L6R9Ux0k+qjo19QapzPZo+/nVKabHqHIrXqnYob1Jv7G9Yqarq2ZTSRyR9paGxr1Q9sf5ANQ06p6qq1ipvw8i9kt6fUjpedYbyQtW2cp3qsbpP9eJ5pGp7u2YVn7+q8lnVhWL2UR23HlKqqvq26rDQSyVzJf23lNImVVWBpFRV1fUppY9K+myqK5mdqxqhT5S0g2qHbrEy4nwxNt8jzbxeKOlW1eG4HVQ75y/12Lxe9TxqQ5JrS+5Wvd78g4WPPqxMdb9U8hvVc/3ElNL9qrP2fxFyXl60VFW1IqX0QUkXNbkWF6tG9Vuq3tk0v6qqIR3cBtyw5XEHSeNSSsc2f/+isloEDfM0UXVStiTtl1LaWtKzVVVdY9f9RtJdVVXNbNr4fKq3VJ+WUnpENciarvoH/7+Tz5RS+qzqHKIbVYctX6G6INNtw/24o4iRMv1OUUvmrGrnYL5CFn3z3VtUL3SLVE/Y6yW9OVxztqTftLxvjobJWl+d+5W3rf1WtQE/rBpJvCtc907VtNhS1fTJ0aq3SF1i14xT/UPzkGrjvFHSG1Q7DmfbdQOSvqJ6IVmpvGVyW4UservnH5vvbhmizxNVOx33NW18UnUCxiyNsH1JdSLWP6pe/NHBt2TZ9y9y3DqZ3cPZjvLWq79RPdmfVx1C2TXcm1SjvPutvV+RNHUU723VseptUTeoXmCWqM6+P0vNFrfmmgWSzhuif7Ps7y1VOx4Lm+/mqHZWvtrYziLlhJ53xue9mP/a+tx8fmrz3YLweWufWuZNWxZ9z3tG0b5pqp24k4f4/q2SLlSej+jpkwrbl0Zj88qZ7gcOYX/bNn+f3PTzd82zHlTtVE4Nephjfw/17LM1+nnwscZ+R9xiuJr20DN29t1nJS0f4rvdVDs7S1QnTn5C9Q9HpWbLb3PdUFn0W7e8azTZ5scpO8CVpBOaz4fKot8r3H+B6jBptJNK0sfD529T7dA/pXqteVD1duo3j9BGsv3b/vvXcO0jQ1x3X8t1V7W860Oqt/UuVb3e/Y/w/VGqf68eaa75lWpwvcVIumb7SJEWabywByT9fVVVn1rb7RkLkuqCP39fVdWIBZOKrLuSUjpb9Q/AgWu7LWtbUkr3qt6h84m13ZYi/7VkdWPwY05SSpNU79u+TnVS2qtUZ0IvUY3+ixQpMnr5pKSfpZR2q36/seW+kpTSkaoTSE9b220p8l9Pyg98lhWqadcvq87UXqyaOj6uqqq27WNFihQZQqqqejDV5ZjXdInedU0mqQ4FvhS7FYoUGVYKRV+kSJEiRYqMQVmdQjdFihQpUqRIkT6X8gNfpEiRIkWKjEEpP/BFihQpUqTIGJS+T7KbOnVqtdlmm+m55+oidAMDdcG4FSvymSbjxtV+ysqV3Uf4TpkyRZL0wgt17QbPN1i+fHnX8wYHB7uu4VkTJkyQJC1bls8y4Zr11luv6+/hzoagvVwzfnx9bDL94nPa4/dMnjy5q01Lly7tupZ/n38+V1+cOHFiV/ujDngWuot9lLJOaAfX8gzXJ99xD+8bTtBffD/Pijrzd3pfJenhhx9+vKqqrlrskydPrjbaaKOOLmjbokWLevrIv0h8t+sJ2xmqz9Eu2vpM++kzY8xY+ljwnqgfxpb28AxJevbZuv7F1KlTu/oc2057XMdDjQNCv9xWh/qOZ/B8bNf1iUSdxznJXHGhz7SZ/vD3BhvkYoPoHNvn7zbb2XDDDastttiiZw64zfKOaCPomGv5u61d6IPn09c45lLWKe2PNhvnp/8/90T7Gy4HK44D99Jm+uXPiPqin9hf/N4/G8rueO+SJUPXNGKOR93EtdKfH98X9ett5Dv6yvr9wAMP9NhOP0nf/8Cvv/76eve73936OeILtstrXvMaSdJ999VVLl/72td2vmMQH3usPvQKA9lii7pMOsbL9/6DwnMx3jvuuEOStPnmdcLwJpvU5xg8/HBOvscgXvGK+qyNxx9/XJK0ePHirvc+8sgjnXsmTZrU9d3PfvYzSdKb3/xmSdIvf/nLrr74osnCx6TYeOO6VP7vfve7rvf7jwKTgh8O2sZzN9qoPhPhySef7OqTlPXHhKJN3IMet9oqH6gVnQ7et/vu9SFht99+e1e7JOlHP/qRXN70prp898yZM3uqt22++eb6xCc+oR13rM9k2HDDDSVJd911V0+7n3iiLrjGjwjtf9WrXiUpj7Ek/cEf1GfivPGNdeGq226rq8OyIKC/bbfdVlL34vLQQ3WZ+Ti2v/3tb7ve7wv7llvWRwSgQ8Zss83qdWXBggVd75WkP/qjP5IkXXRRXR0Vm3nmmWe6nsHfL395PgCN/t1/f11B9ze/+Y2kvND+4R/WhyY+/XRODKeNP//5zyVJW2+9taSs81/96lddbfUfXt7HPKXv2AVtffTRfEbRzJkzJUl333131z0+fyTpDW94Q+f/77zzTrXJrFmzemxnq6220rnnntsZL9rC3Jay7WyzzTaS8nznGuYaNuSf/fSndRny17++rmAMGLnxxhsl5fnKXJOyzmjLU0/Vxd9Y1/gb507q1WX8odpzzz0lSXPn5iJ7rH2sZ7QVm/rFL34hKdswc17qBVlcg67uvfdeRUEH9A894pwuXLiwq188y/vHvbQNneOk+NrPOspa9J//+Z9d12666aZdz5KyPf/kJz/pet+HP/zhYatGrm0pFH2RIkWKFCkyBqXvEfzAwIA22GCDjheHDIXapV50ghfpqAHEhPcJkgIl4eGC/n784x937gV5/vrX9bHYsAl4nKDjadPygVq0Fw92u+2262ozyMYRLqjy1ltv7boHpAM6xgMFWUkZKaAL3gsT8bKX1Ue0OyraYYcdJGVmAGSF1w9C3HXXXSVJF198cedePOR9991XUvaS0QHjx5hIvVQcOgK10F/06cJ75syZ0/MdklLS4OCgfvjDus4K4/PHf5wPJ7vwwgslZV2CShlT/t5///0794CUYALw+EGPIDp061QfjAqIDWQLSwFqctQPQwCqg+kAvfC5MzivfOUrJUnHHVcfDjZv3jxJ0uteVx9Uhd2DWpwxALnAECDYI2wGqF3K84PnX3vttZLy3KON9At7lzJ7wPP32msvSZnt+sY36mMC9t47n1+DfUXaPYqjdvqDHbjtR1m5cqUWL16sI488UlJmjhh7KY8V7WZ+YK/0y9Ex+ob9wYYis8K/2IkkXX99fe4SrAQoFYSNDTvCffWrXy0pMys8jzWDNsNKSnlssGfGAbvgHtYYZzWwdZgobJVnwALwuZTX03vuuUeStMcee0jKNsP8ZfywbUm68sr6qHgQNnOPdYf5xRoqZd0yJ3beeWdJeT1nrXJ2kzFGvM/9LAXBFylSpEiRImNQ+h7Br1ixoge9R8FrwyslNgxKweP8wQ96Tt/rIHe8VrxGvDcQgKN/UB2IE1SC5w6a8FgY3ifIkNgebeR9HnMDnYAEQPezZ8+WlD1dkJsjXdoICgdJcQ3tcG8YVgNvGETw4IMPdv3NM9C79/lf/qU+8hyEQjvw4B944AFFAT1cdll9ki1MAghh++2371zLc4jTEb9rk8HBQW222WadmOJuu+0mKetP6k2MAyXG2CsoScrsB+MC+gbx0GfQ0/z58zv3om/0ABsCwwJScASPnpkH2DfvxXY8Ce2aa+pDrGCkyAeAbbj55pu7+s2YSxml8i/30Cb658ljCHpDDjywLkXP3IMpQDdSRq8nnXRSly5AZ29961u7rvPngMZhe2655Zau/sB2uS6YE8Mlgq5cuVKLFi3SddddJymPNTbqcvTRR0vK85U5DavhTAesAagURM/cYh7RbuaRlBE7axS2wtxGfL2kryBZ3gNaRV+MsZRZJmyf8cbOYFhgaTwfCvYAuwYlY0vY7k477dS5B12AimGsYg4G9sa6IOUcHPSIfpkbjLmzqTFZD33RdtZT1kMpjwPrzki/Sf0iBcEXKVKkSJEiY1DKD3yRIkWKFCkyBqXvKfrRSEyWgSqLe6Wh46VMhXEviRbQdiSjeJILAr0FtQx1BG0IDeXUGbRQvAY6mq1ITnfF/cfQdlB1hCRI9oGGlTKtxnNJwKMdUHJQd1LWD/QxtBqfQ5ES8vC2sh2KthG+gEKPiYFSTrQhqe/www/v0g3v8YRKKG7oSSjaNlm6dKl+/vOfd8aWRBt/HlQxfYlJb9iJ07nQfvT1+9//vqRMMRLCIPHQk9UId0D5Yn/0A51Aw0rS9OnTJeXQApQv40TCmYcy0PcxxxwjKeuLrYf0F1qfZ0jZRmh3pHcJV2G7UtYpfSeREV0de+yxkqRzzjmn6xneBhIm49ZUbNiTnrCRuO0TqtapeYT56gmzQ0lVVVq+fHln/jMXjzjiiM41cT89euNaKF+3HeYU1DnjQD/QKc90mjjW7GDOxToVfC7lRFhsE2oZXfBeH/+4V51+8gyS/bBhtzsS8biGe7Brwow+BoS80F98P59Ds/v8xa5jYjBUOiE9D33SbuyZMSC0wri97W1v69zjITqpe0tqP0tB8EWKFClSpMgYlL5H8AMDA9pwww27EmyixOpMeIQxOcy3EZGEA/rFU8YbxbNtSw4D2dAmZwak7E26xApIoDA8TbxI0It/Buon2SomjvA920yk7KXiseP1xmIS7u3j5fJcPGk+x7MloYkEGimPAf0DtZC86B40AqtAQRU8dpJseJ8zMegNdBwL37gsX75cTz/9dAfd4XV74RHQI9uI0Ad6ImnMURjsx0033dTVFsaB54NSfEsNthO3UmKj2JRXBwOFgU5IQqNNjBNIV8rjf8UVV0jKyInEz1iUyZOG6DuJRTAU9I+tcBT9kDJTw1jdcMMNkjL6Y35h08xNKY87eoOJwr6wHWfqmMska6ETmBDaDtsm9aJ65nabTJo0STvttFOnnejat2U6mpeybTK2IE+fYzAzkZ2DKQApwkR4IiP3kLDIs7ALbMZR/0EHHSRJuvrqqyXlMcQeaJtvreMzbIPiO9gocwIG0ZOJmdMx6S0myDlzGBkikDRsBm3jXl9LKOBEgivjhA3zbC/kxPNZpyNrwhrm6xtrPGtf3DbXr1IQfJEiRYoUKTIGpe8R/IoVK4ZF71JGH6AjvG486lj0QMqoC2SOR0ucj3uIe7lXzDYRkCdIZr/99ut6lm/NwJONjAGeO96+1wQH/eCh0y+egSfdVrcajxOECqp4y1veIikjkbaa5+QO4A3HLXagZrbpSb2FNEBHeMWgDS9vy3O4BhYAlMe2tvPPP79zD3rD24etaZOJEydqhx126KAKPHZHcrSXvlDEBZti/L0wB+NCESQQFddiW6AIvxcdci3XoAOQiMftYW5AxSAs8hHiVkt/J/rBVmKREsbWY4qMA1tEaQv6gw0CPUkZzYG2+Bsd8Xlb2VnYpBgbZ/6AXD0fhjZSKIatdMwRcg1c9/vss48OFlOBAAAgAElEQVSkPMa+HkQZHBzUpptu2nP2wSGHHNK5Js5h8l7QJXPQESfvZk7HssPMQdYU32LHuDOXjj/+eEnSl770JUm5qJGXWCVvg1wT1gOYtfh+KTNUbLXkvdiu54e4bqQ8p0HssWgMn3v+DoV7mJfoERvFPmCOXJ8gadZP/kW/oHPfqsp32CbrnJfclbq3KDJfec5oztroBykIvkiRIkWKFBmD0vcIfijxuCZeHLFpEG70Hh0B4CGDcHgeKAnBy/PSsjAKZKIS5yJ+xvv9sBmQGl4/z8AzBPF4djHeLiiL+GLMNiUG5kVreDdoC6ROfBsv3WO9XIt3CnIEJYGouKct8zaeAEY78Pq9FC/IDH1FxANyp7ylt43+uI6jpJQ0bty4DlLjXs/kZxxAISCLGAP1oj7ojgId9AO0iC1RTMaRQdzZwXsiS+WMUUSatAXES8zaD39Bz9gt48I98XNHcMwNkFssOASyd/aHOQayZrzJGkcHtMsRUMzFoC08E0TsKAyWBJulXzwXVOgHCxFL5vnDlbteuHCh5syZ02GcWCe8JC56hx1BX4wl65HH28kZiLtYmNMwYTBgHr8HmXPtBRdcICkXleFvvwcGIJbnxQ5B8hSMkTKrCernHtpMgRvmq7MxoGx0G3OPYnllKa9f6Iv1jrkdy227RCRN35k/bbts6DtsBjbK/OVfL6fMeDDHSqnaIkWKFClSpMhak3UWwfue73hwBzEWPEK8bi9RCJLAoyQjmmxLvG7YAc/CxIsDaca95XzuMVFQENn7IHeQDejbkSIxL/oVz6aPpVD9rGo8dxAibeJ9XOvlTdEjCAT0A3IA9cVz3KXshYNQ0H08S/qSSy7p3HPAAQd09ZP4HXEz4qqOLr/zne903dtWpwBJKWnSpEkdTxyv23cqYEegA49f+vM9FgrCgSE65ZRTJOX4L2gSxsORADoE2dB3/qbvnj1N7Bs0gi6xYWzJ2YGYac+YEgsHYYG+HP3TbvTEtR43lboRPAiHg1XicZ2gMrLaHcHFOhagc9As3zPmUs7sJ2bN3GCuMxY+n9D9cAcUIQMDA1p//fU7iDC+R8q7G2hXPFKWe3xXDesIdsUYMj4gXVCl2wHrDGwC1/B81htnAZn32Cr3MC677LJL1/dSZiZhqNghASpmrDmAiVi9P4f30r/IhPm+8niuPWtSZAjQq6N2z+mReksYowvP9Oe5sX4ApZKxO98lwjuJy8fywP0qBcEXKVKkSJEiY1DWWQRPNqqU0QBojNgNXhfo2OMmIJahsiHx0PDK3ZPG44tHbYK02/bXgqhAR/EgD7xURzYgc2KfeLa0CZTC3+6Fg5RoN21jBwBIx+PbIBvuYV81B7CANkEbHidGiKdSNY6dBVzr1aHoKwgElOzettSNgEGG9NnRSpTBwUFNmzatcy1sjCMG9OCoXso2wxhHZC9lezv77LMlZdSA/sgyb4vlwVbATvB8jzMj2CLvo888N6JMKWdUX3rppZJy3gHxWuZIGypCx7BOPB9kwz2+FzjuMcfO+Zy4JsjVWaA4B/14VX8/1dFcGCfmBgxFzE/xPjPnnIGIMm7cOE2dOrVTR4DjiT1/46ijjupqP8gaNhAd+MEqcVcG60A8WIU57/kXzC3eR+4KTNfll1/e0+fIjnAt7yf3xw9tYswYK+YnayZMEfbg7BbthsVizQBps7vBJVa5I6eBtpMfQDscPTvzJGX7Zu3i2eQGSHn9gpnCZmCFaLOPNc9jPWhjMftRCoIvUqRIkSJFxqCUH/giRYoUKVJkDErfU/SxVC00pdOe8TACqOqYKOf0d9wSFg9FgAaFrvFEGa6FpiFpg2dBt/oWNGgs3guFCLXYRhVH6h8KK55Hj068AARt4aAV6Fs+h5rzfpGciN6gpUg2QSe01ZOeGA90f9hhh0nKiTpQZ57Ux3MZF8IuMVGPpB8pU2R85+V5o1RVpWXLlnVsB326jknogjon7IGOod09yTIeEIQ9QG2j47YyumzDpE+xZDC0qBdogd6EMiTcw5iyXZHwi9RLP9IP6FfoXkI5XmAJ+2W82XJGYhT26ImujD9zIZ4Lj35pF1vipGxHbCtkrsTtUtinlMeHuU0/oaehkZ3OjeVh2QLbJs8884xmz57daRvz1cN89IF1B1qaseTdvn0VWpu1gfnA+EDRx6RIKa83rjsp2zWFfDxUx9rIZ8w56P24FU7KYSLGgeJYzE/CDNiO65X3Ed5hnAgFco8nx5H8iP6wc3RBf/nc5yK2z3f0CxtmvLxkMe3HJqOtso76nGjb+rwuSEHwRYoUKVKkyBiUvkfwsVQtSMGPqgTJgE7wnPHiQWyO+vHI2DaGRxnLMOLFeYEWPD4QBd4qQhKPo0sSctjmBbKO21jYRiflhBWuISEnFoQAtXhBFdpA4ghtJdkNROL9Bc2TLBTvoR149l5aNLIkoD3QDF4zxUaknISG1x+3VvEe39Y0Y8YMSRkBocdZs2YpysDAgDbaaKMO8mHcfGsdiJL2gRpiARpPQgIdgFxAw3j39Aeb8aQ+7Axbfec73ylJ+sY3viEpJ+g5gkcPjDs6hingc9/ChZ5pN1v7eBa2RHucWWErE6gOFob+gOB9PsEekGCGMF5XXXWVpIzWHB3BFMTtfugCFNhWyCeiSeYP48Y8l3JCI+PUlvCFTJ48WbvssktPmWbfaktfYTiYc/HoXGfJ4jZZ/oUVw/7425EuCaqwJOiDZzL+PseYy7yHe7BZ1g5/D0wA8x22jzbxfua8H7bF3KAfvBc2iyQ/P7yLpErsmjnNvI/3tJWaZvz5DntGJ/57ASPAusY8HioRWZJuueUWSXluxOS+fpWC4IsUKVKkSJExKH2P4IcS36ITPUn3sqUcxwIR+z18F1E/XjfowrdMxGIlIEOeD3ogviXl+BVxn7vvvrurzdzjKBwPEy+YWB/eKAeT8AwOPZF6i0fg4cZjFL0QCEwI/SF+xTYVEA/69fggSIlr2JZCG/GoveQv7QVlcA/boUAsfg/tpq2gpDZZtmyZHnnkkY4XD3LzdoO2QAK0E3aBmLyjfsYdlB230GFDceuYlJENqAtkC7pkjH27HDFWEBXxWsaYYiUeH5w+fbqknCcAGuGeaKNedpgYPyiZfqIr7iGe7PfH/IQYr4c58K1x6In3wYjtueeeknrzIbw/zjz43zBiPgexxbacnCgcNkM/WB98KyLbR+O2PuY4cw0ELOV5wnjzL0iauQV74fFtEC16YN6gY/p1wgkndO7BjmI+CPeA3H0dwJ5hWShwxNqEHvnX49sxVh0LhzHWsB1Sni/Yd0TH0YadlYllutEf8xU78O2GrCcwXzwDdiuyUFJeCxlL/z3oZykIvkiRIkWKFBmDss4ieC/LiYcZj6KM8Sw/eALvne9AKXiPsSCNZ6bimceiB3i+EVVI2Wvk+aCVeLyqF4+JGdB40LQZrxsk5RnDeLK0DRQb2+Z5At5H7x9oC2/c48MIqBa9wQLg6YIUPF/h4IMPlpS9et8FIGXk6v3C2yYL3RFVFMqNcg3xaEdUZOyTqwDiI+7MvfPmzevcw3jQp3gEa9Qx8U6/Jh5RCUvTljHO8/kXPaEf7nXWBhROX/kuHiQD8nYd8x5QF/2ELQHNkF3tz4GZAF3GAiGgL0dUMAPoFZshVhoL/EjZvrh3qANkPOOcQ6G41xmIKCtWrNDTTz/dYZXIkfA+YzMwKBxvjD2jN0erxMdB/8wb2o+eQN6OVtE/84+Do1hbGEOfR6xfntvj74tHAku9hZMYy1jem/45m0p/aBN9Zxy41o95xp64ljWSZ9Bf1vO2gmWgb+w9MkkeT+fdcf7ASLCuojtvN98Nd1BRP0lB8EWKFClSpMgYlHUWwbehyOhV4bV6jAjBywUle1xWyt5pjJlK7eVERyu8h0xRkCIxNw5w8PeAXEBJoDGYChCPZyaDFPFKKbVJHA8E4SV/Yxt5T5v+ooBSQUewKnjHIG/33PHqYRloM6gJD9sRMJ40nnrcExxl3LhxnWxv9rz7oSnkATDOcZcBiMTzOkBKtAW0DYpgXHiG2yWoALRK/gT2zL2ed4Dtfe9735OU9RVt1mOXoKGIDGEMQDjYuR/+ETO84+fowjOh0QGoEtRNnDOW9vS/QYqwP9Ee+Nz3ajsL49fEfdC+TrCDJbJzbbJ48WLdcccd2mOPPSTl+Qpql6SZM2dKyowH7AjX8L3vAqI+BOwBc5drmI+wTT6msB7cw64T7DDWNpByDglrCLFqntu2dx60y3jTNv6N+RzoU8pzg3EH8VIHg/XHmUrGgfkTkTTPp5+wDlKeP+RMYSOsHdiSjwHrKPOH56NXWFXvF8+nXzHPq1+lIPgiRYoUKVJkDMo6i+A9DoNnR+wI1BWRtscZQVB4fMT08XSjh+ZxNFABHiDPAKmBlj2LGoQIssD7xUsGxXibeQ/oHm819hPP3jO9iZfRRjxnEElE/1Lv0YvEYNFJjNG7gKTpJ94vz4xxO+87HjxePf+CuH0fMbkT/MvxjW3y/PPPa/78+R1kAJr1fcK0gbg5CJe+tyE3WAjsjvbCioCaQGF+7CQIE3QaD9ZBvMYAtkneQYzxg2Y9jhoPBCGrPu5/Rze+EwCEhs3Tz3jcrqNL7AhbwWZ5ho+h1F3dDR1wTRxjUK1XnsM2QM/xACb675n3oDnaFHeauGywwQbae++9O4cmYb+gcimPA/OcHJW3v/3tkjJqJEYv5dyIuHvDEabUbTMIz48V3hhDbJR941KeH7BY9Bn7hgXwnQD0FZvhWFzyU+gDTJjHt4l5x10psbKcz1v2mMfxwK5hsFi/fU87Ge/YXWQBfE4g2AptZM0lvwJb9h06sIrYPP3sdykIvkiRIkWKFBmDss4ieM/cxJvH44pHf7bt28ULBlHhUUevFKSLlyllJAE65lo8Q9CyVz+LNdPxbHkviMrjgrQR5I6nCTombhr3gkrZY8cbJSYKIolZ/d4v2AvyFMjwB1UeeuihkqTZs2crCvfCSNAf2AiP64K2QDhxZwPPcuaFMQaZ0Z82mTJlit74xjd2YsVf+9rXJGXUImUkjR0wZqBJ4pke70ZnPAebiXYHCnPEEePLCMfqglYd2YOoaBP2znjwTM/B4P95N3HLWNcBm/VxASmCELE/0DL9dxYNdod7aT86IQZLmxn7NmEnARXiQFYe84/5D7yf9+6+++6SumP1Efn6WQpRFi5cqLlz53bQMMyXrwPMKXRHX5mH7JRwNhDkB+uDXcVaCui87QhoJK5rzGnPMaH/xLPZDw+CZjx8rQL9ci3rDXYI+qdtbt/0FbaJdY91jvHy/sZ99jBkfB53O3j/mAusEbSZ+Uxb3VbJc7roooskZbtwls6fIeX5ypwvWfRFihQpUqRIkbUm5Qe+SJEiRYoUGYOyzlL0frBGLNYB7cU1bQUtoPige6CWKFEKvQYV49ttoL2gI6EbSfDgvU6zktARKVMSSHifU8HQS9DcUNgkEEEFQml6gQso7Ljlha000JROQ3mpWylT57EATRs1j0ABQxuTbAWd6JQpCTAUIIJWZRyhM6EGpd7COcPJsmXL9Oijj3YoOPTnW/WgqAkpkLDIGJKQ5fZGmACKkjaRiBPFKVrsgHAI1B+JWvFIUynTmbQ72gNj69vIeD52y7hjd/Q7zhl/H2NHCeYrr7yy6x7f6gaty5zgGnQEFYzNOkXvZVKlrE/6E4/z9P7Qd+ydfjCebcd7xnLRbTJ16lTtv//+na2JrANuB/QBXaIPaGLs2osW0T6o/5hch/Aep5axTXTL3GasaY9T5swh9MF6Ew9Z8sJDhA+ZY4wt44Ld8Qy3A8ab9Qzqn/AFuvIQK2tDfB7jw1Gz6NW3dCKENEiKjSWsWQMk6ZprrpHUe0QzuqZtnsyKXRMmGy65t5+kIPgiRYoUKVJkDMo6i+Dda4zJGSDDmMiDxyZlz5nn4J2CNOKBIm3PAdni+dEOklJ8+wgeYEQUeNgkb/hhM6A50AnvicmEoAJHf3HbEoid53MP/ZRyEQ50gEdNwlZEX47+eTfeb0xEw/P1RDCQTSyOQdtBHY6M0RfPJ8mmTZYuXaoHH3yw006Qmwv6IemJdzPuMA5uO7SXpCYQDsiXZ5BY5kxOPPQjHs7B327foCzQF8mW2DDj4luC0A9tBY0zR/iXxDVPsiKZC53ALsRDllwYZ8YsJiFhu9iOFy+KSVy0NR7v63ORNtJu2Ceey1j4NrnIrEXmwGXlypVavHixjjzyyK57PTkMHR9++OGS8hyjj9gt28q8vbTLGQEpH+wE6+jIGtTIusJcwFbiEdTex7jlERvlXk+2hcWMCaw8lzbzfmdYQOMwU7AAsTCRF3LC9iNzwFzgPdiQM3AkssL2kPhImziwynXC+omNsj0vJk06u4LN07+2AmH9KAXBFylSpEiRImNQ1lkE72UE8bjw0vBKQat4y3i4Uj48hKI0V199dde9oAgQnsdwiIHjDYPO8azb4nV4tHjUoEm8RLxS305HfgDtBknRNvrFMxw14f2C4LiW95K34Hq8/PLLJWXkiRdM24ntsc2krUwsz+e5IB7QpzMYoGJ0CxImjodn7QWDGA90TvnRNkkpaXBwsPPuiF68PcQV0TloknHxbW20K8aVQRG0Df351seI6mE29tprr642eoySLUcwHLyftsatllI+RAf9YAegShAi6PO6667r3AtijkWY0BVMgbNNcRsk44/dkZ+CnrFhvwd7Yh6he95LARkpl3gm1kscmufGIlQuzA0/fCpKSkkTJ07s2EEbmwT7wbtYQ9A9bSGGLGXbxjZAhtgQ7Axj4FtE+Q4WDDtDp8SmfbssaxV6gOFgncN2/D0c18xzeR/PiEXAvEAN17DOsV2XOQgadyaE+UgODlsR6Qf3oGefT+gpMmEUJIoI33XCuhML28A2OKvFujOast39JAXBFylSpEiRImNQUls8rZ9k6623rj70oQ91vK6Y6ShlJAMiJHaIB4qH6cdNgjhAjcSdyNzEWwRdgBT8uXi/IA48Xe710rEgmXgIAiiI+JNnM8fDcmgzsTiQLc/w94GgYiY6/WmLvVHeFg85FslAf+jZ0ThtA+VzbzzO1WPL6CvGvhhrdOJxe/rKc/DC99lnnzuqqtrN37XddttVn/nMZzp6aSt5yrN5F6wLfWM8HK1iC9hVPNCFz2MM2d8DKmcMyUfgGT4vYXVgR8h34D0wOP6eiGRj/3gGjELbzghYBeyhLXs5yjHHHCMpMxPsxIAxwpZAu95+BAQcGTHPauYzYv/0i/g3bAYoV8oIjXg0tnnIIYf02M6rX/3q6ktf+lJHT9iMH5LC/9NnSiDTTuzN2xDLHGPzvId+MJY+X+JuIb7jb+zSc39YQyjpytrBteSwePlm0HDcqRKPR2bcHB3zPnIi4m6eWIDGn8ucwyZhSLAZ5kpb+WHWcdYS8h74vdhzzz0798D0wmJFhoJ55uXJYS2cTZSkWbNm9dhOP0lB8EWKFClSpMgYlL6Pwa9cubKD6KT2fcIxix0BvXC/x33iIQR4aHjUIAO8SvekQacgeVAK74EFcEQFCuezmE2Mhwuyk7IXioeL50omNns/QQyeJwCCQiegIgTE7XF7YnygDDJd0Q2sAMjFUSbeL/eCEIi90gf39vHmYRGIueFh815nT2APGI+2XQ4u48aN6zA8scSwtxcdEmsnbkrb3HOH6YAVYVxAGsR2GWvPoidL+vbbb5eUdQraxy59XCipSvw2lgEmhuhzIx71CyoB2aM/bMwzyrErYv7oj3nGM7y8LaiOfePoJu5/5lmO2o844ghJGWXCOsEYca/H7WPJX/6FCYmMlQux/qEO+pFqVDcwMNB557nnnisp5+z4u8hdYbyZc7CCnovDeNB/EG/cQYJ9+G4DbJS6BLQNW8EOnTWLMWPWF3IusG9fD1lHWANjDBxkjb35+hzri8RDh7Bhr20R20D70SMlZNGvs7fE7WEO45HT2Ldn8bPWxnLR6Ib1x3e8kD3PWj9c/kY/SUHwRYoUKVKkyBiUvkfwg4ODmjZtWget4O35nua4xxJURGwFj8wzxvGYQSugRLxSPD8Qox/6gDfHc/GSYQhA9r73Eq8blIyHi7eKl+/xM9AHzyPORGyU90X0KWUkQPyWzFhQLOjF93eDIvGcIyPCzgPEUR/P5R7ijqBdslk9no6AwkEGxC45bMQRN7E99uzHNroMDAxoww037KAl9ONsBpnwIF7aAgNClrnnKsSMZ5gGnkUfQTagNCmjR/QCKgbR8H7PF2E/MtfG4y6xC2c6dtutDgsSd+Z5XMt8wv493oieQF+MB2wMtuv3xDg5eiPbHeaGZxG3lnJsnwNdELKpY0xWyvOUucB8xa5hmbwSXNxP72xZlKqqtGLFik58m6OAnZVDT7BA9JGxBfl6hjrrFu0DadI3mAnYAc9Y51reE6tftu05hyWLh8tgk7TD10bYKuyX55MRD7MHsibuLfXuiGGuMMYwY54Jz0FLjAuV5mAk0D399ip19BWmFX0xBogzOTF7nvegqzg3pLwWXXvttZK67aCfpSD4IkWKFClSZAxK+YEvUqRIkSJFxqD0PUU/MDCgqVOndqhsEiy8hCMUEls+oGugmNoSI6AboZKgh7gHWhw6x5PDoN6gcKDKoRKhkJxu5908D0qT90EjewIJVDI0GhQcNG+k5qCVpUwbQpHFs9bjQTlSpgX5l7bFJJ6YGOTXQp1C/UOdQmk5rU/7oTqhwQ855BBJmYL0ZD62u9Afp86jLFu2TA899FAnWShuSZJ6zziPoZO5c+dKyiUvJemb3/ympKwn+jFjxgxJOekKCtCTueg/44ytQgvG5EQph4SgQrmG52I7nlwFlXj88cd3/U3/oIKh2dmCJWUKlufxfuYI73fdY4McooLNMO5QwLzfy7dCCRPSgqqPJWy9NDJzj+19zCvOjifk4nQu48TzL730Ug0lixcv1g9+8APts88+knIoyJMfsUHax3jTFvTo85JQFiETErnYshUTQT1xlvnGXIPajmuYl2+GwmYOECpjHNq2gTLPsS/mJ/ZHSJJwjNPhhALRBW1mPWK98YRJEjNZM0gsjInA3ONrJP+PbcTEVtY/T5LG9pi/6Bg7hOb38A4hWuZpoeiLFClSpEiRImtN+h7Bs03OE1Wi4NG6pyxlZBMPB5Gyl3bUUUdJykkg8QAZL66B4J2CYPB48ThBD17ggs9AcBzbyTPwQL2MKm2JW31ADKAA/vYjDPHIQb940rHsqCNF9AQaw1vFGyZ5jGc5govlWeMWMsSZEDxzPGraz9jQfx97vHgQJ0ikTQYGBjRt2rQOaqBNzqyQ9ISHjxfP1jRsy0u5grKwGdpNP0iGIqHMk/pAaiAqdImd0VdPekKnJGryHpAV17qtYuu0my1I2Bd6JFHQERXjT9vQDe0A+TjqY6yYA9hKPHSGxDbsX8po/OSTT5YknXnmmV3tYM7ccMMNnXtA5vQLHWMXrAWuR2wdNmO4w2YmT56sXXfdtYNwGfPTTz+9c80HP/hBSTmRkDkOosZ2HO1hg1dccYWkzPqBgtE1OvFxQd+sFTCHrFXxkCApsy/MKdi3uK3VE8pYM2C6sAMSAbFD3u8lq2kLuoVB4Fmg5batddh+ZFPbtoEisUhWbAdrlNsqTAHjhS6Yk7TZ2+gJnlJ7snA/SkHwRYoUKVKkyBiUvkfwVVVp2bJlrYdGIHhreHN4W6AFPHcv+oAXx2fEFfEiQa18TnxVyqgE9AOKwFuMW+2k7CmDgkC8PJ+DDSiSI2WEHo+/jdvwiCN7vBGvF7SKh0tMCnTuBSdAEfQDrx/EAGJtOwYTvcXYJ22Lx8ZKWX+xJCpFK4h7efyMbXIUERmu0M3AwIA22GCDTtvoj28nZBshSA0bAmmjC9/ChYePHrgGWwI1th0gxNihH9BLRNiOxuk/z8G+iDeDdImvel9BcCB64p20LRYikXJ+CzYKq8H72B4F4pakc845R1IuBANCx3bQCVutiNVLucAN4wKaROcgdx9rEDvzhe+wN9YER6YUjyFG7UxOlAkTJmi77bbrjO2cOXMk5e1/Uo6f8y7mI1uqWIfc3sjfIS8I28T+WAeYa14QiLnL+hOPjYbNwsb8M+yM9QY9oRNnN9FL3Eob5wb24OiZ70D3rL2gYeaOF9aJ2/94DwwYdu1FfxDYBu6FIeDzthwqGBZ0jh4Za7by+VpMv3ie50b0sxQEX6RIkSJFioxB6XsEL40c7yC+AjoElYIW8B7bih2AuvDmYoY4nqAjT9AjqJSDM/B842E0Uo55E5PmvXjBxPH8UASKUuB9x+fHo2Y9WxtvNCIEdMLfjo7xUvkOtIFOQF144Z6tixcO+gNBgkjov98TD/RhnNAN6MORFu8hl4C+t8nChQs1b968TvwUT92z8kELMVYcs8AdAaAzEBXjBCqBgQDpEs+XcpYxdgBipzBNLJYjZb3EA2RAX7AmrgvsF6RG3DmiQFA6iFKSLr74YklZxxQaIb4Nm+WMATpmtwiIGgQHuo05FFIeX+yP8cfu6YMX/4HNQo+ME/kB2D96lbI9M29g09pk6dKlmj9/foc1YV767h0Yr5gZjl6IQ/uhTIxlLNjFvTBUrGFuB8ypeLhQPKrX0TH6pw3xcDFYTmfy4u6cyIChcz73/sX8DWwTJgWdeFEmxhvGjnGnDC06xw78+F2ujQfEwICgV8+DgHHhfTF/g/ntu1JYi+iP5y71sxQEX6RIkSJFioxB6XsEv3z58q59j22CZ48nSdwPDyweWiFlJAvCxKOMJWtBJh5HIwMW9AMCAUHhAXr8jENGQGh4kbQZb5i4kz8H7xQvGy+SbFneT7xVyp4ynizPAEGAXto8UXRAXI5+8DkMgqN/UAvX4LHDTODZexyVdsPA8FzaRh88m5UxRAe+jz8KmdD0kX44Eow7BkAvoCDQhaNjPgOFgQTi0eJotQ8AACAASURBVKjc46VDGYeYdf7d735XUtabl/KkLbBOsBgwR7AAbqPYk6NsKbMYIBoyoi+77LLONdh+jMUyTvTH9RjLmsIQMD6xfC9IW8rzldgof2NfvN/LUzOW6ATkCyMG4uaQGCkjbt7t8fkoxOCZt+Sb+C6XeLAS7UbHxKF9DGBz0EfcaRGRu699PJe+YzvoBV2wtkm9eUFRF6Byz99hTqAfsuRBseSHcK/PT9A97ceGov587eAe5jT9IUcHe6cdbncg9HhwUDx+13NaQPmxXgk22/aeWA59uPob/SQFwRcpUqRIkSJjUPoewSNx77kLKJj4It4c3jAxHK9MxLV4n8TnQHt4fm17IkHuICaeCwKJn0s5HosXDIKjPyApRwigOFAQqIv4FsiOfjpDQTwTJBer7/FvmzccK0bxXDx735uLgO5oP94wz6ffHsvGc6efeM7E+uOxsVL2zPHI244DRZYsWaIf//jHnSp0tM31BBqCraCdjPvOO+/c81zQD30ha5r4M8gOJHX00Ud37iUjnHFhHGAFQP8wS1LOYgbRxENO2qprYRuMIWNG/gixZbLdXSfYPkwKGfCgLuK2N998c+eeGG9+xzveIUm64IILur6HdXKGgjE97rjjJOUcAN7HGGN/Up6/oLCZM2dKki666CJJuTaBVyCkz/RruONiOWYYm2T+e02GWFGSeYr+0LlnqLMmsCaBWhlbxhq79Ng4DFeskBezwv0exo4MdPI2sG/06DUBbrzxxq73MdewL8aL93q9j3hQDSwDcz1WJ3QdwJawq4J7mFfok7VSyvbGnIgVSBkLz8CnjTyP9RSmABv1g7giy0D9glmzZqmfpSD4IkWKFClSZAxK+YEvUqRIkSJFxqCsMxS9U+RS9wEH0F5QcH4ohZST7ZyGjGdcQzHzLOiveK6wlKlD6FsSSKCuoIn8fSTiDHWYDTSYhyC4B4qS7VfQuVDO0J2eXBPPNoZWpfhGDDP4PbSFNkJl0Z+4TU/KeoNO5/mxWA198L7yHbQqOmLcvHAHlCw6IbmqTQYHB7XJJpt02g8t6AlFvAN6EKoU2j2Gefw76G2oWfoBjcd7oY2lnLQJvRtpx5jQJuXwCvQmeo+hqOnTp3fuOf/88yVlajGWc4a6hIZ022FbJHonFIFd3HbbbV33+vNp03nnnSept9AIVLAnfUGzoieSnmLREt/KGD/jgB+28PE+T1IjuQ5qebjwzvLly/X44493wgLMRcZP6k2yjAlf0N8eqmOtINGLPvJ85g/3Yo9SHnfeB+1MOAYbIvlSylQ89zK26IW/oa2lvHWUa3hPLALGPPItb8wn+sV8h/amfx7m4z1soeUaQgKE+bA/T3gj3ELYgrbRDubiLbfc0rmHfsRQG/3he//NoQ3Yw0iJ3/0iBcEXKVKkSJEiY1DWGQQPWsUjA9VIvQUrYqECPEH3pEHuEZ2QnAbCwWPzYit4byABvFO8VpC9oyLaH4vWOArytnsbQDugbbxVvHs8Ty+KwfPxUmkLOiH5xROzIosAMgDpgBRJSvHDbdj+x/tgChgv0Cc682vjVkG8Zd4LYpEyquS5p556qqT2ZJfx48drq6226iln6QUs2FoIsqIt9Ifx8eSqeNAN401yEgwLjIgzHWydIrkOuwB9xYN2vA2wMXE7Fn+zJdE/I/EKW4qJZfT34IMP7nxG33kfLACJRbAAvsWSJFL6EQtFYX+xuIiUdcvRrJdccomkbMPYqBebYk5wLwlStJ3+OosWj5weTlauXKklS5Z03s064IeOxMOLSHqEvYKlcUaRLWDYQWRJQLb0z20VBoL1Lh4uQ788cZYiRVdddZWkPA4kH6JTZ4wQ2sBaQYIeAivoJcBZg+JBSDyLtrUxRmzpjWVgYX24p62t6I/yxjC0MDy8w4W1ljYfeOCBknKJ2rZSxszL4bbn9pMUBF+kSJEiRYqMQVlnEDyeWCwp6gJCx6PF+8bT9rgPW7FAbnjKcasEiMORNm3gGt7LM4jNgjKl7jiylNEPKBnvNB6vKmWPFq+YfuC1gtI8ToyXD1ICGRL741+PvYFIQbVxuwhIFB15XAsPmT6je2JwfjANQntpP94x/0b0J2WUB/L95Cc/2fNcZHBwUJtvvnkH2YCAfIsO3jrthMUgzg7ycLsDHfA8kBrjDzMBWvGYIawHugSdsJ2M773cKO0HufD8WHCnrfAMz0GXIN6Igjg4xb+LsVjGm/c5y4CA3ON2U9rB3842YF+0ga18lPXFLrETKY9LLPpEW2m7b5OjXC+lTr3PURYuXKi5c+d2yqWCRB1dguqZh8SiQXcgQLffWJ4Ze2OewsrBtDjrCKMSC/TE/Bc/OIhDcmgD7B/rUdyeJ2X7okBPjNeDfPnc5xNx9Birjsjdy82CoNEb+TBRj/TbWSg+4xryQ7Bz7M2PDWbbHWsIzAu6gGX0+cR61lYsq5+lIPgiRYoUKVJkDMo6g+BjAZU2wVvkWjxLPFr3fCnSQUwMzwxUgscGgvcSq3wG6sPzI9sUJOeMAagHJMXzY9zJM1JBQzwXtIeHyfvxiinT6e3F2wWVg3hA+KAlKWekk98Qs+d5Jqjf2QaeB5olFsbnIBUvHEO+A7sf8NxpM+Pm2c7ohzg4McY24Zhh2skYgwilXpQNAok5BCABKcdUsR30AgoCAYNAvMQq+oCN4R5sFt06WqXdHKuL7aIL7MJj/SBYYr0R6WJ/FNThcynHVhn/iBwZD48Px0JUPJ8DmbgHm/ZStSBPDoahbC9sBu/1GDAMxUknnSRJ+o//+A9JeR6hi7ZStfTVj6yNsskmm+jEE0/s2GI8eEXKNoge0AF/E4v3cQFpgoLjLo3IsPkuFz4DjWJn8ShtZyaY3+gyHhTDe8mvkDJzwlwA4ZJjwlpCpn/bMcWsIdiSF6uSuu2NvA3ahs1id6z5zAlnRuk7eowHx7DutB0rjX0zt7Ed7MTXN/JdsMXhjqnuJykIvkiRIkWKFBmDss4geFAz6MnRMTEcYlF4p8RaQJXuSYMoQP14a3jsIIS2Ix8RvEM8XLxSPE5i1VL26mkbqB+PkPiWI3j+H48ahO4I1Pvv2awgBJAp+gKxghwpnSplT5Z78czxitFF26EWeLTE+NArsVJi2n5MKGgVpBDRJUjV43W0H/QS6yO4PPfcc/rJT36ifffdV1LWk6OHKCBs2gTi8vFnDKMeuCYenuNIl3FAl9gmbeMe3xHBeBNfhFFhTzaIzecENglSBlFhQ7Q17qX3/pBhjc6jDTmrwWfohvlE3DvmuHiGMmOIvcMqwAYQ+/cdH9jT1772ta7nx4NXnPGjbW37qaNwyBXZ5x/4wAe62ihlpMdzGTv+po+wFlJG9dgZ8yQeIwsD4+9jLsEu0TfmHPPfyxxjK6BkxhDmMB4OJGXbY0zjgUXMdVgNX49Yc7Fvnov9oTPf+cR6w7jwPNrM523H/LLmY7/YCr8TsJ9e5ph1h+/i7wNzx+cEwmfDMcn9JAXBFylSpEiRImNQ1hkET9zFY1JR8PC9+pOL74klvoPnT5YvMSkQAAjXs2dBdyAdMoZBRcTIHF0Sr8J7pC14p3iljtzw3kErtCFmsYJwL7300s69ZA+jN5AD8XtiSp6tjTcPigCR8Dk6o61ejQykCGphnCLq8Hg6SIO2wBSAHDmwxKvVEcuLcc42mTRpknbccccexOMH+oA0iZejUzx+4p4eQwShw0aAGtELiC0eCez6YFziHl/sz/NFaBs6xi64h7Z6Dgb5DaB7bBJd0E/yHryCIgiGtnItOR/MM2dw6CO6ZScJgg1jQ47+0RNzIu5OAHX6HAQpMn7MI+YXc9L3P2P72KivB1GqqtILL7ygY445puu5nj0da1rwfGwGO/aDXLB/5jl/H3bYYV3viYe2SNnWQdAgTtY75mkbY0TbsF3yXsjr8HUnVkzkuawp1BpgPrUdPsW99I8xZTwcAUd0D1uLXvkbG/U5z/OZT+QH8Px4BLGUbZR5ii2Sk4E+/UAkdAqC9xyZfpaC4IsUKVKkSJExKH2P4MePH69XvOIVXXu8pe595WS+49nyHbEcvEmP++H549lFdBdj8450yfLEoyRDlbgWXp7H/EF7oDzuYU816MvbCIIiTgoqwtPEawW5k7Es9aI7EAGeNN6rx/hAQXi0II9YwQrxTGieF+uxg/bog3v7vCciwljtzREJ8U28eK9oGIV64qATnuPV9Hgn6CHWmScW6nkA2BsxT/5F19gQffbqhPQV20Rv2BkxanQgZYYgHnsc2QfP7OXd6MvRiPeLtnu8EbsmRs04gJppj7MMEbGT94CueV+shujtBxkyTrFOuh+7CrJlbOlnjNf7nmnyTuK+7qGkqqrOe0DlzjzAKDBWoEnaS5s81s96w7vJcqdOBLqIxyxLefyxs5gRjy68xgFrENns7DbgCGP049X9Yl5LRP20jRwQ7x9oG0YHJoV1pu2o3kMOOURSHn/0iG3Sdhg+n/PYE/aFjugDzKnrhLbAVKBPbAc7cYaS93hVzXVBCoIvUqRIkSJFxqCUH/giRYoUKVJkDErfU/QvvPBCFz0PLdZWJjMeIgHVQ0JEG03jiUJSph/5HhrSjxiFro/JZ7HwiVM8UFNQwfG4WpKivF+HH354V7uhiaAfoaGg+7xEJYlptIl7eS/itD6UFW2CqiUkAN1Kv6H0vc9QcyTvkNRF6MHfB13P+6ApoS2hKz1JjaQn6DvfOhVl3LhxmjhxYidBjvHwRD/sib7SPp5Pm7xAD/ZIMhp0M9Qeut5vv/0kddPtvCdSo9gFoSKnMKFECeuQvEWSGG3z8YhH+8byxlCN6M+TCAk1xTZBL6M/T3iljTyHEqnoiP5g3051oy/sDyoYO4Oi9VARIRrmJbqnbejIi5Vgv4RQ2ra+IgMDA9poo4069zPmvhZhp9Do6JKQDGuHzznmLDbDOPghNlKm1n17F7aKbfIexiduRZTyGBJeIQRFm2KoQ8qUP+Mbk/pYb+iDJzUfeuihXf2KyYRtCXlXXnmlpEynxyTPmBzJ91K2HQ47Yusb6x5riId30AVzkefGwmEe1iIE4KGldUEKgi9SpEiRIkXGoPQ9go8CQvCSkSCXWMgCbyuW0WwTPF3uwbPFQ/StVfGQCdBC3DqB1yflBBKQPIlStIn3+eESeJr0h2vwpEEIJJ3EcpB+D0gO5EQSnCdK0S8Spig3y1YrPGq85Jj4KGXmA5RB20Hp8+bN61w7ffp0SRkB4JmDyhgT32ZEG0AIvoUuSlVVqqqqUwIVpHDEEUd0rsHzx8PnqFL0RBtuvfXWzj3okrFjzBivmTNnSsoFdRwdgaCuvvpqSb2HwaAvTyLlO1AwLAP6xw49aYx3Mh6MLWiYRDBKlGKf/m4QNcg9HjHsaIzxQI+gImwShgqk7wmBJE/RJuZa3FLlaJb2ogvsOSaesW1KynOB/vhxt1GeeuopXXLJJR12BBbN1wHmHWwCaBGd0/cZM2Z07mEuOSMo5YQ1+oodODqOh+6AiunrcOW8QfvYEOOw5557SpLmzp3buZaxjEfXIrHwja9Zs2fPlpTZBtqIrmKRKCnPbxKRGSf+pa08wwt6wVrEpGXmLTrz410Zd2yFcUJ/2L1vo2Q+0e62tbYfpSD4IkWKFClSZAzKOofgEY83DveZlD1R3+oGGsATA1GAPPBaQcuOOPD08IrxFkH78ejKNuE72oS36p5hLMRBm0GdeJrRe5VyPAmkAIKKx3h62Uf6BcKJh2ngSRNT9u1roAaKAOG5o8d4PKnUuw0LREq/OKrTj6X9zne+IynH+hxRRRk/fry23nrrnq0tHGbi93NsLOiVttB+z29gzHhuLBpDSVnGwNF/RHkgT8aWuJ8XVEGXII546AZ276gQ9MtzQY5sbQQ1UQbZ5waMB4iaNoP+EY+FYvNx++WBBx4oKR8PS3zfGQrmDXbAM0Dn2KHHzA844ICu58GiEcdlHvlxyDAu9MNZwCibbbaZ/uRP/qSDoBlrHxdsI27rZDz4149KZh7wL4wHfWT8WVucFQS5csASz6WkKzrwLY/M5Vi8CrvANn0doE3oB8SOTYGkyXtwJiRu3URA0qwTfnxrnJ+suYwh7+FvZx3jgTtcy9zAlvxQKlhE1lf6G/MgnJlgPGKuSb9LQfBFihQpUqTIGJS+R/Djx4/Xy1/+8q64y1CCtxsLNeA1OiLGA+MeYiyg/eihtR0PSKY4cS284ZgLMJwMl5WJ18jz8FZBYbGEoxfFAFUSMwJt0M/Yf/8MAfWDRMlmjTFTKaMI0AzImDbzuZeZ5P85kGSXXXaRlMfrK1/5iqRuhEDcnudRzrRNxo8fr2222aZT3ANP3eN/eP4xBgrCiMWGpMx+gChBDYwTCCrGB70vV1xxhaSsfxDvwQcfLCmjMakXETJOoBSe6WwG18QcCBAW/YQJ8Ux/0Dh2FrOzGVMvGATyBNXTNpgQ2AVslNiv95ViQsRxzz//fEk5ju6Z0DAuIFTyRWC3GDcfa4R5FXfQuDz22GM644wzOnOcdcFRXcx9AO0z3jGWLfXmAcFsEOuHKQIlOxLmPbBY8UAX5nZbljk7YYi1g0S5B7uT8viS3wKTwjihg7adSDAEQ8WqvWQsQl8ZX2wUho82YsOeE4A++Rek7jkFUnchJp7P7wEMIfqkX16ozOe/lBmkWbNm9fSnn6Qg+CJFihQpUmQMSt8jeA59wCMk/hJjPNLwR4dK7Sgcbw5UhjeKl9oWRwexEbOJsT32+nqMGu+QdoNKQCKIxwVBCHi9oD36gVdJzNTfB3rA6ycujJeMd+rIDYkHQ4AC999/f0nSNddcI6k71ocXHEuggtJ5r7+Pa0BfeOZertfbI2XUjD0cddRRkto96UWLFmnu3Lmdd6MTR2FkhDMuIE/GOKJnqZc1QA/EKtmDy9+Mj5T3cpNfACoBeUbWRMoMB3FyECHvRce+T5yxY76ASuI8IhvddUxfQTigc+wdhOfHkpL/ATombwC9ovuDDjpIUvceemyRuRdzZpjX6FXKc4MYPONILNnRPsL9IO22PdnIlClT9KY3vanDODC3PM+BOgfsiGDuMi/pF7Yk5flB//kOtIw9wCDBLEk5Tg9KZR1gvNraGEtTY1foCSTvcxm75bkgd3KNWO/a4tCsa8T4me+x3LKPD+yf5ypIvfU2QPJeQwG2AhuJyJ3++z30h+9iSWz6RR0SKbOVzH1yV/pdCoIvUqRIkSJFxqCsEwh++fLlHW+uDblHGU38Bw8arxD0ED3NNsH7ZT84yJN7iEM5SuH5eJwRuSNeyQ7PEi8fRIC3DQqEZXDPnXtA7ux3Jq6F9+pHjILMQHXoApaDz/HSfX93jEeDLkCBoDEfA2KHIBN0w/uIC3q/6DtxQeKRbZJS0uDgYAdFkDvgFapASIwHY0gbyIx3u2MvO7FqP2xDyugFFObePiwP44INoUuQljMGcf8z70fntJ04q5Tj4yBrzwOQcqU57MDtHXRM27CRm266SVLW480339y5B+TJuIMMYWOwC+aEx+85Fviyyy7ruhb9oXufM7AwIDOeSz9hhzzrPe7B9yp3UVauXKlFixZ1+srzfU256KKLup4DCgdNwhA4eqQWA/kM2DF2zXzBttj9IOVxx1a4h50rzCOvFsnzLr/8ckl5lwE2BePirBS5HNhb3Akz3LqK7TibKPXu+3e2FfaPHBzWM/rH89GnZ90zLrCA/E3bYVO8NgB2hY5ZA2CDsCF0JuUxbKsx0M9SEHyRIkWKFCkyBqX8wBcpUqRIkSJjUPqeoh83bpymTJkybAJdLMAQKSSoOafModWgxGOxFZLioLhIvpIyVQ6tBV1IYhG0nreD90BhkRgFhQldRJlTKdOoJEhBLUOzQfOyxcYPRIGWhl6NxXeg8Zw64/kkC0Gz8X6Sk6DMnIZDf4Qv+BtKC+q5LakPQefoF917UYy4/csTvaKMGzdOkyZN6oRMYklKKYcd+A56DloyJpxJmVLkO0qRQgtDC0I1Oz1OqIaQBTZEG7FLp+gZb8YOyj8evuGFOpgT2Cb9oZ/cg124kExF2/iXdhCS8NKxzDHmD7YUD/DAlnwr14033igph35ItmLOM1d8SynbybAZ6FXGlrnuBYri9i4v7hJlwoQJ2n777TthEBLLfFspY8g4v/e975WUqXoSyTz8cdJJJ3VdA83P3GXuYfOsF1LeRsg40zfsjr99jvE8tkOiQ+wAu/YiRrQNXTLP4+FWrLeerOhrrJRDg7SJsI+HBLB5wja8B/tm7eQ6PywqFgriHsaacIyvxXy37777SuotckVCnSdlD1cUqZ+lIPgiRYoUKVJkDErfI3iOi8VzxovzwgN4kkNJLIXIc6WcPEFiHklHJHjgnXqyDh4mSD2iUrxuT5hjewxtick0CAVQXOIhNniWoGTa6sWA0An/kohD0ljciibl5B0QE54y74vJg47ChjrgB6YAXfhRliT4cA1t5dAWkK+3lfGCTQBttsnKlSu1dOnSTt/pB2MvZTviGpAUCWSgZkcp/D9JT7QXRBi32nnRGsYM/cSSyYizFiSZxaNGjzzySEl5WxPoSMrbhXgf6Ag75qhTWCC3MU8Kk/K2LK5hmyTbxKSMUknMpD/MDfqJ7n3rWCwri12ge7bA+VYuEDXX0DbagQ3HrVdSTqryQ4yiPP30052kPykngLm9gUKZNyRlwcIxf5zpgP1BL2w9xcaxFdgBUKaUt0vSR2wW/TH+nsCInfEZ6w0JmZ4oiWDXMAUwdjwLndI2356JgJL9ECOpN9lOygmazGnWSvTKms/64OsOts/6HVmHmPAq5XkaD6piXrPOOYIfTdGyfpSC4IsUKVKkSJExKH2P4JF4hOCqCN6bb49CiPd6WUIpI814VKuUEdo999zT9fxYutG9Rt4NEgBhDVUGUsoeJSgMzzXGxGmPx5ZjoQ9iVDAU3OPlbWEVeC7xbfqOlwyK8djy9773PUkZeYAmKMVJ2x2N8/8gYIS4HV74DTfcoCi8uw2BICkljRs3roOWQDHHH3985xq8eWKt/At6IIfAj/4FQYFwQI/8G+PbjqxhcLg2HqgB4vCYP7ZIrJByvaCXffbZR5J01VVXde4hphqPO2bbHOgSW4oHyUiZKQBBg3iIwRL39nbTP/6OhXZgvXzrIExALLoDOsfeYrlQKeuNuYLemM8+n+KRvPEwJ5eJEydqhx126PQVFIsupByXhXFAeDfj7jFjciFA39gBNnrsscdKkq677jpJ3Qfs+HOkzJZgwzArbUWLuBd07mWmpW77pi3RVmNZbXKEHFFzbWSBGAfmtDNG3kcpr5/onDmIPfg6x3MZf/qL3bUd4kWZ5FishvEczi7ioTn9LgXBFylSpEiRImNQ1hkEH8WLOXiMs028IAuCZ4cHiPdGrJg4E+jJvbpYgpICEHiyeNTuxdJeClfELGf64JnpvIfn4rETG4olSz32RkYtmc8gKlAznq7vDiAWxr948Hj39BMU4vE00D3thwWgbejbPXdQHc8DecSjZr1cJ6gRJOolXdtkYGCg54hHkK+Ux513wKzAEPC36wmGAQQQGSKQB8jTiwmBzBhbYsnYEnrybGTGg2IeZJ2DaCjX6/YWEVp8VkRjzmChU/oDouJesuidoUIYs3hoDwxSW7ESCuiAhGMGPoyJx+DJIYAlIf8kZsb7OsGcoO8jFc1asWJFZyxpm+fMYKfYFbkKzJMzzzyzq61Stn8+44Aq5tjnP/95SdLb3vY2SfloUynbCHqBHaMdsHZ+oE0stc28BwXHHAYpMyWHHHKIpDw+Mf8JNiMicKk7Z6mtHS6RlY1lrf1oYf9cyrkW8SjZWKjMD6iJyD0+H914bhdrL20tCL5IkSJFihQpstZknUXwMWY+nIDK2Wcr5UM98CzjXul4r3uAcb+2ozspx9k9WxvUMxQi4B5nI4jTgcxArzEmDip39I9XD4qkn/QPZOX3wCbgmYPCQUEgubg/VcqoBaYDDz7G+h258f94zKAv2gFK9/gwmbvE/2Ao2uT555/X/PnzO+MF8vBYJveD5kBJIELKAWMvUtYl9sT4MKboh3wEULuU9Q/bElFRW5wZdEXGOygFRH3aaadJkt7//vd37ol5CzACjDu6p63OxsQDQRgXxhgk7HOC79ANzEjMmuaZbncg9mhXoH105bFlWBjGCz3CdnHAjzMZbWh1KEkpaeLEiZ0cj3h4j5TnN/ORuU0fOUDIM7AZf+Yy84N1gHtBj561H0vH0haeH3cCSZmBouwzczoe69xWDwEbYi5H9oe57tnmvLvted5GH3/QMKwZ8z7uNGGMfUcLcwzGlTWZsYaB9bUqCt/F97swJ6hFEPf796sUBF+kSJEiRYqMQVlnEXzb0a/IUIfNOAoDseMNg/KipxePSJRyLBDkBlrhGtrmMXE8PzzziFpphyNc3s2+evawf/vb35Yk7bXXXpKyN+mIiuecddZZkjJSJdZH3Azk5f3A+4VNAClE1oP4l5S97KgLdASy8r2n3M+9oDFQLHvSPXMZ5I4MFwubPHmydtlll45XDwrz+DN6IMYG4mN/Ms8n7i5lVIo+GEuYhqH2aLsesD+QAe8BLfneabLnQXv8y+fYyemnn965h/6AjuPRq7SN9rhOOL4zHnvqGelS97jE2DfPxYZAf+SgeD0EvgPVwoTEA0t8rNH5nXfeKSmzMtgQe9R9zoOO0R/20CaDg4PaeOONO21qq1eAbfMc5j3jgs34WDLf2IFBhTnmMAgbdsDnJywY8xyUjC7RNbt7pDzH0AdoP1aU88x01grGF7YEBM3nsABtOTJRmBu0ua02CeMb2wbrxHo3e/bszj3YEzUhPGdBysjebZf1jHmDDcU2efU69OaH/6wLUhB8kSJFihQpMgal7xH8wMCApkyZ0oPY2/bDxz2KoCTQjNfqxkPm2ngPSJ73OEIhJk3MEJREbDJWOJMyqwBCi3ta7G2O/QAAIABJREFU2cvs3neMfeId47ETJya+Txzf3w26IMZM/Arv1RECVbaIOx900EGSMutAXBPU64wBOsZjpk3EqS+99FJJ3fF04nV4ytyLhw1CctR+wgknSMqsRtseeWTJkiW66667evYwOzKkL4w76AGvngx4RybsygChgRphbEAevNeRInkM9JH3MT7YnVd683rkUkb9XBORrpTtG7QKuuN9IBIYHY+VMx4gNJAbaBC78yxjssJhaJiv6Jy5AtpzdivWGsBm0Ak247FsxgNkxvMjM0Jmu5TnBIwE87RNFi5cqHnz5nXyYGAZPPOe+QHrE6s4oi9nBZn/jBl5FaBH0Crxbc8+HyoTnbFjbru9MccYK5gCalxgQ65bxibmFjFOHuP3tkvZDrAdmBzfuTKUYFewJLBOrJX009E4axB1OGB/uJcx8XyouNMDfcGeMEZtLMO6JgXBFylSpEiRImNQyg98kSJFihQpMgal7yn6FStWdNHzbWUrI80OLQg1Fun4NoG6gjqNBW+8oArUMTQu9DT3QPU4xUPhCmivSEdT8MITVig9SnIQyVrQ/VCNUJhe6IQtH9B6cQsI9KEXDznggAO6dEF/0DmhiFi8RsqUHHQabaI/9NuTFfnMqX5/T1uxFqjE2LY2WW+99bTFFlt0Qje8z5OeoOcYQ6hYxgda1ylM9Ay9D50ak60oQOMHbkDNEs4hCYz+0FYP4UBdY7+0Px4F6+OPDvk3HueLTWGrPp/oD5RvDAEwvzzJEloXPUKNxi1WzEUvVkI/0AH6QkfYweGHH965h7Gk3cwN2hyPPJZ6t9b6UbJRKFVLCAt6mBCLlLfBkVSHnHjiiZIyLe6UOZ/R/ljmGD3GOSFlWyfZFnsgJHDxxRdL6i6NTAiAcBLhJeyOdrieoLnjdkLGHR1A73tRmVhgBhshXMUz3d4Iq2AbtBEbwnYJy3iBJco20/ehtsO10e2xrPFw166rUhB8kSJFihQpMgal7xF8FLwrR55RhttCh+A14g3G4xQRvGYvbIDnCiohKY3jImNCiySdccYZkrInC1IDNXNQRCwh6hK3X+F943H7FjSSw/C2+RePmoQ6P2SCa0BXlKoExeB1gxy8yAwoAsQAQiThjMQZLwsJE4GQKEUSIcgN/frzSKKJB9W4TJgwQdtuu21P4RZPDovjTxsYO/72o0VBfqD8eNAFNgOq8AN9GCsSPknaom2gJEeF9BU0DlKnHYyPb3UCDYH2+Y62MMbvfve7JWUGScqJnmztBPWTBMXc4+AYfy5oKJadRScUXqFPUk7EislUMETYsjNwzAXu4X2gPFCuJ9ZGicc8uyxbtkyPPvpoxz7o89FHH9255pJLLpGUEz9hHrAL2As/spakPdgf1jPGMibKeXIYrAQlauNaxVwebg3xI6WlzJ54Ah+JibQRXXIsbCzO5ImzPIfxpY3YKPPIGTESQFkbSX6kRC62S7Ipdillu6VNjBfvw3ZZq6U8x4YrnztWpCD4IkWKFClSZAzKOofg47GUbQLCJpYDOvKYLp4xyI3YEIgtxoy9wAUolHsvvPBCSTn+SGwHdC7lAw5AX8SKQEtsK3OUgneNNw/iiIV2HJEiXIPnSvESvOK2rUe0n3vREVtQ8OQZA0cKtC2WVWXrHmPh27/QH+gOdE6b2YbknjZbdOKBEW2SUtKECRM67ySW5ygGpAE64LlsI2J7j29VA0FgB/QZtMi9IC4/bITnk9MB24TOYRs4WEbqPeAC5gS0jF378b2gIZ4PkkHXtJ2Da7yQD/3Brti2BsMDsvOtg8yPaG+0HaTF964T2k/fGe94pCr2IWXEjg3xPPrtbBYCemSuDVfmeMWKFXrmmWc6OmYNIe9GysjyggsukJQLsYAQmT++rSyyIQiMGvrhe483g+5hRd7+9rdLynkUzF+fL+QJsIbAMhCnJ0fGt0li87Tb8w6kXICKtcQP4mJcnLWQenM+PO7NHIQ1i2Vg0Rk266VkI4sJoxOf4W0E3aNrGEPGIB56JWXbHK6cbT9KQfBFihQpUqTIGJR1BsHHMqrEXKTeAzrwnPGwiXO2xebxkIkh4t3hLbbFmTj6Mh5riGdNTNFZBuLN9AOmAGQISnLPk3g5KCsiGlBxPHRG6j1shjgX3in3gmb8M7xhyjKCWPFiQQMeJ0Y/6A2vHDSDblx4H+hvxowZkvLuAQ7I8NhyzL1AJ22ycuVKLV68uNNnUJ1nKIMKaT/MCigG+/A8AOyIa+PBNORTgBDoj5RZGWLRxE3RF7aLjUkZYYC60AEMCt/7DgVskngmbQNZwf4wjxxx8RnsCzFf7It/PVsb9gKbiGVU6Tco1OPfMCvMPTK6QZuMl6Mw/h8dMybEsmO5UymjPdgKLyoVhfwNkGZbvJ7cAOYQbBj6YR1Af37tfvvtJynPAfrDOkDbfJ3jWlgKxps5xnrjGfGwFNgTJV3pD+Pu8Xx2K3BIEm1gLQGFRyZJ6i7vKuX5AwpnTfN7YHmwVRgi1gXW4Hjsswv2xfizjrIexWJRwwm25LkziB90sy5IQfBFihQpUqTIGJS+R/ATJ07Udttt1/E4QTrDZcrjSXt8WWo/PCDuF0aI7YEQ/BhX7gVt4dnipeJBuyfNu+OefDxZUIyjcJA0pXFpI3EzPFs+d6+Y5+DtEtPFU8dr9qx23hdLRYIYiWESY3adcQ3jhMcMCo/v92uJa4FIQEaMge+3BwEQw/ZdAP+fvXuL1fWq6sc/9nl3lzalUEUqFq3iIcFgUuRUaCmn0nKoVOSkMUqIiZqYeOWFF7003htjiBjk0NKGgz0CxVIqUKBiIlxoPBGDhKgNIRx2u7tX9/5fmM87v+9Yz1pt8Z/49v3NcbP2Wu/7zGfOMcece3y/Y8wxu3z/+9+vL3/5y6s5hJKW4unYCXpz2Qw7y1KbkKDYJD35jtwB6CgzxrUHwekLlMQ+nO+tqrr77rurarAv/Rk6zfP9HdmaU0hHG5Bi9tF32aw2IGlsRyJqMVzzAul4FguDFcp8AehSe8YJwUNuyeT0GLZ5g/6wK3khTkfhkPCSnDp1ai323EufVo349kte8pK1PpgPOs44OgRPL+YM40Zv0GOe1cdGYDowd9l+1TqTg0WQT6Fk9Jvf/OaqGuxglu11MqUzA/Rnr2J/Wb5Xv+kL22gOs28EEyC/wZq2z7JDbSUzKr+GHulL3ZF++Uz2n661YY/Xx6W+qh9gPJsuE8FPmTJlypQpWygbj+APHjxY55133srbhnwzDsMj4zHzPHmYPd79RASaSMTgb5AlZAMd8SYza1//oQJoRFvQc/YRI+Az3qlMbM96/5JXSU/6IvYKHSWC553yvnnWPHTvkz2rX1UDVUAz2oeMxaXlLVSNuHCvxAbJQUiyk6sG8pGlvd9piiNHjtRFF120QkdYhmuvvXb1Hc+zETrotpKIs1cDZJPQi8+hyOwjNkb7kG+/+IKOqwZjAG17Lz2JKYuNpshZ6Wd+9RXSSTTu3T6DsM2POXZtcdVAQVCRGHivPoa5yPwNumdn0KT8CvHUvGTEnFpPPdNf7D8vU+oIvmdap5w4caKe97znrcYMlWcujjVlnukJ+2PM6iFUjQz0zooQ72Gr2JuqcYql15SAPCFcNpbP0521rc/mK6stmkv7aF//SycKiL2454D47lJcu6N864XusVr6IxehaugYuwF1Y0/1Odncvrb72uj/n6TQ/X4nMDZJJoKfMmXKlClTtlDmf/BTpkyZMmXKFsrGU/SnTp2qr33ta6sEMrRUUvQoHYlFPeFmP0EL9eMP2kC3ZhISegs9pC/a6sf2sv3+PpRclkIlaHy0kyQuFJJnjTsp+h4KoD9UnfehuqsGxdhDA3mJSdWgFZeODknq0T5dofWy9KZiOI7l9HvtlxJlUOVCJvsddTpy5Eg94xnP2JVIlqGTntBFhAUc/0oKG4WJZpWohyY0D/qfdDvdShzqx4okLuZcojB7YqTvmoe0u2uuuaaqhp6uvPLKqhq6pGMhlKQw0agKfwgRoCw/9KEPVdV6Up9Qw2WXXbbWrvf0I4ppO0kp57j0yXvyIhN2ZU7plX2jlXsCWtVIUs1CPV0eeeSR+vrXv76ibyUPLl1Yxaa1a930S3qqhs0Iq1jTwi7odv1+3etet+s91r22vE9yWh599Tf6si7ZtffkxTL0kuVdqwZFrmStMEiGoHqZXHNJf/SZ89KLl0la7kluQip5yZE118vnEn/PS2iEwYRBOhW/RM17RrJiJhZuskwEP2XKlClTpmyhbDyCP3ToUJ1//vm7SgTm8RfiWNVSIkfVuucH2fAae2nSLolW+vE7CXQ8Zwg7j/JB+dqBZHjyWSqS6BuUyfvmBfekQkgr+8Rz9V5JR5BIeqvdY4YuoS1tQGWJaiEAujEXPF1JKVn+kUDYWAeIxFzn5RId1e0nOzs7u66CrFqfF0hZ8hN9mQ/jyGQt8wBJSXrsFwlJeks0DoWzRchTPyVSZr+9x7EofaILl76kfUMa0JhnIbp+2c1v/uZvrp6FijAdkBxbMe9ZhEX7CvhIsqPPfgVoJnf2QirYLaVX6SRRGD0aJ1uVmGeOsBBVY44xAfslSp09e7Z2dnZWc7qUwEggQWva8Uh7TL6nF/yBDH0XA6a0byb16bf3GTPbpIvcG7VvbVmnbGrpelXzoX198l52x4by0iiIvSfoYvDsXcnAGrtESXOLfbRGuh5S6BWCl9y3hLT7ZUZdjCf7uFQO/MkgE8FPmTJlypQpWygbj+B3dnbqwQcfXHl5vPpEOD0+v+SVVi2jZLIXcid5nIVny5PNmFfVQN55JIxnKbbfY+MdiVQN5C7mBZ34LnThe4kyebnyECA371s6PqWd7rHTOWRnfInC6M+Yxe3FoUkW8vG+z33uc1U1YnoQsCI5jthVDTQPIfT8gP6u73znO7sKESnXWTXKiDqCRD90CYlmjgad0h09iLmyi351ZdWwI/OhLbqg28wfue6666pqxLGxIMYO0YtzVg0becMb3lBVVXfccUdVDZTMdiCc97znPatnIcBeTMrcQktZBhZCx0gZBx2Js0PUybJBSn1N0JX17Nhk9p89OA4GPTuC6crjqqr3v//9VTXma7/94MiRI/X0pz99z70k+7uEKKsGi5CI2r+1a6wYNTZEj0ulpLOPVUN/1m0e6e2X8fhd4SnzIx8m27FWMTj94h2M4RISZlf2jp6vs8SIYg70qa/BnpOUY+1IfekIH+k5LV3oM+ft8VxBvokyEfyUKVOmTJmyhbLxCP7QoUP1lKc8ZddFDkuxVYipe909Plw1EJNYFI+fJ9vjgTzfxyP6kZ5m74PfM25eNeL3VcOrF8PtF+KIhfo9L2IRb+Rt83DFl4w3Y/BQkXa0q89XXHFFVQ1UkXp+2cteVlUjBgthy9p2da64XdVABv2SGUgeGlO6NvsGPe7HvOzs7NS3v/3tVf6G8SnXWTWyzSFLuvaeJVQkvkd3Mp892y8qylieGPStt9661pb5yeJBRFEYCMdP8+B9WbgFypffAO3TKZ3QbWZCGxdbYaMQLzSYpWOtI4hNSVrjwUyxx1yL9GSNsR19UnzImqwaCPfOO++sFCyGPmMuUrSzdAESefjhh9dQJx1nv61vNtILs0CpmTHueTFxmfcEgte3F7/4xavPMF29SBYGgT0kC0gfxmLPcGIGK5hFhLBL8gDoCyvEhpdi1XRhTo2XnbGhLFntGe3a49lwz5RPNs27MUTmxN4kLyXXr+/Yg52K6dnzT1bUnjIR/JQpU6ZMmbKFsvEI/vTp0/Xf//3fK6+SV5eer0zhfo1gL32Y0s9LumCB9MzN/aTHWsWM7rnnnl3f5Sn7Li+fd5p95cnKksZa8Hh54+K1if6g/34hBQ8aU5AMAm+b3qAwSKEj0kSMXV/6yPs33oyZ85Bl+nYWwO9QYdWIo4qZX3/99VVVdcMNN1SXc845p37u535uleW+JHQH9Wj33nvvraoRh8tzwhC1GDFmwHxBokt1GCCZfi0tVAK90nnViL3SIaRjDqGTt7/97atnsCHQpPatI4yBS21SR2KTGBaIx3zcddddVbWetc+u/PTefsUnO8/8DePDmuibtUK/aav01q8/lu3uJzusGmjVvGU+yGNJr+dQNeZZ9je79R46yDoO5pce9JOuoXP2Jv+mavcZfOsHC9RLJlcNxoZ9ywtgM/bOPN3S9w76ouN+8U6eEvEMJgJSNx5tZXzbZ2yHjvplTt6XpxLYSl4GVrU7n2NJ9PUHKWH+ZJGJ4KdMmTJlypQtlI1H8CSvbqxaRw/9QgOy30Uk/bN+NWE/657izDyvscfysAF5TpjnCqV0L7lXp6saaKtXKhMz8ow20wvnqUORfqpcBw3llZkQh7it9p1D7vUFIJeqcV4XqscuQG69UlzViMtDY8YHRZuDZFfEf2WUJ8Lpcvbs2Tp16tTK48eEYCaqBmowPzfddFNVjes0vSczmLEGf/Inf1JVI2cAsjdvSxW5IDYI5nd/93erqur222+vqoFSMsuYrZtf9QGgFDab9m885lnMGlI3lzfeeGNVrcdgoUl2JQ7cq9Ol3Zv/Ps9sSjzXWLIypPfInsbYmH9rxDW8VeOaU7qlG7qHzjPDvTMqmLYfVOi2V8TzzqUYbs8uh6QxGtY6VJy1JnqORz+90/N7qgZz4xk67rk/+UzP22Bv9h1252eO03x4j7nzu70k9x3jwpJgIu0H8kXsJUtn2zG69k/92KsmSr7vB5G0302WieCnTJkyZcqULZT5H/yUKVOmTJmyhfKkoegVPVGYRKGGqqqbb765qgZVif7pxy72KmyQguZCR2kzj8mh+nriEJrSUbAsjoOq0hc0FEob5ZOXvygVitbyLHpN+35m0RqJa+gzSS9CHZ7JUEcvOOF9jsdoX4giwxjCFajAfuwLJZlH+dDF6ON+r7nQS4ZnjN2d26jzpSQ7R50codFOlp1E7RkLilfCFIo5k8JuueWWtfeg+VHWQhfo1rxICO1ofiRgoWLpKcdMl+hGdLQ59fe8eEeiF/qTDdGpPqPmM6nPkUG6kKglZON9WSimJ3gpsPOnf/qna787Hph2x0YlsBmXNdOLw1SNtUcXEhC9v19cUjUSQY2rX/TzeCSPzgll6J85RHfTado8YQcK8Qiv2GeEk3JOX/7yl1fV2H+sYbYi5JUJk2zRsThjN1/2xAy37VW4p5ehZkuOMVaN8A36vhe40Ua+o5fv9Qz9ChE48pchAZT8XhcHSS5euiTofyP9Up1NlYngp0yZMmXKlC2UjUfwJ06cqOc+97krNMvTzDKZUA8vHpLiSS8heKjKEQlIE2Lz7FKBG54lROsoDm97KUFPHyF2HqWf3psXq0je6leW9otWejGRquEhGzOvH3KUQJPJNrzSXixEW9CSthKZeDdk0gvdSJBSUrRqIDbfdQ0pgWqggtSBhLb9Lgw5fvx4XXrppbtQRCZXGQMGAtKEBD/xiU9U1frVmfSy14U3EvM8k4U56Ji+6FQ/9C2v1cUMmctefEl/svCMv1kTGAnvw3xAiomoJDX5m7XQj09mERbHCq0Jx/SIZDLsT14CA2UZc79SFYLLPnZbxS50RJ9oryPAfrnSfoLRy2NX9IIZ6Ove+l26qMaRQ+yIfismhYHII6L9+Jj5VtQKq2GNVw02zj7Hzuja3pi6gKi7jdpX7R2Qex5FxI71gk36yA6S1ZKYiWmzFvMSm6qhx/0S57pkgZv/F2Ui+ClTpkyZMmULZeMR/MmTJ+urX/1qXXvttVU1Sk+KR1UNLw3C6IULoIb0UvsRk+7573dMTrxHPCvZhJTLL7989W+eOq8bCoZiIXvItGp40NCYPvmd9w3hKmVZNVBKP14oFstrzuMxdACFe5bHLjaq7URHvGr5D+KzCrssXRMLFe2lP/HxRKZiy/QEGSyJGDxEop1830te8pKqGujEmMQsIVJ9rRp6Vu4XqoPYIXuIk51UDXSMiRJDxEwsFeXp8Vj5API2lmLJxqhdzBAmTFyfLSVjQE90I/aNzWCzeSTO/BqXedIGhO97eSwPSsXYGF8/crd0EZM1wTY924/e5b+X8hz2EuwJvWVRF88bi/mn27RbIm4tlwjqhmgdGdXXvEAoLwSqWo+bZ9+ytDOUzYY66wPh54VIxqwP9kq69l4sUNqOZzBR7M+ebK9iDzl2bCZ9aqtfMpNH1B4rtm58vbDZDyr61o8ZbqpMBD9lypQpU6ZsoRzIQgqbKAcOHPjvqvr3x/zilP/X5ZKzZ8+uVZ+YtjPlccq0nSk/qOyynU2Sjf8PfsqUKVOmTJnyxGVS9FOmTJkyZcoWyvwPfsqUKVOmTNlCmf/BT5kyZcqUKVso8z/4KVOmTJkyZQtl4w/znXvuuWcvvPDC1flZZy6ziphz2ip9qaKk4levqpTi/Kdzjc6F+7s28n0+U2nJWdZ+Pj3F35zLNA7ndfUxq+35m0RIZ339rs1e375q/XrTHEevY55Jlr5Dn8bld9/1Myu0+U7W38/xeW++r7dHx32O9SPFuXTnYP/jP/7jwZ7Net5555192tOetqs6YddN9r/bw5INed6Z+a5Tn/uZtkM/xtzrL5hL/UlhG73muWeysqDnVUTr7fU1oe85Zn1dsuccX35Hu71CX7e/rEbWK/R1+6a/7GPvm2eW6r4/lnzzm9/cZTsnTpw4e8EFF6zGo92cyzz/XbXbZox16U4K7TpbTpddb/ls39fMfx9zzpc+df0YR39v1dBzrwXChvq+s/Ru/dauGgZ9jrNd79OGZ/3unH/uB33+s65HjjfH19fgXpK6p0fvZr///M//vMt2Nkk2/j/4iy66qP7wD/9w7Z70qlG4oWoUGlFYRCEOE8SI8x5hxUcYnDKQChkwNsU3sjCHEpQm23cV3GF0WXBCAQsFYJRl7JcvvPKVr1w9o8CE+9H9rnSn9t2XniUjFZZQ4MQ4FKJRaCc3KZdmKCTBqJXipEd9zwsX/EdrE/IfsJ/KxaYe6YT0+9MtVqUrq0ahGJfy3HPPPVVV9Tu/8zu7jjQ99alPrd///d9f6cV4sviJ/pkHhXP012aXeqIHm7X/RJXSNF8+z/KmxuY/dJtWL8uZxZoUJ1JgRKEl+lEe1PeqRuEeBZSURjVndKCYUF4YYjPWV/rTlrWXF/B86lOfqqqxJvTNfyR+74VpqmqX804n3uc/gJw3f/Osue0FTVKvS45iVdUNN9ywy3YuuOCC+q3f+q3F7xNjokPrkiioo4xu1Sg7TcdsoztIyvfmnPb2FZMxT9q0jquGrSrKY21zqgCOvDiITrsTwma1YQ7SwWB3+uK7+rRUSEwfzaG+mS/P2qMTBOm3y4vMiTVizeReo9++a7zep++55v2H7t3G8da3vnWjj1JOin7KlClTpkzZQtl4BP/II4+soXeIi6dYNVACL47nxXvn1b/pTW9aPaNUZKcytdvRf9LRkItLN3xHGy57uP/++1fP8MShAtdm8gy9D9KuGh4l1KVkI2TgUhNecl6s0Nvj/XoGCs9x8ZShR+VA9ZFeoT3XU1ZVPfDAA1U10ARduGxGWdcsbwvZ0Dk0Q79LKMZcupgmrzntcvjw4fqhH/qhlZfvu2lPvHg61JdOe2d5W1cXK2fLJl0UQn90kWgVGoZGlTc1t1gmYzeOqjF37Mt76SQRKpvEmCg3a7z6gTXJq1j1pZcIpT9zm6hIH7VH5+aUbS1dT0rX/ZplrFAyBQTqYtdsUllqfVtC7f9/lS+FcCHrXsbUOKyNfLd5RxMbhzF3vVUNm4DcMTf2P+/LNdbDUubSd9lQ2qg+KTOMzcICeJ99KfuIIbSO7B36/JnPfKaqBstVNeaO7Vg/PTTIRr/4xS+unsXW6qP9rIezko73/4K5oBv7uTFkGEvfsJn77TubJBPBT5kyZcqUKVsoG4/gjx49Wj/6oz+68hIhA5561biasiMOsTEeWSZN8N7E+3hrPF6IraOkqoEAIVqeNVTBC8+rHiE2yJ0Hz/uHysTGq8alDy6I4EFDtBgL8XteZtW4pOKzn/1sVY14pis+IYS8SvW6666rqoG6xZl4qxCDcWZskX56DO6lL33p2nsSjdMPlIWBoJuly1qgWKiu52ak7Ozs1IMPPriyC2xGXlQkNn3zzTdX1fDue+w4r5jlxfuuuYU49BcyzVwFKIQterZf+ZvI07y7PtXvLu7wXci6aqwB/c7PqsblKdZV9lHOA2SD3fAd48skO2OnN7kS3tPZGPNYNeZSH+WN0AV02RM48xnt97yOJdFOz3t4ouLdcnJcKNWvWc11iTmzHuiWrYtNs7vMO6AHbVjTxm5PS7QqL6RfXGW+rOlcY9rTR+/B+ngGk9UvBaoazBeWy55oDC5Oqhp7ETvuV/3av62dvA7X2obkzQE7ZMt0VjV02lkfa8WzmQfj/wm6tQdsukwEP2XKlClTpmyhzP/gp0yZMmXKlC2UjafoH3nkkRUlVLU72aFq0Euot36mHOWHBqsalI5EOPQTagmFJWkD/VU1wgT9O536Q49lv9HaPpOE4thXUrMSb1D0jiehoVBLKKVMsrvtttuqaiSzoNn03XvznvNPf/rTa31Fr9KJedAv9H/2Af3d6XV0bh4ZMw5UJioOrUcneYSHLCWHdTl+/Hg95znPWYUNUKlpBzfeeGNVDQoOXYweFALI+5/NL92ZfzQkCtC4kgo2/4480i1KHUWbd4kbvyQ09u1eejR7hkzYIl16hg7ojy6S1r388suralCUfuoTSjZtRziCrZrnTmnqR46PbWjPM9ZCPxe/1C7qV9jKnGTIi2QS2l5y5MiR+pEf+ZFdz+cxT/PMjgkbooN8RnhF/7XPvujH2PNIGJr5rrvuWntfT/I1B1UjdCbsxSatCXrLUFc/nqhvqHPrFM2eCc+XXXZZVe2u86Ef7DJtle2j3r2ffq0r9pFn2q0XbfiMXo07j7wJQdibhO7sYZmkRsdDAAAgAElEQVRQS6w9ffxB6i38X8hE8FOmTJkyZcoWysYj+GPHjtUll1yyQjGSRfLoDM+Vl8jj9B1I881vfvPqGcesoETeIm8U6vqFX/iFqhoeXNXwEnnmvGBoAqrM6mEQu75BGhJZeOGZQCKpyZi9z/u/8pWvrI1BYl3VSN5R8EFCG+TOK15CF9CPvvSiKBBCJsz1BB+eOtRvfN5bNbxvetoLfaVO9kvs6fK9732v7r///vrFX/zFqtpdqKNqIFg6NU/6T6d//dd/vXpGP6HgXvGLPfRCSFXD88fGOELVE9ry+GI/fkWH7B16STbDd9hxZxcgKOsq0bjjQualHyH0d4l0+W7z3StC6iOdJWNgHHQg+Qkz4Weipp7gim3y97Qzop3HU+Hy7Nmza+iZZNIb+dmf/dmqGmyJsepbImq2Q8cSWNmIdeQZiZVVg0mhO/uCPQQ7Yz+oGvqnD89aE5///Oeraj3Jzl7XK3Va7xgQfTWmqpE03FG/udPnRMkYAfsn25FkjO1yhPQ1r3nN6lmfYVG0pU/2Pf2oGvsqhsV69V32ra2qqnvvvbdSzPmmy0TwU6ZMmTJlyhbKxiP4nZ2d+ta3vrXyCHmrGRvjcfHIlBuFKnjsGTMWg4cWoBFeJI9abDZjsFCfv/nJC+Z95zM8ZwU+FNoRi4QcM86onX6UhmfpCIhnMtZrzL5LRzxof8/jSjxZqF9eAobE+3nwd9xxx+pZsXft+445WEJhdAF9QSgQO68b2sn2oS/5APuJMXpfxn/FNXsJWWgSak20St/04rsYIzYE7eWz7AD70uv6s9E8YtlRnbgiezeeRJfsF6ozPrFWCI59Z21474OkIB668RPjk2PWF/khEKK/Q1ryYqqGvWER2Cpkr21HPKtGieI8ypRifWfteAibJKrrsrOzsxZbxnhkQRj60a4x0zE2I1E4dOz4qHizZ6xhc9xrq1dVXX311VVVddNNN6393RqDaqvGevE3tuh37FCyFforxm4/NR+eoZNkS+jU+mRfbOWSSy6pqvU4Ots3drqwBqBl+2uWrvYe80IH+uRn6gQzYJwf/OAHq2rMBRvNYkzmtueHbLpMBD9lypQpU6ZsoWw8gn/00Ufru9/97srrgjwzYxxy6reviUXx8nlo2q0acSXISRvizWIviY7FT6F/bUGrUGUiAN5iRzQ8at5y9hGqgu71iVfsWX2+++67V8+KdULhnvGepTKgPeao/wqqiG9C8vpTNVCYmC5vH0KGdiGKquEp8+rpBCLCgCSaNQ7vSzTe5fzzz69XvOIVK9SEPUgWod+uZS6hBDrOfvfSur7TTyj4mVn7/tYvjmE70FLG4BVvgUoh6o54s2So9/guG9HnjsZTx9gxcVKMinXlZMYXvvCF1TNsx3d9hu2gM+s3M9l9x1qE9votjXlyhu3RHzSpWAnWJovM/G9kL6YgxTyZW2PO3AjzAlGymeuvv76qBrNjPMnosX2MFpukc/tRsjHWHbuCnI3nqquuWvte1bAZ3xX77owbe0vmyH4jt8DasydiljIPBkvRyynTH/aJHWRGvHXLvu1rdEXPWSRJ/7VvfNbAu971rqoae3W+x/gejz1sgkwEP2XKlClTpmyhbDyCJxAC7z6RW8/25T26wlI2a3rz4pk9QxRy4jVCZ5m17dl+prPfj5wohYfcL06A2JdiOjxo7AXPVYxK3FsmNi89x8HjxEDwoHnd6X17nvfLw4Xk9Acqz5MFdM4bFhPrsbDMKO8Z3hBaL1WZ8Tp9ovNEx11Onz5d3/zmN1e2InaY8Tj9Ng+Quxi1v2cdBLZIT/fdd99aPzFHmJdkSTxDp+YUCsNM+V4KmxSfpct+Tjg/g/LoTewXwjVPWbJYn+iYTqwjazDjw1AffbF3iN13rZ20u57hbZ76WkmU2UsU9zP7JOO1T0QOHjxYJ06c2DfWCin3C06wQtZt1n4wpl6e1V7Fhow59zk6ZhvWdr/OOeuGuBDKe8yPduUCJavVr4XuJzDomB1mGW/2q09syPzbq+mmquqWW26pqpGX4f10Zd7pJNE/ZG18zrRrfymXAWtin3EB2J/92Z+t6SSZF7q48847d/V/k2Ui+ClTpkyZMmULZeMR/KFDh+rcc89doVUeVF7+ATXy4nhrkIifmTEOJfBkIR1eMgT04Q9/uKpGda+qgQp4264v1Bakk9mlzmV2dAcN8azzbK72oB5eJMTumR4/znFAfdrCVPCs89IHCIRnC8XSufb1Pa9MNFZIF7LuleYSzeo3JA/tQQjaynoC9Oi8rSzxJXnooYfWqoxBMxnfpv9+Jpo9QBGJqDE1UIqz8vQHQfVqYVUDKdMD2zQPzvhmv8U+6VLcmb5UD8u5NB89Vs0u2KG4bY5PHFjMn44hKcwKdJQ6sQahMHHaPu5EmcR8m/9+iUraEvvtpx96Wz/olbCHDh2qpzzlKSsd54kBQsfGaI3RhVhv6rZnxdMxvXkfhJ+MBJ12NCwnSN5DZu33y13ojV2Layf76N/QuPVpzzSepQqa5pd96SP76xX8qkaWvPaMQ1uYiiU0zr7//M//vKqqfu3Xfq2qRj4EO8j8jX7BjsvKoHL2nfNmP+t5CJsuE8FPmTJlypQpWyjzP/gpU6ZMmTJlC2XjKfpHH320vv/979dnPvOZqhrUeSaFJEVUNajRTIzqghJDe6PyUEgoRfRQFsnZ6x5p1C9aLY9Wodx6yU7JQmi2TApCR6OOhAte9apXVdWgUlGDmWTl3eh8VB166kUvelFVrZeopEcUmNAHChK9j9bNBCQJOBk6qRo0fqfwq8Zcon7ReZLgFJfIxDzUPKpx6Y5wcsEFF9Qb3/jG1Vz2gi1Vuy+tEYpB6bGHpMxRd57Rv16YCMWcghKlBxSteXGBTCYSsU0hIZSmEI0QURZ18R5JR/REB94vuS8pczaPIjU+YQxtZ4JjT+rTZ8mp/r5EzZO///u/r6ontn7NJZs1N718cEovwbokp0+fXjuySvIImvnQBzZpHfaEw/w3uruHEKw5un7ta1+7+qwnuwkb2G/sZUnr9xKx2hBW0p+lu88zuTX76lmJomy4aoSp7BF5VLhqHEUTbqgalLhn7YW9rO8LX/jCqhpJcNmOfex973tfVY3kaFR9hsm0Q3/2GXu0PcH+WjXCVBL0XvCCF9STQSaCnzJlypQpU7ZQNh7BHzx4sI4fP75K/IBEePspPH7JGLztXvoyhUcGfUNsvHBtJBrjlUKnkABkwHN3UU3VSMroz/D6IZtkJhRagOYUnIHytcX7zkSxXpoS2oTKeL6pE2PmZWMtoI1+JC2TrPRF+7xvyAFTkSVKHbMzb3SEBeB9ZzJfvy440VGXhx9+uP7hH/5hlRQIGWSSjnmFbPOK36oxp3m5BJsxfr8bB8YDI5KJhdgW8+070MtSYRa26X1shA1pMwuAKEYDZUH3EDsbgvoyiUz/oTC20gufZKEjzFS/Qrkjez9zPWE+zHO/qESRlFzz1oT5l9SFrVlC8Mb1eK6LJfrZ7STHCj32y2Ag4aWrca1V/exHHvUVc1k19hWI2e/QJZYJw1c11jB9Gbs5VP43j0lKgLM36b8+97lOVqOXzaY3behzInj/1if7HD1eccUVVTV0n+vJ+rGeFM1if9ZKlp2V8KffdGL+zEXuE5/4xCeqauyNyQhssjw5ejllypQpU6ZMeUKy8Qj+zJkz9fDDD68QhvhgHp2CTqFRCJC3yOPkkeZ3++UBUASkAZ1lfJMH2YttQDhiVFkIRvyahwupaR8ayvKIntFHz/LGebQ+T51A42LW4vgdHdFnjqd7p/RGJ55NZGIO7r///rXPevEf8eKqgR69t1/N6/dkNaALqG7pSk+C/RFzgyqyT95NPz1WLS6X8+Ld9ASlmH9tQlYZy8QQQOM93pzHeUi/8AgCwZKw5Zx/8UO26jP2BunQbeZvmG/sj6tyfde8iO9Xjbncq7CMNnup4dSF9Yox6sfMli6o8Rm2p1+pnEdVnwhyJ2yF3pIx6mwLe2A79oFkVqwTumRv+uloKjtP+4bc9QXSxWyY0zwuST/e87KXvayqRlxbPDuPhNEhxG7M+gTFQv3arBpH3CBodtWPkCb7R4/9WJxx0av+JPsD/b/jHe+oqrH/eIZOlvToSCLmQyyebWV+j7Wgj/sV2NokmQh+ypQpU6ZM2ULZeAT/lKc8pV784hevvKqO4KpGfAWKUPrwyiuvrKqBYhOFQxQQlMxU3l1Hs3mRB0ZA7I13yFOH0jI2xWPlwfsMKubp8jhzrErIQr+8/X6hTCIUcSTfgYb6tZeJpAjPXJ+hMvqDGDMeqQ+9L/oBFWT8DOrq1+HqG4SYWbrYCmhvP1R28uTJtUzY3/u936uqdZQMAbiop/fTPGUM3lyxA2PUl14WOFEtWzW3UL7v+DyzmtkV9APt99MjEH32m54geLqEjth1Pou10CfzjVHSNl1VDXQF3bENusD6sPe83KbPKTSpbzLxfW+pvX6FaZ56+N8I1sT+kEhXfgOR32B90mP2u5/AkDsAlduPrFt5EPkdfYKsFbbRtpyGqrGP6VtevVw1kPZSTNw47Ku9RLc8jyzjzTbsieawM3l5lbZnlHxmd70YlPW01Fd9sJdYG+wj9297YWdv9QkzkmvQ/NsnspjQJstE8FOmTJkyZcoWysYj+EceeaS+/vWvr2JWvbRs1UCcvHoxQh4nD3Epy/zVr351VVXdc889VTW8Nmh1qdyoeC3vt7MAJM8yQzRQv5guhANVZlY7L971qTxYOQYQb9dN1e6M634hhfPxmaFOT57RN3rklXsm9QmtQLfiZFCu97/uda9bPQPF8djpGBI2/tQr9GB8Gcvrcv7559dVV121at/Vv/kM1AgtyJw1x5AB9Fo15shPemAzfmJyMgZvLr1P37zX2JdOfOhDP6mADUjGCNrreQfsEFNg/HkBD2TjPf0yG3Oa9SCgLKiSrfbLQNhQ9jXj5FVjvjEV1lkyRtaWPuh/X4MpbNJ6zT7sJb29jMF3hNnPjffyvVXDxunHumDX2uwXrFSNODBGUt+wQPSU+oRc2YP2IFA6zXwiurWf+r1fkOP9uc8Zs3Fkzk3+PW0HS+GUizVgXHRkXBkb7yVkjc//D/ZEOqsa+5d9jZ1hM+2ReYYfs6p+yH7XVG+STAQ/ZcqUKVOmbKE8aRA8ESfJGJt4PK+Y1wotQYLZDm/0jjvuqKrdl1dAHt6XcZ/MqK4al5j06wyd66wa6IcnTXjDvpuZwjxkiEqfnCiAQIw7PWnj8D7ef/e6k5noFcvEyDEGPOh+eiCF129cPHYx0qxCxdvvqI6uoZg8j2pcPssM5S5sR/xcdn4iKn3wHfOQlQur1mP9kOBVV11VVaP6HBRpDqHjjMGaQ6gFeoA46CtPDkBZYvDmzjPsLt8DYZhT4zM/3c6X0CzdsJkeV009eh7q6WjT+tJWIlPoiC6813iWzqBDcXQuT4Vel87B96pqnTlIOXHiRD33uc9dy0ivWl9jvYqisak+hzHKinzYFvtBrzC3lK1P6BIL6DvmQwa5mHnVYIjMB+QsJ8N3M0Yuj8Z4nKJgK/psn8iLY8yV9SLnA8uqr1lvgi6sZXaFPWP31lXmEWhfuxhYdq6PyVTavzxjLcii71Usc4x9TWy6TAQ/ZcqUKVOmbKFsPII/evRoXXzxxbvOjaYnDXVB6pATxMEjSyTYz+3yGr2HpwZ5LHn7MlPFbnigPWO0ajAG+q+vzmLqa3qn2udJOm8qA9rnEH1Wo4LMjVl8jt6WqtPpt1hij7lmVmnVeiUz76ZHnjykxjteeh8Ex7N2ZeonP/nJNd1UVb3lLW+pqqpPfepTVbU7kzzlyJEj9YxnPGM1/9DdNddcs/qOWDfEjg2CgHsOQdXQqTHz5tWxN9c9Dp366PFgMVHzhD2pGugLKupn9OkvUav3QGxQkL8bH7vOtcGuel187VtfeR7ZuoGKEm1X7Y7bpshG11cIkn1Ae0t1F6wf39VHiC2Zgl5Vb7969SdPnqyvfvWrK7285CUvqaqBZlPEZWVnY6m0nyd+rCEImv4hROtSH5MlsR6td8yafBrPLqFxaL/PpfWYNUI8DwX363B79n7eL8A2sAx0woatpyWWwd7oNIB2jSvzRAiG1Z7lWfo0/3Jqqqpe+tKXVtXuq5KzbknVun1jjNU2MOebLhPBT5kyZcqUKVso8z/4KVOmTJkyZQtl4yn6s2fP1qOPPrqiqdFFmVzlOAWKB3WpRCnqN2lIlA4qqVOafqJ6MukFVbbf1Zdd0HRo1re97W1VVfWxj32sqgalnke4UGWOQ0nAQR2hrHqSStXuSyTQ+qglCTlZuAPdhd6kt07NG0uWN3V9ossxtCtpDNWIgs6/oVklaqHmzXXqWTgm372XSLJzhKZfwFI19M5WUM3e48hlJkqZQ5Rev+ZW2IAOUsfG1K8YRW0qspGFNNgtOhXN3cv1ZqlaR+r6hTdoVp+jcDP5E2Xak9vMj3KqSbdneCh11BOj2Faup56Y2dvab67pzU/Utr5lGEmS2n7UfBe2yR4yGZF+rCVzaTy+mxf5oJvtZ/Qj2ReFvpTMZV8jKHpjtk7zfZIr7W/CHUKESxfiWB9dl2xX4po9Je2OrVqz2hDiYrMZwlFmVlEqdsDO9FF4JItl6auwmznuIdg8lud5a0A4zP8j5iaPPfp/wmdPZO//v5SJ4KdMmTJlypQtlCcFgj99+vQKXUIxPKqqgdx5i5CsBA/HrvZLyOKpQ7iO2PFI0wOEQpXClajl2Ztuuqmq1pGC5BJJVe9+97urquqNb3xjVY1CO+k1Qjm8RUgeQvDel7/85VVVdfvtt6+elSDFMze+jsYzAQy6gHh7YQmoAprJo1wEQjNOjESW3OzfhUwgN+/zM0uiYhXoZqkgDDl+/Hj99E//9ArRaCcRB0QBQRFJQYphZKnLnvQDqbG3fgQqBWPQk8TMy6c//em1NlMgRkgD8oCoJMdVjXUiAQ+i1oZnoKVMzPKZv0FDnmXXS8mkBLrELuibv2eymjVmLtiXwieOqiVy80wvvtSPcC6VMjb/WbxoL9nvUpGeeEsv/WhoMofWMgT7pS99qapGASgoVr8zGc0zbMia6seBMwHZ+6xze0U/TqiN7G9HsvadXrI69ajfvkMX1rJ5yvLNH/jAByqlJwJD6d0+qsb/A9aptYF5lVCXx4H71dz2YOyGfRaTWDWYFnt/P+68qTIR/JQpU6ZMmbKFsvEI/tChQ3X++eevPLRXvepVVTWK/lcNz45HCWlAr9BRllbtxzn68R2/Qxz5OUYAguNRijP2oy75HjEifX3f+9639kx6wzxJzIO+dEQPDeXRDR46hAMp6rvYa1556d/GwUt95StfufZ3ek1006+YFLt2gYS+5pG3fjUrloYOPJMX4kAXkFpeWtLl1KlT9S//8i+r9yhQlAiHR85mtNePdSUKw3Dor/boxe/QWLIy/q0wC2bINZsKdyQ7wn69VzxTvB76YtP9+aox71CYS07YSSJfrAs0hi0xt3SWTAh7gpzYm3axNGw1L7eha9+B8iB3Osojb3Tsu9gffTJOrEqKz5IR6HL48OF62tOetm9BE+i6F68xDqxPlkmVB2LvELfHvvVjs8kcsh37HZvUZmf2qoZusZryRsyp9vOYXL+GWv6JNqBv+0UeJzN2fbAm2CgmR1+rRp6A71iv2A1rgn1bO1WDRcJ42aP8P6EfmfPBfiF2Y6dfY3jDG96wekbf6CLZsk2WieCnTJkyZcqULZSNR/AHDhyow4cPr7xJyD09TgiaJ9nLzEIeiaTEWHlmPM2/+qu/WvscAkjU168vhASgB33NGB1EJW7Pg/ddCDiRzd/8zd+s9V9xFwLpQvQy2at2X2VpPLxWOsqSv7zhjtygcGiGt5xldSEBuQbe/6u/+qtVNRDKUqyXV9yRIlSWpwO0j83Y77rYAwcO1DnnnLNCPFiFjOEpXHHzzTdX1UDwbMVlRDmXsocVz4B4ZPsqdAIJ5/Wd/mbOjDWZlKr1Mpl01uPL3qtviajNEd1ZG77LtowTcqzaO69BsSLX+GIBqsb8Ggf7tkasRag2x0fkC2RRoaqxNrLoC1vpBXUgQzaVOjF2feplaFN2dnYW0XsWrYE0sRf65930mOwPNkaZY7k3Tr1gxewpyXiZIwjUe+Vi0Ekiau+mhz63xpC2ZQ0Yh7nDSMmNYO9ZgAaLiM3AXrCdXkAs3+MnO8DYmDfjTqbKvozlMz/2NaxXMlreQ7f2FPYsZ+fWW29dPSO2v1fRr02VieCnTJkyZcqULZSNR/CEB8ozzBhOxmSqhqcnds1bzMzHXhZVbJBXzEt885vfXFXjrGvV8N54yh21+D0z1H0mvqMvECjkDh1WDXTFKxZfEvuDRJ31TaTIy4ZCOjLQ9zxZAA0lSqkaXjCd8Xzz2V4K1+/QP28/UZh5keEKzfLc01MnEDA9JuPR5ezZs/XQQw+t0LJyo3nOGnJnQ9qle/3Pc/Bihr0kLQQF8fh71jboeSHQqnFACIlwoC46NKf6YW4TnWFU+kUx/XpNCD+RIpTFjq01a4Tt5HrCEInxsn1zC32aW+usapRa9V19stbpM+PRkKlx9FoB2Jo8E97Rfp7O6HL48OG64IILVnZAj5lX0/ML1FJg49b261//+tUzmBMXqVgv1q622Gzajj3QWGV5Q9zWdu4D9gpIvZ+aME/JmpgHNS3YWc+jwcbkvEDO+s3OzbfP8xQUe9JXfbQPsT9t5rP2CPPTT0H1tqqG7umRbrCO3ufEQdVYW5inzOfaZJkIfsqUKVOmTNlC2XgEf+bMmTp58uQK+fTrFat2n0vmwaoW99GPfrSq1quD8fh6DLd7wxAeRFw1kBqUxaPl3UEgGWfUHi8VwvU+8a30hrUvjmXsUAoEJWbF464aGaDiSmJQmAhea8am6KRnjvPo9V3cMPMSfKcjeLqAPrKSHdTgMz/7+eu8qlffeNDQ316S51+huYytyomgSzZClxBioqI777yzqgYqoENj65nqGfOHzDACUJH3QB7mtGrkgUArbEYM+dprr62q9at42ag+9HPC/SreRIpf/OIXq2ro2PicKabzZHCsASwDxMZWoWeoL5/1XbYiQzlZhar1uYQ8oWgon46wNEv1F/Rhvwz5nZ2d+va3v70WP69az1mxHmWxs1t2hgGB2qtG7gibsP/oE9ZHfkeyJNaHdeP99GKd5B6iT5gB61Mfl5Ao+zUP5gUatxdiY3IP6TUn5Ol0nSSTp090YHxyjIzvuuuuq6r1c/PJrFWNXBBt9noPVUM/xsV2MDDi+VnHhB30+dp0mQh+ypQpU6ZM2UKZ/8FPmTJlypQpWygbT9EfPny4LrzwwhXVh6bKY0VoExSVAiCO1KGyJFdUjQQedA2KVIlV9BOaOI+RSISSeIHWVfBCOAH1UzUo+n6XtvE44uYIUtW4QOG9731vVVVddtllVTXoTs+ikjIxC82EokJHoebRX3mBhcsd0Ll0gebsl9/QQ9Wgqzs1j6Kjv6S66QSdpi9CG9pPGlH/+6VAS3Ls2LG69NJLV/SgceTlJXRpbKhjfeqXwlQNWhDth5bud5Gj45NuRzvrQz8uaTxZypMdsTf2zN4lv2X4A/3s2V5elO30u7erRsIcqhRFKlRAJ9ZMPm8O6cZ4jFe/0KEpvThTX4tZvtd7tJ/0fdUI4eWRMe3ZLzr9viT6Yv7zeBSdshlhD0fCJBxmQqF+0XsvimVO2WVeAqO/9C8pjN058pmhQetFv80/fQkFCB1UVX34wx9eG7P2vMccmuOcS9Q12t7cCQH10sI5VmELuugXM33wgx9c00PVmAPjYKP0pu+ZvEwnbMPa/8hHPlJVY8/P47nszbqUnL3pMhH8lClTpkyZsoWy8Qj+5MmTawUplpKCJKjx9ByH4plBgImOJZDwHnl1UBDkw/vOkqiekfzmvVAxLzURFfTB63aMB6rwMxPK/vIv/7KqhrcrwYdnCeE6NqJYRlXVvffeW1W7y6dmsmB/Xz+eZOwQMNTBK86LMCACSWI+g2Igh9QjvUFujiQZFySUiETyFBahF0VJcdWwcUDLeWQG04GFgUTNf09WqxpMDdaFfiCPfpVkJov1ssrGBr2Yr2QZ9Jsd05fjS1BFFhHqJXfptpd2lXSXxUqMx5xq10+2muPSFwgKO0Mn3od5SyaHvvrx047K89gp5G7N9eN3dGWuUnpZ3ccjxp6JuvTAVthzZz6y2A79GCM2wXz1xLU85sc27F3Wvbm1ltP+oG7MgX3AvNhbcx31i478DsXaK+0HLraqGvZNN+bJ745L5p7OjrAZxg6V+/yWW26pqlGGNsdqvq1Je6+fifq9hy6UsGYXxpvzhk3oCcGbLhPBT5kyZcqUKVsoG4/gjx8/Xs95znNWJVZ5c1B71Sj0AlmLSfKy+sUKVQOx8HqhAx46tM+7y2MRPOaMj1UN77sf0agaKEusCxr3fogt41mOPYnbQxG8YD956entQwjQBa9bP3i2iRS9pxeyUPBBHKuXQc2/QaTyHfRR2+K7+W7Ix3Gjj33sY1U19JnFbMy1nIzsf5fvfOc7dffdd69yGRzzyiOWECAEzQ7YjLgm/VXtZifo2FyadzHMLAPbSwX7DlvSj9RtL7Xcr9z0/kTUvQ/G3K8cxSglS6Jv7Arag/KU783rNOlEu+bH2DEFjoxhZ/LdbBa7xd7YDBRYNdYCG/E++TeZw0DYTq6Txyv0lpeWsB2f6Sd0ConmZUnmmZ56cRrryAUr/UraqqEn6BUitcby+CqBtjFHbNV7c6/CELBVn0HBPa8ni/9o19/sM2yHbeWxtd5/a+4Tn/hEVQ17MLdZ5KwzEuzC+/oFVlVjX/M+4+n5Cfkee5M1kQzUJstE8FOmTJkyZcoWysYj+IMHD9a555678nwhgoyFuVawXxQCJfPcs7gGz46H6RmFYKAkyCOvRrMUT2wAACAASURBVOWx8xp7Vju0l94+z5Zn2S/bgEQzT0D7vHyx6V5OlZefeQnQ3BVXXFFVA21BCL3QSdXwkH0HQlXYBhr0TJZ8lSmOJTFPkINnMy9B3FYsFOo3XjpLxNWv+twvjnreeefVlVdeufLyIZJEDxBFRyPmHfrKLHrzzNPvhY96UZ+8srQXNOmXV9BtZmubS6hO8RPIp8d88zv0pV1t+V1G9BIqgnqgYeuLThIp0ql2XTHsGlx9ZBfJiHQGBHNFn/qYBVWsAfZFrAVzkuVoewnZxyP9dEgWntEHeoGolT1mz5kx3vMMeglZ89PL0laN8WMvxaihSX1MZtF6tEdBwy6oufzyy6tq/XIqz9O/99gbzRM95t4ox0cmPkZSm3SWzFsyM1VjTRq7nBNjyQI05sOeJS+hrxHjrRq6Ny/WPARvDnLdYhX0IfNdNlkmgp8yZcqUKVO2UDYewZ86dar+6Z/+aeUtdgRSNbxT3iHPDMLgJUNlVSO+x1OGhnnSPEDeZcZEeaMdhYmviwuKZVUNBMNz7eetlzxCyIaHLpNbW2JH0MpSWUs5BLxiXj5PPpHbZz/72aoaSNHYecHQkf5kNrp4lvd0T9o4M1vX2XjMAzTuNIA5yj5CqT3Td0l2dnbqP//zP1fIHZpIxAB96B9dsqVePjf/hoWBcJR4lTPQM5ezfUiHrdI9+864PXuCZNmdcegPBqZq98kEfegx2M4c5LisK3ZoTtlUsjFQqzmF3OkGmhXL/PjHP756FvsDWbERGffmL1kvfbIvGF+ySlXrmff2AeuyI8eUgwcP1vHjx1c6sG4TPWIP1AOgF4yHuU0mT64CuzPf1rK1hn3M8+n6bYzsi21aJ5nhbQ1ptzOU/brsqmETdCxLXh/pgg1hSFMHV1999Vr79k9sR8awrWVIWv+hZTozF1me1t7BFrE/7LnnulTt3sewaj1P5Zd+6ZeqixyS1772tbs+20SZCH7KlClTpkzZQtl4BH/27Nk6c+bMKubqrGJe/QiN8nohakjK31VVqxpeou/wLCFO3imPPTPwIVfZshBvz+DNTF5ep/Z5x1DEUizZmHmYvdITrxXSycszePvGBSm4ctaz+QwkIsbK+6WrXmFKHYCqge7Ey8VvzQX0lOjCe4wTMuAlQxWZHd5j+ZnB2+XYsWP1Uz/1UyvEk2e9ibhmP+vtp3EkCoMoIU41BzAEYrHsQo5I1UBZEBwbYW+eSSTaM6mhLzaFDcqzxfotj0IVRCwDNsg4My+ho0rIGTqii6UrOOmEjWjfumUPv/Ebv7F6tlcYZCvGxWaWst/pC8thDsxRrivtZ/XGveTMmTNrdme9ZlVCY3SlMDvGMtkzMvfH+M2d/aVfpyzmmyyJ+fXdforC+DIXB2Ojb/a7nnGfZ+ftSa94xSuqaqwxexfbZbO5h9iLxK/ZLiYHG5D1MHyn5/bomzmkM6ekqsb1sJgJ9kB/7CDzN+xzbAYLZN7oLxmjfrHQD3IS4/9CJoKfMmXKlClTtlDmf/BTpkyZMmXKFsrGU/THjh2rZz/72auECBRt0l5oGNQeqqonOaGlqkbCHao/6c2qkeSEukqKHsWHXkODoY5QPuiiqkHN6otn0USSUDLZBfXWE30kwUicQSWh4apGcpVjd6hS9N7SRS50iqrSf+NDH3pvUpjGhd4yXmOgR0VzqgbV67toNX+nxzxmRDwjNLAkp0+frm984xu77hXPhLlektbvdErXGVrwvO9IEkJVmlMUZvbfe+i9XwqDjsykN2P101owLnafSWP6xp6sEeNAobKTPLaGzmTzvXxzvzikaj2htGpQ8tYcm0G/Zolk+hTyQX3ru6S7XBt0bm3oI7o/qW3yeKj5Lt5jvSwVE+rhNu+WcJhz2UNAQiWOvqGPrcE85kd3vdCVdem9mcCmfc+yTfOeF2IRR5D1QVjHfsA+vC8vHRJGFCJCZbNH6zXn0mf9+K/32H+EBjIE4RnH/YThhP/YpeS/qmF7+mgerQHzlQnB/ZhpXna2yTIR/JQpU6ZMmbKFsvEI/vTp0/Vf//VfKy9P0tDLXvay1Xegb4iDV6eQCq91KWGFF6xdx32gCAlSeWyJh6x93iIvX/JRMga8UEhXn3i8/SIXY8+f/YIS/YCW8jiZf/erS7XVj1hVDW+eR9svHaETbEMiU2PlmUOixuu4Dz1XDRaDviRq8dQlT2bRF2PXh/Tmu+zs7NS3vvWtlWfeixtVDW/eZ5JpoC+sQhYCMVf00oug6KP5ymM9ECEkICnNT4g+kwcddXKJEtuRBOlnonDzaj7okK04pgfZpe3oP1vpRXH0LftIf72cKekMnKSoqqrrr7++qnaXl7We+jHKqsFW9YI3aStVYz1XrZe3fiw5evRo/diP/djKFs1PHpPrZVI70wBZ51E9eoBS9V8SmnmDPFMn/YIlSNvvWJm8nlb/9cmV0L7bj4lWDXszl46p6XPXRRaRYd/WAsRu7sxTFhvyN+/rLEc/6paFdXxHIvWVV15ZVcM+sA8SBqvGvmbddnZ16WrrXi73/e9/fz0ZZCL4KVOmTJkyZQtl4xH8hRdeWG95y1tWFw9ARY4mVQ3kwsMVH3nggQeqalxskXE/sTuepCN0kG4vipExfx4yz1JsXHEH7ACkVTVQCC8Ygua9Qhp55IQHCSF4ph9F6vHuqt2erc+gCjkIGVPkuYr7aZeOjAfKwGBUjXnpF5QYn/dkXOs1r3lNVY1iGPoMZehzPqM9sezUV5dTp07V1772tRV7YA4SeULX0J1+QlT9qtyqgUqM1TN0a160nfFpsXDPQnDa8Pe01Y6gvMf8+G4e5fOZv4k3ehbq0tdEfWxdn+jLONiHI5dVg83oKAuS95NNJ7KGssw/FGi8vTR01UCI/tbj69bIEmrX/7wCuMvOzs5a4ailojhYK2N39Msc+ntnM/K7mChrACvm3Yl0+zWt9A/5uuwm14T5Z/sKEBkPHec+0I/h9qN0vTxw5hr147fsgd3ZG7M4ju9gDjBH/fIm8fWM3/dCZRgPuUfW/tKlPZ41F/3IqMupqsb8iOW/7W1vq6qqG264YVe7myQTwU+ZMmXKlClbKBuP4B988MF6z3vesysTOrOneY08SYhAbJdHluVNPc/ThBL8jgWABDLzmjfYy01qg6f9xje+cfWMyxegUu3xjiHt9E57gRteeEff+pyeNYTGu4fOjQu6lHVcNVBcL5LS451QRsZ8e2a5z8RRxa4Smeq3ZyGrfnoAgq0anrpnljLsydGjR+uZz3zmCiUtXZIDxfnMd/uFMlkIJvMIvCdFvz1D91Vjfs2VOaZbaCbjzZgp6J+eoDBMShYAoTPjg5zYM4SIoUh0rI8dSfWCJNrK/vdcE/rUhnGnTmRhQ77Grk8YhUSKdNALBZH9ytBaN/aJJVGqNue9i/FjS3pGf8+dqdpdEIrtaItesCWpY0jWd+xn3qMfWdSll8Y2dn+3PjMrXJ+cajAvbAmS15+0HfuJrHbvTR1Urce3sRTasTfJE2AfS0yIZ+wZdNJ1lTqRqyVfoxc367lcVcP2MQI33njjrr5sokwEP2XKlClTpmyhbDyCP3DgQB05cmQXgs9Sh+ItPUMVUuOdZoY6bw1CU4LST/Eg38sz5hAVD4/XCE3wABNReV4cG8Lp5WYz5sbbh+CVZdS3fiVmxt5clACl9IsctCE/oWrEmXi0LlQQt+NJYy54/1UDcdAnj1qcUplTiLVqdx0ByNDcYjWSrYEI6ClZhC5Hjhypiy++eDXGv/iLv9j1HVny5kW/ef7GmJdV0HPWRshxYG5cqJLf8yyUBNGyM/aQrADGwHchXN/x3kS4EEwvGcpW5BiIUefa6FdtWnvyVNhDv/K4aqwN8WEIVF/ZfepTrkxnN4xLPzKnpV8q0y+DYWdLV8N6j74uyeHDh+upT33q6p1sP3Nx8t8p1oKx5ll29tQviPFMX6cZO2ZHxupkjzWnraXz/t7XL3vx3RwL1sVJJWuXHXoGms31qd1kHqrGKRR5Ask22q+xjsbpuxgDc5EnmvQBQ+oz88X+83paz/S6KU7xYMSyxDSd9FMamy4TwU+ZMmXKlClbKBuP4A8ePFjnnHPOysuDdDImDoXxyHm0vgMtpNfPGxTPvuOOO9ba4gnywnmxVQMl6BME770QzxKi4u1iHbynV9LLsWoHGhFPEmftOQdVVXfddVdVjRg1777H3DLzWozf+Hi0+gjVitEvoXF98d6evZ2IhLff8wQwFliPzKKHsPUp+9/lzJkzdfLkyfrUpz5VVVVXXXVVVa3nHWAttEuHEA0kkmfZ6bLH+zAbbIk+nVfOz3q1LkIXiajEdnv8lH17b15pTO906DvQEBRmzSRDBaX0ymyQO53nxSudNZPPQTdsV7+S3bIG2ZA29M0ziZ7YvhoU7BlTkJdRdcn4/17y8MMP17/+67+u5rifdqjazZxZ2/RFf1ljwOkByJLee2U7/c/YuD2LbtnxL//yL1fVYOWyzkM/gWPNYmPMJT1WDVt3iU4/qWA/gsqTbdKefaBXJRTXTwbH+6w9OvB+7AbGKBE85K5PfU1qK3MA5LKYCzUZzJ/3ZoW+XiMEA7bpMhH8lClTpkyZsoWy8Qj+0Ucfre9973sr74oX+9nPfnb1HZ4fT7rH7sQsM0OdFwwt9LPf4jPQRcaZvAdC4233Pn7yk59cPePMtzh9v1qSR8izzz7wHnu2PAT8ute9rqrWWQBeNd1ALVCY92cMu9cE0Feee3r5XSe9/n4/d28OxL+yj70eO2QIuWdugXnTXrIIewkE4hytKm5VA9n6DntwTtfYM/7bs//7FaDaMj+uv60aOQ/izuKN0Ins6jwnTg/ahWjZF5YpT4lgBjyLUcEQmBdoJmso9Op3xNz2rPqqMf8QLhu1RuisM1dVgyWhY2sRWoLs0w68j94wMS94wQuqan8E/0SujTXGfvY7+0l31hLd+j1zFTAz5kcf6ABrgcVKxkA7veKbs9n6mtdi+0z7EHTP5k+xxsyR9SJfIxm1qvUTDHTS8xv83ZrP+vzEnNmjXvziF1fVsHs2nBn44vRyfYyz11vIExMYDqxsv3La+JMRpTfrdckeNlEmgp8yZcqUKVO2UOZ/8FOmTJkyZcoWysZT9FX/Q0U5MoXizcsRUHmdTkWZ9usv87uSQiTXoblQY0rk5lEX/5ZYhCZ2NAhF9va3v331jNK6+i0hxuUI6KJrrrlm9Qz62PERlBW6iC5uv/32qlpPXDFWdBe68IUvfGFVjeSTvEYRBZsJUFWDGkSRoXCTmkPj0f3nPve5qhpUIGo6k9XozzNo8X4RjjBJ1Tg657t5VK+LI5aoTLRghmpQ8vTVS9Oyg0xccowGLdhLq6KlfZ4X+tAtfXmGbr0/58BY0Y7myXw7+oT2TxHuQBu7sObmm2+uqmHLSevefffdVTXsyxrxfvS4ksJVY14kRPWLPKwrdGjaDluxjuhGEhnbzWS1TtsKJ6FizWcmgC1d+fpYIsltqXCOsJf59pMu6DYTQa0l608YxH5kDlH5uV4805Nd7X/0k6EVBabsN6hz32FDuTcKfwk9SLbtx0NdwCLsUjUSWa0rNLc5pPucA+FCc2r+e/lrIYIMv+gDW9RXNPtSqKOXfDZPElCNIde8fdu7l46IbqJMBD9lypQpU6ZsoWw8gj969GhdfPHFK4+QZ5slJB2Z6UkmvHsFGjIpiEfpQgEJWL38I+8yjzNBFo5R8AB5mFBYXhfLy+4FOrQFlWUZVH3k0RqzhDxeqn70JLjUAa+/H2PJ6ygl1UhUMh7eq/dJsslkG32D4KBuCIonnWVn+8UqEr4c9+JBp/cNfRtrHkXscvTo0XrWs561Ygh4+xiQqoF6oBaIRx8kQSbi1F5PyDRWCG7pilH2pL1+OQ+0n8ejerElrAuEBfUlywSpZXJgPkugMsinatibObNuet9z/n3HT8izIzYsSiZZ7XXcDIMF2ScTYp32hC9Cn0uXESUTsJc4nqv9TGAkGI68dKdq6AdjkImg1qN5sS+wod7fTOayV1hbbBZDRefJNtCDfa5fjAOR5v7Grjqy1jfjwejYL3IcfmIKrAXrN5kVexPd2CPtR2xHH/PqV2yS4kyepRNzoXRu1Vgv9iptsElJsUtMj/9b+rraVJkIfsqUKVOmTNlC2XgEf/r06XrwwQdXKFL8JI/18JR5h7xiaJjXmmUre1ENXqrv9GMr6eH6Li/Ue3jQ4p6J4KESz/DG9V38TlytasSE/IRo5QvwfOkmvWIeLRQGJWEXrrjiiqpaLxhETz2e6ndxQrrIYyT6qPiFtnjyvONEQv34Yo+D96OEVcODdkSsMyIp3/72t+u2225b6R4qzuNRGACoRKwSS2I8WerSmNgBFMQ2e6w0EZz30Rd9eC/UkiiTnnqstx9NzLggRE63YpTeo/gOtIfBqtp9pTD7hrCM1xhSF5Bhrs/8XfnTRL3mhS7YLPQsfyPzLSDDvY4rLSF39pz93kvOnDmzxrxYJ69+9atXf+ulVfWpX6+busVSmUNi7YqJs/n8HhvUnveaQ21kYSVrCXNn7dojsXJLMXEI3e/2ws56ZY6M3BHz/PKXv7yqqj760Y9W1WAFHW+rGvPORqwX+rcn0kmyjuzNOrV++uVRuRdbLxgi7XvmM5/5TFWts43eiUHOzzZZJoKfMmXKlClTtlA2HsEfOXKknv70p6+Q2vOf//yqWr521Hd4mP2K1PTIxVp5ZrxgXiRvDnr13qqBLCBnKIl3zsNOdCle18vnQl2800Q2vGqI3Xe9n8fOq0wEJ17ZY17+DuFlDFN/IQDt8tx5x/6eyAS6056+ZMZ61fL1l+aPtw35LJUUdRphvxK1XcyluL05rRoI6dZbb62q5aJBVesZteLM5pBexO76xS7JktAP9gPqoy922C/rqBr6ECNn57KNs2hRFiGqGpnOWCYouWfxVw32x9qA+iB5ayTzBGT6y4iHrLAM0CZ0lGyTPlkD0JhYq+9CzFUDVeoDHUBlS4JZezwI/tChQ3XeeeetTq44TWN8OTbxXcW3jB3jkHNpvtmEMUOxxsXeMmPc/Gahl6qq66+/fq1vyTZCw+zO79gAY8hSrtZhfx9mwn4AFbOXqlFYpu/JhF3m6YCef2RtKPqlP+wuGb2OtrVrnMaVe4n/OyB3+Uj6/gd/8Adr768aa8Gpp3797abKRPBTpkyZMmXKFsrGI/jTp0+vebEyIDM2xVPuVy7y2CHNzDKGlGSXunAAquQ1aiNL4zoHrV1xLp47xJFxW//m+UGg+szjzViYMfbrQaEueuH9Z/weQsNaeA8UJAaWCB5iMh6ecs8ap++8shcS6Ge1xXPF5PKiFx6z98huh3je+c53VlXVH//xH9de0hmClGPHjtWzn/3slT34mfEzqEF/6QMKd248T2CYK4wN1HXttddW1YhzG1eOWbxSNjtmp18nnJnQ/VpLCFf82bwkKjZWujQ/PfaPhci8BO1hJnqc07OZSazeQs+Ih7AxR+wjkXa/rMn7sBrWZpbv1Q702FFmsnUk0XfVOmvR5dFHH63vfve7K+ROls4/05d4tnf7mYjafCuta06xTOwRgs89i/573NyFK767xMp5j32tn+LI8s32KPbtWePs+RXsvWrU2WAPnjUv1lGeu8cIsgP2bpz2Bfk3uX4xAvpmTvUpUTi57rrrqqrqYx/7WFWNfBusyh/90R/tesa8mSdM4qbLRPBTpkyZMmXKFsrGI/hHH310Md6RMVgou1e3grB5/pBw1fDw/I1HCZ1CVBBCVu2CcPeKtfImExX1a1qhH15yVhIj2uOxQuXGCWEtxZkgNx61cdINNOBseI4L2oIieP19DKlPnjoWoJ+7d01qsgyYCLG8fq4ccs94nbEae2bHdjly5Eg985nPXM0TxiPzN3rmLgbHGCGgrLvA4zeHxgGJZCy8av3ayZ75DnVjpuRbZHwbCqEHdt3zN/KEAoSIqWHv7FxbkHZm7fuMvowLC8S2cv6xWv4G6fSTGcbr+9kHc4lVYKP0l/FcOu+yhNz3EnP9eMQaz6x964WuoUntirfnVbx0a656pT/zs3RNcd8HvYfNYGfy2mB9wgjRJf31PI6q3WxLrxrpJ9QPaVeN9cS+zZlcBntYslrmzD5u39Sn17/+9VVVddttt619r2o9D6hq7KP02Ks+Vg1G4Ld/+7erauQjsXM6ynljx/J4sHU33HBDbbJMBD9lypQpU6Zsocz/4KdMmTJlypQtlI2n6A8dOlTnnnvurgI0ScWhjNBNKBfHLVA+CpBU7S4JikqS4JMXKFSt016oS0cmPv3pT1fVoHE7tZXPoOR7oYRONVWNBDK0lmN5aFC0OMo5S3mi4FDldOE76MW8n92RE3QWqtnYUcIo1aS6/ZveUJmZJFS1HlpByTqCQvf+/oY3vKGqdidHVT0+KvZ73/teff7zn1+1m/ohwh0oTHOHfly6d9580KlnFfFAP2c4gjhKh+5GaaLS0ZLowqpBN7Jj4Qn2IZSSuk2Kv2rYihAN/S3Zu775ruIlvfBSijnTx35hjNCNtZLhK2NGiZondH6nhKvGHPQ764m2klLva+zxXDpjv0HRLh3PRFHbo/St96VqULzWknnpFxTRWyYyStBEMb/oRS9ae8Za70ckq8beRwf2B+v2vvvuW30X5c+OOzXfw2OpE3NpP2VL/eKgDHn5jrCFREPvEd4x3lz7/o1W167/C+xdGb5i132P974sZU2EMs3bfpdcbZJMBD9lypQpU6ZsoWw8gj927Fhdeumlq2M10FIeQYOUFSzoCVO84EzO4NnzxHhm/aiL92UxB6gUsoE4JBZBwHmlraMrvGsep2M4CunkuKAH3rbf9dl7MBZZUANqkKRDN93zTM8WEuwXRUBOEKrxZgEXR4EUEOLd98QpiLlqICies77QxXvf+95dOunv20+OHz9el1566S7UmmVM2Qg07F0Sp9hDHuuSuNMvxSH+Ds0kWsXc0BNkY56ghywDTHe9IBA2CPrP97Bvtk9f/UrlXsq4aswZ3UCX2A2sjyS4qoEeteM4pr47Zur3PMqFRaDXL33pS1U11rEENEev8pm9hP6SbehH+HrBmJQjR47URRddtHZEdy/RnnVq3bPr3DsgTMyNPth/PGudQtP5DLE3aZOdZ8IkW7E3YJV6AZy8wAW7533s2/qxNsxXJjza34zH3FlX9qU8vuYziab2aUW/lLslmVhrHFg+fdJnY0gG1nxZE/rfGb5MfGZv1tVSEa5NlIngp0yZMmXKlC2UjUfwJ0+erK985SsrD4onlmjlnnvuqardcUzxJV7x3XffvXqmH/nql8HwbB2JSm+f58xb5KHzCHnuWQCCBy3ezMOFaJauHxSL4qWKxSoa0494pVdMTxCMvuo7JJ3v1b4jLRAalEnnPb5bNfTpvf362CXELc5M9xD8xz/+8aoaeswYn7mEDPJijS6OyYkvutYyL6tQ5hMLYmyQDhYjvXtIyZjpSQlP8Ufo3ziqBlrohYi04VhjHrUzh/oAVWJW9CMRHrSq/9pL1iXHkojEs8r1QpFsZ+kCHu+GjqAfffe5tZkXP1lrbEcb0JL5z1g2RqUXCDLHGKuMwVuDSxfRdFFgqxfLSuksCSaRLs1T6kl/zQcWy34AxbKZjOezTWvZeu/vTUQNzesjHfvJ/vL6XugXg2MfYxfG0PNWsg9XXXVVVY292dqwh+RcdpRvP7W27W+33377rr7SCWbMWmDX2s5jgL00Ml0Yp3h7XjGLtTC+/QpsbZJMBD9lypQpU6ZsoWw8gif9EoksrgBli9lANj0OmIUtoHvoQVxRZqUrKnmnGU/nDYoF8Wz9nWebMX8IUV/7VY9Qn8+rxsUn4vS8cbFwKFOMNJG18UGrkIL30hGkkyLTmY49o03oI4tH9HK6ELxnfDfjkVgZOoDqoMyOMvq/89kl2dnZWbtqeGmsSsZiNMypPkCEefmMGCV0TO+eufrqq6tqxNOTyYEs2CL9YC+wJWk7dArJ0iUdG19mlLNr8wL1sVE2u5QRD+HKou65EpiXRGHGg2XIC32qBhozhkRh0L01oG+QJKS8VCYWMoXysvhO1Xr53v0uouly+PDhuvDCC1fIXaEr+QE5FiJDXv/9TEStD4pvyU2Qk6HNvrdUjbwdyF2uijUOedofqgYqhmT7yRg2lIxoFtdJ6euxlxauGghXn9i7fBF7VjI4/t0LNrEze3C3+6rByvT1ZD3bM3P/tsbMgXnDArCzzPkg5mm//I1Nkongp0yZMmXKlC2UJw2C58nyzBJ5QE4+6546rzHjj85UQlc83I4mII2M24nzyNTtWe484EQTLrXhLfYz7uJo+QwGgrcIMembPmVGMkmPvGqgcN4y5JDjwlpgG1y0wmPul9+kFy7/ge7phM6NIdGBPnkGEvA75JZIUV/Yw1JstAvvXTt5kgBaECOECCFRjE7GtyEY34HuxR0hhKXTFN4nPusn24VEclzdvvVxrwtysh3Z0U58sGf9YLOZJwA5iTtilayjRFCETUCg9KktqFMuRiJ4Nsj+jKdfxLR0SkCfzGlf+2nf0KS/ZQnhLkeOHKkf/uEf3pUjsZ/Qqfatl7zmlmBSIELPQOHmK2O9GCFz1a9RxbylvfVsbzbUc3KypoW1ys7sA/26aus383jsA/5Gf9Y9VibrSpg7jKE+0YkcHbaVTGUvB+w9mEKsQJ6GwGpYp2zROjNvOS7MTTI4TwaZCH7KlClTpkzZQnnSIHgeGq+VB1o1EC3vDRqGvqChRPDQp2p0rg7k3UHnvLxEAjx1cTLIALLhNWd8uMetEv1WDcSVcUYeO2TDK5VpDRUtoVkI+td//deramSg8u71MfVItCeLX594/9BTnmkXc+vXrKrc5ruZFew9+pTt5XvTk37HO95RVSPTfj956KGHVii0ajAEiR5kiGNy9AEqglISHfP42QpU4l2QXN+H8AAAGJdJREFUvTnPTG7ox9igEwgYOlG1rGpcl8p+vR/qYkt5nSpkIx6rXe+HINmjvIKqgRrpgu2zNwgnmZAej4bcxfG1TydZswHTAenSibUuByDzbtib9/aKiSSZCTbfmZcl2dnZqW9961ur2PtSdTPzIM7f8xvoOvtGlxknz37ay+wxyXj1S6z6+8xxsk32pH5ax3ftO1n9TkVL4ow5m+zx+zyr3+srvOlNb6qqqo985CNVNfayzKXBpFgT2B/ry7rVtn2pajc7S6+YBGsvL9WyTvslV/S43wVW2l2qaLiJMhH8lClTpkyZsoWy8Qj+2LFj9eM//uMrJA1RLdUVF8+CFiC1rOtNoBCoV7s8y45WxdCrhofrGQiD56dvWSXOd3jB/UrJfg67ani0kIfPZHeKjWojY29Q3Z133llVA5Vp0zll2a1VAz3w9iETKA8yMBeYi6qBZvSRjrAYr3rVq9barBpoRmZvz4CGXui5asQZPZux3C7nnHNO/czP/Myq3xBnnqaABuR0QBjG3BFB1W50DHH0a3TZUGbcYl+8F3rwPrpIxojtQE79TgLfzWxmNgjlYRmgJWuinwnO70JoPedAHD0RtXdDbn6HtPvph8wsNy89e7vnJWT9Ajpf0lfKEhrLSm+PJT1HJ9endrwb4jRPUF6yZHQKeVoffu9t5KkT7WFurAt66rXVq8a611ffZVNyC/JZ2eT9emDI156o7bzGl01a78bnlBKWJk8L2ZOs01tvvbWqBgtoDthB7iHsmy7sr96r7TzJQqfWr0p5dN6Z2ZTOMm66TAQ/ZcqUKVOmbKHM/+CnTJkyZcqULZSNp+ir/ieBAn2HksmjOug69ElSRlWDSkwKsJeGRTv1K0xR+HlcBS2MukLvoh174lbVoPj0rV9M4WcWCHGUT7KO90qmQodK0MlkLnSe7woBGIfP+wUWVYPO81PpWkfr9DWfNS7JOv0yFcdUkkrtl1nQiXnyfm1VjdKXZL8rPx966KH6x3/8x5V9eI/wTNXuQjnoT/Sd8SRViiJEZeqv+UA/doq7aiSq+dnLsaJFM2GSXaPGtUc/7DDHwt56ieB++Y9wQ+pxr6t4u10s0eIoZuvUnPaiL3lBj74KaWXCX9V60R8iqYoN+dnftxSe08d+lLTLgQMHdtH5mRzbSzf3AlBsJkNP7InejV0YBw3tvRmK7CEfIcieYJhJb0JwwiDCBUJES0ce2TMd29/YjoRnusiLkfrRuX4ETkgg7dJ32EQ/2ulZusmQhz75Tn+vtZohIeEoe6PvmC/jkSBcNZL00Pg9nLipMhH8lClTpkyZsoWy8Qj+1KlT9e///u+r4zZ5aQBxKcBtt91WVcPD42VBSYka+lWeEip4zLw8nmF6ur4DHXgPz08xhPQ0exLSa17zmqqq+tCHPlRVw2tWGrVqJL5AnI7qSJCD3KDnRKa9lGJPBIIQclx0AOUryuOYFp1BqHm5DfQFAUsMhDIg+LxExXf1iV7pE1OQqJ2OJSUtITRy5MiResYznrH6DqSTLIl++Yznz6YggkRy9I1Z4NWzM+jbWLOgikIsUFY/cghxZRlgiUKQE9TCdumpI998BvqByuiafSciYVf+Br3o+36XteiTue3HvyQr5vFFkkcRU5YYhb2u66SL/ezisZB71f/o/PTp06t1qQ9LxXZ6oSk6Zlt5JLCPWxu9ZDFWIMepL8r+Qp5sVLJYJp6af+ucbXoPfeW6xDIo7Wwv9HftYwUzAdk66iViza2LsrJQmXHRhdLc9vxMAK1at1U6Nk7zw969NxnbrvNeKpte82gdsbdn0u0my0TwU6ZMmTJlyhbKxiP4I0eO1EUXXbRWVKNqPe504403VtW45AOy5GlCRY5dVO0ujsPr5h3znHmGiY4gGDFyyFYck3eccVQxVu9z3IuIXWVJTH/zbn3DAohNQghLxRd6IRW5BYoBJTJdKgNcNS610I9e8KRq6A8a7yU+zVd6457hQfeylj2Xomr3JTaJjrqcPn16jckwb2k78gtcOsO7lztAJ1kkCRsDZUFljgIpoIIJSYSnsJL4ntixuTPnWYQFY6MvYv9yPJYuvsAaGIe5EuO3JqCVLP6jL/qPSXJBkXhmzj+7gpzo0RzSmThnMkc9hmyeMEr7FRWx1iC1J3IEbj85dOhQnXfeeasxipnL56gaLAGmzh4FVS5dxduvnxWLNkb6Mi9Z+Mr6w2JhjrShj6kvF1bddNNNVTXmlD3bHxLh/u3f/m1V7bZ98w652/8yVs1Gehld656t5rrVb33rZWc9Y72lvWPCIPe3vvWtVVV1yy23VNXuI55Vg/0zB3TMhh21y2f6EcSlwkebKBPBT5kyZcqUKVsoG4/gT58+vXZRADSZf+Px33fffVU1vN/uzWehDGgLwuTNic/yRHu2fdWIOfE0+5WI4pqJ+nxHez1GyStdyi5+17veVVVV7373u6tqxLX6hQ6Z6d/H7D28fR52FiuBrnwmBgaB8qCNUxnPqsFImBeoRRvGl/FouqdHjAsUA80m2uPt+5klXfcSCJGd5GkD/dQvNqPf0FBm/UKNYtIQgBieeCYElBm8SiJ7BvLQJwg4czHMM3vA4NAX/bHZqt1lWLUre9oawTplnFu7+kg3UL5+ZMwcEqTjfukLHbCtPNHiPT5jx+ZGPkLm3yhI1C9yyTW3l3TUv5ccPHhwhVbtF3maAhvCttOusv8p5hIz0Es4GyMd0EnV2EN8h87NJSYpxwVd98t/9NU8ZfGYjmgJ1K0f1qm4eo6Znny3F9rJPnZbfOUrX1lVo1gW2+n5UVVjzbE78fteJGvpKmVso1yDnr2PKavaXer5ySITwU+ZMmXKlClbKBuP4GVCQxgPPPBAVa2fje7XjPLQxcSyhCeBgnl6kPsVV1xRVcN71FZ651AQj5KXDenw9jLLHLLgBcvS5mF7Ji9SEHOH+vS5Z357fzIWXSekl1PlxVaN2JT2+qUSsrehpyxzCyFCea5OlXX6kz/5k1W17rn7G1TREY/YZqJR6JK3nxnxe4l5gmKyVO1eaA5yF/dMdgT7Qj/mln76lax/93d/t3pW/HQvRCNmnmWH/RuL4FlownzkVZZin2zE78bhdwho6cIQ82585gkblLFeaA/zgZkwvs5uJILvOR9dEn2RpStYqx4blT/e7xw6dKjOP//8lT1DpFn7Qb/tDebHM9Z6vg+iZENsEgLtNSDyNAXGQI0Gz5gHunfqJftrLp2A6fk9WTrW3sdWIfrOOvWy2znWjnithc4+VA0Er12MSD/xc++991YXOQbmQC6N9o0vr5zurCJ2BjNg3/G9qrEv2+P7hTybKhPBT5kyZcqUKVsoG4/gZUL3iyiySlwX8UsxeR5mepoQhexI5xqh/o60Mo7aq2fxSqHWpfPI0Lh2epa+rMys2qUvPEyoG/oX9+bBZzxafJtn6z3G08/UZp96BrzzoMYJPUGOVbsRCZQBQYpl5vWdEAlkKC7Js166ztN7nohAEVBqMg/mWe6DvuS54Kp15AZZmCs2BL3QOdR07bXXrp5lk/3SD6iZTrJiGrvFDOgrxNGvnq0aesJwyMQ3D9oyP2mzUKP3iLXK11iyb+1A28buJ51gA/IsPVbB2mCj9Nmr7qVgZ/bKnk8E3J/PkwNdTp48udJV1UDjGf/t7B7bpx8IP9e0XB/P9LoHvSpijsua6gwB5GtPfO1rX7vrGfNjPrCL+pb2nacjqnbnDRg3fWamP2bAnoRJNMfmNLPo6Yvta48ufK7yXOZZsE35B+zcd5ySyaz3m2++uapGzN0+Z1z67IrtqrFPPhbbtGkyEfyUKVOmTJmyhTL/g58yZcqUKVO2UDaeoieSQDKRiPREKSVrCQorKTkUGdrJZ2guR8DQxPks+hYNhP6SeNHLMlbtpqEkU2kLvZcUIJoOVYoeQt37KQkrC+soqGLsaCgUlqSoTFKTNCbEoQBNv38ahZX3tKOwUHPocFSzviaNjKZ+rLvdk87rl8Mo2LMkR48erWc961kr2l0SXBZWQfGiEPulRmhj85Zjcm81EUqhc4lZSWkbM3sSOvG792ZISsjCPKP1+2U9qb9ON/YSpf7uiFDec05fbJG+hIgcx8uEULbT7Vlb+ubzDJf1Y3LWlWSnpYJHeyWRdlmi9UmGQfYSa8Hay3lBC5u7foRT+Ccv8qHnfjGW7/SLpfYrCMQu2JA97a677lp9hw61ow1FaiSuWRvZru+ixnuiYS/SlH3oiabWgPnPeaEnOu4FytiKZzPMZ69lb5nQWjXmRj9StG+OrQV7/6tf/erVd+3Xwpeo/02XieCnTJkyZcqULZQnDYLvyQ2ZCAId8tZ60RBebB6zgMx4oRCOIxt33313VVW98IUvXPs838fDgyr7FYVZdhYagjigB4igj6FqeKo9gahf9pFFf4ijdZJ3oOBeNGXpeJT39WMqEKpSlomm9Ukbxtv7mgxMR+zmySU3Ck30ghspvrskBw4cWEOKPPVEnpCT+ehXyvarQKuqvvCFL1TVQP09+c0cQtx5/E9ion6bdwiE7SzNab+K0zFDY8xiNdrVNyyMv0Nw7Dt1IpnOeLRPR2wnk6usJ3+D9ujIeNhQrifPsDNsSUfueXTwsZD745GOiJcEqiNZeIZgHPrVxRi4FMivMwtsn53RX+57bMOz3c4gUnNaNY7uebZf4NTZyKqx79gbXRONpcN6QcW5z0H77AHr4wgum5Vsmn3yPmO3ZxmDNZN7P7bMXPars629LOTzK7/yK1U1WJSezGuPyqOD5l1fl67Z3USZCH7KlClTpkzZQnnSIHheo3jNkndM+tGwpQIJ0JD2ejxOwRtHZTKGw9sWg4OcHLtwfC0vpnBcBSLUR+8VM8+4Nu/9c5/7XFUN75Hn7r1QWl7Iw/uFWhWA4OE6+pYIWByOBy22hgXgqUNPS8d/6JM3rlSl8S9daWs8+rJf7JXXvXSFaJdTp07Vv/3bv+3y5peK7fTiReYBQkjkpthFR2zQqnnrMeyqEcszP8YBffluIip9Mr/mg772u76VLqF+rAuGBxLJqzF7ERT24L30l2WHPdNj+r10bKI90ouiZDnYlCxY1RmOvewi11NHXfvp7dxzz63nP//5K1tfusgFwwUFs/0ew0476ZeWWNOQrv1gKR8lyyVXjTlzbNV+t8T+sB1rHHOIpUk2znesXawTZsXea25zn8P2aN9+w76NP8tcW1vyNcwze2D/73znO6tqMIhVo3S59Wv+7fmdFawausUyeJ85tk9koTK5S2L8mKhNl4ngp0yZMmXKlC2UJw2C5zXyIhWmqRoeoFgKjznjilXrCIBHK/4HYYo/9nKNyRjwzMV1IA7eo7595CMfWT0j1s3DhfagPBcceF/VQMWQMuTUr/OEzjJDnUeOTYAMoADjzrgmhAYBQL48aOOlI6ipahRz8Sz0bb4gqbzqEYoVa9fH9Jy7dIS233Wxx44dq5/4iZ9YxfAhnSzugx2hY7FCyN14lrKx6Y5e+pWv5jqLiPgMavV+RYog3Iz/QTbsTJ8gJ/Okz1VDT56BNi+77LKqGmuDPSTqYzvYFutGhr/v5jP9oiNoOS9Pyn5kX/sFHhnbT9nvik766gj5fxMrPXPmzGpNmf9E49au+RW77UWyUjfWBRRJh9C3+Uj9kLy+tGrYRT9Vk4WV7rjjjqoa9mUOsQ7sMQt52QfE02Xl+7tx2xOTWdAH78ECeAaDlWPBXtAJ22U71kQvv1xV9YEPfKCqRj6U+camsq23v/3tq2c++MEP1pLYtzFTySRhcPupq02XieCnTJkyZcqULZSNR/BHjx6tiy++eBUvE99MJNdjaT2DmCSS4sF6FhKEhni0YtjpcfLCteHiGxfHQKKJqHuWtv7zXqGxzLju13JCjDKie9nHjG9D9cbDk6Y/KINHneMh+s9Dh1CcPU90BF1BiGJv/g7tJ+I21o7MPJtnc0k/p97PxaccOHCgDh8+vPLI6TxLkGIjsCV+0hc7UIa4arAQELv+itdCZZBbXloBFYhf9jLK7CzzD6C7XrIVyvP31AU9Q8zQnryRfsVx1l/AYhgHtMJWSV7ABOHo/17nz6FasdEcKzTZEfx+9uB9kHsve7sUZ19iEbp8//vfry9/+curfooZJ9vgXeZU3Qs2ZN3kMxgt82+d+m6/YGmpdof5kSPhO73mRNW42hpDiW3Cynhv6ha7hPkSbzZ3PRcg90b/ttasUzrXVu4DdGEc9mn7tz3Y+JwAqBoZ8ep5YOnYtz0m9/5+Laz9m07YUtavcDLB2k8mcpNlIvgpU6ZMmTJlC2XjEfwjjzxS3/jGN1YeoBhYXnPKS+dR80B5fD7Py1igHQgWMoSGoEreYmZR84K1AQXJ6NTH9KR5kj2zGtLg0WaMr1eo8j5j1yfPZJ4Ab9t39KXHwjLLmbfNw3Xemx550ktzoN28oCEFMsnzqL0GAVlCar2PvPtEgl2OHj1al1xyyQpNOM+bQj/YCuyIMbOHRA3YDxXdoFWIV1sYkRwPhINJ8R4x8Y7OqoZtygTG9vT4eeZEWAPm3drAWGAbzEfOpWd69j6b7bkgVWP+oWKom/56fkyuDdLRqz7tZw+9RkRvN68JhZbZzn4InmAX+gmJqsFgmTPsHHtWayArr5lDrJL+0x+dYkSy//YZseLUf0oyLewZOjbfEK85zqxwtsiGMId0q81+mqhq7HOyzvtV070ORz5j3+l1FpzMsL+muDiGyK/BBsnvwa6mXHPNNVU1dC33h47ySnL75NVXX11VVR//+Md3tbeJMhH8lClTpkyZsoUy/4OfMmXKlClTtlA2nqInnU5bKl+KQkJpoyxRi0kloQrRrf1yBzQr2juT+hwf0QZ6De2ljUx6Q6uimFGlaHfvz8sstI+KRWmji1DDPaGkaiSFOGKCbpIc0pN7qoa+JKF5H2oM9Yei69R61e57s1HgS0VrHq8sFcehm/1K1Z49e7ZOnTq1i5rPAi36hxLvx3okSOVxQvNL3y4o8ixboc9MtpTYY/7pCwWsH5nU98ADD1TVOGrZ768mSdmaV30QLujFefyu4E/VoIJRy+abTlCYSR+zjZ4Q5yfqVGgok9+Mq9vIfhT6fol3Kew8Zb8LaMiJEyfq53/+53cdGU0RQkBlK64iLKFvuXegoemLHiSusrdebrtq6LuHyOjJMzk+NmLPYBd0zt4yacxeJYxjzzL/Qg+OEi8V50Lzs2t0u1BBhjzz+HI+KxRhX6XPTFrVN+OzfxqnNZqhPKE1e28PCbH/FM9Yi08WmQh+ypQpU6ZM2ULZeAR/8ODBOn78+ApNZnJGF2jFkSDCI83kE94wT7JfKSthRhLKUplMnqtnILj777+/qtaPgvCqof/ucXpfohjMA8+yJ0rxUvUjUUa/SpT363desEt1qgbShFYhQolAEsL0Pa9qlSzYkaLxQDlZ+AS6gLIwMI4S9Qt6Unp50yX57ne/W/fdd9+qCIo5zqIe3ukSEHNrrP1oYtVggnzHfGBhjBlTsFS4R3vQHVbAHGaRDfPgmY4m2YVkr+xbR7AQob5aE0vHfnynl661JnI9YXn6pVD6lkcTu0BMxtWPfZG8sre/xzPQ834XFD0eOXPmTJ06dWrVpyUGSv+wEr5rXXomEaf5hizZF1tnS0sFlux97Bl75b32m1xjfX14H1YMg5DvwczZ8+xDyrRq3xpfOoqoL94HJZvDLJIEXWO3JPz5jiI2mKM80sm+/cS4YsCg9GRGfdeFN443+v3yyy+vqnV203rEfPTkzk2VieCnTJkyZcqULZSNR/CHDx+upz/96bs89iXpZUwd6+rXuObfoCwIo8dNoRclRauGF6d4BPTAM4RmMl4DWUC43g8NilFmrMh3IV3v83eMAS8dqq3aXSgDaoUclGbN90Fm0CTkiEHg6Toylh5uL6xDjEusLJGVv/VntLVUZpQu9kPu5MSJE/W85z1vNbcuzchYtfnloffrWr0HsqoaeRvYH0dxxMahVvrJ0pra78U9vG8pX4RNQlm+I64JcWXBkV4spMdCO2OViArKwpx4v7mkzywXbV73KjpF9isyQze9DWPYbw+App8Icl+60CXl7NmzK3ZBDDZtki1Cc+zKmoJ0k42hy36c0Lzov/0n2R9o+P9r7w5SGISBKIAmh+i65/Egnr6HsKtfYkRouwrDextBUeuYODg0Js+BSNzSb8YK1SzbEsv8jnGI5TxxT5Z53uR6c5/GSacSk7w55/i5nnH4Z6QykapC4jZ/dnjbttbaOZ45T44xTzCWvrHv+2efVCJSWZmHtaZvjh9cSjUmVY1UaVfnDR4ACup3Ezusovf+aq1d/64NZ8/jOB7jCm2HL2k7/OvSdlayfIIHAH6nRA8ABUnwAFCQBA8ABUnwAFCQBA8ABUnwAFCQBA8ABUnwAFCQBA8ABb0BlXImBACnIFUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1842,7 +829,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu0bflV1/ld59x7695KvW5Sj5CCEBDEVtTWFhUxEGyIQCCgIKBGiO8HIGiro9ugJIiNDx7taLRRkJcQRBTRBgVCN1EQGkGDjR2QIKmkklSl3rmVVNV9nLP6j7W/58zz2XP+9t63bpIRz/yOccY+e+211u+xfmut+Z3PaZ5nNRqNRqPx3zr23t8daDQajUbjfYF+4TUajUbjVKBfeI1Go9E4FegXXqPRaDROBfqF12g0Go1TgX7hNRqNRuNU4LpeeNM0vXKapnmapo+4UR2Zpun10zS9/kad7/2FaZpespqbl7wX23jlNE1/5L11/sYY0zR92TRNv/f90O6LVmsr+/uqG9zW3jRNr87W8TRNXzVN01o80zRN56Zp+uJpmn5ymqZ3TdN0eZqmX5mm6R9O0/TfJ/tPq9/naZpedoP7/0mDuYp/33yD2vv01fl+yw0630unafryZPtHr9r5nBvRzo3ANE1fMk3Tm6ZpemaapjdO0/TKLY/7muKafOd7q69n3lsnbrxX8Uot1+5b3s/9OK34Mkk/Ien73k/tf7Wkf4ltb7vBbexJ+orV/6/ftPM0TbdK+iFJv0nSN0r6KknvkfSRkl4h6XWS7sJhL5b0Yav/v0DSDz7bTgf8e0kfG75/sKTvXfUrtvPQDWrvJ1bt/cINOt9LJX2xlv5G/NdVO790g9p5Vpim6c9J+hpJr5H0byW9TNK3TtN0MM/zP9riFFckfQK2PXxje3mMfuE1Gh94+JV5nv+f93cngP9d0v8g6ePnef73Yfu/kfTN0zT9nuSYL5R0VcsL9eXTNN0xz/MTN6Iz8zxfknQ0R0Eb9V+3mbtpmiZJZ+Z5vrple0/E9t5bmOf56fdFO9tgmqYLkl4t6Rvnef7K1ebXT9P0oZK+epqm75rn+XDDaeb36Vqe53nnPy0MY5b0EWHb67VIOZ8k6T9KekrSf5b0e5LjP1/SL0q6LOn/k/R7Vse/HvvdpUVafPtq31+U9CeKvny8pO+X9G5Jj0r6u5IuYN+bJf1NSW/WIlm8WdKrJO2FfV6yOt/LJX2DpEdWf98p6Y6kf6+VdEnSE5K+Q9JnrY5/Cfb9vVoW6lOrfb9X0guxz32rdj5fi6T4Hkk/K+l3Yp5n/L2ec5z08+9Jun81j/dL+keSbgr7fIqkn5L0tKR3rebyo3AeX+NPkfRzq33fIOm3aRGe/ldJD0h6TNK3SXpOOPZFq77+GUlfp0WyfkrSD0h6Edo5q0WyvW91ne5bfT+bnO9PSvrKVbtPSPo/JX1wMgd/QtJ/kvTM6nr+Q0nPxT7zqp0/u1obT2p5YP86XCPO/7etfvvVkv75amzPSHrr6jqfuZ77LBmDx/zHNuz3pau19thqTn5S0qdgnzOS/rqkXwlz8hOSfsfqN45xlvTlq2O/SsuDyuf6EEnXJP1vO4zlZi33zb9YradZ0p+8EfNUtPcRqzZeWfz+iJZnzRdJetNqPJ+8+u1vrdb7k6tr+yOSfjOO//TV+X9L2PazWljvy1Zr76nV56du6OvXJHP/7tVvH736/jlh/3+q5dn4cVqY7dOS3ijpf5Q0SfrLWu55P3cuor1zWtj8m7Q8H96mRYtwdkM/P3XVl4/F9s9Ybf+YLcb5zBbX7ndK+jFJj6/m8Jclfe11rYPrXDyvVP7Ce0DLC+wVq0X8utXCift9kqRDLQ+ml63O9dbVsa8P+90m6b+sfvvjq+P+tqQDSV+S9OWtqwl8qaQv1/Kg/Dbc4D+u5WX4ZavF8CotN/vXhv1esjrfm7VIrS+V9CWrRfTtmIcf13LTfrGk361FxXi/8MKT9KdW275F0qdJ+jwtL7Q3S7o17HefpLdI+hlJn6PlJnrDaqHesdrn12oRKP6TpN+++vu1g2t1cbWQH5X051bj/v2S/rHbXl2rg9X1ermkP7BaVA9LuhfX+EFJP6/lpfzpWm6sd0r6JknfupqHL9Miuf+tcOyLVnNwf7j2f3h13X9JJ19mr9Wybr5yNf+vXp3vtcn57lvt/6laGMMjWhec/sbq+K9dne8PaxGiflrSftjP5/vh1Tx8zuoa/bJWLy0tKrsHtDzIPP+/avXbm7Q8cD5bi5rmD2gRYM5dz32WXEuP+U9oWc9Hf9jv6yT9kdW1/hRJ/4eWe+6Twz5foeUB/iWrvr5c0l+T9LLV7x+3auubwzjvXf3GF94XrPb9XTuM5Q+ujvlsSfuS3iHp392IeSra2+aF93Yt99bnannefOjqt+9Y9fclq3n651qeBx8Zjq9eeG+T9P9quec+VYva7xklQlk47oWSvkvLy8dz/zGr36oX3mNanr1fsGrnZ1bX9+9oecl9qhbh8ClJ3xKOnbSox5+U9L+sxv3ntRCHb98wp39h1Zdbsf3DV9u/cMPxX7Nalw9qef68Wcs9fy7sc6eOBaOXSfrE1dr+hutaB9e5eF6p/IV3FYvg7tVA/nLY9u+0PCQjq/rtAlOR9FdWC+Mj0fY3rRbnGfTlG7Hfq1Zt/+rV9z+02u/jk/2uSLp79f0lq/34cvuGVX+m1fdPXu33+djvXyu88CTdooUxfQv2+7BVu18Wtt2nRYq5GLb9ltX5/gDm+ie2vFZfuZqH3zTY52e1PKzPoH9XJX1dco0/PGx7+ap/P4pzfp+kN4fvL1rtx2vvB+sfxQ39apzvy1fbfwPO93rs55vwBWG/A0l/Ffu53c8K2+bVPMSX7+estv8OXKfvxPnuXO338uu5p7a8lh5z9peySC22uDOS/m9J/yxs/yFJ/2TQllneq5Pf+MJ71WrfX7XDWH5Ey0P63Or7316d4yO3PceOc7fNC+9dAvtJ9tvXwojeJumvh+3VC+9pSR+SXMM/u6GdlP2ofuHNCqxTC1OftQjMU9j+DyQ9Gb6bpf1etPMnN10PLRqda8n2O1bH/rkNY/xjkv4nLS/Z363l5XxN0veHfV6yOteHj8617d+NDkt40zzPb/KXeZ4f0qICeKEkTdO0L+ljJP3TOeh250WHex/O9SlaJPA3T9N0xn9apO/naWE6Ef8E3/+xlpv9t4bzvUXST+J8P6JFhfbbcTwN6D8v6SZJ96y+f6yWB+k/S9qN+FgtbPW70O79WtQQH4/9f2qe58fRrrSaw+vASyX9zDzPb8h+nKbpOZJ+s6Tvmef5mrfP8/xmLcLJJ+CQX5rn+VfC919cff4w9vtFSR+8soVE8Nr/Oy0PDzsYeD7oqeXv7M+/wnfO1ydrWQec/5/WItVy/l83n7TbbDv/j2pRD/6NaZr++DRNH7lhf0nLPRH7lcxXhq/Sch8d/cVrN03Tx0zT9IPTNL1Tyxq9qkUy/qhwjp+R9Bkrj8uPm6bp3Db9vRGYpuleLezze+Z5vrLa/O2rzy/YcOyE+dq/gV37N7j33OanTdP049M0PablgXxZ0r06OZ8Vfn6e5/v9ZZ7n+7Swp+u9nys8NM/zfwzffV/+yLx6c4Ttt0zTdMfq+6doYVA/kDwXpcWx6L2CeZ6/eZ7nr53n+Ufnef7heZ6/VIvm4TOnafLz+I1aTDvfOk3T75+m6QXPps0b/cJ7LNl2WdL51f93anm5vDPZj9vu1vIwuoq/7139/rwNx/v7veF8H5qczwZ2no9jubz69Fg+SNLj87pROxuHJP1o0vav39TuPM9sd1c8T2MPvota1BoPJL89KOm52MYHwpXB9jNaJOKI6tr7Ork99udB/G5suk6e/1/W+vzfqt2ve4rVQ+WTtUj1Xy3pl1Yu9396dJwWr7vYpy/csL8kvWWe55+Nf/5h5TDwo1qErC/WIkh8jBZ1dRzDX9PC/j9Li+3ukVX4AOd3G/iB/qFb7v+HtDx7/sU0TXesHr5v02Lzf8WGl/4f1cn5+i/X0d8Ka/fANE2/U4vK751ars1v0zKfb9J29+SmZ+KNwi73pXTy/rht1ac4rxZqeX+wzf2Vh26E11A29k347tXnx0hHpOl3aTHrfJOkt0/T9HPXG8byvvbSfETLZN6T/HaPFgZmPKqFHX5pcS4u9Hu06LDjd2nRy/t8b9ain89wX7G9wgOSLk7TdBYvPY7t0dXnK9E/48kd290Vj+j4ZZLhcS0qg+cnvz1f17doR6iu/c+t/nd7z9fyMoh9ib9vC8//S7V+88ffnzVWzPcLVg/s36jlhfP3pmm6b57nf10c9hlaNAfGm59lNz5NywPs983zbCHBTD729YqWF/NXT9P0/FU/vk7Lg/AP7tjmj2mxxXyGFtXpJvilXs3JJ6gOhfh+Ha8VaTEz3CjMybbfp0XV+XnzPB944zRNoxfBBxIe1XJfvLT4fSQs+3n263TSc9Tatzc+i34dXYt58fr9zGmazmoROP6KpH8+TdOvgbZpI96nL7x5ng+mafoZSZ8zTdOrrdqapum3adFtxxfeD2kxqL919ZbfhM/VyZvt87XchD8dzvfZWrydflHPHj+lhb18tk6qMT8f+/2klpfaR8zz/O26MbishZ1sgx+R9OXTNP3GeZ7/E3+c5/k90zT9B0m/b3VNDqQjpvA7tDju3Ejw2n+clhipn1r9/m9Xn5+vxYvQ8EP49Tu29zot6+CF8zy/7rp6vI7Lki5UP67Y3s9N0/TntTCSj1bxcJ/n+eez7c8CN68+j4SwaZr+Oy0PivuKPjwo6ZumafoMLX3VPM/Xpmk61GCc4fj7p2n6R5L+9DRN3z2fDEtwHz5rnufvn6bpt0r6NVq8hr8Xu53Xwqa+UMV1nufZXtPvK9ysRY159ACepunlWtc03GhclnR2mqb9+KJ9L+CHtHim7s/z/NObdgZer+XZ9gd18oX3Ci1OSP/hOvrj+3xtDa2IxU9M0/QaLS/oj9IxE90K7484vK/Q8hD+/mma/r4Wl/nX6FhlZXy9Fm/GH5+m6eu1MLrnaLlZXjzP82di/0+bpulvr879W1ftfEewKX6XFu+8/2uapq/V4uV4TtKv0uJ48VnzPD+17SDmeX7dNE0/IenvT9N0pxYVx+dp9cAI+12apukvSvq70zTdpeXB9y4trOsTtDhdvHbbdld4o6Q/M03T52lhQU/O81ypdr5ei7fgj05LNo6f16Ja/kxJf2qe5ye1SEw/qEWP//e0ONq8ZtXPr92xb5twq05e+6/WMnffIUnzPP/naZq+W9KrV7aEn9Silvsrkr571xfEPM//dZqmvynpG6Zp+igtYQbPaHGl/2RJ3zzP84/tOIY3SnrxNE2frmXdPqKFVf0dSd+jRX26r4XVX9N2rOdG4XVa7HbfubpvXqDlWr417jRN0w9oeSD9Ry3qot+sZT6+Iez2Ri12vtet9nn7PM+Z6ltahNOPlPRj0zR9oxa16nu03F+vkPQbtLCzL9QigPzNeZ7fypNM0/QvJX32NE1ftMv9+F7ED2lxrvgHq3X567R4M/J5daPxRi1q378wTdOPSbpa2eGfJX5Qi5DxA9M0fZ0WlfyeFqe1l0n60/M8pyxvnuenpmn6Si1264d0HHj+eVqcg45s9dM0fY+k3z3P8x2r78/Rohn4Ti1e2ntatBN/Soud/9+v9vtcLcLvv9RCiG7T4kX6+Kqvu+F6PF00iMNL9r1PITxgte33a3mBbYrDu6jlgf1mLbrnh7SEAnxZ0peP1+K6+m4taq8sDu+8Fhd3xwA+psV4/2ode32+ZHW+TyrG/KKw7S4tOucndRyH95nK4/A+TcsFvqTFNfhNWsIUfi3m6juTOTzhLadFvfevVu2ueSomx9+txTvrgdU83q/FSWAUh/cvVMThYduLlMSGreb0yHtQ63F4D6/m4QclfRiOPafFMeMtWpjKW1TH4bFdXz/O/x/SIoW+Z7VGfkHLw/2Dwz6zpK8qxvfKsO3XaFmHT61++7bVHH+7lpv3KS1r699oucmftXfZaMzJfr6/ntFiF/tcLQ+WXw77/CUt2o/HVtf8v0j6qzrpqfvxWrz8LmsQh4fr9iWrdXRptdZ+RYvt5devfn9U0g8P+m6vwVfcqHlbnXerOLzit7+0WoMO+n6xloftD4R9yji8oq2hW70WX4dvXu17qC3i8HD8Lav9/mds/+LV9ueHbWck/cXVWnlGy7PsDVqE0eeM+rk6/ku1CN6Olf4jyT7/1GMIa+V7V+vj6VW7P7+a67gGf8Pq2Les9nmnlpdf6XU++rOL/QcspiVv27dqcZ/95fdzdxoFpml6kRbB5Y/P83xD8hc2Go3GLuhqCY1Go9E4FegXXqPRaDROBT7gVZqNRqPRaGyDZniNRqPROBXoF16j0Wg0TgX6hddoNBqNU4GdAs9vvfXW+c4779S1a0ueWn8eHh7X+Ds4WJIC0Da4t7e8W50mL6bL42/+fiOwjY1yu3y9u++7qQ+jvvG3TeMY9as6V3ZOb/N19HnPnj27tu/+/v6JzzNnzujhhx/WpUuX1jrznOc8Z7548eLa+sj6zTXi9cB1ku3L821z/XexY1/Pddh1zdzoPlfHPJtxx+9cT34e8HuchzNnzqx9Pvzww3ryySfXJmt/f3+O6y9bB1wj2zxT/NuzuT9vxL1d9etG73M9z7nqmNEYdmln01zwOSTl1/jSpUt6+umnNza80wvvzjvv1Fd8xVfo4YeXCuzvete7JElPPnmcDtLbLl++fKKjt912myTpppuWtIF+SErS+fPnT3x6Hy7SbIH6ZuIC54N1mwvkPmU3h4/3Dep9eHN7e9ZHvkz4GcHfeOz1vMh9rK+NBZbYR3++5z3vOdHOnXfeKen4GknH1/SOO5bE6xcvXtSrXvWqtC8XL17UF33RF+nxx0+ms4xz7f6eO7ck7vdD7jnPec6JtrOHn4/xNeTDluOM+1QPBh4bj+Hn6MGaPaBHiO2yD1X7sd3qxePrz2s9Wqu85yjsxv997FNPLQlSrlxZ8hR7LcXxX7x4UZJ0zz1LatXbb79dr3nNa9L5OHfunF70ohcd3Xt+PsR1cMstt0iSbr311hO/eT34++jedv/j2LLf4/+cUx4TUe3DZ1jsY0UUqu2xXe8Tn7WjYyOq9cxnZbZ22A77kQlLPtbX2PD7JJ775puX7Hm+5vv7+3rta7dLVtUqzUaj0WicCuzE8OZ51tWrV9ckxMhQLB15G9/Y1Xnj+a5evZoem0kxI0m3QiXRj9RjFaPahoWSdRpkcbE9znH1mTFY/0bG6nnNrhslVffFUrql9thH/8ZzZDg8PNTly5fX+h+ldF4Xzm0maVeMntdhNE881yZV1wgjNXGFqq/xN84bz53dE6N9svZvFHzfen14HT7zzHFhA69FaxtGa2eaJt10001r7MJMTzqW+s30M7ZEVM+xSpsS+1ipbY3rUdlnrIpjro7J+lGpd7dZ35Vpw+fy9thX95HPEmq9MvUkzSP+tHbHWoKIihWO0Ayv0Wg0GqcCOzO8a9euHUlnfmNHSd9vd+9DCZzbpWNWSGmW242MeVUMbxsnmepc2Xko+VQsJILj8XxVdrq4L1kvz5nZYdgHS0sju4Pbo8TlfZ5++mlJJ6UpS+zu27Vr14ZS48HBwdHYM2mWtgZiNNZNzjCZPa6yV1VraHRert2sj1xD29hSKLlXfY7sg9cgG/smVOt6kzODVF/H2C8zO39euXJlyEDPnj27tkajPdn/m+FV/R6tHX7yfskYHtfdNmuH8zN6vlkDwnnn/Zldl4oVjhyQKqZdHZvZG3leXzf6P0SQ2XmfCxeW6lTx+cfjz549u7WWohleo9FoNE4F+oXXaDQajVOB61JpUs2VqTRJ+enqG9UsNG5X4QGZKpIUu3J8yFRn3tdUuzKcxn3Zp23ckT0HHqfnIqoC42c8xvtUYRaZCmJTnzK136aYHaueoqMAHVpuvvnmYVzS1atXj44ZORVUjhqZGnlT3N3IQF/FiW3jcECwr3G/Sv2d7VudtwpHGanhq99GKs5t1fyZiWCT41hmxrBaPDo0ZcedOXPm6HerLa3uko5VmnSc2EbVRbMB1ca8T+M+VZ9H4Sn8XjmxZL9xn1EYTuXQUqnJ42+8B/j8zuaVfaqemdEsUo2Pz+D43MnOsy2a4TUajUbjVOC6whIYUPrud7/7aB+yGEpAfPtHMIiYkv7IxbgypmZs0YZgSwhuz9/5e/y/MsyOAsPprGKJka7ZGVPmMVUgdexXFbLgz9GcWFImA3Mfo3uwJWz/dnh4WDK8w8NDPfXUU2uhDBGVw0EVksH/I6rEANn5dwlt2cSER2EClcPLyPGJYT48Zpvg+G37HreNHBuqYyjRk/nFvnLNX716dagduHbt2pqzSmR4GQPI+j8ax7bhCXHfKrQl+53zTc1SpsHi9R49P4kq7InXI2OuRrV2M/bGNcn7OWvPz53KcYzvhHj89YTTNMNrNBqNxqnAdTE822ycUszfpXX24rew7X0jCcXb6Io7sqlssk9lLsw+P1kNt8egaNoIjEovHt1oydYs3dp+wc94DPcdBega1LcbnouMwVqC8vm9D0NQYh99Tb1tZBvy2uH54hz7N15/2sAySZssYxPLjefN+hoxkiTJmkeMcpN2gAkC4v/cd5R4oEJlU9nmGM7BKISksp9ltqKY5m7TGLxezewiq9sUmF35EsR9fX7a7jiu+H+lwRrZ2DmnFdOL5+F1r8IEYnu0/1fsM/MdIDifWW5db/OzhEkARuuvSkPmz8jm/dy5ngQRzfAajUajcSqwE8M7PDzUM888c2Szu3TpkqTjN6607n1VJUYdpcCpvG9GNpxK92wJwamHpGNpwdso0TFpcdynCmQls8uS61qa9Xz50wzZv0vrDM/7VHafXYKLPb+R9VJitfRMhhEl+4yxVv2g/dfni33gHFZ2qlESgZEdKI4zbuMnWcDIa459H3mdVtvZbmbL3eR9mnncVl6BVVLhbDxVe5sSDGwC77lNgef7+/tr921cO7Sx72Lj4jOrsrln93TF0rP0fUblX5A99zYlRRh5XNKPYptkDGynSsKdJXKvfhut1U0e5WSJ2b7N8BqNRqPRAHZmeO9+97vXbHeRmZi1sLwMS/5E6dKSDXXMsd34OfIqqiSsuB/tjIYlRx8T+5jZ9bLzM34u9rfaN/NiY2LUWAojbqekGfvo+aSHp7fTiyr2KbL2iHitLXFH+97IS/PKlStHUnSWEquSiiltxmtAlkIpklLtKAEwJf7MG6w6P+OHokRK21Bld87iMcl2N5U/iu2R0VFaZ7841tgX75vdTxWbIivI7KfRvj2S1M+cOXP0DGEZsfg/1wNtQVlfec9yXWQe57ynq++ZfazyKGeJq2xfMjC2E/evGD6/ZxoTeqyTvd1+++2Scjsqx8FYPj53Y78rb/RowxvFR25CM7xGo9FonArsxPAODg705JNPHjE8S/sxDo/2KSZ1tV3MhRqlYylhk+2OUo20rmentGZGkWVNoZ3M53d/YswZJdwq/s59jUzI/7tPPm/0eIzniOd1Xxl75O+ZRxzjCz1Ho3g2Sqj0CqUXoqS1dXBwcDCU0m3Hq85HadxjNLtlCZg41ipLzihjBDMFVeWTtvHSZH8yTzuycv5Ob17peG7JyozMdljZQSi1e35H9j8yFnpXSsfzSDsv119m/433a7V29vb2dOHChaO1n2Va8dqgFyG9q2MfNpWmoe0p3p++Pzx23uO+LvFa0kbIOR0Vqd0UQ8d7PI7D2zwXXEPRFkoPS8+r59qfz33uc0/sF/tdeUzThyFuoz8A2VtcoywZtI3N+KiPW+/ZaDQajcYHMPqF12g0Go1TgZ2dVi5durSWUiwLmDbVve222yRJd911l6Rj9VSk0aao/mSwuFWMmUNIpSakuioGx5sm0+W1Uk9Jm1VlxMg4TpWdx3fHHXeste1PqxY8n57HrO9U33HePCdRtZDVtpOkd73rXen2eB4fu417MNVFUcVEt3PPh9cFVXPS8Rz6GH5SrZOpmLiOPS/eHlX2MY1ahMfj849czCvVcpa0IHNGkMYOCQw78VrxPNLMEJ2AfGwVZpM5Hnj9MhTJ+3AtS7kz0SaVps0gvgdi2JD/91j4nKGqLu5LNSgdj7w9C+qmkx5NKVH1y/VF9SefLXEfo3J4Y7hP3Ifj833G7/F/O6V4rn0/+Vpn87kpWTWTaMS58PP5iSeeOLGPj8mc8tw2TUMjNMNrNBqNxqnATgzv2rVreuKJJ46cFbKUUpYI/BY2s7vzzjslrUsK0rE0cfHixRP7+Ls/LXGZdUjHjhPeRonBko+D5OM+mSE79j1z16WBlFLNKNmppU5K4GQp0rFTjyVXSlz+7vajlEPpk3OSMRfv43m0ZOW+MdlAbNPS7ajEi7TMEecpSv1kdmRpmVs/pVdKrT6H28mcLTxGpkrL0ieRmdD5gs5E0jqDqwLes7RkdFaho4n3zdiO15DXChleFniescw4niwcgn30GiUrjNe60qpk2N/f1y233LLmOOF2pOM143uM2hs67MTfmOLLyBiQ4flhELzXULa+6QhCrUoWJuTzjUKzpOPnaRaW4H2pWfJnXDvum9eM59VzQEeUrORTxTpHITQ+v7/zHZOFSUWNz7aJpJvhNRqNRuNUYGcb3lNPPXVCSpZOMhO7q/qN/YIXvEDSsbRJHbF0zP78aanCEpy/W4qJ7VsSMAMx26Bu/fHHHz86hkGvtOVY8uE4IzK9vpQH1lvCITvzXFFPnu3r75w/tx+ZlyVGj4fhI943HuPfLO09+uijko7n13MSJUj/72OfeuqpYWqxg4ODNbtIlJ7dNqVJMoQsBINByWQvVXkn6VhS9Foxy6UNVDpeix6n58e2Bx+TlauhraZy+c9CDMhGyNYi2/E2ry+yH6+zjC3QvsuwDx+TuZbTJsVj4/q2tmHbpNfnz58/WhceR7R5e6y87gwXiv1mP7m+3EeyLGmdvfgZ4vWQHUOmUyWAiPPk8VSB7VmoFsfHZMvUDmQluzgXFdOMDJb2Ns5RlliEQf0MDctC1hhqdvPNN2+dEL0ZXqPRaDROBXaqd7lEAAAgAElEQVSukX5wcLCWxidK6ZQ4aU/wp+1ykvS85z3vxCf18KOCf96H0itTZMVAd0sD9DJ84IEHThyTeVhRKmP6IfY5O4aeq2Zr0XPV0qt/o/ccWUK04cWSK/EY2lgy+wJtlZZYs2vgYyzZP/HEE8Mg0MPDw7Wg5CxwlYyhSokV/6cNr0omHI/12iSLcjuUMuP5vXa89j3HZsZZcnTaiCpbXlx3lOS53r0+MvsvNSW8FzNv3aqEzCg4nh7R9MajDSmOgzbQDNM06dy5c0Obt68LvRjpVZqxCwaykzVlpbnISGiPi8kYKjAhQaaFqOx9xqa0jNK4wGzsq7S+3qrEz75umd2RfaPnamT1vP4+f5XgP/7v8zXDazQajUYD2Jnh7e/vDxOkUhKgRG8WF/XvltisM/f5KD1bGsiS+dLjiDFGI1sBkyy/7W1vk3RS8rWdyufx+akfz+IMaV+qPMmilELJyfYlz5E/LeVEG6XH7HaZOsvHRCmdjIu2MHp+xm2+PqPk0R4fr0uWKJnsyXNLL97YTyaUrZIsZx6eXF9kxNGzj+u6ik/apqgmE6xn9xO1KP6kvTOyUN43jz32mKR1m26WjorrgPadrLSU9+WaZLxZnAd6aW6Kw7vpppuO2KwZahwzmQ0TY7OIcOy370cmQ+d9E+eCLJBjzOIwyXBoU3N/4lg8z26bzIuJ8OMcU1PhY6ihi+uNv5GxsjD0KK6R5+dY4ljpBcx7Jt7zme27vTQbjUaj0QjYmeHN83wkBVhijJKW397MeFB5G0rHb3lLiJQMLE3YxhY90qjz9bksBVqqiFJMzLoSjzWDsB0mk8wpFdPuk0mSlM4pRWe6+yoeylLiI488cqKvUWoyi7777rtPnH9TjFzsAyVUS+sPP/zw0TbaQG677baNRTwpmcbrwvXE+EUm0JaO590ep54HMq7MfsBEyd6H12eUNcdz6j56XNED1nZQSrO0W7D4rrSeCHyTliDOgZkdE1A/+OCDktZjVaVjr2qf1+Ogl2aU7C19UwtSZWmJv2XlhohpmnT27Nm1tZllFTGY0Sez8bBQqa+/x+zze+17PuMxVfJ6H+vrFNvjfFDDEG1qvkbWBvD5w/biWvV1cV+ZCHpUcNjPWjJWap6yOFqWMqNWIs6J9/HacXtMpJ0V467KvI3QDK/RaDQapwI7Mbx5nnX58uU1L6z4lufbnNlSMo9E6rApzVT5EqX1uBtLY2RPUaqg1E/vv1HuP0sXlrwoOZJZxLmgvYc69SjZ08ZBFkImFUsZ+Rq84Q1vkHQsLd1zzz0n2s0ybZDNUCqN0pSZS5TCRsUYDw8Pj453H6N06fg3rxXaVjJ7lSVdH/uOd7zjxDnMWCy1Z9k+mAvS15Y5XmMfqIVgCRTH5cV96DnMslRZ9hFmoGC+2VF5IK4d2gw9J5EdPfTQQyeO+YVf+AVJ0vOf/3xJ61mPpOP58/WyPZlMPa4dlhS6du1aqR2Y51mHh4drts7Yb2pWquKz2Zq3luQtb3nLifNbQ2JtSsbwaEP2uDJNj7VOtC8z41O8J5ijsyomnY2P9mtmLvI9k8XheW3QO5i2/Pi8oFbN8+l2/fzxp3QcP+l2svPGduN4otZhm3hOqRleo9FoNE4J+oXXaDQajVOB66p4zjQ6UU1kqs3gan/P3E5pEDeNNzWmY0BUE5jqMpg8qj3ZHoNCKxffGMxtis+E2XTfjgmZDVN9qiFovI6qM47HfWZYQmbsZyoxn8PtMDg/jpnJuNnHLPjW13aTU8y1a9fW3KsjfLydbpj0OAuu9VitRrP6iWpjnyOqfCq38FHyaCZrpot/VtWcwfwMjmeAcxwf1eGs7G3EcVFFxtRsTCKcJYI2rMbzevjwD/9wSScTOVCdy9CQLOibzhAjlabBxARxjulAxTmmO710rHa+//77JR0783j9GT6H1W+xHV4zz5PDrrL1xj7zemTPU+9DByQjK5HDxOqeP6ZMi/3y/Pi6e5z33nuvpOP1x6QN0nqCAz8zfU+yrI90PKd8JtEpJ46PjjwjMwrRDK/RaDQapwI7hyXs7e2tGd2zgFJKCgw5iAysSk/DIG+m4on/0y3ZfaNjhXQyUDqel+l7okTKVEt0WWcy6VjCyBKj++LvljDJNKV14zcZBCXMOJ9mN3YwsCTk9ixxxTmjM473ZbByDOlg8GkMOyDM8DjHUVI1g6cDAPuYFUi1VGmJkaEeTEAurSfGdd8qx4c4VjJUBsNmwcNkklV4Qpxjb6vKUmUOVpR4PV+eIxYRzkI1vEa8hshCY3s+P7UCTN2XrbdqfBno/JKlRCOLZfLheIwZCMtEMUzA8xavKUN97OzDhPNxnshgGeCeOSBlGoMIJmPPUnCRfdIBKnOS8fwxyTfvo6wQsJ/5LAbOPsdxMeSEBWDjOXjfbKMdOGp7q70ajUaj0fgAx04Mb29vT+fPn1+TgKOU7t/s6lsVP402ALqdM+iZYQNZgUwGmLpdS29ZuRa6Z1syYRCztG7PYaFPSzoZw4nlc2I7TEMVx8UUabSh0V04S+/GuWFC6GhvJJO0TYxpyKIunVL1KL2PA8+pAYjzyiKavg5mGZl2wOfzemJJIY8xS9+WJWuW1lOaZfZGplyyZMxAbWldC+HfyHyYCi7OhT/NvGk3jX1k+ina0ijFZ0Hrnj+X7CKyPpLZuR0WCo77ZOVziGmatLe3t2bPjmyNaa3oxs/SNdLxfNtWzOtilpslhmCYkGENA1l97BOvu/dhmEo8hqFg7IeR2Unp58DnQnzeut++7tWzi/eIdHx9fQxTwfkz9tnj4jOE2pws6XcsWdQMr9FoNBqNgJ1teNI6s4vsyW9aS6KWypjyaVQYkWXfaTeL0jM9kKhbzyQE2hzMRp02y9szJslPeibSI046lrQs+fgzpsiSTkrAPi9LltDDM5NsKKVT0qcUJa1Ln1nCXCkv5xM94kYs78yZM2nCWoMSKSX5KrEs24h9I/vIvOZ4DSs7XewbWahZs79H5sqUYVki67g9O7aakwxkbmR4Me1Z/F1at48woTH7Ef/nvcY1mhVfzZg3MU2Tzpw5sybZx7XmOSNbp50+zq3/Z0A4NSJZCSNeu6p0UXw2cs3THpp5QrOIKvflmskS63NuWXw5jsX9d9+saXJ79IzMEjkwlRl9MOJzLvPLkNa9n7P0YZEhd/LoRqPRaDQCdmJ4h4eHeuaZZ9bepvE7pXTGcTE1U/yfEik9rrIChpReKrtM5olkFmpmRwaWeROx0CQl1Yw9Mb7Q56eUlhVG9DgseTHOiPF6o75tE39Fe4I/mT4qIvapkrQshTH2LYupo72U3sBR2qO3bFV6JZOeuc48xiptlHTMLmzTMFuih2Jk70xhR4ZKthCl3YpZMYVd5lFMUEuQeTuS1dA2zWTF8bdNRWNHnqSbGN6FCxfWEjTHe7zqJ4sHx5SGvC+ocWFcbjavTOrNhNSZZolxhLwumTco7X1VarsIajXIcsnA4nlYHJjPA++X3e98NlXJxCOqIshMhxf7S5v4NmiG12g0Go1TgZ0Ynr2lWCQwA1kZpZcsdi/z+oy/ZzYcejxVpSOiR6KlFkvltr8wUWvsBxM808vMxzBhbuwbY9lo64geWJY23SfGW/EaZCybnmmMAxvZ0ay7d1/JemLbWR8IJwCmXSdLAEzQjpjZVrlG6GE5KrLLROMG4/OkdcnT3qz+zLzXGM9H26qRJfVm6SwW5s2YUVX81uAcZRlleE/ymMx2TLsfs2ZkXo6U7Cs4cf22YGHoLNaXMXr+PmKbBn0GOC9kytK6t2rleR3B2EPa9Pg8zWKUyQLppZv5RJAFMs40KzhL8Npm93yVdYoMMyJjwu2l2Wg0Go1GQL/wGo1Go3EqcF2pxeg4kdUqMmgYp0FTWjca0xA8cqdnu1QP0tga/7dKk67eWUopqjQrdW6mRuKcVCq6rCI0QzGqhLAZqDKh2iC2RyM0k+5miV/phHHhwoWhWvPg4KB0xY9tVurpLKSBatpKzZqpzqhepSt0VoGaISYOafF6s4t77GNVZ7FSBWcqW9bqI7IUT1yjm1SbcXzchw4Hsb2q2nhVoy6eZxuV5jzPunLlypqTR5ZEgI4MVCNnoQVM2kwX/5EqjiELo+B4OqtQ7c4wLGndNJONIyKr4el2/Z11EKO5x3NBdS+d8vhckNavIdWwo2vAZ5LXOdP9Sesq8m3VmVIzvEaj0WicElyX04rBIEVpnU3QPTdzM6XrPd3DKWVkb3RKCmR8UWpi2ZwYCBnbjxKpjbeUzsmMMocEpkSrUv3E9rLUS/EYut3H9io3cV6byDQrI7SvgeckMgy6n48Cz+d51sHBwZrUn6VEqxyPsqrODJSuEgRkIS1ViAQZXsYKvYYc2hJLO3FcTDPFPtG5IEvVx3AIsrfIuMiI6YxjjBxPNoUXZdoIfq9S3MXjt0lLZzCAPtOyZM4iUq4RIRurHFBGbvS8p/wsZAKHbBxMD8hk0lId4lElos62kcm7r3bWi88YBo9T67aNZqmam2wuOE7OX+bQM3Ly2YRmeI1Go9E4FdiZ4Z09e/bo7WvJNaYq4tuc6WvIvOJvLPa3ydYRUSVGzRie27G07H1oM4z2KjKdKrg7k4Dp9k1JJ0vTw+BwMq9tUoyN2BbPSSZJ+wIl/2zfW265ZWupKwvMpeRGCXx0/c2A2D6l9uwcVXq4zJ3efaEdhOsiY1W0N2YJANge2Z+ZpbdnzJwu6pUdJrOf8TpXZY+y9FeGr4XbzRI3k7lsYnjRd4DtxfMwOTm1BVm4iJ8Dm9ZuFmpEOxU1M1loE9MfGtm1zNKaxXGN7FnVM4OJ77NE4NzXfWeYxyjUhGslC47nc5Rl0bJ1waQCmW9AhWZ4jUaj0TgV2NlLM5Z4MWIwcpUuq/LgicdQ8qHEnwXmsi+UXslQpPVUVZZezEZtr4sljCjpUDJh3+N4M2/W2A8Wd41jZFA00xyRycZxcZ9R+jPasao0SBlzcbqxCxcuDKXkvb29NdtaZL+0T7gvVcqxuC89Ayv7S+bZVyWR9vYsLZ1ZAYOVszRVVfJuXie3E/vI9eZjbDuMpZI4LjI7XrsR02ffuJbiWq5sNvw9m/vocbkpLZ2RrbHKrsOSO5kNl6jsY5ndkmOuEjbH9qok0ln79GysbHlZSkWuZ97bvm8zD0iWu/J6pndmvCerJBAcf8b0eM/zXsk8iUfMsUIzvEaj0WicClyXlybf5JHhVV6MVfJTad3utympb1Zck1Izpdso+bg9S8eWdOxp5+KaMVEymRzj1UZSGtMz0cZhb6nIJCovsyrGKfNiqqTBkb2kshlktin36XnPe97G81ZSerST0puVXmtmVZHV0A7BPvB6jaTLKrYpevH6WrnfXiOeC6+hWBamSrSbxTZyP+/jdngtWepHWr/3GL9IyXvE8Kq1E1mKz5+V7YnItB4Za8/gEkHxPJm2gc8QrqFMO1SlwOJcZLGHVfo2xtHGPnAcmU0yjjvuW3k8jlKLbYpjzhL50yOWtmN+xmP4TOI5s2djZvOM58jSiEUv6rbhNRqNRqMRsBPD29vb0y233HIk5VbxPVLtZZN5eVHioYRAKSrzRCLjymJnDDM4M1NL5RcvXpR0XJo+jo9egIxXqQrCxvOwsK0ZS8Ys3H96plWZCTLPLkqBVSmjeN6K5WReWZ7HLDFvhhinlzH9Slr2vizm6nPGffiZ2cU2gZkhogRO+y6zZLBgr1Rfh0rSzjJReI69NplBJMZHek7c101ZTTJPWfaxKv0T/2d86QhVNpMM8zzr2rVrw+TOjJ3NvDLj9lHbvBdo+4q/GZyfbJ543/ma8d4eaUp8LVmmJ7Md0uuca5Oapgg+s2izHHk9E9tc40pDl8195nm/rR2vGV6j0Wg0TgX6hddoNBqNU4GdVZoXLlw4osam4lGlRfVGFTAZnTyYrqaiwJm7Kyk1VXzu23Of+9y18/jTqrm7775b0rEqIKqyqpQ+VKVmaiOqMlmHzcgMs1X9uE0OInF8VYqhrPo3a5kxSDVLqG3VyO233z50Ld/f31+71pnRuwpLyVQvlSMG+5GpcWkgr4KHo1PWHXfcceJ8VG1nquEqpRsdELJjvS8raVu16WOcCF1aT6iwqaZdphqiOo/XIktHxetTOTFkY92kBj08PEzV4AbvC9Z8zJ4pm9ZOVnct65e07niSObr4GjKhPoO94z1W1cOr1NRxfft54/s0JoiIiAmuObdcO1XoSew/55xOM1mwOp8LPH+8Jzj2bdSqR+1tvWej0Wg0Gh/A2Jnh3XzzzUfOHa7ynJWM4ZuahvtMWqcDCKWXTCKjcZpsytKMJfN4HksNlpbpIBJDGViWhZJu5docz8dwC3+6bwxtiOMiMx455VBK87F0AY/7UaqtgjpHAbWj5NF2K/ccZ9IeQ0kM9iFzLa8cQYzM0E2plSze544ScRVUS2k9C+bNSlXFc2Uu/3YQs5RuRxSvbzvPjBIrVGWBsrVaXT9K4CPWU6Uny+Z+m7SB8zzr8PCwDDmK5yO7qJ4p8fhsbcRjdgll4fMu3nNMhu6QErNzaqXitirR/ai6PdOB8fzZvczEFpXD4Cg8xahYe/bcqZxgMhbHdVA52mVohtdoNBqNU4HrSh7N0hERlhD89mVZiSwId9ugwUyHz7RgZHb8XVqXkhgQ7s+4H1146SJdFaCN+1D6Z0B9lOwooXpfSu9mnlEPzyBsMuPM1deoWEFWwqiyvVaY57lMBRfb5j6ZDYio7FTb2DyrQFleH+l4bsm0eV2i3Y/JsBmATMZizUk8r/tkRmebNAvfSuv3ZVaANfZ1VKKpcrMfhTLQfpVJ4Jl9bxSwfuXKlbUCrVmQ9aYQjCz5QVUotxpXto1rd7R2fK++4x3vkCQ9+OCDJ9rPEl54vTG4f5SYnj4KLKHltRSTJPAa8P4ZzWeVwnAbcF2N/DlGTH8TmuE1Go1G41RgZxve+fPn19hGxtAoefBtHN/KlKgpeZFVRQnIQeP0gGQ7USK1FGgGx3FQao/b3F6VLscSmJP7xr4xwWtMuhzHF/tdeXhWTDqOqyriuU3pjSrpcpYKLH5ukuqqRARSbXska4trZ5NHKveLrKAqJcSUTJkt95FHHpG0HgzvYzK7n6+Drw+1D577Rx999OhYplyypO/xeT3Gea20EERmH6ENrLKNZkypst2xvTiebdiAA89pa4trp/KWrgLCq7Fk+2RMkDZIP++YzDtqepyey4zOn2b0Pic1UNLxOqt8IRggHsfBtWLb4Uhr488q1SA9i+M+VYHj7NnPdVbdx5nPwvUUgm2G12g0Go1TgZ1teJHhWYqNUgWLHDLOItO/V+XkyV6YCiz+RiZHVhOlAEta/qRdcSQ5WNKi56O/mwFEVkAG6X38aV26de3SuvRP2wDjHeM1sJRJ9sE5ycqd8DfGpEXm7vmK3mAjSX1/f79kZBFVwtwRw+MxVWmp7NjKezazdfL60sbG8iqx/5xTS//+zNpjujHv67XrMUSbIT0TOQeUprO4qJEXMI+pStgYGZMkQ8pi6wx7+I7aqdLSVUwv+y0riJr9HvtLG7vvZW+Pmh573PraZV6Z7COZVJVEOrPlVhqzSnskHT87aHf2uqNdNotVrgoIjIoiV9+za83znD17dmt7YTO8RqPRaJwK7GzDu+mmm47esJYqR8lcK8+3+JbeVEaeDC+TFCgB+zOLqaPtzn2LUrJ0UtKilynPT+k8Slpuz8dUXmxRirGkaOnLx1KizxI3mwHT69TjZdaGbBsT2mbJaTNmVElaXjsex0iiN6p4scxbjsdQms1QMbsqFij+5rXK+WdR3/g/r3dVOiv2mZoRej1zv/h/5ek2in2ixqKy+8Y52ZQ4OTsms++MYjjPnj27ZsMbJeiuMnVkmVYqr2Uy1eyZZUbkT997tKPGPng9WKPDzDjR49r3i9eVf6syy8RnmJ8hd955pyTpBS94gaTjuN+77rpL0kl7s6+/z0/vdPc1s5WPPHm5b7WtWpuZzTgmbt/WjtcMr9FoNBqnAjvb8G666aa1fItZPkRKpPTyi5IImZ1ZDWNNKH1K69IZPy2RxFyDjKFiEU/3J/MCc9uU2jOvJYNzUMUMRRbqvlDCok00091XOvsqt13ch/GELEOTFd/dRkr3fqN4TKNiIpmHXRWzR0/BzFbE+eCxRhbjRgbhNeNjow3Pa5BaAd4rWR99fS2tm0lw/rIinkblLTmSuKuisaNcoVVWjuxaZ/akTXlYK+/PCK59tp2xdc4D11QWJ2sm5+tC5p3Zx/ycccFkrxFqoWJRX9sA/Wn7n68LmWZka47VdI5gt+t92PcIZn2i9zbLl8V9qvs3W9/VPcBnVrY2ooambXiNRqPRaAT0C6/RaDQapwLXpdJkoGzmMkqjLSlrZmSnsb0qHRFVDpUrsTFS21A9WaXV8tiz820y1ErrAfMMf8hUNOwbnVbo+ps5gfAaMDFsVEVn6mlpXQ2bqSN8/ptuumlj8uiRuo3hAAzqz0JM6GhC1fJInULV1SipsuG1GENjpGPVEp0I4v9WYdGxiaEnsV9UaWZV0XlM5YpPp4wsNIQhIEzQuylJd/xtpNLc5CiUYZRMgmuHxxhZuEUWNhGROSgxWQTNLVmiBjuL3HvvvSfaY4iLwxek4yQE/ozqTmk9mXgMfHdSfLfrNcR7Okt/xvuJqszsOcc1QrUkw83i/3yWjNIfsr2Dg4Ot01M2w2s0Go3GqcB1FYC1pDBiNZSoKdFlDI+GX0pPIweHKsDYknfWRzqv2LkgS71F5sN26YyRMZfKlTzrW+VazuDljLlQ2uE+Ixde9oXSeTYnvm6bGF5MPG5kbJ2sbMS4qpRElbE7Svh0hqlKrWSsgCEsLLKZlU2pipLS0SJL9VT11Yhzk4XGSDVLy0oZUQvANZM5rWwKTxgF/Y/g1GKjkkRMKUYmnIV8MDlBlcCYTnXS8bWk5oeamQizMIcJ2KmEYUqR4ZnR2WklOt/Fcbo/keFZC+FtVYB7ZFEsMEs2yHNkoSGcP/Yxc14i0+P6GDG90bogmuE1Go1G41RgZxve3t7ekcSQpbXaFLA8Sh5dSRPbSIGVG39me6r0+pWbevZblSIrYwW0W1aBzVnAseeajG/UniVS6uNHzK5yKc/6xnZiEHzVhl3LfU0z7QDZMaW/UbDrpiS0GevhNaULPm0s8TcmVmAITZS0fV6GLlTjHrnvc1xZUeTqWIYUjDQzld10G5s428lS9VWhMxWmaVqbpywZNcMR+BnnvkrbNUq9Vh1Lu3xWANb7xBSC0rFt3+1G+7CLbZsN0obH8Y80Z0xiziQd0nr6syr8pbKZxm20Y2bhDzyv9/E9lyXuJnvepQxRM7xGo9FonArsxPAM6rYzabZiILThRPAtTyk6S7ZaSWeUYmO7VaAxvYgyZlmVH6KOOdPh09uLdoYsqNtzW0n6ZH4RLG9DiTsrmcTfaAuL8+i+eVybmLg1BHHfbbz9qpI1cdsmZJ6ClP65dt3XyPDYLm1cTLuXtU2pmIHHkYVUtmKmforgvGWp+LL943lpm6qKu8Zt9OAbBYgbW6eESmxvUatR3Rdkg5lHOa8/2RvTFkaQ2fEcce69jc8dB4RTmyMd2/3o0cu+0X4W92GSDI8jS8phZmePYtqvR2WWsnRxUu6dSVQ+Epl3PBNm74JmeI1Go9E4FdiZ4e3v759I2inl5UzoAURWGFF5q5G9ZDFQfvPzNybqjdKmJRzvy7RZo4SllQ2P448Mj+wo81aK2+O+TJhdxQxldi1+Z4LoeN0oMZJZuP049+zbLt5SmeS2yX5Ee1ncVnlnjtKEEdvE/hhmY1WB1sjwaE+uPAezpMhcX5Wdc3T9OY9sd8TEuC6y0lLcVsVqZTbxKr51BCY4z46v7G9ZarHKe7Uq5xT3ZRww77HI1mx/8+djjz0m6Tj11z333CPp5D1WacR4zzGWL/bf22iz83YzPemY2bHgLNdMdi9WHvnUAI1iIfn8yTQKmcak4/AajUaj0QjY2UszlukwsvgU2hZGSUfLzhW6YMcBSuuMkYUKyfTiPiyXY4w83iiR0jtsZJtixgHageKcsPwPWQD189a9x21GxeyiNEhJqmJ48VpH263Pv0nSosSd2dT4fRuvucoWVGUmYdvS+jXL7D6cF7KBzCOxYh+VfS6yUNoVyZ4yhkTpvyrTMrKJcr2RycQ1VhUYruzBkta8dTdlyxh588Y2q0xBmWZkE2vx+bMMKGRLZIOZJ6nH7Ji6xx9/XJL00EMPSZIeeeQRSccZUqTj+40aH/oOuG8jtsbk5RlzrUqY0a+BCffjb/TF4HN8dJ35vOZayrDNc8dohtdoNBqNU4F+4TUajUbjVOC6As+pjsyCnklBqT7J1EQjRxMpr0zugEwGb/pcrDYe+8sqwqxmnjlUMB3YKKGtQVUVDfZ2/om1s2y4psqWalirMmL9tSrha1UzUMqNw7F9jyH2kXUR9/f3NyaPtnojc8E3KuN2VsdvlEQ5+x5RJZgeJavm9afKOTuG7VV9ztIoVY5Ao6Tl1ZqsHEXisUwizrng2sp+q+qiZUH/Ua1YrZ15ntN1kpkpMrVwROZkYXDemNg6qnF931kNSTXhqLahnze+Zx9++GFJx04sDlOQ1kN//J0hM1mYis0cdEBhWEI0bWTPvtg+n1Xx+UQVMZ1XjOzaVOs5W29ZOFGrNBuNRqPRCLiu5NF+q1uCiBIpkzVbehg5CNAwSQNwxRrdJ2k9ear3tSQSjbl2C66kCUskcVyUSKvg9MxRYFOarizEgel4qgDgjEmQBZIxZ448FZti5ebI8Ogyff78+VJKd0o6BsNnQc9GxW4yx4MswUA8f5bCisZ09j1La1T1ZRQAXwXcjpxweH5KsFwH2b1BZyj2NUtEnUnUcXsW9F0F7mcsrsK5c+eGcxhdz7MEzb6/q5RvRpbqi/flplSH2VhY1Z7lbrL2qudN1EZZ0wKEq0MAACAASURBVOP7jmWpGAwfr4uZHZPj+3qxXFXsm1E9B+iYEv+vEpuP0tJVqeAyp5Xsud0Mr9FoNBqNgJ0Y3v7+vm6//fY1m0CWkLVKM5RJy7RtMAE07WVZAlVvqwrORj21JRsyVIY0ROmJweNkDhxD5oJNPThtYFH/zrFSKnTfPIboMu19qKMfufZWqcrcRzP3yPAoyY/sMNO0FA9mMdTIvCnNVWnjsn7ThrYpmUHc5vNXSaqzxLVVgLGPyWzGPn8VmuPrFJmL54K23MyeabBUEW1RVWhDBCVslo2JqIKFKxtZ3HcbljvPsy5fvjxMIu7++R7i/Z8F9VfJw8kOPZ8upBrha+gkz74PyfSkWtPie4q2tdhvaqGqtIHx+lTFXPkcyLQ23ub73sySLM6+E/FY2o63KTxd+R1k4R1cm5cvX9466UUzvEaj0WicCuxsw3vOc56zJnFHaZaSoPfx9swuUrEkJjBl8Kt0HLxJT0tLIlF6YR+p//Y5MvsSpXIGVY7Kgvh/f1qC4/YsebT7xCBe95Eep7HfHCel6ujtyhRClPQs4cVxUdof6dFdHsggy439JEuuPH4j6OVF+1GW6IDBu1VC6DguJiXOPF7Z56rsTMW4R0HrZKNGHF+lGWHfMrbm8dEOPCqGu8kjO0suzms7Sio/z7OuXr26ZnOM46qYaOV5K9Up8aqSNTHhhb3D+Wyi53d8xlCrQY/OzBN6kwapWrPZsZXXZJx7PxPMZrOE1vGc2X3lOaHGjMfGfakJrHwK4hi3CUonmuE1Go1G41Rg5zi8c+fOrSVIjp5DlmwsKVQxR1FiqBLkjmJMDEtLjz766IljyMgim2H/q/RTMXUWJRp6YbGPmeTj9hi7xaTS8XyUlqpYocz7kPYsIytESzbgsVuqta4+Yx8V6yD29vbWyh5l66AqL5N5wFbshfa3UToqSs20PcV5qmxpTJKesfWKOVbxS9k+WZkmghIwWVqVaiyCczMqGpvZWbLxZN61xiiGs2J4Wfwv7Ua81zJbUJVajAnp4/PALKwqa+N7PdrjqHGh9qZKDB/7anA8Hv+ItXtfjyNb7/6NGpjKphtRpXMc+Tewv9uwNo/dfejk0Y1Go9FoADuXB5rnec17KUo+zARAySTzLiPjoDROe0KUmpx49R3veIek9YSplsAym5pBrzZLNdEDicmTKw+vjFVZ+nCfyAoz6ZMSPb2zPM9ZRhZv41zTyy2CzMTny2x3Bq/tmTNnNmZa4drJbE+0OdL2OIo5MyhNZnZb7kMGNmLCtL/yWsbrwZjNihmPsomMbJHxXNn5NyV3zjK7bPKWG8WZ8t6oYuLiPmfPnt2a4WUlxowqY5CvU1Y0tvLwo3botttuO/rNXpm2dfEaZ97hZHabPBNj32ibrOKBs0wyni8+CzPmTe0G1w7HELVulT1ulKyc93Rlu4vbq4xF26AZXqPRaDROBXZiePM868qVK2veRJFxmRX57WuGQPtBVsSTUhilG0sTsSS9bXfOaefSG9QxR1uPJR6W3mC8XCy5432jLVBatxFl7fk3zxNjtbLijTyP+8iYIH7GPlGyo50jSk1VSQ+ON5PsIzMaZcuY53nNtpYxb89LlRlkFLNF0LN3lB+V64FZJuLxnidmy8hYYVU6ivNHe1Pch2OP9guOi567/OScZHZNxhmyP/GY6pqPbKFc15sY3sHBwVHfeP/G/myK68s8Rfm9Yk0ZE/Q+fs4xbi1eF9//LM9Fr/DYThVDy/tolLuT46myREWw7Bhj+uhJH8fFtTqyb1f+BYw7zvLnbmLoGZrhNRqNRuNUoF94jUaj0TgV2EmleXh4qCtXrqwFdWeBi6bCpqLenqmWqLqisbtKKh3/r6plZ0HkVOVU6ruMelMtkCXgjeeW6krDniMGXMfz0lBPh5Qs7CIr3RHPlcHnoXqXKocsoDpT4xFWS9FVPUtrVIWJZOev0llVKZninFA9SeM610f8PyvlE48dpbDi+Kqk4tn5dgkToIPBNmWiqgDzUXq3SjVoZE4rVLOPkkd77YzShBnVfZgld6jUhOwvnUqk45R/3Mf35yignk5q2zi8VeEpdKLKArSr8jyZapNhFXzmMrA+PosZEsZ1Xz0rY/853qz4AFWZo5AWohleo9FoNE4FdnZauXr1apmgNf7PtzhdrzM3000ML0tgy1RiNB5nDJCBwEyMyhIcsS+bjOKZ5E0DvX8zu6GUKK3PScWqM6bhMbNUEsMSYh/J7ChF0Ygct7nfWRo3gtJ5dLOvXP3Zh8jW6aZflVHKQjF4XjqeZG7wFescBb4yEJeu1hVbjL9lzinV+Fimh676dISIoRqbkqJXwevxGH7PGF6W1HsU0uLSZLFPsQ/USGwKi4qo1jr7E+9Pz6GZHgtOMwWhtL52mMow037x2E0OT5FR+v6n843nMXuWeYxMsM+0aCyHFOfA4PkzTVA113yuZ4HuWRm3TWiG12g0Go1TgZ0Z3jPPPHMkbWR2noqtVfrxCLqbVtJ5VnrHbvlO6sog9Sid0e7lT4dUUAKKbZKZVOmhomRpKch9sGRnqYm2lnheSnBMZFulOIrtUbJiEHs8nlI5dfpZUdxRQHtEDEtgu3Fs7m9VziRrh9tYnoXjyH6rAtvjmFkChes4Y6FkxxWTyM6ZpWOSxgnVq0BmakjIBOO+VVKEjOFVgfWjAru0I21ieDfddNNagoiITYVfM5ta1V8yhixJPpNimAkxxCVjeFyLTIoQr2WVZo+sKUuwwfRgniP6NWSJFWir8/j8PGVatGx8VWmuuHaqsC7PX2bX5Po9PDxsG16j0Wg0GhE7e2k+/fTTa7r/TAdc2ToymwelL0tYVUqayArMyihFWEJxQcYYIFkFi/pcZk9ROqPun0lVR0VxaU+szhU9LasUVky+nDG8Kjk17WejZL5V4uEsOa37MPICtaedkQWhMjF3VUA0SsBMj0S2RDtjXKu0MfBaZtJ15dk5KsjKY40q8DfzYOY4mG4vJi2gBMwUVqOCwFU6t5EnqcF1RftzlkYuspBq7vb29tJUbSPvWWN0Pcjoq3JBmXaA9jaO1b9nSevJDqtEAfE39pl2/4w98RxcKxnDq+y9lVYqe46zj7zXM22U5433KRNdx77F8zbDazQajUYj4LoYnuG3fZZGy5/06KSNQDqWhujlV3lYRSmOyZNpY8vKEZEpUorN7DC0U1UxJpRus3Gw/EgWk8Yx05bH9GEZG63Gl3lnVQzPOvtReqXoeTuy48UyHlniWkruWfkSHkNPR7IySsJV8uW4D5lPbJ/SclWmKbNXMWVeVdpotHbI7LLYVP7GlFYcwyipcxV/F6X0il3zezzG69afIxuej+W9l6V8Y5+MbbQaBplYptWg5oPbs+ccn0n8zJ5vlVcsj828w9kXr52qHFv8n2uEHqVZqTZe58pLN96DvBeqmN54DfhciPG9m9AMr9FoNBqnAjszvHe/+91DWxCZnKVL67Iz9lRlSzFYUiZKTVXZeu/jY7I4JWbhMGPNMmy4/xWTo3Qe26OkVXkfZvGMUQKW1hme+xUlnIrhbQN6pFHyiudyXzyOuDaIeZ5TSTmCklvF8DLbFz0hq9IkWaFc2scqW0R2DGPosj6TMZDBjmI8KeFXnpZxbulRy8xCmXemkWkoYp84NxxrPC+ZWJTss1iwkQ3v3Llza+snrjU/Z6rSN9m4KuZdZY6J7WXesdnYMw923tN8hmVxn3y+ZOs5jinuw2fuKLaWGgN6kDI7z+jeqPqaMTz2n33PMtbEWORRIuyIZniNRqPROBXoF16j0Wg0TgV2Vmk+88wzR3STqWukdZpMdWUWmE2nispRI3Nlp8qNRtZMrUdKzzp0DrLMVIHcRho/SmFFtRDVX1maLYYsVAGn26R3q6oZxz5x/qhKiN+ZdmqT08rBwcHa+WKfqrqEdFXO1DabjPtZv6r58JodBfNT5VIliJbWU4pl48jOFcHrU6k4429UYVJ1Z2TqySq8w8jmhqATQ7z2VDkeHBwM1840TWuu6zEQvEpQPFIXb5M0IO6XOXdUaa0y1TZDB6qadlGlWaWUI0ZOOVTVjyqsVyESTHA/WqvsE7/HdcC5pQqTz4SISq07QjO8RqPRaJwK7JxaLEslE1EFu9LIGd/KDBY3m6G7fpZqjAzOgeZMzBwlMUorlOwrSTj21biewFz2PUuZRAmHyaKr7bGdSqLM+ui5YMqgUdqlzMA8kkT39/fXqjBHoz/dlr0OGCibBY9XY6sCqTNQKzEaSyXhZpI9pdYq4D0z0FeB/5TOs5RvXMe8pqPk79U8ZczO2+hUwrnIAsVHDDxif39/zekirh2vlSrYOXO6qpyGqJXKHNH4XDOqEKT4P9cM7/9sfRPVvGX70zmnckyJ/5Ph8R7M1kGVXKRyuMvO4+cP5yJjvbGdDjxvNBqNRiNgJ4Y3TUuZDkoMWekGBuaaVWVBt1VQelX6JUtRRFdrvvEzl2K7MtMOlzFJ2ogobdKWliVI3eSGPCri6mNZHiiT6Cp3+9GceF+mDKJtNJM+4/krSd3poTgHWTJnlkKiHSFef7ZHe9moiGyVtot26Mi4GMTL6565/LudkW1QylOZMaC4CrsYaVvYj5GrfgXamTKNAoP7ue6jlL6JSWZgSEQWoM0wId5bsb0q8D7TCsVzxv/JNkeB4Hy+MSXfyGegCjSvkotL62ujYm0Zw6uKBnPNZAkIeN2ZSHsbfwO37/HGpByZvb4ZXqPRaDQaATsxPOlkos6snAWT6tJOkQVdU8dLZkeblL1DpXVPPrKmzEOM57ME4vFYmogSXpVmiEwok9Yo8TBo3OnRohTDbSxlRPYTJaQsoXDsaybB0kZUebBFqYpt7+3tbbThVWncYptMzO1rmXnEVRLuNoGolacl+xbXapUs3Mik9IqFGkxanEmutOWNvPe4T5WEm+2z7YgRG6xslKOA6ur8Fa5du7aWGisLIud88NrGe6zS6JBBZrauKvCfjCjzHfCnx0PmE8dVMbwqiDwLdKedl74K8TnBZ0fl/TxKDUgNDddBpuHw2qF2xXMVn98sHTRKWkA0w2s0Go3GqcB12fBY1mIkkVSST4yhMWjfYYkI/i6tpyjy29/HWKp06R/pmD25DywSO5LoKkZRpZyKv9Fu4b65r9GGx99YHJXf43yyvBKlM5Z3iuMju/G5PM+R4VYlZDJ47VA6z7wZad9jajlfrwiel2wjk1TJxulNmLH1qnQM5zqLM61SLWX2t6q9KpYz62Mmhcft29iMqrUz8iRkuyN788gGZTAtHTUAsU0yHn5m8VxViR1668Y+UFPFZwcLEMc++pN2xUwrwWOqxM/Zdan8DSqv9Ph/5dk9Sm1GWy01WlksJJNFUyM3Oiben83wGo1Go9EI2NmGN8/zWqxWlJrosUk7X6Y3ZrHTKnuKmVnm5WMm5OKtbs/MLurSn3jiiRN94Xgy/Tu9ojZlGsgkkorhMaZOWs82QgnP53LcYWbf2lTQNF4DsrPK62wkQW7KtBI9fLNivlW/jSzrAouZVoVYR7YnHsN1l7FQsjK2n4GSdhWHlzE+96ny9Mxs4lUSbMaSxmu2KRvIKAmzQWl9VBw3s8cR8zzr8PBwTasR14d/Y/+qslHS8b3Fsly+7qNsMnweMH4tKx9EO+PIlmpU2WqqDCURlW2afghZYWYeS/+KLLaS9yfXjuc7Y70eh4+lfTOC59sUwxnRDK/RaDQapwL9wms0Go3GqcDOyaMvX768ZvSM1LyqLcZ0PZFGU4VAusyaY1m9KO9jtaepuFWakfbecccdJ/pUufFn6ZrozFEFhEZQVZEFYEonVU1VYK7bpxo2qpKtRq4CqTOHIYP7eD6zWnZUN1Qu7dIyf7Fu1ShFkduunDuicw9VzJW6iAmoI7iGqHrMVJpsZxRUzvPT2WsUrFzNV5X4IKJK3stzZ45IVRhClgC4cpUfVZcnRmtnb29P58+fX0sfFrFJpZk5hngf1rqkgwtDn+L5KgcQOsJJeRX0iFEyZKo2q+fOSG3Mdoy4dhgITvU3VauZGYZzXoWbZeNhnxmuIK07s2VjqtAMr9FoNBqnAjs7rRwcHKy5t2aODEwlxpIe0bXcEgGrFlMioNFaOpa+KgcHG6SjhHD77bdLWmedZBaZ1MnURTTIZ0yI0hgN6ZkLeBUUe+nSpRPtZK7FlC55rsxlmgHOVTmQLMlAnK+RAfnMmTNr85WVJvE2GuiNuN6YJJzzP3L5Nshq6KaeSZIMPK+uadb/ynklA9cZHWpGTj/VOKvyN7E9nmvkgLKJuWb3UxVInWGaltJAdOMf3Z9+LlQhJ3HfysGJ2qqo8eGzqVoX2X1JTdI2qJ4hWSpDHsMEDjxHdNqp0s5VzC/OA5kdnRAzpykWBmDfs0rnDJ3Yttq51Ayv0Wg0GqcEO5cHylzPM500AzD9NraUE+1IdNu3JOVCrD5X9ranxMvQApYako4lDYcwVMGqI1QpuDJsssf5HO95z3uOfqNdcVNwvG160noKI6NKkh3bIyukxBrH633jdavmbpqmo+DzCpwPMr3MBkIXZR5LLcSIFVSpxjLwfPy+TYHUSkuQscPK7pIxZUrUtO+M1jnHTjaQBZFXqdJGDI/tjbQDZnjU8GTrl3Yk2o+ygHnOJfuRFUr1fUlbFkNZ4rm2LcjLscfzVLa80TnIwBkONWKHTAvHa5CVfGLKxsonI+5bjTMLPK/W9zZohtdoNBqNU4Fpl6C9aZoelvSW9153Gv8N4EPneb6LG3vtNLZAr53G9SJdO8ROL7xGo9FoND5Q0SrNRqPRaJwK9Auv0Wg0GqcC/cJrNBqNxqlAv/AajUajcSqwUxzeuXPn5gsXLqzFVYxiJKo4ogxVHMxpwS5zdKPb2XTerAwJ86IeHh7q0qVLevrpp9dOdvHixfnee+8tcxxmYCxgFj+2qeAnzzWKPdvme7U2n82aHR27qb0bfa9UWUdG9zNjpTZlMMl+m+dZDzzwgJ544om1tXP77bfPd999d1k2iucZfd/mmPcVRhlvbgRu9Pmyc46eJdusnSorj5Ftz+JV77//fj366KMbB7zTC+/mm2/Wi1/84qPky07R5QTD0nGqGNY+Gt0M1SKtAmVHtc2qQOnRxd/lRbspSfEIVR+2WTTbVByuzrcpTVB2HraXJZ52MPy73vUuSUttvte+9rXpGO+991593/d939H6uHjxoqSTiaB5DRlUnwXUOwCYdch8LFOjxSDVqg4dv8f0UFWNweoznq9aO2w3oqpandVsrI7dtL6zlxfXCgOs43XzNXWidt/7TAaQpQQ0rl69qle84hVp/+6++259/dd//VEiCo85C+reVIE+e+4waXf1Isrmj/chX8YjAWub55pRPWdGz6Pq5bFNkHrVbvUsif8zLRirtsdgda8Dv0OYsszn9NqSjmufxnp4n/iJn1iO6cR4ttqr0Wg0Go0PcOycPHpvb69UYcRtFTJVTCWVVexsJAnz+6ii8vWoUKu+VvvFdnZhePyN4xnNc5XCbJf0WkSmvqZqe9M49vf311K9RQmR/eL1yVKLkekw5dpIHVoxq02JjCMqiT72sVoru7ABpqNiuqvsfmLF82qtZmuJSYlHCa99LZnei+eKoPTv1HMZ5nk+0fdRijKOaVTuiPfFplRVWf+qpM7ZNa+uN9d5Nj6mhxvNFf/neqjSeMV9KnCtZJoMpixju3E9UIuyiWFK+bNjW/VtM7xGo9FonArszPBiAmAmGPXv8TeDrC1KBtvq0DP4LV9JJttI6xVbGtkKNzkNZNsr5jVCpTPfhfFtA56vkoxHyWL39vY22iFG2oEqiTNterFEkW13tvOxqO82ziqbHF0yKbZijllB3kpyZ9LoTLIno2M5qGzdb+PcEdsdOQSwACdturEv27BBg9qBm266abiGr127tjbmbZyvRgVSq9JEWeJnHluxw1GC7so2XNlns7YrW/tofVeak9H15zkqVriNZoGsbRuGbmTtZInNm+E1Go1GoxHQL7xGo9FonArsrNKU1t1PM+NhRVEzx4MsnmtbbKuOHKltKvVdRqM3uRSPjL6ck23q8I3cgOMYMieCSr2THeO2WcdtFAbhfbNaYxUqFUn8n44aVls6HCHWDbSrulWa3pfrbKTy2bRmRypNrtUsXGDbtUIVV9zG83J7PIb3U1V3z8juDYYh+Bpn7v12D69CA0YOI9W6jrDTCtXVWb8rNfFI/Vm53m/T/03VtrO1w+9cB9m1rPo0cnyq2uO4R/ctq4pvs3aqUKrqHFlfjcz0wX3Pnj3bKs1Go9FoNCJ2Ynh2WKkqBUdQMqH0F4N5LbFRMq0YUQQlgG0yvZCZkrGOgrkrQ/DIXdfHUoIno82kwU3SWCYBUeqsxhfZHJ0TiCwzCh0bNhmPMxftjAl5XszozOKefPLJE5/xf7M+H0PHgG20B9uExVSVzrnOs2tZOS3xnohz4v/NXMl6/XumMeFvvF+zNcVAc1a8dpB57KOPd8iJmRgdymLg+TahMnHfzGklogoLGGkoqnupYnwZRmEIPFcVBM91n4XObHr+ZM57ldPN9Ti60Wktm08yuerZHJ873IfvAO4XMWKMFZrhNRqNRuNU4LpseNvoZKu0TZnbdsXw+JavwhZiHzaxt7iNAZJRAuUx27haV6BkR/aRSa6U9jYxu8y2Romq0qlLx9K5bTXbSE0jFk1YSve4Mtdrj9Vrg8zuiSeeOPEpSZcuXZJ0bMNjeIIZX2Zb4/oiO6M9SzqeH86Tv5NZRPg8lNa5DjyG2H/aMfmZsUIyPErpDA2I/zM9mNeHGV7so+GUT/70udz3iG1DJ6Rlni5fvryWLm6URqsKnM/u21GoTAXuu0uIEX0H+GzJ2DqZcGX3H2kWtgmdqMa3DRveFOaVtVNpFKgVG/lGNMNrNBqNRgPY2Ya3v78/DKAmO2NQamanqDzfqkDW0duekp33ZbqjuK9BJrSLt+g2Gf0pcTMdVrRrbgqyrZistO5h5/avZ3zbBN+yT9V5rl69epRwOmOZ7o/tcU5K/eijj574fPzxx4+OIcPz+f2dXpwx8bT/5xo1vGZiomQnub311ltP7ONPagmybbyWZKPus7QeWO+58T4eb6Yx4frinDPBexyrP5nc132M7Rnc13OSsfmMXVY4PDw8wfAyj+KKkYwSXlRekpXfwcjLlMdWwescV/wc7VvZl6mVGNk32e5IG0EWWmmLYp+p8fM+9PDNjnG/vXb4bI7j8jqwtmEXNMNrNBqNxqnAzja8/f39oXdmlWqJ7Ca+sakPrmJLMj38tixspKemZLKL/aqKdckYXmWjzOwZlUcXJVWW0cjGlSVbJapYSErnI4l8lFrs8PBQTz/99Nraiecz07LNzuzNjO6xxx47sT3ua+ZDWx6ZXrQnmR1V0rFZziiNlu1VPDaOKyszFM9h1kSWGrdxHzK8OK5NtrtqfcTfeJ2Z2mzknWemR5tl5rnsfff29kqGYxsevZxHzIRtMn4xjmWbBPAVKiY0ui83aawyrUflyVnZoeM+fL5RA5B53FbxvplGieDz3GvUcxJLQ/E+dZ9dPiwbl+8FlgnaBs3wGo1Go3EqcF1xeHy7b/LOi9im+CjtcEYW41Tp3y1NZOyGnmjsEyXTOI7KRmBkXpxVTBDbyfpoiZSSq3+3zjtKOZSwYnLn2Mdt7As+xv2Ic0K2tokZHxwclEmQ4/9mL2Zy0e4mnbTHujAk55BZYKzvzxJPex7IjNyfaMPzeckc2O42sZw+lqwtjpe2O3pncgyxD7TlMpbOdkhLynEcMbZytD22Z0n+oYceOtHe3XfffeLYOBcex9mzZzcyqsqOFc9dsZhsvdHDtWJNHKe0zmYNagAymy491emlHtcO+0aP3srvIe5DdsbnaOxjdZ0rT8/sOcdjPG9ed6NMQlwDLjKeaQd8/S5cuLAVG5ea4TUajUbjlKBfeI1Go9E4FdjZaeXMmTNpHTSiMpQb2yQsNUbJVekIQJVmZpjnb1T9ZHS9Up2yT5l6jwZ0qk4ylSbVnhyHPxkQnO27KS1R/K0KEdmmLtWmsIRr166tBZfHMVPFZ5UFU1dFFYy33XbbbWm73pcB6dK6I4bbq5xJpHV1kPvv+c9UfjyWc8lqz1FN5j7wmlqV7c84J7w/PUdWD3musrVTBUVXn7E9rnOHlbgdq58jYuLpkQNaptLK1IW+llUigswcUt3bHlcWGlQ5b3F75vBENR77EdthsD1V6VXoVjYu922UNN3rjAm6qdrOnpFUmVa1OyOi05J0fL1szvD2qHZnqNn58+e3dl5shtdoNBqNU4GdGN7e3p7Onz+/5hCSuWCT/dFtN0pn1du5ksDisVWAO9lalj6pYp0MJpZy54DYfuUCHEGpaZsE15xjsgBLz1ECqpxHKoYRf6PUTAadGYdj36q2HXjueaS0Ka272rufHmsWDsN9/N0OGWYVXhdZULfbY5A6A+Cl9YBrBvWbccU+bgpD4ZxHduj+04nJ/fCxkT157HfccYck6c477zzxaaaXsVGvUY+dgfx0tIhjrZyifGzGeuN5R+EB165dKx2ppOPQFTqn0HklY4qGf/Na4rMjCxvK7qX4PfaxSixNh404t1XgfBX+lYHPEDqgxWcjt1GrwmuYaXz4nVqdOA/UDpHpjZwOYxKEdlppNBqNRiNg57CEaMOjrcD7SMdSRBXsGt/Y1F1XSU4zJkS346qcBpkK+yCt68ejLcX/Vy7Eo1CNKnRhVEqkSvRLWxFTQGWgvYlp3qSaqY7schWbzzDPs65cubIWyB4Dpn0NWVDW+5DNScfMhsmcadvzeGLxWLMXj8NMjgHuMSyBdphqvmIfyTYYvM1zRWmV19XX7nnPe56kYxbn79Ixy/ygD/ogSdILX/hCScfMjmnRImu11MyAfs8FP6U6vRVDBLKSYD7PuXPnhgzv6tWra/deDNBnIgaWVTLifcl0g0znt01yfKbNanY1eAAAIABJREFUGrXHNULWRM1G/L8qWVSlxYt94zOYz4y4xrz23DevGT6PyNoiqvRn2TOYtkfeA0ytJx1rs2KITtvwGo1Go9EIuK7UYlngp8G3OBndKDVV5WFpZDY92kEoEWXB6pREKXmNSgpVXlEjT0W2U6Uyy+aT80VJMvPsqyRJMrvMzkRd+Oh6WYqOkmPF8pwAuLJnxf5wHViiy7z9GHhfJRGmxBj3oVRrFk2bbhyzpfHKdpvZfysplna5KDXTRug+3nXXXZKO7XIxFdNzn/tcSdK9994rSXrBC15woo9Mh5alluK8Mmm2maV0zNJoA62k9TieOPbKDuW0dEwuHp8PHhMZONdD1EZV5cC2uafpkViV2sm8tcmW6A2aab/YZ2oHMvsYU7z5vCwFlgXU+x6g97N/z54h9DY2uHbjHNHXgloe/x7XjvsWk603w2s0Go1GI+CG2PAyCZHpu8i4Mu8eShyV5DsqLTQqXWRQsiUjijYbgoyhYm1RIqENkqxp5GlFyYV2p8xWUZV4qfoT+09PTo4rzmeVpLjCwcHBkfRPhhr76fOZyVnKM3OJDI8SqeF5crFYs49ow2NfOJeZ7Yk2OrdL6TzOkxmQ7WJu17ZCprjK1oEZDEvvZF5sjD1829veduK8PhcZUzwv2QHv5wgyCNrCacuLffO2kQ3v8PBQTz311FH/fW2jZ7JRxa153jI2Y/CeZnxu5mVK9pp5gxpVkVOfIyvX5HVLzQjLNGVFdvk8y7xA435xn+jNLK2vi5G3tlH5UWRzQ3btcWUJ3Kkx2dvbG3qpnmhnq70ajUaj0fgAx84ML+q9Mw8d2j0oXWTSHt/ufoNbirFER4kxotL9ZtJE5XFEjEpgVMwyK4VSlTWh3joD9/XcUJI1e4htWwK2Ht7fswwVlb2C44pzxes2krIcS+V+ehzR1kU7Cz3FbDfKvMrMGJy42HFZLhob58cws6EU6U+3Hxme9/XaMdskK4jX1EzO28g2KbHG8VEj4t94LWMffX6yDc+Rx2Dm+cgjjxwd+/znP//E+T1ObzdTiuB683g855lWJ0uGPGJ4Tz/99Np9lJX68Tb3gdcragJ4/3FNMstIbI/2MMYt+rpk5Xr8SZaeJTinRocMj0wvi8dlAWAy1uz55319DX0Puq9ZMm4/Z6iZY4adrJSVwWtLjVP8LXqqdhxeo9FoNBoBOzE8S+l+c2cefGQEhN/YmY2rYhlV2RZpPZbG57LkZQkoYyZkcLRBZB6EVXkb6t+zLCYG5y3zAiNTpjcqbRRZjAvn2n22lJ6Vham8LEcMj+fI4LVDyTvOjaVZ2+ropenvWTHI++67T9KxvcrSMu1y8Zqa8VgyNTN6+OGHJeUekLRJU3pl6RePXVovf8R8j9ROSOtMgrY12hBjOz7W5/d2H/PAAw+c6F/sm8/31re+VZL04IMPSpI++qM/WtLJtUPtCr2szRKyGLjouVpJ6dYssVxTPF+VCanKVCQdrw1rA3wOX++RhyfXsb+//e1vl3QcFxm9HMlgq9Jp8VpWnuq89zKPS2pyKi/ozJ+CmhNqMrxOfK/GY9wHa1s8z/YsznIUUwvAvLpZ0e845k3+A0YzvEaj0WicCvQLr9FoNBqnAjsHnmeG5cxBg8ZjU1a6gkdY1WK1DdV0mbqN/WHAcRbsyFQ7VQXyTKVZqRKpJsgCMumWbGRBqwyGppNMFcwef2N4AkunZGV2ODejJAOGr+VoHzse0KU8Gq193R3cTPWKnSximiGnA7Mq09/pGs9gW2m9TM473/nOE+1lgbRM2m1jvvtkJxl/SrWTCu+RzBnD8+RP3yMMw8gSAFfpp3xt77nnnhP7xX2YDu0d73jHiXF/yId8yNExldrY8+btvq7S8dqL6cE2OR54jrNEDVUyB4ZRxLXDcCd/sqwR25CO5796Lvhax/apVuWxVs/HMJFK7clnCZMaZH3k8yALh6rMSkwj6PWYlTLinHs8DK2J/WeyAo/TcxJVw9ukPazQDK/RaDQapwLX5bQySjdFCZEJgLPAzCodGSVFH5u1TxdiGnez4EqjCizNXIoZjEypPAtep2RXMctM0mJfyVwzJyE6P7hdb6f0np2HzhFZSRay9pGE7uBhBl9Hllm5tfOaWuqT1kMLDCYV8GdkGe6vg9NZxobrLs6DQfdpMr24D4N3mSyYQbdxTqhB4H0VnUj4Gxm4x23njLjuzW7MSu2sQK2LHRLi+XwtqnRbo1SEh4eH5fqZ51mXL19ec36J1zxzguLY3A6P8TwwdIXJESKr9j3tMXuNmIlk4VdVomkm8Y6st7oP3e6o4Kz74H7zOcQE//EYw+0xRCwrxuw++dPjolYiS6zu81fhCJu0R9uiGV6j0Wg0TgV2tuFFjAJK6W5KRhRBXTYlX77dMxd8JmBlCZZ4jioMYmQXY1qzUWCklCeprdKfZdILU4dVAeEcUwTtfWSHI9sNbQRZyEFmN6gwTZP29/fX7Dq2gUnHEiHTgZl1ZKmXWOLEkqLPQTtWZF5cbx4P7ZkRlIrN6Oza7iDzaCuqkulWNojIYFkIs5LsI7MhK2SYjedmZAth0mjaZSILpV0+s89LJ5mLpf3Ioqp1dHh4eGJOsiBrFgVlCAjLSMX/mejA56CmKV5Tz23sV+xTplmqND0MH8qSKxMMu8oSbTCBgsHQqXgtqRXisZlmxmA4Cm2Gmd3Pc0L2S5thVh4orusOPG80Go1GI+C6UotV9qUIMhSywewtT++lykszky6qJM7sD8cT+8iAxiiZ0+5FzzeOK0pNZLCVfnoXr6NRkDfPR/tmJn3Su41eZ1l5p2wcla59b29PFy5cWGPR0Q5DidNsholks+TRZKS+hmYVWZJdFmQ16xjZfXyM++rz28PTDC87vmLptI9mAdVMB8Yk7aNCutS6eF6ze5HzyHtulOCAHtq85yPDYwLlbVB5DkrrHqLUWFSB6fG8fK5UhW3jeZm2a9Rn3lv+jd7T2XOA3pjuK5MxZAHa7DOZZTaPXm8VG8zmpCoBx2PjNeCar7xOI8NjQei24TUajUajAdwQhhff2JQIqsKiGUPhtqoUTwSlVErNmZ2psm2Q5WSS/ajERWwn/k4GW6UYyopFVqxvxK4p/VdFeLfxfKrsgPH4kfQf9z1//vxaouwsKWwlmWYszcdX6ec4j9kaYnkjFtXNpGbaCh2n5u3Roy9LaxZB+0vsIyVcS/RVzFvcRu/Mag6ydU5vXa7RUVJkg+sr2s8yL+pqPfK5k9lWabMnQ6G9NjsmG1v8HrfTV4BrnynN4vnZvlk7Y0YjeCzjdNluNh7OW3YvuA8ssstScNkzhMn43TfaxLO1Si0I282KFsR92obXaDQajUbAdXlpbpN9g2/uqjROhirLxyj+z6C0ST386Py0X2Q6+23Hk+m2K51zxij5G/s+suGR5bKPmTTE8fD6jfTkkbmOpPT9/f3hdSeT5/XOvOWqslOUvLPYQ7JCSpO0Q8c+eJtL69j703FYkRUyds4s0OzJ5xx5hbpPbtdMxV6U2fWpCm9yDcW+Vonb6Z0a2+NcV9qJLLHxKEbP8NrhuDKNSFXANrM5Ufs08iSP5+D/sZ3M/l+153VgT9JRAmgyrCqjVOZ3kCW/jueMxzBGj9oV7heP5XOHcb/Z3PC6V97hWRmxbYu+RjTDazQajcapQL/wGo1Go3EqcF3Jo6lmGbm3Uz1QGbjjtiqgeRt1GI/NVBms21Qlfo6qrEw1Km0XSkCVWRVQH8dbqU4rdegIvBYjlXR1/UaB7dE1fpMzDd3o43iYvoru+nQx5//SugqOYQTZOqgCjOnMEvdxuw44N5jGieOP4/QnVV2xj5UqmTUpo8qnUhNWISfZPgZVxCO1a5XQIXPgyJK6b3JaqeYrnq8KwcnuH6qsqbYbqVupSqTaOptjzrcdQxgOFa8lw6yojq6SZse+EXwOxOtSXbtMvR/Pxf/j+alazcxLHF+VHjH2Kc7BtuEtzfAajUajcSrwrFKLZc4kmVQcv2du+5vYIL9nEnflrEK2EP8ns6NBProaV+3QESAbn0GGVyW6jsdXQctVKEXVdrZvPIZzsoltx32joXuTezDTOGUhLZVzkqVLSpmxn2SDI4ZanYNjjims3LYdDVjuaMS4GHRflXjJnDEIpraK+2WVszNso50wkx2lmCOzo+aH7Cf2NzKzkZS+v7+/lnQ7WzubSsdkSeTJZiotTvYM4VrlustSGtLxiM4cmYPGJuex7J72fPF+YWKPbO1UznJVmEr8n+cYPRNHIWdSrh3gNb7pppua4TUajUajEbFzeaBM/5oVH60krFHC6U3hDtvYk6g7zxgSJZGK2Y3CEipJK2NE1INXAbmZzZDn3aZcxiZQsuX/EaNgfEpwV65c2cikPBe2dWVlohyoSnZBe5y0bluoyjdla6tidAaLrErHUrltdz6fGR5tOrGPZHaU6LM0VfytKr2TlZRh+xz3NiEBDOzPWDhtUCxAPEplF9nNaA3u7e2tubnHtcO55f2yDZsdpXjjd+7LkKMs/SKDur2vr1cWlkCbILd730yTVYUjMPQg2i7dF9rUdgkv43rnms1CGfh8qWyx2W/nzp3bOi1jM7xGo9FonArsbMPb5EFWSYujkjiUVrf9jH2oJPlRmQ5KPvTsGwUc0y5Dm1QW4FrpxX1slMwrWyQ9CjPGt6n80IglUoKnpJodkzGvDPM8rwUER2aySSpnoLa0nhSY80XGn60dtlsVWZXWC36yqKW/x7XFQqL8HAVHsy8cVxaEy9RLXDNMg5WxdqOyO48k6ooxZ8wlu6YZog0vKxnj8fN8ZBWZVqNK0DCygbK/1ZjjfkyGTm/dkYcv/SV4n2b3Z2WXJ0OK65vPs8q2NvLFqOZv9Hzg2hylouR9Os9zpxZrNBqNRiPiumx4lZ0sooqv2CYdWeUJmUlR3LdKa5QVfjQsrVvSyRgeE8iyMOvILkImSWmE3nrSuh3G3niU7EfeYGQujDvMpPRNUm8E52JTeqiYINjji2NmKZ8q2Xamz9+0ZkYMr/Ii85zHdcBSRbbdsdhlVjyYoG2XidfjWN3Ok08+eaJPmQRO2wy95mhTye5f9oVrJxY+9bV0ey7fRNtUJqVHe+3IIzWuHc9F5gnLeEHatjat0fjJORixUP7mfsR58v9cO2Z22TxVz7dsrUjjcj3bFJP2M5AstPISz1DNdZVaMfbba4feznFO6Om9C5rhNRqNRuNUYOfyQNM0rdkaMqnCqOxJmWenUXljZtsrW92mfkjrzM42gczWwQSzlJbIvGJ7nCcy5JHOnrbBqqBupsOu2GcG2mqqecySBkcmOZLSz58/f2THoPQfx+wYN44jY97uA7NlVPMUUWkFLIln9oRbb731RL8trdO7baSFqAqlGtkc0+5Mxp8lAPYceF/aYzPmwjlhHBTtaPG8ZiosB5Otb++TPQ+IeZ517dq1tXUc+0BtA/fJnlUc/6i8FVFpDnyOTDtALUClFchi2xg7VzG+LJMMGRGfVZkdjgnB+XzIUMXUVVqj2DY1PqN2rqd48FFfdj6i0Wg0Go0PQPQLr9FoNBqnAteVWoxqm8x9l0ZVUvNRqqpNQYRZwOkmVVwWAGrabjWb1RBZsDpVJpWjQWZMpsqkUs1kbtsM0OV8buM6XTmrZGqwrM5VbDe2l7k9V2rTvb09XbhwYS24OlNpep5iyIJ0PE+ZE0ilNqb6OJuvynnF313jTlp3MMhUs/Ec0vp6o0MDUz9lIQZcI3S/H6V48jxGN/643zbptjJVpkHnCCYXyFRZdKcfqcN9bBVqEM/nbZ63UaB0lWhimxADqoV9rM0j/ozOZ1SDUwU8clqpwiC4nrN1UKkUR6m+/Ok1s43piM+kKnh8ZMKpnlHZOyEe06nFGo1Go9EIuCGpxSI2JV7NgoqroPGK8WVu26NAc+mkFE3DMj9HCU0rZxFuzxJB032/MiJXbUvrCWGzFEbV/HH7SCqidLuNM86m4M9pmo6cPnhead0VmVKmpeYo1VYBuQxAz0oL0dHA3ymJ33777UfHuMI4GRel29gOK1tbo2DmVaWniv97Dsw2yZDi+qZ0TI0F5zG7n+jowCDpyGi5L9fbKAGwUYVu+DxnzpxZYyZxHdCph5qW0RqtnLuqdIVxn00p7bJQIzM7Mjx/xj5WiQbYtyyZRpZkOZubCLIytjdKncZrSgeULAE5SyJxHNmzis/PXZxXmuE1Go1G41RgZ4aXSZJZILBRJYQe6WS3YQpEVQgx01fTZkLJJHOVrsZljIK6qxRZTDQcpcFMny+thwKM9PHVeLIEwNzGfTO3brY5um5eOxxznNcqWTSTEmdhMOz/iDEQZGtuz0GwZnXxN3+SvTNsJYIss9KGZO7xZGWjMi2VzcbjM5PI2qF2o1qjkUlwTli8c1QyyTg8PCzXzzQtBWCrAPp4vqqMUbZ2Nmk8qnCSeB7a9FkcO9rwyJLJjJliLo6H9n/awbL7idgUNhD/r4LT+Zwb+QFUz5IsAUFlX8z6XBX33QbN8BqNRqNxKnBdDI+SYWZ7quxIo2THmxjDSJ+7idllemNKLZSwsnZYpoXjy+wV9Og0Y7Ck7e+ZXWQTc82ClzlvlWdVlOKqdirPxfh/tGOMWF70tCODiKC07GMYrCytz3dmW4jbo8RdjZUepNk8uU8MdM88fCsvxqrQbQQZ9qVLlyRJFy9ePPF7hPtAhsXkxLRvRlTsY2TDY/DwqCgrWdqm5NF7e3tbJawmk9smAUWVgKDyqub/Wf+rQqqxb7T/ZSmzWKqo8nzM2mOSAq9VllnKEt1X14NJ7EfaNmKXpPU8/zbPqm3QDK/RaDQapwLXFYdHyWdkj6viKOJbObNDZN+z7ZXUMNLPWxI1Y7CE5WSuZBixjz6Wdhgmw82Yi7cxQaol70y3zeK0lHiyMh5VEd6RVEaMUpYR23ppSuvsIzIFpmmrEudGbGKiLHaZeUDyGLdPe2lsj9fB62Lk+ViVXqI07TUUj2G8laX2rLxOJZ1X5YIyCZ92OLK4uL7pnUmWzbUqrbOLg4ODoQ0vFojN5q2ysY+eUVWi8SouLysIXaVFzJhSpbkg44uobMJcF5ltj3NCOzPTh8X/aTOubKKZlyafP6Nnf+VlP3oX8HmwSTsQ0Qyv0Wg0GqcCz8qGl0nNlQ1lpG+tysBk7ROVHWYbhlIxnswri/E1tPd53JSMpXUbIeNhKs+yeH5i5PW6qTzH9ei+jSyDzLbHPfPMM2ssOssqwfjEUVJf2gT9yWTOtGPEY7mOyfhckkdav85s1/FyowTn9HSjdJ5J6ZSSma3F8xqPqeJbK7tn3Leyb2d2Js5Fte6ye7FiShmo7cjOxzU50j7w+jM7S5XsW1q32fKcPlfMFsT73HPI7Czx+tMLuCpwnHm4kx3yOzNLxfMwVq/SsmTHMq6UmpvRs2pbT/14vm33l5rhNRqNRuOUYGcb3sHBwZokHLGJcY08dSjxVt+zYyt9/EiXTpbBPme5+ijFWFqiJDyS0ivPqpEXW+U9tQ3rrWJqdmF4o1Iyo77wd0r7mSdsFbeTlXHhXDLfJtlbPJZ22MrzLkrpLGfCYqeZ3YIlayidM8dmZsut4iIz0H5c5Vsc5bjctEYzOwwZTJZrlX3IbNCE4/DIiDJmShZBT+LM05LzU2VPyRheFdvm/sQCsHx2+Hp7PNmzg2uEfR3Z//jsrdjiKAMO2xmhyj7F+zezN1fZtLKsMFnWrm2fZc3wGo1Go3Eq0C+8RqPRaJwKXJfTSkWVpfVg2k3qtQyVu3ZGWysj9TYqTQZ8MiFvFlBfJdfl+DJnjEqVmrk9U53LcYwM99uEcxCbAmmza72La7nXDvuQqSep7qJqaYRN6qhRFfsqlCZeFyd+diJoq6McCJ452tBJgOWC6OgQUQWrO5RlFzU/HS3oJBTHXn0fJV/eFIKUHRtDGjappUaODVVYyv/f3rn0OHIkSThYbBUkSAKkw573//+sPc9J3YIe/SjOYWBV3h/NPJIU5tBLN6DRVax8REZGJt38Yc774cZAwW++H1xpQHo+kjBB3V9rSIlGWhfsfO7Gn57/JFe31nWyz5Gu4ilpheev9yyJcaT3Xf0sudDdmnAtssalORgMBoNBwc0M7/Pnz1fWUpe8cvR3h7SPs+ySBeICpSm42oGptino3lnaZBSpMLz+nCSTOvabWnik8gu3bbqGLvlnl7RyPp+vLEOXWszxJnHvI+A9dm2i0vy49iNkAzUpof69JrroM7FClTkweaArcKawAWXW6twnzwWTJSg1tdZ1YflOJorjrddBdIlqz8/PrWfi+fn5aq7dObkWXbKSkIrEU4G2Y+C7EqC63pjowrIArY8KeszIHBOTdcfQ/2KWHdMjw0vJgC55iWuWiVZOlCMxOpcUxCSpI+/v130PbzkYDAaDwTeMuxrAMhbQparz804mKm2b/u62TVZbJylFK9BZGykOQavFtcBI8QXOhSs45T4pFtH5ujn2WxhSN49HCsPr+KoAsJMFSkynExNIpRFM5xYj64SSK9tY680SdvE4fSYmx3FUa51jYCyP8mcuzsgx6hi8x/VnSn5pW1dwLPD+sNyjE1LuYvvch8/Jd9991zK88/n8el80j04EYVe+4zwKZE2MsXYSc6ktGO9p/ZleAsrtdQ2OnWekjtmJgLBkpvPIpPdKkg1z7CoJBBwRAeE7qnuvuXZKOwzDGwwGg8FD4B+JR8vycTJDjAkd+ZYX0j7OqkgZkC6DUKDlkeJhLsZFS46W5RGGx5iKaxNDRpcYn8sKTQX7u5heB2chO7mj7v6+e/fuUNx3x4QrksxduqddCyZm4CoTUnJhdRuK7Io1kYGt9ZaVR3bI83WMmQwveQ3Wul5PLhZZz9PFZRmrofVef74ldudaB3Xr8enp6SoW1cVudqLO9Wd6ePjucOsvZc+yKNo1ddba0HkU02WWeB1DEosn83JjTBnlXRzOZWG683XvVV6De8+RyaWs/hpn5HfM+XyeLM3BYDAYDCpuZng1hifrtjbVTNYe2YWzBlNGkEDfd92GGVDJaqvH4e+pnUU97q7FiqtFSgKztKYco9zVEXUxHP5+C7NLMVGXdVaZS2J4p9NpnU6nWAu21psFmtZBl1WbPAhkdpUJa91qn2S117VDq1nHo5hzZXhVfJrHq+PgmOvxdV5at671DrMzOQdk0k5Qu5OsWqv31KSazjrGLgZESFqMMn51jlNNGdeSYyQ7L4Fja65NUtpWYDyUsVwnf6bP6Flgey3tU9eS/kZB+1QvWa85ZZ12MbbkFehqO4+0A6pjr/vXWPUwvMFgMBgMCu6K4TF20/lxE3vqGN5ONaFapGJ7tES7Orzk3xe6+pQUp0hs1B3fKVxwH1pUyRJ2VtRRpYtqFTEmmCzjOs8UaK4qPMTlclmXy+XKmq3jTgyv8wpw/AQzFWtzVc6/s8q5naxlHUdjcpmDgrZRLDAp+jgWqnPrfLLglUHKllP152Q96zyOUTCDs3pT6thcrWAX8+J1UUi5U+nhGLt8gLRGXGZiylYk49dY3Ryn7EK33ug54H3Q+qjXoG0Yb0yi6TVGrRg0m1J3aiZHcy3c2krvDD7HnTcqNUuu10XG+O7du2F4g8FgMBhUzBfeYDAYDB4Cd7k0k9zVWm9uLroFu8SQ5FJICRPVrSaXC4tD6aJzLk3S5+SWqD8zeYVUmi6HI+jSunm+I8dNSSpH5N2SO5GJSvUzurgTai9F505zadI7pLIUwiUTpO7oPHb9/Mcff1xrvc2PXIsqPXAp8ypO/+2339Za19feuSDpqqKrR24rl7TCfXV83UONuZO0Y7JEV7TMuU99Deu2R2WhuiJzN55U0uTW1k6uz41/V3gu1N91n+n+pnhFvRaWgOl3jUXr0b0f+A7mHHVuyVQStJM4rH8TmAjTuTQ5drry67V2PRQThuENBoPB4CFwV3sgtsuojItp9Eyb7VLKyUy4j2vTwXR9HssVc7qgZ93GpfonayIVSrptksXrmEQK/KcCzW4bfu7AuU7s2jG8I4kHl8tlffny5Upyqc4rU7CFLuEppZZzrZDd1M8oqpuEc9d6S+qgODBT/N3a0fEoQkxWuCuyrdu65J9dYhVl1rqELoFsoFt3SaTBJbo4Sax0fiYZubUjJG9NJ6fF+52Sv9xxU5mCe29wm9Seqo6FrYsEiojXfXdrx70b+dzT08OieXdP6f3i8+sS7PQZSyj4fz0u2fsRDMMbDAaDwUPgZobnSgKqdSZLS9/U+ltnNdfjp/Ou1fv96a9O6a5122QFdlZsig04a0lIx+ffXSxlVzR+TxG54O5Bit1RWLduU+OnXTrzy8vLVYzIsTWBzKBLo05yZCzyrsXKKeVeTE/n0e91TFVurO4ri9tZzbS4U2G9Y4e0dFO7lrpNajQrYWsXe01zTUvcMZed/F4FmfnHjx+3ZSeMUzmhht1ad89LijExfs7xVKQmuDWdntsmtuYYS2KofHd0Mo/0SlCAoP6cpBk74QiKbwiMlbvcCIolMGbt9nEydzsMwxsMBoPBQ+CuGJ6+1ZXl9fPPP79uw2JKFv5238a7eFW3Dy0EWkKd35hszTExZ0nXbVNLDHe8bmzCzj99JB7H46ZMtvozrzO1tKk/O9bnxuSkx5wFnFq7uEzLNLeML7KdT91H61isTYxOFqlr26R50fEY23OsieuLbETHUOZdvY6UPSl0sVUKW3ftvVh8T0+D7lfNmhMz2bUScsLj+v+PP/7Yvht0HJ2vsmwy01usfiF5b4SOCTH7WPNY7wvXKOPllLqrP+9k93QsZe3W8TMLmdfVFfUnQQ/HpJOQQxKxrn9jDI/7OIHrKuu3K5R/3ffQVoPBYDAYfOO4i+HJmpDlWC0tWV+KG6RMofqNnOJUyR/v6mFSLVVXf5MEml2NXWJ4R+r+uliAO6YbI9HF41KLj042iJYj5Y5cvJa1QZfLpWV4Toi4y/Jfq75BAAAQXUlEQVRKjNRly6XYncYoFlcbswq6RrE1SjJV1kN5Oz0DOj4Fmuu2vE7Ka3VZyDpvstadOLruma45tbBxGXCs9yN7c/FmPuuJ0ax1LbLdWemn0+mr1lKUyqrHZvxyJyPo/sbnxmUk8nnXdVAI/Oi518q1vWtde65SrM3lKtALxvG4ONyuTtKxRX6W2JvLQk7/O4Z3xPOXMAxvMBgMBg+Bmxjey8vL+vvvv18tAsYx1nqzjvUtLuu2UyBI39jJInIxHFq+u2zB7nNn+XTZpWv17DDVobgmmMIuGzPVHXbbpDZFdRsyGLK4yiQYK+qyNL98+bI+fPhwJXrstk8ZvanB5Fo5LqHxa42+f//+qzHVfanuwNhUBeNjVFqpa5RZcTVTtP69sh1C++r54tqp94XNaZlRyga3XR0TWaBb30ct7hrP0v2oNYHdM/v09HSV7VrjvzoOnzUyIBeH2z0nXTYjM2FZf9w90zwPmT+vv4LxP1fjSW+He4brser1dM/aWn4daNskku1i8Cm+Rw/DEXWWIxiGNxgMBoOHwM0xvM+fP79++8tKqxYkfdlkeMw2q+jibXVf56emr9dpNRI7puesl38Cqr8wI+lIbROtNmeJHam34+c8LjVKu/hSjSd0DO/9+/dXjLRmlbmGq7vr2GkaMquyWsBatxxTasmz1jX71HyI4bmYB9WAOKe8x67hrP7XebpMO8akGX9lvVRtYZPqZllDdUTtRvPIeOda18o9uwxN/atzURleygPosja7rOUK9y5J3hKez8VHBbK0WzwYR5pWC4nBOtbbPb/1Gsjm6t/4O2PhTs+WzwCfZ+cxS++JDsPwBoPBYPAQmC+8wWAwGDwEbm4P9PLyciVVJDfLWmv99NNPa603GsuOva4FTHJHpESXui9pcgo4u+PQDZHSduu4U2CbY3OlEzuZpnq9KWhLGu8EgN346zU4N08Sie5cmrs5qXh5eflqnTj3BtumMLFF21a3JNcIXdt037j0/SQtJRdcdVNqfdONR4GFbp6OylK5z5L70M09XalHkjQ415oLumqdu59rhC7qrrVUV9LC82mua4G+Wi+57dfq3WC7QnNXlpCeZSaz1LlNIhy8D259872S1lKXLMfr4jPfjX+3ZuvPlFVL5Ql12+SKdmuCz+0trs1heIPBYDB4CNzF8GjJ1bIEplZTTFqfd0LJnfAz/05LtCuuJtguIzGxeh4yBY6VVlz9mdfJdPsjEmP3FF0mBlbniIXavH9kemtdW1pde6CXl5f1559/XhVQV4bH0og0L3UMvCZamV0iFJkdC85dMW+SsqOlWtmM5o4MNlm1FUmOjAkvzsolk6AHw4kp6LPkOXFzonOT0SkpyAmPszB8Jzx+Op2uxlaTifR+0Tl3ZT1r7e8Dn3VXeE4pts7bwblMHiXHnp1IgDu2S16hHB2v083N0Xew80akspeukS7XeSeoLtT7M9Jig8FgMBgU3FWWwLYq1boUw9M2tOS69NkkdpysgPo3Wr6db3vHAjv2lKyiTqh5Z3101yUkmbAOKe2aMaW1ru8XGV/X7HcnQ6Txf/jw4ZU9yfpzBdq1VGEtLzBN0OJObUeqhazz6LNff/11rfXGHMjI1sqxG56nPhOMh3btjogUn2Acvd4XxnlSrNUV9fL5JGNmfK5+RvaRrrv+fFTk+XK5tCyG95fvqE4KiyyKY3LPC4+XxOvr+XZMy70HeJzksXDxXyKVJdT7ksTwOXY3VsbomMfhGN7O69WVTtzizXu9vsNbDgaDwWDwDeOuBrAsXHVNNRNj2BWXu21oAXX+3CMxL7JBwmUm3cKs6vm766DF08UZUkaXa/GS2GEqWq8/p4avLtOOWV5dpt3Ly8v666+/Xi1HF2tJEkRkby6Gx/udCllrkbWYnDIvf/nll6/2dVmaXGcpVuSyCms7kw51DrsC84oaz+IcuPjrWj5TNon2cv3XayAjZmsc5x3YxaQqTqfTOp/PV3kATjA9iThQKL5eU3qvdBnfbGrKtdrF8shmungjx5i8XkcypRPjd++qdD36O9fJWm9zkdpFdc1wk1hG8tjVsXSs9up8h7ccDAaDweAbxl0xvJTFtNY1wyMzcNaUs77qNh0bpNVyhBWSoSb/sbOWkhRO54dnTV2yQjtGubPgnLXL4/J+1X1ohVNOyWXa8d6ez+c2Lno+n68apda1I2Fp1u90otfJSmYmnMvs0/yrgbFiep0QOK+dlqiuzzUc5u+uJnWtY16EJKXmjseYHT0LleFpftKzITj5M8qtKXvbxcCEIx6f0+m0fvjhh7beKokQc2zuPUCWkbwq9Z46drxW366HtbS8H05cOT3L6T3g3iFpXzcnO4+F1odjbYyJp0zmLmZ8hNnx+Tyfz4ez1ofhDQaDweAhcHMdXle7tdabhctYEH2+rv6KzNGplnAMKRsz1S+lz9y+DqmGhedzFn7HGNJ5hJ31WcG4FjOeXAyTsTpmcLmGmqzH/PTpU2Qniv+yCWyda60NraFbsjN3qjyuHVGKOdCCdIo0ZDNsitzd41sUaoQU63Jrlq2yGENMzV3rZ6kdkFs7vB4p6uj/LoNQ3oGucerp9B/haJ1HY6zZvMwI1dqhiH1975Ax8hqT2HY9TlLAEdy9TQo/jknyHbirL3Rsje/PIzVuvFeJ2dVnlJ4ZvuuP1JuyPZnLnaD36fn5eRjeYDAYDAYV84U3GAwGg4fAzUkrX758uUrqqC5NdlmWi4dJA10Ppp3brhNKTmnUR4RpO6mnlJ7LYxyR6dn9Xj9LhZhpztw+SUC5uhddcXDdly7PNJZdWYKOwx5ZdV+6p+i2dIF5rgm6XOiSqWNIEk/OZc9idP1OwYW6D8sQksQbXXYVTJJgTzjnQqdbkq5O1w8vuc70uSvG5zPOLvMUE3Zj6BKetD2vq7pB6XpnSKVzS9INqeMzccJJDTIMw/+7InkWxzMUweuvf0tF8q4/XSrZ4Xbub6lruebR9bNM3cu7sivCyRZyn/rOHWmxwWAwGAwK/hHDc0F3pmfLipEVSWu2/pyCq2Qd3bc5ZZU67AKdnUVySyp5SnQRUmp9/VtqMePkgXi8ZC25e8CAMIPxla0ckRQTLpfLV0ktTPpY65ohsCO5LPojDI9dy2srGYFWK0tpyBLqZ/pf61wJGhRPr8dNSQq8L85KJxurrGytr9kOz+M6hNdjdsXfTOQRnCzd77///tX5yWyrQIVKUHTuLuFprf/cIybZ1HnS8bRm9D+7rjuPQmqxlGTj1rp+ll2rHR4zlVC5bYkk+cY1VO8l31UpecmdJyU20VNX1xQ9E+ldXK87tWDiM+Lkz3iMIxiGNxgMBoOHwF1lCZ1lT+tYVp0sbMfa2GqHVntiHWv5MgBus0OS6XHbJOmytL3bt2N0wk5CrIvpJQbO++YKuHds0BWe19jDjlnrmilQsNa1RJXiA4yXudZLZEKyNmX5d9Zsan3TpZRznfP3el1kx2S5HevdWdouvsQyAFrjjIW5mFGSn3IxcW374cOHr/5Ga70yPsc6d6IFfF4qoxDj1bXqvrNMxDEgChykuXWNS1OhtIvHdaVE3edrXc8l35mdHCJ/5/vOFbpzvo7EjgWW83AbFzOkKDnXar0uxgS7tmTEMLzBYDAYPATuagBL37wr5qQFTwHbug+ZYpLvYtv5uk3KsLynyFtw1tLRAkd3HDK7xBrXyu1TaFF2WUypwNntw23J7Jwv3TXzPQrHTCnWLCtd1rvO5xgJx0ArU/JhXfEzY09O5DlJRyXZrrpPiql2Wbs8XmJ8NYbH4mBmozKW44p66V3hPXAeBRbhc127NmI67qdPn6JX5nQ6rXfv3sUMwnpsxm71v+KLToBCc6djMNbZZcKm+HXHOI6ykXr8JBJ9RJ6QjCh5RdbK8oeMZzrvQBIQcaIPBN9JyStWQXH0IxiGNxgMBoOHwF1ZmkT99k1tZZi9Wa2oZNnRT+781LQqGNPrBFJTDIXHdtjV0jkLmFYhLa2uvpAMi1ZNPR/jCYnhOTHeVE/UxQqFXUzy48ePV5ZjXU+q29I2XCuK6dUYFzM4U/2Yk0Kq0kRr5fVWMyJTTVMnR8c1mYRxXUNWjltzoDGptVGthyIzZs1jd5/4jOl/emhcPWaqN3QxUbLoXfz3fD5H0fV6bWRjYheaEzG9ug3nQ8foYoaJzTAO6NbFLi7q3lVCqtVztZuJnTEmWeOaZHD0BjCj13nbyNLS+67unzxoZIlr9VmfOwzDGwwGg8FD4K4YHuGYAq1YZvnVfVILDPqYO5aRGJazsFIWXmJE9fg7VRZaNd11ddmaKfuqY7tCUktJbNEdJ/nOXWZniicQT09PV/NXa7P0maxxxdbE/FzMaXcfEvNfK8cWmKFWx0g1CY2R8bLKCslm2MC0a1bM45GxKPu5MjxmZepvGntqAVXBeyuwvVOdA74H2PTZPROai64W8HQ6refn5yuG4t4hbFwrME5Xt9m1FiNrc9eYaoVdnJFrtovLpWeZ1+3A+G5qyFrHmJhdqvvrMnyZ/erqrdPcutZzAtfrNIAdDAaDwQCYL7zBYDAYPATuSlqhq6KC7sckHeNS4gUWI6ZUVbdtkgfqhKA7V2ZC54ZK50vB1c7tmvprpcLTbvzJTVXHmP7v3AbVRbpLuaZ71RVZ051BcWLXJ09uTyYtdEXkmjsej6ntrjieklWpaL6On2UPqdC9unw0BrpMUxJLHVvqys3nqiabpCJ8SgV2Ls2U0OGSjeq509p5enpa33///dV11O13wsVCLd/gGFwh9lq9+47rjHPrBKfp2usED1yRdf1dcAkhnAs+G5wz9zcel++diiSd14VSurmtf6/gd8stZR7D8AaDwWDwELiZ4X3+/PkqecSxGYFpzO5bmcHzFMB0KeC7lP8du0rXSSTrRWChs0st3hXJd4XnnDeybCdSe881p+ScjhUm8W+3fZewQytSkDBzl3qdWrkwlb2yDBYeKwGEVq6TlGLRq7bR75VxHWV47n6xu7fG2on4MrljV1Bf5yQxFK7Dug8L9xMLqXAtqrrC8+fn5/aZJtOiPJgrg6EAN9mL/t6VYlGgO3lmKrgmU1KZO08qBXKerFR+0LUHSuUUfOe7Z53vAW57ZG449iQduVbvsYrHPbzlYDAYDAbfMG4uS1jrWHwnlRp038r85qf14mKH9IuT6R2JQXGMTrA0FacnxnekHGIXB3Tn7USjOaYufrU7Dz93Vq4rik3+dMV/aQU61iaQtbFh5lpv1muSUaN16cYvy5fp+4KzLimCzaaeNYYnhkrZPa4Dx/SSaG8n8cRrpZeFMbVadsH2NkL3/Nb9HZieXo9XSzSOCj0cid1wfbl4peYuPUtM43d5B4nFHinuT6n+dV++E8kKyYAcw0seBLeu031OZVfdPThS2rTzQnWlSNUzeDSONwxvMBgMBg+B0y0ZLqfT6V9rrf/77w1n8P8A/3u5XP6HH87aGRzArJ3BvbBrh7jpC28wGAwGg28V49IcDAaDwUNgvvAGg8Fg8BCYL7zBYDAYPATmC28wGAwGD4H5whsMBoPBQ2C+8AaDwWDwEJgvvMFgMBg8BOYLbzAYDAYPgfnCGwwGg8FD4N95WEo6VJvZuQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bflZ1/ld59ypxtyq1E0qhpBSA9jg0Noik0BQiEBCQEFARYjzACj6qE8j2CaInThA2qdRUZB5EHFAGxQI3ZSCDIKIjR2RBDKnkkrNw62601n9x9rfc97z2e/723vfukmM5/0+z3n22Wuv9ZvXWu/3nX7TPM9qNBqNRuN/dOy9vxvQaDQajcb7Av3CazQajcaJQL/wGo1Go3Ei0C+8RqPRaJwI9Auv0Wg0GicC/cJrNBqNxonAdb3wpml6xTRN8zRNL7pRDZmm6d5pmu69UeW9vzBN04tXY/Pi92Idr5im6Q+/t8pvjDFN05dN0/R73g/13rNaW9nfV9/guvamaXplto6nafrqaZrW4pmmaTozTdOXTNP0E9M0PTpN06Vpmn5lmqZ/NE3T/5ycP61+n6dpeukNbv8nD8Yq/n3jDarvZavyfusNKu8l0zR9ZXL816/q+ZwbUc+NwDRNXzpN0xumaXp6mqbXT9P0iuso4znTND206ttHvxeaKUk69d4quPFexSu0zN03vZ/bcVLxZZJ+XNI/fz/V/2pJ/wrH3n6D69iT9FdX/9+76eRpmm6T9IOSfrOkr5f01ZKelPQhkr5A0uskXcBlHy/pV6/+/0JJP/BMGx3wHyR9TPj+QZK+d9WuWM/9N6i+H1/V919vUHkvkfQlWtob8curen7pBtXzjDBN05+T9LclvUrSv5P0UknfPE3TtXmev32Hol4r6dJ7oYnH0C+8RuMDD78yz/NPvb8bAfyfkv4XSZ8wz/N/CMf/raRvnKbpdyfXfJGkK1peqC+fpun8PM+P3IjGzPP8mKTDMQraqF/eZuymaZoknZrn+cqW9T0S63tvYZ7np94X9WyDaZpukvRKSV8/z/NXrQ7fO03TCyW9epqm75zn+WCLcl4i6TMk/UUtwtJ7D/M87/ynhWHMkl4Ujt2rRcr5ZEk/J+mipP8i6Xcn13++pF/U8kb//yT97tX19+K8C6sBeMfq3F+U9MeLtnyCpO+T9ISkByX9XUk34dybJf0NSW+SdHn1+RWS9sI5L16V93JJXyfpgdXfd0g6n7TvuyQ9JukRSd8m6bNW178Y5/4eLQv14urc75X0wTjnzat6Pl+LpPikpJ+V9NsxzjP+7uUYJ+38e5LethrHt0n6dklnwzmfKuknJT0l6dHVWH4YyvEcf6qkn1+d+58kfZQW4el/l3SfpIckfYukW8K196za+qclfa0WyfqipO+XdA/qOa1Fsn3zap7evPp+OinvT0j6qlW9j0j6vyR9UDIGf1zSf5b09Go+/5GkO3HOvKrnz6zWxuNaHtgfgTni+H/L6rcPlfQvVn17WtJbV/N86nrus6QP7vMf3XDen12ttYdWY/ITkj4V55yS9Ncl/UoYkx+X9LGr39jHWdJXrq79aklzKOsFkq5K+j926MvNWu6bf7laT7OkP3Ejxqmo70WrOl5R/P6AlmfNF0t6w6o/n7L67W+u1vvjq7n9YUm/Bde/bFX+bw3HflYL633pau1dXH1+2oa2/u1k7J9Y/fbrV98/J5z/T7U8Gz9OC7N9StLrJf1OSZOkv6zlnvdz5w7Ud0YLm3+DlufD27VoEU5vaOenrdryMTj+GavjH7nFvNykhbX+uTCGH41zfrukH5X08GoM3yjpa65rHVzn4nmF8hfefVpeYF+wWsSvWy2ceN4nSzrQ8mB66aqst66uvTecd7uk/7b67Y+trvtbkq5J+tKkLW9dLZSXSPpKLQ/Kb8EN/mNaXoZftloMX6HlZv+acN6LV+W9SYvU+hJJX7paRN+KcfgxLTftl0j6XVpUjG8TXniS/uTq2DdJ+nRJn6flhfYmSbeF894s6S2SfkbS56wWwH9aLdTzq3M+XItA8Z8lffTq78MHc3XHaiE/uFpUv1PS75P0j133aq6urebr5ZJ+/2pRvUfS8zHH75L0C1peyi/TcmO9W9I3SPrm1Th8mRbJ/W+Ga+9ZjcHbwtz/odW8/5KOv8y+S8u6+arV+L9yVd53JeW9eXX+p2lhDA9oXXB6zer6r1mV94e0CFE/LWk/nOfyfmg1Dp+zmqM3avXS0qKyu0/Lg8zj/2tXv71BywPnsyV94mocv0PSmWfysE76/Me1rOfDP5z3tZL+8GquP1XS39dyz31KOOevanmAf+mqrS+X9NckvXT1+8et6vrG0M/nr37jC+8LV+f+jh368gdW13y2pH1J75T072/EOBX1bfPCe4eWe+tztTxvXrj67dtW7X3xapz+hZbnwYeE66sX3tsl/b9a7rlP06L2e1qJUBau+2BJ36nl5eOx/8jVb9UL7yEtz94vXNXzM6v5/TtaXnKfpkU4vCjpm8K1kxb1+OOSvnzV7z+vhTh864Yx/QurttyG479mdfyLtpiXV2t5lu0reeFJuktHgtFLJX3Sam1/3XWtg+tcPK9Q/sK7gkXwHC0P0r8cjv17LQ/JyKo+WmAqkv7KamF8COr+htXiPIW2fD3O+4pV3R+6+v4HV+d9QnLeZUnPWX1/8eo8vty+btWeafX9U1bnfT7O+zcKLzxJt2phTN+E8371qt4vC8ferEWKuSMc+62r8n4/xvrHt5yrr1qNw28enPOzWh7Wp9C+K5K+NpnjXxOOvXzVvh9Bmf9c0pvC93tW53Hu/WD9I7ihX4nyvnJ1/DeivHtxnm/CXxXOuybpf8N5rvezwrF5NQ7x5fs5q+Mfi3n6DpR31+q8l1/PPbXlXLrP2V/KIrXY4k5J+n8k/bNw/Acl/ZNBXWZ5r0x+4wvvK1bn/tod+vLDWh7SZ1bf/9aqjA/Ztowdx26bF96jAvtJztvXwojeLumvh+PVC+8pSS9I5vDPbKjnb0t6OjlevfBmBdaphanPWgTmKRz/h5IeD9/N0n4P6vkTm+ZDi0bnanL8/OraP7ehj79By0v9YzGG8YX34tWxXzMqa9u/Gx2W8IZ5nt/gL/M8369FBfDBkjRN076kj5T0T+eg250XnfqbUdanapHA3zRN0yn/aZG+n62F6UT8E3z/x1pu9t8WynuLpJ9AeT+sRYVGzyAa0H9B0llJz119/xgtD9J/ltQb8TFa2Op3ot63aVFDfALO/8l5nh9GvdJqDK8DL5H0M/M8/6fsx2mabpH0WyR9zzzPV318nuc3aRFOPhGX/NI8z78Svv/i6vOHcN4vSvqglS0kgnP/77U8POxg4PH4Dlzn72zPv8Z3jtenaFkHHP+f1iLVcvxfNx+322w7/g9qUQ++ZpqmPzZN04dsOF/Sck/EdiXjleGrtdxHh39x7qZp+shpmn5gmqZ3a1mjV7RIxh8WyvgZSZ+x8rj8uGmazmzT3huBaZqer4V9fs88z5dXh7919fmFG66dMF77N7Bp/xb3nuv89Gmafmyapoe0aB4uSXq+jo9nhV+Y5/lt/jLP85u1sKfrvZ8r3D/P88+F774vf3hevTnC8VunaTq/+v6pWhjU9yfPRWlxLLrhWK3zfyDp2+d5/onBqa/XYtr55mmaft80Tb/qmdR7o194DyXHLkk6t/r/Li0vl3cn5/HYc7Q8jK7g73tXvz97w/X+/vxQ3guT8mxgZ3nsiz2I3JfnSXp4XjdqZ/2QpB9J6v4Nm+qd55n17opna+zBd4cWtcZ9yW/vknQnjvGBcHlw/JQWiTiimnvPk+tje96F341N8+Txf6PWx/827T7vKVYPlU/RItW/WtIvrVzu/9ToOi32i9imL9pwviS9ZZ7nn41//mHlMPAjWoSsL9EiSHykFnV17MNf08L+P0uL7e6BVfgAx3cb+IH+wi3P/4Nanj3/cpqm86uH79u12Py/YMNL/4/o+Hj9t+tob4W1e2Capt+uReX3bi1z81FaxvMN2u6e3PRMvFHY5b6Ujt8ft6/aFMfVQi3vD9a5v/LQjfAayvpu/CFJH6HFucVr4JbVb7dO03S7dEiafocWs843SHrHNE0/f71hLO9rL80HtAzmc5PfnquFgRkPamGHf7Yoiwv9uVp02PG7tOjlXd6btOjnM7y5OF7hPkl3TNN0Gi899u3B1ecr0D7j8R3r3RUP6OhlkuFhLSqDu5Pf7tZ40V4Pqrn/+dX/ru9uLS+D2Jb4+7bw+L9E6zd//P0ZY8V8v3D1wP5NWl44f2+apjfP8/xviss+Q4vmwHjTM2zGp2t5gP3eeZ4tJJjJx7Ze1vJifvU0TXev2vG1Wh6Ef2DHOn9Ui43wM7SoTjfBL/VqTD5RdSjE9+lorUiLmeFGYU6O/V4tqs7Pm+f5mg9O0zR6EXwg4UEt98VLit9HwrKfZx+h456j1r69fnDth2tZp29Mfnudluf2B0nSvHj9fuY0Tae1CBx/RdK/mKbp10HbtBHv0xfePM/Xpmn6GUmfM03TK63amqbpo7TotuML7we1GNTfunrLb8Ln6vjN9vlabsKfDuV9thZvp1/UM8dPamEvn63jaszPx3k/oeWl9qJ5nr9VNwaXtLCTbfDDkr5ymqbfNM/zf+aP8zw/OU3Tf5T0e1dzck06ZAofq8Vx50aCc/9xWhb2T65+/3erz8/X4kVo+CF87471vU7LOvjgeZ5fd10tXsclLd5lKVZs7+enafrzWhjJr1fxcJ/n+Rey488AN68+D4WwaZr+Jy0PijcXbXiXpG+YpukztLRV8zxfnabpQIN+huvfNk3Tt0v6U9M0ffd8PCzBbfiseZ6/b5qm3ybp12nxGv5enHZOC5v6IhXzPM+zvabfV7hZixrz8GU4TdPLta5puNG4JOn0NE378UX7XsAPavFM3Z/n+ac3nQzcq+XZ9gd0/IX3BVqckP7j4Nq/r8VDO+JjtNgFv1iL7fEYVsTix6dpepWWF/SH6YiJboX3RxzeX9XyEP6+aZr+gRaX+VfpSGVlvFaLN+OPTdP0Wi2M7hYtN8vHz/P8mTj/06dp+lursn/bqp5vCzbF79RCo//vaZq+Rotn0BlJv1aL48VnzfN8cdtOzPP8ummaflzSP5im6S4tKo7P0+qBEc57bJqmvyjp707TdEHLg+9RLazrE7U4XXzXtvWu8HpJf3qaps/TwoIen+e5Uu28Vou34I9MSzaOX9CiWv5MSX9ynufHtUhMP6BFj//3tDjavGrVzq/ZsW2bcJuOz/2rtYzdt0nSPM//ZZqm75b0ypUt4Se03Ah/RdJ37/qCmOf5l6dp+huSvm6apg/TEmbwtBZX+k+R9I3zPP/ojn14vaSPn6bpZVrW7QNapNW/I+l7tEit+1pY/VVtx3puFF6nxW73Hav75ldpmcu3xpOmafp+LQ+kn9OiLvotWsbj68Jpr9di53vd6px3zPOcqb6lRTj9EEk/Ok3T12tRqz6p5f76Akm/UQs7+yItAsjfmOf5rSxkmqZ/Jemzp2n64l3ux/ciflDSH5X0D1fr8iO0eDPyeXWj8Xotat+/ME3Tj0q6UtnhnyF+QIuQ8f3TNH2tFpX8nhantZdK+lPzPKcsb57ni9M0fZUWu/X9Ogo8/zwtzkGHtvppmr5H0u+a5/n86tpf1nENjqZpunX178+t/Do0TdPnahF+/5UWQnS7Fi/Sh1dt3Q3X4+miQRxecu6bFcIDVsd+n5YX2KY4vDu0PLDfpEX3fL+WUIAvS9ryCVpcV5/QovbK4vDOaXFxdwzgQ1qM96/Ukdfni1flfXLR53vCsQuSvluLlOM4vM9UHof36VpUP49pcQ1+g5YwhQ/HWH1HMobHvOW0qPf+9areNU/F5PrnaPHOum81jm/T4iQwisP7lyri8HDsHiWxYasxPfQe1Hoc3ntW4/ADkn41rj2jxTHjLVqYyltUx+GxXs8fx/8PapFCn1ytkf+q5eH+QeGcWdJXF/17RTj267Ssw4ur375lNcbfqiXE4qKWtfVvtdzkz9i7bNTn5DzfX09rsYt9rhannzeGc/6SFu3HQ6s5/2+S/jcd99T9BC2S9iUN4vAwb1+6WkePrdbar2ixvfyG1e8PSvqhQdvtNfgFN2rcVuVuFYdX/PaXVmvQQd8fr+Vh+/3hnDIOr6hr6FavxdfhG1fnHmiLODxcf+vqvP8Vx79kdfzucOyUlqDv/7JaM4+s5v3VCrG0g7b+WS0vL8dK/+HknH/qPgzKybw0f+Pq2res2vZuLS+/0ut89GcX+w9YTEvetm/W4j6b6YMb/x1gmqZ7tAguf2ye5xuSv7DRaDR2Qe+W0Gg0Go0TgX7hNRqNRuNE4ANepdloNBqNxjZohtdoNBqNE4F+4TUajUbjRKBfeI1Go9E4Edgp8PzMmTPzuXPntLe3vCdPnVou9/fqmCSNbIX+jZ/bXHsjwXqylH7bnLMJvGZUxvWU7zZW125Tnz9d1pUr6/tg+reDg4PDzyeffFKXLl1aq+D222+fL1y4cHjuru3ahGqN/Pdso+YY8/iNKv96zuM6qD7j/77nq/U9uubg4EBvf/vb9eCDD6415ty5c/Ott956eI3XUBy3Z/LM2HQ/jsaH36/nXh5ds+v63WbOd1lf76t7sjo3u0euXVsSz8R1cPHixfS5Q+z0wjt37pw+6qM+SufPL4m2b7vttmOfknTHHXdIkm6+eclw5AV9+fLlY42NHbh69eqxc/y56UUoae0m8Of+/n56XgaX67Zl11T1uH/xxiV4TiUwZPW5HzxnJFBwvHjN6dOnj5WdnXv27Nljx++/f8nu9vTTR6kLOV9PPPGEfuiHuGnCggsXLug1r3mNnnrqqWP1ZPPCueOLNfadDz/ODzFaQ2xLtu6qNTkSMqq1xzXjMji3WRtH9fJ6fmdZcby5Jv3da8bfz5w52lzBa8X3vM/1Oa7nppuOspSdO3fu2LnXrl3TJ33SJ631W5JuvfVWvexlLzss58knn5R0XAjzOHgtsu/ZfcN7q7ov/RnHiWuU9fj3eB7bkM3ztsjuBX7numM//BnXd3UvsH+bhGpp/cXkz/ic9THOm497fcT7+bHHHpMkPf74kob4ypUruvfee8t2HOvHVmc1Go1Go/EBjp0Y3jRNOn369FDysVRnKel6QMmX7KpqW/zcRRVAaWXEKDeVkbVxkyojk/Q4xuzfSDrk+FVsNJZRsQDP56233nqsrPi/WR+l3oh5nnXt2rW1uRxdM2LNWflZ+4nrUedmDC9Tq8Xju6xVYhv1P9uYsd5KGucaihK3z6VkbS2Mr43X+Dd/VuwnjgkZ4zRNG7UwLn/EFNh3tiFjeG4DmU/F2uL/z8TkULGkZ8L8snqq+96fcb1V7JPnZs/ZSs27zT3h8j3Hntts7KmRo2ZuhGZ4jUaj0TgR2JnhnTp1ak0KsD5eWtfxV7rm+Lan7pznUFLJJIVKih0ZSCubTewvsUn/7j5k/atsaJkNj+yZ9VXH4zGykcoumF3DMbd95tKlS4fXcG739/eHEu/Vq1cPJbiMmVTM53oM8bvYGnZhXCMJVzqSNjP7UsXOua7jfbCNdMxrKntLpS2IIHviOqzs3fE3ImPxHIvR2pnnWQcHB0PGQPZHO1xmU6OtkUyP7c/WamVLH41x9VvWxoqx8vfsucT7vWKyEZVmiWUao+crtQJZH6r7x8i0BpmGYlttXDO8RqPRaJwI9Auv0Wg0GicCO6s09/f3D+mlVZl2S5bWjdGmpP6eOQLw3CzOIn4fqTS3cUChmsD1jlz9N6nIRlSfKoXK9TuWQTUK1b0j55VNBvVMHVc53TBMIc611XZ2N/c4ZrBayu7HmZqDa8So1sEIuzgCbAphyRx1eO6ojbyG6iKqcbL+VX0eqfk3hUOMQjQqFVGm6qruS6pSR6rNTerw6NSS9blSxdPE4ueTdLSWfYymhpEJYFs1ePy9MpmMwlE2xTOPzCIMKaEqM4uZZp93ccrh2qdTiZ8PUd2/rco23iNZqMm27WyG12g0Go0TgZ1jB+y4Ih05Mtxyyy2Hv5v1VcGbI+mcQYiUkrKg9U3R/Jn7+KaAyOyaysV/m3ABSpvV58hluspgM3Itzlx6s77EvtsphdKnpUTPubQejjCStOZ51pUrVw6luxHjItOrQgBiO/l9UwBt/K1y2Bk5LVWsLHOVpos1+zNytKpCZKq5ZR/j92qNjvpZzUG8hu3mGIwYTKbdIPzMIRuIbI1hLnRIybRRPOZzq/CEzHFilzXEMazc6rOxoLMXweeFVDvlVMwv6yud8Pj8zjQZZHT+7ud6tmb9XPAn+zkKndgljKMZXqPRaDROBK4rLMGSkYORo9TPlEHEKKib6YEoEY1cogkyypi6hpIHpaesHraJkh2/j/TitCfQ7hnPraQ0tzGTluh+TAmcgcLSkWTla9x3zmMMQfH/WZ5NYp5nXbp0aeiqzLorZprZRba1qUSJdJtA81F/pHV3eK6teKyaj0qTwfZGuKyM/Y4Ci0d9iddU99hIqua6c7lcW1mbNjG8M2fOHN6DtPnHY26X7xfbl/2ZrV8yPN5z2f1JZlrZ2rJ1QA2WtSojG3WlIeN8xPRtVb/8SRtm7BfHk/3J1jlDctxP+nFkSUmsLWI/twnZ2sXO2Ayv0Wg0GicCOzO8s2fPHjK722+/XVIuVVh6qjzgMgnRb3XqcbdJ00RJhKlqYsC0/7dU4U9K3DFRcmV7ygJo4/H4Pz3G/JlJWr7G55hFbxMUW7WFrCSyXvfPbaR9Lps3z7HH8/Tp00Nvq0uXLh2eWwX5xnZSqhzZViudP69lm2Lf2HbPRyZd0h5He9VIg1F5CRvx+6Y0YUxmEI9V98RI0q6Ck5lIImOFXKvURkRNgNeB19A2NjyOV+YV7HFwuWR2GcOr7Hy8NibMpsaFz4UsAYH77ATqvOeoRYp9rOxUZKNR20bPajI+92+UPJyaBD5PMy1YdQ9kz3OOtcvgOyD2n8/Ry5cvt5dmo9FoNBoROzG8vb093XzzzYdemdSPS0cem5TymKoogtID7UYjT8jKQ8xwmVE6o7T3xBNPSDqSKka2ItqgtvHWpGRdpfrJbHj+rKRaS0ixrZa+Km+zzOOKsZWZnUQ6Pjeed2/TcebMmaENLdrwPJ6xz5WtiYw0tqnadmqb2M0KHouMeXMsq3mJ809WxHPJQiMroIdnFSeXMeUqnoysbaSN8LnUikRvRzMW2qLuvPPOY2XGe9PleL2NPO1swyNriuPEeNFKezLy0q00IZl2h+PN8rOtd4wqXjGzi7GtrJcel9lzrtraKbNNUitAexxZamyrfyPT472Z2dHpD3Dx4sVj3zOGFzUL23pqNsNrNBqNxonATgxvf39ft9122+GGr5YUYhye7Xp+Y1Nq9We0qVHqr+ximT67ynBCr6UoVVeJl6mXzmxqlM4ryTuTmlyebaCUsKN9ofJAIhsYxWFRD74pi0Y8hzaKLIbG6+DRRx9N2zoCmYu0bjPzfLgfGZsi+6tiLI0slor2KcYkZvYqo/IojufRi5X94T0SpWZeS2aZebRyvVUaBdqQIqo4UNYR21/F6vmZkEnh0f67bQLgrE30WnZdXEMjb79NGpjInvxc2WQnyzQLVUai7P6pMsjQi9v1xjEhk6ueVdGWTxbt8TPj8ua73oQ1+jnQg7Pq38hm6Dbz3sieczx3GzTDazQajcaJQL/wGo1Go3EisLNK8/bbbz9UZT3rWc+SdNwVlul5SJtNgTPXW9NnquQYuJipNKuEzAxWjf+bgkcDfDw+CuY1qgDJzAGFBnqqSa0uyM7hOPpzlPaoSsEzuobGaqpd45jQ9XuT4ThLqJ2503s8bBj3J43h0roarVLFZftqVcG1XLtxrXqN0tFqFEJDVSXVRjwey2Cf6XiUOYQwHVSVlHvkjLEpkDpL5mt4vqzq9u9RZU8HtdOnT290LKoSUcT2UMVcqVvjscoZxmVRbRj/tznHn0zKMUq7yHs6c8apnK8YFpOpbFmPf+MYRbUkVZh2SHvkkUeOffc1nutYHp/BVSJvaT0Y3uOWPR8MPt/aaaXRaDQaDWBnhnf+/PlDhmdmR4YkHUlNlhTs+k/nAulISjDDsfTna3zcb/EslRkD3SndZLuy0+242vol1m2Jg5LXKNWT63M9ZLmZMwalMEqdHleOQ2wrHU9oUM/GxGzNfffYjxhZXAeVpDXP87GdiTNmYimS4QdZOALbQAZaBffHOWZ6qEp6zrahIVtm2E1sK/u8adurzG2bDhTR0SD2L57j+fX8MIB6tO1NFd6RJTHmGLhc39dZgmgfM6O4dOlS6bQyTcu2ZNQ+ZFqiTQkAMjd6t9P3pZ87ZjO+Jj53/L8ZCbVd58+fl3QUmiGta0LIXnyvZen2qoQdVfq92HcyfsPj6PtOOnJGefDBByVJ999/vyTpoYceknQ0NhnTZ/A7Wa/XaBasTo1cfDbF36V8/DrwvNFoNBqNgJ0Dz2+55ZZDSSXTr1IfbcmA7C3aq6zr9zHabihpZSl+qm2J/D3q0qvNVS2BuA9RoquChzObXTw/joX7YSmJkmXU3fMYmbHLcF8sacY2kfXS5hYTBngcmTaOZcQ2Uu9+yy23bM3wyBgi3BbaNDK3Zs9ZlUarCrqPxzzPrsfzQptEVp7rp90xs+GyXm6Gm9VXbZ/j+XH9ca0aXvN33HGHpHXWy3Cf2AYGP9NNPV4zskHGa6K9x+2NAegjG97e3l6ZwDjWwfvUazRLMeh7iNont5PHM1uX72lfY0aX3QcM/Pfc0WYc20jNSmXbylz0yfD47PBz189o6egZ/M53vvPYp5mff/c4Z4kouKmAv1szGMfGY8DnAn0U4tqg1mae52Z4jUaj0WhEXNf2QBXLiccsCfiTrMbfpSNJw9ISpUy+5TNWQAmB9oRYn0FPPkvC2caIlpbp0UUpKvOW4nhZUnS/mUxWOrLRkQVQIqLNKrabdh+33eMc7UAeY9oXn/Oc5xwbk2gToW3q/PnzaYCoz33qqafW2E1styVB2i8ryTheX6Vy4hxvk4icdpOMFRoc68zDl8c4lrRVxvqqwGKPFQOe4zmWqM06yA6yBMdMxcckDGT2kIuNAAAgAElEQVRM0jr7pHcj05PF9nq9Pfnkk+Xc2IZXbSwbj7EtvI/ic4DPJreFQc/ZFjV83tC7MbPlUvNCppKl86Pn8KbNaeM68PgzXZcZ3QMPPCDp6HkgHdnz3v3udx87J85TbHvUZHgOqCGhj0LUHtj2aY0F+5eBazJLnFChGV6j0Wg0TgR2YnjSIlFwe4kISkeUYi1NRBueJRBLrYwXOWxsIgHxXEtrGfs0Kk8un3vhwgVJx6UlMzzGzlC6sBQVvSireB8js6WwTZZmrBcns7FXWKzP9XALlswuxMSvlHazGBpK3DfddFNpwzs4ODjG8BhzmbWbHoOeg2g3IIvYtEFmtgkpU4nRHpQxLnqKuQyPdWQfXvP0CmbS5YzhGbRVbrNlku8xagF432ZJxLlWeK9kHpWMK3U/3fZsq5xY3mhj53me1xhyltTb7WVCeDOX+NyhxzPvaa83bnkmraftorf4yGZMb22u67hGaXd323y/k2nF5xHZp8eE/Y3z4jXptjz3uc89VpbLyBKrV97nfKaM4qg5rkZmR8880zehGV6j0Wg0TgR2tuHt7++veehkWReoN6YHZmRv1GUza4Lf/tb3xrgRMjhmD8jsfazH51oSdz1ZvAglN7KBLD6FklQVU5OxUUpHlm7M9NzWKBF5zLmFB6WyyNbYJsak+dqMSUZ77Wh7oMuXL68xkmjXqbYVYaLeTLKjFEuJN/Pso6cl7cvZ+mb2Eo4lvTbj+LDPPk7PxzgvBhM9V/MVf3N5vl+sQeH9FSX8OL/xXB8faQdo1xptt8V74cqVKxuTR1cJzaWj+4H3I2Pqoqelx8fr63nPe56k9S3OmCxfWrdlcs5o44/nus98RtHrWTryK7CNizFu9EqP/SPTondmPNdw+a6P95Gv8e+xrfbo9Fj7WeX1R9tebDfvbXqHZzGckRW2l2aj0Wg0GgE7M7zTp0+vSbVZPAwzrNC2lWUV4W/0tPT3yPBoo6HEQ9thLCeLI5Ry2437RSkz254l1i8dSXmWjhgrxs0OY7m0N3Is3K5sq5R77rlH0pFE51iazJ5VZWehDS+LL/OxJ598cqhL39/fP+yjJdQomVWZOdimWIfXjjNCeCyf/exnH2tjFuPma8nwLKnau9HSLPuSfTKDSPyNY0PWmc1LlWkjs6ka3AbGbTGTcZnUaMS2uPx3vOMdko7Y6POf/3xJeV7Mym7vcY3X+Nw4tyMpfX9//3CeyMClI6bB7YCo7YjPHV//ghe8QJL0ohe96Ng17rPZbWY7dkYSt81j6XvtPe95z+E1bgNjWvkcivcY7ZVmm9R6ZNuukcnzOZPdE4zV5LPec3v33XevtZU+Ax/6oR8qSbrvvvskSW984xuPjY207v3p/rnNZJqxLfFYM7xGo9FoNAL6hddoNBqNE4GdU4vddNNNa0lBMxpttQMTAmdbldBoX7moZsHKlfGYqbdGlJiqBboCS0fGXLafzgRZUCy32slcyeO1sT8GU0h5DjIXXR+zeoDqjkzFxnAHf6cbfgQdAzbh4ODgUK2SOT/QuYbzn6WHYjoof7calyqhbHugKmjd6paYtouB3lRH0QEq9stgAHi1pY10pKqrVFpZcLxRJdbmFjZx7XDLILfVaiimK4vn0OmIzhnRwaFKmZZhb2/vWBsZwC0drYmHH374WJ187sRrrH584QtfKOnIBd9B11xbcU7poEPnsSx8o3KoYwquUfgDU+gZWQKCKoUhk2Uw/Cv+5rYwpMomhHg/xftSOlIFWy3p/ltNHo+5nzRFZUnfjWx7s01ohtdoNBqNE4GdGJ6DQzelc4q/WfKh1BelJUoiBKXOjG1E9+ZYfxasTAcNppSi5B//Zz0GHVGiNOt+WSo3y2GgvVlJrI+Sj8EUU9nmqk4hZMmOEldMqM0UVnSz55jFOuP2PZVruQPPybwji64Cokfb9bjdZhzRIC6tM/AsBRuTBHtMGeQdr6kYvr9H1svtsyw121DvPjCcINZHxs20UZnzisFQIUvimbu9f7NmpgoJye4NusHvsuHwKOh8miadOXNmjcXEMWbAtMeLGoWM4bm9ZodsGxNEx7563XE7mywUg1obrkn3Kz47GOLB4G0y2DiXHP+KBWWbB/vT4+hnU5ZYw3D7PSbcSigLbTIYCsLnUGSh1FDt7e01w2s0Go1GI2JnhnflypW1lDGZOz1tDXSzzzZxtUTAVEsuP5MCq61JmE6L/ZDWA0/dZiZzjW1g8HC1QWdkIS7fkqL7TtYb4XKod6cdINueiJKkpST3zwwvutvTruQ2jqREroNR4PA8z7p06dJWdp1qc9tRADDdp10+k0bH1FJ02zeYxmnk/sz1kAXX0u5LaZwsJI4j7wEySYa8xLGoNkP2GDARebzW/fQa4ZZSo/RQVWqxOK/UrsSto4h5nnX16tW1rcDitjauy+0lq8y2NfI1Di3wWPM5kGk3qMnxd26DFkH7nq9xfdzGKZ7LZ5ZB7Udk0Z4rsydq29iOWD5tdh5zs7PMV4Fj7vAebm0W2TCZHO2Y2WbVrjNu69UMr9FoNBqNgOtKLca3f5QuK087SqoZA2KgsaUlJleO1zJdD1PVjDZitNRgCYibnsZ6yLAYtMnA8EzysURCNppthUG2U6U2G9k+mP6KfYnXMliZbWcaNmldkh+1RVr6SaaYpWCj9EhvuXgNpVRK0WxTtnZoI95mCyGW67Z5zWaJBxhwzPnJtrjhettmHZjN8B5govUsAQNZLdeDxyzbmseglsPnRhsYN5HepB14+umn15hxZsulVyMZeLT7MQ2Z1za1Bn4eZH4ATLnFDZuz54DL8Rg4SYIZXhxzJpqoPLyz5xy3z/Hzh+kKM+ZaJck3w+PzkP/H8mnTjfV5DBjwziTcURPElGibUtJFNMNrNBqNxonAdcXhGZlemRIIPbe4BYuUJ1qV1r0nR7FGjFOhd2NkUZTcuA2I+xjbQ10521ZtNRRBCauKOYnn0tuM0nm2TRH7zLnwNdGexQ0/eXykI48Mr5K29vb2dPbs2bX0YRHVZrccpywtHb1oaeugpBz/p6TP8ctS0PFae/i53iiRciNjg4mo2dZ4jcugPS6Ly/K53IyU/Rkl5jXIRrK4zGrDZqZdi+PI5NEHBwdDG97ly5fX7PWxDdTKcEupbL1xTXBseS9k94D7UW39lNlyva6duu6uu+6SdHSvRybMlF5VsvxMO8FNYclUs/i7yqOzeu5l9kY+K+nvkK1vslFqP7Lk6KOtqio0w2s0Go3GicDOXppXr15diyvLsglU2SNGGQgoRVCyzmxdlBAoRfB3aV3SogREzz5pPYaJUga9KjN9f9aWWF+Uliwx0kNx5CFLUJKnRBuvrWwDBvsb/4+S90ja2tvbW6snk5rJtEeSN+19ZHZsT7buuN6qrA8RvsYsmZlIMo0C4+E4L9t43HJtZoyLtkKXwRgu2qHiMdrTPc6MwY1gm5jse2QrGsGbv7JtGTPlePGei97hXE9VnC/tZ/Gcalsw+jDE9nqNmNnZhhc1LgZtpkw4znnIbIa8n/wsyWIFyfqqxOdGZrfnNYwRzTbuHSXfj22NaIbXaDQajUaBfuE1Go1G40TgulKL0WEio7tUWdH4GKkwg9OZUHQbhxCqOahOyVx9mQCYqsbYRquDrNKkSoP1ZYG5VJ1kwZtsI/vDNEQjWj/amy6WHf9nKiPuZp0FnjPNUVXXqVOnyjmNfWOfObeZSpNq2mrNxPZTpUfVadYfzpmTCfh7lrQgU//F41RTxnljWrIqzVrmlLFJpW1kqcx4Lt3sszRhmVOClKtBeb/s7++XjlHTNGmapvKZIh056PC+oXo6qtcYxJ/VGzFKoF6pxbN58fPOTis+14H0WeJ53pfcJT27P6li5o7q/F1ad4rL1J4VqnXAccvU/bzXK7Vy7Gu8F7dVazbDazQajcaJwE4MT1re+EzJFKXQShqvmEo8xhCGatfvEartUuJ3SpxkFnS8kdYDS+nEwSDykUREgz0dUbJzR4l4Y1mxLSOJWcpZCJkrnXSybVpiQu3RHMVdq7O+0vGowrZphKR6/NyeWB7XX8a4eI6ZhZ0hsu2oeC37UX1KR/dW1SauR/4fv3MMMlawyXEjc17ieuIayFK0ZaESo3mdpmlt+7B4D7DOimVGmGnRMaQavxEYeuH6spAtMywnurCzSqb1qLRCTBqehSX4XK5Jf7r+ODZk8mR6I+c2rjM+UzL2RmZXaRgyjVlM4N4Mr9FoNBqNgOuy4VnKt5QRXX0pTVTb6ETwzZ/p9yOylF9016XbbpQQ6K7LwHZLOZGF8FjFZDPJniyQSYSZ8klaDxqmPYY2glGS7CwNEFFJcJyDrB5fc/HixbIO22G4jUrGFHxOZX/LAleJKmg4s3FwnFhvZlNxiqrKdpexmapNdKnPGBfty7SbxmDl0Rhn/Yv1ca1U9uZs3nhuFYAef4v9GzEpP3uk9cTp0tEY0sbONmZjy9SGIwbM8qiV4BhkvgNmVv6NCeIjK+TzhWn8mKYu3n9eGwy7qphfrJvPg1FYGcGx5lzEa6kVyNLGxbJiu+O2ZNuiGV6j0Wg0TgSuy4bHt29ME1YFh2ZJZ43K7sYyM1texez4e5QQKJUxCbb7E7cz8bHKo4vbkMQxoWcbPesoecV6LLm7bZWUlm1sWgX3VqmT4jUsN0vvxhRWTz/99JBF7u3trXmZZuNEVIx4dI1ByTTrc9XmzKvR9ha3u9rGJErNVcqyTams4jWZh2osK2oHvGbIrMjeRqn6KlY9svvRvklk3qqjjWsJsptMa1N5VmaJ2qvUZ9RmZAyvOod+B1miZK8R39N8hsW5pLbLY8DkBUamjXDbfM9ZI+c1HMvgfIzWSiw7A+/N7PldJfDgOo/fqd3YlPAiohleo9FoNE4EdrbhxSSvmUTH3ygBZTrgykOQeuqMxVWMi9IE45mkI0mYW7tExmJULNNSRrW5Y8SmxNbxGsYtkjmSJWZbpdBOMpJYKy+pyjYhHY2PEyeP2J3LcnmWMmlvko7m1P2o0ihtg8wOZ2yyS2RbIpHZMfE4WUJWH9vGsc+2bao8WDMNBje05XqobJaxHK6ZSkshrW+6ay9EemRnNrzM5k04zqry4o5lu69cQyM2S3s45y6zRVX2KYPb3mRt42axmU0q224s9qdKyxivYbpD9nOkjeIaGcX2Vs/4bFs3gzZIPuMzZj7yat+EZniNRqPROBHYieEdHBzoqaeeOpTOGf0vrXueMY4rs9eNNumMv4+8DatEsFkdlKzscffoo49KOmJ48RpL8NUGsNR9j7Iy+FyPYxX7JK1njKDEM/JCJSsYsezKBmKQZUtH4xUlrZEu/eDgYE06j96HnEOupWyjWc4HJcNN7cnOoU039tmMznPHJMGjOSTDquxxmS2XLGmULYXHKnvPCJviP7N1UrHcjGVvYycz5nnZHshjn81LlYSYtrTIKLkFTZWdaTSnXDvcgDb2y1l5/Hzh8zN7rrFfLJ9jHfvHLayY9J/bpEn1Fl3sdwaub2rqsixbVXwhxyLO6/Uwu8P6rvvKRqPRaDQ+gNAvvEaj0WicCOzstPL000+XTgVSvdcWVU+RolY7GVfBryNU4RCPPPLI4TlMYGynCydvpSNKrJvqqMxpJNYf4XFjYLWR7VZMh4ZqPLP0V3RL9rWZ2pf9o1qHzjPS+jhdvHhxqELc29tbU6dmbuJVIujMgE81yabA2Qi2hSog9y+qfLiHotfSJseHrC1U747U4LxveG62tyHnbJtAfqNady4jU0VvSiAxcpbapNK8dOnSmlo/OhNxj0uu28y5jUkCNiW8GDmicd5dv80l0pEphWq7asd1ad384b3s/L1KuJ6NgetxO7yuo9qSoT8MnSJGIQZV6sQs+QMddphGLsOm5N8ZmuE1Go1G40RgZ6eVp59++nB352c961lr51B6oYSYBdDSCFmlJhq5FlOasGE4CzGgIdbsz/2qJLzYtutJaE03d4+JpcBsm47KOaZi0Fkbq5CKrH8Vg8gchjgfoxQ/07RsD8S5zFzLKS1n24Fk5cfPynCeObxUaZuykBYyOku+1RZTWT1VOrwsLRmldNfH/mYhNJzLbSThymGDbv+xn2S7nL+RU1Z8Lmxieb6Xs7XovlXtHTFubnPFdmR9pjNJpZ2Iu5gzpMj1eU6zcSKz8yfTImb3NFmgn3NeKzGxhlEF0lOrN9JGcH0zWD7b3muThiw+W6rd7bdBM7xGo9FonAjsbMO7fPny4ZvVEkvm6kuX6ErPL61LRyP3eSmX7Ci10HU5Srcsl+miMilmZDOJbcrco+laTltEFjzMa1kG3YazwPrK9TsL+h3Zc6Q82HdXCWtvb6/coiaWV9lDMlZYJbmuEjVnTJhaCaYyy4KHyRxGLMZzw1RSnIdsDqvkvaw3m0sy+2pus4DwakuZLIi8CpEZBS2PmEKGU6dOlZv9xvIYgM37NLK0iuFViaczsC1M5h0ZHtvgMAsG6mdJJKxNc+LpKsTFZcV2+5ivsc8Cny2xPIP2N66LbezOZHGZDb5Kf5hp9UbB9pvQDK/RaDQaJwI7M7xLly4dSqqZRGpQquTGgpktiDreKqlq3AqFjI71+nOU/owS18iGR6mIEpbLyDw8XW7cTknaznutSpybpdmptqoZSWVkQPSUNWI9me2rsmnaRjPyytu0RVE2L5WtkfOesYzK+5PB/iP7D20bTI4trc8Z2fTIzuTyPO5mDF5nmRdq5Y1ZzWk2Z1XgeWbnokdf5Z2ZJZzexkvT8PhktiC2hcgCmvl8YRlMUpwFPPNZQo1ThNeEWdr58+clrT8PsuTRPofJKrillG18sW1MiuFr/BzNtDbWdlV25sxmSI1CZSOPc0DN0SjtnVFpb7ZBM7xGo9FonAjszPCuXLmytn1OjNHIUlBJ65JC5qnD+CeyKR+P0hPrYbocSyTRI4mSh3Xc1AlnumaXT6mlktqldS82S3asJ7NNud1M1UbJJzIXsoyKSYy8zpi0mPEyEXFuN8XhbUq6G0HP24wBVVveVImhR96slWdY5tkZ+5T1J0sPxvVFaTmLcaPXp8uiBJ5JzWx/ZcOL12a2zojM1su+V3Obses4L6O1c+3atbW433jvj+zgWX3ZsSoV2japxaptymJ9bj81MEz9Fu2xVeo6HjdG69vlWzvg41FjVsXQVc/vWD/jfKtrsmd/hZEtb9NazdAMr9FoNBonAjszvGvXrq0xspGti5J2pn/n5qpmcDyXcSzSuveYddxMkBpjBum56fos6bCtsW5K9LR5MYGudKRXt+7ejJISZWRPzEpAKcZtzaRd94deobQzjbZXIZMdxbHRZjQCt1EabduTxWyyHkqPVfLZ0dZSlRew5yBmy+D80+PWNrbICmgXYT308M3YGseamxVnHsUj1rkJFWPO2OImO9xoXYwy4RCjJPPMrDSywxsVE+WYZx6lVZwn11KWVYT+Bka2pRBt0VWGJX+PbI22R/9Gf4r43KGGjmupiiWN53C+ee7oGTLyyGd58fs28dBSM7xGo9FonBDszPCuXr26FhOWeUBWEnfmVUi7BO1U1IdnOm5LR/7k8WhnpOeot+3wJzOhSOsSjsuvmF300jPrtO6ccVdZvjrGEZLJ0M45yl4w8pzkNYzr4thnNoJttuKZpkn7+/tbxdBssqlltlXacsmqsnhMxmhVsU2ZjYPjT21HXDu0QdMOmuWGrMCsKWQh0nqsZjVG7FP8v7KfjuzNlceskTGy0XZDLIvrYmR7rLwLR3bEitWM7H+73APUKFlzwOepn1nSkXaINnVqVbJct66H2xIZ7m9cd1ybXEtGtg4q+zafHaNcuNuMI1nmJvvvsTZtdVaj0Wg0Gh/g6Bdeo9FoNE4ErissoQoQ9znxGFVyWXqozKEgljVyD+ZvdBfO3KitMmBqHx+3CiuqvOhIQ9dyOohkhmcG5lK9l6Vos9rT6k6qNKuxi+VW6oLM4Fyl+Mnc37OtPTapFjYlCI7l0oljlPy4Cm3h+MQyKicOtjGqeVy+E43bSYXJGLLtmtgmg05SmaGeyder1GaxPK79ygEmcwIyOAeZyomhJlxL2ZzTSerq1avDtTFN0zD5OX+rwoXi2NLho+rHyLFmk7NFdl/6XIZ3uY0xEJ3OawwmHyVw93PMKk2uv8xppdqqiqrUbcIEGBSfjVWV3H20dioV9DZohtdoNBqNE4Gdtwd66qmnDqXNbNuMTdvKjJhCZXCm1JG5RFdu1Aw1iNfbIGymZ6mJLCEeo9sumR63/IjnVFJLxnpZD6VahhZk41khc1un8wAZc1YPEwOMGN40TTp9+nQp9cU6yLxGRm+2hWuHbWRoQOxrtdVKtumt6zGzo6YhC51hPyqHoNh/MpRttodivVUy6Ywxcwwqt/RsG6SKodGFftv2G3ZYqVzy4zGyCK7bTcHv8ZNOMiMmUWlGMhbKNcS1G58dXntmaVXSAiOOY6Xl4D0Qy+CGqxxXMvNMu2eQZY9CkUbhHPw90za000qj0Wg0GgE7MTzDUi0DmaUjO1i1XctIN8tjVTBnlGIqd3DaK6JrOW1ElDYzt3j/Rnd0So5V8GXsRyXRR4nb7bXrcpbmKtaXSZIMuq22cYntJStg2yPImjZJWnt7e4drhhvcxnZX9o+RXYR2Mn+SmWfsiVItWVXs0yaG5/7FuazGlqwmY9EMe2Ey8SxNXGWHqRhKZstkcuIRE+M9vUlaj+Vta8PLGF48vwowp9YgjgHvc96fo3tik705axefTZzbEcv1uqO9r0qLFsur+jVqY5X8gc+OWBYZHdeQsQ0b4z2SjX0WDrcJzfAajUajcSJwXQyPjCQGLnK7ejIvSkTxXJZf2Tgy6ZkSN6W2KMWzXEpNmaRa2Qoru0wWFMsA5Cp1WvzfDI9S+CgZN2EGTi/RTLKjBMexivXQm3WapqENL27iWbEBqbbVjYLfabMjExvZuCqpNWPPTPjrz0ceeeTY71kbycZYf6ZZYBsqz9WM7VRerbuk+mLbRl6am1KLZRqTbe1j165d28rDd5MdMc7L6H7fhCqIn5qe+NyhHdag1iObS3pUsp9MHxjbQFTtiOVWdnM+50bbA/H4yI7KNbLNXFeajBGa4TUajUbjRGBnhndwcHD49rWEP7IfULeeSdyV1yLtZP507FO81kyo2lgytsMxVP503Atj3rLUYpWenR5QmQeZ2Se9pzKGx4TWmSQfv2cecPxOr9qRHZVj7rbGsXcbszjCDPv7+6X3Z4Yq9VP0nuVvZKSU2rNtmzbZ8OI1tFFzE80sPRjtbW4/t3HyOMa0dGTnTGScsZNqjVbxeVl6KLLSUezeNmnBYh+ya06dOrVRqh/Z2KuYrG08K6tPIkvfV9nsyeKzY7QRZs9Gxr9lduVYVtb2yi43eqZVduyRxoSoxj7TDmzamikyata9af0da9PWZzYajUaj8QGM60oeTWTb2jBOhzaIrByyMkqblqbNzKT1rTYoKWQeiZagHX/HODwmoM7Ko9RUbcwZfyMLoC00Y3hMfsx4P2aNie3mFjYjGx6lzSomMjKY0fZQFUbSdOW9OMp0wXayXM5/tFswW0nFNuNapnRcbeI5isOrMnpkm3pa2+DPyv6XMa5tmUsE4yR9P2+TPYXl857P7FmjLEoR0zStaY0yb9ZtNCCb2l3ZiLKYs8qj0xgxvIzRS8efjVX2GrYjmw/22fWMttuqErdnNnzWUbFrPtdjHyov05Gtn/bD06dPb83ymuE1Go1G40SgX3iNRqPROBG4LqcVqiOzJMvZLsEVqB6q0hm53riv00MPPSRJevTRRw/bJx1RYTukRDWR/7eayMmjXb9TjsUkrpVROguCjG2W1h1Pqv7Efvl/pgFymxmIHPfQqlRJVG1mKk0asulQE1WadHuvXLWNUdLY2AaeM0KVDqoy6mfrcVPSgKjSZOJfj7v7znmR1tPEUf3p9TcKg6juo6zNlau3sWms4m+VmjmiUiPS6SdTDW+LLFQjgmrCatf3DJnZQ9oupV2lNs7q5f3iMaYTS6byq1TKbFumYqzW/sgBaZTsP5aVqZWrtmZriW2iSjMLRcquaZVmo9FoNBoBOyePvnTp0uHb1NJslEjNTLKdv10GQUmEjMTX0MkgwtJTdGiJ7Yls7fbbb0/rp7t+Jvn4k8yLTiWZkZXMjumwIkMiK6DURCknjgmdH6rE0JkUuslZJaZoo0NDTP+UYZqmwzHOzquCm0fMj8Z0fq+ccaR1yZ5hCllIi8EEB5z/jBVyF3vDrD1jGkwWzbaMnEeq9FBsR2xP5dAwYsGVIw/HIra9amOFg4ODNYe4bP1yTY6SCFADUgX5s58RnMvqfo3lxWdRREyzZmxKwsD1nY3xplCNzMGOa4brO2Ojm0K3jNHaqRLHZ8H414NmeI1Go9E4EdiZ4T3xxBNrb+P4xjUDqLYxyVJvGZS4GJDra8+fP394jd/8toOY0VGKjTY8S1gMMGc4QraJa2UXoSSSBfOSDVCHH0MLKCVXG8K6L5G10pWdrtJZSp4qdZCZLD8joh1t5PoekxaMJETaOqj7j2O/KUEuxzizjxgVI4nroLJTeFw8H3HMKWlXCYbd5szeXLltZ5JxlTyAcztKwl2FDXA9xvrIjLbRmGzLCmJ7MyZchQuNUlaRBbJcaiMy7QDnn2XHMY7b/kjrNvUsHRnr43hRG5aFGDAZQxW2Iq2nzCPjykJMjFHi7FhWFopUsdHR2jE2JS2IaIbXaDQajROBnRnek08+ufYWzpgQvTWNbCscSgaWHiwRUfKNTOjChQvHrjFcf2Y3qaR0ekDGfpEhUFqh/j9KfNys1SxgG285M1cyZtoxsiB5nsO2j9J62RZixm7mnHlLbSOdu12UTDOWabDczGOL51YBslmZZNpkQB7HuFY5zzHpgrS+ZmP59Oytxi1LacdkArRRxvVGyd2/VZ59mZ2p6i9ZSexXZQsf2Vyi1mOkHfKWF9sAACAASURBVNjb2xvO7SYPwQxVIgAGiGearMo+OmLP1bOjShcW27ApZWJm/6u8Mrk1V5bonOtuGz+Kagsh9isL4Oe9R4acaYIiu22G12g0Go1GwM6pxaK067d99NyzRFDF4/FNLq1LYZWkSH21dMT2nvWsZx27hkwrxo9V6ZPYjii9075kicPf/bvZW2brohTGNGtR8qGXq5lDtR1OlIDihqwsN147Sn9lRuek3EwUHdtobPLQjBKn+5PF9VXb24xSZFFSpASebZXD+fA65hZXGaPYFH81si9ViXi5LuM1lX0nS8zM9HYsd+QZWTEH9iHzmqviPEcMhv3IME2T9vf3y8TWGSpb0KZ6svZn3qAcUzLwUUzqJs1C5qXJeeG9lqU0NKhVY1L+CNbDLYQ4FrGMTUnkRx761Saxmb9BlUh9GzTDazQajcaJwHVtAEsPvihpcXuUakuMrDyDempL3PaijB6Jd999tyTpec97nqT1rX6ot45ttMThfjARdMx84t/MAsgomE0is3W5/fQcZL8z0MPTzMvb9USW7XPdz8p2kLWRcXe0gY7aOPLSnOdZ8zwP44Y8R5XOP8v6UG0HVNn/Mu9ZsvVtmERlD622qZHWx67KzhPXKsuv4hhH/eJxYxRTV3lcZjFqFaMbZbfZJbH1NE3HPByzLbg2eX3S+zReU7F0MrxYH+d7m81kuY7I6KqsJrG8bddQdoybIo82ca3smRyr7F6k7a7yEo3HqjYb8VlJTUJ8rmxCM7xGo9FonAjszPD29/cPJQVLWlH6YqYVM4RsC3qDEvymGLQsa4pteHfccYekIzaVZdgwG2JsmftFL6bYD3rlbeOZ5N/cJurH3a8sOwfZtNvxyCOPSDrKJTryQjVoq8zi2aosMFmcTBXvVSFKYmR6EduwM/62idlx3rJrmIeR7D37jQxsNAa8lvVxq6GIimFnY0K7TxXf6POyOEOCWZWydWBUW75k8VeZFx6xt7enm2++ubTLjY5VuSfj/5Xmo8rAE0FbOu//OOZci1nMrpSzZ9pqaV8me4ttq3KCZp7SVf5dahb4fIrXcr4ru3o8RpCRZ1tLbWOXJZrhNRqNRuNEoF94jUaj0TgR2EmlOU2TTp06tebOnSUf3RT8mhkuSZNpPM4CWXmN66cTCd1r2S+pTsUk1TuBV67rmZGV6gGHVGQqE7rT0x15tNWPUSUCpgNEPEbV3DapmbZxaDGoLorqcDvibFKNZsmjqXKlGjRzxebc8XsW8rFtKEZUoVYJmKmKyZw8Ktf4ylkmtilrf/w+CjGonFXozBCvrwLaM+cItv/KlSulampvb0833XTT2rMkS/VVqdNGweNsE49n5hjejwxDyhJQ8BmYmXfYxip4nMieWZyPyhknu6fp/Ed1buYEVDnf8NmRBZ4TVbq3+Fu8x7dVazbDazQajcaJwM4M7/Tp04dv2JFEXklPmUs+mcEmo35m9IwhBNKRuz63XpHWmanPpSt+BA3OVTqwzEmGEoklRhq2s4TD/s2ONh7zaoNYaXMC1mwcM7YurTPHzK3bkmrmGMJ2uJ5sU1DWVTmiZFLsJuP3KOWTpVg7FY1SvpFJbCOlk11U285kaZvIBumEkTFvlsuyOFaZhM9Nkqvtdkb1UeIfOYyMUotZs+R58mfGornG+dwZBSlX2oJMs8R0gXREyZI5V8yeW/KMEnNXbR1pvzKHs3hNFtTNuWTb6JgUy2EaQs5Nlk6w2mA2u2e2DUHI0Ayv0Wg0GicCOzG8vb09nTt3bk1qHknAI7tYLDeWUwVZZq6wZj4u9+GHH5Z0JC1TFy0dSVRMkMwg7lhPZZeoJO0oxZg5WOrzdyeGdlujPYv2Cm7A+uijjx5r8ygdERmm69smWJlMLPar0tVXuHbtWmljiWVzPWyTnJo2BbZplJiX9iomec6kZra5CtiObakSDYwCnFkP+5vZnagRqeaWUnT8n6FAI7uPQWmddvXMtXzbwPMzZ86s2a+zPldrZRtWQN+BKkF8rIeJGsj0smdjFXRPjVbWFoaYjJ6vma0rtqNij/HcTWs3s61VqQF3STZfbc6btXGb8g7bsPWZjUaj0Wh8AGNnG965c+cO39zc0FBat0NU9rkIevtRiqx03tKRTeuxxx47Vobb5sD0uKWQYbZk6cxl+TPax9hu2oKY6DradtxeS6bVBrBZYKslRkqQbGtsDwPnq6DYTOolO6CNKpMGPY7RvlvB5blNGYuugviZbHsbcN4yNsPA/yrlVKw7s9XGa7M6tw2UzQK0NwXYj9KDVSw0W3dMVs51MLJRb0qGnHnnjWyCsfxTp06ViShindX6o2dqvOaZpKVjEgt6pG4KqB+1I9ZZsaMRQ97kpZnZf0drfxMqxjWyJfKZz+Qj2fpgUoxNW0tFNMNrNBqNxonAzja8s2fPHr5NbYviORHcQHAUN1bFslDCipKWGQ512mQ50aOLUuo2MWfV9hWVnXHkkcZ+ZpI/peSK6dkjKrLeKikt6xl59tG7dbRJbWRGlaQ+TZPOnj27FhuWMYUqCXHWXto9qnRGmS2CjKFKp5Yxyiph8jb2qk021ghKuJXH6simxrKsaaDtUjqad9psK41N1v5NtjDpaIxHNhr2hZ6jmbd2FXuaje1oe6FYppGtA8YEbrMlUuXZPZrDKh5vpFGpvHRH9xXPodZpxDg3aR+yODyCcZ4j+2l8HzTDazQajUYjYGeGF5O4jpiQJQOzwFHi4k22E3osZjpgMgefE7fNYX20S9jOlyXxZZYEI7MNsI3sX2WjjBIk4+/8nQyPWwBJ6+yw0sdnLMSgDYfjHI+5fzfddNNGSZ02jpgBx9oAepPxeLbZKaVHjmlmO642kNxmO5PMoy7+nsUnVSxpFOO26dpRfBnP9Vgz1i7OAe+NLDYw9pP/S+v3oj2lRxlyTp06VbIV2/Bo68/KY930ps7so0a1djNv9Cquk8+BLH6sijnLYjorhldhZP+ttm3K1ncVMzryCq20KiMvSv7GzC6ZdiBj3s3wGo1Go9EI6Bdeo9FoNE4Edg5LiOqP6BZqkBJTbZQFu1ZqGjpsGDGNGM+hyzKTScf/mS6H+9ZlahuquWigHwUNMxia/YzjyH7ROYVu/ZnLd2VgHgWcemyoWshUp5mKdGREn+d5LewhC22hOzXVGrHd3HfRoEt+luyWKp5Nzj6xDZWBPlMxVumfKnVolm6tSvxrxDZW11Sq9TgH1V6UIwePyglhFJZgbKOy83OnSvnFc+PnKO0d10S1DrIQGgZVV2OcPeeo1h8FWVep66hSZ6KPDNsE31dOP/yeOQPyvq2cAjO1a7VWjTj2nOP9/f2t0401w2s0Go3GicB1bQ9EVhNRGb2ZTDVea6nC51Q7j2duwZS+uKu4kSV+pcTILXeytDmbtsIZuYlX27bQ4C6t78bOXdmr1EIRlXE8cxziDseUUEf9HkncPK9y55fWHZwYMJ9pBwwm4GXb6IqfnVtpFLKx5XhU2ypJ6+us0gZUrvVZP0bMqxovur+bxUetTXXfVE46sb3VFmBc97Et0blkU3oxakiigwgdmiqtQBbKYJCZuL3u18hxgskLMibOsSSbyeaUTjBsI+uJY1yFRowC3RmSU/U3Y718FlGzkaW4q0JlOFYRvPc2hZdENMNrNBqNxonATgzPoDSVMSFKcH6DWxKKb3knQK506ZTeM1sX2zZyLd+0fY6R6c/ZZ0r4WVmVuy7tczGEwmPi35g8epTYtrKjEhnboU3N0m22kW4muW1yLefvWTo1BhiT8WX9YULsKkwkaz9thZyvTBuxiR1kyDZCjcjYemWzYx+yuazSNFWJobNyt0la4P89TwwnoQ07a9Om4OEsUXRcB1XoTZWYIOsTNUnuh++9TMNEm/fITlvZ90ZaiCrNXqYpi+3IxoLrPPMdYD1c79wcOUu3xrJYxih5xTbaIj5j9/b22obXaDQajUbETgxvnmddvXr18I2dBe7S/kAJi7aieA2D0xloarYRmRDZn6UxswNKJLEcBm/7GtpJpHXdMqXiUYAr++dz3Q+zuOh96pRpTHDN7YIyL0faZjIWJR2XkKlLp7dhJlEyIJy/R0zTpP39/eEGqmSm7If7PAoiN2iLHG04S7Y8SpxbsYKRlyHLGbHzqr5KCzEKdK88LXk8S9tkeM16nWUstGJIXJvZPeE2XL58eevg4SyBNRkjGWqWCqu6LyoGlPXZIOPJtBBk2BXTy2x41X1IW17GuDbZmUfjTg9bjknmPcnvI1Za2dwrdhrPaRteo9FoNBoFdrbhHRwcHErP2Uai1Rub0qXTDUVwiw2DHkGRrXE7eddndmBW8Pjjjx9ec9ttt0k62lLIKcUqz9LYfrJa6rqN+J3SEb3aaKeL/zP+rkppFKVpeopVaamylFKUnnzcbc2k4q3T+iRemrFN3EaJiZjdx8iEq613mEarSgEXr60k4HgNpX2PzzZMr0qqO/I+pcclPfroHRh/4xjwHszWbpX+inatkbcjMYpN3IXVVV60sV2VDdf3U8aEKyaUJauv2r8p7jieM4rZZRsrZl/Ff2ZtJPPm94wVVnG+/J7ZRCsvzYq9xT5vo/WgBuPq1attw2s0Go1GI+K6vDQZ65ZtvUOmNdqSxAyLMSCUou25GKUb2sOYvDpja7feeuuxc8wc6C2V2Xuq+KdR3EolWdH7MDJX/89ziFEsFaVxjkn06GJ/mDSarCBeE9nNyEvzzJkzaxJwZgPYxEjj2Hp86CXr8qsMLPEceqCRLW7DCiqpNh4beX9W/WY2FNrfRrbJylZXaSWy/vCaLB6z2u6IGpnYRo7XpmwZ8zyXDJn/S+vsNmOF1XqrMvxkiZKZQD1qH2LZsXyuUXozxnuCzGfkLUvQf4HxvlmmrGqbtSyBNuun1qnq7yjTSsX4s7mu2O8IzfAajUajcSLQL7xGo9FonAjsnFrs7Nmza4mFM1TJQDOVoH+jQZQGVKsp4o7hTH1ld/6RKyzd9anC3MZlnm7HIxUDVUdUG1BdFI9VSWK5d19sD9WcTCU12qme+9RZRcOxkY7UhduoFPb29nT27Nm1NZMFWY8cW2I/Ihj0TBVsljya9boezk/mJk4njioxeCyHv1Wp3rK1yjU6StG2KYiX6vFsDug8wD0KRwnjq6D8rM54r48cWK5duzZUadJZxX1kiEt8dhhcK1wzIxWwz8nSj8X6Y3urROBZ+bxfGJIxWtdVonl+RnXvJscW1h/rrZIvjPrJtZmFV8Rr4zUjZ68KzfAajUajcSKwM8M7ffr0GjPKpCayQO6AHlmGJQKHKlSur5kDB50SDIY4ZIlfN22fkkkOldvsKDHzKMFzRJTmaND2bw6pGDkteGwp6dNZJQvCrdJCkTlJ62O/adfqM2fODNlg5TgzCh5mqjpKhllwPMHxqbZzivVkrtFZ27NyqhRM2XqrnFRGru0sj84Ko13S6aREprQNG6EEnjHXXRieHVZG2wyxDV6bfkZlIU1krZUzRLYOiMwpJtYf68kC/uPvcX3wmcRn4qhtnHcmbsgYHkMxGM7DNsZ6qfWqkqHvkjZsdE50dOmwhEaj0Wg0Ap4Rw8vsWX6rW7Im0zP7iHYYShNMCxbTD8U6pPWAaH7698zln9vPxH7GT/4fy69+zzZKrbb08LUxGJ+2G44jj8fAc//vsa7c7COjYPJbMhimfZOO5p0soMI0TVsFHFepljKJkcyH5dMem80L2RIl4xHDY1szyZc2syoYPrO5bQpSzsBxqrZp2WbLJ4NSeqYxqeY0czkfbfm1CVl9tP1U2xrFZxVttVzzVcLm7JpKGxWvYSpDMiKyamndVkztQBUKENtUbWTL/sdrWB6fxfyM51Y23FHy7dFYE3x+dfLoRqPRaDSAadvUPpI0TdN7JL3lvdecxv8AeOE8zxd4sNdOYwv02mlcL9K1Q+z0wms0Go1G4wMVrdJsNBqNxolAv/AajUajcSLQL7xGo9FonAj0C6/RaDQaJwI7xeHddttt81133TXcCsVgLFsVexb/v56Yo00YbWM/ygrCa6pzt3H6qWLPdnEYYhmja0cZK6oyqs0iR9dwLvf39/Xggw/qiSeeWBusu+66a77nnnsOvzNnXyy72oAzy1izaUy3ydiwzbm7nMN2bJrnXdbQrnXveu3ofom/Z8eqLBnZPZ/Faj344IN6/PHH1yq45ZZb5jvuuGMtU8xoHVR1Z8+W69lm5n3l7LfLM+q9iU3PlF3KyO6NKn9pNjfc8u3UqVPl2iF2euHdeeed+vIv//LDncKztFYM/HRA8/nz5yUdBUNnu207ITL3siJGL68q4fA2i5kv5VE9m15AMYCzSoq9jeBQJdIevQSq8t0OB+NnSWN97OGHH5Z0tAdhltbNQaeet5tvvlmvfe1r1/ogSS984Qv1Uz/1U4fluNyYnsy70j/66KOSjhJXOyG4v2f7d23ar2uboO4qcH4XwWe0dxp/Y5Bvtk/eKGg3u3bUJn5maalGCRTi99hGBnXzXnRChZgcIZu3V73qVWnf7rjjDn3xF3+x7rvvPkk6fP54D8xYnsG9Lkc7w/OzWkPZnBpM4zaaD37nOhyt0Wp+dhHsR0Ih1yrX3+i5V6VOpOAanztcB0wU4mtiopILF5bogxe84AWH31/zmtekdROt0mw0Go3GicBODO/g4ECPP/74mjQV3/J+U3M7E7KOKN1aOqqktCr1V6ybUkuV3DleX0kzI4a3rWoxS9dTJcXO+lXVx3Oztm5SM4wkViYW5o7HMVE40w3t7+8P67569eqatJclAq/GKVNvVGuEyCTkSs1OaTlTnVWsjewp+43XVMmkWU5EpTbMfqvaniXj5lhXKdMyVsBUZVxLkeGxvk0q+itXrmy8f2Jdo2TuRjVO7PNoHeyiWtykdcrUrptUsqO1ms3vpjbzecJ0iNskYedaGaXdq7b6oUYjfmeKtqtXr26tWm2G12g0Go0TgZ0Z3lNPPbXGxOJ3Si3ciobJUKVc2pdqHXe2qeJIGsvalZ3rczKHCl5DCYSS2DYMr9rcNdZjZNJR1T9KgRWDzVgRJVfaDjO7X5T+KglwnudjkpivjTY86u+3mX9uSVOxNLK5eA4TgY8YWOVQU/2enWNs2i4qYpMjSMZcq/pY76it2zCYyjZILQHv720xz/Ph+pHy+7NiPtUWPPH/bG3E49l2SpX9tWpPdmzEmtmPTWVl93RV7shnoHom0i6bremq3CohfSzH11bJ6mN9fmbYhnvt2rVmeI1Go9FoRPQLr9FoNBonAjurNO0a7u9SHiNh+kpV2IhG8ztDHDJKXKnvjFFMXeWAku23xb5SdUW35GxfKn5mdL3qB/tLVUOmyqji2LZRaVC9yx3k4zlWMVy5cmWoppvnec05JjrB+P9qF+fMQYW7SG9ST2XqPh6r9pOT1sM3qnU9Un9V6320L10W8xg/o7s9z93kWJWt82qX9mwfu2qXbF4b1eF0Tjh9+vQwdOjatWtr+1jGtbbJASlbF5tUmsY2zxAe3yZMYFN9EZuccbZ5rrKsXeKNqzbGa7m/aObAFX+X1p+blRNaVk987rRKs9FoNBqNgJ0ZXnQyyKR5B5laArDkGa/Lys0+6UyQGWYrBwwGoI+kim2CySmBVJLwKCCzcnTYxXlhm52BKYXTaYDOM/Gayvjv+YtSOus+ffr0UNI6derU2m7LmRMM4TbFZAWxzvjJpAV0TBm5fHOeMgbkNtpg7jI8PpmDA9dM5VCVMQ33i+33d/c3BuZWjIVOQCO2xt/Y9uiAwrn0WFT1xWNRqzJiopcuXRomGWCf6eDEMZbWtVE8d7SWt9WajO7tbRxSRiE5m8qqHN2qIPasvIqNZv3ic5UOal6zcb1xjBnqlD2rsiD1ZniNRqPRaATsxPCk5e1qSctSbrQfELSLZW9svs0pEVDyGgUuVtJyZAcVK/O5GdMYBXrH/tH2Fc+trhkF0pJ5VfaReC3d+/mZ5SJkaAjnyd+jDddt8jm33377RkmL9py4DqpAVaasisyfNqyYX2/0GeupQjAyJlGFzlDq3CZMpHItj20kg/M5/u5g7hjUzXOr4GTeb7H97qe/k+Fl96DBcrOwo9E9TTjwnGsxsjXeF7TtZkzYx2jL26ZNFVuv/AGkWsNT2XSzNnD8RwHwfM5VTHaUtGBb5hTrq8JUsqQj1gb40+vN93M2Zi6X9+k2aIbXaDQajROBnW14ly9fPkz862S/tttJ64GJFWOIthtLp7Q5UTrbJjCz0ldHCXiTR1+mj/e5VdqcUYofo2K5leQXUUlPmScUPSDJqjJJi21jgml/j7ZYMrGzZ89ulSJKyqWzbRPlZlIsJW6vmSqtl1TbbEaMf1uvvMz+W60NSt6Znclr1t/J8JyUPfZ9k20ys6P6fzN5rpmRjdrH3Bba9CLD41zv7e1t9NJk+zOmz6TRHJ/4rPJYbsvstkkMsc09zbVSebdmbavKqBhnPLfyaM4SOdBzufKVyO7FKll01sbqHvRayTQz2TumbXiNRqPRaATsxPDmedbTTz99uD2HGV5mr/CxKFHxXB6rUm2NvIqqeBRKT5Hhcesievpl8TGUtCs24O8xvqzS85N5ZSnaqnpGdhiOEyXITAqsbHaUDuOWLJy3c+fObfRsY3szD0F6e9GzM0rNHjt60VJypDQf/6+kaHoJx7o9v/zMmCs9HTfZVkaxW1wPWbou2hGZxs1z6G2YsvRuMW1TbHs2joQZJhPIZ+ubjCyDNQORicYypPUx9L3tratuvfXWtXoylhnbxOMZqzXIZqjJyM6tbPdxbCs78zZ2RpZXMbu4zqlB4LiOGB7Xt8eC9rg4dkwNWNn4My1LjPVuhtdoNBqNRsB1xeHZhkdpUFrXuVKKzXTElKgovfjtzmS08X966jB+LHpnWcrjhrNse5REKK1WcTduY2R4bmP2m6Q1r9d4jBIdbTlZO3hu5cGWsStKVi7D4xfr8TqIEvwolurKlSulB2ms2+3zd2sUXF8cJ9uaOF6VPTSuA88/1wHXX5SAfayyU7g9cZzITCmh0ss581wls/OmuFmMG7UbHjdfY83M/ffff6zNsa1kpa7HGpuoufH4uR/+jZs9xzHhPbCNhD6ydVFL4zY961nPOtaWOP8cf97jvF8yexUz7vD3+Jyj1qTSuMT5rxhVFcuZeTNWydFHmgSufY9bpX3J4Gt5b3Lu42+0K2dxn5nncDO8RqPRaDQC+oXXaDQajROBnZ1WLl++vGaoz9Ia0R2YO59HtZRp++23336sPKsljEx9YHWM1TaVMf+RRx5Za6OvdVuZuiqqI9gPUn/WF2k7f6MTBkMApHWVnMckjnVsexZQSxUqHUWyPQndH6poOK/S0Zhn6bSIeZ516dKltfmK6jSvCbfvwQcflHQ0d1bFxWvoPk+nAaoeo/rQ6+u2226TdKSKq0IA4jhQlUgVV+ZMwHGiSs31RBVUldyBTkZxvVmNb1XwQw89JOloHKnajONJVSYD+z1G8d602tDjeOeddx47TtWmtL7n4S233FKqpeZ5STo+UjV7Xdo5xXW7ndnYVsH7dGaL7TA8Ph47jz8doLzOIzalHxulFiO2SRPGMqp0fNJR3zlnVGlmpgOqOelARMcn6WitstwqTEpafzb1jueNRqPRaAA7M7wrV64Mdx62REAJgRJxllyXzI6MLzNgWkq19EoJwdKAXbDjMbJNSyuWYqMkQUcDOuPQoB6vrYIo6ZQTJS1KX2R458+fPzZWmWMFt9GwtJklgqabuceAThhZYuMsvRlxcHCgJ5544nCs6RovSe95z3uOHTNDcRv8aYYi1eEBdMXPkpebDfjTDIVsIZsXg5Kp+xXHwmNZJbQebaHl8mNgeazH/Y1j4nk2s+O4+lomFYj1kdFXO6HHfrEtFy5ckHS0Rs38IiIrGK2fq1evrjlIxDXrufJ94fHicydb83R9pxObv8c15LZS40KNQnxWMWWi2xa1XbGt8Zrq+Ulml6Vb85qtGGxcW3Tu8dqlk1zmaLdtMH48jzucu41VAnxp3WllFzTDazQajcaJwHUxPEoXWeJa6nwp1Zq9SdIdd9whSXr2s58tad0mQPtZBF2umYTUrMASoLTuJk1bh6+J0hv10/4tY3RS7m5PKc39ctuiXcRjStZhKdmfZL/SkSRFl32zYUv87m88p9omyH2IbIfS5eXLl0up6+DgQE899dRhmzzm73znOw/Pede73iVpPVE1w18yV2i33+uANjyvi9gvaip8DZlr7BOlcYawuKxou3H7ydJoD2aQbzzHcH/cDq73eIyaC0rgWboouuZ73ZHtxHb5mM/1b1x/EV7zbtPFixfLtTPPs65evbrW3vjccXkeY9qis0Btj7Pbz7Xi70xTF3+r0uFl7Mn3KueQ6ywLqalCWEYB6B5bzhk1F/GeruaS9WSp03gfVckstkmszzmOYTDcKHpTWrpj5W51VqPRaDQaH+DYmeHF9FCU/qR1rxp66pDVSEcshszO5zCQNUqkvoaSLlmOGUVsiyUss0233QwoSvPsB+1v/sw2vGUybPfDLM39jazX/3NDXbNAs2LXl+m46Z0Vxzz+Hq+xnYeM1v3JApyzjUQJb+LpMbXNNdrwKgmRwfdZWiuyZ5dBLUSWhJZ95O9Reqw2qKw2II5t4XY0MTVSda3rpiev2+r1nSWrdjleQxnTYn2Er6mSpMfrq7RubnO0M/I+euKJJ4Y2mXme12xrkeGRlXMuXU9kM7QP8Z6mx+8oWQYZWBYgzjZ6DFy+74ksQTu/83iWlJ+/sc2jea88YpkCbuRZTmaXMVje83yOk6VKR89Ar6fLly+3l2aj0Wg0GhE7MbxpmnTq1Kk1KSNK6faSMiwR+A1sNhPtVdT5863PFFZRSqcOuJJIoo2j8i4088pSi/l6etZZIuE1kRVUXqi03WVbvDA91MMPPyzpyB6XMTwm7Pa5I49F2jXpycfUWbFtxijFz8HBB60EFgAAIABJREFUgZ588sm12Lo4xtyOxxIc7QVZYmba+9wPjyltorG8Kn2TxyD+7vJG0rF03NZCBpFtyxLbE6/lWLgsrwd6/knrNiiXZ40CvYYj86ItnEw58w70mFP6J2OL9yBjeDclAJ6mac3jO9vUuWJ2nvc4tu4/PSoZl5ulRqtSJ1ITlDFvMi3Xl6WJY/9cBueYcZOx3fSnGCWPdluqeFz2JT7HfW/QW7dqq7TO/qhtyeyZ9Haf57kZXqPRaDQaETszvNOnTx9KDJbWo23IkraZnt/CjHmKHpCWrFye4TKYCNp2uwyWaizNUiqU1uOPLF24Pv8ebXjM5OLfMtuAdJxJuB7aIKjvz3TbZDUeA27tEiVbe7t6jNl2S17Z5quU7DyfbofZonTE0qrMOBEHBwe6ePHi4VhkTIE2LTL+TIqj96Vtm9wO5jnPec6x77GPlkyZnDpLVu7fKP1Teo9s3e1n5hGDNssopXN+Pf6ef3r+xXY7Ds7leUzIMKLE7TF4+9vfLmk9BjKzx9Fmx2TcWQYeSu6nT5/emC2ENsK4HsjsXCft/vE+pQ2XyZ19f3rMow2U9zCfB/RqjX2mRzS9KON6o9c0tQW0i2Xe6PS8pCYrzo/L8b3ttlpr5Hn3eojX+pnLflSbukZ4/vgszO59xkS3l2aj0Wg0GsB1xeFZmmGUvHQkGdjLsNpeIkp4VUQ+42CMTA/PvJTUrUfJnhIc2ZSlmMjw3Ab31VKfr2VsS7YtCGPnWHZkhRwv9+8tb3nLsX5lW/3YI9X2Ps8JJf5oj2NmDY4bM4pI61LZyA5jGwwzOMQ2VFlyKq/TCI//85//fElHY+q5NOuNY+xxqjafzDYlZZwfJXBK/rFObkfEjDiZNEuvQ7fZbcy0HfQKpa2S2TQiM6dt1fPktfTAAw9Iku67777Da6yZoT2d3tVxTJjP8dSpU0MpfZqmNaYY17zvVWYR4XqLntCuz2zZ3tlur8fFrDcyE65JakSybZToO8B54b0nHc07M95w7Yw2BDbIrDKNAjMGuR4/7+j9Hq/12nFb3vrWt0o6GvNMo+D54f3KTWNjvzwm0Zu2bXiNRqPRaAT0C6/RaDQaJwI773j+1FNPrRmI43caShkgbZVMlrCUrv1UF1k1lKXtYtJqqlSjkd003eqgamf16KDBBLlUi47UUm6b1RtUcWWpxdgPj5v7Q7d0qkkjPEZW2WSqE6rK3E+mFsrUydu46u/t7aW7zkd1NdUSVUqsqJphIL7VxlavuI9WwWQqWaajcpme/yy4lunh6PgQxzZL/xbrY3B8XN9cX3Sd95jHe9Dj43VWBdZ7DcV1zrCXu+++W9KRQxeTpUtHO6e7fK9zOoFkW1hFR65Njge8t+IzxOPCnc75Ga+h+/y73/1uSUcOTqOkBQws97hwTWUhNHQMY2hJrIeqX4Zm+TudSaQjNT5DKKiujKp73i8GHdJoaon98Jg4VaDvRa+liGoboMqsIR2NsddTbw/UaDQajQawE8OTFsmO6Zui1G/JxudYYuR2GhkjsURqyZMpsTIHFErUlMYyd+TMLTYez1LguL2WOBjcbWQb3DLAlRuNMtVU/J+G5bvuuuvYtR6ryK7oQOHfLAWazcX+WWqqgkWzMAJKpFmQaMQ0TWvBrlHiZsolMlHXHcfe0rgleKYiYlLpyHLIGJj+Lkt+nDHdeC2TVsdrRm76sR1RWmXKKt8jVXhMbAu3FjIT82e2IafvV0v07o/LZHiRtM5UyNSyhBFMXjHaPNi/c1uvyJ68Jhiy4Loz5y6X43Z5DdGZzWOR3Z9MUs/Ua6PUYkzqwBRgsV9kdLyPXGZMocgUaZElSXlwPJ+9voapDrOE2h4Tr6EqKXf2/KY2x+va921sI0MltmV3UjO8RqPRaJwQ7Mzw9vf3D9/QfmPbfiIdvXX9m/W33BA2SsAMpqRrsUFbn9sjrb/lLRlkG5cyUNZttWRiKSmyULo5M2UZ7TNZQm26llMvnm1dY4mLqYPoMh+laiZ+pm0os91YQq0kK6ZSy+q5du1aKW05pIXuxlmANpOJu86MIVHC5fZTXo+jdE3UBrg+j3Vchz7mueM5dBuPfaTdkqnGMs0C7Sxcd1kaPIOb0bodnLeoHfC97P4x4J223XiN72OOCT/jOUwincGaAaYCjH1mMm9uJeXvcb15nN1XBj0zkXq8lvcFU5hl4Sm0e7E/HL9YjtcmNWMug8/k2GffA55D2qwz5up+sM1ZOILBTZgZMpMlciC7JftlisOIqFFoG16j0Wg0GgHXlTyaW8VnSY+pY6YkmtlSmHrGEoEZUWYzrDaYpfSaJbul3crBtAyel9YT8VbbcWQSvmFmRduQxzHq2DMvxtgvbheT6bh5jpGlPaJdxONGqTMyV87t/v5+KanP86xLly4dzqmlzswD0nZKt4npyOLaYXLtagNif8/SKJG9uiyya2mdnWX2nfi7lHvFxu/UUmRj6HXn+ulhGMENc5lE2J8x+S7b5HXAgGOmw4r/Z+nC4uco6fsoaYG3JaOdJ85Ltca5CW5sI8vheqb9N3ouZt6q8dqM1TJdFq/lVkxS7SnKscj8G8ggeTzb6smg/ZdJOTLbK23i1bMy87Kvkkhv4xORbQxeoRleo9FoNE4ErmsDWEqmWWwWbQ6UJqNERkkr81qMv0dJkZI89fDckj7WTVuW0yYZUVpy+iRKf5W0lHmdWfJmqqJs6x2yMCaeNtyvyA65ZQ43b6XHX1ZuFTMUWS+l/XPnzpUMzxvAMslyXDueS7eLfcvYrH+rtmuil2OEy7f0yPFyPVlaOq7zTR6qsTyuFdrwMhZND1Yyr8h6eR9xrMnw4pwxJtVgWqhowyGLJhv1fGYahejVOrLDxK2nMi9NeklyXLIUVWQgHIPKTiets0F6T2brjcyuYnyZDY+anm1iVDcxymqbqlhutYUVGVg8Vnmf8pk5+o327MxHgRqybdAMr9FoNBonAjt7aY62lJHWJRzGa2QJRJlxgtIZJTpKO9K6JEwpIDIgMgdml7DXWeYFRlsQGWWWZJmbNjLRbbYRKceWenHG2EVk0lcsI5s3SqiOsyJjimyH29xsQtzE08i2T6GUx+2N4jWew4zpxuPZ90qKZF8jq7Xt0ZlHmFScHsfS2JYVka1r/uZyY5ukPOEws794HI1sexiWRyaTtZ32HPeTtv5srkcakYh5nkvpPx4jC2Qy5XhPVAyHGqxsnHi/UMOU2au41RJ9CLJk+Syf9/ZoA1j6S1Sxj9nzm8yRz+hMC0dWyCxN9A6O13MdcB4zzdE23uFEM7xGo9FonAj0C6/RaDQaJwI7O60cHByUu3xLufu3tO5yG1ULNAqTVjN9WOaAQiM7XWGzYF6rFhxganAX43iMSXurfaiiaq0K3qaqJHMeMDxeNM5n11KVxc9MtVDtmcbUbNFATPfgLPjZcPLoKuluLI/OFQxbyZC5uWeIKjmuNzpaZWm0rNKkOprOHtk4VWm0qPLJdoH3mPgcO4IwUFhaD0vgPcB7JVMHcWzoPJWFBjEEiKE1mTNGDP4fhbQcHBys3f+ZAwpVfj4nMzUwmJuqTPYne2Zx7dNBJDrnMeyFTmxZED7bUD0XsrR0TCzONZqZAZjcg2szq8eonklVWETWL1+bOQoZfH5N09Q7njcajUajEbEzw7t69epaSp7s7ZpJRVIeLEgGV0kGI2ZSST6WsKJkzxRbZk3cTiVKZwwwpkRJySdzD2aiWbLFKPnTSaFyZc5YVRVwyrLi73S6qRyE4jiz7l226TAyqZ/SMiXfKJGSedANnawpC+qlg5VZHHexj9ewfBrdI8PbxiEjlh3HsEqkwBRnWb+8fj0m/swSXBt0EqgCqTNnKTJlMruMucStcbaV0o14f7pO3rsMh4r3JR0/qmQLGchMKoaX7dTt8u0kx7IyllY5nFTrI57D+Scrjc9ijhsdTzhHsa3VGIxYIbUN/J6Bz8LRPBHN8BqNRqNxIrBzWIIDiKUj1+zMflSxtExCrALNyd6yYEiywm3e9kxsTXf3bdyDaVMxmB4tO9cMj9uFREmLTDJjU1Juo8zsY5vAoGeXy2TFmW2s2hYmwnaYUXooMgHaj7IgcrfHtocqMW8m4Vf2KdorY5+rjX7dZiZJj+2l/Tqzv/J7tdUTxzGuezNTH2MqPYYtZEyf5Vb3aGxvZf8d9YtMMsM0Tdrb21tjGdlWP0xHt2lNSvUWWOzzNtoLssZ4X9KGz21uaEPM2sQwLzLy0RZj3ADY93iWULsKLeCcxjHheFafcd6qsKLRWPv6qJlpG16j0Wg0GgHXZcMz/H/0YqNOu0rQmtkcKimPZY0CZSsbRGy3bXc+Rs+kkR2mskvwM0uZRe9Pt8PSTayPW3hkGy7GdmWB9ZX0VzGLrHyDAd3S+nyMJC16UmUp37JUV9J6mqbMs5P2qMpukKXtInMceU1WNlum0Ms0GJyHShuRJRzmeDnw3FqK7L60fc+2aTILeu/G8qvxGyVHJ8hCMvYR53xU5v7+/nDcOP8Mus58Cqpg+srbMLafgd6ZxkLK2Qy32CGTjM8BMi3Wx884NpX93/VnHvO0v2ZJMWLZmQ2P9bGN8VlCezKfM5ntkEk4dkEzvEaj0WicCOxsw5PquC5pXXIz/CY3u4mscFMKnJG3F8uoPHdiYmZLEZaALS1bsvLxzJOU+n3Wk225YqnJrM1SebUdTWzTJok603VTMqXuPCvLY+yYxFE6ICPb6HMkpY9iaqTN9jd6xsbfsnHP2jqyj1R2523KY5q1kf20YhbZvUPPQUrN3B5JOlpXTBLOzXBHCYANzn+WwLuytY/GcdN9xHNPnTq1xm6yTZ1H6ceIKlaPjD+L/63YE+cnzouffVwzfu54fuJa4jNwkxYss5OSfXKrn6xf9Cuo1nO2DjYxvehdS89rtjVbQxyLUfwv0Qyv0Wg0GicCOzG8vb093XzzzWsbmMY3LD3CzG6Y3eRYI2D3qBJNZ1tvUCqmTSvTrdu7lMl8LWF5a/ooXTCRNRPLjhhRxQJiJhd+t/RlaYaxLcw+knkSWpKixJVJ4DyHnqUZK6H35EhKt5cmJfCIqt3GtvVItb0sXlsxEV4bJWAeM3vyOh9J2lVCZjLNuHaYLcWMgVujxD4w/o7rm/dR5inLeRqxbKPKqJHZ8GjrHm0e7PN5r2V2HYO2pyxzR2UXG23XxPrItGmTip6RLtdrxvVbo+T5yWxTVRwe74Usho/2Zc5hZFxMfl55FGeMr0r+zmdWZjPmPU8tRJw3bqi8S/xvM7xGo9FonAj0C6/RaDQaJwI7qTSnadLp06fX1GyRTpp6MsiS7q6Z40G1y/JoLy7udlulnbEaUzqi9Favcq+7LJShcn+vAjSz4Gj/xl3amQJIOlJl2YmEKjOqajO39GrvrFGqJwZw02idOQpENejIWWOe5zWVz8gZhk5M2ySsjXVFZCpUzmVlBI9qI4aQWB3FMJLYL59L1VIW9sB2+RqvB6bMy9Yb70GmyqIJIVO/VuaFLKQlU6tn5WdhKZucIiJGwepV+NPIIam6l6oxyEBX+6geZBu9Vrwe6KzCZ0ismwH1TJqfpQusQhr4DH7ooYcOr3H5HItRSjmOBZ9JDIOJ66SaA5pSRrukx6QEm9AMr9FoNBonAjszvFOnTh1KKpmESkmKEo8xcqevPkcu8pQumRDYjijSugMKpQizqkzqZJJWGoJ9PLbHDiiW0nmu22ZJL7alkpJHbteUbin9uf4sHRkT3FbOMrF81jtC5XQjrc83twcaJZal5FntBJ1tTWJU6cJivR47h9V47qxBcJtjAC13UHcZmdOXdHzd0fnBZbl8JyCO9xnd9quwlFFANe/jkZt4Fd4x2l6H87XJYSVqD7Jg6F3S6BFVEPdIC8HfslRi0nHNEpk1E2iPHIF4L1dORbEMrwlqlNwOayWyRAfUIMQk3/F4hpFjWoVqvY3GZBSmVqEZXqPRaDROBHYOPLe0JeUuo5UEssm2E8+hJMLPzPbE9F3cRDRew0TITLlD+1WsO45DBF3M46ay3I6I7sjZprkuzwzV55LZmTVG+x+DlF0/JdgogfkaMjtKsFmft5HovAGsxziT4GibqVKgZfVUW+xQWs8YCvtGF+k4L3Ypd2KA5z73uZKkF7zgBcfaHgOOK1sK1yFtvBHWErhNLt/zH8eRzJEB1rQZbcPMOb6ZVF0lfx+FarD8DNM0HQtbGM3hpvR5WbLj6ly2P7P/VTanLGyAc2d2PkoPRlSanyzQnRodMrsqHVr8jWyd4UrbhANUm/JK60yZz6FRSEuWxm8TmuE1Go1G40Tguhjepq08RhgFj5OdVYwvSsDcyoVt45Y80vo2KZSajFgW+2XJmm1n0G8Eg+KZEDqzhdLDj5Jl5sHK5NjUw4+S+VLqG21lw2ObdPb7+/trCbQjyCrZ3oxJVkHjlc0js1vS85FzazYnHc3ZnXfeKUl69rOfLemI+THYN7aR65rejW5HlrSc207RHjhK/uA++xpu4Jx59hG0UUWb4TbbQ1Vl75I8mmnWIlNg8Hi1qXSmjTJ4H/L3kc2Qzy4jttGMzqkF6d/ANGKxLVVwvMfP9UTNUpXgwAyPZcb6Kq0KfSVGKeaoHcqeD5u0Q9mayDSA7aXZaDQajUbAzl6aURLLNkGtUn0NG1FIIvSAZPyKtO7x5LZYEjGzi9KUf2PaM26JkaXrMiqPQdrLYvlkgYxVjGNFpuVryGCz2B3/T6ZCr7BRuyuvs9hGxneN4K2laHvIbINVSiL+PjpG1pl5sTE+yPPA7VOyVE+MpbPUniX5ZVxnFkcW2xPXKm21/jSL82dkzGYS0Z4T66c9M6a8c/sr29cunnejWEh6O1+6dGko5Z8+fXonmw0Z3jZp6YxqQ9jsHuOzi/dj1PTYDuu4N88z2xbXG7VP1VZW1E6M+ur59vMvaiMYK0qGaWTPh0oTw89NSeRjP7PnA8egN4BtNBqNRgO4ru2BjG2kJUpHGfNjOdkbPB7PvKUsSVmys6RjaT3a8Cw12FuNyUhp+4h1VpIv9fFZZgCeY4nPkniUtKlndxmUJI3YLiYUrmL2sjYyPo56+SyOLbK1ymvLWVbIaiLjqqS6kXcpWUHV54zheU14rbjPZk1uT5SAzeTuv/9+SUdrhVtY2aYnHc2Hz8mS38Z6o5TuNj7wwAOSpHe+853Hvr/jHe849j1eTwa+yT6TXVMlJ87uDbIqlp/dt1ETUzE8J623fSrL1lRlVNlkl2O7YvsZp5jZr2m7G8Uecv5pw888l6nhyeJ84zWZF+omTVnmE1FtXTW6F6u4z+oeHWHkDbzrtmTH+rHVWY1Go9FofIDjuhjeNhHujMwf2QCqTBO0OTBDRSyXUqYlY0vgZlPSEaMi07NUnmXYoNckJTgyrihJ0gvP/aMkHrNzMJbO3y0dMntCRCWZVnFZsXyynCqWLyt/tNmmf682CI7XV9ldRp6W7HvlVRjH2LYueoxSuoy2MDMsl1PZVKNnJ/Nt+jef6zXq9jz22GNrbTSDu++++yQdrWefG9sYcwxKR2um2som81wkw6OmIWMSxjYSPe/XkXZgb29P586dW7OBj/wDKpaZZbEx6AdArU6ca7KlynM9am0uXLhw7FpuPJt5lNMHgZqezCvY8DE/36L3Z7w223C4yoRDL9E4Z7TLVt6Z2TuA75JRFid6OzfD+//bO5sdN44tCSepVsuGZOjCwKzn/R9rdgYGhgxBNiBb6p7FRahDHyOySA9m4eGJDbtJVlZWVVbx/MSJMxgMBoMBMD94g8FgMLgL3BzSTBI/t1BTKUrqf8sVVoiptYhItF2SLShR46EshYOUBNf+2Qndj6slfJnkTeekdRHm3FOymudN+1WohG1pfJsW0uS58fPDkCap+45bRFuFJuq81ktoj4QZ/p8Kz1ubEcrGOU2c+6NotY7PQ7+ilOuV4WqtA4Ux13oJles9CU9rfBKrPPzO0OWHDx/WWvuO9wLJS02YN5XD8LOdjFwKb/m2SRIslQu09XQ6ndabN28uiCGJOOPbOBJxphHQWod6DwlSrovnIAlza3uth9YOzUOauv56ZRiUsoR+TAppenh9rZd7m8eb5i+Q/JPahfEziiLs9sfSjPa+/+0EyAlpDgaDwWBguMnDU/J4R8EnpZtC00L6xWaimVYlBUYdR0SH5BXIWiJ5gQXoa11SieVZ0cJK1ic9FRJ6hCQp1QpMNZbm7MlxWmMk4bBoea1LuTW9suFkIgokAQJCxcMaL9Go6Z3zeu+uJckUifbux8Vx1jou7l3r5XwoOuDNMx3u4Yk0IM9O/zeikHt4FAfXK6MfPket0VZELqRrQPJVs/hTU9zk1ay1l87b0c+F8/m8Hh8fv90fupZpDhy/eW0c31+5DtLzqZVrtPms9XJuda82oou3CVPUiW272vH6vBgNYhQizZXP0XacicjD6ACjXnzu+pwa0S6tj1tEz4nx8AaDwWBwF/hbZQmyHPWL7Z6C/73WpfVE6qqDlgAt7F3RehMsTaKuzNWw1YqwK8xu1O4dNb+Jqwo+x9beRpCVu8s30npiLizJrdGjo9flVhWLrY/KEtbaC063vBRfU+6GOTt6eCkqwBwNpZYS1Vvzdi9srXXR9sg/Z15PFjw9fl6D9FkTIPC5yqJ3L9OPV69NkGCty4a5fPV81q7UpIHe0zXC4ywBSNyB1h4oRR/oFfE4rmnTkwQN0vccuj46h8xNKhLg47LM5pr2XXz28bmahO6b6APXDP/34+Gzi5G6VMpAT24nCccc3i1cgvHwBoPBYHAX+F9Ji6U4Li0PWass3HbQW6LFQ0srNWZl+5TGGFrrxcLSNu/fv19rvVg6ScRVoFdDK3nn5bCZK9ud7ER8W5FtElhurXEoXZVaJrXmsSmmT8vqyMN7fn6uYruOxl5lbk9j8j3u0/fna5XtWFgg7tdDkHdGC/TXX39da73kgz1PwTyc8n+0lpOgQ5q3z5nto/xvzbU1L04eHs8nPbskINGKhlvxss+75YqI0+l0wZZMERiB90vyApoXQY9v5wlfK7qw1qWIOJnKbPnkaKLuzLUnqT5Ggfg8SOxwrpEmQJDOK3kbOyECet5NEs7XR2oMPizNwWAwGAwMN3l4z8/P30kA0Urjd9d6sW5pmewsoiYmnTwv5vXYAiexfPQdWskUnk65QjZiFXZizvQkFKOnFersLFrnzWJNnh8tOba9SYxF1ubRu2psPd/fly9fDpmalLvyvCkt7taUNnl4jSnINeOekK67zjU9O73vxyTWnGqb9L9qq3755Ze11vc5PAqbMy9H1lmaI6Me9JBTbpW5oiYtlnK5XN/XNHmlNc5r4Xk/RkjevHlToxhaN6x99XkzT0Ts2JnNs2sSY/6dxh3gvHxubADNa+jPEkZ6Wn2k/vfIQqv7vaWxbRPSFtL9zlo67i89+xNj2PeX2m0dsZATxsMbDAaDwV3g5gaw5/O5ij07GrsrbUPLhjVVOyFRWcOyKtjaR2O4dcn6FFnrsjKkapHyVcwfcI5JkFWftTqclGdUPqmpQdDbcWYfzzWbQ8r7SG1o2GA0iQXzuJxFufPw/LNU29Tyr0lF4lrQa1K+dq2Xc6zXxtL0daBzS9UUveraqo3QWpfnVv+TsUzP0vej98hcTnnuxjakxa11kGpGk/pPGiuBORZ6Mmn+b9++3YpB+/aJuUe0NkHpPHFdtTrClEe6JYdHD4s1y+lZyZo2em070WWygJkLT+Lh7fryPF4j3M3o2q6OtnmffHau1XPT12A8vMFgMBjcBeYHbzAYDAZ3gZtDmj/88MNFcfkOLbTpoZLWZTm53AQp5XJ3KZScumRTNFjutUKaKeGcksNrXYZj3TWn0CsFp1NPLR0HwwEkPIgGv+u/x4JmhX09pMmSBVKKd9fAqf/XkBp8Gw+N6DyQNMQQma+do3IEgUSltV7O8c8//7zWegkpsuDc59gKnDWWjsE7kGs9KZTJa8YO6F66o3EZXmW4MIXQWwdqigfv+tVp2500l9BEl9nD0T/z8NfR2mFoNJEtdsekcfh3E55uclfcd5oTRZ79OwLFEEhu8vdYDsU5axsnojW5RQrD78KxfAa3MLmPw892pJlW9sL9HQl3T1nCYDAYDAaGmzy8V69erZ9++unbr62siZ0sUJPI2rWbYSdo/vq7h0m5HHl6pOa7VcG2MGwHk8gKtNwotaVtKPLr47C0gcebrJQmo0MhWL8GbK/EZHWSFmMie5fsb3j37t2hB0Cr2a1+CnRTTEDf9Xkfidvu5tPOJUVvU5Jd+5UHpnMsb9HnpeOSZydPkvJ3ifDEtUmZqCR/1mTwSFpKrbNaK5cmw+XvUcqqvZ/G20UHzufzevv27bftJdidIgZNti95JM0b5DXm+vP3eL4YXUnCzJxrk/PyfdJ74rapxITr4Kj0yI9LaLJr6f7ieuM5SKUHR554KtWZwvPBYDAYDA5wc3ugd+/eXciDeT4rNaJcq+fN/DO9x1Y09CDdIpXws6wHWc+pSaDAHCG9tWQt0JKjiK+wa3fS6NopL8jCff1PD5KUd/+7WVipkeoux+rv+7VnMfLj42O1tE6n03r16tW2gJ25HrbCScIDR7km5nZcTo05FZ03lRgkiSd6LyxTYdG3H6tT8Nd6Wcc7T4jSebwnUtRDx8ESk5QjWut7r4DXtIk0OJpcHPOLqQTFj7154yo6ZwNVecw+Dp8/XB8pUsFcHteS5urXlM8qRnFS1Evz5bXjs8qvpY6ZOX0eLz29dMwtV7cryuczStAxpGbc5DFc08CZ4BrydcdoxzXRp2/HdfU3B4PBYDD4B+NmD+/x8fHbL6osSP+Vp1XOPEhqM0M2GVmgtBDcUmFbFlpLZM+t9T3jx0ELxePGzPc0YdlkxdBi1PGQeeWWtvYnq5Dxdp175t7871ZETHkiBz1Uyl+l1h7Cji3l4r8+birm1bWiFZtkhppHwuKhgygZAAARw0lEQVTkxEjTWuX+yAb09a01QQHwnRCAwHwcLe5UmMucKj391BRZUQ8KDPC6J6+IljulzXaC6i2Ckdr5cHzP7xKn07+bB2u+Eorw5rt6DvA+bAXojiaBxSiBP0OYd6fXweedg89Iftfvy8ZaZLu1a1jUHCN53szZ8jhZzJ7yqE1OMjGzuSa5NvX89mc2n5u7tUOMhzcYDAaDu8DN2iwPDw8X8V230mkt0QNKlhZjvWRU0QOSBbvWS72TsyLXerEUklwTRUf1qjFk1ShXsNZlrRyZfNomeRI8F03SKOXU5CnIgiUbTHDPq3kQzOH5NqxXpEeRYu2UPTry8N68eXPBTHTLjazMxgZOtVQEowZsIuuf0TvcsSYpA0bvUGMlb11ozWq1jZ+T5n3Q8/f9aa0wv02rPTUPvuVcCO3e2Amqc/xdHZ7qfzWu7ku/p3U+mlTVLi9/JIic7tfm2QkpZ6g1w2fVrrluYiT6HPksu4aFypxXYqO3dlA7humOI5DGSuORyZ5kxHjPvX79ejy8wWAwGAwcNyutuBWfYsCsg2mxc7dIWQcl0CpPOTyyFQWyplJrksasYtuYtS5VOMh84hh+vKx7YbuWBFpJyZJ3pPYZHJ/x95T3o+d4DdOrNSl1yMMjWzflcun9MX+QrFiyMfk5G2auddmYtSmUJJUHrgMqbaRcUWuima6HwLyr1jkZxjulHc6x5XR8/s1rE9I2vNfoGfk2Oy+TEEtT4+i+VC5vrUsPj55d8gBayy1GEo6aDPtYfCamtcq1w++6t5jqHtN+kzfHZxHXNb/n0DhaX+1ZlSJZ7ZlPL86/wzVCsfS0dlzBajy8wWAwGAwMN+fwPNaeLAb9+ip/0LQ0U+sdoakXJGUAWunCzoql1eBakD6+M+30tyxfWlS0OhLTTtYS833Jsqe1dNTYNqlAcCx63+4VtyalLaaf9n2kluFzpL6nH2NT+xDSHNoa4vs7dnDLqSW9z9aINVnLzeOm55Dyv/TWdL6uqalMOoSOlEdlfVyyyv197juBY/rfu/o4h3/OlkxrvXgEvE+Zw02MRHqiXH/pfmneq/ZLRq6Px/3s8qOtFRKfwbv6Vq4r3utJ25L3J73bFHHifloudHccjKCkfHA610etpb7N4apvDQaDwWDwD8f84A0Gg8HgLnBzSPP5+fkiPJDouolgstZlaMbHkavdkvopgZpClr7NTrCUydwmfuvfaeFCJpdT2YWwIxxw/juRaIe/z5Atx0pCswwfU/aKElq+Hy9O3lHLHx8fLwqbU4iRaGSP9B7DlAwXeWhGRKRGiklhG5ISGl18R3Bo17DdM75NK6ROZCaGg/TKUh0XWCDhpIXuUqiuzX/XWigRkRp4HP/617++faYidBZ183mUUintVeeWUn1rXaYWuJbYzd4/0/y5vlL4shXxt2fY7jy21FASk1BKimTAFu5N4/IeSfdEC2XqePnq4/lnQ1oZDAaDwcBwk4f3/Py8vn79+k2yKElU0RJt5Qj+Pq1kWn2k9aeEeUoSr5VFnuktUaBUslGp4JhUeXoWqQCUCXSSMZLlw/3weGhF7wqd2RZEVtuuWSTJEinBTSr+kaV1Op2+Hbu8C58DE9jXtKZpYuXpOnBbFguzEWvynkgeSOILa2W6Nj1VQePvGoCS9EW5sNR6h2LcLK1JDW/pQfB67jyIJlog7Aqcd1A5FO9x3adrvRBYdF5IoEieKT0qzoX3ZfKE6BVSri1JsbHBcZNB8/Eod9eK5h0tUkbvzI+TRLqd8LO/798lGvFprUtvTWuSwg470uEUng8Gg8FgANzk4T09Pa3ff/99ffjwYa2VY86t4JxWX4r9MrfEnF6yZhj7pUWVLKEmFiyLQZZjKgBtUj6N2uzHwzwZ4+NJ9qr936zDtbpYtMZXfN73Rw+Or0n0m3T3IxHXp6enC2s6iRbwetPzS/vg+qI8HaWYfA7MDdF7b5arbyM0Ly7Nnx6k1rB7lHpPOVXm6pLlzfuSNG56fjvRguaB7coSmqB6+o7w/Py8bQb6+vXri9ZEfi1VhK61zSbPvh+hlV6Qo7ATBqCnqv2mki1elyMZRt+meYytHZbPm9EBlid4lIUci9Qseq38nGuF5u241+o5O0bZUp55cniDwWAwGBTc5OF9/fp1/fbbbxfW/k48Wr/ushiSuC49OVoPtJbcyqEMGPNKOyYk4+I7y5fMzcbKTPkAtkdpBa6JSdqEoHfF2U2wmywtZ8oyV6fvcv/JM7+66PN8/nYudF12OZXW6icVMKfCeB8/5RFoFdO74Zr1Y+Z4tG5TgbOwa5fC/TXZrraG/Lt8ZX6Exb0+bpP6SpZ9y8eRFXyNlF7bp9/z2p/n8PS3jq01n025bnoHZDwmz475f+a6UuslFqWT75C8tN26SmOk80guBBsC754DvO+5v120pXElHPTg6PFxza718iz21m9TeD4YDAaDgeHmHN6nT58u4vtu9fMXnzm9lHOQpUHrtbGkkoxWy50kS4QxbDZRZYPWtS7rbOhJ0qpx7PII/r/PvQmx0sLeWXTMl1ImKNUV8btkzvq5Z37h8+fP25yPs6nS9Wq1N5Riu6aWip+nnFrz2sns83VIb4b5np2Ib7t2bT34Nm2uiU3ZPFfm8GQh72rq2vnzNe35lbV67sjB6M3T09M2h/fq1auL+8S9PnqtjNokdnhjorbrtPNmmONK/AY++1KLJIJrsq235Okzh6p7ms+BXS6/tRRLwuq8pqzdZFs5/6xJiiUmsbYXM3fXlowYD28wGAwGd4Gbc3ifPn2qaiNrXcaYyVpK32vqFLSaUq0d822yiFqTRZ8vvU+xJulZ+H5Y90fLN1lrzGc2KyrliojGhEp1Xy3/lhRE6LHo/Ok4k5Ay8xcfP37c1lWdTqdtC6b3799/ty+KG6ecWsvRNZbrrhaIzNvEKmuMt9Zs10HvsLHzfNujHI6QPLxmPTO/5eCxN4UXx1E7nR1jsR0n5/T09FTzmX4sWldcm/RM0j7pnTdmdDpWXsumAOXzJ1KtIOfGZ8UuOkCvsHl2/hygJ7xTDPLvrXWszuPtfATe4/yf13Otl3yte4OTwxsMBoPBwDA/eIPBYDC4C9wsLeYU1kRrTgSMtV5CZExwr9Xls4Sdu9qS6nT93TWX265tdEwUak7hCCZgGWZN5JUjIdtdF/EWJmJobRdquqa3HeXbhF1Igz36/vjjjy1pxYkHmot3rdZ5kHSdXrVmVFS8mwvDKY0u7t9p4fYUempSckzqJyJXS/zv5NtISmDpzk6YmeLeIgBwXfu2PE+tNCiFeVu/txQiPCIbOU6n0zqfzxdEsRRe1zEq7EWJPCdocJ6tUDqRVjhf7mcnmMy0B0Opfn1auJhzT/f0kQCFnnuJtMLxeF8nMZAmeNAEov29lhri2k3bHAleOMbDGwwGg8Fd4GYP7/n5+cIDSoQJgfTZa9qm8Nd+R8EXSJ+n5ZhIMq0cQXDSCosnGzkmUW+bVyAkcgQtOVqBtLyuEeFtslS+vbyo1iU7ESrcmz5q88JEtluzLD6lRc8x1jruks5i8mSR8nV3LnleGrXdx2gEB36erNRGWklWLsdj4r9FI9JceC9y7jsiT5OCS8Ljrfiec3p8fNzS93WdRYKShyehZt2nfk8nkhD363NL0YFGQErHw5IfeoNNoNnnzfNF0lSSFmPBOZ936Z5uHl6T/1vrsrUUr1eKCDbyn7ZJ5DZKAd6C8fAGg8FgcBe4ycM7n8/rxx9/vBBxTc0n+atOunuShzpCKuptsVu20fA5UzqKNO3UvLFZIK3gfGfhE8kLbdvs2tBw3y1Wv/NgWBKwE0NOedkjD49xfR+XFiCtv2TFHjXG5XGkPAxFpJk/9f0xP9GiAwnMBTXRYl9LvL6tSXFaO96Y179L7y15+s2D2BVhU3hYVnmKYOzE1onT6bQeHh4uro+fc64ZNrelULvPgd5MK8lI0YHmlekZkvJxDYyG+b5bxEdIBfDM3fEapujQETegiRr43LjeWB6TxMpZusDvuoeXxBcmhzcYDAaDgeEmD0+xdFo3blXIImAb+9b0UuP6K3Fk3TgYR05ewZHw7zXg8ciSTEXkySLld9b6PibN2Hmy/ta6ZJyudSkOSwHtnaQQc16cm1tnsprdstt5sQ8PD7VRrx8DvRjmTRPTjvF85mVSo9bGKGYedmcB7zxg7qdZzzyGtD96GYwoJEub9wLzp4mBx3uBIt8p50ZP8Yi16Z8Jnz9/3t7XDw8PVVze58DGwiy2T9BnqQWWH9dOeLzJIe7QZAnT84iePK8DW5D5vI+Y3Yk7wGvXcsepSTaFAfjdlAvluIy6pSbFO05Hw3h4g8FgMLgL3Ozhec1Dyt2RzSiWFBlJHlOnWK9AMWlhJ72ULI+1vvcAmojyLj/WmIK0TBprz8cj4y15B7QUGX+nd+Jej64LX8nKusbD0/vJQqZ3eT6ftx7e69evt/VJ9Ez0XdZYffz48ds2rW6seWCey6X3JOzq8Ggda26tXs7nyPPe8iPpvuJ3dmy5VqtHr0D3QcoZHbWDScfXGLNpnacc1G7tnM/ni3vQ12TLLVGE+JpoDtdmi66k/e1yYM0jIdMzees79qfPeefhHXng/h7XGT08Rg/8M7KruXZ2OTxGkhJTO/ElJoc3GAwGg4HhJg9vrX//0rLdRKrDowoHLZSUc5KyhuLwLZ+Ucg60Jtj6xC17xYOb9ZqsqJY/ZO5ol6+gZc0xfZumkqBtOZYr4HAMeodJ0YPHLi/DFQ7W+v66pTke5fCuyR+0/Ajryda6ZN817yxdW1rl3G+rA2zv+VjJA+J907yNtHaOWtn4fI4ExpvQ8VqX17Tdx34NGB3gNdbxprrWa/Pn7uFp3NQmjN4Z2Zse1WgqImRvpvpM5t2uaR4ssH611eOtdbmOySDeiZg3JueOM9FUeKiSkljPRznjnbfGSMWOJU6Vq11EhBgPbzAYDAZ3gfnBGwwGg8Fd4GZpsT///DP2UxOYmG8Cxp5wbkXpdHdTeLJ1Kafb64WLgtx/uc86niRwzRCGvkvqbZIrakQQFoh7OILnhKFivu/XooXMGMr0EBNDpnqVuHMiutwiG6fvNSFt/5vntCXQ/RjYDZ1STNyHj6PrzTAli+R9XM5tJwTO88Peiiyd2cl2ccxEh+d1aNsmYkULg3Gb3f4YXtztx8OqjXigcih2L/fwGyUFGzU+hWJ5DhlaTyQj3rPtHk9gKJnzSKFT3i98Jh7JpPl3uc78WdxIK03wYDe+0ESk02cMg6bwa5Ouuwbj4Q0Gg8HgLvC3PDxaE6m9SKPCJikeWoRHBaBukcgToXem92XRpUSprBkWp6bSBspPMXlLCz/JNdEqUskGSzjWuixSp7XZhGD9XDSiS/KuWnEqrVAniegc6Dt//fVXJa3Iu6MlnorINc9GD3fszvtal2soze+oeNzfb7TsdE4JtjzhtUskrealk/Lv54rnqUmaCTupvlb24/vT+mpCDumeb/dEwvl8Xo+Pjxf3ciJ5kdBCT9zPjQhZXJMC/0/39JGkXfJqGY3gmEnonv830tSOvKQ5cT3sSFm8f/hsTJ4XsSMFNkFw3pP+eSoFmbKEwWAwGAwMN3t4X79+vfDe3AppNHohtaSgBSDLhNJYavmRLATNhbF1WXGJ6kvLRt9NucIW1xcoQ7WjW7fCXPfwCJaAMNeWciqtJCRJWOlcNym45EmkRo87D+/Lly81f7nWy3nX9aY8nJBEfDlPegFJ0qyVSJAe7tu03N2O6k2RgGZhJ5Hltp7o0ezo7y1Hxe+l/TVR7OSFcD0Lu3ztrsjft0/SYmluvA4U0PbnUaO+t7INX/s8h/wOc8t+rMyhtfzcDm3/jqPC751YtcDvtpxbmlsrNdiVfZG3kZpwJw7CtRgPbzAYDAZ3gdNRO5fvvnw6/fda67/+76Yz+H+A/3x+fv4PvjlrZ3AFZu0M/i7i2iFu+sEbDAaDweCfiglpDgaDweAuMD94g8FgMLgLzA/eYDAYDO4C84M3GAwGg7vA/OANBoPB4C4wP3iDwWAwuAvMD95gMBgM7gLzgzcYDAaDu8D84A0Gg8HgLvA/VBLYIcCZHcQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1852,7 +839,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuUZFdd77+/fs1M98xkZjJ5kbkJCQ8R8RV5KWBQeWR5VQQEWVeuRFSCz6vXK1fwQXDh67oAkSsaFYlRFESNqFweAsYYBRUBeUQIgbzIeyYzPdPdM9M93fv+sc+3avev9qmu6q6qrqr9/azV6/TZdR67Tu1zzv7+fr/92xZCgBBCCDHuTGx3BYQQQohBoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKIKOX3hm9p1mdqOZPWBmJ83sDjP7KzO7op8VFNuHmV1rZsHMvmRmLW3FzF5dfR7MbCopv93Mrt3E+R5eHevKpOzq5BzBzM5Ube8tZnbhJr/XT5jZ8za57w1mdlOH247lPWNmT3e/yUkzu9nMfsHMdrltzcy+x8w+aGZHzGylak9vN7Nvqjn+31XH/R89rvfDXb3r/m7o0fkeUx3vRT063uOr+2GvK99ZnednenGerWJmz6t+31urer13E8d4jpndZGYLZnbczP7VzJ621bpNbbwJYGY/DuCNAP4AwK8DWATwCAD/FcA3A+j6C4mRYQnABQC+CcAH3WffC+AEgD2u/LkAjm/iXPcC+HoAX8h89lQAqwCmATwWwGsAfJ2ZXRZCWOvyPD8B4CYAf7mJOnZEIffMjwP4NwCzAJ4N4NUAHonYLmBmkwDejtge/hDAmwA8BOC/AHgBgA+a2f4QwjwPaGaHEK8PquO8sYf1ZftK+TCAawFck5Rtpu3muL063+d7dLzHI17j38f6Op6uznNnj86zVZ4P4CsB/BNi2+iK6t55HYDfAHA14nvqss0cq4UQwoZ/iBfy+prPJjo5Rq/+AOwY5PlK/kN8EHwJwAcAXOs+eyqAtWqbAGCqT3W4Ond8AD9QlX/5Jo55O4A/3mR9bgBwUwfbje09A+Dp1bV/hit/a1V+oFr/uWr9+TXHeRaAWVf2ymqfd1fLx/X52gQAr92ua9llXV9e1ffQdtWhw3pOJP9/FMB7u9j3UQCWAby8H3Xr1KR5AMB9uQ9C0rs2sysrCfuNlelmoTJj/FbG1PEaM/tYJVcPm9mHzOzJbhuaTp5nZr9nZg8CuL/67NFmdn1lLjplZnea2Tudae0cM/sdM7vbzE6b2WfN7GWdfOFq3zeb2V3VvneZ2R+Z2Y5kmyvM7MOVSWe++s5f5o5zQyXNrzCzT1TbftzMnmRmU2b2y2Z2r5k9ZNGEOJfsSxPMD5vZ66vvumRmf2tmD+/ke/SI6wA838zSHtb3AvhHxJfHOsyZNJN28WQze1v1m99jZr9pZjuT7VpMmm1gD3c62f8JZvbnlcnspJl9rrq+u5JtbgdwMYDvSUxYaV2/umpXR5JjvDLzHZ9Rtd8lM/u0mT3XbVLcPYOo9gDgkWY2A+CnALw7hPAXNdfh/SGEJVf8EgCfQVThXN8WzOwjZvaB6lr+h5mdBvDS6rOfrD4/ambHzOyfzOxZbv8Wk6Y1TX1PMLN/rtrPLWb20g3q8nIAv12t3pW03fMtY9I0s1+1aP5/TPUdlqr78sXV5y+tzrtQfX6xO5+Z2Y+Y2aeqtvKAmV1jZmdtdN1C9xaXlB9EtCq9pd1GZnZh9Sy5t2qn95jZX5vZ/nb7dWTSBPCvAF5iZl8E8K4Qwi0bbP/HAP4MwJsBPBHALwCYA3Blss2FAN6AqCDmALwYwI1m9nUhhE+5470JwHsA/HcAfEC+G8BRAD8E4HB1vG9F5Ze0aOe+CcAuRJVwG6LZ5bfNbEcI4U11la8u2j8jPrReC+CTAM4F8BwAMwBOW/TDvBvAhwB8N4DdAH4RwE1m9jUhhLuTQz4S0az1SwAWAPwfAH9d/U1V1+XLq20eAPAKV6VXAvgEgO+r6vHLAN5vZl8RQlip+x495C8Qf8vvBPAn1UvqBQD+F6J5qlP+CMCfAngeognmasTf8NUd7DtpZkDTpPkqxAfjp5NtLkK8Ttcimlq/ArHtXQqAD53nAvh/AP6jOj8APAgAZvZERAV3K4CfRGybjwLwVa4uj0A0tf0KYtv7KQDvNLPHhBBurbYp6p6puKRaHkM0v+1DbOMdYWZPAvBlAH4mhPB5M/swYsfkZ0IIq50ep8c8DvG+/EVE1f5gVX4xohn0DsRnwnMBvNfMviWE8PcbHPNsxE7k66pjvgzAW8zsP0MIH67Z5y8Rr+8rAHxHUo8jACZr9jEA7wTwO4jPnB8HcJ2ZfQWAbwDw04i/9RsR781vTPZ9A4AfrpYfRLzPfwnAY83s8i2+1NrxVMT7+koze1V13i8C+PUQwu8l270d8Tr+TwB3AzgfwDPRbOt5OpSZj0Z86Ifq7zDig+tZbrsrq89/x5X/LKL/5dE1x59EfPB/DsAbk/KnV8e73m1/sCr/jjZ1/nkApwA8ypX/XlX/WhMcYuNeBfC1bbb5KKJtfiopuwTACoDXJ2U3VGWXJmXfUdX/A+6YfwngtmT94dV2N2O9meApVfn390P2J+e5FsCXqv+vQ2WaAPBCxF7YXmRMjoiq79pMu3iNO/7fArgl832vTMp4fP/3nwAe0abuVrWpFyOaXs929WsxaQK4EcBdcGY2tw1/z0clZedW7eVVJdwzyTmeVdVhL4DvQuzMfbza5rurbZ7dRXt7c/WdL6zWr6qOcUUf23itSRPAR6r6tDWbI3YYpqr2846k/DHV8V+UlL29Kvv6pGwWwDyA39zgPFmTJuJDPiB2FFj2q1XZC107DYiKfy4pf0VVfl7SdtcAvMKd51u6/T3QvUnzdkTrzf2IavpbEH2WAcBV1TaGaPZ8Wbe/d0cmzRB7p18L4HLEt/wnEHs07zOzn8vs8mdu/e2IjeKJLKhMQn9vZkcAnEF8iDwasYfnud6tH0F86/+qmf2gmT0qs88VAP4FwG0WTYdTlenmfYg9g8e2+crPAvBvIYSP5z60aHa8DLFxn2F5COE2REft5W6XW0IIX0zWP1st3+e2+yyAQ1ZJmYQ/D0mPKoTwT4i9fO+Ab0tlpphK/up6hjmuA/AMMzsf0Zz5rhBCt879d7v1TyGqsk54MoAnAHgS4gt3EVHlnscNzGyvmf2amX0B0ZG/gthzNUSlVotFc+1TALwttJrZPJ8PITQCEUIIDyAq84uSshLumfdVdZhHVBJ/j2gF6BqLroIXAfhQaFpH3oH4O7Y1a2badaeWq074XAjhPzPnfJKZvcfMHkB8Ka4AeBryv4XnaEiUXNXevojO74VueE9yngcQFf5NIYTFZBs+j2iteTbiPfM2d01vRPw9UiXYayYQg+C+L4TwByGED4YQfgCxo/mq6nsEAP8O4FVm9qOVYu344B0RQlgNIdwYQvi5EMIzEM1EnwLw6ozd9P6a9QsBwMwuQzQrLQD4fjQfZv+BvCS919UlIMrXjyKalW4xsy+a2Q8lm52L+MOsuL93Vp+f3ebrno34QqljP2KDuDfz2X2IptCUo259uU35FFpNFP56sqzbsPyXYP21yEVD1vEhxO/7k4g3xHVdnhuIEXoppwHsyG2Y4d9DCB8NIfxrCOGdiNGOlyCaNMhbEXvBv4nYPp4A4Eeqz9qbOuJvOoH2vzvx3wOI32XdOQq4Z36kqsPjAOwOIXx7COGO6rO7quXF6IxvR/wNrjezfWa2ryp/H4DnmAvFd1yeqXOvaLnHzexSxECuWUSz39cjXocPYeN2BnTYfnrAagjhhCtbRv3ziOc/t1p+Ceuv6TLi/dru2blVjiCqSx8R/n4AF5kZn63PRYx0/lkAn7bot39lRiysY9M9oRDCPWb2+4j230ch+izIeYh22HQdiLZWIIatngHwvJD4oKqHwLHc6TLn/yKA762+4FcD+FEAbzaz20MI70G8cA8AqBvL87k2X4/+jTqOVnU6P/PZ+cg36K1wXk3ZJ7o8zt8g3pjkdKc7hhDWzOxtiHb/BxAb4LYRQrjfzA6j8q9VfsXnALg6hNAIZTezr+zwkEcRb7RNje3rhDG8Z24JIXy0ZtuPVvX6dgC/W7NNClXcb1V/nhcimrZy/DvWt+te0nIdETtbuxGjTw+z0Mx296kOg+ZItXw6oiXF82CmrFd8Bq0+85Q1AAgh3IfYuX25mT0WMb7hlxEFx1vrdu5I4ZnZBTUfPaZa+mi0F7r1F1UV/ZdqfRbRDNBoTGb2zdiEpA+RT6DZ039ctXxvVb87K2Xg/3zPJ+X9AJ5oZl9dc85FxJvsBalZ0GKk0zcgyu9e8l2WDPw2s6cAOIQ4hqhjQghH3DXwgQ4b8QeIL83Xhu0LIgDQaJMH0bz5diAqY9+7vzKz+2lEZ32Dyqx0E4AXm4uO3EL9cozrPePPsYwYlPFtZvb83DZm9kwzmzWzcxHNqe9CHO/p/+5DG7NmCOGEr2un9dwkjFZuuDPM7HGIgTr9hB3ULbfPDXg/mr7CXDu4Y6MDbIHrEd9Lz3TlzwZwawihpXMXQrg5hPDTiHEFj/Ofp3Sq8D5tZh9ANKnchuik/lbEN+yfhRD8gMdvNbNfR/XiQIzCuy7xe7wXMez4WjN7K6If4ufR7M22xcy+CrGX/A7EiLpJxAfbGUSzAhCji74bwD+a2RsQe6dziDf000IIz2lzijcA+G8APmBmr0U0Qx1EVBAvr278n0f0Sf2tmb0Zscf3GkR/xus6+R5dsAfAX5nZNQDOQTRJfR6JWdHM3gLgJSGEXvov1lH5pTblo+kBTzKzVcSb4WJEpbmKGIGGEMK8mX0EwE+Z2b2IKv2lyCu2mwE8zcy+DfFhejiEcDti1Ok/APiwmb0O0aRzKYCvCSH8WJf1Le2eyfEriEryHRaHfvwNovXjEKJifR6iGfN7EJ9Fbwgh/EOm7n8I4BVmdqnzhW8X70dUE39sZm9E/D6vQf8Hft9cLX/MzP4E8bfr1sqzISGEm83sNwD8bvUi/0fEl+1FiPENbwoh/HPd/pXJ97JqdT9ihPV3VesfCSF8qdruZYiBSk8JIbBjdz1ihPxbLUZp3oH4LL68WqLy278LwJ8gttFVxKCpXQD+bqMv10nkzMsRw4vvQIziWgTwccTonplkuysRewbfWFVoAbGB/xaAXe6YP4b4IDiJOH7nGYjK6IZkm6cjP8D1XMTMDbcgvtUfQnxQPdtttx/xJr4N0f78AOKP9xMdfOdzEU0x91b73lWdc0eyzRWIKusk4ovuXQC+zB3nBriBymhGI/6AK78aScRjst0PA3g9oppZQnzRXuL2vRaVq6ZXf0iiNNtss67OoRlpdW2mXTwyt2/mulyZOT7/1gDcg/jwfGLmur4HcUjCAwD+L6L5KQB4erLdY6p2sFR9ltb1a6tjH6t+188C+N/tfs+a7zy290zdOWrahyFGyn4I0Wy8gtiR+FPElygQH9q3ArCaYzy6Ot/VvWzf1bE3itL8QM1nL66u5SnEDvHzEQONPuvaWS5K89aac20YzYgYAHUPmmr/fNRHaZ7J7H8fgN93ZVdU+z/Vlb+0amdLiPfUZxD94xdsUEdGk+b+XpTZ7slu/32IQz4eRHzRfhzAC5LP5xAjh29GvF/mq+v3gnb1CiHEBtYrLA4YfitiWPOtG2wuNsDi4PLbAPxgCKHOfyFGGN0zQgwOzZYghBCiCPTCE0IIUQQ9NWkKIYQQw4oUnhBCiCLQC08IIUQR6IUnhBCiCLoapDw7Oxv27du38YZtYKqzNOWZL/Pp0DbjZ+Q+PFYnx2i3jf9Mvs/8NZifn8fS0lJLPrtetB0x3hw7dkxtR2yKurbj6eqFt2/fPlx11VWbr1XC5GQzP/LUVKzGzMwMAGBiYmLdNqurMYvV2trGUzDVvYhy5Szjksf3y9w2pXL6dDP95qlTp9Z9NjU1heuuy+eU7mXbEePJNddcky1X2xEbUdd2PDJpCiGEKIK+5V3cCKo2oKnoVlZi3l+v7AjVVW4GCK+8OjFletVWp/Q2Ok5JpL+JrpMQYpSQwhNCCFEE26bwUryS8wEnG8zpl6Wd0vCKrk7ZSa20kqo5/n/mzJnGUtdssNAaQitJ+r+/b2TJEKUjhSeEEKII9MITQghRBENh0vTBKFz68tzQAJp0vCnGB7GkwyDqglX856JJ7loxyIifraysDP2wjdT0txHD9F1Y7+npaQDNITw7d+4EAOzYsaOxLYf5cB+uE/6GdCXkflOaqZeXlwE0h6MsLi725PsIsR1I4QkhhCiCoVB4hD1OH8TSyT692k7kyQ3+5//s/W9n0IpXOlQ1VERe9QAbZ/TJfWeWUQlRAXFJZbSV65CqNdafZVzu2rULALB7924AwOzsbGMfqj+/JHXfE2h+LyYV8EsqvGPHjjX2mZ+f7+br9Yz0vGeddda21EGMFlJ4QgghimCoFJ4YXnI+PJZR3YQQBqLwUjUzNzcHoKl4uKQSovKjUuISWO/XzUG1RtUDNJXOyZMn1y2XlpbWfc5r4vcHWq0NrIevc/pd+T253Lt377ollR7QvAZUdjwu1S3Pnw4nIVTr/vtR2fFznhcA7rnnHgDAkSNHMEgOHz7c+F8KT3SCFJ4QQogikMITHeEj+9L/BzVQnyom7c2zjKqIS+/jyqknKiAfxeiVa5owm0ru+PHj65ZUafQL5nyFXtn5yEvWOa0j609Fxe/O2QNYTuWXHq/Oh0dFRzWai0ati5Ame/bsafx/zjnnAGheG6rCfuF9x0J0ihSeEEKIIpDCEx1BFZT6e3Kqrx9Q8Xg1l9arrk5UAVRgfkqjdB8//pPfNY3m5HGoorjuo0Bz8z36VHaE+/hlenyfQsyrxtRn6Mv4fVjOa8Brk+7LMqo11pV+SB+dmtaF6rPfCo8RomkdhOgEKTwhhBBFIIUnOsKPawOaKoDqY3l5uS9+PB7zxIkT65ZAU12wfl6B+cmFU3+W9/txH6/IUrXGMiqhuqjNVEly27psQDw+65aqaD/OzyvUXOYTr8r8vvzduG+qyHz2lTofXrvJkTuZmmsrUOVecMEFfTm+GF+k8IQQQhSBXnhCCCGKQCZN0RWpSZP/0wS3tra2qbkLN4ImwX6HodO06ZMu5warcxuaCxcWFtatdwP3eeihh9adA2gd0M5hEDy/Hyiebst9/cD3UYdDMoToFik8IYQQRSCFJzrCJ00GmsEJVCRra2sjPbVSbsjCdpAO82CCZF53BrZwmzSARwjRHik8IYQQRSCFJzqCPqI0HL1uYPMw4Qd7dzMB7DBBfxyXW4G/16hei4997GMAgMsuu2ybayL6Rb+GtoxmixdCCCG6RApPdEROvfmkwzMzM32J0iS5geAe1tMnce5nvUaNUVV25JOf/CQAKTzRPaPd8oUQQogOkcITHUFVkNrUvYratWtXT9UDx/fRV5ibeodj5BjFyH0YzTjqakY04USzZ599NoD1VoeNJvMVo0Xf0tL15ahCCCHEkCGFJzqC6irnC+tX1B/HxbEnn+vFM9NImnAZWJ8dRYwHjFBle2B2G2D9pMBC1CGFJ4QQogik8ERHUDGl+SypuOg/W11d7YntnYqRvjsen3VIz8H//SSxYnxYW1vDiRMnGnlEOS1QOiZRCk90ghSeEEKIItALTwghRBHIpCk6glPlcAk0Q/9pepyamurJAG8egyZMmjhp2pybm2tsy2127Nix5fOK4WR1dRXz8/ON6ZNoth6WZN9ie5mZmek4YE4KTwghRBFI4aEZfDGMyY+HBV6jNNyfao9DAiYmJnoStEKF51VlbkJWMf6sra1hcXERhw8fBgAcPXoUAHDo0KHtrJYYErqxKknhCSGEKAIpPEjZbRYqu1Th9ZJdu3b19HhiNDlz5gyOHj3aUHb79+8H0PQdizLh82Z6erpjlSeFJ4QQogik8ERXpOm9/NQ7SuAr+sHy8jJuv/12LC4uAmj6cO+9997GNpdccgkATQNVIlJ4QgghhEMKT3RF6qdj1CTHwE1OTqqHLXrO6dOncdtttzXaG33uaRo5+vM0HrMc0qhtKTwhhBAiQQpPbBn2tPo1aaMQa2trLT7iPXv2bFNtxDCwmahwKTwhhBBFoBeeEEKIIpBJU2wamjC5XFlZkVlT9IWJiYmWwIQjR440/r/00ksHXSWxzfBZ0808nFJ4QgghiqAYhZc6vDndjNRI9/DaAa3X7+TJk+s+F6IXTExMYOfOnY17mEovVXiiXJaWljp+7kjhCSGEKIKxV3jsDaYhrEoWvXmYKDqFvSspPNEvpqamWhRe2hZ5Tyu9XTmcPn268b8UnhBCCJFQjMJbWVnZ5pqMB2mvmr0qlnWT4keITjGzde2K1pqTJ082ytjbn52dHWzlxEghhSeEEKIIxl7hyafUG6ji0shMqmaWSeGJfhBCwNraWkvbStvisWPHAEjhifZI4QkhhCgCvfBEV4QQGn9nzpzBmTNnMDExgYmJCSk80RfW1tawtLTUWF9dXcXq6ipmZmYaf8eOHWuoPCHq0AtPCCFEEeiFJ4QQogjGPmhF9AYO7E2DgGi+TAf7yqTZPdPT0wCa11aJEdYTQsCpU6cwMzMDoDn/4vHjxxvb8BpqAHp/4PUcxrSMfthKO6TwhBBCFIEUnugI9uhShcee9vLy8rbUaVRhb5kh9F6NpIP7FxYWBlexIcXMMD09jVOnTgEAdu7cCWC9Er7vvvsAAPv27QMAnHPOOQOu5XgzzFaHbmY+l8ITQghRBFJ4oiNyCs+XnTlzZqhs+8MC/UtUxPRF7dixY115LikyWVxcBDBcvpNBQYXH68KEB2nP/v777wcAHDx4EACwZ88eAE01KAQghSeEEKIQpPBER3Si8DQ9UBOqOqCp5KjgeN24ToVHxZLuyzIu08jEUpiamsLBgwcbKo5tLPUd09fJbajwHvawhwHozs8jRovV1dWOLR9qBUIIIYpACk+0xftN0p4UI7fY015eXi7Sx5QjVbre5+SjMtslRabao0rkeknTXU1PT+PQoUM4fPgwgOb1SX2dnB6ISu/OO+8E0LzmBw4cACCfXulI4QkhhCgCKTzRFvaic1lA+D+Xp06dkg+vInedCFUGry3Hl/Ha5a6h/x1KYmZmBhdccAE+85nPAMhHqnp/MpdHjx4F0PwN5ubmGvvwf6pnMf5I4QkhhCgCKTyRJR1bBzT9dKla8apDPrzOoKKj744Kg3651D/nVXSJTE9P42EPe1hj/CL9dWnkpc/1yOvF9ljy9RNNpPCEEEIUgV54QgghikAmTZGFZiNvUssFY9DcqdRi3XHy5Ml1S5FncnISBw4cwN69ewEA8/PzANYP56BJ0w/58NNape1z0G2V95SCZLYPKTwhhBBFIIUn1sFeb6ragHzIPLcpaRC02D6YGDoXQMWAFq/0GNji07qlZf0krSOVPOvGlHJicEjhCSGEKAJ1McQ6fO/ZD0/IDUsgStAr+smhQ4cAAA899BCA9W2Rg/m9ovPJtweh6lJS6wfPzWEpu3fvHmhdhBSeEEKIQpDCE+vw0WzsRXei8EpMeyUGxznnnAOgqebStljnD/NTMKVRnPT79QM/8B1oqkz57rYPKTwhhBBFoK6GAND0NVC1+SlYvNJLt9HYOzEI9u3bBwDYtWsXgKYvrB20Onill5b1A5439WtzUlqxfUjhCSGEKAIpPAGgddydV3S5xMb+M/nwRD9hhpLzzjsPAHD33Xc3PvPJoXPj7gYJJ+oVw4UUnhBCiCLQC08IIUQRyKQpADTNk96kSXMlTZ5MgJv+z3008FwMAg5PuP/++1s+823QmzYHPfBcDBd6QgkhhCgCKbyCyQ0xqFN0XE+nsvFDGKamptSDFn2HCi9NzcUpg4hXdrlhAqI89OsLIYQoAim8gqFqA5o9YCo8KjsqOq63G+yrlEliEDC12IEDBxplbKd1FoZxtzzkvp8SQrQihSeEEKII1CUvED/1T1rGJZXc0tLSumWqCj39TMYrhIcTwgLNKYNooaDi4QBwWh/GVfXkfJO8l5kwu2591JmYmOhYwUvhCSGEKAIpvAKhPy5NE0ZFR18IFR3XFxcXAaxXhT6VWDc9LSG2ClOMAcADDzwAoBmtSRXD9sj1dHqgcSKn1ujr5DXwVhyvflPSaOxhZ3p6WgpPCCGESJHCKxD64dKIyzpFx21y0ZlUePLdie3m3HPPBdBst1QtfllSUmdacPjdue4nd04tPUzQPTc3t25f7nP8+PF+V7trpPCEEEIIhxReQXi1trCw0PiM/7OHTMXHcqrCtCflJ9XspqclRC+hP+/ee+8F0JwkltYHtsuSMq14n10n0GrDLEr0efK6cRLbEydO9Kyem8X/tp1Qzq8vhBCiaPTCE0IIUQQyaRYEzZMclkCzZfo/TRV+W5o6UvMBTQo0ae7YsUMmTbGtXHTRRQCa7XgzZq+SYQCLN/3yOrZLPDFoGGAzOTmpoBUhhBAiRQqvABiIwiV7v6nC42dUdtzGDy5PB6nyMyk8MSzs27cPQFOJcPC1Ept3R13wSjoB9LDQTSCSFJ4QQogiULdnjGFvjGqNg8r9EIS0jEMW2EOmTZ8DdtPUTByMWlKotxhu2Bap7NhelRxha6TWoGEhHTDfaVJwPamEEEIUgRTeGMNeGZWej85MB4/6QelUeD5KM/WF8H9+Ni7TjYjRhwPP2UbHNWl0vxnmezp9NknhCSGEEAlSeGOIV3ZevfHzNCG0V3KMzuKS0Zep3Zy9aHLq1KmWqE4htgOO0RLjC1Xd8vJyx88dKTwhhBBFIIU3JqQ9nI0UHlVaTuHRd0dlx14U11P82Kbl5eWObelCCDFopPCEEEIUgV54QgghikAmzTEhHWJAs6Rf0uxJk2YackzzJssYpEITJfdNTZbepLm6uiqTphBiaJHCE0IIUQRSeCNObqofllHJMeCE67mB4izjvn6mYw0uF0KMOlJ4QgghikAKb0Sh4mIC6HTaDp8WzPvyctD35n14JDftDxWj/HZCiFFACk8IIUQRSOGNKD5NWJryyw8e92l36sqBps/OR2dyeqA0MtP7Bs1Mak8IMbR5vCMfAAAUgUlEQVRI4QkhhCgCKbwRw0dl5vxyVGVewbVb38hnR+WXTvZKfx/r4MflCSHEMCGFJ4QQogjUJR8RqMaopnw0ZbvpMTrxq/E4qYIDWifQTI/lE0sr04oQYpiRwhNCCFEEeuEJIYQoApk0RwQOQ/BDCrwJMi3jkuZIb7Zkee4zmiY7GYAuM6YQop+kz6qtpDeUwhNCCFEEUnhDjk8EnZumx+MVHdcZgEIVl6q1uuOxnMt0gPuOHTvWHUdBK0KIfpCqOj91WTdI4QkhhCgCKbwhpW6YQc5nV1fup/jx6cHSgeL+fNzXD2KnDzHH5ORk1scnhBC9QgpPCCGE2ADr5i1pZg8CuKN/1RFjwMUhhHN8odqO6AC1HbFZsm3H09ULTwghhBhVZNIUQghRBHrhCSGEKAK98IQQQhSBXnhCCCGKoKtxeLOzs2Hfvn0t5cwGAgDz8/PrPvNZPvx6WuZzQGpM1+hx7NgxLC0ttfxwk5OTYXp6upExgUtmawGAvXv3cttBVFUMGXVtp+65I9rjAxJ91qTcdnXbbHTsbsg9130u327fAXVtx9PVC2/fvn246qqrWspvuummxv833ngjAGBmZgYAsH//fgDAueee2zhGugSaDzoud+3aBQDYuXNnN9UTQ8A111yTLZ+amsKFF16II0eOAGgmw3784x/f2Obyyy8H0BwgL8qiru3UPXdEdzBpBNMDcm7NNJmET07PjilfcD4RRZqwwiev8Ov+ZQY0O7e85+fm5gA0O8J8F2xEXdvxyKQphBCiCHqSWuz48eON/9lroMLzU9H4xMa5Mpkyx48QApaXl1uSYLNHB0jZCdFP6Eaiasu5DurMnV6teeWXbrORWbRd0vrccXuJFJ4QQogi6InCW1paainzE4jWKb30M7+tGB9CCFhZWWnxEchPK8Rg4bO3bpJnoPUZXKe40ml7vN+v7rzpsX0dfGLodhNdbwa9WYQQQhSBXnhCCCGKYEsmTUrX3Bxp3oTZbhyeD1eVSXP8oEnTO7b1WwsxWHLzYXr4TPfPeN6/HHvNILR0G78tt+E+qTurrg79ei7oaSOEEKIItqTwOAQhB9/QXtnlgla8M1NTFo0fIQScOXOm0WPkEITdu3dvZ7WEEBm8CkwzIgHAnj17AKy37lHJ1Q1e5/sizczFffwzv1/WPik8IYQQRbAlhce3bxpazrBS9gzYk2+XIy2XpkaMH6urqy09OSk8IUaX1AfXzieYkg5jO3r0KIBWn2G/3gVSeEIIIYqgJwPPUzsrU4p5GzDLqfhyqcVyEZxivGBbYTvQwHMhymJ2draljEqv31Y+KTwhhBBFsCUpRdXGJdCM5mHP3W+Ti9Jkb99HAonxwswa6p2+O819J0S5eLW3uLgIoH8TCEjhCSGEKIItKTxG3HEyT6A5PoPTvnCdPXpO/MrJXoHOJ/kTo42ZNXpuVPVppgYhxPjByEs/NRjQOgbbT2HUa6TwhBBCFIFeeEIIIYpgSybNBx98EABw4sSJRhlNmTRZcslyPxO6KAMzw+TkZMNkwXahQCUhxhs/113OjUEzpx/W1m7Ovs2gt44QQogi2JLCW1hYALDewcggFS45PMGnFksdl2ky0dw2XPp0ZWJ0MDPMzMw0fsODBw8CyA9CFUKMD3ye05qTs+r46YZyKSh7UpeeHk0IIYQYUrak8Pwg8/R/9uT9RLB+AkGgaaflPhymwH00XdDoY2bYsWNH4/d/xCMesc01EkIMC179KXm0EEIIsQW2pPC8nw5o9bPRBsvB6bTR5gYW8u3Oz3wasn6lmxH9h1GaVOuHDh3a5hoJIYaVfkXxS+EJIYQogi0pPE7ZnkbaUdlxPAVVGd/YfqI/oKkKfbQmfXlUkIrOHF2YOPr8888HoKTRYuukFh/5+UUnSOEJIYQogi0pPCqwNBE0FZwfe0F8RCbQVG7s9TPBtLJwjA+M0uT4OyG2ilSd6BYpPCGEEEWwJYV35513Alg/vQ/9elRtXPpxFWlkJ/dnvk0xfkxOTmLPnj36jUVfoEWJzxVGg3cy/RQtST6GQIwfUnhCCCGKQC88IYQQRdCT1GKpmYpTBdFMSZMmhyEwWCUNSJGZa/yZmJjA3NxcIyBJiK2SDkvwQ5j4nPEmTQ6XApoBdjJlloMUnhBCiCLYksJjAuC77rqrUUYlx5Bh9rDYmyLpwGOfSkyMH5we6KyzztruqogxIR2WwNSFVH11QxYYVCdGA/6uaZCjJ5emsg4pPCGEEEWwJYVHlpaWWv7fvXs3gNYeF9fTt/Lx48cBNP19TFXWrwSiYvBMTExg586dmvBV9AU+T+iP66bXL4YX/o6pL3YrKSb1RhFCCFEEPVF4qX2VNtdU9QHNqCn66XK2dCo6vs2VWmx8mJqawtlnn73d1RBjTicDzcXoQMtgGknrFV43lkApPCGEEEXQE4W3uLjY+N+Pu2NKMSo7Kr10DI3/TNMAjR/T09O44IILtrsaQogRwCv1dJ3/+0nGO0EKTwghRBH0PEqT8K1LhUc7q58YNv2MSm9Q0Zk+clT0F42zFEJ0gp9sIF33n3WDFJ4QQogi0AtPCCFEEfTEpHngwIHG/1/4whdayoCm+ZBmrTQwhSbMdBb0fsKhEzzfoM4rhBCiHr4n+E5g8GOamnIrrhEpPCGEEEXQE2mTm/KFoaM+SMUHqACtg9L7QZpMlv9L2QkhxPDgk37nAlTqEoN3ghSeEEKIIuiJxEn9cVR0fpogvqn9MAVgMOHqaa9AKcvEuJEOrdlKD1iI7YTvBaYSy1nj+G7ZTIISKTwhhBBF0BOFx6mAgKZ68oPHfbRNGnWTSzfWazTVkBhn0vatqXFEr/GWOq6n1gQfp+Gf57lEH/64/l1Ai2H6vtjKe0JvASGEEEXQE4WXvnH3798PoPlG5tve21vTnoFPMC2E6I5U1fE+ktITvYLPeLatnJ/YR1TWKbycKvQR8zwPj5lLRbkZpPCEEEIUQU8U3sLCQuN/2lyZzcRHZ/qegv9fCLE1qOx8b3wrSXfF+EDrWyfjkOsS7Of8aBs9x7tRZjy+9wsCW5s+TgpPCCFEEeiFJ4QQogh6YtKcm5tr/H/33XcDaDVl0szClGM0eQJNiaqhA0L0Dt5zuq9ECk2ZuSQgHpoUBz13qA+82ooZM0V3ghBCiCLo+bCEs88+e91nPsVYDvVEN8b3tIToFAWriBzthgl4OhlEvhnqVKafTq5Xif71hhFCCFEEPZ8f56yzzgLQ9NUtLS0BaO0JSM11h5Sd6BQfys10fwxHX15e3p6K9Qh+LynXzcHrxnaQqqfc9G1Aa2rIXPqwboYw+PPVlff6PaG3jhBCiCLoucJjNA1TjPENnUZlAut7Z+qpjT+rq6uYn59vWABE//C9dO//YG99VFOPydqxOXzifiq8VEXVKSqfxIDH2MwA9Nxk3DxOJ5Gj7Y63EVJ4QgghiqDnCo/s3Llz3ZLpx3L+A/XYxp+1tTWcOHFCCm8A+HGtufRMo0zOh6dnyMZQldHathl1RmsBlzkrwVZSRW6mjXYTKToed4AQQgixAX1TeJ50kljRO0ZlfN7a2hpOnjw58IwNpZBmovBZKfy1Hpfpg1LfJL+L4gFa8fecn6Sb65th1BL/S+EJIYQogoEpPNFb6sbJDCtra2uNMZli83h/HFVOzvdRl72CvpxRYWJiAjMzMw3/P1VcqmT5Xfndhv1+GCRe2ZWMFJ4QQogi0AtPCCFEEcik2SO8qalfIdM0ZXJm+ZzphucepkCWEAJWVlYUtLJF6sK2c4N5fduguW/UAjvMrNHegdbEwik08dL8yRSHw4RP9Sbz6+CQwhNCCFEEUng9oq5XneJTPbGnzXKffi0HB/L7Y6a9dvZq/eS7242Z4fTp0wCAXbt2bXNtRhP/W3I9VUBe4XOd137UCCFgdXW1oYzYvlMrgR+K4ZXwMCk93rNc8ncZlvt0nJHCE0IIUQRSeANgoxByrs/OzraU0c7vQ8r9sXK+HR9+Pgy+vaNHjwKQwus1acq+UZ/+pw7vs0vXfTo1fz9w21TpbZei4vAcWmvGJRHAKCCFJ4QQogik8AZIXXRcrlfqt/VKzy9zkzhyyZ5jJ5GR/VR/ZoYTJ0707fhiPDEzTExMtLTrtD1TJbGMPk1vXclFe9KHNmhl3C6Js+gPUnhCCCGKQApvALD3Wee7I6kNv07JUfnRF5Gz+7PHyCV7t37SxtzYrX5hZpienm7UfzMTPW4XuQhYXtNRS547irDtUJ3lLCVe4Xk1yN8rVVN1lo9BK71hGi877gz/00YIIYToAVJ4PcKruJx/gT05buPH7qU9vY3G0NUpPqAZseazmvgsMGkd+519g34Yfp/5+XkAwP79+/t63q3g1TXQ9AHJ77J95Ca09fedj2LOtXkf+czlZhSeP78iLocTKTwhhBBFoBeeEEKIIpBJs0d4s2Sa6ijnMM/tkzO3kDqTY26OM26bDlVIj58zuw7CBJOaNBcXFwEMt0mT10eBKdtLCKGRXgxoDthO7wm2af5WPtVYLrUY9+G2HJ6QSwDv8S4Mpj1jHXk/DlNKMyGFJ4QQohCk8HpMTnH5Xmed0kpVFrelA52DVOtCmHMBLz61WC7R9KDgFC/8HgsLCwDWJzTWjMwiBwOe2J7rhvkAzfum3TbpcYFWC0zdfZILRPPnU9DKcCOFJ4QQogik8HpMbpog2vH9xJXez5BTaX6Atvf35RJC+zr4FGNkkL3QiYkJzMzMNBQde+snT55sbCOFJ3LQOsD7yPvrgNaptrw1hes5X7dXZ+l5gfzwFFpe6lSnfHfDiRSeEEKIIpDCGwB1U/1Q7bRLmeQjyfyA9NwA6DoVuJ1pvCYmJjA7O9v4zuwBp8mk9+7d29hWCDI5OYndu3c3/L5pOeE9xDJaC+oiMdP/fZq4bpIKeEuMGG70ZBFCCFEEUngDIO1VAq32/Xb2fk4K6yPH2Av1kZhAq8LrdExfP6Efht/n+PHjAJqTYQJNvwjHWQlBJicnG23Hj8cDWiOeqei88ktVoR8z6yMux3Ui3ZKRwhNCCFEEUnhDTqqAUnbt2gWg2RvNKT0yLImOJyYmWnraaY+bPhopvCY+OtcnBveRhkBrVPCoE0LA6dOnWyIhU1+v99lxnaowPRbhtePYUPryeI3TCGIxHkjhCSGEKAIpvBGFvU8qvXRMnfdn1PnyBomZYWpqqqXnnfovOWXQwYMHB1/BISCX45T4rCAlRQWurq5iYWEBe/bsAdA6xi4to3WA7Yv3R258LP+nFYVtk/cWFaWypowPUnhCCCGKQC88IYQQRSCT5ojip6xJ170JhmYwPzxikJgZpqenG3XjMjXN0URF0+ZZZ5014FpuLzmTszdd1gUnjbPZLYSA5eXllsCddNjA7t27AbSaMrnMpeDjNZubmwPQNG0yiIXr43JtfdKKuiTz6Wd8rvjgn1FFCk8IIUQRSOGNKD4MO8WnFGs3ZGGQMIE00OxFp/WnEi018W4uSbGnxMHQIQSsrKy0BGHl2jUVCdsS21sugTrbGdULlR6DVhgAs52WkV7C7+utLLmE2myDfM7kJqkeRaTwhBBCFIEU3ojBHitpl2g5F4q93fjpW1IfFXvlQqSEENa1YbbrtO37+8CnCaNSSdsblRv9fFR6TGK+uLgIoJkQYZjuo81Qd3+lqs2raF6bUVd2RApPCCFEEahLPSL4qEyfWirHMPZIfaRd2jP3vkf6HPxEuaIszAxm1vD70reWpqCrux98mjoqFgAtkxFT4bHcR3z66YlGDZ+aLTdt2LgouTqk8IQQQhSBFN6I4XtguYi+3Bi3YcFPyJl+H35GZSeFJ1KovLhM24WPSGbb8YmmUz8W1R8jXxmlSSXpx+eNusIjvOe81agEpPCEEEIUgRTeEJCzm1O5+XFFPhotNz6Gvdxhnh6m3bRG/GyY6y8GRwihMRYPaCquVK1RldHvRsVH9cby3JRCPhsL9/FRmtweGJ+xeaUhhSeEEKII9MITQghRBDJpDgCaUWiq8/PTtQsu8aHE3oTJZZpyatRNgSU600V71tbWGm3cm/mBZgAKTZu5tFnA+nvDz47ObX0ias7DR1MqABw9ehRAuWnwRhUpPCGEEEUghddjvJpL//fBKVR27QZ7+n39Pn6Q9ihTNzBWlA1Ti/m2n943VGO8D5gAmqqNy3ap+Nj+qBY5PVXuHuNxTpw4se58arPDjRSeEEKIIpDC6zE51eYHv9b54XKTobY7LjD608X4ZNhC1MH7hm0+lyaMSotDCbitH3IAtKo9+gTp02MS6Rx+mJBXfGI4kcITQghRBFJ4PSbnw/O9QG/n91GbKT6S009kOYwJoruhnf+ynb9FlItXekAzOnN+fh5AU6Wx3KcaA1qjgana/OSn9OWl2/t71rdjKb3hRE8UIYQQRSCF1yN8bzGnXKjSchNYdgp7qooGE6WTpvdiZKX35XHsHNOEMZozZSN/OZNIp/5mP7my98N7ZSmGAyk8IYQQRSCFt0V875CqrV1CaMLeoF/m9h8Xn50QvSK9X6ioOGUQ16nw6FNL92GUp/ete9VG315qxaFfz2/rM7w89NBDjX10724/UnhCCCGKQC88IYQQRSCT5hbZikmT67n56/yccDKHCLGe9H7h/cGhClwyiIWmzdz8i3XDhRikkruXGSRz4MCBdXXxrof0mMeOHVv3mRg8UnhCCCGKQApvi7D354clpD27jdSaH66Q/j/qU/0IMQio3PwwAAavMPAkvfd471LJeeuMV37pPe2nFmIaMr9tTs1J6W0fUnhCCCGKQAqvR/jeWqr46hRdTtkRKTshOscnZvfJorlM/XF+sLj32fGYfuLZdB/e2xwOwUHqVJztJmbmJLJKIjE4pPCEEEIUgXWjJMzsQQB39K86Ygy4OIRwji9U2xEdoLYjNku27Xi6euEJIYQQo4pMmkIIIYpALzwhhBBFoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKAK98IQQQhSBXnhCCCGK4P8DudM0CwfANWAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmUZFld57+/3Koqs/au6rWGpptFRNxaNkXtVhE4joqAIGdkpAeVxnV0HBHcWA4uMx5lkBFtN9pWlEVFVIZFwLZtBRUBWZqmWXqju7qrq7oqqyqzqjIr884f930jbv7ivsiIzIjIiLjfzzl5Xr4bb7nx4r737vf3+93ftRAChBBCiHFnYqsrIIQQQgwCvfCEEEIUgV54QgghikAvPCGEEEWgF54QQogi0AtPCCFEEXT8wjOz7zKzm83siJmdMbO7zOyvzOwZ/ayg2DrM7AYzC2b2RTNraStm9orq82BmU0n5nWZ2wwbO9/DqWNcmZa9MzhHM7HzV9v7AzC7b4Pf6CTN79gb3vcnMbulw27G8Z8zsGvebnDGzW83sF81sh9vWzOx7zez9ZnbMzJar9vRmM/ummuP/XXXc/97jej/c1bvu76Yene8x1fGe36PjPb66H3a78u3VeV7Wi/NsFjN7dvX7fq6q17u72Pf5ZvZ2M7u7ale3mdmrzWyuF3WbWn8TwMx+HMDrAPwhgF8DsADgEQD+M4BvBtDxFxIjxyKASwB8E4D3u8++D8ApALtc+bMAnNzAuQ4D+FoAn8989vUAVgBMA3gsgFcB+BozuyqEsNrleX4CwC0A/nIDdeyIQu6ZHwfwbwBmATwdwCsAPBKxXcDMJgG8GbE9/BGA1wN4CMB/AvBcAO83s30hhHke0MwOIV4fVMd5XQ/ry/aV8kEANwC4PinbSNvNcWd1vs/26HiPR7zGv4+1dTxXnefuHp1nszwHwJcD+CfEttENPwPgtmp5GMDXIH7nq83smrDZgeMhhHX/EC/k22s+m+jkGL36A7BtkOcr+Q/xQfBFAO8DcIP77OsBrFbbBABTfarDK3PHB/ADVfmXbuCYdwL4kw3W5yYAt3Sw3djeMwCuqa79U135G6vy/dX6z1frz6k5ztMAzLqyl1f7vLNaPq7P1yYAeM1WXcsu6/qSqr6HtqoOHdZzIvn/wwDe3cW+BzNlL66+99dttm6dmjT3A7g/90FIetdmdm0lYb+xMt2crswYv5UxdbzKzD5iZifN7KiZfcDMnuy2oenk2Wb2e2b2IIAHqs8eXUnfI2Z2tpLAb3OmtYNm9jtmdq+Znavk8Ys7+cLVvm8ws3uqfe8xsz82s23JNs8wsw9W0nu++s5f4o5zk5ndUm37sWrbj5rZk8xsysx+2cwOm9lDFk2Ic8m+NMH8sJn9RvVdF83sb83s4Z18jx5xI4DnmFnaW/s+AP+I+PJYgzmTZtIunmxmb6p+8/vM7DfNbHuyXYtJsw3s4U4n+z/BzP68MpmdMbPPVNd3R7LNnQAuB/C9iQkrretXVu3qWHKMl2e+41Or9rtoZp80s2e5TYq7ZxDVHgA80sxmAPwUgHeGEP6i5jq8N4Sw6IpfCOBTiCqc61uCmX3IzN5XXcv/MLNzAF5UffaT1efHzeyEmf2TmT3N7d9i0rSmqe8JZvbPVfu53cxetE5dXgLgt6vVe5K2e7FlTJpm9qsWzf+Pqb7DYnVfvqD6/EXVeU9Xn1/uzmdm9iNm9omqrRwxs+vNbM961y10b3FJ930wU8x21XBhmNll1bPkcNVO7zOzvzazfe2O35FJE8C/AnihmX0BwDtCCLevs/2fAHgrgDcAeCKAXwQwB+DaZJvLALwWUUHMAXgBgJvN7GtCCJ9wx3s9gHcB+K8A+IB8J4DjAH4IwNHqeN+Gyi9p0c59C4AdiCrhDkSzy2+b2bYQwuvrKl9dtH9GfGi9BsDHAVwI4JkAZgCcs+iHeSeADwD4HgA7AbwawC1m9lUhhHuTQz4S0az1SwBOA/jfAP66+puqrsuXVtscAfBSV6WXA/gYgP9W1eOXAbzXzL4shLBc9z16yF8g/pbfBeBPq5fUcwH8T0TzVKf8MYA/A/BsRBPMKxF/w1d0sO+kmQFNk+bPIj4YP5ls8zDE63QDoqn1yxDb3pUA+NB5FoD/B+A/qvMDwIMAYGZPRFRwnwPwk4ht81EAvsLV5RGIprZfQWx7PwXgbWb2mBDC56ptirpnKq6olicQzW97Edt4R5jZkwB8CYCXhRA+a2YfROyYvCyEsNLpcXrM4xDvy1cjqnY+kC9HNIPehfhMeBaAd5vZt4QQ/n6dY16A2In89eqYLwbwB2b26RDCB2v2+UvE6/tSAN+Z1OMYgMmafQzA2wD8DuIz58cB3GhmXwbg6wD8NOJv/TrEe/Mbk31fC+CHq+X7Ee/zXwLwWDO7ejMvtQ1wdbX8dFL2ZsTr+D8A3AvgYgDfimZbz9OhzHw04kM/VH9HER9cT3PbXVt9/juu/OcQ/S+Prjn+JOKD/zMAXpeUX1Md7+1u+wNV+Xe2qfMvADgL4FGu/Peq+tea4BAb9wqAr26zzYcRbfNTSdkVAJYB/EZSdlNVdmVS9p1V/d/njvmXAO5I1h9ebXcr1poJnlKVf/9mJf46v/sNAL5Y/X8jKtMEgOch+vZ2I2NyRFR9N2Taxavc8f8WwO2Z73ttUsbj+79PA3hEm7pb1aZegGh6vcDVr8WkCeBmAPfAmdncNvw9H5WUXVi1l58t4Z5JzvG0qg67AXw3Ymfuo9U231Nt8/Qu2tsbqu98WbV+XXWMZ/SxjdeaNAF8qKpPW7M5Yodhqmo/b0nKH1Md//lJ2Zursq9NymYBzAP4zXXOkzVpIj7kA2JHgWW/WpU9z7XTgKj455Lyl1blFyVtdxXAS915vqXb3wNdmjQz+1+O6Pf9m6TMACwBeHG3x+vIpBli7/SrEd+0v4TYi34WgPeY2c9ndnmrW39z1SieyILKJPT3ZnYMwHnEh8ijEXt4nre79WMAvgDgV83sB83sUZl9ngHgXwDcYdF0OFWZbt6D2DN4bJuv/DQA/xZC+GjuQ4tmx6sQG/d5locQ7kB01F7tdrk9hPCFZP22avket91tAA5ZJWUS/jwkPaoQwj8h9vK9A74tlZliKvmr6xnmuBHAU83sYkRz5jtCCN0699/p1j+BqMo64ckAngDgSYgv3AVElXsRNzCz3Wb2v8zs84iO/GXEnqshKrVaLJprnwLgTaHVzOb5bAihEYgQQjiCqMwflpSVcM+8p6rDPKKS+HtEK0DXWHQVPB/AB0LTOvIWxN+xrVkz0647tVx1wmdCCJ/2hRZdEu8ysyOIL8VlAN+A/G/hOR4SJVe1ty+g83uhG96VnOcIosK/JYSwkGzD5xGtNU9HvGfe5K7pzYi/R6oE+0ZlPv1rxI7UD7A8xLfevwP4WTP70UqxdkTHwxJCCCshhJtDCD8fQngqopnoEwBekbGbPlCzfln1Ra5CNCudBvD9aD7M/gN5SXrY1SUgytcPI5qVbjezL5jZDyWbXYj4wyy7v7dVn1/Q5utegPhCqWMfYoM4nPnsfkRTaMpxt77UpnwKrSYKfz1Z1m1Y/gux9lrkoiHr+ADi9/1JxBvixi7PDcSeWso5ANtyG2b49xDCh0MI/xpCeBtitOMViCYN8kbEXvBvIraPJwD4keqz9qaO+JtOoP3vTvz3AOJ3WXOOAu6ZH6nq8DgAO0MI3xFCuKv67J5qeTk64zsQf4O3m9leM9tblb8HwDPNheI7rs7UuVe03ONmdiViINcsotnvaxGvwwewfjsDOmw/PWAlhHDKlS2h/nnE819YLb+Itdd0CfF+bffs7AmVqHgngEsRrSL+/ngWYqTzzwH4pEW//cszYmENG+4JhRDuM7PfR7T/PgrRZ0EuQvSvpOtAtLUCMWz1PIBnh8QHVT0ETuROlzn/FwB8X/UFvxLAjwJ4g5ndGUJ4F2KP9giAurE8n2nz9ejfqON4VaeLM59djHyD3gwX1ZR9rMvj/A3ijUnOdbpjCGHVzN6EaPc/AuC9XZ67p4QQHjCzo6j8a5Vf8ZkAXhlCaISym9mXd3jI44hmnA2N7euEMbxnbg8hfLhm2w9X9foOAL9bs00KVdxvVX+e5yGG4+f4d6xt172k5ToidrZ2IkafHmWhme3sUx0GzbFqeQ2iJcWTCyzpGZXafwfi0IZvCiHc5rcJIdyP2Ll9iZk9FjG+4ZcRBccb647dkcIzs0tqPnpMtfTRaM9z689HfJj8S7U+i2gGaDQmM/tmbEDSh8jH0OzpP65avruq392VMvB/vueT8l4ATzSzr6w55wLiTfbc1CxoMdLp6xD9PL3kuy0Z+G1mTwFwCHEMUceEEI65a+ADHdbjDxFfmq8JWxdEAKDRJg+gefNtQ1TGvnd/bWb3c4jO+gaVWekWAC8wFx25ifrlGNd7xp9jCTEo49vN7Dm5bczsW81s1swuRDSnvgNxvKf/ux9tzJohhFO+rp3Wc4MwWrnhzjCzxyEG6vQTdlA33T7X4b1o+gpz7eCu9Q6wUSrT6VsRVfO3hxA+st4+IYRbQwg/jRhX8Lh223aq8D5pZu9DNKncgeik/jbEN+xbQwh+wOO3mdmvoXpxIEbh3Zj4Pd6NGHZ8g5m9EdEP8Qto9mbbYmZfgdhLfgtiRN0k4oPtPKJZAYjRRd8D4B/N7LWIvdM5xBv6G0IIz2xzitcC+C8A3mdmr0E0Qx1AVBAvqW78X0CU3H9rZm9A7PG9CtGf8eudfI8u2AXgr8zsegAHEU1Sn0ViVjSzPwDwwhBCL/0Xa6j8Uhvy0fSAJ5nZCmIn7XJEpbmCGIGGEMK8mX0IwE+Z2WFElf4i5BXbrQC+wcy+HfFhejSEcCdi1Ok/APigmf06oknnSgBfFUL4sS7rW9o9k+NXEJXkWywO/fgbROvHIUTF+mxEM+b3Ij6LXhtC+IdM3f8IwEvN7ErnC98q3ouoJv7EzF6H+H1ehf4P/L61Wv6Ymf0p4m/XrZVnXUIIt5rZ/wHwu9WL/B8RX7YPQ4xveH0I4Z/r9q9MvldVq/sQI6y/u1r/UAjhi9V2L0YMVHpKCIEdu99DDOp7BYBlWzvs5u7KSnIRYufoTxHb6Api0NQOAH+33pfrJFLmJYjOw7sQo7gWAHwUMbpnJtnuWsSewTdWFTqN2MB/C8AOd8wfQ3wQnEEcZ/FURGV0U7LNNcgPcL0QMXPD7Yhv9YcQH1RPd9vtQ7yJ70C0Px9B/PF+ooPvfCGiKeZwte891Tm3Jds8A1FlnUF80b0DwJe449wEN1AZzWjEH3Dlr0QS8Zhs98MAfgNRzSwivmivcPvegMpV06s/JFGabbZZU+eq7E7kozQfmds3c12uzRyff6sA7kN8eD4xc13fhTgk4QiA/4tofgoArkm2e0zVDharz9K6fnV17BPV73obgJ9p93vWfOexvWfqzlHTPgwxUvYDiGbjZcSOxJ8hvkSB+ND+HACrOcajq/O9spftuzr2elGa76v57AXVtTyL2CF+DmKg0W2uneWiND9Xc651oxkRA6DuQ1PtX4z6KM3zmf3vB/D7ruwZ1f5f78pfVLWzRcR76lOI/vFL1qkjo0lzf8/PbPdkV7+6fV9WbTOH+GK8FfF+ma+u33PXu35WHaAnWBww/EbEsObPrbO5WAeLg8vvAPCDIYQ6/4UYYXTPCDE4NFuCEEKIItALTwghRBH01KQphBBCDCtSeEIIIYpALzwhhBBFoBeeEEKIIuhqkPLs7GzYu3fv+hu2ganO0pRnvsynQ9uIn5H78FidHKPdNv4z+T7z12B+fh6Li4st+ex60XbEeHPixAm1HbEh6tqOp6sX3t69e3HddddtvFYJk5PN/MhTU7EaMzMzAICJiYk126ysxCxWq6vrT8FU9yLKlbOMSx7fL3PblMq5c830m2fPnl3z2dTUFG68MZ9TupdtR4wn119/fbZcbUesR13b8cikKYQQogj6lndxPajagKaiW16OeX+9siNUV7kZILzy6sSU6VVbndJb7zglkf4muk5CiFFCCk8IIUQRbJnCS/FKzgecrDOnX5Z2SsMrujplJ7XSSqrm+P/58+cbS12zwUJrCK0k6f/+vpElQ5SOFJ4QQogi0AtPCCFEEQyFSdMHo3Dpy3NDA2jS8aYYH8SSDoOoC1bxn4smuWvFICN+try8PPTDNlLT33oM03dhvaenpwE0h/Bs374dALBt27bGthzmw324Tvgb0pWQ+01ppl5aWgLQHI6ysLDQk+8jxFYghSeEEKIIhkLhEfY4fRBLJ/v0ajuRJzf4n/+z97+VQSte6VDVUBF51QOsn9En951ZRiVEBcQlldFmrkOq1lh/lnG5Y8cOAMDOnTsBALOzs419qP78ktR9T6D5vZhUwC+p8E6cONHYZ35+vpuv1zPS8+7Zs2dL6iBGCyk8IYQQRTBUCk8MLzkfHsuobkIIA1F4qZqZm5sD0FQ8XFIJUflRKXEJrPXr5qBao+oBmkrnzJkza5aLi4trPuc18fsDrdYG1sPXOf2u/J5c7t69e82SSg9oXgMqOx6X6pbnT4eTEKp1//2o7Pg5zwsA9913HwDg2LFjGCRHjx5t/C+FJzpBCk8IIUQRSOGJjvCRfen/gxqoTxWT9uZZRlXEpfdx5dQTFZCPYvTKNU2YTSV38uTJNUuqNPoFc75Cr+x85CXrnNaR9aei4nfn7AEsp/JLj1fnw6OioxrNRaPWRUiTXbt2Nf4/ePAggOa1oSrsF953LESnSOEJIYQoAik80RFUQam/J6f6+gEVj1dzab3q6kQVQAXmpzRK9/HjP/ld02hOHocqius+CjQ336NPZUe4j1+mx/cpxLxqTH2Gvozfh+W8Brw26b4so1pjXemH9NGpaV2oPvut8BghmtZBiE6QwhNCCFEEUniiI/y4NqCpAqg+lpaW+uLH4zFPnTq1Zgk01QXr5xWYn1w49Wd5vx/38YosVWssoxKqi9pMlSS3rcsGxOOzbqmK9uP8vELNZT7xqszvy9+N+6aKzGdfqfPhtZscuZOpuTYDVe4ll1zSl+OL8UUKTwghRBHohSeEEKIIZNIUXZGaNPk/TXCrq6sbmrtwPWgS7HcYOk2bPulybrA6t6G58PTp02vWu4H7PPTQQ2vOAbQOaOcwCJ7fDxRPt+W+fuD7qMMhGUJ0ixSeEEKIIpDCEx3hkyYDzeAEKpLV1dWRnlopN2RhK0iHeTBBMq87A1u4TRrAI4RojxSeEEKIIpDCEx1BH1Eajl43sHmY8IO9u5kAdpigP47LzcDfa1SvxUc+8hEAwFVXXbXFNRH9ol9DW0azxQshhBBdIoUnOiKn3nzS4ZmZmb5EaZLcQHAP6+mTOPezXqPGqCo78vGPfxyAFJ7ontFu+UIIIUSHSOGJjqAqSG3qXkXt2LGjp+qB4/voK8xNvcMxcoxi5D6MZhx1NSOacKLZCy64AMBaq8N6k/mK0aJvaen6clQhhBBiyJDCEx1BdZXzhfUr6o/j4tiTz/XimWkkTbgMrM2OIsYDRqiyPTC7DbB2UmAh6pDCE0IIUQRSeKIjqJjSfJZUXPSfrays9MT2TsVI3x2Pzzqk5+D/fpJYMT6srq7i1KlTjTyinBYoHZMohSc6QQpPCCFEEeiFJ4QQoghk0hQdwalyuASaof80PU5NTfVkgDePQRMmTZw0bc7NzTW25Tbbtm3b9HnFcLKysoL5+fnG9Ek0Ww9Lsm+xtczMzHQcMCeFJ4QQogik8NAMvhjG5MfDAq9RGu5PtcchARMTEz0JWqHC86oyNyGrGH9WV1exsLCAo0ePAgCOHz8OADh06NBWVksMCd1YlaTwhBBCFIEUHqTsNgqVXarwesmOHTt6ejwxmpw/fx7Hjx9vKLt9+/YBaPqORZnweTM9Pd2xypPCE0IIUQRSeKIr0vRefuodJfAV/WBpaQl33nknFhYWADR9uIcPH25sc8UVVwDQNFAlIoUnhBBCOKTwRFekfjpGTXIM3OTkpHrYouecO3cOd9xxR6O90eeeppGjP0/jMcshjdqWwhNCCCESpPDEpmFPq1+TNgqxurra4iPetWvXFtVGDAMbiQqXwhNCCFEEeuEJIYQoApk0xYahCZPL5eVlmTVFX5iYmGgJTDh27Fjj/yuvvHLQVRJbDJ813czDKYUnhBCiCIpReKnDm9PNSI10D68d0Hr9zpw5s+ZzIXrBxMQEtm/f3riHqfRShSfKZXFxsePnjhSeEEKIIhh7hcfeYBrCqmTRG4eJolPYu5LCE/1iamqqReGlbZH3tNLblcO5c+ca/0vhCSGEEAnFKLzl5eUtrsl4kPaq2atiWTcpfoToFDNb065orTlz5kyjjL392dnZwVZOjBRSeEIIIYpg7BWefEq9gSoujcykamaZFJ7oByEErK6utrSttC2eOHECgBSeaI8UnhBCiCLQC090RQih8Xf+/HmcP38eExMTmJiYkMITfWF1dRWLi4uN9ZWVFaysrGBmZqbxd+LEiYbKE6IOvfCEEEIUgV54QgghimDsg1ZEb+DA3jQIiObLdLCvTJrdMz09DaB5bZUYYS0hBJw9exYzMzMAmvMvnjx5srENr6EGoPcHXs9hTMvoh620QwpPCCFEEUjhiY5gjy5VeOxpLy0tbUmdRhX2lhlC79VIOrj/9OnTg6vYkGJmmJ6extmzZwEA27dvB7BWCd9///0AgL179wIADh48OOBajjfDbHXoZuZzKTwhhBBFIIUnOiKn8HzZ+fPnh8q2PyzQv0RFTF/Utm3b1pTnkiKThYUFAMPlOxkUVHi8Lkx4kPbsH3jgAQDAgQMHAAC7du0C0FSDQgBSeEIIIQpBCk90RCcKT9MDNaGqA5pKjgqO143rVHhULOm+LOMyjUwshampKRw4cKCh4tjGUt8xfZ3chgrv0ksvBdCdn0eMFisrKx1bPtQKhBBCFIEUnmiL95ukPSlGbrGnvbS0VKSPKUeqdL3PyUdltkuKTLVHlcj1kqa7mp6exqFDh3D06FEAzeuT+jo5PRCV3t133w2gec33798PQD690pHCE0IIUQRSeKIt7EXnsoDwfy7Pnj0rH15F7joRqgxeW44v47XLXUP/O5TEzMwMLrnkEnzqU58CkI9U9f5kLo8fPw6g+RvMzc019uH/VM9i/JHCE0IIUQRSeCJLOrYOaPrpUrXiVYd8eJ1BRUffHRUG/XKpf86r6BKZnp7GpZde2hi/SH9dGnnpcz3yerE9lnz9RBMpPCGEEEWgF54QQogikElTZKHZyJvUcsEYNHcqtVh3nDlzZs1S5JmcnMT+/fuxe/duAMD8/DyAtcM5aNL0Qz78tFZp+xx0W+U9pSCZrUMKTwghRBFI4Yk1sNebqjYgHzLPbUoaBC22DiaGzgVQMaDFKz0Gtvi0bmlZP0nrSCXPujGlnBgcUnhCCCGKQF0MsQbfe/bDE3LDEogS9Ip+cujQIQDAQw89BGBtW+Rgfq/ofPLtQai6lNT6wXNzWMrOnTsHWhchhSeEEKIQpPDEGnw0G3vRnSi8EtNeicFx8OBBAE01l7bFOn+Yn4IpjeKk368f+IHvQFNlyne3dUjhCSGEKAJ1NQSApq+Bqs1PweKVXrqNxt6JQbB3714AwI4dOwA0fWHtoNXBK720rB/wvKlfm5PSiq1DCk8IIUQRSOEJAK3j7ryiyyU29p/Jhyf6CTOUXHTRRQCAe++9t/GZTw6dG3c3SDhRrxgupPCEEEIUgV54QgghikAmTQGgaZ70Jk2aK2nyZALc9H/uo4HnYhBweMIDDzzQ8plvg960OeiB52K40BNKCCFEEUjhFUxuiEGdouN6OpWNH8IwNTWlHrToO1R4aWouThlEvLLLDRMQ5aFfXwghRBFI4RUMVRvQ7AFT4VHZUdFxvd1gX6VMEoOAqcX279/fKGM7rbMwjLvlIff9lBCiFSk8IYQQRaAueYH4qX/SMi6p5BYXF9csU1Xo6WcyXiE8nBAWaE4ZRAsFFQ8HgNP6MK6qJ+eb5L3MhNl166POxMRExwpeCk8IIUQRSOEVCP1xaZowKjr6QqjouL6wsABgrSr0qcS66WkJsVmYYgwAjhw5AqAZrUkVw/bI9XR6oHEip9bo6+Q18FYcr35T0mjsYWd6eloKTwghhEiRwisQ+uHSiMs6RcdtctGZVHjy3Ymt5sILLwTQbLdULX5ZUlJnWnD43bnuJ3dOLT1M0D03N7dmX+5z8uTJfle7a6TwhBBCCIcUXkF4tXb69OnGZ/yfPWQqPpZTFaY9KT+pZjc9LSF6Cf15hw8fBtCcJJbWB7bLkjKteJ9dJ9BqwyxK9HnyunES21OnTvWsnhvF/7adUM6vL4QQomj0whNCCFEEMmkWBM2THJZAs2X6P00VfluaOlLzAU0KNGlu27ZNJk2xpTzsYQ8D0GzHGzF7lQwDWLzpl9exXeKJQcMAm8nJSQWtCCGEEClSeAXAQBQu2ftNFR4/o7LjNn5weTpIlZ9J4YlhYe/evQCaSoSDr5XYvDvqglfSCaCHhW4CkaTwhBBCFIG6PWMMe2NUaxxU7ocgpGUcssAeMm36HLCbpmbiYNSSQr3FcMO2SGXH9qrkCJsjtQYNC+mA+U6TgutJJYQQogik8MYY9sqo9Hx0Zjp41A9Kp8LzUZqpL4T/87NxmW5EjD4ceM42Oq5Jo/vNMN/T6bNJCk8IIYRIkMIbQ7yy8+qNn6cJob2SY3QWl4y+TO3m7EWTs2fPtkR1CrEVcIyWGF+o6paWljp+7kjhCSGEKAIpvDEh7eGsp/Co0nIKj747Kjv2orie4sc2LS0tdWxLF0KIQSOFJ4QQogj0whNCCFEEMmmOCekQA5ol/ZJmT5o005BjmjdZxiAVmii5b2qy9CbNlZUVmTSFEEOLFJ4QQogikMIbcXJT/bCMSo4BJ1zPDRRnGff1Mx1rcLkQYtSRwhNCCFEEUngjChUXE0Cn03b4tGDel5eDvjfvwyO5aX+oGOW3E0KMAlJ4QgghikAKb0TxacLSlF9+8LhPu1NXDjR9dj46k9MDpZGZ3jdoZlJ7QoihRQpPCCFEEUjhjRg+KjPnl6Mq8wqu3fp6Pjsqv3SyV/r7WAc/Lk+zuRSmAAAUW0lEQVQIIYYJKTwhhBBFoC75iEA1RjXloynbTY/RiV+Nx0kVHNA6gWZ6LJ9YWplWhBDDjBSeEEKIItALTwghRBHIpDkicBiCH1LgTZBpGZc0R3qzJctzn9E02ckAdJkxhRD9JH1WbSa9oRSeEEKIIpDCG3J8IujcND0er+i4zgAUqrhUrdUdj+VcpgPct23btuY4CloRQvSDVNX5qcu6QQpPCCFEEUjhDSl1wwxyPru6cj/Fj08Plg4U9+fjvn4QO32IOSYnJ7M+PiGE6BVSeEIIIcQ6WDdvSTN7EMBd/auOGAMuDyEc9IVqO6ID1HbERsm2HU9XLzwhhBBiVJFJUwghRBHohSeEEKII9MITQghRBHrhCSGEKIKuxuHNzs6GvXv3tpQzGwgAzM/Pr/nMZ/nw62mZzwGpMV2jx4kTJ7C4uNjyw01OTobp6elGxgQuma0FAHbv3s1tB1FVMWTUtZ26545ojw9I9FmTctvVbbPesbsh91z3uXy7fQfUtR1PVy+8vXv34rrrrmspv+WWWxr/33zzzQCAmZkZAMC+ffsAABdeeGHjGOkSaD7ouNyxYwcAYPv27d1UTwwB119/fbZ8amoKl112GY4dOwagmQz78Y9/fGObq6++GkBzgLwoi7q2U/fcEd3BpBFMD8i5NdNkEj45PTumfMH5RBRpwgqfvMKv+5cZ0Ozc8p6fm5sD0OwI812wHnVtxyOTphBCiCLoSWqxkydPNv5nr4EKz09F4xMb58pkyhw/QghYWlpqSYLNHh0gZSdEP6Ebiaot5zqoM3d6teaVX7rNembRdknrc8ftJVJ4QgghiqAnCm9xcbGlzE8gWqf00s/8tmJ8CCFgeXm5xUcgP60Qg4XP3rpJnoHWZ3Cd4kqn7fF+v7rzpsf2dfCJodtNdL0R9GYRQghRBHrhCSGEKIJNmTQpXXNzpHkTZrtxeD5cVSbN8YMmTe/Y1m8txGDJzYfp4TPdP+N5/3LsNYPQ0m38ttyG+6TurLo69Ou5oKeNEEKIItiUwuMQhBx8Q3tllwta8c5MTVk0foQQcP78+UaPkUMQdu7cuZXVEkJk8CowzYgEALt27QKw1rpHJVc3eJ3vizQzF/fxz/x+Wfuk8IQQQhTBphQe375paDnDStkzYE++XY60XJoaMX6srKy09OSk8IQYXVIfXDufYEo6jO348eMAWn2G/XoXSOEJIYQogp4MPE/trEwp5m3ALKfiy6UWy0VwivGCbYXtQAPPhSiL2dnZljIqvX5b+aTwhBBCFMGmpBRVG5dAM5qHPXe/TS5Kk719Hwkkxgsza6h3+u40950Q5eLV3sLCAoD+TSAghSeEEKIINqXwGHHHyTyB5vgMTvvCdfboOfErJ3sFOp/kT4w2ZtbouVHVp5kahBDjByMv/dRgQOsYbD+FUa+RwhNCCFEEeuEJIYQogk2ZNB988EEAwKlTpxplNGXSZMkly/1M6KIMzAyTk5MNkwXbhQKVhBhv/Fx3OTcGzZx+WFu7Ofs2gt46QgghimBTCu/06dMA1joYGaTCJYcn+NRiqeMyTSaa24ZLn65MjA5mhpmZmcZveODAAQD5QahCiPGBz3Nac3JWHT/dUC4FZU/q0tOjCSGEEEPKphSeH2Se/s+evJ8I1k8gCDTttNyHwxS4j6YLGn3MDNu2bWv8/o94xCO2uEZCiGHBqz8ljxZCCCE2waYUnvfTAa1+NtpgOTidNtrcwEK+3fmZT0PWr3Qzov8wSpNq/dChQ1tcIyHEsNKvKH4pPCGEEEWwKYXHKdvTSDsqO46noCrjG9tP9Ac0VaGP1qQvjwpS0ZmjCxNHX3zxxQCUNFpsntTiIz+/6AQpPCGEEEWwKYVHBZYmgqaC82MviI/IBJrKjb1+JphWFo7xgVGaHH8nxGaRqhPdIoUnhBCiCDal8O6++24Aa6f3oV+Pqo1LP64ijezk/sy3KcaPyclJ7Nq1S7+x6Au0KPG5wmjwTqafoiXJxxCI8UMKTwghRBHohSeEEKIIepJaLDVTcaogmilp0uQwBAarpAEpMnONPxMTE5ibm2sEJAmxWdJhCX4IE58z3qTJ4VJAM8BOpsxykMITQghRBJtSeEwAfM899zTKqOQYMsweFntTJB147FOJifGD0wPt2bNnq6sixoR0WAJTF1L11Q1ZYFCdGA34u6ZBjp5cmso6pPCEEEIUwaYUHllcXGz5f+fOnQBae1xcT9/KJ0+eBND09zFVWb8SiIrBMzExge3bt2vCV9EX+DyhP66bXr8YXvg7pr7YzaSY1BtFCCFEEfRE4aX2VdpcU9UHNKOm6KfL2dKp6Pg2V2qx8WFqagoXXHDBVldDjDmdDDQXowMtg2kkrVd43VgCpfCEEEIUQU8U3sLCQuN/P+6OKcWo7Kj00jE0/jNNAzR+TE9P45JLLtnqagghRgCv1NN1/u8nGe8EKTwhhBBF0PMoTcK3LhUe7ax+Ytj0Myq9QUVn+shR0V80zlII0Ql+soF03X/WDVJ4QgghikAvPCGEEEXQE5Pm/v37G/9//vOfbykDmuZDmrXSwBSaMNNZ0PsJh07wfIM6rxBCiHr4nuA7gcGPaWrKzbhGpPCEEEIUQU+kTW7KF4aO+iAVH6ACtA5K7wdpMln+L2UnhBDDg0/6nQtQqUsM3glSeEIIIYqgJxIn9cdR0flpgvim9sMUgMGEq6e9AqUsE+NGOrRmMz1gIbYSvheYSixnjeO7ZSMJSqTwhBBCFEFPFB6nAgKa6skPHvfRNmnUTS7dWK/RVENinEnbt6bGEb3GW+q4nloTfJyGf57nEn344/p3AS2G6ftiM+8JvQWEEEIUQU8UXvrG3bdvH4DmG5lve29vTXsGPsG0EKI7UlXH+0hKT/QKPuPZtnJ+Yh9RWafwcqrQR8zzPDxmLhXlRpDCE0IIUQQ9UXinT59u/E+bK7OZ+OhM31Pw/wshNgeVne+NbybprhgfaH3rZBxyXYL9nB9tved4N8qMx/d+QWBz08dJ4QkhhCgCvfCEEEIUQU9MmnNzc43/7733XgCtpkyaWZhyjCZPoClRNXRAiN7Be073lUihKTOXBMRDk+Kg5w71gVebMWOm6E4QQghRBD0flnDBBRes+cynGMuhnuj6+J6WEJ2iYBWRo90wAU8ng8g3Qp3K9NPJ9SrRv94wQgghiqDn8+Ps2bMHQNNXt7i4CKC1JyA11x1SdqJTfCg30/0xHH1paWlrKtYj+L2kXDcGrxvbQaqectO3Aa2pIXPpw7oZwuDPV1fe6/eE3jpCCCGKoOcKj9E0TDHGN3QalQms7Z2ppzb+rKysYH5+vmEBEP3D99K9/4O99VFNPSZrx8bwifup8FIVVaeofBIDHmMjA9Bzk3HzOJ1EjrY73npI4QkhhCiCnis8sn379jVLph/L+Q/UYxt/VldXcerUKSm8AeDHtebSM40yOR+eniHrQ1VGa9tG1BmtBVzmrASbSRW5kTbaTaToeNwBQgghxDr0TeF50kliRe8YlfF5q6urOHPmzMAzNpRCmonCZ6Xw13pcpg9KfZP8LooHaMXfc36Sbq5vhFFL/C+FJ4QQoggGpvBEb6kbJzOsrK6uNsZkio3j/XFUOTnfR132CvpyRoWJiQnMzMw0/P9UcamS5Xfldxv2+2GQeGVXMlJ4QgghikAvPCGEEEUgk2aP8KamfoVM05TJmeVzphuee5gCWUIIWF5eVtDKJqkL284N5vVtg+a+UQvsMLNGewdaEwun0MRL8ydTHA4TPtWbzK+DQwpPCCFEEUjh9Yi6XnWKT/XEnjbLffq1HBzI74+Z9trZq/WT7241ZoZz584BAHbs2LHFtRlN/G/J9VQBeYXPdV77USOEgJWVlYYyYvtOrQR+KIZXwsOk9HjPcsnfZVju03FGCk8IIUQRSOENgPVCyLk+OzvbUkY7vw8p98fK+XZ8+Pkw+PaOHz8OQAqv16Qp+0Z9+p86vM8uXffp1Pz9wG1TpbdViorDc2itGZdEAKOAFJ4QQogikMIbIHXRcbleqd/WKz2/zE3iyCV7jp1ERvZT/ZkZTp061bfji/HEzDAxMdHSrtP2TJXEMvo0vXUlF+1JH9qglXG7JM6iP0jhCSGEKAIpvAHA3med746kNvw6JUflR19Ezu7PHiOX7N36SRtzY7f6hZlhenq6Uf+NTPS4VeQiYHlNRy157ijCtkN1lrOUeIXn1SB/r1RN1Vk+Bq30hmm87Lgz/E8bIYQQogdI4fUIr+Jy/gX25LiNH7uX9vTWG0NXp/iAZsSaz2ris8Ckdex39g36Yfh95ufnAQD79u3r63k3g1fXQNMHJL/L1pGb0Nbfdz6KOdfmfeQzlxtReP78irgcTqTwhBBCFIFeeEIIIYpAJs0e4c2SaaqjnMM8t0/O3ELqTI65Oc64bTpUIT1+zuw6CBNMatJcWFgAMNwmTV4fBaZsLSGERnoxoDlgO70n2Kb5W/lUY7nUYtyH23J4Qi4BvMe7MJj2jHXk/ThMKc2EFJ4QQohCkMLrMTnF5XuddUorVVnclg50DlKtC2HOBbz41GK5RNODglO88HucPn0awNqExpqRWeRgwBPbc90wH6B537TbJj0u0GqBqbtPcoFo/nwKWhlupPCEEEIUgRRej8lNE0Q7vp+40vsZcirND9D2/r5cQmhfB59ijAyyFzoxMYGZmZmGomNv/cyZM41tpPBEDloHeB95fx3QOtWWt6ZwPefr9uosPS+QH55Cy0ud6pTvbjiRwhNCCFEEUngDoG6qH6qddimTfCSZH5CeGwBdpwK3Mo3XxMQEZmdnG9+ZPeA0mfTu3bsb2wpBJicnsXPnzobfNy0nvIdYRmtBXSRm+r9PE9dNUgFviRHDjZ4sQgghikAKbwCkvUqg1b7fzt7PSWF95Bh7oT4SE2hVeJ2O6esn9MPw+5w8eRJAczJMoOkX4TgrIcjk5GSj7fjxeEBrxDMVnVd+qSr0Y2Z9xOW4TqRbMlJ4QgghikAKb8hJFVDKjh07ADR7ozmlR4Yl0fHExERLTzvtcdNHI4XXxEfn+sTgPtIQaI0KHnVCCDh37lxLJGTq6/U+O65TFabHIrx2HBtKXx6vcRpBLMYDKTwhhBBFIIU3orD3SaWXjqnz/ow6X94gMTNMTU219LxT/yWnDDpw4MDgKzgE5HKcEp8VpKSowJWVFZw+fRq7du0C0DrGLi2jdYDti/dHbnws/6cVhW2T9xYVpbKmjA9SeEIIIYpALzwhhBBFIJPmiOKnrEnXvQmGZjA/PGKQmBmmp6cbdeMyNc3RREXT5p49ewZcy60lZ3L2psu64KRxNruFELC0tNQSuJMOG9i5cyeAVlMml7kUfLxmc3NzAJqmTQaxcH1crq1PWlGXZD79jM8VH/wzqkjhCSGEKAIpvBHFh2Gn+JRi7YYsDBImkAaavei0/lSipSbezSUp9pQ4GDqEgOXl5ZYgrFy7piJhW2J7yyVQZzujeqHSY9AKA2C20jLSS/h9vZUll1CbbZDPmdwk1aOIFJ4QQogikMIbMdhjJe0SLedCsbcaP31L6qNir1yIlBDCmjbMdp22fX8f+DRhVCppe6Nyo5+PSo9JzBcWFgA0EyIM0320Eerur1S1eRXNazPqyo5I4QkhhCgCdalHBB+V6VNL5RjGHqmPtEt75t73SJ+DnyhXlIWZwcwafl/61tIUdHX3g09TR8UCoGUyYio8lvuITz890ajhU7Plpg0bFyVXhxSeEEKIIpDCGzF8DywX0Zcb4zYs+Ak50+/Dz6jspPBECpUXl2m78BHJbDs+0XTqx6L6Y+QrozSpJP34vFFXeIT3nLcalYAUnhBCiCKQwhsCcnZzKjc/rshHo+XGx7CXO8zTw7Sb1oifDXP9xeAIITTG4gFNxZWqNaoy+t2o+KjeWJ6bUshnY+E+PkqT2wPjMzavNKTwhBBCFIFeeEIIIYpAJs0BQDMKTXV+frp2wSU+lNibMLlMU06NuimwRGe6aM/q6mqjjXszP9AMQKFpM5c2C1h7b/jZ0bmtT0TNefhoSgWA48ePAyg3Dd6oIoUnhBCiCKTweoxXc+n/PjiFyq7dYE+/r9/HD9IeZeoGxoqyYWox3/bT+4ZqjPcBE0BTtXHZLhUf2x/VIqenyt1jPM6pU6fWnE9tdriRwhNCCFEEUng9Jqfa/ODXOj9cbjLUdscFRn+6GJ8MW4g6eN+wzefShFFpcSgBt/VDDoBWtUefIH16TCKdww8T8opPDCdSeEIIIYpACq/H5Hx4vhfo7fw+ajPFR3L6iSyHMUF0N7TzX7bzt4hy8UoPaEZnzs/PA2iqNJb7VGNAazQwVZuf/JS+vHR7f8/6diylN5zoiSKEEKIIpPB6hO8t5pQLVVpuAstOYU9V0WCidNL0Xoys9L48jp1jmjBGc6as5y9nEunU3+wnV/Z+eK8sxXAghSeEEKIIpPA2ie8dUrW1SwhN2Bv0y9z+4+KzE6JXpPcLFRWnDOI6FR59auk+jPL0vnWv2ujbS6049Ov5bX2Gl4ceeqixj+7drUcKTwghRBHohSeEEKIIZNLcJJsxaXI9N3+dnxNO5hAh1pLeL7w/OFSBSwax0LSZm3+xbrgQg1Ry9zKDZPbv37+mLt71kB7zxIkTaz4Tg0cKTwghRBFI4W0S9v78sIS0Z7eeWvPDFdL/R32qHyEGAZWbHwbA4BUGnqT3Hu9dKjlvnfHKL72n/dRCTEPmt82pOSm9rUMKTwghRBFI4fUI31tLFV+dosspOyJlJ0Tn+MTsPlk0l6k/zg8W9z47HtNPPJvuw3ubwyE4SJ2Ks93EzJxEVkkkBocUnhBCiCKwbpSEmT0I4K7+VUeMAZeHEA76QrUd0QFqO2KjZNuOp6sXnhBCCDGqyKQphBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUgV54QgghikAvPCGEEEWgF54QQogi0AtPCCFEEeiFJ4QQogj+PztdORYhrPtNAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1862,7 +849,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZddd3/vdVT1Ud6vVGlC3WpIleQoYEzvwMDjwCDgLiPFjzMoiBBMw4AcEkpC8kIQ42BhjxhfMkIAhmNiBgLMc5pjJDDFDiAM8O9gGbGFJLUvqltSSuqWWukvdXXXeH+d+7/nV5/z2qXvbsiWl9netWrfuuefsee/zm3+l6zo1NDQ0NDT8746VJ7oBDQ0NDQ0NHwm0F15DQ0NDw45Ae+E1NDQ0NOwItBdeQ0NDQ8OOQHvhNTQ0NDTsCLQXXkNDQ0PDjsCT+oVXSnlZKaWb/f2V5PdPD79/Zrj+plLKsUus81gp5U3h+2eEOvx3TynlV0spn3SJdXxhKeX/ucRnXz1rw65t7rsZbX5s1u7fLqX8k1LKweSZLX1fsD0vK6V8VeV6V0q5eZnynoyYrae7nuh2LIMw/y97otuSYTam3FfZ32c8TvX951LK+x6PsmblfVMp5fOT699dSll/vOr5UFBKeWEp5TdKKcdn+/9EKeW/llJesOCzP1FKeX8p5Wwp5Y5Syn8spdz4kWj7hwuTh+aTCGck/X1Jr8T1r5j9xsP72yX94CXW9UWSHk6u/2NJfyypSLpB0r+U9FullOd3XXf7knV8oaTPlPS6S2zjMvguSb+sfq4PS/obkl4j6RtLKX+r67pbwr21vk/hZbOy/wOu/4qkvy7pxCW0ueFDxwn143/rE92QCr5d0o+G7y+X9NWS/k9JG+H6nz9O9X2LpAOPU1mS9E2S3qp+b0X8sKSffxzr+VBwpaT3q9+b90i6VtI/k/QHpZRP7rruf008+1JJz1Z/Rr1P0tMkfaukPymlPK/runs+rC3/MOGp8sL7eUlfVkp5VTfzlC+l7JP0dyT9nPpDd46u6y55k3dd967KT3/Rdd07/KWU8i5JfynpxZJef6n1fQRwW2y3pJ8vpfywpD+U9F9KKX/NYzrR96XRdd1JSScfr/IeT5RSViWVrusuPtFtWRSllN2SLnYLRorouu4xSe/Y9sYnCLM9Ot+npZQXz/79n4vMSyll76yPi9b3geVbuTy6rrtT0p0fibq2Q9d1vybp1+K1Uspvqt+XL5U09cJ7zWwPx2f/SP0L9Kskfefj29qPDJ7UIs2An5J0k3rqz/gi9e3/Od5MkWYQ73xtKeU1M9b+9Iy9vwHPLirWMye0Ozx7TSnlx0opt8zEAHeWUn6mlHJ9bJt6zvT6ILY5hjJ+ZPbsY7PPnyql7EX9Ty+l/Eop5ZGZuOFVpZSF5rPrur+U9FpJz5P0N6f6Xkp5+qz+e2btua2U8oOz394u6dMlfWroy9tnv41EmqWU3aWU187qOT/7fO3sMPc9y8zVl5RSfqeUcnI2Du8qpXwF+zsr7ztKKd9cSrld0nlJL5i14RuT+189m78rFxnP8NzXlFL+tJSyXkq5fyYSugr3/MNSyv8opTw469c7Sin/F+7xGHx9KeV7SynHJT0m6Yowri8spfx0KeXh0ousfqiUspaU8bJw7U2llLtKKR9fSvn9WR//spTydUlfPnM2nuullA+UUl7OffWRQinlxbO+fN6sDQ9IumP228fMxuFYKeVcKeXWUsq/LaVcjjK2iDRnz3WllK8spXzXbH2fKqX8Yinl6DbtuUfSEUlfHdb9j85+2yLSLKWszX5/5Wz93VlKebSU8kullKtKKUdLKT8/m8c7Sin/NKnvWbP23z+bj/+Pa2YJPKx+/U8SFXzZza7dMns+nme7Z+N3W1j3v19K+eRLbN+HFU8VDu8OSb+nXqz5+7NrXy7pFyQ9skQ5/0o9Z/NV6sV73yfpP0n6jAWeXSm93swize+UdFbSfw33XCVpfVbPSUnXqRch/PdSysd0XbeuXpRzjaQXSLIO4DFJmh2wfzgr57WS3j1r5xdI2uP7ZvgFSW+U9P2SPk/St6mnLN+4yEBI+lVJPyDpUyX9dnZDKeXpkv5o1s9Xqedob5T02bNbvl79+K1K+trZtSmR6H+U9MXqx+4PJH2KpH8t6RmSvhT3LjJXz5D0s5K+W9KmenHtG0op+7qu+1Ftxcsk3aZeFPXo7P9flPQ1CuLv0nN/Xy3pLV3XnZroyxaUUr5b/Vz/kKR/rv5QeK2kjyulfErXdRbT3SzpDZKOqd9/nyfpraWUz+m67tdR7L9WL0b/GvVjHHVDPyXpzZL+tnrR5aslnVIvdprC5ZJ+Rv3cv0bSV0p6fSnl/V3X/bdZXz5WvUj6jyR9ifq190pJh9SP8xOFH1W/3/6eJL/cr1c/l2+RdFrSs9SP21/VYvv6WyX9rvr1cb2kfyPpTZL+1sQzL5H0m+rX8HfNrt27TT0vl/Qu9fvkBvX79k3qxYw/L+lH1O+B15VS/rTrut+RpFLKMyT9T/V7+x9LekDSl0n65VLKS7qu+43tOlh6QnhV/Xn0SvXnCFUQ26KU8tfUr5+/CJdfJekb1O/X96pfI5+k/gx78qHruiftn/pF2KlfxF+lfkOvSTqqnkL5LPWLupP0meG5N0k6Fr7fPLvn7Sj/m2bXrwvXjkl6U/ju8vl3WtJLtmn/qnrZdyfpi9C+u5L7X6Nef/HxE2W+elbeV+L6eyS9Lenzyyvl7J39/vqJvv+keoLiuon2vF3SH0zM3c2z7x83+/5q3Pcts+vPW3au8PuK+hfIj0v6U/zWSTouaR+ue24/LVz7/Nm1F243XxjrDUmvwvVPnZX1hdu0+W2SfimZu3eqF71m4/ptuP5WSbckZbwM/egkvQjr4AFJ/z5c+xn1BNv+cO2o+hfusdo4fCh/YV3vSn578ey3Ny9Qzi71+vFO0nPC9f8s6X3h+8fM7vmNynq8apt67pH0huT6d0taD9/XZuW9R9JKuP4js+vfFK7tUX/GxT3507O1ewj1/J6kdyw4tm/VcG4dl/TJlzA/eyT9D0l3SzoYrv+WpJ/5cKyJD8ffU0WkKUn/Rf3m/Dz18ud7VOFMJvCr+P6e2ecilkffoJ4re4F6Cu/X1evAPj3eVEr5BzOx1iPqX8ofnP300QvU8dmS/rhbTJf2K/j+Xi3WD6PMPqd0Qp8t6a1d1x1fotwa/sbs8z/hur9/Oq5vO1ellGeXUt5cSrlb0oXZ38uVj/Wvd113Ll7ouu7t6o0ivjZc/lpJ7+626j23w2epf3n9dClll//UU+ZnNPRdpZT/o5Ty1lLKverXx4XZ81mbf7GbnSoJOP/v0WLzf7abcXLSXNd3C559oaRf7brubLjvhHqOexKllNU4BmVBMfuC+IWkvrWZuPD9M1HiBfXcl7TYnsvGUVpuLy2Ct3VdF7lji1fnHFrXdecl3a6eSDZerJ6rfRRr623qxfJr2h7/RNInq7d5+EtJv1pKef6iDS+lFEn/XtInSHpp13Vnws9/LOkLS69++JQS1BNPRjxlXnizQf5F9WLNL5f001hAi+BBfLeIcJFFc0vXdX8y+/s19WKV2yR9r28opfwj9ZTbb6kXNX2S+sNj0TqulrSo+XvWl0XqMLyppqwol2nPdrCIg/Xdg9+NybkqpVym/mB7vqRvlvRp6omR/6CeMCJq/Xy9pL9TSrm6lHKT+gOG4tDtcHj2+QENL17/HVQ/jiqlPE09kXaVpH+kXqT7AvXEUzZ3U3OTjU/WbyIT03LtHJV0X3LfdmI7qe9f7P+rFnhmUWTj8X3qubI3Sfoc9XvuS2a/LbIfPpQzYRlw3M9PXPcaX1W/Vr5G43X17erP7231zF3XfaDruj/quu7n1Itqz6hXgSyK16k/d//+jEiMeLWk71D/Mv3vku4vpfx4WVL//ZHCU0WHZ/ykeopsRf0L5wlD13VdKeUv1HOcxpdI+u2u6/6ZL8z0YIvifgWF8IcZVnr/wcQ9j2d7fLBcq62m8tfi90Xx19UbMn1a13XzPpS6f2KNU/pJ9XqYl6k/PM6qFyMtgwdmn5+t/IXi31+sXsfxxV3XzQmJUsr+SrlPVO6uExpe4hFHFnj2a7XVTejxkA4Y2Xj8XUk/3nWddWkqpXzU41jnE4au6zZKKQ+pP/O+v3Lb/UuWuV5Kea96NdG2KKV8u3oO8f/uuu4tSXmPqX/hfcfM2Ofz1RMhe9Qb5z2p8FR74f2mZsrpruv+7IlsyExU81xtNb3fr7HRxlcmjz8maV9y/W2SvqX0vn1/+rg0NEEp5dnqqeJ3qdfB1fA2SX+7lHJ0JtLK8JjGfpAZfm/2+SXqN4jx0tnnVDsy+CVxwRdmVOUXLFNI13UPl1J+Wv1BfZl6PdGyvoi/qd6Y48au635z4r6szX9Fva7vyeTY/g5JLyml7LdYc3aYfaq28avsuu79H4H2SZqL2vYpjOcM2Z57vFHbw483fl29FOM93RJuGDWUPuDEJ6gXRW537z9Xf058U9d1b9ju/tkZ8WOllC9Qr7N/0uEp9cLreku3J4qze85MLyf1VpZfLuljJf2LcM+vS/qXpZRXqLdw+5vqWX3izyVdVUr5B5L+RL2S+z3qqbgvVe/Q/lr1+oSPUn+Ifx1k54viGaWUF6o3oLlGva7sq9VThl88oSOSegu2l0j6w1LKd6oX2V0v6cVd131Z6MvXl1L+rnrO7Ux26HVd995SypslvXrGhf2hei7tlepfMu/hM9vgD9UTFz9cSvlW9U7F3zLr16Ely/oRDXq8mjhzXyklm8sPdF33v0op3yPp35VSPlq91d+6erHxZ6k3bvhv6kXdFyX9ZCnl+9SLDr9NvZ73yaReeK36dfsbpZR/o15U+kr1Is0n0kpzC2ZSlrdJennpXQ6Oqef4PuEjUP2fS3pRKeUl6sW/93Vd98FtnrkUvEK9LvjtpZQfUb9WrlTvUnRd13UjlxKjlPJG9UYm71QvQblZvaXnlQp+dLM1+2eSXtF13ffOrn2FenXNL6m3Mn9hKPp013Xvm933a7P2vUu9Id8nqj/3ahzpE4qn1AvvCcYPhf9PqXfA/NKu694crr9G0hWS/ql6OfzvqpeZ34ay3qBet/eds/vvUG/NeLqU8qnqD5xvVq/7uVfS72iQ+S+LfzX7uzBr95+p16v8xHYv0K7rjs0W+mvVi/0uU7+Bfinc9j3qjQPeMPv9d1U3B3+Z+rH4KvUvp+Oz55fRJ7htJ0spX6RefPKzs7J+UL3OYzvTfJb17lLKLZIe7rrunZXbrlJvOEX8sKR/2HXdK2Yi7m+Y/XXqTcl/W72hgLqu+7NSykvVr5NfVk8gfLN6UednLNPmDye6rvvzmZ/X/6teonK3+nl6sfpD88mEr5P079S3b1O9gceXq9cnfTjxL9QTRz+rntP7sVlbHld0XXdbKeUT1evKvkc9AXy/emJ4Oxekd6jndr9evXThLvWWli/tui66FhT1BHEkuj5n9vkFGktNfkP9WpB6yc0Xqn+Rrql/Ifu8eNKhTBP4DQ3/+2NG4f6Fej3FTzzR7XkyYmYk9AFJv9J13Vc/0e1paLgUtBdew45F6SO3PEs9h/ksSc+i68JORSnl36oXGx9X77D8jZI+XtILuq579xPZtoaGS0UTaTbsZLxcvXj3FvXi6fayG7CmXoR2RL04/Y/UB3doL7uGpywah9fQ0NDQsCPwZLIMa2hoaGho+LChvfAaGhoaGnYE2guvoaGhoWFHYCmjlbW1te7AgQOOkq09e/ZIklZWhvfmrl15kX1QhBxTv2W/Z3rHRe6pgff6e9YuX9uu/Pg7792uv1k5m5ubk22dqm+761mbamOQtX11dXX++eCDD+qRRx4Z3XTo0KHuyJEjunixT8N1/nzvVuh+Ze3zunL5vD7Vj2XGuFb/pdyTzUdtDHnv1Nrib49n/5bZK1m97IfndGOjz4jkOY/1+JzYvbuPNTy1dg4ePNhdffXV83l3ef6UpAsXLmypk22ampdLsWPY7tlF5ulS5rAGj00sk+VP7Rtiu7Zl/a71Oe7x7Z7l96xMnwe+trq6qocffljnzp3bdkCXeuHt27dPL3rRi+bfb7yxDyh+5ZVDnNDLL798S2P8UnSn2XlJ2r9//5ZnjNghaVjM8aXqhe6B8b3+7k0Ry+bG4b2uZ+pwrx1aLtvtiv+73PiCiJ9xQXLj+gWxvt6nROOh4s+sH+zfIocy5yl7+XgeXM7Ro0f1/d+fB1g4fPiwfuAHfkB33323JOnOO/uk0GfODL7vXivGZZddJkk6dKgPnOLD0Z/xGbavtmFjn/2M+8rvcUwNXuN3Pxvnny9hrhGOdRxjtsnt9xhkBx3rZT1c/7EPvGeRF62fOXu2T65w7lxv7PrQQw9Jkh54oA8l6rUrSQcOHJAkPe1pfQzzI0eO6Hu/dx6HfQuuuuoqveIVr5ifE4880gc8+uAHh8AmJ06c2FKH7yFhlb10fY/7zBc1xzqOA8eY4zR1ULMs1xPng3vMcNvcpr17926pI/7PfeMyXU/cd1xftbMwe2l5DNj3xx7rI6Jl+8rXPAdum9eQr8d+XXHFFVv6fvDgQf3cz43ygKdoIs2GhoaGhh2BpTi8rut0/vz5EYUQOa4aFWlMUaSkZkhdZuJSUsCkIjJKi/fWPjOuMKP6pTFnOSX6cRkuk9ezNpA78O+m7CL1PEUxxmdNPcX2k/vgfGUcunHmzJnq+HRdp/X19TkX8PDDfXxmU3+xDTVK2G2J68DXTKWSSzSydnP8+d2IfSJHTaqWXLw0ljJwflh/BMW5vNe/T+0Nt5FcgWFqOms/92TkXBdFNq5er48++uhCz3udR8S2eH7Jtfoe9yeuA7eBa5YSEJYVUZP4ZKhJrLjH4pxTTBylG1nZsX++t9a2bL3x3PR41s63WCbX+dR7wnC5PovIYfp8iPXEc0vqpQWLiqUbh9fQ0NDQsCOwNId38eLFSQ6ClNa+fX0GDVIT8W1PqpxUjMvKOK/YNmlMiUzJmkn11/QX2b2k6IlM3k+KkW2Nz5Az5hiQ8svGxONa01HEPnk+av309ThvmX6npjvb3NzU+vr6XK9jriLOD7klwutibW3Izen/vc7INdU45execiKZ3tkUp9tqLqFmsBFBLt1YhALmmvSnOZ+Ms63pJNnWyD15rfgax8QceuxfTRowZUDkeqzDPXfuXFV6UErR3r17R+MWpQPcW9SlZtyM1+B2nD33YizfqNkZxDklt17b/1NGS/yk9CvTy/O8IdcW+0J7gxrXlkkLqG/jGGXSD3JrrM/9iXPtte41uozxT+PwGhoaGhp2BNoLr6GhoaFhR2Dp4NFd142Uq5GtrSngyYpbBCWNRW8UIVDUGMUpbEvNXSCy+mTtjZq7Av/PyqiJLeP/bIv7SxExn8++U+ybiRppluzrVBDH8mkYMuX7xDHf2NioKo8t0ozGNfHZ2AaKKNwWrxm7K0i9SbI0mLlna7J23eJQilos1qGpuTSI9GhskZn410DRlsF5itf4m/eMTfXjfmLfKWqkmXg0xqCIyXC/PN7R0MViSc+tx6hmYBPrsfvAuXPnqmtnZWVF+/fvH+2XuBZrIn+K16KYreYq5fVWEwHGa/6sGffEPnm9+ZNuAtnZybOvNkaZoZfXSHaeRcRxpPjb9fJs5pmW9dn95JjYdS2C5+Yi/rRRRbCoWLNxeA0NDQ0NOwJLc3illBGlkEXLqCnMTYlm1J6pRlOgpGpp5hrvcb0u39SNqc3MlJ0UPamLWE9NOVwzBMhMmN1WK1tJlcYxoZGI+0OzYCqR4/905iTVO6WMp1m6PyOH5j66X+vr61XDg83NTZ09e3bSMIicj+fSFKEdTv0pDRyHOR2Xa+qSxheZq0lNce51GNcB58H98bj4mcxoqWbUwXWXGXS5f66P/Y5cr59neeTwXG+cUxor1Mz8Y30cg8wgKdYfxyIa/9TWjjk8uhFkEhiucY8P51QacyA0iafUJs5pze2K+zGOLfcjn8mwaGQdj0k0QCIHyb2XSRT8G9dxzYUqW6tcXzw7436qRX/hXolGWR5HS3WWiSDTOLyGhoaGhh2BS0oAW3Oclurm2uSqog6A+hDqQfgGz0xvyZGYesv0B2yDnzE3SKom3kMqpuYsn5kjU+9Wi48pDeG0yBG7XlJ8kaN0P0jVuu00aY//+96aw2nUFWVh22oopWhlZWXEbWTzYsrt6quvltSHloqfUQdgCp6cnOefur1Mh0OTcvYr49Y4p17v2TO1cFM1B/Sp8F10Q3A/43rzPf6N8+62es1ENw9ycjXONXI2HmOvO+oVT58+LWkrJ00OOXL/hDm8U6dObWlbFiaMYQrJfcb1S6dn7ospWwVymzV3oSmJCEG9Occg1kdpSGYH4H7Qad3PUocd20iplyUKNV1bLJ/zQy44rjevK3KFHKu4vj1ftXGcQuPwGhoaGhp2BC6Jw+MbPOMu/PY1dWGq3NRmfIayXuoaTJVl8lxTCzXrPP8eqUtTgaRS/Kwp0khVRKok9q/mgB6p1Zrex/0yBRQ5F3N4pqxchh23ORaxPlPC5mDdH1LpGTVo3Yyt52iFFuvJuNntrKpIxcY2kLPzePg6ubgIhhjzdzoXx/ZnOixpsDq05CHOLQMkM2yXf88CQHO9kUL1+ojtIUdFC79s/ZFa5p6kxV2cM+p/Kc0hx8//pWGeyF1n4aF8z/nz56tWhA5oQF1XlFBQp1RrU5wXznvGLUdkVs2c/ykrRgZE5nnHsywrp3Zm0RlbGs45Sr18neeSNKwd73/q37x/KOGKY+F9S+mHxya2kb9xbWZcnJ/PdJDboXF4DQ0NDQ07AktxeJalm/Ll2z7Cb11b1Jlz8HUHD5aGtzzDI7n8qdBjpkSMmoVnRl36N1Jp7EMEw5JllJy0lfLxb+6HuTZ/uj1Rv0BfI8q6/WluKNZnXRf1Pub0SPnHfnm+TA2ao6zpDmI921mbbWxsjMIPmdqM7WSYMOoeMo6La5EhibK1WgvT5PXtNRqlAy4nrt+svsz6lNzSdsHLpbGFpUFuPT7j+sjt+tNj5r0TKW5yKNSNey7ivNH62G3z+jbFH3X11DNPwWuHOrUodamFYKOfZub36bVPLpD6ubj2Pf/U3WXWoIbPQD9bC+a8SFBnt5W6yzgv3ke818gkZhxHnpU1C0xprP+jlMrzH+uj9M7jSb1v3PPUPS4aOFpqHF5DQ0NDww7BUhze6uqqDh48OKfoMuqMFILfxubiaCEmDQlkGeWj5vsWKSBzIP7NVCs5yowScdtIWWeRCahLIcVNyi5S3KQcfQ8p7cz6lDoaUlimFiNlR12hqSX6R0WK221w+aaITZ1nbSR1u2vXrkl5etd18z577KM/V8atSMN8ea4jnFy05g9J3UDkaj1m9Nmjni7C5VKXOhVpx30kp0BulH5gsd01v09TyHHMano498f9O378+Kh/Brlt6puiLyQ5CXJg1BnFPmbWuoSD1vvs8HlgziH23331mLudmQUsdZt+hvowlx3XA/Xvrtd7zYhcFfeu9x/XWWYVzCDYtSDv8VlaOtYsl7OEs7XoVrTMjwmca/7Z1CFG6QgT2Fo6xfMt24vc64ugcXgNDQ0NDTsC7YXX0NDQ0LAjsLRI88orr5yz7TZ/jyIYOgebrWaG68h6P/jgg31j4Nzte2jUEsUSLI8O25mjrEUJFMlSgRrNlt1Hl0dRksfCiKI6ilupsK/l54u/+VmaUnsuPO7SWCxBEW0mdjU8T+7PtddeK2kQR0QxKF0LpoK40qycJvLSWDFPVww/H8UbVG7TKIYhrKJI06KdaCwkTedfpNEQxZFZMAb3i64tFBvxemy3++7+eR1YpJSZlruvfsbXPZ7ed3E8fQ9DltGd5MSJE/NnGM7Pe5BixiygehYaj+i6TufPn5/3w/XEPcazyOcPDaCi6PSaa67ZUo/LrYXkuv/+++f30qiD4eky9xSjlkvPz0SDF/fDffW4WVR75MgRSWPxsTSsDfeHofq8DqJ6iS5ntWDcLiuuaQZ5d1u8z7Kz0mvPbfUzVnNl+QwXCdBeQ+PwGhoaGhp2BJZ2S4hvdBqVSAPlYSWkFeM0H8+ye/uaqZlFHAypVPe9NepdGihbOjmamsicuU2JsDxTG6TwIpVWCztF5+gshZHLp4m+x2gq9QrrpzFDRC1Tt41CTA1HapBuI/v27Zvk8Pbs2TPvq9uUBeSlsQW5s2i84vLI0ZECpWFKvMdjWuOiI/wbg4S7zVkW8VqIKhqgZAEIaKTAejIJBrOy06DKfWDWcWng8D02/u45Nocf18Hhw4e3lGepgD89R5GT9Fi7H2fOnKlS7qUUra6uzu91G+IeM1fpfe9PGqZlqcXInbudDLoQDVJ4D+dnKj1QLZu8jXDiGeNyfa56HswBWbLDEHvxmtvPM5HuZXF8mOLJa9drxf2MHKWfdRsZeD6TmJD7o1GUy/KZLY3Ps6nA40Tj8BoaGhoadgSW4vB27dqlw4cPj/Qm0UTZlACpMAYjzag5BnymwyQDG8dy6VrAhIiRCzWFQ/NghrHJwhAx8LQpVTpoZ86Q7h/rp+5SGqg9jy0peuoGYn0MbOvvppJMtUd9Fk2mGSSb4Y/ivTFUVo3Du3jxoh544IFUh2tQn2Odicc4a7fhteJxI0U/FTCbLhiUOERu5uTJk5LG3BG5+EiRMsBALcDCVJqTWmJR9yHuJwa2phuRqXKPZ6aHoR6V3HYcE7qLfPCDH9xSlu+NHBl10+YSM1y8eFH333//vL1ZQIDnPOc5W/rOdFbkxGMffa/H0s/4XCC3Kw3zTi6QOra4Tz2WH/VRH7XlXu7LqCf3b94L5uwYuMFrOJ5htUDWLstlR8615l7jfrpt2VqlPttjTqf/OI6U3ngtes9cd911W/oQ7437qSWAbWhoaGhoCFiKw9u9e7cOHz6sd7/73ZJyyyBTGH6L19LL+60f/zfVwtBIppao/5EGqpH1ZVZZhqmFO++8c8t1U15ZUGzXyRRC1nHZ8og6xdgPWknVki3GdrsN5iw8BrSIi3DdDGHEcY6Ox76X1HgM7ktQ57kIjh49KmkYryxBJhMC+96ME/dYWseZ30AJAAAgAElEQVTo77SIjBZ9BhPhUsfqvmfcuqlil2Fq2WMSqXSWSyvAqVRPlGDQKZptjeV5rZJKZ4qhSOHTktfwMx7faGlHbtr13nfffZLGwSeksT7z4MGDVefzCxcu6OTJkyNOxRaKEe4TOfBMokTOl5+05s4SAdOKlfdmiZnpqH/vvffO+ynl+irvVc8VrVD9GaUfvtdt9RphWrS4dmgb4HVgq1zumSzABnV2noMsiLj7St03UxrFdwzrXiQ8ndE4vIaGhoaGHYGl0wOtrKyMOJRIIRikqEzlmfrMKFJ/mpow5WNrr4yTIKdDH6NogWbccMMNkgZqyN/N4ZkCin43pr7M0fm7KV1S01Mpc+hTReuz+D85ZqZbcllue4TH3GPBRLvmtmJ/fC99kvw9Uunue7TGqlnaOSwdrbwy3aPheWC7o87YVD71IjXLt6jDo5+nqVla78YQVh5T+pmaemX4K2nMATGY8lRYLa8rpnKhNCTz3fNeYEB1U/F+No6n2+RnPQcuP7MG9J5gyphM12a4DdGKdkoPs7GxMQpRFbl22ghQN5QFnPb/7qPHhxafWfJYBlv3nPpe7w1LZuL/1B16fDxe8cyKa08aW5B7vujHltXjZzxutE6XBqtPP+t7n/nMZ0oa1oXnPJ7jtIGglXAWGtLPmxt1f90Pj411l9Iwb/fcc8+8X02H19DQ0NDQELC0H97evXtH1obx7VqzlqR1WeQEfK85O99rqsL3+i0frcJMVTJA75TPDnUq119/vaSBS8h0RdQJ0VdsKl0QffWYJsP3RurM/7sNpkJtzeb6zAXH9vkZc2umsEgdRkrS9WU+gdJAfWYBnD0vp0+fnoyC4DQvsY2Rq/O4UAdlmJqOETJ8zRSidR0eJ4+L++PxkgYLMK8N128qM7OIZdqZTIIg5RwedSkeA1o+ZjpxWksyMG8cd+41Rq8wMt9E9+8DH/jAlvp93VKPzOqZ0Wc419G/0GMdg8pPpXlZWVkZ+X5lUX/cJ1pP+pmo8zaX4r75N8+3x8vnUkxFRl03La3djihFob7Ka9b9cHuivyJT4Xi90wo0s4RlhBVGh2Jw6XjN69r73ZIUt9X9jf1z32+88UZJw1q59dZbJQ37Oa4DBsf2PLl/7k/cg+ae77jjDkl9irQpKUlE4/AaGhoaGnYEluLwNjY29PDDD8/f1NR5+R5pnCqe+oT4RjZ1ZoqKyQzvuusuSQM1ESn8Y8eOSRooBSY5pYxdGqhzl0d/m0wPR58WUvoGrYtinw3Gh3M/YzxMWjGa4jYV5cSvfibqG13fLbfcImmQdT/3uc+VNFCyGZdNvy73O0vYaa46Rk2ZirSye/fueV9dTuSQaLnn8Xd7vT6iLsV9te+XLQO9NmnRlSVXpQWn1wo5v6yNXl+uL0t/5fIZj5U6RCN+p9Wax4tjFPUi5sapL6cPKSO+SGO9DmOTmiu+++6758/QP5ZUOxOsSmMd4cbGRpXDu3Dhgu69996RZCmuHeqcXRYjkkSpge/xfDPZqdtma+54znnf+xp1+vSFlQZbBOrdrNvz2s10+bQKpQVx5hfH+aYO1PMR96zP2ne+851b2uxxc3vM8d1+++3zZz3WHEePPdedNEhi6C/LmLERjAJz+vTphS01G4fX0NDQ0LAj0F54DQ0NDQ07AkuJNDc3N/XYY4/N2WuzqFFkx2zRFn1YYWvxVBQFftzHfZykgSW2eM4svkVzN998s6St4kKmDDIbb3GlxXnRUdZsukV8FllYPOq2RbErHUndP/eL4qr4rMUQDKDNtCrRWMGiWY+JRUkeE7fHz0RRjZXfvpfpYSxmjg7Hbj9FmhSlRdcQixQ8thTvEqurq3NRjNsbn3Hd/mQA2UwEx1RHdJFhUFmLguNvDHDAerJgtx5br2eL2b12Yxs9TuyHy6KxRxbwgGGa2MYobvO9FhdRpOm5ZF9iG7xGauH94rxxXdfEUZlbkdfvhQsXqiLNjY0NPfDAA7rpppu29DUaasUxk4b5oCFKXA82rnD/LZ6ziJOZwjMjNvfVe+62226TNIxb7JPnzMYWHkvvH7cj1uPzxfvfY+ozpRbEItZtEbf7y3UWDdHe9773SRpUBDQ4cj0Ww8Zzzm10m30Pg2NEka3LtYjUz3o8vQ7jfvLz7tfp06dHaqMaGofX0NDQ0LAjsBSHV0rRysrKKDFn9vY1J2RKxJScXQDMZUkDNeZyaHDwiZ/4iZIGqilyQqYITLUw8asph2iAYtN0ps9gMOlYD90sjJoxS6Q4zDm4rW6TKXAqhOOYuNznPe95kgbKKzOOMDw/H/3RH71lLDx+ridSnwyZFgNCx/5EgyE6tl5++eWT5sFd143cRaY4IaMWBDm21y4sTLlC6jIaTrgeumu4D1lYNffVwQqYIiuuGcPcgJX3NDwyPKfR/J1O93TMdX+iIY/7TO7Mc0x3iCxpKA3ImLw4ckrkVF2u++MxiiGz4pqR+jGvGTytrq7q6quvntfjcycaP7g9HmtytzSkkIZzwJyI+0bjDo9XnAtzZZ5Lj5s5kyzQAQMbeJwsFXD90XjNIEfne3xWMsRi7J/3GLmyLBi7++MzquZ+4TmI+8v1eS58j6+73igdoMuMpU42nnEbs3RybvfDDz/c0gM1NDQ0NDREXFJoMVMtplSiLJ0myZGTk8ZhjaSBAiCXZpkzU35EroBBbclp0TTWfYjlMB0MzXljOXQEdn2mRDLzZ1OGdF6n2XhGsTJYsDkZjnOsz1wY9Y1MXppx5gyjRN1eFl7J7b/sssuqKW7slsBEvVn6FNdR42Ljd6b9qQVmzoJ6G0yB5HXtMY1UuuumgzP7EK+TK+N6tm6alLA0ppbZX5edtZGhnRjej2ssttHjSCdlcikRDAfFuYjrje5LU24J+/bt08d+7MfO14PHKbaB0hqOAUMOSoN+33uX+lDum7jHfC/18B7bzEyeDvnm7Nw2zo80Ttrq75x/9yFLPM3UO9z/0S3Hz/sc8z3m8Llv4170Pa7HZwqT5cY2MoExpQPmnOPaYGDwRx55ZDLgRUTj8BoaGhoadgSW4vC6rtPFixfn1AWdcKUxFWEZs79T5yVtTdUuDRSB3+CkoiKXYYqOIbEYZDdSZ26TqSJSdFkqeqYOsQyfiWDdh8yS1OXSOsv9iVQhw0LVnLLJycY2mOphskhyjfEZpv9wv3w9UtWc06nQUA5aYKov4/QZ3Nago37UATBMXM3J34i6XKbYYTuy9CPkhFlfFmSbFoIMLWXrNob+iu2vJTTlmo2/UVfEuXXbY1v5G5MI+/e4DuhIzySeDCocy41JaacS4K6srMw5O+ux4zqxhMfjT30lbQsiuMc4Ttm6psVtTR8cOQ/Pt/e9rcN9r8crrinqs90W94cByOM5x+TE/o2WzFGHS/2luc+atXY8Q5jWi9xbdva7TR4L2lG4vriPo8O56506eyIah9fQ0NDQsCOwtJXm7t2751S1qapINdGXitwLfY7ivYYpA8rhjfhszWqSwWOzpLHmXkiBmKrILKxImZKSy9JZmOJxea6XwaOjdZ7HmKGF3B+Pq/sfObyYrieWz5Q8kUqnzsagXiaOve+NoYtqlnabm5s6d+7ciMvJ/LmYtoby+cgJUGdC6pxJaiOHR2qfc5gluSRHSW4qC0tHTthlMGGq25j54THUGxObZtauNS6N/nKRo6C0hZaXGYdE61ZzB9Q3ZQGuY99ra2djY0OnTp0a+UXGPV0LhcffI7dJ619atVJKlCU79T3eA5HrYJ+tszOH57G0RSRTG8W2cb2577RYzSQ9PkPMGdfsAKRh7rwWqSOktWs2Z7UQjWx7rIfrzv3yPGb+hdk5vR0ah9fQ0NDQsCOwtA5vfX19/uam/DrClAKpI3Jg8TeDuidSEfE7qQlSekyyKo0jxJhCIPcZ66Fu0n1n4tdMx0EKhBQ2dQexDdRrUmfpNkbOi5RUbewjpeXf6HtkPQmDFmd93i4J4+bm5rz8LDUJuVZyDBk3Y1B3kkW8qT1LMBJKpsulLs3j49+jnplBjz2HvtdtyrhQr0nqTriG4vqmvpcBlRnAfSrQOTlaWivH9tMH0v21lCCLhpFxT8TFixd16tSpebm0IZCGeTAnUrPsje12u2rpzsjxxbVDS15LZxgZJFp6m7Pzs7ampv4tSj0Ymcr7kRwm2yyNLXzdd+vLqKeTBqmKy/E99hmlhW88x2m5mfkIx2cjKJGhvUM8q3huLqq/kxqH19DQ0NCwQ9BeeA0NDQ0NOwJLG63s2bNnJEaJIhgqfBnUOctLRmfkWJ40NoSJYgkaAFDM6rZmRgS+19/NNmfm6lTAUizEfHIxDBGfzUTAvG5RApXVmSFFrCPeQ7NgOljH/jE3Vi1nVhS3WEFfM3iJ2Nzc1Pr6+igwdyY2Zp9p9p6JMCjCZB+n2lYToXq+oniaIkYaX/iZKG7jNYoaafgU1yrN7L2uKHLOXIMo/qQ4ii4usT8Uu7KtcQ7oIkOH9szdgHVPiaU2Nze3GKFkzt0MN+V+MNRfbIvFjV6Tnmcak1G8FsunQz7dRKIhmu+hk7zPHV+Pa5Vi1yxgQ+xnJrKlqsbGKw4KEseRrmDe/x4T1hvr4280eMrmgOHnsszt0tbz1O21uPfMmTMttFhDQ0NDQ0PE0hzerl27RuazMWQWqSIaGlCBHq+ZimAILiOjLmtBnekEGTOeU7lqKoycRObs6GdJgZASjpyLyzc1Tk4vM7BgwGcaq7Bdsb6akQ+poEhpkVM11eu2Z5wLTZMvXry4bYoXGgbEcXRf6eTvOpnVOra3JlHgZ9bnWmonX48BeU1pmpNgChyWJdW5GEo7snXH9CwOjcUA4HHPuD7uKwa6zowLPB+kzrn+o0SBXDQ5WBo3RcRA1rW143PHRh902Yl9ojERDeAyDo/BFVzWVLCMWrowBk+I6yMaMkkDN8VwbnE+uObpusIxjd9drg1OGOzfga4j3A+31euKZzLXgzReBzQgJNcd4XI8p0z7Fc89z088I7czmJu3caG7GhoaGhoanuJY2i1hY2Nj0jyceheGnWJYm3hvTcfAALbxbU69h38z9URqVxonqKw5SEaY+yBlxZBLmSydeh6mkHHZmWk5KRfem+lEqTMhh5RxxTWK1W02lZiFlIp60inH8/Pnz8/1fjZ/jhQpKWtyeBn3TNcBrh1yfJnOofasqc2oh6GOiC4FmV6MOmFyfFP7yWPA1Fhuh6n0LAg3KWzq4bLwVxw36oGnQA6NezHj4LKwY8TKyorW1tZGiWsj90TXFbptZI7nbh9DYXG+eP5Iw/iT+zNnl9VneF3R9H+K86GtAvWK2Tz5GgM4eA9modO478l90v4gc6XiPjKyc4cBApiGiNx3rMdze8UVV8wDgW+HxuE1NDQ0NOwILMXh2VrKb30GApbGVKu/k+OLMmE6a5PS5ff4tqfzIYOOOlB0BMNk1Sw9I5XOcEZMnsg+RAdQJi512+iEnYUFqgXUrXHQsR72jwlbY3108MySNUpb9Sa0iI1h54jV1VUdOnRorofJwk0xjBrnKbPSpD6UOjR+j+NJipQ6Tus8Yp9rYcc41lFfw+DENU6L/YzlkZN0mdbpRX0Mgzcz3JqRjYnvpXM3JRkR1Kl4LTE9TFwblJhMJQ5eXV3V5ZdfPr83S7dFx3I6MmdhtHh2ZEEcpNzJmmuFDuF0jpbG3BkDLRjR3sD3Uh9q+LrLiu1iCENbNTKkYuY8bpADY9jCKZ2+QU45jq+59ZpVeGa5T73y1VdfPbl+trRlobsaGhoaGhqe4rik9EB+YzNgqjT2YSLVmnEz/p9JFLNQRLHMCHNcpspN3WbycVKt9PvL9D3ktExhm+KqJVeM97Jf9od52tOeJmkrZUfLJvoKMfVLpv9jYFb6VmXjS72CkaXpoC/YVBLPlZUV7dmzZ942cnqxz+QymVA0UnPkPGhpF+vns+ToqXPymoq6IoauotWixzzOpeefnEQtxVPUk1A3Q52exyTqGY8fPy5pkG7QmnpKJ7pd6LVMR03OqBasOuP+s4S5GXbt2qWnP/3pkqT3vOc9krbaA/h/z88i5dKfj1w710wmWWAwd9YX54U+lORKyO3EOhnMmam+psI7UofrMk6ePCkpD6zv4Pfe2xwThqnLQAvpzMra4+bPOF5S/r7wvUePHp23oaUHamhoaGhoCFiKw1tZWdG+ffvm+gK/jZ2YURrkxE5qST0P5djxf1rpGbXEldKY83D0AFLVUQ/j/2upY0xBxHqoh2FSWvo0RaqJnBD9/5w2JKuPEQ9odZhFQKDVH7lOlhH7TuuvqbQwDLo75YdnK03q1jLrWdbJMc4stjJ9VOwP75fGeh2vJSbOzNYOg/fWUsxE1CweeT1LHuzyyGGSa8v6Q06OPpeRq6MlXU1nE59hoGRasPp75OYzPXINXdfp3Llz83Xm9DZ33333/B5z1P601Km2P2P7srRMEdST8f/4LM8bSzJiPdTz2YqSZ5Y0cH3cL1wXlPxIw7pyW91Gn9FMbSUNOmH6PLqN1KllFr60jKc9R1z/Xs9MrMw9ErleSy48NidOnFgoKLzUOLyGhoaGhh2C9sJraGhoaNgRWNpo5cKFC3MnZCs2o0jTYhQbZDCPEwPLutx4jSGQGGA0CzjsNpHVzrIju40GM2ybZY7GOGaxGayXDq4W62Th0SiWsPglEzFSHGARA0MYZcGR6fxP0SYd0GP//CzryQx56D5AMU9EKUWrq6sjN47MQZ9m7hTRZgZPFJVSYZ6J77wmLFqmkUqWN9BtpLLda8frPXM4Zkb1LA+itHXt+H+LmC1yotg3iqUYuJhiSBpcxfGsubtMhSOzOIqiK4pDIyie3rdv32TG80cffXTen8yB2XvV54A/GRh+KjwYXUAo8sxC2jEf3lRgfRru0ak7E/nReZxzSVP/6Ebg9WwRqkWAFmm6LK+pWB4NeGwMSCf2KKbmeqZ6IwvRxjOJ56bfMZnI8o477pDUj3EzWmloaGhoaAhYisPb2NjQ6dOnR4YbNlCRxo6KNYoxcni10FdZBuh4fwSDmVLJHikRU390FvX1jEqnoYmfJdViU9/MeZiO5qbwTHFFKoapclyGQ+h4nDNnWRopROqfbSNIPTPobsaZR06hRqU7ALD7ZYo7rpdaxnm6c0TjHhqL0LWF4c+yMErMVs7AtbE+SiFcj6lnr4u4Rhmaigp5cp+mouO9XivuJ4NWx+C65LTcfksJaP4ex4RZxbn+MmdlSgPYdrrYRNRSZUXYaMVz7b5HbsBzeN9990kanxFZ+hj2sTYv5mDj2mYIrporQ6zX3ApdJtx2GwPG0IOeK4Yq8/nmPniOo7TNZ5Hb4nOaXFTmlkKDLbfN/c0kGL7GgNM8i+M6ICfMsGGZcZPb5s8Y+GQ7NA6voaGhoWFHYOnQYo888siWxHvS1vBTDBlkkKrIKDtycjUHTbYp1ku9j79HJ1W339f8rCkFUxORcqD+oJbix4hcgfvO0GnkSjOu1580JSanEceb9VDPl1GfdNDnOGZhr4xMB5nBXF68N0uuSh3AVLJbllNLjJm5VdCFhG4RridyoV4TpvBZv3Ud2dhS38s2kWOWhnXnT7qLZOGaDOqZyO1m+yubl3iv649t5LgZ1L1nsB777Nmz1SSeDlrPtRPbTekJ68x0eNQ98tkpp+pa2hxyG7GN5vBcvufU3FOWrJrO4VdddZWkQRrlc8B98f1ZPywd8nntsfDZEuupuZMRcYwYeJ4BFjJdLsthgu1MsuR7YqLjKalVROPwGhoaGhp2BJa20tzc3Bw5BGf6KlJrtLzLqMpaWCjqqSIlSVm2KRFznxnVRL2Uy7NVU2bZ6f8ZfspUhuXuTDES28A0QR4jU3iRWmRgWX8n1+ZnIrdAh1I/Q+o8UsGZxV6sP+MGmFZpipJ3ihePMcOIxXLIvZDai2BwaAbbnQo8XbOwpY4l1kt9H+c0m3+GuWNbSd1GK2L/5jViizpakkYKnNKHrB+x7KiPqQVUJ4cU1xstE42aI3dsG4M9Z7B1uDkRtyVaBdesshmgeyoFD0MOuvwsxZg5U+qYaAEbQQ6S6cn83YEopIErZEg5rylalEYOk+v7zjvvlDTW3TpEVyyfIRMZ/CNzPGd4P/aL7434Py28a2H4YnmU6i2CxuE1NDQ0NOwILB1abO/evXPKkBZqEVlQ4+x3lxtBKmwqvBV1gW6b/XJMeVv2LQ3ybpdnWbrl36ZqIkVHSs79MsVNzjXTx7k8t8WUvNuaBVJ2OUxHRH1X5ktFCy6Gw4ogFUbrPHJMHB+ppySngkcfPHhwFAourgO3j5TiIj42Nf0k5y2zLowWjtJW3UAsQxrm+8SJE1vaxrBRmaWdP02d0yLN7cj0Ilwr1PfFNrotpvYzX704JnGP0rK3Rj1nPpy0NuVaimXFte76amfF5uamHn30Ud10002S8rVjDoFcE7mKWAfb4LXDcF7kmGN97Fvms2f4fKHP3iKpbZhSiNbImd1Bbfy9hvyM9YGx3V6jro9tzfTr9K3lGHCfxfKm9LexrbEfmS/gdmgcXkNDQ0PDjsDSVprr6+ujIKeZ1Zzf7qQqGexUGvvV1IJFZz4ZtLRjmiBzcxmlSt8dP+v+MflprId6K1MopmJifYcPH5Y0TkZLziULik2dAPVyWaJYUkvUv2U6POpJsyS4fCaLEDHF4a2trc3H1JxqlkCSujzOXZbElVQs+0wuShr7/bltni9T0TG5KvUsptZdH5MjxzpptVgL1B3hcXJ57gf1MBmHRz8ol0EJTdy/tNJdJFoGfWx5T8bB0Mdt79691bXjtGSGdXlxv1DCUks6GvtKfRXPF5YVdezkAl0Gg73HOSVnx2cza2evJ0uFXK7roc9tbCOjPpmTs/7RZcVUVrRQZv3UJcb+MXoObTLcjjgH2yVhpo5SGvtNTkmWiMbhNTQ0NDTsCCwdaeWhhx4apbmZsrDK9Dwuy2AMOUZo4PcoSyfnw3tNZcS4mG6TqUtzg1l/2W7qD2j9Zaozjgl1Kq7P90QZOuujNRQ5y8wCr2ZxmVlWGbUkpKTAYj2MXrKdLL2UMrJmjXNJjoDJH6fS2dSsC2sSgHiP5+Waa66RJB05cmRLGzPLVHL6jIsYfffoS8e4rJyvOI7kVMltTEUQoZ4ps3hjWw1KWbgO4trib+wPLYvjvZZklFK25fDMaZsDj7YDjEjDGKSLpCXjWUUdXtTL1mL3kmuM1odO9Ox15vqZ8ilKB1wn9Yj0scvsKWhJfOONN26pn/6A0jjdGvcrrTTjOnC7uVaJyBUyNRPPM6/N7MwyB9tiaTY0NDQ0NADthdfQ0NDQsCOwtNHKuXPnRk7YWZZdihRrSuT4P8WBDAvGAMHSOOSRWW0bIGSsN9lyiyd8T5bmhk6jNKf1s1Qux3vdJpu0O5gvRZ7S2FmcLgU0Moki1Fp4sJr5eDYmdGjOxBMU6124cGEy43lcO5mxBftGpXcmOue6Yl89flloKZpg04jA9WeiLIa0i1nfPRaG22DxTM1VIgvfdu2110oaxHjHjx/f0p8sPRSNVQwaNtDIJLalJo7KjAhqYaeYXifbt1FEXDNNL6Vo9+7dc3Eb09tI4wAUHn/Wk5nR00CLrj7el1H1QGMyl0X3oVif2/2c5zxH0nBuWhRo47ko0qRxTM1Vh0ENIizCdFkUZcazimc7zzev86lwgjQg8/qnI39WDg23Mjcvq4SiGHcR1w6pcXgNDQ0NDTsES4cWO3/+/JxDMdUZwYCrDP2UOYDG8qWxa4Mpgsx0lRwj088YkQul8Ust0WikNsh9kCqkAUQ0D47pXqSBoqLzemYIQGqJbc3CoNH5leluapR07A+5A3KH8X+39dy5c5Nlb25uzql0GkXEa+R8ai4g8V72rebGEUFqmQlfMyMSBu2lct1lxvn3PDAsFw0RXE8M5muq3M/ahJycXTaORo3rzjjmWiguznUsk+4u3BuZWT8NgqaCR7s+GjjEOa2FAaOpfCYJ4bqjU7fnIHL6bIO/W2rjNRSNSDx3LsdryQZ1mSuXx8n9Y9hAStCiiwHHhimNsrCLnldzqpRY0PApc1PiWcX1mCUrZkhAOrFniZt91l511VWNw2toaGhoaIhYWof32GOPzd/2fsNGqoKO5aQiM52asV1qD1NLmSk7OS9SfNH1wNQL02OY+8hSF7k863ssZ/en2+6yYv9M9bGtLsvUSRZSqqaHoV5rivOq6R0zV4YsUWp8JnP2jZTplHlwKWXEfWZUPdeQn1nEpYXcRo2CjOWS0yPlHyl7/2/phufQc+wxifoerxGvY68Vl8H0VJGj9Fj4WQcvYMi5CPaHFDfXIYNDxHprXPbUPNdSSS0TAmqqXO/TqGtnOEByJFmyW44DOfqpxKV0U/Ics8x4ltCugImn6dQd+8hAyda/uW2WIjnYdPzNHN0dd9yxpY0Zl8ZwegwxV5NwZW00/AxTm8U+U+dJ6UAEHeYPHTrUOLyGhoaGhoaIpTg8J/Ck3DrTj/nNTU4uk8nW0sJQH0Jrulgf66VVY8YVUmdTC8kU20s9hdti+TjTEsX6/Ol6zC2QO4ntp/6ylkYjs3wip+c2TVH2tLLlWEWOjGG7pqw0XS+t6GL4Nloe1rjY2AZy4zUdZMatcb7dNupsou7JHLx/M0VNCj9a2pkaZyoh6u4yqYfLM/fHPcCAB1Jdh0Z941TAiO30p9me53dyAxm1HgNcZ/13OXv37p1LaWwJHfXWtOar6YJiHZSW0CqY6cNiWDpaUXtMySXG+ihZodW5rSmzhMOGn2VwZ0sL4rr3eNFylMGjM2tXr2+mzOKYZanhahal2dlPTplW6VnCYe/PyNVOJZeNaBxeQ0NDQ8OOwNIc3u7duyfD9ZBqZKBiU2WRSyOnSB2A3+imZiI1SyqFHImpmkiFMm1KzYoocg+m0knpMqwW09vHe2rWh5k83H0mlex6qAOL1C7b5meZniPTZ+mB3AEAACAASURBVGT6y/h7pLSm9HDZ84888kjVf1Gqpx4hV52leDEXxnBarC9ya6TCTdW6DJYpjRNW+h6vKQbslQbK3evKUgDfm3HpBrknWgNHC1k+Q/8+pm3xmsn0H9vpfbO1Q0vYWhBmaaw/ncLKyor27ds350ysu4mc0HZ1k5uO7aHuyZ/Uz8c95jOIyW85l3FOmaaJekbrZ7NxylLrxP5l1uluo5/1+vY9tN6O7ae0w+PL8GuZ5S11lC4/S+tEC1meWdTJxnL92YJHNzQ0NDQ0AEsngF1bW5tTWrQ6kwYqgrJ+6o0iZVejEF0Wy4xUhp+hlQ/1cxmFYMQgpLGtsR5THA5gS26NlqQZB1uzdCJ1E5+vRa4hlRO5Xgal5ZhkuhtSquQ2Mi7OXE4MbF2j2Luu0+bm5ogSyyxFSSXTuivWQf0by13EF4y+W7Vg5tIwTrbKJBWbJU4lVWy9X83/M/avJlGgvilLwuz5N6dC7n0qyC85OvYhk2DwWUajycDEwxlsO0B9fbZ2GMSZ90aLclp0G5TSZNFzfAYywazXF/0npeGM8j2eFwa6jn6YTK3DIM5u61133SVpq27V5Xut+hkmkY3wfDANlcuiLjSuAwddZwQmBhGP64VnPiOtZJbZblPkmBeRMkmNw2toaGho2CFoL7yGhoaGhh2BpY1W9uzZM8onFxWqZseZ3Zaiv0yZS5NeijKznE8WMdJ826yw64ssMRXONCLJwlDRwCHL5xbbluVQoyI7M6Qwaia+NbPgaN5vkQHFvC7D5spxDmgwxIzKmVMsc3OVUqpBh90OisYi3D6G9mKIuUzpTcMWirIy8R1FyswubkTTcP9Gxby/Z4YAFOV4vt0mui3ENjIsVM3xOzN4qbnd1HLGSWNXFQaAznIfUoRZczPKwnoxBGAGnztuL409Yp21ABSZWwJ/4z7hXsv2aS1cXxZWi+JpixppaOUzLd7rNvrezP1F2jqeHm+HLmQ4wiyYs9fG/fffv6Vchky0s3zMpec2Us1Cw5q4xnwPRfWeY4vl47xxjzejlYaGhoaGBmBpo5V9+/bNKQObV2cm8bVgx8ZUqhc6tpPzivWZarAy2t9NoTAslVR3iCW3EM2eGbyXoYOY7TeC1B8DbNNsXBqn5/GY01ghM/jJDHWksaGL5y/2gxQrTdsjlUuqupRSdR722qEz75SxAqm9LHg0KUSGYqLUIEoHaLZNjpgGV9I4tFdtncdxokk3OdeakU5sWxbQPLY57gn/b8MK94MhzGhgIY2zsnOe3NbowM+s27VUL3GuyV3v2bOnunZ8Hw3fsmASdJXi/MQ2ZOtJGjtfk8vO+lgzfMpcm+ieQkO0LISZne0p9fK5M2Vg5XXgcqM5v7R1fduZ2/2xxI5crtsRjYBosOV1GM9RaauREB32/emx5rqL5Vqqtb6+3ji8hoaGhoaGiKU4vN27d+v666+fUwHHjh2TtFXHwbBJlINnQaVrwYKpt8jCGpGCpzOtKaNIZZCj4ncG+5UGysftNnVBx0xSb9JA2ZkSNgVEaioLAG35u2XmpqyY4iOOiceNFBxNqDPXEIb/oel+5FzoKD4VWmz37t06evToiNuJnOm999675Zla4OxMH5vpE2N7OV/SmAt0WZ47fpeke+65R9JA2VL64LIi5evf3AavB4aNomuINKxFcjd0jo5BpN1e6qTIyXCMYn8YBo1Sg8i5UK/EscjS+VCvOaX77bpuC3eVcSaGy/HYsu9xzZNTIAdOri3uMc8vJSJ0ZreeThrm3XNFCYPXZpQA8TyjewD1znH/WVdfk/RQ/ycN8+K20M2KwR8ip89zrJbWLc41AwPw/ZDteerwNjY2GofX0NDQ0NAQsbSV5srKypzbMGUXqeYPfvCDkvLAxNLWt/K8EaCSTbVQR5TpfUyl0NLJ1xkwN5ZTowroECoNFI6pZ6YjYfqRSKXVHGZpHRot3zx+tUC/DBMVuSFTkFm5sf/xOsOsMTC0KdostYfn7dFHH606gNLSzpRhpNLNzdbWTiyLqEkUXI8p/qgn5bryOq4l95QGipvSB85DnH9Sx15flGgwgK40zD+tdQ3qdqXxWvSzHoto0UswKa3B9FBZklLqwEnhZ1aacS/W9uPKyor2798/0vNEzpuB2OlkzX7E9jFcHyU/kYsxuD8pvcmCV3h8vM5ZFscttpfj5XtoOxD3BiUKDHhu3V6sj9bfDMlG3XVcSwzjSJ24+5fpQnkm1gJuSGMn/EW5O6lxeA0NDQ0NOwSX5IdXS5QojXUppEgzq8KoA4rl0VLMZZ08eXL+LDm5WuibzGeHFnW+br1fFnrn5ptvljTo3+hPZOrF1nzSwDn4N3JBpkJjG6lDM7VE3YcprIwLoXycAYezIMxMB+M5mAqZFjmhGrW1urqqQ4cOjXzsYhvoo0cOmKlKpDE3SO59KkgxuXMmNvZ3rwdpHKKMZWSUtilrrjuPOaUTmZ8Sw3RxLWX6Ma4zBmFnMOPYZ3I/3GcR1OvUQo1lbYzrtrZ2fO7Qkjjq2GkF7nGjz2GWWopcLS2wMw6PVpLWl7kP5p6inszj7/XFNtKCOf5vqRrT59D3bWqMPV5OJZT5xdE3mJa99DPO/AzNUdK/MQsYTyt3lkWL0viMsX///kkdcETj8BoaGhoadgQuKXj0lF+ZqRVS3rT2y3xoeC/9OPzWv+++++b3MsEjLd9cH6/HcmkhlEVyMCdFfytGmzFll+nHPE7UoWTBXDmOLj9afUnjANGxjYw2QT1ABKldRl6hXoP/u4yaL9Xq6qquuOKKOSVMq9ZYN9tEXWFEljLI9Ulj7j1LHlyLMuPrmWWn/ZOo6yA3F69Rf02uOfP/ZHBl6ooY+SU+Q30mOcostRCtGiltyfzL/Dy5UVLdcf54z1TwX3N4brc5iKhjr6VRyhING54X+qdSL0qLzFgu587738iCVZNrpr9f5FwZrYaWxS7fEqcISrc8P37G6zta+DIKk++lDpkRtGI91EnSuj6zA6Cdg/WM3gtulzTWGV9xxRWNw2toaGhoaIhYisPb3NzU+vr6iFqKFImpFVJhTH2SUUvmwkhd2qrJlGSM32aKwNSSLbdMkbitmY8bIx+QworUGq2hKP+mXiFSJO4HfWmoV4jcjuu+4447JI0jEJhayzhm6q3o50OuOILWoPQNipQUZfNTsnQnD3afs4SWnv/jx49LGidZpX9Z7KMpQfpF+vesr/RDs96VbYzcE3WdTO2U6X0Zj5TXDSbKlIb1RL0r9dsZh8R1535RohG5I1o50tIu4wrp92nQQjJrW5auKcPKysp8vEz9T1mzMl2Pv2fW4bSepo2C12XkhAxKSxiZJOPWPLbU3bmtmS6/FjOW+z+OJ3XslPxQ/yyN9zQjnvg7OdxsTLjuMx0lOf0sUW8sI45FSwDb0NDQ0NBQQXvhNTQ0NDTsCCwl0pR6dptpH6Iog+Igs6p+hqaq0tiAgWbTZtsZTsvtifXUlNeZo2xNfMdQQ7FcsvQUi2QuBuzXtddeu6V83xtFqBbf0Q2BptM0h4+gmXuWbd6g6wcV3h6rqcDNKysrk6KFrutGYus4Lwy15r7TST1zMaH4ho65vF8ai3TcNhqexGdqWbAzk2uD4kaPkeeYhlDZGDJAM03no+jM7WVGerbV16MDN1MK0dHcn3FcGXaMDudZ+DCusymDp67rtL6+Pl8fFhvGPjPcGENjGTGbOPcszwMGkYjt8149ceLElmfc57vvvnvLs7E8Zmf3HLrMLJM7wxP6GX9maak43zSwyYzBeA5QJUB3omiUwz1BYyCGUovlUERLB/g4b/6f7h2LoHF4DQ0NDQ07Aks7nq+urs4pq8ykmOFjSE1kDsykTuiIa9AQRRooHIY7o+FGFnCYJvikDiNFR2qQbaIhQDReMOVmzuHIkSOSBkqIzqXSwHWYmqFxBKn2aCRjmCN2vb6XpvrSmLp1P+h0m7k0eD1MJXc1WF40BPD82yiBRiN+Nj5DVwa6GtAwKSro6URLJXvWLxorkePJxoecG79nAXINl8fgwJyvzIGb4cBs/OW16bUcn/W9/GQ7IldI45daP6NkgWG89u/fn0oeIswpMCWYNF4rdMVgEIZYDrkWBujO0qDdeeedkgajMnLpfia6mDAMGY3Xsn3pNvlZzwPDxGXSNl4jl5YFSfB+8W80HKNBT1w7lDrUQirGc53uYgwanbmVMRXchQsXJlNLRTQOr6GhoaFhR2BpHd7q6uqcYshM4ql7chiwmKwv/i6NTftJGZrKsNl4pCr829GjRyWNU3lkehE6llL2bNA0VqrLj5mcNlIcDuXD8D/k2mIbqUdy22g6nen/mFCUuhRSabF8Urt0t8iC70bXgO0ciBlkOa4d983zHAMMSMMailQsE+QyXQqp9Mih0z3D42FumeGipGFeqIcx15mZ6JPbqHF2UxITrzM66rJMaaxTY4ohctlZKDNKDEz5Z+mIjO1CjEUOjlz1wYMHJ11a1tbWRpypJSXxmhM/M3hzls7GbfB4eSw9xjzL4phYd0fH/5q0KLbFY0muhPMV28iQedRzZ2uHYbkYlD97hsGcmVaJNgsRfNbg+R7XAQN6+B4G8IhSPTrOt+DRDQ0NDQ0NwFIcnhMx1qyMpOHNbPnq7bffLmnMkUQqgBaApoBITWQybr/5TQmQM8k4PN9r6osBmhlAVRonlGUZdEyP/SMlRz2Mv2fBcKnXoVUTHTalsVN3FiIr1s/nY7nkLKNOgvqzKcfhUopKKfP2u76ohzF1bo6YnIqfjf2grpi6FEoUMj0ZAwCYe/E6jPPidptar+mMpyyJaX3MRLqR8yZnzfIz3QW5Qdbn8aQUJLaBUg+WlXGw7B/3QtSFklubClrgkIaGpSvW9cbyaEXte7y2oi6IUg1yCr7udRDD+nm/U09KLjrOj61M/em9VAulGNvo8v0bpQNZwHAGW6dkIbN6rqXZMmgNH6ViniPqwLnn4jy7HJ+rXiN+1tKeLLyfOfCmw2toaGhoaACWDi129uzZ+duUQXalcZBeUyYM+ZVZZFHWTIvOjOqgXoxpdNgOaewnYirD3AatOGPdtGxics3MKpSULwMBZz5u5IRInVFXFqlnWvTRx8XIwiyROqd+I3I7tip94IEHJPXU2BSXt7q6OgozlIU18jyY6osWgdJWao9WXdRb1PzXpDH1zPnJdA78zf1wm5koUxqv31pgbnKp0lh3Rs41swqltSx11rQO5rqIbePYZP5e5C64BhheMML75sCBA5M6vL179444xrgOyNGZG3ObsgTAtDSkLt3z5LGOIQ0ZCJpzl0l66PdJCZPHOOoKfZ4xKLVBXWgmlWIQdnK2cU8weTDPepaR6X95BjJUZByTWpgz20p4fcT95DGJabwah9fQ0NDQ0BBwScGj/WbNUkSQcmeaB1PrWYoIf9LCjjqQzLKPqX0YODlSl9SZ8Hvm60R/GFLtTBeUpQeijpDcTqRY6c/HwLy03otjQsqVulBStLENTIrrNnuMog7EYxs5le0oLfrqRH0FLbVM5dGvK1Kx1BOQi8nGx6BOi7ouctexbbU1w/5JYyqV/l5cS7E+Skw85qTO4zPUM5LSnrIOrnE3Hkf64GblkMshlxDh8rYLPL5r165RVJHIeTMVFnVrWXow+gLyDKnNj9sbQa6ZEqDYRtoicM9Ei0SvSftQ1iQ7UxIT2jNQipOlFqNEi1xoJmli4mnWk0UucntZPtNvZSmzYkq47Xw45/1b6K6GhoaGhoanONoLr6GhoaFhR+BDCh5tRHaSIh+L6WzqbUf0KL6jOIom/hYfUNQV7yH7blBcJeWiqlgWc55Jg2ikptQ16BCa3UvxA8VIsS0GnTdpFh3b6mdpfMMxigYPFD9RXJmJaKxcj+GOthNL0RQ/9tO/2TjAYigaikQjlkzcJA1j6zZm7WdAc44FRZCxrxR78plMMc91VzPgivuLYjeKpbJQdhwLrp3a79IgLqoZxWSBBbiuaADlvW4jJGns1M1QaUTXdSNRWXS/odFDlsuQYF46jwvF4S4jiho5phzbzFCMBk00OMnyxbmea665Zks93GeZ8zVdl+jekxk81YJW1MTiERQ1UsRNUbtUH3vm94vrg4ZCUwZPROPwGhoaGhp2BJYOHh0plszM2G/au+66S9JgTus3t03YTbFI9XA2fsbUGp0T47OkmknNRAqoZoZMLidLJUOFPB2ATbFEKp3GEEwxQ0fN2Cb3ncYyVKxnLhQGqfLMiMDl+Rq5bN4nDfNvk/ypsGJ2Hs6MRwxTbnSupcFM1u7MAEOqpw+ShrEzt8F16LmMZTKILin5LECuQYU/78kobwYJZxmZsp7Bo5l9m1KYuO54D43C3P8Y9o2SERo00DAhPhNDDtbWTylFKysrI24tmur7PLnnnnu23EOz94zzNuim5D5SAiUNHAgDM2RBK/hMLcA197b7Hn/jfmd4vMyJ3GCgcxqqxb5zX9HdKzv7DWazp8QsjjsNmfx+MDyedtaPcDCBgwcPNqOVhoaGhoaGiKV1eCsrK6NwXVEHYP2a39Q2p/V3v4kzPUyUyUrjJJ6+L3KHdKqkeWuW9JTUMs3eXX+ktBhYljobuglECigLvBzLcv+inJo6CHJ01B3EZ0lBkoM0VZ3pNxiWjG2NnKupM3NeU1S666PONVJ4DLjrexg2Lj5Dt5MaN2vEOSU37raZMs3M32spVmpuCvFehuKrBeKNfaBOhWbvnOP4G/cCuUWPXXSo9hphwmGPxRQHS46C6yueEw5a4LWzSABgBl2PQZZdHvWuPmd8LkV3IXLCNJ93WZQAxHI8luaAeB7EuWQoN+9D6gwz7rDGRVMPHNvIUHW1YBxZaimvDepLyeFl0o9a8ljqLqWx9MHrgUHYYwhCBlLY3NxcOIB04/AaGhoaGnYELkmHR0udLGGh3+qWs5KKiRZbtMTx29oUEC0HI0XKYKfUW2SUVtRZRLBf0dmxZlnlTzqVR6rJFCLDNU21x2Nh6owBtbO0MOwHKVZS+Jk+jXpMt91lxLQwN998s6StVmA1SmtlZUX79+8fWWNFToEh32iBSCpaGidtpY6D3E5mXUZndY819cKxblpj1pz7pbHzO9e5Qao69odWjKSw4+8Mc0XOwuPIpKKxrQYd6cnpSWOOhMmDM92NpTSxjbWgBSsrK7rssstGgYtjn7P1FOvmuRT7ZpDz4d6L6457i+nPstQ1TCVEaQcd3eNv3KvUSU6FJ3R/qMPLgnLUQjQyIbC5rNg/WtXTrsGfcd5cHrnRWqCF+JuDmtTO8wyNw2toaGho2BFYmsNbXV0d6byifwqDDZvKsC7Pslj740nS9ddfL2lMXZLTo6WnNA4pRN1KpuOo+aW4P36GSTCztlGXRm5BGqilWgJQ35uFIWKySHKYTDwZ/3d95EIyy05aJrpechjRf5LjFqlwYmVlRXv27BlR51mQbYP+l6bo4ryQKqdVHvsc208OyN+5DjOOshbUmxa/8ZrrYZg4poeKVDPD0jF4NOcg3ksrTIYHy8KEsc+msOlLFa3man54tM6LnCD1tF3XTXJ4a2trI24tjiMDCjt4NLmAyA2Yy3QfKbWhlCXzj/NvHg9LtGp6e2lYK5aWUP8bz6pacuqaf2bc01w7/M51Hu/hGNMaPUsey0TKXiueE1+P9fqc4RlvZFKxLIxa88NraGhoaGgIWIrDO3/+vO68886RviTqdSi/dQK/u+++u68wCZjKFC61AL2m1iIVYF8c6i18T2bxREskUge0hIt9NWjNSKupSEnWojDUEoLGvvM7rQQzfyxSQEzp4mdiG2mZWktOGaPc+Jqp2iuvvDKN3hDbRYvF2G76AJKiz/SWtIqlta7XY6ZToTUrOW6v67iGSMW6zR6LLIoPOSmuc1L2WdBy6oZIrcdxpw6Sc0ruOtPH1QKPZ2loqL92/6yn973R0s51R0lQjcPb3NzUY489NkpRlemPzClkPmaxbfF5rkVGCKGkJGuD++Zxy5K5kuOmBXlmAWtphseQfqA1XXWsp5YGy4hjRCt0rhHvJ1qtS8PYm6MjZ+8y4/uiNj/U40frWp8PWRD87dA4vIaGhoaGHYH2wmtoaGho2BFYSqS5srKiffv2zdlsizDuuOOOoUCY3D796U+XJL3vfe+TNLChz3zmM+fP3HbbbZIGsYA/bRJvcRuVy7E+/8Ys7HQQj8+bPadok7nt4vMUF1KZS1FX/I0KbBrcZEYkFLtQvJeJX+mGQIOKTNxDkRyV13QQlaQbbrhhSzlRZEk4PBTFKXEuaQJN0XaWD4+iNubHqxnsxL5yLuk8nJlRU5TuNnouo4iR4aa4Zgy3PYrLaVpOAxS6vEhjkSbFb5nS36AYme3IkBkwxLI8ntEVyXsvzumUwVPMeG5k+fVoROKxzDKe0w2G7jo+h3zexfpdHg1A/AxVINI4AAS/ZwHpKbJnzjm6ZcU2cs3QSC+ba65nikyZ2zGKGj0f0TBMGtYZ1268t5aHz2OUqRUyg63t0Di8hoaGhoYdgUvKeE7DBBumSAM1xDfz8573PEmD8Uo0fjBFWstOTC4ncl4M10Tzbd4njZXDDJTr+mI72B+2iSbMsb5amDB/N9WUKZxr1DOp3UgV1kKm0Yk4chI1wwOXYbeSzNzelN3p06ernEDXddrc3BwFP45cLbNGe12YWs9SyHjtnThxYsuzmQl0rQyOJanc+Iw5KjrM0iAhUr5co7VQXxlXQOMhjtFUeCgaqbCfTOMiDfNBYxxypZmRFJ2HDRplSMPeinthyrR8165d873nZ+NaoxGFDSgYrCByeHZv8lnEkG/uazYv5F5pJJcFO/a5RQdzGitlQardFqa0qmWbj2BQahqORe6JQQrIibP/MfM7jXsomckMCXkPU5tlBnaWFMQ92NwSGhoaGhoaApbi8DY2NvTggw/O37p07owwZUKz0mc/+9mStlLedgB9//vfL2mgzkwlmZIzxZ9RijZ1db2WDWehngxS8KSAo96PDuw0uaWeJgbHdj/IadF5NLaRVFItHBUpIrZbGihLhmrLuNBa8li7HsQxOnbsmKQhcO+NN95YTf/TdZ0uXrw40i/G/phaPH78eNp3U+uR4ja151QupM5rqZ+kcUokP0vz7dhG6tSon/VcZg76NbN6hkaK9dWCeZPDi2OSza80DupLPU3sM/U85HbiOqDulSbyTKUljV0+Lr/88m1TvNA0PkuUy9BXLtPrJHNpoSShliA1008zQPaUntTl0b2KwezjHiJ3yXMnC+DA9lKaMsWRkxunm43v9RxkEh9Ku8iVTknbqIPPEly7P9Hmg0mca2gcXkNDQ0PDjkBZxmmvlHJS0h3b3tiwk3FT13XX8GJbOw0LoK2dhktFunaIpV54DQ0NDQ0NT1U0kWZDQ0NDw45Ae+E1NDQ0NOwItBdeQ0NDQ8OOQHvhNTQ0NDTsCCzlh3fo0KHuyJEjo1Q1EfafoJ8VE6ZG0HBmu+9TqN37eJTxoeLxKLc2NouUPXUPf6MPTxbnj3WXUvTQQw/p7NmzI4elK6+8srvuuuvS5J2Gf6NvEaO/fCiIZbCP/JzCopEdYnm1uWKaoEUwtUdYT+1zkWdr9UVfKs5PzZ8uG3v7V+3evVunT5/Wo48+Ohr8tbW17rLLLhuVG9tE39bM7zLrx6K/Lfpstk9q9y6y3vjbMnugtqeXOTMuBZfSP0a7MrL3BWNoTp07xFIvvMOHD+t1r3vdPGiwwzrFUF92HHSIMTsd0pk3y/nFA4/Xpw5d3jO1yWu/MbxN3NScNG5yTljsHx0y/Z25xiLowMqxsLNqFgia4YGyNsXrsVyGUKsFsY6IGdvf+MY3jn6X+qz2b3nLW+Yhyu66665R372OTp48KWlwTmZ4sOgoy0znnIdaUFppcE7mYUln2zhODKfGQySbUwaupqOxv2fO+Jzf2jqPc8tM7qy39hnvZVkMpRbzvDnIgp+1Q7ADHdQCO0iDE/YznvEMvf71rx/9LvXBJT73cz93HmSCOeKkITzY4cOHt9TN4AXxAOXBybU+de7UchkuFcgYgc2ztcP8l1yTHNMsdB7Prqmwi7XQgLWs7NmYMPv6FIPEwCC1wBGxXT4nHJTh7NmzevOb35y2m2gizYaGhoaGHYGlODypf1szk3akECnSJGXK6/H5mjiU1FSkampcoMEM2PHeGqbYaPazRolkWYTJFTItUUZ9kuJhsOopsQHDoLGeLBwVs36TKsuCBsfypsQkKysr87Q65EJi32riQpcdOT5SiLW0Jlm7WF+NM45jwLkjFcu1LNWDeZObctmZdICBf7mu49phaC9yCeRksrEhh8z+RXgs2HeGRcs485ixfUodcf78+VF2dwapju3l/jQybsb11gJkZ+uSUpNlxIPklnh2xD1GCRI5PM5H/M59z7ZnZwZ/q0m2GFIttm0qfCDbUwvCz+DYWVs9X8uoFxqH19DQ0NCwI7AUh1dK0e7duyfl1tTR8ZNBb6VB78cgujXqfEqHV+O4Mqoi4xjj91gvKUbKwckBxmfJ4S0i96feY8p4pAZya1PKZFK3DPTK5Jjxf8/b5uZmldLd3NzU2bNnRwGTM/0RpQLkmjMdl6+Rm6FxRJZGibqTmk4nls/1Ru4prjfqW7mGSMVHDo9UOnU0mUFPLUg5OZepFE181twVqXhp0OGR66W+OUuKbH3cQw89VNV/dV2fWspBno1M2lDT3U5JUdh3rodMf80+1iQumWEN11fG2bGNnPcaVxj7xCDOxBRnxID2mT679gz3lVE7O6WxntlnS2Z8xHK2k9hFNA6voaGhoWFHoL3wGhoaGhp2BJYWaa6urk6K1WqiTIswoympYVEF84RRLFBTRMd7KCbIzNFpaEDlPkVpU+XXREyZONRsO40vpgwdan44U3NQM2GmQj8aY9RcJ2pGE9JYVJKZREdsbm6OMhjHcaqZ53vcMgOBmnk2TaMp2sraXXNpORQttgAAIABJREFUiM9Q1EexeGZaXjOcoAGKy4yioFpm+ykxPw0L2GePs3OaRVUCx7jm1hHXqnP/2Y2E/aURQ/zfbVlfX6+Kpi5evKgHHnhgLhLNRHTMDM6cf1OqDT9jYzzOTzbm27kWTbkn1PwUF3F/qBnPZWXXDI+m+sV7am4d2flUO5NqPpHScAbWyp1yaYmizUWNhhqH19DQ0NCwI7AUh9d1nTY2NkbcU6Ts6cxqjs7KaX+Pzup0XKWJas2sO4MpPVK1kSr0PcyKTERqipQuFfJThge815/mcrOs1exzjfrNTIw5PhwTUr/xN7aZhi8RdAXouq5KadngqWaQEssjF+hxybhnZmA2lW5uiX2ecjmpGWxkXEGMEFK7N/ZdGlOv5FQ8T9EwiFIIjh9/3668rL+Zawg/fU+Wdd7/m9Pzd/cvkw7UHOkzdF2n9fX1efnZ+uUarxnqxPlnObUs21MBL+jSQilH5kJTC5IwFVGoJqGYMkDymNB4hEElsvOPkgsajmUcHsePRl9ZkAzD40djtszYKDMyXDQCTePwGhoaGhp2BJZ2PN/c3BxxMZGqMQdnB+P7779f0kAZMlRR/J/hxzIXBtZXM7UnVWMOQBooUd9bCyWV6W5qTpzkHKachz0W5HYzqrlGjdf0kBl875SpL6m+qTBrBjm8KUqrlKK1tbVRObHP7qupPM975lJgOIzVFVdcIWng2t0fjs9U6CW3je4x2b0u11wMQ41lob5q8LyQW4z1GLV1HcNsMUSan3Ebvf7cxjgHXovU6XpM/Hvck67b68HSHLfd5Ue3ghrnmsGSA3LekUP2/w4/5tBidND2eonPeJyyIBVS7jbAs4JnFteyNA6DR1egbG0yOEFNT5ZJDfy/59/fOX6ZBMOg3jSTzPDZmo6aNgyS5qEGGW7PZ2O251n32tpa4/AaGhoaGhoiLkmHRyfBSO1ZH2eLLVOTlAFPcTPUh02Fh+KbnVynqZuMImX5U5G6Ke+n4yl1XVkos1qYtaw+g3J2Bpw1BRa5gloYN88Fg9Vm5dasv7LQReaYL168OKmL2djYmOTeyQGbeyFF6vqkIfgwdWqm8KfCZ5EDInVOzlyqB0eghWWk1t1Hj6GpV1L4noMojaD+jfPt/kfOpRaOzmVRdxz3kLkz7kmXYQ4v6uC5Zu69915Jw1kQLTENP++gz/v27ZuUDpRSqnpTaVgT5vDcV4+lx82/S1vHLLa/Fvor0+HRipC697h2KMnxp9cD94Y0HsMaF5oFZvZ4+bzzp8eAUqLYburhmIXCv2dh96hPpeQkWugb7N/U2HMP7tmzZ+HwYo3Da2hoaGjYEVhah7exsTHiFDIdAPVuUxSJqTDKh6mvyHy3mLaEyPxk/Ax1HdSXZFwaKY6axVWUpZtqcT/dJn83hRcpF1pFUs/pMkyt1cIHScOcuPws8KtBjoW+cVlormhNuZ0/jNeO9Tlx7VDH4XkxF3DNNddIGrgaaeg/9a4eD5efWelRL2FwHUaOy+12P8gVZJRvLcQW20Z9oDROc8NPcymRc3E51KG5re5PpsPzNQZq5pqN643B5Bk0OtPd+F7P8YEDB6rW0q6fnH4cJ7eBnJxTmHnN+Dufl8YWiNRRZ/B6cFmUqmScvseHAbSnOKDtrBczDoccFqVtGVdYs3ZlfbTJkMZnkNcuJQ6Rs466Z2ls7ZoF7iYXuHv37qbDa2hoaGhoiFiaw5PGVkuRojPF47cwdQ5+E0fqarsUOH67m6qwXDte8zPkLI1IpbEtpGoyLmU7f7ha4OFYHykuRtiIejNSszXZeuZLU4vG4n5maZ1IhdPaNes3x3zXrl1VSqvrOl28eHHkx5VZsbmdphCvv/56SQNlGDlUP8MoGV6TXivuV+TWDAY95hxO6Qdc79Rc1nRC7p+fcdsiF2JOxc+Qe7v66qtHbar50JF6ZtBnqS5dsZSAkgVp2Mtut+fE9dtiO64NWtNORctYWVnR3r175/e6nKjLtRTg6NGjaZvoExj7RF3alK7boMTH9U9FBnH76a9Iq2SPl1T3beMed//iGPtel+99xTNlKtA9I2URce3Q79P1MoJV5AS9B2gDQR1/3IO2D4ltbpFWGhoaGhoaAtoLr6GhoaFhR2Bpt4SY88wiAZsyS+MstBTBZIGLfY3KaNdDp97I8luEShNrGltE0RnFc25zLRRPvFYzTqByP4ps/YzbSlGJ+xmVuTVlMZHl9PM110fH5qm8VMxXZ2Qh25gra8oYxqCBUiZOs8jn8OHDkqSrrrqq2m6vBT/DdWCxncfCDurSIGKqBal2GVEMStE1+5MZAtC4h0Y5brs/s2C+FpmxfjvuZuubRhEMCuExOXXq1PxZl0PRHAN6x366Hoqn3J8sSLXhMX/00Ucnw+ft379/PneeN68LSbr22mslDcYpvieWL+XqEF9z/Q888MCW+rPgC3RH8t71vQxfKA3iZwa+oJFMZhhGNYTn0memf4/O/XQl8CfLiue359ft5x7hOohzyrB+XCsei0wU7XnyWrGBmucirrc4h9J0Hk6icXgNDQ0NDTsClxRajMrdSFWYejW1R0Vz9iY2pVELeUMFaqSafE90hI1lZN/dXlMKplpMQdJhM7afJuRU8tI5VhoHQSZHm5kWcwxoRMJnswDAWcDn2IfYRlP9pLRq6WLib7527ty5KpXujOccxyy4Ljnf48ePb2lj7JfXIhXjhst3iLss9BJRM7yShnExlUpjAbcxctw28DAl7fEydUvn8WgQ4nLdT3+SG4hUOtNt3XfffZIGh3DvFbc9ctl0P/Fc0KQ99s/XKJnxnNjIIHIDdKif4vB27dqlq6++ej4+rsfjJw3z4T0dx0Mac3rSsCY4L5Qaue9xHTCtDbmXTCJCFwmvJRpSZeH2DJrr+7u59Ng/1+22+bv3k/tlKYE0DnBR45yytnt+KClhgIooZXG7vebpwmNErtflRPeh5pbQ0NDQ0NAQcEmhxUy5ZSa4fstTns8QRVmCzCxkUPw90//5N5rVM2hspCgp3zdVyNA7WT10oaglLY0UCoNiMwxVZv5c033WdImZPo66Aj9DfVesj9Qt64/yd1JjU+b7Gxsbevjhh+dUvtdH1MeSOje1akqUVHtsJ8OSUS/nZ6Oe1DogcuWUXMR1QBcC6xk9xqZYo9TD9dQSi5KKj+uAukiPideSuaeod/K1e+65Z8vYmJKnY3ikjrkWzZVQlxP3PN0Q3DavKY+JOSppoPK9Lx966KFqAmGfO3TFiHPpOfN6ohm9xy+uN+o/qX9j0OuoO2JwaIbvyiRa5qysb7zuuuskDeeN64/1uB8eQ6YS8zr0M9FpnRyW++V5cP8jR1lLgut6GJYsrl23wfVSkpCNo8fnyJEjkob9xWAc2VnldX369Ommw2toaGhoaIhYisNbXV3VgQMHRhRD1IXwTUsHzUw2bKqCVn60SGJIngw1B/HIAZm7IAXCEDxR50AOy4jy79iXyFEyISY/s3Q91OGZMjX1zmczyq6WcoWUrDToQxhg2NRYluCUYd0yp26j6zqdP39+PvYnT57c0p9YJ7kYt8H1ZXqKmuUwuajMUtBt8jxlQZUNWt9xnZHTlAZuxtyx15C5Q85l3BsMRk3OniGgpDElzeAEDE+XJeFlP7w+GMotlmtwTjJndrfRY/DII49UdXgGLSLjXLqd5moZkIKWq1m5Lo/cVGaFHPXW0jiNj+c02gEw9RIlTJYERF0hbQR8DnDes/1JXRr3V3ZWUf/L+fd4UhomjceWKbrYh1iPf/PcMmhBbCMDhd9///2Nw2toaGhoaIhYisMrpWjfvn2j0EuRw6MVF638Mr0fA6PS+o+Ud6SeGR6HoZ2yJLWmItxu6yncJnMHkUNiCg9TL3ffffeWel1W5hcVrZNimZlFF4NC19IrZVQT54CBrmspRqSxxay5tswXyePkfp05c6ZKpV+8eFGnTp0aUW6Z3ibK5qVhLD1eUZfneaCs32VY3+OQU5ELdbu5Nj1eDNgdfzO1b32IuUS3LerwvF7tW+Q2WG/h+ffYROtDl2sLS/q5+veoM2YaJe5T99djE/V/1jPRcrGWiFQah8wiR+E1EcOgZSHSan6cKysrOnDgwHy+vDfiGFOHZS6GPmFx/il9qnHP1GtJw3ozN0au2uNnDjZro61nqf+LHJ4tOq33c70MRJ/p8nk2UKfnfsf17bYxhZrnn36vWfB3nj9em17v8dxxe+kLybCV8ez0PvK+OXPmzEI+wFLj8BoaGhoadgiW5vB27949SisS5au0RKSOyW/7zNfEb37LspmQkxygNFA8phjNvVF/ELlCU0emGp72tKdJGusKSdVKA+XDyBcG09LENpBzYDDpCPqhkPKhD2Hksimjpx4g02cwTQcpY98bdW5ug4M733rrrVVLO/vhkWOIOoC77rpL0lh/wPZGS1E/b6qP/nj+3RxeHFemL2GQXetnIwdEHaHbfMMNN0jK/fDoc8Z0OrT8jXNhicFtt90maRg3z4PLMAcoDePmvntPmNtwG809RI7i1ltvlSS9973vlTTos7iGsoDDrtd9596MQbFdt8fxwIEDVSvf3bt368iRIyPdXdRbct3RviDTW3O+XZ65XEYSinC5HkufKQzcHblQ+sd6bN0vj4/XsjSsCc/ls571LEnDGcXUX9aNxzFx+72uaKWb+Zl6LNx+P0PJU5QseV9ynrxm3Na4f6nX5tnoemzRKg1nr/floUOHJlM4RTQOr6GhoaFhR2ApDs9UOimjyM2QWqJOJbPSNNVgzs6U4rFjx7Y8S/2J2yQNFIgpFKYhijJgXzNVQJ1AltiWqTayJJQRkXOh3pIpbbIxMXfhcjwmLsvXzWVFnSGjJZDb9vUp3RSpbfoqxfabu5iSo+/fv1/Pf/7zdeLECUkDV52lB7JelHFQswgxTDPjT68D6iSjfoypVcwB+R5zVVm8T46BuUXr9LJYqubKyOHRAi5SzS7X+8prlJR9bKP743tcrrlRz7XrjTrRm266acs93gMeC3MQce14LdYsmd32LILMVPopY3V1VVdcccW8j5k+juuWUZv8exwn9vHOO+/c8qw5FUZkkbbq5mIfPXeMDiUN3IznxffGNSnl4+Tzi5bK/IySLK8Vc9OUftRSQcX+UH9paQ73W2yrx5xWwpllMyNHeT27PzHZs0Hr+lOnTm1r4Ws0Dq+hoaGhYUegvfAaGhoaGnYElhZpnjlzZhQgNRpdMEyTWXAqmqNYioYYDIRqNj1zbDab7LZY3EExZXRWtjiCaYcYniyCYk6a79JsP4q0aOJLUZ1Z/ixsl9l2i1NqwYOjMQZFaBTdTqWy8Tgy/BXDr0mDuMH9mMp4vnfvXj372c8ehVyKRjD8zWNuMZpFS1E8bUdjhk175jOfuaUMmpFLw9r0GFu05PmwKXg0dLDY6/bbb5c0rEkGgs7Cg7mNFLv7kyJ9adgLtTB0NnCI405jL9frvjMFkPsS+2qDAI/jc5/7XEnSu9/9bkm5SwDnntnRM6fvKBqrGa2srKxobW1tPhZZoArud6bVyYJJ+JrXl/el58Hi99gOgyH4aJjkdR1FbRQ106Uk7iODIfhcr59hOK/YDtdj9YE/Ldr2HMcxcd12IfGacT0MtBH3Io0PmZLJ9XhfSeOwkXx/8PyJ12I6ohY8uqGhoaGhIWBpt4S1tbU5NWUKIXJ4ppr8lqf5dJb+gQ7GNeUqgy7HcviGp2I+go7zrGeK0yMnyaSH7n9mMu22MpRVFg6NqVZcD40VsjQdHC+mEMmCcJMLcHkeIzqtS2POpZRSpbRWVla0d+/eUSDl2G6Phzk5G0qYqqS7RWwPOXn3w328+eabJW3lKL2OPR9cX25jVJzTsZnGUu5fFv6MHDW5Av/u9kRYKmEO0wYVNFuXxilraPLt/WbjoEjhe3z8TJY4lW13PV7ftRBm0ejD+zKGXatxeE5J5nFxffHc8di5L/9/e2e2ZEd1peFVpZIQGDscgRkEDjeO8KXf/0n8ALQtGXAzGQxCUg194fjq/PXl2ll1iOgL91n/TQ0nc+ce86zxX7YgmDawaksm4TPM2E18UbU9F9Y6GF++q+iLS0uZGDyf4/cNfXGwFu/i3AcOqHJpMwdP5We2OrGvTbidAVa0b3ow5tl7qOqgdTIuvz9sKcy56AhI7sNoeIPBYDA4CRyl4Z2fn9eTJ0829tWUXJHynLC4V5TUtn2kB+5x2HO24W92l/5xOZ1sh5/WILripEjNTtAGlt6zj6u+ODE0+2ip06HY1rhSMvJnlp48/oSL1Tp1IvvINYx1Ly3h7OysLi4uNtLlXsFKa50mmK3aFtNEi1hRJKXPwdKxNZQutNxFYdPvmnOQ/2ee7fO274b0jkw8BkjpfIb226XHmKbJZ4495X2ZfWM+8W+ZBKDrm33TTkXqyhDZktEBDQ+tqbPAMLfWmr1HU4vET+XUiNQcqraaUY7FZ3pFpJ3t02+nOLEf8zlohU7u5yfjxXqT97ooLnuHeTRpdj7HxZY5c3vpZaZBZG44ox2RB+3ZUmbrQIJ2+Pn48ePR8AaDwWAwSBxdAPbm5maXuBaJxIVX7SdLScgE0C4/tEfB5WTqVamV9N04CdWRpO5X1bbUhv/P89BsU0p0ZCpt8HyTO2d7LmhqSbIrBeRoUEcFMv5OU+ank3zBijrMfeg+++GHH2616b21RDI12Sz9TS0NydM+NJdkcsHR/Mx0Sk7mzmRlJ14jvVqL6ZKiTY2H5G0NIym46K/9v9xjeqqqg7Rsa4vL3YDcd8yJoxr3SkB5f9Fn1qLzM68KNne4vLysr7/++vZaR4lXHdbORY/dbvq4HPHKtfTTc5B7f0V36H1tjbNqW1qHtXPUeNWW3o6/TfnW+eN4Nv13VPBKK81xsHdM6NBZuqzt8hzm0VHRVYf5439eR0fhe4yMbxLPB4PBYDAIHK3h/fzzzxufREok9jlZ0ur8fiZcpn1LCp0911KFo5lcfqLqIKXYR0M/nL+W7QH7YyxFdeTRtOdoLLeRffH8WaPdm5tV0V1HMFZtJVX+dt/S57YqQ9Th6uqqvv/++9u8ua6QqCVfNAT74VLSZkzOT7IU2xV1dX+dL2T/ST6HPYSG50K5KXE6V9I+HKR22sxcJ/xM7Cc0VZ7DemRenLV//2RNPUdVh/VgP3WlcXIM2RfTePHTfc72eN5eaambm5t68+bN7Rwj/We/TWvlKMou0tLln6zxcMZ9JvIeW7KskaRmwrX0n3lhD9H3JALHl8b/bJWiTedYVm3pv9C0XB4o19JE94B95vOVa+rc4RV9XJczau3PEfT53vGYv/nmm/HhDQaDwWCQOFrDu7y8XGpkVVtp3wVLO3+cSwZZM7E2k5KdpX7b1jsfgaVjF8Z0FGrVtoyFIwetaWZJGefZreYkpTNryNbs9nwetsk7Sm9PG7Sd35Frqe2YXeatt95a9sulpdKOD9Ds6C8FMq0xpJRuf5uLuZpAOX0P7qvXx5pS1WHdIVnmefjWOt+GLSHO9zMZe+4D+46d6wTSz9gVPc7nW7tKKd1nwFqh/ezZjqOBmU+TY+e1jOOzzz5b+odvbm7q5cuXG19b7iHv6U6jM1yyLJ9XdZjTLiKRdWDdHa0Lcj9wjwvmeu/kPLj8F9da8+Ge9JMyLubf17Dfujmy9uez7ndY1TY63HEbe+8s7y/PUa4R/e4sIvdhNLzBYDAYnATmC28wGAwGJ4GjTJpV/1Y5nWSdKrhNeyay3QujBzaJOGEzr7cpzrRaDufOvtlMiVPczur8HyatFeWWzW/5GX21KYE2upB5m5887s7c4gADnu/w/s6sbLOXzSxdLcIk6l0FHjx69Kh+/etfb5J4sz1MSK7EbTNamm24h2tNGux56+jUbALmb56XKSZUXnbQkvdQZzq1acd9Yw3SQU87PA8zLwE9pqmr2p4FPnOQkQMEEjal0Sbz3c2j157z1VXatgny8vJyN/Dg4uJiEziWffCc2vTWBVTZdcG1JoTuAlCc/uTnO1Ujx+zUCQeR5bk0sYTNouxNp4S4nXw+rgMHr1Qd1sgJ+zY3+/2e9/id7Hu6PgG/h5jnjhyf+fr22293U6ISo+ENBoPB4CRwtIb36NGjjZM9JQRrHF3oa16XvzvgZaW9dRKp/2dpIiVuJzuutKiuirSlIgc2WBvNz1zCAykQySgd3yYw9lw4iKFLIrcGttKc8zmAdi21dcn47muHy8vL+uabb27HjBaTSeQrMmXWrksmpj1ra6vq23mvS5E4AMlWghw/17JmlJLZS53h3DiwyhpgapRdtfCqA4Xan//856qq+stf/nL7mcvPoLE8JNnbRBG22HQBXYDPODcut5QaGuuWKUD3EY9by8jzYuJ5p6G4snZe673t87I3T7RrDawLsOJ5Dhby35lC5aAla9Hs8y5QiT6yHtbWSXnJM+30A5Nj2DqU43MQ4yo1rYPngveC082qDhpxkqHvEWIkRsMbDAaDwUngaPLop0+f3tIrEZrd+W0c3r737W6tZZWs7nDxfLYl65XWVrX10Vni3SOn7fw6XRvZHyeaWxpEeu/C31capDXJTjruSHvz/522Y0kRCc/UaVXbcPu9NX79+nU9f/78NgydBPQsvWNKLNClPwAnu5p021J8+n0sndM+mgPXZgkUxo/24nSIvZQPk0bb/9PtWZ69SmVAG/jTn/50ew/E0iY8t/+804I7P1L2yc+v2qZbOOWE/d/NTZIvrHx4Nzc3dX19vTkD+R7w/nXivFNO8nfvA++/LmHaa+eQf1vB8jmOITDhfVqWgM+lrTWdr432vFfZM2h4z549u72Hc0m7Li1kDS+1dvdhZfXq/JrMk9Nuur3Du5FSWV999dVoeIPBYDAYJH6RhofdHbqbLE3i6DhL2CuS1aqtj+4hNmD7/5A40MA68lE/28/tkqNXJWMcAWlaoqqDBGdKKa5hjvIea1YrKrE97dp9B52G56islc+wK3dC/99+++02Eov2Xr58uSFsptgr9+ezDZ6dfgP72/w3Px3dVrX1NdA3NG7WoCvM64KiTtTu1sXjcmkUa4Ldc5B87avK5yGx23fnKEdTBOY1K0J3k6Xn7yZ0MG1Uzj2aMj9fv369u+5PnjzZWB1yPNYevabdO8SarjUR+1Y7K4rp+tDaXJ4qYR8+84ZftvMZr86nf+Y+8LvQPmneQxQXzjFjxfP/TdKRfV1R6O0RbNtH7ehX9k76a9lfe0T0K4yGNxgMBoOTwFEa3vX1df3888+3UgtSQNIcOUrJkXfW9PY+s0bXSWn8zwVnsT3zM7U1k8ZasjSFUT7HkZaOKOWelOxWNEBIXpSDSU3ZfQWOzvQzsg+2i1sS6vJ9rBkxr11kn8e658MD7BnG3FFirfIVO/+SpUlL+itC27zW5Wvok6mZso8uiGqfSu4pJOmV3+chGh5+F/YzUjl5eV2x4sw9zT7a75jPc66m/VvWmPMe+ug9280J++rFixeb9oyzs7M7UZq0jw+n6qDVWqPye6bzV1qL6qJzcxwJ5+dyxruCybwnnVvJPR3VmX10fmfZN92V3mFdrFF243FkLX2ydaDLy7UP2u8DPu/86M6jZY920a5owmh4T58+3SWuT4yGNxgMBoOTwNF5eOfn5xupicieqi2bgH0bnZZmH9rKpg66XDCALZifnXbjaDmzZiAJpaTlKDCzVTgqNTVblwzyXCCxpDTI/K38jV0kqeFoQI+l+19XgifbSEnK/iwKBHe4vLysb7/99rYdfHfdmFeRt91+sO/OhSTt00sNwP4C1oHxwGaSknCSgudnjtrttEL2twt9ujgtxT2rDtK5ybCJsKNI7t///vfbe6x9+iwwLreZY7dGb39XV1IGrc0RfV2OGHEAGXm7ktJvbm7q1atXt+1iHUhNgWhWF51dRfxW3Z/fu2dFYe/wP2u39gdnf+2XRVPpIkn9P2vlKwtTfuZ3MHPf7W/AnqT/LkfUnfNVBPkqajN/X7XLGmSkNDmvnJOnT58+yLpUNRreYDAYDE4E84U3GAwGg5PAUSbNs7OzevTo0a36iOMcFbnqoHpiskLVt7miq1qdz6naJjeazqvqYKIyabMJc7vQa9NRob53df66EO78e1UHMH93UqrJe3OOnDTMPTZldETQK6fxntrvEGyHOXdtrkLm90AqC/1PImjMgPz8wx/+cKd9B69UHcyDDpJy9XSuS6c+/ccUx2eYC2kjTfaY/1aBBownA0Zs3jeYN35mH20O71Izsq9d35iT3//+91W1DRfvqlb77Nk0mInnXfpG3tvdw++ffPJJVf37PbEyaRIsR3t//etfq6rq008/vb3GpAWMyUTNHeG03QQO4OrM/Ct6ONe2y+el6bjq8K5k/rp0KLuA3Fe7f3KdbIYGPI+zmGeac8I+5ix6fh3ok+Azk3B3JtsVeTTX0NecO7uV7iMeT4yGNxgMBoOTwC9KS0CKQUrLpMBViG864qv6MjPAWozD3lPDWyWnO/E9pUfTDVlL66Ra01p1GkOOK+9FA7ZWg/bL/KX26AR27rHGZ0qtxKpSvJ3Y2V+HfluzyHk0ce2qNBDPfPbs2W0YvTXWbAfNBAmUdpmDLgTf2rol4k4TdjK6SQqQwDsyX9bUAUicjQxWILAEaZlrmQP+32l4Lq+1Cl7o6Pa4NzXUqkNAQpci5PPrFB6vedX9pXloM+eROacvb9682Q1aef369SaMPytdQ1FnDciafpco7WALa0QdcbqDoTxP9K3TCllfB4LQ546OjP9xNtB8VmWwsj2/I9krrEdneWAfMxcmY+isbT5jq9JCXcCiSTm4l/F2lGlc2wXhrTAa3mAwGAxOAkenJVxdXW2IZFPyMfWVEwtB3mP/gCU9h/znvU4PWJX8SanC5NGWuJAc0j5tycZlaSwtppTohGbbtD1n+Rl9cuFZ2uxs96bwWRUCzfGtpNpujVfXXF9fL23pjx8/rg8//PDT7GvRAAAgAElEQVR27F7z7IO1crTCjibOGqh9rHt+zBVhtkujdPstx5V9QzJO36Q/s58ZLQRNP0Ow8SfaYkJfaTvXkj7SfxdtdWJ/7jvPoy0lTmauOpwX/6RPnebmclvn5+dLDe/q6qq+++67+uijj+70P32CPkvWNtEK8xkO5Xcpmr0SZ8yp/XBoJB0RApq8rSiAPZMls/zOY/5tYeiex75irRifUzbyLDrBnblh/vZI0le0ZyvKtnyO33d7tHgmVH+o/65qNLzBYDAYnAh+UQHYVaI4n1dtiYVNCH2nE6IvslZhya+TuK212R+UicAuHeJEWaS1lCBNnmotxL6PlEislSEt8fyuTIupzPhpu3WXyO/PwF4xSfu+VkV+c+4dNbnnw+Ne+y87GiUXMPWcJ0yBRZ/8915hXhewZewdIYB9ZybDtrZWtfX7sS723RLZnPvOCczuo3282QeuYQ6YV1s0unn12e7o9sAqediRxJ0/KzWX+yR1n+WuNI37YF9uR2HGPe6vLSG5LuxftA365ndYamu29PA368F+yLWkDxAeOBrY+zvfITzHlhH+NoVe1VaT9DWrkmr5u8sg+fPUbO3v857l7yR2cOzFDz/8cO+757YPD7pqMBgMBoP/cBydh5dawyrfq2rrYzDp6UPJPvOevagy54S5JEZKj5ZiXM6kKzeBRGVaKCS8lV2+ausPsaRnzatqm1/o6KWVr6VqKwHRVyTJPYmbPjlStqNosxawlw9zc3NTl5eXt5GIRO12vkf6gFbjPuRYV/lA3pvdPFlaJR+P/cDziBatOkjajnBjffA35v5m3l3Yc0UTl2OxJO3o1j2S4pU1wFaD3Af2YzmCcc+Hx7yZZss5VdnH9GeupHTIo9G4OT85x5x3W2JM1J3rvypqSr/t083ix2jrtgI4L7QrMYblgr44ijfPGNGejJlxcg00a13xYFvKmHNbGDo6Mmt43ufdOff5tKbX5QWuyh/579yj9tPvlZYyRsMbDAaDwUngKA0PKR10hRFdpoLPkHz2bK2OxrRU2d1rpgskEK7lualJcA/XIq0h8ZiAOsdF37gHaRZJDykw/SJIdPTFbTGnmauItGeS2r2IJ3CfD7STBlc5SKsSTVUHSSvnfK+I59tvv70hdU6pn2cxh9bK7IPqsPKtdgUyLcm77+wHmD2qqj777LOqOpQ5ev/996vqwBgCunmCmYi15XlI8dyT2pN94CsJPM+lS1jRR+fQ2b/VPYdrLXGnT8V+a2tG1rKqtvmje0U8IY9mn2FVSf+Yffb0ZeXPpt38uco15P+c8arD+WeM9IW1hZg5Ywcc4c17gUhcR5hnH1hLtDTOiHMdc45tbXLpNqwVuZY8Z5WH6ffrnkZpDc/vsIQtNCvi6art+X+o/65qNLzBYDAYnAiOjtK8t0EV1UQCsv+o86mBFZ+fS9ZX3Y2cqtqyibiAZt7vyC4XNE0tzbZzSxWWIJNf1Iwa1m6cN5XtuS8dc0z2vevbShvsbPdgNY97OTT3RdpdXFxsfCzpFzFvJHNoP2YXGWapjzVl/pyTVrWV4K11oHmlZI+PDi3DkilSe8cGwz1//OMfq2qbU4evMPfqKuLR2kKuOfPEZ2gFZufoCsA6uhqwH6wF5RzY/+J8w2yTZzO3r169Wkrq19fX9fLly43/MCNhzeZBP7scV99jbcLRwuzRPNOMycw6/HQEeNXhHcL/8N25MGuOxVqT8xddKDXPhqNPeQ59Zx6z5JU1ZVsBVkWzPdYcj//f3btiY+kiypnbjDKeArCDwWAwGATmC28wGAwGJ4Gjg1YyBHQvYMJqrKnFEqvEVZscuuRKzBoObHGZniyf4gAaj8M0Ol0f7YilH5gc0uzqVIkV/VqXAGqnvp37nbPfwT82C3TUYjZPrqo/55z42W+99dZuCSL2T7bf0am5+rqT37PfdrJjRnGycJfS4Irf/GRcmDRJCK9a0+Bh9uJnF8jFT6qTc60ppwiIqdoGYdi0hAktQ7WZJwInnLqwF9TkgJNV2auuarXN/g6AyefQLnP7m9/8pk0Kp59XV1ebRPmO3H1lFu3SEmwid1oMn7NOaQ434Tz3pok2+5UwocKq9Fg3Hu9rp7p0wUuAvrK/MM+7bFE+pyMLz7YSNmGuzm9XOs3fKTaLd6Qcdmc9BKPhDQaDweAk8IvSEpAqKMmRUoYlQn9z+xs9/2cp0iSxXQizNR9rMUgX6TB3wqVJgi1FJ5wIaWdpR5Zt573/b4qrbHdFz2TJKyUuaxRObN6TPp2wbSk9x+B273MeX19fb+Yix8w6O2DCEmIXgGCKNWvNXf9Zd6RyzzGSfWoS7PlV0WCk5S5Aw4VE0YiQuB0Yks92AJc1vwzacZCKgxaYzy4AwVK4Cb27FI6uRFH+3QU8cX8GZa2sAzc3N3cCorq1vC+dpktLcUCWtds9bWpljUJb7wKsHAyDBYF0laQUAy5o7LPrlIkMrHEhYBNudIQXTuNw0r3fVbnmfvfZ+tJZiazBmuavs8xwT9LrTdDKYDAYDAaBo9MSSAKt2hZSrbqfALpLVrfk63Dxzv4OVrQ1DldPjQvJDgloFQLb0RCtyFWtYXQ2bvqySqpMGz7t2DdpLYS/M0TbWq6lpo4s2GN2QdUuMd1a2p6khR8G/4XbT1jKdGHelBBXCdlOWu8SWJ3uYum584/Zz2ItyYVBs0+EgZuWjHPEGDJZGanfvkFrLDnvPmtOuwDWcLp27Tfd86k4lcWE8V0yfra7t3cuLy83pO+5livftn2uud98xuyzQ2vqiM69b+3TMzVg1WFO0ez4SbqKqb+qtuTktoIxB/QxtVDGQftOOdkr+QU8RzzHhWmzr6vC03v+/ft8r3meWBfWK+Mz7sNoeIPBYDA4Cfyi8kC2yea3vIuq2tfV+Sm65MKqgxSRFF9VfcHZFY1OJ8W4tAuwNtX5Ci01r4rT5lhW43PUXEoxq3JHLh7r/mU79HE1F51WYGlsj7bH/d/T8K6vr+uHH37YJOrm9daWLS0z9pRiV4TYbqPTMrymzJul9U5bQ+K2D68jVOczF1x1IVZLxtlHg3Fzb7dX7btbkRXkGpuMwZpeJ61bi/Le5d60stCn9NXs+WGurq5un91F55ngYhW92EXpuo0VBVbnJ0cbZx8wRtMIVh3OY5a1qTpYmtDE8pxa67MP32ewoyUD9n26iHX2zVYoxkNfXaA120+fftV2X3eEF9ZY/V7N9SSytyv5dR9GwxsMBoPBSeDo8kDn5+ebyLFO2rP0vFcWyLZ++wn2/GKryEd/3vkZV36qzsdlqdLP2Ytis3/MGp214vzdkZyrHKfOr7XKbwQpAbqQqqVbR3xWbUuhnJ+fL6X0s7OzevLkya221kWk4XNY5WMhRWfekDVfz7GLnXb9c2mXLvIVQBKMz9R5eF0ulZ/pnNS9yDf3gXkz1VTSkXWad17r4qEJ5185P7Mbn8+n9yRrTl5gd89ehC/UYoyxoyrrfJnZh1U+Wd5jn6bz5Lq979Jb1oy6EkYu8YRm10W7otlwr61F3AMBdWIVsW7LRb53PAfsIeeKst+7ItKryPIuutrvqlU+Hv7O/F9qvVMeaDAYDAaDwFEa3vX19R2pEEm7Y1GxHwF0JTCsAdkGbCmqYwixhO8Ixey32RFWhMwp+dgv4UKIe1LMymfj0j8psZro1flkHsteeRXn3XS+kJXPBjjyL9uh33vlgYi0s/8g19L+IWsK9vvks1dWANbdfqZsz3lpaCSOOqs67PmVBsl4Oj8j2qGjTu0X7qKDfcY87tSYbblw5LS1tJxPPjNjiM9tZ1FwuR1rTrl3KYWVxWHvKwBLjhnrk31gvm0ZoU3+n3vekdz299pf3rGY2KJllpbOH7uKKE2ScgONylawPdYRLCI+py4M3eVHOjqTv1dFmau2e8TWlj3LyUq79/s228fKMuTRg8FgMBgI84U3GAwGg5PA0WkJV1dXG2qXTHpeOSFXqnjV1iy3CnDpqHCscptYtgu2sPkRE4kDN/KeVVi2TaddcrTTH2iD/3d1ozBR2XRi01xX6dhz7nGDzpRhE43nM00Lbn8vtPz6+rp+/PHHTVJ3kmy7Or0DDboEU5tNHJ5tU09H6kwb9IXUiW4fOBWH9hgPbT1//vz2Hofl31d5vFtLm8o97lxL+r+qofcQ8ztzneuTn2cdQ7skMPvyfPqTa0G7mVayMmk+evSo3n333friiy/u/D/nifY4N11yetVd07D3ooNTnDye53MVNMS9vBM7E7+DRUx1mOuCmdNr5aApp8dk/21CtLmyS7ew+ZXncS1r2rXrfe0gwM4t0rkccjwOTsz270tpuXPPg64aDAaDweA/HEeTR19fX99+QyPlZbjxKul5FcRStXXe3xdKnNKAg1ZMzOtnZB8scVtSTeeyNUk7Yi3F5L04si3B7lVl9v8cwLGibMux+hqvRRf+7rB0S4c5r3bq71EHvXnzpr788stbSRQS5hyzk8iBgx7yHgdMAIdkd052NA5+WsPqpEpTOLGH0Cwc+l+11UwZn2nJ9six6aM1WFsnqg7n0oEuK2tIgnlCojeB9h4dlZOFHfCSc+99m+TQxvn5ef3qV7+6HY+tLVUHrZLAIGBtqgsicfI+f1vzSkuWx+Fq5tyT4fTvv/9+VR2SyekbZ6ELTCPJ2qkMaFgml+7OE3DAGGWq8kw7XYi+MnZbMjIY0O92n71Og3cgnc+ex53jykrxe++exGh4g8FgMDgJHJ14fnFxcSvd+lu4qk9MTViTqOpDnau2iYtIEyk12dfU+TSq7oaJu2ClfR30kYTQvXE4bNZFRPMzfpLESZ+tjVYdJFVLSQ+h/LJm7DmxVpz3WJJ3CaWulEgmw6769fr163r+/Hl98sknVdVLy6vk8dUaZ38dUu7E2c6viVTs5F5C5sGHH354+zvSOP3nJ2uLRJzzhDSOhoJfxnRR3dlAmqWv1hY7nxrh+6ZmMxFBR91nTcVad6f1rqwPTrfJ94Tvubq6Wmp4Z2dn9ejRo00KSO6hlf/ffvJuf9qKwj409dYeebTTIDoqM6e5sC7sKd4d6R9DK+RaLAxObXLMQs6JrV60xXNyHj0XtOeSP04MrzrsQWvTq/Jk2Y6tG/SVOekI3FMbHR/eYDAYDAaBozW8x48fb4pdpvZkv0BX1r3qrpRuupxVEjQaF6Xpq7YlXZCwTV7dUX05Esm+wpREkHAs4Tp6krlIadA+G5e16KTPr7/+uqq2EpD9IS4xk/dYs7P0tlf+yKSu9nPl77kGKw0P8mgkN7ScLmLLCfn2J2b5HLR9r6Wl8i4ykTnL9vK59IMCnfm7pUzax5+d9Gc805ReaGKWgDtNyGeCNpwsn+As2NphzS6fd98+cERrXus5d5JyPsf+pXfeeWfphzk/P69333339gxSMDfbWCVKm04r95u1ChMcrHx7Vdskbp81NLHUnrjWUcj2+6Xmwu8ff/xxVVX97W9/u3Otyzbl+4l3yEqDZa+mtsp+cgkhR4OC1EZ59zHm1Xu8I9b398RedGYmnNP/0fAGg8FgMAgcHaX55s2bW4mBb/CkxDG1D/A3d0oxSH6WfBzZ2ZXZsVSJ9mefQ1d80nlJtNuVUzHdEBIc/7dml1ovfbIGiYS1R6jtCEi0Edvhc07s97EE7py7/B+wxNjlyXR+nZUf5tGjR/Xb3/52SWibMB2YpffUuIhi4x7WxdFmHQ0e68FnrAd9QoJMH57Jc72/Or+YC8kyR167zu/jnDATPnNvrgGaHX1xdKPXIO9dRZDuUdcBzjH7jHGjhef+d3ThO++8syQNr/r3/DIu2kuNkbZdFshaVEcebU3OVpTOasHecA4f13ZllJwjiKZKn7rcVJ6DX5m96v3HXsrx2ZfmOe98avTRObGOwO20cef92YfXlWXz3sfqwTqaZrLqoOGllWVv7yRGwxsMBoPBSeBo8uiXL19u7OIpVaHtoYl00VhVdyUES5q2G1vzSwnBzBcZrVa1lcirDlIEErClCf7umEj4yThXOWOd1GxNDknO9vK81r47+uZCutlXlx1a2dCzPx4H7dPHruAj/6NPT58+3S1Y+umnn27y4bq8Iecw2TqQ/TahuKVy+s+a573O+UGKNqtEaqFI2N6raIed78aMGqsiq50fxmVhXCSXz7M8EO06j8znqctx8pqu/E0J+96tbTBHXTRgas8rKR3/L5+j6aHdVx32ClqGfVsgtSdrwibdXpGZJ1aE8N1aMj8uLQRoI6PDeW/ZV+/3Qse0Aug/621GnHx32IJgrdRrlNqv4zdcvBp0LFv0zWXQuDbzK9lfXR7pfRgNbzAYDAYngaN9eK9evdpEJHWMJPx0xJ39SAl/u1t6X/GtVfXsFFUHKSB9OmbLsD/OPsOqrQRi5gs/vyvX4fIsSLzOZ6vaMmnYbr1XAHYV+dT57oC1UOaGe5EGU8JzrsyrV6+WGt7FxUV98MEHGy0tpVkkN6Q555N160IOExFpjJF77T/NsTOnLt7JPfydeXmrKFCez/hSK6T9VQkr4M+rapPz2vk0qu5aMD7//POqOuydZ8+eVdXWl9dxN7Ieq7JK3R6yVmDLT8efy1pzLq+vr3cj7S4uLjbnJsdsS4S5Op1zm/1kbv0+c7Rux8O6KqPl6M2qw3vG0blYi7rYAWvj/GRu3Y/cU7YGcE5diDb3KvewPs4htTUuo5GBNTpblPJzW6McMet3QtVh/XOP7uUlJ0bDGwwGg8FJYL7wBoPBYHASONqkeXl5uaEmShXcxNKm3Gk7oarkTlR1+HsGydg5bNqeLtAFMxjPM7WTiairtuaAVYKrHcR5rYl5XSE4x0XfUOmdxLsqoZSgXQfysBYO4c72GKeT8juS6ocCarqqw7gyiID23nvvvaraUmN1wURQL2GKow3G7ATt7DNr6qRtTE9dYI3XnXUwfVdXpsXh55hzTEfXBQY5fJs2baas2ganYDJzAEwXOm+iAbsgHNSSfXO5JcD8pRnWQW17ycPsG1fdznQoB2TYPMmcZlrKqlI7MDF87hMHWDHXlDAycXbXvt08JtHIz1xJ3cEsJvnO/q+CVrqSX36n+x3l0nC5pm7Xpvy97wC/87mHtU6XFH30Hn0IRsMbDAaDwUng6LSEn376aUPmm0m2dq4jLVt6S+1pVVYCScGSaZfS4NBnNAiTIuf9fg7jsFTT9cXajQly83O0D5MfW0tLCRKp32HBHndHnWb6J4efu3xL3uNQYs/5XiDPfWHCNzc3G4qiHNdKE7ZWlZIi2joagxNXTYnG5zkfrJX3avc82jP9FOH1XSCI6blM0GzKORKS83/WsG1ZSAmY//FzRZLehXw7yMxgX6ZWYJotkwq4AG72f/V3AkpDgDaTwRarIDIH2HWJ505lcUCY3zFVW5J15piz3pUE8zlZtd9pz7Z2sQ4rwv1ufLZcdXPB3LrdTHtJkNpRdTjL1pxXlGr+veow3iQkqLqrKXfUdVMeaDAYDAaDwFEa3tXVVf3rX//aJLamNGCJGukZCbyTHGmPb3WkDPuPnBCaQBKw5rDnrwKrNIGEE1ktmaxSAaq2Ye/W7Jz4WnWXGDVh6XOPzNf+Fif9d+HvnnOPMzXXzq+3AiVekAg7SjE0AMaMlk5SsTWG/P2jjz66c+0qWT37ypyx31L7y7a7vfO73/2uqraag8sS5TNXVg5TfXXXWIOhLfrclW2iPfuMvYdSe7JUbgLvLl3B1FzAZOCp4XFPvh9WUvrZ2Vk9efJkE2af1oHVXjRJRmoKTiGxRu90nrSI2PJhfxxjzXucsgVsFUityWkoK9/6XqyEfateYxcKzvadSmCawtw7fjf6fWMyi7xmlW7lEk3ZF/DQlISq0fAGg8FgcCI42of3/fffb6iXUopxEjVSFFLLXnShpYaupAv98PPwQ1ii25NiTZALOhs3Eraj/RzVaLqoxKpIrX162a5hLdE0Qfm7fZROmu58biYPBl7P7EOXUNrh4uLiVirnniwvYr+I+9cR1zo6F4lwRQiw50daRaRBG5afmYjXhTgTXgdrB46WRHvM35kTxmu/T0rNJnf3eLw3O3+cLSSOIOwKcrqki898+vptufjpp592JfWMDrcPrOow/yZ8YD90lG+rZH7vfRdBrtoWHgZuKz83WYH98F2MgjUeW0E6uj33xXR+jj7uSkvRF/t9QWdtcQm1jrqs6i7ZBPPkiM4V4UFV7wtfkdYbo+ENBoPB4CRwlIZ3eXlZ33333aZURNrFkepsr3a05F7uhImSHZGWUpxJWy0t227NOLr2HFmVUrN9F7ZTWyJJzWJVJBLwd2cPB6YOshSaEp7zUyw5dxrsKmJsRWlUdZAMk1B5JaXjw/NYU5tx0VtrxN533f/QxlySxn7grn1HL7K2qRVyT+erqzpoEB2Fla0ObrOjo3Jf7BtnXTLS0pqDzwT7uvNV2zfkHK4u99a+u1UJo9zf9J9z++rVq6WUfnNzc6e4cEd6jfZobZp+EkXblfxaFWI1MXtaN0xWbssS6HzVzqV1P/JdYquGqRL9vPx7VXR7j/7Mz7MGuUcE7ef4/ep84IRzux8SuZp520MtNhgMBoNB4GimlSwP5PyoqoOEbZJZtIDOX2UJ2HZdS37pC3Duh8lUrYlVraUUs0ykRHIfgXX3HD/PfbRkn9KgtUBLPC6quCe5OpKw8/vYt+ZyNJ1UbV/Kzz///GBbuousVh3yzxy1utJ2sz9ciyQP4bPXK9fezB2eU56bfh/7hB352EUs2p9oLdFrnVL6KkfV/rJcS+eT+R7n7uWcWGPwunNPl6OKxM04HZ3ZRTk6UrkDTCvMmwmuqw5r6PPBewdLQqcBWRu0b7XzX/tMe890paUcyekoUGuwCb8jbC3ozidYWb32WJq8n1fa8J6m73ljj6bf3mvggsfMZ8Yo2DLz+vXr8eENBoPBYJCYL7zBYDAYnAR+EXk0Ib5WO6sOpiSCVyB4xSxEAnpH00N7Jk522HNX8XyVoN2lCdjEZye/E0+zna52XdXWTJVmiZVJweaJzpTlYBI7ZztTa0eFlM/lno4cm3G44nWXfL0iGO6AWcpm8KTEcqqFzWj0Ic0bNoFgPvv444+rakuJ1KVO2OTI/uO5aXa1KY7nEjTSJdY7fcdmfZt+0sRpk1VHGpDXVW1dDQ60os8+V9knB6swF5zjXAOnLDAH9Ikzn2vh87oXtAK1WLf+7rcJAJx6lO8O3i+4LpgHuxw6mjC7J5zY3pENODF7VX+vo040leGKiDrfxQ5acl+druAxVvXpB3ldviP93vE1nQnVCfXuK2uU7zcnv0/i+WAwGAwGwtGJ51nVugtaMfkoUh3f4JD9ppN9RT6MNIlDGmd1SiRIq3uhve6jJQJLWJZy85mWwhwIQH/y+fzPztYVFU8+b0U/ZQLonE+wouDppE9rci5Ls1ctPZO990q8PH78eKNx5xwjzWEVcHAFY+z2DvvOieBQjr148eLO+LJ9/21pvSOuXaWYgNyjDlZx0ICl29wH3otOlu60a6cEucwSz+2Sli310y5aW3e+rEnwHK8FaSc5Jx2tlUFaAucfrTODH6x5Aydop0WB+5nbr7766s61BOD5/VB1eDf53Dv4pgsms9Vmj1zZe8Lrb0quLh2qKwOVf3eJ7k7dcoCNUyuqDvvY6w79XVc6zWXc2A9+V+a6OaH98ePHuwE4d8b8oKsGg8FgMPgPx1EaXtW/v9FXEmTVQdJ2WROku2fPnt35f7ZjzcNErJ3d2FKzKcA6OqqVb8saZld00KG3tve7IGjea+nPkldni/aYrR10SeT2jyARWRrsfJRO/rZ/M0PBGXP6Vvco0V6/fr2hH0q/Dn4w9pBLhXSJsvTB/WftCEen3/k8J8j6eU49yGtNuWQfZ66H27FmZetE3muflLWALsQczcXljpiTPWo9/ufiuPz8xz/+cefzHDsakS0/LrScv6eWtsLl5WV99dVXtxoY6CwULim1suZUbdfFZOW+N9NTnCaw8o91ViKfpe4c5djzXveJ9k28kWP1mXTCe7bZWbeyLeAirNlX4HeUrUb5GXO/Koacc8I+yO+H0fAGg8FgMAgcreFdX19vfABph3dxRkeGkVzcRQZZIsEm/JAyFsDSuimA8vf7yvV0UVmrwq8rEtls15pVFyXl+21nt8S/F1Fq6d8J9qnROpk3KZ+yzS6h2pGSHbAM4I/tIgRZX7QytAmeSZ+y316zlQ+XhHT8g1Vbn4N9qZ3U6DHaR9RFzdJvF+R1gnPn11yVWvGa5pz4Wu9R+4VzDSzZe2464mZrcsDkBd1nSV23irZ78+ZNvXjx4vbd0o3ZfjHaJWocy1IH+m/N3oVzu/eP94gjsBOrMkreq3tn2cnre4Tt1uB9RkxE3fXNPkPvg73Cq6yXk8o7/7bHwfvI0dcJ9lU31yuMhjcYDAaDk8DRGl7V9ts4pQIiclZkrvhY8luZb+/Ot1S1jZbrijia6ievMVZ29lWOU45jVWjxoSXm81rnnKS06Kgza3TMZyfdmP5nJQHlOrq8kbX4Lg/Q++Dy8vJeih9r1QnmFl8Qtnqk9K6QKPut85lkfxkH+XlVVV988cWdcXS5TB7nSmtijpE6U2tyNJ7zvbzvuyg9azCr9XF/s31H8lryz99X/iXGkPR+HrtzUlmj9Pd4P/34449LDe/q6qq+//77zTymhkd/GCN7hLnAN5T99jX+f+fjAqs4gNU6ZX9XBYE7cnTHFVgbtHUoP3ce5qrkTz7PffN7Z2/feQ5sHeoim00XZ+uKfck55swEGPLowWAwGAwCR2l4SFp74NsbKck+FaTAbAeJ3kUnrakQyZMSibUX+7666CbnMNlP4bIg+ZnJaZ1D2JVC6fxf7lP2J8dlFosVG0nno7QkZOkwfS620dvP5Ovy/ozWvU/S2tNmaM+k0ewVGDtyHKt5sa+jy1PCr/f8+fOq2loJOsYaFyVeFfHN9bCmYKndlgcdm1YAAAQ6SURBVIVOW3PUmllZ7Fuu2kra9qFYE+vGvCJlJy+v6rA+RIXeV1i5G8eedYAIX/vH8j1gjcM+Lvr2wQcfbNpflfhxeZu9d4gjbvdyHGmPfUzfuvG7lJPbdeT1noXFEZ8uuJzX2N9ny5b3Y9X2/W0mpi5anXbQ5LjWkb9YeXLsWSaoI83uMBreYDAYDE4C84U3GAwGg5PA0eTR19fXG3NUhh2jWpOkaTMhppE0pxEqbroc00Z1AQ++xyp3F7xiM9iqNldHR+aABsZhs2jC43DfraLns1dhwTYnpplsVQ3dJoyOkNXjdUh2mqJdG+2+5M+zs7MNUXIXEu9EZdc2y3ts6rGJeZVIW7WlH/v888/vPP8hZL6rNJicW4ejr5L6vR/yHtdIcwXyfJ7X36YmJ9h3tHSsrUkmGEueK5NM0CfONabodD+YeGAv6AvSetDVzrOJ1y6VLgXDe4RreHfZTdGdbb9L7DbIc2VTpt+jDp7K+z3HTqx3XdD8bJX20AUJ+p5jUqnsBqHvnudM4P/yyy/bcWDC7AgvnJ4y5NGDwWAwGAhHB63885//3DgyuxBlS42rUiVVh29slxex9O5AlKqDBMA9drp3jlJLLQ7PtfO6aqvJdSHd+XdXYd00WE6gTUnM2pid4avk8rzWWqlDivcc3Jbsu3FZQ95LHr6+vq4ff/zx1hrQVcF+7733qmq7h1hb7k1N2UEVloQd6t1pBya79X7LMVnTstbUEUBbegUOSOlIfu8jqbY2l3BAjYMIukRga3CsgZOz83xby7FWaiLgqq3GtUcPxd5JzaCqJwJ3GgKa6h7JNtfQl3yf5ThSQ+1o4BIuCZX95bnMsVNq9qweKyuBA766vqzIKpJCcVWGbJWKlpYla4crQoU8G6zTKl2J1KSce6wCK8rGPYyGNxgMBoOTwNE+vC4ENL+V+TZHCkcqs9TcaQou1omkhRRBmylt0L79VF3osvto6dnh4imdrcpkrBJz817T51g76wqyWpPjp8lVPabsm0OlrSF3xSk9dofS51q7MOZeEU9KvHgOOgo2h4HbP9LNk/tn2z9aYq7xKqXAz81Ed/xSK0okt5XXOHTeUnvnHwMrfx//7+5ZlVjheZy3zh/n8TAH9DF9udYgXDS205Dsrzo/P19aB6Cl20vjMVExz3TZntznpkY0EbzfHTk3thhYW+/8cXvvzUTeY+2I55ngwBpuXrsqju2x5POsBfqdtecb9x7yOzNTDHyNrV+ct7SO+Ax0Wu0Ko+ENBoPB4CRwdh8V1J2Lz87+p6r++/+uO4P/B/ivm5ub9/3P2TuDB2D2zuCXot07xlFfeIPBYDAY/KdiTJqDwWAwOAnMF95gMBgMTgLzhTcYDAaDk8B84Q0Gg8HgJDBfeIPBYDA4CcwX3mAwGAxOAvOFNxgMBoOTwHzhDQaDweAkMF94g8FgMDgJ/C+w5E3PhBpKYgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Zddd3/nd79VcKlVJQlUqSZbkCWNM200aA4EmQBYQx2HMYhEaCDHgZkwg6dAJcbBxwIwJY4JtGojdTM4izDGTGWKGEAfSONgGbGFJVRqqJFVJVVJJVU9V9d7pP8793vN7n/Pb591bli0pb3/Xeuu+e+45e977/OZf6bpODQ0NDQ0N/7Nj5aluQENDQ0NDw4cC7YXX0NDQ0LAt0F54DQ0NDQ3bAu2F19DQ0NCwLdBeeA0NDQ0N2wLthdfQ0NDQsC3wtH7hlVJeUUrpZn8fnvz+yeH3TwvX31xKOXaFdR4rpbw5fP+UUIf/7i+l/Fop5WOvsI7PLaX8X1f47GtnbdixxX23oc1PzNr9O6WUf1xKOZA8s6nvC7bnFaWUL69c70opty1T3tMRs/V071PdjmUQ5v8VT3VbMszGlPsq+/uUJ6m+/1BKee+TUdasvG8spXx2cv27SilrT1Y9HwhKKR9fSvnNUsqJ2f4/WUr5T6WUl15BWT53fvuD0dYPFSYPzacRzkn6+5Jejev/YPYbD+9vk/SDV1jX50l6NLn+9ZL+RFKRdLOkfy7pt0spL+m67q4l6/hcSZ8m6fuusI3L4Dsl/Yr6uT4s6W9I+lZJ31BK+Vtd190e7q31fQqvmJX973H9VyX9dUknr6DNDR84Tqof/zue6oZU8G2S3hi+v1LSV0j63yWth+t/8STV982S9j9JZUnSN0p6q/q9FfHDkn7hSaznA8E1kt6nfm/eL+kGSf9U0h+WUj6u67r/sUghpZSPkPR/Szr1wWrohwrPlBfeL0j6klLKa7qZp3wpZa+kz5f08+oP3Tm6rrviTd513TsrP/1l13Xv8JdSyjsl/ZWkl0l6w5XW9yHAnbHdkn6hlPLDkv5I0n8spfyvHtOJvi+NrutO6Wm6QUopq5JK13WXn+q2LIpSyk5Jl7sFI0V0XfeEpHdseeNThNkene/TUsrLZv/+t0XmpZSye9bHRet7//KtXB5d190j6Z4PRV1boeu6X5f06/FaKeW31O/LL5a00AtPPWHyY5I+7klt4FOAp7VIM+AnJd2qnvozPk99+3+eN1OkGcQ7X1VK+dYZa392xt7fjGcXFeuZE9oZnr2+lPIjpZTbSynnSyn3lFJ+ppRyU2ybes70piC2OYYyXj979onZ50+WUnaj/meXUn61lPJYKeV4KeU1pZSF5rPrur+S9DpJL5b0N6f6Xkp59qz++2ftubOU8oOz394u6ZMlfWLoy9tnv41EmqWUnaWU183quTj7fN3sMPc9y8zVF5ZSfreUcmo2Du8spfwD9ndW3reXUr6plHKXpIuSXjprwzck9792Nn/XLDKe4bmvLKX8WSllrZRyupTy46WUa3HPPyyl/NdSysOzfr2jlPJ3cI/H4GtLKd9TSjkh6QlJh8K4fnwp5adLKY/ORFY/VErZk5TxinDtzaWUe0spH11K+YNZH/+qlPLVSV8+bTaea6WU95dSXsl99aFCKeVls7581qwND0k6PvvtI2bjcKyUcqGUckcp5d+WUq5GGZtEmrPnulLKl5VSvnO2vs+UUn6plHJ0i/bcL+mIpK8I6/6Ns982iTRLKXtmv796tv7uKaU8Xkr55VLKtaWUo6WUX5jN4/FSyj9J6nverP2nZ/Px/3HNLIFH1a//hYi90qsrPlxj6Zp/3zkbvzvDuv+DUsrT8uX4TOHwjkv6ffVizT+YXftSSb8o6bElyvkX6jmbL1cv3vteST8l6VMWeHal9HozizS/Q9J5Sf8p3HOtpLVZPack3ahehPBfSikf0XXdmnpRzvWSXirJOoAnJGl2wP7RrJzXSXrXrJ2fI2mX75vhFyW9SdL3S/osSf9KPWX5pkUGQtKvSfoBSZ8o6XeyG0opz5b0x7N+vkY9R3uLpM+Y3fK16sdvVdJXza5NiUT/X0lfoH7s/lDSJ0j6l5KeI+mLcO8ic/UcST8n6bskbagX1/5YKWVv13Vv1Ga8QtKd6kVRj8/+/yVJX6kg/i499/cVkn6267ozE33ZhFLKd6mf6x9SL/65Sf0cflQp5RO6rrOY7jb11PIx9fvvsyS9tZTyt7uu+w0U+y/Vi9G/Uv0YR93QT0p6i6S/q150+VpJZyR9yxZNvVrSz6if+2+V9GWS3lBKeV/Xdf951pePVC+S/mNJX6h+7b1a0kH14/xU4Y3q99v/Ickv95vUz+XPSjor6Xnqx+1/0WL7+lsk/Z769XGTpH8j6c2S/tbEMy+X9Fvq1/B3zq49sEU9r5T0TvX75Gb1+/bN6sWMvyDp9er3wPeVUv6s67rflaRSynMk/Tf1e/vrJT0k6Usk/Uop5eVd1/3mVh0sPSG8qv48erX6c4QqiOy56yX9a0n/sOu6R0sp2W2vkfR16vfre9SvkY9Vf4Y9/dB13dP2T/0i7NQv4i9Xv6H3SDqqnkL5dPWLupP0aeG5N0s6Fr7fNrvn7Sj/G2fXbwzXjkl6c/ju8vl3VtLLt2j/qqRnze7/PLTv3uT+b1Wvv/joiTJfOyvvy3D93ZLelvT5lZVyds9+f8NE339CPUFx40R73i7pDyfm7rbZ94+afX8t7vvm2fUXLztX+H1F/QvkRyX9GX7rJJ2QtBfXPbefFK599uzax281XxjrdUmvwfVPnJX1uVu0+W2SfjmZuz9VL3rNxvVf4fpbJd2elPEK9KOT9KlYBw9J+n/CtZ9RT7DtC9eOqn/hHquNwwfyF9b1juS3l81+e8sC5exQrx/vJL0wXP8Pkt4bvn/E7J7frKzHa7eo535JP5Zc/y5Ja+H7nll575a0Eq6/fnb9G8O1XerPuLgnf3q2dg+int+X9I4Fx/atGs6tE5I+bsHnfkrSb4fv74jfZ9d+W9LPfDDWxAfj75ki0pSk/6h+c36Wevnz/apwJhP4NXx/9+zzlgWe/Tr1XNlL1VN4v6FeB/bJ8aZSytfMxFqPqX8p3z376QUL1PEZkv6kW0yX9qv4/h4t1g/D5NqUTugzJL2167oTS5Rbw9+Yff4Urvv7J+P6lnNVSnl+KeUtpZT7JF2a/b1S+Vj/Rtd1F+KFruvert4o4qvC5a+S9K5us95zK3y6+pfXT5dSdvhPPWV+TkPfVUr530opby2lPKB+fVyaPZ+1+Ze62amSgPP/bi02/+e7GScnzXV9t+PZj5f0a13XnQ/3nVTPcU+ilLIax6AsKGZfEL+Y1LdnJi5830yUeEk99yUttueycZSW20uL4G1d10Xu2OLVOYfWdd1FSXepJ5KNl6nnah/H2nqberH8Hm2Nf6xe//b56qU0v1ZKecnUA6W3ev989VKcKfyJpM8tvfrhE0pQTzwd8Yx54XVdd069COrvqxdn/jQW0CJ4GN8tIlxk0dzedd1/n/39unqxyp2Svsc3lFL+kXrK7bfVi5o+Vv3hsWgd10la1Pw968sidRjeVFNWlMu0ZytYxMH67sfvxuRclVKuUn+wvUTSN0n6JPXEyL9XTxgRtX6+QdLnl1KuK6Xcqv6AoTh0Kxyefb5fw4vXfwfUj6NKKc9ST6RdK+kfqRfpvlQ98ZTN3dTcZOOT9ZvIxLRcO0clPZjct5XYTur7F/v/mgWeWRTZeHyveq7szZL+tvo994Wz3xbZDx/ImbAMOO4XJ657ja+qXytfqfG6+jb15/eWeuau697fdd0fd1338+pFtefUq0BSzIiUN87+HiylHCqlHFIvsdox+75rdvtrJX27+pfjf5F0upTyo2VJ/feHCs8UHZ7xE+opshX1L5ynDF3XdaWUv1TPcRpfKOl3uq77p74w04MtitPq9QgfCljp/YcT9zyZ7fHBcoM2m8rfgN8XxV9Xb8j0SV3XzftQ6v6JNU7pJ9TrYV6h/vA4r16MtAwemn1+hvIXin9/mXodxxd0XTcnJEop+yrlPlW5u05qeIlHHFng2a/SZjehJ0M6YGTj8fck/WjXddalqZTyYU9inU8Zuq5bL6U8ov7M+/7KbaeXLHOtlPIe9WqiGnZJeq6kb5j9EWckfY2kN84kBN8u6dtnxj6frZ4I2aXeOO9phWfaC++3NFNOd133509lQ2ZU0Iu02fR+n8ZGG1+WPP6EpL3J9bdJ+ubS+/b92ZPS0ASllOerp4rfqV4HV8PbJP3dUsrRmUgrwxMa+0Fm+P3Z5xeq3yDGF88+p9qRwS+JS74woyo/Z5lCul4Z/9PqD+qr1OuJlvVF/C31xhy3dF33WxP3ZW3+cPW6vqeTY/s7JL28lLLPYs3ZYfaJ2sKvsuu6930I2idJKr0VxV6F8Zwh23NPNmp7+MnGb6iXYry7W8INo4bSB5z4a+pFkTVclPSpyfXXS7qg3jjrdv44OyN+pJTyOep19k87PKNeeF1v6fZUcXYvnOnlpN7K8kslfaSkfxbu+Q1J/7yU8ir1Fm5/Uz2rT/yFpGtLKV8j6b+rV3K/Wz0V90XqHdpfp16f8GHqD/Gvnol1l8VzSikfr14ccb16XdlXqKcMv2BCRyT1Fmwvl/RHpZTvUC+yu0nSy7qu+5LQl68tpfw99ZzbuezQ67ruPaWUt0h67YwL+yP1XNqr1b9k3s1ntsAfqScufriU8i3qnYq/edavg0uW9XoNeryaOHNvKSWby/d3Xfc/SinfLenflVJeoN7qb0292PjT1Rs3/Gf1ou7Lkn6ilPK96kWH/0q9nvfppF54nfp1+5ullH+jXlT6avUizafSSnMTZlKWt0l6ZeldDo6p5/j+2oeg+r+Q9KmllJerF/8+2HXd3Vs8cyV4lXpd8NtLKa9Xv1auUe9SdGPXdSOXEqOU8iZJ96k3fnpYvSHT18+e/45w3wsk/bmkV3Vd9z0zVdHbk/IelfTYTPfta78+a9871RvyfYz6c6/GkT6leEa98J5i/FD4/4z6CAZf1HXdW8L1b5V0SNI/US+H/z31MvM7UdaPqdftfcfs/uPqrRnPllI+Uf2B803qdT8PSPpdDTL/ZfEvZn+XZu3+c/V6lR/f6gXadd2x2cvyderFflep30C/HG77bvXGAT82+/33VDcHf4X6sfhy9S+nE7Pnq/qEibadKqV8nnrxyc/NyvpB9TqPrUzzWda7Sim3S3q067o/rdx2rXrDKeKH1Zttv2om4v662V+n3pT8d9QbCqjruj8vpXyx+nXyK+oJhG9SL+r8lGXa/MFE13V/MfPz+tfqJSr3qZ+nl6k/NJ9O+GpJ/059+zbUG3h8qXp90gcT/0w9cfRz6jm9H5m15UlF13V3llI+Rr2u7LvVE8Cn1RPDW7kgvUM9t/u16qUL90r6r5K+uOu6vwz3FfUE8ZUQXb+vPnLU16s/8+7WcF487VCmCfyGhv/5MaNw/1LS/9l13Y8/1e15OmJmJPR+Sb/add1XPNXtaWi4ErQXXsO2RekjtzxPPYf5PEnPo+vCdkUp5d+qFxufUO+w/A2SPlrSS7uue9dT2baGhitFE2k2bGe8Ur1493b14un2shuwR70I7Yh6cfofqw/u0F52Dc9YNA6voaGhoWFb4OlkGdbQ0NDQ0PBBQ3vhNTQ0NDRsC7QXXkNDQ0PDtsBSRit79uzp9u/f7yjZ2rWrD6e2sjK8N3fsyIuspJbY8rfs90zvuMg9NfBef8/a5WtblR9/571b9TcrZ2NjY7KtU/VtdT1rU20Msravrq7OPx9++GE99thjo5sOHjzYHTlyRJcv92m4Ll7s3Qrdr6x9Xlcun9en+rHMGNfqv5J7svmojSHvnVpb/O3J7N8yeyWrl/3wnK6v9xmRPOexHp8TO3f2sYan1s6BAwe66667bj7vLs+fknTp0qVNdbJNU/NyJXYMWz27yDxdyRzW4LGJZbL8qX1DbNW2rN+1Psc9vtWz/J6V6fPA11ZXV/Xoo4/qwoULWw7oUi+8vXv36lM/dYg4c8stfUDxa64Z4oReffXVmxrjl6I7zc5L0r59+zY9Y8QOScNiji9VL3QPjO/1d2+KWDY3Du91PVOHe+3QctluV/zf5cYXRPyMC5Ib1y+ItbU+JRoPFX9m/WD/FjmUOU/Zy8fz4HKOHj2q7//+PMDC4cOH9QM/8AO67777JEn33NMnhT53bvB991oxrrrqKknSwYN94BQfjv6Mz7B9tQ0b++xn3Fd+j2Nq8Bq/+9k4/3wJc41wrOMYs01uv8cgO+hYL+vh+o994D2LvGj9zPnzfXKFCxd6Y9dHHnlEkvTQQ30oUa9dSdq/f78k6VnP6mOYHzlyRN/zPfM47Jtw7bXX6lWvetX8nHjssT7g0d13D4FNTp48uakO30PCKnvp+h73mS9qjnUcB44xx2nqoGZZrifOB/eY4ba5Tbt3795UR/yf+8Zlup6477i+amdh9tLyGLDvTzzRR0TL9pWveQ7cNq8hX4/9OnTo0Ka+HzhwQD//86M84CmaSLOhoaGhYVtgKQ6v6zpdvHhxRCFEjqtGRRpTFCmpGVKXmbiUFDCpiIzS4r21z4wrzKh+acxZTol+XIbL5PWsDeQO/Lspu0g9T1GM8VlTT7H95D44XxmHbpw7d646Pl3XaW1tbc4FPPpoH5/Z1F9sQ40SdlviOvA1U6nkEo2s3Rx/fjdin8hRk6olFy+NpQycH9YfQXEu7/XvU3vDbSRXYJiaztrPPRk510WRjavX6+OPP77Q817nEbEtnl9yrb7H/YnrwG3gmqUEhGVF1CQ+GWoSK+6xOOcUE0fpRlZ27J/vrbUtW288Nz2etfMtlsl1PvWeMFyuzyJymD4fYj3x3JJ6acGiYunG4TU0NDQ0bAsszeFdvnx5koMgpbV3b59Bg9REfNuTKicV47Iyziu2TRpTIlOyZlL9Nf1Fdi8peiKT95NiZFvjM+SMOQak/LIx8bjWdBSxT56PWj99Pc5bpt+p6c42Nja0trY21+uYq4jzQ26J8LrYs2fIzen/vc7INdU45execiKZ3tkUp9tqLqFmsBFBLt1YhALmmvSnOZ+Ms63pJNnWyD15rfgax8QceuxfTRowZUDkeqzDvXDhQlV6UErR7t27R+MWpQPcW9SlZtyM1+BWnD33YizfqNkZxDklt17b/1NGS/yk9CvTy/O8IdcW+0J7gxrXlkkLqG/jGGXSD3JrrM/9iXPtte41uozxT+PwGhoaGhq2BdoLr6GhoaFhW2Dp4NFd142Uq5GtrSngyYpbBCWNRW8UIVDUGMUpbEvNXSCy+mTtjZq7Av/PyqiJLeP/bIv7SxExn8++U+ybiRppluzrVBDH8mkYMuX7xDFfX1+vKo8t0ozGNfHZ2AaKKNwWrxm7K0i9SbI0mLlna7J23eJQilos1qGpuTSI9GhskZn410DRlsF5itf4m/eMTfXjfmLfKWqkmXg0xqCIyXC/PN7R0MViSc+tx6hmYBPrsfvAhQsXqmtnZWVF+/btG+2XuBZrIn+K16KYreYq5fVWEwHGa/6sGffEPnm9+ZNuAtnZybOvNkaZoZfXSHaeRcRxpPjb9fJs5pmW9dn95JjYdS2C5+Yi/rRRRbCoWLNxeA0NDQ0N2wJLc3illBGlkEXLqCnMTYlm1J6pRlOgpGpp5hrvcb0u39SNqc3MlJ0UPamLWE9NOVwzBMhMmN1WK1tJlcYxoZGI+0OzYCqR4/905iTVO6WMp1m6PyOH5j66X2tra1XDg42NDZ0/f37SMIicj+fSFKEdTv0pDRyHOR2Xa+qSxheZq0lNce51GNcB58H98bj4mcxoqWbUwXWXGXS5f66P/Y5cr59neeTwXG+cUxor1Mz8Y30cg8wgKdYfxyIa/9TWjjk8uhFkEhiucY8P51QacyA0iafUJs5pze2K+zGOLfcjn8mwaGQdj0k0QCIHyb2XSRT8G9dxzYUqW6tcXzw7436qRX/hXolGWR5HS3WWiSDTOLyGhoaGhm2BK0oAW3Oclurm2uSqog6A+hDqQfgGz0xvyZGYesv0B2yDnzE3SKom3kMqpuYsn5kjU+9Wi48pDeG0yBG7XlJ8kaN0P0jVuu00aY//+96aw2nUFWVh22oopWhlZWXEbWTzYsrtuuuuk9SHloqfUQdgCp6cnOefur1Mh0OTcvYr49Y4p17v2TO1cFM1B/Sp8F10Q3A/43rzPf6N8+62es1ENw9ycjXONXI2HmOvO+oVz549K2kzJ00OOXL/hDm8M2fObGpbFiaMYQrJfcb1S6dn7ospWwVymzV3oSmJCEG9Occg1kdpSGYH4H7Qad3PUocd20iplyUKNV1bLJ/zQy44rjevK3KFHKu4vj1ftXGcQuPwGhoaGhq2Ba6Iw+MbPOMu/PY1dWGq3NRmfIayXuoaTJVl8lxTCzXrPP8eqUtTgaRS/Kwp0khVRKok9q/mgB6p1Zrex/0yBRQ5F3N4pqxchh23ORaxPlPC5mDdH1LpGTVo3Yyt52iFFuvJuNmtrKpIxcY2kLPzePg6ubgIhhjzdzoXx/ZnOixpsDq05CHOLQMkM2yXf88CQHO9kUL1+ojtIUdFC79s/ZFa5p6kxV2cM+p/Kc0hx8//pWGeyF1n4aF8z8WLF6tWhA5oQF1XlFBQp1RrU5wXznvGLUdkVs2c/ykrRgZE5nnHsywrp3Zm0RlbGs45Sr18neeSNKwd73/q37x/KOGKY+F9S+mHxya2kb9xbWZcnJ/PdJBboXF4DQ0NDQ3bAktxeJalm/Ll2z7Cb11b1Jlz8HUHD5aGtzzDI7n8qdBjpkSMmoVnRl36N1Jp7EMEw5JllJy0mfLxb+6HuTZ/uj1Rv0BfI8q6/WluKNZnXRf1Pub0SPnHfnm+TA2ao6zpDmI9W1mbra+vj8IPmdqM7WSYMOoeMo6La5EhibK1WgvT5PXtNRqlAy4nrt+svsz6lNzSVsHLpbGFpUFuPT7j+sjt+tNj5r0TKW5yKNSNey7ivNH62G3z+jbFH3X11DNPwWuHOrUodamFYKOfZub36bVPLpD6ubj2Pf/U3WXWoIbPQD9bC+a8SFBnt5W6yzgv3ke818gkZhxHnpU1C0xprP+jlMrzH+uj9M7jSb1v3PPUPS4aOFpqHF5DQ0NDwzbBUhze6uqqDhw4MKfoMuqMFILfxubiaCEmDQlkGeWj5vsWKSBzIP7NVCs5yowScdtIWWeRCahLIcVNyi5S3KQcfQ8p7cz6lDoaUlimFiNlR12hqSX6R0WK221w+aaITZ1nbSR1u2PHjkl5etd18z577KM/V8atSMN8ea4jnFy05g9J3UDkaj1m9Nmjni7C5VKXOhVpx30kp0BulH5gsd01v09TyHHMano498f9O3HixKh/Brlt6puiLyQ5CXJg1BnFPmbWuoSD1vvs8HlgziH23331mLudmQUsdZt+hvowlx3XA/Xvrtd7zYhcFfeu9x/XWWYVzCDYtSDv8VlaOtYsl7OEs7XoVrTMjwmca/7Z1CFG6QgT2Fo6xfMt24vc64ugcXgNDQ0NDdsC7YXX0NDQ0LAtsLRI85prrpmz7TZ/jyIYOgebrWaG68h6P/zww31j4Nzte2jUEsUSLI8O25mjrEUJFMlSgRrNlt1Hl0dRksfCiKI6ilupsK/l54u/+VmaUnsuPO7SWCxBEW0mdjU8T+7PDTfcIGkQR0QxKF0LpoK40qycJvLSWDFPVww/H8UbVG7TKIYhrKJI06KdaCwkTedfpNEQxZFZMAb3i64tFBvxemy3++7+eR1YpJSZlruvfsbXPZ7ed3E8fQ9DltGd5OTJk/NnGM7Pe5BixiygehYaj+i6ThcvXpz3w/XEPcazyOcPDaCi6PT666/fVI/LrYXkOn369PxeGnUwPF3mnmLUcun5mWjw4n64rx43i2qPHDkiaSw+loa14f4wVJ/XQVQv0eWsFozbZcU1zSDvbov3WXZWeu25rX7Gaq4sn+EiAdpraBxeQ0NDQ8O2wNJuCfGNTqMSaaA8rIS0Ypzm41l2b18zNbOIgyGV6r63Rr1LA2VLJ0dTE5kztykRlmdqgxRepNJqYafoHJ2lMHL5NNH3GE2lXmH9NGaIqGXqtlGIqeFIDdJtZO/evZMc3q5du+Z9dZuygLw0tiB3Fo1XXB45OlKgNEyJ93hMa1x0hH9jkHC3OcsiXgtRRQOULAABjRRYTybBYFZ2GlS5D8w6Lg0cvsfG3z3H5vDjOjh8+PCm8iwV8KfnKHKSHmv349y5c1XKvZSi1dXV+b1uQ9xj5iq97/1Jw7QstRi5c7eTQReiQQrv4fxMpQeqZZO3EU48Y1yuz1XPgzkgS3YYYi9ec/t5JtK9LI4PUzx57XqtuJ+Ro/SzbiMDz2cSE3J/NIpyWT6zpfF5NhV4nGgcXkNDQ0PDtsBSHN6OHTt0+PDhkd4kmiibEiAVxmCkGTXHgM90mGRg41guXQuYEDFyoaZwaB7MMDZZGCIGnjalSgftzBnS/WP91F1KA7XnsSVFT91ArI+Bbf3dVJKp9qjPosk0g2Qz/FG8N4bKqnF4ly9f1kMPPZTqcA3qc6wz8Rhn7Ta8VjxupOinAmbTBYMSh8jNnDp1StKYOyIXHylSBhioBViYSnNSSyzqPsT9xMDWdCMyVe7xzPQw1KOS245jQneRu+++e1NZvjdyZNRNm0vMcPnyZZ0+fXre3iwgwAtf+MJNfWc6K3LisY++12PpZ3wukNuVhnknF0gdW9ynHssP+7AP23Qv92XUk/s37wVzdgzc4DUcz7BaIGuX5bIj51pzr3E/3bZsrVKf7TGn038cR0pvvBa9Z2688cZNfYj3xv3UEsA2NDQ0NDQELMXh7dy5U4cPH9a73vUuSbllkCkMv8Vr6eX91o//m2phaCRTS9T/SAPVyPoyqyzD1MI999yz6boprywotutkCiHruGx5RJ1i7AetpGrJFmO73QZzFh4DWsRFuG6GMOI4R8dj30tqPAb3JajzXARHjx6VNIxXliCTCYF9b8aJeyytY/R3WkRGiz6DiXCpY3XfM27dVLHLMLXsMYlUOsulFeBUqidKMOgUzbYFIGUlAAAgAElEQVTG8rxWSaUzxVCk8GnJa/gZj2+0tCM37XoffPBBSePgE9JYn3ngwIGq8/mlS5d06tSpEadiC8UI94kceCZRIufLT1pzZ4mAacXKe7PEzHTUf+CBB+b9lHJ9lfeq54pWqP6M0g/f67Z6jTAtWlw7tA3wOrBVLvdMFmCDOjvPQRZE3H2l7pspjeI7hnUvEp7OaBxeQ0NDQ8O2wNLpgVZWVkYcSqQQDFJUpvJMfWYUqT9NTZjysbVXxkmQ06GPUbRAM26++WZJAzXk7+bwTAFFvxtTX+bo/N2ULqnpqZQ59Kmi9Vn8nxwz0y25LLc9wmPusWCiXXNbsT++lz5J/h6pdPc9WmPVLO0clo5WXpnu0fA8sN1RZ2wqn3qRmuVb1OHRz9PULK13Ywgrjyn9TE29MvyVNOaAGEx5KqyW1xVTuVAakvnueS8woLqpeD8bx9Nt8rOeA5efWQN6TzBlTKZrM9yGaEU7pYdZX18fhaiKXDttBKgbygJO+3/30eNDi88seSyDrXtOfa/3hiUz8X/qDj0+Hq94ZsW1J40tyD1f9GPL6vEzHjdap0uD1aef9b3Pfe5zJQ3rwnMez3HaQNBKOAsN6efNjbq/7ofHxrpLaZi3+++/f96vpsNraGhoaGgIWNoPb/fu3SNrw/h2rVlL0roscgK+15yd7zVV4Xv9lo9WYaYqGaB3ymeHOpWbbrpJ0sAlZLoi6oToKzaVLoi+ekyT4Xsjdeb/3QZTobZmc33mgmP7/Iy5NVNYpA4jJen6Mp9AaaA+swDOnpezZ89ORkFwmpfYxsjVeVyogzJMTccIGb5mCtG6Do+Tx8X98XhJgwWY14brN5WZWcQy7UwmQZByDo+6FI8BLR8znTitJRmYN4479xqjVxiZb6L79/73v39T/b5uqUdm9czoM5zr6F/osY5B5afSvKysrIx8v7KoP+4TrSf9TNR5m0tx3/yb59vj5XMppiKjrpuW1m5HlKJQX+U16364PdFfkalwvN5pBZpZwjLCCqNDMbh0vOZ17f1uSYrb6v7G/rnvt9xyi6Rhrdxxxx2Shv0c1wGDY3ue3D/3J+5Bc8/Hjx+X1KdIm5KSRDQOr6GhoaFhW2ApDm99fV2PPvro/E1NnZfvkcap4qlPiG9kU2emqJjM8N5775U0UBORwj927JikgVJgklPK2KWBOnd59LfJ9HD0aSGlb9C6KPbZYHw49zPGw6QVoyluU1FO/Opnor7R9d1+++2SBln3i170IkkDJZtx2fTrcr+zhJ3mqmPUlKlIKzt37pz31eVEDomWex5/t9frI+pS3Ff7ftky0GuTFl1ZclVacHqtkPPL2uj15fqy9Fcun/FYqUM04ndarXm8OEZRL2JunPpy+pAy4os01uswNqm54vvuu2/+DP1jSbUzwao01hGur69XObxLly7pgQceGEmW4tqhztllMSJJlBr4Hs83k526bbbmjuec972vUadPX1hpsEWg3s26Pa/dTJdPq1BaEGd+cZxv6kA9H3HP+qz90z/9001t9ri5Peb47rrrrvmzHmuOo8ee604aJDH0l2XM2AhGgTl79uzClpqNw2toaGho2BZoL7yGhoaGhm2BpUSaGxsbeuKJJ+bstVnUKLJjtmiLPqywtXgqigI/6qM+StLAEls8ZxbfornbbrtN0mZxIVMGmY23uNLivOgoazbdIj6LLCweddui2JWOpO6f+0VxVXzWYggG0GZalWisYNGsx8SiJI+J2+NnoqjGym/fy/QwFjNHh2O3nyJNitKia4hFCh5bineJ1dXVuSjG7Y3PuG5/MoBsJoJjqiO6yDCorEXB8TcGOGA9WbBbj63Xs8XsXruxjR4n9sNl0dgjC3jAME1sYxS3+V6LiyjS9FyyL7ENXiO18H5x3riua+KozK3I6/fSpUtVkeb6+roeeugh3XrrrZv6Gg214phJw3zQECWuBxtXuP8Wz1nEyUzhmRGb++o9d+edd0oaxi32yXNmYwuPpfeP2xHr8fni/e8x9ZlSC2IR67aI2/3lOouGaO9973slDSoCGhy5Hoth4znnNrrNvofBMaLI1uVaROpnPZ5eh3E/+Xn36+zZsyO1UQ2Nw2toaGho2BZYisMrpWhlZWWUmDN7+5oTMiViSs4uAOaypIEaczk0OPiYj/kYSQPVFDkhUwSmWpj41ZRDNECxaTrTZzCYdKyHbhZGzZglUhzmHNxWt8kUOBXCcUxc7otf/GJJA+WVGUcYnp8XvOAFm8bC4+d6IvXJkGkxIHTsTzQYomPr1VdfPWke3HXdyF1kihMyakGQY3vtwsKUK6Quo+GE66G7hvuQhVVzXx2sgCmy4poxzA1YeU/DI8NzGs3f6XRPx1z3JxryuM/kzjzHdIfIkobSgIzJiyOnRE7V5bo/HqMYMiuuGakf85rB0+rqqq677rp5PT53ovGD2+OxJndLQwppOAfMibhvNO7weMW5MFfmufS4mTPJAh0wsIHHyVIB1x+N1wxydL7HZyVDLMb+eY+RK8uCsbs/PqNq7heeg7i/XJ/nwvf4uuuN0gG6zFjqZOMZtzFLJ+d2P/rooy09UENDQ0NDQ8QVhRYz1WJKJcrSaZIcOTlpHNZIGigAcmmWOTPlR+QKGNSWnBZNY92HWA7TwdCcN5ZDR2DXZ0okM382ZUjndZqNZxQrgwWbk+E4x/rMhVHfyOSlGWfOMErU7WXhldz+q666qprixm4JTNSbpU9xHTUuNn5n2p9aYOYsqLfBFEhe1x7TSKW7bjo4sw/xOrkyrmfrpkkJS2Nqmf112VkbGdqJ4f24xmIbPY50UiaXEsFwUJyLuN7ovjTllrB371595Ed+5Hw9eJxiGyit4Rgw5KA06Pe9d6kP5b6Je8z3Ug/vsc3M5OmQb87ObeP8SOOkrf7O+XcfssTTTL3D/R/dcvy8zzHfYw6f+zbuRd/jenymMFlubCMTGFM6YM45rg0GBn/ssccmA15ENA6voaGhoWFbYCkOr+s6Xb58eU5d0AlXGlMRljH7O3Ve0uZU7dJAEfgNTioqchmm6BgSi0F2I3XmNpkqIkWXpaJn6hDL8JkI1n3ILEldLq2z3J9IFTIsVM0pm5xsbIOpHiaLJNcYn2H6D/fL1yNVzTmdCg3loAWm+jJOn8FtDTrqRx0Aw8TVnPyNqMtlih22I0s/Qk6Y9WVBtmkhyNBStm5j6K/Y/lpCU67Z+Bt1RZxbtz22lb8xibB/j+uAjvRM4smgwrHcmJR2KgHuysrKnLOzHjuuE0t4PP7UV9K2IIJ7jOOUrWta3Nb0wZHz8Hx739s63Pd6vOKaoj7bbXF/GIA8nnNMTuzfaMkcdbjUX5r7rFlrxzOEab3IvWVnv9vksaAdheuL+zg6nLveqbMnonF4DQ0NDQ3bAktbae7cuXNOVZuqilQTfanIvdDnKN5rmDKgHN6Iz9asJhk8Nksaa+6FFIipiszCipQpKbksnYUpHpfnehk8OlrneYwZWsj98bi6/5HDi+l6YvlMyROpdOpsDOpl4tj73hi6qGZpt7GxoQsXLoy4nMyfi2lrKJ+PnAB1JqTOmaQ2cnik9jmHWZJLcpTkprKwdOSEXQYTprqNmR8eQ70xsWlm7Vrj0ugvFzkKSltoeZlxSLRuNXdAfVMW4Dr2vbZ21tfXdebMmZFfZNzTtVB4/D1ym7T+pVUrpURZslPf4z0QuQ722To7c3geS1tEMrVRbBvXm/tOi9VM0uMzxJxxzQ5AGubOa5E6Qlq7ZnNWC9HItsd6uO7cL89j5l+YndNboXF4DQ0NDQ3bAkvr8NbW1uZvbsqvI0wpkDoiBxZ/M6h7IhURv5OaIKXHJKvSOEKMKQRyn7Ee6ibddyZ+zXQcpEBIYVN3ENtAvSZ1lm5j5LxISdXGPlJa/o2+R9aTMGhx1uetkjBubGzMy89Sk5BrJceQcTMGdSdZxJvaswQjoWS6XOrSPD7+PeqZGfTYc+h73aaMC/WapO6Eayiub+p7GVCZAdynAp2To6W1cmw/fSDdX0sJsmgYGfdEXL58WWfOnJmXSxsCaZgHcyI1y97Ybrerlu6MHF9cO7TktXSGkUGipbc5Oz9ra2rq36LUg5GpvB/JYbLN0tjC1323vox6OmmQqrgc32OfUVr4xnOclpuZj3B8NoISGdo7xLOK5+ai+jupcXgNDQ0NDdsE7YXX0NDQ0LAtsLTRyq5du0ZilCiCocKXQZ2zvGR0Ro7lSWNDmCiWoAEAxaxua2ZE4Hv93WxzZq5OBSzFQswnF8MQ8dlMBMzrFiVQWZ0ZUsQ64j00C6aDdewfc2PVcmZFcYsV9DWDl4iNjQ2tra2NAnNnYmP2mWbvmQiDIkz2captNRGq5yuKpylipPGFn4niNl6jqJGGT3Gt0sze64oi58w1iOJPiqPo4hL7Q7Er2xrngC4ydGjP3A1Y95RYamNjY5MRSubczXBT7gdD/cW2WNzoNel5pjEZxWuxfDrk000kGqL5HjrJ+9zx9bhWKXbNAjbEfmYiW6pqbLzioCBxHOkK5v3vMWG9sT7+RoOnbA4Yfi7L3C5tPk/dXot7z50710KLNTQ0NDQ0RCzN4e3YsWNkPhtDZpEqoqEBFejxmqkIhuAyMuqyFtSZTpAx4zmVq6bCyElkzo5+lhQIKeHIubh8U+Pk9DIDCwZ8prEK2xXrqxn5kAqKlBY5VVO9bnvGudA0+fLly1umeKFhQBxH95VO/q6TWa1je2sSBX5mfa6ldvL1GJDXlKY5CabAYVlSnYuhtCNbd0zP4tBYDAAe94zr475ioOvMuMDzQeqc6z9KFMhFk4OlcVNEDGRdWzs+d2z0QZed2CcaE9EALuPwGFzBZU0Fy6ilC2PwhLg+oiGTNHBTDOcW54Nrnq4rHNP43eXa4ITB/h3oOsL9cFu9rngmcz1I43VAA0Jy3REux3PKtF/x3PP8xDNyK4O5eRsXuquhoaGhoeEZjqXdEtbX1yfNw6l3YdgphrWJ99Z0DAxgG9/m1Hv4N1NPpHalcYLKmoNkhLkPUlYMuZTJ0qnnYQoZl52ZlpNy4b2ZTpQ6E3JIGVdco1jdZlOJWUipqCedcjy/ePHiXO9n8+dIkZKyJoeXcc90HeDaIceX6Rxqz5rajHoY6ojoUpDpxagTJsc3tZ88BkyN5XaYSs+CcJPCph4uC3/FcaMeeArk0LgXMw4uCztGrKysaM+ePaPEtZF7ousK3TYyx3O3j6GwOF88f6Rh/Mn9mbPL6jO8rmj6P8X50FaBesVsnnyNARy8B7PQadz35D5pf5C5UnEfGdm5wwABTENE7jvW47k9dOjQPBD4VmgcXkNDQ0PDtsBSHJ6tpfzWZyBgaUy1+js5vigTprM2KV1+j297Oh8y6KgDRUcwTFbN0jNS6QxnxOSJ7EN0AGXiUreNTthZWKBaQN0aBx3rYf+YsDXWRwfPLFmjtFlvQovYGHaOWF1d1cGDB+d6mCzcFMOocZ4yK03qQ6lD4/c4nqRIqeO0ziP2uRZ2jGMd9TUMTlzjtNjPWB45SZdpnV7UxzB4M8OtGdmY+F46d1OSEUGditcS08PEtUGJyVTi4NXVVV199dXze7N0W3QspyNzFkaLZ0cWxEHKnay5VugQTudoacydMdCCEe0NfC/1oYavu6zYLoYwtFUjQypmzuMGOTCGLZzS6RvklOP4mluvWYVnlvvUK1933XWT62dTWxa6q6GhoaGh4RmOK0oP5Dc2A6ZKYx8mUq0ZN+P/mUQxC0UUy4wwx2Wq3NRtJh8n1Uq/v0zfQ07LFLYprlpyxXgv+2V/mGc961mSNlN2tGyirxBTv2T6PwZmpW9VNr7UKxhZmg76gk0l8VxZWdGuXbvmbSOnF/tMLpMJRSM1R86Dlnaxfj5Ljp46J6+pqCti6CpaLXrM41x6/slJ1FI8RT0JdTPU6XlMop7xxIkTkgbpBq2pp3SiW4Vey3TU5Ixqwaoz7j9LmJthx44devazny1Jeve73y1psz2A//f8LFIu/fnItXPNZJIFBnNnfXFe6ENJroTcTqyTwZyZ6msqvCN1uC7j1KlTkvLA+g5+773NMWGYugy0kM6srD1u/ozjJeXvC9979OjReRtaeqCGhoaGhoaApTi8lZUV7d27d64v8NvYiRmlQU7spJbU81COHf+nlZ5RS1wpjTkPRw8gVR31MP6/ljrGFESsh3oYJqWlT1OkmsgJ0f/PaUOy+hjxgFaHWQQEWv2R62QZse+0/ppKC8Ogu1N+eLbSpG4ts55lnRzjzGIr00fF/vB+aazX8Vpi4sxs7TB4by3FTETN4pHXs+TBLo8cJrm2rD/k5OhzGbk6WtLVdDbxGQZKpgWrv0duPtMj19B1nS5cuDBfZ05vc999983vMUftT0udavszti9LyxRBPRn/j8/yvLEkI9ZDPZ+tKHlmSQPXx/3CdUHJjzSsK7fVbfQZzdRW0qATps+j20idWmbhS8t42nPE9e/1zMTK3COR67XkwmNz8uTJhYLCS43Da2hoaGjYJmgvvIaGhoaGbYGljVYuXbo0d0K2YjOKNC1GsUEG8zgxsKzLjdcYAokBRrOAw24TWe0sO7LbaDDDtlnmaIxjFpvBeungarFOFh6NYgmLXzIRI8UBFjEwhFEWHJnO/xRt0gE99s/Psp7MkIfuAxTzRJRStLq6OnLjyBz0aeZOEW1m8ERRKRXmmfjOa8KiZRqpZHkD3UYq2712vN4zh2NmVM/yIEqb147/t4jZIieKfaNYioGLKYakwVUcz5q7y1Q4MoujKLqiODSC4um9e/dOZjx//PHH5/3JHJi9V30O+JOB4afCg9EFhCLPLKQd8+FNBdan4R6dujORH53HOZc09Y9uBF7PFqFaBGiRpsvymorl0YDHxoB0Yo9iaq5nqjeyEG08k3hu+h2TiSyPHz8uqR/jZrTS0NDQ0NAQsBSHt76+rrNnz44MN2ygIo0dFWsUY+TwaqGvsgzQ8f4IBjOlkj1SIqb+6Czq6xmVTkMTP0uqxaa+mfMwHc1N4ZniilQMU+W4DIfQ8ThnzrI0UojUP9tGkHpm0N2MM4+cQo1KdwBg98sUd1wvtYzzdOeIxj00FqFrC8OfZWGUmK2cgWtjfZRCuB5Tz14XcY0yNBUV8uQ+TUXHe71W3E8GrY7Bdclpuf2WEtD8PY4Js4pz/WXOypQGsO10sYmopcqKsNGK59p9j9yA5/DBBx+UND4jsvQx7GNtXszBxrXNEFw1V4ZYr7kVuky47TYGjKEHPVcMVebzzX3wHEdpm88it8XnNLmozC2FBltum/ubSTB8jQGneRbHdUBOmGHDMuMmt82fMfDJVmgcXkNDQ0PDtsDSocUee+yxTYn3pM3hpxgyyCBVkVF25ORqDppsU6yXeh9/j06qbr+v+VlTCqYmIuVA/UEtxY8RuQL3naHTyJVmXK8/aUpMTiOON+uhni+jPumgz3HMwl4ZmQ4yg7m8eG+WXJU6gKlktyynlhgzc6ugCwndIlxP5EK9Jkzhs37rOrKxpb6XbSLHLA3rzp90F8nCNRnUM5HbzfZXNi/xXtcf28hxM6h7z2A99vnz56tJPB20nmsntpvSE9aZ6fCoe+SzU07VtbQ55DZiG83huXzPqbmnLFk1ncOvvfZaSYM0yueA++L7s35YOuTz2mPhsyXWU3MnI+IYMfA8AyxkulyWwwTbmWTJ98REx1NSq4jG4TU0NDQ0bAssbaW5sbExcgjO9FWk1mh5l1GVtbBQ1FNFSpKybFMi5j4zqol6KZdnq6bMstP/M/yUqQzL3ZliJLaBaYI8RqbwIrXIwLL+Tq7Nz0RugQ6lfobUeaSCM4u9WH/GDTCt0hQl7xQvHmOGEYvlkHshtRfB4NAMtjsVeLpmYUsdS6yX+j7OaTb/DHPHtpK6jVbE/s1rxBZ1tCSNFDilD1k/YtlRH1MLqE4OKa43WiYaNUfu2DYGe85g63BzIm5LtAquWWUzQPdUCh6GHHT5WYoxc6bUMdECNoIcJNOT+bsDUUgDV8iQcl5TtCiNHCbX9z333CNprLt1iK5YPkMmMvhH5njO8H7sF98b8X9aeNfC8MXyKNVbBI3Da2hoaGjYFlg6tNju3bvnlCEt1CKyoMbZ7y43glTYVHgr6gLdNvvlmPK27Fsa5N0uz7J0y79N1USKjpSc+2WKm5xrpo9zeW6LKXm3NQuk7HKYjoj6rsyXihZcDIcVQSqM1nnkmDg+Uk9JTgWPPnDgwCgUXFwHbh8pxUV8bGr6Sc5bZl0YLRylzbqBWIY0zPfJkyc3tY1hozJLO3+aOqdFmtuR6UW4Vqjvi210W0ztZ756cUziHqVlb416znw4aW3KtRTLimvd9dXOio2NDT3++OO69dZbJeVrxxwCuSZyFbEOtsFrh+G8yDHH+ti3zGfP8PlCn71FUtswpRCtkTO7g9r4ew35GesDY7u9Rl0f25rp1+lbyzHgPovlTelvY1tjPzJfwK3QOLyGhoaGhm2Bpa0019bWRkFOM6s5v91JVTLYqTT2q6kFi858MmhpxzRB5uYySpW+O37W/WPy01gP9VamUEzFxPoOHz4saZyMlpxLFhSbOgHq5bJEsaSWqH/LdHjUk2ZJcPlMFiFiisPbs2fPfEzNqWYJJKnL49xlSVxJxbLP5KKksd+f2+b5MhUdk6tSz2Jq3fUxOXKsk1aLtUDdER4nl+d+UA+TcXj0g3IZlNDE/Usr3UWiZdDHlvdkHAx93Hbv3l1dO05LZliXF/cLJSy1pKOxr9RX8XxhWVHHTi7QZTDYe5xTcnZ8NrN29nqyVMjluh763MY2MuqTOTnrH11WTGVFC2XWT11i7B+j59Amw+2Ic7BVEmbqKKWx3+SUZIloHF5DQ0NDw7bA0pFWHnnkkVGamykLq0zP47IMxpBjhAZ+j7J0cj6811RGjIvpNpm6NDeY9Zftpv6A1l+mOuOYUKfi+nxPlKGzPlpDkbPMLPBqFpeZZZVRS0JKCizWw+glW8nSSykja9Y4l+QImPxxKp1NzbqwJgGI93herr/+eknSkSNHNrUxs0wlp8+4iNF3j750jMvK+YrjSE6V3MZUBBHqmTKLN7bVoJSF6yCuLf7G/tCyON5rSUYpZUsOz5y2OfBoO8CINIxBukhaMp5V1OFFvWwtdi+5xmh96ETPXmeunymfonTAdVKPSB+7zJ6ClsS33HLLpvrpDyiN061xv9JKM64Dt5trlYhcIVMz8Tzz2szOLHOwLZZmQ0NDQ0MD0F54DQ0NDQ3bAksbrVy4cGHkhJ1l2aVIsaZEjv9THMiwYAwQLI1DHpnVtgFCxnqTLbd4wvdkaW7oNEpzWj9L5XK8122ySbuD+VLkKY2dxelSQCOTKEKthQermY9nY0KH5kw8QbHepUuXJjOex7WTGVuwb1R6Z6Jzriv21eOXhZaiCTaNCFx/JspiSLuY9d1jYbgNFs/UXCWy8G033HCDpEGMd+LEiU39ydJD0VjFoGEDjUxiW2riqMyIoBZ2iul1sn0bRcQ10/RSinbu3DkXtzG9jTQOQOHxZz2ZGT0NtOjq430ZVQ80JnNZdB+K9bndL3zhCyUN56ZFgTaeiyJNGsfUXHUY1CDCIkyXRVFmPKt4tvN88zqfCidIAzKvfzryZ+XQcCtz87JKKIpxF3HtkBqH19DQ0NCwTbB0aLGLFy/OORRTnREMuMrQT5kDaCxfGrs2mCLITFfJMTL9jBG5UBq/1BKNRmqD3AepQhpARPPgmO5FGigqOq9nhgCkltjWLAwanV+Z7qZGScf+kDsgdxj/d1svXLgwWfbGxsacSqdRRLxGzqfmAhLvZd9qbhwRpJaZ8DUzImHQXirXXWacf88Dw3LREMH1xGC+psr9rE3Iydll42jUuO6MY66F4uJcxzLp7sK9kZn10yBoKni066OBQ5zTWhgwmspnkhCuOzp1ew4ip882+LulNl5D0YjEc+dyvJZsUJe5cnmc3D+GDaQELboYcGyY0igLu+h5NadKiQUNnzI3JZ5VXI9ZsmKGBKQTe5a42Wfttdde2zi8hoaGhoaGiKV1eE888cT8be83bKQq6FhOKjLTqRlbpfYwtZSZspPzIsUXXQ9MvTA9hrmPLHWRy7O+x3J2f7rtLiv2z1Qf2+qyTJ1kIaVqehjqtaY4r5reMXNlyBKlxmcyZ99ImU6ZB5dSRtxnRtVzDfmZRVxayG3UKMhYLjk9Uv6Rsvf/lm54Dj3HHpOo7/Ea8Tr2WnEZTE8VOUqPhZ918AKGnItgf0hxcx0yOESst8ZlT81zLZXUMiGgpsr1Po26doYDJEeSJbvlOJCjn0pcSjclzzHLjGcJ7QqYeJpO3bGPDJRs/ZvbZimSg03H38zRHT9+fFMbMy6N4fQYYq4m4craaPgZpjaLfabOk9KBCDrMHzx4sHF4DQ0NDQ0NEUtxeE7gSbl1ph/zm5ucXCaTraWFoT6E1nSxPtZLq8aMK6TOphaSKbaXegq3xfJxpiWK9fnT9ZhbIHcS20/9ZS2NRmb5RE7PbZqi7Glly7GKHBnDdk1ZabpeWtHF8G20PKxxsbEN5MZrOsiMW+N8u23U2UTdkzl4/2aKmhR+tLQzNc5UQtTdZVIPl2fuj3uAAQ+kug6N+sapgBFb6U+zPc/v5AYyaj0GuM7673J27949l9LYEjrqrWnNV9MFxTooLaFVMNOHxbB0tKL2mJJLjPVRskKrc1tTZgmHDT/L4M6WFsR17/Gi5SiDR2fWrl7fTJnFMctSw9UsSrOzn5wyrdKzhMPen5GrnUouG9E4vIaGhoaGbYGlObydO3dOhush1chAxabKIpdGTpE6AL/RTc1EapZUCjkSUzWRCmXalJoVUeQeTKWT0mVYLaa3j/fUrA8zebj7TCrZ9VAHFqldts3PMj1Hps/I9Jfx90hpTenhsucfe+yxqv+iVE89Qq46S/FiLozhtFhf5NZIhZuqdT9E6o0AACAASURBVBksUxonrPQ9XlMM2CsNlLvXlaUAvjfj0g1yT7QGjhayfIb+fUzb4jWT6T+20vtma4eWsLUgzNJYfzqFlZUV7d27d86ZWHcTOaGt6iY3HdtD3ZM/qZ+Pe8xnEJPfci7jnDJNE/WM1s9m45Sl1on9y6zT3UY/6/Xte2i9HdtPaYfHl+HXMstb6ihdfpbWiRayPLOok43l+rMFj25oaGhoaACWTgC7Z8+eOaVFqzNpoCIo66feKFJ2NQrRZbHMSGX4GVr5UD+XUQhGDEIa2xrrMcXhALbk1mhJmnGwNUsnUjfx+VrkGlI5ketlUFqOSaa7IaVKbiPj4szlxMDWNYq96zptbGyMKLHMUpRUMq27Yh3Uv7HcRXzB6LtVC2YuDeNkq0xSsVniVFLF1vvV/D9j/2oSBeqbsiTMnn9zKuTep4L8kqNjHzIJBp9lNJoMTDycwbYD1Ndna4dBnHlvtCinRbdBKU0WPcdnIBPMen3Rf1Iazijf43lhoOvoh8nUOgzi7Lbee++9kjbrVl2+16qfYRLZCM8H01C5LOpC4zpw0HVGYGIQ8bheeOYz0kpmme02RY55ESmT1Di8hoaGhoZtgvbCa2hoaGjYFljaaGXXrl2jfHJRoWp2nNltKfrLlLk06aUoM8v5ZBEjzbfNCru+yBJT4UwjkiwMFQ0csnxusW1ZDjUqsjNDCqNm4lszC47m/RYZUMzrMmyuHOeABkPMqJw5xTI3VymlGnTY7aBoLMLtY2gvhpjLlN40bKEoKxPfUaTM7OJGNA33b1TM+3tmCEBRjufbbaLbQmwjw0LVHL8zg5ea200tZ5w0dlVhAOgs9yFFmDU3oyysF0MAZvC54/bS2CPWWQtAkbkl8DfuE+61bJ/WwvVlYbUonraokYZWPtPivW6j783cX6TN4+nxduhChiPMgjl7bZw+fXpTuQyZaGf5mEvPbaSahYY1cY35HorqPccWy8d54x5vRisNDQ0NDQ3A0kYre/funVMGNq/OTOJrwY6NqVQvdGwn5xXrM9VgZbS/m0JhWCqp7hBLbiGaPTN4L0MHMdtvBKk/Btim2bg0Ts/jMaexQmbwkxnqSGNDF89f7AcpVpq2RyqXVHUppeo87LVDZ94pYwVSe1nwaFKIDMVEqUGUDtBsmxwxDa6kcWiv2jqP40STbnKuNSOd2LYsoHlsc9wT/t+GFe4HQ5jRwEIaZ2XnPLmt0YGfWbdrqV7iXJO73rVrV3Xt+D4avmXBJOgqxfmJbcjWkzR2viaXnfWxZviUuTbRPYWGaFkIMzvbU+rlc2fKwMrrwOVGc35p8/q2M7f7Y4kduVy3IxoB0WDL6zCeo9JmIyE67PvTY811F8u1VGttba1xeA0NDQ0NDRFLcXg7d+7UTTfdNKcCjh07JmmzjoNhkygHz4JK14IFU2+RhTUiBU9nWlNGkcogR8XvDPYrDZSP223qgo6ZpN6kgbIzJWwKiNRUFgDa8nfLzE1ZMcVHHBOPGyk4mlBnriEM/0PT/ci50FF8KrTYzp07dfTo0RG3EznTBx54YNMztcDZmT420yfG9nK+pDEX6LI8d/wuSffff7+kgbKl9MFlRcrXv7kNXg8MG0XXEGlYi+Ru6Bwdg0i7vdRJkZPhGMX+MAwapQaRc6FeiWORpfOhXnNK99t13SbuKuNMDJfjsWXf45onp0AOnFxb3GOeX0pE6MxuPZ00zLvnihIGr80oAeJ5RvcA6p3j/rOuvibpof5PGubFbaGbFYM/RE6f51gtrVucawYG4Psh2/PU4a2vrzcOr6GhoaGhIWJpK82VlZU5t2HKLlLNd999t6Q8MLG0+a08bwSoZFMt1BFleh9TKbR08nUGzI3l1KgCOoRKA4Vj6pnpSJh+JFJpNYdZWodGyzePXy3QL8NERW7IFGRWbux/vM4wawwMbYo2S+3heXv88cerDqC0tDNlGKl0c7O1tRPLImoSBddjij/qSbmuvI5ryT2lgeKm9IHzEOef1LHXFyUaDKArDfNPa12Dul1pvBb9rMciWvQSTEprMD1UlqSUOnBS+JmVZtyLtf24srKiffv2jfQ8kfNmIHY6WbMfsX0M10fJT+RiDO5PSm+y4BUeH69zlsVxi+3lePke2g7EvUGJAgOeW7cX66P1N0OyUXcd1xLDOFIn7v5lulCeibWAG9LYCX9R7k5qHF5DQ0NDwzbBFfnh1RIlSmNdCinSzKow6oBiebQUc1mnTp2aP0tOrhb6JvPZoUWdr1vvl4Xeue222yQN+jf6E5l6sTWfNHAO/o1ckKnQ2Ebq0EwtUfdhCivjQigfZ8DhLAgz08F4DqZCpkVOqEZtra6u6uDBgyMfu9gG+uiRA2aqEmnMDZJ7nwpSTO6ciY393etBGocoYxkZpW3KmuvOY07pROanxDBdXEuZfozrjEHYGcw49pncD/dZBPU6tVBjWRvjuq2tHZ87tCSOOnZagXvc6HOYpZYiV0sL7IzDo5Wk9WXug7mnqCfz+Ht9sY20YI7/W6rG9Dn0fZsaY4+XUwllfnH0DaZlL/2MMz9Dc5T0b8wCxtPKnWXRojQ+Y+zbt29SBxzROLyGhoaGhm2BKwoePeVXZmqFlDet/TIfGt5LPw6/9R988MH5vUzwSMs318frsVxaCGWRHMxJ0d+K0WZM2WX6MY8TdShZMFeOo8uPVl/SOEB0bCOjTVAPEEFql5FXqNfg/y6j5ku1urqqQ4cOzSlhWrXGutkm6gojspRBrk8ac+9Z8uBalBlfzyw77Z9EXQe5uXiN+mtyzZn/J4MrU1fEyC/xGeozyVFmqYVo1UhpS+Zf5ufJjZLqjvPHe6aC/5rDc7vNQUQdey2NUpZo2PC80D+VelFaZMZyOXfe/0YWrJpcM/39IufKaDW0LHb5ljhFULrl+fEzXt/RwpdRmHwvdciMoBXroU6S1vWZHQDtHKxn9F5wu6SxzvjQoUONw2toaGhoaIhYisPb2NjQ2traiFqKFImpFVJhTH2SUUvmwkhd2qrJlGSM32aKwNSSLbdMkbitmY8bIx+QworUGq2hKP+mXiFSJO4HfWmoV4jcjus+fvy4pHEEAlNrGcdMvRX9fMgVR9AalL5BkZKibH5Klu7kwe5zltDS83/ixAlJ4ySr9C+LfTQlSL9I/571lX5o1ruyjZF7oq6TqZ0yvS/jkfK6wUSZ0rCeqHelfjvjkLju3C9KNCJ3RCtHWtplXCH9Pg1aSGZty9I1ZVhZWZmPl6n/KWtWpuvx98w6nNbTtFHwuoyckEFpCSOTZNyax5a6O7c10+XXYsZy/8fxpI6dkh/qn6XxnmbEE38nh5uNCdd9pqMkp58l6o1lxLFoCWAbGhoaGhoqaC+8hoaGhoZtgaVEmlLPbjPtQxRlUBxkVtXP0FRVGhsw0GzabDvDabk9sZ6a8jpzlK2J7xhqKJZLlp5ikczFgP264YYbNpXve6MI1eI7uiHQdJrm8BE0c8+yzRt0/aDC22M1Fbh5ZWVlUrTQdd1IbB3nhaHW3Hc6qWcuJhTf0DGX90tjkY7bRsOT+EwtC3Zmcm1Q3Ogx8hzTECobQwZopul8FJ25vcxIz7b6enTgZkohOpr7M44rw47R4TwLH8Z1NmXw1HWd1tbW5uvDYsPYZ4YbY2gsI2YT557lecAgErF93qsnT57c9Iz7fN999216NpbH7OyeQ5eZZXJneEI/488sLRXnmwY2mTEYzwGqBOhOFI1yuCdoDMRQarEcimjpAB/nzf/TvWMRNA6voaGhoWFbYGnH89XV1TlllZkUM3wMqYnMgZnUCR1xDRqiSAOFw3BnNNzIAg7TBJ/UYaToSA2yTTQEiMYLptzMORw5ckTSQAnRuVQauA5TMzSOINUejWQMc8Su1/fSVF8aU7fuB51uM5cGr4ep5K4Gy4uGAJ5/GyXQaMTPxmfoykBXAxomRQU9nWipZM/6RWMlcjzZ+JBz4/csQK7h8hgcmPOVOXAzHJiNv7w2vZbjs76Xn2xH5App/FLrZ5QsMIzXvn37UslDhDkFpgSTxmuFrhgMwhDLIdfCAN1ZGrR77rlH0mBURi7dz0QXE4Yho/Fati/dJj/reWCYuEzaxmvk0rIgCd4v/o2GYzToiWuHUodaSMV4rtNdjEGjM7cypoK7dOnSZGqpiMbhNTQ0NDRsCyytw1tdXZ1TDJlJPHVPDgMWk/XF36WxaT8pQ1MZNhuPVIV/O3r0qKRxKo9ML0LHUsqeDZrGSnX5MZPTRorDoXwY/odcW2wj9UhuG02nM/0fE4pSl0IqLZZPapfuFlnw3egasJUDMYMsx7XjvnmeY4ABaVhDkYplglymSyGVHjl0umd4PMwtM1yUNMwL9TDmOjMTfXIbNc5uSmLidUZHXZYpjXVqTDFELjsLZUaJgSn/LB2RsVWIscjBkas+cODApEvLnj17RpypJSXxmhM/M3hzls7GbfB4eSw9xjzL4phYd0fH/5q0KLbFY0muhPMV28iQedRzZ2uHYbkYlD97hsGcmVaJNgsRfNbg+R7XAQN6+B4G8IhSPTrOt+DRDQ0NDQ0NwFIcnhMx1qyMpOHNbPnqXXfdJWnMkUQqgBaApoBITWQybr/5TQmQM8k4PN9r6osBmhlAVRonlGUZdEyP/SMlRz2Mv2fBcKnXoVUTHTalsVN3FiIr1s/nY7nkLKNOgvqzKcfhUopKKfP2u76ohzF1bo6YnIqfjf2grpi6FEoUMj0ZAwCYe/E6jPPidptar+mMpyyJaX3MRLqR8yZnzfIz3QW5Qdbn8aQUJLaBUg+WlXGw7B/3QtSFklubClrgkIaGpSvW9cbyaEXte7y2oi6IUg1yCr7udRDD+nm/U09KLjrOj61M/em9VAulGNvo8v0bpQNZwHAGW6dkIbN6rqXZMmgNH6ViniPqwLnn4jy7HJ+rXiN+1tKeLLyfOfCmw2toaGhoaACWDi12/vz5+duUQXalcZBeUyYM+ZVZZFHWTIvOjOqgXoxpdNgOaewnYirD3AatOGPdtGxics3MKpSULwMBZz5u5IRInVFXFqlnWvTRx8XIwiyROqd+I3I7tip96KGHJPXU2BSXt7q6OgozlIU18jyY6osWgdJmao9WXdRb1PzXpDH1zPnJdA78zf1wm5koUxqv31pgbnKp0lh3Rs41swqltSx11rQO5rqIbePYZP5e5C64BhheMML7Zv/+/ZM6vN27d484xrgOyNGZG3ObsgTAtDSkLt3z5LGOIQ0ZCJpzl0l66PdJCZPHOOoKfZ4xKLVBXWgmlWIQdnK2cU8weTDPepaR6X95BjJUZByTWpgz20p4fcT95DGJabwah9fQ0NDQ0BBwRcGj/WbNUkSQcmeaB1PrWYoIf9LCjjqQzLKPqX0YODlSl9SZ8Hvm60R/GFLtTBeUpQeijpDcTqRY6c/HwLy03otjQsqVulBStLENTIrrNnuMog7EYxs5la0oLfrqRH0FLbVM5dGvK1Kx1BOQi8nGx6BOi7ouctexbbU1w/5JYyqV/l5cS7E+Skw85qTO4zPUM5LSnrIOrnE3Hkf64GblkMshlxDh8rYKPL5jx45RVJHIeTMVFnVrWXow+gLyDKnNj9sbQa6ZEqDYRtoicM9Ei0SvSftQ1iQ7UxIT2jNQipOlFqNEi1xoJmli4mnWk0UucntZPtNvZSmzYkq4rXw45/1b6K6GhoaGhoZnONoLr6GhoaFhW+ADCh5tRHaSIh+L6WzqbUf0KL6jOIom/hYfUNQV7yH7blBcJeWiqlgWc55Jg2ikptQ16BCa3UvxA8VIsS0GnTdpFh3b6mdpfMMxigYPFD9RXJmJaKxcj+GOthJL0RQ/9tO/2TjAYigaikQjlkzcJA1j6zZm7WdAc44FRZCxrxR78plMMc91VzPgivuLYjeKpbJQdhwLrp3a79IgLqoZxWSBBbiuaADlvW4jJGns1M1QaUTXdSNRWXS/odFDlsuQYF46jwvF4S4jiho5phzbzFCMBk00OMnyxbme66+/flM93GeZ8zVdl+jekxk81YJW1MTiERQ1UsRNUbtUH3vm94vrg4ZCUwZPROPwGhoaGhq2BZYOHh0plszM2G/ae++9V9JgTus3t03YTbFI9XA2fsbUGp0T47OkmknNRAqoZoZMLidLJUOFPB2ATbFEKp3GEEwxQ0fN2Cb3ncYyVKxnLhQGqfLMiMDl+Rq5bN4nDfNvk/ypsGJ2Hs6MRwxTbnSupcFM1u7MAEOqpw+ShrEzt8F16LmMZTKILin5LECuQYU/78kobwYJZxmZsp7Bo5l9m1KYuO54D43C3P8Y9o2SERo00DAhPhNDDtbWTylFKysrI24tmur7PLn//vs33UOz94zzNuim5D5SAiUNHAgDM2RBK/hMLcA197b7Hn/jfmd4vMyJ3GCgcxqqxb5zX9HdKzv7DWazp8QsjjsNmfx+MDyedtaPcDCBAwcONKOVhoaGhoaGiKV1eCsrK6NwXVEHYP2a39Q2p/V3v4kzPUyUyUrjJJ6+L3KHdKqkeWuW9JTUMs3eXX+ktBhYljobuglECigLvBzLcv+inJo6CHJ01B3EZ0lBkoM0VZ3pNxiWjG2NnKupM3NeU1S666PONVJ4DLjrexg2Lj5Dt5MaN2vEOSU37raZMs3M32spVmpuCvFehuKrBeKNfaBOhWbvnOP4G/cCuUWPXXSo9hphwmGPxRQHS46C6yueEw5a4LWzSABgBl2PQZZdHvWuPmd8LkV3IXLCNJ93WZQAxHI8luaAeB7EuWQoN+9D6gwz7rDGRVMPHNvIUHW1YBxZaimvDepLyeFl0o9a8ljqLqWx9MHrgUHYYwhCBlLY2NhYOIB04/AaGhoaGrYFrkiHR0udLGGh3+qWs5KKiRZbtMTx29oUEC0HI0XKYKfUW2SUVtRZRLBf0dmxZlnlTzqVR6rJFCLDNU21x2Nh6owBtbO0MOwHKVZS+Jk+jXpMt91lxLQwt912m6TNVmA1SmtlZUX79u0bWWNFToEh32iBSCpaGidtpY6D3E5mXUZndY819cKxblpj1pz7pbHzO9e5Qao69odWjKSw4+8Mc0XOwuPIpKKxrQYd6cnpSWOOhMmDM92NpTSxjbWgBSsrK7rqqqtGgYtjn7P1FOvmuRT7ZpDz4d6L6457i+nPstQ1TCVEaQcd3eNv3KvUSU6FJ3R/qMPLgnLUQjQyIbC5rNg/WtXTrsGfcd5cHrnRWqCF+JuDmtTO8wyNw2toaGho2BZYmsNbXV0d6byifwqDDZvKsC7Pslj740nSTTfdJGlMXZLTo6WnNA4pRN1KpuOo+aW4P36GSTCztlGXRm5BGqilWgJQ35uFIWKySHKYTDwZ/3d95EIyy05aJrpechjRf5LjFqlwYmVlRbt27RpR51mQbYP+l6bo4ryQKqdVHvsc208OyN+5DjOOshbUmxa/8ZrrYZg4poeKVDPD0jF4NOcg3ksrTIYHy8KEsc+msOlLFa3man54tM6LnCD1tF3XTXJ4e/bsGXFrcRwZUNjBo8kFRG7AXKb7SKkNpSyZf5x/83hYolXT20vDWrG0hPrfeFbVklPX/DPjnuba4Xeu83gPx5jW6FnyWCZS9lrxnPh6rNfnDM94I5OKZWHUmh9eQ0NDQ0NDwFIc3sWLF3XPPfeM9CVRr0P5rRP43XfffX2FScBUpnCpBeg1tRapAPviUG/hezKLJ1oikTqgJVzsq0FrRlpNRUqyFoWhlhA09p3faSWY+WORAmJKFz8T20jL1FpyyhjlxtdM1V5zzTVp9IbYLlosxnbTB5AUfaa3pFUsrXW9HjOdCq1ZyXF7Xcc1RCrWbfZYZFF8yElxnZOyz4KWUzdEaj2OO3WQnFNy15k+rhZ4PEtDQ/21+2c9ve+NlnauO0qCahzexsaGnnjiiVGKqkx/ZE4h8zGLbYvPcy0yQgglJVkb3DePW5bMlRw3LcgzC1hLMzyG9AOt6apjPbU0WEYcI1qhc414P9FqXRrG3hwdOXuXGd8XtfmhHj9a1/p8yILgb4XG4TU0NDQ0bAu0F15DQ0NDw7bAUiLNlZUV7d27d85mW4Rx/PjxoUCY3D772c+WJL33ve+VNLChz33uc+fP3HnnnZIGsYA/bRJvcRuVy7E+/8Ys7HQQj8+bPadok7nt4vMUF1KZS1FX/I0KbBrcZEYkFLtQvJeJX+mGQIOKTNxDkRyV13QQlaSbb755UzlRZEk4PBTFKXEuaQJN0XaWD4+iNubHqxnsxL5yLuk8nJlRU5TuNnouo4iR4aa4Zgy3PYrLaVpOAxS6vEhjkSbFb5nS36AYme3IkBkwxLI8ntEVyXsvzumUwVPMeG5k+fVoROKxzDKe0w2G7jo+h3zexfpdHg1A/AxVINI4AAS/ZwHpKbJnzjm6ZcU2cs3QSC+ba65nikyZ2zGKGj0f0TBMGtYZ1268t5aHz2OUqRUyg62t0Di8hoaGhoZtgSvKeE7DBBumSAM1xDfzi1/8YkmD8Uo0fjBFWstOTC4ncl4M10Tzbd4njZXDDJTr+mI72B+2iSbMsb5amDB/N9WUKZxr1DOp3UgV1kKm0Yk4chI1wwOXYbeSzNzelN3Zs2ernEDXddrY2BgFP45cLbNGe12YWs9SyHjtnTx5ctOzmQl0rQyOJanc+Iw5KjrM0iAhUr5co7VQXxlXQOMhjtFUeCgaqbCfTOMiDfNBYxxypZmRFJ2HDRplSMPeinthyrR8x44d873nZ+NaoxGFDSgYrCByeHZv8lnEkG/uazYv5F5pJJcFO/a5RQdzGitlQardFqa0qmWbj2BQahqORe6JQQrIibP/MfM7jXsomckMCXkPU5tlBnaWFMQ92NwSGhoaGhoaApbi8NbX1/Xwww/P37p07owwZUKz0uc///mSNlPedgB93/veJ2mgzkwlmZIzxZ9RijZ1db2WDWehngxS8KSAo96PDuw0uaWeJgbHdj/IadF5NLaRVFItHBUpIrZbGihLhmrLuNBa8li7HsQxOnbsmKQhcO8tt9xSTf/TdZ0uX7480i/G/phaPHHiRNp3U+uR4ja151QupM5rqZ+kcUokP0vz7dhG6tSon/VcZg76NbN6hkaK9dWCeZPDi2OSza80DupLPU3sM/U85HbiOqDulSbyTKUljV0+rr766i1TvNA0PkuUy9BXLtPrJHNpoSShliA1008zQPaUntTl0b2KwezjHiJ3yXMnC+DA9lKaMsWRkxunm43v9RxkEh9Ku8iVTknbqIPPEly7P9Hmg0mca2gcXkNDQ0PDtkBZxmmvlHJK0vEtb2zYzri167rrebGtnYYF0NZOw5UiXTvEUi+8hoaGhoaGZyqaSLOhoaGhYVugvfAaGhoaGrYF2guvoaGhoWFboL3wGhoaGhq2BZbywzt48GB35MiRUaqaCPtP0M+KCVMjaDiz1fcp1O59Msr4QPFklFsbm0XKnrqHv9GHJ4vzx7pLKXrkkUd0/vz5kcPSNddc0914441p8k7Dv9G3iNFfPhDEMthHfk5h0cgOsbzaXDFN0CKY2iOsp/a5yLO1+qIvFeen5k+Xjb39q3bu3KmzZ8/q8ccfHw3+nj17uquuumpUbmwTfVszv8usH4v+tuiz2T6p3bvIeuNvy+yB2p5e5sy4ElxJ/xjtysjeF4yhOXXuEEu98A4fPqzv+77vmwcNdlinGOrLjoMOMWanQzrzZjm/eODx+tShy3umNnntN4a3iZuak8ZNzgmL/aNDpr8z11gEHVg5FnZWzQJBMzxQ1qZ4PZbLEGq1INYRMWP7m970ptHvUp/V/md/9mfnIcruvffeUd+9jk6dOiVpcE5meLDoKMtM55yHWlBaaXBO5mFJZ9s4TgynxkMkm1MGrqajsb9nzvic39o6j3PLTO6st/YZ72VZDKUW87w5yIKftUOwAx3UAjtIgxP2c57zHL3hDW8Y/S71wSU+8zM/cx5kgjnipCE82OHDhzfVzeAF8QDlwcm1PnXu1HIZLhXIGIHNs7XD/JdckxzTLHQez66psIu10IC1rOzZmDD7+hSDxMAgtcARsV0+JxyU4fz583rLW96StptoIs2GhoaGhm2BpTg8qX9bM5N2pBAp0iRlyuvx+Zo4lNRUpGpqXKDBDNjx3hqm2Gj2s0aJZFmEyRUyLVFGfZLiYbDqKbEBw6CxniwcFbN+kyrLggbH8qbEJCsrK/O0OuRCYt9q4kKXHTk+Uoi1tCZZu1hfjTOOY8C5IxXLtSzVg3mTm3LZmXSAgX+5ruPaYWgvcgnkZLKxIYfM/kV4LNh3hkXLOPOYsX1KHXHx4sVRdncGqY7t5f40Mm7G9dYCZGfrklKTZcSD5JZ4dsQ9RgkSOTzOR/zOfc+2Z2cGf6tJthhSLbZtKnwg21MLws/g2FlbPV/LqBcah9fQ0NDQsC2wFIdXStHOnTsn5dbU0fGTQW+lQe/HILo16nxKh1fjuDKqIuMY4/dYLylGysHJAcZnyeEtIven3mPKeKQGcmtTymRStwz0yuSY8X/P28bGRpXS3djY0Pnz50cBkzP9EaUC5JozHZevkZuhcUSWRom6k5pOJ5bP9UbuKa436lu5hkjFRw6PVDp1NJlBTy1IOTmXqRRNfNbcFal4adDhkeulvjlLimx93COPPFLVf3Vdn1rKQZ6NTNpQ091OSVHYd66HTH/NPtYkLplhDddXxtmxjZz3GlcY+8QgzsQUZ8SA9pk+u/YM95VROzulsZ7ZZ0tmfMRytpLYRTQOr6GhoaFhW6C98BoaGhoatgWWFmmurq5OitVqokyLMKMpqWFRBfOEUSxQU0THeygmyMzRaWhA5T5FaVPl10RMmTjUbDuNL6YMHWp+OFNzUDNhpkI/GmPUXCdqRhPSWFSSmURHbGxsjDIYx3Gqmed73DIDgZp5Nk2jKdrK2l1zaYjPUNRHsXhmWl4znKABisuMoqBaZvspMT8NC9hnj7NzmkVVAse45tYRQUBqpAAAIABJREFU16pz/9mNhP2lEUP8321ZW1uriqYuX76shx56aC4SzUR0zAzOnH9Tqg0/Y2M8zk825lu5Fk25J9T8FBdxf6gZz2Vl1wyPpvrFe2puHdn5VDuTaj6R0nAG1sqdcmmJos1FjYYah9fQ0NDQsC2wFIfXdZ3W19dH3FOk7OnMao7Oyml/j87qdFyliWrNrDuDKT1StZEq9D3MikxEaoqULhXyU4YHvNef5nKzrNXsc436zUyMOT4cE1K/8Te2mYYvEXQF6LquSmnZ4KlmkBLLIxfoccm4Z2ZgNpVubol9nnI5qRlsZFxBjBBSuzf2XRpTr+RUPE/RMIhSCI4ff9+qvKy/mWsIP31PlnXe/5vT83f3L5MO1BzpM3Rdp7W1tXn52frlGq8Z6sT5Zzm1LNtTAS/o0kIpR+ZCUwuSMBVRqCahmDJA8pjQeIRBJbLzj5ILGo5lHB7Hj0ZfWZAMw+NHY7bM2CgzMlw0Ak3j8BoaGhoatgWWdjzf2NgYcTGRqjEHZwfj06dPSxooQ4Yqiv8z/FjmwsD6aqb2pGrMAUgDJep7a6GkMt1NzYmTnMOU87DHgtxuRjXXqPGaHjKD750y9SXVNxVmzSCHN0VplVK0Z8+eUTmxz+6rqTzPe+ZSYDiM1aFDhyQNXLv7w/GZCr3kttE9JrvX5ZqLYaixLNRXDZ4XcouxHqO2rmOYLYZI8zNuo9ef2xjnwGuROl2PiX+Pe9J1ez1YmuO2u/zoVlDjXDNYckDOO3LI/t/hxxxajA7aXi/xGY9TFqRCyt0GeFbwzOJalsZh8OgKlK1NBieo6ckyqYH/9/z7O8cvk2AY1Jtmkhk+W9NR04ZB0jzUIMPt+WzM9jzr3rNnT+PwGhoaGhoaIq5Ih0cnwUjtWR9niy1Tk5QBT3Ez1IdNhYfim51cp6mbjCJl+VORuinvp+MpdV1ZKLNamLWsPoNydgacNQUWuYJaGDfPBYPVZuXWrL+y0EXmmC9fvjypi1lfX5/k3skBm3shRer6pCH4MHVqpvCnwmeRAyJ1Ts5cqgdHoIVlpNbdR4+hqVdS+J6DKI2g/o3z7f5HzqUWjs5lUXcc95C5M+5Jl2EOL+rguWYeeOABScNZEC0xDT/voM979+6dlA6UUqp6U2lYE+bw3FePpcfNv0ubxyy2vxb6K9Ph0YqQuve4dijJ8afXA/eGNB7DGheaBWb2ePm886fHgFKi2G7q4ZiFwr9nYfeoT6XkJFroG+zf1NhzD+7atWvh8GKNw2toaGho2BZYWoe3vr4+4hQyHQD1blMUiakwyoepr8h8t5i2hMj8ZPwMdR3Ul2RcGimOmsVVlKWbanE/3SZ/N4UXKRdaRVLP6TJMrdXCB0nDnLj8LPCrQY6FvnFZaK5oTbmVP4zXjvU5ce1Qx+F5MRdw/fXXSxq4GmnoP/WuHg+Xn1npUS9hcB1Gjsvtdj/IFWSUby3EFttGfaA0TnPDT3MpkXNxOdShua3uT6bD8zUGauaajeuNweQZNDrT3fhez/H+/fur1tKun5x+HCe3gZycU5h5zfg7n5fGFojUUWfwenBZlKpknL7HhwG0pzigrawXMw6HHBalbRlXWLN2ZX20yZDGZ5DXLiUOkbOOumdpbO2aBe4mF7hz586mw2toaGhoaIhYmsOTxlZLkaIzxeO3MHUOfhNH6mqrFDh+u5uqsFw7XvMz5CyNSKWxLaRqMi5lK3+4WuDhWB8pLkbYiHozUrM12XrmS1OLxuJ+ZmmdSIXT2jXrN8d8x44dVUqr6zpdvnx55MeVWbG5naYQb7rpJkkDZRg5VD/DKBlek14r7lfk1gwGPeYcTukHXO/UXNZ0Qu6fn3HbIhdiTsXPkHu77rrrRm2q+dCRembQZ6kuXbGUgJIFadjLbrfnxPXbYjuuDVrTTkXLWFlZ0e7du+f3upyoy7UU4OjRo2mb6BMY+0Rd2pSu26DEx/VPRQZx++mvSKtkj5dU923jHnf/4hj7XpfvfcUzZSrQPSNlEXHt0O/T9TKCVeQEvQdoA0Edf9yDtg+JbW6RVhoaGhoaGgLaC6+hoaGhYVtgabeEmPPMIgGbMkvjLLQUwWSBi32NymjXQ6feyPJbhEoTaxpbRNEZxXNucy0UT7xWM06gcj+KbP2M20pRifsZlbk1ZTGR5fTzNddHx+apvFTMV2dkIduYK2vKGMaggVImTrPI5/Dhw5Kka6+9ttpurwU/w3VgsZ3Hwg7q0iBiqgWpdhlRDErRNfuTGQLQuIdGOW67P7NgvhaZsX477mbrm0YRDArhMTlz5sz8WZdD0RwDesd+uh6Kp9yfLEi14TF//PHHJ8Pn7du3bz53njevC0m64YYbJA3GKb4nli/l6hBfc/0PPfTQpvqz4At0R/Le9b0MXygN4mcGvqCRTGYYRjWE59Jnpn+Pzv10JfAny4rnt+fX7ece4TqIc8qwflwrHotMFO158lqxgZrnIq63OIfSdB5OonF4DQ0NDQ3bAlcUWozK3UhVmHo1tUdFc/YmNqVRC3lDBWqkmnxPdISNZWTf3V5TCqZaTEHSYTO2nybkVPLSOVYaB0EmR5uZFnMMaETCZ7MAwFnA59iH2EZT/aS0auli4m++duHChSqV7oznHMcsuC453xMnTmxqY+yX1yIV44bLd4i7LPQSUTO8koZxMZVKYwG3MXLcNvAwJe3xMnVL5/FoEOJy3U9/khuIVDrTbT344IOSBodw7xW3PXLZdD/xXNCkPfbP1yiZ8ZzYyCByA3Son+LwduzYoeuuu24+Pq7H4ycN8+E9HcdDGnN60rAmOC+UGrnvcR0wrQ25l0wiQhcJryUaUmXh9gya6/u7ufTYP9fttvm795P7ZSmBNA5wUeOcsrZ7figpYYCKKGVxu73m6cJjRK7X5UT3oeaW0NDQ0NDQEHBFocVMuWUmuH7LU57PEEVZgswsZFD8PdP/+Tea1TNobKQoKd83VcjQO1k9dKGoJS2NFAqDYjMMVWb+XNN91nSJmT6OugI/Q31XrI/ULeuP8ndSY1Pm++vr63r00UfnVL7XR9THkjo3tWpKlFR7bCfDklEv52ejntQ6IHLllFzEdUAXAusZPcamWKPUw/XUEouSio/rgLpIj4nXkrmnqHfytfvvv3/T2JiSp2N4pI65Fs2VUJcT9zzdENw2rymPiTkqaaDyvS8feeSRagJhnzt0xYhz6TnzeqIZvccvrjfqP6l/Y9DrqDticGiG78okWuasrG+88cYbJQ3njeuP9bgfHkOmEvM69DPRaZ0clvvleXD/I0dZS4LrehiWLK5dt8H1UpKQjaPH58iRI5KG/cVgHNlZ5XV99uzZpsNraGhoaGiIWIrDW11d1f79+0cUQ9SF8E1LB81MNmyqglZ+tEhiSJ4MNQfxyAGZuyAFwhA8UedADsuI8u/Yl8hRMiEmP7N0PdThmTI19c5nM8qulnKFlKw06EMYYNjUWJbglGHdMqduo+s6Xbx4cT72p06d2tSfWCe5GLfB9WV6iprlMLmozFLQbfI8ZUGVDVrfcZ2R05QGbsbcsdeQuUPOZdwbDEZNzp4hoKQxJc3gBAxPlyXhZT+8PhjKLZZrcE4yZ3a30WPw2GOPVXV4Bi0i41y6neZqGZCClqtZuS6P3FRmhRz11tI4jY/nNNoBMPUSJUyWBERdIW0EfA5w3rP9SV0a91d2VlH/y/n3eFIaJo3Hlim62IdYj3/z3DJoQWwjA4WfPn26cXgNDQ0NDQ0RS3F4pRTt3bt3FHopcni04qKVX6b3Y2BUWv+R8o7UM8PjMLRTlqTWVITbbT2F22TuIHJITOFh6uW+++7bVK/LyvyionVSLDOz6GJQ6Fp6pYxq4hww0HUtxYg0tpg115b5Inmc3K9z585VqfTLly/rzJkzI8ot09tE2bw0jKXHK+ryPA+U9bsM63sccipyoW4316bHiwG742+m9q0PMZfotkUdnterfYvcBustPP8em2h96HJtYUk/V/8edcZMo8R96v56bKL+z3omWi7WEpFK45BZ5Ci8JmIYtCxEWs2Pc2VlRfv375/Pl/dGHGPqsMzF0Ccszj+lTzXumXotaVhv5sbIVXv8zMFmbbT1LPV/kcOzRaf1fq6XgegzXT7PBur03O+4vt02plDz/NPvNQv+zvPHa9PrPZ47bi99IRm2Mp6d3kfeN+fOnVvIB1hqHF5DQ0NDwzbB0hzezp07R2lFonyVlojUMfltn/ma+M1vWTYTcpIDlAaKxxSjuTfqDyJXaOrIVMOznvUsSWNdIalaaaB8GPnCYFqa2AZyDgwmHUE/FFI+9CGMXDZl9NQDZPoMpukgZex7o87NbXBw5zvuuKNqaWc/PHIMUQdw7733ShrrD9jeaCnq50310R/Pv5vDi+PK9CUMsmv9bOSAqCN0m2+++WZJuR8efc6YToeWv3EuLDG48847JQ3j5nlwGeYApWHc3HfvCXMbbqO5h8hR3HHHHZKk97znPZIGfRbXUBZw2PW679ybMSi26/Y47t+/v2rlu3PnTh05cmSku4t6S6472hdkemvOt8szl8tIQhEu12PpM4WBuyMXSv9Yj6375fHxWpaGNeG5fN7znidpOKOY+su68Tgmbr/XFa10Mz9Tj4Xb72coeYqSJe9LzpPXjNsa9y/12jwbXY8tWqXh7PW+PHjw4GQKp4jG4TU0NDQ0bAssxeGZSidlFLkZUkvUqWRWmqYazNmZUjx27NimZ6k/cZukgQIxhcI0RFEG7GumCqgTyBLbMtVGloQyInIu1FsypU02JuYuXI7HxGX5urmsqDNktARy274+pZsitU1fpdh+cxdTcvR9+/bpJS95iU6ePClp4Kqz9EDWizIOahYhhmlm/Ol1QJ1k1I8xtYo5IN9jriqL98kxMLdonV4WS9VcGTk8WsBFqtnlel95jZKyj210f3yPyzU36rl2vVEneuutt266x3vAY2EOIq4dr8WaJbPbnkWQmUo/ZayururQoUPzPmb6OK5bRm3y73Gc2Md77rln07PmVBiRRdqsm4t99NwxOpQ0cDOeF98b16SUj5PPL1oq8zNKsrxWzE1T+lFLBRX7Q/2lpTncb7GtHnNaCWeWzYwc5fXs/sRkzwat68+cObOlha/ROLyGhoaGhm2B9sJraGhoaNgWWFqkee7cuVGA1Gh0wTBNZsGpaI5iKRpiMBCq2fTMsdlsstticQfFlNFZ2eIIph1ieLIIijlpvkuz/SjSookvRXVm+bOwXWbbLU6pBQ+OxhgUoVF0O5XKxuPI8FcMvyYN4gb3Yyrj+e7du/X85z9/FHIpGsHwN4+5xWgWLUXxtB2NGTbtuc997qYyaEYuDWvTY2zRkufDpuDR0MFir7vuukvSsCYZCDoLD+Y2UuzuT4r0pWEv1MLQ2cAhjjuNvVyv+84UQO5L7KsNAjyOL3rRiyRJ73rXuyTlLgGce2ZHz5y+o2isZrSysrKiPXv2zMciC1TB/c60OlkwCV/z+vK+9DxY/B7bYTAEHw2TvK6jqI2iZrqUxH1kMASf6/UzDOcV2+F6rD7wp0XbnuM4Jq7bLiReM66HgTbiXqTxIVMyuR7vK2kcNpLvD54/8VpMR9SCRzc0NDQ0NAQs7ZawZ8+eOTVlCiFyeKaa/Jan+XSW/oEOxjXlKoMux3L4hqdiPoKO86xnitMjJ8mkh+5/ZjLttjKUVRYOjalWXA+NFbI0HRwvphDJgnCTC3B5HiM6rUtjzqWUUqW0VlZWtHv37lEg5dhuj4c5ORtKmKqku0VsDzl598N9vO222yRt5ii9jj0fXF9uY1Sc07GZxlLuXxb+jBw1uQL/7vZEWCphDtMGFTRbl8Ypa2jy7f1m46BI4Xt8/EyWOJVtdz1e37UQZtHow/syhl2rcXhOSeZxcX3x3PHYuS+UIDBsoDQOJsE97L4z8IU03hfkOty/eFa5LUwtxcDgsR6eN24LjbV8Fsd1QIMqpjaj8VT8jVInr2sG3I4GVi6f4cE8zlxD/397Z7ZkR3Wl4VWlkhAYOxyBGQQON47wpd//SfwAtC0ZcDMZDEJSDX3h+Or89eXaWXWI6Av3Wf9NDSdz5x7zrPFfVQetk3H5/WFLYc5FR0ByH0bDGwwGg8FJ4CgN7/z8vJ48ebKxr6bkipTnhMW9oqS27SM9cI/DnrMNf7O79I/L6WQ7/LQG0RUnRWp2gjaw9J59XPXFiaHZR0udDsW2xpWSkT+z9OTxJ1ys1qkT2UeuYax7aQlnZ2d1cXGxkS73ClZa6zTBbNW2mCZaxIoiKX0Olo6toXSh5S4Km37XnIP8P/Nsn7d9N6R3ZOIxQErnM7TfLj3GNE0+c+wp78vsG/OJf8skAF3f7Jt2KlJXhsiWjA5oeGhNnQWGubXW7D2aWiR+KqdGpOZQtdWMciw+0ysi7WyffjvFif2Yz0ErdHI/Pxkv1pu810Vx2TvMo0mz8zkutsyZ20svMw0ic8MZ7Yg8aM+WMlsHErTDz8ePH4+GNxgMBoNB4ugCsDc3N7vEtUgkLrxqP1lKQiaAdvmhPQouJ1OvSq2k78ZJqI4kdb+qtqU2/H+eh2abUqIjU2mD55vcOdtzQVNLkl0pIEeDOiqQ8XeaMj+d5AtW1GHuQ/fZDz/8cKtN760lkqnJZulvamlInvahuSSTC47mZ6ZTcjJ3Jis78Rrp1VpMlxRtajwkb2sYScFFf+3/5R7TU1UdpGVbW1zuBuS+Y04c1bhXAsr7iz6zFp2feVWwucPl5WV9/fXXt9c6SrzqsHYueux208fliFeupZ+eg9z7K7pD72trnFXb0jqsnaPGq7b0dvxtyrfOH8ez6b+jgldaaY6DvWNCh87SZW2X5zCPjoquOswf//M6OgrfY2R8k3g+GAwGg0HgaA3v559/3vgkUiKxz8mSVuf3M+Ey7VtS6Oy5lioczeTyE1UHKcU+Gvrh/LVsD9gfYymqI4+mPUdjuY3si+fPGu3e3KyK7jqCsWorqfK3+5Y+t1UZog5XV1f1/fff3+bNdYVELfmiIdgPl5I2Y3J+kqXYrqir++t8IftP8jnsITQ8F8pNidO5kvbhILXTZuY64WdiP6Gp8hzWI/PirP37J2vqOao6rAf7qSuNk2PIvpjGi5/uc7bH8/ZKS93c3NSbN29u5xjpP/ttWitHUXaRli7/ZI2HM+4zkffYkmWNJDUTrqX/zAt7iL4nETi+NP5nqxRtOseyakv/habl8kC5lia6B+wzn69cU+cOr+jjupxRa3+OoM/3jsf8zTffjA9vMBgMBoPE0Rre5eXlUiOr2kr7Llja+eNcMsiaibWZlOws9du23vkILB27MKajUKu2ZSwcOWhNM0vKOM9uNScpnVlDtma35/OwTd5RenvaoO38jlxLbcfsMm+99dayXy4tlXZ8gGZHfymQaY0hpXT721zM1QTK6XtwX70+1pSqDusOyTLPw7fW+TZsCXG+n8nYcx/Yd+xcJ5B+xq7ocT7f2lVK6T4D1grtZ892HA3MfJocO69lHJ999tnSP3xzc1MvX77c+NpyD3lPdxqd4ZJl+byqw5x2EYmsA+vuaF2Q+4F7XDDXeyfnweW/uNaaD/ekn5RxMf++hv3WzZG1P591v8OqttHhjtvYe2d5f3mOco3od2cRuQ+j4Q0Gg8HgJDBfeIPBYDA4CRxl0qz6t8rpJOtUwW3aM5HtXhg9sEnECZt5vU1xptVyOHf2zWZKnOJ2Vuf/MGmtKLdsfsvP6KtNCbTRhczb/ORxd+YWBxjwfIf3d2Zlm71sZulqESZR7yrw4NGjR/XrX/96k8Sb7WFCciVum9HSbMM9XGvSYM9bR6dmEzB/87xMMaHysoOWvIc606lNO+4ba5AOetrheZh5CegxTV3V9izwmYOMHCCQsCmNNpnvbh699pyvrtK2TZCXl5e7gQcXFxebwLHsg+fUprcuoMquC641IXQXgOL0Jz/fqRo5ZqdOOIgsz6WJJWwWZW86JcTt5PNxHTh4peqwRk7Yt7nZ7/e8x+9k39P1Cfg9xDx35PjM17fffrubEpUYDW8wGAwGJ4GjNbxHjx5tnOwpIVjj6EJf87r83QEvK+2tk0j9P0sTKXE72XGlRXVVpC0VObDB2mh+5hIeSIFIRun4NoGx58JBDF0SuTWwleaczwG0a6mtS8Z3XztcXl7WN998cztmtJhMIl+RKbN2XTIx7VlbW1XfzntdisQBSLYS5Pi5ljWjlMxe6gznxoFV1gBTo+yqhVcdKNT+/Oc/V1XVX/7yl9vPXH4GjeUhyd4mirDFpgvoAnzGuXG5pdTQWLdMAbqPeNxaRp4XE887DcWVtfNa722fl715ol1rYF2AFc9zsJD/zhQqBy1Zi2afd4FK9JH1sLZOykueaacfmBzD1qEcn4MYV6lpHTwXvBecblZ10IiTDH2PECMxGt5gMBgMTgJHk0c/ffr0ll6J0OzOb+Pw9r1vd2stq2R1h4vnsy1Zr7S2qq2PzhLvHjlt59fp2sj+ONHc0iDSexf+vtIgrUl20nFH2pv/77QdS4pIeKZOq9qG2++t8evXr+v58+e3YegkoGfpHVNigS79ATjZ1aTbluLT72PpnPbRHLg2S6AwfrQXp0PspXyYNNr+n27P8uxVKgPawJ/+9KfbeyCWNuG5/eedFtz5kbJPfn7VNt3CKSfs/25uknxh5cO7ubmp6+vrzRnI94D3rxPnnXKSv3sfeP91CdNeO4f82wqWz3EMgQnv07IEfC5trel8bbTnvcqeQcN79uzZ7T2cS9p1aSFreKm1uw8rq1fn12SenHbT7R3ejZTK+uqrr0bDGwwGg8Eg8Ys0POzu0N1kaRJHx1nCXpGsVm19dA+xAdv/h8SBBtaRj/rZfm6XHL0qGeMISNMSVR0kOFNKcQ1zlPdYs1pRie1p1+476DQ8R2WtfIZduRP6//bbb7eRWLT38uXLDWEzxV65P59t8Oz0G9jf5r/56ei2qq2vgb6hcbMGXWFeFxR1ona3Lh6XS6NYE+yeg+RrX1U+D4ndvjtHOZoiMK9ZEbqbLD1/N6GDaaNy7tGU+fn69evddX/y5MnG6pDjsfboNe3eIdZ0rYnYt9pZUUzXh9bm8lQJ+/CZN/yync94dT79M/eB34X2SfMeorhwjhkrnv9vko7s64pCb49g2z5qR7+yd9Jfy/7aI6JfYTS8wWAwGJwEjtLwrq+v6+eff76VWpACkubIUUqOvLOmt/eZNbpOSuN/LjiL7Zmfqa2ZNNaSpSmM8jmOtHREKfekZLeiAULyohxMasruK3B0pp+RfbBd3JJQl+9jzYh57SL7PNY9Hx5gzzDmjhJrla/Y+ZcsTVrSXxHa5rUuX0OfTM2UfXRBVPtUck8hSa/8Pg/R8PC7sJ+RysnL64oVZ+5p9tF+x3yeczXt37LGnPfQR+/Zbk7YVy9evNi0Z5ydnd2J0qR9fDhVB63WGpXfM52/0lpUF52b40g4P5cz3hVM5j3p3Eru6ajO7KPzO8u+6a70DutijbIbjyNr6ZOtA11ern3Qfh/weedHdx4te7SLdkUTRsN7+vTpLnF9YjS8wWAwGJwEjs7DOz8/30hNRPZUbdkE7NvotDT70FY2ddDlggFswfzstBtHy5k1A0koJS1HgZmtwlGpqdm6ZJDnAoklpUHmb+Vv7CJJDUcDeizd/7oSPNlGSlL2Z1EguMPl5WV9++23t+3gu+vGvIq87faDfXcuJGmfXmoA9hewDowHNpOUhJMUPD9z1G6nFbK/XejTxWkp7ll1kM5Nhk2EHUVy//73v9/eY+3TZ4Fxuc0cuzV6+7u6kjJobY7o63LEiAPIyNuVlH5zc1OvXr26bRfrQGoKRLO66Owq4rfq/vzePSsKe4f/Wbu1Pzj7a78smkoXSer/WStfWZjyM7+DmftufwP2JP13OaLunK8iyFdRm/n7ql3WICOlyXnlnDx9+vRB1qWq0fAGg8FgcCKYL7zBYDAYnASOMmmenZ3Vo0ePbtVHHOeoyFUH1ROTFaq+zRVd1ep8TtU2udF0XlUHE5VJm02Y24Vem44K9b2r89eFcOffqzqA+buTUk3em3PkpGHusSmjI4JeOY331H6HYDvMuWtzFTK/B1JZ6H8SQWMG5Ocf/vCHO+07eKXqYB50kJSrp3NdOvXpP6Y4PsNcSBtpssf8two0YDwZMGLzvsG88TP7aHN4l5qRfe36xpz8/ve/r6ptuHhXtdpnz6bBTDzv0jfy3u4efv/kk0+q6t/viZVJk2A52vvrX/9aVVWffvrp7TUmLWBMJmruCKftJnAAV2fmX9HDubZdPi9Nx1WHdyXz16VD2QXkvtr9k+tkMzTgeZzFPNOcE/YxZ9Hz60CfBJ+ZhLsz2a7Io7mGvubc2a10H/F4YjS8wWAwGJwEflFaAlIMUlomBa5CfNMRX9WXmQHWYhz2nhreKjndie8pPZpuyFpaJ9Wa1qrTGHJceS8asLUatF/mL7VHJ7BzjzU+U2olVpXi7cTO/jr025pFzqOJa1elgXjms2fPbsPorbFmO2gmSKC0yxx0IfjW1i0Rd5qwk9FNUoAE3pH5sqYOQOJsZLACgSVIy1zLHPD/TsNzea1V8EJHt8e9qaFWHQISuhQhn1+n8HjNq+4vzUObOY/MOX158+bNbtDK69evN2H8WekaijprQNb0u0RpB1tYI+qI0x0M5Xmib51WyPo6EIQ+d3Rk/I+zgeazKoOV7fkdyV5hPTrLA/uYuTAZQ2dt8xlblRbqAhZNysG9jLejTOPaLghvhdHwBoPBYHASODot4erqakMkm5KPqa+cWAjyHvsHLOk55D/vdXrAquRPShUmj7bEheSQ9mlLNi5LY2kxpUQnNNum7TnLz+iTC8/SZme7N4XPqhBojm8l1XZrvLrm+vp6aUt//Phxffjhh7dj95pnH6yVoxV2NHHWQO1j3fNjrgizXRql2285ruwbknH6Jv2Z/cy+UUegAAAgAElEQVRoIWj6GYKNP9EWE/pK27mW9JH+u2irE/tz33kebSlxMnPV4bz4J33qNDeX2zo/P19qeFdXV/Xdd9/VRx99dKf/6RP0WbK2iVaYz3Aov0vR7JU4Y07th0Mj6YgQ0ORtRQHsmSyZ5Xce828LQ/c89hVrxficspFn0QnuzA3zt0eSvqI9W1G25XP8vtujxTOh+kP9d1Wj4Q0Gg8HgRPCLCsCuEsX5vGpLLGxC6DudEH2RtQpLfp3Eba3N/qBMBHbpECfKIq2lBGnyVGsh9n2kRGKtDGmJ53dlWkxlxk/brbtEfn8G9opJ2ve1KvKbc++oyT0fHvfaf9nRKLmAqec8YQos+uS/9wrzuoAtY+8IAew7Mxm2tbWqrd+PdbHvlsjm3HdOYHYf7ePNPnANc8C82qLRzavPdke3B1bJw44k7vxZqbncJ6n7LHeladwH+3I7CjPucX9tCcl1Yf+ibdA3v8NSW7Olh79ZD/ZDriV9gPDA0cDe3/kO4Tm2jPC3KfSqtpqkr1mVVMvfXQbJn6dma3+f9yx/J7GDYy9++OGHe989t3140FWDwWAwGPyH4+g8vNQaVvleVVsfg0lPH0r2mffsRZU5J8wlMVJ6tBTjciZduQkkKtNCIeGt7PJVW3+IJT1rXlXb/EJHL618LVVbCYi+IknuSdz0yZGyHUWbtYC9fJibm5u6vLy8jUQkarfzPdIHtBr3Ice6ygfy3uzmydIq+XjsB55HtGjVQdJ2hBvrg78x9zfz7sKeK5q4HIslaUe37pEUr6wBthrkPrAfyxGMez485s00W86pyj6mP3MlpUMejcbN+ck55rzbEmOi7lz/VVFT+m2fbhY/Rlu3FcB5oV2JMSwX9MVRvHnGiPZkzIyTa6BZ64oH21LGnNvC0NGRWcPzPu/Ouc+nNb0uL3BV/sh/5x61n36vtJQxGt5gMBgMTgJHaXhI6aArjOgyFXyG5LNna3U0pqXK7l4zXSCBcC3PTU2Ce7gWaQ2JxwTUOS76xj1Is0h6SIHpF0Gioy9uiznNXEWkPZPU7kU8gft8oJ00uMpBWpVoqjpIWjnne0U833777Q2pc0r9PIs5tFZmH1SHlW+1K5BpSd59Zz/A7FFV9dlnn1XVoczR+++/X1UHxhDQzRPMRKwtz0OK557UnuwDX0ngeS5dwoo+OofO/q3uOVxriTt9KvZbWzOyllW1zR/dK+IJeTT7DKtK+sfss6cvK3827ebPVa4h/+eMVx3OP2OkL6wtxMwZO+AIb94LROI6wjz7wFqipXFGnOuYc2xrk0u3Ya3IteQ5qzxMv1/3NEpreH6HJWyhWRFPV23P/0P9d1Wj4Q0Gg8HgRHB0lOa9DaqoJhKQ/UedTw2s+Pxcsr7qbuRU1ZZNxAU0835HdrmgaWpptp1bqrAEmfyiZtSwduO8qWzPfemYY7LvXd9W2mBnuweredzLobkv0u7i4mLjY0m/iHkjmUP7MbvIMEt9rCnz55y0qq0Eb60DzSsle3x0aBmWTJHaOzYY7vnjH/9YVducOnyFuVdXEY/WFnLNmSc+QyswO0dXANbR1YD9YC0o58D+F+cbZps8m7l99erVUlK/vr6uly9fbvyHGQlrNg/62eW4+h5rE44WZo/mmWZMZtbhpyPAqw7vEP6H786FWXMs1pqcv+hCqXk2HH3Kc+g785glr6wp2wqwKprtseZ4/P/u3hUbSxdRztxmlPEUgB0MBoPBIDBfeIPBYDA4CRwdtJIhoHsBE1ZjTS2WWCWu2uTQJVdi1nBgi8v0ZPkUB9B4HKbR6fpoRyz9wOSQZlenSqzo17oEUDv17dzvnP0O/rFZoKMWs3lyVf0558TPfuutt3ZLELF/sv2OTs3V1538nv22kx0zipOFu5QGV/zmJ+PCpElCeNWaBg+zFz+7QC5+Up2ca005RUBM1TYIw6YlTGgZqs08ETjh1IW9oCYHnKzKXnVVq232dwBMPod2mdvf/OY3bVI4/by6utokynfk7iuzaJeWYBO502L4nHVKc7gJ57k3TbTZr4QJFValx7rxeF871aULXgL0lf2Fed5li/I5HVl4tpWwCXN1frvSaf5OsVm8I+WwO+shGA1vMBgMBieBX5SWgFRBSY6UMiwR+pvb3+j5P0uRJontQpit+ViLQbpIh7kTLk0SbCk64URIO0s7smw77/1/U1xluyt6JkteKXFZo3Bi85706YRtS+k5Brd7n/P4+vp6Mxc5ZtbZAROWELsABFOsWWvu+s+6I5V7jpHsU5Ngz6+KBiMtdwEaLiSKRoTE7cCQfLYDuKz5ZdCOg1QctMB8dgEIlsJN6N2lcHQlivLvLuCJ+zMoa2UduLm5uRMQ1a3lfek0XVqKA7Ks3e5pUytrFNp6F2DlYBgsCKSrJKUYcEFjn12nTGRgjQsBm3CjI7xwGoeT7v2uyjX3u8/Wl85KZA3WNH+dZYZ7kl5vglYGg8FgMAgcnZZAEmjVtpBq1f0E0F2yuiVfh4t39newoq1xuHpqXEh2SECrENiOhmhFrmoNo7Nx05dVUmXa8GnHvklrIfydIdrWci01dWTBHrMLqnaJ6dbS9iQt/DD4L9x+wlKmC/OmhLhKyHbSepfA6nQXS8+df8x+FmtJLgyafSIM3LRknCPGkMnKSP32DVpjyXn3WXPaBbCG07Vrv+meT8WpLCaM75Lxs929vXN5ebkhfc+1XPm27XPN/eYzZp8dWlNHdO59a5+eqQGrDnOKZsdP0lVM/VW1JSe3FYw5oI+phTIO2nfKyV7JL+A54jkuTJt9XRWe3vPv3+d7zfPEurBeGZ9xH0bDGwwGg8FJ4BeVB7JNNr/lXVTVvq7OT9ElF1YdpIik+KrqC86uaHQ6KcalXYC1qc5XaKl5VZw2x7Ian6PmUopZlTty8Vj3L9uhj6u56LQCS2N7tD3u/56Gd319XT/88MMmUTevt7ZsaZmxpxS7IsR2G52W4TVl3iytd9oaErd9eB2hOp+54KoLsVoyzj4ajJt7u71q392KrCDX2GQM1vQ6ad1alPcu96aVhT6lr2bPD3N1dXX77C46zwQXq+jFLkrXbawosDo/Odo4+4Axmkaw6nAes6xN1cHShCaW59Ran334PoMdLRmw79NFrLNvtkIxHvrqAq3Zfvr0q7b7uiO8sMbq92quJ5G9Xcmv+zAa3mAwGAxOAkeXBzo/P99EjnXSnqXnvbJAtvXbT7DnF1tFPvrzzs+48lN1Pi5LlX7OXhSb/WPW6KwV5++O5FzlOHV+rVV+I0gJ0IVULd064rNqWwrl/Px8KaWfnZ3VkydPbrW1LiINn8MqHwspOvOGrPl6jl3stOufS7t0ka8AkmB8ps7D63Kp/EznpO5FvrkPzJupppKOrNO881oXD004/8r5md34fD69J1lz8gK7e/YifKEWY4wdVVnny8w+rPLJ8h77NJ0n1+19l96yZtSVMHKJJzS7LtoVzYZ7bS3iHgioE6uIdVsu8r3jOWAPOVeU/d4VkV5FlnfR1X5XrfLx8Hfm/1LrnfJAg8FgMBgEjtLwrq+v70iFSNodi4r9CKArgWENyDZgS1EdQ4glfEcoZr/NjrAiZE7Jx34JF0Lck2JWPhuX/kmJ1USvzifzWPbKqzjvpvOFrHw2wJF/2Q793isPRKSd/Qe5lvYPWVOw3yefvbICsO72M2V7zktDI3HUWdVhz680SMbT+RnRDh11ar9wFx3sM+Zxp8Zsy4Ujp62l5XzymRlDfG47i4LL7Vhzyr1LKawsDntfAVhyzFif7APzbcsIbfL/3POO5La/1/7yjsXEFi2ztHT+2FVEaZKUG2hUtoLtsY5gEfE5dWHoLj/S0Zn8vSrKXLXdI7a27FlOVtq937fZPlaWIY8eDAaDwUCYL7zBYDAYnASOTku4urraULtk0vPKCblSxau2ZrlVgEtHhWOV28SyXbCFzY+YSBy4kfeswrJtOu2So53+QBv8v6sbhYnKphOb5rpKx55zjxt0pgybaDyfaVpw+3uh5dfX1/Xjjz9ukrqTZNvV6R1o0CWY2mzi8GybejpSZ9qgL6ROdPvAqTi0x3ho6/nz57f3OCz/vsrj3VraVO5x51rS/1UNvYeY35nrXJ/8POsY2iWB2Zfn059cC9rNtJKVSfPRo0f17rvv1hdffHHn/zlPtMe56ZLTq+6ahr0XHZzi5PE8n6ugIe7lndiZ+B0sYqrDXBfMnF4rB005PSb7bxOizZVduoXNrzyPa1nTrl3vawcBdm6RzuWQ43FwYrZ/X0rLnXsedNVgMBgMBv/hOJo8+vr6+vYbGikvw41XSc+rIJaqrfP+vlDilAYctGJiXj8j+2CJ25JqOpetSdoRaykm78WRbQl2ryqz/+cAjhVlW47V13gtuvB3h6VbOsx5tVN/jzrozZs39eWXX95KopAw55idRA4c9JD3OGACOCS7c7KjcfDTGlYnVZrCiT2EZuHQ/6qtZsr4TEu2R45NH63B2jpRdTiXDnRZWUMSzBMSvQm09+ionCzsgJece+/bJIc2zs/P61e/+tXteGxtqTpolQQGAWtTXRCJk/f525pXWrI8Dlcz554Mp3///fer6pBMTt84C11gGknWTmVAwzK5dHeegAPGKFOVZ9rpQvSVsduSkcGAfrf77HUavAPpfPY87hxXVorfe/ckRsMbDAaDwUng6MTzi4uLW+nW38JVfWJqwppEVR/qXLVNXESaSKnJvqbOp1F1N0zcBSvt66CPJITujcNhsy4imp/xkyRO+mxttOogqVpKegjllzVjz4m14rzHkrxLKHWlRDIZdtWv169f1/Pnz+uTTz6pql5aXiWPr9Y4++uQcifOdn5NpGIn9xIyDz788MPb35HG6T8/WVsk4pwnpHE0FPwypovqzgbSLH21ttj51AjfNzWbiQg66j5rKta6O613ZX1wuk2+J3zP1dXVUsM7OzurR48ebVJAcg+t/P/2k3f701YU9qGpt/bIo50G0VGZOc2FdWFP8e5I/xhaIddiYXBqk2MWck5s9aItnpPz6LmgPZf8cWJ41WEPWptelSfLdmzdoK/MSUfgntro+PAGg8FgMAgcreE9fvx4U+wytSf7Bbqy7lV3pXTT5aySoNG4KE1ftS3pgoRt8uqO6suRSPYVpiSChGMJ19GTzEVKg/bZuKxFJ31+/fXXVbWVgOwPcYmZvMeanaW3vfJHJnW1nyt/zzVYaXiQRyO5oeV0EVtOyLc/McvnoO17LS2Vd5GJzFm2l8+lHxTozN8tZdI+/uykP+OZpvRCE7ME3GlCPhO04WT5BGfB1g5rdvm8+/aBI1rzWs+5k5TzOfYvvfPOO0s/zPn5eb377ru3Z5CCudnGKlHadFq536xVmOBg5dur2iZx+6yhiaX2xLWOQrbfLzUXfv/444+rqupvf/vbnWtdtinfT7xDVhosezW1VfaTSwg5GhSkNsq7jzGv3uMdsb6/J/aiMzPhnP6PhjcYDAaDQeDoKM03b97cSgx8gycljql9gL+5U4pB8rPk48jOrsyOpUq0P/scuuKTzkui3a6ciumGkOD4vzW71HrpkzVIJKw9Qm1HQKKN2A6fc2K/jyVw59zl/4Alxi5PpvPrrPwwjx49qt/+9rdLQtuE6cAsvafGRRQb97AujjbraPBYDz5jPegTEmT68Eye6/3V+cVcSJY58tp1fh/nhJnwmXtzDdDs6IujG70Gee8qgnSPug5wjtlnjBstPPe/owvfeeedJWl41b/nl3HRXmqMtO2yQNaiOvJoa3K2onRWC/aGc/i4tiuj5BxBNFX61OWm8hz8yuxV7z/2Uo7PvjTPeedTo4/OiXUEbqeNO+/PPryuLJv3PlYP1tE0k1UHDS+tLHt7JzEa3mAwGAxOAkeTR798+XJjF0+pCm0PTaSLxqq6KyFY0rTd2JpfSghmvshotaqtRF51kCKQgC1N8HfHRMJPxrnKGeukZmtySHK2l+e19t3RNxfSzb667NDKhp798Thonz52BR/5H316+vTpbsHSTz/9dJMP1+UNOYfJ1oHstwnFLZXTf9Y873XOD1K0WSVSC0XC9l5FO+x8N2bUWBVZ7fwwLgvjIrl8nuWBaNd5ZD5PXY6T13Tlb0rY925tgznqogFTe15J6fh/+RxND+2+6rBX0DLs2wKpPVkTNun2isw8sSKE79aS+XFpIUAbGR3Oe8u+er8XOqYVQP9ZbzPi5LvDFgRrpV6j1H4dv+Hi1aBj2aJvLoPGtZlfyf7q8kjvw2h4g8FgMDgJHO3De/Xq1SYiqWMk4acj7uxHSvjb3dL7im+tqmenqDpIAenTMVuG/XH2GVZtJRAzX/j5XbkOl2dB4nU+W9WWScN2670CsKvIp853B6yFMjfcizSYEp5zZV69erXU8C4uLuqDDz7YaGkpzSK5Ic05n6xbF3KYiEhjjNxr/2mOnTl18U7u4e/My1tFgfJ8xpdaIe2vSlgBf15Vm5zXzqdRddeC8fnnn1fVYe88e/asqra+vI67kfVYlVXq9pC1Alt+Ov5c1ppzeX19vRtpd3FxsTk3OWZbIszV6Zzb7Cdz6/eZo3U7HtZVGS1Hb1Yd3jOOzsVa1MUOWBvnJ3PrfuSesjWAc+pCtLlXuYf1cQ6prXEZjQys0dmilJ/bGuWIWb8Tqg7rn3t0Ly85MRreYDAYDE4C84U3GAwGg5PA0SbNy8vLDTVRquAmljblTtsJVSV3oqrD3zNIxs5h0/Z0gS6YwXieqZ1MRF21NQesElztIM5rTczrCsE5LvqGSu8k3lUJpQTtOpCHtXAId7bHOJ2U35FUPxRQ01UdxpVBBLT33nvvVdWWGqsLJoJ6CVMcbTBmJ2hnn1lTJ21jeuoCa7zurIPpu7oyLQ4/x5xjOrouMMjh27RpM2XVNjgFk5kDYLrQeRMN2AXhoJbsm8stAeYvzbAOattLHmbfuOp2pkM5IMPmSeY001JWldqBieFznzjAirmmhJGJs7v27eYxiUZ+5krqDmYxyXf2fxW00pX88jvd7yiXhss1dbs25e99B/idzz2sdbqk6KP36EMwGt5gMBgMTgJHpyX89NNPGzLfTLK1cx1p2dJbak+rshJICpZMu5QGhz6jQZgUOe/3cxiHpZquL9ZuTJCbn6N9mPzYWlpKkEj9Dgv2uDvqNNM/Ofzc5VvyHocSe873AnnuCxO+ubnZUBTluFaasLWqlBTR1tEYnLhqSjQ+z/lgrbxXu+fRnumnCK/vAkFMz2WCZlPOkZCc/7OGbctCSsD8j58rkvQu5NtBZgb7MrUC02yZVMAFcLP/q78TUBoCtJkMtlgFkTnArks8dyqLA8L8jqnakqwzx5z1riSYz8mq/U57trWLdVgR7nfjs+Wqmwvm1u1m2kuC1I6qw1m25ryiVPPvVYfxJiFB1V1NuaOum/JAg8FgMBgEjtLwrq6u6l//+tcmsTWlAUvUSM9I4J3kSHt8qyNl2H/khNAEkoA1hz1/FVilCSScyGrJZJUKULUNe7dm58TXqrvEqAlLn3tkvva3OOm/C3/3nHucqbl2fr0VKPGCRNhRiqEBMGa0dJKKrTHk7x999NGda1fJ6tlX5oz9ltpftt3tnd/97ndVtdUcXJYon7mycpjqq7vGGgxt0eeubBPt2WfsPZTak6VyE3h36Qqm5gImA08Nj3vy/bCS0s/OzurJkyebMPu0Dqz2okkyUlNwCok1eqfzpEXElg/74xhr3uOULWCrQGpNTkNZ+db3YiXsW/Uau1Bwtu9UAtMU5t7xu9HvG5NZ5DWrdCuXaMq+gIemJFSNhjcYDAaDE8HRPrzvv/9+Q72UUoyTqJGikFr2ogstNXQlXeiHn4cfwhLdnhRrglzQ2biRsB3t56hG00UlVkVq7dPLdg1riaYJyt/to3TSdOdzM3kw8HpmH7qE0g4XFxe3Ujn3ZHkR+0Xcv4641tG5SIQrQoA9P9IqIg3asPzMRLwuxJnwOlg7cLQk2mP+zpwwXvt9Umo2ubvH473Z+eNsIXEEYVeQ0yVdfObT12/LxU8//bQrqWd0uH1gVYf5N+ED+6GjfFsl83vvuwhy1bbwMHBb+bnJCuyH72IUrPHYCtLR7bkvpvNz9HFXWoq+2O8LOmuLS6h11GVVd8kmmCdHdK4ID6p6X/iKtN4YDW8wGAwGJ4GjNLzLy8v67rvvNqUi0i6OVGd7taMl93InTJTsiLSU4kzaamnZdmvG0bXnyKqUmu27sJ3aEklqFqsikYC/O3s4MHWQpdCU8JyfYsm502BXEWMrSqOqg2SYhMorKR0fnsea2oyL3loj9r7r/oc25pI09gN37Tt6kbVNrZB7Ol9d1UGD6CisbHVwmx0dlfti3zjrkpGW1hx8JtjXna/aviHncHW5t/bdrUoY5f6m/5zbV69eLaX0m5ubO8WFO9JrtEdr0/STKNqu5NeqEKuJ2dO6YbJyW5ZA56t2Lq37ke8SWzVMlejn5d+rott79Gd+njXIPSJoP8fvV+cDJ5zb/ZDI1czbHmqxwWAwGAwCRzOtZHkg50dVHSRsk8yiBXT+KkvAtuta8ktfgHM/TKZqTaxqLaWYZSIlkvsIrLvn+HnuoyX7lAatBVricVHFPcnVkYSd38e+NZej6aRq+1J+/vnnB9vSXWS16pB/5qjVlbab/eFaJHkIn71eufZm7vCc8tz0+9gn7MjHLmLR/kRriV7rlNJXOar2l+VaOp/M9zh3L+fEGoPXnXu6HFUkbsbp6MwuytGRyh1gWmHeTHBddVhDnw/eO1gSOg3I2qB9q53/2mfae6YrLeVITkeBWoNN+B1ha0F3PsHK6rXH0uT9vNKG9zR9zxt7NP32XgMXPGY+M0bBlpnXr1+PD28wGAwGg8R84Q0Gg8HgJPCLyKMJ8bXaWXUwJRG8AsErZiES0DuaHtozcbLDnruK56sE7S5NwCY+O/mdeJrtdLXrqrZmqjRLrEwKNk90piwHk9g525laOyqkfC73dOTYjMMVr7vk6xXBcAfMUjaDJyWWUy1sRqMPad6wCQTz2ccff1xVW0qkLnXCJkf2H89Ns6tNcTyXoJEusd7pOzbr2/STJk6brDrSgLyuautqcKAVffa5yj45WIW54BznGjhlgTmgT5z5XAuf172gFajFuvV3v00A4NSjfHfwfsF1wTzY5dDRhNk94cT2jmzAidmr+nsddaKpDFdE1PkudtCS++p0BY+xqk8/yOvyHen3jq/pTKhOqHdfWaN8vzn5fRLPB4PBYDAQjk48z6rWXdCKyUeR6vgGh+w3newr8mGkSRzSOKtTIkFa3QvtdR8tEVjCspSbz7QU5kAA+pPP5392tq6oePJ5K/opE0DnfIIVBU8nfVqTc1mavWrpmey9V+Ll8ePHG4075xhpDquAgysYY7d32HdOBIdy7MWLF3fGl+37b0vrHXHtKsUE5B51sIqDBizd5j7wXnSydKddOyXIZZZ4bpe0bKmfdtHauvNlTYLneC1IO8k56WitDNISOP9onRn8YM0bOEE7LQrcz9x+9dVXd64lAM/vh6rDu8nn3sE3XTCZrTZ75MreE15/U3J16VBdGaj8u0t0d+qWA2ycWlF12Mded+jvutJpLuPGfvC7MtfNCe2PHz/eDcC5M+YHXTUYDAaDwX84jtLwqv79jb6SIKsOkrbLmiDdPXv27M7/sx1rHiZi7ezGlppNAdbRUa18W9Ywu6KDDr21vd8FQfNeS3+WvDpbtMds7aBLIrd/BInI0mDno3Tyt/2bGQrOmNO3ukeJ9vr16w39UPp18IOxh1wqpEuUpQ/uP2tHODr9zuc5QdbPc+pBXmvKJfs4cz3cjjUrWyfyXvukrAV0IeZoLi53xJzsUevxPxfH5ec//vGPO5/n2NGIbPlxoeX8PbW0FS4vL+urr7661cBAZ6FwSamVNadquy4mK/e9mZ7iNIGVf6yzEvksdecox573uk+0b+KNHKvPpBPes83OupVtARdhzb4Cv6NsNcrPmPtVMeScE/ZBfj+MhjcYDAaDQeBoDe/6+nrjA0g7vIszOjKM5OIuMsgSCTbhh5SxAJbWTQGUv99XrqeLyloVfl2RyGa71qy6KCnfbzu7Jf69iFJL/06wT43WybxJ+ZRtdgnVjpTsgGUAf2wXIcj6opWhTfBM+pT99pqtfLgkpOMfrNr6HOxL7aRGj9E+oi5qln67IK8TnDu/5qrUitc058TXeo/aL5xrYMnec9MRN1uTAyYv6D5L6rpVtN2bN2/qxYsXt++Wbsz2i9EuUeNYljrQf2v2LpzbvX+8RxyBnViVUfJe3TvLTl7fI2y3Bu8zYiLqrm/2GXof7BVeZb2cVN75tz0O3keOvk6wr7q5XmE0vMFgMBicBI7W8Kq238YpFRCRsyJzxceS38p8e3e+papttFxXxNFUP3mNsbKzr3KcchyrQosPLTGf1zrnJKVFR51Zo2M+O+nG9D8rCSjX0eWNrMV3eYDeB5eXl/dS/FirTjC3+IKw1SOld4VE2W+dzyT7yzjIz6uq+uKLL+6Mo8tl8jhXWhNzjNSZWpOj8Zzv5X3fRelZg1mtj/ub7TuS15J//r7yLzGGpPfz2J2Tyhqlv8f76ccff1xqeFdXV/X9999v5jE1PPrDGNkjzAW+oey3r/H/Ox8XWMUBrNYp+7sqCNyRozuuwNqgrUP5ufMwVyV/8nnum987e/vOc2DrUBfZbLo4W1fsS84xZybAkEcPBoPBYBA4SsND0toD395ISfapIAVmO0j0LjppTYVInpRIrL3Y99VFNzmHyX4KlwXJz0xO6xzCrhRK5/9yn7I/OS6zWKzYSDofpSUhS4fpc7GN3n4mX5f3Z7TufZLWnjZDeyaNZq/A2JHjWM2LfR1dnhJ+vefPn1fV1krQMda4KPGqiG+uhzUFS+22LHTamqPWzMpi33LVVtK2D8WaWDfmFSk7eXlVh/UhKvS+wsrdOPasAzrTOeAAAAQTSURBVET42j+W7wFrHPZx0bcPPvhg0/6qxI/L2+y9Qxxxu5fjSHvsY/rWjd+lnNyuI6/3LCyO+HTB5bzG/j5btrwfq7bvbzMxddHqtIMmx7WO/MXKk2PPMkEdaXaH0fAGg8FgcBKYL7zBYDAYnASOJo++vr7emKMy7BjVmiRNmwkxjaQ5jVBx0+WYNqoLePA9Vrm74BWbwVa1uTo6Mgc0MA6bRRMeh/tuFT2fvQoLtjkxzWSraug2YXSErB6vQ7LTFO3aaPclf56dnW2IkruQeCcqu7ZZ3mNTj03Mq0Taqi392Oeff37n+Q8h812lweTcOhx9ldTv/ZD3uEaaK5Dn87z+NjU5wb6jpWNtTTLBWPJcmWSCPnGuMUWn+8HEA3tBX5DWg652nk28dql0KRjeI1zDu8tuiu5s+11it0GeK5sy/R518FTe7zl2Yr3rguZnq7SHLkjQ9xyTSmU3CH33PGcC/5dfftmOAxNmR3jh9JQhjx4MBoPBQDg6aOWf//znxpHZhShbalyVKqk6fGO7vIildweiVB0kAO6x071zlFpqcXiunddVW02uC+nOv7sK66bBcgJtSmLWxuwMXyWX57XWSh1SvOfgtmTfjcsa8l7y8PX1df3444+31oCuCvZ7771XVds9xNpyb2rKDqqwJOxQ7047MNmt91uOyZqWtaaOANrSK3BASkfyex9JtbW5hANqHETQJQJbg2MNnJyd59tajrVSEwFXbTWuPXoo9k5qBlU9EbjTENBU90i2uYa+5Pssx5EaakcDl3BJqOwvz2WOnVKzZ/VYWQkc8NX1ZUVWkRSKqzJkq1S0tCxZO1wRKuTZYJ1W6UqkJuXcYxVYUTbuYTS8wWAwGJwEjvbhdSGg+a3MtzlSOFKZpeZOU3CxTiQtpAjaTGmD9u2n6kKX3UdLzw4XT+lsVSZjlZib95o+x9pZV5DVmhw/Ta7qMWXfHCptDbkrTumxO5Q+19qFMfeKeFLixXPQUbA5DNz+kW6e3D/b/tESc41XKQV+bia645daUSK5rbzGofOW2jv/GFj5+/h/d8+qxArP47x1/jiPhzmgj+nLtQbhorGdhmR/1fn5+dI6AC3dXhqPiYp5psv25D43NaKJ4P3uyLmxxcDaeueP23tvJvIea0c8zwQH1nDz2lVxbI8ln2ct0O+sPd+495DfmZli4Gts/eK8pXXEZ6DTalcYDW8wGAwGJ4Gz+6ig7lx8dvY/VfXf/3fdGfw/wH/d3Ny873/O3hk8ALN3Br8U7d4xjvrCGwwGg8HgPxVj0hwMBoPBSWC+8AaDwWBwEpgvvMFgMBicBOYLbzAYDAYngfnCGwwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUngfwH0LzUL9xcSKQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1872,7 +859,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bWlV3vt+e+/TVJ1zqupUCxStQG4Rc9U/RMUodggaFTsexQZFr9dwjV2u1ygBtWJQ1Cia5Go0qJeIDWLUqNgHAfUqEs21QwGlrw6qzqn2nKrT7Xn/mGvsNfZvjvHNtfapkqfY432e/ay9ZvP1c67Rvl8bhkGFQqFQKHywY+MD3YBCoVAoFP4hUD94hUKhUNgXqB+8QqFQKOwL1A9eoVAoFPYF6gevUCgUCvsC9YNXKBQKhX2BB+UHr7X2tNbaq1trt7TWzrbWTrTWfre19uWttc3FNc9vrQ2ttcc/GHWi/k9srd3YWvug/QFvrX1Oa+3//EC3Yy9YzM+w+HtmcP7xrbXtxfmvcsdvbK3tKW+mtfb61trrUceAvztaa29orT3rIvq1p3XnnocnrXDt0Fp7CY5d0lr77dbaA621z1gcu3Fx7f2ttcuDcr7c9X223oczgrmO/t71INV1eFHetz5I5T1pMZePDc7d1lr70QejngcDrbVPaq29cbHmbmmtfV9r7dAeynndYgxf/FC003DRPxCttW+U9P9KulLSt0h6hqSvlPQ2Sf9J0mdebB0r4BMlfYc+uDXWz5H0sPzBc7hX0vOC418m6b7g+I9Letoe6/qaxR/x0kWZT5P0v0k6K+k1rbWP3kMdn6gPwLprrR2V9BuSPk7SZw3D8Ou45Jyk5wS3frnGOdgPeBr+bpP02zj2uQ9SXWcW5f3Ug1TekzSuq8kPnqR/Jul7H6R6LgqttY+U9FuS3qPxPf9vJL1A0n9es5yvkHTDg97AAFsXc3Nr7emSXibp/x6G4etx+ldaay+TdORi6vhAobV2aBiGMx/odjyU+AD08ZckPae1dmQYhlPu+PMk/aKk5/uLh2G4SdJNe6loGIa/SU69YxiGN9qX1trvSrpL0udJ+pO91PUPidbaZZJ+U9KHSfr0YRh+P7jslzSO6U+4+x6j8Qf6vwjj/MEIP8eS1Fo7I+kOHs+wzrMxjOwdK5V7sRiG4X/+Q9SzIv6tpL+X9EXDMFyQ9NqFRebHWmvfNwzDm+cKaK1dLenfSfo6ST/7kLZWFy+Zfoukk5L+VXRyGIa3D8Pwl9nNCxX2Rhwz09Pz3bGnLkykJxaq8ztaaz+yOHejRmlIks6ZucLde2lr7Xtba+9cmFvf2Vp7kTdDOZPb57XWXt5au13S+3odb609obX2yoWJ4cyiTf8e13xCa+21rbV7W2unFiaof4JrXt9a+8PW2jNaa/+ztXa6tfbXrbXPdde8QqN0fn1kjmmtXdNa+9HW2s2LtryltfbVqMdMaE9vrf1Ca+0uLV7wvfF9kPFLkgaNPy7Wro+V9ERJr+TFLTBpLvrwktba1y/m8t42miU/FNftMml28IBGLe+Au/dwa+0HF/Nw32KOf621doO75kb1192R1tr3tNbevpiT21prv9hauw71X91a+5nW2j0Lk9B/aK0djhraWjsu6b9L+lBJz0x+7KRR03h6a+1x7tjzJL1bUnjPYu2/cbH+7lqskcfimue21n6vtXb7Ylz+v9balwdlrTpHz2qt/VFr7e5FeW9trX170qeHDK21V7XW/n7xbLyxtXa/pO9cnPuyRdtvX/Tjz1prX4z7JybNxdyfb609efHcn1qMxQtba63Tlk/TKNBI0h+45/1jFud3mTRbay9YnH/qYn3Zev2mxfnPaq39xaL+P2mtfXhQ5xe21t60mPs7F+Nx/cyYXarRmveqxY+d4eckXZD07N79Di/TKCz8clLP9Yvn49bFc3RLa+1XF8/C2tizhtdG39wnSfpvwzA8sNdyVqjnqEZTxJs0Sqb3Snq8pI9dXPLjkh6t0Tz1cRoH2+7dWtz7jzVKI38l6WMkfZtGE+w3obr/qHGxPU9S+NJZlPuERXtOS/p2SX+n0fzwTHfNZ0j6FUm/LulLF4e/ReMi/rBhGN7rinyipH+v0dx2x6Jdv9Bau2EYhr9ftP0aSU/VciGdWdRzmaQ/lHSJpBslvVPSsyT9pzZKqf8Rzf8ZjYvyOZK2VhjfBxOnNWpyz9PyB+7LNJrE37FGOV8q6a2SvkHSQY0S4q8sxuv8zL0bi3UhSddK+maNc/2L7ppDko5JeomkWzWula+R9MettacMw3Cb+uvuoKTflfThkr5H4wN9ucZ5Oa7dwtQrNc7H52k0i90o6U4tf0wNV0v6PY3r7FOGYfizTh//QNK7JH2JpO9eHHuepJ/WKHDsQmvtBRrdD/+Pxhf9sUU73rBYq2YG/RBJ/3XRp21JT5f04621S4ZhoF+pO0ettQ+R9KuL8r5To9Dx5EUdHwhcrXEuvlfS30gyC8QTJL1KoyYjje+8V7bWDg7D8IqZMptGIe8nNPb/8zTOx7s0znmEP5b0LyX9oKR/LskUhr+eqeunJb1C4zx+iaTvb6P29M8kfZdGwe77Jf1ya+3J9iPVRpfUyyS9XOOau0LjfLyutfYRwzCcTur7Rxp/P3a1axiGe1tr79H4zu2itfYpGt9D/6Rz2askXaXRnXOzpEdI+lR13s9dDMOwpz9J12l8eF664vXPX1z/eHdskHQjrnv84vjzF98/cvH9wzpl37i4ZgvHn7c4/nQcf5HGB+zaxfdPXFz3yyv25ac0+pwe1bnm7yW9Fscu0/iD9kPu2Os1+lye7I5dq/EF+q/dsVdIuimo59s0LuYn4/jLF3VtYfx/ENfNju/F/rnxfYakT1707VEaf1hOSvrf3bx/FecVZQ0aBYwD7thzFsc/FuP6+mBd8e8BSV850/5NSZdqFAb+5Qrr7isXx5+9wvPwb3D8NZLeFvTZ/j55ledA40vrbxfHP2px/Mmu3ictzh2VdLekn0RZT9D4jHxjUtfGop6XS/qLdefIfb/soVp3aNO7JP10cu5Vi7Y8a6YM6/MrJf2JO354cf+3umPfszj2Re5Y0xjb8Ksz9Xza4t6PC87dJulH3fcXLK79V+7YQY1C0wOSHu2Of8Hi2o9efL9C4w/7j6COfyTpvKQXdNr4yYuyPjE496eSfn2mj4cXa+TFGMMXY7zOSvrqB2sdPByCPP5Oo4/lx1prX9pGX8Sq+DSNZpw/aq1t2Z+k39FowvoYXB+q1QGeKek1wzDcEp1srT1Zo9b2M6j3tEYJ7um45e+GYfg7+zIMw/slvV+x05r4NI2myXeirt/WKBlR0mIf9zS+vq7FX2qmAV6nUVL7EkmfpVEzffWK9xp+dxiGc+77Xy0+Vxmvl2jUlJ+qUeN6uaT/3Fp7rr+otfYFCxPQXRof/lMafxz+lxXqeKak24Zh+NUVrmXAyV8p7sfrJN2vUXK/YoVyf0rSDa21p2rUot/o15jD0zQKYlyr75X0Frm1ujDP/Vxr7WaNQto5SV+leEzm5ujPF/e/qrX2nNbatSv0abLuVrlnRZwehuG3g/puaIsIdI3r4JxG7XWVdSC5+R3Gt/ibtdo6XRdmBtUwDGc1WnrePIx+cMNbFp/2jH+8RkGOc/+OxR/fUw8mXqzRSvB92QWL8fozSf+6tfa1DSbxveBifvBOaHwAHzd34cVgGIa7NZoRbpH0I5Le00bfyuevcPu1i/adw9+bFuevwvW3rtisq9QPprCH9yeCuj8zqPdkUMYZraa2X6txYbKeX3Bt9djVx4sYX9b3CSu01RbxT2vUvr9co7R79yr3OnC8LLhglfF69zAMf7r4+51hGL5Oo3DwQ/aj3Vr7LEk/L+lvJX2xpI/W+AN5+4p1XKXxR30VRH2Jwrr/SNJnaxRgfnthyk4xjKbwP9Zocn2u8ghCW6v/XdM5/V+1WD8L07eZab9V48vyqZJ+Mmlvd44W7XuWxnfQKyXd1kb/WbqO2pjStKuN7cFLc7otqO8KjeNyg0bT98dp7PPPaLV1cGEYhntwbNXnel3cie9nk2Ny9dvc/6Gmc/9kTd8dUX2RL+1Kxe80SWPahca4jxdJunQxzpZGc7i1dkVbxlh8rsZI0BdJ+uvW2k1zftAe9iwhDaMd/vWSPrXtPdrvjEb122MyyMMw/Lmkz19IHx8p6YWSXt1a+/BhGHq27RMaJZ0vSM6/i1Wt0miNpsKeU/fE4vOFGh8Y4mxwbK84oVEb/Ibk/FvxfdLHPY7vU2fq6eGnFnV8qFZ3bj+UeLNGX8e1Gv1rz5X098MwPN8uaK0d0Pggr4I71PdL7AnDMPxua+05Gv1Cv9Fae9awO9qV+ClJP6xRM3lVco2t1edrHAfC/HdP0yg8fvwwDH9oJy9GyxqG4XUafUWHJP1TjWbYX2+tPX4YhjuCW27RdN2FVpa9NCc49vEan/PPGYbhT+3gYi18MMDm/os1WnoI/lh7vFXjuvpQOavRQjB6rEbLSYYnabSw/UJw7kWLv6dIessw+stfIOkFrbV/LOkrNPpBb9Poc14LF2sS+B6NvpLvU/DCXQR3HBvySM13a/pi+IyssmEMSHhja+3bNL4on6LRaWo/tpdod57Rb0n6fEn3DcPwFj14+B1Jn9dae+QwDJFW+FaNP6YfOgzD9zxIdZ7R2D/itzSG9L5nYQrdMzrjG137p9HxFet5S2vthzUG4kzMSB8AfJhGIcQ0zUs1Pswez9Poy/PI1t3vSHpua+2zhmH4tQezocMwvGZhfv15Sb/WWvuMYRjuTy7/eY1a1F8Ow0Bp3/BHGtv+pGEY/kun6ksXnztmykWk3Gev1YEAC2H59xYvy1/R6D+c/OAtTHV7Xnd7QNTnazUKRw8l/Lp6KPH7Gq10HzIMQxZEE2IYhtOttddqXOcvHZaRms/V+Jz01v2bNFqVPA5qfBf8pEaN/z1BnX8j6Ztba1+jPQqUF/WDNwzD77eR/eNli1/fVywaelzSp2i073+xlpFGxKskvbi19iKNkWwfL+mL/AWttc+U9NWS/ptGbe2IpK/X+JD+8eIyy7n6ptbab2o0JfypRtPDV2jMD/kBSX+hcWCfqPGF/jlDHoXUw3doXPR/1Fr7bo0BKtdL+rRhGL50GIahtfYvNEalHdToo7pDY6DPx2r8cXrZmnX+jaQrW2v/h8aH/oFhGP5KYzTXF2qM/vxBjT+2RzSaYT5+GIbuC2nF8X3QMQzD1z5UZc/gQ9oixFvjOn22xh+FHxmW0ca/JelzFuP5Go1a79dp9HV6ZOvupzUG4vxca+2lGn2sxxb1/NDFCl/DMPxSa82iLn+5tfbZkYVl8SPXTa4ehuGe1to3S/rh1to1Gn1Bd2tcz5+gMfDnZzX+MN6zuO47NK6TF2tc1xNWlzm0MTL06RoT6N+rMUryhRo1trmIxH8o/IFG3+2Ptda+U6Ov89s1WgEe/RDW+xaN/q2vaq2d0iiM/e2MNr82hmE42cZUih9orT1K4w/OvRrn/pMk/eYwDP+1U8S3azSH/mxr7cc0am7/TmNw0M4ctjFF6kck/dNhGP5kGIaTGhUluWvMzPrOYRhevzh2nUYB6Gc1vtcuaAx2ukSjeX1tXLTTdxiGH2qtvUljKO33a1y492p8Kf9z9X/pX6oxUuhrNfoFfkOjJO0TgP9OoxTybZIeuSj7f0j6VOeQfY3GAf0ajZPQJLVhGM61kTbqWzW+1J+gcQG/XaMzeU+mxWEY3rV4ab5k0YejGn02v+Ku+Y02Jua/SGMI+yUa1fA3apS818WPawyy+W6NY/ZujRGvd7cxl+3bNaY9XK/xxfxW7Q61z7DK+H4w4YWLP2l8gb9d0r/QbnaIl2t07H+lxjX8PzQG2DDgp7funqlRMPrqxecJjekXqW9jHQzD8KqFMPUKjSksq/i0s7J+rLX2Xo1+qi/W+F64WeML/88X19zextzQH9CYSnCLxlSaKzVNoVgFfyHp0zU+P9dqHJc/lPQlHY31HxTDMNyyGNfv0/gs3aQxhP9xkr7xIaz31tbaN0j6vzRqYZsaTcoPenL7MAz/obX2bo1h/1+2qOtmSW/QMtAou/dNrbVP1/hO+g2Nfr2XaxSEPDYW5a7rd7tv0YYXaDSTXtDoV//CYRh+a82yJI0P517uKxQKhULhYYWHQ1pCoVAoFAoXjfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvUD94hUKhUNgXqB+8QqFQKOwLrJWHd/z48eH666+X0ZjZ58bG8nfTjlm6g31ub2/vKsunQzA1gvfuJXVinXsezGuj8xeT+rHq2PTqzT79nGT1nD9/ftdnBE9rd//99+vs2bOTfJtjx44NV1111aTuaB2s027eO0ex91Cti4u556HCqm3pjdmq4xpdw/eDP7+5uTn5PHHihO69995JRYcOHRouvfTSSX+i8uaei956i66ZQ69NRHZulXs4D6vU69/L0TXRPdk1WRujd3+vfB7nGrFPrg+PCxdGUpdz50YCnGEYdPLkSd13332zi3StH7zrr79er371q3cacemll+769B2wRj3wwEhecebMmV3H7VOSzp4d87/tpcoORS9HYu7lGC10a2v2Y+zvsTbZMWsbEdVn9/JHI3oRZP1iWSzTl23/WxvtO+fAvkvjD5U/Z/fefffItnXixIldx/21th4OHDigN74xzo29+uqrdeONN+rUqZEswubcl2ftsTG08u1aO+/7ymsNHDcb6+hHnuNv11g96/woWzv8i4Dry8aL19p1/l6+tNgO9ruH7Nnwddg5O7bKDx7PHTgwUk0ePHgw/C5Jl18+krMcPz5yDx85ckTf9V3fFZZ/5MgRPeMZz9hpi62Dw4eXHMz2DuJ7x78UCTtnn9lYRs9pT/jy98yV449z7D3m5mFra2tyr/1v42732vpjvf6YXcNyWabNrb/HjvHH0o77Nlr5Nn/Hjh2TtFwfl1122a76pOW76tZbR1bH06dP66UvfWk4LkSZNAuFQqGwL7CWhjcMg86fPx9KBgZqOJSEqEH4Y5Gq6hFJN6xvFW1tro1sl7+GbV3F7EpNgddGarshk7TteCTZsT/2afXwu/8/M51Ec87yo76xL5QU/Zxm2oxdY331sHng2lhF82EbWH9PK8zGOFqjlKgp8a7SRgPXaM9KwLngMxj1j/dmJq1Ig43MlFEffPk9rcbQWtPBgwd3NLtovux/swbw+TREzzTLWGWM7RqbQ75T+Dz5+7PnPepXpkES0TNtoCUmem55rb2DqellJlV/L9vCe/xzzDHPLFdewzPN/ujRozv39taPR2l4hUKhUNgXWFvDu3DhwkTq81JTJgFkErG/nxLHnMM0qo9+uag9PSnF3xv5iiiJZNJgD3PO5N45Ss09/6ZJUpEWyLKz4JSeJhvdk41pa02bm5uptrNqn6J+SFPplXMc+dYojWe+qEhbzHyH0ZrNtNp1/GSZBtlbb1yb9NlFEj7Hnm2NxsrWF3049snzUT1bW1vdIIetra2JdaU3XtZeW5vRMx35kXvw45XNXfYZwcalF5BCTZH9IqL3HMvNLFxRW2xsOKfUtqO2WVmmkUXPs92TWfkiP7qNm2l43uo4h9LwCoVCobAvUD94hUKhUNgXWHs/vGEYUme4lJulVskBo1pKM1Qv1yQzNZpK7O+dM4n0gnGy42xHFBBC0LwXmdsy00jPZMu0BDNDsD4L75WWZgcL586CjaL0B//ZM2lubW1NxsJ/t/bSzGHomUGzAKdVgm6ytRnN21yQUhSYwHXNoI7I3Jq1Mauvt2ajVCBpau6LrsnKj9Y311mUjsByVw3K2NjYmMxH714+//bdzJjScr3ZMT7LveC8LMirF9zBkH6u895cch1nqSyROZTPDd+JUV5c9p3PiB/PLOiLwSp+jVlbuGYuueSSXecjU+2hQ4ckje+uVfJEpdLwCoVCobBPsHbQinfw2q+ul/rtF5rnMknIH6P0HIX2EpReMkk00kIp/THAIZJ8Micynfle2snCs5mIGUn4mYbHNvo5yOrLtG3/v2l6dEpHWgITds+dO7dyWoLNv5+XbL7t2kjaM8xpJtE4cr6zwKRIe2YZRE+TzKTmKDgmSuPx6IWYU4PJyo7GpJc+4q/z5zi39mmSeKTteI2ht3YiRO3OtHWSF/B/KSZSYD2GzGpDLS4K6GO5HOModSLTvLJUEP9/FkgT9SGzwGQWk2gOeC2fGf/uJ7lERqzhx4Tv3I2NjdLwCoVCoVDwuCgfHn1Edl7KUwyiEOUs9H3VBPGoHn6PQqJpQ6e0HNWT2e5Zj28HQ3p5fJUEXUpe1E57/qYs5SAKLSdlUM9vQulrc3OzK6UPwzDRHKLk4UzCjkLLs3SXbA359mc+Lq6HnrZGRBaMSJvxx1dJBObcsR1RmHrWj0xa9+eydITeWp3TOlYhR4gwDIPOnj27owVEGvEc4YS9q6jV+WtIbGDlR4QHBr7P7Pk5cuSIpDi1yTReGw8meXttPps7+vCZIO7Lz9q8SmoQ0UuLYdv47oqo7Eh7NheL4cv1lp9VrQOl4RUKhUJhX2BtDU+aSpVeC8hs6b2IJ/pzMoqvnu8pk84jyZfSJTWVKKk4o5DKIqEiKcb6Sd9d5M/KNJNMEupFdln5pGyL6qPGyAi7yL9g5W5tbXUlre3t7Z3yrU29KK8e1ZuBtn/ON7XbOR+k71eWXO7bmiUgmxQvTbVkjlGPeo7tzpKIVyEv4BrtJclTq8mSy6NyaC2gX8u32/vTe/7QM2fOTMYnmpe5JOvIEkLfWjZOEfic2KfNv18H1gZaemgV8mOfrV9aP7LnNWp/Ro/or7X6uA4yv6Avh/PNtRNZlow8OqM/izRlTwxRGl6hUCgUCg5ra3gbGxsTCcFLARl5a0+qZCTVHM1MJKVH5/z3XkSXgdJUpAExh2UVDY8SL23o7IMHfQ/WZm5/EmmjWV5bjxKMfhdrq0Vv3nvvvTv3ZFpVhGEYdkXiRb5VajrsB79H/aeGyrGOor04p/weRSZnuZzMrfP1ZP62zD/HuqOyesTjGXUV7+n5mzmekYY3t61O5MNm7mGP7HsYhjDa0cM0KTt38uTJXeft2fPPPCPKMw0v8nVyvXGt9HydnJeeZcnWBrdQo4UhWnfZNkA9y1Jm5bBPe+/YWEXPvuXQGexae4dEcQC0FvZySO1//z6tKM1CoVAoFBzW0vBaa9rY2OiymGS2ZLJ/+Ggpanj0U9lxYwbxfh8rhxFcGROBL5+2ZWoLka+QfrGMkDnKM6QPr2entv9Pnz69q5/cUJfX+/bP+UQ904r1izlb1tbIJ3HPPffsunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN64orrpA0bngs7R4/q4fjFVku2C8+C3wPRdr7lVdeKUk7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3iEY+QtNwzjYEi0vKdcccdd+xqJ03B1r9o/THg5bGPfaykpWnTj8V99923qx5rv7XDxseeA48o4EOarn+rV5KOHTu2655rrrlmV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bftddd+1cS3O3mamtbdYvGztpOQ+XXXbZThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2tM2fO7JTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT33XdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbr0svvXTlQLbS8AqFQqGwL7C2hnf+/Pkw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+8847JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzpw5k4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+PLLLy8fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych+u4J89AAAgAElEQVQ5WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6SKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67/PLLd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aX22+/XdKUYcVgWqOfZ3s32rW0ekXWNr6vL1yoDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7hCU+QJF177bWSpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95www2Slu/6973vfZKWjC9Szt1p7aCFw7fFcO7cudLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg6uuukpSvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zdve9jZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy5cmES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV55syZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/LKKyXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi3LlzK6cmlIZXKBQKhX2BtTW88+fP70hEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75JHPvKRkqT3vve9u8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz5kzZypopVAoFAoFj7UTz8+fPz+xW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zpw5MyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3muvvVbSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHr/+98vKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPs111yzc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8Y999wjKWZayZgoDCaZRNrMHLltZAPONtE0KYKbr0blZAwhXtLKpH76DBiR5Ntm4+W31JCmvkMPSstzW7FE5XA7lV6eF3P4elv1WLu9P64XaXfgwIFJdF409vQR9yItOQ6ZZhf5WqgdUnvqbSVEX3HPR20g8wjXbkSoTX8vmTyoMUvLsSWbDUnToy2tsq2keljFz8fvnP8eAfAwDHrggQd09dVXS5qyKPm+Zc9JjymI80yWFLKP+PI4D7ZptD3jfr3xecmYcHoMSMwNpRbttzCiL5eWK+uPMbH4+sjCkj1X3jqXRVkz/iCKwchyrSONzyxk5r+c25bMozS8QqFQKOwL1A9eoVAoFPYF9rTjuamoFqzgTQI0m62SmGuml2x/uB4JLq+haZGku/5+M5llZMtReDBNJdyPjqSrknZMwAYzO2TJ3Rwf30a2JzvvkYXQR8mcmdO4lxRLE22EjY0NHTx4cGfNREErNBubCZhUT72+ZYFNUb8YAJAR8kZ7KZLQgCa1XiAIqazoBvB9ojmI10QuAo6tXcM0koiUnWujZ2Yk5qgBI4KKLPWI2NjYmLgGPJkzg3uy+eiZtNkmkjp7F4cFi9jYmXnNAtMMZn6TlvNg82JpFjQfRsTM2XvV3lEnTpzYVZa0fC65nx/b6PvJpHhrC9eq1ROtHb4L+U72zyZ3m88S0CMKQhvHSjwvFAqFQgFYO/H89OnTE2nDS3t0ckbbsvjj/v85qTIqK3Ke+msiaiFrIwmFqcV4yYF9ptTC5PIo8IDBKdnu8P5YFhqd0Td5ZJRFUYg+t/2ItnHy90rTgKC5wINhGCbURV6ii3Z89sejpP5Muotoz/z3qM++rb5s3x6ThjPpNUrCpuZobck0Sz/GDL5if62flsoRtZvabU+bz3YrN0QJyFmgTqZ9e0TWBoIBTxkdlS+HgToRGNTBgCC20a8TS5Gw9WAans0TU3Z8OZzvnoXB1hXXXZTCIu3Weq1NrCfSuA2mFdpYUJumNSxClkZmbfUaJZ+fjMLMk5tEW79V0EqhUCgUCg5r+/AuXLgw+cWObPOZZM1fcP9/lobQk+h4jtKmtceTFJv9ndKFlWFt9lqj9zX5crME1EjDo+TI7UCi5MqMssw+o/B+SmGZVuBBTTWTkHuS1FwyqtcAOdZR2etotVlod08ize7hGPt1kM0zQ/EjDY+WBfrjIpKE3jZQWb+4xQvL5fYtUf8y0uoodH6OqDtKio62+uqtrcja4tcb7+X2OazXn+M64Dq2e0yrk5ZailkseqH3vIfzHVGKGUyziUjwozZ6TYjWhiyFyq83vs+yNkbWNq5nriGmR/l2GxjrYf7GaO14P2JpeIVCoVAoOKy9Aey5c+cmElYUxUYNgZRcETIaqB4xcKaB2D1mQ/fRUoZMKovooeibM5+J2bZpV44orKz8jPrJI5O0SdPTk2zos6M/07eRWkdEc+Tr92009Oz6dn1Gwu1B3xIl4l493LYl2krGkPlBKGX6e+mHY0RvNB/0PRnmNrr1ddMaQKqxCBllGed0FTJfItLM+PxkScQevU2dCWsTowyl6RhHWmBWD68xbSojL/DXRMTY/nxk/aLVhhp4ZB3K/G6MXPVk1SSTYBut7T5Zndu6MbKX2wJFUc98Frg+oujwzCce+fW5vjY3N0vDKxQKhULBY+0ozfvvv3/n19gkhEib6UnWvMdAiWduK5YItDnTnyEtJRqzd1MCYX6eNPW/mOaYUZlFOXVekmL5vmxpKp0zl4q+sEjSyqI0mcPj/7e+W32raObWvx4BsJFH90jEmdtD30NUduZvyST7yOfAfjBCLaKHstxKRvZF0Y30I9IPQz+3bxd9UZlVIPLDUNth3tIqm6JmPpao7sxS0tOqvMWiR0u3ubk5aZOP9uN8r2IBMWQWg160LvPGMqL7XhwAn+GI3Dvzu1KjtXdLlBPL9UXNy/eLPsnsGemB77mMpF3S5LeE74Aod4/XRP7SDKXhFQqFQmFfYG0N79SpUxPJN9rqJ/N1RHlxc6S90fYcBiuP+WPUJLzd3/5nFBu1Qp93Q42HeWS0cUfSICV78wPaZyRpsj8cR2rD/hr2q+c/Y55NFuXW8y+dOnVqVsOj7ymyzfOzpxX2cgs9VmEGIRG0WQBWyVPrbZ+SEePOtUeaPhtWBiXxaOsdtpF+rYgVaNVtX/y8MWq7p9kRts6OHj2aXm8bwNKvFOUrZhHk0TuEa4eaD4mU/bxQA8n8c35sI9+jtNRu7NO/J1gPx8DKjO6lxSDy3fN7FgVq6Fl6WK8hi8nw9bH97HdkwfDrrXx4hUKhUCg4rB2lef78+R1thxuNSlNfSeYDivxHGZdmZnuWpr4tStyRVM1cQCvjrrvukiTdeeedkzaSBYF+OfYhkvBtvExKMz/Q7bffLoL2fNrbLZcwiiTM8l/su7XVszJwnqjhRSwg1EgOHTo0m0vV2zIm0xSYE+SlvYxFhGVGuY5ZBJzNqX1G/ljmP3L8/DNBjTpaI/54lHNm9dk9UYSdIdoyKPoeRdqxbZzPyIdITT+L1ow0ZS/RZ2tna2tLV1111c5zErWNPnRq1b3NdQ0sl76iyGpDqwPXg2dasQhKajVkafJzSjajTNM3Dswoh9Peb7QKcbNnD2rMnNPoeVqV0cevA2p2/B7FRDAytrg0C4VCoVAA6gevUCgUCvsCa1OLSUsV2JvEDNGuzf54FBLP4Aorl87VKGyXJtQsfNsHoFjd/GSSum9jlBQa1Rs5qy0oxfrOnahPnjw5KdtMFdGu8tLUnByFC2emNLunNybRVjVsB8e+t/OwhZbTBOTNbNxtPQtiiQIrsiT7njmcSa4Mge4FhNjO1hy3aGspBjwxXaQX6k1yYiaeM0lamgZQZKlBUdpP5k6geTIKLV/HpGn1eHNe1s6NjQ1dcsklO2MQmeAys3QPWbrLXACMP0bXjX2ay8FTGppJ9jGPeYyk5dzSHOtTGTJyDJr1rCx/LwP5+Gz2gsCyIDn2P3JxZIjm19pLE2Yv8Tx7xldBaXiFQqFQ2BfY0wawBtOIogCNLJmzl3CekflmCdTSVBOh1BIFHpj0YJqXbcTY2+KH5VJLojTlpVA7Z/UxwIVJzL69mdOdjudomx0DtQ6bN6+F0IHN+YuCVlj+XOL5gQMHJhpkjzIoc5z7ttExnmkJUZItpchMM+kltlLriCwcJuXbPGf0V9EzQ5IEBkdEWgrnci54ICKOIO0Zxy9abxk1X2/7K27rFeHChQu65557Vkow5tj2gpYMXLPZOoy0DI61PVvR+rZ1YJ/XXHPNrvrtHt9Pa7cFvERWLn9dtIaYRJ5pfNLUCsX3UDbX/pqMrCA6z/IYbBRti8W1WEErhUKhUCgAa2l4pPiJCHOzkOvMNuyPMVzeNKNsuwkp1wZ65K4kB2ayfCQxUCtjv+h/jGjJooR2aSkV+qRPUu3MkQZ7qZB9pobnNTL2L2q/vydKPLW6z54927Wnb25uTiQ4no/6yH54rYCSNLWJnr8s0+h6PrVMi2HagF+jvMd8xKSHisLts21Semk+vQRuqZ94zLZw26NojDIJPvLzsF+raHjnzp3TzTffPLknIpPwaQC+DdGccjzY7p7VgNYm+vB6KSbZxq8nTpyQtJse7LrrrpM03SYo2tCY4Ga0pFns9SuzuvXSijLNuOe351hTg+21dR3Nbqe9a99RKBQKhcLDEGsnnkc0RN5fRemR10TRf9ToaD/ONuaUphIckzfts7fpqUXcUfOKkjhp485Ilr0ETts5/TD0x/hrTXK3tmZbJs1pVr4e+tGiNrLfPQ3Pj0lG7WVJ5z3pP6PC6m0llEWPMVo2ktZ5rKcNGOYSsqPIMUq21i9q3BEYlce2c035tjCSN/N9RBuPciNg1hv5VDKJvrfdFiM8I2xvb+9aW+YLNY1IWvrDSMSQkTuzD732G/y9GdFERnjvrzUN36KzDfYM3nTTTTvHLNrTzl111VW77rG2RhtBWxssdsDGy/plfkH/zPco8nitL8v/nz1HfK6lXKPrRQWz773ocKI0vEKhUCjsC6wdpXnhwoWJ9BL51AymCVFjibQLag9zvgFpGo2VUQv1KIUoRZMIWpr6NLKoxl59zOuycWTOnbS02WfSUi/Sim3OtM8epRTrod82quf8+fOzOTHUxP06yAh/ud78GovIs/09meTo68k+mYPm/8/8ffS5+r7ynlU2tOX8ZmTiPe13jn7N94HXkNop0n4i+j5/3D69lkrfXWut63v0eXVRbu3NN98saakBkSCe1gKPrG9sT5RHmEV/RvNic2e+tNtuu03S1E/r3wPmk7T+WRmM2mWUuDT1y1M7z6w6vk2ZxS7qH8cg0956EeV8R/Z8/ZkW2kNpeIVCoVDYF1jbhxdtPx/ZjbNtMqIozezXnIwKEatIJtmzjEjjyrSaSGLIbNeZnd9LsDxmbTRJztphUpu0lPYoSTHPKNL0eC0JbSPy6GyDWY6Vl6opwc1t0zEMQ5on58ub2wA4qiPTAinVRv4D+ryYHxf5/ShdMlov8nVnEY8cE/88MSozIwSPfGrUVGlBiTSZTFqmVO3vidZB1D8/9mTN2d7e7uZwHj58eEKcHD3T9P+zr5GWNsdEE907lzNKn6u/x8bJfGu0nnjLkr0jrK3mh7PnkNtEmc9Pmm5kbeXaPdE4ZhaMLHrTIxuLHmPNqhGdfu1yHFexLO3Ut9JVhUKhUCg8zFE/eIVCoVDYF1g7aCVywnowwZcBGlE5NKPRBNfbT4lO3IygOaLtYjoATTJRG0klRhJcmgB93VlgTbT7d0RvFpUR7b9mYFBEltjvzxmyYInIdLCKSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNLbW9v7zLVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw2V199taTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQmFfYO2gFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201nba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdPXtWN910004gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5p06d6pI3eJSGVygUCoV9gbU1vPPnz09Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCw54Sz00iiX59o0gjjygybM5nR3ipyYhYmbydUY5JUxJfRtpFkq+VS8Jdu5Yan4+ANOmLW5dkEYa+nsyvQGk6iiCLaNyisjyodTDSqxcZN+fD297envggI8LsjNYqkhyprdu9XEMRTRjPMWo3IlagdE5J28a8F4XMfmRkDVEbs4jliBAiS+Zl5HJExp4hirTL/C22VqIkbParp6biXQYAACAASURBVEW11nTw4MGd54dJ174OG0sSwUe+/WwesijNqLyMpi1679AnzLVriLZ6IjkCzxv8WDM2gJ/Rs5KRfZiv2u4xTS+Kfu9F1Uu7n1+OLZ9Tkoz7fq0TnWkoDa9QKBQK+wJrbwC7sbExkbAiPwwlIPoPPOg3yiRTg5cYMrohSlORVsBIKqP6ibRU+vWy6Dn77iUSRsNRAiLBtm9vlqPI8fXSDvPuqI1mm7x62D2kHIv65fNs5nx4lJp9edR0KeX1NJ+MHDiLjPT3chz43a83aiv0X3HM/bksRyzb+sffOxctGUWxZWTsmQbo2zRHzRZpeJlUbscj4nGvXfWoxTY3NyfrIPKTsi5qHb7djMplXyNt1kD6uSznMBonfuf7IHqfZpSCPX8Z/bF8Z1hZXhvmO5BaKNdu5I9j7vUq/jU+pz0Njz7hVf13Uml4hUKhUNgnWFvDO3To0MSW7n9x6cPKJAQvfWaaBiXHSEpnjgylMUak+Tbwk9Fyvh76vTIC6oipwvxgjHSkNLhKBGGmKfvv9N3Zp81blCuYRXSuQhbrmWN6Gt7m5uakz94Pw7GM/GFSrJH0iH49IuaLbMudKB+Tfc58NhEDBecuk1R7DEZZzlYvRzHLEcwsKNE55tr5tlPryyJje9adOdi7x/ent9VT5g/1a8fKY75nRgDtx4kWHvpyuT6iNmTvjCjvM/Mv9nLq2CZGATPHNxoTe3ex/CjOgZaMLPIy0goNXF+Rhkc/ZpFHFwqFQqEArM2lKS1/5e3X30vpjEikL633S5yxstA+H+VhmURyzz33SJryVXrNj5I8/VU9mzAlK0qbUc4R+TcNzFX0kgtt2ZQG6ff0YF6P9c+O26fNn7QcH/KXGiLNtcdiQpgfhpqQl8DZpx63IkE/Ka+JImGp6XIblch3k0mtWa5br92ZRhdFsVm9EeuHb7u/3zNRRH2Inieuu4wHNlqrph3wWYgiSTluvRxOWzvUHKL1QY5Ze+Yuu+yynbJ8uVLOztR7Z9FHR78zI7D9/yyPliv/TM9FOnJsfX183xCMGvdtsX5Z/h3H1RDNGa0DfAdHFkH6Fcnl6X9jInal0vAKhUKhUHCoH7xCoVAo7AusbdK8cOHCxGzjVeMsTJaqrz9PZydptKgaR2Y1mqzoqPfmO5oQrG2WTBmZpRi8kW19ESV1Rw5eaRo0ETmc+Z1mIkOPqs1MWmbiiHY8p2mE5qMoHJ1BHYcOHVo5LYHmr6jdnPeIJo4BIEzb4Fx6c1EUvOPLp5lKmpJSk4Yq2vGc9zIdhmsq2nonSzTvbQ/VOydNTeq+PkNmaopM9wySsDGKTGscn42NjVnicZKKR/2imZaUb1GidBSc5BERnlvd1jea4SOTJlOouEaZNuSPkeSDwTm83te3CllBBqYy8B0cmcOZnkAzebTesi2EovXGZ/nMmTNl0iwUCoVCweOiglaiREluw5FtzOgRhdSuUr8HpQhKCJHUbGCwQpTEzAAXK8OTtfrzXuu1e73j1dcbke9GKR9R2w1e+qRkb+esTGtbNI7UlClxmRNbmkryq5BHZwEOvjxuwWSIEtCZmMuAhl76RkZjROk8SpuhNNvTJFlPRqcUabB8fkhEHgVCMBWIY9AL+mCbaFlgiLsvL0qvib77/kRE7Vl7sq2gpGlwHLUnauYsO2oL33N+rVrdNh9GccgUBz/GXKt8R0bpGww8s2eYa4lbjvmxMI0x22IsSoOgtS0LJuklnrON0frPkvyZ1hGR4/s0qyKPLhQKhULBYU/bA9F/EP36mtRgNvTepppzW6BQMohsz/RHsMxIqqAWwxD/SOpkeaQyo8TV6x/v8RKr1Z2FoTOZ3PtJMvLoHqUY/YzUuiN/D6X+ucTzjY2NULNjeRzjXroD10K2VU3Pb2H1kIA48hVl9VHTiiTObMsdzkeUajJHBN4j5M2+94iiM2k9SkHhPGU0aN5awXJ6bbH3Ti/kn35Yapv2HvJbCmUbC/M9QwuQr8/uNQ3PPlmHbzetYFnqka+b2hi/W/+iZPzoOWU9BhKD0OrFLY58fXYu0zqjeql19lIYDBxzvyn5HErDKxQKhcK+wNoaXkSKGyWCkxDZ7mOEmjSVCDMSV5bhz5Fupic18Rr2J5K8eX+mMUS0RBndWY80lvUxCszGl5GNHiQypnYQ2e4NjAaNbOkGLwVmGp5pd9RyIx9AJvVHEjnblW2f1Nu4lFImI3x7SeSrbHLJsWX5rKe3bVO27VEUuWrIno2eBk1Ju+eny85lWyj5cg3nzp1L18729rYeeOCBHe0sog0jaQTfHZHfmtpSpLX463qEB/TdR32mBpSRFfSsX4YseT0iEWd/snujYz36Od92j8y6FvnwqHXae7NHzWaa3R133LHThtLwCoVCoVBwWEvD297e1tmzZ9OIOA/696hdeNssJZ3MJxD5ZzIJJJMyfX3ZBpy9/mQkxaQH81I6xykjSfaSD9tGrdNy6yINjxF89EX18svYd+uPSad+3kg71ENrbZcGGOUm0m5PX2s013ME41xDkcRIbYNWiCh3K4tIjMYxI06ndhZFXGZaQJYP6o9lfh9qtJH0ntGPRVGOmWbOiMXI/2uf9913X9f/u729PaG9iwjTTcOy6GkbJ/qxpWXeLcvL1l8vEtCej+PHj0uKo1lNe6Efu6dxZe83jvUq6yDzk/Y0ymybt0jzZCQs57jn/83e8ZG/9sSJE5Kku+66a+feuSjfnb6udFWhUCgUCg9zrO3DO3PmTNefQ6mFGlEknfEeaoOZtO7vpdZCSTzariVD73zGisF+RZF9c59R3h+vIbNDFElIDY9jE+U9UoLLojMjn4S3t89FaXJM/PUZaTPXQ5QPRe0lqpNlZz6cVSMH/bXZ+EXlG1bx/82ReEfPRHYuy1X197I/WS5Vb54z/3lkOfE++DmmFdPOmM8qTTdxvvzyy3e1pUe+zb6SeYWR5/5aO2baYhYZ6f+n1kTNKPIzc2w4H9mWPL58RkFHGldGik3rhCGKvOU4ciyi+uizY399XvOdd965q23roDS8QqFQKOwL1A9eoVAoFPYF1jZpRiGgkSPbVFSaEMxhG6Ul0EGZJaJHjtJ1CFHphGZQRC/hnPXye2RizHac7u1ibf9n6R1MT4j6x7bTXBCFstPB3TN/8NpVyH95rW9rRkxMqjc/TnPh2Uw9iMyqmbmm16+54JXILMkxnks1iPqXpTJEAUg8l+1fGJl5M7q1Xpg6TZlZOg7/t2uz9WMBT2bOj2itSL1G0yapAaXls3P06NFuH5ny4s8xyZpmYp+eRFMszfrR2NIczPLtk/VHbbS29NJ/MrM7j0cm1Iy6zNBLaeG1dBGYGVNapiV4Iu0eOcWucle6qlAoFAqFhznWJo82LU+aJnd6zFETRdLenGYX7YRNh2gWtp31xddriHbNpjSehSxHSeuZJsGAlFVSC6jZRdRS2XYcJv1G2g41x2wbkl7i7hw2NvpbwBhIX8T1wDL9JwOcGCgQjTEJwYkoACVLR4jGaS51pmel4LlMw4vKzQKrqL1FWkGmKffWQW8bJ2m3hsN1u6qELi3Xsdee+AyfPHlS0jR1JtLwTAucGzffn0xrYt+joJVM847ep9mO6lkyd7QTPdvSS/PJiMazwMFewFNmLfD94zPNoBujTLv99tt3jpmGZ9d6Qos5lIZXKBQKhX2BtTS81pq2trYmYeK9jUTpQ4ns+/Rh9MKYpZiCy6SXTALuJZ5TaultB5OlJVAy8n2ya8wHkW3MGW2zxGvn6MI8rI3clDTaSLdHnyTF4c6r+D55Pe/xUjqp47h2DD0tk/3obVjJJPiMkKAX/kxNJfJNck1yfdGn69cFLRarWC7mJG2Ggkc+FUrlGQG6P8bUEPph/DO/CvWfR0Qj5tcOLSB33323pKWGd911103abffYurPUAq71qG0cn+xZWGWeetujsZxsg+YodoHvRt4bPfOcl+z5iqx6BlpV1kmON1j9pqlbsnnU/nVQGl6hUCgU9gX2tD1Qj+yWkrW/15/34DFqWpQMvDTDBGxKLT0fQbYpbSTZs9wswT66N5PO+Bm1gZoepVJDRGVlMA2c2kckpbM8+re8JEbN8dy5c10SV08BFEWI2f8mwdMPZz4gs+v7ujMfXs/nwDIMXHfRhpy892Kig7OoXX+O89MjY8ik8Yy6LZoD0554LbU2j8xfb4i2esm2v/IYhkHDMKTzJC3Hgxsn33bbbZKWmp7XCml5MQ0vi4j0/SHNWaZNR9o6+0EtNyKtyOaf89V7Z5Hu0c77d4k9Y+yPoUc8niXwcx1EW7Wxv/ZpGp5F3Ub12PpYBaXhFQqFQmFfYG0N74EHHtiRArxkb7BjpJFhBGYUxch8F2pthkhby3KoIo0zI+81RNoA/YpZtKbBf2ff7ZMaUtQvO9fbvJVtpa+I/oVsXP29Wc6gH0cS8s6RSLfWJhJrFLFFaZUbZkaS/Vy0ZiSlUyuf8+16sG29PNBsbWR5mJHUPNffSEtjXmOm6UX38loiGhPW0/MvWbttrj11VATv/2UEs6+DNGCmvd18882Sllqc70OmYfc20s38okREaZhZlnrjlZG70xrm22jzwefHxry3vlkftcLo+c0Ix3mP7x+faavPrDg+/459NsxtPO1RGl6hUCgU9gXW1vDOnTs3+VWOfA5mF2aeSiTFMh8qixikDdqXb7AyqGFGkUhZ9F2Uh8dzlNJ67BWUvvg9IrimJpyx20SSX5ZLk5Fy+/rou+NYRL5J7wPIxnRjY0OHDx+eENn6+bN77RwZahgF6PuU+fJ4T8TOkTGCRD5Wrl9q+qvMR5ZX2FurbGvGiOOvoYbH3Mpog9DM19kjKZ6L4IvWCbfKuXDhQldK397eTqNb/f/0cVv5tpWMbRoqSY95zGMk5ZaJHpsOtSe+3yItLrMosA89rTBb13Y+2ng6W8+RhkftNmNAiXIGmROd5RlGeX+cv3vuuUfSUkOP8hn57K+C0vAKhUKhsC9QP3iFQqFQ2BdY26Q5DEO4P5Qhc+LT1OlVVFN5LfSUajPNaVGABuu3emznY/Yj+t4LbaU5MCP87YX8Z0EkUcK7tZ8O+iwxNEpLoHmC5oEehRXNHlE6hJXrzUeZWaq1titgwPrh6aY479zNnakYvg1ZP6KgDraB4fJZ0Iy/NgstXyUtZS5JOQoUmUstiOioSH/lx1+KTVpZIMMqQQFZsEoUrBARXPeo3SJKuCi5n88/zWo+vN3oqh7/+MdLWq63jM4reqa5rnoUczSRZmuoR0uXmRSZwuPr4SfXY0QCkqWYZJR9Uk40ntXvx8Dm69SpU5KWJs3eM+GJEypopVAoFAoFh7XJo72kZdJ5RC0WJaVn5RiiREhpKs16STELjsmSLf39pCPKAh/8NavST0XJ8ZnWxO/SNCGXEiMDBPx4UmPJdmH2CdyZ9MmE3kiT8OugF7RyySWXpImsvl02DqadM/ndS8BRAmx0be9ezilp8KLgnmy7plW0mbk0hUjjYjI0AwH8nDNYJUsX6CWtZ22PruM48pmL0kk4L3M7nntQK/B9IXmBlXnZZZdN7rn11lslScePH5e03CaIz3oUxJYRQdtnZI3IUqcMvWA5Pu9ZyL9/Djjvc3RhUfm0PvSIHLI0LwY6RdYoe99lCf1+rGhFu/TSS4s8ulAoFAoFj7V9eNvb25PQ9WhjRPruKG36RFP6/ehLo4QfJR5Te6K26CXgjNKr54cj3RT9CD2fmiELo7XjJpX6+zPS3kzC9KDdmzZ2PybUVAz0P0ba/FyaR9SGKGGXGha/RyH42TiRxKCneUWSpxRbFLLEdloNIp9D5iPOyKs95iT8nu+GYeI9aTgbg54WOpecTuuLlKdzZNjc3OxajbgpLDeENQ3Pz6VtM2P+IhJM0wcekRZQK6PFwT/TfIb5zEbzQj8YNXxqVVEbqZWx/lX8cLQkRPdm1iH2xY9JlnbVS3WhBaHSEgqFQqFQANqqpJuS1Fq7XdK7H7rmFD4I8LhhGK7hwVo7hRVQa6ewV4Rrh1jrB69QKBQKhYcryqRZKBQKhX2B+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC+wVh7e5ubmcODAgUm+XC/wJeNi8/kiGVvAOhuzZtua8Lq5Yxnmru2dn+MlvJi2rXLd3NhEyJhlete21nT77bfrnnvumVR04MCBwW9dEuVCzuXiRHlkq3I/9tboxQRuZYwUEbJr1pkXQ8ZqsU5966yL3jpgLio5Q3vMRX4uT506pTNnzkwac+jQoeHo0aM7uVgRjyPz4pjj1mt31o+Mczc6lz0f0T2rlJ+VMzdXvTZmbV6l3oyxKLo3K2+V91zE/pLd68f89OnTOnv27OxCXusH78CBA3r0ox+9k8wZJVIzMdUSPq+66ipJ0rFjx3Z9StKRI0ckLcltbUFzYfeSHXmutz9dtscTy4x+WLMXXJawHd2b7Zbs78mSUjOqn6i+7IeiRwvEfliSJ6mapCm58+bmpl74whcqwsGDB/WUpzxlZx5OnjwpaZn0K02Tka29tj4uv/xySbsJwe1/klFnO4VHa9Xan1HARTtdG6w+ayNp3TyiPQBZvtR/Sa5CmZb9oGVJ/xEtGeu3sTI6Op88bONlx4wA2K61/nriZu7ftrm5qde+9rWKcOzYMT372c/e2b/usY997KStNv5XXnnlrnNGlGBt8cQJfI9lhO1c59KUgILJ8Pzxl6brLdvxPiLy4A9qRmLeo7Tj+o6IQ9gG7u/Hvng6xKw/XH/Rnn3sF2kQPZjAvr29rTe84Q2T6yKUSbNQKBQK+wJ72vHcftUjDS8yVUi5luPP9er1nx5zpoSIriej2sloo/w1PLeK+s5ySWUVmSuyeiIKMbZjHbMHj7HenvmLbfO0c1H5586dm8xXZJbKzGe9rX4Mc+uhZ/LhuEXbA2VbnrCsqF8slzROc32I+tFbO5kZjBI4pXffJtazypZgWRm+HpPOvaaSrZ2NjQ1deumlOxq+Sf1+ayk7Z1Yi9s0+oy24TOuzNpFUnpqRPxdpOlJMSzfnAopo4gyco+wd5svOtiVjG3vH2M9oHAlqenz/+b5ktHc9GjwrxzTFs2fP1vZAhUKhUCh4PCgaXk+7yEhPIz9cFoCQle3RI1H25305c47giOyW0soqUlN2D6Un3/ZVg3B6fZgL6Ig084wMO5K0uJ3PnPP7/Pnzky2R/DqgBBhpHqxnbqudbJ6ie+izieqL/Lu+jGi8KLVmmmxvrDOy5WiMso2GVwk247Y2JOiN/FkcN/Yn0gZI7ryxsZGun83NTR07dmzHX2vrzvx20lLbi7bL8n31/TPNznyL9sn5j9ZFT2uJ+unB9dB7r2WaNt8PPR81x5VE5725tPHitT0Nz2D1cj369W3nbE6zzWN76G0eTJSGVygUCoV9gfrBKxQKhcK+wNomzQsXLkzU3ch8Q9WU+0RFIfgMk85SDHo5fDQTRPuurZLjIa2WcxTtD5aVmQUnrGLSyNIhIrMI+5wFnkQmW7aNpkd/nR1bxXls5nCaK/28mMnK75Xor4mCWSzQIDN90OQTmVMyRPXNBbpEznauY857z8TFucr2D/OmumxnbTPh+dB83sswcY59FLTAcjPTcAS/12Vmdm6t6fDhwzvvBTNl2g7l0u70Bg8Gnvi+WqqC7Ytnn1l6AtelL3+VHbf5XFqbe6ksfO5YT5b76P9nAI/1w9JHIpMmA3qyFA1/79xeetYXvy6yvS9Zhq+Hz0lmTo5QGl6hUCgU9gXW0vCkZfCBNN151iPT7KLdkSnhklEhO++PUSukJNRL6s4CANZhEVgFmfYTaaHWD/Yr0yiidIF12sOdu7Mk2UhTtjb2JK3t7W3df//93QANajwMz2YSvD/GXbU5TlEwQ5b2YKHtveAOanLUMHzIPMvnnGVEBP4c+2NSci/xnP2k5hcFL/U08Kh+f20WFMPAB9YpjWuoF6C1ubm5My9GWuHH2P5nHxmYYlqNtNTw7JhdY+vL+kUtxx+j5tUjteC7yvrB3dI9aBWIUoF8O7wGa+esP3aO/fbPE6+1TyuLYxFpXlnyeBTEZOPFVJPMKhKNwarvO6k0vEKhUCjsE6ztwzt//nzqR/BYJT3AQL8ANceMa1NaSgaUKkzijn79s0RgajNR+Ds/KaVHXHBZ+3s0OtRm7ZpMglxFG2XyepQGwRSDVfj2rN3b29uz4cFWfsZ5KOVSOsuQptql3UsarUjzz7RBzk+0huiHsU+TUP1cZqHlBrbN+3Qyny011sgfm63VLFm+19aMpszXl2kjdm2kmfs12SNxOHDgwI6P1zQ9T1Fl7aIWY9R1dtxbIaiZcryYfuW1p0wDorXIrx0bB2s/5z16d9BqkqUhRAnw9D2aj9LG5u6779713f9PX15mJYj6x3N2j333dIKGjCeVlkJ/zKfqVFpCoVAoFAoOe4rSXIdd27BOsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktYqiZLUbjNfoq87I2LNomH9PXMRrFE0YObLi+qh/b3nh7EyMzJcX2fmN4x8e5T67TslRlsP/t5sjdA34CVXrhn6pumD8OUz6d7qsTbZ2EWaS0bqHdFGZYnmnEsmmftrss9o/qzPph1kPhbfL9M6vC8si9Lc2NjQkSNHJn5a//wwijAjuI98QVwrfP6jOZgjZub68MeojdraZbv8tTyXJZP741afjbH57EzDMg3PR5+aFp4lgGfE/tLUukafpJXpLTakc7PvjGDt0a2VD69QKBQKBWDtKE2pTwprv8QmaVuujEkxvYhOAylpTHKMopmoaVHijXw3bEPkB2G/6MvIotlIAeWPURuk9Nkbmzk/YM/uT4LWaBxJE5Zplr18vx7Fj/l/aZv3bWW+kJVrW0xdccUVknZvD2SRbiQPpg8v0ry4Njj+lGr9uNianKOn8+Xzu91Ly0W0fcoqpOEsP/PlGaJ1n1FmZZqtv5Z5bXfddZekmMLK5inSMqP+HD58uEtPaJpBRmMV5WHaOGf+eCvf+uXXAX1c3CIpI2yWcv8y4xH8NdxOycr1eYz+MzvmQV+iP8b3i9WbWVKiezJ6N3/c1gZjFDi+fuyZm7hKvudOG1e+slAoFAqFhzHW0vAsGqYXsWXSuEkAJllTmvE5NNz4NYui7G1HZOUy56fnU6Et3SSGjIBWyu3FGbmvtLRZU5Kk/dqDY0wtzdoYbczKfhqySE/f/oxpw0dy8Zy38/c0vLNnz+6MAf0W0nTbD9PerrnmGkl9De/48eOSpuuNUV6+f4zoJBhF6++3NlB7ilhGslwtSs/0Q/trOC+UcqNNQ7P8OPbfa9n0Z2Zkwt4PY/WR3NnKtfy2iJXDru2x3rTWdOjQoW4EdpYDmK1rX3cWadvbADbzN9u4mF8s0mCZh2fvTLOGRW3lWuU7w+qJ1rJda89cj0jd5t/mMouMpS/Pg9ouv/s22jz5zVx9OyIrIn3vpeEVCoVCoQDUD16hUCgU9gXWDlrZ2tqamIe8icnMAfyk+TBylJtaa2aBLPDAq8RZqDLVd29Ci+hqpGmwhzcJMjiBznDS+Hg1OwshNjD8OWoDTSM0i/kxycxgWSK6L5/hxnRAR+YDO3bo0KHZBFCSPXvznZEC29hee+21uz4tMMU+pdzkEu1/5vsh5SH3NPVFtF0Z7VmUBpNRR9GEFgURMGiF8xKZzGhm65EyZ/ca5nbnlqY7hts8mqkuojCza5kKlLXTU4sxcMPXQYotmuiiPe1oarN6aA6NAtForrZ6+S7z7WWwko2Tffr3TmRO9eXa8ejdyPVr30mO4Em47X/7tLmMglR8n3zfSV1mx62syIRuY273ZBSRHhndYg+l4RUKhUJhX2AtDW9jY0OHDh2aBGh4KZ1SA6XmSKKjc5OhqQx79vWZ5BHRZfmyImJmnuP2NF5yyHYAz6h+vOSdkStTE1sl8dzQc+pSC2Mbe2TPvIbBMz0tdG534tbaxNnvNW8GPVx55ZWSlmuJTn5/bUY2G9FCEUxo720fxeAEk5a5DY1f36RroxbK8YuCFqjZZYFX/n9aG5iGEG0pk5GWZ3Rovh6DSel8F/g1bM/YKmTsGxsbOnr06I6GYOMXaQoMDON4+fVmc5itW2oZ/r1j4LqysWbwir/WznF82L+oHM4lLQ0RdRoDBa0eCwKzgC9paT2hZkeCDxuTiJbM0lJs7K3t0fuGCfw2F1yrkcXEv5OKWqxQKBQKBYe1NbxLLrlkonFFBKJ2jHRKlJClpQTA7VmypOvIt5aF/PdswCbFUJKztnnpLUtONlCL8vUyBD/boNVL2tTCOI7UnCNJmTQ97J+XuDLKIlL8RD4807zOnz/fTUvwG8BG6SnULugHpr/Wt5c+FUrC1Fx9Odzwk35RXx9TTOiTjsLrI61Pyv3AURlMt6CfxJK8pekWL3PbXkXh/ZS0mRTvy6R/hxupRgn19MsPw5Cuna2tLV199dU7mr3dE22Fw02pOZerbDND8oLo2cqIpTM/nT/H9wstTNG2RxnxMt9Lfl64rmwe7Hk1Dc8+paX1hGlQGXmC7x+PcZutKEWE1g/77FkAIg1vVZSGVygUCoV9gT1FaVKK6dF2UQLq/RozSo2JppT8pWlkH9tE6V2aSmGk04nIoyntRRtY+v55KYaRqnObOEpTKZCSNqMcI2oxO2YSd5a87MuhRGnobXtk7T969OgskSvnpxcJa58cvwiUuE3LWcVHRC2AY9DbJorackQTx2vnqL+iMaEGy81JIzIGg11DP2O03RZprvhpY+Pr45YyVp6RE1tboy2TVom029ra0hVXXDGh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4CgE9n92M3D0iqzbY3JkmGY2N9cf7HqXleNLqEkXKMrHejtOS589lzyk1Z9+vTPvsoTS8QqFQKOwL7IlajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvt5ta3DgAAIABJREFUw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxtPnDghaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlLenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwr7AnrYHiiLesmuynB8vpZPE1SRuIw2mZud/7U0iJfNAL9LOpDNqadSmoq0vqKXRH2Jt9GXTTk1pnPlZ0lLCItOJtcn60IseZaSYlX/y5Mld7fJtop2dmnMkQdqx06dPp4wZ29vbOnXq1I62EbHBUIumBByR31rUmvXJrrHcIvMjvP3tb5ckPeIRj9i51+6xOXzMYx6za1xuvvnmSRuZe8qoUJuXyDqQ5d1ROvfWgYwdh5K/1zS4sexVV10lSbrpppt2nTcJ3Ef+3XHHHZKkJz7xiZKWc/H+979/V/+j3L2MVD7y3ZCtqce0YtHhPZYPq8veB/TD0u/j77HxME3uHe94hyTp1ltv3XXc55xZuaYNkjWFPnFpGhVu3xmBG1l6SIrP7z0Scfom+U70z7SVS+vXnXfeuautkeXM+/L9WNizaBaUKNKbFjk+E75ffAaLPLpQKBQKBWAtDc828TTQfizlXHa0yXq7uf1vWf4mCVCiM0klsifTHs1tgaKcM256ys1re7yR9L9RyvUaHvORrHxGa3lpkJqkSfImNXHso9w0k+SYk2jj7bUHaxt9XdaPaCPSyAfai5gahqHLJmLtzXy3VrZJm/5/0+SMd9Okyttuu21Xu/04mUb31re+VdJy7XzER3yEpOUYmyYoxVvq+OMRo4vnGvV9p/812iAz2zTY2moahh9PahI2Nqzvoz7qoyRJr3vd63butbVp5d5www272vG+971vV1t9fRnLURTNzfn3W0dF2NjYmFhV/PPJiEv/LPlrozw103zf/OY3S1rOt1mazGfk1x23qKGmb31mO/y9GcNKpHGRm5Mb8jICWJrm/3LMozw2jq29azk3kZXMxsIsBnavfbfn2/v6aeVgHjffP/4a/5tSTCuFQqFQKDjUD16hUCgU9gX2FLRCU6BXnaMESP+dSZ7S0uRiJk2aJ6+++updZXkzgTmSuW0LndVe9aZph2Su0W7cmcM3o7fx/eMWHqbSm1kgCmZhQBBNnGZusTGyMZSWJhhSPtm1NN36+mw8M4oub25h6P2cWcG2eZHiZHImDdPMamYdC6yQliafRz7ykZKWgU5m0nzb2962q8z3vOc9O/faGFq5Nm42ThHpsZn6zFyzColAtlaYYhBt58OUksyUHlG0WbvNpGT3Wri9jY3HddddJ2n6TNpYmUnTm/cMJIynuSpKh2GKTgRzpTCAKwrUIYl0byd6C0r5y7/8S0nLObO+23vB3hOeZJlmaJoUo/pobrVPG7eI3IHzbWuVu8gzqM2XnxEyR89rRoJgz7qNjbXDvytJNWnP0+233y5p+Vw97nGP27mHATV0X9CE6//vrZkMpeEVCoVCYV9g7aCV7e3tSdCHly4Z0k8HIxOPPUwCyBJzo6RX+5/SC8mOo2AKShUsy4P0UAzYIC2Q38KG/THtgGPRo9yx73Qi2zhHzmPWw4Ru30arm9onncgRjdwq1F+tNR08eHCSjtCjFrOxNa0q2lTT5sqCU0wCZZCUjYVJndIyOMGCpGxcTHuJto+xNWrjY9J5j6CZVgbrB9cbg5h83XYPSZIjjZKk4dYW01AsTeG9733vrrL8GNjauOWWWyQtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537brXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+v1118vafne4fuBGqA/FhEazKE0vEKhUCjsC6yt4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJS2l6Ec96lGSpr4V3wbzk5qfy8q0OfDbEbFNVg/Xe5Q87K0Pva2lzp49O/HpRuuAz6G129prWoZvp2m+1FpoHYqIGphqRKuXf8ZIQ0cNP9o8msQCTBsghV6U0mDjT2sA6el8m6gxZuk4UXoKtweir9zfY+uJ7xm7h+vcl+M3CFiVXqw0vEKhUCjsC6yt4T3wwAMTDSiyATOChhqKt/0ywpLJ4qbhUWKUplvd007taa8MJLm1e0zSZWRSVH7WX/bF30MphP5NLwFTkspIaSPfWiSRRsd79FCZpubHnpueHjhwIJXSLUKTFGVRlCZps/zcsW0shxtkmv+Fyb3+HMmP7ZMRwPxfWvoG6ffx19GfnFHLGSIfMrVB+n+9j4PWDtL62bWm2Zgf0l/D6LheVKhda5YaPj/UGqRpEv7Ro0fTzZXNhxf5Kw1sp42prQf6XKVpNLDB+sF6/Herx/pkvrqIMs/ASG9GYkcbT1Oz4juLa8rXy8hNvisi61EWwZnVH5G/k9DfwOfKl2vHGG1riEgyojGeQ2l4hUKhUNgX2BO1WEarZNdIU0mBvrtIaqZWkREoR9FSLCvLI5OmUXLZFhW+7Gj7Hd9GSu0RSS2jzFifL8PaxPHrRU0a5siqDT3SVc5J5HvN/JpZeVtbWxPN248rx8e0J0qqvVwjRtxyvXnNhPmeVh/Xjocd43ZAGVm6tJyzKM/O968XHcx8vFUorKwt3PLFjpvW69vDNUmfWGTVyTQhrgdfDwnjDx06NBttx/GLNubNttMh9Zj/nxGd3FKKVIDS6s+nb6NplxzDjBDa3891zOefWjzrjtoaEc9n88yNhq2fUZwD/fQce//+5nOUbSkV5bVmlrMeSsMrFAqFwr7AnphWeppJtNGiNI3K6m3iyBwtfo9IaOmX4lYrPhLNpBVK8JS4fB8yloI5f4xvIyMdvR/TX+eRaQOM3vPjSRs9pc6o7XNbbFAK9vd7KawnbW1tbaUMMr599FdRovPzkpEGR1o666N2lrGl+D4zV5TtiPpPnzGj8qjhRfmYzNmi39lH+LLvmVQekTrbOFJDidpmyCwJPTYiauQ9/y/vZb2+bhtraiQRo0sU7Rkh0mbof+caiqxRmb+fkca+jdnaJKJoZWqH1AK5/nwfMzJn1hO9D9gmwo8JLRPZxsaRhpfV20NpeIVCoVDYF6gfvEKhUCjsC6xt0oyclJEZJ3LaSnHgAU1WJJjumTSjkH5pum+YN2laqHK2k7apz1715v5+GSIzmIHtJwl3lODMfjJ4ITJLRSYY/z0as2i/uF79/v9oz0GitRaaL327s7B9tmmuHN+WnpksM+0wedybiRiQQTNlZNLnesrM8FFfOBY0CUfJygzyYT9ZxiqmewZCReQP0Vr090Yh835MenN14cKFSQCNR0bATZOgX79cI3z+e+4K0oBl5nePKCjJlxGB/eI7hGPm20hKQ14TkSSQAjIj946C9WiinSNJ96CJ2DBnbrZ7KvG8UCgUCgWHPQWtrBJ4QKmVAQe9pG5qQAz5jUDNisEqPiGZkg/pc7izctR3arCUeKJdqw1ZWK2vj8EKUXhuBkpSdDhHaSDUWCgRR0549r1H8dNa2xUSHkmoGT1URt8WnWNAQCTFGjLSZkrikURKCd4Sm6MEYAZjRSkevv5oTDhnTNKPwtGZXpFt2RWB4xilArCcbM1GWg8DquaCVnwbovZngQtWZvQsZ1R2c5p/dM5AS0lEIk5thsEqkdbE8uaIoX25rJfvhahfDLRaRaPMCBRYhn+H8Z7s98NjFetNhtLwCoVCobAvsJaGZ/RQ1G68tpb5nnwZvI4+J372yqRkzy1YLJnYS3jUIKnFRKTYPR+Gb4dpMVGSqp1bJXGSPjoDNYuelE5ps0cblkluPSmdvjtPLB615YorrphIy1HCdETe7evpaab0F1ETitbOXMh3lJhLIuhoA05DNu7sT+RbnUt74RqOymdbM+tL1P5Ms/PrhT5JtjWSxHlszofny4usHJn2mlkspOmayML4IyICXkvSBFoY/DXUrLLto6I2kGg8W/8e1NYya4E/l/nTo/SkDGxbdA8tCbQocJNuX272vYfS8AqFQqGwL7AnajEDbcIe/MXO6Ib8NdT0VpHSaAePNgmVdkuuc+SjUdQkNYbMjmz1eonTjhmNjt941ZcZaRKmodJ2T60g8qPOoecryBKeo8hOEulG2NjY0OHDh3d8qlnEmjQvtXpJ2+aFUuxc1F4P1Iz9vNj9NpfWFhIqRKS6/GREZxQRl42FXRNpeCR6zrYWMvj1wnnJ/DAeHKcsqtYf53vgkksuSdftMAy7tINo7WSR3Kw7okGklSiLtI62I6K/v0ewwfHJNEgfcUutj+85kudHieD0y5E4xCNbZ1k0fE+7yny7kQ+PmnIWaR7ds4q2udOmla8sFAqFQuFhjLU1vHPnzk2k2J5GkUWiRfkiGX1SFPFkoOZBwulI6+B2JT1SWqInhfp2eA2Tm1Fyk8jIh+S3TZGW0aakQ4qk6p6N3iOSuLPcyigKjOM1Ry22sbEx0QojaT2LDOtpF/bJtdST/jK/j31yCxtpuo0J/VeRNpNRelGzIJ2TlOd5cZ68L9RvjCnFkrwvK6JtovZBLS6KkMz6F8H6Zc/JnA9ve3u7q21Qs7K+Z4Ttvt1872TbEEWUX7QYkNYt0vRJz2XPtmltvsyMVDnLGY0sWYzktTE3UuwoJ5qWg8yXGD2T9MsZeuuBkfqMZI2sev63pPLwCoVCoVBw2JMPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+FfYSameRNpJt8cLtSaINYO2cbeVCCS/SSjP/RZZbFSGLIPVjH/kIepJWa20ytj2i3CzHKNJMM39vdp2/lvWQiDrydRqyjYE9bO4MmZ8i2sKG2kzGYOS1OG4OmxFd9yTuLD+qp21nz0+0znjt3AawFy5cmPii/PNCDZjxBZG/vkfa7cuK8jM5drZWOLe+Xvro7Fm+6667JC03nvXaOjclZs6etcnyQP36pAXJNDprR3QPrV+93Gciy8OjfzXya3J+GMnqy2bfizy6UCgUCgWgfvAKhUKhsC+wNrWYNy1Epkju2ku1045njnSPzHwSJcoyGKLXRt5joMPZmxYySrHMLNZLxudYRAE2HD9rM+nWIgc7y+dY0PwT9cNAU2CUuOtNV5lJc2NjQwcPHtxpJ9vPcnxbaE6LiIszkgKaZqO99JimYqafKPCF97C+iGSca8fm0Oqh6cmDlFhm7mQQhm8HzWq8h6a6yGTbMy8SXFeGHhUYTX49k7AFy/G5jFIVstSCXjoU11m21120djinfD6jZHUG7JhpM0rvMTOnffKZXoXonPNsbbOUJ29C57zw2WMbIyIHgsFBkUuC6zjrX3TPuXPnKmilUCgUCgWPtanFDhw4MAm68KCTnWH00S7pc/RFGfmuP8fE0izx2P/vQ6Kl3US2rKdHihwhouth6DwDbaJgHGprvS1SWDel5t42NDyWBR542iNqXD3n8cbGxo5G4/sTaetZ36LjlLQZ2JLt4OyvtTXJeY+kdAsh55ZSJi33Ag8uv/zyXfceO3ZsVxttbk+ePLlz7913372rLdzRPSI64LpiiLndE0npXIt8fqL1zvQXzkX0fNtY+yT57FkahkFnzpyZpJz455PvoiwALqIY5Heuw0gTZlBZdk9EE8d54DNuQSzSMg2GGh7bEVl6qAnZ+NpzaG3zQVVMxckS+qPUED7TGWl+BK6hzGrgy101HWpXPStdVSgUCoXCwxxr+/BaaxNtKtp6w6SGLIw/Ojan4UWayRyFVBSOTomKiMJns40xiV7qBP1Jpi1REvf/zyXxZmPn68229vCgr4MSXLRBY0SUPSdp0ZfmNa4eEbIU+1KyPtKXase9JsBrqOHTpytN/UemgZlWZm007U2aUn1dccUVu8q1/lKaZ1+lpbaYaaP+HmohVg9D9v14Z9RsvbSEjODArjVNxq+TzCceYXt7W6dPn97RkKP13HtHRG2LrqVWxjZG2lr2vonIJPi+oQ/PNLtoK7OMhoyaXRS+T+sA3yWeJIMUfYZsXUTIrCs9yxI15N5Gt+xr+fAKhUKhUAD2tAFstkGiNPVTcWucCJSKehFbvt6oDZR8ogRK0vAwYpQ2dmkq5TEqi9d5iTuLfKJtPUrIpJROiS7S2ubIgiPMRZ/2JHGTUHuRt8Mw7Iri7PljswTg7LyUS5NRO3gP10EvmdykZJPCSTXGpHVJuvrqqyUtrR7UHKnpRz418/tlRM2RdcDKpU+PmrLvZ7ZlkaFHFN/z87Eeg6fM6lkxtre3d55t+k99e/n8UWuL7sm02VWSnzlnWcSnNPW70vrEqFp/DeMN6NOPNDy7x+gJbdyy7Zx8OdRGaSVYhYyd2lo0/2wLn9uIyJtRxnOEF7vatNJVhUKhUCg8zLF2lKbPper58JhrYp/0k0jT3KUoT4ztMDC3hVv7RNFEBko+vW1aqJEweon3RtGH9BX1JOO5zU/XiYAiej69LKqxJw2uKl3N5Xsx6jOLgIu0NEMmgUZSLdciPyNyZYMdM03OtDf7tLXl/7drMyozf4/Bnhv6X6jJ+OeJ/tZMeuaz46/JInwNPXoojltET2XXmL+yt34tbsDGIvKtZu3r+R6j6Oio/aQg8/dGYygtx8LeLVIevWjXXHfddZJ2WwfMr8eIV7MsMB/Tz5utJ/MZ///tnd2O5NaRhLN7WoMZwDAsyQNY0MW+/2MtYBgQJEEeeSRZM11Ve7GI7uyPEYesWeyFXBk31V1VJA8PD1kZ+ROpV7FqZWv265M8Ry6rup//Coz/rTJ9nTA0tyHbXGWsb45z+JuDwWAwGPyB8Vl1ePQfu2r71MpjlRmW6mIIp/bB/et/CrX27WnNyrJycSCOkcyOcR+XicR9MYPQqcHsZUU5Cys14jxiYXGMghPYTQLNCXd3d5sYXrcuE6NbNVel5Zvq8Jh52d/jKy3Irl5Bb4SsZNbWdcueMVyOjZ6NzvQYdyGTEKN07YGStZ4yWPsYyIySwHr/e28NOUbW1VNW9/vj4+PGo9TnOMXDOTYXh+N40zPMfZf1qZpT5/XSeDUWNkOmyHPV8/VlBiczml0trNadslv7fque10x/P3nteL7XsCphlUvA/fO557x6/T466uEahjcYDAaDm8DVDO/h4WGTveSsPbLA1FQxHae/Mm7lsjT5P5sryufdP6PuJ5UwukWiOIte9R1ZSd3CrvJxJm3LbMYVK2S25l6NWlXO5NuLk7jxU8ljVe+3t/+Hh4dNPGcVU+P4XbZXYivMznXXyTV47efIRp1VLzN3+7a0XrXu+v5krbuaxj62Pkdat2wLc6QtEZkxa6xcCyjGW1b3Ho+Tsh7JQqqe56fvL61taWmy/revnb2YnTvXvXW72jY9zzhvjpno2fHtt99W1fOa4vOoH1vvad7ojeLzqG/75ZdfvvhMY3L3BJ+bTt+zyqsi8d5zSj59XP07K1Ub7sNl3h/FMLzBYDAY3ATmB28wGAwGN4GrXZqvXr16orNOhoYukL3O59y+70NY0dvUAoPpwt0VxYBskpTqlLkH1/sr3WIuMSQF0Fdd0gUmcqRCU1eszP9XSQUcN+dPc9JdOHtyTjzWF198EVuVVG3nVvtz10NI5SFMilldU8F1cOc5052m+ZHrkcIHVVtXNpNY0j1S9Zy2r/3THc5i5qqta5SSYikxpe9vT7TciU3wHuC17nMvsW199pe//CW6Z0+nU3348KHevXv3Yhs3hiRc7coteP+l59DK9UnJOv3PMpV+/pSfU7mAOpB3aTltr8SSP//5zy/2QVH+fjy2n6J73z13WHbV3fkdq9Kt5MoU3DymZBXB/V50N+/RrufD8AaDwWBwE7haWuz+/n4TNHS/rkl+bJVmzxKGPWZUtbUi2TjVSdOwPYqsGFmdDML3v1PTVjZqdeyJSIXAHTw/MhhXWJ/kjo4UgCbr/IhYrAqEEy6XyyY47RJQZIGmIngXKCfTI/N2sk0pUYclLc66TIyHbKp/VyzNyY9Vbdli3y8ln1iE7eSoOOZUVO7WefIKuLIESgJy/TlRcCZDffXVV5Hhnc/n+vDhw0bWr7MPro3kGTmS6JIKxN08UTKRTYSdAAXZmRPj4HG0P80hhQh471RlOTqWwawS3vSaxEFWpSZ83jhvFLfl/46F6jOVahwVvqgahjcYDAaDG8FnxfBoBbhfX1rLK8alz8i89iyFDlpNKgTlcft+yQopg9bjJdqmW9/8TpUvqE6xs1XZAGNoqQ3Iqn0GWSHnz1l2Ai0ux8i4zaoRo4qHV8W8qREv4zJOcDoJAaS4WT9HvrIcobPnvbZNjJtUPbOAVMzN69TXlIrQWaqR2tL0/e+lkrt2SwLXF8/ziAeDY5UHpWrbMunt27fLwvNPnz493dO99RLHkFgaPSL93OhBoDwhWU5/j3NKT0NfO6m0aCXKQY+F9sFSGnd/7gla6/9+XnxG8Bm1ErxPnjn3nBBS7kPyUlQ9P9u1nl6/fj2F54PBYDAYdHxWeyBXiCnQiiHDY3ykamslkZXR8nNt5VlMTuu8WwC0wngeYnHOZ3+khQzfp5XEuXExtSTQzYw+x7JTY9sjVlBiLqvs077Nyp9+d3e3Gf8q9sg4yYrhpWzN1JrJnRvP3RXB6py7rFX/jhhZZyHKnGMchCyEcmV9vGKMLOJ2RbhpXXOOVmybc7HyACTmQibZvSMuFp7Wp0QLVAytVzdPidW4uFxiS2mfHXviCEIXIEjyhyleVrVtJcSYNe/Tfu+TRafnTd8H1wTXV3q2dCRZsCMSbRyH0MeoddTnfhjeYDAYDAYNVzO8h4eHpYWYMgLJxLpVRX94ypJywqby58oS0v9kRI6ZiKXRwnNWR4qZpIw3x/Bo8dIS6lYMWYbOjxYdGU7fX5KQchbXKnOzw9VcHmkwKyt9dTzGXxnTcnE4ITG7IzWCvA6pEWjfPzPsNCYn1Ks6K2a2pVhrZ0LMWBVotbusSa4DtjRaCfNynTEW5lgB1xWZDGXZ+nn9/PPPuw1gVZ8mdt1jnTon3u+rlmMrTxW/y+PJ66DnGWseVVPXz1nXVeubzwHXQJk5A0l6i/kPVc/PQK5jzR9rB91+hWtkvPj8XLXz4TWnt8A1pKXXozcG2MMwvMFgMBjcBD6rPdDKn5v8tWR43WKQdULrXEhxwf4Z1TE4tj6elA1I9RSXaafXFdvo51KVlVR4Xt3fT6vFNbDt43DMLFlLLu63p3bjsrKOiEZ3XC6XTd2iGy/Ximtjk8aQ1F9W409qHK7RKMevbVNtXT8PZmtq7Wj9u9YrZJT0SqTYUVVm9FQH6Va9yy7sx3dMeU8Yntez719j+fXXX5ctsD59+rSZJ8fMyJ6TCHt/L9VQ8lr35xLvKc3ljz/+WFXP93K/j9Xah/e2xuGyT3Vs7Y/Zmqzd7OfHZyAZHp97/b0Uw+N95tRu+J0UV3XbUNnHxYfT8/QIhuENBoPB4CYwP3iDwWAwuAlc5dK8v7+vN2/ebFwULtlCYCKAS6+Xq4IuFrrgXME0959cjB10aSZB6B5E1jZ0c60SHISU2JL2UbWl+CyGXR2PbgKmlifZqBVcggrHsOp1eLlcXrg0ndxUmpfkzq3K0mLJjefmmC5TzstKRiuJ9zo3YSploJu/u5iY8MEO6IJLCKJoAe891w+Qa4Nr112LvQQR9nur8i6rlWjBx48fl2LPdGGm7x6RwqJbz91rPCe5Kb/77rsX+37//v1mmyQpJ7gSEyXsyO3JsiX2zevjlzs0hTaUYFP1LE5N1zld6EcF4/u2PKeOlMjnhEN43abwfDAYDAYD4LMYHrvi9l95FpZTYJpByaqtvMxKYJrb0uJkCvuq6JHMTtaTrOi+TSp+ZkH6KqBKaR9akt0S0mdMS2YA3RXH0qpNIrjOKkrFys6qvqYYVWUJmqeV5BvHzQQRx0j6cVbn6MpTyA5TF/P+mdYDC6hVeN5BAWCej9abXt39lESDtQ+X0k5JLybLuDnak3haiYjTk0DvhNt2Vdzdv/P27Vv77BB4X1Co2a1frhVuw/H2e1GMTq8SMman8F6WkMTitQ/XAioViXNuKcbd50Jzo4QazqOT7fr666+raitAzbXTxbN5T5P5r547q3ZnfcxuLB8+fDgsID0MbzAYDAY3gc8qS2A8q//68j3K9zhBXsbukrwN02r7d5MUlvs/yU7REnHp4bT6uI0TqSWOFGSy3UeSB1pZzcSKQSdBYY5xJR69wv39/QvL1bFPrY3exLJqazG6+FhqJ7Ji+AJZO9PTHXtmejhjXi5WRMaa5q+v5cRQNTZXLkCJqjQ2trRyYyVWwuNcQ0kswe1nT5Lu9evXG1ZzpGCa596fO1zbLOLnGupsLTE7CkWwfVA/Dlm7k79jvJVF65zzPg+UP9N3NVYxyn6/UcBD567v0OPjcia4ZukpcR4F/s/nultvLodkD8PwBoPBYHAT+CxpMWak9bYf/PWl5c3MtKqt1FHy47pml7JiKBpNhumEoMnKaBG5bKm9bCKN0YnUCmwsuor7kYWmgsxuRSUfOtlOn1/ujzFC10rGxfsSa7m/v68//elPT9lmjuXI4pQUl0BrzzU7ZSyImWjOE8C4F61Wfe6ykMkG2LLEsY+fUGtBAAAScklEQVS0vii55eIVOq6scxfvEyjUnmK6jvWQfaTYyoqRpViba4baM0pXWZqPj49P942T7VL8PUnkMT5blb01jqXzfPi8ITPSWu7F5Iy/6X89Rx0jZmyORetJrKFqG09MrYw69F3NMT1zlKfrcHHSjlXMmP8z56N/j2NZZfhuxnDoW4PBYDAY/MHxWQ1gmWnXLW5m71AOyEn8pBgHLTDGL/p7ZCL8vL+/J5ArC8JldDHrlELHzgImwxJ4nD6PKc4o0Irv4BgJlxmXao7IIFfyXns4n89Rdqj/LctUli8bsrq2MOncXGNMIV1/xmFcbZOgz7QOWJfX36PgdGr505lLknyTSDWFgPuYeM+RLXJ8/e9krTsGle4n3guuKfIq61M4n8/166+/Ph1T60Pxs6rnudQxyN5XzW6ZPa35SzJr/XiqW+P+HZvRNsqAZPasu8f4XpJMdN4I1+asf9cJj3P8Op7mPNW79s9SLaR7TjBGx7l2sUk9BzR/K+8AMQxvMBgMBjeB/5PSihPX1a9uqt9hdln/m0oEKQ7Y2U6yKmgprOrixCQoWt33wZhDskQEl81IUWJam91KZ1yRc03VDBdfcGy6j8dlaZKpOsbCbY7UUj0+PtaPP/64iam5th9iS7ou6Tz6NkkJIrVKcu+xLopxmT4GfVdWNGO7LmacsmQ1dir9VG2vu8as+8xlAzJWy9ihsPISCByrU9VZ1XX1ffQ5oULJV199FdfP4+Nj/fDDD081jmK1P/zww9N39J6YL+dtFesU0np28WbW3ypWx7Xq2BrHzHjZ6llFhSKy9n4MPmvTenNx+TQHzBbvSM1wuXZXMXHmXLisYIlw6/Xu7m4Y3mAwGAwGHVfH8N68ebOx9roCQfLbU9+vWxWy8pgRxLobewLwKdM/7Vp7MD7B7E9XS0emxSxG7quzUB5PzIXWlItxkNXyf6fokOoY+flKdeJIbcte/LTjdDrV+/fvn8Yta91Zl0mvz9XUpRrKVL/mLFOuM7Za6eu7Z8H1c2brn1WNYvqOa3ZJy5UZzYJjH0nnNbGD/h7HSA+Ay0LWd5iF7BiL5lSvj4+PkWmeTqf66aefNhmkHWK8YnhJH9M9S5I3gHPct2XMLjG8fk5idLpXFYvmvHVvCueOSjurOjyysSNeL4F6wnyuubgtVYcS0+/zyPg8t6GiTdWzrmivxxyGNxgMBoNBw/zgDQaDweAmcHXSyuvXr5/oo6i5ExQWXWeKtAsA0y1HlyaLPLu7kEkLLB51xZVJUHZV+J6EZhmIdok8TDvnq0vxZTkAj5Nam/DY/bOULOE+23PvuDHuJT9cLpena6x0bhfUp5tmFSjnNdwrU+jnwZICrkMna8TkACY6rdzTHDNdP07KzEnxVW1d6+76pBRzYuXaTufQXUx0c6ZwQheo4Pp9fHyMbqnz+Vy//PLLZq57ok6SMWMCRZ8DloEkN7R7hjDxgwkibl8aA0u12PLJJS2l8hc+s1b3dHqWOMFptxb7vlxLM7q9KV69Snji+mVSW187vBeukjg8/M3BYDAYDP7AuDpp5fXr108WirPIUqE0i3r7trQMtX8yPrYccuC+XFoy3yMLkFXhWNpK8sb93/eThIzdNpw/JhpwX32slCEjA3OsMBVoJ1GAfpz+2Sp4fLlcNuzdBeiPFpP38aaklST63b+jVyVQUL7JiRaQvdDCdok1aR9M1nJCubwuZDROrJrNaFPauCseJlM6IjFHa51rtq8droPL5RKTnk6nU/38889Pa4VlK1VbGa1VoTmR7il6MLqcVpIjZNKKe+4oYUtp9akUoI+JjM7tn/+TabGVlHt2cA54fIqC9Ps3CYEngf+q7XOU9wbLV9y5vnnz5rD4xTC8wWAwGNwErmZ4XSCYqflVz1YQ20vQoncpvvT9ax+y3rRv1yCRhYupyLKPm6xgZQ3ST5xiKq4UgDG7ZAGvhJmTDJaLudBaOpLCTBZI629VctCv24rhnU6nTdykX8sU4+Q5uzR6WqZs3+OuLQumuXac0DnXisaoOAxjIH2bFN9J8Qv3HmPgrlVOSt/XnKRmxn0/nOtVK6vE8JKUXtW2zc3q3lNJC+PnigNXbdk5x+1i+vQY8fpwflZrVeB67M8JXlfeny5HgfkSR55VHGMSi3axfCI99zSufk31Xd0LjBk77x69aWwtRWmz/t2jrK5jGN5gMBgMbgJXtwd69erVJruwW7P6haYw7srySbEMvZLhubbyKXvIWdVJwJgWcbei0v4ZM0pxuv4ZLS+XZURLnvG3VREux7qKEQjcr+ZN2bYpNlv10hpbMbxXr1497VeWeG/mq2PoPcZQVtmzydIm03NyanrVuTIOs7JI6ZWgQEAHr3eSwXPx7VUcpI+5/02pvpRR2o+3V6ROL0UfP70tGofYlwqG+3u6Pqt1cz6f67fffns65rt376rqOQZW9fys0Ht//etfq2orqrwSOkheDMfwVmLq/X0XJ6fMIkU6nPAA7+F0Xo6tu7Xft3FMiXOTvEYdqShd+3Axas6B1o7Wh8vSZJswZYAfwTC8wWAwGNwErmZ4VVtr2gnyMqOKlmHfB4WQWXskhsfao6rnX3layYwvUhKqj0X7WLWxSJZOymJ0NXV723ZwP0kmzLEQ7j/VGfbrRma31ybGbbOXodmvEQXDq7b1SGnOnXcgZWMyhtO3Zc1cqofrlr1bRw495kALl/vXPUJL350P9+mEyHmfUBaP7GSVpcdYkWthREk0rl0xu55pdyRu2cf08PCwaQDbnyFidjrW+/fvX3yHXoJ+3ql+dK9Fl4Nbo/zM1SD291f1pqsaur6PqnxfpvvLfXd17yUw9p2aZ3fwHmF2ZvcOCFpvb9++Xa6fjmF4g8FgMLgJXM3wzufzxtpYNVVMMQGX+Zay49g2xik2JOURFyfj/mnpuFY4ZEm0kmhBuphh8m07i4fWGS25xOLcGDhHjg1R/UFIMcuqrTV2Op0iy7u7u7MxvB6PFVgLxvly42Y8gmLOrvVKatfEjNu+vulRSLEVlwGrz7hmmLnsMny57niermUWY6KK5ZG1HxG6ThmMHYwVaV04hucEm1dr54svvniaL7HnPsf/+Mc/qupZPFoMT3Mgcec+7tR2ijE7jatnepOVpUxf5424xouSvDQp49MxvKQoRe9IP3fuLzX37fcTvTZ76k39bzI6vS/m3uOaro3bxPAGg8FgMGiYH7zBYDAY3AQ+K2lFoEumahuopAtG1HQl6szkFQbKV73mKDTsUm/ppktyZK6LdHLV0h3hKHYKCB9J+mAiQOoM7PaT3L498YASP0z6ce4Iuj/2yhLu7u42Ls2+dlJ6e7pO/Ry0P8k2pevVx6/rm9zhfdwcIwWHV8kRdCHTpdldZdw2lVswocIljukz7Z/u3VVJC8dC95hL72cBNYvBXUnIEVcUE56cCPHf//73qnq+/nJtUnjCudO4X746tzsL/3k+TrCBbtBUssVz72BqP8Miq+SNlctYYHIX97caK/tHpr54/VqysJ7PfrmmO1J5zxEMwxsMBoPBTeBqhne5XDbpzk7Ml0F8MhRnNQmJ4a0KJVOpxCrln+yTFomzBvda/Air0oYk+Ork1gSywFSU7c6TbNe15EjJKcniX51Pwul02rC4Xjz87bff2nNcMVOtL1mVEhTmWnFp1UdlmpxM2CrFumpdcMx9cRx9PplQQwaxaoPFNcux0lvQ3+N5cqyuxYtA0Xc3R9xmdQ1UeJ7utarnUgUlr/ztb3+rqueEHTeWJBpxhAkneauVQDvnlMkrTlghlQPwuvD9/pn2n8oqVs+qdBxXeJ68UKtyDpayCEpMctctJfIdwTC8wWAwGNwErmZ4Si+v8hYQGRyLyFfCn7SkyPQcUimBxsg4TTqnPiYnAJwYXWIS/VwY/+BcuG2SZJpAVuhilGneVjJbZC6poN999urVq5jirjgMLbbO1pJ1nNhuP0dZ+JRCW5WLCBS7TTHPvh8nA9XH5so3WPDN+XOCxIltkOF11rMXi+R6cyyE159ssZcYiF0TtN7793rct+p/7990j55Op/rXv/71dI9rDLrWHd9///2L16+//rqqnhmDa2+VRJa5/tw8Ea4shdskZr+K5Sd2ztKqfm/wvBJb6+A9mFjuSpSdzC6VNFRtY3csNHdCB6sY+x6G4Q0Gg8HgJvBZ7YH0C+2Ecmk1sZlralVR9fwrT7bGzMsu2yTQAlmJxiZwbH0byjNR2illfHXQd58kv6q2bIPMYeVjJ3vi/LkYZSo4X1lP3M8ew/v48eOGdfbjprgOLUTXcoVMjzFiF9NlMfc1TTzd+a0+r9qypJTh6dg610xiI/29lAmZskW5n74tPQn9HuzCA30bFtSv5LZWhedaOxxDHzfH8N1331VV1TfffFNVVT/99FNVPWdv9nGxkJmxfMeE+TzRcbUtn3cdXHepCWo/ryQ7lmJ7HG8H1+qKUe7FOR2j5PE5dpe5qvliobljibyXj0i+CcPwBoPBYHATuDqG9/DwEGMPVVvGkRolruTIuA+2O3GyZPxf33GWVrIk9zLvqvYzE1exSc4bxWOduHKKqR2pY+LxWJ/l6ss4ppU0FxnQit2cz+f697//vdlvt9woTUTLm3VeVdt6PsnOUVpM8R6XpZdqp1wLmBQfSwzMbUMPBmsenWXOOV6xwtROiefnJPTI/mily/LuMTzKBeoa87ycPJTmzY2l7//333/f5A70uA6FuP/5z39W1TNjEMNzItupxjB5VfrxeI70UvX1nZpU8x7v80TmKqQMzw4y4tS6yrGn1IYq1ef1/XL90Uvh6n8Vs9Mr2VsfDxn3/f394TjeMLzBYDAY3ASujuHd39/HbKP+d6rfYSueDloGFM51rJBxH1lcbEvUxyjVBfqW6VNfnRezsVL9kkOqM3NWDK1BZkA5pkdrPDGwVW1LsiD7NeD+V1aWrPQVI9W4de1SnVy/5r35bNVLYfE+Jmb4VWXGzfNxLJSMhFY62WkH44vMDu6gNcs4I1sN9f1xrtN9288vWdaMB7sM4JQV7MbIe2AlAHy5XOrTp0+bte9iuZonrSExPDH8vka//PLLF+fIsfEedx4M3u8U7nYx4z3FJXc90nMgXeOOlMfgmmPzuGmtuGcy45iKp3OO+nVj7J211ymjue+v55XsYRjeYDAYDG4C84M3GAwGg5vA1Ukr9/f3SxpNNx2D3nInOvHZVBjL4kpHo1PXdFFll8LMkoJUENpB90xKE+8UnC4DBqtdIXhye9L96gqPk6uO26zSxOnWOVKesIKSVlZBcY1H17IXJfdxO9cvEyY4T3IjrgTBkzuyzy3dUsl92PfBdUSx6PS9vt9UeEy3fx9Tup+OSDJxHtkvkaGEqq1Li9fRlT/0xKC0js7n84ukFa2HnjjDtc1xquh91RmeCW8UMXAhjj1XWt+G58c51fn0uU199pi2v5IlE5Kgwur+5XpPBejuvJi8pDH3khZ+N5WPuQQl5yrfwzC8wWAwGNwEPitpRXCFuQK73qZi26ptcJiWAVlityqYpOISTqpeJjMwlZsBbVrGfRuyDoGscCVDlALQqwA3mR7lz5xlt8dgnTg2k1O4jSts5dgcLpfLi47orrt3KrKnQHTHniSakhZ0PpKaqtoyOV7DI6K3KXnFMQnul/eEYw2ppYygbTtrTOn0qdTFrR2dH/eldP/OQhyD43eqXrJr3uMrK12F5/RMOOYtJDbV5ciUAp+eAxqTpOf6fZyK0+nZcglP/J9z7QrPOZf83xVh7zH5VVE8weeBK08gU+V60PuuVIPeJp3fqhTNJV3tYRjeYDAYDG4CVzG8y+VS5/M5xueqtv7uVTxMkOWXrMpUgKwxdSSLofuNk8+a/vJ+HJ6PLOokwdPPN4kGp0LUvl9ajoxRuHlN7CwVE3dw/Imd9u27NZssdcVoGNdZeQy0f62P3koonTPnlqLBfXxKS9f+abW7An1+loSY+3EYt2bqurAqMUnp6C7umOI7tISdx0SWNAuetX/NZ4+pMI7MbfV/Z6FkCHts5HQ6xbno50rWTKbgxB0o30Vmr8/F9Pp3BbINN+d7JQYc12qbJESxuqeTXOBKWoxzwevkchX4TGTp0MqTpfPkfbzy7nz8+HHpXXqxzaFvDQaDwWDwB8fdNRkud3d331fVf///DWfwH4D/ulwu7/jmrJ3BAczaGXwu7NohrvrBGwwGg8Hgj4pxaQ4Gg8HgJjA/eIPBYDC4CcwP3mAwGAxuAvODNxgMBoObwPzgDQaDweAmMD94g8FgMLgJzA/eYDAYDG4C84M3GAwGg5vA/OANBoPB4CbwPximwMjo/OuiAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu4ZnlV3/n9nXOqqi9Vfb+AzVUgtpdRZx5RMYpEGXCiolEeRQPKqJPRTDRmTKKMt47RoMagmYxGo2aMaESMGhWjiAioo+gYoyjKHYRuuqG7qm9Uddft7Pljv+u863z2Wr+936pumeas7/Oc5z3vvvzue7/r+v21YRhUKBQKhcKHOrY+2A0oFAqFQuGvA/WDVygUCoUDgfrBKxQKhcKBQP3gFQqFQuFAoH7wCoVCoXAgUD94hUKhUDgQeEh+8FprT2utvby19t7W2pnW2vHW2qtaa1/eWtteXfPC1trQWnvCQ1En6n9Ga+2W1tqH7A94a+3zW2v/+we7HReC1fwMq79nBeef0FrbXZ3/Knf8ltbaBeXNtNZe21p7LeoY8HdXa+11rbVnX0S/LmjduefhyQuuHVpr34ljl7bWXtlae7C19tmrY7esrn2gtXZlUM6Xu77P1vtIRjDX0d+7HqK6LlmV900PUXlPXs3l44Jzd7TWfvihqOehQGvtb7XWXr9ac+9trX1va+3Igvs+Z/WMvq+1drq19p7W2s+01j7i4WzvRf9AtNa+XtL/I+kaSd8o6ZmSvkLSWyT9W0mfc7F1LMAzJH27PrQ11s+X9Ij8wXO4X9ILguNfJukDwfEfk/S0C6zr76/+iBevynyapK+UdEbSK1prn3QBdTxDH4R111o7Kum/SPpUSZ87DMOv4pKzkp4b3PrlGufgIOBp+LtD0itx7O88RHWdXpX3kw9ReU/WuK4mP3iS/rak73mI6rkotNY+QdKvS3q3xvf8P5P01ZL+3YLbr5X0B5K+RtKzJH2LpP9B0utbax/2sDRY0s7F3Nxae7qkl0j6v4Zh+Dqc/qXW2kskXX4xdXyw0Fo7MgzD6Q92Ox5OfBD6+AuSnttau3wYhpPu+Ask/bykF/qLh2G4VdKtF1LRMAx/kZx6xzAMr7cvrbVXSbpH0hdofAD/f43W2hWSfk3Sx0r6n4Zh+O3gsl/QOKY/7u57rMYf6P8gjPOHIvwcS1Jr7bSku3g8wybPxjCydywq92IxDMMf/3XUsxD/XNLbJH3JMAznJb16ZZH5kdba9w7D8MbsxmEY/gMOva619ieS/kSjIPKDD0eDL1Yy/UZJJyT90+jkMAxvH4bhDdnNKzPALThmpqcXumNPXZlIj69U53e01n5ode4WjdKQJJ01c4W797LW2ve01t65Mre+s7X2zd4M5UxuX9Ba+9HW2p2S3tfreGvtia21l65MDKdXbfrXuObTW2uvbq3d31o7uTJBfQyueW1r7Xdba89srf1xa+1Ua+3PW2t/x13zExql85sic0xr7frW2g+31m5bteVNrbW/h3rMhPb01trPtdbu0eoF3xvfhxi/IGnQ+ONi7foUSU+S9FJe3AKT5qoP39la+7rVXN7fRrPkR+O6fSbNDh7UqOUdcvde0lr7/tU8fGA1x7/SWrvZt039dXd5a+27W2tvX83JHa21n2+t3Yj6r2ut/XRr7b6VSej/bK1dEjW0tXa1pN+U9NGSnpX82EmjpvH01trj3bEXSPorSeE9q7X/+tX6u2e1Rh6Ha57XWvut1tqdq3H5b621Lw/KWjpHz26t/V5r7d5VeW9urX1b0qeHDa21l7XW3rZ6Nl7fWntA0neszn3Zqu13rvrxX1trX4r7JybN1dyfa609ZfXcn1yNxYtaa63Tls/SKNBI0u+45/2TV+f3mTRba1+9Ov/U1fqy9foNq/Of21r701X9f9Ba+7igzi9urf3hau7vXo3HTTNjdplGa97LVj92hp+RdF7Sc3r3Jzi++jzn6vmo1tovr8b/wdbau1trP3sBZUu6CA2vjb65vyXpPw/D8OCFlrOgnqMaTRF/qFEyvV/SEyR9yuqSH5P0GI3mqU/VONh2787q3o/SKI38maRPlvStGk2w34Dq/o3GxfYCSeFLZ1XuE1ftOSXp2yS9VaP54Vnums+W9EuSflXS81eHv1HjIv7YYRje44p8kqR/rdHcdteqXT/XWrt5GIa3rdp+vaSnar2QTq/quULS70q6VNItkt4p6dmS/m0bpdR/g+b/tMZF+VxJOwvG96HEKY2a3Au0/oH7Mo0m8XdsUM7zJb1Z0j+UdFjSv9RoUbh5GIZz3TulrdW6kKQbJP0TjXP98+6aI5KOSfpOSbdrXCt/X9Lvt9Y+chiGO9Rfd4clvUrSx0n6bo3S/5Ua5+Vq7RemXqpxPr5Ao1nsFkl3a/1jarhO0m9pXGefOQzDf+308XckvUvS35X0L1bHXiDppzQKHPvQWvtqje6H/1vji/7Yqh2vW61VM4N+uKT/tOrTrqSnS/qx1tqlwzDQr9Sdo9bah0v65VV536FR6HjKqo4PBq7TOBffI+kvJJkF4omSXqZRk5HGd95LW2uHh2H4iZkym0Yh78c19v8LNM7HuzTOeYTfl/SPJH2/pP9VkikMfz5T109J+gmN8/h3JX1fa+06jSbQ79Io2H2fpF9srT3FfqTa6JJ6iaQf1bjmrtI4H69prX38MAynkvr+hsbfj33tGobh/tbauzW+c2ex+h3Z1jjO36fRovNzq3NN4/v4Vo1jcVzjM/fZS8oOMQzDBf1JulHjw/Pihde/cHX9E9yxQdItuO4Jq+MvXH3/hNX3j+2Ufcvqmh0cf8Hq+NNx/Js1PmA3rL4/Y3XdLy7sy09q9Dl9WOeat0l6NY5dofEH7Qfcsddq9Lk8xR27QeML9P9wx35C0q1BPd+qcTE/Bcd/dFXXDsb/+3Hd7Phe7J8b32dK+oxV3z5M4w/LCUn/i5v3r+K8oqxBo4BxyB177ur4p2BcXxusK/49KOkrZtq/LekyjcLAP1qw7r5idfw5C56Hf4bjr5D0lqDP9vcZS54DjS+tv1wd/8TV8ae4ep+8OndU0r2S/j3KeqLGZ+Trk7q2VvX8qKQ/3XSO3PcrHq51hza9S9JPJedetmrLs2fKsD6/VNIfuOOXrO7/Jnfsu1fHvsQdaxpjG355pp7PWt37qcG5OyT9sPv+1atr/6k7dlij0PSgpMe441+0uvaTVt+v0vjD/kOo429o1LK+utPGz1iV9Yzg3B9J+tWF8/Lnbm3/pfa/Bx+zOv6sh2odPBKCPN6q0cfyI62157fRF7EUn6XRjPN7rbUd+5P0GxpNWJ+M639xYbnPkvSKYRjeG51srT1Fo9b206j3lEYJ7um45a3DMLzVvgzD8H5J71fstCY+S6Np8p2o65UaHcOUtNjHCxpfX9fqLzXTAK+RdJtGKfRzNWqmL194r+FVwzCcdd//bPW5ZLy+U6Om/FSNGtePSvp3rbXn+Ytaa1+0MgHdo/HhP6nxx2FJFNmzJN0xDMMvL7iWASd/prgfr5H0gEbJ/aoF5f6kpJtba0/VqEW/3q8xh6dpFMS4Vt8j6U1ya3VlnvuZ1tptGoW0s5K+SvGYzM3Rn6zuf1lr7bmttRsW9Gmy7pbcsxCnhmF4ZVDfzW0Vga5xHZzVqL0ujSbcm99hfIu/UcvW6aYwM6iGYTij0dLzxmH0gxvetPq0Z/zTNApynPt3rP74nno48MUa1+DzNQpYr2qtPWZ17g6N2t33tda+srX2pIut7GJ+8I5rfAAfP3fhxWAYhns1mhHeK+mHJL27jb6VL1xw+w2r9p3F3x+uzl+L629f2Kxr1Q+msIf3x4O6Pyeo90RQxml1zKqo6+lBPT/n2uqxr48XMb6s79MXtNUe+p/SqH1/uUZp994l9zpwvCy4YMl4/dUwDH+0+vuNYRi+VqNw8AP2o91a+1xJP6tR4vxSSZ+k8QfyzoV1XKvxR30Jor5EYd2/J+nzNAowr1yZslMMoyn89zWaXJ+nPILQ1upvajqn/51W62dl+jYz7TdpfFk+VdK/T9rbnaNV+56t8R30Ukl3tNF/lq6jNqY07Wtje+jSnO4I6rtK47jcrNH0/aka+/zTWrYOzg/DcB+OLX2uN8Xd+H4mOSZXv83972o690/R9N0R1Xd1cO4axe+0CYZheOMwDK8fhuGnJX2mRtPyP16dO6dRk3yDRpPw29roa/3KJWVHuGAJaRjt8K+V9D+2C4/2O61R/faYDPIwDH8i6QtX0scnSHqRpJe31j5uGIaebfu4Rknni5Lz72JVSxqt0VTYc+qa8/VFGh8Y4kxw7EJxXKM2+A+T82/G90kfL3B8nzpTTw8/uarjo3Vhzu2HGm/U6Ou4QaN/7XmS3jYMwwvtgtbaIY0P8hLcJeljZq/aEMMwvKq19lyNfqH/0lp79rA/2pX4SY3Rbuc0mu0i2Fp9ocZxIMx/9zSNwuOnDcPwu3byYrSsYRheo9FXdETS39Rohv3V1toThmG4K7jlvZquu9DKciHNCY59msbn/POHYfgjO7haCx8KsLn/Uo2WHoI/1h5v1riuPlrOarQSjB6n0XKyEYZhuKuNwXhPdsfeKun5bQwy/HhJX6/Rb/yO1frZCBdrEvhujb6S71Xwwl0Fdxwb8kjNv9L0xZA6JFe/+K9vrX2rxhflR2q0AduP7aXan2f065K+UNIHhmF4kx46/IakL2itPXoYhkgrfLPGH9OPHobhux+iOk9r7B/x65K+VtK7V6bQC0ZnfKNr/yg6vrCeN7XWflBjIM7EjPRBwMdqFEJM07xMLlJshRdo9OV5ZOvuNyQ9r7X2ucMw/MpD2dBhGF6xMr/+rKRfaa199jAMDySX/6xGLeoNwzBQ2jf8nsa2P3mYhop7XLb63DNTtjFq9PM26kCAlbD8W6uX5S9p9B9OfvBWproLXncXgKjPN2gUjh5O+HX1cOK3NVrpPnwYhiyIJsQwDKdaa6/WuM5fPKwjNZ+n8TnZeN23MTL0yZJeHdS3K+mPW2v/WOOz+DEazfwb4aJ+8IZh+O02sn+8pLX2URoDK96tUc39TI32/S/VOtKIeJmkb2mtfbPGSLZPk/Ql/oLW2udI+nuS/rNGbe1ySV+n8SH9/dVllnP1Da21X9NoSvgjjaaH/1ljfsi/kvSnGjXKJ2l8oX/+kEch9fDtGhf977XW/oXGAJWbJH3WMAzPH4ZhaK39bxqj0g5r9FHdpTHQ51M0/ji9ZMM6/0LSNa21r9H40D84DMOfaYzm+mKN0Z/fr/HH9nKNZphPG4ah+0JaOL4POYZh+AcPV9kz+PC2CvHWuE6fo/FH4YeGdbTxr0v6/NV4vkKj1vu1Gn2dHtm6+ymNgTg/01p7sUYf67FVPT9wscLXMAy/0FqzqMtfbK19XmRhWf3IdZOrh2G4r7X2TyT9YGvteo2+oHs1rudP1xj48x81/jDet7ru2zWuk2/RuK4nrC5zaGNk6NM1JtC/R6Mp60UaNba5iMS/LvyORt/tj7TWvkOjr/PbNFoBHtO78SLxJo1RsF/VWjupURj7yxltfmMMw3CijakU/6qNyd6v1Pjc36TRzfFrwzD8p04R36bRHPofW2s/ovHH6l9qDA7am8M2pkj9kKS/OQyDpUK9QuOa+vNVnTdrJNY4KekHVtd8osao1pdLervGuIuv0jger73QTj8UEVCfotFndLtGaeiERin3+ZK2Vte8UNMozUs0huPfvur0z2odUfbC1TUfsTr+To1RR3dqfEg+yZWzrdF0836NC2VAHbdoXESnV237f1fHLILxGas6n7lBn5+kMbT4rlW73i7pJbjmaRpfmBYx9S6NP/JPc9e8VtLvBuW/S9JPuO+Xr+q7e9XWd7lzV2v84XunxsXwfo0P69e7a2z8n4x6Zsf3IVgfs+OrzaI0vzO594UY19cG1/i/eyX9scaUgx137ZbG4Jb3agw0ep2k/z6Yk966O6rx4f+r1ZzcrjEE3yKDs/lY1OfV8S9b1fvLGl8GtyiIGsU9Wb1/W6PEfN+qz2/V6J/7KHfNZ0j6bxq1grdrFIwuaI40Phu/pPHH7vRqfH5O0kc8VOsueJ56UZpvS849W6Og/MBqTL5Go2XrQXdNFqV5LqnrTQva+w9WbT63KvuTV8ezKM3H4P7XS/pNHLt5de3zcfzzVmv8fjf3P7ZkLjQqNn+g8d1xu8bUgktwjbXxk92xb1mtpXtWdb5J44/iY901N2n07751dc3x1Rr9zAtdB21VcKFQKBQKH9J4JKQlFAqFQqFw0agfvEKhUCgcCNQPXqFQKBQOBOoHr1AoFAoHAvWDVygUCoUDgfrBKxQKhcKBwEaJ51dfffVw0003yXiC7XNra/27accs3cE+d3d395Xl0yGYGsF7LyR1YpN7Hspro/MXk/qxdGx69Waffk6yes6dO7fvM4LnjX7ggQd05syZCZH0sWPHhmuvvXZSd7QONmk3753jsH641sXF3PNwYWlbemO2dFyja/h+8Oe3t7cnn8ePH9f9998/qejIkSPDZZddNulPVN7cc9Fbb9E1c+i1icjOLbmH87CkXv9ejq6J7smuydoYvft75fM414h9cn14nD8/krqcPTsS4AzDoBMnTugDH/jA7CLd6Afvpptu0stf/vK9Rlx22WX7Pn0HrFEPPjiSV5w+fXrfcfuUpDNnRmpJe6myQ9HLkZh7OUYL3dqa/Rj7e6xNdszaRkT12b380YheBFm/WBbL9GXb/9ZG+845sO/S+EPlz9m99947sm0dP35833F/ra2HQ4cO6fWvjzd+vu6663TLLbfo5MmRLMLm3Jdn7bExtPLtWjvv+8prDRw3G+voR57jb9dYPZv8KFs7/IuA68vGi9fadf5evrTYDva7h+zZ8HXYOTu25AeP5w4dGqkmDx8+HH6XpCuvHMlZrr565B6+/PLL9V3f9V1h+Zdffrme+cxn7rXF1sEll6w5mO0dxPeOfykSds4+s7GMntOe8OXvmSvHH+fYe8zNw87OzuRe+9/G3e619cd6/TG7huWyTJtbf48d44+lHfdttPJt/o4dOyZpvT6uuOKKffVJ63fV7bePrI6nTp3Si1/84nBciDJpFgqFQuFAYCMNbxgGnTt3LpQMDNRwKAlRg/DHIlXVI5JuWN8SbW2ujWyXv4ZtXWJ2pabAayO13ZBJ2nY8kuzYH/u0evjd/5+ZTqI5Z/lR39gXSop+TjNtxq6xvnrYPHBtLNF82AbW39MKszGO1iglakq8S9po4BrtWQk4F3wGo/7x3sykFWmwkZky6oMvv6fVGFprOnz48J5mF82X/W/WAD6fhuiZZhlLxtiusTnkO4XPk78/e96jfmUaJBE90wZaYqLnltfaO5iaXmZS9feyLbzHP8cc88xy5TU80+yPHj26d29v/XiUhlcoFAqFA4GNNbzz589PpD4vNWUSQCYR+/spccw5TKP66JeL2tOTUvy9ka+IkkgmDfYw50zunaPU3PNvmiQVaYEsOwtO6Wmy0T3ZmLbWtL29nWo7S/sU9UOaSq+c48i3Rmk880VF2mLmO4zWbKbVbuInyzTI3nrj2qTPLpLwOfZsazRWtr7ow7FPno/q2dnZ6QY57OzsTKwrvfGy9trajJ7pyI/cgx+vbO6yzwg2Lr2AFGqK7BcRvedYbmbhitpiY8M5pbYdtc3KMo0sep7tnszKF/nRbdxMw/NWxzmUhlcoFAqFA4H6wSsUCoXCgcDGG8AOwzBRTSNVP1ObezlgVEtphurlmmSmRlOJ/b1zJpFeME52nO2IAkIImvcic1tmGumZbJmWYGYI1mfhvdLa7GDh3FmwUZT+4D97Js2dnZ3JWPjv1l6aOQw9M2gW4LQk6CZbm9G8zQUpRYEJXNcM6ojMrVkbs/p6azZKBZKm5r7omqz8aH1znUXpCCx3aVDG1tbWZD569/L5t+9mxpTW682O8VnuBedlQV694A6G9HOd9+aS6zhLZYnMoXxu+E6M8uKy73xG/HhmQV8MVvFrzNrCNXPppZfuOx+Zao8cOSJpfHctyROVSsMrFAqFwgHBxkEr3sFrv7pe6rdfaJ7LJCF/jNJzFNpLUHrJJNFIC6X0xwCHSPLJnMh05ntpJwvPZiJmJOFnGh7b6Ocgqy/Ttv3/punRKR1pCUzYPXv27OK0BJt/Py/ZfNu1kbRnmNNMonHkfGeBSZH2zDKIniaZSc1RcEyUxuPRCzGnBpOVHY1JL33EX+fPcW7t0yTxSNvxGkNv7USI2p1p6yQv4P9STKTAegyZ1YZaXBTQx3I5xlHqRKZ5Zakg/v8skCbqQ2aBySwm0RzwWj4z/t1PcomMWMOPCd+5W1tbpeEVCoVCoeBxUT48+ojsvJSnGEQhylno+9IE8agefo9ComlDp7Qc1ZPZ7lmPbwdDenl8SYIuJS9qpz1/U5ZyEIWWkzKo5zeh9LW9vd2V0odhmGgOUfJwJmFHoeVZuku2hnz7Mx8X10NPWyMiC0akzfjjSxKBOXdsRxSmnvUjk9b9uSwdobdW57SOJeQIEYZh0JkzZ/a0gEgjniOcsHcVtTp/DYkNrPyI8MDA95k9P5dffrmkOLXJNF4bDyZ5e20+mzv68Jkg7svP2rwkNYjopcWwbXx3RVR2pD2bi8Xw5XrLz1LrQGl4hUKhUDgQ2FjDk6ZSpdcCMlt6L+KJ/pyM4qvne8qk80jypXRJTSVKKs4opLJIqEiKsX7Sdxf5szLNJJOEepFdVj4p26L6qDEywi7yL1i5Ozs7XUlrd3d3r3xrUy/Kq0f1ZqDtn/NN7XbOB+n7lSWX+7ZmCcgmxUtTLZlj1KOeY7uzJOIl5AVco70keWo1WXJ5VA6tBfRr+XZ7f3rPH3r69OnJ+ETzMpdkHVlC6FvLxikCnxP7tPn368DaQEsPrUJ+7LP1S+tH9rxG7c/oEf21Vh/XQeYX9OVwvrl2IsuSkUdn9GeRpuyJIUrDKxQKhULBYWMNb2trayIheCkgI2/tSZWMpJqjmYmk9Oic/96L6DJQmoo0IOawLNHwKPHShs4+eND3YG3m9ieRNprltfUoweh3sbZa9Ob999+/d0+mVUUYhmFfJF7kW6Wmw37we9R/aqgc6yjai3PK71FkcpbLydw6X0/mb8v8c6w7KqtHPJ5RV/Genr+Z4xlpeHPb6kQ+bOYe9si+h2EIox09TJOycydOnNh33p49/8wzojzT8CJfJ9cb10rP18l56VmWbG1wCzVaGKJ1l20D1LMsZVYO+7T3jo1V9OxbDp3BrrV3SBQHQGthL4fU/vfv04rSLBQKhULBYSMNr7Wmra2tLotJZksm+4ePlqKGRz+VHTdmEO/3sXIYwZUxEfjyaVumthD5CukXywiZozxD+vB6dmr7/9SpU/v6yQ11eb1v/5xP1DOtWL+Ys2VtjXwS9913375r51gzPPF45Iex8bc+UurvSc0ZehG+Wd4d11TEBsPNarOIX/9/FmHHNvq5zDSGTMKX8kjbLOIy8qkY5qJR/T2Uxm2Moo0/mXM2l4e3tbU1sbxYJKQ0XbdWl/mGetGH/jnw7eV8Rflj1LiuuuoqSeOGx9L+8bN6OF6R5YL94rPA91CkvV9zzTWStLfpMtdMRI4+tykuNUDfZlt33BiceZl+rqzdfPfTUua1Rrbp8OHDpeEVCoVCoeBRP3iFQqFQOBDYOGiltTYJsoiSh0kZY59mrvJmBKryZjbL9inzKq2ZTUxtNzCIxZuJGDZrzlSrx8yI3hyRBXEwcIeBKf4amglsLOzTq/r2vwWJcNzse2TSYr291AVea9dYPT7lwPdbmjqne6ZGCzygKcvPfTQOvm9RyDWDFcw8RJNvZPLgMQYIMFDAl0uzJ9vq53/O/M3gCT8mvJfzQHORP2efHD+a1KJEZ/ar9wzSZJ+RwEf0d36+5tantYkuAWm9Xu3cox71KEnrPdMYKCKt3xl33XXXvnbSFGz9i9YfA14e97jHSVqbNv1YfOADH9hXj7Xf2mHjY8+BRxTwIU3Xv9UrSceOHdt3z/XXX7+vrfb8+vpsXdO0SZdHZvKU1qbMq6++Omz7Pffcs3ctzd1mpra2Wb9s7KT1PFxxxRV7ZZRJs1AoFAoFhwva8bwXQszQbpO8THKwX2ovVVJCnKMn85KWSRx2jFK5SS+mtfnyWS4DNCJiYybTMiCAmq0vhw5aC522MfH3MGjFPtk/JrpGbeE4RoE8PGblmjRGYl1p6vTe3t5OJa3d3V2dPn16r3ymVUh5MBHXhb8nIzfmPJnE6O9lci0Dn6JwdLuW1FFZEIvvR0YSzgCeiKqPbaEW5zVvBg0wqZdrq7cOsrQID4bkW1ttDiJScGp9rbVu4rmnNLS5jNpidZl2Y+MSUeVZ3XYtUz24pvy8ZFs+URP37yorz6w21FTtXenn0pClwfBaC1SRpHvvvVfSWrMz7ZNtNA13SX29XewzSjmbr8h6wGfePu0e+4yS8W28LrvsssWBbKXhFQqFQuFAYGMN79y5c2HovYHSo0kZ9mvc23qHvq1IwpbiROBeeK4v2//PpEfTtEwSMRuxtJZsGCZOjbaXjH333XdLWo+JaU9e+2Qb6WfJfIkRbZOBbaQfypdPYlumMPhxXRrCbudOnz6dhub7vrB8as3R2mHiLdvSs0oYmFQdJUVT4+Emp1ZGpK1HUnHUxojo3MDQb/q7o2M2RnwGbd15fzrD9+0crSt+7in1s7+Rz410d5FW47G7u5sSN7A90jQlgs+vNNVEM8pBplR5MAmafjnTHj3s/ZZRbkW+To4ttTTrX7QVlL3HaGEwTdOnF9kxvrcNpPXy7x1bd/RJ2xhF1ohMw6OlIdpQ2cb4yiuvLB9eoVAoFAoeG0dpeg3PftG9RGJakv36msRAiqKenTrb6iWSKmh3Z3SeScLe/s7NID1dlm+7lxrpB8nor2xMvDTICFUrnz4b30b6W6KtmKS1jdv78KiV0bdiZUQaHvvOqK1o+xGvFcxpeTaOkb+CidgZ6bWX5khHlmnGkeaXkUPzHt/nOSLoKJouo0jjXEbH6aOkb5Ias293RjzAxOpIozBkZOVR4jmThmmhiWivDHNbvAzDMInsjKwNGW0XSQ38MZI6mOabJdCPbTQtAAAgAElEQVRH7bc+WlQoyTKkqeZt/WBEYkTkQe2SVjGLzvQanj1rfB/wved9eBZXkFnkqK1FNH98v9in+b295czKsTGw/nKsIrJyHzla5NGFQqFQKDhc0PZAlG7M3iutJQDTFEh6zPw1aX7TP9YXSRWRX8p/95IPo/0yyTuK/LH2mwTC7xF9DvtHjYWRf75ualaMNouiz+jXyiLtvHbFcWTOUBbx6ctrrXVt6ZEU5ttAf0GmnUXzws0153LP/DHmGNEnFfWJGgXnNNrOxDQIRhRTY/H5jZT65yjGpGmOHjVYtt1L3PRbmcZCRNF51MB7JPO9uczQ2xIpWtO+zijnkFqYnbPj9JNTI5fyTW6jaF1q5VYfo059G/leoYbFqGf/3rF5tfKOHz8uaWqF8zEE1jbzPdJf6vPh2D9DRkRvbfc+Q1r8oqhzgv7MTVAaXqFQKBQOBDYmj/ZZ7abZRblUZK2gFOjvMQmL0qVpG/ad0o60lhbo82J0j9mzpWk0KCOD7B6f05L5EWmDjrYHMkmKtmdGdnrt1NrEiFUDc1q8lGZtZA4fyb695J/5dWyeon5FPtZMw7PtgbINLH15Wd5gtK0TiZINmUbkx4kSKNdZRDicsW9w2ybvK8q2OmH5EYE3JXmuv8hnzHXFtUPrhO+flWtr0cYr8yH68jm3XKPe9x4xxGRrp7WmI0eOTNZgjxCevseIFcrmyMbDCJ/tvXbllVfu++61WuuracBWD/OMI4Yn+r9IEO0tHRkbFK1QjBPwY2Ewnx3Zm/x1jDa2sbHjzAf2zC533nmnpCnDisG0Rj/P9m60a2n1iqxtfF+fP18bwBYKhUKhsA8XxKVp0p9pTV4iNenEPk0ioI3W23Gp4VE7o7TkpQpKArS3R8wnZFagH8YkIC810O5uklwmkUQRXcyV4ThGUjNhdnjTKO1efz2jzugrIl+mb6ONn0le1Gz9OEYRtz0pfXt7e+IL8HlK9FNkG/X6+qjheH+ytB4nsnT4/tsYMl+NXJTSNJ+LlozIX0XfILda4vYtXhOiv4++L861b1vGfMFovR5HKX020bpkW+hzt+N+TKgZ9aI0t7a2dPjw4UnOmwetA9zc18r2Gr5d+8QnPlGSdMMNN0iS3vnOd0paz4utD68Jcx3Q6kXLj2+TtYF5v1F+JvPtsvORL425s3x38X0g5ZsRMx/Q5sD7eMnve/PNN0tav+vf9773SVozvkg5d6e1gxYO3xbD2bNnS8MrFAqFQsGjfvAKhUKhcCBwQUEr3IrDO8xNRWWIeRYiLa3VVqYUkPiXpKH+Gqq+FpJrarY3zVi77RojV7WkS6Yp+HtI3UNzKAMepKkKTlOgmWi9OcFMJNY2mmYj8l0DgwiY6MrrpPU40Slu3zk3/twSAmCrj5RVPiQ+S+pmyoE3F1vdZkoyx7mNKevzwUtmlsmIxiOTJnegN1j5PWLuLHy/R/ZN0xxJC6L6bC0alZ3VY2NNSq1objkmNA17E2qWnMxgrIj0PQqGysDAmSgsnSZGbvXkSSb4fmFKkb0Prr32WknxFjW2Hhi0Yt99UrcFwXAurT4GiETIaAMjwmu+p5luE5HWW39sHG2bJZqtSR/n223jya2aomR8W5Ncxz0qwIxsYglKwysUCoXCgcDGQSvDMOz9ckehvpROqIFx+wdpLQmY1GhOTgYAcMNRaZrYzjD1KIiC0qQ5XhlE4iUHBhQw3YHksb4OSyg3idu0j4zg1pdvQR0MOPBBP1K8fYbVy/BwSpa+LQyKYLJstHWN1xCixHTfJ5tjpob4Y5TcsoRmaaqNUytjP3yfmbRr42JjbFqjX9McDwaAROsu2/Yok9a9BMwk24xmza83EriTwCHa/spgY2BjYv2KSKoNpE5juD23svLtzoIxIjDFwI9TFuhEi5PXCu2at7zlLZLW1hRrkz2vdo9ZD6TpumI/bOwj6wDTAUzLibaHYhK8ge/Z6Pk0cnrrJwO8uHb9OX63tluZkeXHNFgbR3tH2ZqysjzBBkkEmE7CtDZ/zgcxFXl0oVAoFAoOG28PNAzD3i905IfxWzZIU4JU+/QSCjU5UuxQevOSKbectzJIWh35RZggSwnLSyKUsKhBsD1RAmhGim1SUhTCzKT1nsZisH6YREd/Xxbu7+thkrzBjyMlN79JZ1Tuzs7OJMzdS9z0oVC6i0L+DdZXJm+bRBrRhEU0YNKUyLa3DQ01FVvXUcoHQ7upHURh4kwxmEvZ8OWa9YGh37Y2o2cjIyunv7ZHmZURBXjtgYnGPd9va02HDx+epNnY3EpT/y59eNRCfV+ozZrFx95rpul7/x/nkj5Og0+Toa/Onh+rh3EHvh6OcUbYHdGfZVq7fdp5D1vH9ryS6ou+PGltjbJ5IWkGibWl6Vrh995Gun4Tg9LwCoVCoVBw2EjD297e1uWXX55ua+L/Z/QNSZb9LzLpmDJfTi+KjdFjJoFQMpLyDQoZceWTomnLpnbAeryUxqgyaiGMjPL3UPu0fnFMvF8r2xqF9vlIo+S97F+kDRh6/jsrm7RaS5D59DyijSJ9GyP6Ns4hx9ykSy/d0ndGwucehVm2WSzb4fvHhHn6dKL1TWk309IiEmbOD60Qm0QFM4nYj4lJ+0slc7MQ+HqiuSQVGsv3a5TnGLVIAnJPeEGLS7apr9f0rW4S2pN4wFsRaKXJNGNqRL7dpnFxHZgFYMmmuLR+RduSmUUsoz8zRBqsgWuShB7+muidNIfS8AqFQqFwILBxlObW1tZE8vUSArfUoMQYSbH02TDXbBO/BSWSiLaHFEiUYqOtKbilhoHbz0Sai93DLXcYLeX9W9xwNtvQNNvE1B9jnhTzmXy5mYZH7TDCzs5OV2Lf2trqStzsW3QNv5PyzZBJwNE40W9A7c2D7eezwPxTaRo5TL9MRqkmTTVs5lL1iJSzcYy0NEPkJ/fXMs8ta0N0b2SFiN4HUZvOnz8/iW6N/FVZnix9br5Omx/Ok7XXrFXRdlp8Tng+yq3ltRwf3y9aZ/ge5TMebQBLkn+uuyj6naTV2bZbnlrMjtl4kRYvepdk2hojfaNYhcxv2kNpeIVCoVA4ENg4SvP06dMTKdMj2pBUmuZVeFDipOS5ROKm9Mcyow0rTWqx6Cva6r2PwPplEg1t95TavRTHDSaZExRpaeaLiKRYj2gusm2AMpYWaarlMkctiugju0Mvp6q1tk/Di/qcRYb2vme5bdTsuC6iPlELYFt9eZnEHUW8sTyWMafdSFMtPWK6yEDpOYsWjtqS5ZlFPjwDfXmRn5H37u7uzo4DLTJRpDe19OydEp2j9kJfe+S/zuayZ3Gx59/eM2R68e8qapK0BmRbT/lyLWLeWF+y7dCk6XzzPWcaHzcDkNbvRka/Z33w5XOMaAHwfj+bL2tDj3icKA2vUCgUCgcC9YNXKBQKhQOBjU2au7u7eyo5d/n2x3wIstQPo6f6n4WW98x7VNNN1Y4SMhkSbeqymRgiomgzf9JRmoXg9tIEsjQLbx7I+pqFQUeBDiw/C3jx9xgYQp0l2vu6IzJfD0sg9uX6MWZodZaUGtXNT45P1Gc6zBn4FJmnGDzEBN2IRovl9oJwpDgghOkI2e7w/hqaUDNzZVa3/94zS7INfF6joBW2bXt7uxvw5InHI/o+Bsdl5tTI9EU3S2ZW8y4OJvMzuCgK7rFjZoq75pprJMVBIwb22erhpyGaUyO/5h6ltk68uZDm4qx+fw/rprmXYxOZe/k+5fGeK+Ls2bOLUxNKwysUCoXCgcDGGt65c+f2JKIoeZQSFn/NexpQRrLbS7JlufwkybM0pfax8u0ak9a9lkDHNvuVSSi+LYZMGvH3kmw7CzGPJH0GVDCwJmoHy6fE3AvgWLo9kJQ7tP25TOKO+krJPUthiYKlCLY92iaK6Q8mLTNZ2WvoXBNcDwy4idZHJmlTe/TnWN+SgA62jePY08KyNkVkAyy3RwBsaQlcg1G7GVzTW788xt3jaYmJaMnYR6s/0kxsnk2z84ns/t6e1s4gmSVEDvYuefSjHy1Jes973rOvLJ+GZes5C17pWXPsGLdIs36TxNyXZyApdvQ+4ficPn26glYKhUKhUPDYOPH83LlzE7u1l6qYPGlSU5Y+IM0TyFIz6UmkDC2OwmczwumeH4i+DLaVibm90Pls887Iv5RJPNRcotDyLGWCm736NjHRlaHgUdKoPzcXWk7JMaLgoqSfkV/7/+fSEXrIfGqRNYL1MAWEtGG+nGwLlKy/vp7MUhJJ2kxhyHyThh4tWbZ5cXQP1x3bFhEdeNLnTMNrre2zHkQ+vGyt98Yp8xHzM0rj4VrM2u7njZodKQ57qT8ZIQRTCyIt2s5dffXVktbvZNv+yK8He1/yvcL1ztQNaUrgTmtHlFifpTT1UpE4p0vp6aTS8AqFQqFwQLCRhre7u6vTp09PCHK9f4xSSxbF2KNCogaU0TlJefIzNaMoyodShGk+kRTLNtm9lN4pXUvTrUsoATNR15fPiDdqyCSX9eeyiM4o4TSjgON2N1FUJTc/jTAMw96fv9bfY+uJ0b/09/Xs+pmG2Ut6jvw7/nuUoM9rqWH0rAPZVj92PNo+heQBHOso0i7z3fYsKnNaaOQzyvzaXKPRmHhfdSapb21t6ejRo3sUWVxDHhkRQWRFmfNPZhGD0TXZM+a3TjMNi1YAWlf8/Gfavz2P9u6NxoKWOKv3hhtukLQeE0tIl9bPsk/q9mURkU80G8deHEBmdeiNub0vagPYQqFQKBSAjX14u7u7E5ow/ytMHxqJQyntSvM5Z5TAooikLBor0p7myKgjuiZKOtS8MiJgaS3h2vYZRmVGjdZrEjzW0yDYBxt7apvst5faTKtifhHnz7fRtApPldQjEN7Z2Znk2kVb71iULK0FkT+LGlcWgRhJ+Fn0JMc+0vBYBqX2iAbP+pxRl/U0b7vH2mLzEkm2zJ3MKNPYh6h/vCbSpLM8PFpKfD30sfci7Sw63Ciy3v/+90uKtcxs66Voi6w532ZGVyZN55L5khbBfv311+/dY33NorajNmYaqj17va2Fsr5bO0zTi2IHSG3IMVgaFemvzbYL8sjKj8bexro0vEKhUCgUgI00PGPKuO+++yTFTCsZE4XBJJNIm5kjt41swNkmmiZFcPPVqJyMIcRLWpnUT58BI5J822y8/JYa0tR36EFpeW4rlqgcbqfSy/NiDl9vqx5rt/fH9SLtDh06NInOi8aePuJepCXHIdPsIl8LtUNqT72thOgr7vmoDWQe4dqNCLXp7yWTBzVmaT22ZLMhaXq0pVW2lVQPS/x8/M757xEAD8OgBx98UNddd52kKYuS71v2nPSYgjjPZEkh+4gvj/Ngm0bbM+7XG5+XjAmnx4DE3FBq0X4LI/pyabmy/hgTi6+PLCzZc+Wtc1mUNeMPohiMLNc60vjMQmb+y7ltyTxKwysUCoXCgUD94BUKhULhQOCCdjw3FdWCFbxJgGazJYm5ZnrJ9ofrkeDyGpoWSbrr7zeTWUa2HIUH01TC/ehIuippzwRsMLNDltzN8fFtZHuy8x5ZCH2UzJk5jXtJsTTRRtja2tLhw4f31kwUtEKzsZmASfXU61sW2BT1iwEAGSFvtJciCQ1oUusFgpDKim4A3yeag3hN5CLg2No1TCOJSNm5NnpmRmKOGjAiqMhSj4itra2Ja8CTOTO4J5uPnkmbbSKps3dxWLCIjZ2Z1ywwzWDmN2k9DzYvlmZB82FEzJy9V+0ddfz48X1lSevnkvv5sY2+n0yKt7ZwrVo90drhu5DvZP9scrf5LAE9oiC0cazE80KhUCgUgI0Tz0+dOjWRNry0RydntC2LP+7/n5Mqo7Ii56m/JqIWsjaSUJhajJcc2GdKLUwujwIPGJyS7Q7vj2Wh0Rl9k0dGWRSF6HPbj2gbJ3+vNA0Imgs8GIZhQl3kJbpox2d/PErqz6S7iPbMf4/67Nvqy/btMWk4k16jJGxqjtaWTLP0Y8zgK/bX+mmpHFG7qd32tPlst3JDlICcBepk2rdHZG0gGPCU0VH5chioE4FBHQwIYhv9OrEUCVsPpuHZPDFlx5fD+e5ZGGxdcd1FKSzSfq3X2sR6Io3bYFqhjQW1aVrDImRpZNZWr1Hy+ckozDy5SbT1WwWtFAqFQqHgsLEP7/z585Nf7Mg2n0nW/AX3/2dpCD2JjucobVp7PEmx2d8pXVgZ1mavNXpfky83S0CNNDxKjtwOJEquzCjL7DMK76cUlmkFHtRUMwm5J0nNJaN6DZBjHZW9iVabhXb3JNLsHo6xXwfZPDMUP9LwaFmgPy4iSehtA5X1i1u8sFxu3xL1LyOtjkLn54i6o6ToaKuv3tqKrC1+vfFebp/Dev05rgOuY7vHtDppraWYxaIXes97ON8RpZjBNJuIBD9qo9eEaG3IUqj8euP7LGtjZG3jeuYaYnqUb7eBsR7mb4zWjvcjloZXKBQKhYLDxhvAnj17diJhRVFs1BBIyRUho4HqEQNnGojdYzZ0Hy1lyKSyiB6KvjnzmZhtm3bliMLKys+onzwySZs0PT3Jhj47+jN9G6l1RDRHvn7fRkPPrm/XZyTcHvQtUSLu1cNtW6KtZAyZH4RSpr+XfjhG9EbzQd+TYW6jW183rQGkGouQUZZxTpeQ+RKRZsbnJ0si9uht6kxYmxhlKE3HONICs3p4jWlTGXmBvyYixvbnI+sXrTbUwCPrUOZ3Y+SqJ6smmQTbaG33yerc1o2RvdwWKIp65rPA9RFFh2c+8civz/W1vb1dGl6hUCgUCh4bR2k+8MADe7/GJiFE2kxPsuY9Bko8c1uxRKDNmf4MaS3RmL2bEgjz86Sp/8U0x4zKLMqp85IUy/dlS1PpnLlU9IVFklYWpckcHv+/9d3qW6KZW/96BMBGHt0jEWduD30PUdmZvyWT7COfA/vBCLWIHspyKxnZF0U30o9IPwz93L5d9EVlVoHID0Nth3lLSzZFzXwsUd2ZpaSnVXmLRY+Wbnt7e9ImH+3H+V5iATFkFoNetC7zxjKi+14cAJ/hiNw787tSo7V3S5QTy/VFzcv3iz7J7Bnpge+5jKRd0uS3hO+AKHeP10T+0gyl4RUKhULhQGBjDe/kyZMTyTfa6ifzdUR5cXOkvdH2HAYrj/lj1CS83d/+ZxQbtUKfd0ONh3lktHFH0iAle/MD2mckabI/HEdqw/4a9qvnP2OeTRbl1vMvnTx5clbDo+8pss3zs6cV9nILPZYwg5AI2iwAS/LUetunZMS4c+2Rps+GlUFJPNp6h22kXytiBVq67YufN0Zt9zQ7wtbZ0aNH0+ttA1j6laJ8xSyCPHqHcO1Q8yGRsp8XaiCZf86PbeR7lNbajX369wTr4RhYmdG9tBhEvnt+z6JADT1LD+s1ZDEZvj62n/2OLBh+vZUPr1AoFAoFh42jNM+dO7en7XCjUWnqK8l8QJH/KOPSzGzP0tS3RYk7kqqZC2hl3HPPPZKku+++e9JGsiDQL8c+RBK+jZdJaeYHuvPOO0XQnk97u+USRpGEWf6Lfbe2elYGzhM1vIgFhBrJkSNHZnOpelvGZJoCc4K8tJexiLDMKNcxi4CzObXPyB/L/EeOn38mqFFHa8Qfj3LOrD67J4qwM0RbBkXfo0g7to3zGfkQqeln0ZqRpuwl+mzt7Ozs6Nprr917TqK20YdOrbq3ua6B5dJXFFltaHXgevBMKxZBSa2GLE1+TslmlGn6xoEZ5XDa+41WIW727EGNmXMaPU9LGX38OqBmx+9RTAQjY4tLs1AoFAoFoH7wCoVCoXAgsDG1mLRWgb1JzBDt2uyPRyHxDK6wculcjcJ2aULNwrd9AIrVzU8mqfs2RkmhUb2Rs9qCUqzv3In6xIkTk7LNVBHtKi9NzclRuHBmSrN7emMSbVXDdnDsezsPW2g5TUDezMbd1rMgliiwIkuy75nDmeTKEOheQIjtbM1xi7aWYsAT00V6od4kJ2biOZOkpWkARZYaFKX9ZO4Emiej0PJNTJpWjzfnZe3c2trSpZdeujcGkQkuM0v3kKW7zAXA+GN03dinuRw8paGZZB/72MdKWs8tzbE+lSEjx6BZz8ry9zKQj89mLwgsC5Jj/yMXR4Zofq29NGH2Es+zZ3wJSsMrFAqFwoHABW0AazCNKArQyJI5ewnnGZlvlkAtTTURSi1R4IFJD6Z52UaMvS1+WC61JEpTXgq1c1YfA1yYxOzbmznd6XiOttkxUOuwefNaCB3YnL8oaIXlzyWeHzp0aKJB9iiDMse5bxsd45mWECXZUorMNJNeYiu1jsjCYVK+zXNGfxU9MyRJYHBEpKVwLueCByLiCNKecfyi9ZZR8/W2v+K2XhHOnz+v++67b1GCMce2F7Rk4JrN1mGkZXCs7dmK1retA/u8/vrr99Vv9/h+Wrst4CWycvnrojXEJPJM45OmVii+h7K59tdkZAXReZbHYKNoWyyuxQpaKRQKhUIB2EjDI8VPRJibhVxntmF/jOHyphll201IuTbQI3clOTCT5SOJgVoZ+0X/Y0RLFiW0S2up0Cd9kmpnjjTYS4XsMzU8r5Gxf1H7/T1R4qnVfebMma49fXt7eyLB8XzUR/bDawWUpKlN9PxlmUbX86llWgzTBvwa5T3mIyY9VBRun22T0kvz6SVwS/3EY7aF2x5FY5RJ8JGfh/1aouGdPXtWt9122+SeiEzCpwH4NkRzyvFgu3tWA1qb6MPrpZhkG78eP35c0n56sBtvvFHSdJugaENjgpvRkmax16/M6tZLK8o0457fnmNNDbbX1k00u732bnxHoVAoFAqPQGyceB7REHl/FaVHXhNF/1Gjo/0425hTmkpwTN60z96mpxZxR80rSuKkjTsjWfYSOG3n9MPQH+OvNcnd2pptmTSnWfl66EeL2sh+9zQ8PyYZtZclnfek/4wKq7eVUBY9xmjZSFrnsZ42YJhLyI4ixyjZWr+ocUdgVB7bzjXl28JI3sz3EW08yo2AWW/kU8kk+t52W4zwjLC7u7tvbZkv1DQiae0PIxFDRu7MPvTab/D3ZkQTGeG9v9Y0fIvONtgzeOutt+4ds2hPO3fttdfuu8faGm0EbW2w2AEbL+uX+QX9M9+jyOO1viz/f/Yc8bmWco2uFxXMvveiw4nS8AqFQqFwILBxlOb58+cn0kvkUzOYJkSNJdIuqD3M+QakaTRWRi3UoxSiFE0iaGnq08iiGnv1Ma/LxpE5d9LaZp9JS71IK7Y50z57lFKsh37bqJ5z587N5sRQE/frICP85Xrzaywiz/b3ZJKjryf7ZA6a/z/z99Hn6vvKe5ZsaMv5zcjEe9rvHP2a7wOvIbVTpP1E9H3+uH16LZW+u9Za1/fo8+qi3NrbbrtN0loDIkE8rQUeWd/YniiPMIv+jObF5s58aXfccYekqZ/WvwfMJ2n9szIYtcsocWnql6d2nll1fJsyi13UP45Bpr31Isr5juz5+jMttIfS8AqFQqFwILCxDy/afj6yG2fbZERRmtmvORkVIlaRTLJnGZHGlWk1kcSQ2a4zO7+XYHnM2miSnLXDpDZpLe1RkmKeUaTp8VoS2kbk0dkGsxwrL1VTgpvbpmMYhjRPzpc3twFwVEemBVKqjfwH9HkxPy7y+1G6ZLRe5OvOIh45Jv55YlRmRgge+dSoqdKCEmkymbRMqdrfE62DqH9+7Mmas7u7283hvOSSSybEydEzTf8/+xppaXNMNNG9czmj9Ln6e2yczLdG64m3LNk7wtpqfjh7DrlNlPn8pOlG1lau3RONY2bByKI3PbKx6DHWLI3o9GuX47jEsrRX36KrCoVCoVB4hKN+8AqFQqFwILBx0ErkhPVggi8DNKJyaEajCa63nxKduBlBc0TbxXQAmmSiNpJKjCS4NAH6urPAmmj374jeLCoj2n/NwKCILLHfnzNkwRKR6WCJSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNL7e7u7jPVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw21113naTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQuFAYOOgFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201vba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdOXNGt956614gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5J0+e7JI3eJSGVygUCoUDgY01vHPnzk1Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCwwUlnptEEv36RpFGHlFk2JzPjvBSkxGxMnk7oxyTpiS+jLSLJF8rl4S7di01Ph8BadIXty7JIgx9PZlfgdJ0FEEW0bhFZXlQ62CkVy8ybs6Ht7u7O/FBRiBUE7gAACAASURBVITZGa1VJDlSW7d7uYYimjCeY9RuRKxA6ZySto15LwqZ/cjIGqI2ZhHLESFElszLyOWIjD1DFGmX+VtsrURJ2OxXT4tqrenw4cN7zw+Trn0dNpYkgo98+9k8ZFGaUXkZTVv03qFPmGvXEG31RHIEnjf4sWZsAD+jZyUj+zBftd1jml4U/d6Lqpf2P78cWz6nJBn3/dokOtNQGl6hUCgUDgQ23gB2a2trImFFfhhKQPQfeNBvlEmmBi8xZHRDlKYirYCRVEb1E2mp9Otl0XP23UskjIajBESCbd/eLEeR4+ulHebdURvNNnn1sHtIORb1y+fZzPnwKDX78qjpUsrraT4ZOXAWGenv5Tjwu19v1Fbov+KY+3NZjli29Y+/dy5aMopiy8jYMw3Qt2mOmi3S8DKp3I5HxONeu+pRi21vb0/WQeQnZV3UOny7GZXLvkbarIH0c1nOYTRO/M73QfQ+zSgFe/4y+mP5zrCyvDbMdyC1UK7dyB/H3Osl/jU+pz0Njz7hpf47qTS8QqFQKBwQbKzhHTlyZGJL97+49GFlEoKXPjNNg5JjJKUzR4bSGCPSfBv4yWg5Xw/9XhkBdcRUYX4wRjpSGlwSQZhpyv47fXf2afMW5QpmEZ1LyGI9c0xPw9ve3p702fthOJaRP0yKNZIe0a9HxHyRbbkT5WOyz5nPJmKg4NxlkmqPwSjL2erlKGY5gpkFJTrHXDvfdmp9WWRsz7ozB3v3+P70tnrK/KF+7Vh5zPfMCKD9ONHCQ18u10fUhuydEeV9Zv7FXk4d28QoYOb4RmNi7y6WH8U50JKRRV5GWqGB6yvS8OjHLPLoQqFQKBSAjbk0pfWvvP36eymdEYn0pfV+iTNWFtrnozwsk0juu+8+SVO+Sq/5UZKnv6pnE6ZkRWkzyjki/6aBuYpecqEtm9Ig/Z4ezOux/tlx+7T5k9bjQ/5SQ6S59lhMCPPDUBPyEjj71ONWJOgn5TVRJCw1XW6jEvluMqk1y3XrtTvT6KIoNqs3Yv3wbff3eyaKqA/R88R1l/HARmvVtAM+C1EkKcetl8Npa4eaQ7Q+yDFrz9wVV1yxV5YvV8rZmXrvLPro6HdmBLb/n+XRcuWf6blIR46tr4/vG4JR474t1i/Lv+O4GqI5o3WA7+DIIki/Irk8/W9MxK5UGl6hUCgUCg71g1coFAqFA4GNTZrnz5+fmG28apyFyVL19efp7CSNFlXjyKxGkxUd9d58RxOCtc2SKSOzFIM3sq0voqTuyMErTYMmIoczv9NMZOhRtZlJy0wc0Y7nNI3QfBSFozOo48iRI4vTEmj+itrNeY9o4hgAwrQNzqU3F0XBO758mqmkKSk1aaiiHc95L9NhuKairXeyRPPe9lC9c9LUpO7rM2Smpsh0zyAJG6PItMbx2dramiUeJ6l41C+aaUn5FiVKR8FJHhHhudVtfaMZPjJpMoWKa5RpQ/4YST4YnMPrfX1LyAoyMJWB7+DIHM70BJrJo/WWbSEUrTc+y6dPny6TZqFQKBQKHhcVtBIlSnIbjmxjRo8opHZJ/R6UIighRFKzgcEKURIzA1ysDE/W6s97rdfu9Y5XX29EvhulfERtN3jpk5K9nbMyrW3ROFJTpsRlTmxpKskvIY/OAhx8edyCyRAloDMxlwENvfSNjMaI0nmUNkNptqdJsp6MTinSYPn8kIg8CoRgKhDHoBf0wTbRssAQd19elF4Tfff9iYjas/ZkW0FJ0+A4ak/UzFl21Ba+5/xatbptPozikCkOfoy5VvmOjNI3GHhmzzDXErcc82NhGmO2xViUBkFrWxZM0ks8Zxuj9Z8l+TOtIyLH92lWRR5dKBQKhYLDBW0PRP9B9OtrUoPZ0Hubas5tgULJILI90x/BMiOpgloMQ/wjqZPlkcqMElevf7zHS6xWdxaGzmRy7yfJyKN7lGL0M1Lrjvw9lPrnEs+3trZCzY7lcYx76Q5cC9lWNT2/hdVDAuLIV5TVR00rkjizLXc4H1GqyRwReI+QN/veI4rOpPUoBYXzlNGgeWsFy+m1xd47vZB/+mGpbdp7yG8plG0szPcMLUC+PrvXNDz7ZB2+3bSCZalHvm5qY/xu/YuS8aPnlPUYSAxCqxe3OPL12blM64zqpdbZS2EwcMz9puRzKA2vUCgUCgcCG2t4ESlulAhOQmS7jxFq0lQizEhcWYY/R7qZntTEa9ifSPLm/ZnGENESZXRnPdJY1scoMBtfRjZ6kMiY2kFkuzcwGjSypRu8FJhpeKbdUcuNfACZ1B9J5GxXtn1Sb+NSSpmM8O0lkS/Z5JJjy/JZT2/bpmzboyhy1ZA9Gz0NmpJ2z0+Xncu2UPLlGs6ePZuund3dXT344IN72llEG0bSCL47Ir81taVIa/HX9QgP6LuP+kwNKCMr6Fm/DFnyekQizv5k90bHevRzvu0emXUt8uFR67T3Zo+azTS7u+66a68NpeEVCoVCoeCwkYa3u7urM2fOpBFxHvTvUbvwtllKOplPIPLPZBJIJmX6+rINOHv9yUiKSQ/mpXSOU0aS7CUfto1ap+XWRRoeI/joi+rll7Hv1h+TTv28kXaoh9baPg0wyk2k3Z6+1miu5wjGuYYiiZHaBq0QUe5WFpEYjWNGnE7tLIq4zLSALB/UH8v8PtRoI+k9ox+LohwzzZwRi5H/1z4/8IEPdP2/u7u7E9q7iDDdNCyLnrZxoh9bWufdsrxs/fUiAe35uPrqqyXF0aymvdCP3dO4svcbx3rJOsj8pD2NMtvmLdI8GQnLOe75f7N3fOSvPX78uCTpnnvu2bt3Lsp3r6+LrioUCoVC4RGOjX14p0+f7vpzKLVQI4qkM95DbTCT1v291FooiUfbtWTonc9YMdivKLJv7jPK++M1ZHaIIgmp4XFsorxHSnBZdGbkk/D29rkoTY6Jvz4jbeZ6iPKhqL1EdbLszIezNHLQX5uNX1S+YYn/b47EO3omsnNZrqq/l/3Jcql685z5zyPLiffBzzGtmHbGfFZpuonzlVdeua8tPfJt9pXMK4w899faMdMWs8hI/z+1JmpGkZ+ZY8P5yLbk8eUzCjrSuDJSbFonDFHkLceRYxHVR58d++vzmu++++59bdsEpeEVCoVC4UCgfvAKhUKhcCCwsUkzCgGNHNmmotKEYA7bKC2BDsosET1ylG5CiEonNIMiegnnrJffIxNjtuN0bxdr+z9L72B6QtQ/tp3mgiiUnQ7unvmD1y4h/+W1vq0ZMTGp3vw4zYVnM/UgMqtm5ppev+aCVyKzJMd4LtUg6l+WyhAFIPFctn9hZObN6NZ6Yeo0ZWbpOPzfrs3WjwU8mTk/orUi9RpNm6QGlNbPztGjR7t9ZMqLP8cka5qJfXoSTbE060djS3Mwy7dP1h+10drSS//JzO48HplQM+oyQy+lhdfSRWBmTGmdluCJtHvkFPvKXXRVoVAoFAqPcGxMHm1anjRN7vSYoyaKpL05zS7aCZsO0SxsO+uLr9cQ7ZpNaTwLWY6S1jNNggEpS1ILqNlF1FLZdhwm/UbaDjXHbBuSXuLuHLa2+lvAGEhfxPXAMv0nA5wYKBCNMQnBiSgAJUtHiMZpLnWmZ6XguUzDi8rNAquovUVaQaYp99ZBbxsnab+Gw3W7VEKX1uvYa098hk+cOCFpmjoTaXimBc6Nm+9PpjWx71HQSqZ5R+/TbEf1LJk72omebeml+WRE41ngYC/gKbMW+P7xmWbQjVGm3XnnnXvHTMOzaz2hxRxKwysUCoXCgcBGGl5rTTs7O5Mw8d5GovShRPZ9+jB6YcxSTMFl0ksmAfcSzym19LaDydISKBn5Ptk15oPINuaMtlnitXN0YR7WRm5KGm2k26NPkuJw5yW+T17Pe7yUTuo4rh1DT8tkP3obVjIJPiMk6IU/U1OJfJNck1xf9On6dUGLxRLLxZykzVDwyKdCqTwjQPfHmBpCP4x/5pdQ/3lENGJ+7dACcu+990paa3g33njjpN12j607Sy3gWo/axvHJnoUl89TbHo3lZBs0R7ELfDfy3uiZ57xkz1dk1TPQqrJJcrzB6jdN3ZLNo/ZvgtLwCoVCoXAgcEHbA/XIbilZ+3v9eQ8eo6ZFycBLM0zAptTS8xFkm9JGkj3LzRLso3sz6YyfURuo6VEqNURUVgbTwKl9RFI6y6N/y0ti1BzPnj3bJXH1FEBRhJj9bxI8/XDmAzK7vq878+H1fA4sw8B1F23IyXsvJjo4i9r15zg/PTKGTBrPqNuiOTDtiddSa/PI/PWGaKuXbPsrj2EYNAxDOk/Sejy4cfIdd9whaa3pea2QlhfT8LKISN8f0pxl2nSkrbMf1HIj0ops/jlfvXcW6R7tvH+X2DPG/hh6xONZAj/XQbRVG/trn6bhWdRtVI+tjyUoDa9QKBQKBwIba3gPPvjgnhTgJXuDHSONDCMwoyhG5rtQazNE2lqWQxVpnBl5ryHSBuhXzKI1Df47+26f1JCiftm53uatbCt9RfQvZOPq781yBv04kpB3jkS6tTaRWKOILUqr3DAzkuznojUjKZ1a+Zxv14Nt6+WBZmsjy8OMpOa5/kZaGvMaM00vupfXEtGYsJ6ef8nabXPtqaMieP8vI5h9HaQBM+3ttttuk7TW4nwfMg27t5Fu5hclIkrDzLLUG6+M3J3WMN9Gmw8+PzbmvfXN+qgVRs9vRjjOe3z/+ExbfWbF8fl37LNhbuNpj9LwCoVCoXAgsLGGd/bs2cmvcuRzMLsw81QiKZb5UFnEIG3QvnyDlUENM4pEyqLvojw8nqOU1mOvoPTF7xHBNTXhjN0mkvyyXJqMlNvXR98dxyLyTXofQDamW1tbuuSSSyZEtn7+7F47R4YaRgH6PmW+PN4TsXNkjCCRj5Xrl5r+kvnI8gp7a5VtzRhx/DXU8JhbGW0Qmvk6eyTFcxF80TrhVjnnz5/vSum7u7tpdKv/nz5uK9+2krFNQyXpsY99rKTcMtFj06H2xPdbpMVlFgX2oacVZuvazkcbT2frOdLwqN1mDChRziBzorM8wyjvj/N33333SVpr6FE+I5/9JSgNr1AoFAoHAvWDVygUCoUDgY1NmsMwhPtDGTInPk2dXkU1lddCT6k205wWBWiwfqvHdj5mP6LvvdBWmgMzwt9eyH8WRBIlvFv76aDPEkOjtASaJ2ge6FFY0ewRpUNYud58lJmlWmv7AgasH55uivPO3dyZiuHbkPUjCupgGxgunwXN+Guz0PIlaSlzScpRoMhcakFER0X6Kz/+UmzSygIZlgQFZMEqUbBCRHDdo3aLKOGi5H4+/zSr+fB2o6t6whOeIGm93jI6r+iZ5rrqUczRRJqtoR4tXWZSZAqPr4efXI8RCUiWYpJR9kk50XhWvx8Dm6+TJ09KWps0e8+EJ06ooJVCoVAoFBw2Jo/2kpZJ5xG1WJSUnpVjiBIhpak06yXFLDgmS7b095OOKAt88NcspZ+KkuMzrYnfpWlCLiVGBgj48aTGku3C7BO4M+mTCb2RJuHXQS9o5dJLL00TWX27bBxMO2fyu5eAowTY6NrevZxT0uBFwT3Zdk1LtJm5NIVI42IyNAMB/JwzWCVLF+glrWdtj67jOPKZi9JJOC9zO557UCvwfSF5gZV5xRVXTO65/fbbJUlXX321pPU2QXzWoyC2jAjaPiNrRJY6ZegFy/F5z0L+/XPAeZ+jC4vKp/WhR+SQpXkx0CmyRtn7Lkvo92NFK9pll11W5NGFQqFQKHhs7MPb3d2dhK5HGyPSd0dp0yea0u9HXxol/CjxmNoTtUUvAWeUXj0/HOmm6Efo+dQMWRitHTep1N+fkfZmEqYH7d60sfsxoaZioP8x0ubn0jyiNkQJu9Sw+D0Kwc/GiSQGPc0rkjyl2KKQJbbTahD5HDIfcUZe7TEn4fd8NwwT70nD2Rj0tNC55HRaX6Q8nSPD9vZ212rETWG5IaxpeH4ubZsZ8xeRYJo+8Ii0gFoZLQ7+meYzzGc2mhf6wajhU6uK2kitjPUv8cPRkhDdm1mH2Bc/JlnaVS/VhRaESksoFAqFQgFoS0k3Jam1dqekv3r4mlP4EMDjh2G4ngdr7RQWoNZO4UIRrh1iox+8QqFQKBQeqSiTZqFQKBQOBOoHr1AoFAoHAvWDVygUCoUDgfrBKxQKhcKBwEZ5eNvb28OhQ4cm+XK9wJeMi83ni2RsAZtszJpta8Lr5o5lmLu2d36Ol/Bi2rbkurmxiZAxy/Suba3pzjvv1H333Tep6NChQ4PfuiTKhZzLxYnyyJZyP/bW6MUEbmWMFBGyazaZF0PGarFJfZusi946YC4qOUN7zEV+Lk+ePKnTp09PGnPkyJHh6NGje7lYEY8j8+KY49Zrd9aPjHM3Opc9H9E9S8rPypmbq14bszYvqTdjLIruzcpb8p6L2F+ye/2Ynzp1SmfOnJldyBv94B06dEiPecxj9pI5o0RqJqZawue1114rSTp27Ni+T0m6/PLLJa3JbW1Bc2H3kh15rrc/XbbHE8uMflizF1yWsB3dm+2W7O/JklIzqp+ovuyHokcLxH5YkiepmqQpufP29rZe9KIXKcLhw4f1kR/5kXvzcOLECUnrpF9pmoxs7bX1ceWVV0raTwhu/5OMOtspPFqr1v6MAi7a6dpg9VkbSevmEe0ByPKl/ktyCWVa9oOWJf1HtGSs38bK6Oh88rCNlx0zAmC71vrriZu5f9v29rZe/epXK8KxY8f0nOc8Z2//usc97nGTttr4X3PNNfvOGVGCtcUTJ/A9lhG2c51LUwIKJsPzx1+arrdsx/uIyIM/qBmJeY/Sjus7Ig5hG7i/H/vi6RCz/nD9RXv2sV+kQfRgAvvu7q5e97rXTa6LUCbNQqFQKBwIXNCO5/arHml4kalCyrUcf65Xr//0mDMlRHQ9GdVORhvlr+G5Jeo7yyWVVWSuyOqJKMTYjk3MHjzGenvmL7bN085F5Z89e3YyX5FZKjOf9bb6Mcyth57Jh+MWbQ+UbXnCsqJ+sVzSOM31IepHb+1kZjBK4JTefZtYz5ItwbIyfD0mnXtNJVs7W1tbuuyyy/Y0fJP6/dZSds6sROybfUZbcJnWZ20iqTw1I38u0nSkmJZuzgUU0cQZOEfZO8yXnW1Lxjb2jrGf0TgS1PT4/vN9yWjvejR4Vo5pimfOnKntgQqFQqFQ8HhINLyedpGRnkZ+uCwAISvbo0ei7M/7cuYcwRHZLaWVJVJTdg+lJ9/2pUE4vT7MBXREmnlGhh1JWtzOZ875fe7cucmWSH4dUAKMNA/WM7fVTjZP0T302UT1Rf5dX0Y0XpRaM022N9YZ2XI0RtlGw0uCzbitDQl6I38Wx439ibQBkjtvbW2l62d7e1vHjh3b89faujO/nbTW9qLtsnxfff9MszPfon1y/qN10dNaon56cD303muZps33Q89HzXEl0XlvLm28eG1PwzNYvVyPfn3bOZvTbPPYHnqbBxOl4RUKhULhQKB+8AqFQqFwILCxSfP8+fMTdTcy31A15T5RUQg+w6SzFINeDh/NBNG+a0tyPKRlOUfR/mBZmVlwwhKTRpYOEZlF2Ocs8CQy2bJtND366+zYEuexmcNprvTzYiYrv1eivyYKZrFAg8z0QZNPZE7JENU3F+gSOdu5jjnvPRMX5yrbP8yb6rKdtc2E50PzeS/DxDn2UdACy81MwxH8XpeZ2bm1pksuuWTvvWCmTNuhXNqf3uDBwBPfV0tVsH3x7DNLT+C69OUv2XGbz6W1uZfKwueO9WS5j/5/BvBYPyx9JDJpMqAnS9Hw987tpWd98esi2/uSZfh6+Jxk5uQIpeEVCoVC4UBgIw1PWgcfSNOdZz0yzS7aHZkSLhkVsvP+GLVCSkK9pO4sAGATFoElyLSfSAu1frBfmUYRpQts0h7u3J0lyUaasrWxJ2nt7u7qgQce6AZoUONheDaT4P0x7qrNcYqCGbK0Bwtt7wV3UJOjhuFD5lk+5ywjIvDn2B+TknuJ5+wnNb8oeKmngUf1+2uzoBgGPrBOaVxDvQCt7e3tvXkx0go/xvY/+8jAFNNqpLWGZ8fsGltf1i9qOf4YNa8eqQXfVdYP7pbuQatAlArk2+E1WDtn/bFz7Ld/nnitfVpZHItI88qSx6MgJhsvpppkVpFoDJa+76TS8AqFQqFwQLCxD+/cuXOpH8FjSXqAgX4Bao4Z16a0lgwoVZjEHf36Z4nA1Gai8Hd+UkqPuOCy9vdodKjN2jWZBLlEG2XyepQGwRSDJXx71u7d3d3Z8GArP+M8lHIpnWVIU+3S7iWNVqT5Z9og5ydaQ/TD2KdJqH4us9ByA9vmfTqZz5Yaa+SPzdZqlizfa2tGU+bry7QRuzbSzP2a7JE4HDp0aM/Ha5qep6iydlGLMeo6O+6tENRMOV5Mv/LaU6YB0Vrk146Ng7Wf8x69O2g1ydIQogR4+h7NR2ljc++99+777v+nLy+zEkT94zm7x757OkFDxpNKS6E/5lN1Ki2hUCgUCgWHC4rS3IRd27BJsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktaSRElqt5kv0dedEbFm0bD+nrkI1igaMPPlRfXQ/t7zw1iZGRmurzPzG0a+PUr99p0So60Hf2+2Rugb8JIr1wx90/RB+PKZdG/1WJts7CLNJSP1jmijskRzziWTzP012Wc0f9Zn0w4yH4vvl2kd3heWRWlubW3p8ssvn/hp/fPDKMKM4D7yBXGt8PmP5mCOmJnrwx+jNmprl+3y1/Jclkzuj1t9NsbmszMNyzQ8H31qWniWAJ4R+0tT6xp9klamt9iQzs2+M4K1R7dWPrxCoVAoFICNozSlPims/RKbpG25MibF9CI6DaSkMckximaipkWJN/LdsA2RH4T9oi8ji2YjBZQ/Rm2Q0mdvbOb8gD27Pwlao3EkTVimWfby/XoUP+b/pW3et5X5QlaubTF11VVXSdq/PZBFupE8mD68SPPi2uD4U6r142Jrco6ezpfP73YvLRfR9ilLSMNZfubLM0TrPqPMyjRbfy3z2u655x5JMYWVzVOkZUb9ueSSS7r0hKYZZDRWUR6mjXPmj7fyrV9+HdDHxS2SMsJmKfcvMx7BX8PtlKxcn8foP7NjHvQl+mN8v1i9mSUluiejd/PHbW0wRoHj68eeuYlL8j332rj4ykKhUCgUHsHYSMOzaJhexJZJ4yYBmGRNacbn0HDj1yyKsrcdkZXLnJ+eT4W2dJMYMgJaKbcXZ+S+0tpmTUmS9msPjjG1NGtjtDEr+2nIIj19+zOmDR/JxXPezt/T8M6cObM3BvRbSNNtP0x7u/766yX1Nbyrr75a0nS9McrL948RnQSjaP391gZqTxHLSJarRemZfmh/DeeFUm60aWiWH8f+ey2b/syMTNj7Yaw+kjtbuZbfFrFy2LU91pvWmo4cOdKNwM5yALN17evOIm17G8Bm/mYbF/OLRRos8/DsnWnWsKitXKt8Z1g90Vq2a+2Z6xGp2/zbXGaRsfTleVDb5XffRpsnv5mrb0dkRaTvvTS8QqFQKBSA+sErFAqFwoHAxkErOzs7E/OQNzGZOYCfNB9GjnJTa80skAUeeJU4C1Wm+u5NaBFdjTQN9vAmQQYn0BlOGh+vZmchxAaGP0dtoGmEZjE/JpkZLEtE9+Uz3JgO6Mh8YMeOHDkymwBKsmdvvjNSYBvbG264Yd+nBabYp5SbXKL9z3w/pDzknqa+iLYroz2L0mAy6iia0KIgAgatcF4ikxnNbD1S5uxew9zu3NJ0x3CbRzPVRRRmdi1TgbJ2emoxBm74OkixRRNdtKcdTW1WD82hUSAazdVWL99lvr0MVrJxsk//3onMqb5cOx69G7l+7TvJETwJt/1vnzaXUZCK75PvO6nL7LiVFZnQbcztnowi0iOjW+yhNLxCoVAoHAhspOFtbW3pyJEjkwANL6VTaqDUHEl0dG4yNJVhz74+kzwiuixfVkTMzHPcnsZLDtkO4BnVj5e8M3JlamJLEs8NPacutTC2sUf2zGsYPNPTQud2J26tTZz9XvNm0MM111wjab2W6OT312ZksxEtFMGE9t72UQxOMGmZ29D49U26NmqhHL8oaIGaXRZ45f+ntYFpCNGWMhlpeUaH5usxmJTOd4Ffw/aMLSFj39ra0tGjR/c0BBu/SFNgYBjHy683m8Ns3VLL8O8dA9eVjTWDV/y1do7jw/5F5XAuaWmIqNMYKGj1WBCYBXxJa+sJNTsSfNiYRLRklpZiY29tj943TOC3ueBajSwm/p1U1GKFQqFQKDhsrOFdeumlE40rIhC1Y6RTooQsrSUAbs+SJV1HvrUs5L9nAzYphpKctc1Lb1lysoFalK+XIfjZBq1e0qYWxnGk5hxJyqTpYf+8xJVRFpHiJ/LhmeZ17ty5blqC3wA2Sk+hdkE/MP21vr30qVASpubqy+GGn/SL+vqYYkKfdBReH2l9Uu4HjspgugX9JJbkLU23eJnb9ioK76ekzaR4Xyb9O9xINUqop19+GIZ07ezs7Oi6667b0+ztnmgrHG5Kzblcss0MyQuiZysjls78dP4c3y+0MEXbHmXEy3wv+XnhurJ5sOfVNDz7lNbWE6ZBZeQJvn88xm22ohQRWj/ss2cBiDS8pSgNr1AoFAoHAhcUpUkppkfbRQmo92vMKDUmmlLyl6aRfWwTpXdpKoWRTicij6a0F21g6fvnpRhGqs5t4ihNpUBK2oxyjKjF7JhJ3Fnysi+HEqWht+2Rtf/o0aOzRK6cn14krH1y/CJQ4jYtZ4mPiFoAx6C3TRS15YgmjtfOUX9FY0INlpuTRmQMBruGfsZouy3SXPHTxsbXxy1lrDwjJ7a2RlsmLYm029nZ0VVXXTWh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4hICez25G7h6RVRts7kyTjMbG+uN9j9J6PGl1Z1fSIgAAIABJREFUiSJlmVhvx2nJ8+ey55Sas+9Xpn32UBpeoVAoFA4ELohajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvtw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxuPHz8uaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlrenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwoHABW0PFEW8ZddkOT9eSieJq0ncRhpMzc7/2ptESuaBXqSdSWfU0qhNRVtfUEujP8Ta6MumnZrSOPOzpLWERaYTa5P1oRc9ykgxK//EiRP72uXbRDs7NedIgrRjp06dShkzdnd3dfLkyT1tI2KDoRZNCTgiv7WoNeuTXWO5ReZHePvb3y5JetSjHrV3r91jc/jYxz5237jcdtttkzYy95RRoTYvkXUgy7ujdO6tAxk7DiV/r2lwY9lrr71WknTrrbfuO28SuI/8u+uuuyRJT3rSkySt5+L973//vv5HuXsZqXzkuyFbU49pxaLDeywfVpe9D+iHpd/H32PjYZrcO97xDknS7bffvu+4zzmzck0bJGsKfeLSNCrcvjMCN7L0kBSf33sk4vRN8p3on2krl9avu+++e19bI8uZ9+X7sbBn0SwoUaQ3LXJ8Jny/+AwWeXShUCgUCsBGGp5t4mmg/VjKuexok/V2c/vfsvxNEqBEZ5JKZE+mPZrbAkU5Z9z0lJvX9ngj6X+jlOs1POYjWfmM1vLSIDVJk+RNauLYR7lpJskxJ9HG22sP1jb6uqwf0UakkQ+0FzE1DEOXTcTam/lurWyTNv3/pskZ76ZJlXfccce+dvtxMo3uzW9+s6T12vn4j/94SesxNk1QirfU8ccjRhfPNer7Tv9rtEFmtmmwtdU0DD+e1CRsbFjfJ37iJ0qSXvOa1+zda2vTyr355pv3teN973vfvrb6+jKWoyiam/Pvt46KsLW1NbGq+OeTEZf+WfLXRnlqpvm+8Y1vlLSeb7M0mc/IrztuUUNN3/rMdvh7M4aVSOMiNyc35GUEsDTN/+WYR3lsHFt713JuIiuZjYVZDOxe+27Pt/f108rBPG6+f/w1/jelmFYKhUKhUHCoH7xCoVAoHAhcUNAKTYFedY4SIP13JnlKa5OLmTRpnrzuuuv2leXNBOZI5rYtdFZ71ZumHZK5RrtxZw7fjN7G949beJhKb2aBKJiFAUE0cZq5xcbIxlBam2BI+WTX0nTr67PxzCi6vLmFofdzZgXb5kWKk8mZNEwzq5l1LLBCWpt8Hv3oR0taBzqZSfMtb3nLvjLf/e53791rY2jl2rjZOEWkx2bqM3PNEhKBbK0wxSDazocpJZkpPaJos3abScnutXB7GxuPG2+8UdL0mbSxMpOmN+8ZSBhPc1WUDsMUnQjmSmEAVxSoQxLp3k70FpTyhje8QdJ6zqzv9l6w94QnWaYZmibFqD6aW+3Txi0id+B821rlLvIMavPlZ4TM0fOakSDYs25jY+3w70pSTdrzdOedd0paP1ePf/zj9+5hQA3dFzTh+v97ayZDaXiFQqFQOBDYOGhld3d3EvThpUuG9NPByMRjD5MAssTcKOnV/qf0QrLjKJiCUgXL8iA9FAM2SAvkt7Bhf0w74Fj0KHfsO53INs6R85j1MKHbt9HqpvZJJ3JEI7eE+qu1psOHD0/SEXrUYja2plVFm2raXFlwikmgDJKysTCpU1oHJ1iQlI2LaS/R9jG2Rm18TDrvETTTymD94HpjEJOv2+4hSXKkUZI03NpiGoqlKbznPe/ZV5YfA1sb733veyWtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537bvXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+tNN90kaf3e4fuBGqA/FhEazKE0vEKhUCgcCGys4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJa2l6A/7sA+TNPWt+DaYn9T8XFamzYHfjohtsnq43qPkYW996G0tdebMmYlPN1oHfA6t3dZe0zJ8O03zpdZC61BE1MBUI1q9/DNGGjpq+NHm0SQWYNoAKfSilAYbf1oDSE/n20SNMUvHidJTuD0QfeX+HltPfM/YPVznvhy/QcBSerHS8AqFQqFwILCxhvfggw9ONKDIBswIGmoo3vbLCEsmi5uGR4lRmm51Tzu1p70ykOTW7jFJl5FJUflZf9kXfw+lEPo3vQRMSSojpY18a5FEGh3v0UNlmpofe256eujQoVRKtwhNUpRFUZqkzfJzx7axHG6Qaf4XJvf6cyQ/tk9GAPN/ae0bpN/HX0d/ckYtZ4h8yNQG6f/1Pg5aO0jrZ9eaZmN+SH8No+N6UaF2rVlq+PxQa5CmSfhHjx5NN1c2H17krzSwnTamth7oc5Wm0cAG6wfr8d+tHuuT+eoiyjwDI70ZiR1tPE3Niu8srilfLyM3+a6IrEdZBGdWf0T+TkJ/A58rX64dY7StISLJiMZ4DqXhFQqFQuFA4IKoxTJaJbtGmkoK9N1FUjO1ioxAOYqWYllZHpk0jZLLtqjwZUfb7/g2UmqPSGoZZcb6fBnWJo5fL2rSMEdWbeiRrnJOIt9r5tfMytvZ2Zlo3n5cOT6mPVFS7eUaMeKW681rJsz3tPq4djzsGLcDysjSpfWcRXl2vn+96GDm4y2hsLK2cMsXO25ar28P1yR9YpFVJ9OEuB58PSSMP3LkyGy0Hccv2pg3206H1GP+f0Z0ckspUgFKy59P30bTLjmGGSG0v5/rmM8/tXjWHbU1Ip7P5pkbDVs/ozgH+uk59v79zeco21IqymvNLGc9lIZXKBQKhQOBC2Ja6Wkm0UaL0jQqq7eJI3O0+D0ioaVfilut+Eg0k1YowVPi8n3IWArm/DG+jYx09H5Mf51Hpg0wes+PJ230lDqjts9tsUEp2N/vpbCetLWzs5MyyPj20V9Fic7PS0YaHGnprI/aWcaW4vvMXFG2I+o/fcaMyqOGF+VjMmeLfmcf4cu+Z1J5ROps40gNJWqbIbMk9NiIqJH3/L+8l/X6um2sqZFEjC5RtGeESJuh/51rKLJGZf5+Rhr7NmZrk4iilakdUgvk+vN9zMicWU/0PmCbCD8mtExkGxtHGl5Wbw+l4RUKhULhQKB+8AqFQqFwILCxSTNyUkZmnMhpK8WBBzRZkWC6Z9KMQvql6b5h3qRpocrZTtqmPnvVm/v7ZYjMYAa2nyTcUYIz+8nghcgsFZlg/PdozKL94nr1+/+jPQeJ1lpovvTtzsL22aa5cnxbemayzLTD5HFvJmJABs2UkUmf6ykzw0d94VjQJBwlKzPIh/1kGUtM9wyEisgforXo741C5v2Y9Obq/PnzkwAaj4yAmyZBv365Rvj899wVpAHLzO8eUVCSLyMC+8V3CMfMt5GUhrwmIkkgBWRG7h0F69FEO0eS7kETsWHO3Gz3VOJ5oVAoFAoOFxS0siTwgFIrAw56Sd3UgBjyG4GaFYNVfEIyJR/S53Bn5ajv1GAp8US7VhuysFpfH4MVovDcDJSk6HCO0kCosVAijpzw7HuP4qe1ti8kPJJQM3qojL4tOseAgEiKNWSkzZTEI4mUErwlNkcJwAzGilI8fP3RmHDOmKQfhaMzvSLbsisCxzFKBWA52ZqNtB4GVM0Frfg2RO3PAheszOhZzqjs5jT/6JyBlpKIRJzaDINVIq2J5c0RQ/tyWS/fC1G/GGi1RKPMCBRYhn+H8Z7s98NjifUmQ2l4hUKhUDgQ2EjDM3ooajdeW8t8T74MXkefEz97ZVKy5xYslkzsJTxqkNRiIlLsng/Dt8O0mChJ1c4tSZykj85AzaInpVPa7NGGZZJbT0qn784Ti0dtueqqqybScpQwHZF3+3p6min9RdSEorUzF/IdJeaSCDragNOQjTv7E/lW59JeuIaj8tnWzPoStT/T7Px6oU+SbY0kcR6b8+H58iIrR6a9ZhYLabomsjD+iIiA15I0gRYGfw01q2z7qKgNJBrP1r8HtbXMWuDPZf70KD0pA9sW3UNLAi0K3KTbl5t976E0vEKhUCgcCFwQtZiBNmEP/mJndEP+Gmp6S6Q02sGjTUKl/ZLrHPloFDVJjSGzI1u9XuK0Y0aj4zde9WVGmoRpqLTdUyuI/Khz6PkKsoTnKLKTRLoRtra2dMkll+z5VLOINWleavWSts0Lpdi5qL0eqBn7ebH7bS6tLSRUiEh1+cmIzigiLhsLuybS8Ej0nG0tZPDrhfOS+WE8OE5ZVK0/zvfApZdemq7bYRj2aQfR2skiuVl3RINIK1EWaR1tR0R/f49gg+OTaZA+4pZaH99zJM+PEsHplyNxiEe2zrJo+J52lfl2Ix8eNeUs0jy6Z4m2udemxVcWCoVCofAIxsYa3tmzZydSbE+jyCLRonyRjD4pingyUPMg4XSkdXC7kh4pLdGTQn07vIbJzSi5SWTkQ/LbpkjraFPSIUVSdc9G7xFJ3FluZRQFxvGaoxbb2tqaaIWRtJ5FhvW0C/vkWupJf5nfxz65hY003caE/qtIm8kovahZkM5JyvO8OE/eF+o3xpRiSd6XFdE2UfugFhdFSGb9i2D9sudkzoe3u7vb1TaoWVnfM8J2326+d7JtiCLKL1oMSOsWafqk57Jn27Q2X2ZGqpzljEaWLEby2pgbKXaUE03LQeZLjJ5J+uUMvfXASH1GskZWPf9bUnl4hUKhUCg4XJAPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+CXsJtbNIG8m2eOH2JNEGsHbOtnKhhBdppZn/IsutipBFkPqxj3wEPUmrtTYZ2x5RbpZjFGmmmb83u85fy3pIRB35Og3ZxsAeNneGzE8RbWFDbSZjMPJaHDeHzYiuexJ3lh/V07az5ydaZ7x2bgPY8+fPT3xR/nmhBsz4gshf3yPt9mVF+ZkcO1srnFtfL3109izfc889ktYbz3ptnZsSM2fP2mR5oH590oJkGp21I7qH1q9e7jOR5eHRvxr5NTk/jGT1ZbPvRR5dKBQKhQJQP3iFQqFQOBDYmFrMmxYiUyR37aXaacczR7pHZj6JEmUZDNFrI+8x0OHsTQsZpVhmFusl43MsogAbjp+1mXRrkYOd5XMsaP6J+mGgKTBK3PWmq8ykubW1pcOHD++1k+1nOb4tNKdFxMUZSQFNs9FeekxTMdNPFPjCe1hfRDLOtWNzaPXQ9ORBSiwzdzIIw7eDZjXeQ1NdZLLtmRcJritDjwqMJr+eSdiC5fhcRqkKWWpBLx2K6yzb6y5aO5xTPp9RsjoDdsy0GaX3mJnTPvlMLyE65zxb2yzlyZvQOS989tjGiMiBYHBQ5JLgOs76F91z9uzZClopFAqFQsFjY2qxQ4cOTYIuPOhkZxh9tEv6HH1RRr7rzzGxNEs89v/7kGhpP5Et6+mRIkeI6HoYOs9AmygYh9pab4sU1k2pubcNDY9lgQee9ogaV895vLW1tafR+P5E2nrWt+g4JW0GtmQ7OPtrbU1y3iMp3ULIuaWUScu9wIMrr7xy373Hjh3b10ab2xMnTuzde++99+5rC3d0j4gOuK4YYm73RFI61yKfn2i9M/2FcxE93zbWPkk+e5aGYdDp06cnKSf++eS7KAuAiygG+Z3rMNKEGVSW3RPRxHEe+IxbEIu0ToOhhsd2RJYeakI2vvYcWtt8UBVTcbKE/ig1hM90RpofgWsosxr4cpemQ+2rZ9FVhUKhUCg8wrGxD6+1NtGmoq03TGrIwvijY3MaXqSZzFFIReHolKiIKHw22xiT6KVO0J9k2hIlcf//XBJvNna+3mxrDw/6OijBRRs0RkTZc5IWfWle4+oRIUuxLyXrI32pdtxrAryGGj59utLUf2QamGll1kbT3qQp1ddVV121r1zrL6V59lVaa4uZNurvoRZi9TBk3493Rs3WS0vICA7sWtNk/DrJfOIRdnd3derUqT0NOVrPvXdE1LboWmplbGOkrWXvm4hMgu8b+vBMs4u2MstoyKjZReH7tA7wXeJJMkjRZ8jWRYTMutKzLFFD7m10y76WD69QKBQKBeCCNoDNNkiUpn4qbo0TgVJRL2LL1xu1gZJPlEBJGh5GjNLGLk2lPEZl8TovcWeRT7StRwmZlNIp0UVa2xxZcIS56NOeJG4Sai/ydhiGfVGcPX9slgCcnZdyaTJqB+/hOuglk5uUbFI4qcaYtC5J1113naS11YOaIzX9yKdmfr+MqDmyDli59OlRU/b9zLYsMvSI4nt+PtZj8JRZPSvG7u7u3rNN/6lvL58/am3RPZk2uyT5mXOWRXxKU78rrU+MqvXXMN6APv1Iw7N7jJ7Qxi3bzsmXQ22UVoIlZOzU1qL5Z1v43EZE3owyniO82NemRVcVCoVCofAIx8ZRmj6XqufDY66JfdJPIk1zl6I8MbbDwNwWbu0TRRMZKPn0tmmhRsLoJd4bRR/SV9STjOc2P90kAoro+fSyqMaeNLhUuprL92LUZxYBF2lphkwCjaRarkV+RuTKBjtmmpxpb/Zpa8v/b9dmVGb+HoM9N/S/UJPxzxP9rZn0zGfHX5NF+Bp69FAct4ieyq4xf2Vv/VrcgI1F5FvN2tfzPUbR0VH7SUHm743GUFqPhb1bpDx60a658cYbpf+vvbPbkdw6knB2T2swAxiGJXkAC7rY93+sBQwDgiTII48ka6arai8W0Z39MeKQNYu9kCvjprqriuTh4SErI38i66V3QHE9ZrzKs8B6zH7dtJ4UM9arWLWyNfv1SZ4jl1Xdz38Fxv9Wmb5OGJrbkG2uMtY3xzn8zcFgMBgM/sD4rDo8+o9dtX1q5bHKDEt1MYRT++D+9T+FWvv2tGZlWbk4EMdIZse4j8tE4r6YQejUYPayopyFlRpxHrGwOEbBCewmgeaEu7u7TQyvW5eJ0a2aq9LyTXV4zLzs7/GVFmRXr6A3QlYya+u6Zc8YLsdGz0Zneoy7kEmIUbr2QMlaTxmsfQxkRklgvf+9t4YcI+vqKav7/fHxceNR6nOc4uEcm4vDcbzpGea+y/pUzanzemm8GgubIVPkuer5+jKDkxnNrhZW607ZrX2/Vc9rpr+fvHY832tYlbDKJeD++dxzXr1+Hx31cA3DGwwGg8FN4GqG9/DwsMlectYeWWBqqpiO018Zt3JZmvyfzRXl8+6fUfeTShjdIlGcRa/6jqykbmFX+TiTtmU244oVMltzr0atKmfy7cVJ3Pip5LGq99vb/8PDwyaes4qpcfwu2yuxFWbnuuvkGrz2c2SjzqqXmbt9W1qvWnd9f7LWXU1jH1ufI61btoU50paIzJg1Vq4FFOMtq3uPx0lZj2QhVc/z0/eX1ra0NFn/29fOXszOneveul1tm55nnDfHTPTs+Pbbb6vqeU3xedSPrfc0b/RG8XnUt/3yyy9ffKYxuXuCz02n71nlVZF47zklnz6u/p2Vqg334TLvj2IY3mAwGAxuAvODNxgMBoObwNUuzVevXj3RWSdDQxfIXudzbt/3IazobWqBwXTh7opiQDZJSnXK3IPr/ZVuMZcYkgLoqy7pAhM5UqGpK1bm/6ukAo6b86c56S6cPTknHuuLL76IrUqqtnOr/bnrIaTyECbFrK6p4Dq485zpTtP8yPVI4YOqrSubSSzpHql6TtvX/ukOZzFz1dY1SkmxlJjS97cnWu7EJngP8Fr3uZfYtj77y1/+Et2zp9OpPnz4UO/evXuxjRtDEq525Ra8/9JzaOX6pGSd/meZSj9/ys+pXEAdyLu0nLZXYsmf//znF/ugKH8/HttP0b3vnjssu+ru/I5V6VZyZQpuHlOyiuB+L7qb92jX82F4g8FgMLgJXC0tdn9/vwkaul/XJD+2SrNnCcMeM6raWpFsnOqkadgeRVaMrE4G4fvfqWkrG7U69kSkQuAOnh8ZjCusT3JHRwpAk3V+RCxWBcIJl8tlE5x2CSiyQFMRvAuUk+mReTvZppSow5IWZ10mxkM21b8rlubkx6q2bLHvl5JPLMJ2clQccyoqd+s8eQVcWQIlAbn+nCg4k6G++uqryPDO53N9+PBhI+vX2QfXRvKMHEl0SQXibp4omcgmwk6AguzMiXHwONqf5pBCBLx3qrIcHctgVglvek3iIKtSEz5vnDeK2/J/x0L1mUo1jgpfVA3DGwwGg8GN4LNieLQC3K8vreUV49JnZF57lkIHrSYVgvK4fb9khZRB6/ESbdOtb36nyhdUp9jZqmyAMbTUBmTVPoOskPPnLDuBFpdjZNxm1YhRxcOrYt7UiJdxGSc4nYQAUtysnyNfWY7Q2fNe2ybGTaqeWUAq5uZ16mtKRegs1Uhtafr+91LJXbslgeuL53nEg8GxyoNStW2Z9Pbt22Xh+adPn57u6d56iWNILI0ekX5u9CBQnpAsp7/HOaWnoa+dVFq0EuWgx0L7YCmNuz/3BK31fz8vPiP4jFoJ3ifPnHtOCCn3IXkpqp6f7VpPr1+/nsLzwWAwGAw6Pqs9kCvEFGjFkOExPlK1tZLIymj5ubbyLCandd4tAFphPA+xOOezP9JChu/TSuLcuJhaEuhmRp9j2amx7RErKDGXVfZp32blT7+7u9uMfxV7ZJxkxfBStmZqzeTOjefuimB1zl3Wqn9HjKyzEGXOMQ5CFkK5sj5eMUYWcbsi3LSuOUcrts25WHkAEnMhk+zeERcLT+tTogUqhtarm6fEalxcLrGltM+OPXEEoQsQJPnDFC+r2rYSYsya92m/98mi0/Om74NrgusrPVs6kizYEYk2jkPoY9Q66nM/DG8wGAwGg4arGd7Dw8PSQkwZgWRi3aqiPzxlSTlhU/lzZQnpfzIix0zE0mjhOasjxUxSxptjeLR4aQl1K4YsQ+dHi44Mp+8vSUg5i2uVudnhai6PNJiVlb46HuOvjGm5OJyQmN2RGkFeh9QItO+fGXYakxPqVZ0VM9tSrLUzIWasCrTaXdYk1wFbGq2EebnOGAtzrIDrikyGsmz9vH7++efdBrCqTxO77rFOnRPv91XLsZWnit/l8eR10POMNY+qqevnrOuq9c3ngGugzJyBJL3F/Ieq52cg17Hmj7WDbr/CNTJefH6u2vnwmtNb4BrS0uvRGwPsYRjeYDAYDG4Cn9UeaOXPTf5aMrxuMcg6oXUupLhg/4zqGBxbH0/KBqR6isu00+uKbfRzqcpKKjyv7u+n1eIa2PZxOGaWrCUX99tTu3FZWUdEozsul8umbtGNl2vFtbFJY0jqL6vxJzUO12iU49e2qbaunwezNbV2tP5d6xUySnolUuyoKjN6qoN0q95lF/bjO6a8JwzP69n3r7H8+uuvyxZYnz592syTY2Zkz0mEvb+Xaih5rftzifeU5vLHH3+squd7ud/Hau3De1vjcNmnOrb2x2xN1m728+MzkAyPz73+Xorh8T5zajf8Toqrum2o7OPiw+l5egTD8AaDwWBwE5gfvMFgMBjcBK5yad7f39ebN282LgqXbCEwEcCl18tVQRcLXXCuYJr7Ty7GDro0kyB0DyJrG7q5VgkOQkpsSfuo2lJ8FsOujkc3AVPLk2zUCi5BhWNY9Tq8XC4vXJpObirNS3LnVmVpseTGc3NMlynnZSWjlcR7nZswlTLQzd9dTEz4YAd0wSUEUbSA957rB8i1wbXrrsVeggj7vVV5l9VKtODjx49LsWe6MNN3j0hh0a3n7jWek9yU33333Yt9v3//frNNkpQTXImJEnbk9mTZEvvm9fHLHZpCG0qwqXoWp6brnC70o4LxfVueU0dK5HPCIbxuU3g+GAwGgwHwWQyPXXH7rzwLyykwzaBk1VZeZiUwzW1pcTKFfVX0SGYn60lWdN8mFT+zIH0VUKW0Dy3JbgnpM6YlM4DuimNp1SYRXGcVpWJlZ1VfU4yqsgTN00ryjeNmgohjJP04q3N05Slkh6mLef9M64EF1Co876AAMM9H602v7n5KosHah0tpp6QXk2XcHO1JPK1ExOlJoHfCbbsq7u7fefv2rX12CLwvKNTs1i/XCrfhePu9KEanVwkZs1N4L0tIYvHah2sBlYrEObcU4+5zoblRQg3n0cl2ff3111W1FaDm2uni2bynyfxXz51Vu7M+ZjeWDx8+HBaQHoY3GAwGg5vAZ5UlMJ7Vf335HuV7nCAvY3dJ3oZptf27SQrL/Z9kp2iJuPRwWn3cxonUEkcKMtnuI8kDraxmYsWgk6Awx7gSj17h/v7+heXq2KfWRm9iWbW1GF18LLUTWTF8gayd6emOPTM9nDEvFysiY03z19dyYqgamysXoERVGhtbWrmxEivhca6hJJbg9rMnSff69esNqzlSMM1z788drm0W8XMNdbaWmB2FItg+qB+HrN3J3zHeyqJ1znmfB8qf6bsaqxhlv98o4KFz13fo8XE5E1yz9JQ4jwL/53PdrTeXQ7KHYXiDwWAwuAl8lrQYM9J62w/++tLyZmZa1VbqKPlxXbNLWTEUjSbDdELQZGW0iFy21F42kcboRGoFNhZdxf3IQlNBZreikg/nfB5jAAASsElEQVSdbKfPL/fHGKFrJePifYm13N/f15/+9KenbDPHcmRxSopLoLXnmp0yFsRMNOcJYNyLVqs+d1nIZANsWeLYR1pflNxy8QodV9a5i/cJFGpPMV3Hesg+UmxlxchSrM01Q+0ZpasszcfHx6f7xsl2Kf6eJPIYn63K3hrH0nk+fN6QGWkt92Jyxt/0v56jjhEzNsei9STWULWNJ6ZWRh36ruaYnjnK03W4OGnHKmbM/5nz0b/HsawyfDdjOPStwWAwGAz+4PisBrDMtOsWN7N3KAfkJH5SjIMWGOMX/T0yEX7e398TyJUF4TK6mHVKoWNnAZNhCTxOn8cUZxRoxXdwjITLjEs1R2SQK3mvPZzP5yg71P+WZSrLlw1ZXVuYdG6uMaaQrj/jMK62SdBnWgesy+vvUXA6tfzpzCVJvkmkmkLAfUy858gWOb7+d7LWHYNK9xPvBdcUeZX1KZzP5/r111+fjqn1ofhZ1fNc6hhk76tmt8ye1vwlmbV+PNWtcf+OzWgbZUAye9bdY3wvSSY6b4Rrc9a/64THOX4dT3Oe6l37Z6kW0j0nGKPjXLvYpJ4Dmr+Vd4AYhjcYDAaDm8D/SWnFievqVzfV7zC7rP9NJYIUB+xsJ1kVtBRWdXFiEhSt7vtgzCFZIoLLZqQoMa3NbqUzrsi5pmqGiy84Nt3H47I0yVQdY+E2R2qpHh8f68cff9zE1FzbD7ElXZd0Hn2bpASRWiW591gXxbhMH4O+KyuasV0XM05Zsho7lX6qttddY9Z95rIBGatl7FBYeQkEjtWp6qzquvo++pxQoeSrr76K6+fx8bF++OGHpxpHsdoffvjh6Tt6T8yX87aKdQppPbt4M+tvFavjWnVsjWNmvGz1rKJCEVl7PwaftWm9ubh8mgNmi3ekZrhcu6uYOHMuXFawRLj1end3NwxvMBgMBoOOq2N4b9682Vh7XYEg+e2p79etCll5zAhi3Y09AfiU6Z92rT0Yn2D2p6ulI9NiFiP31VkojyfmQmvKxTjIavm/U3RIdYz8fKU6caS2ZS9+2nE6ner9+/dP45a17qzLpNfnaupSDWWqX3OWKdcZW6309d2z4Po5s/XPqkYxfcc1u6TlyoxmwbGPpPOa2EF/j2OkB8BlIes7zEJ2jEVzqtfHx8fINE+nU/3000+bDNIOMV4xvKSP6Z4lyRvAOe7bMmaXGF4/JzE63auKRXPeujeFc0elnVUdHtnYEa+XQD1hPtdc3JaqQ4np93lkfJ7bUNGm6llXtNdjDsMbDAaDwaBhfvAGg8FgcBO4Omnl9evXT/RR1NwJCouuM0XaBYDplqNLk0We3V3IpAUWj7riyiQouyp8T0KzDES7RB6mnfPVpfiyHIDHSa1NeOz+WUqWcJ/tuXfcGPeSHy6Xy9M1Vjq3C+rTTbMKlPMa7pUp9PNgSQHXoZM1YnIAE51W7mmOma4fJ2XmpPiqtq51d31Sijmxcm2nc+guJro5UzihC1Rw/T4+Pka31Pl8rl9++WUz1z1RJ8mYMYGizwHLQJIb2j1DmPjBBBG3L42BpVps+eSSllL5C59Zq3s6PUuc4LRbi31frqUZ3d4Ur14lPHH9Mqmtrx3eC1dJHB7+5mAwGAwGf2BcnbTy+vXrJwvFWWSpUJpFvX1bWobaPxkfWw45cF8uLZnvkQXIqnAsbSV54/7v+0lCxm4bzh8TDbivPlbKkJGBOVaYCrSTKEA/Tv9sFTy+XC4b9u4C9EeLyft4U9JKEv3u39GrEigo3+REC8heaGG7xJq0DyZrOaFcXhcyGidWzWa0KW3cFQ+TKR2RmKO1zjXb1w7XweVyiUlPp9Opfv7556e1wrKVqq2M1qrQnEj3FD0YXU4ryREyacU9d5SwpbT6VArQx0RG5/bP/8m02ErKPTs4Bzw+RUH6/ZuEwJPAf9X2Ocp7g+Ur7lzfvHlzWPxiGN5gMBgMbgJXM7wuEMzU/KpnK4jtJWjRuxRf+v61D1lv2rdrkMjCxVRk2cdNVrCyBuknTjEVVwrAmF2ygFfCzEkGy8VcaC0dSWEmC6T1tyo56NdtxfBOp9MmbtKvZYpx8pxdGj0tU7bvcdeWBdNcO07onGtFY1QchjGQvk2K76T4hXuPMXDXKiel72tOUjPjvh/O9aqVVWJ4SUqvatvmZnXvqaSF8XPFgau27JzjdjF9eox4fTg/q7UqcD325wSvK+9Pl6PAfIkjzyqOMYlFu1g+kZ57Gle/pvqu7gXGjJ13j940tpaitFn/7lFW1zEMbzAYDAY3gavbA7169WqTXditWf1CUxh3ZfmkWIZeyfBcW/mUPeSs6iRgTIu4W1Fp/4wZpThd/4yWl8syoiXP+NuqCJdjXcUIBO5X86Zs2xSbrXppja0Y3qtXr572K0u8N/PVMfQeYyir7NlkaZPpOTk1vepcGYdZWaT0SlAgoIPXO8ngufj2Kg7Sx9z/plRfyijtx9srUqeXoo+f3haNQ+xLBcP9PV2f1bo5n8/122+/PR3z3bt3VfUcA6t6flbovb/+9a9VtRVVXgkdJC+GY3grMfX+vouTU2aRIh1OeID3cDovx9bd2u/bOKbEuUleo45UlK59uBg150BrR+vDZWmyTZgywI9gGN5gMBgMbgJXM7yqrTXtBHmZUUXLsO+DQsisPRLDY+1R1fOvPK1kxhcpCdXHon2s2lgkSydlMbqaur1tO7ifJBPmWAj3n+oM+3Ujs9trE+O22cvQ7NeIguFV23qkNOfOO5CyMRnD6duyZi7Vw3XL3q0jhx5zoIXL/eseoaXvzof7dELkvE8oi0d2ssrSY6zItTCiJBrXrphdz7Q7ErfsY3p4eNg0gO3PEDE7Hev9+/cvvkMvQT/vVD+616LLwa1RfuZqEPv7q3rTVQ1d30dVvi/T/eW+u7r3Ehj7Ts2zO3iPMDuzewcErbe3b98u10/HMLzBYDAY3ASuZnjn83ljbayaKqaYgMt8S9lxbBvjFBuS8oiLk3H/tHRcKxyyJFpJtCBdzDD5tp3FQ+uMllxicW4MnCPHhqj+IKSYZdXWGjudTpHl3d3d2Rhej8cKrAXjfLlxMx5BMWfXeiW1a2LGbV/f9Cik2IrLgNVnXDPMXHYZvlx3PE/XMosxUcXyyNqPCF2nDMYOxoq0LhzDc4LNq7XzxRdfPM2X2HOf43/84x9V9SweLYanOZC4cx93ajvFmJ3G1TO9ycpSpq/zRlzjRUlempTx6RheUpSid6SfO/eXmvv2+4lemz31pv43GZ3eF3PvcU3Xxm1ieIPBYDAYNMwP3mAwGAxuAp+VtCLQJVO1DVTSBSNquhJ1ZvIKA+WrXnMUGnapt3TTJTky10U6uWrpjnAUOwWEjyR9MBEgdQZ2+0lu3554QIkfJv04dwTdH3tlCXd3dxuXZl87Kb09Xad+DtqfZJvS9erj1/VN7vA+bo6RgsOr5Ai6kOnS7K4ybpvKLZhQ4RLH9Jn2T/fuqqSFY6F7zKX3s4CaxeCuJOSIK4oJT06E+O9//3tVPV9/uTYpPOHcadwvX53bnYX/PB8n2EA3aCrZ4rl3MLWfYZFV8sbKZSwwuYv7W42V/SNTX7x+LVlYz2e/XNMdqbznCIbhDQaDweAmcDXDu1wum3RnJ+bLID4ZirOahMTwVoWSqVRilfJP9kmLxFmDey1+hFVpQxJ8dXJrAllgKsp250m261pypOSUZPGvzifhdDptWFwvHv7222/tOa6YqdaXrEoJCnOtuLTqozJNTiZslWJdtS445r44jj6fTKghg1i1weKa5VjpLejv8Tw5VtfiRaDou5sjbrO6Bio8T/da1XOpgpJX/va3v1XVc8KOG0sSjTjChJO81UqgnXPK5BUnrJDKAXhd+H7/TPtPZRWrZ1U6jis8T16oVTkHS1kEJSa565YS+Y5gGN5gMBgMbgJXMzyll1d5C4gMjkXkK+FPWlJkeg6plEBjZJwmnVMfkxMATowuMYl+Lox/cC7cNkkyTSArdDHKNG8rmS0yl1TQ7z579epVTHFXHIYWW2dryTpObLefoyx8SqGtykUEit2mmGffj5OB6mNz5Rss+Ob8OUHixDbI8Drr2YtFcr05FsLrT7bYSwzErgla7/17Pe5b9b/3b7pHT6dT/etf/3q6xzUGXeuO77///sXr119/XVXPjMG1t0oiy1x/bp4IV5bCbRKzX8XyEztnaVW/N3heia118B5MLHclyk5ml0oaqraxOxaaO6GDVYx9D8PwBoPBYHAT+Kz2QPqFdkK5tJrYzDW1qqh6/pUnW2PmZZdtEmiBrERjEzi2vg3lmSjtlDK+Oui7T5JfVVu2Qeaw8rGTPXH+XIwyFZyvrCfuZ4/hffz4ccM6+3FTXIcWomu5QqbHGLGL6bKY+5omnu78Vp9XbVlSyvB0bJ1rJrGR/l7KhEzZotxP35aehH4PduGBvg0L6ldyW6vCc60djqGPm2P47rvvqqrqm2++qaqqn376qaqeszf7uFjIzFi+Y8J8nui42pbPuw6uu9QEtZ9Xkh1LsT2Ot4NrdcUo9+KcjlHy+By7y1zVfLHQ3LFE3stHJN+EYXiDwWAwuAlcHcN7eHiIsYeqLeNIjRJXcmTcB9udOFky/q/vOEsrWZJ7mXdV+5mJq9gk543isU5cOcXUjtQx8Xisz3L1ZRzTSpqLDGjFbs7nc/373//e7LdbbpQmouXNOq+qbT2fZOcoLaZ4j8vSS7VTrgVMio8lBua2oQeDNY/OMuccr1hhaqfE83MSemR/tNJlefcYHuUCdY15Xk4eSvPmxtL3//vvv29yB3pch0Lc//znP6vqmTGI4TmR7VRjmLwq/Xg8R3qp+vpOTap5j/d5InMVUoZnBxlxal3l2FNqQ5Xq8/p+uf7opXD1v4rZ6ZXsrY+HjPv+/v5wHG8Y3mAwGAxuAlfH8O7v72O2Uf871e+wFU8HLQMK5zpWyLiPLC62JepjlOoCfcv0qa/Oi9lYqX7JIdWZOSuG1iAzoBzTozWeGNiqtiVZkP0acP8rK0tW+oqRaty6dqlOrl/z3ny26qWweB8TM/yqMuPm+TgWSkZCK53stIPxRWYHd9CaZZyRrYb6/jjX6b7t55csa8aDXQZwygp2Y+Q9sBIAvlwu9enTp83ad7FczZPWkBieGH5fo19++eWLc+TYeI87Dwbvdwp3u5jxnuKSux7pOZCucUfKY3DNsXnctFbcM5lxTMXTOUf9ujH2ztrrlNHc99fzSvYwDG8wGAwGN4H5wRsMBoPBTeDqpJX7+/sljaabjkFvuROd+GwqjGVxpaPRqWu6qLJLYWZJQSoI7aB7JqWJdwpOlwGD1a4QPLk96X51hcfJVcdtVmnidOscKU9YQUkrq6C4xqNr2YuS+7id65cJE5wnuRFXguDJHdnnlm6p5D7s++A6olh0+l7fbyo8ptu/jyndT0ckmTiP7JfIUELV1qXF6+jKH3piUFpH5/P5RdKK1kNPnOHa5jhV9L7qDM+EN4oYuBDHniutb8Pz45zqfPrcpj57TNtfyZIJSVBhdf9yvacCdHdeTF7SmHtJC7+bysdcgpJzle9hGN5gMBgMbgKflbQiuMJcgV1vU7Ft1TY4TMuALLFbFUxScQknVS+TGZjKzYA2LeO+DVmHQFa4kiFKAehVgJtMj/JnzrLbY7BOHJvJKdzGFbZybA6Xy+VFR3TX3TsV2VMgumNPEk1JCzofSU1VbZkcr+ER0duUvOKYBPfLe8KxhtRSRtC2nTWmdPpU6uLWjs6P+1K6f2chjsHxO1Uv2TXv8ZWVrsJzeiYc8xYSm+pyZEqBT88BjUnSc/0+TsXp9Gy5hCf+z7l2heecS/7virD3mPyqKJ7g88CVJ5Cpcj3ofVeqQW+Tzm9ViuaSrvYwDG8wGAwGN4GrGN7lcqnz+Rzjc1Vbf/cqHibI8ktWZSpA1pg6ksXQ/cbJZ01/eT8Oz0cWdZLg6eebRINTIWrfLy1HxijcvCZ2loqJOzj+xE779t2aTZa6YjSM66w8Btq/1kdvJZTOmXNL0eA+PqWla/+02l2BPj9LQsz9OIxbM3VdWJWYpHR0F3dM8R1aws5jIkuaBc/av+azx1QYR+a2+r+zUDKEPTZyOp3iXPRzJWsmU3DiDpTvIrPX52J6/bsC2Yab870SA45rtU0Soljd00kucCUtxrngdXK5CnwmsnRo5cnSefI+Xnl3Pn78uPQuvdjm0LcGg8FgMPiD4+6aDJe7u7vvq+q///+GM/gPwH9dLpd3fHPWzuAAZu0MPhd27RBX/eANBoPBYPBHxbg0B4PBYHATmB+8wWAwGNwE5gdvMBgMBjeB+cEbDAaDwU1gfvAGg8FgcBOYH7zBYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE/gfv3VZUE2/cMQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1892,7 +879,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4delZ1nm/5zvfUPOcVBIIkUlkuFQUiBPaKGoLDkCjYUwIaWNrK06IGBAQEBW1RRBpEBCMoIhtiKAQBgMdiYJIYoAGxSBkqKSqUpX6aso3nLP6j7Xvc57z28/zrrW/+ioJnve+rnPts/de613vtNZ+7mds0zRpYGBgYGDgf3bsvac7MDAwMDAw8O7A+MEbGBgYGDgVGD94AwMDAwOnAuMHb2BgYGDgVGD84A0MDAwMnAqMH7yBgYGBgVOBp/0Hr7X2otbaVPz9nqfhei9urb3oere74rqttfbGzbg+4d10zZe31n7xaWj3JZtxvM/1bnvg2tFau7O19qWttd/wHrj2Szr38e9Kjv/czXevfRr68h86fYl/916n672utfaK69TWhc0a/tbku1e01l53Pa5zPdBa+4DW2r9urT3aWntna+07r2VOW2t/Y7Me3/t09HMX7L8br/Wpkt6Mz37uabjOiyVdlfSPn4a2e/gdkn7N5v/PlvR97+brX098j6SfkXT/e7ojAydwp6QvkfQ/JL2nHoyfLOk+fJbdxy/cvD6/tfbB0zT91+vYh8+VdEt4/+WSPkTzMybiHdfpep8l6dJ1auuC5jV8TNKP47u/JOn8dbrOU0Jr7Q5Jr5b0dkmfprnfXyXpB1trv2mapssr2/kISX9G128tnhLenT94r5um6bqzkXcHWmvnp2la2vAvlHRF8yb5Q62126dpeufT3rmnAdM0PSDpgfd0PwbeK/HT0zT9j94BrbX3l/TbJf0bSX9AswD4RderA9M0/Syu9w5Jl6Zp+g9rzl95P8frvWHHLl4TrrNQ8FTxZyTdI+mjp2m6T5Jaa/9V0uslfaakb1lqoLW2J+kbJX2tpN/39HV1B0zT9LT+SXqRpEnSB3aOuUHS10j6WUmPa5YgXynp1ybHfoCkf6pZ8rgk6Y2S/u7mu9dsrhX/fiic+3xJP7y5xmOSflDSb0b7L9csQf82Sa+V9KSkv7MwxhslXdTMjH7/5rovTY57jeYfxN8r6aclPaGZSf0hHPfBoR9PSvrvkv6BpNuTvv5imMOHJH11ct2XSDqU9EFhHn5oc/wTm/a/FsdPkt4nfPZZmlnF45IekfRfJL1kxfr/xs28PLQZy89L+oLwfZP0FyT91816vlXzDXJzOGZ/058vlfT5kn5l049/LeluSc+U9N2bNfgVSX8xGf+k+SH8ys3aP7i5zgUc+5zNvD4o6V2ab/BPL9r7KEnfubnuWyX9PUnncezNkr56s5aXNe/XvyyphWN+z6a9T5D0DzVLww9I+nZJt22O+UBt7+1J0mduvv9fNe/XRzbj+3lJL7uO97HH/LwVx37p5tiPkPSfJP1yHO/T8Iz5Z9rcB8l3f3bTl9+8WfuLkl69+e53bPbmWzb3wf8n6YslnUMbr5P0ivD+j2za/N2SvlnSw5qfR/8o7tukL7cXa/hnN9+/QjMx8PG/wWu82VsPbPr/jZLOSfpwST+i+V74BUmfklzzYyR9/2ZfPCHp30n6qBVz+lOSvi/5/PWSvmfluvzJzdrftJnD78X358O9cWkzvh+V9JFP1155dzK8M621eL1pmqaDzf83bP7+mqS3SbpL0p+S9NrW2odM03S/NOuUJf2E5kX/Is0P6udqfmBI0h/X/AA60DzZ0rzQaq39Rs0/Nm/QsbrlCyX9WGvto6dp+pnQtzslfYekv7U55omFsX2SZhXLt2v+Eb1Ps1T7fyfHfrCkv6tZPfAOzQ/wf7lR+/zS5pjnaN4o/0LzzfSBkv6KpF+v+aG9hWmanmyt/WNJL2qtvWw6qXJ4qaQfmabpv7XWbpP0bzU/HD9b88PxeZp/BFNsbDTfpvmm+wuSzkj6UEl3VOdszvstmm/IX5D0eZofLB+8Odf4m5s5+FpJ36v5Jv5ySR/RWvu4aZoOw7Gfo/mG+xOSni3p/9r06y7ND7NvkPQCSV/dWvsv0zS9Cl36Ds374+s24/1izfvuJZv+3qL5hrtV87q/eTNH/7S1dmGaJkq1/3TT5jdrFpC+RPOafvmmvbOSXrUZ85drFm5+q6Qv28zdF6C9r9X8I/5pkn7dZm6uaFbhvUmzyu5fSPoKHavMf7G19kGaH9z/bNP2FUkfJOn9dP3Ru4/VWmua5+x10zS9obX27ZqF2d+l+WH7nsJ3a74/v0azkCXNJogf1/wD8rjm++tLNN9/f2JFm98o6V9K+qOaf5y+ctPO5xXHPyrp4zU/I75W896R5gd+D1+pmS1/hqTftHkvzc+Cr5H0NzTfl9/ZWvvAaZp+RZJaax+7udaPab53rmz69uqNWvLnO9f8UM1CMfGzmgW9Llprz9b8jHvRNE2Pz9tiC1+h+d77Qs3Cxu2a78vuc+Up4en6JQ2/4i9SLtW8pnPOGc1SwROS/nT4/Ds0/9jd2zn3NdpIcPj8FZpZxq2QuN4p6bvCZy/f9O8TdhjjqzZtn9u8/+pNGx+U9O2ypPcPnz1rc+xf6rS/r/mBMUn6CPT1F8P7D9LM5D4tfPaRm/P+t83752/ef2jneicYnmZGcv81rP2Pa/7hvqH4/p7NfPyjYs/8gTD+SfNNcSYc9/c3n//l8NlZzezsm5LxfB2u8yWa7b0fsHlvNvDbcdyrNQsxe2jvi3Hc90v6ufD+czbH/dbkupck3bV5b4b3zTjuGyQ9Ht6b5b0Ix71g8/lN1+u+7ewJ/r0ax33s5vM/t3l/92aN//HT2Lc1DO9LFtpom332f27W5kL4rmJ4X4M2Xr50n+iY5f3F5LuK4f0/OO5HNp9/YvjsuZvPPi989lOSfhL3zAXNWpByPTRrrE7cV+G7r5P0jhVr8t0KjE45w3uNpG95uvZF9vfuDEv4JM2Sgf8+N37ZWntBa+0nWmuPaH4IPaZZ+v614bDfK+mV0zS97Rqu/7Gbcy/6g2m2sX2vpN+JYy9plqgW0Vp7jmbVxj+fjlnVt21ePzs55eenaXpj6MN9mh/Qzw1tnm+tfVFr7edba09qlswsHf9aFZim6b9plspeGj5+qWbW/D2b97+gWWj4ptbaZ6z0xPxJSfe01r69tfYJG5bYxYYtPV/SP5mm6cnisN+i+Qfq5fj8OzX/cHNdXjUFNqFZbSdJP+APpmm6ollt+L7J9b4L7/+ZZuHKEuvHSvrlaZpeg+NeLulebc89HZPeoLCOmtXb/13ST7TW9v2nWUA6p1ndtNTeja21u5OxRPy05nvmn7fWPqW1ds/C8ZKk2Cewth7+kE7exy/F9y/c9OU7JGmapgc130uf0lq7aaE/Z9CnlBZcI/5Vcr27Wmtf01r7Jc33/BXNzOucZq3HErL1uqe1dsNT7Cvxb/H+5zXfHz/oD6aZ1T2pzb7f7IGP1HwvtbDGVzVrMT72OvfxCK21T9Rsu/3TC4f+pKRPba19SWvt+TvswWvGu/MH72emafpP4e8X/EVr7ZM0L8zPaFbnfIzmm+khzRKJcae2PT0Xsblx7tC2d5k0/xjcic/ePm1EkBX4LM3z+D2ttdtba7dv+vgzkj4zuWkfStq4pJPj/FuS/qpmFcwnSPpoHXugXVAfXy/pd7bWPmTzo/PpmqWoK5I0TdPDkv4XzTaHb5D0ptbaG1prf6RqcJqmH5b0xzQ/BF4h6cHW2qtaax/e6cedmqXm3np53k+syzQ7FDys7XV5GO8vdz7P5untxfvnhP5UeyT21+Bach2fodnmfAV/9s67a0V70sKab+6l369j4eHtrbXXttZ+R3VOa+0D2a+Vws8bOvfxjZr36Y9KuhTuh3+l2Zb5yQttvwV9+mMr+rMW2bp+l+b746s1s+yP0qzNkJbvM6ler+vtaZnt7yenbcebuO+fsXn9O9ref5+p7b13hGmantA8lky1eKfyZ5ikIzX+P9CsfXk47IEzkvY3789tDv9CSX9b8zP/tZqfK/+wtXZr1f5TxbvThtfDCzQznxf7g9baBc30P+IdOn44rcY0TVNr7WHNUjpxr7YXcO2PnXRsD6QUZvxOzSqxXfACzT9Sf90fbDbNGvxrzfael2pmczdK+qZ4wDRN/1nSJ28kqo+S9DJJ391a+/Cp0OtP0/Rdkr6rtXazpI/TbF/6t6215xbCwUOa57G3Xp73ezd9lSRtbog71LmxrhHPjNfZvJfmB6378xuT8+4N3++Cd0j6Rc03dIZfKj7fGRuh5Ic3981v02wz/Dettfebpinr95u0bYuhQLArbMv+3dp+SEvzvfJPOuf/Ps0/2sZ/f4r9iTixRzes+eM0m0y+PnxeCgm/yuAwgL+uhN1q9nPo4eckfVjy+YeqH052k2Ytxxdo20b94Zr3xedoVqm+S7PN+cs2mrI/ovkHcE/bmoPrgveWH7wbNVPtiM/WNgN9laQ/3Fp7xrRxZElwSbM0SfyopE9srd00TdPjkrRRzX3Cpt2d0Vr7aM3xP1+v2Zkg4oJmR4oXavcfvBs0S2IRn7PmxGmaDlpr3yjpz2t+kP/AVLiRT9N0VbNj0F/VPA+/Tsdqwqr9xyS9csMQ/o6KH6Zpmh5tc9DxZ7XWvnKzuYnXah7nCzSvj/Fpmtf+1b2+XAP+qGYDvvECzTf+T2ze/6ikT2qtfcw0Tf8xHPfpmlle/LFcg++X9AclPbJRNz9VWKIvVWabef7hzd7+l5odV7L1uaTZg/J64oWancQ+WbPKLeJ/l/SC1tr7TtP0puzkaZpef53704PVq0f32caNPjNDXE8sruH1wDRNb2utvV6zzf9l19DEKyV9QWvtXpuQ2hxT9+s1q30rPKZZg0T8I81emF+o5BkzTdNbJP2D1tqnaP5hfFrw3vKD9/2Svq619rc1M6WP0mw8vojjvliz6ua1rbWv0iw9v6+kj5+myRv15yS9pLX2qZol6IvTHN/y1zQ/YH+otfbVmtVtf1mz+uHLr7HfL9R8Y//NjQ79BFprr9Rsu/hTGzXBWvyApBe31n5Os5T7qZrVmmvxTZpVoh+umb3FPv1hzcH5r9DsHXazZsP+RUn/UQlaa1+pWQXy7zSrhp6reX3+U8EejL+wOefHW2t/V/MP8Adovgk/b5qmB1prf0/SX9zYKr9fs1T55Zp/fH6gaPda8Qdba49rtnM+X7On77cGm+q3aLY7vKK19kWaQw0+U/MN/LnTSY/RNfh2zQ44/26zt9+g2T70gZptYZ+YqKV6eKtmJ6tPa639rGanrjdqFhB+i+b5e5NmZ6C/olmd/HQkd9hCsGV/4zRNP5J8/07NgsNnavbee0/jV7QJQ2itXdTsQfkndTKg/bpjmr2p/4dmDcu/1yaUpiPAPxX8GUmv2jyH/onmRBLP0PwsuThNU++59/c1CymvbK19mY4Dz39WgaW31n69ZueYPz9N09/fCNGvZmOttcc0O7u8Onz2Q5rv89drFpSer9nz9Ct5/vXCe0suzW/QPJmfrlkl9/s0M45H40GbB9PHaJZM/6bmG/xLdTIjyFdpnsRv0WwU/frNuT+t+cH1pOYF+zbNk/yx08mQhFXYqN1eoDnOb+vHboNv1nwDLdkuiD+p2SD+VZL+uebN9hlrT56m6e2S/l/NDzwa1h3v9lc1CxffrDne7HdP0/TWosn/KOn9NYcl/OCmXz+smb30+vEfNG/g+zTr9f+N5h/BKOF/geYME5+o2YHo8yV9q+Yfg11/YJbw6ZpVMv9K84/8NygY1qdpelSzCvqHNdtRX6FZaPiMaTskYREbJ6aP17wX/w/N43+55of+a7TN4pfaO9DsLXnPpo8/qdk54HWaQyn+hmZtxddK+m+a1/R6ZQhZgm3Z6TxN0/Q6Sf9ZxyaA9yg2avhP1szav2nz97OCgPg04Y9rtml9v+Y1/PSn4yLTNP2YZkHoqub4zldp1sq8v6R/v3DuQ5o9wx/Q/Az6Fs3r9/HTyZCnpnks1/Jb8mOaBb9v0/wseqFmUnOtBGQRbb1vxsCvFrTW7tIswf6taZq+7D3dn/c0Wmsv0fxA+zWVendgYOB/fry3qDQHrgM2rsgfIunPaTbS/8P3bI8GBgYG3nvw3qLSHLg++MOa1QQfKemznia7wMDAwMCvSgyV5sDAwMDAqcBgeAMDAwMDpwLjB29gYGBg4FRg/OANDAwMDJwK7OSlub+/P509e1aHh3N4lF+jHZCpI/f29rqv8X+fG7/L2sxyyi4d83Sds+b7tde53uf2+rQEr2mvfdp/p2nS/fffr4sXL24dfNNNN0133nnn1jlxrXmtpdel7zJcyxyvbWdXrLGfZ3O8tj/VuXztHVN97ns/wp8dHByk73vjba3p0Ucf1bve9a6tgdx4443T7bffftTe5ctzGNiVK8dhjFevXk37uebeWtpDu9xb1+vYJXB81+ucao12+bzaZ9nvRfVbwt+C7J73d/v7+3ryySd1+fLlxcnY6Qfv7Nmzet7znqfHH39cko5e48Y7c+bMUSck6cYbb5Qk3XrrrSfe+1WSbrhhzrJz4cKFo+vEV7eZDd7f+bPqvV9jO2zDn/N9/J/HGL0F4pywDX7e6wvH53P9Gv/v9amCN5wfUj733LlzW330MX7YXL16VZ//+Z+ftnv77bfrpS996dHDyu157WO/uf4+xufEsbo/3jucS79mN3u1pj3hzHA7ax6sRu/Gj5/HHxP+ePA6vb7xh8br5M/5Go/xq6/r916/S5eO49n9v18ffXTOF3Hx4pwo6Z3vfKck6V3vOs4u52vGe+D7vo85EmbcdtttevGLX6yHHpqT+rzpTXPegvvvP3ZC9rWefPJkYQ7voew+OX/+fHqM3/f2wdI6ZJ/zM76uWVOD9+cuP2J8NmY/QHwO8H22Vyl0+L3X3a9xjfy/f0u8h/ybcsstc+Ib3/txzDffPGeQvOuuu/RTP/VT5fgjhkpzYGBgYOBUYCeGN02Trl69evTrSykwIpNS4udrJO2MnfE923u6VE0VPaekn4ESd/V5r42K6mcqJv/PeVsDXqca7644PDzUE088cTRWSpnZNSiBZuo2zkPFuHoSd4XeelRrtkbSrs7tqXyq9c+u6//NVHh/8j7zfRzP9Wu1zzNWWO1NI55jpuhjzp07153vw8PDI4bg54/biH3gPUYtUaYJMXsg0zN66tDqHttFLZ6p6Ag+56pnSe8618IGK9aWaQe4n7hn2IZ0zOi4Z7zGTzzxxIm243f+7F3vetcq84A0GN7AwMDAwCnBzgzvypUrR7+w0XZnVIyH9pEoxayxoVWfV/rvNVIN7WG7OED0DP/sY8WS1hjUK6bcQ8XG2FbmbMRx+ZyMNXJu10rosZ3YR5/v72xjIXq2Ttpqerbcan52cS4gA+s5cxi0g/D6cR6XjPjZPFbj8Jywz1HiXrLdZQzDz4ElJ4XsnNg+WUvE4eHhlhNM1m/aBjn2zIZH34E1mhHeH7Gf0rXZ8GhDjKjGU423dz1+nu1Zrpnn19fNtHvU3lBL4HPjfe1nQraPpWOGF214HPOlS5fSMWQYDG9gYGBg4FRg/OANDAwMDJwK7KzSPDg4OKKzVktkKqbKeSBz8aU6qnLXz0ICllSZa+L+SKMzel2ptdbEtiypFtaoPyr1a69/lZotU5NSnVSpbLM+uv2e+nWaJl2+fPnomEwdnrlJZ9eO629Vh9VSfk8VZqZKX4r3rMYhbat61sScVSo/3jO9cJgqHCVTNVdhFdwPmVqqCkOwG3k8h04E3BeZC3tmFunFevkv9rGnQve8eF/4NarTHBrFvbOLc0fl1JOt5dKzMFNpLvWFe6j3bOR1eip0vqfKOFNpeq/4Ozqk8B6RjtfDqk32NQuDMazuvHLlynBaGRgYGBgYiNi5Ht7BwcGRVJYZmSk9ViEGmXuwJRsGGFcB6NlnVfBwBCWtJQeU7NiqrUzSqiTunpNOJcFXTgsZKyAq1/3e+HrvfR2vz8HBQZcJX716tes4Ew3TEXSzt0QubUvplhirfZftncp5JdsP3t9kKNR2RIcKjoOoEgXEz3gMx5k5gfE7Mi8jCzGwZF05FcS58djN/rhHs+fFLgyvtaa9vb1uiAzZi/cSHVNiwgsHLjPxxRrHoIy1RvT2zpJjX8bwqucOmWQWoE2tR+XY1RuHGRYZXramPpbsjP2I7TB5QS/RAZ2vrl69OhjewMDAwMBAxDUFnld56+L/lTSRMaDKzmKJgIwvY4c8l8yoJ3FluuXsfTy2chfPxse+VHPTk9KX0l5dC1uL57j9SnLN7IGUfHs2vNaaWmtH51O/L9W2Gc5XZHi00SztmV5YBec0299Ml8T18biy/UZbBtlbj4Uy3Rpfo2TP9vwdGZ4l8rimZmlV4gGPP9rCKrd+MofI5rzW/qy11pXSz5w5s6VNiWvJdGBmbWZxt912m6TjFIfScdoqj8XnVAHpmX2susey0AnmAHUbDPnI1p/PXIPPm5iqj/eCx+Hx+rWXlpDPRveV9jrp+J6wbc3vfU+4b7GPvo6Pfeyxx070w32Me7SX0GAJg+ENDAwMDJwKXJOXZs9zr2IklDYzO0XFfCpJJftsDcOrpLDK4y47tpqDXdha5Z0a54RScpWOKsMugfTUi1P670nfkRkteTr2mAKPWQq6lmrbpt9XCYLjZ1UAfcY4GXhNRtyb6ypYuZdSinZsSufZuMgK2S73edxDS96/GYunLZdB0Nl1eI/1gr1bazpz5szWvR6fA27npptuknTM7O68884Tr5Hh+VgyPNr9qD2I/1dMiOxGOmY+fvU5TJnW8ySm1oEM3+OO/fZ4bL/0uJlwPbbH9WAqMY8hPiPNzvydE0I7mTjnM8KM0W34vfsT70EGv++CwfAGBgYGBk4FdvbSnKbp6NefqWSkbUmUtpS1aahi+/SAi1JPZXNaY+OqUnBlqZ+W0vGsSWVWebBmtiIyCZYDoWTcS0+2xiu1skXQhpPp0temQWutbaWUilJaloIqQ+yrJWjWSvPnlp7p1ShtMzyDbcW55XrQey1LbFzZQ8nssnuCLLNKCxavwbRTPJflWmJf6XFJb7lsfL4O7S70lMySYrv96IVJtNa0v7+/5aEatQNkPGYxd999t6RjhhcZEJkOvTUrNh3/573l8ZDleIzZ2Dkn2bOKe4QajMwLlePzq+fAx0aGR09KarboTRnvVbJDt8XrxHnkM5Bemka0//a89pcwGN7AwMDAwKnAzgwvIvMQs1TBop08Np5DfTF/3StPMen4l9/SC+NDMsl+KcNGxkKX4m167KRn8+y1HVHZqtjn+H8Vh5XZipZKCtG2F4/dRdKqyrhEkLX6mpaWsyTUtFstZaaRlhOcu6+ZRzFtCxxXFl/GPrB8j++JzBOWfWKmmqz6N/tSxTZl3pN8JfvoeR+6r2YStstERuaCrfQOzjBNkw4PD7cSGGd71c+B22+/XdIxu8ji2egpzP3Luc4YHsFzog2vKunTixkmK6RWwHNKe2T2XVXoNoLrzr1i5uriu7bPZWOnBqGn1bFt9d577z1x7oMPPrh1Du17kf0vYTC8gYGBgYFTgfGDNzAwMDBwKnBNKk3S6hhISBdev6d6KkuFRSM7VRZ0iImfUWXqPpnOZyl3YkosqV/Nl6odqicylZ9BtVvl5JGpUKnCrOptZcGjDAimWizOia/dU3ewj5y3pbCETAUV2+M8+Tu6N2cOGnQs8KvVH1l4Bdfb89FLNcc9SHVxlkarCn+okjJk46Mrt4+xujCqeali9DjpiGJkKe3oNEW1bNxvDGFhgumsDprHE9vtpaXL6nBmldqz0KXYl8yJxGq6at3d79g/hld5jHEdpJN7nmpbqv4ytW4W5hSvT5PNmtAPz5vnIu5Vj51mBO8z34OPPPKIJOmhhx46Opcqcu6ZzOxDpyurwe+55560HxEx5eBQaQ4MDAwMDATsxPBaa6lLaZQ+6DBBKSNzwY4uzhGUCNxmllqKrrB0o4/uugyypmNDlhaIDKFKxNxLKcU5qNI3xWtX6c+qIH1p22XaIIPK5p3Gfa5XL4VZ5gwTj93b29tyd+5VCLdUWSUGiP2tgqzpPh1ZbRUEX7GDCM4L1yHuHUrhvSQFPJfsyHNuFvXOd75TUs7wPHZLxz7HyNjQ2qrf8Rw6PJFBZPuMDjtLDO/SpUtbjDyui9OEWaNj+NqZM1F1T2dps6ScCVOT5TYYmsHxeMyxT2ZP8Tp0nKKWqLdeHB9DNnyduC+8j7yvzOAefvjhE5/73rTzUUSldcucc7wu1D74HK9rZIW8bwfDGxgYGBgYAHZmeGfOnNnS6/dK8FTI7GNMQ7YmvRZZWpWcOLZh6YsSR+WSHa9Z2d8oYWX6/splPktXRrZJ2yCZX8Ysq2D4bG0ona8JpGfw65rUYmRAcR49RttUmIi5ShQQ263m1uiFJ3AdMpuabcOUji0B+9yeFiJL2hv7ltmBGUzOwObMNskSP1WB5cjW2CfOAduM/SXL9rG0kcX/PTdLpaUODg62El1kc8x+uv8sWRP7TQbPIOtMg0G7rJmI3euzUB3ur+pZFVmT55nB45WNP4KhWe6zmaTXxfa4OCdve9vbJElvectbJB0zPZ/rPsb5JLOrAt5j8D/P4dxnJcHI9GNi8SUMhjcwMDAwcCqwc/JoS1tSzhgqSZupmLKS7VUS2l6BTEqVTI1DDzWPI76yBEUV3BuvzfFVknFsn9JYlbYn9peeT2SSWTJuemNSP57Zu2hPWgqWl+r0ahX29va2EuTG6zDlFcuoZHZE2sNo57XtlgmC4zlk9FzbOE5K2PT+s40jrqXn3Syg8rh1f+JeJeMmG83s6Ibb8TkeO+cos8cxxRPv9Tg+eia6XXpVZmnp4v1U7R/7DngNe0mDyZLdN89F7CttgfToJYvKytqwLBTnItMSMWkBbZxmXll7vG8qO13sG9PFea+apcXgcV/77W9/uyTpgQceOHFMpXXJ5sDnuE9mv/F6/oyJrN3XzPbOhPNZQYMKg+ENDAwMDJwK7ByHd3BwsFU6vlewktLPc1rYAAAgAElEQVRsZnOiJOJjGNOXSelM9Fp5LWXpyCgN0is08wasYgPp+ZmBUlEv4bClJNq6qtIyPdZj9JgrWajnmB542ZzENe1JWtHLl7YV6XidK2aQxQbS45TzQ0+xjNUalRdtJqXTTkbWkaWyY9o9et6RXcXrce/Q/hbHUqXMYnxrtnfcHlNjkYVkXtb0uDOydHJZmqsqNZ09OBmTGMdsZuKx2IvQ8+XvMy9NH0smbFsTk0tL24ml+azqeU/6GPfJx9iWFhkebYKcA65x7CP3TFWYNYvd8151qi/GxWVJns3c/Eov6yzekLZ2ertm9zXLOJ07d251AunB8AYGBgYGTgWuqTxQVWxVWrbjGJkE7FfbXe666y5Jx1JOxrJuu+02Sdv69p59qfJ4pJ0itkFvoorJ0eNTqpNf03YU59FSDNmGpRom5I2eT7TVMaMM7QLSsSRl6Zw2ijWZHHpS1t7ens6fP38kwVEij/2mLaBnH2VmCB8b4y5jH7OyNmSUvVJWjHHjfPm68fq0ldFm57XObFOW+snOs2TIBteO3nLUAMQ1oGTNpMG2/2TMhdJ/r2wU7aVLsVR7e3tHNlAzpMiE3V8ybmYKyTIF+R4yi/F1XFIo02Qxvo4ZnjKPYu9nagncRydKjllF3Bfawe64444TffJrfLYxy5XbpddsXEvGjPr69Inwez9/pW1PTu/dX/qlX5J0vAaZZ7ZReZ1m2YeMG2+8cTC8gYGBgYGBiJ0ZXoy1yuLHDHph8Rc7s/tZKqZkxbibKJH4GHsc+bq0B0XpmZ5GvUwuRhXDVJUyyspZcOxklNH7iNdj3JLb9JxFiZPrw2MydkpWS0ZBG188NuYx7Enp8TuPI7LNqjApbaqZdoB7iBI4S/DEc8hQbb+gBB5BOzZjzzIvXc6xx9mz4VW2SWo04p41G/Bc0IZCTUpEtB9FuH33zd6o8XrUJDALSZb7MmZIWtIOmT2ZOcR9YA1H9ADkNWMbsV/v+77vK+lYo+Q2uJeyQql+7rhdP7uyGDfGMJrxMPdodi9Tk0OP316pJx9DG16mmaHGxOOihuS5z33uic/jsZ6/D/uwD5MkPetZz5Ikvf71r5d07PkZr0PmyH2daT9iX4eX5sDAwMDAQMD4wRsYGBgYOBW4pvJAVEdkqYmqUjgZ9TRttTqgZ8SX8mSnVAdQ3ZpVhKY6gC7GUWXCMdM5pZcI2sdQ9ZM5xxBUtzLNEd3j47F0VqgSX8fxMLi717csCXIveHh/f3/LXTuuCw3YDEPwXES1lNVOTNvlc60CYtLlOFb3344ArpbN4P/YDhMdeP6pJo19Yh+pHs9S2jFEp0o8kKnB7ODgeb3vvvtOjMeq2jjPrCrO+8nzHfvIIGGeSxd+6fi+jfuht3fiue5DL90UE11YBei1lY7nx88dmkN4j8X96blbSvkXVfZMuOxXmg2iqplhDpwj9zELNWKqPjuV+H3WJtXqXH+rK9/85jdLOnk/eW/6GM+R76vnPe95kk4+q6pnseE19tzFPkaHmbUYDG9gYGBg4FRgZ4Z3eHi4JcFlaY0qN9EsESvT8zBNDl2NMxfVKsVU5oJfpU9iyppsXO4LnSJY1iJKzTQ8Z4G4cdzxfzJkJu7OJLvM6Sae23POIQNnoHicezL8Na7BTM0V57xKFsAEspbMpWMHEzqNVAHnWWkSM0ZLon7vuY8SKfcmg3rp9BP7XbFDssK4txiewtCCXvIHMiuzGzucZKnaqgTnLLMUWQj3YpUMIq41naAODw9Lx4MzZ87o1ltvPWrfkn083kyDjjJkT3HP+9iqYC2dpaLzkq/tvrh9JpHoBejTac572c4z2bGVo2AWDsW9maVZjJ/Hc6pwJB/r1GPx+WNtiveG58vM0u/j/uZ9yjRoWbJy3oO90lLEYHgDAwMDA6cCOzG8w8NDXb58eav4YHRlpk2BoQVZ8DjTF1lCsMTTYxIs/GrQ/tdLZ2NUQevxMx5jaZDlLKI0Szsf05AxgDt+RpthVZgzS5lFCc/osQK6KjM4ObtOtE32SrxcvXp1K2g42uN4bb9ScsyKalIiZbC3r5PZfdhn2u6yxNx0wec6RVsR9y1tk2TGcXxMg0dk+8ISsO0eZHyezyzMg/ciQ2iykkKeWyZF5j7MGBzvgQwuHuxj3H8HasfzbatjAVYWEZaOmQefZ5wftxHXlPuMtjQG38f2+er5c/vZ+vM+ZJ+5D+NntBlzP2b3RJWiz31kgndpm4Xef//9ko5DM7J0ZCy3Rc1JpvWgRq6XTJwYDG9gYGBg4FRg5/JAMcgvKw9Er7Is4a900i5SSc1Mo5QlRaYEWv3aZ3rqqoBtZh/jOHgupdl4PPXrZCOZZ6dRMTzapKJkR/sL+5yNj/NYJavOxhXfL6WH4niyUk8s6WOp3cg8BBm4WqUcY3+k7dRLxBrtAPcD+xzPpV3G6Hk9U8PAoPgsGJ/7nGwq0yzQZlKVaooaDEvfWfq2eE5WumYNDg4O9Oijj249DyJoF6V9lB6L2djIHGg/jWNmekW21UvuwH1uL1FrtKKNjZ6U1dpmdnkmp2Yigp7WpmLlZLTxPqhKmmXs2qh8FWhfjZog2lzXBp1Lg+ENDAwMDJwSXFPyaHrsZNIaf7nJOrIYMDKfKolvlgC2ur6lzSwOL/MUjJ9HVAyvki7i5xXLrcr4SLU9i3NExhT/57z1vEKrBNpct4xJGEueUrFQY5ZyjpI0y7JkdoNKeqT9wvsgznWVBL3HPhjnRQnc9p+4p2xLY2q3KtaxN8cG1zQrKWRwXVh4OM4d05AxLipjoVUScTLJjEmsSTx+cHCgixcvbt0nWYkxgp9HBkT7e3XfZJ7Q1f3PpNs9D8i7775bkvSMZzzjxLFR00BGVRUCzryDq31Az8teYd5qvHz+RPB5R0YZn0N8rlEb4bYi66WWo+fhSwyGNzAwMDBwKrATw7O3VGUb4rERZDNrzqHkm8WgsGwF+5RlSaDUSk9SHxs9g+hpycwkZLSxj5WHVRWPF48haMvJ7EFVoc8qaXWv/5UtL0NPyjo8PNSlS5e2pPTYh4q9VvZS/i9ts5d4fYKMrhpjL1k1pXbbSXpSc69sDsGyL5XNOIJ2pJ4HJPtRZVHqrS09fM1uaRPNrmMs9THG/2a2m4qV8d7K7KOMF2QsYsZmquw4ZsYxoTrH6HYc9+m40re85S3d8cdX+jlkDI9MyKB9LCtlxn1W7fte2R4mnuacxXbJ/siqM41gFpe9hMHwBgYGBgZOBcYP3sDAwMDAqcBTqoeXGTiz1GEnLpikeDKqiuOkrFlNNoIUP7pKW6XJvlA9Gak31QJVFe6eq2wVLpCpQSsVEseVqSepkmEfM3XpksNJdm6WmqoHJy6Q+rUNK9Vrpl6j2rMKmWF6svhZFerRC/nwdViV3edkaah6am/Pj5SruKvE2pkTCQNyq9R8mSMSnQUqB5QMWQXtiCw4Ppoeeg5gWWhIhNVzdL036O6efcckFtUzLIL3O9O5ZU5ZPtYOTl6fLCymCimhijt77lQpzKiujHPFtavWO9s7XFPPo8MtGHaW9ZsB+1lCdcNrTqfDHgbDGxgYGBg4FdjZaSVzsY9STOVqTUN9llyZUkNlMM2uZ1Aiyhge3aTp+NJzn636bPScSCq3Zx4XQWmc18/6VzGk3jnVuUQ293HNe1L65cuXt8rMZPsgC2iX8jRylFqrcIqM9VahHmucSZhMmWWComNUlUqu0pRk4SKUdHmPZNW4DTpuMSA4SwhesYNM+8E1oJNCj7lGJ4Ul5wOmO8vCU/xZlVw5e35xLqtSPNk9TYc3ahJi0mMmnvdrTJFGVPt5Dejkx1AtJtiOoCbD6DH9JUcXz01WlZ1hQ73STCwMcPbs2RGWMDAwMDAwEHFNNjxKcpmemhJALxh2yYayxDpi+5WuO3OfpSRMSTWTtI2qb1mZDpZNqVxxM/ZEW0SV+muN5EcbUs+leE17vf5n1452mixxMdvlnGeSd7VXKjtcZG9V2jbOfdwHFTtiSAvHLm2zQbKpTDtAZmI7DxP/xvXL0n9l/cgCz+nOXxVWjRoT3mPuI0s2ZawgpqHq2Yv29va2yofFfnvMDvL32HuB7RVLrsKIIrguFTOJY2KB10z7VPWx0j4wTCnuA5ZGY6A9n0sZKhshSyfFPvK7LLF11b5faXeO9wQTXO/CegfDGxgYGBg4FdjZhrfGG1CqJZFe0OiSxJ39klM/nQVgSnnBWTI5MotMgqREUqVTiuNnUUhLeD3GVQWp8/vsPW1DZFPZPFbprdYkaF3rwRfHYOkzFhKt0rdV5ZWkbe87rhPfZ/uA89Wz3dCmwCBYH9uzUZN99lJYsUCmr0O2E7UVFbut9kWWPJpMjywtY8pVcLwZX+b1nI2ZaK1pf3//KBlyxhi5P8mWGRAubT+/OG+08WfeumSJZMSZ9yxtUJW9Mf6/VCYsexYzsTqL1Gbpz+xRSe1AZQ+Ma0AtADUItCFnYzd6Cc4z34S1LG8wvIGBgYGBU4GdbXhSP9VTpWte4/lG6bGKW9rFvpTFblGSy6RW6aRUUSWApiSSpfPxZ5aoLD1VpV/i/5RmlpJlx/+XbGvxeu4vJdVdyrgsJXGNLM/SbVYKhfNCVhP3G8fK/nI/rkmn1kvIS/sBvdmyWKMqPRv3eS+NV2YzkY7nJNprHN9VoUoMHPtAcF4zll2xXtpj4jiix2Dvvt7b29tiRtETlrZMxgRm8Vy9NFnxe+7L+F2lCcli+ciWPV+8ThabymKxfoZ4rv0+rqWPtV2TZYnWeNzS65RzFN9XjM7rlbHeKh0dy1PFvVN50a7BYHgDAwMDA6cCOzE8Z8qgPSHzuKx0vj0GsBRr1rPlVfEqlWTMccVzMom8KodRxdRl2WAo4ZF9ZBkIKjsmJcpdknH3vM7INtfE7hlrY2GkbQlOOh6rJVPvM2ZhiH1YkvY4j1kCYzKtKhF5bMegrShLjl7FQ1Z7KpOaec9F26d0ku1YSiYzod0ls8NU3tSV/U/a9lyttBHxvdd9rQf2wcHBlmYkZiaxpsA2KI7H8xcLiZq1sOArk0hn2aGqTCCMFY176aGHHkqPZaHZeB320eOjx7cR91Jli6YXarb+lfdnTzvAxM9Vwd7YLybdZhHZ7DfGiM/NEYc3MDAwMDAQMH7wBgYGBgZOBXZ2Wjk4ONhyaIiUuApQ5Gt0TV1K0lq5dcf/qbZx+5lbf6XaqVyN4/+Vu3v1efy/CvzN1AVUCTNYfo2qmE4Z7EdPDVqpIeJaZwH6FaZpSmsSRqeVKvCXasueg04VipEFul+L2pb9r5J4x3mi40GVwiobn+enct+3aitTabq9W2655UQ/eJ1egoVdao1V6t4swJrpx5ZU5VeuXOk6rdHV3mpCOsdkKdgql/8q9Zz7FI9hsu0sjVZVl87j8fuo+vU47IhklaY/p8NQVrPPcFiHj+3VVOT4qHY1slp6dDJz+3wf++L14asR9wfv8RF4PjAwMDAwAOwceH7u3Lkt1+zM6JmlSapAt2C6ejPgOAsAzfoS28gYXiVlZolmyfoq55VMGqzSjlUhDfE6lYNBT6qpnCSq/mT9JvvJ5nEpGJY4PDzcCpXIUrBRuqME3EuubFRhHRkqbUQm+ZpxWVquQlliIDhd1Jk8uOe8xOBkvvrcGCjsftMxhM4SvVCXKrF5pQGQtt3RKelHNs9x7O3tlWvk1GIeT3YPcIwMYcm0UQyRqVhmdk9XbJAaLO+T+B37xBSHsY9m8GbpZnh2WvIc+J7paW08J+4Tg+Qjqr3Csl4ZW/Or15sJ1aM2gufwmZiFBnm+4nNzBJ4PDAwMDAwEXFN5oJ4knBUVrNpaQpUiKWN4tJ2QcUXdM+0uLNqYJeSlVLYUoNtLyMo+ZwyJElTFDnuJp9e+j+2QOVRuyvzf75fWlRJp3CfV2GgLygqWktGtKflDey+vw3AISVvpregenq3HUnJ0fh4ZbqUx6dn9OPZqvxlZCE1lN8/ueUrptMMwWXFsN0rylTaotaYLFy5s2aB6miXfn1nyYYP3NMsP8fMsQL/SwJjdxNCJKu0hbXfxOrx2FcKShQDQJk5bmvvYK3TNNbUtLysfxPvHzNnr5utFpu/58TF+32OfRk/bUGEwvIGBgYGBU4GdvTRba92UPNTfV7rZzNOuCt6uXiNob+klDaYHUsXwskBTetpVqayiTaXyQqUEltnAqEunV1YV+N5DZteiVMs+9aSpNXZFBw+TKUQ2Q2++XiIAnkOPN6NK7s3/s/G4H9EOw8TFXJ9Mo8A1cnsVW8vS0rHdpUTdEdRo0PM3s2tRWq/ua6m20TClVDb3axKPO3k002fFvUOPYSZ3yFKLVc+kKhF1XBePsUr957Fn+5up18i0Ms9lBmQbTN+VaXo4LgZ5x3Mqxkh2Svtz7H+1HzIPzCr9XO955r7EZ/Gw4Q0MDAwMDARckw2PyXUzhlfZYbJzGI9WlaDIpMCeZ1dEpu+vmGPGgKp0Q1V8Xi/ei16nGYOpziEL4FjiMZXE2kvTU5VE6SVf3iWWismVY2oxS41V+qJMO+Br0zuu6n8mOVZ24CzBtY9xXBT3gZF5opFR0WZD9h6/o02KzKUXh0kJu7Ipxr4xzrBKDByPpY2Gkn6WhDvu5yUtBeMzI2jr4XMoY7PV84UeyT1P311SJ5LFUFuQ+SgwAbS9M9lnaw3i/cQ14zFel8yjnFq8qkxUppXifquKJvN/qX7uZcmjY3zrYHgDAwMDAwMBOzG8vb09nT9/fiuJby+LSeX5FiWhXnLRDJntyeB1qeOO31H6Y3xHluSULKRiemtsXbThZAmHK68sekmtSVbcy1RReYz2WFvmybe0duxv1OfTS44St9vOEk6zv1Vxz8x7krYVaiWyuD9K/5RmMybhvcPimr3sJpk3Y7x+xp58Dtnumv1AiZqshNeVjj3rzOzIILLsSrTDxEwqxN7enm644YYjhsK4tWxsxC7Zhbj+LMXTA/dfXGvaNsl8mDQ9fudzLl68eOJzg96O0nYBWLIz9zHzCqY3ehWPm3nj85nf0+5Vtlvem5nHfM/3ocJgeAMDAwMDpwI7e2nu7+9380bSW6nyeMpQxQdRSu/FgpHhZQUymVePfaVELm1LeVVexEzaoO56lwKGFZPj3GQ57bg+vdI/S5lJ1jC9HuilSeYibTO8al2yeEVKe2RgWaxjFQ/HPRrP8X56xzveceLYSqqN59vuxwKtlHx7noRkWH7N4vDohVzFVvY8JMlcmbNSOrYvmV34lbac7Dpx/npxePv7+6XtPba9tBd75XOoxalynUrbNkFqXrJzGKNrVsbnUebfQJZWZXqK16MmocpPmXmfVh7rvfklk6vsm1kb1Iz0PLTZ713yvQ6GNzAwMDBwKjB+8AYGBgYGTgV2DkvY398vjf0+RtpO9bMU3BmPYVs9NUFFkysVkHSs3szS40Rkn5viM9C5R6ur79aW1YnoOavwelWoRDaPlZPMLn3tqTtamxMAV2pKaVvlwrEybZRUlxSq1JXxXIaH0ACfuUR7H1mN51eOK0t2631H136qy7Pk0XQL9ysD3+MYGQLCdHic1/h/lSAgMxGwen0VlpA5VvWSHsdjz58/v6WqjY4MTFZAZCptHkvnNZopsmTyRnWPR7OInx133nmnJOmRRx458ZqpDdknXo/Pv5jSkCEsPqZyfOG1IzjnvYQXVRhUpp6skpRX1+X52fseBsMbGBgYGDgVuKbUYjTuL6WUkta5XveuKa1LBFwlc43XY+kQuufa6J5Jg5ZiOQdVeELsS8WwsvFwTipHFCaxjX2qzukZ4fldljSafVwb9Nla65beYfkXGvHJiOIxVQo0rktkkQzm5trxuvF8uosvlZiJ3z366KMn2soCjnk9Xof3XmQfdm8ng1uTjq4KH6LTRKYxqdzt6YwU/4/B8RVL8jOHpWki66HTCNvK5rZ6rnA9GOgsbd//XA+PPdurZOC8jyJL82dMf1g5B8Y5Zjktn8OUYnGuGJpFVNqDeG06lXCfZ5olg/Oa9WNNeasKg+ENDAwMDJwK7MzwpH4arYqZ9FLwLNmHqkDqeG4VjsDSL+xvPJcu5VGyt+STuWXHNjLX+aWgdKbo6rW7xNqyY4mMWS4Fmi/ZWNzXtWuZ2Y8Mhm+QaUWpr2JHVZHNKpF3D3EfxP+z9noJB7g3KZ1n6ZqY8Lcqm9ILS6DEXQWgxz7QvsOwiyxhAEvJ8Ng4Vwyn6aUWm6ZJV69e3WJgGcOr7ovMhkemwGBx2uvj9cguKrtSPMdpwRhK4+u5LTP07Fjuc9q9sznknq2K5EZUWg9qTLI1NYP0fPaScVRJR3r2Wu7bXRLnD4Y3MDAwMHAqcE0Mj7++azwUK2k2O5+/2JQ6o1RQpTxieY6MFVDyoFdglHLdDnXX7HvmNVd5kBpZMVkyoCpZ9Bq9+JLXVPysx6b5fsnLlX1YSv6dBV7H95kXI22PLM9E9hz7SrtLZffJ2JPPsTReJcGN51CS5t7N9g7hcbGEUTaPtDf3JG2C+5uepVHDwXGQkWf3bZV6sNcfsqZo66KdcM2epz2Kqd8YsB/XLyu4Gq9jRBue++tXM7477rhD0vEcxOdB5Q3OlInZs7hKBH7rrbeeOHfNuOix2vMDoE8EvaDX7L81zDz7bgmD4Q0MDAwMnArsHId35syZLYkxswFUXpIZM6KEW5UUMjKvOeqlyYgym1r1mtl7KimCNqTMFlal5aFHWWbXpARcMYmMJS6xttjHqszREuPbBdEOk42ZqNIoRYZHOwG9zDiPPVZbeRT3vAvJLG2/iHuHaeh6GotsvNl3PS/Eig1U8VCZdoDnVna67LuqlExkcZlWZ0lTYGZkVh3bi0mTM2SxdLSh+ZXFTXv3NFk7yzlFGx4ZpBketRBxLX0M7dfUOLk/cV2qkkkcQwRjQjk+aj3i3qliXv3qZ3NPI1jt/YyZR6/dtc+lwfAGBgYGBk4FrikOb40Nr/Ke5Ku0zfDIzigJR8nOUguP7SWarcpLkOFl+ndLl5T+yAoznXP1Pku0XZXUIHPJpDTaq9bE/1XMbk3S2F5cF8F+x7VkTCPHnF2H2VLI6Kpk0hHsi99n9gzaDL1HKkk4nu89QrZJ1hjPrZISM1YxszNSK8BzsxjLyoOY9qBMy8IE07x+ZB+Z7au3x/b29rZsd7EPnAfOaXZf8rPKLp4xPD4HOC4yPWn7GcH93ks8z3OYecXr0ptD2tZ8PbPIeL3Ka5t7qLfvKrtf1l71nMme3/Si3d/fHwxvYGBgYGAgYvzgDQwMDAycCuzstLK3t9c1ehtVHbws1Vem5pRqo35W+43nVkmFY3t01KBzQZaQN9LoeG4vQWqlUqwcfLJxVQHBPSq/VDMrC+asVBjZuHhszxjdWtO5c+e2gvp7jjrcK716YQxkrqqWZw4aVL1xTbPEtQxW5r7oOZ5QTeW2etXSKzNCFkLDY7hnsnMM9qkKH4jqRK4pVZprAoSXXMtba1uB4TE0wirGKol05sLO+533NB1d4rkMWagSKsR+cA7t4OS++/pxbt3+TTfddKI9hp5wriN693C8bhyrz2ESAe7vrHaj22DIxBpnrOr503P+GSrNgYGBgYEBYGenlSWGV0mgVVBxdizBNnqMsjI4cwzStuRWuSVnx1YBzz3Wy2PIOtZUuq6ccbKAU0qDPeOxUTmt9AJA10jwe3t7uvHGG7dck6M0WyUYr9I3SdsMj+nIuN8yFsr95z71JFK6XJvheQ9lYSIMnSFLzIK6yRS4dzKHJ4YDcI9wz0amR61KldYtKynEAHQ6o2VJit2HG264oQxI3tvb0/nz57eSK8cSRUyYzXFkweNV2i46ovWSR1cB+QyXiueYrTEBuZ1HshALt+u+xKTb8X3cB1VSDjpwZX2syvR4DjK2yL1Rsd4eC+X96f7EdGsM4B8Mb2BgYGBgALim1GLGGoZX2aCy4OFegunYdi942KB0m7mWUw/P972A48wmVF2vcvlfU0Sysi8SmS2smsc1YQQVi++lTFtijufOnduyV0VUweJkXnEOeu752fvMXsG2OI5sr2bSsZQzCc4dXeXpZh/3TlZaJ76vkknHc401icfJjCpbXo/h0e7DwPdqDnoM74Ybbthib5FxMeWaWVOl+Ylj5JryHK5ThK/jIq4sceUCwbHd22677US7LJwbGT4TDVQaDI8lrguLBVfMLp7D0kFLmqz4zOIzco02oudXIG0nBYh9iGEqa9KVSYPhDQwMDAycEuzspbm/v78lVWcBpZUtL0sWW6Uho3SepQcii8m8yGJ/snb4mpWcydKoeU6yPmapcHqpxAjad+ihWKXBytqomFjGCo2K2fW8NNfo0avE3dK2BEq7ZRZ0W0m81BoYvaTlld0v89JkSqfKbhGPNcj0uP+ye8NYSjEX+1vtjcxTujqG+4wemNlnVTqy3n174cKFcv+01k7Y+Mh2pO2g/jUJKCp7e5VOL16P90VlB44g64sB39Ixu4rrQq0TPWt9rMefpXxju2R2PY0Ji8gavA+kkzbV2H7Pj6PyILbNLivNRBteb+8Qg+ENDAwMDJwKXBeGF3/laQOo9LdZIllKAhXDy7znKNn3kh1X7IX66kyyrzwr3UaW8HgpVqeKj8nGulQ2KBsnsYuX5poEupn9IGt3f3+/jEHLxsa9krXPeCGWBeqB7VXeu73ik/SEM+J7pqGiZqTyEox9qcpQ9ZJikxG5XXr2xXmgjZWMJUstRu8/Hpsxc8bCnj17ttyXtuFxTuJnvBbvjx7D4/1ZJSSP5zL2kPa4LM6U7fI5k8Xu+XzvlYppZfY4Miq20UusT8/Uni2Ufa00dtn4qhRwtN3F3xiveyyzNGx4AwMDAwMDATszvAsXLpS/xlKd+aTnOVjpluk1R6kwflfpuDObSpXxhN/HtliI0ah00Bk7rLJwZIU/KbFQsqK9K8tcQ6m2Z3Or4u5oA+klxV7y+rxw4cKRJH+7OLcAACAASURBVJ7ZT+hhR0/EbF0439xLtJdloJcuWVXPM7XKtJPtb57DMWQMtup3xcCzdnw9xkBybaW6DI3XhHFm8RyyG8YbZkzCdqwewztz5oxuueWWrbi1W2655egYxr1VtrR4X1YJvyvP6KxQavVs6mlrqmT1mQc2nxlkiVzDLAsV4zyrOMmsfd5HfJ5mGXcqvw2OKZsLXzeW/onvJenmm2+WdJIFDoY3MDAwMDAQsBPDs5Tei5hn3BAZXa88UOWVR0RJkFIR89H1YoAqj6ee/Y9SGiW8TMddSTj08MoYVxWfUnnvZeeyb2vscWyrZwMxel5/zrRCiTSeQ5ZexdTFuajsfFUGlggyO7MNrksmPdI+QTaQzdNSCRsen12PjDXzlqMnJ8dD1tPLa2s25fvarC1mAyHrY9xXVkIpy2LSi8O78cYby7Jh0nH2Eo6tiq2L//P+4P2YefxW9n/G6tFzMbZX2Yzjc4DHcj8z9rGX+aQqzJt5dnIP2W7Wi/urbHV8zmaxsG6fzztmp5GO947v1xjfu4TB8AYGBgYGTgXGD97AwMDAwKnAzk4r58+f36K70WmF7rhUf2aB5z7HVNXvTXMr99aIpfIiUR3B5MCm53QTz9xn16i7+HkVJN4LR8gcCiJ6jjxUyVSlkjLHmgqZyoAqs4ODg66Txfnz549UPGvK6FSJn+M8up3MmSJ+n7nve795n3kfV6rGeG3Of5W8IPtuSbUYr1uFw/TCbypzAvvBNFjxf6q2qtCD7DOWrLGTQeYwEh2FeoHn586dO/GckaTHH3/86H8GufO54/73kgjwc77vmQAylbn7bnheqA5ln1nNPJ7DOeqFx1DNz2dKleJQ2t4HlUllTUrDXjqySp1LE0FUFdPJZ6g0BwYGBgYGgJ2dVs6dO7flWh6lG0thWXFJKZeaq2DR6rUXCMwSLLHv/L9Km2Rkrt40/FaG7p7ETYa5i5ReJf7NjNV08uil9arSLBkZS2XYwOXLlxdDE9hOlq6JpVeoUcjmiUzEn3uuyQ7Yr2yMPfbMvVIlXZbyFE7xmF7ITuWA1NMAUGKn1oXzHK/Hfc4QA7K3eAzv315aOrrkL6UWO3v27FYAf0zMTIcZ3v9kubE/S2Wzesw7S68Yr5OF3TBpBRM2x77TuYd9ZRu9dVlKhxaPqZ6raxJ7LIWlZI5DTGbCEKF4/5LhjbCEgYGBgYEBYOfyQGfOnOkmFrWulRLPmkKclOirQMmeG3VVCqPnjlwFi2bpmij5kA1kTIhSECXuXhB2ZcPp2f+qkIYqlKLX/14JI6ahunr1apfhHR4ebrlER3tFVZCzSpgsbQe7knnRTTyzV9HWQdfvLCEA936WVJkgo6rCLiIqNkabZI+lkZXxHonn8pgq5CC623NNuVd7ydjjHPdSi910001Ha+njbBuM/XZ/7bJOu29Pq8E9z30R+8c9mfkmxO+l7RRlVVLljHGRoTLlWFZkt9IGMbSlF0KVjaP6nHPN5xwTfEvbNnaPz2ubhRVVweprMBjewMDAwMCpwM5emnt7e1u/rPHXl56bVVHNjKVR4q6YXpbOhoHmlNYzSYR2nSpAO35XHbvGS4gSVcUSs/4bPelsaRw9hkcpl/a/npcmpcwM0zSltokIS/D0qOP7zEOQ3l2U0jMGRlbAfcG9lbVfJWrO0p/11ixrIzuXLJD7Pv7PVG20b9PzMv7PNa3s6fF6SyntspRSPU2Fsbd3Mnm023Eh1Xht2/XogVvd89LyvZsx4aoEEm25WWJuMi56M2bPncqG20vvV2mQeI+v8UY2qpSRUp3sg8w5rqXbYxkkB5ozOUQ8Z8kzP8NgeAMDAwMDpwI72/CkunRE/M6v9JbKdMFL6cfcBj2WpG07EiWQLHk0r1OlJ1vjxdjzLFs6purPmnOqJMbxu0rX3WNrZJuU0rJEw5EhVTa8w8NDXbp0aUtii33xZ15neuVmUmeVxijGBkrbdqvYf7bLsWZJjyvvSSP2kWywsj1kXpNV3ypvSmnbZuf3jEnLYhdpq+O89cpR8TOmFIvzyFRSPduvx80E7jHdFG13Znr0KcjuE6NKAWf0it5WNu+MrVUpzbJE51WaxcpLMtMS8Tsy8eyZXLHRyjs9fkc7Juck89blb4rXLUtLZ/QYaoXB8AYGBgYGTgV2ZnjRhudf5cx2w+wePU+kqhQ8vaTIKKS6LJDRK/GyJv7OoHRU6ad7qKSmjCVQ/75k6+hlgeB1egyPbVT2Rim3j/WkrYODgy3pNvPwtVTHLA9kbxFkL4bZTRYfWtmeyPzj/sjsLFI/5owsrfK4zVAVfuXejfcg7UuUvCsWF8+tMnhk92+VWYPPgGi3JcNfE8PZ01S4bcZvMXtJT4uy5M2YzTH7TOaTeRdW3qs9+2L1fKOXYzyu8vCm9iO7p7knqwLHPV8Makp6ca3uk70zzd4zHwLee5cuXRqZVgYGBgYGBiLGD97AwMDAwKnAzmEJWVLcjG7TfZsG0oyi8juqzPyaGT2JXuotUuzKaaanpmS7PTfrqtJxj4ZXaklePwuLqNSfVX20iMqVeY3LfC8swW1QxZ2puezQQNVcpgY1qtAWOj7FOm4Mq6F6iMdV15bWBVlXSQOoHo+gKaAK7s3UkksOKJlKk6ox9mlNOAwdEDJnMybSXko8fu7cuVWJCKpE3QzNiP/zvqRaL9vflWMGExNkzzkGkfcqnzPQvEqkn6n0mYS/SgAe55EmAc451fJMMBKP4R7Jxlep+WneiHPPeTw8PBwqzYGBgYGBgYidnVYiy6Nk5O+lbamO7Cxz26/SWFEizdzSK2eCjAFR0qYTTk9Kp4t19ZoF2S6lwuklca0koUyaqoL8q8DT+P8uaXqqdEMV9vb2tgLOYx9YCoSpsZhgNp7P+alc8rPx2ZWdzipZyZclpp2FMnB8VbKCrI90kiLb6FWtrtKCUWMSz2XYQZUuLK4bJW6vH5leVh6IY8/ghBc8NvuMyYbJ1uO6kCmyDxW7zo5xXzz2bP2rPUJHmywMxudwfbguUYNRJbpnUucsKQfb5zipQYlgWEf1jJRy9h/fZ/OZMdORPHpgYGBgYCDgmpJHU8LK7GiU6sjwsjCBSg/LFFAZK+DrmgDQtSm44v+V3aWSErNxLaWYisfwdU1YAtsgMqlsKaA+C/Lk2HvY29vThQsXthheTELMAsBu1zYIS6pZKruqxJT3TM++yLRklirdRkxAzfWvtANxnJVbNvd9LwCYtpIe+6hs3wzr6aVb43z1mFJlq6mCiLN2ehL6NE06ODjosmeyfz6TMrt1FTLF99lzJ/YttpWxNF6Pe6d6jce63SrUIAsbyjRi2ftotyM7o4akZ+Ot9rfR8zdwOAI1dj42piMjU82uVWEwvIGBgYGBU4GdvTT39/e3vP16bI3SudFjXFVANsuQSHkSYulYAsmC46tUN7S1ZV5llLQq216WwqjyMuylV6LkVtn0MlBa2iXpanWdzEvT6Enp9rSj5B3Xz+tLmxpTjjFRAPsV+0I7cOalSc8wIytNwnOrY+P3lW2Y+y4LZnbfmJDXyALBq+TrPdsdz82SYMfrZ9oPMhTatSLDq/ZzhWmato6J+4CFQ+klmSURWHp2+FwziXjfLCXFp5do1pfqedd7nrIAK9lovL/Iyul96rbiPqju96XPY7/ZV885yyNlc1E9R+M9mJUUGgxvYGBgYGAgYGeGd+7cuaNf7CzJKiVOsqUsCTGlfv7aU1qPUlolIVK6jd+zD1US0l7sXhV/l9ljqrRklZ0sosew4vWzWMjKrthjeEvsL2MfMX6pkrS8d5hUPEpulACZNNzagix9EvdQlQopfk5pkl5lmc2Q163Q85ql/YXSchYrxj3KlGKZHY73AOOwesVqac+qvIOl9dJ5xpCqMjcR9gzPWLphFun2aEfkXuUY4nvOSxaDWnlN92yrGVuJn2dzW6Ujo02frDTrU5WmLkNW9DYis4lW9tjKsz3+v2TfjGDqwStXrgyGNzAwMDAwEPGUCsD2yspb4qCklXkbVlIMGWQmaZHBkfFkyVApkVYekb0yHZTweucy6XFly4vvK/ZJiTKT0qpje3Y/Mla2n2VvqWytGWz/rZIuS7UWwJ/bthfX//HHH0/PoWTYs3XRk7Paj/F87kl6xPVsuJVXZmY3Y3aUJ5988kRfswKwZHZZRpXYj2wP9bwyicozkZ7a8fulrDwR9tKkV2lkStQK+D3Ly8Q5WLKLr2FABrNOZTYuznfFwNZ4FPe8wg3GpFZjyJ5znBPaCGlblvoxqNJ21pjYHp8dzEKTxTVXsZY9DIY3MDAwMHAqMH7wBgYGBgZOBa4p8NzI1EdMY9MzPho0NNO4SbVkVBOQttOInyWcptG4pxYgloI4szapFqhSGEX0qnwvXa9Se9KlOaJSofaScHOdllQL0zSVbu7ZZ1W4SAxC9TWt6qvGkzkvMWWdj3W17MzBimonOg1kDgJWs3FNq/RaUU1ENacDgemIEgP4/b9fqbJdEwpQJUPvpcfjXq0qh2fnL6nmDg4Otvqb1VVjf5lqLEu9RdXYUvJ1/i/VtRWzOaZakI4omdNKtjfi59m+473MtGRZ3yrHPab9Y63KeG0+D6pQrvhdpfbPnjtUH4+whIGBgYGBAeCaygNVQb7StuMBpb3MUE5Jh69VoHa8DlNLkR1mAZlL7KmXVLVCFj5QBQtn12E7lUNIldQ1omLVmeMQJatKwu8lDV7CNE1d1+iK+ValV6RjRxaDiaZ7a1wZ9XvlgegwUTmvZOnIuEaVs0TsD/e1JXwyvchc/D/DEDjubG+xj3RWYIhN/L9yKWcS43hsr1QV+1w5tUknGW5sz+wtY1xVyMWaRMRk9p7zKhly7C+1TlkyZKMKmaFz4BqHF6NiU/w/9plJBHpOOUalNcrCEpYc7bLwDs/14eHhSB49MDAwMDAQsbMNL3O3XnN8z4ZXSb6V3SBjGUtsJiveWCWLzfThVZJo2uV6dp+lIPIsmDf7Lo43s8stBTr31q3SofcCjtdKV1I9X9K2jcFg2q4s2LUqQ0WG0mMStP9m46P9zX2lnSILjs8KV2bjytgT+8ZQg2jDZAo+aj24H3rB2JUNPmOhld3e14vJfnuluCr0Ur1V9v5euEoV/F49S3q2bz5TsnuiCk9iXzM2U6VDXPPM4vOUfcwYV6XZoU0081WoCjZnrLBKis3r92yh586dGza8gYGBgYGBiLajh+IDkn756evOwP8EeL9pmu7hh2PvDKzA2DsD14p07xA7/eANDAwMDAz8asVQaQ4MDAwMnAqMH7yBgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBXaKw7vlllumu+66qxtLZVyLM8y765z3FNbGiqw5Z824n47rZVk5YuzOAw88oEcffXSrkVtvvXW65557ytJI8dqMj2KMUbbfljJ18Br8P3u/dH4Pa8q2PF1Yav9a9gXPzeaxylSSlaVi3NrBwYEuXryoJ554YqtzrbUptsvYLWm7BFGvFJbBeMTq2KpAdO/YNaiOvV77sDpmTTxudUwV4/tUUZVKy2Jzs+fB1atXdXh4uDgpO/3g3XXXXfqiL/oiPfroo5KOa5HFIFQ+eKraUlkwLzdW9RDLEiVX6P0YL23ka3k49hKzLgV199rfZaNV564JEK+qFjtoOCZuvvnmmyVJt99+u6Q57dDLXvaytN27775bX/EVX7FV0y4bO4OqnbaJ6bSk7SThTHNVVV+OYzV4bC/1Evtd7eH43dIPN1OpRVT3T5aqrwrWrVKZ9RIe8JgsOJtB3axBx2rkkvTOd75TkvTggw9KmhN2f+u3fuvWuI39/X3ddtttkua9JOnovTQ/m+K11qTt4j1UpfxzG9k9x31H9JJsV/djlqC9qr9XJSCP51YJwLMA+6XUgkx0sUbQ7NXJY+A8n/0PPPCApOPfGklbvz9PPPHE0XGLfVl11MDAwMDAwK9y7JxaTOozo0pCrMpOSLVKoZKEe6VwiKztKtVXRauz9irswux66cOu5ToVliR+qU4/5lcnas36SFbV63OvNNISA8rmjVJjxdqyNGFUf1Xzs0YttqZMSyXF9rDE7DKWsCYt3BIq1XOvDZYyYtotMz+pZigZWms6e/bs0fk+NyYR53fsU8ZIKpayy/OgSkBu9NanOjYzG3A9mJIt20sVK+f7LJXZGrU0jyMbrfZOr9gA9/utt94q6WRauqXndg+D4Q0MDAwMnArszPBcjFHq22EqiSArEbFkn6oSN8fPKmQlbChhWzpbSu6c9XUNeyIqKSorrktUUlOPwVa2qR5DJyvIJPEsOXFv3NM0dRPlcl9xjD1Ws5R8mOWp4mc8t2fjrfZiT9PQSxKeIVsXslHuoSwB8NL1ltYqQ4+F8H6y9J7Zt8jS9vf3u8znwoULR8f6NZaGov2weu5E+29P2yDVSZfjsdXzp/dcWkqWH5lrlWC6Srod+0hbXWy3wpLjzi4J73lvZKXa2A5th/YZiOW2Mm3TWgyGNzAwMDBwKjB+8AYGBgYGTgWuyWml56bbq5AdP89UMEuu/hmtXlMpWeqrIyqVTOwjVVZLxuQ1MS40Hu9Sa5Dqg8xJYpe4qKqKfe86vN4SWmtlFWTppLop60MWf8U1rFSyWbhFz106th37WNWnq2IIs7EyprGnJmINOK5pL0zgqTitrL2vMlQu+plzxJqaZq01nT9//kiF6XCYqOby/5UTTFanjmrOyglrbYwn25dy0w1Vjbz/4zlVLVDeE0ZWK7IKNcr2KteAjijVMzNiyRwTHXw4Pt6vVlHHcCirNP1dDFlYwmB4AwMDAwOnAjsxPDusVGwg/l+5h/sXPEomlFIqR5BMqqyCRckGs4rnlfs0j8uwFNTbC0+gVJ65aK8NHs5QMTx+3qsCXwUcr2EuGfb29nT+/PmyL9U50rYU2JMqybA515mRnXPdCyL3/JgVMEg+0w64Xe6nJTYa+012S+YX76GK1Vbr08tcs8Zln3PCe67nMGRpvefwtLe3p3Pnzh0xvFtuuUXSscu6dOzAUjk4ZfcyK7V7DQ3eJ1ml9SrwuxfUz7H7tdKqsJ3YZzpwxHWp1r1KBhK/W7o3sj5WGgzetxnLpqOTr2cWd9NNNx2d46QFmWZsCYPhDQwMDAycCuzM8KKk1AsEjpJbfOUvt1TnweN1eoGfBnXNTA8U/7dEt4Y1kQ1WWMNYOEdMxSRts741wepVXyoGFiU8zwnZ7xr36jUB2tI8bgbKxv5TuiPW9IX7jXurZzteE0Se2YKyc3v27eqYTPvBgGqOy3sonkNmV2lKMu0Hx1zlzd0lZV9me6cNqheA3lrThQsXjpjdHXfcIemY6cV2loKdYx88d/7MfaC2I2ubY8rYuXTyuVPd/7Y/+n3Gniv25P3Rew6QydFWHvvMsAeuSy9FJBkXn11Z2BHZZvb7IJ1MI2eG5xRjS+FQJ/q76qiBgYGBgYFf5djZSzP+wmdSgKUh/0JbeqkkU6mWlo2ezZCg/YV6+ux8SrO94Fr2cY2dkVJmpcOPXmdLtpvedZck7Ezi9nXI9CrGHPuwRrqyh2ZvHEu2uiplUQ+91Fhcl4qpZrYO97Xy1sz6ULGCyt4Y/69ee/bfynbDhNuZ1zMZPsfVS8oQg8mzcUdEW2S1j86cOaPbb79d99xzjyTpzjvvlHSSBVTs3+3zORT/55grZOdybPRqjGzKGiXuB3sgejzRluiE6dV1aMOLc1ixcqbzyp5zXrsY3B/PyeZkyTvY8+sxxc8MPoMzG7XZnplez8OXGAxvYGBgYOBU4Jri8IzMI9NSiiUDSy89b7nKXtSLoVoC9fIZK6BHXRX3FVFJ6WtQeU1mtpTqmDXejVXJjR4zquIlybbicUsScURrTfv7+10bHq/NfpN9Zn2opMw1MU7cB5VdKPY/jq/6fskDtrev2S7ZZhYrRu0GGZ0T8fo16yvvDdoXM1bQi5eM/cr63Usttr+/r7vuuuuoBJC9M7P4yYp5ZWnkKg9Lsijay+IYDc8t05DF/RmZTXzPmLPI8J588skT7XBfVx7ucTy8R2gPXmOHY/tZeq/KC5z7MSaCph+FwfHGdXN5qHe84x2SZvY+GN7AwMDAwEDAzgwvetodNRKkAEsp9B4jU4iSqn/lqVPuSXyxP/Ecg5VyM087SmFkRpl+mpI9+7yGRVECihIPUdnJKDVldpiK2WXekEsSUtaPjIn1ks8eHh524xXJXizdXrx4UdJxIVi/SsdScuVdSrtclIithfAr967tPtmYOce+rvdyFuNIFmCwTEuPrRn0NM7W3995jpyR4rHHHjvxGhlAlVGDtvlo2+H8xawYUu59SPQ87fb393X77bcfMTu3nz13mLC6ig2M51fxsdRGZbGOHpPjxNiPzDucsYHM0hSfB/ZEZIxgZQvPtAVk4O4j2dqa9v3eax6fkR4fCzZ7nB5XZMrcb+6Lz/EzIPPivf/++yXNRYTXav8GwxsYGBgYOBUYP3gDAwMDA6cCO6k0W2snVJqZcwfdpBn4TRofj6kcMyqDZkTVRqZiMrX2d1QPZQZnqsqoLqySoMZjqFbpOSS4j1XgKdWy8dwqvZHXLatLdS1B/0Zc46XjqHqMKh+rL7wODz/8sKRj92OrSnycdKzy8Wd+tfqOCQMylebtt98u6TgpMVWd/lzaVgdVDiJx73Dvc655bs/lny703LvSsSrJKkvP3yOPPCLpeM7ovBL7QrUe1ZVRben5Y2C43cc9f5mTSZVoOsJhCW7Hqs24f71WVBd6LvyaqSU9p1Zhe029h7LEEHSfZ6o3fx5Djdx/OoTwvozJkP0d1YN0xjGiepLhT1XoRBZuwbAXowoVimAYgvdX9tzmc9rj9HpmYTcOS7ET01vf+tah0hwYGBgYGIi4LmEJ8dfVv/g0sloSzVzLKSVXbtuZCzaDt8miMoZXBVfT0J25UdPteMmpJJ5TVSfOXP5ZsoTtVs4asT1Kf1XQsrTtoFFVVI5YUyok9vvw8HCL7Ua2ZiO0GQidVbyW8Rwf43Mqxwyfm0ncZgxmKH41Q8mSFFeJrX29iCo9E9lIlujY0rHXgaEF3geehzgXZsgPPPDAiWM8n1kgPyuRm8l53JmGxqDjDjUocS8x5KOnGdjf39czn/nMI4neDiJx/5LNmNVWJaek4zn0fvJc+r3nz/fEM5/5zKNzq+rrvKczRkkNi8eTJaBg4DmfP73Ac/eJLNfjy5ykqr3KNV1TloqMLks64mP8GR1fsme+x/WMZzxD0qxh6D2nIgbDGxgYGBg4Fbim8kCU0qMNgJIGpfKM4ZHh0JW4xxysX492lnjdXtBwFWxtZGnUquTNDHjtlemoElH3grotHXluKLX1dOlVsGqUPilp0RaRhV3QFrAU2jBN09G6mIk5eFSS3v72t0uq3Zopocb/K1bIeYrBvwwLybQBHLPtYB47bVo+N4ZO0H5YBUNnQbZ0jXcf3Q8zSo8/fvbggw9K2k62S+k57kPasaq0Z73SMv6OtsR4Hdth4jkVyzt79qye+cxnHtkKmVhYOl5Dz4vHToYc15+2YdqTHnrooRPv77vvvqNzmaqMwdx+jc8l3h9mdh6X8ZznPOfofz4jqH3ivZeFCVhz4vF6XJ6LLKSFmgP3w5/7ORGTOrsvfBbTFh5L/fh6DOfwa6bB8pqacd9xxx3d5OMRg+ENDAwMDJwKPKXk0ZZ8slI//o7BwrSbZW1nv+pSzrIopTPo1shS7lDnzGDRzIuRQZq0X2VSE3XaVfqjaG9g4DQlH0p+cbyU+tZ4rvpY94E2lmhXMBjke/Xq1dVempYco82La0hGnHl20m5kxue2GHCeScCV51m2Vxkgy6QBnqdsvqpk0dQK9DwJzYzJaCNz8TGVZx+LbWb2D84rGV5k2Qw0J8vhvSEdPw/WBqXfdtttR+vl62UpuDx22qn83gxQOt57TPlFBp7Zjqukx3y2MPlyHDMD6P0cjetB+x5tXb3yYdSm+b3H7b0T97f3lVmgj7Vd23NltpaVpfI5vgf47I/r5v76PjLb9bip9Yuf+Xrv8z7vkwbPZxgMb2BgYGDgVGAnhnd4eKjLly9veTXGX3lKc5S4Mo8+2omqGCD/ivfK9jDZqpFJsZUHZKYPJhusSgxl3pVka0wx1EsLRKnIUiFtCPF6bt9zUcXlZUmDaaur4ozid2u8NA8PD3Xp0qUtz7iIquSOXy05xjglSo9kxNxLURKklynHThYiHe9FX8/HUFqP81Ql/CYLzOKieB16n9I2Lh3fe76e7SyWmunlGPvF+8dzQu/QeI/4HLOZau9EcK/0GF5rTWfPnj2aL7MAsxDpeP7dbzMQ95d2uniM2Qvto54fxxVmKdg4L2TvWfo+ar/sbcg4PWm7zBpTvFFrYzuddLwu7ivvObcR7yczvErT09NwUDNjr1o+x+O9wdR41Mx5r8Z59P72mt92223DS3NgYGBgYCBiZy/NS5cuHUkM/oWN0hrjKCwtMS4lSs1LxRQt3fjXvhfrRI++jK0xCww9njLGwkwN9FC0pOPxR7smY2fI7NifeCw9EysWHMdpid6SG6XbLHuK+12V9DCyYr9xbStPTXto0vYQJTOvMzMzkNlFD0i3Z+mYHm+eL0vpsf9VInDafxjLJW3b48gGo6ca9zylUdoSo5RbMTxL8ln2Cl/Hc5F55Up5UVR79Nl71vuYfYxswXPKmD0y6GzvREZc7Z29vb0TbNjXMTOLn5HVMBNNz3u6ynzkeYxshgyb942PjX3084ve7d7X9jqM+83rzjhZ2ruz+Gd657IUT5bZh+ycc+G1tSdpvBe9Z/gs8fMos2/Tnkmmz+K48fy1npkRg+ENDAwMDJwK7JxL89y5c0eSAfMKSttxYsyywGKH0vGvOuOE/EtOfXyEj6X05CwJlhAYG9KDpc8sZst9YhkLSnhZfjoyCmbPyLLB0A7HEhvuY2Q2tGMwdozMLP5f5XXs2eey1oPeOwAAIABJREFUYpDE3t5eGj8VpT1f0/2lBMysKW43jvX93u/9Thzj2L4s/yLtL7TlUVsR+1DdA1lJIe6ZynbHNY+fef59ffeZ+zBem9ehxyAl7wjP17Of/WxJx8zP91WW2YUxsV43XzdqdbLyMr39c+bMmS37VdxPtI8z72oWw+ljuS7eO7T/xeePP3MbLHhNBhjP97Oqsn3H507Fkhk3m/kueF+5L/TSNQOMz2+vO89lRiHPUWZvNPtj9qG3ve1tkvKMOyxVxPs67lHO36233jpyaQ4MDAwMDESMH7yBgYGBgVOBnVWaZ8+e3VJ3ZYHgdGs2Dc2qFTPtEwMi77333hPXi6qRKhCcqtSoBmM7PLaXcqlSaTJ1UTS+MlCWRuNeAmi6mHPcmaMDXaMZWJuVO6kSeNMpJwYZV6EMGVprJ9QSTB2UXZMJoXsOGnfffbekYxdvq088P1aTZuEiVEdaPeWky1ngueebyQpY1imew/d00srUoVTj+pWqnzg3/sxrxUraDCuK6+I5dx9igl5JeuMb3ygpD0uoHB2yiuFZmrUlpxUm9c4Cz/3qkAUmL8hKIXku/YyyO72dMBjIH8EUYnRqy9T4TNjgczP13bOe9awTffR8+Rnpz32dOCdeSz5/GE4Wn6GeA88jx8Ewibjm3hPeK0xW4OvHNHj33HPPib74XK+x7+ssYYTX5eabbx5hCQMDAwMDAxE7+3U6NEHaTmsjbRtXLRH4F9vSc3S9pSGW5TMYaJhdj+VSmAQ5K/VjMFwgAxleVRiVQcsRZJtVwH02DrpXe46y1EW+NpkyDetRsiOTZFqqjLlkEvkSy2MqqSgBu98MR6FEHNfJUr/njiErlogt8WcskYVfGT6QFQLmXmEQdxbUzzRJLACbMSGmtKOTDAN1pe096vW2ZG3m0tt3ZnaWot0Pz3ecE0r/FcvJSskwKUOGaZp09erVI+nfISaRKXB+fGxW7Nig0wo1I0wxFu8XptzjPeVzY1iC+0LGxT2cOWgwRIeaBl83ljBieI9Zm+fGr3EPcU6owWIYQcaYWUTYLM7zmzkvuT33yfvPax2fE96TdrrpaQeIwfAGBgYGBk4Fdg48jwmCszI7WWHA+D6TlixhmAWyFAXTa2XSGlP7uK1eyRWDiVkZEC5tS9ZVAmC3kUlNBm06bFPathVS/067Vuwr7XB2NWYQZ5YSjn1i+aFox2ApmR5DtmYgS73FPljitf6ebvuxD5wfS/1eF7fh+cqCyOmWbyk6Y6ss2smkCN53awrnMhl6xnbIILyW7mMV8iIdj5k2SjPa7BzPvSVvS9G0zWcsxH3xe18nCw3i2C9fvtxNWnDp0qWtOc2eAywhxPJJ8blTJYLw2F3CyHsralO4htQoVamypOM96LX0a8YK/VxjUmeyT58Tx2dbJEtleV9QmxOP5VxzjrIkCpwDz5fH5/eZVsp7xozO4+H+j/3tpa6rMBjewMDAwMCpwM42vFjihYGMEZk9ojqWn5FN0Xsv2pEo/fO6LL4pbdseyegyOw2lCZ5LlhN1zvSGo3dglsaL16OEReaVJSvmuf7cuvwshVWV+NefZ2ndorRX2fCmadKVK1e22s1Si1nKIwOxtBv7wMB4BmSTKcf+VWWT6DUcz6GtyNKr2YvfZ3uH+5w2XPYrfkcthNc7CwDm/ek94j5bes6KFZNlRTuZlGtomOrJEryl9uwc3jeHh4eLJYIM2rPjWHnf90ovZYksIszwWGpK2n5GMDA7A/0A3D6ZT2yDKRqZJIFp0eK5TDHHYPUsDSJTtFWanyzZBOfY7ZLhxwKwho+lDTz7jeGzqpcUgxgMb2BgYGDgVGBnhhclCEqQUl2Wh/FcWcwZ0yjxlzwrGktJgIyOSWrj/1URVXrNxXNoN6gSz2Y2taW2IqoiuFVx0p60SinUzGWXkkkZG2Cx23PnznUZ3tWrV7eKXEaJ25Ig45NYgDPOJ1Mq0ROyWp94DksW0RM29pFeamZL7muW6ot9okdnL46RNk8W1eRYpO39xvnr3Ru8X6lZyKTqKjF8Zn/hOfHervaO4/CozYnjpDaDMXbuQ8a8+XzJCrHG46RtWxbH7jnPkl77M8fY2e5LH4Z4TTJKMqFsr/pcezzSz4BaotiO7wm+Vp6YsW9VYvvseVP9Pnj+Mnt6FiPc0w5EDIY3MDAwMHAqsHt9hYBM6qdEzV91MpT4GRlj1j5ReQ3RWzTTrVMaJMPMShgZVV/pPRXHShbKYzMWSibn92QwWd8ISonxODKgqmRTZsfIvFoztNa21iMrGUNpmVkkos2BUioLSlbrFPvP72iLykq82M5o+4g/z7QQBu2ju9jwGL+ajceo7C+UzjP7X+V1SDYY7wd6l9KWk8XrGpHlLsXisQRT5g/AfcrnQrZHM7YSP8+S5BuM86WnZ2R4zIBjG57tvr5O1NbYdmdbaqXJcsxt7CNZLZMus5ixtJ0Mm89mZvzJ9mp1H2fe6AaTf2fljgze80v234jB8AYGBgYGTgXGD97AwMDAwKnAzirN1tqWKjCraUU1Bw3Ea+oXVcdkVYuz8IOILCUWVZmsxp0ZgCtVGd9nge5un/OX1Zyj6qhS1WbqyyU33Z5KoRpflUotHttbUycep3NBVCNRNUpHDSbfjv1hijkGmDOMRNpOPO73VEfFgGk6q9D13qqlbO/01MNVH5nCiuE3ns8YzMtAY85FT+3K+5UqzqymH13UqxCBOK5ewDxhhycHTHvuo2qbiScqx7B4DlPWseYk93x233At+TyKzwEfQzU41Ycep3Ss0vRn7IvXIUsEzu98HZoVsjSPfDb5uqw7mqk0+ezqpVCsnP2oQo3neC782Vp1pjQY3sDAwMDAKcHO5YFaa1tJdXvVvckQKkN9PIbG6DVOK3SyYN96Ui1dvHt9pGSzxrGGJWToPJAZaCk1sy/sY8Z61/TN4DGU8JbShknzOCvHg6gZiO1niZIr93a3HatIW2K39Oo5pANSBkqgdGFnQHU8hmyQYSFxXBXDqkJqspAGpgfj55Hh2QmClbvdDzpRZfujWgu+xv+Z9LvnxOR2l4K/jWmatsJFYrgDU8ox/VTmvOZ5IvPm/GR7iGtoVEH/0vFeNUvy9Q2mEZOOn01LifXJTqXtivNkaXSAi+C89QLcjcoxqKfdq54rdCiL80wt2pUrV4bTysDAwMDAQMQ12fDIWOKvL12R16RTqtJzrSkdYlRu2pmEQCbJMISe+2xldzGyc8lCacvLUhdR6q9SmmV2H/a1YnrZ9ZbGmQXFGmfOnOkmAI7uw5m7MaX+Kmg49sFz6WMq6Tyzw1AirQJls+ToDE6m3SoLUqbUXxXQzQKBmZiZ+yNjU5xr2qp7Wg+jsiVnidVpT+yFKPn8bO9n44j708zFbv3Stg2fydWz9eee5lirYsjxGLIknhOvZ1uwQ1p8XTM6J+qODM/jiHY96XjOyc7icVUYFEsoxXGRRTOkpBeewmdUlUIxrnXlI8D1jMyVe+eRRx5ZtZelwfAGBgYGBk4Jdrbh7e/vb9kT4q8rmQLThq3x1FlCFuheSYhZQc4q4XSv3ESlw66kl54nYVX4M0vmzHIjFaPrlcig9NNLD1V52lF6i8dEibi3Dq21rXOihFolljZ7y2wAvSBkjpHncg7p4ZtpGMjwKm/kOC7uDdonuD7ZunB9LZ1boo8SsK9DVuj91UvVV+1V9idLkkD217uvd00eHdc3S35uVmkvWQYyc07i/1XgPO+T7DlX2cF8brStmpHS/uY+P/jgg5KOC/RKx+trW17l50D7bDzX8PPaDNIpx1xGKJ5v71Cmo6uYWPysekZlnt7V89T3V3aPuI9mxBcvXhwMb2BgYGBgIOKakkfTuy1LBM1fXMa4sc2IyrOul8psSSrLykvQZtNL4tvzTorfs1/ZMbQR0M4gbevS6QlXJfWN/1fSOZlGbI82o964OV+7lOkg88/OZ0yVpeXopUnGxXmvbMjZZ7R1MEVWvJ6/o+Yi2/+ZliG+p60jrhtjNrlXzfSi3cfz04vVi2PIwHWv+hrbqYokZ3NOZtSz/x4eHurSpUtbRYjNjCJY3LjncVnF7pJVZAnv2S7hdfL6SMcMy+vj/r/tbW+TJL31rW+VdMxcYvv0OnUbHENkvYz/NaPzsd4zsVyP2Z73jPtC+2+2d3oFtGNfM4/y6pzsWeV+v/nNbz7q0/DSHBgYGBgYCNiJ4TkWpheTRbZCT7SMcVX2girTQWbjqDKeZLptehpVCaYzadCosmb0PLoMxrZkiVgNfkeb2prCk+xzJp1W3oy0VWQ2EKNnw5umuQAsdfNZH6r4sCyLTmW7Y/LgXoafzNs0HhvPsWTtV2aGyEpLcX9X3qGZVyjnn4lzWTw0wscywXrPtlbdi2tiOitP4oxdsZBpj+EdHBzo4sWLW4VMIxPiOmfestJJjYL7QBsemV0WJ1vZblnkNe5Z2+H8alvdL//yL0uSHnjgAUknNRj0UvR4qr2TPbOYOca2RDPMaP/1PDqbjdtnmZ5erDK1RczeEsF7uvqd8F6WjpldVox6CYPhDQwMDAycCowfvIGBgYGBU4GdVZoHBwelAT1+Fs+RanVlPKZyfugl3a2cU+j0kbmyM31SpZLJQJVpNZZ47Sp0wP2JKc6qOnhVwHHPGahyVukFnnOcve+qhN0R3js0ekc1EeeJx2YOE0xQzGN7Sa+ppq0qM8c19hoxvRFVTXE+GZhdBbobmTrUai6rn6hiimm2rE5j3ypHpJ76tVLzZ8HDVb3F7L72mJfCSnze448/vnWvxfuFicWXxpwdWz2rMjV1ZVpwcLmPtXt/PMdred999514zZxw6DDDPcp7Oar+PFZ/Vpk/4v3rfcQ0aH7P/Z/tHYIq7V5Sfq+xQyo8zrjWnhOr8R9++OHVDnOD4Q0MDAwMnArsHHi+t7e3lfA1k5po+O8lW6ax2KhS+/SCyP1KyShKwEbF6LLAWUqDVfmMjFEweLgy/MfxM21blTyW7tfStpReSawZqlRSvXXrBb0bTg9FZ4XY7yoBQM9hYo0zRWwrk9KrEI+sXEsV0sJq0pmTFKuIV8452XzGNErSLNVK2xJ3bL/SUNDhoKfJ6LE0g44MlUNFFsDfY3axD4899pjuv/9+SScDpQ2mqmNC8GxdqrRjnJes4nmlFXA/zKqiA4rnzm71Ho/XNIZocBzUAvCZwkD7+JlhJx8mcohJrCvHNmsNYphFPD4ey3P9PttnlSaBx2YJrt3uk08+ORjewMDAwMBAxDUFnhu9X+4l6XFNoCCljSyNDxmdJSyymFgYkf1nGi9K8dK2RGrJjRJqVpTQfaOti3r3OC66QjOhcixkWaGyp5J1Rywl+86kzzWu5a21E+dm4SlVSqoqNVocwxpbcTw+nsM2WE4nSul027bEa9bBtFHStq2Y7uKUXm+77bat/rsP1FTYlpfdE5Xtk9qBuC+XbHjZ51XYRS9UJgtBWQpp4XrEufD/nFO3b3tPPKfSLPHzXrpA+gwwUXfcB+5bTIkVj2GoSXXt2D6Py8J8rH3wuvBZkrGnKoEHkwzEZ0zFRvncy/abwec3Q0Ok4zm3dmMEng8MDAwMDADXVB7I6OlNq4S4vaKTlPor+1zU1/OzqqxO7Cs9OCm10NYSx+1zaCOsUjFFsFijYUklSoP0WuL4yEpjXxlYT1teFsBPrzZKeNm6sb0lW14mIUdQilwK7q/6Fa/FFGCRUVYppMwguC+kY2n52c9+tqTjdE1mfL5uL5kzJW3aNWknkba9MhmIHINwPVbvqypY2YjrwgBuzmsWRG5Qu9Gz+/WeA9mxly9f3noeZBoYvmZB4wbv1YrNZtoIBq1zbql5iv9Tg2TtQJa2K0vBF+HvM80P049Zc0AP0/isZv/JWPl9LxEF28yuV2nxeG9kHrm2rQ+GNzAwMDAwAFyTl+Yar78q5ZeRJTumjY5MLIt9I0tjMtWMrVVskH3NSryQYWWpxKTc1kUJLotFq65nVHGHWYFEvpKJZV6o7DM9CjNpfW1as8uXL3dTi1X2Cl47O4fzXyVzzmxdtMNEm510ci1tA3K8lW3D7Lv3XTyf8+R18ZxkCXQZK8iiuFncHz0EGf9U2Xbj/2uSlBtVDCRZXE+yf9e73tWV0g8PD7eSYsd94rWjHYn3WhY/SLsR+5F9Ti9Qem3aDhf3gcdaFWD1a9x/XkvvM7/ns9H7IfoquA8uOHvPPfec6KvPieviz+g7wDR1RhaHx/1A1p1poyrvdzK9+F0WC7iEwfAGBgYGBk4FdmZ4Z8+ePfpVziQf/lJTN5tJWvSoosRVvcZ2WCaGtq0oafG6VWaNzGuS0l9lZ8rioir7WJappIqVq7ynIpjxoirQmXlYsc9rdONR4u6VeHnyySe39k4vDqsqTdNLem1QAiYzl46lVnr2seRP3Ac+xzYzzrX3WZS0qWWoCo/6fbTH+Xq2V9DDz5/HWEHbO2gbNHpZaDzWqs9LLCwbX7ZG1OZcunRpMZaqsitFUNOzJoF1ZdOv4nOlY4ZP2xm1JzFm0PZfr53b83rRHhj/Z2FUPjO93+JaO0n0vffeK+mY6bkNjyFqmDz2mJg7fu79yOd6HDO1A9ROZNqPan/xevH/uC5rWd5geAMDAwMDpwLXxPAyG5BRsTHaxSIzqbwzl7KZSNuSNSXTzHvJ/y+xzyz2g1lmqqwWmacVPeAqu1k8h96fVSHGbD573o18n3l7Zn3NsmUYWT7P2M7Vq1e3GF1WKJX2nZ7XX2Xj5CuleWm71A/ZgRGZhEu6UOqntsBem9KxZM9YMGbHyPpotmeJ2xlWmNEjMjx6EFY2xF7ZG+4hrm1c+yqejbacng2v52k3TVP33PgZ+8L7Jp5T+QowXpI2L2mb0XGfuQ2zqHg+7zH32f2IDIjxtvQ6pl0stk07s6/j95mdkf33/qps4b01YN+y9a3KnFUe+vGaaz0zIwbDGxgYGBg4FRg/eAMDAwMDpwI7B57H9FGZSrNKPkpq2lNR9FJJ8T3VDnzNKvP6O1N7qlB7iVhpBK8q/2alUOiwwTFE0CC/VIk6c9VfCuCOqILIe27Ia1JIRVy9enVLFRvboxqNr5mTxVKCA39v1UyW6oltMIwjqvysWowqxHiM58JqTOk4Oa9VTEwPZpUq01PF6/i6MQA3u75Uz1eVHKHnBORXqsXWqJOo8s6c29Yk/XVIC9XhmcNEdq34Pq41r23VHtVrmUqO6cB4HYaPxHa8D6yutBMLn5lSnRSbZhL2PR5Lhz4m0cgSQlDV6PbZn8wkwXlliEjmqObv+IzMVJoMH+olwycGwxsYGBgYOBV4SoHnlCSlWrKihJW5KFeSPaXBzGBevc+kCksLliYYPJylGvKxltzpGs0+Z0VxqxRc/j72sZK015RrqZgR2WiWALhizFnSYEqBPanfjgdV8H3sb1X0NrbF/6uwEDqEREmxkkQ5B1mAMxP/cq6js4LZGZ0IGCrBYF/pWIql67rRS+pdpXoim8+k9CqBMp3EsnOqdGSZU1blUMXzH3/88SO2m7GZHpuM14tYKp9VhTjE76r70esWNQp2EnGKLzs2eT9k+50OSJU2wuwthsMsOREx9VzsL9OgsY3smVWtYU8jWO2dyoFNyu/pkVpsYGBgYGAg4P9v73x647aSIP4kWYnjg5PA2CBADvv9P9Zes0GQAHFgx9LMnkpq/VjV5Gixh+x0XUaaGZLvkY+crv5T/aoYHi3f7tc1xYacbBdxpKg7xSNo3TjRYFr0ZGKd5JIYH1OanZVGtsSxC3UbxjOTbz1Jt9V5pFfHAFLRaMcKk++eOJ1Om0JtFz9iTJVWZictlhheJ4mmcynrODXBXWvbykn7JdOrLE1rRY0/ZY0nWTRnzfJ4XAc1HZ1NTzn3tB7qsSkpp3XuWC8Z/tG43Fovr3X3HHh4eHhiJLpOdc6pmXOacx1DVz5R51PjV6mlkMao71YWqnie9ieGx2vs4uTJy8H7yXm/+EzidXKlOhS6T/KLFalESHCx/uR96nI+kuj6EQzDGwwGg8FV4OIYnorP1/K+7cQe2Bqiy/Dci+V1mX20hN02srpk2dASIvOr+yEoveTYYfJ7s4jUtRLZ84t3QtCpmae7bntWUrdNxxiF8/lsGXP3HlmbKzjdY3hd7Emg4C+vaZ0X2RPPgeJMTgBYn6V7g8XMdb+pmFesoRYoUwyB99URz0xq7uzicRzrXgyxIkn2ObDtUWVPjOtxLC6Tj+eBWbJcMzVDNuUd6Lo79iFmKjEBxXQp6u28KPyfXg95D1yDWzbO1bnQ9XFrlR6L9Mx392LKXHfPibS/rpGuzl9l0RPDGwwGg8Gg4OIY3ps3bzYyNtUHnJoqHmEXyfffZWlyf0l2pm5DNljnVvfhpLKStcx9OzDOR4uyMjzXDLIer4uXJFaQahT5t0NnndU40tH9uKzPFGvi510Mj+93bIOCvLKOXUspQVY6X7kOHRvgq8bceUz0nsbG2jCN3WUsphhrF4cReP8mL0H9LMlEdWyg3tNJAFjZ4bonZOHXjER6axiHdTWolFYTAyc70zaSdavfYRyMsafKxDQWSswpa1OMT59XsB6Ozzutt7pm2diYNZzap8sK5rOJovz8v46NXpB0XesYuUb5TKxjTxnLRzAMbzAYDAZXgYsZ3vl8bsWjheTPd5Z9sh7paxbctvRpd+ostDiZtXkkJpXgmBnPk2uNUv9fa9siKe3LxSj53RTvczV1nDO/W5kEYw/39/ftmqjjpfXsxku2SKFmbu+OQ4vfzZmWKRlenTMVIVJbJcVU1sptiPZUgtbaNno90uqpY0r11cWZXEuk7vh1G2aMdq1fmJH49ddfx3GrhjPFedbaZpdy/64BMFlMbUZbIUb5888/b95jk11mFdYxaixs1qpsTbXzqQyPsUl6FFLT4rW2YuRUSdGYK3sic+U40pjrmBj75HXtvC06PmOhdYy6PkfqfzfHOfzNwWAwGAz+xpgfvMFgMBhcBS52aVbXQldakCSDXBJBkuXaK9R229KFodeatq39Uj6HFLnr70bKz+C4kwlj0gBdDdXdwvIKundT6q/DJS6F9OoKnOnm2nNn1nm4NZQ6gXM9dB3v94RknbiuXC8p2cPJ4HHMSjhw7jueJ11vrjOKmq+1TQ7Ycx9WcI0yWcYlXqVCZx63kzLjd1wq/SVuKI2HCWl1f3TP8l52Igap3yI/l3vt999/f/rsl19+efHKUIYrf9HYtD+5LvW/C8/I/cn1TYEDd++xRIbPRLndu4QQyi9KWlFzqX0fKYoudKEhhjb4TJT7so6Rrtk63j0MwxsMBoPBVeBihnd7e9umUR9leBW0XmglM+nC/ZrvtZapVgaZW5LgcWPlmFJrIbcNrUwGuB0rTOn2qVyhYq/Fj0t0SAkUtN7X6ktNiPP5vL58+RJT2Ov2ewXSlQnTkudrJ0KbupXrNYlX1zmntVTHyP1StosM0Hkj+B3HuAUmYTChgglRdY3Jkk8C545Rcl7J++DKSY54BU6n0/r8+fPTuHUcx/C0P7b+6kpaeL9zXbhtWaCtJBbtg6UHa23LDtguSuypCo+T4fO5w6QWJ8auz8j0UoJK/Y6Ox3IEd2+6JK+6f95X9T0m8DFZpTI8XrdPnz5N4flgMBgMBhUXM7zT6dS2T6EFQjAt3b2XYnmyIKp/nL/2yaJzqeVCklGqc0jitIxPOOuWY0htO1zMkHEQxstcCr/GkmKgbpsUu3OlB9zGsQyH0+n0ZGW6tUM2w9RyFt+utWUpZBn0HrhGqYLOG1lOXS/6jMW1ZFVuG8ZHND+e28rwWCbAmIeLGafiYcY+yBq6MXHezmOSYrqd6HtleontnU6n9eeff25aM9VYJ1vdcM04CbPkUUrlSZV5fffddy/OR5IyrNuowFwMT+PX+/x/rXyPUZZQ/9cico2BY9S8FX+rcTiysb3Sncpg+ZwWeE/U5xzvS11HliW4Zr/1GT8MbzAYDAaDgosZ3lpbP3n9xabw6h7Tc/tNosTMFOKx6zZddlZqQyO4LNGUaZQkrFxxfPKHO6mnlAXqrBsixZ6OiPrynKdMxvpetaL34nip3Uz9m77+TiYsxVtThmBlOYq/MKNO2W1OgEAWrazixLgrKPRMjwLn5SS4uF9KV9WYIRkeJc3Y8NgVhCfpMueFSAyf7LSOkee2s9BPp9P6448/NnGlyp4Ss9P/TsiBsWIX217reX388MMPT++p4NplrdZ9VwZEr4C24VqqheddVrObg2KJa21jtpyXyzvgmJxARBoPx8bfACfpSKaqTFjNg/eim/ubN28OxYLXGoY3GAwGgyvBq8Sj9cvtGjHKiiCLStmFHRi3omDvWlvpJcaBnFWRMjmJ+r6LOay1rW1yMbyUxZha2dRj87MkYeQkk+jf77IpU1YmffaO4V0iwUaGV68l4yCpFUpFsnzJHFyWZmLCSV5trW2DTAqpCzWWIqT4Mq+h8w4IbEPjmCuZXWL27tyR0XeSYkISC04tu+p+kpRZxePj4/r48eOGkdS6OEqKMfNWcLWASWha7JbPu7WevUwfPnx48d2uebDAPAeegzpG3sucJwWpu9ZSjM+6TEt9xno7xdbYALleN3rM0n3ssvrZQov3mVs7l9ZyrjUMbzAYDAZXgosbwN7f328soxoD0S9yYhNHarb4WWdlpnYVbKbZ1d+QtaUaOLftJSDr7Jhmsv5p0TurKWWspkzMtbbZmHuvdRtnVTrc3t5urL1qzXJt0AJl1mYFryEzft34E4tm7MOdJ64Nxkccw0sgc+mEx1lL5dgTx8ZYe6oLXGtffUbomAQZBZmMm9fDw0MrBP7p06dNJq7YwFovMw3rsTqmlQSyeRydi3qMH3/8ca211k8//fTiM3pEKnhd6IERi6rz0jZsHsxMbF1jZY+u5ZnpWlvmWtcu4+a6Tnquq0USY21rbZ+nyZPh6vBY16hX593hOrnkWTwMbzAYDAbLCsAfAAAPZklEQVRXgYsZ3t3d3abKv2Yi1V/8tbb+VtfyZ081JMW+1so6nKkZYd0+NYLtGNfemJ2VSka1F59zY0t1hS5LMWW5pszLtbaxKJ4/V4dHq3kv+7PGf50Fl+I6tIydlibPA+MHGnfN8NXcUvNOx57YQobM0cWiGLNJzNXNj/NycT5C51GWvOZJr4djI6n+srsnUyZ2qm9183l8fNyNyfC61DY+YkdkQN352tNd5f1T6yO1jlQzJ2ZFFl3nfjQeV9eoPvv+++9fzIN6rPRO1e+S4VPZpV5/xthT+yGdOzaVrcfR2LVtV6OcvAPc51pbFjp1eIPBYDAYAPODNxgMBoOrwKvEoxkQrgWgv/3221prmzBB94YrHqb7M0k/VborSs3AOAOzXZCd+2epgQNdZylpov59tDiy7o9zTu5Qdzy6GJlkUl0ZdMXQHea2cWnuaY5KeKIrphOCJjq3RRIqTgXUaz2ncuscs0O0XD9dOxK6gN3aoTuf1077cIkuPJ+pi7STwdP89Eq3tJPqS4Lgbl0LdDE5IQWC7W2+fPkSr6/c4TxPde3ovffv378Yi953rtnkPksJL13iC117roQqrQMWxTvprSQ4T5dtPR7noessV6ZeXdKSxqQQlc4jy2+69cBnvwulMClFnzE5zJXOuGSoPQzDGwwGg8FV4OKklWppuWJeyifJWkmCxmttE1mSZeiKrMmwNDZZXE7CihZBSkd3KbFJfqhLvNkLjnfNKck6yCAcG+YYUxp6nQNLTFLCgxMZuERUoGuuy2A+4Zh5aumUZLuc6DHT0HXOneA0QUZ0pJRlT7S6fs5jMwHG3TNsM8TkFCYxVIubrCe1+nFMnmUcSYi4ftaVANVjvX379mmc8iI5uUDes0lcfK3t9Wdhtpgxz1v9jpqoStBa11rPwZrQxzmzqJpegwq2z0mlOxVsqiro2ah9usatYnbaVmURFHfuxDL2SnfW2j7PNB+2IXIF7vSqHMEwvMFgMBhcBS5meF999dWT79f5r2UV0dcsS6GTtWKKKi3hTn7ItcdYKzcldGDas7Pskz+fMTyXjiwkIWAX90kp8118JDG8lKa8Vi5D0HdlcdXUbDK8vQLQ2lqqvifQC0CW5qzYVOyaRJ2PxKsEx0Zd+5963FSo3Y2Zx3etUFKLFVdQTybPGA5jeM77QSZJ1PlzbPSYuCJs19YreQju7u7Wt99++8SIxC6c3BRjXfRCObFyjY8sgyUadX2wQemvv/661tpKczn25DxV7v+K5GWgt62yQ15vPZs1ZidWLVC6TgxPhedigE6yMcWqWUq11rYBLOehOdQSFMbuLpKrPPzNwWAwGAz+xriI4d3e3q53795tLKJqwYkRyALSL3Mn4somncKe9Nda2xgd/dMuE41WOK1A5xPmWPbichWJDbLI07WFSZmjyRqt7yVL1RXjM57Dhp9idi6OITw8PLTMRjHgtbZxMs6/g7PS0/VIxfdrbdkMGQo9DvVvxriOxKIEd73rtm4dCEkk3cWmUlYmM1a7a5aK5V1xPC1vZmJW74CLm3dZmjXDV6zJSQymDGtma9btu/yCuu8KMSAxHsUVxZZcWyfe73tygRVpjFwH9RyT4fH86jq57GC9p1fNV8yOz1m3H2bmM6/DjYX/c35rPT+DxDoveRYPwxsMBoPBVeBVDI8ZT9Wq0N+ywtii3VnNdf/d/10GnCBGyaaH1UpjXK+LKxH8LLVvcePeE1PtxKP52rWwIXNlTIe1ivVvMj3G8lztnl7/+uuvttbw7u5u48/v4nKpFqceg5l2e5ZiRRI2Ty2u6nt7cTg3n8T0eXyXcZledbxufdPSJxvoPAt7Qt71M54bxgErc2Ecq6vD03FZg1ivdWoHlOqB6/x53lNmav1fjIfZ4PVeWOsl60nttLoWain+zzh353ni3JnpWWXDKGnILE3WQNb8DbLa5DHp5s7njmvcq2eRMmRHWmwwGAwGA+BVdXj8Na5ZPqzMZ9amyzJM1jEtRGfFJ9aU2svX91xtWQKtQFq1ncB1UqCg5VutmKSsckS1hVmvqb1SZWvM0iQbcJmdrkFvioNo7ZChOmbK/1M7JzfnlHlJtYe6P36XrLGC15KZdc5KTyLKiWHWMTL2mGorXU0lY7YuK5PjOGopuxq4vZrEeq4Yv+qs9Nvb2/XNN988HUfPmHpPi4GQRTFu5rIY9xQ7HNMXKyID61i8zjPb9VDxp55bxh6pRtWxUMbqj7BCHZv1dszJcDH4dD/xOeeeIcwg17aKjbrnCuO2RzAMbzAYDAZXgfnBGwwGg8FV4FUdzwVR4krRKS3GILjcEc4lklw8Kemjfof0PLkg6990VfD4jkYniaWu8Dy55Dif6vJxiSwVdB+4dOtUgOwkpVhYnlxmLqW4frcTj3Yuzbq/JK5Lebp6TujaSa5MJ1qeOnVzjp1ALteoK0xngk7qg+bOCfdBN1VXPM5rxmsrHOn7mK6N24buxM51Vu+9zk1/e3u7KVKuyRaas8SjCeeWZJjFdYCv29bjsTM33cYu9MBryG2OYK8Mx5Un8budyLfeY5E/58tzV/frEqnqvuu9kcprKDRdf2OcQMVRYf5heIPBYDC4CrwqaYXWc7UQFIAle6EIsgtQO+kZh7ptx/7Wyu1U1srJCh2SMG5X/EjLJhWRO+bC+ZBtMJjNv9faJqA4VuBYX/2OK2xlicFem47T6bSZj2uFwv2TxR0pG0nb1LXD8boWQjxeCshz/Tkxb36XzM4xITLTlIDSMW8Wngudhb/Xnd1tw3NDRubE0Y8kyciCF9twUnx67nBOZLt1DEmui0LNnOdaW08VhYy78iudF7YQYpnEWl6gv75Pb5XblmUJYmmuxGQvWaW7BukZqHk5lk15M3pkXNsjlSNc0m5NGIY3GAwGg6vAqxrA8u/KFGjN6f+uBICF7Kno1aWy03pJ8bgKWpWMrbiWKy42V7elde7S0lMReWdpJ0uO7MDNl+ecTM+lsu+lvVeGRyusY17n83k9PDxEBlbf24t1HhHOTqzDWaQplsdYW90f2QulxlxZyt74u3kxpsHCcxdvTqnsfHXxdI6dZRgu7kfBcx63MiZXcpLY3vl8Xufz+YlVCc5DwYJoNafWunVSWGn98vzUImsxHY2BnivX7DTF1l0cnkjlPnx2uHY9lC4TW2MxeX2PsTuKRbOVUj0e48vuPiIktk1Rbs2nNhnXZzrOu3fvDjeBHYY3GAwGg6vAxTG8KgCsX9X6y02xYX1GaSrXxDO1k3BCrAItG1oRLlaQWtCzaLXL0kwZUB3Do4XPQtNqadMKTyzEySwxHpeKll1mZxJtdXFO7b9awnvMmtfUNQUlq+A+6znfK1Z3Bec8HmMLZPouw5cgm3FI7JaZq85KT4zeFauT9e15IVzhborZORaamjzzvNZ7k+vq4eEhnrvT6bQ+fvz41GS1E4TXPsRQtH8nfi72wucP73sxIxVB17kw74DjqOeLeQw6vjLbxVycGENqWs015fIb6HXTcRmvq3+L6SU2qHNfr2mKTQpdrgTXNZ+RdV46X1oP79+/jwyYGIY3GAwGg6vAxTG8m5ubjQ+6WiT6VacFpO/q19nVqe297jWlrN91PmZB1hKZnSwvJ65c5++Q2FsdE63jLsM0xRmFLjMyMVWyNycETXbAa+yYpJuzQ93W1XPxPHEsnQTUEaHxuq96vNSCqZP6Yg1qyiit7zkR5bW2zNuNnZ6FjuGnxpg8512mZPJKuH27GHSdj4vddF4b4nQ6vYifucxkgfFDXR8xF8WK1nrODBR74fjZxqc2IeWzghJgZFH1eGoppP851npOUhZuenbUbVMT3CQfVufFBrAUk3bZk6mlGFu1ubZOrEWmd8BlLtfnz4hHDwaDwWBQcDHDu7u7e/ol77Im2fiVrYScqGqKV9FCqcfby8rsxKpp8ZBR1DqdlKXJeXdsjfOhVeaslCQ4TPbh2sOkuihnNab97alf1P2dTqf2+zc3NxsrulP5SFlrR1jBkXOcrgdZwhGLO2XR1ve4jjm2bh10cT6OMdUzMsPOsSy2Y+G8XL3XXvapq9dNAtMO5/N5ff78eZPN6BiejsF7wDVXraL3az0zPWbcMtbn9kdvETOi13r2bgmMcXHMdY700qQYnsuN4P8aO9e7e4/rjNffNf/mvFJWav2b8V/+X8fIZ9VRdrfWMLzBYDAYXAnmB28wGAwGV4FXdTxP6aZrPVNeUnsWzLoCZtJyJiLIteDcKXT5UPqmKyKn+yalAh+Bc+t0wtIV7v2UNNKJOic3SBJorftP5QhOZIDuuz1X4/l83gj1OhFiljsIdH/U/bi07LpP9z9FEJL0W+fSZJF6tw3XKI/Dfbr9JVdmJ8a+J2V3iXtScDJhXCtMinHPiSOQaEE69/VvJkEwiai6xpTAoudZ6lfZJUlRektuUXe9mGiW3JRObo+hhr3wT50HrwfXYb0H+R7LyHTOXJmHisM5n07eLV1TupVdMk4XAkgYhjcYDAaDq8DFDO/t27ebdH1XCMxApWN23CYlaPD/KoXD4krKkzlB3r2UXsfEjshnHUXqPHxJITjZWpeAwvl0hZ//TaJLFRYnzufzenx8jGnHbm5Km2aZRUVKrqB12bEM7pfrzEmw1XnVV77PY7rjdCBrEkMhe+tEC1LHdbeW90oa3LYaU2LmnddD6FpLieE5Zsfx8frwPnFtZvRZLVlYK8sk1uPx3tKacYLZKdGEhfqOcQv0aPD50LE1IUl/rbUVrdD41XaJ7Xrq+UzC80k0vW6TZPCYQFbfO3L/EMPwBoPBYHAVuFha7O7uLlrEa2WGx7IE58ellZ5ko1wciXJJR9q1CMl6rcfZsyaOWM/CXqyyfpZia0nk2e13T5bsyH6ddc3rtHeOHh8fN3GkaunvpSQ7NpuKxlN8pILjTw1nXcE8P2Nc4YgQdBqPO8dJcNwV+++JINOz0MVAaJ27Mp+9bRwYa++Ek/Xc6Upl0v1BhlfZDO8tQayFrc7cc0etaijm4MogUilDV9TP51lqaebELbjOKLPmmC3vG81H54KtjGppR/I6Kb4p9lvPI1sicY3q/+rV4/W/v78/zPaG4Q0Gg8HgKnBzSYbLzc3Nv9da//rfDWfwf4B/ns/nf/DNWTuDA5i1M3gt7NohLvrBGwwGg8Hg74pxaQ4Gg8HgKjA/eIPBYDC4CswP3mAwGAyuAvODNxgMBoOrwPzgDQaDweAqMD94g8FgMLgKzA/eYDAYDK4C84M3GAwGg6vA/OANBoPB4CrwH/7FpVj8bf0vAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUJflV33l/WVlZ1WtVb1Jrly3ArGPACIRZzWZjYXbGAktIFvKRz3gM2EaGMRKLDeaAMAcEBg77gIZFg20hBpBAAjEjIwzIIBBCbNqlbvXeVd1dXUtmzB8R33w3P+/eX8SrruoW5P2ek+fley/iF78t4t31e9swDFYoFAqFwl93bD3SHSgUCoVC4eFA/eAVCoVC4VCgfvAKhUKhcChQP3iFQqFQOBSoH7xCoVAoHArUD16hUCgUDgUu+w9ea+05rbUh+fuMy3C957bWnnOp211w3dZae+s0rqc/TNd8aWvtLy5Du8+bxvH4S9124eLRWru+tfZNrbWPfASu/bzOffypwfFfMX33+svQl9/u9MX/3XyJrvcHrbWXX6K2jk9r+HeD717eWvuDS3GdS4HW2lNaa7/YWjvdWruntfYzS+a0tXaysyZPvvw9z7H9MF7rS8zs3fjszZfhOs81swtm9hOXoe0ePsnM/sb0/5eb2S89zNe/lPgFM3uTmd32SHekcADXm9k3mtnbzeyRejB+oZndgs+i+/jZ0+vTWmsfNAzDn13CPnyFmV3j3v8HM/tgG58xHndeous9y8zOXqK2jtu4hveZ2W/hu39rZscu0XUeElpr15nZa83sfWb2pTb2+9vM7Ndaa39nGIZzC5r5XjP7aXzGvfOw4uH8wfuDYRguuTbycKC1dmwYhrkN/2wzO2/jJvnc1trJYRjuueyduwwYhuF2M7v9ke5H4f0Svz8Mw9t7B7TW/qaZfaKZ/bKZ/UMbBcAXXqoODMPwx7jenWZ2dhiG315y/sL72V/vjzbs4kXhEgsFDxVfaWY3mdnHDsNwi5lZa+3PzOyNZvZMM/uxBW28c+maPFx4v/DhtdauaK19T2vtj1tr97fWbmmtvaK19reCY5/SWvu/Wmvva62dncyI3zV99zoz+wQz+xSnQr/anfu01tprpmvc11r7tdbax6D9l7bW3t5a+4TW2utba2fM7D/O9P9KG6XLXzGz77JRGvrHwXGva629trX2Wa2132+tPdBae1Nr7XNx3Ae5fpxprf1la+0/t9ZOzszhXa21FwffPa+1ttda+0A3D6+ejn9gav97cfwBk2Zr7VmTaef+1tq9rbU/bK09rzcv03kf1Vr7helaZ1prb2mtfa37vrXW/k1r7c+m9Xxva+17W2tXu2O2p/58U2vtBa21d079+MXW2o2ttUe31n6+tXZq+u5rgvEPrbVPnPbVfa21O6brHMexj5vm/o7W2oOttTe21r4sae+pbTTznJr6/d2ttWM49urW2ountTw37deva601d8xnTO09vbX2A621O1trt7fWfrK1dmI65gPM7M+nU37c7e9nTt9/9rRf753G95bW2tfPrc9lwpebWTOzrzOzN5jZs/x4H0601r56mqePmdb+lJm9avruk6a9+Z7pPviT1tqLWms7aOOASbO19vlTm5/eWvvR1trdbXwe/Yjft0FfTprZ3dPbF7s1/Orp+wMmzdbaR2qNp711+7TXfqi1ttNa+/DW2q9P98Kftta+KLjmx7XWXjntiwdaa7/RWnvqgqn7XDN7jX7szMyGYfhDM/tDM/u8BefPorV2zN0bZ6fx/WZr7aMvRfshhmG4rH9m9hwzG8zsb9moUerviDvmejP7IRt/JD7FRrPJa8zsLjN7lDvuKTaaKd5mZv/MzD5tav+l0/cfaqME8j/N7GnT34dM332UmT1oZr9rZl88/b3BzB4wsw9313ipmZ0ys3eY2b8ws0+1UcrpjfGfTGP8IjM7YmbvNbP/Hhz3uum7N03n/INpnOfN7G+44/6emX2rjRvrk2000/6Fmb0O7b3UzP7Cvf8uGzWzHRz3u2b26un/EzbedL9sZp8zje85ZvaD7vjnTeN5/PT+U81sb2r/083ss8zsq83sBTPz8vFmdsZG89uzpvX652b2EnfMd0zXesnU7r82s/tt1JS3pmO2p2PeYWavsFFreJ6ZnbbRdPzbZvbvzOwzzOxHpmM/KxjPO83s26frfMM07z/ijrtmmufbbNxfn21mPzOd+9ygvT8zs2+arvuN0xy9yB131Eaz1R1m9lXT3L3IRvPYt7vjPmNq761m9j1T/77Kxv36o9Mxx2zcs4ONJjzt7xvN7APN7JyZ/aSNe+rTp3n+tkt4H2vMT7HkPp6Oa9M4fn96/5XTeX/vMj5jftbcfYDvvnq6/tvN7N9Pc/MZ03dfbmZfa2ZPt3GPf5WNz5wfRBt/YGYvd+8/f2rzL6f9+5lm9oJpDb6n088jbq1f4tbw5un7l9toCdPxH2mrff8D0774P6Z99kM2mpKfP33+qun6T3Tnf/K0137NxmfqPzKzV9t4f33wzJye8XvUff7TZvbnM+eenPp9x9Sn02b2SjN7Ko57sY3Pon9u43P/82w0m376Zdsrl6thN6jnTIPn3+s65xwxs6ts/DH6l5jsU9ogybmvM7PXBp+/fNrM12Jh7jGzl7nPXjr17+kbjPFXp7Z33EIOZvaBQd/OmdnfdJ89Zjr233ba355uyMHMPgJ99T94HzjdDF/qPvvo6bwvnt4/bXr/oZ3r8Qfv68zstotY+9+abtYrku9vmubjR/C59sw/dOMfzOxP7KCg9JLp869znx2dbrQfDsbzfbjON9ro733K9F4Px0/Eca+10fewhfZehONeaWZvdu//6XTc3w2ue9bMbpje6yH4ozjuB83sfvf+A6bjnoPjnjF9ftWlum87e4J/r8Vxnzx9/q+m9zdOa/wTl7FvS37wvnGmjTbts/99Wpvj7rvsB+970MZL5+4TW/0YfE3wXfaD919x3K9Pn3+O++yJ02df5T57g43Crr9njtso+KXrYWZX8r5y332fmd05M8arzexHbRTQPsnG+/ktNgpwH+OOe52Z/djl2hfR38Np0vwCM3uq+/sK/2Vr7Rmttd9prd1r40PoPjO7wkbNUPgsM3vFMAy3XsT1P3k695Q+GEYf2/9jo3ThcdZGDWgWrbXH2Sg1/tywcuT+n9PrlwenvGUYhre6Ptxi4wP6ia7NY621F05mqTM2aiK/MX29ZuZ1bf25jRLc893HzzezW20MRDEz+1MbhYYfbq39k7YsEvN3zeymycT2dJnZemitXWPjj+tPDcNwJjns4238gXopPv8ZG3+4uS6/OgzDrnv/lun1VfpgGIbzNmoYTwiu9zK8/1kbhSuZeD7ZzN4xDMPrcNxLzexmW597Bib9kbl1tFHb+ksz+502mmW3W2vbNgpIO2b2cQvau7K1dmMwFo/ft/Ge+bnW2he11m6aOd7M9k3Fvl9L8Ll28D5+Pr5/9tSXnzYzG4bhDhvvpS9qrV01058j6NOlNIP+t+B6N7TRlfI2G+/58zYGWuyY2ZMXtBmt102ttSseYl+JX8H7t9h4f/yaPhiG4Z02amVPMDOb9sBH23gvNbfGF8zsN23c65cFwzDcNwzDVwzD8PPDMPx/wzD8hI0+3VM2WkSE3zWzL2mtfWMb3SyXPabk4fzBe9MwDL/n/v5UX7TWvsDGhXmTjRFBH2fjzXSXjRKJcL2tR3rOYrpxrrM4QujWqV2P9w2TCLIAz7JxHn+hjeG4J6c+vsnMnhnctHcFbZy1g+P8DhtNbj9po7nlY20VgXbc+vh+G32YHzz96HyZjVLUeTOzYRjuttFk+j4bNYh3tdb+qLX2+VmDwzC8xkZz85NtlELvaK39amvtwzv9uN5Gqbm3Xpr3A+syjAEFd9v6utyN9+c6n0fz9L7k/eNcf7I94vsrcC25jo+y0QR4Hn+KzrthQXtmM2s+3Uv/wFbCw/smf94nZedMPsED/Voo/PxR5z6WL/s3zeysux/+m41S/xfOtP0e9GnND/4QEK3ry2y8P15so5b9VButGWbz95lZvl6XOtIy2t9nhvXAG7/vHzW9/idb33/PtPW9t49hGB6wcSzXBV9fb/EzrItJ8Hm1rYRLs9E8+502PvNfb+Nz5Qdaa9du2v5SPJxRmj08w0bN57n6oI3BBAzSuNNWD6fFGIZhaK3dbaOUTtxs6wu49MfObBV+TSlM+BQbTWKb4Bk2/kjtB8u0TsAK8Itm9i4bJe8/tdE88cP+gGEY/qeZfeEkUT3VzL7ezH6+tfbhwzC8xQIMw/AyM3vZ5JT/NBt9Yb/SWntiIhzcZeM89tZL837z1FczM5uCBq6zi7ixZvBof53pvdn4oFV/Pio472b3/Sa400af4Jcm379tw/ZSTELJa6b75hNs9PP9cmvtScMwRP1+lx18+JitCwSb4gts9IN+uq0/pM3Ge+WnOuf/fRt/tIW/fIj98TiwRyet+dNsdJl8v/s8FRL+ikEpGf/RAu3WzHaDzzzebGYfFnz+ofbQ0sn212EYhgfN7JvN7JsnS9nn2/gDuGXrloNLgveXH7wrbVS1Pb7c1jXQXzWzz2utPWoYhixH7KyN0iTxm2b2Oa21q4ZhuN/MbDLNPX1qd2O01j7Wxvyf7zez/xtfH7cxwOLZtvkP3hU2SmIe/3TJicMw7LbWfsjG4I/3mNmrhiSMfBiGC2b2+tbaN9g4Dx9iKzNh1v59ZvaKSUP4T5b8MA3DcLqNScfPaq1967S5idfbOM5n2Lg+wpfauPav7fXlIvC/mtn/694/w8Yb/3em979pZl/QWvu4YRj+hzvuy2zU8vyP5RK80sZAgXsnc/NDhST61GQ2zfNrpr39X8zsSRavz1kz+71L0CePZ5vZvTZqcnv47p+Z2TNaa08YhuFd0cnDMLzxEvenB5lX9++z1tqWxW6IS4nZNbwUGIbh1tbaG230+V9MtO4rzOxrW2s3y4XUWvsIM/vbNpp9N8JkYv1MG+/5qL/vMbP/PEWa9ixHDwnvLz94rzSz72utfaeNmtJTbXQen8JxL7LRdPP61tq32Sg9P8HMPnMYBm3UN5vZ81prX2KjBH1qGPNb/r2Nk/3qNobuK2z6mI3S8MXg2Tbe2N8+2dAPoLX2Cht9F/9iMhMsxavM7LmttTfbKOV+iY1mzaX4YRtNoh9uo/bm+/R5NkZ9vtzGyLWrbXTsnzKz/2EBWmvfaqMJ5DdsNA090cb1+b1EexD+zXTOb7UxdeQ9Npr4PmIYhq8ahuH21tp3m9nXTL7KV9ooVf4HG398XpW0e7H4R621+200rTzNxtywH3c+1R8zs39pZi9vrb3QxojaZ9poAv6KYRj4EJ/DT9rosP+NaW//kY3+oQ+w0Rf2OYFZqof32hhk9aWttT+2MajrrTYKCB9v4/y9y8ZgoH9nozn5cpA7rMH5sn9oGIZfD76/x0bB4Zk2RuI90ninjUFQL2pjqsJpM/vf7GBC+yXHMAxnWmtvt9HC8t9tvO/e2RHgHwq+0sx+dXoO/ZSN0cePsvFZcmoYht5z7yU2CimvaK19s60Sz//YnJbeWvvbNgbH/OthGF4yffbNNj4vXmejoPgUG6Nhr7IxYEvnvtrG+/yNNgpKT7PR1/etD3XgKS53VIytIu4+oHPMERtV7/faeBP/ho2SxLttPYLvA8zs52xU2R+08QfhO933j7Xxxj89XffV7ruPtzHC6X4bg2JebS5qaFhFWr19wbh2pj68qnPMZ099eOawikp6bXDcgXHa+MB6mY0Pt7tt3GAf59tyfc2i015j48OPYeMfMrX9tmn+brPR+e6jpxil+bk2asG32CihvsvGH9U0Wta19Xem9u+10an+J+Yi1GwUPL7GxhD/c9Me+F4zu9odoyjNb0Lb6ueT8fmBeXbHfYKNJt/7prX7XnPReNOxj5vm9c5prG80sy9beN1vMbML+OwKG4WtP53au9NGweIbbRX1qSjNT02u83j32RdNc3he+2Ea1yumfXR2WqefM7MPuoT3cThm9/3XTd8/tdPGG2x0XVzqZ8ySKM0bg+8+eLpP7pvm7MU2+g0HM/tId1wWpclnh651cqa/n2ljPtu56fivnj7PojS/GOd/t5ndF7R7j61HIn+Umf1XGwPjztr4Q/9fzOzTFszrB9p4795n4/37s2b2GBzzkX4M02f/2MZUoTunfXq7mf28mf0vOPcbbAxcudvG5/6bbfxh3LrUe0R/bbpw4a8RWms32Lixv2MYhm9+pPvzSKONCfI/bGOu49sf4e4UCoVHCO8vJs3CJcBkJ/9gM/tXNkpdP/DI9qhQKBTef/B+QS1WuGT4PBuDMj7azJ41XB6/QKFQKPyVRJk0C4VCoXAoUBpeoVAoFA4F6gevUCgUCocC9YNXKBQKhUOBjaI0t7e3h6NHj9re3ph/q1fvByR15NbWVvfV/69z/XdRmxGn7Nwxl+ucJd8vvc6lPrfXpzloTXvt0/87DIPddtttdurUqbWDr7rqquH6669fO8evNa819zr3XYSLmeOl7WyKJf7zaI6X9ic7l6+9Y7LPde976LPd3d3wfW+8rTU7ffq0Pfjgg2sDufLKK4eTJ0/ut3fu3Eihev78iozowoULYT+X3Ftze2iTe+tSHTsHju9SnZOt0SafZ/ss+r3Ifkv4WxDd8/pue3vbzpw5Y+fOnZudjI1+8I4ePWpPfvKT7f777zcz23/1G+/IkSP7nTAzu/LKK83M7Nprrz3wXq9mZldcMbLsHD9+fP86/lVtRoPXd/ose69X3w7b0Od87//nMUJvgTgnbIOf9/rC8elcvfr/e33KoA2nh5TO3dnZWeujjtHD5sKFC/aCF7wgbPfkyZP2/Oc/f/9hpfa09r7fXH8do3P8WNUf7R3OpV6jmz1b055wJqidJQ9WoXfj+8/9jwl/PHidXt/4Q6N10ud89cfoVdfVe63f2bMrghj9r9fTp0+bmdmpUyNR0j333GNmZg8+uGKX0zX9PfBLv8TiAyNOnDhhz33uc+2uu0ZSn3e9a2Qmu+22VRCyrnXmzMHCHNpD0X1y7Nix8Bi97+2DuXWIPudnfF2ypgLvz01+xPhsjH6A+Bzg+2ivUujQe627Xv0a6X/9lmgP6TflmmtG4hvd+37MV189MkjecMMN9oY3vCEdv0eZNAuFQqFwKLCRhjcMg124cGH/15dSoEckpfjPl0jakXbG92zvcpmaMvWckn4EStzZ5702MlU/MjHpf87bEvA62Xg3xd7enj3wwAP7Y6WUGV2DEmhkbuM8ZBpXT+LO0FuPbM2WSNrZuT2TT7b+0XX1vzQV3p+8z3Qf+3P1mu3zSCvM9qbgz5GmqGN2dna68723t7evIej5ozZ8H3iP0UoUWUKkPVDTE3rm0Owe28QsHpnoCD7nsmdJ7zoXow1mWltkHeB+4p5hG2YrjY57Rmv8wAMPHGjbf6fPHnzwwUXuAbPS8AqFQqFwSLCxhnf+/Pn9X1jvuxMyjYf+ES/FLPGhZZ9n9u8lUg39YZsEQPQc/+xjpiUtcahnmnIPmTbGtqJgI45L50RaI+d2qYTu2/F91Pn6Tj4WoufrpK+m58vN5meT4AJqYL1gDoF+EF7fz+OcEz+ax2wcmhP22Uvcc767SMPQc2AuSCE6x7dPrcVjb29vLQgm6jd9gxx75MNj7MASywjvD99Ps4vz4dGH6JGNJxtv73r8PNqzXDPNr64bWfdovaGVQOf6+1rPhGgfm600PO/D45jPnj0bjiFCaXiFQqFQOBSoH7xCoVAoHApsbNLc3d3dV2dllohMTFnwQBTiS3NUFq4fpQTMmTKX5P1RjY7U68ystSS3Zc60sMT8kZlfe/3LzGyRmZTmpMxkG/VR7ffMr8Mw2Llz5/aPiczhUZh0dG2//jJ1yCyl9zRhRqb0uXzPbBxm66aeJTlnmcmP90wvHSZLR4lMzVlaBfdDZJbK0hAURu7PYRAB90UUwh65RXq5XvrzfeyZ0DUv2hd69eY0pUZx72wS3JEF9URrOfcsjEyac33hHuo9G3mdngmd72kyjkya2iv6jgEpvEfMVush0yb7GqXBCDJ3nj9/voJWCoVCoVDw2Lge3u7u7r5UFjmZKT1mKQZReLAkGyYYZwno0WdZ8rAHJa25AJTo2KytSNLKJO5ekE4mwWdBC5FWQGSh+73x9d7rOlqf3d3driZ84cKFbuCMd0x7MMxeErnZupQuiTHbd9HeyYJXov2g/U0NhdYOH1DBcRAZUYD/jMdwnFEQGL+j5iVEKQaSrLOgAj83Gru0P+7R6HmxiYbXWrOtra1uigy1F+0lBqZ4wgslLpP4YklgUKS1evT2zlxgX6ThZc8dapJRgjatHllgV28c0rCo4UVrqmOpnbEfvh2SF/SIDhh8deHChdLwCoVCoVDwuKjE84y3zv+fSRORBpT5WSQRUOOLtEOeS82oJ3FFtuXovT82CxePxse+ZHPTk9LnaK8uRlvz56j9THKN/IGUfHs+vNaatdb2z6d93yz3zXC+vIZHH83cnumlVXBOo/1NuiSuj8YV7Tf6Mqi99bRQ0q3x1Uv2bE/fUcOTRO7XVFpaRjyg8XtfWBbWT83Ba3Naa33WWutK6UeOHFmzpvi1JB2YtDZpcSdOnDCzFcWh2Yq2SmPROVlCeuQfy+6xKHWCHKBqgykf0frzmSvweeOp+ngvaBwar157tIR8Nqqv9NeZre4J+db0XveE+ub7qOvo2Pvuu+9AP9RHv0d7hAZzKA2vUCgUCocCFxWl2YvcyzQSSpuRnyLTfDJJJfpsiYaXSWFZxF10bDYHm2hrWXSqnxNKyRkdVYRNEulpF6f035O+vWY0F+nY0xR4zFzStVnu29T7jCDYf5Yl0EcaJxOvqRH35jpLVu5RStGPTek8Ghe1QrbLfe730Fz0b6TF05fLJOjoOrzHesnerTU7cuTI2r3unwNq56qrrjKzlWZ3/fXXH3j1Gp6OpYZHvx+tB/7/TBOidmO20nz0qnNImdaLJKbVgRq+xu37rfHIf6lxk3Ddt8f1IJWYxuCfkdLO9J0IoUUmzvn0kMaoNvRe/fH3IJPfN0FpeIVCoVA4FNg4SnMYhv1ff1LJmK1LovSlLKWh8u0zAs5LPZnPaYmPK6Pgiqif5uh4llCZZRGska+ImgTLgVAy7tGTLYlKzXwR9OFEtvSlNGittTVKKS+lRRRUEXxfJUGzVpo+l/TMqEazdQ1PYFt+brkejF6LiI0zfyg1u+ieoJaZ0YL5a5B2iueyXIvvKyMuGS0XjU/Xod+FkZIRKbba91GYRGvNtre31yJUvXWAGo+0mBtvvNHMVhqe14Co6TBaM9Om/f+8tzQeajkaYzR2zkn0rOIeoQUjikLl+PSqOdCxXsNjJCUtW4ym9PcqtUO1xev4eeQzkFGagvf/9qL251AaXqFQKBQOBTbW8DyiCDFJFSzayWP9ObQX89c9ixQzW/3yS3phfkgk2c8xbERa6Fy+TU876fk8e217ZL4q9tn/n+VhRb6iuZJC9O35YzeRtLIyLh7UWnVNScsRCTX9VnPMNGbzBOfqaxRRTN8CxxXll7EPLN+jeyKKhGWfyFQTVf9mX7Lcpih6kq/UPnrRh+qrNAn5ZbxGpoKtjA6OMAyD7e3trREYR3tVz4GTJ0+a2Uq7iPLZGCnM/cu5jjQ8gud4H15W0qeXM0ytkFYBzSn9kdF3WaFbD64794o0VxXflX8uGjstCD2rjnyrN99884Fz77jjjrVz6N/z2v8cSsMrFAqFwqFA/eAVCoVC4VDgokyaVKt9IiFDePWe5qmICotOdposGBDjP6PJVH2SOh9R7nhKLLN+NV+admieiEx+As1uWZBHZEKlCTOrtxUljzIhmGYxPye6ds/cwT5y3ubSEiITlG+P86TvGN4cBWgwsECvMn9E6RVcb81Hj2qOe5Dm4ohGK0t/yEgZovExlFvHyFzozbw0MWqcDEQRIko7Bk3RLOv3G1NYSDAd1UHTeHy7PVq6qA5nVKk9Sl3yfYmCSGSmy9Zd/fb9Y3qVxujXwezgnqfZlqa/yKwbpTn569NlsyT1Q/OmufB7VWOnG0H7TPfgvffea2Zmd9111/65NJFzz0RuHwZdyQx+0003hf3w8JSDZdIsFAqFQsFhIw2vtRaGlHrpgwETlDKiEGwf4uxBiUBtRtRSDIVlGL0P12WSNQMbIlogaggZEXOPUopzkNE3+Wtn9GdZkr7Zesi0QA0qmnc697lePQqzKBjGH7u1tbUW7tyrEC6pMiMG8P3NkqwZPu212iwJPtMOPDgvXAe/dyiF90gKeC61I825tKh77rnHzGINT2OXdKxzhEgbWlr125/DgCdqENE+Y8DOnIZ39uzZNY3cr4towmTREXTtKJgou6cj2iyzWBOmJUttMDWD49GYfZ+kPfnrMHCKVqLeenF8TNnQdfy+0D7SvpIGd/fddx/4XPemgo88MqtbFJyjdaH1QedoXb1WyPu2NLxCoVAoFICNNbwjR46s2fV7JXgyRP4x0pAtodeilpaRE/s2JH1R4shCsv01M/8bJazI3p+FzEd0ZdQ26Ruk5hdpllkyfLQ2lM6XJNIz+XUJtRg1ID+PGqN8KiRizogCfLvZ3Aq99ASuQ+RTk2+Y0rEkYJ3bs0JEpL2+b5EfmMnkTGyOfJMs8ZMVWPbaGvvEOWCbvr/UsnUsfWT+f83NXGmp3d3dNaKLaI7ZT/WfJWt8v6nBM8k6smDQLytNROH1UaoO91f2rPJak+aZyeOZj9+DqVnqszRJrYv8cX5Obr31VjMze8973mNmK01P56qPfj6p2WUJ7z75n+dw7qOSYNT0PbH4HErDKxQKhcKhwMbk0ZK2zGKNIZO0ScUUlWzPSGh7BTIpVZIahxFqGod/ZQmKLLnXX5vjyyRj3z6lsYy2x/eXkU/UJCMybkZj0j4e+bvoT5pLljfL6dUybG1trRHk+uuQ8oplVCI/Iv1h9PPKd0uCYH8ONXqurR8nJWxG/8nH4ddS8y4tIIu4VX/8XqXGTW008qMLakfnaOyco8gfR4on3ut+fIxMVLuMqoxo6fz9lO0fxQ5oDXukwdRdFeP8AAAgAElEQVSS1TfNhe8rfYGM6KUWFZW1YVkozkVkJSJpAX2c0ryi9njfZH463zfSxWmvSkvzyeO69vve9z4zM7v99tsPHJNZXaI50Dnqk7Rffz19RiJr9TXyvZNwPipokKE0vEKhUCgcCmych7e7u7tWOr5XsJLSbORzoiSiY5jTF0npJHrNopYiOjJKg4wKjaIBs9xARn5GoFTUIxyWlERfV1Zapqf1CD3NlVqo5pgReNGc+DXtSVo+ype+FbPVOmeaQZQbyIhTzg8jxSKtVsiiaCMpnX4yah0RlR1p9xh5R+3KX497h/43P5aMMov5rdHeUXukxqIWEkVZM+JOiOjkIpqrjJpOEZzMSfRjlmaisSiKUPOl76MoTR1LTVi+JpJLm60TS/NZ1Yue1DHqk46RL81rePQJcg64xr6P3DNZYdYod097VVRfzIuLSJ6luemVUdZRviF97Yx2je5rlnHa2dlZTCBdGl6hUCgUDgUuqjxQVmzVbN6PI0QSsF7ld7nhhhvMbCXlRFrWiRMnzGzd3t7zL2URj/RT+DYYTZRpcoz4NMvJr+k78vMoKYbahqQaEvL6yCf66sgoQ7+A2UqSknROH8USJoeelLW1tWXHjh3bl+Aokft+0xfQ84+SGULH+rxL38eorA01yl4pK+a4cb50XX99+sros9NaR74pSf3UziMyZIFrx2g5WgD8GlCyJmmw/D+R5kLpv1c2iv7SuVyqra2tfR+oNCSvCau/1LjJFBIxBekekhaj66ikUGTJYn4dGZ6iiGLtZ1oJ1EcRJXtWEfWFfrDrrrvuQJ/06p9tZLlSu4ya9WvJnFFdnzEReq/nr9l6JKf27tve9jYzW61BFJktZFGnEfuQcOWVV5aGVygUCoWCx8Yans+1ivLHBEZh8Rc78vtJKqZkxbwbL5HoGEUc6br0B3npmZFGPSYXIcthykoZReUsOHZqlD76iNdj3pLa1Jx5iZPrw2Mi7ZRaLTUK+vj8sZ7HsCel++80Dq9tZoVJ6VONrAPcQ5TAWYLHn0MNVf4LSuAe9GMz9yyK0uUca5w9H17mm6RFw+9ZaQOaC/pQaEnx8P4jD7Wvvika1V+PlgSykETcl54hac46JO1JmoPfB7Jw+AhAXtO34fv1hCc8wcxWFiW1wb0UFUrVc0ft6tkV5bgxh1EaD7lHo3uZlhxG/PZKPekY+vAiywwtJhoXLSRPfOITD3zuj9X8fdiHfZiZmT3mMY8xM7M3vvGNZraK/PTXoebIfR1ZP3xfK0qzUCgUCgWH+sErFAqFwqHARZUHojkioibKSuFEqqfUVpkDek58s5jslOYAmlujitA0BzDE2JtMOGYGp/SIoHUMTT9RcAxBcytpjhge749lsEJGfO3Hw+TuXt8iEuRe8vD29vZauLZfFzqwmYagufBmKZmdSNulc2UCIumyH6v6r0AAVctm8r9vh0QHmn+aSX2f2EeaxyNKO6boZMQDkRlMAQ6a11tuueXAeGSq9fPMquK8nzTfvo9MEua5DOE3W923fj/09o4/V33o0U2R6EImQK2t2Wp+9NyhO4T3mN+fmrs5yj9vsifhsl7pNvCmZqY5cI7UxyjViFR9CirR+6hNmtW5/jJXvvvd7zazg/eT9qaO0Rzpvnryk59sZgefVdmzWNAaa+58H33AzFKUhlcoFAqFQ4GNNby9vb01CS6iNcrCRCMiVtLzkCaHocZRiGpGMRWF4Gf0SaSsicalvjAogmUtvNRMx3OUiOvH7f+nhkzi7kiyi4Ju/Lm94Bxq4EwU93NPDX9JaDCpufycZ2QBJJCVZG62CjBh0EiWcB6VJpHGKElU7zX3XiLl3mRSL4N+fL8z7ZBaod9bTE9hakGP/IGalbQbBZxEVG0ZwTnLLHkthHsxI4Pwa80gqL29vTTw4MiRI3bttdfuty/J3h8vTYOBMtSe/J7XsVnBWgZL+eAlXVt9Ufskkegl6DNoTntZwTPRsVmgYJQOxb0Z0Sz6z/05WTqSjhX1mH/+yJqivaH5kmap935/8z4lDVpEVs57sFdaiigNr1AoFAqHAhtpeHt7e3bu3Lm14oM+lJk+BaYWRMnjpC+ShCCJp6dJsPCrQP9fj85GyJLW/Wc8RtIgy1l4aZZ+PtKQMYHbf0afYVaYM6LMooQn9LQChiozOTm6jvdN9kq8XLhwYS1p2PvjeG29UnKMimpSImWyt64T+X3YZ/ruImJuhuBznbyviPuWvklqxn58pMEjon0hCVh+D2p8ms8ozYP3IlNoopJCmluSInMfRhoc74EIKh6sY9R/JWr78+WrYwFWFhE2W2kefJ5xftSGX1PuM/rSmHzv2+er5k/tR+vP+5B95j70n9FnzP0Y3RMZRZ/6SIJ3s3Ut9LbbbjOzVWpGREfGclu0nERWD1rkemTiRGl4hUKhUDgU2Lg8kE/yi8oDMaosIvw1O+gXyaRm0ihFpMiUQLNf+8hOnRWwjfxjHAfPpTTrj6d9ndpIFNkpZBoefVJesqP/hX2Oxsd5zMiqo3H593P0UBxPVOqJJX0ktQtRhCATVzPKMfbHbJ16iVhiHeB+YJ/9ufTLCL2oZ1oYmBQfJeNzn1ObiiwL9JlkpZq8BUPSd0Tf5s+JStcswe7urp0+fXrteeBBvyj9o4xYjMZGzYH+Uz9m0iuyrR65A/e5okRl0fI+NkZSZmsb+eVJTk0igp7VJtPKqdH6+yAraRZp10IWq0D/qrcE0ee6NOncrDS8QqFQKBwSXBR5NCN2ImmNv9zUOqIcMGo+GYlvRACbXV/SZpSHF0UK+s89Mg0vky7855mWm5XxMcv9WZwjakz+f85bLyo0I9DmukWahDAXKeULNUaUc5SkWZYl8htk0iP9F9oHfq4zEvSe9sE8L0rg8v/4PSVfGqndslzH3hwLXNOopJDAdWHhYT93pCFjXlSkhWYk4tQkI01iCfH47u6unTp1au0+iUqMEfzca0D0v2f3TRQJnd3/JN3uRUDeeOONZmb2qEc96sCx3tJAjSorBBxFB2f7gJGXvcK82Xj5/PHg844apX8O8blGa4Ta8lovrRy9CF+iNLxCoVAoHApspOEpWirzDfFYD2ozS86h5BvloLBsBfsUsSRQamUkqY71kUGMtCQzCTVa38cswirLx/PHEPTlRP6grNBnRlrd63/my4vQk7L29vbs7Nmza1K670OmvWb+Uv5vtq69+OsT1OiyMfbIqim1y0/Sk5p7ZXMIln3JfMYe9CP1IiDZj4xFqbe2jPCVdkufaHQdYa6PPv838t1kWhnvrcg/ynxB5iJG2kzGjiPN2BOqc4xqR3mfyit9z3ve0x2/f2WcQ6ThURMS6B+LSplxn2X7vle2h8TTnDPfLrU/atWRRTDKy55DaXiFQqFQOBSoH7xCoVAoHAo8pHp4kYMzog47cMGA4knIKo5TZY1qshFU8X2otEya7AvNk171plkgq8LdC5XN0gUiM2hmQuK4IvMkTTLsY2QunQs4ic6NqKl6EHGBWb+2YWZ6jcxrNHtmKTOkJ/OfZakevZQPXYdV2XVOREPVM3trfsxiE3dGrB0FkTAhN6PmiwKRGCyQBaBEiCpoe0TJ8d710AsAi1JDPGSeY+i9wHD36DuSWGTPMA/e76Rzi4KydKwCnLQ+UVpMllJCE3f03MkozGiu9HPFtcvWO9o7XFPNo9ItmHYW9ZsJ+xGhuqA1Z9BhD6XhFQqFQuFQYOOglSjE3ksxWag1HfURuTKlhsxhGl1PoEQUaXgMk2bgSy98Nuuz0AsiycKeeZwHpXFeP+pfpiH1zsnOJaK592vek9LPnTu3VmYm2gdRQrtZTCNHqTVLp4i03izVY0kwCcmUWSbIB0ZlVHKZpSRKF6Gky3skqsYtMHCLCcERIXimHUTWD64BgxR6mqsPUpgLPiDdWZSeos8ycuXo+cW5zErxRPc0A95oSfCkxySe16unSCOy/bwEDPJjqhYJtj1oyRB6mv5coIvmJqrKzrShXmkmFgY4evRopSUUCoVCoeBxUT48SnKRnZoSQC8Zds6HMqd1+PYzW3cUPktJmJJqJGkLWd+iMh0sm5KF4kbaE30RGfXXEsmPPqReSPGS9nr9j67t/TQRcTHb5ZxHkne2VzI/nNfeMto2zr3fB5l2xJQWjt1sXRukNhVZB6iZyM9D4l+/fhH9V9SPKPGc4fxZYVVvMeE9pj6yZFOkFXgaqp6/aGtra618mO+3xqwkf429l9ieaclZGpEH1yXTTPyYWOA1sj5lfcysD0xT8vuApdGYaM/nUoTMR8jSSb6P/C4its7a1yv9zv6eIMH1JlpvaXiFQqFQOBTY2Ie3JBrQLJdEekmjcxJ39EtO+3SUgGkWF5ylJkfNIpIgKZFkdEp+/CwKKQmvp3FlSer8PnpP3xC1qWgeM3qrJQStSyP4/BgkffpCohl9W1ZeyWw9+o7rxPfRPuB89Xw39CkwCVbH9nzU1D57FFYskKnrUNvx1opMu832RUQeTU2PWlqkKWfJ8dL4oqjnaMxEa822t7f3yZAjjZH7k9oyE8LN1p9fnDf6+KNoXWqJ1Iij6Fn6oDJ/o/9/rkxY9CwmsTqL1Eb0Z4qopHUg8wf6NaAVgBYE+pCjsQs9gvMoNmGpllcaXqFQKBQOBTb24Zn1qZ4yW/OSyDdKj1ne0ib+pSh3i5JcJLWaHZQqMgJoSiIRnY8+k0Ql6Skr/eL/pzQzR5bt/5/zrfnrqb+UVDcp4zJH4uq1PEm3USkUzgu1Gr/fOFb2l/txCZ1aj5CX/gNGs0W5Rhk9G/d5j8Yr8pmYrebE+2uU35UhIwb2fSA4r5GWnWm99Mf4cfiIwd59vbW1taYZ+UhY+jKZExjlc/Vosvz33Jf+u8wSEuXyUVvWfPE6UW4qi8XqGaK51nu/ljpWfk2WJVoSccuoU86Rf59pdFqvSOvN6OhYnsrvnSyKdglKwysUCoXCocBGGp6YMuhPiCIuM5tvTwOYyzXr+fKyfJVMMua4/DmRRJ6Vw8hy6iI2GEp41D4iBoLMj0mJchMy7l7UGbXNJbl7wtJcGLN1Cc5sNVZJptpnZGHwfZiT9jiPEYExNa2MiNy3I9BXFJGjZ/mQ2Z6KpGbec973aXZQ25GUTM2EfpfID5NFU2f+P7P1yNXMGuHfa92XRmDv7u6uWUY8M4ksBfJBcTyaP19IVFoLC76SRDpih8qYQJgr6vfSXXfdFR7LQrP+OuyjxseIb8HvpcwXzSjUaP2z6M+edYDEz1nBXt8vkm6ziGz0GyP452bl4RUKhUKh4FA/eIVCoVA4FNg4aGV3d3ctoMGrxFmCIl99aOocSWsW1u3/p9lG7Udh/ZlpJws19v9n4e7Z5/7/LPE3MhfQJMxk+SWmYgZlsB89M2hmhvBrHSXoZxiGIaxJ6INWssRfmi17ATpZKkaU6H4xZlv2PyPx9vPEwIOMwioan+YnC9+XaSsyaaq9a6655kA/eJ0ewcImtcYyc2+UYE36sTlT+fnz57tBawy1l5mQwTERBVsW8p9Rz6lP/hiSbUc0WlldOo1H773pV+NQIJJMmvqcAUNRzT5BaR06tldTkeOj2VWIaukxyEzt873vi9aHr4LfH7zHK/G8UCgUCgVg48TznZ2dtdDsyOkZ0SRlYFgwQ72ZcBwlgEZ98W1EGl4mZUZEs9T6suCVSBrMaMeylAZ/nSzAoCfVZEESWX+iflP7ieZxLhmW2NvbW0uViCjYKN1RAu6RKwtZWkeEzBoRSb7SuCQtZ6ksPhGcIeokD+4FLzE5ma861ycKq98MDGGwRC/VJSM2zywAZuvh6JT0vTbPcWxtbaVrJGoxjSe6BzhGprBE1iimyGRaZnRPZ9ogLVjaJ/479okUh76P0uClpUvDU9CS5kD3TM9qozlRn5gk75HtFZb1irQ1vWq9SajurRE8h8/EKDVI8+Wfm5V4XigUCoWCw0WVB+pJwlFRwaytOWQUSZGGR98JNS5ve6bfhUUbI0JeSmVzCbo9Qlb2OdKQKEFl2mGPeHrpe98ONYcsTJn/6/3culIi9fskGxt9QVHBUmp0S0r+0N/L6zAdwszW6K0YHh6txxw5Oj/3Gm5mMen5/Tj2bL8JUQpN5jeP7nlK6fTDkKzYt+sl+cwa1Fqz48ePr/mgepYl3Z8R+bDAe5rlh/h5lKCfWWCk3fjUiYz2kL47fx1eO0thiVIA6BOnL0197BW65prKlxeVD+L9I81Z66breU1f86Nj9L6nfQo9a0OG0vAKhUKhcCiwcZRma61LyUP7fWabjSLtsuTt7NWD/pYeaTAjkDINL0o0ZaRdRmXlfSpZFColsMgHRls6o7KyxPceIr8WpVr2qSdNLfErKnmYmoLXZhjN1yMC4DmMeBMycm/+H41H/fB+GBIXc30iiwLXSO1l2lpES8d254i6PWjRYORv5NeitJ7d12a5j4aUUtHcLyEeF3k06bP83mHEMMkdImqx7JmUEVH7ddEYM+o/jT3a36Reo6YVRS4zIVsgfVdk6eG4mOTtz8k0Rmqn9D/7/mf7IYrAzOjnes8z9cU/i8uHVygUCoWCw0X58EiuG2l4mR8mOof5aFkJikgK7EV2eUT2/kxzjDSgjG4oy8/r5Xsx6jTSYLJzqAVwLP6YTGLt0fRkJVF65Mub5FKRXNlTi0lqzOiLIuuArs3ouKz/keSY+YEjgmsdo7wo7gMhikSjRkWfDbV3/x19UtRcenmYlLAzn6LvG/MMM2Jgfyx9NJT0IxJuv5/nrBTMz/Sgr4fPoUibzZ4vjEjuRfpuQp1ILYbWgihGgQTQis5kn2U18PcT14zHaF2iiHJa8bIyUZFVivstK5rM/83y515EHu3zW0vDKxQKhULBYSMNb2try44dO7ZG4ttjMcki37wk1CMXjRD5ngRelzZu/x2lP+Z3RCSn1EIyTW+Jr4s+nIhwOIvKYpTUErLiHlNFFjHa09qiSL65tWN/vT2fUXKUuNV2RDjN/mbFPaPoSfpWaJWI8v4o/VOajTQJ7R0W1+yxm0TRjP76kfakc6jtLtkPlKiplfC6ZqvIOml21CAidiX6YTyTCrG1tWVXXHHFvobCvLVobMQm7EJcf5bi6YH7z681fZvUfEia7r/TOadOnTrwucBoR7P1ArDUztTHKCqY0ehZPm4Ujc9nfs+6l/lueW9GEfO92IcMpeEVCoVC4VBg4yjN7e3tLm8ko5WyiKcIWX4QpfReLhg1vKhAJnn12FdK5GbrUl7GixhJG7Rdb1LAMNPkODcRpx3Xp1f6Z46ZZImm1wOjNKm5mK1reNm6RPmKlPaogUW5jlk+HPeoP0f76c477zxwbCbV+vPl92OBVkq+vUhCalh6jfLwGIWc5Vb2IiSpuZKz0mzlX5J2oVf6cqLr+Pnr5eFtb2+nvnff9txe7JXPoRUn4zo1W/cJ0vISncMcXWllfB5F8Q3U0jKmJ389WhIyfsoo+jSLWO/NLzW5zL8ZtUHLSC9Cm/3ehO+1NLxCoVAoHArUD16hUCgUDgU2TkvY3t5Onf06xmyd6mcuudMfw7Z6ZoJMTc5MQGYr82ZEj+MRfS4Vn4nOPbU6+25pWR2PXrAKr5elSkTzmAXJbNLXnrmjtZEAODNTmq2bXDhW0kaZ5SWFMnOlP5fpIXTARyHR2kcy4+mV44rIbrXvGNpPc3lEHs2wcL0y8d2PkSkgpMPjvPr/M4KAyEXA6vVZWkIUWNUjPfbHHjt2bM1U6wMZSFZARCZtHsvgNbopIjJ5IbvHvVtEz47rr7/ezMzuvffeA6+R2ZB94vX4/POUhkxh0TFZ4Auv7cE57xFeZGlQkXkyIynPrsvzo/c9lIZXKBQKhUOBi6IWo3N/jlLKbFnode+aZsuIgDMyV389lg5heK6c7pE0KCmWc5ClJ/i+ZBpWNB7OSRaIQhJb36fsnJ4Tnt9FpNHs49Kkz9Zat/QOy7/QiU+NyB+TUaBxXbwWyWRurh2v689nuPhciRn/3enTpw+0FSUc83q8Du89r30ovJ0a3BI6uix9iEETkcUkC7dnMJL/3yfHZ1qSnjksTeO1HgaNsK1obrPnCteDic5m6/c/10Njj/YqNXDeR15L02ekP8yCA/0cs5yWziGlmJ8rpmYRmfXAX5tBJdznkWVJ4LxG/VhS3ipDaXiFQqFQOBTYWMMz69NoZZpJj4Jnzj+UJVL7c7N0BJZ+YX/9uQwp95K9JJ8oLNu3EYXOzyWlk6Kr1+6c1hYdS0Sa5Vyi+ZyPRX1dupaR/0hg+gY1LS/1ZdpRVmQzI/Luwe8D/3/UXo9wgHuT0nlE10TC36xsSi8tgRJ3loDu+0D/DtMuIsIAlpLhsX6umE7ToxYbhsEuXLiwpoFFGl52X0Q+PGoKTBanv95fj9pF5lfy54gWjKk0up7akoYeHct9Tr93NIfcs1mRXI/M6kGLSbSm0iA1nz0yjox0pOev5b7dhDi/NLxCoVAoHApclIbHX98lEYqZNBudz19sSp1eKsgoj1ieI9IKKHkwKtBLuWqHtmv2PYqayyJIhaiYLDWgjCx6iV18LmrKf9bTpvl+LsqVfZgj/44Sr/37KIqRvkeWZ6L27PtKv0vm94m0J50jaTwjwfXnUJLm3o32DqFxsYRRNI/0N/ckbYL7m5Gl3sLBcVAjj+7bjHqw1x9qTd7XRT/hkj1PfxSp35iw79cvKrjqryN4H576q1dpfNddd52ZrebAPw+yaHBSJkbP4owI/Nprrz1w7pJxMWK1FwfAmAhGQS/Zf0s08+i7OZSGVygUCoVDgY3z8I4cObImMUY+gCxKMtKMKOFmJYWEKGqOdmlqRJFPLXuN/D2ZFEEfUuQLy2h5GFEW+TUpAWeaRKQlzmltvo9ZmaM5jW8TeD9MNGYio1HyGh79BIwy4zz2tNosorgXXUjNUv4Lv3dIQ9ezWETjjb7rRSFm2kCWDxVZB3hu5qeLvstKyXgtLrLqzFkKpBlJq/btedLkCFEuHX1oemVx0949Ta2d5Zy8D48apDQ8WiH8WuoY+q9pcVJ//LpkJZM4Bg/mhHJ8tHr4vZPlvOpVz+aeRTDb+5Fm7qN2lz6XSsMrFAqFwqHAReXhLfHhZdGTfDVb1/ConVES9pKdpBYe2yOazcpLUMOL7O+SLin9USuMbM7Z+4hoOyupQc0lktLor1qS/5dpdktIY3t5XQT77deSOY0cc3QdsqVQo8vIpD3YF72P/Bn0GWqPZJKwP197hNomtUZ/bkZKzFzFyM9IqwDPjXIsswhi+oMiKwsJpnl9r31Evq/eHtva2lrz3fk+cB44p9F9yc8yv3ik4fE5wHFR0zNbf0Zwv/eI53kOmVe0Lr05pG9N15MW6a+XRW1zD/X2Xeb3i9rLnjPR85tRtNvb26XhFQqFQqHgUT94hUKhUDgU2DhoZWtrq+v0FrI6eBHVV2TmNMud+lHtN56bkQr79hioweCCiJDXq9H+3B5BamZSzAJ8onFlCcE9VX6uZlaUzJmZMKJx8dieM7q1Zjs7O2tJ/b1AHe6VXr0wJjJnVcujAA2a3rimEXEtk5W5L3qBJzRTqa1etfTMjRCl0PAY7pnoHIF9ytIHvDmRa0qT5pIE4bnQ8tbaWmK4T42QiTEjkY5C2Hm/855moIs/lykLGaGC7wfnUAFO6ruu7+dW7V911VUH2mPqCefao3cP++v6seockghwf0e1G9UGUyaWBGNlz59e8E+ZNAuFQqFQADYOWpnT8DIJNEsqjo4l2EZPo8wczhyD2brkloUlR8dmCc89rZfHUOtYUuk6C8aJEk4pDfacx0IWtNJLAF0iwW9tbdmVV165FprspdmMYDyjbzJb1/BIR8b9Fmmh3H/qU08iZci1NDztoShNhKkz1BKjpG5qCtw7UcAT0wG4R7hnvaZHq0pG6xaVFGICOoPRIpJi9eGKK65IE5K3trbs2LFja+TKvkQRCbM5jih5PKPtYiBajzw6S8hnupQ/R9oaCcgVPBKlWKhd9cWTbvv3fh9kpBwM4Ir6mJXp0RxE2iL3Rqb19rRQ3p/qj6dbYwJ/aXiFQqFQKAAXRS0mLNHwMh9UlDzcI5j2bfeShwVKt1FoOe3wfN9LOI58Qtn1spD/JUUkM/8iEfnCsnlckkaQafE9yrQ5zXFnZ2fNX+WRJYtT8/Jz0AvPj95H/gq2xXFEezWSjs1iTYJzx1B5htn7vROV1vHvMzJpf66whHicmlHmy+tpePT7MPE9m4OehnfFFVesaW9e4yLlmrSmzPLjx8g15TlcJw9dR0VcWeJKBYJ9uydOnDjQLgvneg2fRAOZBUNj8evCYsGZZufPYemgOUuWf2bxGbnEGtGLKzBbJwXwffBpKkvoysxKwysUCoXCIcHGUZrb29trUnWUUJr58iKy2IyGjNJ5RA9ELSaKIvP9idrha1RyJqJR05xEfYyocHpUYgT9O4xQzGiwojYyTSzSCoVMs+tFaS6xo2fE3WbrEij9llHSbSbx0mog9EjLM79fFKVJSqfMb+GPFajpcf9F94YwRzHn+5vtjShSOjuG+4wRmNFnGR1Z7749fvx4un9aawd8fNR2zNaT+pcQUGT+9oxOz1+P90XmB/ag1ucTvs1W2pVfF1qdGFmrYzX+iPKN7VKz61lMWERW4H1gdtCn6tvvxXFkEcTy2UWlmejD6+0dojS8QqFQKBwKXBINz//K0weQ2W8jIllKApmGF0XPUbLvkR1n2gvt1ZFkn0VWqo2I8HguVyfLj4nGOlc2KBonsUmU5hIC3ch/ELW7vb2d5qBFY+NeidpnvhDLAvXA9rLo3V7xSUbCCf49aahoGcmiBH1fsjJUPVJsakRql5F9fh7oY6XGElGLMfqPx0aaOXNhjx49mu5L+fA4J/4zXov3R0/D4/2ZEZL7c5l7SH9clGfKdvmciXL3dL72SqZpRf44alRso0esz8jUni+Ufc0sdtH4Mgo4+u78byyDLagAACAASURBVIzW3ZdZKh9eoVAoFAoOG2t4x48fT3+NzXLmk17kYGZbZtQcpUL/XWbjjnwqGeMJv/dtsRCjkNmgI+0wY+GICn9SYqFkRX9XxFxDqbbnc8vy7ugD6ZFiz0V9Hj9+fF8Sj/wnjLBjJGK0Lpxv7iX6yyIwSpdaVS8yNWPaifY3z+EYIg0263emgUft6HrMgeTamuVlaLQmzDPz51C7Yb5hpEnIj9XT8I4cOWLXXHPNWt7aNddcs38M894yX5q/LzPC7ywyOiqUmj2betaajKw+isDmM4NaItcwYqFinmeWJxm1z/uIz9OIcSeL2+CYornQdX3pH//ezOzqq682s4NaYGl4hUKhUCg4bKThSUrvZcwzb4gaXa88UBaVR3hJkFIR+eh6OUBZxFPP/0cpjRJeZOPOJBxGeEUaV5afkkXvReeyb0v8cWyr5wMRelF/YlqhROrPoZae5dT5ucj8fBkDiwc1O2kbXJdIeqR/gtpANE9zJWx4fHQ9aqxRtBwjOTkeaj09XltpU7qvpbV5NhBqfcz7ikooRSwmvTy8K6+8Mi0bZrZiL+HYstw6/z/vD96PUcRv5v9nrh4jF317mc/YPwd4LPczcx97zCdZYd4ospN7SH6zXt5f5qvjczbKhVX7fN6RncZstXd0v/r83jmUhlcoFAqFQ4H6wSsUCoXCocDGQSvHjh1bU3d90ArDcWn+jBLPdY5UVb2XmpuFt3rMlRfx5giSA0s9Z5h4FD67xNzFz7Mk8V46QhRQ4NEL5KFJJiuVFAXWZIhMBjSZ7e7udoMsjh07tm/iWVJGJyN+9vOodqJgCv99FL6v/aZ9pn2cmRr9tTn/GXlB9N2cadFfN0uH6aXfZO4E9oM0WP5/mray1IPoM5asUZBBFDDiA4V6iec7OzsHnjNmZvfff//+/0xy53NH/e+RCPBzvu+5ACKTufouaF5oDmWfWc3cn8M56qXH0MzPZ0pGcWi2vg8yl8oSSsMeHVlmzqWLwJuKGeRTJs1CoVAoFICNg1Z2dnbWQsu9dCMpLCouaRZLzVmyaPbaSwRmCRbfd/6f0SYJUag3Hb+Zo7sncVPD3ERKz4h/I2c1gzx6tF4ZzZIQaalMGzh37txsagLbieiaWHqFFoVonqiJ6HPNNbUD9isaY0975l7JSJfNYgonf0wvZScLQOpZACix0+rCefbX4z5nigG1N38M798eLR1D8ueoxY4ePbqWwO+JmRkww/ufWq7vz1zZrJ7mHdEr+utEaTckrSBhs+87g3vYV7bRW5c5OjR/TPZcXULsMZeWEgUOkcyEKUL+/qWGV2kJhUKhUCgAG5cHOnLkSJdYVLZWSjxLCnFSos8SJXth1FkpjF44cpYsGtE1UfKhNhBpQpSCKHH3krAzH07P/5elNGSpFL3+90oYkYbqwoULXQ1vb29vLSTa+yuygpwZYbLZerIrNS+GiUf+Kvo6GPodEQJw70ekygQ1qiztwiPTxuiT7Glp1Mp4j/hzeUyWcuDD7bmm3Ks9MnY/xz1qsauuump/LXWcfIO+3+qvQtbp9+1ZNbjnuS98/7gno9gE/73ZOkVZRqocaVzUUEk5FhXZzaxBTG3ppVBF48g+51zzOUeCb7N1H7vGp7WN0oqyZPUlKA2vUCgUCocCG0dpbm1trf2y+l9fRm5mRTUjLY0Sd6bpRXQ2TDSntB5JIvTrZAna/rvs2CVRQpSoMi0x6r/Qk87mxtHT8Cjl0v/Xi9KklBlhGIbQN+EhCZ4RdXwfRQgyuotSeqSBUSvgvuDeitrPiJoj+rPemkVtROdSC+S+9/+Tqo3+bUZe+v+5ppk/3V9vjtIuopTqWSqEra2D5NFqR4VU/bXl12MEbnbPm83fu5EmnJVAoi83IuamxsVoxui5k/lwe/R+mQWJ9/iSaGQho4w0y8k+qDn7tVR7LIOkRHOSQ/hz5iLzI5SGVygUCoVDgY19eGZ56Qj/nV4ZLRXZgufox9QGI5bM1v1IlEAi8mheJ6MnWxLF2Issmzsm68+SczISY/9dZuvuaWvUNimlRUTDXkPKfHh7e3t29uzZNYnN90WfaZ0ZlRtJnRmNkc8NNFv3W/n+s12ONSI9zqInBd9HaoOZ7yGKmsz6lkVTmq377PSeOWlR7iJ9dZy3XjkqfkZKMT+PpJLq+X41bhK4e7op+u6k6TGmILpPhIwCTugVvc183pG2llGaRUTnGc1iFiUZWYn4HTXx6JmcaaNZdLr/jn5MzkkUrcvfFK1bREsn9DTUDKXhFQqFQuFQYGMNz/vw9Ksc+W7I7tGLRMpKwTNKihqFWV4WSOiVeFmSfydQOsrs0z1kUlOkJdD+Pufr6LFA8Do9DY9tZP5Gs9g/1pO2dnd316TbKMJXUh1ZHqi9eVB7EaTdRPmhme+Jmr/fH5Gfxayfc0YtLYu4jZAVfuXe9fcg/UuUvDMtzp+bMXhE92/GrMFngPfbUsNfksPZs1SobeZvkb2kZ0WZi2aM5ph9puYTRRdm0as9/2L2fGOUoz8ui/Cm9SO6p7knswLHvVgMWkp6ea3qk6Izpb1HMQS8986ePVtMK4VCoVAoeNQPXqFQKBQOBTZOS4hIcSN1m+HbdJBGKiq/o8lMr5HTk+hRb1HFzoJmemZKttsLs84qHffU8MwsyetHaRGZ+TOrj+aRhTIvCZnvpSWoDZq4IzOXAhpomovMoEKW2sLAJ1/HjWk1NA/xuOzaZsuSrDPSAJrHPegKyJJ7I7PkXABKZNKkaYx9WpIOwwCEKNiMRNpzxOM7OzuLiAgyom6mZvj/eV/SrBft7ywwg8QE0XOOSeS9yudMNM+I9COTPkn4MwJwP490CXDOaZYnwYg/hnskGl9m5qd7w88953Fvb69MmoVCoVAoeGwctOK1PEpG+t5sXaqjdhaF7Wc0VpRIo7D0LJgg0oAoaTMIpyelM8Q6e42SbOeocHokrpkkFElTWZJ/lnjq/9+EpiejG8qwtbW1lnDu+8BSIKTGIsGsP5/zk4XkR+NTKDuDVaKSL3OadpTKwPFlZAVRHxkkRW2jV7U6owWjxcSfy7SDjC7Mrxslbq0fNb2oPBDHHkGEFzw2+oxkw9TW/bpQU2QfMu06OkZ90dij9c/2CANtojQYncP14bp4C0ZGdE9S54iUg+1znLSgeDCtI3tGmsXav38fzWekmRZ5dKFQKBQKDhdFHk0JK/KjUaqjhhelCWR2WFJARVoBX5ckgC6l4PL/Z36XTEqMxjVHMeWP4euStAS2QURS2VxCfZTkybH3sLW1ZcePH1/T8DwJMQsAq135ICSpRlR2WYkp7Zmef5G0ZJIq1YYnoOb6Z9YBP84sLJv7vpcATF9JT/vIfN9M6+nRrXG+eppS5qvJkoijdnoS+jAMtru729Weqf3zmRT5rbOUKb6Pnju+b76tSEvj9bh3sld/rNrNUg2itKHIIha99347ame0kPR8vNn+FnrxBkpHoMVOx3o6Mmqq0bUylIZXKBQKhUOBjaM0t7e316L9etoapXOhp3FlCdksQ2IWkxCbrSSQKDk+o7qhry2KKqOklfn2IgqjLMqwR69EyS3z6UWgtLQJ6Wp2nShKU+hJ6Yq0o+Tt10/rS58aKcdIFMB++b7QDxxFaTIyTIhKk/Dc7Fj/feYb5r6LkpnVNxLyClEieEa+3vPd8dyIBNtfP7J+UEOhX8treNl+zjAMw9oxfh+wcCijJCMSgblnh86VJuHvmzlSfEaJRn3Jnne95ykLsFIb9fcXtXJGn6otvw+y+33uc99v9lVzzvJI0Vxkz1F/D0YlhUrDKxQKhULBYWMNb2dnZ/8XOyJZpcRJbSkiIabUz197SuteSsskREq3/nv2ISMh7eXuZfl3kT8moyXL/GQePQ3LXz/Khcz8ij0Nb077i7QPn7+USVraOyQV95IbJUCShstaENEncQ9lVEj+c0qTjCqLfIa8boZe1Cz9L5SWo1wx7lFSikV+ON4DzMPqFaulPyuLDjZbLp1HGlJW5sZDkeGRli5Ii1R79CNyr3IM/j3nJcpBzaKme77VSFvxn0dzm9GR0adPrTTqU0ZTFyEqeusR+UQzf2wW2e7/n/NvepB68Pz586XhFQqFQqHg8ZAKwPbKykvioKQVRRtmUgw1yEjSogZHjSciQ6VEmkVE9sp0UMLrnUvS48yX599n2iclykhKy47t+f2osbL9iL0l87VGkP83I102y60A+ly+Pb/+999/f3gOJcOer4uRnNl+9OdzTzIirufDzaIyI78Z2VHOnDlzoK9RAVhqdhGjiu9HtId6UZlEFpnISG3//Rwrj4eiNBlV6jUlWgX0nuVl/BzM+cWXaEACWaciHxfnO9PAlkQU96LCBeakZmOInnOcE/oI6Vs26+egmq2zxvj2+OwgC02U15zlWvZQGl6hUCgUDgXqB69QKBQKhwIXlXguROYj0tj0nI8CHc10btIs6c0EVNvpxI8Ip+k07pkFiLkkzqhNmgUyCiOPXpXvuetlZk+GNHtkJtQeCTfXac60MAxDGuYefZali/gkVF1Tpr5sPFHwEinrdKyqZUcBVjQ7MWggChCQmY1rmtFreTMRzZxKBGYgik/g1/96pcl2SSpARobeo8fjXs0qh0fnz5nmdnd31/ob1VVjf0k1FlFv0TQ2R77O/83y2orRHNMsyECUKGgl2hv+82jf8V4mLVnUtyxwj7R/rFXpr83nQZbK5b/LzP7Rc4fm40pLKBQKhUIBuKjyQFmSr9l64AGlvchRTkmHr1mitr8OqaWoHUYJmXPaU49UNUOUPpAlC0fXYTtZQEhG6uqRadVR4BAlq0zC75EGz2EYhm5odKb5ZqVXzFaBLAKJpntrnDn1e+WBGDCRBa9EdGRcoyxYwveH+1oSPjU9r7nof6YhcNzR3mIfGazAFBv/fxZSThJjf2yvVBX7nAW1mR3UcH170t4ijStLuVhCREzNXnOekSH7/tLqFJEhC1nKDIMDlwS8CJk2xf99n0ki0AvKETKrUZSWMBdoF6V3aK739vaKPLpQKBQKBY+NfXhRuPWS43s+vEzyzfwGkZYxp81ExRszstjIHp6RRNMv1/P7zCWRR8m80Xd+vJFfbi7RubdumQ29l3C8VLoyy+fLbN3HIJC2K0p2zcpQUUPpaRL0/0bjo/9NfaWfIkqOjwpXRuOKtCf2jakG3odJCj5aPbgfesnYmQ8+0kIzv72u58l+e6W4MvSo3jJ/fy9dJUt+z54lPd83nynRPZGlJ7GvkTaT0SEueWbxeco+RhpXZtmhTzSKVcgKNkdaYUaKzev3fKE7OzvlwysUCoVCwaNtGKF4u5m94/J1p/DXAE8ahuEmflh7p7AAtXcKF4tw7xAb/eAVCoVCofBXFWXSLBQKhcKhQP3gFQqFQuFQoH7wCoVCoXAoUD94hUKhUDgU2CgP75prrhluuOGGbi6VcDHBMA/XOY8UluaKLDlnybgvx/UiVg6fu3P77bfb6dOn1xq59tprh5tuuiktjeSvzfwo5hhF+22OqYPX4P/R+7nze1hStuVyYa79i9kXPDeax4ypJCpLxby13d1dO3XqlD3wwANrnWutDb5d5m6ZrZcg6pXCEpiPmB2bFYjuHbsE2bGXah9mxyzJx82OyXJ8HyqyUmlRbm70PLhw4YLt7e3NTspGP3g33HCDvfCFL7TTp0+b2aoWmU9C5YMnqy0VJfNyY2UPsYgoOUPvx3huI1/Mw7FHzDqX1N1rf5ONlp27JEE8q1qspGFP3Hz11VebmdnJkyfNbKQd+vqv//qw3RtvvNG+5Vu+Za2mXTR2JlWLtol0WmbrJOGkucqqL/uxCjy2R73Efmd72H8398NNKjWP7P6JqPqyZN2MyqxHeMBjouRsJnWzBh2rkZuZ3XPPPWZmdscdd5jZSNj94z/+42vjFra3t+3EiRNmNu4lM9t/bzY+m/y1ltB28R7KKP/URnTPcd8RPZLt7H6MCNqz+nsZAbk/NyMAjxLs56gFSXSxRNDs1clj4jyf/bfffruZrX5rzGzt9+eBBx7YP262L4uOKhQKhULhrzg2phYz62tGmYSYlZ0wy00KmSTcK4VDRG1nVF+ZWh21l2ETza5HH3Yx18kwJ/Gb5fRjehVRa9RHalW9PvdKI81pQNG8UWrMtLaIJozmr2x+lpjFlpRpyaTYHuY0u0hLWEILN4fM9Nxrg6WMSLslzc8s11AitNbs6NGj++frXE8izu/Yp0gjybSUTZ4HGQG50Fuf7NjIbcD1ICVbtJcyrZzvIyqzJWZpHkdtNNs7vWID3O/XXnutmR2kpZt7bvdQGl6hUCgUDgU21vBUjNGs74fJJIKoRMScfyojbvafZYhK2FDClnQ2R+4c9XWJ9kRkUlRUXJfIpKaeBpv5pnoaOrWCSBKPyIl74x6GoUuUy33FMfa0mjnyYZan8p/x3J6PN9uLPUtDjyQ8QrQu1Ea5hyIC4Lnrza1VhJ4WwvtJ0nvk36KWtr293dV8jh8/vn+sXn1pKPoPs+eO9//2rA1mOemyPzZ7/vSeS3Nk+V5zzQimM9Jt30f66ny7GeYCdzYhvOe9EZVqYzv0HSpmwJfbiqxNS1EaXqFQKBQOBeoHr1AoFAqHAhcVtNIL0+1VyPafRyaYuVD/SK1eUinZrG+OyEwyvo80Wc05k5fkuNB5vEmtQZoPoiCJTfKisir2vevwenNoraVVkM0OmpuiPkT5V1zDzCQbpVv0wqV9276PWX26LIcwGitzGntmItaA45r20gQeStDK0vsqQhaiHwVHLKlp1lqzY8eO7ZswlQ7jzVz6PwuCierU0cyZBWEtzfFk+2ax64amRt7//pysFijvCSGqFZmlGkV7lWvAQJTsmekx547xAT4cH+9Xmah9OpRMmvrOpyzMoTS8QqFQKBwKbKThKWAl0wb8/1l4uH7BvWRCKSULBImkyixZlNpgVPE8C5/mcRHmknp76QmUyqMQ7aXJwxEyDY+f96rAZwnHSzSXCFtbW3bs2LG0L9k5ZutSYE+qpIbNuY6c7JzrXhK55kdaAZPkI+uA2uV+mtNGfb+p3VLz8/dQptVm69NjrlkSss854T3XCxiStN4LeNra2rKdnZ19De+aa64xs1XIutkqgCULcIruZVZq1xoKvE+iSutZ4ncvqZ9j12tmVWE7vs8M4PDrkq17Rgbiv5u7N6I+ZhYM3reRls1AJ11PWtxVV121f45ICyLL2BxKwysUCoXCocDGGp6XlHqJwF5y86/85TbLefB4nV7ip0BbM+mB/P+S6JZoTdQGMyzRWDhHpGIyW9f6liSrZ33JNDAv4WlOqP0uCa9ekqBtNo6bibK+/5TuiCV94X7j3ur5jpckkUe+oOjcnn87OyayfjChmuPSHvLnULPLLCWR9YNjznhzN6Hsi3zv9EH1EtBba3b8+PF9ze66664zs5Wm59uZS3b2fdDc6TP1gdaOqG2OKdLOzQ4+d7L7X/5HvY+050x70v7oPQeoydFX7vvMtAeuS48ikhoXn11R2hG1zej3wewgjZw0PFGMzaVDHejvoqMKhUKhUPgrjo2jNP0vfCQFSBrSL7Skl0wyNculZaHnMyTof6GdPjqf0mwvuZZ9XOJnpJSZ2fB91Nmc76Z33TkJO5K4dR1qepnG7PuwRLpShGZvHHO+uoyyqIceNRbXJdNUI1+H+ppFa0Z9yLSCzN/o/89ee/7fzHdDwu0o6pkaPsfVI2XwyeTRuD28LzLbR0eOHLGTJ0/aTTfdZGZm119/vZkd1AIy7V/t8znk/+eYM0TncmyMavTalCxK3A+KQNR4vC9RhOnZdejD83OYaeWk84qec1o7n9zvz4nmZC46WPOrMfnPBD6DIx+1tD1per0IX6I0vEKhUCgcClxUHp4QRWRKSpFkIOmlFy2X+Yt6OVRzoF0+0goYUZflfXlkUvoSZFGTkS8lO2ZJdGNWcqOnGWX5ktS2/HFzErFHa822t7e7Pjxem/2m9hn1IZMyl+Q4cR9kfiHffz++7Pu5CNjevma71DajXDFaN6jRiYhXr1FfeW/QvxhpBb18Sd+vqN89arHt7W274YYb9ksAKTozyp/MNK+IRi6LsKQWRX+ZH6OguSUNmd+fXrPx75lz5jW8M2fOHGiH+zqLcPfj4T1Cf/ASPxzbj+i9sihw7kdPBM04CoHj9eum8lB33nmnmY3ae2l4hUKhUCg4bKzh+Ui7/UacFCAphdFj1BS8pKpfedqUexKf748/R2Cl3CjSjlIYNaPIPk3Jnn1eokVRAvISD5H5ySg1RX6YTLOLoiHnJKSoH5Em1iOf3dvb6+YrUnuRdHvq1CkzWxWC1avZSkrOokvpl/MSsawQeuXeld8nGjPnWNfVXo5yHKkFCCzT0tPWBEYaR+uv7zRHYqS47777Drx6DSBj1KBv3vt2OH+eFcMsjj4kepF229vbdvLkyX3NTu1Hzx0SVme5gf78LD+W1qgo11FjUp4Y+xFFhzM3kCxN/nmgSETmCGa+8MhaQA1cfaS2tqR9vdea+2ekxseCzRqnxuU1Ze439UXn6BkQRfHedtttZjYWEV5q/SsNr1AoFAqHAvWDVygUCoVDgY1Mmq21AybNKLiDYdJM/KYa74/JAjMyh6ZH1kZkYpJqre9oHooczjSV0VyYkaD6Y2hW6QUkqI9Z4inNsv7cjN5I6xbVpbqYpH/Br/HccTQ9epOPzBdah7vvvtvMVuHHMpXoOLOVyUef6VXmOxIGRCbNkydPmtmKlJimTn1utm4OygJE/N7h3udc89xeyD9D6Ll3zVamJJksNX/33nuvma3mjMErvi8069Fc6c2Wmj8mhit8XPMXBZlkRNMeSktQOzJt+v2rtaK5UHOh18gsqTmVCVtrqj0UEUMwfJ5Ub/rcpxqp/wwI4X3pyZD1Hc2DDMYRvHmS6U9Z6kSUbsG0FyFLFfJgGoL2V/Tc5nNa49R6Rmk3SktRENN73/veMmkWCoVCoeBxSdIS/K+rfvHpZJUkGoWWU0rOwrajEGwmb1OLijS8LLmaju4ojJphx3NBJf6crDpxFPLPkiVsNwvW8O1R+suSls3WAzSyisoeS0qF+H7v7e2tabteW5MTWhoIg1W0lv4cHaNzssAMnRtJ3NIYpKHoVRpKRFKcEVvreh4ZPRO1kYjoWNKx1oGpBdoHmgc/F9KQb7/99gPHaD6jRH5WIpcmp3FHFhqBgTu0oPi9xJSPnmVge3vbHv3oR+9L9AoQ8fuX2oy02qzklNlqDrWfNJd6r/nTPfHoRz96/9ys+jrv6UijpIVF44kIKJh4zudPL/FcfaKWq/FFQVLZXuWaLilLRY0uIh3RMfqMgS/RM1/jetSjHmVmo4Wh95zyKA2vUCgUCocCF1UeiFK69wFQ0qBUHml41HAYStzTHGRf934Wf91e0nCWbC1ENGoZeTMTXntlOjIi6l5St6QjzQ2ltp4tPUtW9dInJS36IqK0C/oC5lIbhmHYXxdpYkoeNTN73/veZ2Z5WDMlVP9/phVynnzyL9NCImsAxyw/mMZOn5bO9akT9B9mydBRki1D49VH9UMapcbvP7vjjjvMbJ1sl9Kz34f0Y2W0Z73SMvqOvkR/Hflh/DmZlnf06FF79KMfve8rJLGw2WoNNS8aOzVkv/70DdOfdNdddx14f8stt+yfS6oyJnPr1T+XeH9Is9O4hMc97nH7//MZQesT770oTUCWE41X49JcRCkttByoH/pczwlP6qy+8FlMX7gv9aPrMZ1Dr5EFS2sqjfu6667rko97lIZXKBQKhUOBh0QeLcknKvWj75gsTL9Z1Hb0q24Wa1mU0pl0K0SUO7Q5M1k0imJkkib9V5HURJt2Rn/k/Q1MnKbkQ8nPj5dS35LIVR2rPtDH4v0KApN8L1y4sDhKU5Kj93lxDakRR5Gd9BtJ41NbTDiPJOAs8izaq0yQJWmA5imar4wsmlaBXiShNGNqtF5z0TFZZB+LbUb+D84rNTyvZTPRnFoO7w2z1fNgaVL6iRMn9tdL14souDR2+qn0Xhqg2WrvkfKLGnjkO85Ij/lsIfmyHzMT6PUc9etB/x59Xb3yYbSm6b3Grb3j97f2lbRAHSu/tuZK2lpUlkrn6B7gs9+vm/qr+0jarsZNq5//TNd7/OMfHybPRygNr1AoFAqHAhtpeHt7e3bu3Lm1qEb/K09pjhJXFNFHP1GWA6Rf8V7ZHpKtCpEUm0VARvZgaoNZiaEoupLaGimGerRAlIokFdKH4K+n9jUXWV5eRBpMX12WZ+S/WxKlube3Z2fPnl2LjPPISu7oVZKjz1Oi9EiNmHvJS4KMMuXYqYWYrfairqdjKK37ecoIv6kFRnlRvA6jT+kbN1vde7qe/CySmhnl6PvF+0dzwuhQf4/oHGkz2d7x4F7paXitNTt69Oj+fEkLkBZitpp/9VsaiPpLP50/RtoL/aOaH+UVRhRsnBdq7xF9H61fijZknp7Zepk1UrzRaiM/ndlqXdRX3nNqw99P0vAyS0/PwkHLjKJq+Rz39wap8WiZ017186j9rTU/ceJERWkWCoVCoeCxcZTm2bNn9yUG/cJ6aY15FJKWmJfipea5YoqSbvRr38t1YkRfpK2RBYYRT5HGQqYGRihK0tH4vV+TuTPU7NgffywjEzMt2I9TEr0kN0q3EXuK+p2V9BCiYr9+bbNITUVo0vfgJTOtM5kZqNn5CEi1J+mYEW+aL0npvv8ZETj9P8zlMlv3x1Eb9JFq3POURulL9FJupuFJko/YK3QdzUUUlWsWF0VVRJ+iZ7WP2UevLWhOmbNHDTraO14jzvbO1tbWAW1Y15Fm5j+jVkMmml70dMZ8pHn02gw1bN43Otb3Uc8vRrdrXyvq0O83rTvzZOnvjvKfGZ3LUjwRsw+1c86F1laRpP5e1J7hs0TPo8i/TX8mNX0Wx/XnL43M9CgNr1AoFAqHAhtzae7sMKkUwwAAIABJREFU7OxLBuQVNFvPEyPLAosdmq1+1ZknpF9y2uM9dCylJ7EkSEJgbkgPkj6jnC31iWUsKOFF/HTUKMieEbHB0A/HEhvqo9ds6Mdg7hg1M/9/xuvY889FxSCJra2tMH/KS3u6pvpLCZisKWrXj/VJT3rSgWOU2xfxL9L/Ql8erRW+D9k9EJUU4p7JfHdcc/+Z5l/XV5+5D/21eR1GDFLy9tB8PfaxjzWzlean+ypidmFOrNZN1/VWnai8TG//HDlyZM1/5fcT/ePkXY1yOHUs10V7h/4///zRZ2qDBa+pAfrz9azKfN/+uZNpycybjWIXtK/UF0bpSgP0z2+tO88lo5DmKPI3Svsj+9Ctt95qZjHjDksV8b72e5Tzd+211xaXZqFQKBQKHvWDVygUCoVDgY1NmkePHl0zd0WJ4AxrlhoaVSsm7RMTIm+++eYD1/OmkSwRnKZUbwZjOzy2R7mUmTRJXeSdr0yUpdO4RwDNEHOOOwp0YGg0E2ujcicZgTeDcnyScZbKEKG1dsAsQeqg6JokhO4FaNx4441mtgrxlvlE8yMzaZQuQnOkzFMiXY4SzzXfJCtgWSd/Dt8zSCsyh9KMq1eafvzc6DOtFStpM63Ir4vmXH3wBL1mZm9961vNLE5LyAIdoorhEc3aXNAKSb2jxHO9KmWB5AVRKSTNpZ5RCqdXEAYT+T1IIcagtsiMT8IGnRuZ7x7zmMcc6KPmS89Ifa7r+DnRWvL5w3Qy/wzVHGgeOQ6mSfg1157QXiFZga7vafBuuummA33RuVpj3dcRYYTW5eqrr660hEKhUCgUPDaO61Rqgtk6rY3ZunNVEoF+sSU9+9BbOmJZPoOJhtH1WC6FJMhRqR+B6QIRqOFlhVGZtOxBbTNLuI/GwfBqzVFEXaRrU1OmY91LdtQkSUsVaS6RRD6n5ZFKykvA6jfTUSgR+3WS1K+5Y8qKJGJJ/JGWyMKvTB+ICgFzrzCJO0rqJ00SC8BGmhAp7Rgkw0Rds/U9qvWWZC3NpbfvpNlJilY/NN9+Tij9Z1pOVEqGpAwRhmGwCxcu7Ev/SjHxmgLnR8dGxY4FBq3QMkKKMX+/kHKP95TO9WkJ6gs1Lu7hKECDKTq0NOi6voQR03uktWlu9Or3EOeEFiymEUQaM4sIS4vT/EbBS2pPfdL+01r754T2pIJuetYBojS8QqFQKBwKbJx47gmCozI7UWFA/z6SliRhSAtkKQrSa0XSGql91Fav5IpAYlYmhJutS9YZAbDaiKQmgT4dtmm27iuk/Z1+Ld9X+uEUaswkzogSjn1i+SHvx2ApmZ6GLMtARL3FPkjilf2eYfu+D5wfSf1aF7Wh+YqSyBmWLyk60lZZtJOkCNp3Swrnkgw90naoQWgt1ccs5cVsNWb6KKXRRudo7iV5S4qmbz7SQtQXvdd1otQgjv3cuXNd0oKzZ8+uzWn0HGAJIZZP8s+djAhCY1cJI+0tb03hGtKilFFlma32oNZSr5FWqOcaSZ2pfeocPz75IlkqS/uC1hx/LOeacxSRKHAONF8an95HVintGWl0Gg/3v+9vj7ouQ2l4hUKhUDgU2NiH50u8MJHRI/JHZMfyM2pTjN7zfiRK/7wui2+arfseqdFFfhpKEzyXWo63OTMajtGBEY0Xr0cJi5pXRFbMc/W5bPkRhVVG/KvPI1o3L+1lPrxhGOz8+fNr7UbUYpLyqIFI2vV9YGI8E7KpKfv+ZWWTGDXsz6GvSNKrtBe9j/YO9zl9uOyX/45WCK13lADM+1N7RH2W9BwVK6aW5f1kZrGFhlRPkuAltUfn8L7Z29ubLREk0J/tx8r7vld6KSKy8JCGx1JTZuvPCCZmR2AcgNqn5uPbIEUjSRJIi+bPJcUck9UjGkRStGWWn4hsgnOsdqnh+wKwgo6lDzz6jeGzqkeKQZSGVygUCoVDgY01PC9BUII0y8vyMJ8ryjkjjRJ/yaOisZQEqNGRpNb/nxVRZdScP4d+g4x4NvKpzbXlkRXBzYqT9qRVSqHSXDYpmRRpAyx2u7Oz09XwLly4sFbk0kvckgSZn8QCnH4+SanESMhsffw5LFnESFjfR0apSVtSXyOqL/aJEZ29PEb6PFlUk2MxW99vnL/evcH7lZaFSKrOiOEj/wvP8fd2tneUh0drjh8nrRnMsVMfIs2bz5eoEKs/zmzdl8Wxa84j0mt9phw7+X0Zw+CvSY2SmlC0V3WuIh4ZZ0ArkW9H9wRfs0hM37eM2D563mS/D5q/yJ8e5Qj3rAMepeEVCoVC4VBg8/oKDpHUT4mav+rUUPxn1Bij9oksaojRopFtndIgNcyohJGQ9ZXRU36s1EJ5bKSFUpPTe2owUd8ISon+OGpAWcmmyI8RRbVGaK2trUdUMobSMlkkvM+BUioLSmbr5PvP7+iLikq8yM8o/4g+j6wQAv2jm/jwmL8ajUfI/C+UziP/XxZ1SG3Q3w+MLqUvJ8rXFbyWO5eLxxJMUTwA9ymfC9EejbQV/3lEki8wz5eRnl7DIwOOfHjy++o63loj3518qZklSzm3vo/Uakm6zGLGZutk2Hw2k/En2qvZfRxFowsk/47KHQm85+f8vx6l4RUKhULhUKB+8AqFQqFwKLCxSbO1tmYKjGpa0cxBB/GS+kXZMVHV4ij9wCOixKIpk9W4IwdwZirj+yjRXe1z/qKaczQdZabayHw5F6bbMylk48uo1PyxvTUV8TiDC7wZiaZRBmqQfNv3hxRzTDBnGonZOvG43tMc5ROmGazC0HuZlqK90zMPZ30khRXTbzSfPpmXicaci57ZlfcrTZxRTT+GqGcpAn5cvYR5QgFPSpjW3HvTNoknssAwfw4p61hzkns+um+4lnwe+eeAjqEZnOZDjdNsZdLUZ+yL1iEiAud3ug7dChHNI59Nui7rjkYmTT67ehSKWbAfTaj+HM2FPltqzjQrDa9QKBQKhwQblwdqra2R6vaqe1NDyBz1/hg6o5cErTDIgn3rSbUM8e71kZLNksAalpBh8EDkoKXUzL6wj5HWu6RvAo+hhDdHG2Y2jjMLPPCWAd9+RJSchberbV9FWhK7pFfNIQOQIlACZQg7E6r9MdQGmRbix5VpWFlKTZTSQHowfu41PAVBsHK3+sEgqmh/ZGvBV/8/Sb97QUxqdy75WxiGYS1dxKc7kFKO9FNR8JrmiZo35yfaQ1xDIUv6N1vtVWlJur5AGjGz1bNpjlif2qnZesV5amkMgPPgvPUS3IUsMKhn3cueKwwo8/NMK9r58+craKVQKBQKBY+L8uFRY/G/vgxFXkKnlNFzLSkdImRh2pGEQE2SaQi98NnM7yJE51ILpS8voi6i1J9RmkV+H/Y10/Si682NM0qKFY4cOdIlAPbhw1G4MaX+LGnY90FzqWMy6Tzyw1AizRJlI3J0JifTbxUlKVPqzwroRonAJGbm/oi0Kc41fdU9q4eQ+ZIjYnX6E3spSjo/2vvROPz+lOaisH6zdR8+ydWj9eee5lizYsj+GGpJPMdfT75gpbToutLoRNTtNTyNw/v1zFZzTu3MH5elQbGEkh8XtWimlPTSU/iMyigU/VpnMQJcT6+5cu/ce++9i/ayWWl4hUKhUDgk2NiHt729veZP8L+u1BRIG7YkUmcOUaJ7JiFGBTkzwuleuYnMhp1JL71IwqzwZ0TmzHIjmUbXK5FB6adHD5VF2lF688d4ibi3Dq21tXO8hJoRS0t7i3wAvSRkjpHncg4Z4RtZGKjhZdHIflzcG/RPcH2ideH6SjqXRO8lYF2HWqH2V4+qL9ur7E9EkkDtr3dfb0oe7dc3Ij+XVqkoWSYyc078/1niPO+T6DmX+cF0rvetSiOl/019vuOOO8xsVaDXbLW+8uVlcQ70z/pzBT2vpUGKckxlhPz5ig4lHV2mifnPsmdUFOmdPU91f0X3iPoojfjUqVOl4RUKhUKh4HFR5NGMbouIoPmLyxw3tumRRdb1qMzmpLKovAR9Nj0S3150kv+e/YqOoY+AfgazdVs6I+EyUl//fyadU9Pw7dFn1Bs352uTMh3U/KPzmVMladlHaVLj4rxnPuToM/o6SJHlr6fvaLmI9n9kZfDv6evw68acTe5VaXre76P56eXq+TFE4LpnffXtZEWSozmnZtTz/+7t7dnZs2fXihBLM/JgceNexGWWu0utIiK8Z7uE1knrY7bSsLQ+6v+tt95qZmbvfe97zWylufj2GXWqNjgGr/Uy/1canY7VnvHleqTtac+oL/T/RnunV0Db9zWKKM/OiZ5V6ve73/3u/T5VlGahUCgUCg4baXjKhenlZFFbYSRapHFl/oKM6SDycWSMJ5Ftm5FGGcF0JA0KGWtGL6JLYG5LRMQq8Dv61JYUnmSfI+k0i2akryLygQg9H94wjAVgaZuP+pDlh0UsOpnvjuTBPYafKNrUH+vPkWStVzJDRKWluL+z6NAoKpTzT+JcFg/10LEkWO/51rJ7cUlOZxZJHGlXLGTa0/B2d3ft1KlTa4VMvSbEdY6iZc0OWhTUB/rwqNlFebKZ75ZFXv2elR9Or/LVveMd7zAzs9tvv93MDlowGKWo8WR7J3pmkTlGvkRpmN7/q3kUm43aZ5meXq4yrUVkb/HgPZ39Tmgvm600u6gY9RxKwysUCoXCoUD94BUKhULhUGBjk+bu7m7qQPef+XPMcnOlPyYLfuiR7mbBKQz6iELZSZ+UmWQi0GSajcVfO0sdUH88xVlWBy9LOO4FA2XBKr3Ec46z911G2O2hvUOntzcTcZ54bBQwQYJiHtsjvaaZNqvM7NdYa0R6I5qa/HwyMTtLdBcic6jMXDI/0cTkabZkTmPfskCknvk1M/NHycNZvcXovtaY59JKdN7999+/dq/5+4XE4nNjjo7NnlWRmTpzLSi5XMcqvN+fo7W85ZZbDrxGQTgMmOEe5b3sTX8aqz7L3B/+/tU+Ig2a3nP/R3uHoEm7R8qvNVZKhcbp11pzIjP+3XffvThgrjS8QqFQKBwKbJx4vrW1tUb4GklNdPz3yJbpLBYyap9eErleKRl5CVjINLoocZbSYFY+I9IomDycOf79+EnblpHHMvzabF1KzyTWCBmVVG/deknvguihGKzg+50RAPQCJpYEU/i2Iik9S/GIyrVkKS2sJh0FSbGKeBacE82np1EyG6Vas3WJ27efWSgYcNCzZPS0NIGBDFlARZTA39PsfB/uu+8+u+2228zsYKK0QKo6EoJH65LRjnFeoornmVVA/ZBW5QNQNHcKq9d4tKY+RYPjoBWAzxQm2vvPBAX5kMjBk1hngW2yGvg0C3+8P5bn6n20zzJLAo+NCK7V7pkzZ0rDKxQKhULB46ISz4XeL/ec9LgkUZDSRkTjQ41OEha1GF8Ykf0njReleLN1iVSSGyXUqCih+kZfF+3uflwMhSahsi9kmSHzp1Lr9pgj+46kzyWh5a21A+dG6SkZJVVGjebHsMRX7I/357ANltPxUjrDtiXxSusgbZTZuq+Y4eKUXk+cOLHWf/WBlgr58qJ7IvN90jrg9+WcDy/6PEu76KXKRCkocyktXA8/F/qfc6r25e/x52SWJX7eowtkzACJuv0+UN88JZY/hqkm2bV9+zwuSvOR9UHrwmdJpD1lBB4kGfDPmEwb5XMv2m8Cn99MDTFbzbmsG5V4XigUCoUCcFHlgYSe3TQjxO0VnaTUn/nnvL2en2VldXxfGcFJqYW+Fj9unUMfYUbF5MFijYIkFS8NMmqJ46NW6vvKxHr68qIEfka1UcKL1o3tzfnyIgnZg1LkXHJ/1i9/LVKAeY0yo5CSBsF9YbaSlh/72Mea2YquSRqfrtsjc6akTb8m/SRm61GZTET2Sbgaq/ZVlqws+HVhAjfnNUoiF2jd6Pn9es+B6Nhz586tPQ8iCwxfo6Rxgfdqps1G1ggmrXNuaXny/9OCJOtARNsVUfB56PvI8kP6MVkOGGHqn9XsPzVWft8jomCb0fUyKx7vjSgiV7710vAKhUKhUAAuKkpzSdRfRvklRGTH9NFRE4ty36ilkUw10tYybZB9jUq8UMOKqMTMYl8XJbgoFy27npDlHUYFEvlKTSyKQmWfGVEYSetLac3OnTvXpRbL/BW8dnQO5z8jc458XfTDeJ+d2cG1lA9I+VbyDbPv2nf+fM6T1kVzEhHoMleQRXGjvD9GCDL/KfPt+v+XkJQLWQ4ktbieZP/ggw92pfS9vb01Umy/T7R29CPxXovyB+k3Yj+izxkFyqhN+eH8PtBYswKsevX7T2upfab3fDZqP/hYBfVBBWdvuummA33VOX5d9BljB0hTJ0R5eNwP1Loja1QW/U5Nz38X5QLOoTS8QqFQKBwKbKzhHT16dP9XOZJ8+EtN22wkaTGiihJX9urbYZkY+ra8pMXrZswaUdQkpb/MzxTlRWX+sYipJMuVy6KnPMh4kRXojCKs2OcltnEvcfdKvJw5c2Zt7/TysLLSND3Sa4ESMDVzs5XUysg+lvzx+0DnyGfGudY+85I2rQxZ4VG99/44XU/+Ckb46XOfKyh/B32DQo+FRmPN+jynhUXji9aI1pyzZ8/O5lJlfiUPWnqWEFhnPv0sP9dspeHTd0bric8ZlP9Xa6f2tF70B/r/WRiVz0ztN7/WIom++eabzWyl6akNjcFbmDR2T8ztP9d+5HPdj5nWAVonIutHtr94Pf+/X5elWl5peIVCoVA4FLgoDS/yAQmZNka/mNdMsujMOTYTs3XJmpJpFL2k/+e0zyj3gywzGatFFGnFCLjMb+bPYfRnVogxms9edCPfR9GeUV8jtgwh4vP07Vy4cGFNo4sKpdK/04v6y3ycfKU0b7Ze6ofageA1CZV0odRPa4GiNs1Wkj1zwciOEfVR2p4kbjGskNHDa3iMIMx8iL2yN9xDXFu/9lk+G305PR9eL9JuGIbuuf4z9oX3jT8nixVgviR9XmbrGh33mdqQFuXP5z2mPqsfXgNivi2jjukX823Tz6zr6H3kZ2T/tb8yX3hvDdi3aH2zMmdZhL6/5tLITI/S8AqFQqFwKFA/eIVCoVA4FNg48dzTR0UmzYx8lKppz0TRo5Lie5od+BpV5tV3Uu1pQu0RsdIJnlX+jUqhMGCDY/CgQ36uEnUUqj+XwO2RJZH3wpCXUEh5XLhwYc0U69ujGY2vUZDFHMGBvpdpJqJ6YhtM4/AmP5kWvQnRH6O5kBnTbEXOKxMT6cFkUiU9lb+OrusTcKPrm+XzlZEj9IKA9Eqz2BJzEk3eUXDbEtJfpbTQHB4FTETX8u/9WvPaMu3RvBaZ5EgHxuswfcS3o30gc6WCWPjMNMtJsekmYd/9sQzoI4lGRAhBU6PaZ38ilwTnlSkiUaCavuMzMjJpMn2oR4ZPlIZXKBQKhUOBh5R4TknSLJesKGFFIcqZZE9pMHKYZ+8jqULSgqQJJg9HVEM6VpI7Q6PZ56gobkbBpe99HzNJe0m5lkwzojYaEQBnGnNEGkwpsCf1K/AgS773/c2K3vq2+H+WFsKAEC8pZpIo5yBKcCbxL+faBytIO2MQAVMlmOxrtpJiGbou9Ei9M6onavORlJ4RKDNILDonoyOLgrKygCqef//99+9ru5E209Mm/fU85spnZSkO/rvsftS6eYuCgkRE8aXAJu2HaL8zACmzRkh78+kw/39759Mbt5UE8SfJShwfnATGBgFy2O//sfaaDYIEiAM7lmb2VFLrx6omR4s9ZKfrMtLMkHyPfOR09Z/qvSQiSs/V8VIGjftwz6x0DTuPYFo7KYFtLX9Pj7TYYDAYDAYFr4rh0fLtfl1TbMjJdhFHirpTPILWjRMNpkVPJtZJLonxMaXZWWlkSxy7ULdhPDP51pN0W51HenUMIBWNdqww+e6J0+m0KdR28SPGVGlldtJiieF1kmg6l7KOUxPctbatnLRfMr3K0rRW1PhT1niSRXPWLI/HdVDT0dn0lHNP66Eem5JyWueO9ZLhH43LrfXyWnfPgYeHhydGoutU55yaOac51zF05RN1PjV+lVoKaYz6bmWhiudpf2J4vMYuTp68HLyfnPeLzyReJ1eqQ6H7JL9YkUqEBBfrT96nLucjia4fwTC8wWAwGFwFLo7hqfh8Le/bTuyBrSG6DM+9WF6X2UdL2G0jq0uWDS0hMr+6H4LSS44dJr83i0hdK5E9v3gnBJ2aebrrtmclddt0jFE4n8+WMXfvkbW5gtM9htfFngQK/vKa1nmRPfEcKM7kBID1Wbo3WMxc95uKecUaaoEyxRB4Xx3xzKTmzi4ex7HuxRArkmSfA9seVfbEuB7H4jL5eB6YJcs1UzNkU96BrrtjH2KmEhNQTJei3s6Lwv/p9ZD3wDW4ZeNcnQtdH7dW6bFIz3x3L6bMdfecSPvrGunq/FUWPTG8wWAwGAwKLo7hvXnzZiNjU33AqaniEXaRfP9dlib3l2Rn6jZkg3VudR9OKitZy9y3A+N8tCgrw3PNIOvxunhJYgWpRpF/O3TWWY0jHd2Py/pMsSZ+3sXw+H7HNijIK+vYtZQSZKXzlevQsQG+asydx0TvaWysDdPYXcZiirF2cRiB92/yEtTPkkxUxwbqPZ0EgJUdrntCFn7NSKS3hnFYV4NKaTUxcLIzbSNZt/odxsEYe6pMTGOhxJyyNsX49HkF6+H4vNN6q2uWjY1Zw6l9uqxgPpsoys//69joBUnXtY6Ra5TPxDr2lLF8BMPwBoPBYHAVuJjhnc/nVjxaSP58Z9kn65G+ZsFtS592p85Ci5NZm0diUgmOmfE8udYo9f+1ti2S0r5cjJLfTfE+V1PHOfO7lUkw9nB/f9+uiTpeWs9uvGSLFGrm9u44tPjdnGmZkuHVOVMRIrVVUkxlrdyGaE8laK1to9cjrZ46plRfXZzJtUTqjl+3YcZo1/qFGYlff/11HLdqOFOcZ61tdin37xoAk8XUZrQVYpQ///zz5j022WVWYR2jxsJmrcrWVDufyvAYm6RHITUtXmsrRk6VFI25sicyV44jjbmOibFPXtfO26LjMxZax6jrc6T+d3Ocw98cDAaDweBvjPnBGwwGg8FV4GKXZnUtdKUFSTLIJREkWa69Qm23LV0Yeq1p29ov5XNIkbv+bqT8DI47mTAmDdDVUN0tLK+gezel/jpc4lJIr67AmW6uPXdmnYdbQ6kTONdD1/F+T0jWievK9ZKSPZwMHseshAPnvuN50vXmOqOo+Vrb5IA992EF1yiTZVziVSp05nE7KTN+x6XSX+KG0niYkFb3R/cs72UnYpD6LfJzudd+//33p89++eWXF68MZbjyF41N+5PrUv+78Izcn1zfFDhw9x5LZPhMlNu9Swih/KKkFTWX2veRouhCFxpiaIPPRLkv6xjpmq3j3cMwvMFgMBhcBS5meLe3t20a9VGGV0HrhVYyky7cr/lea5lqZZC5JQkeN1aOKbUWctvQymSA27HClG6fyhUq9lr8uESHlEBB632tvtSEOJ/P68uXLzGFvW6/VyBdmTAteb52IrSpW7lek3h1nXNaS3WM3C9lu8gAnTeC33GMW2ASBhMqmBBV15gs+SRw7hgl55W8D66c5IhX4HQ6rc+fPz+NW8dxDE/7Y+uvrqSF9zvXhduWBdpKYtE+WHqw1rbsgO2ixJ6q8DgZPp87TGpxYuz6jEwvJajU7+h4LEdw96ZL8qr7531V32MCH5NVKsPjdfv06dMUng8Gg8FgUHExwzudTm37FFogBNPS3XsplicLovrH+WufLDqXWi4kGaU6hyROy/iEs245htS2w8UMGQdhvMyl8GssKQbqtkmxO1d6wG0cy3A4nU5PVqZbO2QzTC1n8e1aW5ZClkHvgWuUKui8keXU9aLPWFxLVuW2YXxE8+O5rQyPZQKMebiYcSoeZuyDrKEbE+ftPCYpptuJvleml9je6XRaf/7556Y1U411stUN14yTMEsepVSeVJnXd9999+J8JCnDuo0KzMXwNH69z//XyvcYZQn1fy0i1xg4Rs1b8bcahyMb2yvdqQyWz2mB90R9zvG+1HVkWYJr9luf8cPwBoPBYDAouJjhrbX1k9dfbAqv7jE9t98kSsxMIR67btNlZ6U2NILLEk2ZRknCyhXHJ3+4k3pKWaDOuiFS7OmIqC/PecpkrO9VK3ovjpfazdS/6evvZMJSvDVlCFaWo/gLM+qU3eYECGTRyipOjLuCQs/0KHBeToKL+6V0VY0ZkuFR0owNj11BeJIuc16IxPDJTusYeW47C/10Oq0//vhjE1eq7CkxO/3vhBwYK3ax7bWe18cPP/zw9J4Krl3Wat13ZUD0CmgbrqVaeN5lNbs5KJa41jZmy3m5vAOOyQlEpPFwbPwNcJKOZKrKhNU8eC+6ub958+ZQLHitYXiDwWAwuBK8Sjxav9yuEaOsCLKolF3YgXErCvautZVeYhzIWRUpk5Oo77uYw1rb2iYXw0tZjKmVTT02P0sSRk4yif79LpsyZWXSZ+8Y3iUSbGR49VoyDpJaoVQky5fMwWVpJiac5NXW2jbIpJC6UGMpQoov8xo674DANjSOuZLZJWbvzh0ZfScpJiSx4NSyq+4nSZlVPD4+ro8fP24YSa2Lo6QYM28FVwuYhKbFbvm8W+vZy/Thw4cX3+2aBwvMc+A5qGPkvcx5UpC6ay3F+KzLtNRnrLdTbI0NkOt1o8cs3ccuq58ttHifubVzaS3nWsPwBoPBYHAluLgB7P39/cYyqjEQ/SInNnGkZoufdVZmalfBZppd/Q1ZW6qBc9teArLOjmkm658WvbOaUsZqysRca5uNufdat3FWpcPt7e3G2qvWLNcGLVBmbVbwGjLj140/sWjGPtx54tpgfMQxvAQyl054nLVUjj1xbIy1p7rAtfbVZ4SOSZBRkMm4eT08PLRC4J8+fdpk4ooNrPUy07Aeq2NaSSCbx9G5qMf48ccf11pr/fTTTy8+o0ff6pJqAAAPq0lEQVSkgteFHhixqDovbcPmwczE1jVW9uhanpmutWWude0ybq7rpOe6WiQx1rbW9nmaPBmuDo91jXp13h2uk0uexcPwBoPBYHAVuJjh3d3dbar8ayZS/cVfa+tvdS1/9lRDUuxrrazDmZoR1u1TI9iOce2N2VmpZFR78Tk3tlRX6LIUU5ZryrxcaxuL4vlzdXi0mveyP2v811lwKa5Dy9hpafI8MH6gcdcMX80tNe907IktZMgcXSyKMZvEXN38OC8X5yN0HmXJa570ejg2kuovu3syZWKn+lY3n8fHx92YDK9LbeMjdkQG1J2vPd1V3j+1PlLrSDVzYlZk0XXuR+NxdY3qs++///7FPKjHSu9U/S4ZPpVd6vVnjD21H9K5Y1PZehyNXdt2NcrJO8B9rrVloVOHNxgMBoMBMD94g8FgMLgKvEo8mgHhWgD622+/rbW2CRN0b7jiYbo/k/RTpbui1AyMMzDbBdm5f5YaONB1lpIm6t9HiyPr/jjn5A51x6OLkUkm1ZVBVwzdYW4bl+ae5qiEJ7piOiFoonNbJKHiVEC91nMqt84xO0TL9dO1I6EL2K0duvN57bQPl+jC85m6SDsZPM1Pr3RLO6m+JAju1rVAF5MTUiDY3ubLly/x+sodzvNU147ee//+/Yux6H3nmk3us5Tw0iW+0LXnSqjSOmBRvJPeSoLzdNnW43Eeus5yZerVJS1pTApR6Tyy/KZbD3z2u1AKk1L0GZPDXOmMS4bawzC8wWAwGFwFLk5aqZaWK+alfJKslSRovNY2kSVZhq7ImgxLY5PF5SSsaBGkdHSXEpvkh7rEm73geNeckqyDDMKxYY4xpaHXObDEJCU8OJGBS0QFuua6DOYTjpmnlk5JtsuJHjMNXefcCU4TZERHSln2RKvr5zw2E2DcPcM2Q0xOYRJDtbjJelKrH8fkWcaRhIjrZ10JUD3W27dvn8YpL5KTC+Q9m8TF19pefxZmixnzvNXvqImqBK11rfUcrAl9nDOLquk1qGD7nFS6U8GmqoKejdqna9wqZqdtVRZBcedOLGOvdGet7fNM82EbIlfgTq/KEQzDGwwGg8FV4GKG99VXXz35fp3/WlYRfc2yFDpZK6ao0hLu5Idce4y1clNCB6Y9O8s++fMZw3PpyEISAnZxn5Qy38VHEsNLacpr5TIEfVcWV03NJsPbKwCtraXqewK9AGRpzopNxa5J1PlIvEpwbNS1/6nHTYXa3Zh5fNcKJbVYcQX1ZPKM4TCG57wfZJJEnT/HRo+JK8J2bb2Sh+Du7m59++23T4xI7MLJTTHWRS+UEyvX+MgyWKJR1wcblP76669rra00l2NPzlPl/q9IXgZ62yo75PXWs1ljdmLVAqXrxPBUeC4G6CQbU6yapVRrbRvAch6aQy1BYezuIrnKw98cDAaDweBvjIsY3u3t7Xr37t3GIqoWnBiBLCD9MncirmzSKexJf621jdHRP+0y0WiF0wp0PmGOZS8uV5HYIIs8XVuYlDmarNH6XrJUXTE+4zls+Clm5+IYwsPDQ8tsFANeaxsn4/w7OCs9XY9UfL/Wls2QodDjUP9mjOtILEpw17tu69aBkETSXWwqZWUyY7W7ZqlY3hXH0/JmJmb1Dri4eZelWTN8xZqcxGDKsGa2Zt2+yy+o+64QAxLjUVxRbMm1deL9vicXWJHGyHVQzzEZHs+vrpPLDtZ7etV8xez4nHX7YWY+8zrcWPg/57fW8zNIrPOSZ/EwvMFgMBhcBV7F8JjxVK0K/S0rjC3andVc99/932XACWKUbHpYrTTG9bq4EsHPUvsWN+49MdVOPJqvXQsbMlfGdFirWP8m02Msz9Xu6fWvv/5qaw3v7u42/vwuLpdqceoxmGm3ZylWJGHz1OKqvrcXh3PzSUyfx3cZl+lVx+vWNy19soHOs7An5F0/47lhHLAyF8axujo8HZc1iPVap3ZAqR64zp/nPWWm1v/FeJgNXu+FtV6yntROq2uhluL/jHN3nifOnZmeVTaMkobM0mQNZM3fIKtNHpNu7nzuuMa9ehYpQ3akxQaDwWAwAF5Vh8df45rlw8p8Zm26LMNkHdNCdFZ8Yk2pvXx9z9WWJdAKpFXbCVwnBQpavtWKScoqR1RbmPWa2itVtsYsTbIBl9npGvSmOIjWDhmqY6b8P7VzcnNOmZdUe6j743fJGit4LZlZ56z0JKKcGGYdI2OPqbbS1VQyZuuyMjmOo5ayq4Hbq0ms54rxq85Kv729Xd98883TcfSMqfe0GAhZFONmLotxT7HDMX2xIjKwjsXrPLNdDxV/6rll7JFqVB0LZaz+CCvUsVlvx5wMF4NP9xOfc+4ZwgxybavYqHuuMG57BMPwBoPBYHAVmB+8wWAwGFwFXtXxXBAlrhSd0mIMgssd4VwiycWTkj7qd0jPkwuy/k1XBY/vaHSSWOoKz5NLjvOpLh+XyFJB94FLt04FyE5SioXlyWXmUorrdzvxaOfSrPtL4rqUp6vnhK6d5Mp0ouWpUzfn2Ankco26wnQm6KQ+aO6ccB90U3XF47xmvLbCkb6P6dq4behO7Fxn9d7r3PS3t7ebIuWabKE5SzyacG5JhllcB/i6bT0eO3PTbexCD7yG3OYI9spwXHkSv9uJfOs9Fvlzvjx3db8ukaruu94bqbyGQtP1N8YJVBwV5h+GNxgMBoOrwKuSVmg9VwtBAViyF4oguwC1k55xqNt27G+t3E5lrZys0CEJ43bFj7RsUhG5Yy6cD9kGg9n8e61tAopjBY711e+4wlaWGOy16TidTpv5uFYo3D9Z3JGykbRNXTscr2shxOOlgDzXnxPz5nfJ7BwTIjNNCSgd82bhudBZ+Hvd2d02PDdkZE4c/UiSjCx4sQ0nxafnDudEtlvHkOS6KNTMea619VRRyLgrv9J5YQshlkms5QX66/v0VrltWZYgluZKTPaSVbprkJ6Bmpdj2ZQ3o0fGtT1SOcIl7daEYXiDwWAwuAq8qgEs/65Mgdac/u9KAFjInopeXSo7rZcUj6ugVcnYimu54mJzdVta5y4tPRWRd5Z2suTIDtx8ec7J9Fwq+17ae2V4tMI65nU+n9fDw0NkYPW9vVjnEeHsxDqcRZpieYy11f2RvVBqzJWl7I2/mxdjGiw8d/HmlMrOVxdP59hZhuHifhQ853ErY3IlJ4ntnc/ndT6fn1iV4DwULIhWc2qtWyeFldYvz08tshbT0RjouXLNTlNs3cXhiVTuw2eHa9dD6TKxNRaT1/cYu6NYNFsp1eMxvuzuI0Ji2xTl1nxqk3F9puO8e/fucBPYYXiDwWAwuApcHMOrAsD6Va2/3BQb1meUpnJNPFM7CSfEKtCyoRXhYgWpBT2LVrsszZQB1TE8WvgsNK2WNq3wxEKczBLjcalo2WV2JtFWF+fU/qslvMeseU1dU1CyCu6znvO9YnVXcM7jMbZApu8yfAmyGYfEbpm56qz0xOhdsTpZ354XwhXuppidY6GpyTPPa703ua4eHh7iuTudTuvjx49PTVY7QXjtQwxF+3fi52IvfP7wvhczUhF0nQvzDjiOer6Yx6DjK7NdzMWJMaSm1VxTLr+BXjcdl/G6+reYXmKDOvf1mqbYpNDlSnBd8xlZ56XzpfXw/v37yICJYXiDwWAwuApcHMO7ubnZ+KCrRaJfdVpA+q5+nV2d2t7rXlPK+l3nYxZkLZHZyfJy4sp1/g6JvdUx0TruMkxTnFHoMiMTUyV7c0LQZAe8xo5Jujk71G1dPRfPE8fSSUAdERqv+6rHSy2YOqkv1qCmjNL6nhNRXmvLvN3Y6VnoGH5qjMlz3mVKJq+E27eLQdf5uNhN57UhTqfTi/iZy0wWGD/U9RFzUaxorefMQLEXjp9tfGoTUj4rKAFGFlWPp5ZC+p9jreckZeGmZ0fdNjXBTfJhdV5sAEsxaZc9mVqKsVWba+vEWmR6B1zmcn3+jHj0YDAYDAYFFzO8u7u7p1/yLmuSjV/ZSsiJqqZ4FS2Uery9rMxOrJoWDxlFrdNJWZqcd8fWOB9aZc5KSYLDZB+uPUyqi3JWY9rfnvpF3d/pdGq/f3Nzs7GiO5WPlLV2hBUcOcfpepAlHLG4UxZtfY/rmGPr1kEX5+MYUz0jM+wcy2I7Fs7L1XvtZZ+6et0kMO1wPp/X58+fN9mMjuHpGLwHXHPVKnq/1jPTY8YtY31uf/QWMSN6rWfvlsAYF8dc50gvTYrhudwI/q+xc72797jOeP1d82/OK2Wl1r8Z/+X/dYx8Vh1ld2sNwxsMBoPBlWB+8AaDwWBwFXhVx/OUbrrWM+UltWfBrCtgJi1nIoJcC86dQpcPpW+6InK6b1Iq8BE4t04nLF3h3k9JI52oc3KDJIHWuv9UjuBEBui+23M1ns/njVCvEyFmuYNA90fdj0vLrvt0/1MEIUm/dS5NFql323CN8jjcp9tfcmV2Yux7UnaXuCcFJxPGtcKkGPecOAKJFqRzX/9mEgSTiKprTAksep6lfpVdkhSlt+QWddeLiWbJTenk9hhq2Av/1HnwenAd1nuQ77GMTOfMlXmoOJzz6eTd0jWlW9kl43QhgIRheIPBYDC4ClzM8N6+fbtJ13eFwAxUOmbHbVKCBv+vUjgsrqQ8mRPk3UvpdUzsiHzWUaTOw5cUgpOtdQkonE9X+PnfJLpUYXHifD6vx8fHmHbs5qa0aZZZVKTkClqXHcvgfrnOnARbnVd95fs8pjtOB7ImMRSyt060IHVcd2t5r6TBbasxJWbeeT2ErrWUGJ5jdhwfrw/vE9dmRp/VkoW1skxiPR7vLa0ZJ5idEk1YqO8Yt0CPBp8PHVsTkvTXWlvRCo1fbZfYrqeezyQ8n0TT6zZJBo8JZPW9I/cPMQxvMBgMBleBi6XF7u7uokW8VmZ4LEtwflxa6Uk2ysWRKJd0pF2LkKzXepw9a+KI9SzsxSrrZym2lkSe3X73ZMmO7NdZ17xOe+fo8fFxE0eqlv5eSrJjs6loPMVHKjj+1HDWFczzM8YVjghBp/G4c5wEx12x/54IMj0LXQyE1rkr89nbxoGx9k44Wc+drlQm3R9keJXN8N4SxFrY6sw9d9SqhmIOrgwilTJ0Rf18nqWWZk7cguuMMmuO2fK+0Xx0LtjKqJZ2JK+T4ptiv/U8siUS16j+r149Xv/7+/vDbG8Y3mAwGAyuAjeXZLjc3Nz8e631r//dcAb/B/jn+Xz+B9+ctTM4gFk7g9fCrh3ioh+8wWAwGAz+rhiX5mAwGAyuAvODNxgMBoOrwPzgDQaDweAqMD94g8FgMLgKzA/eYDAYDK4C84M3GAwGg6vA/OANBoPB4CowP3iDwWAwuArMD95gMBgMrgL/Ads367dYGYP3AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1980,7 +967,11 @@ " \n", " ('Non-negative components - NMF (Gensim)',\n", " NmfWrapper(\n", - " chunksize=10,\n", + " chunksize=100,\n", + "# use_r=True,\n", + " lambda_=0.05,\n", + " passes=10,\n", + " eval_every=1000,\n", " id2word={idx:idx for idx in range(faces.shape[1])},\n", " num_topics=n_components,\n", " minimum_probability=0\n", @@ -2062,17 +1053,17 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 17, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -2085,7 +1076,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -2094,7 +1085,7 @@ "(183, 256)" ] }, - "execution_count": 18, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -2113,15 +1104,15 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 374 ms, sys: 560 ms, total: 934 ms\n", - "Wall time: 262 ms\n" + "CPU times: user 527 ms, sys: 476 ms, total: 1 s\n", + "Wall time: 279 ms\n" ] } ], @@ -2136,17 +1127,17 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 20, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -2164,7 +1155,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -2175,7 +1166,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 47, "metadata": { "scrolled": true }, @@ -2184,272 +1175,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-20 22:15:22,726 : INFO : h_r_error: 17211892.5\n", - "2018-08-20 22:15:22,729 : INFO : h_r_error: 12284515.111163257\n", - "2018-08-20 22:15:22,731 : INFO : h_r_error: 11201387.638214733\n", - "2018-08-20 22:15:22,734 : INFO : h_r_error: 10815579.549704548\n", - "2018-08-20 22:15:22,738 : INFO : h_r_error: 10646539.06006998\n", - "2018-08-20 22:15:22,747 : INFO : h_r_error: 10558409.831047071\n", - "2018-08-20 22:15:22,755 : INFO : h_r_error: 10507775.272428757\n", - "2018-08-20 22:15:22,757 : INFO : h_r_error: 10475469.606854783\n", - "2018-08-20 22:15:22,759 : INFO : h_r_error: 10453925.335400445\n", - "2018-08-20 22:15:22,762 : INFO : h_r_error: 10439939.102116534\n", - "2018-08-20 22:15:22,784 : INFO : w_error: 10430366.610691467\n", - "2018-08-20 22:15:22,788 : INFO : w_error: 11466405.186009312\n", - "2018-08-20 22:15:22,791 : INFO : w_error: 10938537.274967317\n", - "2018-08-20 22:15:22,793 : INFO : w_error: 10835183.946454465\n", - "2018-08-20 22:15:22,799 : INFO : w_error: 10808896.588521175\n", - "2018-08-20 22:15:22,803 : INFO : w_error: 10800700.69189361\n", - "2018-08-20 22:15:22,813 : INFO : w_error: 10797625.389554728\n", - "2018-08-20 22:15:22,822 : INFO : w_error: 10796326.877290638\n", - "2018-08-20 22:15:22,887 : INFO : h_r_error: 10439939.102116534\n", - "2018-08-20 22:15:22,892 : INFO : h_r_error: 5219717.607766112\n", - "2018-08-20 22:15:22,903 : INFO : h_r_error: 4876433.68440713\n", - "2018-08-20 22:15:22,912 : INFO : h_r_error: 4716452.5126186535\n", - "2018-08-20 22:15:22,919 : INFO : h_r_error: 4646689.620867923\n", - "2018-08-20 22:15:22,924 : INFO : h_r_error: 4608559.674039051\n", - "2018-08-20 22:15:22,930 : INFO : h_r_error: 4584190.709493502\n", - "2018-08-20 22:15:22,938 : INFO : h_r_error: 4572961.429340482\n", - "2018-08-20 22:15:22,946 : INFO : h_r_error: 4565401.692201527\n", - "2018-08-20 22:15:22,950 : INFO : h_r_error: 4559558.680005681\n", - "2018-08-20 22:15:22,967 : INFO : w_error: 10796326.877290638\n", - "2018-08-20 22:15:22,975 : INFO : w_error: 3930758.885860101\n", - "2018-08-20 22:15:22,981 : INFO : w_error: 3677458.2627771287\n", - "2018-08-20 22:15:22,987 : INFO : w_error: 3533600.150892006\n", - "2018-08-20 22:15:22,997 : INFO : w_error: 3445283.399413136\n", - "2018-08-20 22:15:23,021 : INFO : w_error: 3387724.0695435745\n", - "2018-08-20 22:15:23,027 : INFO : w_error: 3348095.1397870793\n", - "2018-08-20 22:15:23,038 : INFO : w_error: 3319186.5294471537\n", - "2018-08-20 22:15:23,043 : INFO : w_error: 3297270.6048084307\n", - "2018-08-20 22:15:23,051 : INFO : w_error: 3280135.5493962015\n", - "2018-08-20 22:15:23,058 : INFO : w_error: 3266430.893683863\n", - "2018-08-20 22:15:23,063 : INFO : w_error: 3255269.075502726\n", - "2018-08-20 22:15:23,072 : INFO : w_error: 3246056.4386206362\n", - "2018-08-20 22:15:23,077 : INFO : w_error: 3238390.701615569\n", - "2018-08-20 22:15:23,082 : INFO : w_error: 3231955.0349307293\n", - "2018-08-20 22:15:23,102 : INFO : w_error: 3226518.9403491775\n", - "2018-08-20 22:15:23,111 : INFO : w_error: 3221892.863625709\n", - "2018-08-20 22:15:23,119 : INFO : w_error: 3217939.686304069\n", - "2018-08-20 22:15:23,140 : INFO : w_error: 3214547.861387841\n", - "2018-08-20 22:15:23,147 : INFO : w_error: 3211625.5540026743\n", - "2018-08-20 22:15:23,153 : INFO : w_error: 3209100.973817354\n", - "2018-08-20 22:15:23,162 : INFO : w_error: 3206909.4902177462\n", - "2018-08-20 22:15:23,170 : INFO : w_error: 3205002.806936681\n", - "2018-08-20 22:15:23,175 : INFO : w_error: 3203339.106714502\n", - "2018-08-20 22:15:23,191 : INFO : w_error: 3201884.296535962\n", - "2018-08-20 22:15:23,200 : INFO : w_error: 3200609.651616765\n", - "2018-08-20 22:15:23,204 : INFO : w_error: 3199490.8536888813\n", - "2018-08-20 22:15:23,210 : INFO : w_error: 3198507.2616635645\n", - "2018-08-20 22:15:23,217 : INFO : w_error: 3197641.816993364\n", - "2018-08-20 22:15:23,220 : INFO : w_error: 3196878.7555294256\n", - "2018-08-20 22:15:23,222 : INFO : w_error: 3196205.0327337375\n", - "2018-08-20 22:15:23,225 : INFO : w_error: 3195609.4184782924\n", - "2018-08-20 22:15:23,229 : INFO : w_error: 3195082.3236335893\n", - "2018-08-20 22:15:23,239 : INFO : w_error: 3194615.5831228425\n", - "2018-08-20 22:15:23,246 : INFO : w_error: 3194201.5683043436\n", - "2018-08-20 22:15:23,252 : INFO : w_error: 3193834.8146398743\n", - "2018-08-20 22:15:23,254 : INFO : w_error: 3193508.7771292524\n", - "2018-08-20 22:15:23,347 : INFO : h_r_error: 4559558.680005681\n", - "2018-08-20 22:15:23,364 : INFO : h_r_error: 4177748.0244537\n", - "2018-08-20 22:15:23,376 : INFO : h_r_error: 3628705.265115735\n", - "2018-08-20 22:15:23,379 : INFO : h_r_error: 3462026.1148307407\n", - "2018-08-20 22:15:23,380 : INFO : h_r_error: 3401243.761839247\n", - "2018-08-20 22:15:23,384 : INFO : h_r_error: 3374010.723758998\n", - "2018-08-20 22:15:23,387 : INFO : h_r_error: 3359732.557542593\n", - "2018-08-20 22:15:23,389 : INFO : h_r_error: 3352317.7179698027\n", - "2018-08-20 22:15:23,394 : INFO : h_r_error: 3348280.3675716706\n", - "2018-08-20 22:15:23,397 : INFO : w_error: 3193508.7771292524\n", - "2018-08-20 22:15:23,405 : INFO : w_error: 3035675.9706508047\n", - "2018-08-20 22:15:23,414 : INFO : w_error: 2869288.8789675366\n", - "2018-08-20 22:15:23,417 : INFO : w_error: 2764186.2959779585\n", - "2018-08-20 22:15:23,426 : INFO : w_error: 2693213.432438592\n", - "2018-08-20 22:15:23,429 : INFO : w_error: 2643268.1644628057\n", - "2018-08-20 22:15:23,435 : INFO : w_error: 2606976.7410476464\n", - "2018-08-20 22:15:23,438 : INFO : w_error: 2579925.699628573\n", - "2018-08-20 22:15:23,441 : INFO : w_error: 2559341.912315733\n", - "2018-08-20 22:15:23,445 : INFO : w_error: 2543405.243066019\n", - "2018-08-20 22:15:23,450 : INFO : w_error: 2530852.4896410117\n", - "2018-08-20 22:15:23,453 : INFO : w_error: 2520776.369602926\n", - "2018-08-20 22:15:23,458 : INFO : w_error: 2512659.270346705\n", - "2018-08-20 22:15:23,463 : INFO : w_error: 2505998.37537577\n", - "2018-08-20 22:15:23,468 : INFO : w_error: 2500465.83441612\n", - "2018-08-20 22:15:23,471 : INFO : w_error: 2495824.830527703\n", - "2018-08-20 22:15:23,476 : INFO : w_error: 2491898.009297832\n", - "2018-08-20 22:15:23,485 : INFO : w_error: 2488567.934214808\n", - "2018-08-20 22:15:23,487 : INFO : w_error: 2485706.556587448\n", - "2018-08-20 22:15:23,492 : INFO : w_error: 2483219.241524508\n", - "2018-08-20 22:15:23,498 : INFO : w_error: 2481038.43800671\n", - "2018-08-20 22:15:23,505 : INFO : w_error: 2479120.047007517\n", - "2018-08-20 22:15:23,507 : INFO : w_error: 2477421.760689254\n", - "2018-08-20 22:15:23,512 : INFO : w_error: 2475910.438868984\n", - "2018-08-20 22:15:23,517 : INFO : w_error: 2474556.023699714\n", - "2018-08-20 22:15:23,524 : INFO : w_error: 2473336.203138627\n", - "2018-08-20 22:15:23,534 : INFO : w_error: 2472234.09824528\n", - "2018-08-20 22:15:23,537 : INFO : w_error: 2471233.9127539126\n", - "2018-08-20 22:15:23,539 : INFO : w_error: 2470324.4109078967\n", - "2018-08-20 22:15:23,545 : INFO : w_error: 2469496.304810781\n", - "2018-08-20 22:15:23,548 : INFO : w_error: 2468738.397048462\n", - "2018-08-20 22:15:23,554 : INFO : w_error: 2468042.8434290714\n", - "2018-08-20 22:15:23,556 : INFO : w_error: 2467403.1448129206\n", - "2018-08-20 22:15:23,583 : INFO : w_error: 2466814.194397469\n", - "2018-08-20 22:15:23,586 : INFO : w_error: 2466270.9455591654\n", - "2018-08-20 22:15:23,593 : INFO : w_error: 2465770.2129656817\n", - "2018-08-20 22:15:23,596 : INFO : w_error: 2465305.808378511\n", - "2018-08-20 22:15:23,603 : INFO : w_error: 2464874.412077462\n", - "2018-08-20 22:15:23,607 : INFO : w_error: 2464473.0854899157\n", - "2018-08-20 22:15:23,610 : INFO : w_error: 2464099.220703231\n", - "2018-08-20 22:15:23,616 : INFO : w_error: 2463750.4974501343\n", - "2018-08-20 22:15:23,620 : INFO : w_error: 2463424.9738803557\n", - "2018-08-20 22:15:23,624 : INFO : w_error: 2463120.930349401\n", - "2018-08-20 22:15:23,627 : INFO : w_error: 2462836.387742595\n", - "2018-08-20 22:15:23,630 : INFO : w_error: 2462570.2390546994\n", - "2018-08-20 22:15:23,635 : INFO : w_error: 2462320.878029416\n", - "2018-08-20 22:15:23,703 : INFO : h_r_error: 3348280.3675716706\n", - "2018-08-20 22:15:23,705 : INFO : h_r_error: 4253706.044704209\n", - "2018-08-20 22:15:23,709 : INFO : h_r_error: 3619969.593220182\n", - "2018-08-20 22:15:23,714 : INFO : h_r_error: 3503684.15961777\n", - "2018-08-20 22:15:23,719 : INFO : h_r_error: 3470696.317669814\n", - "2018-08-20 22:15:23,723 : INFO : h_r_error: 3459238.1820447627\n", - "2018-08-20 22:15:23,727 : INFO : h_r_error: 3454845.2734097256\n", - "2018-08-20 22:15:23,731 : INFO : w_error: 2462320.878029416\n", - "2018-08-20 22:15:23,735 : INFO : w_error: 2866194.263650794\n", - "2018-08-20 22:15:23,740 : INFO : w_error: 2676748.594518999\n", - "2018-08-20 22:15:23,745 : INFO : w_error: 2574223.0662252144\n", - "2018-08-20 22:15:23,749 : INFO : w_error: 2506119.5762679265\n", - "2018-08-20 22:15:23,759 : INFO : w_error: 2456743.2571549844\n", - "2018-08-20 22:15:23,764 : INFO : w_error: 2419389.81180092\n", - "2018-08-20 22:15:23,768 : INFO : w_error: 2390167.633219041\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:23,774 : INFO : w_error: 2366899.5684030103\n", - "2018-08-20 22:15:23,780 : INFO : w_error: 2347964.180692087\n", - "2018-08-20 22:15:23,787 : INFO : w_error: 2332331.149509242\n", - "2018-08-20 22:15:23,791 : INFO : w_error: 2319290.024670701\n", - "2018-08-20 22:15:23,794 : INFO : w_error: 2308301.644607859\n", - "2018-08-20 22:15:23,811 : INFO : w_error: 2298998.176426708\n", - "2018-08-20 22:15:23,814 : INFO : w_error: 2291054.8383098356\n", - "2018-08-20 22:15:23,818 : INFO : w_error: 2284233.8267418565\n", - "2018-08-20 22:15:23,821 : INFO : w_error: 2278346.4815429775\n", - "2018-08-20 22:15:23,823 : INFO : w_error: 2273239.326070163\n", - "2018-08-20 22:15:23,824 : INFO : w_error: 2268800.1953844256\n", - "2018-08-20 22:15:23,826 : INFO : w_error: 2264918.837606525\n", - "2018-08-20 22:15:23,828 : INFO : w_error: 2261511.2618650706\n", - "2018-08-20 22:15:23,830 : INFO : w_error: 2258510.001427239\n", - "2018-08-20 22:15:23,831 : INFO : w_error: 2255858.510132532\n", - "2018-08-20 22:15:23,833 : INFO : w_error: 2253518.01968442\n", - "2018-08-20 22:15:23,834 : INFO : w_error: 2251442.662145877\n", - "2018-08-20 22:15:23,861 : INFO : w_error: 2249597.3768979134\n", - "2018-08-20 22:15:23,863 : INFO : w_error: 2247952.8598014205\n", - "2018-08-20 22:15:23,866 : INFO : w_error: 2246485.5245242286\n", - "2018-08-20 22:15:23,875 : INFO : w_error: 2245172.528538167\n", - "2018-08-20 22:15:23,878 : INFO : w_error: 2243996.834264229\n", - "2018-08-20 22:15:23,880 : INFO : w_error: 2242941.92831139\n", - "2018-08-20 22:15:23,890 : INFO : w_error: 2241993.1507367296\n", - "2018-08-20 22:15:23,892 : INFO : w_error: 2241138.981282724\n", - "2018-08-20 22:15:23,894 : INFO : w_error: 2240372.9035035283\n", - "2018-08-20 22:15:23,898 : INFO : w_error: 2239682.3493660195\n", - "2018-08-20 22:15:23,901 : INFO : w_error: 2239058.568720074\n", - "2018-08-20 22:15:23,903 : INFO : w_error: 2238494.4270380144\n", - "2018-08-20 22:15:23,905 : INFO : w_error: 2237984.220099477\n", - "2018-08-20 22:15:23,907 : INFO : w_error: 2237520.9884815286\n", - "2018-08-20 22:15:23,909 : INFO : w_error: 2237101.4608067865\n", - "2018-08-20 22:15:23,913 : INFO : w_error: 2236722.197668247\n", - "2018-08-20 22:15:23,917 : INFO : w_error: 2236378.2100734715\n", - "2018-08-20 22:15:23,919 : INFO : w_error: 2236065.4883022504\n", - "2018-08-20 22:15:23,921 : INFO : w_error: 2235780.7662224914\n", - "2018-08-20 22:15:23,928 : INFO : w_error: 2235521.2506842595\n", - "2018-08-20 22:15:23,934 : INFO : w_error: 2235284.50782033\n", - "2018-08-20 22:15:24,015 : INFO : h_r_error: 3454845.2734097256\n", - "2018-08-20 22:15:24,022 : INFO : h_r_error: 2904795.303667716\n", - "2018-08-20 22:15:24,027 : INFO : h_r_error: 1815403.6929314781\n", - "2018-08-20 22:15:24,032 : INFO : h_r_error: 1671979.8610838044\n", - "2018-08-20 22:15:24,036 : INFO : h_r_error: 1646880.9983210769\n", - "2018-08-20 22:15:24,040 : INFO : h_r_error: 1641779.1711565189\n", - "2018-08-20 22:15:24,044 : INFO : w_error: 2235284.50782033\n", - "2018-08-20 22:15:24,051 : INFO : w_error: 1409895.717238072\n", - "2018-08-20 22:15:24,054 : INFO : w_error: 1302982.9901564536\n", - "2018-08-20 22:15:24,056 : INFO : w_error: 1241643.1836578501\n", - "2018-08-20 22:15:24,058 : INFO : w_error: 1202010.8537802538\n", - "2018-08-20 22:15:24,060 : INFO : w_error: 1174256.300835889\n", - "2018-08-20 22:15:24,062 : INFO : w_error: 1153846.4792943266\n", - "2018-08-20 22:15:24,069 : INFO : w_error: 1138188.0072938434\n", - "2018-08-20 22:15:24,071 : INFO : w_error: 1125814.6795108886\n", - "2018-08-20 22:15:24,073 : INFO : w_error: 1115797.5567339717\n", - "2018-08-20 22:15:24,085 : INFO : w_error: 1107544.5916628074\n", - "2018-08-20 22:15:24,093 : INFO : w_error: 1100632.5763251274\n", - "2018-08-20 22:15:24,095 : INFO : w_error: 1094768.0463676567\n", - "2018-08-20 22:15:24,098 : INFO : w_error: 1089733.3497174797\n", - "2018-08-20 22:15:24,100 : INFO : w_error: 1085368.0977918073\n", - "2018-08-20 22:15:24,103 : INFO : w_error: 1081553.7274452301\n", - "2018-08-20 22:15:24,105 : INFO : w_error: 1078197.974529183\n", - "2018-08-20 22:15:24,107 : INFO : w_error: 1075221.1960310491\n", - "2018-08-20 22:15:24,110 : INFO : w_error: 1072567.0519346807\n", - "2018-08-20 22:15:24,112 : INFO : w_error: 1070184.5128907093\n", - "2018-08-20 22:15:24,115 : INFO : w_error: 1068036.0176788152\n", - "2018-08-20 22:15:24,119 : INFO : w_error: 1066090.4127692194\n", - "2018-08-20 22:15:24,127 : INFO : w_error: 1064327.6259531814\n", - "2018-08-20 22:15:24,131 : INFO : w_error: 1062721.1800760324\n", - "2018-08-20 22:15:24,134 : INFO : w_error: 1061253.957796574\n", - "2018-08-20 22:15:24,138 : INFO : w_error: 1059907.3810685019\n", - "2018-08-20 22:15:24,140 : INFO : w_error: 1058667.3010715283\n", - "2018-08-20 22:15:24,143 : INFO : w_error: 1057522.661485047\n", - "2018-08-20 22:15:24,146 : INFO : w_error: 1056463.766328158\n", - "2018-08-20 22:15:24,148 : INFO : w_error: 1055481.284770791\n", - "2018-08-20 22:15:24,156 : INFO : w_error: 1054567.852474613\n", - "2018-08-20 22:15:24,159 : INFO : w_error: 1053717.0477835708\n", - "2018-08-20 22:15:24,162 : INFO : w_error: 1052923.1639589816\n", - "2018-08-20 22:15:24,164 : INFO : w_error: 1052181.239545011\n", - "2018-08-20 22:15:24,168 : INFO : w_error: 1051486.7537766937\n", - "2018-08-20 22:15:24,171 : INFO : w_error: 1050835.5528771807\n", - "2018-08-20 22:15:24,179 : INFO : w_error: 1050224.2841197972\n", - "2018-08-20 22:15:24,183 : INFO : w_error: 1049649.9491698176\n", - "2018-08-20 22:15:24,186 : INFO : w_error: 1049109.5181107703\n", - "2018-08-20 22:15:24,189 : INFO : w_error: 1048600.1347902017\n", - "2018-08-20 22:15:24,192 : INFO : w_error: 1048119.4565463454\n", - "2018-08-20 22:15:24,196 : INFO : w_error: 1047665.3804627837\n", - "2018-08-20 22:15:24,204 : INFO : w_error: 1047235.9988371491\n", - "2018-08-20 22:15:24,207 : INFO : w_error: 1046832.1737272177\n", - "2018-08-20 22:15:24,211 : INFO : w_error: 1046452.970740819\n", - "2018-08-20 22:15:24,219 : INFO : w_error: 1046094.0422380052\n", - "2018-08-20 22:15:24,222 : INFO : w_error: 1045753.8434798977\n", - "2018-08-20 22:15:24,226 : INFO : w_error: 1045431.0670550654\n", - "2018-08-20 22:15:24,228 : INFO : w_error: 1045125.6449549346\n", - "2018-08-20 22:15:24,235 : INFO : w_error: 1044835.281707322\n", - "2018-08-20 22:15:24,238 : INFO : w_error: 1044559.003901511\n", - "2018-08-20 22:15:24,241 : INFO : w_error: 1044295.9426706597\n", - "2018-08-20 22:15:24,244 : INFO : w_error: 1044045.9285662061\n", - "2018-08-20 22:15:24,248 : INFO : w_error: 1043808.7970637546\n", - "2018-08-20 22:15:24,251 : INFO : w_error: 1043582.7109886903\n", - "2018-08-20 22:15:24,254 : INFO : w_error: 1043366.9643033193\n", - "2018-08-20 22:15:24,263 : INFO : w_error: 1043160.9585288618\n", - "2018-08-20 22:15:24,266 : INFO : w_error: 1042964.1438447876\n", - "2018-08-20 22:15:24,269 : INFO : w_error: 1042776.0120289348\n", - "2018-08-20 22:15:24,272 : INFO : w_error: 1042596.091452744\n", - "2018-08-20 22:15:24,276 : INFO : w_error: 1042423.9432487075\n", - "2018-08-20 22:15:24,279 : INFO : w_error: 1042259.1581987607\n", - "2018-08-20 22:15:24,285 : INFO : w_error: 1042101.5438366913\n", - "2018-08-20 22:15:24,288 : INFO : w_error: 1041950.5711721119\n", - "2018-08-20 22:15:24,290 : INFO : w_error: 1041805.8915701783\n", - "2018-08-20 22:15:24,293 : INFO : w_error: 1041667.1853462582\n", - "2018-08-20 22:15:24,298 : INFO : w_error: 1041534.1552983838\n", - "2018-08-20 22:15:24,303 : INFO : w_error: 1041406.5861844597\n", - "2018-08-20 22:15:24,306 : INFO : w_error: 1041284.254338951\n", - "2018-08-20 22:15:24,309 : INFO : w_error: 1041166.8169666711\n", - "2018-08-20 22:15:24,312 : INFO : w_error: 1041054.0409667041\n", - "2018-08-20 22:15:24,316 : INFO : w_error: 1040945.70739374\n", - "2018-08-20 22:15:24,322 : INFO : Loss (no outliers): 1442.803948351552\tLoss (with outliers): 1442.803948351552\n" + "2018-09-25 00:56:44,027 : INFO : Loss (no outliers): 2009.7411222788025\tLoss (with outliers): 2009.7411222788025\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.3 s, sys: 1.91 s, total: 3.22 s\n", - "Wall time: 1.63 s\n" + "CPU times: user 413 ms, sys: 0 ns, total: 413 ms\n", + "Wall time: 415 ms\n" ] } ], @@ -2472,988 +1206,27 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 49, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:24,333 : INFO : h_r_error: 1641779.1711565189\n", - "2018-08-20 22:15:24,335 : INFO : h_r_error: 118028.68383364937\n", - "2018-08-20 22:15:24,337 : INFO : h_r_error: 105616.73503369163\n", - "2018-08-20 22:15:24,339 : INFO : h_r_error: 105376.48023111676\n", - "2018-08-20 22:15:24,344 : INFO : h_r_error: 105376.48023111676\n", - "2018-08-20 22:15:24,345 : INFO : h_r_error: 88296.81129174746\n", - "2018-08-20 22:15:24,347 : INFO : h_r_error: 75598.49700209008\n", - "2018-08-20 22:15:24,350 : INFO : h_r_error: 75202.00810070324\n", - "2018-08-20 22:15:24,352 : INFO : h_r_error: 75202.00810070324\n", - "2018-08-20 22:15:24,353 : INFO : h_r_error: 40896.39022296863\n", - "2018-08-20 22:15:24,354 : INFO : h_r_error: 32494.67090191547\n", - "2018-08-20 22:15:24,356 : INFO : h_r_error: 32239.868252556797\n", - "2018-08-20 22:15:24,366 : INFO : h_r_error: 32239.868252556797\n", - "2018-08-20 22:15:24,368 : INFO : h_r_error: 44930.159607806534\n", - "2018-08-20 22:15:24,370 : INFO : h_r_error: 36557.7492240496\n", - "2018-08-20 22:15:24,371 : INFO : h_r_error: 35312.9484972738\n", - "2018-08-20 22:15:24,373 : INFO : h_r_error: 35184.5687269612\n", - "2018-08-20 22:15:24,380 : INFO : h_r_error: 35184.5687269612\n", - "2018-08-20 22:15:24,383 : INFO : h_r_error: 55889.096964695964\n", - "2018-08-20 22:15:24,386 : INFO : h_r_error: 45781.767631924326\n", - "2018-08-20 22:15:24,387 : INFO : h_r_error: 44138.99627893232\n", - "2018-08-20 22:15:24,388 : INFO : h_r_error: 43952.375976439565\n", - "2018-08-20 22:15:24,390 : INFO : h_r_error: 43952.375976439565\n", - "2018-08-20 22:15:24,391 : INFO : h_r_error: 78794.06131625794\n", - "2018-08-20 22:15:24,393 : INFO : h_r_error: 67664.25272873385\n", - "2018-08-20 22:15:24,394 : INFO : h_r_error: 65282.3178957933\n", - "2018-08-20 22:15:24,395 : INFO : h_r_error: 65014.955716781675\n", - "2018-08-20 22:15:24,397 : INFO : h_r_error: 65014.955716781675\n", - "2018-08-20 22:15:24,398 : INFO : h_r_error: 115824.20033686075\n", - "2018-08-20 22:15:24,399 : INFO : h_r_error: 97829.78400236492\n", - "2018-08-20 22:15:24,400 : INFO : h_r_error: 94585.44160249463\n", - "2018-08-20 22:15:24,402 : INFO : h_r_error: 94376.15747523532\n", - "2018-08-20 22:15:24,403 : INFO : h_r_error: 94376.15747523532\n", - "2018-08-20 22:15:24,405 : INFO : h_r_error: 114744.06992294117\n", - "2018-08-20 22:15:24,406 : INFO : h_r_error: 89437.25014346528\n", - "2018-08-20 22:15:24,408 : INFO : h_r_error: 85408.47209298614\n", - "2018-08-20 22:15:24,409 : INFO : h_r_error: 85172.43982700528\n", - "2018-08-20 22:15:24,411 : INFO : h_r_error: 85172.43982700528\n", - "2018-08-20 22:15:24,413 : INFO : h_r_error: 129231.1344055495\n", - "2018-08-20 22:15:24,414 : INFO : h_r_error: 95296.99614410217\n", - "2018-08-20 22:15:24,415 : INFO : h_r_error: 90493.41027642736\n", - "2018-08-20 22:15:24,417 : INFO : h_r_error: 90223.42598619989\n", - "2018-08-20 22:15:24,418 : INFO : h_r_error: 90223.42598619989\n", - "2018-08-20 22:15:24,420 : INFO : h_r_error: 181731.42136797323\n", - "2018-08-20 22:15:24,421 : INFO : h_r_error: 138104.21628540446\n", - "2018-08-20 22:15:24,422 : INFO : h_r_error: 132501.6357796059\n", - "2018-08-20 22:15:24,424 : INFO : h_r_error: 132152.80413014264\n", - "2018-08-20 22:15:24,426 : INFO : h_r_error: 132152.80413014264\n", - "2018-08-20 22:15:24,427 : INFO : h_r_error: 192166.82022383242\n", - "2018-08-20 22:15:24,428 : INFO : h_r_error: 148475.97120526063\n", - "2018-08-20 22:15:24,429 : INFO : h_r_error: 142884.97822597128\n", - "2018-08-20 22:15:24,430 : INFO : h_r_error: 142515.8680913862\n", - "2018-08-20 22:15:24,446 : INFO : h_r_error: 142515.8680913862\n", - "2018-08-20 22:15:24,448 : INFO : h_r_error: 160074.94464316766\n", - "2018-08-20 22:15:24,449 : INFO : h_r_error: 118917.36421921203\n", - "2018-08-20 22:15:24,451 : INFO : h_r_error: 113071.95801308611\n", - "2018-08-20 22:15:24,452 : INFO : h_r_error: 112649.3520833024\n", - "2018-08-20 22:15:24,455 : INFO : h_r_error: 112649.3520833024\n", - "2018-08-20 22:15:24,456 : INFO : h_r_error: 109774.25286602361\n", - "2018-08-20 22:15:24,458 : INFO : h_r_error: 70630.6630087\n", - "2018-08-20 22:15:24,459 : INFO : h_r_error: 65862.60865989806\n", - "2018-08-20 22:15:24,461 : INFO : h_r_error: 65236.19068167282\n", - "2018-08-20 22:15:24,463 : INFO : h_r_error: 65236.19068167282\n", - "2018-08-20 22:15:24,465 : INFO : h_r_error: 97716.73332566798\n", - "2018-08-20 22:15:24,466 : INFO : h_r_error: 45699.60910087229\n", - "2018-08-20 22:15:24,469 : INFO : h_r_error: 39362.1075187331\n", - "2018-08-20 22:15:24,473 : INFO : h_r_error: 38607.62156919656\n", - "2018-08-20 22:15:24,475 : INFO : h_r_error: 38542.879127641194\n", - "2018-08-20 22:15:24,480 : INFO : h_r_error: 38542.879127641194\n", - "2018-08-20 22:15:24,482 : INFO : h_r_error: 108334.77768707108\n", - "2018-08-20 22:15:24,483 : INFO : h_r_error: 45414.682916660764\n", - "2018-08-20 22:15:24,485 : INFO : h_r_error: 37024.4176799266\n", - "2018-08-20 22:15:24,487 : INFO : h_r_error: 36458.157875334204\n", - "2018-08-20 22:15:24,489 : INFO : h_r_error: 36421.29482582344\n", - "2018-08-20 22:15:24,491 : INFO : h_r_error: 36421.29482582344\n", - "2018-08-20 22:15:24,493 : INFO : h_r_error: 136592.18547993482\n", - "2018-08-20 22:15:24,495 : INFO : h_r_error: 77617.26173564204\n", - "2018-08-20 22:15:24,497 : INFO : h_r_error: 68748.33469269038\n", - "2018-08-20 22:15:24,499 : INFO : h_r_error: 68271.3071049404\n", - "2018-08-20 22:15:24,503 : INFO : h_r_error: 68271.3071049404\n", - "2018-08-20 22:15:24,507 : INFO : h_r_error: 164620.9918105678\n", - "2018-08-20 22:15:24,509 : INFO : h_r_error: 107083.22841187923\n", - "2018-08-20 22:15:24,510 : INFO : h_r_error: 100170.32759387848\n", - "2018-08-20 22:15:24,511 : INFO : h_r_error: 99456.89058438297\n", - "2018-08-20 22:15:24,514 : INFO : h_r_error: 99456.89058438297\n", - "2018-08-20 22:15:24,515 : INFO : h_r_error: 166146.2986450904\n", - "2018-08-20 22:15:24,517 : INFO : h_r_error: 111973.73165621341\n", - "2018-08-20 22:15:24,519 : INFO : h_r_error: 107003.97112908355\n", - "2018-08-20 22:15:24,520 : INFO : h_r_error: 106511.38556261087\n", - "2018-08-20 22:15:24,522 : INFO : h_r_error: 106511.38556261087\n", - "2018-08-20 22:15:24,524 : INFO : h_r_error: 133504.83113404203\n", - "2018-08-20 22:15:24,525 : INFO : h_r_error: 83253.38023127089\n", - "2018-08-20 22:15:24,527 : INFO : h_r_error: 80084.52684233678\n", - "2018-08-20 22:15:24,529 : INFO : h_r_error: 79823.1245934147\n", - "2018-08-20 22:15:24,532 : INFO : h_r_error: 79823.1245934147\n", - "2018-08-20 22:15:24,534 : INFO : h_r_error: 90889.69640460412\n", - "2018-08-20 22:15:24,536 : INFO : h_r_error: 46853.105489898364\n", - "2018-08-20 22:15:24,537 : INFO : h_r_error: 45133.70200421212\n", - "2018-08-20 22:15:24,540 : INFO : h_r_error: 45133.70200421212\n", - "2018-08-20 22:15:24,541 : INFO : h_r_error: 84327.47728746234\n", - "2018-08-20 22:15:24,543 : INFO : h_r_error: 48406.07253927901\n", - "2018-08-20 22:15:24,545 : INFO : h_r_error: 47435.009425067314\n", - "2018-08-20 22:15:24,547 : INFO : h_r_error: 47435.009425067314\n", - "2018-08-20 22:15:24,551 : INFO : h_r_error: 82409.89836879147\n", - "2018-08-20 22:15:24,554 : INFO : h_r_error: 52766.03488097161\n", - "2018-08-20 22:15:24,555 : INFO : h_r_error: 51394.05480640483\n", - "2018-08-20 22:15:24,556 : INFO : h_r_error: 51304.428858608226\n", - "2018-08-20 22:15:24,558 : INFO : h_r_error: 51304.428858608226\n", - "2018-08-20 22:15:24,560 : INFO : h_r_error: 106935.22488025115\n", - "2018-08-20 22:15:24,562 : INFO : h_r_error: 80237.15440778974\n", - "2018-08-20 22:15:24,576 : INFO : h_r_error: 79209.7234310819\n", - "2018-08-20 22:15:24,580 : INFO : h_r_error: 79209.7234310819\n", - "2018-08-20 22:15:24,582 : INFO : h_r_error: 136751.76043962757\n", - "2018-08-20 22:15:24,586 : INFO : h_r_error: 111108.69335643484\n", - "2018-08-20 22:15:24,589 : INFO : h_r_error: 110470.36624680427\n", - "2018-08-20 22:15:24,595 : INFO : h_r_error: 110470.36624680427\n", - "2018-08-20 22:15:24,599 : INFO : h_r_error: 132718.3075324984\n", - "2018-08-20 22:15:24,603 : INFO : h_r_error: 109060.80819403294\n", - "2018-08-20 22:15:24,607 : INFO : h_r_error: 108828.29185697387\n", - "2018-08-20 22:15:24,612 : INFO : h_r_error: 108828.29185697387\n", - "2018-08-20 22:15:24,613 : INFO : h_r_error: 130349.3102692345\n", - "2018-08-20 22:15:24,615 : INFO : h_r_error: 106333.5621825021\n", - "2018-08-20 22:15:24,616 : INFO : h_r_error: 106021.90676445854\n", - "2018-08-20 22:15:24,618 : INFO : h_r_error: 106021.90676445854\n", - "2018-08-20 22:15:24,619 : INFO : h_r_error: 153480.24107840055\n", - "2018-08-20 22:15:24,620 : INFO : h_r_error: 129031.03040291351\n", - "2018-08-20 22:15:24,621 : INFO : h_r_error: 128846.01926523249\n", - "2018-08-20 22:15:24,622 : INFO : h_r_error: 128846.01926523249\n", - "2018-08-20 22:15:24,638 : INFO : h_r_error: 141576.1910210185\n", - "2018-08-20 22:15:24,640 : INFO : h_r_error: 119978.94995744752\n", - "2018-08-20 22:15:24,645 : INFO : h_r_error: 119825.8687034397\n", - "2018-08-20 22:15:24,654 : INFO : h_r_error: 119825.8687034397\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:24,658 : INFO : h_r_error: 134685.80489629053\n", - "2018-08-20 22:15:24,661 : INFO : h_r_error: 113538.95669792594\n", - "2018-08-20 22:15:24,665 : INFO : h_r_error: 113353.41144229252\n", - "2018-08-20 22:15:24,669 : INFO : h_r_error: 113353.41144229252\n", - "2018-08-20 22:15:24,671 : INFO : h_r_error: 122345.42442740352\n", - "2018-08-20 22:15:24,672 : INFO : h_r_error: 101206.04117840753\n", - "2018-08-20 22:15:24,673 : INFO : h_r_error: 100993.62587045786\n", - "2018-08-20 22:15:24,674 : INFO : h_r_error: 100993.62587045786\n", - "2018-08-20 22:15:24,676 : INFO : h_r_error: 116266.06525752878\n", - "2018-08-20 22:15:24,677 : INFO : h_r_error: 96812.1429100881\n", - "2018-08-20 22:15:24,683 : INFO : h_r_error: 96671.85729303533\n", - "2018-08-20 22:15:24,686 : INFO : h_r_error: 96671.85729303533\n", - "2018-08-20 22:15:24,687 : INFO : h_r_error: 124976.11247413699\n", - "2018-08-20 22:15:24,689 : INFO : h_r_error: 105696.72347766797\n", - "2018-08-20 22:15:24,690 : INFO : h_r_error: 105516.7395837665\n", - "2018-08-20 22:15:24,691 : INFO : h_r_error: 105516.7395837665\n", - "2018-08-20 22:15:24,693 : INFO : h_r_error: 146470.2640249488\n", - "2018-08-20 22:15:24,694 : INFO : h_r_error: 127731.6923564533\n", - "2018-08-20 22:15:24,695 : INFO : h_r_error: 127533.0140907293\n", - "2018-08-20 22:15:24,696 : INFO : h_r_error: 127533.0140907293\n", - "2018-08-20 22:15:24,698 : INFO : h_r_error: 116516.53968187683\n", - "2018-08-20 22:15:24,729 : INFO : h_r_error: 98550.36989787972\n", - "2018-08-20 22:15:24,731 : INFO : h_r_error: 98348.73507292234\n", - "2018-08-20 22:15:24,734 : INFO : h_r_error: 98348.73507292234\n", - "2018-08-20 22:15:24,736 : INFO : h_r_error: 83893.40980768634\n", - "2018-08-20 22:15:24,738 : INFO : h_r_error: 70661.46051854167\n", - "2018-08-20 22:15:24,743 : INFO : h_r_error: 70518.89065328502\n", - "2018-08-20 22:15:24,746 : INFO : h_r_error: 70518.89065328502\n", - "2018-08-20 22:15:24,747 : INFO : h_r_error: 84886.38848637952\n", - "2018-08-20 22:15:24,749 : INFO : h_r_error: 75403.0417830475\n", - "2018-08-20 22:15:24,752 : INFO : h_r_error: 75308.00746994432\n", - "2018-08-20 22:15:24,754 : INFO : h_r_error: 75308.00746994432\n", - "2018-08-20 22:15:24,761 : INFO : h_r_error: 85316.80762722554\n", - "2018-08-20 22:15:24,765 : INFO : h_r_error: 77251.27417314934\n", - "2018-08-20 22:15:24,773 : INFO : h_r_error: 77143.82662566137\n", - "2018-08-20 22:15:24,779 : INFO : h_r_error: 77143.82662566137\n", - "2018-08-20 22:15:24,783 : INFO : h_r_error: 73553.39387109454\n", - "2018-08-20 22:15:24,788 : INFO : h_r_error: 66152.79219166574\n", - "2018-08-20 22:15:24,792 : INFO : h_r_error: 65835.47220932409\n", - "2018-08-20 22:15:24,795 : INFO : h_r_error: 65835.47220932409\n", - "2018-08-20 22:15:24,796 : INFO : h_r_error: 50775.99401955186\n", - "2018-08-20 22:15:24,803 : INFO : h_r_error: 43830.36067690958\n", - "2018-08-20 22:15:24,805 : INFO : h_r_error: 43195.603195800686\n", - "2018-08-20 22:15:24,807 : INFO : h_r_error: 43103.14299130767\n", - "2018-08-20 22:15:24,810 : INFO : h_r_error: 43103.14299130767\n", - "2018-08-20 22:15:24,818 : INFO : h_r_error: 63341.13752266902\n", - "2018-08-20 22:15:24,822 : INFO : h_r_error: 53924.846649871244\n", - "2018-08-20 22:15:24,824 : INFO : h_r_error: 52977.50569965488\n", - "2018-08-20 22:15:24,827 : INFO : h_r_error: 52861.032501429065\n", - "2018-08-20 22:15:24,829 : INFO : h_r_error: 52861.032501429065\n", - "2018-08-20 22:15:24,830 : INFO : h_r_error: 82441.4874200672\n", - "2018-08-20 22:15:24,832 : INFO : h_r_error: 70092.19085069446\n", - "2018-08-20 22:15:24,833 : INFO : h_r_error: 68857.66881113088\n", - "2018-08-20 22:15:24,835 : INFO : h_r_error: 68719.78360373998\n", - "2018-08-20 22:15:24,837 : INFO : h_r_error: 68719.78360373998\n", - "2018-08-20 22:15:24,839 : INFO : h_r_error: 116068.82475570982\n", - "2018-08-20 22:15:24,841 : INFO : h_r_error: 98936.2974353597\n", - "2018-08-20 22:15:24,844 : INFO : h_r_error: 97280.67673289865\n", - "2018-08-20 22:15:24,846 : INFO : h_r_error: 97074.42498967852\n", - "2018-08-20 22:15:24,849 : INFO : h_r_error: 97074.42498967852\n", - "2018-08-20 22:15:24,851 : INFO : h_r_error: 193771.07280092753\n", - "2018-08-20 22:15:24,853 : INFO : h_r_error: 167714.14690177588\n", - "2018-08-20 22:15:24,855 : INFO : h_r_error: 165261.32276745175\n", - "2018-08-20 22:15:24,857 : INFO : h_r_error: 165026.16476628813\n", - "2018-08-20 22:15:24,860 : INFO : h_r_error: 165026.16476628813\n", - "2018-08-20 22:15:24,862 : INFO : h_r_error: 216721.62053218845\n", - "2018-08-20 22:15:24,867 : INFO : h_r_error: 183723.35667939033\n", - "2018-08-20 22:15:24,868 : INFO : h_r_error: 180291.11958318867\n", - "2018-08-20 22:15:24,871 : INFO : h_r_error: 179885.7411508071\n", - "2018-08-20 22:15:24,875 : INFO : h_r_error: 179885.7411508071\n", - "2018-08-20 22:15:24,877 : INFO : h_r_error: 177050.13720251067\n", - "2018-08-20 22:15:24,880 : INFO : h_r_error: 143961.610710226\n", - "2018-08-20 22:15:24,882 : INFO : h_r_error: 139724.63504639387\n", - "2018-08-20 22:15:24,884 : INFO : h_r_error: 139082.44374033014\n", - "2018-08-20 22:15:24,886 : INFO : h_r_error: 139082.44374033014\n", - "2018-08-20 22:15:24,888 : INFO : h_r_error: 147607.24267108657\n", - "2018-08-20 22:15:24,890 : INFO : h_r_error: 120018.73888155147\n", - "2018-08-20 22:15:24,892 : INFO : h_r_error: 116287.06398890018\n", - "2018-08-20 22:15:24,894 : INFO : h_r_error: 115522.0139159181\n", - "2018-08-20 22:15:24,896 : INFO : h_r_error: 115334.43041489228\n", - "2018-08-20 22:15:24,899 : INFO : h_r_error: 115334.43041489228\n", - "2018-08-20 22:15:24,901 : INFO : h_r_error: 118365.81663670983\n", - "2018-08-20 22:15:24,902 : INFO : h_r_error: 93132.88915954153\n", - "2018-08-20 22:15:24,903 : INFO : h_r_error: 89122.17715497369\n", - "2018-08-20 22:15:24,905 : INFO : h_r_error: 88231.49030112062\n", - "2018-08-20 22:15:24,906 : INFO : h_r_error: 88057.2036447887\n", - "2018-08-20 22:15:24,908 : INFO : h_r_error: 88057.2036447887\n", - "2018-08-20 22:15:24,910 : INFO : h_r_error: 112031.45144655604\n", - "2018-08-20 22:15:24,913 : INFO : h_r_error: 85282.34307749954\n", - "2018-08-20 22:15:24,917 : INFO : h_r_error: 81608.4108547704\n", - "2018-08-20 22:15:24,920 : INFO : h_r_error: 81068.52518153662\n", - "2018-08-20 22:15:24,922 : INFO : h_r_error: 81068.52518153662\n", - "2018-08-20 22:15:24,924 : INFO : h_r_error: 113120.94754019415\n", - "2018-08-20 22:15:24,926 : INFO : h_r_error: 77189.01208482559\n", - "2018-08-20 22:15:24,927 : INFO : h_r_error: 73025.66214248759\n", - "2018-08-20 22:15:24,929 : INFO : h_r_error: 72376.99859107213\n", - "2018-08-20 22:15:24,931 : INFO : h_r_error: 72280.48483968731\n", - "2018-08-20 22:15:24,934 : INFO : h_r_error: 72280.48483968731\n", - "2018-08-20 22:15:24,936 : INFO : h_r_error: 110118.08448968553\n", - "2018-08-20 22:15:24,947 : INFO : h_r_error: 63147.328257194524\n", - "2018-08-20 22:15:24,956 : INFO : h_r_error: 57647.812476420404\n", - "2018-08-20 22:15:24,958 : INFO : h_r_error: 56870.72573548426\n", - "2018-08-20 22:15:24,960 : INFO : h_r_error: 56778.257092080545\n", - "2018-08-20 22:15:24,963 : INFO : h_r_error: 56778.257092080545\n", - "2018-08-20 22:15:24,965 : INFO : h_r_error: 105876.5962159224\n", - "2018-08-20 22:15:24,967 : INFO : h_r_error: 51779.48545739382\n", - "2018-08-20 22:15:24,969 : INFO : h_r_error: 45563.46975869903\n", - "2018-08-20 22:15:24,970 : INFO : h_r_error: 44990.10718859484\n", - "2018-08-20 22:15:24,973 : INFO : h_r_error: 44990.10718859484\n", - "2018-08-20 22:15:24,975 : INFO : h_r_error: 81356.83817164302\n", - "2018-08-20 22:15:24,977 : INFO : h_r_error: 30402.09748446639\n", - "2018-08-20 22:15:24,978 : INFO : h_r_error: 27546.96495755806\n", - "2018-08-20 22:15:24,980 : INFO : h_r_error: 27213.517074651434\n", - "2018-08-20 22:15:24,981 : INFO : h_r_error: 27181.21158620719\n", - "2018-08-20 22:15:24,983 : INFO : h_r_error: 27181.21158620719\n", - "2018-08-20 22:15:24,985 : INFO : h_r_error: 84928.95919387031\n", - "2018-08-20 22:15:24,987 : INFO : h_r_error: 32417.693628730725\n", - "2018-08-20 22:15:24,988 : INFO : h_r_error: 29007.221465319304\n", - "2018-08-20 22:15:24,990 : INFO : h_r_error: 28741.252041050557\n", - "2018-08-20 22:15:24,992 : INFO : h_r_error: 28741.252041050557\n", - "2018-08-20 22:15:24,994 : INFO : h_r_error: 93950.90077407988\n", - "2018-08-20 22:15:24,998 : INFO : h_r_error: 56249.61615828003\n", - "2018-08-20 22:15:25,000 : INFO : h_r_error: 52924.363341441735\n", - "2018-08-20 22:15:25,002 : INFO : h_r_error: 52751.541989180885\n", - "2018-08-20 22:15:25,004 : INFO : h_r_error: 52751.541989180885\n", - "2018-08-20 22:15:25,005 : INFO : h_r_error: 75506.66154775783\n", - "2018-08-20 22:15:25,006 : INFO : h_r_error: 57242.30005666704\n", - "2018-08-20 22:15:25,007 : INFO : h_r_error: 55345.64041769668\n", - "2018-08-20 22:15:25,008 : INFO : h_r_error: 55186.16186036283\n", - "2018-08-20 22:15:25,010 : INFO : h_r_error: 55186.16186036283\n", - "2018-08-20 22:15:25,012 : INFO : h_r_error: 55186.16186036283\n", - "2018-08-20 22:15:25,013 : INFO : h_r_error: 65626.41064582833\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:25,015 : INFO : h_r_error: 58344.200783367785\n", - "2018-08-20 22:15:25,020 : INFO : h_r_error: 56997.1979143896\n", - "2018-08-20 22:15:25,023 : INFO : h_r_error: 56864.86772938072\n", - "2018-08-20 22:15:25,025 : INFO : h_r_error: 56864.86772938072\n", - "2018-08-20 22:15:25,031 : INFO : h_r_error: 55804.84516396389\n", - "2018-08-20 22:15:25,032 : INFO : h_r_error: 49720.76312800324\n", - "2018-08-20 22:15:25,034 : INFO : h_r_error: 48669.3293093283\n", - "2018-08-20 22:15:25,036 : INFO : h_r_error: 48566.79973146436\n", - "2018-08-20 22:15:25,039 : INFO : h_r_error: 48566.79973146436\n", - "2018-08-20 22:15:25,042 : INFO : h_r_error: 50232.78247908833\n", - "2018-08-20 22:15:25,045 : INFO : h_r_error: 43460.18499959944\n", - "2018-08-20 22:15:25,047 : INFO : h_r_error: 42583.76639804095\n", - "2018-08-20 22:15:25,049 : INFO : h_r_error: 42583.76639804095\n", - "2018-08-20 22:15:25,051 : INFO : h_r_error: 70689.83802178742\n", - "2018-08-20 22:15:25,053 : INFO : h_r_error: 54799.329874802635\n", - "2018-08-20 22:15:25,057 : INFO : h_r_error: 53914.8316747843\n", - "2018-08-20 22:15:25,059 : INFO : h_r_error: 53848.05269206547\n", - "2018-08-20 22:15:25,062 : INFO : h_r_error: 53848.05269206547\n", - "2018-08-20 22:15:25,064 : INFO : h_r_error: 108449.9769402526\n", - "2018-08-20 22:15:25,065 : INFO : h_r_error: 75225.82220714819\n", - "2018-08-20 22:15:25,067 : INFO : h_r_error: 72609.7918222791\n", - "2018-08-20 22:15:25,069 : INFO : h_r_error: 72378.78725369519\n", - "2018-08-20 22:15:25,073 : INFO : h_r_error: 72378.78725369519\n", - "2018-08-20 22:15:25,075 : INFO : h_r_error: 127164.30656219537\n", - "2018-08-20 22:15:25,077 : INFO : h_r_error: 84579.9832644276\n", - "2018-08-20 22:15:25,079 : INFO : h_r_error: 80803.72888974627\n", - "2018-08-20 22:15:25,083 : INFO : h_r_error: 80503.5077458557\n", - "2018-08-20 22:15:25,086 : INFO : h_r_error: 80503.5077458557\n", - "2018-08-20 22:15:25,088 : INFO : h_r_error: 174296.9674397971\n", - "2018-08-20 22:15:25,091 : INFO : h_r_error: 115868.15218188912\n", - "2018-08-20 22:15:25,094 : INFO : h_r_error: 107516.90754969341\n", - "2018-08-20 22:15:25,096 : INFO : h_r_error: 106698.60961349803\n", - "2018-08-20 22:15:25,099 : INFO : h_r_error: 106698.60961349803\n", - "2018-08-20 22:15:25,101 : INFO : h_r_error: 188764.71900915547\n", - "2018-08-20 22:15:25,103 : INFO : h_r_error: 120666.83609976483\n", - "2018-08-20 22:15:25,105 : INFO : h_r_error: 109728.74724218929\n", - "2018-08-20 22:15:25,107 : INFO : h_r_error: 108173.7827542977\n", - "2018-08-20 22:15:25,110 : INFO : h_r_error: 108003.53821445782\n", - "2018-08-20 22:15:25,112 : INFO : h_r_error: 108003.53821445782\n", - "2018-08-20 22:15:25,115 : INFO : h_r_error: 182992.56219648672\n", - "2018-08-20 22:15:25,117 : INFO : h_r_error: 122929.88482513907\n", - "2018-08-20 22:15:25,118 : INFO : h_r_error: 110308.97418968279\n", - "2018-08-20 22:15:25,120 : INFO : h_r_error: 108628.82457256186\n", - "2018-08-20 22:15:25,122 : INFO : h_r_error: 108461.95196544233\n", - "2018-08-20 22:15:25,125 : INFO : h_r_error: 108461.95196544233\n", - "2018-08-20 22:15:25,128 : INFO : h_r_error: 205178.2828927736\n", - "2018-08-20 22:15:25,129 : INFO : h_r_error: 140432.38605897967\n", - "2018-08-20 22:15:25,131 : INFO : h_r_error: 125174.444634394\n", - "2018-08-20 22:15:25,132 : INFO : h_r_error: 122620.12145656205\n", - "2018-08-20 22:15:25,134 : INFO : h_r_error: 122338.49688463559\n", - "2018-08-20 22:15:25,175 : INFO : h_r_error: 122338.49688463559\n", - "2018-08-20 22:15:25,176 : INFO : h_r_error: 237457.227950885\n", - "2018-08-20 22:15:25,178 : INFO : h_r_error: 145906.50129498472\n", - "2018-08-20 22:15:25,184 : INFO : h_r_error: 131773.8442483685\n", - "2018-08-20 22:15:25,191 : INFO : h_r_error: 128797.05540441698\n", - "2018-08-20 22:15:25,196 : INFO : h_r_error: 128424.53309311552\n", - "2018-08-20 22:15:25,202 : INFO : h_r_error: 128424.53309311552\n", - "2018-08-20 22:15:25,206 : INFO : h_r_error: 275412.50869024196\n", - "2018-08-20 22:15:25,207 : INFO : h_r_error: 157717.62339863132\n", - "2018-08-20 22:15:25,208 : INFO : h_r_error: 141486.70261398956\n", - "2018-08-20 22:15:25,213 : INFO : h_r_error: 139232.8703803961\n", - "2018-08-20 22:15:25,215 : INFO : h_r_error: 138984.25764109177\n", - "2018-08-20 22:15:25,219 : INFO : h_r_error: 138984.25764109177\n", - "2018-08-20 22:15:25,222 : INFO : h_r_error: 300650.3506786036\n", - "2018-08-20 22:15:25,223 : INFO : h_r_error: 152930.16348874537\n", - "2018-08-20 22:15:25,224 : INFO : h_r_error: 133210.48458463038\n", - "2018-08-20 22:15:25,226 : INFO : h_r_error: 131243.98671354743\n", - "2018-08-20 22:15:25,228 : INFO : h_r_error: 131243.98671354743\n", - "2018-08-20 22:15:25,229 : INFO : h_r_error: 272716.1610946117\n", - "2018-08-20 22:15:25,230 : INFO : h_r_error: 107439.07817534365\n", - "2018-08-20 22:15:25,231 : INFO : h_r_error: 86009.70672732047\n", - "2018-08-20 22:15:25,232 : INFO : h_r_error: 83692.29377563702\n", - "2018-08-20 22:15:25,233 : INFO : h_r_error: 83581.00674929329\n", - "2018-08-20 22:15:25,234 : INFO : h_r_error: 83581.00674929329\n", - "2018-08-20 22:15:25,236 : INFO : h_r_error: 254441.12230500238\n", - "2018-08-20 22:15:25,237 : INFO : h_r_error: 72013.57418846728\n", - "2018-08-20 22:15:25,238 : INFO : h_r_error: 48278.794818697526\n", - "2018-08-20 22:15:25,239 : INFO : h_r_error: 45514.994923329155\n", - "2018-08-20 22:15:25,240 : INFO : h_r_error: 45241.60017170514\n", - "2018-08-20 22:15:25,241 : INFO : h_r_error: 45179.15646442517\n", - "2018-08-20 22:15:25,243 : INFO : h_r_error: 45179.15646442517\n", - "2018-08-20 22:15:25,244 : INFO : h_r_error: 209933.23754358318\n", - "2018-08-20 22:15:25,245 : INFO : h_r_error: 41462.79385360789\n", - "2018-08-20 22:15:25,246 : INFO : h_r_error: 17256.968824554147\n", - "2018-08-20 22:15:25,247 : INFO : h_r_error: 14469.27786394224\n", - "2018-08-20 22:15:25,249 : INFO : h_r_error: 14277.901689417691\n", - "2018-08-20 22:15:25,250 : INFO : h_r_error: 14223.800438013002\n", - "2018-08-20 22:15:25,252 : INFO : h_r_error: 14223.800438013002\n", - "2018-08-20 22:15:25,258 : INFO : h_r_error: 176449.76277944492\n", - "2018-08-20 22:15:25,260 : INFO : h_r_error: 40292.9864638591\n", - "2018-08-20 22:15:25,265 : INFO : h_r_error: 17918.368196309668\n", - "2018-08-20 22:15:25,267 : INFO : h_r_error: 15750.866831518895\n", - "2018-08-20 22:15:25,268 : INFO : h_r_error: 15653.663346471416\n", - "2018-08-20 22:15:25,270 : INFO : h_r_error: 15653.663346471416\n", - "2018-08-20 22:15:25,272 : INFO : h_r_error: 164832.90258332962\n", - "2018-08-20 22:15:25,273 : INFO : h_r_error: 48424.8934538084\n", - "2018-08-20 22:15:25,274 : INFO : h_r_error: 27926.21987864753\n", - "2018-08-20 22:15:25,277 : INFO : h_r_error: 25891.390224328195\n", - "2018-08-20 22:15:25,278 : INFO : h_r_error: 25771.69994539886\n", - "2018-08-20 22:15:25,287 : INFO : h_r_error: 25771.69994539886\n", - "2018-08-20 22:15:25,288 : INFO : h_r_error: 191912.09950543175\n", - "2018-08-20 22:15:25,290 : INFO : h_r_error: 83090.77071204718\n", - "2018-08-20 22:15:25,292 : INFO : h_r_error: 64829.64668925761\n", - "2018-08-20 22:15:25,293 : INFO : h_r_error: 62052.54176189226\n", - "2018-08-20 22:15:25,295 : INFO : h_r_error: 61519.16586221018\n", - "2018-08-20 22:15:25,296 : INFO : h_r_error: 61519.16586221018\n", - "2018-08-20 22:15:25,297 : INFO : h_r_error: 169908.2691991225\n", - "2018-08-20 22:15:25,298 : INFO : h_r_error: 82613.65835938942\n", - "2018-08-20 22:15:25,299 : INFO : h_r_error: 65795.5031022393\n", - "2018-08-20 22:15:25,300 : INFO : h_r_error: 63315.871900203485\n", - "2018-08-20 22:15:25,301 : INFO : h_r_error: 62680.183691267695\n", - "2018-08-20 22:15:25,302 : INFO : h_r_error: 62433.146777739734\n", - "2018-08-20 22:15:25,303 : INFO : h_r_error: 62361.1412724006\n", - "2018-08-20 22:15:25,305 : INFO : h_r_error: 62361.1412724006\n", - "2018-08-20 22:15:25,306 : INFO : h_r_error: 175890.65408062979\n", - "2018-08-20 22:15:25,307 : INFO : h_r_error: 100326.13910647832\n", - "2018-08-20 22:15:25,308 : INFO : h_r_error: 83816.92879282839\n", - "2018-08-20 22:15:25,309 : INFO : h_r_error: 80521.84957427568\n", - "2018-08-20 22:15:25,310 : INFO : h_r_error: 80348.23286437501\n", - "2018-08-20 22:15:25,312 : INFO : h_r_error: 80348.23286437501\n", - "2018-08-20 22:15:25,313 : INFO : h_r_error: 139159.32181461973\n", - "2018-08-20 22:15:25,314 : INFO : h_r_error: 81428.8231076188\n", - "2018-08-20 22:15:25,316 : INFO : h_r_error: 69224.97642667429\n", - "2018-08-20 22:15:25,317 : INFO : h_r_error: 67175.86485018545\n", - "2018-08-20 22:15:25,319 : INFO : h_r_error: 66967.7538071723\n", - "2018-08-20 22:15:25,321 : INFO : h_r_error: 66967.7538071723\n", - "2018-08-20 22:15:25,322 : INFO : h_r_error: 117301.19850489953\n", - "2018-08-20 22:15:25,323 : INFO : h_r_error: 75610.89667328351\n", - "2018-08-20 22:15:25,338 : INFO : h_r_error: 66713.5978221731\n", - "2018-08-20 22:15:25,340 : INFO : h_r_error: 65738.56677856592\n", - "2018-08-20 22:15:25,342 : INFO : h_r_error: 65631.24459072924\n", - "2018-08-20 22:15:25,354 : INFO : h_r_error: 65631.24459072924\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:25,356 : INFO : h_r_error: 123923.46378028487\n", - "2018-08-20 22:15:25,357 : INFO : h_r_error: 91401.7915719367\n", - "2018-08-20 22:15:25,359 : INFO : h_r_error: 85191.39582673303\n", - "2018-08-20 22:15:25,361 : INFO : h_r_error: 84532.90616743342\n", - "2018-08-20 22:15:25,364 : INFO : h_r_error: 84532.90616743342\n", - "2018-08-20 22:15:25,365 : INFO : h_r_error: 111957.92974291708\n", - "2018-08-20 22:15:25,367 : INFO : h_r_error: 90673.10717043538\n", - "2018-08-20 22:15:25,368 : INFO : h_r_error: 86795.48708018255\n", - "2018-08-20 22:15:25,370 : INFO : h_r_error: 86359.0193082306\n", - "2018-08-20 22:15:25,372 : INFO : h_r_error: 86359.0193082306\n", - "2018-08-20 22:15:25,374 : INFO : h_r_error: 78116.94232451699\n", - "2018-08-20 22:15:25,389 : INFO : h_r_error: 64864.185952766085\n", - "2018-08-20 22:15:25,403 : INFO : h_r_error: 62627.20138398043\n", - "2018-08-20 22:15:25,406 : INFO : h_r_error: 62387.88488623845\n", - "2018-08-20 22:15:25,417 : INFO : h_r_error: 62387.88488623845\n", - "2018-08-20 22:15:25,418 : INFO : h_r_error: 49500.7753928332\n", - "2018-08-20 22:15:25,419 : INFO : h_r_error: 42087.7938861251\n", - "2018-08-20 22:15:25,420 : INFO : h_r_error: 40919.547444569056\n", - "2018-08-20 22:15:25,422 : INFO : h_r_error: 40797.118344441675\n", - "2018-08-20 22:15:25,423 : INFO : h_r_error: 40797.118344441675\n", - "2018-08-20 22:15:25,425 : INFO : h_r_error: 33133.46717145053\n", - "2018-08-20 22:15:25,427 : INFO : h_r_error: 28187.64325842917\n", - "2018-08-20 22:15:25,428 : INFO : h_r_error: 27457.524480600925\n", - "2018-08-20 22:15:25,431 : INFO : h_r_error: 27363.275532166514\n", - "2018-08-20 22:15:25,435 : INFO : h_r_error: 27363.275532166514\n", - "2018-08-20 22:15:25,437 : INFO : h_r_error: 36510.654255069974\n", - "2018-08-20 22:15:25,439 : INFO : h_r_error: 31872.903080009222\n", - "2018-08-20 22:15:25,440 : INFO : h_r_error: 31217.98548164642\n", - "2018-08-20 22:15:25,441 : INFO : h_r_error: 31085.040361192147\n", - "2018-08-20 22:15:25,443 : INFO : h_r_error: 31085.040361192147\n", - "2018-08-20 22:15:25,451 : INFO : h_r_error: 32717.539038069233\n", - "2018-08-20 22:15:25,453 : INFO : h_r_error: 29045.52539605171\n", - "2018-08-20 22:15:25,455 : INFO : h_r_error: 28541.895937532478\n", - "2018-08-20 22:15:25,456 : INFO : h_r_error: 28461.38852698747\n", - "2018-08-20 22:15:25,458 : INFO : h_r_error: 28461.38852698747\n", - "2018-08-20 22:15:25,461 : INFO : h_r_error: 39530.97336392132\n", - "2018-08-20 22:15:25,463 : INFO : h_r_error: 34691.260614155886\n", - "2018-08-20 22:15:25,466 : INFO : h_r_error: 34552.31704531897\n", - "2018-08-20 22:15:25,471 : INFO : h_r_error: 34552.31704531897\n", - "2018-08-20 22:15:25,473 : INFO : h_r_error: 51147.598069400025\n", - "2018-08-20 22:15:25,474 : INFO : h_r_error: 45291.99255837201\n", - "2018-08-20 22:15:25,475 : INFO : h_r_error: 45214.75981765208\n", - "2018-08-20 22:15:25,477 : INFO : h_r_error: 45214.75981765208\n", - "2018-08-20 22:15:25,478 : INFO : h_r_error: 46016.409572444805\n", - "2018-08-20 22:15:25,479 : INFO : h_r_error: 42227.240327538966\n", - "2018-08-20 22:15:25,480 : INFO : h_r_error: 42073.032303607266\n", - "2018-08-20 22:15:25,482 : INFO : h_r_error: 42073.032303607266\n", - "2018-08-20 22:15:25,483 : INFO : h_r_error: 27327.849983908094\n", - "2018-08-20 22:15:25,484 : INFO : h_r_error: 24777.228358306573\n", - "2018-08-20 22:15:25,485 : INFO : h_r_error: 24678.74334174119\n", - "2018-08-20 22:15:25,487 : INFO : h_r_error: 24678.74334174119\n", - "2018-08-20 22:15:25,489 : INFO : h_r_error: 28624.20791140836\n", - "2018-08-20 22:15:25,490 : INFO : h_r_error: 27007.89226208855\n", - "2018-08-20 22:15:25,491 : INFO : h_r_error: 26876.018329480405\n", - "2018-08-20 22:15:25,493 : INFO : h_r_error: 26876.018329480405\n", - "2018-08-20 22:15:25,495 : INFO : h_r_error: 47763.61557444882\n", - "2018-08-20 22:15:25,496 : INFO : h_r_error: 46266.525376300975\n", - "2018-08-20 22:15:25,497 : INFO : h_r_error: 46150.63200927735\n", - "2018-08-20 22:15:25,502 : INFO : h_r_error: 46150.63200927735\n", - "2018-08-20 22:15:25,508 : INFO : h_r_error: 44637.420943173915\n", - "2018-08-20 22:15:25,511 : INFO : h_r_error: 43081.22221036457\n", - "2018-08-20 22:15:25,514 : INFO : h_r_error: 43027.272112547\n", - "2018-08-20 22:15:25,517 : INFO : h_r_error: 43027.272112547\n", - "2018-08-20 22:15:25,521 : INFO : h_r_error: 34197.1970988031\n", - "2018-08-20 22:15:25,523 : INFO : h_r_error: 32315.875508897345\n", - "2018-08-20 22:15:25,524 : INFO : h_r_error: 32232.402902709637\n", - "2018-08-20 22:15:25,526 : INFO : h_r_error: 32232.402902709637\n", - "2018-08-20 22:15:25,527 : INFO : h_r_error: 70710.40068384536\n", - "2018-08-20 22:15:25,528 : INFO : h_r_error: 66320.87213896835\n", - "2018-08-20 22:15:25,530 : INFO : h_r_error: 66030.65492802096\n", - "2018-08-20 22:15:25,531 : INFO : h_r_error: 66030.65492802096\n", - "2018-08-20 22:15:25,532 : INFO : h_r_error: 105979.34962699868\n", - "2018-08-20 22:15:25,533 : INFO : h_r_error: 98450.75207245885\n", - "2018-08-20 22:15:25,534 : INFO : h_r_error: 98016.97785205963\n", - "2018-08-20 22:15:25,536 : INFO : h_r_error: 98016.97785205963\n", - "2018-08-20 22:15:25,537 : INFO : h_r_error: 129788.72803970131\n", - "2018-08-20 22:15:25,538 : INFO : h_r_error: 115670.68870158785\n", - "2018-08-20 22:15:25,539 : INFO : h_r_error: 114852.65676091662\n", - "2018-08-20 22:15:25,543 : INFO : h_r_error: 114852.65676091662\n", - "2018-08-20 22:15:25,548 : INFO : h_r_error: 191581.60964479294\n", - "2018-08-20 22:15:25,551 : INFO : h_r_error: 166679.56805275375\n", - "2018-08-20 22:15:25,552 : INFO : h_r_error: 164422.30428484583\n", - "2018-08-20 22:15:25,553 : INFO : h_r_error: 164252.21597441917\n", - "2018-08-20 22:15:25,555 : INFO : h_r_error: 164252.21597441917\n", - "2018-08-20 22:15:25,556 : INFO : h_r_error: 169298.78806069307\n", - "2018-08-20 22:15:25,558 : INFO : h_r_error: 134116.76721492808\n", - "2018-08-20 22:15:25,559 : INFO : h_r_error: 130643.93672028101\n", - "2018-08-20 22:15:25,561 : INFO : h_r_error: 130325.27402663218\n", - "2018-08-20 22:15:25,567 : INFO : h_r_error: 130325.27402663218\n", - "2018-08-20 22:15:25,570 : INFO : h_r_error: 129358.04990250216\n", - "2018-08-20 22:15:25,571 : INFO : h_r_error: 85641.97969093166\n", - "2018-08-20 22:15:25,573 : INFO : h_r_error: 80836.42049500016\n", - "2018-08-20 22:15:25,574 : INFO : h_r_error: 80486.27356277718\n", - "2018-08-20 22:15:25,576 : INFO : h_r_error: 80486.27356277718\n", - "2018-08-20 22:15:25,578 : INFO : h_r_error: 132531.56364256528\n", - "2018-08-20 22:15:25,579 : INFO : h_r_error: 74126.80733985627\n", - "2018-08-20 22:15:25,580 : INFO : h_r_error: 67086.79041257549\n", - "2018-08-20 22:15:25,581 : INFO : h_r_error: 66678.55813885953\n", - "2018-08-20 22:15:25,583 : INFO : h_r_error: 66678.55813885953\n", - "2018-08-20 22:15:25,584 : INFO : h_r_error: 133703.17505022846\n", - "2018-08-20 22:15:25,590 : INFO : h_r_error: 59914.01632175076\n", - "2018-08-20 22:15:25,593 : INFO : h_r_error: 51397.657582639105\n", - "2018-08-20 22:15:25,595 : INFO : h_r_error: 50837.980834824186\n", - "2018-08-20 22:15:25,598 : INFO : h_r_error: 50774.91197243039\n", - "2018-08-20 22:15:25,607 : INFO : h_r_error: 50774.91197243039\n", - "2018-08-20 22:15:25,612 : INFO : h_r_error: 109490.15716808783\n", - "2018-08-20 22:15:25,614 : INFO : h_r_error: 30568.832146996563\n", - "2018-08-20 22:15:25,615 : INFO : h_r_error: 22869.001662211296\n", - "2018-08-20 22:15:25,617 : INFO : h_r_error: 22525.15024264768\n", - "2018-08-20 22:15:25,620 : INFO : h_r_error: 22433.24745937775\n", - "2018-08-20 22:15:25,623 : INFO : h_r_error: 22409.331483770882\n", - "2018-08-20 22:15:25,625 : INFO : h_r_error: 22409.331483770882\n", - "2018-08-20 22:15:25,626 : INFO : h_r_error: 108240.89575392664\n", - "2018-08-20 22:15:25,628 : INFO : h_r_error: 27445.072240102305\n", - "2018-08-20 22:15:25,629 : INFO : h_r_error: 19796.62179594789\n", - "2018-08-20 22:15:25,630 : INFO : h_r_error: 19498.064804576392\n", - "2018-08-20 22:15:25,630 : INFO : h_r_error: 19420.473673215376\n", - "2018-08-20 22:15:25,632 : INFO : h_r_error: 19420.473673215376\n", - "2018-08-20 22:15:25,633 : INFO : h_r_error: 123079.47395167682\n", - "2018-08-20 22:15:25,634 : INFO : h_r_error: 39846.8436024557\n", - "2018-08-20 22:15:25,635 : INFO : h_r_error: 32839.06177875537\n", - "2018-08-20 22:15:25,637 : INFO : h_r_error: 32558.16857171215\n", - "2018-08-20 22:15:25,638 : INFO : h_r_error: 32469.203239033526\n", - "2018-08-20 22:15:25,640 : INFO : h_r_error: 32469.203239033526\n", - "2018-08-20 22:15:25,641 : INFO : h_r_error: 117859.05084752497\n", - "2018-08-20 22:15:25,642 : INFO : h_r_error: 41915.78317479446\n", - "2018-08-20 22:15:25,644 : INFO : h_r_error: 36438.94043937608\n", - "2018-08-20 22:15:25,645 : INFO : h_r_error: 35911.77701625004\n", - "2018-08-20 22:15:25,647 : INFO : h_r_error: 35706.468029702366\n", - "2018-08-20 22:15:25,649 : INFO : h_r_error: 35706.468029702366\n", - "2018-08-20 22:15:25,650 : INFO : h_r_error: 123474.67107920357\n", - "2018-08-20 22:15:25,658 : INFO : h_r_error: 53669.768012712586\n", - "2018-08-20 22:15:25,661 : INFO : h_r_error: 48567.784931206465\n", - "2018-08-20 22:15:25,664 : INFO : h_r_error: 48154.9212966142\n", - "2018-08-20 22:15:25,666 : INFO : h_r_error: 47988.29822300928\n", - "2018-08-20 22:15:25,669 : INFO : h_r_error: 47936.77092657334\n", - "2018-08-20 22:15:25,673 : INFO : h_r_error: 47936.77092657334\n", - "2018-08-20 22:15:25,675 : INFO : h_r_error: 151207.18006761468\n", - "2018-08-20 22:15:25,676 : INFO : h_r_error: 88235.71146256049\n", - "2018-08-20 22:15:25,678 : INFO : h_r_error: 84277.38424942065\n", - "2018-08-20 22:15:25,679 : INFO : h_r_error: 83899.85690983165\n", - "2018-08-20 22:15:25,680 : INFO : h_r_error: 83751.41595126623\n", - "2018-08-20 22:15:25,682 : INFO : h_r_error: 83751.41595126623\n", - "2018-08-20 22:15:25,683 : INFO : h_r_error: 167269.31497447164\n", - "2018-08-20 22:15:25,684 : INFO : h_r_error: 113582.2386863772\n", - "2018-08-20 22:15:25,685 : INFO : h_r_error: 110085.49161310388\n", - "2018-08-20 22:15:25,686 : INFO : h_r_error: 109782.77676110268\n", - "2018-08-20 22:15:25,687 : INFO : h_r_error: 109663.78283456886\n", - "2018-08-20 22:15:25,689 : INFO : h_r_error: 109663.78283456886\n", - "2018-08-20 22:15:25,690 : INFO : h_r_error: 157753.94573886512\n", - "2018-08-20 22:15:25,691 : INFO : h_r_error: 109400.55521635251\n", - "2018-08-20 22:15:25,692 : INFO : h_r_error: 106008.96079804211\n", - "2018-08-20 22:15:25,693 : INFO : h_r_error: 105728.251929925\n", - "2018-08-20 22:15:25,695 : INFO : h_r_error: 105728.251929925\n", - "2018-08-20 22:15:25,696 : INFO : h_r_error: 112759.45896297898\n", - "2018-08-20 22:15:25,697 : INFO : h_r_error: 72052.2044476772\n", - "2018-08-20 22:15:25,698 : INFO : h_r_error: 68415.34243474793\n", - "2018-08-20 22:15:25,699 : INFO : h_r_error: 68209.29331201482\n", - "2018-08-20 22:15:25,701 : INFO : h_r_error: 68209.29331201482\n", - "2018-08-20 22:15:25,711 : INFO : h_r_error: 91114.10750748111\n", - "2018-08-20 22:15:25,713 : INFO : h_r_error: 55697.261271592106\n", - "2018-08-20 22:15:25,716 : INFO : h_r_error: 51122.896399245685\n", - "2018-08-20 22:15:25,717 : INFO : h_r_error: 50771.213410520046\n", - "2018-08-20 22:15:25,721 : INFO : h_r_error: 50685.706279457336\n", - "2018-08-20 22:15:25,724 : INFO : h_r_error: 50685.706279457336\n", - "2018-08-20 22:15:25,725 : INFO : h_r_error: 120533.10241786917\n", - "2018-08-20 22:15:25,727 : INFO : h_r_error: 85840.68793886981\n", - "2018-08-20 22:15:25,728 : INFO : h_r_error: 81085.6932420261\n", - "2018-08-20 22:15:25,729 : INFO : h_r_error: 80618.2449916983\n", - "2018-08-20 22:15:25,731 : INFO : h_r_error: 80618.2449916983\n", - "2018-08-20 22:15:25,733 : INFO : h_r_error: 144346.3875923771\n", - "2018-08-20 22:15:25,734 : INFO : h_r_error: 104051.51661938874\n", - "2018-08-20 22:15:25,735 : INFO : h_r_error: 98387.68309223754\n", - "2018-08-20 22:15:25,736 : INFO : h_r_error: 97738.32758740771\n", - "2018-08-20 22:15:25,738 : INFO : h_r_error: 97738.32758740771\n", - "2018-08-20 22:15:25,739 : INFO : h_r_error: 145594.31678220004\n", - "2018-08-20 22:15:25,740 : INFO : h_r_error: 98721.32836014092\n", - "2018-08-20 22:15:25,741 : INFO : h_r_error: 93324.51688015206\n", - "2018-08-20 22:15:25,742 : INFO : h_r_error: 92520.57319065594\n", - "2018-08-20 22:15:25,744 : INFO : h_r_error: 92520.57319065594\n", - "2018-08-20 22:15:25,746 : INFO : h_r_error: 102650.24369218039\n", - "2018-08-20 22:15:25,747 : INFO : h_r_error: 48669.42225203629\n", - "2018-08-20 22:15:25,750 : INFO : h_r_error: 45178.66059215797\n", - "2018-08-20 22:15:25,751 : INFO : h_r_error: 44778.850508414784\n", - "2018-08-20 22:15:25,762 : INFO : h_r_error: 44778.850508414784\n", - "2018-08-20 22:15:25,765 : INFO : h_r_error: 95042.43849410885\n", - "2018-08-20 22:15:25,766 : INFO : h_r_error: 32548.73505120907\n", - "2018-08-20 22:15:25,767 : INFO : h_r_error: 30347.04943881905\n", - "2018-08-20 22:15:25,769 : INFO : h_r_error: 29957.108359922466\n", - "2018-08-20 22:15:25,770 : INFO : h_r_error: 29913.8437520984\n", - "2018-08-20 22:15:25,772 : INFO : h_r_error: 29913.8437520984\n", - "2018-08-20 22:15:25,774 : INFO : h_r_error: 100337.72340120646\n", - "2018-08-20 22:15:25,775 : INFO : h_r_error: 38042.32645009931\n", - "2018-08-20 22:15:25,776 : INFO : h_r_error: 35150.77154243809\n", - "2018-08-20 22:15:25,779 : INFO : h_r_error: 34969.334772222064\n", - "2018-08-20 22:15:25,784 : INFO : h_r_error: 34969.334772222064\n", - "2018-08-20 22:15:25,788 : INFO : h_r_error: 83514.52007176694\n", - "2018-08-20 22:15:25,789 : INFO : h_r_error: 38908.94580453252\n", - "2018-08-20 22:15:25,791 : INFO : h_r_error: 36604.933153747384\n", - "2018-08-20 22:15:25,792 : INFO : h_r_error: 36143.1596455028\n", - "2018-08-20 22:15:25,794 : INFO : h_r_error: 36074.38352930394\n", - "2018-08-20 22:15:25,796 : INFO : h_r_error: 36074.38352930394\n", - "2018-08-20 22:15:25,797 : INFO : h_r_error: 86384.23941232702\n", - "2018-08-20 22:15:25,799 : INFO : h_r_error: 54522.63022871282\n", - "2018-08-20 22:15:25,800 : INFO : h_r_error: 52269.22838283751\n", - "2018-08-20 22:15:25,801 : INFO : h_r_error: 51784.41198322365\n", - "2018-08-20 22:15:25,802 : INFO : h_r_error: 51694.78405021233\n", - "2018-08-20 22:15:25,803 : INFO : h_r_error: 51694.78405021233\n", - "2018-08-20 22:15:25,805 : INFO : h_r_error: 59934.5201301244\n", - "2018-08-20 22:15:25,806 : INFO : h_r_error: 38003.956341161625\n", - "2018-08-20 22:15:25,807 : INFO : h_r_error: 35824.68084150275\n", - "2018-08-20 22:15:25,809 : INFO : h_r_error: 35416.27744903075\n", - "2018-08-20 22:15:25,811 : INFO : h_r_error: 35350.79590335559\n", - "2018-08-20 22:15:25,813 : INFO : h_r_error: 35350.79590335559\n", - "2018-08-20 22:15:25,814 : INFO : h_r_error: 52773.46998561132\n", - "2018-08-20 22:15:25,816 : INFO : h_r_error: 34438.140590869916\n", - "2018-08-20 22:15:25,818 : INFO : h_r_error: 32127.70173508694\n", - "2018-08-20 22:15:25,820 : INFO : h_r_error: 31801.275101390467\n", - "2018-08-20 22:15:25,821 : INFO : h_r_error: 31763.039930469866\n", - "2018-08-20 22:15:25,823 : INFO : h_r_error: 31763.039930469866\n", - "2018-08-20 22:15:25,825 : INFO : h_r_error: 89658.92124894459\n", - "2018-08-20 22:15:25,827 : INFO : h_r_error: 69134.68778135825\n", - "2018-08-20 22:15:25,829 : INFO : h_r_error: 66797.29744618708\n", - "2018-08-20 22:15:25,831 : INFO : h_r_error: 66608.52339570905\n", - "2018-08-20 22:15:25,832 : INFO : h_r_error: 66608.52339570905\n", - "2018-08-20 22:15:25,843 : INFO : h_r_error: 84060.26038757557\n", - "2018-08-20 22:15:25,848 : INFO : h_r_error: 62823.13539430651\n", - "2018-08-20 22:15:25,849 : INFO : h_r_error: 60924.35270401313\n", - "2018-08-20 22:15:25,852 : INFO : h_r_error: 60672.5727604889\n", - "2018-08-20 22:15:25,856 : INFO : h_r_error: 60672.5727604889\n", - "2018-08-20 22:15:25,857 : INFO : h_r_error: 82400.69532648215\n", - "2018-08-20 22:15:25,858 : INFO : h_r_error: 62296.81077464238\n", - "2018-08-20 22:15:25,860 : INFO : h_r_error: 60300.12575851453\n", - "2018-08-20 22:15:25,861 : INFO : h_r_error: 60033.39538330248\n", - "2018-08-20 22:15:25,863 : INFO : h_r_error: 60033.39538330248\n", - "2018-08-20 22:15:25,864 : INFO : h_r_error: 77801.37356392771\n", - "2018-08-20 22:15:25,865 : INFO : h_r_error: 58931.06891529856\n", - "2018-08-20 22:15:25,866 : INFO : h_r_error: 57270.16822998984\n", - "2018-08-20 22:15:25,867 : INFO : h_r_error: 57140.20891464639\n", - "2018-08-20 22:15:25,869 : INFO : h_r_error: 57140.20891464639\n", - "2018-08-20 22:15:25,870 : INFO : h_r_error: 75958.60475923998\n", - "2018-08-20 22:15:25,871 : INFO : h_r_error: 61089.03212278704\n", - "2018-08-20 22:15:25,872 : INFO : h_r_error: 59996.78681582652\n", - "2018-08-20 22:15:25,873 : INFO : h_r_error: 59932.34782600625\n", - "2018-08-20 22:15:25,875 : INFO : h_r_error: 59932.34782600625\n", - "2018-08-20 22:15:25,876 : INFO : h_r_error: 76836.89003462985\n", - "2018-08-20 22:15:25,877 : INFO : h_r_error: 65865.27153834907\n", - "2018-08-20 22:15:25,878 : INFO : h_r_error: 64995.8870329025\n", - "2018-08-20 22:15:25,879 : INFO : h_r_error: 64918.239951684365\n", - "2018-08-20 22:15:25,881 : INFO : h_r_error: 64918.239951684365\n", - "2018-08-20 22:15:25,882 : INFO : h_r_error: 48980.581814778896\n", - "2018-08-20 22:15:25,883 : INFO : h_r_error: 41808.449457535935\n", - "2018-08-20 22:15:25,885 : INFO : h_r_error: 41252.6125794878\n", - "2018-08-20 22:15:25,886 : INFO : h_r_error: 41189.66801287636\n", - "2018-08-20 22:15:25,887 : INFO : h_r_error: 41189.66801287636\n", - "2018-08-20 22:15:25,889 : INFO : h_r_error: 40785.75997818555\n", - "2018-08-20 22:15:25,890 : INFO : h_r_error: 34891.36854438516\n", - "2018-08-20 22:15:25,892 : INFO : h_r_error: 33600.54177970833\n", - "2018-08-20 22:15:25,901 : INFO : h_r_error: 33323.966042387816\n", - "2018-08-20 22:15:25,902 : INFO : h_r_error: 33280.73672451113\n", - "2018-08-20 22:15:25,904 : INFO : h_r_error: 33280.73672451113\n", - "2018-08-20 22:15:25,905 : INFO : h_r_error: 26454.37120000968\n", - "2018-08-20 22:15:25,907 : INFO : h_r_error: 21540.39479576784\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:25,908 : INFO : h_r_error: 20608.810430887163\n", - "2018-08-20 22:15:25,910 : INFO : h_r_error: 20433.54257729559\n", - "2018-08-20 22:15:25,911 : INFO : h_r_error: 20400.741509122505\n", - "2018-08-20 22:15:25,913 : INFO : h_r_error: 20400.741509122505\n", - "2018-08-20 22:15:25,916 : INFO : h_r_error: 28200.31679054761\n", - "2018-08-20 22:15:25,919 : INFO : h_r_error: 23300.098733814248\n", - "2018-08-20 22:15:25,929 : INFO : h_r_error: 22137.1510942318\n", - "2018-08-20 22:15:25,931 : INFO : h_r_error: 21810.085864093246\n", - "2018-08-20 22:15:25,932 : INFO : h_r_error: 21775.213278946343\n", - "2018-08-20 22:15:25,934 : INFO : h_r_error: 21775.213278946343\n", - "2018-08-20 22:15:25,935 : INFO : h_r_error: 15260.366709589653\n", - "2018-08-20 22:15:25,936 : INFO : h_r_error: 11872.08315938859\n", - "2018-08-20 22:15:25,937 : INFO : h_r_error: 10908.905597899073\n", - "2018-08-20 22:15:25,938 : INFO : h_r_error: 10684.630020773682\n", - "2018-08-20 22:15:25,939 : INFO : h_r_error: 10651.271246929588\n", - "2018-08-20 22:15:25,941 : INFO : h_r_error: 10651.271246929588\n", - "2018-08-20 22:15:25,942 : INFO : h_r_error: 21032.87159613912\n", - "2018-08-20 22:15:25,944 : INFO : h_r_error: 16982.111213920845\n", - "2018-08-20 22:15:25,945 : INFO : h_r_error: 15866.510855147071\n", - "2018-08-20 22:15:25,953 : INFO : h_r_error: 15662.38695739796\n", - "2018-08-20 22:15:25,968 : INFO : h_r_error: 15638.966745766626\n", - "2018-08-20 22:15:25,970 : INFO : h_r_error: 15638.966745766626\n", - "2018-08-20 22:15:25,972 : INFO : h_r_error: 35159.7164846516\n", - "2018-08-20 22:15:25,973 : INFO : h_r_error: 29103.083952578443\n", - "2018-08-20 22:15:25,974 : INFO : h_r_error: 27679.57023556275\n", - "2018-08-20 22:15:25,975 : INFO : h_r_error: 27554.425552082583\n", - "2018-08-20 22:15:25,978 : INFO : h_r_error: 27554.425552082583\n", - "2018-08-20 22:15:25,981 : INFO : h_r_error: 66821.6687468943\n", - "2018-08-20 22:15:25,983 : INFO : h_r_error: 57882.03046952179\n", - "2018-08-20 22:15:25,986 : INFO : h_r_error: 56709.66844688913\n", - "2018-08-20 22:15:25,988 : INFO : h_r_error: 56615.34344199158\n", - "2018-08-20 22:15:25,990 : INFO : h_r_error: 56615.34344199158\n", - "2018-08-20 22:15:25,991 : INFO : h_r_error: 102536.44589819173\n", - "2018-08-20 22:15:25,992 : INFO : h_r_error: 89790.53104875541\n", - "2018-08-20 22:15:25,993 : INFO : h_r_error: 88797.37168870388\n", - "2018-08-20 22:15:25,995 : INFO : h_r_error: 88797.37168870388\n", - "2018-08-20 22:15:25,996 : INFO : h_r_error: 94256.0865083771\n", - "2018-08-20 22:15:25,997 : INFO : h_r_error: 81796.94144023153\n", - "2018-08-20 22:15:26,012 : INFO : h_r_error: 79914.31899253973\n", - "2018-08-20 22:15:26,026 : INFO : h_r_error: 79801.96367959536\n", - "2018-08-20 22:15:26,028 : INFO : h_r_error: 79801.96367959536\n", - "2018-08-20 22:15:26,030 : INFO : h_r_error: 103681.66251015848\n", - "2018-08-20 22:15:26,032 : INFO : h_r_error: 91149.66390562967\n", - "2018-08-20 22:15:26,034 : INFO : h_r_error: 88039.71971343001\n", - "2018-08-20 22:15:26,037 : INFO : h_r_error: 87725.90055568086\n", - "2018-08-20 22:15:26,040 : INFO : h_r_error: 87725.90055568086\n", - "2018-08-20 22:15:26,046 : INFO : h_r_error: 56004.11426043542\n", - "2018-08-20 22:15:26,050 : INFO : h_r_error: 47197.703146981876\n", - "2018-08-20 22:15:26,052 : INFO : h_r_error: 44837.80243648732\n", - "2018-08-20 22:15:26,053 : INFO : h_r_error: 44443.57942939128\n", - "2018-08-20 22:15:26,055 : INFO : h_r_error: 44374.80930404322\n", - "2018-08-20 22:15:26,057 : INFO : h_r_error: 44374.80930404322\n", - "2018-08-20 22:15:26,058 : INFO : h_r_error: 43292.4267967832\n", - "2018-08-20 22:15:26,059 : INFO : h_r_error: 35378.8097280495\n", - "2018-08-20 22:15:26,061 : INFO : h_r_error: 34196.54479859938\n", - "2018-08-20 22:15:26,062 : INFO : h_r_error: 33921.22257936816\n", - "2018-08-20 22:15:26,069 : INFO : h_r_error: 33882.99653972745\n", - "2018-08-20 22:15:26,072 : INFO : h_r_error: 33882.99653972745\n", - "2018-08-20 22:15:26,073 : INFO : h_r_error: 83106.68092031234\n", - "2018-08-20 22:15:26,074 : INFO : h_r_error: 72006.9979466662\n", - "2018-08-20 22:15:26,075 : INFO : h_r_error: 70987.0810195443\n", - "2018-08-20 22:15:26,077 : INFO : h_r_error: 70703.88128074924\n", - "2018-08-20 22:15:26,079 : INFO : h_r_error: 70703.88128074924\n", - "2018-08-20 22:15:26,080 : INFO : h_r_error: 34056.68769062177\n", - "2018-08-20 22:15:26,082 : INFO : h_r_error: 22340.518976325024\n", - "2018-08-20 22:15:26,085 : INFO : h_r_error: 21202.2807999469\n", - "2018-08-20 22:15:26,092 : INFO : h_r_error: 21018.168130075122\n", - "2018-08-20 22:15:26,094 : INFO : h_r_error: 20985.179625872217\n", - "2018-08-20 22:15:26,104 : INFO : h_r_error: 20985.179625872217\n", - "2018-08-20 22:15:26,107 : INFO : h_r_error: 47079.4827339218\n", - "2018-08-20 22:15:26,108 : INFO : h_r_error: 28040.444823154972\n", - "2018-08-20 22:15:26,111 : INFO : h_r_error: 26012.050369414745\n", - "2018-08-20 22:15:26,112 : INFO : h_r_error: 25778.668392323463\n", - "2018-08-20 22:15:26,114 : INFO : h_r_error: 25752.543285183405\n", - "2018-08-20 22:15:26,118 : INFO : h_r_error: 25752.543285183405\n", - "2018-08-20 22:15:26,120 : INFO : h_r_error: 53830.62087925428\n", - "2018-08-20 22:15:26,122 : INFO : h_r_error: 28056.31895396446\n", - "2018-08-20 22:15:26,125 : INFO : h_r_error: 25538.969559838195\n", - "2018-08-20 22:15:26,130 : INFO : h_r_error: 25231.784702255714\n", - "2018-08-20 22:15:26,135 : INFO : h_r_error: 25231.784702255714\n", - "2018-08-20 22:15:26,137 : INFO : h_r_error: 98623.57824868678\n", - "2018-08-20 22:15:26,138 : INFO : h_r_error: 56869.718676174605\n", - "2018-08-20 22:15:26,139 : INFO : h_r_error: 52575.08611645739\n", - "2018-08-20 22:15:26,140 : INFO : h_r_error: 52194.0055934277\n", - "2018-08-20 22:15:26,142 : INFO : h_r_error: 52194.0055934277\n", - "2018-08-20 22:15:26,144 : INFO : h_r_error: 151046.2615779934\n", - "2018-08-20 22:15:26,146 : INFO : h_r_error: 85671.1807956229\n", - "2018-08-20 22:15:26,157 : INFO : h_r_error: 78721.59964559798\n", - "2018-08-20 22:15:26,158 : INFO : h_r_error: 78253.8217480222\n", - "2018-08-20 22:15:26,161 : INFO : h_r_error: 78253.8217480222\n", - "2018-08-20 22:15:26,163 : INFO : h_r_error: 170143.0368298679\n", - "2018-08-20 22:15:26,164 : INFO : h_r_error: 88169.30243474309\n", - "2018-08-20 22:15:26,165 : INFO : h_r_error: 81485.62257891156\n", - "2018-08-20 22:15:26,167 : INFO : h_r_error: 81043.05017860854\n", - "2018-08-20 22:15:26,168 : INFO : h_r_error: 81043.05017860854\n", - "2018-08-20 22:15:26,170 : INFO : h_r_error: 193290.35730186303\n", - "2018-08-20 22:15:26,171 : INFO : h_r_error: 92326.29391460496\n", - "2018-08-20 22:15:26,173 : INFO : h_r_error: 85478.74125628427\n", - "2018-08-20 22:15:26,174 : INFO : h_r_error: 84863.23013863043\n", - "2018-08-20 22:15:26,175 : INFO : h_r_error: 84863.23013863043\n", - "2018-08-20 22:15:26,177 : INFO : h_r_error: 143000.39477505267\n", - "2018-08-20 22:15:26,180 : INFO : h_r_error: 47690.38239901879\n", - "2018-08-20 22:15:26,181 : INFO : h_r_error: 42535.89066549057\n", - "2018-08-20 22:15:26,183 : INFO : h_r_error: 42191.861043280165\n", - "2018-08-20 22:15:26,185 : INFO : h_r_error: 42191.861043280165\n", - "2018-08-20 22:15:26,196 : INFO : h_r_error: 142675.06428208412\n", - "2018-08-20 22:15:26,199 : INFO : h_r_error: 48176.866217790404\n", - "2018-08-20 22:15:26,200 : INFO : h_r_error: 40416.058453941805\n", - "2018-08-20 22:15:26,201 : INFO : h_r_error: 40017.15421775054\n", - "2018-08-20 22:15:26,204 : INFO : h_r_error: 40017.15421775054\n", - "2018-08-20 22:15:26,206 : INFO : h_r_error: 167788.56160431716\n", - "2018-08-20 22:15:26,207 : INFO : h_r_error: 65451.04391470968\n", - "2018-08-20 22:15:26,208 : INFO : h_r_error: 58775.61705137578\n", - "2018-08-20 22:15:26,210 : INFO : h_r_error: 58166.916215643076\n", - "2018-08-20 22:15:26,213 : INFO : h_r_error: 58166.916215643076\n", - "2018-08-20 22:15:26,216 : INFO : h_r_error: 144878.72484764503\n", - "2018-08-20 22:15:26,218 : INFO : h_r_error: 47990.718678389516\n", - "2018-08-20 22:15:26,220 : INFO : h_r_error: 42459.08584400939\n", - "2018-08-20 22:15:26,221 : INFO : h_r_error: 42374.837127099265\n", - "2018-08-20 22:15:26,223 : INFO : h_r_error: 42374.837127099265\n", - "2018-08-20 22:15:26,225 : INFO : h_r_error: 147093.6388017975\n", - "2018-08-20 22:15:26,226 : INFO : h_r_error: 61741.05478800946\n", - "2018-08-20 22:15:26,227 : INFO : h_r_error: 56000.0869573749\n", - "2018-08-20 22:15:26,229 : INFO : h_r_error: 55724.81891032926\n", - "2018-08-20 22:15:26,230 : INFO : h_r_error: 55724.81891032926\n", - "2018-08-20 22:15:26,231 : INFO : h_r_error: 177070.46954423655\n", - "2018-08-20 22:15:26,232 : INFO : h_r_error: 86813.13608230506\n", - "2018-08-20 22:15:26,234 : INFO : h_r_error: 80750.06541413112\n", - "2018-08-20 22:15:26,235 : INFO : h_r_error: 80108.79492326386\n", - "2018-08-20 22:15:26,236 : INFO : h_r_error: 80018.0835706642\n", - "2018-08-20 22:15:26,238 : INFO : h_r_error: 80018.0835706642\n", - "2018-08-20 22:15:26,248 : INFO : h_r_error: 191498.891043512\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:26,250 : INFO : h_r_error: 89193.15992567304\n", - "2018-08-20 22:15:26,251 : INFO : h_r_error: 82326.7193949022\n", - "2018-08-20 22:15:26,253 : INFO : h_r_error: 81654.10188430984\n", - "2018-08-20 22:15:26,254 : INFO : h_r_error: 81550.8364588384\n", - "2018-08-20 22:15:26,256 : INFO : h_r_error: 81550.8364588384\n", - "2018-08-20 22:15:26,258 : INFO : h_r_error: 195202.30314943343\n", - "2018-08-20 22:15:26,259 : INFO : h_r_error: 87377.33791727532\n", - "2018-08-20 22:15:26,261 : INFO : h_r_error: 80672.67496760779\n", - "2018-08-20 22:15:26,262 : INFO : h_r_error: 80479.76631168138\n", - "2018-08-20 22:15:26,268 : INFO : h_r_error: 80479.76631168138\n", - "2018-08-20 22:15:26,271 : INFO : h_r_error: 144824.23872960033\n", - "2018-08-20 22:15:26,272 : INFO : h_r_error: 55900.50694270172\n", - "2018-08-20 22:15:26,273 : INFO : h_r_error: 50456.945266342926\n", - "2018-08-20 22:15:26,275 : INFO : h_r_error: 50209.455574301464\n", - "2018-08-20 22:15:26,277 : INFO : h_r_error: 50209.455574301464\n", - "2018-08-20 22:15:26,278 : INFO : h_r_error: 120497.96569875091\n", - "2018-08-20 22:15:26,279 : INFO : h_r_error: 54942.81832456545\n", - "2018-08-20 22:15:26,280 : INFO : h_r_error: 51139.536326477886\n", - "2018-08-20 22:15:26,282 : INFO : h_r_error: 50931.89498627135\n", - "2018-08-20 22:15:26,283 : INFO : h_r_error: 50931.89498627135\n", - "2018-08-20 22:15:26,284 : INFO : h_r_error: 118560.7658767246\n", - "2018-08-20 22:15:26,286 : INFO : h_r_error: 66209.35306663823\n", - "2018-08-20 22:15:26,287 : INFO : h_r_error: 63672.851013482956\n", - "2018-08-20 22:15:26,288 : INFO : h_r_error: 63532.512372798665\n", - "2018-08-20 22:15:26,290 : INFO : h_r_error: 63532.512372798665\n", - "2018-08-20 22:15:26,299 : INFO : h_r_error: 145281.10256636093\n", - "2018-08-20 22:15:26,301 : INFO : h_r_error: 99879.7345641714\n", - "2018-08-20 22:15:26,303 : INFO : h_r_error: 98089.94579477502\n", - "2018-08-20 22:15:26,305 : INFO : h_r_error: 98089.94579477502\n", - "2018-08-20 22:15:26,306 : INFO : h_r_error: 165137.3997750682\n", - "2018-08-20 22:15:26,308 : INFO : h_r_error: 121745.46955607059\n", - "2018-08-20 22:15:26,309 : INFO : h_r_error: 120148.35468973644\n", - "2018-08-20 22:15:26,312 : INFO : h_r_error: 120148.35468973644\n", - "2018-08-20 22:15:26,316 : INFO : h_r_error: 158538.77643486226\n", - "2018-08-20 22:15:26,320 : INFO : h_r_error: 117514.12100067486\n", - "2018-08-20 22:15:26,322 : INFO : h_r_error: 115814.83388310859\n", - "2018-08-20 22:15:26,324 : INFO : h_r_error: 115814.83388310859\n", - "2018-08-20 22:15:26,325 : INFO : h_r_error: 136038.15608420633\n", - "2018-08-20 22:15:26,326 : INFO : h_r_error: 96742.83001877212\n", - "2018-08-20 22:15:26,328 : INFO : h_r_error: 94559.96804935293\n", - "2018-08-20 22:15:26,329 : INFO : h_r_error: 94383.14616395722\n", - "2018-08-20 22:15:26,331 : INFO : h_r_error: 94383.14616395722\n", - "2018-08-20 22:15:26,332 : INFO : h_r_error: 101367.71763481224\n", - "2018-08-20 22:15:26,334 : INFO : h_r_error: 62548.2325397448\n", - "2018-08-20 22:15:26,335 : INFO : h_r_error: 59882.78131770487\n", - "2018-08-20 22:15:26,336 : INFO : h_r_error: 59454.59463196322\n", - "2018-08-20 22:15:26,337 : INFO : h_r_error: 59378.02619761801\n", - "2018-08-20 22:15:26,339 : INFO : h_r_error: 59378.02619761801\n", - "2018-08-20 22:15:26,341 : INFO : h_r_error: 95865.50790628867\n", - "2018-08-20 22:15:26,342 : INFO : h_r_error: 62378.63362038054\n", - "2018-08-20 22:15:26,343 : INFO : h_r_error: 59242.72783463293\n", - "2018-08-20 22:15:26,344 : INFO : h_r_error: 58609.456228255316\n", - "2018-08-20 22:15:26,345 : INFO : h_r_error: 58496.34350233016\n", - "2018-08-20 22:15:26,347 : INFO : h_r_error: 58496.34350233016\n", - "2018-08-20 22:15:26,348 : INFO : h_r_error: 90515.55027129139\n", - "2018-08-20 22:15:26,349 : INFO : h_r_error: 58018.099802026285\n", - "2018-08-20 22:15:26,360 : INFO : h_r_error: 55105.19055132983\n", - "2018-08-20 22:15:26,362 : INFO : h_r_error: 54665.30390811013\n", - "2018-08-20 22:15:26,365 : INFO : h_r_error: 54665.30390811013\n", - "2018-08-20 22:15:26,367 : INFO : h_r_error: 83134.14281795638\n", - "2018-08-20 22:15:26,369 : INFO : h_r_error: 55442.09864068202\n", - "2018-08-20 22:15:26,371 : INFO : h_r_error: 52963.28200871138\n", - "2018-08-20 22:15:26,373 : INFO : h_r_error: 52586.908681102745\n", - "2018-08-20 22:15:26,387 : INFO : h_r_error: 52586.908681102745\n", - "2018-08-20 22:15:26,389 : INFO : h_r_error: 73598.27979210831\n", - "2018-08-20 22:15:26,391 : INFO : h_r_error: 45715.61157809627\n", - "2018-08-20 22:15:26,392 : INFO : h_r_error: 41437.58248913924\n", - "2018-08-20 22:15:26,395 : INFO : h_r_error: 40707.77290896303\n", - "2018-08-20 22:15:26,398 : INFO : h_r_error: 40609.36114776876\n", - "2018-08-20 22:15:26,413 : INFO : h_r_error: 40609.36114776876\n", - "2018-08-20 22:15:26,417 : INFO : h_r_error: 59503.97001493072\n", - "2018-08-20 22:15:26,422 : INFO : h_r_error: 33432.097819146526\n", - "2018-08-20 22:15:26,425 : INFO : h_r_error: 29486.32651237871\n", - "2018-08-20 22:15:26,427 : INFO : h_r_error: 28926.026181920453\n", - "2018-08-20 22:15:26,430 : INFO : h_r_error: 28926.026181920453\n", - "2018-08-20 22:15:26,432 : INFO : h_r_error: 50217.117754469546\n", - "2018-08-20 22:15:26,434 : INFO : h_r_error: 27138.614025112507\n", - "2018-08-20 22:15:26,436 : INFO : h_r_error: 24091.11630445048\n", - "2018-08-20 22:15:26,441 : INFO : h_r_error: 23798.914970480397\n", - "2018-08-20 22:15:26,445 : INFO : h_r_error: 23798.914970480397\n", - "2018-08-20 22:15:26,450 : INFO : h_r_error: 46011.29451609649\n", - "2018-08-20 22:15:26,455 : INFO : h_r_error: 23339.291405321692\n", - "2018-08-20 22:15:26,458 : INFO : h_r_error: 21141.855440357434\n", - "2018-08-20 22:15:26,460 : INFO : h_r_error: 20948.160112459424\n", - "2018-08-20 22:15:26,463 : INFO : h_r_error: 20948.160112459424\n", - "2018-08-20 22:15:26,465 : INFO : h_r_error: 56099.969883942176\n", - "2018-08-20 22:15:26,467 : INFO : h_r_error: 31558.214159141873\n", - "2018-08-20 22:15:26,469 : INFO : h_r_error: 29543.03148778048\n", - "2018-08-20 22:15:26,471 : INFO : h_r_error: 29371.947464451052\n", - "2018-08-20 22:15:26,473 : INFO : h_r_error: 29371.947464451052\n", - "2018-08-20 22:15:26,475 : INFO : h_r_error: 72350.54561082687\n", - "2018-08-20 22:15:26,477 : INFO : h_r_error: 45607.577200019216\n", - "2018-08-20 22:15:26,480 : INFO : h_r_error: 42697.75965676168\n", - "2018-08-20 22:15:26,482 : INFO : h_r_error: 42435.09532013215\n", - "2018-08-20 22:15:26,485 : INFO : h_r_error: 42435.09532013215\n", - "2018-08-20 22:15:26,486 : INFO : h_r_error: 81673.58262360246\n", - "2018-08-20 22:15:26,487 : INFO : h_r_error: 55028.966308308285\n", - "2018-08-20 22:15:26,488 : INFO : h_r_error: 50879.5437727653\n", - "2018-08-20 22:15:26,492 : INFO : h_r_error: 50430.705456493\n", - "2018-08-20 22:15:26,496 : INFO : h_r_error: 50430.705456493\n", - "2018-08-20 22:15:26,503 : INFO : h_r_error: 85259.06957006888\n", - "2018-08-20 22:15:26,506 : INFO : h_r_error: 56417.15576227808\n", - "2018-08-20 22:15:26,507 : INFO : h_r_error: 51950.01266205731\n", - "2018-08-20 22:15:26,509 : INFO : h_r_error: 51427.891558767784\n", - "2018-08-20 22:15:26,512 : INFO : h_r_error: 51427.891558767784\n", - "2018-08-20 22:15:26,514 : INFO : h_r_error: 87542.85171726909\n", - "2018-08-20 22:15:26,516 : INFO : h_r_error: 54471.47858022249\n", - "2018-08-20 22:15:26,519 : INFO : h_r_error: 51692.16694423167\n", - "2018-08-20 22:15:26,520 : INFO : h_r_error: 51314.94085991872\n", - "2018-08-20 22:15:26,525 : INFO : h_r_error: 51314.94085991872\n", - "2018-08-20 22:15:26,527 : INFO : h_r_error: 74989.53473624078\n", - "2018-08-20 22:15:26,530 : INFO : h_r_error: 40437.67511528515\n", - "2018-08-20 22:15:26,532 : INFO : h_r_error: 38660.661040941544\n", - "2018-08-20 22:15:26,534 : INFO : h_r_error: 38179.70126096432\n", - "2018-08-20 22:15:26,539 : INFO : h_r_error: 38065.50275211432\n", - "2018-08-20 22:15:26,543 : INFO : h_r_error: 38065.50275211432\n", - "2018-08-20 22:15:26,545 : INFO : h_r_error: 108828.80093509772\n", - "2018-08-20 22:15:26,547 : INFO : h_r_error: 60212.67760110461\n", - "2018-08-20 22:15:26,549 : INFO : h_r_error: 57812.19815738934\n", - "2018-08-20 22:15:26,551 : INFO : h_r_error: 57190.44665422103\n", - "2018-08-20 22:15:26,555 : INFO : h_r_error: 57021.325789113616\n", - "2018-08-20 22:15:26,557 : INFO : h_r_error: 57021.325789113616\n", - "2018-08-20 22:15:26,559 : INFO : h_r_error: 78817.5512140593\n", - "2018-08-20 22:15:26,561 : INFO : h_r_error: 27383.623063646068\n", - "2018-08-20 22:15:26,563 : INFO : h_r_error: 24613.083436085217\n", - "2018-08-20 22:15:26,565 : INFO : h_r_error: 24366.273428677887\n", - "2018-08-20 22:15:26,566 : INFO : h_r_error: 24324.814654375365\n", - "2018-08-20 22:15:26,569 : INFO : h_r_error: 24324.814654375365\n", - "2018-08-20 22:15:26,571 : INFO : h_r_error: 72411.94794136818\n", - "2018-08-20 22:15:26,573 : INFO : h_r_error: 21870.11709181413\n", - "2018-08-20 22:15:26,577 : INFO : h_r_error: 19136.87592728228\n", - "2018-08-20 22:15:26,580 : INFO : h_r_error: 18959.722842143907\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:26,582 : INFO : h_r_error: 18959.722842143907\n", - "2018-08-20 22:15:26,583 : INFO : h_r_error: 83876.31226742358\n", - "2018-08-20 22:15:26,584 : INFO : h_r_error: 27066.441250717817\n", - "2018-08-20 22:15:26,586 : INFO : h_r_error: 23671.276967366928\n", - "2018-08-20 22:15:26,587 : INFO : h_r_error: 23588.035853516478\n", - "2018-08-20 22:15:26,590 : INFO : h_r_error: 23588.035853516478\n", - "2018-08-20 22:15:26,591 : INFO : h_r_error: 87851.09522030315\n", - "2018-08-20 22:15:26,593 : INFO : h_r_error: 36557.55519906569\n", - "2018-08-20 22:15:26,596 : INFO : h_r_error: 32920.158554937225\n", - "2018-08-20 22:15:26,605 : INFO : h_r_error: 32884.0633641823\n" + "ename": "ValueError", + "evalue": "setting an array element with a sequence.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmatutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDense2Corpus\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg_matrix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproba\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgensim_nmf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mH\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mValueError\u001b[0m: setting an array element with a sequence." ] } ], "source": [ "W = gensim_nmf.get_topics().T\n", - "H = np.hstack(gensim_nmf[bow] for bow in matutils.Dense2Corpus(img_matrix.T))" + "H = np.zeros((W.shape[1], len(matutils.Dense2Corpus(img_matrix.T))))\n", + "for bow_id, bow in enumerate(matutils.Dense2Corpus(img_matrix.T)):\n", + " for topic_id, proba in gensim_nmf[bow]:\n", + " H[topic_id, bow_id] = proba" ] }, { @@ -3465,21 +1238,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUWElEQVR4nF39754cOZIkCIqoAmbuEfyTWVU9vbN7N/e7e/+3uBfYF9hPezvTMz1dlUwywt0MUJX7oLAga1lVrEwy3M0MBihURUQF/EumUqAEAP319gg1J0RDayT6fv+0NT4f//jxnHPGnEh1VwqA5NJ+H+8zCRj6PR7GyUbeR7g1UkrThE4BUuNnp+X5eASNr9u3vT0GKJG0dgpGUHLfGkV3WnOzBrgxAWRkJv39MRN2jxnc45kpMWR5TtGbzUhYmnmCNLackTLvoKcJOLkr3ZvnmA0AANbvUkwBIOt/AoDMFGgEIEmAKAkSQF2fpQEgjWZGI0mQ+OU/AkBBCoEZua7LTH38dd0JCYBIypIWCtoUHUwASmWyz4gEIjJMAEzr+wB+fA1+3h/dRCfqtkQASkCZ2WamJBASgYgxAhk1AuYgZhujOcbx/TlmRIZAM5eE+hhyhmBIGpAJ0Iypc6aFr1GcUAgUktOMuabPZJCZpJK0ZIpJAFCmTJKMEtcrqQHITOYICTkzUyMTdElRk1iJ1PVWaTRzb6RSlsgkCDFqtAxsEQmhlgDB4JggIRm5bXLmPJ9mzOMYGTMlkDSrAQiaRAJyAWIOc+tmmUMGMzOQ5jZjWgIQkATpZpR0zPxlvqFejZGgkwZ4d5Bwl3kKBGAUaz5Kde9upGGEmKxfRjOJpoCZmZs7EQmR4panpYGEkbSWmRAoCSBzYsy6EmmuNOZICbATQk4JoNG7IAZFisgEm9IaJXrb3MfAJJIpwglBKYGmVLARfU7G1IxaVEyIRK0+pwHNZUTbNgTVWrrXWIlKKUFDIgXCurubHgGRFIk085aiJdDM3Pu2OWbMJOCf9MNSNKSZgc0IKIWEBArKWFGAoMstNM8UfLRasEZv3Ha05CQpKM8RMEmqx0w3zUwHMhISxUgB9E4QbO5bDAQEATTQ65EgIT0JICm4+3bXpLYtrI8ZNa81R8BJIwhwu/funjxyJlJCik4H0Uhr7s23+8vG5zhPAf5pcw+1niE6vLmARMU0kN6MWrORbbfdJxQQWjjJSJDutu1AkkymRBJsCZoAk7dtixFyAIIgiVLWxAZa31rcx1NWy9AN9EmYUZYijQ60ltba/vqqk9hvw7dzDoAyYdjEzJBBgt1e9615xFvKau3XkibM5K233vbXTzc+zueRYvttz5zqew7R6c1JRqQkADJvvMKp2f5y3tswBMQ+uyGmYOsiViu15jcQCaWkBHJa0q2vXQvItZ9YI2p8Pp3vFcDpfRq8TXiTDHJ3GtlbeG/3z1/zyXx5fdp+zoOEHHzayTMsXQnjy+dbR84V+GqZGMBry5Jino+wsBZ03v7TCzS07fMZgNCaG+eMDAISee2IBNhuuDefJ13WWjOsPS2prA2LFZ0FZEKpRJrCptiwAwpmsIIzSWsMkTTt3WGmtaGghdBcYZC5wcjWYN76y6cQYr8nNjFIoNlbMzNXrFW6vbx4HDFD0Hr7JExUEpJSMQzTbDPrG1//9vr+HNr3QyOUaq05CdBSAGj+MQNo21337uMwwJo3z3pkAgQNoBu1Nroabai2ENFsAzSRgERLAuZOg7e+xX13GAnQm0vuCW9Rn3M4rTeyb7fXL1OIT19N9z6dBLo9OGGC5Aq43z692IhfMgCCJl6ZAAAopmx35X6zz397/fZ+ar/1tBnIlgnLrNEDbNuuESDZtrl3bftzqnYXubRien1AylRCQkiQpLSUEGm5tj3WXWjtymjb7R63RlTUt8aKnbWvVq5i5g5rfbu9RDK+/u56PeeDhLqdHU/AmE2TzfZ9NzDryakVdlbSpnUfSeOdtGZ9v3WzpNEcCLURZISQkgTrm31kVNb2uW/atq4EYQaZCUIykwmkUlFJDRJQ1hBQjDQQ8o908WNQ6X2/zW6qC9JcGYhAWGYmKhjRHN77drsrPT5/MX0+450mNXt4WCaVTYZu++3GdNJk5IqBWXkeAE8mFQm7wcwb+9ZMM9jmFAG1h8BEY+VRbN1+LoG+z9uW+9Md8NYaYFYvfBpDCBsZmbV7AqoZkUllQCe4WVakMKupCYDemhoz62W7STMyMBmZQioogZbm3m4vOX3eX6UvZzSzVLM/dSimIpvI3u6fXohGc3gLrzUQciAgGZGsRC0Is8a+dY7neeTxlhbjbKfSZM5KyeluHy/Lbp/x5dbHo6XhlneXeTKUmYMMKPqMrOoAufafhEKJRCQdRlpYooJD6zjSrHW9bOYMGnnbm800A5GpFWbNeof37f71bwE/P/9GfT2zOZWbf8v3yJEzN03b+2//+ll/vPXWHGFhQGMyISSVZjSjUmrayNfP9vv/cv//3Z6nkHN6zNmoekegQNAb+ZFHb/fz5ZZ7dyd77y6ZKStzXb/j5/SGCH1MHxDmzdOEBNNrvcvT+7bxZW/IoNP2vaWTkK3Exgxu3ru8b/unL/Ow/ulL5pcj0Sy0+8u4zTxiZhd9316//pb6dNu7NOkAXKAsVwQkjUnQ+k7eXuzTX16+3B/T92xwKhsr71ENhG+3GgFzc8PU8IHeR2pkyGCeNBitEVBN4opvVXJJIFCBQDBFplJJmCmkAH27vX45e++I7p32+rofDqMgGggjQVLw5sZ5wDd/ub3iy8juFtH4aX7Kc4uIjua37jmVaLd7MG0SaAASPwsDmM0Ec3icBx//eHx/jkCqtT6bN6+sqUoua7eXzQWyNbfNhIxs99dk0gFa48yk6I2CYGsvXyVNE6Rr+zGzZlfJSPNUImh2e/n05ejeEtLuur9sg2aWQTOR7qwytG2t2Txav+H1DvsaujtySp/jmW+7MjaT7W5xaGbbbxNpJ0CD0gDRTGZmcApCjJzng2//sf35OIKh1rc5rLXrFRIw8/3Wm2hwb+YaGpx2+5w+m7nI5siE0Z1ZIyCltQhIpKUsV05Nom82DTUmvo1MTaPvt5fXRnMDcGtxf9neDc5M0QRyZW/ZnIjn95uZN9t8F5opzxH77X4crXW2JtuIZ+Ixue2mRAdI01xJjYxGOiOg8dgGjf2/tf/4/pBG2HYfplZlrGAQrGbAmuXG+YjHOP2WQwaPcDkmDQZrTMlhtKQ1RBWTgGVICgNdsJypGqe+YzKHt3Z7+fR5e2ebNLv3+frpRod7DsFEKGmBOFsz5Pzunz+xN259d9ws8/l+3M7X8631ibaLG+KH4fFUvyFTlatlGlAIA8k0I6Djx55jYJr9tz+G94Z+u3dnU21glUHItp0KpuAyPt6Qdt7v+Xw7YotEymu6uFtAqro8MxMJIiIjghBJpDzPRyYg9wYSGWdrvt0///Y43A0yst1eNgDwhVUgky3lR9shzXe2L/3lZe/7l04w9G72Kc5n6xnwJtsi3sDjQN/mNDeCMpJZ/0eSQTdI5wPSiZj4x/fctPN2ex3ONqvKNGHBXDkDBBiKyDQfbu/fvz2im7smIkUzs5qvgKCcIQGJyLxAKDE1H3MU9BOpmOd0SkqRyHE+MzWc37fHcUpKmbdK5t2auxlpZt5a733r29YhCz16b80BGqFAzvEk7Pl49vfn2zGOU5CPmTLQuPYpKqdaSjXItYPVBhnNLaEMAKovnDFBEBY+T8EP6O3H98f0fWsIzVxVkEEJ8wxkFMSX0NrxAZpZg5QJIJgROTJMmXPOOWfEjJEn/cftPCeVEgEJtlLazGRERP0w7TgEBh7neZ7nMeaMmSJ4CODxdvj78/2I5ynKUomPfXqhdtlnKGky+oZtf8Ftc1M2ZfJnKZlzXHAloIykYtpMSZkZTKZIb70xJYJmMrgSriRhAMysvjEU1xdnYauSNM/z8XgeY84xjfb+fswq2+iOqJqjUEtTxpzj6I/e4t1TFnj8eLw/nueYMUMUcFBqYQ0xx4g5V+5N0LzJvZttO9vIbW8pKcIkRSYzU7S2cqCqWKE5de0JQEaaptcMj0rwUjT21jEFg5nLYAY2DZKSy1uzORN2AccUFFUnKDPmeTyPEXOOSfLxHAHLhHlrABw0Y5WUmZnzPPqzt9yZQvLx9niv4YtpQOpkqgs+c84RMyQCBsKseXprbn33LcK2Nglk8CN/EWltzoCwYA7mOGLtYoJiCDaouRDdRBUr5mZapY/qlbFpmiMr1fMjp2Ihgai9DVWg5Tge/f39mKnCoc/4gKOMpFUEpeYE5tmej02MvgMhBp9vjz9/vD2OY45JIXOY4NavrLTSuqREmlW0als35TRPhMYR56EzzHOnEq1W6Vq4zLGWgARkTIExOXNBv1DNe9Kzik+SZj7JljAHZPC+tRy4lpIWb7DKZcU4ns8zFmjNjFxZdGbRBQQIiwhgjPF8dFj2YZpi4nh/vL29P88xZ5BIZMrom7Gbm8wqG18BwGje0LfWPR8TYamYyJDmVMxJtvYzlQcAxRoAQoVp2jRGqhgJJCSytd7SRQPNITMjWpAmS0fbbj1OS3ygDICU1wyY43w+zxEZMZM4njMcCZi5m2gys9oPLTNinoc5p1pMIXk81hKICBIRg2lmvR+ZETFDWYuONPdsrXVu+37vac+YFLOwBwhSNvrHACxAaa4kCgCUociYleZAFQMgCVn8RIW1wh8KGOKa6j+/Fh8zEwBSMc9+jsgqG1DbIhe+ZteLQGYAc47zPGjoyRxC2vF8Pp7HeY6Yk0BwmmyYYUQUnABBhESpqnNGRFhGRERKVXZHYI6RGR8DUDeZMT9IpiIeGIbIhergl1e6Hhy/bjirTjR30sSLb/k5HFLGPNt5xvVdMfOafqictLDJjADnaOfTheyhHEJyPI73x/MYI+ckkIiQahUJIC3FVZz98ove0leNNi0ymcGYQ1L7px/E4gYLVVJGoZoXZnyNLn5egBetY/r4QzNjwUOA6pk+giCUMccoGFoAMmp3YGZERBXlIjODYTHHOGkMWNQAHM/jOMeMjGQiELGqMlaIqmH8mH4kzaxte3bPWtd1aaUyBf7TAJAa7dq7BcVUcmLVFlIiLU0XGrwGoBgKU710S/PW3dYY1lu9UCYoc55PPI95jUrO1Pqyol9BUWJGQDzNHphx9jHnKaSN43h/Pp/HyDkppCalSK4kMy9gGGtJGc3Nt9td7+8TkjAtUqoZsOr6jwUAxMn4eS8x0jjDRwiEriVPdzfxI9SaGayR5lK62rbfHl7wBi6Mp+aBoBzH+zweY9WMiJE0N4O5uxdwRiZyWqaAxNievd32cUriHOfjOB/PqZh0RgakKd+8Jhp14SA09zRzb95vnz7p7ccgEuEWmYjJeZo3/t+XwLQszJuEMlIMrRkAKWuNWrvI8itlWmEMNDPz5u7uH/HCVEj6KnTHqWOEAMKq+nNvRtu2HVFbawBcWRNPxGwtxnlKYozzOMcxJiIARIaJs3apSixqXgJcCRUBsDXUHEFOj0xE2Jxz0trPgL2m6IoBFYkTSKa0iNuPdZz5gWT/0+fXX9dMWX/yMwbU3pMTMz5w9YUES6hSkioGLhgQaRyQMqk1APM8x5gRyGAwMwORkbFo1l+jdLJw+lWuZm3kmZn1CDHDrP2k0wQIGSpQGgv3LpRzPXo9dMo05pyMSCpzZcpAAoQp5gh6FxKJIrQ/WDtlzqExQgLplNFba2jw/b5vSWQAtqiPzOCEYrYc44TEiHGMmCMQQTEyKB2PH/l+jMg06SOzB5ExDWGt9RPf3h7PcyLIGZIPyYTW28cLvNYoQFoTIFsw77XP4yLbYJjnDERkSSIEzCSy1kFMJnuJbhJXdnuRRpkTEanCndLo6r03tv3lPkXNETJT6UGQGRV95hxCWsSYM2bUAFhGUDifP+bbMWfKUCkmVGR5TIoy4qFvP47nOZHkCGmaxJS3BrJu7WPn5C/rmoS5YbO82GhAOY6wOQIzg1JSEKYUpDCTJ+OcURHCCm3ntcF/LKC1hjIzc0Jigook5kzNkAlKJziLEVWkVn1U7ymllYnFPJ/5LK3Btd8iOYdNAkk+yVM/nueIXFdnZnCSPpsJH4lDAaMmc9PHDofmzVMaKaZgUMaUzRn8CASEophhk3KapmBpoISLcF0luqBgPQxgVrnbGpeIJCJSUSvPmAFjujI9QhArn1sp3tqYcp4ex8/cglXYZihBCvaUDr0955gJcWbKcgpGTLYq/FDToKASmTuAtNrszGkp+QgyRSCHO2Jkpau18BTFRxqUI31OEWwo/kd0MjLXJCsdEUjb27m1AYMZldNTJn2IlqBMYMIyLVoRmBmxJlCmiaS5AI2YoiPqMaJqq2kTSoPiPBoeZ86ZKHwKDIEKsFnBgRRRohlv8tYMSHNPgq17ChnPUxmIVM4RiJlIpUwLAgTNaE2JCJPohCsTMiZgPmY9v1EAzQjzl+2xeZPRjaoNYc3DyqulZFDF860KRqt4V92vGkRNBp1mWWqNtTIslElq0htGKANiKlKWEIgAmpc+rPg4ADJn23oHYiEarXdQEUKGJSOkiMqZS5FlNAPY2matB6FIh/WMhkgk/UyZGVnTPSdW3ev7fq59ayVAMLNCD6xqExZlTnoxvxFZ23gmBFOQSCkA0T1SgYoMVKZSEokpOlKXCE1BYbIY1GYV+FfMg2SN2217oc4WIwBrbSOVY0YwM5SQMkpKJHlRvoBZv/m+nZYjYOa3yI4IJFsOuodVaaBQ1l7j/XZ/inSYmaW7k61hDDlAIZFESXAIL2FY5trUFQY4Br0EGzQaMzWJmbnygBREi0wYQeYigCoQSUGgOQWJlGBWxKRt99tvls9+vM+Et76RCrRGZRoSxsKCCkYxdxB02z/1l+29DRM26/fQjjERtp0Bc49cl0+DYETbX1/fplw09xZt24N7t3HgJBhSjsLBVrF85SISRJHmO07bap5Y0F1Tg3pe6DTq5z6gIl07OQEhCRpaYbG/JnK0tt2+tGk3n0hawarKSk9rd6uMjxeKAHM2u3/aX7vboRPUqkuSaLciDpdEM4GgOTz79vp6e6YD1nqztnXj/eajoYMaiQA0V0lpl0xSS4sGEp3mzU3MMLJ57UPDrsTroxalGygtBWEWBRMysCkzBUOuGmymGcDe6a0KjMyUEvMY0iykl8aKnbWqQ27WrO/7zc8t3STFSJjOYRCL8kfJESNJtFLHuTtJl7k39NaM+621NIKpAMykQGEbqfpDZcZV0tIAWpfNlbwIsIKrRZJUkbf07kLKjN44A0RxeLQm1QZbO2htr/B+2/y9M+YkRM8ZOWISkRnpvq/1jCXHoXvbsN3unxzuMdLSwfnkmG7tZTuBGesjkwZMQcnj6Y93DRhord1fb8Gvn/3Y7KGcTI2p9dzgBGpe1QAAGRiJg2CgSRhmDQdTOgNuQrspY8kzjJAilVIqg8hMMAG1zJiVOFAihmjwfv9tfzxeH4hpOcF5jjwpq6AGNB0FPyUoTnXvbcfLp8+/WbvZ4TEzhEOYsW1fX7sjswr9QBRj45YpMofS3ft+99cv9+C//O7Pf/jbjMOH/NSEhAwQqBwEknLCMCVBh5RJVyIaGx5G4whzCNseRyCRMNp0KdJY4LYiS7pJLrHSVUdColnbbq83u9+7AVqAcJZSNQmBrZgkLLyLNHdn326vDD67m+AJJkGa70agUCVVlgrWHCRzVvbpre8vL9M+f2nbMM2Jk5kWmZmMCUJrANa9UEoja2Y2AUkrdh650k//CPklBY0UYTmRhjUAYDPjB4pMCjBv/Xb/+rJ9//Jnb0kTXWEJlhCp9Fgl7KpF4Obe2sb99fNXox97C6QLMWmxb/fXzbVQdCxUrXgItm3VPAS9b5vx9rr50zUHh6daKSe0mDdAyRLrAyJR0sWkVEwIGq0XsSdYgRYlHbtquaWKxwrSRGsrQS2MXzTzvr98+uun25+//dHbpNy6hkEoAXuyCpkLSAbp3nvf7fW3v/zNrB03ZyYSMzgzuX3eu5h1TWopC81l/f7ygUgZaAb2+80fPWPYPEM9lLU8eSFLVXHLaDS/We0AAujuTcneaXKyWi+47hAoWRoEDQOphXuwXcN0lYI0877dPn/Cy+utNydk7s5fsFaal6CnxrAU+a3bfnv57Gfe9z6SFrCksbX9deulsjcVT8aFLcB8ldA07/v9bvby5ba9bxEnTo/oMRpK2L6KNSFNShppZLNaEHnJ3UUYBZpJ3rKg6iXDxprlWHL7WvLtgxgthSKNZm1/eX2d+21rbtCi2QnU64Dtn+05fwIkIV/FI91I5JwKb1JgBPH259//HYEFxFzEgVJst5etw/Z9f3398vKXf/1y2P/jf9u+Pfw8cRjoVsJhGfEL+oacdAK0VkzyUkdGmpsCc07IDPeVexf6rIw5CAthDRcAoP1Kqq2My2it9+7u9qEIozVdkgPz3q26VGpFSjAjvTVzo9WoM71pSBkxJ9FyXLORhHnvtr98/vr5e3K/ba+fv+yvr59v9tuXNm7cFM2q4cJWKoxFxWHB5kYzb9a4SbaJpp2b7Y6urqW4+3jNoPkC4TIhfsR8Y5uhK1RKooLzfPz487/ev//78ff354EMi3NMWS4JFNm20y0/ZmUi5xHub/+A2d/fvz8TbM2yMTwU5490wxYrdwFhTHe37sj9dXK77a+fX7Zt2zfb8nx/6v35+P72zOeIvLabRLLqg1IAQsl4GCBr5msL0OYj1aIWZquZnrI1GLUgVJvCWvDtjJA+JLYtAwd+/GP/P7Yf/9frv/3548RM+hxDkVLpWKzfRzNDApQphThg6a4/v/vb+OM9ab5beJiZ4v3vs7ZBgKsvRMog5vMfeibgbdv3ftv3u3nP4/vb/P7++PbHkeehrBFGhoK1nxkK3UfoDx6piCruJ4Z3e6YWGOVbuOXHHlJwb82m1EUBZzsUurYG+C6LM7nvk49/377/eJ8aImdkpbCQjNuX/7x/n2eGUmoYsDyDw+efn/5nS387Gvvtk8UzMZP5/Ie6IlVYu4FmOhXZ5/OPPDvs9fOnv/319tuX/+f/ttkX/P0fe1qM4zlmWueWyKcwRs7KpZNABGiJ+I4ZMxKrdcz7v7THO2YC9H7/bX6LUASYuaBCWinRRK/dXO3VpIgoJl8zaMw8H92OaSmQPhOwxTelCMb73/88ouS8MFJKmhKRc2TYeZ4hOzv2iNOBjAhFKpOkUoLDYaacx+N5YHu6f8v9+SN+NPtk3//rfz/+/PH88Tgjj4jzzByYY0bk2ogqlRpMnZjZmlAyYyifEaTgEjXe5hSgagQwmmTO3iwJZ0bEzFT7AH2vMlGZc54PPp85qrBec2flcb/8+ol1W3D6gDXPNuKDFicp5fj5b9d2u3QMUQTR+ppMKXKcY4wx5pgh0fyqhSv5AQt8Lw5tVgZxQdd1uz950Z+cK6rDxZzefRT8V8/c3E0zhFwKRSQzzgM8jhjxywBct02sFrDC36xGAIBG0hztnJkCaa1PoxAjr4FjyUZJl5HQGKGqtmOOcTyCwo+3x/P5PI5xVg9UXfMq5VcNfskpFze1MgtkZspW+F8Z88deUDOgbY2Am+Zpg4H29dZwPN9mzGp5AKGcp3GG5ap8L5yukgnnfEx4sxygeYSQhfhbTgGRoZRve+zv55yREZHJWj5GwbrtIpLImTIqMZ/hatm44+3b9+P9eYyIZIYiU+Zrpq0k4spAqxbjTzZc1dbHLRPMkfSSXiIFEtaabZ+2o7Vb03E8n8ep9vVT5/v3OExIVcUFKLB0QosmWHGysgCOx5A1T4Dup8OrH8Bbay4zR3V82elH0Pb7UUpp0ZAUrfsOYJCZmc4InZqYOBybH2+Pc2SKBikUmQuq+sl5X7XLxYGgUGYzTsEdfFEkWoY1BSnmTCNpfbPbp95u99c9Ho/Hj7eW7fayE6NFCcwlpGWMwzjOnFE55pqFLLmDIadozRVAM7dC4MRJY1OLFGneb2zP3iIh85TS0kwkk946hChBDglQGXM85TrteH+M8zxHRC4hVoXri/u7wC5AiBWHdAWy6n70Lovq0RF04UOEebN+2/jy8uUWvdmcma23Zq35Ii3qS2Ic4DxTkhmopTyvSoZEDCVgSaa5mW8/Y6Po2IB+39tu/XjJFrevt4hznDPhkUyaeUcyEtNUDDGAAU5Hs/OcKZi5ItnByUp1aiDMKJljouBdkM1Y4LEDgLdu/RM1ZtuPBoTYSE3vG7aXm336G/3+8rJHzLO5oXFJJQCsN3xFbDPRzTUDYFUJStIITUVRVEXgbvWavW+72T4TbLe9d/r9E3q8/n6LeDzsTDlHrWJLmmUVMqmYkAwuR7YEzMUZFpGNbJFm5lnlnZkJ1qVYdY5a85oWrVHN1TZuN+N5ep9G0Og0yXvHdrvZ/TUPN0rKSEHtx+F8vB9jpmCrVs2MwRms7uTKPQS6WxPcrHEqRiIyRXi7n2e2Aj+sNdrm2+d76/DPuY9x/3qL2SjMVYYo8BBbhJATQ8Q7mysNojRHIlOQZWYqMkMKQbTVlEK2+Fnpmhm43cfhm/Fu7+rZmzvQ9pOkYE2m4W7YOhHP5/f393ePt8fj/Ui090yM81EYEXPVVdMYgZwTYqREKABHgZNxzMyTnJnZaPunQ3Oj+u1l577PfWvcx0MTid5uv/1raPzx97+/j5FpkdLMB1tDZkbQBgO++bGdu9O3UHQza80tMjOUGTNYHByEBNr9GFWFQYizedvaAewMoHGft9f99ni0fj7CmW7cfbScebuTnj9+oPWM5xhngm28n4g5peouB5CWGdXcPafEERCgUHoMwIwRck0xI0nH/uV56s6xv77ueNnnp5s/7f3bM2hB3/72X9yPf7/Zn8/niFMSU4NutpDJAB8NPgMy6xa97eZIbceUBY1Iyf2MWNYNbC94ZiUySrFv/XZvMzxHOttmL5+/fPrx3vw84AFv++f76M8/x+s92ez5FHnmqUz31uL5kJRX6+GiOK2RaczqkLRcI6AJOES4W3GdMkN/QY+7ve+vn/f83Odvd/82z+8zrLFZe/1L68f88eepkF8x37SQGGWonWoIRoQ7reNmTmDnIWZWl2CDFTwpEW0/XZDgAJTNtk+f/Xm2qdN362r76xew+22bW9D3179+je0Pe7zuw2gZgXxmgPRtbzkOrRr7AhagjGBWIrZUxKpyg5XAPmnzTJuZENlu6VbQ+Jb7ft52390lWG/7/uVv/3nfn3r/PiieHoISSrhBQYMiT0sPBIZ5Nm0yV4vY61uNC8xbBJ7RfH9WMlzBaVEXbDCx9R33z7/9buYs4tMB5DSB/dbMXgyp+cy5yH9eifla35SQE2BOm1ViVFf46oaCNJ9B5JBFCpkpM+p05YzMZMbMbN2b+t5vt9fPv7/uz7f/eHnPGasvt1Awm4FOQhGeTFl4tzNvJZyjLRD14gJWvQbQuiEjJDBTmOf7t3EcpUUwb9pfXj/P00I5eeaI5PvbNr/PFzb2W63zGATzbL/K5YuEZlKKgcXGVBJkAGU1AxQ5AQUtxJmSzJGHYxwHNeaczuytdWz7fru9fPr0+/3xx+eX2zxHMVQ1BAZNuXPJkGPKtkzPPc6UhUqtT2WmMtYA1EzstlhSUyZiwM44mEqC5thfXj8dbzylnCMsAz/+2P1Q0LltBMjMSSDMGsxXKbjy6/pvFUAN6D2zm1Mx1NOXjcvqbgVVfHXO9Ha892Dnox2YiELxjJjHaKN0uotSTYNypiTUI2QMC4XFPJFNTdiO4eeYnrUZ5lyiko/EL5VCiDAyTx04W+R0RoRynMdx6jjO059h8zjz79td/hyNubLG0iIIjeY/nx8oCxxDJosKaBvtpXeL+WO0aBISa+2lQGRK9XTg+UR75mENmY844ac5H3/+e94f/3h7Hsd5jJSX/DFn0PYyqoEyNMMtw5gNFLcz8H5MO3iOMRWMaivIJHOteVp5CAiQqnJRZgTOHxv/+KbzcY6cKSZj2pnt+dYxxvfnFOdYEuXmfS7xF0DBGg1ujKAnzLC9ZP/ycvNx/McbxoyUSP1SJwFAVjQ8n8Q5RzOCJ1OREfN8+ztv79/eHs9zzCm26hDImWLvo3S2S4QetCOfMDFm2hmrmZwgYHBTNYJWj4axTxFN5S+zOrjnHHb8cHz7rnHOpW2fqQzFOFIRIwNuy7FJzVuv6FJ9C73D4A0z2ILN2F95/+vn1/Z8lw2bpcWiEbEqsrVJpIhxeDszGmk2uYjI8f6H3d7/fH+cY4wgt2AtAYHbnuZGu7SSGWk6i7zWDJEGbzLOFi5zsSXMemvuoN2PhG05EkZjqYVjzna+Mb//UJxRShhkKAMWA6kIJVk+FUo10YSSThQxBIM7JHNYN2vdttv93h17TzOT1VvQ1WOSiuOYmZgaRo8Bk1s8UnIo2uh87O/f/vjxdhznTJlYHKVgfT9tWU8VhUfMfDJlSeVzlKqmNM+CW6kuqRkg3VokbIcnWi0ECBlD+nMcbz+Qxwgt6q27gfNUpokoeXlhgqInSEQtiZQ3tE6S3dsd3V+x37/8to0/vh8Kq24Mt6LTyzoqzxGZJRjs8XTKW54e4WbM/FNHf//+jz/f5hmK2eYRdsswQuaaGcZqXa0OPk1kGi3mOVvr48yRbUxNPEk0s+TzfUZESTd861skZ0yOmOSJI858f3s+gOeYFqaYhiqjksD+tSm8NUSZqGQBH0vLaNVl1A1gi1bqnb7f7hu7+4IkYT+tdpRSzBk56VLazMMRvimaBmnyoTn97e3bn88cY6zEYkamEWM+YZNekrS2n4QHpdS0zJmrpY+rTl0UDj9CODIZes7AjMk+n86I1jX8OQ5aVBeJDeWwrTV4RpvPMRe5CUW0c0ylymkKpZ8D6JFAWgh5IP6w2ccf3x9HvWp6Q2QtAGbofH9GComMOD3ETCBtjoTcOM5hj/cfjzMXPFbsYBLI6lo1Nlpj3xthoao9JktPTFouXUuxelIcs/huQUqzMnHCDJEZQ5LlHNYykkJWT0ZxY4niE3VhvO2YJaiMXPmQBSLbDExYBPyIRzy/tfz+x9vzPIcyzXrh7IAyMs/3MxZcmrPuyyLPGME0Y2Ta8/39HJlS5ggBVlMpRuGE7mab9b2TNmNilvsI2BwusxYJwUq4OxXVb6GZguSbx5whFluQIdCj8FxBohIqjT8N7Y7ZIHouVPiIgGCo1kCq/lmRCVo/5WPE+/dbw/v78xwzkGC7zbig4gyN95/82ixFUCZFRADEnA+ej+dzJpiZvzQlMYME3X1rtrftDtLO45RPr8251iTcgTJJMTMgnkMQVB2t8NqSkPLNDk2ymlZVwoDUBf0rphJOIsVFkLaRNRS5vB+ghMyqr/Q5wjSnvW/OY8xZKKz1/SKsgZTiuLoMpIBDTnMzDRkSmUnN5zlmghEFZZeul0ubbq112/rtxQl4tb5kIDHOnDOUM/PSOKRSOCJU0n5pntV7aEbrN5uZBLPg3co7LzIOslTYeJzzEhqBrV7lB3KPqteLN5gYwzKD4zCOynYA2nbXk7aYlMpqP95qZatm3TWmVVuCMs4xZwKVzlGX44I5ad63fffb9vqpkfkAY01eacyMVM7M1XiYQCJHpFBIVQ4ilQlS9N0fmUSUo5pdpC+knODME+ecjyO02rqJdnX24IMkh0ATLZljVi2ayQpJDiXadp/VEbNMchbbvqRpoLftdmtA+DwzFTNjROZP2J2RVjZaTsL7tt/9vn/+2oHwM0dGEpA0pFlpTK4O64RQ5meLJ4ihBGmgW3/xH6tDE4TZJSwBoAApws84M5eOkWRbUACv11l3WBLozKjVYV5uDM2ROfvt9fDqBBBM5qzeR8vSqfC2ffr0esN9tPMxbJTb0kctI32kN82dsL7d7y/+ev/6l405+okTOY0gMlOBjMwIUVAuZXtc+yAAZdLM01q//cV/KFC9K2wyE5bNlJSkgGAEZFyILhoMLGqLq9DCos4ARaSSGXC4WlteH+328sO9QiZJYPVsr8gGmO+3Ty+GYY8QYzwOBLKaaiipektKHCa0vt3uL/768vX3nXHyx8QcRWsrJ7J0bXNlXUI1TxiEdIhKpRUv0vbXtj1C0AR9PYWWSGo1dpggA51IyQxtWXZizWFLiqSDSi8/NipLWmDed4tAv71sboIxqqck8tLykjSx314//fbF7PQ39uM854mkMhdTx6v2ttZC8Lbtt7u/fvr6+x3ziW9Dc4Rb2qK+Cqvnyj51KZy4NJCe8uaQtf3Tb+32HqmMdMgclNUwrIaVQAk7Sk4hGlo1VWjRTCazpLVuAbnShKKMilfZbozI7eXzvVkplUhDQ0C27L9sk728fvn9b18NR9/5eI5oLlhRg7C8DOjMWt9TaPvt5fVz+/3zv/znF8zH/h3NZOPMCW4DJBzIpBNTLM4saZDRWRSd9wZZv7/+3l6+FzcL8y08YKAbKuRgkV9EcJldonkR/IBUEhyR9G2aJqrAWn6AiJkEUzN5u2+NCVrSMucyITK5mfeU5nkeD3t7+J9/PN8HWFWMFvJKk8HprW17QNvt5fXLb+33z3/9Ty+Mh/+hxrTzSIJbddFBYSphjK63VUTxgsssIJvq37fHCIie7v02W1QgQUpr8ZGEo7mhuiCbObm6rnWJzS7wrzoOIms3mbKcFDRHsGop1oK0RR+XKivz0Df6wf/xzj//PL+P1dFOLuJhzd6awKK5mbfmRbC6ubuZLTyGC3SgqjkSVTMCSJmEEC3FNIA29D+3789py6dtedzEaqldhYQRDnchLSk0LJ2XBJXrBUF6lhTnn2ZAMgbljGBzy6UAxzITrZydZokcz/d98B9v+v5jPNmsiUYlr+fHgjTMDHBvrW9t2/Z9p/F+38e+nc2VlKcEGbIaQ/QRoS/xVLkWlhcWp75t76cgGsy9V5tJ5EdoX3qGS18BCW095qV7BWSkeV7eoeuDsEwgCLQm67d9Q5aRbelUUW3KZmYO4zzeRv7xI78/5ujLq7AiCXW9CtK8uWDeWt/6vt9ebtbsftvP3lrzdKopJTfALZbnxjUELLFPlouFRyCnfuzPAaZBoDW4AQg0mGHOMjuCqbqWlhns2gC09ufKIrJEyktlSCF5CatIywjRVvv0yp+XmGA1BOY4+tDjEe/PCLa45lg9upnKKEEZuXC8ifM8HrBWBimrI6AGSg6mpySVVsk+1tDavcyscu5njuAy/ChUthhLt0Ws02AyVZKYgDU3KySq5pQhJcWYlYwZildY/gT1EnW+LQVfDddqgkTEdMEigeZHR60gRWQ1OlTuZnDHTEIZ4xxm83zub71x7v1mfvz7P769vT2e54xc9kLekZDPkq9odWOrRBFLPrCa/mdZlUBSziMiE1kGQJiV+pmZnH6127P1ZpxTUdDikknNM3Im2YqOS4CWXH4Q1Hg/EiYJpR1FikpExhRPFdRBowdJlKceJFk5P7eG5WgzfDRhHMe7u07nRj/+/o9vj7dHdQLDGiZz82FWeGzV8klCpFn6ahLXpAmYWFIyoiBBwqzMmZoEGNvWhqM3RmZEqt125zjKGVcAGVDGiJxJIKD8EGgUPUJjnGnN1M4UfdjH0oECqwLJhG+ZRAYX9ZrLmZR9Qyx/pxHmmjMOd85unXb+8e3H4/F8nBEpnUmZwbzyHxBVaIv0UkwLmW7mVEiYheq4QGgmXaCyk8SIpW2GbW3fmJlzhNrrfePTJ6vSy+p2zRmKIJBaf4SVewt0aibdmEo4T1vhs0ppi0JNvd8+tWzOy0Lqg3mBwEZkkEqlXGBODXtsDTx/PJ7PY4wZEaZR61hzjjlrAFQ9w0wt+w1Qy9KwPLBJNk2aQjUA0UhDKimab1u+bK83xJzHOdQ+fbrx3Q6ELg1uSSRqyS6NfQFT1VRDoxJ1dELQ+XR5XF3ShSm50/vtlbf4cXrUlHSp+t+gaqPUQGtN7o2+kYgYTxePx3GOMhALabUN+nOec2Z+xACBKVpFStJ7wxTSAIM3btUyjopfbG4NQECkb7te719ecI7TzNhev96txfco3+ZqdVWMZXFb5GAJFa89wRgHYG6aZKdXZwakZIK5HtjajeOtt/KT/fCUqlyLDmgojpyNhhkRFiNPSuP9+9tzHMeIiBVezTHmGaOKftVzrRAbAZnYMjNDOm31wklglCAWcjcrr05j2+/5+vn3T3mcDxFs90+vjmMbnFG2cnWHqr6tvMShhguWNdN42JluoqFpgbQz9ZFwDLlt98/3+XgZS216la4rGa92T0X5U0SOyWjzYRnjeLwfMY5zRhAFeXWd84yIGgAiL0Yqyk4ePHOULztNLJmJ8ix3YcWYIs4hM9C2LV8+//Y5Hg8+T6LdP322+b6d8MsEbr3p8kVFRXsAZTJJ9MbxZs9qt7JiqyBFuecyjJFot9evf0XE0+zH4MLuFq0BWmumsNRMUJrnPJKnv5vFnGM8T8Q5Cv1JJNGQkVcL6IrxwFVZAMiphJn5jVPW+y1sTszM4i5HjkSijFJve9xfv36extyM0e6fv/h825q8rHiwsM2a1StvrHLUrDmwdWlwujkcbFmGqMpgFLgCZvr+6be/uc7vM0KhwNUwRIL01ims7RPM1JwIgyyOmXGepnMyAutYCKAwL9Plw3CpYWFWdisArXm7YQTNm4zIM+skEMx4Dpibi7Rty/unr78N99y7q7Xt1vbNPX4mVh+NZ8trFqwYZyQpo3K4KqeiC0BML/QdSmamcYykNTmQ43keE6XXWikgaQwoEaRlZuQ4MSyD8xjIcTqOsAwiCplSZl5hSFjyxaoHazosvrYI0ox5HmOI7FcLbUJpigxF0tp2u7dzPrfe0MyrNebXCXYVLBd8YaUFuIoDXJb5tatVKfEBP2aWJ1TWNpLKiAkzgGtRVYJb8QCZysgYMObEfE5qDnEmMg0pqMCLj4uXMhofIOZHKl9vTldyumyi9OHiVH9TEdo9vWw7G69DcT4uwKurr56+iLM6S6UYlrX3fFiEadEsJVxL5XLCNI0x5yzHlI9b/hA2A7+M8YdMBz//4SfORlzfvrIJFG7BC9GvCjkIRZQVg5T8qG0ukFkfQ/BRSbRxPP0453KmuN7MRwTAigC1Ic666bBuUKp8V385mqgANA6pvzRs+j//69//8eMZcYGtWmA4l9dQElJmjAgJMcq+rd43SYMBYGutAyxgTgKQvKxHF6CfVGIQVNIb45oygpBp1qr7bSW1czyfc1Rq2I735m+PMWc1XRijyiQCdJOvDbek8ylgLki/HqHqNujSGEZJm8bjz713/f3b97fn+OXNVeNtMys/oyC6IuIcozQTMePq6wbdzElYv23n3GtwWA3QXJ0H8iryyTmryR2OYHm+X2iiuZfDufVmrbfI8XzPc4Ro3s5nt+Oc5a8Ea/bRUwmUvZ9Yep5/WidmNafy8l4r2GbhnVSM4xE6i4gtGKvQerrtW/clBJexrFMD4GXyVKvFALMSxb30iFApSyIjNWpiKuUlIC776IUYqBq8roiW3hLArJ+DlON87jpn0h3t+SP9+2PMWNjrpbr5+bi8zt2QrcbPWnAToWQdPAU4wowyI90debx/33hVzQb3ddhG5W+cUf2AdGbmKAfqmZkBZRLBrAVrUkaF4Kv65zpOhhWfSW/dpo0IoY6tyUvKLRKOThqOIVA5nxZvbQ88j+OY9HY8YI9j1kyu6mTFIZS7iMAsj5yF66SRsIVHFgIL0JF0Jg30mmWPsHOuAwhAuywey3/lOszIkGXapiibr1gGXhYV1dPEI05kVjkcRZZ8zEWS3vutHSGyohgvCGoB9ey9bfhRazHHiOf+gzjP4whZO96mvT3GrEfJsI+sldcJZqw3cW13glX5WXMWdJnQOc1hcLVt3w6dj97t/SwOqyhKIS0VOQ6LnIq5KveT5xGqDpqMhcZ+xGElbJ7UnCkRmcp1asTCogzs992OkdV4oOBUrrzF3Ay3+8uN/c9nzMA8WzybJ8c8j6C3Jw4+3s+plGi/eCGvEeCVEJY0ToDoZh2xnJxohjltt8OaCT37/WXnMR7W7DETdJinLWiVCcbJzMRcphAcdhyp9FoDXFrKtdKUnLTpOUep1vPiF6t+l6Vs+/SCtzNw4Xflz9zMvLXm9vr1t09s8PMQNOd8FDEwT3hvZzqP5yyTlOo4p5Y/zNWORMF8ub+AsN76riOLCzJ3juRuP7yntM395fNd8Ty9cQrmIjyJsvUGkwowterGIGYbp5BgpfwiUQb3pEwElTBOfHC41yZuyjRn215++4IfQyq8DzUtvBva1nvvn//lX79SJ59ITGWOJ+RSRu8vbU7jWTO1Wmw+AkB5Daw2tSwjYdYhBG27K6d7psHReQTvbm1Labfb57+8KoYURm+YIHyZDpEljBUF/yAkZ+YUZE5JIo1BepqBslyG7AW4WllRrAFgdVG3/dPf/qpvJ8QpDwNhoPtObPt+2/ff/9f/118t3vmmqQQwje4mcLt/bscQYo7iRWwBYNcSEH/plPLKGA2+ed/L/lSgcffn4N297WK8nC+//fVrHG/HNENnCzjaiGAojUAwZjY4MyRYGHKeJyAzZpbBMASDUxSL+WHTeRQ4MoXGq7cBAmj95a//+vy3N6XNIqnNPb3fkH2/vbzc//Kf/z//at//Y9p4aipnzOdojeRrv7fnIwrxTS7TiZ/xdSWNCRFmjiYjOr2bdWJBRrROAj1BT9Lg2/31ZTMm4JvliJBm7fFlBKCcUFrEwts1z4OQs8VMaDTMYRb20wwomslsdW+tp7ZqF7DNbvdPv//Ln5/eqhXxQORAZmWO3rbb6+tv//Kf7a9fvh8NmrRxMEfbrDX0WxvnxOWoYIs2uQZgIf+Fp7vL5DW7aJ4r9VWxtTSrFZQpmJsiZJ1SxjnTowzzLX+eYlRuC5dxD0v+rUxMYE6zSUft+FJex5msKiqrfnGSvvX7y6evX7+83rKMF2WaiCSmZ1mibPfPv9v/97Y1SoEeQ+l1CFDfm34+8of09ypz1niwbOs8TZe2/qfcIRcvoFWDxYw5Zlx25Jkxz/DwduUmAJaZnpuTiqCZmS4VUBWTynXu58dkLDiMtKjdbhFsrW/7vpWNq9MlS2ZOyjHLR1S5xNx11/Tgz/fMlqsjFAAUvzw9l2FwebsZSTc4wIxTw+P9iHFMZNjIUL6fGs+cOfJ8+94ObObWfPZpQJnEFiCYQmS40ua0BJWJUU3CqwaCFtsowMASMk8uz/AqQ5VRImAxcjy+/Vv827fHGXDMSh6ozDOSVGrmp/u3//1//x//+P6MpFWT9gBtfHM1Oj/We7k+XjBg9W2DpOjWstHZmJZxJpDvI+IMITxT0vvI+VRo5nj/7qO90uktzuHA/NhXJUFRjHpEiVYSYVVqlD3eB5GYoLBwhbPOAtNVa+gylOA0cPuvj//+/ZjyXeeq4JGxUM4cD8//zv/jv/39x/uZMY8RQs6EjT8x2sILynVrLewlE7CqiGh1OqfRWkcKecYYesbUKSExI1LvM8cBccTxtjHt3p3e8jnqaJdFDEplUls6nmtFXMeewhCleYGWiq1SdCQ5V+ZXn5AqH2fGTPn+9sfbCXrTc1U8CnEtwIPj7RX/9j/eHs+nhmIOchKieTwbudKb9ei0XEJgJ2SiW8IaHc3YOiOYMY/QyMRUHYIq6AjFafRUnM+tN785fMt2jmP8KtyrAJICMkELEIoV37DsHVZEWsWJBHBc8VOo/q5cFIsUEfbH+facbr6pGUu2dumLghHx3PXt23mMmYGIoNWYu462QCVLgpZGlpRDolNpgrWkdxqb2X7jGEOGkZhJCwqig0QElGhGQrQ722tD2/PtwJwGi7prsE5uzXKRtSuoVkRzcOhjCS6dJ0rDKfxMkZcnVcGMbhlzjLS2bS8vej4LAynngxIBH4Z3vT1mebJLYS0iARuuBjoAGUrAS1r5hIk0yRJcuDi92+2V43lMw5iQnFnH6SmVI6XpplDMwL6//NbR7vHtcf5wVMfTxQ58rOUrEotLqM4s3UXpVa8mKQmI8tpMJmmxqHYB5t5maJxhtt+//KYfbxll9Vln5AJzvs8HdQ5FRIgL21Aimke7XBa0jEoXHbbQi9obhiU8O327macnNHKVsgClOVNDkuAp5oxs9y+/7+ov07Zvm6nwtvU8l3m3lm3FBb4tKqvy4SXQIbCqBJjTFKVqjA+VDM07pTgE77fPv+llO1llfS2yzGFvT4ZIKwHpOvyjjHXZsrDlK0r9kgj+RAUv4FVadHuh1JmJD+JEHypIZc6IOUwoRBTF11wJ9j8hnzXqqeudL+R2waP69QMLUKiKSCVTvLKPaUoWBv0RWiEpyYgIYOpKNTJSnJojxJhsV1zBJZLh0kqU+JRwR28bOZvmkxzPY+YpoMjZZM7xEd4ypeB4b39/vD9d/Z4/nn+8j1LGoTBcfmxmoNvAFdQVmtV9pQ94eG1EAKqbNaI2wMLtZFLMiTFkQ2k549Qf72do5gIzJHIwhVgYLCAwkQhJyMm26IRyybiQJuLKjwije9+qle4Q5jFmzrptKm2J/tcAZiphD+vPx2nyGx7Ht/dj5i8wLa5AwI8UHIvRiMsKtypyfWDmBfQBmYsU+5gVGRMzZFNJxRz6/hizsPG6SnIiVh/kh/kVsIJIoq3YtNKn0pxgPV9tNCwmZKYyBuI8M2cFbwFpq8t0vaZUxjxoj+1B+YZj/nhbvjofPKsDF9gkkKmPumrZ0dTErylTfSIAL5oZqMPmcQWoOasPjTmOAz+OWUvzmtY5i2KtQwjLqHdFOFJoa1H93KAraZWYNIejSHirFtapnDNZT5T1Uzl/7mQlExm0cZxEaxjxOCMBg2Ep0wTQM5f7RSXKH5l4cYaliyXYTKGkJa4eatZlf4Yq6y1LC51TKhspGNdSYjUekDSjHGlNY8jWWSNCw89wpJUBwEgDWUZFZsQIQJEg6zDtj/cHURnXyW5u5mVgY9NOsllGnpMSq0mmhGgGLrvDZlqzYdmWwyvAlQ6u8G9AAV7cUn78DhRPOTOrazCQgYkFCFViq9JFSIggQuJR3mmLbWbzD+oIhaiXgrNTsmpNyuKvFFH17yU85CqqlAAdpHVrzJASp9k0NkUqrmO8FvuVC9Ch6O4Z191W0WFWVjtYXdxLdHApv9cwVOMV5ajWoOWukcWTCTQgl93SElhWt/O6E/PVupGskxAVH5tS/THGFbEqReWSdizZDAorEUGmpq+epsQ6wdummZtnzMjS8PDi3sEiD0DRjc1rYK2CNDGxIgCvOUwue1ZdleoHL5msiqA2y1iNNVyV75rXybzyTRF1FKatmo9sRoLrlIgrROvqoyTq9NakEUgs8WRF52sdlseKoBr0wjTd0mTzKH/9cjniNXBmVufxePklFtMWS6a1csQPkrLA1J+b58fyu0K01UBJClVFcSH6XKH30nGSMJZD2Wq1s2ZmCNg6XKd6537yvmvYyDS/SrFfIOOaB7WnCD9PEql/87ZUdix1ycfNmznhYa3XQb0iTVMr0q0A/nED68sXWP1PqWP1CxgkGWWrnrcykV/DtyaNXTJlU5o3yyoYrZkbWScT/HpJ8oqJEGuRx4f/7KUVWh3oy13CzJXIK6bSWhtFHIjNrjdKkNbcYPS2uTLBNHq6IFsiiH8GplgMfQ12uSNq4UFmdG9Qojq9ArSLwbtSxnU3uiIX6d5NqWTSm1kpb3FBoLVgO5UWsRABiaVgJ68b4yVjX+FF8LYpMaVMIa9zQQXaLLD54w6MZnD4dmsxU0mjW53tThPjmu8LGllaz49qemUJVmfUe3MgqiHDALpY2ij9OoSrcfjjHtah6LZOnPyYMOISBToX2HnpRX7+BP7p189crQ5OLm6x4nxBl+Z52bEKH4/BS9B/3eZC+kvVfJWEa3X/DNAftMV6MP3f7uUnls1r8fz6A1wJrn0IYloWOPVrqop1hBcjL3lyvWpDBU/iQ6xAI8xyhSoK7qlerlPbnjlS3gOt9SOv/mRkpUEl7JRUSRqACpRWA7B6OVHnFV0zQFCVbpJyWVyJBoO8ZrNAqo2LgQVRuytgTpnPZAwolClnGwKLef1wzAGgINYBDUtFLykXd1rik0shnFd9kxkQys4cAfiYxyPE5b5zMasoIJSWiEDJiWAFbcEsZXnF/PphrunxT+B1bVYSklnQQQpLjMSPVtk1d5bWuerxErXgQqHbVWKurOaKAY1I5vzoz7k2MFKA/yRniaqcCuiGKmJWVMqoxsOc8L6PMVfjCsvatjwsi2HPWBY+lYrrl6m9kiRb9flqhK0dwF1Wp5cQMz/SzSnNCKwNjKS3zc9RQMnayEFQ1lrTEiLUurz6+aybwkIrIFdNv3olJRCGJY0CaUhag9oGqRQ0dWDM5YusX+q+uiMzmqxtbdYKqq9ewMGVM4I1SFzkLJlaoEDtOtY9vLdmbqYjiKyTCqvfE6uT1Yx9v/nzOeNSka1ai9a2JnJJYnnFGVZOllQdswcl4F5bzUdGf61IISXHBGNGaCZU6ZDRGTMQc5JoabiSYPfm7NHvL65x0qd8y4dSZpyrPXTlNlhxLYsSWvP4WiRp3tq+EYI1gtEAhlcrWcU7kGCk+jlnsj7JKxZXMUTyUt5ddTPqyC4jzBRK0babhSsA4NIoXbiFKkF2ZZyrh67Iy34qE0p6v722Mdd7Fezm3GN7/dx4PuwY2ff5Y2Y2IrKazNbkskylsaY3MyF+1GIg2Lf9850awXMSw0SG8xwRvCo2ApS1kMwgNo2oujVBWMu81jMvrGBV7qR5NkuFQGs9m6+fvRhKXcnNL7BNNbsVvnUd+EfztqWbag6RbI5u27Y39zyE2XdrHmhNdmV5EmHdcyjNQGcdWmdVW6q0Udb6/vqJeY6F6QKgu9nlpg3CRO+3vQjutA3vZQWVCbPWfq3szLC6ZirbNWfzlBJm/aaza1o1GS5IZmX3JiPlbUNU1LG0TLRbbHKa+fby9S8/jjmhSBq83xpe5+3Lb709fTptv7sjy2OXNKGJILy3VMIcbGTtDyaRloA3821/ef39K+J5qg3XMWoGeB1SoUoYiyOmIbuF32IGqleL8DUAyw7BKv581Fy+xd5CSVrb7zh7nl4isp9RAKvEAMy7xkp5TALbPXqGubf99fNX/njWvDa0fu/5Ol++/qVv73Y22v21dSe9Z2kD0DBBtts2FbQGdlpaknQlzULw5rbdX77+7S8c3x+y6eqnaLMlTEN1IB0EpOhdlto9+qcZMWZJacDWzCu/4S8JEtf+4Q53mJFm7TZLXXvRZ1fqJUTCmWsbnHZNC/b7QWXmDOzYuq1CwNX6reser1//svcbng3+6cvj9jyx73mg4gyyEtti+QNGpzG5PIfAst7Y7y9ff8cRQo5WPkujPw7MOecFcqbGWTb1tKxZDRnCAPPWWIfFmoy+atbKMqxOJZBvbr2/fonvfXiDMmQX3FDHXRickLdtOgOEili+fT77EM36/vLpt7xtWVm/+tZ2vs7Pv/+nu//Aw9E+/7a/PGa8vObJ+dEcCM1nRCpGMKoRCiktZwSz7n3bt9bU93Q7Nvkp2diPqcMrgK6gb61HBgIT3+f7GYs08r63e9JSM1sa3ZwoMwQlqTyYRm5ufXt5/U7Am9KcXevgZNIyretKH9xakIC7d7x+emvFsJv1W3ciQOsWlRxjv336BL29jPBPX/rrk/z6KU4va26ZtDq9hJlUb9ScmBDNyure3Ijxoyke0d2d3pWWW3cHYO0CrwhB59sDk4NzDLEx0Bt6783oVofXJqUyU5FZ7eU1B4H0Fq/vD8zZBHO/64gK9TQhJ90g79s8wlwkrPfmn758MwXMwLbdb93NIAN822/37dP49OXra+vjB/r4y396/2ve+Z8+h/14HJGRM5ACy/Vghfw6EUfVJklSbK1ZuyEyb+DGSAyz2+2O9y3UcwRWM4V3Xx5gyDBvlslU324tE0vhUXnDgq51BbpSNFiMi5Mh6bc59bMWK7GsvG+zs5lksN7N29aNoPXW9vvry+YeTKPBW9tu9/765fdPvT3/CD+//u3t67H7377k7P0Rc0YpF60OO4fV9MqraValgmx92/f7J0zEndZNwEHe9z26O/ayS4dIa1t3oyNtHZaHoCRr7W2agRqharCkSHjTR1f2z18LOE34Vuc1SQnPwPSV1y8AXjKC+v7n2+N5QrPp7f0Yc84ozH2O87Qzs8DMumDfbr59+aIfMWNoCWZXRZC/IJYAoMBlfFE8WmWICRiSc57vb2+PwzbEFDLEqP5ZCAPHOXRlwjrOlqmV3mCxl0XKXPmQrkuM+dErYTT3VamTVpugypnGCPeCUOdzCKCUOY/354jM2stjjIPPeP/xLf3bn2/vz/P9x+MYEeehMeM6kfWXoecyy7vq4dqDlTHH+XxQiRhn2GE4dfhxzqgUYEnOby8v90dvWWzBKmdqXTXjBcKS5CXRDSs9NEs/IRJThDkpk03tfiYzjUw5krwl2GdTT+tbG2cIMWXeReQ8nj/ejxlpgMSMOewcP779/bA///6P78cQHv/2bbTnq/79/XloDJXNWGJpt73ZSn5XlmbmZlbt6m3bm84DqUMz5+OcU6ICXg39/bf/5b98/r9aO/Pk7G5TctLMP3/5rbWFsRegkRfQ+EJMm4eKhjIYzuIXISAf3l1hETSRDcPaa577p27jOH1r/e39Pfj2/e2cQbZzHI8fb8eYASppOefg8Wzf/xz5x//8+/fzfDuO//rjxN/v9j00bZTEOEMrmTH3BfOYKMjMzc16y8hxcr/vpyE1/0xyzuc5U9KoQ523dvtP/+X//SmP+TgjWXI7p7m1l9dP10lTq7qoNglz31xsOFcpIUFlhZQAzOh71qlxprSGMNtz+obphnZr28mYOB/HDIGuHMfbY0QkTUrGnIPns/34c57f/vzxNsbw8X4MIdqBQhbq96ipKbr/quNfFRyMc8zjwZvvMyPyeFOzs47gJWhsve/b9vqXf/nX1/94/RFBKy9FOZt7u91uZaW1tCcqJkiclCktxjq9I4CYAcGsspzr18JRNTHieHw/3kYcW+/e++bs1raYyiOV4zjnx8JWzoHn+fjxj4d+PI4jRh7njEDMeIqymfQoa1ddQN8VhFcNKmXGARvn8bTt1o/ziBzKoUMzLne7AmCNzA947yfUTFJqNcUWBhFsnCkQJwlpJckTyDlh3n3LkFJTOsMzEil5TMN7zuf38zHnTEZEf4V9esn3NkYkIsbzmCmly7z1xtDz4NufB57neY7w54jS30dCFqLq/C7rNfH3jTTOmdX7V65yijBlnMD8cfw4BG455lDMMTMwTOVOMYzH/f/8jx+PY87rsDokYOf7H+3KKUBSaY0ZEHDSTGaEyUrUlmytsceZoRgTU6mpOvsxpPfM549xxMiQ1G73bn/9y03fj/fHk8p5XmeYmLk7Mp7Tn+/D5hxjhMZZbU4zFKX+WK/dvE7x2lozGyNnhM5IGghFEkQceTQ9p/nm+X2kpOo9p3LOMeNtPP/c//HH4ywX+UhSmgYe762tC9WEFnsdlFKXdhkIzwwhg33z1odNESMggQklQQXzkM1nhAJxtn6/7/f2298Ovz//wJwR4yiTXHLNgLDJx1unznGemW0k6qgAXLC6A6B5a2Zuftt25xhx5pCNCStfVDNjzvk0H2m+WRyHInNGxgXAwp7n4/v2POdQPfvK+KR5vDVd8lPSKDMvXKGZteZJEC2GKRW9923vJw4xy+u/NjVrY+UQKZeD5v319vq5f/lr9P2BcYxRS2A1JZDIORHwrYHncZ5Ii6Q1L2a/sKAGycy9mbvbtt/dTkum5cykica615hGtqT1+xZ/EpE5Q1JSaUoykNkilcrVumIlIFCO9lH8G23ZhYBkM7aO4OrzAjWbW791zpa+GMxCG1ofC2QDjQn2++vX25ff+qevdHs73t7eFefjGJHIZAzRMueMgLXUfHtMgyLMyjfXRFX2oUqJiv9Lup1HnjF1nEEXpuinj2PM1j1CsO1lNuRZxqUr1Hnr5qvtTRHJOsRcCjBjNlxAUmWWH3T2Io0TVt2cTBDm5m61Ka/eVaO3ZkSZtzkbbL+9vt5eXrf7zecT933rbohc+GEoZKlEwJ8tch4jkUyt47WNC5yWlGBkkHSLkW7nkSMDx6jDJkRDOzunmhVr70uPDSsE2+net9637ufMgrnLiyUTQEqNi2esZ87BYmJE7tLpCccY6cv4qbVsZnVcNUDRROut3ldMygS2++vn2+cv2/1z5/A/9r6P3szqfDpFIAxkZs4zFGNeCTdAZGiWiqSc+ykaAOfWh9txaKb4UJrTxEyMMWw6XRSt3aKRlahTlIxmrXnfNl8CibJLzcyohtCmn4lF4Q2+yOGC5QOwOUXEFNm2jtO9T0SNn1RdU6XlDjeXe9/vXz79/tdb/3x74e37P37MaM4SR6FUfTBHinTFmAkabd/8toEn64jkKC+vlCwTxrGZ2/FEJOxkWhXiYjsbzmGB02T9NTcjzJ0I2AxBqTwRT5uBUCYQRdaMhPk22wch8Gu19bMroqi7JMJE89bCzbyVKdVPQLXUv1Xskebb/fXzrb284Efs3a3WVgFNKLMRmDAt67Abkmib33adxJAoKj4YqatQ++UGV92WZTQ/bTgTYLulXwXi4nwlKcqpgoGLnhNKmFlCyfW9+qC6VjgyWYU5Y5NBipgYkYK3n7zj+lTda32mjtkck3gc50igxLs/HyCLPUwtHN3YwL2/bJpdmRlJwitWiYCWmGrd+8/MUBHzzFMbOf14PN71HHNGSIB5DWJmMW5LhKuPRxWU0ezD5ndpE7i4zku4ZOZdXc1Nyok5Yx7PY9YqrrdfR0+UoVoCyHk83vbdU49jJPt+IzDNPga/kPeMqYicCYUDpz+7fgSfQMLKBxRZ7GcCSpTlRsGVi6BSZmRYTE7N+fyhEQK9gZN5MWnXZK3TDAJaPB2lbDVPsBp7AZV5qUBfx2TSOjsbkPNofj7OU4/lBSalK4M+lKjDolI2j8d3RWx+v59/vL9PtBsySF+puOrVA5KHNCqdUnC43tImmfRcx9ReFFbGpM0or3HXcngCvSnGtIkwAMpvj3NKVjpiCso5rxYyrZPSV/FDaKqtKmDpES5gjBfassrjTkvlPIzjOabmJY0RgIw6H5pKSyegebxhZud+jx/Px0TrH92OWuxjVR9pIUSSQTI8rjzEltudLS6NoDTJmUxR9EwBWa6XI0bTwTDFnPr2dpzMaqsrDV1MJQIsD5sC1K6lOKNV8F9ZQNE6Atcub5Y0g/lGzOrmWagMfo2ctsikdSgNlqBcbFfDB65DQiouMUvaFT7AlDFAX5j3Bxy7mK3rWpI+ZLwXgSzBpsYIF8IP813HOSb1061kLe6oEx5XDKznFZBoVlQ5L7jRrKiZLNEO4U3ed2qSdTLFT03NVQ5fO8KCz2onaCY3lM/UR2BGdQNjcZF2sSjX19V0/0lPQr+M9Mc/kSzFSpIfB0L+Up8Dvw7ALwKgn8jHRZ6jxKpXQVRRbwkvOxMutIa+7dR5bZj/9DVFAnld2sxbptlHRK3A460h3Vbb4U9+lTCvJ1mA3NK6EKJRfsV+/vPzk/BZvYwrffn5eFVSFreBJYb9NdNdU+djBgBt9UxZrJrQTKADSaO5gXvDfr+bHiMmIucs9fF6R/Woxd0jU0JazvNwbZZn2vMc8WE7aC6WS6/XPLQFdF10+yLzliqOBkdMLRk7E2T5Jfs61VEQ3EOOUPgwuI4ZH043C+Ct3N/M2MzMLAabvLT3aq0K2yXNsNIwNmOyM2XArfnr64vH9vaIUIwxQ+UjpKUvze40gGitbZHU+XyLJxD94ed8zGvKXBO96H+R3PbnOiC95mCKday7ucmcKHqOLB+5JUhEaRtJZ3nRJAYV1jSm3k9kZiAvfFcZSSWSWfrJ6gctC7BU62aZJfQzCt6bs2/uSeM5Ter77S+fP/lzy3FmzjkiMn4aShCSNQ+R7G27j0md7KN7zO3ZZj7GslIEkOn18gMA6bf7j1mLsU7FlegGQVZljaL8WyTA5ppiZnUAGdgUZ8b4MW0604Z04DGtzlGOlaEyTKlUTGdwYg4P6zmq9lHz6mODEgYrtKLvLsHSukv7y6d/+evX/v5HjHPEmDNkrQoVGEhl0jIDpunq4621nLZtt/Noe1M8H0/EE3OunqC+8pIkbbs3IuGOtGbb7kpgYtYMmyj5m1b1eB38JfNat22khJyDKOJ4dDyj2ThPQtZKRh2IUClYw4cOMQSUG5eybRl1HEXNwrb1jbdb06DnkCM/v/7+v/7rX7bvr9/f32OWR1aKFz5PgNtwq6K17aRhqMd4eTy3c6cCZvTq/LC0bBVtJJjtL16Cp1X9j7LthGiNuZzh0xZcvZI60vfpAbMNOWDMaibCxINIOlVkuNkVHXU14y0T4AKHZUo1w4ewnFeohCJO08xq8m7b7b7Hy2amiMgMhV3urWscVBGFz2Mc8jOf09/fzpxpiDk3d/M+S15pRgOQdG+tdebKqqZmvhfkO8NF01h9HZlMpeVVTYjriBJKNNo6lhjKIdDhRhMSYVfRU3lX4dlrX7gAneZG46xKbeHuiz26lIVaUHad/7nyGZokwuwSIQvKXxvZmFBwOurUes25tNa6SsIInOc5kYLlNIMyV5F5XfPnvl8zhBdvt0i7jJjzPE+mTPJ8Ct66x8phP1KA8qWpt2yw5t22zYQMtQavXpLyH6mNoJnBmk066a31bdt6d7v4gAWg1PvM5VdDurN1lY7EvM/s3kzyNNTRXgtCqi2jJpcZIHOmG9xt3TO9NcukAZYlf19ZTiVtJcAwul89/vVoVDUmmKkknlyd/7xSD9LoaFtsnUKkWqUNUlkQlzlyJrsBPQPS+Xj7ts3+/X/++X6MMaMwy9V+UpvXOemisfvrjbcGQqkAmYNKceTJuY6gR6R+4tCXZLFgYDN5Myim984EisxcwqsVcATEmOu8CYdiwZhgCWqM+bOhgx9Ctpr1ApzObYu9QSna/x9gC2VgMTbu+QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Image.fromarray(np.uint8(W.dot(H).T), 'L')" ] diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 8dd006a814..c5e13aa072 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -34,6 +34,7 @@ def __init__( eval_every=10, v_max=None, normalize=True, + sparse_threshold=1e-3 ): """ @@ -75,6 +76,7 @@ def __init__( self.v_max = v_max self.eval_every = eval_every self.normalize = normalize + self.sparse_threshold = sparse_threshold if store_r: self._R = [] else: @@ -85,7 +87,8 @@ def __init__( @property def A(self): - return self._A / len(self._H) + # return self._A / len(self._H) + return self._A @A.setter def A(self, value): @@ -93,7 +96,8 @@ def A(self, value): @property def B(self): - return self._B / len(self._H) + # return self._B / len(self._H) + return self._B @B.setter def B(self, value): @@ -101,9 +105,9 @@ def B(self, value): def get_topics(self): if self.normalize: - return np.asarray(self._W.T / self._W.T.sum(axis=1).reshape(-1, 1)) + return self._W.T.toarray() / self._W.T.toarray().sum(axis=1).reshape(-1, 1) - return self._W.T + return self._W.T.toarray() def __getitem__(self, bow, eps=None): return self.get_document_topics(bow, eps) @@ -141,15 +145,15 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): topics = self.get_topics() - print(topics) + # print(topics) for i in chosen_topics: topic = topics[i] - print(type(topic)) - print(topic.shape) + # print(topic) + # print(topic.shape) bestn = matutils.argsort(topic, num_words, reverse=True).ravel() - print(type(bestn)) - print(bestn.shape) + # print(type(bestn)) + # print(bestn.shape) topic = [(self.id2word[id], topic[id]) for id in bestn] if formatted: topic = " + ".join(['%.3f*"%s"' % (v, k) for k, v in topic]) @@ -310,8 +314,8 @@ def error(): # print(type(self.B)) # print(self.B[:5, :5]) return ( - 0.5 * (self._W.T.dot(self._W).dot(self.A)).diagonal().sum() - - (self._W.T.dot(self.B)).diagonal().sum() + 0.5 * self._W.T.dot(self._W).dot(self.A).diagonal().sum() + - self._W.T.dot(self.B).diagonal().sum() ) eta = self._kappa / scipy.sparse.linalg.norm(self.A) @@ -334,73 +338,52 @@ def error(): @staticmethod def __solve_r(r, r_actual, lambda_, v_max): - threshold = 1e-1 + r_actual_sign = np.sign(r_actual.data) - r_actual.data *= np.abs(r_actual.data) > threshold + np.abs(r_actual.data, out=r_actual.data) + r_actual.data -= lambda_ + np.maximum(r_actual.data, 0.0, out=r_actual.data) + + r_actual.data *= r_actual_sign r_actual.eliminate_zeros() + np.clip(r_actual.data, -v_max, v_max, out=r_actual.data) + + violation = scipy.sparse.linalg.norm(r - r_actual) + r.indices = r_actual.indices r.indptr = r_actual.indptr r.data = r_actual.data - np.abs(r_actual.data, out=r.data) - r.data -= lambda_ - np.maximum(r.data, 0.0, out=r.data) - - r_actual.data *= np.abs(r.data) > threshold - r_actual.eliminate_zeros() - r.data *= np.abs(r.data) > threshold - r.eliminate_zeros() - - r.data *= np.sign(r_actual.data) - - np.clip(r.data, -v_max, v_max, out=r.data) - - return scipy.sparse.linalg.norm(r - r_actual) + return violation @staticmethod def __solve_h(h, Wt_v_minus_r, WtW, eta): - threshold = 1e-1 - - # print('h') - # print(h[:5, :5]) grad = (WtW.dot(h) - Wt_v_minus_r) * eta - # print('grad') - # print(grad[:5, :5]) grad = scipy.sparse.csr_matrix(grad) new_h = h - grad - new_h.data *= np.abs(new_h.data) > threshold - new_h.eliminate_zeros() - # print('new_h') - # print(new_h[:5, :5]) np.maximum(new_h.data, 0.0, out=new_h.data) - # print('new_h') - # print(new_h[:5, :5]) new_h.eliminate_zeros() - # print('new_h') - # print(new_h[:5, :5]) return new_h, scipy.sparse.linalg.norm(grad) def __transform(self): - threshold = 1e-2 - - self._W.data *= np.abs(self._W.data) > threshold - self._W.eliminate_zeros() - np.clip(self._W.data, 0, self.v_max, out=self._W.data) self._W.eliminate_zeros() - # print(type(self._W)) - # print(self._W[:5, :5]) sumsq = scipy.sparse.linalg.norm(self._W, axis=0) np.maximum(sumsq, 1, out=sumsq) - self._W = scipy.sparse.csc_matrix(self._W / sumsq) + self._W /= sumsq + self._W = np.multiply( + self._W, + ( + (self._W > self.sparse_threshold) + | (self._W < self.sparse_threshold).all(axis=0) + ) + ) - self._W.data *= np.abs(self._W.data) > threshold + self._W = scipy.sparse.csc_matrix(self._W) self._W.eliminate_zeros() - # print(type(self._W)) - # print(self._W[:5, :5]) def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape @@ -421,7 +404,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): WtW = W.T.dot(W) - eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 + # eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 _h_r_error = None @@ -432,15 +415,17 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): Wt_v_minus_r = W.T.dot(v - r) - # error_ += solve_h(h, Wt_v_minus_r, WtW, self._kappa) - h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) - error_ += error_h + h_ = h.toarray() + error_ += solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) + h = scipy.sparse.csr_matrix(h_) + # h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) + # error_ += error_h if self.use_r: r_actual = v - W.dot(h) + # print(r.data.shape) # error_ += solve_r(r, r_actual, self._lambda_, self.v_max) error_ += self.__solve_r(r, r_actual, self._lambda_, self.v_max) - # error_ += solve_r(r, v, self._lambda_, self.v_max) error_ /= m From 87981bf32f447b4327e7ef7510269ed4647f2249 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 25 Sep 2018 14:09:53 +0300 Subject: [PATCH 055/144] Divide A and B again --- gensim/models/nmf.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index c5e13aa072..c55a5206ca 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -87,8 +87,8 @@ def __init__( @property def A(self): - # return self._A / len(self._H) - return self._A + return self._A / len(self._H) + # return self._A @A.setter def A(self, value): @@ -96,8 +96,8 @@ def A(self, value): @property def B(self): - # return self._B / len(self._H) - return self._B + return self._B / len(self._H) + # return self._B @B.setter def B(self, value): From 0b314c7ab8283217aca5b5831765a9a664e8e5b8 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 25 Sep 2018 14:53:47 +0300 Subject: [PATCH 056/144] Fix A and B computation bug --- gensim/models/nmf.py | 26 ++++++++------------------ 1 file changed, 8 insertions(+), 18 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index c55a5206ca..eebae9a952 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -77,6 +77,10 @@ def __init__( self.eval_every = eval_every self.normalize = normalize self.sparse_threshold = sparse_threshold + + self.A = None + self.B = None + if store_r: self._R = [] else: @@ -85,24 +89,6 @@ def __init__( if corpus is not None: self.update(corpus) - @property - def A(self): - return self._A / len(self._H) - # return self._A - - @A.setter - def A(self, value): - self._A = value - - @property - def B(self): - return self._B / len(self._H) - # return self._B - - @B.setter - def B(self, value): - self._B = value - def get_topics(self): if self.normalize: return self._W.T.toarray() / self._W.T.toarray().sum(axis=1).reshape(-1, 1) @@ -285,7 +271,11 @@ def update(self, corpus, chunks_as_numpy=False): self._R.append(r) self.A += h.dot(h.T) + self.A *= (max(len(self._H) - 1, 1)) / len(self._H) + self.B += (v - r).dot(h.T) + self.B *= (max(len(self._H) - 1, 1)) / len(self._H) + self._solve_w() if chunk_idx % self.eval_every == 0: From b024dd610324d4068eb3add02b8cf3298f2c3082 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 25 Sep 2018 15:28:38 +0300 Subject: [PATCH 057/144] Sparsify W init --- gensim/models/nmf.py | 16 ++++++++++------ 1 file changed, 10 insertions(+), 6 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index eebae9a952..748d1fbf4f 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -232,14 +232,18 @@ def _setup(self, corpus): self.n_features = first_doc.shape[0] avg = np.sqrt(first_doc.mean() / self.n_features) - self._W = scipy.sparse.csc_matrix( - np.abs( - avg - * halfnorm.rvs(size=(self.n_features, self.num_topics)) - / np.sqrt(self.num_topics) - ) + self._W = np.abs( + avg + * halfnorm.rvs(size=(self.n_features, self.num_topics)) + / np.sqrt(self.num_topics) + ) + self._W *= ( + (self._W > self.sparse_threshold) + | (self._W < self.sparse_threshold).all(axis=0) ) + self._W = scipy.sparse.csc_matrix(self._W) + self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) return corpus From 35d5406e376d859df28d7b9673f167cffbf311fe Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 25 Sep 2018 15:40:35 +0300 Subject: [PATCH 058/144] Experimenting --- gensim/models/nmf.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 748d1fbf4f..afb0776931 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -230,16 +230,18 @@ def _setup(self, corpus): first_doc = next(iter(corpus)) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] self.n_features = first_doc.shape[0] - avg = np.sqrt(first_doc.mean() / self.n_features) + avg = ( + np.sqrt(first_doc.mean() / self.n_features) + / np.sqrt(self.num_topics) + ) self._W = np.abs( avg * halfnorm.rvs(size=(self.n_features, self.num_topics)) - / np.sqrt(self.num_topics) ) self._W *= ( - (self._W > self.sparse_threshold) - | (self._W < self.sparse_threshold).all(axis=0) + (self._W > avg) + | (self._W < avg).all(axis=0) ) self._W = scipy.sparse.csc_matrix(self._W) From 74acb376c5e45c5fcc6c968c97bff5b5b4fcf274 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 25 Sep 2018 15:46:17 +0300 Subject: [PATCH 059/144] New norm --- gensim/models/nmf.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index afb0776931..23807d2358 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -240,8 +240,8 @@ def _setup(self, corpus): * halfnorm.rvs(size=(self.n_features, self.num_topics)) ) self._W *= ( - (self._W > avg) - | (self._W < avg).all(axis=0) + (self._W > avg * 3) + | (self._W < avg * 3).all(axis=0) ) self._W = scipy.sparse.csc_matrix(self._W) From 8b286751830658639867b1da759feda2a57a02e0 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 25 Sep 2018 18:15:24 +0300 Subject: [PATCH 060/144] Sparse threshold -> sparse coefficient --- gensim/models/nmf.py | 32 +++++++++++++++++++++++--------- 1 file changed, 23 insertions(+), 9 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 23807d2358..4734cb7b2a 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -34,7 +34,7 @@ def __init__( eval_every=10, v_max=None, normalize=True, - sparse_threshold=1e-3 + sparse_coef=3 ): """ @@ -76,11 +76,13 @@ def __init__( self.v_max = v_max self.eval_every = eval_every self.normalize = normalize - self.sparse_threshold = sparse_threshold + self.sparse_coef = sparse_coef self.A = None self.B = None + self.w_avg = None + if store_r: self._R = [] else: @@ -230,18 +232,18 @@ def _setup(self, corpus): first_doc = next(iter(corpus)) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] self.n_features = first_doc.shape[0] - avg = ( + self.w_avg = ( np.sqrt(first_doc.mean() / self.n_features) / np.sqrt(self.num_topics) ) self._W = np.abs( - avg + self.w_avg * halfnorm.rvs(size=(self.n_features, self.num_topics)) ) self._W *= ( - (self._W > avg * 3) - | (self._W < avg * 3).all(axis=0) + (self._W > self.w_avg * self.sparse_coef) + | (self._W < self.w_avg * self.sparse_coef).all(axis=0) ) self._W = scipy.sparse.csc_matrix(self._W) @@ -370,16 +372,28 @@ def __transform(self): sumsq = scipy.sparse.linalg.norm(self._W, axis=0) np.maximum(sumsq, 1, out=sumsq) self._W /= sumsq + self._W = np.multiply( self._W, ( - (self._W > self.sparse_threshold) - | (self._W < self.sparse_threshold).all(axis=0) + (self._W > self.w_avg * self.sparse_coef) + | (self._W < self.w_avg * self.sparse_coef).all(axis=0) ) ) self._W = scipy.sparse.csc_matrix(self._W) - self._W.eliminate_zeros() + # self._W = np.multiply( + # self._W, + # self._W >= ( + # self._W.mean(axis=0) + # - self.sparse_coef * self._W.std(axis=0)) + # ) + + # stds = ((self._W.power(2)).mean(axis=0) - self._W.mean(axis=0)**2).sqrt() + # print(W_stds) + # self._W *= self._W >= (self._W.mean(axis=0) - self.sparse_coef * stds) + + # self._W.eliminate_zeros() def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape From 588ef6a75836a3066c10ef64aba6f0d1bbf362f7 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 26 Sep 2018 13:03:14 +0300 Subject: [PATCH 061/144] Optimize residuals computation --- gensim/models/nmf.py | 42 ++++---- gensim/models/nmf_pgd.pyx | 204 ++++++++++++++++++++++++++++++-------- 2 files changed, 186 insertions(+), 60 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 4734cb7b2a..211e6e8408 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -6,7 +6,7 @@ from gensim import matutils from gensim import interfaces from gensim.models import basemodel -from gensim.models.nmf_pgd import solve_h, solve_r +from gensim.models.nmf_pgd import solve_r logger = logging.getLogger(__name__) @@ -210,7 +210,7 @@ def get_term_topics(self, word_id, minimum_probability=None): return values def get_document_topics(self, bow, minimum_probability=None): - v = matutils.corpus2csc([bow], len(self.id2word)).tocsr() + v = matutils.corpus2csc([bow], len(self.id2word)) h, _ = self._solveproj(v, self._W, v_max=np.inf) if self.normalize: @@ -232,9 +232,9 @@ def _setup(self, corpus): first_doc = next(iter(corpus)) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] self.n_features = first_doc.shape[0] - self.w_avg = ( - np.sqrt(first_doc.mean() / self.n_features) - / np.sqrt(self.num_topics) + self.w_avg = np.sqrt( + first_doc.mean() + / self.n_features * self.num_topics ) self._W = np.abs( @@ -248,7 +248,7 @@ def _setup(self, corpus): self._W = scipy.sparse.csc_matrix(self._W) - self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) + self.A = scipy.sparse.csc_matrix((self.num_topics, self.num_topics)) self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) return corpus @@ -271,7 +271,7 @@ def update(self, corpus, chunks_as_numpy=False): for chunk in utils.grouper( corpus, self.chunksize, as_numpy=chunks_as_numpy ): - v = matutils.corpus2csc(chunk, len(self.id2word)).tocsr() + v = matutils.corpus2csc(chunk, len(self.id2word)) self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) h, r = self._h, self._r self._H.append(h) @@ -358,7 +358,7 @@ def __solve_r(r, r_actual, lambda_, v_max): @staticmethod def __solve_h(h, Wt_v_minus_r, WtW, eta): grad = (WtW.dot(h) - Wt_v_minus_r) * eta - grad = scipy.sparse.csr_matrix(grad) + grad = scipy.sparse.csc_matrix(grad) new_h = h - grad np.maximum(new_h.data, 0.0, out=new_h.data) @@ -407,14 +407,14 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): hshape = (n, batch_size) if h is None or h.shape != hshape: - h = scipy.sparse.csr_matrix(hshape) + h = scipy.sparse.csc_matrix(hshape) if r is None or r.shape != rshape: - r = scipy.sparse.csr_matrix(rshape) + r = scipy.sparse.csc_matrix(rshape) WtW = W.T.dot(W) - # eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 + eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 _h_r_error = None @@ -425,17 +425,23 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): Wt_v_minus_r = W.T.dot(v - r) - h_ = h.toarray() - error_ += solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) - h = scipy.sparse.csr_matrix(h_) - # h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) - # error_ += error_h + # h_ = h.toarray() + # error_ += solve_h(h, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) + # h = scipy.sparse.csr_matrix(h_) + h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) + error_ += error_h if self.use_r: r_actual = v - W.dot(h) # print(r.data.shape) - # error_ += solve_r(r, r_actual, self._lambda_, self.v_max) - error_ += self.__solve_r(r, r_actual, self._lambda_, self.v_max) + error_ += solve_r( + r.indptr, r.indices, r.data, + r_actual.indptr, r_actual.indices, r_actual.data, + self._lambda_, + self.v_max + ) + r = r_actual + # error_ += self.__solve_r(r, r_actual, self._lambda_, self.v_max) error_ /= m diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index baf087da5e..cd8b46f935 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -3,56 +3,176 @@ # cython: cdivision=True # cython: boundscheck=False # cython: wraparound=False -# cython: linetrace=False +# cython: nonecheck=False cimport cython from libc.math cimport sqrt, fabs, fmin, fmax, copysign from cython.parallel import prange - -def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): - cdef Py_ssize_t n_components = h.shape[0] - cdef Py_ssize_t n_samples = h.shape[1] +import numpy as np + +# def solve_h( +# h_indptr, +# h_indices, +# h_data, +# Wt_v_minus_r, +# WtW, +# double kappa +# ): +# cdef Py_ssize_t n_components = h.shape[0] +# cdef Py_ssize_t n_samples = h.shape[1] +# cdef double violation = 0 +# cdef double grad, projected_grad, hessian +# cdef Py_ssize_t sample_idx = 0 +# cdef Py_ssize_t component_idx_1 = 0 +# cdef Py_ssize_t component_idx_2 = 0 +# +# for component_idx_1 in range(n_components): +# for sample_idx in range(n_samples): +# +# grad = -Wt_v_minus_r[component_idx_1, sample_idx] +# +# for component_idx_2 in range(n_components): +# grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] +# +# hessian = WtW[component_idx_1, component_idx_1] +# +# grad = grad * kappa / hessian +# +# projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad +# +# violation += projected_grad * projected_grad +# +# h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) +# +# return sqrt(violation) + +def solve_r( + int[::1] r_indptr, + int[::1] r_indices, + double[::1] r_data, + int[::1] r_actual_indptr, + int[::1] r_actual_indices, + double[::1] r_actual_data, + double lambda_, + double v_max + ): + cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 cdef double violation = 0 - cdef double grad, projected_grad, hessian - cdef Py_ssize_t sample_idx, component_idx_1, component_idx_2 - - for component_idx_1 in range(n_components): - for sample_idx in prange(n_samples, nogil=True): - - grad = -Wt_v_minus_r[component_idx_1, sample_idx] - - for component_idx_2 in range(n_components): - grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] - - hessian = WtW[component_idx_1, component_idx_1] - - grad = grad * kappa / hessian - - projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + cdef double r_actual_sign = 1.0 + cdef Py_ssize_t sample_idx - violation += projected_grad * projected_grad + cdef Py_ssize_t r_col_size = 0 + cdef Py_ssize_t r_actual_col_size = 0 + cdef Py_ssize_t r_col_idx_idx = 0 + cdef Py_ssize_t r_actual_col_idx_idx - h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) - - return sqrt(violation) - -def solve_r(double[:, ::1] r, double[:, ::1] r_actual, double lambda_, double v_max): - cdef Py_ssize_t n_features = r.shape[0] - cdef Py_ssize_t n_samples = r.shape[1] - cdef double violation = 0 - cdef double r_new_element - cdef Py_ssize_t sample_idx, feature_idx + cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) + cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) for sample_idx in prange(n_samples, nogil=True): - for feature_idx in range(n_features): - r_new_element = fabs(r_actual[feature_idx, sample_idx]) - lambda_ - r_new_element = fmax(r_new_element, 0) - r_new_element = copysign(r_new_element, r_actual[feature_idx, sample_idx]) - r_new_element = fmax(r_new_element, -v_max) - r_new_element = fmin(r_new_element, v_max) - - violation += (r[feature_idx, sample_idx] - r_new_element) ** 2 - - r[feature_idx, sample_idx] = r_new_element + r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] + r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] + + r_col_indices[sample_idx] = 0 + r_actual_col_indices[sample_idx] = 0 + + while r_col_indices[sample_idx] < r_col_size and r_actual_col_indices[sample_idx] < r_actual_col_size: + r_col_idx_idx = r_indices[ + r_indptr[sample_idx] + + r_col_indices[sample_idx] + ] + r_actual_col_idx_idx = r_actual_indices[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] + + if r_col_idx_idx >= r_actual_col_idx_idx: + r_actual_sign = copysign( + r_actual_sign, + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] + ) + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = fabs( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] + ) - lambda_ + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = fmax( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + 0 + ) + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = copysign( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + r_actual_sign + ) + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = fmax( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + -v_max + ) + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = fmin( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + v_max + ) + + if r_col_idx_idx == r_actual_col_idx_idx: + violation += ( + r_data[ + r_indptr[sample_idx] + + r_col_indices[sample_idx] + ] + - r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] + ) ** 2 + else: + violation += r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] ** 2 + + r_actual_col_indices[sample_idx] += 1 + else: + violation += r_data[ + r_indptr[sample_idx] + + r_col_indices[sample_idx] + ] ** 2 + + r_col_indices[sample_idx] += 1 return sqrt(violation) From 8f84758ef286efc1a1ad95bc90dcd52911e08ad5 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 26 Sep 2018 13:44:19 +0300 Subject: [PATCH 062/144] Fix residuals bug --- gensim/models/nmf.py | 1 - gensim/models/nmf_pgd.pyx | 60 +++++++++++++++++++++++---------------- 2 files changed, 36 insertions(+), 25 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 211e6e8408..6e73d2874f 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -433,7 +433,6 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): if self.use_r: r_actual = v - W.dot(h) - # print(r.data.shape) error_ += solve_r( r.indptr, r.indices, r.data, r_actual.indptr, r_actual.indices, r_actual.data, diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index cd8b46f935..4aa376195f 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -76,7 +76,7 @@ def solve_r( r_col_indices[sample_idx] = 0 r_actual_col_indices[sample_idx] = 0 - while r_col_indices[sample_idx] < r_col_size and r_actual_col_indices[sample_idx] < r_actual_col_size: + while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: r_col_idx_idx = r_indices[ r_indptr[sample_idx] + r_col_indices[sample_idx] @@ -116,38 +116,44 @@ def solve_r( 0 ) - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = copysign( + if ( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] != 0 + ): r_actual_data[ r_actual_indptr[sample_idx] + r_actual_col_indices[sample_idx] - ], - r_actual_sign - ) + ] = copysign( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + r_actual_sign + ) - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fmax( r_actual_data[ r_actual_indptr[sample_idx] + r_actual_col_indices[sample_idx] - ], - -v_max - ) + ] = fmax( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + -v_max + ) - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fmin( r_actual_data[ r_actual_indptr[sample_idx] + r_actual_col_indices[sample_idx] - ], - v_max - ) + ] = fmin( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + v_max + ) if r_col_idx_idx == r_actual_col_idx_idx: violation += ( @@ -166,13 +172,19 @@ def solve_r( + r_actual_col_indices[sample_idx] ] ** 2 - r_actual_col_indices[sample_idx] += 1 + if r_actual_col_indices[sample_idx] < r_actual_col_size: + r_actual_col_indices[sample_idx] += 1 + else: + r_col_indices[sample_idx] += 1 else: violation += r_data[ r_indptr[sample_idx] + r_col_indices[sample_idx] ] ** 2 - r_col_indices[sample_idx] += 1 + if r_col_indices[sample_idx] < r_col_size: + r_col_indices[sample_idx] += 1 + else: + r_actual_col_indices[sample_idx] += 1 return sqrt(violation) From 8a67c44ac0de8761e16733bb431adbf67171fed0 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 26 Sep 2018 15:38:31 +0300 Subject: [PATCH 063/144] W speedup --- gensim/models/nmf.py | 56 +++++++++++++++++++------------------------- 1 file changed, 24 insertions(+), 32 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 6e73d2874f..8e08ca85d6 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -241,10 +241,10 @@ def _setup(self, corpus): self.w_avg * halfnorm.rvs(size=(self.n_features, self.num_topics)) ) - self._W *= ( - (self._W > self.w_avg * self.sparse_coef) - | (self._W < self.w_avg * self.sparse_coef).all(axis=0) - ) + + is_great_enough = self._W > self.w_avg * self.sparse_coef + + self._W *= is_great_enough | ~is_great_enough.all(axis=0) self._W = scipy.sparse.csc_matrix(self._W) @@ -371,29 +371,21 @@ def __transform(self): self._W.eliminate_zeros() sumsq = scipy.sparse.linalg.norm(self._W, axis=0) np.maximum(sumsq, 1, out=sumsq) - self._W /= sumsq - - self._W = np.multiply( - self._W, - ( - (self._W > self.w_avg * self.sparse_coef) - | (self._W < self.w_avg * self.sparse_coef).all(axis=0) - ) + sumsq = np.repeat(sumsq, self._W.getnnz(axis=0)) + self._W.data /= sumsq + + is_great_enough_data = self._W.data > self.w_avg * self.sparse_coef + is_great_enough = self._W.toarray() > self.w_avg * self.sparse_coef + is_all_too_small = is_great_enough.sum(axis=0) == 0 + is_all_too_small = np.repeat( + is_all_too_small, + self._W.getnnz(axis=0) ) - self._W = scipy.sparse.csc_matrix(self._W) - # self._W = np.multiply( - # self._W, - # self._W >= ( - # self._W.mean(axis=0) - # - self.sparse_coef * self._W.std(axis=0)) - # ) - - # stds = ((self._W.power(2)).mean(axis=0) - self._W.mean(axis=0)**2).sqrt() - # print(W_stds) - # self._W *= self._W >= (self._W.mean(axis=0) - self.sparse_coef * stds) + is_great_enough_data |= is_all_too_small - # self._W.eliminate_zeros() + self._W.data *= is_great_enough_data + self._W.eliminate_zeros() def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape @@ -433,14 +425,14 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): if self.use_r: r_actual = v - W.dot(h) - error_ += solve_r( - r.indptr, r.indices, r.data, - r_actual.indptr, r_actual.indices, r_actual.data, - self._lambda_, - self.v_max - ) - r = r_actual - # error_ += self.__solve_r(r, r_actual, self._lambda_, self.v_max) + # error_ += solve_r( + # r.indptr, r.indices, r.data, + # r_actual.indptr, r_actual.indices, r_actual.data, + # self._lambda_, + # self.v_max + # ) + # r = r_actual + error_ += self.__solve_r(r, r_actual, self._lambda_, self.v_max) error_ /= m From 560f2bfa25209cdbb164e65070e361d5469658ef Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 26 Sep 2018 15:55:40 +0300 Subject: [PATCH 064/144] Experiment --- gensim/models/nmf.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 8e08ca85d6..ce76ddd422 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -210,7 +210,7 @@ def get_term_topics(self, word_id, minimum_probability=None): return values def get_document_topics(self, bow, minimum_probability=None): - v = matutils.corpus2csc([bow], len(self.id2word)) + v = matutils.corpus2csc([bow], len(self.id2word)).tocsr() h, _ = self._solveproj(v, self._W, v_max=np.inf) if self.normalize: @@ -271,7 +271,7 @@ def update(self, corpus, chunks_as_numpy=False): for chunk in utils.grouper( corpus, self.chunksize, as_numpy=chunks_as_numpy ): - v = matutils.corpus2csc(chunk, len(self.id2word)) + v = matutils.corpus2csc(chunk, len(self.id2word)).tocsr() self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) h, r = self._h, self._r self._H.append(h) @@ -399,10 +399,10 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): hshape = (n, batch_size) if h is None or h.shape != hshape: - h = scipy.sparse.csc_matrix(hshape) + h = scipy.sparse.csr_matrix(hshape) if r is None or r.shape != rshape: - r = scipy.sparse.csc_matrix(rshape) + r = scipy.sparse.csr_matrix(rshape) WtW = W.T.dot(W) From cac2590c5ecc527e4a6474ee7985873c780b0dec Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 26 Sep 2018 16:23:47 +0300 Subject: [PATCH 065/144] Revert changes a bit --- gensim/models/nmf.py | 18 +++++------ gensim/models/nmf_pgd.pyx | 63 +++++++++++++++++---------------------- 2 files changed, 37 insertions(+), 44 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index ce76ddd422..3899288c5a 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -6,7 +6,7 @@ from gensim import matutils from gensim import interfaces from gensim.models import basemodel -from gensim.models.nmf_pgd import solve_r +from gensim.models.nmf_pgd import solve_h, solve_r logger = logging.getLogger(__name__) @@ -248,7 +248,7 @@ def _setup(self, corpus): self._W = scipy.sparse.csc_matrix(self._W) - self.A = scipy.sparse.csc_matrix((self.num_topics, self.num_topics)) + self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) return corpus @@ -358,7 +358,7 @@ def __solve_r(r, r_actual, lambda_, v_max): @staticmethod def __solve_h(h, Wt_v_minus_r, WtW, eta): grad = (WtW.dot(h) - Wt_v_minus_r) * eta - grad = scipy.sparse.csc_matrix(grad) + grad = scipy.sparse.csr_matrix(grad) new_h = h - grad np.maximum(new_h.data, 0.0, out=new_h.data) @@ -406,7 +406,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): WtW = W.T.dot(W) - eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 + # eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 _h_r_error = None @@ -417,11 +417,11 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): Wt_v_minus_r = W.T.dot(v - r) - # h_ = h.toarray() - # error_ += solve_h(h, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) - # h = scipy.sparse.csr_matrix(h_) - h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) - error_ += error_h + h_ = h.toarray() + error_ += solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) + h = scipy.sparse.csr_matrix(h_) + # h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) + # error_ += error_h if self.use_r: r_actual = v - W.dot(h) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 4aa376195f..a3354cd59f 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -10,41 +10,34 @@ from libc.math cimport sqrt, fabs, fmin, fmax, copysign from cython.parallel import prange import numpy as np -# def solve_h( -# h_indptr, -# h_indices, -# h_data, -# Wt_v_minus_r, -# WtW, -# double kappa -# ): -# cdef Py_ssize_t n_components = h.shape[0] -# cdef Py_ssize_t n_samples = h.shape[1] -# cdef double violation = 0 -# cdef double grad, projected_grad, hessian -# cdef Py_ssize_t sample_idx = 0 -# cdef Py_ssize_t component_idx_1 = 0 -# cdef Py_ssize_t component_idx_2 = 0 -# -# for component_idx_1 in range(n_components): -# for sample_idx in range(n_samples): -# -# grad = -Wt_v_minus_r[component_idx_1, sample_idx] -# -# for component_idx_2 in range(n_components): -# grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] -# -# hessian = WtW[component_idx_1, component_idx_1] -# -# grad = grad * kappa / hessian -# -# projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad -# -# violation += projected_grad * projected_grad -# -# h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) -# -# return sqrt(violation) +def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + cdef Py_ssize_t n_components = h.shape[0] + cdef Py_ssize_t n_samples = h.shape[1] + cdef double violation = 0 + cdef double grad, projected_grad, hessian + cdef Py_ssize_t sample_idx = 0 + cdef Py_ssize_t component_idx_1 = 0 + cdef Py_ssize_t component_idx_2 = 0 + + for component_idx_1 in range(n_components): + for sample_idx in prange(n_samples, nogil=True): + + grad = -Wt_v_minus_r[component_idx_1, sample_idx] + + for component_idx_2 in range(n_components): + grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] + + hessian = WtW[component_idx_1, component_idx_1] + + grad = grad * kappa / hessian + + projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + + violation += projected_grad * projected_grad + + h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + + return sqrt(violation) def solve_r( int[::1] r_indptr, From 060ab28927227fca4bd38e64147d190b9df94651 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Wed, 26 Sep 2018 17:33:01 +0300 Subject: [PATCH 066/144] Fix corpus --- docs/notebooks/nmf-wikipedia.ipynb | 5344 +++++++++++++++------------- docs/notebooks/nmf_benchmark.ipynb | 3969 +++++++++++++++++++-- gensim/models/nmf.py | 4 +- 3 files changed, 6548 insertions(+), 2769 deletions(-) diff --git a/docs/notebooks/nmf-wikipedia.ipynb b/docs/notebooks/nmf-wikipedia.ipynb index 10e25cb8bf..cab9c11210 100644 --- a/docs/notebooks/nmf-wikipedia.ipynb +++ b/docs/notebooks/nmf-wikipedia.ipynb @@ -2,29 +2,40 @@ "cells": [ { "cell_type": "code", - "execution_count": 62, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "from gensim.corpora import MmCorpus\n", + "%load_ext autoreload\n", + "%autoreload 2\n", + "from gensim.corpora import MmCorpus, Dictionary\n", "from gensim.models.nmf import Nmf\n", "from gensim.models import LdaModel\n", "import gensim.downloader as api\n", "from gensim.parsing.preprocessing import preprocess_string\n", "from tqdm import tqdm, tqdm_notebook\n", "import json\n", + "import itertools\n", "\n", "tqdm.pandas()\n", "\n", "import logging\n", - "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)" + "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG)" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 2, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-26 17:27:02,079 : DEBUG : {'uri': '/home/anotherbugmaster/gensim-data/wiki-english-20171001/wiki-english-20171001.gz', 'mode': 'rb', 'kw': {'encoding': 'utf-8'}}\n", + "2018-09-26 17:27:02,081 : DEBUG : encoding_wrapper: {'fileobj': , 'mode': 'r', 'encoding': 'utf-8', 'errors': 'strict'}\n" + ] + }, { "name": "stdout", "output_type": "stream", @@ -344,14 +355,12 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [], "source": [ - "import itertools\n", - "\n", "def wiki_articles_iterator():\n", " for article in tqdm_notebook(data):\n", " yield (\n", @@ -367,7 +376,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -396,2194 +405,2264 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 5, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2ee9a06771694ac4a9afc80dddfec2f3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "save_preprocessed_articles('wiki_articles.jsonlines', data)" + "# save_preprocessed_articles('wiki_articles.jsonlines', data)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# dictionary = Dictionary(get_preprocessed_articles('wiki_articles.jsonlines'))\n", + "\n", + "# dictionary.save('wiki.dict')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, "metadata": {}, "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "65e540f94a2242228acc24eba5e8daae", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:24:22,338 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-08-31 00:24:34,891 : INFO : adding document #10000 to Dictionary(399748 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:24:46,430 : INFO : adding document #20000 to Dictionary(591699 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:24:55,712 : INFO : adding document #30000 to Dictionary(731105 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:04,177 : INFO : adding document #40000 to Dictionary(851685 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:10,188 : INFO : adding document #50000 to Dictionary(931675 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:13,951 : INFO : adding document #60000 to Dictionary(952350 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:16,822 : INFO : adding document #70000 to Dictionary(969420 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:19,778 : INFO : adding document #80000 to Dictionary(985378 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:25,894 : INFO : adding document #90000 to Dictionary(1054685 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:34,122 : INFO : adding document #100000 to Dictionary(1154713 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:41,486 : INFO : adding document #110000 to Dictionary(1245897 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:48,275 : INFO : adding document #120000 to Dictionary(1323132 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:25:54,852 : INFO : adding document #130000 to Dictionary(1394796 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:01,754 : INFO : adding document #140000 to Dictionary(1472266 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:08,146 : INFO : adding document #150000 to Dictionary(1556781 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:14,467 : INFO : adding document #160000 to Dictionary(1634683 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:20,461 : INFO : adding document #170000 to Dictionary(1702000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:26,248 : INFO : adding document #180000 to Dictionary(1755381 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:31,597 : INFO : adding document #190000 to Dictionary(1811754 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:36,737 : INFO : adding document #200000 to Dictionary(1868295 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:41,868 : INFO : adding document #210000 to Dictionary(1920805 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:47,026 : INFO : adding document #220000 to Dictionary(1968409 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:53,506 : INFO : discarding 17545 tokens: [('granitzstraß', 1), ('hafenplatz', 1), ('hausvogteiplatz', 1), ('markgrafenstraß', 1), ('markisch', 1), ('niederwallstraß', 1), ('schoeneweid', 1), ('senefelderplatz', 1), ('spittelmarkt', 1), ('thuoff', 1)]...\n", - "2018-08-31 00:26:53,507 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 230000 (=100.0%) documents\n", - "2018-08-31 00:26:55,640 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:26:55,681 : INFO : adding document #230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:02,007 : INFO : discarding 49481 tokens: [('番茄牛肉麵', 1), ('紅燒牛肉麵', 1), ('mienvil', 1), ('dheepesh', 1), ('kantaben', 1), ('khnh', 1), ('nikkhil', 1), ('sankla', 1), ('sarlaben', 1), ('sulbha', 1)]...\n", - "2018-08-31 00:27:02,008 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 240000 (=100.0%) documents\n", - "2018-08-31 00:27:04,034 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:04,072 : INFO : adding document #240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:10,445 : INFO : discarding 48604 tokens: [('score’', 1), ('tzvetkov', 1), ('utemuratov', 1), ('arntner', 1), ('bierschinken', 1), ('bruckfleisch', 1), ('buchteln', 1), ('burgenlandish', 1), ('buschenschanken', 1), ('dobostort', 1)]...\n", - "2018-08-31 00:27:10,446 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 250000 (=100.0%) documents\n", - "2018-08-31 00:27:12,558 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:12,597 : INFO : adding document #250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:18,827 : INFO : discarding 50505 tokens: [('næpæɾvæɾæm', 1), ('pejkæɾæm', 1), ('peykaram', 1), ('pišeam', 1), ('piʃeæm', 1), ('poɾ', 1), ('pâke', 1), ('pâyand', 1), ('pɒjænde', 1), ('pɒke', 1)]...\n", - "2018-08-31 00:27:18,828 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 260000 (=100.0%) documents\n", - "2018-08-31 00:27:20,841 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:20,880 : INFO : adding document #260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:26,946 : INFO : discarding 44106 tokens: [('wnni', 1), ('wnpd', 1), ('wocn', 1), ('womr', 1), ('wozq', 1), ('wpmw', 1), ('wrbb', 1), ('wryp', 1), ('wsdh', 1), ('wsrg', 1)]...\n", - "2018-08-31 00:27:26,946 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 270000 (=100.0%) documents\n", - "2018-08-31 00:27:29,067 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:29,106 : INFO : adding document #270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:35,191 : INFO : discarding 48370 tokens: [('magtalisai', 1), ('sealight', 1), ('tabunok', 1), ('talisaynon', 1), ('teresa–', 1), ('affirmtrust', 1), ('bellekom', 1), ('broadweb', 1), ('humyo', 1), ('identum', 1)]...\n", - "2018-08-31 00:27:35,192 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 280000 (=100.0%) documents\n", - "2018-08-31 00:27:37,226 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:37,264 : INFO : adding document #280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:43,221 : INFO : discarding 50844 tokens: [('tafsifschi', 1), ('taláka', 1), ('talámámchi', 1), ('tamichi', 1), ('tatápi', 1), ('tinihowi', 1), ('tuwátifshi', 1), ('control…', 1), ('east—turkei', 1), ('novels—lik', 1)]...\n", - "2018-08-31 00:27:43,222 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 290000 (=100.0%) documents\n", - "2018-08-31 00:27:45,368 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:45,408 : INFO : adding document #290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:51,332 : INFO : discarding 48668 tokens: [('quinsnicket', 1), ('rhodoclia—peerless', 1), ('saccharissa', 1), ('scribam', 1), ('veteropingui', 1), ('wildrak', 1), ('σφιγγην', 1), ('antoptima', 1), ('antsim', 1), ('asrank', 1)]...\n", - "2018-08-31 00:27:51,332 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 300000 (=100.0%) documents\n" - ] - }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:27:53,376 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:53,415 : INFO : adding document #300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:27:59,163 : INFO : discarding 43531 tokens: [('chalcophaea', 1), ('chamdoensi', 1), ('charchirensi', 1), ('chaudoiri', 1), ('chodjaii', 1), ('cholashanensi', 1), ('chormaensi', 1), ('coiffaiti', 1), ('colasi', 1), ('collivaga', 1)]...\n", - "2018-08-31 00:27:59,164 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 310000 (=100.0%) documents\n", - "2018-08-31 00:28:01,285 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:01,326 : INFO : adding document #310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:07,145 : INFO : discarding 50270 tokens: [('предложения', 1), ('сантальского', 1), ('характерные', 1), ('цейлона', 1), ('черты', 1), ('ᱥᱤᱧᱚᱛ', 1), ('ᱱᱮᱯᱟᱲ', 1), ('ᱵᱟᱝᱞᱟᱫᱮᱥ', 1), ('ᱵᱷᱩᱴᱟᱱ', 1), ('xepolit', 1)]...\n", - "2018-08-31 00:28:07,146 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 320000 (=100.0%) documents\n", - "2018-08-31 00:28:09,176 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:09,215 : INFO : adding document #320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:15,003 : INFO : discarding 48032 tokens: [('centrocelsofurtado', 1), ('cihanyuksel', 1), ('disguisedli', 1), ('domaindlx', 1), ('econometricsocieti', 1), ('enviada', 1), ('externalitylit', 1), ('worldev', 1), ('eskizi', 1), ('kavkazskiy', 1)]...\n", - "2018-08-31 00:28:15,004 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 330000 (=100.0%) documents\n", - "2018-08-31 00:28:17,131 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:17,172 : INFO : adding document #330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:22,705 : INFO : discarding 38389 tokens: [('ultimatechampionshipwrestl', 1), ('bloor–danforthbetween', 1), ('brentcliff', 1), ('electricalfe', 1), ('electricalpickup', 1), ('electricaltyp', 1), ('linesserv', 1), ('lineswhereus', 1), ('ofvehicl', 1), ('passengercapacityp', 1)]...\n", - "2018-08-31 00:28:22,706 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 340000 (=100.0%) documents\n", - "2018-08-31 00:28:24,727 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:24,767 : INFO : adding document #340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:30,305 : INFO : discarding 38286 tokens: [('szarlotka', 1), ('turówka', 1), ('zhubr', 1), ('zubrouka', 1), ('zubroŭka', 1), ('зубрiвка', 1), ('зубровка', 1), ('chakawana', 1), ('icannwatch', 1), ('adonis', 1)]...\n", - "2018-08-31 00:28:30,307 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 350000 (=100.0%) documents\n", - "2018-08-31 00:28:32,419 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:32,461 : INFO : adding document #350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:38,088 : INFO : discarding 38738 tokens: [('euentu', 1), ('excusationem', 1), ('exuta', 1), ('frameaqu', 1), ('grauissima', 1), ('immanibu', 1), ('imperandi', 1), ('incipiebat', 1), ('incitata', 1), ('initiorum', 1)]...\n", - "2018-08-31 00:28:38,089 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 360000 (=100.0%) documents\n", - "2018-08-31 00:28:40,125 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:40,165 : INFO : adding document #360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:45,704 : INFO : discarding 37578 tokens: [('codillo', 1), ('estuch', 1), ('gascaril', 1), ('gascarola', 1), ('lumbur', 1), ('l’hombr', 1), ('ombre”', 1), ('recontruct', 1), ('rocambor', 1), ('spadilla', 1)]...\n", - "2018-08-31 00:28:45,705 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 370000 (=100.0%) documents\n", - "2018-08-31 00:28:47,848 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:47,889 : INFO : adding document #370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:53,317 : INFO : discarding 36405 tokens: [('kamalkahanisaeedbhuttaabookonpunjabifolktal', 1), ('lababdar', 1), ('lalari', 1), ('naiza', 1), ('qoum', 1), ('euseg', 1), ('maxillop', 1), ('“wavefront”', 1), ('cloudco', 1), ('freekin', 1)]...\n", - "2018-08-31 00:28:53,318 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 380000 (=100.0%) documents\n", - "2018-08-31 00:28:55,369 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:28:55,408 : INFO : adding document #380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:00,894 : INFO : discarding 39639 tokens: [('aufdeckung', 1), ('begruoben', 1), ('choufman', 1), ('externsteinen', 1), ('firesit', 1), ('gebain', 1), ('germanomaniac', 1), ('heresburg', 1), ('hiezen', 1), ('irmensiul', 1)]...\n", - "2018-08-31 00:29:00,895 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 390000 (=100.0%) documents\n", - "2018-08-31 00:29:03,046 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:03,089 : INFO : adding document #390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:08,505 : INFO : discarding 39685 tokens: [('rheela', 1), ('selelvian', 1), ('thallonion', 1), ('xenexian', 1), ('yakaba', 1), ('pearlcoat', 1), ('sd²c', 1), ('ghuda', 1), ('nathana', 1), ('tabarhindh', 1)]...\n", - "2018-08-31 00:29:08,506 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 400000 (=100.0%) documents\n", - "2018-08-31 00:29:10,546 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:10,586 : INFO : adding document #400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:16,014 : INFO : discarding 37327 tokens: [('machinewa', 1), ('warsawa', 1), ('wilbär', 1), ('pomphrai', 1), ('pundler', 1), ('—sybil', 1), ('faethorn', 1), ('fernmeldewesen', 1), ('funksendestellen', 1), ('lulatsch', 1)]...\n", - "2018-08-31 00:29:16,015 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 410000 (=100.0%) documents\n", - "2018-08-31 00:29:18,149 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:18,191 : INFO : adding document #410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:23,547 : INFO : discarding 42449 tokens: [('severmorsk', 1), ('shashkova', 1), ('shchukozero', 1), ('vayongg', 1), ('cowessett', 1), ('islands—belong', 1), ('map—rhod', 1), ('massasoit”', 1), ('pauquunaukit', 1), ('pokanoket’', 1)]...\n", - "2018-08-31 00:29:23,547 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 420000 (=100.0%) documents\n", - "2018-08-31 00:29:25,586 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:25,626 : INFO : adding document #420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:27:02,269 : INFO : loading Dictionary object from wiki.dict\n", + "2018-09-26 17:27:02,269 : DEBUG : {'uri': 'wiki.dict', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:27:03,110 : INFO : loaded wiki.dict\n", + "2018-09-26 17:27:05,264 : INFO : discarding 1910258 tokens: [('abdelrahim', 49), ('abstention', 120), ('anarcha', 101), ('anarchica', 40), ('anarchosyndicalist', 20), ('antimilitar', 68), ('arbet', 194), ('archo', 100), ('arkhē', 5), ('autonomedia', 118)]...\n", + "2018-09-26 17:27:05,264 : INFO : keeping 100000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", + "2018-09-26 17:27:05,513 : DEBUG : rebuilding dictionary, shrinking gaps\n", + "2018-09-26 17:27:05,594 : INFO : resulting dictionary: Dictionary(100000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n", + "2018-09-26 17:27:05,669 : DEBUG : rebuilding dictionary, shrinking gaps\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:29:31,061 : INFO : discarding 41810 tokens: [('deathclaw', 1), ('scatari', 1), ('swoad', 1), ('dragonella', 1), ('isthistomorrow', 1), ('stuporman', 1), ('chepkoya', 1), ('chewanjel', 1), ('kibuk', 1), ('paulmann', 1)]...\n", - "2018-08-31 00:29:31,062 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 430000 (=100.0%) documents\n", - "2018-08-31 00:29:33,208 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:33,251 : INFO : adding document #430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:38,502 : INFO : discarding 35200 tokens: [('subuktigin', 1), ('arkemedia', 1), ('har”', 1), ('jcdc', 1), ('malachismith', 1), ('malachi’', 1), ('reggaeconcept', 1), ('reggaesoca', 1), ('“wiseman”', 1), ('dibromophenol', 1)]...\n", - "2018-08-31 00:29:38,503 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 440000 (=100.0%) documents\n", - "2018-08-31 00:29:40,573 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:40,614 : INFO : adding document #440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:46,219 : INFO : discarding 41826 tokens: [('pacchimiriam', 1), ('padajathi', 1), ('sahithyam', 1), ('syllables—or', 1), ('varṇam', 1), ('viribhoni', 1), ('viriboni', 1), ('jyoen', 1), ('koseski', 1), ('muto—ar', 1)]...\n", - "2018-08-31 00:29:46,220 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 450000 (=100.0%) documents\n", - "2018-08-31 00:29:48,376 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:48,418 : INFO : adding document #450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:53,738 : INFO : discarding 41234 tokens: [('i̇nsanları', 1), ('karaalioğlu', 1), ('karagöz—who', 1), ('kayabaşı', 1), ('kitapçılık', 1), ('kuntai', 1), ('kurumlar', 1), ('kıvılcım', 1), ('largely—in', 1), ('literature—prior', 1)]...\n", - "2018-08-31 00:29:53,739 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 460000 (=100.0%) documents\n", - "2018-08-31 00:29:55,782 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:29:55,823 : INFO : adding document #460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:01,236 : INFO : discarding 40485 tokens: [('with—to', 1), ('owlt', 1), ('anterosuperiorli', 1), ('counterculture—a', 1), ('spitzz', 1), ('stantondal', 1), ('frumpton', 1), ('nintari', 1), ('noidtrix', 1), ('zibelman', 1)]...\n", - "2018-08-31 00:30:01,237 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 470000 (=100.0%) documents\n", - "2018-08-31 00:30:03,374 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:03,417 : INFO : adding document #470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:08,669 : INFO : discarding 38842 tokens: [('laloor', 1), ('nethilakkavu', 1), ('nettipattam', 1), ('nilapaduthara', 1), ('panamukkump', 1), ('panchavadhyam', 1), ('piriy', 1), ('pookattikkara', 1), ('sasthavu', 1), ('upacharam', 1)]...\n", - "2018-08-31 00:30:08,670 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 480000 (=100.0%) documents\n", - "2018-08-31 00:30:10,724 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:10,765 : INFO : adding document #480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:15,897 : INFO : discarding 35417 tokens: [('balenko', 1), ('breliu', 1), ('dialetician', 1), ('mulerr', 1), ('polaroo', 1), ('skilski', 1), ('sliphorn', 1), ('troglo', 1), ('avbrott', 1), ('befjädrad', 1)]...\n", - "2018-08-31 00:30:15,898 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 490000 (=100.0%) documents\n", - "2018-08-31 00:30:18,060 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:18,103 : INFO : adding document #490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:23,276 : INFO : discarding 38896 tokens: [('taken—and', 1), ('beusselkiez', 1), ('huttenstraß', 1), ('kriminalgericht', 1), ('moorjebiet', 1), ('spreebogen', 1), ('stephankiez', 1), ('stephanstraß', 1), ('turmstr', 1), ('zellengefängni', 1)]...\n", - "2018-08-31 00:30:23,277 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 500000 (=100.0%) documents\n", - "2018-08-31 00:30:25,337 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:25,378 : INFO : adding document #500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:30,561 : INFO : discarding 36197 tokens: [('mocquerysia', 1), ('neoptychocarpu', 1), ('olmediella', 1), ('ophiobotri', 1), ('osmelia', 1), ('phyllobotryon', 1), ('phylloclinium', 1), ('pleuranthodendron', 1), ('priamosia', 1), ('pseudoscolopia', 1)]...\n", - "2018-08-31 00:30:30,561 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 510000 (=100.0%) documents\n", - "2018-08-31 00:30:32,706 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:32,749 : INFO : adding document #510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:38,027 : INFO : discarding 41487 tokens: [('dbxl', 1), ('time—dbas', 1), ('xsharp', 1), ('coopet', 1), ('fukaeminami', 1), ('nezammafi', 1), ('rokkodai', 1), ('sazō', 1), ('tomogaoka', 1), ('tsurukabuto', 1)]...\n", - "2018-08-31 00:30:38,028 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 520000 (=100.0%) documents\n", - "2018-08-31 00:30:40,096 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:40,137 : INFO : adding document #520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:45,416 : INFO : discarding 38742 tokens: [('scharzenbach', 1), ('“herzogpark', 1), ('champalimad', 1), ('havenhous', 1), ('hoscar', 1), ('oqg', 1), ('cellprom', 1), ('chemijo', 1), ('chirurgiczna', 1), ('crepuq', 1)]...\n", - "2018-08-31 00:30:45,417 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 530000 (=100.0%) documents\n", - "2018-08-31 00:30:47,572 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:47,616 : INFO : adding document #530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:52,804 : INFO : discarding 37000 tokens: [('iacobbucci', 1), ('ccdrlvt', 1), ('nutsiii', 1), ('göweck', 1), ('brasslei', 1), ('cristsbal', 1), ('dechernei', 1), ('dorrik', 1), ('kalwass', 1), ('kreitzman', 1)]...\n", - "2018-08-31 00:30:52,804 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 540000 (=100.0%) documents\n", - "2018-08-31 00:30:54,857 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:30:54,898 : INFO : adding document #540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:00,012 : INFO : discarding 37685 tokens: [('aptonlin', 1), ('cherrywinkl', 1), ('dittydoodl', 1), ('scientast', 1), ('sheira', 1), ('maxpass', 1), ('parkhopp', 1), ('eemymp', 1), ('kkznova', 1), ('lorsn', 1)]...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:31:00,013 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 550000 (=100.0%) documents\n", - "2018-08-31 00:31:02,150 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:02,194 : INFO : adding document #550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:07,222 : INFO : discarding 38870 tokens: [('ågå', 1), ('åinakåsz', 1), ('åinasim', 1), ('åtzån', 1), ('funeral—', 1), ('wilef', 1), ('iskuryhmä', 1), ('legorgu', 1), ('phélip', 1), ('pomlt', 1)]...\n", - "2018-08-31 00:31:07,223 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 560000 (=100.0%) documents\n", - "2018-08-31 00:31:09,271 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:09,312 : INFO : adding document #560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:14,358 : INFO : discarding 36242 tokens: [('a͡tʃʰ', 1), ('balafaisi', 1), ('bemari', 1), ('beṭa', 1), ('bhagyô', 1), ('bhaiggô', 1), ('bhalafaici', 1), ('bhalaṭtik', 1), ('bhalkoi', 1), ('bhalopeyechi', 1)]...\n", - "2018-08-31 00:31:14,359 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 570000 (=100.0%) documents\n", - "2018-08-31 00:31:16,492 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:16,537 : INFO : adding document #570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:21,503 : INFO : discarding 37670 tokens: [('abssi', 1), ('bangladesh—ther', 1), ('causes—ultra', 1), ('common—besid', 1), ('countries—jordan', 1), ('countries—princip', 1), ('france—found', 1), ('hereketa', 1), ('hizbula', 1), ('idolaters”', 1)]...\n", - "2018-08-31 00:31:21,504 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 580000 (=100.0%) documents\n", - "2018-08-31 00:31:23,550 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:23,592 : INFO : adding document #580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:28,720 : INFO : discarding 35533 tokens: [('pfeilflieg', 1), ('ëarlier', 1), ('dobrzhani', 1), ('orlitza', 1), ('ezplos', 1), ('seemuppen', 1), ('aviatak', 1), ('castelorizo', 1), ('jagdgeshwad', 1), ('türkenkreuz', 1)]...\n", - "2018-08-31 00:31:28,721 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 590000 (=100.0%) documents\n", - "2018-08-31 00:31:30,877 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:30,922 : INFO : adding document #590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:35,729 : INFO : discarding 32408 tokens: [('kojevnikov', 1), ('astriphytum', 1), ('prismaticum', 1), ('quadricostatum', 1), ('tulens', 1), ('cachiyacui', 1), ('canaanimi', 1), ('caviocricetu', 1), ('contamanensi', 1), ('dicolpomi', 1)]...\n", - "2018-08-31 00:31:35,730 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 600000 (=100.0%) documents\n", - "2018-08-31 00:31:37,772 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:37,814 : INFO : adding document #600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:42,683 : INFO : discarding 33435 tokens: [('languagebutton', 1), ('metadatarepositori', 1), ('mirrorget', 1), ('sesekin', 1), ('newdata', 1), ('prevval', 1), ('chiplitfest', 1), ('cotshil', 1), ('walterbush', 1), ('ls‑', 1)]...\n", - "2018-08-31 00:31:42,683 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 610000 (=100.0%) documents\n", - "2018-08-31 00:31:44,841 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:44,886 : INFO : adding document #610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:49,804 : INFO : discarding 38991 tokens: [('“chim”', 1), ('“haa', 1), ('bulukbasci', 1), ('distruttor', 1), ('dresak', 1), ('feldgeschütz', 1), ('meharisti', 1), ('muntaz', 1), ('ostafrikan', 1), ('sciumbasci', 1)]...\n", - "2018-08-31 00:31:49,805 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 620000 (=100.0%) documents\n", - "2018-08-31 00:31:51,871 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:51,914 : INFO : adding document #620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:56,791 : INFO : discarding 35025 tokens: [('meldei', 1), ('otherwise—don', 1), ('schma', 1), ('smortion', 1), ('b—are', 1), ('channels—such', 1), ('c·s−·v−', 1), ('dependent—in', 1), ('integration—thi', 1), ('ion—in', 1)]...\n", - "2018-08-31 00:31:56,792 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 630000 (=100.0%) documents\n", - "2018-08-31 00:31:58,942 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:31:58,986 : INFO : adding document #630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:03,823 : INFO : discarding 34754 tokens: [('offreçieron', 1), ('ovieron', 1), ('ovieronla', 1), ('ovieront', 1), ('peydro', 1), ('pienssan', 1), ('prisist', 1), ('pusieront', 1), ('quebrantast', 1), ('quebrantest', 1)]...\n", - "2018-08-31 00:32:03,823 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 640000 (=100.0%) documents\n", - "2018-08-31 00:32:05,863 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:05,905 : INFO : adding document #640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:10,720 : INFO : discarding 33143 tokens: [('lcch', 1), ('mavbot', 1), ('quessenberri', 1), ('fobbi', 1), ('dīwānīyah', 1), ('الديوانيه', 1), ('doctorandi', 1), ('schmachtenberg', 1), ('dodecuplet', 1), ('notes—or', 1)]...\n", - "2018-08-31 00:32:10,721 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 650000 (=100.0%) documents\n", - "2018-08-31 00:32:12,864 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:12,908 : INFO : adding document #650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:17,600 : INFO : discarding 35150 tokens: [('kakâ', 1), ('arhitektid', 1), ('basiladz', 1), ('baziladz', 1), ('klassikaraadio', 1), ('maania', 1), ('obydov', 1), ('teletorn', 1), ('tõsine', 1), ('vikerraadio', 1)]...\n", - "2018-08-31 00:32:17,600 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 660000 (=100.0%) documents\n", - "2018-08-31 00:32:19,641 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:19,685 : INFO : adding document #660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:24,459 : INFO : discarding 35616 tokens: [('avenue—four', 1), ('edleson', 1), ('station—includ', 1), ('street–cardozo', 1), ('strikes—both', 1), ('been—unfairly—view', 1), ('granby’', 1), ('bocom’', 1), ('customercontactchannel', 1), ('greenko', 1)]...\n", - "2018-08-31 00:32:24,460 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 670000 (=100.0%) documents\n", - "2018-08-31 00:32:26,631 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:32:26,676 : INFO : adding document #670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:31,331 : INFO : discarding 31718 tokens: [('econbrows', 1), ('mieczkowski', 1), ('pouzèr', 1), ('fodem', 1), ('ouangolé', 1), ('kittrdg', 1), ('zarudnaya', 1), ('hüther', 1), ('iwkoeln', 1), ('ss”', 1)]...\n", - "2018-08-31 00:32:31,331 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 680000 (=100.0%) documents\n", - "2018-08-31 00:32:33,386 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:33,429 : INFO : adding document #680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:38,107 : INFO : discarding 35660 tokens: [('ostravan', 1), ('vigantic', 1), ('swstk', 1), ('xdustmd', 1), ('rastenn', 1), ('lp×lp', 1), ('ssshhhhhh', 1), ('xdustcdx', 1), ('assets—church', 1), ('granor', 1)]...\n", - "2018-08-31 00:32:38,108 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 690000 (=100.0%) documents\n", - "2018-08-31 00:32:40,272 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:40,318 : INFO : adding document #690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:44,974 : INFO : discarding 42712 tokens: [('另眼相看', 1), ('向祖兒狂呼音樂劇', 1), ('壓軸拉闊音樂會李克勤x容祖兒', 1), ('好事多為', 1), ('容祖兒perfect', 1), ('容祖兒x古巨基', 1), ('容祖兒x草蜢', 1), ('容祖兒x陳奕迅', 1), ('容祖兒x黃耀明', 1), ('容祖兒、洪卓立東莞音樂會', 1)]...\n", - "2018-08-31 00:32:44,974 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 700000 (=100.0%) documents\n", - "2018-08-31 00:32:47,027 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:47,071 : INFO : adding document #700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:51,674 : INFO : discarding 29720 tokens: [('falcin', 1), ('subfalcin', 1), ('transcalvari', 1), ('transfalcin', 1), ('transforamin', 1), ('birkedahl', 1), ('burnettebroth', 1), ('electrical”', 1), ('leoppard', 1), ('paulburlison', 1)]...\n", - "2018-08-31 00:32:51,674 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 710000 (=100.0%) documents\n", - "2018-08-31 00:32:53,836 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:53,880 : INFO : adding document #710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:32:58,578 : INFO : discarding 32942 tokens: [('turnboldt', 1), ('neuman’', 1), ('cawthol', 1), ('irelanders”', 1), ('“sourfaces”', 1), ('junglero', 1), ('bernadó', 1), ('constraints—h', 1), ('enclosure—a', 1), ('pool—onc', 1)]...\n", - "2018-08-31 00:32:58,579 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 720000 (=100.0%) documents\n", - "2018-08-31 00:33:00,636 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:00,678 : INFO : adding document #720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:05,459 : INFO : discarding 44138 tokens: [('priđeš', 1), ('produži', 1), ('sretnog', 1), ('titovim', 1), ('vatrom', 1), ('zvao', 1), ('ćatović', 1), ('čarolija', 1), ('čola', 1), ('mazigia', 1)]...\n", - "2018-08-31 00:33:05,460 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 730000 (=100.0%) documents\n", - "2018-08-31 00:33:07,616 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:07,662 : INFO : adding document #730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:12,265 : INFO : discarding 31358 tokens: [('electrofolk', 1), ('presents﹣our', 1), ('rockmuiolog', 1), ('《你安安靜靜地躲起來》', 1), ('《掀起》', 1), ('青春文化', 1), ('assistant–manag', 1), ('sdobwa', 1), ('bergthorson', 1), ('delarossa', 1)]...\n", - "2018-08-31 00:33:12,266 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 740000 (=100.0%) documents\n", - "2018-08-31 00:33:14,315 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:14,358 : INFO : adding document #740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:19,139 : INFO : discarding 33903 tokens: [('kinez', 1), ('kojčinovac', 1), ('koviljuša', 1), ('liplja', 1), ('ljeljenča', 1), ('magnojević', 1), ('mauzer', 1), ('međaši', 1), ('nasalj', 1), ('obrijež', 1)]...\n", - "2018-08-31 00:33:19,140 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 750000 (=100.0%) documents\n", - "2018-08-31 00:33:21,282 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:21,329 : INFO : adding document #750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:25,971 : INFO : discarding 32344 tokens: [('ershisi', 1), ('liuhopafa', 1), ('lǎozǔ', 1), ('xīyí', 1), ('zǔshī', 1), ('希夷祖師', 1), ('陳摶老祖', 1), ('age—mostli', 1), ('knampton', 1), ('phyllite—underli', 1)]...\n", - "2018-08-31 00:33:25,972 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 760000 (=100.0%) documents\n", - "2018-08-31 00:33:28,030 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:28,073 : INFO : adding document #760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:32,913 : INFO : discarding 35176 tokens: [('левое', 1), ('ліворуч', 1), ('нале', 1), ('напра', 1), ('оber', 1), ('обернись', 1), ('плечо', 1), ('праворуч', 1), ('руш', 1), ('смирно', 1)]...\n", - "2018-08-31 00:33:32,914 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 770000 (=100.0%) documents\n", - "2018-08-31 00:33:35,063 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:35,109 : INFO : adding document #770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:39,802 : INFO : discarding 36116 tokens: [('しゃぶしゃぶ', 1), ('しんろ', 1), ('すこし', 1), ('すり身', 1), ('たこ焼', 1), ('たこ焼き', 1), ('たまり', 1), ('ひきこもり', 1), ('ひじき', 1), ('まんが', 1)]...\n", - "2018-08-31 00:33:39,803 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 780000 (=100.0%) documents\n", - "2018-08-31 00:33:41,863 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:41,906 : INFO : adding document #780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:46,524 : INFO : discarding 31930 tokens: [('afrofemcentr', 1), ('afrofemcentrist', 1), ('mexciana', 1), ('michasel', 1), ('plática', 1), ('tesfagiogi', 1), ('tesfagiorgi', 1), ('udderli', 1), ('difficulty″', 1), ('eunicella', 1)]...\n", - "2018-08-31 00:33:46,525 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 790000 (=100.0%) documents\n", - "2018-08-31 00:33:48,669 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:48,715 : INFO : adding document #790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:53,280 : INFO : discarding 30602 tokens: [('govindaa', 1), ('namadhari', 1), ('padakk', 1), ('thimmappa', 1), ('thimmappana', 1), ('historians—except', 1), ('resource…contrari', 1), ('neorim', 1), ('oberältest', 1), ('rominow', 1)]...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:33:53,280 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 800000 (=100.0%) documents\n", - "2018-08-31 00:33:55,361 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:33:55,404 : INFO : adding document #800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:00,058 : INFO : discarding 34021 tokens: [('mednarodnega', 1), ('miklič', 1), ('szdl', 1), ('vitoslav', 1), ('archeologists’', 1), ('emircanov', 1), ('hacibayov', 1), ('kamanca', 1), ('migachevir', 1), ('niftaliyev', 1)]...\n", - "2018-08-31 00:34:00,058 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 810000 (=100.0%) documents\n", - "2018-08-31 00:34:02,206 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:02,251 : INFO : adding document #810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:06,723 : INFO : discarding 30470 tokens: [('lxwxg', 1), ('leads—balki', 1), ('mypo', 1), ('sheslow', 1), ('thallassia', 1), ('citcom', 1), ('flexibili', 1), ('solomatov', 1), ('anenu', 1), ('autostradowi', 1)]...\n", - "2018-08-31 00:34:06,723 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 820000 (=100.0%) documents\n", - "2018-08-31 00:34:08,763 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:08,806 : INFO : adding document #820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:13,443 : INFO : discarding 34954 tokens: [('suværen', 1), ('manchester…', 1), ('dranag', 1), ('artcan', 1), ('bendika', 1), ('lithuanien', 1), ('orvyda', 1), ('alloys—nam', 1), ('dilver', 1), ('fe–ni–', 1)]...\n", - "2018-08-31 00:34:13,444 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 830000 (=100.0%) documents\n", - "2018-08-31 00:34:15,588 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:15,634 : INFO : adding document #830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:20,192 : INFO : discarding 35248 tokens: [('滘西洲', 1), ('火石洲', 1), ('炸魚排', 1), ('烏蠅排', 1), ('爛頭排', 1), ('牙鷹排', 1), ('牛尾洲', 1), ('牛屎砵', 1), ('牛頭排', 1), ('癩痢仔', 1)]...\n", - "2018-08-31 00:34:20,192 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 840000 (=100.0%) documents\n", - "2018-08-31 00:34:22,240 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:22,284 : INFO : adding document #840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:26,861 : INFO : discarding 31305 tokens: [('鮑紹雄', 1), ('flocompon', 1), ('rusport', 1), ('sungazett', 1), ('aflua', 1), ('carriss', 1), ('foletta', 1), ('pleass', 1), ('sanneman', 1), ('sigmont', 1)]...\n", - "2018-08-31 00:34:26,861 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 850000 (=100.0%) documents\n", - "2018-08-31 00:34:29,002 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:29,048 : INFO : adding document #850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:33,538 : INFO : discarding 32928 tokens: [('κρυφός', 1), ('نیز', 1), ('چیم', 1), ('チムニーズ館の秘密(chimnei', 1), ('烟囱宅之谜', 1), ('artwashington', 1), ('masciulli', 1), ('mchughen', 1), ('drude–lorentz', 1), ('acylcholin', 1)]...\n", - "2018-08-31 00:34:33,538 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 860000 (=100.0%) documents\n", - "2018-08-31 00:34:35,594 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:35,638 : INFO : adding document #860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:40,151 : INFO : discarding 33845 tokens: [('roarchick', 1), ('sfoza', 1), ('shopkeeper–postmistress', 1), ('west—from', 1), ('—capt', 1), ('chew—copyright', 1), ('devoist', 1), ('arbutusunedo', 1), ('madronerefrigeratortre', 1), ('ornithostaphylo', 1)]...\n", - "2018-08-31 00:34:40,151 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 870000 (=100.0%) documents\n", - "2018-08-31 00:34:42,301 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:42,348 : INFO : adding document #870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:46,850 : INFO : discarding 34628 tokens: [('землемер', 1), ('narratives’', 1), ('ranjoo', 1), ('seodu', 1), ('‘globalization’', 1), ('‘post’', 1), ('凡是毛主席作出的决策,我们都坚决维护;凡是毛主席的指示,我们都始终不渝地遵循', 1), ('boasa', 1), ('anthistl', 1), ('indienet', 1)]...\n", - "2018-08-31 00:34:46,850 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 880000 (=100.0%) documents\n", - "2018-08-31 00:34:48,900 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:48,944 : INFO : adding document #880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:53,506 : INFO : discarding 34332 tokens: [('haʼicu', 1), ('haʼicug', 1), ('haṣ', 1), ('haṣaba', 1), ('hebai', 1), ('hehkai', 1), ('hehmapa', 1), ('hejeḍ', 1), ('heubagĭ', 1), ('hewhogĭ', 1)]...\n", - "2018-08-31 00:34:53,507 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 890000 (=100.0%) documents\n", - "2018-08-31 00:34:55,659 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:34:55,705 : INFO : adding document #890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:00,167 : INFO : discarding 33625 tokens: [('herotsc', 1), ('pridepark', 1), ('ajansa', 1), ('apparelknit', 1), ('firatê', 1), ('liquidd', 1), ('nûçeyan', 1), ('pollendin', 1), ('surroundings—albeit', 1), ('acqtc', 1)]...\n", - "2018-08-31 00:35:00,167 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 900000 (=100.0%) documents\n", - "2018-08-31 00:35:02,229 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:02,274 : INFO : adding document #900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:06,827 : INFO : discarding 34469 tokens: [('baharga', 1), ('bprm', 1), ('dmeir', 1), ('drasiah', 1), ('dursunozden', 1), ('fughara', 1), ('issadar', 1), ('jūb', 1), ('kahrez', 1), ('kakuriz', 1)]...\n", - "2018-08-31 00:35:06,828 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 910000 (=100.0%) documents\n", - "2018-08-31 00:35:08,986 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:09,033 : INFO : adding document #910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:13,372 : INFO : discarding 30776 tokens: [('gluecksohn', 1), ('schönheimer', 1), ('schönheimer´', 1), ('sgbm', 1), ('spemann´', 1), ('waelsch´', 1), ('cascanuec', 1), ('confundida', 1), ('impresent', 1), ('nikté', 1)]...\n", - "2018-08-31 00:35:13,373 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 920000 (=100.0%) documents\n", - "2018-08-31 00:35:15,424 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:15,468 : INFO : adding document #920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:35:19,973 : INFO : discarding 33158 tokens: [('squeezeflowmod', 1), ('yucudaa', 1), ('clariscan', 1), ('cliavist', 1), ('combidex', 1), ('endorem', 1), ('ferrotec', 1), ('feruglos', 1), ('lumirem', 1), ('resovist', 1)]...\n", - "2018-08-31 00:35:19,974 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 930000 (=100.0%) documents\n", - "2018-08-31 00:35:22,131 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:22,179 : INFO : adding document #930000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:26,527 : INFO : discarding 29712 tokens: [('bandicoot—dansu', 1), ('dinestein', 1), ('hakik', 1), ('spiralmouth', 1), ('theplay', 1), ('callisen’', 1), ('lotheissen‘', 1), ('mcevedy’', 1), ('narath’', 1), ('retrovascular', 1)]...\n", - "2018-08-31 00:35:26,527 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 940000 (=100.0%) documents\n", - "2018-08-31 00:35:28,588 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:28,632 : INFO : adding document #940000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:33,195 : INFO : discarding 30348 tokens: [('butylzinc', 1), ('iodoanilin', 1), ('ballwork', 1), ('fascion', 1), ('gasbarri', 1), ('mckemmi', 1), ('ridgwel', 1), ('toadie’', 1), ('dgstj', 1), ('lavrec', 1)]...\n", - "2018-08-31 00:35:33,196 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 950000 (=100.0%) documents\n", - "2018-08-31 00:35:35,354 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:35,400 : INFO : adding document #950000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:39,798 : INFO : discarding 32690 tokens: [('napocna', 1), ('navogoh', 1), ('qarashé', 1), ('凤凰乡', 1), ('dennett’', 1), ('brangi', 1), ('icehal', 1), ('jokiv', 1), ('mähr', 1), ('tsutsunen', 1)]...\n", - "2018-08-31 00:35:39,798 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 960000 (=100.0%) documents\n", - "2018-08-31 00:35:41,874 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:41,918 : INFO : adding document #960000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:46,329 : INFO : discarding 30931 tokens: [('köstebek', 1), ('utanmaz', 1), ('changor', 1), ('lovisex', 1), ('sadissimo', 1), ('satarella', 1), ('strictement', 1), ('yandım', 1), ('calavano', 1), ('darukijung', 1)]...\n", - "2018-08-31 00:35:46,330 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 970000 (=100.0%) documents\n", - "2018-08-31 00:35:48,491 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:48,539 : INFO : adding document #970000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:52,824 : INFO : discarding 27285 tokens: [('burkinaonlin', 1), ('n’do', 1), ('paalga', 1), ('salankoloto', 1), ('danshøj', 1), ('frederiksbergcentret', 1), ('kampmannsgad', 1), ('nyelandsvej', 1), ('nørrebroparken', 1), ('reloct', 1)]...\n", - "2018-08-31 00:35:52,825 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 980000 (=100.0%) documents\n", - "2018-08-31 00:35:54,898 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:54,946 : INFO : adding document #980000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:35:59,529 : INFO : discarding 29285 tokens: [('ganshou', 1), ('沮渠乾壽', 1), ('河西王', 1), ('闞伯周', 1), ('bendiwi', 1), ('caraibo', 1), ('caraïbo', 1), ('countsmen', 1), ('worsbough', 1), ('byaverag', 1)]...\n", - "2018-08-31 00:35:59,530 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 990000 (=100.0%) documents\n", - "2018-08-31 00:36:01,705 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:01,755 : INFO : adding document #990000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:06,189 : INFO : discarding 32588 tokens: [('symclosen', 1), ('achiq', 1), ('aghasiyev', 1), ('bagradouni', 1), ('bailoff', 1), ('balakhani', 1), ('bunyat', 1), ('gotsinski', 1), ('gubernskaya', 1), ('hümmet', 1)]...\n", - "2018-08-31 00:36:06,189 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1000000 (=100.0%) documents\n", - "2018-08-31 00:36:08,253 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:08,298 : INFO : adding document #1000000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:12,768 : INFO : discarding 33574 tokens: [('nova–can', 1), ('nova–la', 1), ('paral·lel–badalona', 1), ('sagrera–can', 1), ('sagrera–gorg', 1), ('sarrià–reina', 1), ('t–zona', 1), ('universitària–trinitat', 1), ('“soldier’', 1), ('dogabon', 1)]...\n", - "2018-08-31 00:36:12,769 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1010000 (=100.0%) documents\n", - "2018-08-31 00:36:14,937 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:14,985 : INFO : adding document #1010000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:19,290 : INFO : discarding 37934 tokens: [('arasamaram', 1), ('pendamaran', 1), ('unjur', 1), ('吉令港', 1), ('巴生观音亭', 1), ('chris—in', 1), ('skywalker—th', 1), ('chángfāng朱常淓', 1), ('chángluò朱常洛', 1), ('chángqīng朱常清', 1)]...\n", - "2018-08-31 00:36:19,291 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1020000 (=100.0%) documents\n", - "2018-08-31 00:36:21,357 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:21,403 : INFO : adding document #1020000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:25,878 : INFO : discarding 41262 tokens: [('kaye—to', 1), ('proportions»', 1), ('yes—chri', 1), ('maine–quebec', 1), ('wolastoqiyuk', 1), ('wəlastəkok', 1), ('wələstəq', 1), ('cheeno', 1), ('hindustan—th', 1), ('आपस', 1)]...\n", - "2018-08-31 00:36:25,878 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1030000 (=100.0%) documents\n", - "2018-08-31 00:36:28,044 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:28,092 : INFO : adding document #1030000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:32,485 : INFO : discarding 37728 tokens: [('ice—ha', 1), ('maturity—not', 1), ('oveckhin', 1), ('plutokil', 1), ('necrosound', 1), ('rivao', 1), ('ulaeu', 1), ('marquetteri', 1), ('lochanā', 1), ('panchajnana', 1)]...\n", - "2018-08-31 00:36:32,486 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1040000 (=100.0%) documents\n", - "2018-08-31 00:36:34,557 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:34,602 : INFO : adding document #1040000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:38,998 : INFO : discarding 31907 tokens: [('beedham', 1), ('brodertoft', 1), ('brothertoftborn', 1), ('buttol', 1), ('cromel', 1), ('curtoi', 1), ('gerordot', 1), ('lemanof', 1), ('marrat', 1), ('sempringam', 1)]...\n", - "2018-08-31 00:36:38,999 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1050000 (=100.0%) documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:36:41,160 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:41,208 : INFO : adding document #1050000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:45,452 : INFO : discarding 34086 tokens: [('tangle—wer', 1), ('korsakoff´', 1), ('wernicke´', 1), ('fedorov‘', 1), ('sisyphan', 1), ('smartshroud', 1), ('wormcam', 1), ('modérateur', 1), ('sugrivapithecu', 1), ('yastwant', 1)]...\n", - "2018-08-31 00:36:45,453 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1060000 (=100.0%) documents\n", - "2018-08-31 00:36:47,533 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:47,578 : INFO : adding document #1060000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:51,879 : INFO : discarding 31320 tokens: [('fautré', 1), ('hrwf', 1), ('iclar', 1), ('«focus', 1), ('aradhan', 1), ('auradkar', 1), ('basavanth', 1), ('basawanna', 1), ('belkera', 1), ('bhukari', 1)]...\n", - "2018-08-31 00:36:51,879 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1070000 (=100.0%) documents\n", - "2018-08-31 00:36:54,068 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:54,115 : INFO : adding document #1070000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:36:58,041 : INFO : discarding 38939 tokens: [('ahreea', 1), ('androsgeorgi', 1), ('pakinawatik', 1), ('entoproctan', 1), ('kofiran', 1), ('meilcour', 1), ('neadarn', 1), ('zéokinisul', 1), ('écumoir', 1), ('bianconi’', 1)]...\n", - "2018-08-31 00:36:58,042 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1080000 (=100.0%) documents\n", - "2018-08-31 00:37:00,121 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:00,167 : INFO : adding document #1080000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:04,603 : INFO : discarding 40155 tokens: [('codalema', 1), ('décimétriqu', 1), ('radiotélescop', 1), ('macrophil', 1), ('part—ent', 1), ('releases″', 1), ('″preliminari', 1), ('loathed—sheridan', 1), ('parkerview', 1), ('allbin', 1)]...\n", - "2018-08-31 00:37:04,604 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1090000 (=100.0%) documents\n", - "2018-08-31 00:37:06,756 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:06,804 : INFO : adding document #1090000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:11,026 : INFO : discarding 31177 tokens: [('absorption—for', 1), ('adlaf', 1), ('potashnik', 1), ('regaudi', 1), ('sakellaropoulo', 1), ('urdl', 1), ('zoern', 1), ('greeder', 1), ('paratron', 1), ('bricasti', 1)]...\n", - "2018-08-31 00:37:11,027 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1100000 (=100.0%) documents\n", - "2018-08-31 00:37:13,091 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:13,136 : INFO : adding document #1100000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:17,398 : INFO : discarding 30521 tokens: [('ansigtstyven', 1), ('begyndt', 1), ('borgkælderen', 1), ('brudefærd', 1), ('brænder', 1), ('danskefilm', 1), ('derbyløb', 1), ('dobbeltgæng', 1), ('dollarprinsessen', 1), ('flintesønnern', 1)]...\n", - "2018-08-31 00:37:17,399 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1110000 (=100.0%) documents\n", - "2018-08-31 00:37:19,540 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:19,589 : INFO : adding document #1110000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:23,695 : INFO : discarding 27945 tokens: [('sakuzō', 1), ('yorita', 1), ('borita', 1), ('alicyn', 1), ('fufalla', 1), ('glissandra', 1), ('humidia', 1), ('incanta', 1), ('iridessa', 1), ('kettletre', 1)]...\n", - "2018-08-31 00:37:23,695 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1120000 (=100.0%) documents\n", - "2018-08-31 00:37:25,777 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:25,823 : INFO : adding document #1120000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:30,049 : INFO : discarding 31674 tokens: [('tvguidemag', 1), ('animationvisu', 1), ('assistancekei', 1), ('atwiki', 1), ('beginningep', 1), ('creatordirectorscriptdigit', 1), ('designkei', 1), ('effectsart', 1), ('kattobas', 1), ('liliputian', 1)]...\n", - "2018-08-31 00:37:30,050 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1130000 (=100.0%) documents\n", - "2018-08-31 00:37:32,217 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:32,266 : INFO : adding document #1130000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:36,397 : INFO : discarding 29187 tokens: [('eitchon', 1), ('fricho', 1), ('halbbauern', 1), ('homburgeramt', 1), ('sauriermuseum', 1), ('vollbauern', 1), ('bürersteig', 1), ('gansungen', 1), ('holefehr', 1), ('holekit', 1)]...\n", - "2018-08-31 00:37:36,398 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1140000 (=100.0%) documents\n", - "2018-08-31 00:37:38,464 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:38,510 : INFO : adding document #1140000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:42,857 : INFO : discarding 29644 tokens: [('com–', 1), ('pspvideo', 1), ('sonystyl', 1), ('junkclub', 1), ('omeara', 1), ('zeffira', 1), ('koroseta', 1), ('마이티', 1), ('‘classroom', 1), ('aldoshin', 1)]...\n", - "2018-08-31 00:37:42,857 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1150000 (=100.0%) documents\n", - "2018-08-31 00:37:45,014 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:45,063 : INFO : adding document #1150000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:48,995 : INFO : discarding 25332 tokens: [('baliwasan', 1), ('boalan', 1), ('bunguiao', 1), ('cabaluai', 1), ('cabatangan', 1), ('calarian', 1), ('canelar', 1), ('capisan', 1), ('culianan', 1), ('curuan', 1)]...\n", - "2018-08-31 00:37:48,995 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1160000 (=100.0%) documents\n", - "2018-08-31 00:37:51,070 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:51,116 : INFO : adding document #1160000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:55,293 : INFO : discarding 36793 tokens: [('kakimura', 1), ('kumakatsu', 1), ('mitsumaru', 1), ('yasuiti', 1), ('birgittaklost', 1), ('untaf', 1), ('svivon', 1), ('esseci', 1), ('nicoloini', 1), ('examplevertexfigur', 1)]...\n", - "2018-08-31 00:37:55,293 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1170000 (=100.0%) documents\n", - "2018-08-31 00:37:57,471 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:37:57,520 : INFO : adding document #1170000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:38:01,419 : INFO : discarding 27739 tokens: [('usvba', 1), ('abhiraja', 1), ('ce—or', 1), ('ce—th', 1), ('dhammavilasa', 1), ('elements—art', 1), ('generations—wa', 1), ('guards—', 1), ('hlaung', 1), ('hpyat', 1)]...\n", - "2018-08-31 00:38:01,420 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1180000 (=100.0%) documents\n", - "2018-08-31 00:38:03,482 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:03,529 : INFO : adding document #1180000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:07,579 : INFO : discarding 29505 tokens: [('clift’', 1), ('deer’’', 1), ('kazan’', 1), ('lodan', 1), ('loden”', 1), ('music—everyth', 1), ('pictures…', 1), ('wanda”', 1), ('“kazan', 1), ('“maggie”', 1)]...\n", - "2018-08-31 00:38:07,579 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1190000 (=100.0%) documents\n", - "2018-08-31 00:38:09,744 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:09,792 : INFO : adding document #1190000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:13,786 : INFO : discarding 26867 tokens: [('packetexchang', 1), ('aiyaa', 1), ('azhagam', 1), ('irukkiraai', 1), ('kattradhu', 1), ('paravaiy', 1), ('pattaampoochi', 1), ('poobaal', 1), ('poobal', 1), ('raavar', 1)]...\n", - "2018-08-31 00:38:13,786 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1200000 (=100.0%) documents\n", - "2018-08-31 00:38:15,849 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:15,895 : INFO : adding document #1200000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:20,256 : INFO : discarding 29744 tokens: [('points’', 1), ('reksep', 1), ('lemhous', 1), ('jtbgmt', 1), ('rurubu', 1), ('stand’', 1), ('‘tomb', 1), ('nicolaeva', 1), ('damierlyonnai', 1), ('molimard', 1)]...\n", - "2018-08-31 00:38:20,257 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1210000 (=100.0%) documents\n", - "2018-08-31 00:38:22,420 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:22,469 : INFO : adding document #1210000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:26,599 : INFO : discarding 30192 tokens: [('chicklet', 1), ('tiles’', 1), ('sokolani', 1), ('mahadeorao', 1), ('shivankar', 1), ('sukaji', 1), ('worldwarairfield', 1), ('吳鑑泉', 1), ('bhatkya', 1), ('rojgar', 1)]...\n", - "2018-08-31 00:38:26,599 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1220000 (=100.0%) documents\n", - "2018-08-31 00:38:28,688 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:28,733 : INFO : adding document #1220000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:32,928 : INFO : discarding 29553 tokens: [('bossieux', 1), ('madsol', 1), ('“geomungo”', 1), ('거문고', 1), ('cadet”', 1), ('“gentleman', 1), ('handock', 1), ('hrishita', 1), ('kettavarellam', 1), ('mahabanoo', 1)]...\n", - "2018-08-31 00:38:32,929 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1230000 (=100.0%) documents\n", - "2018-08-31 00:38:35,100 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:35,149 : INFO : adding document #1230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:39,237 : INFO : discarding 28947 tokens: [('khanaqah', 1), ('khaniqah', 1), ('ma‘arif', 1), ('payvan', 1), ('riyasateyn', 1), ('ṣufiyya', 1), ('‘eblis’', 1), ('“prodigi', 1), ('afforment', 1), ('autotour', 1)]...\n", - "2018-08-31 00:38:39,238 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1240000 (=100.0%) documents\n", - "2018-08-31 00:38:41,330 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:41,376 : INFO : adding document #1240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:45,509 : INFO : discarding 31331 tokens: [('abfaltersbach', 1), ('petzenburg', 1), ('tirolerhut', 1), ('doruccio', 1), ('pisa’', 1), ('kargha', 1), ('hemkunj', 1), ('smartpart', 1), ('ejji', 1), ('amendi', 1)]...\n", - "2018-08-31 00:38:45,510 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1250000 (=100.0%) documents\n", - "2018-08-31 00:38:47,703 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:47,752 : INFO : adding document #1250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:51,811 : INFO : discarding 30763 tokens: [('pyreau', 1), ('shquindi', 1), ('tamare', 1), ('teeyhittaan', 1), ('barroetaveña', 1), ('caleidoscopio', 1), ('conciencias”', 1), ('doño', 1), ('ejqfsc', 1), ('esaín', 1)]...\n", - "2018-08-31 00:38:51,811 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1260000 (=100.0%) documents\n", - "2018-08-31 00:38:53,878 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:53,925 : INFO : adding document #1260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:38:58,137 : INFO : discarding 30310 tokens: [('cunundrum', 1), ('nightfriend', 1), ('darbaki', 1), ('abarquez', 1), ('caiban', 1), ('consolabao', 1), ('pagsangjan', 1), ('tancinco', 1), ('tinambacan', 1), ('ubanon', 1)]...\n", - "2018-08-31 00:38:58,137 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1270000 (=100.0%) documents\n", - "2018-08-31 00:39:00,304 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:00,353 : INFO : adding document #1270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:04,481 : INFO : discarding 28848 tokens: [('lajiaomei', 1), ('lankouzi', 1), ('lingda', 1), ('liusheng', 1), ('shenbianshi', 1), ('suifeng', 1), ('xiyangyang', 1), ('xueji', 1), ('yimei', 1), ('yuetong', 1)]...\n", - "2018-08-31 00:39:04,482 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1280000 (=100.0%) documents\n", - "2018-08-31 00:39:06,552 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:06,599 : INFO : adding document #1280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:10,720 : INFO : discarding 29006 tokens: [('koliabor', 1), ('laithapana', 1), ('langisong', 1), ('madhurjya', 1), ('mridupom', 1), ('nirbhoynarayan', 1), ('numali', 1), ('thanunath', 1), ('tonmoi', 1), ('bhorupkar', 1)]...\n", - "2018-08-31 00:39:10,721 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1290000 (=100.0%) documents\n", - "2018-08-31 00:39:12,882 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:12,932 : INFO : adding document #1290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:16,920 : INFO : discarding 34204 tokens: [('hɔ̂ːj', 1), ('hɯ´ːan', 1), ('isan—both', 1), ('iːnɔːŋ', 1), ('jâːŋ', 1), ('jîam', 1), ('jùt', 1), ('kadat', 1), ('kalèm', 1), ('kammandam', 1)]...\n", - "2018-08-31 00:39:16,921 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1300000 (=100.0%) documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:39:18,999 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:19,047 : INFO : adding document #1300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:23,319 : INFO : discarding 29336 tokens: [('hankari', 1), ('hubaira', 1), ('isma‘il', 1), ('jallaluddin', 1), ('jamiyattablighulislam', 1), ('jamālullah', 1), ('mawā', 1), ('muhiyuddin', 1), ('nausha', 1), ('naushahi', 1)]...\n", - "2018-08-31 00:39:23,320 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1310000 (=100.0%) documents\n", - "2018-08-31 00:39:25,498 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:25,547 : INFO : adding document #1310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:29,609 : INFO : discarding 29440 tokens: [('pohronskybukovec', 1), ('kevedobra', 1), ('добрица', 1), ('medzibrod', 1), ('charruana', 1), ('rosengurttii', 1), ('poniki', 1), ('d’eramo', 1), ('karkari', 1), ('merrith', 1)]...\n", - "2018-08-31 00:39:29,609 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1320000 (=100.0%) documents\n", - "2018-08-31 00:39:31,716 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:31,763 : INFO : adding document #1320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:35,885 : INFO : discarding 28345 tokens: [('最佳金句', 1), ('最受欢迎新人奖', 1), ('最惨烂笑容奖', 1), ('最火搭档', 1), ('未来不是梦', 1), ('plead’', 1), ('‘unfit', 1), ('czerchowski', 1), ('czerchów', 1), ('ľubovnianska', 1)]...\n", - "2018-08-31 00:39:35,886 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1330000 (=100.0%) documents\n", - "2018-08-31 00:39:38,054 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:38,103 : INFO : adding document #1330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:42,270 : INFO : discarding 30216 tokens: [('teosk', 1), ('doidals', 1), ('confuchia', 1), ('danzeno', 1), ('iktam', 1), ('koropick', 1), ('tedburrow', 1), ('gymnuru', 1), ('hoplomi', 1), ('leptura', 1)]...\n", - "2018-08-31 00:39:42,270 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1340000 (=100.0%) documents\n", - "2018-08-31 00:39:44,366 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:44,413 : INFO : adding document #1340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:48,554 : INFO : discarding 25284 tokens: [('bisknel', 1), ('groobi', 1), ('sizeland', 1), ('alappatt', 1), ('maliekk', 1), ('thoomkuzhi', 1), ('bremlei', 1), ('childbirth—a', 1), ('chirantan', 1), ('galpomala', 1)]...\n", - "2018-08-31 00:39:48,555 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1350000 (=100.0%) documents\n", - "2018-08-31 00:39:50,752 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:50,801 : INFO : adding document #1350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:54,884 : INFO : discarding 27853 tokens: [('stratodyn', 1), ('leuvilloi', 1), ('royale»', 1), ('«voie', 1), ('bidesi', 1), ('gopendra', 1), ('intellectur', 1), ('daskov', 1), ('daskova', 1), ('feodorova', 1)]...\n", - "2018-08-31 00:39:54,885 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1360000 (=100.0%) documents\n", - "2018-08-31 00:39:56,967 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:39:57,017 : INFO : adding document #1360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:01,232 : INFO : discarding 28340 tokens: [('cukiertort', 1), ('krzyzanovska', 1), ('tnmt', 1), ('transpositions—in', 1), ('chessoia', 1), ('ctenophoran', 1), ('melagiu', 1), ('sikyo', 1), ('sjómannadagurinn', 1), ('tölva', 1)]...\n", - "2018-08-31 00:40:01,232 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1370000 (=100.0%) documents\n", - "2018-08-31 00:40:03,406 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:03,455 : INFO : adding document #1370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:07,719 : INFO : discarding 29524 tokens: [('liucoccu', 1), ('lomatococcu', 1), ('londiania', 1), ('longicoccu', 1), ('macrocepicoccu', 1), ('maculicoccu', 1), ('madacanthococcu', 1), ('madagasia', 1), ('madangiacoccu', 1), ('madeurycoccu', 1)]...\n", - "2018-08-31 00:40:07,720 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1380000 (=100.0%) documents\n", - "2018-08-31 00:40:09,799 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:09,850 : INFO : adding document #1380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:14,150 : INFO : discarding 33316 tokens: [('несу́', 1), ('несу́т', 1), ('несём', 1), ('несёте', 1), ('неё', 1), ('нулево́й', 1), ('нуть', 1), ('нёс', 1), ('нёсший', 1), ('о́чень', 1)]...\n", - "2018-08-31 00:40:14,150 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1390000 (=100.0%) documents\n", - "2018-08-31 00:40:16,316 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:16,367 : INFO : adding document #1390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:20,489 : INFO : discarding 28893 tokens: [('itomu', 1), ('jikukawa', 1), ('kazutak', 1), ('lagross', 1), ('lamphroaig', 1), ('laszo', 1), ('mokania', 1), ('rusuran', 1), ('shilfi', 1), ('shinatom', 1)]...\n", - "2018-08-31 00:40:20,490 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1400000 (=100.0%) documents\n", - "2018-08-31 00:40:22,574 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:22,621 : INFO : adding document #1400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:26,805 : INFO : discarding 35761 tokens: [('krestivka', 1), ('lymanski', 1), ('marynski', 1), ('marïnka', 1), ('shakhtarski', 1), ('shakhtarskyi', 1), ('slovyanski', 1), ('starobeshivski', 1), ('telmanivski', 1), ('velikonovosilkivski', 1)]...\n", - "2018-08-31 00:40:26,805 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1410000 (=100.0%) documents\n", - "2018-08-31 00:40:28,992 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:29,043 : INFO : adding document #1410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:33,048 : INFO : discarding 27479 tokens: [('olten–genèv', 1), ('shorelineneuchâtel', 1), ('terras', 1), ('voilain', 1), ('“shepherd’', 1), ('chriztoph', 1), ('oedipusend', 1), ('paliou', 1), ('paperstrang', 1), ('selaiha', 1)]...\n", - "2018-08-31 00:40:33,049 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1420000 (=100.0%) documents\n", - "2018-08-31 00:40:35,130 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:35,177 : INFO : adding document #1420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:40:39,304 : INFO : discarding 27312 tokens: [('damascus–istr', 1), ('editzioni', 1), ('grafasdiv', 1), ('jalo–giarabub', 1), ('jozza', 1), ('legionaira', 1), ('leproni', 1), ('nauagia', 1), ('scaramanzia', 1), ('thermopila', 1)]...\n", - "2018-08-31 00:40:39,304 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1430000 (=100.0%) documents\n", - "2018-08-31 00:40:41,472 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:41,522 : INFO : adding document #1430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:45,578 : INFO : discarding 28821 tokens: [('ardinari', 1), ('aysle—a', 1), ('below—not', 1), ('comaghaz', 1), ('cyberpapaci', 1), ('cyberpapacy—cov', 1), ('drakacanu', 1), ('ebenuscrux', 1), ('edeino', 1), ('eideno', 1)]...\n", - "2018-08-31 00:40:45,578 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1440000 (=100.0%) documents\n", - "2018-08-31 00:40:47,663 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:47,710 : INFO : adding document #1440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:51,726 : INFO : discarding 25589 tokens: [('aonobuaka', 1), ('borotiam', 1), ('kiribarti', 1), ('koinawa', 1), ('maneab', 1), ('morikao', 1), ('nuotaea', 1), ('riboono', 1), ('tabuiroa', 1), ('tabwiroa', 1)]...\n", - "2018-08-31 00:40:51,727 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1450000 (=100.0%) documents\n", - "2018-08-31 00:40:53,918 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:53,969 : INFO : adding document #1450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:40:58,045 : INFO : discarding 27049 tokens: [('cavezzali', 1), ('cittanòva', 1), ('crònich', 1), ('culodritto', 1), ('diamoci', 1), ('epafànich', 1), ('fatâz', 1), ('filemazio', 1), ('gnicch', 1), ('jachia', 1)]...\n", - "2018-08-31 00:40:58,046 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1460000 (=100.0%) documents\n", - "2018-08-31 00:41:00,131 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:00,178 : INFO : adding document #1460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:04,338 : INFO : discarding 30597 tokens: [('aescularia', 1), ('brephoid', 1), ('cruentaria', 1), ('desmobathrina', 1), ('dichromod', 1), ('immorata', 1), ('leucobrepho', 1), ('lythria', 1), ('marginepunctata', 1), ('nearcha', 1)]...\n", - "2018-08-31 00:41:04,338 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1470000 (=100.0%) documents\n", - "2018-08-31 00:41:06,493 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:06,542 : INFO : adding document #1470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:10,585 : INFO : discarding 32029 tokens: [('бөртэ', 1), ('activeanime—comparison', 1), ('囲まれた世界', 1), ('danniya', 1), ('hinduva', 1), ('hindūg', 1), ('fastpaq', 1), ('arabskikh', 1), ('cherteb', 1), ('dagestanskogo', 1)]...\n", - "2018-08-31 00:41:10,586 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1480000 (=100.0%) documents\n", - "2018-08-31 00:41:12,673 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:12,721 : INFO : adding document #1480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:16,818 : INFO : discarding 28748 tokens: [('wiilko', 1), ('wymarch', 1), ('golfml', 1), ('atia—advanc', 1), ('atic—advanc', 1), ('cmsr—center', 1), ('dsead', 1), ('geometry—relationship', 1), ('irembass', 1), ('ncmr—nation', 1)]...\n", - "2018-08-31 00:41:16,819 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1490000 (=100.0%) documents\n", - "2018-08-31 00:41:19,002 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:19,052 : INFO : adding document #1490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:23,119 : INFO : discarding 30384 tokens: [('वर्ग', 1), ('वहन', 1), ('वहित्र', 1), ('वाच्', 1), ('वाज', 1), ('वार्ता', 1), ('वाशी', 1), ('विचक्षण', 1), ('विचक्ष्', 1), ('विद्याधरी', 1)]...\n", - "2018-08-31 00:41:23,119 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1500000 (=100.0%) documents\n", - "2018-08-31 00:41:25,206 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:25,253 : INFO : adding document #1500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:29,336 : INFO : discarding 31667 tokens: [('kṛttikākārttika', 1), ('laatj', 1), ('langsai', 1), ('langseng', 1), ('laoteng', 1), ('lappai', 1), ('legiun', 1), ('lenspreci', 1), ('lianglong', 1), ('limoen', 1)]...\n", - "2018-08-31 00:41:29,337 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1510000 (=100.0%) documents\n", - "2018-08-31 00:41:31,508 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:31,558 : INFO : adding document #1510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:35,597 : INFO : discarding 29687 tokens: [('ŋɯm', 1), ('ɲaːw', 1), ('ʔĩi', 1), ('กระจับปี่', 1), ('กลอง', 1), ('ขลุ่ย', 1), ('ขับงึม', 1), ('ขับซำเหนือ', 1), ('ขับทุ้มหลวงพระบาง', 1), ('ขับพวน', 1)]...\n", - "2018-08-31 00:41:35,598 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1520000 (=100.0%) documents\n", - "2018-08-31 00:41:37,669 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:37,716 : INFO : adding document #1520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:41,885 : INFO : discarding 29222 tokens: [('peiniot', 1), ('peinkitel', 1), ('platforms—bord', 1), ('ponapé', 1), ('tauach', 1), ('temuen', 1), ('usennamw', 1), ('rhizomop', 1), ('taddarita', 1), ('skiltonianum', 1)]...\n", - "2018-08-31 00:41:41,886 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1530000 (=100.0%) documents\n", - "2018-08-31 00:41:44,048 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:44,097 : INFO : adding document #1530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:48,152 : INFO : discarding 27600 tokens: [('toshitoro', 1), ('nazigold', 1), ('war—notwithstand', 1), ('“mytho', 1), ('centralparkst', 1), ('patscentr', 1), ('lutzelkolb', 1), ('minnik', 1), ('afaha’', 1), ('andomi', 1)]...\n", - "2018-08-31 00:41:48,153 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1540000 (=100.0%) documents\n", - "2018-08-31 00:41:50,249 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:50,296 : INFO : adding document #1540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:54,819 : INFO : discarding 28043 tokens: [('godihk', 1), ('gogháiidá', 1), ('gohtsį', 1), ('golqah', 1), ('got’iné', 1), ('goyide', 1), ('goyíi', 1), ('goyúé', 1), ('goyįde', 1), ('gołį', 1)]...\n", - "2018-08-31 00:41:54,819 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1550000 (=100.0%) documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:41:56,987 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:41:57,037 : INFO : adding document #1550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:01,166 : INFO : discarding 27786 tokens: [('malcadet', 1), ('vicalet', 1), ('agnervil', 1), ('aignervillai', 1), ('aignervillais', 1), ('berigot', 1), ('airannai', 1), ('airannais', 1), ('borgarelli', 1), ('deuzet', 1)]...\n", - "2018-08-31 00:42:01,167 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1560000 (=100.0%) documents\n", - "2018-08-31 00:42:03,250 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:03,298 : INFO : adding document #1560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:07,456 : INFO : discarding 27673 tokens: [('progenitin', 1), ('chernjo', 1), ('grcheto', 1), ('jurukov', 1), ('katardjiev', 1), ('kitinchev', 1), ('michev', 1), ('mysro', 1), ('protogetov', 1), ('sharlo', 1)]...\n", - "2018-08-31 00:42:07,457 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1570000 (=100.0%) documents\n", - "2018-08-31 00:42:09,627 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:09,677 : INFO : adding document #1570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:13,630 : INFO : discarding 27049 tokens: [('oreillyfound', 1), ('“irishman', 1), ('birthplace—wher', 1), ('ndenvirocaucu', 1), ('¹out', 1), ('awarded—fifteen', 1), ('crosses—murrai', 1), ('distiniguish', 1), ('halbisengibb', 1), ('halbrun', 1)]...\n", - "2018-08-31 00:42:13,631 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1580000 (=100.0%) documents\n", - "2018-08-31 00:42:15,731 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:15,779 : INFO : adding document #1580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:19,984 : INFO : discarding 27369 tokens: [('キッコロ', 1), ('モリゾー', 1), ('愛・地球博', 1), ('bangh', 1), ('disposalb', 1), ('divergerg', 1), ('fangla', 1), ('hangzhou–taizhou–wenzh', 1), ('henghui', 1), ('jiekan', 1)]...\n", - "2018-08-31 00:42:19,984 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1590000 (=100.0%) documents\n", - "2018-08-31 00:42:22,151 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:22,203 : INFO : adding document #1590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:26,117 : INFO : discarding 26627 tokens: [('droppo', 1), ('dhimsr', 1), ('doctorji', 1), ('vijayasaradhi', 1), ('oryx—which', 1), ('ciyc', 1), ('darici', 1), ('transmedialidad', 1), ('urbatect', 1), ('murough', 1)]...\n", - "2018-08-31 00:42:26,118 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1600000 (=100.0%) documents\n", - "2018-08-31 00:42:28,213 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:28,261 : INFO : adding document #1600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:32,094 : INFO : discarding 23412 tokens: [('ḳarʿa', 1), ('ḳābila', 1), ('ἄγγος', 1), ('pnucleu', 1), ('“unjustifi', 1), ('karpovag', 1), ('uzzá', 1), ('ʻuzzāʼ', 1), ('الشراة', 1), ('kikudaifu', 1)]...\n", - "2018-08-31 00:42:32,095 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1610000 (=100.0%) documents\n", - "2018-08-31 00:42:34,261 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:34,311 : INFO : adding document #1610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:38,276 : INFO : discarding 30025 tokens: [('oksal', 1), ('pekmezoglu', 1), ('segrid', 1), ('punktperspekt', 1), ('borderstrik', 1), ('shayka', 1), ('gandercanada', 1), ('admantha', 1), ('meurik', 1), ('phycholog', 1)]...\n", - "2018-08-31 00:42:38,276 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1620000 (=100.0%) documents\n", - "2018-08-31 00:42:40,366 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:40,413 : INFO : adding document #1620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:44,539 : INFO : discarding 27516 tokens: [('《寒夜》,', 1), ('《寻找理想的少年朋友》,', 1), ('《将军》,', 1), ('《小人小事》,', 1), ('《巴金书信集》,', 1), ('《巴金自传》,', 1), ('《巴金论创作》,', 1), ('《序跋集》,', 1), ('《废园外》,', 1), ('《心里话》,', 1)]...\n", - "2018-08-31 00:42:44,540 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1630000 (=100.0%) documents\n", - "2018-08-31 00:42:46,711 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:46,761 : INFO : adding document #1630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:50,714 : INFO : discarding 23993 tokens: [('superbounc', 1), ('superjump', 1), ('ethom', 1), ('mitointeractom', 1), ('nutriproteom', 1), ('omicum', 1), ('pharmacomicrobiom', 1), ('tomom', 1), ('“comic”', 1), ('“genome”', 1)]...\n", - "2018-08-31 00:42:50,715 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1640000 (=100.0%) documents\n", - "2018-08-31 00:42:52,803 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:52,851 : INFO : adding document #1640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:56,885 : INFO : discarding 29139 tokens: [('kfhpga', 1), ('kfhpma', 1), ('kfhpnw', 1), ('mapmg', 1), ('scpmg', 1), ('tpmg', 1), ('tspmg', 1), ('goissard', 1), ('ride—design', 1), ('sa—wa', 1)]...\n", - "2018-08-31 00:42:56,886 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1650000 (=100.0%) documents\n", - "2018-08-31 00:42:59,049 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:42:59,099 : INFO : adding document #1650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:02,344 : INFO : discarding 21254 tokens: [('beishengzh', 1), ('kuirong', 1), ('mengmao', 1), ('ming–mong', 1), ('nalou', 1), ('shierguan', 1), ('shisi', 1), ('tehgchong', 1), ('tuguan', 1), ('zhangguan', 1)]...\n", - "2018-08-31 00:43:02,344 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1660000 (=100.0%) documents\n", - "2018-08-31 00:43:04,445 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:04,492 : INFO : adding document #1660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:08,459 : INFO : discarding 26825 tokens: [('chakalov', 1), ('dodunekov', 1), ('kenderov', 1), ('“lie', 1), ('geeno', 1), ('mainquin', 1), ('marveni', 1), ('numarx', 1), ('mackbrown', 1), ('texasfootbal', 1)]...\n", - "2018-08-31 00:43:08,459 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1670000 (=100.0%) documents\n", - "2018-08-31 00:43:10,627 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:10,677 : INFO : adding document #1670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:14,031 : INFO : discarding 21103 tokens: [('feisanna', 1), ('blumenverkäuferin', 1), ('werzel', 1), ('homeaccentstodai', 1), ('progressivebusinessmedia', 1), ('brentanobad', 1), ('ellaver', 1), ('ervita', 1), ('jõeküla', 1), ('kuusna', 1)]...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:43:14,032 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1680000 (=100.0%) documents\n", - "2018-08-31 00:43:16,121 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:16,169 : INFO : adding document #1680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:19,338 : INFO : discarding 17143 tokens: [('platychilu', 1), ('pleurostriatu', 1), ('haddadu', 1), ('chapin—whom', 1), ('with—to', 1), ('pluvicanoru', 1), ('duffal', 1), ('strawbsweb', 1), ('coqui”', 1), ('bergwaldoffens', 1)]...\n", - "2018-08-31 00:43:19,339 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1690000 (=100.0%) documents\n", - "2018-08-31 00:43:21,507 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:21,558 : INFO : adding document #1690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:24,873 : INFO : discarding 16319 tokens: [('feilach', 1), ('gelni', 1), ('lonauer', 1), ('museveri', 1), ('schizophreni', 1), ('ristor', 1), ('antilless', 1), ('addiet', 1), ('anbesit', 1), ('ereberb', 1)]...\n", - "2018-08-31 00:43:24,874 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1700000 (=100.0%) documents\n", - "2018-08-31 00:43:26,963 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:27,010 : INFO : adding document #1700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:30,687 : INFO : discarding 24608 tokens: [('philaharmon', 1), ('belosludov', 1), ('betpak', 1), ('seleviniida', 1), ('bisindo', 1), ('africasan', 1), ('seecon', 1), ('swedensusana', 1), ('unsgab', 1), ('wsscc', 1)]...\n", - "2018-08-31 00:43:30,687 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1710000 (=100.0%) documents\n", - "2018-08-31 00:43:32,851 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:32,902 : INFO : adding document #1710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:36,239 : INFO : discarding 21837 tokens: [('oxyurichthi', 1), ('cylindricep', 1), ('jaarmani', 1), ('–brown', 1), ('chichiawan', 1), ('aadeez', 1), ('hogaya', 1), ('hungami', 1), ('jayantabhai', 1), ('lamhei', 1)]...\n", - "2018-08-31 00:43:36,240 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1720000 (=100.0%) documents\n", - "2018-08-31 00:43:38,334 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:38,381 : INFO : adding document #1720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:42,194 : INFO : discarding 25936 tokens: [('liocypri', 1), ('oiqi', 1), ('santeurenn', 1), ('sampcd', 1), ('booth–clibborn', 1), ('soleath', 1), ('bonazzo', 1), ('albertsonrobert', 1), ('babcockdai', 1), ('blalah', 1)]...\n", - "2018-08-31 00:43:42,195 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1730000 (=100.0%) documents\n", - "2018-08-31 00:43:44,365 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:44,417 : INFO : adding document #1730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:47,774 : INFO : discarding 22878 tokens: [('avalancheapril', 1), ('brownhenrik', 1), ('bruinsapril', 1), ('burrstev', 1), ('calgarymai', 1), ('canadiensapril', 1), ('canadiensdecemb', 1), ('canadiensmai', 1), ('canucksapril', 1), ('canucksmai', 1)]...\n", - "2018-08-31 00:43:47,774 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1740000 (=100.0%) documents\n", - "2018-08-31 00:43:49,867 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:49,915 : INFO : adding document #1740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:53,027 : INFO : discarding 18745 tokens: [('oouè', 1), ('owoé', 1), ('owui', 1), ('trinití', 1), ('caudatoacuminata', 1), ('bangkulu', 1), ('kebongan', 1), ('kotudan', 1), ('labobo', 1), ('timpau', 1)]...\n", - "2018-08-31 00:43:53,027 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1750000 (=100.0%) documents\n", - "2018-08-31 00:43:55,218 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:55,267 : INFO : adding document #1750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:43:59,254 : INFO : discarding 31073 tokens: [('actionsfor', 1), ('else—for', 1), ('grupocn', 1), ('houshanpi', 1), ('jiangzicui', 1), ('taipeida', 1), ('taipeiwanhua', 1), ('taipeixinyi', 1), ('taipeizhongzheng', 1), ('zhonghsan', 1)]...\n", - "2018-08-31 00:43:59,254 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1760000 (=100.0%) documents\n", - "2018-08-31 00:44:01,362 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:01,411 : INFO : adding document #1760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:05,047 : INFO : discarding 22391 tokens: [('allerheiligenberg', 1), ('spielerid', 1), ('spielerportrait', 1), ('seriesno', 1), ('hsht', 1), ('boswtol', 1), ('إنجيل', 1), ('الديـن', 1), ('العشرون', 1), ('محمـد', 1)]...\n", - "2018-08-31 00:44:05,047 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1770000 (=100.0%) documents\n", - "2018-08-31 00:44:07,253 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:07,303 : INFO : adding document #1770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:11,028 : INFO : discarding 26981 tokens: [('conclsuion', 1), ('cpwl', 1), ('cpwt', 1), ('fietj', 1), ('meurk', 1), ('synlait', 1), ('waiainiwaniwa', 1), ('wainiwaniwa', 1), ('alpert’', 1), ('boudin’', 1)]...\n", - "2018-08-31 00:44:11,029 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1780000 (=100.0%) documents\n", - "2018-08-31 00:44:13,161 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:13,209 : INFO : adding document #1780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:17,023 : INFO : discarding 23617 tokens: [('igumnov', 1), ('xiayin', 1), ('epidemiologi', 1), ('infektionsweg', 1), ('intracellulari', 1), ('körperkonstitut', 1), ('lungenheilstätt', 1), ('meningokokken', 1), ('parasitologi', 1), ('pneumokokkenimmunität', 1)]...\n", - "2018-08-31 00:44:17,023 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1790000 (=100.0%) documents\n", - "2018-08-31 00:44:19,213 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:19,262 : INFO : adding document #1790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:23,023 : INFO : discarding 21653 tokens: [('divan”', 1), ('hafez’', 1), ('moayeri', 1), ('chahriq', 1), ('charik', 1), ('čahrīk', 1), ('aavc', 1), ('aavp', 1), ('aavr', 1), ('chumrark', 1)]...\n", - "2018-08-31 00:44:23,024 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1800000 (=100.0%) documents\n", - "2018-08-31 00:44:25,125 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:44:25,173 : INFO : adding document #1800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:29,124 : INFO : discarding 27925 tokens: [('bhajia', 1), ('celantro', 1), ('upvaa', 1), ('hildegun', 1), ('hungn', 1), ('ingjerd', 1), ('voktor', 1), ('øigarden', 1), ('nanoscientist', 1), ('adifor', 1)]...\n", - "2018-08-31 00:44:29,125 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1810000 (=100.0%) documents\n", - "2018-08-31 00:44:31,298 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:31,348 : INFO : adding document #1810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:35,098 : INFO : discarding 24224 tokens: [('pecsovszki', 1), ('peći', 1), ('sigaudi', 1), ('trémintin', 1), ('nzog', 1), ('branchiura', 1), ('allwörden', 1), ('kumminin', 1), ('bruddersford', 1), ('jolliph', 1)]...\n", - "2018-08-31 00:44:35,098 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1820000 (=100.0%) documents\n", - "2018-08-31 00:44:37,193 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:37,242 : INFO : adding document #1820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:41,070 : INFO : discarding 28616 tokens: [('“itzhak', 1), ('brecenio', 1), ('cantun', 1), ('elryn', 1), ('mastovich', 1), ('chernihov', 1), ('hermanivka', 1), ('liubar', 1), ('radzwiłł', 1), ('trylisi', 1)]...\n", - "2018-08-31 00:44:41,071 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1830000 (=100.0%) documents\n", - "2018-08-31 00:44:43,262 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:43,312 : INFO : adding document #1830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:47,221 : INFO : discarding 38513 tokens: [('genechip®', 1), ('mmjggl', 1), ('refinfo', 1), ('gwenyfyr', 1), ('xibaba', 1), ('legrez', 1), ('marpot', 1), ('nzfsa', 1), ('almiranta', 1), ('canonsl', 1)]...\n", - "2018-08-31 00:44:47,221 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1840000 (=100.0%) documents\n", - "2018-08-31 00:44:49,330 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:49,379 : INFO : adding document #1840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:53,179 : INFO : discarding 24873 tokens: [('uglješići', 1), ('tihovići', 1), ('needle”', 1), ('“numbers”', 1), ('“thread', 1), ('renter’', 1), ('aegistrust', 1), ('kigalimemorialcentr', 1), ('theholocaustcentr', 1), ('mogthrasir', 1)]...\n", - "2018-08-31 00:44:53,180 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1850000 (=100.0%) documents\n", - "2018-08-31 00:44:55,354 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:55,405 : INFO : adding document #1850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:44:59,287 : INFO : discarding 24358 tokens: [('ergb', 1), ('berkerol', 1), ('geisshardt', 1), ('fishingnet', 1), ('ukriversguidebook', 1), ('polnocn', 1), ('diaquoi', 1), ('gorrissen', 1), ('ramjiawan', 1), ('deweerd', 1)]...\n", - "2018-08-31 00:44:59,287 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1860000 (=100.0%) documents\n", - "2018-08-31 00:45:01,387 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:01,435 : INFO : adding document #1860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:05,423 : INFO : discarding 28506 tokens: [('gardenofpeacememori', 1), ('antwork', 1), ('biedrzychowic', 1), ('marpinard', 1), ('bożkowic', 1), ('rayco', 1), ('naglepet', 1), ('thomaspet', 1), ('wheregolf', 1), ('andcom', 1)]...\n", - "2018-08-31 00:45:05,425 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1870000 (=100.0%) documents\n", - "2018-08-31 00:45:07,608 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:07,659 : INFO : adding document #1870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:11,603 : INFO : discarding 26634 tokens: [('barhaan', 1), ('behoshi', 1), ('shaarang', 1), ('carncelyn', 1), ('carnelyn', 1), ('glynarthen', 1), ('electricalmodel', 1), ('löcherbach', 1), ('naturalmodel', 1), ('nossenson', 1)]...\n", - "2018-08-31 00:45:11,604 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1880000 (=100.0%) documents\n", - "2018-08-31 00:45:13,706 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:13,754 : INFO : adding document #1880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:17,600 : INFO : discarding 29965 tokens: [('baldasarr', 1), ('astrith', 1), ('baltsan', 1), ('bempéchat', 1), ('nelsova', 1), ('rachmanninov', 1), ('țapu', 1), ('nantmelin', 1), ('cosmoman', 1), ('freezeman', 1)]...\n", - "2018-08-31 00:45:17,601 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1890000 (=100.0%) documents\n", - "2018-08-31 00:45:19,800 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:19,853 : INFO : adding document #1890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:23,596 : INFO : discarding 26882 tokens: [('beairsto', 1), ('panichkul', 1), ('bentincklaan', 1), ('aluprof', 1), ('jinestra', 1), ('karsiyaka', 1), ('minchanka', 1), ('plantinalonga', 1), ('querard', 1), ('samorodok', 1)]...\n", - "2018-08-31 00:45:23,596 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1900000 (=100.0%) documents\n", - "2018-08-31 00:45:25,726 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:25,774 : INFO : adding document #1900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:29,260 : INFO : discarding 22813 tokens: [('canonad', 1), ('rimert', 1), ('laringotom', 1), ('regoretti', 1), ('ssellini', 1), ('dziwadlo', 1), ('gruzach', 1), ('kaukaz', 1), ('krwia', 1), ('parandzi', 1)]...\n", - "2018-08-31 00:45:29,261 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1910000 (=100.0%) documents\n", - "2018-08-31 00:45:31,435 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:31,485 : INFO : adding document #1910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:35,196 : INFO : discarding 34877 tokens: [('brazavil', 1), ('mavunza', 1), ('punza', 1), ('polywanh', 1), ('chilsag’', 1), ('chisag', 1), ('kaialshnath', 1), ('theatrepasta', 1), ('wanvari', 1), ('‘chilsag', 1)]...\n", - "2018-08-31 00:45:35,197 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1920000 (=100.0%) documents\n", - "2018-08-31 00:45:37,296 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:37,345 : INFO : adding document #1920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:41,092 : INFO : discarding 36764 tokens: [('naivar', 1), ('abandonment—first', 1), ('ann—though', 1), ('assignment—to', 1), ('child—h', 1), ('creostu', 1), ('cresostu', 1), ('erected—also', 1), ('felicity—for', 1), ('felicti', 1)]...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:45:41,093 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1930000 (=100.0%) documents\n", - "2018-08-31 00:45:43,286 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:43,337 : INFO : adding document #1930000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:47,114 : INFO : discarding 30737 tokens: [('thomton', 1), ('kargów', 1), ('nieciesławic', 1), ('rzędów', 1), ('sieczków', 1), ('hydroclem', 1), ('massachset', 1), ('metereau', 1), ('chotel', 1), ('gluzi', 1)]...\n", - "2018-08-31 00:45:47,115 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1940000 (=100.0%) documents\n", - "2018-08-31 00:45:49,208 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:49,257 : INFO : adding document #1940000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:52,989 : INFO : discarding 24267 tokens: [('batss', 1), ('flössin', 1), ('genres—univers', 1), ('genrifi', 1), ('monitr', 1), ('ydz', 1), ('dratchko', 1), ('dhangara', 1), ('formanjam', 1), ('hirdmaniston', 1)]...\n", - "2018-08-31 00:45:52,990 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1950000 (=100.0%) documents\n", - "2018-08-31 00:45:55,167 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:55,218 : INFO : adding document #1950000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:45:58,970 : INFO : discarding 25290 tokens: [('petomain', 1), ('aggertalklinik', 1), ('allwetterzoo', 1), ('architektenteam', 1), ('fachklinikum', 1), ('landesplanung', 1), ('metallberufsschul', 1), ('reingau', 1), ('schülerinternat', 1), ('stadtkern', 1)]...\n", - "2018-08-31 00:45:58,970 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1960000 (=100.0%) documents\n", - "2018-08-31 00:46:01,075 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:01,125 : INFO : adding document #1960000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:04,800 : INFO : discarding 24249 tokens: [('mukaa', 1), ('gondalpara', 1), ('gundala', 1), ('lehrasib', 1), ('بھلو', 1), ('تحریر', 1), ('صداقت', 1), ('گوندل', 1), ('blaguard', 1), ('apostoloski', 1)]...\n", - "2018-08-31 00:46:04,801 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1970000 (=100.0%) documents\n", - "2018-08-31 00:46:06,977 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:07,029 : INFO : adding document #1970000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:10,757 : INFO : discarding 22305 tokens: [('paraysien', 1), ('prunaysien', 1), ('pirlotchet', 1), ('pussein', 1), ('relló', 1), ('quincéen', 1), ('richarvilloi', 1), ('roinvilloi', 1), ('roinvilliérain', 1), ('saclasien', 1)]...\n", - "2018-08-31 00:46:10,758 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1980000 (=100.0%) documents\n", - "2018-08-31 00:46:12,868 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:12,917 : INFO : adding document #1980000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:16,512 : INFO : discarding 20732 tokens: [('shoester', 1), ('branzig', 1), ('krysz', 1), ('omlett', 1), ('wfyv', 1), ('wybb', 1), ('wieniawski’', 1), ('zendo—join', 1), ('hagemeij', 1), ('o′neil', 1)]...\n", - "2018-08-31 00:46:16,513 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 1990000 (=100.0%) documents\n", - "2018-08-31 00:46:18,689 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:18,740 : INFO : adding document #1990000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:22,340 : INFO : discarding 23220 tokens: [('volckhausen', 1), ('blundr', 1), ('cdcdcz', 1), ('kedakpenarik', 1), ('zseez', 1), ('bybee–howel', 1), ('signbybe', 1), ('braylin', 1), ('quartterback', 1), ('spydermann', 1)]...\n", - "2018-08-31 00:46:22,341 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2000000 (=100.0%) documents\n", - "2018-08-31 00:46:24,449 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:24,497 : INFO : adding document #2000000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:28,310 : INFO : discarding 25540 tokens: [('aachar', 1), ('aatisha', 1), ('anuj’', 1), ('bakuben', 1), ('kanchan’', 1), ('shakuben', 1), ('cocomac', 1), ('code—to', 1), ('wedeen', 1), ('doushit', 1)]...\n", - "2018-08-31 00:46:28,310 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2010000 (=100.0%) documents\n", - "2018-08-31 00:46:30,486 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:30,538 : INFO : adding document #2010000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:34,381 : INFO : discarding 25460 tokens: [('collegeknoxlawr', 1), ('hoosieroon', 1), ('normal–pittsburg', 1), ('pondelik', 1), ('mardoni', 1), ('quirri', 1), ('gârbava', 1), ('mtk’', 1), ('swallower’', 1), ('calían', 1)]...\n", - "2018-08-31 00:46:34,382 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2020000 (=100.0%) documents\n", - "2018-08-31 00:46:36,489 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:36,537 : INFO : adding document #2020000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:40,456 : INFO : discarding 23292 tokens: [('nyfw', 1), ('latiflora', 1), ('painful', 1), ('abolencia', 1), ('alaalang', 1), ('amaliang', 1), ('bakasyonista', 1), ('boksingera', 1), ('bumunot', 1), ('clarizza', 1)]...\n", - "2018-08-31 00:46:40,456 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2030000 (=100.0%) documents\n", - "2018-08-31 00:46:42,648 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:42,698 : INFO : adding document #2030000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:46,486 : INFO : discarding 22417 tokens: [('anthí', 1), ('artakian', 1), ('chantava', 1), ('dioti', 1), ('emmanouilid', 1), ('genitsaridi', 1), ('giota', 1), ('imoco', 1), ('kiosi', 1), ('lamprini', 1)]...\n", - "2018-08-31 00:46:46,486 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2040000 (=100.0%) documents\n", - "2018-08-31 00:46:48,598 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:48,647 : INFO : adding document #2040000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:52,502 : INFO : discarding 23943 tokens: [('akentyev', 1), ('alimchev', 1), ('antoshchuk', 1), ('bludnov', 1), ('bobreshov', 1), ('buchnev', 1), ('delkin', 1), ('dobrolovich', 1), ('dolzhenko', 1), ('drobyshev', 1)]...\n", - "2018-08-31 00:46:52,503 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2050000 (=100.0%) documents\n", - "2018-08-31 00:46:54,686 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:46:54,737 : INFO : adding document #2050000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:46:58,502 : INFO : discarding 28306 tokens: [('askimenokonson', 1), ('naseongo', 1), ('nassanongo', 1), ('nassiongo', 1), ('nassiungo', 1), ('engen’', 1), ('missoula’', 1), ('canadiantheatr', 1), ('carmela’', 1), ('cibpa', 1)]...\n", - "2018-08-31 00:46:58,503 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2060000 (=100.0%) documents\n", - "2018-08-31 00:47:00,600 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:00,649 : INFO : adding document #2060000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:04,558 : INFO : discarding 26218 tokens: [('faguo', 1), ('jialü', 1), ('许明龙', 1), ('黃嘉略与早期法囯汉学', 1), ('cotyttia', 1), ('cotytto', 1), ('hoshal', 1), ('mulelland', 1), ('arsv', 1), ('babáková', 1)]...\n", - "2018-08-31 00:47:04,558 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2070000 (=100.0%) documents\n", - "2018-08-31 00:47:06,738 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:06,789 : INFO : adding document #2070000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:10,610 : INFO : discarding 25999 tokens: [('eisenoff', 1), ('hokoah', 1), ('enviasag', 1), ('apouh', 1), ('bagy', 1), ('snyen', 1), ('taaren', 1), ('edicao', 1), ('espeçi', 1), ('infosecur', 1)]...\n", - "2018-08-31 00:47:10,611 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2080000 (=100.0%) documents\n", - "2018-08-31 00:47:12,718 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:12,767 : INFO : adding document #2080000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:16,625 : INFO : discarding 24373 tokens: [('dwimmercrafti', 1), ('esperebl', 1), ('hamsterspeak', 1), ('ohrer', 1), ('voxhumana', 1), ('werewaffl', 1), ('ypsiliform', 1), ('zenzizen', 1), ('aisro', 1), ('albesti', 1)]...\n", - "2018-08-31 00:47:16,626 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2090000 (=100.0%) documents\n", - "2018-08-31 00:47:18,816 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:18,867 : INFO : adding document #2090000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:22,724 : INFO : discarding 24403 tokens: [('graphtech', 1), ('midiax', 1), ('midifli', 1), ('sustainiac', 1), ('tonezon', 1), ('turboton', 1), ('zatti', 1), ('cienciasbiomedica', 1), ('espaçofísicoufu', 1), ('laboratoriosmicroimunoufu', 1)]...\n", - "2018-08-31 00:47:22,724 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2100000 (=100.0%) documents\n", - "2018-08-31 00:47:24,846 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:24,895 : INFO : adding document #2100000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:28,730 : INFO : discarding 24660 tokens: [('bengalspeakseatingonthestreet', 1), ('bengalspeakslastpictur', 1), ('bengalspeaksstarvationfatalitybengalfamin', 1), ('cookroomfaminereliefmadra', 1), ('famineinbengalgrainboatsongang', 1), ('faminereliefahmedabad', 1), ('faminesmapofindia', 1), ('fiveemaciatedchildr', 1), ('graphicfaminenativesbuyinggrain', 1), ('illustratedlondonnewsfamineinindiacov', 1)]...\n", - "2018-08-31 00:47:28,731 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2110000 (=100.0%) documents\n", - "2018-08-31 00:47:30,908 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:30,960 : INFO : adding document #2110000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:34,783 : INFO : discarding 23822 tokens: [('tinei', 1), ('cellut', 1), ('cellutions™', 1), ('immunocolumn', 1), ('lympholyt', 1), ('chiguer', 1), ('jaoid', 1), ('海城市', 1), ('海城街道', 1), ('海城镇', 1)]...\n", - "2018-08-31 00:47:34,783 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2120000 (=100.0%) documents\n", - "2018-08-31 00:47:36,910 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:36,963 : INFO : adding document #2120000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:40,807 : INFO : discarding 22889 tokens: [('duskwort', 1), ('ledroptha', 1), ('pencilla', 1), ('sees—henc', 1), ('sudyka', 1), ('thernbaakagen', 1), ('kämp', 1), ('bayonet’', 1), ('bugle’', 1), ('bremen’', 1)]...\n", - "2018-08-31 00:47:40,807 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2130000 (=100.0%) documents\n", - "2018-08-31 00:47:42,991 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:43,043 : INFO : adding document #2130000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:46,878 : INFO : discarding 25575 tokens: [('medipress', 1), ('amphiceru', 1), ('mardigni', 1), ('teissèdr', 1), ('manmei', 1), ('刘海滨', 1), ('计划调配处', 1), ('fnick', 1), ('kerbridg', 1), ('edinboronow', 1)]...\n", - "2018-08-31 00:47:46,879 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2140000 (=100.0%) documents\n", - "2018-08-31 00:47:48,995 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:49,045 : INFO : adding document #2140000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:52,716 : INFO : discarding 22678 tokens: [('ysleta–zaragoza', 1), ('scorai', 1), ('stakeholder”', 1), ('“marrakech', 1), ('antunovich', 1), ('golner', 1), ('jimmieson', 1), ('matekino', 1), ('mcrichi', 1), ('phebi', 1)]...\n", - "2018-08-31 00:47:52,717 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2150000 (=100.0%) documents\n", - "2018-08-31 00:47:54,909 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:54,961 : INFO : adding document #2150000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:47:58,629 : INFO : discarding 23455 tokens: [('rachcin', 1), ('stage–', 1), ('totalpx', 1), ('lubianki', 1), ('bisschoffsheim', 1), ('holtkott', 1), ('wildno', 1), ('grochowalsk', 1), ('kochoń', 1), ('kamejima', 1)]...\n", - "2018-08-31 00:47:58,630 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2160000 (=100.0%) documents\n", - "2018-08-31 00:48:00,735 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:00,784 : INFO : adding document #2160000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:04,453 : INFO : discarding 23921 tokens: [('geetapriya', 1), ('harathi', 1), ('hasiru', 1), ('hengasarinda', 1), ('hennaru', 1), ('hudga', 1), ('izzatdaar', 1), ('jokali', 1), ('kalisina', 1), ('kanoonu', 1)]...\n", - "2018-08-31 00:48:04,454 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2170000 (=100.0%) documents\n", - "2018-08-31 00:48:06,637 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:06,689 : INFO : adding document #2170000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:10,291 : INFO : discarding 21483 tokens: [('ondraszek', 1), ('wtrt', 1), ('analyn', 1), ('dinolan', 1), ('nebato', 1), ('salinggawi', 1), ('turqueza', 1), ('koutayeb', 1), ('lubnāniya', 1), ('mithliyīn', 1)]...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 00:48:10,292 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2180000 (=100.0%) documents\n", - "2018-08-31 00:48:12,414 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:12,462 : INFO : adding document #2180000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:16,174 : INFO : discarding 25352 tokens: [('miętki', 1), ('modryniu', 1), ('prehorył', 1), ('rulikówka', 1), ('szychowic', 1), ('korytyna', 1), ('mołodiatycz', 1), ('nieledew', 1), ('aurelin', 1), ('drohiczani', 1)]...\n", - "2018-08-31 00:48:16,174 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2190000 (=100.0%) documents\n", - "2018-08-31 00:48:18,357 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:18,409 : INFO : adding document #2190000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:21,672 : INFO : discarding 21656 tokens: [('registration—convict', 1), ('chesha', 1), ('hanumadvijaya', 1), ('kalaprapoorna', 1), ('kaluvai', 1), ('kavyathirtha', 1), ('khandam', 1), ('krishnavatara', 1), ('lalitopakhyanam', 1), ('nannaparya', 1)]...\n", - "2018-08-31 00:48:21,672 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2200000 (=100.0%) documents\n", - "2018-08-31 00:48:23,790 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:23,839 : INFO : adding document #2200000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:27,493 : INFO : discarding 20322 tokens: [('marianówek', 1), ('nafin', 1), ('khushaishah', 1), ('chinacustomtour', 1), ('chiqik', 1), ('thebeijingguid', 1), ('iscout', 1), ('microobserv', 1), ('modulevehicl', 1), ('omnisens', 1)]...\n", - "2018-08-31 00:48:27,493 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2210000 (=100.0%) documents\n", - "2018-08-31 00:48:29,668 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:29,720 : INFO : adding document #2210000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:33,220 : INFO : discarding 25017 tokens: [('kettaneh', 1), ('buffelsdrift', 1), ('derdepoort', 1), ('downbern', 1), ('kameeldrift', 1), ('kameelfontein', 1), ('paardefontein', 1), ('pumulani', 1), ('rynou', 1), ('wallmanstahl', 1)]...\n", - "2018-08-31 00:48:33,221 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2220000 (=100.0%) documents\n", - "2018-08-31 00:48:35,335 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:35,385 : INFO : adding document #2220000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:39,334 : INFO : discarding 27535 tokens: [('american—th', 1), ('buscani', 1), ('temachtia', 1), ('upground', 1), ('yaroslavksi', 1), ('attakora', 1), ('nikfar', 1), ('edwini', 1), ('eiysa', 1), ('fetsch', 1)]...\n", - "2018-08-31 00:48:39,335 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2230000 (=100.0%) documents\n", - "2018-08-31 00:48:41,536 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:41,588 : INFO : adding document #2230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:44,510 : INFO : discarding 14758 tokens: [('vanesio', 1), ('dorurtabedul', 1), ('duchelreng', 1), ('kelulul', 1), ('kerruul', 1), ('klebkellel', 1), ('klisicham', 1), ('klisichel', 1), ('klisiich', 1), ('klungiolam', 1)]...\n", - "2018-08-31 00:48:44,511 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2240000 (=100.0%) documents\n", - "2018-08-31 00:48:46,623 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:46,672 : INFO : adding document #2240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:50,214 : INFO : discarding 23681 tokens: [('rongelop', 1), ('ryua', 1), ('shojen', 1), ('simusu', 1), ('torpeod', 1), ('zuikauku', 1), ('kelekhsashvili', 1), ('mdzleve', 1), ('gestatoriam', 1), ('hossiem', 1)]...\n", - "2018-08-31 00:48:50,214 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2250000 (=100.0%) documents\n", - "2018-08-31 00:48:52,395 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:52,447 : INFO : adding document #2250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:56,492 : INFO : discarding 26563 tokens: [('marxtoymuseum', 1), ('botany', 1), ('offspring—a', 1), ('callwork', 1), ('faulduo', 1), ('neoglyph', 1), ('attainment—effect', 1), ('attainment—profession', 1), ('brazil—had', 1), ('facilitated—therefor', 1)]...\n", - "2018-08-31 00:48:56,493 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2260000 (=100.0%) documents\n", - "2018-08-31 00:48:58,602 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:48:58,653 : INFO : adding document #2260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:02,770 : INFO : discarding 33506 tokens: [('posintuwu', 1), ('wirtschaftsanthropologi', 1), ('deadtran', 1), ('burdundi', 1), ('andther', 1), ('belastningsregistret', 1), ('bundeszentralregist', 1), ('coaep', 1), ('dcrem', 1), ('dgaj', 1)]...\n", - "2018-08-31 00:49:02,771 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2270000 (=100.0%) documents\n", - "2018-08-31 00:49:04,970 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:05,025 : INFO : adding document #2270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:08,705 : INFO : discarding 27795 tokens: [('wzcv', 1), ('xcmv', 1), ('yatv', 1), ('ˌmɒnəˌnɛgəviː’rɑ', 1), ('μóνος', 1), ('asuntojen', 1), ('comofi', 1), ('eräiden', 1), ('harjoittavien', 1), ('kiinteistörahastolaki', 1)]...\n", - "2018-08-31 00:49:08,705 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2280000 (=100.0%) documents\n", - "2018-08-31 00:49:10,821 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:10,872 : INFO : adding document #2280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:14,778 : INFO : discarding 27899 tokens: [('sunjia', 1), ('sūnjiā', 1), ('wǔqiáo', 1), ('xiongjia', 1), ('xióngjiā', 1), ('xiǎozhōu', 1), ('zhonggul', 1), ('zhoujiaba', 1), ('zhùshān', 1), ('zhōnggǔlóu', 1)]...\n", - "2018-08-31 00:49:14,779 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2290000 (=100.0%) documents\n", - "2018-08-31 00:49:16,957 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:17,010 : INFO : adding document #2290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:20,756 : INFO : discarding 25680 tokens: [('colyma', 1), ('conflictana', 1), ('evanidana', 1), ('ferrugininotata', 1), ('fractivittana', 1), ('griseicoma', 1), ('heliaspi', 1), ('improvisana', 1), ('jecorana', 1), ('lafauryana', 1)]...\n", - "2018-08-31 00:49:20,757 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2300000 (=100.0%) documents\n", - "2018-08-31 00:49:22,874 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" - ] - }, + } + ], + "source": [ + "dictionary = Dictionary.load('wiki.dict')\n", + "dictionary.filter_extremes()\n", + "dictionary.compactify()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "\n", + "class RandomCorpus(MmCorpus):\n", + " def __init__(self, *args, random_state, **kwargs):\n", + " super().__init__(*args, **kwargs)\n", + " self.random_state = random_state\n", + " random.seed(self.random_state)\n", + " \n", + " self.shuffled_indices = list(range(self.num_docs))\n", + " random.shuffle(self.shuffled_indices)\n", + "\n", + " def __iter__(self):\n", + " for doc_id in self.shuffled_indices:\n", + " yield self[doc_id]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# corpus = (\n", + "# dictionary.doc2bow(article)\n", + "# for article\n", + "# in get_preprocessed_articles('wiki_articles.jsonlines')\n", + "# )\n", + "\n", + "# RandomCorpus.serialize('wiki.mm', corpus)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:49:22,923 : INFO : adding document #2300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:26,112 : INFO : discarding 18320 tokens: [('合欢皮', 1), ('大血藤', 1), ('天竺黄', 1), ('宽根藤', 1), ('山葡萄', 1), ('山麻黄', 1), ('川木通', 1), ('川贝母', 1), ('常春藤', 1), ('平贝母', 1)]...\n", - "2018-08-31 00:49:26,113 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2310000 (=100.0%) documents\n", - "2018-08-31 00:49:28,295 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:28,347 : INFO : adding document #2310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:31,867 : INFO : discarding 23407 tokens: [('jhanghuà', 1), ('jhúběi', 1), ('kung¹', 1), ('lan²', 1), ('lien²', 1), ('lin²', 1), ('liu⁴', 1), ('li⁴', 1), ('ma³', 1), ('miao²', 1)]...\n", - "2018-08-31 00:49:31,868 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2320000 (=100.0%) documents\n", - "2018-08-31 00:49:33,994 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:34,044 : INFO : adding document #2320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:37,878 : INFO : discarding 23425 tokens: [('bouyerden', 1), ('l′indiffér', 1), ('l′intellig', 1), ('rhineburg', 1), ('sikkak', 1), ('tijini', 1), ('zouatna', 1), ('trekpuls', 1), ('lesion—includ', 1), ('minimum—du', 1)]...\n", - "2018-08-31 00:49:37,878 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2330000 (=100.0%) documents\n", - "2018-08-31 00:49:40,063 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:40,115 : INFO : adding document #2330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:43,860 : INFO : discarding 27145 tokens: [('saphah', 1), ('whaga', 1), ('turumoan', 1), ('光復鄉', 1), ('卓溪鄉', 1), ('壽豐鄉', 1), ('富里鄉', 1), ('玉里鎮', 1), ('瑞穗鄉', 1), ('秀林鄉', 1)]...\n", - "2018-08-31 00:49:43,861 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2340000 (=100.0%) documents\n", - "2018-08-31 00:49:45,977 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:46,028 : INFO : adding document #2340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:49,767 : INFO : discarding 23579 tokens: [('victorville†', 1), ('waseca††', 1), ('goewai', 1), ('sentences—wer', 1), ('singchair', 1), ('watertorturesings', 1), ('albimaculosu', 1), ('daibod', 1), ('अण्ड', 1), ('ब्रह्माण्ड', 1)]...\n", - "2018-08-31 00:49:49,768 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2350000 (=100.0%) documents\n", - "2018-08-31 00:49:51,960 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:52,014 : INFO : adding document #2350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:55,867 : INFO : discarding 26231 tokens: [('капитализъм', 1), ('карчев', 1), ('комуналният', 1), ('кръстева', 1), ('лазарова', 1), ('нацева', 1), ('полустолетие', 1), ('посетен', 1), ('прозореца', 1), ('розалина', 1)]...\n", - "2018-08-31 00:49:55,868 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2360000 (=100.0%) documents\n", - "2018-08-31 00:49:58,005 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:49:58,056 : INFO : adding document #2360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:01,815 : INFO : discarding 25513 tokens: [('gyulzadyan', 1), ('habousi', 1), ('kotoyan', 1), ('qamancha', 1), ('shahmuradian', 1), ('spitakci', 1), ('stver', 1), ('tgheq', 1), ('tonikyan', 1), ('vanarmenya', 1)]...\n", - "2018-08-31 00:50:01,816 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2370000 (=100.0%) documents\n", - "2018-08-31 00:50:04,011 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:04,063 : INFO : adding document #2370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:07,822 : INFO : discarding 28948 tokens: [('remain—unknown', 1), ('counterpoetri', 1), ('benneil', 1), ('thekitchen', 1), ('autothanatograph', 1), ('kinerot', 1), ('rauffenbart', 1), ('wojnarowicz—janin', 1), ('clarena', 1), ('aspect—their', 1)]...\n", - "2018-08-31 00:50:07,823 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2380000 (=100.0%) documents\n", - "2018-08-31 00:50:09,951 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:10,001 : INFO : adding document #2380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:13,918 : INFO : discarding 25436 tokens: [('ඊලවර්', 1), ('ඊළාම්', 1), ('ඔක්කොම', 1), ('කච්චි', 1), ('කඳුරට', 1), ('කම්කරැ', 1), ('කම්කරු', 1), ('කුට්ටනි', 1), ('කොංග්\\u200dරසය', 1), ('කොංග්\\u200dරස්', 1)]...\n", - "2018-08-31 00:50:13,919 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2390000 (=100.0%) documents\n", - "2018-08-31 00:50:16,112 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:16,165 : INFO : adding document #2390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:19,542 : INFO : discarding 19016 tokens: [('episodesstar', 1), ('gabebarri', 1), ('jeromeralph', 1), ('mannata', 1), ('matuwir', 1), ('pennphil', 1), ('price—even', 1), ('smithken', 1), ('thrallkil', 1), ('trypanosoman', 1)]...\n", - "2018-08-31 00:50:19,542 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2400000 (=100.0%) documents\n", - "2018-08-31 00:50:21,663 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:21,713 : INFO : adding document #2400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:25,454 : INFO : discarding 23312 tokens: [('hidrobiologia', 1), ('hitzilopochco', 1), ('huehua', 1), ('huitzilopohco', 1), ('huixachtécatl', 1), ('iztapalapa”', 1), ('meyehualco', 1), ('nahuyotl', 1), ('nauhyotl', 1), ('nonoalcatl', 1)]...\n", - "2018-08-31 00:50:25,455 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2410000 (=100.0%) documents\n", - "2018-08-31 00:50:27,633 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:27,686 : INFO : adding document #2410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:31,336 : INFO : discarding 23981 tokens: [('dieksanderkoog', 1), ('fedderwardergroden', 1), ('herrenkoog', 1), ('innengroden', 1), ('kleiseerkoog', 1), ('koogshaven', 1), ('kōg', 1), ('morsumkoog', 1), ('neuengroden', 1), ('neuerkoog', 1)]...\n", - "2018-08-31 00:50:31,336 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2420000 (=100.0%) documents\n", - "2018-08-31 00:50:33,454 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:33,505 : INFO : adding document #2420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:37,406 : INFO : discarding 28769 tokens: [('lazutkina', 1), ('oskorbin', 1), ('osmolkina', 1), ('pykhachov', 1), ('shirinkina', 1), ('yalinich', 1), ('zaleyev', 1), ('ajakan', 1), ('contemptari', 1), ('trancedream', 1)]...\n" + "2018-09-26 17:31:16,992 : DEBUG : {'uri': 'wiki.mm.index', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:17,529 : INFO : loaded corpus index from wiki.mm.index\n", + "2018-09-26 17:31:17,530 : INFO : initializing cython corpus reader from wiki.mm\n", + "2018-09-26 17:31:17,531 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:17,532 : INFO : accepted corpus with 4924894 documents, 100000 features, 683375728 non-zero entries\n" ] - }, + } + ], + "source": [ + "corpus = RandomCorpus('wiki.mm', random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "PASSES = 2\n", + "\n", + "training_params = dict(\n", + " chunksize=2000,\n", + " num_topics=100,\n", + " id2word=dictionary\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:50:37,407 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2430000 (=100.0%) documents\n", - "2018-08-31 00:50:39,593 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:39,646 : INFO : adding document #2430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:43,436 : INFO : discarding 26802 tokens: [('bayesloop', 1), ('cgarch', 1), ('cowpertwait', 1), ('figarch', 1), ('mann–kendal', 1), ('timeviz', 1), ('北条時頼', 1), ('yāˈqub', 1), ('إِبرَٰهِم', 1), ('إِبْنُ', 1)]...\n", - "2018-08-31 00:50:43,437 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2440000 (=100.0%) documents\n", - "2018-08-31 00:50:45,568 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:45,618 : INFO : adding document #2440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:49,162 : INFO : discarding 22903 tokens: [('falkheim', 1), ('feedback–feedforward', 1), ('individuals—draw', 1), ('product–a', 1), ('society—part', 1), ('janinepommyvega', 1), ('bottermelk', 1), ('funalogu', 1), ('joppiemuffl', 1), ('plasticacid', 1)]...\n", - "2018-08-31 00:50:49,163 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2450000 (=100.0%) documents\n", - "2018-08-31 00:50:51,345 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:51,397 : INFO : adding document #2450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:54,818 : INFO : discarding 26477 tokens: [('ayusuk', 1), ('buasi', 1), ('siripongvutikorn', 1), ('sunanta', 1), ('thummaratwasik', 1), ('usawakesmane', 1), ('ຕົ້ມຂ່າໄກ່', 1), ('xvi—a', 1), ('baronston', 1), ('boswell—a', 1)]...\n", - "2018-08-31 00:50:54,819 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2460000 (=100.0%) documents\n", - "2018-08-31 00:50:56,948 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:50:56,998 : INFO : adding document #2460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:00,466 : INFO : discarding 20272 tokens: [('·beverli', 1), ('·dalla', 1), ('·houston', 1), ('chistovodnoy', 1), ('horoshevski', 1), ('etsip', 1), ('kangulohi', 1), ('nyango', 1), ('ontananga', 1), ('onyuulay', 1)]...\n", - "2018-08-31 00:51:00,466 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2470000 (=100.0%) documents\n", - "2018-08-31 00:51:02,651 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:02,705 : INFO : adding document #2470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:05,641 : INFO : discarding 15776 tokens: [('karschau', 1), ('kremitten', 1), ('krzemiti', 1), ('łankiejmi', 1), ('landkeim', 1), ('łękajni', 1), ('marłuti', 1), ('nunkajmi', 1), ('waldried', 1), ('sandenberg', 1)]...\n", - "2018-08-31 00:51:05,641 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2480000 (=100.0%) documents\n", - "2018-08-31 00:51:07,770 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:07,819 : INFO : adding document #2480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:11,370 : INFO : discarding 23033 tokens: [('qrsag', 1), ('ruscinian', 1), ('aesp', 1), ('articfici', 1), ('bymart', 1), ('bymedia', 1), ('byoir’', 1), ('nowldef', 1), ('nowldef’', 1), ('speechlin', 1)]...\n", - "2018-08-31 00:51:11,371 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2490000 (=100.0%) documents\n", - "2018-08-31 00:51:13,566 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:13,618 : INFO : adding document #2490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:17,287 : INFO : discarding 28014 tokens: [('bullshitin', 1), ('calmdown', 1), ('fakeboyz', 1), ('fakegirlz', 1), ('akuana', 1), ('clusterwink', 1), ('cummingian', 1), ('imperforata', 1), ('gosserand', 1), ('argalista', 1)]...\n", - "2018-08-31 00:51:17,288 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2500000 (=100.0%) documents\n", - "2018-08-31 00:51:19,439 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:19,490 : INFO : adding document #2500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:23,117 : INFO : discarding 35707 tokens: [('простый', 1), ('“belorussian', 1), ('“plurilingu', 1), ('cyberspark', 1), ('intellinx', 1), ('ma’of', 1), ('multinationals’', 1), ('telecommunicationsand', 1), ('tzatam', 1), ('usa–israel', 1)]...\n", - "2018-08-31 00:51:23,117 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2510000 (=100.0%) documents\n", - "2018-08-31 00:51:25,318 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:25,372 : INFO : adding document #2510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:29,255 : INFO : discarding 28285 tokens: [('cristom', 1), ('maddow’', 1), ('marmount', 1), ('strengthsfind', 1), ('abadam', 1), ('damboa', 1), ('gubio', 1), ('guzamala', 1), ('magumeri', 1), ('maidgurui', 1)]...\n", - "2018-08-31 00:51:29,256 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2520000 (=100.0%) documents\n", - "2018-08-31 00:51:31,384 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:31,434 : INFO : adding document #2520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:35,130 : INFO : discarding 27091 tokens: [('duhautlondel', 1), ('dulondel', 1), ('huau', 1), ('laynai', 1), ('pekünlü', 1), ('force\\u200e', 1), ('macmurrari', 1), ('bydgoszczpolonia', 1), ('lesznoalfr', 1), ('manchestern', 1)]...\n", - "2018-08-31 00:51:35,130 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2530000 (=100.0%) documents\n", - "2018-08-31 00:51:37,309 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:37,362 : INFO : adding document #2530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:41,123 : INFO : discarding 26359 tokens: [('‘yep', 1), ('jordanxl', 1), ('austrolimborina', 1), ('badioatra', 1), ('furvella', 1), ('fuscosora', 1), ('globulispora', 1), ('gyrizan', 1), ('gyromuscosa', 1), ('limborina', 1)]...\n", - "2018-08-31 00:51:41,124 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2540000 (=100.0%) documents\n", - "2018-08-31 00:51:43,247 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:43,297 : INFO : adding document #2540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:47,141 : INFO : discarding 26533 tokens: [('fortfreedom', 1), ('zilkowski', 1), ('arch—a', 1), ('czepiel', 1), ('jock”', 1), ('‘jocks’', 1), ('glamorgan’', 1), ('guardiancardiff', 1), ('autei', 1), ('famousvillain', 1)]...\n", - "2018-08-31 00:51:47,142 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2550000 (=100.0%) documents\n", - "2018-08-31 00:51:49,355 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:23,234 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "2018-08-31 00:51:49,408 : INFO : adding document #2550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:53,215 : INFO : discarding 24108 tokens: [('bonisson', 1), ('cibb', 1), ('piuri', 1), ('tzanak', 1), ('ogorek', 1), ('estirao', 1), ('dammitt', 1), ('dalimil´', 1), ('candlelightrecord', 1), ('entrancemperium', 1)]...\n", - "2018-08-31 00:51:53,216 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2560000 (=100.0%) documents\n", - "2018-08-31 00:51:55,345 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:55,399 : INFO : adding document #2560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:51:59,183 : INFO : discarding 23226 tokens: [('macilwraith', 1), ('maclink', 1), ('loueckhot', 1), ('wthout', 1), ('managlor', 1), ('pointwith', 1), ('bobmark', 1), ('mtdx', 1), ('fun…it’', 1), ('madblud', 1)]...\n", - "2018-08-31 00:51:59,183 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2570000 (=100.0%) documents\n", - "2018-08-31 00:52:01,385 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:01,437 : INFO : adding document #2570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:05,327 : INFO : discarding 23817 tokens: [('chyu', 1), ('duī', 1), ('guāngnián', 1), ('gōngchǐ', 1), ('gōngfēn', 1), ('hǎilǐ', 1), ('jiālùn', 1), ('kǔn', 1), ('miǎochājù', 1), ('pāo', 1)]...\n", - "2018-08-31 00:52:05,328 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2580000 (=100.0%) documents\n", - "2018-08-31 00:52:07,453 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:07,503 : INFO : adding document #2580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:11,222 : INFO : discarding 24167 tokens: [('anbuthiru', 1), ('kalvirayanpettai', 1), ('kandithampattu', 1), ('kangeyampatti', 1), ('bizup', 1), ('thiruvar', 1), ('kollangarai', 1), ('abdualla', 1), ('awwp', 1), ('sa’ud', 1)]...\n", - "2018-08-31 00:52:11,223 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2590000 (=100.0%) documents\n", - "2018-08-31 00:52:13,423 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:13,477 : INFO : adding document #2590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:17,466 : INFO : discarding 31789 tokens: [('galleghan', 1), ('gemas–tampin', 1), ('nohon', 1), ('proportion—an', 1), ('tajikam', 1), ('zohiri', 1), ('reemu', 1), ('plichta', 1), ('resdesron', 1), ('barganza', 1)]...\n", - "2018-08-31 00:52:17,467 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2600000 (=100.0%) documents\n", - "2018-08-31 00:52:19,614 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:19,664 : INFO : adding document #2600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:23,592 : INFO : discarding 28102 tokens: [('alchemytodai', 1), ('candidd', 1), ('“tehran', 1), ('makofo', 1), ('raybould’', 1), ('russ’', 1), ('all—retain', 1), ('bill—without', 1), ('insurance—even', 1), ('kennedy–griffith', 1)]...\n", - "2018-08-31 00:52:23,592 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2610000 (=100.0%) documents\n", - "2018-08-31 00:52:25,792 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:25,845 : INFO : adding document #2610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:29,371 : INFO : discarding 22928 tokens: [('mattinal', 1), ('adzé', 1), ('ngoubili', 1), ('ongouori', 1), ('unihopp', 1), ('dadless', 1), ('arenediazonium', 1), ('ferrocenepalladium', 1), ('electrouniqu', 1), ('ozeana', 1)]...\n", - "2018-08-31 00:52:29,372 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2620000 (=100.0%) documents\n", - "2018-08-31 00:52:31,493 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:31,543 : INFO : adding document #2620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:35,303 : INFO : discarding 42342 tokens: [('glavspetsmash', 1), ('glavspetsmontazh', 1), ('lengiprostroi', 1), ('eflyer', 1), ('historicssit', 1), ('azmurai', 1), ('hahsen', 1), ('durów', 1), ('lakiński', 1), ('prostyni', 1)]...\n", - "2018-08-31 00:52:35,303 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2630000 (=100.0%) documents\n", - "2018-08-31 00:52:37,502 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:37,557 : INFO : adding document #2630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:41,346 : INFO : discarding 27529 tokens: [('atrichantha', 1), ('bryomorph', 1), ('dolichothrix', 1), ('plumelik', 1), ('calotesta', 1), ('denekia', 1), ('disparago', 1), ('laxifolia', 1), ('trampwe', 1), ('galeomma', 1)]...\n", - "2018-08-31 00:52:41,347 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2640000 (=100.0%) documents\n", - "2018-08-31 00:52:43,495 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:43,546 : INFO : adding document #2640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:47,442 : INFO : discarding 28981 tokens: [('biswaroop', 1), ('reliablepl', 1), ('smallbiz', 1), ('smartceo', 1), ('thetax', 1), ('wjactv', 1), ('tucaro', 1), ('otherword', 1), ('register‘', 1), ('diffeormorph', 1)]...\n", - "2018-08-31 00:52:47,443 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2650000 (=100.0%) documents\n", - "2018-08-31 00:52:49,641 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:49,695 : INFO : adding document #2650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:53,355 : INFO : discarding 33425 tokens: [('venture—h', 1), ('wildgrass', 1), ('‘absurdli', 1), ('duopark.f', 1), ('igosso', 1), ('nakashinden', 1), ('ragend', 1), ('verdelazzo', 1), ('colonies—loos', 1), ('jhtwachtmanbranchvil', 1)]...\n", - "2018-08-31 00:52:53,356 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2660000 (=100.0%) documents\n", - "2018-08-31 00:52:55,480 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:55,531 : INFO : adding document #2660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:52:59,263 : INFO : discarding 28380 tokens: [('cibotii', 1), ('epimedii', 1), ('spatholobi', 1), ('spur”', 1), ('“hyperplast', 1), ('淫羊藿', 1), ('莱菔子', 1), ('骨碎补', 1), ('鸡血藤', 1), ('schnock', 1)]...\n", - "2018-08-31 00:52:59,264 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2670000 (=100.0%) documents\n", - "2018-08-31 00:53:01,465 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:01,519 : INFO : adding document #2670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:04,972 : INFO : discarding 26493 tokens: [('aceratheriini', 1), ('aceratherini', 1), ('acerorhinu', 1), ('zernowi', 1), ('bot’', 1), ('bridgeig', 1), ('deleec', 1), ('duffbot', 1), ('fatania', 1), ('grusman', 1)]...\n" + "The line_profiler extension is already loaded. To reload it, use:\n", + " %reload_ext line_profiler\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:53:04,972 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2680000 (=100.0%) documents\n", - "2018-08-31 00:53:07,107 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:07,159 : INFO : adding document #2680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:11,209 : INFO : discarding 28087 tokens: [('geil’', 1), ('akweathercam', 1), ('acquaverd', 1), ('doria—wher', 1), ('fassolo', 1), ('genoa–milan', 1), ('genoa–rom', 1), ('genoa–turin', 1), ('mazzucchetti', 1), ('montegalletto', 1)]...\n", - "2018-08-31 00:53:11,210 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2690000 (=100.0%) documents\n", - "2018-08-31 00:53:13,396 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:13,449 : INFO : adding document #2690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:17,361 : INFO : discarding 27940 tokens: [('hydrostratigraphi', 1), ('mchess', 1), ('knipex', 1), ('musäum', 1), ('ukranenland', 1), ('flankmen', 1), ('ruthermor', 1), ('marcourai', 1), ('skytrooop', 1), ('adenizia', 1)]...\n", - "2018-08-31 00:53:17,362 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2700000 (=100.0%) documents\n", - "2018-08-31 00:53:19,503 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:19,554 : INFO : adding document #2700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:23,424 : INFO : discarding 28020 tokens: [('graphentheori', 1), ('übungsaufgaben', 1), ('gaidano', 1), ('somerston', 1), ('butalehja', 1), ('butalja', 1), ('cerinah', 1), ('hyuha', 1), ('nebanda', 1), ('beingth', 1)]...\n", - "2018-08-31 00:53:23,425 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2710000 (=100.0%) documents\n", - "2018-08-31 00:53:25,620 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:25,673 : INFO : adding document #2710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:29,496 : INFO : discarding 32311 tokens: [('peson', 1), ('phansaa', 1), ('baklok', 1), ('lieutent', 1), ('maluan', 1), ('sirkind', 1), ('ahdiat', 1), ('benjang', 1), ('burgerkill’', 1), ('jakartabeat', 1)]...\n", - "2018-08-31 00:53:29,496 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2720000 (=100.0%) documents\n", - "2018-08-31 00:53:31,640 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:31,691 : INFO : adding document #2720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:35,568 : INFO : discarding 29914 tokens: [('mengcun', 1), ('niujinzhuang', 1), ('songzhuangzi', 1), ('xinxian', 1), ('مْعڞٌ', 1), ('孟村镇', 1), ('宋庄子乡', 1), ('新县镇', 1), ('牛进庄乡', 1), ('辛店镇', 1)]...\n", - "2018-08-31 00:53:35,568 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2730000 (=100.0%) documents\n", - "2018-08-31 00:53:37,790 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:37,843 : INFO : adding document #2730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:41,595 : INFO : discarding 26940 tokens: [('lapeir', 1), ('banagalia', 1), ('phantomsit', 1), ('rhatib', 1), ('vandermaark', 1), ('walkers’', 1), ('walker–', 1), ('darriel', 1), ('mandow', 1), ('‘oasis’', 1)]...\n", - "2018-08-31 00:53:41,596 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2740000 (=100.0%) documents\n", - "2018-08-31 00:53:43,741 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:43,794 : INFO : adding document #2740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:47,673 : INFO : discarding 30838 tokens: [('pentylresorcinol', 1), ('synthase’', 1), ('taura’', 1), ('tetraketid', 1), ('greenshard', 1), ('issueof', 1), ('gallequillbox', 1), ('mataraquillbox', 1), ('nicholaswel', 1), ('robsi', 1)]...\n", - "2018-08-31 00:53:47,675 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2750000 (=100.0%) documents\n", - "2018-08-31 00:53:49,866 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:49,920 : INFO : adding document #2750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:53,700 : INFO : discarding 24534 tokens: [('byrda', 1), ('siemiatkowski', 1), ('annalakshmi', 1), ('mahaasamaadhi', 1), ('shivanjali', 1), ('cananew', 1), ('cricon', 1), ('dishworldiptv', 1), ('espnstar', 1), ('hdzee', 1)]...\n", - "2018-08-31 00:53:53,700 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2760000 (=100.0%) documents\n", - "2018-08-31 00:53:55,842 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:55,893 : INFO : adding document #2760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:53:59,893 : INFO : discarding 24471 tokens: [('mcml', 1), ('muntaqim’', 1), ('muntaquim', 1), ('“anthoni', 1), ('“nuh”', 1), ('mucculloh', 1), ('indenvertim', 1), ('—booklist', 1), ('—fredric', 1), ('—rich', 1)]...\n", - "2018-08-31 00:53:59,893 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2770000 (=100.0%) documents\n", - "2018-08-31 00:54:02,100 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:02,153 : INFO : adding document #2770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:05,871 : INFO : discarding 24147 tokens: [('hospício', 1), ('podshivalov', 1), ('tekstilschik', 1), ('zlydnev', 1), ('alexis’', 1), ('incorporated”', 1), ('brandindex', 1), ('burgerbusi', 1), ('entrequinta', 1), ('ansong–pyongtaek', 1)]...\n", - "2018-08-31 00:54:05,871 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2780000 (=100.0%) documents\n", - "2018-08-31 00:54:08,011 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:08,062 : INFO : adding document #2780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:11,803 : INFO : discarding 24603 tokens: [('azizovich', 1), ('compdetail', 1), ('fffbdadbfc', 1), ('spaticchia', 1), ('tgrmotorsport', 1), ('dommergaard', 1), ('kunstakademiet', 1), ('kunstnersamfundet', 1), ('cowardly”', 1), ('cremationthough', 1)]...\n", - "2018-08-31 00:54:11,803 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2790000 (=100.0%) documents\n", - "2018-08-31 00:54:14,010 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:14,063 : INFO : adding document #2790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:18,004 : INFO : discarding 27031 tokens: [('partner—onli', 1), ('mozgó', 1), ('máglya', 1), ('olchvari', 1), ('oroszlánkóru', 1), ('pusztítá', 1), ('carl²', 1), ('eband', 1), ('egyxo', 1), ('kaeloo', 1)]...\n", - "2018-08-31 00:54:18,005 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2800000 (=100.0%) documents\n", - "2018-08-31 00:54:20,155 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:24,026 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,029 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,030 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,032 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,033 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,034 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,036 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,235 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,236 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,237 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,238 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,239 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,240 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,241 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,241 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,242 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,243 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,244 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,244 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,245 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,246 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,246 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,247 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,248 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,248 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,249 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,250 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,250 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,251 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,252 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,252 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,253 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,254 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,254 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,255 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,256 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,257 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,257 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,258 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,449 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,450 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,456 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,457 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,458 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,459 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,460 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,461 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,461 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,462 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,463 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,464 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,465 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,465 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,466 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,467 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,467 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,468 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,469 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,469 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,470 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,471 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,472 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,472 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,473 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,474 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,474 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,475 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,476 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,476 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,477 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,478 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,479 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,480 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,480 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,481 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,482 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,482 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,483 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,484 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,485 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,485 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,486 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,487 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,487 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,488 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,489 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,489 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,490 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,491 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,491 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,492 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,493 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,493 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,494 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,495 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,496 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,497 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,499 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,500 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,501 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,501 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,502 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,503 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:54:20,207 : INFO : adding document #2800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:24,168 : INFO : discarding 26926 tokens: [('ludhaina', 1), ('freeplaneport', 1), ('butzii', 1), ('island′', 1), ('wreck′', 1), ('rdasc', 1), ('wmfe', 1), ('eclaro', 1), ('eclaro’', 1), ('mbeic', 1)]...\n", - "2018-08-31 00:54:24,168 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2810000 (=100.0%) documents\n", - "2018-08-31 00:54:26,364 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:26,417 : INFO : adding document #2810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:30,174 : INFO : discarding 30399 tokens: [('kumbárová', 1), ('lazarchuk', 1), ('liachovičiūtė', 1), ('mossiakova', 1), ('raclavská', 1), ('sydorska', 1), ('uzhylovska', 1), ('volodymyrivna', 1), ('wolfbrandt', 1), ('бондаренко', 1)]...\n", - "2018-08-31 00:54:30,176 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2820000 (=100.0%) documents\n", - "2018-08-31 00:54:32,435 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:32,487 : INFO : adding document #2820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:36,377 : INFO : discarding 27492 tokens: [('coutareagenin', 1), ('hintonia', 1), ('latiflora', 1), ('circumpeduncular', 1), ('middle–upp', 1), ('olisiponensi', 1), ('trancão', 1), ('radjabu', 1), ('upd–zigamibanga', 1), ('oxyrhynchum', 1)]...\n", - "2018-08-31 00:54:36,378 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2830000 (=100.0%) documents\n", - "2018-08-31 00:54:38,578 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:38,633 : INFO : adding document #2830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:42,439 : INFO : discarding 27971 tokens: [('dwyre’', 1), ('aalderen', 1), ('ascj', 1), ('biryanta', 1), ('breewel', 1), ('daleweij', 1), ('gijtenbeek', 1), ('kunstrijden', 1), ('oogjen', 1), ('geumdangsamokbuljwasang', 1)]...\n", - "2018-08-31 00:54:42,440 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2840000 (=100.0%) documents\n", - "2018-08-31 00:54:44,577 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:44,629 : INFO : adding document #2840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:48,636 : INFO : discarding 33821 tokens: [('douglasrichard', 1), ('dudmanroi', 1), ('duejan', 1), ('duguidrod', 1), ('duguidron', 1), ('edinoskar', 1), ('egglerdomin', 1), ('egglerfrédér', 1), ('elmalehjean', 1), ('erikssonchristoff', 1)]...\n", - "2018-08-31 00:54:48,637 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2850000 (=100.0%) documents\n", - "2018-08-31 00:54:50,839 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:50,893 : INFO : adding document #2850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:54,782 : INFO : discarding 27951 tokens: [('arkitektskol', 1), ('arkitekttidningen', 1), ('arkitekturen', 1), ('bearbejdn', 1), ('brudlini', 1), ('byggeri', 1), ('bygningsstatisk', 1), ('bærend', 1), ('dokumentar', 1), ('grandearch', 1)]...\n", - "2018-08-31 00:54:54,782 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2860000 (=100.0%) documents\n", - "2018-08-31 00:54:56,924 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:54:56,976 : INFO : adding document #2860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:00,824 : INFO : discarding 27243 tokens: [('hudderspool', 1), ('lusinghieri', 1), ('phénicienn', 1), ('counterp', 1), ('véneto', 1), ('dorkamania', 1), ('hallèn', 1), ('gatetarn', 1), ('marinelarena', 1), ('mapsi', 1)]...\n", - "2018-08-31 00:55:00,824 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2870000 (=100.0%) documents\n", - "2018-08-31 00:55:03,027 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:03,084 : INFO : adding document #2870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:06,842 : INFO : discarding 24609 tokens: [('baldiva', 1), ('cingovskii', 1), ('daghestana', 1), ('droshica', 1), ('mniszechii', 1), ('panjshira', 1), ('porphyritica', 1), ('schakuhensi', 1), ('thelephassa', 1), ('turkestana', 1)]...\n", - "2018-08-31 00:55:06,843 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2880000 (=100.0%) documents\n", - "2018-08-31 00:55:08,987 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:09,039 : INFO : adding document #2880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:12,787 : INFO : discarding 24586 tokens: [('takamuro', 1), ('elliasson', 1), ('gesundheitshotel', 1), ('åsenfjorden', 1), ('சன்', 1), ('சுன்', 1), ('செங்', 1), ('hibamus', 1), ('khâli', 1), ('lbal', 1)]...\n", - "2018-08-31 00:55:12,788 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2890000 (=100.0%) documents\n", - "2018-08-31 00:55:15,001 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:15,055 : INFO : adding document #2890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:18,859 : INFO : discarding 28816 tokens: [('dietzekatrin', 1), ('dzieniszewskaewelina', 1), ('ganinivan', 1), ('harazhaaleksandr', 1), ('heathjon', 1), ('janicsninetta', 1), ('jouvemaxim', 1), ('kharitonovalexand', 1), ('khudzenkamaryna', 1), ('kirajsebastian', 1)]...\n", - "2018-08-31 00:55:18,859 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2900000 (=100.0%) documents\n", - "2018-08-31 00:55:21,007 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:21,061 : INFO : adding document #2900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:24,539 : INFO : discarding 21470 tokens: [('yabiku', 1), ('staerk', 1), ('jeongcheol', 1), ('klosterfeld', 1), ('ombiji', 1), ('distinguishedalumni', 1), ('getinvolv', 1), ('herkamp', 1), ('musicaltheatersing', 1), ('qvpkzac', 1)]...\n", - "2018-08-31 00:55:24,540 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2910000 (=100.0%) documents\n", - "2018-08-31 00:55:26,752 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:26,805 : INFO : adding document #2910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:30,730 : INFO : discarding 26016 tokens: [('vinnaaraa', 1), ('romagnasport', 1), ('บ้านดอนชัย', 1), ('บ้านผนัง', 1), ('บ้านยางคราม', 1), ('บ้านหนองม่วง', 1), ('บ้านห้วยน้ำขาว', 1), ('บ้านห้วยรากไม้', 1), ('บ้านห้วยรากไม้บน', 1), ('บ้านใหม่ดอนชัย', 1)]...\n", - "2018-08-31 00:55:30,731 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2920000 (=100.0%) documents\n", - "2018-08-31 00:55:32,888 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:32,940 : INFO : adding document #2920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:24,505 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,505 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,506 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,507 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,508 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,509 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,510 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,510 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,511 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,512 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,513 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,514 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,515 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,515 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,516 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,517 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,517 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,518 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,519 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,520 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,520 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,521 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,522 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,523 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,524 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,524 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,525 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,526 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,526 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,527 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,528 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,529 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,529 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,530 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,531 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,532 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,532 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,533 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,534 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,535 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,536 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,536 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,537 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,538 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,538 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,539 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,540 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,541 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,541 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,542 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,543 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,544 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,545 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,545 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,546 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,547 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,547 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,548 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,549 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,550 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,551 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,551 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,552 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,553 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,554 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,554 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,555 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,556 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,557 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,569 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,570 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,571 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,571 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,572 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,573 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,573 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,574 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,575 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,576 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,577 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,578 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,578 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,579 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,580 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,581 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,581 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,582 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,583 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,584 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,584 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,585 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,586 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,586 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,587 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,588 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,589 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,590 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,590 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,591 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,592 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,593 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,594 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,595 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,596 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,597 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,598 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,598 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:55:36,844 : INFO : discarding 26899 tokens: [('gamepag', 1), ('giftabl', 1), ('sportsfriend', 1), ('tanysphyra', 1), ('surnâm', 1), ('tuhaf', 1), ('yukh', 1), ('fencholen', 1), ('mediapartn', 1), ('stuckenholtz', 1)]...\n", - "2018-08-31 00:55:36,844 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2930000 (=100.0%) documents\n", - "2018-08-31 00:55:39,040 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:39,093 : INFO : adding document #2930000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:43,095 : INFO : discarding 35965 tokens: [('jarusombat', 1), ('phinij', 1), ('raktapongpisak', 1), ('parents—di', 1), ('scrappit', 1), ('jūliè', 1), ('unfight', 1), ('国史概要', 1), ('秦第一', 1), ('allowances—', 1)]...\n", - "2018-08-31 00:55:43,096 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2940000 (=100.0%) documents\n", - "2018-08-31 00:55:45,239 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:45,291 : INFO : adding document #2940000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:49,114 : INFO : discarding 27696 tokens: [('company—surviv', 1), ('esrailian', 1), ('heraldnet', 1), ('modernluxuri', 1), ('mptf', 1), ('societynewsla', 1), ('uclahealth', 1), ('ellabel', 1), ('haouach', 1), ('stationd', 1)]...\n", - "2018-08-31 00:55:49,115 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2950000 (=100.0%) documents\n", - "2018-08-31 00:55:51,326 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:51,380 : INFO : adding document #2950000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:55,240 : INFO : discarding 26612 tokens: [('droop’', 1), ('clivecussl', 1), ('wondrash', 1), ('bonyin', 1), ('cubether', 1), ('obtm', 1), ('paralz', 1), ('axtar', 1), ('bokrid', 1), ('boxra', 1)]...\n", - "2018-08-31 00:55:55,241 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2960000 (=100.0%) documents\n", - "2018-08-31 00:55:57,400 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:55:57,453 : INFO : adding document #2960000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:01,316 : INFO : discarding 29008 tokens: [('village—found', 1), ('solyent', 1), ('prinetad', 1), ('κλεομένης', 1), ('antiorthogon', 1), ('spectroscopyelectrodynam', 1), ('chenivtsi', 1), ('hertsayiv', 1), ('hlybot', 1), ('novodnistrov', 1)]...\n", - "2018-08-31 00:56:01,317 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2970000 (=100.0%) documents\n", - "2018-08-31 00:56:03,532 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:03,586 : INFO : adding document #2970000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:07,486 : INFO : discarding 28066 tokens: [('ojoru', 1), ('opadotun', 1), ('oyeerind', 1), ('oyètádé', 1), ('ráṣọ', 1), ('rélùweè', 1), ('rẹja', 1), ('rọ́', 1), ('sobowol', 1), ('síbí', 1)]...\n", - "2018-08-31 00:56:07,486 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2980000 (=100.0%) documents\n", - "2018-08-31 00:56:09,646 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:09,697 : INFO : adding document #2980000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:13,486 : INFO : discarding 25001 tokens: [('kurpsi', 1), ('káfej', 1), ('káncÿnał', 1), ('kónik', 1), ('kówera', 1), ('latschen', 1), ('latámi', 1), ('lejduj', 1), ('listkárż', 1), ('listkář', 1)]...\n", - "2018-08-31 00:56:13,486 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 2990000 (=100.0%) documents\n", - "2018-08-31 00:56:15,674 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:15,728 : INFO : adding document #2990000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:19,519 : INFO : discarding 25140 tokens: [('mapitagan', 1), ('markeron', 1), ('amatsh', 1), ('amhlop', 1), ('babambeni', 1), ('bulliesberg', 1), ('eloana', 1), ('engibulawayo', 1), ('enhla', 1), ('enqameni', 1)]...\n", - "2018-08-31 00:56:19,519 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3000000 (=100.0%) documents\n", - "2018-08-31 00:56:21,669 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:21,721 : INFO : adding document #3000000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:25,559 : INFO : discarding 29368 tokens: [('kunddhari', 1), ('nagdit', 1), ('pramah', 1), ('pramathe', 1), ('prayaami', 1), ('roudrakarma', 1), ('sahishnu', 1), ('samdukkha', 1), ('saprapta', 1), ('satyasandh', 1)]...\n", - "2018-08-31 00:56:25,559 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3010000 (=100.0%) documents\n", - "2018-08-31 00:56:27,781 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:27,835 : INFO : adding document #3010000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:31,507 : INFO : discarding 28488 tokens: [('centraal–woerden–alphen', 1), ('centraal–zwolle–groningen', 1), ('centrum–amsterdam', 1), ('centrum–zwol', 1), ('centrum–zwolle–groningen', 1), ('eindhoven–deurn', 1), ('enkhuizen–amsterdam', 1), ('groningen–zwol', 1), ('haarlem–alkmaar', 1), ('haarlem–leiden', 1)]...\n", - "2018-08-31 00:56:31,508 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3020000 (=100.0%) documents\n", - "2018-08-31 00:56:33,674 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:33,726 : INFO : adding document #3020000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:37,657 : INFO : discarding 34868 tokens: [('subveni', 1), ('tedeco', 1), ('doorworld', 1), ('futurisit', 1), ('malagarba', 1), ('muzinq', 1), ('alagiyamanavalar', 1), ('andauto', 1), ('appukudaththan', 1), ('srivageesha', 1)]...\n", - "2018-08-31 00:56:37,658 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3030000 (=100.0%) documents\n", - "2018-08-31 00:56:39,863 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:39,917 : INFO : adding document #3030000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:43,753 : INFO : discarding 43060 tokens: [('emetophag', 1), ('“trampling”', 1), ('ethnonot', 1), ('niglaeeedecaaa', 1), ('tlulib', 1), ('“multimethodology”', 1), ('scienfic', 1), ('attempting—despit', 1), ('beverages—tea', 1), ('childhood—about', 1)]...\n", - "2018-08-31 00:56:43,754 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3040000 (=100.0%) documents\n", - "2018-08-31 00:56:45,907 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:45,960 : INFO : adding document #3040000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:49,793 : INFO : discarding 26343 tokens: [('springfieldm', 1), ('wodf', 1), ('wueb', 1), ('brentwood–bel', 1), ('booth—wer', 1), ('—molland', 1), ('starsbob', 1), ('themolin', 1), ('zilara', 1), ('czteroleciu', 1)]...\n" + "2018-09-26 17:31:24,599 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,600 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,600 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,602 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,603 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,603 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,604 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,605 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,605 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,606 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,607 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,607 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,608 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,609 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,610 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,610 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,611 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,612 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,612 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,613 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,614 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,615 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,616 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,617 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,618 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,618 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,619 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,620 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,620 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,621 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,622 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,623 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,623 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,624 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,625 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,626 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,627 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,627 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,628 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,629 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,629 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,630 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,631 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,631 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,632 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,633 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,633 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,634 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,635 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,635 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,636 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,637 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,638 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,639 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,639 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,640 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,641 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,641 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,642 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,643 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,643 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,644 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,645 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,645 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,646 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,647 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,648 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,648 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,649 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,650 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,651 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,652 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,653 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,653 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,654 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,655 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,656 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,656 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,657 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,658 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,659 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,659 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,660 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,661 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,662 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,662 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,663 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,664 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,665 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,666 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,667 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,667 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,668 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,669 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,670 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,670 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,671 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,672 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,673 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,674 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,675 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,675 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,676 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,677 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,678 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,679 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,680 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:56:49,794 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3050000 (=100.0%) documents\n", - "2018-08-31 00:56:51,998 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:52,052 : INFO : adding document #3050000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:55,792 : INFO : discarding 27065 tokens: [('lappifolia', 1), ('刘积斌', 1), ('nougat’', 1), ('nowga', 1), ('nucatu', 1), ('nucatum', 1), ('لوکا', 1), ('نوقا', 1), ('tschehr', 1), ('王亚平', 1)]...\n", - "2018-08-31 00:56:55,792 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3060000 (=100.0%) documents\n", - "2018-08-31 00:56:57,949 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:56:58,003 : INFO : adding document #3060000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:01,731 : INFO : discarding 26564 tokens: [('wxhxl', 1), ('”calculated”', 1), ('swellfar', 1), ('liaosi', 1), ('d’altérité', 1), ('indiens’', 1), ('tlahtolōyān', 1), ('totonaqu', 1), ('tutunacu', 1), ('«territoir', 1)]...\n", - "2018-08-31 00:57:01,732 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3070000 (=100.0%) documents\n", - "2018-08-31 00:57:03,926 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:03,979 : INFO : adding document #3070000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:07,396 : INFO : discarding 20327 tokens: [('khadachakra', 1), ('kshireshwar', 1), ('kupind', 1), ('lekbeshi', 1), ('mahagadhimai', 1), ('majuwagadhi', 1), ('municipalities−c', 1), ('nalgad', 1), ('panchapuri', 1), ('panchkhapan', 1)]...\n", - "2018-08-31 00:57:07,397 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3080000 (=100.0%) documents\n", - "2018-08-31 00:57:09,550 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:09,601 : INFO : adding document #3080000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:12,807 : INFO : discarding 18870 tokens: [('hoiness', 1), ('lysholt', 1), ('vincart', 1), ('benning’', 1), ('houck’', 1), ('whom”', 1), ('winslow’', 1), ('“slightli', 1), ('coachtran', 1), ('aerotunel', 1)]...\n", - "2018-08-31 00:57:12,807 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3090000 (=100.0%) documents\n", - "2018-08-31 00:57:15,017 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:15,070 : INFO : adding document #3090000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:18,475 : INFO : discarding 20104 tokens: [('framlimgham', 1), ('hrechyshkin', 1), ('cathinka', 1), ('forsørgels', 1), ('trængend', 1), ('badpahari', 1), ('bhathia', 1), ('bhiad', 1), ('daskarma', 1), ('divorcc', 1)]...\n", - "2018-08-31 00:57:18,476 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3100000 (=100.0%) documents\n", - "2018-08-31 00:57:20,622 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:20,673 : INFO : adding document #3100000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:24,438 : INFO : discarding 26459 tokens: [('laussedat', 1), ('basipinacocyt', 1), ('endopinacocyt', 1), ('exopinacocyt', 1), ('covilla', 1), ('fredmann', 1), ('freidann', 1), ('friedann', 1), ('morm', 1), ('pharbin', 1)]...\n", - "2018-08-31 00:57:24,439 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3110000 (=100.0%) documents\n", - "2018-08-31 00:57:26,656 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:26,710 : INFO : adding document #3110000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:30,565 : INFO : discarding 28548 tokens: [('cerisii', 1), ('parasquillida', 1), ('pseudosquillopsi', 1), ('마음의', 1), ('소록도', 1), ('한센인들의', 1), ('affarano', 1), ('wciti', 1), ('xsolo', 1), ('manxi', 1)]...\n", - "2018-08-31 00:57:30,566 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3120000 (=100.0%) documents\n", - "2018-08-31 00:57:32,724 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:32,778 : INFO : adding document #3120000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:36,587 : INFO : discarding 31652 tokens: [('baleegh', 1), ('choote', 1), ('paire', 1), ('parega', 1), ('mepaco', 1), ('“acorn', 1), ('“acorns”', 1), ('“koffi', 1), ('“ko”', 1), ('“mi”', 1)]...\n", - "2018-08-31 00:57:36,587 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3130000 (=100.0%) documents\n", - "2018-08-31 00:57:38,807 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:38,863 : INFO : adding document #3130000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:42,756 : INFO : discarding 26215 tokens: [('bharuchgujarat', 1), ('mceligott', 1), ('aalaththoor', 1), ('aaranmula', 1), ('aaranmulamaahaathmyam', 1), ('aazhuvaancheri', 1), ('achchan', 1), ('achchankovilshaasthaavum', 1), ('adhyaathmaraamaayanam', 1), ('ammannoor', 1)]...\n", - "2018-08-31 00:57:42,757 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3140000 (=100.0%) documents\n", - "2018-08-31 00:57:44,913 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:44,966 : INFO : adding document #3140000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:48,917 : INFO : discarding 27685 tokens: [('rughafa', 1), ('urjuzah', 1), ('krismayr', 1), ('chainel', 1), ('démare', 1), ('pévèlois', 1), ('vichot', 1), ('ashran', 1), ('awinor', 1), ('convulsión', 1)]...\n", - "2018-08-31 00:57:48,917 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3150000 (=100.0%) documents\n", - "2018-08-31 00:57:51,130 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:51,184 : INFO : adding document #3150000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:55,121 : INFO : discarding 29336 tokens: [('dedê', 1), ('korzynietz', 1), ('massimilian', 1), ('razundara', 1), ('tjikuzu', 1), ('alsphotopag', 1), ('plataspida', 1), ('plataspidida', 1), ('plataspina', 1), ('thyreocorida', 1)]...\n", - "2018-08-31 00:57:55,122 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3160000 (=100.0%) documents\n", - "2018-08-31 00:57:57,285 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:57:57,338 : INFO : adding document #3160000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:01,299 : INFO : discarding 27431 tokens: [('kouandijo', 1), ('kouanjio', 1), ('publications—includ', 1), ('evil—intrud', 1), ('hulga', 1), ('is—without', 1), ('stranger—decept', 1), ('bubakir', 1), ('daibani', 1), ('hasairi', 1)]...\n", - "2018-08-31 00:58:01,299 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3170000 (=100.0%) documents\n", - "2018-08-31 00:58:03,522 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:24,680 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,681 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,682 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,683 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,684 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,684 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,685 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,686 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,686 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,687 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,688 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,689 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,690 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,690 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,691 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,692 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,693 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,694 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,694 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,695 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,696 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,697 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,698 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,698 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,699 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,700 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,700 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,701 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,702 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,703 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,703 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,704 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,705 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,706 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,707 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,707 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,708 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,709 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,710 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,711 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,711 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,712 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,713 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,714 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,714 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,715 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,716 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,717 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,718 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,718 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,719 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,720 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,721 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,721 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,722 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,723 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,724 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,724 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,725 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,726 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,727 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,728 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,729 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,729 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,730 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,731 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,732 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,732 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,733 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,734 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,735 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,735 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,736 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,737 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,738 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,738 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,739 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,740 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,741 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,741 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,742 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,743 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,743 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,744 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,745 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,746 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,746 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,747 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,748 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,749 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,749 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,750 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,751 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,752 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,752 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,753 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,754 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,755 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,756 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,757 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,757 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,758 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,759 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,760 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,760 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,761 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,762 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:58:03,576 : INFO : adding document #3170000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:08,376 : INFO : discarding 37593 tokens: [('cinecrack', 1), ('cinedict', 1), ('deceault', 1), ('filmspot', 1), ('kempenaar', 1), ('larsenonfilm', 1), ('belonog', 1), ('faaea', 1), ('goncharuk', 1), ('haborák', 1)]...\n", - "2018-08-31 00:58:08,377 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3180000 (=100.0%) documents\n", - "2018-08-31 00:58:10,535 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:10,587 : INFO : adding document #3180000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:14,494 : INFO : discarding 27004 tokens: [('akbaşlı', 1), ('akçevr', 1), ('güveneroğlu', 1), ('hoşfikir', 1), ('olgun', 1), ('taviş', 1), ('ulucan', 1), ('uğurludoğan', 1), ('önatlı', 1), ('özkalp', 1)]...\n", - "2018-08-31 00:58:14,495 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3190000 (=100.0%) documents\n", - "2018-08-31 00:58:16,711 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:16,766 : INFO : adding document #3190000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:20,728 : INFO : discarding 40551 tokens: [('weaponolog', 1), ('reiseatla', 1), ('urlaubsparadi', 1), ('jurcsek', 1), ('proplem', 1), ('sárbogárd', 1), ('aicurzio', 1), ('albiat', 1), ('bellusco', 1), ('mezzago', 1)]...\n", - "2018-08-31 00:58:20,729 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3200000 (=100.0%) documents\n", - "2018-08-31 00:58:22,902 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:22,957 : INFO : adding document #3200000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:27,001 : INFO : discarding 38816 tokens: [('morchen', 1), ('cartograp', 1), ('pashaj', 1), ('teretori', 1), ('aread', 1), ('explum', 1), ('haubrok', 1), ('heikejung', 1), ('leuum', 1), ('misoon', 1)]...\n", - "2018-08-31 00:58:27,001 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3210000 (=100.0%) documents\n", - "2018-08-31 00:58:29,222 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:29,276 : INFO : adding document #3210000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:33,261 : INFO : discarding 35252 tokens: [('clinodactyl', 1), ('cultureunplug', 1), ('pfokhreh', 1), ('triumfetti', 1), ('eonymph', 1), ('beleman', 1), ('venloo', 1), ('zittesj', 1), ('wikiafrica', 1), ('gallgher', 1)]...\n", - "2018-08-31 00:58:33,262 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3220000 (=100.0%) documents\n", - "2018-08-31 00:58:35,446 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:35,500 : INFO : adding document #3220000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:39,552 : INFO : discarding 32923 tokens: [('appmachin', 1), ('bizland', 1), ('aboloc', 1), ('gustong', 1), ('khayce', 1), ('mahanap', 1), ('makulong', 1), ('quemuel', 1), ('tierro', 1), ('trahedyang', 1)]...\n", - "2018-08-31 00:58:39,552 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3230000 (=100.0%) documents\n", - "2018-08-31 00:58:41,769 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:41,824 : INFO : adding document #3230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:45,748 : INFO : discarding 28265 tokens: [('doxia', 1), ('апт', 1), ('biyuda', 1), ('biyudo', 1), ('dadapa', 1), ('iputok', 1), ('labada', 1), ('litsonero', 1), ('m–zet', 1), ('ntonio', 1)]...\n", - "2018-08-31 00:58:45,749 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3240000 (=100.0%) documents\n", - "2018-08-31 00:58:47,925 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:47,977 : INFO : adding document #3240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:51,968 : INFO : discarding 31580 tokens: [('bendlin', 1), ('appur', 1), ('arunattu', 1), ('chinavantikeni', 1), ('eluppaiyur', 1), ('iluppaiyur', 1), ('karattampatti', 1), ('karuppannasami', 1), ('kudiyazhaippu', 1), ('kulathaivam', 1)]...\n", - "2018-08-31 00:58:51,969 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3250000 (=100.0%) documents\n", - "2018-08-31 00:58:54,188 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:54,243 : INFO : adding document #3250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:58:58,173 : INFO : discarding 29700 tokens: [('arculeo', 1), ('obliquefron', 1), ('palapedia', 1), ('pelsartensi', 1), ('rastrip', 1), ('royfdhdei', 1), ('truncatifron', 1), ('yongshuensi', 1), ('mikoczi', 1), ('cinctimana', 1)]...\n", - "2018-08-31 00:58:58,174 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3260000 (=100.0%) documents\n", - "2018-08-31 00:59:00,335 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:00,388 : INFO : adding document #3260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:04,320 : INFO : discarding 30314 tokens: [('choopiniji', 1), ('daraneenuch', 1), ('eternity–and', 1), ('liaorakwong', 1), ('makhin', 1), ('pantewanop', 1), ('phapo', 1), ('phenkul', 1), ('phenphet', 1), ('photipit', 1)]...\n", - "2018-08-31 00:59:04,322 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3270000 (=100.0%) documents\n", - "2018-08-31 00:59:06,526 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:06,581 : INFO : adding document #3270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:10,509 : INFO : discarding 33284 tokens: [('baronz', 1), ('geybridg', 1), ('higgens’', 1), ('iiko', 1), ('centrota', 1), ('maclaran', 1), ('athletes—two', 1), ('brièvement', 1), ('diverssant', 1), ('tezozomac', 1)]...\n", - "2018-08-31 00:59:10,510 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3280000 (=100.0%) documents\n", - "2018-08-31 00:59:12,672 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:12,724 : INFO : adding document #3280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:16,563 : INFO : discarding 30510 tokens: [('wanggom', 1), ('bulgnuu', 1), ('ranellucci', 1), ('saxophone–', 1), ('wirtel', 1), ('“cuban', 1), ('“suite”', 1), ('gřegořek', 1), ('kostroski', 1), ('trusdal', 1)]...\n", - "2018-08-31 00:59:16,564 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3290000 (=100.0%) documents\n", - "2018-08-31 00:59:18,776 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:18,832 : INFO : adding document #3290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:22,742 : INFO : discarding 30136 tokens: [('flustard', 1), ('hoobub', 1), ('kwuggerbug', 1), ('snather', 1), ('fruhner', 1), ('time†', 1), ('buildingsofireland', 1), ('drumhawnagh', 1), ('inventri', 1), ('epomyn', 1)]...\n" + "2018-09-26 17:31:24,763 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,764 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,764 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,765 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,766 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,766 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,767 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,768 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,769 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,769 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,770 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,771 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,772 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,773 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,773 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,774 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,775 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,776 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,776 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,777 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,778 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,779 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,779 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,780 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,781 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,781 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,782 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,783 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,783 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,784 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,785 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,786 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,786 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,787 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,788 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,788 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,789 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,790 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,791 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,791 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,792 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,793 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,809 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,810 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,811 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,812 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,812 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,813 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,814 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,815 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,816 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,816 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,817 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,818 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,819 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,820 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,820 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,821 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,822 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,823 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,823 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,824 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,825 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,826 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,826 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,827 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,827 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,828 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,829 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,830 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,830 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,831 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,832 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,833 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,833 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,834 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,835 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,836 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,836 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,837 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,838 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,838 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,839 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,840 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,841 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,841 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,842 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,843 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,843 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,844 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,845 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,846 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,847 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,848 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,848 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,849 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,850 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,851 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,852 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,853 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,853 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,854 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 00:59:22,743 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3300000 (=100.0%) documents\n", - "2018-08-31 00:59:24,918 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:24,972 : INFO : adding document #3300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:28,775 : INFO : discarding 28970 tokens: [('d’humili', 1), ('entlarg', 1), ('l’émotion', 1), ('ablagh', 1), ('ablaghiat', 1), ('khabriyat', 1), ('rujhanaat', 1), ('zabir', 1), ('aiyekooto', 1), ('ehinlanwo', 1)]...\n", - "2018-08-31 00:59:28,775 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3310000 (=100.0%) documents\n", - "2018-08-31 00:59:30,984 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:31,039 : INFO : adding document #3310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:34,733 : INFO : discarding 36803 tokens: [('kotlui', 1), ('sonajuri', 1), ('hutmura', 1), ('pindra', 1), ('raghabpur', 1), ('sihuli', 1), ('medja', 1), ('pǫtь', 1), ('sladъkъ', 1), ('sǫtь', 1)]...\n", - "2018-08-31 00:59:34,734 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3320000 (=100.0%) documents\n", - "2018-08-31 00:59:36,912 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:36,967 : INFO : adding document #3320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:40,664 : INFO : discarding 24992 tokens: [('bouachon', 1), ('breitman’', 1), ('graveg', 1), ('l’aimai', 1), ('mediterranean’', 1), ('skalli”', 1), ('supéri', 1), ('‘banker', 1), ('‘bullionist', 1), ('‘hour', 1)]...\n", - "2018-08-31 00:59:40,665 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3330000 (=100.0%) documents\n", - "2018-08-31 00:59:42,888 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:42,943 : INFO : adding document #3330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:46,552 : INFO : discarding 25009 tokens: [('castillofiel', 1), ('esperamalo', 1), ('malbiz', 1), ('obaren', 1), ('traspalacio', 1), ('valtracon', 1), ('cachiburrio', 1), ('enecor', 1), ('formerio', 1), ('garsea', 1)]...\n", - "2018-08-31 00:59:46,552 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3340000 (=100.0%) documents\n", - "2018-08-31 00:59:48,733 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:48,786 : INFO : adding document #3340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:52,638 : INFO : discarding 28939 tokens: [('bracav', 1), ('missegh', 1), ('steylaert', 1), ('vyotski', 1), ('luzuloid', 1), ('kissengen', 1), ('lhowp', 1), ('overpumpag', 1), ('revitalz', 1), ('undergroundcavern', 1)]...\n", - "2018-08-31 00:59:52,639 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3350000 (=100.0%) documents\n", - "2018-08-31 00:59:54,843 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:54,898 : INFO : adding document #3350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 00:59:58,756 : INFO : discarding 29664 tokens: [('narashimhika', 1), ('narasina', 1), ('pratyangira', 1), ('omrin', 1), ('claveriei', 1), ('igneusta', 1), ('illusella', 1), ('lateritiali', 1), ('pallidifron', 1), ('pulvereali', 1)]...\n", - "2018-08-31 00:59:58,757 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3360000 (=100.0%) documents\n", - "2018-08-31 01:00:00,934 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:00,986 : INFO : adding document #3360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:04,734 : INFO : discarding 26416 tokens: [('bulanikh', 1), ('charsanjak', 1), ('chmshkatsag', 1), ('dneprovskaya', 1), ('handamej', 1), ('hazro', 1), ('hazzo', 1), ('ispir', 1), ('jahukyan', 1), ('jebrayil', 1)]...\n", - "2018-08-31 01:00:04,734 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3370000 (=100.0%) documents\n", - "2018-08-31 01:00:06,953 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:07,009 : INFO : adding document #3370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:10,803 : INFO : discarding 30058 tokens: [('trandfer', 1), ('agmonia', 1), ('moesorum', 1), ('thermidava', 1), ('clark†', 1), ('krumbhaar', 1), ('schmidt†', 1), ('wildemor', 1), ('donbel', 1), ('tangkai', 1)]...\n", - "2018-08-31 01:00:10,803 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3380000 (=100.0%) documents\n", - "2018-08-31 01:00:12,997 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:13,051 : INFO : adding document #3380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:16,926 : INFO : discarding 31132 tokens: [('perventsev', 1), ('photography»', 1), ('pictures»', 1), ('požerski', 1), ('prekhner', 1), ('prozavod', 1), ('sherstennikov', 1), ('trakhman', 1), ('trankvillicki', 1), ('vakhromeeva', 1)]...\n", - "2018-08-31 01:00:16,927 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3390000 (=100.0%) documents\n", - "2018-08-31 01:00:19,132 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:19,188 : INFO : adding document #3390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:22,969 : INFO : discarding 26463 tokens: [('nominated—irish', 1), ('nominated—milan', 1), ('serafimova', 1), ('theatra', 1), ('наташа', 1), ('khrystoforivka', 1), ('radushn', 1), ('криворізький', 1), ('радушне', 1), ('христофорівка', 1)]...\n", - "2018-08-31 01:00:22,970 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3400000 (=100.0%) documents\n", - "2018-08-31 01:00:25,143 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:25,196 : INFO : adding document #3400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:29,061 : INFO : discarding 28972 tokens: [('μην', 1), ('μπάμπης', 1), ('ντρέπεστε', 1), ('στόκας', 1), ('τραγουδήστε', 1), ('τρελών', 1), ('υψίστης', 1), ('φυλακή', 1), ('mösl', 1), ('solarzeitalt', 1)]...\n", - "2018-08-31 01:00:29,062 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3410000 (=100.0%) documents\n", - "2018-08-31 01:00:31,262 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:31,316 : INFO : adding document #3410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:35,202 : INFO : discarding 29031 tokens: [('marsaux', 1), ('sauzerau', 1), ('weiermul', 1), ('athletes”', 1), ('trustees—w', 1), ('unc–chapel', 1), ('“appal', 1), ('“hardin’', 1), ('‘howthelightgetsin’', 1), ('boniquit', 1)]...\n", - "2018-08-31 01:00:35,203 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3420000 (=100.0%) documents\n", - "2018-08-31 01:00:37,375 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:24,858 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,860 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,861 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,861 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,863 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,864 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,865 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,866 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,866 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,867 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,867 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,868 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,869 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,870 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,870 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,871 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,872 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,873 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,873 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,874 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,875 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,875 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,876 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,877 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,877 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,878 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,879 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,879 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,880 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,881 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,882 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,882 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,883 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,884 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,885 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,885 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,886 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,887 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,888 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,889 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,889 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,890 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,891 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,892 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,893 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,893 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,894 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,895 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,896 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,897 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,898 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,899 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,899 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,900 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,901 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,902 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,903 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,904 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,904 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,905 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,906 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,906 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,907 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,908 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,908 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,909 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,910 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,911 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,911 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,912 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,913 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,914 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,915 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,915 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,916 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,917 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,917 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,918 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,920 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,921 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,922 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,923 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,924 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,924 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,925 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,926 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,927 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,927 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,928 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,929 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,930 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,930 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,931 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,932 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,933 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,933 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,935 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,935 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,936 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,937 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,938 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,938 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,939 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,940 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,940 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:00:37,428 : INFO : adding document #3420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:41,245 : INFO : discarding 26003 tokens: [('rezāābād', 1), ('institute–commiss', 1), ('ebergéni', 1), ('ebergényi', 1), ('bardvāl', 1), ('bardwāl', 1), ('bārd', 1), ('oldest—perman', 1), ('defensism”', 1), ('afirmo', 1)]...\n", - "2018-08-31 01:00:41,246 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3430000 (=100.0%) documents\n", - "2018-08-31 01:00:43,452 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:43,508 : INFO : adding document #3430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:47,314 : INFO : discarding 26749 tokens: [('altrokradio', 1), ('djjd', 1), ('metallicav', 1), ('nuclearrockradio', 1), ('thepenguinrock', 1), ('computer—thu', 1), ('necracedia', 1), ('nintendo®', 1), ('超任博士', 1), ('homoni', 1)]...\n", - "2018-08-31 01:00:47,314 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3440000 (=100.0%) documents\n", - "2018-08-31 01:00:49,487 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:49,540 : INFO : adding document #3440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:53,322 : INFO : discarding 26396 tokens: [('″roar', 1), ('″sagebrush', 1), ('″shale', 1), ('″stoni', 1), ('″yakama″', 1), ('″yakima″', 1), ('lucasremark', 1), ('mattoxwari', 1), ('recendi', 1), ('reséndiz’', 1)]...\n", - "2018-08-31 01:00:53,323 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3450000 (=100.0%) documents\n", - "2018-08-31 01:00:55,538 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:55,593 : INFO : adding document #3450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:00:59,316 : INFO : discarding 26788 tokens: [('sarandopoulo', 1), ('caween', 1), ('hiihtostadion', 1), ('jalkaranta', 1), ('kivimaa–kiveriö–joutjärvi', 1), ('kolava–kujala', 1), ('mukkula', 1), ('salpau', 1), ('salpauselkä', 1), ('viipurinti', 1)]...\n", - "2018-08-31 01:00:59,317 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3460000 (=100.0%) documents\n", - "2018-08-31 01:01:01,485 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:01,542 : INFO : adding document #3460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:05,368 : INFO : discarding 27112 tokens: [('yangshupo', 1), ('billyjoelvevo', 1), ('unity”through', 1), ('nltsg', 1), ('venaiss', 1), ('evergreentre', 1), ('claoué', 1), ('hedonna', 1), ('tjararu', 1), ('pindemonti', 1)]...\n", - "2018-08-31 01:01:05,368 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3470000 (=100.0%) documents\n", - "2018-08-31 01:01:07,578 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:07,633 : INFO : adding document #3470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:11,500 : INFO : discarding 26707 tokens: [('innishmeela', 1), ('killyburn', 1), ('macaldoo', 1), ('mallinmor', 1), ('comparable—and', 1), ('poset—no', 1), ('jemmina', 1), ('kahanapril', 1), ('lifese', 1), ('robinso', 1)]...\n", - "2018-08-31 01:01:11,501 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3480000 (=100.0%) documents\n", - "2018-08-31 01:01:13,662 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:13,715 : INFO : adding document #3480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:17,614 : INFO : discarding 26770 tokens: [('brandelln', 1), ('encountered—africa', 1), ('filmdirectorexecut', 1), ('producerfin', 1), ('uncreditedarch', 1), ('bicepiru', 1), ('kentrika', 1), ('agioanneia', 1), ('agioannina', 1), ('apsarad', 1)]...\n", - "2018-08-31 01:01:17,615 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3490000 (=100.0%) documents\n", - "2018-08-31 01:01:19,824 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:19,878 : INFO : adding document #3490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:23,593 : INFO : discarding 28463 tokens: [('paragari', 1), ('hoodiez', 1), ('duerwood', 1), ('“acknickulous”', 1), ('czetwertynska', 1), ('забавить', 1), ('pvgc', 1), ('pvgr', 1), ('антоновна', 1), ('нарышкина', 1)]...\n", - "2018-08-31 01:01:23,593 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3500000 (=100.0%) documents\n", - "2018-08-31 01:01:25,774 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:25,828 : INFO : adding document #3500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:29,629 : INFO : discarding 31054 tokens: [('亞東時報', 1), ('國學講習會', 1), ('大元帥府秘書長', 1), ('大共和日報', 1), ('娘日歸泥', 1), ('湯國梨', 1), ('湯志鈞', 1), ('章太炎傳', 1), ('许寿裳', 1), ('children—veronica', 1)]...\n", - "2018-08-31 01:01:29,629 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3510000 (=100.0%) documents\n", - "2018-08-31 01:01:31,853 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:31,909 : INFO : adding document #3510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:35,569 : INFO : discarding 25757 tokens: [('carfrax', 1), ('chameloeid', 1), ('ciceronicu', 1), ('cosmocid', 1), ('cruxwan', 1), ('cwulzenda', 1), ('cyberstructur', 1), ('dangrabad', 1), ('eadrax', 1), ('esflovian', 1)]...\n", - "2018-08-31 01:01:35,570 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3520000 (=100.0%) documents\n", - "2018-08-31 01:01:37,759 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:37,812 : INFO : adding document #3520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:41,546 : INFO : discarding 28593 tokens: [('退道運動', 1), ('artisans—carpent', 1), ('painters—from', 1), ('מלקרת', 1), ('nately’', 1), ('company—top', 1), ('hemisquillida', 1), ('intrarhabdom', 1), ('movement—up', 1), ('ommatidia—a', 1)]...\n", - "2018-08-31 01:01:41,547 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3530000 (=100.0%) documents\n", - "2018-08-31 01:01:43,760 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:43,816 : INFO : adding document #3530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:47,562 : INFO : discarding 27394 tokens: [('capacitance”', 1), ('coils’', 1), ('visho', 1), ('nformativ', 1), ('ombëtar', 1), ('ërbimi', 1), ('ilnygaai', 1), ('koryaks—inhabit', 1), ('kujkynnjaku', 1), ('ėli', 1)]...\n", - "2018-08-31 01:01:47,563 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3540000 (=100.0%) documents\n", - "2018-08-31 01:01:49,747 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:49,802 : INFO : adding document #3540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:53,225 : INFO : discarding 21700 tokens: [('katjimun', 1), ('nelago', 1), ('nkruhma', 1), ('trans‐africa', 1), ('absequip', 1), ('bvequip', 1), ('clumpweight', 1), ('cyscan', 1), ('dnvequip', 1), ('dpoper', 1)]...\n" + "2018-09-26 17:31:24,941 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,942 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,943 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,944 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,945 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,945 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,946 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,947 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,948 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,949 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,949 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,950 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,951 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,952 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,952 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,953 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,954 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,955 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,955 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,956 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,957 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,958 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,958 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,959 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,960 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,961 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,961 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,962 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,963 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,983 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,984 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,985 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,986 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,987 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,987 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,988 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,989 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,990 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,991 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,991 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,992 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,993 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,994 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,995 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,995 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,996 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,997 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,998 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,998 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:24,999 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,000 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,000 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,001 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,002 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,003 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,004 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,004 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,005 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,006 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,006 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,007 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,008 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,008 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,009 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,010 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,011 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,011 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,012 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,013 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,014 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,015 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,016 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,016 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,017 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,018 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,019 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,020 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,020 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,021 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,022 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,022 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,023 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,024 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,025 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,026 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,026 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,027 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,028 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,028 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,029 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,030 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,032 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,033 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,033 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,034 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,036 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,037 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,037 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,038 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,039 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,040 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,041 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,041 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:01:53,226 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3550000 (=100.0%) documents\n", - "2018-08-31 01:01:55,440 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:55,495 : INFO : adding document #3550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:01:59,073 : INFO : discarding 23115 tokens: [('gananita', 1), ('kabushia', 1), ('shereyk', 1), ('ethosc', 1), ('akedami', 1), ('asifia', 1), ('charkaman', 1), ('deccanwood', 1), ('hitex', 1), ('kutubkhana', 1)]...\n", - "2018-08-31 01:01:59,074 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3560000 (=100.0%) documents\n", - "2018-08-31 01:02:01,248 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:01,301 : INFO : adding document #3560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:04,943 : INFO : discarding 25762 tokens: [('cantomundo', 1), ('iptd', 1), ('loglogist', 1), ('tūshan', 1), ('printemps”', 1), ('”bolero”', 1), ('”media', 1), ('”sacr', 1), ('laviña', 1), ('right–wing', 1)]...\n", - "2018-08-31 01:02:04,943 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3570000 (=100.0%) documents\n", - "2018-08-31 01:02:07,156 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:07,211 : INFO : adding document #3570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:10,669 : INFO : discarding 24833 tokens: [('goliardica', 1), ('intellettuali', 1), ('socialità', 1), ('klafter', 1), ('whict', 1), ('bahngesellschaft', 1), ('ashmuqam', 1), ('chandanwari', 1), ('laripora', 1), ('liddar', 1)]...\n", - "2018-08-31 01:02:10,670 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3580000 (=100.0%) documents\n", - "2018-08-31 01:02:12,868 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:12,921 : INFO : adding document #3580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:16,401 : INFO : discarding 23286 tokens: [('qahrman', 1), ('qahrmān', 1), ('nazami', 1), ('naẓamī', 1), ('zahurian', 1), ('zahūrīān', 1), ('shakri', 1), ('shāḵrī', 1), ('dānyāl', 1), ('jarāḥī', 1)]...\n", - "2018-08-31 01:02:16,402 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3590000 (=100.0%) documents\n", - "2018-08-31 01:02:18,632 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:18,687 : INFO : adding document #3590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:22,347 : INFO : discarding 26965 tokens: [('laotianliao', 1), ('mingt', 1), ('touwu', 1), ('chirurgicaux', 1), ('legueu', 1), ('maretheux', 1), ('néphrectomi', 1), ('pyélographi', 1), ('rétrograd', 1), ('urologiqu', 1)]...\n", - "2018-08-31 01:02:22,348 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3600000 (=100.0%) documents\n", - "2018-08-31 01:02:24,515 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:24,568 : INFO : adding document #3600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:28,000 : INFO : discarding 22062 tokens: [('ecogold', 1), ('luhmuehlen', 1), ('majyk', 1), ('smartpak', 1), ('stübben', 1), ('toozac', 1), ('windurra', 1), ('gobbargumpi', 1), ('sahana’', 1), ('nitetim', 1)]...\n", - "2018-08-31 01:02:28,000 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3610000 (=100.0%) documents\n", - "2018-08-31 01:02:30,224 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:30,279 : INFO : adding document #3610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:33,961 : INFO : discarding 26261 tokens: [('kenkoro', 1), ('lilg', 1), ('ftpaccess', 1), ('gadmin', 1), ('proftp', 1), ('utmp', 1), ('vsftpd', 1), ('wtmp', 1), ('musaeb', 1), ('microbullatu', 1)]...\n", - "2018-08-31 01:02:33,962 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3620000 (=100.0%) documents\n", - "2018-08-31 01:02:36,148 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:36,201 : INFO : adding document #3620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:39,896 : INFO : discarding 33103 tokens: [('in‑hous', 1), ('regions—ar', 1), ('states—american', 1), ('traumaccent', 1), ('diphenylketyl', 1), ('peptide–protein', 1), ('phco•−', 1), ('diesel—includ', 1), ('hydrocarbons—raw', 1), ('akulii', 1)]...\n", - "2018-08-31 01:02:39,896 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3630000 (=100.0%) documents\n", - "2018-08-31 01:02:42,110 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:42,165 : INFO : adding document #3630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:45,709 : INFO : discarding 24520 tokens: [('brugita', 1), ('cachuyta', 1), ('caxamarca', 1), ('chachapoia', 1), ('companon', 1), ('donosa', 1), ('guamachuco', 1), ('huicho', 1), ('otusco', 1), ('sapukai', 1)]...\n", - "2018-08-31 01:02:45,709 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3640000 (=100.0%) documents\n", - "2018-08-31 01:02:47,906 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:47,960 : INFO : adding document #3640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:51,700 : INFO : discarding 29669 tokens: [('architect”', 1), ('connecticut”', 1), ('croswell’', 1), ('draft”', 1), ('d’asenzo', 1), ('harwood’', 1), ('itheil', 1), ('ithiel’', 1), ('latchabl', 1), ('mechanic”', 1)]...\n", - "2018-08-31 01:02:51,700 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3650000 (=100.0%) documents\n", - "2018-08-31 01:02:53,917 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:53,973 : INFO : adding document #3650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:57,555 : INFO : discarding 27475 tokens: [('concorden', 1), ('moonsilk', 1), ('tooten', 1), ('aspesæt', 1), ('away»', 1), ('besnæret', 1), ('bewildered»', 1), ('blendet', 1), ('flyr', 1), ('fragile»', 1)]...\n", - "2018-08-31 01:02:57,556 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3660000 (=100.0%) documents\n", - "2018-08-31 01:02:59,746 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:02:59,800 : INFO : adding document #3660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:03,323 : INFO : discarding 24246 tokens: [('europhon', 1), ('makhtutat', 1), ('makhṭūṭāt', 1), ('mubai', 1), ('niyā', 1), ('sinigh', 1), ('sinighāl', 1), ('sīsī', 1), ('السنغال', 1), ('نياس', 1)]...\n", - "2018-08-31 01:03:03,323 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3670000 (=100.0%) documents\n", - "2018-08-31 01:03:05,549 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:05,605 : INFO : adding document #3670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:25,043 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,044 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,044 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,045 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,046 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,046 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,047 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,048 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,048 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,049 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,050 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,050 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,051 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,052 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,053 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,053 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,054 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,055 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,055 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,056 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,057 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,057 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,058 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,059 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,060 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,060 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,061 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,062 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,063 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,063 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,064 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,065 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,065 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,066 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,067 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,068 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,068 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,069 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,070 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,071 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,072 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,073 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,073 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,074 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,075 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,076 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,076 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,077 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,078 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,079 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,080 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,080 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,081 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,082 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,082 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,083 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,084 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,084 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,085 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,086 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,087 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,087 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,088 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,089 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,090 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,090 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,091 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,092 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,093 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,094 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,095 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,096 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,097 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,098 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,099 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,100 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,101 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,102 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,103 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,104 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,105 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,106 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,106 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,107 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,108 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,109 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,109 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,110 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,111 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,112 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,112 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,113 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,114 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,114 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,115 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,116 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,117 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,118 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,118 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,119 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,120 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,120 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,121 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,122 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,123 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,123 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,124 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:03:09,401 : INFO : discarding 26999 tokens: [('crowdcube’', 1), ('lovespac', 1), ('annaházi', 1), ('belorv', 1), ('bántalmak', 1), ('coronariaspazmu', 1), ('czapf', 1), ('diagnózi', 1), ('döntően', 1), ('esophagocardiac', 1)]...\n", - "2018-08-31 01:03:09,401 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3680000 (=100.0%) documents\n", - "2018-08-31 01:03:11,588 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:11,641 : INFO : adding document #3680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:15,426 : INFO : discarding 29512 tokens: [('rupayan', 1), ('sohrawardi', 1), ('absec', 1), ('boodjari', 1), ('munyarryun', 1), ('hairoddin', 1), ('cudi—', 1), ('baupolizeilich', 1), ('stadterweiterungen', 1), ('roengpithya', 1)]...\n", - "2018-08-31 01:03:15,426 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3690000 (=100.0%) documents\n", - "2018-08-31 01:03:17,645 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:17,700 : INFO : adding document #3690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:21,553 : INFO : discarding 28710 tokens: [('héligoland', 1), ('ortzen', 1), ('sabalot', 1), ('vulliez', 1), ('eichornia', 1), ('plantedtank', 1), ('berezynski', 1), ('kroczek', 1), ('zuzanski', 1), ('cesant', 1)]...\n", - "2018-08-31 01:03:21,553 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3700000 (=100.0%) documents\n", - "2018-08-31 01:03:23,737 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:23,794 : INFO : adding document #3700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:27,511 : INFO : discarding 28130 tokens: [('kaganoff', 1), ('vivdli', 1), ('helzarin', 1), ('landermer', 1), ('vukšić', 1), ('curiak', 1), ('geax', 1), ('gronewald', 1), ('icycl', 1), ('iditabik', 1)]...\n", - "2018-08-31 01:03:27,512 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3710000 (=100.0%) documents\n", - "2018-08-31 01:03:29,734 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:29,790 : INFO : adding document #3710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:33,587 : INFO : discarding 27280 tokens: [('aaghosham', 1), ('anukudumbam', 1), ('aparenmar', 1), ('bharghavinilayam', 1), ('chekkan', 1), ('chengkotta', 1), ('dineshan', 1), ('evidingananu', 1), ('filmstaar', 1), ('jackiechan', 1)]...\n", - "2018-08-31 01:03:33,588 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3720000 (=100.0%) documents\n", - "2018-08-31 01:03:35,773 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:35,828 : INFO : adding document #3720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:39,705 : INFO : discarding 29140 tokens: [('humaston', 1), ('andrinali', 1), ('affaibliss', 1), ('biétrix', 1), ('christoflour', 1), ('infaillibilité', 1), ('corintian', 1), ('analyta', 1), ('gammali', 1), ('mantegazzi', 1)]...\n", - "2018-08-31 01:03:39,706 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3730000 (=100.0%) documents\n", - "2018-08-31 01:03:41,934 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:41,989 : INFO : adding document #3730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:45,720 : INFO : discarding 27095 tokens: [('housemark', 1), ('kunigliga', 1), ('nordenval', 1), ('serafimerorden', 1), ('acommerc', 1), ('ecomey', 1), ('ecommerceiq', 1), ('ipric', 1), ('itruemart', 1), ('pricepanda', 1)]...\n", - "2018-08-31 01:03:45,720 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3740000 (=100.0%) documents\n", - "2018-08-31 01:03:47,907 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:47,961 : INFO : adding document #3740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:51,740 : INFO : discarding 26408 tokens: [('etüken', 1), ('maliyan', 1), ('ahaf', 1), ('aswoon', 1), ('gorskok', 1), ('infla', 1), ('kumsan', 1), ('porform', 1), ('preeemin', 1), ('서울시립미술관', 1)]...\n", - "2018-08-31 01:03:51,741 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3750000 (=100.0%) documents\n", - "2018-08-31 01:03:53,982 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:54,039 : INFO : adding document #3750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:03:57,820 : INFO : discarding 30792 tokens: [('whisperer”', 1), ('araweelo', 1), ('bartamaha', 1), ('somaliwood', 1), ('wargelin', 1), ('xaaskayga', 1), ('kabacchi', 1), ('camarathon', 1), ('gcecd', 1), ('gepeto', 1)]...\n", - "2018-08-31 01:03:57,821 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3760000 (=100.0%) documents\n", - "2018-08-31 01:04:00,009 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:00,063 : INFO : adding document #3760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:03,868 : INFO : discarding 26649 tokens: [('altantuya', 1), ('americk', 1), ('shaariibuu', 1), ('shariibugin', 1), ('yokeheswarem', 1), ('yokheswarem', 1), ('kuaiwa', 1), ('mahakian', 1), ('christoffersdatt', 1), ('danielssøn', 1)]...\n", - "2018-08-31 01:04:03,869 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3770000 (=100.0%) documents\n", - "2018-08-31 01:04:06,086 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:06,141 : INFO : adding document #3770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:09,715 : INFO : discarding 23153 tokens: [('ssiek', 1), ('bezauri', 1), ('ghurum', 1), ('gitanjana', 1), ('kenyatta’', 1), ('kimemia', 1), ('mottaleb', 1), ('nibigira', 1), ('sezibera', 1), ('sibabrata', 1)]...\n", - "2018-08-31 01:04:09,716 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3780000 (=100.0%) documents\n", - "2018-08-31 01:04:11,895 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:11,949 : INFO : adding document #3780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:15,614 : INFO : discarding 24353 tokens: [('alivenotdead', 1), ('ptu女警之偶然陷阱', 1), ('redgrass', 1), ('youlai', 1), ('マイ★ヒーロー', 1), ('マイ★ボス', 1), ('三不管', 1), ('不再讓你孤單', 1), ('不死心靈', 1), ('中華兒女', 1)]...\n", - "2018-08-31 01:04:15,615 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3790000 (=100.0%) documents\n", - "2018-08-31 01:04:17,839 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:17,895 : INFO : adding document #3790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:21,626 : INFO : discarding 23794 tokens: [('truthclaim', 1), ('dustav', 1), ('hastam', 1), ('luftur', 1), ('jlnf', 1), ('jnmf', 1), ('aeit', 1), ('issotl', 1), ('iswnetwork', 1), ('centerwatch', 1)]...\n", - "2018-08-31 01:04:21,626 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3800000 (=100.0%) documents\n" + "2018-09-26 17:31:25,125 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,126 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,126 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,127 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,128 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,129 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,129 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,130 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,131 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,132 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,132 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,133 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,134 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,135 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,135 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,156 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,157 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,157 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,158 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,159 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,161 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,161 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,162 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,163 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,163 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,168 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,169 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,170 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,170 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,171 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,172 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,172 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,173 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,174 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,174 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,175 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,176 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,177 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,177 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,178 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,179 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,180 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,180 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,181 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,182 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,183 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,183 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,184 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,185 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,186 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,186 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,187 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,188 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,188 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,189 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,190 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,191 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,192 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,194 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,194 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,195 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,196 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,196 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,197 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,198 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,198 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,199 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,200 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,201 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,201 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,202 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,203 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,204 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,204 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,205 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,206 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,207 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,207 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,208 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,209 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,210 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,211 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,212 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,212 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,213 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,214 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,215 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,215 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,217 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,217 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,218 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,219 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,219 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,220 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,221 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,222 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,222 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,223 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,224 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,225 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,226 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,227 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,227 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,228 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,229 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,229 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,230 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:04:23,828 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:23,881 : INFO : adding document #3800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:27,657 : INFO : discarding 26588 tokens: [('pinellas”', 1), ('metapsíquico', 1), ('malhstedt', 1), ('cutston', 1), ('astodia', 1), ('hargovanda', 1), ('lakhmichand', 1), ('nathiba', 1), ('nhlmmc', 1), ('saraspur', 1)]...\n", - "2018-08-31 01:04:27,658 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3810000 (=100.0%) documents\n", - "2018-08-31 01:04:29,894 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:29,949 : INFO : adding document #3810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:33,823 : INFO : discarding 28656 tokens: [('ophisoma', 1), ('noctuélit', 1), ('arulik', 1), ('hakafashist', 1), ('արևելք', 1), ('kedou', 1), ('đẩu', 1), ('“蝌蚪书”、“蝌蚪篆”', 1), ('消歧义', 1), ('蝌蚪文', 1)]...\n", - "2018-08-31 01:04:33,824 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3820000 (=100.0%) documents\n", - "2018-08-31 01:04:36,005 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:36,059 : INFO : adding document #3820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:39,794 : INFO : discarding 25327 tokens: [('bedimo', 1), ('djeugoué', 1), ('guémo', 1), ('miscontrol', 1), ('diomandé', 1), ('conmebolafc', 1), ('frickson', 1), ('mažić', 1), ('uchebo', 1), ('uzoenyi', 1)]...\n", - "2018-08-31 01:04:39,795 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3830000 (=100.0%) documents\n", - "2018-08-31 01:04:42,018 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:42,073 : INFO : adding document #3830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:45,976 : INFO : discarding 26127 tokens: [('beyhadh', 1), ('vighnaharta', 1), ('habits”', 1), ('leewis', 1), ('centuries”', 1), ('shillea', 1), ('shillea’', 1), ('“galleri', 1), ('akp’', 1), ('aktihanoglu', 1)]...\n", - "2018-08-31 01:04:45,976 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3840000 (=100.0%) documents\n", - "2018-08-31 01:04:48,169 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:48,222 : INFO : adding document #3840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:52,015 : INFO : discarding 25095 tokens: [('descenz', 1), ('winterclimb', 1), ('tapdk', 1), ('theaterjon', 1), ('contrastandard', 1), ('yutsi', 1), ('playpak', 1), ('undetal', 1), ('rohga', 1), ('wartech', 1)]...\n", - "2018-08-31 01:04:52,016 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3850000 (=100.0%) documents\n", - "2018-08-31 01:04:54,234 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:54,289 : INFO : adding document #3850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:04:57,972 : INFO : discarding 23718 tokens: [('wtcta', 1), ('lecklit', 1), ('dolerosauru', 1), ('trauthi', 1), ('nordicbet', 1), ('ulbjerg', 1), ('chico”', 1), ('“colegio', 1), ('ambei', 1), ('bikta', 1)]...\n", - "2018-08-31 01:04:57,973 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3860000 (=100.0%) documents\n", - "2018-08-31 01:05:00,167 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:00,220 : INFO : adding document #3860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:03,812 : INFO : discarding 23329 tokens: [('բարդուղիմեոսի', 1), ('լիմ', 1), ('խծկոնք', 1), ('մշո', 1), ('նարեկավանք', 1), ('bushelman', 1), ('atatürkün', 1), ('bakıdakı', 1), ('başkomutan', 1), ('başöğretmen', 1)]...\n", - "2018-08-31 01:05:03,812 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3870000 (=100.0%) documents\n", - "2018-08-31 01:05:06,039 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:06,094 : INFO : adding document #3870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:09,868 : INFO : discarding 28582 tokens: [('αθλοπαιδιών', 1), ('εοαπ', 1), ('”groovin', 1), ('feet…it', 1), ('mgbolu', 1), ('captric', 1), ('captricity’', 1), ('“shredded”', 1), ('leadi', 1), ('charfoo', 1)]...\n", - "2018-08-31 01:05:09,868 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3880000 (=100.0%) documents\n", - "2018-08-31 01:05:12,058 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:12,112 : INFO : adding document #3880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:15,660 : INFO : discarding 27492 tokens: [('žuan', 1), ('qājar', 1), ('qarqalu', 1), ('qārqāli', 1), ('qārqālū', 1), ('enriquecarlo', 1), ('pórrez', 1), ('komajin', 1), ('eleiec', 1), ('ermez', 1)]...\n", - "2018-08-31 01:05:15,661 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3890000 (=100.0%) documents\n", - "2018-08-31 01:05:17,878 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:17,935 : INFO : adding document #3890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:21,514 : INFO : discarding 27575 tokens: [('pennix', 1), ('midyan', 1), ('ownerhip', 1), ('wiganthorp', 1), ('blendin', 1), ('cutebik', 1), ('fillbrick', 1), ('mcgucket', 1), ('stanchurian', 1), ('antersijn', 1)]...\n", - "2018-08-31 01:05:21,515 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3900000 (=100.0%) documents\n", - "2018-08-31 01:05:23,707 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:23,761 : INFO : adding document #3900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:27,438 : INFO : discarding 30283 tokens: [('grizzlies—becom', 1), ('nubeo', 1), ('votes—second', 1), ('motorsport—th', 1), ('aisenbrei', 1), ('theatermess', 1), ('alytoi', 1), ('amanédh', 1), ('bayandéra', 1), ('carkad', 1)]...\n", - "2018-08-31 01:05:27,438 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3910000 (=100.0%) documents\n", - "2018-08-31 01:05:29,665 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:29,721 : INFO : adding document #3910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:33,285 : INFO : discarding 27385 tokens: [('琿春廳', 1), ('边境村', 1), ('长图线', 1), ('阳川山屯线', 1), ('青年湖公园', 1), ('도문시', 1), ('돈화시', 1), ('룡정시', 1), ('안도현', 1), ('연길시', 1)]...\n", - "2018-08-31 01:05:33,286 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3920000 (=100.0%) documents\n", - "2018-08-31 01:05:35,481 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:35,534 : INFO : adding document #3920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:39,033 : INFO : discarding 28022 tokens: [('ballghazi', 1), ('bendgat', 1), ('biscuitg', 1), ('blabberg', 1), ('bladeg', 1), ('bridgeghazi', 1), ('briefing', 1), ('chipgat', 1), ('cuntgat', 1), ('deaverg', 1)]...\n" + "2018-09-26 17:31:25,231 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,232 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,233 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,233 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,234 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,235 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,236 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,236 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,238 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,239 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,240 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,462 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,464 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,465 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,466 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,467 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,467 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,468 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,469 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,470 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,472 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,473 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,474 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,475 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,476 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,476 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,478 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,479 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,479 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,480 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,482 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,483 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,483 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,484 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,485 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,485 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,486 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,487 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,487 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,488 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,489 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,489 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,490 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,491 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,491 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,492 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,493 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,493 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,495 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,496 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,496 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,497 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,498 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,498 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,499 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,500 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,500 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,501 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,502 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,514 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,515 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,516 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,516 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,517 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,518 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,519 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,519 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,520 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,522 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,522 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,523 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,524 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,524 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,525 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,526 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,527 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,527 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,528 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,529 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,530 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,531 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,532 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,532 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,534 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,535 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,535 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,536 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,537 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,538 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,539 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,539 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,540 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,541 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,541 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,542 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,543 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,543 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,544 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,545 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,546 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,546 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,547 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,548 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,548 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,549 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,550 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,551 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:05:39,034 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3930000 (=100.0%) documents\n", - "2018-08-31 01:05:41,269 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:41,324 : INFO : adding document #3930000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:44,831 : INFO : discarding 23651 tokens: [('premur', 1), ('prevajalec', 1), ('prevodoma', 1), ('produkciji', 1), ('protitok', 1), ('provincialn', 1), ('raziskovalno', 1), ('različni', 1), ('razsvetljenska', 1), ('reakcionarni', 1)]...\n", - "2018-08-31 01:05:44,832 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3940000 (=100.0%) documents\n", - "2018-08-31 01:05:47,020 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:47,073 : INFO : adding document #3940000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:50,526 : INFO : discarding 25483 tokens: [('antimarkovnikov', 1), ('disiamyl', 1), ('methylcyclopenten', 1), ('methylcyclpentane—th', 1), ('amrop', 1), ('firm—peat', 1), ('futurestepat', 1), ('pratzer', 1), ('ultracompetit', 1), ('blaah', 1)]...\n", - "2018-08-31 01:05:50,527 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3950000 (=100.0%) documents\n", - "2018-08-31 01:05:52,765 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:52,822 : INFO : adding document #3950000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:56,182 : INFO : discarding 26712 tokens: [('cathedraex', 1), ('cathedrahi', 1), ('cathedrajeffrei', 1), ('consorthi', 1), ('consortjeffrei', 1), ('cornettsconcerto', 1), ('cornettsjeffrei', 1), ('elderandrew', 1), ('evangelisteamonn', 1), ('evangelistgreg', 1)]...\n", - "2018-08-31 01:05:56,183 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3960000 (=100.0%) documents\n", - "2018-08-31 01:05:58,378 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:05:58,431 : INFO : adding document #3960000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:01,886 : INFO : discarding 21158 tokens: [('juanmanueldelmar', 1), ('juanvelascoalvarado', 1), ('justinianoborgoño', 1), ('justofiguerola', 1), ('lizardomonteroflor', 1), ('luisjosédeorbegoso', 1), ('luislapuerta', 1), ('luismiguelsánchezcerro', 1), ('manuelcandamo', 1), ('manuelignaciodevivanco', 1)]...\n", - "2018-08-31 01:06:01,886 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3970000 (=100.0%) documents\n", - "2018-08-31 01:06:04,108 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:04,162 : INFO : adding document #3970000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:07,732 : INFO : discarding 24238 tokens: [('ižoralain', 1), ('līċ', 1), ('jiɸu', 1), ('qiyinlu', 1), ('yùnfù', 1), ('yùntóu', 1), ('aldocumar', 1), ('anasmol', 1), ('anticoag', 1), ('befarin', 1)]...\n", - "2018-08-31 01:06:07,733 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3980000 (=100.0%) documents\n", - "2018-08-31 01:06:09,942 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:09,996 : INFO : adding document #3980000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:13,626 : INFO : discarding 25230 tokens: [('feniksov', 1), ('fenixaren', 1), ('fenixorden', 1), ('filosofau', 1), ('filozofală', 1), ('flammern', 1), ('fruktansvärt', 1), ('fshehtav', 1), ('furien', 1), ('fénixov', 1)]...\n", - "2018-08-31 01:06:13,627 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 3990000 (=100.0%) documents\n", - "2018-08-31 01:06:15,847 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:15,902 : INFO : adding document #3990000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:19,660 : INFO : discarding 28551 tokens: [('lynch–bushbi', 1), ('lynch–lee–murdai', 1), ('lyn–li', 1), ('lúe', 1), ('pleonosteosi', 1), ('pseudometachromat', 1), ('inlaat', 1), ('aminoacidopathi', 1), ('broca–boni', 1), ('hypoacousia', 1)]...\n", - "2018-08-31 01:06:19,660 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4000000 (=100.0%) documents\n", - "2018-08-31 01:06:21,872 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:21,927 : INFO : adding document #4000000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:25,621 : INFO : discarding 26595 tokens: [('computexdai', 1), ('skybridgeinterlaken', 1), ('skybridgemunich', 1), ('awxj', 1), ('london—teessid', 1), ('berryno', 1), ('cesenano', 1), ('neuburgno', 1), ('tendano', 1), ('tudorno', 1)]...\n", - "2018-08-31 01:06:25,622 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4010000 (=100.0%) documents\n", - "2018-08-31 01:06:27,849 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:27,904 : INFO : adding document #4010000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:31,249 : INFO : discarding 22417 tokens: [('naudingen', 1), ('“competitor”', 1), ('hkdba', 1), ('phoneticis', 1), ('province—near', 1), ('wcorcom', 1), ('wdbrc', 1), ('sitback', 1), ('camaspostrecord', 1), ('anonyniu', 1)]...\n", - "2018-08-31 01:06:31,250 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4020000 (=100.0%) documents\n", - "2018-08-31 01:06:33,452 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:33,505 : INFO : adding document #4020000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:36,947 : INFO : discarding 22038 tokens: [('ajmn', 1), ('ajplu', 1), ('nowthi', 1), ('fudoshin', 1), ('sadateru', 1), ('stratobu', 1), ('ambala–attari', 1), ('atariwala', 1), ('shabajpur', 1), ('demekhi', 1)]...\n", - "2018-08-31 01:06:36,948 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4030000 (=100.0%) documents\n", - "2018-08-31 01:06:39,178 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:39,233 : INFO : adding document #4030000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:42,754 : INFO : discarding 26370 tokens: [('gazger', 1), ('gāzgar', 1), ('gāzger', 1), ('jodegalabad', 1), ('jodegālābād', 1), ('joghranvaru', 1), ('joghrānvārū', 1), ('joghrāvārū', 1), ('jamig', 1), ('jamīg', 1)]...\n", - "2018-08-31 01:06:42,755 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4040000 (=100.0%) documents\n", - "2018-08-31 01:06:44,953 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:45,008 : INFO : adding document #4040000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:48,930 : INFO : discarding 30108 tokens: [('heterogend', 1), ('ewbb', 1), ('ljubliana', 1), ('multeum', 1), ('observatour', 1), ('polycentropsi', 1), ('guangyong', 1), ('mulligar', 1), ('martello–martellt', 1), ('payol', 1)]...\n", - "2018-08-31 01:06:48,931 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4050000 (=100.0%) documents\n" + "2018-09-26 17:31:25,551 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,572 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,572 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,573 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,574 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,574 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,575 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,576 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,577 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,577 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,578 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,579 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,580 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,581 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,582 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,583 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,583 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,584 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,585 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,586 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,586 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,587 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,588 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,589 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,590 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,590 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,591 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,592 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,592 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,593 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,594 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,594 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,595 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,596 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,597 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,598 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,598 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,599 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,600 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,601 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,601 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,602 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,603 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,604 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,604 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,605 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,606 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,607 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,608 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,608 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,609 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,610 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,611 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,612 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,612 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,613 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,614 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,614 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,615 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,616 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,617 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,617 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,618 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,619 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,620 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,621 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,621 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,622 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,623 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,623 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,624 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,625 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,626 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,627 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,628 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,628 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,629 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,630 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,631 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,631 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,632 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,633 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,634 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,634 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,635 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,636 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,637 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,637 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,638 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,639 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,640 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,641 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,642 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,643 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,643 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,644 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,645 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,645 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,646 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,647 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,648 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,648 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,649 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,650 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,650 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,651 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,652 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:06:51,173 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:51,228 : INFO : adding document #4050000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:54,963 : INFO : discarding 25795 tokens: [('hodzyur', 1), ('krasnozhan', 1), ('utsiev', 1), ('affelai', 1), ('choutesioti', 1), ('masuaku', 1), ('strezo', 1), ('pangratio', 1), ('alebrini', 1), ('thadeyn', 1)]...\n", - "2018-08-31 01:06:54,964 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4060000 (=100.0%) documents\n", - "2018-08-31 01:06:57,160 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:06:57,214 : INFO : adding document #4060000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:00,990 : INFO : discarding 24945 tokens: [('buddhanin', 1), ('kobam', 1), ('siripu', 1), ('yaasagan', 1), ('llanar', 1), ('trysav', 1), ('‘beefy’', 1), ('atumpan’', 1), ('elinam', 1), ('hardboi', 1)]...\n", - "2018-08-31 01:07:00,991 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4070000 (=100.0%) documents\n", - "2018-08-31 01:07:03,216 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:03,271 : INFO : adding document #4070000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:07,078 : INFO : discarding 28279 tokens: [('mtun', 1), ('tucn', 1), ('giaguaro', 1), ('martinková', 1), ('sacrestano', 1), ('cronò', 1), ('gaudtvinck', 1), ('gavdtvinck', 1), ('goudtvinck', 1), ('‘ignativ', 1)]...\n", - "2018-08-31 01:07:07,078 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4080000 (=100.0%) documents\n", - "2018-08-31 01:07:09,269 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:09,323 : INFO : adding document #4080000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:13,211 : INFO : discarding 27270 tokens: [('kavarathi', 1), ('mohamma', 1), ('chengfoo', 1), ('tientsen', 1), ('waihaiwei', 1), ('avadhutha', 1), ('haritayana', 1), ('kshattriya', 1), ('parasurama’', 1), ('ramanananda', 1)]...\n", - "2018-08-31 01:07:13,212 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4090000 (=100.0%) documents\n", - "2018-08-31 01:07:15,444 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:15,500 : INFO : adding document #4090000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:19,262 : INFO : discarding 25875 tokens: [('rehabcar', 1), ('gavambodi', 1), ('karnatiqu', 1), ('plannisola', 1), ('agriculturepl', 1), ('glankeen', 1), ('kilcuilawn', 1), ('krickovič', 1), ('navijača', 1), ('podgorelec', 1)]...\n", - "2018-08-31 01:07:19,262 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4100000 (=100.0%) documents\n", - "2018-08-31 01:07:21,467 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:21,521 : INFO : adding document #4100000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:25,331 : INFO : discarding 31683 tokens: [('rentlord', 1), ('seedcamp', 1), ('almerin', 1), ('siriusdecis', 1), ('karzaz', 1), ('maribella', 1), ('cochleocep', 1), ('gobiesocid', 1), ('felderhoff', 1), ('krugalle', 1)]...\n", - "2018-08-31 01:07:25,331 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4110000 (=100.0%) documents\n", - "2018-08-31 01:07:27,556 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:27,612 : INFO : adding document #4110000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:31,433 : INFO : discarding 31773 tokens: [('costria', 1), ('discopuncta', 1), ('okendeni', 1), ('achuth', 1), ('cheluvaraj', 1), ('hemanthkumar', 1), ('shobh', 1), ('froemberg', 1), ('hatziyakouni', 1), ('rabed', 1)]...\n", - "2018-08-31 01:07:31,434 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4120000 (=100.0%) documents\n", - "2018-08-31 01:07:33,643 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:33,698 : INFO : adding document #4120000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:37,348 : INFO : discarding 26180 tokens: [('mattalia', 1), ('climonet', 1), ('bolcer', 1), ('lange–paul', 1), ('“mood', 1), ('“wend', 1), ('cardkei', 1), ('kentakkī', 1), ('kerasin', 1), ('radinov', 1)]...\n", - "2018-08-31 01:07:37,348 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4130000 (=100.0%) documents\n", - "2018-08-31 01:07:39,576 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:39,631 : INFO : adding document #4130000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:43,123 : INFO : discarding 26461 tokens: [('herniman', 1), ('kiwiboot', 1), ('зоро”', 1), ('мајска', 1), ('свијетла', 1), ('„ој', 1), ('dichpal', 1), ('jankampet', 1), ('nizamabad–manoharabad', 1), ('secunderabad–manmad', 1)]...\n", - "2018-08-31 01:07:43,124 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4140000 (=100.0%) documents\n", - "2018-08-31 01:07:45,322 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:45,375 : INFO : adding document #4140000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:49,028 : INFO : discarding 25557 tokens: [('dracularegion', 1), ('foolbroadwai', 1), ('hefner’', 1), ('sarjubala', 1), ('सरजूबाला', 1), ('counties—spokan', 1), ('horsebyt', 1), ('airtre', 1), ('arbolino', 1), ('brandcrowd', 1)]...\n", - "2018-08-31 01:07:49,029 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4150000 (=100.0%) documents\n", - "2018-08-31 01:07:51,262 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:51,318 : INFO : adding document #4150000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:55,039 : INFO : discarding 27656 tokens: [('deschauense', 1), ('ademinokan', 1), ('allahkabo', 1), ('baninla', 1), ('bonlambo', 1), ('bougfen', 1), ('dialemi', 1), ('lesizw', 1), ('l’orphelin', 1), ('mtungi', 1)]...\n", - "2018-08-31 01:07:55,039 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4160000 (=100.0%) documents\n", - "2018-08-31 01:07:57,259 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:07:57,313 : INFO : adding document #4160000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:01,049 : INFO : discarding 27527 tokens: [('badasseri', 1), ('bumpagussi', 1), ('fanback', 1), ('number—venus—trap', 1), ('whore”', 1), ('“gore', 1), ('“zombi', 1), ('allcamarina', 1), ('chachacomayoc', 1), ('chachakuma', 1)]...\n", - "2018-08-31 01:08:01,050 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4170000 (=100.0%) documents\n", - "2018-08-31 01:08:03,272 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:03,328 : INFO : adding document #4170000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:25,653 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,653 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,654 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,655 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,656 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,656 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,657 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,658 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,659 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,659 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,660 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,661 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,662 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,662 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,663 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,664 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,664 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,665 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,666 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,667 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,668 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,669 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,670 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,670 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,671 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,672 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,672 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,673 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,674 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,675 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,676 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,676 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,677 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,678 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,679 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,679 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,680 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,681 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,682 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,682 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,683 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,684 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,684 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,685 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,686 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,686 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,687 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,688 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,688 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,689 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,690 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,691 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,691 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,692 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,693 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,694 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,694 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,695 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,696 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,696 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,697 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,698 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,698 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,699 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,700 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,701 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,701 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,702 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,703 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,703 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,704 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,705 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,705 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,706 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,707 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,708 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,709 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,710 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,710 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,711 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,712 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,712 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,713 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,714 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,714 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,715 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,716 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,716 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,717 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,718 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,719 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,719 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,720 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,721 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,740 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,741 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,742 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,743 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,743 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,744 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,745 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,745 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,746 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,747 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,747 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,748 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,749 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:08:07,053 : INFO : discarding 32837 tokens: [('busiess', 1), ('duhoki', 1), ('mehoderet', 1), ('zilberstien', 1), ('“barghouti', 1), ('grosswig', 1), ('beninensi', 1), ('beninensis”', 1), ('pflanzenfam', 1), ('pflanzenw', 1)]...\n", - "2018-08-31 01:08:07,053 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4180000 (=100.0%) documents\n", - "2018-08-31 01:08:09,254 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:09,310 : INFO : adding document #4180000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:13,016 : INFO : discarding 26977 tokens: [('adefesio', 1), ('bellesa', 1), ('bitó', 1), ('cdgc', 1), ('coratg', 1), ('dispersión', 1), ('dramàtic', 1), ('poliorama', 1), ('reposición', 1), ('ridículo', 1)]...\n", - "2018-08-31 01:08:13,017 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4190000 (=100.0%) documents\n", - "2018-08-31 01:08:15,240 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:15,296 : INFO : adding document #4190000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:18,909 : INFO : discarding 26355 tokens: [('asteson', 1), ('bciaev', 1), ('bcmab', 1), ('bcowg', 1), ('bfkss', 1), ('biawm', 1), ('bqcjo', 1), ('buwg', 1), ('mystic”', 1), ('odrun', 1)]...\n", - "2018-08-31 01:08:18,910 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4200000 (=100.0%) documents\n", - "2018-08-31 01:08:21,112 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:21,166 : INFO : adding document #4200000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:24,815 : INFO : discarding 27749 tokens: [('лончар', 1), ('раде', 1), ('olomi', 1), ('crsvr', 1), ('skizzi', 1), ('wentzi', 1), ('حسّون', 1), ('شادي', 1), ('shafgotch', 1), ('avertis', 1)]...\n", - "2018-08-31 01:08:24,816 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4210000 (=100.0%) documents\n", - "2018-08-31 01:08:27,050 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:27,105 : INFO : adding document #4210000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:30,794 : INFO : discarding 27483 tokens: [('gwmpa', 1), ('htv’', 1), ('asdefault', 1), ('datco', 1), ('dncc', 1), ('presentu', 1), ('usebelowbox', 1), ('ataş', 1), ('aycıl', 1), ('formerplay', 1)]...\n", - "2018-08-31 01:08:30,795 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4220000 (=100.0%) documents\n", - "2018-08-31 01:08:33,023 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:33,078 : INFO : adding document #4220000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:37,015 : INFO : discarding 33609 tokens: [('disembarc', 1), ('ddpd', 1), ('dimmension', 1), ('gheitanchi', 1), ('mbdpd', 1), ('mddpd', 1), ('nmse', 1), ('summart', 1), ('petitdemang', 1), ('chekir', 1)]...\n", - "2018-08-31 01:08:37,016 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4230000 (=100.0%) documents\n", - "2018-08-31 01:08:39,252 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:39,309 : INFO : adding document #4230000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:43,022 : INFO : discarding 35581 tokens: [('middelstegracht', 1), ('onbeschoten', 1), ('schoorsteen', 1), ('serruij', 1), ('wevershui', 1), ('south–eastward', 1), ('kummerfranziska', 1), ('forest–rich', 1), ('mollebo', 1), ('oud–dijk', 1)]...\n", - "2018-08-31 01:08:43,022 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4240000 (=100.0%) documents\n", - "2018-08-31 01:08:45,223 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:45,277 : INFO : adding document #4240000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:49,087 : INFO : discarding 26558 tokens: [('anhammu', 1), ('dalenii', 1), ('albisparsum', 1), ('albomaculatum', 1), ('alboplagiatum', 1), ('annamanum', 1), ('annulicorn', 1), ('basigranulatum', 1), ('chebanum', 1), ('griseolum', 1)]...\n", - "2018-08-31 01:08:49,087 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4250000 (=100.0%) documents\n", - "2018-08-31 01:08:51,322 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:51,378 : INFO : adding document #4250000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:55,129 : INFO : discarding 26392 tokens: [('morê', 1), ('mrdulja', 1), ('changkija', 1), ('curdt', 1), ('goslak', 1), ('koelbaek', 1), ('sadena', 1), ('yueer', 1), ('adhibekhon', 1), ('anuhandhan', 1)]...\n", - "2018-08-31 01:08:55,130 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4260000 (=100.0%) documents\n", - "2018-08-31 01:08:57,332 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:08:57,386 : INFO : adding document #4260000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:01,109 : INFO : discarding 25433 tokens: [('agherton', 1), ('asscoait', 1), ('botvidarsson', 1), ('hejnum', 1), ('hellvi', 1), ('maadikondu', 1), ('ಮಾಡಿ', 1), ('fourchevil', 1), ('lanjean', 1), ('slubicki', 1)]...\n", - "2018-08-31 01:09:01,110 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4270000 (=100.0%) documents\n", - "2018-08-31 01:09:03,333 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:03,389 : INFO : adding document #4270000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:07,204 : INFO : discarding 27722 tokens: [('sarıdaniş', 1), ('saxagan', 1), ('saçlımüsellim', 1), ('sefaalan', 1), ('selinoū̂', 1), ('sestv', 1), ('seyitl', 1), ('seïtàn', 1), ('seïtán', 1), ('siderio', 1)]...\n", - "2018-08-31 01:09:07,205 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4280000 (=100.0%) documents\n", - "2018-08-31 01:09:09,430 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:09,484 : INFO : adding document #4280000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:13,206 : INFO : discarding 27241 tokens: [('manipad', 1), ('palasoni', 1), ('pathori', 1), ('satradhikar', 1), ('podwalna', 1), ('zajdensznir', 1), ('yodia', 1), ('hahayyim', 1), ('hayyei', 1), ('paytanim', 1)]...\n", - "2018-08-31 01:09:13,206 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4290000 (=100.0%) documents\n", - "2018-08-31 01:09:15,447 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:15,503 : INFO : adding document #4290000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:19,322 : INFO : discarding 26610 tokens: [('clearenathaniel', 1), ('coxgenna', 1), ('darolyn', 1), ('davisalecia', 1), ('favolic', 1), ('guerrerojohn', 1), ('huaesther', 1), ('huntewilan', 1), ('johnsonandr', 1), ('juaun', 1)]...\n", - "2018-08-31 01:09:19,322 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4300000 (=100.0%) documents\n" + "2018-09-26 17:31:25,750 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,750 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,751 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,752 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,752 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,753 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,754 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,754 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,755 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,756 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,757 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,757 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,758 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,759 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,760 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,760 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,761 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,762 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,762 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,763 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,764 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,764 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,765 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,766 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,766 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,767 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,768 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,769 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,769 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,770 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,771 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,771 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,772 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,773 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,774 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,775 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,775 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,776 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,777 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,777 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,778 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,779 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,780 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,780 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,781 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,782 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,782 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,783 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,784 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,785 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,785 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,786 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,787 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,788 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,788 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,789 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,790 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,791 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,791 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,792 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,793 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,794 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,794 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,795 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,795 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,796 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,797 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,797 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,798 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,799 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,800 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,800 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,801 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,802 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,802 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,803 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,803 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,804 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,805 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,806 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,806 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,807 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,807 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,808 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,809 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,810 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,811 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,812 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,812 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,813 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,814 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,815 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,815 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,816 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,817 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,817 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,818 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,819 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,819 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,820 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,821 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,821 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,822 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,823 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,824 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,825 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,825 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:09:21,533 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:21,587 : INFO : adding document #4300000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:25,439 : INFO : discarding 26271 tokens: [('viestintä', 1), ('shinchireem', 1), ('polyromant', 1), ('alhathloul', 1), ('देओराई', 1), ('abbandon', 1), ('cicarimanah', 1), ('cilopang', 1), ('pamulihan', 1), ('ruhatma', 1)]...\n", - "2018-08-31 01:09:25,440 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4310000 (=100.0%) documents\n", - "2018-08-31 01:09:27,664 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:27,720 : INFO : adding document #4310000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:31,502 : INFO : discarding 26757 tokens: [('hagenbezirk', 1), ('oberlohberg', 1), ('bratusehek', 1), ('hundsternperiod', 1), ('intercessiss', 1), ('minoem', 1), ('mondcyclen', 1), ('münzfüsse', 1), ('philolaic', 1), ('philologensammlung', 1)]...\n", - "2018-08-31 01:09:31,503 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4320000 (=100.0%) documents\n", - "2018-08-31 01:09:33,712 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:33,766 : INFO : adding document #4320000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:37,543 : INFO : discarding 26110 tokens: [('yermosol', 1), ('frithstreetgalleri', 1), ('‘aquatopia', 1), ('empyriu', 1), ('’toon', 1), ('imogenstuart', 1), ('frēnulum', 1), ('ileocaecali', 1), ('indepthinfo', 1), ('jonpatrick', 1)]...\n", - "2018-08-31 01:09:37,544 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4330000 (=100.0%) documents\n", - "2018-08-31 01:09:39,768 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:39,824 : INFO : adding document #4330000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:43,716 : INFO : discarding 29562 tokens: [('shmadderhorn', 1), ('skyboss', 1), ('return—compli', 1), ('byelomory', 1), ('rate—mad', 1), ('resolution—ow', 1), ('beatlesactu', 1), ('catsactu', 1), ('pedmont', 1), ('turneractu', 1)]...\n", - "2018-08-31 01:09:43,716 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4340000 (=100.0%) documents\n", - "2018-08-31 01:09:45,928 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:45,983 : INFO : adding document #4340000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:49,760 : INFO : discarding 25286 tokens: [('moriakov', 1), ('nedostupnyi', 1), ('onkuko', 1), ('opasnaga', 1), ('panamushir', 1), ('rakkoshima', 1), ('rasutsua', 1), ('reidovo', 1), ('shimushir', 1), ('tanfilyevka', 1)]...\n", - "2018-08-31 01:09:49,760 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4350000 (=100.0%) documents\n", - "2018-08-31 01:09:51,991 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:52,048 : INFO : adding document #4350000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:55,908 : INFO : discarding 25872 tokens: [('cilìa', 1), ('earle—releas', 1), ('everypunk', 1), ('filmed—featur', 1), ('moaningli', 1), ('whigs—vocalist', 1), ('you—now', 1), ('dāʾimā', 1), ('muẓaff', 1), ('zülfe', 1)]...\n", - "2018-08-31 01:09:55,909 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4360000 (=100.0%) documents\n", - "2018-08-31 01:09:58,134 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:09:58,189 : INFO : adding document #4360000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:01,940 : INFO : discarding 24639 tokens: [('juglandioidea', 1), ('pecanpi', 1), ('preservation—hom', 1), ('banis', 1), ('boehmischbroda', 1), ('kölving', 1), ('urgrossmutt', 1), ('mixtecah', 1), ('boldest—through', 1), ('craven—drop', 1)]...\n", - "2018-08-31 01:10:01,940 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4370000 (=100.0%) documents\n", - "2018-08-31 01:10:04,164 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:04,220 : INFO : adding document #4370000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:07,951 : INFO : discarding 28414 tokens: [('fffeh', 1), ('fontpag', 1), ('jiseucjp', 1), ('microwiz', 1), ('modifoc', 1), ('rajvite', 1), ('ruscii', 1), ('sicgcc', 1), ('barwin’', 1), ('ewrit', 1)]...\n", - "2018-08-31 01:10:07,952 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4380000 (=100.0%) documents\n", - "2018-08-31 01:10:10,164 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:10,219 : INFO : adding document #4380000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:13,877 : INFO : discarding 26830 tokens: [('asturya', 1), ('charvonah', 1), ('chrsitian', 1), ('deprazo', 1), ('disengoff', 1), ('eitzah', 1), ('freilichin', 1), ('haitah', 1), ('hayesa', 1), ('khumai', 1)]...\n", - "2018-08-31 01:10:13,877 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4390000 (=100.0%) documents\n", - "2018-08-31 01:10:16,099 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:16,155 : INFO : adding document #4390000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:19,776 : INFO : discarding 24195 tokens: [('carocari', 1), ('faustman–ohlin', 1), ('åkerlöf', 1), ('loubet’', 1), ('cinemascope—', 1), ('cinemascope—a', 1), ('cinemascope—on', 1), ('press—bi', 1), ('richard—for', 1), ('roach—wer', 1)]...\n", - "2018-08-31 01:10:19,777 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4400000 (=100.0%) documents\n", - "2018-08-31 01:10:22,002 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:22,057 : INFO : adding document #4400000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:25,676 : INFO : discarding 25098 tokens: [('wildenburgisch', 1), ('fedarai', 1), ('fedraei', 1), ('losiap', 1), ('mwagmwog', 1), ('potoangroa', 1), ('yasor', 1), ('axes—keep', 1), ('corona′', 1), ('corona‴', 1)]...\n", - "2018-08-31 01:10:25,677 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4410000 (=100.0%) documents\n", - "2018-08-31 01:10:27,914 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:27,970 : INFO : adding document #4410000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:31,541 : INFO : discarding 22613 tokens: [('ʾarbaʿūn', 1), ('ʾithnān', 1), ('иккĕ', 1), ('сорак', 1), ('хĕрĕх', 1), ('четрдесет', 1), ('හතලිස්', 1), ('ორმოცდაორი', 1), ('dialkylaminoanthraquinon', 1), ('diethylaminoazobenzen', 1)]...\n", - "2018-08-31 01:10:31,542 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4420000 (=100.0%) documents\n", - "2018-08-31 01:10:33,767 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:33,821 : INFO : adding document #4420000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:25,826 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,827 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,827 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,828 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,829 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,829 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,830 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,831 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,832 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,832 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,833 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,834 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,834 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,835 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,836 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,837 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,837 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,838 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,839 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,839 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,840 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,841 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,842 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,842 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,843 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,844 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,845 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,845 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,846 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,846 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,847 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,848 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,849 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,849 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,850 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,851 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,852 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,853 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,854 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,856 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,860 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,861 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,862 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,863 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,864 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,864 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,865 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,866 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,866 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,867 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,868 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,868 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,870 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,870 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,871 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,872 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,872 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,873 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,874 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,875 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,876 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,876 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,877 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,878 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,878 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,879 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,880 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,881 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,882 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,883 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,883 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,884 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,885 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,885 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,886 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,907 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,908 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,909 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,910 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,911 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,912 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,913 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,913 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,914 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,915 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,916 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,917 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,917 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,919 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,920 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,921 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,922 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,922 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,923 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,924 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,924 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,925 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,926 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,927 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,927 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,928 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,929 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:10:37,410 : INFO : discarding 25416 tokens: [('udadh', 1), ('umaisi', 1), ('withelector', 1), ('yadlaf', 1), ('yahzin', 1), ('yalhan', 1), ('keïta’', 1), ('millenniumsprei', 1), ('“schicksal', 1), ('biotinctur', 1)]...\n", - "2018-08-31 01:10:37,410 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4430000 (=100.0%) documents\n", - "2018-08-31 01:10:39,643 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:39,699 : INFO : adding document #4430000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:43,517 : INFO : discarding 25712 tokens: [('babies—no', 1), ('രണ്ടാമൂഴം', 1), ('mudhakkirâtî', 1), ('haunt–', 1), ('羊をめぐる冒険', 1), ('hiáni', 1), ('年のピンボール', 1), ('bouzaidi', 1), ('fishbook', 1), ('prusakowski', 1)]...\n", - "2018-08-31 01:10:43,518 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4440000 (=100.0%) documents\n", - "2018-08-31 01:10:45,733 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:45,788 : INFO : adding document #4440000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:49,638 : INFO : discarding 28233 tokens: [('noisenik', 1), ('sexnois', 1), ('halkevleri', 1), ('insuanc', 1), ('documfest', 1), ('tv“', 1), ('wirtschaftsfilmprei', 1), ('zdftheaterkan', 1), ('„broadview', 1), ('buzzcar', 1)]...\n", - "2018-08-31 01:10:49,639 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4450000 (=100.0%) documents\n", - "2018-08-31 01:10:51,877 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:51,935 : INFO : adding document #4450000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:55,646 : INFO : discarding 23373 tokens: [('gonsalensi', 1), ('bp–bp', 1), ('pabalat', 1), ('gonsaloi', 1), ('toxtrot', 1), ('llangari', 1), ('pseudolisten', 1), ('kinderboekenmuseum', 1), ('mauritshau', 1), ('sgravenhag', 1)]...\n", - "2018-08-31 01:10:55,646 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4460000 (=100.0%) documents\n", - "2018-08-31 01:10:57,858 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:10:57,916 : INFO : adding document #4460000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:01,710 : INFO : discarding 26196 tokens: [('nislei', 1), ('mulran', 1), ('pakkiam', 1), ('camacúa', 1), ('veshka', 1), ('vishka’', 1), ('aboel', 1), ('maaden', 1), ('albummak', 1), ('chiljip', 1)]...\n", - "2018-08-31 01:11:01,710 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4470000 (=100.0%) documents\n", - "2018-08-31 01:11:03,947 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:04,004 : INFO : adding document #4470000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:07,794 : INFO : discarding 25284 tokens: [('xeob', 1), ('xerca', 1), ('xetaa', 1), ('xhtaa', 1), ('deleari', 1), ('eisennagel', 1), ('elsammak', 1), ('lap’', 1), ('xher', 1), ('fùshǔ', 1)]...\n", - "2018-08-31 01:11:07,795 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4480000 (=100.0%) documents\n", - "2018-08-31 01:11:10,008 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:10,062 : INFO : adding document #4480000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:13,768 : INFO : discarding 25546 tokens: [('sivrji', 1), ('leatherart', 1), ('stehben', 1), ('eidolf', 1), ('smiercakova', 1), ('xiao’ou', 1), ('epuff', 1), ('xinpei', 1), ('yingmei', 1), ('两大女主角之一', 1)]...\n", - "2018-08-31 01:11:13,769 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4490000 (=100.0%) documents\n", - "2018-08-31 01:11:15,991 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:16,048 : INFO : adding document #4490000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:19,727 : INFO : discarding 25155 tokens: [('colafrancessco', 1), ('colafrancesso', 1), ('murworth', 1), ('vinceslao', 1), ('bare’', 1), ('bubbapalooza', 1), ('ccshow', 1), ('cryin’', 1), ('epladi', 1), ('epwatermelon', 1)]...\n", - "2018-08-31 01:11:19,727 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4500000 (=100.0%) documents\n", - "2018-08-31 01:11:21,945 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:22,000 : INFO : adding document #4500000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:25,667 : INFO : discarding 25594 tokens: [('bialkonski', 1), ('derfl', 1), ('generalin', 1), ('grodicki', 1), ('heiratsnest', 1), ('henkstein', 1), ('sorner', 1), ('wranow', 1), ('seiford', 1), ('nepoos', 1)]...\n", - "2018-08-31 01:11:25,668 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4510000 (=100.0%) documents\n", - "2018-08-31 01:11:27,911 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:27,967 : INFO : adding document #4510000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:31,755 : INFO : discarding 26618 tokens: [('chronei', 1), ('footprintz', 1), ('jesglar', 1), ('brozei', 1), ('cusumba', 1), ('namsŏk', 1), ('sŏnghu', 1), ('estrapron', 1), ('tristeroid', 1), ('trophobolen', 1)]...\n", - "2018-08-31 01:11:31,755 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4520000 (=100.0%) documents\n", - "2018-08-31 01:11:33,974 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:34,029 : INFO : adding document #4520000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:37,854 : INFO : discarding 26258 tokens: [('aackerlund', 1), ('hollyann', 1), ('burmanniida', 1), ('cormfyt', 1), ('cormofyt', 1), ('fjälltrakter', 1), ('fylog', 1), ('färder', 1), ('kommunalgymnasium', 1), ('lappmark', 1)]...\n", - "2018-08-31 01:11:37,855 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4530000 (=100.0%) documents\n", - "2018-08-31 01:11:40,093 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:40,148 : INFO : adding document #4530000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:43,821 : INFO : discarding 24805 tokens: [('bybi', 1), ('‘groupwork', 1), ('eyhirind', 1), ('komekbaev', 1), ('taimbet', 1), ('zhosali', 1), ('көмекбаев', 1), ('тәйімбет', 1), ('kaipi', 1), ('marstv', 1)]...\n", - "2018-08-31 01:11:43,822 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4540000 (=100.0%) documents\n", - "2018-08-31 01:11:46,049 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:46,103 : INFO : adding document #4540000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:49,784 : INFO : discarding 29513 tokens: [('chopek', 1), ('lvng', 1), ('seerman', 1), ('bilkman', 1), ('blisson', 1), ('guenoden', 1), ('mccabewith', 1), ('rabbit—televis', 1), ('schellewald', 1), ('sniz', 1)]...\n", - "2018-08-31 01:11:49,785 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4550000 (=100.0%) documents\n" + "2018-09-26 17:31:25,930 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,930 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,931 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,932 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,933 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,933 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,934 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,935 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,935 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,936 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,937 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,938 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,939 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,940 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,941 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,941 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,942 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,945 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,946 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,947 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,948 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,948 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,949 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,950 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,951 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,951 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,952 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,953 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,953 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,954 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,955 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,956 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,956 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,957 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,958 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,959 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,960 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,961 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,961 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,962 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,963 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,964 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,965 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,965 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,966 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,967 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,968 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,968 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,969 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,970 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,971 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,972 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,972 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,973 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,974 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,975 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,976 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,976 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,977 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,978 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,979 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,979 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,980 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,981 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,982 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,982 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,983 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,984 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,984 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,985 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,986 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,986 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,987 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,988 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,988 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,989 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,990 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,991 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,991 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,992 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,993 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,994 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,995 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,995 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,996 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,997 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,998 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,998 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,999 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:25,999 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,001 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,002 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,002 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,012 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,013 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,014 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,015 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,016 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,016 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,017 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,018 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,018 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,019 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,020 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,021 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,022 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,022 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:11:52,033 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:52,089 : INFO : adding document #4550000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:55,843 : INFO : discarding 27946 tokens: [('aristri', 1), ('bitú', 1), ('contratado', 1), ('criou', 1), ('indivisível', 1), ('nosgenti', 1), ('storiei', 1), ('himmeltårnet', 1), ('mannfolk', 1), ('synker', 1)]...\n", - "2018-08-31 01:11:55,843 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4560000 (=100.0%) documents\n", - "2018-08-31 01:11:58,057 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:11:58,114 : INFO : adding document #4560000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:01,790 : INFO : discarding 25430 tokens: [('compathi', 1), ('transpathi', 1), ('unipathi', 1), ('hphl', 1), ('jedraniyah', 1), ('kuhaylan', 1), ('samraa', 1), ('zawba', 1), ('boniquez', 1), ('mosoli', 1)]...\n", - "2018-08-31 01:12:01,791 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4570000 (=100.0%) documents\n", - "2018-08-31 01:12:04,024 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:04,081 : INFO : adding document #4570000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:07,772 : INFO : discarding 24577 tokens: [('hazera', 1), ('philuppa', 1), ('villiprott', 1), ('subnormality’', 1), ('subnormal’', 1), ('‘incurable’', 1), ('‘psychopath’', 1), ('dolsando', 1), ('huayllani', 1), ('gudlavalleru', 1)]...\n", - "2018-08-31 01:12:07,773 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4580000 (=100.0%) documents\n", - "2018-08-31 01:12:09,986 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:10,041 : INFO : adding document #4580000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:13,671 : INFO : discarding 25906 tokens: [('baddamp', 1), ('badvelli', 1), ('bommena', 1), ('buyyaram', 1), ('chamanp', 1), ('godampet', 1), ('gudep', 1), ('jajulpet', 1), ('jakkep', 1), ('jilleda', 1)]...\n", - "2018-08-31 01:12:13,671 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4590000 (=100.0%) documents\n", - "2018-08-31 01:12:15,907 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:15,964 : INFO : adding document #4590000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:19,555 : INFO : discarding 26622 tokens: [('buttefield', 1), ('twentysomethings’', 1), ('형제복지원', 1), ('chyqui', 1), ('chyti', 1), ('aussenförd', 1), ('eeeeeeoooooow', 1), ('purrrrr', 1), ('farming’', 1), ('lanefield', 1)]...\n", - "2018-08-31 01:12:19,555 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4600000 (=100.0%) documents\n", - "2018-08-31 01:12:21,783 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:21,837 : INFO : adding document #4600000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:25,275 : INFO : discarding 21558 tokens: [('xevjp', 1), ('xhvjp', 1), ('xelu', 1), ('xhlu', 1), ('xeng', 1), ('xheng', 1), ('dostbiliranpstc', 1), ('xeol', 1), ('byarkitekten', 1), ('ålcom', 1)]...\n", - "2018-08-31 01:12:25,276 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4610000 (=100.0%) documents\n", - "2018-08-31 01:12:27,516 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:27,572 : INFO : adding document #4610000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:31,214 : INFO : discarding 27511 tokens: [('sfranki', 1), ('rauchenberg', 1), ('freakshift', 1), ('joobeur', 1), ('oubthani', 1), ('abitey', 1), ('agbinibo', 1), ('chanomi', 1), ('ekpemupolo', 1), ('eweleso', 1)]...\n", - "2018-08-31 01:12:31,215 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4620000 (=100.0%) documents\n", - "2018-08-31 01:12:33,438 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:33,492 : INFO : adding document #4620000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:37,252 : INFO : discarding 28035 tokens: [('bahnhofsbucht', 1), ('heilbronn–schwäbisch', 1), ('hohenlohebahn', 1), ('kocherbahn', 1), ('operating”', 1), ('zamarián', 1), ('kohlrabizirku', 1), ('lokhal', 1), ('multiversum', 1), ('sachsenarena', 1)]...\n", - "2018-08-31 01:12:37,253 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4630000 (=100.0%) documents\n", - "2018-08-31 01:12:39,498 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:39,555 : INFO : adding document #4630000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:43,280 : INFO : discarding 29319 tokens: [('kuehu', 1), ('lahni', 1), ('salanoa', 1), ('shawlina', 1), ('citraperkasa', 1), ('gentabuana', 1), ('halilintar', 1), ('karmapala', 1), ('mayangkara', 1), ('menaragad', 1)]...\n", - "2018-08-31 01:12:43,281 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4640000 (=100.0%) documents\n", - "2018-08-31 01:12:45,509 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:45,563 : INFO : adding document #4640000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:49,172 : INFO : discarding 25666 tokens: [('cooperatsiya', 1), ('pisheviki', 1), ('«сборная', 1), ('братьев', 1), ('могилы', 1), ('родословной', 1), ('старостиных', 1), ('футболу»', 1), ('gewachs', 1), ('hieracien', 1)]...\n", - "2018-08-31 01:12:49,172 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4650000 (=100.0%) documents\n", - "2018-08-31 01:12:51,401 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:51,458 : INFO : adding document #4650000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:55,095 : INFO : discarding 27899 tokens: [('motalia', 1), ('saltomort', 1), ('dictornari', 1), ('speigelberg', 1), ('teatrar', 1), ('theaterhistori', 1), ('velthen', 1), ('“kwong', 1), ('läski', 1), ('pihlajamaa', 1)]...\n", - "2018-08-31 01:12:55,096 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4660000 (=100.0%) documents\n", - "2018-08-31 01:12:57,320 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:12:57,375 : INFO : adding document #4660000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:00,887 : INFO : discarding 22069 tokens: [('cheruvallikkavu', 1), ('dharmashatha', 1), ('kumaranallor', 1), ('kuroor', 1), ('laxmna', 1), ('manarcad', 1), ('mookaambika', 1), ('nagampadom', 1), ('pakkil', 1), ('pallippurathukavu', 1)]...\n", - "2018-08-31 01:13:00,888 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4670000 (=100.0%) documents\n", - "2018-08-31 01:13:03,128 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:03,185 : INFO : adding document #4670000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:26,023 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,024 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,025 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,025 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,026 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,027 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,027 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,028 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,029 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,030 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,032 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,032 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,033 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,034 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,036 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,037 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,037 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,038 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,039 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,040 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,040 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,042 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,042 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,043 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,044 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,045 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,045 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,046 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,047 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,048 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,049 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,049 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,051 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,051 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,052 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,053 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,054 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,054 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,055 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,056 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,056 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,057 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,058 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,059 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,059 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,060 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,061 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,062 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,063 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,063 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,064 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,065 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,066 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,066 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,067 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,068 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,068 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,069 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,071 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,071 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,072 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,073 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,073 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,092 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,092 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,093 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,094 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,095 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,096 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,096 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,097 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,097 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,098 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,099 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,100 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,101 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,102 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,103 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,103 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,104 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,106 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,107 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,108 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,109 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,110 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,112 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,112 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,113 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,114 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,115 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,116 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,117 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,117 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,118 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,119 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,120 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,120 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,122 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,123 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,123 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,124 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,125 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,125 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,126 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:13:06,836 : INFO : discarding 30694 tokens: [('karisalkalampatti', 1), ('karisalkallampatti', 1), ('maikandan', 1), ('prednli', 1), ('rayapalayam', 1), ('sengapadai', 1), ('sivarakkottai', 1), ('sivarakottai', 1), ('sundrav', 1), ('surayi', 1)]...\n", - "2018-08-31 01:13:06,837 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4680000 (=100.0%) documents\n", - "2018-08-31 01:13:09,061 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:09,116 : INFO : adding document #4680000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:12,581 : INFO : discarding 22690 tokens: [('dunnamona', 1), ('owenacharra', 1), ('forsgrini', 1), ('kyranak', 1), ('chemicæ', 1), ('purgantibu', 1), ('as“…an', 1), ('chemicals”', 1), ('cradle”', 1), ('smm’', 1)]...\n", - "2018-08-31 01:13:12,582 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4690000 (=100.0%) documents\n", - "2018-08-31 01:13:14,837 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:14,893 : INFO : adding document #4690000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:18,445 : INFO : discarding 26884 tokens: [('aierb', 1), ('auzmendi', 1), ('etxezarreta', 1), ('inguma', 1), ('rubriscoria', 1), ('beinhak', 1), ('optegra', 1), ('jisedaigata', 1), ('sōzōryoku', 1), ('悲劇喜劇', 1)]...\n", - "2018-08-31 01:13:18,445 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4700000 (=100.0%) documents\n", - "2018-08-31 01:13:20,673 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:20,729 : INFO : adding document #4700000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:24,351 : INFO : discarding 24855 tokens: [('vanpretti', 1), ('ammunson', 1), ('euon', 1), ('leerschool', 1), ('lulich', 1), ('nimarota', 1), ('manabendranath', 1), ('matlebuddin', 1), ('rakheswar', 1), ('bhimananda', 1)]...\n", - "2018-08-31 01:13:24,351 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4710000 (=100.0%) documents\n", - "2018-08-31 01:13:26,592 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:26,650 : INFO : adding document #4710000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:30,265 : INFO : discarding 24534 tokens: [('trenow', 1), ('vksk', 1), ('rapnet', 1), ('“virgo', 1), ('villarutia', 1), ('leboucz', 1), ('sussuru', 1), ('flhb', 1), ('yscu', 1), ('hrajnoha', 1)]...\n", - "2018-08-31 01:13:30,265 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4720000 (=100.0%) documents\n", - "2018-08-31 01:13:32,496 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:32,550 : INFO : adding document #4720000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:36,327 : INFO : discarding 27836 tokens: [('udheshichathu', 1), ('ogunjobi', 1), ('rajion', 1), ('season–open', 1), ('dopaldehyd', 1), ('stojmenov', 1), ('jhujuan', 1), ('mizzel', 1), ('nortwest', 1), ('tonyan', 1)]...\n", - "2018-08-31 01:13:36,328 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4730000 (=100.0%) documents\n", - "2018-08-31 01:13:38,569 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:38,625 : INFO : adding document #4730000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:42,269 : INFO : discarding 25378 tokens: [('sons—henri', 1), ('bclb', 1), ('further”', 1), ('glader', 1), ('plarium', 1), ('iksten', 1), ('jeremejev', 1), ('lapkovski', 1), ('matjušenko', 1), ('seņ', 1)]...\n", - "2018-08-31 01:13:42,270 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4740000 (=100.0%) documents\n", - "2018-08-31 01:13:44,494 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:44,549 : INFO : adding document #4740000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:48,077 : INFO : discarding 23039 tokens: [('covntry', 1), ('dicastu', 1), ('třebič', 1), ('japonard', 1), ('kallyr', 1), ('lesnabi', 1), ('overcomethough', 1), ('appearance—heavi', 1), ('bdniko', 1), ('odilonredon', 1)]...\n", - "2018-08-31 01:13:48,077 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4750000 (=100.0%) documents\n", - "2018-08-31 01:13:50,315 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:50,370 : INFO : adding document #4750000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:53,795 : INFO : discarding 24674 tokens: [('ago—dr', 1), ('hawke—continu', 1), ('leftfrom', 1), ('shawhugh', 1), ('buschenreit', 1), ('ganzendorf', 1), ('gunack', 1), ('klangweil', 1), ('lethereberock', 1), ('mühlgang', 1)]...\n", - "2018-08-31 01:13:53,796 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4760000 (=100.0%) documents\n", - "2018-08-31 01:13:56,027 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:56,082 : INFO : adding document #4760000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:13:59,690 : INFO : discarding 25555 tokens: [('mcelhonein', 1), ('melvillewith', 1), ('relationshipparticularli', 1), ('—fraiss', 1), ('kategreenawai', 1), ('littledom', 1), ('marigoldgarden', 1), ('trot’', 1), ('turnasid', 1), ('ali—with', 1)]...\n", - "2018-08-31 01:13:59,691 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4770000 (=100.0%) documents\n", - "2018-08-31 01:14:01,930 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:01,986 : INFO : adding document #4770000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:05,750 : INFO : discarding 28204 tokens: [('sthlmlab', 1), ('″scandinavian', 1), ('concert—bil', 1), ('flow—h', 1), ('night—you', 1), ('petrossev', 1), ('aviationsoftwar', 1), ('privateavi', 1), ('extravascul', 1), ('intranven', 1)]...\n", - "2018-08-31 01:14:05,750 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4780000 (=100.0%) documents\n", - "2018-08-31 01:14:07,998 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:08,055 : INFO : adding document #4780000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:11,656 : INFO : discarding 26331 tokens: [('½nhso', 1), ('½nnaso', 1), ('genderolog', 1), ('tamasailau', 1), ('transfemmebutch', 1), ('nusugbu', 1), ('penfoi', 1), ('barnhardtcotton', 1), ('nnaso', 1), ('ocsnan', 1)]...\n", - "2018-08-31 01:14:11,656 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4790000 (=100.0%) documents\n", - "2018-08-31 01:14:13,915 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:13,972 : INFO : adding document #4790000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:17,563 : INFO : discarding 25757 tokens: [('tudorand', 1), ('unreadyand', 1), ('valoiscalai', 1), ('viiiand', 1), ('wendenc', 1), ('wessexand', 1), ('wessexson', 1), ('winchesterag', 1), ('yorknin', 1), ('yorkwestminst', 1)]...\n" + "2018-09-26 17:31:26,127 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,128 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,129 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,129 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,130 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,131 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,131 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,132 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,133 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,134 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,135 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,136 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,136 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,137 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,138 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,139 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,140 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,141 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,141 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,142 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,143 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,144 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,144 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,145 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,146 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,146 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,147 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,148 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,148 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,149 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,150 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,151 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,152 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,152 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,153 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,154 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,155 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,156 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,156 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,157 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,158 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,159 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,159 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,160 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,161 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,161 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,162 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,163 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,163 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,164 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,165 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,166 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,166 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,167 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,168 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,169 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,170 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,170 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,171 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,172 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,173 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,173 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,174 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,175 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,176 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,176 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,177 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,178 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,179 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,180 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,180 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,181 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,182 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,182 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,183 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,184 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,185 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,185 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,186 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,187 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,188 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,188 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,189 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,190 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,191 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,191 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,192 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,193 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,193 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,194 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,195 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,196 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,196 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,197 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,198 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,198 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,199 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,200 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,201 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,202 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,203 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,204 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,204 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,205 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,206 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,206 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,207 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:14:17,564 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4800000 (=100.0%) documents\n", - "2018-08-31 01:14:19,802 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:19,856 : INFO : adding document #4800000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:23,379 : INFO : discarding 27394 tokens: [('orders—list', 1), ('biis', 1), ('boncouer', 1), ('conhabit', 1), ('strips–', 1), ('aaron—top', 1), ('brafasco', 1), ('thughliph', 1), ('alsohold', 1), ('hospitals—credit', 1)]...\n", - "2018-08-31 01:14:23,380 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4810000 (=100.0%) documents\n", - "2018-08-31 01:14:25,637 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:25,693 : INFO : adding document #4810000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:29,320 : INFO : discarding 26264 tokens: [('genoptix', 1), ('kymriah', 1), ('larvadex', 1), ('lipactin', 1), ('malariam', 1), ('neporex', 1), ('oncologyceo', 1), ('palobiofarma', 1), ('pedestrian—research', 1), ('pharmaceuticalsceo', 1)]...\n", - "2018-08-31 01:14:29,321 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4820000 (=100.0%) documents\n", - "2018-08-31 01:14:31,542 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:31,597 : INFO : adding document #4820000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:35,024 : INFO : discarding 22392 tokens: [('haachts', 1), ('clerckschool', 1), ('herentchurch', 1), ('toverveld', 1), ('alpaïdi', 1), ('alpeid', 1), ('gorgoniuskerk', 1), ('freedomtre', 1), ('kerkhuldenberg', 1), ('peuthystraat', 1)]...\n", - "2018-08-31 01:14:35,024 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4830000 (=100.0%) documents\n", - "2018-08-31 01:14:37,276 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:37,333 : INFO : adding document #4830000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:40,867 : INFO : discarding 24385 tokens: [('o’neylle’', 1), ('daricau', 1), ('bissamberg', 1), ('bockfluss', 1), ('breintle', 1), ('brzeczinski', 1), ('feldmareschalleutn', 1), ('felmarshalleutn', 1), ('grosshofen', 1), ('hartizsch', 1)]...\n", - "2018-08-31 01:14:40,868 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4840000 (=100.0%) documents\n", - "2018-08-31 01:14:43,094 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:43,149 : INFO : adding document #4840000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:46,707 : INFO : discarding 23869 tokens: [('loooouuuuuuuuuuuu', 1), ('rainhat', 1), ('rryyrrybybbrbrryryybrbbybi', 1), ('aktrain', 1), ('arqalıq', 1), ('baikonuriss', 1), ('balqaş', 1), ('jañaözen', 1), ('kostanaycentr', 1), ('kökşetaw', 1)]...\n", - "2018-08-31 01:14:46,708 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4850000 (=100.0%) documents\n", - "2018-08-31 01:14:48,950 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:49,009 : INFO : adding document #4850000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:52,583 : INFO : discarding 25415 tokens: [('kubainbo', 1), ('kubianbo', 1), ('malteranium', 1), ('megatron—but', 1), ('obisidian', 1), ('spacecraftt', 1), ('thebes—bor', 1), ('friedenstor', 1), ('merkel—who', 1), ('cloud–grand', 1)]...\n", - "2018-08-31 01:14:52,584 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4860000 (=100.0%) documents\n", - "2018-08-31 01:14:54,829 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:54,884 : INFO : adding document #4860000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:14:58,365 : INFO : discarding 25449 tokens: [('lokepara', 1), ('lokeparamahavidyalaya', 1), ('myparlia', 1), ('purbasthalicolleg', 1), ('amnplifi', 1), ('ambodisaina', 1), ('randria', 1), ('rajnagarmahavidyalaya', 1), ('gonnepal', 1), ('lingapalem', 1)]...\n", - "2018-08-31 01:14:58,366 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4870000 (=100.0%) documents\n", - "2018-08-31 01:15:00,622 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:00,678 : INFO : adding document #4870000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:04,211 : INFO : discarding 25973 tokens: [('alaban', 1), ('arvoi', 1), ('batoux', 1), ('dicchi', 1), ('djamba', 1), ('harouch', 1), ('moukomel', 1), ('moumini', 1), ('nouriati', 1), ('sinegr', 1)]...\n", - "2018-08-31 01:15:04,212 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4880000 (=100.0%) documents\n", - "2018-08-31 01:15:06,440 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:06,494 : INFO : adding document #4880000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:09,968 : INFO : discarding 26297 tokens: [('jyotii', 1), ('kameruniensi', 1), ('cgfp', 1), ('jarlin', 1), ('bhabban', 1), ('hodla', 1), ('tarnah', 1), ('belenot', 1), ('kërtusha', 1), ('xhulieta', 1)]...\n", - "2018-08-31 01:15:09,969 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4890000 (=100.0%) documents\n", - "2018-08-31 01:15:12,220 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:12,276 : INFO : adding document #4890000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:15,780 : INFO : discarding 27986 tokens: [('altınyazı', 1), ('barzachanion', 1), ('gariala', 1), ('hypatio', 1), ('pertinentia', 1), ('aphatisch', 1), ('barbakads', 1), ('baukasten', 1), ('bildsatz', 1), ('brenner“', 1)]...\n", - "2018-08-31 01:15:15,781 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4900000 (=100.0%) documents\n", - "2018-08-31 01:15:18,015 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:18,070 : INFO : adding document #4900000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:21,522 : INFO : discarding 26228 tokens: [('molio', 1), ('pocketl', 1), ('unigium', 1), ('wegam', 1), ('ranmark', 1), ('archdimens', 1), ('”archdimens', 1), ('osostowicz', 1), ('baalbora', 1), ('belbora', 1)]...\n", - "2018-08-31 01:15:21,523 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4910000 (=100.0%) documents\n", - "2018-08-31 01:15:23,762 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:23,818 : INFO : adding document #4910000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:27,197 : INFO : discarding 24806 tokens: [('davenson', 1), ('mozartienn', 1), ('reprend', 1), ('ajiona', 1), ('byhmc', 1), ('fuks’', 1), ('invest”', 1), ('kaluzhskii', 1), ('millionaires’', 1), ('olympiyskii', 1)]...\n", - "2018-08-31 01:15:27,198 : INFO : keeping 2000000 tokens which were in no less than 0 and no more than 4920000 (=100.0%) documents\n", - "2018-08-31 01:15:29,435 : INFO : resulting dictionary: Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n" + "2018-09-26 17:31:26,207 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,208 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,209 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,210 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,210 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,211 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,212 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,212 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,213 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,214 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,215 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,216 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,216 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,217 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,218 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,219 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,220 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,220 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,221 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,222 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,223 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,224 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,225 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,225 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,226 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,227 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,228 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,228 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,229 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,230 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,230 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,231 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,232 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,232 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,233 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,234 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,234 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,235 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,236 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,237 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,238 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,238 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,239 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,240 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,240 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,241 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,242 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,243 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,243 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,244 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,244 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,245 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,265 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,266 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,266 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,267 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,268 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,269 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,269 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,270 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,271 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,272 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,272 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,273 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,274 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,275 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,275 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,276 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,277 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,277 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,278 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,279 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,294 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,295 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,296 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,297 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,298 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,299 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,299 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,300 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,302 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,303 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,304 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,305 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,306 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,307 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,308 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,308 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,309 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,310 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,311 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,312 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,312 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,313 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,314 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,315 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,315 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,316 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,317 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,318 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,319 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,320 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,321 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,321 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,322 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,323 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,323 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:15:29,490 : INFO : adding document #4920000 to Dictionary(2000000 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...)\n", - "2018-08-31 01:15:30,267 : INFO : built Dictionary(2010258 unique tokens: ['abandon', 'abdelrahim', 'abil', 'abl', 'abolit']...) from 4924894 documents (total 1456741401 corpus positions)\n", - "2018-08-31 01:15:30,268 : INFO : saving Dictionary object under wiki.dict, separately None\n", - "2018-08-31 01:15:31,235 : INFO : saved wiki.dict\n" + "2018-09-26 17:31:26,324 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,325 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,325 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,326 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,327 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,328 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,328 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,329 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,330 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,331 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,332 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,333 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,333 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,334 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,335 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,336 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,336 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,337 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,338 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,339 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,340 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,341 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,342 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,342 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,343 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,343 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,344 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,345 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,346 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,346 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,349 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,350 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,351 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,352 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,353 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,354 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,354 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,355 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,356 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,356 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,357 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,358 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,360 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,360 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,361 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,362 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,362 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,363 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,364 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,365 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,366 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,366 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,367 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,368 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,368 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,369 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,370 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,370 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,371 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,372 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,372 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,373 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,374 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,374 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,375 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,376 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,377 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,377 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,378 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,379 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,379 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,380 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,381 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:26,382 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", + "2018-09-26 17:31:29,044 : DEBUG : h_r_error: None\n", + "2018-09-26 17:31:45,646 : DEBUG : h_r_error: 0.0042052357680393325\n", + "2018-09-26 17:32:03,586 : DEBUG : h_r_error: 0.0007387218894986965\n" ] } ], "source": [ - "from gensim.corpora import Dictionary\n", - "\n", - "dictionary = Dictionary(get_preprocessed_articles('wiki_articles.jsonlines'))\n", + "%load_ext line_profiler\n", "\n", - "dictionary.save('wiki.dict')" + "%lprun -f Nmf._setup gensim_nmf = Nmf(**training_params, corpus=corpus, use_r=True, lambda_=200)" ] }, { @@ -2595,408 +2674,569 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 01:15:31,248 : INFO : loading Dictionary object from wiki.dict\n", - "2018-08-31 01:15:32,160 : INFO : loaded wiki.dict\n", - "2018-08-31 01:15:34,487 : INFO : discarding 1910258 tokens: [('abdelrahim', 49), ('abstention', 120), ('anarcha', 101), ('anarchica', 40), ('anarchosyndicalist', 20), ('antimilitar', 68), ('arbet', 194), ('archo', 100), ('arkhē', 5), ('autonomedia', 118)]...\n", - "2018-08-31 01:15:34,488 : INFO : keeping 100000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", - "2018-08-31 01:15:34,850 : INFO : resulting dictionary: Dictionary(100000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" + "2018-09-25 20:01:01,127 : INFO : Loss (no outliers): 2187.8126676419793\tLoss (with outliers): 2187.8126676419793\n", + "2018-09-25 20:05:20,635 : INFO : Loss (no outliers): 1827.3584807920479\tLoss (with outliers): 1827.3584807920479\n", + "2018-09-25 20:09:26,448 : INFO : Loss (no outliers): 2160.9315399905636\tLoss (with outliers): 2160.9315399905636\n", + "2018-09-25 20:11:43,012 : INFO : Loss (no outliers): 2096.3005293752603\tLoss (with outliers): 2096.3005293752603\n", + "2018-09-25 20:13:39,924 : INFO : Loss (no outliers): 2219.8595473938913\tLoss (with outliers): 2219.8595473938913\n", + "2018-09-25 20:15:16,059 : INFO : Loss (no outliers): 2386.337256599918\tLoss (with outliers): 2386.337256599918\n", + "2018-09-25 20:16:55,507 : INFO : Loss (no outliers): 2174.8242892829526\tLoss (with outliers): 2174.8242892829526\n", + "2018-09-25 20:18:13,774 : INFO : Loss (no outliers): 2167.327441415781\tLoss (with outliers): 2167.327441415781\n", + "2018-09-25 20:19:08,062 : INFO : Loss (no outliers): 2302.0876438555892\tLoss (with outliers): 2302.0876438555892\n", + "2018-09-25 20:20:20,917 : INFO : Loss (no outliers): 2131.8228402146287\tLoss (with outliers): 2131.8228402146287\n", + "2018-09-25 20:21:31,408 : INFO : Loss (no outliers): 2266.1975063743394\tLoss (with outliers): 2266.1975063743394\n", + "2018-09-25 20:22:54,676 : INFO : Loss (no outliers): 2257.0836244775646\tLoss (with outliers): 2257.0836244775646\n", + "2018-09-25 20:23:38,334 : INFO : Loss (no outliers): 3164.075185170647\tLoss (with outliers): 3164.075185170647\n", + "2018-09-25 20:24:34,000 : INFO : Loss (no outliers): 2537.402378468375\tLoss (with outliers): 2537.402378468375\n", + "2018-09-25 20:25:21,215 : INFO : Loss (no outliers): 2085.1143669005523\tLoss (with outliers): 2085.1143669005523\n", + "2018-09-25 20:26:12,325 : INFO : Loss (no outliers): 1917.4662703631843\tLoss (with outliers): 1917.4662703631843\n", + "2018-09-25 20:26:45,741 : INFO : Loss (no outliers): 2425.775764436527\tLoss (with outliers): 2425.775764436527\n", + "2018-09-25 20:27:26,078 : INFO : Loss (no outliers): 1880.8062670071406\tLoss (with outliers): 1880.8062670071406\n", + "2018-09-25 20:27:56,568 : INFO : Loss (no outliers): 2037.992814496653\tLoss (with outliers): 2037.992814496653\n", + "2018-09-25 20:28:26,400 : INFO : Loss (no outliers): 1866.0845062826913\tLoss (with outliers): 1866.0845062826913\n", + "2018-09-25 20:28:59,528 : INFO : Loss (no outliers): 2254.506677278798\tLoss (with outliers): 2254.506677278798\n", + "2018-09-25 20:29:39,800 : INFO : Loss (no outliers): 2415.126257651434\tLoss (with outliers): 2415.126257651434\n", + "2018-09-25 20:30:06,285 : INFO : Loss (no outliers): 2033.2142338523656\tLoss (with outliers): 2033.2142338523656\n", + "2018-09-25 20:30:31,982 : INFO : Loss (no outliers): 2155.7749664000735\tLoss (with outliers): 2155.7749664000735\n", + "2018-09-25 20:31:07,855 : INFO : Loss (no outliers): 2149.7886510702974\tLoss (with outliers): 2149.7886510702974\n", + "2018-09-25 20:31:38,098 : INFO : Loss (no outliers): 2090.0590065159954\tLoss (with outliers): 2090.0590065159954\n", + "2018-09-25 20:32:08,264 : INFO : Loss (no outliers): 3051.4390246212574\tLoss (with outliers): 3051.4390246212574\n", + "2018-09-25 20:32:43,324 : INFO : Loss (no outliers): 2755.146280286994\tLoss (with outliers): 2755.146280286994\n", + "2018-09-25 20:33:11,577 : INFO : Loss (no outliers): 1953.0514799998996\tLoss (with outliers): 1953.0514799998996\n", + "2018-09-25 20:33:37,810 : INFO : Loss (no outliers): 2078.0805979102347\tLoss (with outliers): 2078.0805979102347\n", + "2018-09-25 20:34:08,085 : INFO : Loss (no outliers): 1888.1039633096568\tLoss (with outliers): 1888.1039633096568\n", + "2018-09-25 20:34:42,087 : INFO : Loss (no outliers): 2162.4288484244385\tLoss (with outliers): 2162.4288484244385\n", + "2018-09-25 20:35:08,838 : INFO : Loss (no outliers): 2506.894772934331\tLoss (with outliers): 2506.894772934331\n", + "2018-09-25 20:35:35,438 : INFO : Loss (no outliers): 1905.058861233822\tLoss (with outliers): 1905.058861233822\n", + "2018-09-25 20:36:01,910 : INFO : Loss (no outliers): 1937.758972871597\tLoss (with outliers): 1937.758972871597\n", + "2018-09-25 20:36:28,562 : INFO : Loss (no outliers): 1975.9146643769143\tLoss (with outliers): 1975.9146643769143\n", + "2018-09-25 20:36:57,179 : INFO : Loss (no outliers): 2126.652984828385\tLoss (with outliers): 2126.652984828385\n", + "2018-09-25 20:37:23,895 : INFO : Loss (no outliers): 2070.0477717027475\tLoss (with outliers): 2070.0477717027475\n", + "2018-09-25 20:37:50,735 : INFO : Loss (no outliers): 2209.238005287575\tLoss (with outliers): 2209.238005287575\n", + "2018-09-25 20:38:17,700 : INFO : Loss (no outliers): 2120.6505477292617\tLoss (with outliers): 2120.6505477292617\n", + "2018-09-25 20:38:44,663 : INFO : Loss (no outliers): 1944.3532143022674\tLoss (with outliers): 1944.3532143022674\n", + "2018-09-25 20:39:11,706 : INFO : Loss (no outliers): 1869.673157402031\tLoss (with outliers): 1869.673157402031\n", + "2018-09-25 20:39:38,671 : INFO : Loss (no outliers): 3255.276326705787\tLoss (with outliers): 3255.276326705787\n", + "2018-09-25 20:40:28,543 : INFO : Loss (no outliers): 2435.859103075609\tLoss (with outliers): 2435.859103075609\n", + "2018-09-25 20:40:55,526 : INFO : Loss (no outliers): 1862.570367799494\tLoss (with outliers): 1862.570367799494\n", + "2018-09-25 20:41:22,754 : INFO : Loss (no outliers): 2133.0116432967625\tLoss (with outliers): 2133.0116432967625\n", + "2018-09-25 20:41:49,674 : INFO : Loss (no outliers): 2111.907302375691\tLoss (with outliers): 2111.907302375691\n", + "2018-09-25 20:42:23,763 : INFO : Loss (no outliers): 2195.705225873015\tLoss (with outliers): 2195.705225873015\n", + "2018-09-25 20:43:06,466 : INFO : Loss (no outliers): 3044.0490489973076\tLoss (with outliers): 3044.0490489973076\n", + "2018-09-25 20:43:33,924 : INFO : Loss (no outliers): 2616.79977906664\tLoss (with outliers): 2616.79977906664\n", + "2018-09-25 20:44:29,067 : INFO : Loss (no outliers): 4842.718133634694\tLoss (with outliers): 4842.718133634694\n", + "2018-09-25 20:44:55,509 : INFO : Loss (no outliers): 1985.98966133246\tLoss (with outliers): 1985.98966133246\n", + "2018-09-25 20:45:23,067 : INFO : Loss (no outliers): 3064.415840599372\tLoss (with outliers): 3064.415840599372\n", + "2018-09-25 20:45:49,554 : INFO : Loss (no outliers): 2131.5509920527406\tLoss (with outliers): 2131.5509920527406\n", + "2018-09-25 20:46:36,794 : INFO : Loss (no outliers): 1991.9116662567365\tLoss (with outliers): 1991.9116662567365\n", + "2018-09-25 20:47:04,174 : INFO : Loss (no outliers): 2174.288203134576\tLoss (with outliers): 2174.288203134576\n", + "2018-09-25 20:47:31,531 : INFO : Loss (no outliers): 2142.2319437624255\tLoss (with outliers): 2142.2319437624255\n", + "2018-09-25 20:47:59,101 : INFO : Loss (no outliers): 2590.1425025671692\tLoss (with outliers): 2590.1425025671692\n", + "2018-09-25 20:48:25,806 : INFO : Loss (no outliers): 1806.6643919739586\tLoss (with outliers): 1806.6643919739586\n", + "2018-09-25 20:49:02,806 : INFO : Loss (no outliers): 2588.1962416200254\tLoss (with outliers): 2588.1962416200254\n", + "2018-09-25 20:49:31,581 : INFO : Loss (no outliers): 2029.872816779808\tLoss (with outliers): 2029.872816779808\n", + "2018-09-25 20:49:57,169 : INFO : Loss (no outliers): 1916.5805541295447\tLoss (with outliers): 1916.5805541295447\n", + "2018-09-25 20:50:24,100 : INFO : Loss (no outliers): 2630.743158581952\tLoss (with outliers): 2630.743158581952\n", + "2018-09-25 20:50:51,141 : INFO : Loss (no outliers): 2106.912544838272\tLoss (with outliers): 2106.912544838272\n", + "2018-09-25 20:51:20,724 : INFO : Loss (no outliers): 2200.8524728509683\tLoss (with outliers): 2200.8524728509683\n", + "2018-09-25 20:51:45,737 : INFO : Loss (no outliers): 1960.0984584187886\tLoss (with outliers): 1960.0984584187886\n", + "2018-09-25 20:52:13,747 : INFO : Loss (no outliers): 1730.2112614759099\tLoss (with outliers): 1730.2112614759099\n", + "2018-09-25 20:52:42,615 : INFO : Loss (no outliers): 1856.7002145959946\tLoss (with outliers): 1856.7002145959946\n", + "2018-09-25 20:53:11,814 : INFO : Loss (no outliers): 2028.8929229689675\tLoss (with outliers): 2028.8929229689675\n", + "2018-09-25 20:53:40,610 : INFO : Loss (no outliers): 1925.8572023772126\tLoss (with outliers): 1925.8572023772126\n", + "2018-09-25 20:54:09,532 : INFO : Loss (no outliers): 1996.1691640755826\tLoss (with outliers): 1996.1691640755826\n", + "2018-09-25 20:54:38,212 : INFO : Loss (no outliers): 2113.6525446762803\tLoss (with outliers): 2113.6525446762803\n", + "2018-09-25 20:55:07,051 : INFO : Loss (no outliers): 3516.0827354077574\tLoss (with outliers): 3516.0827354077574\n", + "2018-09-25 20:55:33,999 : INFO : Loss (no outliers): 2186.760754286475\tLoss (with outliers): 2186.760754286475\n" ] - } - ], - "source": [ - "dictionary = Dictionary.load('wiki.dict')\n", - "dictionary.filter_extremes()\n", - "dictionary.compactify()" - ] - }, - { - "cell_type": "code", - "execution_count": 202, - "metadata": {}, - "outputs": [], - "source": [ - "import random\n", - "\n", - "class RandomCorpus(MmCorpus):\n", - " def __init__(self, *args, random_state, **kwargs):\n", - " super().__init__(*args, **kwargs)\n", - "\n", - " def __iter__(self):\n", - " random.seed(42)\n", - " \n", - " shuffled_indices = list(range(self.num_docs))\n", - " random.shuffle(shuffled_indices)\n", - " \n", - " for doc_id in shuffled_indices:\n", - " yield self[doc_id]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ + }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 02:09:12,249 : INFO : storing corpus in Matrix Market format to wiki.mm\n", - "2018-08-31 02:09:12,424 : INFO : saving sparse matrix to wiki.mm\n" + "2018-09-25 20:56:02,823 : INFO : Loss (no outliers): 2427.223231537262\tLoss (with outliers): 2427.223231537262\n", + "2018-09-25 20:56:31,906 : INFO : Loss (no outliers): 1916.1747272542427\tLoss (with outliers): 1916.1747272542427\n", + "2018-09-25 20:57:00,958 : INFO : Loss (no outliers): 2160.7246788720004\tLoss (with outliers): 2160.7246788720004\n", + "2018-09-25 20:57:29,892 : INFO : Loss (no outliers): 2418.632822651408\tLoss (with outliers): 2418.632822651408\n", + "2018-09-25 20:57:59,123 : INFO : Loss (no outliers): 1839.4987454612694\tLoss (with outliers): 1839.4987454612694\n", + "2018-09-25 20:58:28,258 : INFO : Loss (no outliers): 2193.5954352867516\tLoss (with outliers): 2193.5954352867516\n", + "2018-09-25 20:58:57,297 : INFO : Loss (no outliers): 1840.22885077515\tLoss (with outliers): 1840.22885077515\n", + "2018-09-25 20:59:25,111 : INFO : Loss (no outliers): 2256.5277679640835\tLoss (with outliers): 2256.5277679640835\n", + "2018-09-25 20:59:54,109 : INFO : Loss (no outliers): 2100.762294874342\tLoss (with outliers): 2100.762294874342\n", + "2018-09-25 21:00:22,970 : INFO : Loss (no outliers): 2204.122432731921\tLoss (with outliers): 2204.122432731921\n", + "2018-09-25 21:00:52,200 : INFO : Loss (no outliers): 1860.1620776602304\tLoss (with outliers): 1860.1620776602304\n", + "2018-09-25 21:01:21,367 : INFO : Loss (no outliers): 1815.2521291751739\tLoss (with outliers): 1815.2521291751739\n", + "2018-09-25 21:01:50,401 : INFO : Loss (no outliers): 3311.252168850051\tLoss (with outliers): 3311.252168850051\n", + "2018-09-25 21:02:19,372 : INFO : Loss (no outliers): 2156.3560824860388\tLoss (with outliers): 2156.3560824860388\n", + "2018-09-25 21:02:48,441 : INFO : Loss (no outliers): 2263.6674136324004\tLoss (with outliers): 2263.6674136324004\n", + "2018-09-25 21:03:16,462 : INFO : Loss (no outliers): 2112.4727265535294\tLoss (with outliers): 2112.4727265535294\n", + "2018-09-25 21:03:42,627 : INFO : Loss (no outliers): 1913.8360242183785\tLoss (with outliers): 1913.8360242183785\n", + "2018-09-25 21:04:11,909 : INFO : Loss (no outliers): 2014.6643683696088\tLoss (with outliers): 2014.6643683696088\n", + "2018-09-25 21:04:39,817 : INFO : Loss (no outliers): 2078.6995508723694\tLoss (with outliers): 2078.6995508723694\n", + "2018-09-25 21:05:06,729 : INFO : Loss (no outliers): 1936.7020001726385\tLoss (with outliers): 1936.7020001726385\n", + "2018-09-25 21:05:33,475 : INFO : Loss (no outliers): 2356.5530890187124\tLoss (with outliers): 2356.5530890187124\n", + "2018-09-25 21:06:06,239 : INFO : Loss (no outliers): 2034.2154444927517\tLoss (with outliers): 2034.2154444927517\n", + "2018-09-25 21:06:35,300 : INFO : Loss (no outliers): 2006.3791815895174\tLoss (with outliers): 2006.3791815895174\n", + "2018-09-25 21:07:04,231 : INFO : Loss (no outliers): 2054.1164818717402\tLoss (with outliers): 2054.1164818717402\n", + "2018-09-25 21:07:31,586 : INFO : Loss (no outliers): 2057.6333293052853\tLoss (with outliers): 2057.6333293052853\n", + "2018-09-25 21:08:00,802 : INFO : Loss (no outliers): 2321.2059825163565\tLoss (with outliers): 2321.2059825163565\n", + "2018-09-25 21:08:27,691 : INFO : Loss (no outliers): 2002.1899589484995\tLoss (with outliers): 2002.1899589484995\n", + "2018-09-25 21:08:56,710 : INFO : Loss (no outliers): 2062.100494007335\tLoss (with outliers): 2062.100494007335\n", + "2018-09-25 21:09:23,529 : INFO : Loss (no outliers): 2043.7663264699158\tLoss (with outliers): 2043.7663264699158\n", + "2018-09-25 21:09:52,474 : INFO : Loss (no outliers): 1838.1724567511956\tLoss (with outliers): 1838.1724567511956\n", + "2018-09-25 21:10:21,215 : INFO : Loss (no outliers): 2098.617407650227\tLoss (with outliers): 2098.617407650227\n", + "2018-09-25 21:10:49,045 : INFO : Loss (no outliers): 2141.387412003673\tLoss (with outliers): 2141.387412003673\n", + "2018-09-25 21:11:16,060 : INFO : Loss (no outliers): 2551.8204203020086\tLoss (with outliers): 2551.8204203020086\n", + "2018-09-25 21:11:43,869 : INFO : Loss (no outliers): 2149.289052544625\tLoss (with outliers): 2149.289052544625\n", + "2018-09-25 21:12:12,062 : INFO : Loss (no outliers): 2552.363559124317\tLoss (with outliers): 2552.363559124317\n", + "2018-09-25 21:12:40,039 : INFO : Loss (no outliers): 1906.6408255882475\tLoss (with outliers): 1906.6408255882475\n", + "2018-09-25 21:13:09,219 : INFO : Loss (no outliers): 2036.5936720286422\tLoss (with outliers): 2036.5936720286422\n", + "2018-09-25 21:13:37,255 : INFO : Loss (no outliers): 1850.1890733666162\tLoss (with outliers): 1850.1890733666162\n", + "2018-09-25 21:14:05,432 : INFO : Loss (no outliers): 2164.84218419626\tLoss (with outliers): 2164.84218419626\n", + "2018-09-25 21:14:33,873 : INFO : Loss (no outliers): 1950.5598625383436\tLoss (with outliers): 1950.5598625383436\n", + "2018-09-25 21:15:01,111 : INFO : Loss (no outliers): 2207.1248663290485\tLoss (with outliers): 2207.1248663290485\n", + "2018-09-25 21:15:28,283 : INFO : Loss (no outliers): 2168.438881199719\tLoss (with outliers): 2168.438881199719\n", + "2018-09-25 21:15:56,126 : INFO : Loss (no outliers): 2029.4191174914824\tLoss (with outliers): 2029.4191174914824\n", + "2018-09-25 21:16:25,331 : INFO : Loss (no outliers): 1962.9215769920033\tLoss (with outliers): 1962.9215769920033\n", + "2018-09-25 21:16:54,373 : INFO : Loss (no outliers): 1923.6899366054292\tLoss (with outliers): 1923.6899366054292\n", + "2018-09-25 21:17:23,409 : INFO : Loss (no outliers): 1932.1336747757045\tLoss (with outliers): 1932.1336747757045\n", + "2018-09-25 21:17:50,727 : INFO : Loss (no outliers): 2184.484439277677\tLoss (with outliers): 2184.484439277677\n", + "2018-09-25 21:18:19,981 : INFO : Loss (no outliers): 1972.5669842074942\tLoss (with outliers): 1972.5669842074942\n", + "2018-09-25 21:18:48,972 : INFO : Loss (no outliers): 2367.2317809146457\tLoss (with outliers): 2367.2317809146457\n", + "2018-09-25 21:19:16,634 : INFO : Loss (no outliers): 1983.0726445913924\tLoss (with outliers): 1983.0726445913924\n", + "2018-09-25 21:19:51,237 : INFO : Loss (no outliers): 2131.7868378407143\tLoss (with outliers): 2131.7868378407143\n", + "2018-09-25 21:20:20,105 : INFO : Loss (no outliers): 1958.6453384125398\tLoss (with outliers): 1958.6453384125398\n", + "2018-09-25 21:20:47,823 : INFO : Loss (no outliers): 2178.9873159094723\tLoss (with outliers): 2178.9873159094723\n", + "2018-09-25 21:21:13,744 : INFO : Loss (no outliers): 1734.9669489769726\tLoss (with outliers): 1734.9669489769726\n", + "2018-09-25 21:21:41,542 : INFO : Loss (no outliers): 2113.4823961084544\tLoss (with outliers): 2113.4823961084544\n", + "2018-09-25 21:22:10,466 : INFO : Loss (no outliers): 2453.3882744846055\tLoss (with outliers): 2453.3882744846055\n", + "2018-09-25 21:22:39,396 : INFO : Loss (no outliers): 1889.2330119037024\tLoss (with outliers): 1889.2330119037024\n", + "2018-09-25 21:23:07,477 : INFO : Loss (no outliers): 2259.476996437533\tLoss (with outliers): 2259.476996437533\n", + "2018-09-25 21:23:34,313 : INFO : Loss (no outliers): 1760.0274631790478\tLoss (with outliers): 1760.0274631790478\n", + "2018-09-25 21:24:02,278 : INFO : Loss (no outliers): 2273.3293817520716\tLoss (with outliers): 2273.3293817520716\n", + "2018-09-25 21:24:29,083 : INFO : Loss (no outliers): 2204.1007849754083\tLoss (with outliers): 2204.1007849754083\n", + "2018-09-25 21:24:58,026 : INFO : Loss (no outliers): 2394.9053817806443\tLoss (with outliers): 2394.9053817806443\n", + "2018-09-25 21:25:26,115 : INFO : Loss (no outliers): 2239.505201239239\tLoss (with outliers): 2239.505201239239\n", + "2018-09-25 21:25:55,026 : INFO : Loss (no outliers): 2045.1587439654916\tLoss (with outliers): 2045.1587439654916\n", + "2018-09-25 21:26:23,077 : INFO : Loss (no outliers): 2093.4201397206325\tLoss (with outliers): 2093.4201397206325\n", + "2018-09-25 21:26:50,089 : INFO : Loss (no outliers): 2371.8476348922404\tLoss (with outliers): 2371.8476348922404\n", + "2018-09-25 21:27:18,082 : INFO : Loss (no outliers): 2113.5653394446404\tLoss (with outliers): 2113.5653394446404\n", + "2018-09-25 21:27:49,088 : INFO : Loss (no outliers): 2561.514713061976\tLoss (with outliers): 2561.514713061976\n", + "2018-09-25 21:28:15,057 : INFO : Loss (no outliers): 2029.116634428362\tLoss (with outliers): 2029.116634428362\n", + "2018-09-25 21:28:43,833 : INFO : Loss (no outliers): 2246.5374525823754\tLoss (with outliers): 2246.5374525823754\n", + "2018-09-25 21:29:12,533 : INFO : Loss (no outliers): 2039.592692506823\tLoss (with outliers): 2039.592692506823\n", + "2018-09-25 21:29:41,134 : INFO : Loss (no outliers): 1965.64108201071\tLoss (with outliers): 1965.64108201071\n", + "2018-09-25 21:30:09,792 : INFO : Loss (no outliers): 2162.0896817516464\tLoss (with outliers): 2162.0896817516464\n" ] }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3ba812197aa748909f589c65c4d1d78b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 02:09:12,447 : INFO : PROGRESS: saving document #0\n", - "2018-08-31 02:09:14,303 : INFO : PROGRESS: saving document #1000\n", - "2018-08-31 02:09:15,963 : INFO : PROGRESS: saving document #2000\n", - "2018-08-31 02:09:17,822 : INFO : PROGRESS: saving document #3000\n", - "2018-08-31 02:09:19,552 : INFO : PROGRESS: saving document #4000\n", - "2018-08-31 02:09:21,256 : INFO : PROGRESS: saving document #5000\n", - "2018-08-31 02:09:23,119 : INFO : PROGRESS: saving document #6000\n", - "2018-08-31 02:09:25,152 : INFO : PROGRESS: saving document #7000\n", - "2018-08-31 02:09:27,166 : INFO : PROGRESS: saving document #8000\n", - "2018-08-31 02:09:28,840 : INFO : PROGRESS: saving document #9000\n", - "2018-08-31 02:09:30,784 : INFO : PROGRESS: saving document #10000\n", - "2018-08-31 02:09:32,637 : INFO : PROGRESS: saving document #11000\n", - "2018-08-31 02:09:34,379 : INFO : PROGRESS: saving document #12000\n", - "2018-08-31 02:09:36,092 : INFO : PROGRESS: saving document #13000\n", - "2018-08-31 02:09:37,861 : INFO : PROGRESS: saving document #14000\n", - "2018-08-31 02:09:39,705 : INFO : PROGRESS: saving document #15000\n", - "2018-08-31 02:09:41,549 : INFO : PROGRESS: saving document #16000\n", - "2018-08-31 02:09:43,843 : INFO : PROGRESS: saving document #17000\n", - "2018-08-31 02:09:44,680 : INFO : PROGRESS: saving document #18000\n", - "2018-08-31 02:09:45,960 : INFO : PROGRESS: saving document #19000\n", - "2018-08-31 02:09:47,433 : INFO : PROGRESS: saving document #20000\n", - "2018-08-31 02:09:48,296 : INFO : PROGRESS: saving document #21000\n", - "2018-08-31 02:09:49,296 : INFO : PROGRESS: saving document #22000\n", - "2018-08-31 02:09:50,803 : INFO : PROGRESS: saving document #23000\n", - "2018-08-31 02:09:52,336 : INFO : PROGRESS: saving document #24000\n", - "2018-08-31 02:09:53,816 : INFO : PROGRESS: saving document #25000\n", - "2018-08-31 02:09:55,358 : INFO : PROGRESS: saving document #26000\n", - "2018-08-31 02:09:56,832 : INFO : PROGRESS: saving document #27000\n", - "2018-08-31 02:09:58,202 : INFO : PROGRESS: saving document #28000\n", - "2018-08-31 02:09:59,691 : INFO : PROGRESS: saving document #29000\n", - "2018-08-31 02:10:00,935 : INFO : PROGRESS: saving document #30000\n", - "2018-08-31 02:10:02,143 : INFO : PROGRESS: saving document #31000\n", - "2018-08-31 02:10:03,519 : INFO : PROGRESS: saving document #32000\n", - "2018-08-31 02:10:04,983 : INFO : PROGRESS: saving document #33000\n", - "2018-08-31 02:10:06,180 : INFO : PROGRESS: saving document #34000\n", - "2018-08-31 02:10:07,476 : INFO : PROGRESS: saving document #35000\n", - "2018-08-31 02:10:08,816 : INFO : PROGRESS: saving document #36000\n", - "2018-08-31 02:10:10,027 : INFO : PROGRESS: saving document #37000\n", - "2018-08-31 02:10:11,047 : INFO : PROGRESS: saving document #38000\n", - "2018-08-31 02:10:12,185 : INFO : PROGRESS: saving document #39000\n", - "2018-08-31 02:10:13,158 : INFO : PROGRESS: saving document #40000\n", - "2018-08-31 02:10:13,981 : INFO : PROGRESS: saving document #41000\n", - "2018-08-31 02:10:15,100 : INFO : PROGRESS: saving document #42000\n", - "2018-08-31 02:10:15,966 : INFO : PROGRESS: saving document #43000\n", - "2018-08-31 02:10:16,887 : INFO : PROGRESS: saving document #44000\n", - "2018-08-31 02:10:17,825 : INFO : PROGRESS: saving document #45000\n", - "2018-08-31 02:10:18,588 : INFO : PROGRESS: saving document #46000\n", - "2018-08-31 02:10:19,542 : INFO : PROGRESS: saving document #47000\n", - "2018-08-31 02:10:20,502 : INFO : PROGRESS: saving document #48000\n", - "2018-08-31 02:10:21,432 : INFO : PROGRESS: saving document #49000\n", - "2018-08-31 02:10:22,112 : INFO : PROGRESS: saving document #50000\n", - "2018-08-31 02:10:22,786 : INFO : PROGRESS: saving document #51000\n", - "2018-08-31 02:10:23,661 : INFO : PROGRESS: saving document #52000\n", - "2018-08-31 02:10:24,262 : INFO : PROGRESS: saving document #53000\n", - "2018-08-31 02:10:24,778 : INFO : PROGRESS: saving document #54000\n", - "2018-08-31 02:10:25,255 : INFO : PROGRESS: saving document #55000\n", - "2018-08-31 02:10:25,730 : INFO : PROGRESS: saving document #56000\n", - "2018-08-31 02:10:26,385 : INFO : PROGRESS: saving document #57000\n", - "2018-08-31 02:10:26,808 : INFO : PROGRESS: saving document #58000\n", - "2018-08-31 02:10:27,291 : INFO : PROGRESS: saving document #59000\n", - "2018-08-31 02:10:27,900 : INFO : PROGRESS: saving document #60000\n", - "2018-08-31 02:10:28,268 : INFO : PROGRESS: saving document #61000\n", - "2018-08-31 02:10:28,649 : INFO : PROGRESS: saving document #62000\n", - "2018-08-31 02:10:28,965 : INFO : PROGRESS: saving document #63000\n", - "2018-08-31 02:10:29,210 : INFO : PROGRESS: saving document #64000\n", - "2018-08-31 02:10:29,505 : INFO : PROGRESS: saving document #65000\n", - "2018-08-31 02:10:29,888 : INFO : PROGRESS: saving document #66000\n", - "2018-08-31 02:10:30,295 : INFO : PROGRESS: saving document #67000\n", - "2018-08-31 02:10:31,189 : INFO : PROGRESS: saving document #68000\n", - "2018-08-31 02:10:31,781 : INFO : PROGRESS: saving document #69000\n", - "2018-08-31 02:10:32,393 : INFO : PROGRESS: saving document #70000\n", - "2018-08-31 02:10:32,879 : INFO : PROGRESS: saving document #71000\n", - "2018-08-31 02:10:33,368 : INFO : PROGRESS: saving document #72000\n", - "2018-08-31 02:10:33,831 : INFO : PROGRESS: saving document #73000\n", - "2018-08-31 02:10:34,212 : INFO : PROGRESS: saving document #74000\n", - "2018-08-31 02:10:34,609 : INFO : PROGRESS: saving document #75000\n", - "2018-08-31 02:10:35,031 : INFO : PROGRESS: saving document #76000\n", - "2018-08-31 02:10:35,469 : INFO : PROGRESS: saving document #77000\n", - "2018-08-31 02:10:35,983 : INFO : PROGRESS: saving document #78000\n", - "2018-08-31 02:10:36,519 : INFO : PROGRESS: saving document #79000\n", - "2018-08-31 02:10:37,047 : INFO : PROGRESS: saving document #80000\n", - "2018-08-31 02:10:37,343 : INFO : PROGRESS: saving document #81000\n", - "2018-08-31 02:10:37,871 : INFO : PROGRESS: saving document #82000\n", - "2018-08-31 02:10:38,659 : INFO : PROGRESS: saving document #83000\n", - "2018-08-31 02:10:39,751 : INFO : PROGRESS: saving document #84000\n", - "2018-08-31 02:10:40,849 : INFO : PROGRESS: saving document #85000\n", - "2018-08-31 02:10:42,066 : INFO : PROGRESS: saving document #86000\n", - "2018-08-31 02:10:42,862 : INFO : PROGRESS: saving document #87000\n", - "2018-08-31 02:10:43,967 : INFO : PROGRESS: saving document #88000\n", - "2018-08-31 02:10:44,944 : INFO : PROGRESS: saving document #89000\n", - "2018-08-31 02:10:46,029 : INFO : PROGRESS: saving document #90000\n", - "2018-08-31 02:10:47,239 : INFO : PROGRESS: saving document #91000\n", - "2018-08-31 02:10:48,630 : INFO : PROGRESS: saving document #92000\n", - "2018-08-31 02:10:49,979 : INFO : PROGRESS: saving document #93000\n", - "2018-08-31 02:10:51,285 : INFO : PROGRESS: saving document #94000\n", - "2018-08-31 02:10:52,582 : INFO : PROGRESS: saving document #95000\n", - "2018-08-31 02:10:53,921 : INFO : PROGRESS: saving document #96000\n", - "2018-08-31 02:10:54,963 : INFO : PROGRESS: saving document #97000\n", - "2018-08-31 02:10:56,004 : INFO : PROGRESS: saving document #98000\n", - "2018-08-31 02:10:56,932 : INFO : PROGRESS: saving document #99000\n", - "2018-08-31 02:10:58,141 : INFO : PROGRESS: saving document #100000\n", - "2018-08-31 02:10:59,257 : INFO : PROGRESS: saving document #101000\n", - "2018-08-31 02:11:00,349 : INFO : PROGRESS: saving document #102000\n", - "2018-08-31 02:11:01,459 : INFO : PROGRESS: saving document #103000\n", - "2018-08-31 02:11:02,549 : INFO : PROGRESS: saving document #104000\n", - "2018-08-31 02:11:03,631 : INFO : PROGRESS: saving document #105000\n", - "2018-08-31 02:11:04,695 : INFO : PROGRESS: saving document #106000\n", - "2018-08-31 02:11:05,746 : INFO : PROGRESS: saving document #107000\n", - "2018-08-31 02:11:06,820 : INFO : PROGRESS: saving document #108000\n", - "2018-08-31 02:11:07,835 : INFO : PROGRESS: saving document #109000\n", - "2018-08-31 02:11:08,850 : INFO : PROGRESS: saving document #110000\n", - "2018-08-31 02:11:09,881 : INFO : PROGRESS: saving document #111000\n", - "2018-08-31 02:11:10,885 : INFO : PROGRESS: saving document #112000\n", - "2018-08-31 02:11:11,889 : INFO : PROGRESS: saving document #113000\n", - "2018-08-31 02:11:12,865 : INFO : PROGRESS: saving document #114000\n", - "2018-08-31 02:11:13,835 : INFO : PROGRESS: saving document #115000\n", - "2018-08-31 02:11:14,708 : INFO : PROGRESS: saving document #116000\n", - "2018-08-31 02:11:15,798 : INFO : PROGRESS: saving document #117000\n", - "2018-08-31 02:11:16,783 : INFO : PROGRESS: saving document #118000\n", - "2018-08-31 02:11:17,710 : INFO : PROGRESS: saving document #119000\n", - "2018-08-31 02:11:18,693 : INFO : PROGRESS: saving document #120000\n", - "2018-08-31 02:11:19,758 : INFO : PROGRESS: saving document #121000\n", - "2018-08-31 02:11:20,837 : INFO : PROGRESS: saving document #122000\n", - "2018-08-31 02:11:21,862 : INFO : PROGRESS: saving document #123000\n" + "2018-09-25 21:30:36,622 : INFO : Loss (no outliers): 2095.0487477112065\tLoss (with outliers): 2095.0487477112065\n", + "2018-09-25 21:31:04,338 : INFO : Loss (no outliers): 2099.0227812135545\tLoss (with outliers): 2099.0227812135545\n", + "2018-09-25 21:31:32,823 : INFO : Loss (no outliers): 2051.6399910837404\tLoss (with outliers): 2051.6399910837404\n", + "2018-09-25 21:32:00,823 : INFO : Loss (no outliers): 2210.176946629351\tLoss (with outliers): 2210.176946629351\n", + "2018-09-25 21:32:29,752 : INFO : Loss (no outliers): 1919.1980163329379\tLoss (with outliers): 1919.1980163329379\n", + "2018-09-25 21:32:58,007 : INFO : Loss (no outliers): 2815.500072368925\tLoss (with outliers): 2815.500072368925\n", + "2018-09-25 21:33:25,814 : INFO : Loss (no outliers): 2092.2302648232076\tLoss (with outliers): 2092.2302648232076\n", + "2018-09-25 21:33:52,795 : INFO : Loss (no outliers): 2049.2576301920562\tLoss (with outliers): 2049.2576301920562\n", + "2018-09-25 21:34:20,888 : INFO : Loss (no outliers): 2040.4636635273798\tLoss (with outliers): 2040.4636635273798\n", + "2018-09-25 21:34:48,747 : INFO : Loss (no outliers): 1927.0453957261007\tLoss (with outliers): 1927.0453957261007\n", + "2018-09-25 21:35:14,772 : INFO : Loss (no outliers): 2224.3228884879695\tLoss (with outliers): 2224.3228884879695\n", + "2018-09-25 21:35:44,027 : INFO : Loss (no outliers): 2297.7110152925634\tLoss (with outliers): 2297.7110152925634\n", + "2018-09-25 21:36:12,945 : INFO : Loss (no outliers): 2095.8799019014664\tLoss (with outliers): 2095.8799019014664\n", + "2018-09-25 21:36:42,110 : INFO : Loss (no outliers): 1901.7753027005685\tLoss (with outliers): 1901.7753027005685\n", + "2018-09-25 21:37:10,756 : INFO : Loss (no outliers): 2032.9477205722912\tLoss (with outliers): 2032.9477205722912\n", + "2018-09-25 21:37:39,865 : INFO : Loss (no outliers): 1996.7208785179805\tLoss (with outliers): 1996.7208785179805\n", + "2018-09-25 21:38:09,036 : INFO : Loss (no outliers): 2232.90904142117\tLoss (with outliers): 2232.90904142117\n", + "2018-09-25 21:38:38,098 : INFO : Loss (no outliers): 2037.925295806951\tLoss (with outliers): 2037.925295806951\n", + "2018-09-25 21:39:05,068 : INFO : Loss (no outliers): 1935.3080596141233\tLoss (with outliers): 1935.3080596141233\n", + "2018-09-25 21:39:31,351 : INFO : Loss (no outliers): 1969.3183241495406\tLoss (with outliers): 1969.3183241495406\n", + "2018-09-25 21:39:59,250 : INFO : Loss (no outliers): 1992.3059322554004\tLoss (with outliers): 1992.3059322554004\n", + "2018-09-25 21:40:27,481 : INFO : Loss (no outliers): 2621.2191386972886\tLoss (with outliers): 2621.2191386972886\n", + "2018-09-25 21:40:54,424 : INFO : Loss (no outliers): 2304.5265738630683\tLoss (with outliers): 2304.5265738630683\n", + "2018-09-25 21:41:23,644 : INFO : Loss (no outliers): 2056.6379517024493\tLoss (with outliers): 2056.6379517024493\n", + "2018-09-25 21:41:50,985 : INFO : Loss (no outliers): 1843.291599343536\tLoss (with outliers): 1843.291599343536\n", + "2018-09-25 21:42:16,145 : INFO : Loss (no outliers): 2031.778329104365\tLoss (with outliers): 2031.778329104365\n", + "2018-09-25 21:42:45,318 : INFO : Loss (no outliers): 2131.7107832529528\tLoss (with outliers): 2131.7107832529528\n", + "2018-09-25 21:43:13,462 : INFO : Loss (no outliers): 2196.1310385201123\tLoss (with outliers): 2196.1310385201123\n", + "2018-09-25 21:43:39,632 : INFO : Loss (no outliers): 1829.181680724877\tLoss (with outliers): 1829.181680724877\n", + "2018-09-25 21:44:08,940 : INFO : Loss (no outliers): 2118.037488247893\tLoss (with outliers): 2118.037488247893\n", + "2018-09-25 21:44:37,075 : INFO : Loss (no outliers): 2707.367244938892\tLoss (with outliers): 2707.367244938892\n", + "2018-09-25 21:45:06,122 : INFO : Loss (no outliers): 1945.9610054336392\tLoss (with outliers): 1945.9610054336392\n", + "2018-09-25 21:45:34,291 : INFO : Loss (no outliers): 2136.79848976216\tLoss (with outliers): 2136.79848976216\n", + "2018-09-25 21:46:02,533 : INFO : Loss (no outliers): 2226.784545788012\tLoss (with outliers): 2226.784545788012\n", + "2018-09-25 21:46:30,762 : INFO : Loss (no outliers): 2192.757219984718\tLoss (with outliers): 2192.757219984718\n", + "2018-09-25 21:46:59,160 : INFO : Loss (no outliers): 1854.821302464148\tLoss (with outliers): 1854.821302464148\n", + "2018-09-25 21:47:29,385 : INFO : Loss (no outliers): 2192.987837479867\tLoss (with outliers): 2192.987837479867\n", + "2018-09-25 21:48:04,188 : INFO : Loss (no outliers): 1979.5570841573535\tLoss (with outliers): 1979.5570841573535\n", + "2018-09-25 21:48:31,217 : INFO : Loss (no outliers): 2314.7285311747096\tLoss (with outliers): 2314.7285311747096\n", + "2018-09-25 21:48:58,233 : INFO : Loss (no outliers): 2249.193285337731\tLoss (with outliers): 2249.193285337731\n", + "2018-09-25 21:49:26,293 : INFO : Loss (no outliers): 2210.9125492971275\tLoss (with outliers): 2210.9125492971275\n", + "2018-09-25 21:49:55,554 : INFO : Loss (no outliers): 2253.2038560025226\tLoss (with outliers): 2253.2038560025226\n", + "2018-09-25 21:50:23,541 : INFO : Loss (no outliers): 1904.0110258018562\tLoss (with outliers): 1904.0110258018562\n", + "2018-09-25 21:50:50,859 : INFO : Loss (no outliers): 2007.3752991832107\tLoss (with outliers): 2007.3752991832107\n", + "2018-09-25 21:51:19,251 : INFO : Loss (no outliers): 2183.465959494442\tLoss (with outliers): 2183.465959494442\n", + "2018-09-25 21:51:46,564 : INFO : Loss (no outliers): 2126.672782915573\tLoss (with outliers): 2126.672782915573\n", + "2018-09-25 21:52:15,792 : INFO : Loss (no outliers): 2137.444584832173\tLoss (with outliers): 2137.444584832173\n", + "2018-09-25 21:52:43,056 : INFO : Loss (no outliers): 2081.186643044829\tLoss (with outliers): 2081.186643044829\n", + "2018-09-25 21:53:11,476 : INFO : Loss (no outliers): 1777.718050403664\tLoss (with outliers): 1777.718050403664\n", + "2018-09-25 21:53:40,217 : INFO : Loss (no outliers): 1966.5827468691502\tLoss (with outliers): 1966.5827468691502\n", + "2018-09-25 21:54:07,523 : INFO : Loss (no outliers): 2285.0330395577853\tLoss (with outliers): 2285.0330395577853\n", + "2018-09-25 21:54:34,899 : INFO : Loss (no outliers): 2095.3439891372013\tLoss (with outliers): 2095.3439891372013\n", + "2018-09-25 21:55:02,465 : INFO : Loss (no outliers): 2441.6313285843867\tLoss (with outliers): 2441.6313285843867\n", + "2018-09-25 21:55:31,873 : INFO : Loss (no outliers): 2078.1160600839357\tLoss (with outliers): 2078.1160600839357\n", + "2018-09-25 21:56:01,281 : INFO : Loss (no outliers): 2006.13614211244\tLoss (with outliers): 2006.13614211244\n", + "2018-09-25 21:56:28,977 : INFO : Loss (no outliers): 2191.077945446085\tLoss (with outliers): 2191.077945446085\n", + "2018-09-25 21:56:56,475 : INFO : Loss (no outliers): 2271.6558298602467\tLoss (with outliers): 2271.6558298602467\n", + "2018-09-25 21:57:23,852 : INFO : Loss (no outliers): 2076.1714233505795\tLoss (with outliers): 2076.1714233505795\n", + "2018-09-25 21:57:51,175 : INFO : Loss (no outliers): 2071.403024680281\tLoss (with outliers): 2071.403024680281\n", + "2018-09-25 21:58:19,714 : INFO : Loss (no outliers): 2097.4059222055885\tLoss (with outliers): 2097.4059222055885\n", + "2018-09-25 21:58:49,321 : INFO : Loss (no outliers): 2082.348876299056\tLoss (with outliers): 2082.348876299056\n", + "2018-09-25 21:59:18,847 : INFO : Loss (no outliers): 2265.751110956243\tLoss (with outliers): 2265.751110956243\n", + "2018-09-25 21:59:46,345 : INFO : Loss (no outliers): 2415.3575868885173\tLoss (with outliers): 2415.3575868885173\n", + "2018-09-25 22:00:12,555 : INFO : Loss (no outliers): 1974.544440526273\tLoss (with outliers): 1974.544440526273\n", + "2018-09-25 22:00:41,431 : INFO : Loss (no outliers): 2322.92251110559\tLoss (with outliers): 2322.92251110559\n", + "2018-09-25 22:01:08,936 : INFO : Loss (no outliers): 1892.8189643660533\tLoss (with outliers): 1892.8189643660533\n", + "2018-09-25 22:01:34,385 : INFO : Loss (no outliers): 2214.5754559649295\tLoss (with outliers): 2214.5754559649295\n", + "2018-09-25 22:02:03,153 : INFO : Loss (no outliers): 3161.683151229439\tLoss (with outliers): 3161.683151229439\n", + "2018-09-25 22:02:30,807 : INFO : Loss (no outliers): 2132.586108500245\tLoss (with outliers): 2132.586108500245\n", + "2018-09-25 22:03:00,601 : INFO : Loss (no outliers): 2608.6760917520655\tLoss (with outliers): 2608.6760917520655\n", + "2018-09-25 22:03:29,077 : INFO : Loss (no outliers): 2302.148923419783\tLoss (with outliers): 2302.148923419783\n", + "2018-09-25 22:03:57,640 : INFO : Loss (no outliers): 2160.005629018783\tLoss (with outliers): 2160.005629018783\n", + "2018-09-25 22:04:25,221 : INFO : Loss (no outliers): 2342.9963345866317\tLoss (with outliers): 2342.9963345866317\n", + "2018-09-25 22:04:55,185 : INFO : Loss (no outliers): 2248.102532697063\tLoss (with outliers): 2248.102532697063\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 02:11:22,868 : INFO : PROGRESS: saving document #124000\n", - "2018-08-31 02:11:23,814 : INFO : PROGRESS: saving document #125000\n", - "2018-08-31 02:11:24,801 : INFO : PROGRESS: saving document #126000\n", - "2018-08-31 02:11:25,360 : INFO : PROGRESS: saving document #127000\n", - "2018-08-31 02:11:26,211 : INFO : PROGRESS: saving document #128000\n", - "2018-08-31 02:11:27,220 : INFO : PROGRESS: saving document #129000\n", - "2018-08-31 02:11:28,276 : INFO : PROGRESS: saving document #130000\n", - "2018-08-31 02:11:29,222 : INFO : PROGRESS: saving document #131000\n", - "2018-08-31 02:11:30,264 : INFO : PROGRESS: saving document #132000\n", - "2018-08-31 02:11:31,561 : INFO : PROGRESS: saving document #133000\n", - "2018-08-31 02:11:32,560 : INFO : PROGRESS: saving document #134000\n", - "2018-08-31 02:11:33,806 : INFO : PROGRESS: saving document #135000\n", - "2018-08-31 02:11:35,091 : INFO : PROGRESS: saving document #136000\n", - "2018-08-31 02:11:36,016 : INFO : PROGRESS: saving document #137000\n", - "2018-08-31 02:11:37,006 : INFO : PROGRESS: saving document #138000\n", - "2018-08-31 02:11:38,062 : INFO : PROGRESS: saving document #139000\n", - "2018-08-31 02:11:39,025 : INFO : PROGRESS: saving document #140000\n", - "2018-08-31 02:11:40,063 : INFO : PROGRESS: saving document #141000\n", - "2018-08-31 02:11:41,001 : INFO : PROGRESS: saving document #142000\n", - "2018-08-31 02:11:41,989 : INFO : PROGRESS: saving document #143000\n", - "2018-08-31 02:11:42,949 : INFO : PROGRESS: saving document #144000\n", - "2018-08-31 02:11:43,950 : INFO : PROGRESS: saving document #145000\n", - "2018-08-31 02:11:44,810 : INFO : PROGRESS: saving document #146000\n", - "2018-08-31 02:11:45,681 : INFO : PROGRESS: saving document #147000\n", - "2018-08-31 02:11:46,339 : INFO : PROGRESS: saving document #148000\n", - "2018-08-31 02:11:47,304 : INFO : PROGRESS: saving document #149000\n", - "2018-08-31 02:11:48,204 : INFO : PROGRESS: saving document #150000\n", - "2018-08-31 02:11:49,088 : INFO : PROGRESS: saving document #151000\n", - "2018-08-31 02:11:49,947 : INFO : PROGRESS: saving document #152000\n", - "2018-08-31 02:11:51,065 : INFO : PROGRESS: saving document #153000\n", - "2018-08-31 02:11:51,902 : INFO : PROGRESS: saving document #154000\n", - "2018-08-31 02:11:52,849 : INFO : PROGRESS: saving document #155000\n", - "2018-08-31 02:11:53,791 : INFO : PROGRESS: saving document #156000\n", - "2018-08-31 02:11:54,742 : INFO : PROGRESS: saving document #157000\n", - "2018-08-31 02:11:55,700 : INFO : PROGRESS: saving document #158000\n", - "2018-08-31 02:11:56,681 : INFO : PROGRESS: saving document #159000\n", - "2018-08-31 02:11:57,567 : INFO : PROGRESS: saving document #160000\n", - "2018-08-31 02:11:58,395 : INFO : PROGRESS: saving document #161000\n", - "2018-08-31 02:11:59,354 : INFO : PROGRESS: saving document #162000\n", - "2018-08-31 02:12:00,275 : INFO : PROGRESS: saving document #163000\n", - "2018-08-31 02:12:01,146 : INFO : PROGRESS: saving document #164000\n", - "2018-08-31 02:12:01,965 : INFO : PROGRESS: saving document #165000\n", - "2018-08-31 02:12:02,804 : INFO : PROGRESS: saving document #166000\n", - "2018-08-31 02:12:03,703 : INFO : PROGRESS: saving document #167000\n", - "2018-08-31 02:12:04,484 : INFO : PROGRESS: saving document #168000\n", - "2018-08-31 02:12:05,353 : INFO : PROGRESS: saving document #169000\n", - "2018-08-31 02:12:06,230 : INFO : PROGRESS: saving document #170000\n", - "2018-08-31 02:12:07,079 : INFO : PROGRESS: saving document #171000\n", - "2018-08-31 02:12:07,909 : INFO : PROGRESS: saving document #172000\n", - "2018-08-31 02:12:08,790 : INFO : PROGRESS: saving document #173000\n", - "2018-08-31 02:12:09,692 : INFO : PROGRESS: saving document #174000\n", - "2018-08-31 02:12:10,494 : INFO : PROGRESS: saving document #175000\n", - "2018-08-31 02:12:11,370 : INFO : PROGRESS: saving document #176000\n", - "2018-08-31 02:12:12,199 : INFO : PROGRESS: saving document #177000\n", - "2018-08-31 02:12:13,020 : INFO : PROGRESS: saving document #178000\n", - "2018-08-31 02:12:13,790 : INFO : PROGRESS: saving document #179000\n", - "2018-08-31 02:12:14,636 : INFO : PROGRESS: saving document #180000\n", - "2018-08-31 02:12:15,422 : INFO : PROGRESS: saving document #181000\n", - "2018-08-31 02:12:16,203 : INFO : PROGRESS: saving document #182000\n", - "2018-08-31 02:12:17,053 : INFO : PROGRESS: saving document #183000\n", - "2018-08-31 02:12:17,866 : INFO : PROGRESS: saving document #184000\n", - "2018-08-31 02:12:18,636 : INFO : PROGRESS: saving document #185000\n", - "2018-08-31 02:12:19,426 : INFO : PROGRESS: saving document #186000\n", - "2018-08-31 02:12:20,108 : INFO : PROGRESS: saving document #187000\n", - "2018-08-31 02:12:20,916 : INFO : PROGRESS: saving document #188000\n", - "2018-08-31 02:12:21,559 : INFO : PROGRESS: saving document #189000\n", - "2018-08-31 02:12:22,512 : INFO : PROGRESS: saving document #190000\n", - "2018-08-31 02:12:23,298 : INFO : PROGRESS: saving document #191000\n", - "2018-08-31 02:12:23,951 : INFO : PROGRESS: saving document #192000\n", - "2018-08-31 02:12:24,640 : INFO : PROGRESS: saving document #193000\n", - "2018-08-31 02:12:25,413 : INFO : PROGRESS: saving document #194000\n", - "2018-08-31 02:12:26,120 : INFO : PROGRESS: saving document #195000\n", - "2018-08-31 02:12:26,855 : INFO : PROGRESS: saving document #196000\n", - "2018-08-31 02:12:27,647 : INFO : PROGRESS: saving document #197000\n", - "2018-08-31 02:12:28,410 : INFO : PROGRESS: saving document #198000\n", - "2018-08-31 02:12:29,274 : INFO : PROGRESS: saving document #199000\n", - "2018-08-31 02:12:29,998 : INFO : PROGRESS: saving document #200000\n", - "2018-08-31 02:12:30,811 : INFO : PROGRESS: saving document #201000\n", - "2018-08-31 02:12:31,460 : INFO : PROGRESS: saving document #202000\n", - "2018-08-31 02:12:32,040 : INFO : PROGRESS: saving document #203000\n", - "2018-08-31 02:12:32,806 : INFO : PROGRESS: saving document #204000\n", - "2018-08-31 02:12:33,580 : INFO : PROGRESS: saving document #205000\n", - "2018-08-31 02:12:34,319 : INFO : PROGRESS: saving document #206000\n", - "2018-08-31 02:12:35,136 : INFO : PROGRESS: saving document #207000\n", - "2018-08-31 02:12:35,901 : INFO : PROGRESS: saving document #208000\n", - "2018-08-31 02:12:36,583 : INFO : PROGRESS: saving document #209000\n", - "2018-08-31 02:12:37,364 : INFO : PROGRESS: saving document #210000\n", - "2018-08-31 02:12:38,074 : INFO : PROGRESS: saving document #211000\n", - "2018-08-31 02:12:38,839 : INFO : PROGRESS: saving document #212000\n", - "2018-08-31 02:12:39,562 : INFO : PROGRESS: saving document #213000\n", - "2018-08-31 02:12:40,295 : INFO : PROGRESS: saving document #214000\n", - "2018-08-31 02:12:41,070 : INFO : PROGRESS: saving document #215000\n", - "2018-08-31 02:12:41,813 : INFO : PROGRESS: saving document #216000\n", - "2018-08-31 02:12:42,442 : INFO : PROGRESS: saving document #217000\n", - "2018-08-31 02:12:43,179 : INFO : PROGRESS: saving document #218000\n", - "2018-08-31 02:12:43,998 : INFO : PROGRESS: saving document #219000\n", - "2018-08-31 02:12:44,822 : INFO : PROGRESS: saving document #220000\n", - "2018-08-31 02:12:45,538 : INFO : PROGRESS: saving document #221000\n", - "2018-08-31 02:12:46,318 : INFO : PROGRESS: saving document #222000\n", - "2018-08-31 02:12:47,131 : INFO : PROGRESS: saving document #223000\n", - "2018-08-31 02:12:47,908 : INFO : PROGRESS: saving document #224000\n", - "2018-08-31 02:12:48,618 : INFO : PROGRESS: saving document #225000\n", - "2018-08-31 02:12:49,292 : INFO : PROGRESS: saving document #226000\n", - "2018-08-31 02:12:49,983 : INFO : PROGRESS: saving document #227000\n", - "2018-08-31 02:12:50,739 : INFO : PROGRESS: saving document #228000\n" + "2018-09-25 22:05:23,333 : INFO : Loss (no outliers): 2045.8914472500164\tLoss (with outliers): 2045.8914472500164\n", + "2018-09-25 22:05:49,855 : INFO : Loss (no outliers): 2021.2644079653978\tLoss (with outliers): 2021.2644079653978\n", + "2018-09-25 22:06:20,389 : INFO : Loss (no outliers): 2054.8243581364536\tLoss (with outliers): 2054.8243581364536\n", + "2018-09-25 22:06:50,099 : INFO : Loss (no outliers): 1978.88264172572\tLoss (with outliers): 1978.88264172572\n", + "2018-09-25 22:07:18,494 : INFO : Loss (no outliers): 1880.6688041814068\tLoss (with outliers): 1880.6688041814068\n", + "2018-09-25 22:07:46,152 : INFO : Loss (no outliers): 2008.3882815060638\tLoss (with outliers): 2008.3882815060638\n", + "2018-09-25 22:08:14,700 : INFO : Loss (no outliers): 2142.5359761925024\tLoss (with outliers): 2142.5359761925024\n", + "2018-09-25 22:08:43,337 : INFO : Loss (no outliers): 1915.8094403414839\tLoss (with outliers): 1915.8094403414839\n", + "2018-09-25 22:09:11,780 : INFO : Loss (no outliers): 1801.005269158962\tLoss (with outliers): 1801.005269158962\n", + "2018-09-25 22:09:38,203 : INFO : Loss (no outliers): 2683.426083837766\tLoss (with outliers): 2683.426083837766\n", + "2018-09-25 22:10:06,942 : INFO : Loss (no outliers): 2362.362799181837\tLoss (with outliers): 2362.362799181837\n", + "2018-09-25 22:10:35,753 : INFO : Loss (no outliers): 2081.652012620842\tLoss (with outliers): 2081.652012620842\n", + "2018-09-25 22:11:02,268 : INFO : Loss (no outliers): 2018.9575520975206\tLoss (with outliers): 2018.9575520975206\n", + "2018-09-25 22:11:28,898 : INFO : Loss (no outliers): 1896.0501352116105\tLoss (with outliers): 1896.0501352116105\n", + "2018-09-25 22:11:54,385 : INFO : Loss (no outliers): 1814.5243504099649\tLoss (with outliers): 1814.5243504099649\n", + "2018-09-25 22:12:21,028 : INFO : Loss (no outliers): 2638.9332756935337\tLoss (with outliers): 2638.9332756935337\n", + "2018-09-25 22:12:46,619 : INFO : Loss (no outliers): 2231.6419589596558\tLoss (with outliers): 2231.6419589596558\n", + "2018-09-25 22:13:14,320 : INFO : Loss (no outliers): 3000.346161503833\tLoss (with outliers): 3000.346161503833\n", + "2018-09-25 22:13:43,050 : INFO : Loss (no outliers): 1981.5531696817302\tLoss (with outliers): 1981.5531696817302\n", + "2018-09-25 22:14:11,919 : INFO : Loss (no outliers): 1703.329876128146\tLoss (with outliers): 1703.329876128146\n", + "2018-09-25 22:14:40,572 : INFO : Loss (no outliers): 2357.7370749591523\tLoss (with outliers): 2357.7370749591523\n", + "2018-09-25 22:15:08,086 : INFO : Loss (no outliers): 2163.878945360187\tLoss (with outliers): 2163.878945360187\n", + "2018-09-25 22:15:35,701 : INFO : Loss (no outliers): 2080.085325715664\tLoss (with outliers): 2080.085325715664\n", + "2018-09-25 22:16:02,486 : INFO : Loss (no outliers): 2245.723946876521\tLoss (with outliers): 2245.723946876521\n", + "2018-09-25 22:16:29,064 : INFO : Loss (no outliers): 1787.057872784789\tLoss (with outliers): 1787.057872784789\n", + "2018-09-25 22:16:36,845 : INFO : Loss (no outliers): 1572.250745072216\tLoss (with outliers): 1572.250745072216\n", + "2018-09-25 22:16:36,855 : INFO : saving Nmf object under nmf_0.model, separately None\n", + "2018-09-25 22:18:29,155 : INFO : saved nmf_0.model\n", + "2018-09-25 22:19:05,466 : INFO : Loss (no outliers): 2343.230061431289\tLoss (with outliers): 2343.230061431289\n", + "2018-09-25 22:19:35,164 : INFO : Loss (no outliers): 1803.5568054807027\tLoss (with outliers): 1803.5568054807027\n", + "2018-09-25 22:20:06,925 : INFO : Loss (no outliers): 2112.381459531017\tLoss (with outliers): 2112.381459531017\n", + "2018-09-25 22:20:39,497 : INFO : Loss (no outliers): 2020.941260409267\tLoss (with outliers): 2020.941260409267\n", + "2018-09-25 22:21:07,621 : INFO : Loss (no outliers): 2185.704899263782\tLoss (with outliers): 2185.704899263782\n", + "2018-09-25 22:21:38,179 : INFO : Loss (no outliers): 2070.601828195947\tLoss (with outliers): 2070.601828195947\n", + "2018-09-25 22:22:10,794 : INFO : Loss (no outliers): 2124.6456169186727\tLoss (with outliers): 2124.6456169186727\n", + "2018-09-25 22:22:43,221 : INFO : Loss (no outliers): 2146.2311424760983\tLoss (with outliers): 2146.2311424760983\n", + "2018-09-25 22:23:13,852 : INFO : Loss (no outliers): 2303.1808410983854\tLoss (with outliers): 2303.1808410983854\n", + "2018-09-25 22:23:44,342 : INFO : Loss (no outliers): 2180.2646353891396\tLoss (with outliers): 2180.2646353891396\n", + "2018-09-25 22:24:13,779 : INFO : Loss (no outliers): 2200.142548021326\tLoss (with outliers): 2200.142548021326\n", + "2018-09-25 22:24:44,354 : INFO : Loss (no outliers): 2258.1808870133605\tLoss (with outliers): 2258.1808870133605\n", + "2018-09-25 22:25:13,234 : INFO : Loss (no outliers): 3013.086383787325\tLoss (with outliers): 3013.086383787325\n", + "2018-09-25 22:25:42,240 : INFO : Loss (no outliers): 2526.2047863046855\tLoss (with outliers): 2526.2047863046855\n", + "2018-09-25 22:26:11,885 : INFO : Loss (no outliers): 2077.9775009852524\tLoss (with outliers): 2077.9775009852524\n", + "2018-09-25 22:26:40,844 : INFO : Loss (no outliers): 1925.959266398268\tLoss (with outliers): 1925.959266398268\n", + "2018-09-25 22:27:09,080 : INFO : Loss (no outliers): 2442.7401035865687\tLoss (with outliers): 2442.7401035865687\n", + "2018-09-25 22:27:38,620 : INFO : Loss (no outliers): 1851.7330177542158\tLoss (with outliers): 1851.7330177542158\n", + "2018-09-25 22:28:07,976 : INFO : Loss (no outliers): 2023.45959589726\tLoss (with outliers): 2023.45959589726\n", + "2018-09-25 22:28:36,964 : INFO : Loss (no outliers): 1846.8389873476876\tLoss (with outliers): 1846.8389873476876\n", + "2018-09-25 22:29:05,806 : INFO : Loss (no outliers): 2231.3654855915493\tLoss (with outliers): 2231.3654855915493\n", + "2018-09-25 22:29:34,640 : INFO : Loss (no outliers): 2416.821012936733\tLoss (with outliers): 2416.821012936733\n", + "2018-09-25 22:30:02,134 : INFO : Loss (no outliers): 1908.555282307352\tLoss (with outliers): 1908.555282307352\n", + "2018-09-25 22:30:28,794 : INFO : Loss (no outliers): 2137.382180160982\tLoss (with outliers): 2137.382180160982\n", + "2018-09-25 22:30:58,133 : INFO : Loss (no outliers): 2144.0912259325037\tLoss (with outliers): 2144.0912259325037\n", + "2018-09-25 22:31:26,628 : INFO : Loss (no outliers): 2125.0801246891488\tLoss (with outliers): 2125.0801246891488\n", + "2018-09-25 22:31:53,667 : INFO : Loss (no outliers): 3043.1339513969324\tLoss (with outliers): 3043.1339513969324\n", + "2018-09-25 22:32:22,466 : INFO : Loss (no outliers): 2761.610240335735\tLoss (with outliers): 2761.610240335735\n", + "2018-09-25 22:32:49,729 : INFO : Loss (no outliers): 1954.7285327279428\tLoss (with outliers): 1954.7285327279428\n", + "2018-09-25 22:33:18,917 : INFO : Loss (no outliers): 2049.5128251532205\tLoss (with outliers): 2049.5128251532205\n", + "2018-09-25 22:33:45,582 : INFO : Loss (no outliers): 1882.181786044952\tLoss (with outliers): 1882.181786044952\n", + "2018-09-25 22:34:13,016 : INFO : Loss (no outliers): 2150.2957865839608\tLoss (with outliers): 2150.2957865839608\n", + "2018-09-25 22:34:40,549 : INFO : Loss (no outliers): 2493.1949323614244\tLoss (with outliers): 2493.1949323614244\n", + "2018-09-25 22:35:08,758 : INFO : Loss (no outliers): 1861.9450521802298\tLoss (with outliers): 1861.9450521802298\n", + "2018-09-25 22:35:36,737 : INFO : Loss (no outliers): 1929.2667309376138\tLoss (with outliers): 1929.2667309376138\n", + "2018-09-25 22:36:02,578 : INFO : Loss (no outliers): 1963.4419179185065\tLoss (with outliers): 1963.4419179185065\n", + "2018-09-25 22:36:30,406 : INFO : Loss (no outliers): 2113.7118046588075\tLoss (with outliers): 2113.7118046588075\n", + "2018-09-25 22:36:56,229 : INFO : Loss (no outliers): 2063.06327286125\tLoss (with outliers): 2063.06327286125\n", + "2018-09-25 22:37:23,972 : INFO : Loss (no outliers): 2188.564308783892\tLoss (with outliers): 2188.564308783892\n", + "2018-09-25 22:37:50,500 : INFO : Loss (no outliers): 2101.93150703327\tLoss (with outliers): 2101.93150703327\n", + "2018-09-25 22:38:16,978 : INFO : Loss (no outliers): 1940.0592351383712\tLoss (with outliers): 1940.0592351383712\n", + "2018-09-25 22:38:43,580 : INFO : Loss (no outliers): 1857.2868340568768\tLoss (with outliers): 1857.2868340568768\n", + "2018-09-25 22:39:09,856 : INFO : Loss (no outliers): 3240.2915816372715\tLoss (with outliers): 3240.2915816372715\n", + "2018-09-25 22:39:38,260 : INFO : Loss (no outliers): 2467.005825097243\tLoss (with outliers): 2467.005825097243\n", + "2018-09-25 22:40:05,771 : INFO : Loss (no outliers): 1848.9637075877067\tLoss (with outliers): 1848.9637075877067\n", + "2018-09-25 22:40:33,455 : INFO : Loss (no outliers): 2134.2871777837504\tLoss (with outliers): 2134.2871777837504\n" ] - } - ], - "source": [ - "corpus = (\n", - " dictionary.doc2bow(article)\n", - " for article\n", - " in get_preprocessed_articles('wiki_articles.jsonlines')\n", - ")\n", - "\n", - "RandomCorpus.serialize('wiki.mm')" - ] - }, - { - "cell_type": "code", - "execution_count": 206, - "metadata": {}, - "outputs": [ + }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 17:42:54,211 : INFO : loaded corpus index from wiki.mm.index\n", - "2018-08-31 17:42:54,211 : INFO : initializing cython corpus reader from wiki.mm\n", - "2018-08-31 17:42:54,212 : INFO : accepted corpus with 4924894 documents, 100000 features, 683375728 non-zero entries\n" + "2018-09-25 22:41:01,044 : INFO : Loss (no outliers): 2094.4917084070967\tLoss (with outliers): 2094.4917084070967\n", + "2018-09-25 22:41:28,486 : INFO : Loss (no outliers): 2154.240691211658\tLoss (with outliers): 2154.240691211658\n", + "2018-09-25 22:41:53,447 : INFO : Loss (no outliers): 2802.6732906098923\tLoss (with outliers): 2802.6732906098923\n", + "2018-09-25 22:42:20,289 : INFO : Loss (no outliers): 2613.120421709758\tLoss (with outliers): 2613.120421709758\n", + "2018-09-25 22:42:47,349 : INFO : Loss (no outliers): 5317.562151779767\tLoss (with outliers): 5317.562151779767\n", + "2018-09-25 22:43:14,199 : INFO : Loss (no outliers): 1971.8530237998427\tLoss (with outliers): 1971.8530237998427\n", + "2018-09-25 22:43:41,212 : INFO : Loss (no outliers): 3059.6913116173\tLoss (with outliers): 3059.6913116173\n", + "2018-09-25 22:44:07,936 : INFO : Loss (no outliers): 2119.064129683836\tLoss (with outliers): 2119.064129683836\n", + "2018-09-25 22:44:32,600 : INFO : Loss (no outliers): 1972.9436280672116\tLoss (with outliers): 1972.9436280672116\n", + "2018-09-25 22:45:01,038 : INFO : Loss (no outliers): 2148.1581104622533\tLoss (with outliers): 2148.1581104622533\n", + "2018-09-25 22:45:27,472 : INFO : Loss (no outliers): 2139.4284786370845\tLoss (with outliers): 2139.4284786370845\n", + "2018-09-25 22:45:53,933 : INFO : Loss (no outliers): 2503.4118718186446\tLoss (with outliers): 2503.4118718186446\n", + "2018-09-25 22:46:19,338 : INFO : Loss (no outliers): 1783.692053186271\tLoss (with outliers): 1783.692053186271\n", + "2018-09-25 22:46:45,573 : INFO : Loss (no outliers): 3326.2729404575603\tLoss (with outliers): 3326.2729404575603\n", + "2018-09-25 22:47:13,058 : INFO : Loss (no outliers): 2029.2064819911038\tLoss (with outliers): 2029.2064819911038\n", + "2018-09-25 22:47:37,658 : INFO : Loss (no outliers): 1910.1297079750075\tLoss (with outliers): 1910.1297079750075\n", + "2018-09-25 22:48:04,256 : INFO : Loss (no outliers): 2624.25082993823\tLoss (with outliers): 2624.25082993823\n", + "2018-09-25 22:48:31,154 : INFO : Loss (no outliers): 2100.231986343954\tLoss (with outliers): 2100.231986343954\n", + "2018-09-25 22:48:58,859 : INFO : Loss (no outliers): 2198.869425068537\tLoss (with outliers): 2198.869425068537\n", + "2018-09-25 22:49:22,567 : INFO : Loss (no outliers): 1954.803125604589\tLoss (with outliers): 1954.803125604589\n", + "2018-09-25 22:49:48,897 : INFO : Loss (no outliers): 1714.1060864773353\tLoss (with outliers): 1714.1060864773353\n", + "2018-09-25 22:50:14,471 : INFO : Loss (no outliers): 1844.9434574731933\tLoss (with outliers): 1844.9434574731933\n", + "2018-09-25 22:50:41,064 : INFO : Loss (no outliers): 2022.1314905464465\tLoss (with outliers): 2022.1314905464465\n", + "2018-09-25 22:51:07,821 : INFO : Loss (no outliers): 1918.2145124775693\tLoss (with outliers): 1918.2145124775693\n", + "2018-09-25 22:51:33,327 : INFO : Loss (no outliers): 1989.0285618162839\tLoss (with outliers): 1989.0285618162839\n", + "2018-09-25 22:51:58,862 : INFO : Loss (no outliers): 2105.5909672039147\tLoss (with outliers): 2105.5909672039147\n", + "2018-09-25 22:52:24,529 : INFO : Loss (no outliers): 3144.9532507856998\tLoss (with outliers): 3144.9532507856998\n", + "2018-09-25 22:52:49,557 : INFO : Loss (no outliers): 2148.185971976513\tLoss (with outliers): 2148.185971976513\n", + "2018-09-25 22:53:16,666 : INFO : Loss (no outliers): 2415.191505263212\tLoss (with outliers): 2415.191505263212\n", + "2018-09-25 22:53:43,843 : INFO : Loss (no outliers): 1912.5479737617327\tLoss (with outliers): 1912.5479737617327\n", + "2018-09-25 22:54:07,675 : INFO : Loss (no outliers): 2053.519038128509\tLoss (with outliers): 2053.519038128509\n", + "2018-09-25 22:54:34,294 : INFO : Loss (no outliers): 2413.188615141713\tLoss (with outliers): 2413.188615141713\n", + "2018-09-25 22:54:58,823 : INFO : Loss (no outliers): 1839.5354484425868\tLoss (with outliers): 1839.5354484425868\n", + "2018-09-25 22:55:25,844 : INFO : Loss (no outliers): 2171.5043133219037\tLoss (with outliers): 2171.5043133219037\n", + "2018-09-25 22:55:53,108 : INFO : Loss (no outliers): 1830.964625801034\tLoss (with outliers): 1830.964625801034\n", + "2018-09-25 22:56:18,364 : INFO : Loss (no outliers): 2262.588342039689\tLoss (with outliers): 2262.588342039689\n", + "2018-09-25 22:56:44,120 : INFO : Loss (no outliers): 2091.5608762325573\tLoss (with outliers): 2091.5608762325573\n", + "2018-09-25 22:57:13,094 : INFO : Loss (no outliers): 2196.0384907002835\tLoss (with outliers): 2196.0384907002835\n", + "2018-09-25 22:57:41,573 : INFO : Loss (no outliers): 1855.938004123325\tLoss (with outliers): 1855.938004123325\n", + "2018-09-25 22:58:09,702 : INFO : Loss (no outliers): 1806.7467270545092\tLoss (with outliers): 1806.7467270545092\n", + "2018-09-25 22:58:36,436 : INFO : Loss (no outliers): 3265.1574607441166\tLoss (with outliers): 3265.1574607441166\n", + "2018-09-25 22:59:03,452 : INFO : Loss (no outliers): 2149.359868932271\tLoss (with outliers): 2149.359868932271\n", + "2018-09-25 22:59:31,625 : INFO : Loss (no outliers): 2259.8569906240573\tLoss (with outliers): 2259.8569906240573\n", + "2018-09-25 22:59:56,458 : INFO : Loss (no outliers): 2107.590518731254\tLoss (with outliers): 2107.590518731254\n", + "2018-09-25 23:00:20,389 : INFO : Loss (no outliers): 1910.057854676393\tLoss (with outliers): 1910.057854676393\n", + "2018-09-25 23:00:48,594 : INFO : Loss (no outliers): 2008.5717460401377\tLoss (with outliers): 2008.5717460401377\n", + "2018-09-25 23:01:14,733 : INFO : Loss (no outliers): 2075.8424461866866\tLoss (with outliers): 2075.8424461866866\n", + "2018-09-25 23:01:39,505 : INFO : Loss (no outliers): 1917.8892603605773\tLoss (with outliers): 1917.8892603605773\n", + "2018-09-25 23:02:05,617 : INFO : Loss (no outliers): 2355.809913970435\tLoss (with outliers): 2355.809913970435\n", + "2018-09-25 23:02:34,943 : INFO : Loss (no outliers): 2019.417695257248\tLoss (with outliers): 2019.417695257248\n", + "2018-09-25 23:03:03,316 : INFO : Loss (no outliers): 2004.5258341864428\tLoss (with outliers): 2004.5258341864428\n", + "2018-09-25 23:03:30,111 : INFO : Loss (no outliers): 2035.7302843265702\tLoss (with outliers): 2035.7302843265702\n", + "2018-09-25 23:03:56,473 : INFO : Loss (no outliers): 2050.7263424767934\tLoss (with outliers): 2050.7263424767934\n", + "2018-09-25 23:04:24,778 : INFO : Loss (no outliers): 2311.9423786481066\tLoss (with outliers): 2311.9423786481066\n", + "2018-09-25 23:04:50,954 : INFO : Loss (no outliers): 1999.1389895018674\tLoss (with outliers): 1999.1389895018674\n", + "2018-09-25 23:05:17,967 : INFO : Loss (no outliers): 2055.4952328346494\tLoss (with outliers): 2055.4952328346494\n", + "2018-09-25 23:05:42,178 : INFO : Loss (no outliers): 2039.5278737946228\tLoss (with outliers): 2039.5278737946228\n", + "2018-09-25 23:06:07,595 : INFO : Loss (no outliers): 1839.325464614614\tLoss (with outliers): 1839.325464614614\n", + "2018-09-25 23:06:34,815 : INFO : Loss (no outliers): 2087.8776539138216\tLoss (with outliers): 2087.8776539138216\n", + "2018-09-25 23:07:01,019 : INFO : Loss (no outliers): 2134.916421928831\tLoss (with outliers): 2134.916421928831\n", + "2018-09-25 23:07:25,420 : INFO : Loss (no outliers): 2545.9773748983703\tLoss (with outliers): 2545.9773748983703\n", + "2018-09-25 23:07:51,049 : INFO : Loss (no outliers): 2147.160957915417\tLoss (with outliers): 2147.160957915417\n", + "2018-09-25 23:08:19,594 : INFO : Loss (no outliers): 2536.553126621696\tLoss (with outliers): 2536.553126621696\n", + "2018-09-25 23:08:54,113 : INFO : Loss (no outliers): 1897.491022332055\tLoss (with outliers): 1897.491022332055\n", + "2018-09-25 23:09:26,101 : INFO : Loss (no outliers): 2029.0933238794585\tLoss (with outliers): 2029.0933238794585\n", + "2018-09-25 23:09:56,671 : INFO : Loss (no outliers): 1847.6177798437752\tLoss (with outliers): 1847.6177798437752\n", + "2018-09-25 23:10:26,210 : INFO : Loss (no outliers): 2153.873866618242\tLoss (with outliers): 2153.873866618242\n", + "2018-09-25 23:10:56,501 : INFO : Loss (no outliers): 1945.5393658968965\tLoss (with outliers): 1945.5393658968965\n", + "2018-09-25 23:11:25,997 : INFO : Loss (no outliers): 2193.757372695464\tLoss (with outliers): 2193.757372695464\n", + "2018-09-25 23:11:54,420 : INFO : Loss (no outliers): 2151.593574460095\tLoss (with outliers): 2151.593574460095\n", + "2018-09-25 23:12:24,862 : INFO : Loss (no outliers): 1996.9114529056953\tLoss (with outliers): 1996.9114529056953\n", + "2018-09-25 23:12:53,583 : INFO : Loss (no outliers): 1958.1618337680452\tLoss (with outliers): 1958.1618337680452\n", + "2018-09-25 23:13:23,232 : INFO : Loss (no outliers): 1909.989368794284\tLoss (with outliers): 1909.989368794284\n", + "2018-09-25 23:13:50,827 : INFO : Loss (no outliers): 1933.3579371192534\tLoss (with outliers): 1933.3579371192534\n" ] - } - ], - "source": [ - "corpus = RandomCorpus('wiki.mm', random_state=42)" - ] - }, - { - "cell_type": "code", - "execution_count": 207, - "metadata": {}, - "outputs": [], - "source": [ - "PASSES = 2\n", - "\n", - "training_params = dict(\n", - " chunksize=2000,\n", - " num_topics=100,\n", - " id2word=dictionary\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 187, - "metadata": {}, - "outputs": [ + }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 17:17:30,351 : INFO : Loss (no outliers): 2367.6889968919445\tLoss (with outliers): 2367.6889968919445\n", - "2018-08-31 17:18:59,163 : INFO : Loss (no outliers): 1854.0984036987372\tLoss (with outliers): 1854.0984036987372\n", - "2018-08-31 17:20:26,149 : INFO : Loss (no outliers): 2345.1193574171775\tLoss (with outliers): 2345.1193574171775\n" + "2018-09-25 23:14:21,401 : INFO : Loss (no outliers): 2176.093877943977\tLoss (with outliers): 2176.093877943977\n", + "2018-09-25 23:14:52,134 : INFO : Loss (no outliers): 1965.582201308679\tLoss (with outliers): 1965.582201308679\n", + "2018-09-25 23:15:23,216 : INFO : Loss (no outliers): 2358.571359311288\tLoss (with outliers): 2358.571359311288\n", + "2018-09-25 23:15:53,292 : INFO : Loss (no outliers): 1979.0309962150184\tLoss (with outliers): 1979.0309962150184\n", + "2018-09-25 23:16:20,867 : INFO : Loss (no outliers): 2074.951204201203\tLoss (with outliers): 2074.951204201203\n", + "2018-09-25 23:16:51,763 : INFO : Loss (no outliers): 1955.2326162454233\tLoss (with outliers): 1955.2326162454233\n", + "2018-09-25 23:17:20,574 : INFO : Loss (no outliers): 2172.5557242886475\tLoss (with outliers): 2172.5557242886475\n", + "2018-09-25 23:17:48,661 : INFO : Loss (no outliers): 1728.0919560487505\tLoss (with outliers): 1728.0919560487505\n", + "2018-09-25 23:18:19,099 : INFO : Loss (no outliers): 2104.077330774064\tLoss (with outliers): 2104.077330774064\n", + "2018-09-25 23:18:49,058 : INFO : Loss (no outliers): 2450.896502514616\tLoss (with outliers): 2450.896502514616\n", + "2018-09-25 23:19:17,910 : INFO : Loss (no outliers): 1885.7837019898961\tLoss (with outliers): 1885.7837019898961\n", + "2018-09-25 23:19:46,769 : INFO : Loss (no outliers): 2254.9561319894724\tLoss (with outliers): 2254.9561319894724\n", + "2018-09-25 23:20:13,680 : INFO : Loss (no outliers): 1758.551732659085\tLoss (with outliers): 1758.551732659085\n", + "2018-09-25 23:20:44,505 : INFO : Loss (no outliers): 2250.9228488778303\tLoss (with outliers): 2250.9228488778303\n", + "2018-09-25 23:21:13,211 : INFO : Loss (no outliers): 2192.9844894862417\tLoss (with outliers): 2192.9844894862417\n", + "2018-09-25 23:21:43,664 : INFO : Loss (no outliers): 2382.5490142677113\tLoss (with outliers): 2382.5490142677113\n", + "2018-09-25 23:22:14,299 : INFO : Loss (no outliers): 2233.809457917905\tLoss (with outliers): 2233.809457917905\n", + "2018-09-25 23:22:43,999 : INFO : Loss (no outliers): 2042.1788779700366\tLoss (with outliers): 2042.1788779700366\n", + "2018-09-25 23:23:13,143 : INFO : Loss (no outliers): 2088.4211971065643\tLoss (with outliers): 2088.4211971065643\n", + "2018-09-25 23:23:39,920 : INFO : Loss (no outliers): 2368.1026220897315\tLoss (with outliers): 2368.1026220897315\n", + "2018-09-25 23:24:07,961 : INFO : Loss (no outliers): 2110.097703221738\tLoss (with outliers): 2110.097703221738\n", + "2018-09-25 23:24:39,083 : INFO : Loss (no outliers): 2554.4429875620167\tLoss (with outliers): 2554.4429875620167\n", + "2018-09-25 23:25:06,213 : INFO : Loss (no outliers): 2028.1327900159624\tLoss (with outliers): 2028.1327900159624\n", + "2018-09-25 23:25:36,614 : INFO : Loss (no outliers): 2243.912813602955\tLoss (with outliers): 2243.912813602955\n", + "2018-09-25 23:26:06,727 : INFO : Loss (no outliers): 2038.8844467846395\tLoss (with outliers): 2038.8844467846395\n", + "2018-09-25 23:26:37,743 : INFO : Loss (no outliers): 1951.881249655801\tLoss (with outliers): 1951.881249655801\n", + "2018-09-25 23:27:07,910 : INFO : Loss (no outliers): 2124.2066843262255\tLoss (with outliers): 2124.2066843262255\n", + "2018-09-25 23:27:35,965 : INFO : Loss (no outliers): 2088.9695152864783\tLoss (with outliers): 2088.9695152864783\n", + "2018-09-25 23:28:05,176 : INFO : Loss (no outliers): 2092.5509718884377\tLoss (with outliers): 2092.5509718884377\n", + "2018-09-25 23:28:35,332 : INFO : Loss (no outliers): 2052.6544563901857\tLoss (with outliers): 2052.6544563901857\n", + "2018-09-25 23:29:04,465 : INFO : Loss (no outliers): 2195.2233746925585\tLoss (with outliers): 2195.2233746925585\n", + "2018-09-25 23:29:34,392 : INFO : Loss (no outliers): 1914.9885026731986\tLoss (with outliers): 1914.9885026731986\n", + "2018-09-25 23:30:03,408 : INFO : Loss (no outliers): 2799.099738389821\tLoss (with outliers): 2799.099738389821\n", + "2018-09-25 23:30:32,868 : INFO : Loss (no outliers): 2086.907263817489\tLoss (with outliers): 2086.907263817489\n", + "2018-09-25 23:31:00,600 : INFO : Loss (no outliers): 2043.8823430773832\tLoss (with outliers): 2043.8823430773832\n", + "2018-09-25 23:31:27,824 : INFO : Loss (no outliers): 2048.76723149159\tLoss (with outliers): 2048.76723149159\n", + "2018-09-25 23:31:54,665 : INFO : Loss (no outliers): 1924.3722566988054\tLoss (with outliers): 1924.3722566988054\n", + "2018-09-25 23:32:21,620 : INFO : Loss (no outliers): 2230.0742537573296\tLoss (with outliers): 2230.0742537573296\n", + "2018-09-25 23:32:49,316 : INFO : Loss (no outliers): 2293.977623102217\tLoss (with outliers): 2293.977623102217\n", + "2018-09-25 23:33:16,749 : INFO : Loss (no outliers): 2093.454518820313\tLoss (with outliers): 2093.454518820313\n", + "2018-09-25 23:33:42,341 : INFO : Loss (no outliers): 1901.9654591163442\tLoss (with outliers): 1901.9654591163442\n", + "2018-09-25 23:34:08,115 : INFO : Loss (no outliers): 2030.356700911018\tLoss (with outliers): 2030.356700911018\n", + "2018-09-25 23:34:35,672 : INFO : Loss (no outliers): 1997.1635089527806\tLoss (with outliers): 1997.1635089527806\n", + "2018-09-25 23:35:01,275 : INFO : Loss (no outliers): 2231.355831663867\tLoss (with outliers): 2231.355831663867\n", + "2018-09-25 23:35:26,716 : INFO : Loss (no outliers): 2032.0299917122334\tLoss (with outliers): 2032.0299917122334\n", + "2018-09-25 23:35:49,979 : INFO : Loss (no outliers): 1930.552216514557\tLoss (with outliers): 1930.552216514557\n", + "2018-09-25 23:36:12,333 : INFO : Loss (no outliers): 1979.8507549655797\tLoss (with outliers): 1979.8507549655797\n", + "2018-09-25 23:36:36,419 : INFO : Loss (no outliers): 1991.5606088173624\tLoss (with outliers): 1991.5606088173624\n", + "2018-09-25 23:37:01,419 : INFO : Loss (no outliers): 2630.923634427679\tLoss (with outliers): 2630.923634427679\n", + "2018-09-25 23:37:26,800 : INFO : Loss (no outliers): 2301.9653308539837\tLoss (with outliers): 2301.9653308539837\n", + "2018-09-25 23:37:53,739 : INFO : Loss (no outliers): 2055.817116754809\tLoss (with outliers): 2055.817116754809\n", + "2018-09-25 23:38:18,254 : INFO : Loss (no outliers): 1822.764182208202\tLoss (with outliers): 1822.764182208202\n", + "2018-09-25 23:38:41,754 : INFO : Loss (no outliers): 2029.1069514148528\tLoss (with outliers): 2029.1069514148528\n", + "2018-09-25 23:39:08,768 : INFO : Loss (no outliers): 2133.602033110426\tLoss (with outliers): 2133.602033110426\n", + "2018-09-25 23:39:34,163 : INFO : Loss (no outliers): 2197.090199157584\tLoss (with outliers): 2197.090199157584\n", + "2018-09-25 23:39:58,495 : INFO : Loss (no outliers): 1828.3500500114683\tLoss (with outliers): 1828.3500500114683\n", + "2018-09-25 23:40:22,154 : INFO : Loss (no outliers): 2114.488386904246\tLoss (with outliers): 2114.488386904246\n", + "2018-09-25 23:40:48,101 : INFO : Loss (no outliers): 2711.8452085292106\tLoss (with outliers): 2711.8452085292106\n", + "2018-09-25 23:41:13,708 : INFO : Loss (no outliers): 1943.247003837912\tLoss (with outliers): 1943.247003837912\n", + "2018-09-25 23:41:38,001 : INFO : Loss (no outliers): 2131.2603114519\tLoss (with outliers): 2131.2603114519\n", + "2018-09-25 23:42:03,252 : INFO : Loss (no outliers): 2226.0218824964973\tLoss (with outliers): 2226.0218824964973\n", + "2018-09-25 23:42:28,042 : INFO : Loss (no outliers): 2190.2723493142\tLoss (with outliers): 2190.2723493142\n", + "2018-09-25 23:42:54,248 : INFO : Loss (no outliers): 1854.2997416518954\tLoss (with outliers): 1854.2997416518954\n", + "2018-09-25 23:43:19,774 : INFO : Loss (no outliers): 2186.240545437923\tLoss (with outliers): 2186.240545437923\n", + "2018-09-25 23:43:48,560 : INFO : Loss (no outliers): 1976.1877796984606\tLoss (with outliers): 1976.1877796984606\n", + "2018-09-25 23:44:15,553 : INFO : Loss (no outliers): 2331.443148691169\tLoss (with outliers): 2331.443148691169\n", + "2018-09-25 23:44:42,766 : INFO : Loss (no outliers): 2261.4676367531915\tLoss (with outliers): 2261.4676367531915\n", + "2018-09-25 23:45:09,164 : INFO : Loss (no outliers): 2207.4177482522387\tLoss (with outliers): 2207.4177482522387\n", + "2018-09-25 23:45:37,801 : INFO : Loss (no outliers): 2253.2766420636385\tLoss (with outliers): 2253.2766420636385\n", + "2018-09-25 23:46:04,284 : INFO : Loss (no outliers): 1902.3284575904888\tLoss (with outliers): 1902.3284575904888\n", + "2018-09-25 23:46:30,648 : INFO : Loss (no outliers): 2004.5778414924434\tLoss (with outliers): 2004.5778414924434\n", + "2018-09-25 23:46:58,063 : INFO : Loss (no outliers): 2181.675746998223\tLoss (with outliers): 2181.675746998223\n", + "2018-09-25 23:47:26,321 : INFO : Loss (no outliers): 2125.52283973715\tLoss (with outliers): 2125.52283973715\n", + "2018-09-25 23:47:56,157 : INFO : Loss (no outliers): 2128.0513544401056\tLoss (with outliers): 2128.0513544401056\n" ] }, { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mA\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 276\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mB\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 277\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_solve_w\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 278\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunk_idx\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meval_every\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m_solve_w\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 313\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 314\u001b[0;31m \u001b[0merror_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 315\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror_\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_w_error\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_w_error\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_w_stop_condition\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36merror\u001b[0;34m()\u001b[0m\n\u001b[1;32m 298\u001b[0m return (\n\u001b[1;32m 299\u001b[0m \u001b[0;36m0.5\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mA\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 300\u001b[0;31m \u001b[0;34m-\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mB\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 301\u001b[0m )\n\u001b[1;32m 302\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36mB\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mB\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 95\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_B\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_H\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 96\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mB\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-25 23:48:23,705 : INFO : Loss (no outliers): 2080.0181605330813\tLoss (with outliers): 2080.0181605330813\n", + "2018-09-25 23:48:50,755 : INFO : Loss (no outliers): 1777.5633441823009\tLoss (with outliers): 1777.5633441823009\n", + "2018-09-25 23:49:18,657 : INFO : Loss (no outliers): 1967.0114183374278\tLoss (with outliers): 1967.0114183374278\n", + "2018-09-25 23:49:44,242 : INFO : Loss (no outliers): 2280.2841649712095\tLoss (with outliers): 2280.2841649712095\n", + "2018-09-25 23:50:10,607 : INFO : Loss (no outliers): 2087.404533633996\tLoss (with outliers): 2087.404533633996\n", + "2018-09-25 23:50:38,403 : INFO : Loss (no outliers): 2437.395526161061\tLoss (with outliers): 2437.395526161061\n", + "2018-09-25 23:51:07,075 : INFO : Loss (no outliers): 2075.1895737839277\tLoss (with outliers): 2075.1895737839277\n", + "2018-09-25 23:51:34,039 : INFO : Loss (no outliers): 2004.940901973424\tLoss (with outliers): 2004.940901973424\n", + "2018-09-25 23:52:02,144 : INFO : Loss (no outliers): 2191.0941805913494\tLoss (with outliers): 2191.0941805913494\n", + "2018-09-25 23:52:31,651 : INFO : Loss (no outliers): 2254.2381681195902\tLoss (with outliers): 2254.2381681195902\n", + "2018-09-25 23:52:58,336 : INFO : Loss (no outliers): 2072.816769355593\tLoss (with outliers): 2072.816769355593\n", + "2018-09-25 23:53:25,504 : INFO : Loss (no outliers): 2076.975692980428\tLoss (with outliers): 2076.975692980428\n", + "2018-09-25 23:53:55,129 : INFO : Loss (no outliers): 2095.36412396137\tLoss (with outliers): 2095.36412396137\n", + "2018-09-25 23:54:23,873 : INFO : Loss (no outliers): 2079.444422428293\tLoss (with outliers): 2079.444422428293\n", + "2018-09-25 23:54:52,696 : INFO : Loss (no outliers): 2263.415460080705\tLoss (with outliers): 2263.415460080705\n", + "2018-09-25 23:55:19,992 : INFO : Loss (no outliers): 2409.6375066716546\tLoss (with outliers): 2409.6375066716546\n", + "2018-09-25 23:55:47,291 : INFO : Loss (no outliers): 1973.8036154611589\tLoss (with outliers): 1973.8036154611589\n", + "2018-09-25 23:56:15,741 : INFO : Loss (no outliers): 2322.494520250953\tLoss (with outliers): 2322.494520250953\n", + "2018-09-25 23:56:43,299 : INFO : Loss (no outliers): 1893.3685929084443\tLoss (with outliers): 1893.3685929084443\n", + "2018-09-25 23:57:10,936 : INFO : Loss (no outliers): 2208.7510615560464\tLoss (with outliers): 2208.7510615560464\n", + "2018-09-25 23:57:40,612 : INFO : Loss (no outliers): 3157.3713036759473\tLoss (with outliers): 3157.3713036759473\n", + "2018-09-25 23:58:08,384 : INFO : Loss (no outliers): 2130.8365625119227\tLoss (with outliers): 2130.8365625119227\n", + "2018-09-25 23:58:39,592 : INFO : Loss (no outliers): 2539.6266260925513\tLoss (with outliers): 2539.6266260925513\n", + "2018-09-25 23:59:08,643 : INFO : Loss (no outliers): 2298.1684435880584\tLoss (with outliers): 2298.1684435880584\n", + "2018-09-25 23:59:38,724 : INFO : Loss (no outliers): 2143.7452038705455\tLoss (with outliers): 2143.7452038705455\n", + "2018-09-26 00:00:05,761 : INFO : Loss (no outliers): 2336.0606635956374\tLoss (with outliers): 2336.0606635956374\n", + "2018-09-26 00:00:34,208 : INFO : Loss (no outliers): 2244.886983108166\tLoss (with outliers): 2244.886983108166\n", + "2018-09-26 00:01:02,142 : INFO : Loss (no outliers): 2045.791141985632\tLoss (with outliers): 2045.791141985632\n", + "2018-09-26 00:01:30,112 : INFO : Loss (no outliers): 2019.8401309918304\tLoss (with outliers): 2019.8401309918304\n", + "2018-09-26 00:02:00,495 : INFO : Loss (no outliers): 2055.2584116530497\tLoss (with outliers): 2055.2584116530497\n", + "2018-09-26 00:02:29,782 : INFO : Loss (no outliers): 1977.0746775931043\tLoss (with outliers): 1977.0746775931043\n", + "2018-09-26 00:02:59,445 : INFO : Loss (no outliers): 1876.225713131957\tLoss (with outliers): 1876.225713131957\n", + "2018-09-26 00:03:25,868 : INFO : Loss (no outliers): 2006.6055303929518\tLoss (with outliers): 2006.6055303929518\n", + "2018-09-26 00:03:56,497 : INFO : Loss (no outliers): 2144.341014578608\tLoss (with outliers): 2144.341014578608\n", + "2018-09-26 00:04:25,520 : INFO : Loss (no outliers): 1911.2824168081459\tLoss (with outliers): 1911.2824168081459\n", + "2018-09-26 00:04:55,341 : INFO : Loss (no outliers): 1798.1485411179674\tLoss (with outliers): 1798.1485411179674\n", + "2018-09-26 00:05:23,985 : INFO : Loss (no outliers): 2599.1888426103756\tLoss (with outliers): 2599.1888426103756\n", + "2018-09-26 00:05:54,326 : INFO : Loss (no outliers): 2360.956179904954\tLoss (with outliers): 2360.956179904954\n", + "2018-09-26 00:06:23,594 : INFO : Loss (no outliers): 2079.901743618425\tLoss (with outliers): 2079.901743618425\n", + "2018-09-26 00:06:51,974 : INFO : Loss (no outliers): 2018.8529299185695\tLoss (with outliers): 2018.8529299185695\n", + "2018-09-26 00:07:19,996 : INFO : Loss (no outliers): 1893.0830223356584\tLoss (with outliers): 1893.0830223356584\n", + "2018-09-26 00:07:47,718 : INFO : Loss (no outliers): 1813.9499748053875\tLoss (with outliers): 1813.9499748053875\n", + "2018-09-26 00:08:15,174 : INFO : Loss (no outliers): 2625.2386150900343\tLoss (with outliers): 2625.2386150900343\n", + "2018-09-26 00:08:42,185 : INFO : Loss (no outliers): 2230.72547540253\tLoss (with outliers): 2230.72547540253\n", + "2018-09-26 00:09:10,284 : INFO : Loss (no outliers): 2924.509342960041\tLoss (with outliers): 2924.509342960041\n", + "2018-09-26 00:09:40,392 : INFO : Loss (no outliers): 1981.121331032708\tLoss (with outliers): 1981.121331032708\n", + "2018-09-26 00:10:08,496 : INFO : Loss (no outliers): 1702.5035655007814\tLoss (with outliers): 1702.5035655007814\n", + "2018-09-26 00:10:38,668 : INFO : Loss (no outliers): 2357.9024412304625\tLoss (with outliers): 2357.9024412304625\n", + "2018-09-26 00:11:07,878 : INFO : Loss (no outliers): 2162.656733424695\tLoss (with outliers): 2162.656733424695\n", + "2018-09-26 00:11:38,104 : INFO : Loss (no outliers): 2071.1218536903266\tLoss (with outliers): 2071.1218536903266\n", + "2018-09-26 00:12:05,156 : INFO : Loss (no outliers): 2244.5651657572316\tLoss (with outliers): 2244.5651657572316\n", + "2018-09-26 00:12:32,202 : INFO : Loss (no outliers): 1786.7497551551085\tLoss (with outliers): 1786.7497551551085\n", + "2018-09-26 00:12:40,519 : INFO : Loss (no outliers): 1569.8517407457389\tLoss (with outliers): 1569.8517407457389\n", + "2018-09-26 00:12:40,529 : INFO : saving Nmf object under nmf_1.model, separately None\n" ] } ], "source": [ - "%%time\n", + "## %%time\n", "\n", - "gensim_nmf = Nmf(**training_params)\n", + "gensim_nmf = Nmf(\n", + " **training_params,\n", + " use_r=True,\n", + " lambda_=200,\n", + ")\n", "\n", "for pass_ in range(PASSES):\n", - " gensim_nmf.update(corpus_iter())\n", + "# gensim_nmf.update(itertools.islice(corpus, 100))\n", + " gensim_nmf.update(corpus)\n", " gensim_nmf.save('nmf_%s.model' % pass_)" ] }, { "cell_type": "code", - "execution_count": 188, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-08-31 17:21:18,926 : INFO : loading Nmf object from nmf_0.model\n", - "2018-08-31 17:21:19,238 : INFO : loading id2word recursively from nmf_0.model.id2word.* with mmap=None\n", - "2018-08-31 17:21:19,240 : INFO : loading _r from nmf_0.model._r.npy with mmap=None\n", - "2018-08-31 17:21:19,625 : INFO : loaded nmf_0.model\n" + "2018-09-26 00:34:11,714 : INFO : loading Nmf object from nmf_0.model\n", + "2018-09-26 00:34:23,539 : INFO : loading id2word recursively from nmf_0.model.id2word.* with mmap=r\n", + "2018-09-26 00:34:23,572 : INFO : loaded nmf_0.model\n" ] } ], @@ -3006,163 +3246,243 @@ }, { "cell_type": "code", - "execution_count": 189, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.023*\"film\" + 0.017*\"documentari\" + 0.011*\"best\" + 0.010*\"product\" + 0.009*\"award\" + 0.008*\"nomin\" + 0.007*\"colombian\" + 0.006*\"time\" + 0.006*\"director\" + 0.005*\"american\"'),\n", + " '0.100*\"damag\" + 0.084*\"tornado\" + 0.070*\"list\" + 0.062*\"home\" + 0.056*\"tree\" + 0.041*\"report\" + 0.038*\"build\" + 0.033*\"storm\" + 0.031*\"destroi\" + 0.022*\"caus\"'),\n", " (1,\n", - " '0.039*\"game\" + 0.023*\"team\" + 0.022*\"vike\" + 0.020*\"season\" + 0.012*\"win\" + 0.012*\"playoff\" + 0.010*\"goal\" + 0.010*\"plai\" + 0.009*\"year\" + 0.008*\"score\"'),\n", + " '0.220*\"order\" + 0.117*\"regul\" + 0.096*\"amend\" + 0.032*\"road\" + 0.030*\"traffic\" + 0.028*\"prohibit\" + 0.027*\"temporari\" + 0.027*\"trunk\" + 0.026*\"health\" + 0.021*\"england\"'),\n", " (2,\n", - " '0.033*\"air\" + 0.022*\"squadron\" + 0.021*\"march\" + 0.015*\"wing\" + 0.012*\"unit\" + 0.011*\"servic\" + 0.011*\"base\" + 0.011*\"forc\" + 0.011*\"train\" + 0.010*\"command\"'),\n", + " '0.125*\"mount\" + 0.124*\"peak\" + 0.123*\"lemmon\" + 0.122*\"kitt\" + 0.122*\"spacewatch\" + 0.062*\"survei\" + 0.043*\"octob\" + 0.038*\"septemb\" + 0.023*\"novemb\" + 0.023*\"catalina\"'),\n", " (3,\n", - " '0.018*\"seri\" + 0.016*\"game\" + 0.012*\"point\" + 0.011*\"race\" + 0.009*\"group\" + 0.008*\"win\" + 0.007*\"final\" + 0.007*\"goal\" + 0.007*\"car\" + 0.007*\"score\"'),\n", + " '0.236*\"new\" + 0.076*\"york\" + 0.018*\"zealand\" + 0.016*\"jersei\" + 0.012*\"washington\" + 0.011*\"chicago\" + 0.010*\"boston\" + 0.010*\"broadcast\" + 0.010*\"channel\" + 0.009*\"televis\"'),\n", " (4,\n", - " '0.012*\"group\" + 0.011*\"team\" + 0.010*\"men\" + 0.009*\"women\" + 0.008*\"rank\" + 0.008*\"german\" + 0.008*\"resist\" + 0.007*\"final\" + 0.007*\"point\" + 0.007*\"event\"'),\n", + " '0.271*\"servic\" + 0.059*\"commun\" + 0.030*\"royal\" + 0.026*\"mr\" + 0.025*\"offic\" + 0.023*\"late\" + 0.020*\"director\" + 0.019*\"educ\" + 0.019*\"public\" + 0.018*\"chief\"'),\n", " (5,\n", - " '0.016*\"colorado\" + 0.016*\"histori\" + 0.015*\"type\" + 0.010*\"function\" + 0.008*\"class\" + 0.008*\"std\" + 0.007*\"int\" + 0.007*\"car\" + 0.007*\"constructor\" + 0.007*\"templat\"'),\n", + " '0.251*\"parti\" + 0.038*\"elect\" + 0.038*\"vote\" + 0.031*\"liber\" + 0.029*\"communist\" + 0.029*\"seat\" + 0.026*\"polit\" + 0.026*\"social\" + 0.026*\"peopl\" + 0.020*\"independ\"'),\n", " (6,\n", - " '0.026*\"phoenix\" + 0.022*\"citi\" + 0.014*\"open\" + 0.011*\"area\" + 0.011*\"arizona\" + 0.008*\"road\" + 0.007*\"tucson\" + 0.007*\"valencia\" + 0.007*\"built\" + 0.006*\"popul\"'),\n", + " '0.373*\"hous\" + 0.163*\"term\" + 0.071*\"build\" + 0.070*\"serv\" + 0.056*\"congress\" + 0.047*\"member\" + 0.036*\"hall\" + 0.034*\"januari\" + 0.033*\"histor\" + 0.023*\"castl\"'),\n", " (7,\n", - " '0.012*\"franc\" + 0.009*\"parti\" + 0.008*\"state\" + 0.008*\"econom\" + 0.007*\"tax\" + 0.007*\"nation\" + 0.006*\"govern\" + 0.006*\"phoenix\" + 0.005*\"peopl\" + 0.005*\"french\"'),\n", + " '0.036*\"law\" + 0.033*\"court\" + 0.029*\"right\" + 0.025*\"govern\" + 0.013*\"case\" + 0.013*\"public\" + 0.012*\"constitut\" + 0.010*\"legal\" + 0.009*\"intern\" + 0.009*\"justic\"'),\n", " (8,\n", - " '0.016*\"leagu\" + 0.010*\"championship\" + 0.010*\"season\" + 0.010*\"club\" + 0.009*\"team\" + 0.009*\"cup\" + 0.008*\"world\" + 0.007*\"plai\" + 0.007*\"footbal\" + 0.006*\"vike\"'),\n", + " '0.208*\"septemb\" + 0.141*\"octob\" + 0.138*\"august\" + 0.111*\"juli\" + 0.096*\"june\" + 0.064*\"april\" + 0.060*\"novemb\" + 0.039*\"decemb\" + 0.025*\"februari\" + 0.009*\"theatr\"'),\n", " (9,\n", - " '0.008*\"armi\" + 0.007*\"attack\" + 0.007*\"german\" + 0.007*\"resist\" + 0.007*\"war\" + 0.006*\"hitler\" + 0.005*\"appear\" + 0.005*\"time\" + 0.004*\"nazi\" + 0.004*\"forc\"'),\n", + " '0.516*\"road\" + 0.157*\"bridg\" + 0.060*\"street\" + 0.057*\"build\" + 0.040*\"traffic\" + 0.031*\"construct\" + 0.027*\"junction\" + 0.018*\"temporari\" + 0.014*\"prohibit\" + 0.012*\"squar\"'),\n", " (10,\n", - " '0.019*\"forc\" + 0.019*\"armi\" + 0.019*\"attack\" + 0.016*\"japanes\" + 0.013*\"divis\" + 0.012*\"group\" + 0.011*\"corp\" + 0.011*\"area\" + 0.009*\"war\" + 0.007*\"arrow\"'),\n", + " '0.103*\"ship\" + 0.061*\"british\" + 0.059*\"class\" + 0.044*\"navi\" + 0.038*\"royal\" + 0.032*\"king\" + 0.026*\"naval\" + 0.026*\"gun\" + 0.024*\"sea\" + 0.022*\"london\"'),\n", " (11,\n", - " '0.029*\"new\" + 0.014*\"paywal\" + 0.009*\"york\" + 0.007*\"onlin\" + 0.006*\"content\" + 0.005*\"newspap\" + 0.005*\"time\" + 0.005*\"access\" + 0.005*\"revenu\" + 0.004*\"free\"'),\n", + " '0.566*\"school\" + 0.055*\"primari\" + 0.047*\"educ\" + 0.045*\"public\" + 0.044*\"student\" + 0.039*\"grade\" + 0.035*\"elementari\" + 0.028*\"secondari\" + 0.024*\"websit\" + 0.020*\"teacher\"'),\n", " (12,\n", - " '0.011*\"german\" + 0.009*\"resist\" + 0.009*\"war\" + 0.007*\"hitler\" + 0.006*\"armi\" + 0.006*\"nazi\" + 0.005*\"french\" + 0.005*\"offic\" + 0.005*\"new\" + 0.004*\"gener\"'),\n", + " '0.345*\"seri\" + 0.052*\"comic\" + 0.037*\"charact\" + 0.033*\"anim\" + 0.029*\"televis\" + 0.029*\"origin\" + 0.027*\"featur\" + 0.020*\"stori\" + 0.020*\"run\" + 0.019*\"version\"'),\n", " (13,\n", - " '0.019*\"album\" + 0.017*\"releas\" + 0.016*\"song\" + 0.012*\"singl\" + 0.009*\"music\" + 0.008*\"record\" + 0.007*\"band\" + 0.007*\"featur\" + 0.006*\"year\" + 0.006*\"track\"'),\n", + " '0.090*\"album\" + 0.066*\"song\" + 0.059*\"record\" + 0.044*\"band\" + 0.031*\"chart\" + 0.026*\"singl\" + 0.023*\"track\" + 0.018*\"rock\" + 0.018*\"vocal\" + 0.017*\"featur\"'),\n", " (14,\n", - " '0.031*\"histori\" + 0.030*\"colorado\" + 0.011*\"church\" + 0.010*\"franc\" + 0.009*\"state\" + 0.006*\"german\" + 0.006*\"resist\" + 0.006*\"french\" + 0.006*\"war\" + 0.006*\"adventist\"'),\n", + " '0.293*\"member\" + 0.292*\"conserv\" + 0.175*\"labour\" + 0.130*\"liber\" + 0.023*\"elect\" + 0.014*\"ontario\" + 0.014*\"union\" + 0.010*\"order\" + 0.009*\"feder\" + 0.009*\"recogn\"'),\n", " (15,\n", - " '0.061*\"school\" + 0.024*\"high\" + 0.013*\"state\" + 0.013*\"phoenix\" + 0.010*\"histori\" + 0.010*\"student\" + 0.009*\"public\" + 0.009*\"colorado\" + 0.009*\"club\" + 0.009*\"open\"'),\n", + " '0.087*\"run\" + 0.075*\"test\" + 0.064*\"score\" + 0.052*\"australia\" + 0.034*\"field\" + 0.032*\"wicket\" + 0.032*\"cricket\" + 0.032*\"in\" + 0.031*\"second\" + 0.029*\"pass\"'),\n", " (16,\n", - " '0.014*\"type\" + 0.010*\"function\" + 0.008*\"class\" + 0.008*\"std\" + 0.006*\"int\" + 0.006*\"constructor\" + 0.006*\"templat\" + 0.006*\"us\" + 0.005*\"initi\" + 0.005*\"time\"'),\n", + " '0.080*\"centuri\" + 0.080*\"god\" + 0.053*\"peopl\" + 0.045*\"christian\" + 0.035*\"jewish\" + 0.032*\"templ\" + 0.031*\"israel\" + 0.029*\"lord\" + 0.023*\"page\" + 0.022*\"word\"'),\n", " (17,\n", - " '0.019*\"march\" + 0.016*\"squadron\" + 0.016*\"air\" + 0.011*\"citi\" + 0.009*\"decemb\" + 0.008*\"octob\" + 0.008*\"wing\" + 0.008*\"novemb\" + 0.008*\"januari\" + 0.007*\"june\"'),\n", + " '0.211*\"power\" + 0.104*\"electr\" + 0.093*\"energi\" + 0.050*\"nuclear\" + 0.044*\"plant\" + 0.034*\"fuel\" + 0.031*\"ga\" + 0.028*\"us\" + 0.028*\"vehicl\" + 0.027*\"solar\"'),\n", " (18,\n", - " '0.102*\"colorado\" + 0.094*\"histori\" + 0.031*\"state\" + 0.016*\"denver\" + 0.015*\"counti\" + 0.010*\"territori\" + 0.009*\"mountain\" + 0.009*\"unit\" + 0.007*\"colleg\" + 0.007*\"park\"'),\n", + " '0.625*\"oper\" + 0.055*\"network\" + 0.031*\"mobil\" + 0.026*\"unknown\" + 0.020*\"own\" + 0.017*\"later\" + 0.016*\"agenc\" + 0.014*\"gsm\" + 0.012*\"report\" + 0.012*\"licens\"'),\n", " (19,\n", - " '0.059*\"colorado\" + 0.056*\"histori\" + 0.026*\"univers\" + 0.016*\"colleg\" + 0.012*\"state\" + 0.009*\"denver\" + 0.009*\"phoenix\" + 0.008*\"school\" + 0.007*\"counti\" + 0.007*\"educ\"')]" + " '0.526*\"leagu\" + 0.074*\"cup\" + 0.068*\"basebal\" + 0.058*\"major\" + 0.058*\"premier\" + 0.047*\"hit\" + 0.047*\"run\" + 0.045*\"home\" + 0.034*\"stadium\" + 0.030*\"bat\"'),\n", + " (20,\n", + " '0.524*\"counti\" + 0.053*\"area\" + 0.051*\"statist\" + 0.036*\"township\" + 0.021*\"combin\" + 0.020*\"metropolitan\" + 0.018*\"ohio\" + 0.013*\"texa\" + 0.012*\"micropolitan\" + 0.011*\"courthous\"'),\n", + " (21,\n", + " '0.545*\"unit\" + 0.064*\"kingdom\" + 0.038*\"bank\" + 0.035*\"canada\" + 0.024*\"germani\" + 0.021*\"franc\" + 0.016*\"itali\" + 0.016*\"spain\" + 0.014*\"secur\" + 0.013*\"marin\"'),\n", + " (22,\n", + " '0.362*\"game\" + 0.057*\"plai\" + 0.038*\"team\" + 0.018*\"score\" + 0.016*\"video\" + 0.015*\"field\" + 0.015*\"nfl\" + 0.015*\"playstat\" + 0.014*\"goal\" + 0.013*\"nintendo\"'),\n", + " (23,\n", + " '0.236*\"viola\" + 0.169*\"piano\" + 0.056*\"orchestra\" + 0.053*\"major\" + 0.050*\"violin\" + 0.050*\"concerto\" + 0.048*\"solo\" + 0.041*\"sonata\" + 0.032*\"centr\" + 0.031*\"minor\"'),\n", + " (24,\n", + " '0.052*\"final\" + 0.049*\"win\" + 0.044*\"round\" + 0.025*\"won\" + 0.023*\"second\" + 0.018*\"titl\" + 0.017*\"champion\" + 0.017*\"lost\" + 0.014*\"defeat\" + 0.014*\"score\"'),\n", + " (25,\n", + " '0.394*\"episod\" + 0.061*\"appear\" + 0.049*\"star\" + 0.046*\"televis\" + 0.040*\"role\" + 0.038*\"voic\" + 0.027*\"charact\" + 0.025*\"cast\" + 0.024*\"guest\" + 0.023*\"season\"'),\n", + " (26,\n", + " '0.117*\"student\" + 0.098*\"scienc\" + 0.089*\"educ\" + 0.072*\"research\" + 0.061*\"program\" + 0.055*\"institut\" + 0.054*\"studi\" + 0.032*\"depart\" + 0.029*\"develop\" + 0.028*\"technolog\"'),\n", + " (27,\n", + " '0.224*\"elect\" + 0.145*\"democrat\" + 0.131*\"republican\" + 0.041*\"incumb\" + 0.034*\"vote\" + 0.032*\"candid\" + 0.031*\"senat\" + 0.024*\"district\" + 0.020*\"repres\" + 0.019*\"result\"'),\n", + " (28,\n", + " '0.144*\"china\" + 0.129*\"chines\" + 0.083*\"japan\" + 0.071*\"japanes\" + 0.050*\"world\" + 0.036*\"kong\" + 0.035*\"hong\" + 0.032*\"korea\" + 0.027*\"korean\" + 0.023*\"taiwan\"'),\n", + " (29,\n", + " '0.720*\"born\" + 0.057*\"william\" + 0.048*\"singer\" + 0.031*\"actress\" + 0.020*\"painter\" + 0.018*\"songwrit\" + 0.017*\"musician\" + 0.015*\"compos\" + 0.014*\"known\" + 0.008*\"saint\"'),\n", + " (30,\n", + " '0.550*\"year\" + 0.076*\"ag\" + 0.042*\"old\" + 0.038*\"male\" + 0.033*\"femal\" + 0.028*\"month\" + 0.028*\"household\" + 0.025*\"career\" + 0.022*\"highli\" + 0.020*\"commend\"'),\n", + " (31,\n", + " '0.444*\"nation\" + 0.041*\"countri\" + 0.030*\"intern\" + 0.029*\"govern\" + 0.029*\"forest\" + 0.028*\"wetland\" + 0.024*\"resourc\" + 0.024*\"reserv\" + 0.023*\"indian\" + 0.022*\"region\"'),\n", + " (32,\n", + " '0.493*\"street\" + 0.141*\"east\" + 0.102*\"lower\" + 0.102*\"upper\" + 0.034*\"built\" + 0.025*\"neighborhood\" + 0.015*\"near\" + 0.014*\"courthous\" + 0.009*\"houston\" + 0.008*\"ind\"'),\n", + " (33,\n", + " '0.233*\"linear\" + 0.232*\"socorro\" + 0.055*\"septemb\" + 0.048*\"neat\" + 0.043*\"palomar\" + 0.042*\"octob\" + 0.030*\"august\" + 0.029*\"decemb\" + 0.028*\"kitt\" + 0.028*\"peak\"'),\n", + " (34,\n", + " '0.277*\"languag\" + 0.108*\"english\" + 0.065*\"word\" + 0.058*\"french\" + 0.037*\"form\" + 0.030*\"dialect\" + 0.027*\"class\" + 0.027*\"mean\" + 0.026*\"exampl\" + 0.025*\"linguist\"'),\n", + " (35,\n", + " '0.132*\"speci\" + 0.109*\"nov\" + 0.089*\"mpc\" + 0.086*\"valid\" + 0.074*\"mba\" + 0.058*\"famili\" + 0.047*\"format\" + 0.043*\"middl\" + 0.037*\"gen\" + 0.036*\"type\"'),\n", + " (36,\n", + " '0.392*\"dai\" + 0.057*\"week\" + 0.033*\"month\" + 0.030*\"evict\" + 0.028*\"housem\" + 0.025*\"arriv\" + 0.024*\"mar\" + 0.023*\"nomin\" + 0.021*\"vote\" + 0.020*\"sundai\"'),\n", + " (37,\n", + " '0.089*\"work\" + 0.018*\"life\" + 0.016*\"public\" + 0.014*\"includ\" + 0.013*\"societi\" + 0.013*\"earli\" + 0.012*\"write\" + 0.012*\"world\" + 0.010*\"studi\" + 0.010*\"cultur\"'),\n", + " (38,\n", + " '0.074*\"war\" + 0.026*\"battl\" + 0.024*\"german\" + 0.015*\"french\" + 0.015*\"world\" + 0.013*\"soviet\" + 0.011*\"british\" + 0.011*\"germani\" + 0.011*\"franc\" + 0.010*\"govern\"'),\n", + " (39,\n", + " '0.295*\"film\" + 0.032*\"festiv\" + 0.032*\"director\" + 0.028*\"star\" + 0.026*\"movi\" + 0.024*\"direct\" + 0.019*\"role\" + 0.019*\"featur\" + 0.018*\"actor\" + 0.018*\"pictur\"'),\n", + " (40,\n", + " '0.374*\"produc\" + 0.294*\"product\" + 0.065*\"execut\" + 0.037*\"pictur\" + 0.031*\"distribut\" + 0.031*\"plant\" + 0.029*\"studio\" + 0.016*\"process\" + 0.014*\"canada\" + 0.012*\"export\"'),\n", + " (41,\n", + " '0.559*\"airport\" + 0.218*\"intern\" + 0.042*\"airlin\" + 0.030*\"passeng\" + 0.026*\"termin\" + 0.011*\"rout\" + 0.010*\"san\" + 0.009*\"california\" + 0.009*\"transport\" + 0.007*\"serv\"'),\n", + " (42,\n", + " '0.778*\"window\" + 0.054*\"wall\" + 0.051*\"cross\" + 0.036*\"quoin\" + 0.033*\"platform\" + 0.015*\"atari\" + 0.015*\"stain\" + 0.004*\"emul\" + 0.003*\"radiat\" + 0.003*\"arrai\"'),\n", + " (43,\n", + " '0.464*\"ireland\" + 0.316*\"northern\" + 0.120*\"irish\" + 0.030*\"final\" + 0.027*\"australia\" + 0.018*\"munster\" + 0.014*\"rugbi\" + 0.006*\"volunt\" + 0.003*\"new\" + 0.001*\"captain\"'),\n", + " (44,\n", + " '0.231*\"march\" + 0.134*\"januari\" + 0.093*\"februari\" + 0.082*\"decemb\" + 0.072*\"april\" + 0.067*\"novemb\" + 0.037*\"june\" + 0.030*\"juli\" + 0.024*\"gen\" + 0.024*\"usv\"'),\n", + " (45,\n", + " '0.436*\"engin\" + 0.121*\"design\" + 0.087*\"model\" + 0.038*\"aircraft\" + 0.032*\"built\" + 0.030*\"seat\" + 0.030*\"cylind\" + 0.027*\"version\" + 0.025*\"type\" + 0.023*\"tank\"'),\n", + " (46,\n", + " '0.177*\"offic\" + 0.157*\"polic\" + 0.092*\"depart\" + 0.045*\"chief\" + 0.032*\"lieuten\" + 0.028*\"sergeant\" + 0.025*\"ministri\" + 0.023*\"secretari\" + 0.023*\"assist\" + 0.020*\"public\"'),\n", + " (47,\n", + " '0.191*\"women\" + 0.163*\"men\" + 0.058*\"rank\" + 0.054*\"athlet\" + 0.051*\"advanc\" + 0.051*\"event\" + 0.036*\"medal\" + 0.025*\"colspan\" + 0.024*\"winner\" + 0.024*\"olymp\"'),\n", + " (48,\n", + " '0.420*\"file\" + 0.249*\"jpg\" + 0.110*\"svg\" + 0.055*\"sign\" + 0.028*\"png\" + 0.022*\"view\" + 0.019*\"white\" + 0.019*\"red\" + 0.016*\"format\" + 0.014*\"hall\"'),\n", + " (49,\n", + " '0.558*\"compani\" + 0.091*\"corpor\" + 0.068*\"market\" + 0.058*\"battalion\" + 0.049*\"million\" + 0.026*\"build\" + 0.016*\"locat\" + 0.013*\"renam\" + 0.011*\"move\" + 0.010*\"construct\"'),\n", + " (50,\n", + " '0.292*\"american\" + 0.043*\"footbal\" + 0.041*\"english\" + 0.041*\"politician\" + 0.039*\"actor\" + 0.038*\"british\" + 0.026*\"canadian\" + 0.026*\"singer\" + 0.025*\"actress\" + 0.024*\"poet\"'),\n", + " (51,\n", + " '0.238*\"air\" + 0.104*\"squadron\" + 0.083*\"aircraft\" + 0.063*\"forc\" + 0.057*\"flight\" + 0.054*\"wing\" + 0.044*\"base\" + 0.043*\"fighter\" + 0.039*\"raf\" + 0.033*\"fly\"'),\n", + " (52,\n", + " '0.236*\"bar\" + 0.189*\"text\" + 0.155*\"till\" + 0.144*\"color\" + 0.031*\"shift\" + 0.031*\"width\" + 0.029*\"valu\" + 0.028*\"fontsiz\" + 0.027*\"band\" + 0.015*\"guitar\"'),\n", + " (53,\n", + " '0.109*\"royal\" + 0.059*\"regiment\" + 0.053*\"corp\" + 0.045*\"lieuten\" + 0.042*\"armi\" + 0.035*\"artilleri\" + 0.034*\"battalion\" + 0.032*\"field\" + 0.030*\"major\" + 0.030*\"captain\"'),\n", + " (54,\n", + " '0.055*\"john\" + 0.047*\"william\" + 0.022*\"jame\" + 0.022*\"georg\" + 0.019*\"thoma\" + 0.017*\"robert\" + 0.016*\"henri\" + 0.016*\"charl\" + 0.013*\"edward\" + 0.012*\"richard\"'),\n", + " (55,\n", + " '0.200*\"art\" + 0.136*\"museum\" + 0.074*\"paint\" + 0.047*\"galleri\" + 0.046*\"artist\" + 0.043*\"exhibit\" + 0.038*\"histori\" + 0.035*\"collect\" + 0.029*\"histor\" + 0.022*\"design\"'),\n", + " (56,\n", + " '0.282*\"kill\" + 0.101*\"car\" + 0.056*\"black\" + 0.047*\"shot\" + 0.042*\"vehicl\" + 0.038*\"red\" + 0.033*\"gun\" + 0.026*\"prison\" + 0.026*\"later\" + 0.025*\"blue\"'),\n", + " (57,\n", + " '0.155*\"team\" + 0.115*\"match\" + 0.082*\"plai\" + 0.049*\"world\" + 0.047*\"cup\" + 0.038*\"championship\" + 0.027*\"wrestl\" + 0.026*\"stadium\" + 0.024*\"defeat\" + 0.022*\"england\"'),\n", + " (58,\n", + " '0.293*\"park\" + 0.091*\"area\" + 0.055*\"lake\" + 0.043*\"forest\" + 0.025*\"wetland\" + 0.024*\"statist\" + 0.022*\"natur\" + 0.021*\"stadium\" + 0.021*\"site\" + 0.018*\"reserv\"'),\n", + " (59,\n", + " '0.407*\"book\" + 0.213*\"publish\" + 0.108*\"stori\" + 0.086*\"press\" + 0.080*\"edit\" + 0.033*\"illustr\" + 0.030*\"origin\" + 0.025*\"london\" + 0.004*\"split\" + 0.003*\"nazi\"'),\n", + " (60,\n", + " '0.222*\"forc\" + 0.161*\"armi\" + 0.099*\"command\" + 0.082*\"militari\" + 0.055*\"attack\" + 0.051*\"arm\" + 0.032*\"train\" + 0.026*\"ukrainian\" + 0.025*\"corp\" + 0.023*\"oper\"'),\n", + " (61,\n", + " '0.295*\"citi\" + 0.042*\"area\" + 0.032*\"popul\" + 0.023*\"san\" + 0.023*\"region\" + 0.020*\"locat\" + 0.017*\"west\" + 0.017*\"includ\" + 0.017*\"municip\" + 0.016*\"council\"'),\n", + " (62,\n", + " '0.449*\"town\" + 0.176*\"villag\" + 0.038*\"municip\" + 0.038*\"ag\" + 0.034*\"local\" + 0.025*\"locat\" + 0.025*\"place\" + 0.023*\"main\" + 0.020*\"resid\" + 0.018*\"old\"'),\n", + " (63,\n", + " '0.234*\"club\" + 0.076*\"footbal\" + 0.062*\"golf\" + 0.043*\"goal\" + 0.035*\"cup\" + 0.025*\"plai\" + 0.021*\"sport\" + 0.021*\"manag\" + 0.021*\"score\" + 0.018*\"leagu\"'),\n", + " (64,\n", + " '0.232*\"bai\" + 0.129*\"stone\" + 0.103*\"storei\" + 0.101*\"roof\" + 0.077*\"slate\" + 0.066*\"famili\" + 0.055*\"green\" + 0.050*\"doorwai\" + 0.042*\"sash\" + 0.036*\"sandston\"'),\n", + " (65,\n", + " '0.324*\"state\" + 0.016*\"texa\" + 0.015*\"feder\" + 0.014*\"california\" + 0.013*\"michigan\" + 0.012*\"senat\" + 0.012*\"florida\" + 0.012*\"repres\" + 0.011*\"virginia\" + 0.011*\"washington\"'),\n", + " (66,\n", + " '0.353*\"usa\" + 0.129*\"california\" + 0.083*\"angel\" + 0.071*\"york\" + 0.070*\"lo\" + 0.052*\"record\" + 0.036*\"england\" + 0.032*\"chicago\" + 0.024*\"london\" + 0.022*\"florida\"'),\n", + " (67,\n", + " '0.144*\"time\" + 0.025*\"second\" + 0.022*\"later\" + 0.017*\"stage\" + 0.017*\"turn\" + 0.016*\"said\" + 0.015*\"note\" + 0.013*\"start\" + 0.013*\"star\" + 0.013*\"appear\"'),\n", + " (68,\n", + " '0.257*\"presid\" + 0.237*\"minist\" + 0.152*\"prime\" + 0.040*\"met\" + 0.033*\"foreign\" + 0.032*\"govern\" + 0.028*\"governor\" + 0.027*\"–present\" + 0.024*\"attend\" + 0.024*\"meet\"'),\n", + " (69,\n", + " '0.862*\"group\" + 0.013*\"plane\" + 0.013*\"manag\" + 0.012*\"fifa\" + 0.011*\"base\" + 0.010*\"tend\" + 0.009*\"soccer\" + 0.009*\"advanc\" + 0.009*\"meet\" + 0.007*\"plot\"'),\n", + " (70,\n", + " '0.276*\"season\" + 0.051*\"team\" + 0.042*\"dvd\" + 0.036*\"coach\" + 0.031*\"home\" + 0.030*\"record\" + 0.026*\"rai\" + 0.026*\"plai\" + 0.022*\"blu\" + 0.022*\"career\"'),\n", + " (71,\n", + " '0.050*\"famili\" + 0.038*\"man\" + 0.037*\"king\" + 0.036*\"son\" + 0.029*\"father\" + 0.029*\"death\" + 0.028*\"appear\" + 0.027*\"live\" + 0.026*\"later\" + 0.024*\"brother\"'),\n", + " (72,\n", + " '0.448*\"gener\" + 0.116*\"major\" + 0.083*\"command\" + 0.057*\"brigadi\" + 0.044*\"lieuten\" + 0.040*\"hospit\" + 0.038*\"offic\" + 0.037*\"governor\" + 0.019*\"secretari\" + 0.018*\"india\"'),\n", + " (73,\n", + " '0.010*\"includ\" + 0.007*\"us\" + 0.007*\"develop\" + 0.007*\"number\" + 0.006*\"base\" + 0.006*\"form\" + 0.005*\"differ\" + 0.005*\"provid\" + 0.005*\"area\" + 0.005*\"chang\"'),\n", + " (74,\n", + " '0.269*\"divis\" + 0.071*\"brigad\" + 0.067*\"infantri\" + 0.053*\"battalion\" + 0.042*\"regiment\" + 0.037*\"german\" + 0.025*\"rifl\" + 0.023*\"attack\" + 0.022*\"tank\" + 0.019*\"cavalri\"'),\n", + " (75,\n", + " '0.676*\"north\" + 0.148*\"carolina\" + 0.055*\"america\" + 0.018*\"centuri\" + 0.017*\"mine\" + 0.012*\"bai\" + 0.010*\"geograph\" + 0.009*\"patrol\" + 0.006*\"harbor\" + 0.006*\"civil\"'),\n", + " (76,\n", + " '0.660*\"colleg\" + 0.066*\"commun\" + 0.065*\"confer\" + 0.048*\"footbal\" + 0.039*\"athlet\" + 0.034*\"associ\" + 0.017*\"san\" + 0.012*\"intercollegi\" + 0.012*\"collegi\" + 0.008*\"ladi\"'),\n", + " (77,\n", + " '0.645*\"act\" + 0.075*\"amend\" + 0.019*\"land\" + 0.017*\"appropri\" + 0.016*\"duti\" + 0.015*\"scotland\" + 0.012*\"fund\" + 0.011*\"provis\" + 0.009*\"financ\" + 0.009*\"public\"'),\n", + " (78,\n", + " '0.251*\"award\" + 0.200*\"best\" + 0.040*\"nomin\" + 0.032*\"actress\" + 0.028*\"actor\" + 0.024*\"perform\" + 0.023*\"won\" + 0.021*\"outstand\" + 0.021*\"artist\" + 0.019*\"support\"'),\n", + " (79,\n", + " '0.585*\"univers\" + 0.048*\"professor\" + 0.033*\"institut\" + 0.032*\"campu\" + 0.032*\"colleg\" + 0.023*\"academ\" + 0.020*\"activ\" + 0.018*\"technolog\" + 0.016*\"press\" + 0.015*\"oxford\"'),\n", + " (80,\n", + " '0.265*\"river\" + 0.084*\"lake\" + 0.071*\"creek\" + 0.043*\"rout\" + 0.032*\"area\" + 0.030*\"highwai\" + 0.019*\"near\" + 0.019*\"vallei\" + 0.019*\"land\" + 0.016*\"dam\"'),\n", + " (81,\n", + " '0.838*\"island\" + 0.024*\"territori\" + 0.018*\"cape\" + 0.017*\"peopl\" + 0.015*\"puerto\" + 0.014*\"republ\" + 0.013*\"uss\" + 0.010*\"independ\" + 0.009*\"claim\" + 0.008*\"disput\"'),\n", + " (82,\n", + " '0.643*\"player\" + 0.154*\"footbal\" + 0.035*\"rule\" + 0.033*\"ball\" + 0.020*\"actor\" + 0.013*\"retir\" + 0.012*\"bet\" + 0.011*\"link\" + 0.010*\"open\" + 0.010*\"william\"'),\n", + " (83,\n", + " '0.170*\"district\" + 0.041*\"pennsylvania\" + 0.032*\"grade\" + 0.026*\"basic\" + 0.026*\"fund\" + 0.026*\"level\" + 0.021*\"educ\" + 0.019*\"receiv\" + 0.019*\"school\" + 0.018*\"tax\"'),\n", + " (84,\n", + " '0.450*\"yard\" + 0.155*\"touchdown\" + 0.118*\"return\" + 0.063*\"defens\" + 0.040*\"bear\" + 0.030*\"novemb\" + 0.014*\"navi\" + 0.012*\"bomb\" + 0.010*\"carrier\" + 0.009*\"sea\"'),\n", + " (85,\n", + " '0.818*\"point\" + 0.097*\"stand\" + 0.021*\"contest\" + 0.018*\"light\" + 0.008*\"santa\" + 0.007*\"main\" + 0.006*\"panel\" + 0.006*\"lighthous\" + 0.005*\"chi\" + 0.003*\"barrel\"'),\n", + " (86,\n", + " '0.356*\"center\" + 0.113*\"hospit\" + 0.085*\"style\" + 0.061*\"health\" + 0.050*\"text\" + 0.049*\"medic\" + 0.047*\"commun\" + 0.045*\"align\" + 0.041*\"public\" + 0.035*\"arena\"'),\n", + " (87,\n", + " '0.157*\"championship\" + 0.155*\"world\" + 0.133*\"open\" + 0.055*\"winner\" + 0.052*\"tour\" + 0.043*\"doubl\" + 0.042*\"singl\" + 0.038*\"grand\" + 0.032*\"hard\" + 0.028*\"master\"'),\n", + " (88,\n", + " '0.509*\"station\" + 0.112*\"radio\" + 0.063*\"broadcast\" + 0.041*\"circl\" + 0.041*\"cross\" + 0.041*\"bu\" + 0.036*\"market\" + 0.028*\"nagar\" + 0.027*\"gate\" + 0.021*\"serv\"'),\n", + " (89,\n", + " '0.250*\"race\" + 0.141*\"team\" + 0.102*\"ret\" + 0.073*\"car\" + 0.050*\"lap\" + 0.048*\"driver\" + 0.036*\"ford\" + 0.036*\"finish\" + 0.035*\"motorsport\" + 0.034*\"championship\"'),\n", + " (90,\n", + " '0.229*\"church\" + 0.037*\"cathol\" + 0.026*\"built\" + 0.025*\"saint\" + 0.023*\"christian\" + 0.023*\"build\" + 0.023*\"list\" + 0.023*\"centuri\" + 0.023*\"bishop\" + 0.020*\"roman\"'),\n", + " (91,\n", + " '0.457*\"align\" + 0.385*\"left\" + 0.089*\"right\" + 0.040*\"style\" + 0.028*\"text\" + 0.000*\"trackag\" + 0.000*\"zephyr\" + 0.000*\"chouteau\" + 0.000*\"basidiomycet\" + 0.000*\"westcliff\"'),\n", + " (92,\n", + " '0.163*\"line\" + 0.102*\"railwai\" + 0.050*\"train\" + 0.034*\"railroad\" + 0.031*\"rout\" + 0.025*\"rail\" + 0.024*\"open\" + 0.020*\"passeng\" + 0.020*\"track\" + 0.016*\"locomot\"'),\n", + " (93,\n", + " '0.679*\"township\" + 0.098*\"pennsylvania\" + 0.079*\"west\" + 0.067*\"england\" + 0.009*\"borough\" + 0.008*\"raf\" + 0.008*\"southampton\" + 0.006*\"manchest\" + 0.005*\"confer\" + 0.005*\"cross\"'),\n", + " (94,\n", + " '0.605*\"protein\" + 0.127*\"receptor\" + 0.116*\"factor\" + 0.053*\"infect\" + 0.031*\"immun\" + 0.021*\"intern\" + 0.012*\"apoptosi\" + 0.011*\"oncogen\" + 0.009*\"queensland\" + 0.008*\"immunoglobulin\"'),\n", + " (95,\n", + " '0.299*\"south\" + 0.128*\"west\" + 0.116*\"east\" + 0.056*\"conserv\" + 0.052*\"labour\" + 0.052*\"australia\" + 0.050*\"western\" + 0.045*\"africa\" + 0.043*\"central\" + 0.027*\"african\"'),\n", + " (96,\n", + " '0.574*\"water\" + 0.059*\"sea\" + 0.057*\"right\" + 0.047*\"white\" + 0.045*\"red\" + 0.034*\"blue\" + 0.029*\"municip\" + 0.022*\"larg\" + 0.015*\"saint\" + 0.012*\"swim\"'),\n", + " (97,\n", + " '0.385*\"music\" + 0.070*\"perform\" + 0.055*\"compos\" + 0.043*\"danc\" + 0.034*\"orchestra\" + 0.031*\"festiv\" + 0.027*\"instrument\" + 0.025*\"opera\" + 0.025*\"concert\" + 0.018*\"piano\"'),\n", + " (98,\n", + " '0.356*\"high\" + 0.273*\"school\" + 0.027*\"class\" + 0.025*\"academi\" + 0.020*\"senior\" + 0.016*\"junior\" + 0.016*\"student\" + 0.015*\"team\" + 0.014*\"vallei\" + 0.012*\"central\"'),\n", + " (99,\n", + " '0.406*\"releas\" + 0.092*\"singl\" + 0.070*\"dvd\" + 0.068*\"digit\" + 0.067*\"label\" + 0.056*\"entertain\" + 0.033*\"album\" + 0.031*\"date\" + 0.030*\"version\" + 0.025*\"rai\"')]" ] }, - "execution_count": 189, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "gensim_nmf.show_topics(20)" + "gensim_nmf.show_topics(100)" ] }, { "cell_type": "code", - "execution_count": 190, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-31 17:21:19,680 : INFO : using symmetric alpha at 0.05\n", - "2018-08-31 17:21:19,681 : INFO : using symmetric eta at 0.05\n", - "2018-08-31 17:21:19,694 : INFO : using serial LDA version on this node\n", - "2018-08-31 17:21:19,932 : WARNING : input corpus stream has no len(); counting documents\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunksize, decay, offset, passes, update_every, eval_every, iterations, gamma_threshold, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 878\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 879\u001b[0;31m \u001b[0mlencorpus\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 880\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: object of type 'generator' has no len()", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunksize, decay, offset, passes, update_every, eval_every, iterations, gamma_threshold, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 881\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"input corpus stream has no len(); counting documents\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 882\u001b[0;31m \u001b[0mlencorpus\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 883\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlencorpus\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 884\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"LdaModel.update() called with an empty corpus\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 881\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"input corpus stream has no len(); counting documents\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 882\u001b[0;31m \u001b[0mlencorpus\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 883\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlencorpus\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 884\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"LdaModel.update() called with an empty corpus\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mcorpus_iter\u001b[0;34m()\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcorpus_iter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mshuffled_indices\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0;32myield\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/Documents/gensim/gensim/corpora/indexedcorpus.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, docno)\u001b[0m\n\u001b[1;32m 178\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSlicedCorpus\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdocno\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 179\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdocno\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteger_types\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteger\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 180\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdocbyoffset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdocno\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 181\u001b[0m \u001b[0;31m# TODO: no `docbyoffset` method, should be defined in this class\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], + "outputs": [], "source": [ "%%time\n", "\n", "gensim_lda = LdaModel(**training_params)\n", "\n", "for pass_ in range(PASSES):\n", - " gensim_lda.update(corpus_iter())\n", + " gensim_lda.update(corpus)\n", " gensim_lda.save('lda_%s.model' % pass_)" ] }, { "cell_type": "code", - "execution_count": 191, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(0,\n", - " '0.040*\"anim\" + 0.039*\"scienc\" + 0.033*\"actual\" + 0.029*\"sens\" + 0.025*\"write\" + 0.020*\"translat\" + 0.020*\"matter\" + 0.019*\"observ\" + 0.018*\"formal\" + 0.017*\"activ\"'),\n", - " (1,\n", - " '0.348*\"letter\" + 0.064*\"capit\" + 0.055*\"write\" + 0.036*\"sign\" + 0.028*\"distinguish\" + 0.027*\"size\" + 0.027*\"commonli\" + 0.027*\"round\" + 0.027*\"semi\" + 0.019*\"earliest\"'),\n", - " (2,\n", - " '0.016*\"actual\" + 0.013*\"scienc\" + 0.013*\"anim\" + 0.010*\"activ\" + 0.010*\"sens\" + 0.009*\"earth\" + 0.009*\"write\" + 0.009*\"translat\" + 0.009*\"observ\" + 0.008*\"formal\"'),\n", - " (3,\n", - " '0.016*\"court\" + 0.011*\"pass\" + 0.011*\"presid\" + 0.010*\"anim\" + 0.010*\"support\" + 0.010*\"congress\" + 0.009*\"write\" + 0.009*\"armi\" + 0.009*\"movement\" + 0.009*\"held\"'),\n", - " (4,\n", - " '0.082*\"death\" + 0.074*\"island\" + 0.052*\"kill\" + 0.034*\"figur\" + 0.030*\"sea\" + 0.028*\"king\" + 0.023*\"charact\" + 0.023*\"daughter\" + 0.019*\"stori\" + 0.017*\"give\"'),\n", - " (5,\n", - " '0.058*\"court\" + 0.026*\"cultur\" + 0.026*\"rate\" + 0.024*\"pass\" + 0.023*\"histor\" + 0.022*\"oper\" + 0.022*\"increas\" + 0.017*\"capit\" + 0.017*\"northern\" + 0.017*\"christian\"'),\n", - " (6,\n", - " '0.014*\"movement\" + 0.014*\"free\" + 0.013*\"presid\" + 0.011*\"support\" + 0.010*\"congress\" + 0.009*\"commun\" + 0.009*\"argu\" + 0.009*\"slave\" + 0.009*\"social\" + 0.008*\"individu\"'),\n", - " (7,\n", - " '0.027*\"presid\" + 0.019*\"support\" + 0.018*\"free\" + 0.015*\"slave\" + 0.014*\"armi\" + 0.013*\"movement\" + 0.011*\"congress\" + 0.010*\"issu\" + 0.009*\"court\" + 0.009*\"effort\"'),\n", - " (8,\n", - " '0.110*\"music\" + 0.055*\"releas\" + 0.054*\"conduct\" + 0.046*\"perform\" + 0.037*\"composit\" + 0.028*\"featur\" + 0.028*\"arrang\" + 0.028*\"restor\" + 0.027*\"friend\" + 0.020*\"rate\"'),\n", - " (9,\n", - " '0.055*\"letter\" + 0.018*\"individu\" + 0.016*\"presid\" + 0.016*\"social\" + 0.015*\"support\" + 0.013*\"commun\" + 0.013*\"capit\" + 0.012*\"free\" + 0.012*\"movement\" + 0.011*\"write\"'),\n", - " (10,\n", - " '0.042*\"presid\" + 0.039*\"support\" + 0.032*\"slave\" + 0.026*\"armi\" + 0.022*\"court\" + 0.021*\"congress\" + 0.018*\"free\" + 0.016*\"death\" + 0.015*\"issu\" + 0.015*\"argu\"'),\n", - " (11,\n", - " '0.017*\"movement\" + 0.014*\"free\" + 0.012*\"court\" + 0.012*\"commun\" + 0.011*\"support\" + 0.010*\"presid\" + 0.009*\"congress\" + 0.009*\"social\" + 0.009*\"countri\" + 0.009*\"establish\"'),\n", - " (12,\n", - " '0.013*\"anim\" + 0.012*\"scienc\" + 0.012*\"actual\" + 0.011*\"court\" + 0.009*\"function\" + 0.009*\"write\" + 0.009*\"commun\" + 0.008*\"activ\" + 0.008*\"sens\" + 0.008*\"christian\"'),\n", - " (13,\n", - " '0.009*\"anim\" + 0.009*\"scienc\" + 0.008*\"actual\" + 0.008*\"write\" + 0.007*\"movement\" + 0.007*\"support\" + 0.007*\"formal\" + 0.007*\"activ\" + 0.007*\"presid\" + 0.006*\"sens\"'),\n", - " (14,\n", - " '0.072*\"presid\" + 0.052*\"support\" + 0.038*\"slave\" + 0.032*\"armi\" + 0.029*\"congress\" + 0.026*\"court\" + 0.022*\"thoma\" + 0.020*\"effort\" + 0.019*\"issu\" + 0.019*\"free\"'),\n", - " (15,\n", - " '0.058*\"movement\" + 0.054*\"free\" + 0.042*\"commun\" + 0.034*\"societi\" + 0.025*\"activ\" + 0.025*\"social\" + 0.024*\"posit\" + 0.022*\"earth\" + 0.019*\"saw\" + 0.019*\"principl\"'),\n", - " (16,\n", - " '0.162*\"color\" + 0.131*\"thoma\" + 0.077*\"king\" + 0.071*\"stephen\" + 0.030*\"march\" + 0.019*\"sea\" + 0.018*\"stori\" + 0.018*\"hope\" + 0.018*\"christian\" + 0.018*\"west\"'),\n", - " (17,\n", - " '0.124*\"earth\" + 0.092*\"increas\" + 0.091*\"low\" + 0.046*\"observ\" + 0.024*\"vari\" + 0.022*\"mass\" + 0.021*\"rate\" + 0.019*\"greater\" + 0.019*\"condit\" + 0.018*\"actual\"'),\n", - " (18,\n", - " '0.072*\"social\" + 0.063*\"individu\" + 0.042*\"commun\" + 0.036*\"evid\" + 0.031*\"increas\" + 0.031*\"function\" + 0.022*\"activ\" + 0.022*\"movement\" + 0.018*\"help\" + 0.018*\"research\"'),\n", - " (19,\n", - " '0.070*\"movement\" + 0.057*\"free\" + 0.038*\"commun\" + 0.037*\"societi\" + 0.035*\"social\" + 0.030*\"individu\" + 0.024*\"econom\" + 0.023*\"establish\" + 0.021*\"post\" + 0.021*\"author\"')]" - ] - }, - "execution_count": 191, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "lda.show_topics(20)" ] diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 233bdbf2b0..d7384ff9c3 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -78,11 +78,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 13:20:09,912 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-09-25 13:20:10,539 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", - "2018-09-25 13:20:10,584 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2018-09-25 13:20:10,585 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2018-09-25 13:20:10,600 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2018-09-12 20:53:12,761 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-09-12 20:53:13,091 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", + "2018-09-12 20:53:13,156 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2018-09-12 20:53:13,157 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2018-09-12 20:53:13,165 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], @@ -119,13 +119,13 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "training_params = dict(\n", " corpus=corpus,\n", - " chunksize=1000,\n", + " chunksize=100,\n", " num_topics=5,\n", " id2word=dictionary,\n", " passes=5,\n", @@ -143,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 21, "metadata": { "scrolled": true }, @@ -152,16 +152,29 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 13:20:26,354 : INFO : Loss (no outliers): 606.7598004776954\tLoss (with outliers): 532.6664031339877\n", - "2018-09-25 13:20:28,908 : INFO : Loss (no outliers): 625.5678486264283\tLoss (with outliers): 508.448594425845\n" + "2018-09-12 20:58:50,218 : INFO : Loss (no outliers): 230.22475241071896\tLoss (with outliers): 181.72478704101758\n", + "2018-09-12 20:58:51,164 : INFO : Loss (no outliers): 163.48810664663065\tLoss (with outliers): 144.25987095642046\n", + "2018-09-12 20:58:52,081 : INFO : Loss (no outliers): 159.0804739083802\tLoss (with outliers): 146.29286144958536\n", + "2018-09-12 20:58:52,988 : INFO : Loss (no outliers): 226.95806797833993\tLoss (with outliers): 164.64238869319595\n", + "2018-09-12 20:58:53,934 : INFO : Loss (no outliers): 315.60393412205065\tLoss (with outliers): 212.8099190508261\n", + "2018-09-12 20:58:54,829 : INFO : Loss (no outliers): 273.15289715620474\tLoss (with outliers): 209.02117087605416\n", + "2018-09-12 20:58:55,760 : INFO : Loss (no outliers): 193.84147325913466\tLoss (with outliers): 153.92610633268097\n", + "2018-09-12 20:58:56,816 : INFO : Loss (no outliers): 224.72348560200965\tLoss (with outliers): 159.7287973966028\n", + "2018-09-12 20:58:57,725 : INFO : Loss (no outliers): 141.73839636051133\tLoss (with outliers): 137.34458298895294\n", + "2018-09-12 20:58:58,692 : INFO : Loss (no outliers): 231.1934996846037\tLoss (with outliers): 154.27316332572826\n", + "2018-09-12 20:58:59,685 : INFO : Loss (no outliers): 165.65316969374092\tLoss (with outliers): 156.48227904440301\n", + "2018-09-12 20:59:00,581 : INFO : Loss (no outliers): 132.40930008872843\tLoss (with outliers): 127.87618135922182\n", + "2018-09-12 20:59:01,588 : INFO : Loss (no outliers): 170.3045897536692\tLoss (with outliers): 157.52168859114607\n", + "2018-09-12 20:59:02,602 : INFO : Loss (no outliers): 238.01261892204263\tLoss (with outliers): 183.77404452641522\n", + "2018-09-12 20:59:02,986 : INFO : Loss (no outliers): 114.00397662927625\tLoss (with outliers): 84.69507030838965\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 14.9 s, sys: 1.89 s, total: 16.7 s\n", - "Wall time: 16.8 s\n" + "CPU times: user 25.5 s, sys: 29 s, total: 54.5 s\n", + "Wall time: 14.1 s\n" ] } ], @@ -173,24 +186,46 @@ "gensim_nmf = GensimNmf(\n", " **training_params,\n", " use_r=True,\n", - " lambda_=10\n", + " lambda_=10,\n", ")" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 22, "metadata": { - "scrolled": false + "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:04,192 : INFO : Loss (no outliers): 230.34056054984242\tLoss (with outliers): 182.08434566569053\n", + "2018-09-12 20:59:05,164 : INFO : Loss (no outliers): 163.71642098551374\tLoss (with outliers): 144.36487487868305\n", + "2018-09-12 20:59:06,122 : INFO : Loss (no outliers): 160.56477083345212\tLoss (with outliers): 147.25872435716468\n", + "2018-09-12 20:59:07,112 : INFO : Loss (no outliers): 225.67612281887742\tLoss (with outliers): 163.077985626035\n", + "2018-09-12 20:59:08,196 : INFO : Loss (no outliers): 316.7881583440518\tLoss (with outliers): 213.8086221268407\n", + "2018-09-12 20:59:09,173 : INFO : Loss (no outliers): 271.1781810297604\tLoss (with outliers): 207.501789900391\n", + "2018-09-12 20:59:10,163 : INFO : Loss (no outliers): 194.54551260476714\tLoss (with outliers): 154.11575594904286\n", + "2018-09-12 20:59:11,168 : INFO : Loss (no outliers): 218.4376400812092\tLoss (with outliers): 155.60139243917698\n", + "2018-09-12 20:59:12,103 : INFO : Loss (no outliers): 142.12546252260182\tLoss (with outliers): 137.74580193804698\n", + "2018-09-12 20:59:13,151 : INFO : Loss (no outliers): 242.40810680411292\tLoss (with outliers): 159.84160763324005\n", + "2018-09-12 20:59:14,231 : INFO : Loss (no outliers): 164.883419850243\tLoss (with outliers): 155.95439133118154\n", + "2018-09-12 20:59:15,124 : INFO : Loss (no outliers): 132.61922037805198\tLoss (with outliers): 128.13075115895393\n", + "2018-09-12 20:59:16,211 : INFO : Loss (no outliers): 168.62539060060425\tLoss (with outliers): 156.09394981216414\n", + "2018-09-12 20:59:17,308 : INFO : Loss (no outliers): 249.5104152633981\tLoss (with outliers): 191.7913452921991\n", + "2018-09-12 20:59:17,729 : INFO : Loss (no outliers): 114.18469106347206\tLoss (with outliers): 84.45559195399146\n" + ] + } + ], "source": [ - "# %lprun -f GensimNmf._solveproj gensim_nmf = GensimNmf(**training_params, use_r=True, lambda_=100)" + "%lprun -f GensimNmf._solveproj GensimNmf(**training_params, use_r=True, lambda_=10)" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 23, "metadata": { "scrolled": true }, @@ -199,155 +234,1325 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 13:20:29,003 : INFO : using symmetric alpha at 0.2\n", - "2018-09-25 13:20:29,004 : INFO : using symmetric eta at 0.2\n", - "2018-09-25 13:20:29,008 : INFO : using serial LDA version on this node\n", - "2018-09-25 13:20:29,017 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-09-25 13:20:29,019 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2018-09-25 13:20:30,356 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:30,364 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"like\" + 0.005*\"think\" + 0.004*\"host\" + 0.004*\"peopl\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"new\"\n", - "2018-09-25 13:20:30,366 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.003*\"know\" + 0.003*\"new\" + 0.003*\"armenian\" + 0.003*\"right\"\n", - "2018-09-25 13:20:30,368 : INFO : topic #2 (0.200): 0.006*\"right\" + 0.005*\"com\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"israel\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"host\" + 0.004*\"like\" + 0.004*\"think\"\n", - "2018-09-25 13:20:30,370 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"space\" + 0.005*\"know\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"peopl\" + 0.003*\"host\"\n", - "2018-09-25 13:20:30,372 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"said\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenian\"\n", - "2018-09-25 13:20:30,373 : INFO : topic diff=1.649447, rho=1.000000\n", - "2018-09-25 13:20:30,374 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2018-09-25 13:20:31,564 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:31,571 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.007*\"com\" + 0.006*\"graphic\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\" + 0.004*\"know\"\n", - "2018-09-25 13:20:31,573 : INFO : topic #1 (0.200): 0.006*\"nasa\" + 0.006*\"peopl\" + 0.005*\"time\" + 0.005*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"imag\" + 0.003*\"thing\"\n", - "2018-09-25 13:20:31,575 : INFO : topic #2 (0.200): 0.008*\"israel\" + 0.008*\"isra\" + 0.006*\"peopl\" + 0.006*\"right\" + 0.005*\"com\" + 0.005*\"think\" + 0.005*\"arab\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"state\"\n", - "2018-09-25 13:20:31,577 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.009*\"space\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"know\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"host\" + 0.003*\"program\" + 0.003*\"nntp\"\n", - "2018-09-25 13:20:31,579 : INFO : topic #4 (0.200): 0.007*\"armenian\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"think\" + 0.004*\"know\" + 0.004*\"muslim\" + 0.004*\"islam\" + 0.004*\"turkish\" + 0.004*\"time\"\n", - "2018-09-25 13:20:31,580 : INFO : topic diff=0.868179, rho=0.707107\n", - "2018-09-25 13:20:33,265 : INFO : -8.029 per-word bound, 261.2 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-09-25 13:20:33,266 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2018-09-25 13:20:34,318 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-09-25 13:20:34,326 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.007*\"file\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"program\"\n", - "2018-09-25 13:20:34,327 : INFO : topic #1 (0.200): 0.008*\"nasa\" + 0.006*\"space\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"univers\" + 0.004*\"orbit\"\n", - "2018-09-25 13:20:34,328 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"god\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"think\" + 0.005*\"know\" + 0.004*\"com\"\n", - "2018-09-25 13:20:34,329 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.012*\"com\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.003*\"know\"\n", - "2018-09-25 13:20:34,331 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.009*\"peopl\" + 0.007*\"turkish\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenia\" + 0.004*\"islam\"\n", - "2018-09-25 13:20:34,332 : INFO : topic diff=0.663742, rho=0.577350\n", - "2018-09-25 13:20:34,333 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2018-09-25 13:20:35,293 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:35,314 : INFO : topic #0 (0.200): 0.010*\"imag\" + 0.008*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"us\" + 0.005*\"need\"\n", - "2018-09-25 13:20:35,317 : INFO : topic #1 (0.200): 0.007*\"nasa\" + 0.006*\"space\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"univers\" + 0.004*\"moon\" + 0.004*\"time\" + 0.004*\"launch\"\n", - "2018-09-25 13:20:35,319 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"isra\" + 0.007*\"god\" + 0.007*\"peopl\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"state\" + 0.005*\"think\" + 0.005*\"univers\"\n", - "2018-09-25 13:20:35,325 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.012*\"com\" + 0.004*\"bike\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"univers\" + 0.004*\"year\" + 0.004*\"dod\" + 0.004*\"host\" + 0.004*\"like\"\n", - "2018-09-25 13:20:35,327 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.010*\"peopl\" + 0.007*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"greek\" + 0.004*\"islam\"\n", - "2018-09-25 13:20:35,332 : INFO : topic diff=0.449256, rho=0.455535\n", - "2018-09-25 13:20:35,337 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2018-09-25 13:20:36,685 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:36,692 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"file\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"like\" + 0.005*\"nntp\" + 0.005*\"us\"\n", - "2018-09-25 13:20:36,693 : INFO : topic #1 (0.200): 0.009*\"nasa\" + 0.007*\"space\" + 0.005*\"gov\" + 0.005*\"like\" + 0.005*\"orbit\" + 0.005*\"time\" + 0.005*\"peopl\" + 0.004*\"moon\" + 0.004*\"year\" + 0.004*\"univers\"\n", - "2018-09-25 13:20:36,695 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"peopl\" + 0.007*\"god\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"state\" + 0.004*\"know\"\n", - "2018-09-25 13:20:36,697 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.012*\"space\" + 0.005*\"bike\" + 0.004*\"time\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"dod\"\n", - "2018-09-25 13:20:36,702 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.005*\"said\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.004*\"islam\" + 0.004*\"armenia\" + 0.004*\"time\"\n", - "2018-09-25 13:20:36,705 : INFO : topic diff=0.419776, rho=0.455535\n", - "2018-09-25 13:20:37,877 : INFO : -7.774 per-word bound, 218.9 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-09-25 13:20:37,878 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2018-09-25 13:20:38,463 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-09-25 13:20:38,470 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.009*\"file\" + 0.008*\"graphic\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"program\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"univers\" + 0.005*\"host\"\n", - "2018-09-25 13:20:38,473 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.008*\"space\" + 0.005*\"gov\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"year\" + 0.004*\"launch\" + 0.004*\"moon\"\n", - "2018-09-25 13:20:38,474 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"jew\" + 0.006*\"arab\" + 0.006*\"think\" + 0.005*\"right\" + 0.005*\"exist\" + 0.005*\"state\"\n", - "2018-09-25 13:20:38,475 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.013*\"com\" + 0.005*\"bike\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\" + 0.004*\"like\"\n", - "2018-09-25 13:20:38,476 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.006*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.004*\"time\" + 0.004*\"turkei\" + 0.004*\"muslim\"\n" + "2018-09-12 20:59:17,750 : INFO : using symmetric alpha at 0.2\n", + "2018-09-12 20:59:17,751 : INFO : using symmetric eta at 0.2\n", + "2018-09-12 20:59:17,752 : INFO : using serial LDA version on this node\n", + "2018-09-12 20:59:17,758 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 100 documents, evaluating perplexity every 1000 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-09-12 20:59:17,759 : INFO : PROGRESS: pass 0, at document #100/2819\n", + "2018-09-12 20:59:17,865 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:17,872 : INFO : topic #0 (0.200): 0.007*\"com\" + 0.007*\"jew\" + 0.006*\"think\" + 0.006*\"oper\" + 0.006*\"new\" + 0.005*\"host\" + 0.005*\"lunar\" + 0.005*\"univers\" + 0.005*\"model\" + 0.005*\"nntp\"\n", + "2018-09-12 20:59:17,873 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.006*\"univers\" + 0.005*\"space\" + 0.005*\"like\" + 0.005*\"peac\" + 0.005*\"nasa\" + 0.004*\"liar\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"dai\"\n", + "2018-09-12 20:59:17,875 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.007*\"palestinian\" + 0.007*\"com\" + 0.007*\"isra\" + 0.005*\"new\" + 0.005*\"right\" + 0.005*\"univers\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"think\"\n", + "2018-09-12 20:59:17,876 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"space\" + 0.006*\"jew\" + 0.005*\"new\" + 0.005*\"year\" + 0.005*\"time\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.004*\"world\"\n", + "2018-09-12 20:59:17,877 : INFO : topic #4 (0.200): 0.007*\"com\" + 0.006*\"time\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"israel\" + 0.004*\"work\" + 0.004*\"world\" + 0.004*\"level\"\n", + "2018-09-12 20:59:17,878 : INFO : topic diff=4.583228, rho=1.000000\n", + "2018-09-12 20:59:17,878 : INFO : PROGRESS: pass 0, at document #200/2819\n", + "2018-09-12 20:59:17,984 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:17,988 : INFO : topic #0 (0.200): 0.013*\"dod\" + 0.008*\"sai\" + 0.007*\"imag\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"com\" + 0.005*\"went\" + 0.005*\"kill\" + 0.004*\"armenian\" + 0.004*\"murder\"\n", + "2018-09-12 20:59:17,989 : INFO : topic #1 (0.200): 0.008*\"peopl\" + 0.006*\"univers\" + 0.006*\"dod\" + 0.006*\"like\" + 0.005*\"prison\" + 0.005*\"earth\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"god\" + 0.004*\"right\"\n", + "2018-09-12 20:59:17,990 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.008*\"right\" + 0.007*\"said\" + 0.006*\"arab\" + 0.005*\"state\" + 0.005*\"univers\" + 0.005*\"com\" + 0.005*\"palestinian\" + 0.005*\"think\"\n", + "2018-09-12 20:59:17,991 : INFO : topic #3 (0.200): 0.008*\"univers\" + 0.007*\"physic\" + 0.007*\"time\" + 0.006*\"theori\" + 0.006*\"van\" + 0.006*\"com\" + 0.005*\"case\" + 0.005*\"space\" + 0.005*\"mass\" + 0.004*\"gener\"\n", + "2018-09-12 20:59:17,992 : INFO : topic #4 (0.200): 0.009*\"god\" + 0.007*\"greek\" + 0.007*\"time\" + 0.007*\"turkish\" + 0.006*\"like\" + 0.005*\"com\" + 0.004*\"know\" + 0.004*\"work\" + 0.004*\"motorcycl\" + 0.004*\"said\"\n", + "2018-09-12 20:59:17,992 : INFO : topic diff=1.706693, rho=0.707107\n", + "2018-09-12 20:59:17,993 : INFO : PROGRESS: pass 0, at document #300/2819\n", + "2018-09-12 20:59:18,091 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:18,096 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.009*\"dod\" + 0.006*\"think\" + 0.006*\"access\" + 0.006*\"like\" + 0.006*\"imag\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"sai\" + 0.004*\"look\"\n", + "2018-09-12 20:59:18,096 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.007*\"like\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"bike\" + 0.005*\"dog\" + 0.005*\"univers\" + 0.005*\"com\" + 0.005*\"know\" + 0.004*\"dod\"\n", + "2018-09-12 20:59:18,097 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"arab\" + 0.007*\"right\" + 0.006*\"com\" + 0.006*\"think\" + 0.006*\"law\" + 0.006*\"said\" + 0.005*\"peopl\" + 0.005*\"state\"\n", + "2018-09-12 20:59:18,098 : INFO : topic #3 (0.200): 0.008*\"com\" + 0.007*\"univers\" + 0.006*\"space\" + 0.005*\"physic\" + 0.005*\"time\" + 0.005*\"theori\" + 0.004*\"host\" + 0.004*\"case\" + 0.004*\"know\" + 0.004*\"van\"\n", + "2018-09-12 20:59:18,098 : INFO : topic #4 (0.200): 0.007*\"com\" + 0.007*\"like\" + 0.006*\"armenian\" + 0.005*\"time\" + 0.005*\"god\" + 0.005*\"muslim\" + 0.004*\"bike\" + 0.004*\"work\" + 0.004*\"turkish\" + 0.004*\"greek\"\n", + "2018-09-12 20:59:18,099 : INFO : topic diff=0.960692, rho=0.577350\n", + "2018-09-12 20:59:18,100 : INFO : PROGRESS: pass 0, at document #400/2819\n", + "2018-09-12 20:59:18,194 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:18,199 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.007*\"dod\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"access\" + 0.006*\"like\" + 0.005*\"think\" + 0.005*\"imag\" + 0.005*\"need\" + 0.004*\"thank\"\n", + "2018-09-12 20:59:18,200 : INFO : topic #1 (0.200): 0.007*\"bike\" + 0.006*\"like\" + 0.006*\"peopl\" + 0.005*\"thing\" + 0.005*\"univers\" + 0.005*\"com\" + 0.005*\"dai\" + 0.005*\"nasa\" + 0.005*\"ride\" + 0.004*\"know\"\n", + "2018-09-12 20:59:18,201 : INFO : topic #2 (0.200): 0.009*\"isra\" + 0.008*\"israel\" + 0.007*\"right\" + 0.007*\"arab\" + 0.006*\"think\" + 0.006*\"state\" + 0.006*\"peopl\" + 0.006*\"said\" + 0.005*\"women\" + 0.005*\"law\"\n", + "2018-09-12 20:59:18,202 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"univers\" + 0.005*\"time\" + 0.005*\"space\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"know\" + 0.004*\"gener\" + 0.004*\"new\" + 0.004*\"theori\"\n", + "2018-09-12 20:59:18,203 : INFO : topic #4 (0.200): 0.007*\"com\" + 0.007*\"turkish\" + 0.007*\"armenian\" + 0.006*\"greek\" + 0.006*\"like\" + 0.005*\"bike\" + 0.004*\"time\" + 0.004*\"work\" + 0.004*\"muslim\" + 0.004*\"state\"\n", + "2018-09-12 20:59:18,203 : INFO : topic diff=0.790763, rho=0.500000\n", + "2018-09-12 20:59:18,204 : INFO : PROGRESS: pass 0, at document #500/2819\n", + "2018-09-12 20:59:18,293 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:18,298 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.007*\"went\" + 0.006*\"like\" + 0.006*\"know\" + 0.006*\"think\" + 0.006*\"look\" + 0.005*\"need\" + 0.005*\"said\" + 0.005*\"save\" + 0.005*\"host\"\n", + "2018-09-12 20:59:18,299 : INFO : topic #1 (0.200): 0.010*\"peopl\" + 0.007*\"bike\" + 0.007*\"like\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"nasa\" + 0.005*\"dai\" + 0.005*\"left\" + 0.005*\"gov\" + 0.005*\"com\"\n", + "2018-09-12 20:59:18,300 : INFO : topic #2 (0.200): 0.012*\"peopl\" + 0.009*\"said\" + 0.008*\"right\" + 0.007*\"think\" + 0.006*\"kill\" + 0.006*\"women\" + 0.005*\"apart\" + 0.005*\"isra\" + 0.005*\"father\" + 0.005*\"came\"\n", + "2018-09-12 20:59:18,301 : INFO : topic #3 (0.200): 0.010*\"space\" + 0.010*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"time\" + 0.005*\"know\" + 0.004*\"graphic\" + 0.004*\"curv\" + 0.004*\"like\"\n", + "2018-09-12 20:59:18,302 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.008*\"peopl\" + 0.007*\"turkish\" + 0.007*\"like\" + 0.006*\"know\" + 0.006*\"said\" + 0.005*\"time\" + 0.005*\"com\" + 0.004*\"year\" + 0.004*\"turk\"\n", + "2018-09-12 20:59:18,302 : INFO : topic diff=0.817144, rho=0.447214\n", + "2018-09-12 20:59:18,303 : INFO : PROGRESS: pass 0, at document #600/2819\n", + "2018-09-12 20:59:18,385 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:18,390 : INFO : topic #0 (0.200): 0.010*\"imag\" + 0.009*\"com\" + 0.007*\"file\" + 0.006*\"know\" + 0.006*\"like\" + 0.006*\"need\" + 0.006*\"think\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"look\"\n", + "2018-09-12 20:59:18,391 : INFO : topic #1 (0.200): 0.008*\"peopl\" + 0.008*\"like\" + 0.007*\"bike\" + 0.006*\"gov\" + 0.006*\"com\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"nasa\" + 0.005*\"univers\" + 0.005*\"rider\"\n", + "2018-09-12 20:59:18,392 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.009*\"isra\" + 0.008*\"said\" + 0.007*\"right\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"adam\" + 0.005*\"kill\" + 0.005*\"state\"\n", + "2018-09-12 20:59:18,392 : INFO : topic #3 (0.200): 0.011*\"space\" + 0.009*\"com\" + 0.009*\"univers\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"know\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"distribut\"\n", + "2018-09-12 20:59:18,393 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.006*\"greek\" + 0.005*\"know\" + 0.005*\"said\" + 0.005*\"turk\" + 0.005*\"time\" + 0.004*\"govern\"\n", + "2018-09-12 20:59:18,394 : INFO : topic diff=0.581547, rho=0.408248\n", + "2018-09-12 20:59:18,394 : INFO : PROGRESS: pass 0, at document #700/2819\n", + "2018-09-12 20:59:18,473 : INFO : merging changes from 100 documents into a model of 2819 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:18,478 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.010*\"com\" + 0.006*\"host\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"like\" + 0.006*\"think\" + 0.006*\"file\" + 0.005*\"need\" + 0.005*\"alaska\"\n", + "2018-09-12 20:59:18,478 : INFO : topic #1 (0.200): 0.007*\"bike\" + 0.007*\"like\" + 0.007*\"nasa\" + 0.007*\"peopl\" + 0.006*\"orbit\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"gov\" + 0.006*\"god\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:18,479 : INFO : topic #2 (0.200): 0.012*\"isra\" + 0.011*\"israel\" + 0.011*\"peopl\" + 0.008*\"right\" + 0.006*\"jew\" + 0.006*\"think\" + 0.006*\"said\" + 0.005*\"arab\" + 0.005*\"men\" + 0.005*\"kill\"\n", + "2018-09-12 20:59:18,480 : INFO : topic #3 (0.200): 0.010*\"space\" + 0.009*\"univers\" + 0.009*\"com\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"graphic\" + 0.005*\"new\" + 0.004*\"know\" + 0.004*\"like\" + 0.004*\"program\"\n", + "2018-09-12 20:59:18,481 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"know\" + 0.005*\"com\" + 0.005*\"time\" + 0.005*\"greek\" + 0.005*\"said\" + 0.004*\"turk\"\n", + "2018-09-12 20:59:18,481 : INFO : topic diff=0.586025, rho=0.377964\n", + "2018-09-12 20:59:18,482 : INFO : PROGRESS: pass 0, at document #800/2819\n", + "2018-09-12 20:59:18,564 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:18,569 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.010*\"com\" + 0.007*\"know\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"like\" + 0.006*\"need\" + 0.005*\"think\" + 0.005*\"look\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:18,570 : INFO : topic #1 (0.200): 0.009*\"bike\" + 0.008*\"like\" + 0.008*\"nasa\" + 0.007*\"peopl\" + 0.007*\"ride\" + 0.006*\"thing\" + 0.006*\"gov\" + 0.006*\"com\" + 0.005*\"univers\" + 0.005*\"orbit\"\n", + "2018-09-12 20:59:18,571 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.011*\"isra\" + 0.010*\"peopl\" + 0.006*\"right\" + 0.006*\"said\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"think\" + 0.005*\"women\"\n", + "2018-09-12 20:59:18,572 : INFO : topic #3 (0.200): 0.011*\"space\" + 0.009*\"univers\" + 0.008*\"com\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"new\" + 0.005*\"graphic\" + 0.005*\"know\" + 0.004*\"program\" + 0.004*\"like\"\n", + "2018-09-12 20:59:18,573 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.008*\"peopl\" + 0.008*\"turkish\" + 0.005*\"greek\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"time\" + 0.005*\"said\" + 0.005*\"know\" + 0.004*\"armenia\"\n", + "2018-09-12 20:59:18,573 : INFO : topic diff=0.522439, rho=0.353553\n", + "2018-09-12 20:59:18,574 : INFO : PROGRESS: pass 0, at document #900/2819\n", + "2018-09-12 20:59:18,653 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:18,658 : INFO : topic #0 (0.200): 0.011*\"com\" + 0.009*\"imag\" + 0.006*\"host\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"like\" + 0.006*\"need\" + 0.005*\"look\" + 0.005*\"thank\" + 0.005*\"think\"\n", + "2018-09-12 20:59:18,658 : INFO : topic #1 (0.200): 0.009*\"bike\" + 0.007*\"like\" + 0.007*\"ride\" + 0.007*\"thing\" + 0.007*\"com\" + 0.006*\"nasa\" + 0.006*\"peopl\" + 0.006*\"gov\" + 0.005*\"god\" + 0.005*\"orbit\"\n", + "2018-09-12 20:59:18,659 : INFO : topic #2 (0.200): 0.011*\"atheist\" + 0.011*\"peopl\" + 0.009*\"isra\" + 0.009*\"israel\" + 0.008*\"right\" + 0.007*\"god\" + 0.007*\"atheism\" + 0.007*\"religion\" + 0.007*\"believ\" + 0.006*\"arab\"\n", + "2018-09-12 20:59:18,660 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.008*\"com\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"point\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"satellit\" + 0.004*\"program\" + 0.004*\"year\"\n", + "2018-09-12 20:59:18,660 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.008*\"peopl\" + 0.006*\"turkish\" + 0.005*\"time\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"year\" + 0.004*\"know\" + 0.004*\"work\" + 0.004*\"greek\"\n", + "2018-09-12 20:59:18,661 : INFO : topic diff=0.589248, rho=0.333333\n", + "2018-09-12 20:59:18,808 : INFO : -8.126 per-word bound, 279.3 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", + "2018-09-12 20:59:18,808 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2018-09-12 20:59:18,884 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:18,888 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.011*\"com\" + 0.007*\"file\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"bit\" + 0.005*\"need\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"want\"\n", + "2018-09-12 20:59:18,889 : INFO : topic #1 (0.200): 0.009*\"bike\" + 0.007*\"orbit\" + 0.007*\"ride\" + 0.007*\"com\" + 0.006*\"like\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"peopl\"\n", + "2018-09-12 20:59:18,890 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.009*\"peopl\" + 0.009*\"right\" + 0.008*\"atheist\" + 0.008*\"arab\" + 0.006*\"human\" + 0.006*\"state\" + 0.006*\"believ\" + 0.006*\"religion\"\n", + "2018-09-12 20:59:18,891 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.007*\"com\" + 0.007*\"point\" + 0.006*\"univers\" + 0.006*\"program\" + 0.006*\"new\" + 0.006*\"probe\" + 0.005*\"year\" + 0.005*\"orbit\" + 0.005*\"problem\"\n", + "2018-09-12 20:59:18,891 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.009*\"greek\" + 0.007*\"peopl\" + 0.006*\"turk\" + 0.005*\"time\" + 0.005*\"like\" + 0.004*\"year\" + 0.004*\"armenia\" + 0.004*\"argic\"\n", + "2018-09-12 20:59:18,892 : INFO : topic diff=0.519242, rho=0.316228\n", + "2018-09-12 20:59:18,892 : INFO : PROGRESS: pass 0, at document #1100/2819\n", + "2018-09-12 20:59:18,966 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:18,970 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.011*\"com\" + 0.009*\"file\" + 0.006*\"us\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"displai\" + 0.005*\"packag\" + 0.005*\"avail\" + 0.005*\"like\"\n", + "2018-09-12 20:59:18,971 : INFO : topic #1 (0.200): 0.010*\"bike\" + 0.007*\"gov\" + 0.007*\"com\" + 0.007*\"nasa\" + 0.007*\"ride\" + 0.006*\"like\" + 0.006*\"orbit\" + 0.006*\"thing\" + 0.005*\"moon\" + 0.005*\"time\"\n", + "2018-09-12 20:59:18,972 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.010*\"peopl\" + 0.010*\"isra\" + 0.008*\"arab\" + 0.008*\"atheist\" + 0.008*\"right\" + 0.007*\"god\" + 0.007*\"religion\" + 0.007*\"think\" + 0.006*\"jew\"\n", + "2018-09-12 20:59:18,972 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.007*\"com\" + 0.007*\"data\" + 0.006*\"program\" + 0.006*\"point\" + 0.006*\"univers\" + 0.005*\"graphic\" + 0.005*\"new\" + 0.004*\"year\" + 0.004*\"host\"\n", + "2018-09-12 20:59:18,973 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.008*\"peopl\" + 0.006*\"turk\" + 0.006*\"greek\" + 0.004*\"armi\" + 0.004*\"time\" + 0.004*\"argic\" + 0.004*\"armenia\" + 0.004*\"soviet\"\n", + "2018-09-12 20:59:18,974 : INFO : topic diff=0.491061, rho=0.301511\n", + "2018-09-12 20:59:18,974 : INFO : PROGRESS: pass 0, at document #1200/2819\n", + "2018-09-12 20:59:19,046 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,050 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"com\" + 0.008*\"file\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.006*\"like\" + 0.005*\"packag\" + 0.005*\"know\" + 0.005*\"format\"\n", + "2018-09-12 20:59:19,051 : INFO : topic #1 (0.200): 0.009*\"bike\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"gov\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"time\" + 0.005*\"peopl\" + 0.005*\"orbit\"\n", + "2018-09-12 20:59:19,052 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"peopl\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"right\" + 0.007*\"arab\" + 0.006*\"argument\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"atheist\"\n", + "2018-09-12 20:59:19,053 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.007*\"data\" + 0.007*\"program\" + 0.007*\"point\" + 0.006*\"com\" + 0.006*\"univers\" + 0.005*\"graphic\" + 0.005*\"new\" + 0.004*\"develop\" + 0.004*\"year\"\n", + "2018-09-12 20:59:19,053 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.009*\"greek\" + 0.008*\"peopl\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"genocid\" + 0.004*\"time\" + 0.004*\"argic\"\n", + "2018-09-12 20:59:19,054 : INFO : topic diff=0.360480, rho=0.288675\n", + "2018-09-12 20:59:19,054 : INFO : PROGRESS: pass 0, at document #1300/2819\n", + "2018-09-12 20:59:19,124 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,129 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"mail\" + 0.008*\"graphic\" + 0.007*\"format\" + 0.006*\"packag\" + 0.006*\"send\" + 0.006*\"host\" + 0.006*\"ftp\"\n", + "2018-09-12 20:59:19,130 : INFO : topic #1 (0.200): 0.010*\"bike\" + 0.008*\"com\" + 0.007*\"like\" + 0.007*\"gov\" + 0.007*\"thing\" + 0.006*\"nasa\" + 0.005*\"time\" + 0.005*\"ride\" + 0.004*\"dai\" + 0.004*\"peopl\"\n", + "2018-09-12 20:59:19,130 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"peopl\" + 0.009*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"arab\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"right\" + 0.006*\"argument\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:19,131 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.009*\"graphic\" + 0.006*\"pub\" + 0.006*\"data\" + 0.006*\"com\" + 0.006*\"rai\" + 0.006*\"program\" + 0.005*\"univers\" + 0.005*\"new\" + 0.005*\"point\"\n", + "2018-09-12 20:59:19,132 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"turkish\" + 0.008*\"peopl\" + 0.007*\"greek\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"like\" + 0.004*\"org\" + 0.004*\"time\"\n", + "2018-09-12 20:59:19,132 : INFO : topic diff=0.403653, rho=0.277350\n", + "2018-09-12 20:59:19,133 : INFO : PROGRESS: pass 0, at document #1400/2819\n", + "2018-09-12 20:59:19,207 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,212 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.012*\"com\" + 0.010*\"file\" + 0.008*\"mail\" + 0.007*\"graphic\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.006*\"format\" + 0.006*\"send\"\n", + "2018-09-12 20:59:19,212 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"bike\" + 0.008*\"like\" + 0.007*\"gov\" + 0.006*\"thing\" + 0.006*\"nasa\" + 0.005*\"time\" + 0.005*\"ride\" + 0.004*\"know\" + 0.004*\"dai\"\n", + "2018-09-12 20:59:19,213 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.009*\"isra\" + 0.007*\"god\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"atheist\" + 0.005*\"moral\" + 0.005*\"exist\"\n", + "2018-09-12 20:59:19,214 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.008*\"graphic\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"data\" + 0.005*\"univers\" + 0.005*\"pub\" + 0.005*\"rai\" + 0.005*\"new\" + 0.004*\"point\"\n", + "2018-09-12 20:59:19,215 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.007*\"peopl\" + 0.006*\"henrik\" + 0.006*\"greek\" + 0.006*\"turkei\" + 0.006*\"turk\" + 0.005*\"armenia\" + 0.005*\"org\" + 0.005*\"like\"\n", + "2018-09-12 20:59:19,216 : INFO : topic diff=0.329007, rho=0.267261\n", + "2018-09-12 20:59:19,216 : INFO : PROGRESS: pass 0, at document #1500/2819\n", + "2018-09-12 20:59:19,282 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,287 : INFO : topic #0 (0.200): 0.028*\"imag\" + 0.011*\"com\" + 0.009*\"file\" + 0.007*\"mail\" + 0.007*\"host\" + 0.006*\"graphic\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.006*\"bit\" + 0.005*\"packag\"\n", + "2018-09-12 20:59:19,288 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.008*\"jesu\" + 0.006*\"thing\" + 0.006*\"nasa\" + 0.006*\"gov\" + 0.006*\"dai\" + 0.005*\"time\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:19,288 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.011*\"peopl\" + 0.007*\"isra\" + 0.007*\"arab\" + 0.007*\"god\" + 0.007*\"right\" + 0.006*\"think\" + 0.006*\"state\" + 0.006*\"christian\" + 0.006*\"jew\"\n", + "2018-09-12 20:59:19,289 : INFO : topic #3 (0.200): 0.010*\"space\" + 0.008*\"graphic\" + 0.007*\"program\" + 0.007*\"data\" + 0.006*\"com\" + 0.005*\"univers\" + 0.005*\"process\" + 0.005*\"new\" + 0.004*\"pub\" + 0.004*\"softwar\"\n", + "2018-09-12 20:59:19,290 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.009*\"turkish\" + 0.007*\"peopl\" + 0.007*\"turk\" + 0.007*\"turkei\" + 0.006*\"greek\" + 0.005*\"armenia\" + 0.005*\"like\" + 0.005*\"henrik\" + 0.005*\"muslim\"\n", + "2018-09-12 20:59:19,291 : INFO : topic diff=0.378576, rho=0.258199\n", + "2018-09-12 20:59:19,292 : INFO : PROGRESS: pass 0, at document #1600/2819\n", + "2018-09-12 20:59:19,354 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,359 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.012*\"com\" + 0.009*\"file\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"graphic\" + 0.006*\"bit\" + 0.006*\"mail\" + 0.006*\"us\" + 0.005*\"thank\"\n", + "2018-09-12 20:59:19,359 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"bike\" + 0.008*\"like\" + 0.007*\"jesu\" + 0.006*\"thing\" + 0.006*\"nasa\" + 0.006*\"gov\" + 0.005*\"dai\" + 0.005*\"time\" + 0.004*\"good\"\n", + "2018-09-12 20:59:19,360 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.006*\"god\" + 0.006*\"jew\" + 0.005*\"islam\"\n", + "2018-09-12 20:59:19,361 : INFO : topic #3 (0.200): 0.011*\"space\" + 0.007*\"graphic\" + 0.007*\"program\" + 0.006*\"data\" + 0.006*\"com\" + 0.006*\"univers\" + 0.005*\"point\" + 0.004*\"new\" + 0.004*\"process\" + 0.004*\"host\"\n", + "2018-09-12 20:59:19,362 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.009*\"turkish\" + 0.007*\"armenia\" + 0.007*\"peopl\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.005*\"muslim\" + 0.005*\"time\" + 0.005*\"like\" + 0.005*\"greek\"\n", + "2018-09-12 20:59:19,363 : INFO : topic diff=0.263111, rho=0.250000\n", + "2018-09-12 20:59:19,363 : INFO : PROGRESS: pass 0, at document #1700/2819\n", + "2018-09-12 20:59:19,428 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,433 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.012*\"com\" + 0.011*\"file\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"bit\" + 0.006*\"need\" + 0.006*\"thank\" + 0.006*\"mail\" + 0.006*\"graphic\"\n", + "2018-09-12 20:59:19,434 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.006*\"nasa\" + 0.006*\"gov\" + 0.006*\"time\" + 0.005*\"ride\" + 0.005*\"jesu\" + 0.005*\"dai\"\n", + "2018-09-12 20:59:19,435 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.009*\"think\" + 0.007*\"isra\" + 0.007*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.006*\"god\" + 0.005*\"jew\" + 0.005*\"moral\"\n", + "2018-09-12 20:59:19,435 : INFO : topic #3 (0.200): 0.012*\"space\" + 0.007*\"graphic\" + 0.006*\"program\" + 0.006*\"data\" + 0.006*\"univers\" + 0.006*\"com\" + 0.005*\"point\" + 0.004*\"new\" + 0.004*\"nasa\" + 0.004*\"host\"\n", + "2018-09-12 20:59:19,436 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.008*\"turkish\" + 0.007*\"peopl\" + 0.006*\"armenia\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"org\" + 0.005*\"muslim\" + 0.005*\"like\" + 0.005*\"turkei\"\n", + "2018-09-12 20:59:19,437 : INFO : topic diff=0.276904, rho=0.242536\n", + "2018-09-12 20:59:19,437 : INFO : PROGRESS: pass 0, at document #1800/2819\n", + "2018-09-12 20:59:19,505 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,510 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.013*\"com\" + 0.011*\"file\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.006*\"bit\" + 0.006*\"graphic\" + 0.006*\"mail\" + 0.006*\"need\" + 0.006*\"thank\"\n", + "2018-09-12 20:59:19,511 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.009*\"bike\" + 0.008*\"like\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"time\" + 0.005*\"gov\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:19,512 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"right\" + 0.007*\"god\" + 0.007*\"jew\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"islam\"\n", + "2018-09-12 20:59:19,513 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.006*\"program\" + 0.006*\"point\" + 0.006*\"univers\" + 0.006*\"graphic\" + 0.006*\"com\" + 0.005*\"data\" + 0.005*\"nasa\" + 0.005*\"new\" + 0.004*\"host\"\n", + "2018-09-12 20:59:19,513 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.007*\"turkish\" + 0.006*\"peopl\" + 0.005*\"armenia\" + 0.005*\"muslim\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"org\" + 0.004*\"serdar\" + 0.004*\"like\"\n", + "2018-09-12 20:59:19,514 : INFO : topic diff=0.250504, rho=0.235702\n", + "2018-09-12 20:59:19,515 : INFO : PROGRESS: pass 0, at document #1900/2819\n", + "2018-09-12 20:59:19,576 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,583 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.013*\"com\" + 0.011*\"file\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.006*\"graphic\" + 0.006*\"univers\" + 0.006*\"know\" + 0.006*\"thank\" + 0.006*\"need\"\n", + "2018-09-12 20:59:19,584 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.008*\"like\" + 0.008*\"bike\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"time\" + 0.005*\"dod\" + 0.005*\"nntp\" + 0.005*\"gov\" + 0.005*\"host\"\n", + "2018-09-12 20:59:19,585 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.009*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.007*\"jew\" + 0.006*\"right\" + 0.006*\"moral\" + 0.005*\"arab\" + 0.005*\"state\"\n", + "2018-09-12 20:59:19,586 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.007*\"univers\" + 0.007*\"graphic\" + 0.006*\"program\" + 0.006*\"point\" + 0.006*\"com\" + 0.005*\"data\" + 0.005*\"nasa\" + 0.005*\"new\" + 0.005*\"host\"\n", + "2018-09-12 20:59:19,587 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"turkish\" + 0.007*\"peopl\" + 0.007*\"armenia\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.006*\"turk\" + 0.005*\"muslim\" + 0.005*\"argic\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:19,588 : INFO : topic diff=0.247034, rho=0.229416\n", + "2018-09-12 20:59:19,720 : INFO : -8.001 per-word bound, 256.2 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:19,720 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2018-09-12 20:59:19,787 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,792 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.012*\"com\" + 0.012*\"file\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.006*\"graphic\" + 0.006*\"know\" + 0.006*\"need\" + 0.006*\"bit\"\n", + "2018-09-12 20:59:19,793 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"bike\" + 0.008*\"like\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"time\" + 0.005*\"gov\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:19,794 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.010*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"jew\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"moral\"\n", + "2018-09-12 20:59:19,795 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.007*\"data\" + 0.007*\"program\" + 0.006*\"univers\" + 0.005*\"orbit\" + 0.005*\"com\" + 0.005*\"graphic\" + 0.005*\"satellit\" + 0.005*\"center\"\n", + "2018-09-12 20:59:19,796 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.007*\"armenia\" + 0.007*\"peopl\" + 0.006*\"genocid\" + 0.005*\"turk\" + 0.005*\"serdar\" + 0.005*\"argic\" + 0.005*\"muslim\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:19,796 : INFO : topic diff=0.269817, rho=0.223607\n", + "2018-09-12 20:59:19,797 : INFO : PROGRESS: pass 0, at document #2100/2819\n", + "2018-09-12 20:59:19,860 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,866 : INFO : topic #0 (0.200): 0.027*\"imag\" + 0.021*\"jpeg\" + 0.019*\"file\" + 0.011*\"gif\" + 0.010*\"color\" + 0.009*\"format\" + 0.008*\"com\" + 0.008*\"bit\" + 0.007*\"us\" + 0.007*\"version\"\n", + "2018-09-12 20:59:19,867 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"bike\" + 0.008*\"like\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.005*\"nasa\" + 0.005*\"gov\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"nntp\"\n", + "2018-09-12 20:59:19,868 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.006*\"right\" + 0.006*\"jew\" + 0.006*\"god\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"state\"\n", + "2018-09-12 20:59:19,869 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.008*\"data\" + 0.007*\"nasa\" + 0.006*\"program\" + 0.005*\"orbit\" + 0.005*\"univers\" + 0.005*\"graphic\" + 0.005*\"com\" + 0.005*\"us\" + 0.004*\"satellit\"\n", + "2018-09-12 20:59:19,870 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.010*\"turkish\" + 0.007*\"armenia\" + 0.006*\"peopl\" + 0.006*\"turk\" + 0.006*\"argic\" + 0.005*\"serdar\" + 0.005*\"genocid\" + 0.005*\"soviet\" + 0.005*\"muslim\"\n", + "2018-09-12 20:59:19,871 : INFO : topic diff=0.308571, rho=0.218218\n", + "2018-09-12 20:59:19,871 : INFO : PROGRESS: pass 0, at document #2200/2819\n", + "2018-09-12 20:59:19,934 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:19,939 : INFO : topic #0 (0.200): 0.025*\"imag\" + 0.018*\"jpeg\" + 0.018*\"file\" + 0.010*\"color\" + 0.010*\"gif\" + 0.009*\"com\" + 0.009*\"format\" + 0.008*\"bit\" + 0.007*\"us\" + 0.007*\"graphic\"\n", + "2018-09-12 20:59:19,940 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"ride\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"nasa\"\n", + "2018-09-12 20:59:19,941 : INFO : topic #2 (0.200): 0.012*\"peopl\" + 0.009*\"isra\" + 0.008*\"think\" + 0.008*\"israel\" + 0.006*\"right\" + 0.006*\"jew\" + 0.006*\"god\" + 0.006*\"arab\" + 0.005*\"kill\" + 0.005*\"human\"\n", + "2018-09-12 20:59:19,942 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.007*\"data\" + 0.007*\"nasa\" + 0.006*\"program\" + 0.005*\"softwar\" + 0.005*\"satellit\" + 0.005*\"univers\" + 0.005*\"graphic\" + 0.005*\"com\" + 0.005*\"orbit\"\n", + "2018-09-12 20:59:19,943 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.009*\"peopl\" + 0.008*\"turkish\" + 0.007*\"armenia\" + 0.005*\"said\" + 0.005*\"turk\" + 0.005*\"time\" + 0.004*\"like\" + 0.004*\"know\" + 0.004*\"turkei\"\n", + "2018-09-12 20:59:19,943 : INFO : topic diff=0.254874, rho=0.213201\n", + "2018-09-12 20:59:19,944 : INFO : PROGRESS: pass 0, at document #2300/2819\n", + "2018-09-12 20:59:20,006 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,012 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.017*\"file\" + 0.015*\"jpeg\" + 0.011*\"gif\" + 0.010*\"color\" + 0.009*\"format\" + 0.009*\"com\" + 0.008*\"bit\" + 0.007*\"us\" + 0.007*\"host\"\n", + "2018-09-12 20:59:20,014 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"gov\" + 0.005*\"think\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n", + "2018-09-12 20:59:20,015 : INFO : topic #2 (0.200): 0.012*\"peopl\" + 0.009*\"isra\" + 0.008*\"israel\" + 0.008*\"think\" + 0.007*\"right\" + 0.006*\"jew\" + 0.006*\"god\" + 0.005*\"human\" + 0.005*\"islam\" + 0.005*\"arab\"\n", + "2018-09-12 20:59:20,016 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.007*\"nasa\" + 0.006*\"data\" + 0.006*\"program\" + 0.006*\"softwar\" + 0.005*\"orbit\" + 0.005*\"com\" + 0.005*\"univers\" + 0.005*\"point\" + 0.005*\"inform\"\n", + "2018-09-12 20:59:20,016 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"armenia\" + 0.006*\"said\" + 0.005*\"turk\" + 0.005*\"time\" + 0.004*\"like\" + 0.004*\"live\" + 0.004*\"come\"\n", + "2018-09-12 20:59:20,017 : INFO : topic diff=0.235805, rho=0.208514\n", + "2018-09-12 20:59:20,017 : INFO : PROGRESS: pass 0, at document #2400/2819\n", + "2018-09-12 20:59:20,077 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,081 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.017*\"file\" + 0.014*\"jpeg\" + 0.010*\"gif\" + 0.010*\"color\" + 0.009*\"com\" + 0.008*\"format\" + 0.007*\"bit\" + 0.007*\"host\" + 0.007*\"us\"\n", + "2018-09-12 20:59:20,082 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"gov\" + 0.005*\"think\" + 0.005*\"time\"\n", + "2018-09-12 20:59:20,083 : INFO : topic #2 (0.200): 0.012*\"jew\" + 0.012*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"human\" + 0.005*\"state\" + 0.005*\"arab\"\n", + "2018-09-12 20:59:20,084 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.007*\"nasa\" + 0.006*\"data\" + 0.006*\"program\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.005*\"com\" + 0.005*\"orbit\" + 0.005*\"new\" + 0.005*\"point\"\n", + "2018-09-12 20:59:20,085 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.014*\"turkish\" + 0.010*\"peopl\" + 0.007*\"turkei\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"know\" + 0.005*\"turk\" + 0.005*\"time\" + 0.004*\"russian\"\n", + "2018-09-12 20:59:20,085 : INFO : topic diff=0.271897, rho=0.204124\n", + "2018-09-12 20:59:20,086 : INFO : PROGRESS: pass 0, at document #2500/2819\n", + "2018-09-12 20:59:20,142 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,147 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.011*\"jpeg\" + 0.010*\"com\" + 0.009*\"color\" + 0.009*\"gif\" + 0.007*\"format\" + 0.007*\"need\" + 0.007*\"bit\" + 0.007*\"host\"\n", + "2018-09-12 20:59:20,147 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"gov\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\" + 0.005*\"think\"\n", + "2018-09-12 20:59:20,148 : INFO : topic #2 (0.200): 0.011*\"jew\" + 0.011*\"peopl\" + 0.008*\"isra\" + 0.008*\"god\" + 0.007*\"right\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"human\" + 0.005*\"state\"\n", + "2018-09-12 20:59:20,149 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.010*\"nasa\" + 0.006*\"com\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.005*\"faq\" + 0.005*\"program\" + 0.005*\"data\" + 0.005*\"inform\" + 0.005*\"new\"\n", + "2018-09-12 20:59:20,150 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.010*\"peopl\" + 0.007*\"turkei\" + 0.007*\"armenia\" + 0.006*\"said\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:20,151 : INFO : topic diff=0.203641, rho=0.200000\n", + "2018-09-12 20:59:20,151 : INFO : PROGRESS: pass 0, at document #2600/2819\n", + "2018-09-12 20:59:20,211 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,216 : INFO : topic #0 (0.200): 0.018*\"imag\" + 0.016*\"file\" + 0.011*\"com\" + 0.010*\"jpeg\" + 0.008*\"color\" + 0.007*\"gif\" + 0.007*\"need\" + 0.007*\"format\" + 0.007*\"host\" + 0.007*\"us\"\n", + "2018-09-12 20:59:20,217 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"ride\" + 0.005*\"gov\" + 0.005*\"time\"\n", + "2018-09-12 20:59:20,218 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.009*\"god\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"right\" + 0.005*\"know\" + 0.005*\"state\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:20,219 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.010*\"launch\" + 0.008*\"nasa\" + 0.008*\"satellit\" + 0.006*\"program\" + 0.006*\"data\" + 0.006*\"new\" + 0.005*\"orbit\" + 0.005*\"inform\" + 0.005*\"com\"\n", + "2018-09-12 20:59:20,219 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.013*\"turkish\" + 0.009*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"turk\" + 0.004*\"soviet\"\n", + "2018-09-12 20:59:20,220 : INFO : topic diff=0.243524, rho=0.196116\n", + "2018-09-12 20:59:20,220 : INFO : PROGRESS: pass 0, at document #2700/2819\n", + "2018-09-12 20:59:20,276 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,281 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.015*\"file\" + 0.012*\"com\" + 0.008*\"jpeg\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.007*\"gif\" + 0.006*\"us\"\n", + "2018-09-12 20:59:20,281 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"ride\" + 0.005*\"dod\" + 0.005*\"gov\"\n", + "2018-09-12 20:59:20,282 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"peopl\" + 0.009*\"jew\" + 0.008*\"isra\" + 0.008*\"god\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"state\"\n", + "2018-09-12 20:59:20,283 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.008*\"nasa\" + 0.008*\"launch\" + 0.008*\"satellit\" + 0.005*\"new\" + 0.005*\"inform\" + 0.005*\"program\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"orbit\"\n", + "2018-09-12 20:59:20,284 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"know\" + 0.004*\"azerbaijan\"\n", + "2018-09-12 20:59:20,285 : INFO : topic diff=0.185262, rho=0.192450\n", + "2018-09-12 20:59:20,285 : INFO : PROGRESS: pass 0, at document #2800/2819\n", + "2018-09-12 20:59:20,348 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,353 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.014*\"file\" + 0.011*\"com\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.007*\"jpeg\" + 0.007*\"version\" + 0.006*\"graphic\"\n", + "2018-09-12 20:59:20,354 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"dod\" + 0.005*\"ride\" + 0.005*\"think\"\n", + "2018-09-12 20:59:20,354 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"peopl\" + 0.009*\"god\" + 0.009*\"jew\" + 0.009*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"islam\"\n", + "2018-09-12 20:59:20,355 : INFO : topic #3 (0.200): 0.023*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.007*\"satellit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"inform\" + 0.005*\"orbit\" + 0.005*\"univers\" + 0.005*\"program\"\n", + "2018-09-12 20:59:20,356 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"time\" + 0.005*\"know\" + 0.004*\"turk\" + 0.004*\"year\"\n", + "2018-09-12 20:59:20,356 : INFO : topic diff=0.199321, rho=0.188982\n", + "2018-09-12 20:59:20,392 : INFO : -7.831 per-word bound, 227.7 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", + "2018-09-12 20:59:20,393 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2018-09-12 20:59:20,405 : INFO : merging changes from 19 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,410 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.008*\"need\" + 0.008*\"access\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.007*\"version\" + 0.007*\"thank\" + 0.007*\"program\"\n", + "2018-09-12 20:59:20,410 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"dod\" + 0.005*\"einstein\" + 0.004*\"gov\"\n", + "2018-09-12 20:59:20,411 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.008*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.006*\"state\"\n", + "2018-09-12 20:59:20,412 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.008*\"inform\" + 0.008*\"nasa\" + 0.006*\"launch\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"satellit\" + 0.005*\"scienc\" + 0.005*\"program\" + 0.005*\"point\"\n", + "2018-09-12 20:59:20,412 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:20,413 : INFO : topic diff=0.277507, rho=0.185695\n", + "2018-09-12 20:59:20,413 : INFO : PROGRESS: pass 1, at document #100/2819\n", + "2018-09-12 20:59:20,470 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,474 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.012*\"imag\" + 0.012*\"com\" + 0.008*\"need\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"access\" + 0.007*\"program\" + 0.006*\"version\" + 0.006*\"thank\"\n", + "2018-09-12 20:59:20,475 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.004*\"gov\" + 0.004*\"time\"\n", + "2018-09-12 20:59:20,476 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.008*\"believ\" + 0.007*\"think\" + 0.007*\"exist\" + 0.007*\"atheist\" + 0.007*\"jew\" + 0.006*\"state\"\n", + "2018-09-12 20:59:20,476 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.007*\"nasa\" + 0.007*\"inform\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.005*\"satellit\" + 0.004*\"scienc\" + 0.004*\"program\" + 0.004*\"point\"\n", + "2018-09-12 20:59:20,477 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"world\" + 0.005*\"compromis\" + 0.005*\"time\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:20,478 : INFO : topic diff=0.162565, rho=0.181999\n", + "2018-09-12 20:59:20,478 : INFO : PROGRESS: pass 1, at document #200/2819\n", + "2018-09-12 20:59:20,536 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,541 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.014*\"imag\" + 0.012*\"com\" + 0.008*\"host\" + 0.008*\"access\" + 0.008*\"nntp\" + 0.008*\"need\" + 0.007*\"graphic\" + 0.007*\"bit\" + 0.006*\"thank\"\n", + "2018-09-12 20:59:20,541 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.011*\"dod\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"ride\" + 0.005*\"thing\" + 0.005*\"motorcycl\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"nntp\"\n", + "2018-09-12 20:59:20,542 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"believ\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", + "2018-09-12 20:59:20,543 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.005*\"launch\" + 0.004*\"time\" + 0.004*\"system\"\n", + "2018-09-12 20:59:20,544 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"turkish\" + 0.009*\"said\" + 0.008*\"peopl\" + 0.006*\"turkei\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"time\"\n", + "2018-09-12 20:59:20,544 : INFO : topic diff=0.220737, rho=0.181999\n", + "2018-09-12 20:59:20,545 : INFO : PROGRESS: pass 1, at document #300/2819\n", + "2018-09-12 20:59:20,604 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,609 : INFO : topic #0 (0.200): 0.013*\"file\" + 0.013*\"imag\" + 0.013*\"com\" + 0.009*\"host\" + 0.009*\"access\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.007*\"graphic\" + 0.007*\"bit\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:20,609 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"dod\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"ride\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"motorcycl\"\n", + "2018-09-12 20:59:20,610 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"exist\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"jew\"\n", + "2018-09-12 20:59:20,611 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.004*\"system\" + 0.004*\"program\" + 0.004*\"com\"\n", + "2018-09-12 20:59:20,612 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.009*\"turkish\" + 0.009*\"said\" + 0.008*\"peopl\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"greek\" + 0.004*\"time\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:20,613 : INFO : topic diff=0.158672, rho=0.181999\n", + "2018-09-12 20:59:20,614 : INFO : PROGRESS: pass 1, at document #400/2819\n", + "2018-09-12 20:59:20,670 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,675 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"com\" + 0.012*\"imag\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.009*\"access\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"graphic\" + 0.006*\"us\"\n", + "2018-09-12 20:59:20,676 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"dod\" + 0.009*\"bike\" + 0.009*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"motorcycl\"\n", + "2018-09-12 20:59:20,677 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"state\" + 0.006*\"jew\"\n", + "2018-09-12 20:59:20,678 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.005*\"inform\" + 0.004*\"orbit\" + 0.004*\"scienc\" + 0.004*\"com\" + 0.004*\"time\" + 0.004*\"point\"\n", + "2018-09-12 20:59:20,679 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"turkish\" + 0.009*\"said\" + 0.008*\"peopl\" + 0.006*\"greek\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"world\" + 0.004*\"armenia\" + 0.004*\"kill\"\n", + "2018-09-12 20:59:20,679 : INFO : topic diff=0.154223, rho=0.181999\n", + "2018-09-12 20:59:20,680 : INFO : PROGRESS: pass 1, at document #500/2819\n", + "2018-09-12 20:59:20,738 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,742 : INFO : topic #0 (0.200): 0.014*\"com\" + 0.013*\"file\" + 0.011*\"imag\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"access\" + 0.008*\"need\" + 0.007*\"graphic\" + 0.007*\"thank\" + 0.006*\"us\"\n", + "2018-09-12 20:59:20,743 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.009*\"dod\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"think\"\n", + "2018-09-12 20:59:20,744 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"exist\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:20,744 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.006*\"univers\" + 0.006*\"nasa\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"com\" + 0.005*\"orbit\" + 0.004*\"scienc\" + 0.004*\"launch\" + 0.004*\"time\"\n", + "2018-09-12 20:59:20,745 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"said\" + 0.011*\"peopl\" + 0.008*\"turkish\" + 0.006*\"know\" + 0.006*\"kill\" + 0.005*\"went\" + 0.005*\"time\" + 0.005*\"sai\" + 0.005*\"live\"\n", + "2018-09-12 20:59:20,745 : INFO : topic diff=0.210690, rho=0.181999\n", + "2018-09-12 20:59:20,746 : INFO : PROGRESS: pass 1, at document #600/2819\n", + "2018-09-12 20:59:20,802 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,807 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.014*\"imag\" + 0.013*\"com\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"access\" + 0.007*\"thank\" + 0.007*\"us\" + 0.006*\"univers\"\n", + "2018-09-12 20:59:20,808 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"motorcycl\"\n", + "2018-09-12 20:59:20,809 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:20,810 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.005*\"com\" + 0.004*\"launch\" + 0.004*\"includ\"\n", + "2018-09-12 20:59:20,811 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"said\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"greek\" + 0.005*\"went\" + 0.005*\"turk\" + 0.005*\"time\"\n", + "2018-09-12 20:59:20,811 : INFO : topic diff=0.147515, rho=0.181999\n", + "2018-09-12 20:59:20,812 : INFO : PROGRESS: pass 1, at document #700/2819\n", + "2018-09-12 20:59:20,867 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,872 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.014*\"file\" + 0.013*\"com\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.008*\"need\" + 0.007*\"graphic\" + 0.007*\"univers\" + 0.007*\"access\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:20,873 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"bike\" + 0.009*\"like\" + 0.007*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"think\"\n", + "2018-09-12 20:59:20,873 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.010*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"jew\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"state\"\n", + "2018-09-12 20:59:20,874 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.008*\"univers\" + 0.006*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"launch\" + 0.005*\"scienc\" + 0.004*\"com\" + 0.004*\"year\"\n", + "2018-09-12 20:59:20,875 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"said\" + 0.009*\"turkish\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"time\"\n", + "2018-09-12 20:59:20,875 : INFO : topic diff=0.156674, rho=0.181999\n", + "2018-09-12 20:59:20,876 : INFO : PROGRESS: pass 1, at document #800/2819\n", + "2018-09-12 20:59:20,930 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:20,936 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.013*\"com\" + 0.012*\"file\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.007*\"univers\" + 0.007*\"graphic\" + 0.007*\"thank\" + 0.007*\"know\"\n", + "2018-09-12 20:59:20,937 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"dod\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"time\"\n", + "2018-09-12 20:59:20,938 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.010*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"state\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"islam\"\n", + "2018-09-12 20:59:20,939 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.007*\"univers\" + 0.007*\"nasa\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.005*\"inform\" + 0.004*\"launch\" + 0.004*\"com\" + 0.004*\"year\" + 0.004*\"scienc\"\n", + "2018-09-12 20:59:20,940 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.010*\"said\" + 0.009*\"turkish\" + 0.005*\"greek\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"turk\" + 0.005*\"time\" + 0.005*\"armenia\"\n", + "2018-09-12 20:59:20,940 : INFO : topic diff=0.159971, rho=0.181999\n", + "2018-09-12 20:59:20,941 : INFO : PROGRESS: pass 1, at document #900/2819\n", + "2018-09-12 20:59:20,996 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,000 : INFO : topic #0 (0.200): 0.014*\"com\" + 0.013*\"imag\" + 0.011*\"file\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"thank\" + 0.007*\"univers\" + 0.007*\"graphic\" + 0.007*\"know\"\n", + "2018-09-12 20:59:21,001 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"dod\" + 0.007*\"ride\" + 0.006*\"thing\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.005*\"time\"\n", + "2018-09-12 20:59:21,003 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"atheist\" + 0.007*\"believ\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.006*\"religion\"\n", + "2018-09-12 20:59:21,003 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.006*\"orbit\" + 0.005*\"point\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.004*\"year\" + 0.004*\"com\"\n", + "2018-09-12 20:59:21,004 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.010*\"said\" + 0.008*\"turkish\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"greek\" + 0.005*\"time\" + 0.004*\"sai\" + 0.004*\"turk\"\n", + "2018-09-12 20:59:21,005 : INFO : topic diff=0.189405, rho=0.181999\n", + "2018-09-12 20:59:21,131 : INFO : -7.850 per-word bound, 230.7 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", + "2018-09-12 20:59:21,132 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2018-09-12 20:59:21,189 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,194 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.013*\"com\" + 0.013*\"file\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"bit\" + 0.007*\"need\" + 0.007*\"thank\" + 0.007*\"univers\" + 0.007*\"graphic\"\n", + "2018-09-12 20:59:21,195 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"time\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:21,195 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"believ\" + 0.007*\"right\" + 0.007*\"atheist\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"state\"\n", + "2018-09-12 20:59:21,196 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.008*\"orbit\" + 0.007*\"nasa\" + 0.006*\"new\" + 0.006*\"mission\" + 0.006*\"univers\" + 0.006*\"point\" + 0.005*\"launch\" + 0.005*\"probe\" + 0.005*\"year\"\n", + "2018-09-12 20:59:21,197 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.009*\"said\" + 0.008*\"greek\" + 0.006*\"turk\" + 0.005*\"know\" + 0.004*\"time\" + 0.004*\"kill\" + 0.004*\"armenia\"\n", + "2018-09-12 20:59:21,198 : INFO : topic diff=0.191512, rho=0.181999\n", + "2018-09-12 20:59:21,198 : INFO : PROGRESS: pass 1, at document #1100/2819\n", + "2018-09-12 20:59:21,253 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,258 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.013*\"com\" + 0.013*\"file\" + 0.009*\"graphic\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.007*\"program\" + 0.006*\"bit\" + 0.006*\"univers\"\n", + "2018-09-12 20:59:21,259 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"bike\" + 0.008*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"know\" + 0.005*\"time\"\n", + "2018-09-12 20:59:21,260 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"think\" + 0.007*\"atheist\" + 0.007*\"arab\" + 0.006*\"believ\" + 0.006*\"right\" + 0.006*\"religion\"\n", + "2018-09-12 20:59:21,260 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"data\" + 0.006*\"univers\" + 0.005*\"point\" + 0.005*\"mission\" + 0.005*\"year\" + 0.004*\"inform\"\n", + "2018-09-12 20:59:21,261 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"greek\" + 0.006*\"turk\" + 0.004*\"soviet\" + 0.004*\"armenia\" + 0.004*\"russian\" + 0.004*\"know\"\n", + "2018-09-12 20:59:21,262 : INFO : topic diff=0.199847, rho=0.181999\n", + "2018-09-12 20:59:21,262 : INFO : PROGRESS: pass 1, at document #1200/2819\n", + "2018-09-12 20:59:21,319 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,324 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.013*\"com\" + 0.012*\"file\" + 0.010*\"graphic\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.007*\"program\" + 0.007*\"univers\" + 0.006*\"format\"\n", + "2018-09-12 20:59:21,324 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.006*\"dod\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"good\"\n", + "2018-09-12 20:59:21,325 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.006*\"right\" + 0.006*\"atheist\"\n", + "2018-09-12 20:59:21,326 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.006*\"orbit\" + 0.006*\"point\" + 0.006*\"data\" + 0.006*\"new\" + 0.006*\"univers\" + 0.005*\"program\" + 0.005*\"year\" + 0.005*\"mission\"\n", + "2018-09-12 20:59:21,326 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.007*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"genocid\"\n", + "2018-09-12 20:59:21,327 : INFO : topic diff=0.144722, rho=0.181999\n", + "2018-09-12 20:59:21,327 : INFO : PROGRESS: pass 1, at document #1300/2819\n", + "2018-09-12 20:59:21,383 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,388 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.016*\"graphic\" + 0.014*\"file\" + 0.012*\"com\" + 0.008*\"mail\" + 0.008*\"format\" + 0.007*\"host\" + 0.007*\"ftp\" + 0.007*\"packag\" + 0.007*\"us\"\n", + "2018-09-12 20:59:21,389 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"nntp\" + 0.005*\"dod\" + 0.005*\"host\" + 0.005*\"time\" + 0.005*\"know\"\n", + "2018-09-12 20:59:21,390 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.005*\"right\"\n", + "2018-09-12 20:59:21,391 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.006*\"data\" + 0.005*\"univers\" + 0.005*\"point\" + 0.004*\"rai\" + 0.004*\"program\" + 0.004*\"mission\"\n", + "2018-09-12 20:59:21,391 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"greek\" + 0.007*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.004*\"soviet\" + 0.004*\"time\"\n", + "2018-09-12 20:59:21,392 : INFO : topic diff=0.193399, rho=0.181999\n", + "2018-09-12 20:59:21,392 : INFO : PROGRESS: pass 1, at document #1400/2819\n", + "2018-09-12 20:59:21,446 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,451 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.013*\"com\" + 0.008*\"mail\" + 0.008*\"host\" + 0.007*\"program\" + 0.007*\"nntp\" + 0.007*\"format\" + 0.007*\"us\"\n", + "2018-09-12 20:59:21,451 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.005*\"host\" + 0.005*\"know\" + 0.005*\"time\"\n", + "2018-09-12 20:59:21,452 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.006*\"exist\" + 0.005*\"right\"\n", + "2018-09-12 20:59:21,453 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.007*\"nasa\" + 0.006*\"orbit\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"program\" + 0.004*\"point\" + 0.004*\"mission\" + 0.004*\"launch\"\n", + "2018-09-12 20:59:21,454 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"henrik\" + 0.004*\"time\"\n", + "2018-09-12 20:59:21,454 : INFO : topic diff=0.145858, rho=0.181999\n", + "2018-09-12 20:59:21,455 : INFO : PROGRESS: pass 1, at document #1500/2819\n", + "2018-09-12 20:59:21,507 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,512 : INFO : topic #0 (0.200): 0.026*\"imag\" + 0.014*\"graphic\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"host\" + 0.008*\"program\" + 0.007*\"mail\" + 0.007*\"us\" + 0.007*\"nntp\" + 0.007*\"format\"\n", + "2018-09-12 20:59:21,512 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"thing\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.005*\"host\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"dai\"\n", + "2018-09-12 20:59:21,513 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"god\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"arab\" + 0.006*\"state\" + 0.006*\"christian\" + 0.006*\"right\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:21,514 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.007*\"nasa\" + 0.006*\"data\" + 0.006*\"new\" + 0.005*\"orbit\" + 0.005*\"program\" + 0.005*\"univers\" + 0.004*\"point\" + 0.004*\"includ\" + 0.004*\"process\"\n", + "2018-09-12 20:59:21,514 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.007*\"said\" + 0.007*\"turk\" + 0.006*\"turkei\" + 0.006*\"greek\" + 0.005*\"armenia\" + 0.004*\"time\" + 0.004*\"henrik\"\n", + "2018-09-12 20:59:21,515 : INFO : topic diff=0.183537, rho=0.181999\n", + "2018-09-12 20:59:21,515 : INFO : PROGRESS: pass 1, at document #1600/2819\n", + "2018-09-12 20:59:21,571 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,576 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.013*\"graphic\" + 0.012*\"com\" + 0.011*\"file\" + 0.008*\"host\" + 0.007*\"program\" + 0.007*\"nntp\" + 0.007*\"us\" + 0.007*\"mail\" + 0.007*\"bit\"\n", + "2018-09-12 20:59:21,576 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"dod\" + 0.005*\"know\" + 0.005*\"good\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:21,577 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.007*\"isra\" + 0.006*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:21,578 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.007*\"nasa\" + 0.006*\"data\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"point\" + 0.005*\"orbit\" + 0.005*\"program\" + 0.005*\"center\" + 0.005*\"research\"\n", + "2018-09-12 20:59:21,579 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.007*\"said\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.005*\"greek\" + 0.005*\"time\" + 0.004*\"muslim\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:21,579 : INFO : topic diff=0.130285, rho=0.181999\n", + "2018-09-12 20:59:21,580 : INFO : PROGRESS: pass 1, at document #1700/2819\n", + "2018-09-12 20:59:21,631 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,635 : INFO : topic #0 (0.200): 0.022*\"imag\" + 0.013*\"file\" + 0.012*\"graphic\" + 0.012*\"com\" + 0.008*\"host\" + 0.008*\"program\" + 0.007*\"nntp\" + 0.007*\"bit\" + 0.007*\"us\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:21,636 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.005*\"host\" + 0.005*\"time\" + 0.005*\"ride\" + 0.005*\"know\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:21,637 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"christian\"\n", + "2018-09-12 20:59:21,637 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"data\" + 0.005*\"univers\" + 0.005*\"new\" + 0.005*\"point\" + 0.005*\"program\" + 0.005*\"center\" + 0.004*\"research\"\n", + "2018-09-12 20:59:21,638 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.009*\"turkish\" + 0.009*\"peopl\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.004*\"sai\"\n", + "2018-09-12 20:59:21,638 : INFO : topic diff=0.140251, rho=0.181999\n", + "2018-09-12 20:59:21,639 : INFO : PROGRESS: pass 1, at document #1800/2819\n", + "2018-09-12 20:59:21,692 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,696 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.013*\"com\" + 0.012*\"graphic\" + 0.012*\"file\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"program\" + 0.007*\"univers\" + 0.007*\"us\" + 0.007*\"mail\"\n", + "2018-09-12 20:59:21,697 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"dod\" + 0.005*\"time\"\n", + "2018-09-12 20:59:21,698 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.008*\"isra\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"islam\"\n", + "2018-09-12 20:59:21,699 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"point\" + 0.005*\"univers\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"program\" + 0.005*\"center\" + 0.004*\"research\"\n", + "2018-09-12 20:59:21,699 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.009*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"time\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"serdar\"\n", + "2018-09-12 20:59:21,700 : INFO : topic diff=0.138975, rho=0.181999\n", + "2018-09-12 20:59:21,701 : INFO : PROGRESS: pass 1, at document #1900/2819\n", + "2018-09-12 20:59:21,751 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,757 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.013*\"graphic\" + 0.012*\"com\" + 0.012*\"file\" + 0.009*\"host\" + 0.008*\"nntp\" + 0.008*\"univers\" + 0.007*\"program\" + 0.007*\"thank\" + 0.006*\"us\"\n", + "2018-09-12 20:59:21,759 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"time\"\n", + "2018-09-12 20:59:21,759 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.008*\"god\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"moral\" + 0.005*\"arab\" + 0.005*\"state\"\n", + "2018-09-12 20:59:21,760 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"point\" + 0.006*\"univers\" + 0.005*\"new\" + 0.005*\"program\" + 0.005*\"data\" + 0.005*\"center\" + 0.004*\"research\"\n", + "2018-09-12 20:59:21,761 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.006*\"genocid\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"serdar\" + 0.005*\"soviet\" + 0.005*\"argic\"\n", + "2018-09-12 20:59:21,762 : INFO : topic diff=0.137672, rho=0.181999\n", + "2018-09-12 20:59:21,874 : INFO : -7.872 per-word bound, 234.3 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n", + "2018-09-12 20:59:21,875 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2018-09-12 20:59:21,935 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:21,940 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.013*\"file\" + 0.012*\"graphic\" + 0.012*\"com\" + 0.008*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"ftp\" + 0.007*\"univers\" + 0.006*\"us\"\n", + "2018-09-12 20:59:21,941 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"dod\" + 0.005*\"time\"\n", + "2018-09-12 20:59:21,941 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.008*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"moral\"\n", + "2018-09-12 20:59:21,942 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"data\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"new\" + 0.005*\"program\" + 0.005*\"satellit\" + 0.005*\"point\"\n", + "2018-09-12 20:59:21,943 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.006*\"said\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.005*\"argic\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:21,943 : INFO : topic diff=0.151601, rho=0.181999\n", + "2018-09-12 20:59:21,944 : INFO : PROGRESS: pass 1, at document #2100/2819\n", + "2018-09-12 20:59:21,999 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,005 : INFO : topic #0 (0.200): 0.027*\"imag\" + 0.019*\"file\" + 0.019*\"jpeg\" + 0.011*\"graphic\" + 0.011*\"gif\" + 0.010*\"color\" + 0.010*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", + "2018-09-12 20:59:22,006 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"thing\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:22,007 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"god\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"state\"\n", + "2018-09-12 20:59:22,008 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.007*\"data\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"center\" + 0.004*\"program\" + 0.004*\"research\" + 0.004*\"scienc\"\n", + "2018-09-12 20:59:22,009 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.008*\"peopl\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"argic\" + 0.006*\"serdar\" + 0.005*\"genocid\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:22,009 : INFO : topic diff=0.198995, rho=0.181999\n", + "2018-09-12 20:59:22,010 : INFO : PROGRESS: pass 1, at document #2200/2819\n", + "2018-09-12 20:59:22,061 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,066 : INFO : topic #0 (0.200): 0.025*\"imag\" + 0.018*\"file\" + 0.017*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"color\" + 0.010*\"gif\" + 0.009*\"format\" + 0.009*\"com\" + 0.008*\"program\" + 0.008*\"us\"\n", + "2018-09-12 20:59:22,067 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"ride\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:22,068 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"jew\" + 0.006*\"right\" + 0.006*\"arab\" + 0.005*\"moral\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:22,068 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"data\" + 0.005*\"satellit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"univers\" + 0.005*\"scienc\" + 0.005*\"point\"\n", + "2018-09-12 20:59:22,069 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"time\" + 0.005*\"happen\"\n", + "2018-09-12 20:59:22,070 : INFO : topic diff=0.167868, rho=0.181999\n", + "2018-09-12 20:59:22,070 : INFO : PROGRESS: pass 1, at document #2300/2819\n", + "2018-09-12 20:59:22,125 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,129 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.017*\"file\" + 0.015*\"jpeg\" + 0.011*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.010*\"format\" + 0.009*\"com\" + 0.008*\"program\" + 0.008*\"us\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:22,130 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"think\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.005*\"gov\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:22,131 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"arab\" + 0.005*\"human\"\n", + "2018-09-12 20:59:22,131 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"data\" + 0.005*\"point\" + 0.005*\"new\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"scienc\" + 0.004*\"inform\"\n", + "2018-09-12 20:59:22,132 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.008*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"come\" + 0.005*\"live\"\n", + "2018-09-12 20:59:22,133 : INFO : topic diff=0.149647, rho=0.181999\n", + "2018-09-12 20:59:22,133 : INFO : PROGRESS: pass 1, at document #2400/2819\n", + "2018-09-12 20:59:22,184 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,189 : INFO : topic #0 (0.200): 0.022*\"imag\" + 0.017*\"file\" + 0.013*\"jpeg\" + 0.011*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.009*\"com\" + 0.009*\"format\" + 0.008*\"program\" + 0.008*\"us\"\n", + "2018-09-12 20:59:22,189 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"think\" + 0.006*\"host\" + 0.005*\"dod\" + 0.005*\"time\"\n", + "2018-09-12 20:59:22,191 : INFO : topic #2 (0.200): 0.012*\"jew\" + 0.011*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"state\" + 0.005*\"arab\"\n", + "2018-09-12 20:59:22,192 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"data\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"point\" + 0.005*\"launch\" + 0.004*\"inform\" + 0.004*\"program\"\n", + "2018-09-12 20:59:22,193 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.014*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"time\"\n", + "2018-09-12 20:59:22,193 : INFO : topic diff=0.195605, rho=0.181999\n", + "2018-09-12 20:59:22,194 : INFO : PROGRESS: pass 1, at document #2500/2819\n", + "2018-09-12 20:59:22,245 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,250 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.011*\"jpeg\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.009*\"color\" + 0.009*\"gif\" + 0.008*\"format\" + 0.008*\"program\" + 0.007*\"us\"\n", + "2018-09-12 20:59:22,251 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"gov\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:22,252 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"human\" + 0.005*\"state\"\n", + "2018-09-12 20:59:22,252 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"faq\" + 0.005*\"univers\" + 0.005*\"inform\" + 0.005*\"center\" + 0.005*\"data\" + 0.005*\"launch\"\n", + "2018-09-12 20:59:22,253 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.007*\"armenia\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"kill\"\n", + "2018-09-12 20:59:22,254 : INFO : topic diff=0.139030, rho=0.181999\n", + "2018-09-12 20:59:22,254 : INFO : PROGRESS: pass 1, at document #2600/2819\n", + "2018-09-12 20:59:22,307 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,312 : INFO : topic #0 (0.200): 0.019*\"imag\" + 0.016*\"file\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.010*\"jpeg\" + 0.008*\"color\" + 0.008*\"gif\" + 0.008*\"format\" + 0.008*\"program\" + 0.007*\"us\"\n", + "2018-09-12 20:59:22,313 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"thing\" + 0.005*\"think\" + 0.005*\"ride\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:22,314 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"believ\" + 0.005*\"know\"\n", + "2018-09-12 20:59:22,315 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.012*\"launch\" + 0.010*\"nasa\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"inform\" + 0.005*\"program\" + 0.004*\"center\"\n", + "2018-09-12 20:59:22,315 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:22,316 : INFO : topic diff=0.179603, rho=0.181999\n", + "2018-09-12 20:59:22,317 : INFO : PROGRESS: pass 1, at document #2700/2819\n", + "2018-09-12 20:59:22,375 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,380 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.016*\"file\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.009*\"jpeg\" + 0.008*\"program\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"gif\" + 0.007*\"host\"\n", + "2018-09-12 20:59:22,381 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"think\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:22,382 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"jew\" + 0.009*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\"\n", + "2018-09-12 20:59:22,382 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.010*\"launch\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"program\"\n", + "2018-09-12 20:59:22,383 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.012*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"soviet\"\n", + "2018-09-12 20:59:22,383 : INFO : topic diff=0.135327, rho=0.181999\n", + "2018-09-12 20:59:22,384 : INFO : PROGRESS: pass 1, at document #2800/2819\n", + "2018-09-12 20:59:22,439 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,443 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.015*\"file\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.008*\"need\" + 0.008*\"color\" + 0.007*\"program\" + 0.007*\"host\" + 0.007*\"version\" + 0.007*\"nntp\"\n", + "2018-09-12 20:59:22,444 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:22,445 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"jew\" + 0.008*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"right\"\n", + "2018-09-12 20:59:22,446 : INFO : topic #3 (0.200): 0.024*\"space\" + 0.010*\"nasa\" + 0.009*\"launch\" + 0.007*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"inform\" + 0.005*\"univers\" + 0.004*\"scienc\"\n", + "2018-09-12 20:59:22,447 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"kill\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:22,447 : INFO : topic diff=0.149077, rho=0.181999\n", + "2018-09-12 20:59:22,483 : INFO : -7.772 per-word bound, 218.6 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", + "2018-09-12 20:59:22,484 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2018-09-12 20:59:22,497 : INFO : merging changes from 19 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,501 : INFO : topic #0 (0.200): 0.018*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"version\" + 0.008*\"thank\" + 0.007*\"host\" + 0.007*\"access\"\n", + "2018-09-12 20:59:22,502 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"think\" + 0.005*\"einstein\"\n", + "2018-09-12 20:59:22,503 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.008*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.005*\"state\"\n", + "2018-09-12 20:59:22,503 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"inform\" + 0.006*\"new\" + 0.006*\"satellit\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.005*\"design\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:22,504 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.005*\"soviet\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:22,504 : INFO : topic diff=0.228487, rho=0.181999\n", + "2018-09-12 20:59:22,505 : INFO : PROGRESS: pass 2, at document #100/2819\n", + "2018-09-12 20:59:22,561 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,566 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.008*\"program\" + 0.008*\"need\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"version\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:22,566 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.005*\"think\" + 0.004*\"good\"\n", + "2018-09-12 20:59:22,567 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.007*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", + "2018-09-12 20:59:22,568 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.008*\"nasa\" + 0.007*\"launch\" + 0.007*\"new\" + 0.006*\"inform\" + 0.005*\"univers\" + 0.005*\"satellit\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.004*\"design\"\n", + "2018-09-12 20:59:22,569 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"compromis\" + 0.005*\"world\" + 0.005*\"know\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:22,569 : INFO : topic diff=0.130049, rho=0.179057\n", + "2018-09-12 20:59:22,570 : INFO : PROGRESS: pass 2, at document #200/2819\n", + "2018-09-12 20:59:22,626 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,631 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.015*\"imag\" + 0.011*\"com\" + 0.011*\"graphic\" + 0.008*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"need\" + 0.008*\"access\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:22,631 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.011*\"dod\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"thing\" + 0.005*\"motorcycl\"\n", + "2018-09-12 20:59:22,633 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"believ\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", + "2018-09-12 20:59:22,633 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.006*\"univers\" + 0.006*\"new\" + 0.006*\"inform\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"scienc\" + 0.004*\"time\" + 0.004*\"year\"\n", + "2018-09-12 20:59:22,634 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"turkei\" + 0.005*\"sai\" + 0.005*\"turk\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"know\"\n", + "2018-09-12 20:59:22,635 : INFO : topic diff=0.178614, rho=0.179057\n", + "2018-09-12 20:59:22,635 : INFO : PROGRESS: pass 2, at document #300/2819\n", + "2018-09-12 20:59:22,688 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,693 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"imag\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"need\" + 0.008*\"nntp\" + 0.008*\"access\" + 0.007*\"thank\" + 0.007*\"version\"\n", + "2018-09-12 20:59:22,694 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"dod\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"ride\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"think\"\n", + "2018-09-12 20:59:22,695 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"exist\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"jew\"\n", + "2018-09-12 20:59:22,696 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.007*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"orbit\" + 0.005*\"inform\" + 0.005*\"launch\" + 0.005*\"scienc\" + 0.004*\"year\" + 0.004*\"develop\"\n", + "2018-09-12 20:59:22,698 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"said\" + 0.009*\"turkish\" + 0.009*\"peopl\" + 0.005*\"turkei\" + 0.005*\"sai\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"greek\"\n", + "2018-09-12 20:59:22,698 : INFO : topic diff=0.133321, rho=0.179057\n", + "2018-09-12 20:59:22,699 : INFO : PROGRESS: pass 2, at document #400/2819\n", + "2018-09-12 20:59:22,753 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,758 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.012*\"com\" + 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"need\" + 0.008*\"nntp\" + 0.008*\"access\" + 0.008*\"thank\" + 0.007*\"program\"\n", + "2018-09-12 20:59:22,759 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.010*\"dod\" + 0.009*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"think\"\n", + "2018-09-12 20:59:22,759 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"state\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:22,760 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.005*\"orbit\" + 0.005*\"inform\" + 0.005*\"launch\" + 0.005*\"scienc\" + 0.004*\"year\" + 0.004*\"develop\"\n", + "2018-09-12 20:59:22,761 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"greek\" + 0.005*\"kill\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"world\" + 0.005*\"armenia\"\n", + "2018-09-12 20:59:22,761 : INFO : topic diff=0.130123, rho=0.179057\n", + "2018-09-12 20:59:22,762 : INFO : PROGRESS: pass 2, at document #500/2819\n", + "2018-09-12 20:59:22,817 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,822 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"com\" + 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"access\" + 0.007*\"thank\" + 0.007*\"us\"\n", + "2018-09-12 20:59:22,823 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:22,824 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"exist\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:22,824 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"orbit\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"time\"\n", + "2018-09-12 20:59:22,825 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.012*\"peopl\" + 0.008*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.006*\"went\" + 0.005*\"apart\" + 0.005*\"sai\" + 0.005*\"time\"\n", + "2018-09-12 20:59:22,826 : INFO : topic diff=0.183301, rho=0.179057\n", + "2018-09-12 20:59:22,826 : INFO : PROGRESS: pass 2, at document #600/2819\n", + "2018-09-12 20:59:22,877 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,882 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.014*\"imag\" + 0.013*\"com\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.009*\"graphic\" + 0.008*\"need\" + 0.008*\"thank\" + 0.008*\"us\" + 0.007*\"access\"\n", + "2018-09-12 20:59:22,883 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"think\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:22,884 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:22,884 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.007*\"nasa\" + 0.007*\"univers\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.006*\"launch\" + 0.006*\"inform\" + 0.005*\"scienc\" + 0.004*\"year\" + 0.004*\"includ\"\n", + "2018-09-12 20:59:22,885 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"said\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"children\"\n", + "2018-09-12 20:59:22,885 : INFO : topic diff=0.122262, rho=0.179057\n", + "2018-09-12 20:59:22,886 : INFO : PROGRESS: pass 2, at document #700/2819\n", + "2018-09-12 20:59:22,938 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:22,945 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.015*\"imag\" + 0.013*\"com\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.008*\"need\" + 0.008*\"univers\" + 0.007*\"thank\" + 0.007*\"us\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:22,946 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:22,947 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"jew\" + 0.006*\"islam\" + 0.005*\"right\" + 0.005*\"state\"\n", + "2018-09-12 20:59:22,948 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.007*\"univers\" + 0.006*\"launch\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"earth\"\n", + "2018-09-12 20:59:22,948 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.011*\"said\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"time\"\n", + "2018-09-12 20:59:22,949 : INFO : topic diff=0.130615, rho=0.179057\n", + "2018-09-12 20:59:22,949 : INFO : PROGRESS: pass 2, at document #800/2819\n", + "2018-09-12 20:59:23,003 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,008 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.013*\"file\" + 0.013*\"com\" + 0.010*\"host\" + 0.010*\"graphic\" + 0.010*\"nntp\" + 0.008*\"need\" + 0.008*\"univers\" + 0.007*\"thank\" + 0.007*\"know\"\n", + "2018-09-12 20:59:23,011 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"think\"\n", + "2018-09-12 20:59:23,012 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"state\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"right\"\n", + "2018-09-12 20:59:23,013 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.009*\"nasa\" + 0.007*\"univers\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"inform\" + 0.004*\"scienc\" + 0.004*\"point\"\n", + "2018-09-12 20:59:23,014 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"armenia\" + 0.005*\"time\"\n", + "2018-09-12 20:59:23,015 : INFO : topic diff=0.134384, rho=0.179057\n", + "2018-09-12 20:59:23,015 : INFO : PROGRESS: pass 2, at document #900/2819\n", + "2018-09-12 20:59:23,068 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,073 : INFO : topic #0 (0.200): 0.013*\"com\" + 0.013*\"imag\" + 0.012*\"file\" + 0.010*\"host\" + 0.010*\"graphic\" + 0.009*\"nntp\" + 0.008*\"univers\" + 0.008*\"thank\" + 0.008*\"need\" + 0.007*\"know\"\n", + "2018-09-12 20:59:23,074 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"ride\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\"\n", + "2018-09-12 20:59:23,075 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"atheist\" + 0.007*\"believ\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"religion\"\n", + "2018-09-12 20:59:23,075 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.007*\"new\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"point\" + 0.004*\"inform\" + 0.004*\"scienc\"\n", + "2018-09-12 20:59:23,076 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.011*\"said\" + 0.008*\"turkish\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"greek\" + 0.005*\"time\" + 0.004*\"sai\" + 0.004*\"children\"\n", + "2018-09-12 20:59:23,077 : INFO : topic diff=0.160567, rho=0.179057\n", + "2018-09-12 20:59:23,204 : INFO : -7.821 per-word bound, 226.1 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", + "2018-09-12 20:59:23,205 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2018-09-12 20:59:23,259 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,264 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.013*\"file\" + 0.013*\"com\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.009*\"graphic\" + 0.008*\"program\" + 0.008*\"thank\" + 0.008*\"univers\" + 0.008*\"need\"\n", + "2018-09-12 20:59:23,264 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"time\"\n", + "2018-09-12 20:59:23,265 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"believ\" + 0.007*\"atheist\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"state\"\n", + "2018-09-12 20:59:23,266 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.009*\"orbit\" + 0.008*\"nasa\" + 0.007*\"new\" + 0.006*\"launch\" + 0.006*\"mission\" + 0.005*\"univers\" + 0.005*\"probe\" + 0.005*\"year\" + 0.005*\"point\"\n", + "2018-09-12 20:59:23,266 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.009*\"said\" + 0.008*\"greek\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"time\"\n", + "2018-09-12 20:59:23,267 : INFO : topic diff=0.162359, rho=0.179057\n", + "2018-09-12 20:59:23,268 : INFO : PROGRESS: pass 2, at document #1100/2819\n", + "2018-09-12 20:59:23,319 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,324 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"us\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.006*\"avail\"\n", + "2018-09-12 20:59:23,325 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"think\"\n", + "2018-09-12 20:59:23,325 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"peopl\" + 0.010*\"god\" + 0.009*\"isra\" + 0.007*\"think\" + 0.007*\"atheist\" + 0.007*\"arab\" + 0.006*\"believ\" + 0.006*\"right\" + 0.006*\"religion\"\n", + "2018-09-12 20:59:23,326 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"mission\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"data\"\n", + "2018-09-12 20:59:23,327 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.008*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.005*\"soviet\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.004*\"armi\"\n", + "2018-09-12 20:59:23,327 : INFO : topic diff=0.173305, rho=0.179057\n", + "2018-09-12 20:59:23,328 : INFO : PROGRESS: pass 2, at document #1200/2819\n", + "2018-09-12 20:59:23,383 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,387 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.012*\"file\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.008*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.007*\"univers\" + 0.007*\"format\"\n", + "2018-09-12 20:59:23,388 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"ride\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"dod\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"think\"\n", + "2018-09-12 20:59:23,389 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.006*\"right\" + 0.006*\"atheist\"\n", + "2018-09-12 20:59:23,389 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"point\" + 0.005*\"data\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"develop\" + 0.005*\"mission\"\n", + "2018-09-12 20:59:23,390 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.012*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.008*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"know\"\n", + "2018-09-12 20:59:23,391 : INFO : topic diff=0.125231, rho=0.179057\n", + "2018-09-12 20:59:23,391 : INFO : PROGRESS: pass 2, at document #1300/2819\n", + "2018-09-12 20:59:23,447 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,452 : INFO : topic #0 (0.200): 0.017*\"graphic\" + 0.016*\"imag\" + 0.014*\"file\" + 0.011*\"com\" + 0.009*\"mail\" + 0.008*\"pub\" + 0.008*\"format\" + 0.008*\"ftp\" + 0.008*\"program\" + 0.007*\"host\"\n", + "2018-09-12 20:59:23,453 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"ride\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"time\"\n", + "2018-09-12 20:59:23,454 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.005*\"right\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:23,455 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"univers\" + 0.005*\"mission\" + 0.004*\"launch\"\n", + "2018-09-12 20:59:23,455 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.012*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.007*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"know\"\n", + "2018-09-12 20:59:23,456 : INFO : topic diff=0.174433, rho=0.179057\n", + "2018-09-12 20:59:23,456 : INFO : PROGRESS: pass 2, at document #1400/2819\n", + "2018-09-12 20:59:23,513 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,517 : INFO : topic #0 (0.200): 0.016*\"graphic\" + 0.016*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.008*\"mail\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"pub\" + 0.007*\"us\" + 0.007*\"format\"\n", + "2018-09-12 20:59:23,518 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\" + 0.005*\"know\" + 0.005*\"time\"\n", + "2018-09-12 20:59:23,519 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.005*\"right\"\n", + "2018-09-12 20:59:23,520 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"launch\" + 0.005*\"univers\" + 0.005*\"mission\" + 0.004*\"point\" + 0.004*\"program\"\n", + "2018-09-12 20:59:23,521 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"henrik\" + 0.004*\"know\"\n", + "2018-09-12 20:59:23,521 : INFO : topic diff=0.126654, rho=0.179057\n", + "2018-09-12 20:59:23,521 : INFO : PROGRESS: pass 2, at document #1500/2819\n", + "2018-09-12 20:59:23,573 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,577 : INFO : topic #0 (0.200): 0.025*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"mail\" + 0.007*\"host\" + 0.007*\"us\" + 0.007*\"nntp\" + 0.007*\"format\"\n", + "2018-09-12 20:59:23,578 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"dod\" + 0.005*\"time\"\n", + "2018-09-12 20:59:23,579 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.009*\"god\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"arab\" + 0.006*\"christian\" + 0.006*\"state\" + 0.006*\"right\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:23,579 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"program\" + 0.004*\"point\" + 0.004*\"research\" + 0.004*\"develop\"\n", + "2018-09-12 20:59:23,580 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.008*\"said\" + 0.007*\"turk\" + 0.006*\"greek\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.004*\"time\" + 0.004*\"henrik\"\n", + "2018-09-12 20:59:23,581 : INFO : topic diff=0.159517, rho=0.179057\n", + "2018-09-12 20:59:23,581 : INFO : PROGRESS: pass 2, at document #1600/2819\n", + "2018-09-12 20:59:23,633 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,637 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.007*\"mail\" + 0.007*\"us\" + 0.007*\"univers\"\n", + "2018-09-12 20:59:23,639 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"good\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:23,640 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:23,640 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"data\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"program\"\n", + "2018-09-12 20:59:23,641 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turk\" + 0.006*\"turkei\" + 0.006*\"greek\" + 0.005*\"time\" + 0.004*\"muslim\"\n", + "2018-09-12 20:59:23,642 : INFO : topic diff=0.115286, rho=0.179057\n", + "2018-09-12 20:59:23,642 : INFO : PROGRESS: pass 2, at document #1700/2819\n", + "2018-09-12 20:59:23,695 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,700 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.012*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.007*\"us\" + 0.007*\"mail\" + 0.007*\"bit\"\n", + "2018-09-12 20:59:23,700 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"think\" + 0.005*\"time\"\n", + "2018-09-12 20:59:23,701 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.007*\"god\" + 0.007*\"isra\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:23,702 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"data\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"earth\"\n", + "2018-09-12 20:59:23,703 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.009*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.004*\"kill\"\n", + "2018-09-12 20:59:23,704 : INFO : topic diff=0.124904, rho=0.179057\n", + "2018-09-12 20:59:23,704 : INFO : PROGRESS: pass 2, at document #1800/2819\n", + "2018-09-12 20:59:23,758 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,763 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.012*\"file\" + 0.012*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.007*\"mail\" + 0.007*\"us\"\n", + "2018-09-12 20:59:23,763 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:23,764 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:23,765 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"point\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"research\" + 0.004*\"earth\" + 0.004*\"data\"\n", + "2018-09-12 20:59:23,766 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.009*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"time\" + 0.005*\"turkei\" + 0.005*\"armi\"\n", + "2018-09-12 20:59:23,767 : INFO : topic diff=0.126077, rho=0.179057\n", + "2018-09-12 20:59:23,768 : INFO : PROGRESS: pass 2, at document #1900/2819\n", + "2018-09-12 20:59:23,816 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,820 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.015*\"graphic\" + 0.013*\"file\" + 0.012*\"com\" + 0.009*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"univers\" + 0.007*\"thank\" + 0.007*\"mail\"\n", + "2018-09-12 20:59:23,821 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"know\" + 0.005*\"good\"\n", + "2018-09-12 20:59:23,822 : INFO : topic #2 (0.200): 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"god\" + 0.008*\"think\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"moral\" + 0.005*\"state\"\n", + "2018-09-12 20:59:23,822 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"point\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"earth\" + 0.004*\"program\"\n", + "2018-09-12 20:59:23,823 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"said\" + 0.006*\"serdar\" + 0.006*\"soviet\" + 0.005*\"argic\"\n", + "2018-09-12 20:59:23,824 : INFO : topic diff=0.123488, rho=0.179057\n", + "2018-09-12 20:59:23,938 : INFO : -7.843 per-word bound, 229.6 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:23,939 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2018-09-12 20:59:23,991 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:23,996 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.013*\"graphic\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"ftp\" + 0.008*\"host\" + 0.008*\"univers\" + 0.008*\"nntp\" + 0.007*\"us\"\n", + "2018-09-12 20:59:23,997 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:23,998 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.008*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:23,999 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"data\" + 0.005*\"center\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.005*\"research\" + 0.005*\"satellit\"\n", + "2018-09-12 20:59:24,000 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.007*\"said\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.006*\"argic\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:24,001 : INFO : topic diff=0.134523, rho=0.179057\n", + "2018-09-12 20:59:24,002 : INFO : PROGRESS: pass 2, at document #2100/2819\n", + "2018-09-12 20:59:24,052 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,057 : INFO : topic #0 (0.200): 0.026*\"imag\" + 0.019*\"file\" + 0.019*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.010*\"format\" + 0.009*\"program\" + 0.008*\"us\" + 0.008*\"version\"\n", + "2018-09-12 20:59:24,058 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"think\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"good\"\n", + "2018-09-12 20:59:24,059 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"state\"\n", + "2018-09-12 20:59:24,060 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"data\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"scienc\"\n", + "2018-09-12 20:59:24,062 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.008*\"peopl\" + 0.008*\"armenia\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"argic\" + 0.006*\"serdar\" + 0.006*\"genocid\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:24,062 : INFO : topic diff=0.179297, rho=0.179057\n", + "2018-09-12 20:59:24,063 : INFO : PROGRESS: pass 2, at document #2200/2819\n", + "2018-09-12 20:59:24,111 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,116 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.018*\"file\" + 0.016*\"jpeg\" + 0.013*\"graphic\" + 0.010*\"color\" + 0.009*\"gif\" + 0.009*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", + "2018-09-12 20:59:24,116 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:24,117 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"believ\" + 0.005*\"moral\"\n", + "2018-09-12 20:59:24,118 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"data\" + 0.005*\"satellit\" + 0.005*\"new\" + 0.005*\"scienc\" + 0.005*\"univers\" + 0.005*\"point\"\n", + "2018-09-12 20:59:24,118 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turkei\"\n", + "2018-09-12 20:59:24,119 : INFO : topic diff=0.153771, rho=0.179057\n", + "2018-09-12 20:59:24,119 : INFO : PROGRESS: pass 2, at document #2300/2819\n", + "2018-09-12 20:59:24,174 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,179 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.017*\"file\" + 0.014*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.010*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", + "2018-09-12 20:59:24,179 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-09-12 20:59:24,181 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"arab\" + 0.005*\"human\"\n", + "2018-09-12 20:59:24,182 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.005*\"data\" + 0.005*\"new\" + 0.005*\"point\" + 0.005*\"launch\" + 0.005*\"scienc\" + 0.005*\"univers\" + 0.004*\"satellit\"\n", + "2018-09-12 20:59:24,183 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"time\" + 0.005*\"come\"\n", + "2018-09-12 20:59:24,183 : INFO : topic diff=0.133881, rho=0.179057\n", + "2018-09-12 20:59:24,184 : INFO : PROGRESS: pass 2, at document #2400/2819\n", + "2018-09-12 20:59:24,236 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,240 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.017*\"file\" + 0.013*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.009*\"format\" + 0.009*\"com\" + 0.008*\"program\" + 0.008*\"us\"\n", + "2018-09-12 20:59:24,241 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"look\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:24,242 : INFO : topic #2 (0.200): 0.011*\"jew\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"state\" + 0.005*\"arab\"\n", + "2018-09-12 20:59:24,243 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"data\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"point\" + 0.004*\"scienc\"\n", + "2018-09-12 20:59:24,243 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"time\"\n", + "2018-09-12 20:59:24,244 : INFO : topic diff=0.180343, rho=0.179057\n", + "2018-09-12 20:59:24,244 : INFO : PROGRESS: pass 2, at document #2500/2819\n", + "2018-09-12 20:59:24,294 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,299 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.012*\"graphic\" + 0.011*\"jpeg\" + 0.010*\"com\" + 0.009*\"color\" + 0.009*\"gif\" + 0.008*\"format\" + 0.008*\"program\" + 0.007*\"version\"\n", + "2018-09-12 20:59:24,300 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"think\" + 0.005*\"look\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:24,301 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"believ\" + 0.005*\"islam\"\n", + "2018-09-12 20:59:24,301 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"faq\" + 0.005*\"center\" + 0.005*\"launch\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"inform\"\n", + "2018-09-12 20:59:24,302 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.015*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.007*\"armenia\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"kill\"\n", + "2018-09-12 20:59:24,303 : INFO : topic diff=0.124272, rho=0.179057\n", + "2018-09-12 20:59:24,303 : INFO : PROGRESS: pass 2, at document #2600/2819\n", + "2018-09-12 20:59:24,358 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,363 : INFO : topic #0 (0.200): 0.018*\"imag\" + 0.016*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.010*\"jpeg\" + 0.008*\"program\" + 0.008*\"color\" + 0.008*\"gif\" + 0.008*\"format\" + 0.007*\"us\"\n", + "2018-09-12 20:59:24,364 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"look\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:24,365 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"jew\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"believ\" + 0.005*\"know\"\n", + "2018-09-12 20:59:24,365 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.012*\"launch\" + 0.011*\"nasa\" + 0.008*\"satellit\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"year\" + 0.005*\"inform\" + 0.005*\"center\"\n", + "2018-09-12 20:59:24,366 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:24,367 : INFO : topic diff=0.166120, rho=0.179057\n", + "2018-09-12 20:59:24,367 : INFO : PROGRESS: pass 2, at document #2700/2819\n", + "2018-09-12 20:59:24,422 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,427 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.015*\"file\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.008*\"jpeg\" + 0.008*\"program\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"gif\" + 0.007*\"us\"\n", + "2018-09-12 20:59:24,427 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:24,428 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"jew\" + 0.009*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"state\"\n", + "2018-09-12 20:59:24,429 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"technolog\" + 0.005*\"center\" + 0.004*\"research\"\n", + "2018-09-12 20:59:24,430 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.012*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:24,430 : INFO : topic diff=0.122824, rho=0.179057\n", + "2018-09-12 20:59:24,431 : INFO : PROGRESS: pass 2, at document #2800/2819\n", + "2018-09-12 20:59:24,483 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,488 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.015*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"need\" + 0.007*\"color\" + 0.007*\"version\" + 0.007*\"host\" + 0.007*\"nntp\"\n", + "2018-09-12 20:59:24,489 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:24,489 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.008*\"jew\" + 0.008*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"right\"\n", + "2018-09-12 20:59:24,490 : INFO : topic #3 (0.200): 0.025*\"space\" + 0.011*\"nasa\" + 0.009*\"launch\" + 0.007*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"inform\" + 0.004*\"scienc\" + 0.004*\"project\"\n", + "2018-09-12 20:59:24,491 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"time\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:24,491 : INFO : topic diff=0.135455, rho=0.179057\n", + "2018-09-12 20:59:24,524 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", + "2018-09-12 20:59:24,525 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2018-09-12 20:59:24,536 : INFO : merging changes from 19 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,541 : INFO : topic #0 (0.200): 0.018*\"file\" + 0.013*\"imag\" + 0.010*\"com\" + 0.010*\"graphic\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"version\" + 0.008*\"thank\" + 0.007*\"host\" + 0.007*\"nntp\"\n", + "2018-09-12 20:59:24,542 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.007*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"thing\" + 0.005*\"think\" + 0.005*\"dod\" + 0.005*\"einstein\"\n", + "2018-09-12 20:59:24,542 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.007*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.005*\"state\"\n", + "2018-09-12 20:59:24,543 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.007*\"inform\" + 0.006*\"new\" + 0.006*\"satellit\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.005*\"design\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:24,544 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:24,544 : INFO : topic diff=0.213418, rho=0.179057\n", + "2018-09-12 20:59:24,545 : INFO : PROGRESS: pass 3, at document #100/2819\n", + "2018-09-12 20:59:24,597 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,602 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.011*\"graphic\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"version\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:24,603 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.009*\"like\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.007*\"bike\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.004*\"good\"\n", + "2018-09-12 20:59:24,604 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.007*\"atheist\" + 0.006*\"jew\" + 0.005*\"state\"\n", + "2018-09-12 20:59:24,604 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"new\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"satellit\" + 0.005*\"univers\" + 0.005*\"scienc\" + 0.005*\"design\"\n", + "2018-09-12 20:59:24,605 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"compromis\" + 0.005*\"turk\" + 0.005*\"world\" + 0.005*\"know\"\n", + "2018-09-12 20:59:24,606 : INFO : topic diff=0.119734, rho=0.176254\n", + "2018-09-12 20:59:24,607 : INFO : PROGRESS: pass 3, at document #200/2819\n", + "2018-09-12 20:59:24,662 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,667 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.015*\"imag\" + 0.012*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"need\" + 0.008*\"nntp\" + 0.007*\"thank\" + 0.007*\"mail\"\n", + "2018-09-12 20:59:24,668 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.011*\"dod\" + 0.010*\"like\" + 0.007*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.005*\"ride\" + 0.005*\"thing\" + 0.005*\"think\"\n", + "2018-09-12 20:59:24,668 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"believ\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", + "2018-09-12 20:59:24,669 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.006*\"orbit\" + 0.006*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"time\"\n", + "2018-09-12 20:59:24,670 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"turkei\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"kill\"\n", + "2018-09-12 20:59:24,671 : INFO : topic diff=0.165077, rho=0.176254\n", + "2018-09-12 20:59:24,671 : INFO : PROGRESS: pass 3, at document #300/2819\n", + "2018-09-12 20:59:24,720 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,725 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.011*\"graphic\" + 0.009*\"host\" + 0.008*\"need\" + 0.008*\"nntp\" + 0.008*\"access\" + 0.007*\"program\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:24,726 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.010*\"dod\" + 0.008*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2018-09-12 20:59:24,726 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"exist\" + 0.006*\"islam\" + 0.006*\"jew\" + 0.006*\"state\"\n", + "2018-09-12 20:59:24,727 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"develop\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:24,728 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"said\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"kill\" + 0.005*\"greek\"\n", + "2018-09-12 20:59:24,728 : INFO : topic diff=0.124056, rho=0.176254\n", + "2018-09-12 20:59:24,729 : INFO : PROGRESS: pass 3, at document #400/2819\n", + "2018-09-12 20:59:24,777 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,784 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.012*\"imag\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.009*\"host\" + 0.009*\"need\" + 0.008*\"nntp\" + 0.008*\"thank\" + 0.007*\"access\" + 0.007*\"program\"\n", + "2018-09-12 20:59:24,785 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"dod\" + 0.009*\"bike\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"ride\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2018-09-12 20:59:24,786 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"state\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:24,788 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"orbit\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"develop\"\n", + "2018-09-12 20:59:24,789 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"greek\" + 0.006*\"kill\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"sai\"\n", + "2018-09-12 20:59:24,789 : INFO : topic diff=0.121423, rho=0.176254\n", + "2018-09-12 20:59:24,790 : INFO : PROGRESS: pass 3, at document #500/2819\n", + "2018-09-12 20:59:24,844 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,849 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"com\" + 0.012*\"imag\" + 0.011*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"access\" + 0.007*\"program\"\n", + "2018-09-12 20:59:24,850 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:24,851 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.005*\"state\" + 0.005*\"exist\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:24,851 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.006*\"univers\" + 0.005*\"year\" + 0.005*\"scienc\" + 0.005*\"inform\" + 0.004*\"design\"\n", + "2018-09-12 20:59:24,852 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.012*\"peopl\" + 0.008*\"turkish\" + 0.007*\"kill\" + 0.006*\"know\" + 0.006*\"went\" + 0.005*\"apart\" + 0.005*\"sai\" + 0.005*\"time\"\n", + "2018-09-12 20:59:24,853 : INFO : topic diff=0.174145, rho=0.176254\n", + "2018-09-12 20:59:24,853 : INFO : PROGRESS: pass 3, at document #600/2819\n", + "2018-09-12 20:59:24,903 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,908 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.014*\"imag\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"thank\" + 0.008*\"us\" + 0.007*\"univers\"\n", + "2018-09-12 20:59:24,909 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:24,910 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:24,910 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.008*\"nasa\" + 0.007*\"univers\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.006*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"project\"\n", + "2018-09-12 20:59:24,911 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"children\"\n", + "2018-09-12 20:59:24,912 : INFO : topic diff=0.113469, rho=0.176254\n", + "2018-09-12 20:59:24,912 : INFO : PROGRESS: pass 3, at document #700/2819\n", + "2018-09-12 20:59:24,965 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:24,970 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.015*\"imag\" + 0.013*\"com\" + 0.011*\"graphic\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.008*\"univers\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"us\"\n", + "2018-09-12 20:59:24,970 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"know\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:24,971 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"jew\" + 0.006*\"islam\" + 0.005*\"right\" + 0.005*\"state\"\n", + "2018-09-12 20:59:24,972 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.007*\"univers\" + 0.006*\"launch\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"earth\"\n", + "2018-09-12 20:59:24,972 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"children\"\n", + "2018-09-12 20:59:24,973 : INFO : topic diff=0.121962, rho=0.176254\n", + "2018-09-12 20:59:24,973 : INFO : PROGRESS: pass 3, at document #800/2819\n", + "2018-09-12 20:59:25,025 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,030 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"univers\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"know\"\n", + "2018-09-12 20:59:25,031 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\"\n", + "2018-09-12 20:59:25,032 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"state\" + 0.005*\"jew\" + 0.005*\"islam\" + 0.005*\"right\"\n", + "2018-09-12 20:59:25,032 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"launch\" + 0.005*\"year\" + 0.004*\"inform\" + 0.004*\"scienc\" + 0.004*\"earth\"\n", + "2018-09-12 20:59:25,033 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.006*\"greek\" + 0.005*\"turk\" + 0.005*\"armenia\" + 0.005*\"live\"\n", + "2018-09-12 20:59:25,034 : INFO : topic diff=0.125259, rho=0.176254\n", + "2018-09-12 20:59:25,034 : INFO : PROGRESS: pass 3, at document #900/2819\n", + "2018-09-12 20:59:25,087 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,092 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.013*\"com\" + 0.012*\"file\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"univers\" + 0.008*\"thank\" + 0.008*\"need\" + 0.007*\"know\"\n", + "2018-09-12 20:59:25,092 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"ride\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"think\"\n", + "2018-09-12 20:59:25,093 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"atheist\" + 0.007*\"believ\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"state\"\n", + "2018-09-12 20:59:25,094 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.007*\"new\" + 0.006*\"launch\" + 0.006*\"univers\" + 0.005*\"year\" + 0.005*\"point\" + 0.004*\"scienc\" + 0.004*\"inform\"\n", + "2018-09-12 20:59:25,095 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.005*\"know\" + 0.005*\"greek\" + 0.005*\"time\" + 0.005*\"children\" + 0.004*\"turk\"\n", + "2018-09-12 20:59:25,095 : INFO : topic diff=0.150314, rho=0.176254\n", + "2018-09-12 20:59:25,215 : INFO : -7.806 per-word bound, 223.7 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", + "2018-09-12 20:59:25,216 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2018-09-12 20:59:25,266 : INFO : merging changes from 100 documents into a model of 2819 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:25,271 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.009*\"host\" + 0.009*\"graphic\" + 0.009*\"nntp\" + 0.008*\"program\" + 0.008*\"univers\" + 0.008*\"thank\" + 0.007*\"need\"\n", + "2018-09-12 20:59:25,271 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"think\"\n", + "2018-09-12 20:59:25,272 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"believ\" + 0.006*\"atheist\" + 0.006*\"right\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"state\"\n", + "2018-09-12 20:59:25,273 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.009*\"orbit\" + 0.008*\"nasa\" + 0.007*\"new\" + 0.007*\"launch\" + 0.006*\"mission\" + 0.006*\"year\" + 0.005*\"probe\" + 0.005*\"point\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:25,274 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.009*\"said\" + 0.008*\"greek\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"time\"\n", + "2018-09-12 20:59:25,275 : INFO : topic diff=0.151185, rho=0.176254\n", + "2018-09-12 20:59:25,276 : INFO : PROGRESS: pass 3, at document #1100/2819\n", + "2018-09-12 20:59:25,330 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,335 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"us\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.007*\"avail\"\n", + "2018-09-12 20:59:25,336 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"dod\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2018-09-12 20:59:25,337 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.010*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.007*\"atheist\" + 0.007*\"arab\" + 0.006*\"believ\" + 0.006*\"right\" + 0.005*\"religion\"\n", + "2018-09-12 20:59:25,337 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"mission\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"data\"\n", + "2018-09-12 20:59:25,338 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.008*\"said\" + 0.007*\"greek\" + 0.007*\"turk\" + 0.005*\"soviet\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.004*\"kill\"\n", + "2018-09-12 20:59:25,339 : INFO : topic diff=0.163387, rho=0.176254\n", + "2018-09-12 20:59:25,339 : INFO : PROGRESS: pass 3, at document #1200/2819\n", + "2018-09-12 20:59:25,391 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,396 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.012*\"file\" + 0.012*\"graphic\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.007*\"univers\" + 0.007*\"format\"\n", + "2018-09-12 20:59:25,397 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"dod\" + 0.005*\"think\"\n", + "2018-09-12 20:59:25,397 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.006*\"right\" + 0.005*\"atheist\"\n", + "2018-09-12 20:59:25,398 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"point\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"develop\" + 0.005*\"data\" + 0.005*\"launch\"\n", + "2018-09-12 20:59:25,399 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.008*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.005*\"know\"\n", + "2018-09-12 20:59:25,399 : INFO : topic diff=0.117799, rho=0.176254\n", + "2018-09-12 20:59:25,400 : INFO : PROGRESS: pass 3, at document #1300/2819\n", + "2018-09-12 20:59:25,450 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,455 : INFO : topic #0 (0.200): 0.017*\"graphic\" + 0.016*\"imag\" + 0.014*\"file\" + 0.011*\"com\" + 0.009*\"mail\" + 0.009*\"pub\" + 0.008*\"format\" + 0.008*\"ftp\" + 0.008*\"program\" + 0.007*\"host\"\n", + "2018-09-12 20:59:25,456 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"think\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:25,457 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.005*\"right\"\n", + "2018-09-12 20:59:25,458 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"year\" + 0.005*\"data\" + 0.005*\"launch\" + 0.005*\"mission\"\n", + "2018-09-12 20:59:25,458 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.007*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"know\"\n", + "2018-09-12 20:59:25,459 : INFO : topic diff=0.166254, rho=0.176254\n", + "2018-09-12 20:59:25,459 : INFO : PROGRESS: pass 3, at document #1400/2819\n", + "2018-09-12 20:59:25,510 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,515 : INFO : topic #0 (0.200): 0.016*\"graphic\" + 0.015*\"imag\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"mail\" + 0.008*\"program\" + 0.008*\"pub\" + 0.008*\"host\" + 0.007*\"us\" + 0.007*\"format\"\n", + "2018-09-12 20:59:25,516 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"ride\" + 0.005*\"think\"\n", + "2018-09-12 20:59:25,517 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"right\"\n", + "2018-09-12 20:59:25,517 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"mission\" + 0.005*\"univers\" + 0.004*\"research\" + 0.004*\"data\" + 0.004*\"year\"\n", + "2018-09-12 20:59:25,518 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.007*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.005*\"henrik\" + 0.004*\"know\"\n", + "2018-09-12 20:59:25,519 : INFO : topic diff=0.118707, rho=0.176254\n", + "2018-09-12 20:59:25,519 : INFO : PROGRESS: pass 3, at document #1500/2819\n", + "2018-09-12 20:59:25,568 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,573 : INFO : topic #0 (0.200): 0.025*\"imag\" + 0.016*\"graphic\" + 0.011*\"file\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"mail\" + 0.007*\"host\" + 0.007*\"us\" + 0.007*\"nntp\" + 0.007*\"format\"\n", + "2018-09-12 20:59:25,574 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"dod\" + 0.005*\"think\"\n", + "2018-09-12 20:59:25,575 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.009*\"god\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"arab\" + 0.006*\"christian\" + 0.006*\"state\" + 0.005*\"right\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:25,576 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"research\" + 0.005*\"develop\" + 0.004*\"center\" + 0.004*\"earth\"\n", + "2018-09-12 20:59:25,576 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.008*\"said\" + 0.007*\"turk\" + 0.007*\"greek\" + 0.007*\"turkei\" + 0.006*\"armenia\" + 0.004*\"time\" + 0.004*\"know\"\n", + "2018-09-12 20:59:25,577 : INFO : topic diff=0.150018, rho=0.176254\n", + "2018-09-12 20:59:25,577 : INFO : PROGRESS: pass 3, at document #1600/2819\n", + "2018-09-12 20:59:25,626 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,631 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"mail\" + 0.007*\"nntp\" + 0.007*\"us\" + 0.007*\"univers\"\n", + "2018-09-12 20:59:25,631 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"good\" + 0.005*\"think\"\n", + "2018-09-12 20:59:25,632 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:25,633 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"univers\" + 0.004*\"scienc\" + 0.004*\"data\"\n", + "2018-09-12 20:59:25,634 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turk\" + 0.006*\"turkei\" + 0.006*\"greek\" + 0.005*\"time\" + 0.004*\"kill\"\n", + "2018-09-12 20:59:25,634 : INFO : topic diff=0.108742, rho=0.176254\n", + "2018-09-12 20:59:25,635 : INFO : PROGRESS: pass 3, at document #1700/2819\n", + "2018-09-12 20:59:25,684 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,689 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.007*\"mail\" + 0.007*\"us\" + 0.007*\"univers\"\n", + "2018-09-12 20:59:25,690 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"ride\" + 0.005*\"time\"\n", + "2018-09-12 20:59:25,690 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.007*\"isra\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:25,691 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"univers\" + 0.005*\"earth\" + 0.005*\"research\" + 0.005*\"data\"\n", + "2018-09-12 20:59:25,692 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"kill\"\n", + "2018-09-12 20:59:25,693 : INFO : topic diff=0.117992, rho=0.176254\n", + "2018-09-12 20:59:25,693 : INFO : PROGRESS: pass 3, at document #1800/2819\n", + "2018-09-12 20:59:25,745 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,750 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.012*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.007*\"mail\" + 0.007*\"us\"\n", + "2018-09-12 20:59:25,751 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"good\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:25,752 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:25,753 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"point\" + 0.006*\"new\" + 0.005*\"center\" + 0.005*\"univers\" + 0.005*\"research\" + 0.005*\"earth\" + 0.005*\"launch\"\n", + "2018-09-12 20:59:25,754 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.009*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"armi\"\n", + "2018-09-12 20:59:25,754 : INFO : topic diff=0.120008, rho=0.176254\n", + "2018-09-12 20:59:25,755 : INFO : PROGRESS: pass 3, at document #1900/2819\n", + "2018-09-12 20:59:25,803 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,809 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.015*\"graphic\" + 0.012*\"file\" + 0.011*\"com\" + 0.009*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"univers\" + 0.007*\"mail\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:25,811 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:25,811 : INFO : topic #2 (0.200): 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"isra\" + 0.008*\"think\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"moral\" + 0.005*\"state\"\n", + "2018-09-12 20:59:25,812 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"point\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"year\" + 0.005*\"earth\"\n", + "2018-09-12 20:59:25,813 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"said\" + 0.006*\"serdar\" + 0.006*\"soviet\" + 0.006*\"argic\"\n", + "2018-09-12 20:59:25,813 : INFO : topic diff=0.116874, rho=0.176254\n", + "2018-09-12 20:59:25,932 : INFO : -7.828 per-word bound, 227.3 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n", + "2018-09-12 20:59:25,933 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2018-09-12 20:59:25,985 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:25,990 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"ftp\" + 0.008*\"host\" + 0.008*\"univers\" + 0.007*\"nntp\" + 0.007*\"us\"\n", + "2018-09-12 20:59:25,991 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:25,991 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.008*\"isra\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:25,992 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"center\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"research\" + 0.005*\"scienc\"\n", + "2018-09-12 20:59:25,993 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.007*\"said\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.006*\"argic\" + 0.006*\"soviet\"\n", + "2018-09-12 20:59:25,993 : INFO : topic diff=0.127076, rho=0.176254\n", + "2018-09-12 20:59:25,994 : INFO : PROGRESS: pass 3, at document #2100/2819\n", + "2018-09-12 20:59:26,043 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,048 : INFO : topic #0 (0.200): 0.026*\"imag\" + 0.019*\"file\" + 0.018*\"jpeg\" + 0.013*\"graphic\" + 0.010*\"gif\" + 0.010*\"format\" + 0.010*\"color\" + 0.009*\"program\" + 0.008*\"us\" + 0.008*\"version\"\n", + "2018-09-12 20:59:26,049 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.006*\"think\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"good\"\n", + "2018-09-12 20:59:26,050 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:26,051 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.005*\"data\" + 0.005*\"launch\" + 0.005*\"new\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"scienc\" + 0.004*\"univers\"\n", + "2018-09-12 20:59:26,052 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.008*\"peopl\" + 0.008*\"armenia\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"argic\" + 0.006*\"serdar\" + 0.006*\"genocid\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:26,053 : INFO : topic diff=0.170265, rho=0.176254\n", + "2018-09-12 20:59:26,053 : INFO : PROGRESS: pass 3, at document #2200/2819\n", + "2018-09-12 20:59:26,101 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,106 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.018*\"file\" + 0.016*\"jpeg\" + 0.013*\"graphic\" + 0.010*\"color\" + 0.009*\"gif\" + 0.009*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", + "2018-09-12 20:59:26,107 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:26,108 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"believ\" + 0.005*\"moral\"\n", + "2018-09-12 20:59:26,109 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.005*\"satellit\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"scienc\" + 0.004*\"univers\" + 0.004*\"point\"\n", + "2018-09-12 20:59:26,110 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turkei\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:26,110 : INFO : topic diff=0.146208, rho=0.176254\n", + "2018-09-12 20:59:26,111 : INFO : PROGRESS: pass 3, at document #2300/2819\n", + "2018-09-12 20:59:26,165 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,170 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.017*\"file\" + 0.014*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"format\" + 0.010*\"color\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", + "2018-09-12 20:59:26,170 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-09-12 20:59:26,171 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"arab\" + 0.005*\"human\"\n", + "2018-09-12 20:59:26,172 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"point\" + 0.005*\"data\" + 0.005*\"scienc\" + 0.005*\"project\" + 0.004*\"satellit\"\n", + "2018-09-12 20:59:26,173 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"come\"\n", + "2018-09-12 20:59:26,173 : INFO : topic diff=0.125927, rho=0.176254\n", + "2018-09-12 20:59:26,174 : INFO : PROGRESS: pass 3, at document #2400/2819\n", + "2018-09-12 20:59:26,223 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,227 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.017*\"file\" + 0.013*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.009*\"format\" + 0.009*\"com\" + 0.009*\"program\" + 0.008*\"us\"\n", + "2018-09-12 20:59:26,228 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-09-12 20:59:26,229 : INFO : topic #2 (0.200): 0.011*\"jew\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"state\" + 0.005*\"arab\"\n", + "2018-09-12 20:59:26,230 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.012*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"research\" + 0.005*\"data\" + 0.005*\"earth\" + 0.004*\"scienc\" + 0.004*\"point\"\n", + "2018-09-12 20:59:26,230 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"time\"\n", + "2018-09-12 20:59:26,231 : INFO : topic diff=0.172883, rho=0.176254\n", + "2018-09-12 20:59:26,231 : INFO : PROGRESS: pass 3, at document #2500/2819\n", + "2018-09-12 20:59:26,282 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,287 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.012*\"graphic\" + 0.011*\"jpeg\" + 0.009*\"com\" + 0.009*\"color\" + 0.008*\"gif\" + 0.008*\"program\" + 0.008*\"format\" + 0.007*\"us\"\n", + "2018-09-12 20:59:26,287 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-09-12 20:59:26,289 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"believ\" + 0.005*\"state\"\n", + "2018-09-12 20:59:26,290 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"faq\" + 0.005*\"univers\" + 0.005*\"scienc\"\n", + "2018-09-12 20:59:26,290 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.015*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.007*\"armenia\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"kill\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:26,291 : INFO : topic diff=0.117342, rho=0.176254\n", + "2018-09-12 20:59:26,291 : INFO : PROGRESS: pass 3, at document #2600/2819\n", + "2018-09-12 20:59:26,345 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,350 : INFO : topic #0 (0.200): 0.018*\"imag\" + 0.016*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.010*\"jpeg\" + 0.008*\"program\" + 0.008*\"color\" + 0.007*\"gif\" + 0.007*\"format\" + 0.007*\"us\"\n", + "2018-09-12 20:59:26,351 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"look\"\n", + "2018-09-12 20:59:26,351 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"jew\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"believ\" + 0.005*\"know\"\n", + "2018-09-12 20:59:26,352 : INFO : topic #3 (0.200): 0.022*\"space\" + 0.012*\"launch\" + 0.011*\"nasa\" + 0.008*\"satellit\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"year\" + 0.005*\"center\" + 0.005*\"data\" + 0.005*\"project\"\n", + "2018-09-12 20:59:26,353 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.014*\"turkish\" + 0.011*\"peopl\" + 0.009*\"said\" + 0.007*\"armenia\" + 0.007*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:26,353 : INFO : topic diff=0.159922, rho=0.176254\n", + "2018-09-12 20:59:26,354 : INFO : PROGRESS: pass 3, at document #2700/2819\n", + "2018-09-12 20:59:26,403 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,408 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.015*\"file\" + 0.011*\"graphic\" + 0.011*\"com\" + 0.008*\"jpeg\" + 0.008*\"program\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"us\" + 0.007*\"gif\"\n", + "2018-09-12 20:59:26,409 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:26,409 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"jew\" + 0.009*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"state\"\n", + "2018-09-12 20:59:26,410 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"technolog\"\n", + "2018-09-12 20:59:26,411 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.012*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"turk\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:26,411 : INFO : topic diff=0.115902, rho=0.176254\n", + "2018-09-12 20:59:26,412 : INFO : PROGRESS: pass 3, at document #2800/2819\n", + "2018-09-12 20:59:26,464 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,469 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.014*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"need\" + 0.007*\"color\" + 0.007*\"version\" + 0.007*\"host\" + 0.007*\"nntp\"\n", + "2018-09-12 20:59:26,469 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.011*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:26,470 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.008*\"jew\" + 0.008*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"right\"\n", + "2018-09-12 20:59:26,471 : INFO : topic #3 (0.200): 0.025*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.007*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"inform\" + 0.004*\"project\" + 0.004*\"year\"\n", + "2018-09-12 20:59:26,472 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:26,473 : INFO : topic diff=0.128170, rho=0.176254\n", + "2018-09-12 20:59:26,509 : INFO : -7.744 per-word bound, 214.3 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", + "2018-09-12 20:59:26,509 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2018-09-12 20:59:26,520 : INFO : merging changes from 19 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,525 : INFO : topic #0 (0.200): 0.018*\"file\" + 0.013*\"imag\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"version\" + 0.007*\"thank\" + 0.007*\"host\" + 0.007*\"nntp\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:26,526 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.007*\"bike\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"einstein\"\n", + "2018-09-12 20:59:26,527 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.007*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.005*\"state\"\n", + "2018-09-12 20:59:26,528 : INFO : topic #3 (0.200): 0.022*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"inform\" + 0.006*\"new\" + 0.006*\"satellit\" + 0.005*\"orbit\" + 0.005*\"design\" + 0.005*\"scienc\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:26,529 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"turk\" + 0.005*\"soviet\" + 0.005*\"know\"\n", + "2018-09-12 20:59:26,529 : INFO : topic diff=0.205506, rho=0.176254\n", + "2018-09-12 20:59:26,530 : INFO : PROGRESS: pass 4, at document #100/2819\n", + "2018-09-12 20:59:26,579 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,584 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.013*\"imag\" + 0.011*\"graphic\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"version\" + 0.007*\"univers\"\n", + "2018-09-12 20:59:26,584 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.007*\"bike\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.004*\"good\"\n", + "2018-09-12 20:59:26,585 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.008*\"peopl\" + 0.008*\"believ\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.007*\"atheist\" + 0.006*\"jew\" + 0.005*\"state\"\n", + "2018-09-12 20:59:26,586 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"new\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"satellit\" + 0.005*\"year\" + 0.005*\"design\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:26,587 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"compromis\" + 0.005*\"turk\" + 0.005*\"world\" + 0.005*\"know\"\n", + "2018-09-12 20:59:26,587 : INFO : topic diff=0.113642, rho=0.173579\n", + "2018-09-12 20:59:26,588 : INFO : PROGRESS: pass 4, at document #200/2819\n", + "2018-09-12 20:59:26,642 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,647 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.014*\"imag\" + 0.012*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"need\" + 0.008*\"nntp\" + 0.007*\"mail\" + 0.007*\"univers\"\n", + "2018-09-12 20:59:26,647 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.011*\"dod\" + 0.010*\"like\" + 0.007*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:26,648 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"believ\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", + "2018-09-12 20:59:26,650 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.006*\"new\" + 0.006*\"launch\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"design\"\n", + "2018-09-12 20:59:26,650 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"turkei\" + 0.006*\"turk\" + 0.005*\"sai\" + 0.005*\"armenia\" + 0.005*\"greek\" + 0.005*\"kill\"\n", + "2018-09-12 20:59:26,651 : INFO : topic diff=0.158000, rho=0.173579\n", + "2018-09-12 20:59:26,651 : INFO : PROGRESS: pass 4, at document #300/2819\n", + "2018-09-12 20:59:26,699 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,704 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"imag\" + 0.011*\"graphic\" + 0.011*\"com\" + 0.009*\"host\" + 0.008*\"need\" + 0.008*\"nntp\" + 0.007*\"program\" + 0.007*\"version\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:26,705 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.010*\"dod\" + 0.008*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\"\n", + "2018-09-12 20:59:26,705 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"exist\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"jew\"\n", + "2018-09-12 20:59:26,706 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"develop\"\n", + "2018-09-12 20:59:26,707 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.010*\"said\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"kill\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"greek\"\n", + "2018-09-12 20:59:26,707 : INFO : topic diff=0.118663, rho=0.173579\n", + "2018-09-12 20:59:26,708 : INFO : PROGRESS: pass 4, at document #400/2819\n", + "2018-09-12 20:59:26,754 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,759 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.012*\"imag\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.009*\"need\" + 0.009*\"host\" + 0.008*\"nntp\" + 0.007*\"thank\" + 0.007*\"program\" + 0.007*\"softwar\"\n", + "2018-09-12 20:59:26,759 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"dod\" + 0.009*\"bike\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"know\" + 0.006*\"ride\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2018-09-12 20:59:26,760 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"state\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:26,761 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"orbit\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"year\" + 0.005*\"scienc\" + 0.004*\"develop\"\n", + "2018-09-12 20:59:26,762 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"greek\" + 0.006*\"kill\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"sai\"\n", + "2018-09-12 20:59:26,762 : INFO : topic diff=0.116203, rho=0.173579\n", + "2018-09-12 20:59:26,763 : INFO : PROGRESS: pass 4, at document #500/2819\n", + "2018-09-12 20:59:26,813 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,817 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.012*\"com\" + 0.012*\"imag\" + 0.011*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"program\" + 0.007*\"us\"\n", + "2018-09-12 20:59:26,818 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:26,819 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.005*\"state\" + 0.005*\"exist\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:26,820 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.006*\"new\" + 0.006*\"launch\" + 0.006*\"orbit\" + 0.005*\"univers\" + 0.005*\"year\" + 0.005*\"scienc\" + 0.004*\"inform\" + 0.004*\"design\"\n", + "2018-09-12 20:59:26,820 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.012*\"peopl\" + 0.008*\"turkish\" + 0.007*\"kill\" + 0.006*\"know\" + 0.006*\"went\" + 0.005*\"apart\" + 0.005*\"sai\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:26,821 : INFO : topic diff=0.168337, rho=0.173579\n", + "2018-09-12 20:59:26,821 : INFO : PROGRESS: pass 4, at document #600/2819\n", + "2018-09-12 20:59:26,871 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,876 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.014*\"imag\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"thank\" + 0.008*\"us\" + 0.008*\"univers\"\n", + "2018-09-12 20:59:26,877 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"know\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:26,878 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"jew\"\n", + "2018-09-12 20:59:26,878 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"year\" + 0.005*\"scienc\" + 0.004*\"project\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 13:20:38,477 : INFO : topic diff=0.433169, rho=0.455535\n", - "2018-09-25 13:20:38,478 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2018-09-25 13:20:39,415 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:39,421 : INFO : topic #0 (0.200): 0.012*\"imag\" + 0.009*\"file\" + 0.008*\"graphic\" + 0.008*\"com\" + 0.006*\"univers\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"program\" + 0.006*\"like\" + 0.005*\"us\"\n", - "2018-09-25 13:20:39,423 : INFO : topic #1 (0.200): 0.009*\"nasa\" + 0.008*\"space\" + 0.006*\"orbit\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"gov\" + 0.005*\"earth\" + 0.004*\"year\" + 0.004*\"henri\" + 0.004*\"launch\"\n", - "2018-09-25 13:20:39,424 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.006*\"right\" + 0.006*\"think\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-09-25 13:20:39,425 : INFO : topic #3 (0.200): 0.013*\"com\" + 0.013*\"space\" + 0.006*\"bike\" + 0.005*\"dod\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\"\n", - "2018-09-25 13:20:39,426 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"greek\" + 0.004*\"turk\" + 0.004*\"armenia\"\n", - "2018-09-25 13:20:39,428 : INFO : topic diff=0.348645, rho=0.414549\n", - "2018-09-25 13:20:39,429 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2018-09-25 13:20:40,148 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:40,154 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.007*\"com\" + 0.007*\"program\" + 0.006*\"univers\" + 0.006*\"host\" + 0.005*\"us\" + 0.005*\"nntp\" + 0.005*\"like\"\n", - "2018-09-25 13:20:40,157 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.008*\"space\" + 0.006*\"orbit\" + 0.006*\"gov\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"year\" + 0.005*\"earth\" + 0.005*\"time\" + 0.004*\"new\"\n", - "2018-09-25 13:20:40,159 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.008*\"god\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"com\"\n", - "2018-09-25 13:20:40,160 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.012*\"space\" + 0.007*\"bike\" + 0.005*\"dod\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"ride\"\n", - "2018-09-25 13:20:40,161 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.004*\"time\"\n", - "2018-09-25 13:20:40,162 : INFO : topic diff=0.322965, rho=0.414549\n", - "2018-09-25 13:20:41,251 : INFO : -7.719 per-word bound, 210.7 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-09-25 13:20:41,252 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2018-09-25 13:20:41,800 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-09-25 13:20:41,807 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.007*\"program\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"color\" + 0.005*\"host\"\n", - "2018-09-25 13:20:41,809 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.010*\"space\" + 0.006*\"orbit\" + 0.006*\"gov\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"earth\" + 0.005*\"moon\" + 0.005*\"launch\" + 0.005*\"new\"\n", - "2018-09-25 13:20:41,811 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"peopl\" + 0.006*\"jew\" + 0.006*\"think\" + 0.006*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"exist\"\n", - "2018-09-25 13:20:41,812 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.013*\"space\" + 0.007*\"bike\" + 0.004*\"dod\" + 0.004*\"like\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"time\"\n", - "2018-09-25 13:20:41,815 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.006*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"like\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.004*\"muslim\"\n", - "2018-09-25 13:20:41,816 : INFO : topic diff=0.325727, rho=0.414549\n", - "2018-09-25 13:20:41,817 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2018-09-25 13:20:42,525 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:42,531 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"com\" + 0.007*\"univers\" + 0.006*\"program\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.005*\"need\"\n", - "2018-09-25 13:20:42,533 : INFO : topic #1 (0.200): 0.010*\"nasa\" + 0.009*\"space\" + 0.007*\"orbit\" + 0.005*\"gov\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"earth\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"henri\"\n", - "2018-09-25 13:20:42,534 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-09-25 13:20:42,535 : INFO : topic #3 (0.200): 0.014*\"com\" + 0.012*\"space\" + 0.008*\"bike\" + 0.006*\"dod\" + 0.005*\"ride\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.004*\"time\"\n", - "2018-09-25 13:20:42,536 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"know\" + 0.005*\"like\" + 0.005*\"greek\" + 0.004*\"time\" + 0.004*\"turk\" + 0.004*\"armenia\"\n", - "2018-09-25 13:20:42,537 : INFO : topic diff=0.264433, rho=0.382948\n", - "2018-09-25 13:20:42,538 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2018-09-25 13:20:43,212 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:43,220 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"data\"\n", - "2018-09-25 13:20:43,221 : INFO : topic #1 (0.200): 0.011*\"nasa\" + 0.010*\"space\" + 0.007*\"orbit\" + 0.006*\"gov\" + 0.005*\"moon\" + 0.005*\"like\" + 0.005*\"earth\" + 0.005*\"year\" + 0.004*\"time\" + 0.004*\"new\"\n", - "2018-09-25 13:20:43,222 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.008*\"isra\" + 0.008*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"jew\" + 0.006*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"state\"\n", - "2018-09-25 13:20:43,223 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.011*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"ride\" + 0.004*\"time\" + 0.004*\"new\"\n", - "2018-09-25 13:20:43,225 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.004*\"time\"\n", - "2018-09-25 13:20:43,226 : INFO : topic diff=0.248884, rho=0.382948\n", - "2018-09-25 13:20:44,316 : INFO : -7.692 per-word bound, 206.8 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-09-25 13:20:44,316 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2018-09-25 13:20:44,882 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-09-25 13:20:44,892 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"color\" + 0.005*\"format\"\n", - "2018-09-25 13:20:44,894 : INFO : topic #1 (0.200): 0.011*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"gov\" + 0.005*\"launch\" + 0.005*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"\n", - "2018-09-25 13:20:44,896 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"\n", - "2018-09-25 13:20:44,897 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.012*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"ride\" + 0.004*\"new\" + 0.004*\"time\"\n", - "2018-09-25 13:20:44,899 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"like\" + 0.004*\"turk\"\n", - "2018-09-25 13:20:44,900 : INFO : topic diff=0.251402, rho=0.382948\n", - "2018-09-25 13:20:44,901 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2018-09-25 13:20:45,546 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:45,552 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.007*\"program\" + 0.007*\"univers\" + 0.006*\"com\" + 0.006*\"us\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"need\"\n" + "2018-09-12 20:59:26,879 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.012*\"peopl\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"greek\" + 0.005*\"went\" + 0.005*\"turk\" + 0.005*\"children\"\n", + "2018-09-12 20:59:26,880 : INFO : topic diff=0.107799, rho=0.173579\n", + "2018-09-12 20:59:26,880 : INFO : PROGRESS: pass 4, at document #700/2819\n", + "2018-09-12 20:59:26,937 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:26,942 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.015*\"imag\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"univers\" + 0.008*\"need\" + 0.007*\"us\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:26,943 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:26,944 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"right\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:26,944 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.007*\"launch\" + 0.006*\"univers\" + 0.006*\"new\" + 0.005*\"year\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.004*\"earth\"\n", + "2018-09-12 20:59:26,945 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"children\"\n", + "2018-09-12 20:59:26,946 : INFO : topic diff=0.116856, rho=0.173579\n", + "2018-09-12 20:59:26,946 : INFO : PROGRESS: pass 4, at document #800/2819\n", + "2018-09-12 20:59:26,997 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,002 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.009*\"univers\" + 0.008*\"need\" + 0.007*\"know\" + 0.007*\"thank\"\n", + "2018-09-12 20:59:27,003 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"thing\" + 0.006*\"ride\" + 0.006*\"know\" + 0.006*\"think\"\n", + "2018-09-12 20:59:27,004 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"state\" + 0.005*\"jew\" + 0.005*\"islam\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:27,005 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.006*\"new\" + 0.005*\"year\" + 0.004*\"scienc\" + 0.004*\"inform\" + 0.004*\"earth\"\n", + "2018-09-12 20:59:27,005 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.012*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.006*\"greek\" + 0.005*\"turk\" + 0.005*\"armenia\" + 0.005*\"live\"\n", + "2018-09-12 20:59:27,006 : INFO : topic diff=0.119888, rho=0.173579\n", + "2018-09-12 20:59:27,006 : INFO : PROGRESS: pass 4, at document #900/2819\n", + "2018-09-12 20:59:27,061 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,066 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.012*\"file\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.009*\"univers\" + 0.008*\"thank\" + 0.008*\"need\" + 0.007*\"know\"\n", + "2018-09-12 20:59:27,066 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"ride\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"think\"\n", + "2018-09-12 20:59:27,067 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"atheist\" + 0.007*\"believ\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"state\"\n", + "2018-09-12 20:59:27,068 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.007*\"new\" + 0.006*\"launch\" + 0.006*\"univers\" + 0.005*\"year\" + 0.005*\"point\" + 0.004*\"scienc\" + 0.004*\"center\"\n", + "2018-09-12 20:59:27,068 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.005*\"know\" + 0.005*\"greek\" + 0.005*\"time\" + 0.005*\"children\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:27,069 : INFO : topic diff=0.144073, rho=0.173579\n", + "2018-09-12 20:59:27,188 : INFO : -7.797 per-word bound, 222.4 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", + "2018-09-12 20:59:27,188 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2018-09-12 20:59:27,237 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,244 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.014*\"file\" + 0.012*\"com\" + 0.009*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.009*\"program\" + 0.008*\"univers\" + 0.008*\"thank\" + 0.007*\"need\"\n", + "2018-09-12 20:59:27,245 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.010*\"like\" + 0.007*\"ride\" + 0.006*\"host\" + 0.006*\"dod\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"think\"\n", + "2018-09-12 20:59:27,246 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"believ\" + 0.006*\"atheist\" + 0.006*\"right\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"state\"\n", + "2018-09-12 20:59:27,247 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.009*\"orbit\" + 0.009*\"nasa\" + 0.007*\"new\" + 0.007*\"launch\" + 0.006*\"mission\" + 0.006*\"year\" + 0.005*\"probe\" + 0.005*\"point\" + 0.005*\"univers\"\n", + "2018-09-12 20:59:27,247 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.010*\"said\" + 0.008*\"greek\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"soviet\"\n", + "2018-09-12 20:59:27,248 : INFO : topic diff=0.144795, rho=0.173579\n", + "2018-09-12 20:59:27,248 : INFO : PROGRESS: pass 4, at document #1100/2819\n", + "2018-09-12 20:59:27,301 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,306 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.013*\"file\" + 0.011*\"com\" + 0.011*\"graphic\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"us\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.007*\"avail\"\n", + "2018-09-12 20:59:27,307 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"dod\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\"\n", + "2018-09-12 20:59:27,308 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.007*\"atheist\" + 0.006*\"arab\" + 0.006*\"believ\" + 0.006*\"right\" + 0.005*\"religion\"\n", + "2018-09-12 20:59:27,309 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.006*\"year\" + 0.005*\"launch\" + 0.005*\"mission\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"earth\"\n", + "2018-09-12 20:59:27,309 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.009*\"said\" + 0.007*\"greek\" + 0.007*\"turk\" + 0.005*\"soviet\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.005*\"kill\"\n", + "2018-09-12 20:59:27,311 : INFO : topic diff=0.157374, rho=0.173579\n", + "2018-09-12 20:59:27,311 : INFO : PROGRESS: pass 4, at document #1200/2819\n", + "2018-09-12 20:59:27,362 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,366 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.012*\"file\" + 0.012*\"graphic\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.008*\"univers\" + 0.007*\"format\"\n", + "2018-09-12 20:59:27,367 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.010*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"ride\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"dod\" + 0.005*\"think\"\n", + "2018-09-12 20:59:27,368 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.006*\"right\" + 0.005*\"atheist\"\n", + "2018-09-12 20:59:27,369 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"year\" + 0.006*\"point\" + 0.005*\"develop\" + 0.005*\"launch\" + 0.005*\"earth\" + 0.005*\"center\"\n", + "2018-09-12 20:59:27,369 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.013*\"turkish\" + 0.012*\"peopl\" + 0.008*\"greek\" + 0.008*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.005*\"know\"\n", + "2018-09-12 20:59:27,370 : INFO : topic diff=0.112615, rho=0.173579\n", + "2018-09-12 20:59:27,370 : INFO : PROGRESS: pass 4, at document #1300/2819\n", + "2018-09-12 20:59:27,424 : INFO : merging changes from 100 documents into a model of 2819 documents\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 13:20:45,553 : INFO : topic #1 (0.200): 0.011*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.005*\"earth\" + 0.005*\"moon\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"new\"\n", - "2018-09-25 13:20:45,555 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"believ\"\n", - "2018-09-25 13:20:45,556 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.011*\"space\" + 0.008*\"bike\" + 0.006*\"dod\" + 0.005*\"ride\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.004*\"new\" + 0.004*\"time\"\n", - "2018-09-25 13:20:45,557 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"know\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"like\" + 0.005*\"armenia\" + 0.005*\"time\"\n", - "2018-09-25 13:20:45,558 : INFO : topic diff=0.210808, rho=0.357622\n", - "2018-09-25 13:20:45,559 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2018-09-25 13:20:46,362 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-25 13:20:46,369 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"graphic\" + 0.010*\"file\" + 0.008*\"program\" + 0.007*\"univers\" + 0.006*\"com\" + 0.006*\"us\" + 0.005*\"host\" + 0.005*\"data\" + 0.005*\"mail\"\n", - "2018-09-25 13:20:46,371 : INFO : topic #1 (0.200): 0.012*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"earth\" + 0.005*\"moon\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"launch\" + 0.004*\"new\"\n", - "2018-09-25 13:20:46,372 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"com\" + 0.005*\"state\"\n", - "2018-09-25 13:20:46,374 : INFO : topic #3 (0.200): 0.016*\"com\" + 0.009*\"space\" + 0.009*\"bike\" + 0.006*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"ride\" + 0.005*\"nntp\" + 0.004*\"time\" + 0.004*\"new\"\n", - "2018-09-25 13:20:46,375 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.005*\"muslim\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"like\"\n", - "2018-09-25 13:20:46,376 : INFO : topic diff=0.203456, rho=0.357622\n", - "2018-09-25 13:20:47,283 : INFO : -7.675 per-word bound, 204.4 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-09-25 13:20:47,284 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2018-09-25 13:20:47,837 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-09-25 13:20:47,844 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"com\" + 0.006*\"color\" + 0.006*\"format\"\n", - "2018-09-25 13:20:47,845 : INFO : topic #1 (0.200): 0.014*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"launch\" + 0.006*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"\n", - "2018-09-25 13:20:47,847 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"\n", - "2018-09-25 13:20:47,848 : INFO : topic #3 (0.200): 0.015*\"com\" + 0.010*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.004*\"new\" + 0.004*\"time\"\n", - "2018-09-25 13:20:47,849 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"like\"\n", - "2018-09-25 13:20:47,850 : INFO : topic diff=0.205852, rho=0.357622\n" + "2018-09-12 20:59:27,429 : INFO : topic #0 (0.200): 0.017*\"graphic\" + 0.016*\"imag\" + 0.013*\"file\" + 0.010*\"com\" + 0.009*\"mail\" + 0.008*\"pub\" + 0.008*\"format\" + 0.008*\"program\" + 0.008*\"ftp\" + 0.007*\"host\"\n", + "2018-09-12 20:59:27,430 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"bike\" + 0.010*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"ride\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:27,431 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.005*\"right\"\n", + "2018-09-12 20:59:27,432 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"center\" + 0.005*\"point\" + 0.005*\"mission\" + 0.005*\"earth\"\n", + "2018-09-12 20:59:27,432 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.008*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"know\"\n", + "2018-09-12 20:59:27,433 : INFO : topic diff=0.160612, rho=0.173579\n", + "2018-09-12 20:59:27,433 : INFO : PROGRESS: pass 4, at document #1400/2819\n", + "2018-09-12 20:59:27,485 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,490 : INFO : topic #0 (0.200): 0.016*\"graphic\" + 0.015*\"imag\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"mail\" + 0.008*\"program\" + 0.008*\"pub\" + 0.007*\"host\" + 0.007*\"us\" + 0.007*\"format\"\n", + "2018-09-12 20:59:27,491 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"dod\" + 0.005*\"ride\" + 0.005*\"think\"\n", + "2018-09-12 20:59:27,491 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.005*\"exist\" + 0.005*\"arab\" + 0.005*\"right\"\n", + "2018-09-12 20:59:27,492 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"mission\" + 0.005*\"research\" + 0.004*\"center\" + 0.004*\"earth\"\n", + "2018-09-12 20:59:27,493 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.005*\"henrik\" + 0.004*\"know\"\n", + "2018-09-12 20:59:27,493 : INFO : topic diff=0.113705, rho=0.173579\n", + "2018-09-12 20:59:27,494 : INFO : PROGRESS: pass 4, at document #1500/2819\n", + "2018-09-12 20:59:27,544 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,549 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"mail\" + 0.007*\"host\" + 0.007*\"us\" + 0.006*\"nntp\" + 0.006*\"format\"\n", + "2018-09-12 20:59:27,550 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"ride\" + 0.005*\"think\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:27,551 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.009*\"god\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"arab\" + 0.006*\"state\" + 0.006*\"christian\" + 0.005*\"right\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:27,551 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.010*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"develop\" + 0.005*\"research\" + 0.005*\"data\" + 0.005*\"earth\" + 0.005*\"center\" + 0.004*\"launch\"\n", + "2018-09-12 20:59:27,552 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.008*\"said\" + 0.007*\"turk\" + 0.007*\"greek\" + 0.007*\"turkei\" + 0.006*\"armenia\" + 0.004*\"time\" + 0.004*\"know\"\n", + "2018-09-12 20:59:27,553 : INFO : topic diff=0.144029, rho=0.173579\n", + "2018-09-12 20:59:27,553 : INFO : PROGRESS: pass 4, at document #1600/2819\n", + "2018-09-12 20:59:27,607 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,612 : INFO : topic #0 (0.200): 0.022*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"mail\" + 0.007*\"us\" + 0.007*\"nntp\" + 0.007*\"univers\"\n", + "2018-09-12 20:59:27,612 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"dod\" + 0.005*\"think\" + 0.005*\"good\"\n", + "2018-09-12 20:59:27,613 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:27,614 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.010*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"scienc\"\n", + "2018-09-12 20:59:27,615 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turk\" + 0.006*\"turkei\" + 0.006*\"greek\" + 0.005*\"time\" + 0.004*\"kill\"\n", + "2018-09-12 20:59:27,615 : INFO : topic diff=0.104411, rho=0.173579\n", + "2018-09-12 20:59:27,616 : INFO : PROGRESS: pass 4, at document #1700/2819\n", + "2018-09-12 20:59:27,664 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,669 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"host\" + 0.007*\"mail\" + 0.007*\"nntp\" + 0.007*\"us\" + 0.007*\"univers\"\n", + "2018-09-12 20:59:27,670 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"ride\" + 0.005*\"time\"\n", + "2018-09-12 20:59:27,671 : INFO : topic #2 (0.200): 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.007*\"isra\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:27,672 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"center\" + 0.005*\"point\" + 0.005*\"earth\" + 0.005*\"research\" + 0.005*\"univers\" + 0.004*\"year\"\n", + "2018-09-12 20:59:27,672 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"kill\"\n", + "2018-09-12 20:59:27,673 : INFO : topic diff=0.113257, rho=0.173579\n", + "2018-09-12 20:59:27,674 : INFO : PROGRESS: pass 4, at document #1800/2819\n", + "2018-09-12 20:59:27,720 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,725 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.012*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"univers\" + 0.007*\"nntp\" + 0.007*\"mail\" + 0.007*\"us\"\n", + "2018-09-12 20:59:27,726 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"good\" + 0.005*\"dod\"\n", + "2018-09-12 20:59:27,727 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:27,728 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"point\" + 0.006*\"new\" + 0.005*\"center\" + 0.005*\"earth\" + 0.005*\"univers\" + 0.005*\"research\" + 0.005*\"launch\"\n", + "2018-09-12 20:59:27,728 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"armi\" + 0.005*\"time\"\n", + "2018-09-12 20:59:27,729 : INFO : topic diff=0.115689, rho=0.173579\n", + "2018-09-12 20:59:27,729 : INFO : PROGRESS: pass 4, at document #1900/2819\n", + "2018-09-12 20:59:27,777 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,782 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.015*\"graphic\" + 0.012*\"file\" + 0.011*\"com\" + 0.008*\"host\" + 0.008*\"program\" + 0.008*\"univers\" + 0.008*\"nntp\" + 0.007*\"mail\" + 0.007*\"us\"\n", + "2018-09-12 20:59:27,783 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:27,784 : INFO : topic #2 (0.200): 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"isra\" + 0.008*\"think\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"moral\" + 0.005*\"state\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:27,785 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.012*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"year\" + 0.005*\"research\" + 0.005*\"earth\"\n", + "2018-09-12 20:59:27,785 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"said\" + 0.006*\"serdar\" + 0.006*\"soviet\" + 0.006*\"argic\"\n", + "2018-09-12 20:59:27,786 : INFO : topic diff=0.112068, rho=0.173579\n", + "2018-09-12 20:59:27,900 : INFO : -7.820 per-word bound, 225.9 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n", + "2018-09-12 20:59:27,900 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2018-09-12 20:59:27,954 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:27,959 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"univers\" + 0.008*\"ftp\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.007*\"us\"\n", + "2018-09-12 20:59:27,959 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:27,960 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.008*\"isra\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:27,961 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.014*\"nasa\" + 0.008*\"orbit\" + 0.006*\"center\" + 0.005*\"launch\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"earth\"\n", + "2018-09-12 20:59:27,962 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.007*\"said\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.006*\"argic\" + 0.006*\"soviet\"\n", + "2018-09-12 20:59:27,962 : INFO : topic diff=0.121759, rho=0.173579\n", + "2018-09-12 20:59:27,963 : INFO : PROGRESS: pass 4, at document #2100/2819\n", + "2018-09-12 20:59:28,011 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,016 : INFO : topic #0 (0.200): 0.026*\"imag\" + 0.019*\"file\" + 0.018*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"format\" + 0.010*\"color\" + 0.009*\"program\" + 0.008*\"us\" + 0.008*\"version\"\n", + "2018-09-12 20:59:28,017 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.006*\"think\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"good\"\n", + "2018-09-12 20:59:28,018 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:28,018 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.005*\"launch\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"year\" + 0.004*\"scienc\"\n", + "2018-09-12 20:59:28,019 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.008*\"armenia\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"argic\" + 0.006*\"serdar\" + 0.006*\"genocid\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:28,020 : INFO : topic diff=0.164339, rho=0.173579\n", + "2018-09-12 20:59:28,020 : INFO : PROGRESS: pass 4, at document #2200/2819\n", + "2018-09-12 20:59:28,069 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,074 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.018*\"file\" + 0.016*\"jpeg\" + 0.013*\"graphic\" + 0.010*\"color\" + 0.009*\"format\" + 0.009*\"gif\" + 0.009*\"program\" + 0.008*\"us\" + 0.008*\"com\"\n", + "2018-09-12 20:59:28,075 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:28,075 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"believ\" + 0.005*\"moral\"\n", + "2018-09-12 20:59:28,076 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.005*\"satellit\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"research\"\n", + "2018-09-12 20:59:28,077 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turkei\"\n", + "2018-09-12 20:59:28,077 : INFO : topic diff=0.141308, rho=0.173579\n", + "2018-09-12 20:59:28,078 : INFO : PROGRESS: pass 4, at document #2300/2819\n", + "2018-09-12 20:59:28,129 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,134 : INFO : topic #0 (0.200): 0.022*\"imag\" + 0.017*\"file\" + 0.014*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"format\" + 0.010*\"color\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", + "2018-09-12 20:59:28,135 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-09-12 20:59:28,135 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"arab\" + 0.005*\"believ\"\n", + "2018-09-12 20:59:28,136 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"point\" + 0.005*\"project\" + 0.005*\"data\" + 0.005*\"scienc\" + 0.004*\"satellit\"\n", + "2018-09-12 20:59:28,137 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"come\"\n", + "2018-09-12 20:59:28,137 : INFO : topic diff=0.120548, rho=0.173579\n", + "2018-09-12 20:59:28,138 : INFO : PROGRESS: pass 4, at document #2400/2819\n", + "2018-09-12 20:59:28,186 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,191 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.017*\"file\" + 0.013*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.009*\"color\" + 0.009*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", + "2018-09-12 20:59:28,191 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.007*\"know\" + 0.007*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-09-12 20:59:28,192 : INFO : topic #2 (0.200): 0.011*\"jew\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"state\" + 0.005*\"arab\"\n", + "2018-09-12 20:59:28,193 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.012*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"research\" + 0.005*\"earth\" + 0.004*\"data\" + 0.004*\"point\" + 0.004*\"scienc\"\n", + "2018-09-12 20:59:28,194 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"time\"\n", + "2018-09-12 20:59:28,194 : INFO : topic diff=0.167668, rho=0.173579\n", + "2018-09-12 20:59:28,195 : INFO : PROGRESS: pass 4, at document #2500/2819\n", + "2018-09-12 20:59:28,244 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,249 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.012*\"graphic\" + 0.011*\"jpeg\" + 0.009*\"com\" + 0.008*\"color\" + 0.008*\"gif\" + 0.008*\"program\" + 0.008*\"format\" + 0.007*\"us\"\n", + "2018-09-12 20:59:28,250 : INFO : topic #1 (0.200): 0.018*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"know\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"good\"\n", + "2018-09-12 20:59:28,251 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"believ\" + 0.005*\"state\"\n", + "2018-09-12 20:59:28,251 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"center\" + 0.005*\"research\" + 0.004*\"scienc\" + 0.004*\"earth\" + 0.004*\"mission\"\n", + "2018-09-12 20:59:28,252 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.015*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"kill\" + 0.005*\"turk\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-09-12 20:59:28,253 : INFO : topic diff=0.112645, rho=0.173579\n", + "2018-09-12 20:59:28,253 : INFO : PROGRESS: pass 4, at document #2600/2819\n", + "2018-09-12 20:59:28,302 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,307 : INFO : topic #0 (0.200): 0.018*\"imag\" + 0.016*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.009*\"jpeg\" + 0.008*\"program\" + 0.008*\"color\" + 0.007*\"format\" + 0.007*\"gif\" + 0.007*\"us\"\n", + "2018-09-12 20:59:28,307 : INFO : topic #1 (0.200): 0.018*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"look\"\n", + "2018-09-12 20:59:28,308 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"jew\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"believ\" + 0.005*\"know\"\n", + "2018-09-12 20:59:28,309 : INFO : topic #3 (0.200): 0.022*\"space\" + 0.012*\"launch\" + 0.011*\"nasa\" + 0.008*\"satellit\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"year\" + 0.005*\"center\" + 0.005*\"project\" + 0.004*\"data\"\n", + "2018-09-12 20:59:28,310 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.014*\"turkish\" + 0.011*\"peopl\" + 0.009*\"said\" + 0.007*\"armenia\" + 0.007*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:28,311 : INFO : topic diff=0.155260, rho=0.173579\n", + "2018-09-12 20:59:28,312 : INFO : PROGRESS: pass 4, at document #2700/2819\n", + "2018-09-12 20:59:28,360 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,365 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.015*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"jpeg\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"us\" + 0.007*\"host\"\n", + "2018-09-12 20:59:28,366 : INFO : topic #1 (0.200): 0.018*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\"\n", + "2018-09-12 20:59:28,366 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"jew\" + 0.009*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"state\"\n", + "2018-09-12 20:59:28,367 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"technolog\" + 0.005*\"year\"\n", + "2018-09-12 20:59:28,368 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.012*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"turk\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"soviet\"\n", + "2018-09-12 20:59:28,368 : INFO : topic diff=0.111450, rho=0.173579\n", + "2018-09-12 20:59:28,369 : INFO : PROGRESS: pass 4, at document #2800/2819\n", + "2018-09-12 20:59:28,420 : INFO : merging changes from 100 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,425 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.014*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"version\" + 0.007*\"host\" + 0.007*\"mail\"\n", + "2018-09-12 20:59:28,426 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.011*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", + "2018-09-12 20:59:28,427 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.008*\"jew\" + 0.008*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"right\"\n", + "2018-09-12 20:59:28,427 : INFO : topic #3 (0.200): 0.025*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.007*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"year\" + 0.005*\"project\" + 0.004*\"inform\"\n", + "2018-09-12 20:59:28,428 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\"\n", + "2018-09-12 20:59:28,428 : INFO : topic diff=0.123355, rho=0.173579\n", + "2018-09-12 20:59:28,465 : INFO : -7.738 per-word bound, 213.4 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", + "2018-09-12 20:59:28,466 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2018-09-12 20:59:28,480 : INFO : merging changes from 19 documents into a model of 2819 documents\n", + "2018-09-12 20:59:28,486 : INFO : topic #0 (0.200): 0.018*\"file\" + 0.013*\"imag\" + 0.010*\"graphic\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"version\" + 0.007*\"thank\" + 0.007*\"host\" + 0.007*\"nntp\"\n", + "2018-09-12 20:59:28,486 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.007*\"bike\" + 0.007*\"know\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"einstein\"\n", + "2018-09-12 20:59:28,487 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.007*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.005*\"state\"\n", + "2018-09-12 20:59:28,488 : INFO : topic #3 (0.200): 0.022*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.006*\"new\" + 0.006*\"inform\" + 0.006*\"satellit\" + 0.005*\"orbit\" + 0.005*\"design\" + 0.005*\"scienc\" + 0.005*\"year\"\n", + "2018-09-12 20:59:28,489 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"turk\" + 0.005*\"soviet\" + 0.005*\"know\"\n", + "2018-09-12 20:59:28,489 : INFO : topic diff=0.199679, rho=0.173579\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 18.7 s, sys: 110 ms, total: 18.8 s\n", - "Wall time: 18.8 s\n" + "CPU times: user 10.8 s, sys: 676 ms, total: 11.4 s\n", + "Wall time: 10.7 s\n" ] } ], @@ -368,24 +1573,24 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 13:20:47,926 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-09-25 13:20:47,957 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + "2018-09-12 20:59:28,530 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-09-12 20:59:28,549 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { "data": { "text/plain": [ - "-1.5363353899846062" + "-1.8725255613516496" ] }, - "execution_count": 10, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -402,24 +1607,24 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 13:20:48,133 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-09-25 13:20:48,165 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + "2018-09-12 20:59:28,613 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-09-12 20:59:28,633 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { "data": { "text/plain": [ - "-1.7217224975861698" + "-1.7277803594076822" ] }, - "execution_count": 11, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -443,7 +1648,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -462,16 +1667,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "59.05222374757144" + "55656.79384893339" ] }, - "execution_count": 13, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -482,16 +1687,16 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "323.14210991534367" + "103360.93300773863" ] }, - "execution_count": 14, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -509,25 +1714,25 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.036*\"israel\" + 0.027*\"isra\" + 0.019*\"jew\" + 0.019*\"arab\" + 0.017*\"right\" + 0.017*\"state\" + 0.015*\"peopl\" + 0.013*\"govern\" + 0.013*\"turkish\" + 0.013*\"attack\"'),\n", + " '0.031*\"armenian\" + 0.013*\"turkish\" + 0.008*\"peopl\" + 0.007*\"armenia\" + 0.007*\"turk\" + 0.006*\"govern\" + 0.006*\"turkei\" + 0.006*\"world\" + 0.006*\"russian\" + 0.005*\"villag\"'),\n", " (1,\n", - " '0.020*\"peopl\" + 0.019*\"said\" + 0.017*\"armenian\" + 0.017*\"know\" + 0.012*\"went\" + 0.011*\"like\" + 0.011*\"come\" + 0.010*\"apart\" + 0.010*\"sai\" + 0.010*\"azerbaijani\"'),\n", + " '0.017*\"peopl\" + 0.016*\"said\" + 0.015*\"know\" + 0.010*\"like\" + 0.009*\"sai\" + 0.009*\"come\" + 0.008*\"went\" + 0.008*\"time\" + 0.008*\"look\" + 0.007*\"go\"'),\n", " (2,\n", - " '0.034*\"god\" + 0.020*\"believ\" + 0.020*\"exist\" + 0.015*\"peopl\" + 0.015*\"atheist\" + 0.015*\"christian\" + 0.014*\"atheism\" + 0.013*\"religion\" + 0.012*\"thing\" + 0.011*\"mean\"'),\n", + " '0.019*\"god\" + 0.011*\"exist\" + 0.010*\"believ\" + 0.007*\"atheist\" + 0.007*\"christian\" + 0.007*\"atheism\" + 0.007*\"argument\" + 0.006*\"peopl\" + 0.006*\"religion\" + 0.006*\"evid\"'),\n", " (3,\n", - " '0.026*\"imag\" + 0.025*\"jpeg\" + 0.014*\"file\" + 0.012*\"program\" + 0.011*\"format\" + 0.010*\"us\" + 0.009*\"avail\" + 0.009*\"softwar\" + 0.009*\"ftp\" + 0.009*\"graphic\"'),\n", + " '0.035*\"jpeg\" + 0.023*\"imag\" + 0.013*\"file\" + 0.011*\"program\" + 0.011*\"format\" + 0.009*\"us\" + 0.009*\"softwar\" + 0.009*\"displai\" + 0.009*\"avail\" + 0.007*\"set\"'),\n", " (4,\n", - " '0.047*\"space\" + 0.019*\"nasa\" + 0.016*\"orbit\" + 0.013*\"satellit\" + 0.013*\"launch\" + 0.011*\"mission\" + 0.010*\"year\" + 0.010*\"new\" + 0.009*\"earth\" + 0.008*\"data\"')]" + " '0.027*\"space\" + 0.011*\"nasa\" + 0.008*\"satellit\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.005*\"mission\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"technolog\" + 0.005*\"shuttl\"')]" ] }, - "execution_count": 15, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -538,7 +1743,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -556,7 +1761,7 @@ " '0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"like\"')]" ] }, - "execution_count": 16, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -574,7 +1779,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 138, "metadata": {}, "outputs": [], "source": [ @@ -587,16 +1792,16 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 139, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8.624692869468236" + "8.563342468627981" ] }, - "execution_count": 18, + "execution_count": 139, "metadata": {}, "output_type": "execute_result" } @@ -607,15 +1812,15 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 142, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 35.9 s, sys: 8.65 s, total: 44.5 s\n", - "Wall time: 14.5 s\n" + "CPU times: user 31 s, sys: 7.28 s, total: 38.3 s\n", + "Wall time: 11.5 s\n" ] } ], @@ -630,7 +1835,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 143, "metadata": {}, "outputs": [ { @@ -639,7 +1844,7 @@ "8.300690481807766" ] }, - "execution_count": 20, + "execution_count": 143, "metadata": {}, "output_type": "execute_result" } @@ -657,7 +1862,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 158, "metadata": {}, "outputs": [], "source": [ @@ -698,6 +1903,1040 @@ " return self.nmf.get_topics()" ] }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'data': ['From: John Lussmyer \\nSubject: Re: DC-X update???\\nOrganization: Mystery Spot BBS\\nReply-To: dragon@angus.mi.org\\nLines: 12\\n\\nhenry@zoo.toronto.edu (Henry Spencer) writes:\\n\\n> The first flight will be a low hover that will demonstrate a vertical\\n> landing. There will be no payload. DC-X will never carry any kind\\n\\nExactly when will the hover test be done, and will any of the TV\\nnetworks carry it. I really want to see that...\\n\\n--\\nJohn Lussmyer (dragon@angus.mi.org)\\nMystery Spot BBS, Royal Oak, MI --------------------------------------------?--\\n\\n',\n", + " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 25\\n\\nDear Mr. Beyer:\\n\\nIt is never wise to confuse \"freedom of speech\" with \"freedom\"\\nof racism and violent deragatory.\"\\n\\nIt is unfortunate that many fail to understand this crucial \\ndistinction.\\n\\nIndeed, I find the latter in absolute and complete contradiction\\nto the former. Racial invective tends to create an atmosphere of\\nintimidation where certain individuals (who belong to the group\\nunder target group) do not feel the ease and liberty to exercise \\n*their* fundamental \"freedom of speech.\"\\n\\nThis brand of vilification is not sanctioned under \"freedom of\\nspeech.\\n\\nSalam,\\n\\nJohn Absood\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", + " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 16\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n \\n> \"Wait. You just said that humans are rarely reasonable. Doesn\\'t that\\n> contradict atheism, where everything is explained through logic and\\n> reason? This is THE contradiction in atheism that proves it false.\"\\n> --- Bobby Mozumder proving the existence of Allah, #2\\n\\nDoes anybody have Bobby\\'s post in which he said something like \"I don\\'t\\nknow why there are more men than women in islamic countries. Maybe it\\'s\\natheists killing the female children\"? It\\'s my personal favorite!\\n\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", + " \"From: gdoherty@us.oracle.com (Greg Doherty)\\nSubject: BMW '90 K75RT For Sale\\nDistribution: ca\\nOrganization: Oracle Corporation\\nLines: 11\\nOriginator: gdoherty@kr2seq.us.oracle.com\\nNntp-Posting-Host: kr2seq.us.oracle.com\\nX-Disclaimer: This message was written by an unauthenticated user\\n at Oracle Corporation. The opinions expressed are those\\n of the user and not necessarily those of Oracle.\\n\\n[this is posted for a friend, please reply to dschick@holonet.net]\\n\\n1990 BMW K75RT FOR SALE\\n\\nAsking 5900.00 or best offer.\\nThis bike has a full faring and is great for touring or commuting. It has\\nabout 30k miles and has been well cared for. The bike comes with one hard\\nsaddle bag (the left one; the right side bag was stolen), a Harro tank bag\\n(the large one), and an Ungo Box alarm. Interested? Then Please drop me a\\nline.\\nDAS\\n\",\n", + " 'From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: NONE\\nLines: 21\\n\\nIn article <1993Apr17.185118.10792@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n|> In article <1993Apr16.195452.21375@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n|> >04/16/93 1045 ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\n|> >\\n|> \\n|> Ermenistan kasiniyor...\\n|> \\n|> Let me translate for everyone else before the public traslation service gets\\n|> into it\\t: Armenia is getting itchy. \\n|> \\n|> Esin.\\n\\n\\nLet me clearify Mr. Turkish;\\n\\nARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that SHE\\nWILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\ntricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\nCYPRESS WHILE the world simply WATCHED. \\n\\n\\n',\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: End of the Space Age?\\nOrganization: Express Access Online Communications USA\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nOddly, enough, The smithsonian calls the lindbergh years\\nthe golden age of flight. I would call it the granite years,\\nreflecting the primitive nature of it. It was romantic,\\nswashbuckling daredevils, \"those daring young men in their flying\\nmachines\". But in reality, it sucked. Death was a highly likely\\noccurence, and the environment blew. Ever see the early navy\\npressure suits, they were modified diving suits. You were ready to\\nstar in \"plan 9 from outer space\". Radios and Nav AIds were\\na joke, and engines ran on castor oil. They picked and called aviators\\n\"men with iron stomachs\", and it wasn\\'t due to vertigo.\\n\\nOddly enough, now we are in the golden age of flight. I can hop the\\nshuttle to NY for $90 bucks, now that\\'s golden.\\n\\nMercury gemini, and apollo were romantic, but let\\'s be honest.\\nPeeing in bags, having plastic bags glued to your butt everytime\\nyou needed a bowel movement. Living for days inside a VW Bug.\\nRomantic, but not commercial. The DC-X points out a most likely\\nnew golden age. An age where fat cigar smoking business men in\\nloud polyester space suits will fill the skys with strip malls\\nand used space ship lots.\\n\\nhhhmmmmm, maybe i\\'ll retract that golden age bit. Maybe it was\\nbetter in the old days. Of course, then we\\'ll have wally schirra\\ntelling his great grand children, \"In my day, we walked on the moon.\\nEvery day. Miles. no buses. you kids got it soft\".\\n\\npat\\n',\n", + " 'From: dean@fringe.rain.com (Dean Woodward)\\nSubject: Re: Drinking and Riding\\nOrganization: Organization for Mass Confusion.\\nLines: 36\\n\\ncjackson@adobe.com (Curtis Jackson) writes:\\n\\n> In article MJMUISE@1302.wats\\n> }I think the cops and \"Don\\'t You Dare Drink & Drive\" (tm) commercials will \\n> }usually say 1hr/drink in general, but after about 5 drinks and 5 hrs, you \\n> }could very well be over the legal limit. \\n> }Watch yourself.\\n> \\n> Indeed, especially if you are \"smart\" and eat some food with your\\n> drink. The food coating the stomach lining (especially things like\\n> milk) can temporarily retard the absorption of alcohol. When the\\n> food is digested, the absorption will proceed, and you will\\n> actually be drunker (i.e., have a higher instantaneous BAC) than\\n> you would have been if you had drunk 1 drink/hr. on an empty stomach.\\n> \\n> Put another way, food can cause you to be less drunk than drinking on\\n> an empty stomach early on in those five hours, but more drunk than\\n> drinking on an empty stomach later in those five hours.\\n> -- \\n> Curtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\n> DoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\\n> \"There is no justification for taking away individuals\\' freedom\\n> in the guise of public safety.\" -- Thomas Jefferson\\n\\nAgain, from my alcohol server\\'s class:\\nThe absolute *most* that eating before drinking can do is slow the absorption\\ndown by 15 minutes. That gives me time to eat, slam one beer, and ride like\\nhell to try to make it home in the 10 minutes left after paying, donning \\nhelmet & gloves, starting bike...\\n\\n\\n--\\nDean Woodward | \"You want to step into my world?\\ndean@fringe.rain.com | It\\'s a socio-psychotic state of Bliss...\"\\n\\'82 Virago 920 | -Guns\\'n\\'Roses, \\'My World\\'\\nDoD # 0866\\n',\n", + " 'From: klinger@ccu.umanitoba.ca (Jorg Klinger)\\nSubject: Re: Riceburner Respect\\nNntp-Posting-Host: ccu.umanitoba.ca\\nOrganization: University of Manitoba, Winnipeg, Canada\\nLines: 28\\n\\nIn <1993Apr15.192558.3314@icomsim.com> mmanning@icomsim.com (Michael Manning) writes:\\n\\n>In article craig@cellar.org (Saint Craig) \\n>writes:\\n>> shz@mare.att.com (Keeper of the \\'Tude) writes:\\n>> \\n\\n>Most people wave or return my wave when I\\'m on my Harley.\\n>Other Harley riders seldom wave back to me when I\\'m on my\\n>duck. Squids don\\'t wave, or return waves ever, even to each\\n>other, from what I can tell.\\n\\n\\n When we take a hand off the bars we fall down!\\n\\n__\\n Jorg Klinger | GSXR1100 | If you only new who\\n Arch. & Eng. Services |\"Lost Horizons\" CR500 | I think I am. \\n UManitoba, Man. Ca. |\"The Embalmer\" IT175 | - anonymous\\n\\n --Squidonk-- \\n\\n\\n\\n\\n\\n\\n\\n',\n", + " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Israeli Terrorism\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 8\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n As someone who reads Israeli newpapaers every day, I can state\\nwith absolute certainty, that anybody who relies on western media\\nto get a picture of what is happening in Israel is not getting an\\naccurate picture. There is tremendous bias in those stories that\\ndo get reported. And the stories that NEVER get mentioned create\\na completely false picture of the mideast.\\n\\n',\n", + " 'From: dwarner@sceng.ub.com (Dave Warner)\\nSubject: Sabbatical (and future flames)\\nSummary: I\\'m outta here\\nLines: 32\\nNntp-Posting-Host: 128.203.2.156\\nOrganization: Ungermann-Bass SSE\\n\\nSo, I begin my 6 week sabbatical in about 15 minutes. Six wonderful weeks\\nof riding, and no phones or email.\\n\\nI won\\'t have any way to check mail (or setup a vacation agent, no sh*t!), \\nthough I can dial in and get newsfeed, (dont ask), so if there are any \\noutstanding CFC\\'s or such things,please try my compuserve address:\\n\\n72517.3356@compuserve.com\\n\\nAnybody wants to do some WEEKDAY rides around the BA, send me a mail\\nto above or post here.\\n\\nI\\'ll be thinking about all of you stuck if front of your\\nterminals......\"Sheeyaahhh, and monkeys might fly out of my butt...\"\\nride safe,\\ndave\\n\\n\\n\\n-------------------------------------------------------------------------\\n Sense AIN\\'T common....\\n\\nDave Warner Opinions unlikely to be shared\\nAMA 687955/HOG 0588773/DoD 870\\t by my employer or anyone else\\ndwarner@sceng.ub.com _Signature on file_ \\ndwarner@milo.ub.com 72517.3356@compuserve.com \\n\\'93 FXSTS \\'71 T120 (Stolen)\\n\\n-------------------------------------------------------------------------\\n\\n\\n\\n',\n", + " \"From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Anti-Zionism is Racism\\nOrganization: NYSERNet, Inc.\\nLines: 14\\n\\nB8HA000 writes:\\n\\n>In Re:Syria's Expansion, the author writes that the UN thought\\n>Zionism was Racism and that they were wrong. They were correct\\n>the first time, Zionism is Racism and thankfully, the McGill Daily\\n>(the student newspaper at McGill) was proud enough to print an article\\n>saying so. If you want a copy, send me mail.\\n\\n>Steve\\n\\nJust felt it was important to add four letters that Steve left out of\\nhis Subject: header.\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n\",\n", + " 'From: Center for Policy Research \\nSubject: Desertification of the Negev\\nNf-ID: #N:cdp:1483500361:000:5123\\nNf-From: cdp.UUCP!cpr Apr 25 05:25:00 1993\\nLines: 104\\n\\n\\nFrom: Center for Policy Research \\nSubject: Desertification of the Negev\\n\\n\\nThe desertification of the arid Negev\\n------------------------------------- by Moise Saltiel, I&P March\\n1990\\n\\nI. The Negev Bedouin Before and After 1948 II. Jewish\\nAgricultural Settlement in the Negev III. Development of the\\nNegev\\'s Rural Population IV. Economic Situation of Jewish\\nSettlements in 1990 V. Failure in Settling the Arava Valley\\nVI. Failure in Settling the Central Mountains VII. Failure in\\nMaking the Negev \"Bedouinenrein\" (Cleansing the Negev of Bedouins)\\nVIII. Transforming Bedouin into Low-Paid Workers IX.. Failure\\nin Settling the \"Development Towns\" X. Jordan Water to the\\nNegev: A Strategic Asset XI. The Negev Becomes a Dumping\\nGround XII. The Dimona Nuclear Plant XIII. The Negev as a\\nMilitary Base XIV. The Negev in the Year 2000\\n\\nJust after the creation of the State of Israel, the phrase \"the\\nJewish pioneers will make the desert bloom\" was trumpeted\\nthroughout the Western world. After the Six Day War in 1967, David\\nBen-Gurion declared in a letter to Charles de Gaulle: \"It\\'s by our\\npioneering creation that we have transformed a poor and arid land\\ninto a fertile land, created built-up areas, towns and villages in\\nabandoned desert areas\".\\n\\nContrary to Ben-Gurion\\'s assertion, it must be affirmed that\\nduring the 26 years of the British mandate over Palestine and for\\ncenturies previous, a productive human presence was to be found in\\nall parts of the Negev desert - in the very arid hills and valleys\\nof the southern Negev as well as in the more fertile north. These\\nwere the Bedouin Arabs.\\n\\nThe real desertification of the Negev, mainly in the southern\\npart, occurred after Israel\\'s dispossession of the Bedouin\\'s\\ncultivated lands and pastures. Nowadays, the majority of the\\n12,800 square-kilometer Negev, which represents 62 percent of the\\nState of Israel (pre-1967 borders), has been desertified beyond\\nrecognition. The main new occupiers of the formerly Bedouin Negev\\nare the Israeli army; the Nature Reserves Authority, whose chief\\nrole is to prevent Bedouin from roaming their former pasture\\nlands; and vast industrial zones, including nuclear reactors and\\ndumping grounds for chemical, nuclear and other wastes. Israeli\\nJews in the Negev today cultivate less than half the surface area\\ncultivated by the Bedouin before 1948, and there is no Jewish\\npastoral activity.\\n\\nI. Agricultural and pastoral activities of the Negev Bedouin\\nbefore and after 1948\\n-------------------------------------------------- In 1942,\\naccording to British mandatory statistics, the Beersheba\\nsub-district (which corresponds more or less to Israel\\'s Negev, or\\nSouthern, district) had 52,000 inhabitants, almost all Bedouin\\nArabs, who held 11,500 camels, 6,000 cows and oxen, 42,000 sheep\\nand 22,000 goats.\\n\\nThe majority of the Bedouin lived a more or less sedentary life in\\nthe north, where precipitation ranged between 200 and 350 mm per\\nyear. In 1944 they cultivated about 200,000 hectares of the\\nBeersheba district - i.e. 16 percent of its total area and *more\\nthan double the area cultivated by the Negev\\'s Jewish settlers\\nafter 40 years of \"making the desert bloom\"*\\n\\nThe Bedouin had a very low crop yield - 350 to 400 kilograms of\\nbarley per hectare during rainy years - and their farming\\ntechniques were primitive, but production was based solely on\\nanimal and human labor. It must also be underscored that animal\\nproduction, although low, was based entirely on pasturing.\\nProduction increased considerably during the rainy years and\\ndiminished significantly during drought years. All Bedouin pasture\\nanimals - goats, camels and sheep - had the ability to gain weight\\nquickly over the relatively rainy winters and to withstand many\\nwaterless days during the hot summers. These animals were the\\nresult of a centuries-old process of natural selection in harsh\\nlocal conditions.\\n\\nAfter the creation of the State of Israel, 80 percent of the Negev\\nBedouin were expelled to the Sinai or to Southern Jordan. The\\n10,000 who were allowed to remain were confined to a territory of\\n40,000 hectares in a region were annual mean precipiation was 150\\nmm - a quantity low enough to ensure a crop failure two years out\\nof three. The rare water wells in the south and central Negev,\\nspring of life in the desert, were cemented to prevent Bedouin\\nshepherds from roaming.\\n\\nA few Bedouin shepherds were allowed to stay in the central Negev.\\nBut after 1982, when the Sinai was returned to Egypt, these\\nBedouin were also eliminated. At the same time, strong pressure\\nwas applied on the Bedouin to abandon cultivation of their fields\\nin order that the land could be transferred to the army.\\n\\nNo reliable statistics exist concerning the amount of land held\\ntoday by Negev Bedouin. It is a known fact that a large part of\\nthe 40,000 hectares they cultivated in the 1950s has been seized\\nby the Israeli authorities. Indeed, most of the Bedouin are now\\nconfined to seven \"development towns\", or *sowetos*, established\\nfor them.\\n\\n(the rest of the article is available from Elias Davidsson, email:\\nelias@ismennt.is)\\n\\n',\n", + " 'From: mcguire@cs.utexas.edu (Tommy Marcus McGuire)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: CS Dept, University of Texas at Austin\\nLines: 36\\nDistribution: world\\nNNTP-Posting-Host: cash.cs.utexas.edu\\n\\nIn article <1qmetg$g2n@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n[...]\\n>horse\\'s neck in the direction you wish to go. When training a\\n>plow-steering horse to neck-rein, one technique is to cross the reins\\n>under his necks. Thus, when neck-reining to the left, the right rein\\n ^^^^^\\n[...]\\n>Ed Green, former Ninjaite |I was drinking last night with a biker,\\n[...]\\n\\n\\nGiven my desire to stay as far away as possible from farming and ranching\\nequipment, I really hate to jump into this thread. I\\'m going to anyway,\\nbut I really hate it.\\n\\nEd, exactly what kind of mutant horse-like entity do you ride, anyway?\\nDoes countersteering work on the normal, garden-variety, one-necked horse?\\n\\nObmoto: I was flipping through the March (I think) issue of Rider, and I\\nsaw a small pseudo-ad for a book on hand signals appropriate to motorcycling.\\nIt mentioned something about a signal for \"Your passenger is on fire.\" Any\\nbody know the title and author of this book, and where I could get a copy?\\nThis should not be understood as implying that I have grown sociable enough\\nto ride with anyone, but the book sounded cute.\\n\\n\\n\\n\\n-----\\nTommy McGuire\\nmcguire@cs.utexas.edu\\nmcguire@austin.ibm.com\\n\\n\"...I will append an appropriate disclaimer to outgoing public information,\\nidentifying it as personal and as independent of IBM....\"\\n\\n',\n", + " \"From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: Boom! Dog attack!\\nOrganization: the HP Corporate notes server\\nLines: 30\\n\\nSeveral years ago, while driving a cage, a dog darted out at a quiet\\nintersection right in front of me but there was enough distance\\nbetween us so I didn't have to slow down. However, a 2nd dog\\nsuddenly appeared and collided with my right front bumper and\\nthe force of the impact was enough to kill that Scottish Terrier.\\n\\nApparently, it was following the 1st dog. Henceforth, if a dog\\ndecides to cross the street, keep an eye out for a 2nd dog as\\nmany dogs like to travel in pairs or packs. \\n\\nI've yet to experience a dog chasing me on my black GL1200I which\\nhas a pretty loud OEM horn (not as good as Fiamms, but good enuff)\\nbut the bike is large and heavy enough to run right over one of\\nthe smaller nippers while the larger ones would have trouble\\ngetting my leg between the saddlebags and engine guards. I'd\\ndef feel more vulnerable on my '68 Trump as that'd be easier\\nleg chewing target for those mongrels.\\n\\nIf there's a persistent dog running after bikers despite\\ncomplaints to the owner I wouldn't be adverse to running\\nover it with my truck as a dogs life isn't worth much IMHO\\ncompared to a child riding a bike who gets knocked to the\\nground by said dog and dies from a head injury. \\n\\nAny dog in the neighborhood that's vicious or a public menace\\nrunning about unleashed is fair game as road kill candidate.\\n\\nGraeme Harrison\\n(gharriso@hpcc01.corp.hp.com) DoD#649 \\n\\n\",\n", + " 'Subject: Re: Video in/out\\nFrom: djlewis@ualr.edu\\nOrganization: University of Arkansas at Little Rock\\nNntp-Posting-Host: athena.ualr.edu\\nLines: 40\\n\\nIn article <1993Apr18.080719.4773@nwnexus.WA.COM>, mscrap@halcyon.com (Marta Lyall) writes:\\n> Organization: \"A World of Information at your Fingertips\"\\n> Keywords: \\n> \\n> In article <628@toontown.columbiasc.ncr.com> craig@toontown.ColumbiaSC.NCR.COM (Craig S. Williamson) writes:\\n>>\\n>>I\\'m getting ready to buy a multimedia workstation and would like a little\\n>>advice. I need a graphics card that will do video in and out under windows.\\n>>I was originally thinking of a Targa+ but that doesn\\'t work under Windows.\\n>>What cards should I be looking into?\\n>>\\n>>Thanks,\\n>>Craig\\n>>\\n>>-- \\n>> \"To forgive is divine, to be\\n>>-Craig Williamson an airhead is human.\"\\n>> Craig.Williamson@ColumbiaSC.NCR.COM -Balki Bartokomas\\n>> craig@toontown.ColumbiaSC.NCR.COM (home) Perfect Strangers\\n> \\n> \\n> Craig,\\n> \\n> You should still consider the Targa+. I run windows 3.1 on it all the\\n> time at work and it works fine. I think all you need is the right\\n> driver. \\n> \\n> Josh West \\n> email: mscrap@halcyon.com\\n> \\nAT&T also puts out two new products for windows, Model numbers elude me now,\\na 15 bit video board with framegrabber and a 16bit with same. Yesterday I\\nwas looking at a product at a local Software ETC store. Media Vision makes\\na 15bit (32,768 color) frame capture board that is stand alone and doesnot\\nuse the feature connector on your existing video card. It claims upto 30 fps\\nlive capture as well as single frame from either composite NTSC or s-video\\nin and out.\\n\\nDon Lewis\\n\\n',\n", + " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Yeah, Right\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 49\\nDistribution: world\\nNNTP-Posting-Host: agar.engin.umich.edu\\n\\nIn article <66014@mimsy.umd.edu> mangoe@cs.umd.edu (Charley Wingate) writes:\\n>Benedikt Rosenau writes:\\n>\\n>>And what about that revelation thing, Charley?\\n>\\n>If you\\'re talking about this intellectual engagement of revelation, well,\\n>it\\'s obviously a risk one takes.\\n\\n Ah, now here is the core question. Let me suggest a scenario.\\n\\n We will grant that a God exists, and uses revelation to communicate\\nwith humans. (Said revelation taking the form (paraphrased from your\\nown words) \\'This infinitely powerful deity grabs some poor schmuck,\\nmakes him take dictation, and then hides away for a few hundred years\\'.)\\n Now, there exists a human who has not personally experienced a\\nrevelation. This person observes that not only do these revelations seem\\nto contain elements that contradict rather strongly aspects of the\\nobserved world (which is all this person has ever seen), but there are\\nmany mutually contradictory claims of revelation.\\n\\n Now, based on this, can this person be blamed for concluding, absent\\na personal revelation of their own, that there is almost certainly\\nnothing to this \\'revelation\\' thing?\\n\\n>I\\'m not an objectivist, so I\\'m not particularly impressed with problems of\\n>conceptualization. The problem in this case is at least as bad as that of\\n>trying to explain quantum mechanics and relativity in the terms of ordinary\\n>experience. One can get some rough understanding, but the language is, from\\n>the perspective of ordinary phenomena, inconsistent, and from the\\n>perspective of what\\'s being described, rather inexact (to be charitable).\\n>\\n>An analogous situation (supposedly) obtains in metaphysics; the problem is\\n>that the \"better\" descriptive language is not available.\\n\\n Absent this better language, and absent observations in support of the\\nclaims of revelation, can one be blamed for doubting the whole thing?\\n\\n Here is what I am driving at: I have thought a long time about this. I\\nhave come to the honest conclusion that if there is a deity, it is\\nnothing like the ones proposed by any religion that I am familiar with.\\n Now, if there does happen to be, say, a Christian God, will I be held\\naccountable for such an honest mistake?\\n\\n Sincerely,\\n\\n Ray Ingles ingles@engin.umich.edu\\n\\n \"The meek can *have* the Earth. The rest of us are going to the\\nstars!\" - Robert A. Heinlein\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nOrganization: Express Access Online Communications USA\\nLines: 7\\nNNTP-Posting-Host: access.digex.net\\n\\n Besides this was the same line of horse puckey the mining companies claimed\\nwhen they were told to pay for restoring land after strip mining.\\n\\nthey still mine coal in the midwest, but now it doesn't look like\\nthe moon when theyare done.\\n\\npat\\n\",\n", + " 'From: beck@irzr17.inf.tu-dresden.de (Andre Beck)\\nSubject: Re: Fonts in POV??\\nOrganization: Dept. of Computer Science, TU Dresden, Germany.\\nLines: 57\\nDistribution: world\\nReply-To: Andre_Beck@IRS.Inf.TU-Dresden.DE\\nNNTP-Posting-Host: irzr17.inf.tu-dresden.de\\nKeywords: fonts, raytrace\\n\\n\\nIn article <1qg9fc$et9@wampyr.cc.uow.edu.au>, g9134255@wampyr.cc.uow.edu.au (Coronado Emmanuel Abad) writes:\\n|> \\n|> \\n|> \\tI have seen several ray-traced scenes (from MTV or was it \\n|> RayShade??) with stroked fonts appearing as objects in the image.\\n|> The fonts/chars had color, depth and even textures associated with\\n|> them. Now I was wondering, is it possible to do the same in POV??\\n|> \\n\\nHi Noel,\\n\\nI\\'ve made some attempts to write a converter that reads Adobe Type 1 fonts,\\ntriangulates them, bevelizes them and extrudes them to result in a generic\\n3d object which could be used with PoV f.i.\\n\\nThe problem I\\'m currently stuck on is that theres no algorithm which\\ntriangulates any arbitrary polygonal shape. Delaunay seems to be limited\\nto convex hulls. Constrained delaunay may be okay, but I have no code\\nexample of how to do it.\\n\\nAnother way to do the bartman may be\\n\\n- TGA2POV\\n- A selfmade variation of this, using heightfields.\\n\\n Create a b/w picture (BIG) of the text you need, f.i. using a PostScript\\n previewer. Then, use this as a heightfield. If it is white on black,\\n the heightfield is exactly the images white parts (it\\'s still open\\n on the backside). To close it, mirror it and compound it with the original.\\n\\nExample:\\n\\nobject {\\n union {\\n height_field { gif \"abp2.gif\" }\\n height_field { gif \"abp2.gif\" scale <1 -1 1>}\\n }\\n texture {\\n Glass\\n }\\n translate <-0.5 0 -0.5> //center\\n rotate <-90 0 0> // rotate upwards\\n scale <10 5 100> // scale bigger and thicker\\n translate <0 2 0> // final placement\\n}\\n\\n\\nabp2.gif is a GIF of arbitrary size containing \"ABP\" black on white in\\nTimes-Roman 256 points.\\n\\n--\\n+-o-+--------------------------------------------------------------+-o-+\\n| o | \\\\\\\\\\\\- Brain Inside -/// | o |\\n| o | ^^^^^^^^^^^^^^^ | o |\\n| o | Andre\\' Beck (ABPSoft) mehl: Andre_Beck@IRS.Inf.TU-Dresden.de | o |\\n+-o-+--------------------------------------------------------------+-o-+\\n',\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: \"Conventional Proposales\": Israel & Palestinians\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 117\\n\\nIn article <2BCA3DC0.13224@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n>\\n>The latest Israeli \"proposal\", first proposed in February of 1992, contains \\n>the following assumptions concerning the nature of any \"interim status\" refering to the WB and Gaza, the Palestinians, implemented by negotiations. It\\n>states that: \\n> >Israel will remain the existing source of authority until \"final status\"\\n> is agreed upon;\\n> >Israel will negiotiate the delegation of power to the organs of the \\n> Interim Self-Government Arrangements (ISGA);\\n> >The ISGA will apply to the \"Palestinian inhabitants of the territories\"\\n> under Israeli military administration. The arrangements will not have a \\n> territorial application, nor will they apply to the Israeli population \\n> of the territories or to the Palestinian inhabitants of Jerusalem;\\n> >Residual powers not delegated under the ISGA will be reserved by Israel;\\n> >Israelis will continue to live and settle in the territoriesd;\\n> >Israel alone will have responsibility for security in all its aspects-\\n> external, internal- and for the maintenance of public order;\\n> >The organs of the ISGA will be of an administrative-functional nature;\\n> >The exercise of powers under the ISGA will be subject to cooperation and \\n> coordination with Israel. \\n> >Israel will negotiate delegation of powers and responsibilities in the \\n> areas of administration, justice, personnel, agriculture, education,\\n> business, tourism, labor and social welfare, local police,\\n> local transportation and communications, municipal affairs and religious\\n> affairs.\\n>\\n>The Palestinian counterproposal of March 1992:\\n> >The establishment of a Palestinian Interim Self-Governing Authority \\n> (PISGA) whose authority is vested by the Palestinian people;\\n> >Its (PISGA) powers cannot be delegated by Israel;\\n> >In the interim phase the Israeli military government and civil adminis-\\n> tration will be abolished, and the PISGA will asume the powers previous-\\n> ly enjoyed by Israel;\\n> >There will be no limitations on its (PISGA) powers and responsibilities \\n> \"except those which derive from its character as an interim arrangement\";\\n> >By the time PISGA is inaugurated, the Israeli armed forces will have \\n> completed their withdrawal to agreed points along the borders of the \\n> Occupied Palestinian Territory (OPT). The OPT includes Jerusalem;\\n> >The jurisdiction of the PISGA shall extend to all of the OPT, including \\n> its land, water and air space;\\n> >The PISGA shall have legislative powers to enact, amend and abrogate laws;\\n> >It will wield executive power withput foreign control;\\n> >It shall determine the nature of its cooperation with any state or \\n> international body, and shall be empowered to conclude binding coopera-\\n> tive agreements free of any control by Israel;\\n> >The PISGA shall administer justice throughout the OPT and will have sole\\n> and exclusive jruisdiction;\\n> >It will have a strong police force responsible for security and public\\n> order in the OPT;\\n> >It can request the assistance of a UN peacekeeping force;\\n> >Disputes with Israel over self-governing arrangements will be settled by \\n> a committee composed of representatives of the five permanent members of\\n> the UN Security Council, the Secretary General (of the UN), the PISGA, \\n> Jordan, Egypt, Syria and Israel.\\n>\\n>But perhaps the \"bargaining\" attitude behind these very different visions\\n>of the \"interim stage\" is wrong? For two reasons: 1) the present Palestinian \\n>and Israeli leadership are *as moderate* as is likely to exist for many years,\\n>so the present opportunity may be the last for a significant period, 2) since\\n>these negotiations *are not* designed to, or even attempting to, resolve the \\n>conflict, attention to issues dealing with a desired \"final status\" are mis-\\n>placed and potentially destructive.\\n>\\n>Given this, how should proposals (from either side) be altered to temper\\n>their \"maximalist\" approaches as stated above? How can Israeli worries ,and \\n>desire for some \"interim control\", be addressed while providing for a very \\n>*real* interim Palestinian self-governing entity?\\n>\\n>Tim\\n> \\nApril 13, 1993 response by Al Moore (L629159@LMSC5.IS.LMSC.LOCKHEED.COM):\\n\\nBasically the problem is that Israel may remain, or leave, the occupied \\nterritories; it cannot do both, it cannot do neither. So far, Israe \\ncontinues to propose that they remain. The Palestinians propose that they \\nleave. Why should either change their view? It is worth pointing out that \\nthe only area of compromise accomodating both views seems to require a\\nreduction in the Israeli presence. Israel proposes no such reduction....\\nand in fact may be said to *not* be negotiating.\\n------------------------------------------------------------------------\\n\\nTim: \\n\\nThere seem to be two perceptions that **have to be addressed**. The\\nfirst is that of Israel, where there is little trust for Arab groups, so\\nthere is little support for Israel giving up **tangible** assets in \\nexchange for pieces of paper, \"expectations\", \"hopes\", etc. The second\\nis that of the Arab world/Palestinians, where there is the demand that\\nthese \"tangible concessions\" be made by Israel **without** it receiving\\nanything **tangible** back. Given this, the gap between the two stances\\nseems to be the need by Israel of receiving some ***tangible*** returns\\nfor its expected concessions. By \"tangible\" is meant something that\\n1) provides Israel with \"comparable\" protection (from the land it is to \\ngive up), 2) in some way ensures that the Arab states and Palestine \\n**will be** accountable and held actively (not just \"diplomatically) \\nresponsible for the upholding of all actions on its territory (by citizens \\nor \"visitors\").\\n\\nIn essence I do not believe that Israel objections to Palestinian\\nstatehood would be anywhere near as strong as they are now IF Israel\\nwas assured that any new Palestinian state *would be committed to** \\nco-existing with Israel and held responsible for ALL attacks on Israel \\nfrom its territory.\\n\\tAside from some of the rather slanted proposals above,\\n\\thow *could* such \"guarantees\" be instilled? For example,\\n\\thow could such \"guarantees\"/\"controls\" be added to the\\n\\tPalestinian PISGA proposals?\\n\\nIsrael is hanging on largely because it is scared stiff that the minute\\nit lets go (gives lands back to Arab states, no more \"buffer zone\", gives\\nfull autonomy to Palestinians), ANY and/or ALL of the Arab parties\\ncould (and *would*, if not \"controlled\" somehow) EASILY return to the \\ntraditional anti-Israel position. The question then is HOW to *really*\\nensure that that will not happen.\\n\\nTim\\n\\n',\n", + " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: Re: Israel\\'s Expansion\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 34\\n\\n\\nIn article <18APR93.15729846.0076@VM1.MCGILL.CA>, B8HA000 writes:\\n>Just a couple of questions for the pro-Israeli lobby out there:\\n>\\n>1) Is Israel\\'s occupation of Southern Lebanon temporary? For Mr.\\n>Stein: I am working on a proof for you that Israel is diverting\\n>water to the Jordan River (away from Lebanese territory).\\n\\nYes. As long as the goverment over there can force some authority and prevent\\nterrorists attack against Israel. \\n\\n>\\n>2) Is Israel\\'s occupation of the West Bank, Gaza, and Golan\\n>temporary? If so (for those of you who support it), why were so\\n>many settlers moved into the territories? If it is not temporary,\\n>let\\'s hear it.\\n\\nSinai had several big cities that were avcuated when isreal gave it back to\\nEgypth, but for a peace agreement. So it is my opinin that the settlers will not\\nbe an obstacle for withdrawal as long it is combined with a real peace agreement\\nwith the Arabs and the Palastinians.\\n\\n>\\n>Steve\\n>\\n\\n\\nNaftaly\\n\\n---\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", + " \"From: sproulx@bmtlh204.BNR.CA (Stephane Proulx)\\nSubject: Re: Cobra Locks\\nReply-To: sproulx@bmtlh204.BNR.CA (Stephane Proulx)\\nOrganization: Bell-Northern Research Ltd.\\nLines: 105\\n\\n\\nYou may find it useful.\\n(This is a repost. The original sender is at the bottom.)\\n-------------------cut here--------------------------------------------------\\nArticle 39994 of rec.motorcycles:\\nPath:\\nscrumpy!bnrgate!corpgate!news.utdallas.edu!hermes.chpc.utexas.edu!cs.ute\\nexas.edu!swrinde!mips!pacbell.com!iggy.GW.Vitalink.COM!widener!eff!ibmpc\\ncug!pipex!unipalm!uknet!cf-cm!cybaswan!eeharvey\\nFrom: eeharvey@cybaswan.UUCP (i t harvey)\\nNewsgroups: rec.motorcycles\\nSubject: Re: Best way to lock a bike ?\\nMessage-ID: <861@cybaswan.UUCP>\\nDate: 15 Jul 92 09:47:10 GMT\\nReferences: <1992Jul14.165538.9789@usenet.ins.cwru.edu>\\nLines: 84\\n\\n\\nThese are the figures from the Performance Bikes lock test, taken without\\npermission of course. The price is for comparison. All the cable locks\\nhave some sort of armour, the chain locks are padlock and chain. Each\\nlock was tested for a maximum of ten minutes (600 secs) for each test:\\n\\n\\tBJ\\tBottle jack\\n\\tCD\\tCutting disc\\n\\tBC\\tBolt croppers\\n\\tGAS\\tGas flame\\n\\nThe table should really be split into immoblisers (for-a-while) and\\nlock-to-somethings (for-a-short-while) to make comparisons.\\n\\n\\t\\tType\\tWeight\\tBJ\\tCD\\tBC\\tGAS\\tTotal\\tPrice\\n\\t\\t\\t(kg)\\t(sec)\\t(sec)\\t(sec)\\t(sec)\\t(sec)\\t(Pounds)\\n========================================================================\\n=========\\n3-arm\\t\\tFolding\\t.8\\t53\\t5\\t13\\t18\\t89\\t26\\nCyclelok\\tbar\\n\\nAbus Steel-o-\\tCable\\t1.4\\t103\\t4\\t20\\t26\\t153\\t54\\nflex\\n\\nOxford\\t\\tCable\\t2.0\\t360\\t4\\t32\\t82\\t478\\t38\\nRevolver\\n\\nAbus Diskus\\tChain\\t2.8\\t600\\t7\\t40\\t26\\t675\\t77\\n\\n6-arm\\t\\tFolding\\t1.8\\t44\\t10\\t600\\t22\\t676\\t51\\nCyclelok\\tbar\\n\\nAbus Extra\\tU-lock\\t1.2\\t600\\t10\\t120\\t52\\t782\\t44\\n\\nCobra\\t\\tCable\\t6.0(!)\\t382\\t10\\t600\\t22\\t1014\\t150\\n(6ft)\\n\\nAbus closed\\tChain\\t4.0\\t600\\t11\\t600\\t33\\t1244\\t100\\nshackle\\t\\n\\nKryptonite\\tU-lock\\t2.5\\t600\\t22\\t600\\t27\\t1249\\t100\\nK10\\n\\nOxford\\t\\tU-lock\\t2.0\\t600\\t7\\t600\\t49\\t1256\\t38\\nMagnum\\n\\nDisclock\\tDisc\\t.7\\tn/a\\t44\\tn/a\\t38\\t1282\\t43\\n\\t\\tlock\\n\\nAbus 58HB\\tU-lock\\t2.5\\t600\\t26\\t600\\t64\\t1290\\t100\\n\\nMini Block\\tDisc\\t.65\\tn/a\\t51\\tn/a\\t84\\t1335\\t50\\n\\t\\tlock\\n========================================================================\\n=========\\n\\nPretty depressing reading. I think a good lock and some common sense about\\nwhere and when you park your bike is the only answer. I've spent all my\\nspare time over the last two weeks landscaping (trashing) the garden of\\nmy (and two friends with bikes) new house to accommodate our three bikes in\\nrelative security (never underestimate how much room a bike requires to\\nmanouver in a walled area :( ). Anyway, since the weekend there are only two\\nbikes :( and no, he didn't use his Abus closed shackle lock, it was too much\\nhassle to take with him when visiting his parents. A minimum wait of 8\\nweeks (if they don't decide to investigate) for the insurance company\\nto make an offer and for the real haggling to begin.\\n\\nAbus are a German company and it would seem not well represented in the US\\nbut very common in the UK. The UK distributor, given in the above article\\nis:\\n\\tMichael Brandon Ltd,\\n\\t15/17 Oliver Crescent,\\n\\tHawick,\\n\\tRoxburgh TD9 9BJ.\\n\\tTel. 0450 73333\\n\\nThe UK distributors for the other locks can also given if required.\\n\\nDon't lose it\\n\\tIan\\n\\n-- \\n_______________________________________________________________________\\n Ian Harvey, University College Swansea Too old to rock'n'roll\\n eeharvey@uk.ac.swan.pyr Too young to die\\n '79 GS750E \\n\\n\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Morality? (was Re: >>Explain to me\\n>>>how instinctive acts can be moral acts, and I am happy to listen.\\n>>For example, if it were instinctive not to murder...\\n>Then not murdering would have no moral significance, since there\\n>would be nothing voluntary about it.\\n\\nSee, there you go again, saying that a moral act is only significant\\nif it is \"voluntary.\" Why do you think this?\\n\\nAnd anyway, humans have the ability to disregard some of their instincts.\\n\\n>>So, only intelligent beings can be moral, even if the bahavior of other\\n>>beings mimics theirs?\\n>You are starting to get the point. Mimicry is not necessarily the \\n>same as the action being imitated. A Parrot saying \"Pretty Polly\" \\n>isn\\'t necessarily commenting on the pulchritude of Polly.\\n\\nYou are attaching too many things to the term \"moral,\" I think.\\nLet\\'s try this: is it \"good\" that animals of the same species\\ndon\\'t kill each other. Or, do you think this is right? \\n\\nOr do you think that animals are machines, and that nothing they do\\nis either right nor wrong?\\n\\n\\n>>Animals of the same species could kill each other arbitarily, but \\n>>they don\\'t.\\n>They do. I and other posters have given you many examples of exactly\\n>this, but you seem to have a very short memory.\\n\\nThose weren\\'t arbitrary killings. They were slayings related to some sort\\nof mating ritual or whatnot.\\n\\n>>Are you trying to say that this isn\\'t an act of morality because\\n>>most animals aren\\'t intelligent enough to think like we do?\\n>I\\'m saying:\\n>\\t\"There must be the possibility that the organism - it\\'s not \\n>\\tjust people we are talking about - can consider alternatives.\"\\n>It\\'s right there in the posting you are replying to.\\n\\nYes it was, but I still don\\'t understand your distinctions. What\\ndo you mean by \"consider?\" Can a small child be moral? How about\\na gorilla? A dolphin? A platypus? Where is the line drawn? Does\\nthe being need to be self aware?\\n\\nWhat *do* you call the mechanism which seems to prevent animals of\\nthe same species from (arbitrarily) killing each other? Don\\'t\\nyou find the fact that they don\\'t at all significant?\\n\\nkeith\\n',\n", + " \"From: hesh@cup.hp.com (Chris Steinbroner)\\nSubject: Re: Tracing license plates of BDI cagers?\\nArticle-I.D.: cup.C535HL.C6H\\nReply-To: Chris Steinbroner \\nOrganization: HP-UX Kernel Lab, Cupertino, CA\\nLines: 12\\nNntp-Posting-Host: hesh.cup.hp.com\\nX-Newsreader: TIN [version 1.1 PL9.1]\\n\\nCurtis Jackson (cjackson@adobe.com) wrote:\\n: The driver had looked over at me casually a couple of times; I\\n: know he knew I was there.\\n\\noh, okay. then in that case it was\\nattemped vehicular manslaughter.\\nhe definitely wanted to kill you.\\nall cagers want to kill bikers.\\nthat's the only explanation that\\ni can think of.\\n\\n-- hesh\\n\",\n", + " \"From: halat@pooh.bears (Jim Halat)\\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 37\\n\\nIn article <30121@ursa.bear.com>, halat@pooh.bears (Jim Halat) writes:\\n>In article <115288@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n>>\\n>>He'd have to be precise about is rejection of God and his leaving Islam.\\n>>One is perfectly free to be muslim and to doubt and question the\\n>>existence of God, so long as one does not _reject_ God. I am sure that\\n>>Rushdie has be now made his atheism clear in front of a sufficient \\n>>number of proper witnesses. The question in regard to the legal issue\\n>>is his status at the time the crime was committed. \\n>\\n\\nI'll also add that it is impossible to actually tell when one\\n_rejects_ god. Therefore, you choose to punish only those who\\n_talk_ about it. \\n\\n>\\n>-jim halat \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n\",\n", + " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: Newbie\\nOrganization: NASA Science Internet Project Office\\nLines: 16\\n\\nIn article , os048@xi.cs.fsu.edu () writes:\\n|> hey there,\\n|> Yea, thats what I am....a newbie. I have never owned a motorcycle,\\n\\nThis makes 5! It IS SPRING!\\n\\n|> Matt\\n|> PS I am not really sure what the purpose of this article was but...oh well\\n\\nNeither were we. Read for a few days, then try again.\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", + " \"From: valo@cvtstu.cvt.stuba.cs (Valo Roman)\\nSubject: Re: Text Recognition software availability\\nOrganization: Slovak Technical University Bratislava, Slovakia\\nLines: 23\\nNNTP-Posting-Host: sk2eu.eunet.sk\\nReplyTo: valo@cvtstu.cvt.stuba.cs (Valo Roman)\\n\\nIn article , ab@nova.cc.purdue.edu (Allen B) writes:\\n|> One more time: is there any >free< OCR software out there?\\n|>\\n|> I ask this question periodically and haven't found anything. This is\\n|> the last time. If I don't find anything, I'm going to write some\\n|> myself.\\n|> \\n|> Post here or email me if you have any leads or suggestions, else just\\n|> sit back and wait for me. :)\\n|> \\n|> ab\\n\\nI'm not sure if this is free or shareware, but you can try to look to wsmrsimtel20.army.mil,\\ndirectory PD1: file OCR104.ZIP .\\nFrom the file SIMIBM.LST :\\nOCR104.ZIP B 93310 910424 Optical character recognition for scanners.\\n\\nHope this helps.\\n\\nRoman Valo valo@cvt.stuba.cs\\nSlovak Technical University\\nBratislava \\nSlovakia\\n\",\n", + " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: Investment in Yehuda and Shomron\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , horen@netcom.com (Jonathan B. Horen) writes:\\n|> \\n|> While I applaud investing of money in Yehuda, Shomron, v\\'Chevel-Azza,\\n|> in order to create jobs for their residents, I find it deplorable that\\n|> this has never been an active policy of any Israeli administration\\n|> since 1967, *with regard to their Jewish residents*. Past governments\\n|> found funds to subsidize cheap (read: affordable) housing and the\\n|> requisite infrastructure, but where was the investment for creating\\n|> industry (which would have generated income *and* jobs)? \\n\\nThe investment was there in the form of huge tax breaks, and employer\\nbenfits. You are overlooking the difference that these could have\\nmade to any company. Part of the problem was that few industries\\nwere interested in political settling, as much as profit.\\n\\n|> After 26 years, Yehuda and Shomron remain barren, bereft of even \\n|> middle-sized industries, and the Jewish settlements are sterile\\n|> \"bedroom communities\", havens for (in the main) Israelis (both\\n|> secular *and* religious) who work in Tel-Aviv or Jerusalem but\\n|> cannot afford to live in either city or their surrounding suburbs.\\n\\nTrue, which leads to the obvious question, should any investment have\\nbeen made there at the taxpayer\\'s expense. Obviously, the answer was\\nand still is a resounding no.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n',\n", + " \"From: house@helios.usq.EDU.AU (ron house)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nOrganization: University of Southern Queensland\\nLines: 42\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tFirst I want to start right out and say that I'm a Christian. It \\n\\nI _know_ I shouldn't get involved, but... :-)\\n\\n[bit deleted]\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n>\\tSome reasons why he wouldn't be a liar are as follows. Who would \\n>die for a lie? Wouldn't people be able to tell if he was a liar? People \\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy. Very doubtful, in fact rediculous. For example \\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn't a liar or a lunatic, he must have been the \\n>real thing. \\n\\nRighto, DAN, try this one with your Cornflakes...\\n\\nThe book says that Muhammad was either a liar, or he was crazy ( a \\nmodern day Mad Mahdi) or he was actually who he said he was.\\nSome reasons why he wouldn't be a liar are as follows. Who would \\ndie for a lie? Wouldn't people be able to tell if he was a liar? People \\ngathered around him and kept doing it, many gathered from hearing or seeing \\nhow his son-in-law made the sun stand still. Call me a fool, but I believe \\nhe did make the sun stand still. \\nNiether was he a lunatic. Would more than an entire nation be drawn \\nto someone who was crazy. Very doubtful, in fact rediculous. For example \\nanyone who is drawn to the Mad Mahdi is obviously a fool, logical people see \\nthis right away.\\nTherefore since he wasn't a liar or a lunatic, he must have been the \\nreal thing. \\n\\n--\\n\\nRon House. USQ\\n(house@helios.usq.edu.au) Toowoomba, Australia.\\n\",\n", + " \"From: B8HA \\nSubject: Re: Israel's Expansion II\\nLines: 24\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nIn article <1993Apr22.093527.15720@donau.et.tudelft.nl> avi@duteinh.et.tudelft.nl (Avi Cohen Stuart) writes:\\n>From article <93111.225707PP3903A@auvm.american.edu>, by Paul H. Pimentel :\\n>> What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n>> s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n>> k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n>> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n>> ore they have a right to Jerusaleum as much as Isreal does.\\n>\\n>\\n>There is one big difference between Israel and the Arabs, Christians in this\\n>respect.\\n>\\n>Israel allows freedom of religion.\\n>\\n>Avi.\\n>.\\n>.\\nAvi,\\n For your information, Islam permits freedom of religion - there is\\nno compulsion in religion. Does Judaism permit freedom of religion\\n(i.e. are non-Jews recognized in Judaism). Just wondering.\\n\\nSteve\\n\\n\",\n", + " \"From: jk87377@lehtori.cc.tut.fi (Kouhia Juhana)\\nSubject: Re: More gray levels out of the screen\\nOrganization: Tampere University of Technology\\nLines: 21\\nDistribution: inet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn article <1993Apr6.011605.909@cis.uab.edu> sloan@cis.uab.edu\\n(Kenneth Sloan) writes:\\n>\\n>Why didn't you create 8 grey-level images, and display them for\\n>1,2,4,8,16,32,64,128... time slices?\\n\\nBy '8 grey level images' you mean 8 items of 1bit images?\\nIt does work(!), but it doesn't work if you have more than 1bit\\nin your screen and if the screen intensity is non-linear.\\n\\nWith 2 bit per pixel; there could be 1*c_1 + 4*c_2 timing,\\nthis gives 16 levels, but they are linear if screen intensity is\\nlinear.\\nWith 1*c_1 + 2*c_2 it works, but we have to find the best\\ncompinations -- there's 10 levels, but 16 choises; best 10 must be\\nchosen. Different compinations for the same level, varies a bit, but\\nthe levels keeps their order.\\n\\nReaders should verify what I wrote... :-)\\n\\nJuhana Kouhia\\n\",\n", + " \"From: gfk39017@uxa.cso.uiuc.edu (George F. Krumins)\\nSubject: Re: space news from Feb 15 AW&ST\\nOrganization: University of Illinois at Urbana\\nLines: 23\\n\\njbreed@doink.b23b.ingr.com (James B. Reed) writes:\\n\\n>In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>|> [Pluto's] atmosphere will start to freeze out around 2010, and after about\\n>|> 2005 increasing areas of both Pluto and Charon will be in permanent\\n>|> shadow that will make imaging and geochemical mapping impossible.\\n\\nIt's my understanding that the freezing will start to occur because of the\\ngrowing distance of Pluto and Charon from the Sun, due to it's\\nelliptical orbit. It is not due to shadowing effects. \\n\\n>Where does the shadow come from? There's nothing close enough to block\\n>sunlight from hitting them. I wouldn't expect there to be anything block\\n>our view of them either. What am I missing?\\n\\nPluto can shadow Charon, and vice-versa.\\n\\nGeorge Krumins\\n-- \\n--------------------------------------------------------------------------------\\n| George Krumins |\\n| gfk39017@uxa.cso.uiuc.edu |\\n| Pufferfish Observatory |\\n\",\n", + " 'From: Mark A. Cartwright \\nSubject: Re: TIFF: philosophical significance of 42 (SILLY)\\nOrganization: University of Texas @ Austin, Comp. Center\\nLines: 21\\nDistribution: world\\nNNTP-Posting-Host: aliester.cc.utexas.edu\\nX-UserAgent: Nuntius v1.1\\n\\nWell,\\n\\n42 is 101010 binary, and who would forget that its the\\nanswer to the Question of \"Life, the Universe, and Everything else.\"\\nThat is to quote Douglas Adams in a round about way.\\n\\nOf course the Question has not yet been discovered...\\n\\n--\\nMark A. Cartwright, N5SNP\\nUniversity of Texas @ Austin\\nComputation Center, Graphics Facility\\nmarkc@emx.utexas.edu\\nmarkc@sirius.cc.utexas.edu\\nmarkc@hermes.chpc.utexas.edu\\n(512)-471-3241 x 362\\n\\nPP-ASEL 9-92\\n\\na.) \"Often in error, never in doubt.\"\\nb.) \"This situation has no gravity, I would like a refund please.\"\\n',\n", + " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Nazi Eugenic Theories Circulated by CPR => (unconventianal peace)\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 36\\n\\nIn article <1993Apr19.223054.10273@cirrus.com> chrism@cirrus.com (Chris Metcalfe) writes:\\n>Now we have strong evidence of where the CPR really stands.\\n>Unbelievable and disgusting. It only proves that we must\\n>never forget...\\n>\\n>\\n>>A unconventional proposal for peace in the Middle-East.\\n>\\n>Not so unconventional. Eugenic solutions to the Jewish Problem\\n>have been suggested by Northern Europeans in the past.\\n>\\n> Eugenics: a science that deals with the improvement (as by\\n> control of human mating) of hereditory qualities of race\\n> or breed. -- Webster's Ninth Collegiate Dictionary.\\n>\\n>>I would be thankful for critical comments to the above proposal as\\n>>well for any dissemination of this proposal for meaningful\\n>>discussion and enrichment.\\n>>\\n>>Elias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n>\\n>Critical comment: you can take the Nazi flag and Holocaust photos\\n>off of your bedroom wall, Elias; you'll never succeed.\\n>\\n>-- Chris Metcalfe\\n\\nChris, solid job at discussing the inherent Nazism in Mr. Davidsson's post.\\nOddly, he has posted an address for hate mail, which I think we should\\nall utilize. And Elias,\\n\\nWie nur dem Koph nicht alle Hoffnung schwindet,\\nDer immerfort an schalem Zeuge klebt?\\n\\nPeace,\\npete\\n\\n\",\n", + " ' zaphod.mps.ohio-state.edu!wupost!uunet!olivea!sgigate!odin!fido!solntze.wpd.sgi.com!livesey\\nSubject: Re: <1p88fi$4vv@fido.asd.sgi.com> \\n <1993Mar30.051246.29911@blaze.cs.jhu.edu> <1p8nd7$e9f@fido.asd.sgi.com> <1pa0stINNpqa@gap.caltech.edu> <1pan4f$b6j@fido.asd.sgi.com>\\nOrganization: sgi\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\nLines: 20\\n\\nIn article <1pieg7INNs09@gap.caltech.edu>, keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >Now along comes Mr Keith Schneider and says \"Here is an \"objective\\n|> >moral system\". And then I start to ask him about the definitions\\n|> >that this \"objective\" system depends on, and, predictably, the whole\\n|> >thing falls apart.\\n|> \\n|> It only falls apart if you attempt to apply it. This doesn\\'t mean that\\n|> an objective system can\\'t exist. It just means that one cannot be\\n|> implemented.\\n\\nIt\\'s not the fact that it can\\'t exist that bothers me. It\\'s \\nthe fact that you don\\'t seem to be able to define it.\\n\\nIf I wanted to hear about indefinable things that might in\\nprinciple exist as long as you don\\'t think about them too\\ncarefully, I could ask a religious person, now couldn\\'t I?\\n\\njon.\\n',\n", + " \"From: mrf4276@egbsun12.NoSubdomain.NoDomain (Matthew R. Feulner)\\nSubject: Re: Lunar Colony Race! By 2005 or 2010?\\nNntp-Posting-Host: egbsun12.draper.com\\nOrganization: Draper Laboratory\\nLines: 18\\n\\nIn article <1993Apr20.234427.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\\n|> Okay here is what I have so far:\\n|> \\n|> Have a group (any size, preferibly small, but?) send a human being to the moon,\\n|> set up a habitate and have the human(s) spend one earth year on the moon. Does\\n|> that mean no resupply or ?? \\n|> \\n|> Need to find atleast $1billion for prize money.\\n\\n\\nMy first thought is Ross Perot. After further consideration, I think he'd\\nbe more likely to try to win it...but come in a disappointing third.\\n\\nTry Bill Gates. Try Sam Walton's kids.\\n\\nMatt\\n\\nmatthew_feulner@qmlink.draper.com\\n\",\n", + " 'From: wawers@lif.de (Theo Wawers)\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Lahmeyer International, Frankfurt\\nLines: 15\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\n\\nThere is a nice little tool in Lucid emacs. It\\'s called \"calendar\".\\nOn request it shows for given longitude/latitude coordinates times for\\nsunset and sunrise. The code is written in lisp.\\nI don\\'t know if you like the idea that an editor is the right program to\\ncalculate these things.\\n\\n\\nTheo W.\\n\\nTheo Wawers LAHMEYER INTERNATIONAL GMBH\\nemail : wawers@sunny.lif.de Lyonerstr. 22\\nphone : +49 69 66 77 639 D-6000 Frankfurt/Main\\nfax : +49 69 66 77 571 Germany\\n\\n',\n", + " 'From: eder@hsvaic.boeing.com (Dani Eder)\\nSubject: Re: NASP\\nDistribution: sci\\nOrganization: Boeing AI Center, Huntsville, AL\\nLines: 39\\n\\nI have before me a pertinent report from the United States General\\nAccounting Office:\\n\\nNational Aero-Space Plane: Restructuring Future Research and Development\\nEfforts\\nDecember 1992\\nReport number GAO/NSIAD-93-71\\n\\nIn the back it lists the following related reports:\\n\\nNASP: Key Issues Facing the Program (31 Mar 92) GAO/T-NSIAD-92-26\\n\\nAerospace Plane Technology: R&D Efforts in Japan and Australia\\n(4 Oct 91) GAO/NSIAD-92-5\\n\\nAerospace Plane Technology: R&D Efforts in Europe (25 July 91)\\nGAO/NSIAD-91-194\\n\\nAerospace Technology: Technical Data and Information on Foreign\\nTest Facilities (22 Jun 90) GAO/NSIAD-90-71FS\\n\\nInvestment in Foreign Aerospace Vehicle Research and Technological\\nDevelopment Efforts (2 Aug 89) GAO/T-NSIAD-89-43\\n\\nNASP: A Technology Development and Demonstration Program to Build\\nthe X-30 (27 Apr 88) GAO/NSIAD-88-122\\n\\n\\nOn the inside back cover, under \"Ordering Information\" it says\\n\\n\"The first copy of each GAO report is free. . . . Orders\\nmay also be placed by calling (202)275-6241\\n\"\\n\\nDani\\n\\n-- \\nDani Eder/Meridian Investment Company/(205)464-2697(w)/232-7467(h)/\\nRt.1, Box 188-2, Athens AL 35611/Location: 34deg 37\\' N 86deg 43\\' W +100m alt.\\n',\n", + " \"From: jamesf@apple.com (Jim Franklin)\\nSubject: Re: Tracing license plates of BDI cagers?\\nOrganization: Apple Computer, Inc.\\nLines: 30\\n\\nIn article <1993Apr09.182821.28779@i88.isc.com>, jeq@lachman.com (Jonathan\\nE. Quist) wrote:\\n> \\n\\n> You could file a complaint for dangerous operation of a motor vehicle,\\n> and sign it. Be willing to show up in court if it comes to it.\\n\\nNo... you can do this? Really? The other morning I went to do a lane change\\non the freeway and looked in my mirror, theer was a car there, but far\\nenough behind. I looked again about 3-5 seconds later, car still in same\\nposition, i.e. not accelerating. I triple check with a head turn and decide\\nI have plenty of room, so I do it, accelerating. I travel about 1/4 mile\\nstaying ~200\\nfeet off teh bumper of the car ahead, and I do a casual mirror check. This\\nguy is RIGHT on my tail, I mean you couldn't stick a hair between my tire &\\nhis fender. I keep looking in the mirror at him a,d slowly let off teh\\nthrottle. He stays there until I had lost about 15mph and then comes around\\nme and cuts me off big time. I follow him for about 10 miles and finally\\nget bored and turn back into work. \\n\\nI can file a complaint about this? And actually have the chance to have\\nsomething done? How? Who? Where?\\n\\njim\\n\\n* Jim Franklin * jamesf@apple.com Jim Bob & Sons *\\n* 1987 Cagiva Alazzurra 650 | .signature remodling *\\n* 1969 Triumph 650 (slalom champ) | Low price$ Quality workman- * \\n* DoD #469 KotP(un) | ship * \\n Call today for free estimit\\n\",\n", + " 'From: bobc@sed.stel.com (Bob Combs)\\nSubject: Re: Blow up space station, easy way to do it.\\nOrganization: SED, Stanford Telecom, Reston, VA 22090\\nLines: 16\\n\\nIn article <1993Apr5.184527.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>This might a real wierd idea or maybe not..\\n>\\n>\\n>Why musta space station be so difficult?? why must we have girders? why be\\n>confined to earth based ideas, lets think new ideas, after all space is not\\n>earth, why be limited by earth based ideas??\\n>\\nChoose any or all of the following as an answer to the above:\\n \\n\\n1. Politics\\n2. Traditions\\n3. Congress\\n4. Beauracrats\\n\\n',\n", + " 'From: nerone@ccwf.cc.utexas.edu (Michael Nerone)\\nSubject: Re: Newsgroup Split\\nOrganization: The University of Texas at Austin\\nLines: 25\\nDistribution: world\\n\\t<1993Apr19.193758.12091@unocal.com>\\n\\t<1quvdoINN3e7@srvr1.engin.umich.edu>\\nNNTP-Posting-Host: sylvester.cc.utexas.edu\\nIn-reply-to: tdawson@engin.umich.edu\\'s message of 19 Apr 1993 19:43:52 GMT\\n\\nIn article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n\\n CH> Concerning the proposed newsgroup split, I personally am not in\\n CH> favor of doing this. I learn an awful lot about all aspects of\\n CH> graphics by reading this group, from code to hardware to\\n CH> algorithms. I just think making 5 different groups out of this\\n CH> is a wate, and will only result in a few posts a week per group.\\n CH> I kind of like the convenience of having one big forum for\\n CH> discussing all aspects of graphics. Anyone else feel this way?\\n CH> Just curious.\\n\\nI must agree. There is a dizzying number of c.s.amiga.* newsgroups\\nalready. In addition, there are very few issues which fall cleanly\\ninto one of these categories.\\n\\nAlso, it is readily observable that the current spectrum of amiga\\ngroups is already plagued with mega-crossposting; thus the group-split\\nwould not, in all likelihood, bring about a more structured\\nenvironment.\\n\\n--\\n /~~~~~~~~~~~~~~~~~~~\\\\/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\\\\\n / Michael Nerone \\\\\"I shall do so with my customary lack of tact; and\\\\\\n / Internet Address: \\\\since you have asked for this, you will be obliged\\\\\\n/nerone@ccwf.cc.utexas.edu\\\\to pardon it.\"-Sagredo, fictional char of Galileo.\\\\\\n',\n", + " \"From: lmp8913@rigel.tamu.edu (PRESTON, LISA M)\\nSubject: Another CVIEW question (was CView answers)\\nOrganization: Texas A&M University, Academic Computing Services\\nLines: 12\\nDistribution: world\\nNNTP-Posting-Host: rigel.tamu.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\n\\n\\tHas anybody gotten CVIEW to work in 32k or 64k color mode on a Trident\\n8900c hi-color card? At best the colors come out screwed up, and at worst the \\nprogram hangs. I loaded the VESA driver, and the same thing happens on 2 \\ndifferent machines.\\n\\n\\tIf it doesn't work on the Trident, does anybody know of a viewer that \\ndoes?\\n\\nThanx!\\nLISA \\n\\n\",\n", + " 'From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)\\nSubject: Re: New Member\\nNntp-Posting-Host: crchh410\\nOrganization: BNR, Inc.\\nLines: 47\\n\\nIn article , dfuller@portal.hq.videocart.com (Dave Fuller) writes:\\n|> Hello. I just started reading this group today, and I think I am going\\n|> to be a large participant in its daily postings. I liked the section of\\n|> the FAQ about constructing logical arguments - well done. I am an atheist,\\n|> but I do not try to turn other people into atheists. I only try to figure\\n|> why people believe the way they do - I don\\'t much care if they have a \\n|> different view than I do. When it comes down to it . . . I could be wrong.\\n|> I am willing to admit the possibility - something religious followers \\n|> dont seem to have the capability to do.\\n\\nWelcome aboard!\\n\\n|> \\n|> I notice alot of posts from Bobby. Why does anybody ever respond to \\n|> his posts ? He always falls back on the same argument:\\n\\n(I think you just answered your own question, there)\\n\\n|> \\n|> \"If the religion is followed it will cause no bad\"\\n|> \\n|> He is right. Just because an event was explained by a human to have been\\n|> done \"in the name of religion\", does not mean that it actually followed\\n|> the religion. He will always point to the \"ideal\" and say that it wasn\\'t\\n|> followed so it can\\'t be the reason for the event. There really is no way\\n|> to argue with him, so why bother. Sure, you may get upset because his \\n|> answer is blind and not supported factually - but he will win every time\\n|> with his little argument. I don\\'t think there will be any postings from\\n|> me in direct response to one of his.\\n\\nMost responses were against his postings that spouted the fact that\\nall atheists are fools/evil for not seeing how peachy Islam is.\\nI would leave the pro/con arguments of Islam to Fred Rice, who is more\\nlevel headed and seems to know more on the subject, anyway.\\n\\n|> \\n|> Happy to be aboard !\\n\\nHow did you know I was going to welcome you abord?!?\\n\\n|> \\n|> Dave Fuller\\n|> dfuller@portal.hq.videocart.com\\n|> \\n|> \\n\\nBrian /-|-\\\\\\n',\n", + " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Happy Birthday Israel!\\nOrganization: University of Illinois at Urbana\\nLines: 2\\n\\nIsrael - Happy 45th Birthday!\\n\\n',\n", + " 'From: ken@sugra.uucp (Kenneth Ng)\\nSubject: Re: nuclear waste\\nOrganization: Private Computer, Totowa, NJ\\nLines: 18\\n\\nIn article <1993Mar31.191658.9836@mksol.dseg.ti.com: mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n:Just a bit off, Phil. We don\\'t reprocess nuclear fuel because what\\n:you get from the reprocessing plant is bomb-grade plutonium. It is\\n:also cheaper, given current prices of things, to simply fabricate new\\n:fuel rods rather than reprocess the old ones, creating potentially\\n:dangerous materials (from a national security point of view) and then\\n:fabricate that back into fuel rods.\\n\\nFabricating with reprocessed plutonium may result in something that may go\\nkind of boom, but its hardly decent bomb grade plutonium. If you want bomb\\ngrade plutonium use a research reactor, not a power reactor. But if you want\\na bomb, don\\'t use plutonium, use uranium.\\n\\n-- \\nKenneth Ng\\nPlease reply to ken@eies2.njit.edu for now.\\n\"All this might be an elaborate simulation running in a little device sitting\\non someone\\'s table\" -- J.L. Picard: ST:TNG\\n',\n", + " 'From: pmoloney@maths.tcd.ie (Paul Moloney)\\nSubject: Re: THE POPE IS JEWISH!\\nOrganization: Somewhere in the Twentieth Century\\nLines: 47\\n\\nwest@next02cville.wam.umd.edu (Stilgar) writes:\\n\\n>The pope is jewish.... I guess they\\'re right, and I always thought that\\n>the thing on his head was just a fancy hat, not a Jewish headpiece (I\\n>don\\'t remember the name). It\\'s all so clear now (clear as mud.)\\n\\nAs to what that headpiece is....\\n\\n(by chort@crl.nmsu.edu)\\n\\nSOURCE: AP NEWSWIRE\\n\\nThe Vatican, Home Of Genetic Misfits?\\n\\nMichael A. Gillow, noted geneticist, has revealed some unusual data\\nafter working undercover in the Vatican for the past 18 years. \"The\\nPopehat(tm) is actually an advanced bone spur.\", reveals Gillow in his\\ngroundshaking report. Gillow, who had secretly studied the innermost\\nworkings of the Vatican since returning from Vietnam in a wheel chair,\\nfirst approached the scientific community with his theory in the late\\n1950\\'s.\\n\\n\"The whole hat thing, that was just a cover up. The Vatican didn\\'t\\nwant the Catholic Community(tm) to realize their leader was hefting\\nnearly 8 kilograms of extraneous bone tissue on the top of his\\nskull.\", notes Gillow in his report. \"There are whole laboratories in\\nthe Vatican that experiment with tissue transplants and bone marrow\\nexperiments. What started as a genetic fluke in the mid 1400\\'s is now\\nscientifically engineered and bred for. The whole bone transplant idea\\nstarted in the mid sixties inspired by doctor Timothy Leary\\ntransplanting deer bone cells into small white rats.\" Gillow is quick\\nto point out the assassination attempt on Pope John Paul II and the\\ndisappearance of Dr. Leary from the public eye.\\n\\n\"When it becomes time to replace the pope\", says Gillow, \"The old pope\\nand the replacement pope are locked in a padded chamber. They butt\\nheads much like male yaks fighting for dominance of the herd. The\\nvictor emerges and has earned the privilege of inseminating the choir\\nboys.\"\\n\\n\\nP.\\n-- \\n moorcockpratchettdenislearydelasoulu2iainmbanksneworderheathersbatmanpjorourke\\nclive p a u l m o l o n e y Come, let us retract the foreskin of misconception\\njames trinity college dublin and apply the wire brush of enlightenment - GeoffM\\n brownbladerunnersugarcubeselectronicblaylockpowersspikeleekatebushhamcornpizza \\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: HLV for Fred (was Re: Prefab Space Station?)\\nArticle-I.D.: zoo.C51875.67p\\nOrganization: U of Toronto Zoology\\nLines: 28\\n\\nIn article jbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n>>>Titan IV launches ain't cheap \\n>>Granted. But that's because titan IV's are bought by the governemnt. Titan\\n>>III is actually the cheapest way to put a pound in space of all US expendable\\n>>launchers.\\n>\\n>In that case it's rather ironic that they are doing so poorly on the commercial\\n>market. Is there a single Titan III on order?\\n\\nThe problem with Commercial Titan is that MM has made little or no attempt\\nto market it. They're basically happy with their government business and\\ndon't want to have to learn how to sell commercially.\\n\\nA secondary problem is that it is a bit big. They'd need to go after\\nmulti-satellite launches, a la Ariane, and that complicates the marketing\\ntask quite significantly.\\n\\nThey also had some problems with launch facilities at just the wrong time\\nto get them started properly. If memory serves, the pad used for the Mars\\nObserver launch had just come out of heavy refurbishment work that had\\nprevented launches from it for a year or so.\\n\\nThere have been a few CT launches. Mars Observer was one of them. So\\nwas that stranded Intelsat, and at least one of its brothers that reached\\norbit properly.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Unconventional peace proposal\\nOrganization: The Department of Redundancy Department\\nLines: 85\\n\\nIn article <1483500348@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n>\\n>From: Center for Policy Research \\n>\\n>A unconventional proposal for peace in the Middle-East.\\n>---------------------------------------------------------- by\\n>\\t\\t\\t Elias Davidsson\\n\\nOf all the stupid postings you\\'ve brought here recently, it is\\nilluminating that you chose to put your own name on perhaps the\\nstupidest of them.\\n\\n>The following proposal is based on the following assumptions:\\n>\\n>1. Fundamental human rights, such as the right to life, to\\n>education, to establish a family and have children, to human\\n>dignity, the right to free movement, to free expression, etc. are\\n>more important to human existence that the rights of states.\\n\\nDoes this mean that you are calling for the dismantling of the Arab\\nstates? \\n\\n>2. In the event of a conflict between basic human rights and\\n>rights of collectivities, basic human rights should prevail.\\n\\nApparently, your answer is yes.\\n\\n>6. Attempts to solve the Israeli-Arab conflict by traditional\\n>political means have failed.\\n\\nAttempts to solve these problem by traditional military means and\\nnon-traditional terrorist means has also failed. But that won\\'t stop\\nthem from trying again. After all, it IS a Holy War, you know.... \\n\\n>7. As long as the conflict is perceived as that between two\\n>distinct ethnical/religious communities/peoples which claim the\\n>land, there is no just nor peaceful solution possible.\\n\\n\"No just solution possible.\" How very encouraging.\\n\\n>Having stated my assumptions, I will now state my proposal.\\n\\nYou mean that it gets even funnier?\\n\\n>1. A Fund should be established which would disburse grants\\n>for each child born to a couple where one partner is Israeli-Jew\\n>and the other Palestinian-Arab.\\n[...]\\n>3. For the first child, the grant will amount to $18.000. For\\n>the second the third child, $12.000 for each child. For each\\n>subsequent child, the grant will amount to $6.000 for each child.\\n>\\n>4. The Fund would be financed by a variety of sources which\\n>have shown interest in promoting a peaceful solution to the\\n>Israeli-Arab conflict, \\n\\nNo, the Fund should be financed by the Center for Policy Research. It\\nIS a major organization, isn\\'t it? Isn\\'t it?\\n\\n>5. The emergence of a considerable number of \\'mixed\\'\\n>marriages in Israel/Palestine, all of whom would have relatives on\\n>\\'both sides\\' of the divide, would make the conflict lose its\\n>ethnical and unsoluble core and strengthen the emergence of a\\n>truly civil society. \\n\\nYeah, just like marriages among Arabs has strengthened their\\nsocieties. \\n\\n>The existence of a strong \\'mixed\\' stock of\\n>people would also help the integration of Israeli society into the\\n>Middle-East in a graceful manner.\\n\\nThe world could do with a bit less Middle Eastern \"grace\".\\n\\n>Objections to this proposal will certainly be voiced. I will\\n>attempt to identify some of these:\\n\\nBoy, you\\'re a one-man band. Listen, if you\\'d like to Followup on your\\nown postings and debate with yourself, just tell us and we\\'ll leave\\nyou alone.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " \"From: uk02183@nx10.mik.uky.edu (bryan k williams)\\nSubject: Re: CView answers\\nKeywords: Stupid Programming\\nNntp-Posting-Host: nx10.mik.uky.edu\\nOrganization: University of Kentucky\\nLines: 6\\n\\nre: majority of users not readding from floppy.\\nWell, how about those of us who have 1400-picture CD-ROMS and would like to use\\nCVIEW because it is fast and it works well, but can't because the moron lacked\\nthe foresight to create the temp file in the program's path, not the current\\ndidrectory?\\n\\n\",\n", + " 'From: madhaus@netcom.com (Maddi Hausmann)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: Society for Putting Things on Top of Other Things\\nLines: 40\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes: >\\n\\n>OK, you have disproved one thing, but you failed to \"nail\" me.\\n>\\n>See, nowhere in my post did I claim that something _must_ be believed in. Here\\n>are the three possibilities:\\n>\\n>\\t1) God exists. \\n>\\t2) God does not exist.\\n>\\t3) I don\\'t know.\\n>\\n>My attack was on strong atheism, (2). Since I am (3), I guess by what you said\\n>below that makes me a weak atheist.\\n [snip]\\n>First of all, you seem to be a reasonable guy. Why not try to be more honest\\n>and include my sentence afterwards that \\n\\nHonest, it just ended like that, I swear! \\n\\nHmmmm...I recognize the warning signs...alternating polite and\\nrude...coming into newsgroup with huge chip on shoulder...calls\\npeople names and then makes nice...whirrr...click...whirrr\\n\\n\"Clam\" Bake Timmons = Bill \"Shit Stirrer Connor\"\\n\\nQ.E.D.\\n\\nWhirr click whirr...Frank O\\'Dwyer might also be contained\\nin that shell...pop stack to determine...whirr...click..whirr\\n\\n\"Killfile\" Keith Allen Schneider = Frank \"Closet Theist\" O\\'Dwyer =\\n\\nthe mind reels. Maybe they\\'re all Bobby Mozumder.\\n\\n-- \\nMaddi Hausmann madhaus@netcom.com\\nCentigram Communications Corp San Jose California 408/428-3553\\n\\nKids, please don\\'t try this at home. Remember, I post professionally.\\n\\n',\n", + " 'From: simon@dcs.warwick.ac.uk (Simon Clippingdale)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: nin\\nOrganization: Department of Computer Science, Warwick University, England\\nLines: 49\\n\\nIn article <1993Apr5.023044.19580@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n> One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n> because of the love of their mom. It makes for more virile men.\\n> Compare that with how homos are raised. Do a study and you will get my\\n> point.\\n\\nOh, Bobby. You\\'re priceless. Did I ever tell you that?\\n\\nMy policy with Bobby\\'s posts, should anyone give a damn, is to flick\\nthrough the thread at high speed, searching for posts of Bobby\\'s which\\nhave generated a whole pile of followups, then go in and extract the\\nhilarious quote inevitably present for .sig purposes. Works for me.\\n\\nFor the guy who said he\\'s just arrived, and asked whether Bobby\\'s for real,\\nyou betcha. Welcome to alt.atheism, and rest assured that it gets worse.\\nI have a few pearls of wisdom from Bobby which I reproduce below. Is anyone\\n(Keith?) keeping a big file of such stuff?\\n\\n \"In Allah\\'s infinite wisdom, the universe was created from nothing,\\n just by saying \"Be\", and it became. Therefore Allah exists.\"\\n --- Bobby Mozumder proving the existence of Allah, #1\\n\\n \"Wait. You just said that humans are rarely reasonable. Doesn\\'t that\\n contradict atheism, where everything is explained through logic and\\n reason? This is THE contradiction in atheism that proves it false.\"\\n --- Bobby Mozumder proving the existence of Allah, #2\\n\\n \"Plus, to the believer, it would be contradictory\\n to the Quran for Allah not to exist.\"\\n --- Bobby Mozumder proving the existence of Allah, #3\\n\\nand now\\n\\n \"One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n because of the love of their mom. It makes for more virile men. Compare\\n that with how homos are raised. Do a study and you will get my point.\"\\n -- Bobby Mozumder being Islamically Rigorous on alt.atheism\\n\\nMmmmm. Quality *and* quantity from the New Voice of Islam (pbuh).\\n\\nCheers\\n\\nSimon\\n-- \\nSimon Clippingdale simon@dcs.warwick.ac.uk\\nDepartment of Computer Science Tel (+44) 203 523296\\nUniversity of Warwick FAX (+44) 203 525714\\nCoventry CV4 7AL, U.K.\\n',\n", + " 'From: mogal@deadhead.asd.sgi.com (Joshua Mogal)\\nSubject: Re: SGI sales practices (Was: Crimson (Was: Kubota Announcement?))\\nOrganization: Silicon Graphics, Inc.\\nLines: 123\\nNNTP-Posting-Host: deadhead.asd.sgi.com\\n\\n|> My\\n|> comment regarding DEC was to indicate that I might be open to other\\n|> vendors\\n|> that supported OpenGL, rather than deal further with SGI.\\n\\nOpenGL is a graphics programming library and as such is a great, portable\\ninterface for the development of interactive 3D graphics applications. It\\nis not, however, an indicator of performance, as that will vary strongly\\nfrom machine to machine and vendor to vendor. SGI is committed to high\\nperformance interactive graphics systems and software tools, so OpenGL\\nmeans that you can port easily from SGI to other platforms, there is no\\nguarantee that your performance would be comparable.\\n\\n|> \\n|> What I *am* annoyed about is the fact that we were led to believe that\\n|> we *would* be able to upgrade to a multiprocessor version of the\\n|> Crimson without the assistance of a fork lift truck.\\n\\nIf your sales representative truly mislead you, then you should have a\\nvalid grievance against us which you should carry up to your local SGI\\nsales management team. Feel free to contact the local branch manager...we\\nunderstand that repeat sales come from satisfied customers, so give it a\\nshot.\\n\\n|> \\n|> I\\'m also annoyed about being sold *several* Personal IRISes at a\\n|> previous site on the understanding *that* architecture would be around\\n|> for a while, rather than being flushed.\\n\\nAs one of the previous posts stated, the Personal IRIS was introduced in\\n1988 and grew to include the 4D/20, 4D/25, 4D/30 and 4D/35 as clock rates\\nsped up over time. As a rule of thumb, SGI platforms live for about 4-5\\nyears. This was true of the motorola-based 3000 series (\\'85-\\'89), the PI\\n(\\'88-\\'93), the Professional Series (the early 4D\\'s - \\'86-\\'90), the Power\\nSeries parallel systems (\\'88-\\'93). Individual CPU subsystems running at a\\nparticular clock rate usually live for about 2 years. New graphics\\narchitectures at the high end (GT, VGX, RealityEngine) are released every\\n18 months to 2 years.\\n\\nThese are the facts of life. If we look at these machines, they become\\nalmost archaic after four years, and we have to come out with a new\\nplatform (like Indigo, Onyx, Challenge) which has higher bus bandwidths,\\nfaster CPUs, faster graphics and I/O, and larger disk capacities. If we\\ndon\\'t, we become uncompetitive.\\n\\nFrom the user perspective, you have to buy a machine that meets your\\ncurrent needs and makes economic sense today. You can\\'t wait to buy, but\\nif you need a guaranteed upgrade path for the machine, ask the Sales Rep\\nfor one in writing. If it\\'s feasible, they should be able to do that. Some\\nof our upgrade paths have specific programs associated with them, such as\\nthe Performance Protection Program for older R3000-based Power Series\\nmultiprocessing systems which allowed purchasers of those systems to obtain\\na guaranteed upgrade price for moving to the new Onyx or Challenge\\nR4400-based 64-bit multiprocessor systems.\\n\\n|> \\n|> Now I understand that SGI is responsible to its investors and has to\\n|> keep showing a positive quarterly bottom line (odd that I found myself\\n|> pressured on at least two occasions to get the business on the books\\n|> just before the end of the quarter), but I\\'m just a little tired of\\n|> getting boned in the process.\\n|> \\n\\nIf that\\'s happening, it\\'s becausing of misunderstandings or\\nmis-communication, not because SGI is directly attempting to annoy our\\ncustomer base.\\n\\n|> Maybe it\\'s because my lab buys SGIs in onesies and twosies, so we\\n|> aren\\'t entitled to a \"peek under the covers\" as the Big Kids (NASA,\\n|> for instance) are. This lab, and I suspect that a lot of other labs\\n|> and organizations, doesn\\'t have a load of money to spend on computers\\n|> every year, so we can\\'t be out buying new systems on a regular basis.\\n\\nMost SGI customers are onesy-twosey types, but regardless, we rarely give a\\ngreat deal of notice when we are about to introduce a new system because\\nagain, like a previous post stated, if we pre-announced and the schedule\\nslipped, we would mess up our potential customers schedules (when they were\\ncounting on the availability of the new systems on a particular date) and\\nwould also look awfully bad to both our investors and the financial\\nanalysts who watch us most carefully to see if we are meeting our\\ncommitments.\\n\\n|> The boxes that we buy now will have to last us pretty much through the\\n|> entire grant period of five years and, in some case, beyond. That\\n|> means that I need to buy the best piece of equipment that I can when I\\n|> have the money, not some product that was built, to paraphrase one\\n|> previous poster\\'s words, \\'to fill a niche\\' to compete with some other\\n|> vendor. I\\'m going to be looking at this box for the next five years.\\n|> And every time I look at it, I\\'m going to think about SGI and how I\\n|> could have better spent my money (actually *your* money, since we\\'re\\n|> supported almost entirely by Federal tax dollars).\\n|> \\n\\nFive years is an awfully long time in computer years. New processor\\ntechnologies are arriving every 1-2 years, making a 5 year old computer at\\nleast 2 and probably 3 generations behind the times. The competitive nature\\nof the market is demanding that rate of development, so if your timing is\\nreally 5 years between purchases, you have to accept the limited viability\\nof whatever architecture you buy into from any vendor.\\n\\nThere are some realities about the computer biz that we all have to live\\nwith, but keeping customers happy is the most important, so don\\'t give up,\\nwe know it.\\n\\nJosh |:-)\\n\\n-- \\n\\n\\n**************************************************************************\\n**\\t\\t\\t\\t **\\t\\t\\t\\t\\t**\\n**\\tJoshua Mogal\\t\\t **\\tProduct Manager\\t\\t\\t**\\n**\\tAdvanced Graphics Division **\\t Advanced Graphics Systems\\t**\\n**\\tSilicon Graphics Inc.\\t **\\tMarket Manager\\t\\t\\t**\\n**\\t2011 North Shoreline Blvd. **\\t Virtual Reality\\t\\t**\\n**\\tMountain View, CA 94039-7311 **\\t Interactive Entertainment\\t**\\n**\\tM/S 9L-580\\t\\t **\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t *************************************\\n**\\tTel:\\t(415) 390-1460\\t\\t\\t\\t\\t\\t**\\n**\\tFax:\\t(415) 964-8671\\t\\t\\t\\t\\t\\t**\\n**\\tE-mail:\\tmogal@sgi.com\\t\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t\\t\\t\\t\\t\\t**\\n**************************************************************************\\n',\n", + " 'From: buenneke@monty.rand.org (Richard Buenneke)\\nSubject: White House outlines options for station, Russian cooperation\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 71\\n\\n------- Blind-Carbon-Copy\\n\\nTo: spacenews@austen.rand.org, cti@austen.rand.org\\nSubject: White House outlines options for station, Russian cooperation\\nDate: Tue, 06 Apr 93 16:00:21 PDT\\nFrom: Richard Buenneke \\n\\n4/06/93: GIBBONS OUTLINES SPACE STATION REDESIGN GUIDANCE\\n\\nNASA Headquarters, Washington, D.C.\\nApril 6, 1993\\n\\nRELEASE: 93-64\\n\\n Dr. John H. Gibbons, Director, Office of Science and Technology\\nPolicy, outlined to the members-designate of the Advisory Committee on the\\nRedesign of the Space Station on April 3, three budget options as guidance\\nto the committee in their deliberations on the redesign of the space\\nstation.\\n\\n A low option of $5 billion, a mid-range option of $7 billion and a\\nhigh option of $9 billion will be considered by the committee. Each\\noption would cover the total expenditures for space station from fiscal\\nyear 1994 through 1998 and would include funds for development,\\noperations, utilization, Shuttle integration, facilities, research\\noperations support, transition cost and also must include adequate program\\nreserves to insure program implementation within the available funds.\\n\\n Over the next 5 years, $4 billion is reserved within the NASA\\nbudget for the President\\'s new technology investment. As a result,\\nstation options above $7 billion must be accompanied by offsetting\\nreductions in the rest of the NASA budget. For example, a space station\\noption of $9 billion would require $2 billion in offsets from the NASA\\nbudget over the next 5 years.\\n\\n Gibbons presented the information at an organizational session of\\nthe advisory committee. Generally, the members-designate focused upon\\nadministrative topics and used the session to get acquainted. They also\\nreceived a legal and ethics briefing and an orientation on the process the\\nStation Redesign Team is following to develop options for the advisory\\ncommittee to consider.\\n\\n Gibbons also announced that the United States and its\\ninternational partners -- the Europeans, Japanese and Canadians -- have\\ndecided, after consultation, to give \"full consideration\" to use of\\nRussian assets in the course of the space station redesign process.\\n\\n To that end, the Russians will be asked to participate in the\\nredesign effort on an as-needed consulting basis, so that the redesign\\nteam can make use of their expertise in assessing the capabilities of MIR\\nand the possible use of MIR and other Russian capabilities and systems.\\nThe U.S. and international partners hope to benefit from the expertise of\\nthe Russian participants in assessing Russian systems and technology. The\\noverall goal of the redesign effort is to develop options for reducing\\nstation costs while preserving key research and exploration capabilitiaes.\\nCareful integration of Russian assets could be a key factor in achieving\\nthat goal.\\n\\n Gibbons reiterated that, \"President Clinton is committed to the\\nredesigned space station and to making every effort to preserve the\\nscience, the technology and the jobs that the space station program\\nrepresents. However, he also is committed to a space station that is well\\nmanaged and one that does not consume the national resources which should\\nbe used to invest in the future of this industry and this nation.\"\\n\\n NASA Administrator Daniel S. Goldin said the Russian\\nparticipation will be accomplished through the East-West Space Science\\nCenter at the University of Maryland under the leadership of Roald\\nSagdeev.\\n\\n------- End of Blind-Carbon-Copy\\n',\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Second Law (was: Albert Sabin)\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 20\\n\\nJoel Hanes (jjh00@diag.amdahl.com) wrote:\\n\\n: Mr Connor\\'s assertion that \"more complex\" == later in paleontology\\n: is simply incorrect. Many lineages are known in which whole\\n: structures are lost -- for example, snakes have lost their legs.\\n: Cave fish have lost their eyes. Some species have almost completely\\n: lost their males. Kiwis are descended from birds with functional\\n: wings.\\n\\nJoel,\\n\\nThe statements I made were illustrative of the inescapably\\nanthrpomorphic quality of any desciption of an evolutionary process.\\nThere is no way evolution can be described or explained in terms other\\nthan teleological, that is my whole point. Even those who have reason\\nto believe they understand evolution (biologists for instance) tend to\\npersonify nature and I can\\'t help but wonder if it\\'s because of the\\nlimits of the language or the nature of nature.\\n\\nBill\\n',\n", + " \"From: stgprao@st.unocal.COM (Richard Ottolini)\\nSubject: Re: Rumours about 3DO ???\\nOrganization: Unocal Corporation\\nLines: 5\\n\\nThey need a hit software product to encourage software sales of the product,\\ni.e. the Pong, Pacman, VisiCalc, dBase, or Pagemaker of multi-media.\\nThere are some multi-media and digital television products out there already,\\nalbeit, not as capable as 3DO's. But are there compelling reasons to buy\\nsuch yet? Perhaps someone in this news group will write that hit software :-)\\n\",\n", + " 'From: et@teal.csn.org (Eric H. Taylor)\\nSubject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\nSummary: Dong .... Dong .... Do I hear the death-knell of relativity?\\nKeywords: space, curvature, nothing, tesla\\nNntp-Posting-Host: teal.csn.org\\nOrganization: 4-L Laboratories\\nDistribution: World\\nExpires: Wed, 28 Apr 1993 06:00:00 GMT\\nLines: 30\\n\\nIn article metares@well.sf.ca.us (Tom Van Flandern) writes:\\n>crb7q@kelvin.seas.Virginia.EDU (Cameron Randale Bass) writes:\\n>> Bruce.Scott@launchpad.unc.edu (Bruce Scott) writes:\\n>>> \"Existence\" is undefined unless it is synonymous with \"observable\" in\\n>>> physics.\\n>> [crb] Dong .... Dong .... Dong .... Do I hear the death-knell of\\n>> string theory?\\n>\\n> I agree. You can add \"dark matter\" and quarks and a lot of other\\n>unobservable, purely theoretical constructs in physics to that list,\\n>including the omni-present \"black holes.\"\\n>\\n> Will Bruce argue that their existence can be inferred from theory\\n>alone? Then what about my original criticism, when I said \"Curvature\\n>can only exist relative to something non-curved\"? Bruce replied:\\n>\"\\'Existence\\' is undefined unless it is synonymous with \\'observable\\' in\\n>physics. We cannot observe more than the four dimensions we know about.\"\\n>At the moment I don\\'t see a way to defend that statement and the\\n>existence of these unobservable phenomena simultaneously. -|Tom|-\\n\\n\"I hold that space cannot be curved, for the simple reason that it can have\\nno properties.\"\\n\"Of properties we can only speak when dealing with matter filling the\\nspace. To say that in the presence of large bodies space becomes curved,\\nis equivalent to stating that something can act upon nothing. I,\\nfor one, refuse to subscribe to such a view.\" - Nikola Tesla\\n\\n----\\n ET \"Tesla was 100 years ahead of his time. Perhaps now his time comes.\"\\n----\\n',\n", + " 'From: ednobles@sacam.OREN.ORTN.EDU (Edward d Nobles)\\nSubject: windows imagine??!!\\nOrganization: Oak Ridge National Laboratory\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 10\\n\\n\\nI sent off for my copy today... Snail Mail. Hope to get it back in\\nabout ten days. (Impulse said \"a week\".)\\n\\nI hope it\\'s as good as they claim...\\n\\nJim Nobles\\n\\n(Hope I have what it takes to use it... :>)\\n\\n',\n", + " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nOrganization: University of Illinois at Urbana\\nLines: 48\\n\\nanwar+@cs.cmu.edu (Anwar Mohammed) writes:\\n\\n>In article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>>The readers of this forum seemed to be more interested in the contents\\n>>of those files.\\n>>So It will be nice if Yigal will tell us:\\n>>1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\n>ADL authorities seem to view a lot of people as dangerous, including\\n>the millions of Americans of Arab ancestry. Perhaps you can answer\\n>the question as to why the ADL maintained files and spied on ADC members\\n>in California (and elsewhere??)? Friendly rivalry perhaps?\\n\\nCome on! Most if not all Arabs are sympathetic to the Palestinian war \\nagainst Israel. That is why the ADL monitors Arab organizations. That is\\nthe same reason the US monitored communist organizations and Soviet nationals\\nonly a few years ago. \\n\\n>Perhaps Yigal is a Greenpeace member? Or the NAACP? Or a reporter? \\n>Or a member of any of the dozens of other political organizations/ethnic \\n>minorities/occupations that the ADL spied on.\\n\\nAll of these groups have, in the past, associated with or been a part of anti-\\nIsrael activity or propoganda. The ADL is simply monitoring them so that if\\nanything comes up, they won\\'t be caught by surprise.\\n\\n>>2. Why does the ADL have an interest in that person ?\\n\\n>Paranoia?\\n\\nNo, that is why World Trade Center bombings don\\'t happen in Israel (aside from\\nthe fact that there is no world trade center) and why people like Zein Isa (\\nPalestinian whose American group planned to bow up the Israeli Embassy and \\n\"kill many Jews.\") are caught. As Mordechai Levy of the JDL said, Paranoid\\nJews live longer.\\n\\n>>3. If one does trust either the US government or the ADL what an\\n>> additional information should he send them ?\\n\\n>The names of half the posters on this forum, unless they already \\n>have them.\\n\\nThey probably do.\\n\\n>>Gideon Ehrlich\\n>-anwar\\nEd.\\n\\n',\n", + " 'From: n8643084@henson.cc.wwu.edu (owings matthew)\\nSubject: Re: Riceburner Respect\\nArticle-I.D.: henson.1993Apr15.200429.21424\\nOrganization: Western Washington University\\n \\n The 250 ninja and XL 250 got ridden all winter long. I always wave. I\\nLines: 13\\n\\nam amazed at the number of Harley riders who ARE waving even to a lowly\\nbaby ninja. Let\\'s keep up the good attitudes. Brock Yates said in this\\nmonths Car and Driver he is ready for a war (against those who would rather\\nwe all rode busses). We bikers should be too.\\n\\nIt\\'s a freedom that we all wanna know\\nand it\\'s an obsession to some\\nto keep the world in your rearview mirror\\nwhile you try to run down the sun\\n\\n\"Wheels\" by Rhestless Heart\\nMarty O.\\n87 250 ninja\\n73 XL 250 Motosport\\n',\n", + " 'From: todd@phad.la.locus.com (Todd Johnson)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Locus Computing Corporation, Los Angeles, California\\nLines: 28\\n\\nIn article enzo@research.canon.oz.au (Enzo Liguori) writes:\\n;From the article \"What\\'s New\" Apr-16-93 in sci.physics.research:\\n;\\n;........\\n;WHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n;\\n;1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\n;What about light pollution in observations? (I read somewhere else that\\n;it might even be visible during the day, leave alone at night).\\n;Is NASA really supporting this junk?\\n;Are protesting groups being organized in the States?\\n;Really, really depressed.\\n;\\n; Enzo\\n\\nI wouldn\\'t worry about it. There\\'s enough space debris up there that\\na mile-long inflatable would probably deflate in some very short\\nperiod of time (less than a year) while cleaning up LEO somewhat.\\nSort of a giant fly-paper in orbit.\\n\\nHmm, that could actually be useful.\\n\\nAs for advertising -- sure, why not? A NASA friend and I spent one\\ndrunken night figuring out just exactly how much gold mylar we\\'d need\\nto put the golden arches of a certain American fast food organization\\non the face of the Moon. Fortunately, we sobered up in the morning.\\n\\n\\n',\n", + " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: Morality? (was Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>\\n>What I've been saying is that moral behavior is likely the null behavior.\\n\\n Do I smell .sig material here?\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", + " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Hamza Salah, the Humanist\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 13\\n\\nAre you people sure his posts are being forwarded to his system operator???\\nWho is forwarding them???\\n\\nIs there a similar file being kept on Mr. Omran???\\n\\nSalam,\\n\\nJohn Absood\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", + " 'From: kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran)\\nSubject: We don\\'t need no stinking subjects!\\nX-Disclaimer: Nyx is a public access Unix system run by the University\\n\\tof Denver for the Denver community. The University has neither\\n\\tcontrol over nor responsibility for the opinions of users.\\nOrganization: The Loyal Order Of Keiths.\\nLines: 93\\n\\nIn article <1ql1avINN38a@gap.caltech.edu> keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran) writes:\\n>>keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>>>kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran) writes:\\n>\\n>>No, if you\\'re going to claim something, then it is up to you to prove it.\\n>>Think \"Cold Fusion\".\\n>\\n>Well, I\\'ve provided examples to show that the trend was general, and you\\n>(or others) have provided some counterexamples, mostly ones surrounding\\n>mating practices, etc. I don\\'t think that these few cases are enough to\\n>disprove the general trend of natural morality. And, again, the mating\\n>practices need to be reexamined...\\n\\nSo what you\\'re saying is that your mind is made up, and you\\'ll just explain\\naway any differences at being statistically insignificant?\\n\\n>>>Try to find \"immoral\" non-mating-related activities.\\n>>So you\\'re excluding mating-related-activities from your \"natural morality\"?\\n>\\n>No, but mating practices are a special case. I\\'ll have to think about it\\n>some more.\\n\\nSo you\\'ll just explain away any inconsistancies in your \"theory\" as being\\n\"a special case\".\\n\\n>>>Yes, I think that the natural system can be objectively deduced with the\\n>>>goal of species propogation in mind. But, I am not equating the two\\n>>>as you so think. That is, an objective system isn\\'t necessarily the\\n>>>natural one.\\n>>Are you or are you not the man who wrote:\\n>>\"A natural moral system is the objective moral system that most animals\\n>> follow\".\\n>\\n>Indeed. But, while the natural system is objective, all objective systems\\n>are not the natural one. So, the terms can not be equated. The natural\\n>system is a subset of the objective ones.\\n\\nYou just equated them. Re-read your own words.\\n\\n>>Now, since homosexuality has been observed in most animals (including\\n>>birds and dolphins), are you going to claim that \"most animals\" have\\n>>the capacity of being immoral?\\n>\\n>I don\\'t claim that homosexuality is immoral. It isn\\'t harmful, although\\n>it isn\\'t helpful either (to the mating process). And, when you say that\\n>homosexuality is observed in the animal kingdom, don\\'t you mean \"bisexuality?\"\\n\\nA study release in 1991 found that 11% of female seagulls are lesbians.\\n\\n>>>Well, I\\'m saying that these goals are not inherent. That is why they must\\n>>>be postulates, because there is not really a way to determine them\\n>>>otherwise (although it could be argued that they arise from the natural\\n>>>goal--but they are somewhat removed).\\n>>Postulate: To assume; posit.\\n>\\n>That\\'s right. The goals themselves aren\\'t inherent.\\n>\\n>>I can create a theory with a postulate that the Sun revolves around the\\n>>Earth, that the moon is actually made of green cheese, and the stars are\\n>>the portions of Angels that intrudes into three-dimensional reality.\\n>\\n>You could, but such would contradict observations.\\n\\nNow, apply this last sentence of your to YOUR theory. Notice how your are\\ncontridicting observations?\\n\\n>>I can build a mathematical proof with a postulate that given the length\\n>>of one side of a triangle, the length of a second side of the triangle, and\\n>>the degree of angle connecting them, I can determine the length of the\\n>>third side.\\n>\\n>But a postulate is something that is generally (or always) found to be\\n>true. I don\\'t think your postulate would be valid.\\n\\nYou don\\'t know much math, do you? The ability to use SAS to determine the\\nlength of the third side of the triangle is fundemental to geometry.\\n\\n>>Guess which one people are going to be more receptive to. In order to assume\\n>>something about your system, you have to be able to show that your postulates\\n>>work.\\n>\\n>Yes, and I think the goals of survival and happiness *do* work. You think\\n>they don\\'t? Or are they not good goals?\\n\\nGoals <> postulates.\\n\\nAgain, if one of the \"goals\" of this \"objective/natural morality\" system\\nyou are proposing is \"survival of the species\", then homosexuality is\\nimmoral.\\n--\\n=kcochran@nyx.cs.du.edu | B(0-4) c- d- e++ f- g++ k(+) m r(-) s++(+) t | TSAKC=\\n=My thoughts, my posts, my ideas, my responsibility, my beer, my pizza. OK???=\\n',\n", + " 'From: djf@cck.coventry.ac.uk (Marvin Batty)\\nSubject: Re: Moonbase race\\nNntp-Posting-Host: cc_sysk\\nOrganization: Starfleet, Coventry, UK\\nLines: 22\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu> sysmgr@king.eng.umd.edu writes:\\n>In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>\\n>>Apollo was done the hard way, in a big hurry, from a very limited\\n>>technology base... and on government contracts. Just doing it privately,\\n>>rather than as a government project, cuts costs by a factor of several.\\n>\\n>So how much would it cost as a private venture, assuming you could talk the\\n>U.S. government into leasing you a couple of pads in Florida? \\n>\\nWhy use a ground launch pad. It is entirely posible to launch from altitude.\\nThis was what the Shuttle was originally intended to do! It might be seriously\\ncheaper. \\n\\nAlso, what about bio-engineered CO2 absorbing plants instead of many LOX bottles?\\nStick \\'em in a lunar cave and put an airlock on the door.\\n\\n-- \\n**************************************************************************** \\n Marvin Batty - djf@uk.ac.cov.cck\\n\"And they shall not find those things, with a sort of rafia like base,\\nthat their fathers put there just the night before. At about 8 O\\'clock!\"\\n',\n", + " 'From: mlj@af3.mlb.semi.harris.com (Marvin Jaster )\\nSubject: FOR SALE\\nNntp-Posting-Host: sunsol.mlb.semi.harris.com\\nOrganization: Harris Semiconductor, Melbourne FL\\nKeywords: FOR SALE\\nLines: 46\\n\\nI am selling my Sportster to make room for a new FLHTCU.\\nThis scoot is in excellent condition and has never been wrecked or abused.\\nAlways garaged.\\n\\n\\t1990 Sportster 883 Standard (blue)\\n\\n\\tfactory 1200cc conversion kit\\n\\n\\tless than 8000 miles\\n\\n\\tBranch ported and polished big valve heads\\n\\n\\tScreamin Eagle carb\\n\\n\\tScreamin Eagle cam\\n\\n\\tadjustable pushrods\\n\\n\\tHarley performance mufflers\\n\\n\\ttachometer\\n\\n\\tnew Metzeler tires front and rear\\n\\n\\tProgressive front fork springs\\n\\n\\tHarley King and Queen seat and sissy bar\\n\\n\\teverything chromed\\n\\n\\tO-ring chain\\n\\n\\tfork brace\\n\\n\\toil cooler and thermostat\\n\\n\\tnew Die-Hard battery\\n\\n\\tbike cover\\n\\nprice: $7000.00\\nphone: hm 407/254-1398\\n wk 407/724-7137\\nMelbourne, Florida\\n\\n\\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orion drive in vacuum -- how?\\nOrganization: U of Toronto Zoology\\nLines: 12\\n\\nIn article <1993Apr17.053333.15696@sfu.ca> Leigh Palmer writes:\\n>... a high explosive Orion prototype flew (in the atmosphere) in San\\n>Diego back in 1957 or 1958... I feel sure\\n>that someone must have film of that experiment, and I'd really like to\\n>see it. Has anyone out there seen it?\\n\\nThe National Air & Space Museum has both the prototype and the film.\\nWhen I was there, some years ago, they had the prototype on display and\\nthe film continuously repeating.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " \"From: Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado)\\nSubject: Conference on Manned Lunar Exploration. May 7 Crystal City\\nLines: 25\\n\\nReply address: mark.prado@permanet.org\\n\\n > From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\n >\\n > In article <1993Apr19.230236.18227@aio.jsc.nasa.gov>,\\n > daviss@sweetpea.jsc.nasa.gov (S.F. Davis) writes:\\n > > |> AW&ST had a brief blurb on a Manned Lunar Exploration\\n > confernce> |> May 7th at Crystal City Virginia, under the\\n > auspices of AIAA.\\n >\\n > Thanks for typing that in, Steven.\\n >\\n > I hope you decide to go, Pat. The Net can use some eyes\\n > and ears there...\\n\\nI plan to go. It's about 30 minutes away from my home.\\nI can report on some of it (from my perspective ...)\\nAnyone else on sci.space going to be there? If so, send me\\nnetmail. Maybe we can plan to cross paths briefly...\\nI'll maintain a list of who's going.\\n\\nmark.prado@permanet.org\\n\\n * Origin: Just send it to bill.clinton@permanet.org\\n(1:109/349.2)\\n\",\n", + " 'From: wmiler@nyx.cs.du.edu (Wyatt Miler)\\nSubject: Diaspar Virtual Reality Network Announcement\\nOrganization: Nyx, Public Access Unix @ U. of Denver Math/CS dept.\\nLines: 185\\n\\n\\nPosted to the Internet by wmiler@nyx.cs.du.edu\\n \\n000062David42 041493003715\\n \\n The Lunar Tele-operation Model One (LTM1)\\n =========================================\\n By David H. Mitchell\\n March 23, 1993\\n \\nINTRODUCTION:\\n \\nIn order to increase public interest in space-based and lunar operations, a\\nreal miniature lunar-like environment is being constructed on which to test\\ntele-operated models. These models are remotely-controlled by individuals\\nlocated world-wide using their personal computers, for EduTainment\\npurposes.\\nNot only does this provide a test-bed for simple tele-operation and\\ntele-presence activities but it also provides for the sharing of\\ninformation\\non methods of operating in space, including, but not limited to, layout of\\na\\nlunar colony, tele-operating machines for work and play, disseminating\\neducational information, providing contests and awards for creativity and\\nachievement and provides a new way for students worldwide to participate in\\nTwenty-First century remote learning methods.\\n \\nBecause of the nature of the LTM1 project, people of all ages, interests\\nand\\nskills can contribute scenery and murals, models and structures,\\ninterfacing\\nand electronics, software and graphics. In operation LTM1 is an evolving\\nplayground and laboratory that can be used by children, students and\\nprofessionals worldwide. Using a personal computer at home or a terminal at\\na participating institution a user is able to tele-operate real models at\\nthe\\nLTM1 base for experimental or recreational purposes. Because a real\\nfacility\\nexists, ample opportunity is provided for media coverage of the\\nconstruction\\nof the lunar model, its operation and new features to be added as suggested\\nby the users themselves.\\n \\nThis has broad inherent interest for a wide range of groups:\\n - tele-operations and virtual reality research\\n - radio control, model railroad and ham radio operation\\n - astronomy and space planetariums and science centers\\n - art and theater\\n - bbs and online network users\\n - software and game developers\\n - manufacturers and retailers of model rockets, cars and trains\\n - children\\n - the child in all of us\\n \\nLTM1 OVERALL DESIGN:\\n \\nA room 14 feet by 8 feet contains the base lunar layout. The walls are used\\nfor murals of distant moon mountains, star fields and a view of the earth.\\nThe \"floor\" is the simulated lunar surface. A global call for contributions\\nis hereby made for material for the lunar surface, and for the design and\\ncreation of scale models of lunar colony elements, scenery, and\\nmachine-lets.\\n \\n The LTM1 initial design has 3 tele-operated machinelets:\\n 1. An SSTO scale model which will be able to lift off, hover and land;\\n 2. A bulldozerlet which will be able to move about in a quarry area; and\\n 3. A moon-train which will traverse most of the simulated lunar surface.\\n \\n Each machinelet has a small TV camera utilizing a CCD TV chip mounted on\\n it. A personal computer digitizes the image (including reducing picture\\n content and doing data-compression to allow for minimal images to be sent\\n to the operator for control purposes) and also return control signals.\\n \\nThe first machinelet to be set up will be the moon-train since model trains\\nwith TV cameras built in are almost off-the-shelf items and control\\nelectronics for starting and stopping a train are minimal. The user will\\nreceive an image once every 1 to 4 seconds depending on the speed of their\\ndata link to LTM1.\\n \\nNext, an SSTO scale model with a CCD TV chip will be suspended from a\\nservo-motor operated wire frame mounted on the ceiling allowing for the\\nSSTO\\nto be controlled by the operator to take off, hover over the entire lunar\\nlandscape and land.\\n \\nFinally, some tank models will be modified to be CCD TV chip equipped\\nbulldozerlets. The entire initial LTM1 will allow remote operators\\nworldwide\\nto receive minimal images while actually operating models for landing and\\ntakeoff, traveling and doing work. The entire system is based on\\ncommercially\\navailable items and parts that can be easily obtained except for the\\ninterface electronics which is well within the capability of many advanced\\nham radio operator and computer hardware/software developers.\\n \\nBy taking a graphically oriented communications program (Dmodem) and adding\\na tele-operations screen and controls, the necessary user interface can be\\nprovided in under 80 man hours.\\n \\nPLAN OF ACTION:\\n \\nThe Diaspar Virtual Reality Network has agreed to sponsor this project by\\nproviding a host computer network and Internet access to that network.\\nDiaspar is providing the 14 foot by 8 foot facility for actual construction\\nof the lunar model. Diaspar has, in stock, the electronic tanks that can be\\nmodified and one CCD TV chip. Diaspar also agrees to provide \"rail stock\"\\nfor the lunar train model. Diaspar will make available the Dmodem graphical\\ncommunications package and modify it for control of the machines-lets.\\nAn initial \"ground breaking\" with miniature shovels will be performed for\\na live photo-session and news conference on April 30, 1993. The initial\\nmodels will be put in place. A time-lapse record will be started for\\nhistorical purposes. It is not expected that this event will be completely\\nserious or solemn. The lunar colony will be declared open for additional\\nbuilding, operations and experiments. A photographer will be present and\\nthe photographs taken will be converted to .gif images for distribution\\nworld-wide to major online networks and bbs\\'s. A press release will be\\nissued\\ncalling for contributions of ideas, time, talent, materials and scale\\nmodels\\nfor the simulated lunar colony.\\n \\nA contest for new designs and techniques for working on the moon will then\\nbe\\nannounced. Universities will be invited to participate, the goal being to\\nfind instructors who wish to have class participation in various aspects of\\nthe lunar colony model. Field trips to LTM1 can be arranged and at that\\ntime\\nthe results of the class work will be added to the model. Contributors will\\nthen be able to tele-operate any contributed machine-lets once they return\\nto\\ntheir campus.\\n \\nA monthly LTM1 newsletter will be issued both electronically online and via\\nconventional means to the media. Any major new tele-operated equipment\\naddition will be marked with an invitation to the television news media.\\nHaving a large, real model space colony will be a very attractive photo\\nopportunity for the television community. Especially since the \"action\"\\nwill\\nbe controlled by people all over the world. Science fiction writers will be\\ninvited to issue \"challenges\" to engineering and human factors students at\\nuniversities to build and operate the tele-operated equipment to perform\\nlunar tasks. Using counter-weight and pulley systems, 1/6 gravity may be\\nsimulated to some extent to try various traction challenges.\\n \\nThe long term goal is creating world-wide interest, education,\\nexperimentation\\nand remote operation of a lunar colony. LTM1 has the potential of being a\\nlong\\nterm global EduTainment method for space activities and may be the generic\\nexample of how to teach and explore in many other subject areas not limited\\nto space EduTainment. All of this facilitates the kind of spirit which can\\nlead to a generation of people who are ready for the leap to the stars!\\n \\nCONCLUSION:\\n \\nEduTainment is the blending of education and entertainment. Anyone who has\\never enjoyed seeing miniatures will probably see the potential impact of a\\nglobally available layout for recreation, education and experimentation\\npurposes. By creating a tele-operated model lunar colony we not only create\\nworld-wide publicity, but also a method of trying new ideas that require\\nreal\\n(not virtual) skills and open a new method for putting people\\'s minds in\\nspace.\\n \\n \\nMOONLIGHTERS:\\n \\n\"Illuminating the path of knowledge about space and lunar development.\"\\nThe following people are already engaged in various parts of this work:\\nDavid42, Rob47, Dash, Hyson, Jzer0, Vril, Wyatt, The Dark One, Tiggertoo,\\nThe Mad Hatter, Sir Robin, Jogden.\\n \\nCome join the discussion any Friday night from 10:30 to midnight PST in\\n \\nDiaspar Virtual Reality Network. Ideas welcome!\\n \\nInternet telnet to: 192.215.11.1 or diaspar.com\\n \\n(voice) 714-376-1776\\n(2400bd) 714-376-1200\\n(9600bd) 714-376-1234\\n \\nEmail inquiries to LTM1 project leader Jzer@Hydra.unm.edu\\nor directly to Jzer0 on Diaspar.\\n\\n',\n", + " 'From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: Countersteering, to know or not to know - what is the question?\\nOrganization: University of East Anglia\\nDistribution: net\\nLines: 22\\n\\nlotto@husc4.harvard.edu (Jerry Lotto) writes:\\n\\n>There has been a running thread on the need to understand\\n>countersteering. I have seen a lot of opinion, but not much of it has\\n>any basis in fact or study. The bottom line is:\\n\\n>The understanding and ability to swerve was essentially absent among\\n>the accident-involved riders in the Hurt study.\\n\\n>The \"average rider\" does not identify that countersteering alone\\n>provides the primary input to effect motorcycle lean by themselves,\\n>even after many years of practice.\\n\\nI would agree entirely with these three paragraphs. But did the Hurt\\nstudy make any distinction between an *ability* to swerve and a *failure*\\nto swerve? In most of the accidents and near accidents that I\\'ve seen, riders\\nwill almost always stand on the brakes as hard as they dare, simply because\\nthe instinct to brake in the face of danger is so strong that it over-rides\\neverything else. Hard braking and swerving tend to be mutually exclusive\\nmanouvres - did Hurt draw any conclusions on which one is generally preferable?\\n\\n\\n',\n", + " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israel\\'s Expansion II\\nOrganization: University of Virginia\\nLines: 29\\n\\nwaldo@cybernet.cse.fau.edu writes:\\n> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n> \\n> > First of all I never said the Holocaust. I said before the\\n> > Holocaust. I\\'m not ignorant of the Holocaust and know more\\n> > about Nazi Germany than most people (maybe including you). \\n> \\n> Uh Oh! The first sign of an argument without merit--the stating of one\\'s \\n> \"qualifications\" in an area. If you know something about Nazi Germany, \\n> show it. If you don\\'t, shut up. Simple as that.\\n> \\n> > \\tI don\\'t think the suffering of some Jews during WWII\\n> > justifies the crimes commited by the Israeli government. Any\\n> > attempt to call Civil liberterians like myself anti-semetic is\\n> > not appreciated.\\n> \\n> ALL Jews suffered during WWII, not just our beloved who perished or were \\n> tortured. We ALL suffered. Second, the name-calling was directed against\\n> YOU, not civil-libertarians in general. Your name-dropping of a fancy\\n> sounding political term is yet another attempt to \"cite qualifications\" \\n> in order to obfuscate your glaring unpreparedness for this argument. Go \\n> back to the minors, junior.\\n\\tAll humans suffered emotionally, some Jews and many\\nothers suffered physically. It is sad that people like you are\\nso blinded by emotions that they can\\'t see the facts. Thanks\\nfor calling me names, it only assures me of what kind of\\nignorant people I am dealing with. I included your letter since\\nI thought it demonstrated my point more than anything I could\\nwrite. \\n',\n", + " 'From: Thomas.Enblom@eos.ericsson.se (Thomas Enblom)\\nSubject: NAVSTAR positions\\nReply-To: Thomas.Enblom@eos.ericsson.se\\nOrganization: Ericsson Telecom AB\\nLines: 16\\nNntp-Posting-Host: eos8c29.ericsson.se\\n\\nI\\'ve just read Richard Langley\\'s latest \"Navstar GPS Constellation Status\".\\n\\nIt states that the latest satellite was placed in Orbit Plane Position C-3.\\nThere is already one satellite in that position. I know that it\\'s almost\\nten years since that satellite was launched but it\\'s still in operation so\\nwhy not use it until it goes off?\\n\\nWhy not instead place the new satellite at B-4 since that position is empty\\nand by this measure have an almost complete GPS-constellation\\n(23 out of 24)?\\n\\n/Thomas\\n================================================================================\\nEricsson Telecom, Stockholm, Sweden\\n \\nThomas Enblom, just another employee. \\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Arafat (Re: Sampson)\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 61\\n\\nIn article <5897@copper.Denver.Colorado.EDU> aaldoubo@copper.denver.colorado.edu (Shaqeeqa) writes:\\n>In article <1993Apr10.182402.11676@colorado.edu> perlman@qso.Colorado.EDU (Eric S. Perlman) writes:\\n\\n>>Perhaps, though one can argue about whether or not the current\\n>>Palestinian delegation represents the PLO (I would hope it does not, as\\n>>the PLO really doesn\\'t have that kind of legitimacy).\\n\\n>Does it matter to you, Naftaly, Adam, and others, that Arafat\\n>advises the delegation and that the PLO, overall, supports it? Does\\n>it also matter that Arafat, on behalf of the PLO, recognizes Israel\\n>and its right to exist? Further, does Israel\\'s new policy concerning\\n>direct negotiations with the PLO hold any substance to the situation\\n>as a whole?\\n\\nNo, he does not. Arafat explicitly *denies* this claim.\\n\\n\\nfrom a Libyan televison interview with Yasser Arafat 7-19-1991\\nQ: Some people say that the Palestinian revolution has many times changed\\n its strategies and tactics, something which has left its imprint on the\\n Palestinian problem and on the Palestinian Liberation Front. The\\n [strategies and tactics] have not been clear. The question is, is the\\n direction of the Palestinian problem clear? The Palestinian leadership\\n has stopped, or at least this is what has been said in the media, this\\n happened on the way to the dialogue with the United States, the PLO\\n recognized something called \"Israel\"...\\n\\nA: No, no, no! We do not recognize the State of Israel. We said\\n \"recognition\" -- when a Palestinian state is established. It will then\\n decide if to recognize Israel or not. When it is established, its\\n parliament will convene and decide.\\n\\n>policies which it can justify through occupation. Because of this,\\n>you have the grassroot movements that reject Israel\\'s authority and\\n>disregard for human rights; and, if Israel was serious about peace, it\\n>would abandon these policies.\\n\\n\\tAnd replace them with what? If Israel is to withdraw its\\ncontrol of any territory, there must be two prerequsites. One is that\\nit leads to a reduction in deaths. The second is that it should not\\nweaken Israels bargianing position with respect to peace talks.\\n\\n\\tLeaving Gaza unilateraly is a bad idea because it encourages\\narabs to think they can get what they want by killing Jews. The only\\nway Israel should pull out of Gaza is at the end of negotiations.\\nThese negotiations should lead to a mutually agreeable solution with\\nsecurity guarantees for both sides.\\n\\n\\tUntil arabs are ready to sit down at the table and talk again,\\nthey should not expect, or recieve more concessions.\\n\\n\\nAdam\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'Subject: Need rgb data from saved images\\nFrom: \\nOrganization: Penn State University\\nLines: 4\\n\\n Could someone please help me find a program or figure out how to extract a li\\nst of R G B values for each pixel in an image. I can convert between tga and s\\neveral other popular formats but I need the R G B values for use in a program I\\n am writing. Thanks for the help\\n',\n", + " 'From: Center for Policy Research \\nSubject: Symbiotics: Zionism-Antisemitism\\nNf-ID: #N:cdp:1483500355:000:10647\\nNf-From: cdp.UUCP!cpr Apr 23 15:14:00 1993\\nLines: 197\\n\\n\\nFrom: Center for Policy Research \\nSubject: Symbiotics: Zionism-Antisemitism\\n\\n\\nZionism and the Holocaust\\n-------------------------- by Haim Bresheeth\\n\\nThe first point to note regarding the appropriation of the history\\nof the Holocaust by Zionist propaganda is that Zionism without\\nanti-semitism is impossible. Zionism agrees with the basic tenet\\nof anti-Semitism, namely that Jews cannot live with non- Jews.\\n\\nThe history and roots of the Holocaust go back a long way. While\\nthe industru of death and destruction did not operate before 1942,\\nits roots were firmly placed in the 19th Century. Jewish\\naspirations for emancipation emerged out of the national struggles\\nin Europe. When the hopes for liberation through\\nbourgeois-democratic change were dashed, other alternatives for\\nimproving the lot of the Jews of Europe achieved prominence.\\n\\nThe socialist Bund, a mass movement with enormous following, had\\nto contend with opposition from a new and small, almost\\ninsignificant opponent, the political Zionists. In outline these\\ntwo offered diametrically opposed options for Jews in Europe.\\nWhile the Bund was suggesting joining forces with the rest of\\nEurope\\'s workers, the Zionists were proposing a new programme\\naimed at ridding Europe of its Jews by setting up some form of a\\nJewish state.\\n\\nHistorically, nothing is inevitable, all depends on the balance of\\nforces involved in the struggle. History can be seen as an option\\ntree: every time a certain option is chosen, other routes become\\nbarred. Because of that choice, movement backwards to the point\\nbefore that choice was made is impossible. While Zionism as an\\noption was taken by many young Jews, it remained a minority\\nposition until the first days of the 3rd Reich. The Zionist\\nFederation of Germany (ZVfD), an organisation representing a tiny\\nminority of German Jews, was selected by the Nazis as the body to\\nrepresent the Jews of the Reich. Its was the only flag of an\\ninterantional organisation allowed to fly in Berlin, and this was\\nthe only international organisation allowed to operate during this\\nperiod. From a marginal position, the leaders of the Zionist\\nFederation were propelled to a prominence and centrality that\\nsurprised even them. All of a sudden they attained political\\npower, power based not on representation, but from being selected\\nas the choice of the Nazi regime for dealing with the the \\'Jewish\\nproblem\\'. Their position in negotiating with the Nazis agreements\\nthat affected the lives of many tens of thousands of the Jews in\\nGermany transformed them from a utopian, marginal organisation in\\nGermany (and some other countries in Europe) into a real option to\\nbe considered by German Jews.\\n\\nThe best example of this was the \\'Transfer Agreement\\' of 1934.\\nImmediately after the Nazi takeover in 1933, Jews all over the\\nworld supported or were organising a world wide boycott of German\\ngoods. This campaign hurt the Nazi regime and the German\\nauthorities searched frantically for a way disabling the boycott.\\nIt was clear that if Jews and Jewish organisations were to pull\\nout, the campaign would collapse.\\n\\nThis problem was solved by the ZVfD. A letter sent to the Nazi\\nparty as early as 21. June 1933, outlined the degree of agreement\\nthat existed between the two organisations on the question of\\nrace, nation, and the nature of the \\'Jewish problem\\', and it\\noffered to collaborate with the new regime:\\n\\n\"The realisation of Zionism could only be hurt by resentment of\\nJews abroad against the German development. Boycott propaganda -\\nsuch as is currently being carried out against Germany in many\\nways - is in essence unZionist, because Zionism wants not to do\\nbattle but to convince and build.\"\\n\\nIn their eagerness to gain credence and the backing of the new\\nregime, the Zionist organisation managed to undermine the boycott.\\nThe main public act was the signature of the \"Transfer Agreement\"\\nwith the Nazi authorities during the Zionist Congress of 1934. In\\nessence, the agreement was designed to get Germany\\'s Jews out of\\nthe country and into Mandate Palestine. It provided a possibility\\nfor Jews to take a sizeable part of their property out of the\\ncountry, through a transfer of German goods to Palestine. This\\nright was denied to Jews leaving to any other destination. The\\nZionist organisation was the acting agent, through its financial\\norganisations. This agreement operated on a number of fronts -\\n\\'helping\\' Jews to leave the country, breaking the ring of the\\nboycott, exporting German goods in large quantities to Palestine,\\nand last but not least, enabling the regime to be seen as humane\\nand reasonable even towards its avowed enemies, the Jews. After\\nall, they argued, the Jews do not belong in Europe and now the\\nJews come and agree with them.\\n\\nAfter news of the agreement broke, the boycott was doomed. If the\\nZionist Organization found it possible and necessary to deal with\\nthe Nazis, and import their goods, who could argue for a boycott ?\\nThis was not the first time that the interests of both movements\\nwere presented to the German public as complementary. Baron Von\\nMildenstein, the first head of the Jewish Department of the SS,\\nlater followed by Eichmann, was invited to travel to Palestine.\\nThis he did in early 1933, in the company of a Zionist leader,\\nKurt Tuchler. Having spent six months in Palestine, he wrote a\\nseries of favourable articles in Der STURMER describing the \\'new\\nJew\\' of Zionism, a Jew Nazis could accept and understand.\\n\\nThis little-known episode established quite clearly the\\nrelationship during the early days of Nazism, between the new\\nregime and the ZVfD, a relationship that was echoed later in a\\nnumber of key instances, even after the nature of the Final\\nSolution became clear. In many cases this meant a silencing of\\nreports about the horrors of the exterminations. A book\\nconcentrating on this aspect of the Zionist reaction to the\\nHolocaust is Post-Ugandan Zionism in the Crucible of the\\nHolocaust, by S. B. Beth-Zvi.\\n\\nIn the case of the Kastner episode, around which Jim Allen\\'s play\\nPERDITION is based, even the normal excuse of lack of knowledge of\\nthe real nature of events does not exist. It occured near the end\\nof the war. The USSR had advanced almost up to Germany. Italy and\\nthe African bases had been lost. The Nazis were on the run, with a\\nnumber of key countries, such as Rumania, leaving the Axis. A\\nsecond front was a matter of months away, as the western Allies\\nprepared their forces. In the midst of all this we find Eichmann,\\nthe master bureaucrat of industrial murder, setting up his HZ in\\noccupied Budapest, after the German takeover of the country in\\nApril 1944. His first act was to have a conference with the Jewish\\nleadership, and to appoint Zionist Federation members, headed by\\nKastner as the agent and clearing house for all Jews and their\\nrelationship with the SS and the Nazr authorities. Why they did\\nthis is not difficult to see. As opposed to Poland, where its\\nthree and a half million Jews lived in ghettoes and were visibly\\ndifferent from the rest of the Polish population, the Hungarian\\nJews were an integrated part of the community. The middle class\\nwas mainly Jewish, the Jews were mainly middle-class. They enjoyed\\nfreedom of travel, served in the Hungarian (fascist) army in\\nfronline units, as officers and soldiers, their names were\\nHungarian - how was Eichmann to find them if they were to be\\nexterminated ? The task was not easy, there were a million Jews in\\nHungary, most of them resident, the rest being refugees from other\\ncountries. Many had heard about the fate of Jews elsewhere, and\\nwere unlikely to believe any statements by Nazi officials.\\n\\nLike elsewhere, the only people who had the information and the\\near of the frightened Jewish population were the Judenrat. In this\\ncase the Judenrat comprsied mainly the Zionist Federation members.\\nWithout their help the SS, with 19 officers and less than 90 men,\\nplus a few hundred Hungarian police, could not have collected and\\ncontrolled a million Jews, when they did not even know their\\nwhereabouts. Kastner and the others were left under no illusions.\\nEichmann told Joel Brand, one of the members of Kastner\\'s\\ncommittee, that he intended to send all Hungary\\'s Jews to\\nAuschwitz, before he even started the expulsions! He told them\\nclearly that all these Jews will die, 12,000 a day, unless certain\\nconditions were met.\\n\\nThe Committee faced a simple choice - to tell the Jews of Hungary\\nabout their fate, (with neutral Rumania, where many could escape,\\nbeing in most cases a few hours away) or to collaborate with the\\nNazis by assisting in the concentration process. What would not\\nhave been believed when coming from the SS, sounded quite\\nplausible when coming from the mouths of the Zionist leadership.\\nThus it is, that most of the Hungarian Jews went quietly to their\\ndeath, assured by their leadership that they were to be sent to\\nwork camps.\\n\\nTo be sure, there are thirty pieces of silver in this narrative of\\ndestruction: the trains of \\'prominents\\' which Eichmann promised to\\nKastner - a promise he kept to the last detail. For Eichmann it\\nwas a bargain: allowing 1,680 Jews to survive, as the price paid\\nfor the silent collaboration over the death of almost a million\\nJews.\\n\\nThere was no way in which the Jews of Hungary could even be\\nlocated, not to say murdered, without the full collaboration of\\nKastner and his few friends. No doubt the SS would hunt a few Jews\\nhere and there, but the scale of the operation would have been\\nminiscule compared to the half million who died in Auschwitz.\\n\\nIt is important to realise that Kastner was not an aberration,\\nlike say Rumkovsky in Lodz. Kastner acted as a result of his\\nstrongly held Zionist convictions. His actions were a logical\\noutcome of earlier positions. This is instanced when he exposed to\\nthe Gestapo the existence of a British cell of saboteurs, Palgi\\nand Senesh, and persuaded them to give themselves up, so as not to\\ndisrupt his operations. At no point during his trial or elsewhere,\\ndid Kastner deny that he knew exactly what was to happen to those\\nJews.\\n\\nTo conclude, the role played by Zionists in this period, was\\nconnected to another role they could, and should have played, that\\nof alarming the whole world to what was happening in Europe. They\\nhad the information, but politically it was contrary to their\\npriorities. The priorities were, and still are, quite simple: All\\nthat furthers the Zionist enterprise in Palestine is followed,\\nwhatever the price. The lives of individuals, Jews and non-Jews,\\nare secondary. If this process requires dealing with fascists,\\nNazis and other assorted dictatorial regimes across the world, so\\nbe it.\\n\\n',\n", + " \"From: jgarland@kean.ucs.mun.ca\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nLines: 26\\nOrganization: Memorial University. St.John's Nfld, Canada\\n\\nIn article <1993Apr19.020359.26996@sq.sq.com>, msb@sq.sq.com (Mark Brader) writes:\\n>> > Can these questions be answered for a previous\\n>> > instance, such as the Gehrels 3 that was mentioned in an earlier posting?\\n> \\n>> Orbital Elements of Comet 1977VII (from Dance files)\\n>> p(au) 3.424346\\n>> e 0.151899\\n>> i 1.0988\\n>> cap_omega(0) 243.5652\\n>> W(0) 231.1607\\n>> epoch 1977.04110\\n> \\n> \\n>> Also, perihelions of Gehrels3 were:\\n>> \\n>> April 1973 83 jupiter radii\\n>> August 1970 ~3 jupiter radii\\n> \\n> Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. So the\\n> 1970 figure seems unlikely to actually be anything but a perijove.\\n> Is that the case for the 1973 figure as well?\\n> -- \\nSorry, _perijoves_...I'm not used to talking this language.\\n\\nJohn Garland\\njgarland@kean.ucs.mun.ca\\n\",\n", + " 'From: svoboda@rtsg.mot.com (David Svoboda)\\nSubject: Re: Ok, So I was a little hasty...\\nNntp-Posting-Host: corolla18\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 16\\n\\nIn article speedy@engr.latech.edu (Speedy Mercer) writes:\\n|\\n|This was changed here in Louisiana when a girl went to court and won her \\n|case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\nGeez, what happened? She got a ticket for driving too slow???\\n\\n| ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\nOh, are you saying you\\'re not an edu.breath, then? Okay.\\n\\n\\nDave Svoboda (svoboda@void.rtsg.mot.com) | \"I\\'m getting tired of\\n90 Concours 1000 (Mmmmmmmmmm!) | beating you up, Dave.\\n84 RZ 350 (Ring Ding) (Woops!) | You never learn.\"\\nAMA 583905 DoD #0330 COG 939 (Chicago) | -- Beth \"Bruiser\" Dixon\\n',\n", + " \"From: robert@Xenon.Stanford.EDU (Robert Kennedy)\\nSubject: Solar battery chargers -- any good?\\nOrganization: Computer Science Department, Stanford University.\\nLines: 12\\n\\nI've seen solar battery boosters, and they seem to come without any\\nguarantee. On the other hand, I've heard that some people use them\\nwith success, although I have yet to communicate directly with such a\\nperson. Have you tried one? What was your experience? How did you use\\nit (occasional charging, long-term leave-it-for-weeks, etc.)?\\n\\n\\t-- Robert Kennedy\\n\\nRobert Kennedy\\t\\t\\t\\t\\t(415) 723-4532 (office)\\nrobert@cs.stanford.edu\\t\\t\\t\\t(415) 322-7367 (home voice)\\nComputer Science Dept., Stanford University\\t(415) 322-7329 (home tty)\\n\\n\",\n", + " \"From: jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll)\\nSubject: Re: Vandalizing the sky.\\nOrganization: University of Western Ontario, London\\nNntp-Posting-Host: prism.engrg.uwo.ca\\nLines: 15\\n\\nIn article nickh@CS.CMU.EDU (Nick Haines) writes:\\n>\\n>Would they buy it, given that it's a _lot_ more expensive, and not\\n>much more impressive, than putting a large set of several-km\\n>inflatable billboards in LEO (or in GEO, visible 24 hours from your\\n>key growth market). I'll do _that_ for only $5bn (and the changes of\\n>identity).\\n\\n\\tI've heard of sillier things, like a well-known utility company\\nwanting to buy an 'automated' boiler-cleaning system which uses as many\\noperators as the old system, and which rumour has it costs three million\\nmore per unit. Automation is more 'efficient' although by what scale they are\\nnot saying...\\n\\n\\t\\t\\t\\t\\t\\t\\tJames Nicoll\\n\",\n", + " 'From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Absood\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nOrganization: Columbia University\\nLines: 11\\n\\nTo my fellow Columbian, I must ask, why do you say that I engage\\nin fantasies? Arafat is a terrorist, who happens to have\\n a lot of pull among Palestinians. Can we ignore the two facts?\\nI doubt it.\\n\\nPeace, roar lion roar, and other niceties,\\nPete\\n\\n\\n\\n\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: DC-Y trajectory simulation\\nKeywords: SSTO, Delta Clipper\\nOrganization: University of Illinois at Urbana\\nLines: 91\\n\\n\\nI\\'ve been to three talks in the last month which might be of interest. I\\'ve \\ntranscribed some of my notes below. Since my note taking ability is by no means\\ninfallible, please assume that all factual errors are mine. Permission is \\ngranted to copy this without restriction.\\n\\nNote for newbies: The Delta Clipper project is geared towards producing a\\nsingle staget to orbit, reusable launch vehicle. The DC-X vehicle is a 1/3\\nscale vehicle designed to test some of the concepts invovled in SSTO. It is \\ncurrently undergoing tests. The DC-Y vehicle would be a full scale \\nexperimental vehicle capable of reaching orbit. It has not yet been funded.\\n\\nOn April 6th, Rocky Nelson of MacDonnell Douglas gave a talk entitled \\n\"Optimizing Techniques for Advanced Space Missions\" here at the University of\\nIllinois. Mr Nelson\\'s job involves using software to simulate trajectories and\\ndetermine the optimal trajectory within given requirements. Although he is\\nnot directly involved with the Delta Clipper project, he has spent time with \\nthem recently, using his software for their applications. He thus used \\nthe DC-Y project for most of his examples. While I don\\'t think the details\\nof implicit trajectory simulation are of much interest to the readers (I hope\\nthey aren\\'t - I fell asleep during that part), I think that many of you will\\nbe interested in some of the details gleaned from the examples.\\n\\nThe first example given was the maximization of payload for a polar orbit. The\\nmain restriction is that acceleration must remain below 3 Gs. I assume that\\nthis is driven by passenger constraints rather than hardware constraints, but I\\ndid not verify that. The Delta Clipper Y version has 8 engines - 4 boosters\\nand 4 sustainers. The boosters, which have a lower isp, are shut down in \\nmid-flight. Thus, one critical question is when to shut them down. Mr Nelson\\nshowed the following plot of acceleration vs time:\\n ______\\n3 G /| / |\\n / | / | As ASCII graphs go, this is actually fairly \\n / | / |\\t good. The big difference is that the lines\\n2 G / |/ | made by the / should be curves which are\\n / | concave up. The data is only approximate, as\\n / | the graph wasn\\'t up for very long.\\n1 G / |\\n |\\n |\\n0 G |\\n\\n ^ ^\\n ~100 sec ~400 sec\\n\\n\\nAs mentioned before, a critical constraint is that G levels must be kept below\\n3. Initially, all eight engines are started. As the vehicle burns fuel the\\naccelleration increases. As it gets close to 3G, the booster engines are \\nthrotled back. However, they quickly become inefficient at low power, so it\\nsoon makes more sense to cut them off altogether. This causes the dip in \\naccelleration at about 100 seconds. Eventually the remaining sustainer engines\\nbring the G level back up to about 3 and then hold it there until they cut\\nout entirely.\\n\\nThe engine cutoff does not acutally occur in orbit. The trajectory is aimed\\nfor an altitude slightly higher than the 100nm desired and the last vestiges of\\nair drag slow the vehicle slightly, thus lowering the final altitude to \\nthat desired.\\n\\nQuestions from the audience: (paraphrased)\\n\\nQ: Would it make sense to shut down the booster engines in pairs, rather than\\n all at once?\\n\\nA: Very perceptive. Worth considering. They have not yet done the simulation. Shutting down all four was part of the problem as given.\\n\\nQ: So what was the final payload for this trajectory?\\n\\nA: Can\\'t tell us. \"Read Aviation Leak.\" He also apparently had a good \\n propulsion example, but was told not to use it. \\n\\nMy question: Does anyone know if this security is due to SDIO protecting\\nnational security or MD protecting their own interests?\\n\\nThe second example was reentry simulation, from orbit to just before the pitch\\nup maneuver. The biggest constraint in this one is aerodynamic heating, and \\nthe parameter they were trying to maximize was crossrange. He showed graphs\\nof heating using two different models, to show that both were very similar,\\nand I think we were supposed to assume that this meant they were very accurate.\\nThe end result was that for a polar orbit landing at KSC, the DC-Y would have\\nabout 30 degrees of crossrange and would start it\\'s reentry profile about \\n60 degrees south latitude.\\n\\nI would have asked about the landing maneuvers, but he didn\\'t know about that\\naspect of the flight profile.\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " 'From: laszlo@eclipse.cs.colorado.edu (Laszlo Nemeth)\\nSubject: New DoD listing. Membership is at 1148\\nNntp-Posting-Host: eclipse.cs.colorado.edu\\nOrganization: University of Colorado Boulder, Pizza Disposal Group\\nLines: 23\\n\\nThere is a new DoD listing. To get a copy use one of these commands:\\n\\n\\t\\tfinger motohead@cs.colorado.edu\\n\\t\\t\\t\\tOR\\n\\t\\tmail motohead@cs.colorado.edu\\n\\nIf you send mail make sure your \"From\" line is correct (ie \"man vacation\").\\nI will not try at all to fix mail problems (unless they are mine ;-). And I\\nmay just publicly tell the world what a bad mailer you have. I do scan the \\nmail to find bounces but I will not waste my time answering your questions \\nor requests.\\n\\nFor those of you that want to update your entry or get a # contact the KotL.\\nOnly the KotL can make changes. SO STOP BOTHERING ME WITH INANE MAIL\\n\\nI will not tell what \"DoD\" is! Ask rec.motorcycles. I do not give out the #\\'s.\\n\\n\\nLaszlo Nemeth\\nlaszlo@cs.colorado.edu\\n\"hey - my tool works (yeah, you can quote me on that).\" From elef@Sun.COM\\n\"Flashbacks = free drugs.\"\\nDoD #0666 UID #1999\\n',\n", + " 'From: tychay@cco.caltech.edu (Terrence Y. Chay)\\nSubject: TIFF (NeXT Appsoft draw) -> GIF conversion?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 27\\nNNTP-Posting-Host: punisher.caltech.edu\\nSummary: Help!\\nKeywords: TIFF GIF graphics conversion NeXT Appsoft\\n\\nOkay all my friends are bitching at me that the map I made in Appsoft Draw\\ncan\\'t be displayed in \"xv\"... I checked... It\\'s true, at least with version\\n1.0. My readers on the NeXT have very little trouble on it (Preview messes\\nup the .eps, but does fine with the TIFF and ImageViewer0.9a behaves with\\nflying colors except it doesn\\'t convert worth *&^^% ;-) )\\n\\n Please is there any way I can convert this .drw from Appsoft 1.0 on the NeXT\\nto something more reasonable like .gif? I have access to a sun4 and NeXTstep\\n3.0 systems. any good reliable conversion programs would be helpful... please\\nemail, I\\'ll post responses if anyone wants me to... please email that to.\\n\\nYes I used alphachannel... (god i could choke steve jobs right now ;-) )\\n\\nYes i know how to archie, but tell me what to archie for ;-)\\n\\nAlso is there a way to convert to .ps plain format? ImageViiewer0.9 turns\\nout nothing recognizable....\\n\\n terrychay\\n\\n---\\nsmall editorial\\n\\n-rw-r--r-- 1 tychay 2908404 Apr 18 08:03 Undernet.tiff\\n-rw-r--r-- 1 tychay 73525 Apr 18 08:03 Undernet.tiff.Z\\n\\nand not using gzip! is it me or is there something wrong with this format?\\n',\n", + " \"From: deweeset@ptolemy2.rdrc.rpi.edu (Thomas E. DeWeese)\\nSubject: Finding equally spaced points on a sphere.\\nArticle-I.D.: rpi.4615trd\\nOrganization: Rensselaer Polytechnic Institute, Troy, NY\\nLines: 8\\nNntp-Posting-Host: ptolemy2.rdrc.rpi.edu\\n\\n\\n Hello, I know that this has been discussed before. But at the time\\nI didn't need to teselate a sphere. So if any kind soul has the code\\nor the alg, that was finally decided upon as the best (as I recall it\\nwas a nice, iterative subdivision meathod), I would be very \\nappreciative.\\n\\t\\t\\t\\t\\t\\t\\tThomas DeWeese\\ndeweeset@rdrc.rpi.edu\\n\",\n", + " \"From: diablo.UUCP!cboesel (Charles Boesel)\\nSubject: Alias phone number wanted\\nOrganization: Diablo Creative\\nReply-To: diablo.UUCP!cboesel (Charles Boesel)\\nX-Mailer: uAccess LITE - Macintosh Release: 1.6v2\\nLines: 9\\n\\nWhat is the phone number for Alias?\\nA toll-free number is preferred, if available.\\n\\nThanks\\n\\n--\\ncharles boesel @ diablo creative | If Pro = for and Con = against\\ncboesel@diablo.uu.holonet.net | Then what's the opposite of Progress?\\n+1.510.980.1958(pager) | What else, Congress.\\n\",\n", + " 'From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: NEWS YOU MAY HAVE MISSED, Apr 20\\nOrganization: Bellcore, Livingston, NJ\\nSummary: Totally Unbiased Magazine\\nLines: 134\\n\\nIn article <1qu7op$456@genesis.MCS.COM>, arf@genesis.MCS.COM (Jack Schmidling) writes:\\n> \\n> NEWS YOU MAY HAVE MISSED, APR 19, 1993\\n> \\n> Not because you were too busy but because\\n> Israelists in the US media spiked it.\\n> \\n> ................\\n> \\n> \\n> THOSE INTREPID ISRAELI SOLDIERS\\n> \\n> \\n> Israeli soldiers have sexually taunted Arab women in the occupied Gaza Strip \\n> during the three-week-long closure that has sealed Palestinians off from the \\n> Jewish state, Palestinian sources said on Sunday.\\n> \\n> The incidents occurred in the town of Khan Younis and involved soldiers of\\n> the Golani Brigade who have been at the centre of house-to-house raids for\\n> Palestinian activists during the closure, which was imposed on the strip and\\n> occupied West Bank.\\n> \\n> Five days ago girls at the Al-Khansaa secondary said a group of naked\\n> soldiers taunted them, yelling: ``Come and kiss me.\\'\\' When the girls fled, \\n> the soldiers threw empty bottles at them.\\n> \\n> On Saturday, a group of soldiers opened their shirts and pulled down their\\n> pants when they saw girls from Al-Khansaa walking home from school. Parents \\n> are considering keeping their daughters home from the all-girls school.\\n> \\n> The same day, soldiers harassed two passing schoolgirls after a youth\\n> escaped from them at a boys\\' secondary school. Deputy Principal Srur \\n> Abu-Jamea said they shouted abusive language at the girls, backed them \\n> against a wall, and put their arms around them.\\n> \\n> When teacher Hamdan Abu-Hajras intervened the soldiers kicked him and beat\\n> him with the butts of their rifles.\\n> \\n> On Tuesday, troops stopped a car driven by Abdel Azzim Qdieh, a practising\\n> Moslem, and demanded he kiss his female passenger. Qdieh refused, the \\n> soldiers hit him and the 18-year-old passenger kissed him to stop the \\n> beating.\\n> \\n> On Friday, soldiers entered the home of Zamno Abu-Ealyan, 60, blindfolded\\n> him and his wife, put a music tape on a recorder and demanded they dance. As\\n> the elderly couple danced, the soldiers slipped away. The coupled continued\\n> dancing until their grandson came in and asked what was happening.\\n> \\n> The army said it was checking the reports.\\n> \\n> ....................\\n> \\n> \\n> ISRAELI TROOPS BAR CHRISTIANS FROM JERUSALEM\\n> \\n> Israeli troops prevented Christian Arabs from entering Jerusalem on Thursday \\n> to celebrate the traditional mass of the Last Supper.\\n> \\n> Two Arab priests from the Greek Orthodox church led some 30 worshippers in\\n> prayer at a checkpoint separating the occupied West Bank from Jerusalem after\\n> soldiers told them only people with army-issued permits could enter.\\n> \\n> ``Right now, our brothers are celebrating mass in the Church of the Holy\\n> Sepulchre and we were hoping to be able to join them in prayer,\\'\\' said Father\\n> George Makhlouf of the Ramallah Parish.\\n> \\n> Israel sealed off the occupied lands two weeks ago after a spate of\\n> Palestinian attacks against Jews. The closure cut off Arabs in the West Bank\\n> and Gaza Strip from Jerusalem, their economic, spiritual and cultural centre.\\n> \\n> Father Nicola Akel said Christians did not want to suffer the humiliation\\n> of requesting permits to reach holy sites.\\n> \\n> Makhlouf said the closure was discriminatory, allowing Jews free movement\\n> to take part in recent Passover celebrations while restricting Christian\\n> celebrations.\\n> \\n> ``Yesterday, we saw the Jews celebrate Passover without any interruption.\\n> But we cannot reach our holiest sites,\\'\\' he said.\\n> \\n> An Israeli officer interrupted Makhlouf\\'s speech, demanding to see his\\n> identity card before ordering the crowd to leave.\\n> \\n> ...................\\n> \\n> \\n> \\n> If you are as revolted at this as I am, drop Israel\\'s best friend email and \\n> let him know what you think.\\n> \\n> \\n> 75300.3115@compuserve.com (via CompuServe)\\n> clintonpz@aol.com (via America Online)\\n> clinton-hq@campaign92.org (via MCI Mail)\\n> \\n> \\n> Tell \\'em ARF sent ya.\\n> \\n> ..................................\\n> \\n> If you are tired of \"learning\" about American foreign policy from what is \\n> effectively, Israeli controlled media, I highly recommend checking out the \\n> Washington Report. A free sample copy is available by calling the American \\n> Education Trust at:\\n> (800) 368 5788\\n> \\n> Tell \\'em arf sent you.\\n> \\n> js\\n> \\n> \\n> \\n\\nI took your advice and ordered a copy of the Washinton Report. I\\nheartily recommend it to all pro-Israel types for the following \\nreasons:\\n\\n1. It is an excellent absorber of excrement. I use it to line\\n the bottom of my parakeet\\'s cage. A negative side effect is\\n that my bird now has a somewhat warped view of the mideast.\\n\\n2. It makes a great April Fool\\'s joke, i.e., give it to someone\\n who knows nothing about the middle east and then say \"April\\n Fools\".\\n\\nAnyway, I plan to call them up every month just to keep getting\\nthose free sample magazines (you know how cheap we Jews are).\\n\\nBTW, when you call them, tell \\'em barf sent you.\\n\\nJust Kidding,\\n\\nBen.\\n\\n',\n", + " 'From: hernlem@chess.ncsu.edu (Brad Hernlem)\\nSubject: Israeli Media (was Re: Israeli Terrorism)\\nReply-To: hernlem@chess.ncsu.edu (Brad Hernlem)\\nOrganization: NCSU Chem Eng\\nLines: 33\\n\\n\\nIn article <2BD9C01D.11546@news.service.uci.edu>, tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n|> In article <1993Apr24.203620.6531@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n|> >I think the Israeli press might be a tad bit biased in\\n|> >reporting the events. I doubt the Propaganda machine of Goering\\n|> >reported accurately on what was happening in Germany. It is\\n|> >interesting that you are basing the truth on Israeli propaganda.\\n|> \\n|> Since one is also unlikely to get \"the truth\" from either Arab or \\n|> Palestinian news outlets, where do we go to \"understand\", to learn? \\n|> Is one form of propoganda more reliable than another? The only way \\n|> to determine that is to try and get beyond the writer\\'s \"political\\n|> agenda\", whether it is \"on\" or \"against\" our *side*.\\n|> \\n|> Tim \\n\\nTo Andi,\\n\\nI have to disagree with you about the value of Israeli news sources. If you\\nwant to know about events in Palestine it makes more sense to get the news\\ndirectly from the source. EVERY news source is inherently biased to some\\nextent and for various reasons, both intentional and otherwise. However, \\nthe more sources relied upon the easier it is to see the \"truth\" and to discern \\nthe bias. \\n\\nGo read or listen to some Israeli media. You will learn more news and more\\nopinion about Israel and Palestine by doing so. Then you can form your own\\nopinions and hopefully they will be more informed even if your views don\\'t \\nchange.\\n\\nBrad Hernlem (hernlem@chess.ncsu.EDU)\\nJake can call me Doctor Mohandes Brad \"Ali\" Hernlem (as of last Wednesday)\\n',\n", + " \"From: oehler@picard.cs.wisc.edu (Eric Oehler)\\nSubject: Translating TTTDDD to DXF or Swiv3D.\\nArticle-I.D.: cs.1993Apr6.020751.13389\\nDistribution: usa\\nOrganization: University of Wisconsin, Madison -- Computer Sciences Dept.\\nLines: 8\\n\\nI am a Mac-user when it comes to graphics (that's what I own software and hardware for) and\\nI've recently come across a large number of TTTDDD format modeling databases. Is there any\\nsoftware, mac or unix, for translating those to something I could use, like DXF? Please\\nreply via email.\\n\\nThanx.\\nEric Oehler\\noehler@picard.cs.wisc.edu\\n\",\n", + " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Re: Vulcan? No, not Spock or Haphaestus\\nOrganization: NASA Langley Research Center\\nLines: 16\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\n> Another legend with the name Vulcan was the planet, much like Earth,\\n> in the same orbit\\n\\nThere was a Science fiction movie sometime ago (I do not remember its \\nname) about a planet in the same orbit of Earth but hidden behind the \\nSun so it could never be visible from Earth. Turns out that that planet \\nwas the exact mirror image of Earth and all its inhabitants looked like \\nthe Earthings with the difference that their organs was in the opposite \\nside like the heart was in the right side instead in the left and they \\nwould shake hands with the left hand and so on...\\n\\n C.O.EGALON@LARC.NASA.GOV\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", + " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Re: Space Station Redesign Chief Resigns for Health Reasons\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: tm0006.lerc.nasa.gov\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article , xrcjd@mudpuppy.gsfc.nasa.gov (Charles J. Divine) writes...\\n>Writer Kathy Sawyer reported in today\\'s Washington Post that Joseph Shea, the \\n>head of the space station redesign has resigned for health reasons.\\n> \\n>Shea was hospitalized shortly after his selection in February. He returned\\n>yesterday to lead the formal presentation to the independent White House panel.\\n>Shea\\'s presentation was rambling and almost inaudible.\\n\\nI missed the presentations given in the morning session (when Shea gave\\nhis \"rambling and almost inaudible\" presentation), but I did attend\\nthe afternoon session. The meeting was in a small conference room. The\\nspeaker was wired with a mike, and there were microphones on the table for\\nthe panel members to use. Peons (like me) sat in a foyer outside the\\nconference room, and watched the presentations on closed circuit TV. In\\ngeneral, the sound system was fair to poor, and some of the other\\nspeakers (like the committee member from the Italian Space Agency)\\nalso were \"almost inaudible.\"\\n\\nShea didn\\'t \"lead the formal presentation,\" in the sense of running\\nor guiding the presentation. He didn\\'t even attend the afternoon\\nsession. Vest ran the show (President of MIT, the chair of the\\nadvisory panel).\\n\\n> \\n>Shea\\'s deputy, former astronaut Bryan O\\'Connor, will take over the effort.\\n\\nNote that O\\'Connor has been running the day-to-day\\noperations of the of the redesign team since Shea got sick (which\\nwas immediately after the panel was formed).\\n\\n',\n", + " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 47\\n\\nIn emarsh@hernes-sun.Eng.Sun.COM (Eric \\nMarsh) writes:\\n\\n>In article lis450bw@ux1.cso.uiuc.edu (lis450 \\nStudent) writes:\\n>>Hmmmm. Define objective morality. Well, depends upon who you talk to.\\n>>Some say it means you can\\'t have your hair over your ears, and others say\\n>>it means Stryper is acceptable. _I_ would say that general principles\\n>>of objective morality would be listed in one or two places.\\n\\n>>Ten Commandments\\n\\n>>Sayings of Jesus\\n\\n>>the first depends on whether you trust the Bible, \\n\\n>>the second depends on both whether you think Jesus is God, and whether\\n>> you think we have accurate copies of the NT.\\n\\n>Gong!\\n\\n>Take a moment and look at what you just wrote. First you defined\\n>an \"objective\" morality and then you qualified this \"objective\" morality\\n>with subjective justifications. Do you see the error in this?\\n\\n>Sorry, you have just disqualified yourself, but please play again.\\n\\n>>MAC\\n>>\\n\\n>eric\\n\\nHuh? Please explain. Is there a problem because I based my morality on \\nsomething that COULD be wrong? Gosh, there\\'s a heck of a lot of stuff that I \\nbelieve that COULD be wrong, and that comes from sources that COULD be wrong. \\nWhat do you base your belief on atheism on? Your knowledge and reasoning? \\nCOuldn\\'t that be wrong?\\n\\nMAC\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: He has risen!\\nOrganization: Case Western Reserve University\\nLines: 16\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\n\\n\\n\\tOur Lord and Savior David Keresh has risen!\\n\\n\\n\\tHe has been seen alive!\\n\\n\\n\\tSpread the word!\\n\\n\\n\\n\\n--------------------------------------------------------------------------------\\n\\t\\t\\n\\t\\t\"My sole intention was learning to fly.\"\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: While Armenians destroyed all the Moslem villages in the plain...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 48\\n\\nIn article <1pol62INNa5u@cascade.cs.ubc.ca> kvdoel@cs.ubc.ca (Kees van den Doel) writes:\\n\\n>>See, you are a pathological liar.\\n\\n>You got a crack in your record I think. \\n\\nThis is the point we seem to disagree about. Not a chance.\\n\\n>I keep seeing that line over and over. That\\'s pathetic, even for \\n>Serdar Argic!\\n\\nWell, \"Arromdian\" of ASALA/SDPA/ARF Terrorism and Revisionism Triangle\\nis a compulsive liar. Now try dealing with the rest of what I wrote.\\n\\nU.S. Ambassador Bristol:\\n\\nSource: \"U.S. Library of Congress:\" \\'Bristol Papers\\' - General Correspondence\\nContainer #34.\\n\\n \"While the Dashnaks were in power they did everything in the world to keep the\\n pot boiling by attacking Kurds, Turks and Tartars; by committing outrages\\n against the Moslems; by massacring the Moslems; and robbing and destroying\\n their homes;....During the last two years the Armenians in Russian Caucasus\\n have shown no ability to govern themselves and especially no ability to \\n govern or handle other races under their power.\"\\n\\nA Kurdish scholar:\\n\\nSource: Hassan Arfa, \"The Kurds,\" (London, 1968), pp. 25-26.\\n\\n \"When the Russian armies invaded Turkey after the Sarikamish disaster \\n of 1914, their columns were preceded by battalions of irregular \\n Armenian volunteers, both from the Caucasus and from Turkey. One of \\n these was commanded by a certain Andranik, a blood-thirsty adventurer.\\n These Armenian volunteers committed all kinds of excesses, more\\n than six hundred thousand Kurds being killed between 1915 and 1916 in \\n the eastern vilayets of Turkey.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " \"From: tdawson@llullaillaco.engin.umich.edu (Chris Herringshaw)\\nSubject: Re: Sun IPX root window display - background picture\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 15\\nDistribution: world\\nNNTP-Posting-Host: llullaillaco.engin.umich.edu\\nKeywords: sun ipx background picture\\nOriginator: tdawson@llullaillaco.engin.umich.edu\\n\\n\\nI'm not sure if you got the information you were looking for, so I'll\\npost it anyway for the general public. To load an image on your root\\nwindow add this line to the end of your .xsession file:\\n\\n xloadimage -onroot -fullscreen &\\n\\nThis is assuming of course you have the xloadimage client, and as\\nfor the switches, I think they pretty much explain what is going on.\\nIf you leave out the <&>, the terminal locks till you kill it.\\n(You already knew that though...)\\n\\nHope this helps.\\n\\nDaemon\\n\",\n", + " \"From: arthurc@sfsuvax1.sfsu.edu (Arthur Chandler)\\nSubject: Stereo Pix of planets?\\nOrganization: California State University, Sacramento\\nLines: 5\\n\\nCan anyone tell me where I might find stereo images of planetary and\\nplanetary satellite surfaces? GIFs preferred, but any will do. I'm\\nespecially interested in stereos of the surfaces of Phobos, Deimos, Mars\\nand the Moon (in that order).\\n Thanks. \\n\",\n", + " 'Subject: Re: If You Feed Armenians Dirt -- You Will Bite Dust!\\nFrom: senel@vuse.vanderbilt.edu (Hakan)\\nOrganization: Vanderbilt University\\nSummary: Armenians correcting the geo-political record.\\nNntp-Posting-Host: snarl02\\nLines: 18\\n\\nIn article <1993Apr5.194120.7010@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n\\n>In article <1993Apr5.064028.24746@kth.se> hilmi-er@dsv.su.se (Hilmi Eren) \\n>writes:\\n\\n>David Davidian says: Armenians have nothing to lose! They lack food, fuel, and\\n>warmth. If you fascists in Turkey want to show your teeth, good for you! Turkey\\n>has everything to lose! You can yell and scream like barking dogs along the \\n\\nDavidian, who are fascists? Armenians in Azerbaijan are killing Azeri \\npeople, invading Azeri soil and they are not fascists, because they \\nlack food ha? Strange explanation. There is no excuse for this situation.\\n\\nHerkesi fasist diye damgala sonra, kendileri fasistligin alasini yapinca,\\n\"ac kaldilar da, yiyecekleri yok amcasi, bu seferlik affedin\" de. Yurrruuu, \\nyuru de plaka numarani alalim......\\n\\nHakan\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Level 5?\\nOrganization: Texas Instruments Inc\\nDistribution: sci\\nLines: 33\\n\\nIn 18084TM@msu.edu (Tom) writes:\\n\\n\\n>Nick Haines sez;\\n>>(given that I\\'ve heard the Shuttle software rated as Level 5 in\\n>>maturity, I strongly doubt that this [having lots of bugs] is the case).\\n\\n>Level 5? Out of how many? What are the different levels? I\\'ve never\\n>heard of this rating system. Anyone care to clue me in?\\n\\nSEI Level 5 (the highest level -- the SEI stands for Software\\nEngineering Institute). I\\'m not sure, but I believe that this rating\\nonly applies to the flight software. Also keep in mind that it was\\n*not* achieved through the use of sophisticated tools, but rather\\nthrough a \\'brute force and ignorance\\' attack on the problem during the\\nChallenger standdown - they simply threw hundreds of people at it and\\ndid the whole process by hand. I would not consider receiving a \\'Warning\\'\\nstatus on systems which are not yet in use would detract much (if\\nanything) from such a rating -- I\\'ll have to get the latest copy of\\nthe guidelines to make sure (they just issued new ones, I think).\\n\\nAlso keep in mind that the SEI levels are concerned primarily with\\ncontrol of the software process; the assumption is that a\\nwell controlled process will produce good software. Also keep in mind\\nthat SEI Level 5 is DAMNED HARD. Most software in this country is\\nproduced by \\'engineering practicies\\' that only rate an SEI Level 1 (if\\nthat). \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Deriving Pleasure from Death\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 13\\n\\n\\n>them. (By the way, I do not applaud the killing of _any_ human being,\\n>including prisoners sentenced to death by our illustrious justice department)\\n>\\n>Peace.\\n>-marc\\n>\\n\\nBoy, you really are a stupid person. Our justice department does\\nnot sentence people to death. That's up to state courts. Again,\\nget a brain.\\n\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Method employed by the Armenians in \\'Genocide of the Muslim People\\'.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 28\\n\\nSource: \"Men Are Like That\" by Leonard Ramsden Hartill. The Bobbs-Merrill\\nCompany, Indianapolis (1926). (305 pages). \\n(Memoirs of an Armenian officer who participated in the genocide of 2.5 \\n million Muslim people)\\n\\n\\np. 133 (first paragraph)\\n\\n\"In this movement we took with us three thousand Turkish soldiers who\\n had been captured by the Russians and left on our hands when the Russians\\n abandoned the struggle. During our retreat to Karaklis two thousand of\\n these poor devils were cruelly put to death. I was sickened by the\\n brutality displayed, but could not make any effective protest. Some,\\n mercifully, were shot. Many of them were burned to death. The method\\n employed was to put a quantity of straw into a hut, and then after\\n crowding the hut with Turks, set fire to the straw.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: jbrown@batman.bmd.trw.com\\nSubject: Re: Gulf War and Peace-niks\\nLines: 67\\n\\nIn article <1993Apr20.062328.19776@bmerh85.bnr.ca>, \\ndgraham@bmers30.bnr.ca (Douglas Graham) writes:\\n\\n[...]\\n> \\n> Wait a minute. You said *never* play a Chamberlain. Since the US\\n> *is* playing Chamberlain as far as East Timor is concerned, wouldn\\'t\\n> that lead you to think that your argument is irrelevant and had nothing\\n> to do with the Gulf War? Actually, I rather like your idea. Perhaps\\n> the rest of the world should have bombed (or maybe missiled) Washington\\n> when the US invaded Nicaragua, Grenada, Panama, Vietnam, Mexico, Hawaii,\\n> or any number of other places.\\n\\nWait a minute, Doug. I know you are better informed than that. The US \\nhas never invaded Nicaragua (as far as I know). We liberated Grenada \\nfrom the Cubans\\tto protect US citizens there and to prevent the completion \\nof a strategic air strip. Panama we invaded, true (twice this century). \\nVietnam? We were invited in by the government of S. Vietnam. (I guess \\nwe \"invaded\" Saudi Arabia during the Gulf War, eh?) Mexico? We have \\ninvaded Mexico 2 or 3 times, once this century, but there were no missiles \\nfor anyone to shoot over here at that time. Hawaii? We liberated it from \\nSpain.\\n\\nSo if you mean by the word \"invaded\" some sort of military action where\\nwe cross someone\\'s border, you are right 5 out of 6. But normally\\n\"invaded\" carries a connotation of attacking an autonomous nation.\\n(If some nation \"invades\" the U.S. Virgin Islands, would they be\\ninvading the Virgin Islands or the U.S.?) So from this point of\\nview, your score falls to 2 out of 6 (Mexico, Panama).\\n\\n[...]\\n> \\n> What\\'s a \"peace-nik\"? Is that somebody who *doesn\\'t* masturbate\\n> over \"Guns\\'n\\'Ammo\" or what? Is it supposed to be bad to be a peace-nik?\\n\\nNo, it\\'s someone who believes in \"peace-at-all-costs\". In other words,\\na person who would have supported giving Hitler not only Austria and\\nCzechoslakia, but Poland too if it could have averted the War. And one\\nwho would allow Hitler to wipe all *all* Jews, slavs, and political \\ndissidents in areas he controlled as long as he left the rest of us alone.\\n\\n\"Is it supposed to be bad to be a peace-nik,\" you ask? Well, it depends\\non what your values are. If you value life over liberty, peace over\\nfreedom, then I guess not. But if liberty and freedom mean more to you\\nthan life itself; if you\\'d rather die fighting for liberty than live\\nunder a tyrant\\'s heel, then yes, it\\'s \"bad\" to be a peace-nik.\\n\\nThe problem with most peace-niks it they consider those of us who are\\nnot like them to be \"bad\" and \"unconscionable\". I would not have any\\nargument or problem with a peace-nik if they held to their ideals and\\nstayed out of all conflicts or issues, especially those dealing with \\nthe national defense. But no, they are not willing to allow us to\\nlegitimately hold a different point-of-view. They militate and \\nmany times resort to violence all in the name of peace. (What rank\\nhypocrisy!) All to stop we \"warmongers\" who are willing to stand up \\nand defend our freedoms against tyrants, and who realize that to do\\nso requires a strong national defense.\\n\\nTime to get off the soapbox now. :)\\n\\n[...]\\n> --\\n> Doug Graham dgraham@bnr.ca My opinions are my own.\\n\\nRegards,\\n\\nJim B.\\n',\n", + " 'From: geigel@seas.gwu.edu (Joseph Geigel)\\nSubject: Looking for AUTOCAD .DXF file parser\\nOrganization: George Washington University\\nLines: 16\\n\\n\\n Hello...\\n\\n Does anyone know of any C or C++ function libraries in the public domain\\n that assist in parsing an AUTOCAD .dxf file? \\n\\n Please e-mail.\\n\\n\\n Thanks,\\n\\n-- \\n\\n -- jogle\\n geigel@seas.gwu.edu\\n\\n',\n", + " 'From: JDB1145@tamvm1.tamu.edu\\nSubject: Re: A Little Too Satanic\\nOrganization: Texas A&M University\\nLines: 21\\nNNTP-Posting-Host: tamvm1.tamu.edu\\n\\nIn article <65934@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n>\\n>Nanci Ann Miller writes:\\n>\\n]The \"corrupted over and over\" theory is pretty weak. Comparison of the\\n]current hebrew text with old versions and translations shows that the text\\n]has in fact changed very little over a space of some two millennia. This\\n]shouldn\\'t be all that suprising; people who believe in a text in this manner\\n]are likely to makes some pains to make good copies.\\n \\nTell it to King James, mate.\\n \\n]C. Wingate + \"The peace of God, it is no peace,\\n] + but strife closed in the sod.\\n]mangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\n]tove!mangoe + the marv\\'lous peace of God.\"\\n \\n \\nJohn Burke, jdb1145@summa.tamu.edu\\n',\n", + " 'From: mau@herky.cs.uiowa.edu (Mau Napoleon)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nNntp-Posting-Host: herky.cs.uiowa.edu\\nOrganization: University of Iowa, Iowa City, IA, USA\\nLines: 63\\n\\nFrom article <1993Apr15.092101@IASTATE.EDU>, by tankut@IASTATE.EDU (Sabri T Atan):\\n> Well, Panos, Mr. Tamamidis?, the way you put it it is only the Turks\\n> who bear the responsibility of the things happening today. That is hard to\\n> believe for somebody trying to be objective.\\n> When it comes to conflicts like our countries having you cannot\\n> blame one side only, there always are bad guys on both sides.\\n> What were you doing on Anatolia after the WW1 anyway?\\n> Do you think it was your right to be there?\\n\\nThere were a couple millions of Greeks living in Asia Minor until 1923.\\nSomeone had to protect them. If not us who??\\n\\n> I am not saying that conflicts started with that. It is only\\n> not one side being the aggressive and the ither always suffering.\\n> It is sad that we (both) still are not trying to compromise.\\n> I remember the action of the Turkish government by removing the\\n> visa requirement for greeks to come to Turkey. I thought it\\n> was a positive attempt to make the relations better.\\n> \\nCompromise on what, the invasion of Cyprus, the involment of Turkey in\\nGreek politics, the refusal of Turkey to accept 12 miles of territorial\\nwaters as stated by international law, the properties of the Greeks of \\nKonstantinople, the ownership of the islands in the Greek lake,sorry, Aegean.\\n\\nThere are some things on which there can not be a compromise.\\n\\n\\n> The Greeks I mentioned who wouldn\\'t talk to me are educated\\n> people. They have never met me but they know! I am bad person\\n> because I am from Turkey. Politics is not my business, and it is\\n> not the business of most of the Turks. When it comes to individuals \\n> why the hatred?\\n\\nAny person who supports the policies of the Turkish goverment directly or\\nindirecly is a \"bad\" person.\\nIt is not your nationality that makes you bad, it is your support of the\\nactions of your goverment that make you \"bad\".\\nPeople do not hate you because of who you are but because of what you\\nare. You are a supporter of the policies of the Turkish goverment and\\nas a such you must pay the price.\\n\\n> So that makes me think that there is some kind of\\n> brainwashing going on in Greece. After all why would an educated person \\n> treat every person from a nation the same way? can you tell me about your \\n> history books and things you learn about Greek-Turkish\\n> encounters during your schooling. \\n> take it easy! \\n> \\n> --\\n> Tankut Atan\\n> tankut@iastate.edu\\n> \\n> \"Achtung, baby!\"\\n\\nYou do not need brainwashing to turn people against the Turks. Just talk to\\nGreeks, Arabs, Slavs, Kurds and all other people who had the luck to be under\\nTurkish occupation.\\nThey will talk to you about murders,rapes,distruction.\\n\\nYou do not learn about Turks from history books, you learn about them from\\npeople who experienced first hand Turkish friendliness.\\n\\nNapoleon\\n',\n", + " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 8\\n\\nKeith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n\\n: \\tNice cop out bill.\\n\\nI'm sure you're right, but I have no idea to what you refer. Would you\\nmind explaining how I copped out?\\n\\nBill\\n\",\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: Final Solution for Gaza ?\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 66\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: Final Solution for Gaza ?\\n>\\n>While Israeli Jews fete the uprising of the Warsaw ghetto,\\n\\n\"fete\"??? Since this word both formally and commonly refers to\\npositive/joyous events, your misuse of it here is rather unsettling.\\n \\n>they repress by violent means the uprising of the Gaza ghetto \\n>and attempt to starve the Gazans.\\n\\nI certainly abhor those Israeli policies and attitudes that are\\nabusive towards the Palestinians/Gazans. Given that, however, there \\n*is no comparison* between the reality of the Warsaw Ghetto and in \\nGaza. \\n>\\n>The right of the Gazan population to resist occupation is\\n>recognized in international law and by any person with a sense of\\n>justice. \\n\\nJust as international law recognizes the right of the occupying \\nentity to maintain order, especially in the face of elements\\nthat are consciously attempting to disrupt the civil structure. \\nIronically, international law recognizes each of these focusses\\n(that of the occupied and the occupier) even though they are \\ninherently in conflict.\\n>\\n>As Israel denies Gazans the only two options which are compatible\\n>with basic human rights and international law, that of becoming\\n>Israeli citizens with full rights or respecting their right for\\n>self-determination, it must be concluded that the Israeli Jewish\\n>society does not consider Gazans full human beings.\\n\\nIsrael certainly cannot, and should not, continue its present\\npolicies towards Gazan residents. There is, however, a third \\nalternative- the creation and implementation of a jewish \"dhimmi\"\\nsystem with Gazans/Palestinians as benignly \"protected\" citizens.\\nWould you find THAT as acceptable in that form as you do with\\nregard to Islam\\'s policies towards its minorities?\\n \\n>Whether they have some Final Solution up their sleeve ?\\n\\nIt is a race, then? Between Israel\\'s anti-Palestinian/Gazan\\n\"Final Solution\" and the Arab World\\'s anti-Israel/jewish\\n\"Final Solution\". Do you favor one? neither? \\n>\\n>I urge all those who have slight human compassion to do whatever\\n>they can to help the Gazans regain their full human, civil and\\n>political rights, to which they are entitled as human beings.\\n\\nSince there is justifiable worry by various parties that Israel\\nand Arab/Palestinian \"final solution\" intentions exist, isn\\'t it\\nimportant that BOTH Israeli *and* Palestinian/Gazan \"rights\"\\nbe secured?\\n>\\n>Elias Davidsson Iceland\\n>\\n\\n\\n--\\nTim Clock Ph.D./Graduate student\\nUCI tel#: 714,8565361 Department of Politics and Society\\n fax#: 714,8568441 University of California - Irvine\\nHome tel#: 714,8563446 Irvine, CA 92717\\n',\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: thoughts on christians\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 24\\n\\nKent Sandvik (sandvik@newton.apple.com) wrote:\\n\\n\\n: > This is a good point, but I think \"average\" people do not take up Christianity\\n: > so much out of fear or escapism, but, quite simply, as a way to improve their\\n: > social life, or to get more involved with American culture, if they are kids of\\n: > immigrants for example. Since it is the overwhelming major religion in the\\n: > Western World (in some form or other), it is simply the choice people take if\\n: > they are bored and want to do something new with their lives, but not somethong\\n: > TOO new, or TOO out of the ordinary. Seems a little weak, but as long as it\\n: > doesn\\'t hurt anybody...\\n\\n: The social pressure is indeed a very important factor for the majority\\n: of passive Christians in our world today. In the case of early Christianity\\n: the promise of a heavenly afterlife, independent of your social status,\\n: was also a very promising gift (reason slaves and non-Romans accepted\\n: the religion very rapidly).\\n\\nIf this is a hypothetical proposition, you should say so, if it\\'s\\nfact, you should cite your sources. If all this is the amateur\\nsociologist sub-branch of a.a however, it would suffice to alert the\\nunwary that you are just screwing around ...\\n\\nBill\\n',\n", + " \"From: neideck@nestvx.enet.dec.com (Burkhard Neidecker-Lutz)\\nSubject: Re: Rumours about 3DO ???\\nOrganization: CEC Karlsruhe\\nLines: 17\\nNNTP-Posting-Host: NESTVX\\n\\nIn article <1993Apr15.164940.11632@mercury.unt.edu> Sean McMains writes:\\n>Wow! A 68070! I'd be very interested to get my hands on one of these,\\n>especially considering the fact that Motorola has not yet released the\\n>68060, which is supposedly the next in the 680x0 lineup. 8-D\\n\\nThe 68070 is a variation of the 68010 that was done a few years ago by\\nthe European partners of Motorola. It has some integrated I/O controllers\\nand half a MMU, but otherwise it's a 68010. Think of it the same as\\nthe 8086 and 80186 were.\\n\\n\\t\\tBurkhard Neidecker-Lutz\\n\\nDistributed Multimedia Group, CEC Karlsruhe EERP Portfolio Manager\\nSoftware Motion Pictures & BERKOM II Project Multimedia Base Technology\\nDigital Equipment Corporation\\nneidecker@nestvx.enet.dec.com\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: DESTROYING ETHNIC IDENTITY: TURKS OF GREECE (& Macedonians...)\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 145\\n\\nIn article ptg2351@uxa.cso.uiuc.edu (Panos Tamamidis ) writes:\\n\\n>> Sure your memory is weak. \\n>> Let me refresh your memory (if that\\'s not to late):\\n\\n>> First of all: it is called ISTANBUL. \\n>> Let me even spell it for you: I S T A N B U L\\n\\n> When my grandfather came in Greece, the official name of the city was\\n> Constantinoupolis. \\n\\nAre you related to \\'Arromdian\\' of ASALA/SDPA/ARF Terrorism and Revisionism \\nTriangle?\\n\\n>Now, read carefully the following, and then speak:\\n>The recent Helsinki Watch 78 page report, Broken Promises: Torture and\\n\\nDitto.\\n\\n|1|\\n\\nHELSINKI WATCH: \"PROBLEMS OF TURKS IN WESTERN THRACE CONTINUE\"\\n\\nAnkara (A.A) In a 15-page report of the \"Helsinki Watch\" it is\\nstated that the Turkish minority in Western Thrace is still faced\\nwith problems and stipulated that the discriminatory policy being\\nimplemented by the Greek Government be brought to an end.\\n\\nThe report on Western Thrace emphasized that the Greek government\\nshould grant social and political rights to all the members of\\nminorities that are equal to those enjoyed by Greek citizens and\\nin addition they must recognize the existence of the \"Turkish\\nMinority\" in Western Thrace and grant them the right to identify\\nthemselves as \\'Turks\\'.\\n\\nNEWSPOT, May 1992\\n\\n|2|\\n\\nGREECE ISOLATES WEST THRACE TURKS\\n\\nThe Xanthi independent MP Ahmet Faikoglu said that the Greek\\nstate is trying to cut all contacts and relations of the Turkish\\nminority with Turkey.\\n\\nPointing out that while the Greek minority living in Istanbul is\\ncalled \"Greek\" by ethnic definition, only the religion of the\\nminority in Western Thrace is considered. In an interview with\\nthe Greek newspaper \"Ethnos\" he said: \"I am a Greek citizen of\\nTurkish origin. The individuals of the minority living in Western\\nTrace are also Turkish.\"\\n\\nEmphasizing the education problem for the Turkish minority in\\nWestern Thrace Faikoglu said that according to an agreement\\nsigned in 1951 Greece must distribute textbooks printed in Turkey\\nin Turkish minority schools in Western Thrace.\\n\\nRecalling his activities and those of Komotini independent MP Dr.\\nSadIk Ahmet to defend the rights of the Turkish minority,\\nFaikoglu said. \"In fact we helped Greece. Because we prevented\\nGreece, the cradle of democracy, from losing face before European\\ncountries by forcing the Greek government to recognize our legal\\nrights.\"\\n\\nOn Turco-Greek relations, he pointed out that both countries are\\npredestined to live in peace for geographical and historical\\nreasons and said that Turkey and Greece must resist the foreign\\npowers who are trying to create a rift between them by\\ncooperating, adding that in Turkey he observed that there was\\nwill to improve relations with Greece.\\n\\nNEWSPOT, January 1993\\n\\n|3|\\n\\nMACEDONIAN HUMAN RIGHTS ACTIVISTS TO FACE TRIAL IN GREECE.\\n\\nTwo ethnic Macedonian human rights activists will face trial in\\nAthens for alleged crimes against the Greek state, according to a\\nCourt Summons (No. 5445) obtained by MILS.\\n\\n Hristos Sideropoulos and Tashko Bulev (or Anastasios Bulis)\\nhave been charged under Greek criminal law for making comments in\\nan Athenian magazine.\\n\\n Sideropoulos and Bulev gave an interview to the Greek weekly\\nmagazine \"ENA\" on March 11, 1992, and said that they as\\nMacedonians were denied basic human rights in Greece and would\\nfield an ethnic Macedonian candidate for the up-coming Greek\\ngeneral election.\\n\\n Bulev said in the interview: \"I am not Greek, I am Macedonian.\"\\nSideropoulos said in the article that \"Greece should recognise\\nMacedonia. The allegations regarding territorial aspirations\\nagainst Greece are tales... We are in a panic to secure the\\nborder, at a time when the borders and barriers within the EEC\\nare falling.\"\\n\\n The main charge against the two, according to the court\\nsummons, was that \"they have spread...intentionally false\\ninformation which might create unrest and fear among the\\ncitizens, and might affect the public security or harm the\\ninternational interests of the country (Greece).\"\\n\\n The Greek state does not recognise the existence of a\\nMacedonian ethnicity. There are believed to be between 350,000 to\\n1,000,000 ethnic Macedonians living within Greece, largely\\nconcentrated in the north. It is a crime against the Greek state\\nif anyone declares themselves Macedonian.\\n\\n In 1913 Greece, Serbia-Yugoslavia and Bulgaria partioned\\nMacedonia into three pieces. In 1919 Albania took 50 Macedonian\\nvillages. The part under Serbo-Yugoslav occupation broke away in\\n1991 as the independent Republic of Macedonia. There are 1.5\\nmillion Macedonians in the Republic; 500,000 in Bulgaria; 150,000\\nin Albania; and 300,000 in Serbia proper.\\n\\n Sideropoulos has been a long time campaigner for Macedonian\\nhuman rights in Greece, and lost his job as a forestry worker a\\nfew years ago. He was even exiled to an obscure Greek island in\\nthe mediteranean. Only pressure from Amnesty International forced\\nthe Greek government to allow him to return to his home town of\\nFlorina (Lerin) in Northern Greece (Aegean Macedonia), where the\\nmajority of ethnic Macedonians live.\\n\\n Balkan watchers see the Sideropoulos affair as a show trial in\\nwhich Greece is desperate to clamp down on internal dissent,\\nespecially when it comes to the issue of recognition for its\\nnorthern neighbour, the Republic of Macedonia.\\n\\n Last year the State Department of the United States condemned\\nGreece for its bad treatment of ethnic Macedonians and Turks (who\\nlargely live in Western Thrace). But it remains to be seen if the\\nUS government will do anything until the Presidential elections\\nare over.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " 'From: perry@dsinc.com (Jim Perry)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: Decision Support Inc.\\nLines: 80\\nNNTP-Posting-Host: dsi.dsinc.com\\n\\n(References: deleted to move this to a new thread)\\n\\nIn article <114133@bu.edu> jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n>In article <1phkf7INN86p@dsi.dsinc.com> perry@dsinc.com (Jim Perry) writes:\\n\\n>>}Rushdie is, however, as I understand, a muslim.\\n>>}The fact that he\\'s a British citizen does not preclude his being muslim.\\n>\\n>>Rushdie was an atheist (to use local terminology, not to put words in\\n>>his mouth) at the time of writing TSV and at the time of the fatwa in\\n>>February 1989.[...]\\n>\\n>Well, if he was born muslim (I am fairly certain he was) then he _is_ \\n>muslim until he explicitly renounces Islam. So far as I know he has never\\n>explicitly renounced Islam, though he may have been in extreme doubt\\n>about the existence of God. Being muslim is a legal as well as\\n>intellectual issue, according to Islam.\\n\\n\"To put it as simply as possible: *I am not a Muslim*.[...] I do not\\n accept the charge of apostacy, because I have never in my adult life\\n affirmed any belief, and what one has not affirmed one can not be\\n said to have apostasized from. The Islam I know states clearly that\\n \\'there can be no coercion in matters of religion\\'. The many Muslims\\n I respect would be horrified by the idea that they belong to their\\n faith *purely by virtue of birth*, and that a person who freely chose\\n not to be a Muslim could therefore be put to death.\"\\n \\t \\t \\t \\tSalman Rushdie, \"In Good Faith\", 1990\\n\\n\"God, Satan, Paradise, and Hell all vanished one day in my fifteenth\\n year, when I quite abruptly lost my faith. [...]and afterwards, to\\n prove my new-found atheism, I bought myself a rather tasteless ham\\n sandwich, and so partook for the first time of the forbidden flesh of\\n the swine. No thunderbolt arrived to strike me down. [...] From that\\n day to this I have thought of myself as a wholly seculat person.\"\\n \\t \\t \\t \\tSalman Rushdie, \"In God We Trust\", 1985\\n \\n>>[I] think the Rushdie affair has discredited Islam more in my eyes than\\n>>Khomeini -- I know there are fanatics and fringe elements in all\\n>>religions, but even apparently \"moderate\" Muslims have participated or\\n>>refused to distance themselves from the witch-hunt against Rushdie.\\n>\\n>Yes, I think this is true, but there Khomenei\\'s motivations are quite\\n>irrelevant to the issue. The fact of the matter is that Rushdie made\\n>false statements (fiction, I know, but where is the line between fact\\n>and fiction?) about the life of Mohammad. \\n\\nOnly a functional illiterate with absolutely no conception of the\\nnature of the novel could think such a thing. I\\'ll accept it\\n(reluctantly) from mobs in Pakistan, but not from you. What is\\npresented in the fictional dream of a demented character cannot by the\\nwildest stretch of the imagination be considered a reflection on the\\nactual Mohammad. What\\'s worse, the novel doesn\\'t present the\\nMahound/Mohammed character in any worse light than secular histories\\nof Islam; in particular, there is no \"lewd\" misrepresentation of his\\nlife or that of his wives.\\n\\n>That is why\\n>few people rush to his defense -- he\\'s considered an absolute fool for \\n>his writings in _The Satanic Verses_. \\n\\nDon\\'t hold back; he\\'s considered an apostate and a blasphemer.\\nHowever, it\\'s not for his writing in _The Satanic Verses_, but for\\nwhat people have accepted as a propagandistic version of what is\\ncontained in that book. I have yet to find *one single muslim* who\\nhas convinced me that they have read the book. Some have initially\\nclaimed to have done so, but none has shown more knowledge of the book\\nthan a superficial Newsweek story might impart, and all have made\\nfactual misstatements about events in the book.\\n\\n>If you wish to understand the\\n>reasons behind this as well has the origin of the concept of \"the\\n>satanic verses\" [...] see the\\n>Penguin paperback by Rafiq Zakariyah called _Mohammad and the Quran_.\\n\\nI\\'ll keep an eye out for it. I have a counter-proposal: I suggest\\nthat you see the Viking hardcover by Salman Rushdie called _The\\nSatanic Verses_. Perhaps then you\\'ll understand.\\n-- \\nJim Perry perry@dsinc.com Decision Support, Inc., Matthews NC\\nThese are my opinions. For a nominal fee, they can be yours.\\n',\n", + " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Re: Space Debris\\nOrganization: NASA Langley Research Center\\nLines: 7\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\nThere is a guy in NASA Johnson Space Center that might answer \\nyour question. I do not have his name right now but if you follow \\nup I can dig that out for you.\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", + " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: Rejetting carbs..\\nKeywords: air pump\\nDistribution: na\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 58\\n\\nIn article jburney@hydra.nodc.noaa.gov (Jeff Burney) writes:\\n>\\n>If we are only talking about 4-stroke (I think I can understand exhaust\\n>pulse affect in a 2-stroke), the intake valve is closed on the\\n>exhaust stroke and the gas is pushed out by the cyclinder. I guess\\n>there is some gas compression that may affect the amount pushed out\\n>but the limiting factor seems to be the header pipe and not the \\n>canister. Meaning: would gases \"so far\" down the line (the canister)\\n>really have an effect on the exhaust stroke? Do the gases really \\n>compress that much?\\n\\n For discussion purposes, I will ignore dynamic effects like pulses\\nin the exhaust pipe, and try to paint a useful mental picture.\\n\\n1. Unless an engine is supercharged, the pressure available to force\\nair into the intake tract is _atmospheric_. At the time the intake\\nvalve is opened, the pressure differential available to move air is only\\nthe difference between the combustion chamber pressure (left over after\\nthe exhaust stroke) and atmospheric. As the piston decends on the\\nintake stroke, combustion chamber pressure is decreased, allowing\\natmospheric pressure to move more air into the intake tract. At no time\\ndoes the pressure ever become \"negative\", or even approach a good\\nvacuum.\\n\\n2. At the time of the exhaust valve closing, the pressure in the\\ncombustion chamber is essentially the pressure of the exhaust system up\\nto the first major flow restriction (the muffler). Note that the volume\\nof gas that must flow through the exhaust is much larger than the volume\\nthat must flow through the intake, because of the temperature\\ndifference and the products of combustion.\\n\\n3. In the last 6-8 years, the Japanese manufacturers have started\\npaying attention to exhaust and intake tuning, in pursuit of almighty\\nhorsepower. At this point in time, on high-performance bikes,\\nsubstitution of an aftermarket free-flow air filter will have almost\\nzero affect on performance, because the stock intake system flows very\\nwell anyway. Substitution of an aftermarket exhaust system will make\\nvery little difference, unless (in general) the new exhaust system is\\n_much_ louder than the stocker.\\n\\n4. On older bikes, exhaust back-pressure was the dominating factor.\\nIf free-flowing air filters were substituted, very little difference\\nwas noted, unless a free-flowing exhaust system was installed as well.\\n\\n5. In general, an engine can be visualized as an air pump. At any\\ngiven RPM, anything that will cause the engine to pump more air, be it\\non the intake or exhaust side, will cause it to produce more horsepower.\\nPumping more air will require recalibration (rejetting) of the carburetor.\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", + " \"From: ari@tahko.lpr.carel.fi (Ari Suutari)\\nSubject: Any graphics packages available for AIX ?\\nOrganization: Carelcomp Oy\\nLines: 24\\nNNTP-Posting-Host: tahko.lpr.carel.fi\\nKeywords: gks graphics\\n\\n\\n\\tDoes anybody know if there are any good 2d-graphics packages\\n\\tavailable for IBM RS/6000 & AIX ? I'm looking for something\\n\\tlike DEC's GKS or Hewlett-Packards Starbase, both of which\\n\\thave reasonably good support for different output devices\\n\\tlike plotters, terminals, X etc.\\n\\n\\tI have tried also xgks from X11 distribution and IBM's implementation\\n\\tof Phigs. Both of them work but we require more output devices\\n\\tthan just X-windows.\\n\\n\\tOur salesman at IBM was not very familiar with graphics and\\n\\tI am not expecting for any good solutions from there.\\n\\n\\n\\t\\tAri\\n\\n---\\n\\n\\tAri Suutari\\t\\t\\tari@carel.fi\\n\\tCarelcomp Oy\\n\\tLappeenranta\\n\\tFINLAND\\n\\n\",\n", + " 'From: jaskew@spam.maths.adelaide.edu.au (Joseph Askew)\\nSubject: Re: Small Astronaut (was: Budget Astronaut)\\nOrganization: Statistics, Pure & Applied Mathematics, University of Adelaide\\nLines: 25\\n\\nIn article <1pfkf5$7ab@access.digex.com> prb@access.digex.com (Pat) writes:\\n\\n>Only one problem with sending a corp of Small astronauts.\\n>THey may want to start a galactic empire:-) Napoleon\\n>complex you know. Genghis Khan was a little guy too. I\\'d bet\\n>Julius caesar never broke 5\\'1\".\\n\\nI think you would lose your money. Julius was actually rather tall\\nfor a Roman. He did go on record as favouring small soldiers though.\\nThought they were tougher and had more guts. He was probably right\\nif you think about it. As for Napoleon remember that the French\\navergae was just about 5 feet and that height is relative! Did he\\nreally have a complex?\\n\\nObSpace : We have all seen the burning candle from High School that goes\\nout and relights. If there is a large hot body placed in space but in an\\natmosphere, exactly how does it heat the surroundings? Diffusion only?\\n\\nJoseph Askew\\n\\n-- \\nJoseph Askew, Gauche and Proud In the autumn stillness, see the Pleiades,\\njaskew@spam.maths.adelaide.edu Remote in thorny deserts, fell the grief.\\nDisclaimer? Sue, see if I care North of our tents, the sky must end somwhere,\\nActually, I rather like Brenda Beyond the pale, the River murmurs on.\\n',\n", + " 'From: mt90dac@brunel.ac.uk (Del Cotter)\\nSubject: Re: Crazy? or just Imaginitive?\\nOrganization: Brunel University, West London, UK\\nLines: 26\\n\\n<1993Apr21.205403.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n\\n>So some of my ideas are a bit odd, off the wall and such, but so was Wilbur and\\n>Orville Wright, and quite a few others.. Sorry if I do not have the big degrees\\n>and such, but I think (I might be wrong, to error is human) I have something\\n>that is in many ways just as important, I have imagination, dreams. And without\\n>dreams all the knowledge is worthless.. \\n\\nOh, and us with the big degrees don\\'t got imagination, huh?\\n\\nThe alleged dichotomy between imagination and knowledge is one of the most\\npernicious fallacys of the New Age. Michael, thanks for the generous\\noffer, but we have quite enough dreams of our own, thank you.\\n\\nYou, on the other hand, are letting your own dreams go to waste by\\nfailing to get the maths/thermodynamics/chemistry/(your choices here)\\nwhich would give your imagination wings.\\n\\nJust to show this isn\\'t a flame, I leave you with a quote from _Invasion of \\nthe Body Snatchers_:\\n\\n\"Become one of us; it\\'s not so bad, you know\"\\n-- \\n \\',\\' \\' \\',\\',\\' | | \\',\\' \\' \\',\\',\\'\\n \\', ,\\',\\' | Del Cotter mt90dac@brunel.ac.uk | \\', ,\\',\\' \\n \\',\\' | | \\',\\' \\n',\n", + " 'From: rlennip4@mach1.wlu.ca (robert lennips 9209 U)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nX-Newsreader: TIN [version 1.1 PL6]\\nOrganization: Wilfrid Laurier University\\nLines: 2\\n\\nPlease get a REAL life.\\n\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Final Solution for Gaza ?\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 31\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n\\n\\tOther people have commented on most of this swill, I figured\\nI\\'d add a few comments of my own.\\n\\n>The Gaza strip, this tiny area of land with the highest population\\n>density in the world, has been cut off from the world for weeks.\\n\\n\\tHong Kong, and Cairo both have higher population densities.\\n\\n>The Israeli occupier has decided to punish the whole population of\\n>Gaza, some 700.000 people, by denying them the right to leave the\\n>strip and seek work in Israel.\\n\\n\\tThere is no fundamental right to work in another country. And\\nthe closing of the strip is not a punishment, it is a security measure\\nto stop people from stabbing Israelis.\\n\\n\\n>The only help given to Gazans by Israeli\\n>Jews, only dozens of people, is humanitarian assistance.\\n\\n\\tDozens minus one, since one of them was stabbed to death a few\\ndays ago.\\n\\n\\tAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: lochem@fys.ruu.nl (Gert-Jan van Lochem)\\nSubject: Dutch: symposium compacte objecten\\nSummary: U wordt uitgenodigd voor het symposium compacte objecten 26-4-93\\nKeywords: compacte objecten, symposium\\nOrganization: Physics Department, University of Utrecht, The Netherlands\\nLines: 122\\n\\nSterrenkundig symposium \\'Compacte Objecten\\'\\n op 26 april 1993\\n\\n\\nIn het jaar 1643, zeven jaar na de oprichting van de\\nUniversiteit van Utrecht, benoemde de universiteit haar\\neerste sterrenkundige waarnemer. Hiermee ontstond de tweede\\nuniversiteitssterrenwacht ter wereld. Aert Jansz, de eerste\\nwaarnemer, en zijn opvolgers voerden de Utrechtse sterrenkunde\\nin de daaropvolgende jaren, decennia en eeuwen naar de\\nvoorhoede van het astronomisch onderzoek. Dit jaar is het 350\\njaar geleden dat deze historische benoeming plaatsvond.\\n\\nDe huidige generatie Utrechtse sterrenkundigen en studenten\\nsterrenkunde, verenigd in het Sterrekundig Instituut Utrecht,\\nvieren de benoeming van hun \\'oervader\\' middels een breed scala\\naan feestelijke activiteiten. Zo is er voor scholieren een\\nplanetenproject, programmeert de Studium Generale een aantal\\nvoordrachten met een sterrenkundig thema en wordt op de Dies\\nNatalis aan een astronoom een eredoctoraat uitgereikt. Er\\nstaat echter meer op stapel.\\n\\nStudenten natuur- en sterrenkunde kunnen op 26 april aan een\\nsterrenkundesymposium deelnemen. De onderwerpen van het\\nsymposium zijn opgebouwd rond een van de zwaartepunten van het\\nhuidige Utrechtse onderzoek: het onderzoek aan de zogeheten\\n\\'compacte objecten\\', de eindstadia in de evolutie van sterren.\\nBij de samenstelling van het programma is getracht de\\ndeelnemer een zo aktueel en breed mogelijk beeld te geven van\\nde stand van zaken in het onderzoek aan deze eindstadia. In de\\neerste, inleidende lezing zal dagvoorzitter prof. Lamers een\\nbeknopt overzicht geven van de evolutie van zware sterren,\\nwaarna de zeven overige sprekers in lezingen van telkens een\\nhalf uur nader op de specifieke evolutionaire eindprodukten\\nzullen ingaan. Na afloop van elke lezing is er gelegenheid tot\\nhet stellen van vragen. Het dagprogramma staat afgedrukt op\\neen apart vel.\\nHet niveau van de lezingen is afgestemd op tweedejaars\\nstudenten natuur- en sterrenkunde. OOK ANDERE BELANGSTELLENDEN\\nZIJN VAN HARTE WELKOM!\\n\\nTijdens de lezing van prof. Kuijpers zullen, als alles goed\\ngaat, de veertien radioteleskopen van de Radiosterrenwacht\\nWesterbork worden ingezet om via een directe verbinding tussen\\nhet heelal, Westerbork en Utrecht het zwakke radiosignaal van\\neen snel roterende kosmische vuurtoren, een zogeheten pulsar,\\nin de symposiumzaal door te geven en te audiovisualiseren.\\nProf. Kuijpers zal de binnenkomende signalen (elkaar snel\\nopvolgende scherp gepiekte pulsen radiostraling) bespreken en\\ntrachten te verklaren.\\nHet slagen van dit unieke experiment staat en valt met de\\ntechnische haalbaarheid ervan. De op te vangen signalen zijn\\nnamelijk zo zwak, dat pas na een waarnemingsperiode van 10\\nmiljoen jaar genoeg energie is opgevangen om een lamp van 30\\nWatt een seconde te laten branden! Tijdens het symposium zal\\ner niet zo lang gewacht hoeven te worden: de hedendaagse\\ntechnologie stelt ons in staat live het heelal te beluisteren.\\n\\nDeelname aan het symposium kost f 4,- (exclusief lunch) en\\nf 16,- (inclusief lunch). Inschrijving geschiedt door het\\nverschuldigde bedrag over te maken op ABN-AMRO rekening\\n44.46.97.713 t.n.v. stichting 350 JUS. Het gironummer van de\\nABN-AMRO bank Utrecht is 2900. Bij de inschrijving dient te\\nworden aangegeven of men lid is van de NNV. Na inschrijving\\nwordt de symposiummap toegestuurd. Bij inschrijving na\\n31 maart vervalt de mogelijkheid een lunch te reserveren.\\n\\nHet symposium vindt plaats in Transitorium I,\\nUniversiteit Utrecht.\\n\\nVoor meer informatie over het symposium kan men terecht bij\\nHenrik Spoon, p/a S.R.O.N., Sorbonnelaan 2, 3584 CA Utrecht.\\nTel.: 030-535722. E-mail: henriks@sron.ruu.nl.\\n\\n\\n\\n******* DAGPROGRAMMA **************************************\\n\\n\\n 9:30 ONTVANGST MET KOFFIE & THEE\\n\\n10:00 Opening\\n Prof. dr. H.J.G.L.M. Lamers (Utrecht)\\n\\n10:10 Dubbelster evolutie\\n Prof. dr. H.J.G.L.M. Lamers\\n\\n10:25 Radiopulsars\\n Prof. dr. J.M.E. Kuijpers (Utrecht)\\n\\n11:00 Pulsars in dubbelster systemen\\n Prof. dr. F. Verbunt (Utrecht)\\n\\n11:50 Massa & straal van neutronensterren\\n Prof. dr. J. van Paradijs (Amsterdam)\\n\\n12:25 Theorie van accretieschijven\\n Drs. R.F. van Oss (Utrecht)\\n\\n13:00 LUNCH\\n\\n14:00 Hoe zien accretieschijven er werkelijk uit?\\n Dr. R.G.M. Rutten (Amsterdam)\\n\\n14:35 Snelle fluktuaties bij accretie op neutronensterren\\n en zwarte gaten\\n Dr. M. van der Klis (Amsterdam)\\n\\n15:10 THEE & KOFFIE\\n\\n15:30 Zwarte gaten: knippen en plakken met ruimte en tijd\\n Prof. dr. V. Icke (leiden)\\n\\n16:05 afsluiting\\n\\n16:25 BORREL\\n\\n-- \\nGert-Jan van Lochem\\t \\\\\\\\\\t\\t\"What is it?\"\\nFysische informatica\\t \\\\\\\\\\t\"Something blue\"\\nUniversiteit Utrecht \\\\\\\\\\t\"Shapes, I need shapes!\"\\n030-532803\\t\\t\\t\\\\\\\\\\t\\t\\t- HHGG -\\n',\n", + " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: GGRRRrrr!! Cages double-parking motorc\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 32\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 1@cs.cmu.edu, jfriedl+@RI.CMU.EDU (Jeffrey Friedl) writes:\\n>egreen@east.sun.com (Ed Green - Pixel Cruncher) writes:\\n>|> \\n>|> An apartment complex where I used to live tried this, only they put the\\n>|> thing over the driver\\'s window, \"so they couldn\\'t miss it.\" \\n>\\n>I can see the liability of putting stickers on the car while it was moving,\\n>or something, but it\\'s the BDI that chooses to start and then drive the car\\n>in a known unsafe condition that would (seem to be) liable. \\n\\nAn effort was made to remove the sticker. It came to pieces, leaving\\nmost of it firmly attached to the window. It was dark, and around\\n10:00 pm. The sticker (before being mangled in an ineffective attempt\\nto be torn off) warned the car would be towed if not removed. A\\n\"reasonable person\" would arguably have driven the car. Had an\\naccident occured, I don\\'t think my friend\\'s attorney would have much\\ntrouble fixing blame on the apartment mangement.\\n\\nAs a practical matter, even without a conviction, the cost and\\ninconvenience of defending against the suit would be considerable.\\n\\nAs a moral matter, it was a pretty fucking stupid thing to do for so\\npaltry a violation as parking without an authorization sticker (BTW, it\\nwasn\\'t \"somebody\\'s\" spot, it was resident-only, but unassigned,\\nparking).\\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", + " 'From: enzo@research.canon.oz.au (Enzo Liguori)\\nSubject: Vandalizing the sky.\\nOrganization: Canon Information Systems Research Australia\\nLines: 38\\n\\nFrom the article \"What\\'s New\" Apr-16-93 in sci.physics.research:\\n\\n........\\nWHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n\\n1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\nIn 1950, science fiction writer Robert Heinlein published \"The\\nMan Who Sold the Moon,\" which involved a dispute over the sale of\\nrights to the Moon for use as billboard. NASA has taken the firsteps toward this\\n hideous vision of the future. Observers were\\nstartled this spring when a NASA launch vehicle arrived at the\\npad with \"SCHWARZENEGGER\" painted in huge block letters on the\\nside of the booster rockets. Space Marketing Inc. had arranged\\nfor the ad to promote Arnold\\'s latest movie. Now, Space Marketing\\nis working with University of Colorado and Livermore engineers on\\na plan to place a mile-long inflatable billboard in low-earth\\norbit. NASA would provide contractual launch services. However,\\nsince NASA bases its charge on seriously flawed cost estimates\\n(WN 26 Mar 93) the taxpayers would bear most of the expense. This\\nmay look like environmental vandalism, but Mike Lawson, CEO of\\nSpace Marketing, told us yesterday that the real purpose of the\\nproject is to help the environment! The platform will carry ozone\\nmonitors he explained--advertising is just to help defray costs.\\n..........\\n\\nWhat do you think of this revolting and hideous attempt to vandalize\\nthe night sky? It is not even April 1 anymore.\\nWhat about light pollution in observations? (I read somewhere else that\\nit might even be visible during the day, leave alone at night).\\nIs NASA really supporting this junk?\\nAre protesting groups being organized in the States?\\nReally, really depressed.\\n\\n Enzo\\n-- \\nVincenzo Liguori | enzo@research.canon.oz.au\\nCanon Information Systems Research Australia | Phone +61 2 805 2983\\nPO Box 313 NORTH RYDE NSW 2113 | Fax +61 2 805 2929\\n',\n", + " 'From: mscrap@halcyon.com (Marta Lyall)\\nSubject: Re: Video in/out\\nOrganization: Northwest Nexus Inc. (206) 455-3505\\nLines: 29\\n\\nOrganization: \"A World of Information at your Fingertips\"\\nKeywords: \\n\\nIn article <628@toontown.columbiasc.ncr.com> craig@toontown.ColumbiaSC.NCR.COM (Craig S. Williamson) writes:\\n>\\n>I\\'m getting ready to buy a multimedia workstation and would like a little\\n>advice. I need a graphics card that will do video in and out under windows.\\n>I was originally thinking of a Targa+ but that doesn\\'t work under Windows.\\n>What cards should I be looking into?\\n>\\n>Thanks,\\n>Craig\\n>\\n>-- \\n> \"To forgive is divine, to be\\n>-Craig Williamson an airhead is human.\"\\n> Craig.Williamson@ColumbiaSC.NCR.COM -Balki Bartokomas\\n> craig@toontown.ColumbiaSC.NCR.COM (home) Perfect Strangers\\n\\n\\nCraig,\\n\\nYou should still consider the Targa+. I run windows 3.1 on it all the\\ntime at work and it works fine. I think all you need is the right\\ndriver. \\n\\nJosh West \\nemail: mscrap@halcyon.com\\n\\n',\n", + " \"From: adams@bellini.berkeley.edu (Adam L. Schwartz)\\nSubject: Re: Final Solution in Palestine ?\\nNntp-Posting-Host: bellini.berkeley.edu\\nOrganization: U.C. Berkeley -- ERL\\nLines: 27\\n\\nIn article hm@cs.brown.edu (Harry Mamaysky) writes:\\n>In article <1993Apr25.171003.10694@thunder.mcrcim.mcgill.edu> ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed) writes:\\n>\\n>\\t DRIVING THE JEWS INTO THE SEA ?!\\n>\\n> I am sick and tired of this 'DRIVING THE JEWS INTO THE SEA' sentance attributed\\n> to Islamic movements and the PLO; it simply can't be proven as part of their\\n> plan !\\n>\\n\\nProven? Maybe not. But it can certainly be verified beyond a reasonable doubt. This\\nstatement and statements like it are a matter of public record. Before the Six Day War (1967)\\nI think Nasser and some other Arab leaders were broadcasting these statements on\\nArab radio. You might want to check out some old newspapers Ahmed.\\n\\n\\n> What Hamas and Islamic Jihad believe in, as far as I can get from the Arab media,\\n> is an Islamic state that protects the rights of all its inhabitants under Koranic\\n> Law.\\n\\nI think if you take a look at the Hamas covenant (written in 1988) you might get a \\ndifferent impression. I have the convenant in the original arabic with a translation\\nthat I've verified with Arabic speakers. The document is rife with calls to kill jews\\nand spread Islam and so forth.\\n\\n-Adam Schwartz\\n\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: First, I\\'ll make the assumption that you agree that a murderer is one\\n>who has commited murder.\\n\\nWell, I\\'d say that a murderer is one who intentionally committed a murder.\\nFor instance, if you put a bullet into a gun that was thought to contain\\nblanks, and someone was killed with such a gun, the person who actually\\nperformed the action isn\\'t the murderer (but I guess this is actually made\\nclear in the below definition).\\n\\n>I\\'d be interested to see a more reasonable definition. \\n\\nWhat do you mean by \"reasonable?\"\\n\\n>Otherwise, your inductive definition doesn\\'t bottom out:\\n>Your definition, in essence, is that\\n>>Murder is the intentional killing of someone who has not commited \\n>>murder, against his will.\\n>Expanding the second occurence of `murder\\' in the above, we see that\\n[...]\\n\\nYes, it is bad to include the word being defined in the definition. But,\\neven though the series is recursively infinite, I think the meaning can\\nstill be deduced.\\n\\n>I assume you can see the problem here. To do a correct inductive\\n>definition, you must define something in terms of a simpler case, and\\n>you must have one or several \"bottoming out\" cases. For instance, we\\n>can define the factorial function (the function which assigns to a\\n>positive integer the product of the positive integers less than or\\n>equal to it) on the positive integers inductively as follows:\\n\\n[math lesson deleted]\\n\\nOkay, let\\'s look at this situation: suppose there is a longstanding\\nfeud between two families which claim that the other committed some\\ntravesty in the distant past. Each time a member of the one family\\nkills a member of the other, the other family thinks that it is justified\\nin killing a that member of the first family. Now, let\\'s suppose that this\\nsequence has occurred an infinite number of times. Or, if you don\\'t\\nlike dealing with infinities, suppose that one member of the family\\ngoes back into time and essentially begins the whole thing. That is, there\\nis a never-ending loop of slayings based on some non-existent travesty.\\nHow do you resolve this?\\n\\nWell, they are all murders.\\n\\nNow, I suppose that this isn\\'t totally applicable to your \"problem,\" but\\nit still is possible to reduce an uninduced system.\\n\\nAnd, in any case, the nested \"murderer\" in the definition of murder\\ncannot be infintely recursive, given the finite existence of humanity.\\nAnd, a murder cannot be committed without a killing involved. So, the\\nfirst person to intentionally cause someone to get killed is necessarily\\na murderer. Is this enough of an induction to solve the apparently\\nunreducable definition? See, in a totally objective system where all the\\ninformation is available, such a nested definition isn\\'t really a problem.\\n\\nkeith\\n',\n", + " 'From: dwestner@cardhu.mcs.dundee.ac.uk (Dominik Westner)\\nSubject: need a viewer for gl files\\nOrganization: Maths & C.S. Dept., Dundee University, Scotland, UK\\nLines: 10\\nNNTP-Posting-Host: cardhu.mcs.dundee.ac.uk\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nHi, \\n\\nthe subject says it all. Is there a PD viewer for gl files (for X)?\\n\\nThanks\\n\\n\\nDominik\\n\\n\\n',\n", + " 'From: msb@sq.sq.com (Mark Brader)\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nOrganization: SoftQuad Inc., Toronto, Canada\\nLines: 34\\n\\n> > Can these questions be answered for a previous\\n> > instance, such as the Gehrels 3 that was mentioned in an earlier posting?\\n\\n> Orbital Elements of Comet 1977VII (from Dance files)\\n> p(au) 3.424346\\n> e 0.151899\\n> i 1.0988\\n> cap_omega(0) 243.5652\\n> W(0) 231.1607\\n> epoch 1977.04110\\n\\nThanks for the information!\\n\\nI assume p is the semi-major axis and e the eccentricity. The peri-\\nhelion and aphelion are then given by p(1-e) and p(1+e), i.e., about\\n2.90 and 3.95 AU respectively. For Jupiter, they are 4.95 and 5.45 AU.\\nIf 1977 was after the temporary capture, this means that the comet\\nended up in an orbit that comes no closer than 1 AU to Jupiter\\'s --\\nwhich I take to be a rough indication of how far from Jupiter it could\\nget under Jupiter\\'s influence.\\n\\n> Also, perihelions of Gehrels3 were:\\n> \\n> April 1973 83 jupiter radii\\n> August 1970 ~3 jupiter radii\\n\\nWhere 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. So the\\n1970 figure seems unlikely to actually be anything but a perijove.\\nIs that the case for the 1973 figure as well?\\n-- \\nMark Brader, SoftQuad Inc., Toronto\\t\\t\"Remember the Golgafrinchans\"\\nutzoo!sq!msb, msb@sq.com\\t\\t\\t\\t\\t-- Pete Granger\\n\\nThis article is in the public domain.\\n',\n", + " 'From: ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky)\\nSubject: Re: Ten questions about Israel\\nLines: 66\\nNntp-Posting-Host: taupe.cc.utexas.edu\\nOrganization: University of Texas @ Austin\\nLines: 66\\n\\nIn article <1483500349@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n> \\n> From: Center for Policy Research \\n> Subject: Ten questions about Israel\\n> \\n> \\n> Ten questions to Israelis\\n> -------------------------\\n> \\n> I would be thankful if any of you who live in Israel could help to\\n> provide\\n> accurate answers to the following specific questions. These are\\n> indeed provocative questions but they are asked time and again by\\n> people around me. \\n> \\n> 1. Is it true that the Israeli authorities don\\'t recognize\\n> Israeli nationality ? And that ID cards, which Israeli citizens\\n> must carry at all times, identify people as Jews or Arabs, not as\\n> Israelis ?\\n\\n\\n\\tThat\\'s true. Israeli ID cards do not identify people\\n\\tas Israelies. Smart huh?\\n\\n\\n> 3. Is it true that Israeli stocks nuclear weapons ? If so,\\n> could you provide any evidence ?\\n\\n\\tYes. There\\'s one warhead in my parent\\'s backyard in\\n\\tBeer Sheva (that\\'s only some 20 miles from Dimona,\\n\\tyou know). Evidence? I saw it!\\n\\n \\n> 4. Is it true that in Israeli prisons there are a number of\\n> individuals which were tried in secret and for which their\\n> identities, the date of their trial and their imprisonment are\\n> state secrets ?\\n\\n\\tYes. But unfortunately I can\\'t give you more details.\\n\\tThat\\'s _secret_, you see.\\n\\n\\n\\t\\t\\t[...]\\n\\n> \\n> Thanks,\\n> \\n> Elias Davidsson Iceland email: elias@ismennt.is\\n\\n\\n\\tYou\\'re welcome. Now, let me ask you a few questions, if you\\n\\tdon\\'t mind:\\n\\n\\t1. Is it true that the Center for Policy Research is a \\n\\t one-man enterprise?\\n\\n\\t2. Is it true that your questions are not being asked\\n\\t bona fide?\\n\\n\\t3. Is it true that your statement above, \"These are indeed \\n\\t provocative questions but they are asked time and again by\\n\\t people around me\" is not true?\\n\\n\\nNoam\\n\\n',\n", + " 'From: Club@spektr.msk.su (Koltovoy Nikolay Alexeevich)\\nSubject: [NEWS]Re:List or image processing systems?\\nDistribution: eunet\\nReply-To: Club@spektr.msk.su\\nOrganization: Moscow Scientific Industrial Ass. Spectrum\\nLines: 137\\n\\n\\n Moscow Scientific Inductrial Association \"Spectrum\" offer\\n VIDEOSCAN vision system for PC/AT,wich include software and set of\\n controllers.\\n\\n SOFTWARE\\n\\n For support VIDEOSCAN family program kit was developed. Kit\\n includes more then 200 different functions for image processing.\\n Kit works in the interactive regime, and has include Help for\\n non professional users.\\n There are next possibility:\\n - input frame by any board of VIDEOSCAN family;\\n - read - white image to - from disk;\\n - print image on the printer;\\n - makes arithmetic with 2 frames;\\n - filter image;\\n - work with gistogramme;\\n - edit image.\\n - include users exe modules.\\n\\n CONTROLLER VS9\\n\\n The function of VS-9 controller is to load TV-images into PC/AT.\\n VS-9 controller allows one to load a fragment of the TV-frame from\\n a field of 724x600 pixels.\\n The clock rate is 14,7 MHz when loading an image with 512 pixel in\\n the line and 7,4 MHz when loading a 256 pixels image. This\\n provides the equal pixel size of input image in both horizontal\\n and vertical directions.\\n The number of gray levels in any input modes is 256.\\n Video signal capture time - 2.5s.\\n\\n CONTROLLER VS52\\n\\n The purpose of the controller is to enter the TV images into a IBM\\n PC AT or any other machine of that type. The controller was\\n created on the base of modern elements, including user\\n programmable gate arrays.\\n The controller allows to digitize a input signal with different\\n resolutions. Its flexible architecture makes possible to change\\n technical parameters. Instead of TV signal one can process any\\n other analog signal (including signals from slow-speed scanning\\n devices).\\n The controller has the following technical characteristics:\\n - memory volume - from 256 K to 2 Mb ;\\n - resolution when working with standard video signal - from 64x64\\n to 1024x512 pixels ;\\n - resolution when working in slow input regime - up to 2048x1024\\n pixels;\\n - video signal capture time - 40 ms.\\n - maximum size of a screen when memory volume is 2Mb - 2048x1024\\n pixels ;\\n - number of gray level - 256 ;\\n - clock rate for input - up to 30 MHz ;\\n - 4 input video multiplexer ;\\n - input/output lookup table (LUT);\\n - possibility to realize \"scroll\" and \"zoom\";\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - 8 lines for external synchronization (an input using external\\n controlling signal) ;\\n - electronic adjustment of black and white reference for analog -\\n digital converter;\\n - possibility output image to the color RGB monitor.\\n One can change all listed above functions and parameters of the\\n controller by reprogramming it.\\n\\n\\n IMAGE PROCESSOR VS100\\n\\n\\n Image processor VS100 allows to digitize and process TV\\n signal in real time. It is possible digitize TV signal with\\n 512*512*8 resolution and realize arithmetic and logic operation\\n with two images.\\n Processor was created on the base of modern elements\\n including user programmable gate arrays and designed as a board\\n for PC.\\n Memory volume allows write to the 256 frames with 512*512*8\\n format. It is possible to accumulate until 16 images.\\n The processor has the following technical characteristics:\\n - memory volume to 64 Mb;\\n - number of the gray level - 256;\\n - 4 input video multiplexer;\\n - input/output lookup table;\\n - electronic adjustment for black and white ADC reference;\\n - image size from 256*256 to 8192*8192;\\n - possibility color and black / white output;\\n - possibility input from slow-scan video sources.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Morality? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>So, you are saying that it isn\\'t possible for an instinctive act\\n|> >>to be moral one?\\n|> >\\n|> >I like to think that many things are possible. Explain to me\\n|> >how instinctive acts can be moral acts, and I am happy to listen.\\n|> \\n|> For example, if it were instinctive not to murder...\\n\\nThen not murdering would have no moral significance, since there\\nwould be nothing voluntary about it.\\n\\n|> \\n|> >>That is, in order for an act to be an act of morality,\\n|> >>the person must consider the immoral action but then disregard \\n|> >>it?\\n|> >\\n|> >Weaker than that. There must be the possibility that the\\n|> >organism - it\\'s not just people we are talking about - can\\n|> >consider alternatives.\\n|> \\n|> So, only intelligent beings can be moral, even if the bahavior of other\\n|> beings mimics theirs?\\n\\nYou are starting to get the point. Mimicry is not necessarily the \\nsame as the action being imitated. A Parrot saying \"Pretty Polly\" \\nisn\\'t necessarily commenting on the pulchritude of Polly.\\n\\n|> And, how much emphasis do you place on intelligence?\\n\\nSee above.\\n\\n|> Animals of the same species could kill each other arbitarily, but \\n|> they don\\'t.\\n\\nThey do. I and other posters have given you many examples of exactly\\nthis, but you seem to have a very short memory.\\n\\n|> Are you trying to say that this isn\\'t an act of morality because\\n|> most animals aren\\'t intelligent enough to think like we do?\\n\\nI\\'m saying:\\n\\n\\t\"There must be the possibility that the organism - it\\'s not \\n\\tjust people we are talking about - can consider alternatives.\"\\n\\nIt\\'s right there in the posting you are replying to.\\n\\njon.\\n',\n", + " 'From: rubery@saturn.aitc.rest.tasc.com. (Dan Rubery)\\nSubject: Graphic Formats\\nOrganization: TASC\\nLines: 7\\nNNTP-Posting-Host: saturn.aitc.rest.tasc.com\\n\\nI am writing some utilies to convert Regis and Tektonic esacpe sequences \\ninto some useful formats. I would rather not have to goto a bitmap format. \\nI can convert them to Window Meta FIles easily enough, but I would rather \\nconvert them to Corel Draw, .CDR, or MS Power Point, .PPT, files. \\nMicrosoft would not give me the format. I was wondering if anybody out \\nthere knows the formats for these two applications.\\n\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>\\n>>>Well, chimps must have some system. They live in social groups\\n>>>as we do, so they must have some \"laws\" dictating undesired behavior.\\n>>So, why \"must\" they have such laws?\\n>\\n>The quotation marks should enclose \"laws,\" not \"must.\"\\n>\\n>If there were no such rules, even instinctive ones or unwritten ones,\\n>etc., then surely some sort of random chance would lead a chimp society\\n>into chaos.\\n\\t\\n\\n\\tThe \"System\" refered to a \"moral system\". You havn\\'t shown any \\nreason that chimps \"must\" have a moral system. \\n\\tExcept if you would like to redefine everything.\\n\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: For JOHS@dhhalden.no (3) - Last\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 33\\n\\n: un021432@wvnvms.wvnet.edu writes:\\n\\n: >DUCATI3.UUE\\n: >QUUNCD Ver. 1.4, by Theodore A. Kaldis.\\n: >BEGIN--cut here--CUT HERE--Part 3\\n: >MG@NH)C1M+AV4)I;^**3NYR7,*(.H&\"3V\\'!X12(&E+AFKIN0@APYT;C[#LI2T\\n\\nThis GIF was GREAT!! I have it as the backdrop on my Apollo thingy and many\\npeople stop by and admire it. Of course I tell them that I did it myself....\\n\\nIt\\'s far too much trouble to contact archive sites to get stuff like this, so\\nif anybody else has any good GIFs, please, please don\\'t hesitate to post them.\\n\\nIs the bra thing still going?\\n--\\n\\nNick (the Idiot Biker) DoD 1069 Concise Oxford No Bras\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 16\\n\\nKeith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n: \\n: \\tWild and fanciful claims require greater evidence. If you state that \\n: one of the books in your room is blue, I certainly do not need as much \\n: evidence to believe than if you were to claim that there is a two headed \\n: leapard in your bed. [ and I don\\'t mean a male lover in a leotard! ]\\n\\nKeith, \\n\\nIf the issue is, \"What is Truth\" then the consequences of whatever\\nproposition argued is irrelevent. If the issue is, \"What are the consequences\\nif such and such -is- True\", then Truth is irrelevent. Which is it to\\nbe?\\n\\n\\nBill\\n',\n", + " 'From: arens@ISI.EDU (Yigal Arens)\\nSubject: Re: Ten questions about Israel\\nOrganization: USC/Information Sciences Institute\\nLines: 184\\nDistribution: world\\nNNTP-Posting-Host: grl.isi.edu\\nIn-reply-to: backon@vms.huji.ac.il\\'s message of 20 Apr 93 21:38:19 GMT\\n\\nIn article <1993Apr20.213819.664@vms.huji.ac.il> backon@vms.huji.ac.il writes:\\n>\\n> In article <1483500349@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n> >\\n> > 4. Is it true that in Israeli prisons there are a number of\\n> > individuals which were tried in secret and for which their\\n> > identities, the date of their trial and their imprisonment are\\n> > state secrets ?\\n>\\n>\\n> Apart from Mordechai Vanunu who had a trial behind closed doors, there\\n> was one other espionage case (the nutty professor at the Nes Ziona\\n> Biological Institute who was a K.G.B. mole) who was tried \"in camera\".\\n> I wouldn\\'t exactly call it a state secret. The trial was simply tried\\n> behind closed doors. I hate to disappoint you but the United States\\n> has tried a number of espionage cases in camera.\\n\\nAt issue was not a trial behind closed doors, but arrest, trial and\\nimprisonment in complete secrecy. This was appraently attempted in the\\ncase of Vanunu and failed. It has happened before, and there is reason\\nto believe it still goes on.\\n\\nRead this:\\n\\nFrom Ma\\'ariv, February 18 (possibly 28), 1992\\n\\nPUBLICATION BAN\\n\\n The State of Israel has never officially admitted that for many\\n years there have been in its prisons Israeli citizens who were\\n sentenced to long prison terms without either the fact of\\n their arrest or the crimes of which they were accused ever\\n being made public.\\n\\nBy Baruch Me\\'iri\\n\\nAll those involved in this matter politely refused my request, one way\\nor another: \"Look, the subject is too delicate. If I comment on it, I\\nwill be implicitly admitting that it is true; If I mention a specific\\ncase, even hint at it, I might be guilty of making public something\\nwhich may legally not be published\".\\n\\nThe State of Israel has never officially admitted that for many years\\nthere have been in its prisons Israeli citizens who were sentenced to\\nlong prison terms without either the fact of their arrest or the\\ncrimes of which they were accused ever being made public. More\\nprecisely: A court ordered publication ban was placed on the fact of\\ntheir arrest, and later on their imprisonment.\\n\\nIn Israel of 1993, citizens are imprisoned without us, the citizens of\\nthis country, knowing anything about it. Not knowing anything about\\nthe fact that one person or another were tried and thrown in prison,\\nfor security offenses, in complete secrecy.\\n\\nIn the distant past -- for example during the days of the [Lavon - YA]\\naffair -- we heard about \"the third man\" being in prison. But many\\nyears have passed since then, and what existed then can today no\\nlonger be found even in South American countries, or in the former\\nCommunist countries.\\n\\nBut it appears that this is still possible in Israel of 1993.\\n\\nThe Chair of the Knesset Committee on Law, the Constitution and\\nJustice, MK David Zucker, sent a letter on this subject early this\\nweek to the Prime Minister, the Minister of Justice, and the Cabinet\\nLegal Advisor. Ma\\'ariv has obtained the content of the letter:\\n\\n\"During the past several years a number of Israeli citizens have been\\nimprisoned for various periods for security offenses. In some of\\nthese cases a legal publication ban was imposed not only on the\\nspecifics of the crimes for which the prisoners were convicted, but\\neven on the mere fact of their imprisonment. In those cases, after\\nbeing legally convicted, the prisoners spend their term in prison\\nwithout public awareness either of the imprisonment or of the\\nprisoner\", asserts MK Zucker.\\n\\nOn the other hand Zucker agrees in his letter that, \"There is\\nabsolutely no question that it is possible, and in some cases it is\\nimperative, that a publication ban be imposed on the specifics of\\nsecurity offenses and the course of trials. But even in such cases\\nthe Court must weigh carefully and deliberately the circumstances\\nunder which a trial will not be held in public.\\n\\n\"However, one must ask whether the imposition of a publication ban on\\nthe mere fact of a person\\'s arrest, and on the name of a person\\nsentenced to prison, is justified and appropriate in the State of\\nIsrael. The principle of public trial and the right of the public to\\nknow are not consistent with the disappearance of a person from public\\nsight and his descent into the abyss of prison.\"\\n\\nZucker thus decided to turn to the Prime Minister, the Minister of\\nJustice and the Cabinet Legal Advisor and request that they consider\\nthe question. \"The State of Israel is strong enough to withstand the\\ncost incurred by abiding by the principle of public punishment. The\\nState of Israel cannot be allowed to have prisoners whose detention\\nand its cause is kept secret\", wrote Zucker.\\n\\nThe legal counsel of the Civil Rights Union, Attorney Mordechai\\nShiffman said that, \"We, as the Civil Rights Union, do not know of any\\ncases of security prisoners, Citizens of Israel, who are imprisoned,\\nand whose imprisonment cannot be made public. This is a situation\\nwhich, if it actually exists, is definitely unhealthy. Just like\\ncensorship is an unhealthy matter\".\\n\\n\"The Union is aware\", says Shiffman, \"of cases where notification of a\\nsuspect\\'s arrest to family members and lawyers is withheld. I am\\nspeaking only of several days. I know also of cases where a detainee\\nwas not allowed to meet with an attorney -- sometimes for the whole\\nfirst month of arrest. That is done because of the great secrecy.\\n\\n\"The suspect himself, his family, his lawyer -- or even a journalist --\\ncan challenge the publication ban in court. But there are cases where\\nthe family members themselves are not interested in publicity. The\\njournalist knows nothing of the arrest, and so almost everyone is\\nhappy...\"\\n\\nAttorney Yossi Arnon, an official of the Bar, claims that given the\\nlaws as they exist in Israel today, a situation where the arrest of a\\nperson for security offenses is kept secret is definitely possible. \\n\"Nothing is easier. The court orders a publication ban, and that\\'s\\nthat. Someone who has committed security offenses can spend long\\nyears in prison without us knowing anything about it.\"\\n\\n-- Do you find this situation acceptable?\\n\\nAttorney Arnon: \"Definitely not. We live in a democratic country, and\\nsuch a state of affairs is impermissible. I am well aware that\\npublication can be damaging -- from the standpoint of security -- but\\ntotal non-publication, silence, is unacceptable. Consider the trial of\\nMordechai Vanunu: at least in his case we know that he was charged\\nwith aggravated espionage and sentenced to 18 years in prison. The\\ntrial was held behind closed doors, nobody knew the details except for\\nthose who were authorized to. It is somehow possible to understand,\\nthough not to accept, the reasons, but, as I have noted, we at least\\nare aware of his imprisonment.\"\\n\\n-- Why is the matter actually that serious? Can\\'t we trust the\\ndiscretion of the court?\\n\\nAttorney Arnon: \"The judges have no choice but to trust the\\npresentations made to them. The judges do not have the tools to\\ninvestigate. This gives the government enormous power, power which\\nthey can misuse.\"\\n\\n-- And what if there really is a security issue?\\n\\nAttorney Arnon: \"I am a man of the legal system, not a security expert.\\n Democracy stands in opposition to security. I believe it is possible\\nto publicize the matter of the arrest and the charges -- without\\nentering into detail. We have already seen how the laws concerning\\npublication bans can be misused, in the case of the Rachel Heller\\nmurder. A suspect in the murder was held for many months without the\\nmatter being made public.\"\\n\\nAttorney Shiffman, on the other hand, believes that state security can\\nbe a legitimate reason for prohibiting publication of a suspect\\'s\\narrest, or of a convicted criminal\\'s imprisonment. \"A healthy\\nsituation? Definitely not. But I am aware of the fact that mere\\npublication may be harmful to state security\".\\n\\nA different opinion is expressed by attorney Uri Shtendal, former\\nadvisor for Arab affairs to Prime Ministers Levi Eshkol and Golda\\nMeir. \"Clearly, we are speaking of isolated special cases. Such\\nsituations contrast with the principle that a judicial proceeding must\\nbe held in public. No doubt this contradicts the principle of freedom\\nof expression. Definitely also to the principle of individual freedom\\nwhich is also harmed by the prohibition of publication.\\n\\n\"Nevertheless\", adds Shtendal, \"the legislator allowed for the\\npossibility of such a ban, to accommodate special cases where the\\ndamage possible as a consequence of publication is greater than that\\nwhich may follow from an abridgment of the principles I\\'ve mentioned.\\nThe authority to decide such matters of publication does not rest with\\nthe Prime Minister or the security services, but with the court, which\\nwe may rest assured will authorize a publication ban only if it has\\nbeen convinced of its need beyond a shadow of a doubt.\"\\n\\nNevertheless, attorney Shtendal agrees: \"As a rule, clearly such a\\nphenomenon is undesirable. Such an extreme step must be taken only in\\nthe most extreme circumstances.\"\\n--\\nYigal Arens\\nUSC/ISI TV made me do it!\\narens@isi.edu\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: A visit from the Jehovah\\'s Witnesses\\nOrganization: Case Western Reserve University\\nLines: 48\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article suopanki@stekt6.oulu.fi (Heikki T. Suopanki) writes:\\n>:> God is eternal. [A = B]\\n>:> Jesus is God. [C = A]\\n>:> Therefore, Jesus is eternal. [C = B]\\n>\\n>:> This works both logically and mathematically. God is of the set of\\n>:> things which are eternal. Jesus is a subset of God. Therefore\\n>:> Jesus belongs to the set of things which are eternal.\\n>\\n>Everything isn\\'t always so logical....\\n>\\n>Mercedes is a car.\\n>That girl is Mercedes.\\n>Therefore, that girl is a car?\\n\\n\\tThis is not strickly correct. Only by incorrect application of the \\nrules of language, does it seem to work.\\n\\n\\tThe Mercedes in the first premis, and the one in the second are NOT \\nthe same Mercedes. \\n\\n\\tIn your case, \\n\\n\\tA = B\\n\\tC = D\\n\\t\\n\\tA and D are NOT equal. One is a name of a person, the other the\\nname of a object. You can not simply extract a word without taking the \\ncontext into account. \\n\\n\\tOf course, your case doesn\\'t imply that A = D.\\n\\n\\tIn his case, A does equal D.\\n\\n\\n\\tTry again...\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n\\n',\n", + " 'From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Vast Bandwidth Over-runs on NASA thread (was Re: NASA \"Wraps\")\\nIn-Reply-To: wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov\\'s message of 18 Apr 1993 13:56 CDT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<17APR199316423628@judy.uh.edu> <1993Apr18.034101.21934@iti.org>\\n\\t<18APR199313560620@judy.uh.edu>\\nLines: 12\\n\\nIn article <18APR199313560620@judy.uh.edu>, Dennis writes about a\\nzillion lines in response to article <1993Apr18.034101.21934@iti.org>,\\nin which Allen wrote a zillion lines in response to article\\n<17APR199316423628@judy.uh.edu>, in which Dennis wrote another zillion\\nlines in response to Allen.\\n\\nHey, can it you guys. Take it to email, or talk.politics.space, or\\nalt.flame, or alt.music.pop.will.eat.itself.the.poppies.are.on.patrol,\\nor anywhere, but this is sci.space. This thread lost all scientific\\ncontent many moons ago.\\n\\nNick Haines nickh@cmu.edu\\n',\n", + " \"From: jr0930@eve.albany.edu (REGAN JAMES P)\\nSubject: Re: Pascal-Fractals\\nOrganization: State University of New York at Albany\\nLines: 10\\n\\nApparently, my editor didn't do what I wanted it to do, so I'll try again.\\n\\ni'm looking for any programs or code to do simple animation and/or\\ndrawing using fractals in TurboPascal for an IBM\\n Thanks in advance\\n-- \\n ||||||||||| \\t\\t \\t ||||||||||| \\n_|||||||||||_______________________|||||||||||_ jr0930@eve.albany.edu\\n-|||||||||||-----------------------|||||||||||- jr0930@Albnyvms.bitnet\\n ||||||||||| GO HEAVY OR GO HOME |||||||||||\\n\",\n", + " 'From: davec@silicon.csci.csusb.edu (Dave Choweller)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: California State University, San Bernardino\\nLines: 45\\nNntp-Posting-Host: silicon.csci.csusb.edu\\n\\nIn article <1qif1g$fp3@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n>In article <1qialf$p2m@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>|In article <1qi921$egl@horus.ap.mchp.sni.de>, frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n[stuff deleted...]\\n>||> To the newsgroup at large, how about this for a deal: recognise that what \\n>||> happened in former Communist Russia has as much bearing on the validity \\n>||> of atheism as has the doings of sundry theists on the validity of their \\n>||> theism. That\\'s zip, nada, none. The fallacy is known as ad hominem, and \\n>||> it\\'s an old one. It should be in the Holy FAQ, in the Book of Constructing\\n>||> a Logical Argument :-)\\n>|\\n>|Apart from not making a lot of sense, this is wrong. There\\n>|is no \"atheist creed\" that taught any communist what to do \"in\\n>|the name of atheism\". There clearly are theistic creeds and\\n>|instructions on how to act for theists. They all madly\\n>|conflict with one another, but that\\'s another issue.\\n>\\n>Lack of instructions on how to act might also be evil.\\n\\nThat\\'s like saying that, since mathematics includes no instructions on\\nhow to act, it is evil. Atheism is not a moral system, so why should\\nit speak of instructions on how to act? *Atheism is simply lack of\\nbelief in God*.\\n\\n Plenty of theists\\n>think so. So one could argue the case for \"atheism causes whatever\\n>I didn\\'t like about the former USSR\" with as much validity as \"theism\\n>causes genocide\" - that is to say, no validity at all.\\n\\nI think the argument that a particular theist system causes genocide\\ncan be made more convincingly than an argument that atheism causes genocide.\\nThis is because theist systems contain instructions on how to act,\\nand one or more of these can be shown to cause genocide. However, since\\nthe atheist set of instructions is the null set, how can you show that\\natheism causes genocide?\\n--\\nDavid Choweller (davec@silicon.csci.csusb.edu)\\n\\nThere are scores of thousands of human insects who are\\nready at a moment\\'s notice to reveal the Will of God on\\nevery possible subject. --George Bernard Shaw.\\n-- \\nThere are scores of thousands of human insects who are\\nready at a moment\\'s notice to reveal the Will of God on\\nevery possible subject. --George Bernard Shaw.\\n',\n", + " 'From: todd@psgi.UUCP (Todd Doolittle)\\nSubject: Fork Seals \\nDistribution: world\\nOrganization: Not an Organization\\nLines: 23\\n\\nI\\'m about to undertake changing the fork seals on my \\'88 EX500. My Clymer\\nmanual says I need the following tools from Kawasaki:\\n\\n57001-183 (T handle looking thing in illustration)\\n57001-1057 (Some type of adapter for the end of the T handle)\\n57001-1091 No illustration of this tool and the manual just refers to it\\n as \"the kawasaki tool.\"\\n57001-1058 Oil seal and bearing remover.\\n\\nHow necessary are these tools? Considering the dealers around here didn\\'t\\nhave the Clymer manual, fork seals, and a turn signal assembly in stock I\\nreally doubt they have these tools in stock and I\\'d really like to get this\\ndone this week. Any help would be appreciated as always.\\n\\n--\\n\\n--------------------------------------------------------------------------\\n ..vela.acs.oakland.edu!psgi!todd | \\'88 RM125 The only bike sold without\\n Todd Doolittle | a red-line. \\n Troy, MI | \\'88 EX500 \\n DoD #0832 | \\n--------------------------------------------------------------------------\\n\\n',\n", + " 'From: abdkw@stdvax (David Ward)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nNews-Software: VAX/VMS VNEWS 1.4-b1 \\nOrganization: Goddard Space Flight Center - Robotics Lab\\nLines: 34\\n\\nIn article <20APR199321040621@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes...\\n>In article <1993Apr20.204335.157595@zeus.calpoly.edu>, jgreen@trumpet.calpoly.edu (James Thomas Green) writes...\\n>>Why do spacecraft have to be shut off after funding cuts. For\\n>>example, Why couldn\\'t Magellan just be told to go into a \"safe\"\\n>>mode and stay bobbing about Venus in a low-power-use mode and if\\n>>maybe in a few years if funding gets restored after the economy\\n>>gets better (hopefully), it could be turned on again. \\n> \\n>It can be, but the problem is a political one, not a technical one.\\n\\nAlso remember that every dollar spent keeping one spacecraft in safe mode\\n(probably a spin-stabilized sun-pointing orientation) is a dollar not\\nspent on mission analysis for a newer spacecraft. In order to turn the\\nspacecraft back on, you either need to insure that the Ops guys will be\\navailable, or you need to retrain a new team.\\n\\nHaving said that, there are some spacecraft that do what you have proposed.\\nMany of the operational satellites Goddard flies (like the Tiros NOAA \\nseries) require more than one satellite in orbit for an operational set.\\nExtras which get replaced on-orbit are powered into a \"standby\" mode for\\nuse in an emergency. In that case, however, the same ops team is still\\nrequired to fly the operational birds; so the standby maintenance is\\nrelatively cheap.\\n\\nFinally, Pat\\'s explanation (some spacecraft require continuous maintenance\\nto stay under control) is also right on the mark. I suggested a spin-\\nstabilized control mode because it would require little power or \\nmaintenance, but it still might require some momentum dumping from time\\nto time.\\n\\nIn the end, it *is* a political decision (since the difference is money),\\nbut there is some technical rationale behind the decision.\\n\\nDavid W. @ GSFC \\n',\n", + " \"From: ruca@pinkie.saber-si.pt (Rui Sousa)\\nSubject: Re: Potential World-Bearing Stars?\\nIn-Reply-To: dan@visix.com's message of Mon, 12 Apr 1993 19:52:23 GMT\\nLines: 17\\nOrganization: SABER - Sistemas de Informacao, Lda.\\n\\nIn article dan@visix.com (Daniel Appelquist) writes:\\n\\n\\n I'm on a fact-finding mission, trying to find out if there exists a list of\\n potentially world-bearing stars within 100 light years of the Sun...\\n Is anyone currently working on this sort of thing? Thanks...\\n\\n Dan\\n -- \\n\\nIn principle, any star resembling the Sun (mass, luminosity) might have planets\\nlocated in a suitable orbit. There several within 100 ly of the sun. They are\\nsingle stars, for double or multiple systems might be troublesome. There's a\\nlist located at ames.arc.nasa.gov somewhere in pub/SPACE. I think it is called\\nstars.dat. By the way, what kind of project, if I may know?\\n\\nRui\\n-- \\n*** Infinity is at hand! Rui Sousa\\n*** If yours is big enough, grab it! ruca@saber-si.pt\\n\\n All opinions expressed here are strictly my own\\n\",\n", + " \"From: decay@cbnewsj.cb.att.com (dean.kaflowitz)\\nSubject: Re: some thoughts.\\nOrganization: AT&T\\nDistribution: na\\nLines: 13\\n\\nIn article , edm@twisto.compaq.com (Ed McCreary) writes:\\n> >>>>> On Thu, 15 Apr 1993 04:54:38 GMT, bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) said:\\n> \\n> DLB> \\tFirst I want to start right out and say that I'm a Christian. It \\n> DLB> makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n> DLB>lunatic, or the real thing? (I might be a little off on the title, but he \\n> DLB>writes the book. Anyway he was part of an effort to destroy Christianity, \\n> DLB> in the process he became a Christian himself.\\n> \\n> Here we go again...\\n\\nJust the friendly folks at Christian Central, come to save you.\\n\\n\",\n", + " \"From: mjw19@cl.cam.ac.uk (M.J. Williams)\\nSubject: Re: Rumours about 3DO ???\\nKeywords: 3DO ARM QT Compact Video\\nReply-To: mjw19@cl.cam.ac.uk\\nOrganization: The National Society for the Inversion of Cuddly Tigers\\nLines: 32\\nNntp-Posting-Host: earith.cl.cam.ac.uk\\n\\nIn article <2BD07605.18974@news.service.uci.edu> rbarris@orion.oac.uci.edu (Robert C. Barris) writes:\\n> We\\n>got to see the unit displaying full-screen movies using the CompactVideo codec\\n>(which was nice, very little blockiness showing clips from Jaws and Backdraft)\\n>... and a very high frame rate to boot (like 30fps).\\n\\nAcorn Replay running on a 25MHz ARM 3 processor (the ARM 3 is about 20% slower\\nthan the ARM 6) does this in software (off a standard CD-ROM). 16 bit colour at\\nabout the same resolution (so what if the computer only has 8 bit colour\\nsupport, real-time dithering too...). The 3D0/O is supposed to have a couple of\\nDSPs - the ARM being used for housekeeping.\\n\\n>I'm not sure how a Centris/20MHz 040 stacks up against the 25 MHz ARM in\\n>the 3DO box. Obviously the ARM is faster, but how much?\\n\\nA 25MHz ARM 6xx should clock around 20 ARM MIPS, say 18 flat out. Depends\\nreally on the surrounding system and whether you are talking ARM6x or ARM6xx\\n(the latter has a cache, and so is essential to run at this kind of speed with\\nslower memory).\\n\\nI'll stop saying things there 'cos I'll hopefully be working for ARM after\\ngraduation...\\n\\nMike\\n\\nPS Don't pay heed to what reps from Philips say; if the 3D0/O doesn't beat the\\n pants off 3DI then I'll eat this postscript.\\n--\\n____________________________________________________________________________\\n\\\\ / / Michael Williams Part II Computer Science Tripos\\n|\\\\/|\\\\/\\\\ MJW19@phx.cam.ac.uk University of Cambridge\\n| |(__)Cymdeithas Genedlaethol Traddodiad Troi Teigrod Mwythus Ben I Waered\\n\",\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 159\\n\\n>In article <1993Apr16.130037.18830@ncsu.edu>, hernlem@chess.ncsu.edu \\n (Brad Hernlem) writes:\\n>|> \\n>|> In article <2BCE0918.6105@news.service.uci.edu>, tclock@orion.oac.uci.edu \\n (Tim Clock) writes:\\n>|> \\n>|> Are you suggesting that, when guerillas use the population for cover, \\n>|> Israel should totally back down? So...the easiest way to get away with \\n>|> attacking another is to use an innocent as a shield and hope that the \\n>|> other respects innocent lives?\\n\\n> Tell me Tim, what are these guerillas doing wrong? Assuming that they are \\n> using civilians for cover, \\n\\n\"Assuming\"? Also: come on, Brad. If we are going to get anywhere in \\nthis (or any) discussion, it doesn\\'t help to bring up elements I never \\naddressed, *nor commented on in any way*. I made no comment on who is \\n\"right\" or who is \"wrong\", only that civilians ARE being used as cover \\nand that, having been placed \"in between\" the Israelis and the guerillas,\\nthey *will* be injured as both parties continue their fight.\\n \\n\\t[The *purpose* of an army\\'s use of military uniforms \\n\\tis *to set its members apart* from the civilians so that \\n\\tcivilians will not be thought of by the other side as\\n\\t\"combatants\". So, what do you think is the \"meaning behind\", \\n\\tthe intention and the effect when an \"army\" purposely \\n\\t*does not were uniforms but goes out of its way to *look \\n\\tlike civilians\\'? *They are judging that the benefit they will \\n\\treceive from this \"cover\" is more important that the harm\\n\\tthat will come to civilians.*\\n\\nThis is a comment on the Israeli experience and is saying\\nthat the guerillas *do* have some responsibility in putting civilians\\nin \"the middle\" of this fight. By putting on uniforms and living apart\\nfrom civilians (barracks, etc.), the guerillas would significantly lower\\nthe risk to civilians.\\n\\n\\tBut if the guerillas do this aren\\'t *they* putting themselves\\n\\tat greater risk? Absolutely, they ask themselves \"why set \\n\\tourselves apart (by wearing uniforms) when there is a ready-made \\n\\tcover for us (civilians)? That makes sense from their point of \\n\\tview, BUT when this cover is used, the guerillas should accept \\n\\tsome of the responsibility for subsequent harm to civilians.\\n\\n> If the buffer zone is to prevent attacks on Israel, is it not working? Why\\n> is it further neccessary for Israeli guns to pound Lebanese villages? Why \\n> not just kill those who try to infiltrate the buffer zone? You see, there \\n> is more to the shelling of the villages.... it is called RETALIATION... \\n> \"GETTING BACK\"...\"GETTING EVEN\". It doesn\\'t make sense to shell the \\n> villages. The least it shows is a reckless disregard by the Israeli \\n> government for the lives of civilians.\\n\\nI agree with you here. I have always thought that Israel\\'s bombing\\nsortees and bombing policy is stupid, thoughtless, inhumane AND\\nineffective. BUT, there is no reason that Israel should passive wait \\nuntil attackers chose to act; there is every reason to believe that\\n\"taking the fight *to* the enemy\" will do more to stop attacks. \\n\\nAs I said previously, Israel spent several decades \"sitting passively\"\\non its side of a border and only acting to stop these attacks *after*\\nthe attackers had entered Israeli territory. It didn\\'t work very well.\\nThe \"host\" Arab state did little/nothing to try and stop these attacks \\nfrom its side of the border with Israel so the number of attacks\\nwere considerably higher, as was their physical and psychological impact \\non the civilians caught in their path. \\n>\\n>|> What?So the whole bit about attacks on Israel from neighboring Arab states \\n>|> can start all over again? While I also hope for this to happen, it will\\n>|> only occur WHEN Arab states show that they are *prepared* to take on the \\n>|> responsibility and the duty to stop guerilla attacks on Israel from their \\n>|> soil. They have to Prove it (or provide some \"guaratees\"), there is no way\\n>|> Israel is going to accept their \"word\"- not with their past attitude of \\n>|> tolerance towards \"anti-Israel guerillas in-residence\".\\n>|> \\n> If Israel is not willing to accept the \"word\" of others then, IMHO, it has\\n> no business wasting others\\' time coming to the peace talks. \\n\\nThis is just another \"selectively applied\" statement.\\n \\nThe reason for this drawn-out impasse between Ababs/Palestinians and Israelis\\nis that NEITHER side is willing to accept the Word of the other. By your\\ncriteria *everyone* should stay away from the negotiations.\\n\\nThat is precisely why the Palestinians (in their recent PISGA proposal for \\nthe \"interim\" period after negotiations and leading up to full autonomy) are\\ndemanding conditions that essentially define \"autonomy\" already. They DO\\nNOT trust that Israel will \"follow through\" the entire process and allow\\nPalestinians to reach full autonomy. \\n\\nDo you understand and accept this viewpoint by the Palestinians? \\nIf you do, then why should Israel\\'s view of Arabs/Palestinians \\nbe any different? Why should they trust the Arab/Palestinians\\' words?\\nSince they don\\'t, they are VERY reluctant to give up \"tangible assets \\n(land, control of areas) in exchange for \"words\". For this reason,\\nthey are also concerned about the sorts of \"guarantees\" they will have \\nthat the Arabs WILL follow through on their part of any agreement reached.\\n>\\n>But don\\'t you see that the same statement can be made both ways?\\n>If Lebanon was interested in peace then it should accept the word\\n>of Israel that the attacks were the cause for war and disarming the\\n>Hizbollah will remove the cause for its continued occupancy. \\n\\nAbsolutely, so are the Arabs/Palestinians asking FIRST for the\\nIsraelis \"word\" in relation to any agreement? NO, what is being\\ndemanded FIRST is LAND. When the issue is LAND, and one party\\nfinally gets HOLD of this \"land\", what the \"other party\" does\\nis totally irrelevent. If I NOW have possession of this land,\\nyour words have absolutely no power; whether Israel chooses to\\nkeeps its word does NOT get the land back.\\n\\n>Afterall, Israel has already staged two parts of the withdrawal from \\n>areas it occupied in Lebanon during SLG.\\n>\\n> Tim, you are ignoring the fact that the Palestinians in Lebanon have been\\n> disarmed. Hezbollah remains the only independent militia. Hezbollah does\\n> not attack Israel except at a few times such as when the IDF burned up\\n> Sheikh Mosavi, his wife, and young son. \\n\\nWhile the \"major armaments\" (those allowing people to wage \"civil wars\")\\nhave been removed, the weapons needed to cross-border attacks still\\nremain to some extent. Rocket attacks still continue, and \"commando\"\\nraids only require a few easily concealed weapons and a refined disregard\\nfor human life (yours of that of others). Such attacks also continue.\\n\\n> Of course, if Israel would withdraw from Lebanon\\n> and stop assassinating people and shelling villages they wouldn\\'t\\n> make the Lebanese so mad as to do that.\\n\\nBat guano. The situation you call for existed in the 1970s and attacks\\nwere commonplace.\\n\\n>Furthermore, with Hezbollah subsequently disarmed, it would not be possible.\\n\\nThere is NO WAY these groups can be effectively \"disarmed\" UNLESS the state\\nis as authoritarian is Syria\\'s. The only other way is for Lebanon to take\\nit upon itself to constantly patrol the entire border with Israel, essentially\\nmirroring Israel\\'s border secirity on its side. It HAS TO PROVE TO ISREAL that\\nit is this committed to protecting Israel from attack from Lebanese territory.\\n>\\n>|> Once Syria leaves who is to say that Lebanon will be able to retain \\n>|> control? If Syria stays thay may be even more dangerous for Israel.\\n>|> \\n> Tim, when is the last time that you recall any trouble on the Syrian border?\\n> Not lately, eh?\\n\\nThat\\'s what I said, ok? But, doesn\\'t that mean that Syria has to \"take over\"\\nLebanon? I don\\'t think Israel or Lebanon would like that.\\n> \\nWhat both \"sides\" need is to receive something \"tangible\". The Arabs/\\nPalestinians are looking for \"land\" and demanding that they receive it\\nprior to giving anything to Israel. Israel has two problems: 1) if it\\ngives up real *land* it IS exposing itself to a changed geostrategic\\nsituation (and that change doesn\\'t help Israel\\'s position), and 2) WHEN\\nit gives up this land IT NEEDS to receive something in return to\\ncompensate for the increased risks\\n\\nTim\\n\\n\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Rights Violations in Azerbaijan #013\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 339\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #013\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +---------------------------------------------------------------------+\\n | |\\n | I said that on February 27, when those people were streaming down |\\n | our street, they were shouting, \"Long live Turkey!\" and \"Glory to |\\n | Turkey!\" And during the trial I said to that Ismailov, \"What does |\\n | that mean, \\'Glory to Turkey\\'?\" I still don\\'t understand what Turkey |\\n | has to do with this, we live in the Soviet Union. That Turkey told |\\n | you to or is going to help you kill Armenians? I still don\\'t |\\n | understand why \"Glory to Turkey!\" I asked that question twice and |\\n | got no answer . . . No one answered me . . . |\\n | |\\n +---------------------------------------------------------------------+\\n\\nDEPOSITION OF EMMA SETRAKOVNA SARGISIAN\\n\\n Born 1933\\n Cook\\n Sumgait Emergency Hospital\\n\\n Resident at Building 16/13, Apartment 14\\n Block 5\\n Sumgait [Azerbaijan]\\n\\n\\nTo this day I can\\'t understand why my husband, an older man, was killed. What \\nwas he killed for. He hadn\\'t hurt anyone, hadn\\'t said any word he oughtn\\'t \\nhave. Why did they kill him? I want to find out--from here, from there, from \\nthe government--why my husband was killed.\\n\\nOn the 27th, when I returned from work--it was a Saturday--my son was at home.\\nHe doesn\\'t work. I went straight to the kitchen, and he called me, \"Mamma, is \\nthere a soccer game?\" There were shouts from Lenin Street. That\\'s where we \\nlived. I say, \"I don\\'t know, Igor, I haven\\'t turned on the TV.\" He looked \\nagain and said, \"Mamma, what\\'s going on in the courtyard?!\" I look and see so \\nmany people, it\\'s awful, marching, marching, there are hundreds, thousands, \\nyou can\\'t even tell how many there are. They\\'re shouting, \"Down with the \\nArmenians! Kill the Armenians! Tear the Armenians to pieces!\" My God, why is \\nthat happening, what for? I had known nothing at that point. We lived together\\nwell, in friendship, and suddenly something like this. It was completely \\nunexpected. And they were shouting, \"Long live Turkey!\" And they had flags,\\nand they were shouting. There was a man walking in front well dressed, he\\'s \\naround 40 or 45, in a gray raincoat. He is walking and saying something, I \\ncan\\'t make it out through the vent window. He is walking and saying something,\\nand the children behind him are shouting, \"Tear the Armenians to pieces!\" and \\n\"Down with the Armenians!\" They shout it again, and then shout, \"Hurrah!\" The \\npeople streamed without end, they were walking in groups, and in the groups I \\nsaw that there were women, too. I say, \"My God, there are women there too!\" \\nAnd my son says, \"Those aren\\'t women, Mamma, those are bad women.\" Well we \\ndidn\\'t look a long time. They were walking and shouting and I was afraid, I \\nsimply couldn\\'t sit still. I went out onto the balcony, and my Azerbaijani \\nneighbor is on the other balcony, and I say, \"Khalida, what\\'s going on, what \\nhappened?\" She says, \"Emma, I don\\'t know, I don\\'t know, I don\\'t know what \\nhappened.\" Well she was quite frightened too. They had these white sticks, \\neach second or third one had a white rod. They\\'re waving the rods above their \\nheads as they walk, and the one who\\'s out front, like a leader, he has a white\\nstick too. Well maybe it was an armature shaft, but what I saw was white, I \\ndon\\'t know.\\n\\nMy husband got home 10 or 15 minutes later. He comes home and I say, \"Oh \\ndear, I\\'m frightened, they\\'re going to kill us I bet.\" And he says, \"What are \\nyou afraid of, they\\'re just children.\" I say, \"Everything that happens comes \\nfrom children.\" There had been 15- and 16-year kids from the Technical and \\nVocational School. \"Don\\'t fear,\" he said, \"it\\'s nothing, nothing all that \\nbad.\" He didn\\'t eat, he just lay on the sofa. And just then on television they\\nbroadcast that two Azerbaijanis had been killed in Karabakh, near Askeran. \\nWhen I heard that I couldn\\'t settle down at all, I kept walking here and \\nthere and I said, \"They\\'re going to kill us, the Azerbaijanis are going to \\nkill us.\" And he says, \"Don\\'t be afraid.\" Then we heard--from the central \\nsquare, there are women shouting near near the stage, well, they\\'re shouting\\ndifferent things, and you couldn\\'t hear every well. I say, \"You speak\\nAzerbaijani well, listen to what they\\'re saying.\" He says \"Close the window\\nand go to bed, there s nothing happening there.\" He listened a bit and then \\nclosed the window and went to bed, and told us, \"Come on, go to sleep, it\\'s\\nnothing.\" Sleep, what did he mean sleep? My Son and I stood at the window\\nuntil two in the morning watching. Well he\\'s sick, and all of this was\\naffecting him. I say, \"Igor, you go to bed, I\\'m going to go to bed in a minute\\ntoo.\" He went and I sat at the window until three, and then went to bed. \\nThings had calmed down slightly.\\n\\nThe 28th, Sunday, was my day off. My husband got up and said, \"Come on, Emma, \\nget up.\" I say, \"Today\\'s my day off, let me rest.\" He says, \"Aren\\'t you going \\nto make me some tea?\" Well I felt startled and got up, and said, \"Where are \\nyou going?\" He says, \"I\\'m going out, I have to.\" I say, \"Can you really go \\noutside on a day like today? Don\\'t go out, for God\\'s sake. You never listen to\\nme, I know, and you\\'re not going to listen to me now, but at least don\\'t take \\nthe car out of the garage, go without the car.\" And he says, \"Come on, close \\nthe door!\" And then on the staircase he muttered something, I couldn\\'t make it\\nout, he probably said \"coward\" or something.\\n\\nI closed the door and he left. And I started cleaning . . . picking things up\\naround the house . . . Everything seemed quiet until one o\\'clock in the after-\\nnoon, but at the bus station, my neighbor told me, cars were burning. I said,\\n\"Khalida, was it our car?\" She says, \"No, no, Emma, don\\'t be afraid, they\\nwere government cars and Zhigulis.\\'\\' Our car is a GAZ-21 Volga. And I waited,\\nit was four o\\'clock, five o\\'clock . . . and when he wasn\\'t home at seven I\\nsaid, \"Oh, they\\'ve killed Shagen!\"\\n\\nTires are burning in town, there\\'s black smoke in town, and I\\'m afraid, I\\'m \\nstanding on the balcony and I\\'m all . . . my whole body is shaking. My God, \\nthey\\'ve probably killed him! So basically I waited like that until ten \\no\\'clock and he still hadn\\'t come home. And I\\'m afraid to go out. At ten\\no\\'clock I look out: across from our building is a building with a bookstore,\\nand from upstairs, from the second floor, everything is being thrown outside. \\nI\\'m looking out of one window and Igor is looking out of the other, and I \\ndon\\'t want him to see this, and he, as it turns out, doesn\\'t want me to see \\nit. We wanted to hide it from one another. I joined him. \"Mamma,\" he says,\\n\"look what they\\'re doing over there!\" They were burning everything, and there \\nwere police standing there, 10 or 15 of them, maybe twenty policemen standing \\non the side, and the crowd is on the other side, and two or three people are \\nthrowing everything down from the balcony. And one of the ones on the balcony \\nis shouting, \"What are you standing there for, burn it!\" When they threw the \\ntelevision, wow, it was like a bomb! Our neighbor on the third floor came out \\non her balcony and shouted, \"Why are you doing that, why are you burning those\\nthings, those people saved with such difficulty to buy those things for their \\nhome. Why are you burning them?\" And from the courtyard they yell at her, \"Go \\ninside, go inside! Instead why don\\'t you tell us if they are any of them in \\nyour building or not?\" They meant Armenians, but they didn\\'t say Armenians, \\nthey said, \"of them.\" She says, \"No, no, no, none!\" Then she ran downstairs to\\nour place, and says, \"Emma, Emma, you have to leave!\" I say, \"They\\'ve killed\\nShagen anyway, what do we have to live for? It won\\'t be living for me without \\nShagen. Let them kill us, too!\" She insists, saying, \"Emma, get out of here, \\ngo to Khalida\\'s, and give me the key. When they come I\\'ll say that it\\'s my \\ndaughter\\'s apartment, that they\\'re off visiting someone.\" I gave her the key \\nand went to the neighbor\\'s, but I couldn\\'t endure it. I say, \"Igor, you stay \\nhere, I\\'m going to go downstairs, and see, maybe Papa\\'s . . . Papa\\'s there.\"\\n\\nMeanwhile, they were killing the two brothers, Alik and Valery [Albert and \\nValery Avanesians; see the accounts of Rima Avanesian and Alvina Baluian], in \\nthe courtyard. There is a crowd near the building, they\\'re shouting, howling, \\nand I didn\\'t think that they were killing at the time. Alik and Valery lived\\nin the corner house across from ours. When I went out into the courtyard I saw\\nan Azerbaijani, our neighbor, a young man about 30 years old. I say, \"Madar, \\nUncle Shagen\\'s gone, let\\'s go see, maybe he\\'s dead in the garage or near the \\ngarage, let\\'s at least bring the corpse into the house. \"He shouts, \"Aunt \\nEmma, where do you think you\\'re going?! Go back into the house, I\\'ll look for \\nhim.\" I say, \"Something will happen to you, too, because of me, no, Madar, \\nI\\'m coming too.\" Well he wouldn\\'t let me go all the same, he says, \"You stay \\nhere with us, I\\'m go look.\" He went and looked, and came back and said, \"Aunt \\nEmma, there\\'s no one there, the garage is closed. \"Madar went off again and \\nthen returned and said, \"Aunt Emma, they\\'re already killed Alik, and Valery\\'s \\nthere . . . wheezing.\"\\n\\nMadar wanted to go up to him, but those scoundrels said, \"Don\\'t go near him, \\nor we\\'ll put you next to him.\" He got scared--he\\'s young--and came back and \\nsaid, \"I\\'m going to go call, maybe an ambulance will come, at least to take \\nAlik, maybe he\\'ll live . . . \" They grew up together in our courtyard, they \\nknew each other well, they had always been on good terms. He went to call, but\\nnot a single telephone worked, they had all been shut off. He called, and \\ncalled, and called, and called--nothing.\\n\\nI went upstairs to the neighbor\\'s. Igor says, \"Two police cars drove up over \\nthere, their headlights are on, but they\\'re not touching them, they are still \\nlying where they were, they\\'re still lying there . . . \"We watched out the\\nwindow until four o\\'clock, and then went downstairs to our apartment. I didn\\'t\\ntake my clothes off. I lay on the couch so as not to go to bed, and at six\\no\\'clock in the morning I got up and said, \"Igor, you stay here at home, don\\'t\\ngo out, don\\'t go anywhere, I\\'m going to look, I have to find Papa, dead or\\nalive . . . let me go . . . I\\'ve got the keys from work.\"\\n\\nAt six o\\'clock I went to the Emergency Hospital. The head doctor and another \\ndoctor opened the door to the morgue. I run up to them and say, \"Doctor, is \\nShagen there?\" He says, \"What do you mean? Why should Shagen be here?!\" I \\nwanted to go in, but he wouldn\\'t let me. There were only four people in there,\\nthey said. Well, they must have been awful because they didn\\'t let me in. They\\nsaid, \"Shagen\\'s not here, he\\'s alive somewhere, he\\'ll come back.\"\\n\\nIt\\'s already seven o\\'clock in the morning. I look and there is a panel truck\\nwith three policemen. Some of our people from the hospital were there with\\nthem. I say, \"Sara Baji [\"Sister\" Sara, term of endearment], go look, they\\'ve\\nprobably brought Shagen.\" I said it, shouted it, and she went and came back\\nand says, \"No, Emma, he has tan shoes on, it\\'s a younger person.\" Now Shagen \\njust happened to have tan shoes, light tan, they were already old. When they \\nsaid it like that I guessed immediately. I went and said, \"Doctor, they\\'ve \\nbrought Shagen in dead.\" He says, \"Why are you carrying on like that, dead, \\ndead . . . he\\'s alive.\" But then he went all the same, and when he came back \\nthe look on his face was . . . I could tell immediately that he was dead. They\\nknew one another well, Shagen had worked for him a long time. I say, \"Doctor, \\nis it Shagen?\" He says, \"No, Emma, it\\'s not he, it\\'s somebody else entirely.\" \\nI say, \"Doctor, why are you deceiving me, I\\'ll find out all the same anyway, \\nif not today, then tomorrow.\" And he said . . . I screamed, right there in the\\noffice. He says, \"Emma, go, go calm down a little.\" Another one of our \\ncolleagues said that the doctor had said it was Shagen, but . . . in hideous \\ncondition. They tried to calm me down, saying it wasn\\'t Shagen. A few minutes \\nlater another colleague comes in and says, \"Oh, poor Emma!\" When she said it \\nlike that there was no hope left.\\n\\n That day was awful. They were endlessly bringing in dead and injured \\npeople.\\n\\nAt night someone took me home. I said, \"Igor, Papa\\'s been killed.\"\\n\\nOn the morning of the 1st I left Igor at home again and went to the hospital: \\nI had to bury him somehow, do something. I look and see that the hospital is \\nsurrounded by soldiers. They are wearing dark clothes. \"Hey, citizen, where \\nare you going?\" I say, \"I work here,\" and from inside someone shouts, \"Yes, \\nyes, that\\'s our cook, let her in.\" I went right to the head doctor\\'s office\\nand there is a person from the City Health Department there, he used to\\nwork with us at the hospital. He says, \"Emma, Shagen\\'s been taken to Baku.\\nIn the night they took the wounded and the dead, all of them, to Baku.\" I\\nsay, \"Doctor, how will I bury him?\" He says, \"We\\'re taking care of all that,\\ndon\\'t you worry, we\\'ll do everything, we\\'ll tell you about it. Where did you\\nspend the night?\" I say, \"I was at home.\" He says, \"What do you mean you\\nwere at home?! You were at home alone?\" I say, \"No, Igor was there too.\" He\\nsays, \"You can\\'t stay home, we\\'re getting an ambulance right now, wait just\\none second, the head doctor is coming, we\\'re arranging an ambulance right\\nnow, you put on a lab coat and take one for Igor, you go and bring Igor here\\nlike a patient, and you\\'ll stay here and we\\'ll se~ later what to do next ...\"\\nHis last name is Kagramanov. The head doctor\\'s name is Izyat Jamalogli\\nSadukhov.\\n\\nThe \"ambulance\" arrived and I went home and got Igor. They admitted him as a \\npatient, they gave us a private room, an isolation room. We stayed in the \\nhospital until the 4th.\\n\\nSome police car came and they said, \"Emma, let\\'s go.\" And the women, our \\ncolleagues, then they saw the police car, became anxious and said, \"Where are \\nyou taking her?\" I say, \"They\\'re going to kill me, too . . . \" And the\\ninvestigator says, \"Why are you saying that, we\\'re going to make a positive\\nidentification.\" We went to Baku and they took me into the morgue . . . I\\nstill can\\'t remember what hospital it was . . . The investigator says, \"Let\\'s \\ngo, we need to be certain, maybe it\\'s not Shagen.\" And when I saw the caskets,\\nlying on top of one another, I went out of my mind. I say, \"I can\\'t look, no.\"\\nThe investigator says, \"Are there any identifying marks?\" I say, \"Let me see\\nthe clothes, or the shoes, or even a sock, I\\'ll recognize them.\" He says, \\n\"Isn\\'t they\\'re anything on his body?\" I say he has seven gold teeth and his \\nfinger, he only has half of one of his fingers. Shagen was a carpenter, he had\\nbeen injured at work . . .\\n\\nThey brought one of the sleeves of the shirt and sweater he was wearing, they \\nbrought them and they were all burned . . . When I saw them I shouted, \"Oh, \\nthey burned him!\" I shouted, I don\\'t know, I fell down . . . or maybe I sat \\ndown, I don\\'t remember. And that investigator says, \"Well fine, fine, since \\nwe\\'ve identified that these are his clothes, and since his teeth . . . since\\nhe has seven gold teeth . . . \"\\n\\nOn the 4th they told me: \"Emma, it\\'s time to bury Shagen now.\" I cried, \"How, \\nhow can I bury Shagen when I have only one son and he\\'s sick? I should inform \\nhis relatives, he has three sisters, I can\\'t do it by myself.\" They say, \"OK, \\nyou know the situation. How will they get here from Karabagh? How will they \\nget here from Yerevan? There\\'s no transportation, it s impossible.\"\\n\\nHe was killed on February 28, and I buried him on March 7. We buried him in \\nSumgait. They asked me, \"Where do you want to bury him?\" I said, \"I want to \\nbury him in Karabagh, where we were born, let me bury him in Karabagh,\" I\\'m \\nshouting, and the head of the burial office, I guess, says, \"Do you know what \\nit means, take him to Karabagh?! It means arson!\" I say, \"What do you mean, \\narson? Don\\'t they know what\\'s going on in Karabagh? The whole world knows that\\nthey killed them, and I want to take him to Karabagh, I don\\'t have anyone \\nanymore.\" I begged, I pleaded, I grieved, I even got down on my knees. He\\nsays, \"Let\\'s bury him here now, and in three months, in six months, a year, \\nif it calms down, I\\'ll help you move him to Karabagh . . . \"\\n\\nOur trial was the first in Sumgait. It was concluded on May 16. At the\\ninvestigation the murderer, Tale Ismailov, told how it all happened, but then\\nat the trial he . . . tried to wriggle . . . he tried to soften his crime. \\nThen they brought a videotape recorder, I guess, and played it, and said, \\n\"Ismailov, look, is that you?\" He says, \"Yes.\" \"Well look, here you\\'re \\ndescribing everything as it was on the scene of the crime, right?\" He says, \\n\"Yes.\" \"And now you\\'re telling it differently?\" He says, \"Well maybe I \\nforgot!\" Like that.\\n\\nThe witnesses and that criminal creep himself said that when the car was going\\nalong Mir Street, there was a crowd of about 80 people . . . Shagen had a \\nVolga GAZ-21. The 80 people surrounded his car, and all 80 of them were \\ninvolved. One of them was this Ismailov guy, this Tale. They--it\\'s unclear\\nwho--started pulling Shagen out of the car. Well, one says from the left side\\nof the car, another says from the right side. They pulled off his sports \\njacket. He had a jacket on. Well they ask him, \"What\\'s your nationality?\" He \\nsays, \"Armenian.\" Well they say from the crowd they shouted, \"If he\\'s an\\nArmenian, kill him, kill him!\" They started beating him, they broke seven of\\nhis ribs, and his heart . . . I don\\'t know, they did something there, too \\n. . . it\\'s too awful to tell about. Anyway, they say this Tale guy . . . he \\nhad an armature shaft. He says, \"I picked it up, it was lying near a bush, \\nthat\\'s where I got it.\" He said he picked it up, but the witnesses say that he\\nhad already had it. He said, \"I hit him twice,\" he said, \" . . . once or twice\\non the head with that rod.\" And he said that when he started to beat him \\nShagen was sitting on the ground, and when he hit him he fell over. He said, \\n\"I left, right nearby they were burning things or something in an apartment,\\nkilling someone,\" he says, \"and I came back to look, is that Shagen alive or\\nnot?\" I said, \"You wanted to finish him, right, and if he was still alive, you\\ncame back to hit him again?\" He went back and looked and he was already dead.\\n\"After that,\" that bastard Tale said, \"after that I went home.\"\\n\\nI said, \"You . . . you . . . little snake,\" I said, \"Are you a thief and a \\nmurderer?\" Shagen had had money in his jacket, and a watch on his wrist. They\\nwere taken. He says he didn\\'t take them\\n\\nWhen they overturned and burned the car, that Tale was no longer there, it was\\nother people who did that. Who it was, who turned over the car and who burned\\nit, that hasn\\'t been clarified as yet. I told the investigator, \"How can you \\nhave the trial when you don\\'t know who burned the car?\" He said something, but\\nI didn\\'t get what he was saying. But I said, \"You still haven\\'t straightened \\neverything out, I think that\\'s unjust.\"\\n\\nWhen they burned the car he was lying next to it, and the fire spread to him. \\nIn the death certificate it says that he had third-degree burns over 80\\npercent of his body . . .\\n\\nAnd I ask again, why was he killed? My husband was a carpenter; he was a good \\ncraftsman, he knew how to do everything, he even fixed his own car, with his \\nown hands. We have three children. Three sons. Only Igor was with me at the \\ntime. The older one was in Pyatigorsk, and the younger one is serving in the \\nArmy. And now they\\'re fatherless...\\n\\nI couldn\\'t sit all the way through it. When the Procurator read up to 15\\nyears\\' deprivation of freedom, I just . . . I went out of my mind, I didn\\'t\\nknow what to do with myself, I said, \"How can that be? You,\" I said, \"you are \\nsaying that it was intentional murder and the sentence is 15 years\\' \\ndeprivation of freedom?\" I screamed, I had my mind! I said, \"Let me at that\\ncreep, with my bare hands I\\'ll . . . \" A relative restrained me, and there\\nwere all those military people there . . . I lest. I said,\" This isn\\'t a \\nSoviet trial, this is unjust!\" That\\'s what I shouted, l said it and left . . .\\n\\nI said that on February 27, when those people were streaming down our street, \\nthey were shouting, \"Long live Turkey!\" and \"Glory to Turkey!\" And during the \\ntrial I said to that Ismailov, \"What does that mean, \\'Glory to Turkey\\'?\" I \\nstill don\\'t understand what Turkey has to do with this, we live in the Soviet \\nUnion. That Turkey told you to or is going to help you kill Armenians? I still\\ndon\\'t understand why \"Glory to Turkey!\" I asked that question twice and got no\\nanswer . . . No one answered me . . .\\n\\n May 19, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 178-184\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: Ivanov Sergey \\nSubject: Re: Re: VGA 640x400 graphics mode\\nDistribution: world\\nOrganization: Commercial and Industrial Group ARGUS\\nReply-To: serge@argus.msk.su\\nLines: 7\\n\\n> My 8514/a VESA TSR supports this\\n\\n Can You report CRT and other register state in this mode ?\\n Thank's.\\n\\n Serge Ivanov (serge@argus.msk.su)\\n\\n\",\n", + " 'From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Surface normal orientations\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 42\\n\\nIn article <1pscti$aqe@travis.csd.harris.com> srp@travis.csd.harris.com (Stephen Pietrowicz) writes:\\n>...\\n>How do you go about orienting all normals in the same direction, given a \\n>set of points, edges and faces? \\n\\nLook for edge inconsistencies. Consider two vertices, p and q, which\\nare connected by at least one edge.\\n\\nIf (p,q) is an edge, then (q,p) should *not* appear. \\n\\nIf *both* (p,q) and (q,p) appear as edges, then the surface \"flips\" when\\nyou travel across that edge. This is bad. \\n\\nAssuming (warning...warning...warning) that you have an otherwise\\nacceptable surface - you can pick an edge, any edge, and traverse the\\nsurface enforcing consistency with that edge. \\n\\n 0) pick an edge (p,q), and mark it as \"OK\"\\n 1) for each face, F, containing this edge (if more than 2, oops)\\n make sure that all edges in F are consistent (i.e., the Face\\n should be [(p,q),(q,r),(r,s),(s,t),(t,p)]). Flip those which\\n are wrong. Mark all of the edges in F as \"OK\",\\n and add them to a queue (check for duplicates, and especially\\n inconsistencies - don\\'t let the queue have both (p,q) and (q,p)). \\n 2) remove an edge from the queue, and go to 1).\\n\\nIf a *marked* edge is discovered to be inconsistent, then you lose.\\n\\nIf step 1) finds more than one face sharing a particular edge, then you\\nlose. \\n \\nOtherwise, when done, all of the edges will be consistent. Which means\\nthat all of the surface normals will either point IN or OUT. Deciding\\nwhich way is OUT is left as an exercise...\\n\\n\\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n',\n", + " 'From: kimd@rs6401.ecs.rpi.edu (Daniel Chungwan Kim)\\nSubject: WANTED: Super 8mm Projector with SOUNDS\\nKeywords: projector\\nNntp-Posting-Host: rs6401.ecs.rpi.edu\\nLines: 9\\n\\n\\tI am looking for Super 8mm Projector with SOUNDS.\\nIf anybody out there has one for sale, send email with\\nthe name of brand, condition of the projector, and price\\nfor sale to kimd@rpi.edu\\n(IT MUST HAVE SOUND CAPABILITY)\\n\\nDanny\\nkimd@rpi.edu\\n\\n',\n", + " 'From: mac@utkvx.bitnet (Richard J. McDougald)\\nSubject: Re: Why does Illustrator AutoTrace so poorly?\\nOrganization: University of Tennessee \\nLines: 22\\n\\nIn article <0010580B.vmcbrt@diablo.UUCP> diablo.UUCP!cboesel (Charles Boesel) writes:\\n\\nYeah, Corel Draw and WordPerfect Presentations pretty limited here, too.\\n\\tSince there\\'s no (not really) such thing as a decent raster to\\nvector conversion program, this \"tracing\" technique is about it. Simple\\nstuff, like b&w logos, etc. do pretty well, while more complicated stuff\\ngoes haywire. I suspect (even though I don\\'t write code) that a good\\nbitmapped to vector conversion program would probably be as big as most\\nof these application softwares we\\'re using -- but even so, how come one\\nhasn\\'t been written? (to my knowledge). I mean, even Hijaak, one of the\\ncommercial industry standards of file conversion, hasn\\'t attempted it yet.\\n\\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\\n Mac McDougald * Any opinions expressed herein \\n The Photography Center * are not necessarily (actually,\\n Univ. of Tenn. Knoxville 37996 * are almost CERTAINLY NOT) those\\n mac@utkvx.utk.edu * of The University of Tennessee. \\n mac@utkvx.bitnet * \\n (615-974-3449) * \"Things are more like they are now \\n (615-974-6435) FAX * than they\\'ve ever been before.\"\\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\\n \\n',\n", + " 'From: vdp@mayo.edu (Vinayak Dutt)\\nSubject: Re: Islamic Banks (was Re: Slavery\\nReply-To: vdp@mayo.edu\\nOrganization: Mayo Foundation/Mayo Graduate School :Rochester, MN\\nLines: 39\\n\\nIn article 28833@monu6.cc.monash.edu.au, darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n#In <1993Apr14.143121.26376@bmw.mayo.edu> vdp@mayo.edu (Vinayak Dutt) writes:\\n#>So instead of calling it interest on deposits, you call it *returns on investements*\\n#>and instead of calling loans you call it *investing in business* (that is in other words\\n#>floating stocks in your company). \\n#\\n#No, interest is different from a return on an investment. For one\\n#thing, a return on an investment has greater risk, and not a set return\\n#(i.e. the amount of money you make can go up or down, or you might even\\n#lose money). The difference is, the risk of loss is shared by the\\n#investor, rather than practically all the risk being taken by the\\n#borrower when the borrower borrows from the bank.\\n#\\n\\nBut is it different from stocks ? If you wish to call an investor in stocks as\\na banker, well then its your choice .....\\n\\n#>Relabeling does not make it interest free !!\\n#\\n#It is not just relabeling, as I have explained above.\\n\\nIt *is* relabeling ...\\nAlso its still not interest free. The investor is still taking some money ... as\\ndividend on his investment ... ofcourse the investor (in islamic *banking*, its your\\nso called *bank*) is taking more risk than the usual bank, but its still getting some\\nthing back in return .... \\n\\nAlso have you heard of junk bonds ???\\n\\n\\n---Vinayak\\n-------------------------------------------------------\\n vinayak dutt\\n e-mail: vdp@mayo.edu\\n\\n standard disclaimers apply\\n-------------------------------------------------------\\n\\n\\n',\n", + " 'From: grw@HQ.Ileaf.COM (Gary Wasserman)\\nSubject: Stuff For Sale is GONE!!!\\nNntp-Posting-Host: ars\\nReply-To: grw@HQ.Ileaf.COM (Gary Wasserman)\\nOrganization: Interleaf, Inc.\\nDistribution: usa\\nLines: 10\\n\\n\\nThanks to all who responded. The three items (electric vest,\\nAerostitch Suit, and Scarf) are all spoken for.\\n\\n-Gary\\n\\n-- \\nGary Wasserman \"A completely irrational attraction to BMW bikes\"\\nInterleaf, Inc. Prospect Place, 9 Hillside Ave, Waltham, MA 02154\\ngrw@ileaf.com 617-290-4990x3423 FAX 617-290-4970 DoD#0216\\n',\n", + " 'From: Nanci Ann Miller \\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: Sponsored account, School of Computer Science, Carnegie Mellon, Pittsburgh, PA\\nLines: 56\\n\\t<1993Apr5.084042.822@batman.bmd.trw.com>\\nNNTP-Posting-Host: po5.andrew.cmu.edu\\nIn-Reply-To: <1993Apr5.084042.822@batman.bmd.trw.com>\\n\\n\\njbrown@batman.bmd.trw.com writes:\\n> > Sorry, but there are no supernatural\\n> > forces necessary to create a pathogen. You are saying, \"Since\\n> > diseases are bad, the bad entity must have created it.\" So\\n> > what would you say about acid rain, meteors falling from the\\n> > sky, volcanoes, earthquakes, and other QUOTE UNQUOTE \"Acts\\n> > of God?\" \\n> \\n> I would say that they are not \"acts of God\" but natural\\n> occurrences.\\n\\nIt amazes me that you have the audacity to say that human creation was not\\nthe result of the natural process of evolution (but rather an \"act of God\")\\nand then in the same post say that these other processes (volcanos et al.)\\nare natural occurrences. Who gave YOU the right to choose what things are\\nnatural processes and what are direct acts of God? How do you know that\\nGod doesn\\'t cause each and every natural disaster with a specific purpose\\nin mind? It would certainly go along with the sadistic nature I\\'ve seen in\\nthe bible.\\n\\n> >>Even if Satan had nothing to do with the original inception of\\n> >>disease, evolution by random chance would have produced them since\\n> >>humanity forsook God\\'s protection. If we choose to live apart from\\n> >>God\\'s law (humanity collectively), then it should come as no surprise\\n> >>that there are adverse consequences to our (collective) action. One\\n> >>of these is that we are left to deal with disease and disorders which\\n> >>inevitably result in an entropic universe.\\n> > \\n> > May I ask, where is this \\'collective\\' bullcrap coming from? \\n>\\n> By \"collective\" I was referring to the idea that God works with\\n> humanity on two levels, individually and collectively. If mankind\\n> as a whole decides to undertake a certain action (the majority of\\n> mankind), then God will allow the consequences of that action to\\n> affect mankind as a whole.\\n\\nAdam & Eve (TWO PEOPLE), even tho they had the honor (or so you christians\\nclaim) of being the first two, definitely do NOT represent a majority in\\nthe billions and trillions (probably more) of people that have come after\\nthem. Perhaps they were the majority then, but *I* (and YOU) weren\\'t\\naround to vote, and perhaps we might have voted differently about what to\\ndo with that tree. But your god never asked us. He just assumes that if\\nyou have two bad people then they ALL must be bad. Hmm. Sounds like the\\nsame kind of false generalization that I see many of the theists posting\\nhere resorting to. So THAT\\'s where they get it... shoulda known.\\n\\n> Jim B.\\n\\nNanci\\n\\n.........................................................................\\nIf you know (and are SURE of) the author of this quote, please send me\\nemail (nm0w+@andrew.cmu.edu):\\nLying to ourselves is more deeply ingrained than lying to others.\\n\\n',\n", + " \"From: chico@ccsun.unicamp.br (Francisco da Fonseca Rodrigues)\\nSubject: New planet/Kuiper object found?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 28\\n\\n\\n\\tTonigth a TV journal here in Brasil announced that an object,\\nbeyond Pluto's orbit, was found by an observatory at Hawaii. They\\nnamed the object Karla.\\n\\n\\tThe program said the object wasn't a gaseous giant planet, and\\nshould be composed by rocks and ices.\\n\\n\\tCan someone confirm these information? Could this object be a\\nnew planet or a Kuiper object?\\n\\n\\tThanks in advance.\\n\\n\\tFrancisco.\\n\\n-----------------------=====================================----the stars,----\\n| ._, | Francisco da Fonseca Rodrigues | o o |\\n| ,_| |._/\\\\ | | o o |\\n| | |o/^^~-._ | COTUCA-Colegio Tecnico da UNICAMP | o |\\n|/-' BRASIL | ~| | o o o |\\n|\\\\__/|_ /' | Depto de Processamento de Dados | o o o o |\\n| \\\\__ Cps | . | | o o o o |\\n| | * __/' | InterNet : chico@ccsun.unicamp.br | o o o |\\n| > /' | cotuca@ccvax.unicamp.br| o |\\n| /' /' | Fone/Fax : 55-0192-32-9519 | o o |\\n| ~~^\\\\/' | Campinas - SP - Brasil | o o |\\n-----------------------=====================================----like dust.----\\n\\n\",\n", + " 'From: blgardne@javelin.sim.es.com (Dances With Bikers)\\nSubject: FAQ - What is the DoD?\\nSummary: Everything you always wanted to know about DoD, but were afraid to ask\\nKeywords: DoD FAQ\\nArticle-I.D.: javelin.DoD.monthly_733561501\\nExpires: Sun, 30 May 1993 07:05:01 GMT\\nReply-To: blgardne@javelin.sim.es.com\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 849\\nSupersedes: \\n\\nThis is a periodic posting intended to answer the Frequently Asked\\nQuestion: What is the DoD? It is posted the first of each month, with\\nan expiration time of over a month. Thus, unless your site\\'s news\\nsoftware is ill-mannered, this posting should always be available.\\nThis WitDoDFAQ is crossposted to all four rec.motorcycles groups in an\\nattempt to catch most new users, and followups are directed to\\nrec.motorcycles.\\n\\nLast changed 9-Feb-93 to add a message from the KotL, and a bit of\\nHalon.\\n\\n\\t\\t\\tVERSION 1.1\\n\\nThis collection was originally assembled by Lissa Shoun, from the\\noriginal postings. With Lissa\\'s permission, I have usurped the title of\\nKotWitDoDFAQ. Any corrections, additions, bribes, etc. should be aimed at\\nblgardne@javelin.sim.es.com.\\n\\n------------------------------------------------------------------------\\n\\nContents:\\nHow do I get a DoD number?\\tby Blaine Gardner\\tDoD #46\\nDoD \"Road Rider\" article\\tby Bruce Tanner\\t\\tDoD #161\\nWhat is the DoD?\\t\\tby John Sloan\\t\\tDoD #11\\nThe DoD Logo\\t\\t\\tby Chuck Rogers\\t\\tDoD #3\\nThe DoD (this started it all)\\tby The Denizen of Doom\\tDoD #1\\nThe DoD Anthem\\t\\t\\tby Jonathan Quist\\tDoD #94\\nWhy you have to be killed\\tby Blaine Gardner\\tDoD #46\\nThe rec.moto.photo.archive\\tcourtesy of Bruce Tanner DoD #161\\nPatches? What patches?\\t\\tby Blaine Gardner\\tDoD #46\\nLetter from the AMA museum by Jim Rogers, Director DoD #395\\nThe DoD Rules\\t\\t\\tby consensus\\nOther rec.moto resources\\tby various Keepers\\tDoD #misc\\nThe rec.moto.reviews.archive\\tcourtesy of Loki Jorgenson DoD #1210\\nUpdated stats & rides info\\tby Ed Green (DoD #111) and others\\n\\n------------------------------------------------------------------------\\n\\t\\t\\tHow do I get a DoD number?\\n\\nIf the most Frequently Asked Question in rec.motorcycles is \"What is the\\nDoD?\", then the second most Frequently Asked Question must be \"How do I\\nget a DoD number?\" That is as simple as asking the Keeper of the List\\n(KotL, accept no substitue Keepers) for a number. If you\\'re feeling\\ncreative, and your favorite number hasn\\'t been taken already, you can\\nmake a request, subject to KotL approval. (Warning, non-numeric, non-\\nbase-10 number requests are likely to earn a flame from the KotL. Not\\nthat you won\\'t get it, but you _will_ pay for it.)\\n\\nOh, and just one little, tiny suggestion. Ask the KotL in e-mail. You\\'ll\\njust be playing the lightning rod for flames if you post to the whole\\nnet, and you\\'ll look like a clueless newbie too.\\n\\nBy now you\\'re probably asking \"So who\\'s the KotL already?\". Well, as\\nJohn Sloan notes below, that\\'s about the only real \"secret\" left around\\nhere, but a few (un)subtle hints can be divulged. First, it is not myself,\\nnor anyone mentioned by name in this posting (maybe :-), though John was\\nthe original KotL. Second, in keeping with the true spirit of Unix, the\\nKotL\\'s first name is only two letters long, and can be spelled entirely\\nwith hexadecimal characters. (2.5, the KotL shares his name with a line-\\noriented text utility.) Third, he has occasionally been seen posting\\nmessages bestowing new DoD numbers (mostly to boneheads with \"weenie\\nmailers\"). Fourth, there is reason to suspect the KotL of being a\\nDead-Head.\\n\\n***************** Newsflash: A message from the KotL ******************\\n\\nOnce you have surmounted this intellectual pinnacle and electronically\\ngroveled to the KotL, please keep in mind that the KotL does indeed\\nwork for a living, and occasionally must pacify its boss by getting\\nsomething done. Your request may languish in mailer queue for (gasp!)\\ndays, perhaps even (horrors!) a week or two. During such times of\\neconomic activity on the part of the KotL\\'s employers, sending yet\\nanother copy of your request will not speed processing of the queue (it\\njust makes it longer, verification of this phenominon is left as an\\nexcersize for the reader). If you suspect mailer problems, at least\\nannotate subsequent requests with an indication that a former request\\nwas submitted, lest you be assigned multiple numbers (what, you think\\nthe KotL *memorizes* the list?!?).\\n\\n***********************************************************************\\n\\nOne more thing, the KotL says that its telepathic powers aren\\'t what\\nthey used to be. So provide some information for the list, will ya?\\nThe typical DoD List entry contains number, name, state/country, &\\ne-mail address. For example:\\n\\n0111:Ed Green:CA:ed.green@East.Sun.COM\\n\\n(PS: While John mentions below that net access and a bike are the only\\nrequirements for DoD membership, that\\'s not strictly true these days, as\\nthere are a number of Denizens who lack one or both.)\\n\\nBlaine (Dances With Bikers) Gardner blgardne@javelin.sim.es.com\\n\\n------------------------------------------------------------------------\\n\\n \"Denizens of Doom\", by Bruce Tanner (DoD 0161)\\n\\n [Road Rider, August 1991, reprinted with Bruce\\'s permission]\\n\\nThere is a group of motorcyclists that gets together and does all the normal \\nthings that a bunch of bikers do. They discuss motorcycles and \\nmotorcycling, beverages, cleaning fluids, baklavah, balaclava, caltrops, \\nhelmets, anti-fog shields, spine protectors, aerodynamics, three-angle valve\\nseats, bird hits, deer whistles, good restaurants, racing philosophy, \\ntraffic laws, tickets, corrosion control, personalities, puns, double \\nentendres, culture, absence of culture, first rides and friendship. They \\nargue with each other and plan rides together.\\n\\nThe difference between this group and your local motorcycle club is that, \\nalthough they get together just about everyday, most have never seen each \\nother face to face. The members of this group live all over the known world \\nand communicate with each other electronically via computer.\\n\\nThe computers range from laptops to multi-million dollar computer centers; \\nthe people range from college and university students to high-tech industry \\nprofessionals to public-access electronic bulletin-board users. Currently, \\nrec.motorcycles (pronounced \"wreck-dot-motorcycles,\" it\\'s the file name for \\nthe group\\'s primary on-line \"meeting place\") carries about 2250 articles per \\nmonth; it is read by an estimated 29,000 people. Most of the frequent \\nposters belong to a motorcycle club, the Denizens of Doom, usually referred \\nto as the DoD.\\n\\nThe DoD started when motorcyclist John R. Nickerson wrote a couple of \\nparodies designed to poke fun at motorcycle stereotypes. Fellow computer \\nenthusiast Bruce Robinson posted these articles under the pen name, \"Denizen \\nof Doom.\" A while later Chuck Rogers signed off as DoD nr. 0003 Keeper of \\nthe Flame. Bruce was then designated DoD nr. 0002, retroactively and, of \\ncourse, Nickerson, the originator of the parodies, was given DoD nr. 0001.\\n\\nThe idea of a motorcycle club with no organization, no meetings and no rules \\nappealed to many, so John Sloan -- DoD nr. 0011 -- became Keeper of the \\nList, issuing DoD numbers to anyone who wanted one. To date there have been \\nalmost 400 memberships issued to people all over the United States and \\nCanada, as well as Australia, New Zealand, the United Kingdom, France, \\nGermany, Norway and Finland.\\n\\nKeeper of the List Sloan eventually designed a club patch. The initial run \\nof 300 patches sold out immediately. The profits from this went to the \\nAmerican Motorcycle Heritage Foundation. Another AMHF fund raiser -- \\nselling Denizens of Doom pins to members -- was started by Arnie Skurow a \\nfew months later. Again, the project was successful and the profits were \\ndonated to the foundation. So far, the Denizens have contributed over $1500 \\nto the AMA museum. A plaque in the name of the Denizens of Doom now hangs \\nin the Motorcycle Heritage Museum.\\n\\nAs often as possible, the DoD\\'ers crawl out from behind their CRTs and go \\nriding together. It turns out that the two largest concentrations of \\nDoD\\'ers are centered near Denver/Boulder, Colorado, and in California\\'s \\n\"Silicon Valley.\" Consequently, two major events are the annual Assault on \\nRollins Pass in Colorado, and the Northern versus Southern California \\n\"Joust.\"\\n\\nThe Ride-and-Feed is a bike trip over Rollins Pass, followed by a big \\nbarbecue dinner. The concept for the Joust is to have riders from Northern \\nCalifornia ride south; riders from Southern California to ride north, \\nmeeting at a predesignated site somewhere in the middle. An additional plan \\nfor 1991 is to hold an official Denizens of Doom homecoming in conjunction \\nwith the AMA heritage homecoming in Columbus, Ohio, in July.\\n\\nThough it\\'s a safe bet the the Denizens of Doom and their collective \\ncommunications hub, rec.motorcycles, will not replace the more traditional \\nmotorcycle organizations, for those who prowl the electronic pathways in \\nsearch of two-wheeled camaraderie, it\\'s a great way for kindred spirits to \\nget together. Long may they flame.\\n\\n\\n\"Live to Flame -- Flame to Live\"\\t[centerbar]\\n\\nThis official motto of the Denizens of Doom refers to the ease with which \\nyou can gratuitously insult someone electronically, when you would not do \\nanything like that face to face. These insults are known as \"flames\"; \\nissuing them is called \"flaming.\" Flames often start when a member \\ndisagrees with something another member has posted over the network. A \\ntypical, sophisticated, intelligent form of calm, reasoned rebuttal would be \\nsomething like: \"What an incredibly stupid statement, you Spandex-clad \\nposeur!\" This will guarantee that five other people will reply in defense \\nof the original poster, describing just what they think of you, your riding \\nability and your cat.\\n\\n------------------------------------------------------------------------\\n\\n _The Denizens of Doom: The Saga Unfolds_\\n\\n by John Sloan DoD #0011\\n\\nPeriodically the question \"What is DoD?\" is raised. This is one of\\nthose questions in the same class as \"Why is the sky blue?\", \"If there\\nis a God, why is there so much suffering in the world?\" and \"Why do\\nwomen inevitably tell you that you\\'re such a nice guy just before they\\ndump you?\", the kinds of questions steeped in mysticism, tradition,\\nand philosophy, questions that have inspired research and discussion\\nby philosophers in locker rooms, motorcycle service bays, and in the\\nhalls of academe for generations. \\n\\nA long, long time ago (in computer time, where anything over a few\\nminutes is an eternity and the halting problem really is a problem) on\\na computer far, far away on the net (topologically speaking; two\\nmachines in the same room in Atlanta might route mail to one another\\nvia a system in Chicago), a chap who wished to remain anonymous (but\\nwho was eventually assigned the DoD membership #1) wrote a satire of\\nthe various personalities and flame wars of rec.motorcycles, and\\nsigned it \"The Denizen of Doom\". Not wishing to identify himself, he\\nasked that stalwart individual who would in the fullness of time\\nbecome DoD #2 to post it for him. DoD #2, not really giving a whit\\nabout what other people thought and generally being a right thinking\\nindividual, did so. Flaming and other amusements followed. \\n\\nHe who would become the holder of DoD membership #3 thought this was\\nthe funniest thing he\\'d seen in a while (being the sort that is pretty\\neasily amused), so he claimed membership in the Denizens of Doom\\nMotorcycle Club, and started signing his postings with his membership\\nnumber. \\n\\nPerhaps readers of rec.motorcycles were struck with the vision of a\\nmotorcycle club with no dues, no rules, no restrictions as to brand or\\nmake or model or national origin of motorcycle, a club organized\\nelectronically. It may well be that readers were yearning to become a\\npart of something that would provide them with a greater identity, a\\ngestalt personality, something in which the whole was greater than the\\nsum of its parts. It could also be that we\\'re all computer nerds who\\nwear black socks and sneakers and pocket protectors, who just happen\\nto also love taking risks on machines with awesome power to weight\\nratios, social outcasts who saw a clique that would finally be open\\nminded enough to accept us as members. \\n\\nIn a clear case of self fulfilling prophesy, The Denizens of Doom\\nMotorcycle Club was born. A club in which the majority of members have\\nnever met one another face to face (and perhaps like it that way), yet\\nfeel that they know one another pretty well (or well enough given some\\nof the electronic personalities in the newsgroup). A club organized\\nand run (in the loosest sense of the word) by volunteers through the\\nnetwork via electronic news and mail, with a membership/mailing list\\n(often used to organize group rides amongst members who live in the\\nsame region), a motto, a logo, a series of photo albums circulating\\naround the country (organized by DoD #9), club patches (organized by\\n#11), and even an MTV-style music video (produced by #47 and\\ndistributed on VHS by #18)! \\n\\nWhere will it end? Who knows? Will the DoD start sanctioning races,\\nplacing limits on the memory and clock rate of the on-board engine\\nmanagement computers? Will the DoD organize poker runs where each\\nparticipant collects a hand of hardware and software reference cards?\\nWill the DoD have a rally in which the attendees demand a terminal\\nroom and at least a 386-sized UNIX system? Only time will tell. \\n\\nThe DoD has no dues, no rules, and no requirements other than net\\naccess and a love for motorcycles. To become a member, one need only\\nask (although we will admit that who you must ask is one of the few\\nreally good club secrets). New members will receive via email a\\nmembership number and the latest copy of the membership list, which\\nincludes name, state, and email address. \\n\\nThe Denizens of Doom Motorcycle Club will live forever (or at least\\nuntil next year when we may decided to change the name). \\n\\n Live to Flame - Flame to Live\\n\\n------------------------------------------------------------------------\\n\\n The DoD daemon as seen on the patches, pins, etc. by\\n\\n\\tChuck Rogers, car377@druhi.att.com, DoD #0003\\n \\n\\n :-( DoD )-: \\n :-( x __ __ x )-: \\n :-( x / / \\\\ \\\\ x )-: \\n :-( x / / -\\\\-----/- \\\\ \\\\ x )-: \\n :-( L | \\\\/ \\\\ / \\\\/ | F )-: \\n :-( I | / \\\\ / \\\\ | L )-: \\n :-( V \\\\/ __ / __ \\\\/ A )-: \\n :-( E / / \\\\ / \\\\ \\\\ M )-: \\n :-( | | \\\\ / | | E )-: \\n :-( T | | . | _ | . | | )-: \\n :-( O | \\\\___// \\\\\\\\___/ | T )-: \\n :-( \\\\ \\\\_/ / O )-: \\n :-( F \\\\___ ___/ )-: \\n :-( L \\\\ \\\\ / / L )-: \\n :-( A \\\\ vvvvv / I )-: \\n :-( M | ( ) | V )-: \\n :-( E | ^^^^^ | E )-: \\n :-( x \\\\_______/ x )-: \\n :-( x x )-: \\n :-( x rec.motorcycles x )-:\\n :-( USENET )-:\\n\\n\\n------------------------------------------------------------------------\\n\\n The DoD\\n\\n by the Denizen of Doom DoD #1\\n \\nWelcome one and all to the flamingest, most wonderfullest newsgroup of\\nall time: wreck.mudder-disciples or is it reak.mudder-disciples? The\\nNames have been changes to protect the Guilty (riders) and Innocent\\n(the bikes) alike. If you think you recognize a contorted version of\\nyour name, you don\\'t. It\\'s just your guilt complex working against\\nyou. Read \\'em and weep. \\n\\nWe tune in on a conversation between some of our heros. Terrible\\nBarbarian is extolling the virtues of his Hopalonga Puff-a-cane to\\nReverend Muck Mudgers and Stompin Fueling-Injection: \\n\\nTerrible: This Hopalonga is the greatest... Beats BMWs dead!! \\n\\nMuck: I don\\'t mean to preach, Terrible, but lighten up on the BMW\\n crowd eh? I mean like I like riding my Yuka-yuka Fudgeo-Jammer\\n 11 but what the heck. \\n\\nStompin: No way, the BMW is it, complete, that\\'s all man.\\n\\nTerrible: Nahhhh, you\\'re sounding like Heritick Ratatnack! Hey, at\\n least he is selling his BMW and uses a Hopalonga Intercorruptor!\\n Not as good as a Puff-a-cane, should have been called a\\n Woosh-a-stream.\\n\\nStompin: You mean Wee-Stream.\\n\\nTerrible: Waddya going to do? Call in reinforcements???\\n\\nStompin: Yehh man. Here comes Arlow Scarecrow and High Tech. Let\\'s see\\n what they say, eh? \\n\\nMuck: Now men, let\\'s try to be civil about this.\\n\\nHigh Tech: Hi, I\\'m a 9 and the BMW is the greatest.\\n\\nArlow: Other than my B.T. I love my BMW!\\n\\nTerrible: B.T.???\\n\\nArlow: Burley Thumpison, the greatest all American ride you can own.\\n\\nMuck: Ahhh, look, you\\'re making Terrible gag.\\n\\nTerrible: What does BMW stand for anyway??? \\n\\nMuck, Arlow, High: Beats Me, Wilhelm.\\n\\nTerrible: Actually, my name is Terrible. Hmmm, I don\\'t know either.\\n\\nMuck: Say, here comes Chunky Bear.\\n\\nChunky: Hey, Hey, Hey! Smarter than your average bear!\\n\\nTerrible: Hey, didn\\'t you drop your BMW???\\n\\nChunky: All right eh, a little BooBoo, but I left him behind. I mean \\n even Villy Ogle flamed me for that! \\n\\nMuck: It\\'s okay, we all makes mistakes.\\n\\nOut of the blue the West coasters arrive, led by Tread Orange with\\nDill Snorkssy, Heritick Ratatnack, Buck Garnish, Snob Rasseller and\\nthe perenial favorite: Hooter Boobin Brush! \\n\\nHeritick: Heya Terrible, how\\'s yer front to back bias?\\n\\nTerrible: Not bad, sold yer BMW?\\n\\nHeritick: Nahhh.\\n\\nHooter: Hoot, Hoot.\\n\\nBuck: Nice tree Hooter, how\\'d ya get up there?\\n\\nHooter: Carbujectors from Hell!!!\\n\\nMuck: What\\'s a carbujector?\\n\\nHooter: Well, it ain\\'t made of alumican!!! Made by Tilloslert!!\\n\\nMuck: Ahh, come on down, we aren\\'t going to flame ya, honest!!\\n\\nDill: Well, where do we race?\\n\\nSnob: You know, Chunky, we know about about your drop and well, don\\'t\\n ride! \\n\\nMuck: No! No! Quiet!\\n\\nTread: BMW\\'s are the greatest in my supreme level headed opinion.\\n They even have luggage made by Sourkraut!\\n\\nHigh: My 9 too!\\n\\nTerrible, Heritick, Dill, Buck: Nahhhhh!!!\\n\\nStompin, Tread, High, Chunky, Snob: Yesss Yessssss!!!\\n\\nBefore this issue could be resolved the Hopalonga crew called up more\\ncohorts from the local area including Polyanna Stirrup and the\\ninfamous Booster Robiksen on his Cavortin! \\n\\nPolyanna: Well, men, the real bikers use stirrups on their bikes like\\n I use on my Hopalonga Evening-Bird Special. Helpful for getting\\n it up on the ole ventral stand! \\n\\nTerrible: Hopalonga\\'s are great like Polyanna says and Yuka-Yuka\\'s and\\n Sumarikis and Kersnapis are good too! \\n\\nBooster: I hate Cavortin.\\n\\nAll: WE KNOW, WE KNOW.\\n\\nBooster: I love Cavortin.\\n\\nAll: WE KNOW WE KNOW.\\n\\nMuck: Well, what about Mucho Guzlers and Lepurras?\\n\\nSnob, Tread: Nawwwwww.\\n\\nMuck: What about a Tridump?\\n\\nTerrible: Isn\\'t that a chewing gum?\\n\\nMuck: Auggggg, Waddda about a Pluck-a-kity?\\n\\nHeritick: Heyya Muck, you tryin\\' to call up the demon rider himself?\\n\\nMuck: No, no. There is more to Mudder-Disciples than arguing about make.\\n\\nTwo more riders zoom in, in the form of Pill Turret and Phalanx Lifter.\\nPill: Out with dorsal stands and ventral stands forever.\\n\\nPhalanx: Hey, I don\\'t know about that.\\n\\nAnd Now even more west coasters pour in.\\nRoad O\\'Noblin: Hopalonga\\'s are the greatest!\\n\\nMaulled Beerstein: May you sit on a bikejector!\\n\\nSuddenly more people arrived from the great dark nurth:\\nKite Lanolin: Hey, BMW\\'s are great, men.\\n\\nRobo-Nickie: I prefer motorcycle to robot transformers, personally.\\n\\nMore riders from the west coast come into the discussion:\\nAviator Sourgas: Get a Burley-Thumpison with a belted-rigged frame.\\n\\nGuess Gasket: Go with a BMW or Burley-Thumpison.\\n\\nWith a roar and a screech the latest mudder-disciple thundered in. It\\nwas none other that Clean Bikata on her Hopalonga CaBammerXorn. \\nClean: Like look, Hopalonga are it but only CaBammerXorns. \\n\\nMuck: Why??\\n\\nClean: Well, like it\\'s gotta be a 6-banger or nothin.\\n\\nMuck: But I only have a 4-banger.\\n\\nClean: No GOOD!\\n\\nChunky: Sob, some of us only have 2-bangers!\\n\\nClean: Inferior!\\n\\nStompin: Hey, look, here\\'s proof BMW\\'s are better. The Bimmer-Boys\\nburst into song: (singing) Beemer Babe, Beemer Babe give me a\\nthrill... \\n\\nRoad, Terrible, Polyanna, Maulled, Dill etc.: Wadddoes BMW stand for? \\n\\nHeritick, Stompin, Snob, Chunky, Tread, Kite, High, Arlow: BEAT\\'S ME,\\n WILHEM! \\n\\nRoad, Terrible, Polyanna, Maulled, Dill etc.: Oh, don\\'t you mean BMW? \\n\\nAnd so the ensuing argument goes until the skies clouded over and the\\nthunder roared and the Greatest Mudder-Disciple (G.M.D.) of them all\\nboomed out.\\nG.M.D.: Enough of your bickering! You are doomed to riding\\n Bigot & Suction powered mini-trikes for your childish actions. \\n\\nAll: no, No, NO!!! Puhlease.\\n\\nDoes this mean that all of the wreck.mudder-disciples will be riding\\nmini-trikes? Are our arguing heros doomed? Tune in next week for the\\nnext gut wretching episode of \"The Yearning and Riderless\" with its\\never increasing cast of characters. Where all technical problems will\\nbe flamed over until well done. Next week\\'s episode will answer the\\nquestion of: \"To Helmet or Not to Helmet\" will be aired, this is heady\\nmaterial and viewer discretion is advised. \\n\\n------------------------------------------------------------------------\\n\\n Script for the Denizens of Doom Anthem Video\\n\\n by Jonathan E. Quist DoD #94\\n\\n\\n[Scene: A sterile engineering office. A lone figure, whom we\\'ll call\\nChuck, stands by a printer output bin, wearing a white CDC lab coat,\\nwith 5 mechanical pencils in a pocket protector.] \\n\\n(editor\\'s note: For some reason a great deal of amusement was had at\\nthe First Annual DoD Uni-Coastal Ironhorse Ride & Joust by denizens\\nreferring to each other as \"Chuck\". I guess you had to be there. I\\nwasn\\'t.) \\n\\nChuck: I didn\\'t want to be a Software Systems Analyst,\\n cow-towing to the whims of a machine, and saying yessir, nosir,\\n may-I-have-another-sir. My mother made me do it. I wanted\\n to live a man\\'s life,\\n[Music slowly builds in background]\\n riding Nortons and Triumphs through the highest mountain passes\\n and the deepest valleys,\\n living the life of a Motorcyclist;\\n doing donuts and evading the police;\\n terrorizing old ladies and raping small children;\\n eating small dogs for tea (and large dogs for dinner). In short,\\n\\n\\tI Want to be A Denizen!\\n\\n[Chuck rips off his lab coat, revealing black leather jacket (with\\nfringe), boots, and cap. Scene simultaneously changes to the top of\\nan obviously assaulted Rollins Pass. A small throng of Hell\\'s Angels\\nsit on their Harleys in the near background, gunning their engines,\\nshowering lookers-on with nails as they turn donuts, and leaking oil\\non the tarmac. Chuck is standing in front of a heavily chromed Fat\\nBoy.] \\n\\nChuck [Sings to the tune of \"The Lumberjack Song\"]:\\n\\nI\\'m a Denizen and I\\'m okay,\\nI flame all night and I ride all day.\\n\\n[Hell\\'s Angels Echo Chorus, surprisingly heavy on tenors]:\\nHe\\'s a Denizen and he\\'s okay,\\nHe flames all night and he rides all day.\\n\\nI ride my bike;\\nI eat my lunch;\\nI go to the lavat\\'ry.\\nOn Wednesdays I ride Skyline,\\nRunning children down with glee.\\n\\n[Chorus]:\\nHe rides his bike;\\nHe eats his lunch;\\nHe goes to the lavat\\'ry.\\nOn Wednesdays he rides Skyline,\\nRunning children down with glee.\\n\\n[Chorus refrain]:\\n\\'Cause He\\'s a Denizen...\\n\\nI ride real fast,\\nMy name is Chuck,\\nIt somehow seems to fit.\\nI over-rate the worst bad f*ck,\\nBut like a real good sh*t.\\n\\nOh, I\\'m a Denizen and I\\'m okay!\\nI flame all night and I ride all day.\\n\\n[Chorus refrain]:\\nOh, He\\'s a Denizen...\\n\\nI wear high heels\\nAnd bright pink shorts,\\n full leathers and a bra.\\nI wish I rode a Harley,\\n just like my dear mama.\\n\\n[Chorus refrain]\\n\\n------------------------------------------------------------------------\\n\\n Why you have to be killed.\\n\\nWell, the first thing you have to understand (just in case you managed\\nto read this far, and still not figure it out) is that the DoD started\\nas a joke. And in the words of one Denizen, it intends to remain one.\\n\\nSometime in the far distant past, a hapless newbie asked: \"What does DoD\\nstand for? It\\'s not the Department of Defense is it?\" Naturally, a\\nDenizen who had watched the movie \"Top Gun\" a few times too many rose\\nto the occasion and replied:\\n\\n\"That\\'s classified, we could tell you, but then we\\'d have to kill you.\"\\n\\nAnd the rest is history.\\n\\nA variation on the \"security\" theme is to supply disinformation about\\nwhat DoD stands for. Notable contributions (and contributers, where\\nknown) include:\\n\\nDaughters of Democracy (DoD 23)\\t\\tDoers of Donuts\\nDancers of Despair (DoD 9)\\t\\tDebasers of Daughters\\nDickweeds of Denver\\t\\t\\tDriveway of Death\\nDebauchers of Donuts\\t\\t\\tDumpers of Dirtbikes\\n\\nNote that this is not a comprehensive list, as variations appear to be\\nlimited only by the contents of one\\'s imagination or dictionary file.\\n\\n------------------------------------------------------------------------\\n\\n The rec.moto.photo archive\\n\\nFirst a bit of history, this all started with Ilana Stern and Chuck\\nRogers organizing a rec.motorcycles photo album. Many copies were made,\\nand several sets were sent on tours around the world, only to vanish in\\nunknown locations. Then Bruce Tanner decided that it would be appropriate\\nfor an electronic medium to have an electronic photo album. Bruce has not\\nonly provided the disk space and ftp & e-mail access, but he has taken\\nthe time to scan most of the photos that are available from the archive.\\n\\nNot only can you see what all these folks look like, you can also gawk\\nat their motorcycles. A few non-photo files are available from the\\nserver too, they include the DoD membership list, the DoD Yellow Pages,\\nthe general rec.motorcycles FAQ, and this FAQ posting.\\n\\nHere are a couple of excerpts from from messages Bruce posted about how\\nto use the archive.\\n\\n**********************************************************\\n\\nVia ftp:\\n\\ncerritos.edu [130.150.200.21]\\n\\nVia e-mail:\\n\\nThe address is server@cerritos.edu. The commands are given in the body of the\\nmessage. The current commands are DIR and SEND, given one per line. The\\narguments to the commands are VMS style file specifications. For\\nrec.moto.photo the file spec is [DOD]file. For example, you can send:\\n\\ndir [dod]\\nsend [dod]bruce_tanner.gif\\nsend [dod]dodframe.ps\\n\\nand you\\'ll get back 5 mail messages; a directory listing, 3 uuencoded parts\\nof bruce_tanner.gif, and the dodframe.ps file in ASCII.\\n\\nOh, wildcards (*) are allowed, but a maximum of 20 mail messages (rounded up to\\nthe next whole file) are send. A \\'send [dod]*.gif\\' would send 150 files of\\n50K each; not a good idea.\\n-- \\nBruce Tanner (213) 860-2451 x 596 Tanner@Cerritos.EDU\\nCerritos College Norwalk, CA cerritos!tanner\\n\\n**********************************************************\\n\\nA couple of comments: Bruce has put quite a bit of effort into this, so\\nwhy not drop him a note if you find the rec.moto.photo archive useful?\\nSecond, since Bruce has provided the server as a favor, it would be kind\\nof you to access it after normal working hours (California time). \\n\\n------------------------------------------------------------------------\\n\\n Patches? What patches?\\n\\nYou may have heard mention of various DoD trinkets such as patches &\\npins. And your reaction was probably: \"I want!\", or \"That\\'s sick!\", or\\nperhaps \"That\\'s sick! I want!\"\\n\\nWell, there\\'s some good news and some bad news. The good news is that\\nthere\\'s been an amazing variety of DoD-labeled widgets created. The bad\\nnews is that there isn\\'t anywhere you can buy any of them. This isn\\'t\\nbecause of any \"exclusivity\" attempt, but simply because there is no\\n\"DoD store\" that keeps a stock. All of the creations have been done by\\nindividual Denizens out of their own pockets. The typical procedure is\\nsomeone says \"I\\'m thinking of having a DoD frammitz made, they\\'ll cost\\n$xx.xx, with $xx.xx going to the AMA museum. Anyone want one?\" Then\\norders are taken, and a batch of frammitzes large enough to cover the\\npre-paid orders is produced (and quickly consumed). So if you want a\\nDoD doodad, act quickly the next time somebody decides to do one. Or\\nproduce one yourself if you see a void that needs filling, after all\\nthis is anarchy in action.\\n\\nHere\\'s a possibly incomplete list of known DoD merchandise (and\\nperpetrators). Patches (DoD#11), pins (DoD#99), stickers (DoD#99),\\nmotorcycle license plate frames (DoD#216), t-shirts (DoD#99), polo shirts\\n(DoD#122), Zippo lighters (DoD#99) [LtF FtL], belt buckles (DoD#99), and\\npatches (DoD#99) [a second batch was done (and rapidly consumed) by\\npopular demand].\\n\\nAll \"profits\" have been donated to the American Motorcyclist Association\\nMotorcycle Heritage Museum. As of June 1992, over $5500 dollars has been\\ncontributed to the museum fund by the DoD. If you visit the museum,\\nyou\\'ll see a large plaque on the Founders\\' Wall in the name of \"Denizens\\nof Doom, USENET, The World\", complete with a DoD pin.\\n\\n------------------------------------------------------------------------\\n\\nHere\\'s a letter from the AMA to the DoD regarding our contributions.\\n\\n~Newsgroups: rec.motorcycles\\n~From: Arnie Skurow \\n~Subject: A letter from the Motorcycle Heritage Museum\\n~Date: Mon, 13 Apr 1992 11:04:58 GMT\\n\\nI received the following letter from Jim Rogers, director of the Museum,\\nthe other day.\\n\\n\"Dear Arnie and all members of the Denizens of Doom:\\n\\nCongratulations and expressions of gratitude are in order for you and the\\nDenizens of Doom! With your recent donation, the total amount donated is\\nnow $5,500. On behalf of the AMHF, please extend my heartfeld gratitude\\nto all the membership of the Denizens. The club\\'s new plaque is presently\\nbeing prepared. Of course, everyone is invited to come to the museum to \\nsee the plaque that will be installed in our Founders Foyer. By the way,\\nI will personally mount a Denizens club pin on the plaque. Again, thank \\nyou for all your support, which means so much to the foundation, the\\nmuseum, and the fulfillment of its goals.\\n\\n Sincerely,\\n\\n\\n Jim Rogers, D.O.D. #0395\\n Director\\n\\nP.S. Please post on your computer bulletin board.\"\\n\\nAs you all know, even though the letter was addressed to me personally,\\nit was meant for all of you who purchased DoD goodies that made this\\namount possible.\\n\\nArnie\\n\\n------------------------------------------------------------------------\\n\\nThe Rules, Regulations, & Bylaws of the Denizens of Doom Motorcycle Club\\n\\nFrom time to time there is some mention, discussion, or flame about the\\nrules of the DoD. In order to fan the flames, here is the complete text\\nof the rules governing the DoD.\\n\\n\\t\\t\\tRule #1. There are no rules.\\n\\t\\t\\tRule #0. Go ride.\\n\\n------------------------------------------------------------------------\\n\\n\\t\\tOther rec.motorcycles information resources.\\n\\nThere are several general rec.motorcycles resources that may or may not\\nhave anything to do with the DoD. Most are posted on a regular basis,\\nbut they can also be obtained from the cerritos ftp/e-mail server (see\\nthe info on the photo archive above).\\n\\nA general rec.motorcycles FAQ is maintained by Dave Williams.\\nCerritos filenames are FAQn.TXT, where n is currently 1-5.\\n\\nThe DoD Yellow Pages, a listing of motorcycle industry vendor phone\\nnumbers & addresses, is maintained by bob pakser.\\nCerritos filename is YELLOW_PAGES_Vnn, where n is the rev. number.\\n\\nThe List of the DoD membership is maintained by The Keeper of the List.\\nCerritos filename is DOD.LIST.\\n\\nThis WitDoD FAQ (surprise, surprise!) is maintained by yours truly.\\nCerritos filename is DOD_FAQ.TXT.\\n\\nAdditions, corrections, etc. for any of the above should be aimed at\\nthe keepers of the respective texts.\\n\\n------------------------------------------------------------------------\\n\\n(Loki Jorgenson loki@Physics.McGill.CA) has provided an archive site\\nfor motorcycle and accessory reviews, here\\'s an excerpt from his\\nperiodic announcement.\\n\\n**********************************************************\\n\\n\\tThe Rec.Motorcycles.Reviews Archives (and World Famous Llama\\n Emporium) contains a Veritable Plethora (tm) of bike (and accessories)\\n reviews, written by rec.moto readers based on their own experiences.\\n These invaluable gems of opinion (highly valued for their potential to\\n reduce noise on the list) can be accessed via anonymous FTP, Email\\n server or by personal request:\\n\\n Anonymous FTP:\\t\\tftp.physics.mcgill.ca (132.206.9.13)\\n\\t\\t\\t\\t\\tunder ~ftp/pub/DoD\\n Email archive server:\\t\\trm-reviews@ftp.physics.mcgill.ca\\n Review submissions/questions:\\trm-reviews@physics.mcgill.ca\\n\\n NOTE: There is a difference in the addresses for review submission\\n and using the Email archive server (ie. an \"ftp.\").\\n\\n To get started with the Email server, send an Email message with a line\\n containing only \"send help\". \\n\\n NOTE: If your return address appears like\\n\\tdomain!subdomain!host!username\\n in your mail header, include a line like (or something similar)\\n\\tpath username@host.subdomain.domain \\n\\n\\tIf you are interested in submitting a review of a bike that you\\n already own(ed), PLEASE DO! There is a template of the format that the\\n reviews are kept in (more or less) available at the archive site .\\n For those who have Internet access but are unsure of how anonymous\\n FTP works, an example script is available on request.\\n\\n**********************************************************\\n\\nReviews of any motorcycle related accessory or widget are welcome too.\\n\\n------------------------------------------------------------------------\\n\\n Updated stats & rec.motorcycles rides info\\n\\nSome of the info cited above in various places tends to be a moving\\ntarget. Rather than trying to catch every occurence, I\\'m just sticking\\nthe latest info down here.\\n\\nEstimated rec.motorcycles readership: 35K [news.groups]\\n \\nApproximate DoD Membership: 975 [KotL]\\n\\nDoD contributions to the American Motorcyclist Association Motorcycle\\nHeritage Museum. Over $5500 [Arnie]\\n \\n Organized (?) Rides:\\n\\nSummer 1992 saw more organized rides, with the Joust in its third\\nyear, and the Ride & Feed going strong, but without the Rollins Pass\\ntrip due to the collapse of a tunnel. The East Coast Denizens got\\ntogether for the Right Coast Ride (RCR), with bikers from as far north\\nas NH, and as far south as FL meeting in the Blueridge Mountains of\\nNorth Carolina. The Pacific Northwest crew organized the first Great\\nPacific Northwest Dryside Gather (GPNDG), another successful excuse for\\nriding motorcycles, and seeing the faces behind the names we all have\\ncome to know so well. [Thanks to Ed Green for the above addition.]\\n\\nAlso worth mentioning are: The first rec.moto.dirt ride, held in the\\nMoab/Canyonlands area of southern Utah. Riders from 5 states showed up,\\nriding everything from monster BMWs to itty-bitty XRs to almost-legal\\n2-strokes. And though it\\'s not an \"official\" (as if anything could be\\nofficial with this crowd) rec.moto event, the vintage motorcycle races\\nin Steamboat Springs, Colorado always provides a good excuse for netters\\nto gather. There\\'s also been the occasional Labor Day gather in Utah.\\nEuropean Denizens have staged some gathers too. (Your ad here,\\nreasonable rates!)\\n------------------------------------------------------------------------\\n-- \\nBlaine Gardner @ Evans & Sutherland 580 Arapeen Drive, SLC, Utah 84108\\n blgardne@javelin.sim.es.com BIX: blaine_g@bix.com FJ1200\\nHalf of my vehicles and all of my computers are Kickstarted. DoD#46\\n-- \\nBlaine Gardner @ Evans & Sutherland 580 Arapeen Drive, SLC, Utah 84108\\n blgardne@javelin.sim.es.com BIX: blaine_g@bix.com FJ1200\\nHalf of my vehicles and all of my computers are Kickstarted. DoD#46\\n',\n", + " 'From: frank@marvin.contex.com (Frank Perdicaro)\\nSubject: ST1100 ride\\nKeywords: heavy\\nLines: 95\\n\\nSixteen days I had put off test driving the Honda ST1100. Finally,\\nthe 17th was a Saturday without much rain. In fact it cleared up, \\nbecame warm and sunny, and the wind died. About three weeks ago, I\\ntook a long cool ride on the Hawk down to Cycles! 128 for a test ride.\\nThey had sold, and delivered, the demo ST1100 about fifteen hours\\nbefore I arrived. And the demo VFR was bike-locked in the showroom --\\nsurrounded by 150 other bikes, and not likely to move soon.\\n\\nToday was different. There were even more bikes. 50 used dirt bikes,\\n50 used street bikes, 35 cars, and a big tent full of Outlandishly Fat\\nTouring Bikes With Trailers were all squeezed in the parking lot.\\nSome sort of fat bike convention. Shelly and Dave were running one\\nMSF course each, at the same time. One in the classroom and one on\\nthe back lot. Plus, there was the usuall free cookout food that\\nCycles! gives away every weekend in the summer. Hmmm, it seemed like\\na big moto party.\\n\\nAfter about ten minutes of looking for Rob C, cheif of sales slime,\\nand another 5 minutes reading and signing a long disclosure/libility/\\npray-to-god form I helped JT push the ST out into the mess in the\\nparking lot. We went over the the controls, I put the tank bag from \\nthe Hawk into the right saddlebag, and my wife put everything else\\ninto the left saddlebag. ( Thats nice.... ) Having helped push the \\nST out to the lot, I thought it best to have JT move it to the edge of\\nthe road, away from the 100+ bikes and 100+ people. He rode it like a\\nbicycle! \\'It cant be that heavy\\' I thought.\\n\\nWell I was wrong. As I sat on the ST, both feet down, all I could \\nthink was \"big\". Then I put one foot up. \"Heavy\" came to mind very\\nquickly. With Cindy on the back -- was she on the back? Hard to \\ntell with seat three times as large as a Hawk seat -- the bike seemed\\nnearly out of control just idling on the side of the road.\\n\\nBy 3000 rpm in second gear, all the weight seemed to dissappear. Even\\non bike with 4.1 miles on the odometer, slippery new tires, and pads that \\ndid not yet bite the disks, things seems smooth and sure. Cycles! is\\non a section of 128 that few folks ever ride. About 30 miles north\\nof the computer concentration, about five miles north of where I95\\nsplits away, 128 is a lighly travelled, two lane limited access\\nhighway. It goes through heavily forested sections of Hamilton, \\nManchester-by-the-Sea and Newbury on its way to Gloucester.\\nOn its way there, it meets 133, a road that winds from the sea about\\n30 miles inland to Andover. On its way it goes through many\\nthoroughly New England spots. Perfect, if slow, sport touring sections.\\n\\nCindy has no difficulty with speed. 3rd gear, 4th gear, purring along\\nin top gear. This thing has less low rpm grunt that my Hawk. Lane \\nchanges were a new experience. A big heft is required to move this \\nthing. Responds well though. No wallowing or complaint. Behind the\\nfairing it was fairly quiet, but the helmet buffeting was\\nnon-trivial. Top gear car passing at 85mph was nearly effortless.\\nSmooth, smooth, smooth. Not sure what the v4 sound reminds me of,\\nbut it is pleasant. If only the bars were not transmitting an endless\\nbuzz.\\n\\nThe jump on to 133 caused me to be less than impressed with the\\nbrakes. Its a down hill, reversing camber, twice-reversing radius,\\ndecreasing radius turn. A real squeeze is needed on the front binder. \\nThe section of 133 we were on was tight, but too urban. The ST works ok\\nin this section, but it shows its weight. We went by the clam shack\\noft featured in \"Spencer for Hire\" -- a place where you could really \\nfind \"Spencer\", his house was about 15 miles down 133. After putting\\nthrough traffic for a while, we turned and went back to 128.\\n\\nAbout half way through the onramp, I yanked Cindy\\'s wrist, our singal\\nfor \"hold on tight\". Head check left, time to find redline. Second\\ngear gives a good shove. Third too. Fourth sees DoD speed with a \\nshort shift into top. On the way to 133 we saw no cops and very light\\ntraffic. Did not cross into DoD zone because the bike was too new.\\nWell, now it had 25 miles on it, so it was ok. Tried some high effort\\nlane changes, some wide sweeping turns. Time to wick it up? I went \\nuntil the buffeting was threating to pull us off the seat. And stayed\\nthere. When I was comfortable with the wind and the steering, \\nI looked down to find an indicated 135mph. Not bad for 2-up touring.\\n\\nBeverly comes fast at more than twice the posted limit. At the \"get\\noff in a mile\" sign, I rolled off the throttle and coasted. I wanted\\nto re-adjust to the coming slowness. It was a good idea: there were\\nseveral manhole-sized patches of sand on the exit ramp. Back to the \\nslow and heavy behavior. Cycles! is about a mile from 128. I could \\nsee even more cars stacked up outside right when I got off. I managed\\nto thread the ST through the cars to the edge of the concrete pad\\nout front. Heavy. It took way too much effort for Cindy and I to put\\nthe thing on the center stand. I am sure that if I used the side\\nstand the ST would have been on its side within a minute.\\n\\n\\nMy demo opinion? Heavy. Put it on a diet. Smooth, comfortable,\\nhardly notices the DoD speed. I\\'d buy on for about $3000 less than \\nlist, just like it is. Too much $ for the bike as it is.\\n-- \\n\\t Frank Evan Perdicaro \\t\\t\\t\\tXyvision Color Systems\\n Legalize guns, drugs and cash...today.\\t\\t101 Edgewater Drive\\n inhouse: frank@marvin, x5572\\t\\t\\t\\tWakefield MA\\nouthouse: frank@contex.com, 617-245-4100x5572\\t\\t018801285\\n',\n", + " \"From: havardn@edb.tih.no (Haavard Nesse,o92a)\\nSubject: HELP!!! GRASP\\nReply-To: havardn@edb.tih.no\\nPosting-Front-End: Winix Conference v 92.05.15 1.20 (running under MS-Windows)\\nLines: 13\\n\\nHi!\\n\\nCould anyone tell me if it's possible to save each frame\\nof a .gl (grasp) animation to .gif, .jpg, .iff or any other\\npicture formats.\\n\\n(I've got some animations that I'd like to transfer to my Amiga)\\n \\nI really hope that someone can help me.\\n\\nCheers\\n\\nHaavard Nesse - Trondheim College of Engineering, Trondheim, Norway\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Let the Turks speak for themselves.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 95\\n\\nIn article <1993Apr16.142935.535@cs.yale.edu> karage@scus1.ctstateu.edu (Angelos Karageorgiou) writes:\\n\\n>\\tIf Turks in Greece were so badly mistreated how come they\\n>elected two,m not one but two, representatives in the Greek government?\\n\\nPardon me?\\n\\n\"Greece Government Rail-Roads Two Turkish Ethnic Deputies\"\\n\\nWhile World Human Rights Organizations Scream, Greeks \\nPersistently Work on Removing the Parliamentary Immunity\\nof Dr. Sadik Ahmet and Mr. Ahmet Faikoglu.\\n\\n\\nDr. Sadik Ahmet, Turkish Ethnic Member of Greek Parliament, Visits US\\n\\nWashington DC, July 7- Doctor Sadik Ahmet, one of the two ethnic\\nTurkish members of the Greek parliament visited US on june 24 through\\nJuly 5th and held meetings with human rights organizations and\\nhigh-level US officials in Washington DC and New York.\\n\\nAt his press conference at the National Press Club in Washington DC,\\nSadik Ahmet explained the plight of ethnic Turks in Greece and stated\\nsix demands from Greek government.\\n\\nAhmet said \"our only hope in Greece is the pressure generated from\\nWestern capitals for insisting that Greece respects the human rights.\\nWhat we are having done to ethnic Turks in Greece is exactly the same\\nas South African Apartheid.\" He added: \"What we are facing is pure\\nGreek hatred and racial discrimination.\"\\n\\nSpelling out the demands of the Turkish ethnic community in Greece\\nhe said \"We want the restoration of Greek citizenship of 544 ethnic\\nTurks. Their citizenship was revoked by using the excuse that this\\npeople have stayed out of Greece for too long. They are Greek citizens\\nand are residing in Greece, even one of them is actively serving in\\nthe Greek army. Besides, other non-Turkish citizens of Greece are\\nnot subject to this kind of interpretation at an extent that many of\\nGreek-Americans have Greek citizenship and they permanently live in\\nthe United States.\"\\n\\n\"We want guarantee for Turkish minority\\'s equal rights. We want Greek\\ngovernment to accept the Turkish minority and grant us our civil rights.\\nOur people are waiting since 25 years to get driving licenses. The Greek\\ngovernment is not granting building permits to Turks for renovating\\nour buildings or building new ones. If your name is Turkish, you are\\nnot hired to the government offices.\"\\n\\n\"Furthermore, we want Greek government to give us equal opportunity\\nin business. They do not grant licenses so we can participate in the\\neconomic life of Greece. In my case, they denied me a medical license\\nnecessary for practicing surgery in Greek hospitals despite the fact\\nthat I have finished a Greek medical school and followed all the\\nnecessary steps in my career.\"\\n\\n\"We want freedom of expression for ethnic Turks. We are not allowed\\nto call ourselves Turks. I myself have been subject of a number of\\nlaw suits and even have been imprisoned just because I called myself\\na Turk.\"\\n\\n\"We also want Greek government to provide freedom of religion.\"\\n\\nIn separate interview with The Turkish Times, Dr. Sadik Ahmet stated\\nthat the conditions of ethnic Turks are deplorable and in the eyes of\\nGreek laws, ethnic Greeks are more equal than ethnic Turks. As an example,\\nhe said there are about 20,000 telephone subscribers in Selanik (Thessaloniki)\\nand only about 800 of them are Turks. That is not because Turks do not\\nwant to have telephone services at their home and businesses. He said\\nthat Greek government changed the election law just to keep him out\\nof the parliament as an independent representative and they stated\\nthis fact openly to him. While there is no minimum qualification\\nrequirement for parties in terms of receiving at least 3% of the votes,\\nthey imposed this requirement for the independent parties, including\\nthe Turkish candidates.\\n\\nAhmet was born in a small village at Gumulcine (Komotini), Greece 1947.\\nHe earned his medical degree at University of Thessaloniki in 1974.\\nhe served in the Greek military as an infantryman.\\n\\nIn 1985 he got involved with community affairs for the first time\\nby collecting 15,000 signatures to protest the unjust implementation\\nof laws against ethnic Turks. In 1986, he was arrested by the police\\nfor collecting signatures.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " \"From: gwh@soda.berkeley.edu (George William Herbert)\\nSubject: Re: Moonbase race\\nOrganization: Retro Aerospace\\nLines: 14\\nNNTP-Posting-Host: soda.berkeley.edu\\nSummary: Hmm...\\n\\nHmm. $1 billion, lesse... I can probably launch 100 tons to LEO at\\n$200 million, in five years, which gives about 20 tons to the lunar\\nsurface one-way. Say five tons of that is a return vehicle and its\\nfuel, a bigger Mercury or something (might get that as low as two\\ntons), leaving fifteen tons for a one-man habitat and a year's supplies?\\nGee, with that sort of mass margins I can build the systems off\\nthe shelf for about another hundred million tops. That leaves\\nabout $700 million profit. I like this idea 8-) Let's see\\nif you guys can push someone to make it happen 8-) 8-)\\n\\n[slightly seriously]\\n\\n-george william herbert\\nRetro Aerospace\\n\",\n", + " \"From: jk87377@lehtori.cc.tut.fi (Kouhia Juhana)\\nSubject: XV problems\\nOrganization: Tampere University of Technology\\nLines: 113\\nDistribution: world\\nNNTP-Posting-Host: cc.tut.fi\\n\\n[Please, note the Newsgroups.]\\n\\nRecent discussion about XV's problems were held in some newsgroup.\\nHere is some text users of XV might find interesting.\\nI have added more to text to this collection article, so read on, even\\nyou so my articles a while ago.\\n\\nI hope author of XV corrects those problems as best he can, so fine\\nprogram XV is that it is worth of improving.\\n(I have also minor ideas for 24bit XV, e-mail me for them.)\\n\\nAny misundertanding of mine is understandable.\\n\\n\\nJuhana Kouhia\\n\\n\\n==clip==\\n\\n[ ..deleted..]\\n\\nNote that 'xv' saves only 8bit/rasterized images; that means that\\nthe saved jpegs are just like jpeg-to-gif-to-jpeg quality.\\nAlso, there's three kind of 8bit quantizers; your final image quality\\ndepends on them too.\\n \\nThis were the situation when I read jpeg FAQ a while ago.\\n \\nIMHO, it is design error of 'xv'; there should not be such confusing\\nerrors in programs.\\nThere's two errors:\\n -xv allows the saving of 8bit/rasterized image as jpeg even the\\n original is 24bit -- saving 8bit/rasterized image instead of\\n original 24bit should be a special case\\n -xv allows saving the 8bit/rasterized image made with any quantizer\\n -- the main case should be that 'xv' quantizes the image with the\\n best quantizer available before saving the image to a file; lousier\\n quantizers should be just for viewing purposes (and a special cases\\n in saving the image, if at all)\\n \\n==clip==\\n\\n==clip==\\n\\n[ ..deleted..]\\n\\nIt is limit of *XV*, but not limit of design.\\nIt is error in design.\\nIt is error that 8bit/quantized/rasterized images are stored as jpegs;\\njpeg is not designed to that.\\n\\nAs matter of fact, I'm sure when XV were designed 24bit displays were\\nknown. It is not bad error to program a program for 8bit images only\\nat that time, but when 24bit image formats are included to program the\\nwhole design should be changed to support 24bit images.\\nThat were not done and now we have\\n -the program violate jpeg design (and any 24bit image format)\\n -the program has human interface errors.\\n\\nOtherway is to drop saving images as jpegs or any 24bit format without\\nclearly saying that it is special case and not expected in normal use.\\n\\n[ ..deleted.. ]\\n\\n==clip==\\n\\nSome new items follows.\\n\\n==clip==\\n\\nI have seen that XV quantizes the image sometimes poorly with -best24\\noption than with default option we have.\\nThe reason surely is the quantizer used as -best24; it is (surprise)\\nthe same than used in ppmquant.\\n\\nIf you remember, I have tested some quantizers. In that test I found\\nthat rlequant (with default) is best, then comes djpeg, fbmquant, xv\\n(our default) in that order. In my test ppmquant suggeeded very poorly\\n-- it actually gave image with bad artifacts.\\n\\nI don't know is ppmquant improved any, but I expect no.\\nSo, use of XV's -best24 option is not very good idea.\\n\\nI suggest that author of XV changes the quantizer to the one used in\\nrlequant -- I'm sure rle-people gives permission.\\n(Another could be one used in ImageMagick; I have not tested it, so I\\ncan say nothing about it.)\\n\\n==clip==\\n\\n==clip==\\n\\nSome minor bugs in human interface are:\\n\\nKey pressings and cursor clicks goes to a buffer; Often it happens\\nthat I make click errors or press keyboard when cursor is in the wrong\\nplace. It is very annoying when you have waited image to come about\\nfive minutes and then it is gone away immediately.\\nThe buffer should be cleaned when the image is complete.\\n\\nAlso, good idea is to wait few seconds before activating keyboard\\nand mouse for XV after the image is completed.\\nOften it happens that image pops to the screen quickly, just when\\nI'm writing something with editor or such. Those key pressings\\nthen go to XV and image has gone or something weird.\\n\\nIn the color editor, when I turn a color meter and release it, XV\\nupdates the images. It is impossible to change all RGB values first\\nand then get the updated image. It is annoying wait image to be\\nupdated when the setting are not ready yet.\\nI suggest of adding an 'apply' button to update the exchanges done.\\n\\n==clip==\\n\",\n", + " 'From: mvp@netcom.com (Mike Van Pelt)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: Netcom - Online Communication Services (408 241-9760 guest)\\nLines: 17\\n\\nIn article <1r64pb$nkk@genesis.MCS.COM> arf@genesis.MCS.COM (Jack Schmidling) writes:\\n>Neither the Times nor the trained seals who have responded thus far seem to\\n>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>otherwords, American taxpayers put up at least 30% of the money.\\n\\nDammit, how did ArfArf\\'s latest excretion escape my kill file?\\n\\nOh, he changed sites. Again. *sigh* OK, I assume no other person\\non this planet will ever use the login name of arf.\\n\\n/arf@/aK:j \\n\\n-- \\nMike Van Pelt mvp@netcom.com\\n\"... Local prohibitions cannot block advances in military and commercial\\ntechnology.... Democratic movements for local restraint can only restrain\\nthe world\\'s democracies, not the world as a whole.\" -- K. Eric Drexler\\n',\n", + " \"From: nancyo@fraser.sfu.ca (Nancy Patricia O'Connor)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: Simon Fraser University, Burnaby, B.C., Canada\\nLines: 11\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes:\\n\\n>Rule #4: Don't mix apples with oranges. How can you say that the\\n>extermination by the Mongols was worse than Stalin? Khan conquered people\\n>unsympathetic to his cause. That was atrocious. But Stalin killed millions of\\n>his own people who loved and worshipped _him_ and his atheist state!! How can\\n>anyone be worse than that?\\n\\nYou're right. And David Koresh claimed to be a Christian.\\n\\n\\n\",\n", + " 'From: lpzsml@unicorn.nott.ac.uk (Steve Lang)\\nSubject: Re: Objective Values \\'v\\' Scientific Accuracy (was Re: After 2000 years, can we say that Christian Morality is)\\nOrganization: Nottingham University\\nLines: 38\\n\\nIn article , tk@dcs.ed.ac.uk (Tommy Kelly) wrote:\\n> In article <1qjahh$mrs@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n> \\n> >Science (\"the real world\") has its basis in values, not the other way round, \\n> >as you would wish it. \\n> \\n> You must be using \\'values\\' to mean something different from the way I\\n> see it used normally.\\n> \\n> And you are certainly using \\'Science\\' like that if you equate it to\\n> \"the real world\".\\n> \\n> Science is the recognition of patterns in our perceptions of the Universe\\n> and the making of qualitative and quantitative predictions concerning\\n> those perceptions.\\n\\nScience is the process of modeling the real world based on commonly agreed\\ninterpretations of our observations (perceptions).\\n\\n> It has nothing to do with values as far as I can see.\\n> Values are ... well they are what I value.\\n> They are what I would have rather than not have - what I would experience\\n> rather than not, and so on.\\n\\nValues can also refer to meaning. For example in computer science the\\nvalue of 1 is TRUE, and 0 is FALSE. Science is based on commonly agreed\\nvalues (interpretation of observations), although science can result in a\\nreinterpretation of these values.\\n\\n> Objective values are a set of values which the proposer believes are\\n> applicable to everyone.\\n\\nThe values underlaying science are not objective since they have never been\\nfully agreed, and the change with time. The values of Newtonian physic are\\ncertainly different to those of Quantum Mechanics.\\n\\nSteve Lang\\nSLANG->SLING->SLINK->SLICK->SLACK->SHACK->SHANK->THANK->THINK->THICK\\n',\n", + " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: some thoughts.\\nIn-Reply-To: healta@saturn.wwc.edu\\'s message of Fri, 16 Apr 1993 02: 51:29 GMT\\nOrganization: Compaq Computer Corp\\n\\t\\nLines: 47\\n\\n>>>>> On Fri, 16 Apr 1993 02:51:29 GMT, healta@saturn.wwc.edu (Tammy R Healy) said:\\nTRH> I hope you\\'re not going to flame him. Please give him the same coutesy you\\'\\nTRH> ve given me.\\n\\nBut you have been courteous and therefore received courtesy in return. This\\nperson instead has posted one of the worst arguments I have ever seen\\nmade from the pro-Christian people. I\\'ve known several Jesuits who would\\nlaugh in his face if he presented such an argument to them.\\n\\nLet\\'s ignore the fact that it\\'s not a true trilemma for the moment (nice\\nword Maddi, original or is it a real word?) and concentrate on the\\nliar, lunatic part.\\n\\nThe argument claims that no one would follow a liar, let alone thousands\\nof people. Look at L. Ron Hubbard. Now, he was probably not all there,\\nbut I think he was mostly a liar and a con-artist. But look at how many\\nthousands of people follow Dianetics and Scientology. I think the \\nBaker\\'s and Swaggert along with several other televangelists lie all\\nthe time, but look at the number of follower they have.\\n\\nAs for lunatics, the best example is Hitler. He was obviously insane,\\nhis advisors certainly thought so. Yet he had a whole country entralled\\nand came close to ruling all of Europe. How many Germans gave their lives\\nfor him? To this day he has his followers.\\n\\nI\\'m just amazed that people still try to use this argument. It\\'s just\\nso obviously *wrong*.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", + " 'From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Why is sex only allowed in marriage: Rationality (was: Islamic marriage)?\\nOrganization: Monash University, Melb., Australia.\\nLines: 115\\n\\nIn <1993Apr4.093904.20517@proxima.alt.za> lucio@proxima.alt.za (Lucio de Re) writes:\\n\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n\\n>>My point of view is that the argument \"all sexism is bad\" just simply\\n>>does not hold. Let me give you an example. How about permitting a\\n>>woman to temporarily leave her job due to pregnancy -- should that be\\n>>allowed? It happens to be sexist, as it gives a particular right only\\n>>to women. Nevertheless, despite the fact that it is sexist, I completely \\n>>support such a law, because I think it is just.\\n\\n>Fred, you\\'re exasperating... Sexism, like racialism, is a form of\\n>discrimination, using obvious physical or cultural differences to deny\\n>one portion of the population the same rights as another.\\n\\n>In this context, your example above holds no water whatsoever:\\n>there\\'s no discrimination in \"denying\" men maternity leave, in fact\\n>I\\'m quite convinced that, were anyone to experiment with male\\n>pregnancy, it would be possible for such a future father to take\\n>leave on medical grounds.\\n\\nOkay... I argued this thoroughly about 3-4 weeks ago. Men and women are\\ndifferent ... physically, physiologically, and psychologically. Much\\nrecent evidence for this statement is present in the book \"Brainsex\" by\\nAnne Moir and David Jessel. I recommend you find a copy and read it.\\nTheir book is an overview of recent scientific research on this topic\\nand is well referenced. \\n\\nNow, if women and men are different in some ways, the law can only\\nadequately take into account their needs in these areas where they are\\ndifferent by also taking into account the ways in which men and women\\nare different. Maternity leave is an example of this -- it takes into\\naccount that women get pregnant. It does not give women the same rules\\nit would give to men, because to treat women like it treats men in this\\ninstance would be unjust. This is just simply an obvious example of\\nwhere men and women are intrinsically different!!!!!\\n\\nNow, people make the _naive_ argument that sexism = oppression.\\nHowever, maternity leave is sexist because MEN DO NOT GET PREGNANT. \\nMen do not have the same access to leave that women do (not to the same\\nextent or degree), and therefore IT IS SEXIST. No matter however much a\\nman _wants_ to get pregnant and have maternity leave, HE NEVER CAN. And\\ntherefore the law IS SEXIST. No man can have access to maternity leave,\\nNO MATTER HOW HARD HE TRIES TO GET PREGNANT. I hope this is clear.\\n\\nMaternity leave is an example where a sexist law is just, because the\\nsexism here just reflects the \"sexism\" of nature in making men and women\\ndifferent. There are many other differences between men and women which\\nare far more subtle than pregnancy, and to find out more of these I\\nrecommend you have a look at the book \"Brainsex\".\\n\\nYour point that perhaps some day men can also be pregnant is fallacious.\\nIf men can one day become pregnant it will be by having biologically\\nbecome women! To have a womb and the other factors required for\\npregnancy is usually wrapped up in the definition of what a woman is --\\nso your argument, when it is examined, is seen to be fallacious. You\\nare saying that men can have the sexist maternity leave privilege that \\nwomen can have if they also become women -- which actually just supports\\nmy statement that maternity leave is sexist.\\n\\n>The discrimination comes in when a woman is denied opportunities\\n>because of her (legally determined) sexual inferiorities. As I\\n>understand most religious sexual discrimination, and I doubt that\\n>Islam is exceptional, the female is not allowed into the priestly\\n>caste and in general is subjugated so that she has no aspirations to\\n>rights which, as an equal human, she ought to be entitled to.\\n\\nThere is no official priesthood in Islam -- much of this function is\\ntaken by Islamic scholars. There are female Islamic scholars and\\nfemale Islamic scholars have always existed in Islam. An example from\\nearly Islamic history is the Prophet\\'s widow, Aisha, who was recognized\\nin her time and is recognized in our time as an Islamic scholar.\\n\\n>No matter how sweetly you coat it, part of the role of religions\\n>seems, historically, to have served the function of oppressing the\\n>female, whether by forcing her to procreate to the extent where\\n>there is no opportunity for self-improvement, or by denying her\\n>access to the same facilities the males are offered.\\n\\nYou have no evidence for your blanket statement about all religions, and\\nI dispute it. I could go on and on about women in Islam, etc., but I\\nrecently reposted something here under the heading \"Islam and Women\" --\\nif it is still at your news-site I suggest you read it. It is reposted\\nfrom soc.religion.islam, so if it has disappeared from alt.atheism it\\nstill might be in soc.religion.islam (I forgot what its original title\\nwas though). I will email it to you if you like. \\n\\n>The Roman Catholic Church is the most blatant of the culprit,\\n>because they actually istitutionalised a celibate clergy, but the\\n>other religious are no different: let a woman attempt to escape her\\n>role as child bearer and the wrath of god descends on her.\\n\\nYour statement that \"other religions are no different\" is, I think, a\\nstatement based simply on lack of knowledge about religions other than\\nChristianity and perhaps Judaism.\\n\\n>I\\'ll accept your affirmation that Islam grants women the same rights\\n>as men when you can show me that any muslim woman can aspire to the\\n>same position as (say) Khomeini and there are no artificial religious\\n>or social obstacles on her path to achieve this.\\n\\nAisha, who I mentioned earlier, was not only an Islamic scholar but also\\nwas, at one stage, a military leader.\\n\\n>Show me the equivalent of Hillary Rhodam-Clinton within Islam, and I\\n>may consider discussing the issue with you.\\n\\nThe Prophet\\'s first wife, who died just before the \"Hijra\" (the\\nProphet\\'s journey from Mecca to Medina) was a successful businesswoman.\\n\\nLucio, you cannot make a strong case for your viewpoint when your\\nviewpoint is based on ignorance about world religions.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n',\n", + " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Israeli Terrorism\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 7\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n How many of you readers know anything about Jews living in the\\nArab countries? How many of you know if Jews still live in these\\ncountries? How many of you know what the circumstances of Arabic\\nJews leaving their homelands were? Just curious.\\n\\n\\n',\n", + " 'Organization: Penn State University\\nFrom: Andrew Newell \\nSubject: Re: free moral agency\\nDistribution: na\\n \\nLines: 119\\n\\nIn article , bil@okcforum.osrhe.edu (Bill\\nConner) says:\\n>\\n>dean.kaflowitz (decay@cbnewsj.cb.att.com) wrote:\\n>\\n>: Now, what I am interested in is the original notion you were discussing\\n>: on moral free agency. That is, how can a god punish a person for\\n>: not believing in him when that person is only following his or her\\n>: nature and it is not possible for that person to deny what his or\\n>: her reason tells him or her, which is that there is no god?\\n>\\n>I think you\\'re letting atheist mythology confuse you on the issue of\\n\\n(WEBSTER: myth: \"a traditional or legendary story...\\n ...a belief...whose truth is accepted uncritically.\")\\n\\nHow does that qualify?\\nIndeed, it\\'s almost oxymoronic...a rather amusing instance.\\nI\\'ve found that most atheists hold almost no atheist-views as\\n\"accepted uncritically,\" especially the few that are legend.\\nMany are trying to explain basic truths, as myths do, but\\nthey don\\'t meet the other criterions.\\nAlso...\\n\\n>Divine justice. According to the most fundamental doctrines of\\n>Christianity, When the first man sinned, he was at that time the\\n\\nYou accuse him of referencing mythology, then you procede to\\nlaunch your own xtian mythology. (This time meeting all the\\nrequirements of myth.)\\n\\n>salvation. The idea of punishment is based on the proposition that\\n>everyone knows (instinctively?) that God exists, is their creator and\\n\\nAh, but not everyone \"knows\" that god exists. So you have\\na fallacy.\\n\\n>There\\'s nothing terribly difficult in all this and is well known to\\n>any reasonably Biblically literate Christian. The only controversy is\\n\\nAnd that makes it true? Holding with the Bible rules out controversy?\\nRead the FAQ. If you\\'ve read it, you missed something, so re-read.\\n(Not a bad suggestion for anyone...I re-read it just before this.)\\n\\n>with those who pretend not to know what is being said and what it\\n>means. When atheists claim that they do -not- know if God exists and\\n>don\\'t know what He wants, they contradict the Bible which clearly says\\n>that -everyone- knows. The authority of the Bible is its claim to be\\n\\n...should I repeat what I wrote above for the sake of getting\\nit across? You may trust the Bible, but your trusting it doesn\\'t\\nmake it any more credible to me.\\n\\nIf the Bible says that everyone knows, that\\'s clearly reason\\nto doubt the Bible, because not everyone \"knows\" your alleged\\ngod\\'s alleged existance.\\n\\n>refuted while the species-wide condemnation is justified. Those that\\n>claim that there is no evidence for the existence of God or that His will is\\n>unknown, must deliberately ignore the Bible; the ignorance itself is\\n>no excuse.\\n\\n1) No, they don\\'t have to ignore the Bible. The Bible is far\\nfrom universally accepted. The Bible is NOT a proof of god;\\nit is only a proof that some people have thought that there\\nwas a god. (Or does it prove even that? They might have been\\nwriting it as series of fiction short-stories. As in the\\ncase of Dionetics.) Assuming the writers believed it, the\\nonly thing it could possibly prove is that they believed it.\\nAnd that\\'s ignoring the problem of whether or not all the\\ninterpretations and Biblical-philosophers were correct.\\n\\n2) There are people who have truly never heard of the Bible.\\n\\n3) Again, read the FAQ.\\n\\n>freedom. You are free to ignore God in the same way you are free to\\n>ignore gravity and the consequences are inevitable and well known\\n>in both cases. That an atheist can\\'t accept the evidence means only\\n\\nBzzt...wrong answer!\\nGravity is directly THERE. It doesn\\'t stop exerting a direct and\\nrationally undeniable influence if you ignore it. God, on the\\nother hand, doesn\\'t generally show up in the supermarket, except\\non the tabloids. God doesn\\'t exert a rationally undeniable influence.\\nGravity is obvious; gods aren\\'t.\\n\\n>Secondly, human reason is very comforatble with the concept of God, so\\n>much so that it is, in itself, intrinsic to our nature. Human reason\\n>always comes back to the question of God, in every generation and in\\n\\nNo, human reason hasn\\'t always come back to the existance of\\n\"God\"; it has usually come back to the existance of \"god\".\\nIn other words, it doesn\\'t generally come back to the xtian\\ngod, it comes back to whether there is any god. And, in much\\nof oriental philosophic history, it generally doesn\\'t pop up as\\nthe idea of a god so much as the question of what natural forces\\nare and which ones are out there. From a world-wide view,\\nhuman nature just makes us wonder how the universe came to\\nbe and/or what force(s) are currently in control. A natural\\ntendancy to believe in \"God\" only exists in religious wishful\\nthinking.\\n\\n>I said all this to make the point that Christianity is eminently\\n>reasonable, that Divine justice is just and human nature is much\\n>different than what atheists think it is. Whether you agree or not\\n\\nXtianity is no more reasonable than most other religions, and\\nit\\'s reasonableness certainly doesn\\'t merit eminence.\\nDivine justice...well, it only seems just to those who already\\nbelieve in the divinity.\\nFirst, not all atheists believe the same things about human\\nnature. Second, whether most atheists are correct or not,\\nYOU certainly are not correct on human nature. You are, at\\nthe least, basing your views on a completely eurocentric\\napproach. Try looking at the outside world as well when\\nyou attempt to sum up all of humanity.\\n\\nAndrew\\n',\n", + " 'From: thester@nyx.cs.du.edu (Uncle Fester)\\nSubject: Re: CView answers\\nX-Disclaimer: Nyx is a public access Unix system run by the University\\n\\tof Denver for the Denver community. The University has neither\\n\\tcontrol over nor responsibility for the opinions of users.\\nOrganization: Nyx, Public Access Unix at U. of Denver Math/CS dept.\\nLines: 36\\n\\nIn article <5103@moscom.com> mz@moscom.com (Matthew Zenkar) writes:\\n>Cyberspace Buddha (cb@wixer.bga.com) wrote:\\n>: renew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n>: >over where it places its temp files: it just places them in its\\n>: >\"current directory\".\\n>\\n>: I have to beg to differ on this point, as the batch file I use\\n>: to launch cview cd\\'s to the dir where cview resides and then\\n>: invokes it. every time I crash cview, the 0-byte temp file\\n>: is found in the root dir of the drive cview is on.\\n>\\n>I posted this as well before the cview \"expert\". Apparently, he thought\\nhe\\n>knew better.\\n>\\n>Matthew Zenkar\\n>mz@moscom.com\\n\\n\\n Are we talking about ColorView for DOS here? \\n I have version 2.0 and it writes the temp files to its own\\n current directory.\\n What later versions do, I admit that I don\\'t know.\\n Assuming your \"expert\" referenced above is talking about\\n the version that I have, then I\\'d say he is correct.\\n Is the ColorView for unix what is being discussed?\\n Just mixed up, confused, befuddled, but genuinely and\\n entirely curious....\\n\\n Uncle Fester\\n\\n--\\n : What God Wants : God wants gigolos :\\n : God gets : God wants giraffes :\\n : God help us all : God wants politics :\\n : *thester@nyx.cs.du.edu* : God wants a good laugh :\\n',\n", + " 'From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES \\nOrganization: NONE\\nLines: 52\\n\\nIn article <1993Apr20.110021.5746@kth.se>, hilmi-er@dsv.su.se (Hilmi Eren) writes:\\n\\n\\nhenrik] The Armenians in Nagarno-Karabagh are simply DEFENDING their \\nhenrik] RIGHTS to keep their homeland and it is the AZERIS that are \\nhenrik] INVADING their homeland.\\n\\n\\nHE] Homeland? First Nagarno-Karabagh was Armenians homeland today\\nHE] Fizuli, Lacin and several villages (in Azerbadjan)\\nHE] are their homeland. Can\\'t you see the\\nHE] the \"Great Armenia\" dream in this? With facist methods like\\nHE] killing, raping and bombing villages. The last move was the\\nHE] blast of a truck with 60 kurdish refugees, trying to\\nHE] escape the from Lacin, a city that was \"given\" to the Kurds\\nHE] by the Armenians.\\n\\nNagorno-Karabakh is in Azerbaijan not Armenia. Armenians have lived in Nagorno-\\nKarabakh ever since there were Armenians. Armenians used to live in the areas\\nbetween Armenia and Nagorno-Karabakh and this area is being used to invade \\nNagorno- Karabakh. Armenians are defending themselves. If Azeris are dying\\nbecause of a policy of attacking Armenians, then something is wrong with this \\npolicy.\\n\\nIf I recall correctly, it was Stalin who caused all this problem with land\\nin the first place, not the Armenians.\\n\\nhenrik] However, I hope that the Armenians WILL force a TURKISH airplane\\nhenrik] to LAND for purposes of SEARCHING for ARMS similar to the one\\nhenrik] that happened last SUMMER. Turkey searched an AMERICAN plane\\nhenrik] (carrying humanitarian aid) bound to ARMENIA.\\n\\nHE] Don\\'t speak about things you don\\'t know: 8 U.S. Cargo planes\\nHE] were heading to Armenia. When the Turkish authorities\\nHE] announced that they were going to search these cargo\\nHE] planes 3 of these planes returned to it\\'s base in Germany.\\nHE] 5 of these planes were searched in Turkey. The content of\\nHE] of the other 3 planes? Not hard to guess, is it? It was sure not\\nHE] humanitarian aid.....\\n\\nWhat story are you talking about? Planes from the U.S. have been sending\\naid into Armenian for two years. I would not like to guess about what were in\\nthe 3 planes in your story, I would like to find out.\\n\\n\\nHE] Search Turkish planes? You don\\'t know what you are talking about.\\nHE] Turkey\\'s government has announced that it\\'s giving weapons\\nHE] to Azerbadjan since Armenia started to attack Azerbadjan\\nHE] it self, not the Karabag province. So why search a plane for weapons\\nHE] since it\\'s content is announced to be weapons?\\n\\nIt\\'s too bad you would want Turkey to start a war with Armenia.\\n',\n", + " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 14\\n\\nMr. Freeman:\\n\\nPlease find something more constructive to do with your time rather\\nthan engaging in fantasy..... Not that I have a particular affinty\\nto Arafat or anything.\\n\\nJohn\\n\\n\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Rejetting carbs..\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nDistribution: na\\nLines: 53\\n\\nMark Kromer, on the Thu, 15 Apr 1993 00:42:46 GMT wibbled:\\n: In an article rtaraz@bigwpi (Ramin Taraz) wrote:\\n\\n: >Does the \"amount of exhaust allowed to leave the engine through the\\n: >exhaust pipe\" make that much of a difference? the amount of air/fuel\\n: >mixture that a cylender sucks in (tries to suck in) depends on the\\n: >speed of the piston when it goes down. \\n\\n: ...and the pressure in the cylinder at the end of the exhaust stroke.\\n\\n: With a poor exhaust system, this pressure may be above atmospheric.\\n: With a pipe that scavenges well this may be substantially below\\n: atmospheric. This effect will vary with rpm depending on the tune of\\n: the pipe; some pipes combined with large valve overlap can actually\\n: reverse the intake flow and blow mixture out of the carb when outside\\n: the pipes effective rev range.\\n\\n: >Now, my question is which one provides more resistence as far as the\\n: >engine is conserned:\\n: >) resistance that the exhaust provides \\n: >) or the resistance that results from the bike trying to push itself and\\n: > the rider\\n\\n: Two completely different things. The state of the pipe determines how\\n: much power the motor can make. The load of the bike determines how\\n: much power the motor needs to make.\\n\\n: --\\n: - )V(ark)< FZR400 Pilot / ZX900 Payload / RD400 Mechanic \\n: You\\'re welcome.\\n\\nWell I, for one, am so very glad that I have fuel injection! All those \\nneedles and orifices and venturi and pressures... It\\'s worse than school human\\nbiology reproduction lessons (sex). Always made me feel a bit queasy.\\n--\\n\\nNick (the Simple Minded Biker) DoD 1069 Concise Oxford Tube Rider\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", + " \"From: ralph.buttigieg@f635.n713.z3.fido.zeta.org.au (Ralph Buttigieg)\\nSubject: Why not give $1 billion to first year-lo\\nOrganization: Fidonet. Gate admin is fido@socs.uts.edu.au\\nLines: 34\\n\\nOriginal to: keithley@apple.com\\nG'day keithley@apple.com\\n\\n21 Apr 93 22:25, keithley@apple.com wrote to All:\\n\\n kc> keithley@apple.com (Craig Keithley), via Kralizec 3:713/602\\n\\n\\n kc> But back to the contest goals, there was a recent article in AW&ST\\nabout a\\n kc> low cost (it's all relative...) manned return to the moon. A General\\n kc> Dynamics scheme involving a Titan IV & Shuttle to lift a Centaur upper\\n kc> stage, LEV, and crew capsule. The mission consists of delivering two\\n kc> unmanned payloads to the lunar surface, followed by a manned mission.\\n kc> Total cost: US was $10-$13 billion. Joint ESA(?)/NASA project was\\n$6-$9\\n kc> billion for the US share.\\n\\n kc> moon for a year. Hmmm. Not really practical. Anyone got a\\n kc> cheaper/better way of delivering 15-20 tonnes to the lunar surface\\nwithin\\n kc> the decade? Anyone have a more precise guess about how much a year's\\n kc> supply of consumables and equipment would weigh?\\n\\nWhy not modify the GD plan into Zurbrin's Compact Moon Direct scheme? let\\none of those early flight carry an O2 plant and make your own.\\n\\nta\\n\\nRalph\\n\\n--- GoldED 2.41+\\n * Origin: VULCAN'S WORLD - Sydney Australia (02) 635-1204 3:713/6\\n(3:713/635)\\n\",\n", + " \"From: naren@tekig1.PEN.TEK.COM (Naren Bala)\\nSubject: Re: Slavery (was Re: Why is sex only allowed in marriage: ...)\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 21\\n\\nIn article sandvik@newton.apple.com (Kent Sandvik) writes:\\n>Looking at historical evidence such 'perfect utopian' islamic states\\n>didn't survive. I agree, people are people, and even if you might\\n>start an Islamic revolution and create this perfect state, it takes \\n>some time and the internal corruption will destroy the ground rules --\\n>again.\\n>\\n\\nNothing is perfect. Nothing is perpetual. i.e. even if it is perfect,\\nit isn't going to stay that way forever. \\n\\nPerpetual machines cannot exist. I thought that there\\nwere some laws in mechanics or thermodynamics stating that.\\n\\nNot an atheist\\nBN\\n--\\n---------------------------------------------------------------------\\n- Naren Bala (Software Evaluation Engineer)\\n- HOME: (503) 627-0380\\t\\tWORK: (503) 627-2742\\n- All standard disclaimers apply. \\n\",\n", + " 'From: g9134255@wampyr.cc.uow.edu.au (Coronado Emmanuel Abad)\\nSubject: Fonts in POV??\\nOrganization: University of Wollongong, NSW, Australia.\\nLines: 11\\nNNTP-Posting-Host: wampyr.cc.uow.edu.au\\nKeywords: fonts, raytrace\\n\\n\\n\\n\\tI have seen several ray-traced scenes (from MTV or was it \\nRayShade??) with stroked fonts appearing as objects in the image.\\nThe fonts/chars had color, depth and even textures associated with\\nthem. Now I was wondering, is it possible to do the same in POV??\\n\\n\\nThanks,\\n\\nNoel\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Space Research Spin Off\\nOrganization: Express Access Online Communications USA\\nLines: 30\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article henry@zoo.toronto.edu (Henry Spencer) writes:\\n>In article <1ppm7j$ip@access.digex.net> prb@access.digex.com (Pat) writes:\\n|>I thought the area rule was pioneered by Boeing.\\n|>NASA guys developed the rule, but no-one knew if it worked\\n|>until Boeing built the hardware 727 and maybe the FB-111?????\\n|\\n|Nope. The decisive triumph of the area rule was when Convair's YF-102 --\\n|contractually commmitted to being a Mach 1.5 fighter and actually found\\n|to be incapable of going supersonic in level flight -- was turned into\\n|the area-ruled YF-102A which met the specs. This was well before either\\n|the 727 or the FB-111; the 102 flew in late 1953, and Convair spent most\\n|of the first half of 1954 figuring out what went wrong and most of the\\n|second half building the first 102A.\\n|-- \\n|All work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n| - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\\n\\n\\nGood thing i stuck in a couple of question marks up there.\\n\\nI seem to recall, somebody built or at least proposed a wasp waisetd\\nPassenger civil transport. I thought it was a 727, but maybe it\\nwas a DC- 8,9??? Sure it had a funny passenger compartment,\\nbut on the other hand it seemed to save fuel.\\n\\nI thought Area rules applied even before transonic speeds, just\\nnot as badly.\\n\\npat\\n\",\n", + " 'From: jgreen@amber (Joe Green)\\nSubject: Re: Weitek P9000 ?\\nOrganization: Harris Computer Systems Division\\nLines: 14\\nDistribution: world\\nNNTP-Posting-Host: amber.ssd.csd.harris.com\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nRobert J.C. Kyanko (rob@rjck.UUCP) wrote:\\n> abraxis@iastate.edu writes in article :\\n> > Anyone know about the Weitek P9000 graphics chip?\\n> As far as the low-level stuff goes, it looks pretty nice. It\\'s got this\\n> quadrilateral fill command that requires just the four points.\\n\\nDo you have Weitek\\'s address/phone number? I\\'d like to get some information\\nabout this chip.\\n\\n--\\nJoe Green\\t\\t\\t\\tHarris Corporation\\njgreen@csd.harris.com\\t\\t\\tComputer Systems Division\\n\"The only thing that really scares me is a person with no sense of humor.\"\\n\\t\\t\\t\\t\\t\\t-- Jonathan Winters\\n',\n", + " 'From: yohan@citation.ksu.ksu.edu (Jonathan W Newton)\\nSubject: Re: Societally acceptable behavior\\nOrganization: Kansas State University\\nLines: 35\\nDistribution: world\\nNNTP-Posting-Host: citation.ksu.ksu.edu\\n\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n>Merely a question for the basis of morality\\n>\\n>Moral/Ethical behavior = _Societally_ _acceptable_ _behavior_.\\n\\nI disagree with these. What society thinks should be irrelevant. What the\\nindividual decides is all that is important.\\n\\n>\\n>1)Who is society\\n\\nI think this is fairly obvious\\n\\n>\\n>2)How do \"they\" define what is acceptable?\\n\\nGenerally by what they \"feel\" is right, which is the most idiotic policy I can\\nthink of.\\n\\n>\\n>3)How do we keep from a \"whatever is legal is what is \"moral\" \"position?\\n\\nBy thinking for ourselves.\\n\\n>\\n>MAC\\n>--\\n>****************************************************************\\n> Michael A. Cobb\\n> \"...and I won\\'t raise taxes on the middle University of Illinois\\n> class to pay for my programs.\" Champaign-Urbana\\n> -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n> \\n>With new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", + " 'From: bleve@hoggle2.uucp (Bennett Lee Leve)\\nSubject: Re: Choking Ninja Problem\\nIn-Reply-To: starr@kuhub.cc.ukans.edu\\'s message of 13 Apr 93 15:34:41 CST\\nOrganization: Organized?? Surely you jest!\\nLines: 22\\n\\nIn article <1993Apr13.153441.49118@kuhub.cc.ukans.edu> starr@kuhub.cc.ukans.edu writes:\\n\\n\\n > I need help with my \\'85 ZX900A, I put Supertrapp slip-on\\'s on it and\\n > had the carbs re-jetted to match a set of K&N filters that replaced\\n > the stock airbox. Now I have a huge flat spot in the carburation at\\n > about 5 thousand RPM in most any gear. This is especially frustrating\\n > on the highway, the bike likes to cruise at about 80mph which happens\\n > to be 5,0000 RPM in sixth gear. I\\'ve had it \"tuned\" and this doesn\\'t\\n > seem to help. I am thinking about new carbs or the injection system\\n > from a GPz 1100. Does anyone have any suggestions for a fix besides\\n > restoring it to stock?\\n > Starr@kuhub.ukans.cc.edu\\t the brain dead.\" -Ted Nugent\\n\\nIt sound like to me that your carbs are not jetted properly.\\nIf you did it yourself, take it to a shop and get it done right.\\nIf a shop did it, get your money back, and go to another shop.\\n-- \\n-----------------------------------------------------------------------\\n|Bennett Leve 84 V-65 Sabre | I\\'m drowning, throw |\\n|Orlando, FL 73 XL 250 | me a bagel. |\\n|hoggle!hoggle2!bleve@peora.sdc.ccur.com | |\\n',\n", + " \"From: steel@hal.gnu.ai.mit.edu (Nick Steel)\\nSubject: Re: F*CK OFF TSIEL, logic of Mr. Emmanuel Huna\\nKeywords: Conspiracy, Nutcase\\nOrganization: /etc/organization\\nLines: 24\\nNNTP-Posting-Host: hal.ai.mit.edu\\n\\nIn article <4806@bimacs.BITNET> huna@bimacs.BITNET (Emmanuel Huna) writes:\\n>\\n> Mr. Steel, from what I've read Tsiel is not a racist, but you\\n>are an anti semitic. And stop shouting, you fanatic,\\n\\nMr. Emmanuel Huna,\\n\\nGive logic a break will you. Gosh, what kind of intelligence do\\nyou have, if any?\\n\\n\\nTesiel says : Be a man not an arab for once.\\nI say : Fuck of Tsiel (for saying the above).\\n\\nI get tagged as a racist, and he gets praised?\\nWell Mr. logicless, Tsiel has apologized for his racist remark.\\nI praise him for that courage, but I tell Take a hike to whoever calls me\\na racist without a proof because I am not.\\n\\nYou have proven to us that your brain has been malfunctioning\\nand you are just a moron that's loose on the net.\\n\\nAbout being fanatic: I am proud to be a fanatic about my rights and\\nfreedom, you idiot.\\n\",\n", + " \"From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)\\nSubject: header paint\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: relva.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 8\\n\\nit seems the 200 miles of trailering in the rain has rusted my bike's headers.\\nthe metal underneath is solid, but i need to sand off the rust coating and\\nrepaint the pipes black. any recommendations for paint and application\\nof said paint?\\n\\nthanks!\\n\\naxel\\n\",\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race\\nOrganization: U of Toronto Zoology\\nLines: 11\\n\\nIn article 18084TM@msu.edu (Tom) writes:\\n>On the other hand, if Apollo cost ~25billion, for a few days or weeks\\n>in space, in 1970 dollars, then won't the reward have to be a lot more\\n>than only 1 billion to get any takers?\\n\\nApollo was done the hard way, in a big hurry, from a very limited\\ntechnology base... and on government contracts. Just doing it privately,\\nrather than as a government project, cuts costs by a factor of several.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: sigma@rahul.net (Kevin Martin)\\nSubject: Re: XV under MS-DOS ?!?\\nNntp-Posting-Host: bolero\\nOrganization: a2i network\\nLines: 11\\n\\nIn <1993Apr20.083731.260@eicn.etna.ch> NO E-MAIL ADDRESS@eicn.etna.ch writes:\\n>Do somenone know the solution to run XV ??? any help would be apprecied..\\n\\nI would guess that it requires X, almost certainly DV/X, which commonly\\nuses the GO32 (DJGPP) setup for its programs. If you don\\'t have DV/X\\nrunning, you can\\'t get anything which requires interfacing with X.\\n\\n-- \\nKevin Martin\\nsigma@rahul.net\\n\"I gotta get me another hat.\"\\n',\n", + " 'From: mcelwre@cnsvax.uwec.edu\\nSubject: LARSONIAN Astronomy and Physics\\nOrganization: University of Wisconsin Eau Claire\\nLines: 552\\n\\n\\n\\n LARSONIAN Astronomy and Physics\\n\\n Orthodox physicists, astronomers, and astrophysicists \\n CLAIM to be looking for a \"Unified Field Theory\" in which all \\n of the forces of the universe can be explained with a single \\n set of laws or equations. But they have been systematically \\n IGNORING or SUPPRESSING an excellent one for 30 years! \\n\\n The late Physicist Dewey B. Larson\\'s comprehensive \\n GENERAL UNIFIED Theory of the physical universe, which he \\n calls the \"Reciprocal System\", is built on two fundamental \\n postulates about the physical and mathematical natures of \\n space and time: \\n \\n (1) \"The physical universe is composed ENTIRELY of ONE \\n component, MOTION, existing in THREE dimensions, in DISCRETE \\n UNITS, and in two RECIPROCAL forms, SPACE and TIME.\" \\n \\n (2) \"The physical universe conforms to the relations of \\n ORDINARY COMMUTATIVE mathematics, its magnitudes are \\n ABSOLUTE, and its geometry is EUCLIDEAN.\" \\n \\n From these two postulates, Larson developed a COMPLETE \\n Theoretical Universe, using various combinations of \\n translational, vibrational, rotational, and vibrational-\\n rotational MOTIONS, the concepts of IN-ward and OUT-ward \\n SCALAR MOTIONS, and speeds in relation to the Speed of Light \\n (which Larson called \"UNIT VELOCITY\" and \"THE NATURAL \\n DATUM\"). \\n \\n At each step in the development, Larson was able to \\n MATCH objects in his Theoretical Universe with objects in the \\n REAL physical universe, (photons, sub-atomic particles \\n [INCOMPLETE ATOMS], charges, atoms, molecules, globular star \\n clusters, galaxies, binary star systems, solar systems, white \\n dwarf stars, pulsars, quasars, ETC.), even objects NOT YET \\n DISCOVERED THEN (such as EXPLODING GALAXIES, and GAMMA-RAY \\n BURSTS). \\n \\n And applying his Theory to his NEW model of the atom, \\n Larson was able to precisely and accurately CALCULATE inter-\\n atomic distances in crystals and molecules, compressibility \\n and thermal expansion of solids, and other properties of \\n matter. \\n\\n All of this is described in good detail, with-OUT fancy \\n complex mathematics, in his books. \\n \\n\\n\\n BOOKS of Dewey B. Larson\\n \\n The following is a complete list of the late Physicist \\n Dewey B. Larson\\'s books about his comprehensive GENERAL \\n UNIFIED Theory of the physical universe. Some of the early \\n books are out of print now, but still available through \\n inter-library loan. \\n \\n \"The Structure of the Physical Universe\" (1959) \\n \\n \"The Case AGAINST the Nuclear Atom\" (1963)\\n \\n \"Beyond Newton\" (1964) \\n \\n \"New Light on Space and Time\" (1965) \\n \\n \"Quasars and Pulsars\" (1971) \\n \\n \"NOTHING BUT MOTION\" (1979) \\n [A $9.50 SUBSTITUTE for the $8.3 BILLION \"Super \\n Collider\".] \\n [The last four chapters EXPLAIN chemical bonding.]\\n\\n \"The Neglected Facts of Science\" (1982) \\n \\n \"THE UNIVERSE OF MOTION\" (1984)\\n [FINAL SOLUTIONS to most ALL astrophysical\\n mysteries.] \\n \\n \"BASIC PROPERTIES OF MATTER\" (1988)\\n\\n All but the last of these books were published by North \\n Pacific Publishers, P.O. Box 13255, Portland, OR 97213, and \\n should be available via inter-library loan if your local \\n university or public library doesn\\'t have each of them. \\n\\n Several of them, INCLUDING the last one, are available \\n from: The International Society of Unified Science (ISUS), \\n 1680 E. Atkin Ave., Salt Lake City, Utah 84106. This is the \\n organization that was started to promote Larson\\'s Theory. \\n They have other related publications, including the quarterly \\n journal \"RECIPROCITY\". \\n\\n \\n\\n Physicist Dewey B. Larson\\'s Background\\n \\n Physicist Dewey B. Larson was a retired Engineer \\n (Chemical or Electrical). He was about 91 years old when he \\n died in May 1989. He had a Bachelor of Science Degree in \\n Engineering Science from Oregon State University. He \\n developed his comprehensive GENERAL UNIFIED Theory of the \\n physical universe while trying to develop a way to COMPUTE \\n chemical properties based only on the elements used. \\n \\n Larson\\'s lack of a fancy \"PH.D.\" degree might be one \\n reason that orthodox physicists are ignoring him, but it is \\n NOT A VALID REASON. Sometimes it takes a relative outsider \\n to CLEARLY SEE THE FOREST THROUGH THE TREES. At the same \\n time, it is clear from his books that he also knew ORTHODOX \\n physics and astronomy as well as ANY physicist or astronomer, \\n well enough to point out all their CONTRADICTIONS, AD HOC \\n ASSUMPTIONS, PRINCIPLES OF IMPOTENCE, IN-CONSISTENCIES, ETC.. \\n \\n Larson did NOT have the funds, etc. to experimentally \\n test his Theory. And it was NOT necessary for him to do so. \\n He simply compared the various parts of his Theory with OTHER \\n researchers\\' experimental and observational data. And in \\n many cases, HIS explanation FIT BETTER. \\n \\n A SELF-CONSISTENT Theory is MUCH MORE than the ORTHODOX \\n physicists and astronomers have! They CLAIM to be looking \\n for a \"unified field theory\" that works, but have been \\n IGNORING one for over 30 years now! \\n \\n \"Modern physics\" does NOT explain the physical universe \\n so well. Some parts of some of Larson\\'s books are FULL of \\n quotations of leading orthodox physicists and astronomers who \\n agree. And remember that \"epicycles\", \"crystal spheres\", \\n \"geocentricity\", \"flat earth theory\", etc., ALSO once SEEMED \\n to explain it well, but were later proved CONCEPTUALLY WRONG. \\n \\n \\n Prof. Frank H. Meyer, Professor Emeritus of UW-Superior, \\n was/is a STRONG PROPONENT of Larson\\'s Theory, and was (or \\n still is) President of Larson\\'s organization, \"THE \\n INTERNATIONAL SOCIETY OF UNIFIED SCIENCE\", and Editor of \\n their quarterly Journal \"RECIPROCITY\". He moved to \\n Minneapolis after retiring. \\n \\n\\n\\n \"Super Collider\" BOONDOGGLE!\\n \\n I am AGAINST contruction of the \"Superconducting Super \\n Collider\", in Texas or anywhere else. It would be a GROSS \\n WASTE of money, and contribute almost NOTHING of \"scientific\" \\n value. \\n \\n Most physicists don\\'t realize it, but, according to the \\n comprehensive GENERAL UNIFIED Theory of the late Physicist \\n Dewey B. Larson, as described in his books, the strange GOOFY \\n particles (\"mesons\", \"hyperons\", ALLEGED \"quarks\", etc.) \\n which they are finding in EXISTING colliders (Fermi Lab, \\n Cern, etc.) are really just ATOMS of ANTI-MATTER, which are \\n CREATED by the high-energy colliding beams, and which quickly \\n disintegrate like cosmic rays because they are incompatible \\n with their environment. \\n \\n A larger and more expensive collider will ONLY create a \\n few more elements of anti-matter that the physicists have not \\n seen there before, and the physicists will be EVEN MORE \\n CONFUSED THAN THEY ARE NOW! \\n \\n Are a few more types of anti-matter atoms worth the $8.3 \\n BILLION cost?!! Don\\'t we have much more important uses for \\n this WASTED money?! \\n \\n \\n Another thing to consider is that the primary proposed \\n location in Texas has a serious and growing problem with some \\n kind of \"fire ants\" eating the insulation off underground \\n cables. How much POISONING of the ground and ground water \\n with insecticides will be required to keep the ants out of \\n the \"Supercollider\"?! \\n \\n \\n Naming the \"Super Collider\" after Ronald Reagon, as \\n proposed, is TOTALLY ABSURD! If it is built, it should be \\n named after a leading particle PHYSICIST. \\n \\n\\n\\n LARSONIAN Anti-Matter\\n \\n In Larson\\'s comprehensive GENERAL UNIFIED Theory of the \\n physical universe, anti-matter is NOT a simple case of \\n opposite charges of the same types of particles. It has more \\n to do with the rates of vibrations and rotations of the \\n photons of which they are made, in relation to the \\n vibrational and rotational equivalents of the speed of light, \\n which Larson calls \"Unit Velocity\" and the \"Natural Datum\". \\n \\n In Larson\\'s Theory, a positron is actually a particle of \\n MATTER, NOT anti-matter. When a positron and electron meet, \\n the rotational vibrations (charges) and rotations of their \\n respective photons (of which they are made) neutralize each \\n other. \\n \\n In Larson\\'s Theory, the ANTI-MATTER half of the physical \\n universe has THREE dimensions of TIME, and ONLY ONE dimension \\n of space, and exists in a RECIPROCAL RELATIONSHIP to our \\n MATERIAL half. \\n \\n\\n\\n LARSONIAN Relativity\\n \\n The perihelion point in the orbit of the planet Mercury \\n has been observed and precisely measured to ADVANCE at the \\n rate of 574 seconds of arc per century. 531 seconds of this \\n advance are attributed via calculations to gravitational \\n perturbations from the other planets (Venus, Earth, Jupiter, \\n etc.). The remaining 43 seconds of arc are being used to \\n help \"prove\" Einstein\\'s \"General Theory of Relativity\". \\n \\n But the late Physicist Dewey B. Larson achieved results \\n CLOSER to the 43 seconds than \"General Relativity\" can, by \\n INSTEAD using \"SPECIAL Relativity\". In one or more of his \\n books, he applied the LORENTZ TRANSFORMATION on the HIGH \\n ORBITAL SPEED of Mercury. \\n \\n Larson TOTALLY REJECTED \"General Relativity\" as another \\n MATHEMATICAL FANTASY. He also REJECTED most of \"Special \\n Relativity\", including the parts about \"mass increases\" near \\n the speed of light, and the use of the Lorentz Transform on \\n doppler shifts, (Those quasars with red-shifts greater than \\n 1.000 REALLY ARE MOVING FASTER THAN THE SPEED OF LIGHT, \\n although most of that motion is away from us IN TIME.). \\n \\n In Larson\\'s comprehensive GENERAL UNIFIED Theory of the \\n physical universe, there are THREE dimensions of time instead \\n of only one. But two of those dimensions can NOT be measured \\n from our material half of the physical universe. The one \\n dimension that we CAN measure is the CLOCK time. At low \\n relative speeds, the values of the other two dimensions are \\n NEGLIGIBLE; but at high speeds, they become significant, and \\n the Lorentz Transformation must be used as a FUDGE FACTOR. \\n [Larson often used the term \"COORDINATE TIME\" when writing \\n about this.] \\n \\n \\n In regard to \"mass increases\", it has been PROVEN in \\n atomic accelerators that acceleration drops toward zero near \\n the speed of light. But the formula for acceleration is \\n ACCELERATION = FORCE / MASS, (a = F/m). Orthodox physicists \\n are IGNORING the THIRD FACTOR: FORCE. In Larson\\'s Theory, \\n mass STAYS CONSTANT and FORCE drops toward zero. FORCE is \\n actually a MOTION, or COMBINATIONS of MOTIONS, or RELATIONS \\n BETWEEN MOTIONS, including INward and OUTward SCALAR MOTIONS. \\n The expansion of the universe, for example, is an OUTward \\n SCALAR motion inherent in the universe and NOT a result of \\n the so-called \"Big Bang\" (which is yet another MATHEMATICAL \\n FANTASY). \\n \\n \\n \\n THE UNIVERSE OF MOTION\\n\\n I wish to recommend to EVERYONE the book \"THE UNIVERSE \\n OF MOTION\", by Dewey B. Larson, 1984, North Pacific \\n Publishers, (P.O. Box 13255, Portland, Oregon 97213), 456 \\n pages, indexed, hardcover. \\n \\n It contains the Astrophysical portions of a GENERAL \\n UNIFIED Theory of the physical universe developed by that \\n author, an UNrecognized GENIUS, more than thirty years ago. \\n \\n It contains FINAL SOLUTIONS to most ALL Astrophysical \\n mysteries, including the FORMATION of galaxies, binary and \\n multiple star systems, and solar systems, the TRUE ORIGIN of \\n the \"3-degree\" background radiation, cosmic rays, and gamma-\\n ray bursts, and the TRUE NATURE of quasars, pulsars, white \\n dwarfs, exploding galaxies, etc.. \\n \\n It contains what astronomers and astrophysicists are ALL \\n looking for, if they are ready to seriously consider it with \\n OPEN MINDS! \\n \\n The following is an example of his Theory\\'s success: \\n In his first book in 1959, \"THE STRUCTURE OF THE PHYSICAL \\n UNIVERSE\", Larson predicted the existence of EXPLODING \\n GALAXIES, several years BEFORE astronomers started finding \\n them. They are a NECESSARY CONSEQUENCE of Larson\\'s \\n comprehensive Theory. And when QUASARS were discovered, he \\n had an immediate related explanation for them also. \\n \\n\\n \\n GAMMA-RAY BURSTS\\n\\n Astro-physicists and astronomers are still scratching \\n their heads about the mysterious GAMMA-RAY BURSTS. They were \\n originally thought to originate from \"neutron stars\" in the \\n disc of our galaxy. But the new Gamma Ray Telescope now in \\n Earth orbit has been detecting them in all directions \\n uniformly, and their source locations in space do NOT \\n correspond to any known objects, (except for a few cases of \\n directional coincidence). \\n \\n Gamma-ray bursts are a NECESSARY CONSEQUENCE of the \\n GENERAL UNIFIED Theory of the physical universe developed by \\n the late Physicist Dewey B. Larson. According to page 386 of \\n his book \"THE UNIVERSE OF MOTION\", published in 1984, the \\n gamma-ray bursts are coming from SUPERNOVA EXPLOSIONS in the \\n ANTI-MATTER HALF of the physical universe, which Larson calls \\n the \"Cosmic Sector\". Because of the relationship between the \\n anti-matter and material halves of the physical universe, and \\n the way they are connected together, the gamma-ray bursts can \\n pop into our material half anywhere in space, seemingly at \\n random. (This is WHY the source locations of the bursts do \\n not correspond with known objects, and come from all \\n directions uniformly.) \\n \\n I wonder how close to us in space a source location \\n would have to be for a gamma-ray burst to kill all or most \\n life on Earth! There would be NO WAY to predict one, NOR to \\n stop it! \\n \\n Perhaps some of the MASS EXTINCTIONS of the past, which \\n are now being blamed on impacts of comets and asteroids, were \\n actually caused by nearby GAMMA-RAY BURSTS! \\n \\n\\n\\n LARSONIAN Binary Star Formation\\n \\n About half of all the stars in the galaxy in the \\n vicinity of the sun are binary or double. But orthodox \\n astronomers and astrophysicists still have no satisfactory \\n theory about how they form or why there are so many of them. \\n \\n But binary star systems are actually a LIKELY \\n CONSEQUENCE of the comprehensive GENERAL UNIFIED Theory of \\n the physical universe developed by the late Physicist Dewey \\n B. Larson. \\n \\n I will try to summarize Larsons explanation, which is \\n detailed in Chapter 7 of his book \"THE UNIVERSE OF MOTION\" \\n and in some of his other books. \\n \\n First of all, according to Larson, stars do NOT generate \\n energy by \"fusion\". A small fraction comes from slow \\n gravitational collapse. The rest results from the COMPLETE \\n ANNIHILATION of HEAVY elements (heavier than IRON). Each \\n element has a DESTRUCTIVE TEMPERATURE LIMIT. The heavier the \\n element is, the lower is this limit. A star\\'s internal \\n temperature increases as it grows in mass via accretion and \\n absorption of the decay products of cosmic rays, gradually \\n reaching the destructive temperature limit of lighter and \\n lighter elements. \\n \\n When the internal temperature of the star reaches the \\n destructive temperature limit of IRON, there is a Type I \\n SUPERNOVA EXPLOSION! This is because there is SO MUCH iron \\n present; and that is related to the structure of iron atoms \\n and the atom building process, which Larson explains in some \\n of his books [better than I can]. \\n \\n When the star explodes, the lighter material on the \\n outer portion of the star is blown outward in space at less \\n than the speed of light. The heavier material in the center \\n portion of the star was already bouncing around at close to \\n the speed of light, because of the high temperature. The \\n explosion pushes that material OVER the speed of light, and \\n it expands OUTWARD IN TIME, which is equivalent to INWARD IN \\n SPACE, and it often actually DISAPPEARS for a while. \\n \\n Over long periods of time, both masses start to fall \\n back gravitationally. The material that had been blown \\n outward in space now starts to form a RED GIANT star. The \\n material that had been blown OUTWARD IN TIME starts to form a \\n WHITE DWARF star. BOTH stars then start moving back toward \\n the \"MAIN SEQUENCE\" from opposite directions on the H-R \\n Diagram. \\n \\n The chances of the two masses falling back into the \\n exact same location in space, making a single lone star \\n again, are near zero. They will instead form a BINARY \\n system, orbiting each other. \\n \\n According to Larson, a white dwarf star has an INVERSE \\n DENSITY GRADIENT (is densest at its SURFACE), because the \\n material at its center is most widely dispersed (blown \\n outward) in time. This ELIMINATES the need to resort to \\n MATHEMATICAL FANTASIES about \"degenerate matter\", \"neutron \\n stars\", \"black holes\", etc.. \\n \\n\\n\\n LARSONIAN Solar System Formation\\n\\n If the mass of the heavy material at the center of the \\n exploding star is relatively SMALL, then, instead of a single \\n white dwarf star, there will be SEVERAL \"mini\" white dwarf \\n stars (revolving around the red giant star, but probably \\n still too far away in three-dimensional TIME to be affected \\n by its heat, etc.). These will become PLANETS! \\n \\n In Chapter 7 of THE UNIVERSE OF MOTION, Larson used all \\n this information, and other principles of his comprehensive \\n GENERAL UNIFIED Theory of the physical universe, to derive \\n his own version of Bode\\'s Law. \\n \\n\\n\\n \"Black Hole\" FANTASY!\\n\\n I heard that physicist Stephen W. Hawking recently \\n completed a theoretical mathematical analysis of TWO \"black \\n holes\" merging together into a SINGLE \"black hole\", and \\n concluded that the new \"black hole\" would have MORE MASS than \\n the sum of the two original \"black holes\". \\n \\n Such a result should be recognized by EVERYone as a RED \\n FLAG, causing widespread DOUBT about the whole IDEA of \"black \\n holes\", etc.! \\n \\n After reading Physicist Dewey B. Larson\\'s books about \\n his comprehensive GENERAL UNIFIED Theory of the physical \\n universe, especially his book \"THE UNIVERSE OF MOTION\", it is \\n clear to me that \"black holes\" are NOTHING more than \\n MATHEMATICAL FANTASIES! The strange object at Cygnus X-1 is \\n just an unusually massive WHITE DWARF STAR, NOT the \"black \\n hole\" that orthodox astronomers and physicists so badly want \\n to \"prove\" their theory. \\n \\n \\n By the way, I do NOT understand why so much publicity is \\n being given to physicist Stephen Hawking. The physicists and \\n astronomers seem to be acting as if Hawking\\'s severe physical \\n problem somehow makes him \"wiser\". It does NOT! \\n \\n I wish the same attention had been given to Physicist \\n Dewey B. Larson while he was still alive. Widespread \\n publicity and attention should NOW be given to Larson\\'s \\n Theory, books, and organization (The International Society of \\n Unified Science). \\n \\n \\n \\n ELECTRO-MAGNETIC PROPULSION\\n\\n I heard of that concept many years ago, in connection \\n with UFO\\'s and unorthodox inventors, but I never was able to \\n find out how or why they work, or how they are constructed. \\n \\n I found a possible clue about why they might work on \\n pages 112-113 of the book \"BASIC PROPERTIES OF MATTER\", by \\n the late Physicist Dewey B. Larson, which describes part of \\n Larson\\'s comprehensive GENERAL UNIFIED Theory of the physical \\n universe. I quote one paragraph: \\n \\n \"As indicated in the preceding chapter, the development \\n of the theory of the universe of motion arrives at a totally \\n different concept of the nature of electrical resistance. \\n The electrons, we find, are derived from the environment. It \\n was brought out in Volume I [Larson\\'s book \"NOTHING BUT \\n MOTION\"] that there are physical processes in operation which \\n produce electrons in substantial quantities, and that, \\n although the motions that constitute these electrons are, in \\n many cases, absorbed by atomic structures, the opportunities \\n for utilizing this type of motion in such structures are \\n limited. It follows that there is always a large excess of \\n free electrons in the material sector [material half] of the \\n universe, most of which are uncharged. In this uncharged \\n state the electrons cannot move with respect to extension \\n space, because they are inherently rotating units of space, \\n and the relation of space to space is not motion. In open \\n space, therefore, each uncharged electron remains permanently \\n in the same location with respect to the natural reference \\n system, in the manner of a photon. In the context of the \\n stationary spatial reference system the uncharged electron, \\n like the photon, is carried outward at the speed of light by \\n the progression of the natural reference system. All \\n material aggregates are thus exposed to a flux of electrons \\n similar to the continual bombardment by photons of radiation. \\n Meanwhile there are other processes, to be discussed later, \\n whereby electrons are returned to the environment. The \\n electron population of a material aggregate such as the earth \\n therefore stabilizes at an equilibrium level.\" \\n \\n Note that in Larson\\'s Theory, UNcharged electrons are \\n also massLESS, and are basically photons of light of a \\n particular frequency (above the \"unit\" frequency) spinning \\n around one axis at a particular rate (below the \"unit\" rate). \\n (\"Unit velocity\" is the speed of light, and there are \\n vibrational and rotational equivalents to the speed of light, \\n according to Larson\\'s Theory.) [I might have the \"above\" and \\n \"below\" labels mixed up.] \\n \\n Larson is saying that outer space is filled with mass-\\n LESS UN-charged electrons flying around at the speed of \\n light! \\n \\n If this is true, then the ELECTRO-MAGNETIC PROPULSION \\n fields of spacecraft might be able to interact with these \\n electrons, or other particles in space, perhaps GIVING them a \\n charge (and mass) and shooting them toward the rear to \\n achieve propulsion. (In Larson\\'s Theory, an electrical charge \\n is a one-dimensional rotational vibration of a particular \\n frequency (above the \"unit\" frequency) superimposed on the \\n rotation of the particle.) \\n \\n The paragraph quoted above might also give a clue to \\n confused meteorologists about how and why lightning is \\n generated in clouds. \\n\\n\\n\\n SUPPRESSION of LARSONIAN Physics\\n\\n The comprehensive GENERAL UNIFIED Theory of the physical \\n universe developed by the late Physicist Dewey B. Larson has \\n been available for more than 30 YEARS, published in 1959 in \\n his first book \"THE STRUCTURE OF THE PHYSICAL UNIVERSE\". \\n \\n It is TOTALLY UN-SCIENTIFIC for Hawking, Wheeler, Sagan, \\n and the other SACRED PRIESTS of the RELIGION they call \\n \"science\" (or \"physics\", or \"astronomy\", etc.), as well as \\n the \"scientific\" literature and the \"education\" systems, to \\n TOTALLY IGNORE Larson\\'s Theory has they have. \\n \\n Larson\\'s Theory has excellent explanations for many \\n things now puzzling orthodox physicists and astronomers, such \\n as gamma-ray bursts and the nature of quasars. \\n \\n Larson\\'s Theory deserves to be HONESTLY and OPENLY \\n discussed in the physics, chemistry, and astronomy journals, \\n in the U.S. and elsewhere. And at least the basic principles \\n of Larson\\'s Theory should be included in all related courses \\n at UW-EC, UW-Madison, Cambridge, Cornell University, and \\n elsewhere, so that students are not kept in the dark about a \\n worthy alternative to the DOGMA they are being fed. \\n \\n \\n\\n For more information, answers to your questions, etc., \\n please consult my CITED SOURCES (especially Larson\\'s BOOKS). \\n\\n\\n\\n UN-altered REPRODUCTION and DISSEMINATION of this \\n IMPORTANT partial summary is ENCOURAGED. \\n\\n\\n Robert E. McElwaine\\n B.S., Physics and Astronomy, UW-EC\\n \\n\\n',\n", + " 'Subject: Technical Help Sought\\nFrom: jiu1@husc11.harvard.edu (Haibin Jiu)\\nOrganization: Harvard University Science Center\\nNntp-Posting-Host: husc11.harvard.edu\\nLines: 9\\n\\nHi! I am in immediate need for details of various graphics compression\\ntechniques. So if you know where I could obtain descriptions of algo-\\nrithms or public-domain source codes for such formats as JPEG, GIF, and\\nfractals, I would be immensely grateful if you could share the info with\\nme. This is for a project I am contemplating of doing.\\n\\nThanks in advance. Please reply via e-mail if possible.\\n\\n--hBJ\\n',\n", + " 'From: keith@hydra.unm.edu ()\\nSubject: Where can I AFFORD a Goldwing mirror?\\nOrganization: University of New Mexico, Albuquerque\\nLines: 9\\nDistribution: usa\\nNNTP-Posting-Host: hydra.unm.edu\\n\\nSearched without luck for a FAQ here. I need a left 85 Aspencade\\nmirror and Honda wants $75 for it. Now if this were another piece\\nof chrome to replace the black plastic that wings come so liberally\\nsupplied with I might be able to see that silly price, but a mirror\\nis a piece of SAFETY EQUIPMENT. The fact that Honda clearly places\\nconcern for their profits ahead of concern for my safety is enough\\nto convince me that this (my third) wing will likely be my last.\\nIn the mean time, anyboby have a non-ripoff source for a mirror?\\nkeith smith keith@hydra.unm.edu\\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 06/15 - Constants and Equations\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.constants_733694246\\nExpires: 6 May 1993 19:57:26 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 189\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/constants\\nLast-modified: $Date: 93/04/01 14:39:04 $\\n\\nCONSTANTS AND EQUATIONS FOR CALCULATIONS\\n\\n This list was originally compiled by Dale Greer. Additions would be\\n appreciated.\\n\\n Numbers in parentheses are approximations that will serve for most\\n blue-skying purposes.\\n\\n Unix systems provide the \\'units\\' program, useful in converting\\n between different systems (metric/English, etc.)\\n\\n NUMBERS\\n\\n\\t7726 m/s\\t (8000) -- Earth orbital velocity at 300 km altitude\\n\\t3075 m/s\\t (3000) -- Earth orbital velocity at 35786 km (geosync)\\n\\t6371 km\\t\\t (6400) -- Mean radius of Earth\\n\\t6378 km\\t\\t (6400) -- Equatorial radius of Earth\\n\\t1738 km\\t\\t (1700) -- Mean radius of Moon\\n\\t5.974e24 kg\\t (6e24) -- Mass of Earth\\n\\t7.348e22 kg\\t (7e22) -- Mass of Moon\\n\\t1.989e30 kg\\t (2e30) -- Mass of Sun\\n\\t3.986e14 m^3/s^2 (4e14) -- Gravitational constant times mass of Earth\\n\\t4.903e12 m^3/s^2 (5e12) -- Gravitational constant times mass of Moon\\n\\t1.327e20 m^3/s^2 (13e19) -- Gravitational constant times mass of Sun\\n\\t384401 km\\t ( 4e5) -- Mean Earth-Moon distance\\n\\t1.496e11 m\\t (15e10) -- Mean Earth-Sun distance (Astronomical Unit)\\n\\n\\t1 megaton (MT) TNT = about 4.2e15 J or the energy equivalent of\\n\\tabout .05 kg (50 gm) of matter. Ref: J.R Williams, \"The Energy Level\\n\\tof Things\", Air Force Special Weapons Center (ARDC), Kirtland Air\\n\\tForce Base, New Mexico, 1963. Also see \"The Effects of Nuclear\\n\\tWeapons\", compiled by S. Glasstone and P.J. Dolan, published by the\\n\\tUS Department of Defense (obtain from the GPO).\\n\\n EQUATIONS\\n\\n\\tWhere d is distance, v is velocity, a is acceleration, t is time.\\n\\tAdditional more specialized equations are available from:\\n\\n\\t ames.arc.nasa.gov:pub/SPACE/FAQ/MoreEquations\\n\\n\\n\\tFor constant acceleration\\n\\t d = d0 + vt + .5at^2\\n\\t v = v0 + at\\n\\t v^2 = 2ad\\n\\n\\tAcceleration on a cylinder (space colony, etc.) of radius r and\\n\\t rotation period t:\\n\\n\\t a = 4 pi**2 r / t^2\\n\\n\\tFor circular Keplerian orbits where:\\n\\t Vc\\t = velocity of a circular orbit\\n\\t Vesc = escape velocity\\n\\t M\\t = Total mass of orbiting and orbited bodies\\n\\t G\\t = Gravitational constant (defined below)\\n\\t u\\t = G * M (can be measured much more accurately than G or M)\\n\\t K\\t = -G * M / 2 / a\\n\\t r\\t = radius of orbit (measured from center of mass of system)\\n\\t V\\t = orbital velocity\\n\\t P\\t = orbital period\\n\\t a\\t = semimajor axis of orbit\\n\\n\\t Vc\\t = sqrt(M * G / r)\\n\\t Vesc = sqrt(2 * M * G / r) = sqrt(2) * Vc\\n\\t V^2 = u/a\\n\\t P\\t = 2 pi/(Sqrt(u/a^3))\\n\\t K\\t = 1/2 V**2 - G * M / r (conservation of energy)\\n\\n\\t The period of an eccentric orbit is the same as the period\\n\\t of a circular orbit with the same semi-major axis.\\n\\n\\tChange in velocity required for a plane change of angle phi in a\\n\\tcircular orbit:\\n\\n\\t delta V = 2 sqrt(GM/r) sin (phi/2)\\n\\n\\tEnergy to put mass m into a circular orbit (ignores rotational\\n\\tvelocity, which reduces the energy a bit).\\n\\n\\t GMm (1/Re - 1/2Rcirc)\\n\\t Re = radius of the earth\\n\\t Rcirc = radius of the circular orbit.\\n\\n\\tClassical rocket equation, where\\n\\t dv\\t= change in velocity\\n\\t Isp = specific impulse of engine\\n\\t Ve\\t= exhaust velocity\\n\\t x\\t= reaction mass\\n\\t m1\\t= rocket mass excluding reaction mass\\n\\t g\\t= 9.80665 m / s^2\\n\\n\\t Ve\\t= Isp * g\\n\\t dv\\t= Ve * ln((m1 + x) / m1)\\n\\t\\t= Ve * ln((final mass) / (initial mass))\\n\\n\\tRelativistic rocket equation (constant acceleration)\\n\\n\\t t (unaccelerated) = c/a * sinh(a*t/c)\\n\\t d = c**2/a * (cosh(a*t/c) - 1)\\n\\t v = c * tanh(a*t/c)\\n\\n\\tRelativistic rocket with exhaust velocity Ve and mass ratio MR:\\n\\n\\t at/c = Ve/c * ln(MR), or\\n\\n\\t t (unaccelerated) = c/a * sinh(Ve/c * ln(MR))\\n\\t d = c**2/a * (cosh(Ve/C * ln(MR)) - 1)\\n\\t v = c * tanh(Ve/C * ln(MR))\\n\\n\\tConverting from parallax to distance:\\n\\n\\t d (in parsecs) = 1 / p (in arc seconds)\\n\\t d (in astronomical units) = 206265 / p\\n\\n\\tMiscellaneous\\n\\t f=ma -- Force is mass times acceleration\\n\\t w=fd -- Work (energy) is force times distance\\n\\n\\tAtmospheric density varies as exp(-mgz/kT) where z is altitude, m is\\n\\tmolecular weight in kg of air, g is local acceleration of gravity, T\\n\\tis temperature, k is Bolztmann\\'s constant. On Earth up to 100 km,\\n\\n\\t d = d0*exp(-z*1.42e-4)\\n\\n\\twhere d is density, d0 is density at 0km, is approximately true, so\\n\\n\\t d@12km (40000 ft) = d0*.18\\n\\t d@9 km (30000 ft) = d0*.27\\n\\t d@6 km (20000 ft) = d0*.43\\n\\t d@3 km (10000 ft) = d0*.65\\n\\n\\t\\t Atmospheric scale height\\tDry lapse rate\\n\\t\\t (in km at emission level)\\t (K/km)\\n\\t\\t -------------------------\\t--------------\\n\\t Earth\\t 7.5\\t\\t\\t 9.8\\n\\t Mars\\t 11\\t\\t\\t 4.4\\n\\t Venus\\t 4.9\\t\\t\\t 10.5\\n\\t Titan\\t 18\\t\\t\\t 1.3\\n\\t Jupiter\\t 19\\t\\t\\t 2.0\\n\\t Saturn\\t 37\\t\\t\\t 0.7\\n\\t Uranus\\t 24\\t\\t\\t 0.7\\n\\t Neptune\\t 21\\t\\t\\t 0.8\\n\\t Triton\\t 8\\t\\t\\t 1\\n\\n\\tTitius-Bode Law for approximating planetary distances:\\n\\n\\t R(n) = 0.4 + 0.3 * 2^N Astronomical Units (N = -infinity for\\n\\t Mercury, 0 for Venus, 1 for Earth, etc.)\\n\\n\\t This fits fairly well except for Neptune.\\n\\n CONSTANTS\\n\\n\\t6.62618e-34 J-s (7e-34) -- Planck\\'s Constant \"h\"\\n\\t1.054589e-34 J-s (1e-34) -- Planck\\'s Constant / (2 * PI), \"h bar\"\\n\\t1.3807e-23 J/K\\t(1.4e-23) - Boltzmann\\'s Constant \"k\"\\n\\t5.6697e-8 W/m^2/K (6e-8) -- Stephan-Boltzmann Constant \"sigma\"\\n 6.673e-11 N m^2/kg^2 (7e-11) -- Newton\\'s Gravitational Constant \"G\"\\n\\t0.0029 m K\\t (3e-3) -- Wien\\'s Constant \"sigma(W)\"\\n\\t3.827e26 W\\t (4e26) -- Luminosity of Sun\\n\\t1370 W / m^2\\t (1400) -- Solar Constant (intensity at 1 AU)\\n\\t6.96e8 m\\t (7e8)\\t -- radius of Sun\\n\\t1738 km\\t\\t (2e3)\\t -- radius of Moon\\n\\t299792458 m/s\\t (3e8) -- speed of light in vacuum \"c\"\\n\\t9.46053e15 m\\t (1e16) -- light year\\n\\t206264.806 AU\\t (2e5) -- \\\\\\n\\t3.2616 light years (3)\\t -- --> parsec\\n\\t3.0856e16 m\\t (3e16) -- /\\n\\n\\nBlack Hole radius (also called Schwarzschild Radius):\\n\\n\\t2GM/c^2, where G is Newton\\'s Grav Constant, M is mass of BH,\\n\\t\\tc is speed of light\\n\\n Things to add (somebody look them up!)\\n\\tBasic rocketry numbers & equations\\n\\tAerodynamical stuff\\n\\tEnergy to put a pound into orbit or accelerate to interstellar\\n\\t velocities.\\n\\tNon-circular cases?\\n\\n\\nNEXT: FAQ #7/15 - Astronomical Mnemonics\\n',\n", + " 'From: B8HA \\nSubject: RE: Jews/Islam Dr. Frankenstien\\nLines: 99\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nSome of your article was cut off on the right margin, but I will try\\nand answer from what I can read.\\n\\nIn article kaveh@gate-koi.corp.sgi.com (Kaveh Smith ) writes:\\n>I have found Jewish people very imagentative and creative. Jewish religion was the foundation for Christianity and\\n>Islam. In other words Judaism has fathered both religions. Now Islam has turned against its father I may say.\\n>It is Ironic that after communizem threat is almost gone, religion wars are going to be on the raise.\\n>I thought the idea of believing on one God, was to Unite all man kind. How come both Jews and Islam which believe\\n>on the same God, \"the God of Ebrahim\" are killing each other? Is this like Dr. Frankenstien\\'s story?\\n>How are you going to stop this from happening? How are you going to deal with so many Muslims. Nuking them\\n>would distroy the whole world? Would God get mad, since you have killed his followers, you believe on the same\\n>God, same heaven and the same hell after all? What is the peacefull way of ending this Saga?\\n>\\nJudaism did not father Islam. We had many of the same prophets, but\\nJudaism ignores prophets later prophets including Jesus Christ (who\\nChristians and Muslims believe in) and Mohammed. The idea of believing\\nin one God should unite all peoples. However, note that Christianity\\nand Islam reflect the fact that there are people with different views\\nand the rights of non-Christians and non-Muslims are stated in each\\nreligion.\\n\\n\\n>Man kind needs religion, since it sets up the rules and the regulations which keeps the society in a healthy state.\\n>A religion is mostly a sets of rules which people have experienced and know it works for the society.\\n>The praying, keeps the sole healthy and meditates it. God does not care for man kinds pray, but man kind hopes\\n>that God will help him when he prays.\\n>Religion works mostly on the moral issues and trys to put away the materialistic things in the life. But the\\n>religious leaders need to make a living through religion? So they may corrupt it, or turn it to their own way to\\n>make their living. i.e Muslims have to pay %20 percent of their income to the Mullahs. I guess the rabie gets his\\n>cut too!\\n>\\nWe are supposed to pay 6% of our income after all necessities are\\npaid. Please note that this 6% is on a personal basis - if you are\\npoor, there is no need to pay (quite the contrary, this money most\\noften goes to the poor in each in country and to the poor Muslims\\naround the world). Also, this money is not required in the human\\nsense (i.e. a Muslim never knocks at your door to ask for money\\nand nobody makes a list at the mosque to make sure you have paid\\n(and we surely don\\'t pass money baskets around during our prayer\\nservices)).\\n\\n>Is in it that religion should be such that everybody on planet earth respects each other, be good toward each other\\n>helps one another, respect the mother nature. Is in that heaven and hell are created on earth through the acts\\n>that we take today? Is in it that within every man there is good and bad, he could choose either one, then he will\\n>see the outcome of his choice. How can we prevent man kind from going crazy over religion. How can we stop\\n>another religious killing field, under poor Gods name? What are your thoughts? Do you think man kind would\\n>to come its senses, before it is too late?\\n>\\n>\\n>P.S. on the side\\n>\\n>Do you think that Moses saw the God on mount Sina? Why would God go to top of the mountain? He created\\n>the earth, he could have been anywhere? why on top the mountain? Was it because people thought to see God\\n>you have to reach to the skies/heavens? Why God kept coming back to Middle East? Was it because they created\\n>God through their imagination? Is that why Jewish people were told by God, they were the chosen ones?\\n>\\nGod\\'s presence is certainly on Earth, but since God is everywhere,\\nGod may show signs of existence in other places as well. We can not\\nsay for sure where God has shown signs of his existence and where\\nhe has not/.\\n\\n>Profit Mohammad was married to Khadijeh. She was a Jewish. She taught him how to trade. She probably taught\\n>him about Judaism. Quran is mostly copy right of Taurah (sp? old testement). Do you think God wrote Quran?\\n>Makeh was a trade city before Islam. Do you think it was made to be the center of Islamic world because Mohammad\\n>wanted to expand his trade business? Is that why God has put his house in there?\\n>\\nThe Qur\\'an is not a copyright of the Taurah. Muslims believe that\\nthe Taurah, the Bible, and the Qur\\'an originally contained much the same\\nmessage, thus the many similiarities. However, the Taurah and the\\nBible have been \\'translated\\' into other languages which has changed\\ntheir meaning over time (a translation also reflects some of the\\npersonal views of the translator(s). The Qur\\'an still exists in the\\nsame language that it was revealed in - Arabic. Therefore, we know\\nthat mankind has not changed its meaning. It is truly what was revealed\\nto Mohammed at that time. There are many scientific facts which\\nwere not discovered by traditional scientific methods until much later\\nsuch as the development of the baby in the mother\\'s womb.\\n\\n\\n>I think this religious stuff has gone too far. All man kind are going to hurt from it if they do not wise up.\\n>Look at David Koresh, how that turned out? I am afraid in the bigger scale, the Jews and the Muslims will\\n>have the same ending!!!!!!!!\\n>\\nOnly God knows for sure how it will turn out. I hope it won\\'t, but if\\nthat happens, it was the will of God.\\n\\n>Religion is needed in the sense to keep people in harmony and keep them doing good things, rather than\\n>plotting each others distruction. There is one earth, One life and one God. Let\\'s all man kind be good toward\\n>each other.\\n>\\n>God help us all.\\n>Peace\\n>.\\n>.\\nPlease send this mail to me again so I can read the rest of what\\nyou said. And yes, may God help us all.\\n\\nSteve\\n\\n',\n", + " \"From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Commercial mining activities on the moon\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 10\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article , steinly@topaz.ucsc.edu (Steinn Sigurdsson) writes:\\n\\n>Very cost effective if you use the right accounting method :-)\\n\\nSherzer Methodology!!!!!!\\n\\n\\n\\n Software engineering? That's like military intelligence, isn't it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\",\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: space food sticks\\nOrganization: Express Access Online Communications USA\\nLines: 9\\nNNTP-Posting-Host: access.digex.net\\nKeywords: food\\n\\ndillon comments that Space Food Sticks may have bad digestive properties.\\n\\nI don't think so. I think most NASA food products were designed to\\nbe low fiber 'zero-residue' products so as to minimize the difficulties\\nof waste disposal. I'd doubt they'd deploy anything that caused whole sale\\nGI distress. There aren't enough plastic baggies in the world for\\na bad case of GI disease.\\n\\npat\\n\",\n", + " 'From: mogal@deadhead.asd.sgi.com (Joshua Mogal)\\nSubject: Re: Hollywood Hits, Virtual Reality\\nOrganization: Silicon Graphics, Inc.\\nLines: 137\\nNNTP-Posting-Host: deadhead.asd.sgi.com\\n\\nSorry I missed you Raymond, I was just out in Dahlgren last month...\\n\\nI\\'m the Virtual Reality market manager for Silicon Graphics, so perhaps I\\ncan help a little.\\n\\nIn article <1993Mar17.185725.13487@relay.nswc.navy.mil>,\\nrchui@nswc-wo.nswc.navy.mil (Raymond Chui) writes:\\n|> Hello, the real reality. Our agency started to express interest in\\n|> virtual reality(VR). So far, we do not know much about VR. All we\\n|> know about are the Hollywood movies \"The Terminater 2\" and \"Lawnmover\\n|> Man\". We also know something about VR from ABC news magazine and\\n|> Computer Graphics World magazine.\\n\\n\\nUnfortunately, while SGI systems were used to create the special effects\\nfor both Terminator 2 and Lawnmower Man, those are film-quality computer\\ngraphics, rendered in software and written to film a frame at a time. Each\\nframe of computer animation for those films took hours to render on\\nhigh-end parallel processing computer systems. Thus, that level of graphics\\nwould be difficult, if not impossible, to acheive in real time (30 frames\\nper second).\\n\\n\\n|> \\n|> We certainly want to know more about VR. Who are the leading\\n|> companies,\\n|> agencies, universities? What machines support VR (i.e. SGI, Sun4,\\n|> HP-9000, BIM-6000, etc.)?\\n\\n\\nIt depends upon how serious you are and how advanced your application is.\\nTrue immersive visualization (VR), requires the rendering of complex visual\\ndatabases at anywhere from 20 to 60 newly rendered frames per second. This\\nis a similar requirement to that of traditional flight simulators for pilot\\ntraining. If the frame rate is too low, the user notices the stepping of\\nthe frames as they move their head rapidly around the scene, so the motion\\nof the graphics is not smooth and contiguous. Thus the graphics system\\nmust be powerful enough to sustain high frame rates while rendering complex\\ndata representations.\\n\\nAdditionally, the frame rate must be constant. If the system renders 15\\nframes per second at one point, then 60 frames per second the next (perhaps\\ndue to the scene in the new viewing direction being simpler than what was\\nvisible before), the user can get heavily distracted by the medium (the\\ngraphics computer) rather than focusing on the data. To maintain a constant\\nframe rate, the system must be able to run in real-time. UNIX in general\\ndoes not support real-time operation, but Silicon Graphics has modified the\\nUNIX kernel for its multi-processor systems to be able to support real-time\\noperation, bypassing the usual UNIX process priority-management schemes. \\nUniprocessor systems running UNIX cannot fundamentally support real-time\\noperation (not Sun SPARC10, not HP 700 Series systems, not IBM RS-6000, not\\neven SGI\\'s uniprocessor systems like Indigo or Crimson). Only our\\nmultiprocessor Onyx and Challenge systems support real-time operation due\\nto their Symmetric Multi-Processing (SMP) shared-memory architecture.\\n\\nFrom a graphics perspective, rendering complex virtual environments\\nrequires advanced rendering techniques like texture mapping and real-time\\nmulti-sample anti-aliasing. Of all of the general purpose graphics systems\\non the market today, only Crimson RealityEngine and Onyx RealityEngine2\\nsystems fully support these capabilities. The anti-aliasing is particularly\\nimportant, as the crawling jagged edges of aliased polygons is an\\nunfortunate distraction when immersed in a virtual environment.\\n\\n\\n|> What kind of graphics languages are used with VR\\n|> (GL, opengl, Phigs, PEX, GKS, etc.)?\\n\\nYou can use the general purpose graphics libraries listed above to develop\\nVR applications, but that is starting at a pretty low level. There are\\noff-the- shelf software packages available to get you going much faster,\\nbeing targeted directly at the VR application developer. Some of the most\\npopular are (in no particular order):\\n\\n\\t- Division Inc.\\t\\t (Redwood City, CA) - dVS\\n\\t- Sens8 Inc.\\t\\t (Sausalito, CA) - WorldToolKit\\n\\t- Naval Postgraduate School (Monterey, CA) - NPSnet (FREE!)\\n\\t- Gemini Technology Corp (Irvine, CA) - GVS Simation Series\\n\\t- Paradigm Simulation Inc. (Dallas, TX) - VisionWorks, AudioWorks\\n\\t- Silicon Graphics Inc.\\t (Mountain View,CA) - IRIS Performer\\n\\nThere are some others, but not off the top of my head...\\n\\n\\t\\n|> What companies are making\\n|> interface devices for VR (goggles or BOOM (Binocular Omni-Orientational\\n|> Monitor), hamlets, gloves, arms, etc.)?\\n\\nThere are too many to list here, but here is a smattering:\\n\\n\\t- Fake Space Labs\\t (Menlo Park,CA) - BOOM\\n\\t- Virtual Technologies Inc. (Stanford, CA) - CyberGlove\\n\\t- Digital Image Design\\t (New York, NY) - The Cricket (3D input)\\n\\t- Kaiser Electro Optics\\t (Carlsbad, CA) - Sim Eye Helmet Displays\\n\\t- Virtual Research\\t (Sunnyvale, CA) - Flight Helmet display\\n\\t- Virtual Reality Inc.\\t (Pleasantville,NY) - Head Mtd Displays, s/w\\n\\t- Software Systems\\t (San Jose, CA) - 3D Modeling software\\n\\t- etc., etc., etc.\\n\\n\\n|> What are those company\\'s\\n|> addresses and phone numbers? Where we can get a list name of VR\\n|> experts\\n|> and their phone numbers and Email addresses?\\n\\n\\nRead some of the VR books on the market:\\n\\n\\t- Virtual Reality - Ken Pimental and Ken Texiera (sp?)\\n\\t- Virtual Mirage\\n\\t- Artificial Reality - Myron Kreuger\\n\\t- etc.\\n\\nOr check out the newsgroup sci.virtual_worlds\\n\\nFeel free to contact me for more info.\\n\\nRegards,\\n\\nJosh\\n\\n-- \\n\\n\\n**************************************************************************\\n**\\t\\t\\t\\t **\\t\\t\\t\\t\\t**\\n**\\tJoshua Mogal\\t\\t **\\tProduct Manager\\t\\t\\t**\\n**\\tAdvanced Graphics Division **\\t Advanced Graphics Systems\\t**\\n**\\tSilicon Graphics Inc.\\t **\\tMarket Manager\\t\\t\\t**\\n**\\t2011 North Shoreline Blvd. **\\t Virtual Reality\\t\\t**\\n**\\tMountain View, CA 94039-7311 **\\t Interactive Entertainment\\t**\\n**\\tM/S 9L-580\\t\\t **\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t *************************************\\n**\\tTel:\\t(415) 390-1460\\t\\t\\t\\t\\t\\t**\\n**\\tFax:\\t(415) 964-8671\\t\\t\\t\\t\\t\\t**\\n**\\tE-mail:\\tmogal@sgi.com\\t\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t\\t\\t\\t\\t\\t**\\n**************************************************************************\\n',\n", + " \"From: amehdi@src.honeywell.com (Hossien Amehdi)\\nSubject: Re: was: Go Hezbollah!!\\nNntp-Posting-Host: tbilisi.src.honeywell.com\\nOrganization: Honeywell Systems & Research Center\\nLines: 26\\n\\nIn article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>\\n>What the hell do you know about Israeli policy? What gives you the fiat\\n>to look into the minds of Israeli generals? Has this 'policy of intimidation'\\n>been published somewhere? For your information, the actions taken by Arabs,\\n>specifically the PLO, were not uncommon in the Lebanon Campaign of 1982. My\\n>brain is full of shit? At least I don't look into the minds of others and \\n>make Israeli policy for them!\\n>\\n... deleted\\n\\nI am not in the business of reading minds, however in this case it would not\\nbe necessary. Israelis top leaders in the past and present, always come across\\nas arrogant with their tough talks trying to intimidate the Arabs. \\n\\nThe way I see it, Israelis and Arabs have not been able to achieve peace\\nafter almost 50 years of fighting because of the following two major reasons:\\n\\n 1) Arab governments are not really representative of their people, currently\\n most of their leaders are stupid, and/or not independent, and/or\\n dictators.\\n\\n 2) Israeli government is arrogant and none comprising.\\n\\n\\n\\n\",\n", + " 'From: mlee@eng.sdsu.edu (Mike Lee)\\nSubject: MPEG for x-windows MONO needed.\\nOrganization: San Diego State University Computing Services\\nLines: 4\\nNNTP-Posting-Host: eng.sdsu.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nHello, and thank you for reading this request. I have a Mpeg viewer for x-windows and it did not run because I was running it on a monochrome monitor. I need the mono-driver for mpeg_play. \\n\\nPlease post the location of the file or better yet, e-mail me at mlee@eng.sdsu.edu.\\n\\n',\n", + " 'From: jaeger@buphy.bu.edu (Gregg Jaeger)\\nSubject: Re: An Anecdote about Islam\\nOrganization: Boston University Physics Department\\nLines: 117\\n\\nIn article <16BB112949.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n>In article <115287@bu.edu> jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n\\n \\n>>>>>A brutal system filtered through \"leniency\" is not lenient.\\n\\n\\n>>>>Huh?\\n\\n\\n>>>How do you rate public floggings or floggings at all? Chopping off the\\n>>>hands, heads, or other body parts? What about stoning?\\n\\n\\n>>I don\\'t have a problem with floggings, particularly, when the offenders\\n>>have been given a chance to change their behavior before floggings are\\n>>given. I do have a problem with maiming in general, by whatever means.\\n>>In my opinion no-one who has not maimed another should be maimed. In\\n>>the case of rape the victim _is_ maimed, physically and emotionally,\\n>>so I wouldn\\'t have a problem with maiming rapists. Obviously I wouldn\\'t\\n>>have a problem with maiming murderers either.\\n\\n\\n>May I ask if you had the same opinion before you became a Muslim?\\n\\n\\n\\nSure. Yes, I did. You see I don\\'t think that rape and murder should\\nbe dealt with lightly. You, being so interested in leniency for\\nleniency\\'s sake, apparently think that people should simply be\\ntold the \"did a _bad_ thing.\"\\n\\n\\n>And what about the simple chance of misjudgements?\\n\\nMisjudgments should be avoided as much as possible.\\nI suspect that it\\'s pretty unlikely that, given my requirement\\nof repeated offenses, that misjudgments are very likely.\\n\\n \\n>>>>>>\"Orient\" is not a place having a single character. Your ignorance\\n>>>>>>exposes itself nicely here.\\n\\n\\n>>>>>Read carefully, I have not said all the Orient shows primitive machism.\\n\\n\\n>>>>Well then, why not use more specific words than \"Orient\"? Probably\\n>>>>because in your mind there is no need to (it\\'s all the same).\\n\\n\\n>>>Because it contains sufficient information. While more detail is possible,\\n>>>it is not necessary.\\n\\n\\n>>And Europe shows civilized bullshit. This is bullshit. Time to put out\\n>>or shut up. You\\'ve substantiated nothing and are blabbering on like\\n>>\"Islamists\" who talk about the West as the \"Great Satan.\" You\\'re both\\n>>guilty of stupidities.\\n\\n\\n>I just love to compare such lines to the common plea of your fellow believers\\n>not to call each others names. In this case, to substantiate it: The Quran\\n>allows that one beATs one\\'s wife into submission. \\n\\n\\nReally? Care to give chapter and verse? We could discuss it.\\n\\n\\n>Primitive Machism refers to\\n>that. (I have misspelt that before, my fault).\\n \\n\\nAgain, not all of the Orient follows the Qur\\'an. So you\\'ll have to do\\nbetter than that.\\n\\n\\nSorry, you haven\\'t \"put out\" enough.\\n\\n \\n>>>Islam expresses extramarital sex. Extramarital sex is a subset of sex. It is\\n>>>suppressedin Islam. That marial sexis allowed or encouraged in Islam, as\\n>>>it is in many branches of Christianity, too, misses the point.\\n\\n>>>Read the part about the urge for sex again. Religions that run around telling\\n>>>people how to have sex are not my piece of cake for two reasons: Suppressing\\n>>>a strong urge needs strong measures, and it is not their business anyway.\\n\\n>>Believe what you wish. I thought you were trying to make an argument.\\n>>All I am reading are opinions.\\n \\n>It is an argument. That you doubt the validity of the premises does not change\\n>it. If you want to criticize it, do so. Time for you to put up or shut up.\\n\\n\\n\\nThis is an argument for why _you_ don\\'t like religions that suppress\\nsex. A such it\\'s an irrelevant argument.\\n\\nIf you\\'d like to generalize it to an objective statement then \\nfine. My response is then: you have given no reason for your statement\\nthat sex is not the business of religion (one of your \"arguments\").\\n\\nThe urge for sex in adolescents is not so strong that any overly strong\\nmeasures are required to suppress it. If the urge to have sex is so\\nstrong in an adult then that adult can make a commensurate effort to\\nfind a marriage partner.\\n\\n\\n\\nGregg\\n\\n\\n\\n\\n\\n\\n',\n", + " \"From: cpr@igc.apc.org (Center for Policy Research)\\nSubject: Ten questions about Israel\\nLines: 55\\nNf-ID: #N:cdp:1483500349:000:1868\\nNf-From: cdp.UUCP!cpr Apr 19 14:38:00 1993\\n\\n\\nFrom: Center for Policy Research \\nSubject: Ten questions about Israel\\n\\n\\nTen questions to Israelis\\n-------------------------\\n\\nI would be thankful if any of you who live in Israel could help to\\nprovide\\n accurate answers to the following specific questions. These are\\nindeed provocative questions but they are asked time and again by\\npeople around me.\\n\\n1. Is it true that the Israeli authorities don't recognize\\nIsraeli nationality ? And that ID cards, which Israeli citizens\\nmust carry at all times, identify people as Jews or Arabs, not as\\nIsraelis ?\\n\\n2. Is it true that the State of Israel has no fixed borders\\nand that Israeli governments from 1948 until today have refused to\\nstate where the ultimate borders of the State of Israel should be\\n?\\n\\n3. Is it true that Israeli stocks nuclear weapons ? If so,\\ncould you provide any evidence ?\\n\\n4. Is it true that in Israeli prisons there are a number of\\nindividuals which were tried in secret and for which their\\nidentities, the date of their trial and their imprisonment are\\nstate secrets ?\\n\\n5. Is it true that Jews who reside in the occupied\\nterritories are subject to different laws than non-Jews?\\n\\n6. Is it true that Jews who left Palestine in the war 1947/48\\nto avoid the war were automatically allowed to return, while their\\nChristian neighbors who did the same were not allowed to return ?\\n\\n7. Is it true that Israel's Prime Minister, Y. Rabin, signed\\nan order for ethnical cleansing in 1948, as is done today in\\nBosnia-Herzegovina ?\\n\\n8. Is it true that Israeli Arab citizens are not admitted as\\nmembers in kibbutzim?\\n\\n9. Is it true that Israeli law attempts to discourage\\nmarriages between Jews and non-Jews ?\\n\\n10. Is it true that Hotel Hilton in Tel Aviv is built on the\\nsite of a muslim cemetery ?\\n\\nThanks,\\n\\nElias Davidsson Iceland email: elias@ismennt.is\\n\",\n", + " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 42\\n\\nIn <1qjahh$mrs@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) \\nwrites:\\n\\n>In article pww@spacsun.rice.edu \\n(Peter Walker) writes:\\n>#In article <1qie61$fkt@horus.ap.mchp.sni.de>, frank@D012S658.uucp (Frank\\n>#O\\'Dwyer) wrote:\\n>#> Objective morality is morality built from objective values.\\n>#\\n>#But where do those objective values come from? How can we measure them?\\n>#What mediated thair interaction with the real world, a moralon? Or a scalar\\n>#valuino field?\\n\\n>Science (\"the real world\") has its basis in values, not the other way round, \\n>as you would wish it. If there is no such thing as objective value, then \\n>science can not objectively be said to be more useful than a kick in the head.\\n>Simple theories with accurate predictions could not objectively be said\\n>to be more useful than a set of tarot cards. You like those conclusions?\\n>I don\\'t.\\n\\n>#And how do we know they exist in the first place?\\n\\n>One assumes objective reality, one doesn\\'t know it. \\n\\n>-- \\n>Frank O\\'Dwyer \\'I\\'m not hatching That\\'\\n>odwyer@sse.ie from \"Hens\", by Evelyn Conlon\\n\\nHow do we measure truth, beauty, goodness, love, friendship, trust, honesty, \\netc.? If things have no basis in objective fact then aren\\'t we limited in what\\nwe know to be true? Can\\'t we say that we can examples or instances of reason,\\nbut cannot measure reason, or is that semantics?\\n\\nMAC\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", + " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: rec\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 9\\n\\n>>>>> On 19 Apr 93 21:48:42 GMT, xlyx@vax5.cit.cornell.edu said:\\n> Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\n\\tYes, but the _rear_ wheel comes off the ground, not the front.\\n See, it just HOPS into the air! Figure.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: Gospel Dating\\nOrganization: Case Western Reserve University\\nLines: 26\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1993Apr6.021635.20958@wam.umd.edu> west@next02cville.wam.umd.edu (Stilgar) writes:\\n\\n>Fine... THE ILLIAD IS THE WORD OF GOD(tm) (disputed or not, it is)\\n>\\n>Dispute that. It won\\'t matter. Prove me wrong.\\n\\n\\tThe Illiad contains more than one word. Ergo: it can not be\\nthe Word of God. \\n\\n\\tBut, if you will humbly agree that it is the WORDS of God, I \\nwill conceed.\\n\\n\\t:-D\\n\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n\\n',\n", + " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Ontario Hydro - Research Division\\nLines: 12\\n\\nIn article <1993Apr15.200857.10631@adobe.com> cjackson@adobe.com (Curtis Jackson) writes:\\n>\\n>So perhaps it is only *some* waterski bikes on which one countersteers...\\n\\nA Sea Doo is a boat. It turns by changing the angle of the duct behind the\\npropeller. A waterski bike looks like a motorcycle but has a ski where each\\nwheel should be. Its handlebars are connected through a familiar looking\\nsteering head to the front ski. It handles like a motorcycle.\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", + " \"From: ukrphil@prlhp1.prl.philips.co.uk (M.J.Phillips)\\nSubject: Re: Rumours about 3DO ???\\nReply-To: ukrphil@prlhp1.UUCP (M.J.Phillips)\\nOrganization: Philips Research Laboratories, Redhill, UK\\nLines: 7\\n\\nThe 68070 _does_ exist. It's number was licensed to Philips to make their\\nown variant. This chip includes extra featurfes such as more I/O ports, \\nI2C bus... making it more microcontroller like.\\n\\nBecause of the confusion with numbering (!), Philips other products in the\\n[range with the 68??? core have been given differend numbers like PCF...\\nor PCD7.. or something.\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Turkish Government Agents on UseNet Lie Through Their Teeth!\\nArticle-I.D.: urartu.1993Apr15.204512.11971\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 63\\n\\nIn revision of history <9304131827@zuma.UUCP> as posted by Turkish Government\\nAgents under the guise of sera@zuma.UUCP (Serdar Argic) LIE in response to\\narticle <1993Apr13.033213.4148@urartu.sdpa.org> hla@urartu.sdpa.org and\\nscribed: \\n\\n[(*] Orhan Gunduz is blown up. Gunduz receives an ultimatum: Either \\n[(*] he gives up his honorary position or he will be \"executed\". He \\n[(*] refuses. \"Responsibility\" is claimed by JCAG and SDPA.\\n\\n[(*] May 4, 1982 - Cambridge, Massachusetts\\n[(*]\\tOrhan Gunduz, the Turkish honorary consul in Boston, would not bow \\n[(*]\\tto the Armenian terrorist ultimatum that he give up his title of \\n[(*]\\t\"honorary consul\". Now he is attacked and murdered in cold blood.\\n[(*]\\tPresident Reagan orders an all-out manhunt-to no avail. An eye-\\n[(*]\\twitness who gave a description of the murderer is shot down. He \\n[(*]\\tsurvives... but falls silent. One of the most revolting \"triumphs\" in \\n[(*]\\tthe senseless, mindless history of Armenian terrorism. Such a murder \\n[(*]\\tbrings absolutely nothing - except an ego boost for the murderer \\n[(*]\\twithin the Armenian terrorist underworld, which is already wallowing \\n[(*]\\tin self-satisfaction.\\n[(*] \\n[(*] Were you involved in the murder of Sarik Ariyak? \\n\\n[(*] \\tDecember 17, 1980 - Sydney\\n[(*]\\tTwo Nazi Armenians massacre Sarik Ariyak and his bodyguard, Engin \\n[(*] Sever. JCAG and SDPA claim responsibility.\\n\\nMr. Turkish Governmental Agent: prove that the SDPA even existed in 1980 or\\n1982! Go ahead, provide us the newspaper accounts of the assassinations and \\nshow us the letters SDPA! The Turkish government is good at excising text from\\ntheir references, let\\'s see how good thay are at adding text to verifiable \\nnewspaper accounts! \\n\\nThe Turkish government can\\'t support any of their anti-Armenian claims as\\ntypified in the above scribed garbage! That government continues to make \\nfalse and libelous charges for they have no recourse left after having made \\nfools out of through their attempt at a systematic campaign at denying and \\ncovering up the Turkish genocide of the Armenians. \\n\\nJust like a dog barking at a moving bus, it barks, jumps, yells, until the\\nbus stops, at which point it just walks away! Such will be with this posting!\\nTurkish agents level the most ridiculous charges, and when brought to answer, \\nthey are silent, like the dog after the bus stops!\\n\\nThe Turkish government feels it can funnel a heightened state of ultra-\\nnationalism existing in Turkey today onto UseNet and convince people via its \\nrevisionist, myopic, and incidental view of themselves and their place in the \\nworld. \\n\\nThe resulting inability to address Armenian and Greek refutations of Turkey`s\\nre-write of history is to refer to me as a terrorist, and worse, claim --\\nas part of the record -- I took responsibility for the murder of 2 people!\\n\\nWhat a pack of raging fools, blinded by anti-Armenian fascism. It\\'s too bad\\nthe socialization policies of the Republic of Turkey requires it to always \\nfind non-Turks to de-humanize! Such will be their downfall! \\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: apryan@vax1.tcd.ie\\nSubject: Order MOORE\\'s book to restore Great Telescope\\nLines: 41\\nNntp-Posting-Host: vax1.tcd.ie\\nOrganization: Trinity College Dublin\\nLines: 41\\n\\nSeveral people have enquired about the availability of the book about the\\nGreat 72\" reflector built at Birr Castle, Ireland in 1845 which remained the\\nlargest in the world until the the start of the 20th century.\\n\\n\"The Astronomy of Birr Castle\" was written by Patrick Moore who now sits on\\nthe committee which is going to restore the telescope. (The remains are on\\npublic display all year round - the massive support walls, the 60 foot long\\ntube, and other bits and pieces). This book is the definitivie history of\\nhow one man, the Third Earl of Rosse, pulled off the most impressive\\ntechnical achievement, perhaps ever, in the history of the telescope, and\\nthe discoveries made with the instrument.\\n\\nPatrick Moore is donating all proceeds from the book\\'s sale to help restore\\nthe telescope. Astronomy Ireland is making the book available world wide by\\nmail order. It\\'s a fascinating read and by ordering a copy you bring the day\\nwhen we can all look through it once again that little bit nearer.\\n\\n=====ORDERING INFORMATION=====\\n\"The Astronomy of Birr Castle\" Dr. Patrick Moore, xii, 90pp, 208mm x 145mm.\\nPrice:\\nU.S.: US$4.95 + US$2.95 post & packing (add $3.50 airmail)\\nU.K. (pounds sterling): 3.50 + 1.50 post & packing\\nEUROPE (pounds sterling): 3.50 + 2.00 post and packing\\nREST OF WORLD: as per U.S. but funds payable in US$ only.\\n\\nPAYMENT:\\nMake all payments to \"Astronomy Ireland\".\\nCREDIT CARD: MASTERCARD/VISA/EUROCARD/ACCESS accepted by email or snail\\nmail: give card number, name & address, expiration date, and total amount.\\nPayments otherwise must be by money order or bank draft.\\nSend to our permanent address: P.O.Box 2888, Dublin 1, Ireland.\\n\\nYou can also subscribe to \"Astronomy & Space\" at the same time. See below:\\n----------------------------------------------------------------------------\\nTony Ryan, \"Astronomy & Space\", new International magazine, available from:\\n Astronomy Ireland, P.O.Box 2888, Dublin 1, Ireland.\\n6 issues (one year sub.): UK 10.00 pounds, US$20 surface (add US$8 airmail).\\nACCESS/VISA/MASTERCARD accepted (give number, expiration date, name&address).\\n\\n (WORLD\\'S LARGEST ASTRO. SOC. per capita - unless you know better? 0.033%)\\nTel: 0891-88-1950 (UK/N.Ireland) 1550-111-442 (Eire). Cost up to 48p per min\\n',\n", + " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 30\\n\\nIn article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>The readers of this forum seemed to be more interested in the contents\\n>of those files.\\n>So It will be nice if Yigal will tell us:\\n>1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\nADL authorities seem to view a lot of people as dangerous, including\\nthe millions of Americans of Arab ancestry. Perhaps you can answer\\nthe question as to why the ADL maintained files and spied on ADC members\\nin California (and elsewhere??)? Friendly rivalry perhaps?\\n\\nPerhaps Yigal is a Greenpeace member? Or the NAACP? Or a reporter? \\nOr a member of any of the dozens of other political organizations/ethnic \\nminorities/occupations that the ADL spied on.\\n\\n>2. Why does the ADL have an interest in that person ?\\n\\nParanoia?\\n\\n>3. If one does trust either the US government or the ADL what an\\n> additional information should he send them ?\\n\\nThe names of half the posters on this forum, unless they already \\nhave them.\\n\\n>\\n>\\n>Gideon Ehrlich\\n\\n-anwar\\n',\n", + " 'From: wats@scicom.AlphaCDC.COM (Bruce Watson)\\nSubject: Quotation Was:(Re: , nerone@ccwf.cc.utexas.edu (Michael Nerone) writes:\\n|> In article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n|> \\n|> CH> Concerning the proposed newsgroup split, I personally am not in\\n|> CH> favor of doing this. I learn an awful lot about all aspects of\\n|> CH> graphics by reading this group, from code to hardware to\\n|> CH> algorithms. I just think making 5 different groups out of this\\n|> CH> is a wate, and will only result in a few posts a week per group.\\n|> CH> I kind of like the convenience of having one big forum for\\n|> CH> discussing all aspects of graphics. Anyone else feel this way?\\n|> CH> Just curious.\\n|> \\n|> I must agree. There is a dizzying number of c.s.amiga.* newsgroups\\n|> already. In addition, there are very few issues which fall cleanly\\n|> into one of these categories.\\n|> \\n|> Also, it is readily observable that the current spectrum of amiga\\n|> groups is already plagued with mega-crossposting; thus the group-split\\n|> would not, in all likelihood, bring about a more structured\\n|> environment.\\n|> \\n|> --\\n|> /~~~~~~~~~~~~~~~~~~~\\\\/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\\\\\n|> / Michael Nerone \\\\\"I shall do so with my customary lack of tact; and\\\\\\n|> / Internet Address: \\\\since you have asked for this, you will be obliged\\\\\\n|> /nerone@ccwf.cc.utexas.edu\\\\to pardon it.\"-Sagredo, fictional char of Galileo.\\\\\\n\\nHi,\\nIt might be nice to know, what\\'s possible on different hard ware platforms.\\nBut usually the hard ware is fixed ( in my case either Unix or DOS- PC ).\\nSo I\\'m not much interested in Amiga news. \\n\\nIn the case of Software, I won\\'t get any comercial software mentioned in this\\nnewgroup to run on a Unix- platform, so I\\'m not interested in this information.\\n\\nI would suggest to split the group. I don\\'t see the problem of cross-posting.\\nThen you need to read just 2 newgroups with half the size. \\n\\nBUT WHAT WOULD BE MORE IMPORTANT IS TO HAVE A FAQ. THIS WOULD REDUCE THE\\nTRAFFIC A LOT.\\n\\nSincerely, Gerhard\\n-- \\nI\\'m writing this as a privat person, not reflecting any opinions of the Inst.\\nof Hydromechanics, the University of Karlsruhe, the Land Baden-Wuerttemberg,\\nthe Federal Republic of Germany and the European Community. The address and\\nphone number below are just to get in touch with me. Everything I\\'m saying, \\nwriting and typing is always wrong ! (Statement necessary to avoid law suits)\\n=============================================================================\\n- Dipl.-Ing. Gerhard Bosch M.Sc. voice:(0721) - 608 3118 -\\n- Institute for Hydromechanic FAX:(0721) - 608 4290 -\\n- University of Karlsruhe, Kaiserstrasse 12, 7500-Karlsruhe, Germany -\\n- Internet: bosch@ifh-hp2.bau-verm.uni-karlsruhe.de -\\n- Bitnet: nd07@DKAUNI2.BITNET -\\n=============================================================================\\n',\n", + " \"From: amann@iam.unibe.ch (Stephan Amann)\\nSubject: Re: more on radiosity\\nReply-To: amann@iam.unibe.ch\\nOrganization: University of Berne, Institute of Computer Science and Applied Mathematics, Special Interest Group Computer Graphics\\nLines: 80\\n\\nIn article 66319@yuma.ACNS.ColoState.EDU, xz775327@longs.LANCE.ColoState.Edu (Xia Zhao) writes:\\n>\\n>\\n>In article <1993Apr19.131239.11670@aragorn.unibe.ch>, you write:\\n>|>\\n>|>\\n>|> Let's be serious... I'm working on a radiosity package, written in C++.\\n>|> I would like to make it public domain. I'll announce it in c.g. the minute\\n>|> I finished it.\\n>|>\\n>|> That were the good news. The bad news: It'll take another 2 months (at least)\\n>|> to finish it.\\n>\\n>\\n> Are you using the traditional radiosity method, progressive refinement, or\\n> something else in your package?\\n>\\n\\nMy package is based on several articles about non-standard radiosity and\\nsome unpublished methods.\\n\\nThe main articles are:\\n\\n- Cohen, Chen, Wallace, Greenberg : \\n A Progressive Refinement Approach to fast Radiosity Image Generation\\n Computer Graphics (SIGGRAPH), V. 22(No. 4), pp 75-84, August 1988\\n\\n- Silion, Puech\\n A General Two-Pass Method Integrating Specular and Diffuse Reflection\\n Computer Graphics (SIGGRAPH), V23(No. 3), pp335-344, July 1989 \\n\\n> If you need to project patches on the hemi-cube surfaces, what technique are\\n> you using? Do you have hardware to facilitate the projection?\\n>\\n\\nI do not use hemi-cubes. I have no special hardware (SUN SPARCstation).\\n\\n>\\n>|>\\n>|> In the meantime you may have a look at the file\\n>|> Radiosity_code.tar.Z\\n>|> located at\\n>|> compute1.cc.ncsu.edu\\n>\\n>\\n> What are the guest username and password for this ftp site?\\n>\\n\\nUse anonymous as username and your e-mail address as password.\\n\\n>\\n>|>\\n>|> (there are some other locations; have a look at archie to get the nearest)\\n>|>\\n>|> Hope that'll help.\\n>|>\\n>|> Yours\\n>|>\\n>|> Stephan\\n>|>\\n>\\n>\\n> Thanks, Stephan.\\n>\\n>\\n> Josephine\\n\\n\\nStephan.\\n\\n\\n----------------------------------------------------------------------------\\n\\n Stephan Amann SIG Computer Graphics, University of Berne, Switzerland\\n amann@iam.unibe.ch\\n\\t Tel +41 31 65 46 79\\t Fax +41 31 65 39 65\\n\\n Projects: Radiosity, Raytracing, Computer Graphics\\n\\n----------------------------------------------------------------------------\\n\",\n", + " 'Subject: Re: Request for Support\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 16\\n\\nIn article <1993Apr5.095148.5730@sei.cmu.edu> dpw@sei.cmu.edu (David Wood) writes:\\n\\n>2. If you must respond to one of his articles, include within it\\n>something similar to the following:\\n>\\n> \"Please answer the questions posed to you in the Charley Challenges.\"\\n\\n\\tAgreed.\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", + " 'From: hasan@McRCIM.McGill.EDU \\nSubject: Re: Water on the brain (was Re: Israeli Expansion-lust)\\nOriginator: hasan@lightning.mcrcim.mcgill.edu\\nNntp-Posting-Host: lightning.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 15\\n\\n\\nIn article <1993Apr15.055341.6075@nysernet.org>, astein@nysernet.org (Alan Stein) writes:\\n|> I guess Hasan finally revealed the source of his claim that Israel\\n|> diverted water from Lebanon--his imagination.\\n|> -- \\n|> Alan H. Stein astein@israel.nysernet.org\\nMr. water-head,\\ni never said that israel diverted lebanese rivers, in fact i said that\\nisrael went into southern lebanon to make sure that no \\nwater is being used on the lebanese\\nside, so that all water would run into Jordan river where there\\nisrael will use it !#$%^%&&*-head.\\n\\nHasan \\n',\n", + " 'From: tffreeba@indyvax.iupui.edu\\nSubject: Death and Taxes (was Why not give $1 billion to...\\nArticle-I.D.: indyvax.1993Apr22.162501.747\\nLines: 10\\n\\nIn my first posting on this subject I threw out an idea of how to fund\\nsuch a contest without delving to deep into the budget. I mentioned\\ngranting mineral rights to the winner (my actual wording was, \"mining\\nrights.) Somebody pointed out, quite correctly, that such rights are\\nnot anybody\\'s to grant (although I imagine it would be a fait accompli\\nsituation for the winner.) So how about this? Give the winning group\\n(I can\\'t see one company or corp doing it) a 10, 20, or 50 year\\nmoratorium on taxes.\\n\\nTom Freebairn \\n',\n", + " 'From: sts@mfltd.co.uk (Steve Sherwood (x5543))\\nSubject: Re: Virtual Reality for X on the CHEAP!\\nReply-To: sts@mfltd.co.uk\\nOrganization: Micro Focus Ltd, Newbury, England\\nLines: 39\\n\\nIn article <1r6v3a$rj2@fg1.plk.af.mil>, ridout@bink.plk.af.mil (Brian S. Ridout) writes:\\n|> In article <1993Apr15.134802.21995@mfltd.co.uk>, sts@mfltd.co.uk (Steve Sherwood (x5543)) writes:\\n|> |> Has anyone got multiverse to work ?\\n|> |> \\n|> |> I have built it on 486 svr4, mips svr4s and Sun SparcStation.\\n|> |> \\n|> |> There seems to be many bugs in it. The \\'dogfight\\' and \\'dactyl\\' simply do nothing\\n|> |> (After fixing a bug where a variable is defined twice in two different modules - One needed\\n|> |> setting to static - else the client core-dumped)\\n|> |> \\n|> |> Steve\\n|> |> -- \\n|> |> \\n|> |> Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n|> |> +-----------------------------------+------------------------+ Micro Focus\\n|> |> | Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n|> |> | Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n|> |> | Need courage to survive the day. | | Berkshire\\n|> |> +-----------------------------------+------------------------+ England\\n|> |> (A)bort (R)etry (I)nfluence with large hammer\\n|> I built it on a rs6000 (my only Motif machine) works fine. I added some objects\\n|> into dogfight so I could get used to flying. This was very easy. \\n|> All in all Cool!. \\n|> Brian\\n\\nThe RS6000 compiler is so forgiving, I think that if you mixed COBOL & pascal\\nthe C compiler still wouldn\\'t complain. :-)\\n\\nSteve\\n-- \\n\\n Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n+-----------------------------------+------------------------+ Micro Focus\\n| Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n| Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n| Need courage to survive the day. | | Berkshire\\n+-----------------------------------+------------------------+ England\\n (A)bort (R)etry (I)nfluence with large hammer\\n\\n',\n", + " 'From: arnie@magnus.acs.ohio-state.edu (Arnie Skurow)\\nSubject: Re: Live Free, but Quietly, or Die\\nArticle-I.D.: magnus.1993Apr6.184322.18666\\nOrganization: The Ohio State University\\nLines: 14\\nNntp-Posting-Host: bottom.magnus.acs.ohio-state.edu\\n\\nIn article Russell.P.Hughes@dartmouth.edu (R\\nussell P. Hughes) writes:\\n>What a great day! Got back home last night from some fantastic skiing\\n>in Colorado, and put the battery back in the FXSTC. Cleaned the plugs,\\n>opened up the petcock, waited a minute, hit the starter, and bingo it\\n>started up like a charm! Spent a restless night anticipating the first\\n>ride du saison, and off I went this morning to get my state inspection\\n>done. Now my bike is stock (so far) except for HD slash-cut pipes, and\\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nTherein lies the rub. The HD slash cut, or baloney cuts as some call\\nthem, ARE NOT STOCK mufflers. They\\'re sold for \"off-road use only,\"\\nand are much louder than stock mufflers.\\n\\nArnie\\n',\n", + " 'From: lcd@umcc.umcc.umich.edu (Leon Dent)\\nSubject: Re: MPEG for x-windows MONO needed.\\nOrganization: UMCC, Ann Arbor, MI\\nLines: 20\\nNNTP-Posting-Host: umcc.umcc.umich.edu\\n\\nOn sunsite.unc.edu in pub/multimedia/utilities/unix find \\n mpeg_play-2.0.tar.Z.\\n\\nI find for mono it works best as mpeg_play -dither threshold \\n though you can use mpeg_play -dither mono\\n\\nFace it, this is not be the best viewing situation.\\n\\nAlso someone has made a patch for mpeg_play that gives two more mono\\nmodes (mono2 and halftone).\\n\\nThey are by jan@pandonia.canberra.edu.au (Jan Newmarch).\\nAnd the patch can be found on csc.canberra.edu.au (137.92.1.1) under\\n/pub/motif/mpeg2.0.mono.patch.\\n\\n\\nLeon Dent\\nlcd@umcc.umich.edu\\n \\n\\n',\n", + " \"From: robert@Xenon.Stanford.EDU (Robert Kennedy)\\nSubject: Battery storage -- why not charge and store dry?\\nOrganization: Computer Science Department, Stanford University.\\nLines: 24\\n\\nSo it looks like I'm going to have to put a couple of bikes in storage\\nfor a few months, starting several months from now, and I'm already\\ncontemplating how to do it so they're as easy to get going again as\\npossible. I have everything under control, I think, besides the\\nbatteries. I know that if I buy a $50.00 Battery Tender for each one\\nand leave them plugged in the whole time the bikes are in storage,\\nthey'll be fine. But I'm not sure that's necessary. I've never heard\\nanyone discussing this idea, so maybe there's some reason why it isn't\\nso great. But maybe someone can tell me.\\n\\nWould it be a mistake to fully charge the batteries, drain the\\nelectrolyte into separate containers (one for each battery), seal the\\ncontainer, close up the batteries, and leave them that way? Then it\\nwould seem that when the bikes come out of storage, I could put the\\nelectrolyte back in the batteries and they should still be fully\\ncharged. What's wrong with this?\\n\\nOn a related, but different note for you Bay Area Denizens, wasn't\\nthere someone who had a bunch of spare EDTA a few months back? Who was\\nit? Is there still any of it left?\\n\\nThanks for any and all help!\\n\\n\\t-- Robert\\n\",\n", + " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: Need advice for riding with someone on pillion\\nKeywords: advice, pillion, help!\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nDistribution: na\\nLines: 44\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n\\t<...>\\t<...>\\n>This person is <100 lbs. and fairly small, so I don\\'t see weight as too much\\n>of a problem, but what sort of of advice should I give her before we go?\\n>I want her to hold onto me :-) rather than the grab rail out back, and\\n>I\\'ve heard that she should look over my shoulder in the direction we\\'re\\n>turning so she leans *with* me, but what else? Are there traditional\\n>signals for SLOW DOWN!! or GO FASTER!! or I HAFTA GO PEE!! etc.???\\n\\n\\tI\\'ve never liked my passengers to try and shift their weight with the\\n\\tturns at all... I find the weight shift can be very sudden and\\n\\tunnerving. It\\'s one thing if they\\'re just getting comfortable or\\n\\tdecide to look over your other shoulder, but I don\\'t recommend having\\n\\thim/her shift her weight with each turn... too violent.\\n\\t\\n\\tAlso (I think someone already said this) make sure your passenger\\n\\twears good gear. I sometimes choose to ride without a helmet or\\n\\tlacking other safety gear (depends on how squidly I feel) but I\\n\\twon\\'t let passengers do it. What I do to myself I can handle, but\\n\\tI wouldn\\'t want to hurt anyone else, so I don\\'t let them on without\\n\\tgloves, jacket, (at least) jeans, heavy boots, and a helmet that *fits*\\n\\n>I really want this to be a positive experience for us both, mainly so that\\n>she\\'ll want to go with me again, so any help will be appreciated...\\n\\n\\tGo *real* easy. It\\'s amazing how solid a grip you have on the\\n\\thandle bars that your passenger does not. Don\\'t make her feel like\\n\\tshe\\'s going to slide off the back, and \"snappy\" turns for you are\\n\\tsickening lurches for her. In general, it feels much less controlled\\n\\tand smooth as a passenger. I can\\'t stand being on the back of my\\n\\tbrother\\'s bike, and I ride aggressively when i ride and I know he\\'s\\n\\ta good pilot... still, everything feels very unsteady when you\\'re\\n\\ta passenger. \\n\\n\\n>Thanks,\\n> -Bob-\\n\\n\\tShow off by not showing off the first time out...\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", + " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: Happy Easter!\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 17\\n\\nIn article <1993Apr15.171757.10890@i88.isc.com> jeq@lachman.com (Jonathan E. Quist) writes:\\n>Rolls-Royce owned by a non-British firm?\\n>\\n>Ye Gods, that would be the end of civilization as we know it.\\n\\n Why not? Ford owns Aston-Martin and Jaguar, General Motors owns Lotus\\nand Vauxhall. Rover is only owned 20% by Honda.\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", + " \"From: tom@inferno.UUCP (Tom Sherwin)\\nSubject: Re: XV under MS-DOS ?!?\\nOrganization: Periphonics Corporation\\nLines: 30\\nNNTP-Posting-Host: ablaze\\n\\n|> Hi ... Recently I found XV for MS-DOS in a subdirectory of GNU-CC (GNUISH). I \\n|> use frequently XV on a Sun Spark Station 1 and I never had problems, but when I\\n|> start it on my computer with -h option, it display the help menu and when I\\n|> start it with a GIF-File my Hard disk turns 2 or 3 seconds and the prompt come\\n|> back.\\n|> \\n|> My computer is a little 386/25 with copro, 4 Mega rams, Tseng 4000 (1M) running\\n|> MS-DOS 5.0 with HIMEM.SYS and no EMM386.SYS. I had the GO32.EXE too... but no\\n|> driver who run with it.\\n|> \\n|> Do somenone know the solution to run XV ??? any help would be apprecied..\\n|> \\t\\t\\n\\nYou probably need an X server running on top of MS DOS. I use Desqview/X\\nbut any MS-DOS X server should do.\\n\\n-- \\n\\n XX X Technical documentation is writing 90% of the words\\n XX X for 10% of the features that only 1% of the customers\\n XX X actually use.\\n XX X -------------------------------------------------------\\n A PC to XX X I don't have opinions, I have factual interpretations...\\n the power XX X -Me\\n of X XX ---------------------------------------------------------\\n X XX ...uunet!rutgers!mcdhup!inferno!tom can be found at\\n X XX Periphonics Corporation\\n X XX 4000 Veterans Memorial Highway Bohemia, NY 11716\\n X XX ----------------------------------------------------\\n X XX They pay me to write, not express their opinions...\\n\",\n", + " \"From: kardank@ERE.UMontreal.CA (Kardan Kaveh)\\nSubject: Re: Newsgroup Split\\nOrganization: Universite de Montreal\\nLines: 8\\n\\nI haven't been following this thread, so appologies if this has already been\\nmentioned, but how about\\n\\n\\tcomp.graphics.3d\\n\\n-- \\nKaveh Kardan\\nkardank@ERE.UMontreal.CA\\n\",\n", + " 'From: svoboda@rtsg.mot.com (David Svoboda)\\nSubject: Re: edu breaths\\nNntp-Posting-Host: corolla18\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 29\\n\\nIn article <1993Apr15.214910.5676@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n|In article <1993Apr15.003749.15710@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n|>In article <1993Apr14.220252.14731@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n|>|\\n|>|The difference of opinion, and difference in motorcycling between the sport-bike\\n|>|riders and the cruiser-bike riders. \\n|>\\n|>That difference is only in the minds of certain closed-minded individuals. I\\n|>have had the very best motorcycling times with riders of \"cruiser\" \\n|>bikes (hi Don, Eddie!), yet I ride anything but.\\n|\\n|Continuously, on this forum, and on the street, you find quite a difference\\n|between the opinions of what motorcycling is to different individuals.\\n\\nYes, yes, yes. Motorcycling is slightly different to each and every one of us. This\\nis the nature of people, and one of the beauties of the sport. \\n\\n|Cruiser-bike riders have a different view of motorcycling than those of sport bike riders\\n|(what they like and dislike about motorcycling). This is not closed-minded. \\n\\nAnd what view exactly is it that every single rider of cruiser bikes holds, a veiw\\nthat, of course, no sport-bike rider could possibly hold? Please quantify your\\ngeneralization for us. Careful, now, you\\'re trying to pigeonhole a WHOLE bunch\\nof people.\\n\\nDave Svoboda (svoboda@void.rtsg.mot.com) | \"I\\'m getting tired of\\n90 Concours 1000 (Mmmmmmmmmm!) | beating you up, Dave.\\n84 RZ 350 (Ring Ding) (Woops!) | You never learn.\"\\nAMA 583905 DoD #0330 COG 939 (Chicago) | -- Beth \"Bruiser\" Dixon\\n',\n", + " \"From: nicho@vnet.IBM.COM (Greg Stewart-Nicholls)\\nSubject: Re: Vandalizing the sky.\\nReply-To: nicho@vnet.ibm.com\\nDisclaimer: This posting represents the poster's views, not those of IBM\\nNews-Software: UReply 3.1\\nX-X-From: nicho@vnet.ibm.com\\n \\nLines: 9\\n\\nIn George F. Krumins writes:\\n>It is so typical that the rights of the minority are extinguished by the\\n>wants of the majority, no matter how ridiculous those wants might be.\\n Umm, perhaps you could explain what 'rights' we are talking about\\nhere ..\\n -----------------------------------------------------------------\\nGreg Nicholls ... : Vidi\\nnicho@vnet.ibm.com or : Vici\\nnicho@olympus.demon.co.uk : Veni\\n\",\n", + " \"From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: bikes with big dogs\\nOrganization: AT&T\\nDistribution: na\\nLines: 20\\n\\nIn article <1993Apr14.234835.1@cua.edu> 84wendel@cua.edu writes:\\n>Has anyone ever heard of a rider giving a big dog such as a great dane a ride \\n>on the back of his bike. My dog would love it if I could ever make it work.\\n>\\tThanks\\n>\\t\\t\\t84wendel@cua.edu\\n \\n If a large Malmute counts then yes someone has heard(and seen) such\\nan irresponsible childish stunt. The dog needed assistance straightening\\nout once on board. The owner would lift the front legs of dog and throw\\nthem over the driver/pilots shoulders. Said dog would get shit eating\\ngrin on its face and away they'd go. The dogs ass was firmly planted\\non the seat.\\n \\n My dog and this dog actively seek each other out at camping party's.\\nThey hate each other. I think it's something personal.\\n \\n================================================================================\\n Steatopygias's 'R' Us. doh#0000000005 That ain't no Hottentot.\\n Sesquipedalian's 'R' Us. ZX-10. AMA#669373 DoD#564. There ain't no more.\\n================================================================================\\n\",\n", + " 'Subject: Quotation? Lowest bidder...\\nFrom: bioccnt@otago.ac.nz\\nOrganization: University of Otago, Dunedin, New Zealand\\nNntp-Posting-Host: thorin.otago.ac.nz\\nLines: 12\\n\\n\\nCan someone please remind me who said a well known quotation? \\n\\nHe was sitting atop a rocket awaiting liftoff and afterwards, in answer to\\nthe question what he had been thinking about, said (approximately) \"half a\\nmillion components, each has to work perfectly, each supplied by the lowest\\nbidder.....\" \\n\\nAttribution and correction of the quote would be much appreciated. \\n\\nClive Trotman\\n\\n',\n", + " 'From: mlj@af3.mlb.semi.harris.com (Marvin Jaster )\\nSubject: FOR SALE \\nNntp-Posting-Host: sunsol.mlb.semi.harris.com\\nOrganization: Harris Semiconductor, Melbourne FL\\nKeywords: FOR SALE\\nLines: 44\\n\\nI am selling my Sportster to make room for a new FLHTCU.\\nThis scoot is in excellent condition and has never been wrecked or abused.\\nAlways garaged.\\n\\n\\t1990 Sportster 883 Standard (blue)\\n\\n\\tfactory 1200cc conversion kit\\n\\n\\tless than 8000 miles\\n\\n\\tBranch ported and polished big valve heads\\n\\n\\tScreamin Eagle carb\\n\\n\\tScreamin Eagle cam\\n\\n\\tadjustable pushrods\\n\\n\\tHarley performance mufflers\\n\\n\\ttachometer\\n\\n\\tnew Metzeler tires front and rear\\n\\n\\tProgressive front fork springs\\n\\n\\tHarley King and Queen seat and sissy bar\\n\\n\\teverything chromed\\n\\n\\tO-ring chain\\n\\n\\tfork brace\\n\\n\\toil cooler and thermostat\\n\\n\\tnew Die-Hard battery\\n\\n\\tbike cover\\n\\nprice: $7000.00\\nphone: hm 407/254-1398\\n wk 407/724-7137\\nMelbourne, Florida\\n',\n", + " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: Fundamentalism - again.\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , khan0095@nova.gmi.edu (Mohammad Razi Khan) writes:\\n|> One of my biggest complaints about using the word \"fundamentalist\"\\n|> is that (at least in the U.S.A.) people speak of muslime\\n|> fundamentalists ^^^^^^^muslim\\n|> but nobody defines what a jewish or christan fundamentalist is.\\n|> I wonder what an equal definition would be..\\n|> any takers..\\n\\nWell, I would go as far as saying that Naturei Karta are definitely\\nJewish fundamentalists. Other ultra-orthodox Jewish groups might very\\nwell be, though I am hesitant of making such a broad generalization.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n',\n", + " \"From: howard@netcom.com (Howard Berkey)\\nSubject: Re: Shipping a bike\\nOrganization: Netcom Online Communications Services (408-241-9760 login: guest)\\nLines: 23\\n\\nIn article mellon@ncd.com (Ted Lemon) writes:\\n>\\n>>Can someone recommend how to ship a motorcycle from San Francisco\\n>>to Seattle? And how much might it cost?\\n>\\n>I'd recommend that you hop on the back of it and cruise - that's a\\n>really nice ride, if you choose your route with any care at all.\\n>Shouldn't cost more than about $30 in gas, and maybe a night's motel\\n>bill...\\n>\\n\\nYes! Up the coast, over to Portland, then up I-5. Really nice most\\nof the way, and I'm sure there's even better ways.\\n\\nWatch the weather, though... I got about as good a drenching as\\npossible in the Oregon coast range once... \\n\\n\\n-- \\n::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\\nHoward Berkey \\t\\t\\t\\t\\t\\t howard@netcom.com\\n\\t\\t\\t\\t Help!\\n... .. ... ... .. ... ... .. ... ... .. ... ... .. ... ... .. ...\\n\",\n", + " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: free moral agency and Jeff Clark\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 21\\n\\nIn article sandvik@newton.apple.com (Kent Sandvik) writes:\\n>\\n>This is the reason I like the controversy of post-modernism, the\\n>issues of polarities -- evil and good -- are just artificial \\n>constructs, and they fall apart during a closer inspection.\\n>\\n>The more I look into the notion of a constant struggle between\\n>the evil and good forces, the more it sounds like a metaphor\\n>that people just assume without closer inspection.\\n>\\n\\n More info please. I'm not well exposed to these ideas.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", + " \"From: bob1@cos.com (Bob Blackshaw)\\nSubject: Re: No humanity in Bosnia\\nKeywords: Barbarism\\nOrganization: Corporation for Open Systems\\nDistribution: world \\nLines: 47\\n\\nIn <1993Apr15.135934.23814@julian.uwo.ca> mrizvi@gfx.engga.uwo.ca (Mr. Mubashir Rizvi) writes:\\n\\n>It is very encouraging that a number of people took so interest in my posting.I recieved a couple of letters too,some has debated the statement that events in Bosnia are unprecedented in the history of the modern world.Those who contest this statement present the figures of the World War II.However we must keep in mind that it was a World War and no country had the POWER to stop it,today is the matter not of the POWER but of the WILL.It\\n>seems to be that what we lack is the will.\\n\\nThe idea of the U.S, or any other nation, taking action, i.e., military\\nintervention, in Bosnia has not been well thought out by those who \\nadvocate such action. After the belligerants are subdued, it would require\\nan occupation force for one or two generations. If you will stop and\\nthink about it, you will realize that these people have never forgotten\\na single slight or injury, they have imbibed hatred with their mother's\\nmilk. If we stop the fighting, seize and destroy all weapons, they will\\nsimply go back to killing each other with clubs. And the price for this\\nfutility will be the lives of the young men and women we send there to\\ndie. A price I am unwilling to even consider.\\n\\n>Second point of difference (which makes it different from the holocast(sp?) ) is that at that time international community\\n>didnot have enough muscle to prevent the unfortunate event,\\n\\nThere is no valid comparison to the Holocaust. All of the Jewish people\\nthat I have known as friends were not brought up to hate. To be wary of\\nothers, most certainly, but not to hate. And except for the Warsaw\\nuprising, they were unarmed (and even in Warsaw badly out-gunned).\\nIt is very easy to speak of muscle when they are someone else's muscles.\\nSuppose we do this thing, what will you tell the parents, wives, children,\\nlovers of those we are sending to die? That they gave their lives in some noble cause? Noble cause, separating some mad dogs who will turn on them.\\n\\nWell, I will offer you some muscle. Suppose we tell them that they have\\none week (this will give foreign nationals time to leave) to cease\\ntheir bloodshed. At the end of that week, bring in the Tomahawk firing\\nships and destroy Belgrade as they destroyed the Bosnian cities. Perhaps\\nwhen some of their cities are reduced to rubble they will have a sudden\\nattack of brains. Send in missiles by all means, but do not send in\\ntroops.\\n\\n>today inspite of all the might,the international community is not just standing neutral but has placed an arms embargo which\\n\\nBy all means lift the embargo.\\n\\n>is to the obvious disadvantage of the weeker side and therefore to the advantage of the bully.Hence indirecltly and possibly\\n>unintentionally, mankind has sided with the killers.And this,I think is unprecedented in the history of the modern world.\\n\\nWhich killers? Do you honestly believe they are all on one side?\\n\\n>M.Rizvi\\n> \\nREB\\n\",\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Alaska Pipeline and Space Station!\\nOrganization: Express Access Online Communications USA\\nLines: 25\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr5.160550.7592@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n|\\n|I think this would be a great way to build it, but unfortunately\\n|current spending rules don't permit it to be workable. For this to\\n|work it would be necessary for the government to guarantee a certain\\n|minimum amount of business in order to sufficiently reduce the risk\\n|enough to make this attractive to a private firm. Since they\\n|generally can't allocate money except one year at a time, the\\n|government can't provide such a tenant guarantee.\\n\\n\\nFred.\\n\\n\\tTry reading a bit. THe government does lots of multi year\\ncontracts with Penalty for cancellation clauses. They just like to be\\ndamn sure they know what they are doing before they sign a multi year\\ncontract. THe reason they aren't cutting defense spending as much\\nas they would like is the Reagan administration signed enough\\nMulti year contracts, that it's now cheaper to just finish them out.\\n\\nLook at SSF. THis years funding is 2.2 Billion, 1.8 of which will\\ncover penalty clauses, due to the re-design.\\n\\npat\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian slaughter of defenseless Muslim children and pregnant women.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 81\\n\\nIn article <1993Apr20.232449.22318@kpc.com> henrik@quayle.kpc.com writes:\\n\\nBM] Gimme a break. CAPITAL letters, or NOT, the above is pure nonsense. \\nBM] It seems to me that short sighted Armenians are escalating the hostilities\\n\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n> Again, Armenians in KARABAKH are SIMPLY defending themselves. What do\\n\\nThe winding down of winter puts you in a heavy \\'Arromdian\\' mood? I\\'ll \\nsee if I can get our dear \"Mehmetcik\" to write you a letter giving\\nyou and your criminal handlers at the ASALA/SDPA/ARF Terrorism and\\nRevisionism Triangle some military pointers, like how to shoot armed\\nadult males instead of small Muslim children and pregnant women.\\n\\n\\nSource: \\'The Times,\\' 3 March 1992\\n\\nMASSACRE UNCOVERED....\\n\\nBy ANATOL LIEVEN,\\n\\nMore than sixty bodies, including those of women and children, have \\nbeen spotted on hillsides in Nagorno-Karabakh, confirming claims \\nthat Armenian troops massacred Azeri refugees. Hundreds are missing.\\n\\nScattered amid the withered grass and bushes along a small valley \\nand across the hillside beyond are the bodies of last Wednesday\\'s \\nmassacre by Armenian forces of Azerbaijani refugees.\\n\\nFrom that hill can be seen both the Armenian-controlled town of \\nAskeran and the outskirts of the Azerbaijani military headquarters \\nof Agdam. Those who died very nearly made it to the safety of their \\nown lines.\\n\\nWe landed at this spot by helicopter yesterday afternoon as the last \\ntroops of the Commonwealth of Independent states began pulling out. \\nThey left unhindered by the warring factions as General Boris Gromov, \\nwho oversaw the Soviet withdrawal from Afghanistan, flew to Stepanakert \\nto ease their departure.\\n\\nA local truce was enforced to allow the Azerbaijaines to collect their \\ndead and any refugees still hiding in the hills and forest. All the \\nsame, two attack helicopters circled continuously the nearby Armenian \\npositions.\\n\\nIn all, 31 bodies could be counted at the scene. At least another \\n31 have been taken into Agdam over the past five days. These figures \\ndo not include civilians reported killed when the Armenians stormed \\nthe Azerbaijani town of Khodjaly on Tuesday night. The figures also \\ndo not include other as yet undiscovered bodies\\n\\nZahid Jabarov, a survivor of the massacre, said he saw up to 200 \\npeople shot down at the point we visited, and refugees who came \\nby different routes have also told of being shot at repeatedly and \\nof leaving a trail of bodies along their path. Around the bodies \\nwe saw were scattered possessions, clothing and personnel documents. \\nThe bodies themselves have been preserved by the bitter cold which\\nkilled others as they hid in the hills and forest after the massacre. \\nAll are the bodies of ordinary people, dressed in the poor, ugly \\nclothing of workers.\\n\\nOf the 31 we saw, only one policeman and two apparent national \\nvolunteers were wearing uniform. All the rest were civilians, \\nincluding eight women and three small children. TWO GROUPS, \\nAPPARENTLY FAMILIES, HAD FALLEN TOGETHER, THE CHILDREN CRADLED \\nIN THE WOMEN\\'S ARMS.\\n\\nSEVERAL OF THEM, INCLUDING ONE SMALL GIRL, HAD TERRIBLE HEAD \\nINJURIES: ONLY HER FACE WAS LEFT. SURVIVORS HAVE TOLD HOW THEY \\nSAW ARMENIANS SHOOTING THEM POINT BLANK AS THEY LAY ON THE GROUND.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: The Israeli Press\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 48\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , benali@alcor.concordia.ca ( ILYESS B. BDIRA ) writes:\\n|> \\n|> Of course you never read Arab media,\\n\\nI don\\'t, though when I was in Israel I did make a point of listening\\nto JTV news, as well as Monte Carlo Radio. In the United States,\\nI generally read the NYT, and occasionally, a mainstream Israeli\\nnewpaper.\\n\\n|> I read Arab, ISRAELI (Jer. Post, and this network is more than enough)\\n|> and Western (American, French, and British) reports and I can say\\n|> that if we give Israel -10 and Arabs +10 on the bias scale (of course\\n|> you can switch the polarities) Israeli newspapers will get either\\n|> a -9 or -10, American leading newspapers and TV news range from -6\\n|> to -10 (yes there are some that are more Israelis than Israelis)\\n|> The Montreal suburban (a local free newspaper) probably is closer\\n|> to Kahane\\'s views than some Israeli right wing newspapers, British\\n|> range from 0 (neutral) to -10, French (that Iknow of, of course) range\\n|> from +2 (Afro-french magazines) to -10, Arab official media range from\\n|> 0 to -5 (Egyptian) to +9 in SA. Why no +10? Because they do not want to\\n|> overdo it and stir people against Israel and therefore against them since \\n|> they are doing nothing.\\n\\nWhat you may not be taking into account is that the JP is no longer\\nrepresentative of the mainstream in Israel. It was purchased a few\\nyears ago and in the battle for control, most of the liberal and\\nleft-wing reporters walked out. The new owner stated in the past,\\nmore than once, that the JP\\'s task should be geared towards explaining\\nand promoting Israel\\'s position, more than attacking the gov\\'t (Likud\\nat the time). The paper that I would recommend reading, being middle\\nstream and factual is \"Ha-Aretz\" - or at least this was the case two\\nyears ago.\\n\\n|> the average bias of what you read would be probably around -9,\\n|> while that of the average American would be the same if they do\\n|> not read or read the new-york times and similar News-makers, and\\n|> -8 if they read some other RELATIVELY less biased newspapers.\\n\\nAnd what about the \"Nat\\'l Enquirer\"? 8^)\\nBut seriously, if one were to read some of the leftist newspapers\\none could arrive at other conclusions. The information you received\\nwas highly selective and extrapolating from it is a bad move.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninja of the skies.\\nCambridge, MA |\\n',\n", + " 'From: dpw@sei.cmu.edu (David Wood)\\nSubject: Re: Gospel Dating\\nIn-Reply-To: mangoe@cs.umd.edu\\'s message of 4 Apr 93 10:56:03 GMT\\nOrganization: Software Engineering Institute\\nLines: 33\\n\\n\\n\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n\\n>>David Wood writes:\\n>>\\n>> \"Extraordinary claims require extraordinary evidence.\"\\n>\\n>More seriously, this is just a high-falutin\\' way of saying \"I don\\'t believe\\n>what you\\'re saying\".\\n\\nAre you making a meta-argument here? In any case, you are wrong. \\nThink of those invisible pink unicorns.\\n\\n>Also, the existence if Jesus is not an extradinary claim. \\n\\nI was responding to the \"historical accuracy... of Biblical claims\",\\nof which the existence of Jesus is only one, and one that was not even\\nmentioned in my post.\\n\\n>You may want to\\n>complain that the miracles attributed to him do constitute such claims (and\\n>I won\\'t argue otherwise), but that is a different issue.\\n\\nWrong. That was exactly the issue. Go back and read the context\\nincluded within my post, and you\\'ll see what I mean.\\n\\nNow that I\\'ve done you the kindness of responding to your questions,\\nplease do the same for me. Answer the Charley Challenges. Your claim\\nthat they are of the \"did not!/ did so!\" variety is a dishonest dodge\\nthat I feel certain fools only one person.\\n\\n--Dave Wood\\n',\n", + " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Observation re: helmets\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 40\\n\\nIn article <211353@mavenry.altcit.eskimo.com>,\\nmaven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n|> \\n|> Grf. Dropped my Shoei RF-200 off the seat of my bike while trying to\\n|> rock \\n|> it onto it\\'s centerstand, chipped the heck out of the paint on it...\\n|> \\n|> So I cheerfully spent $.59 on a bottle of testor\\'s model paint and \\n|> repainted the scratches and chips for 20 minutes.\\n|> \\n|> The question for the day is re: passenger helmets, if you don\\'t know\\n|> for \\n|> certain who\\'s gonna ride with you (like say you meet them at a ....\\n|> church \\n|> meeting, yeah, that\\'s the ticket)... What are some guidelines? Should\\n|> I just \\n|> pick up another shoei in my size to have a backup helmet (XL), or\\n|> should I \\n|> maybe get an inexpensive one of a smaller size to accomodate my\\n|> likely \\n|> passenger? \\n\\n My rule of thumb is \"Don\\'t give rides to people that wear\\na bigger helmet than you\", unless your taste runs that way,\\nor they are family.friends.\\nGee, reminds me of a *dancer* in Hull, just over the river \\nfrom Ottowa, that I saw a few years ago, for her I would a\\nbought a bigger helmet (or even her own bike) or anything \\nelse she wanted ;->\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", + " 'From: csc3phx@vaxa.hofstra.edu\\nSubject: Color problem.\\nLines: 8\\n\\n\\nI am scanning in a color image and it looks fine on the screen. When I \\nconverted it into PCX,BMP,GIF files so as to get it into MS Windows the colors\\ngot much lighter. For example the yellows became white. Any ideas?\\n\\nthanks\\nDan\\ncsc3phx@vaxc.hofstra.edu\\n',\n", + " \"From: weber@sipi.usc.edu (Allan G. Weber)\\nSubject: Need help with Mitsubishi P78U image printer\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 26\\nDistribution: na\\nNNTP-Posting-Host: sipi.usc.edu\\n\\nOur group recently bought a Mitsubishi P78U video printer and I could use some\\nhelp with it. We bought this thing because it (1) has a parallel data input in\\naddition to the usual video signal inputs and (2) claimed to print 256 gray\\nlevel images. However, the manual that came with it only describes how to\\nformat the parallel data to print 1 and 4 bit/pixel images. After some initial\\nproblems with the parallel interface I now have this thing running from a\\nparallel port of an Hewlett-Packard workstation and I can print 1 and 4\\nbit/pixel images just fine. I called the Mitsubishi people and asked about the\\n256 level claim and they said that was only available when used with the video\\nsignal inputs. This was not mentioned in the sales literature. However they\\ndid say the P78U can do 6 bit/pixel (64 level) images in parallel mode, but\\nthey didn't have any information about how to program it to do so, and they\\nwould call Japan, etc.\\n\\nFrankly, I find it hard to believe that if this thing can do 8 bit/pixel images\\nfrom the video source, it can't store 8 bits/pixel in the memory. It's not\\nlike memory is that expensive any more. If anybody has any information on\\ngetting 6 bit/pixel (or even 8 bit/pixel) images out of this thing, I would\\ngreatly appreciate your sending it to me.\\n\\nThanks.\\n\\nAllan Weber\\nSignal & Image Processing Institute\\nUniversity of Southern California\\nweber@sipi.usc.edu\\n\",\n", + " 'From: shag@aero.org (Rob Unverzagt)\\nSubject: Re: space food sticks\\nKeywords: food\\nArticle-I.D.: news.1pscc6INNebg\\nOrganization: Organization? You must be kidding.\\nLines: 35\\nNNTP-Posting-Host: aerospace.aero.org\\n\\nIn article <1pr5u2$t0b@agate.berkeley.edu> ghelf@violet.berkeley.edu (;;;;RD48) writes:\\n> I had spacefood sticks just about every morning for breakfast in\\n> first and second grade (69-70, 70-71). They came in Chocolate,\\n> strawberry, and peanut butter and were cylinders about 10cm long\\n> and 1cm in diameter wrapped in yellow space foil (well, it seemed\\n> like space foil at the time). \\n\\nWasn\\'t there a \"plain\" flavor too? They looked more like some\\nkind of extruded industrial product than food -- perfectly\\nsmooth cylinders with perfectly smooth ends. Kinda scary.\\n\\n> The taste is hard to describe, although I remember it fondly. It was\\n> most certainly more \"candy\" than say a modern \"Power Bar.\" Sort of\\n> a toffee injected with vitamins. The chocolate Power Bar is a rough\\n> approximation of the taste. Strawberry sucked.\\n\\nAn other post described it as like a \"microwaved Tootsie Roll\" --\\nwhich captures the texture pretty well. As for taste, they were\\nlike candy, only not very sweet -- does that make sense? I recall\\nliking them for their texture, not taste. I guess I have well\\ndeveloped texture buds.\\n\\n> Man, these were my \"60\\'s.\"\\n\\nIt was obligatory to eat a few while watching \"Captain Scarlet\".\\nDoes anybody else remember _that_, as long as we\\'re off the\\ntopic of space?\\n\\nShag\\n\\n-- \\n----------------------------------------------------------------------\\n Rob Unverzagt |\\n shag@aerospace.aero.org | Tuesday is soylent green day.\\nunverzagt@courier2.aero.org | \\n',\n", + " 'From: pbd@runyon.cim.cdc.com (Paul Dokas)\\nSubject: Big amateur rockets\\nOrganization: ICEM Systems, Inc.\\nLines: 23\\n\\nI was reading Popular Science this morning and was surprised by an ad in\\nthe back. I know that a lot of the ads in the back of PS are fringe\\nscience or questionablely legal, but this one really grabbed my attention.\\nIt was from a company name \"Personal Missle, Inc.\" or something like that.\\n\\nAnyhow, the ad stated that they\\'d sell rockets that were up to 20\\' in length\\nand engines of sizes \"F\" to \"M\". They also said that some rockets will\\nreach 50,000 feet.\\n\\nNow, aside from the obvious dangers to any amateur rocketeer using one\\nof these beasts, isn\\'t this illegal? I can\\'t imagine the FAA allowing\\npeople to shoot rockets up through the flight levels of passenger planes.\\nNot to even mention the problem of locating a rocket when it comes down.\\n\\nAnd no, I\\'m not going to even think of buying one. I\\'m not that crazy.\\n\\n\\n-Paul \"mine\\'ll do 50,000 feet and carries 50 pounds of dynamite\" Dokas\\n-- \\n#include \\n#define FULL_NAME \"Paul Dokas\"\\n#define EMAIL \"pbd@runyon.cim.cdc.com\"\\n/* Just remember, you *WILL* die someday. */\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n|> \\n|> >>But chimps are almost human...\\n|> >Does this mean that Chimps have a moral will?\\n|> \\n|> Well, chimps must have some system. They live in social groups\\n|> as we do, so they must have some \"laws\" dictating undesired behavior.\\n\\nAh, the verb \"to must\". I was warned about that one back\\nin Kindergarten.\\n\\nSo, why \"must\" they have such laws?\\n\\njon.\\n',\n", + " \"From: jfreund@taquito.engr.ucdavis.edu (Jason Freund)\\nSubject: Info on Medical Imaging systems\\nOrganization: College of Engineering - University of California - Davis\\nLines: 10\\n\\n\\n\\tHi, \\n\\n\\tIs anyone into medical imaging? I have a good ray tracing background,\\nand I'm interested in that field. Could you point me to some sources? Or\\nbetter yet, if you have any experience, do you want to talk about what's\\ngoing on or what you're working on?\\n\\nThanks,\\nJason Freund\\n\",\n", + " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: So, do any XXXX, I mean police officers read this stuff?\\nOrganization: Louisiana Tech University\\nLines: 22\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr20.163629.29153@iscnvx.lmsc.lockheed.com> jrlaf@sgi502.msd.lmsc.lockheed.com (J. R. Laferriere) writes:\\n\\n>I was just wondering if there were any law officers that read this. I have\\n>several questions I would like to ask pertaining to motorcycles and cops.\\n>And please don't say get a vehicle code, go to your local station, or obvious\\n>things like that. My questions would not be found in those places nor\\n>answered face to face with a real, live in the flesh, cop.\\n>If your brother had a friend who had a cousin whos father was a cop, etc.\\n>don't bother writing in. Thanks.\\n\\nI just gotta ask... What ARE these questions you want to ask an active cop?\\nWorking on your DoD qualfications? B-)\\n\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", + " \"From: mmadsen@bonnie.ics.uci.edu (Matt Madsen)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nNntp-Posting-Host: bonnie.ics.uci.edu\\nReply-To: mmadsen@ics.uci.edu (Matt Madsen)\\nOrganization: Univ. of Calif., Irvine, Info. & Computer Sci. Dept.\\nLines: 27\\n\\nRobert G. Carpenter writes:\\n\\n>Hi Netters,\\n>\\n>I'm building a CAD package and need a 3D graphics library that can handle\\n>some rudimentry tasks, such as hidden line removal, shading, animation, etc.\\n>\\n>Can you please offer some recommendations?\\n>\\n>I'll also need contact info (name, address, email...) if you can find it.\\n>\\n>Thanks\\n>\\n>(Please Post Your Responses, in case others have same need)\\n>\\n>Bob Carpenter\\n>\\n\\nI too would like a 3D graphics library! How much do C libraries cost\\nanyway? Can you get the tools used by, say, RenderMan, and can you get\\nthem at a reasonable cost?\\n\\nSorry that I don't have any answers, just questions...\\n\\nMatt Madsen\\nmmadsen@ics.uci.edu\\n\\n\",\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: pushing the envelope\\nOrganization: Texas Instruments Inc\\nDistribution: na\\nLines: 35\\n\\nIn <1993Apr3.233154.7045@Princeton.EDU> lije@cognito.Princeton.EDU (Elijah Millgram) writes:\\n\\n\\n>A friend of mine and I were wondering where the expression \"pushing\\n>the envelope\" comes from. Anyone out there know?\\n\\nEvery aircraft has flight constraints for speed/AOA/power. When\\ngraphed, these define the \\'flight envelope\\' of that aircraft,\\npresumably so named because the graphed line encloses (envelopes) the\\narea on the graph that represents conditions where the aircraft\\ndoesn\\'t fall out of the sky. Hence, \\'pushing the envelope\\' becomes\\n\\'operating at (or beyond) the edge of the flight (or operational)\\nenvelope\\'. \\n\\nNote that the envelope isn\\'t precisely known until someone actually\\nflies the airplane in those regions -- up to that point, all there are\\nare the theoretical predictions. Hence, one of the things test pilots\\ndo for a living is \\'push the envelope\\' to find out how close the\\ncorrespondence between the paper airplane and the metal one is -- in\\nessence, \\'pushing back\\' the edges of the theoretical envelope to where\\nthe airplane actually starts to fail to fly. Note, too, that this is\\ndone is a quite calculated and careful way; flight tests are generally\\ncarefully coreographed and just what is going to be \\'pushed\\' and how\\nfar is precisely planned (despite occasional deviations from plans,\\nsuch as the \\'early\\' first flight of the F-16 during its high-speed\\ntaxi tests).\\n\\nI\\'m sure Mary can tell you everything you ever wanted to know about\\nthis process (and then some).\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: gawne@stsci.edu\\nSubject: Re: Vulcan? (No, not the guy with the ears!)\\nDistribution: na\\nOrganization: Space Telescope Science Institute\\nLines: 42\\n\\nIn article , victor@inqmind.bison.mb.ca \\n(Victor Laking) writes:\\n> Does anyone have any info on the apparent sightings of Vulcan?\\n> \\n> All that I know is that there were apparently two sightings at \\n> drastically different times of a small planet that was inside Mercury\\'s \\n> orbit. Beyond that, I have no other info.\\n\\nThe sightings were apparently spurious. There is no planet inside of\\nthe orbit of Mercury.\\n\\nThe idea of Vulcan came from the differences between Mercury\\'s observed\\nperihelion precession and the value it should have had according to\\nNewtonian physics. Leverrier made an extensive set of observations\\nand calculations during the mid 19th century, and Simon Newcombe later\\nimproved on the observations and re-calculated using Leverrier\\'s system\\nof equations. Now Leverrier was one of the co-discoverers of Neptune\\nand since he had predicted its existence based on anomalies in the orbit\\nof Uranus his inclination was to believe the same sort of thing was\\nafoot with Mercury.\\n\\nBut alas, \\'twere not so. Mercury\\'s perihelion precesses at the rate\\nit does because the space where it resides near the sun is significantly\\ncurved due to the sun\\'s mass. This explanation had to wait until 1915\\nand Albert Einstein\\'s synthesis of his earlier theory of the electrodynamics\\nof moving bodies (commonly called Special Relativity) with Reimanian \\ngeometry. The result was the General Theory of Relativity, and one of\\nit\\'s most noteworthy strengths is that it accounts for the precession\\nof Mercury\\'s perihelion almost exactly. (Exactly if you use Newcomb\\'s\\nnumbers rather than Leverrier\\'s.)\\n\\nOf course not everybody believes Einstein, and that\\'s fine. But subsequent\\nefforts to find any planets closer to the sun than Mercury using radar\\nhave been fruitless.\\n\\n-Bill Gawne\\n\\n \"Forgive him, he is a barbarian, who thinks the customs of his tribe\\n are the laws of the universe.\" - G. J. Caesar\\n\\nAny opinions are my own. Nothing in this post constitutes an official\\nstatement from any person or organization.\\n',\n", + " \"From: rytg7@fel.tno.nl (Q. van Rijt)\\nSubject: Re: Sphere from 4 points?\\nOrganization: TNO Physics and Electronics Laboratory\\nLines: 26\\n\\nThere is another useful method based on Least Sqyares Estimation of the sphere equation parameters.\\n\\nThe points (x,y,z) on a spherical surface with radius R and center (a,b,c) can be written as \\n\\n (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2\\n\\nThis equation can be rewritten into the following form: \\n\\n 2ax + 2by + 2cz + R^2 - a^2 - b^2 -c^2 = x^2 + y^2 + z^2\\n\\nApproximate the left hand part by F(x,y,z) = p1.x + p2.x + p3.z + p4.1\\n\\nFor all datapoints, i.c. 4, determine the 4 parameters p1..p4 which minimise the average error |F(x,y,z) - x^2 - y^2 - z^2|^2.\\n\\nIn 'Numerical Recipes in C' can be found algorithms to solve these parameters.\\n\\nThe best fitting sphere will have \\n- center (a,b,c) = (p1/2, p2/2, p3/2)\\n- radius R = sqrt(p4 + a.a + b.b + c.c).\\n\\nSo, at last, will this solve you sphere estination problem, at least for the most situations I think ?.\\n\\nQuick van Rijt, rytg7@fel.tno.nl\\n\\n\\n\\n\",\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Jews can\\'t hide from keith@cco.\\nOrganization: sgi\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article , karner@austin.ibm.com (F. Karner) writes:\\n>\\n> So, you consider the german poster\\'s remark anti-semitic? \\n\\nWhen someone says:\\n\\n\\t\"So after 1000 years of sightseeing and roaming around its \\n\\tok to come back, kill Palastinians, and get their land back, \\n\\tright?\"\\n\\nYes, that\\'s casual antisemitism. I can think of plenty of ways\\nto criticize Israeli policy without insulting Jews or Jewish history.\\n\\nCan\\'t you?\\n\\njon \\n',\n", + " \"From: nicho@vnet.IBM.COM (Greg Stewart-Nicholls)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nReply-To: nicho@vnet.ibm.com\\nDisclaimer: This posting represents the poster's views, not those of IBM\\nNews-Software: UReply 3.1\\nX-X-From: nicho@vnet.ibm.com\\n \\nLines: 15\\n\\nIn Greg Hennessy writes:\\n>In article <1r6aqr$dnv@access.digex.net> prb@access.digex.com (Pat) writes:\\n>#The better question should be.\\n>#Why not transfer O&M of all birds to a separate agency with continous funding\\n>#to support these kind of ongoing science missions.\\n>\\n>Since we don't have the money to keep them going now, how will\\n>changing them to a seperate agency help anything?\\n>\\nHow about transferring control to a non-profit organisation that is\\nable to accept donations to keep craft operational.\\n -----------------------------------------------------------------\\nGreg Nicholls ... : Vidi\\nnicho@vnet.ibm.com or : Vici\\nnicho@olympus.demon.co.uk : Veni\\n\",\n", + " 'From: joerg@sax.sax.de (Joerg Wunsch)\\nSubject: About the various DXF format questions\\nOrganization: SaxNet, Dresden, Germany\\nLines: 25\\nDistribution: world\\nNNTP-Posting-Host: sax.sax.de\\nSummary: List of sites holding documentation of DXF format\\nKeywords: DXF, graphics formats\\n\\nArchie told me the following sites holding documentation about DXF:\\n\\nHost nic.funet.fi (128.214.6.100)\\nLast updated 15:11 7 Apr 1993\\n\\n Location: /pub/csc/graphics/format\\n FILE rwxrwxr-- 95442 Dec 4 1991 dxf.doc\\n\\nHost rainbow.cse.nau.edu (134.114.64.24)\\nLast updated 17:09 1 Jun 1992\\n\\n Location: /graphics/formats\\n FILE rw-r--r-- 95442 Mar 23 23:31 dxf.doc\\n\\nHost ftp.waseda.ac.jp (133.9.1.32)\\nLast updated 00:47 5 Apr 1993\\n\\n Location: /pub/data/graphic\\n FILE rw-r--r-- 39753 Nov 18 1991 dxf.doc.Z\\n\\n-- \\nJ\"org Wunsch, ham: dl8dtl : joerg_wunsch@uriah.sax.de\\nIf anything can go wrong... : ...or:\\n .o .o : joerg@sax.de,wutcd@hadrian.hrz.tu-chemnitz.de,\\n <_ ... IT WILL! : joerg_wunsch@tcd-dresden.de\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Shuttle oxygen (was Budget Astronaut)\\nOrganization: Express Access Online Communications USA\\nLines: 11\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nI thought that under emergency conditions, the STS can\\nput down at any good size Airport. IF it could take a C-5 or a\\n747, then it can take an orbiter. You just need a VOR/TAC\\n\\nI don't know if they need ILS.\\n\\npat\\n\\nANyone know for sure.\\n\",\n", + " 'From: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nSubject: Re: How many israeli soldiers does it take to kill a 5 yr old child?\\nReply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nOrganization: The National Capital Freenet\\nLines: 27\\n\\n\\nIn a previous article, steel@hal.gnu.ai.mit.edu (Nick Steel) says:\\n\\n>Q: How many occupying israeli soldiers (terrorists) does it \\n> take to kill a 5 year old native child?\\n>\\n>A: Four\\n>\\n>Two fasten his arms, one shoots in the face,\\n>and one writes up a false report.\\n\\nThis newsgroup is for intelligent discussion. I want you to either smarten\\nup and stop this bullshit posting or get the fuck out of my face and this\\nnet.\\n\\n Steve\\n\\n-- \\n------------------------------------------------------------------------------\\n| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\\n| Mossad@qube.ocunix.on.ca |\\n| <> |\\n',\n", + " \"From: tony@morgan.demon.co.uk (Tony Kidson)\\nSubject: Re: Info on Sport-Cruisers \\nDistribution: world\\nOrganization: The Modem Palace\\nReply-To: tony@morgan.demon.co.uk\\nX-Newsreader: Simple NEWS 1.90 (ka9q DIS 1.21)\\nLines: 25\\n\\nIn article <4foNhvm00WB4E5hUxB@andrew.cmu.edu> jae+@CMU.EDU writes:\\n\\n>I'm looking for a sport-cruiser - factory installed fairings (\\n>full/half ), hard saddle bags, 750cc and above, and all that and still\\n>has that sporty look.\\n>\\n>I particularly like the R100RS and K75 RT or S, or any of the K series\\n>BMW bikes.\\n>\\n>I was wondering if there are any other comparable type bikes being\\n>produced by companies other than BMW.\\n\\n\\nThe Honda ST1100 was designed by Honda in Germany, originally for the \\nEuropean market, as competition for the BMW 'K' series. Check it out.\\n\\nTony\\n\\n+---------------+------------------------------+-------------------------+\\n|Tony Kidson | ** PGP 2.2 Key by request ** |Voice +44 81 466 5127 |\\n|Morgan Towers, | The Cat has had to move now |E-Mail(in order) |\\n|Morgan Road, | as I've had to take the top |tony@morgan.demon.co.uk |\\n|Bromley, | off of the machine. |tny@cix.compulink.co.uk |\\n|England BR1 3QE|Honda ST1100 -=<*>=- DoD# 0801|100024.301@compuserve.com|\\n+---------------+------------------------------+-------------------------+\\n\",\n", + " 'Subject: Cornerstone DualPage driver wanted\\nFrom: tkelder@ebc.ee (Tonis Kelder)\\nNntp-Posting-Host: kask.ebc.ee\\nX-Newsreader: TIN [version 1.1 PL8]Lines: 12\\nLines: 12\\n\\n\\n\\nI am looking for a WINDOW 3.1 driver for \\n Cornerstone DualPage (Cornerstone Technology, Inc) \\nvideo card. Does anybody know, that has these? Is there one?\\n\\nThanks for any info,\\n\\nTo~nis\\n-- \\nTo~nis Kelder Estonian Biocentre (tkelder@kask.ebc.ee)\\n\\n',\n", + " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: YOU WILL ALL GO TO HELL!!!\\nOrganization: Technical University Braunschweig, Germany\\nLines: 18\\n\\nIn article <93108.020701TAN102@psuvm.psu.edu>\\nAndrew Newell writes:\\n \\n>>In article <93106.155002JSN104@psuvm.psu.edu> writes:\\n>>>YOU BLASHEPHEMERS!!! YOU WILL ALL GO TO HELL FOR NOT BELIEVING IN GOD!!!! BE\\n>>>PREPARED FOR YOUR ETERNAL DAMNATION!!!\\n>>\\n>>readers of the group. How convenient that he doesn't have a real name...\\n>>Let's start up the letters to the sysadmin, shall we?\\n>\\n>His real name is Jeremy Scott Noonan.\\n>vmoper@psuvm.psu.edu should have at least some authority,\\n>or at least know who to email.\\n>\\n \\nPOSTMAST@PSUVM.BITNET respectively P_RFOWLES or P_WVERITY (the sys admins)\\nat the same node are probably a better idea than the operator.\\n Benedikt\\n\",\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Ten questions about Israel\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 64\\n\\nIn article <1483500349@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\nTen Questions about arab countries\\n----------------------------------\\n\\nI would be thankful if any of you who live in arab countries could\\nhelp to provide accurate answers to the following specific questions.\\nThese are indeed provocative questions but they are asked time and\\nagain by people around me.\\n\\n1. Is it true that many arab countries don\\'t recognize\\nIsraeli nationality ? That people with Israeli stamps on their\\npassports can\\'t enter arabic countries?\\n\\n2. Is it true that arabic countries such as Jordan and Syria\\nhave undefined borders and that arab governments from 1948 until today\\nhave refused to state where the ultimate borders of their states\\nshould be?\\n\\n3. Is it true that arab countires refused to sign the Chemical\\nweapon convention treaty in Paris in 1993?\\n\\n4. Is it true that in arab prisons there are a number of\\nindividuals which were tried in secret and for which their\\nidentities, the date of their trial and their imprisonment are\\nstate secrets ?\\n\\n4a.\\tIs it true that some arab countries, like Syria, harbor Nazi\\nwar criminals, and refuse to extradite them?\\n\\n4b.\\tIs it true that some arab countries, like Saudi Arabia,\\nprohibit women from driving cars?\\n\\n5. Is it true that Jews who reside in the Muslim\\ncountries are subject to different laws than Muslims?\\n\\n6. Is it true that arab countries confiscated the property of\\nentire Jewish communites forced to flee by anti-Jewish riots?\\n\\n7. Is it true that Israel\\'s Prime Minister, Y. Rabin, signed\\na chemical weapons treaty that no arab nation was willing to sign?\\n\\n8. Is it true that Syrian Jews are required to leave a $10,000\\ndeposit before leaving the country, and are no longer allowed to\\nemmigrate, despite promises made by Hafez Assad to George Bush?\\n\\n9.\\t Is it true that Jews in Muslim lands are required to pay a\\nspecial tax, for being Jews?\\n\\n10. Is it true that Intercontinental Hotel in Jerusalem was built\\non a Jewish cemetary, with roads being paved over grave sites, and\\ngravestones being used in Jordanian latrines?\\n\\n11.\\tIs it really cheesy and inappropriate to post lists of biased\\nleading questions?\\n\\n11a.\\tIs it less appropriate if information implied in Mr.\\nDavidsson\\'s questions is highly misleading?\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 162\\n\\nC.Wainwright (eczcaw@mips.nott.ac.uk) wrote:\\n: I\\n: |> Jim,\\n: |> \\n: |> I always thought that homophobe was only a word used at Act UP\\n: |> rallies, I didn\\'t beleive real people used it. Let\\'s see if we agree\\n: |> on the term\\'s definition. A homophobe is one who actively and\\n: |> militantly attacks homosexuals because he is actually a latent\\n: |> homosexual who uses his hostility to conceal his true orientation.\\n: |> Since everyone who disapproves of or condemns homosexuality is a\\n: |> homophobe (your implication is clear), it must necessarily follow that\\n: |> all men are latent homosexuals or bisexual at the very least.\\n: |> \\n: \\n: Crap crap crap crap crap. A definition of any type of \\'phobe comes from\\n: phobia = an irrational fear of. Hence a homophobe (not only in ACT UP meetings,\\n: the word is apparently in general use now. Or perhaps it isn\\'t in the bible? \\n: Wouldst thou prefer if I were to communicate with thou in bilespeak?)\\n: \\n: Does an arachnophobe have an irrational fear of being a spider? Does an\\n: agoraphobe have an irrational fear of being a wide open space? Do you\\n: understand English?\\n: \\n: Obviously someone who has phobia will react to it. They will do their best\\n: to avoid it and if that is not possible they will either strike out or\\n: run away. Or do gaybashings occur because of natural processes? People\\n: who definately have homophobia will either run away from gay people or\\n: cause them (or themselves) violence.\\n: \\n\\nIsn\\'t that what I said ...\\nWhat are you taking issue with here, your remarks are merely\\nparenthetical to mine and add nothing useful.\\n\\n: [...]\\n: \\n: |> It would seem odd if homosexuality had any evolutionary function\\n: |> (other than limiting population growth) since evolution only occurs\\n: |> when the members of one generation pass along their traits to\\n: |> subsequent generations. Homosexuality is an evolutionary deadend. If I\\n: |> take your usage of the term, homophobe, in the sense you seem to\\n: |> intend, then all men are really homosexual and evolution of our\\n: |> species at least, is going nowhere.\\n: |> \\n: \\n: So *every* time a man has sex with a woman they intend to produce children?\\n: Hmm...no wonder the world is overpopulated. Obviously you keep to the\\n: Monty Python song: \"Every sperm is sacred\". And if, as *you* say, it has\\n: a purpose as a means to limit population growth then it is, by your own \\n: arguement, natural.\\n\\nConsider the context, I\\'m talking about an evolutionary function. One\\nof the most basic requirements of evolution is that members of a\\nspecies procreate, those who don\\'t have no purpose in that context.\\n\\n: \\n: |> Another point is that if the offspring of each generation is to\\n: |> survive, the participation of both parents is necessary - a family must\\n: |> exist, since homosexuals do not reproduce, they cannot constitute a\\n: |> family. Since the majority of humankind is part of a family,\\n: |> homosexuality is an evolutionary abberation, contrary to nature if you\\n: |> will.\\n: |> \\n: \\n: Well if that is true, by your own arguements homosexuals would have \\n: vanished *years* ago due to non-procreation. Also the parent from single\\n: parent families should put the babies out in the cold now, cos they must,\\n: by your arguement, die.\\n\\nBy your argument, homosexuality is genetically determined. As to your\\nsecond point, you prove again that you have no idea what context\\nmeans. I am talking about evolution, the preservation of the species,\\nthe fundamental premise of the whole process.\\n: \\n: |> But it gets worse. Since the overwhelming majority of people actually\\n: |> -prefer- a heterosexual relationship, homosexuality is a social\\n: |> abberation as well. The homosexual eschews the biological imperative\\n: |> to reproduce and then the social imperative to form and participate in\\n: |> the most fundamental social element, the family. But wait, there\\'s\\n: |> more.\\n: |> \\n: \\n: Read the above. I expect you to have at least ten children by now, with\\n: the family growing. These days sex is less to do with procreation (admittedly\\n: without it there would be no-one) but more to do with pleasure. In pre-pill\\n: and pre-condom days, if you had sex there was the chance of producing children.\\n: These days is just ain\\'t true! People can decide whether or not to have \\n: children and when. Soon they will be able to choose it\\'s sex &c (but that\\'s \\n: another arguement...) so it\\'s more of a \"lifestyle\" decision. Again by\\n: your arguement, since homosexuals can not (or choose not) to reproduce they must\\n: be akin to people who decide to have sex but not children. Both are \\n: as \"unnatural\" as each other.\\n\\nYet another non-sequitur. Sex is an evolutionary function that exists\\nfor procreation, that it is also recreation is incidental. That\\nhomosexuals don\\'t procreate means that sex is -only- recreation and\\nnothing more; they serve no -evolutionary- purpose.\\n\\n: \\n: |> Since homosexuals have come out the closet and have convinced some\\n: |> policy makers that they have civil rights, they are now claiming that\\n: |> their sexuality is a preference, a life-style, an orientation, a\\n: |> choice that should be protected by law. Now if homosexuality is a mere\\n: |> choice and if it is both contrary to nature and anti-social, then it\\n: |> is a perverse choice; they have even less credibility than before they\\n: |> became prominent. \\n: |> \\n: \\n: People are people are people. Who are you to tell anyone else how to live\\n: their life? Are you god(tm)? If so, fancy a date?\\n\\nHere\\'s pretty obvious dodge, do you really think you\\'ve said anything\\nor do you just feel obligated to respond to every statement? I am not\\ntelling anyone anything, I am demonstrating that there are arguments\\nagainst the practice of homosexuality (providing it\\'s a merely an\\nalternate lifestlye) that are not homophobic, that one can reasonably\\ncall it perverse in a context even a atheist can understand. I realize\\nof course that this comes dangerously close to establishing a value,\\nand that atheists are compelled to object on that basis, but if you\\nare to be consistent, you have no case in this regard.\\n: \\n: |> To characterize any opposition to homosexuality as homophobic is to\\n: |> ignore some very compelling arguments against the legitimization of\\n: |> the homosexual \"life-style\". But since the charge is only intended to\\n: |> intimidate, it\\'s really just demogoguery and not to be taken\\n: |> seriously. Fact is, Jim, there are far more persuasive arguments for\\n: |> suppressing homosexuality than those given, but consider this a start.\\n: |> \\n: \\n: Again crap. All your arguments are based on outdated ideals. Likewise the\\n: bible. Would any honest Christian condemn the ten generations spawned by\\n: a \"bastard\" to eternal damnation? Or someone who crushes his penis (either\\n: accidently or not..!). Both are in Deuteronomy.\\n\\nI\\'m sure your comment pertains to something, but you\\'ve disguised it\\nso well I can\\'t see what. Where did I mention ideals, out-dated or\\notherwise? Your arguments are very reactionary; do you have anything\\nat all to contribute?\\n\\n: \\n: |> As to why homosexuals should be excluded from participation in\\n: |> scouting, the reasons are the same as those used to restrict them from\\n: |> teaching; by their own logic, homosexuals are deviates, social and\\n: |> biological. Since any adult is a role model for a child, it is\\n: |> incumbent on the parent to ensure that the child be isolated from\\n: |> those who would do the child harm. In this case, harm means primarily\\n: |> social, though that could be extended easily enough.\\n: |> \\n: |> \\n: \\n: You show me *anyone* who has sex in a way that everyone would describe as\\n: normal, and will take of my hat (Puma baseball cap) to you. \"One man\\'s meat\\n: is another man\\'s poison\"!\\n: \\n\\nWhat has this got to do with anything? Would you pick a single point\\nthat you find offensive and explain your objections, I would really\\nlike to believe that you can discuss this issue intelligibly.\\n\\nBill\\n\\n\\n',\n", + " 'From: tcora@pica.army.mil (Tom Coradeschi)\\nSubject: Re: \"Beer\" unto bicyclists\\nOrganization: Elect Armts Div, US Army Armt RDE Ctr, Picatinny Arsenal, NJ\\nLines: 23\\nNntp-Posting-Host: b329-gator-3.pica.army.mil\\n\\nIn article <31MAR199308594057@erich.triumf.ca>, ivan@erich.triumf.ca (Ivan\\nD. Reid) wrote:\\n> \\n> In article ,\\n> \\t tcora@pica.army.mil (Tom Coradeschi) writes...\\n> >mxcrew@PROBLEM_WITH_INEWS_DOMAIN_FILE (The MX-Crew) wrote:\\n> >> just an information (no flame war please): Budweiser is a beer from the\\n> >> old CSFR (nowadays ?Tschechien? [i just know the german word]).\\n> \\n> >Czechoslovakia. Budweiser Budwar (pronounced bud-var).\\n> ^^^^^^^^^^^^^^\\n> \\tNot any more, a short while ago (Jan 1st?) it split into The Czech\\n> Republic and Slovakia. Actually, I think for a couple of years its official\\n> name was \"The Czech and Slovak Republics\". Sheesh! Don\\'t you guys get CNN??\\n\\nCNN=YuppieTV\\n\\n tom coradeschi <+> tcora@pica.army.mil\\n \\n \"Usenet is like a herd of performing elephants with diarrhea -- massive,\\ndifficult to redirect, awe-inspiring, entertaining, and a source of mind-\\nboggling amounts of excrement when you least expect it.\"\\n --gene spafford, 1992\\n',\n", + " \"From: ()\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: nstlm66\\nOrganization: Bell-Northern Research, Ottawa, Canada\\nLines: 21\\n\\nIn article <115561@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) wrote:\\n\\n>Khomeini advocates the view that\\n> there was a series of twelve Islamic leaders (the Twelve Imams) who\\n> are free of error or sin. This makes him a heretic.\\n> \\n\\nWow, you're quicker to point out heresy than the Church in the\\nMiddle ages. Seriously though, even the Sheiks at Al-Azhar don't\\nclaim that the Shi'ites are heretics. Most of the accusations\\nand fabrications about Shi'ites come out of Saudi Arabia from the\\nWahabis. For that matter you should read the original works of\\nthe Sunni Imams (Imams of the four madhabs). The teacher of\\nat least two of them was Imam Jafar Sadiq (the sixth Imam of the\\nShi'ites). \\n\\nAlthough there is plenty of false propaganda floating around\\nabout the Shi'ites (esp. since the revolution), there are also\\nmany good works by Shi'ites which present the views and teachings\\nof their school. Why make assumptions and allegations (like\\npeople in this group have done about Islam in general) about Shi'ites.\\n\",\n", + " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: Re: rejoinder. Questions to Israelis\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 25\\n\\n\\nIn article <1483500352@igc.apc.org>, Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: rejoinder. Questions to Israelis\\n>\\n>\\n>To: shaig@Think.COM\\n>\\n>Subject: Ten questions to Israelis\\n>\\n>Dear Shai,\\n>\\n>Your answers to my questions are unsatisfactory.\\n\\n\\n\\nSo why don\\'t ypu sue him.\\n\\n----\\n\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", + " \"From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Ancient islamic rituals\\nOrganization: Monash University, Melb., Australia.\\nLines: 21\\n\\nIn <16BA6C947.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n\\n>In article <1993Apr3.081052.11292@monu6.cc.monash.edu.au>\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n> \\n>>There has been some discussion on the pros and cons about sex outside of\\n>>marriage.\\n>>\\n>>I personally think that part of the value of having lasting partnerships\\n>>between men and women is that this helps to provide a stable and secure\\n>>environment for children to grow up in.\\n>(Deletion)\\n> \\n>As an addition to Chris Faehl's post, what about homosexuals?\\n\\nWell, from an Islamic viewpoint, homosexuality is not the norm for\\nsociety. I cannot really say much about the Islamic viewpoint on homosexuality \\nas it is not something I have done much research on.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n\",\n", + " \"From: robert@cpuserver.acsc.com (Robert Grant)\\nSubject: Virtual Reality for X on the CHEAP!\\nOrganization: USCACSC, Los Angeles\\nLines: 187\\nDistribution: world\\nReply-To: robert@cpuserver.acsc.com (Robert Grant)\\nNNTP-Posting-Host: cpuserver.acsc.com\\n\\nHi everyone,\\n\\nI thought that some people may be interested in my VR\\nsoftware on these groups:\\n\\n*******Announcing the release of Multiverse-1.0.2*******\\n\\nMultiverse is a multi-user, non-immersive, X-Windows based Virtual Reality\\nsystem, primarily focused on entertainment/research.\\n\\nFeatures:\\n\\n Client-Server based model, using Berkeley Sockets.\\n No limit to the number of users (apart from performance).\\n Generic clients.\\n Customizable servers.\\n Hierachical Objects (allowing attachment of cameras and light sources).\\n Multiple light sources (ambient, point and spot).\\n Objects can have extension code, to handle unique functionality, easily\\n attached.\\n\\nFunctionality:\\n\\n Client:\\n The client is built around a 'fast' render loop. Basically it changes things\\n when told to by the server and then renders an image from the user's\\n viewpoint. It also provides the server with information about the user's\\n actions - which can then be communicated to other clients and therefore to\\n other users.\\n\\n The client is designed to be generic - in other words you don't need to\\n develop a new client when you want to enter a new world. This means that\\n resources can be spent on enhancing the client software rather than adapting\\n it. The adaptations, as will be explained in a moment, occur in the servers.\\n\\n This release of the client software supports the following functionality:\\n\\n o Hierarchical Objects (with associated addressing)\\n\\n o Multiple Light Sources and Types (Ambient, Point and Spot)\\n\\n o User Interface Panels\\n\\n o Colour Polygonal Rendering with Phong Shading (optional wireframe for\\n\\tfaster frame rates)\\n\\n o Mouse and Keyboard Input\\n\\n (Some people may be disappointed that this software doesn't support the\\n PowerGlove as an input device - this is not because it can't, but because\\n I don't have one! This will, however, be one of the first enhancements!)\\n\\n Server(s):\\n This is where customization can take place. The following basic support is\\n provided in this release for potential world server developers:\\n\\n o Transparent Client Management\\n\\n o Client Message Handling\\n\\n This may not sound like much, but it takes away the headache of\\naccepting and\\n terminating clients and receiving messages from them - the\\napplication writer\\n can work with the assumption that things are happening locally.\\n\\n Things get more interesting in the object extension functionality. This is\\n what is provided to allow you to animate your objects:\\n\\n o Server Selectable Extension Installation:\\n What this means is that you can decide which objects have extended\\n functionality in your world. Basically you call the extension\\n initialisers you want.\\n\\n o Event Handler Registration:\\n When you develop extensions for an object you basically write callback\\n functions for the events that you want the object to respond to.\\n (Current events supported: INIT, MOVE, CHANGE, COLLIDE & TERMINATE)\\n\\n o Collision Detection Registration:\\n If you want your object to respond to collision events just provide\\n some basic information to the collision detection management software.\\n Your callback will be activated when a collision occurs.\\n\\n This software is kept separate from the worldServer applications because\\n the application developer wants to build a library of extended objects\\n from which to choose.\\n\\n The following is all you need to make a World Server application:\\n\\n o Provide an initWorld function:\\n This is where you choose what object extensions will be supported, plus\\n any initialization you want to do.\\n\\n o Provide a positionObject function:\\n This is where you determine where to place a new client.\\n\\n o Provide an installWorldObjects function:\\n This is where you load the world (.wld) file for a new client.\\n\\n o Provide a getWorldType function:\\n This is where you tell a new client what persona they should have.\\n\\n o Provide an animateWorld function:\\n This is where you can go wild! At a minimum you should let the objects\\n move (by calling a move function) and let the server sleep for a bit\\n (to avoid outrunning the clients).\\n\\n That's all there is to it! And to prove it here are the line counts for the\\n three world servers I've provided:\\n\\n generic - 81 lines\\n dactyl - 270 lines (more complicated collision detection due to the\\n stairs! Will probably be improved with future\\n versions)\\n dogfight - 72 lines\\n\\nLocation:\\n\\n This software is located at the following site:\\n ftp.u.washington.edu\\n\\n Directory:\\n pub/virtual-worlds\\n\\n File:\\n multiverse-1.0.2.tar.Z\\n\\nFutures:\\n\\n Client:\\n\\n o Texture mapping.\\n\\n o More realistic rendering: i.e. Z-Buffering (or similar), Gouraud shading\\n\\n o HMD support.\\n\\n o Etc, etc....\\n\\n Server:\\n\\n o Physical Modelling (gravity, friction etc).\\n\\n o Enhanced Object Management/Interaction\\n\\n o Etc, etc....\\n\\n Both:\\n\\n o Improved Comms!!!\\n\\nI hope this provides people with a good understanding of the Multiverse\\nsoftware,\\nunfortunately it comes with practically zero documentation, and I'm not sure\\nwhether that will ever be able to be rectified! :-(\\n\\nI hope people enjoy this software and that it is useful in our explorations of\\nthe Virtual Universe - I've certainly found fascinating developing it, and I\\nwould *LOVE* to add support for the PowerGlove...and an HMD :-)!!\\n\\nFinally one major disclaimer:\\n\\nThis is totally amateur code. By that I mean there is no support for this code\\nother than what I, out the kindness of my heart, or you, out of pure\\ndesperation, provide. I cannot be held responsible for anything good or bad\\nthat may happen through the use of this code - USE IT AT YOUR OWN RISK!\\n\\nDisclaimer over!\\n\\nOf course if you love it, I would like to here from you. And anyone with\\nPOSITIVE contributions/criticisms is also encouraged to contact me. Anyone who\\nhates it: > /dev/null!\\n\\n************************************************************************\\n*********\\nAnd if anyone wants to let me do this for a living: you know where to\\nwrite :-)!\\n************************************************************************\\n*********\\n\\nThanks,\\n\\nRobert.\\n\\nrobert@acsc.com\\n^^^^^^^^^^^^^^^\\n\",\n", + " 'From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Need advice for riding with someone on pillion\\nKeywords: advice, pillion, help!\\nOrganization: NEC Systems Laboratory, Inc.\\nDistribution: na\\nLines: 40\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n>I need some advice on having someone ride pillion with me on my 750 Ninja.\\n>This will be the the first time I\\'ve taken anyone for an extended ride\\n>(read: farther than around the block :-). We\\'ll be riding some twisty, \\n>fairly bumpy roads (the Mines Road-Mt.Hamilton Loop for you SF Bay Areans).\\n\\n\\tYou sonuvabitch. Rub it in, why don\\'t you? \"We have great weather\\nand great roads here, unlike the rest of you putzes in the U.S. Nyah, nyah,\\nnyah.\"\\n\\n\\t:-) for the severely humor-impaired.\\n\\n>This person is <100 lbs. and fairly small, so I don\\'t see weight as too much\\n>of a problem, but what sort of of advice should I give her before we go?\\n>I want her to hold onto me :-) rather than the grab rail out back, and\\n>I\\'ve heard that she should look over my shoulder in the direction we\\'re\\n>turning so she leans *with* me, but what else? Are there traditional\\n>signals for SLOW DOWN!! or GO FASTER!! or I HAFTA GO PEE!! etc.???\\n\\n\\tYou\\'ll likely not notice her weight too much. A piece of advice\\nfor you: don\\'t be abrupt with the throttle. No wheelies, accelerate a\\nwee bit more slowly than usual. Consciously worry about spitting her off\\nthe back. It\\'s as much your job to keep her on the pillion as it is hers,\\nand I guarantee she\\'ll be put off by the bike ripping out from under her\\nwhen you whack it open. Keep the lean angles pretty tame the first time\\nout too. You and her need to learn each other\\'s body English. She needs\\nto learn what your idea is about how to take the turn, and you need to\\nlearn her idea of \"shit! Don\\'t crash now!\" so you don\\'t work at cross\\npurposes while leaned over. You can work up to more aggressive riding over\\ntime.\\n\\n\\tA very important thing: tell her to put her hand against the tank\\nwhen you brake--this could save you some severely crushed cookies.\\n\\nHave fun,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n',\n", + " \"From: bgardner@bambam.es.com (Blaine Gardner)\\nSubject: Re: Why I won't be getting my Low Rider this year\\nKeywords: congratz\\nArticle-I.D.: dsd.1993Apr6.044018.23281\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 23\\nNntp-Posting-Host: bambam\\n\\nIn article <1993Apr5.182851.23410@cbnewsj.cb.att.com> car377@cbnewsj.cb.att.com (charles.a.rogers) writes:\\n>In article <1993Mar30.214419.923@pb2esac.uucp>, prahren@pb2esac.uucp (Peter Ahrens) writes:\\n \\n>> That would be low drag bars and way rad rearsets for the FJ, so that the \\n>> ergonomic constraints would have contraceptive consequences?\\n>\\n>Ouch. :-) This brings to mind one of the recommendations in the\\n>Hurt Study. Because the rear of the gas tank is in close proximity\\n>to highly prized and easily damaged anatomy, Hurt et al recommended\\n>that manufacturers build the tank so as to reduce the, er, step function\\n>provided when the rider's body slides off of the seat and onto the\\n>gas tank in the unfortunate event that the bike stops suddenly and the \\n>rider doesn't. I think it's really inspiring how the manufacturers\\n>have taken this advice to heart in their design of bikes like the \\n>CBR900RR and the GTS1000A.\\n\\nI dunno, on my old GS1000E the tank-seat junction was nice and smooth.\\nBut if you were to travel all the way forward, you'd collect the top\\ntriple-clamp in a sensitive area. I'd hate to have to make the choice,\\nbut I think I'd prefer the FJ's gas tank. :-)\\n-- \\nBlaine Gardner @ Evans & Sutherland\\nbgardner@dsd.es.com\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The wholesale extermination of the Muslim population by the Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 82\\n\\nIn article arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>But some of this is verifiable information. For instance, the person who\\n>knows about the buggy product may be able to tell you how to reproduce the\\n>bug on your own, but still fears retribution if it were to be known that he\\n>was the one who told the public how to do so.\\n\\nTypical \\'Arromdian\\' of the ASALA/SDPA/ARF Terrorism and Revisionism \\nTriangle. Well, does it change the fact that during the period of 1914 \\nto 1920, the Armenian Government ordered, incited, assisted and participated \\nin the genocide of 2.5 million Muslim people because of race, religion\\nand national origin?\\n\\n\\n1) Armenians did slaughter the entire Muslim population of Van.[1,2,3,4,5]\\n2) Armenians did slaughter 42% of Muslim population of Bitlis.[1,2,3,4]\\n3) Armenians did slaughter 31% of Muslim population of Erzurum.[1,2,3,4]\\n4) Armenians did slaughter 26% of Muslim population of Diyarbakir.[1,2,3,4]\\n5) Armenians did slaughter 16% of Muslim population of Mamuretulaziz.[1,2,3,4]\\n6) Armenians did slaughter 15% of Muslim population of Sivas.[1,2,3,4]\\n7) Armenians did slaughter the entire Muslim population of the x-Soviet\\n Armenia.[1,2,3,4]\\n8) .....\\n\\n[1] McCarthy, J., \"Muslims and Minorities, The Population of Ottoman \\n Anatolia and the End of the Empire,\" New York \\n University Press, New York, 1983, pp. 133-144.\\n\\n[2] Karpat, K., \"Ottoman Population,\" The University of Wisconsin Press,\\n 1985.\\n\\n[3] Hovannisian, R. G., \"Armenia on the Road to Independence, 1918. \\n University of California Press (Berkeley and \\n Los Angeles), 1967, pp. 13, 37.\\n\\n[4] Shaw, S. J., \\'On Armenian collaboration with invading Russian armies \\n in 1914, \"History of the Ottoman Empire and Modern Turkey \\n (Volume II: Reform, Revolution & Republic: The Rise of \\n Modern Turkey, 1808-1975).\" (London, Cambridge University \\n Press 1977). pp. 315-316.\\n\\n[5] \"Gochnak\" (Armenian newspaper published in the United States), May 24, \\n 1915.\\n\\n\\nSource: \"Adventures in the Near East\" by A. Rawlinson, Jonathan Cape, \\n30 Bedford Square, London, 1934 (First published 1923) (287 pages).\\n(Memoirs of a British officer who witnessed the Armenian genocide of 2.5 \\n million Muslim people)\\n\\np. 178 (first paragraph)\\n\\n\"In those Moslem villages in the plain below which had been searched for\\n arms by the Armenians everything had been taken under the cloak of such\\n search, and not only had many Moslems been killed, but horrible tortures \\n had been inflicted in the endeavour to obtain information as to where\\n valuables had been hidden, of which the Armenians were aware of the \\n existence, although they had been unable to find them.\"\\n\\np. 175 (first paragraph)\\n\\n\"The arrival of this British brigade was followed by the announcement\\n that Kars Province had been allotted by the Supreme Council of the\\n Allies to the Armenians, and that announcement having been made, the\\n British troops were then completely withdrawn, and Armenian occupation\\n commenced. Hence all the trouble; for the Armenians at once commenced\\n the wholesale robbery and persecution of the Muslem population on the\\n pretext that it was necessary forcibly to deprive them of their arms.\\n In the portion of the province which lies in the plains they were able\\n to carry out their purpose, and the manner in which this was done will\\n be referred to in due course.\"\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Objective morality (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >In another part of this thread, you\\'ve been telling us that the\\n|> >\"goal\" of a natural morality is what animals do to survive.\\n|> \\n|> That\\'s right. Humans have gone somewhat beyond this though. Perhaps\\n|> our goal is one of self-actualization.\\n\\nHumans have \"gone somewhat beyond\" what, exactly? In one thread\\nyou\\'re telling us that natural morality is what animals do to\\nsurvive, and in this thread you are claiming that an omniscient\\nbeing can \"definitely\" say what is right and what is wrong. So\\nwhat does this omniscient being use for a criterion? The long-\\nterm survival of the human species, or what?\\n\\nHow does omniscient map into \"definitely\" being able to assign\\n\"right\" and \"wrong\" to actions?\\n\\n|> \\n|> >But suppose that your omniscient being told you that the long\\n|> >term survival of humanity requires us to exterminate some \\n|> >other species, either terrestrial or alien.\\n|> \\n|> Now you are letting an omniscient being give information to me. This\\n|> was not part of the original premise.\\n\\nWell, your \"original premises\" have a habit of changing over time,\\nso perhaps you\\'d like to review it for us, and tell us what the\\ndifference is between an omniscient being be able to assign \"right\"\\nand \"wrong\" to actions, and telling us the result, is. \\n\\n|> \\n|> >Does that make it moral to do so?\\n|> \\n|> Which type of morality are you talking about? In a natural sense, it\\n|> is not at all immoral to harm another species (as long as it doesn\\'t\\n|> adversely affect your own, I guess).\\n\\nI\\'m talking about the morality introduced by you, which was going to\\nbe implemented by this omniscient being that can \"definitely\" assign\\n\"right\" and \"wrong\" to actions.\\n\\nYou tell us what type of morality that is.\\n\\njon.\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Happy Easter!\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 37\\n\\nkevinh, on the Tue, 20 Apr 1993 13:23:01 GMT wibbled:\\n\\n: In article <1993Apr19.154020.24818@i88.isc.com>, jeq@lachman.com (Jonathan E. Quist) writes:\\n: |> In article <2514@tekgen.bv.tek.com> davet@interceptor.cds.tek.com (Dave Tharp CDS) writes:\\n: |> >In article <1993Apr15.171757.10890@i88.isc.com> jeq@lachman.com (Jonathan E. Quist) writes:\\n: |> >>Rolls-Royce owned by a non-British firm?\\n: |> >>\\n: |> >>Ye Gods, that would be the end of civilization as we know it.\\n: |> >\\n: |> > Why not? Ford owns Aston-Martin and Jaguar, General Motors owns Lotus\\n: |> >and Vauxhall. Rover is only owned 20% by Honda.\\n: |> \\n: |> Yes, it\\'s a minor blasphemy that U.S. companies would ?? on the likes of A.M.,\\n: |> Jaguar, or (sob) Lotus. It\\'s outright sacrilege for RR to have non-British\\n: |> ownership. It\\'s a fundamental thing\\n\\n\\n: I think there is a legal clause in the RR name, regardless of who owns it\\n: it must be a British company/owner - i.e. BA can sell the company but not\\n: the name.\\n\\n: kevinh@hasler.ascom.ch\\n\\nI don\\'t believe that BA have anything to do with RR. It\\'s a seperate\\ncompany from the RR Aero-Engine company. I think that the government\\nown a stake. Unfortunately they owned a stake of Jaguar too, until\\nthey decided to make a quick buck and sold it to Ford. Bastards.\\nThis is definitely the ultimate Arthur-Daley government.\\n--\\n\\nNick (the Cynical Biker) DoD 1069 Concise Oxford Leaky Gearbox\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n',\n", + " 'From: pashdown@slack.sim.es.com (Pete Ashdown)\\nSubject: Need parts/info for 1963 Maicoletta scooter\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 15\\nNNTP-Posting-Host: slack\\n\\n\\nPosted for a friend:\\n\\nLooking for tires, dimensions 14\" x 3.25\" or 3.35\"\\n\\nAlso looking for brakes or info on relining existing shoes.\\n\\nAlso any other Maicoletta owners anywhere to have contact with.\\n\\nCall Scott at 801-583-1354 or email me.\\n-- \\n I saw fops by the thousand sew themselves together round the Lloyds building.\\n\\nDISCLAIMER: My writings have NOTHING to do with my employer. Keep it that way.\\nPete Ashdown pashdown@slack.sim.es.com Salt Lake City, Utah\\n',\n", + " 'From: mikec@sail.LABS.TEK.COM (Micheal Cranford)\\nSubject: Disney Animation\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 5\\n\\n------------------------------------\\n\\n Can anyone tell me anything about the Disney Animation software package?\\nNote the followup line (this is not for me but for a colleague).\\n\\n',\n", + " \"From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Israeli Expansion-lust\\nOrganization: The Department of Redundancy Department\\nLines: 13\\n\\nIn article <1993Apr14.224726.15612@bnr.ca> zbib@bnr.ca writes:\\n>Jake Livni writes\\n>> Sam Zbib writes\\n\\n[all deleted...]\\n\\nSam Zbib's posting is so confused and nonsensical as not to warrant a\\nreasoned response. We're getting used to this, too.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n\",\n", + " 'From: karish@gondwana.Stanford.EDU (Chuck Karish)\\nSubject: Re: Living\\nOrganization: Mindcraft, Inc.\\nLines: 31\\n\\nIn article amc@crash.wpd.sgi.com\\n(Allan McNaughton) writes:\\n>In article <1993Mar27.040606.4847@eos.arc.nasa.gov>, phil@eos.arc.nasa.gov\\n(Phil Stone) writes:\\n>|> Alan, nothing personal, but I object to the \"we all\" in that statement.\\n>|> (I was on many of those rides that Alan is describing.) Pushing the\\n>|> envelope does not necessarily equal taking insane chances.\\n\\nMoreover, if two riders are riding together at the same speed,\\none might be riding well beyond his abilities and the other\\nmay have a safety margin left.\\n\\n>Oh come on Phil. You\\'re an excellent rider, but you still take plenty of\\n>chances. Don\\'t tell me that it\\'s just your skill that keeps you from \\n>getting wacked. There\\'s a lot of luck thrown in there too. You\\'re a very\\n>good rider and a very lucky one too. Hope your luck holds.... \\n\\nAllan, I know the circumstances of several of your falls.\\nOn the ride when you fell while I was next behind you,\\nyou made an error of judgement by riding too fast when\\nyou knew the road was damp, and you reacted badly when\\nyou were surprised by an oncoming car. That crash was\\ndue to factors that were subject to your control.\\n\\nI won\\'t deny that there\\'s a combination of luck and skill\\ninvolved for each of us, but it seems that you\\'re blaming\\nbad luck for more of your own pain than is warranted.\\n--\\n\\n Chuck Karish karish@mindcraft.com\\n (415) 323-9000 x117 karish@pangea.stanford.edu\\n',\n", + " \"From: alaa@peewee.unx.dec.com (Alaa Zeineldine)\\nSubject: Re: THE HAMAS WAY of DEATH\\nOrganization: Digital Equipment Corp.\\nX-Newsreader: Tin 1.1 PL3\\nLines: 12\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n: \\n: While you brought up the separate question of Israel's unjustified\\n: policies and practices, I am still unclear about your reaction to\\n: the practices and polocies reflected in the article above.\\n: \\n: Tim\\n\\nNot a separate question Mr. Clock. It is deceiving to judge the \\nresistance movement out of the context of the occupation.\\n\\nAlaa Zeineldine\\n\",\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: Express Access Online Communications USA\\nLines: 12\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.164801.7530@julian.uwo.ca> jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll) writes:\\n>\\tHmmm. I seem to recall that the attraction of solid state record-\\n>players and radios in the 1960s wasn't better performance but lower\\n>per-unit cost than vacuum-tube systems.\\n>\\n\\n\\nI don't think so at first, but solid state offered better reliabity,\\nid bet, and any lower costs would be only after the processes really scaled up.\\n\\npat\\n\\n\",\n", + " \"From: jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: University of Western Ontario, London\\nNntp-Posting-Host: prism.engrg.uwo.ca\\nLines: 9\\n\\n\\tHmmm. I seem to recall that the attraction of solid state record-\\nplayers and radios in the 1960s wasn't better performance but lower\\nper-unit cost than vacuum-tube systems.\\n\\n\\tMind you, my father was a vacuum-tube fan in the 60s (Switched\\nto solid-state in the mid-seventies and then abruptly died; no doubt\\nthere's a lesson in that) and his account could have been biased.\\n\\n\\t\\t\\t\\t\\t\\t\\tJames Nicoll\\n\",\n", + " 'From: \"danny hawrysio\" \\nSubject: radiosity\\nReply-To: \"danny hawrysio\" \\nOrganization: Canada Remote Systems\\nDistribution: comp\\nLines: 9\\n\\n\\n-> I am looking for source-code for the radiosity-method.\\n\\n I don\\'t know what kind of machine you want it for, but the program\\nRadiance comes with \\'C\\' source code - I don\\'t have ftp access so I\\ncouldn\\'t tell you where to get it via that way.\\n--\\nCanada Remote Systems - Toronto, Ontario\\n416-629-7000/629-7044\\n',\n", + " 'From: dkusswur@falcon.depaul.edu (Daniel C. Kusswurm)\\nSubject: Siggraph 1987 Course Notes\\nNntp-Posting-Host: falcon.depaul.edu\\nOrganization: DePaul University, Chicago\\nDistribution: usa\\nLines: 7\\n\\nI am looking for a copy of the following Siggraph publication: Gomez, J.E.\\n\"Comments on Event Driven Annimation,\" Siggraph Course Notes, 10, 1987.\\n\\nIf anyone knows of a location where I can obtain a copy of these notes, I\\nwould appreciate if they could let me know. Thanks.\\n\\ndkusswur@falcon.depaul.edu\\n',\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nOrganization: Express Access Online Communications USA\\nLines: 54\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.003719.101323@zeus.calpoly.edu> jgreen@trumpet.calpoly.edu (James Thomas Green) writes:\\n>prb@access.digex.com (Pat) Pontificated: \\n>>\\n>>\\n>\\n>I heard once that the voyagers had a failsafe routine built in\\n>that essentially says \"If you never hear from Earth again,\\n>here\\'s what to do.\" This was a back up in the event a receiver\\n>burnt out but the probe could still send data (limited, but\\n>still some data). \\n>\\n\\nVoyager has the unusual luck to be on a stable trajectory out of the\\nsolar system. All it\\'s doing is collecting fields data, and routinely\\nsquirting it down. One of the mariners is also in stable\\nsolar orbit, and still providing similiar solar data. \\n\\nSomething in a planetary orbit, is subject to much more complex forces.\\n\\nComsats, in \"stable \" geosynch orbits, require almost daily\\nstationkeeping operations. \\n\\nFor the occasional deep space bird, like PFF after pluto, sure\\nit could be left on \"auto-pilot\". but things like galileo or\\nmagellan, i\\'d suspect they need enough housekeeping that\\neven untended they\\'d end up unusable after a while.\\n\\nThe better question should be.\\n\\nWhy not transfer O&M of all birds to a separate agency with continous funding\\nto support these kind of ongoing science missions.\\n\\npat\\n\\n\\tWhen ongoing ops are mentioned, it seems to always quote Operations\\nand Data analysis. how much would it cost to collect the data\\nand let it be analyzed whenever. kinda like all that landsat data\\nthat sat around for 15 years before someone analyzed it for the ozone hole.\\n\\n>>Even if you let teh bird drift, it may get hosed by some\\n>>cosmic phenomena. \\n>>\\n>Since this would be a shutdown that may never be refunded for\\n>startup, if some type of cosmic BEM took out the probe, it might\\n>not be such a big loss. Obviously you can\\'t plan for\\n>everything, but the most obvious things can be considered.\\n>\\n>\\n>/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n>| \"I know you believe you understand what it is that you | \\n>| think I said. But I am not sure that you realize that |\\n>| what I said is not what I meant.\" |\\n\\n\\n',\n", + " 'From: jaeger@buphy.bu.edu (Gregg Jaeger)\\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nOrganization: Boston University Physics Department\\nLines: 63\\n\\nIn article <1993Apr14.121134.12187@monu6.cc.monash.edu.au> darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n\\n>>In article khan@itd.itd.nrl.navy.mil (Umar Khan) writes:\\n\\n>I just borrowed a book from the library on Khomeini\\'s fatwa etc.\\n\\n>I found this useful passage regarding the legitimacy of the \"fatwa\":\\n\\n>\"It was also common knowledge as prescribed by Islamic law, that the\\n>sentence was only applicable where the jurisdiction of Islamic law\\n>applies. Moreover, the sentence has to be passed by an Islamic court\\n>and executed by the state machinery through the due process of the law.\\n>Even in Islamic countries, let alone in non-Muslim lands, individuals\\n>cannot take the law into their own hands. The sentence when passed,\\n>must be carried out by the state through the usual machinery and not by\\n>individuals. Indeed it becomes a criminal act to take the law into\\n>one\\'s own hands and punish the offender unless it is in the process of\\n>self-defence. Moreover, the offender must be brought to the notice of\\n>the court and it is the court who shoud decide how to deal with him.\\n>This law applies equally to Muslim as well as non-Muslim territories.\\n\\n\\nI agree fully with the above statement and is *precisely* what I meant\\nby my previous statements about Islam not being anarchist and the\\nlaw not being _enforcible_ despite the _law_ being applicable. \\n\\n\\n>Hence, on such clarification from the ulama [Islamic scholars], Muslims\\n>in Britain before and after Imam Khomeini\\'s fatwa made it very clear\\n>that since Islamic law is not applicable to Britain, the hadd\\n>[compulsory] punishment cannot be applied here.\"\\n\\n\\nI disagree with this conclusion about the _applicability_ of the \\nIslamic law to all muslims, wherever they may be. The above conclusion \\ndoes not strictly follow from the foregoing, but only the conclusion \\nthat the fatwa cannot be *enforced* according to Islamic law. However, \\nI do agree that the punishment cannot be applied to Rushdie even *were*\\nit well founded.\\n\\n>Wow... from the above, it looks like that from an Islamic viewpoint\\n>Khomeini\\'s \"fatwa\" constitutes a \"criminal act\" .... perhaps I could\\n>even go out on a limb and call Khomeini a \"criminal\" on this basis....\\n\\n\\nCertainly putting a price on the head of Rushdie in Britain is a criminal \\nact according to Islamic law. \\n\\n\\n>Anyhow, I think it is understood by _knowledgeable_ Muslims that\\n>Khomeini\\'s \"fatwa\" is Islamically illegitimate, at least on the basis\\n>expounded above. Others, such as myself and others who have posted here\\n>(particularly Umar Khan and Gregg Jaeger, I think) go further and say\\n>that even the punishment constituted in the fatwa is against Islamic law\\n>according to our understanding.\\n\\nYes.\\n\\n\\n\\n\\n\\nGregg\\n',\n", + " 'From: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nSubject: Boom! Dog attack!\\nReply-To: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nDistribution: world\\nOrganization: Computer Dynamics-Vancouver B.C.-(604)986-9937 (604)255-9937\\nLines: 59\\n\\nMy previous posting on dog attacks must have generated some bad karma or\\nsomething. I\\'ve weathered attempted dog attacks before using the\\napproved method: Slow down to screw up dog\\'s triangulation of target,\\nthen take off and laugh at the dog, now far behind you. This time, it\\ndidn\\'t work because I didn\\'t have time. Riding up the hill leading to my\\nhouse, I encountered a liver-and-white Springer Spaniel (no relation to\\nthe Springer Softail, or the Springer Spagthorpe, a close relation to\\nthe Spagthorpe Viking). Actually, the dog encountered me with intent to\\nharm.\\n\\nBut I digress: I was riding near the (unpainted) centerline of the\\nroughly 30-foot wide road, doing between forty and sixty clicks (30 mph\\nfor the velocity-impaired). The dog shot at me from behind bushes on the\\nleft side of the road at an impossibly high speed. I later learned he\\nhad been accelerating from the front porch, about thirty feet away,\\nheading down the very gently sloped approach to the side of the road. I\\nsaw the dog, and before you could say SIPDE, he was on me. Boom! I took\\nthe dog in the left leg, and from the marks on the bike my leg was\\ndriven up the side of the bike with considerable force, making permanent\\nmarks on the plastic parts of the bike, and cracking one panel. I think\\nI saw the dog spin around when I looked back, but my memory of this\\nmoment is hazy.\\n\\nI next turned around, and picked the most likely looking house. The\\napologetic woman explained that the dog was not seriously hurt (cut\\nmouth) and hoped I was not hurt either. I could feel the pain in my\\nshin, and expected a cool purple welt to form soon. Sadly, it has not.\\nSo I\\'m left with a tender shin, and no cool battle scars!\\n\\nInterestingly, the one thing that never happened was that the bike never\\nmoved off course. The not inconsiderable impact did not push the bike\\noff course, nor did it cause me to put the bike out of control from some\\ngut reaction to the sudden impact. Delayed pain may have helped me\\nhere, as I didn\\'t feel a sudden sharp pain that I can remember.\\n\\nWhat worries me about the accident is this: I don\\'t think I could have\\nprevented it except by traveling much slower than I was. This is not\\nnecessarily an unreasonable suggestion for a residential area, but I was\\nriding around the speed limit. I worry about what would have happened if\\nit had been a car instead of a dog, but I console myself with the\\nthought that it would take a truly insane BDI cager to whip out of a\\nblind driveway at 15-30 mph. For that matter, how many driveways are\\nlong enough for a car to hit 30 mph by the end?\\n\\nI eagerly await comment.\\n\\nRyan Cousinetc.|1982 Yamaha Vision XZ550 -Black Pig of Inverness|Live to Ride\\nKotRB |1958 AJS 500 C/S -King Rat |to Work to\\nDoD# 0863 |I\\'d be a squid if I could afford the bike... |Flame to\\nryan.cousineau@compdyn.questor.org | Vancouver, BC, Canada |Live . . .\\n\\n\\n * SLMR 2.1a * \"He\\'s hurt.\" \"Dammit Jim, I\\'m a Doctor -- oh, right.\"\\n \\n----\\n+===============================================================+\\n|COMPUTER DYNAMICS BBS 604-255-9937(HST) 604-986-9937(V32)|\\n|Vancouver, BC, Canada - Easy Access, Low Rates, Friendly Sysop|\\n+===============================================================+\\n',\n", + " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Re: rejoinder. Questions to Israelis\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 22\\n\\nIn article <1483500353@igc.apc.org> Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: rejoinder. Questions to Israelis\\n>\\n>\\n>Dear Josh\\n>\\n>I appreciate the fact that you sought to answer my questions.\\n>\\n>Having said that, I am not totally happy with your answers.\\n>\\n>1. You did not fully answer my question whether Israeli ID cards\\n>identify the holders as Jews or Arabs. You imply that U.S.\\n>citizens must identify themselves by RACE. Is that true ? Or are\\n>just trying to mislead the reader ? \\n\\nI think he is trying to mislead people. In cases where race\\ninformation is sought, it is completely voluntary (the census\\npossibly excepted).\\n\\n-anwar\\n',\n", + " \"From: cheinan@access.digex.com (Cheinan Marks)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nOrganization: Express Access Online Communications, Greenbelt, MD USA\\nLines: 100\\nNNTP-Posting-Host: access.digex.net\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\n: Robert G. Carpenter writes:\\n\\n: >Hi Netters,\\n: >\\n: >I'm building a CAD package and need a 3D graphics library that can handle\\n: >some rudimentry tasks, such as hidden line removal, shading, animation, etc.\\n: >\\n: >Can you please offer some recommendations?\\n: >\\n: >I'll also need contact info (name, address, email...) if you can find it.\\n: >\\n: >Thanks\\n: >\\n: >(Please Post Your Responses, in case others have same need)\\n: >\\n: >Bob Carpenter\\n: >\\n\\nThe following is extracted from sumex-aim.stanford.edu. It should also be on\\nthe mirrors. I think there is source for some applications that may have some\\nbearing on your project. Poke around the source directory. I've never used\\nthis package, nor do I know anyone who did, but the price is right :-)\\n\\nHope this helps.\\n\\n\\t\\t\\t\\t\\tCheinan\\n\\nAbstracts of files as of Thu Apr 1 03:11:39 PST 1993\\nDirectory: info-mac/source\\n\\n#### BINHEX 3d-grafsys-121.hqx ****\\n\\nDate: Fri, 5 Mar 93 14:13:07 +0100\\nFrom: Christian Steffen Ove Franz \\nTo: questions@mac.archive.umich.edu\\nSubject: 3d GrafSys 1.21 in incoming directory\\nA 3d GrafSys short description follows:\\n\\nProgrammers 3D GrafSys Vers 1.21 now available. \\n\\nVersion 1.21 is mainly a bugfix for THINK C users. THIS VERSION\\nNOW RUNS WITH THINK C, I PROMISE! The Docs now contain a chapter for\\nC programmers on how to use the GrafSys. If you have problems, feel free \\nto contact me.\\nThe other change is that I removed the FastPerfTrig calls from\\nthe FPU version to make it run faster.\\n\\nThose of you who don't know what all this is about, read on.\\n\\n********\\n\\nProgrammers 3D GrafSys -- What it is:\\n-------------------------------------\\n\\nDidn't you always have this great game in mind where you needed some way of \\ndrawing three-dimensional scenes? \\n\\nDidn't you always want to write this program that visualized the structure \\nof three-dimensional molecules?\\n\\nAnd didn't the task of writing your 3D conversions routines keep you from \\nactually doing it?\\n\\nWell if the answer to any of the above questions is 'Yes, but what has it to \\ndo with this package???' , read on.\\n\\nGrafSys is a THINK Pascal/C library that provides you with simple routines \\nfor building, saving, loading (as resources), and manipulating \\n(independent rotating around arbitrary achses, translating and scaling) \\nthree dimensional objects. Objects, not just simple single-line drawings.\\n\\nGrafSys supports full 3D clipping, animation and some (primitive) hidden-\\nline/hidden-surface drawing with simple commands from within YOUR PROGRAM.\\n\\nGrafSys also supports full eye control with both perspective and parallel\\nprojections (If you can't understand a word, don't worry, this is just showing\\noff for those who know about it. The docs that come with it will try to explain\\nwhat it all means later on). \\n\\nGrafSys provides a powerful interface to supply your own drawing routines with\\ndata so you can use GrafSys to do the 3D transformations and your own routines\\nto do the actual drawing. (Note that GrafSys also provides drawing routines so\\nyou don't have to worry about that if you don't want to)\\n\\nGrafSys 1.11 comes in two versions. One for the 881 and 020 or above \\nprocessors. The other version uses fixed-point arithmetic and runs on any Mac.\\nBoth versions are *100% source compatibel*. \\n\\nGrafSys comes with an extensive manual that teaches you the fundamentals of 3D\\ngraphics and how to use the package.\\n\\nIf demand is big enough I will convert the GrafSys to an object-class library. \\nHowever, I feelt that the way it is implemented now makes it easier to use for\\na lot more people than the select 'OOP-Guild'.\\n\\nGrafSys is free for any non-commercial usage. Read the documentation enclosed.\\n\\n\\nEnjoy,\\nChristian Franz\\n\",\n", + " 'Subject: Re: Looking for Tseng VESA drivers\\nFrom: t890449@patan.fi.upm.es ()\\nOrganization: /usr/local/lib/organization\\nNntp-Posting-Host: patan.fi.upm.es\\nLines: 10\\n\\nHi, this is my first msg to the Net (actually the 3rd copy of it, dam*ed VI!!).\\n\\n Look for the new VPIC6.0, it comes with updated VESA 1.2 drivers for almost every known card. The VESA level is 1.2, and my Tseng4000 24-bit has a nice affair with the driver. \\n\\n Hope it is useful!!\\n\\n\\n\\t\\t\\t\\t\\t\\t\\tBye\\n\\n\\n',\n", + " 'From: pww@spacsun.rice.edu (Peter Walker)\\nSubject: Re: Rawlins debunks creationism\\nOrganization: I didn\\'t do it, nobody saw me, you can\\'t prove a thing.\\nLines: 30\\n\\nIn article <1993Apr15.223844.16453@rambo.atlanta.dg.com>,\\nwpr@atlanta.dg.com (Bill Rawlins) wrote:\\n> \\n> We are talking about origins, not merely science. Science cannot\\n> explain origins. For a person to exclude anything but science from\\n> the issue of origins is to say that there is no higher truth\\n> than science. This is a false premise.\\n\\nSays who? Other than a hear-say god.\\n\\n> By the way, I enjoy science.\\n\\nYou sure don\\'t understand it.\\n\\n> It is truly a wonder observing God\\'s creation. Macroevolution is\\n> a mixture of 15 percent science and 85 percent religion [guaranteed\\n> within three percent error :) ]\\n\\nBill, I hereby award you the Golden Shovel Award for the biggist pile of\\nbullshit I\\'ve seen in a whils. I\\'m afraid there\\'s not a bit of religion in\\nmacroevolution, and you\\'ve made a rather grand statement that Science can\\nnot explain origins; to a large extent, it already has!\\n\\n> // Bill Rawlins //\\n\\nPeter W. Walker \"Yu, shall I tell you what knowledge is? When \\nDept. of Space Physics you know a thing, say that you know it. When \\n and Astronomy you do not know a thing, admit you do not know\\nRice University it. This is knowledge.\"\\nHouston, TX - K\\'ung-fu Tzu\\n',\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Lunar Colony Race! By 2005 or 2010?\\nArticle-I.D.: aurora.1993Apr20.234427.1\\nOrganization: University of Alaska Fairbanks\\nLines: 27\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nOkay here is what I have so far:\\n\\nHave a group (any size, preferibly small, but?) send a human being to the moon,\\nset up a habitate and have the human(s) spend one earth year on the moon. Does\\nthat mean no resupply or ?? \\n\\nNeed to find atleast $1billion for prize money.\\n\\nContest open to different classes of participants.\\n\\nNew Mexico State has semi-challenged University of Alaska (any branch) to put a\\nteam together and to do it..\\nAny other University/College/Institute of Higher Learning wish to make a\\ncounter challenge or challenge another school? Say it here.\\n\\nI like the idea of having atleast a russian team.\\n\\n\\nSome prefer using new technology, others old or ..\\n\\nThe basic idea of the New Moon Race is like the Solar Car Race acrossed\\nAustralia.. Atleast in that basic vein of endevour..\\n\\nAny other suggestions?\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", + " \"From: dgraham@bmers30.bnr.ca (Douglas Graham)\\nSubject: Re: Jews can't hide from keith@cco.\\nOrganization: Bell-Northern Research, Ottawa, Canada\\nLines: 40\\n\\nIn article <1pqdor$9s2@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>In article <1993Apr3.071823.13253@bmerh85.bnr.ca>, dgraham@bmers30.bnr.ca (Douglas Graham) writes:\\n>The poster casually trashed two thousand years of Jewish history, and \\n>Ken replied that there had previously been people like him in Germany.\\n\\nI think the problem here is that I pretty much ignored the part\\nabout the Jews sightseeing for 2000 years, thinking instead that\\nthe important part of what the original poster said was the bit\\nabout killing Palestinians. In retrospect, I can see how the\\nsightseeing thing would be offensive to many. I originally saw\\nit just as poetic license, but it's understandable that others\\nmight see it differently. I still think that Ken came on a bit\\nstrong though. I also think that your advice to Masud Khan:\\n\\n #Before you argue with someone like Mr Arromdee, it's a good idea to\\n #do a little homework, or at least think.\\n\\nwas unnecessary.\\n\\n>That's right. There have been. There have also been people who\\n>were formally Nazis. But the Nazi party would have gone nowhere\\n>without the active and tacit support of the ordinary man in the\\n>street who behaved as though casual anti-semitism was perfectly\\n>acceptable.\\n>\\n>Now what exactly don't you understand about what I wrote, and why\\n>don't you see what it has to do with the matter at hand?\\n\\nThroughout all your articles in this thread there is the tacit\\nassumption that the original poster was exhibiting casual\\nanti-semitism. If I agreed with that, then maybe your speech\\non why this is bad might have been relevant. But I think you're\\nreading a lot into one flip sentence. While probably not\\ntrue in this case, too often the charge of anti-semitism gets\\nthrown around in order to stifle legitimate criticism of the\\nstate of Israel.\\n\\nAnyway, I'd rather be somewhere else, so I'm outta this thread.\\n--\\nDoug Graham dgraham@bnr.ca My opinions are my own.\\n\",\n", + " \"From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: Recommendation for a front tire.\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 11\\n\\nHey folks--\\n\\nI've got a pair of Dunlop sportmax radials of my ZX-10, and they've been\\nvery sticky (ie no slides yet), but all this talk about the Metzelers has\\nme wondering if my next set should be a Lazer comp K and a radial Metzeler\\nrear...for hard sport-touring, how do the choices stack up?\\n\\nNathaniel\\nZX-10\\nDoD 0812\\nAMA\\n\",\n", + " 'From: tmc@spartan.ac.BrockU.CA (Tim Ciceran)\\nSubject: Re: Newsgroup Split\\nOrganization: Brock University, St. Catharines Ontario\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 19\\n\\nChris Herringshaw (tdawson@engin.umich.edu) wrote:\\n: Concerning the proposed newsgroup split, I personally am not in favor of\\n: doing this. I learn an awful lot about all aspects of graphics by reading\\n: this group, from code to hardware to algorithms. I just think making 5\\n: different groups out of this is a wate, and will only result in a few posts\\n: a week per group. I kind of like the convenience of having one big forum\\n: for discussing all aspects of graphics. Anyone else feel this way?\\n: Just curious.\\n\\n\\n: Daemon\\n\\nWhat he said...\\n\\n-- \\n\\nTMC\\n(tmc@spartan.ac.BrockU.ca)\\n\\n',\n", + " 'From: tjohnson@tazmanian.prime.com (Tod Johnson (617) 275-1800 x2317)\\nSubject: Re: Live Free, but Quietly, or Die\\nDistribution: The entire Nugent family\\nOrganization: Computervision\\nLines: 29\\n\\n\\n In article <1qc2fu$c1r@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n >Loud pipes are a biligerent exercise in ego projection,\\n\\nNo arguements following, just the facts.\\n\\nI was able to avoid an accident by revving my engine and having my\\n*stock* Harley pipes make enough noise to draw someones attention.\\n\\nI instinctively revved my engine before I went for my horn. Don\\'t know\\nwhy, but I did it and it worked. Thats rather important.\\n\\nI am not saying \"the louder the pipes the better\". My Harley is loud\\nand it gets me noticed on the road for that reason. I personally do\\nnot feel it is to loud. If you do, well thats to bad; welcome to \\nAmerica - \"Home of the Free, Land of the Atlanta Braves\".\\n\\nIf you really want a fine tuned machine like our federal government\\nto get involved and pass Db restrictions; it should be generous\\nenough so that a move like revving your engine will get you noticed.\\nSure there are horns but my hand is already on the throttle. Should we\\nget into how many feet a bike going 55mph goes in .30 seconds; or\\nhow long it would take me to push my horn button??\\n\\nAnd aren\\'t you the guy that doesn\\'t even have a bike???\\n\\nTod J. Johnson\\nDoD #883\\n\"Go Slow, Take Geritol\"\\n',\n", + " 'From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Cobra Locks\\nOrganization: NEC Systems Laboratory, Inc.\\nDistribution: usa\\nLines: 55\\n\\nIn article <1r1b3rINNale@cronkite.Central.Sun.COM> doc@webrider.central.sun.com writes:\\n>I was posting to Alt.locksmithing about the best methods for securing \\n>a motorcycle. I got several responses referring to the Cobra Lock\\n>(described below). Has anyone come across a store carrying this lock\\n>in the Chicago area?\\n\\n\\tIt is available through some dealerships, who in turn have to back\\norder it from the manufacturer directly. Each one is made to order, at least\\nif you get a nonstandard length (standard is 5\\', I believe).\\n\\n>Any other feedback from someone who has used this?\\n\\n\\tSee below\\n\\n>In article 1r1534INNraj@shelley.u.washington.edu, basiji@stein.u.washington.edu (David Basiji) writes:\\n>> \\n>> Incidentally, the best lock I\\'ve found for bikes is the Cobra Lock.\\n>> It\\'s a cable which is shrouded by an articulated, hardened steel sleeve.\\n>> The lock itself is cylindrical and the locking pawl engages the joints\\n>> at the articulation points so the chain can be adjusted (like handcuffs).\\n>> You can\\'t get any leverage on the lock to break it open and the cylinder\\n>> is well-protected. I wouldn\\'t want to cut one of these without a torch\\n>> and/or a vice and heavy duty cutting wheel.\\n\\n\\tI have a 6\\' long CobraLinks lock that I used to use for my Harley (she\\ndoesn\\'t get out much anymore, so I don\\'t use the lock that often anymore). It\\nis made of 3/4\" articulated steel shells covering seven strands of steel cable.\\nIt is probably enough to stop all the joyriders, but, unfortunately,\\nprofessionals can open it rather easily:\\n\\n\\t1) Freeze a link.\\n\\n\\t2) Break frozen link with your favorite method (hammers work well).\\n\\n\\t3) Snip through the steel cables (which, I have on authority, are\\n\\t\\tfrightfully thin) with a set of boltcutters.\\n\\n\\tFor the same money, you can get a Kryptonite cable lock, which is\\nanywhere from 1/2\" to 7/8\" thick steel cable (looks like steel rope), shielded\\nin a flexible covering to protect your bike\\'s finish, and has a barrel-type\\nlocking mechanism. I don\\'t know if it\\'s adjustable, but my source says it\\'s\\nmore difficult to pick than most locks, and the cable tends to squish flat\\nin bolt-cutter jaws rather than shear (5/8\" model).\\n\\n\\tAll bets are off if the thief has a die grinder with a cutoff wheel.\\nEven the most durable locks tested yield to this tool in less than one minute.\\n\\n\\tFYI, I\\'ll be getting a Krypto cable next paycheck.\\n\\nLater,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n',\n", + " \"From: roland@sics.se (Roland Karlsson)\\nSubject: Re: Magellan Venus Maps (Thanks)\\nIn-Reply-To: baalke@kelvin.jpl.nasa.gov's message of 30 Mar 1993 00:34 UT\\nLines: 14\\nOrganization: Swedish Institute of Computer Science, Kista\\n\\n\\nThanks Ron and Peter for some very nice maps.\\n\\nI have an advice though. You wrote that the maps were reduced to 256\\ncolors. As far ad I understand JPEG pictures gets much better (and\\nthe compressed files smaller) if you use the original 3 color 24 bit\\ndata when converting to JPEG.\\n\\nThanks again,\\n\\n--\\nRoland Karlsson SICS, PO Box 1263, S-164 28 KISTA, SWEDEN\\nInternet: roland@sics.se Tel: +46 8 752 15 40 Fax: +46 8 751 72 30\\nTelex: 812 6154 7011 SICS Ttx: 2401-812 6154 7011=SICS\\n\",\n", + " 'From: glover@casbah.acns.nwu.edu (Eric Glover)\\nSubject: Re: What if the USSR had reached the Moon first?\\nNntp-Posting-Host: unseen1.acns.nwu.edu\\nOrganization: Northwestern University, Evanston Illinois.\\nLines: 45\\n\\nIn article <1993Apr06.020021.186145@zeus.calpoly.edu> jgreen@trumpet.calpoly.edu (James Thomas Green) writes:\\n>Suppose the Soviets had managed to get their moon rocket working\\n>and had made it first. They could have beaten us if either:\\n>* Their rocket hadn\\'t blown up on the pad thus setting them back,\\n>and/or\\n>* A Saturn V went boom.\\n\\nThe Apollo fire was harsh, A Saturn V explosion would have been\\nhurtful but The Soviets winning would have been crushing. That could have\\nbeen *the* technological turning point for the US turning us\\nfrom Today\\'s \"We can do anything, we\\'re *the* Super Power\" to a much more\\nreserved attitude like the Soviet Program today.\\n\\nKennedy was gone by 68\\\\69, the war was still on is the east, I think\\nthe program would have stalled badly and the goal of the moon\\nby 70 would have been dead with Nasa trying to figure were they went wrong.\\n \\n>If they had beaten us, I speculate that the US would have gone\\n>head and done some landings, but we also would have been more\\n>determined to set up a base (both in Earth Orbit and on the\\n>Moon). Whether or not we would be on Mars by now would depend\\n>upon whether the Soviets tried to go. Setting up a lunar base\\n>would have stretched the budgets of both nations and I think\\n>that the military value of a lunar base would outweigh the value\\n>of going to Mars (at least in the short run). Thus we would\\n>have concentrated on the moon.\\n\\nI speulate that:\\n+The Saturn program would have been pushed into\\nthe 70s with cost over runs that would just be too evil. \\nNixon still wins.\\n+The Shuttle was never proposed and Skylab never built.\\n+By 73 the program stalled yet again under the fuel crisis.\\n+A string of small launches mark the mid seventies.\\n+By 76 the goal of a US man on the moon is dead and the US space program\\ndrifts till the present day.\\n\\n\\n>/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n>| \"I believe that this nation should commit itself to achieving\\t| \\n>| the goal, before this decade is out, of landing a man on the \\t|\\n>| Moon and returning him safely to the Earth.\" \\t\\t|\\n>| \\t\\t|\\n\\n\\n',\n", + " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: thoughts on christians\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 19\\n\\nIn article pl1u+@andrew.cmu.edu (Patrick C Leger) writes:\\n>EVER HEAR OF\\n>BAPTISM AT BIRTH? If that isn't preying on the young, I don't know what\\n>is...\\n>\\n \\n No, that's praying on the young. Preying on the young comes\\n later, when the bright eyed little altar boy finds out what the\\n priest really wears under that chasible.\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", + " 'From: gnb@leo.bby.com.au (Gregory N. Bond)\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nIn-Reply-To: gene@theporch.raider.net\\'s message of Sun, 18 Apr 1993 19:29:40 GMT\\nNntp-Posting-Host: leo-gw\\nOrganization: Burdett, Buckeridge & Young, Melbourne, Australia\\nLines: 32\\n\\nIn article <6ZV82B2w165w@theporch.raider.net> gene@theporch.raider.net (Gene Wright) writes:\\n\\n Announce that a reward of $1 billion would go to the first corporation \\n who successfully keeps at least 1 person alive on the moon for a\\n year. \\n\\nAnd with $1B on offer, the problem of \"keeping them alive\" is highly\\nlikely to involve more than just the lunar environment! \\n\\n\"Oh Dear, my freighter just landed on the roof of ACME\\'s base and they\\nall died. How sad. Gosh, that leaves us as the oldest residents.\"\\n\\n\"Quick Boss, the slime from YoyoDyne are back, and this time they\\'ve\\ngot a tank! Man the guns!\"\\n\\nOne could imagine all sorts of technologies being developed in that\\nsort of environment.....\\n\\nGreg.\\n\\n(I\\'m kidding, BTW, although the problem of winner-takes-all prizes is\\nthat it encourages all sorts of undesirable behaviour - witness\\nmilitary procurement programs. And $1b is probably far too small a\\nreward to encourage what would be a very expensive and high risk\\nproposition.)\\n\\n\\n--\\nGregory Bond Burdett Buckeridge & Young Ltd Melbourne Australia\\n Knox\\'s 386 is slick. Fox in Sox, on Knox\\'s Box\\n Knox\\'s box is very quick. Plays lots of LSL. He\\'s sick!\\n(Apologies to John \"Iron Bar\" Mackin.)\\n',\n", + " 'From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: OPINIONS WANTED -- HELP\\nNntp-Posting-Host: amhux3.amherst.edu\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 9\\n\\nWhat size dirtbikes did you ride? and for how long? You might be able to\\nslip into a 500cc bike. Like I keep telling people, though, buy an older,\\ncheaper bike and ride that for a while first...you might like a 500 Interceptor\\nas an example\\n\\nNathaniel\\nZX-10\\nDoD 0812\\nAMA\\n',\n", + " 'From: viking@iastate.edu (Dan Sorenson)\\nSubject: Re: Flashing anyone?\\nKeywords: flashing\\nOrganization: Iowa State University, Ames IA\\nLines: 29\\n\\nbehanna@syl.nj.nec.com (Chris BeHanna) writes:\\n\\n>>Just before arriving at a toll booth I\\n>>switch the hazards on. I do thisto warn other motorists that I will\\n>>be taking longer than the 2 1/2 seconds to make the transaction.\\n>>My question, is this a good/bad thing to do?\\n\\n>\\tThis sounds like a VERY good thing to do.\\n\\n\\tI\\'ll second that. In addition, I find my hazards to be more\\noften used than my horn. At speeds below 40mph on the interstates,\\nquite common in mountains with trucks, some states require flashers.\\nIn rural areas, flashers let the guy behind you know there is a tractor\\nwith a rather large implement behind it in the way. Use them whenever \\nyou need to communicate that things will deviate from the norm. \\n\\n>-- \\n>Chris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\n>behanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\n>Disclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\n\\n\\tIs that ZX-11 painted green? Since the green Triumph 650 that\\na friend owned was sold off, her name is now free for adoption. How\\ndoes the name \"Thunderpickle\" grab you?\\n\\n< Dan Sorenson, DoD #1066 z1dan@exnet.iastate.edu viking@iastate.edu >\\n< ISU only censors what I read, not what I say. Don\\'t blame them. >\\n< USENET: Post to exotic, distant machines. Meet exciting, >\\n< unusual people. And flame them. >\\n',\n", + " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: uh, der, whassa deltabox?\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 21\\n\\nIn article <5227@unisql.UUCP> ray@unisql.UUCP (Ray Shea) writes:\\n>\\n>Can someone tell me what a deltabox frame is, and what relation that has,\\n>if any, to the frame on my Hawk GT? That way, next time some guy comes up\\n>to me in some parking lot and sez \"hey, dude, nice bike, is that a deltabox\\n>frame on there?\" I can say something besides \"duh, er, huh?\"\\n\\n Deltabox (tm) is a registered trademark of Yamaha, used to describe\\ntheir aluminum perimeter frame design, used on the FZR400 and FZR1000.\\nIn cross-section, it has a five-sided appearance, so it probably really\\nshould be called a \"Pentabox\".\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", + " \"From: palmer@cco.caltech.edu (David M. Palmer)\\nSubject: Re: Gamma Ray Bursters. WHere are they.\\nOrganization: California Institute of Technology, Pasadena\\nLines: 53\\nNNTP-Posting-Host: alumni.caltech.edu\\n\\nprb@access.digex.com (Pat) writes:\\n\\n> What evidence indicates that Gamma Ray bursters are very far away?\\n\\n>Given the enormous power, i was just wondering, what if they are\\n>quantum black holes or something like that fairly close by?\\n\\n>Why would they have to be at galactic ranges? \\n\\nGamma Ray Bursts (GRBs) are seen coming equally from all directions.\\nHowever, given the number of bright ones, there are too few faint\\nones to be consistent with being equally dense for as far\\nas we can see--it is as if they are all contained within\\na finite sphere (or a sphere with fuzzy edges) with us at the\\ncenter. (These measurements are statistical, and you can\\nalways hide a sufficiently small number of a different\\ntype of GRB with a different origin in the data. I am assuming\\nthat there is only one population of GRBs).\\n\\nThe data indicates that we are less than 10% of the radius of the center\\nof the distribution. The only things the Earth is at the exact center\\nof are the Solar system (at the scale of the Oort cloud of comets\\nway beyond Pluto) and the Universe. Cosmological theories, placing\\nGRBs throughout the Universe, require supernova-type energies to\\nbe released over a timescale of milliseconds. Oort cloud models\\ntend to be silly, even by the standards of astrophysics.\\n\\nIf GRBs were Galactic (i.e. distributed through the Milky Way Galaxy)\\nyou would expect them to be either concentrated in the plane of\\nthe Galaxy (for a 'disk' population), or towards the Galactic center\\n(for a spherical 'halo' population). We don't see this, so if they\\nare Galactic, they must be in a halo at least 250,000 light years in\\nradius, and we would probably start to see GRBs from the Andromeda\\nGalaxy (assuming that it has a similar halo.) For comparison, the\\nEarth is 25,000 light-years from the center of the Galaxy.\\n\\n>my own pet theory is that it's Flying saucers entering\\n>hyperspace :-)\\n\\nThe aren't concentrated in the known spacelanes, and we don't\\nsee many coming from Zeta Reticuli and Tau Ceti.\\n\\n>but the reason i am asking is that most everyone assumes that they\\n>are colliding nuetron stars or spinning black holes, i just wondered\\n>if any mechanism could exist and place them closer in.\\n\\nThere are more than 130 GRB different models in the refereed literature.\\nRight now, the theorists have a sort of unofficial moratorium\\non new models until new observational evidence comes in.\\n\\n-- \\n\\t\\tDavid M. Palmer\\t\\tpalmer@alumni.caltech.edu\\n\\t\\t\\t\\t\\tpalmer@tgrs.gsfc.nasa.gov\\n\",\n", + " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Keith Schneider - Stealth Poster?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 12\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\nsandvik@newton.apple.com (Kent Sandvik) writes:\\n\\n>>To borrow from philosophy, you don't truly understand the color red\\n>>until you have seen it.\\n>Not true, even if you have experienced the color red you still might\\n>have a different interpretation of it.\\n\\nBut, you wouldn't know what red *was*, and you certainly couldn't judge\\nit subjectively. And, objectivity is not applicable, since you are wanting\\nto discuss the merits of red.\\n\\nkeith\\n\",\n", + " 'From: buenneke@monty.rand.org (Richard Buenneke)\\nSubject: DC-X Rollout Report\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 124\\n\\n\\nMcDonnell Douglas rolls out DC-X\\n\\n HUNTINGTON BEACH, Calif. -- On a picture-perfect Southern\\nCalifornia day, McDonnell Douglas rolled out its DC-X rocket ship last\\nSaturday. The company hopes this single-stage rocket technology\\ndemonstrator will be the first step towards a single-stage-to-orbit (SSTO)\\nrocket ship.\\n\\n The white conical vehicle was scheduled to go to the White Sands\\nMissile Range in New Mexico this week. Flight tests will start in\\nmid-June.\\n\\n Although there wasn\\'t a cloud in the noonday sky, the forecast for\\nSSTO research remains cloudy. The SDI Organization -- which paid $60\\nmillion for the DC-X -- can\\'t itself afford to fund full development of a\\nfollow-on vehicle. To get the necessary hundreds of millions required for\\na sub-orbital DC-XA, SDIO is passing a tin cup among its sister government\\nagencies.\\n\\n SDIO originally funded SSTO research as a way to cut the costs for\\norbital deployments of space-based sensors and weapns. However, recent\\nchanges in SDI\\'s political marching orders and budget cuts have made SSTO\\nless of a priority. Today, the agency is more interested in using DC-X as\\na step towards a low-cost, reusable sounding rocket.\\n\\n SDIO has already done 50 briefings to other government agencies,\\nsaid Col. Simon \"Pete\" Worden, SDIO\\'s deputy for technology. But Worden\\ndeclined to say how much the agencies would have to pony up for the\\nprogram. \"I didn\\'t make colonel by telling my contractors how much money I\\nhave available to spend,\" he quipped at a press conference at McDonnell\\nDouglas Astronautics headquarters.\\n\\n While SDIO has lowered its sights on the program\\'s orbital\\nobjective, agency officials hail the DC-X as an example of the \"better,\\nfaster, cheaper\" approach to hardware development. The agency believes\\nthis philosophy can produce breakthroughs that \"leapfrog\" ahead of\\nevolutionary technology developments.\\n\\n Worden said the DC-X illustrates how a \"build a little, test a\\nlittle\" approach can produce results on time and within budget. He said\\nthe program -- which went from concept to hardware in around 18 months --\\nshowed how today\\'s engineers could move beyond the \"miracles of our\\nparents\\' time.\"\\n\\n \"The key is management,\" Worden said. \"SDIO had a very light hand\\non this project. We had only one overworked major, Jess Sponable.\"\\n\\n Although the next phase may involve more agencies, Worden said\\nlean management and a sense of government-industry partnership will be\\ncrucial. \"It\\'s essential we do not end up with a large management\\nstructure where the price goes up exponentially.\"\\n\\n SDIO\\'s approach also won praise from two California members of the\\nHouse Science, Space and Technology Committee. \"This is the direction\\nwe\\'re going to have to go,\" said Rep. George Brown, the committee\\'s\\nDemocratic chairman. \"Programs that stretch aout 10 to 15 years aren\\'t\\nsustainable....NASA hasn\\'t learned it yet. SDIO has.\"\\n\\n Rep. Dana Rohrbacher, Brown\\'s Republican colleague, went further.\\nJoking that \"a shrimp is a fish designed by a NASA design team,\"\\nRohrbacher doubted that the program ever would have been completed if it\\nwere left to the civil space agency.\\n\\n Rohrbacher, whose Orange County district includes McDonnell\\nDouglas, also criticized NASA-Air Force work on conventional, multi-staged\\nrockets as placing new casings around old missile technology. \"Let\\'s not\\nbuild fancy ammunition with capsules on top. Let\\'s build a spaceship!\"\\n\\n Although Rohrbacher praised SDIO\\'s sponsorship, he said the\\nprivate sector needs to take the lead in developing SSTO technology.\\n\\n McDonnell Douglas, which faces very uncertain prospects with its\\nC-17 transport and Space Station Freedom programs, were more cautious\\nabout a large private secotro commitment. \"On very large ventures,\\ncompanies put in seed money,\" said Charles Ordahl, McDonnell Douglas\\'\\nsenior vice president for space systems. \"You need strong government\\ninvestments.\"\\n\\n While the government and industry continue to differ on funding\\nfor the DC-XA, they agree on continuing an incremental approach to\\ndevelopment. Citing corporate history, they liken the process to Douglas\\nAircraft\\'s DC aircraft. Just as two earlier aircraft paved the way for\\nthe DC-3 transport, a gradual evolution in single-stage rocketry could\\neventually lead to an orbital Delta Clipper (DC-1).\\n\\n Flight tests this summer at White Sands will \"expand the envelope\"\\nof performance, with successive tests increasing speed and altitude. The\\nfirst tests will reach 600 feet and demonstrate hovering, verticle\\ntake-off and landing. The second series will send the unmanned DC-X up to\\n5,000 feet. The third and final series will take the craft up to 20,000\\nfeet.\\n\\n Maneuvers will become more complex on third phase. The final\\ntests will include a \"pitch-over\" manever that rotates the vehicle back\\ninto a bottom-down configuration for a soft, four-legged landing.\\n\\n The flight test series will be supervised by Charles \"Pete\"\\nConrad, who performed similar maneuvers on the Apollo 12 moon landing.\\nNow a McDonnell Douglas vice president, Conrad paised the vehicles\\naircraft-like approach to operations. Features include automated\\ncheck-out and access panels for easy maintainance.\\n\\n If the program moves to the next stage, engine technology will\\nbecome a key consideration. This engine would have more thrust than the\\nPratt & Whitney RL10A-5 engines used on the DC-X. Each motor uses liquid\\nhydrogen and liquid oxygen propellants to generate up to 14,760 pounds of\\nthrust\\n\\n Based on the engine used in Centaur upper stages, the A-5 model\\nhas a thrust champer designed for sea level operation and three-to-on\\nthrottling capability. It also is designed for repeat firings and rapid\\nturnaround.\\n\\n Worden said future single-stage rockets could employ\\ntri-propellant engine technology developed in the former Soviet Union.\\nThe resulting engines could burn a dense hydrocarbon fuel at takeoff and\\nthen switch to liquid hydrogen at higher altitudes.\\n\\n The mechanism for the teaming may already be in place. Pratt has\\na technology agreement with NPO Energomash, the design bureau responsible\\nfor the tri-propellant and Energia cryogenic engines.\\n\\n\\n',\n", + " 'From: mancus@sweetpea.jsc.nasa.gov (Keith Mancus)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: MDSSC\\nLines: 60\\n\\njbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n>mancus@sweetpea.jsc.nasa.gov (Keith Mancus) writes:\\n>>cook@varmit.mdc.com (Layne Cook) writes:\\n>>> The $25k Orteig prize helped Lindbergh sell his Spirit\\n>>> of Saint Louis venture to his financial backers. But I strongly suspect\\n>>> that his Saint Louis backers had the foresight to realize that much more\\n>>> was at stake than $25,000. Could it work with the moon? Who are the\\n>>> far-sighted financial backers of today?\\n \\n>> The commercial uses of a transportation system between already-settled-\\n>>and-civilized areas are obvious. Spaceflight is NOT in this position.\\n>>The correct analogy is not with aviation of the \\'30\\'s, but the long\\n>>transocean voyages of the Age of Discovery.\\n> Lindbergh\\'s flight took place in \\'27, not the thirties.\\n \\n Of course; sorry for the misunderstanding. I was referring to the fact\\nthat far more aeronautical development took place in the \\'30\\'s. For much\\nof the \\'20\\'s, the super-abundance of Jennies and OX-5 engines held down the\\nindustry. By 1926, many of the obsolete WWI aircraft had been retired\\nand Whirlwind had their power/weight ratio and reliability up to the point\\nwhere long-distance flights became practical. It\\'s important to note that\\nthe Atlantic was flown not once but THREE times in 1927: Lindbergh,\\nChamberlin and Levine, and Byrd\\'s _America_. \"When it\\'s time to railroad,\\nyou railroad.\"\\n\\n>>It didn\\'t require gov\\'t to fund these as long as something was known about\\n>>the potential for profit at the destination. In practice, some were gov\\'t\\n>>funded, some were private.\\n>Could you give examples of privately funded ones?\\n\\n Not off the top of my head; I\\'ll have to dig out my reference books again.\\nHowever, I will say that the most common arrangement in Prince Henry the\\nNavigator\\'s Portugal was for the prince to put up part of the money and\\nmerchants to put up the rest. They profits from the voyage would then be\\nshared.\\n\\n>>But there was no way that any wise investor would spend a large amount\\n>>of money on a very risky investment with no idea of the possible payoff.\\n>A person who puts up $X billion for a moon base is much more likely to do\\n>it because they want to see it done than because they expect to make money\\n>off the deal.\\n\\n The problem is that the amount of prize money required to inspire a\\nMoon Base is much larger than any but a handful of individuals or corporations\\ncan even consider putting up. The Kremer Prizes (human powered aircraft),\\nOrteig\\'s prize, Lord Northcliffe\\'s prize for crossing the Atlantic (won in\\n1919 by Alcock and Brown) were MUCH smaller. The technologies required were\\nwithin the reach of individual inventors, and the prize amounts were well\\nwithin the reach of a large number of wealthy individuals. I think that only\\na gov\\'t could afford to set up a $1B+ prize for any purpose whatsoever.\\n Note that Burt Rutan suggested that NASP could be built most cheaply by\\ntaking out an ad in AvWeek stating that the first company to build a plane\\nthat could take off and fly the profile would be handed $3B, no questions\\nasked.\\n\\n-- \\n Keith Mancus |\\n N5WVR |\\n \"Black powder and alcohol, when your states and cities fall, |\\n when your back\\'s against the wall....\" -Leslie Fish |\\n',\n", + " 'From: neal@cmptrc.lonestar.org (Neal Howard)\\nSubject: Do Splitfires Help Spagthorpe Diesels ?\\nKeywords: Using Splitfire plugs for performance.\\nDistribution: rec.motorcycles\\nOrganization: CompuTrac Inc., Richardson TX\\nLines: 34\\n\\nIn article wcd82671@uxa.cso.uiuc.edu (daniel warren c) writes:\\n>Earlier, I was reading on the net about using Splitfire plugs. One\\n>guy was thinking about it and almost everybody shot him to hell. Well,\\n>I saw one think that someone said about \"Show me a team that used Split-\\n>fires....\" Well, here\\'s some additional insight and some theories\\n>about splitfire plugs and how they boost us as oppossed to cages.\\n>\\n>Splitfires were originally made to burn fuel more efficiently and\\n>increased power for the 4x4 cages. Well, for these guys, splitfires\\n>\\n>Now I don\\'t know about all of this (and I\\'m trying to catch up with\\n>somebody about it now), but Splitfires should help twins more than\\n\\nSplitfires work mainly by providing a more-or-less unshrouded spark to the\\ncombustion chamber. If an engine\\'s cylinder head design can benefit from this,\\nthen the splitfires will yield a slight performance increase, most noticeably\\nin lower rpm range torque. Splitfires didn\\'t do diddly-squat for my 1992 GMC\\npickup (4.3l V6) but do give a noticeable performance boost in my 1991 Harley\\nSportster 1200 and my best friend\\'s 1986 Sportster 883. Folks I know who\\'ve\\ntried them in 1340 Evo motors can\\'t tell any performance boost over plain\\nplugs (which is interesting since the XLH and big twin EVO combustion chambers\\nare pretty much the same shape, just different sizes). Two of my friends who\\nhave shovelhead Harleys swear by the splitfires but if I had a shovelhead,\\nI\\'d dual-plug it instead since they respond well enough to dual plugs to make\\nthe machine work and extra ignition system worth the expense (plus they look\\nreally cool with a spark plug on each side of each head)\\n-- \\n=============================================================================\\nNeal Howard \\'91 XLH-1200 DoD #686 CompuTrac, Inc (Richardson, TX)\\n\\t doh #0000001200 |355o33| neal@cmptrc.lonestar.org\\n\\t Std disclaimer: My opinions are mine, not CompuTrac\\'s.\\n \"Let us learn to dream, gentlemen, and then perhaps\\n we shall learn the truth.\" -- August Kekule\\' (1890)\\n=============================================================================\\n',\n", + " 'From: MANDTBACKA@FINABO.ABO.FI (Mats Andtbacka)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Unorganized Usenet Postings UnInc.\\nLines: 24\\nIn-Reply-To: frank@D012S658.uucp\\'s message of 15 Apr 1993 23:15:09 GMT\\nX-News-Reader: VMS NEWS 1.24\\n\\nIn <1qkq9t$66n@horus.ap.mchp.sni.de> frank@D012S658.uucp writes:\\n\\n(Attempting to define \\'objective morality\\'):\\n\\n> I\\'ll take a wild guess and say Freedom is objectively valuable. I base\\n> this on the assumption that if everyone in the world were deprived utterly\\n> of their freedom (so that their every act was contrary to their volition),\\n> almost all would want to complain.\\n\\n So long as you keep that \"almost\" in there, freedom will be a\\nmostly valuable thing, to most people. That is, I think you\\'re really\\nsaying, \"a real big lot of people agree freedom is subjectively valuable\\nto them\". That\\'s good, and a quite nice starting point for a moral\\nsystem, but it\\'s NOT UNIVERSAL, and thus not \"objective\".\\n\\n> Therefore I take it that to assert or\\n> believe that \"Freedom is not very valuable\", when almost everyone can see\\n> that it is, is every bit as absurd as to assert \"it is not raining\" on\\n> a rainy day.\\n\\n It isn\\'t in Sahara.\\n\\n-- \\n Disclaimer? \"It\\'s great to be young and insane!\"\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Biosphere II\\nOrganization: Express Access Online Communications USA\\nLines: 22\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <19930419.062802.166@almaden.ibm.com> nicho@vnet.ibm.com writes:\\n|In <1q77ku$av6@access.digex.net> Pat writes:\\n|>The Work is privately funded, the DATA belongs to SBV. I don't see\\n|>either george or Fred, scoriating IBM research division for\\n|>not releasing data.\\n| We publish plenty kiddo,you just have to look.\\n\\n\\nNever said you didn't publish, merely that there is data you don't\\npublish, and that no-one scoriates you for those cases. \\n\\nIBM research publishes plenty, it's why you ended up with 2 Nobel\\nprizes in the last 10 years, but that some projects are deemed\\ncompany confidential. ATT Bell Labs, keeps lots of stuff private,\\nLike Karamankars algorithm. Private moeny is entitled to do what\\nit pleases, within the bounds of Law, and For all the keepers of the\\ntemple of SCience, should please shove their pointy little heads\\nup their Conically shaped Posterior Orifices. \\n\\npat\\n\\n\\twho just read the SA article on Karl Fehrabend(sp???)\\n\",\n", + " 'From: alaa@peewee.unx.dec.com (Alaa Zeineldine)\\nSubject: Re: WTC bombing\\nOrganization: Digital Equipment Corp.\\nX-Newsreader: Tin 1.1 PL3\\nLines: 13\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n: \\n: \"But Hadas might be a fictitious character invented by the two men for \\n: billing purposes, said Mohammed Mehdi, head of the Arab-American Relations Committee.\"\\n: \\n: Tim\\n\\nI would remind readers of the fact that the NY Daily News on March 5th \\nreported the arrest of Joise Hadas. Foreign newspapers reported her\\nrelease shortly afterwards. I can provide copies of the articles \\nupon request.\\n\\nAlaa Zeineldine\\n',\n", + " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Re: Gospel Dating\\nLines: 73\\n\\nBenedikt Rosenau writes:\\n\\n>The argument goes as follows: Q-oid quotes appear in John, but not in\\n>the almost codified way they were in Matthew or Luke. However, they are\\n>considered to be similar enough to point to knowledge of Q as such, and\\n>not an entirely different source.\\n\\nAssuming you are presenting it accurately, I don\\'t see how this argument\\nreally leads to any firm conclusion. The material in John (I\\'m not sure\\nexactly what is referred to here, but I\\'ll take for granted the similarity\\nto the Matt./Luke \"Q\" material) IS different; hence, one could have almost\\nany relationship between the two, right up to John getting it straight from\\nJesus\\' mouth.\\n\\n>We are talking date of texts here, not the age of the authors. The usual\\n>explanation for the time order of Mark, Matthew and Luke does not consider\\n>their respective ages. It says Matthew has read the text of Mark, and Luke\\n>that of Matthew (and probably that of Mark).\\n\\nThe version of the \"usual theory\" I have heard has Matthew and Luke\\nindependently relying on Mark and \"Q\". One would think that if Luke relied\\non Matthew, we wouldn\\'t have the grating inconsistencies in the geneologies,\\nfor one thing.\\n\\n>As it is assumed that John knew the content of Luke\\'s text. The evidence\\n>for that is not overwhelming, admittedly.\\n\\nThis is the part that is particularly new to me. If it were possible that\\nyou could point me to a reference, I\\'d be grateful.\\n\\n>>Unfortunately, I haven\\'t got the info at hand. It was (I think) in the late\\n>>\\'70s or early \\'80s, and it was possibly as old as CE 200.\\n\\n>When they are from about 200, why do they shed doubt on the order on\\n>putting John after the rest of the three?\\n\\nBecause it closes up the gap between (supposed) writing and the existing\\ncopy quit a bit. The further away from the original, the more copies can be\\nwritten, and therefore survival becomes more probable.\\n\\n>>And I don\\'t think a \"one step removed\" source is that bad. If Luke and Mark\\n>>and Matthew learned their stories directly from diciples, then I really\\n>>cannot believe in the sort of \"big transformation from Jesus to gospel\" that\\n>>some people posit. In news reports, one generally gets no better\\n>>information than this.\\n\\n>>And if John IS a diciple, then there\\'s nothing more to be said.\\n\\n>That John was a disciple is not generally accepted. The style and language\\n>together with the theology are usually used as counterargument.\\n\\nI\\'m not really impressed with the \"theology\" argument. But I\\'m really\\npointing this out as an \"if\". And as I pointed out earlier, one cannot make\\nthese arguments about I Peter; I see no reason not to accept it as an\\nauthentic letter.\\n\\n\\n>One step and one generation removed is bad even in our times. Compare that\\n>to reports of similar events in our century in almost illiterate societies.\\n\\nThe best analogy would be reporters talking to the participants, which is\\nnot so bad.\\n\\n>In other words, one does not know what the original of Mark did look like\\n>and arguments based on Mark are pretty weak.\\n\\nBut the statement of divinity is not in that section, and in any case, it\\'s\\nagreed that the most important epistles predate Mark.\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", + " 'From: u1452@penelope.sdsc.edu (Jeff Bytof - SIO)\\nSubject: End of the Space Age?\\nOrganization: San Diego Supercomputer Center @ UCSD\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: penelope.sdsc.edu\\n\\nWe are not at the end of the Space Age, but only at the end of Its\\nbeginning.\\n\\nThat space exploration is no longer a driver for technical innovation,\\nor a focus of American cultural attention is certainly debatable; however,\\ntechnical developments in other quarters will always be examined for\\npossible applications in the space area and we can look forward to\\nmany innovations that might enhance the capabilities and lower the\\ncost of future space operations. \\n\\nThe Dream is Alive and Well.\\n\\n-Jeff Bytof\\nmember, technical staff\\nInstitute for Remote Exploration\\n\\n',\n", + " \"From: clarke@acme.ucf.edu (Thomas Clarke)\\nSubject: Re: Vandalizing the sky.\\nOrganization: University of Central Florida\\nLines: 19\\n\\nI posted this over in sci.astro, but it didn't make it here.\\nThought you all would like my wonderful pithy commentary :-)\\n\\nWhat? You guys have never seen the Goodyear blimp polluting\\nthe daytime and nightime skies?\\n\\nActually an oribital sign would only be visible near\\nsunset and sunrise, I believe. So pollution at night\\nwould be minimal.\\n\\nIf it pays for space travel, go for it. Those who don't\\nlike spatial billboards can then head for the pristine\\nenvironment of Jupiter's moons :-)\\n\\n---\\nThomas Clarke\\nInstitute for Simulation and Training, University of Central FL\\n12424 Research Parkway, Suite 300, Orlando, FL 32826\\n(407)658-5030, FAX: (407)658-5059, clarke@acme.ucf.edu\\n\",\n", + " 'From: sieferme@stein.u.washington.edu (Eric Sieferman)\\nSubject: Re: some thoughts.\\nOrganization: University of Washington, Seattle\\nLines: 75\\nNNTP-Posting-Host: stein.u.washington.edu\\nKeywords: Dan Bissell\\n\\nIn article bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\nIt appears that Walla Walla College will fill the same role in alt.atheist\\nthat Allegheny College fills in alt.fan.dan-quayle.\\n\\n>\\tFirst I want to start right out and say that I\\'m a Christian. It \\n>makes sense to be one. Have any of you read Tony Campollo\\'s book- liar, \\n>lunatic, or the real thing? (I might be a little off on the title, but he \\n>writes the book. Anyway he was part of an effort to destroy Christianity, \\n>in the process he became a Christian himself.\\n\\nConverts to xtianity have this tendency to excessively darken their\\npre-xtian past, frequently falsely. Anyone who embarks on an\\neffort to \"destroy\" xtianity is suffering from deep megalomania, a\\ndefect which is not cured by religious conversion.\\n\\n>\\tThe arguements he uses I am summing up. The book is about whether \\n>Jesus was God or not. I know many of you don\\'t believe, but listen to a \\n>different perspective for we all have something to gain by listening to what \\n>others have to say. \\n\\nDifferent perspective? DIFFERENT PERSPECTIVE?? BWAHAHAHAHAHAHAHAH!!!\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n\\n(sigh!) Perhaps Big J was just mistaken about some of his claims.\\nPerhaps he was normally insightful, but had a few off days. Perhaps\\nmany (most?) of the statements attributed to Jesus were not made by\\nhim, but were put into his mouth by later authors. Other possibilities\\nabound. Surely, someone seriously examining this question could\\ncome up with a decent list of possible alternatives, unless the task\\nis not serious examination of the question (much less \"destroying\"\\nxtianity) but rather religious salesmanship.\\n\\n>\\tSome reasons why he wouldn\\'t be a liar are as follows. Who would \\n>die for a lie?\\n\\nHow many Germans died for Nazism? How many Russians died in the name\\nof the proletarian dictatorship? How many Americans died to make the\\nworld safe for \"democracy\". What a silly question!\\n\\n>Wouldn\\'t people be able to tell if he was a liar? People \\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n\\nIs everyone who performs a healing = God?\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy.\\n\\nIt\\'s probably hard to \"draw\" an entire nation to you unless you \\nare crazy.\\n\\n>Very doubtful, in fact rediculous. For example \\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn\\'t a liar or a lunatic, he must have been the \\n>real thing. \\n\\nAnyone who is convinced by this laughable logic deserves\\nto be a xtian.\\n\\n>\\tSome other things to note. He fulfilled loads of prophecies in \\n>the psalms, Isaiah and elsewhere in 24 hrs alone. This in his betrayal \\n>and Crucifixion. I don\\'t have my Bible with me at this moment, next time I \\n>write I will use it.\\n\\nDon\\'t bother. Many of the \"prophecies\" were \"fulfilled\" only in the\\neyes of xtian apologists, who distort the meaning of Isaiah and\\nother OT books.\\n\\n\\n\\n',\n", + " \"From: lmh@juliet.caltech.edu (Henling, Lawrence M.)\\nSubject: Re: Americans and Evolution\\nOrganization: California Institute of Technology\\nLines: 13\\nDistribution: world\\nNNTP-Posting-Host: juliet.caltech.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr3.195642.25261@njitgw.njit.edu>, dmu5391@hertz.njit.edu (David Utidjian Eng.Sci.) writes...\\n>In article <31MAR199321091163@juliet.caltech.edu> lmh@juliet.caltech.edu (Henling, Lawrence M.) writes:\\n>\\tFor a complete description of what is, and is not atheism\\n>or agnosticism see the FAQ for alt.atheism in alt.answers... I think.\\n>utidjian@remarque.berkeley.edu\\n\\n I apologize for posting this. I thought it was only going to talk.origins.\\nI also took my definitions from a 1938 Websters.\\n Nonetheless, the apparent past arguments over these words imply that like\\n'bimonthly' and 'biweekly' they have no commonly accepted definitions and\\nshould be used with care.\\n\\nlarry henling lmh@shakes.caltech.edu\\n\",\n", + " \"From: gunning@cco.caltech.edu (Kevin J. Gunning)\\nSubject: stolen CBR900RR\\nOrganization: California Institute of Technology, Pasadena\\nLines: 12\\nDistribution: usa\\nNNTP-Posting-Host: alumni.caltech.edu\\nSummary: see above\\n\\nStolen from Pasadena between 4:30 and 6:30 pm on 4/15.\\n\\nBlue and white Honda CBR900RR california plate KG CBR. Serial number\\nJH2SC281XPM100187, engine number 2101240.\\n\\nNo turn signals or mirrors, lights taped over for track riders session\\nat Willow Springs tomorrow. Guess I'll miss it. :-(((\\n\\nHelp me find my baby!!!\\n\\nkjg\\n\\n\",\n", + " 'Subject: E-mail of Michael Abrash?\\nFrom: gmontem@eis.calstate.edu (George A. Montemayor)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 0\\n\\n',\n", + " \"From: James Leo Belliveau \\nSubject: First Bike??\\nOrganization: Freshman, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA\\nLines: 17\\nNNTP-Posting-Host: andrew.cmu.edu\\n\\n Anyone, \\n\\n I am a serious motorcycle enthusiast without a motorcycle, and to\\nput it bluntly, it sucks. I really would like some advice on what would\\nbe a good starter bike for me. I do know one thing however, I need to\\nmake my first bike a good one, because buying a second any time soon is\\nout of the question. I am specifically interested in racing bikes, (CBR\\n600 F2, GSX-R 750). I know that this may sound kind of crazy\\nconsidering that I've never had a bike before, but I am responsible, a\\nfast learner, and in love. Please give me any advice that you think\\nwould help me in my search, including places to look or even specific\\nbikes that you want to sell me.\\n\\n Thanks :-)\\n\\n Jamie Belliveau (jbc9@andrew.cmu.edu) \\n\\n\",\n", + " 'From: Wingert@vnet.IBM.COM (Bret Wingert)\\nSubject: Re: Level 5?\\nOrganization: IBM, Federal Systems Co. Software Services\\nDisclaimer: This posting represents the poster\\'s views, not those of IBM\\nNews-Software: UReply 3.1\\n <1993Apr23.124759.1@fnalf.fnal.gov>\\nLines: 29\\n\\nIn <1993Apr23.124759.1@fnalf.fnal.gov> Bill Higgins-- Beam Jockey writes:\\n>In article <19930422.121236.246@almaden.ibm.com>, Wingert@vnet.IBM.COM (Bret Wingert) writes:\\n>> 3. The Onboard Flight Software project was rated \"Level 5\" by a NASA team.\\n>> This group generates 20-40 KSLOCs of verified code per year for NASA.\\n>\\n>Will someone tell an ignorant physicist where the term \"Level 5\" comes\\n>from? It sounds like the RISKS Digest equivalent of Large, Extra\\n>Large, Jumbo... Or maybe it\\'s like \"Defcon 5...\"\\n>\\n>I gather it means that Shuttle software was developed with extreme\\n>care to have reliablility and safety, and almost everything else in\\n>the computing world is Level 1, or cheesy dime-store software. Not\\n>surprising. But who is it that invents this standard, and how come\\n>everyone but me seems to be familiar with it?\\n\\nLevel 5 refers to the Carnegie-Mellon Software Engineering Institute\\'s\\nCapability Maturity Model. This model rates software development\\norg\\'s from1-5. with 1 being Chaotic and 5 being Optimizing. DoD is\\nbeginning to use this rating system as a discriminator in contracts. I\\nhave more data on thifrom 1 page to 1000. I have a 20-30 page\\npresentation that summarizes it wethat I could FAX to you if you\\'re\\ninterested...\\nBret Wingert\\nWingert@VNET.IBM.COM\\n\\n(713)-282-7534\\nFAX: (713)-282-8077\\n\\n\\n',\n", + " 'From: jcopelan@nyx.cs.du.edu (The One and Only)\\nSubject: Re: New Member\\nOrganization: Salvation Army Draft Board\\nLines: 28\\n\\nIn article dfuller@portal.hq.videocart.com (Dave Fuller) writes:\\n>\\n> Hello. I just started reading this group today, and I think I am going\\n>to be a large participant in its daily postings. I liked the section of\\n>the FAQ about constructing logical arguments - well done. I am an atheist,\\n>but I do not try to turn other people into atheists. I only try to figure\\n>why people believe the way they do - I don\\'t much care if they have a \\n>different view than I do. When it comes down to it . . . I could be wrong.\\n>I am willing to admit the possibility - something religious followers \\n>dont seem to have the capability to do.\\n>\\n> Happy to be aboard !\\n>\\n>Dave Fuller\\n>dfuller@portal.hq.videocart.com\\n\\nWelcome. I am the official keeper of the list of nicknames that people\\nare known by on alt.atheism (didn\\'t know we had such a list, did you).\\nYour have been awarded the nickname of \"Buckminster.\" So the next time\\nyou post an article, sign with your nickname like so:\\nDave \"Buckminster\" Fuller. Thanks again.\\n\\nJim \"Humor means never having to say you\\'re sorry\" Copeland\\n--\\nIf God is dead and the actor plays his part | -- Sting,\\nHis words of fear will find their way to a place in your heart | History\\nWithout the voice of reason every faith is its own curse | Will Teach Us\\nWithout freedom from the past things can only get worse | Nothing\\n',\n", + " \"From: 18084TM@msu.edu (Tom)\\nSubject: Space Clippers launched\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 14\\n\\n\\n\\n> SPACE CLIPPERS LAUNCHED SUCCESSFULLY\\n\\nWhen I first saw this, I thought for a second that it was a headline from\\nThe Star about the pliers found in the SRB recently.\\n\\nY'know, sometimes they have wire-cutters built in :-)\\n\\n-Tommy Mac\\n-------------------------------------------------------------------------\\nTom McWilliams 517-355-2178 wk \\\\\\\\ As the radius of vision increases,\\n18084tm@ibm.cl.msu.edu 336-9591 hm \\\\\\\\ the circumference of mystery grows.\\n-------------------------------------------------------------------------\\n\",\n", + " 'From: jimh@carson.u.washington.edu (James Hogan)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nKeywords: slander calumny\\nOrganization: University of Washington, Seattle\\nLines: 60\\nNNTP-Posting-Host: carson.u.washington.edu\\n\\nIn article <1993Apr16.222525.16024@bnr.ca> (Rashid) writes:\\n>In article <1993Apr16.171722.159590@zeus.calpoly.edu>,\\n>jmunch@hertz.elee.calpoly.edu (John Munch) wrote:\\n>> \\n>> In article <1993Apr15.212943.15118@bnr.ca> (Rashid) writes:\\n>> >P.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\n>> >applies to Rushdie and may be encompassed under the umbrella\\n>> >of the \"fasad\" ruling.\\n>> \\n>> Please define the words \"shatim\" and \"fasad\" before you use them again.\\n>\\n>My apologies. \"Shatim\", I believe, refers to slandering or spreading\\n>slander and lies about the Prophets(a.s) - any of the Prophets.\\n\\nBasically, any prophet I\\'ve ever dealt with has either been busy \\nhawking stolen merchandise or selling swampland house lots in \\nFlorida. Then you hear all the stories of sexual abuse by prophets\\nand how the families of victims were paid to keep quiet about it.\\n\\n>It\\'s a kind of willful caulmny and \"cursing\" that\\'s indicated by the\\n>word. This is the best explanation I can come up with off the top\\n>of my head - I\\'ll try and look up a more technical definition when I\\n>have the time.\\n\\nNever mind that, but let me tell you about this Chevelle I bought \\nfrom this dude (you guessed it, a prophet) named Mohammed. I\\'ve\\ngot the car for like two days when the tranny kicks, then Manny, \\nmy mechanic, tells me it was loaded with sawdust! Take a guess\\nwhether \"Mohammed\" was anywhere to be found. I don\\'t think so.\\n\\n>\\n>\"Fasad\" is a little more difficult to describe. Again, this is not\\n>a technical definition - I\\'ll try and get that later. Literally,\\n\\nOh, Mohammed!\\n\\n>the word \"fasad\" means mischief. But it\\'s a mischief on the order of\\n>magnitude indicated by the word \"corruption\". It\\'s when someone who\\n>is doing something wrong to begin with, seeks to escalate the hurt,\\n\\nYeah, you, Mohammed!\\n\\n>disorder, concern, harm etc. (the mischief) initially caused by their \\n>actions. The \"wrong\" is specifically related to attacks against\\n>\"God and His Messenger\" and mischief, corruption, disorder etc.\\n\\nYou slimy mass of pond scum!\\n\\n>resulting from that. The attack need not be a physical attack and there\\n>are different levels of penalty proscribed, depending on the extent\\n>of the mischief and whether the person or persons sought to \\n>\"make hay\" of the situation. The severest punishment is death.\\n\\nYeah, right! You\\'re the one should be watching your butt. You and\\nyour buddy Allah. The stereo he sold me croaked after two days.\\nYour ass is grass!\\n\\nJim\\n\\nYeah, that\\'s right, Jim.\\n',\n", + " \"From: pes@hutcs.cs.hut.fi (Pekka Siltanen)\\nSubject: Re: detecting double points in bezier curves\\nNntp-Posting-Host: hutcs.cs.hut.fi\\nOrganization: Helsinki University of Technology, Finland\\nLines: 26\\n\\nIn article <1993Apr19.234409.18303@kpc.com> jbulf@balsa.Berkeley.EDU (Jeff Bulf) writes:\\n>In article , ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck) writes:\\n>|> I'm looking for any information on detecting and/or calculating a double\\n>|> point and/or cusp in a bezier curve.\\n>|> \\n>|> An algorithm, literature reference or mail about this is very appreciated,\\n>\\n>There was a very useful article in one of the 1989 issues of\\n>Transactions On Graphics. I believe Maureen Stone was one of\\n>the authors. Sorry not to be more specific. I don't have the\\n>reference here with me.\\n\\n\\nStone, DeRose: Geometric characterization of parametric cubic curves.\\nACM Trans. Graphics 8 (3) (1989) 147 - 163.\\n\\n\\nManocha, Canny: Detecting cusps and inflection points in curves.\\nComputer aided geometric design 9 (1992) 1-24.\\n\\nPekka Siltanen\\n\\n\\n\\n\\n\\n\",\n", + " \"Subject: Re: Deriving Pleasure from Death\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 30\\n\\n> Brad Hernlem writes...\\n> >\\n> >Congratulations to the brave men of the Lebanese resistance! With every\\n> >Israeli son that you place in the grave you are underlining the moral\\n> >bankruptcy of Israel's occupation and drawing attention to the Israeli\\n> >government's policy of reckless disregard for civilian life.\\n> >\\n> >Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nTo which Mark Ira Kaufman responds:\\n> \\n> Your delight in the death of human beings says more about you\\n> than anything that I could say.\\n\\nMark,\\nWere you one of the millions of Americans cheering the slaughter of Iraqi\\ncivilians by US forces in 1991? Your comment could also apply to all of\\nthem. (By the way, I do not applaud the killing of _any_ human being,\\nincluding prisoners sentenced to death by our illustrious justice department)\\n\\nPeace.\\n-marc\\n\\n\\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", + " 'From: Mike_Peredo@mindlink.bc.ca (Mike Peredo)\\nSubject: Re: \"Fake\" virtual reality\\nOrganization: MIND LINK! - British Columbia, Canada\\nLines: 11\\n\\nThe most ridiculous example of VR-exploitation I\\'ve seen so far is the\\n\"Virtual Reality Clothing Company\" which recently opened up in Vancouver. As\\nfar as I can tell it\\'s just another \"chic\" clothes spot. Although it would be\\ninteresting if they were selling \"virtual clothing\"....\\n\\nE-mail me if you want me to dig up their phone # and you can probably get\\nsome promotional lit.\\n\\nMP\\n(8^)-\\n\\n',\n", + " 'From: lotto@laura.harvard.edu (Jerry Lotto)\\nSubject: Re: where to put your helmet\\nOrganization: Chemistry Dept., Harvard University\\nLines: 25\\nDistribution: world\\nNNTP-Posting-Host: laura.harvard.edu\\nIn-reply-to: ryan_cousineau@compdyn.questor.org\\'s message of 19 Apr 93 18:25:00 GMT\\n\\n>>>>> On 19 Apr 93 18:25:00 GMT, ryan_cousineau@compdyn.questor.org (Ryan Cousineau) said:\\nCB> DON\\'T BE SO STUPID AS TO LEAVE YOUR HELMET ON THE SEAT WHERE IT CAN\\nCB> FALL DOWN AND GO BOOM!\\n\\nRyan> Another good place for your helmet is your mirror (!). I kid you not.\\n\\nThis is very bad advice. Helmets have two major impact absorbing\\nlayers... a hard outer shell and a closed-cell foam impact layer.\\nMost helmets lose their protective properties because the inner liner\\ncompacts over time, long before the outer shell is damaged or\\ndelaminates from age. Dr. Hurt tested helmets for many years\\nfollowing his landmark study and has estimated that a helmet can lose\\nup to 80% of it\\'s effectiveness from inner liner compression. I have\\na video he produced that discusses this phenomenon in detail.\\n\\nPuncture compression of the type caused by mirrors, sissy bars, and\\nother relatively sharp objects is the worst offender. Even when the\\ncomfort liner is unaffected, dents and holes in the foam can seriously\\ndegrade the effectiveness of a helmet. If you are in the habit of\\n\"parking your lid\" on the mirrors, I suggest you look under the\\ncomfort liner at the condition of the foam. If it is significantly\\ndamaged (or missing :-), replace the helmet.\\n--\\nJerry Lotto MSFCI, HOGSSC, BCSO, AMA, DoD #18\\nChemistry Dept., Harvard Univ. \"It\\'s my Harley, and I\\'ll ride if I want to...\"\\n',\n", + " 'From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Drinking and Riding\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 30\\n\\nIn article maven@eskimo.com (Norman Hamer) writes:\\n\\n> What is a general rule of thumb for sobriety and cycling? Couple hours after\\n>you \"feel\" sober? What? Or should I just work with \"If I drink tonight, I\\n>don\\'t ride until tomorrow\"?\\n\\nInteresting discussion.\\n\\nI limit myself to *one* \\'standard serving\\' of alcohol if I\\'m\\ngoing to ride. And mostly, unless the alcohol is something\\nspecial (fine ale, good wine, or someone else\\'s vsop), I usually\\njust don\\'t drink *any*.\\n\\nBut then alcohol just isn\\'t really important to me, mainly\\nfor financial reasons...\\n\\nAt least one of the magazines claims to follow the\\naviation guideline of \"no alcohol whatsoever\" within\\n24hrs of riding a \\'company\\' bike.\\n\\nDon\\'t remember which mag though, it was a few years ago.\\n\\nRegards, Charles (hicc.)\\nDoD:0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Though his book was dealing with the Genocide of Muslims by Armenians..\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 45\\n\\nIn article arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>Then repeat everything I said before with the word \"race-related\" \\n>substituted for \"racist\". All that changes is the phrasing; complaining \\n>that I used the wrong word is a quibble.\\n\\nWell, your Armenian grandparents were fascist. As early as 1934, K. S. \\nPapazian asserted in \\'Patriotism Perverted\\' that the Armenians\\n\\n \\'lean toward Fascism and Hitlerism.\\'[1]\\n\\nAt that time, he could not have foreseen that the Armenians would\\nactively assume a pro-German stance and even collaborate in World\\nWar II. His book was dealing with the Armenian genocide of Turkish\\npopulation of eastern Anatolia. However, extreme rightwing ideological\\ntendencies could be observed within the Dashnagtzoutune long before\\nthe outbreak of the Second World War.\\n\\nIn 1936, for example, O. Zarmooni of the \\'Tzeghagrons\\' was quoted\\nin the \\'Hairenik Weekly:\\' \\n\\n\"The race is force: it is treasure. If we follow history we shall \\n see that races, due to their innate force, have created the nations\\n and these have been secure only insofar as they have reverted to\\n the race after becoming a nation. Today Germany and Italy are\\n strong because as nations they live and breath in terms of race.\\n On the other hand, Russia is comparatively weak because she is\\n bereft of social sanctities.\"[2]\\n\\n[1] K. S. Papazian, \\'Patriotism Perverted,\\' (Boston, Baikar Press\\n 1934), Preface.\\n[2] \\'Hairenik Weekly,\\' Friday, April 10, 1936, \\'The Race is our\\n Refuge\\' by O. Zarmooni.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " \"From: dannyb@panix.com (Daniel Burstein)\\nSubject: japanese moon landing?\\nOrganization: PANIX Public Access Unix, NYC\\nLines: 17\\n\\nAfraid I can't give any more info on this.. and hoping someone in greter\\nNETLAND has some details.\\n\\nA short story in the newspaper a few days ago made some sort of mention\\nabout how the Japanese, using what sounded like a gravity assist, had just\\nmanaged to crash (or crash-land) a package on the moon.\\n\\nthe article was very vague and unclear. and, to make matters worse, I\\ndidn't clip it.\\n\\ndoes this jog anyone's memory?\\n\\n\\nthanks\\ndannyb@panix.com\\n\\n\\n\",\n", + " \"From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Fat Boy versus ZX-11 (new math)\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 32\\n\\nIn article <1pimfd$cre@agate.berkeley.edu> robinson@cogsci.Berkeley.EDU (Michael Robinson) writes:\\n>In article klinger@ccu.umanitoba.ca (Jorg Klinger) writes:\\n>>In <1993Apr1.130432.11009@bnr.ca> npet@bnr.ca (Nick Pettefar) writes:\\n>>>Manual Velcro, on the 31 Mar 93 09:19:29 +0200 wibbled:\\n>>>: But 14 is greater than 11, or 180 is greater than 120, or ...\\n>>>No! 10 is the best of all.\\n>>No No No!\\n>> It should be obvious that 8 is the best number by far. Last year 10\\n>>was hot but with the improvements to 8 this year there can be no\\n>>question.\\n>\\n>Hell, my Dad used to have an old 5 that would beat out today's 8 without \\n>breaking a sweat.\\n>\\n>(Well, in the twisties, anyway.)\\n>\\n>This year's 8 is just too cumbersome for practical use in anything other \\n>than repeating decimals.\\n>\\nRemember the good old days, when Hexadecimals, and even Binaries\\nwere still legal? Sure, they smoked a little blue stuff out the\\npipes, but I had a hex 7 that could slaughter any decimal 10 on\\nthe road. Sigh, such nostalgia!\\n\\nRegards, Charles\\nDoD0,001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n\",\n", + " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: some thoughts.\\nOrganization: Technical University Braunschweig, Germany\\nLines: 12\\n\\nIn article \\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n \\n> The arguements he uses I am summing up. The book is about whether\\n>Jesus was God or not. I know many of you don't believe, but listen to a\\n>different perspective for we all have something to gain by listening to what\\n>others have to say.\\n \\nRead the FAQ first, watch the list fr some weeks, and come back then.\\n \\nAnd read some other books on the matter in order to broaden your view first.\\n Benedikt\\n\",\n", + " 'From: ivan@erich.triumf.ca (Ivan D. Reid)\\nSubject: Re: Carrying crutches (was Re: Living\\nOrganization: TRIUMF: Tri-University Meson Facility\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: erich.triumf.ca\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1pqhkl$g48@usenet.INS.CWRU.Edu>,\\n\\t ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes...\\n>\\tWhen I got my knee rebuilt I got back on the street bike ASAP. I put\\n>the crutches on the rack and the passenger seat and they hung out back a\\n>LONG way. Just make sure they\\'re tied down tight in front and no problemo.\\n ^^^^\\n\\tHmm, sounds like a useful trick -- it\\'d keep the local cagers at least\\na crutch-length off my tail-light, which is more than they give me now. But\\ndo I have to break a leg to use it?\\n\\n\\t(When I broke my ankle dirt-biking, I ended up strapping the crutches\\nto the back of the bike & riding to the lab. It was my right ankle, but the\\nbike was a GT380 and started easily by hand.)\\n\\nIvan Reid, Paul Scherrer Institute, CH. \\t\\t\\tivan@cvax.psi.ch\\nGSX600F, RG250WD. \"Beware drainage ditches on firetrails\"\\tDoD #484\\n',\n", + " 'From: cliff@watson.ibm.com (cliff)\\nSubject: Reprints\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM.\\nNntp-Posting-Host: cliff.watson.ibm.com\\nOrganization: A\\nLines: 17\\n\\nI have a few reprints left of chapters from my book \"Visions of the \\nFuture\". These include reprints of 3 chapters probably of interest to \\nreaders of this forum, including: \\n \\n1. Current Techniques and Development of Computer Art, by Franz Szabo \\n \\n2. Forging a Career as a Sculptor from a Career as Computer Programmer, \\nby Stewart Dickson \\n \\n3. Fractals and Genetics in the Future by H. Joel Jeffrey \\n \\nI\\'d be happy to send out free reprints to researchers for scholarly \\npurposes, until the reprints run out. \\n \\nJust send me your name and address. \\n \\nThanks, Cliff cliff@watson.ibm.com \\n',\n", + " \"From: friedenb@silver.egr.msu.edu (Gedaliah Friedenberg)\\nSubject: Re: Zionism is Racism\\nOrganization: College of Engineering, Michigan State University\\nLines: 26\\nDistribution: world\\nReply-To: friedenb@silver.egr.msu.edu (Gedaliah Friedenberg)\\nNNTP-Posting-Host: silver.egr.msu.edu\\n\\nIn article <20APR93.23565659.0109@VM1.MCGILL.CA>, B8HA000 writes:\\n|> In Re:Syria's Expansion, the author writes that the UN thought\\n|> Zionism was Racism and that they were wrong. They were correct\\n|> the first time, Zionism is Racism and thankfully, the McGill Daily\\n|> (the student newspaper at McGill) was proud enough to print an article\\n|> saying so. If you want a copy, send me mail.\\n\\nIf you want info claiming that blacks were brought to earth 60 trillion\\nyears ago by Aliens from the plante Shabazz, I can send you literature from\\nthe Nation of Islam (Farrakhan's group) who believe this.\\n\\nIf you want info claiming that the Holocaust never happened, I can send you\\ninfo from IHR (Institute for Historical Review - David Irving's group), or\\njust read Dan Gannon's posts on alt.revisionism.\\n\\nI just wanted to put Steve's post in with the company that it deserves.\\n\\n|> Steve\\n\\nGedaliah Friedenberg\\n-=-Department of Mechanical Engineering\\n-=-Department of Metallurgy, Mechanics and Materials Science\\n-=-Michigan State University\\n\\n\\n \\n\",\n", + " 'From: bandy@catnip.berkeley.ca.us (Andrew Scott Beals -- KC6SSS)\\nSubject: Re: Your opinion and what it means to me.\\nOrganization: The San Jose, California, Home for Perverted Hackers\\nLines: 10\\n\\ninfante@acpub.duke.edu (Andrew Infante) writes:\\n\\n>Since the occurance, I\\'ve paid many\\n>dollars in renumerance, taken the drunk class, \\n>and, yes, listened to all the self-righteous\\n>assholes like yourself that think your SO above the\\n>rest of the world because you\\'ve never had your\\n>own little DD suaree.\\n\\n\"The devil made me do it!\"\\n',\n", + " \"From: rwf2@ns1.cc.lehigh.edu (ROBERT WILLIAM FUSI)\\nSubject: Bike advice\\nOrganization: Lehigh University\\nLines: 11\\n\\nI have an '89 Kawasaki KX 80. It is in mint condition and starts on the first\\nkick EVERY time. I have outgrown the bike, and am considering selling it. I\\nwas told I should ask around $900. Does that sound right or should it be\\nhigher/lower?\\n Also, I am looking for a used ZX-7. How much do I have to spend, and what\\nyear should I look for to get a bike without paying an arm and a leg????\\n Thanks for the help!\\n\\n Rob Fusi\\n rwf2@lehigh.edu\\n-- \\n\",\n", + " 'From: randy@megatek.com (Randy Davis)\\nSubject: Re: A Miracle in California\\nArticle-I.D.: megatek.1993Apr5.223941.11539\\nReply-To: randy@megatek.com\\nOrganization: Megatek Corporation, San Diego, California\\nLines: 15\\n\\nIn article <1ppvof$92a@seven-up.East.Sun.COM> egreen@East.Sun.COM writes:\\n|Bikers wave to bikers the world over. Whether or not Harley riders\\n|wave to other bikers is one of our favorite flame wars...\\n\\n I am happy to say that some Harley riders in our area are better than most\\nthat are flamed about here: I (riding a lowly sport bike, no less) and my\\ngirlfriend were the recipient of no less than twenty waves from a group of\\nat least twenty-five Harley riders. I was leading a group of about four\\nsport bikes at the time (FJ1200/CBR900RR/VFR750). I initiated *some* of the\\nwaves, but not all. It was a perfect day, and friendly riders despite some\\nbrand differences made it all the better...\\n\\nRandy Davis Email: randy@megatek.com\\nZX-11 #00072 Pilot {uunet!ucsd}!megatek!randy\\nDoD #0013\\n',\n", + " 'From: jamshid@cgl.ucsf.edu (J. Naghizadeh)\\nSubject: PR Campaign Against Iran (PBS Frontline)\\nOrganization: Computer Graphics Laboratory, UCSF\\nLines: 51\\nOriginator: jamshid@socrates.ucsf.edu\\n\\nThere have been a number of articles on the PBS frontline program\\nabout Iranian bomb. Here is my $0.02 on this and related subjects.\\n\\nOne is curious to know the real reasons behind this and related\\npublic relations campaign about Iran in recent months. These include:\\n\\n1) Attempts to implicate Iran in the bombing of the New York Trade\\n Center. Despite great efforts in this direction they have not\\n succeeded in this. They, however, have indirectly created\\n the impression that Iran is behind the rise of fundamentalist\\n Islamic movements and thus are indirectly implicated in this matter.\\n\\n2) Public statements by the Secretary of State Christoffer and\\n other official sources regarding Iran being a terrorist and\\n outlaw state.\\n\\n3) And finally the recent broadcast of the Frontline program. I \\n suspect that this PR campaign against Iran will continue and\\n perhaps intensify.\\n\\nWhy this increased pressure on Iran? A number of factors may have\\nbeen behind this. These include:\\n\\n1) The rise of Islamic movements in North-Africa and radical\\n Hamas movement in the Israeli occupied territories. This\\n movement is basically anti-western and is not necessarily\\n fueled by Iran. The cause for accelerated pace of this \\n movement is probably the Gulf War which sought to return\\n colonial Shieks and Amirs to their throne in the name of\\n democracy and freedom. Also, the obvious support of Algerian\\n military coup against the democratically elected Algerian\\n Islamic Front which clearly exposed the democracy myth.\\n A further cause of this may be the daily broadcast of the news\\n on the slaughter of Bosnian Moslems.\\n\\n2) Possible future implications of this movement in Saudi Arabia\\n and other US client states and endangerment of the cheap oil\\n sources from this region.\\n\\n3) A need to create an enemy as an excuse for huge defense\\n expenditures. This has become necessary after the demise of\\n Soveit Union.\\n\\nThe recent PR campaign against Iran, however, seems to be directed\\nfrom Israel rather than Washington. There is no fundamental conflict\\nof interest between Iran and the US and in my opinion, it is in the\\ninterest of both countries to affect reestablishment of normal\\nand friendly relations. This may have a moderating effect on the\\nrise of radical movements within the Islamic world and Iran .\\n\\n--jamshid\\n',\n", + " \"From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: Reasons : was Re: was: Go Hezbollah!!\\nOrganization: Unocal Corporation\\nLines: 35\\n\\n\\n\\nHossien Amehdi writes:\\n\\n>I am not in the business of reading minds, however in this case it would not\\n>be necessary. Israelis top leaders in the past and present, always come across\\n>as arrogant with their tough talks trying to intimidate the Arabs. \\n\\n>The way I see it, Israelis and Arabs have not been able to achieve peace\\n>after almost 50 years of fighting because of the following two major reasons:.\\n\\n> 1) Arab governments are not really representative of their people, currently\\n > most of their leaders are stupid, and/or not independent, and/or\\n> dictators.\\n\\n> 2) Israeli government is arrogant and none comprising.\\n\\n\\n\\nIt's not relevant whether I agree with you or not, there is some reasonable\\nthought in what you say here an I appreciate your point. However, I would make 2\\nremarks: \\n\\n - you forgot about hate, and this is not only at government level.\\n - It's not only 'arab' governments.\\n\\nNow, about taugh talk and arrogance, we are adults, aren't we ? Do you listen \\nto tough talk of american politicians ? or switch the channel ? \\nI would rather be 'intimidated' by some dummy 'talking tough' then by a \\nbomb ready to blow under my seat in B747.\\n\\n\\n\\nDorin\\n\\n\",\n", + " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Portuguese Launch Complex (was:*Doppelganger*)\\nOrganization: NASA Langley Research Center\\nLines: 14\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\n> Portugese launch complex were *wonderful\\n\\nPortuguese launch complex??? Gosh.... Polish are for American in the \\nsame way as Portuguese are for Brazilians (I am from Brazil). There is \\na joke about the Portuguese Space Agency that wanted to send a \\nPortuguese astronaut to the surface of the Sun (if there is such a thing).\\nHow did they solve all problems of sending a man to the surface of the \\nSun??? Simple... their astronauts travelled during the night...\\n\\n C.O.EGALON@LARC.NASA.GOV\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", + " 'From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: Yeah, Right\\nOrganization: Technical University Braunschweig, Germany\\nLines: 54\\n\\nIn article <66014@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n>>And what about that revelation thing, Charley?\\n>\\n>If you\\'re talking about this intellectual engagement of revelation, well,\\n>it\\'s obviously a risk one takes.\\n>\\n \\nI see, it is not rational, but it is intellectual. Does madness qualify\\nas intellectual engagement, too?\\n \\n \\n>>Many people say that the concept of metaphysical and religious knowledge\\n>>is contradictive.\\n>\\n>I\\'m not an objectivist, so I\\'m not particularly impressed with problems of\\n>conceptualization. The problem in this case is at least as bad as that of\\n>trying to explain quantum mechanics and relativity in the terms of ordinary\\n>experience. One can get some rough understanding, but the language is, from\\n>the perspective of ordinary phenomena, inconsistent, and from the\\n>perspective of what\\'s being described, rather inexact (to be charitable).\\n>\\n \\nExactly why science uses mathematics. QM representation in natural language\\nis not supposed to replace the elaborate representation in mathematical\\nterminology. Nor is it supposed to be the truth, as opposed to the\\nrepresentation of gods or religions in ordinary language. Admittedly,\\nnot every religion says so, but a fancy side effect of their inept\\nrepresentations are the eternal hassles between religions.\\n \\nAnd QM allows for making experiments that will lead to results that will\\nbe agreed upon as being similar. Show me something similar in religion.\\n \\n \\n>An analogous situation (supposedly) obtains in metaphysics; the problem is\\n>that the \"better\" descriptive language is not available.\\n>\\n \\nWith the effect that the models presented are useless. And one can argue\\nthat the other way around, namely that the only reason metaphysics still\\nflourish is because it makes no statements that can be verified or falsified -\\nshowing that it is bogus.\\n \\n \\n>>And in case it holds reliable information, can you show how you establish\\n>>that?\\n>\\n>This word \"reliable\" is essentially meaningless in the context-- unless you\\n>can show how reliability can be determined.\\n \\nHaven\\'t you read the many posts about what reliability is and how it can\\nbe acheived respectively determined?\\n Benedikt\\n',\n", + " 'From: Center for Policy Research \\nSubject: conf:mideast.levant\\nNf-ID: #N:cdp:1483500358:000:1967\\nNf-From: cdp.UUCP!cpr Apr 24 14:55:00 1993\\nLines: 47\\n\\n\\nFrom: Center for Policy Research \\nSubject: conf:mideast.levant\\n\\n\\nRights of children violated by the State of Israel (selected\\narticles of the IV Geneva Convention of 1949)\\n-------------------------------------------------------------\\nArticle 31: No physical or moral coercion shall be exercised\\nagainst protected persons, in particular to obtain information\\nfrom them or from third parties.\\n\\nArticle 32: The High Contracting Parties specifically agree that\\neach of them is prohibited from taking any measure of such a\\ncharacter as to cause the physical suffering or extermination of\\nprotected persons in their hands. This prohibition applies not\\nonly to murder, torture, corporal punishment (...) but also to any\\nother measures of brutality whether applied by civilian or\\nmilitary agents.\\n\\nArticle 33: No protected person may be punished for an offence he\\nor she has not personally committed. Collective penalties and\\nlikewise measures of intimidation or of terrorism are prohibited.\\n\\nArticle 34: Taking of hostages is prohibited.\\n\\nArticle 49: Individual or mass forcible transfers, as well as\\ndeportations of protected persons from occupied territory to the\\nterritory of the Occupying Power or to that of any other country,\\noccupied or not, are prohibited, regardless of their motive.\\n\\nArticle 50: The Occupying Power shall, with the cooperation of\\nthe national and local authorities, facilitate the proper working\\nof all institutions devoted to the care and education of\\nchildren.\\n\\nArticle 53: Any destruction by the Occupying Power of real or\\npersonal property belonging individually or collectively to\\nprivate persons, or to the State, or to other public authorities,\\nor to social or cooperative organizations, is prohibited, except\\nwhere such destruction is rendered absolutely necessary by\\nmilitary operations.\\n\\nPS: It is obvious that violations of the above articles are also\\nviolations of the International Convention of the Rights of the\\nChild.\\n\\n',\n", + " 'From: twpierce@unix.amherst.edu (Tim Pierce)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nArticle-I.D.: unix.C52Cw7.I6t\\nOrganization: Blasny Blasny, Consolidated (Amherst, MA Offices)\\nLines: 37\\n\\nIn article <1993Apr6.041343.24997@cbnewsl.cb.att.com> stank@cbnewsl.cb.att.com (Stan Krieger) writes:\\n\\n>Roger and I have\\n>clearly stated our support of the BSA position on the issue;\\n>specifically, that homosexual behavior constitutes a violation of\\n>the Scout Oath (specifically, the promise to live \"morally straight\").\\n>\\n>There is really nothing else to discuss.\\n\\nApparently not.\\n\\nIn response to his claim that it \"terrifies\" gay people not to be able\\nto \"indoctrinate children to our lifestyle\" (or words to that effect),\\nI sent Roger a very calm, carefully-written, detailed letter\\nexplaining simply why the BSA policy does, indeed terrify me. I did\\nnot use inflammatory language and left myself extremely open for an\\nanswer. Thus far, I have not received an answer. I can conclude only\\nthat Roger considers his position either indefensible or simply not\\nworth defending.\\n\\n>Trying to cloud the issue\\n>with comparisons to Blacks or other minorities is also meaningless\\n>because it\\'s like comparing apples to oranges (i.e., people can\\'t\\n>control their race but they can control their behavior).\\n\\nIn fact, that\\'s exactly the point: people can control their behavior.\\nBecause of that fact, there is no need for a blanket ban on\\nhomosexuals.\\n\\n>What else is there to possibly discuss on rec.scouting on this issue?\\n\\nYou tell me.\\n\\n-- \\n____ Tim Pierce / ?Usted es la de la tele, eh? !La madre\\n\\\\ / twpierce@unix.amherst.edu / del asesino! !Ay, que graciosa!\\n \\\\/ (BITnet: TWPIERCE@AMHERST) / -- Pedro Almodovar\\n',\n", + " 'From: crash@ckctpa.UUCP (Frank \"Crash\" Edwards)\\nSubject: Re: forms for curses\\nReply-To: crash%ckctpa@myrddin.sybus.com (Frank \"Crash\" Edwards)\\nOrganization: Edwards & Edwards Consulting\\nLines: 40\\n\\nNote the Followup-To: header ...\\n\\nsteelem@rintintin.Colorado.EDU (STEELE MARK A) writes:\\n>Is there a collection of forms routines that can be used with curses?\\n>If so where is it located?\\n\\nOn my SVR4 Amiga Unix box, I\\'ve got -lform, -lmenu, and -lpanel for\\nuse with the curses library. Guess what they provide? :-)\\n\\nUnix Press, ie. Prentice-Hall, has a programmer\\'s guide for these\\ntools, referred to as the FMLI (Forms Mgmt Language Interface) and\\nETI (Extended Terminal Interface), now in it\\'s 2nd edition. It is\\nISBN 0-13-020637-7.\\n\\nParaphrased from the outside back cover:\\n\\n FMLI is a high-level programming tool for creating menus, forms,\\n and text frames. ETI is a set of screen management library\\n subroutines that promote fast development of application programs\\n for window, panel, menu, and form manipulation.\\n\\nThe FMLI is a shell package which reads ascii text files and produces\\nscreen displays for data entry and presentation. It consists of a\\n\"shell-like\" environment of the \"fmli\" program and it\\'s database\\nfiles. It is section 1F in the Unix Press manual.\\n\\nThe ETI are subroutines, part of the 3X manual section, provide\\nsupport for a multi-window capability on an ordinary ascii terminal\\nwith controls built on top of the curses library.\\n\\n>Thanks\\n>-Mark Steele\\n>steelem@rintintin.colorado.edu\\n\\n-- \\nFrank \"Crash\" Edwards Edwards & Edwards Consulting\\nVoice: 813/786-3675 crash%ckctpa@myrddin.sybus.com, but please\\nData: 813/787-3675 don\\'t ask UUNET to route it -- it\\'s sloooow.\\n There will be times in life when everyone you meet smiles and pats you on\\n the back and tells you how great you are ... so hold on to your wallet.\\n',\n", + " \"From: ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky)\\nSubject: Go Hizbollah II!\\nLines: 28\\nNntp-Posting-Host: purple.cc.utexas.edu\\nOrganization: University of Texas @ Austin\\nLines: 28\\n\\n\\nFrom Israel Line, Thursday, April 22, 1993:\\n \\nToday's HA'ARETZ reports that three women were injured when a\\nKatyusha rocket fell in the center of their community. The rocket\\nwas one of several dozen fired at the communities of the Galilee in\\nnorthern Israel yesterday by the terrorist Hizbullah organization [...] \\n\\n\\nIn article <1993Apr14.125813.21737@ncsu.edu> hernlem@chess.ncsu.edu \\n(Brad Hernlem) wrote:\\n\\nCongratulations to the brave men of the Lebanese resistance! With every\\nIsraeli son that you place in the grave you are underlining the moral\\nbankruptcy of Israel's occupation and drawing attention to the Israeli\\ngovernment's policy of reckless disregard for civilian life.\\n\\n\\n\\tApparently, the Hizbollah were encouraged by Brad's cheers\\n\\t(good job, Brad). Someone forgot to tell them, though, that \\n\\tBrad asks them to place only Israeli _sons_ in the grave, \\n\\tnot daughters. Paraphrasing a bit, with every rocket that \\n\\tthe Hizbollah fires on the Galilee, they justify Israel's \\n\\tholding to the security zone. \\n\\nNoam\\n \\n \\n\",\n", + " \"From: SHICKLEY@VM.TEMPLE.EDU\\nSubject: For Sale (sigh)\\nOrganization: Temple University\\nLines: 34\\nNntp-Posting-Host: vm.temple.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\n\\n FOR SALE (RELUCTANTLY)\\n ---- Classic Bike -----\\n 1972 YAMAHA XS-2 650 TWIN\\n \\n<6000 Original miles. Always stored inside. 1979 front end with\\naftermarket tapered steering head bearings. Racer's supply rear\\nbronze swingarm bushings, Tsubaki chain, Pirrhana 1/4 fairing\\nwith headlight cutout, one-up Carrera racing seat, superbike bars,\\nvelo stacks on twin carbs. Also have original seat. Tank is original\\ncherry/white paint with no scratches, dents or dings. Needs a\\nnew exhaust as original finally rusted through and was discarded.\\nI was in process of making Kenney Roberts TT replica/ cafe racer\\nwhen graduate school, marriage, child precluded further effort.\\nWife would love me to unload it. It does need re-assembly, but\\nI think everything is there. I'll also throw in manuals, receipts,\\nand a collection of XS650 Society newsletters and relevant mag\\narticles. Great fun, CLASSIC bike with over 2K invested. Will\\nconsider reasonable offers.\\n___________________________________________________________________________\\n \\nTimothy J. Shickley, Ph.D. Director, Neurourology\\nDepartments of Urology and Anatomy/Cell Biology\\nTemple University School of Medicine\\n3400 North Broad St.\\nPhiladelphia, PA 19140\\n(voice/data) 215-221-8966; (voice) 21-221-4567; (fax) 21-221-4565\\nINTERNET: shickley@vm.temple.edu BITNET: shickley@templevm.bitnet\\nICBM: 39 57 08N\\n 75 09 51W\\n_________________________________________________________________________\\n \\n \\nw\\n\",\n", + " 'From: pearson@tsd.arlut.utexas.edu (N. Shirlene Pearson)\\nSubject: Re: Sunrise/ sunset times\\nNntp-Posting-Host: wren\\nOrganization: Applied Research Labs, University of Texas at Austin\\nLines: 13\\n\\njpw@cbis.ece.drexel.edu (Joseph Wetstein) writes:\\n\\n\\n>Hello. I am looking for a program (or algorithm) that can be used\\n>to compute sunrise and sunset times.\\n\\nWould you mind posting the responses you get?\\nI am also interested, and there may be others.\\n\\nThanks,\\n\\nN. Shirlene Pearson\\npearson@titan.tsd.arlut.utexas.edu\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: For JOHS@dhhalden.no (3) - Last \\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 37\\n\\nPete Young, on the Tue, 20 Apr 93 08:29:21 GMT wibbled:\\n: Nick Pettefar (npet@bnr.ca) wrote:\\n\\n: : Tsk, tsk, tsk. Another newbie bites the dust, eh? They\\'ll learn.\\n\\n: Newbie. Sorry to disappoint you, but as far as the Internet goes I was\\n: in Baghdad while you were still in your dads bag.\\nIs this bit funny?\\n\\n: Most of the people who made this group interesting 3 or 4 years ago\\n: are no longer around and I only have time to make a random sweep\\n: once a week or so. Hence I missed most of this thread. \\nI\\'m terribly sorry.\\n\\n: Based on your previous postings, apparently devoid of humour, sarcasm,\\n: wit, or the apparent capacity to walk and chew gum at the same time, I\\n: assumed you were serious. Mea culpa.\\nI know, I know. Subtlety is sort of, you know, subtle, isn\\'t it.\\n\\n: Still, it\\'s nice to see that BNR are doing so well that they can afford\\n: to overpay some contractors to sit and read news all day.\\nThat\\'s foreign firms for you.\\n\\n\\n..and a touchy newbie, at that.\\n\\nWhat\\'s the matter, too much starch in the undies?\\n--\\n\\nNick (the Considerate Biker) DoD 1069 Concise Oxford None Gum-Chewer\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n (-\\n',\n", + " 'From: ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck)\\nSubject: Re: detecting double points in bezier curves\\nOrganization: My own node in Groningen, NL.\\nLines: 34\\n\\nrenner@adobe.com (John Renner) writes:\\n\\n> In article <19930420.090030.915@almaden.ibm.com> capelli@vnet.IBM.COM (Ron Ca\\n> >In Ferdinand Oeinck writes:\\n> >>I\\'m looking for any information on detecting and/or calculating a double\\n> >>point and/or cusp in a bezier curve.\\n> >\\n> >See:\\n> > Maureen Stone and Tony DeRose,\\n> > \"A Geometric Characterization of Parametric Cubic Curves\",\\n> > ACM TOG, vol 8, no 3, July 1989, pp. 147-163.\\n> \\n> I\\'ve used that reference, and found that I needed to go to their\\n> original tech report:\\n> \\n> \\tMaureen Stone and Tony DeRose,\\n> \\t\"Characterizing Cubic Bezier Curves\"\\n> \\tXerox EDL-88-8, December 1988\\n> \\n\\nFirst, thanks to all who replied to my original question.\\n\\nI\\'ve implemented the ideas from the article above and I\\'m very satisfied\\nwith the results. I needed it for my bezier curve approximation routine.\\nIn some cases (generating offset curves) loops can occur. I now have a\\nfast method of detecting the generation of a curve with a loop. Although\\nI did not follow the article above strictly. The check if the fourth control\\npoint lies in the the loop area, which is bounded by two parabolas and\\none ellips is too complicated. Instead I enlarged the loop-area and\\nsurrounded it by for straight lines. The check is now simple and fast and\\nmy approximation routine never ever outputs self-intersecting bezier curves\\nagain!\\nFerdinand.\\n\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: U of Toronto Zoology\\nLines: 10\\n\\nIn article <23APR199317452695@tm0006.lerc.nasa.gov> dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock) writes:\\n> - Man-Tended Capability (Griffin has not yet adopted non-sexist\\n> language) ...\\n\\nGlad to see Griffin is spending his time on engineering rather than on\\nritual purification of the language. Pity he got stuck with the turkey\\nrather than one of the sensible options.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: backon@vms.huji.ac.il\\nSubject: Re: From Israeli press. Madness.\\nDistribution: world\\nOrganization: The Hebrew University of Jerusalem\\nLines: 165\\n\\nIn article <1483500342@igc.apc.org>, Center for Policy Research writes:\\n>\\n> From: Center for Policy Research \\n> Subject: From Israeli press. Madness.\\n>\\n> /* Written 4:34 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n> /* ---------- \"From Israeli press. Madness.\" ---------- */\\n> FROM THE ISRAELI PRESS.\\n>\\n> Paper: Zman Tel Aviv (Tel Aviv\\'s time). Friday local Tel Aviv\\'s\\n> paper, affiliated with Maariv.\\n>\\n> Date: 19 February 1993\\n>\\n> Journalist: Guy Ehrlich\\n>\\n> Subject: Interview with soldiers who served in the Duvdevan\\n> (Cherry) units, which disguise themselves as Arabs and operate\\n> within the occupied territories.\\n>\\n> Excerpts from the article:\\n>\\n> \"A lot has been written about the units who disguise themselves as\\n> Arabs, things good and bad, some of the falsehoods. But the most\\n> important problem of those units has been hardly dealt with. It is\\n> that everyone who serves in the Cherry, after a time goes in one\\n> way or another insane\".\\n\\n\\nGee, I\\'d better tell this to the Mental Health Branch of the Israeli Army\\nMedical Corps ! Where would we be without you, Davidson ?\\n\\n\\n\\n\\n\\n>\\n> A man who said this, who will here be called Danny (his full name\\n> is known to the editors) served in the Cherry. After his discharge\\n> from the army he works as delivery boy. His pal, who will here be\\n> called Dudu was also serving in the Cherry, and is now about to\\n> depart for a round-the-world tour. They both look no different\\n> from average Israeli youngsters freshly discharged from conscript\\n> service. But in their souls, one can notice something completely\\n> different....It was not easy for them to come out with disclosures\\n> about what happened to them. And they think that to most of their\\n> fellows from the Cherry it woundn\\'t be easy either. Yet after they\\n> began to talk, it was nearly impossible to make them stop talking.\\n> The following article will contain all the horror stories\\n> recounted with an appalling openness.\\n>\\n> (...) A short time ago I was in command of a veteran team, in\\n> which some of the fellows applied for release from the Cherry. We\\n> called such soldiers H.I. \\'Hit by the Intifada\\'. Under my command\\n> was a soldier who talked to himself non-stop, which is a common\\n> phenomenon in the Cherry. I sent him to a psychiatrist. But why I\\n> should talk about others when I myself feel quite insane ? On\\n> Fridays, when I come home, my parents know I cannot be talked to\\n> until I go to the beach, surf a little, calm down and return. The\\n> keys of my father\\'s car must be ready for in advance, so that I\\n> can go there. I they dare talk to me before, or whenever I don\\'t\\n> want them to talk to me, I just grab a chair and smash it\\n> instantly. I know it is my nerve: Smashing chairs all the time\\n> and then running away from home, to the car and to the beach. Only\\n> there I become normal.(...)\\n>\\n> (...) Another friday I was eating a lunch prepared by my mother.\\n> It was an omelette of sorts. She took the risk of sitting next to\\n> me and talking to me. I then told my mother about an event which\\n> was still fresh in my mind. I told her how I shot an Arab, and how\\n> exactly his wound looked like when I went to inspect it. She began\\n> to laugh hysterically. I wanted her to cry, and she dared laugh\\n> straight in my face instead ! So I told her how my pal had made a\\n> mincemeat of the two Arabs who were preparing the Molotov\\n> cocktails. He shot them down, hitting them beautifully, exactly as\\n> they deserved. One bullet had set a Molotov cocktail on fire, with\\n> the effect that the Arab was burning all over, just beautifully. I\\n> was delighted to see it. My pal fired three bullets, two at the\\n> Arab with the Molotov cocktail, and the third at his chum. It hit\\n> him straight in his ass. We both felt that we\\'d pulled off\\n> something.\\n>\\n> Next I told my mother how another pal of mine split open the guts\\n> in the belly of another Arab and how all of us ran toward that\\n> spot to take a look. I reached the spot first. And then that Arab,\\n> blood gushing forth from his body, spits at me. I yelled: \\'Shut\\n> up\\' and he dared talk back to me in Hebrew! So I just laughed\\n> straight in his face. I am usually laughing when I stare at\\n> something convulsing right before my eyes. Then I told him: \\'All\\n> right, wait a moment\\'. I left him in order to take a look at\\n> another wounded Arab. I asked a soldier if that Arab could be\\n> saved, if the bleeding from his artery could be stopped with the\\n> help of a stone of something else like that. I keep telling all\\n> this to my mother, with details, and she keeps laughing straight\\n> into my face. This infuriated me. I got very angry, because I felt\\n> I was becoming mad. So I stopped eating, seized the plate with he\\n> omelette and some trimmings still on, and at once threw it over\\n> her head. Only then she stopped laughing. At first she didn\\'t know\\n> what to say.\\n>\\n> (...) But I must tell you of a still other madness which falls\\n> upon us frequently. I went with a friend to practice shooting on a\\n> field. A gull appeared right in the middle of the field. My friend\\n> shot it at once. Then we noticed four deer standing high up on the\\n\\n\\nSigh.\\n\\nFour (4) deer in Tel Aviv ?? Well, this is probably as accurate as the rest of\\nthis fantasy.\\n\\n\\n\\n\\n\\n> hill above us. My friend at once aimed at one of them and shot it.\\n> We enjoyed the sight of it falling down the rock. We shot down two\\n> deer more and went to take a look. When we climbed the rocks we\\n> saw a young deer, badly wounded by our bullet, but still trying to\\n> such some milk from its already dead mother. We carefully\\n> inspected two paths, covered by blood and chunks of torn flesh of\\n> the two deer we had hit. We were just delighted by that sight. We\\n> had hit\\'em so good ! Then we decided to kill the young deer too,\\n> so as spare it further suffering. I approached, took out my\\n> revolver and shot him in the head several times from a very short\\n> distance. When you shoot straight at the head you actually see the\\n> bullets sinking in. But my fifth bullet made its brains fall\\n> outside onto the ground, with the effect of splattering lots of\\n> blood straight on us. This made us feel cured of the spurt of our\\n> madness. Standing there soaked with blood, we felt we were like\\n> beasts of prey. We couldn\\'t explain what had happened to us. We\\n> were almost in tears while walking down from that hill, and we\\n> felt the whole day very badly.\\n>\\n> (...) We always go back to places we carried out assignments in.\\n> This is why we can see them. When you see a guy you disabled, may\\n> be for the rest of his life, you feel you got power. You feel\\n> Godlike of sorts.\"\\n>\\n> (...) Both Danny and Dudu contemplate at least at this moment\\n> studying the acting. Dudu is not willing to work in any\\n> security-linked occupation. Danny feels the exact opposite. \\'Why\\n> shouldn\\'t I take advantage of the skills I have mastered so well ?\\n> Why shouldn\\'t I earn $3.000 for each chopped head I would deliver\\n> while being a mercenary in South Africa ? This kind of job suits\\n> me perfectly. I have no human emotions any more. If I get a\\n> reasonable salary I will have no problem to board a plane to\\n> Bosnia in order to fight there.\"\\n>\\n> Transl. by Israel Shahak.\\n>\\n\\nYisrael Shahak the crackpot chemist ? Figures. I often see him in the\\nRechavia (Jerusalem) post office. A really sad figure. Actually, I feel sorry\\nfor him. He was in a concentration camp during the Holocaust and it must have\\naffected him deeply.\\n\\n\\n\\n\\nJosh\\nbackon@VMS.HUJI.AC.IL\\n\\n\\n\\n',\n", + " 'From: un034214@wvnvms.wvnet.edu\\nSubject: M-MOTION VIDEO CARD: YUV to RGB ?\\nOrganization: West Virginia Network for Educational Telecomputing\\nLines: 21\\n\\nI am trying to convert an m-motion (IBM) video file format YUV to RGB \\ndata...\\n\\nTHE Y portion is a byte from 0-255\\nTHE V is a byte -127-127\\nTHe color is U and V\\nand the intensity is Y\\n\\nDOes anyone have any ideas for algorhtyms or programs ?\\n\\nCan someone tell me where to get info on the U and V of a television signal ?\\n\\nIF you need more info reply at the e-mail address...\\nBasically what I am doing is converting a digital NTSC format to RGB (VGA)\\nfor displaying captured video pictures.\\n\\nThanks.\\n\\n\\nTHE U is a byte -127-127\\n\\n',\n", + " \"From: sherry@a.cs.okstate.edu (SHERRY ROBERT MICH)\\nSubject: Re: .SCF files, help needed\\nOrganization: Oklahoma State University\\nLines: 27\\n\\nFrom article <1993Apr21.013846.1374@cx5.com>, by tlc@cx5.com:\\n> \\n> \\n> I've got an old demo disk that I need to view. It was made using RIX Softworks. \\n> The files on the two diskette set end with: .scf\\n> \\n> The demo was VGA resolution (256 colors), but I don't know the spatial \\n> resolution.\\n> \\n\\nAccording to my ColoRIX manual .SCF files are 640x480x256\\n\\n> First problem: When I try to run the demo, the screen has two black bars that \\n> cut across (horizontally) the screen, in the top third and bottom third of the \\n> screen. The bars are about 1-inch wide. Other than this, the demo (the \\n> animation part) seems to be running fine.\\n> \\n> Second problem: I can't find any graphics program that will open and display \\n> these files. I have a couple of image conversion programs, none mention .scf \\n> files.\\n> \\n\\nYou may try VPIC, I think it handles the 256 color RIX files OK..\\n\\n\\nRob Sherry\\nsherry@a.cs.okstate.edu\\n\",\n", + " \"From: nick@sfb256.iam.uni-bonn.de ( Nikan B Firoozye )\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Applied Math, University of Bonn, Germany\\nLines: 15\\n\\nA related question (which I haven't given that much serious thought \\nto): at what lattitude is the average length of the day (averaged \\nover the whole year) maximized? Is this function a constant=\\n12 hours? Is it truly symmetric about the equator? Or is\\nthere some discrepancy due to the fact that the orbit is elliptic\\n(or maybe the difference is enough to change the temperature and\\nmake the seasons in the southern hemisphere more bitter, but\\nis far too small to make a sizeable difference in daylight\\nhours)?\\n\\nI want to know where to move.\\n\\n\\t-Nick Firoozye\\n\\tnick@sfb256.iam.uni-bonn.de\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Given the massacre of the Muslim population of Karabag by Armenians...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nLines: 124\\n\\nIn article <1993Apr19.155856.8260@kpc.com> henrik@quayle.kpc.com writes:\\n\\n>Let me clearify Mr. Turkish;\\n>ARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that \\n>SHE WILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\n>tricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\n>CYPRESS WHILE the world simply WATCHED. \\n\\nAnd the \\'Turkish Karabag\\' is next. As for \\'Cyprus\\', In 1974, Turkiye \\nstepped into Cyprus to preserve the lives of the Turkish population \\nthere. This is nothing but a simple historical fact. Unfortunately, \\nthe intervention was too late at least for some of the victims. Mass \\ngraves containing numerous bodies of women and children already showed \\nwhat fate had been planned for a peaceful minority.\\n\\nThe problems in Cyprus have their origin in decades of \\noppression of the Turkish population by the Greek Cypriot \\nofficials and their violation of the co-founder status of \\nthe Turks set out in the constitution. The coup d\\'etat \\nengineered by Greece in 1974 to execute a final solution \\nto the Turkish problem was the savage blow that invoked \\nTurkiye\\'s intervention. Turkiye intervened reluctantly and \\nonly as a last resort after exhausting all other avenues \\nconsulting with Britain and Greece as the other two signatories \\nto the treaty to protect the integrity of Cyprus. There simply \\nwas not any expansionist motivation in the Turkish action at \\nall. This is in dramatic contrast to the Greek motivation which \\nwas openly expansionist, stated as \\'Enosis,\\' union with Greece. \\nSince the creation of independent Cyprus in 1960, the Turkish \\npopulation, although smaller, legally had status as the co-founder\\nof the republic with the Greek population.\\n\\nThe Greek Cypriots, with the support of \\'Enosis\\'-minded\\nGreeks in the mainland, have consistently ignored that\\nstatus and portrayed the Island as a Greek island with\\na minority population of Turks. The Turks of Cyprus are\\nnot a minority in a Greek Republic and they found the\\nonly way they could show that was to assert their \\nautonomy in a separate republic.\\n\\nTurkiye is not satisfied with the status quo. She would\\nrather not be involved with the island. But, given the\\ndismal record of brutal Greek oppression of the Turkish\\npopulation in Cyprus, she simply cannot leave the fate\\nof the island\\'s Turks in the hands of the Greeks until\\nthe Turkish side is satisfied with whatever accord\\nthe two communities finally reach to guarantee that\\nhistory will not repeat itself to rob Turkish Cypriots\\nof their rights, liberties and their very lives.\\n\\n\\n Source: \\'Cyprus: The Tale Of An Island,\\' A. H. Rizvi, p. 42\\n\\n 21-12-1963 Throughout Cyprus\\n \"Following the Greek Cypriot premeditated onslaught of 21 December,\\n 1963, the Turkish Sectors all over Cyprus were completely besieged\\n by Greeks; all telephonic, telegraphic and postal communications\\n between these sectors were cut off and the Turkish Cypriot\\n Community\\'s contact with each other and with the outside world\\n was thus prevented.\"\\n\\n 21-12-63 -- 31-12-63 Turkish Quarter of Nicosia and suburbs\\n \"Greek Cypriot armed elements broke into hundreds of Turkish\\n homes and fired at the unarmed occupants with automatic\\n weapons killing at random many Turks, including women, children\\n and elderly persons (51 Turks were killed and 82 wounded). They\\n also carried away as hostages more than 700 Turks, including\\n women and children, whom they forced to walk bare-footed and\\n in night-dresses across rough fields and river beds.\"\\n\\n 21-12-63 -- 12-12-64 Throughout Cyprus\\n \"The Greek Cypriot Administration deprived Turkish Cypriots \\n including Ministers, MPs, and Turkish members of the Public\\n services of the republic, of their right to freedom of movement.\"\\n\\n In his report No. S/6102 of 12 December, 1964 to the Security\\n Council, the UN Secretary-General stated in this respect the\\n following:\\n\\n \"Restrictions on the free movement of civilians have been one of\\n the major features of the situation in Cyprus since the early\\n stages of the disturbances, these restrictions have inflicted\\n considerable hardship on the population, especially the Turkish\\n Cypriot Community, and have kept tension high.\"\\n\\n 25-9-1964 -- 31-3-1968 Throughout Cyprus\\n \\n \"Supply of petrol was completely denied to the Turkish sections.\"\\n\\n Makarios Addresses UN Security Council On 19 July 1974\\n After being Ousted by the Greek Junta Coup\\n\\n \"In the beginning I wish to express my sincere thanks to all the\\n members of the Security Council for the great interest they have\\n shown in the critical situation which has been created in Cyprus\\n after the coup organized by the military regime in Greece and\\n carried out by the Greek army officers who were serving in the\\n National Guard and were commanding it.\\n\\n [..]\\n\\n 13-3-1975 On the road travelling to the South to the freedom of\\n the North\\n\\n \"A Turkish woman was seriously wounded and her four-month old\\n baby was riddled with bullets from an automatic weapon fired by\\n a Greek Cypriot mobile patrol which had ambushed the car in which\\n the mother and her baby were travelling to the Turkish region.\\n The baby died in her mother\\'s arms.\\n\\n This wanton murder of a four-month-old baby, which shocked foreign\\n observers as much as the Turkish Community, was not committed by\\n irresponsible persons, but by members of the Greek Cypriot security\\n forces. According to the mother\\'s statement the Greek police patrol\\n had chased their car and deliberately fired upon it.\"\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n',\n", + " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Enough Freeman Bashing! Was: no-Free man propaganda machine: Freemanwith blood greetings from Israel\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 18\\n\\nIn article mafifi@eis.calstate.edu (Marc A Afifi) writes:\\n>pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman) writes:\\n>\\n>\\n>Peter,\\n>\\n>I believe this is your most succinct post to date. Since you have nothing\\n>to say, you say nothing! It's brilliant. Did you think of this all by\\n>yourself?\\n>\\n>-marc \\n>--\\n\\nHey tough guy, read the topic. That's the message. Get a brain. Go to \\na real school.\\n\\n\\n\\n\",\n", + " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 22\\n\\nJim Perry (perry@dsinc.com) wrote:\\n\\n: The Bible says there is a God; if that is true then our atheism is\\n: mistaken. What of it? Seems pretty obvious to me. Socrates said\\n: there were many gods; if that is true then your monotheism (and our\\n: atheism) is mistaken, even if Socrates never existed.\\n\\n\\nJim,\\n\\nI think you must have come in late. The discussion (on my part at\\nleast) began with Benedikt's questioning of the historical acuuracy of\\nthe NT. I was making the point that, if the same standards are used to\\nvalidate secular history that are used here to discredit NT history,\\nthen virtually nothing is known of the first century.\\n\\nYou seem to be saying that the Bible -cannot- be true because it\\nspeaks of the existence of God as it it were a fact. Your objection\\nhas nothing to do with history, it is merely another statement of\\natheism.\\n\\nBill\\n\",\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Level 5?\\nOrganization: U of Toronto Zoology\\nLines: 18\\n\\nIn article <1raejd$bf4@access.digex.net> prb@access.digex.com (Pat) writes:\\n>what ever happened to the hypothesis that the shuttle flight software\\n>was a major factor in the loss of 51-L. to wit, that during the\\n>wind shear event, the Flight control software indicated a series\\n>of very violent engine movements that shocked and set upa harmonic\\n>resonance leading to an overstress of the struts.\\n\\nThis sounds like another of Ali AbuTaha\\'s 57 different \"real causes\" of\\nthe Challenger accident. As far as I know, there has never been the\\nslightest shred of evidence for a \"harmonic resonance\" having occurred.\\n\\nThe windshear-induced maneuvering probably *did* contribute to opening\\nup the leak path in the SRB joint again -- it seems to have sealed itself\\nafter the puffs of smoke during liftoff -- but the existing explanation\\nof this and related events seems to account for the evidence adequately.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: Where are they now?\\nOrganization: Case Western Reserve University\\nLines: 34\\nDistribution: world\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1ql0d3$5vo@dr-pepper.East.Sun.COM> geoff@East.Sun.COM (Geoff Arnold @ Sun BOS - R.H. coast near the top) writes:\\n\\n>Your posting provoked me into checking my save file for memorable\\n>posts. The first I captured was by Ken Arromdee on 19 Feb 1990, on the\\n>subject \"Re: atheist too?\". That was article #473 here; your question\\n>was article #53766, which is an average of about 48 articles a day for\\n>the last three years. As others have noted, the current posting rate is\\n>such that my kill file is depressing large...... Among the posting I\\n>saved in the early days were articles from the following notables:\\n\\n\\tHey, it might to interesting to read some of these posts...\\nEspecially from ones who still regularly posts on alt.atheism!\\n\\n\\n>>From: loren@sunlight.llnl.gov (Loren Petrich)\\n>>From: jchrist@nazareth.israel.rel (Jesus Christ of Nazareth)\\n>>From: mrc@Tomobiki-Cho.CAC.Washington.EDU (Mark Crispin)\\n>>From: perry@apollo.HP.COM (Jim Perry)\\n>>From: lippard@uavax0.ccit.arizona.edu (James J. Lippard)\\n>>From: minsky@media.mit.edu (Marvin Minsky)\\n>\\n>An interesting bunch.... I wonder where #2 is?\\n\\n\\tHee hee hee.\\n\\n\\t*I* ain\\'t going to say....\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", + " \"Subject: Re: Traffic morons\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 28\\n\\nIn article <10326.97.uupcb@compdyn.questor.org>,\\nryan_cousineau@compdyn.questor.org (Ryan Cousineau) wrote:\\n> \\n> NMM>From: nielsmm@imv.aau.dk (Niels Mikkel Michelsen)\\n> NMM>Subject: How to act in front of traffic jerks\\n> \\n> NMM>The other day, it was raining cats and dogs, therefor I was going only to\\n> NMM>the speed limit, on nothing more, on my bike. This guy in his BMW was\\n> NMM>driving 1-2 meters behind me for 7-800 meters and at the next red light I\\n> NMM>calmly put the bike on its leg, walked back to this car, he rolled down the\\n> NMM>window, and I told him he was a total idiot (and the reason why).\\n> \\n> NMM>Did I do the right thing?\\n\\n\\timho, you did the wrong thing. You could have been shot\\n or he could have run over your bike or just beat the shit\\n out of you. Consider that the person is foolish enough\\n to drive like a fool and may very well _act_ like one, too.\\n\\n Just get the heck away from the idiot.\\n\\n IF the driver does something clearly illegal, you _can_\\n file a citizens arrest and drag that person into court.\\n It's a hassle for you but a major hassle for the perp.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n\",\n", + " \"From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Re: Vandalizing the sky.\\nIn-Reply-To: todd@phad.la.locus.com's message of Wed, 21 Apr 93 16:28:00 GMT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<1993Apr21.162800.168967@locus.com>\\nLines: 33\\n\\nIn article <1993Apr21.162800.168967@locus.com> todd@phad.la.locus.com (Todd Johnson) writes:\\n\\n As for advertising -- sure, why not? A NASA friend and I spent one\\n drunken night figuring out just exactly how much gold mylar we'd need\\n to put the golden arches of a certain American fast food organization\\n on the face of the Moon. Fortunately, we sobered up in the morning.\\n\\nHmmm. It actually isn't all that much, is it? Like about 2 million\\nkm^2 (if you think that sounds like a lot, it's only a few tens of m^2\\nper burger that said organization sold last year). You'd be best off\\nwith a reflective substance that could be sprayed thinly by an\\nunmanned craft in lunar orbit (or, rather, a large set of such craft).\\nIf you can get a reasonable albedo it would be visible even at new\\nmoon (since the moon itself is quite dark), and _bright_ at full moon.\\nYou might have to abandon the colour, though.\\n\\nBuy a cheap launch system, design reusable moon -> lunar orbit\\nunmanned spraying craft, build 50 said craft, establish a lunar base\\nto extract TiO2 (say: for colour you'd be better off with a sulphur\\ncompound, I suppose) and some sort of propellant, and Bob's your\\nuncle. I'll do it for, say, 20 billion dollars (plus changes of\\nidentity for me and all my loved ones). Delivery date 2010.\\n\\nCan we get the fast-food chain bidding against the fizzy-drink\\nvendors? Who else might be interested?\\n\\nWould they buy it, given that it's a _lot_ more expensive, and not\\nmuch more impressive, than putting a large set of several-km\\ninflatable billboards in LEO (or in GEO, visible 24 hours from your\\nkey growth market). I'll do _that_ for only $5bn (and the changes of\\nidentity).\\n\\nNick Haines nickh@cmu.edu\\n\",\n", + " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Boom! Hubcap attack!\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nLines: 57\\n\\nIn article , speedy@engr.latech.edu (Speedy\\nMercer) writes:\\n|> I was attacked by a rabid hubcap once. I was going to work on a\\n|> Yamaha\\n|> 750 Twin (A.K.A. \"the vibrating tank\") when I heard a wierd noise off\\n|> to my \\n|> left. I caught a glimpse of something silver headed for my left foot\\n|> and \\n|> jerked it up about a nanosecond before my bike was hit HARD in the\\n|> left \\n|> side. When I went to put my foot back on the peg, I found that it\\n|> was not \\n|> there! I pulled into the nearest parking lot and discovered that I\\n|> had been \\n|> hit by a wire-wheel type hubcap from a large cage! This hubcap\\n|> weighed \\n|> about 4-5 pounds! The impact had bent the left peg flat against the\\n|> frame \\n|> and tweeked the shifter in the process. Had I not heard the\\n|> approaching \\n|> cap, I feel certian that I would be sans a portion of my left foot.\\n|> \\n|> Anyone else had this sort of experience?\\n|> \\n\\n Not with a hub cap but one of those \"Lumber yard delivery\\ntrucks\" made life interesting when he hit a \\'dip\\' in the road\\nand several sheets of sheetrock and a dozen 5 gallon cans of\\nspackle came off at 70 mph. It got real interesting for about\\n20 seconds or so. Had to use a wood mallet to get all the dried\\nspackle off Me, the Helmet and the bike when I got home. Thanks \\nto the bob tail Kenworth between me and the lumber truck I had\\na \"Path\" to drive through he made with his tires (and threw up\\nthe corresponding monsoon from those tires as he ran over\\nwhat ever cans of spackle didn\\'t burst in impact). A car in\\nfront of me in the right lane hit her brakes, did a 360 and\\nnailed a bridge abutment half way through the second 360.\\n\\nThe messiest time was in San Diego in 69\\' was on my way\\nback to the apartment in ocean beach on my Sportster and\\nhad just picked up a shake, burger n fries from jack in\\nthe box and stuffed em in my foul weather jacket when the\\nmilk shake opened up on Nimitz blvd at 50 mph, nothing\\nlike the smell of vanilla milk shake cooking on the\\nengine as it runs down your groin and legs and 15 people\\nwaiting in back of you to make the same left turn you are.\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Camping question?\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 46\\n\\nSanjay Sinha, on the 12 Apr 93 00:23:19 GMT wibbled:\\n\\n: Thanks to everyone who posted in my previous quest for camping info..\\n\\n: Another question. \\n: Well, not strictly r.m. stuff\\n\\n: I am looking for a thermos/flask to keep coffee hot. I mean real\\n: hot! Of course it must be the unbreakable type. So far, what ever\\n: metal type I have wasted money on has not matched the vacuum/glass \\n: type.\\n\\n: Any info appreciated.\\n\\n: Sanjay\\n\\n\\nBack in my youth (ahem) the wiffy and moi purchased a gadget which heated up\\nwater from a 12V source. It was for car use but we thought we\\'d try it on my\\nRD350B. It worked OK apart from one slight problem: we had to keep the revs \\nabove 7000. Any lower and the motor would die from lack of electron movement.\\n\\nIt made for interesting cups of coffee, anyhow. We would plot routes that\\ncontained straights of over three miles so that we had sufficient time to\\nget the water to boiling point. This is sometimes difficult in England.\\n\\nGood luck on your quest.\\n--\\n\\nNick (the Biker) DoD 1069 Concise Oxford\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", + " 'From: arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee)\\nSubject: Re: American Jewish Congress Open Letter to Clinton\\nOrganization: Johns Hopkins University CS Dept.\\nLines: 46\\n\\nIn article <22APR199307534304@vxcrna.cern.ch> casper@vxcrna.cern.ch (CASPER,DAVI./PPE) writes:\\n>> [I said the fixation on Bosnia is due to it being in a European country,\\n>> rather than the third world]\\n>>I recall, before we did anything for Somalia, (apparent) left-wingers saying\\n>>that the reason everyone was more willing to send troops to Bosnia than to\\n>>Somalia was because the Somalis are third-worlders who Americans consider\\n>>unworthy of help. They suddenly shut up when the US decided to send troops to\\n>>the opposite place than that predicted by the theory.\\n>I am a staunch Republican, BTW. The irony of arguing against military\\n>intervention with arguments based on Vietnam has not escaped me. I was opposed\\n>to US intervention in Somalia for the same reasons, although clearly it was\\n>not nearly as risky.\\n\\nBased on the same reasons? You mean you were opposed to US intervention in\\nSomalia because since Somalia is a European country instead of the third world,\\nthe desire to help Somalia is racist? I don\\'t think this \"same reason\" applies\\nto Somalia at all.\\n\\nThe whole point is that Somalia _is_ a third world country, and we were more\\nwilling to send troops there than to Bosnia--exactly the _opposite_ of what\\nthe \"fixation on European countries\" theory would predict. (Similarly, the\\ndesire to help Muslims being fought by Christians is also exactly the opposite\\nof what that theory predicts.)\\n\\n>>For that matter, this theory of yours suggests that Americans should want to\\n>>help the Serbs. After all, they\\'re Christian, and the Muslims are not. If\\n>>the desire to intervene in Bosnia is based on racism against people that are\\n>>less like us, why does everyone _want_ to help the side that _is_ less like us?\\n>>Especially if both of the sides are equal as you seem to think?\\n>Well, one thing you have to remember is, the press likes a good story. Good\\n>for business, don\\'t you know. And BTW, not \"everyone\" wants to help the\\n>side that is less like us.\\n\\nI\\'m referring to people who want to help at all, of course. You don\\'t see\\npeople sending out press releases \"help Bosnian Serbs with ethnic cleansing!\\nThe Muslim presence in the Balkans should be eliminated now!\" (Well, except\\nfor some Serbs, but I admit that the desire of Serbs in America to help the\\nSerbian side probably _is_ because those are people more like them.)\\n--\\n\"On the first day after Christmas my truelove served to me... Leftover Turkey!\\nOn the second day after Christmas my truelove served to me... Turkey Casserole\\n that she made from Leftover Turkey.\\n[days 3-4 deleted] ... Flaming Turkey Wings! ...\\n -- Pizza Hut commercial (and M*tlu/A*gic bait)\\n\\nKen Arromdee (arromdee@jyusenkyou.cs.jhu.edu)\\n',\n", + " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Should liability insurance be required?\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 13\\n\\nIf I have one thing to say about \"No Fault\" it would be\\n\"It isn\\'t\"\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", + " 'From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: BMW MOA members read this!\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 10\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nAs a new BMW owner I was thinking about signing up for the MOA, but\\nright now it is beginning to look suspiciously like throwing money\\ndown a rathole.\\n When you guys sort this out let me know.\\n\\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n',\n", + " \"From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: M-MOTION VIDEO CARD: YUV to RGB ?\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM UK Labs\\nLines: 3\\n\\nI'll contact you offline about this.\\n\\nRick\\n\",\n", + " \"From: delilah@next18pg2.wam.umd.edu (Romeo DeVerona)\\nSubject: Re: New to Motorcycles...\\nNntp-Posting-Host: next18pg2.wam.umd.edu\\nOrganization: Workstations at Maryland, University of Maryland, College Park\\nLines: 10\\n\\n> > Motorcycle Safety Foundation riding course (a must!)\\t$140\\n> ^^^\\n> Wow! Courses in Georgia are much cheaper. $85 for both.\\n> >\\n> \\nin maryland, they were $25 each when i learned to ride 3 years ago. now,\\nit's $125 (!) for the beginner riders' course and $60 for the experienced\\nriders' course (which, admittedly, takes only about half the time ).\\n\\n-D-\\n\",\n", + " 'From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Shaft-drives and Wheelies\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 15\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, xlyx@vax5.cit.cornell.edu () says:\\n\\nMike Terry asks:\\n\\n>Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n>\\nNo Mike. It is imposible due to the shaft effect. The centripital effects\\nof the rotating shaft counteract any tendency for the front wheel to lift\\noff the ground.\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n',\n", + " 'From: yamauchi@ces.cwru.edu (Brian Yamauchi)\\nSubject: DC-X: Choice of a New Generation (was Re: SSRT Roll-Out Speech)\\nOrganization: Case Western Reserve University\\nLines: 27\\nDistribution: world\\nNNTP-Posting-Host: yuggoth.ces.cwru.edu\\nIn-reply-to: jkatz@access.digex.com\\'s message of 21 Apr 1993 22:09:32 -0400\\n\\nIn article <1r4uos$jid@access.digex.net> jkatz@access.digex.com (Jordan Katz) writes:\\n\\n>\\t\\t Speech Delivered by Col. Simon P. Worden,\\n>\\t\\t\\tThe Deputy for Technology, SDIO\\n>\\n>\\tMost of you, as am I, are \"children of the 1960\\'s.\" We grew\\n>up in an age of miracles -- Inter-Continental Ballistic Missiles,\\n>nuclear energy, computers, flights to the moon. But these were\\n>miracles of our parent\\'s doing. \\n\\n> Speech by Pete Worden\\n> Delivered Before the U.S. Space Foundation Conference\\n\\n> I\\'m embarrassed when my generation is compared with the last\\n>generation -- the giants of the last great space era, the 1950\\'s\\n>and 1960\\'s. They went to the moon - we built a telescope that\\n>can\\'t see straight. They soft-landed on Mars - the least we\\n>could do is soft-land on Earth!\\n\\nJust out of curiousity, how old is Worden?\\n--\\n_______________________________________________________________________________\\n\\nBrian Yamauchi\\t\\t\\tCase Western Reserve University\\nyamauchi@alpha.ces.cwru.edu\\tDepartment of Computer Engineering and Science\\n_______________________________________________________________________________\\n\\n',\n", + " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nIn-Reply-To: nicho@vnet.IBM.COM\\'s message of Fri, 23 Apr 93 09: 06:09 BST\\nOrganization: Compaq Computer Corp\\n\\t<1r6aqr$dnv@access.digex.net> \\n\\t<19930423.010821.639@almaden.ibm.com>\\nLines: 14\\n\\n>>>>> On Fri, 23 Apr 93 09:06:09 BST, nicho@vnet.IBM.COM (Greg Stewart-Nicholls) said:\\nGS> How about transferring control to a non-profit organisation that is\\nGS> able to accept donations to keep craft operational.\\n\\nI seem to remember NASA considering this for some of the Apollo\\nequipment left on the moon, but that they decided against it.\\n\\nOr maybe not...\\n\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", + " 'From: MUNIZB%RWTMS2.decnet@rockwell.com (\"RWTMS2::MUNIZB\")\\nSubject: How do they ignite the SSME?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 21\\n\\non Date: Sat, 3 Apr 1993 12:38:50 GMT, Paul Dietz \\nwrites:\\n\\n/in essence, holding a match under the nozzle, is just *nuts*. One\\n/thing you absolutely must do in such an engine is to guarantee that\\n/the propellants ignite as soon as they mix, within milliseconds. To\\n/do otherwise is to fill your engine with a high explosive mixture\\n/which, when it finally does ignite, blows everything to hell.\\n\\nDefinitely! In one of the reports of an early test conducted by Rocketdyne at \\ntheir Santa Susanna Field Lab (\"the Hill\" above the San Fernando and Simi \\nValleys), the result of a hung start was described as \"structural failure\" of \\nthe combustion chamber. The inspection picture showed pumps with nothing below\\n, the CC had vaporized! This was described in a class I took as a \"typical\\nengineering understatement\" :-)\\n\\nDisclaimer: Opinions stated are solely my own (unless I change my mind).\\nBen Muniz MUNIZB%RWTMS2.decnet@consrt.rockwell.com w(818)586-3578\\nSpace Station Freedom:Rocketdyne/Rockwell:Structural Loads and Dynamics\\n \"Man will not fly for fifty years\": Wilbur to Orville Wright, 1901\\n\\n',\n", + " \"From: lulagos@cipres.cec.uchile.cl (admirador)\\nSubject: OAK VGA 1Mb. Please, I needd VESA TSR!!! 8^)\\nOriginator: lulagos@cipres\\nNntp-Posting-Host: cipres.cec.uchile.cl\\nOrganization: Centro de Computacion (CEC), Universidad de Chile\\nLines: 15\\n\\n\\n\\tHi there!...\\n\\t\\tWell, i have a 386/40 with SVGA 1Mb. (OAK chip 077) and i don't\\n\\t\\thave VESA TSR program for this card. I need it . \\n\\t\\t\\tPlease... if anybody can help me, mail me at:\\n\\t\\t\\tlulagos@araucaria.cec.uchile.cl\\n\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tThanks.\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tMackk. \\n _ /| \\n \\\\'o.O' \\n =(___)=\\n U \\n Ack!\\n\",\n", + " \"From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: FAQs\\nArticle-I.D.: mojo.1pst9uINN7tj\\nReply-To: sysmgr@king.eng.umd.edu\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 10\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article <10505.2BBCB8C3@nss.org>, freed@nss.org (Bev Freed) writes:\\n>I was wondering if the FAQ files could be posted quarterly rather than monthly\\n>. Every 28-30 days, I get this bloated feeling.\\n\\nOr just stick 'em on sci.space.news every 28-30 days? \\n\\n\\n\\n Software engineering? That's like military intelligence, isn't it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\",\n", + " 'From: revans@euclid.ucsd.edu ( )\\nSubject: Himmler\\'s speech on the extirpation of the Jewish race\\nLines: 42\\nNntp-Posting-Host: euclid.ucsd.edu\\n\\n\\n WASHINGTON - A stark reminder of the Holocaust--a speech by Nazi \\nSS leader Heinrich Himmler that refers to \"the extermination of the\\nJewish race\"--went on display Friday at the National Archives.\\n\\tThe documents, including handwritten notes by Himmler, are\\namong the best evidence that exists to rebut claims that the\\nHolocaust is a myth, archivists say.\\n\\t\"The notes give them their authenticity,\" said Robert Wolfe,\\na supervisory archivist for captured German records. \"He was\\nsupposed to destroy them. Like a lot of bosses, he didn\\'t obey his\\nown rules.\"\\n\\tThe documents, moved out of Berlin to what Himmler hoped\\nwould be a safe hiding place, were recovered by Allied forces after\\nWorld War II from a salt mine near Salzburg, Austria.\\n\\tHimmler spoke on Oct.4, 1943, in Posen, Poland, to more than\\n100 German secret police generals. \"I also want to talk to you,\\nquite frankly, on a very grave matter. Among ourselves it should be\\nmentioned quite frankly, and yet we will never speak of it publicly.\\nI mean the clearing out of the Jew, the extermination of the Jewish\\nrace. This is a page of GLORY in our history which has never been\\nwritten and is never to be written.\" [Emphasis mine--rje]\\n\\tThe German word Himmler uses that is translated as\\n\"extermination\" is *Ausrottung*.\\n\\tWolfe said a more precise translation would be \"extirpation\"\\nor \"tearing up by the roots.\"\\n\\tIn his handwritten notes, Himmler used a euphemism,\\n\"Judenevakuierung\" or \"evacuation of the Jews.\" But archives\\nofficials said \"extermination\" is the word he actually\\nspoke--preserved on an audiotape in the archives.\\n\\tHimmler, who oversaw Adolf Hitler\\'s \"final solution of the\\nJewish question,\" committed suicide after he was arrested in 1945.\\n\\tThe National Archives exhibit, on display through May 16, is\\na preview of the opening of the United States Holocaust Memorial\\nMuseum here on April 26.\\n\\tThe National Archives exhibit includes a page each of\\nHimmler\\'s handwritten notes, a typed transcript from the speech and\\nan offical translation made for the Nuremberg war crimes trials.\\n\\n\\t---From p.A10 of Saturday\\'s L.A. Times, 4/17/93\\n\\t(Associated Press)\\n-- \\n(revans@math.ucsd.edu)\\n',\n", + " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Fortune-guzzler barred from bars!\\nOrganization: Louisiana Tech University\\nLines: 19\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr16.104158.27890@reed.edu> mblock@reed.edu (Matt Block) writes:\\n\\n>(assuming David didn't know that it can be done one-legged,) I too would \\n\\nIn New Orleans, LA, there was a company making motorcycles for WHEELCHAIR \\nbound people! The rig consists of a flat-bed sidecar rig that the \\nwheelchair can be clamped to. The car has a set of hand controls mounted on \\nconventional handlebars! Looks wierd as hell to see this legless guy \\ndriving the rig from the car while his girlfriend sits on the bike as a \\npassenger!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", + " 'From: robinson@cogsci.Berkeley.EDU (Michael Robinson)\\nSubject: Passenger helmet sizing\\nOrganization: Institute of Cognitive Studies, U.C. Berkeley\\nLines: 32\\nNNTP-Posting-Host: cogsci.berkeley.edu\\n\\nIn article <1qk5oi$d0i@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n>In article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n>> \\n>> The question for the day is re: passenger helmets, if you don\\'t know for \\n>>certain who\\'s gonna ride with you (like say you meet them at a .... church \\n>>meeting, yeah, that\\'s the ticket)... What are some guidelines? Should I just \\n>>pick up another shoei in my size to have a backup helmet (XL), or should I \\n>>maybe get an inexpensive one of a smaller size to accomodate my likely \\n>>passenger? \\n>\\n>If your primary concern is protecting the passenger in the event of a\\n>crash, have him or her fitted for a helmet that is their size. If your\\n>primary concern is complying with stupid helmet laws, carry a real big\\n>spare (you can put a big or small head in a big helmet, but not in a\\n>small one).\\n\\nWhile shopping for a passenger helmet, I noticed that in many cases the\\nexternal dimensions of the helmets were the same from S through XL. The\\ndifference was the amount of inside padding.\\n\\nMy solution was to buy a large helmet, and construct a removable liner \\nfrom a sheet of .5\" closed-cell foam and some satin (glued to the inside\\nsurface). The result is a reasonably snug fit on my smallest-headed pillion\\nwith the liner in, and a comfortable fit on my largest-headed pillion with\\nthe liner out. Everyone else gets linered or not by best fit.\\n\\n\\n\\n-- \\n ----------------------------------------------------------------------------\\n Michael Robinson UUCP: ucbvax!cogsci!robinson\\n INTERNET: robinson@cogsci.berkeley.edu\\n',\n", + " \"From: khan0095@nova.gmi.edu (Mohammad Razi Khan)\\nSubject: Looking for a good book for beginners\\nOrganization: GMI Engineering&Management Institute, Flint, MI\\nLines: 10\\n\\nI wanted to know if any of you out there can recommend a good\\nbook about graphics, still and animated, and in VGA/SVGA.\\n\\nThanks in advance\\n\\n--\\nMohammad R. Khan / khan0095@nova.gmi.edu\\nAfter July '93, please send mail to mkhan@nyx.cs.du.edu\\n\\n\\n\",\n", + " 'From: marshall@csugrad.cs.vt.edu (Kevin Marshall)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Virginia Tech Computer Science Dept, Blacksburg, VA\\nLines: 42\\nNNTP-Posting-Host: csugrad.cs.vt.edu\\n\\nsnm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>If Saddam believed in God, he would pray five times a\\n>day.\\n>\\n>Communism, on the other hand, actually committed genocide in the name of\\n>atheism, as Lenin and Stalin have said themselves. These two were die\\n>hard atheist (Look! A pun!) and believed in atheism as an integral part\\n>of communism.\\n\\nNo, Bobby. Stalin killed millions in the name of Socialism. Atheism was a\\ncharacteristic of the Lenin-Stalin version of Socialism, nothing more.\\nAnother characteristic of Lenin-Stalin Socialism was the centralization of\\nfood distribution. Would you therefore say that Stalin and Lenin killed\\nmillions in the name of rationing bread? Of course not.\\n\\n\\n>More horrible deaths resulted from atheism than anything else.\\n\\nIn earlier posts you stated that true (Muslim) believers were incapable of\\nevil. I suppose if you believe that, you could reason that no one has ever\\nbeen killed in the name of religion. What a perfect world you live in,\\nBobby. \\n\\n\\n>One of the reasons that you are atheist is that you limit God by giving\\n>God a form. God does not have a \"face\".\\n\\nBobby is referring to a rather obscure law in _The Good Atheist\\'s \\nHandbook_:\\n\\nLaw XXVI.A.3: Give that which you do not believe in a face. \\n\\nYou must excuse us, Bobby. When we argue against theism, we usually argue\\nagainst the Christian idea of God. In the realm of Christianity, man was\\ncreated in God\\'s image. \\n\\n-- \\n|\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"|\\n| Kevin Marshall Sophomore, Computer Science |\\n| Virginia Tech, Blacksburg, VA USA marshall@csugrad.cs.vt.edu |\\n|____________________________________________________________________|\\n',\n", + " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 19\\n\\nIn article <1r16ja$dpa@news.ysu.edu>, ak296@yfn.ysu.edu (John R. Daker)\\nwrote:\\n> \\n> \\n> In a previous article, xlyx@vax5.cit.cornell.edu () says:\\n> \\n> Mike Terry asks:\\n> \\n> >Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n> >\\n> No Mike. It is imposible due to the shaft effect. The centripital effects\\n> of the rotating shaft counteract any tendency for the front wheel to lift\\n> off the ground.\\n\\n\\tThis is true as evinced by the popularity of shaft-drive drag bikes.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orbital RepairStation\\nOrganization: U of Toronto Zoology\\nLines: 21\\n\\nIn article collins@well.sf.ca.us (Steve Collins) writes:\\n>The difficulties of a high Isp OTV include...\\n>If you go solar, you have to replace the arrays every trip, with\\n>current technology.\\n\\nYou\\'re assuming that \"go solar\" = \"photovoltaic\". Solar dynamic power\\n(turbo-alternators) doesn\\'t have this problem. It also has rather less\\nair drag due to its higher efficiency, which is a non-trivial win for big\\nsolar plants at low altitude.\\n\\nNow, you might have to replace the *rest* of the electronics fairly often,\\nunless you invest substantial amounts of mass in shielding.\\n\\n>Nuclear power sources are strongly restricted\\n>by international treaty.\\n\\nReferences? Such treaties have been *proposed*, but as far as I know,\\nnone of them has ever been negotiated or signed.\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: djmst19@unixd2.cis.pitt.edu (David J Madura)\\nSubject: Re: Rumours about 3DO ???\\nLines: 13\\nX-Newsreader: Tin 1.1 PL3\\n\\ndave@optimla.aimla.com (Dave Ziedman) writes:\\n\\n: 3DO is still a concept.\\n: The software is what sells and what will determine its\\n: success.\\n\\n\\nApparantly you dont keep up on the news. 3DO was shown\\nat CES to developers and others at private showings. Over\\n300 software licensees currently developing software for it.\\n\\nI would say that it is a *LOT* more than just a concept.\\n\\n',\n", + " 'From: sgoldste@aludra.usc.edu (Fogbound Child)\\nSubject: Re: \"Fake\" virtual reality\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 31\\nNNTP-Posting-Host: aludra.usc.edu\\n\\nMike_Peredo@mindlink.bc.ca (Mike Peredo) writes:\\n\\n>The most ridiculous example of VR-exploitation I\\'ve seen so far is the\\n>\"Virtual Reality Clothing Company\" which recently opened up in Vancouver. As\\n>far as I can tell it\\'s just another \"chic\" clothes spot. Although it would be\\n>interesting if they were selling \"virtual clothing\"....\\n\\n>E-mail me if you want me to dig up their phone # and you can probably get\\n>some promotional lit.\\n\\nI understand there have been a couple of raves in LA billing themselves as\\n\"Virtual Reality\" parties. What I hear they do is project .GIF images around\\non the walls, as well as run animations through a Newtek Toaster.\\n\\nSeems like we need to adopt the term Really Virtual Reality or something, except\\nfor the non-immersive stuff which is Virtually Really Virtual Reality.\\n\\n\\netc.\\n\\n\\n\\n>MP\\n>(8^)-\\n\\n___Samuel___\\n-- \\n_________Pratice Safe .Signature! Prevent Dangerous Signature Virii!_______\\nGuildenstern: Our names shouted in a certain dawn ... a message ... a\\n summons ... There must have been a moment, at the beginning,\\n where we could have said -- no. But somehow we missed it.\\n',\n", + " 'From: mayne@pipe.cs.fsu.edu (William Mayne)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nOrganization: Florida State University Computer Science Department\\nReply-To: mayne@cs.fsu.edu\\nLines: 21\\n\\nIn article jvigneau@cs.ulowell.edu (Joe Vigneau) writes:\\n>\\n>If anything, the BSA has taught me, I don\\'t know, tolerance or something.\\n>Before I met this guy, I thought all gays were \\'faries\\'. So, the BSA HAS\\n>taught me to be an antibigot.\\n\\nI could give much the same testimonial about my experience as a scout\\nback in the 1960s. The issue wasn\\'t gays, but the principles were the\\nsame. Thanks for a well put testimonial. Stan Krieger and his kind who\\nthink this discussion doesn\\'t belong here and his intolerance is the\\nonly acceptable position in scouting should take notice. The BSA has\\nbeen hijacked by the religious right, but some of the core values have\\nsurvived in spite of the leadership and some scouts and former scouts\\nhaven\\'t given up. Seeing a testimonial like this reminds me that\\nscouting is still worth fighting for.\\n\\nOn a cautionary note, you must realize that if your experience with this\\ncamp leader was in the BSA you may be putting him at risk by publicizing\\nit. Word could leak out to the BSA gestapo.\\n\\nBill Mayne\\n',\n", + " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: What is it with Cats and Dogs ???!\\nOrganization: NASA Science Internet Project Office\\nLines: 29\\n\\nIn article , \\nryang@ryang1.pgh.pa.us (Robert H. Yang) writes:\\n|> Hi,\\n|> \\n|> \\tSorry, just feeling silly.\\n|> \\n|> Rob\\n\\n\\nNo need to appologise, as a matter of fact\\nthis reminds me to bring up something I\\nhave found consistant with dogs-\\n\\nMost of the time, they do NOT like having\\nme and my bike anywhere near them, and will\\nchase as if to bite and kill. \\n\\nAn instructor once said it was because the \\nsound from a bike was painfull to their \\nears. As silly as this seams, no other options\\nhave arrizen. \\n\\nnet.wisdom?\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nOrganization: U of Toronto Zoology\\nLines: 22\\n\\nIn article <1993Apr21.212202.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>Here is a way to get the commericial companies into space and mineral\\n>exploration.\\n>\\n>Basically get the eco-freaks to make it so hard to get the minerals on earth.\\n\\nThey aren't going to leave a loophole as glaring as space mining. Quite a\\nfew of those people are, when you come right down to it, basically against\\nindustrial civilization. They won't stop with shutting down the mines here;\\nthat is only a means to an end for them now.\\n\\nThe worst thing you can say to a true revolutionary is that his revolution\\nis unnecessary, that the problems can be corrected without radical change.\\nTelling people that paradise can be attained without the revolution is\\ntreason of the vilest kind.\\n\\nTrying to harness these people to support spaceflight is like trying to\\nharness a buffalo to pull your plough. He's got plenty of muscle, all\\nright, but the furrow will go where he wants, not where you want.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: Used Bikes, East vs. West Coasts\\nOrganization: the HP Corporate notes server\\nLines: 16\\n\\n/ hpcc01:rec.motorcycles / groverc@gold.gvg.tek.com (Grover Cleveland) / 9:07 am Apr 14, 1993 /\\nShop for your bike in Sacramento - the Bay area prices are\\nalways much higher than elsewhere in the state.\\n\\nGC\\n----------\\nAffirmative! Check Sacramento Bee, Fresno Bee, Modesto, Stockton,\\nBakersfield and other newspapers for prices of motos in the\\nclassifieds...a large main public library ought to have a\\nnumber of out-of-town papers. \\n\\n--------------------------------------------------------------------------\\nGraeme Harrison, Hewlett-Packard Co., Communications Components Division,\\n350 W Trimble Rd, San Jose, CA 95131 (gharriso@hpcc01.corp.hp.com) DoD#649 \\n--------------------------------------------------------------------------\\n\\n',\n", + " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Re: LONG TRIPS\\nOrganization: Duke University; Durham, N.C.\\nLines: 27\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nIn article <18859.1076.uupcb@freddy.ersys.edmonton.ab.ca> mark.harrison@freddy.ersys.edmonton.ab.ca (Mark Harrison) writes:\\n>I am new to motorcycliing (i.e. Don't even have a bike yet) and will be\\n>going on a long trip from Edmonton to Vancouver. Any tips on bare\\n>essentials for the trip? Tools, clothing, emergency repairs...?\\n\\nEr, without a bike (Ed, maybe you ought to respond to this...), how\\nyou gonna get there?\\n\\nIf yer going by cage, what's this got to do with r.m?\\n\\n>\\n>I am also in the market for a used cycle. Any tips on what to look for\\n>so I don't get burnt?\\n>\\n>Much appreciated\\n>Mark\\n> \\n\\nMaybe somebody oughta gang-tool-FAQ this guy, hmmm?\\n\\n\\n\\n-- \\nAndy Infante | You can listen to what everybody says, but the fact remains |\\n'71 BMW R60/5 | that you've got to get out there and do the thing yourself. | \\nDoD #2426 | -- Joan Sutherland | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", + " \"From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Thoughts on a 1982 Yamaha Seca Turbo?\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 18\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, howp@skyfox () says:\\n\\n>I was wondering if anybody knows anything about a Yamaha Seca Turbo. I'm \\n>considering buying a used 1982 Seca Turbo for $1300 Canadian (~$1000 US)\\n>with 30,000 km on the odo. This will be my first bike. Any comments?\\n\\t\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nBecause of this I cannot in good faith recommend a Seca Turbo. Power\\ndelivery is too uneven for a novice. The Official (tm) Dod newbie\\nbike of choice would be more appropriate because the powerband is so wide\\nand delivery is very smooth. Perfect for the beginner.\\n\\n\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n\",\n", + " 'From: todd@psgi.UUCP (Todd Doolittle)\\nSubject: Re: Motorcycle Courier (Summer Job)\\nDistribution: world\\nOrganization: Not an Organization\\nLines: 37\\n\\nIn article <1poj23INN9k@west.West.Sun.COM> gaijin@ale.Japan.Sun.COM (John Little - Nihon Sun Repair Depot) writes:\\n>In article <8108.97.uupcb@compdyn.questor.org> \\\\\\n>ryan_cousineau@compdyn.questor.org (Ryan Cousineau) writes:\\n>%\\n>% I think I\\'ve found the ultimate summer job: It\\'s dangerous, involves\\n>% motorcycles, requires high speeds in traffic, and it pays well.\\n>% \\n>% So my question is as follows: Has anyone here done this sort of work?\\n>% What was your experience?\\n>% \\n[Stuff deleted]\\n> Get a -good- \"AtoZ\" type indexed streetmap for all of the areas you\\'re\\n> likely to work. Always carry plenty of black-plastic bin liners to\\n\\nCheck with the local fire department. My buddy is a firefighter and they\\nhave these small map books which are Amazing! They are compact, easy to\\nuse (no folding). They even have a cross reference section in which you\\nmatch your current cross streets with the cross streets you want to go to\\nand it details the quickest route. They gave me an extra they had laying\\naround. But then again I know all those people I\\'m not really sure if they\\nare supposed to give/sell them. (The police may also have something\\nsimilar).\\n \\n>-- \\n> ------------------------------------------------------------------------\\n> | John Little - gaijin@Japan.Sun.COM - Sun Microsystems. Atsugi, Japan | \\n> ------------------------------------------------------------------------\\n\\n--\\n\\n--------------------------------------------------------------------------\\n ..vela.acs.oakland.edu!psgi!todd | \\'88 RM125 The only bike sold without\\n Todd Doolittle | a red-line. \\n Troy, MI | \\'88 EX500 \\n DoD #0832 | \\n--------------------------------------------------------------------------\\n\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: The systematic genocide of the Muslim population by the Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 226\\n\\nIn article <1993Apr5.091410.4108@massey.ac.nz> CBlack@massey.ac.nz (C.K. Black) writes:\\n\\n>Mr. Furr does it again,\\n\\nVery sensible.\\n\\n> He says \\n\\n>>>How many Mutlus can dance on the head of a pin?\\n\\n>And lo and behold, he invokes the Mr.666 of the net himself, our beloved\\n>Serdar, a program designed to seek out the words TERRX and GHEX in the\\n>same sentence and gets the automated reply....\\n\\nMust you rave so? Fascist x-Soviet Armenian Government engaged in \\ndisgusting cowardly massacres of Azeri women and children. I am\\nreally sorry if that fact bothers you.\\n\\n>>Our \"Mutlu\"? Oboy, this is exciting. First you discuss your literature \\n>>tastes, then your fantasies, and now your choices of entertainment. Have \\n>>you considered just turning on the TV and leaving those of us who aren\\'t\\n>>brain dead to continue to discuss the genocide of 2.5 million Muslim \\n>>people by the x-Soviet Armenian Government? \\n\\n>etc. etc. etc........\\n\\nMore ridicule, I take it? Still not addressing the original points made.\\n\\n>Joel, don\\'t do this to me mate! I\\'m only a poor plant scientist, I don\\'t\\n>know how to make \\'kill\\' files. My \\'k\\' key works overtime as it is just to\\n\\nThen what seems to be the problem? Did you ever read newspaper at all?\\n\\n\\n\"PAINFUL SEARCH ..\"\\n\\nTHE GRUESOME extent of February\\'s killings of Azeris by Armenians\\nin the town of Hojali is at last emerging in Azerbaijan - about\\n600 men, women and children dead in the worst outrage of the\\nfour-year war over Nagorny Karabakh.\\n\\nThe figure is drawn from Azeri investigators, Hojali officials\\nand casualty lists published in the Baku press. Diplomats and aid\\nworkers say the death toll is in line with their own estimates.\\n\\nThe 25 February attack on Hojali by Armenian forces was one of\\nthe last moves in their four-year campaign to take full control\\nof Nagorny Karabakh, the subject of a new round of negotiations\\nin Rome on Monday. The bloodshed was something between a fighting\\nretreat and a massacre, but investigators say that most of the\\ndead were civilians. The awful number of people killed was first\\nsuppressed by the fearful former Communist government in Baku.\\nLater it was blurred by Armenian denials and grief-stricken\\nAzerbaijan\\'s wild and contradictory allegations of up to 2,000\\ndead.\\n\\nThe State Prosecuter, Aydin Rasulov, the cheif investigator of a\\n15-man team looking into what Azerbaijan calls the \"Hojali\\nDisaster\", said his figure of 600 people dead was a minimum on\\npreliminary findings. A similar estimate was given by Elman\\nMemmedov, the mayor of Hojali. An even higher one was printed in\\nthe Baku newspaper Ordu in May - 479 dead people named and more\\nthan 200 bodies reported unidentified. This figure of nearly 700\\ndead is quoted as official by Leila Yunusova, the new spokeswoman\\nof the Azeri Ministry of Defence.\\n\\nFranCois Zen Ruffinen, head of delegation of the International\\nRed Cross in Baku, said the Muslim imam of the nearby city of\\nAgdam had reported a figure of 580 bodies received at his mosque\\nfrom Hojali, most of them civilians. \"We did not count the\\nbodies. But the figure seems reasonable. It is no fantasy,\" Mr\\nZen Ruffinen said. \"We have some idea since we gave the body bags\\nand products to wash the dead.\"\\n\\nMr Rasulov endeavours to give an unemotional estimate of the\\nnumber of dead in the massacre. \"Don\\'t get worked up. It will\\ntake several months to get a final figure,\" the 43-year-old\\nlawyer said at his small office.\\n\\nMr Rasulov knows about these things. It took him two years to\\nreach a firm conclusion that 131 people were killed and 714\\nwounded when Soviet troops and tanks crushed a nationalist\\nuprising in Baku in January 1990.\\n\\nThose nationalists, the Popular Front, finally came to power\\nthree weeks ago and are applying pressure to find out exactly\\nwhat happened when Hojali, an Azeri town which lies about 70\\nmiles from the border with Armenia, fell to the Armenians.\\n\\nOfficially, 184 people have so far been certified as dead, being\\nthe number of people that could be medically examined by the\\nrepublic\\'s forensic department. \"This is just a small percentage\\nof the dead,\" said Rafiq Youssifov, the republic\\'s chief forensic\\nscientist. \"They were the only bodies brought to us. Remember the\\nchaos and the fact that we are Muslims and have to wash and bury\\nour dead within 24 hours.\"\\n\\nOf these 184 people, 51 were women, and 13 were children under 14\\nyears old. Gunshots killed 151 people, shrapnel killed 20 and\\naxes or blunt instruments killed 10. Exposure in the highland\\nsnows killed the last three. Thirty-three people showed signs of\\ndeliberate mutilation, including ears, noses, breasts or penises\\ncut off and eyes gouged out, according to Professor Youssifov\\'s\\nreport. Those 184 bodies examined were less than a third of those\\nbelieved to have been killed, Mr Rasulov said.\\n\\nFiles from Mr Rasulov\\'s investigative commission are still\\ndisorganised - lists of 44 Azeri militiamen are dead here, six\\npolicemen there, and in handwriting of a mosque attendant, the\\nnames of 111 corpses brought to be washed in just one day. The\\nmost heartbreaking account from 850 witnesses interviewed so far\\ncomes from Towfiq Manafov, an Azeri investigator who took a\\nhelicopter flight over the escape route from Hojali on 27\\nFebruary.\\n\\n\"There were too many bodies of dead and wounded on the ground to\\ncount properly: 470-500 in Hojali, 650-700 people by the stream\\nand the road and 85-100 visible around Nakhchivanik village,\" Mr\\nManafov wrote in a statement countersigned by the helicopter\\npilot.\\n\\n\"People waved up to us for help. We saw three dead children and\\none two-year-old alive by one dead woman. The live one was\\npulling at her arm for the mother to get up. We tried to land but\\nArmenians started a barrage against our helicopter and we had to\\nreturn.\"\\n\\nThere has been no consolidation of the lists and figures in\\ncirculation because of the political upheavals of the last few\\nmonths and the fact that nobody knows exactly who was in Hojali\\nat the time - many inhabitants were displaced from other villages\\ntaken over by Armenian forces.\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\n\\nHEROES WHO FOUGHT ON AMID THE BODIES\\n\\nAREF SADIKOV sat quietly in the shade of a cafe-bar on the\\nCaspian Sea esplanade of Baku and showed a line of stitches in\\nhis trousers, torn by an Armenian bullet as he fled the town of\\nHojali just over three months ago, writes Hugh Pope.\\n\\n\"I\\'m still wearing the same clothes, I don\\'t have any others,\"\\nthe 51-year-old carpenter said, beginning his account of the\\nHojali disaster. \"I was wounded in five places, but I am lucky to\\nbe alive.\"\\n\\nMr Sadikov and his wife were short of food, without electricity\\nfor more than a month, and cut off from helicopter flights for 12\\ndays. They sensed the Armenian noose was tightening around the\\n2,000 to 3,000 people left in the straggling Azeri town on the\\nedge of Karabakh.\\n\\n\"At about 11pm a bombardment started such as we had never heard\\nbefore, eight or nine kinds of weapons, artillery, heavy\\nmachine-guns, the lot,\" Mr Sadikov said.\\n\\nSoon neighbours were pouring down the street from the direction\\nof the attack. Some huddled in shelters but others started\\nfleeing the town, down a hill, through a stream and through the\\nsnow into a forest on the other side.\\n\\nTo escape, the townspeople had to reach the Azeri town of Agdam\\nabout 15 miles away. They thought they were going to make it,\\nuntil at about dawn they reached a bottleneck between the two\\nArmenian villages of Nakhchivanik and Saderak.\\n\\n\"None of my group was hurt up to then ... Then we were spotted by\\na car on the road, and the Armenian outposts started opening\\nfire,\" Mr Sadikov said.\\n\\nAzeri militiamen fighting their way out of Hojali rushed forward\\nto force open a corridor for the civilians, but their efforts\\nwere mostly in vain. Mr Sadikov said only 10 people from his\\ngroup of 80 made it through, including his wife and militiaman\\nson. Seven of his immediate relations died, including his\\n67-year-old elder brother.\\n\\n\"I only had time to reach down and cover his face with his hat,\"\\nhe said, pulling his own big flat Turkish cap over his eyes. \"We\\nhave never got any of the bodies back.\"\\n\\nThe first groups were lucky to have the benefit of covering fire.\\nOne hero of the evacuation, Alif Hajief, was shot dead as he\\nstruggled to change a magazine while covering the third group\\'s\\ncrossing, Mr Sadikov said.\\n\\nAnother hero, Elman Memmedov, the mayor of Hojali, said he and\\nseveral others spent the whole day of 26 February in the bushy\\nhillside, surrounded by dead bodies as they tried to keep three\\nArmenian armoured personnel carriers at bay.\\n\\nAs the survivors staggered the last mile into Agdam, there was\\nlittle comfort in a town from which most of the population was\\nsoon to flee.\\n\\n\"The night after we reached the town there was a big Armenian\\nrocket attack. Some people just kept going,\" Mr Sadikov said. \"I\\nhad to get to the hospital for treatment. I was in a bad way.\\nThey even found a bullet in my sock.\"\\n\\nVictims of war: An Azeri woman mourns her son, killed in the\\nHojali massacre in February (left). Nurses struggle in primitive\\nconditions (centre) to save a wounded man in a makeshift\\noperating theatre set up in a train carriage. Grief-stricken\\nrelatives in the town of Agdam (right) weep over the coffin of\\nanother of the massacre victims. Calculating the final death toll\\nhas been complicated because Muslims bury their dead within 24\\nhours.\\n\\nPhotographs: Liu Heung / AP\\n Frederique Lengaigne / Reuter\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Fundamentalism - again.\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 19\\n\\nIn article khan0095@nova.gmi.edu (Mohammad Razi Khan) writes:\\n>One of my biggest complaints about using the word \"fundamentalist\"\\n>is that (at least in the U.S.A.) people speak of muslime\\n>fundamentalists ^^^^^^^muslim\\n>but nobody defines what a jewish or christan fundamentalist is.\\n>I wonder what an equal definition would be..\\n>any takers..\\n\\n\\tThe American press routinely uses the word fundamentalist to\\nrefer to both Christians and Jews. Christian fundementalists are\\noften refered to in the context of anti-abortion protests. The\\nAmerican media also uses fundamentalist to refer to Jews who live in\\nJudea, Samaria or Gaza, and to any Jew who follows the torah.\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: sturges@oasys.dt.navy.mil (Richard Sturges)\\nSubject: Re: DOT Tire date codes\\nReply-To: sturges@oasys.dt.navy.mil (Richard Sturges)\\nDistribution: usa\\nOrganization: Carderock Division, NSWC, Bethesda, MD\\nLines: 12\\n\\nIn rec.motorcycles, cookson@mbunix.mitre.org (Cookson) writes:\\n>To the nedod mailing list, and Jack Tavares suggested I check out\\n>how old the tire is as one tactic for getting it replaced. Does\\n>anyone have the file on how to read the date codes handy?\\n\\nIt\\'s quite simple; the code is the week and year of manufacture.\\n\\n\\t<================================================> \\n / Rich Sturges (h) 703-536-4443 \\\\\\n / NSWC - Carderock Division (w) 301-227-1670 \\\\\\n / \"I speak for no one else, and listen to the same.\" \\\\\\n <========================================================>\\n',\n", + " \"From: mbeaving@bnr.ca (M Beavington)\\nSubject: Re: Insurance and lotsa points...\\nNntp-Posting-Host: bmerh824\\nReply-To: MBEAVING@BNR.CA\\nOrganization: BNR Ottawa, DMS Software Design\\nLines: 15\\n\\nIn article <13386@news.duke.edu>, infante@acpub.duke.edu (Andrew Infante) writes:\\n|> Well, it looks like I'm F*cked for insurance.\\n|> \\n|> I had a DWI in 91 and for the beemer, as a rec.\\n|> vehicle, it'll cost me almost $1200 bucks to insure/year.\\n|> \\n|> Now what do I do?\\n|> \\n\\nGo bikeless. You drink and drive, you pay. No smiley.\\n\\n\\nMike Beavington\\nmbeaving@bnr.ca\\n*opinions are my own and not my companies'.\\n\",\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nOrganization: sgi\\nLines: 31\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <115565@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n|> In article <1qi3l5$jkj@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >I hope an Islamic Bank is something other than BCCI, which\\n|> >ripped off so many small depositors among the Muslim\\n|> >community in the Uk and elsewhere.\\n|> \\n|> >jon.\\n|> \\n|> Grow up, childish propagandist.\\n\\nGregg, I\\'m really sorry if having it pointed out that in practice\\nthings aren\\'t quite the wonderful utopia you folks seem to claim\\nthem to be upsets you, but exactly who is being childish here is \\nopen to question.\\n\\nBBCI was an example of an Islamically owned and operated bank -\\nwhat will someone bet me they weren\\'t \"real\" Islamic owners and\\noperators? - and yet it actually turned out to be a long-running\\nand quite ruthless operation to steal money from small and often\\nquite naive depositors.\\n\\nAnd why did these naive depositors put their life savings into\\nBCCI rather than the nasty interest-motivated western bank down\\nthe street? Could it be that they believed an Islamically owned \\nand operated bank couldn\\'t possibly cheat them? \\n\\nSo please don\\'t try to con us into thinking that it will all \\nwork out right next time.\\n\\njon.\\n',\n", + " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Victims of various \\'Good Fight\\'s\\nIn-Reply-To: 9051467f@levels.unisa.edu.au\\'s message of 12 Apr 93 21: 36:33 +0930\\nOrganization: Compaq Computer Corp\\n\\t<9454@tekig7.PEN.TEK.COM> <1993Apr12.213633.20143@levels.unisa.edu.au>\\nLines: 12\\n\\n>>>>> On 12 Apr 93 21:36:33 +0930, 9051467f@levels.unisa.edu.au (The Desert Brat) said:\\n\\nTDB> 12. Disease introduced to Brazilian * oher S.Am. tribes: x million\\n\\nTo be fair, this was going to happen eventually. Given time, the Americans\\nwould have reached Europe on their own and the same thing would have \\nhappened. It was just a matter of who got together first.\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", + " 'From: weston@ucssun1.sdsu.edu (weston t)\\nSubject: graphical representation of vector-valued functions\\nOrganization: SDSU Computing Services\\nLines: 13\\nNNTP-Posting-Host: ucssun1.sdsu.edu\\n\\ngnuplot, etc. make it easy to plot real valued functions of 2 variables\\nbut I want to plot functions whose values are 2-vectors. I have been \\ndoing this by plotting arrays of arrows (complete with arrowheads) but\\nbefore going further, I thought I would ask whether someone has already\\ndone the work. Any pointers??\\n\\nthanx in advance\\n\\n\\nTom Weston | USENET: weston@ucssun1.sdsu.edu\\nDepartment of Philosophy | (619) 594-6218 (office)\\nSan Diego State Univ. | (619) 575-7477 (home)\\nSan Diego, CA 92182-0303 | \\n',\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Moraltiy? (was Re: >>>What if I act morally for no particular reason? Then am I moral? What\\n>>>>if morality is instinctive, as in most animals?\\n>>>Saying that morality is instinctive in animals is an attempt to \\n>>>assume your conclusion.\\n>>Which conclusion?\\n>You conclusion - correct me if I err - that the behaviour which is\\n>instinctive in animals is a \"natural\" moral system.\\n\\nSee, we are disagreeing on the definition of moral here. Earlier, you said\\nthat it must be a conscious act. By your definition, no instinctive\\nbehavior pattern could be an act of morality. You are trying to apply\\nhuman terms to non-humans. I think that even if someone is not conscious\\nof an alternative, this does not prevent his behavior from being moral.\\n\\n>>You don\\'t think that morality is a behavior pattern? What is human\\n>>morality? A moral action is one that is consistent with a given\\n>>pattern. That is, we enforce a certain behavior as moral.\\n>You keep getting this backwards. *You* are trying to show that\\n>the behaviour pattern is a morality. Whether morality is a behavior \\n>pattern is irrelevant, since there can be behavior pattern, for\\n>example the motions of the planets, that most (all?) people would\\n>not call a morality.\\n\\nI try to show it, but by your definition, it can\\'t be shown.\\n\\nAnd, morality can be thought of a large class of princples. It could be\\ndefined in terms of many things--the laws of physics if you wish. However,\\nit seems silly to talk of a \"moral\" planet because it obeys the laws of\\nphyics. It is less silly to talk about animals, as they have at least\\nsome free will.\\n\\nkeith\\n',\n", + " \"From: edimg@willard.atl.ga.us (Ed pimentel)\\nSubject: HELP! Need JPEG / MPEG encod-decode \\nOrganization: Willard's House BBS, Atlanta, GA -- +1 (404) 664 8814\\nLines: 41\\n\\nI am involve in a Distant Learning project and am in need\\nof Jpeg and Mpeg encode/decode source and object code.\\nThis is a NOT-FOR PROFIT project that once completed I\\nhope to release to other educational and institutional\\nlearning centers.\\nThis project requires that TRUE photographic images be sent\\nover plain telephone lines. In addition if there is a REAL Good\\nGUI lib with 3D objects and all types of menu classes that can\\nbe use at both end of the transaction (Server and Terminal End)\\nI would like to hear about it.\\n \\nWe recently posted an RFD announcing the OTG (Open Telematic Group)\\nthat will concern itself with the developement of such application\\nand that it would incorporate NAPLPS, JPEG, MPEG, Voice, IVR, FAX\\nSprites, Animation(fli, flc, etc...).\\nAt present only DOS and UNIX environment is being worked on and it\\nour hope that we can generate enough interest where all the major\\nplatform can be accomodated via a plaform independent API/TOOLKIT/SDK\\nWe are of the mind that it is about time that such project and group\\nbe form to deal with these issues.\\nWe want to setup a repository where these files may be access such as\\nSimte20 and start putting together a OTG FAQ.\\nIf you have some or any information that in your opinion would be \\nof interest to the OTG community and you like to see included in our\\nfirst FAQ please send it email to the address below.\\n \\nThanks in Advance\\n \\nEd\\nP.O. box 95901\\nAtlanta Ga. 30347-0901\\n(404)985-1198 zyxel 14.4\\nepimntl@world.std.com \\ned.pimentel@gisatl.fidonet.org\\n\\n\\n-- \\nedimg@willard.atl.ga.us (Ed pimentel)\\ngatech!kd4nc!vdbsan!willard!edimg\\nemory!uumind!willard!edimg\\nWillard's House BBS, Atlanta, GA -- +1 (404) 664 8814\\n\",\n", + " 'From: tankut@IASTATE.EDU (Sabri T Atan)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: tankut@IASTATE.EDU (Sabri T Atan)\\nOrganization: Iowa State University\\nLines: 43\\n\\nIn article , ptg2351@uxa.cso.uiuc.edu (Panos\\nTamamidis ) writes:\\n> Yeah, too much Mutlu/Argic isn\\'t helping. I could, one day, proceed and\\n\\nYou shouldn\\'t think many Turks read Mutlu/Argic stuff.\\nThey are in my kill file, likewise any other fanatic.\\n \\n> >(I have nothing against Greeks but my problem is with fanatics. I have met\\n> >so many Greeks who wouldn\\'t even talk to me because I am Turkish. From my\\n> >experience, all my friends always were open to Greeks)\\n> \\n> Well, the history, wars, current situations, all of them do not help.\\n\\nWell, Panos, Mr. Tamamidis?, the way you put it it is only the Turks\\nwho bear the responsibility of the things happening today. That is hard to\\nbelieve for somebody trying to be objective.\\nWhen it comes to conflicts like our countries having you cannot\\nblame one side only, there always are bad guys on both sides.\\nWhat were you doing on Anatolia after the WW1 anyway?\\nDo you think it was your right to be there?\\nI am not saying that conflicts started with that. It is only\\nnot one side being the aggressive and the ither always suffering.\\nIt is sad that we (both) still are not trying to compromise.\\nI remember the action of the Turkish government by removing the\\nvisa requirement for greeks to come to Turkey. I thought it\\nwas a positive attempt to make the relations better.\\n\\nThe Greeks I mentioned who wouldn\\'t talk to me are educated\\npeople. They have never met me but they know! I am bad person\\nbecause I am from Turkey. Politics is not my business, and it is\\nnot the business of most of the Turks. When it comes to individuals \\nwhy the hatred? So that makes me think that there is some kind of\\nbrainwashing going on in Greece. After all why would an educated person \\ntreat every person from a nation the same way? can you tell me about your \\nhistory books and things you learn about Greek-Turkish\\nencounters during your schooling. \\ntake it easy! \\n\\n--\\nTankut Atan\\ntankut@iastate.edu\\n\\n\"Achtung, baby!\"\\n',\n", + " 'From: maxg@microsoft.com (Max Gilpin)\\nSubject: HONDA CBR600 For Sale\\nOrganization: Microsoft Corp.\\nKeywords: CBR Hurricane \\nDistribution: usa\\nLines: 8\\n\\nFor Sale 1988 Honda CBR600 (Hurricane). I bought the bike at the end of\\nlast summer and although I love it, the bills are forcing me to part with\\nit. The bike has a little more than 6000 miles on it and runs very strong.\\nIt is in nead of a tune-up and possibly break pads but the rubber is good.\\nI am also tossing in a TankBag and a KIWI Helmet. Asking $3000.00 or best\\noffer. Add hits newspaper 04-20-93 and Micronews 04-23-93. Interested \\nparties can call 206-635-2006 during the day and 889-1510 in the evenings\\nno later than 11:00PM. \\n',\n", + " \"Subject: Re: How many israeli soldiers does it take to kill a 5 yr old child?\\nFrom: jhsegal@wiscon.weizmann.ac.il (Livian Segal)\\nOrganization: Weizmann Institute of Science, Computation Center\\nLines: 16\\n\\nIn article <1qhv50$222@bagel.cs.huji.ac.il> ranen@falafel.cs.huji.ac.il (Ranen Goren) writes:\\n>Q: How many Nick Steel's does it take to twist any truth around?\\n>A: Only one, and thank God there's only one.\\n>\\n>\\tRanen.\\n\\nAbsolutely not true!\\nThere are lots of them!\\n\\n _____ __Livian__ ______ ___ __Segal__ __ __ __ __ __\\n *\\\\ /* | | \\\\ \\\\ \\\\ | | | | \\\\ |\\n***\\\\ /*** | | |__ | /_ \\\\ \\\\ | | | | \\\\ |\\n|---O---| | | / | \\\\ | | | | \\\\ |\\n\\\\ /*\\\\ / \\\\___ / | \\\\ | | | \\\\ | | \\\\___ / | / |\\n \\\\/***\\\\/ / | \\\\ | | | | | / | |\\nVM/CMS: JhsegalL@Weizmann.weizmann.ac.il UNIX: Jhsegal@wiscon.weizmann.ac.il\\n\",\n", + " 'From: CGKarras@world.std.com (Christopher G Karras)\\nSubject: Need Maintenance tips\\nOrganization: The World Public Access UNIX, Brookline, MA\\nLines: 29\\n\\n\\nAfter reading the service manual for my bike (Suzuki GS500E--1990) I have\\na couple of questions I hope you can answer:\\n\\nWhen checking the oil level with the dip stick built into the oil fill\\ncap, does one check it with the cap screwed in or not? I am more used to\\nthe dip stick for a cage where the stick is extracted fully, wiped clean\\nand reinserted fully, then withdrawn and read. The dip stick on my bike\\nis part of the oil filler cap and has about 1/2 inch of threads on it. Do\\nI remove the cap, wipe the stick clean and reinsert it with/without\\nscrewing it down before reading?\\n\\nThe service manual calls for the application of Suzuki Bond No. 1207B on\\nthe head cover. I guess this is some sort of liquid gasket material. do\\nyou know of a generic (cheaper) substitute?\\n\\nMy headlight is a Halogen 60/55 W bulb. Is there an easy, brighter\\nreplacement bulb available? Where should I look for one?\\n\\nAs always, I very much appreciate your help. The weather in Philadelphia\\nhas finally turned WARM. This weekend I saw lotsa bikes, and the riders\\nALL waved. A nice change of tone from what Philadelphia can be like. . . .\\n\\nChris\\n\\n-- \\n*******************************************************************\\nChristopher G. Karras\\nInternet: CGKarras@world.std.com\\n',\n", + " \"From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Bikes vs. Horses (was Re: insect impac\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 27\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nNNTP-Posting-Host: slc4.ins.cwru.edu\\n\\n\\nIn a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n\\n>In article sda@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes:\\n\\n> The only people who train for years to jump a horse 2 feet\\n>are equistrian posers who wear velvet tails and useless helmets.\\n>\\n\\n\\tWhich, as it turns out, is just about everybody that's serious about\\nhorses. What a bunch of weenie fashion nerds. And the helmets suck. I'm wearing\\nmy Shoei mountain bike helmet - fuck em.>>>\\n\\n\\n>>\\tOr I'm permanently injured.\\n>\\n>Oops. too late.\\n>\\n\\n\\tNah, I can still walk unaided.\\n\\n\\n\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n\",\n", + " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Louisiana Tech University\\nLines: 17\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article csundh30@ursa.calvin.edu (Charles Sundheim) writes:\\n\\n\\n\\n>Moral: I'm not really sure, but more and more I believe that bikers ought \\n> to be allowed to carry handguns.\\n\\nCome to Louisiana where it is LEGAL to carry concealed weapons on a bike!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", + " 'From: freed@nss.org (Bev Freed)\\nSubject: FAQs\\nOrganization: The NSS BBS, Pittsburgh PA (412) 366-5208\\nLines: 8\\n\\nI was wondering if the FAQ files could be posted quarterly rather than monthly. Every 28-30 days, I get this bloated feeling.\\n \\n\\n\\n-- \\nBev Freed - via FidoNet node 1:129/104\\nUUCP: ...!pitt!nss!freed\\nINTERNET: freed@nss.org\\n',\n", + " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Mars Observer Update - 04/23/93\\nOrganization: Jet Propulsion Laboratory\\nLines: 48\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Mars Observer, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from the Mars Observer Project\\n\\n MARS OBSERVER STATUS REPORT\\n April 23, 1993\\n 10:00 AM PDT\\n\\nFlight Sequence C8 is active, the Spacecraft subsystems and instrument\\npayload performing well in Array Normal Spin and outer cruise\\nconfiguration, with uplink and downlink via the High Gain Antenna; uplink\\nat 125 bps, downlink at the 2 K Engineering data rate.\\n\\nAs a result of the spacecraft entering Contingency Mode on April 9, all\\npayload instruments were automatically powered off by on-board fault\\nprotection software. Gamma Ray Spectrometer Random Access Memory\\nwas successfully reloaded on Monday, April 19. To prepare for\\nMagnetometer Calibrations which were rescheduled for execution in Flight\\nSequence C9 on Tuesday and Wednesday of next week, a reload of Payload\\nData System Random Access Memory will take place this morning\\nbeginning at 10:30 AM.\\n\\nOver this weekend, the Flight Team will send real-time commands to\\nperform Differential One-Way Ranging to obtain additional data for\\nanalysis by the Navigation Team. Radio Science Ultra Stable Oscillator\\ntesting will take place on Monday .\\n\\nThe Flight Sequence C9 uplink will occur on Sunday, April 25, with\\nactivation at Midnight, Monday evening April 26. C9 has been modified to\\ninclude Magnetometer Calibrations which could not be performed in C8 due\\nto Contingency Mode entry on April 9. These Magnetometer instrument\\ncalibrations will allow the instrument team to better characterize the\\nspacecraft-generated magnetic field and its effect on their instrument.\\nThis information is critical to Martian magnetic field measurements\\nwhich occur during approach and mapping phases. MAG Cals will require\\nthe sequence to command the spacecraft out of Array Normal Spin state\\nand perform slew and roll maneuvers to provide the MAG team data points\\nin varying spacecraft attitudes and orientations.\\n\\nToday, the spacecraft is 22,971,250 km (14,273,673 mi.) from Mars\\ntravelling at a velocity of 2.09 kilometers/second (4,677 mph) with\\nrespect to Mars. One-way light time is approximately 10 minutes, 38\\nseconds.\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n',\n", + " \"Organization: Penn State University\\nFrom: \\nSubject: scanned grey to color equations?\\nLines: 7\\n\\nA while back someone had several equations which could be used for changing 3 f\\niltered grey scale images into one true color image. This is possible because\\nit's the same theory used by most color scanners. I am not looking for the obv\\nious solution which is to buy a color scanner but what I do need is those equat\\nions becasue I am starting to write software which will automate the conversion\\n process. I would really appreciate it if someone would repost the 3 equations\\n/3 unknowns. Thanks for the help!!!\\n\",\n", + " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 48\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn <1993Apr9.154316.19778@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>In article kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n \\n>>\\tIf I state that I know that there is a green marble in a closed box, \\n>>which I have _never_ seen, nor have any evidence for its existance; I would\\n>>be guilty of deceit, even if there is, in fact, a green marble inside.\\n>>\\n>>\\tThe question of whether or not there is a green marble inside, is \\n>>irrelevent.\\n\\n>You go ahead and play with your marbles.\\n\\nI love it, I love it, I love it!! Wish I could fit all that into a .sig\\nfile! (If someone is keeping a list of Bobby quotes, be sure to include\\nthis one!)\\n\\n>>\\n>>\\tStating an unproven opinion as a fact, is deceit. And, knowingly \\n>>being decietful is a falsehood and a lie.\\n\\n>So why do you think its an unproven opinion? If I said something as\\n>fact but you think its opinion because you do not accept it, then who\\'s\\n>right?\\n\\nThe Flat-Earthers state that \"the Earth is flat\" is a fact. I don\\'t accept\\nthis, I think it\\'s an unproven opinion, and I think the Round-Earthers are\\nright because they have better evidence than the Flat-Earthers do.\\n\\nAlthough I can\\'t prove that a god doesn\\'t exist, the arguments used to\\nsupport a god\\'s existence are weak and often self-contradictory, and I\\'m not\\ngoing to believe in a god unless someone comes over to me and gives me a\\nreason to believe in a god that I absolutely can\\'t ignore.\\n\\nA while ago, I read an interesting book by a fellow called Von Daenicken,\\nin which he proved some of the wildest things, and on the last page, he\\nwrote something like \"Can you prove it isn\\'t so?\" I certainly can\\'t, but\\nI\\'m not going to believe him, because he based his \"proof\" on some really\\nquestionable stuff, such as old myths (he called it \"circumstancial\\nevidence\" :] ).\\n\\nSo far, atheism hasn\\'t made me kill anyone, and I\\'m regarded as quite an\\nagreeable fellow, really. :)\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", + " 'From: mmaser@engr.UVic.CA (Michael Maser)\\nSubject: Re: extraordinary footpeg engineering\\nNntp-Posting-Host: uglv.uvic.ca\\nReply-To: mmaser@engr.UVic.CA\\nOrganization: University of Victoria, Victoria, BC, Canada\\nLines: 38\\n\\n--In a previous article, exb0405@csdvax.csd.unsw.edu.au () says:\\n--\\n-->Okay DoD\\'ers, here\\'s a goddamn mystery for ya !\\n-->\\n-->Today I was turning a 90 degree corner just like on any other day, but there\\n-->was a slight difference- a rough spot right in my path caused the suspension\\n-->to compress in mid corner and some part of the bike hit the ground with a very\\n-->tangible \"thunk\". I pulled over at first opportunity to sus out the damage. \\n--== some deleted\\n-->\\n-->Barry Manor DoD# 620 confused accidental peg-scraper\\n-->\\n-->\\n--Check the bottom of your pipes Barry -- suspect that is what may\\n--have hit. I did the same a few years past & thought it was the\\n--peg but found the bottom of my pipe has made contact & showed a\\n--good sized dent & scratch.\\n\\n-- Believe you\\'d feel the suddent change on your foot if the peg\\n--had bumped. As for the piece missing -- contribute that to \\n--vibration loss.\\n\\nYep, the same thing happened to me on my old Honda 200 Twinstar.\\n\\n\\n*****************************************************************************\\n* Mike Maser | DoD#= 0536 | SQUID RATING: 5.333333333333333 *\\n* 9235 Pinetree Rd. |----------------------------------------------*\\n* Sidney, B.C., CAN. | Hopalonga Twinfart Yuka-Yuka EXCESS 400 *\\n* V8L-1J1 | wish list: Tridump, Mucho Guzler, Burley *\\n* home (604) 656-6131 | Thumpison, or Bimotamoeba *\\n* work (604) 721-7297 |***********************************************\\n* mmaser@sirius.UVic.CA |JOKE OF THE MONTH: What did the gay say to the*\\n* University of Victoria | Indian Chief ? *\\n* news: rec.motorcycles | ANSWER: Can I bum a couple bucks ? *\\n*****************************************************************************\\n\\n\\n',\n", + " 'From: David.Rice@ofa123.fidonet.org\\nSubject: islamic authority [sic] over women\\nX-Sender: newtout 0.08 Feb 23 1993\\nLines: 62\\n\\n \\nwho: kmr4@po.CWRU.edu (Keith M. Ryan)\\nwhat: \\nwith: rush@leland.Stanford.EDU \\nwhat: <1993Apr5.050524.9361@leland.Stanford.EDU>\\n \\n>>> Other readers: I just joined, but is this guy for real?\\n>>> I\\'m simply amazed.\\n \\nKR> \"Sadly yes. Don\\'t loose any sleep over Old \\'Zlumber. Just\\nKR> have some fun with him, but he is basically harmless. \\nKR> At least, if you don\\'t work in NY city.\"\\n \\nI don\\'t find it hard to believe that \"Ole \\'Zlumber\" really believes\\nthe hate and ignorant prattle he writes. The frightening thought is,\\nthere are people even worse than he! To say that feminism equals\\n\"superiority\" over men is laughable as long as he doesn\\'t then proceed\\nto pick up a rifle and start to shoot women as a preemptive strike---\\naka the Canada slaughter that occured a few years ago. But then, men\\nkilling women is nothing new. Islamic Fundamentalists just have a\\n\"better\" excuse (Qu\\'ran).\\n \\n from the Vancouver Sun, Thursday, October 4, 1990\\n by John Davidson, Canadian Press\\n \\n MONTREAL-- Perhaps it\\'s the letter to the five-year old\\n daughter that shocks the most.\\n \\n \"I hope one day you will be old enough to understand what\\n happened to your parents,\" wrote Patrick Prevost. \"I loved\\n your mother with a passion that went as far as hatred.\"\\n \\n Police found the piece of paper near Prevost\\'s body in his\\n apartment in northeast Montreal.\\n \\n They say the 39-year-old mechanic committed suicide after\\n killing his wife, Jocelyne Parent, 31.\\n \\n The couple had been separated for a month and the woman had\\n gone to his apartment to talk about getting some more money\\n for food. A violent quarrel broke out and Prevost attacked\\n his wife with a kitchen knife, cutting her throat, police said.\\n \\n She was only the latest of 13 women slain by a husband or\\n lover in Quebec in the last five weeks.\\n \\n Five children have also been slain as a result of the same\\n domestic \"battles.\"\\n \\n Last year in Quebec alone, 29 [women] were slain by their\\n husbands. That was more than one-third of such cases across\\n Canada, according to statistics from the Canadian Centre for\\n Justice. [rest of article ommited]\\n \\nThen to say that women are somehow \"better\" or \"should\" be the\\none to \"stay home\" and raise a child is also laughable. Women\\nhave traditionally done hard labor to support a family, often \\nmore than men in many cultures, throughout history. Seems to me\\nit takes at least two adults to raise a child, and that BOTH should\\nstay home to do so!\\n\\n--- Maximus 2.01wb\\n',\n", + " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Hamza Salah, the Humanist\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 8\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\nMr. Salah, why are you such a homicidal racist? Do you feel this\\nsame hatred towards Christans, or is it only Jews? Are you from\\na family of racists? Did you learn this racism in your home? Or\\nare you a self-made bigot? How does one become such a racist? I\\nwonder what you think your racism will accomplish. Are you under\\nthe impression that your racism will help bring peace in the mid-\\neast? I would like to know your thoughts on this.\\n',\n", + " 'From: laszlo@eclipse.cs.colorado.edu (Laszlo Nemeth)\\nSubject: Re: Protective gear\\nNntp-Posting-Host: eclipse.cs.colorado.edu\\nOrganization: University of Colorado Boulder, Pizza Disposal Group\\nLines: 19\\n\\nIn article , maven@eskimo.com (Norman Hamer) writes:\\n|> Question for the day:\\n|> \\n|> What protective gear is the most important? I\\'ve got a good helmet (shoei\\n|> rf200) and a good, thick jacket (leather gold) and a pair of really cheap\\n|> leather gloves... What should my next purchase be? Better gloves, boots,\\n|> leather pants, what?\\n\\ncondom\\n\\n\\nduring wone of the 500 times i had to go over my accident i\\nwas asked if i was wearing \"protection\" my responces was\\n\"yes i was wearing a condom\"\\n\\n\\n\\nlaz\\n\\n',\n", + " 'From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: Georgia Institute of Technology\\nLines: 21\\n\\nWho the hell is this guy David Davidian. I think he talks too much..\\n\\n\\nYo , DAVID you would better shut the f... up.. O.K ?? I don\\'t like \\n\\nyour attitute. You are full of lies and shit. Didn\\'t you hear the \\n\\nsaying \"DON\\'T MESS WITH A TURC!!\"...\\n\\nSee ya in hell..\\n\\nTimucin.\\n\\n\\n\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n',\n", + " \"From: ernie@woody.apana.org.au (Ernie Elu)\\nSubject: MGR NAPLPS & GUI BBS Frontends\\nOrganization: Woody - Public Access Linux - Melbourne\\nLines: 28\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\n\\n\\nHi all,\\nI am looking into methods I can use to turn my Linux based BBS into a full color\\nGraphical BBS that supports PC, Mac, Linux, and Amiga callers. \\nOriginally I was inspired by the NAPLPS graphics standard (a summary of \\nwhich hit this group about 2 weeks ago). \\nFollowing up on software availability of NAPLPS supporting software I find\\nthat most terminal programs are commercial the only resonable shareware one being\\nPP3 which runs soley on MSDOS machines leaving Mac and Amiga users to buy full\\ncommercial software if they want to try out the BBS (I know I wouldn't)\\n\\nNext most interesting possibility is to port MGR to PC, Mac, Amiga. I know there\\nis an old version of a Mac port on bellcore.com that doesn't work under System 7\\nBut I can't seem to find the source anywhere to see if I can patch it.\\n\\nIs there a color version of MGR for Linux? \\nI know there was an alpha version of the libs out last year but I misplaced it.\\n\\nDoes anyone on this group know if MGR as been ported to PC or Amiga ?\\nI can't seem to send a message to the MGR channel without it bouncing.\\n\\nDoes anyone have any other suggestions for a Linux based GUI BBS ?\\n\\nThanks in advan\\n\",\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1r6ub0$mgl@access.digex.net> prb@access.digex.com (Pat) writes:\\n\\n>In article <1993Apr22.164801.7530@julian.uwo.ca> jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll) writes:\\n>>\\tHmmm. I seem to recall that the attraction of solid state record-\\n>>players and radios in the 1960s wasn\\'t better performance but lower\\n>>per-unit cost than vacuum-tube systems.\\n>>\\n\\n\\n>I don\\'t think so at first, but solid state offered better reliabity,\\n>id bet, and any lower costs would be only after the processes really scaled up.\\n\\nCareful. Making statements about how solid state is (generally) more\\nreliable than analog will get you a nasty follow-up from Tommy Mac or\\nPat. Wait a minute; you *are* Pat. Pleased to see that you\\'re not\\nsuffering from the bugaboos of a small mind. ;-)\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: andersen@me.udel.edu (Stephen Andersen)\\nSubject: Riding Jacket Recommendations\\nNntp-Posting-Host: me.udel.edu\\nOrganization: Center for Composite Materials/University of Delaware\\nLines: 36\\n\\nMy old jacket is about to bite the dust so I\\'m in the market for a new riding\\njacket. I\\'m looking for recommendations for a suitable replacement. I would\\nlike to buy a full Aerostich suit but I can\\'t afford $700 for it right now.\\n\\nI\\'m considering two basic options:\\n\\n1) Buy the Aerostich jacket only. Dunno how much it costs\\n due to recent price increases, but I\\'d imagine over $400.\\n That may be pushing my limit. Advantages include the fact\\n that I can later add the pants, and that it nearly eliminates\\n the need for the jacket portion of a rainsuit.\\n\\n2) Buy some kind of leather jacket. I like a few of the new \\n Hein-Gericke FirstGear line, however they may be a bit pricey\\n unless I can work some sort of deal. Advantages of leather\\n are potentially slightly better protection, enhanced pose\\n value (we all know how important that is :-), possibly cheaper\\n than upper Aerostich.\\n\\nRequirements for a jacket are that it must fit over a few other \\nlayers (mainly a sizing thing), if leather i\\'d prefer a zip-out \\nlining, it MUST have some body armor similar to aerostich (elbows, \\nshoulders, forearms, possibly back/kidney protection, etc.), a \\nreasonable amount of pocket space would be nice, ventilation would \\nbe a plus, however it must be wearable in cold weather (below\\nfreezing) with layers or perhaps electrics.\\n\\nPlease fire away with suggestions, comments, etc...\\n\\nSteve\\n--\\n-- \\n Steve Andersen DoD #0239 andersen@me.udel.edu\\n (302) 832-0136 andersen@zr1.ccm.udel.edu\\n 1992 Ducati 907 I.E. 1987 Yamaha SRX250\\n \"Life is simply a consequence of the complexities of carbon chemistry...\"\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 B\\nSummary: Part B \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 912\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 Part B\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n\\t\\t\\t\\t(Part B of #008)\\n\\n +------------------------------------------------------------------+\\n | |\\n | \"Oh, yes, I just remembered. While they were raping me they |\\n | repeated quite frequently, \"Let the Armenian women have babies |\\n | for us, Muslim babies, let them bear Azerbaijanis for the |\\n | struggle against the Armenians.\" Then they said, \"Those |\\n | Muslims can carry on our holy cause. Heroes!\" They repeated |\\n | it very often.\" |\\n | |\\n +------------------------------------------------------------------+\\n\\n...continued from PART A:\\n\\nThe six of them left. They left and I had an attack. I realized that the dan-\\nger was past, and stopped controlling myself. I relaxed for a moment and the \\nphysical pain immediately made itself felt. My heart and kidneys hurt. I had \\nan awful kidney attack. I rolled back and forth on top of those Christmas\\nornaments, howling and howling. I didn\\'t know where I was or how long this \\nwent on. When we figured out the time, later it turned out that I howled and \\nwas in pain for around an hour. Then all my strength was gone and I burst into\\ntears, I started feeling sorry for myself, and so on and so forth . . .\\n\\nThen someone came into the room. I think I hear someone calling my name. I \\nwant to respond and restrain myself, I think that I\\'m hallucinating. I am \\nsilent, and then it continues: it seems that first a man\\'s voice is calling\\nme, then a woman\\'s. Later I found out that Mamma had sent our neighbor, the\\none whose apartment she was hiding in, Uncle Sabir Kasumov, to our place, \\ntelling him, \"I know that they\\'ve killed Lyuda. Go there and at least bring \\nher corpse to me so they don\\'t violate her corpse.\" He went and returned empty\\nhanded, but Mamma thought he just didn\\'t want to carry the corpse into his \\napartment. She sent him another time, and then sent his wife, and they were \\nwalking through the rooms looking for me, but I didn\\'t answer their calls. \\nThere was no light, they had smashed the chandeliers and lamps.\\n\\nThey started the pogrom in our apartment around five o\\'clock, and at 9:30 I \\nwent down to the Kasumovs\\'. I went down the stairs myself. I walked out of the\\napartment: how long can you wait for your own death, how long can you be \\ncowardly, afraid? Come what will. I walked out and started knocking on the \\ndoors one after the next. No one, not on the fifth floor, not on the fourth, \\nopened the door. On the third floor, on the landing of the stairway, Uncle \\nSabir\\'s son started to shout, \"Aunt Roza, don\\'t cry, Lyuda\\'s alive!\" He \\nknocked on his own door and out came Aunt Tanya, Igor, and after them, Mamma. \\nAunt Tanya, Uncle Sabir\\'s wife, is an Urdmurt. All of us were in their \\napartment. I didn\\'t see Karina, but she was in their home, too, Lying\\ndelirious, she had a fever. Marina was there too, and my father and mother.\\nAll of my family had gathered there.\\n \\nAt the door I lost consciousness. Igor and Aunt Tanya carried me into the\\napartment.\\n\\nLater I found out what they had done to our Karina. Mamma said, \"Lyuda, \\nKarina\\'s in really serious condition, she\\'s probably dying. If she recognizes \\nyou, don\\'t cry, don\\'t tell her that her face looks so awful.\" It was as though\\nher whole face was paralyzed, you know, everything was pushed over to one \\nside, her eye was all swollen, and everything flowed together, her lips, her \\ncheeks . . . It was as though they had dragged her right side around the whole\\nmicrodistrict, that\\'s how disfigured her face was. I said, \"Fine.\" Mamma was \\nafraid to go into the room, because she went in and hugged Karina and started \\nto cry. I went in. As soon as I saw her my legs gave way. I fell down near the\\nbed, hugged her legs and started kissing them and crying. She opened the eye \\nthat was intact, looked at me, and said, \"Who is it?\" But I could barely talk, \\nmy whole face was so badly beaten. I didn\\'t say, but rather muttered something\\ntender, something incomprehensible, but tender, \"My Karochka, my Karina, my \\nlittle golden one . . . \" She understood me.\\n\\nThen Igor brought me some water, I drank it down and moistened Karina\\'s lips. \\nShe started to groan. She was saying something to me, but I couldn\\'t \\nunderstand it. Then I made out, \"It hurts, I hurt all over.\" Her hair was \\nglued down with blood. I stroked her forehead, her head, she had grit on her \\nforehead, and on her lips . . . She was groaning again, and I don\\'t know how \\nto help her. She calls me over with her hand, come closer. I go to her. She\\'s\\nsaying something to me, but I can\\'t understand her. Igor brings her a pencil \\nand paper and says, \"Write it down.\" She shakes her head as if to say, no, I \\ncan\\'t write. I can\\'t understand what she\\'s saying. She wanted to tell me \\nsomething, but she couldn\\'t. I say, \"Karina, just lie there a little while,\\nthen maybe you\\'ll feel better and you can tell me then.\" And then she says,\\n\"Maybe it\\'ll be too late.\" And I completely . . . just broke down, I couldn\\'t\\ncontrol myself.\\n\\nThen I moistened my hand in the water and wiped her forehead and eye. I dipped\\na handkerchief into the water and squeezed a little water onto her lips. She \\nsays, \"Lyuda, we\\'re not saved yet, we have to go somewhere else. Out of this \\ndamned house. They want to kill us, I know. They\\'ll find us here, too. We need\\nto call Urshan.\" She repeated this to me for almost a whole hour, Until I \\nunderstood her every word. I ask, \"What\\'s his number?\" Urshan Feyruzovich, \\nthat\\'s the head of the administration where she works. \"We have to call him.\" \\nBut I didn\\'t know his home number. I say, \"Karina, what\\'s his number?\" She \\nsays, \"I can\\'t remember.\" I say, \"Who knows his number? Who can I call?\" She \\nsays, \"I don\\'t know anything, leave me alone.\"\\n\\nI went out of the room. Igor stayed to watch over her and sat there, he was \\ncrying, too. I say, \"Mamma, Karina says that we have to call Urshan. How can \\nwe call him? Who knows his telephone number?\" I tell Marina, \"Think, think, \\nwho can we call to find out?\" She started calling; several people didn\\'t \\nanswer. She called a girlfriend, her girlfriend called another girlfriend and \\nfound out the number and called us back. The boss\\'s wife answered and said he \\nwas at the dacha. My voice keeps cracking, I can\\'t talk normally. She says, \\n\"Lyuda, don\\'t panic, get a hold of yourself, go out to those hooligans and \\ntell them that they just can\\'t do that.\" She still didn\\'t know what was really\\ngoing on. I said, \"It\\'s easy for you to say that, you don\\'t understand what\\'s \\nhappening. They are killing people here. I don\\'t think there is a single \\nArmenian left in the building, they\\'ve cut them all up. I\\'m even surprised \\nthat we managed to save ourselves. \"She says, \"Well, OK, if it\\'s that serious \\n. . . \" And all the same she\\'s thinking that my emotions are all churned up \\nand that I\\'m fearing for my life, that in fact it\\'s not all that bad. \"OK, \\nfine, fine,\" she says, \"if you\\'re afraid, OK, as soon as Urshan comes back \\nI\\'ll send him over.\"\\n\\nWe called again because they had just started robbing the apartment directly \\nunder Aunt Tanya\\'s, on the second floor, Asya Dallakian\\'s apartment. She \\nwasn\\'t home, she was staying with her daughter in Karabagh. They destroyed \\neverything there . . . We realized that they still might come back. We kept on\\ntrying to get through to Aunt Tanya--Urshan\\'s wife is named Tanya too and \\nfinally we get through. She says, \"Yes, he\\'s come home, he\\'s leaving for your \\nplace now.\" He came. Of course he didn\\'t know what was happening, either, \\nbecause he brought two of his daughters with him. He came over in his jeep \\nwith his two daughters, like he was going on an outing. He came and saw what \\nshape we were in and what was going on in town and got frightened. He has \\ngrown up daughters, they\\'re almost my age.\\n\\nThe three of us carried out Karina, tossed a coat on her and a warm scarf, and\\nwent down to his car. He took Karina and me to the Maternity Home. . . No, \\nfirst they took us to the po]ice precinct. They had stretchers ready. As\\nsoon as we got out of the car they put Karina and me on stretchers and said\\nthat we were in serious condition and that we mustn\\'t move, we might have\\nfractures. From the stretcher I saw about 30 soldiers sitting and lying on the\\nfirst floor, bandaged, on the concrete floor, groaning . . . This was around\\neleven o\\'clock at night. We had left the house somewhere around 1:30. When I \\nsaw those soldiers I realized that a war was going on: soldiers, enemies\\n. . . everything just like a war.\\n\\nThey carried me into some office on the stretcher. The emergency medical\\npeople from Baku were there. The medical attendant there was an older \\nArmenian. Urshan told him what they had done to Karina because she\\'s so proud \\nshe would never have told. And this aging Armenian . . . his name was Uncle \\nArkady, I think, because someone said \"Arkady, get an injection ready,\" he \\nstarted to fill a syringe, and turned around so as to give Karina a shot. But \\nwhen he looked at her face he became ill. And he was an old man, in his \\nsixties, his hair was all grey, and his moustache, too. He hugged Karina and \\nstarted to cry: \"What have they done to you?!\" He was speaking Armenian. \"What\\nhave they done to you?!\" Karina didn\\'t say anything. Mamma came in then, and \\nshe started to cry, too. The man tried to calm her. \"I\\'ll give you a shot.\" \\nMamma tells him, \"I don\\'t need any shot. Where is the government? Just what \\nare they doing? Look what they\\'ve done to my children! They\\'re killing people,\\nand you\\'re just sitting here!\" Some teacups were standing on the table in \\nthere. \"You\\'re sitting here drinking tea! Look what they\\'ve done to my \\ndaughters! Look what they\\'ve turned them into!\" They gave her something to \\ndrink, some heart medicine, I think. They gave Karina an injection and the\\ndoctor said that she had to be taken to the Maternity Home immediately. Papa \\nand Urshan, I think, even though Papa was in bad shape, helped carry Karina \\nout. When they put her on the stretcher, none of the medics got near her. I \\ndon\\'t know, maybe there weren\\'t any orderlies. Then they came to me: \"What\\'s \\nthe matter with you?\" Their tone was so official that I wrapped myself tighter\\nin the half-length coat. I had a blanket on, too, an orange one, Aunt Tanya\\'s.\\nI said, \"I\\'m fine.\" Uncle Arkady came over and was soothing me, and then told \\nthe doctor, \"You leave, let a woman examine her.\" A woman came, an \\nAzerbaijani, I believe, and said, \"What\\'s wrong with you?\" I was wearing my \\nsister Lyuda\\'s nightshirt, the sister who at this time was in Yerevan. When \\nshe was nursing her infant she had cut out a big hole in it so that it would \\nbe easier to breast feed the baby. I tore the night shirt some more and showed\\nher. I took it off my shoulders and turned my back to her. There was a huge \\nwound, about the size of a hand, on my back, from the Indian vase. She said \\nsomething to them and they gave me two shots. She said that it should be \\ndressed with something, but that they\\'d do that in the hospital.\\n\\nThey put me on a stretcher, too. They started looking for people to carry me. \\nI raised up my head a little and wanted to sit up, and this woman, I don\\'t \\nknow if she was a doctor or a nurse, said, \"Lie still, you mustn\\'t move.\" When\\nI was lying back down I saw two policemen leading a man. His profile seemed \\nvery familiar to me. I shouted, \"Stop!\" One of the policemen turned and says, \\n\"What do you want?\" I say, \"Bring him to me, I want to look at him.\" They \\nbrought him over and I said, \"That person was just in our apartment and he \\njust raped me and my sister. I recognize him, note it down.\" They said, \\n\"Fine,\" but didn\\'t write it down and led him on. I don\\'t know where they were \\ntaking him.\\n\\nThen they put my stretcher near where the injured and beaten soldiers were \\nsitting. They went to look for the ambulance driver so he would bring the car \\nup closer. One of the soldiers started talking to me, \"Sister . . . \" I don\\'t \\nremember the conversation exactly, but he asked me were we lived and what they\\ndid to us. I asked him, \"Where are you from?\" He said that he was from Ufa. \\nApparently they were the first that were brought in. The Ufa police. Later I \\nlearned that they suffered most of all. He says, \"OK, you\\'re Armenians, they \\ndidn\\'t get along with you, but I\\'m a Russian,\" he says, \"what are they trying \\nto kill me for?\" Oh, I remembered something else. When I went out onto the \\nbalcony with Kuliyev for a hammer and nails I looked out the window and saw \\ntwo Azerbaijanis beating a soldier near the kindergarten. He was pressed \\nagainst the fence and he covered his head with his arms, they were beating him\\nwith his own club. The way he cried \"Mamma\" made my skin crawl. I don\\'t know \\nwhat they did to him, if he\\'s still alive or not. And something else. Before \\nhe attack on our house we saw sheets, clothes, and some dishes flying from the\\nthird or fourth floor of the neighboring building, but I didn\\'t think it was \\nAzerbaijanis attacking Armenians. I thought that something was on fire or they\\nwere throwing something they didn\\'t need out, or someone was fighting with \\nsomeone. It was only later, when they were burning a passenger car in the \\nyard, when the neighbors said that they were doing that to the Armenians, that\\nI realized that this was serious, that it was anti-Armenian.\\n\\nThey took Karina and me to the Sumgait Maternity Home. Mamma went to them too \\nand said, \"I\\'ve been beaten too, help me.\" But they just ignored her. My \\nfather went to them and said in a guilty voice, as though it was his fault \\nthat he\\'d been beaten, and says, \"My ribs hurt so much, those creeps have \\nprobably broken my ribs. Please look at them.\" The doctor says, \"That\\'s not my\\njob.\" Urshan said, \"Fine, I\\'ll take you to my place and if we need a doctor, \\nI\\'ll find you one. I\\'ll bring one and have him look at you. And he drove them \\nto his apartment.\\n\\nMarina and I stayed there. They examined us. I was more struck by what the \\ndoctor said than by what those Azerbaijanis in our apartment did to us. I \\nwasn\\'t surprised when they beat us they wanted to beat us, but I was very\\nsurprised that in a Soviet medical facility a woman who had taken the\\nHippocratic Oath could talk to victims like that. By happy--or unhappy--\\ncoincidence we were seen by the doctor that had delivered our Karina. And she,\\nhaving examined Karina, said, \"No problem, you got off pretty good. Not like \\nthey did in Kafan, when you Armenians were killing and raping our women.\\n\"Karina was in such terrible condition that she couldn\\'t say anything--she\\nwould certainly have had something to say! Then they examined me. The same \\nstory. They put us in a separate ward. No shots, no medicinal powders, no \\ndrugs. Absolutely none! They didn\\'t even give us tea. All the women there soon\\nfound out that in ward such and such were Armenians who had been raped. And\\nthey started coming and peering through the keyhole, the way people look at \\nzoo animals. Karina didn\\'t see this, she was lying there, and I kept her from \\nseeing it.\\n\\nThey put Ira B. in our ward. She had also been raped. True, she didn\\'t have \\nany serious bodily injuries, but when she told me what had happened at their \\nplace, I felt worse for them than I did for us. Because when they raped Ira \\nher daughter was in the room, she was under the bed on which it happened. And\\nIra was holding her daughter\\'s hand, the one who was hiding under the bed.\\nWhen they were beating Ira or taking her earrings off, gold, when she \\ninvoluntarily let go of her daughter\\'s hand, her daughter took her hand again.\\nHer daughter is in the fourth grade, she\\'s 11 years old. I felt really awful \\nwhen I heard that. Ira asked them not to harm her daughter, she said, \"Do what\\nyou want with me, just leave my daughter alone.\" Well, they did what they \\nwanted. They threatened to kill her daughter if she got in their way. Now I \\nwould be surprised if the criminals had behaved any other way that night. It \\nwas simply Bartholomew\\'s Night, I say, they did what they would love to do \\nevery day: steal, kill, rape . . .\\n\\nMany are surprised that those animals didn\\'t harm the children. The beasts \\nexplained it like this: this would be repeated in 15 to 20 years, and those \\nchildren would be grown, and then, as they put it, \"we\\'ll come take the \\npleasure out of their lives, those children.\" This was about the girls that\\nwould be young women in 15 years. They were thinking about their tomorrow \\nbecause they were sure that there would be no trial and no investigation, just\\nas there was no trial or investigation in 1915, and that those girls could be \\nof some use in 15 years. This I heard from the investigators; one of the \\nvictims testified to it. That\\'s how they described their own natures, that\\nthey would still be bloodthirsty in 15 to 20 years, and in 100 years--they\\nthemselves said that.\\n\\nAnd this, too. Everyone is surprised that they didn\\'t harm our Marina. Many \\npeople say that they either were drunk or had smoked too much. I don\\'t know \\nwhy their eyes were red. Maybe because they hadn\\'t slept the night before, \\nmaybe for some other reason, I don\\'t know. But they hadn\\'t been smoking and \\nthey weren\\'t drunk, I\\'m positive, because someone who has smoked will stop at \\nnothing he has the urge to do. And they spoke in a cultured fashion with \\nMarina: \"Little sister, don\\'t be afraid, we won\\'t harm you, don\\'t look over \\nthere [where I was], you might be frightened. You\\'re a Muslim, a Muslim woman \\nshouldn\\'t see such things.\" So they were really quite sober . . .\\n\\nSo we came out of that story alive. Each every day we have lived since it all \\nhappened bears the mark of that day. It wasn\\'t even a day, of those several \\nhours. Father still can\\'t look us in the eyes. He still feels guilty for what\\nhappened to Karina, Mother, and me. Because of his nerves he\\'s started talk-\\ning to himself, I\\'ve heard him argue with himself several times when he\\nthought no one is listening: \"Listen,\" he\\'ll say, \"what could I do? What could\\nI do alone, how could I protect them?\" I don\\'t know where to find the words,\\nit\\'s not that I\\'m happy, but I am glad that he didn\\'t see it all happen. \\nThat\\'s the only thing they spared us . . . or maybe it happened by chance. Of \\ncourse he knows it all, but there\\'s no way you could imagine every last detail\\nof what happened. And there were so many conversations: Karina and I spoke\\ntogether in private, and we talked with Mamma, too. But Father was never\\npresent at those conversations. We spare him that, if you can say that. And\\nwhen the investigator comes to the house, we don\\'t speak with Father present.\\n\\nOn February 29, the next clay, Karina and I were discharged from the hospital.\\nFirst they released me, but since martial law had been declared in the city, \\nthe soldiers took me to the police precinct in an armored personnel carrier. \\nThere were many people there, Armenian victims. I met the Tovmasian family \\nthere. From them I learned that Rafik and their Uncle Grant had died. They \\nwere sure that both had died. They were talking to me and Raya, Rafik\\'s wife \\nand Grant\\'s daughter, and her mother, were both crying.\\n\\nThen they took us all out of the office on the first floor into the yard.\\nThere\\'s a little one-room house outside there, a recreation and reading area.\\nThey took us in there. The women were afraid to go because they thought\\nthat they were shooing us out of the police precinct because it had become\\nso dangerous that even the people working at the precinct wanted to hide.\\nThe women were shouting. They explained to them: \"We want to hide you\\nbetter because it\\'s possible there will be an attack on the police precinct.\"\\n\\nWe went into the little house. There were no chairs or tables in there. We\\nhad children with us and they were hungry; we even had infants who needed to \\nhave their diapers changed. No one had anything with them. It was just awful. \\nThey kept us there for 24 hours. From the window of the one room house you \\ncould see that there were Azerbaijanis standing on the fences around the \\npolice precinct, as though they were spying on us. The police precinct is \\nsurrounded by a wall, like a fence, and it\\'s electrified, but if they were \\nstanding on the wall, it means the electricity was shut off. This brought \\ngreat psychological pressure to bear on us, particularly on those who hadn\\'t \\njust walked out of their apartments, but who hadn\\'t slept for 24 hours, or 48,\\nor those who had suffered physically and spiritually, the ones who had lost \\nfamily members. For us it was another ordeal. We were especially frightened \\nwhen all the precinct employees suddenly disappeared. We couldn\\'t see a single\\nperson, not in the courtyard and not in the windows. We thought that they must\\nhave already been hiding under the building, that they must have some secret \\nroom down there. People were panicking: they started throwing themselves at\\none another . . . That\\'s the way it is on a sinking ship. We heard those \\npeople, mainly young people, whistling and whopping on the walls. We felt that\\nthe end was approaching. I was completely terrified: I had left Karina in the \\nhospital and didn\\'t know where my parents were. I was sort of calm about my \\nparents, I was thinking only about Karina, if, Heaven forbid, they should \\nattack the hospital, they would immediately tell them that there was an \\nArmenian in there, and something terrible would happen to Karina again, and \\nshe wouldn\\'t be able to take it.\\n\\nThen soldiers with dogs appeared. When they saw the dogs some of the people \\nclimbed down off the fence. Then they brought in about another 30 soldiers.\\nThey all had machine guns in readiness, their fingers on the triggers. We \\ncalmed down a little. They brought us chairs and brought the children some \\nlittle cots and showed us where we could wash our hands, and took the children\\nto the toilet. But we all sat there hungry, but to be honest, it would never \\nhave occurred to any of us that we hadn\\'t eaten for two days and that people \\ndo eat.\\n\\nThen, closer to nightfall, they brought a group of detained criminals. They \\nwere being watched by soldiers with guard dogs. One of the men came back from \\nthe courtyard and told us about it. Raya Tovmasian . . . it was like a \\ndifferent woman had been substituted. Earlier she had been crying, wailing, \\nand calling out: \"Oh, Rafik!,\" but when she heard about this such a rage came \\nover her! She jumped up, she had a coat on, and she started to roll up her \\nsleeves like she was getting ready to beat someone. And suddenly there were \\nsoldiers, and dogs, and lots of people. She ran over to them. The bandits were\\nstanding there with their hands above their heads facing the wall. She went up\\nto one of them and grabbed him by the collar and started to shake and thrash \\nhim! Then, on to a second, and a third. Everyone was rooted to the spot. Not \\none of the soldiers moved, no one went up to help or made her stop her from \\ndoing it. And the bandits fell down and covered their heads with their hands, \\nmuttering something. She came back and sat down, and something akin to a smile\\nappeared on her face. She became so quiet: no tears, no cries. Then that round\\nwas over and she went back to beat them again. She was walking and cursing \\nterribly: take that, and that, they killed my husband, the bastards, the \\ncreeps, and so on. Then she came back again and sat down. She probably did \\nthis the whole night through, well, it wasn\\'t really night, no one slept. She \\nwent five or six times and beat them and returned. And she told the women, \\n\"What are you sitting there for? They killed your husbands and children, they \\nraped, and you\\'re just sitting there. You\\'re sitting and talking as though \\nnothing had happened. Aren\\'t you Armenians?\" She appealed to everyone, but no \\none got up. I was just numb, I didn\\'t have the strength to beat anyone, I \\ncould barely hold myself up, all the more so since I had been standing for so \\nmany hours--I was released at eleven o\\'clock in the morning and it was already\\nafter ten at night because there weren\\'t enough chairs, really it was the \\nelderly and women with children who sat. I was on my feet the whole time. \\nThere was nothing to breathe, the door was closed, and the men were smoking. \\nThe situation was deplorable.\\n\\nAt eleven o\\'clock at night policemen came for us, local policemen, \\nAzerbaijanis. They said, \"Get up. They\\'ve brought mattresses, you can wash up\\nand put the children to bed.\" Now the women didn\\'t want to leave this place, \\neither. The place had become like home, it was safe, there were soldiers with \\ndogs. If anyone went outside, the soldiers would say, \"Oh, it\\'s our little \\nfamily,\" and things like that. The soldiers felt this love, and probably, for \\nthe first time in their lives perceived themselves as defenders. Everyone\\nspoke from the heart, cried, and hugged them and they, with their loaded\\nmachine guns in their hands, said, \"Grandmother, you mustn\\'t approach me,\\nI\\'m on guard.\" Our people would say, \"Oh, that\\'s all right.\" They hugged\\nthem, one woman even kissed one of the machine guns. This was all terribly\\nmoving for me. And the small children kept wanting to pet the dogs.\\n\\nThey took us up to the second floor and said, \"You can undress and sleep in \\nhere. Don\\'t be afraid, the precinct is on guard, and it\\'s quiet in the city.\"\\nThis was the 29th, when the killing was going on in block 41A and in other\\nplaces. Then we were told that all the Armenians were being gathered at the\\nSK club and at the City Party Committee. They took us there. On the way I \\nasked them to stop at the Maternity Home: I wanted to take Karina with me.\\nI didn\\'t know what was happening there. They told me, \"Don\\'t worry, the\\nMaternity Home is full of soldiers, more than mothers-to-be. So you can rest\\nassured. I say, \"Well, I won\\'t rest assured regardless, because the staff in\\nthere is capable of anything.\"\\n\\nWhen I arrived at the City Party Committee it turned out that Karina had\\nalready been brought there. They had seen fit to release her from the hospi-\\ntal, deciding that she felt fine and was no longer in need of any care. Once\\nwe were in the City Party Committee we gave free reign to our tears. We met \\nacquaintances, but everyone was somehow divided into two groups, those who \\nhadn\\'t been injured, who were clothed, who had brought a pot of food with \\nthem, and so on, and those, like me, like Raya, who were wearing whatever had \\ncome their way. There were even people who were all made up, dolled up like \\nthey had come from a wedding. There were people without shoes, naked people, \\nhungry people, those who were crying, and those who had lost someone. And of \\ncourse the stories and the talk were flying: \"Oh, I heard that they killed \\nhim!\" \"What do you mean they killed him!\" \"He stayed at work!\" \"Do you know \\nwhat\\'s happening at this and such a plant? Talk like that.\\n\\nAnd then I met Aleksandr Mikhailovich Gukasian, the teacher. I know him very \\nwell and respect him highly. I\\'ve known him for a long time. They had a small \\nroom, well really it was more like a study-room. We spent a whole night \\ntalking in that study once. On March 1 we heard that Bagirov [First Secretary \\nof the Communist Party of Azerbaijan SSR] had arrived. Everyone ran to see \\nBagirov, what news he had brought with him and how this was all being viewed \\nfrom outside. He arrived and everyone went up to him to talk to him and ask \\nhim things. Everyone was in a tremendous rage. But he was protected by \\nsoldiers, and he went up to the second floor and didn\\'t deign to speak with \\nthe people. Apparently he had more important things to do.\\n\\nSeveral hours passed. Gukasian called me and says, \"Lyudochka, find another \\ntwo or three. We\\'re going to make up lists, they asked for them upstairs, \\nlists of the dead, those whose whereabouts are unknown, and lists of people \\nwho had pogroms of their apartments and of those whose cars were burned.\" I \\nhad about 50 people in my list when they called me and said, \"Lyuda, your \\nMamma has arrived, she\\'s looking for you, she doesn\\'t believe that you are \\nalive and well and that you\\'re here.\" I gave the lists to someone and asked \\nthem to continue what I was doing and went off.\\n\\nThe list was imprecise, of course. It included Grant Adamian, Raya Tovmasian\\'s\\nfather, who was alive, but at the time they thought him dead. There was Engels\\nGrigorian\\'s father and aunt, Cherkez and Maria. The list also included the \\nname of my girlfriend and neighbor, Zhanna Agabekian. One of the guys said \\nthat he had been told that they chopped her head off in the courtyard in front\\nof the Kosmos movie theater. We put her on the list too, and cried, but later \\nit turned out that that was just a rumor, that in fact an hour earlier she had\\nsomehow left Sumgait for the marina and from there had set sail for \\nKrasnovodsk, where, thank God, she was alive and well. I should also say that \\nin addition to those who died that list contained people who were rumored \\nmissing or who were so badly wounded that they were given up for dead. 3\\n\\nAll the lists were taken to Bagirov. I don\\'t remember how many dead were \\ncontained in the list, but it\\'s a fact that when Gukasian came in a couple \\nof minutes later he was cursing and was terribly irate. I asked, \"What\\'s \\ngoing on?\" He said, \"Lyuda, can you imagine what animals, what scoundrels\\nthey are! They say that they lost the list of the dead. Piotr Demichev\\n[Member of the Politburo of the Central Committee of the Communist Party\\nof the USSR] has just arrived, and we were supposed to submit the list to\\nhim, so that he\\'d see the scope of the slaughter, of the tragedy, whether it\\nwas one or fifty.\" They told him that the list had disappeared and they\\nshould ask everyone who hadn\\'t left for the Khimik boarding house all over\\nagain. There were 26 people on our second list. I think that the number 26\\nwas the one that got into the press and onto television and the radio, because\\nthat\\'s the list that Demichev got. I remember exactly that there were 26 \\npeople on the list, I had even told Aleksandr Mikhailovich that that was only \\na half of those that were on the first list. He said, \"Lyuda, please, try to\\nremember at least one more.\" But I couldn\\'t remember anyone else. But there\\nwere more than 30 dead. Of that I am certain. The government and the Procuracy\\ndon\\'t count the people who died of fright, like sick people and old people \\nwhose lives are threatened by any shock. They weren\\'t registered as victims of\\nthe Sumgait tragedy. And then there may be people we didn\\'t know. So many \\npeople left Sumgait between March 1 and 8! Most of them left for smaller towns\\nin Russia, and especially to the Northern Caucasus, to Stavropol, and the \\nKrasnodarsk Territory. We don\\'t have any information on them. I know that \\nthere are people who set out for parts around Moscow. In the periodical \\nKrestyanka [Woman Farmer] there was a call for people who know how to milk \\ncows, and for mechanics, and drivers, and I know a whole group of people went \\nto help out. Also clearly not on our list are those people who died entering\\nthe city, who were burned in their cars. No one knows about them, except the \\nAzerbaijanis, who are hardly likely to say anything about it. And there\\'s\\nmore. A great many of the people who were raped were not included in the list \\ndrawn up at the Procuracy. I know of three instances for sure, and I of course\\ndon\\'t know them all. I\\'m thinking of three women whose parents chose not to \\npublicize what had happened, that is, they didn\\'t take the matter to court, \\nthey simply left. But in so doing they didn\\'t cease being victims. One of them\\nis the first cousin of my classmate Kocharian. She lived in Microdistrict No. \\n8, on the fifth floor. I can\\'t tell you the building number and I don\\'t know \\nher name. Then comes the neighbor of one of my relatives, she lived in \\nMicrodistrict 1 near the gift shop. I don\\'t know her name, she lives on the \\nsame landing as the Sumgait procurator. They beat her father, he was holding \\nthe door while his daughter hid, but he couldn\\'t hold the door forever, and \\nwhen she climbed over the balcony to the neighbors\\' they seized her by her \\nbraid. Like the Azerbaijanis were saying, it was a very cultured mob, because \\nthey didn\\'t kill anyone, they only raped them and left. And the third one \\n. . . I don\\'t remember who the third one was anymore.\\n\\nThey transferred us on March 1. Karina still wasn\\'t herself. Yes, we lived for\\ndays in the SK, in the cultural facility, and at the Khimik. They lived there \\nand I lived at the City Party Committee because I couldn\\'t stay with Karina; \\nit was too difficult for me, but I was at peace: she had survived. I could \\nalready walk, but really it was honest words that held me up. Thanks to the \\nsocial work I did there, I managed to persevere. Aleksandr Mikhailovich said, \\n\"If it weren\\'t for the work I would go insane.\" He and I put ourselves in gear\\nand took everything upon ourselves: someone had an infant and needed diapers \\nand free food, and we went to get them. The first days we bought everything, \\nalthough we should have received it for free. They were supposed to have been \\ndispensed free of charge, and they sold it to us. Then, when we found out it \\nwas free, we went to Krayev. At the time, fortunately, you could still drop by\\nto see him like a neighbor, all the more so since everything was still clearly\\nvisible on our faces. Krayev sent a captain down and he resolved the issue.\\n\\nOn March 2 they sent two investigators to see us: Andrei Shirokov and Vladimir\\nFedorovich Bibishev. The way it worked out, in our family they had considered \\nonly Karina and me victims, maybe because she and I wound up in the hospital.\\nMother and Father are considered witnesses, but not victims.\\n\\nShirokov was involved with Karina\\'s case, and Bibishev, with mine. After I \\ntold him everything, he and I planned to sit down with the identikit and\\nrecord everyone I could remember while everything was still fresh in my mind. \\nWe didn\\'t work with the identikit until the very last day because the\\nconditions weren\\'t there. The investigative group worked slowly and did poor \\nquality work solely because the situation wasn\\'t conducive to working: there \\nweren\\'t enough automobiles, especially during the time when there was a \\ncurfew, and there were no typewriters for typing transcripts, and no still or \\nvideo cameras. I think that this was done on purpose. We\\'re not so poor that \\nwe can\\'t supply our investigators with all that stuff. It was done especially \\nto draw out the investigation, all the more so since the local authorities saw\\nthat the Armenians were leaving at the speed of light, never to return to \\nSumgait. And the Armenians had a lot to say I came to an agreement with \\nBibishev, I told him myself, \"Don\\'t you worry, if it takes us a month or two \\nmonths, I\\'ll be here. I\\'m not afraid, I looked death in the eyes five times in\\nthose two days, I\\'ll help you conduct the investigation.\"\\n\\nHe and I worked together a great deal, and I used this to shelter Karina, I\\ngave them so much to do that for a while they didn\\'t have the time to get to\\nher, so that she would at least have a week or two to get back to being her-\\nself. She was having difficulty breathing so we looked for a doctor to take x-\\nrays. She couldn\\'t eat or drink for nine days, she was nauseous. I didn\\'t eat\\nand drank virtually nothing for five days. Then, on the fifth day, when we\\nwere in Baku already, the investigator told me, \"How long can you go on like \\nthis? Well fine, so you don\\'t want to eat, you don\\'t love yourself, you\\'re\\nnot taking care of yourself, but you gave your word that you would see this\\ninvestigation through. We need you.\" Then I started eating, because in fact I\\nwas exhausted. It wasn\\'t enough that I kept seeing those faces in our apart-\\nment in my mind, every day I went to the investigative solitary confinement\\ncells and prisons. I don\\'t know . . . we were just everywhere! Probably in\\nevery prison in the city of Baku and in all the solitary confinement cells of\\nSumgait. At that time they had even turned the drunk tank into solitary \\nconfinement.\\n\\nThus far I have identified 31 of the people who were in our apartment. Mamma \\nidentified three, and Karina, two. The total is 36. Marina didn\\'t identify \\nanyone, she remembers the faces of two or three, But they weren\\'t among the \\nphotographs of those detained. I told of the neighbor I recognized. The one \\nwho went after the axe. He still hasn\\'t been detained, he\\'s still on the \\nloose. He\\'s gone, and it\\'s not clear if he will be found or not. I don\\'t know \\nhis first or last name. I know which building he lived in and I know his \\nsisters\\' faces. But he\\'s not in the city. The investigators informed me that \\neven if the investigation is closed and even if the trial is over they will \\ncontinue looking for him.\\n\\nThe 31 people I identified are largely blue-collar workers from various \\nplants, without education, and of the very lowest level in every respect.\\nMostly their ages range from 20 to 30 years; there was one who was 48. Only\\none of them was a student. He was attending the Azerbaijan Petroleum and\\nChemical Institute in Sumgait, his mother kept trying to bribe the investiga-\\ntor. Once, thinking that I was an employee and not a victim, she said in front\\nof me \"I\\'ll set you up a restaurant worth 500 rubles and give you 600 in cash\\nsimply for keeping him out of Armenia,\" that is, to keep him from landing in\\na prison on Armenian soil. They\\'re all terribly afraid of that, because if the\\ninvestigator is talking with a criminal and the criminal doesn\\'t confess even\\nthough we identified him, they tell him--in order to apply psychological\\npressure--they say, \"Fine, don\\'t confess, just keep silent. When you\\'re in an\\nArmenian prison, when they find out who you are, they\\'ll take care of you\\nin short order.\" That somehow gets to them. Many give in and start to talk.\\n\\nThe investigators and I were in our apartment and videotaped the entire\\npogrom of our apartment, as an investigative experiment. It was only then\\nthat I saw the way they had left our apartment. Even without knowing who was \\nin our apartment, you could guess. They stole, for example, all the money and \\nall the valuables, but didn\\'t take a single book. They tore them up, burned \\nthem, poured water on them, and hacked them with axes. Only the Materials\\nfrom the 27th Congress of the Communist Party of the Soviet Union and James \\nFenimore Cooper\\'s Last of the Mohigans. Oh yes, lunch was ready, we were \\nboiling a chicken, and there were lemons for tea on the table. After they had \\nbeen in our apartment, both the chicken and the lemons were gone. That\\'s \\nenough to tell you what kind of people were in our apartment, people who don\\'t\\neven know anything about books. They didn\\'t take a single book, but they did \\ntake worn clothing, food, and even the cheapest of the cheap, worn-out \\nslippers.\\n\\nOf those whom I identified, four were Kafan Azerbaijanis living in Sumgait. \\nBasically, the group that went seeking \"revenge\"--let\\'s use their word for \\nit--was joined by people seeking easy gain and thrill-seekers. I talked with \\none of them. He had gray eyes, and somehow against the back-drop of all that \\nblack I remembered him specifically because of his of his eyes. Besides taking\\npart in the pogrom of our apartment, he was also involved in the murder of \\nTamara Mekhtiyeva from Building 16. She was an older Armenian who had recently\\narrived from Georgia, she lived alone and did not have anyone in Sumgait. I \\ndon\\'t know why she had a last name like that, maybe she was married to an \\nAzerbaijani. I had laid eyes on this woman only once or twice, and know \\nnothing about her. I do know that they murdered her in her apartment with an \\naxe. Murdering her wasn\\'t enough for them. They hacked her into pieces and \\nthrew them into the tub with water.\\n\\nI remember another guy really well too, he was also rather fair-skinned. You \\nknow, all the people who were in our apartment were darker than dark, both \\ntheir hair and their skin. And in contrast with them, in addition to the grey-\\neyed one, I remember this one fellow, the one l took to be a Lezgin. I \\nidentified him. As it turned out he was Eduard Robertovich Grigorian, born\\nin the city of Sumgait, and he had been convicted twice. One of our own. How \\ndid I remember him? The name Rita was tattooed on his left or right hand. I \\nkept thinking, is that Rita or \"puma,\" which it would be if you read the word \\nas Latin characters instead of Cyrillic, because the Cyrillic \"T\" was the one \\nthat looks like a Latin \"M.\" When they led him in he sat with his hands behind\\nhis back. This was at the confrontation. He swore on every holy book, tried to\\nput in an Armenian word here and there to try and spark my compassion, and \\ntold me that I was making a mistake, and called me \"dear sister.\" He said, \\n\"You\\'re wrong, how could I, an Armenian, raise my hand against my own, an \\nArmenian,\" and so on. He spoke so convincingly that even the investigator \\nasked me, \"Lyuda, are you sure it was he?\" I told him, \"I\\'ll tell you one more\\nidentifying mark. If I\\'m wrong I shall apologize and say I was mistaken. The \\nname Rita is tattooed on his left or right hand.\" He went rigid and became \\npale. They told him, \"Put your hands on the table.\" He put his hands on the\\ntable with the palms up. I said, \"Now turn your hands over,\" but he didn\\'t \\nturn his hands over. Now this infuriated me. If he had from the very start\\nacknowledged his guilt and said that he hadn\\'t wanted to do it, that they \\nforced him or something else, I would have treated him somewhat differently.\\nBut he insolently stuck to his story, \"No, I did not do anything, it wasn\\'t \\nme.\" When they turned his hands over the name Rita was in fact tattooed on his\\nhand. His face distorted and he whispered something wicked. I immediately flew\\ninto a rage. There was an ashtray on the table, a really heavy one, made out \\nof granite or something, very large, and it had ashes and butts in it. \\nCatching myself quite by surprise, I hurled that ashtray at him. But he ducked\\nand the ashtray hit the wall, and ashes and butts rained down on his head and \\nback. And he smiled. When he smiled it provoked me further. I don\\'t know how, \\nbut I jumped over the table between us and started either pounding him or \\nstrangling him; I no longer remember which. When I jumped I caught the \\nmicrophone cord. The investigator was there, Tolya . . .I no longer recall his\\nlast name, and he says, \"Lyudochka, it\\'s a Japanese microphone! Please . . .\\n\" And shut off all the equipment on the spot, it was all being video taped. \\nThey took him away. I stayed, and they talked to me a little to calm me down, \\nbecause we needed to go on working, I only remember Tolya telling me, \"You\\'re \\nsome actress! What a performance!\" I said, \"Tolya, honestly . . . \" Beforehand\\nthey would always tell me, \"Lyuda, more emotion. You speak as calmly as if \\nnothing had happened to you.\" I say, \"I don\\'t have any more strength or \\nemotion. All my emotions are behind me now, I no longer have the strength \\n. . . I don\\'t have the strength to do anything.\" And he says, \"Lyuda, how were\\nyou able to do that?\" And when I returned to normal, drinking tea and watching\\nthe tape, I said, \"Can I really have jumped over that table? I never jumped \\nthat high in gym class.\"\\n\\nSo you could say the gang that took over our apartment was international. Of \\nthe 36 we identified there was an Armenian, a Russian, Vadim Vorobyev, who \\nbeat Mamma, and 34 Azerbaijanis.\\n\\nAt the second meeting with Grigorian, when he had completely confessed his \\nguilt, he told of how on February 27 the Azerbaijanis had come knocking. Among\\nthem were guys--if you can call them guys--he knew from prison. They said, \\n\"Tomorrow we\\'re going after the Armenians. Meet us at the bus station at three\\no\\'clock.\" He said, \"No, I\\'m not coming.\" They told him, \"If you don\\'t come \\nwe\\'ll kill you.\" He said, \"Alright, I\\'ll come.\" And he went.\\n\\nThey also went to visit my classmate from our microdistrict, Kamo Pogosian. He\\nhad also been in prison; I think that together they had either stolen a \\nmotorcycle or dismantled one to get some parts they needed. They called him \\nout of his apartment and told him the same thing: \"Tomorrow we\\'re going to get\\nthe Armenians. Be there.\" He said, \"No.\" They pulled a knife on him. He said, \\n\"I\\'m not going all the same.\" And in the courtyard on the 27th they stabbed \\nhim several times, in the stomach. He was taken to the hospital. I know he was\\nin the hospital in Baku, in the Republic hospital. If we had known about that \\nwe would have had some idea of what was to come on the 28th.\\n\\nI\\'ll return to Grigorian, what he did in our apartment. I remember that he\\nbeat me along with all the rest. He spoke Azerbaijani extremely well. But he\\nwas very fair-skinned, maybe that led me to think that they had it out for\\nhim, too. But later it was proved that he took part in the beating and burning\\nof Shagen Sargisian. I don\\'t know if he participated in the rapes in our \\napartment; I didn\\'t see, I don\\'t remember. But the people who were in our \\napartment who didn\\'t yet know that he was an Armenian said that he did. I \\ndon\\'t know if he confessed or not, and I myself don\\'t recall because I blacked\\nout very often. But I think that he didn\\'t participate in the rape of Karina\\nbecause he was in the apartment the whole time. When they carried her into the\\ncourtyard, he remained in the apartment.\\n\\nAt one point I was talking with an acquaintance about Edik Grigorian. From her\\nI learned that his wife was a dressmaker, his mother is Russian, he doesn\\'t \\nhave a father, and that he\\'s been convicted twice. Well this will be his third\\nand, I hope, last sentence. He beat his wife, she was eternally coming to work\\nwith bruises. His wife was an Armenian by the name of Rita.\\n\\nThe others who were detained . . . well they\\'re little beasts. You really can\\'t\\ncall them beasts, they\\'re just little beasts. They were robots carrying out\\nsomeone else\\'s will, because at the investigation they all said, \"I don\\'t \\nunderstand how I could have done that, I was out of my head.\" But we know that\\nthey were won around to it and prepared for it, that\\'s why they did it. In the\\nname of Allah, in the name of the Koran, in the name of propagating Islam--\\nthat\\'s holy to them--that\\'s why they did everything they were commanded to do.\\nBecause I saw they didn\\'t have minds of their own, I\\'m not talking about their\\nlevel of cultural sophistication or any higher values. No education, they\\nwork, have a slew of children without the means to raise them properly, they \\ncrowd them in, like at the temporary housing, and apparently, they were \\npromised that if they slaughtered the Armenians they would receive apartments.\\nSo off they went. Many of them explained their participation saying, \"they \\npromised us apartments.\"\\n\\nAmong them was one who genuinely repented. I am sure that he repented from the\\nheart and that he just despised himself after the incident. He worked at a \\nchildren\\'s home, an Azerbaijani, he has two children, and his wife works at \\nthe children\\'s home too. Everything that they acquired, everything that they \\nhave they earned by their own labor, and wasn\\'t inherited from parents or \\ngrandparents. And he said, \"I didn\\'t need anything I just don\\'t know . . . how\\nI ended up in that; it was like some hand was guiding me. I had no will of my \\nown, I had no strength, no masculine dignity, nothing.\" And the whole time I\\nkept repeating, \"Now you imagine that someone did the same to your young wife \\nright before your own eyes.\" He sat there and just wailed.\\n\\nBut that leader in the Eskimo dogskin coat was not detained. He performed a \\nmarvelous disappearing act, but I think that they\\'ll get onto him, they just \\nhave to work a little, because that Vadim, that boy, according to his\\ngrandfather, is in touch with the young person who taught him what to do, how \\nto cover his tracks. He was constantly exchanging jackets with other boys he \\nknew and those he didn\\'t, either, and other things as well, and changed \\nhimself like a chameleon so they wouldn\\'t get onto him, but he was detained.\\n\\nThat one in the Eskimo dogskin coat was at the Gambarians\\' after Aleksandr \\nGambarian was murdered. He came in and said, \"Let\\'s go, enough, you\\'ve spilled\\nenough blood here.\"\\n\\nMaybe Karina doesn\\'t know this but the reason they didn\\'t finish her off was \\nthat they were hoping to take her home with them. I heard this from Aunt Tanya\\nand her sons, the Kasumovs, who were in the courtyard near the entryway. They \\nliked her very much, and they had decided to take her to home with them. When \\nKarina came to at one point--she doesn\\'t remember this yet, this the neighbors \\nold me--and she saw that there was no one around her, she started crawling to \\nthe entryway. They saw that she was still alive and came back, they were \\nalready at the third entryway, on their way to the Gambarians\\'. They came back\\nand started beating her to finish her. If she had not come to she would have \\nsustained lesser bodily injuries, they would have beat her less. An older \\nwoman from our building, Aunt Nazan, an Azerbaijani, all but lay on top of \\nKarina, crying and pleading that they leave her alone, but they flung her off.\\nThe woman\\'s grown sons were right nearby; they picked her up in their hands \\nand led her home. She howled and cried out loudly and swore: God is on Earth, \\nhe sees everything, and He won\\'t forgive this.\\n\\nThere was another woman, too, Aunt Fatima, a sick, aging woman from the first \\nfloor, she\\'s already retired. Mountain dwellers, and Azerbaijanis, too, have a\\ncustom: If men are fighting, they throw a scarf under their feet to stop them.\\nBut they trampled her scarf and sent her home. To trample a scarf is \\ntantamount to trampling a woman\\'s honor.\\n\\nNow that the investigation is going on, now that a lot is behind us and we \\nhave gotten back to being ourselves a little, I think about how could these \\nevents that are now called the Sumgait tragedy happen? How did they come \\nabout? How did it start? Could it have been avoided? Well, it\\'s clear that \\nwithout a signal, without permission from the top leadership, it would not \\nhave happened. All the same, I\\'m not afraid to say this, the Azerbaijanis,\\nlet other worthy people take no offense, the better representatives of their \\nnations, let them take no offense, but the Azerbaijanis in their majority are \\na people who are kept in line only by fear of the law, fear of retribution for\\nwhat they have done. And when the law said that they could do all that, like\\nunleashed dogs who were afraid they wouldn\\'t have time to do everything, they \\nthrew themselves from one thing to the next so as to be able to get more done,\\nto snatch a bit more. The smell of the danger was already in the air on\\nFebruary 27. You could tell that something was going to happen. And everyone \\nwho had figured it out took steps to avoid running into those gangs. Many left\\nfor their dachas, got plane tickets for the other end of the country, just got\\nas far away as their legs would carry them.\\n\\nFebruary 27 was a Saturday. I was teaching my third class. The director came \\ninto my classroom and said that I should let the children out, that there had \\nbeen a call from the City Party Committee asking that all teachers gather for \\na meeting at Lenin Square. Well, I excused the children, and there were few \\nteachers left at school, altogether three women, the director, and six or \\nseven men. The rest had already gone home. We got to Lenin Square and there \\nwere a great many people there. This was around five-thirty or six in the \\nevening, no later. They were saying all kinds of rubbish up on the podium and \\nthe crowd below was supporting them stormily, roaring. They spoke over the \\nmicrophone about what had happened in Kafan a few days earlier and that the \\ndriver of a bus going to some district had recently thrown a small Azerbaijani\\nchild off the bus. The speaker affirmed that he was an eyewitness, that he had\\nseen it himself..The crowd started to rage: \"Death to the Armenians! They must\\nbe killed!\" Then a woman went up on stage. I didn\\'t see the woman because \\npeople were clinging to the podium like flies. I could only hear her. The \\nwoman introduced herself as coming from Kafan, and said that the Armenians \\ncut her daughters\\' breasts off, and called, \"Sons, avenge my daughters!\" That \\nwas enough. A portion of the people on the square took off running in the \\ndirection of the factories, toward the beginning of Lenin Street.\\n\\nWe stood there about an hour. Then the director of School 25 spoke, he gave a \\nvery nationalist speech. He said, \"Brother Muslims, kill the Armenians!\" This \\nhe repeated every other sentence. When he said this the crowd supported him \\nstormily, whistling and shouting \"Karabagh!\" He said, \"Karabagh has been our \\nterritory my whole life long, Karabagh is my soul. How can you tear out my \\nheart?\" As though an Azerbaijani would die without Karabagh. \"It\\'s our \\nterritory, the Armenians will never see it. The Armenians must be eliminated. \\nFrom time immemorial Muslims have cleansed the land of infidel Armenians, from\\ntime immemorial, that\\'s the way nature created it, that every 20 to 30 years \\nthe Azerbaijanis should cleanse the land of filth.\" By filth he meant \\nArmenians.\\n\\nI heard this. Before that I hadn\\'t been listening to the speeches closely.\\nMany people spoke and I stood with my back to the podium, talking shop with \\nthe other teachers, and somehow it all went right by, it didn\\'t penetrate,\\nthat in fact something serious was taking place. Then, when one of our\\nteachers said, \"Listen to what he\\'s saying, listen to what idiocy he\\'s \\nspouting,\" we listened. That was the speech of that director. Before that we \\nlistened to the woman\\'s speech.\\n\\nRight then in our group--there were nine of us--the mood changed, and the \\nsubject of conversation and all school matters were forgotten. Our director of\\nstudies, for whom I had great respect, he\\'s an Azerbaijani . . . Before that I\\nhad considered him an upstanding and worthy person, if there was a need to \\nobtain leave we had asked him, he seemed like a good person. So he tells me,\\n\"Lyuda, you know that besides you there are no Armenians on the square? If \\nthey find out that you\\'re an Armenian they\\'ll tear you to pieces. Should I \\ntell them you\\'re an Armenian? Should I tell them you\\'re an Armenian?\" When he \\nsaid it the first time I pretended not to hear it, and then he asked me a \\nsecond time. I turned to the director, Khudurova, and said that it was already\\nafter eight, I was expected at home, and I should be leaving. She answered, \\n\"No, they said that women should stay here until ten o\\'clock,.and men, until \\ntwelve. Stay here.\" There was a young teacher with us, her children were in \\nkindergarten and her husband worked shifts. She asked to leave: \"I left my \\nchildren at the kindergarten.\" The director excused her. When she let her go I\\nturned around, said, \"Good-bye,\" and left with the young teacher, the \\nAzerbaijani. I didn\\'t see them after that.\\n\\nWhen we were walking the buses weren\\'t running, and a crowd from the rally ran\\nnearby us. They had apparently gotten all fired up. It must have become too \\nmuch for them, and they wanted to seek vengeance immediately, so they rushed \\noff. I wasn\\'t afraid this time because I was sure that the other teacher \\nwouldn\\'t say that I was an Armenian.\\n\\nTo make it short, we reached home. Then Karina told of how they had been at \\nthe movies and what had happened there. I started telling of my experience and\\nagain my parents didn\\'t understand that we were in danger. We watched \\ntelevision as usual, and didn\\'t even imagine that tomorrow would be our last \\nday. That\\'s how it all was.\\n\\nAt the City Party Committee I met an acquaintance, we went to school together,\\nZhanna, I don\\'t remember her last name, she lives above the housewares store \\non Narimanov Street. She was there with her father, for some reason she \\ndoesn\\'t have a mother. The two of them were at home alone. While her father \\nheld the door she jumped from the third floor, and she was lucky that the \\nground was wet and that there wasn\\'t anyone behind the building when she went \\nout on the balcony, there was no one there, they were all standing near the \\nentryway. That building was also a lucky one in that there were no murders \\nthere. She jumped. She jumped and didn\\'t feel any pain in the heat of the \\nmoment. A few days later I found out that she couldn\\'t stand up, she had been \\ninjured somehow. That\\'s how people in Sumgait saved their lives, their honor, \\nand their children: any way they could. \\n\\nWhere it was possible, the Armenians fought back. My father\\'s first cousin, \\nArmen M., lives in Block 30. They found out by phone from one of the victims \\nwhat was going on in town. The Armenians in that building all called one \\nanother immediately and all of them armed themselves with axes, knives, even \\nwith muskets and went up to the roof. They took their infants with them, and \\ntheir old women who had been in bed for God knows how many months, they got \\nthem right out of their beds and took everyone upstairs. They hooked \\nelectricity up to the trap door to the roof and waited, ready to fight. Then \\nthey took the daughter of the school board director hostage, she\\'s an \\nAzerbaijani who lived in their building. They called the school board director\\nand told her that if she didn\\'t help them, the 17 Armenians on the roof, to \\nescape alive and unharmed, she\\'d never see her daughter again. I\\'m sure, of \\ncourse, that Armenians would never lay a hand on a woman, it was just the only\\nthing that could have saved them at the time. She called the police. The \\nArmenians made a deal with the local police to go into town. Two armored \\npersonnel carriers and soldiers were summoned They surrounded the entryway and\\nled everyone down from the roof, and off to the side from the armored \\npersonnel carriers was a crowd that was on its way to the building at that \\nvery moment, into Block 30. That\\'s how they defended themselves.\\n\\nI heard that our neighbors, Roman and Sasha Gambarian, resisted. They\\'re big, \\nstrong guys. Their father was killed. And I heard that the brothers put up a \\nstrong defense and lost their father, but were able to save their mother.\\n\\nOne of the neighbors told me that after it happened, when they were looking \\nfor the criminals on March 1 to 2 and detaining everyone they suspected, \\npeople hid people in our entryway, maybe people who were injured or perhaps \\ndead. The neighbors themselves were afraid to go there, and when they went \\nwith the soldiers into our basement they are supposed to have found \\nAzerbaijani corpses. I don\\'t know how many. Even if they had been wounded and \\nput down there, after two days they would have died from loss of blood or \\ninfection--that basement was filled with water. I heard this from the \\nneighbors. And later when I was talking with the investigators the subject \\ncame up and they confirmed it. I know, too, that for several hours the \\nbasement was used to store objects stolen from our apartment. And our neighbor\\ncarried out our carpet, along with the rest: he stole it for himself, posing \\nas one of the criminals. Everyone was taking his own share, and the neighbor \\ntook his, too, and carried it home. And when we came back, when everything \\nseemed to have calmed down, he returned it, saying that it was the only thing \\nof ours he had managed to \"save.\"\\n\\nRaya\\'s husband and father defended themselves. The Trdatovs defended \\nthemselves, and so did other Armenian families. To be sure there were\\nAzerbaijani victims, although we\\'ll never hear anything about them. For some \\nreason our government doesn\\'t want to say that the Armenians were not just \\nvictims, but that they defended the honor of their sisters and mothers, too. \\nIn the TV show \"Pozitsiya\" [Viewpoint] a military man, an officer, said that \\nthe Armenians did virtually nothing to defend themselves. But that\\'s not \\nimportant, the truth will come out regardless.\\n\\nSo that\\'s the price we paid those three days. For three days our courage, our \\nbravery, and our humanity was tested. It was those three days, and not the \\nyears and dozens of years we had lived before them, that showed what we\\'ve \\nbecome, what we grew up to be. Those three days showed who was who.\\n\\nOn that I will conclude my narrative on the Sumgait tragedy. It should be said\\nthat it\\'s not over yet, the trials are still ahead of us, and the punishments\\nreceived by those who so violated us, who wanted to make us into nonhumans \\nwill depend on our position and on the work of the investigators, the \\nProcuracy, and literally of every person who lent his hand to the investiga-\\ntion. That\\'s the price we paid to live in Armenia, to not fear going out on \\nthe street at night, to not be afraid to say we\\'re Armenians, and to not fear\\nspeaking our native tongue.\\n\\n October 15,1988\\n Yerevan\\n\\n\\t\\t\\t- - - reference for #008 - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 118-145\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 A\\nSummary: Part A \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 501\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 Part A\\n Prelude to Current Events in Nagorno-Karabakh\\n\\t\\n\\t\\t\\t\\t(Part A of #008)\\n\\n +------------------------------------------------------------------+\\n | |\\n | \"Oh, yes, I just remembered. While they were raping me they |\\n | repeated quite frequently, \"Let the Armenian women have babies |\\n | for us, Muslim babies, let them bear Azerbaijanis for the |\\n | struggle against the Armenians.\" Then they said, \"Those |\\n | Muslims can carry on our holy cause. Heroes!\" They repeated |\\n | it very often.\" |\\n | |\\n +------------------------------------------------------------------+\\n\\nDEPOSITION OF LYUDMILA GRIGOREVNA M.\\n\\n Born 1959\\n Teacher\\n Sumgait Secondary School No. 10\\n Secretary of the Komsomol Organization at School No. 10\\n Member of the Sumgait City Komsomol Committee Office\\n\\n Resident at Building 17/33B, Apartment 15\\n Microdistrict No. 3\\n Sumgait [Azerbaijan]\\n\\n[Note: The events in Kafan, used as a pretext to attack Armenians in \\n Azerbaijan are false, as verified by independent International Human Rights\\n organizations - DD]\\n\\nI\\'m thinking about the price the Sumgait Armenians paid to be living in\\nArmenia now. We paid for it in human casualties and crippled fates--the\\nprice was too great! Now, after the Sumgait tragedy, we, the victims, divide\\nour lives into \"before\" and \\'\\'after.\" We talk like that: that was before the\\nwar. Like the people who went through World War II and considered it a whole\\nepoch, a fate. No matter how many years go by, no matter how long we live,\\nit will never be forgotten. On the contrary, some of the moments become even \\nsharper: in our rage, in our sorrow, we saw everything differently, but now\\n. . . They say that you can see more with distance, and we can see those\\ninhuman events with more clarity now . . . we more acutely perceive our\\nlosses and everything that happened.\\n\\nNineteen eighty-eight was a leap year. Everyone fears a leap year and wants it\\nto pass as quickly as possible. Yet we never thought that that leap year would\\nbe such a black one for every Sumgait Armenian: those who lost someone and \\nthose who didn\\'t.\\n\\nThat second to last day of winter was ordinary for our family, although you \\ncould already smell danger in the air. But we didn\\'t think that the danger was\\nnear and possible, so we didn\\'t take any steps to save ourselves. At least, as\\nmy parents say, at least we should have done something to save the children. \\nMy parents themselves are not that old, 52 and 53 years. But then they thought\\nthat they had already lived enough, and did everything they could to save us.\\n\\nIn our apartment the tragedy started on February 28, around five in the\\nafternoon. I call it a tragedy, and I repeat: it was a tragedy even though all\\nour family survived. When I recall how they broke down our door my skin\\ncrawls; even now, among Armenians, among people who wish me only well, I feel\\nlike it\\'s all starting over again. I remember how that mob broke into our \\napartment . . . My parents were standing in the hall. My father had an axe in \\nhis hands and had immediately locked both of the doors. Our door was rarely \\nlocked since friends and neighbors often dropped by. We\\'re known as a \\nhospitable family, and we just never really thought about whether the people \\nwho were coming to see us were Azerbaijanis, Jews, or Russians. We had friends\\nof many nationalities, even a Turkmen woman.\\n\\nMy parents were in the hall, my father with an axe. I remember him telling my \\nmother, \"Run to the kitchen for a knife.\" But Mother was detached, pale, as \\nthough she had decided to sell her life a bit dearer. To be honest I never \\nexpected it of her, she\\'s afraid of getting shot and afraid of the dark. A \\ngirlfriend was at the house that day, a Russian girl, Lyuda, and Mamma said, \\n\"No matter what happens, no matter what they do to us, you\\'re not to come out \\nof the bedroom. We\\'re going to tell them that we\\'re alone in the apartment.\"\\n\\nWe went into the bedroom. There were four of us. Marina and the Russian girl \\ncrawled under the bed, and we covered them up with a rug, boxes of dishes, and\\nKarina and I are standing there and looking at one another. The idea that \\nperhaps we were seeing each other for the last time flashed somewhere inside \\nme. I\\'m an emotional person and I express my emotions immediately. I wanted to\\nembrace her and kiss her, as though it were the last second. And maybe Karina \\nwas thinking the same thing, but she\\'s quite reserved. We didn\\'t have time to \\nsay anything to each other because we immediately heard Mamma raise a shout. \\nThere was so much noise from the tramping of feet, from the shouting, and from\\nexcited voices. I couldn\\'t figure what was going on out there because the door\\nto the bedroom was only open a crack. But when Mamma shouted the second time\\nKarina ran out of the bedroom. I ran after her, I had wanted to hold her back,\\nbut when she opened the door and ran out into the hall they saw us \\nimmediately. The only thing I managed to do was close the door behind me, at \\nleast so as to save Marina and her friend. The mob was shouting, all of their \\neyes were shining, all red, like from insomnia. At first about 40 people burst\\nin, but later I was standing with my back to the door and couldn\\'t see. They \\ncame into the hall, into the kitchen, and dragged my father into the other \\nroom. He didn\\'t utter a word, he just raised the axe to hit them, but Mamma \\nsnatched the axe from behind and said, \"Tell them not to touch the children. \\nTell them they can do as they want with us, but not to harm the children.\" She\\nsaid this to Father in Armenian.\\n\\nThere were Azerbaijanis from Armenia among the mob who broke in. They \\nunderstood Armenian perfectly. The local Azerbaijanis don\\'t know Armenian, \\nthey don\\'t need to speak it. And one of them responded in Armenian: \"You and \\nyour children both . . . we\\'re going to do the same thing to you and your \\nchildren that you Armenians did in Kafan. They killed our women, our girls, \\nour mothers, they cut their breasts off, and burned our houses . . . ,\" and \\nso on and so forth, \"and we came to do the same thing to you.\" This whole time\\nsome of them are destroying the house and the others are shouting at us. They \\nwere mostly young people, under 30. At first there weren\\'t any older people \\namong them. And all of their faces were unfamiliar. Sumgait is a small town, \\nall the same, and we know a lot of people by their faces, especially me, I\\'m \\na teacher.\\n\\nSo they dragged my father into the other room. They twisted his arms and took \\nhim in there, no they didn\\'t take him in there, they dragged him in there,\\nbecause he was already unable to walk. They closed the door to that room all \\nbut a crack. We couldn\\'t see what was happening to Father, what they were \\ndoing to him. Then a young man, about 26 years old, started to tear off \\nMamma\\'s sarafan, and Mamma shouted at him in Azerbaijani: \"I\\'m old enough to \\nbe your mother! What are you doing?!\" He struck her. Now he\\'s being held, \\nMamma identified him. I hope he\\'s convicted. Then they went after Karina, \\nwho\\'s been talking to them like a Komsomol leader, as though she were trying \\nto lead them down a different path, as they say, to influence their \\nconsciousness. She told them that what they were doing was wrong, that they \\nmustn\\'t do it. She said, \"Come on, let\\'s straighten this out, without \\nemotions. What do you want? Who are you? Why did you come here? What did we \\never do to you?\" Someone tried to explain who they were and why they had come \\ninto our home, but then the ones in the back--more of them kept coming and \\ncoming--said, \"What are you talking to, them for. You should kill them. We \\ncame here to kill them.\"\\n\\nThey pushed Karina, struck her, and she fell down. They beat her, but she \\ndidn\\'t cry out. Even when they tore her clothes off, she kept repeating, \"What\\ndid we do to you? What did we do to you?\" And even later, when she came to, \\nshe said, \"Mamma, what did we do to them? Why did they do that to us?\"\\n\\nThat group was prepared, I know this because I noticed that some of them only \\nbroke up furniture, and others only dealt with us. I remember that when they \\nwere beating me, when they were tearing my clothes off, I felt neither pain \\nnor shame because my entire attention was riveted to Karina. All I could do \\nwas watch how much they beat her and how painful it was for her, and what they\\ndid to her. That\\'s why I felt no pain. Later, when they carried Karina off, \\nthey beat her savagely . . . It\\'s really amazing that she not only lived, but \\ndidn\\'t lose her mind . She is very beautiful and they did everything they \\ncould to destroy her beauty. Mostly they beat her face, with their fists, \\nkicking her, using anything they could find.\\n\\nMamma, Karina, and I were all in one room. And again I didn\\'t feel any pain, \\njust didn\\'t feel any, no matter how much they beat me, no matter what they \\ndid. Then one of those creeps said that there wasn\\'t enough room in the\\napartment. They broke up the beds and the desk and moved everything into the \\ncorners so there would be more room. Then someone suggested, \"Let\\'s take her \\noutside.\"\\n\\nThose beasts were in Heaven. They did what they would do every day if they \\nweren\\'t afraid of the authorities. Those were their true colors. At the time \\nI thought that in fact they would always behave that way if they weren\\'t \\nafraid of what would happen to them.\\n\\nWhen they carried Karina out and beat Mamma-her face was completely covered \\nwith blood--that\\'s when I started to feel the pain. I blacked out several \\ntimes from the pain, but each moment that I had my eyes open it was as though \\nI were recording it all on film. I think I\\'m a kind person by nature, but I\\'m \\nvengeful, especially if someone is mean to me, and I don\\'t deserve it. I hold \\na grudge a long time if someone intentionally causes me pain. And every time \\nI would come to and see one of those animals on top of me, I\\'d remember them, \\nand I\\'ll remember them for the rest of my life, even though people tell me \\n\"forget,\" you have to forget, you have to go on living.\\n\\nAt some point I remember that they stood me up and told me something, and \\ndespite the fact that I hurt all over--I had been beaten terribly--I found\\nthe strength in myself to interfere with their tortures. I realized that I had\\nto do something: resist them or just let them kill me to bring my suffering \\nto an end. I pushed one of them away, he was a real horse. I remember now that\\nhe\\'s being held, too. As though they were all waiting for it, they seized me\\nand took me out onto the balcony. I had long hair, and it was stuck all over\\nme. One of the veranda shutters to the balcony was open, and I realized that\\nthey planned to throw me out the window, because they had already picked me up\\nwith their hands, I was up in the air. As though for the last time I took a \\nreally deep breath and closed my eyes, and somehow braced myself inside, I \\nsuddenly became cold, as though my heart had sunk into my feet. And suddenly \\nI felt myself flying. I couldn\\'t figure out if I was really flying or if I \\njust imagined it. When I came to I thought now I\\'m going to smash on the \\nground. And when it didn\\'t happen I opened my eyes and realized that I was \\nstill lying on the floor. And since I didn\\'t scream, didn\\'t beg them at all,\\nthey became all the more wild, like wolves. They started to trample me with\\ntheir feet. Shoes with heels on them, and iron horseshoes, like they had spe-\\ncially put them on. Then I lost consciousness.\\n\\nI came to a couple of times and waited for death, summoned it, beseeched it. \\nSome people ask for good health, life, happiness, but at that moment I didn\\'t \\nneed any of those things. I was sure that none of us would survive, and I had \\neven forgotten about Marina; and if none of us was alive, it wasn\\'t worth \\nliving.\\n\\nThere was a moment when the pain was especially great. I withstood inhuman \\npain, and realized that they were going to torment me for a long time to come \\nbecause I had showed myself to be so tenacious. I started to strangle myself, \\nand when I started to wheeze they realized that with my death I was going to\\nput an end to their pleasures, and they pulled my hands from my throat. The \\nperson who injured and insulted me most painfully I remember him very well, \\nbecause he was the oldest in the group. He looked around 48. I know that he \\nhas four children and that he considers himself an ideal father and person, \\none who would never do such a thing. Something came over him then, you see, \\neven during the investigation he almost called me \"daughter,\" he apologized, \\nalthough, of course, he knew that I\\'d never forgive him. Something like that \\nI can never forgive. I have never injured anyone with my behavior, with my \\nwords, or with my deeds, I have always put myself in the other person\\'s shoes,\\nbut then, in a matter of hours, they trampled me entirely. I shall never \\nforget it.\\n\\nI wanted to do myself in then, because I had nothing to lose, because no one \\ncould protect me. My father, who tried to do something against that hoard of \\nbeasts by himself, could do nothing and wouldn\\'t be able to do anything.\\nI knew that I was even sure that he was no longer alive.\\n\\nAnd Ira Melkumian, my acquaintance I knew her and had been to see her family a\\ncouple of times--her brother tried to save her and couldn\\'t, so he tried to \\nkill her, his very own sister. He threw an axe at her to kill her and put an \\nend to her suffering. When they stripped her clothes off and carried her into \\nthe other room, her brother knew what awaited her. I don\\'t know which one it \\nwas, Edik or Igor. Both of them were in the room from which the axe was \\nthrown. But the axe hit one of the people carrying her and so they killed her \\nand made her death even more excruciating, maybe the most excruciating of all \\nthe deaths of those days in Sumgait. I heard about it all from the neighbor \\nfrom the Melkumians\\' landing. His name is Makhaddin, he knows my family a \\nlittle. He came to see how we had gotten settled in the new apartment in Baku,\\nhow we were feeling, and if we needed anything. He\\'s a good person. He said, \\n\"You should praise God that you all survived. But what I saw with my own eyes,\\nI, a man, who has seen so many people die, who has lived a whole life, I,\" he\\nsays, \"nearly lost my mind that day. I had never seen the likes of it and \\nthink I never shall again.\" The door to his apartment was open and he saw \\neverything. One of the brothers threw the axe, because they had already taken \\nthe father and mother out of the apartment. Igor, Edik, and Ira remained. He \\nsaw Ira, naked, being carried into the other room in the hands of six or seven\\npeople. He told us about it and said he would never forget it. He heard the \\nbrothers shouting something, inarticulate from pain, rage, and the fact that \\nthey were powerless to do anything. But all the same they tried to \\ndo something. The guy who got hit with the axe lived. I I\\n\\nAfter I had been unsuccessful at killing myself I saw them taking Marina and \\nLyuda out of the bedroom. I was in such a state that I couldn\\'t even \\nremember my sister\\'s name. I wanted to cry \"Marina!\" out to her, but could\\nnot. I looked at her and knew that it was a familiar, dear face, but couldn\\'t\\nfor the life of me remember what her name was and who she was. And thus\\nI saved her, because when they were taking her out, she, as it turns out, had\\ntold them that she had just been visiting and that she and Lyuda were both\\nthere by chance, that they weren\\'t Armenians. Lyuda\\'s a Russian, you can tell \\nright away, and Marina speaks Azerbaijani wonderfully and she told them that\\nshe was an Azerbaijani. And I almost gave her away and doomed her. I\\'m glad \\nthat at least Marina came out of this all in good physical health . . . \\nalthough her spirit was murdered . . .\\n\\nAt some point I came to and saw Igor, Igor Agayev, my acquaintance, in that \\nmob. He lives in the neighboring building. For some reason I remembered his \\nname, maybe I sensed my defense in him. I called out to him in Russian, \"Igor,\\nhelp!\" But he turned away and went into the bedroom. Just then they were \\ntaking Marina and Lyuda out of the bedroom. Igor said he knew Marina and \\nLyuda, that Marina in fact was Azerbaijani, and he took both of them to the \\nneighbors.\\n\\nAnd the idea stole through me that maybe Igor had led them to our apartment, \\nsomething like that, but if he was my friend, he was supposed to save me.\\n \\nThen they were striking me very hard--we have an Indian vase, a metal one, \\nthey were hitting me on the back with it and I blacked out--they took me out \\nonto the balcony a second time to throw me out the window. They were already \\nsure that I was dead because I didn\\'t react at all to the new blows. Someone \\nsaid, \"She\\'s already dead, let\\'s throw her out.\" When they carried me out onto\\nthe balcony for the second time, when I was about to die the second time, I \\nheard someone say in Azerbaijani: \"Don\\'t kill her, I know her, she\\'s a \\nteacher.\" I can still hear that voice ringing in my ears, but I can\\'t remember\\nwhose voice it was. It wasn\\'t Igor, because he speaks Azerbaijani with an \\naccent: his mother is Russian and they speak Russian at home. He speaks\\nAzerbaijani worse than our Marina does. I remember when they carried me in and\\nthrew me on the bed he came up to me, that person, and \\tI having opened my \\neyes, saw and recognized that person, but immediately passed out cold. I had \\nbeen beaten so much that I didn\\'t have the strength to remember him. I only \\nremember that this person was older and he had a high position. Unfortunately \\nI can\\'t remember anything more.\\n\\nWhat should I say about Igor? He didn\\'t treat me badly. I had heard a lot \\nabout him, that he wasn\\'t that good a person, that he sometimes drank too\\nmuch. Once he boasted to me that he had served in Afghanistan. He knew that \\nwomen usually like bravery in a man. Especially if a man was in Afghanistan,\\nif he was wounded, then it\\'s about eighty percent sure that he will be treated\\nvery sympathetically, with respect. Later I found out that he had served in \\nUfa, and was injured, but that\\'s not in Afghanistan, of course. I found that \\nall out later.\\n\\nAmong the people who were in our apartment, my Karina also saw the Secretary \\nof the Party organization. I don\\'t know his last name, his first name is \\nNajaf, he is an Armenian-born Azerbaijani. But later Karina wasn\\'t so sure,\\nshe was no longer a hundred percent sure that it was he she saw, and she \\ndidn\\'t want to endanger him. She said, \"He was there,\" and a little while \\nlater, \"Maybe they beat me so much that I am confusing him with someone else. \\nNo, it seems like it was he.\" I am sure it was he because when he came to see \\nus the first time he said one thing, and the next time he said something \\nentirely different. The investigators haven\\'t summoned him yet. He came to see\\nus in the Khimik boarding house where we were living at the time. He brought \\ngroceries and flowers, this was right before March 8th; he almost started \\ncrying, he was so upset to see our condition. I don\\'t know if he was putting \\nus on or not, but later, after we had told the investigator and they summoned \\nhim to the Procuracy, he said that he had been in Baku, he wasn\\'t in Sumgait. \\nThe fact that he changed his testimony leads me to believe that Karina is \\nright, that in fact it was he who was in our apartment. I don\\'t know how the \\ninvestigators are now treating him. At one point I wondered and asked, and was\\ntold that he had an alibi and was not in our apartment. Couldn\\'t he have gone \\nto Baku and arranged an alibi? I\\'m not ruling out that possibility.\\n\\nIll now return to our apartment. Mamma had come to. You could say that she \\nbought them off with the gold Father gave her when they were married: her \\nwedding band and her watch were gold. She bought her own and her husband\\'s \\nlives with them. She gave the gold to a 14-year old boy. Vadim Vorobyev. A \\nRussian boy, he speaks Azerbaijani perfectly. He\\'s an orphan who was raised by\\nhis grandfather and who lives in Sumgait on Nizami Street. He goes to a \\nspecial school, one for mentally handicapped children. But I\\'ll say this--I\\'m \\na teacher all the same and in a matter of minutes I can form an opinion--that\\nboy is not at all mentally handicapped. He\\'s healthy, he can think just fine, \\nand analyze, too . . . policemen should be so lucky. And he\\'s cunning, too. \\nAfter that he went home and tore all of the pictures out of his photo album.\\n\\nHe beat Mamma and demanded gold, saying, \"Lady, if you give us all the gold \\nand money in your apartment we\\'ll let you live.\" And Mamma told them where \\nthe gold was. He brought in the bag and opened it, shook out the contents, and \\neveryone who was in the apartment jumped on it, started knocking each other \\nover and taking the gold from one another. I\\'m surprised they didn\\'t kill one \\nanother right then.\\n\\nMamma was still in control of herself. She had been beaten up, her face was\\nblack and blue from the blows, and her eyes were filled with blood, and she \\nran into the other room. Father was lying there, tied up, with a gag in his\\nmouth and a pillow over his face. There was a broken table on top of the pil-\\nlow. Mamma grabbed Father and he couldn\\'t walk; like me, he was half dead, \\nhalfway into the other world. He couldn\\'t comprehend anything, couldn\\'t see, \\nand was covered with black and blue. Mamma pulled the gag out of his mouth, \\nit was some sort of cloth, I think it was a slipcover from an armchair.\\n\\nThe bandits were still in our apartment, even in the room Mamma pulled Father \\nout of, led him out of, carried him out of. We had two armchairs in that room,\\na small magazine table, a couch, a television, and a screen. Three people \\nwere standing next to that screen, and into their shirts, their pants, \\neverywhere imaginable, they were shoving shot glasses and cups from the coffee\\nservice--Mamma saw them out of the corner of her eye. She said, \"I was afraid \\nto turn around, I just seized Father and started pulling him, but at the \\nthreshold I couldn\\'t hold him up, he fell down, and I picked him up again and \\ndragged him down the stairs to the neighbors\\'.\" Mamma remembered one of the \\ncriminals, the one who had watched her with his face half-turned toward her, \\nout of one eye. She says, \"I realized that my death would come from that \\nperson. I looked him in the eyes and he recoiled from fear and went stealing.\"\\nLater they caught that scoundrel. Meanwhile, Mamma grabbed Father and left.\\n\\nI was alone. Igor had taken Marina away, Mamma and Father were gone, Karina \\nwas already outside, I didn\\'t know what they were doing to her. I was left all\\nalone, and at that moment . . . I became someone else, do you understand? Even\\nthough I knew that neither Mother and Father in the other room, nor Marina and\\nLyuda under the bed could save me, all the same I somehow managed to hold out.\\nI went on fighting them, I bit someone, I remember, and I scratched another. \\nBut when I was left alone I realized what kind of people they were, the ones \\nI had observed, the ones who beat Karina, what kind of people they were, the \\nones who beat me, that it was all unnecessary, that I was about to die and \\nthat all of that would die with me.\\n\\nAt some point I took heart when I saw the young man from the next building. I \\ndidn\\'t know his name, but we would greet one another when we met, we knew that\\nwe were from the same microdistrict. When I saw him I said, \"Neighbor, is that\\nyou?\" In so doing I placed myself in great danger. He realized that if I lived\\nI would remember him. That\\'s when he grabbed the axe. The axe that had been \\ntaken from my father. I automatically fell to my knees and raised my hands to \\ntake the blow of the axe, although at the time it would have been better if he\\nhad struck me in the head with the axe and put me out of my misery. When he \\nstarted getting ready to wind back for the blow, someone came into the room. \\nThe newcomer had such an impact on everyone that my neighbor\\'s axe froze in \\nthe air. Everyone stood at attention for this guy, like soldiers in the \\npresence of a general. Everyone waited for his word: continue the atrocities \\nor not. He said, \"Enough, let\\'s go to the third entryway.\" In the third \\nentryway they killed Uncle Shurik, Aleksandr Gambarian. This confirms once \\nagain that they had prepared in advance. Almost all of them left with him, as \\nthey went picking up pillows, blankets, whatever they needed, whatever they \\nfound, all the way up to worn out slippers and one boot, someone else had \\nalready taken the other.\\n\\nFour people remained in the room, soldiers who didn\\'t obey their general. They\\nhad to have come recently, because other faces had flashed in front of me over\\nthose 2 to 3 hours, but I had never seen those three. One of them, Kuliyev (I \\nidentified him later), a native of the Sisian District of Armenia, an \\nAzerbaijani, had moved to Azerbaijan a year before. He told me in Armenian:\\n\"Sister, don\\'t be afraid, I\\'ll drive those three Azerbaijanis out of here.\"\\nThat\\'s just what he said, \"those Azerbaijanis,\" as though he himself were not \\nAzerbaijani, but some other nationality, he said with such hatred, \"I\\'ll drive\\nthem out of here now, and you put your clothes on, and find a hammer and nails\\nand nail the door shut, because they\\'ll be coming back from Apartment 41.\" \\nThat\\'s when I found out that they had gone to Apartment 41. Before that, the \\nperson in the Eskimo dogskin coat, the one who came in and whom they listened \\nto, the \"general,\" said that they were going to the third entryway.\\n\\nKuliyev helped me get some clothes on, because l couldn\\'t do it by myself. \\nMarina\\'s old fur coat was lying on the floor. He threw it over my shoulders, I\\nwas racked with shivers, and he asked where he could find nails and a hammer. \\nHe wanted to give them to me so that when he left I could nail the door shut. \\nBut the door was lying on the floor in the hall.\\n\\nI went out onto the balcony. There were broken windows, and flowers and dirt \\nfrom flowerpots were scattered on the floor. It was impossible to find \\nanything. He told me, \"Well, fine, I won\\'t leave you here. Would any of the \\nneighbors let you in? They\\'ll be back, they won\\'t calm down, they know you\\'re \\nalive.\" He told me all this in Armenian.\\n\\nThen he returned to the others and said, \"What are you waiting for? Leave!\" \\nThey said, \"Ah, you just want to chase us out of here and do it with her \\nyourself. No, we want to do it to.\" He urged them on, but gently, not \\ncoarsely, because he was alone against them, although they were still just\\nboys, not old enough to be drafted. He led them out of the room, and went\\ndown to the third floor with them himself, and said, \"Leave. What\\'s the mat-\\nter, aren\\'t you men? Go fight with the men. What do you want of her?\" And\\nhe came back upstairs. They wanted to come up after him and he realized that \\nhe couldn\\'t hold them off forever. Then he asked me where he could hide me. I \\ntold him at the neighbors\\' on the fourth floor, Apartment 10, we were on really\\ngood terms with them.\\n\\nWe knocked on the door, and he explained in Azerbaijani. The neighbor woman \\nopened the door and immediately said, \"I\\'m an Azerbaijani.\" He said, \"I know. \\nLet her sit at your place a while. Don\\'t open the door to anyone, no one knows\\nabout this, I won\\'t tell anyone. Let her stay at your place.\" She says, \"Fine,\\nhave her come in.\" I went in. She cried a bit and gave me some stockings, I \\nhad gone entirely numb and was racked with nervous shudders. I burst into \\ntears. Even though I was wearing Marina\\'s old fur coat, it\\'s a short one, a \\nhalf-length, I was cold all the same. I asked, \"Do you know where my family \\nis, what happened to them?\" She says, \"No, I don\\'t know anything. I\\'m afraid \\nto go out of the apartment, now they\\'re so wild that they don\\'t look to see \\nwho\\'s Azerbaijani and who\\'s Armenian.\" Kuliyev left. Ten minutes later my \\nneighbor says, \"You know, Lyuda, I don\\'t want to lose my life because of you, \\nor my son and his wife. Go stay with someone else.\" During the butchery in our\\napartment one of the scum, a sadist, took my earring in his mouth--I had pearl\\nearrings on--and ripped it out, tearing the earlobe. The other earring was \\nstill there. When I\\'m nervous I fix my hair constantly, and then, when I \\ntouched my ear, I noticed that I had one earring on. I took it out and gave it\\nto her. She took the earring, but she led me out of the apartment.\\n\\nI went out and didn\\'t know where to go. I heard someone going upstairs. I \\ndon\\'t know who it was but assumed it was them. With tremendous difficulty I \\nend up to our apartment, I wanted to die in my own home. I go into the \\napartment and hear that they are coming up to our place, to the fifth floor. \\nI had to do something. I went into the bedroom where Marina and Lyuda had \\nhidden and saw that the bed was overturned. Instead of hiding I squatted near \\nsome broken Christmas ornaments, found an unbroken one, and started sobbing. \\nThen they came in. Someone said that there were still some things to take. I \\nthink that someone pushed me under the bed. I lay on the floor, and there were\\nbroken ornaments on it, under my head and legs. I got all cut up, but I lay \\nthere without moving. My heart was beating so hard it seemed the whole town \\ncould hear it. There were no lights on. Maybe that\\'s what saved me. They were \\nburning matches, and toward the end they brought in a candle. They started\\npicking out the clothes that could still be worn. They took Father\\'s sport \\njacket and a bedspread, the end of which was under my head. They pulled on the\\none end, and it felt like they were pulling my hair out. I almost cried out. \\nAnd again I realized I wasn\\'t getting out of there alive, and I started to \\nstrangle myself again. I took my throat in one hand, and pressed the other on \\nmy mouth, so as not to wheeze, so that I would die and they would only find me\\nafterward. They were throwing the burned matches under the bed, and I got \\nburned, but I withstood it. Something inside of me held on, someone\\'s hand was\\nprotecting me to the end. I knew that I was going to die, but I didn\\'t know \\nhow. I knew that if I survived I would walk out of that apartment, but if \\nI found out that one of my family had died, I would die for sure, because I \\nhad never been so close to death and couldn\\'t imagine how you could go on \\nliving without your mother or father, or without your sister. Marina, I \\nthought, was still alive: she went to Lyuda\\'s place or someone is hiding her. \\nI tried to think that Igor wouldn\\'t let them be killed. He served in \\nAfghanistan, he should protect her.\\n\\nWhile I was strangling myself I said my good-byes to everyone. And then I\\nthought, how could Marina survive alone. If they killed all of us, how would \\nshe live all by herself? There were six people in the room. They talked among \\nthemselves and smoked. One talked about his daughter, saying that there was no\\nchildren\\'s footwear in our apartment that he could take for his daughter. \\nAnother said that he liked the apartment--recently we had done a really good \\njob fixing everything up--and that he would live there after everything was \\nall over. They started to argue. A third one says, \"How come you get it? I \\nhave four children, and there are three rooms here, that\\'s just what I need. \\nAll these years I\\'ve been living in God-awful places.\" Another one says, \\n\"Neither of you gets it. We\\'ll set fire to it and leave.\" Then someone said \\nthat Azerbaijanis live right next door, the fire could move over to their\\nplace. And they, to my good fortune, didn\\'t set fire to the apartment, and\\nleft.\\n\\nOh, yes, I just remembered. While they were raping me they repeated quite \\nfrequently, \"Let the Armenian women have babies for us, Muslim babies, let \\nthem bear Azerbaijanis for the struggle against the Armenians.\" Then they \\nsaid, \"Those Muslims can carry on our holy cause. Heroes!\" They repeated it \\nvery often.\\n\\n\\t\\t - - - reference for #008 - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 118-145\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: A1RODRIG@vma.cc.nd.edu\\nSubject: What a HATE filled newsgroup!!!!\\nOrganization: Bullwinkle Fan Club\\nLines: 5\\n\\nIs this group for real? I honestly can't believe that most of you expect you\\nor your concerns to be taken remotely seriously if you behave this way in a\\nforum for discussion. Doesn't it ever occur to those of you who write letters\\nlike the majority of those in this group that you're being mind-bogglingly\\nhypocritical?\\n\",\n", + " 'From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: Should liability insurance be required?\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 14\\nDistribution: usa\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nTommy Marcus McGuire (mcguire@cs.utexas.edu) wrote:\\n: You know, it sounds suspiciously like no fault doesn\\'t even do what it\\n: was advertised as doing---getting the lawyers out of the loop.\\n\\n: Sigh. Another naive illusion down the toilet....\\n\\nSince most legislators are lawyers it is very difficult to get any\\nlaw passed that would cut down on lawyers\\' business. That is why\\n\"No-fault\" insurance laws always backfire. \\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race, NASA resources, why?\\nOrganization: U of Toronto Zoology\\nLines: 33\\n\\nIn article <1993Apr21.210712.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>> So how much would it cost as a private venture, assuming you could talk the\\n>> U.S. government into leasing you a couple of pads in Florida? \\n>\\n>Why must it be a US Government Space Launch Pad? Directly I mean...\\n\\nIn fact, you probably want to avoid US Government anything for such a\\nproject. The pricetag is invariably too high, either in money or in\\nhassles.\\n\\nThe important thing to realize here is that the big cost of getting to\\nthe Moon is getting into low Earth orbit. Everything else is practically\\ndown in the noise. The only part of getting to the Moon that poses any\\nnew problems, beyond what you face in low orbit, is the last 10km --\\nthe actual landing -- and that is not immensely difficult. Of course,\\nyou *can* spend sagadollars (saga- is the metric prefix for beelyuns\\nand beelyuns) on things other than the launches, but you don't have to.\\n\\nThe major component of any realistic plan to go to the Moon cheaply (for\\nmore than a brief visit, at least) is low-cost transport to Earth orbit.\\nFor what it costs to launch one Shuttle or two Titan IVs, you can develop\\na new launch system that will be considerably cheaper. (Delta Clipper\\nmight be a bit more expensive than this, perhaps, but there are less\\nambitious ways of bringing costs down quite a bit.) Any plan for doing\\nsustained lunar exploration using existing launch systems is wasting\\nmoney in a big way.\\n\\nGiven this, questions like whose launch facilities you use are *not* a\\nminor detail; they are very important to the cost of the launches, which\\ndominates the cost of the project.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: ucer@ee.rochester.edu (Kamil B. Ucer)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: University of Rochester Department of Electrical Engineering\\n\\nIn article <1993Apr16.142935.535@cs.yale.edu> karage@scus1.ctstateu.edu (Angelos Karageorgiou Greek and Macedon the only combination) writes:\\n>\\n>\\tOk. My Aykut., what about the busload of Greek turists that was\\n>torched, and all the the people in the buis died. Happened oh, about 5\\n>years ago in Instanbul.\\n>\\tWhat about the Greeks in the islands of Imbros and tenedos, they\\n>are not allowed to have churches any more, instead momama turkey has\\n>turned the church into a warehouse, I got a picture too.\\n>\\tWhat about the pontian Greeks of Trapezounta and Sampsounta,\\n>what you now call Trabzon and Sampson, they spoke a 2 thousand year alod\\n>language, are there any left that still speek or were they Islamicised?\\n>\\tBefore we start another flamefest , and before you start quoting\\n>Argic all over again, or was it somebody else?, please think. I know it\\n>is a hard thing to do for somebody not equipped , but try nevertheless.\\n>\\tIf Turks in Greece were so badly mistreated how come they\\n>elected two,m not one but two, representatives in the Greek government?\\n>How come they have free(absolutely free) hospitalization and education?\\n>Do the Turks in Turkey have so much?If they do then you have every right\\n>to shout, untill then you can also move to Greece and enjoy those\\n>privileges. But I forget , for you do study in a foreign university,\\n>some poor shod is tiling the earth with his own sweat.\\n>\\tBTW is Aziz Nessin still writing poetry? I\\'d like to read some\\n>of his new stuff. Also who was the guy that wrote \"On the mountains of\\n>Tayros.\" ? please respond kindly to the last two questions, I am\\n>interested in finding more books from these two people.\\n>\\t\\n>\\n>-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n>Yeian kai Eytyxeian | The opinions expressed above are nobody else\\'s but\\n>Angelos Karageorgiou | mine,MINE,MIIINNE,MIIINNEEEE,aaaarrgghhhh..(*&#$$*((+_$%\\n>Live long & Prosper | NO CARRIER\\n>-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n>> Any and all mail sent to me , can and will be used in any manner <\\n>> whatsoever. I may repost or publicise parts of messages or whole <\\n>> messages. If you disagree, please exercise your freedom of speech <\\n>> and don\\'t send me anything. <\\n\\nDear Mr. Karageorgiou,\\nI would like to clarify several misunderstandings in your posting. First the bus incident which I believe was in Canakkale three years ago, was done by a mentally ill person who killed himself afterwards. The Pontus Greeks were ex- changedwith Turks in Greece in 1923. I have to logout now since my Greek friend\\nYiorgos here wants to use the computer. Well, I\\'ll be back.Asta la vista baby.\\n\\n',\n", + " \"From: bss2p@kelvin.seas.Virginia.EDU (Brent S. Stone)\\nSubject: Wanted: Advice for New Cylist (Ditto)\\nOrganization: University of Virginia\\nLines: 21\\n\\nIn article blaisec@sr.hp.com (Blaise Cirelli) writes:\\n>\\n\\n\\n\\tI'm thinking about becoming a bike owner this year\\nw/o any bike experience thus far. I figure that getting a \\ndecent used bike for under $1K the thing would pay for itself\\nwhile I'm at grad school (car permits are $$$ where I'm going\\nand who want's to ride a bus). I'm looking for advice\\non a first bike - best models/years. I'm NOT looking for\\nan old loud roaring thing that sounds like a monster. The\\nquit whirring of newer engines is more to my liking.\\n\\nApprec any advice.\\n\\nThanks,\\n\\nBS\\n\\n\\n\\n\",\n", + " 'From: pgf@srl02.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 8\\n\\nThe only ether I see here is the stuff you must\\nhave been breathing before you posted...\\n\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", + " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Keith IS a relativist!\\nOrganization: California Institute of Technology, Pasadena\\nLines: 10\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\n9051467f@levels.unisa.edu.au (The Desert Brat) writes:\\n\\n>Keith, if you start wafffling on about how it is different for a human\\n>to maul someone thrown into it's cage (so to speak), you'd better start\\n>posting tome decent evidence or retract your 'I think there is an absolute\\n>morality' blurb a few weeks ago.\\n\\nDid I claim that there was an absolute morality, or just an objective one?\\n\\nkeith\\n\",\n", + " 'From: dragon@access.digex.com (Covert C Beach)\\nSubject: Re: Mars Observer Update - 03/29/93\\nOrganization: Express Access Online Communications, Greenbelt, MD USA\\nLines: 33\\nDistribution: world\\nNNTP-Posting-Host: access.digex.net\\nKeywords: Mars Observer, JPL\\n\\nIn article <1pcgaa$do1@access.digex.com> prb@access.digex.com (Pat) writes:\\n>Now isn\\'t that always the kicker. It does seem stupid to drop\\n>a mission like Magellan, because there isn\\'t 70 million a year\\n>to keep up the mission. You\\'d think that ongoing science could\\n>justify the money. JPL gets accused of spending more then neccessary,\\n>probably some validity in that, but NASA does put money into some\\n>things that really are Porcine. Oh well.\\n\\nI attended a colloquium at Goddard last fall where the head of the \\noperations section of NASA was talking about what future missions\\nwere going to be funded. I don\\'t remember his name or title off hand\\nand I have discarded the colloquia announcement. In any case, he was \\nasked about that very matter: \"Why can\\'t we spend a few million more\\nto keep instruments that we already have in place going?\"\\n\\nHis responce was that there are only so many $ available to him and\\nthe lead time on an instrument like a COBE, Magellan, Hubble, etc\\nis 5-10 years minumum. If he spent all that could be spent on using\\ncurrent instruments in the current budget enviroment he would have\\nvery little to nothing for future projects. If he did that, sure\\nin the short run the science would be wonderful and he would be popular,\\nhowever starting a few years after he had retired he would become\\none of the greatest villans ever seen in the space community for not\\nfunding the early stages of the next generation of instruments. Just\\nas he had benefited from his predicessor\\'s funding choices, he owed it\\nto whoever his sucessor would eventually be to keep developing new\\nmissions, even at the expense of cutting off some instruments before\\nthe last drop of possible science has been wrung out of them.\\n\\n\\n-- \\nCovert C Beach\\ndragon@access.digex.com\\n',\n", + " 'From: maverick@wpi.WPI.EDU (T. Giaquinto)\\nSubject: General Information Request\\nOrganization: Worcester Polytechnic Institute, Worcester, MA 01609-2280\\nLines: 11\\nNNTP-Posting-Host: wpi.wpi.edu\\n\\n\\n\\tI am looking for any information about the space program.\\nThis includes NASA, the shuttles, history, anything! I would like to\\nknow if anyone could suggest books, periodicals, even ftp sites for a\\nnovice who is interested in the space program.\\n\\n\\n\\n\\t\\t\\t\\t\\tTodd Giaquinto\\n\\t\\t\\t\\t\\tmaverick@wpi.WPI.EDU\\n\\t\\t\\t\\t\\t\\n',\n", + " 'From: ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck)\\nSubject: Re: Distance between two Bezier curves\\nOrganization: My own node in Groningen, NL.\\nLines: 14\\n\\npes@hutcs.cs.hut.fi (Pekka Siltanen) writes:\\n\\n> Suppose two cubic Bezier curves (control points V1,..,V4 and W1,..,W4)\\n> which have equal first and last control points (V1 = W1, V4 = W4). How do I \\n> get upper bound for distance between these curves. \\n\\nWhich distance? The distance between one point (t = ti) on the first curve\\nand a point on the other curve with same parameter (u = ti)?\\n\\n> \\n> Any references appreciated. Thanks in anvance.\\n> \\n> Pekka Siltanen\\n\\n',\n", + " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Freedom In U.S.A.\\nOrganization: University of Virginia\\nLines: 11\\n\\n\\tI have just started reading the articles in this news\\ngroup. There seems to be an attempt by some members to quiet\\nother members with scare tactics. I believe one posting said\\nthat all postings by one person are being forwarded to his\\nserver who keeps a file on him in hope that \"Appropriate action\\nmight be taken\". \\n\\tI don\\'t know where you guys are from but in America\\nsuch attempts to curtail someones first amendment rights are\\nnot appreciated. Here, we let everyone speak their mind\\nregardless of how we feel about it. Take your fascistic\\nrepressive ideals back to where you came from.\\n',\n", + " 'From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: Twit Bicyclists (was RE: Oh JOY!)\\nOrganization: AT&T\\nDistribution: na\\nLines: 20\\n\\nIn article <1993Apr2.045903.6066@spectrum.xerox.com> cooley@xerox.com writes:\\n>Yo, ASSHOLES. I hope you are all just kidding\\n>because it\\'s exactly that kind of attidue that gets\\n>many a MOTORcyclist killed: \"Look at the leather\\n>clad poseurs! Watch how they swirve and\\n>swear as I pretend that they don\\'t exist while\\n>I change lanes.\"\\n>\\n>If you really find it necesary to wreck others\\n>enjoyment of the road to boost your ego, then\\n>it is truely you who are the poseur.\\n>\\n>--aaron\\n\\nDisgruntled Volvo drivers. What are they rebelling against?\\n \\n================================================================================\\n Steatopygias\\'s \\'R\\' Us. doh#0000000005 That ain\\'t no Hottentot.\\n Sesquipedalian\\'s \\'R\\' Us. ZX-10. AMA#669373 DoD#564. There ain\\'t no more.\\n================================================================================\\n',\n", + " 'From: kjenks@gothamcity.jsc.nasa.gov\\nSubject: Space Station Redesign, JSC Alternative #4\\nOrganization: NASA/JSC/GM2, Space Shuttle Program Office \\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 71\\n\\nI have 19 (2 MB worth!) uuencode\\'d GIF images contain charts outlining\\none of the many alternative Space Station designs being considered in\\nCrystal City. Mr. Mark Holderman works down the hall from me, and can\\nbe reached for comment at (713) 483-1317, or via e-mail at\\nmholderm@jscprofs.nasa.gov.\\n\\nMark proposed this design, which he calls \"Geode\" (\"rough on the\\noutside, but a gem on the inside\") or the \"ET Strongback with\\nintegrated hab modules and centrifuge.\" As you can see from file\\ngeodeA.gif, it uses a Space Shuttle External Tank (ET) in place of much\\nof the truss which is currently part of Space Station Freedom. The\\nwhite track on the outside of the ET is used by the Station Remonte\\nManipulator System (SRMS) and by the Reaction Control System (RCS)\\npod. This allows the RCS pod to move along the track so that thrusting\\ncan occur near the center of gravity (CG) of the Station as the mass\\nproperties of the Station change during assembly.\\n\\nThe inline module design allows the Shuttle to dock more easily because\\nit can approach closer to the Station\\'s CG and at a structurally strong\\npart of the Station. In the current SSF design, docking forces are\\nlimited to 400 pounds, which seriously constrains the design of the\\ndocking system.\\n\\nThe ET would have a hatch installed pre-flight, with little additional\\nlaunch mass. We\\'ve always had the ability to put an ET into orbit\\n(contrary to some rumors which have circulated here), but we\\'ve never\\nhad a reason to do it, while we have had some good reasons not to\\n(performance penalties, control, debris generation, and eventual\\nde-orbit and impact footprint). Once on-orbit, we would vent the\\nresidual H2. The ET insulation (SOFI) either a) erodes on-orbit from\\nimpact with atomic Oxygen, or b) stays where it is, and we deploy a\\nKevlar sheath around it to protect it and keep it from contaminating\\nthe local space environment. Option b) has the advantage of providing\\nfurther micrometeor protection. The ET is incredibly strong (remember,\\nit supports the whole stack during launch), and could serve as the\\nnucleus for a much more ambitious design as budget permits.\\n\\nThe white module at the end of ET contains a set of Control Moment\\nGyros to be used for attitude control, while the RCS will be used\\nfor gyro desaturation. The module also contains a de-orbit system\\nwhich can be used at the end of the Station\\'s life to perform a\\ncontrolled de-orbit (so we don\\'t kill any more kangaroos, like we\\ndid with Skylab).\\n\\nThe centrifuge, which has the same volume as a hab module, could be\\nused for long-term studies of the effects of lunar or martian gravity\\non humans. The centrifuge will be used as a momentum storage device\\nfor the whole attitude control system. The centrifuge is mounted on\\none of the modules, opposite the ET and the solar panels.\\n\\nThis design uses most of the existing SSF designs for electrical,\\ndata and communication systems, getting leverage from the SSF work\\ndone to date.\\n\\nMark proposed this design at Joe Shea\\'s committee in Crystal City,\\nand he reports that he was warmly received. However, the rumors\\nI hear say that a design based on a wingless Space Shuttle Orbiter\\nseems more likely.\\n\\nPlease note that this text is my interpretation of Mark\\'s design;\\nyou should see his notes in the GIF files. \\n\\nInstead of posting a 2 MB file to sci.space, I tried to post these for\\nanon-FTP in ames.arc.nasa.gov, but it was out of storage space. I\\'ll\\nlet you all know when I get that done.\\n\\n-- Ken Jenks, NASA/JSC/GM2, Space Shuttle Program Office\\n kjenks@gothamcity.jsc.nasa.gov (713) 483-4368\\n\\n \"...Development of the space station is as inevitable as \\n the rising of the sun.\" -- Wernher von Braun\\n',\n", + " 'Subject: Re: islamic authority over women\\nFrom: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 46\\n\\nIn article <1993Apr5.023044.19580@ultb.isc.rit.edu) snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n)\\n)That\\'s your mistake. It would be better for the children if the mother\\n)raised the child.\\n)\\n)One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n)because of the love of their mom. It makes for more virile men.\\n)Compare that with how homos are raised. Do a study and you will get my\\n)point.\\n)\\n)But in no way do you have a claim that it would be better if the men\\n)stayed home and raised the child. That is something false made up by\\n)feminists that seek a status above men. You do not recognize the fact\\n)that men and women have natural differences. Not just physically, but\\n)mentally also.\\n) [...]\\n)Your logic. I didn\\'t say americans were the cause of worlds problems, I\\n)said atheists.\\n) [...]\\n)Becuase they have no code of ethics to follow, which means that atheists\\n)can do whatever they want which they feel is right. Something totally\\n)based on their feelings and those feelings cloud their rational\\n)thinking.\\n) [...]\\n)Yeah. I didn\\'t say that all atheists are bad, but that they could be\\n)bad or good, with nothing to define bad or good.\\n)\\n\\n Awright! Bobby\\'s back, in all of his shit-for-brains glory. Just\\n when I thought he\\'d turned the corner of progress, his Thorazine\\n prescription runs out. \\n\\n I\\'d put him in my kill file, but man, this is good stuff. I wish\\n I had his staying power.\\n\\n Fortunately, I learned not to take him too seriously long,long,long\\n ago.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n',\n", + " 'From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: free moral agency and Jeff Clark\\nOrganization: Technical University Braunschweig, Germany\\nLines: 30\\n\\nIn article \\nhealta@saturn.wwc.edu (TAMMY R HEALY) writes:\\n \\n(Deletion)\\n>You also said,\"Why did millions suffer for what Adam and Ee did? Seems a\\n>pretty sick way of going about creating a universe...\"\\n>\\n>I\\'m gonna respond by giving a small theology lesson--forgive me, I used\\n>to be a theology major.\\n>First of all, I believe that this planet is involved in a cosmic struggle--\\n>\"the Great Controversy betweed Christ and Satan\" (i borrowed a book title).\\n>God has to consider the interests of the entire universe when making\\n>decisions.\\n(Deletion)\\n \\nAn universe it has created. By the way, can you tell me why it is less\\ntyrannic to let one of one\\'s own creatures do what it likes to others?\\nBy your definitions, your god has created Satan with full knowledge what\\nwould happen - including every choice of Satan.\\n \\nCan you explain us what Free Will is, and how it goes along with omniscience?\\nDidn\\'t your god know everything that would happen even before it created the\\nworld? Why is it concerned about being a tyrant when noone would care if\\neverything was fine for them? That the whole idea comes from the possibility\\nto abuse power, something your god introduced according to your description?\\n \\n \\nBy the way, are you sure that you have read the FAQ? Especially the part\\nabout preaching?\\n Benedikt\\n',\n", + " 'From: cptully@med.unc.edu (Christopher P. Tully,Pathology,62699)\\nSubject: Re: TIFF: philosophical significance of 42\\nNntp-Posting-Host: helix.med.unc.edu\\nReply-To: cptully@med.unc.edu\\nOrganization: UNC-CH School of Medicine\\nLines: 40\\n\\nIn article 8HC@mentor.cc.purdue.edu, ab@nova.cc.purdue.edu (Allen B) writes:\\n>In article <1993Apr10.160929.696@galki.toppoint.de> ulrich@galki.toppoint.de \\n>writes:\\n>> According to the TIFF 5.0 Specification, the TIFF \"version number\"\\n>> (bytes 2-3) 42 has been chosen for its \"deep philosophical \\n>> significance\".\\n>> Last week, I read the Hitchhikers Guide To The Galaxy,\\n>> Is this actually how they picked the number 42?\\n>\\n>I\\'m sure it is, and I am not amused. Every time I read that part of the\\n>TIFF spec, it infuriates me- and I\\'m none too happy about the\\n>complexity of the spec anyway- because I think their \"arbitrary but\\n>carefully chosen number\" is neither. Additionally, I find their\\n>choice of 4 bytes to begin a file with meaningless of themselves- why\\n>not just use the letters \"TIFF\"?\\n>\\n>(And no, I don\\'t think they should have bothered to support both word\\n>orders either- and I\\'ve found that many TIFF readers actually\\n>don\\'t.)\\n>\\n>ab\\n\\nWhy so up tight? FOr that matter, TIFF6 is out now, so why not gripe\\nabout its problems? Also, if its so important to you, volunteer to\\nhelp define or critique the spec.\\n\\nFinally, a little numerology: 42 is 24 backwards, and TIFF is a 24 bit\\nimage format...\\n\\nChris\\n---\\n*********************************************************************\\nChristopher P. Tully\\t\\t\\t\\tcptully@med.unc.edu\\nUniv. of North Carolina - Chapel Hill\\nCB# 7525\\t\\t\\t\\t\\t(919) 966-2699\\nChapel Hill, NC 27599\\n*********************************************************************\\nI get paid for my opinions, but that doesn\\'t mean that UNC or anybody\\n else agrees with them.\\n\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Re: Killer\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 95\\n\\nIn article <1993Apr21.032746.10820@doug.cae.wisc.edu> yamen@cae.wisc.edu\\n(Soner Yamen) responded to article <1r20kr$m9q@nic.umass.edu> BURAK@UCSVAX.\\nUCS.UMASS.EDU (AFS) who wrote:\\n\\n[AFS] Just a quick comment::\\n[AFS]\\n[AFS] Armenians killed Turks------Turks killed Armenians.\\n[AFS]\\n[AFS] Simple as that. Can anybody deny these facts?\\n\\nJews killed Germans in WWII -- Germans killed Jews in WWII, BUT there was \\nquite a difference in these two statements, regardless of what Nazi \\nrevisionists say!\\n\\n[SY] My grand parents were living partly in todays Armenia and partly in\\n[SY] todays Georgia. There were villages, Kurd/Turk (different Turkic groups)\\n[SY] Georgian (muslim/christian) Armenian and Farsi... Very near to eachother.\\n[SY] The people living there were aware of their differences. They were \\n[SY] different people. For example, my grandfather would not have been happy \\n[SY] if his doughter had willed to marry an Armenian guy. But that did not \\n[SY] mean that they were willing to kill eachother. No! They were neighbors.\\n\\nOK.\\n\\n[SY] Armenians killed Turks. Which Armenians? Their neoghbors? As far as my\\n[SY] grandparents are concerned, the Armenians attacked first but these \\n[SY] Armenians were not their neighbors. They came from other places. Maybe \\n[SY] first they had a training at some place. They were taught to kill people,\\n[SY] to hate Turks/Kurds? It seems so...\\n\\nThere is certainly a difference between the planned extermination of the\\nArmenians of eastern Turkey beginning in 1915, with that of the Armeno-\\nGeorgian conflicts of late 1918! The argument is not whether Armenians ever \\nkilled in their collective existence, but rather the wholesale destruction of\\nAnatolian Armenians under orders of the Turkish government. An Armenian-\\nGeorgian dispute over the disposition of Akhalkalak, Lori, and Pambak after\\nthe Turkish Third Army evacuated the region, cannot be equated with the\\nextermination of Anatolian Armenians. Many Armenians and Georgians died\\nin this area in the scramble to re-occupy these lands and the lack of\\npreparation for the winter months. This is not the same as the Turkish \\ngenocide of the Armenians nearly four years earlier, hundreds of kilometers\\naway!\\n\\n[SY] Anyway, but after they killed/raped/... Turks and other muslim people\\n[SY] around, people assumed that \\'Armenians killed us, raped our women\\',\\n[SY] not a particular group of people trained in some camps, maybe backed\\n[SY] by some powerful states... After that step, you cannot explain these \\n[SY] people not to hate all Armenians. \\n\\nI don\\'t follow, perhaps the next paragraph will shed some light.\\n\\n[SY] So what am I trying to point out? First, at least for that region,\\n[SY] you cannot blame Turks/Kurds etc since it was a self defense situation.\\n[SY] Most of the Armenians, I think, are not to blame either. But since some\\n[SY] people started that fire, it is not easy to undo it. There are facts.\\n[SY] People cannot trust eachother easily. It is very difficult to establish\\n[SY] a good relation based on mutual respect and trust between nations with\\n[SY] different ethnic/cultural/religious backgrounds but it is unfortunately\\n[SY] very easy to start a fire!\\n\\nAgain, the fighting between Armenians and Georgians in 1918/19 had little to\\ndo with the destruction of the Armenians in Turkey. It is interesting that\\nthe Georgian leaders of the Transcaucasian Federation (Armenia, Azerbaijan, \\nand Georgia) made special deals with Turkish generals not to pass through \\nTiflis on their way to Baku, in return for Georgians not helping the Armenians \\nmilitarily. Of course, as Turkish troops marched across what was left of\\nCaucasian Armenia, many Armenians went north and such population movement \\ncaused problems with the locals. This is in no comparison with events 4 years \\nearlier in eastern Anatolia. My father\\'s mother\\'s family escaped Cemiskezek -> \\nErzinka -> Erzerum -> Nakhitchevan -> Tiflis -> Constantinople -> \\nMassachusetts. \\n\\n[SY] My grandparents were *not* bloodthirsty people. We did not experience\\n[SY] what they had to endure... They had to leave their lands, there were\\n[SY] ladies, old ladies, all of her children killed while she forced to\\n[SY] witness! Young women put dirt at their face to make themselves\\n[SY] unattractive! I don\\'t want to go into any graphic detail.\\n\\nMy grandmother\\'s brother was forced to dress up as a Kurdish women, and paste\\npotato skins on his face to look ugly. The Turks would kill any Armenian\\nyoung man on sight in Dersim. Because their family was rather influential,\\nlocal Kurds helped them escape before it was too late. This is why I am alive \\ntoday.\\n\\n[SY] You may think that my sources are biased. They were biased in some sense.\\n[SY] They experienced their own pain, of course. That is the way it is. But\\n[SY] as I said they were living in peace with their neighbors before. Why \\n[SY] should they become enemies?\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Commercial mining activities on the moon\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 27\\n\\nIn article steinly@topaz.ucsc.edu (Steinn Sigurdsson) writes:\\n\\n>Seriously though. If you were to ask the British government\\n>whether their colonisation efforts in the Americas were cost\\n>effective, what answer do you think you\\'d get? What if you asked\\n>in 1765, 1815, 1865, 1915 and 1945 respectively? ;-)\\n\\nWhat do you mean? Are you saying they thought the effort was\\nprofitable or that the money was efficiently spent (providing max\\nvalue per money spent)?\\n\\nI think they would answer yes on ballance to both questions. Exceptions\\nwould be places like the US from the French Indian War to the end of\\nthe US Revolution. \\n\\nBut even after the colonies revolted or where given independance the\\nBritish engaged in very lucrative trading with the former colonies.\\nFive years after the American Revolution England was still the largest\\nUS trading partner.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------55 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " \"Subject: Re: was:Go Hezbollah!!\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 43\\n\\nstssdxb@st.unocal.com (Dorin Baru) writes:\\n> Even the most extemist, one sided (jewish/israeli) postings (with which I \\n> certainly disagree), did not openly back plain murder. You do.\\n> \\n> The 'Lebanese resistance' you are talking about is a bunch of lebanese \\n> farmers who detonate bombs after work, or is an organized entity of not-\\n> only-lebanese well trained mercenaries ? I do not know, just curious.\\n> \\n> I guess you also back the killings of hundreds of marines in Beirut, right?\\n> \\n> What kind of 'resistance' movement killed jewish attlets in Munich 1972 ?\\n> \\n> You liked it, didn't you ?\\n> \\n> \\n> You posted some other garbage before, so at least you seem to be consistent.\\n> \\n> Dorin\\n\\nDorin,\\nLet's not forget that the soldiers were killed not murdered. The\\ndistinction is not trivial. Murder happens to innocent people, not people\\nwhose line of work is to kill or be killed. It just so happened that these\\nsoldiers, in the line of duty, were killed by the opposition. And\\nresistance is different from terrorism. Certainly the athletes in Munich\\nwere victims of terrorists (though some might call them freedom fighters).\\nTheir deaths cannot be compared to those of soldiers who are killed by\\nresistance fighters. Don't forget that it was the French Resistance to the\\nNazi occupying forces which eventually succeeded in driving out the\\nhostile occupiers in WWII. Diplomacy has not worked with Israel and the\\nLebanese people are tired of being occupied! They are now turning to the\\nonly option they see as viable. (Don't forget that it worked in driving\\nout the US)\\n\\n-marc\\n\\n\\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", + " \"From: lau@auriga.rose.brandeis.edu (frankie t. k. lau)\\nSubject: PC fastest line/circle drawing routines: HELP!\\nOrganization: Brandeis University\\nLines: 41\\n\\nhi all,\\n\\nIN SHORT: looking for very fast assembly code for line/circle drawing\\n\\t on SVGA graphics.\\n\\nCOMPLETE:\\n\\tI am thinking of a simple but fast molecular\\ngraphics program to write on PC or clones. (ball-and-stick type)\\n\\nReasons: programs that I've seen are far too slow for this purpose.\\n\\nPlatform: 386/486 class machine.\\n\\t 800x600-16 or 1024x728-16 VGA graphics\\n\\t\\t(speed is important, 16-color for non-rendering\\n\\t\\t purpose is enough; may stay at 800x600 for\\n\\t\\t speed reason.)\\n (hope the code would be generic enough for different SVGA\\n cards. My own card is based on Trident 8900c, not VESA?)\\n\\nWhat I'm looking for?\\n1) fast, very fast routines to draw lines/circles/simple-shapes\\n on above-mentioned SVGA resolutions.\\n Presumably in assembly languagine.\\n\\tYes, VERY FAST please.\\n2) related codes to help rotating/zooming/animating the drawings on screen.\\n Drawings for beginning, would be lines, circles mainly, think of\\n text, else later.\\n (you know, the way molecular graphics rotates, zooms a molecule)\\n2) and any other codes (preferentially in C) that can help the \\n project.\\n\\nFinal remarks;-\\nnon-profit. expected to become share-, free-ware.\\n\\n\\tAny help is appreciated.\\n\\tthanks\\n\\n-Frankie\\nlau@tammy.harvard.edu\\n\\nPS pls also email, I may miss reply-post.\\n\",\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: U of Toronto Zoology\\nLines: 17\\n\\nIn article <1993Apr23.103038.27467@bnr.ca> agc@bmdhh286.bnr.ca (Alan Carter) writes:\\n>|> ... a NO-OP command was sent to reset the command loss timer ...\\n>\\n>This activity is regularly reported in Ron's interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n\\nIf I'm not mistaken, this is the usual sort of precaution against loss of\\ncommunications. That timer is counting down continuously; if it ever hits\\nzero, that means Galileo hasn't heard from Earth in a suspiciously long\\ntime and it may be Galileo's fault... so it's time to go into a fallback\\nmode that minimizes chances of spacecraft damage and maximizes chances\\nof restoring contact. I don't know exactly what-all Galileo does in such\\na situation, but a common example is to switch receivers, on the theory\\nthat maybe the one you're listening with has died.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Re: Ten questions about Israel\\nOrganization: Brown University Department of Computer Science\\nLines: 21\\n\\ncpr@igc.apc.org (Center for Policy Research) writes:\\n\\n# 3. Is it true that Israeli stocks nuclear weapons ? If so,\\n# could you provide any evidence ?\\n\\nYes, Israel has nuclear weapons. However:\\n\\n1) Their use so far has been restricted to killing deer, by LSD addicted\\n \"Cherrie\" soldiers.\\n\\n2) They are locked in the cellar of the \"Garinei Afula\" factory, and since\\n the Gingi lost the key, no one can use them anymore.\\n\\n3) Even if the Gingi finds the key, the chief Rabbis have a time lock\\n on the bombs that does not allow them to be activated on the Sabbath\\n and during weeks which follow victories of the Betar Jerusalem soccer\\n team. A quick glance at the National League score table will reveal\\n the strategic importance of this fact.\\n\\n-Danny Keren.\\n\\n',\n", + " 'From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: Studies on Book of Mormon\\nLines: 31\\nOrganization: Walla Walla College\\nLines: 31\\n\\nIn article <735023059snx@enkidu.mic.cl> agrino@enkidu.mic.cl (Andres Grino Brandt) writes:\\n>From: agrino@enkidu.mic.cl (Andres Grino Brandt)\\n>Subject: Studies on Book of Mormon\\n>Date: Sun, 18 Apr 1993 14:15:33 CST\\n>Hi!\\n>\\n>I don\\'t know much about Mormons, and I want to know about serious independent\\n>studies about the Book of Mormon.\\n>\\n>I don\\'t buy the \\'official\\' story about the gold original taken to heaven,\\n>but haven\\'t read the Book of Mormon by myself (I have to much work learning\\n>Biblical Hebrew), I will appreciate any comment about the results of study\\n>in style, vocabulary, place-names, internal consistency, and so on.\\n>\\n>For example: There is evidence for one-writer or multiple writers?\\n>There are some mention about events, places, or historical persons later\\n>discovered by archeologist?\\n>\\n>Yours in Collen\\n>\\n>Andres Grino Brandt Casilla 14801 - Santiago 21\\n>agrino@enkidu.mic.cl Chile\\n>\\n>No hay mas realidad que la realidad, y la razon es su profeta\\nI don\\'t think the Book of Mormon was supposedly translated from Biblical \\nHebrew. I\\'ve read that \"prophet Joseph Smith\" traslated the gold tablets \\nfrom some sort of Egyptian-ish language. \\nFormer Mormons, PLEASE post.\\n\\nTammy \"no trim\" Healy\\n\\n',\n", + " 'From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Freedom In U.S.A.\\nOrganization: NYSERNet, Inc.\\nLines: 23\\n\\nab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>\\tI have just started reading the articles in this news\\n>group. There seems to be an attempt by some members to quiet\\n>other members with scare tactics. I believe one posting said\\n>that all postings by one person are being forwarded to his\\n>server who keeps a file on him in hope that \"Appropriate action\\n>might be taken\". \\n>\\tI don\\'t know where you guys are from but in America\\n>such attempts to curtail someones first amendment rights are\\n>not appreciated. Here, we let everyone speak their mind\\n>regardless of how we feel about it. Take your fascistic\\n>repressive ideals back to where you came from.\\n\\nFreedom of speech does not mean that others are compelled to give one\\nthe means to speak publicly. Some systems have regulations\\nprohibiting the dissemination of racist and bigoted messages from\\naccounts they issue.\\n\\nApparently, that\\'s not the case with virginia.edu, since you are still\\nposting.\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n',\n", + " 'From: dab@vuse.vanderbilt.edu (David A. Braun)\\nSubject: Wrecked BMW\\nOriginator: dab@necs\\nNntp-Posting-Host: necs\\nOrganization: Vanderbilt University School of Engineering, Nashville, TN, USA\\nDistribution: na\\nLines: 13\\n\\n\\nDo you or does anyone you know have a wrecked 1981 or later R80(anything)\\nor R100(anything) that they are interested in getting rid of? I need\\na motor, but will buy a whole bike.\\n\\nemail replies to:\\tDavid.Braun@FtCollinsCO.NCR.com\\n\\tor:\\t\\tdab@vuse.vanderbilt.edu\\n\\nor phone:\\t303/223-5100 x9487 (voice mail)\\n\\t\\t303/229-0952\\t (home)\\n\\n\\n\\n',\n", + " \"From: jaskew@spam.maths.adelaide.edu.au (Joseph Askew)\\nSubject: Re: the call to space (was Re: Clueless Szaboisms )\\nKeywords: trumpet calls, infrastructure, public perception\\nOrganization: Statistics, Pure & Applied Mathematics, University of Adelaide\\nLines: 32\\n\\nIn article <1pfj8k$6ab@access.digex.com> prb@access.digex.com (Pat) writes:\\n>In article <1993Mar31.161814.11683@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n\\n>>It isn't feasible for Japan to try to stockpile the amount of oil they\\n>>would need to run their industries if they did no use nuclear power.\\n\\n>Of course, Given they export 50 % of the GNP, What do they do.\\n\\nWell they don't export anywhere near 50% of their GNP. Mexico's perhaps\\nbut not their own. They actually export around the 9-10% mark. Similar\\nto most developed countries actually. Australia exports a larger share\\nof GNP as does the United States (14% I think off hand. Always likely to\\nbe out by a factor of 12 or more though) This would be immediately obvious\\nif you thought about it.\\n\\n>Anything serious enough to disrupt the sea lanes for oil will\\n>also hose their export routes.\\n\\nIt is their import routes that count. They can do without exports but\\nthey couldn't live without imports for any longer than six months if that.\\n\\n>Given they import everything, oil is just one more critical commodity.\\n\\nToo true! But one that is unstable and hence a source of serious worry.\\n\\nJoseph Askew\\n\\n-- \\nJoseph Askew, Gauche and Proud In the autumn stillness, see the Pleiades,\\njaskew@spam.maths.adelaide.edu Remote in thorny deserts, fell the grief.\\nDisclaimer? Sue, see if I care North of our tents, the sky must end somwhere,\\nActually, I rather like Brenda Beyond the pale, the River murmurs on.\\n\",\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race\\nOrganization: U of Toronto Zoology\\nLines: 23\\n\\nIn article <3HgF3B3w165w@shakala.com> dante@shakala.com (Charlie Prael) writes:\\n>Doug-- Actually, if memory serves, the Atlas is an outgrowth of the old \\n>Titan ICBM...\\n\\nNope, you're confusing separate programs. Atlas was the first-generation\\nUS ICBM; Titan I was the second-generation one; Titan II, which all the\\nTitan launchers are based on, was the third-generation heavy ICBM. There\\nwas essentially nothing in common between these three programs.\\n\\n(Yes, *three* programs. Despite the similarity of names, Titan I and\\nTitan II were completely different missiles. They didn't even use the\\nsame fuels, never mind the same launch facilities.)\\n\\n>If so, there's probably quite a few old pads, albeit in need \\n>of some serious reconditioning. Still, Being able to buy the turf and \\n>pad (and bunkers, including prep facility) at Midwest farmland prices \\n>strikes me as pretty damned cheap.\\n\\nSorry, the Titan silos (a) can't handle the Titan launchers with their\\nlarge SRBs, (b) can't handle *any* sort of launcher without massive\\nviolations of normal range-safety rules (nobody cares about such things\\nin the event of a nuclear war, but in peacetime they matter), and (c) were\\nscrapped years ago.\\n\",\n", + " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Ok, So I was a little hasty...\\nOrganization: Duke University; Durham, N.C.\\nLines: 16\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nApparently that last post was a little hasy, since I\\ncalled around to more places and got quotes for less\\nthan 600 and 425. Liability only, of course.\\n\\nPlus, one palced will give me C7C for my car + liab on the bike for\\nonly 1350 total, which ain't bad at all.\\n\\nSo I won't go with the first place I called, that's\\nfer sure.\\n\\n\\n-- \\nAndy Infante | You can listen to what everybody says, but the fact remains |\\n'71 BMW R60/5 | that you've got to get out there and do the thing yourself. | \\nDoD #2426 | -- Joan Sutherland | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", + " 'From: osinski@chtm.eece.unm.edu (Marek Osinski)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: University of New Mexico, Albuquerque\\nLines: 12\\nDistribution: world\\nNNTP-Posting-Host: chtm.eece.unm.edu\\n\\nIn article <1993Apr15.174657.6176@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>Compromise on what, the invasion of Cyprus, the involment of Turkey in\\n>Greek politics, the refusal of Turkey to accept 12 miles of territorial\\n>waters as stated by international law, the properties of the Greeks of \\n>Konstantinople, the ownership of the islands in the Greek lake,sorry, Aegean.\\n\\nWell, it did not take long to see how consequent some Greeks are in\\nrequesting that Thessaloniki are not called Solun by Bulgarian netters. \\nSo, Napoleon, why do you write about Konstantinople and not Istanbul?\\n\\nMarek Osinski\\n',\n", + " 'From: mbh2@engr.engr.uark.edu (M. Barton Hodges)\\nSubject: Stereoscopic imaging\\nSummary: Stereoscopic imaging\\nKeywords: stereoscopic\\nNntp-Posting-Host: engr.engr.uark.edu\\nOrganization: University of Arkansas\\nLines: 8\\n\\nI am interested in any information on stereoscopic imaging on a sun\\nworkstation. For the most part, I need to know if there is any hardware\\navailable to interface the system and whether the refresh rates are\\nsufficient to produce quality image representations. Any information\\nabout the subject would be greatly appreciated.\\n\\n Thanks!\\n\\n',\n", + " 'From: ktt3@unix.brighton.ac.uk (Koon Tang)\\nSubject: PostScript driver for GINO\\nOrganization: The Univerity of Brighton, U.K.\\nLines: 15\\n\\nDoes anybody know where I can get, via anonymous ftp or otherwise, a PostScript\\ndriver for the graphics libraries GINO verison 3.0A ?\\n\\nWe are runnining on a VAX/VMS and are looking for a way outputing our plots to a\\nPostScript file...\\n\\n\\nThanks in advance...\\n-- \\nKoon Tang, internet: ktt3@unix.bton.ac.uk\\nDepartment of Mathematical Sciences, uucp: uknet!itri!ktt3\\nUniversity of Brighton,\\nBrighton,\\nBN2 4GJ,\\nU.K.\\n',\n", + " 'From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Boom! Hubcap attack!\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 21\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, speedy@engr.latech.edu (Speedy Mercer) says:\\n\\n>I was attacked by a rabid hubcap once. I was going to work on a Yamaha\\n>750 Twin (A.K.A. \"the vibrating tank\") when I heard a wierd noise off to my \\n>left. I caught a glimpse of something silver headed for my left foot and \\n>jerked it up about a nanosecond before my bike was hit HARD in the left \\n>side. When I went to put my foot back on the peg, I found that it was not \\n>there! I pulled into the nearest parking lot and discovered that I had been \\n>hit by a wire-wheel type hubcap from a large cage! This hubcap weighed \\n>about 4-5 pounds! The impact had bent the left peg flat against the frame \\n>and tweeked the shifter in the process. Had I not heard the approaching \\n>cap, I feel certian that I would be sans a portion of my left foot.\\n>\\nHmmmm.....I wondered where that hubcap went.\\n\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n',\n", + " 'From: rbemben@timewarp.prime.com (Rich Bemben)\\nSubject: Re: Riceburner Respect\\nExpires: 15 May 93 05:00:00 GMT\\nOrganization: Computervision Corp., Bedford, Ma.\\nLines: 19\\n\\nIn article <1993Apr9.172953.12408@cbnewsm.cb.att.com> shz@mare.att.com (Keeper of the \\'Tude) writes:\\n>The rider (pilot?) of practically every riceburner I\\'ve passed recently\\n>has waved to me and I\\'m wondering if it will last. Could they simply be \\n>overexuberant that their \\'burners have been removed from winter moth-balls \\n>and the novelty will soon dissipate? Perhaps the gray beard that sprouted\\n>since the last rice season makes them think I\\'m a friendly old fart that\\n>deserves a wave...\\n\\nMaybe...then again did you get rid of that H/D of yorn and buy a rice rocket \\nof your own? That would certainly explain the friendliness...unless you \\nmaybe had a piece of toilet paper stuck on the bottom of your boot...8-).\\n\\nRich\\n\\n\\nRich Bemben - DoD #0044 rbemben@timewarp.prime.com\\n1977 750 Triumph Bonneville (617) 275-1800 x 4173\\n\"Fear not the evil men do in the name of evil, but heaven protect\\n us from the evil men do in the name of good\"\\n',\n", + " \"From: nelson@seahunt.imat.com (Michael Nelson)\\nSubject: Re: Why I won't be getting my Low Rider this year\\nKeywords: congratz\\nArticle-I.D.: myrddin.C52EIp.71x\\nOrganization: SeaHunt, San Francisco CA\\nLines: 29\\nNntp-Posting-Host: seahunt.imat.com\\n\\nIn article <1993Apr5.182851.23410@cbnewsj.cb.att.com> car377@cbnewsj.cb.att.com (charles.a.rogers) writes:\\n>\\n>Ouch. :-) This brings to mind one of the recommendations in the\\n>Hurt Study. Because the rear of the gas tank is in close proximity\\n>to highly prized and easily damaged anatomy, Hurt et al recommended\\n>that manufacturers build the tank so as to reduce the, er, step function\\n>provided when the rider's body slides off of the seat and onto the\\n>gas tank in the unfortunate event that the bike stops suddenly and the \\n>rider doesn't. I think it's really inspiring how the manufacturers\\n>have taken this advice to heart in their design of bikes like the \\n>CBR900RR and the GTS1000A.\\n\\n\\tWhen I'm riding my 900RR, my goodies are already up\\n\\tagainst the tank, because the design of the Corbin seat\\n\\ttends to move you forward.\\n\\n\\tWouldn't the major danger to one's cajones be due to\\n\\taccelerating into and then being stopped by the tank? If\\n\\tyou're already there, there wouldn't be an impact\\n\\tproblem, would there?\\n\\n\\t\\t\\t\\t- Michael -\\n\\n\\n-- \\n+-------------------------------------------------------------+\\n| Michael Nelson 1993 CBR900RR |\\n| Internet: nelson@seahunt.imat.com Dod #0735 |\\n+-------------------------------------------------------------+\\n\",\n", + " \"From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: Happy Easter!\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 23\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nKaren Black (karen@angelo.amd.com) wrote:\\n: ranck@joesbar.cc.vt.edu (Wm. L. Ranck) writes:\\n: >Nick Pettefar (npet@bnr.ca) wrote:\\n: >: English cars:-\\n: >\\n: >: Rover, Reliant, Morgan, Bristol, Rolls Royce, etc.\\n: > ^^^^^^\\n: > Talk about Harleys using old technology, these\\n: >Morgan people *really* like to use old technology.\\n\\n: Well, if you want to pick on Morgan, why not attack its ash (wood)\\n: frame or its hand-bent metal skin (just try and get a replacement :-)). \\n: I thought the kingpost suspension was one of the Mog's better features.\\n\\nHey! I wasn't picking on Morgan. They use old technology. That's all\\nI said. There's nothing wrong with using old technology. People still\\nuse shovels to dig holes even though there are lots of new powered implements\\nto dig holes with. \\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Political Atheists?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 57\\nNNTP-Posting-Host: lloyd.caltech.edu\\n\\nmmwang@adobe.com (Michael Wang) writes:\\n\\n>I was looking for a rigorous definition because otherwise we would be\\n>spending the rest of our lives arguing what a \"Christian\" really\\n>believes.\\n\\nI don\\'t think we need to argue about this.\\n\\n>KS>Do you think that the motto points out that this country is proud\\n>KS>of its freedom of religion, and that this is something that\\n>KS>distinguishes us from many other countries?\\n>MW>No.\\n>KS>Well, your opinion is not shared by most people, I gather.\\n>Perhaps not, but that is because those seeking to make government\\n>recognize Christianity as the dominant religion in this country do not\\n>think they are infringing on the rights of others who do not share\\n>their beliefs.\\n\\nYes, but also many people who are not trying to make government recognize\\nChristianity as the dominant religion in this country do no think\\nthe motto infringes upon the rights of others who do not share their\\nbeliefs.\\n\\nAnd actually, I think that the government already does recognize that\\nChristianity is the dominant religion in this country. I mean, it is.\\nDon\\'t you realize/recognize this?\\n\\nThis isn\\'t to say that we are supposed to believe the teachings of\\nChristianity, just that most people do.\\n\\n>Like I\\'ve said before I personally don\\'t think the motto is a major\\n>concern.\\n\\nIf you agree with me, then what are we discussing?\\n\\n>KS>Since most people don\\'t seem to associate Christmas with Jesus much\\n>KS>anymore, I don\\'t see what the problem is.\\n>Can you prove your assertion that most people in the U.S. don\\'t\\n>associate Christmas with Jesus anymore?\\n\\nNo, but I hear quite a bit about Christmas, and little if anything about\\nJesus. Wouldn\\'t this figure be more prominent if the holiday were really\\nassociated to a high degree with him? Or are you saying that the\\nassociation with Jesus is on a personal level, and that everyone thinks\\nabout it but just never talks about it?\\n\\nThat is, can *you* prove that most people *do* associate Christmas\\nmost importantly with Jesus?\\n\\n>Anyways, the point again is that there are people who do associate\\n>Christmas with Jesus. It doesn\\'t matter if these people are a majority\\n>or not.\\n\\nI think the numbers *do* matter. It takes a majority, or at least a\\nmajority of those in power, to discriminate. Doesn\\'t it?\\n\\nkeith\\n',\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Blow up space station, easy way to do it.\\nArticle-I.D.: aurora.1993Apr5.184527.1\\nOrganization: University of Alaska Fairbanks\\nLines: 28\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nThis might a real wierd idea or maybe not..\\n\\nI have seen where people have blown up ballons then sprayed material into them\\nthat then drys and makes hard walls...\\n\\nWhy not do the same thing for a space station..\\n\\nFly up the docking rings and baloon materials and such, blow up the baloons,\\nspin then around (I know a problem in micro gravity) let them dry/cure/harden?\\nand cut a hole for the docking/attaching ring and bingo a space station..\\n\\nOf course the ballons would have to be foil covered or someother radiation\\nprotective covering/heat shield(?) and the material used to make the wals would\\nhave to meet the out gasing and other specs or atleast the paint/covering of\\nthe inner wall would have to be human safe.. Maybe a special congrete or maybe\\nthe same material as makes caplets but with some changes (saw where someone\\ninstea dof water put beer in the caplet mixture, got a mix that was just as\\nstrong as congret but easier to carry around and such..)\\n\\nSorry for any spelling errors, I missed school today.. (grin)..\\n\\nWhy musta space station be so difficult?? why must we have girders? why be\\nconfined to earth based ideas, lets think new ideas, after all space is not\\nearth, why be limited by earth based ideas??\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\ngoing crazy in Nome Alaska, break up is here..\\n\",\n", + " \"From: mmanning@icomsim.com (Michael Manning)\\nSubject: Re: Bikes And Contacts\\nOrganization: Icom Simulations\\nLines: 30\\n\\nIn article <1993Apr13.163450.1@skcla.monsanto.com> \\nmpmena@skcla.monsanto.com writes:\\n\\n> Michael (Manning)...Must be that blockhead of yours....the gargoyles\\n> are the ONLY thing that work for me! ;*}\\n> \\n> \\n> Michael (Menard)\\n> \\n> P.S. When you showin' up at Highland House? We'll compare sunglasses...\\n\\nLet's see how the weather is Saturday or Sunday. It sucks\\ntoday. What time is good?\\nYou're welcome to give any of the ones I have a try. As\\nfor the gargoyles, if you want mine you can have 'em. I\\nthink the bridge of my nose holds them too far from my face.\\nSame deal for the two of my friends who tried them. For\\npeople who use them with a full face helmet, all bets are\\noff. Sorry if they fit you well and took my complaint\\npersonally. Yes the Oakleys are much more desirable squid\\nattire. Also the gargoyles aren't that ugly, even in my\\nopinion, or I wouldn't have tried them.\\n\\n--\\nMichael Manning\\nmmanning@icomsim.com (NeXTMail accepted.)\\n\\n`92 FLSTF FatBoy\\n`92 Ducati 900SS\\n\\n\",\n", + " 'From: karish@gondwana.Stanford.EDU (Chuck Karish)\\nSubject: Re: Recommended bike for a tall beginner.\\nOrganization: Mindcraft, Inc.\\nDistribution: usa\\nLines: 13\\n\\nIn article <47116@sdcc12.ucsd.edu> jtozer@sdcc3.ucsd.edu (John Tozer) writes:\\n>\\tI am looking for advice on what bikes I should check out. I\\n>am 6\\'4\" tall, and find my legs/hips uncomfortably bent on most of\\n>the bikes I have ridden (not many admittedly). Are there any bikes\\n>out there built for a taller rider?\\n\\nThere\\'s plenty of legroom on the Kawasaki KLR650. A bit\\nshort in the braking department for spirited street riding,\\nbut enough for dirt and for less-agressive street stuff.\\n--\\n\\n Chuck Karish karish@mindcraft.com\\n (415) 323-9000 x117 karish@pangea.stanford.edu\\n',\n", + " \"From: adams@bellini.berkeley.edu (Adam L. Schwartz)\\nSubject: Re: Israel's Expansion II\\nNntp-Posting-Host: bellini.berkeley.edu\\nOrganization: U.C. Berkeley -- ERL\\nLines: 9\\n\\nIn article <93111.225707PP3903A@auvm.american.edu> Paul H. Pimentel writes:\\n>What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n>s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n>k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n>ore they have a right to Jerusaleum as much as Isreal does.\\n\\n\\nWhat gives the United States the right to keep Washington D.C.? \\n\",\n", + " 'From: higgins@fnala.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: NASA Ames server (was Re: Space Station Redesign, JSC Alternative #4)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 14\\nNNTP-Posting-Host: fnala.fnal.gov\\n\\nIn article <1993Apr26.152722.19887@aio.jsc.nasa.gov>, kjenks@jsc.nasa.gov (Ken Jenks [NASA]) writes:\\n> I just posted the GIF files out for anonymous FTP on server ics.uci.edu.\\n[...]\\n> Sorry it took\\n> me so long to get these out, but I was trying for the Ames server,\\n> but it\\'s out of space.\\n\\nHow ironic.\\n\\nBill Higgins, Beam Jockey | \"Treat your password like\\nFermi National Accelerator Laboratory | your toothbrush. Don\\'t let\\nBitnet: HIGGINS@FNAL.BITNET | anybody else use it--\\nInternet: HIGGINS@FNAL.FNAL.GOV | and get a new one every\\nSPAN/Hepnet: 43011::HIGGINS | six months.\" --Cliff Stoll\\n',\n", + " 'From: hdsteven@solitude.Stanford.EDU (H. D. Stevens)\\nSubject: Re: Inflatable Mile-Long Space Billboards (was Re: Vandalizing the sky.)\\nOrganization: stanford\\nLines: 38\\n\\nIn article , yamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n|> >NASA would provide contractual launch services. However,\\n|> >since NASA bases its charge on seriously flawed cost estimates\\n|> >(WN 26 Mar 93) the taxpayers would bear most of the expense. This\\n|> >may look like environmental vandalism, but Mike Lawson, CEO of\\n|> >Space Marketing, told us yesterday that the real purpose of the\\n|> >project is to help the environment! The platform will carry ozone\\n|> >monitors he explained--advertising is just to help defray costs.\\n|> \\n|> This may be the purpose for the University of Colorado people. My\\n|> guess is that the purpose for the Livermore people is to learn how to\\n|> build large, inflatable space structures.\\n|> \\n\\nThe CU people have been, and continue to be big ozone scientists. So \\nthis is consistent. It is also consistent with the new \"Comercial \\napplications\" that NASA and Clinton are pushing so hard. \\n|> \\n|> >Is NASA really supporting this junk?\\n\\nDid anyone catch the rocket that was launched with a movie advert \\nall over it? I think the rocket people got alot of $$ for painting \\nup the sides with the movie stuff. What about the Coke/Pepsi thing \\na few years back? NASA has been trying to find ways to get other \\npeople into the space funding business for some time. Frankly, I\\'ve \\nthought about trying it too. When the funding gets tight, only the \\ninnovative get funded. One of the things NASA is big on is co-funding. \\nIf a PI can show co-funding for any proposal, that proposal has a SIGNIFICANTLY\\nhigher probability of being funded than a proposal with more merit but no \\nco-funding. Once again, money talks!\\n\\n\\n-- \\nH.D. Stevens\\nStanford University\\t\\t\\tEmail:hdsteven@sun-valley.stanford.edu\\nAerospace Robotics Laboratory\\t\\tPhone:\\t(415) 725-3293 (Lab)\\nDurand Building\\t\\t\\t\\t\\t(415) 722-3296 (Bullpen)\\nStanford, CA 94305\\t\\t\\tFax:\\t(415) 725-3377\\n',\n", + " 'Subject: Re: Bill Conner:\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 17\\n\\nIn article bil@okcforum.osrhe.edu (Bill Conner) writes:\\n\\n>Could you explain what any of this pertains to? Is this a position\\n>statement on something or typing practice? And why are you using my\\n>name, do you think this relates to anything I\\'ve said and if so, what.\\n>\\n>Bill\\n\\n Could you explain what any of the above pertains to? Is this a position \\nstatement on something or typing practice? \\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", + " \"From: edb9140@tamsun.tamu.edu (E.B.)\\nSubject: POV problems with tga outputs\\nOrganization: Texas A&M University, College Station, TX\\nLines: 9\\nDistribution: world\\nNNTP-Posting-Host: tamsun.tamu.edu\\n\\nI can't fiqure this out. I have properly compiled pov on a unix machine\\nrunning SunOS 4.1.3 The problem is that when I run the sample .pov files and\\nuse the EXACT same parameters when compiling different .tga outputs. Some\\nof the .tga's are okay, and other's are unrecognizable by any software.\\n\\nHelp!\\ned\\nedb9140@tamsun.tamu.edu\\n\\n\",\n", + " 'From: zowie@daedalus.stanford.edu (Craig \"Powderkeg\" DeForest)\\nSubject: Re: Cold Gas tanks for Sounding Rockets\\nOrganization: Stanford Center for Space Science and Astrophysics\\nLines: 29\\nNNTP-Posting-Host: daedalus.stanford.edu\\nIn-reply-to: rdl1@ukc.ac.uk\\'s message of 16 Apr 93 14:28:07 GMT\\n\\nIn article <3918@eagle.ukc.ac.uk> rdl1@ukc.ac.uk (R.D.Lorenz) writes:\\n >Does anyone know how to size cold gas roll control thruster tanks\\n >for sounding rockets?\\n\\n Well, first you work out how much cold gas you need, then make the\\n tanks big enough.\\n\\nOur sounding rocket payload, with telemetry, guidance, etc. etc. and a\\ntelescope cluster, weighs around 1100 pounds. It uses freon jets for\\nsteering and a pulse-width-modulated controller for alignment (ie\\nduring our eight minutes in space, the jets are pretty much\\ncontinuously firing on a ~10% duty cycle or so...). The jets also\\nneed to kill residual angular momentum from the spin stabilization, and\\nflip the payload around to look at the Sun.\\n\\nWe have two freon tanks, each holding ~5 liters of freon (I\\'m speaking\\nonly from memory of the last flight). The ground crew at WSMR choose how\\nmuch freon to use based on some black-magic algorithm. They have\\nextra tank modules that just bolt into the payload stack.\\n\\nThis should give you an idea of the order of magnitude for cold gas \\nquantity. If you really need to know, send me email and I\\'ll try to get you\\nin touch with our ground crew people.\\n\\nCheers,\\nCraig\\n\\n--\\nDON\\'T DRINK SOAP! DILUTE DILUTE! OK!\\n',\n", + " \"From: rgc3679@bcstec.ca.boeing.com (Robert G. Carpenter)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nOrganization: Boeing\\nLines: 24\\n\\nIn article John_Shepardson.esh@qmail.slac.stanford.edu (John Shepardson) writes:\\n>> Can you please offer some recommendations? (3d graphics)\\n>\\n>\\n>There has been a fantastic 3d programmers package for some years that has\\n>been little advertised, and apparently nobody knows about, called 3d\\n>Graphic Tools written by Mark Owen of Micro System Options in Seattle WA. \\n>I reviewed it a year or so ago and was really awed by it's capabilities. \\n>It also includes tons of code for many aspects of Mac programming\\n>(including offscreen graphics). It does Zbuffering, 24 bit graphics, has a\\n>database for representing graphical objects, and more.\\n>It is very well written (MPW C, Think C, and HyperCard) and the code is\\n>highly reusable. Last time I checked the price was around $150 - WELL\\n>worth it.\\n>\\n>Their # is (206) 868-5418.\\n\\n I've talked with Mark and he faxed some literature, though it wasn't very helpful-\\n just a list of routine names: _BSplineSurface, _DrawString3D... 241 names.\\n There was a Product Info sheet that explained some of the package capabilities.\\n I also found a review in April/May '92 MacTutor.\\n\\n It does look like a good package. The current price is $295 US.\\n\\n\",\n", + " 'From: jscotti@lpl.arizona.edu (Jim Scotti)\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 33\\n\\nIn article <1993Apr21.170817.15845@sq.sq.com> msb@sq.sq.com (Mark Brader) writes:\\n>\\n>> > > Also, peri[jove]s of Gehrels3 were:\\n>> > > \\n>> > > April 1973 83 jupiter radii\\n>> > > August 1970 ~3 jupiter radii\\n>\\n>> > Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. ...\\n>\\n>> Sorry, _perijoves_...I\\'m not used to talking this language.\\n>\\n>Thanks again. One final question. The name Gehrels wasn\\'t known to\\n>me before this thread came up, but the May issue of Scientific American\\n>has an article about the \"Inconstant Cosmos\", with a photo of Neil\\n>Gehrels, project scientist for NASA\\'s Compton Gamma Ray Observatory.\\n>Same person?\\n\\nNeil Gehrels is Prof. Tom Gehrels son. Tom Gehrels was the discoverer\\nof P/Gehrels 3 (as well as about 4 other comets - the latest of which\\ndoes not bear his name, but rather the name \"Spacewatch\" since he was\\nobserving with that system when he found the latest comet). \\n\\n>-- \\n>Mark Brader, SoftQuad Inc., Toronto\\t\"Information! ... We want information!\"\\n>utzoo!sq!msb, msb@sq.com\\t\\t\\t\\t-- The Prisoner\\n\\n---------------------------------------------\\nJim Scotti \\n{jscotti@lpl.arizona.edu}\\nLunar & Planetary Laboratory\\nUniversity of Arizona\\nTucson, AZ 85721 USA\\n---------------------------------------------\\n',\n", + " 'From: mcguire@cs.utexas.edu (Tommy Marcus McGuire)\\nSubject: Re: Countersteering_FAQ please post\\nArticle-I.D.: earth.ls1v14INNjml\\nOrganization: CS Dept, University of Texas at Austin\\nLines: 54\\nNNTP-Posting-Host: earth.cs.utexas.edu\\n\\nIn article <12739@news.duke.edu> infante@acpub.duke.edu (Andrew Infante) writes:\\n>In article <05APR93.02678944.0049@UNBVM1.CSD.UNB.CA> C70A@UNB.CA (C70A000) writes:\\n>>In article Eric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n>>>Would someone please post the countersteering FAQ...i am having this awful\\n[...]\\n>>\\n>> Ummm, if you push on the right handle of your bike while at speed and\\n>>your bike turns left, methinks your bike has a problem. When I do it\\n>\\n>Really!?\\n>\\n>Methinks somethings wrong with _your_ bike.\\n>\\n>Perhaps you meant _pull_?\\n>\\n>Pushing the right side of my handlebars _will_ send me left.\\n>\\n>It should. \\n>REally.\\n>\\n>>on MY bike, I turn right. No wonder you need that FAQ. If I had it\\n>>I\\'d send it.\\n>\\n>I\\'m sure others will take up the slack...\\n>\\n[...]\\n>-- \\n>Andy Infante | I sometimes wish that people would put a little more emphasis |\\n\\n\\nOh, lord. This is where I came in.\\n\\nObcountersteer: For some reason, I\\'ve discovered that pulling on the\\nwrong side of the handlebars (rather than pushing on the other wrong\\nside, if you get my meaning) provides a feeling of greater control. For\\nexample, rather than pushing on the right side to lean right to turn \\nright (Hi, Lonny!), pulling on the left side at least until I get leaned\\nover to the right feels more secure and less counter-intuitive. Maybe\\nI need psychological help.\\n\\nObcountersteer v2.0:Anyone else find it ironic that in the weekend-and-a-\\nnight MSF class, they don\\'t mention countersteering until after the\\nfirst day of riding?\\n\\n\\n\\n-----\\nTommy McGuire, who\\'s going to hit his head on door frames the rest of\\n the evening, leaning into those tight turns....\\nmcguire@cs.utexas.edu\\nmcguire@austin.ibm.com\\n\\n\"...I will append an appropriate disclaimer to outgoing public information,\\nidentifying it as personal and as independent of IBM....\"\\n',\n", + " \"From: ednobles@sacam.OREN.ORTN.EDU (Edward d Nobles)\\nSubject: windows imagine??!!\\nOrganization: Oak Ridge National Laboratory\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 10\\n\\n\\nHas ANYONE who has ordered the new PC version of Imagine ACTUALLY recieved\\nit yet? I'm just about ready to order but reading posts about people still\\nawaiting delivery are making me a little paranoid. Has anyone actually \\nheld this piece of software in their own hands?\\n\\nLater,\\n\\nJim Nobles\\n\\n\",\n", + " 'From: ma170saj@sdcc14.ucsd.edu (System Operator)\\nSubject: A Moment Of Silence\\nOrganization: University of California, San Diego\\nLines: 14\\nNntp-Posting-Host: sdcc14.ucsd.edu\\n\\n\\n April 24th is approaching, and Armenians around the world\\nare getting ready to remember the massacres of their family members\\nby the Turkish government between 1915 and 1920. \\n At least 1.5 Million Armenians perished during that period,\\nand it is important to note that those who deny that this event\\never took place, either supported the policy of 1915 to exterminate\\nthe Armenians, or, as we have painfully witnessed in Azerbaijan,\\nwould like to see it happen again...\\n Thank you for taking the time to read this post.\\n\\n -Helgge\\n\\n\\n',\n", + " 'From: cervi@oasys.dt.navy.mil (Mark Cervi)\\nSubject: Re: ++BIKE SOLD OVER NET 600 MILES AWAY!++\\nOrganization: NSWC, Carderock Division, Annapolis, MD, USA\\nLines: 15\\n\\nIn article <6130331@hplsla.hp.com> kens@hplsla.hp.com (Ken Snyder) writes:\\n>\\n>> Any other bikes sold long distances out there...I\\'d love to hear about\\n>it!\\n\\nI bought my Moto Guzzi from a Univ of Va grad student in Charlottesville\\nlast spring.\\n\\n\\t Mark Cervi, cervi@oasys.dt.navy.mil, (w) 410-267-2147\\n\\t\\t DoD #0603 MGNOC #12998 \\'87 Moto Guzzi SP-II\\n \"What kinda bikes that?\" A Moto Guzzi. \"What\\'s that?\" Its Italian.\\n-- \\n\\n\\tMark Cervi, CARDEROCKDIV, NSWC Code 852, Annapolis, MD 21402\\n\\t\\t cervi@oasys.dt.navy.mil, (w) 410-267-2147\\n',\n", + " \"From: nelson@seahunt.imat.com (Michael Nelson)\\nSubject: Re: Protective gear\\nNntp-Posting-Host: seahunt.imat.com\\nOrganization: SeaHunt, San Francisco CA\\nLines: 15\\n\\nIn article <1993Apr5.151323.7183@rd.hydro.on.ca> jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n>\\n>I'm still looking for good gloves, myself,\\n>as the ones I have now are too loose.\\n\\n\\tWhen you find some new ones, I suggest donating the ones\\n\\tyou have now to the Lautrec family in France... \\n\\n\\t\\t\\t\\tMichael\\n\\n-- \\n+-------------------------------------------------------------+\\n| Michael Nelson 1993 CBR900RR |\\n| Internet: nelson@seahunt.imat.com Dod #0735 |\\n+-------------------------------------------------------------+\\n\",\n", + " \"From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Science News article on Federal R&D\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 24\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , xrcjd@resolve.gsfc.nasa.gov (Charles J. Divine) writes:\\n> Just a pointer to the article in the current Science News article\\n> on Federal R&D funding.\\n> \\n> Very briefly, all R&D is being shifted to gaining current \\n> competitive advantage from things like military and other work that\\n> does not have as much commercial utility.\\n> -- \\n> Chuck Divine\\n\\nGulp.\\n\\n[Disclaimer: This opinion is mine and does not represent the views of\\nFermilab, Universities Research Association, the Department of Energy,\\nor the 49th Ward Regular Science Fiction Organization.]\\n \\n-- \\n O~~* /_) ' / / /_/ ' , , ' ,_ _ \\\\|/\\n - ~ -~~~~~~~~~~~/_) / / / / / / (_) (_) / / / _\\\\~~~~~~~~~~~zap!\\n / \\\\ (_) (_) / | \\\\\\n | | Bill Higgins Fermi National Accelerator Laboratory\\n \\\\ / Bitnet: HIGGINS@FNAL.BITNET\\n - - Internet: HIGGINS@FNAL.FNAL.GOV\\n ~ SPAN/Hepnet: 43011::HIGGINS \\n\",\n", + " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Sixty-two thousand (was Re: How many read sci.space?)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 67\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article <1993Apr15.072429.10206@sol.UVic.CA>, rborden@ugly.UVic.CA (Ross Borden) writes:\\n> In article <734850108.F00002@permanet.org> Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado) writes:\\n>>\\n>>One could go on and on and on here, but I wonder ... how\\n>>many people read sci.space and of what power/influence are\\n>>these individuals?\\n>>\\n> \\tQuick! Everyone who sees this, post a reply that says:\\n> \\n> \\t\\t\\t\"Hey, I read sci.space!\"\\n> \\n> Then we can count them, and find out how many there are! :-)\\n> (This will also help answer that nagging question: \"Just what is\\n> the maximum bandwidth of the Internet, anyways?\")\\n\\nA practical suggestion, to be sure, but one could *also* peek into\\nnews.lists, where Brian Reid has posted \"USENET Readership report for\\nMar 93.\" Another posting called \"USENET READERSHIP SUMMARY REPORT FOR\\nMAR 93\" gives the methodology and caveats of Reid\\'s survey. (These\\npostings failed to appear for a while-- I wonder why?-- but they are\\nnow back.)\\n\\nReid, alas, gives us no measure of the \"power/influence\" of readers...\\nSorry, Mark.\\n\\nI suspect Mark, dangling out there on Fidonet, may not get news.lists\\nso I\\'ve mailed him copies of these reports.\\n\\nThe bottom line?\\n\\n +-- Estimated total number of people who read the group, worldwide.\\n | +-- Actual number of readers in sampled population\\n | | +-- Propagation: how many sites receive this group at all\\n | | | +-- Recent traffic (messages per month)\\n | | | | +-- Recent traffic (kilobytes per month)\\n | | | | | +-- Crossposting percentage\\n | | | | | | +-- Cost ratio: $US/month/rdr\\n | | | | | | | +-- Share: % of newsrders\\n | | | | | | | | who read this group.\\n V V V V V V V V\\n 88 62000 1493 80% 1958 4283.9 19% 0.10 2.9% sci.space \\n\\nThe first figure indicates that sci.space ranks 88th among most-read\\nnewsgroups.\\n\\nI\\'ve been keeping track sporadically to watch the growth of traffic\\nand readership. You might be entertained to see this.\\n\\nOct 91 55 71000 1387 84% 718 1865.2 21% 0.04 4.2% sci.space\\nMar 92 43 85000 1741 82% 1207 2727.2 13% 0.06 4.1% sci.space\\nJul 92 48 94000 1550 80% 1044 2448.3 12% 0.04 3.8% sci.space\\nMay 92 45 94000 2023 82% 834 1744.8 13% 0.04 4.1% sci.space\\n(some kind of glitch in estimating number of readers happens here)\\nSep 92 45 51000 1690 80% 1420 3541.2 16% 0.11 3.6% sci.space \\nNov 92 78 47000 1372 81% 1220 2633.2 17% 0.08 2.8% sci.space \\n(revision in ranking groups happens here(?))\\nMar 93 88 62000 1493 80% 1958 4283.9 19% 0.10 2.9% sci.space \\n\\nPossibly old Usenet hands could give me some more background on how to\\ninterpret these figures, glitches, or the history of Reid\\'s reporting\\neffort. Take it to e-mail-- it doesn\\'t belong in sci.space.\\n\\nBill Higgins, Beam Jockey | In a churchyard in the valley\\nFermi National Accelerator Laboratory | Where the myrtle doth entwine\\nBitnet: HIGGINS@FNAL.BITNET | There grow roses and other posies\\nInternet: HIGGINS@FNAL.FNAL.GOV | Fertilized by Clementine.\\nSPAN/Hepnet: 43011::HIGGINS |\\n',\n", + " \"From: cywang@ux1.cso.uiuc.edu (Crying Freeman)\\nSubject: What's a good assembly VGA programming book?\\nOrganization: University of Illinois at Urbana\\nLines: 9\\n\\nCan someone give me the title of a good VGA graphics programming book?\\nPlease respond by email. Thanks!\\n\\n\\t\\t\\t--Yuan\\n\\n-- \\nChe-Yuan Wang\\ncw21219@uxa.cso.uiuc.edu\\ncywang@ux1.cso.uiuc.edu\\n\",\n", + " 'From: CBW790S@vma.smsu.edu.Ext (Corey Webb)\\nSubject: Re: HELP!!! GRASP\\nOrganization: SouthWest Mo State Univ\\nLines: 29\\nNNTP-Posting-Host: vma.smsu.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\nIn article <1993Apr19.160944.20236W@baron.edb.tih.no>\\nhavardn@edb.tih.no (Haavard Nesse,o92a) writes:\\n>\\n>Could anyone tell me if it\\'s possible to save each frame\\n>of a .gl (grasp) animation to .gif, .jpg, .iff or any other\\n>picture formats.\\n>\\n \\n If you have the GRASP animation system, then yes, it\\'s quite easy.\\nYou simply use GLIB to extract the image (each \"frame\" in a .GL is\\nactually a complete .PCX or .CLP file), then use one of MANY available\\nutilities to convert it. If you don\\'t have the GRASP package, I\\'m afraid\\nI can\\'t help you. Sorry.\\n By the way, before you ask, GRASP (GRaphics Animation System for\\nProfessionals) is a commercial product that sells for just over US$300\\nfrom most mail-order companies I\\'ve seen. And no, I don\\'t have it. :)\\n \\n \\n Corey Webb\\n \\n \\n ____________________________________________________________________\\n | Corey Webb | \"For in much wisdom is much grief, and |\\n | cbw790s@vma.smsu.edu | he that increaseth knowledge increaseth |\\n | Bitnet: CBW790S@SMSVMA | sorrow.\" -- Ecclesiastes 1:18 |\\n |-------------------------|------------------------------------------|\\n | The \"S\" means I am only | \"But first, are you experienced?\" |\\n | speaking for myself. | -- Jimi Hendrix |\\n \\n',\n", + " \"From: n4hy@harder.ccr-p.ida.org (Bob McGwier)\\nSubject: Re: NAVSTAR positions\\nOrganization: IDA Center for Communications Research\\nLines: 11\\nDistribution: world\\nNNTP-Posting-Host: harder.ccr-p.ida.org\\nIn-reply-to: Thomas.Enblom@eos.ericsson.se's message of 19 Apr 93 06:34:55 GMT\\n\\n\\nYou have missed something. There is a big difference between being in\\nthe SAME PLANE and in exactly the same state (positions and velocities\\nequal). IN addition to this, there has always been redundancies proposed.\\n\\nBob\\n--\\n------------------------------------------------------------------------------\\nRobert W. McGwier | n4hy@ccr-p.ida.org\\nCenter for Communications Research | Interests: amateur radio, astronomy,golf\\nPrinceton, N.J. 08520 | Asst Scoutmaster Troop 5700, Hightstown\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: \"Cruel\" (was Re: >This whole thread started because of a discussion about whether\\n>>or not the death penalty constituted cruel punishment, which is forbidden\\n>>by the US Constitution.\\n>Yes, but they didn\\'t say what they meant by \"cruel\", which is why\\n>a) you have the Supreme Court, and b) it makes no sense to refer\\n>to the Constitution, which is quite silent on the meaning of the\\n>word \"cruel\".\\n\\nThey spent quite a bit of time on the wording of the Constitution. They\\npicked words whose meanings implied the intent. We have already looked\\nin the dictionary to define the word. Isn\\'t this sufficient?\\n\\n>>Oh, but we were discussing the death penalty (and that discussion\\n>>resulted from the one about murder which resulted from an intial\\n>>discussion about objective morality--so this is already three times\\n>>removed from the morality discussion).\\n>Actually, we were discussing the mening of the word \"cruel\" and\\n>the US Constitution says nothing about that.\\n\\nBut we were discussing it in relation to the death penalty. And, the\\nConstitution need not define each of the words within. Anyone who doesn\\'t\\nknow what cruel is can look in the dictionary (and we did).\\n\\nkeith\\n',\n", + " \"From: dennisn@ecs.comm.mot.com (Dennis Newkirk)\\nSubject: Re: Proton/Centaur?\\nOrganization: Motorola\\nNntp-Posting-Host: 145.1.146.43\\nLines: 31\\n\\nIn article <1r54to$oh@access.digex.net> prb@access.digex.com (Pat) writes:\\n>The question i have about the proton, is could it be handled at\\n>one of KSC's spare pads, without major malfunction, or could it be\\n>handled at kourou or Vandenberg? \\n\\nSeems like a lot of trouble to go to. Its probably better to \\ninvest in newer launch systems. I don't think a big cost advantage\\nfor using Russian systems will last for very long (maybe a few years). \\nLockheed would be the place to ask, since you would probably have to buy \\nthe Proton from them (they market the Proton world wide except Russia). \\nThey should know a lot about the possibilities, I haven't heard them\\npropose US launches, so I assume they looked into it and found it \\nunprofitable. \\n\\n>Now if it uses storables, \\n\\nYes...\\n\\n>then how long would it take for the russians\\n>to equip something at cape york?\\n\\nComparable to the Zenit I suppose, but since it looks like\\nnothing will be built there, you might just as well pick any\\nspot.\\n\\nThe message is: to launch now while its cheap and while Russia and\\nKazakstan are still cooperating. Later, the story may be different.\\n\\nDennis Newkirk (dennisn@ecs.comm.mot.com)\\nMotorola, Land Mobile Products Sector\\nSchaumburg, IL\\n\",\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: was:Go Hezbollah!!\\nOrganization: The Department of Redundancy Department\\nLines: 39\\n\\nIn article <1993Apr14.210636.4253@ncsu.edu> hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n>Hezbollah and other Lebanese Resistance fighters are skilled at precision\\n>bombing of SLA and Israeli targets. \\n\\nIt\\'s hard to beat a car-bomb with a suicidal driver in getting \\nright up to the target before blowing up. Even booby-traps and\\nradio-controlled bombs under cars are pretty efficient killers. \\nYou have a point. \\n\\n>I find such methods to be far more\\n>restrained and responsible \\n\\nIs this part of your Islamic value-system?\\n\\n>than the Israeli method of shelling and bombing\\n>villages with the hope that a Hezbollah member will be killed along with\\n>the civilians murdered. \\n\\nHad Israeli methods been anything like this, then Iraq wouldn\\'ve been\\nnuked long ago, entire Arab towns deported and executions performed by\\nthe tens of thousands. The fact is, though, that Israeli methods\\naren\\'t even 1/10,000th as evil as those which are common and everyday\\nin Arab states.\\n\\n>Soldiers are trained to die for their country. Three IDF soldiers\\n>did their duty the other day. These men need not have died if their government\\n>had kept them on Israeli soil. \\n\\n\"Israeli soil\"???? Brad/Ali! Just wait until the Ayatollah\\'s\\nthought-police get wind of this. It\\'s all \"Holy Muslim Soil (tm)\".\\nHave you forgotten? May Allah have mercy on you now.\\n\\n>Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: Steve_Mullins@vos.stratus.com\\nSubject: Re: Bible Quiz\\nOrganization: Stratus Computer, Marlboro Ma.\\nLines: 20\\nNNTP-Posting-Host: m72.eng.stratus.com\\n\\n\\nIn article <1993Apr16.130430.1@ccsua.ctstateu.edu> kellyb@ccsua.ctstateu.edu wrote: \\n>In article , kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n>> Only when the Sun starts to orbit the Earth will I accept the Bible. \\n>> \\n> Since when does atheism mean trashing other religions?There must be a God\\n ^^^^^^^^^^^^^^^\\n> of inbreeding to which you are his only son.\\n\\n\\na) I think that he has a rather witty .sig file. It sums up a great\\n deal of atheistic thought (IMO) in one simple sentence.\\nb) Atheism isn\\'t an \"other religion\".\\n\\n\\nsm\\n=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=\\nSteve_Mullins@vos.stratus.com () \"If a man empties his purse into his\\nMy opinions <> Stratus\\' opinions () head, no one can take it from him\\n------------------------------ () ---------------Benjamin Franklin\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1993Apr20.101044.2291@iti.org> aws@iti.org (Allen W. Sherzer) writes:\\n\\n>Depends. If you assume the existance of a working SSTO like DC, on billion\\n>$$ would be enough to put about a quarter million pounds of stuff on the\\n>moon. If some of that mass went to send equipment to make LOX for the\\n>transfer vehicle, you could send a lot more. Either way, its a lot\\n>more than needed.\\n\\n>This prize isn\\'t big enough to warrent developing a SSTO, but it is\\n>enough to do it if the vehicle exists.\\n\\nBut Allen, if you can assume the existence of an SSTO there is no need\\nto have the contest in the first place. I would think that what we\\nwant to get out of the contest is the development of some of these\\n\\'cheaper\\' ways of doing things; if they already exist, why flush $1G\\njust to get someone to go to the Moon for a year?\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " \"From: oz@ursa.sis.yorku.ca (Ozan S. Yigit)\\nSubject: Re: Turkish Government Agents on UseNet Lie Through Their Teeth! \\nIn-Reply-To: dbd@urartu.sdpa.org's message of Thu, 15 Apr 1993 20: 45:12 GMT\\nOrganization: York U. Student Information Systems Project\\nLines: 15\\n\\nDavidian-babble:\\n\\n>The Turkish government feels it can funnel a heightened state of ultra-\\n>nationalism existing in Turkey today onto UseNet and convince people via its \\n>revisionist, myopic, and incidental view of themselves and their place in the \\n>world. \\n\\nTurkish government on usenet? How long are you going to keep repeating\\nthis utterly idiotic [and increasingly saddening] drivel?\\n\\noz\\n---\\n life of a people is a sea, and those that look at it from the shore \\n cannot know its depths.\\t\\t\\t -Armenian proverb \\n\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violatins in Azerbaijan #009\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 262\\n\\n Accounts of Anti-Armenian Human Right Violatins in Azerbaijan #009\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +-----------------------------------------------------------------+\\n | |\\n | There were about six burned people in there, and the small |\\n | corpse of a burned child. It was gruesome. I suffered a |\\n | tremendous shock. There were about ten people there, but the |\\n | doctor on duty said that because of the numbers they were being |\\n | taken to Baku. There was a woman\\'s corpse there too, she had |\\n | been . . . well, there was part of a body there . . . a |\\n | hacked-off part of a woman\\'s body. It was something terrible. |\\n | |\\n +-----------------------------------------------------------------+\\n\\nDEPOSITION OF ROMAN ALEKSANDROVICH GAMBARIAN\\n\\n Born 1954\\n Senior Engineer\\n Sumgait Automotive Transport Production Association\\n\\n Resident at Building 17/33B, Apartment 40\\n Microdistrict No. 3\\n Sumgait [Azerbaijan]\\n\\n\\nWhat happened in Sumgait was a great tragedy, an awful tragedy for us, the \\nArmenian people, and for all of mankind. A genocide of Armenians took place\\nduring peacetime.\\n\\nAnd it was a great tragedy for me personally, because I lost my father in\\nthose days. He was still young. Born in 1926.\\n\\nOn that day, February 28, we were at home. Of course we had heard that there \\nwas unrest in town, my younger brother Aleksandr had told us about it. But we \\ndidn\\'t think . . . we thought that everything would happen outdoors, that they\\nwouldn\\'t go into people\\'s apartments. About five o\\'clock we saw a large crowd \\nnear the Kosmos movie theater in our microdistrict. We were sitting at home \\nwatching television. We go out on the balcony and see the crowd pour into Mir \\nStreet. This is right near downtown, next to the airline ticket office, our \\nhouse is right nearby. That day there was a group of policeman with shields\\nthere. They threw rocks at those policemen. Then they moved off in the \\ndirection of our building. They burned a motorcycle in our courtyard and \\nstarted shouting for Armenians to come out of the building. We switched off \\nthe light. As it turns out, their signal was just the opposite: to turn on the\\nlight. That meant that it was an Azerbaijani home. We, of course, didn\\'t know \\nand thought that if they saw lights on they would come to our apartment.\\n\\nSuddenly there\\'s pounding on the door. We go to the door, all four of us:\\nthere were four of us in the apartment. Father, Mother, my younger brother\\nAleksandr, and I. He was born in 1959. My father was a veteran of World War \\nII and had fought in China and in the Soviet Far East; he was a pilot.\\n\\nWe went to the door and they started pounding on it harder, breaking it down \\nwith axes. We start to talk to them in Azerbaijani, \"What\\'s going on? What\\'s \\nhappened?\" They say, \"Armenians, get out of here!\" We don\\'t open the door, we \\nsay, \"If we have to leave, we\\'ll leave, we\\'ll leave tomorrow.\" They say, \"No, \\nleave now, get out of here, Armenian dogs, get out of here!\" By now they\\'ve \\nbroken the door both on the lock and the hinge sides. We hold them off as best\\nwe can, my father and I on one side, and my mother and brother on the other. \\nWe had prepared ourselves: we had several hammers and an axe in the apartment,\\nand grabbed what we could find to defend ourselves. They broke in the door and\\nwhen the door gave way, we held it for another half-hour. No neighbors, no\\npolice and no one from the city government came to our aid the whole time. We \\nheld the door. They started to smash the door on the lock side, first with an \\naxe, and then with a crowbar.\\n\\nWhen the door gave way--they tore it off its hinges--Sasha hit one of them \\nwith the axe. The axe flew out of his hands. They also had axes, crowbars, \\npipes, and special rods made from armature shafts. One of them hit my father \\nin the head. The pressure from the mob was immense. When we retreated into the\\nroom, one of them hit my mother, too, in the left part of her face. My brother\\nSasha and I fought back, of course. Sasha is quite strong and hot-tempered, he\\nwas the judo champion of Sumgait. We had hammers in our hands, and we injured \\nseveral of the bandits--in the heads and in the eyes, all that went on. But \\nthey, the injured ones, fell back, and others came to take their places, there\\nwere many of them.\\n\\nThe door fell down at an angle. The mob tried to remove the door, so as to go \\ninto the second room and to continue . . . to finish us off. Father brought \\nskewers and gave them to Sasha and me--we flew at them when we saw Father \\nbleeding: his face was covered with blood, he had been wounded in the head, \\nand his whole face was bloody. We just threw ourselves on them when we saw \\nthat. We threw ourselves at the mob and drove back the ones in the hall, drove\\nthem down to the third floor. We came out on the landing, but a group of the \\nbandits remained in one of the rooms they were smashing all the furniture in \\nthere, having closed the door behind them. We started tearing the door off to \\nchase away the remaining ones or finish them. Then a man, an imposing man of \\nabout 40, an Azerbaijani, came in. When he was coming in, Father fell down and\\nMother flew to him, and started to cry out. I jumped out onto the balcony and \\nstarted calling an ambulance, but then the mob started throwing stones through\\nthe windows of our veranda and kitchen. We live on the fourth floor. And no \\none came. I went into the room. It seemed to me that this man was the leader \\nof the group. He was respectably dressed in a hat and a trench coat with a \\nfur collar. And he addressed my mother in Azerbaijani: \"What\\'s with you, \\nwoman, why are you shouting? What happened? Why are you shouting like that?\"\\nShe says, \"What do you mean, what happened? You killed somebody!\" My father \\nwas a musician, he played the clarinet, he played at many weddings, Armenian \\nand Azerbaijani, he played for many years. Everyone knew him. Mother says, \\n\"The person who you killed played at thousands of Azerbaijani weddings, he \\nbrought so much joy to people, and you killed that person.\" He says, \"You \\ndon\\'t need to shout, stop shouting.\" And when they heard the voice of this \\nman, the 15 to 18 people who were in the other room opened the door and \\nstarted running out. We chased after them, but they ran away. That man left, \\ntoo. As we were later told, downstairs one of them told the others, I don\\'t \\nknow if it was from fright or what, told them that we had firearms, even\\nthough we only fought with hammers and an axe. We raced to Father and started \\nto massage his heart, but it was already too late. We asked the neighbors to \\ncall an ambulance. The ambulance never came, although we waited for it all \\nevening and all through the night.\\n\\nSomewhere around midnight about 15 policemen came. They informed us they were \\nfrom Khachmas. They said, \"We heard that a group was here at your place, you \\nhave our condolences.\" They told us not to touch anything and left. Father lay\\nin the room.\\n\\nSo we stayed home. Each of us took a hammer and a knife. We sat at home. Well,\\nwe say, if they descend on us again we\\'ll defend ourselves. Somewhere around \\none o\\'clock in the morning two people came from the Sumgait Procuracy, \\ninvestigators. They say, \"Leave everything just how it is, we\\'re coming back \\nhere soon and will bring an expert who will record and photograph everything.\"\\nThen people came from the Republic Procuracy too, but no one helped us take \\nFather away. The morning came and the neighbors arrived. We wanted to take \\nFather away somehow. We called the Procuracy and the police a couple of times,\\nbut no one came. We called an ambulance, and nobody came. Then one of the \\nneighbors said that the bandits were coming to our place again and we should \\nhide. We secured the door somehow or other. We left Father in the room and \\nwent up to the neighbor\\'s.\\n\\nThe excesses began again in the morning. The bandits came in several vehicles,\\nZIL panel trucks, and threw themselves out of the vehicles like . . . a \\nlanding force near the center of town. Our building was located right there. A\\ncrowd formed. Then they started fighting with the soldiers. Then, in Buildings\\n19 and 20, that\\'s next to the airline ticket office, they started breaking \\ninto Armenian apartments, destroying property, and stealing. The Armenians \\nweren\\'t at home, they had managed to flee and hide somewhere. And again they \\npoured in the direction of our building. They were shouting that there were \\nsome Armenians left on the fourth floor, meaning us. \"They\\'re up there, still,\\nup there. Let\\'s go kill them!\" They broke up all the furniture remaining in \\nthe two rooms, threw it outside, and burned it in large fires. We were hiding \\none floor up. Something heavy fell. Sasha threw himself toward the door \\nshouting that it was probably Father, they had thrown Father, were defiling \\nthe corpse, probably throwing it in the fire, going to burn it. I heard it, \\nand the sound was kind of hollow, and I said, \"No, that\\'s from some of the \\nfurniture.\" Mother and I pounced on Sasha and stopped him somehow, and calmed \\nhim down.\\n\\nThe mob left somewhere around eight o\\'clock. They smashed open the door and \\nwent into the apartment of the neighbors across from us. They were also\\nArmenians, they had left for another city.\\n\\nThe father of the neighbor who was concealing us came and said, \"Are you \\ncrazy? Why are you hiding Armenians? Don\\'t you now they\\'re checking all the \\napartments? They could kill you and them!\" And to us :\" . . . Come on, leave \\nthis apartment!\" We went down to the third floor, to some other neighbors\\'. At\\nfirst the man didn\\'t want to let us in, but then one of his sons asked him and\\nhe relented. We stayed there until eleven o\\'clock at night. We heard the sound\\nof motors. The neighbors said that it was armored personnel carriers. We went \\ndownstairs. There was a light on in the room where we left Father. In the \\nother rooms, as we found out later, all the chandeliers had been torn down. \\nThey left only one bulb. The bulb was burning, which probably was a signal \\nthey had agreed on because there was a light burning in every apartment in our\\nMicrodistrict 3 where there had been a pogrom.\\n\\nWith the help of the soldiers we made it to the City Party Committee and were \\nsaved. Our salvation--my mother\\'s, my brother\\'s, and mine,--was purely \\naccidental, because, as we later found out from the neighbors, someone in the \\ncrowd shouted that we had firearms up there. Well, we fought, but we were only\\nable to save Mother. We couldn\\'t save Father. We inflicted many injuries on \\nthe bandits, some of them serious. But others came to take their places. We \\nwere also wounded, there was blood, and we were scratched all over--we got our\\nshare. It was a miracle we survived. We were saved by a miracle and the \\ntroops. And if troops hadn\\'t come to Sumgait, the slaughter would have been \\neven greater: probably all the Armenians would have been victims of the \\ngenocide.\\n\\nThrough an acquaintance at the City Party Committee I was able to contact the \\nleadership of the military unit that was brought into the city, and at their \\norders we were assigned special people to accompany us, experts. We went to \\'\\npick up Father\\'s corpse. We took it to the morgue. This was about two o\\'clock \\nin the morning, it was already March 1, it was raining very hard and it was \\nquite cold, and we were wearing only our suits. When my brother and I carried \\nFather into the morgue we saw the burned and disfigured corpses. There were \\nabout six burned people in there, and the small corpse of a burned child. It \\nwas gruesome. I suffered a tremendous shock. There were about ten people \\nthere, but the doctor on duty said that because of the numbers they were being\\ntaken to Baku. There was a woman\\'s corpse there too, she had been . . . well, \\nthere was part of a body there . . . a hacked-off part of a woman\\'s body. It \\nwas something terrible. The morgue was guarded by the landing force . . . The \\nchild that had been killed was only ten or twelve years old. It was impossible\\nto tell if it was a boy or a girl because the corpse was burned. There was a \\nman there, too, several men. You couldn\\'t tell anything because their faces \\nwere disfigured, they were in such awful condition...\\n\\nNow two and a half months have passed. Every day I recall with horror what \\nhappened in the city of Sumgait. Every day: my father, and the death of my \\nfather, and how we fought, and the people\\'s sorrow, and especially the morgue.\\n\\nI still want to say that 70 years have passed since Soviet power was\\nestablished, and up to the very last minute we could not conceive of what \\nhappened in Sumgait. It will go down in history.\\n\\nI\\'m particularly surprised that the mob wasn\\'t even afraid of the troops. They\\neven fought the soldiers. Many soldiers were wounded. The mob threw fuel \\nmixtures onto the armored personnel carriers, setting them on fire. They \\nweren\\'t afraid. They were so sure of their impunity that they attacked our \\ntroops. I saw the clashes on February 29 near the airline ticket office, right\\nacross from our building. And that mob was fighting with the soldiers. The \\ninhabitants of some of the buildings, also Azerbaijanis, threw rocks at the \\nsoldiers from windows, balconies, even cinder blocks and glass tanks. They \\nweren\\'t afraid of them. I say they were sure of their impunity. When we were \\nat the neighbors\\' and when they were robbing homes near the airline ticket \\noffice I called the police at number 3-20-02 and said that they were robbing \\nArmenian apartments and burning homes. And they told me that they knew that \\nthey were being burned. During those days no one from the police department \\ncame to anyone\\'s aid. No one came to help us, either, to our home, even though\\nperhaps they could have come and saved us.\\n\\nAs we later found out the mob was given free vodka and drugs, near the bus \\nstation. Rocks were distributed in all parts of town to be thrown and used in \\nfighting. So I think all of it was arranged in advance. They even knew in \\nwhich buildings and apartments the Armenians lived, on which floors--they had\\nlists, the bandits. You can tell that the \"operation\" was planned in advance.\\n\\nThanks, of course, to our troops, to the country\\'s leadership, and to the\\nleadership of the Ministry of Defense for helping us, thanks to the Russian\\npeople, because the majority of the troops were Russians, and the troops \\nsuffered losses, too. I want to express this gratitude in the name of my \\nfamily and in the name of all Armenians, and in the name of all Sumgait\\nArmenians. For coming in time and averting terrible things: worse would\\nhave happened if that mob had not been stopped on time.\\n\\nAt present an investigation is being conducted on the part of the USSR\\nProcuracy. I want to say that those bandits should receive the severest\\npossible punishment, because if they don\\'t, the tragedy, the genocide, could \\nhappen again. Everyone should see that the most severe punishment is meted\\nout for such deeds.\\n\\nVery many bandits and hardened hooligans took part in the unrest, in the mass \\ndisturbances. The mobs were huge. At present not all of them have been caught,\\nvery few of them have been, I think, judging by the newspaper reports. There \\nwere around 80 people near our building alone, that\\'s how many people took \\npart in the pogrom of our building all in all.\\n\\nThey should all receive the most severe punishment so that others see that \\nretribution awaits those who perform such acts.\\n\\n May 18, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 153-157\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Bikes vs. Horses (was Re: insect impacts f\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 41\\n\\nJonathan E. Quist, on the Thu, 15 Apr 1993 14:26:42 GMT wibbled:\\n: In article txd@ESD.3Com.COM (Tom Dietrich) writes:\\n: >>In a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n\\n: [lots of things, none of which are quoted here]\\n\\n: >>>In article rgu@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes:\\n: >>> You think your *average* dirt biker can jump\\n: >>>a 3 foot log? \\n: >\\n: >How about an 18\" log that is suspended about 18\" off of the ground?\\n: >For that matter, how about a 4\" log that is suspended 2.5\\' off of the\\n: >ground?\\n\\n: Oh, ye of little imagination.\\n\\n:You don\\'t jump over those -that\\'s where you lay the bike down and slide under!\\n: -- \\n: Jonathan E. Quist\\n\\nThe nice thing about horses though, is that if they break down in the middle of\\nnowhere, you can eat them. Fuel\\'s a bit cheaper, too.\\n--\\n\\nNick (the 90 HP Biker) DoD 1069 Concise Oxford Giddy-Up!\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", + " 'From: nelson_p@apollo.hp.com (Peter Nelson)\\nSubject: Re: Remember those names come election time.\\nNntp-Posting-Host: c.ch.apollo.hp.com\\nOrganization: Hewlett-Packard Corporation, Chelmsford, MA\\nKeywords: usa federal, government, international, non-usa government\\nLines: 34\\n\\nIn article anwar+@cs.cmu.edu (Anwar Mohammed) writes:\\n>I said:\\n> In article nelson_p@apollo.hp.com (Peter Nelson) writes:\\n> >\\n> > Besides, there\\'s no case that can be made for US military involvement\\n> > there that doesn\\'t apply equally well to, say, Liberia, Angola, or\\n> > (it appears with the Khmer Rouge\\'s new campaign) Cambodia. Non-whites\\n> > don\\'t count?\\n>\\n> Hmm...some might say Kuwaitis are non-white. Ooops, I forgot, Kuwaitis are\\n> \"oil rich\", \"loaded with petro-dollars\", etc so they don\\'t count.\\n>\\n>...and let\\'s not forget Somalia, which is about as far from white as it\\n>gets.\\n\\n And why are we in Somalia? When right across the Gulf of Aden are\\n some of the wealthiest Arab nations on the planet? Why does the \\n US always become the point man for this stuff? I don\\'t mind us\\n helping out; but what invariably happens is that everybody expects\\n us to do most of the work and take most of the risks, even when these\\n events are occuring in other people\\'s back yards, and they have the\\n resources to deal with them quite well, thank you. I mean, it\\'s \\n not like either Serbia, or Somalia represent some overwhelming\\n military force that their neighbors can\\'t handle. Nor are the \\n logistics a big deal -- it\\'s a lot bigger logistical challenge \\n to get troops and supplies from New York to Somalia, than from \\n Saudi Arabia; harder to go from Texas to Serbia, than Turkey or \\n Austria to Serbia.\\n\\n\\n---peter\\n\\n\\n\\n',\n", + " \"From: halat@pooh.bears (Jim Halat)\\nSubject: Islam is caused by believing (was Re: Genocide is Caused by Theism)\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 40\\n\\n\\n\\nIn article <1993Apr13.173100.29861@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>>I'm only saying that anything can happen under atheism. Being a\\n>>beleiver, a knowledgeable one in religion, only good can happen.\\n\\nThis is becoming a tiresome statement. Coming from you it is \\na definition, not an assertion:\\n\\n Islam is good. Belief in Islam is good. Therefore, being a \\n believer in Islam can produce only good...because Islam is\\n good. Blah blah blah.\\n\\nThat's about as circular as it gets, and equally meaningless. To\\nsay that something produces only good because it is only good that \\nit produces is nothing more than an unapplied definition. And\\nall you're application is saying that it's true if you really \\nbelieve it's true. That's silly.\\n\\nConversely, you say off-handedly that _anything_ can happen under\\natheism. Again, just an offshoot of believe-it-and-it-becomes-true-\\ndon't-believe-it-and-it-doesn't. \\n\\nLike other religions I'm aquainted with, Islam teaches exclusion and\\ncaste, and suggests harsh penalties for _behaviors_ that have no\\nlogical call for punishment (certain limits on speech and sex, for\\nexample). To me this is not good. I see much pain and suffering\\nwithout any justification, except for the _waving of the hand_ of\\nsome inaccessible god.\\n\\nBy the by, you toss around the word knowledgable a bit carelessly.\\nFor what is a _knowledgeable believer_ except a contradiction of\\nterms. I infer that you mean believer in terms of having faith.\\nAnd If you need knowledge to believe then faith has nothing\\nto do with it, does it?\\n\\n-jim halat\\n \\n\\n\",\n", + " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Cultural Enquiries\\nOrganization: University College of Wales, Aberystwyth\\nLines: 35\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\nIn article <1pcl6i$e4i@bigboote.WPI.EDU> ravi@vanilla.WPI.EDU (Ravi Narayan) writes:\\n>In a previous article, groh@nu.cs.fsu.edu said:\\n>= azw@aber.ac.uk (Andy Woodward) writes:\\n>= \\n>= >2) Why do they ride Harleys?\\n>= \\n>= 'cause we can.\\n>= \\n>\\n> you sure are lucky! i am told that there are very few people out\\n> there who can actually get their harley to ride ;-) (the name tod\\n> johnson jumps to the indiscreet mind... laz whats it you used to\\n> ride???).\\n>\\n>\\n>-- \\n>----------_________----------_________----------_________----------_________\\n>sig (n): a piece of mail with a fool at one | Ravi Narayan, CS, WPI\\n> end and flames at the other. (C). | 89 SuzukiGS500E - Phaedra ;)\\n>__________---------__________---------__________---------__________---------\\n\\nHi, Ravi\\n\\nIf you need a Harley, we have lots to spare here. All the yuppies\\nbought 'the best' a couple of years ago to pose at the (s)wine\\nbar. They 'rode a mile and walked the rest'. Called a taxi home and \\nwent back to the porsche. So there's are loads going cheap with about\\n1 1/2 miles on the clock (takes a while to coast to a halt).\\n\\nCheers\\n\\nAndy\\n\\nP.S. You get a better class of people on GS500's anyway\\n\",\n", + " 'From: ivan@erich.triumf.ca (Ivan D. Reid)\\nSubject: Re: Accident report\\nNews-Software: VAX/VMS VNEWS 1.41 \\nNntp-Posting-Host: erich.triumf.ca\\nOrganization: TRIUMF: Tri-University Meson Facility\\nLines: 36\\n\\nIn article <1992Jun25.132424.20760@prl.philips.nl>, mcardle@prl.philips.nl (Owen McArdle) writes...\\n>In article ranck@vtvm1.cc.vt.edu (Wm. L. Ranck) writes:\\n>--In article <1992Jun23.214330.18592@bcrka451.bnr.ca> whitton@bnr.ca (Mark Whitton) writes:\\n>--\\n>-->It turns out that the trailer lights were not hooked up\\n>-->to the truck. \\n>--\\n>--Yep, basic rule: *Never* expect or believe turn signals completely.\\n>--Around here, and many other places, people just don\\'t signal at all.\\n>--And, sometimes the signals aren\\'t working. Sometimes they get left on.\\n> \\n>\\tThe scary bit about this is the is the non-availability of rear-\\n>lights at all. Now living in the Netherlands I\\'ve learned that the only\\n>reliable indicators are those red ones which go on at both sides at once -\\n>some people call them brake lights. Once they light up, expect ANYTHING\\n>to occur in front of you :-). (It\\'s not just the Dutch though)\\n> \\n>\\tHowever I never realised how much I relied on this until I got \\n>caught a few times behind someone whose lights didn\\'t work AT ALL. Once \\n>I\\'d sussed it out it wasn\\'t so bad (knowing it is half the battle), but \\n>it\\'s a great way to find out that you\\'ve been following someone too \\n>closely :-). Now I try to check for lights all the time, \\'cos that split \\n>second can make all the difference (though it shouldn\\'t be necessary, I \\n>know),\\n> \\n>Owen.\\n\\tWhat used to peeve me in Canada was the cars with bloody _red_ rear\\nindicators. You\\'d see a single red light come on and think, \"Now, is he\\nstopping but one brake-lamp is not working, or does he have those dumb bloody\\n_red_ rear indicators?\" This being Survival 101, you have to assume he\\'s\\nbraking and take the appropriate actions, until such time as the light goes\\nout and on again, after which you can be reasonably certain it\\'s a bloody _red_\\nrear indicator.\\n\\nIvan Reid, Paul Scherrer Institute, CH. \\t\\t\\tivan@cvax.psi.ch\\nGSX600F, RG250WD.\\tSI=2.66 \"You Porsche. Me pass!\"\\tDoD #484\\n',\n", + " 'From: tankut@IASTATE.EDU (Sabri T Atan)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: tankut@IASTATE.EDU (Sabri T Atan)\\nOrganization: Iowa State University\\nLines: 36\\n\\nIn article <1993Apr20.143453.3127@news.uiowa.edu>, mau@herky.cs.uiowa.edu (Mau\\nNapoleon) writes:\\n> From article <1qvgu5INN2np@lynx.unm.edu>, by osinski@chtm.eece.unm.edu (Marek\\nOsinski):\\n> \\n> > Well, it did not take long to see how consequent some Greeks are in\\n> > requesting that Thessaloniki are not called Solun by Bulgarian netters. \\n> > So, Napoleon, why do you write about Konstantinople and not Istanbul?\\n> > \\n> > Marek Osinski\\n> \\n> Thessaloniki is called Thessaloniki by its inhabitants for the last 2300\\nyears.\\n> The city was never called Solun by its inhabitants.\\n> Instabul was called Konstantinoupolis from 320 AD until about the 1920s.\\n> That\\'s about 1600 years. There many people alive today who were born in a\\ncity\\n> called Konstantinoupolis. How many people do you know that were born in a city\\n> called Solun.\\n> \\n> Napoleon\\n\\nAre you one of those people who were born when Istanbul was called \\nKonstantinopolis? I don\\'t think so! If those people use it because\\nthey are used to do so, then I understand. But open any map\\ntoday (except a few that try to be political) you will see that the name \\nof the city is printed as Istanbul. So, don\\'t try to give\\nany arguments to using Konstantinopolis except to cause some\\nflames, to make some political statement. \\n\\n\\n--\\nTankut Atan\\ntankut@iastate.edu\\n\\n\"Achtung, baby!\"\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Investment in Yehuda and Shomron\\nOrganization: Division of Applied Sciences, Harvard University\\nLines: 29\\n\\n\\nIn article <1483500346@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n\\n>Those who wish to learn something about the perversion of Judaism,\\n>should consult the masterly work by Yehoshua Harkabi, who was many\\n>years the head of Israeli Intelligence and an opponent of the PLO. His\\n>latest book was published in English and includes a very detailed analysis\\n>of Judeo-Nazism.\\n\\n\\tYou mean he talks about those Jews, who, because of their self\\nhatred, spend all their time attacking Judaism, Jews, and Israel,\\nusing the most despicable of anti-Semetic stereotypes?\\n\\n\\tI don\\'t think we need to coin a term like \"Jedeo-Nazism\" to\\nrefer to those Jews who, in their endless desire to be accepted by the\\nNazis, do their dirty work for them. We can just call them house\\nJews, fools, or anti-Semites from Jewish families.\\n\\n\\tI think \"house Jews,\" a reference to a person of Jewish\\nancestry who issues statements for a company or organization that\\ncondemn Judaism is perfectly sufficeint. I think a few years free of\\ntheir anti-Semetic role models would do wonders for most of them.\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: zeno@phylo.genetics.washington.edu (Sean Lamont)\\nSubject: Closed-curve intersection\\nArticle-I.D.: shelley.1ra2paINN68s\\nOrganization: Abstract Software\\nLines: 10\\nNNTP-Posting-Host: phylo.genetics.washington.edu\\n\\nI would like a reference to an algorithm that can detect whether \\none closed curve bounded by some number of bezier curves lies completely\\nwithin another closed curve bounded by bezier curves.\\n\\nThanks.\\n-- \\nSean T. Lamont | Ask me about the WSI-Fonts\\nzeno@genetics.washington.edu | Professional collection for NeXT \\nlamont@abstractsoft.com |____________________________________\\nAbstract Software \\n',\n", + " 'From: mz@moscom.com (Matthew Zenkar)\\nSubject: Re: CView answers\\nOrganization: Moscom Corp., E. Rochester, NY\\nLines: 15\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nCyberspace Buddha (cb@wixer.bga.com) wrote:\\n: renew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n: >over where it places its temp files: it just places them in its\\n: >\"current directory\".\\n\\n: I have to beg to differ on this point, as the batch file I use\\n: to launch cview cd\\'s to the dir where cview resides and then\\n: invokes it. every time I crash cview, the 0-byte temp file\\n: is found in the root dir of the drive cview is on.\\n\\nI posted this as well before the cview \"expert\". Apparently, he thought he\\nknew better.\\n\\nMatthew Zenkar\\nmz@moscom.com\\n',\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nArticle-I.D.: aurora.1993Apr23.123433.1\\nOrganization: University of Alaska Fairbanks\\nLines: 43\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1r96hb$kbi@access.digex.net>, prb@access.digex.com (Pat) writes:\\n> In article <1993Apr23.001718.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>>In article <1r6b7v$ec5@access.digex.net>, prb@access.digex.com (Pat) writes:\\n>>> Besides this was the same line of horse puckey the mining companies claimed\\n>>> when they were told to pay for restoring land after strip mining.\\n>>===\\n>>I aint talking the large or even the \"mining companies\" I am talking the small\\n>>miners, the people who have themselves and a few employees (if at all).The\\n>>people who go out every year and set up thier sluice box, and such and do\\n>>mining the semi-old fashion way.. (okay they use modern methods toa point).\\n> \\n> \\n> Lot\\'s of these small miners are no longer miners. THey are people living\\n> rent free on Federal land, under the claim of being a miner. The facts are\\n> many of these people do not sustaint heir income from mining, do not\\n> often even live their full time, and do fotentimes do a fair bit\\n> of environmental damage.\\n> \\n> These minign statutes were created inthe 1830\\'s-1870\\'s when the west was\\n> uninhabited and were designed to bring people into the frontier. Times change\\n> people change. DEAL. you don\\'t have a constitutional right to live off\\n> the same industry forever. Anyone who claims the have a right to their\\n> job in particular, is spouting nonsense. THis has been a long term\\n> federal welfare program, that has outlived it\\'s usefulness.\\n> \\n> pat\\n> \\n\\nHum, do you enjoy putting words in my mouth? \\nCome to Nome and meet some of these miners.. I am not sure how things go down\\nsouth in the lower 48 (I used to visit, but), of course to believe the\\nmedia/news its going to heck (or just plain crazy). \\nWell it seems that alot of Unionist types seem to think that having a job is a\\nright, and not a priviledge. Right to the same job as your forbearers, SEE:\\nKennedy\\'s and tel me what you see (and the families they have married into).\\nThere is a reason why many historians and poli-sci types use unionist and\\nsocialist in the same breath.\\nThe miners that I know, are just your average hardworking people who pay there\\ntaxes and earn a living.. But taxes are not the answer. But maybe we could move\\nthis discussion to some more appropriate newsgroup..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", + " 'From: djf@cck.coventry.ac.uk (Marvin Batty)\\nSubject: Re: Moon Colony Prize Race! $6 billion total?\\nNntp-Posting-Host: cc_sysk\\nOrganization: Starfleet, Coventry, UK\\nLines: 49\\n\\nIn article <1993Apr20.020259.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>I think if there is to be a prize and such.. There should be \"classes\"\\n>such as the following:\\n>\\n>Large Corp.\\n>Small Corp/Company (based on reported earnings?)\\n>Large Government (GNP and such)\\n>Small Governemtn (or political clout or GNP?)\\n>Large Organization (Planetary Society? and such?)\\n>Small Organization (Alot of small orgs..)\\n\\nWhatabout, Schools, Universities, Rich Individuals (around 250 people \\nin the UK have more than 10 million dollars each). I reecieved mail\\nfrom people who claimed they might get a person into space for $500\\nper pound. Send a skinny person into space and split the rest of the money\\namong the ground crew!\\n>\\n>The organization things would probably have to be non-profit or liek ??\\n>\\n>Of course this means the prize might go up. Larger get more or ??\\n>Basically make the prize (total purse) $6 billion, divided amngst the class\\n>winners..\\n>More fair?\\n>\\n>There would have to be a seperate organization set up to monitor the events,\\n>umpire and such and watch for safety violations (or maybe not, if peopel want\\n>to risk thier own lives let them do it?).\\n>\\nAgreed. I volunteer for any UK attempts. But one clause: No launch methods\\nwhich are clearly dangerous to the environment (ours or someone else\\'s). No\\nusage of materials from areas of planetary importance.\\n\\n>Any other ideas??\\n\\nYes: We should *do* this rather than talk about it. Lobby people!\\nThe major problem with the space programmes is all talk/paperwork and\\nno action!\\n\\n>==\\n>Michael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n>\\n>\\n\\n\\n-- \\n**************************************************************************** \\n Marvin Batty - djf@uk.ac.cov.cck\\n\"And they shall not find those things, with a sort of rafia like base,\\nthat their fathers put there just the night before. At about 8 O\\'clock!\"\\n',\n", + " \"From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)\\nSubject: Re: ++BIKE SOLD OVER NET 600 MILES AWAY!++\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: relva.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 14\\n\\nIn article <6130331@hplsla.hp.com>, kens@hplsla.hp.com (Ken Snyder) writes:\\n|> \\n|> > Any other bikes sold long distances out there...I'd love to hear about\\n|> it!\\n|> \\n|> I bought my VFR750 from a guy in San Jose via the net. That's 825 miles\\n|> according to my odometer!\\n|> \\n\\nmark andy (living in pittsburgh) bought his RZ350 from a dude in\\nmassachusetts (or was it connecticut?).\\n\\naxel\\n\\n\",\n", + " 'From: cdw2t@dayhoff.med.Virginia.EDU (Dances With Federal Rangers)\\nSubject: Re: Misc./buying info. needed\\nOrganization: University of Virginia\\nLines: 28\\n\\nIn article <1993Apr18.160449.1@hamp.hampshire.edu> jyaruss@hamp.hampshire.edu writes:\\n\\n>Is there a buying guide for new/used motorcycles (that lists reliability, how\\n>to go about the buying process, what to look for, etc...)?\\n\\n_Cycle World_ puts one out, but I\\'m sure it\\'s not very objective. Try talking\\nwith dealers and the people that hang out there, as well as us. We love to\\ngive advice.\\n\\n>Is there a pricing guide for new/used motorcycles (Blue Book)?\\n\\nMost of the bigger banks have a blue book which includes motos -- ask for the\\none with RVs in it.\\n\\n>Are there any books/articles on riding cross country, motorcycle camping, etc?\\n\\nCouldn\\'t help you here.\\n\\n>Is there an idiots\\' guide to motorcycles?\\n\\nYou\\'re reading it.\\n\\n----------------------------------------------------------------------------\\n| Cliff Weston DoD# 0598 \\'92 Seca II (Tem) |\\n| |\\n| \"the female body is a beautiful work of art, while the male body |\\n| is lumpy and hairy and should not be seen by the light of day.\" |\\n----------------------------------------------------------------------------\\n',\n", + " 'From: Howard Frederick \\nSubject: Re: Turkish Government Agents on UseNet\\nNf-ID: #R:1993Apr15.204512.11971@urartu.sd:1238805668:cdp:1483500341:000:1042\\nNf-From: cdp.UUCP!hfrederick Apr 16 14:31:00 1993\\nLines: 20\\n\\n\\nI don\\'t know anything about this particular case, but *other*\\ngovernments have been known to follow events on the Usenet. For\\nexample after Tienanmien Square in Beijing the Chinese government\\nbegan monitoring cyberspace. As the former Director of PeaceNet,\\nI am aware of many incidents of local, state, national and\\ninternational authorities monitoring Usenet and other conferences\\nsuch as those on the Institute for Global Communications. But\\nwhat\\'s the big deal? You shouldn\\'t advocate illegal acts in this\\nmedium in any case. If you are concerned about being monitored,\\nyou should use encyrption software (available in IGC\\'s \"micro\"\\nconference). I know for a fact that human rights activists in the\\nBalkan-Mideast area use encryption software to send out their\\nreports to international organizations. Such message *can* be\\ndecoded however by large computers consuming much CPU time, which\\nprobably the Turkish government doesn\\'t have access to.\\n\\nHoward Frederick, University of California, Irvine Department of\\nPolitics and Society\\n\\n',\n", + " \"From: dls@aeg.dsto.gov.au (David Silver)\\nSubject: Re: Fractal Generation of Clouds\\nOrganization: Defence Science and Technology Organisation\\nLines: 14\\nNNTP-Posting-Host: kestrel.dsto.gov.au\\n\\nhaabn@nye.nscee.edu (Frederick J. Haab) writes:\\n\\n\\n>I need to implement an algorithm to fractally generate clouds\\n>as sort of a benchmark for some algorithms I'm working on.\\n\\nJust as a matter of interest, a self-promo computer graphics sequence \\nthat one of the local TV stations used to play quite a lot a couple of\\nyears ago showed a 3D flyover of Australia from the West coast to the\\nEast. The clouds were quite recognisable as fuzzy, flat, white\\nMandlebrot sets!!\\n\\nDavid Silver\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: This year the Turkish Nation is mourning and praying again for...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 207\\n\\nReferring to notes from the personal diary of Russian General L. \\nOdishe Liyetze on the Turkish front, he wrote,\\n\\n\"On the nights 11-12 March, 1918 alone Armenian butchers \\n bayoneted and axed to death 3000 Muslims in areas surrounding\\n Erzincan. These barbars threw their victims into pits, most\\n likely dug according to their sinister plans to extinguish \\n Muslims, in groups of 80. My adjutant counted and unearthed\\n 200 such pits. This is an act against our world of civilization.\"\\n\\nOn March 12, 1918 Lieut-colonel Griyaznof wrote (from an official\\nRussian account of the Turkish genocide),\\n\\n\"Roads leading to villages were littered with bayoneted torsos,\\n dismembered joints and carved out organs of Muslim peasants...\\n alas! mainly of women and children.\"\\n\\nSource: Doc. Dr. Azmi Suslu, \"Russian View on the Atrocities Committed\\n by the Armenians Against the Turks,\" Ankara Universitesi, Ankara,\\n 1987, pp. 45-53.\\n \"Document No: 77,\" Archive No: 1-2, Cabin No: 10, Drawer \\n No: 4, File No: 410, Section No: 1578, Contents No: 1-12, 1-18.\\n (Acting Commander of Erzurum and Deveboynu regions and Commander\\n of the Second Erzurum Artillery Regiment Prisoner of War,\\n Lieutenant Colonel Toverdodleyov)\\n\\n\"The things I have heard and seen during the two months, until the\\n liberation of Erzurum by the Turks, have surpassed all the\\n allegations concerning the vicious, degenerate characteristic of\\n the Armenians. During the Russian occupation of Erzurum, no Armenian\\n was permitted to approach the city and its environs.\\n\\n While the Commander of the First Army Corps, General Kaltiyin remained\\n in power, troops including Armenian enlisted men, were not sent to the\\n area. When the security measures were lifted, the Armenians began to \\n attack Erzurum and its surroundings. Following the attacks came the\\n plundering of the houses in the city and the villages and the murder\\n of the owners of these houses...Plundering was widely committed by\\n the soldiers. This plunder was mainly committed by Armenian soldiers\\n who had remained in the rear during the war.\\n\\n One day, while passing through the streets on horseback, a group of\\n soldiers including an Armenian soldier began to drag two old men of\\n seventy years in a certain direction. The roads were covered with mud,\\n and these people were dragging the two helpless Turks through the mud\\n and dirt...\\n\\n It was understood later that all these were nothing but tricks and\\n traps. The Turks who joined the gendarmarie soon changed their minds\\n and withdrew. The reason was that most of the Turks who were on night\\n patrol did not return, and no one knew what had happened to them. The \\n Turks who had been sent outside the city for labour began to disappear\\n also. Finally, the Court Martial which had been established for the\\n trials of murderers and plunderers, began to liquidate itself for\\n fear that they themselves would be punished. The incidents of murder\\n and rape, which had decreased, began to occur more frequently.\\n\\n Sometime in January and February, a leading Turkish citizen Haci Bekir\\n Efendi from Erzurum, was killed one night at his home. The Commander\\n in Chief (Odiselidge) gave orders to find murderers within three days.\\n The Commander in Chief has bitterly reminded the Armenian intellectuals\\n that disobedience among the Armenian enlisted men had reached its\\n highest point, that they had insulted and robbed the people and half\\n of the Turks sent outside the city had not returned.\\n\\n ...We learnt the details this incident from the Commander-in-Chief,\\n Odishelidge. They were as follows:\\n\\n The killings were organized by the doctors and the employers, and the\\n act of killing was committed solely by the Armenian renegades...\\n More than eight hundred unarmed and defenceless Turks have been\\n killed in Erzincan. Large holes were dug and the defenceless \\n Turks were slaughtered like animals next to the holes. Later, the\\n murdered Turks were thrown into the holes. The Armenian who stood \\n near the hole would say when the hole was filled with the corpses:\\n \\'Seventy dead bodies, well, this hole can take ten more.\\' Thus ten\\n more Turks would be cut into pieces, thrown into the hole, and when\\n the hole was full it would be covered over with soil.\\n\\n The Armenians responsible for the act of murdering would frequently\\n fill a house with eighty Turks, and cut their heads off one by one.\\n Following the Erzincan massacre, the Armenians began to withdraw\\n towards Erzurum... The Armenian renegades among those who withdrew\\n to Erzurum from Erzincan raided the Moslem villages on the road, and\\n destroyed the entire population, together with the villages.\\n\\n During the transportation of the cannons, ammunition and the carriages\\n that were outside the war area, certain people were hired among the \\n Kurdish population to conduct the horse carriages. While the travellers\\n were passing through Erzurum, the Armenians took advantage of the time\\n when the Russian soldiers were in their dwellings and began to kill\\n the Kurds they had hired. When the Russian soldiers heard the cries\\n of the dying Kurds, they attempted to help them. However, the \\n Armenians threatened the Russian soldiers by vowing that they would\\n have the same fate if they intervened, and thus prevented them from\\n acting. All these terrifying acts of slaughter were committed with\\n hatred and loathing.\\n\\n Lieutenant Medivani from the Russian Army described an incident that\\n he witnessed in Erzurum as follows: An Armenian had shot a Kurd. The\\n Kurd fell down but did not die. The Armenian attempted to force the\\n stick in his hand into the mouth of the dying Kurd. However, since\\n the Kurd had firmly closed his jaws in his agony, the Armenian failed\\n in his attempt. Having seen this, the Armenian ripped open the abdomen\\n of the Kurd, disembowelled him, and finally killed him by stamping\\n him with the iron heel of his boot.\\n\\n Odishelidge himself told us that all the Turks who could not escape\\n from the village of Ilica were killed. Their heads had been cut off\\n by axes. He also told us that he had seen thousands of murdered\\n children. Lieutenant Colonel Gryaznov, who passed through the village\\n of Ilica, three weeks after the massacre told us the following:\\n\\n There were thousands of dead bodies hacked to pieces, on the roads.\\n Every Armenian who happened to pass through these roads, cursed and\\n spat on the corpses. In the courtyard of a mosque which was about\\n 25x30 meter square, dead bodies were piled to a height of 140 \\n centimeters. Among these corpses were men and women of every age,\\n children and old people. The women\\'s bodies had obvious marks of\\n rape. The genitals of many girls were filled with gun-powder.\\n\\n A few educated Armenian girls, who worked as telephone operators\\n for the Armenian troops were called by Lieutenant Colonel Gryaznov\\n to the courtyard of the mosque and he bitterly told them to be \\n proud of what the Armenians had done. To the lieutenant colonel\\'s\\n disgusted amazement, the Armenian girls started to laugh and giggle,\\n instead of being horrified. The lieutenant colonel had severely\\n reprimanded those girls for their indecent behaviour. When he told\\n the girls that the Armenians, including women, were generally more\\n licentious than even the wildest animals, and that their indecent\\n and shameful laughter was the most obvious evidence of their inhumanity\\n and barbarity, before a scene that appalled even veteran soldiers,\\n the Armenian girls finally remembered their sense of shame and\\n claimed they had laughed because they were nervous.\\n\\n An Armenian contractor at the Alaca Communication zone command\\n narrated the following incident which took place on February 20:\\n\\n The Armenians had nailed a Turkish women to the wall. They had cut\\n out the women\\'s heart and placed the heart on top of her head.\\n The great massacre in Erzurum began on February 7... The enlisted men \\n of the artillery division caught and stripped 270 people. Then they\\n took these people into the bath to satisfy their lusts. 100 people\\n among this group were able to save their lives as the result of\\n my decisive attempts. The others, the Armenians claimed, were \\n released when they learnt that I understood what was going on. \\n Among those who organized this treacherous act was the envoy to the\\n Armenian officers, Karagodaviev. Today, some Turks were murdered\\n on the streets.\\n\\n On February 12, some Armenians have shot more than ten innocent\\n Moslems. The Russian soldiers who attempted to save these people were\\n threatened with death. Meanwhile I imprisoned an Armenian for\\n murdering an innocent Turk. \\n\\n When an Armenian officer told an Armenian murderer that he would \\n be hanged for his crime, the killer shouted furiously: \\'How dare\\n you hang an Armenian for killing a Turk?\\' In Erzurum, the \\n Armenians burned down the Turkish market. On February 17, I heard\\n that the entire population of Tepekoy village, situated within\\n the artillery area, had been totally annihilated. On the same \\n day when Antranik entered Erzurum, I reported the massacre to\\n him, and asked him to track down the perpetrators of this horrible\\n act. However no result was achieved.\\n\\n In the villages whose inhabitants had been massacred, there was a\\n natural silence. On the night of 26/27 February, the Armenians deceived\\n the Russians, perpetrated a massacre and escaped for fear of the \\n Turkish soldiers. Later, it was understood that this massacre had\\n been based upon a method organized and planned in a circular. \\n The population had been herded in a certain place and then killed\\n one by one. The number of murders committed on that night reached\\n three thousand. It was the Armenians who bragged to about the details\\n of the massacre. The Armenians fighting against the Turkish soldiers\\n were so few in number and so cowardly that they could not even\\n withstand the Turkish soldiers who consisted of only five hundred\\n people and two cannons, for one night, and ran away. The leading\\n Armenians of the community could have prevented this massacre.\\n However, the Armenian intellectuals had shared the same ideas with\\n the renegades in this massacre, just as in all the others. The lower\\n classes within the Armenian community have always obeyed the orders\\n of the leading Armenian figures and commanders. \\n\\n I do not like to give the impression that all Armenian intellectuals\\n were accessories to these murders. No, for there were people who\\n opposed the Armenians for such actions, since they understood that\\n it would yield no result. However, such people were only a minority.\\n Furthermore, such people were considered as traitors to the Armenian\\n cause. Some have seemingly opposed the Armenian murders but have\\n supported the massacres secretly. Some, on the other hand, preferred\\n to remain silent. There were certain others, who, when accused by\\n the Russians of infamy, would say the following: \\'You are Russians.\\n You can never understand the Armenian cause.\\' The Armenians had a\\n conscience. They would commit massacres and then would flee in fear\\n of the Turkish soldiers.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: ldaddari@polaris.cv.nrao.edu (Larry D\\'Addario)\\nSubject: Re: Russian Email Contacts.\\nIn-Reply-To: nsmca@aurora.alaska.edu\\'s message of Sat, 17 Apr 1993 12: 52:09 GMT\\nOrganization: National Radio Astronomy Observatory\\nLines: 32\\n\\nIt is usually possible to reach people at IKI (Institute for Space\\nResearch) in Moscow by writing to\\n\\n\\tIKIMAIL@esoc1.bitnet\\n\\nThis is a machine at ESA in Darmstadt, Germany; IKI has a dedicated\\nphone line to this machine and someone there logs in regularly to\\nretrieve mail.\\n\\nIn addition, there are several user accounts belonging to Russian\\nscientific institutions on\\n\\n\\t@sovam.com\\n\\nwhich is a commercial enterprise based in San Francisco that provides\\nemail services to the former USSR. For example, fian@sovam.com is the\\n\"PHysics Institute of the Academy of Sciences\" (initials transliterated\\nfrom Russian, of course). These connections cost the Russians real\\ndollars, even for *received* messages, so please don\\'t send anything\\nvoluminous or frivilous.\\n\\n=====================================================================\\nLarry R. D\\'Addario\\nNational Radio Astronomy Observatory\\n\\nAddresses (INTERNET) LDADDARI@NRAO.EDU\\n\\t (FAX) +1/804/296-0324 Charlottesville\\n\\t\\t +1/304/456-2200 Green Bank\\n\\t (MAIL) 2015 Ivy Road, Charlottesville, VA 22903, USA\\n\\t (PHONE) +1/804/296-0245 office, 804/973-4983 home CHO\\n\\t\\t +1/304/456-2226 off., -2106 lab, -2256 apt. GB\\n=====================================================================\\n',\n", + " 'From: txd@ESD.3Com.COM (Tom Dietrich)\\nSubject: Re: Ducati 400 opinions wanted\\nLines: 51\\nNntp-Posting-Host: able.mkt.3com.com\\n\\nfrankb@sad.hp.com (Frank Ball) writes:\\n\\n>Godfrey DiGiorgi (ramarren@apple.com) wrote:\\n>& \\n>& The Ducati 400 model is essentially a reduced displacement 750, which\\n>& means it weighs the same and is the same size as the 750 with far less\\n>& power. It is produced specifically to meet a vehicle tax restriction\\n>& in certain markets which makes it commercially viable. It\\'s not sold\\n>& in the US where it is unneeded and unwanted.\\n>& \\n>& As such, it\\'s somewhat large and overweight for its motor. It will \\n>& still handle magnificently, it just won\\'t be very fast. There are\\n>& very few other flaws to mention; the limited steering lock is the \\n>& annoyance noted by most testers. And the mirrors aren\\'t perfect.\\n\\n>The Ducati 750 model is essentially a reduced displacement 900, which\\n>means it weighs the same and is the same size as the 900 with far less\\n\\nNope, it\\'s 24 lbs. lightrer than the 900.\\n\\n>power. And less brakes.\\n\\nA single disk that is quite impressive. WIth two fingers on the lever,\\nmuch to Beth\\'s horror I lifted the rear wheel about 8\" in a fine Randy\\nMamola impression. ;{>\\n\\n>As such, it\\'s somewhat large and overweight for its motor. It will \\n>still handle magnificently, it just won\\'t be very fast. There are\\n\\nI have a feeling that it\\'s going to be fast enough that Beth will give\\na few liter bike riders fits in the future.\\n\\n>very few other flaws to mention; the limited steering lock is the \\n\\nThe steering locks are adjustable.\\n\\n>annoyance noted by most testers. And the mirrors aren\\'t perfect.\\n\\nBeth sees fine out of them... I see 2/3 of them filled with black\\nleather.\\n\\n*********************************************************************\\n\\'86 Concours.....Sophisticated Lady Tom Dietrich \\n\\'72 1000cc Sportster.....\\'Ol Sport-For sale DoD # 055\\n\\'79 SR500.....Spike, the Garage Rat AMA #524245\\nQueued for an M900!! FSSNOC #1843\\nTwo Jousts and a Gather, *BIG fun!* 1KSPT=17.28% \\nMa Bell (408) 764-5874 Cool as a rule, but sometimes...\\ne-mail txd@Able.MKT.3Com.COM (H. Lewis) \\nDisclaimer: 3Com takes no responsibility for opinions preceding this.\\n*********************************************************************\\n',\n", + " 'From: (Rashid)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: 47.252.4.179\\nOrganization: NH\\nLines: 76\\n\\nIn article <1993Apr14.131032.15644@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n> \\n> It is my understanding that it is generally agreed upon by the ulema\\n> [Islamic scholars] that Islamic law applies only in an Islamic country,\\n> of which the UK is not. Furthermore, to take the law into one\\'s own\\n> hands is a criminal act, as these are matters for the state, not for\\n> individuals. Nevertheless, Khomeini offered a cash prize for people to\\n> take the law into their own hands -- something which, to my\\n> understanding, is against Islamic law.\\n\\nYes, this is also my understanding of the majority of Islamic laws.\\nHowever, I believe there are also certain legal rulings which, in all\\nfive schools of law (4 sunni and 1 jaffari), can be levelled against\\nmuslim or non-muslims, both within and outside dar-al-islam. I do\\nnot know if apostasy (when accompanied by active, persistent, and\\nopen hostility to Islam) falls into this category of the law. I do know\\nthat\\nhistorically, apostasy has very rarely been punished at all, let alone\\nby the death penalty.\\n\\nMy understanding is that Khomeini\\'s ruling was not based on the\\nlaw of apostasy (alone). It was well known that Rushdie was an apostate\\nlong before he wrote the offending novel and certainly there is no\\nprecedent in the Qur\\'an, hadith, or in Islamic history for indiscriminantly\\nlevelling death penalties for apostasy.\\n\\nI believe the charge levelled against Rushdie was that of \"fasad\". This\\nruling applies both within and outside the domain of an\\nIslamic state and it can be carried out by individuals. The reward was\\nnot offered by Khomeini but by individuals within Iran.\\n\\n\\n> Stuff deleted\\n> Also, I think you are muddying the issue as you seem to assume that\\n> Khomeini\\'s fatwa was issued due to the _distribution_ of the book. My\\n> understanding is that Khomeini\\'s fatwa was issued in response to the\\n> _writing_ and _publishing_ of the book. If my view is correct, then\\n> your viewpoint that Rushdie was sentenced for a \"crime in progress\" is\\n> incorrect.\\n> \\nI would concur that the thrust of the fatwa (from what I remember) was\\nlevelled at the author and all those who assisted in the publication\\nof the book. However, the charge of \"fasad\" can encompass a\\nnumber of lesser charges. I remember that when diplomatic relations\\nbroke off between Britain and Iran over the fatwa - Iran stressed that\\nthe condemnation of the author, and the removal of the book from\\ncirculation were two preliminary conditions for resolving the\\n\"crisis\". But you are correct to point out that banning the book was not\\nthe main thrust behind the fatwa. Islamic charges such as fasad are\\nlevelled at people, not books.\\n\\nThe Rushdie situation was followed in Iran for several months before the\\nissuance of the fatwa. Rushdie went on a media blitz,\\npresenting himself as a lone knight guarding the sacred values of\\nsecular democracy and mocking the foolish concerns of people\\ncrazy enough to actually hold their religious beliefs as sacred. \\nFanning the flames and milking the controversy to boost\\nhis image and push the book, he was everywhere in the media. Then\\nMuslim demonstrators in several countries were killed while\\nprotesting against the book. Rushdie appeared momentarily\\nconcerned, then climbed back on his media horse to once again\\nattack the Muslims and defend his sacred rights. It was at this\\npoint that the fatwa on \"fasad\" was issued.\\n\\nThe fatwa was levelled at the person of Rushdie - any actions of\\nRushdie that feed the situation contribute to the legitimization of\\nthe ruling. The book remains in circulation not by some independant\\nwill of its own but by the will of the author and the publishers. The fatwa\\nagainst the person of Rushdie encompasses his actions as well. The\\ncrime was certainly a crime in progress (at many levels) and was being\\nplayed out (and played up) in the the full view of the media.\\n\\nP.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\napplies to Rushdie and may be encompassed under the umbrella\\nof the \"fasad\" ruling.\\n',\n", + " 'From: dean@fringe.rain.com (Dean Woodward)\\nSubject: Re: Comments on a 1984 Honda Interceptor 1000?\\nOrganization: Organization for Mass Confusion.\\nLines: 30\\n\\njearls@tekig6.PEN.TEK.COM (Jeffrey David Earls) writes:\\n\\n> In article <19APR93.15421177@skyfox> howp@skyfox writes:\\n> >Hi.\\n> > I am considering the purchase of a 1984 Honda 1000cc Interceptor for\\n> >$2095 CDN (about $1676 US). I don\\'t know the mileage on this bike, but from\\n> >the picture in the \\'RV Trader\\' magazine, it looks to be in good shape.\\n> >Can anybody enlighten me as to whether this is a good purchase? \\n> \\n> Oog. I hate to jump in on this type of thread but ....\\n> \\n> pass on the VF1000. It\\'s big, top heavy, and carries lots of\\n> expensive parts. \\n\\nWhat he said. Most of my friends refer to them as \"ground magnets.\" One\\n\\n\\n> =============================================================================\\n> |Jeff Earls jearls@tekig6.pen.tek.com | DoD #0530 KotTG KotSPT WMTC AMA\\n> |\\'89 FJ1200 - Millennium Falcon | Squid Factor: 16.99 \\n> |\\'93 KLR650 - Thumpy | \"Hit the button Chewie!\"... Han Solo\\n> \\n> \"There ain\\'t nothin\\' like a 115 mph sweeper in the Idaho rockies.\" - me\\n\\n\\n--\\nDean Woodward | \"You want to step into my world?\\ndean@fringe.rain.com | It\\'s a socio-psychotic state of Bliss...\"\\n\\'82 Virago 920 | -Guns\\'n\\'Roses, \\'My World\\'\\nDoD # 0866\\n',\n", + " 'From: MUNIZB%RWTMS2.decnet@rockwell.com (\"RWTMS2::MUNIZB\")\\nSubject: Space Activities in Tucson, AZ ?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 7\\n\\nI would like to find out about space engineering employment and educational\\nopportunities in the Tucson, Arizona area. E-mail responses appreciated.\\nMy mail feed is intermittent, so please try one or all of these addresses.\\n\\nBen Muniz w(818)586-3578 MUNIZB%RWTMS2.decnet@beach.rockwell.com \\nor: bmuniz@a1tms1.remnet.ab.com MUNIZB%RWTMS2.decnet@consrt.rockwell.com\\n\\n',\n", + " \"Subject: Re: Enough Freeman Bashing! Was: no-Free man propaganda machine: Freemanwith blood greetings from Israel\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 16\\n\\npgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman) writes:\\n\\n\\nPeter,\\n\\nI believe this is your most succinct post to date. Since you have nothing\\nto say, you say nothing! It's brilliant. Did you think of this all by\\nyourself?\\n\\n-marc \\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Turkey Admits to Sending Arms to Azerbaijan/Turkish Pilot Caught\\nSummary: Oh, yes...neutral Turkey \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 57\\n\\n4/15/93 1242 Turkey sends light weapons as aid to Azerbaijan\\n\\nBy SEVA ULMAN\\n \\nANKARA, Turkey (UPI) -- Turkey is arming Azerbaijan with light weapons to help\\nit fight Armenian forces in the struggle for the Nagorno- Karabakh enclave, \\nthe newspaper Hurriyet said Thursday.\\n\\nDeputy Prime Minister Erdal Inonu told reporters in Ankara that Turkey was\\nresponding positively to a request from Azerbaijan for assistance.\\n\\n\"We are giving a positive response to all requests\" from Azerbaijan, \"within\\nthe limits of our capabilities,\" he said.\\n\\nForeign Ministry spokesman Vural Valkan declined to elaborate on the nature\\nof the aid being sent to Azerbaijan, but said they were within the framework \\nof the Council for Security and Cooperation in Europe.\\n\\nHurriyet, published in Istanbul, said Turkey was sending light weapons to\\nAzerbaijan, including rockets, rocket launchers and ammunition.\\n\\nAnkara began sending the hardware after a visit to Turkey last week by a\\nhigh-ranking Azerbaijani official. Turkey has however ruled out, for the second\\ntime in one week, that it would intervene militarily in Azerbaijan.\\n\\nWednesday, Inonu told reporters Ankara would not allow Azerbaijan to suffer\\ndefeat at the hands of the Armenians. \"We feel ourselves bound to help\\nAzerbaijan, but I am not in a position right now to tell you what form (that)\\nhelp may take in the future,\" he said.\\n\\nHe said Turkish aid to Azerbaijan was continuing, \"and the whole world knows\\nabout it.\"\\n\\nPrime Minister Suleyman Demirel reiterated that Turkey would not get\\nmilitarily involved in the conflict. Foreign policy decisions could not be \\nbased on street-level excitement, he said.\\n\\nThere was no immediate reaction in Ankara to regional reports, based on\\nArmenian sources in Yerevan, saying Turkish pilots and other officers were\\ncaptured when they were shot down flying Azerbaijani warplanes and \\nhelicopters.\\n\\nThe newspaper Cumhuriyet said Turkish troops were digging in along the border\\nwith Armenia, but military sources denied reports based on claims by local\\npeople that gunfire was heard along the border. No military action has \\noccurred, the sources said.\\n\\nThe latest upsurge in fighting between the Armenians and Azerbaijanis flared\\nearly this month when Armenian forces seized the town of Kelbajar and later\\npositioned themselves outside Fizuli, near the Iranian border.\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: dietz@cs.rochester.edu (Paul Dietz)\\nSubject: Re: Terraforming Venus: can it be done \"cheaply\"?\\nOrganization: University of Rochester\\nLines: 9\\n\\nWould someone please send me James Oberg\\'s email address, if he has\\none and if someone reading this list knows it? I wanted to send\\nhim a comment on something in his terraforming book.\\n\\n\\tPaul F. Dietz\\n\\tdietz@cs.rochester.edu\\n\\n\\tPotential explosive yield of the annual global\\n\\tproduction of borax: 5 million megatons\\n',\n", + " 'From: 9051467f@levels.unisa.edu.au (The Desert Brat)\\nSubject: Victims of various \\'Good Fight\\'s\\nOrganization: Cured, discharged\\nLines: 30\\n\\nIn article <9454@tekig7.PEN.TEK.COM>, naren@tekig1.PEN.TEK.COM (Naren Bala) writes:\\n\\n> LIST OF KILLINGS IN THE NAME OF RELIGION \\n> 1. Iran-Iraq War: 1,000,000\\n> 2. Civil War in Sudan: 1,000,000\\n> 3, Riots in India-Pakistan in 1947: 1,000,000\\n> 4. Massacares in Bangladesh in 1971: 1,000,000\\n> 5. Inquistions in America in 1500s: x million (x=??)\\n> 6. Crusades: ??\\n\\n7. Massacre of Jews in WWII: 6.3 million\\n8. Massacre of other \\'inferior races\\' in WWII: 10 million\\n9. Communist purges: 20-30 million? [Socialism is more or less a religion]\\n10. Catholics V Protestants : quite a few I\\'d imagine\\n11. Recent goings on in Bombay/Iodia (sp?) area: ??\\n12. Disease introduced to Brazilian * oher S.Am. tribes: x million\\n\\n> -- Naren\\n\\nThe Desert Brat\\n-- \\nJohn J McVey, Elc&Eltnc Eng, Whyalla, Uni S Australia, ________\\n9051467f@levels.unisa.edu.au T.S.A.K.C. \\\\/Darwin o\\\\\\nFor replies, mail to whjjm@wh.whyalla.unisa.edu.au /\\\\________/\\nDisclaimer: Unisa hates my opinions. bb bb\\n+------------------------------------------------------+-----------------------+\\n|\"It doesn\\'t make a rainbow any less beautiful that we | \"God\\'s name is smack |\\n|understand the refractive mechanisms that chance to | for some.\" |\\n|produce it.\" - Jim Perry, perry@dsinc.com | - Alice In Chains |\\n+------------------------------------------------------+-----------------------+\\n',\n", + " 'From: frank@D012S658.uucp (Frank O\\'Dwyer)\\nSubject: Re: Societally acceptable behavior\\nOrganization: Siemens-Nixdorf AG\\nLines: 87\\nNNTP-Posting-Host: d012s658.ap.mchp.sni.de\\n\\nIn article cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n#In <1qvabj$g1j@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) \\n#writes:\\n#\\n#>In article cobb@alexia.lis.uiuc.edu (Mike \\n#Cobb) writes:\\n#\\n#Am I making a wrong assumption for the basis of morals? Where do they come \\n#from? The question came from the idea that I heard that morals come from\\n#whatever is societally mandated.\\n\\nIt\\'s only one aspect of morality. Societal morality is necessarily\\nvery crude and broad-brush stuff which attempts to deal with what\\nis necessary to keep that society going - and often it\\'s a little\\nover-enthusiastic about doing so. Individual morality is a different\\nthing, it often includes societal mores (or society is in trouble),\\nbut is stronger. For example, some people are vegetarian, though eating\\nmeat may be perfectly legal.\\n\\n#\\n#>#Merely a question for the basis of morality\\n#>#\\n#>#Moral/Ethical behavior = _Societally_ _acceptable_ _behavior_.\\n#>#\\n#>#1)Who is society\\n#\\n#>Depends on the society.\\n#\\n#Doesn\\'t help. Is the point irrelevant?\\n\\nNo. Often the answer is \"we are\". But if society is those who make\\nthe rules, that\\'s a different question. If society is who should\\nmake the rules, that\\'s yet another. I don\\'t claim to have the answers, either,\\nbut I don\\'t think we do it very well in Ireland, and I like some things\\nabout the US system, at least in principle.\\n\\n#\\n#>#2)How do \"they\" define what is acceptable?\\n#\\n#>Depends.\\n#On.... Again, this comes from a certain question (see above).\\n\\nWell, ideally they don\\'t, but if they must they should do it by consensus, IMO.\\n#\\n#>#3)How do we keep from a \"whatever is legal is what is \"moral\" \"position?\\n#\\n#>By adopting a default position that people\\'s moral decisions\\n#>are none of society\\'s business,\\n#\\n#So how can we put people in jail? How can we condemn other societies?\\n\\nBecause sometimes that\\'s necessary. The hard trick is to recognise when\\nit is, and equally importantly, when it isn\\'t.\\n\\n# and only interfering when it\\'s truly\\n#>necessary.\\n#\\n#Why would it be necessary? What right do we have to interfere?\\n\\nIMO, it isn\\'t often that interference (i.e. jail, and force of various\\nkinds and degrees) is both necessary and effective. Where you derive \\nthe right to interfere is a difficult question - it\\'s a sort of\\nliar\\'s paradox: \"force is necessary for freedom\". One possible justification\\nis that people who wish to take away freedom shouldn\\'t object if\\ntheir own freedom is taken away - the paradox doesn\\'t arise if\\nwe don\\'t actively wish to take way anyone\\'s freedom.\\n#\\n# The introduction of permissible interference causes the problem\\n#>that it can be either too much or too little - but most people seem\\n#>to agree that some level of interference is necessary.\\n#\\n#They see the need for a \"justice\" system. How can we even define that term?\\n\\nOnly by consensus, I guess.\\n\\n# Thus you\\n#>get a situation where \"The law often allows what honour forbids\", which I\\'ve\\n#>come to believe is as it should be. \\n#\\n#I admit I don\\'t understand that statement.\\n\\nWhat I mean is that, while thus-and-such may be legal, thus-and-such may\\nalso be seen as immoral. The law lets you do it, but you don\\'t let yourself\\ndo it. Eating meat, for example.\\n-- \\nFrank O\\'Dwyer \\'I\\'m not hatching That\\'\\nodwyer@sse.ie from \"Hens\", by Evelyn Conlon\\n',\n", + " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: writes:\\n\\n>>>As for rape, surely there the burden of guilt is solely on the rapist?\\n>>Unless you force someone to live with the rapist against his will, in which\\n>>case part of the responsibility is yours.\\n>I'm sorry, but I can't accept that. Unless the rapist was hypnotized or\\n>something, I view him as solely responsible for his actions.\\n\\nNot necessarily, especially if the rapist is known as such. For instance,\\nif you intentionally stick your finger into a loaded mousetrap and get\\nsnapped, whose fault is it?\\n\\nkeith\\n\",\n", + " \"From: bio1@navi.up.ac.za (Fourie Joubert)\\nSubject: Image Analysis for PC\\nOrganization: University of Pretoria\\nLines: 18\\nNNTP-Posting-Host: zeno.up.ac.za\\n\\nHi\\n\\nI am looking for Image Analysis software running in DOS or Windows. I'd like \\nto be able to analyze TIFF or similar files to generate histograms of \\npatterns, etc. \\n\\nAny help would be appreciated!\\n\\n__________________________________________________________________________\\n\\n _/_/_/_/ _/_/_/_/_/ Fourie Joubert \\n _/ _/ Department of Biochemistry\\n _/ _/ University of Pretoria\\n _/_/_/_/ _/ bio1@navi.up.ac.za\\n _/ _/\\n_/ _/_/_/_/\\n__________________________________________________________________________\\n\\n\",\n", + " \"From: wdm@world.std.com (Wayne Michael)\\nSubject: Re: XV under MS-DOS ?!?\\nOrganization: n/a\\nLines: 12\\n\\nNO E-MAIL ADDRESS@eicn.etna.ch writes:\\n\\n>Hi ... Recently I found XV for MS-DOS in a subdirectory of GNU-CC (GNUISH). I \\n\\nplease tell me where you where you FTP'd this from? I would like to have\\na copy of it. (I would have mailed you, but your post indicates you have no mail\\naddress...)\\n\\n> \\n-- \\nWayne Michael\\nwdm@world.std.com\\n\",\n", + " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Duke University; Durham, N.C.\\nLines: 37\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nIn article <05APR93.02678944.0049@UNBVM1.CSD.UNB.CA> C70A@UNB.CA (C70A000) writes:\\n>In article Eric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n>>Would someone please post the countersteering FAQ...i am having this awful\\n>>time debating with someone on why i push the right handle of my motorcycle\\n>>foward when i am turning left...and i can't explain (well at least) why this\\n>>happens...please help...post the faq...i need to convert him.\\n>\\n> Ummm, if you push on the right handle of your bike while at speed and\\n>your bike turns left, methinks your bike has a problem. When I do it\\n\\nReally!?\\n\\nMethinks somethings wrong with _your_ bike.\\n\\nPerhaps you meant _pull_?\\n\\nPushing the right side of my handlebars _will_ send me left.\\n\\nIt should. \\nREally.\\n\\n>on MY bike, I turn right. No wonder you need that FAQ. If I had it\\n>I'd send it.\\n>\\n\\nI'm sure others will take up the slack...\\n\\n\\n>\\n>\\n>\\n\\n-- \\nAndy Infante | I sometimes wish that people would put a little more emphasis |\\n'71 BMW R60/5 | upon the observance of the law than they do upon it's | \\nDoD #2426 | enforcement. -Calvin Coolidge | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Alaska Pipeline and Space Station!\\nOrganization: Texas Instruments Inc\\nLines: 45\\n\\nIn <1pq7rj$q2u@access.digex.net> prb@access.digex.com (Pat) writes:\\n\\n>In article <1993Apr5.160550.7592@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n>|\\n>|I think this would be a great way to build it, but unfortunately\\n>|current spending rules don\\'t permit it to be workable. For this to\\n>|work it would be necessary for the government to guarantee a certain\\n>|minimum amount of business in order to sufficiently reduce the risk\\n>|enough to make this attractive to a private firm. Since they\\n>|generally can\\'t allocate money except one year at a time, the\\n>|government can\\'t provide such a tenant guarantee.\\n\\n\\n>Fred.\\n\\n>\\tTry reading a bit. THe government does lots of multi year\\n>contracts with Penalty for cancellation clauses. They just like to be\\n>damn sure they know what they are doing before they sign a multi year\\n>contract. THe reason they aren\\'t cutting defense spending as much\\n>as they would like is the Reagan administration signed enough\\n>Multi year contracts, that it\\'s now cheaper to just finish them out.\\n\\nI don\\'t have to \"try reading a bit\", Pat. I *work* as a government\\ncontractor and know what the rules are like. Yes, they sign some\\n(damned few -- which is why everyone is always having to go to\\nWashington to see about next week\\'s funding) multi-year contracts;\\nthey also aren\\'t willing to include sufficient cancellation penalties\\nwhen they *do* decide to cut the multi-year contract and not pay on it\\n(which can happen arbitrarily at any time, no matter what previous\\nplans were) to make the risk acceptable of something like putting up a\\nprivate space station with the government as the expected prime\\noccupant.\\n\\nI\\'d like a source for that statement about \"the reason they aren\\'t\\ncutting defense spending as much as they would like\"; I just don\\'t buy\\nit. The other thing I find a bit \\'funny\\' about your posting, Pat, is\\nthat several other people answered the question pretty much the same\\nway I did; mine is the one you comment (and incorrectly, I think) on.\\nI think that says a lot. You and Tommy should move in together.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " \"From: games@max.u.washington.edu\\nSubject: SSTO Senatorial (aide) breifing recollections.\\nArticle-I.D.: max.1993Apr6.125512.1\\nDistribution: world\\nLines: 78\\nNNTP-Posting-Host: max.u.washington.edu\\n\\nThe following are my thoughts on a meeting that I, Hugh Kelso, and Bob Lilly\\nhad with an aide of Sen. Patty Murrays. We were there to discuss SSTO, and\\ncommercial space. This is how it went...\\n\\n\\n\\nAfter receiving a packet containing a presentation on the benifits of SSTO,\\nI called and tried to schedule a meeting with our local Senator (D) Patty\\nMurray, Washington State. I started asking for an hour, and when I heard\\nthe gasp on the end of the phone, I quickly backed off to 1/2 an hour.\\nLater in that conversation, I learned that a standard appointment is 15 minutes.\\n\\nWe got the standard bozo treatment. That is, we were called back by an aide,\\nwho scheduled a meeting with us, in order to determine that we were not\\nbozos, and to familiarize himself with the material, and to screen it, to \\nmake sure that it was appropriate to take the senators time with that material.\\n\\nWell, I got allocated 1/2 hour with Sen. Murrays aide, and we ended up talking\\nto him for 45 minutes, with us ending the meeting, and him still listening.\\nWe covered a lot of ground, and only a little tiny bit was DCX specific. \\nMost of it was a single stage reusable vehicle primer. There was another\\nwoman there who took copius quantities of notes on EVERY topic that\\nwe brought up.\\n\\nBut, with Murray being new, we wanted to entrench ourselves as non-corporate\\naligned (I.E. not speaking for boeing) local citizens interentested in space.\\nSo, we spent a lot of time covering the benifits of lower cost access to\\nLEO. Solar power satellites are a big focus here, so we hit them as becoming \\nfeasible with lower cost access, and we hit the environmental stand on that.\\nWe hit the tourism angle, and I left a copy of the patric Collins Tourism\\npaper, with side notes being that everyone who goes into space, and sees the\\natmosphere becomes more of an environmentalist, esp. after SEEING the smog\\nover L.A. We hit on the benifits of studying bone decalcification (which is \\nmore pronounced in space, and said that that had POTENTIAL to lead to \\nunderstanding of, and MAYBE a cure for osteoporosis. We hit the education \\nwhereby kids get enthused by space, but as they get older and find out that\\nthey havent a hop in hell of actually getting there, they go on to other\\nfields, with low cost to orbit, the chances they might get there someday \\nwould provide greater incentive to hit the harder classes needed.\\n\\nWe hit a little of the get nasa out of the operational launch vehicle business\\nangle. We hit the lower cost of satellite launches, gps navigation, personal\\ncommunicators, tellecommunications, new services, etc... Jobs provided\\nin those sectors.\\n\\nJobs provided building the thing, balance of trade improvement, etc..\\nWe mentioned that skypix would benifit from lower launch costs.\\n\\nWe left the paper on what technologies needed to be invested in in order\\nto make this even easier to do. And he asked questions on this point.\\n\\nWe ended by telling her that we wanted her to be aware that efforts are\\nproceeding in this area, and that we want to make sure that the\\nresults from these efforts are not lost (much like condor, or majellan),\\nand most importantly, we asked that she help fund further efforts along\\nthe lines of lowering the cost to LEO.\\n\\nIn the middle we also gave a little speal about the Lunar Resource Data \\nPurchase act, and the guy filed it separately, he was VERY interested in it.\\nHe asked some questions about it, and seemed like he wanted to jump on it,\\nand contact some of the people involved with it, so something may actually\\nhappen immediatly there.\\n\\nThe last two things we did were to make sure that they knew that we\\nknew a lot of people in the space arena here in town, and that they\\ncould feel free to call us any time with questions, and if we didn't know\\nthe answers, that we would see to it that they questions got to people who\\nreally did know the answers.\\n\\nThen finally, we asked for an appointment with the senator herself. He\\nsaid that we would get on the list, and he also said that knowing her, this\\nwould be something that she would be very interested in, although they\\ndo have a time problem getting her scheduled, since she is only in the\\nstate 1 week out of 6 these days.\\n\\nAll in all we felt like we did a pretty good job.\\n\\n\\t\\t\\tJohn.\\n\",\n", + " 'From: na4@vax5.cit.cornell.edu\\nSubject: Aerostitch: 1- or 2-piece?\\nDistribution: rec\\nOrganization: Cornell University\\nLines: 11\\n\\nRequest for opinions:\\t\\n\\nWhich is better - a one-piece Aerostitch or a two-piece Aerostitch?\\n\\n\\nWe\\'re looking for more than \"Well, the 2-pc is more versatile, but the \\n1-pc is better protection,...\"\\t\\n\\nThanks in advance,\\nNadine\\n\\n',\n", + " \"From: cds7k@Virginia.EDU (Christopher Douglas Saady)\\nSubject: Re: Looking for MOVIES w/ BIKES\\nOrganization: University of Virginia\\nLines: 4\\n\\nThere's also Billy Jack, The Wild One, Smokey and the Bandit\\n(Where Jerry Reed runs his truck over Motorcycle Gangs Bikes),\\nand a video tape documentary on the Hell's Angels I\\nfound in a rental store once\\n\",\n", + " \"From: bclarke@galaxy.gov.bc.ca\\nSubject: Fortune-guzzler barred from bars!\\nOrganization: BC Systems Corporation\\nLines: 20\\n\\nSaw this in today's newspaper:\\n------------------------------------------------------------------------\\nFORTUNE-GUZZLER BARRED FROM BARS\\n--------------------------------\\nBarnstaple, England/Reuter\\n\\n\\tA motorcyclist said to have drunk away a $290,000 insurance payment in\\nless than 10 years was banned Wednesday from every pub in England and Wales.\\n\\n\\tDavid Roberts, 29, had been awarded the cash in compensation for\\nlosing a leg in a motorcycle accident. He spent virtually all of it on cider, a\\ncourt in Barnstaple in southwest England was told.\\n\\n\\tJudge Malcolm Coterill banned Roberts from all bars in England and\\nWales for 12 months and put on two years' probation after he started a brawl in\\na pub.\\n\\n-- \\nBruce Clarke B.C. Environment\\n e-mail: bclarke@galaxy.gov.bc.ca\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: The Orders for the Turkish Extermination of the Armenians #17\\nSummary: To the children of genocide: \"Send them away into the Desert\"\\nArticle-I.D.: urartu.1993Apr6.115347.10660\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 145\\n\\n\\n The Orders for the Turkish Extermination of the Armenians #17\\n To the children of genocide: \"Send them away into the Desert\"\\n\\nThis is part of a continuing series of articles containing official Turkish \\nwartime (WW1) governmental telegrams, in translation, entailing the orders \\nfor the extermination of the Armenian people in Turkey. Generally, these\\ntelegrams were issued by the Turkish Minister of the Interior, Talaat Pasha,\\nfor example, we have the following set regarding children:\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t November 5, 1915. We are informed that the little ones belonging to\\n\\t the Armenians from Sivas, Mamuret-ul-Aziz, Diarbekir and Erzeroum\\n\\t [hundreds of km distance from Aleppo] are adopted by certain Moslem\\n\\t families and received as servants when they are left alone through\\n\\t the death of their parents. We inform you that you are to collect\\n\\t all such children in your province and send them to the places of\\n\\t deportation, and also to give the necessary orders regarding this to\\n\\t the people.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [1]\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t September 21, 1915. There is no need for an orphanage. It is not the\\n\\t time to give way to sentiment and feed the orphans, prolonging their\\n\\t lives. Send them away to the desert and inform us.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\t\\t\\t\\t\\t\\tTalaat\" [2]\\n\\n\\t\"To the General Committee for settling and deportees.\\n\\n\\t November 26, 1915. There were more than four hundred children in the\\n\\t orphanage. They will be added to the caravans and sent to their\\n\\t places of exile.\\n\\n\\t \\t\\t\\t\\tAbdullahad Nuri. [3]\\n\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t January 15, 1916. We hear that certain orphanages which have been\\n\\t opened receive also the children of the Armenians. Whether this is\\n\\t done through the ignorance of our real purpose, or through contempt\\n\\t of it, the Government will regard the feeding of such children or\\n\\t any attempt to prolong their lives as an act entirely opposed to it\\n\\t purpose, since it considers the survival of these children as\\n\\t detrimental. I recommend that such children shall not be received\\n\\t into the orphanages, and no attempts are to be made to establish\\n\\t special orphanages for them.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat.\" [4]\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\n\\t Collect and keep only those orphans who cannot remember the tortures\\n\\t to which their parents have been subjected. Send the rest away with\\n\\t the caravans.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [5]\\n\\n\\t\"From the Ministry of the Interior to the Government of Aleppo.\\n\\n\\t At a time when there are thousands of Moslem refugees and the widows\\n\\t of Shekid [fallen soldiers] are in need of food and protection, it is\\n\\t not expedient to incur extra expenses by feeding the children left by\\n\\t Armenians, who will serve no purpose except that of giving trouble\\n\\t in the future. It is necessary that these children should be turned\\n\\t out of your vilayet and sent with the caravans to the place of\\n\\t deportation. Those that have been kept till now are also to be sent\\n\\t away, in compliance with our previous orders, to Sivas.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [6]\\n\\nIn 1926, Halide Edip (a pioneer Turkish nationalist) wrote in her memoirs\\nabout a conversation with Talaat Pasha, verifying and \"rationalizing\" this\\nultra-national fascist anti-Armenian mentality, the following:\\n\\n\\t\"I have the conviction that as long as a nation does the best for\\n\\t its own interest, and succeeds, the world admires it and thinks\\n\\t it moral. I am ready to die for what I have done, and I know I\\n\\t shall die for it.\" [7]\\n\\n\\nThese telegrams were entered as unquestioned evidence during the 1923 trial of\\nTalaat Pasha\\'s, assassin, Soghomon Tehlerian. The Turkish government never\\nquestioned these \"death march orders\" until 1986, during a time when the world\\nwas again reminded of the genocide of the Armenians.\\n\\nFor reasons known to those who study the psychology of genocide denial, the\\nTurkish government and their supporters in crime deny that such orders were\\never issued, and further claim that these telegrams were forgeries based on a\\nstudy by S. Orel and S. Yuca of the Turkish Historical Society.\\n\\nIf one were to examine the sample \"authentic text\" provided in the Turkish \\nHistorical Society study and use their same forgery test on that sample, it \\ntoo would be a forgery!. In fact, if any of the tests delineated by the \\nTurkish Historical Society are performed an any piece of Ottoman Turkish or \\nPersian/Arabic script, one finds that anything handwritten in such language is\\na forgery. \\n\\nToday, the body of Talaat Pasha lies in a tomb on Liberty Hill, Istanbul,\\nTurkey, just next to the Yildiz University campus. The body of this genocide \\narchitect was returned to Turkey from Germany during WW2 when Turkey was in a \\nheightened state of proto-fascism. Recently, this monument has served as a\\nfocal point for anti-Armenianism in Turkey.\\n\\nThis monument represents the epitome of the Turkish government\\'s pathological\\ndenial of a clear historical event and is an insult to a people whose only\\ncrime was to be born Armenian.\\n\\n\\t\\t\\t- - - references - - -\\n\\n[1] _The Memoirs of Naim Bey_, Aram Andonian, 1919, pages 59-60\\n\\n[2] ibid, page 60\\n\\n[3] ibid, page 60\\n\\n[4] ibid, page 61\\n\\n[5] ibid, page 61\\n\\n[6] ibid, page 62\\n\\n[7] _Memoirs of Halide Edip_, Halide Edip, The Century Press, New York (and\\n London), 1926, page 387\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: drunen@nucleus.ps.uci.edu (Eric Van Drunen)\\nSubject: Re: Big amateur rockets\\nNntp-Posting-Host: nucleus.ps.uci.edu\\nOrganization: University of California, Irvine\\nLines: 30\\n\\nActually, they are legal! I not familiar with the ad you are speaking of\\nbut knowing Popular Science it is probably on the fringe. However, you\\nmay be speaking of \"Public Missle, Inc.\", which is a legitimate company\\nthat has been around for a while.\\n\\nDue to advances in composite fuels, engines are now available for model\\nrockets using similar composites to SRB fuel, roughly 3 times more \\npowerful than black powder motors. They are even available in a reloadable\\nform, i.e. aluminum casing, end casings, o-rings (!). The engines range\\nfrom D all the way to M in common manufacture, N and O I\\'ve heard of\\nused at special occasions.\\n\\nTo be a model rocket, however, the rocket can\\'t contain any metal \\nstructural parts, amongst other requirements. I\\'ve never heard of a\\nmodel rocket doing 50,000. I have heard of > 20,000 foot flights.\\nThese require FAA waivers (of course!). There are a few large national\\nlaunches (LDRS, FireBALLS), at which you can see many > K sized engine\\nflights. Actually, using a > G engine constitutes the area of \"High\\nPower Rocketry\", which is seperate from normal model rocketry. Purchase\\nof engines like I have been describing require membership in the National\\nAssociation of Rocketry, the Tripoli Rocketry Assoc., or you have to\\nbe part of an educational institute or company involved in rocketry.\\n\\nAmatuer rocketry is another area. I\\'m not really familiar with this,\\nbut it is an area where metal parts are allowed, along with liquid fuels\\nand what not. I don\\'t know what kind of regulations are involved, but\\nI\\'m sure they are numerous.\\n\\nHigh power rocketry is very exciting! If you are interested or have \\nmore questions, there is a newsgroup rec.model.rockets.\\n',\n", + " \"From: avi@duteinh.et.tudelft.nl (Avi Cohen Stuart)\\nSubject: Re: Israel's Expansion II\\nOriginator: avi@duteinh.et.tudelft.nl\\nNntp-Posting-Host: duteinh.et.tudelft.nl\\nOrganization: Delft University of Technology, Dept. of Electrical Engineering\\nLines: 14\\n\\nFrom article <93111.225707PP3903A@auvm.american.edu>, by Paul H. Pimentel :\\n> What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n> s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n> k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n> ore they have a right to Jerusaleum as much as Isreal does.\\n\\n\\nThere is one big difference between Israel and the Arabs, Christians in this\\nrespect.\\n\\nIsrael allows freedom of religion.\\n\\nAvi.\\n\",\n", + " \"From: denis@apldbio.com (Denis Concordel)\\nSubject: *** For sale: 1988 Husqvarna 510TE ***\\nDistribution: ba,ca\\nOrganization: Applied Biosystems, Inc\\nLines: 42\\n\\nFor sale:\\n\\n Model : Husqvarna 510 TE (enduro model)\\n Year : 1988\\n Engine : 500 cc Four Stroke\\n\\n Extras : - 1992 ignition (for easy starting)\\n - Suspension by Aftershock\\n - Custom carbon fiber/Kevlar skid plate\\n - Quick steering geometry\\n - Stock (EPA legal and quiet) exhaust system\\n - Bark busters and hand guards\\n - Motion Pro clutch cable\\n\\n Price : $2200\\n\\n Contact: Denis Concordel E-Mail: denis@apldbio.com\\n MaBell: (415) 570 6667 (work)\\n (415) 494 7109 (home)\\n\\n I am selling my trusty Husky... hopefully to buy a Husaberg... This is\\n a very good dirt bike and has been maintained perfectly. I never had\\n any problems with it.\\n\\n It's a four stroke, 4 valves, liquid cooled engine. It is heavier than \\n a 250 2 stroke but still lighter than a Honda XR600 and has a lot better \\n suspension (Ohlins shock, Husky fork) than the XR. For the casual or non\\n competitive rider, the engine is much better than any two stroke.\\n You can easily lug up hills and blast through trails with minimum gear\\n changes.\\n \\n The 1992 ignition and the carefully tuned carburation makes this bike\\n very easy to start (starts of first kick when cold or hot). There is a\\n custom made carbon/kevlar (light 1 pound) wrap around skid plate to protect\\n the engine cases and the water pump. The steering angle has been reduced \\n by 2 degree to increase steering quickness. This with the suspension tune-up\\n by Phil Douglas of Aftershock (Multiple time ISDE rider) gives it a better\\n ride than most bike: plush suspension, responsive steering with no head shake.\\n\\n So if it is such a good bike why sell it???? Gee, I want to buy a Husaberg,\\n which just a husky but 25 pounds lighter... and a tad more $$$.\\n\\n\",\n", + " \"From: g.coulter@daresbury.ac.uk (G. Coulter)\\nSubject: SHADOW Optical Raytracing Package?\\nReply-To: g.coulter@daresbury.ac.uk\\nOrganization: SERC Daresbury Laboratory, UK\\nLines: 17\\nNNTP-Posting-Host: dlsg.dl.ac.uk\\n\\nHi Everyone ::\\n\\nI am looking for some software called SHADOW as \\nfar as I know its a simple raytracer used in\\nthe visualization of synchrotron beam lines.\\nNow we have an old version of the program here\\n,but unfortunately we don't have any documentation\\nif anyone knows where I can get some docs, or\\nmaybe a newer version of the program or even \\nanother program that does the same sort of thing\\nI would love to hear from you.\\n\\nPS I think SHADOW was written by a F Cerrina?\\n\\nAnyone any ideas?\\n\\nThanks -Gary- SERC Daresbury Lab.\\n\",\n", + " 'From: rwf2@ns1.cc.lehigh.edu (ROBERT WILLIAM FUSI)\\nSubject: Re: Recommendation for a front tire.\\nOrganization: Lehigh University\\nLines: 37\\n\\nIn article , nrmendel@unix.amherst.edu (Nathaniel M\\nendell) writes:\\n>Ken Orr (orr@epcot.spdc.ti.com) wrote:\\n>: In article nrmendel@unix.amherst.edu (Nathaniel\\nMendell) writes:\\n>: >Steve Mansfield (smm@rodan.UU.NET) wrote:\\n>: >: Yes, my front tire is all but dead. It has minimal tread left, so it\\'s\\n>: >: time for a new one. Any recommendations on a good tire in front? I\\'m\\n>: >: riding on an almost brand new ME55A in back.\\n>: >:\\n>: >: Steve Mansfield | The system we\\'ve learned says we\\'re equal under la\\nw\\n>: >: smm@uunet.uu.net | But the streets are reality, the weak and poor will\\nfall\\n>: >: 1983 Suzuki GS550E | Let\\'s tip the power balance and tear down the crown\\n>: >: DoD# 1718 | Educate the masses, we\\'ll burn the White House down.\\n>: >: Queensryche - Speak the Word.\\n>: >\\n>: >The best thing is to match front and back, no? Given that the 99A (\"Perfect\"\\n?)\\n>: >is such a good tire, just go with that one\\n>: >\\n>: The Me99a perfect is a rear. The match for the front is the Me33 laser.\\n>:\\n>: DOD #306 K.O.\\n>: AMA #615088 Orr@epcot.spdc.ti.com\\n>\\n>Yeah, what *he* said....<:)\\n>\\n>Nathaniel\\n>ZX-10\\n>DoD 0812\\n>AM\\n\\n>Yes, you definitely need a front tire on a motorcycle....\\n\\n-- \\n',\n", + " \"From: zellner@stsci.edu\\nSubject: Re: HST Servicing Mission\\nLines: 19\\nOrganization: Space Telescope Science Institute\\nDistribution: world,na\\n\\nIn article <1rd1g0$ckb@access.digex.net>, prb@access.digex.com (Pat) writes: \\n > \\n > \\n > SOmebody mentioned a re-boost of HST during this mission, meaning\\n > that Weight is a very tight margin on this mission.\\n > \\n\\nI haven't heard any hint of a re-boost, or that any is needed.\\n\\n > \\n > why not grapple, do all said fixes, bolt a small liquid fueled\\n > thruster module to HST, then let it make the re-boost. it has to be\\n > cheaper on mass then usingthe shuttle as a tug. \\n\\nNasty, dirty combustion products! People have gone to monumental efforts to\\nkeep HST clean. We certainly aren't going to bolt any thrusters to it.\\n\\nBen\\n\\n\",\n", + " \"From: jyaruss@hamp.hampshire.edu\\nSubject: Misc./buying info. needed\\nOrganization: Hampshire College\\nLines: 15\\nNNTP-Posting-Host: hamp.hampshire.edu\\n\\nHi. I have been thinking about buying a Motorcycle or a while now and I have\\nsome questions:\\n\\n-Is there a buying guide for new/used motorcycles (that lists reliability, how\\nto go about the buying process, what to look for, etc...)?\\n-Is there a pricing guide for new/used motorcycles (Blue Book)?\\n\\nAlso\\n-Are there any books/articles on riding cross country, motorcycle camping, etc?\\n-Is there an idiots' guide to motorcycles?\\n\\nANY related information is helpful. Please respond directly to me.\\n\\nThanks a lot.\\n-Jordan\\n\",\n", + " 'From: sigma@rahul.net (Kevin Martin)\\nSubject: Re: Stay Away from MAG Innovision!!!\\nNntp-Posting-Host: bolero\\nOrganization: a2i network\\nLines: 10\\n\\nIn <16BB58B33.D1SAR@VM1.CC.UAKRON.EDU> D1SAR@VM1.CC.UAKRON.EDU (Steve Rimar) writes:\\n>My Mag MX15F works fine....................\\n\\nMine was beautiful for a year and a half. Then it went . I bought\\na ViewSonic 6FS instead. Another great monitor, IMHO.\\n\\n-- \\nKevin Martin\\nsigma@rahul.net\\n\"I gotta get me another hat.\"\\n',\n", + " 'From: lusky@ccwf.cc.utexas.edu (Jonathan R. Lusky)\\nSubject: Kawasaki ZX-6 engine needed\\nReply-To: lusky@ccwf.cc.utexas.edu (Jonathan R. Lusky)\\nDistribution: usa\\nOrganization: UT SAE / Longhorn Racing Team\\nLines: 14\\nOriginator: lusky@sylvester.cc.utexas.edu\\n\\nI\\'m looking for a 1990-91 Kawasaki ZX-6 engine. Just the engine,\\nno intake, exhaust, ignition, etc. Preferably in the central texas\\narea, but we haven\\'t had much luck around here so we\\'ll take whatever we\\ncan get. Please reply via mail or call (512) 471-5399 if you have one\\n(or more... really need a spare).\\n\\nThanx\\n\\n-- \\n--=< Jonathan Lusky ----- lusky@ccwf.cc.utexas.edu >=-- \\n \\\\ \"Turbos are nice, but I\\'d rather be blown!\" /\\n \\\\ 89 Jeep Wrangler - 258/for sale! / \\n \\\\ 79 Rx-7 - 12A/Holley 4bbl / \\n \\\\________67 Camaro RS - 350/4spd________/ \\n',\n", + " 'From: ed@cwis.unomaha.edu (Ed Stastny)\\nSubject: The OTIS Project (FTP sites for original art and images)\\nKeywords: Mr.Owl, how many licks...\\nOrganization: University of Nebraska at Omaha\\nLines: 227\\n\\n\\n\\t-------------------------------------\\n\\t+ ............The OTIS Project \\'93 + \\n\\t+ \"The Operative Term Is STIMULATE\" + \\n\\t-------------------------------------\\n\\t---this file last updated..4-21-93---\\n\\n\\nWHAT IS OTIS?\\n\\nOTIS is here for the purpose of distributing original artwork\\nand photographs over the network for public perusal, scrutiny, \\nand distribution. Digital immortality.\\n\\nThe basic idea behind \"digital immortality\" is that computer networks \\nare here to stay and that anything interesting you deposit on them\\nwill be around near-forever. The GIFs and JPGs of today will be the\\nartifacts of a digital future. Perhaps they\\'ll be put in different\\nformats, perhaps only surviving on backup tapes....but they\\'ll be\\nthere...and someone will dig them up. \\n \\nIf that doesn\\'t interest you... OTIS also offers a forum for critique\\nand exhibition of your works....a virtual art gallery that never closes\\nand exists in an information dimension where your submissions will hang\\nas wallpaper on thousands of glowing monitors. Suddenly, life is \\nbreathed into your work...and by merit of it\\'s stimulus, it will \\ntravel the globe on pulses of light and electrons.\\n \\nSpectators are welcome also, feel free to browse the gallery and \\nlet the artists know what you think of their efforts. Keep your own\\ncopies of the images to look at when you\\'ve got the gumption...\\nthat\\'s what they\\'re here for.\\n\\n---------------------------------------------------------------\\n\\nWHERE? \\n\\nOTIS currently (as of 4/21/93) has two FTP sites. \\n \\n \\t141.214.4.135 (projects/otis), the UWI site\\n\\t\\t\\n\\tsunsite.unc.edu (/pub/multimedia/pictures/OTIS), the SUNsite \\n\\t(you can also GOPHER to this site for OTIS as well)\\n\\nMerely \"anonymous FTP\" to either site on Internet and change to the\\nappropriate directory. Don\\'t forget to get busy and use the \"bin\"\\ncommand to make sure you\\'re in binary.\\n\\nOTIS has also been spreading to some dial-up BBS systems around North\\nAmerica....the following systems have a substancial supply of\\nOTIStuff...\\n\\tUnderground Cafe (Omaha) (402.339.0179) 2 lines\\n\\tCyberDen (SanFran?) (415.472.5527) Usenet Waffle-iron\\n\\n--------------------------------------------------------------\\n \\nHOW DO YOU CONTRIBUTE?\\n \\nWhat happens is...you draw a pretty picture or take a lovely \\nphoto, get it scanned into an image file, then either FTP-put\\nit in the CONTRIB/Incoming directory or use UUENCODE to send it to me\\n(email addresses at eof) in email. After the image is received,\\nit will be put into the correct directory. Computer originated works\\nare also welcome.\\n\\nOTIS\\' directories house two types of image files, GIF and JPG. \\nGIF and JPG files require, oddly enough, a GIF or JPG viewer to \\nsee. These viewers are available for all types of computers at \\nmost large FTP sites around Internet. JPG viewers are a bit\\ntougher to find. If you can\\'t find one, but do have a GIF viewer, \\nyou can obtain a JPG-to-GIF conversion program which will change \\nJPG files to a standard GIF format. \\n\\nOTIS also accepts animation files. \\n\\nWhen you submit image files, please send me email at the same time\\nstating information about what you uploaded and whether it is to be\\nused (in publications or other projects) or if it is merely for people\\nto view. Also, include some biographical information on yourself, we\\'ll\\nbe having info-files on each contributing artist and their works. You \\ncan also just upload a text-file of info about yourself (instead of \\nemailing).\\n\\nIf you have pictures, but no scanner, there is hope. Merely send\\ncopies to:\\n\\nThe OTIS Project\\nc/o Ed Stastny\\nPO BX 241113\\nOmaha, NE 68124-1113\\n\\nI will either scan them myself or get them to someone who will \\nscan them. Include an ample SASE if you want your stuff back. \\nAlso include information on each image, preferably a 1-3 line \\ndescription of the image that we can include in the infofile in the\\ndirectory where it\\'s finally put. If you have preferences as to what\\nthe images are to be named, include those as well. \\n \\nConversely, if you have a scanner and would like to help out, please\\ncontact me and we\\'ll arrange things.\\n\\nIf you want to submit your works by disk, peachy. Merely send a 3.5\"\\ndisk to the above address (Omaha) and a SASE if you want your disk back.\\nThis is good for people who don\\'t have direct access to encoders or FTP,\\nbut do have access to a scanner. We accept disks in either Mac or IBM\\ncompatible format. If possible, please submit image files as GIF or\\nJPG. If you can\\'t...we can convert from most formats...we\\'d just rather\\nnot have to.\\n\\nAt senders request, we can also fill disks with as much OTIS as they\\ncan stand. Even if you don\\'t have stuff to contribute, you can send\\na blank disk and an SASE (or $2.50 for disk, postage and packing) to \\nget a slab-o-OTIS.\\n\\nAs of 04/21/93, we\\'re at about 18 megabytes of files, and growing. \\nEmail me for current archive size and directory.\\n\\n--------------------------------------------------------------------\\n\\nDISTRIBUTION?\\n\\nThe images distributed by the OTIS project may be distributed freely \\non the condition that the original filename is kept and that it is\\nnot altered in any way (save to convert from one image format to\\nanother). In fact, we encourage files to be distributed to local \\nbulletin boards and such. If you could, please transport the\\nappropriate text files along with the images. \\n \\nIt would also be nice if you\\'d send me a note when you did post images\\nfrom OTIS to your local bbs. I just want to keep track of them so\\nparticipants can have some idea how widespread their stuff is.\\n\\nIt\\'s the purpose of OTIS to get these images spread out as much as\\npossible. If you have the time, please upload a few to your favorite\\nBBS system....or even just post this \"info-file\" there. It would be\\nkeen of you.\\n\\n--------------------------------------------------------------------\\n\\nUSE?\\n\\nIf you want to use any of the works you find on the OTIS directory,\\nyou\\'ll have to check to see if permission has been granted and the \\nstipulations of the permission (such as free copy of publication, or\\nfull address credit). You will either find this in the \".rm\" file for \\nthe image or series of images...or in the \"Artists\" directory under the \\nArtists name. If permission isn\\'t explicitly given, then you\\'ll have \\nto contact the artist to ask for it. If no info is available, email\\nme (ed@cwis.unomaha.edu), and I\\'ll get in contact with the artist for \\nyou, or give you their contact information.\\n \\nWhen you DO use permitted work, it\\'s always courteous to let the artist\\nknow about it, perhaps even send them a free copy or some such\\ncompensation for their files.\\n\\n---------------------------------------------------------------------\\n\\nNAMING IMAGES?\\n\\nPlease keep the names of your files in \"dos\" format. That means, keep\\nthe filename (before .jpg or .gif) to eight characters or less. The way\\nI usually do it is to use the initials of the artist, plus a three or\\nfour digit \"code\" for the series of images, plus the series number.\\nThus, Leonardo DeVinci\\'s fifth mechanical drawing would be something\\nlike:\\n \\n\\tldmek5.gif OR ldmek5.jpg OR ldmech5.gif ETC\\n\\nKeeping the names under 8 characters assures that the filename will\\nremain intact on all systems. \\n\\n\\n---------------------------------------------------------------------- \\n\\nCREATING IMAGE FILES?\\n\\nWhen creating image files, be sure to at least include your name\\nsomewhere on or below the picture. This gives people a reference in\\ncase they\\'d like to contact you. You may also want to include a title,\\naddress or other information you\\'d like people to know.\\n\\n-----------------------------------------------------------------------\\n\\nHMMM?!\\n\\nThat\\'s about it for now. More \"guidelines\" will be added as needed.\\nYour input is expected.\\n\\n-----------------------------------------------------------------------\\n\\nDISCLAIMER: The OTIS Project has no connection to the Church of OTIS \\n \\t (a sumerian deity) or it\\'s followers, be they pope, priest,\\n\\t or ezine administrator. We do take sacrifices and donations\\n\\t however.\\n\\n-----------------------------------------------------------------------\\n\\nDISCLAIMER: The OTIS Project is here for the distribution of original \\n \\t image files. The files will go to the public at large. \\n\\t It\\'s possible, as with any form of mass-media, that someone\\n\\t could unscrupulously use your images for financial gain. \\n \\t Unless you\\'ve given permission for that, it\\'s illegal. OTIS\\n\\t takes no responsibility for this. In simple terms, all rights\\n\\t revert to the author/artist. To leave an image on OTIS is to \\n\\t give permission for it to be viewed, copied and distributed \\n\\t electronically. If you don\\'t want your images distributed \\n\\t all-over, don\\'t upload them. To leave an image on OTIS is\\n\\t NOT giving permission to have it used in any publication or\\n\\t broadcast that incurs profit (this includes, but is not \\n\\t limited to, magazines, newsletters, clip-art software, \\n\\t screen-printed clothing, etc). You must give specific\\n\\t permission for this sort of usage. \\n\\n-----------------------------------------------------------------------\\n\\nRemember, the operative term is \"stimulate\". If you know of people\\nthat\\'d be interested in this sort of thing...get them involved...kick\\'m\\nin the booty....offer them free food...whatever...\\n\\n....e (ed@cwis.unomaha.edu)\\n (ed@sunsite.unc.edu)\\n\\n--\\nEd Stastny | OTIS Project, END PROCESS, SOUND News and Arts \\nPO BX 241113\\t | FTP: sunsite.unc.edu (/pub/multimedia/pictures/OTIS)\\nOmaha, NE 68124-1113 | 141.214.4.135 (projects/otis)\\n---------------------- EMail: ed@cwis.unomaha.edu, ed@sunsite.unc.edu\\n',\n", + " 'From: amjad@eng.umd.edu (Amjad A Soomro)\\nSubject: Gamma-Law Correction\\nOrganization: Project GLUE, University of Maryland, College Park\\nLines: 22\\nDistribution: USA\\nExpires: 05/15/93\\nNNTP-Posting-Host: filter.eng.umd.edu\\n\\nHi:\\n\\nI am digitizing a NTSC signal and displaying on a PC video monitor.\\nIt is known that the display response of tubes is non-linear and is\\nsometimes said to follow Gamma-Law. I am not certain if these\\nnon-linearities are \"Gamma-corrected\" before encoding NTSC signals\\nor if the TV display is supposed to correct this.\\n \\nAlso, if 256 grey levels, for example, are coded in a C program do\\nthese intensity levels appear with linear brightness on a PC\\nmonitor? In other words does PC monitor display circuitry\\ncorrect for \"gamma errrors\"?\\n \\nYour response is much appreciated.\\n \\nAmjad.\\n\\nAmjad Soomro\\nCCS, Computer Science Center\\nU. of Maryland at College Park\\nemail: amjad@wam.umd.edu\\n\\n',\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: How many Mutlus can dance on the head of a pin?\\nArticle-I.D.: news.2BC0D53B.20378\\nOrganization: University of California, Irvine\\nLines: 28\\nNntp-Posting-Host: orion.oac.uci.edu\\n\\nIn article <1993Apr5.211146.3662@mnemosyne.cs.du.edu> jfurr@nyx.cs.du.edu (Joel Furr) writes:\\n>In article <3456@israel.nysernet.org> warren@nysernet.org writes:\\n>>In jfurr@polaris.async.vt.edu (Joel Furr) writes:\\n>>>How many Mutlus can dance on the head of a pin?\\n>>\\n>>That reminds me of the Armenian massacre of the Turks.\\n>>\\n>>Joel, I took out SCT, are we sure we want to invoke the name of he who\\n>>greps for Mason Kibo\\'s last name lest he include AFU in his daily\\n>>rounds?\\n>\\n>I dunno, Warren. Just the other day I heard a rumor that \"Serdar Argic\"\\n>(aka Hasan Mutlu and Ahmed Cosar and ZUMABOT) is not really a Turk at all,\\n>but in fact is an Armenian who is attempting to make any discussion of the\\n>massacres in Armenia of Turks so noise-laden as to make serious discussion\\n>impossible, thereby cloaking the historical record with a tremendous cloud\\n>of confusion. \\n\\n\\nDIs it possible to track down \"zuma\" and determine who/what/where \"seradr\" is?\\nIf not, why not? I assu\\\\me his/her/its identity is not shielded by policies\\nsimilar to those in place at \"anonymous\" services.\\n\\nTim\\nD\\nD\\nD\\nVery simpl\\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Boom! Whoosh......\\nOrganization: U of Toronto Zoology\\nLines: 21\\n\\nIn article <1r46ofINNdku@gap.caltech.edu> palmer@cco.caltech.edu (David M. Palmer) writes:\\n>>orbiting billboard...\\n>\\n>I would just like to point out that it is much easier to place an\\n>object at orbital altitude than it is to place it with orbital\\n>velocity. For a target 300 km above the surface of Earth,\\n>you need a delta-v of 2.5 km/s. Assuming that rockets with specific\\n>impulses of 300 seconds are easy to produce, a rocket with a dry\\n>weight of 50 kg would require only about 65 kg of fuel+oxidizer...\\n\\nUnfortunately, if you launch this from the US (or are a US citizen),\\nyou will need a launch permit from the Office of Commercial Space\\nTransportation, and I think it may be difficult to get a permit for\\nan antisatellite weapon... :-)\\n\\nThe threshold at which OCST licensing kicks in is roughly 100km.\\n(The rules are actually phrased in more complex ways, but that is\\nthe result.)\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: jgreen@trumpet.calpoly.edu (James Thomas Green)\\nSubject: Re: Vulcan? (No, not the guy with the ears!)\\nOrganization: California Polytechnic State University, San Luis Obispo\\nLines: 31\\n\\n>In article victor@inqmind.bison.mb.ca (Victor Laking) writes:\\n>>From: victor@inqmind.bison.mb.ca (Victor Laking)\\n>>Subject: Vulcan? (No, not the guy with the ears!)\\n>>Date: Sun, 04 Apr 93 19:31:54 CDT\\n>>Does anyone have any info on the apparent sightings of Vulcan?\\n>> \\n>>All that I know is that there were apparently two sightings at \\n>>drastically different times of a small planet that was inside Mercury\\'s \\n>>orbit. Beyond that, I have no other info.\\n>>\\n>>Does anyone know anything more specific?\\n>>\\n\\nAs I heard the story, before Albert came up the the theory\\no\\'relativity and warped space, nobody could account for\\nMercury\\'s orbit. It ran a little fast (I think) for simple\\nNewtonian physics. With the success in finding Neptune to\\nexplain the odd movments of Uranus, it was postulated that there\\nmight be another inner planet to explain Mercury\\'s orbit. \\n\\nIt\\'s unlikely anything bigger than an asteroid is closer to the\\nsun than Mercury. I\\'m sure we would have spotted it by now.\\nPerhaps some professionals can confirm that.\\n\\n\\n/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n| Heaven, n.: |\\n| A place where the wicked cease from troubling you with talk | \\n| of their own personal affairs, and the good listen with |\\n| attention while you expound your own. |\\n| Ambrose Bierce, \"The Devil\\'s Dictionary\" |\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The museum of \\'BARBARISM\\'.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 215\\n\\nIn article v999saum@ubvmsb.cc.buffalo.edu (Varnavas A. Lambrou) writes:\\n\\n>What about Cyprus?? The majority of the population is christian, but \\n>your fellow Turkish friends DID and STILL DOING a \\'good\\' job for you \\n>by cleaning the area from christians.\\n\\nAll your article reflects is your abundant ignorance. The people of \\nTurkiye know quite well that Greece and the Greek Cypriots will never \\nabandon the idea of hellenizing Cyprus and will remain eternally \\nhopeful of uniting it with Greece, someday, whatever the cost to the\\nparties involved. The history speaks for itself. Greece was the sole \\nperpetrator of invasion on that island when it sent its troops on July \\n15, 1974 in an attempt to topple the legitimate government of Archibishop \\nMakarios.\\n\\nFollowing the Greek Cypriot attempt to annex the island to Greece with \\nthe aid of the Greek army, Turkiye intervened by using her legal right \\ngiven by two international agreements. Turkiye did it for the frequently \\nand conveniently forgotten people of the island, Turkish Cypriots. For \\nthose Turkish Cypriots whose grandparents have been living on the island \\nsince 1571. \\n\\nThe release of Nikos Sampson, a member of EOKA [National Organization\\nof Cypriot Fighters] and a convicted terrorist, shows that the\\n\\'enosis\\' mentality continues to survive in Greece. One should not\\nforget that Sampson dedicated his life to annihilating the Turks\\nin Cyprus, committed murder to achieve this goal, and tried to\\ndestroy the island\\'s independence by annexing it to Greece. Of\\ncourse, the Greek governments will have to bear the consequences \\nfor this irresponsible conduct.\\n\\n\\n THE MUSEUM OF BARBARISM\\n\\n2 Irfan Bey Street, Kumsal Area, Nicosia, Cyprus\\n\\nIt is the house of Dr. Nihat Ilhan, a major who was serving at\\nthe Cyprus Turkish Army Contingent. During the attacks launched\\nagainst the Turks by the Greeks, on 20th December 1963, Dr. Nihat\\nIlhan\\'s wife and three children were ruthlessly and brutally\\nkilled in the bathroom, where they had tried to hide, by savage\\nGreeks. Dr. Nihat Ilhan happened to be on duty that night, the\\n24th December 1963. Pictures reflecting Greek atrocities\\ncommitted during and after 1963 are exhibited in this house which\\nhas been converted into a museum.\\n\\nAN EYE-WITNESS ACCOUNT OF HOW A TURKISH FAMILY WAS BUTCHERED BY\\nGREEK TERRORISTS\\n\\nThe date is the 24th of December, 1963... The onslaught of the\\nGreeks against the Turks, which started three days ago, has been\\ngoing on with all its ferocity; and defenseless women, old men\\nand children are being brutally killed by Greeks. And now Kumsal\\nArea of Nicosia witnesses the worst example of the Greeks savage\\nbloodshed...\\n\\nThe wife and the three infant children of Dr. Nihat Ilhan, a\\nmajor on duty at the camp of the Cyprus Turkish Army Contingent,\\nare mercilessly and dastardly shot dead while hiding in the\\nbathroom of their house, by maddened Greeks who broke into their\\nhome. A glaring example of Greek barbarism.\\n\\nLet us now listen to the relating of the said incident told by\\nMr. Hasan Yusuf Gudum, an eye witness, who himself was wounded\\nduring the same terrible event.\\n\\n\"On the night of the 24th of December, 1963 my wife Feride Hasan\\nand I were paying a visit to the family of Major Dr. Nihat Ilhan.\\nOur neighbours Mrs. Ayshe of Mora, her daughter Ishin and Mrs.\\nAyshe\\'s sister Novber were also with us. We were all sitting\\nhaving supper. All of a sudden bullets from the Pedieos River\\ndirection started to riddle the house, sounding like heavy rain.\\nThinking that the dining-room where we were sitting was\\ndangerous, we ran to the bathroom and toilet which we thought\\nwould be safer. Altogether we were nine persons. We all hid in\\nthe bathroom except my wife who took refuge in the toilet. We\\nwaited in fear. Mrs. Ilhan the wife of Major Doctor, was standing\\nin the bath with her three children Murat, Kutsi and Hakan in her\\narms. Suddenly with a great noise we heard the front door open.\\nGreeks had come in and were combing, every corner of the house\\nwith their machine gun bullets. During these moments I heard\\nvoices saying, in Greek, \"You want Taksim eh!\" and then bullets\\nstarted flying in the bathroom. Mrs. Ilhan and her three children\\nfell into the bath. They were shot. At this moment the Greeks,\\nwho broke into the bathroom, emptied their guns on us again. I\\nheard one of the Major\\'s children moan, then I fainted.\\n\\nWhen I came to myself 2 or 3 hours later, I saw Mrs. Ilhan and\\nher three children lying dead in the bath. I and the rest of the\\nneighbours in the bathroom were all seriously wounded. But what\\nhad happened to my wife? Then I remembered and immediately ran to\\nthe toilet, where, in the doorway, I saw her body. She was\\nbrutally murdered.\\n\\nIn the street admist the sound of shots I heard voices crying\\n\"Help, help. Is there no one to save us?\" I became terrified. I\\nthought that if the Greeks came again and found that I was not\\ndead they would kill me. So I ran to the bedroom and hid myself\\nunder the double-bed.\\n\\nAn our passed by. In the distance I could still hear shots. My\\nmouth was dry, so I came out from under the bed and drank some\\nwater. Then I put some sweets in my pocket and went back to the\\nbathroom, which was exactly as I had left in an hour ago. There I\\noffered sweets to Mrs. Ayshe, her daughter and Mrs. Novber who\\nwere all wounded.\\n\\nWe waited in the bathroom until 5 o\\'clock in the morning. I\\nthought morning would never come. We were all wounded and needed\\nto be taken to hospital. Finally, as we could walk, Mrs. Novber\\nand I, went out into the street hoping to find help, and walked\\nas far as Koshklu Chiftlik.\\n\\nThere, we met some people who took us to hospital where we were\\noperated on. When I regained my consciousness I said that there\\nwere more wounded in the house and they went and brought Mrs.\\nAyshe and her daughter.\\n\\nAfter staying three days in the hospital I was sent by plane to\\nAnkara for further treatment. There I have had four months\\ntreatment but still I cannot use my arm. On my return to Cyprus,\\nGreeks arrested me at the Airport.\\n\\nAll I have related to you above I told the Greeks during my\\ndetention. They then released me.\"\\n\\nON FOOT INTO CYPRUS\\'S DEVASTATED TURKISH QUARTER\\n\\nWe went tonight into the sealed-off Turkish quarter of Nicosia in\\nwhich 200 to 300 people have been slaughtered in the last five\\ndays.\\n\\nWe were the first Western reporters there, and we saw some\\nterrible sights.\\n\\nIn the Kumsal quarter at No. 2, Irfan Bey Sokagi, we made our way\\ninto a house whose floors were covered with broken glass. A\\nchild\\'s bicycle lay in a corner.\\n\\nIn the bathroom, looking like a group of waxworks, were three\\nchildren piled on top of their murdered mother.\\n\\nIn a room next to it we glimpsed the body of a woman shot in the\\nhead.\\n\\nThis, we were told, was the home of a Turkish Army major whose\\nfamily had been killed by the mob in the first violence.\\n\\nToday was five days later, and still they lay there.\\n\\nRene MacCOLL and Daniel McGEACHIE, (From the \"DAILY EXPRESS\")\\n\\n\"...I saw in a bathroom the bodies of a mother and three infant\\nchildren murdered because their father was a Turkish Officer...\"\\n\\nMax CLOS, LE FIGARO 25-26 January, 1964\\n\\n\\n Peter Moorhead reporting from the village of Skyloura, Cyprus. \\n Date : 1 January, 1964. \\n\\n IL GIARNO (Italy)\\n \\n THEY ARE TURK-HUNTING, THEY WANT TO EXTERMINATE THEM.\\n\\n Discussions start in London; in Cyprus terror continues. Right now we\\n are witnessing the exodus of Turks from the villages. Thousands of people\\n abandoning homes, land, herds; Greek Cypriot terrorism is relentless. This \\n time, the rhetoric of the Hellenes and the bust of Plato do not suffice to \\n cover up barbaric and ferocious behaviors.\\n\\n Article by Giorgo Bocca, Correspondent of Il Giorno\\n Date: 14 January 1964\\n\\n DAILY HERALD (London)\\n\\n AN APPALLING SIGHT\\n\\nAnd when I came across the Turkish homes they were an appalling sight.\\nApart from the walls, they just did not exist. I doubt if a napalm bomb\\nattack could have created more devastation. I counted 40 blackened brick\\nand concrete shells that had once been homes. Each house had been deliberately\\nfired by petrol. Under red tile roofs which had caved in, I found a twisted\\nmass of bed springs, children\\'s conts and cribs, and ankle deep grey\\nashes of what had once been chairs, tables and wardrobes.\\n\\nIn the neighbouring village of Ayios Vassilios, a mile away, I counted 16 \\nwrecked and burned out homes. They were all Turkish Cypriot homes. From\\nthis village more than 100 Turkish Cypriots had also vanished.In neither village\\ndid I find a scrap of damage to any Greek Cypriot house.\\n\\n\\n DAILY TELEGRAPH (London)\\n \\n GRAVES OF 12 SHOT TURKISH CYPRIOTS FOUND IN CYPRUS VILLAGE\\n\\n Silent crowds gathered tonight outside the Red Crescent hospital in the\\n Turkish Sector of Nicosia, as the bodies of 9 Turkish Cypriots found\\n crudely buried outside the village of Ayios Vassilios, 13 miles away, were\\n brought to the hospital under the escort of the Parachute Regiment. Three \\n more bodies, including one of a woman, were discovered nearby but could\\n not be removed. Turkish Cypriots guarded by paratroops are still trying to \\n locate the bodies of 20 more believed to have been buried on the same site.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: Wayne.Orwig@AtlantaGA.NCR.COM (Wayne Orwig)\\nSubject: Re: Shaft-drives and Wheelies\\nLines: 21\\nNntp-Posting-Host: worwig.atlantaga.ncr.com\\nOrganization: NCR Corporation\\nX-Newsreader: FTPNuz (DOS) v1.0\\n\\nIn Article <1r16ja$dpa@news.ysu.edu> \"ak296@yfn.ysu.edu (John R. Daker)\" says:\\n> \\n> In a previous article, xlyx@vax5.cit.cornell.edu () says:\\n> \\n> Mike Terry asks:\\n> \\n> >Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n> >\\n> No Mike. It is imposible due to the shaft effect. The centripital effects\\n> of the rotating shaft counteract any tendency for the front wheel to lift\\n> off the ground.\\n> -- \\n> DoD #650<----------------------------------------------------------->DarkMan\\nWell my last two motorcycles have been shaft driven and they will wheelie.\\nThe rear gear does climb the ring gear and lift the rear which gives an\\nodd feel, but it still wheelies.\\n',\n", + " 'Subject: Re: Traffic morons\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 16\\n\\nIn article , ahatcher@athena.cs.uga.edu\\n(Allan Hatcher) wrote:\\n> \\n\\n> You can\\'t make a Citizens arrest on anything but a felony.\\n\\n\\tI\\'m not sure that\\'s true. Let me rephrase; \"You can file a complaint\\n which will bring the person into court.\" As I understand it, a\\n \"citizens arrest\" does not have to be the physical detention of\\n the person.\\n\\n Better now?\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", + " 'From: orourke@sophia.smith.edu (Joseph O\\'Rourke)\\nSubject: Re: Delaunay Triangulation\\nOrganization: Smith College, Northampton, MA, US\\nLines: 22\\n\\nIn article zyeh@caspian.usc.edu (zhenghao yeh) writes:\\n>\\n>Does anybody know what Delaunay Triangulation is?\\n>Is there any reference to it? \\n>Is it useful for creating 3-D objects? If yes, what\\'s the advantage?\\n\\nThere is a vast literature on Delaunay triangulations, literally\\nhundreds of papers. A program is even provided with every copy of \\nMathematica nowadays. You might look at this if you are interested in \\nusing it for creating 3D objects:\\n\\n@article{Boissonnat5,\\n author = \"J.D. Boissonnat\",\\n title = \"Geometric Structures for Three-Dimensional Shape Representation\",\\n journal = \"ACM Transactions on Graphics\",\\n month = \"October\",\\n year = {1984},\\n volume = {3},\\n number = {4},\\n pages = {266-286}\\n}\\n\\n',\n", + " \"From: johnsw@wsuvm1.csc.wsu.edu (William E. Johns)\\nSubject: Need a wheel\\nOriginator: bill@wsuaix.csc.wsu.edu\\nKeywords: '92\\nOrganization: Washington State University\\nDistribution: na\\nLines: 18\\n\\n\\nDoes anyone have a rear wheel for a PD they'd like to part with?\\n\\nDoes anyone know where I might find one salvage?\\n\\nAs long as I'm getting the GIVI luggage for Brunnhilde and have\\nthe room, I thought I'd carry a spare.\\n\\nRide Free,\\n\\nBill\\n___________________________________________________________________ \\njohnsw@wsuvm1.csc.wsu.edu prez=BIMC KotV KotRR \\nDoD #00314 AMA #580924 SPI = 7.18 WMTC #0002 KotD #0001 \\nYamabeemer fj100gs1200pdr650 Special and a Volvo. What more could anyone ask? \\n \\nPain is inevitable, suffering is optional.\\n \\n\",\n", + " \"From: Clarke@bdrc.bd.com (Richard Clarke)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Becton Dickinson Research Center R.T.P. NC USA\\nLines: 27\\nNntp-Posting-Host: polymr4.bdrc.bd.com\\n\\n>I eagerly await comment.\\n\\nThe ice princess next door makes a habit of flooring her cage out of the \\ndriveway when she sees me coming. Probably only hits 25mph, or so. (I made \\nthe mistake of waving to a neighbor. She has some sort of grudge, now.)\\n\\nI was riding downhill at ~60mph on a local backroad when a brown dobie came \\nflashing through the brush at well over 30mph, on an intercept course with \\nmy front wheel. The dog had started out at the top of the hill when it heard \\nme and still had a lead when it hit the road. The dog was approaching from \\nmy left, and was running full tilt to get to my bike on the other side of \\nthe road before I went by. Rover was looking back at me to calculate the \\nfinal trajectory. Too bad it didn't notice the car approaching at 50+mph \\nfrom the other direction.\\n\\nI got a closeup view of the our poor canine friend's noggin careening off \\nthe front bumper, smacking the asphalt, and getting runover by the front \\ntire. It managed a pretty good yelp, just before impact. (peripheral \\nimminent doom?) I guess the driver didn't see me or they probably would have \\nswerved into my lane. The squeegeed pup actually got up and headed back \\nhome, but I haven't seen it since. \\n\\nSniff. \\n\\nSometimes Fate sees you and smiles.\\n\\n-Rick\\n\",\n", + " \"From: bgardner@pebbles.es.com (Blaine Gardner)\\nSubject: Re: Ducati 400 opinions wanted\\nNntp-Posting-Host: 130.187.85.70\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 29\\n\\nIn article <1qmnga$s9q@news.ysu.edu> ak954@yfn.ysu.edu (Albion H. Bowers) writes:\\n>In a previous article, bgardner@pebbles.es.com (Blaine Gardner) says:\\n\\n>>I guess I'm out of touch, but what exactly is the Ducati 400? A v-twin\\n>>desmo, or is it that half-a-v-twin with the balance weight where the 2nd\\n>>cylinder would go? A 12 second 1/4 for a 400 isn't bad at all.\\n>\\n>Sorry, I should have been more specific. The 750 SS ran the quater in\\n>12.10 @ 108.17. The last small V-twin Duc we got in the US (and the 400 is\\n>a Pantah based V-twin) was the 500SL Pantah, and it ran a creditable 13.0 @\\n>103. Modern carbs and what not should put the 400 in the high 12s at 105.\\n>\\n>BTW, FZR 400s ran mid 12s, and the latest crop of Japanese 400s will out\\n>run that. It's hard to remember, but but a new GOOF2 will clobber an old\\n>KZ1000 handily, both in top end and roll-on. Technology stands still for\\n>no-one...\\n\\nNot too hard to remember, I bought a GS1000 new in '78. :-) It was\\n3rd place in the '78 speed wars (behind the CBX & XS Eleven) with a\\n11.8 @ 113 1/4 mile, and 75 horses. That wouldn't even make a good 600\\nthese days. Then again, I paid $2800 for it, so technology isn't the\\nonly thing that's changed. Of course I'd still rather ride the old GS\\nacross three states than any of the 600's.\\n\\nI guess it's an indication of how much things have changed that a 12\\nsecond 400 didn't seem too far out of line.\\n-- \\nBlaine Gardner @ Evans & Sutherland\\nbgardner@dsd.es.com\\n\",\n", + " \"From: bryanw@rahul.net (Bryan Woodworth)\\nSubject: Re: CView answers\\nOrganization: a2i network\\nLines: 13\\nNntp-Posting-Host: bolero\\n\\nIn <1993Apr17.113223.12092@imag.fr> schaefer@imag.imag.fr (Arno Schaefer) writes:\\n\\n>Sorry, Bryan, this is not quite correct. Remember the VGALIB package that comes\\n>with Linux/SLS? It will switch to VGA 320x200x256 mode *without* Xwindows.\\n>So at least it is *possible* to write a GIF viewer under Linux. However I don't\\n>think that there exists a similar SVGA package, and viewing GIFs in 320x200 is\\n>not very nice.\\n\\nNo, VGALIB? Amazing.. I guess it was lost in all those subdirs :-)\\nThanks for correcting me. It doesn't sound very appealing though, only\\n320x200? I'm glad it wasn't something major I missed.\\n\\nThanks,\\n\",\n", + " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: NASA Science Internet Project Office\\nLines: 12\\n\\nIn article , \\nEric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n|> Would someone please post the countersteering FAQ...\\n|> \\t\\t\\t\\teric\\n\\nLike, there\\'s a FAQ for this?\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Final Solution for Gaza ?\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 13\\n\\nIn article <2BDC2931.17498@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>Certainly, the Israeli had a legitimate worry behind the action they took,\\n>but isn\\'t that action a little draconian?\\n\\n\\tWhat alternative would you suggest be taken to safeguard the\\nlives of Israeli citizens?\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Serdar\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nYou are quite the loser\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", + " 'Subject: A word of advice\\nFrom: jcopelan@nyx.cs.du.edu (The One and Only)\\nOrganization: Nyx, Public Access Unix at U. of Denver Math/CS dept.\\nSummary: was Re: Yeah, Right\\nLines: 14\\n\\nIn article <65882@mimsy.umd.edu> mangoe@cs.umd.edu (Charley Wingate) writes:\\n>\\n>I\\'ve said enough times that there is no \"alternative\" that should think you\\n>might have caught on by now. And there is no \"alternative\", but the point\\n>is, \"rationality\" isn\\'t an alternative either. The problems of metaphysical\\n>and religious knowledge are unsolvable-- or I should say, humans cannot\\n>solve them.\\n\\nHow does that saying go: Those who say it can\\'t be done shouldn\\'t interrupt\\nthose who are doing it.\\n\\nJim\\n--\\nHave you washed your brain today?\\n',\n", + " 'From: kempmp@phoenix.oulu.fi (Petri Pihko)\\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: University of Oulu, Finland\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 215\\n\\nThis kind of argument cries for a comment...\\n\\njbrown@batman.bmd.trw.com wrote:\\n: In article <1993Apr3.095220.24632@leland.Stanford.EDU>, galahad@leland.Stanford.EDU (Scott Compton) writes:\\n\\nJim, you originally wrote:\\n \\n: >>...God did not create\\n: >>disease nor is He responsible for the maladies of newborns.\\n: > \\n: >>What God did create was life according to a protein code which is\\n: >>mutable and can evolve. Without delving into a deep discussion of\\n: >>creationism vs evolutionism, God created the original genetic code\\n: >>perfect and without flaw. \\n: > ~~~~~~~ ~~~~~~~ ~~~~\\n\\nDo you have any evidence for this? If the code was once perfect, and\\nhas degraded ever since, we _should_ have some evidence in favour\\nof this statement, shouldn\\'t we?\\n\\nPerhaps the biggest \"imperfection\" of the code is that it is full\\nof non-coding regions, introns, which are so called because they\\nintervene with the coding regions (exons). An impressive amount of\\nevidence suggests that introns are of very ancient origin; it is\\nlikely that early exons represented early protein domains.\\n\\nIs the number of introns decreasing or increasing? It appears that\\nintron loss can occur, and species with common ancestry usually\\nhave quite similar exon-intron structure in their genes. \\n\\nOn the other hand, the possibility that introns have been inserted\\nlater, presents several logical difficulties. Introns are removed\\nby a splicing mechanism - this would have to be present, but unused,\\nif introns are inserted. Moreover, intron insertion would have\\nrequired _precise_ targeting - random insertion would not be tolerated,\\nsince sequences for intron removal (self-splicing of mRNA) are\\nconserved. Besides, transposition of a sequence usually leaves a\\ntrace - long terminal repeats and target - site duplications, and\\nthese are not found in or near intron sequences. \\n\\nI seriously recommend reading textbooks on molecular biology and\\ngenetics before posting \"theological arguments\" like this. \\nTry Watson\\'s Molecular Biology of the Gene or Darnell, Lodish\\n& Baltimore\\'s Molecular Biology of the Cell for starters.\\n\\n: Remember, the question was posed in a theological context (Why does\\n: God cause disease in newborns?), and my answer is likewise from a\\n: theological perspective -- my own. It is no less valid than a purely\\n: scientific perspective, just different.\\n\\nScientific perspective is supported by the evidence, whereas \\ntheological perspectives often fail to fulfil this criterion.\\n \\n: I think you misread my meaning. I said God made the genetic code perfect,\\n: but that doesn\\'t mean it\\'s perfect now. It has certainly evolved since.\\n\\nFor the worse? Would you please cite a few references that support\\nyour assertion? Your assertion is less valid than the scientific\\nperspective, unless you support it by some evidence.\\n\\nIn fact, it has been claimed that parasites and diseases are perhaps\\nmore important than we\\'ve thought - for instance, sex might\\nhave evolved as defence against parasites. (This view is supported by\\ncomputer simulations of evolution, eg Tierra.) \\n \\n: Perhaps. I thought it was higher energy rays like X-rays, gamma\\n: rays, and cosmic rays that caused most of the damage.\\n\\nIn fact, it is thermal energy that does most of the damage, although\\nit is usually mild and easily fixed by enzymatic action. \\n\\n: Actually, neither of us \"knows\" what the atmosphere was like at the\\n: time when God created life. According to my recollection, most\\n: biologists do not claim that life began 4 billion years ago -- after\\n: all, that would only be a half billion years or so after the earth\\n: was created. It would still be too primitive to support life. I\\n: seem to remember a figure more like 2.5 to 3 billion years ago for\\n: the origination of life on earth. Anyone with a better estimate?\\n\\nI\\'d replace \"created\" with \"formed\", since there is no need to \\ninvoke any creator if the Earth can be formed without one.\\nMost recent estimates of the age of the Earth range between 4.6 - 4.8\\nbillion years, and earliest signs of life (not true fossils, but\\norganic, stromatolite-like layers) date back to 3.5 billion years.\\nThis would leave more than billion years for the first cells to\\nevolve.\\n\\nI\\'m sorry I can\\'t give any references, this is based on the course\\non evolutionary biochemistry I attended here. \\n\\n: >>dominion, it was no great feat for Satan to genetically engineer\\n: >>diseases, both bacterial/viral and genetic. Although the forces of\\n: >>natural selection tend to improve the survivability of species, the\\n: >>degeneration of the genetic code tends to more than offset this. \\n\\nAgain, do you _want_ this be true, or do you have any evidence for\\nthis supposed \"degeneration\"? \\n\\nI can understand Scott\\'s reaction:\\n\\n: > Excuse me, but this is so far-fetched that I know you must be\\n: > jesting. Do you know what pathogens are? Do you know what \\n: > Point Mutations are? Do you know that EVERYTHING CAN COME\\n: > ABOUT SPONTANEOUSLY?!!!!! \\n: \\n: In response to your last statement, no, and neither do you.\\n: You may very well believe that and accept it as fact, but you\\n: cannot *know* that.\\n\\nI hope you don\\'t forget this: We have _evidence_ that suggests \\neverything can come about spontaneously. Do you have evidence against\\nthis conclusion? In science, one does not have to _believe_ in \\nanything. It is a healthy sign to doubt and disbelieve. But the \\nright path to walk is to take a look at the evidence if you do so,\\nand not to present one\\'s own conclusions prior to this. \\n\\nTheology does not use this method. Therefore, I seriously doubt\\nit could ever come to right conclusions.\\n\\n: >>Human DNA, being more \"complex\", tends to accumulate errors adversely\\n: >>affecting our well-being and ability to fight off disease, while the \\n: >>simpler DNA of bacteria and viruses tend to become more efficient in \\n: >>causing infection and disease. It is a bad combination. Hence\\n: >>we have newborns that suffer from genetic, viral, and bacterial\\n: >>diseases/disorders.\\n\\nYou are supposing a purpose, not a valid move. Bacteria and viruses\\ndo not exist to cause disease. They are just another manifests of\\na general principle of evolution - only replication saves replicators\\nfrom degradiation. We are just an efficient method for our DNA to \\nsurvive and replicate. The less efficient methods didn\\'t make it \\nto the present. \\n\\nAnd for the last time. Please present some evidence for your claim that\\nhuman DNA is degrading through evolutionary processes. Some people have\\nclaimed that the opposite is true - we have suppressed our selection,\\nand thus are bound to degrade. I haven\\'t seen much evidence for either\\nclaim.\\n \\n: But then I ask, So? Where is this relevant to my discussion in\\n: answering John\\'s question of why? Why are there genetic diseases,\\n: and why are there so many bacterial and viral diseases which require\\n: babies to develop antibodies. Is it God\\'s fault? (the original\\n: question) -- I say no, it is not.\\n\\nOf course, nothing \"evil\" is god\\'s fault. But your explanation does\\nnot work, it fails miserably.\\n \\n: You may be right. But the fact is that you don\\'t know that\\n: Satan is not responsible, and neither do I.\\n: \\n: Suppose that a powerful, evil being like Satan exists. Would it\\n: be inconceivable that he might be responsible for many of the ills\\n: that affect mankind? I don\\'t think so.\\n\\nHe could have done a much better Job. (Pun intended.) The problem is,\\nit seems no Satan is necessary to explain any diseases, they are\\njust as inevitable as any product of evolution.\\n\\n: Did I say that? Where? Seems to me like another bad inference.\\n: Actually what you\\'ve done is to oversimplify what I said to the\\n: point that your summary of my words takes on a new context. I\\n: never said that people are \"meant\" (presumably by God) \"to be\\n: punished by getting diseases\". Why I did say is that free moral\\n: choices have attendent consequences. If mankind chooses to reject\\n: God, as people have done since the beginning, then they should not\\n: expect God to protect them from adverse events in an entropic\\n: universe.\\n\\nI am not expecting this. If god exists, I expect him to leave us alone.\\nI would also like to hear why do you believe your choices are indeed\\nfree. This is an interesting philosophical question, and the answer\\nis not as clear-cut as it seems to be.\\n\\nWhat consequences would you expect from rejecting Allah?\\n \\n: Oh, I admit it\\'s not perfect (yet). But I\\'m working on it. :)\\n\\nA good library or a bookstore is a good starting point.\\n\\n: What does this have to do with the price of tea in China, or the\\n: question to which I provided an answer? Biology and Genetics are\\n: fine subjects and important scientific endeavors. But they explain\\n: *how* God created and set up life processes. They don\\'t explain\\n: the why behind creation, life, or its subsequent evolution.\\n\\nWhy is there a \"why behind\"? And your proposition was something\\nthat is not supported by the evidence. This is why we recommend\\nthese books.\\n\\nIs there any need to invoke any why behind, a prime mover? Evidence\\nfor this? If the whole universe can come into existence without\\nany intervention, as recent cosmological theories (Hawking et al)\\nsuggest, why do people still insist on this?\\n \\n: Thanks Scotty, for your fine and sagely advice. But I am\\n: not highly motivated to learn all the nitty-gritty details\\n: of biology and genetics, although I\\'m sure I\\'d find it a\\n: fascinating subject. For I realize that the details do\\n: not change the Big Picture, that God created life in the\\n: beginning with the ability to change and adapt to its\\n: environment.\\n\\nI\\'m sorry, but they do. There is no evidence for your big picture,\\nand no need to create anything that is capable of adaptation.\\nIt can come into existence without a Supreme Being.\\n\\nTry reading P.W. Atkins\\' Creation Revisited (Freeman, 1992).\\n\\nPetri\\n--\\n ___. .\\'*\\'\\'.* Petri Pihko kem-pmp@ Mathematics is the Truth.\\n!___.\\'* \\'.\\'*\\' \\' . Pihatie 15 C finou.oulu.fi Physics is the Rule of\\n \\' *\\' .* \\'* SF-90650 OULU kempmp@ the Game.\\n *\\' * .* FINLAND phoenix.oulu.fi -> Chemistry is The Game.\\n',\n", + " 'From: gary@ke4zv.uucp (Gary Coffman)\\nSubject: Re: What if the USSR had reached the Moon first?\\nReply-To: gary@ke4zv.UUCP (Gary Coffman)\\nOrganization: Destructive Testing Systems\\nLines: 30\\n\\nIn article <93107.144339SAUNDRSG@QUCDN.QueensU.CA> Graydon writes:\\n>This is turning into \\'what\\'s a moonbase good for\\', and I ought\\n>not to post when I\\'ve a hundred some odd posts to go, but I would\\n>think that the real reason to have a moon base is economic.\\n>\\n>Since someone with space industry will presumeably have a much\\n>larger GNP than they would _without_ space industry, eventually,\\n>they will simply be able to afford more stuff.\\n\\nIf I read you right, you\\'re saying in essence that, with a larger\\neconomy, nations will have more discretionary funds to *waste*\\non a lunar facility. That was certainly partially the case with Apollo, \\nbut real Lunar colonies will probably require a continuing military,\\nscientific, or commercial reason for being rather than just a \"we have \\nthe money, why not?\" approach.\\n\\nIt\\'s conceivable that Luna will have a military purpose, it\\'s possible\\nthat Luna will have a commercial purpose, but it\\'s most likely that\\nLuna will only have a scientific purpose for the next several hundred\\nyears at least. Therefore, Lunar bases should be predicated on funding\\nlevels little different from those found for Antarctic bases. Can you\\nput a 200 person base on the Moon for $30 million a year? Even if you\\nuse grad students?\\n\\nGary\\n-- \\nGary Coffman KE4ZV | You make it, | gatech!wa4mei!ke4zv!gary\\nDestructive Testing Systems | we break it. | uunet!rsiatl!ke4zv!gary\\n534 Shannon Way | Guaranteed! | emory!kd4nc!ke4zv!gary \\nLawrenceville, GA 30244 | | \\n',\n", + " 'From: se92psh@brunel.ac.uk (Peter Hauke)\\nSubject: Re: Grayscale Printer\\nOrganization: Brunel University, Uxbridge, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nDistribution: na\\nLines: 13\\n\\nJian Lu (jian@coos.dartmouth.edu) wrote:\\n: We are interested in purchasing a grayscale printer that offers a good\\n: resoltuion for grayscale medical images. Can anybody give me some\\n: recommendations on these products in the market, in particular, those\\n: under $5000?\\n\\n: Thank for the advice.\\n-- \\n***********************************\\n* Peter Hauke @ Brunel University *\\n*---------------------------------*\\n* se92psh@brunel.ac.uk *\\n***********************************\\n',\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Moonbase race, NASA resources, why?\\nLines: 32\\nNntp-Posting-Host: acad3.alaska.edu\\nOrganization: University of Alaska Fairbanks\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu>, sysmgr@king.eng.umd.edu (Doug Mohney) writes:\\n> In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n> \\n>>Apollo was done the hard way, in a big hurry, from a very limited\\n>>technology base... and on government contracts. Just doing it privately,\\n>>rather than as a government project, cuts costs by a factor of several.\\n> \\n> So how much would it cost as a private venture, assuming you could talk the\\n> U.S. government into leasing you a couple of pads in Florida? \\n> \\n> \\n> \\n> Software engineering? That\\'s like military intelligence, isn\\'t it?\\n> -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\\n\\nWhy must it be a US Government Space Launch Pad? Directly I mean..\\nI know of a few that could launch a small package into space.\\nNot including Ariadne, and the Russian Sites.. I know \"Poker Flats\" here in\\nAlaska, thou used to be only sounding rockets for Auroral Borealous(sp and\\nother northern atmospheric items, is at last I heard being upgraded to be able\\nto put sattelites into orbit. \\n\\nWhy must people in the US be fixed on using NASAs direct resources (Poker Flats\\nis runin part by NASA, but also by the Univesity of Alaska, and the Geophysical\\nInstitute). Sounds like typical US cultural centralism and protectionism..\\nAnd people wonder why we have the multi-trillion dollar deficite(sp).\\nYes, I am working on a spell checker..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n\\n',\n", + " 'From: pgf@srl02.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 16\\n\\nJeff.Cook@FtCollinsCO.NCR.COM (Jeff Cook) writes:\\n...\\n>people in primitive tribes out in the middle of nowhere as they look up\\n>and see a can of Budweiser flying across the sky... :-D\\n\\nSeen that movie already. Or one just like it.\\nCome to think of it, they might send someone on\\na quest to get rid of the dang thing...\\n\\n>Jeff Cook Jeff.Cook@FtCollinsCO.NCR.com\\n\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 15/15 - Orbital and Planetary Launch Services\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 195\\nDistribution: world\\nExpires: 6 May 1993 20:02:47 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/launchers\\nLast-modified: $Date: 93/04/01 14:39:11 $\\n\\nORBITAL AND PLANETARY LAUNCH SERVICES\\n\\nThe following data comes from _International Reference Guide to Space Launch\\nSystems_ by Steven J. Isakowitz, 1991 edition.\\n\\nNotes:\\n * Unless otherwise specified, LEO and polar paylaods are for a 100 nm\\n\\torbit.\\n * Reliablity data includes launches through Dec, 1990. Reliabity for a\\n\\tfamiliy of vehicles includes launches by types no longer built when\\n\\tapplicable\\n * Prices are in millions of 1990 $US and are subject to change.\\n * Only operational vehicle families are included. Individual vehicles\\n\\twhich have not yet flown are marked by an asterisk (*) If a vehicle\\n\\thad first launch after publication of my data, it may still be\\n\\tmarked with an asterisk.\\n\\n\\nVehicle | Payload kg (lbs) | Reliability | Price | Launch Site\\n(nation) | LEO\\t Polar GTO |\\t\\t|\\t| (Lat. & Long.)\\n--------------------------------------------------------------------------------\\n\\nAriane\\t\\t\\t\\t\\t 35/40 87.5%\\t Kourou\\n(ESA)\\t\\t\\t\\t\\t\\t\\t\\t (5.2 N, 52.8 W)\\n AR40\\t\\t4,900\\t 3,900 1,900 1/1\\t\\t $65m\\n\\t (10,800) (8,580) (4,190)\\n AR42P\\t\\t6,100\\t 4,800 2,600 1/1\\t\\t $67m\\n\\t (13,400) (10,600) (5,730)\\n AR44P\\t\\t6,900\\t 5,500 3,000 0/0 ?\\t $70m\\n\\t (15,200) (12,100) (6,610)\\n AR42L\\t\\t7,400\\t 5,900 3,200 0/0 ?\\t $90m\\n\\t (16,300) (13,000) (7,050)\\n AR44LP\\t8,300\\t 6,600 3,700 6/6\\t\\t $95m\\n\\t (18,300) (14,500) (8,160)\\n AR44L\\t\\t9,600\\t 7,700 4,200 3/4\\t\\t $115m\\n\\t (21,100) (16,900) (9,260)\\n\\n* AR5\\t 18,000\\t ???\\t 6,800 0/0\\t\\t $105m\\n\\t (39,600)\\t\\t (15,000)\\n\\t [300nm]\\n\\n\\nAtlas\\t\\t\\t\\t\\t 213/245 86.9%\\t Cape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\t (28.5 N, 81.0W)\\n Atlas E\\t --\\t 820\\t -- 15/17\\t $45m\\t Vandeberg AFB\\n\\t\\t\\t (1,800)\\t\\t\\t\\t(34.7 N, 120.6W)\\n\\n Atlas I\\t5,580\\t 4,670 2,250 1/1\\t\\t $70m\\n\\t (12,300) (10,300) (4,950)\\n\\n Atlas II\\t6,395\\t 5,400 2,680 0/0\\t\\t $75m\\n\\t (14,100) (11,900) (5,900)\\n\\n Atlas IIA\\t6,760\\t 5,715 2,810 0/0\\t\\t $85m\\n\\t (14,900) (12,600) (6,200)\\n\\n* Atlas IIAS\\t8,390\\t 6,805 3,490 0/0\\t\\t $115m\\n\\t (18,500) (15,000) (7,700)\\n\\n\\nDelta\\t\\t\\t\\t\\t 189/201 94.0%\\t Cape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\t Vandenberg AFB\\n Delta 6925\\t3,900\\t 2,950 1,450 14/14\\t $45m\\n\\t (8,780)\\t (6,490) (3,190)\\n\\n Delta 7925\\t5,045\\t 3,830 1,820 1/1\\t\\t $50m\\n\\t (11,100) (8,420) (2,000)\\n\\n\\nEnergia\\t\\t\\t\\t\\t 2/2 100%\\t\\t Baikonur\\n(Russia)\\t\\t\\t\\t\\t\\t\\t (45.6 N 63.4 E)\\n Energia 88,000\\t 80,000 ??? 2/2\\t\\t $110m\\n\\t (194,000) (176,000)\\n\\n\\nH series\\t\\t\\t\\t 22/22 100%\\t\\t Tangeshima\\n(Japan)\\t\\t\\t\\t\\t\\t\\t\\t(30.2 N 130.6 E)\\n* H-2\\t 10,500\\t 6,600\\t 4,000 0/0\\t\\t $110m\\n\\t (23,000)\\t(14,500) (8,800)\\n\\n\\nKosmos\\t\\t\\t\\t\\t 371/377 98.4%\\t Plestek\\n(Russia)\\t\\t\\t\\t\\t\\t\\t (62.8 N 40.1 E)\\n Kosmos 1100 - 1350 (2300 - 3000)\\t\\t $???\\t Kapustin Yar\\n\\t [400 km orbit ??? inclination]\\t\\t\\t (48.4 N 45.8 E)\\n\\n\\nLong March\\t\\t\\t\\t 23/25 92.0%\\t\\t Jiquan SLC\\n(China)\\t\\t\\t\\t\\t\\t\\t\\t (41 N\\t100 E)\\n* CZ-1D\\t\\t 720\\t ???\\t 200 0/0\\t\\t $10m\\t Xichang SLC\\n\\t\\t(1,590)\\t\\t (440)\\t\\t\\t (28 N\\t102 E)\\n\\t\\t\\t\\t\\t\\t\\t\\t Taiyuan SLC\\n CZ-2C\\t\\t3,200\\t 1,750 1,000 12/12\\t $20m\\t (41 N\\t100 E)\\n\\t (7,040)\\t (3,860) (2,200)\\n\\n CZ-2E\\t\\t9,200\\t ???\\t 3,370 1/1\\t\\t $40m\\n\\t (20,300)\\t\\t (7,430)\\n\\n* CZ-2E/HO 13,600\\t ???\\t 4,500 0/0\\t\\t $???\\n\\t (29,900)\\t\\t (9,900)\\n\\n CZ-3\\t\\t???\\t ???\\t 1,400 6/7\\t\\t $33m\\n\\t\\t\\t\\t (3,100)\\n\\n* CZ-3A\\t\\t???\\t ???\\t 2,500 0/0\\t\\t $???m\\n\\t\\t\\t\\t (5,500)\\n\\n CZ-4\\t\\t4,000\\t ???\\t 1,100 2/2\\t\\t $???m\\n\\t (8,800)\\t\\t (2,430)\\n\\n\\nPegasus/Taurus\\t\\t\\t\\t 2/2 100%\\t\\tPeg: B-52/L1011\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tTaur: Canaveral\\n Pegasus\\t 455\\t 365\\t 125 2/2\\t\\t $10m\\t or Vandenberg\\n\\t\\t(1,000) (800) (275)\\n\\n* Taurus\\t1,450\\t 1,180 375 0/0\\t\\t $15m\\n\\t (3,200)\\t (2,600) (830)\\n\\n\\nProton\\t\\t\\t\\t\\t 164/187 87.7%\\t Baikonour\\n(Russia)\\n Proton 20,000\\t ???\\t 5,500 164/187\\t $35-70m\\n\\t (44,100)\\t\\t (12,200)\\n\\n\\nSCOUT\\t\\t\\t\\t\\t 99/113 87.6%\\tVandenberg AFB\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tWallops FF\\n SCOUT G-1\\t 270\\t 210\\t 54\\t 13/13\\t $12m\\t(37.9 N 75.4 W)\\n\\t\\t(600)\\t (460) (120)\\t\\t\\tSan Marco\\n\\t\\t\\t\\t\\t\\t\\t\\t(2.9 S\\t40.3 E)\\n* Enhanced SCOUT 525\\t 372\\t 110\\t 0/0\\t\\t $15m\\n\\t\\t(1,160) (820) (240)\\n\\n\\nShavit\\t\\t\\t\\t\\t 2/2 100%\\t\\tPalmachim AFB\\n(Israel)\\t\\t\\t\\t\\t\\t\\t( ~31 N)\\n Shavit\\t ???\\t 160\\t ???\\t 2/2\\t\\t $22m\\n\\t\\t\\t (350)\\n\\nSpace Shuttle\\t\\t\\t\\t 37/38 97.4%\\tKennedy Space\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tCenter\\n Shuttle/SRB 23,500\\t ???\\t 5,900 37/38\\t $248m (28.5 N 81.0 W)\\n\\t (51,800)\\t\\t (13,000)\\t\\t [FY88]\\n\\n* Shuttle/ASRM 27,100\\t ???\\t ???\\t 0/0\\n\\t (59,800)\\n\\n\\nSLV\\t\\t\\t\\t\\t 2/6 33.3%\\tSHAR Center\\n(India) (400km) (900km polar)\\t\\t\\t\\t(13.9 N 80.4 E)\\n ASLV\\t\\t150\\t ???\\t ??? 0/2\\t\\t $???m\\n\\t (330)\\n\\n* PSLV\\t\\t3,000\\t 1,000 450 0/0\\t\\t $???m\\n\\t (6,600)\\t (2,200) (990)\\n\\n* GSLV\\t\\t8,000\\t ???\\t 2,500 0/0\\t\\t $???m\\n\\t (17,600)\\t\\t (5,500)\\n\\n\\nTitan\\t\\t\\t\\t\\t 160/172 93.0%\\tCape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tVandenberg\\n Titan II\\t ???\\t 1,905 ??? 2/2\\t\\t $43m\\n\\t\\t\\t (4,200)\\n\\n Titan III 14,515\\t ???\\t 5,000 2/3\\t\\t $140m\\n\\t (32,000)\\t\\t (11,000)\\n\\n Titan IV/SRM 17,700\\t 14,100 6,350 3/3\\t\\t $154m-$227m\\n\\t (39,000)\\t(31,100) (14,000)\\n\\n Titan IV/SRMU 21,640\\t 18,600 8,620 0/0\\t\\t $???m\\n\\t (47,700)\\t(41,000) (19,000)\\n\\n\\nVostok\\t\\t\\t\\t\\t 1358/1401 96.9%\\tBaikonur\\n(Russia)\\t\\t [650km]\\t\\t\\t\\tPlesetsk\\n Vostok\\t4,730\\t 1,840 ??? ?/149\\t $14m\\n\\t (10,400)\\t(4,060)\\n\\n Soyuz\\t\\t7,000\\t ???\\t ??? ?/944\\t $15m\\n\\t (15,400)\\n\\n Molniya\\t1500kg (3300 lbs) in\\t ?/258\\t $???M\\n\\t\\tHighly eliptical orbit\\n\\n\\nZenit\\t\\t\\t\\t\\t 12/13 92.3%\\tBaikonur\\n(Russia)\\n Zenit 13,740\\t 11,380 4,300 12/13\\t $65m\\n\\t (30,300)\\t(25,090) (9,480)\\n',\n", + " \"From: jhwitten@cs.ruu.nl (Jurriaan Wittenberg)\\nSubject: Re: images of earth\\nOrganization: Utrecht University, Dept. of Computer Science\\nLines: 27\\n\\nIn <1993Apr18.230732.27804@kakwa.ucs.ualberta.ca> ken@cs.UAlberta.CA (Huisman Kenneth M) writes:\\n\\n>I am looking for some graphic images of earth shot from space. \\n>( Preferably 24-bit color, but 256 color .gif's will do ).\\n>\\n>Anyways, if anyone knows an FTP site where I can find these, I'd greatly\\n>appreciate it if you could pass the information on. Thanks.\\n>\\n>\\nTry FTP-ing at\\n pub-info.jpl.nasa.gov (128.149.6.2) (simple dir-structure)\\n\\nand ames.arc.nasa.gov\\nat /pub/SPACE/GIF and /pub/SPACE/JPEG\\nsorry only 8 bits gifs and jpegs :-( great piccy's though (try the *x.gif\\nfiles they're semi-huge gif89a files)\\n ^^-watch out gif89a dead ahead!!!\\nGood-luck (good software to be found out-there too)\\n\\nJurriaan\\n\\nJHWITTEN@CS.RUU.NL \\n-- \\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n|----=|=-<- - - - - - JHWITTEN@CS.RUU.NL- - - - - - - - - - - - ->-=|=----|\\n|----=|=-<-Jurriaan Wittenberg- - -Department of ComputerScience->-=|=----|\\n|____/|\\\\_________Utrecht_________________The Netherlands___________/|\\\\____|\\n\",\n", + " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: note to Bobby M.\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 14\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn <1993Apr10.191100.16094@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>Insults about the atheistic genocide was totally unintentional. Under\\n>atheism, anything can happen, good or bad, including genocide.\\n\\nAnd you know why this is? Because you\\'ve conveniently _defined_ a theist as\\nsomeone who can do no wrong, and you\\'ve _defined_ people who do wrong as\\natheists. The above statement is circular (not to mention bigoting), and,\\nas such, has no value.\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", + " 'Organization: Penn State University\\nFrom: \\nSubject: Re: Tools Tools Tools\\n <1993Apr1.162709.16643@osf.org> <1993Apr2.235809.3241@kronos.arc.nasa.gov>\\n <1993Apr5.165548.21479@research.nj.nec.com>\\nLines: 1\\n\\nWHAT IS THE FLANK DRIVE EVERYONES TALKING ABOUT?\\n',\n", + " \"From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: CorelDraw Bitmap to SCODAL\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM T.J. Watson Research\\nLines: 4\\n\\nMy CorelDRAW 3.0.whatever write SCODL files directly. Look under File|Export\\non the main menu. \\n\\nRick\\n\",\n", + " 'From: cb@wixer.bga.com (Cyberspace Buddha)\\nSubject: Re: CView answers\\nKeywords: Stupid Programming\\nOrganization: Real/Time Communications\\nLines: 15\\n\\nrenew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n>over where it places its temp files: it just places them in its\\n>\"current directory\".\\n\\nI have to beg to differ on this point, as the batch file I use\\nto launch cview cd\\'s to the dir where cview resides and then\\ninvokes it. every time I crash cview, the 0-byte temp file\\nis found in the root dir of the drive cview is on.\\n\\njust my $0.13,\\ncb\\n-- \\n Cyberspace Buddha { Why are you looking for more knowledge when you } /(o\\\\\\n cb@wixer.bga.com \\\\ do not pay attention to what you already know? / \\\\o)/\\n cb@wixer.cactus.org } \"get out of my chair!\" -- Hillary to god { peace...\\n',\n", + " \"From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: Jet Propulsion Laboratory\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Galileo, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr23.103038.27467@bnr.ca>, agc@bmdhh286.bnr.ca (Alan Carter) writes...\\n>In article <22APR199323003578@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes:\\n>|> 3. On April 19, a NO-OP command was sent to reset the command loss timer to\\n>|> 264 hours, its planned value during this mission phase.\\n> \\n>This activity is regularly reported in Ron's interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n> \\n\\nThe Command Loss Timer is part of the fault protection scheme of the\\nspacecraft. If the Command Loss Timer ever countdowns to zero, then the\\nspacecraft assumes it has lost communications with Earth and will go \\nthrough a set of predetermined steps to try to regain contact. The\\nCommand Loss Timer is set to 264 hours and reset about once a week during \\nthe cruise phase, and is set to a lower value during an encounter phase. \\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian-Nazi Collaboration During World War II.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 51\\n\\nIn article <2BC0D53B.20378@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>Is it possible to track down \"zuma\" and determine who/what/where \"seradr\" \\n>is? \\n\\nDone. But did it change the fact that during the period of 1914 to 1920, \\nthe Armenian Government ordered, incited, assisted and participated \\nin the genocide of 2.5 million Muslim people because of race, religion\\nand national origin? By the way, you still haven\\'t corrected yourself.\\nDuring World War II Armenians were carried away with the German might and\\ncringing and fawning over the Nazis. In that zeal, the Armenian publication\\nin Germany, Hairenik, carried statements as follows:[1]\\n\\n\"Sometimes it is difficult to eradicate these poisonous elements (the Jews)\\n when they have struck deep root like a chronic disease, and when it \\n becomes necessary for a people (the Nazis) to eradicate them in an uncommon\\n method, these attempts are regarded as revolutionary. During the surgical\\n operation, the flow of blood is a natural thing.\" \\n\\nNow for a brief view of the Armenian genocide of the Muslims and Jews -\\nextracts from a letter dated December 11, 1983, published in the San\\nFrancisco Chronicle, as an answer to a letter that had been published\\nin the same journal under the signature of one B. Amarian.\\n\\n \"...We have first hand information and evidence of Armenian atrocities\\n against our people (Jews)...Members of our family witnessed the \\n murder of 148 members of our family near Erzurum, Turkey, by Armenian \\n neighbors, bent on destroying anything and anybody remotely Jewish \\n and/or Muslim. Armenians should look to their own history and see \\n the havoc they and their ancestors perpetrated upon their neighbors...\\n Armenians were in league with Hitler in the last war, on his premise \\n to grant them self government if, in return, the Armenians would \\n help exterminate Jews...Armenians were also hearty proponents of\\n the anti-Semitic acts in league with the Russian Communists. Mr. Amarian!\\n I don\\'t need your bias.\" \\n\\n Signed Elihu Ben Levi, Vacaville, California.\\n\\n[1] James G. Mandalian, \\'Dro, Drastamat Kanayan,\\' in the \\'Armenian\\n Review,\\' a Quarterly by the Hairenik Association, Inc., Summer:\\n June 1957, Vol. X, No. 2-38.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: A moment of silence for the perpetrators of the Turkish Genocide?\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 115\\n\\nIn article <48299@sdcc12.ucsd.edu> ma170saj@sdcc14.ucsd.edu (System Operator) writes:\\n\\n> April 24th is approaching, and Armenians around the world\\n>are getting ready to remember the massacres of their family members\\n\\nCelebrating in joy the cold-blooded genocide of 2.5 million Muslim \\npeople by your criminal grandparents between 1914 and 1920? Did you \\nthink that you could cover up the genocide perpetrated by your fascist\\ngrandparents against my grandparents in 1914? You\\'ve never heard of \\n\\'April 23rd\\'? \\n\\n\\n \"In Soviet Armenia today there no longer exists a single Turkish soul.\\n It is in our power to tear away the veil of illusion that some of us\\n create for ourselves. It certainly is possible to severe the artificial\\n life-support system of an imagined \\'ethnic purity\\' that some of us\\n falsely trust as the only structure that can support their heart beats \\n in this alien land.\"\\n (Sahak Melkonian - 1920 - \"Preserving the Armenian purity\") \\n\\n\\nDuring the First World War and the ensuing years - 1914-1920, \\nthe Armenian Dictatorship through a premeditated and systematic \\ngenocide, tried to complete its centuries-old policy of \\nannihilation against the Turks and Kurds by savagely murdering \\n2.5 million Muslims and deporting the rest from their 1,000 year \\nhomeland.\\n\\nThe attempt at genocide is justly regarded as the first instance\\nof Genocide in the 20th Century acted upon an entire people.\\nThis event is incontrovertibly proven by historians, government\\nand international political leaders, such as U.S. Ambassador Mark \\nBristol, William Langer, Ambassador Layard, James Barton, Stanford \\nShaw, Arthur Chester, John Dewey, Robert Dunn, Papazian, Nalbandian, \\nOhanus Appressian, Jorge Blanco Villalta, General Nikolayef, General \\nBolkovitinof, General Prjevalski, General Odiselidze, Meguerditche, \\nKazimir, Motayef, Twerdokhlebof, General Hamelin, Rawlinson, Avetis\\nAharonian, Dr. Stephan Eshnanie, Varandian, General Bronsart, Arfa,\\nDr. Hamlin, Boghos Nubar, Sarkis Atamian, Katchaznouni, Rachel \\nBortnick, Halide Edip, McCarthy, W. B. Allen, Paul Muratoff and many \\nothers.\\n\\nJ. C. Hurewitz, Professor of Government Emeritus, Former Director of\\nthe Middle East Institute (1971-1984), Columbia University.\\n\\nBernard Lewis, Cleveland E. Dodge Professor of Near Eastern History,\\nPrinceton University.\\n\\nHalil Inalcik, University Professor of Ottoman History & Member of\\nthe American Academy of Arts & Sciences, University of Chicago.\\n\\nPeter Golden, Professor of History, Rutgers University, Newark.\\n\\nStanford Shaw, Professor of History, University of California at\\nLos Angeles.\\n\\nThomas Naff, Professor of History & Director, Middle East Research\\nInstitute, University of Pennsylvania.\\n\\nRonald Jennings, Associate Professor of History & Asian Studies,\\nUniversity of Illinois.\\n\\nHoward Reed, Professor of History, University of Connecticut.\\n\\nDankwart Rustow, Distinguished University Professor of Political\\nScience, City University Graduate School, New York.\\n\\nJohn Woods, Associate Professor of Middle Eastern History, \\nUniversity of Chicago.\\n\\nJohn Masson Smith, Jr., Professor of History, University of\\nCalifornia at Berkeley.\\n\\nAlan Fisher, Professor of History, Michigan State University.\\n\\nAvigdor Levy, Professor of History, Brandeis University.\\n\\nAndreas G. E. Bodrogligetti, Professor of History, University of California\\nat Los Angeles.\\n\\nKathleen Burrill, Associate Professor of Turkish Studies, Columbia University.\\n\\nRoderic Davison, Professor of History, George Washington University.\\n\\nWalter Denny, Professor of History, University of Massachusetts.\\n\\nCaesar Farah, Professor of History, University of Minnesota.\\n\\nTom Goodrich, Professor of History, Indiana University of Pennsylvania.\\n\\nTibor Halasi-Kun, Professor Emeritus of Turkish Studies, Columbia University.\\n\\nJustin McCarthy, Professor of History, University of Louisville.\\n\\nJon Mandaville, Professor of History, Portland State University (Oregon).\\n\\nRobert Olson, Professor of History, University of Kentucky.\\n\\nMadeline Zilfi, Professor of History, University of Maryland.\\n\\nJames Stewart-Robinson, Professor of Turkish Studies, University of Michigan.\\n\\n.......so the list goes on and on and on.....\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: john@goshawk.mcc.ac.uk (John Heaton)\\nSubject: POV reboots PC after memory upgrade\\nReply-To: john@nessie.mcc.ac.uk\\nOrganization: MCC Network Unit\\nLines: 13\\n\\nUp until last week, I have been running POVray v1.0 on my 486/33 under DOS5\\nwithout any major problems. Over Easter I increased the memory from 4Meg to\\n8Meg, and found that POVray reboots the system every time under DOS5. I had\\na go at running POVray in a DOS window when running Win3.1 on the same system\\nand it now works fine, even if a lot slower. I would like to go back to \\nusing POVray directly under DOS, anyone any ideas???\\n\\nJohn\\n-- \\n John Heaton - NRS Central Administrator\\n MCC Network Unit, The University, Oxford Road, Manchester, M13-9PL\\n Phone: (+44) 61 275 6011 - FAX: (+44) 61 275 6040\\n Packet: G1YYH @ G1YYH.GB7PWY.#16.GBR.EU\\n',\n", + " 'Subject: Re: Gospel Dating\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 64\\n\\nIn article bil@okcforum.osrhe.edu (Bill Conner) writes:\\n\\n>Keith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n>: \\n>: \\tWild and fanciful claims require greater evidence. If you state that \\n>: one of the books in your room is blue, I certainly do not need as much \\n>: evidence to believe than if you were to claim that there is a two headed \\n>: leapard in your bed. [ and I don\\'t mean a male lover in a leotard! ]\\n>\\n>Keith, \\n>\\n>If the issue is, \"What is Truth\" then the consequences of whatever\\n>proposition argued is irrelevent. If the issue is, \"What are the consequences\\n>if such and such -is- True\", then Truth is irrelevent. Which is it to\\n>be?\\n\\n\\tI disagree: every proposition needs a certain amount of evidence \\nand support, before one can believe it. There are a miriad of factors for \\neach individual. As we are all different, we quite obviously require \\ndifferent levels of evidence.\\n\\n\\tAs one pointed out, one\\'s history is important. While in FUSSR, one \\nmay not believe a comrade who states that he owns five pairs of blue jeans. \\nOne would need more evidence, than if one lived in the United States. The \\nonly time such a statement here would raise an eyebrow in the US, is if the \\nindividual always wear business suits, etc.\\n\\n\\tThe degree of the effect upon the world, and the strength of the \\nclaim also determine the amount of evidence necessary. When determining the \\nlevel of evidence one needs, it is most certainly relevent what the \\nconsequences of the proposition are.\\n\\n\\n\\n\\tIf the consequences of a proposition is irrelvent, please explain \\nwhy one would not accept: The electro-magnetic force of attraction between \\ntwo charged particles is inversely proportional to the cube of their \\ndistance apart. \\n\\n\\tRemember, if the consequences of the law are not relevent, then\\nwe can not use experimental evidence as a disproof. If one of the \\nconsequences of the law is an incongruency between the law and the state of \\naffairs, or an incongruency between this law and any other natural law, \\nthey are irrelevent when theorizing about the \"Truth\" of the law.\\n\\n\\tGiven that any consequences of a proposition is irrelvent, including \\nthe consequence of self-contradiction or contradiction with the state of \\naffiars, how are we ever able to judge what is true or not; let alone find\\n\"The Truth\"?\\n\\n\\n\\n\\tBy the way, what is \"Truth\"? Please define before inserting it in \\nthe conversation. Please explain what \"Truth\" or \"TRUTH\" is. I do think that \\nanything is ever known for certain. Even if there IS a \"Truth\", we could \\nnever possibly know if it were. I find the concept to be meaningless.\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", + " \"From: asper@calvin.uucp (Alan E. Asper)\\nSubject: Re: V-max handling request\\nOrganization: /usr/lib/news/organization\\nLines: 12\\nNNTP-Posting-Host: calvin.sbc.com\\n\\nIn article <1993Apr15.222224.1@ntuvax.ntu.ac.sg> ba7116326@ntuvax.ntu.ac.sg writes:\\n>hello there\\n>ican anyone who has handson experience on riding the Yamaha v-max, pls kindly\\n>comment on its handling .\\n\\nI've ridden one twice. It was designed to be a monster in a straight line,\\nwhich it is. It has nothing on an FZR400 in the corners. In fact, it just\\ndidn't handle that well at all in curves. But hey, that's not what it\\nwas designed to do.\\nMy two cents,\\nAlan\\n\\n\",\n", + " \"From: sichase@csa2.lbl.gov (SCOTT I CHASE)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Lawrence Berkeley Laboratory - Berkeley, CA, USA\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: 128.3.254.197\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article , pgf@srl02.cacs.usl.edu (Phil G. Fraering) writes...\\n>Jeff.Cook@FtCollinsCO.NCR.COM (Jeff Cook) writes:\\n>....\\n>>people in primitive tribes out in the middle of nowhere as they look up\\n>>and see a can of Budweiser flying across the sky... :-D\\n> \\n>Seen that movie already. Or one just like it.\\n>Come to think of it, they might send someone on\\n>a quest to get rid of the dang thing...\\n\\nActually, the idea, like most good ideas, comes from Jules Verne, not\\n_The Gods Must Be Crazy._ In one of his lesser known books (I can't\\nremember which one right now), the protagonists are in a balloon gondola,\\ntravelling over Africa on their way around the world in the balloon, when\\none of them drops a fob watch. They then speculate about the reaction\\nof the natives to finding such a thing, dropped straight down from heaven.\\nBut the notion is not pursued further than that.\\n\\n-Scott\\n-------------------- New .sig under construction\\nScott I. Chase Please be patient\\nSICHASE@CSA2.LBL.GOV Thank you \\n\",\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nDistribution: na\\nOrganization: University of Illinois at Urbana\\nLines: 33\\n\\nhiggins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey) writes:\\n\\n>(Josh Hopkins) writes:\\n>> I remeber reading the comment that General Dynamics was tied into this, in \\n>> connection with their proposal for an early manned landing. \\n\\n>The General Chairman is Paul Bialla, who is some official of General\\n>Dynamics.\\n\\n>The emphasis seems to be on a scaled-down, fast plan to put *people*\\n>on the Moon in an impoverished spaceflight-funding climate. You\\'d\\n>think it would be a golden opportunity to do lots of precusor work for\\n>modest money using an agressive series of robot spacecraft, but\\n>there\\'s not a hint of this in the brochure.\\n\\nIt may be that they just didn\\'t mention it, or that they actually haven\\'t \\nthought about it. I got the vague impression from their mission proposal\\nthat they weren\\'t taking a very holistic aproach to the whole thing. They\\nseemed to want to land people on the Moon by the end of the decade without \\nexplaining why, or what they would do once they got there. The only application\\nI remember from the Av Week article was placing a telescope on the Moon. That\\'s\\ngreat, but they don\\'t explain why it can\\'t be done robotically. \\n\\n>> Hrumph. They didn\\'t send _me_ anything :(\\n\\n>You\\'re not hanging out with the Right People, apparently.\\n\\nBut I\\'m a _member_. Besides Bill, I hang out with you :) \\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Freeman\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nWatch your language ASSHOLE!!!!\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", + " 'From: joe@rider.cactus.org (Joe Senner)\\nSubject: Re: Shaft-drives and Wheelies\\nReply-To: joe@rider.cactus.org\\nDistribution: rec\\nOrganization: NOT\\nLines: 9\\n\\nxlyx@vax5.cit.cornell.edu (From: xlyx@vax5.cit.cornell.edu) writes:\\n]Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\nyes.\\n\\n-- \\nJoe Senner joe@rider.cactus.org\\nAustin Area Ride Mailing List ride@rider.cactus.org\\nTexas SplatterFest Mailing List fest@rider.cactus.org\\n',\n", + " \"From: tdawson@engin.umich.edu (Chris Herringshaw)\\nSubject: WingCommanderII Graphics\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 8\\nDistribution: world\\nNNTP-Posting-Host: antithesis.engin.umich.edu\\n\\n I was wondering if anyone knows where I can get more information about\\nthe graphics in the WingCommander series, and the RealSpace system they use.\\nI think it's really awesome, and wouldn't mind being able to use similar\\nfeatures in programs. Thanks in advance.\\n\\n\\nDaemon\\n\\n\",\n", + " 'From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Zionism is Racism\\nOrganization: NYSERNet, Inc.\\nLines: 10\\n\\n\"D. C. Sessions\" writes:\\n\\n># So Steve: Lets here, what IS zionism?\\n\\n> Assuming that you mean \\'hear\\', you weren\\'t \\'listening\\': he just\\n> told you, \"Zionism is Racism.\" This is a tautological statement.\\n\\nI think you are confusing \"tautological\" with \"false and misleading.\"\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n',\n", + " 'From: adam@sw.stratus.com (Mark Adam)\\nSubject: Re: space food sticks\\nOrganization: Stratus Computer, Inc.\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: paix.sw.stratus.com\\nKeywords: food\\n\\nIn article <1pr5u2$t0b@agate.berkeley.edu>, ghelf@violet.berkeley.edu (;;;;RD48) writes:\\n> The taste is hard to describe, although I remember it fondly. It was\\n> most certainly more \"candy\" than say a modern \"Power Bar.\" Sort of\\n> a toffee injected with vitamins. The chocolate Power Bar is a rough\\n> approximation of the taste. Strawberry sucked.\\n> \\n\\nPeanut butter was definitely my favorite. I don\\'t think I ever took a second bite\\nof the strawberry.\\n\\nI recently joined Nutri-System and their \"Chewy Fudge Bar\" is very reminicent of\\nthe chocolate Space Food. This is the only thing I can find that even comes close\\nthe taste. It takes you back... your taste-buds are happy and your\\nintestines are in knots... joy!\\n\\n-- \\n\\nmark ----------------------------\\n(adam@paix.sw.stratus.com)\\t|\\tMy opinions are not those of Stratus.\\n\\t\\t\\t\\t|\\tHell! I don`t even agree with myself!\\n\\n\\t\"Logic is a wreath of pretty flowers that smell bad.\"\\n',\n", + " 'From: jrwaters@eos.ncsu.edu (JACK ROGERS WATERS)\\nSubject: Re: The quest for horndom\\nOrganization: North Carolina State University, Project Eos\\nLines: 30\\n\\nIn article <1993Apr5.171807.22861@research.nj.nec.com> behanna@phoenix.syl.nj.nec.com (Chris BeHanna) writes:\\n>In article <1993Apr4.010533.26294@ncsu.edu> jrwaters@eos.ncsu.edu (JACK ROGERS WATERS) writes:\\n>>No laughing, please. I have a few questions. First of all, do I\\n>>need a relay? Are there different kinds, and if so, what kind should\\n>>I get? Both horns are 12 Volt.\\n>\\n>\\tI did some back-of-the-eyelids calculations last night, and I figure\\n>these puppies suck up about 10 amps to work at maximum efficiency (i.e., the\\n>cager might need a shovel to clean out his seat). Assumptions: 125dBA at one\\n>meter. Neglecting solid angle considerations and end effects and other\\n>acoustic niceties from the shape of the horn itself, this is a power output\\n>of 125 Watts. 125Watts/12Volts is approx. 10 Amps.\\n>\\n>\\tYes, get a relay.\\n>\\n>\\tYes, tell me how you did it (I want to do it on the ZX).\\n>\\n>Later,\\n\\nI\\'ll post a summary after I get enough information. I\\'ll include\\ntips like \"how to know when the monkey is pulling your leg\". Shouldn\\'t\\nmonkey\\'s have to be bonded and insured before they work on bikes?\\n\\nJack Waters II\\nDoD#1919\\n\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n~ I don\\'t fear the thief in the night. Its the one that comes in the ~\\n~ afternoon, when I\\'m still asleep, that I worry about. ~\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n',\n", + " 'From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Boom! Whoosh......\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 24\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>In article <1r46ofINNdku@gap.caltech.edu> palmer@cco.caltech.edu (David M. Palmer) writes:\\n>>>orbiting billboard...\\n>>\\n>>I would just like to point out that it is much easier to place an\\n>>object at orbital altitude than it is to place it with orbital\\n>>velocity. For a target 300 km above the surface of Earth,\\n>>you need a delta-v of 2.5 km/s. \\n>Unfortunately, if you launch this from the US (or are a US citizen),\\n>you will need a launch permit from the Office of Commercial Space\\n>Transportation, and I think it may be difficult to get a permit for\\n>an antisatellite weapon... :-)\\n\\nWell Henry, we are often reminded how CANADA is not a part of the United States\\n(yet). You could have quite a commercial A-SAT, er sky-cleaning service going\\nin a few years. \\n\\n\"Toronto SkySweepers: Clear skies in 48 hours, or your money back.\"\\n\\t Discount rates available for astro-researchers. \\n\\n\\n\\n Software engineering? That\\'s like military intelligence, isn\\'t it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n',\n", + " \"From: dgempey@ucscb.UCSC.EDU (David Gordon Empey)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: University of California, Santa Cruz\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: ucscb.ucsc.edu\\n\\n\\nIn <1993Apr23.165459.3323@coe.montana.edu> uphrrmk@gemini.oscs.montana.edu (Jack Coyote) writes:\\n\\n>In sci.astro, dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n>[ a nearly perfect parody -- needed more random CAPS]\\n\\n\\n>Thanks for the chuckle. (I loved the bit about relevance to people starving\\n>in Somalia!)\\n\\n>To those who've taken this seriously, READ THE NAME! (aloud)\\n\\nWell, I thought it must have been a joke, but I don't get the \\njoke in the name. Read it aloud? David MACaloon. David MacALLoon.\\nDavid macalOON. I don't geddit.\\n\\n-Dave Empey (speaking for himself)\\n>-- \\n>Thank you, thank you, I'll be here all week. Enjoy the buffet! \\n\\n\\n\",\n", + " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Lawsuit against ADL\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 142\\n\\n[It looks like Yigal has been busy...]\\n\\nRTw 04/14 2155 JEWISH GROUP SUED FOR PASSING OFFICIAL INFORMATION\\n\\n By Adrian Croft\\n SAN FRANCISCO, April 14, Reuter - Nineteen people, including the son of\\nformer Israeli Defence Minister Moshe Arens, sued the Anti-Defamation League\\n(ADL) on Wednesday, accusing the Jewish group of disclosing confidential\\nofficial information about them.\\n Richard Hirschhaut, director of the San Francisco branch of the ADL, art\\ndealer Roy Bullock and former policeman Tom Gerard were also named as defendants\\nin the suit, filed in San Francisco County Superior Court.\\n The 19 accuse the ADL of B\\'nai B\\'rith, a group dedicated to fighting\\nanti-Semitism, and the other defendants of secretly gathering information on\\nthem, including data from state and federal agencies.\\n The suit alleges they disclosed the information to others, including the\\ngovernments of Israel and South Africa, in what it alleges was a \"a massive\\nspying operation.\"\\n The action is a class-action suit. It was filed on behalf of about 12,000\\nanti-apartheid activists or opponents of Israeli policies about whom the\\nplaintiffs believe the ADL, Bullock and Gerard gathered information.\\n Representatives of the ADL in San Francisco were not immediately available\\nfor comment on Wednesday.\\n The civil suit is the first legal action arising out of allegations that\\nGerard, a former inspector in the San Francisco police intelligence unit, passed\\nconfidential police files on California political activists to a spy ring.\\n The FBI and San Francisco police are investigating the ADL, Bullock and\\nGerard over the affair and last week searched the ADL\\'s offices in San Francisco\\nand Los Angeles.\\n The suit alleges invasion of privacy under the Civil Code of California,\\nwhich prohibits the publication of information obtained from official sources.\\nIt seeks exemplary damages of at least $2,500 per person as well as other\\nunspecified damages.\\n Lawyer Pete McCloskey, a former Congresmen who is representing the\\nplaintiffs, said the 19 plaintiffs included Arab-Americans and Jews -- and his\\nwife Helen, who also had information gathered about her.\\n One of the plaintiffs is Yigal Arens, a research scientist at the\\nUniversity of Southern California who is a son of the former Israeli Defence\\nMinister.\\n Arens told the San Francisco Examiner he had seen a file the ADL kept on\\nhim in the 1980s, presumably because of his criticism of the treatment of\\nPalestinians and his position on the Israeli-occupied territories.\\n According to court documents released last week, Bullock and Gerard both\\nkept information on thousands of California political activists.\\n In the documents, a police investigator said he believed the ADL paid\\nBullock for many years to provide information and that both the league and\\nBullock received confidential information from the authorities.\\n No criminal charges have yet been filed in the case. The ADL, Bullock and\\nGerard have all denied any wrongdoing.\\n REUTER AC KG CM\\n\\n\\n\\nAPn 04/14 2202 ADL Lawsuit\\n\\nCopyright, 1993. The Associated Press. All rights reserved.\\n\\nBy CATALINA ORTIZ\\n Associated Press Writer\\n SAN FRANCISCO (AP) -- Arab-Americans and critics of Israel sued the\\nAnti-Defamation League on Wednesday, saying it invaded their privacy by\\nillegally gathering information about them through a nationwide spy network.\\n The ADL, a national group dedicated to fighting anti-Semitism, intended to\\nuse the data to discredit them because of their political views, according to\\nthe class-action lawsuit filed in San Francisco Superior Court.\\n \"None of us has been guilty of racism or Nazism or anti-Semitism or hate\\ncrimes, or any of the other `isms\\' that the ADL claims to protect against. None\\nof us is violent or criminal in any way,\" said Carol El-Shaieb, an education\\nconsultant who develops programs on Arab culture.\\n The 19 plaintiffs include Yigal Arens, son of former Israel Defense Minister\\nMoshe Arens. The younger Arens, a research scientist at the University of\\nSouthern California, said the ADL kept a file on him in the 1980s presumably\\nbecause he has criticized Israel\\'s treatment of Palestinians.\\n \"The ADL believes that anyone who is an Arab American ... or speaks\\npolitically against Israel is at least a closet anti-Semite,\" Arens said.\\n The ADL has denied any wrongdoing, but couldn\\'t comment on the lawsuit\\nbecause it hasn\\'t reviewed it, said a spokesman at the ADL\\'s New York\\nheadquarters.\\n The FBI and local police and prosecutors are investigating allegations that\\nthe ADL spied on thousands of individuals and hundreds of groups, including\\nwhite supremacist and anti-Semitic organizations, Arab-Americans, Greenpeace,\\nthe National Association for the Advancement of Colored People and San Francisco\\npublic television station KQED.\\n Some information allegedly came from confidential police and government\\nrecords, according to court documents filed in the probe and the civil lawsuit.\\nNo charges have been filed in the criminal investigation.\\n The lawsuit accuses the ADL of violating California\\'s privacy law, which\\nforbids the intentional disclosure of personal information \"not otherwise\\npublic\" from state or federal records.\\n The lawsuit claims the ADL disclosed the information to \"persons and\\nentities\" who had no compelling need to receive it. It didn\\'t elaborate.\\n Defendants include Richard Hirschhaut, director of the ADL\\'s office in San\\nFrancisco. He did not immediately return a phone call seeking comment.\\n Other defendants are San Francisco art dealer Roy Bullock, an alleged ADL\\ninformant over the past four decades, and former police officer Tom Gerard.\\nGerard allegedly tapped into law enforcement and government computers and passed\\ninformation on to Bullock.\\n Gerard, who has retired from the police force, has moved to the Philippines.\\nBullock\\'s lawyer, Richard Breakstone, said he could not comment on the lawsuit\\nbecause he had not yet studied it.\\n\\n\\n\\n\\n\\nUPwe 04/14 1956 ADL sued for allegedly spying on U.S. residents\\n\\n SAN FRANCISCO (UPI) -- A group of California residents filed suit Wednesday\\ncharging the Anti-Defamation League of B\\'nai Brith with violating their privacy\\nby spying on them for the Israeli and South African governments.\\n The class-action suit, filed in San Francisco Superior Court, charges the ADL\\nand its leadership conspired with a local police official to obtain information\\non outspoken opponents of Israeli policies towards the Occupied Territories and\\nSouth Africa\\'s apartheid policy.\\n The ADL refused to comment on the suit.\\n The suit also took aim at two top local ADL officials and retired San\\nFrancicso police officer Tom Gerard, claiming they violated privacy guarantees\\nin the state constitution and violated state confidentiality laws.\\n According to the suit, Gerard helped the ADL obtain access to confidential\\nfiles in law enforcement and government computers. Information from these files\\nwere passed to the foreign governments, the suit charges.\\n \"The whole concept of an organized collection of information based on\\npolitical viewpoints and using government agencies as a source of information is\\nabsolutely repugnant,\" said former Rep. Pete McCloskey, who is representing the\\nplaintiffs.\\n The ADL\\'s information-gathering network was revealed publicly last week when\\nthe San Francisco District Attorney\\'s Office released documents indicating the\\ngroup had spied on 12,000 people and 500 political and ethnic groups for more\\nthan 30 years.\\n \"My understanding is that they (the ADL) consider all activity that is in\\nsome sense opposed to Israel or Israeli action to be part of their responsbility\\nto investigate,\" said Arens, a research scientist at the University of Southern\\nCalifornia.\\n \"The ADL believes that anyone who is Arab American...or speaks politically\\nagainst Israel is at least a closet anti-Semite.\"\\n The FBI and the District Attorney\\'s Office have been investigating the\\noperation for four months.\\n The 19 plaintiffs in the case include Arens, the son of former Israeli\\nDefense Minister Moshe Arens.\\n In a press release, the plaintiffs said the alleged spying had damaged them\\npsychologically and economically and accused the ADL of trying to interfere with\\ntheir freedom of speech.\\n',\n", + " 'From: bds@uts.ipp-garching.mpg.de (Bruce d. Scott)\\nSubject: Re: News briefs from KH # 1026\\nOrganization: Rechenzentrum der Max-Planck-Gesellschaft in Garching\\nLines: 21\\nDistribution: world\\nNNTP-Posting-Host: uts.ipp-garching.mpg.de\\n\\nMack posted:\\n\\n\"I know nothing about statistics, but what significance does the\\nrelatively small population growth rate have where the sampling period\\nis so small (at the end of 1371)?\"\\n\\nThis is not small. A 2.7 per cent annual population growth rate implies\\na doubling in 69/2.7 \\\\approx 25 years. Can you imagine that? Most people\\nseem not able to, and that is why so many deny that this problem exists,\\nfor me most especially in the industrialised countries (low growth rates,\\nbut large environmental impact). Iran\\'s high growth rate threatens things\\nlike accelerated desertification due to intensive agriculture, deforestation,\\nand water table drop. Similar to what is going on in California (this year\\'s\\nrain won\\'t save you in Stanford!). This is probably more to blame than \\nthe current government\\'s incompetence for dropping living standards\\nin Iran.\\n-- \\nGruss,\\nDr Bruce Scott The deadliest bullshit is\\nMax-Planck-Institut fuer Plasmaphysik odorless and transparent\\nbds at spl6n1.aug.ipp-garching.mpg.de -- W Gibson\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: DC-X: Vehicle Nears Flight Test\\nArticle-I.D.: news.C51rzx.AC3\\nOrganization: University of Illinois at Urbana\\nLines: 34\\n\\nnsmca@aurora.alaska.edu writes:\\n\\n[Excellent discussion of DC-X landing techniques by Henry deleted]\\n\\n>Since the DC-X is to take off horizontal, why not land that way??\\n\\nThe DC-X will not take of horizontally. It takes of vertically. \\n\\n>Why do the Martian Landing thing.. \\n\\nFor several reasons. Vertical landings don\\'t require miles of runway and limit\\nnoise pollution. They don\\'t require wheels or wings. Just turn on the engines\\nand touch down. Of course, as Henry pointed out, vetical landings aren\\'t quite\\nthat simple.\\n\\n>Or am I missing something.. Don\\'t know to\\n>much about DC-X and such.. (overly obvious?).\\n\\nWell, to be blunt, yes. But at least you\\'re learning.\\n\\n>Why not just fall to earth like the russian crafts?? Parachute in then...\\n\\nThe Soyuz vehicles use parachutes for the descent and then fire small rockets\\njust before they hit the ground. Parachutes are, however, not especially\\npractical if you want to reuse something without much effort. The landings\\nare also not very comfortable. However, in the words of Georgy Grechko,\\n\"I prefer to have bruises, not to sink.\"\\n\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n \"Tout ce qu\\'un homme est capable d\\'imaginer, d\\'autres hommes\\n \\t seront capable de la realiser\"\\n\\t\\t\\t -Jules Verne\\n',\n", + " 'From: landis@stsci.edu (Robert Landis,S202,,)\\nSubject: Re: Space Debris\\nReply-To: landis@stsci.edu\\nOrganization: Space Telescope Science Institute, Baltimore MD\\nLines: 14\\n\\nAnother fish to check out is Richard Rast -- he works\\nfor Lockheed Missiles, but is on-site at NASA Johnson.\\n\\nNick Johnson at Kaman Sciences in Colo. Spgs and his\\nfriend, Darren McKnight at Kaman in Alexandria, VA.\\n\\nGood luck.\\n\\nR. Landis\\n\\n\"Behind every general is his wife.... and...\\n behind every Hillary is a Bill . .\"\\n\\n\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Legality of the Jewish Purchase\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 104\\n\\nIn article <1993Apr16.225910.16670@bnr.ca> zbib@bnr.ca writes:\\n>Adam Shostack writes: \\n>> Sam Zbib writes\\n> >>I\\'m surprised that you don\\'t consider the acquisition of land by\\n> >>the Jews from arabs, for the purpose of establishing an exclusive\\n> >>state, as a hostile action leading to war.\\n\\n>>\\tIt was for the purpose of establishing a state, not an\\n>> exclusive state. If the state was to be exclusive, it would not have\\n>> 400 000 arab citizens.\\n\\n>Could you please tell me what was the ethnic composition of \\n>Israel right after it was formed. \\n\\n\\t100% Israeli citizens. The ethnic composition depends on what\\nyou mean by formed. What the UN deeded to Israel? What it won in war?\\n\\n>> \\tAnd no, I do not consider the purchase of land a hostile\\n>> action. When someone wants to buy land, and someone else is willing\\n>> to sell it, at a mutually agreeable price, then that is commerce. It\\n>> is not a hostile action leading to war.\\n\\n>No one in his right mind would sell his freedom and dignity.\\n>Palestinians are no exception. Perhaps you heard about\\n>anti-trust in the business world.\\n\\n\\tWere there anti-trust laws in place in mandatory Palestine?\\nSince the answer is no, you\\'re argument, while interestingly\\nconstructed, is irrelevant. I will however, respond to a few points\\nyou assert in the course of talking about anti-trust laws.\\n\\n\\n>They were establishing a bridgehead for the European Jews.\\n\\n\\tAnd those fleeing Arab lands, where Jews were second class\\ncitizens. \\n\\n>Plus they paid fair market value, etc...\\n\\n\\tJews often paid far more than fair market value for the land\\nthey bought.\\n\\n>They did not know they were victims of an international conspiracy.\\n\\n\\tYou know, Sam, when people start talking about an\\nInternational Jewish conspiracy, its really begins to sound like\\nanti-Semitic bull.\\n\\n\\tThe reason there is no conspiracy here is quite simple.\\nZionists made no bones about what was going on. There were\\nconferences, publications, etc, all talking about creating a National\\nhome for the Jews.\\n\\n>>>Israel gave citizenship to the remaining arabs because it\\n>>>had to maintain a democratic facade (to keep the western aid\\n>>>flowing).\\n\\n>>\\tIsrael got no western aid in 1948, nor in 1949 or 50...It\\n>>still granted citizenship to those arabs who remained. And how\\n>>is granting citizenship a facade?\\n\\n>Don\\'t get me wrong. I beleive that Israel is democratic\\n>within the constraints of one dominant ethnic group (Jews).\\n[...]\\n>\\'bad\\' arabs. Personaly, I\\'ve never heard anything about the\\n>arab community in Isreal. Except that they\\'re there. So\\n>yes, they\\'re there. But as a community with history and\\n>roots, its dead.\\n\\n\\tBecause you\\'ve never heard of it, its dead? The fact is, you\\nclaimed Israel had to give arabs rights because of (non-existant)\\nInternational aid. Then you see that that argument has a hole you\\ncould drive a truck through, and again assert that Israel is only\\ndemocratic within the (unexplained) constraints of one ethnic group.\\nThe problem with that argument is that Arabs are allowed to vote for\\nwhoever they please. So, please tell me, Sam, what constraints are\\nthere on Israeli democracy that don\\'t exist in other democratic\\nstates?\\n\\n\\tI\\'ve never heard anything about the Khazakistani arab\\npopulation. Does that mean that they have no history or roots? When\\nI was at Ben Gurion university in Israel, one of my neighbors was an\\nIsraeli arab. He wasn\\'t really all that different from my other\\nneighbors. Does that make him dead or oppressed?\\n\\n\\n>I stand corrected. I meant that the jewish culture was not\\n>predominant in Palestine in recent history. I have no\\n>problem with Jerusalem having a jewish character if it were\\n>predominantly Jewish. So there. what to make of the rest\\n>Palestine?\\n\\n\\tHow recent is recent? I can probably build a case for a\\nJewish Gaza city. It would be pretty silly, but I could do it. I\\'m\\narguing not that Jerusalem is Jewish, but that land has no ethnicity.\\n\\nAdam\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: hm@cs.brown.edu (Harry Mamaysky)\\nSubject: Re: Final Solution for Gaza ?\\nIn-Reply-To: Center for Policy Research\\'s message of 23 Apr 93 15:10 PDT\\nOrganization: Dept. of Computer Science, Brown University\\nLines: 30\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n\\n Final Solution for the Gaza ghetto ?\\n ------------------------------------\\n\\n While Israeli Jews fete the uprising of the Warsaw ghetto, they\\n repress by violent means the uprising of the Gaza ghetto and\\n attempt to starve the Gazans.\\n\\n [...]\\n\\nElias should the families of the children who were stabbed in their\\nhigh school by a Palestinian \"freedom fighter\" be the ones who offer\\ntheir help to the Gazans. Perhaps it should be the families of the 18\\nIsraelis who were murdered last month by Palestinian \"freedom\\nfighters\".\\n\\nThe Jews in the Warsaw ghetto were fighting to keep themselves and\\ntheir families from being sent to Nazi gas chambers. Groups like Hamas\\nand the Islamic Jihad fight with the expressed purpose of driving all\\nJews into the sea. Perhaps, we should persuade Jewish people to help\\nthese wnderful \"freedom fighters\" attain this ultimate goal.\\n\\nMaybe the \"freedom fighters\" will choose to spare the co-operative Jews.\\nIs that what you are counting on, Elias - the pity of murderers.\\n\\nYou say your mother was Jewish. How ashamed she must be of her son. I\\nam sorry, Mrs. Davidsson.\\n\\nHarry.\\n',\n", + " 'From: DKELO@msmail.pepperdine.edu (Dan Kelo)\\nSubject: M-81 Supernova\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 7\\n\\n\\nHow \\'bout some more info on that alleged supernova in M-81?\\nI might just break out the scope for this one.\\n____________________________________________________\\n\"No sir, I don\\'t like it! \"-- Mr. Horse\\nDan Kelo dkelo@pepvax.pepperdine.edu\\n____________________________________________________\\n',\n", + " 'From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: Question: Arai Quantum-S\\nOrganization: AT&T\\nDistribution: na\\nLines: 30\\n\\nIn article amir@ms.uky.edu (Amir Sadr) writes:\\n>they way I want it to. However, I have the following problem: My chin hangs\\n>out from the bottom of the helmet. I am curious to know whether I would still\\n>have this problem if I were to switch to the extra large size? In particular,\\n>can anyone tell me \"for certain\", if the outer shell of the \"Arai Quantum-S\" in\\n>size X-large is any different (larger-rounder-etc.) than the same helmet in size\\n>large? Or if the inner padding/foam on the X-large is such that one\\'s head\\n>fits a little deeper in the helmet, and thus one\\'s chin would not stick out?\\n>This is true for the very old Arthur-Fulmer helmets that I have. Namely, my\\n>chin hangs out a little from the bottom of the Large helmet, and not at all\\n>from the X-large (but the X-large is not as snug as the large). The dealer\\n>is willing to replace the helmet at no additional cost (i.e. shipping), but\\n>I want to make sure that 1) the X-large is in fact a little bigger or linered\\n>such that my chin will not hang out and 2) how much looser will my head fit in\\n>the X-large? If anyone has recent experience with this helmet, please let me\\n>hear (E-mail) from you ASAP. Thank you so much. Amir-\\n\\nI\\'m not sure about the helmet but for chin questions you might\\nwant to write to a:\\n\\n Jay Leno\\n c/o Tonight Show \\n Burbank Calif.\\n \\nGood luck.\\n \\n================================================================================\\n Steatopygias\\'s \\'R\\' Us. doh#0000000005 That ain\\'t no Hottentot.\\n Sesquipedalian\\'s \\'R\\' Us. ZX-10. AMA#669373 DoD#564. There ain\\'t no more.\\n================================================================================\\n',\n", + " 'From: sprattli@azores.crd.ge.com (Rod Sprattling)\\nSubject: Re: Kawi Zephyr? (was Re: Vision vs GpZ 550)\\nArticle-I.D.: crdnns.C52M30.5yI\\nReply-To: sprattli@azores.crd.ge.com (Rod Sprattling)\\nOrganization: GE Corp R&D Center, Schenectady NY\\nLines: 31\\nNntp-Posting-Host: azores.crd.ge.com\\n\\nIn article <1993Apr4.135829.28141@pro-haven.cts.com>,\\nshadow@pro-haven.cts.com writes:\\n|>In <1993Apr3.094509.11448@organpipe.uug.arizona.edu>\\n|>asphaug@lpl.arizona.edu (Erik Asphaug x2773) writes:\\n|>\\n|>% By the way, the short-lived Zephyr is essentially a GpZ 550,\\n|>\\n|>Why was the \"Zephyr\" discontinued? I heard something about a problem with\\n|>the name, but I never did hear anything certain... \\n\\nFord had an anemic mid-sized car by that name back in the last decade.\\nI rented one once. That car would ruin the name \"Zephyr\" for any other\\nuse.\\n\\nRod\\n--- \\nRoderick Sprattling\\t\\t| No job too great, no time too small\\nsprattli@azores.crd.ge.com\\t| With feet to fire and back to wall.\\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n\\n \\n',\n", + " 'From: bill@xpresso.UUCP (Bill Vance)\\nSubject: TRUE \"GLOBE\", Who makes it?\\nOrganization: (N.) To be organized. But that\\'s not important right now.....\\nLines: 11\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nIt has been known for quite a while that the earth is actually more pear\\nshaped than globular/spherical. Does anyone make a \"globe\" that is accurate\\nas to actual shape, landmass configuration/Long/Lat lines etc.?\\nThanks in advance.\\n\\n--\\n\\nbill@xpresso.UUCP (Bill Vance), Bothell, WA\\nrwing!xpresso!bill\\n\\nYou listen when I xpresso, I listen When uuxpresso.......:-)\\n',\n", + " 'From: ghasting@vdoe386.vak12ed.edu (George Hastings)\\nSubject: Re: Space on other nets\\nOrganization: Virginia\\'s Public Education Network (Richmond)\\nLines: 17\\n\\n We run \"SpaceNews & Views\" on our STAREACH BBS, a local\\noperation running WWIV software with the capability to link to\\nover 1500 other BBS\\'s in the U.S.A. and Canada through WWIVNet.\\n Having just started this a couple of months ago, our sub us\\ncurrently subscribed by only about ten other boards, but more\\nare being added.\\n We get our news articles re on Internet, via ftp from NASA\\nsites, and from a variety of aerospace related periodicals. We\\nget a fair amount of questions on space topics from students\\nwho access the system.\\n ____________________________________________________________\\n| George Hastings\\t\\tghasting@vdoe386.vak12ed.edu | \\n| Space Science Teacher\\t\\t72407.22@compuserve.com | If it\\'s not\\n| Mathematics & Science Center \\tSTAREACH BBS: 804-343-6533 | FUN, it\\'s\\n| 2304 Hartman Street\\t\\tOFFICE: 804-343-6525 | probably not\\n| Richmond, VA 23223\\t\\tFAX: 804-343-6529 | SCIENCE!\\n ------------------------------------------------------------\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Lezgians Astir in Azerbaijan and Daghestan\\nSummary: asking not to fight against Armenians in Karabakh & for unification\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 106\\n\\n\\n04/19/1993 0000 Lezghis Astir\\n\\nBy NEJLA SAMMAKIA\\n Associated Press Writer\\n \\nGUSSAR, Azerbaijan (AP) -- The 600,000 Lezghis of Azerbaijan and Russia have\\nbegun clamoring for their own state, threatening turmoil in a tranquil corner \\nof the Caucasus.\\n\\nThe region has escaped the ethnic warfare of neighboring Nagorno-Karabakh,\\nAbkhazia and Ossetia, but Lezhgis could become the next minority in the former\\nSoviet Union to fight for independence.\\n\\nLezghis, who are Muslim descendents of nomadic shepherds, are angry about the\\nconscription of their young men to fight in Azerbaijan\\'s 5-year-old undeclared\\nwar with Armenia.\\n\\nThey also want to unite the Lezghi regions of Azerbaijan and Russia, which\\nwere effectively one until the breakup of the Soviet Union created national\\nborders that had been only lines on a map.\\n\\nA rally of more than 3,000 Lezghis in March to protest conscription and\\ndemand a separate \"Lezghistan\" alarmed the Azerbaijani government.\\n\\nOfficials in Baku, the capital, deny rumors that police shot six\\ndemonstrators to death. But the government announced strict security measures\\nand began cooperating with Russian authorities to control the movement of\\nLezhgis living across the border in the Dagestan region of Russia.\\n\\nVisitors to Gussar, the center of Lezhgi life, found the town quiet soon\\nafter the protest. Children played outdoors in the crisp mountain air.\\n\\nAt the Sunday bazaar, men in heavy coats and dark fur hats gathered to\\ndiscuss grievances ranging from high customs duties at the Russian border to a\\nwar they say is not theirs.\\n\\n\"I have been drafted, but I won\\'t go,\" said Shamil Kadimov, gold teeth\\nglinting in the sun. \"Why must I fight a war for the Azerbaijanis? I have\\nnothing to do with Armenia.\"\\n\\nMore than 3,000 people have died in the war, which centers on the disputed\\nterritory of Nagorno-Karabakh, about 150 miles to the southeast.\\n\\nMalik Kerimov, an official in the mayor\\'s office, said only 11 of 300 locals\\ndrafted in 1992 had served.\\n\\n\"The police don\\'t force people to go,\" he said. \"They are afraid of an\\nuprising that could be backed by Lezghis in Dagestan.\"\\n\\nAll the men agreed that police had not fired at the demonstrators, but\\ndisagreed on how the protest came about.\\n\\nSome said it occurred spontaneously when rumors spread that Azerbaijan was\\nabout to draft 1,500 men from the Gussar region, where 75,000 Lezghis live.\\n\\nOthers said the rally was ordered by Gen. Muhieddin Kahramanov, leader of the\\nLezhgi underground separatist movement, Sadval, based in Dagestan.\\n\\n\"We organized the demonstration when families came to us distraught about\\ndraft orders,\" said Kerim Babayev, a mathematics teacher who belongs to Sadval.\\n\\n\"We hope to reunite peacefully, by approaching everyone -- the Azerbaijanis, \\nthe Russians.\"\\n\\nIn the early 18th century, the Lezhgis formed two khanates, or sovereignties,\\nin what are now Azerbaijan and Dagestan. They roamed freely with their sheep\\nover the green hills and mountains between the two khanates.\\n\\nBy 1812, the Lezghi areas were joined to czarist Russia. After 1917, they\\ncame under Soviet rule. With the disintegration of the Soviet Union, the \\n600,000 Lezghis were faced for the first time with strict borders.\\n\\nAbout half remained in Dagestan and half in newly independent Azerbaijan.\\n\\n\"We have to pay customs on all this, on cars, on wine,\" complained Mais\\nTalibov, a small trader. His goods, laid out on the ground at the bazaar,\\nincluded brandy, stomach medication and plastic shoes from Dagestan.\\n\\n\"We want our own country,\" he said. \"We want to be able to move about easily.\\nBut Baku won\\'t listen to us.\"\\n\\nPhysically, it is hard for outsiders to distinguish Lezhgis from other\\nAzerbaijanis. In many villages, they live side by side, working at the same \\njobs and intermarrying to some degree.\\n\\nBut the Lezhgis have a distinctive language, a mixture of Arabic, Turkish and\\nPersian with strong guttural vowels.\\n\\nAzerbaijan officially supports the cultural preservation of its 10 largest\\nethnic minorities. The Lezghis have weekly newspapers and some elementary \\nschool classes in their language.\\n\\nAutonomy is a different question. If the Lezghis succeeded in separating from\\nAzerbaijan, they would set a precedent for other minorities, such as the \\nTalish in the south, the Tats in the nearby mountains and the Avars of eastern\\nAzerbaijan.\\n\\n\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: shz@mare.att.com (Keeper of the 'Tude)\\nSubject: Re: Riceburner Respect\\nOrganization: Office of 'Tude Licensing\\nNntp-Posting-Host: binky\\nLines: 14\\n\\nIn article <1993Apr14.190210.8996@megatek.com>, randy@megatek.com (Randy Davis) writes:\\n> |The rider (pilot?)\\n> \\n> I'm happy I've had such an effect on your choice of words, Seth.. :-)\\n\\n:-)\\n\\nT'was a time when I could get a respectable response with a posting like that.\\nRandy's post doesn't count 'cause he saw the dearth of responses and didn't \\nwant me to feel ignored (thanks Randy!).\\n\\nI was curious about this DoD thing. How do I get a number? (:-{)}\\n\\n- Roid\\n\",\n", + " \"From: jar2e@faraday.clas.Virginia.EDU (Virginia's Gentleman)\\nSubject: Re: was:Go Hezbollah!!\\nOrganization: University of Virginia\\nLines: 4\\n\\nWe really should try to be as understanding as we can for Brad, because it\\nappears killing is all he knows.\\n\\nJesse\\n\",\n", + " \"From: tmc@spartan.ac.BrockU.CA (Tim Ciceran)\\nSubject: Re: Hijaak\\nOrganization: Brock University, St. Catharines Ontario\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 15\\n\\nHaston, Donald Wayne (haston@utkvx.utk.edu) wrote:\\n: Currently, I use a shareware program called Graphics Workshop.\\n: What kinds of things will Hijaak do that these shareware programs\\n: will not do?\\n\\nI also use Graphic Workshop and the only differences that I know of are that\\nHijaak has screen capture capabilities and acn convert to/from a couple of\\nmore file formats (don't know specifically which one). In the April 13\\nissue of PC Magazine they test the twelve best selling image capture/convert\\nutilities, including Hijaak.\\n\\nTMC.\\n(tmc@spartan.ac.brocku.ca)\\n\\n\\n\",\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Abyss: breathing fluids\\nArticle-I.D.: access.1psghn$s7r\\nOrganization: Express Access Online Communications USA\\nLines: 19\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article enf021@cck.coventry.ac.uk (Achurist) writes:\\n|\\n|I believe the reason is that the lung diaphram gets too tired to pump\\n|the liquid in and out and simply stops breathing after 2-3 minutes.\\n|So if your in the vehicle ready to go they better not put you on \\n|hold, or else!! That's about it. Remember a liquid is several more times\\n|as dense as a gas by its very nature. ~10 I think, depending on the gas\\n|and liquid comparision of course!\\n\\n\\nCould you use some sort of mechanical chest compression as an aid.\\nSorta like the portable Iron Lung? Put some sort of flex tubing\\naround the 'aquanauts' chest. Cyclically compress it and it will\\npush enough on the chest wall to support breathing?????\\n\\nYou'd have to trust your breather, but in space, you have to trust\\nyour suit anyway.\\n\\npat\\n\",\n", + " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: Observation re: helmets\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 12\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 734919391@u.washington.edu, moseley@u.washington.edu (Steve L. Moseley) writes:\\n>\\n>So what should I carry if I want to comply with intelligent helmet laws?\\n\\nTake up residence in a fantasy world. \\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", + " \"From: bdunn@cco.caltech.edu (Brendan Dunn)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: California Institute of Technology, Pasadena\\nLines: 8\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\nThanks to whoever posted this wonderful parody of people who post without \\nreading the FAQ! I was laughing for a good 5 minutes. Were there any \\nparts of the FAQ that weren't mentioned? I think there might have been one\\nor two...\\n\\nPlease don't tell me this wasn't a joke. I'm not ready to hear that yet...\\n\\nBrendan\\n\",\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Syria\\'s Expansion\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 95\\n\\nIn article hallam@zeus02.desy.de writes:\\n>\\n>In article <1993Apr18.212610.5933@das.harvard.edu>, adam@endor.uucp (Adam Shostack) writes:\\n\\n>|>In article <18APR93.15729846.0076@VM1.MCGILL.CA> B8HA000 writes:\\n\\n>|>>1) Is Israel\\'s occupation of Southern Lebanon temporary?\\n\\n>|>\\tIsrael has repeatedly stated that it will leave Lebanon when\\n>|>the Lebanese government can provide guarantees that Israel will not be\\n>|>attacked from Lebanese soil, and when the Syrians leave.\\n\\n>Not acceptable. Syria and Lebanon have a right to determine if\\n>they wish to return to the situation prior to the French invasion\\n>where they were both part of the same \"mandate territory\" - read\\n>colony.\\n\\n\\tAnd Lebanon has a right to make this decision without Syrian\\ntroops controlling the country. Until Syria leaves, and free\\nelections take place, its is rediculous to claim that the Lebanese\\nwould even be involved in determining what happens to their country.\\n\\n>Israel has no right to determine what happens in Lebanon. Invading another\\n>country because you consider them a threat is precisely the way that almost\\n>all wars of aggression have started.\\n\\n\\tI expect you will agree that the same holds true for Syria\\nhaving no right to be in Lebanon?\\n\\n>|>\\tIsrael has already annexed areas taken over in the 1967 war.\\n>|>These areas are not occupied, but disputed, since there is no\\n>|>legitamate governing body. Citizenship was given to those residents\\n>|>in annexed areas who wanted citizenship.\\n\\n>The UN defines them as occupied. They are recognised as such by every\\n>nation on earth (excluding one small caribean island).\\n\\n\\tThe UN also thought Zionism is racism. That fails to make it true.\\n\\n>|>\\tThe first reason was security. A large Jewish presense makes\\n>|>it difficult for terrorists to infiltrate. A Jewish settlements also\\n>|>act as fortresses in times of war.\\n>\\n>Theyu also are a liability. We are talking about civilian encampments that\\n>would last no more than hours against tanks,\\n\\n\\tThey lasted weeks against tanks in \\'48, and stopped those\\ntanks from advancing. They also lasted days in \\'73. There is little\\nevidence for the claim that they are military liabilities.\\n\\n\\tThey evidence is there to show that when infiltrations take\\nplace over the Jordan river, the existance of large, patrolled\\nkibutzim forces terrorists into a very small area, where they are\\nusually picked up in the morning.\\n\\n>|>\\tA second reason was political. Creating \"settlements\" brought\\n>|>the arabs to the negotiation table. Had the creation of new towns and\\n>|>cities gone on another several years, there would be no place left in\\n>|>Israel where there was an arab majority. There would have been no\\n>|>land left that could be called arab.\\n\\n>Don\\'t fool yourself. It was the gulf war that brought the Israelis to the\\n>negotiating table. Once their US backers had a secure base in the gulf\\n>they insrtructed Shamir to negotiate or else.\\n\\n\\tNonsense. Israel has been trying to get its neighbors to the\\nnegotiating table for 40 years. It was the gulf war that brought the\\narabs to the table, not the Israelis.\\n\\n>|>\\tThe point is, there are many reasons people moved over the\\n>|>green line, and many reasons the government wanted them to. Whatever\\n>|>status is negotiated for disputed territories, it will not be an \"all\\n>|>or nothing\" deal. New boundaries will be drawn up by negotiation, not\\n>|>be the results of a war.\\n\\n>Unless the new boundaries drawn up are those of 48 there will be no peace.\\n>Araffat has precious little authority to agree to anything else.\\n\\n\\tNonsense. According to Arafat, Israel must be destroyed. He\\nhas never come clean and denied that this is his plan. He always\\nwaffles on what he means.\\n\\n\\t``When the Arabs set off their volcano, there will only be Arabs in\\n\\tthis part of the world. Our people will continue to fuel the torch\\n\\tof the revolution with rivers of blood until the whole of the\\n\\toccupied homeland is liberated...\\'\\'\\n\\t--- Yasser Arafat, AP, 3/12/79\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 57\\n\\nIn article bh437292@lance.colostate.edu writes:\\n\\n[most of Brads post deleted.]\\n\\n>we have come to accept and deal with, the Lebanese Resistance\\n>on the other hand is not going to stop its attacks on OCCUPYING \\n>ISRAELI SOLDIERS until they withdraw, this is the only real \\n>leverage that they have to force Israel to withdraw.\\n\\n\\tTell me, do these young men also attack Syrian troops?\\n\\n\\n>with the blood of its soldiers. If Israel is interested in peace,\\n>than it should withdraw from OUR land.\\n\\n\\tThere must be a guarantee of peace before this happens. It\\nseems that many of these Lebanese youth are unable to restrain\\nthemselves from violence, and unable to to realize that their actions\\nprolong Israels stay in South Lebanon.\\n\\n\\tIf the Lebanese army was able to maintain the peace, then\\nIsrael would not have to be there. Until it is, Israel prefers that\\nits soldiers die rather than its children.\\n\\n\\n>If Israel really wants to save some Israeli lives it would withdraw \\n>unilaterally from the so-called \"Security Zone\" before the conclusion\\n>of the peace talks. Such a move would save Israeli lives,\\n>advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n>public image abroad and give it an edge in the peace negociations \\n>since Israel can rightly claim that it is genuinely interested in \\n>peace and has already offered some important concessions.\\n\\n\\tIsrael should withdraw from Lebanon when a peace treaty is\\nsigned. Not a day before. Withdraw because of casualties would tell\\nthe Lebanese people that all they need to do to push Israel around is\\nkill a few soldiers. Its not gonna happen.\\n\\n>Along with such a withdrawal Israel could demand that Hizbollah\\n>be disarmed by the Lebanese government and warn that it will not \\n>accept any attacks against its northern cities and that if such a\\n>shelling occurs than it will consider re-taking the buffer zone\\n>and will hold the Lebanese and Syrian government responsible for it.\\n\\n\\n\\tWhy should Israel not demand this while holding the buffer\\nzone? It seems to me that the better bargaining position is while\\nholding your neighbors land. If Lebanon were willing to agree to\\nthose conditions, Israel would quite probably have left already.\\nUnfortunately, it doesn\\'t seem that the Lebanese can disarm the\\nHizbolah, and maintain the peace.\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: eylerken@stein.u.washington.edu (Ken Eyler)\\nSubject: stand alone editing suite.\\nArticle-I.D.: shelley.1qvkaeINNgat\\nDistribution: world\\nOrganization: University of Washington, Seattle\\nLines: 12\\nNNTP-Posting-Host: stein.u.washington.edu\\n\\nI need some help. We are upgrading our animation/video editing stand. We\\nare looking into the different type of setups for A/B roll and a cuts only\\nstation. We would like this to be controlled by a computer ( brand doesnt matter but maybe MAC, or AMIGA). Low end to high end system setups would be very\\nhelpful. If you have a system or use a system that might be of use, could you\\nmail me your system requirements, what it is used for, and all the hardware and\\nsoftware that will be necessary to set the system up. If you need more \\ninfo, you can mail me at eylerken@u.washington.edu\\n\\nthanks in advance.\\n\\n:ken\\n:eylerken@u.washington.edu\\n',\n", + " 'From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: RE: was:Go Hezbollah!\\nOrganization: Unocal Corporation\\nLines: 68\\n\\n\\nhernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n\\n>I just thought that I would make it clear, in case you are not familiar with\\n>my past postings on this subject; I do not condone attacks on civilians. \\n>Hezbollah and other Lebanese Resistance fighters are skilled at precision\\n>bombing of SLA and Israeli targets. I find such methods to be far more\\n>restrained and responsible than the Israeli method of shelling and bombing\\n>villages with the hope that a Hezbollah member will be killed along with\\n>the civilians murdered. I do not consider the killing of combatants to be\\n>murder. Soldiers are trained to die for their country. Three IDF soldiers\\n>did their duty the other day. These men need not have died if their government\\n>had kept them on Israeli soil. \\n\\nIs there any Israeli a civilian, in your opinion ?\\n\\nNow, I do not condone myself bombing villages, any kind of villages.\\nBut you claim these are villages with civilians, and Iraelis claim they are \\ncamps filled with terrorists. You claim that israelis shell the villages with the\\n\\'hope\\' of finding a terrorist or so. If they kill one, fine, if not, too bad, \\ncivilians die, right ? I am not so sure. \\n\\nAs somebody wrote, Saddam Hussein had no problems using civilians in disgusting\\nmanner. And he also claimed \\'civilians murdered\\'. Let me ask you, isn\\'t there \\nat least a slight chance that you (not only, and the question is very general, \\nno insult) are doing a similar type of propaganda in respect to civilians in\\nsouthern Lebanon ?\\n\\nNow, a lot people who post here consider \\'Israeli soil\\' kind of Mediteranean sea.\\nHow do you define Israeli soil ? From what you say, if you do not clearly \\nrecognize the state of Israel, you condone killing israelis anywhere.\\n\\n>Dorin, are you aware that the IDF sent helicopters and gun-boats up the\\n>coast of Lebanon the other day and rocketted a Palestinian refugee north of\\n>Beirut. Perhaps I should ask YOU \"what qualifies a person for murder?\":\\n\\nI do not know what was the pupose of the action you describe. If it was \\nto kill civilians (I doubt), I certainly DO NOT CONDONE IT. If civilians were \\nkilled, i do not condone it. \\n\\n>That they are Palestinian?\\n\\n>That they are children and may grow up to be \"terrorists\"?\\n\\n>That they are female and may give birth to little terrorists?\\n\\n>Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nMr. Hernlem, it was YOU, not ME, who was showing a huge satisfaction for 3 \\nisraelis (human beings by most standards, Don\\'t know about your standards) killed.\\n\\nIf you ask me those questions, I will have no problem answering (not with a \\nquestion, as you did) : No, NOBODY is qualified candidate for murder, nothing\\njustifies murder. I have the feeling that you may be able yourself to make\\nsimilar statements, maybe after eliminating all Israelis, jews, ? Am I wrong ?\\n\\n\\nNow tell me, did you also condone Saddam\\'s scuds on israeli \\'soldiers\\' in, let\\'s\\nsay, Tel Aviv ? From what I understand, a lot of palestineans cheered. What does\\nit show? It does not qualify for freedom fighting to me ? But again, I may be \\nwrong, and the jewish controlled media distorted the information, and I am just\\nan ignorant victim of the media, like most of us.\\n\\n\\nDorin\\n\\n\\n',\n", + " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Dreams and Degrees (was Re: Crazy? or just Imaginitive?)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 47\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , mt90dac@brunel.ac.uk (Del Cotter) writes:\\n> <1993Apr21.205403.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>> Sorry if I do not have the big degrees\\n>>and such, but I think (I might be wrong, to error is human) I have something\\n>>that is in many ways just as important, I have imagination, dreams. And without\\n>>dreams all the knowledge is worthless.. \\n> \\n> Oh, and us with the big degrees don\\'t got imagination, huh?\\n> \\n> The alleged dichotomy between imagination and knowledge is one of the most\\n> pernicious fallacys of the New Age. Michael, thanks for the generous\\n> offer, but we have quite enough dreams of our own, thank you.\\n\\nWell said.\\n \\n> You, on the other hand, are letting your own dreams go to waste by\\n> failing to get the maths/thermodynamics/chemistry/(your choices here)\\n> which would give your imagination wings.\\n> \\n> Just to show this isn\\'t a flame, I leave you with a quote from _Invasion of \\n> the Body Snatchers_:\\n> \\n> \"Become one of us; it\\'s not so bad, you know\"\\n\\nOkay, Del, so Michael was being unfair, but you are being unfair back. \\nHe is taking college courses now, I presume he is studying hard, and\\nhis postings reveal that he is *somewhat* hip to the technical issues\\nof astronautics. Plus, he is attentively following the erudite\\ndiscourse of the Big Brains who post to sci.space; is it not\\ninevitable that he will get a splendid technical education from\\nreading the likes of you and me? [1]\\n\\nLike others involved in sci.space, Mr. Adams shows symptoms of being a\\nfledgling member of the technoculture, and I think he\\'s soaking it up\\nfast. I was a young guy with dreams once, and they led me to get a\\ntechnical education to follow them up. Too bad I wound up in an\\nassembly-line job stamping out identical neutrinos day after day...\\n(-:\\n\\n[1] Though rumors persist that Del and I are both pseudonyms of Fred\\nMcCall.\\n\\nBill Higgins, Beam Jockey | \"We\\'ll see you\\nFermi National Accelerator Laboratory | at White Sands in June. \\nBitnet: HIGGINS@FNAL.BITNET | You bring your view-graphs, \\nInternet: HIGGINS@FNAL.FNAL.GOV | and I\\'ll bring my rocketship.\" \\nSPAN/Hepnet: 43011::HIGGINS | --Col. Pete Worden on the DC-X\\n',\n", + " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Bill Conner:\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 6\\n\\n\\nCould you explain what any of this pertains to? Is this a position\\nstatement on something or typing practice? And why are you using my\\nname, do you think this relates to anything I've said and if so, what.\\n\\nBill\\n\",\n", + " 'From: bsaffo01@cad.gmeds.com (Brian H. Safford)\\nSubject: IGES Viewer for DOS/Windows\\nOrganization: EDS/Cadillac\\nLines: 10\\nNNTP-Posting-Host: ccadmn1.cad.gmeds.com\\n\\nAnybody know of an IGES Viewer for DOS/Windows? I need to be able to display \\nComputerVision IGES files on a PC running Windows 3.1. Thanks in advance.\\n\\n+-----------------------------------------------------------+\\n| Brian H. Safford EMAIL: bsaffo01@cad.gmeds.com |\\n| Electronic Data Systems PHONE: (313) 696-6302 |\\n+-----------------------------------------------------------+\\n| NOTE: The views and opinions expressed herein are mine, |\\n| and DO NOT reflect those of Electronic Data Systems Corp. |\\n+-----------------------------------------------------------+\\n',\n", + " \"From: geoffrey@cosc.canterbury.ac.nz (Geoff Thomas)\\nSubject: Re: Help! 256 colors display in C.\\nKeywords: graphics\\nArticle-I.D.: cantua.C533EM.Cv7\\nOrganization: University of Canterbury, Christchurch, New Zealand\\nLines: 21\\nNntp-Posting-Host: huia.canterbury.ac.nz\\n\\n\\nYou'll probably have to set the palette up before you try drawing\\nin the new colours.\\n\\nUse the bios interrupt calls to set the r g & b values (in the range\\nfrom 0-63 for most cards) for a particular palette colour (in the\\nrange from 0-255 for 256 colour modes).\\n\\nThen you should be able to draw pixels in those palette values and\\nthe result should be ok.\\n\\nYou might have to do a bit of colourmap compressing if you have\\nmore than 256 unique rgb triplets, for a 256 colour mode.\\n\\n\\nGeoff Thomas\\t\\t\\tgeoffrey@cosc.canterbury.ac.nz\\nComputer Science Dept.\\nUniversity of Canterbury\\nPrivate Bag\\t\\t\\t\\t+-------+\\nChristchurch\\t\\t\\t\\t| Oook! |\\nNew Zealand\\t\\t\\t\\t+-------+\\n\",\n", + " 'From: joachim@kih.no (joachim lous)\\nSubject: Re: XV for MS-DOS !!!\\nOrganization: Kongsberg Ingeniorhogskole\\nLines: 20\\nNNTP-Posting-Host: samson.kih.no\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\nNOE-MAILADDRESS@eicn.etna.ch wrote:\\n> I\\'m sorry for...\\n\\n> 1) The late of the answer but I couldn\\'t find xv221 for msdos \\'cause \\n> \\tI forgot the address...but I\\'ve retrieve it..\\n\\n> 2) Posting this answer here in comp.graphics \\'cause I can\\'t use e-mail,\\n> ^^^ not yet....\\n\\n> 2) My bad english \\'cause I\\'m a Swiss and my language is french....\\n ^^^\\nIf french is your language, try counting in french in stead, maybe\\nit will work better.... :-)\\n\\n _______________________________\\n / _ L* / _ / . / _ /_ \"One thing is for sure: The sheep\\n / _) /()(/(/)//)) /_ ()(/_) / / Is NOT a creature of the earth.\"\\n / \\\\_)~ (/ Joachim@kih.no / / \\n/_______________________________/ / -The back-masking on \\'Haaden II\\'\\n /_______________________________/ from \\'Exposure\\' by Robert Fripp.\\n',\n", + " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Cookamunga Tourist Bureau\\nLines: 26\\n\\nIn article <1993Apr19.113255.27550@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n> >Fred, the problem with such reasoning is that for us non-believers\\n> >we need a better measurement tool to state that person A is a\\n> >real Muslim/Christian, while person B is not. As I know there are\\n> >no such tools, and anyone could believe in a religion, misuse its\\n> >power and otherwise make bad PR. It clearly shows the sore points\\n> >with religion -- in other words show me a movement that can\\'t spin\\n> >off Khomeinis, Stalins, Davidians, Husseins... *).\\n> \\n> I don\\'t think such a system exists. I think the reason for that is an\\n> condition known as \"free will\". We humans have got it. Anybody, using\\n> their free-will, can tell lies and half-truths about *any* system and\\n> thus abuse it for their own ends.\\n\\nI don\\'t think such tools exist either. In addition, there\\'s no such\\nthing as objective information. All together, it looks like religion\\nand any doctrines could be freely misused to whatever purpose.\\n\\nThis all reminds me of Descartes\\' whispering deamon. You can\\'t trust\\nanything. So why bother.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", + " 'From: pbenson@ecst.csuchico.edu (Paul A. Benson)\\nSubject: CD-ROM Indexes available\\nOrganization: California State University, Chico\\nLines: 6\\nNNTP-Posting-Host: cscihp.ecst.csuchico.edu\\n\\nThe file and contents listings for:\\n\\nKnowledge Media Resource Library: Graphics 1\\nKnowledge Media Resource Library: Audio 1\\n\\nare now available for anonymous FTP from cdrom.com\\n',\n", + " 'From: terziogl@ee.rochester.edu (Esin Terzioglu)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: Univ of Rochester, College of Engineering and Applied Science\\nLines: 33\\n\\nIn article <1993Apr19.155856.8260@kpc.com> henrik@quayle.kpc.com writes:\\n>In article <1993Apr17.185118.10792@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n>|> In article <1993Apr16.195452.21375@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>|> >04/16/93 1045 ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\n>|> >\\n>|> \\n>|> Ermenistan kasiniyor...\\n>|> \\n>|> Let me translate for everyone else before the public traslation service gets\\n>|> into it\\t: Armenia is getting itchy. \\n>|> \\n>|> Esin.\\n>\\n>\\n>Let me clearify Mr. Turkish;\\n>\\n>ARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that SHE\\n>WILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\n>tricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n>CYPRESS WHILE the world simply WATCHED. \\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\nYour ignorance is obvious from your posting. \\n\\n1) Cyprus was an INDEPENDENT country with Turkish/Greek inhabitants (NOT a \\n Greek island like your ignorant posting claims)\\n\\n2) The name should be Cyprus (in English)\\n\\nnext time read and learn before you post. \\n\\nEsin.\\n',\n", + " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 30\\n\\nSCOTT D. SAUYET (SSAUYET@eagle.wesleyan.edu) wrote:\\n\\n: Regardless of people's hidden motivations, the stated reasons for many\\n: wars include religion. Of course you can always claim that the REAL\\n: reason was economics, politics, ethnic strife, or whatever. But the\\n: fact remains that the justification for many wars has been to conquer\\n: the heathens.\\n\\n: If you want to say, for instance, that economics was the chief cause\\n: of the Crusades, you could certainly make that point. But someone\\n: could come along and demonstrate that it was REALLY something else, in\\n: the same manner you show that it was REALLY not religion. You could\\n: in this manner eliminate all possible causes for the Crusades.\\n: \\n\\nScott,\\n\\nI don't have to make outrageous claims about religion's affecting and\\neffecting history, for the purpsoe of a.a, all I have to do point out\\nthat many claims made here are wrong and do nothing to validate\\natheism. At no time have I made any statement that religion was the\\nsole cause of anything, what I have done is point out that those who\\ndo make that kind of claim are mistaken, usually deliberately. \\n\\nTo credit religion with the awesome power to dominate history is to\\nmisunderstand human nature, the function of religion and of course,\\nhistory. I believe that those who distort history in this way know\\nexaclty what they're doing, and do it only for affect.\\n\\nBill\\n\",\n", + " 'From: declrckd@rtsg.mot.com (Dan J. Declerck)\\nSubject: Re: edu breaths\\nNntp-Posting-Host: corolla17\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 53\\n\\nIn article <1993Apr15.221024.5926@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>In article <1993Apr15.214910.5676@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n>|In article <1993Apr15.003749.15710@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>|>In article <1993Apr14.220252.14731@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n>|>|\\n>|>|The difference of opinion, and difference in motorcycling between the sport-bike\\n>|>|riders and the cruiser-bike riders. \\n>|>\\n>|>That difference is only in the minds of certain closed-minded individuals. I\\n>|>have had the very best motorcycling times with riders of \"cruiser\" \\n>|>bikes (hi Don, Eddie!), yet I ride anything but.\\n>|\\n>|Continuously, on this forum, and on the street, you find quite a difference\\n>|between the opinions of what motorcycling is to different individuals.\\n>\\n>Yes, yes, yes. Motorcycling is slightly different to each and every one of us. This\\n>is the nature of people, and one of the beauties of the sport. \\n>\\n>|Cruiser-bike riders have a different view of motorcycling than those of sport bike riders\\n>|(what they like and dislike about motorcycling). This is not closed-minded. \\n>\\n>And what view exactly is it that every single rider of cruiser bikes holds, a veiw\\n>that, of course, no sport-bike rider could possibly hold? Please quantify your\\n>generalization for us. Careful, now, you\\'re trying to pigeonhole a WHOLE bunch\\n>of people.\\n>\\nThat plastic bodywork is useless. That torque, and an upright riding position is\\nbetter than a slightly or radically forward riding position combined with a high-rpm\\nlow torque motor.\\n\\nTo a cruiser-motorcyclist, chrome has some importance. To sport-bike motorcyclists\\nchrome has very little impact on buying choice.\\n\\nUnless motivated solely by price, these are the criteria each rider uses to select\\nthe vehicle of choice. \\n\\nTo ignore these, as well as other criteria, would be insensitive. In other words,\\nno one motorcycle can fufill the requirements that a sport-bike rider and a cruiser\\nrider may have.(sometimes it\\'s hard for *any* motorcycle to fufill a person\\'s requirements)\\n \\nYou\\'re fishing for flames, Dave.\\n\\nThis difference of opinion is analogous to the difference\\nbetween Sports-car owners, and luxury-car owners. \\n\\nThis is a moot conversation.\\n\\n\\n-- \\n=> Dan DeClerck | EMAIL: declrckd@rtsg.mot.com <=\\n=> Motorola Cellular APD | <=\\n=>\"Friends don\\'t let friends wear neon\"| Phone: (708) 632-4596 <=\\n----------------------------------------------------------------------------\\n',\n", + " 'From: rj3s@Virginia.EDU (\"Get thee to a nunnery.....\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 32\\n\\neshneken@ux4.cso.uiuc.edu writes:\\n> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n> \\n> >I think the Israeli press might be a tad bit biased in\\n> >reporting the events. I doubt the Propaganda machine of Goering\\n> >reported accurately on what was happening in Germany. It is\\n> >interesting that you are basing the truth on Israeli propaganda.\\n> \\n> If you consider Israeli reporting of events in Israel to be propoganda, then \\n> consider the Washington Post\\'s handling of American events to be propoganda\\n> too. What makes the Israeli press inherently biased in your opinion? I\\n> wouldn\\'t compare it to Nazi propoganda either. Unless you want to provide\\n> some evidence of Israeli inaccuracies or parallels to Nazism, I suggest you \\n> keep your mouth shut. I\\'m sick and tired of all you anti-semites comparing\\n> Israel to the Nazis (and yes, in my opinion, if you compare Israel to the Nazis\\n> you are an anti-semite because you know damn well it isn\\'t true and you are\\n> just trying to discredit Israel).\\n> \\n> Ed.\\n> \\nYou know ed,... You\\'re right! Andi shouldn\\'t be comparing\\nIsrael to the Nazis. The Israelis are much worse than the\\nNazis ever were anyway. The Nazis did a lot of good for\\nGermany, and they would have succeeded if it weren\\'t for the\\ndamn Jews. The Holocaust never happened anyway. Ample\\nevidence given by George Schafer at Harvard, Dept. of History,\\nand even by Randolph Higgins at NYU, have shown that the\\nHolocaust was just a semitic conspiracy created to obtain\\nsympathy to piush for the creation of Israel.\\n\\n\\n\\t\\t\\t\\t\\t\\n',\n", + " 'From: aa429@freenet.carleton.ca (Terry Ford)\\nSubject: A flawed propulsion system: Space Shuttle\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 13\\n\\n\\n\\nFor an essay, I am writing about the space shuttle and a need for a better\\npropulsion system. Through research, I have found that it is rather clumsy \\n(i.e. all the checks/tests before launch), the safety hazards (\"sitting\\non a hydrogen bomb\"), etc.. If you have any beefs about the current\\nspace shuttle program Re: propulsion, please send me your ideas.\\n\\nThanks a lot.\\n\\n--\\nTerry Ford [aa429@freenet.carleton.ca]\\nNepean, Ontario, Canada.\\n',\n", + " 'From: IMAGING.CLUB@OFFICE.WANG.COM (\"Imaging Club\")\\nSubject: Re: WANTED: Info on Image Databases\\nOrganization: Mail to News Gateway at Wang Labs\\nLines: 14\\n\\nPadmini Srivathsa in Wisconsin writes:\\n\\n>I would like references to any introductory material on image\\n>databases.\\n\\nI\\'d be happy to US (international) Snail mail technical information on\\nimaging databases to anyone who needs it, if you can provide me with your\\naddress for hard copy (not Email). We\\'re focusing mostly on Open PACE,\\nOracle, Ingres, Adabas, Sybase, and Gupta, regarding our imaging\\ndatabases installed. (We have over 1,000 installed and in production now;\\nmost of the new ones going in are on Novell LANs, the RS/6000, and now HP\\nUnix workstations.) We work with Visual Basic too.\\n\\nMichael.Willett@OFFICE.Wang.com\\n',\n", + " 'From: inu530n@lindblat.cc.monash.edu.au (I Rachmat)\\nSubject: Fractal compression\\nSummary: looking for good reference\\nKeywords: fractal\\nOrganization: Monash University, Melb., Australia.\\nLines: 6\\n\\nHi... can anybody give me book or reference title to give me a start at \\nfractal image compression technique. Helps will be appreciated... thanx\\n\\ninu530n@lindblat.cc.monash.edu.au\\ninu530n@aurora.cc.monash.edu.au\\n\\n',\n", + " 'From: isaackuo@skippy.berkeley.edu (Isaac Kuo)\\nSubject: Re: Abyss--breathing fluids\\nOrganization: U.C. Berkeley Math. Department.\\nLines: 19\\nNNTP-Posting-Host: skippy.berkeley.edu\\n\\nAre breathable liquids possible?\\n\\nI remember seeing an old Nova or The Nature of Things where this idea was\\ntouched upon (it might have been some other TV show). If nothing else, I know\\nsuch liquids ARE possible because...\\n\\nThey showed a large glass full of this liquid, and put a white mouse (rat?) in\\nit. Since the liquid was not dense, the mouse would float, so it was held down\\nby tongs clutching its tail. The thing struggled quite a bit, but it was\\ncertainly held down long enough so that it was breathing the liquid. It never\\ndid slow down in its frantic attempts to swim to the top.\\n\\nNow, this may not have been the most humane of demonstrations, but it certainly\\nshows breathable liquids can be made.\\n-- \\n*Isaac Kuo (isaackuo@math.berkeley.edu)\\t* ___\\n*\\t\\t\\t\\t\\t* _____/_o_\\\\_____\\n*\\tTwinkle, twinkle, little .sig,\\t*(==(/_______\\\\)==)\\n*\\tKeep it less than 5 lines big.\\t* \\\\==\\\\/ \\\\/==/\\n',\n", + " 'From: dkennett@fraser.sfu.ca (Daniel Kennett)\\nSubject: [POV] Having trouble bump mapping a gif to a sphere\\nSummary: Having trouble bump mapping a gif to a spher in POVray\\nKeywords: bump map\\nOrganization: Simon Fraser University, Burnaby, B.C., Canada\\nLines: 44\\n\\n\\nHello,\\n I\\'ve been trying to bump map a gif onto a sphere for a while and I\\ncan\\'t seem to get it to work. Image mapping works, but not bump\\nmapping. Here\\'s a simple file I was working with, could some kind\\nsoul tell me whats wrong with this.....\\n\\n#include \"colors.inc\"\\n#include \"shapes.inc\"\\n#include \"textures.inc\"\\n \\ncamera {\\n location <0 1 -3>\\n direction <0 0 1.5>\\n up <0 1 0>\\n right <1.33 0 0>\\n look_at <0 1 2>\\n}\\n \\nobject { light_source { <2 4 -3> color White }\\n }\\n \\nobject {\\n sphere { <0 1 2> 1 }\\n texture {\\n bump_map { 1 <0 1 2> gif \"surf.gif\"}\\n }\\n}\\n\\nNOTE: surf.gif is a plasma fractal from Fractint that is using the\\nlandscape palette map.\\n\\n \\n\\tThanks in advance\\n\\t -Daniel-\\n\\n*======================================================================* \\n| Daniel Kennett\\t \\t\\t |\\n| dkennett@sfu.ca \\t\\t \\t\\t\\t |\\n| \"Our minds are finite, and yet even in those circumstances of |\\n| finitude, we are surrounded by possibilities that are infinite, and |\\n| the purpose of human life is to grasp as much as we can out of that |\\n| infinitude.\" - Alfred North Whitehead | \\n*======================================================================*\\n',\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: The Department of Redundancy Department\\nLines: 39\\n\\nIn article bh437292@lance.colostate.edu writes:\\n\\n>Most of the \\n>people in my village are regular inhabitants that go about their daily\\n>business, some work in the fields, some own small shops, others are\\n>older men that go to the coffe shop and drink coffee. Is that so hard to\\n>imagine ????\\n\\n...quickly followed by...\\n\\n>SOME young men, usually aged between 17 to 30 years are members of\\n>the Lebanese resistance. Even the inhabitants of the village do not \\n>know who these are, they are secretive about it, but most people often\\n>suspect who they are and what they are up to. \\n\\nThis is the standard method for claiming non-combatant status, even\\nfor the commanders of combat.\\n\\n>These young men are\\n>supported financially by Iran most of the time. They sneak arms and\\n>ammunitions into the occupied zone where they set up booby traps\\n>for Israeli patrols. Every time an Israeli soldier is killed or injured\\n>by these traps, Israel retalliates by indiscriminately bombing villages\\n>of their own choosing often killing only innocent civilians. \\n\\n\"Innocent civilians\"??? Like the ones who set up the booby traps or\\nengaged in shoot-outs with soldiers or attack them with grenades or\\naxes? \\n\\n>We are now accustomed to Israeli tactics, and we figure that this is \\n\\nAnd the rest of the world is getting used to Arab tactics of claiming\\ninnocence for even the most guilty of the vile murderers among them.\\nKeep it up long enough and it will backfire but good.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: ddeciacco@cix.compulink.co.uk (David Deciacco)\\nSubject: Re: Another CVIEW question (wa\\nReply-To: ddeciacco@cix.compulink.co.uk\\nLines: 5\\n\\n\\nIn-Reply-To: <20APR199312262902@rigel.tamu.edu> lmp8913@rigel.tamu.edu (PRESTON, LISA M)\\n\\nI have a trident card and fullview works real gif jpg try it#\\ndave\\n',\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Morality? (was Re: I don\\'t expect the lion to know, or not know anything of the kind.\\n>In fact, I don\\'t have any evidence that lions ever consider such \\n>issues.\\n>And that, of course, is why I don\\'t think you can assign moral\\n>significance to the instinctive behaviour of lions.\\n\\nWhat I\\'ve been saying is that moral behavior is likely the null behavior.\\nThat is, it doesn\\'t take much work to be moral, but it certainly does to\\nbe immoral (in some cases). Also, I\\'ve said that morality is a remnant\\nof evolution. Our moral system is based on concepts well practiced in\\nthe animal kingdom.\\n\\n>>So you are basically saying that you think a \"moral\" is an undefinable\\n>>term, and that \"moral systems\" don\\'t exist? If we can\\'t agree on a\\n>>definition of these terms, then how can we hope to discuss them?\\n>No, it\\'s perfectly clear that I am saying that I know what a moral\\n>is in *my* system, but that I can\\'t speak for other people.\\n\\nBut, this doesn\\'t get us anywhere. Your particular beliefs are irrelevant\\nunless you can share them or discuss them...\\n\\nkeith\\n',\n", + " 'From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: SSAUYET@eagle.wesleyan.edu (SCOTT D. SAUYET) writes:\\n>In <1qabe7INNaff@gap.caltech.edu> keith@cco.caltech.edu writes:\\n>\\n>>> Chimpanzees fight wars over land.\\n>> \\n>> But chimps are almost human...\\n>> \\n>> keith\\n>\\n>Could it be? This is the last message from Mr. Schneider, and it\\'s\\n>more than three days old!\\n>\\n>Are these his final words? (And how many here would find that\\n>appropriate?) Or is it just that finals got in the way?\\n>\\n\\n No. The christians were leary of having an atheist spokesman\\n (seems so clandestine, and all that), so they had him removed. Of\\n course, Keith is busy explaining to his fellow captives how he\\n isn\\'t really being persecuted, since (after all) they *are*\\n feeding him, and any resistance on his part would only be viewed\\n as trouble making. \\n\\n I understand he did make a bit of a fuss when they tatooed \"In God\\n We Trust\" on his forehead, though.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n',\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Orbital RepairStation\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 20\\n\\nIn article henry@zoo.toronto.edu (Henry Spencer) writes:\\n\\n>The biggest problem with this is that all orbits are not alike. It can\\n>actually be more expensive to reach a satellite from another orbit than\\n>from the ground. \\n\\nBut with cheaper fuel from space based sources it will be cheaper to \\nreach more orbits than from the ground.\\n\\nAlso remember, that the presence of a repair/supply facility adds value\\nto the space around it. If you can put your satellite in an orbit where it\\ncan be reached by a ready source of supply you can make it cheaper and gain\\nbenefit from economies of scale.\\n\\n Allen\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------58 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " \"From: joth@ersys.edmonton.ab.ca (Joe Tham)\\nSubject: Where can I find SIPP?\\nOrganization: Edmonton Remote Systems #2, Edmonton, AB, Canada\\nLines: 11\\n\\n I recently got a file describing a library of rendering routines \\ncalled SIPP (SImple Polygon Processor). Could anyone tell me where I can \\nFTP the source code and which is the newest version around?\\n Also, I've never used Renderman so I was wondering if Renderman \\nis like SIPP? ie. a library of rendering routines which one uses to make \\na program that creates the image...\\n\\n Thanks, Joe Tham\\n\\n--\\nJoe Tham joth@ersys.edmonton.ab.ca \\n\",\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Russian Email Contacts.\\nLines: 15\\nNntp-Posting-Host: acad3.alaska.edu\\nOrganization: University of Alaska Fairbanks\\n\\nDoes anyone have any Russian Contacts (Space or other) or contacts in the old\\nUSSR/SU or Eastern Europe?\\n\\nPost them here so we all can talk to them and ask questions..\\nI think the cost of email is high, so we would have to keep the content to\\nspecific topics and such..\\n\\nBasically if we want to save Russia and such, then we need to make contacts,\\ncontacts are a form of info, so lets get informing.\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\\nAlive in Nome, Alaska (once called Russian America).\\n\\n\",\n", + " 'From: warren@nysernet.org (Warren Burstein)\\nSubject: Re: To be exact, 2.5 million Muslims were exterminated by the Armenians.\\nOrganization: NYSERNet, Inc.\\nLines: 34\\n\\nac = In <9304202017@zuma.UUCP> sera@zuma.UUCP (Serdar Argic)\\npl = linden@positive.Eng.Sun.COM (Peter van der Linden)\\n\\npl: 1. So, did the Turks kill the Armenians?\\n\\nac: So, did the Jews kill the Germans? \\nac: You even make Armenians laugh.\\n\\nac: \"An appropriate analogy with the Jewish Holocaust might be the\\nac: systematic extermination of the entire Muslim population of \\nac: the independent republic of Armenia which consisted of at \\nac: least 30-40 percent of the population of that republic. The \\nac: memoirs of an Armenian army officer who participated in and \\nac: eye-witnessed these atrocities was published in the U.S. in\\nac: 1926 with the title \\'Men Are Like That.\\' Other references abound.\"\\n\\nTypical Mutlu. PvdL asks if X happened, the response is that Y\\nhappened. Even if we grant that the Armenians *did* do what Cosar\\naccuses them of doing, this has no bearing on whether the Turks did\\nwhat they are accused of.\\n\\nWhile I can understand how an AI could be this stupid, I\\ncan\\'t understand how a human could be such a moron as to either let\\nsuch an AI run amok or to compose such pointless messages himself.\\n\\nI do not expect any followup to this article from Argic to do anything\\nto alleviate my puzzlement. But maybe I\\'ll see a new line from his\\nlist of insults.\\n\\n-- \\n/|/-\\\\/-\\\\ This article is supplied without longbox\\n |__/__/_/ and uses recycled 100% words, characters and ideas.\\n |warren@ \\n/ nysernet.org \\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 11/15 - Upcoming Planetary Probes\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 243\\nDistribution: world\\nExpires: 6 May 1993 20:00:01 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/new_probes\\nLast-modified: $Date: 93/04/01 14:39:17 $\\n\\nUPCOMING PLANETARY PROBES - MISSIONS AND SCHEDULES\\n\\n Information on upcoming or currently active missions not mentioned below\\n would be welcome. Sources: NASA fact sheets, Cassini Mission Design\\n team, ISAS/NASDA launch schedules, press kits.\\n\\n\\n ASUKA (ASTRO-D) - ISAS (Japan) X-ray astronomy satellite, launched into\\n Earth orbit on 2/20/93. Equipped with large-area wide-wavelength (1-20\\n Angstrom) X-ray telescope, X-ray CCD cameras, and imaging gas\\n scintillation proportional counters.\\n\\n\\n CASSINI - Saturn orbiter and Titan atmosphere probe. Cassini is a joint\\n NASA/ESA project designed to accomplish an exploration of the Saturnian\\n system with its Cassini Saturn Orbiter and Huygens Titan Probe. Cassini\\n is scheduled for launch aboard a Titan IV/Centaur in October of 1997.\\n After gravity assists of Venus, Earth and Jupiter in a VVEJGA\\n trajectory, the spacecraft will arrive at Saturn in June of 2004. Upon\\n arrival, the Cassini spacecraft performs several maneuvers to achieve an\\n orbit around Saturn. Near the end of this initial orbit, the Huygens\\n Probe separates from the Orbiter and descends through the atmosphere of\\n Titan. The Orbiter relays the Probe data to Earth for about 3 hours\\n while the Probe enters and traverses the cloudy atmosphere to the\\n surface. After the completion of the Probe mission, the Orbiter\\n continues touring the Saturnian system for three and a half years. Titan\\n synchronous orbit trajectories will allow about 35 flybys of Titan and\\n targeted flybys of Iapetus, Dione and Enceladus. The objectives of the\\n mission are threefold: conduct detailed studies of Saturn\\'s atmosphere,\\n rings and magnetosphere; conduct close-up studies of Saturn\\'s\\n satellites, and characterize Titan\\'s atmosphere and surface.\\n\\n One of the most intriguing aspects of Titan is the possibility that its\\n surface may be covered in part with lakes of liquid hydrocarbons that\\n result from photochemical processes in its upper atmosphere. These\\n hydrocarbons condense to form a global smog layer and eventually rain\\n down onto the surface. The Cassini orbiter will use onboard radar to\\n peer through Titan\\'s clouds and determine if there is liquid on the\\n surface. Experiments aboard both the orbiter and the entry probe will\\n investigate the chemical processes that produce this unique atmosphere.\\n\\n The Cassini mission is named for Jean Dominique Cassini (1625-1712), the\\n first director of the Paris Observatory, who discovered several of\\n Saturn\\'s satellites and the major division in its rings. The Titan\\n atmospheric entry probe is named for the Dutch physicist Christiaan\\n Huygens (1629-1695), who discovered Titan and first described the true\\n nature of Saturn\\'s rings.\\n\\n\\t Key Scheduled Dates for the Cassini Mission (VVEJGA Trajectory)\\n\\t -------------------------------------------------------------\\n\\t 10/06/97 - Titan IV/Centaur Launch\\n\\t 04/21/98 - Venus 1 Gravity Assist\\n\\t 06/20/99 - Venus 2 Gravity Assist\\n\\t 08/16/99 - Earth Gravity Assist\\n\\t 12/30/00 - Jupiter Gravity Assist\\n\\t 06/25/04 - Saturn Arrival\\n\\t 01/09/05 - Titan Probe Release\\n\\t 01/30/05 - Titan Probe Entry\\n\\t 06/25/08 - End of Primary Mission\\n\\t (Schedule last updated 7/22/92)\\n\\n\\n GALILEO - Jupiter orbiter and atmosphere probe, in transit. Has returned\\n the first resolved images of an asteroid, Gaspra, while in transit to\\n Jupiter. Efforts to unfurl the stuck High-Gain Antenna (HGA) have\\n essentially been abandoned. JPL has developed a backup plan using data\\n compression (JPEG-like for images, lossless compression for data from\\n the other instruments) which should allow the mission to achieve\\n approximately 70% of its original objectives.\\n\\n\\t Galileo Schedule\\n\\t ----------------\\n\\t 10/18/89 - Launch from Space Shuttle\\n\\t 02/09/90 - Venus Flyby\\n\\t 10/**/90 - Venus Data Playback\\n\\t 12/08/90 - 1st Earth Flyby\\n\\t 05/01/91 - High Gain Antenna Unfurled\\n\\t 07/91 - 06/92 - 1st Asteroid Belt Passage\\n\\t 10/29/91 - Asteroid Gaspra Flyby\\n\\t 12/08/92 - 2nd Earth Flyby\\n\\t 05/93 - 11/93 - 2nd Asteroid Belt Passage\\n\\t 08/28/93 - Asteroid Ida Flyby\\n\\t 07/02/95 - Probe Separation\\n\\t 07/09/95 - Orbiter Deflection Maneuver\\n\\t 12/95 - 10/97 - Orbital Tour of Jovian Moons\\n\\t 12/07/95 - Jupiter/Io Encounter\\n\\t 07/18/96 - Ganymede\\n\\t 09/28/96 - Ganymede\\n\\t 12/12/96 - Callisto\\n\\t 01/23/97 - Europa\\n\\t 02/28/97 - Ganymede\\n\\t 04/22/97 - Europa\\n\\t 05/31/97 - Europa\\n\\t 10/05/97 - Jupiter Magnetotail Exploration\\n\\n\\n HITEN - Japanese (ISAS) lunar probe launched 1/24/90. Has made\\n multiple lunar flybys. Released Hagoromo, a smaller satellite,\\n into lunar orbit. This mission made Japan the third nation to\\n orbit a satellite around the Moon.\\n\\n\\n MAGELLAN - Venus radar mapping mission. Has mapped almost the entire\\n surface at high resolution. Currently (4/93) collecting a global gravity\\n map.\\n\\n\\n MARS OBSERVER - Mars orbiter including 1.5 m/pixel resolution camera.\\n Launched 9/25/92 on a Titan III/TOS booster. MO is currently (4/93) in\\n transit to Mars, arriving on 8/24/93. Operations will start 11/93 for\\n one martian year (687 days).\\n\\n\\n TOPEX/Poseidon - Joint US/French Earth observing satellite, launched\\n 8/10/92 on an Ariane 4 booster. The primary objective of the\\n TOPEX/POSEIDON project is to make precise and accurate global\\n observations of the sea level for several years, substantially\\n increasing understanding of global ocean dynamics. The satellite also\\n will increase understanding of how heat is transported in the ocean.\\n\\n\\n ULYSSES- European Space Agency probe to study the Sun from an orbit over\\n its poles. Launched in late 1990, it carries particles-and-fields\\n experiments (such as magnetometer, ion and electron collectors for\\n various energy ranges, plasma wave radio receivers, etc.) but no camera.\\n\\n Since no human-built rocket is hefty enough to send Ulysses far out of\\n the ecliptic plane, it went to Jupiter instead, and stole energy from\\n that planet by sliding over Jupiter\\'s north pole in a gravity-assist\\n manuver in February 1992. This bent its path into a solar orbit tilted\\n about 85 degrees to the ecliptic. It will pass over the Sun\\'s south pole\\n in the summer of 1993. Its aphelion is 5.2 AU, and, surprisingly, its\\n perihelion is about 1.5 AU-- that\\'s right, a solar-studies spacecraft\\n that\\'s always further from the Sun than the Earth is!\\n\\n While in Jupiter\\'s neigborhood, Ulysses studied the magnetic and\\n radiation environment. For a short summary of these results, see\\n *Science*, V. 257, p. 1487-1489 (11 September 1992). For gory technical\\n detail, see the many articles in the same issue.\\n\\n\\n OTHER SPACE SCIENCE MISSIONS (note: this is based on a posting by Ron\\n Baalke in 11/89, with ISAS/NASDA information contributed by Yoshiro\\n Yamada (yamada@yscvax.ysc.go.jp). I\\'m attempting to track changes based\\n on updated shuttle manifests; corrections and updates are welcome.\\n\\n 1993 Missions\\n\\to ALEXIS [spring, Pegasus]\\n\\t ALEXIS (Array of Low-Energy X-ray Imaging Sensors) is to perform\\n\\t a wide-field sky survey in the \"soft\" (low-energy) X-ray\\n\\t spectrum. It will scan the entire sky every six months to search\\n\\t for variations in soft-X-ray emission from sources such as white\\n\\t dwarfs, cataclysmic variable stars and flare stars. It will also\\n\\t search nearby space for such exotic objects as isolated neutron\\n\\t stars and gamma-ray bursters. ALEXIS is a project of Los Alamos\\n\\t National Laboratory and is primarily a technology development\\n\\t mission that uses astrophysical sources to demonstrate the\\n\\t technology. Contact project investigator Jeffrey J Bloch\\n\\t (jjb@beta.lanl.gov) for more information.\\n\\n\\to Wind [Aug, Delta II rocket]\\n\\t Satellite to measure solar wind input to magnetosphere.\\n\\n\\to Space Radar Lab [Sep, STS-60 SRL-01]\\n\\t Gather radar images of Earth\\'s surface.\\n\\n\\to Total Ozone Mapping Spectrometer [Dec, Pegasus rocket]\\n\\t Study of Stratospheric ozone.\\n\\n\\to SFU (Space Flyer Unit) [ISAS]\\n\\t Conducting space experiments and observations and this can be\\n\\t recovered after it conducts the various scientific and\\n\\t engineering experiments. SFU is to be launched by ISAS and\\n\\t retrieved by the U.S. Space Shuttle on STS-68 in 1994.\\n\\n 1994\\n\\to Polar Auroral Plasma Physics [May, Delta II rocket]\\n\\t June, measure solar wind and ions and gases surrounding the\\n\\t Earth.\\n\\n\\to IML-2 (STS) [NASDA, Jul 1994 IML-02]\\n\\t International Microgravity Laboratory.\\n\\n\\to ADEOS [NASDA]\\n\\t Advanced Earth Observing Satellite.\\n\\n\\to MUSES-B (Mu Space Engineering Satellite-B) [ISAS]\\n\\t Conducting research on the precise mechanism of space structure\\n\\t and in-space astronomical observations of electromagnetic waves.\\n\\n 1995\\n\\tLUNAR-A [ISAS]\\n\\t Elucidating the crust structure and thermal construction of the\\n\\t moon\\'s interior.\\n\\n\\n Proposed Missions:\\n\\to Advanced X-ray Astronomy Facility (AXAF)\\n\\t Possible launch from shuttle in 1995, AXAF is a space\\n\\t observatory with a high resolution telescope. It would orbit for\\n\\t 15 years and study the mysteries and fate of the universe.\\n\\n\\to Earth Observing System (EOS)\\n\\t Possible launch in 1997, 1 of 6 US orbiting space platforms to\\n\\t provide long-term data (15 years) of Earth systems science\\n\\t including planetary evolution.\\n\\n\\to Mercury Observer\\n\\t Possible 1997 launch.\\n\\n\\to Lunar Observer\\n\\t Possible 1997 launch, would be sent into a long-term lunar\\n\\t orbit. The Observer, from 60 miles above the moon\\'s poles, would\\n\\t survey characteristics to provide a global context for the\\n\\t results from the Apollo program.\\n\\n\\to Space Infrared Telescope Facility\\n\\t Possible launch by shuttle in 1999, this is the 4th element of\\n\\t the Great Observatories program. A free-flying observatory with\\n\\t a lifetime of 5 to 10 years, it would observe new comets and\\n\\t other primitive bodies in the outer solar system, study cosmic\\n\\t birth formation of galaxies, stars and planets and distant\\n\\t infrared-emitting galaxies\\n\\n\\to Mars Rover Sample Return (MRSR)\\n\\t Robotics rover would return samples of Mars\\' atmosphere and\\n\\t surface to Earch for analysis. Possible launch dates: 1996 for\\n\\t imaging orbiter, 2001 for rover.\\n\\n\\to Fire and Ice\\n\\t Possible launch in 2001, will use a gravity assist flyby of\\n\\t Earth in 2003, and use a final gravity assist from Jupiter in\\n\\t 2005, where the probe will split into its Fire and Ice\\n\\t components: The Fire probe will journey into the Sun, taking\\n\\t measurements of our star\\'s upper atmosphere until it is\\n\\t vaporized by the intense heat. The Ice probe will head out\\n\\t towards Pluto, reaching the tiny world for study by 2016.\\n\\n\\nNEXT: FAQ #12/15 - Controversial questions\\n',\n", + " 'From: bprofane@netcom.com (Gert Niewahr)\\nSubject: Re: Rumours about 3DO ???\\nArticle-I.D.: netcom.bprofaneC51wHz.HIo\\nOrganization: Netcom Online Communications Services (408-241-9760 login: guest)\\nLines: 39\\n\\nIn article lex@optimla.aimla.com (Lex van Sonderen) writes:\\n>In article erik@westworld.esd.sgi.com (Erik Fortune) writes:\\n>>> better than CDI\\n>>*Much* better than CDI.\\n>Of course, I do not agree. It does have more horsepower. Horsepower is not\\n>the only measurement for \\'better\\'. It does not have full motion, full screen\\n>video yet. Does it have CD-ROM XA?\\n>\\n>>> starting in the 4 quarter of 1993\\n>>The first 3DO \"multiplayer\" will be manufactured by panasonic and will be \\n>>available late this year. A number of other manufacturers are reported to \\n>>have 3DO compatible boxes in the works.\\n>Which other manufacturers?\\n>We shall see about the date.\\n\\nA 3DO marketing rep. recently offered a Phillips marketing rep. a $100\\nbet that 3DO would have boxes on the market on schedule. The Phillips\\nrep. declined the bet, probably because he knew that 3DO players are\\nalready in pre-production manufacturing runs, 6 months before the\\ncommercial release date.\\n\\nBy the time of commercial release, there will be other manufacturers of\\n3DO players announced and possibly already tooling up production. Chip\\nsets will be in full production. The number of software companies\\ndesigning titles for the box will be over 300.\\n\\nHow do I know this? I was at a bar down the road from 3DO headquarters\\nlast week. Some folks were bullshitting a little too loudly about\\ncompany business.\\n\\n>>All this information is third hand or so and worth what you paid for it:-).\\n>This is second hand, but it still hard to look to the future ;-).\\n>\\n>Lex van Sonderen\\n>lex@aimla.com\\n>Philips Interactive Media\\n ^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n What an impartial source!\\n',\n", + " 'From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 33\\n\\nIn article cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n>In <11825@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>\\n>\\n>> Actually, my atheism is based on ignorance. Ignorance of the\\n>> existence of any god. Don\\'t fall into the \"atheists don\\'t believe\\n>> because of their pride\" mistake.\\n>\\n>How do you know it\\'s based on ignorance, couldn\\'t that be wrong? Why would it\\n>be wrong \\n>to fall into the trap that you mentioned? \\n>\\n\\n If I\\'m wrong, god is free at any time to correct my mistake. That\\n he continues not to do so, while supposedly proclaiming his\\n undying love for my eternal soul, speaks volumes.\\n\\n As for the trap, you are not in a position to tell me that I don\\'t\\n believe in god because I do not wish to. Unless you can know my\\n motivations better than I do myself, you should believe me when I\\n say that I earnestly searched for god for years and never found\\n him.\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n',\n", + " 'From: ba7116326@ntuvax.ntu.ac.sg\\nSubject: V-max handling request\\nLines: 5\\nNntp-Posting-Host: v9001.ntu.ac.sg\\nOrganization: Nanyang Technological University - Singapore\\n\\nhello there\\nican anyone who has handson experience on riding the Yamaha v-max, pls kindly\\ncomment on its handling .\\n\\n\\n',\n", + " 'From: lioness@maple.circa.ufl.edu\\nSubject: Re: comp.graphics.programmer\\nOrganization: Center for Instructional and Research Computing Activities\\nLines: 68\\nReply-To: LIONESS@ufcc.ufl.edu\\nNNTP-Posting-Host: maple.circa.ufl.edu\\n\\nIn article , andreasa@dhhalden.no (ANDREAS ARFF) writes:\\n|>Hello netters\\n|>\\n|>Sorry, I don\\'t know if this is the right way of doing this kind of thing,\\n|>probably should be a CFV, but since I don\\'t have tha ability to create a \\n|>news group myself, I just want to start the discussion. \\n|>\\n|>I enjoy reading c.g very much, but I often find it difficult to sort out what\\n|>I\\'m interested in. Everything from screen-drivers, graphics cards, graphics\\n|>programming and graphics programs are discused here. What I\\'d like is a \\n|>comp.graphics.programmer news group.\\n|>What do you other think.\\n\\nThis sounds wonderful, but it seems no one either wants to spend time doing\\nthis, or they don\\'t have the power to do so. For example, I would like\\nto see a comp.graphics architecture like this:\\n\\ncomp.graphics.algorithms.2d\\ncomp.graphics.algorithms.3d\\ncomp.graphics.algorithms.misc\\ncomp.graphics.hardware\\ncomp.graphics.misc\\ncomp.graphics.software/apps\\n\\nHowever, that is almost overkill. Something more like this would probably\\nmake EVERYONE a lot happier:\\n\\ncomp.graphics.programmer\\ncomp.graphics.hardware\\ncomp.graphics.apps\\ncomp.graphics.misc\\n\\nIt would be nice to see specialized groups devote to 2d, 3d, morphing,\\nraytracing, image processing, interactive graphics, toolkits, languages,\\nobject systems, etc. but these could be posted to a relevant group or\\nhave a mailing list organized.\\n\\nThat way when someone reads news they don\\'t have to see these subject\\nheadings, which are rather disparate:\\n\\nSystem specific stuff ( should be under comp.sys or comp.os.???.programmer ):\\n\\n\\t\"Need help programming GL\"\\n\\t\"ModeX programming information?\"\\n\\t\"Fast sprites on PC\"\\n\\nHardware technical stuff:\\n\\n\\t\"Speed of Weitek P9000\"\\n\\t\"Drivers for SpeedStar 24X\"\\n\\nApplications oriented stuff:\\n\\n\\t\"VistaPro 3.0 help\"\\n\\t\"How good is 3dStudio?\"\\n\\t\"Best image processing program for Amiga\"\\n\\nProgramming oriented stuff:\\n\\n\\t\"Fast polygon routine needed\"\\n\\t\"Good morphing alogirhtm wanted\"\\n\\t\"Best depth sort for triangles?\"\\n\\t\"Which C++ library to get?\"\\n\\nI wish someone with the power would get a CFD and then a CFV going on\\nthis stuff....this newsgroup needs it.\\n\\nBrian\\n',\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: 30826\\nArticle-I.D.: aurora.1993Apr25.151108.1\\nOrganization: University of Alaska Fairbanks\\nLines: 14\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nI like option C of the new space station design.. \\nIt needs some work, but it is simple and elegant..\\n\\nIts about time someone got into simple construction versus overly complex...\\n\\nBasically just strap some rockets and a nose cone on the habitat and go for\\nit..\\n\\nMight be an idea for a Moon/Mars base to.. \\n\\nWhere is Captain Eugenia(sp) when you need it (reference to russian heavy\\nlifter, I think).\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", + " 'From: ramarren@apple.com (Godfrey DiGiorgi)\\nSubject: Re: uh, der, whassa deltabox?\\nOrganization: Apple Computer\\nLines: 15\\n\\n>Can someone tell me what a deltabox frame is, and what relation that has,\\n>if any, to the frame on my Hawk GT? That way, next time some guy comes up\\n>to me in some parking lot and sez \"hey, dude, nice bike, is that a deltabox\\n>frame on there?\" I can say something besides \"duh, er, huh?\"\\n\\nThe Yammie Deltabox and the Hawk frame are conceptually similar\\nbut Yammie has a TM on the name. The Hawk is a purer \\'twin spar\\' \\nframe design: investment castings at steering head and swing arm\\ntied together with aluminum extruded beams. The Yammie solution is\\na bit more complex.\\n------------------------------------------------------------------\\nGodfrey DiGiorgi - ramarren@apple.com | DoD #0493 AMA#489408\\n Rule #1: Never sell a Ducati. | \"The street finds its own\\n Rule #2: Always obey Rule #1. | uses for things.\" -WG\\n------ Ducati Cinelli Toyota Krups Nikon Sony Apple Telebit ------\\n',\n", + " 'Subject: Re: A visit from the Jehovah\\'s Witnesses\\nFrom: lippard@skyblu.ccit.arizona.edu (James J. Lippard)\\nDistribution: world,local\\nOrganization: University of Arizona\\nNntp-Posting-Host: skyblu.ccit.arizona.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\nLines: 27\\n\\nIn article , chrisb@tafe.sa.edu.au (Chris BELL) writes...\\n>jbrown@batman.bmd.trw.com writes:\\n> \\n>>My syllogism is of the form:\\n>>A is B.\\n>>C is A.\\n>>Therefore C is B.\\n> \\n>>This is a logically valid construction.\\n> \\n>>Your syllogism, however, is of the form:\\n>>A is B.\\n>>C is B.\\n>>Therefore C is A.\\n> \\n>>Therefore yours is a logically invalid construction, \\n>>and your comments don\\'t apply.\\n\\nIf all of those are \"is\"\\'s of identity, both syllogisms are valid.\\nIf, however, B is a predicate, then the second syllogism is invalid.\\n(The first syllogism, as you have pointed out, is valid--whether B\\nis a predicate or designates an individual.)\\n\\nJim Lippard Lippard@CCIT.ARIZONA.EDU\\nDept. of Philosophy Lippard@ARIZVMS.BITNET\\nUniversity of Arizona\\nTucson, AZ 85721\\n',\n", + " 'From: hahm@fossi.hab-weimar.de (peter hahm)\\nSubject: Radiosity\\nKeywords: radiosity, raytracing, rendering\\nNntp-Posting-Host: fossi.hab-weimar.de\\nOrganization: Hochschule fuer Architektur und Bauwesen Weimar, Germany\\nLines: 17\\n\\n\\n\\nRADIOSITY SOURCES WANTED !!!\\n============================\\n\\nWhen I read the comp.graphics group, I never found something about \\nradiosity. Is there anybody interested in out there? I would be glad \\nto hear from somebody.\\nI am looking for source-code for the radiosity-method. I have already\\nread common literature, e. g.Foley ... . I think little examples could \\nhelp me to understand how radiosity works. Common languages ( C, C++, \\nPascal) prefered.\\nI hope you will help me!\\n\\nYours\\nPeter \\n\\n',\n", + " 'From: hilmi-er@dsv.su.se (Hilmi Eren)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik)\\nLines: 95\\nNntp-Posting-Host: viktoria.dsv.su.se\\nReply-To: hilmi-er@dsv.su.se (Hilmi Eren)\\nOrganization: Dept. of Computer and Systems Sciences, Stockholm University\\n\\n\\n\\n\\n|>The student of \"regional killings\" alias Davidian (not the Davidian religios sect) writes:\\n\\n\\n|>Greater Armenia would stretch from Karabakh, to the Black Sea, to the\\n|>Mediterranean, so if you use the term \"Greater Armenia\" use it with care.\\n\\n\\n\\tFinally you said what you dream about. Mediterranean???? That was new....\\n\\tThe area will be \"greater\" after some years, like your \"holocaust\" numbers......\\n\\n\\n\\n\\n|>It has always been up to the Azeris to end their announced winning of Karabakh \\n|>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to \\n|>power last year, he announced he would be be \"swimming in Lake Sevan [in \\n|>Armeniaxn] by July\".\\n\\t\\t*****\\n\\tIs\\'t July in USA now????? Here in Sweden it\\'s April and still cold.\\n\\tOr have you changed your calendar???\\n\\n\\n|>Well, he was wrong! If Elchibey is going to shell the \\n|>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey \\n\\t\\t\\t\\t\\t\\t ****************\\n|>is going to shell Karabakh from Fizuli his people will pay the price! If \\n\\t\\t\\t\\t\\t\\t ******************\\n|>Elchibey thinks he can get away with bombing Armenia from the hills of \\n|>Kelbajar, his people will pay the price. \\n\\t\\t\\t ***************\\n\\n\\n\\tNOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT\\'s TRUE.\\n\\t\\n\\tSHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH\\n\\t\\t\\t\\t\\t\\t **************\\n\\tBEING RAPED, KILLED AND TORTURED BY THE ARMENIANS??????????\\n\\t\\n\\tHAVE YOU HEARDED SOMETHING CALLED: \"GENEVA CONVENTION\"???????\\n\\tYOU FACIST!!!!!\\n\\n\\n\\n\\tOhhh i forgot, this is how Armenians fight, nobody has forgot\\n\\tyou killings, rapings and torture against the Kurds and Turks once\\n\\tupon a time!\\n \\n \\n\\n|>And anyway, this \"60 \\n|>Kurd refugee\" story, as have other stories, are simple fabrications sourced in \\n|>Baku, modified in Ankara. Other examples of this are Armenia has no border \\n|>with Iran, and the ridiculous story of the \"intercepting\" of Armenian military \\n|>conversations as appeared in the New York Times supposedly translated by \\n|>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed \\n|>\"special correspondent\" to the NY Times from Baku. Real accurate!\\n\\nOhhhh so swedish RedCross workers do lie they too? What ever you say\\n\"regional killer\", if you don\\'t like the person then shoot him that\\'s your policy.....l\\n\\n\\n|>[HE]\\tSearch Turkish planes? You don\\'t know what you are talking about.<-------\\n|>[HE]\\tsince it\\'s content is announced to be weapons? \\t\\t\\t\\ti\\t \\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n|>Well, big mouth Ozal said military weapons are being provided to Azerbaijan\\ti\\n|>from Turkey, yet Demirel and others say no. No wonder you are so confused!\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\tConfused?????\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\tYou facist when you delete text don\\'t change it, i wrote:\\t\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n Search Turkish planes? You don\\'t know what you are talking about.\\ti\\n Turkey\\'s government has announced that it\\'s giving weapons <-----------i\\n to Azerbadjan since Armenia started to attack Azerbadjan\\t\\t\\n it self, not the Karabag province. So why search a plane for weapons\\t\\n since it\\'s content is announced to be weapons? \\n\\n\\tIf there is one that\\'s confused then that\\'s you! We have the right (and we do)\\n\\tto give weapons to the Azeris, since Armenians started the fight in Azerbadjan!\\n \\n\\n|>You are correct, all Turkish planes should be simply shot down! Nice, slow\\n|>moving air transports!\\n\\n\\tShoot down with what? Armenian bread and butter? Or the arms and personel \\n\\tof the Russian army?\\n\\n\\n\\n\\nHilmi Eren\\nStockholm University\\n',\n", + " 'From: borst@cs.utwente.nl (Pim Borst)\\nSubject: PBM-PLUS sources, where?\\nNntp-Posting-Host: utis116.cs.utwente.nl\\nOrganization: University of Twente, Dept. of Computer Science\\nLines: 7\\n\\nHi everybody,\\n\\nCan anyone name an anonymous ftp-site where I can find the sources\\nof the PBM-PLUS package (portable bit/gray/pixel map).\\nI would like to compile and run it on a Sun Sparcstation.\\n\\nThanks!\\n',\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: About this \\'Center for Policy Resea\\nOrganization: The Department of Redundancy Department\\nLines: 85\\n\\nIn article <1483500350@igc.apc.org> Center for Policy Research writes:\\n\\n>It seems to me that many readers of this conference are interested\\n>who is behind the Center for Polict Research. I will oblige.\\n\\nTrumpets, please.\\n\\n>My name is Elias Davidsson, Icelandic citizen, born in Palestine. My\\n>mother was thrown from Germany because she belonged to the \\'undesirables\\'\\n>(at that times this group was defined as \\'Jews\\'). She was forced to go\\n>to Palestine due to many cynical factors. \\n\\n\"Forced to go to Palestine.\" How dreadful. Unlike other\\nundesirables/Jews, she wasn\\'t forced to go into a gas chamber, forced\\nunder a bulldozer, thrown into a river, forced into a \"Medical\\nexperiment\" like a rat, forced to march until she dropped dead, burned\\nto nothingness in a crematorium. Your mother was \"forced to go to\\nPalestine.\" You have our deepest sympathies.\\n\\n>I have meanwhile settled in Iceland (30 years ago) \\n\\nWe are pleased to hear of your escape. At least you won\\'t have to\\nsuffer the same fate that your mother did.\\n\\n>and met many people who were thrown out from\\n>my homeland, Palestine, \\n\\nYour homeland, Palestine? \\n\\n>because of the same reason (they belonged to\\n>the \\'indesirables\\'). \\n\\nShould we assume that you are refering here to Jews who were kicked\\nout of their homes in Jerusalem during the Jordanian Occupation of\\nEast Jerusalem? These are the same people who are now being called\\nthieves for re-claiming houses that they once owned and lived in and\\nnever sold to anyone?\\n\\n>These people include my neighbors in Jerusalem\\n>with the children of whom I played as child. Their crime: Theyare\\n>not Jews. \\n\\nI have never heard of NOT being a Jew as a crime. Certainly in\\nIsrael, there is no such crime. In some times and places BEING a Jew\\nis a crime, but NOT being a Jew??!!\\n\\n>My conscience does not accept such injustice, period. \\n\\nOur brains do not accept your logic, yet, either.\\n\\n>My\\n>work for justice is done in the name of my principled opposition to racism\\n>and racial discrimination. Those who protest against such practices\\n>in Arab countries have my support - as long as their protest is based\\n>on a principled position, but not as a tactic to deflect criticism\\n>from Israel. \\n\\nThe way you\\'ve written this, you seem to accept criticism in the Arab\\nworld UNLESS it deflects criticism from Israel, in which case, we have\\nto presume, you no longer support criticism of the Arab world.\\n\\n>The struggle against discrimination and racism is universal.\\n\\nLook who\\'s taling about discrimination now!\\n\\n>The Center for Policy Research is a name I gave to those activities\\n>undertaken under my guidance in different domains, and which command\\n>the support of many volunteers in Iceland. It is however not a formal\\n>institution and works with minimal funds.\\n\\nBe careful. You are starting to sound like Barfling.\\n\\n>Professionally I am music teacher and composer. I have published \\n>several pieces and my piano music is taught widely in Europe.\\n>\\n>I would hope that discussion about Israel/Palestine be conducted in\\n>a more civilized manner. Calling names is not helpful.\\n\\nGood. Don\\'t call yourself \"ARF\" or \"the Center for Policy Research\",\\neither. \\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: kshin@stein.u.washington.edu (Kevin Shin)\\nSubject: thinning algorithm\\nOrganization: University of Washington, Seattle\\nLines: 10\\nNNTP-Posting-Host: stein.u.washington.edu\\n\\nHi, netters\\n\\nI am looking for source code that can reads the ascii file\\nor bitmap file and produced the thinned image.\\nFor example, to preprocess the character image I want to\\napply thinning algorithm.\\n\\nthanks\\nkevin\\n.\\n',\n", + " \"From: wrs@wslack.UUCP (Bill Slack)\\nSubject: Re: Shaft-drives and Wheelies\\nDistribution: world\\nOrganization: W. R. Slack\\nLines: 20\\n\\n\\nVarious posts about shafties can't do wheelies:\\n\\n>: > No Mike. It is imposible due to the shaft effect. The centripital effects\\n>: > of the rotating shaft counteract any tendency for the front wheel to lift\\n>: > off the ground\\n>\\n>Good point John...a buddy of mine told me that same thing when I had my\\n>BMW R80GS; I dumped the clutch at 5,000rpm (hey, ito nly revved to 7 or so) and\\n>you know what? He was right!\\n\\nUh, folks, the shaft doesn't have diddleysquatpoop to do with it. I can get\\nthe front wheel off the ground on my /5, ferchrissake!\\n\\nBill \\n__\\nwrs@gozer.mv.com (Bill Slack) DoD #430\\nBut her tears were shed in vain and her every word was lost\\nIn the rumble of his engine and the smoke from his exhaust! Oo..o&o\\n \\n\",\n", + " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Re: Who Says the Apostles Were Tortured?\\nLines: 9\\n\\nThe traditions of the church hold that all the \"apostles\" (meaning the 11\\nsurviving disciples, Matthias, Barnabas and Paul) were martyred, except for\\nJohn. \"Tradition\" should be understood to read \"early church writings other\\nthan the bible and heteroorthodox scriptures\".\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", + " \"From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Insurance and lotsa points...\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 39\\n\\nIn article <1993Apr18.230531.11329@bcars6a8.bnr.ca> keithh@bnr.ca (Keith Hanlan) writes:\\n>In article <13386@news.duke.edu> infante@acpub.duke.edu (Andrew Infante) writes:\\n>>Well, it looks like I'm F*cked for insurance.\\n>>\\n>>I had a DWI in 91 and for the beemer, as a rec.\\n>>vehicle, it'll cost me almost $1200 bucks to insure/year.\\n>>\\n>>Now what do I do?\\n>\\n>Sell the bike and the car and start taking the bus. That way you can\\n>keep drinking which seems to be where your priorities lay.\\n>\\n>I expect that enough of us on this list have lost friends because of\\n>driving drunks that our collective sympathy will be somewhat muted.\\n\\nLook, guy, I doubt anyone here approves of Drunk Driving, but if\\nhe's been caught and convicted and punished maybe you ought to\\nlighten up? I mean, it isn't like most of us haven't had a few\\nand then ridden or driven home. *We* just didn't get caught.\\nAnd I can speak for myself and say it will *never* happen again,\\nbut that is beside the point.\\n\\nIn answer to the original poster: I'd insure whatever vehicle\\nis cheapest, and can get you to and from work, and suffer\\nthrough it for a few years, til your rates drop.\\n\\nAnd *don't* drink and drive. I had one friend killed by a \\ndrunk, and I was rear ended by one, totaling my bike (bent\\nframe), and only failing to kill me because I had an eye\\non my mirror while I waited at the stoplight.\\n\\nRegards, Charles\\nDoD0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n\",\n", + " 'From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Ed must be a Daemon Child!!\\nArticle-I.D.: usenet.1pqhvu$go8\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 22\\nNNTP-Posting-Host: slc10.ins.cwru.edu\\n\\n\\nIn a previous article, svoboda@rtsg.mot.com (David Svoboda) says:\\n\\n>In article <1993Apr2.163021.17074@linus.mitre.org> cookson@mbunix.mitre.org (Cookson) writes:\\n>|\\n>|Wait a minute here, Ed is Noemi AND Satan? Wow, and he seemed like such\\n>|a nice boy at RCR I too.\\n>\\n>And Noemi makes me think of \"cuddle\", not \"KotL\".\\n>\\n\\n\\tYou talking bout the same Noemi I know? She makes me think of big bore\\nhand guns and extreme weirdness. This babe rode a CSR300 across the desert! And\\na borrowed XL100 on the Death Ride. Don\\'t fuck with her man, your making a big\\nmistake.\\n\\n\\n\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n',\n", + " \"From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: ISLAM BORDERS vs Israeli borders\\nOrganization: University of Illinois at Urbana\\nLines: 46\\n\\nhasan@McRCIM.McGill.EDU writes:\\n\\n\\n>In article <1993Apr5.202800.27705@wam.umd.edu>, spinoza@next06wor.wam.umd.edu (Yon Bonnie Laird of Cairn Robbing) writes:\\n>|> In article ilyess@ECE.Concordia.CA \\n>|> (Ilyess Bdira) writes:\\n>|> > > 1)why do jews who don't even believe in God (as is the case with many\\n>|> > of the founders of secular zionism) have a right in Palestine more\\n>|> > than the inhabitants of Palestine, just because God gave you the land?\\n>|> G-d has nothing to do with it. Some of the land was in fact given to the \\n>|> Jews by the United Nations, quite a bit of it was purchased from Arab \\n>|> absentee landlords. Present claims are based on prior ownership (purchase \\n>|> from aforementioned absentee landlords) award by the United Nations in the \\n>|> partition of the Palestine mandate territory, and as the result of \\n>|> defensive wars fought against the Egyptians, Syrians, Jordanians, et al.\\n>|> \\n>|> ***\\n>|> > 2)Why do most of them speak of the west bank as theirs while most of\\n>|> > the inhabitants are not Jews and do not want to be part of Israel?\\n>|> First, I should point out that many Jews do not in fact agree with the \\n>|> idea that the West Bank is theirs. Since, however, I agree with those who \\n>|> claim the West Bank, I think I can answer your question thusly: the West \\n>|> bank was what is called the spoils of war. Hussein ordered the Arab Legion \\n\\n>\\t\\t\\t^^^^^^^^^^^^^^^^^^^^\\n>This is very funny.\\n>Anyway, suppose that in fact israel didnot ATTACK jordan till jordan attacked\\n>israel. Now, how do you explain the attack on Syria in 1967, Syria didnot\\n>enter the war with israel till the 4th day .\\n\\nSyria had been bombing Israeli settlements from the Golan and sending\\nterrorist squads into Israel for years. Do you need me to provide specifics?\\nI can.\\n\\nWhy don't you give it up, Hasan? I'm really starting to get tired of your \\nempty lies. You can defend your position and ideology with documented facts\\nand arguments rather than the crap you regularly post. Take an example from\\nsomeone like Brendan McKay, with whom I don't agree, but who uses logic and\\ndocumentation to argue his position. Why must you insist on constantly spouting\\nbaseless lies? You may piss some people off, but that's about it. You won't\\nprove anything or add anything worthy to a discussion. Your arguments just \\nprove what a poor debater you are and how weak your case really is.\\n\\nAll my love,\\nEd.\\n\\n\",\n", + " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: Route Suggestions?\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nDistribution: usa\\nLines: 27\\n\\nIn article <1993Apr20.173413.29301@porthos.cc.bellcore.com> mdc2@pyuxe.cc.bellcore.com (corrado,mitchell) writes:\\n>In article <1qmm5dINNnlg@cronkite.Central.Sun.COM>, doc@webrider.central.sun.com (Steve Bunis - Chicago) writes:\\n>> 55E -> I-81/I-66E. After this point the route is presently undetermined\\n>> into Pennsylvania, New York?, and back to Chicago (by 6/6). Suggestions \\n>\\n>If you do make it into New York state, the Palisades Interstate Parkway is a\\n>pleasant ride (beautiful scenery, good road surface, minimal traffic). You\\n\\t\\t\\t\\t ^^^^^^^^^^^^^^^^^\\n\\n\\tBeen a while since you hit the PIP? The pavement (at least until around\\n\\texit 9) is for sh*t these days. I think it must have taken a beating\\n\\tthis winter, because I don\\'t remember it being this bad. It\\'s all\\n\\tbreaking apart, and there are some serious potholes now. Of course\\n\\tthere are also the storm drains that are *in* your lane as opposed\\n\\tto on the side of the road (talk about annoying cost saving measures).\\n\\t\\t\\n\\tAs for traffic, don\\'t try it around 5:15 - 6:30 on weekdays (outbound,\\n\\trush hour happens inbound too) as there are many BDC\\'s...\\n\\n\\t<...> <...>\\n> \\'\\\\ Mitch Corrado\\n> / DEC \\\\======== mdc2@panther.tnds.bellcore.com\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", + " 'From: joe@rider.cactus.org (Joe Senner)\\nSubject: Re: BMW MOA members read this!\\nReply-To: joe@rider.cactus.org\\nDistribution: world\\nOrganization: NOT\\nLines: 25\\n\\nvech@Ra.MsState.Edu (Craig A. Vechorik) writes:\\n]I wrote the slash two blues for a bit of humor which seems to be lacking\\n]in the MOA Owners News, when most of the stuff is \"I rode the the first\\n]day, I saw that, I rode there the second day, I saw this\" \\n\\nI admit it was a surprise to find something interesting to read in \\nthe most boring and worthless mag of all the ones I get.\\n\\n]any body out there know were the sense if humor went in people?\\n]I though I still had mine, but I dunno... \\n\\nI think most people see your intended humor, I do, I liked the article.\\nyou seem to forget that you\\'ve stepped into the political arena. as well\\nintentioned as you may intend something you\\'re walking through a china\\nstore carrying that /2 on your head. everything you say or do says something\\nabout how you would represent the membership on any given day. you don\\'t\\nhave to look far in american politics to see what a few light hearted\\njokes about one segment of the population can do to someone in the limelight.\\n\\nOBMoto: I did manage to squeak in a reference to a /2 ;-)\\n\\n-- \\nJoe Senner joe@rider.cactus.org\\nAustin Area Ride Mailing List ride@rider.cactus.org\\nTexas SplatterFest Mailing List fest@rider.cactus.org\\n',\n", + " \"From: Center for Policy Research \\nSubject: Final Solution for Gaza ?\\nNf-ID: #N:cdp:1483500354:000:5791\\nNf-From: cdp.UUCP!cpr Apr 23 15:10:00 1993\\nLines: 126\\n\\n\\nFrom: Center for Policy Research \\nSubject: Final Solution for Gaza ?\\n\\n\\nFinal Solution for the Gaza ghetto ?\\n------------------------------------\\n\\nWhile Israeli Jews fete the uprising of the Warsaw ghetto, they\\nrepress by violent means the uprising of the Gaza ghetto and\\nattempt to starve the Gazans.\\n\\nThe Gaza strip, this tiny area of land with the highest population\\ndensity in the world, has been cut off from the world for weeks.\\nThe Israeli occupier has decided to punish the whole population of\\nGaza, some 700.000 people, by denying them the right to leave the\\nstrip and seek work in Israel.\\n\\nWhile Polish non-Jews risked their lives to save Jews from the\\nGhetto, no Israeli Jew is known to have risked his life to help\\nthe Gazan resistance. The only help given to Gazans by Israeli\\nJews, only dozens of people, is humanitarian assistance.\\n\\nThe right of the Gazan population to resist occupation is\\nrecognized in international law and by any person with a sense of\\njustice. A population denied basic human rights is entitled to\\nrise up against its tormentors.\\n\\nAs is known, the Israeli regime is considering Gazans unworthy of\\nIsraeli citizenship and equal rights in Israel, although they are\\nconsidered worthy to do the dirty work in Israeli hotels, shops\\nand fields. Many Gazans are born in towns and villages located in\\nIsrael. They may not live there, for these areas are reserved for\\nthe Master Race.\\n\\nThe Nazi regime accorded to the residents of the Warsaw ghetto the\\nright to self- administration. They selected Jews to pacify the\\noccupied population and preventing any form of resistance. Some\\nJewish collaborators were killed. Israel also wishes to rule over\\nGaza through Arab collaborators.\\n\\nAs Israel denies Gazans the only two options which are compatible\\nwith basic human rights and international law, that of becoming\\nIsraeli citizens with full rights or respecting their right for\\nself-determination, it must be concluded that the Israeli Jewish\\nsociety does not consider Gazans full human beings. This attitude\\nis consistent with the attitude of the Nazis towards Jews. The\\ncurrent policies by the Israeli government of cutting off Gaza are\\nconsistent with the wish publicly expressed by Prime Mininister\\nYitzhak Rabin that 'Gaza sink into the sea'. One is led to ask\\noneself whether Israeli leaders entertain still more sinister\\ngoals towards the Gazans ? Whether they have some Final Solution\\nup their sleeve ?\\n\\nI urge all those who have slight human compassion to do whatever\\nthey can to help the Gazans regain their full human, civil and\\npolitical rights, to which they are entitled as human beings.\\n\\nElias Davidsson Iceland\\n\\nFrom elias@ismennt.is Fri Apr 23 02:30:21 1993 Received: from\\nisgate.is by igc.apc.org (4.1/Revision: 1.77 )\\n\\tid AA00761; Fri, 23 Apr 93 02:30:13 PDT Received: from\\nrvik.ismennt.is by isgate.is (5.65c8/ISnet/14-10-91); Fri, 23 Apr\\n1993 09:29:41 GMT Received: by rvik.ismennt.is\\n(16.8/ISnet/11-02-92); Fri, 23 Apr 93 09:30:23 GMT From:\\nelias@ismennt.is (Elias Davidsson) Message-Id:\\n<9304230930.AA11852@rvik.ismennt.is> Subject: no subject (file\\ntransmission) To: cpr@igc.org Date: Fri, 23 Apr 93 9:30:22 GMT\\nX-Charset: ASCII X-Char-Esc: 29 Status: RO\\n\\nFinal Solution for the Gaza ghetto ?\\n------------------------------------\\n\\nWhile Israeli Jews fete the uprising of the Warsaw ghetto, they\\nrepress by violent means the uprising of the Gaza ghetto and\\nattempt to starve the Gazans.\\n\\nThe Gaza strip, this tiny area of land with the highest population\\ndensity in the world, has been cut off from the world for weeks.\\nThe Israeli occupier has decided to punish the whole population of\\nGaza, some 700.000 people, by denying them the right to leave the\\nstrip and seek work in Israel.\\n\\nWhile Polish non-Jews risked their lives to save Jews from the\\nGhetto, no Israeli Jew is known to have risked his life to help\\nthe Gazan resistance. The only help given to Gazans by Israeli\\nJews, only dozens of people, is humanitarian assistance.\\n\\nThe right of the Gazan population to resist occupation is\\nrecognized in international law and by any person with a sense of\\njustice. A population denied basic human rights is entitled to\\nrise up against its tormentors.\\n\\nAs is known, the Israeli regime is considering Gazans unworthy of\\nIsraeli citizenship and equal rights in Israel, although they are\\nconsidered worthy to do the dirty work in Israeli hotels, shops\\nand fields. Many Gazans are born in towns and villages located in\\nIsrael. They may not live there, for these areas are reserved for\\nthe Master Race.\\n\\nThe Nazi regime accorded to the residents of the Warsaw ghetto the\\nright to self- administration. They selected Jews to pacify the\\noccupied population and preventing any form of resistance. Some\\nJewish collaborators were killed. Israel also wishes to rule over\\nGaza through Arab collaborators.\\n\\nAs Israel denies Gazans the only two options which are compatible\\nwith basic human rights and international law, that of becoming\\nIsraeli citizens with full rights or respecting their right for\\nself-determination, it must be concluded that the Israeli Jewish\\nsociety does not consider Gazans full human beings. This attitude\\nis consistent with the attitude of the Nazis towards Jews. The\\ncurrent policies by the Israeli government of cutting off Gaza are\\nconsistent with the wish publicly expressed by Prime Mininister\\nYitzhak Rabin that 'Gaza sink into the sea'. One is led to ask\\noneself whether Israeli leaders entertain still more sinister\\ngoals towards the Gazans ? Whether they have some Final Solution\\nup their sleeve ?\\n\\nI urge all those who have slight human compassion to do whatever\\nthey can to help the Gazans regain their full human, civil and\\npolitical rights, to which they are entitled as human beings.\\n\\nElias Davidsson Iceland\\n\\n\",\n", + " 'From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Ontario Hydro - Research Division\\nLines: 18\\n\\nIn article mcguire@cs.utexas.edu (Tommy Marcus McGuire) writes:\\n>\\n>Obcountersteer: For some reason, I\\'ve discovered that pulling on the\\n>wrong side of the handlebars (rather than pushing on the other wrong\\n>side, if you get my meaning) provides a feeling of greater control. For\\n>example, rather than pushing on the right side to lean right to turn \\n>right (Hi, Lonny!), pulling on the left side at least until I get leaned\\n>over to the right feels more secure and less counter-intuitive. Maybe\\n>I need psychological help.\\n\\nI told a newbie friend of mine, who was having trouble from the complicated\\nexplanations of his rider course, to think of using the handlebars to lean,\\nnot to turn. Push the right handlebar \"down\" (or pull left up or whatever)\\nto lean right. It worked for him, he stopped steering with his tuchus.\\n\\nI\\'ve bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n',\n", + " 'From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Islam & Dress Code for women\\nOrganization: Monash University, Melb., Australia.\\nLines: 120\\n\\nIn <16BA7103C3.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n\\n>In article <1993Apr5.091258.11830@monu6.cc.monash.edu.au>\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n> \\n>(Deletion)\\n>>>>Of course people say what they think to be the religion, and that this\\n>>>>is not exactly the same coming from different people within the\\n>>>>religion. There is nothing with there existing different perspectives\\n>>>>within the religion -- perhaps one can say that they tend to converge on\\n>>>>the truth.\\n>>\\n>>>My point is that they are doing a lot of harm on the way in the meantime.\\n>>>\\n>>>And that they converge is counterfactual, religions appear to split and\\n>>>diverge. Even when there might be a \\'True Religion\\' at the core, the layers\\n>>>above determine what happens in practise, and they are quite inhumane\\n>>>usually.\\n>>>\\n> \\n>What you post then is supposed to be an answer, but I don\\'t see what is has\\n>got to do with what I say.\\n> \\n>I will repeat it. Religions as are harm people. And religions don\\'t\\n>converge, they split. Giving more to disagree upon. And there is a lot\\n>of disagreement to whom one should be tolerant or if one should be\\n>tolerant at all.\\n\\nIdeologies also split, giving more to disagree upon, and may also lead\\nto intolerance. So do you also oppose all ideologies?\\n\\nI don\\'t think your argument is an argument against religion at all, but\\njust points out the weaknesses of human nature.\\n\\n>(Big deletion)\\n>>(2) Do women have souls in Islam?\\n>>\\n>>People have said here that some Muslims say that women do not have\\n>>souls. I must admit I have never heard of such a view being held by\\n>>Muslims of any era. I have heard of some Christians of some eras\\n>>holding this viewpoint, but not Muslims. Are you sure you might not be\\n>>confusing Christian history with Islamic history?\\n> \\n>Yes, it is supposed to have been a predominant view in the Turkish\\n>Caliphate.\\n\\nI would like a reference if you have got one, for this is news to me.\\n\\n>>Anyhow, that women are the spiritual equals of men can be clearly shown\\n>>from many verses of the Qur\\'an. For example, the Qur\\'an says:\\n>>\\n>>\"For Muslim men and women, --\\n>>for believing men and women,\\n>>for devout men and women,\\n>>for true men and women,\\n>>for men and women who are patient and constant,\\n>>for men and women who humble themselves,\\n>>for men and women who give in charity,\\n>>for men and women who fast (and deny themselves),\\n>>for men and women who guard their chastity,\\n>>and for men and women who engage much in God\\'s praise --\\n>>For them has God prepared forgiveness and a great reward.\"\\n>>\\n>>[Qur\\'an 33:35, Abdullah Yusuf Ali\\'s translation]\\n>>\\n>>There are other quotes too, but I think the above quote shows that men\\n>>and women are spiritual equals (and thus, that women have souls just as\\n>>men do) very clearly.\\n>>\\n> \\n>No, it does not. It implies that they have souls, but it does not say they\\n>have souls. And it is not given that the quote above is given a high\\n>priority in all interpretations.\\n\\nOne must approach the Qur\\'an with intelligence. Any thinking approach\\nto the Qur\\'an cannot but interpret the above verse and others like it\\nthat women and men are spiritual equals.\\n\\nI think that the above verse does clearly imply that women have\\nsouls. Does it make any sense for something without a soul to be\\nforgiven? Or to have a great reward (understood to be in the\\nafter-life)? I think the usual answer would be no -- in which case, the\\npart saying \"For them has God prepared forgiveness and a great reward\"\\nsays they have souls. \\n\\n(If it makes sense to say that things without souls can be forgiven, then \\nI have no idea _what_ a soul is.)\\n\\nAs for your saying that the quote above may not be given a high priority\\nin all interpretations, any thinking approach to the Qur\\'an has to give\\nall verses of the Qur\\'an equal priority. That is because, according to\\nMuslim belief, the _whole_ Qur\\'an is the revelation of God -- in fact,\\ndenying the truth of any part of the Qur\\'an is sufficient to be\\nconsidered a disbeliever in Islam.\\n\\n>Quite similar to you other post, even when the Quran does not encourage\\n>slavery, it is not justified to say that iit forbids or puts an end to\\n>slavery. It is a non sequitur.\\n\\nLook, any approach to the Qur\\'an must be done with intelligence and\\nthought. It is in this fashion that one can try to understand the\\nQuran\\'s message. In a book of finite length, it cannot explicitly\\nanswer every question you want to put to it, but through its teachings\\nit can guide you. I think, however, that women are the spiritual equals\\nof men is clearly and unambiguously implied in the above verse, and that\\nsince women can clearly be \"forgiven\" and \"rewarded\" they _must_ have\\nsouls (from the above verse).\\n\\nLet\\'s try to understand what the Qur\\'an is trying to teach, rather than\\ntry to see how many ways it can be misinterpreted by ignoring this\\npassage or that passage. The misinterpretations of the Qur\\'an based on\\nignoring this verse or that verse are infinite, but the interpretations \\nfully consistent are more limited. Let\\'s try to discuss these\\ninterpretations consistent with the text rather than how people can\\nignore this bit or that bit, for that is just showing how people can try\\nto twist Islam for their own ends -- something I do not deny -- but\\nprovides no reflection on the true teachings of Islam whatsoever.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n',\n", + " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: THE HAMAS WAY of DEATH\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 104\\n\\n\\n THE HAMAS WAY of DEATH\\n \\n (Following is a transcript of a recruitment and training\\nvideotape made last summer by the Qassam Battalions, the military\\narm of Hamas, an Islamic Palestinian group. Hamas figures\\nsignificantly in the Middle East equation. In December, Israel\\ndeported more than 400 Palestinians to Lebanon in response to\\nHamas\\'s kidnapping and execution of an Israeli soldier. A longer\\nversion appears in the May issue of Harper\\'s Magazine, which\\nobtained and translated the tape.)\\n \\n My name is Yasir Hammad al-Hassan Ali. I live in Nuseirat [a\\nrefugee camp in the Gaza Strip]. I was born in 1964. I finished\\nhigh school, then attended Gaza Polytechnic. Later, I went to work\\nfor Islamic University in Gaza as a clerk. I\\'m married and I have\\ntwo daughters.\\n The Qassam Battalions are the only group in Palestine\\nexplicitly dedicated to jihad [holy war]. Our primary concern is\\nPalestinians who collaborate with the enemy. Many young men and\\nwomen have fallen prey to the cunning traps laid by the [Israeli]\\nSecurity Services.\\n Since our enemies are trying to obliterate our nation,\\ncooperation with them is clearly a terrible crime. Our most\\nimportant objective must be to put an end to the plague of\\ncollaboration. To do so, we abduct collaborators, intimidate and\\ninterrogate them in order to uncover other collaborators and expose\\nthe methods that the enemy uses to lure Palestinians into\\ncollaboration in the first place. In addition to that, naturally,\\nwe confront the problem of collaborators by executing them.\\n We don\\'t execute every collaborator. After all, about 70\\npercent of them are innocent victims, tricked or black-mailed into\\ntheir misdeeds. The decision whether to execute a collaborator is\\nbased on the seriousness of his crimes. If, like many\\ncollaborators, he has been recruited as an agent of the Israeli\\nBorder Guard then it is imperative that he be executed at once.\\nHe\\'s as dangerous as an Israeli soldier, so we treat him like an\\nIsraeli soldier.\\n There\\'s another group of collaborators who perform an even\\nmore loathsome role -- the ones who help the enemy trap young men\\nand women in blackmail schemes that force them to become\\ncollaborators. I regard the \"isqat\" [the process by which a\\nPalestinians is blackmailed into collaboration] of single person as\\ngreater crime than the killing of a demonstrator. If someone is\\nguilty of causing repeated cases of isqat, than it is our religious\\nduty to execute him.\\n A third group of collaborators is responsible for the\\ndistribution of narcotics. They work on direct orders from the\\nSecurity Services to distribute drugs as widely as possible. Their\\nvictims become addicted and soon find it unbearable to quit and\\nimpossible to afford more. They collaborate in order to get the\\ndrugs they crave. The dealers must also be executed.\\n In the battalions, we have developed a very careful method of\\nuncovering collaborators, We can\\'t afford to abduct an innocent\\nperson, because once we seize a person his reputation is tarnished\\nforever. We will abduct and interrogate a collaborator only after\\nevidence of his guilt has been established -- never before. If\\nafter interrogation the collaborator is found guilty beyond any\\ndoubt, then he is executed.\\n In many cases, we don\\'t have to make our evidence against\\ncollaborators public, because everyone knows that they\\'re guilty.\\nBut when the public isn\\'t aware that a certain individual is a\\ncollaborator, and we accuse him, people are bound to ask for\\nevidence. Many people will proclaim his innocence, so there must be\\nirrefutable proof before he is executed. This proof is usually\\nobtained in the form of a confession.\\n At first, every collaborator denies his crimes. So we start\\noff by showing the collaborator the testimony against him. We tell\\nhim that he still has a chance to serve his people, even in the\\nlast moment of his life, by confessing and giving us the\\ninformation we need.\\n We say that we know his repentance in sincere and that he has\\nbeen a victim. That kind of talk is convincing. Most of them\\nconfess after that. Others hold out; in those cases, we apply\\npressure, both psychological and physical. Then the holdouts\\nconfess as well.\\n Only one collaborator has ever been executed without an\\ninterrogation. In that case, the collaborator had been seen working\\nfor the Border Guard since before the intifada, and he himself\\nconfessed his involvement to a friend, who disclosed the\\ninformation to us. In addition, three members of his network of\\ncollaborators told us that he had caused their isqat. With this\\nmuch evidence, there was no need to interrogate him. But we are\\nvery careful to avoid wrongful executions. In every case, our\\nprincipal is the same: the accused should be interrogated until he\\nhimself confesses his crimes. \\n A few weeks ago, we sat down and complied a list of\\ncollaborators to decide whether there were any who could be\\nexecuted without interrogation. An although we had hundreds of\\nnames, still, because of our fear of God and of hell, we could not\\nmark any of these men, except for the one I just mentioned, for\\nexecution.\\n When we execute a collaborator in public, we use a gun. But\\nafter we abduct and interrogate a collaborator, we can\\'t shoot him\\n-- to do so might give away our locations. That\\'s why collaborators\\nare strangled. Sometimes we ask the collaborator, \"What do you\\nthink? How should we execute you?\" One collaborator told us,\\n\"Strangle me.\" He hated the sight of blood.\\n\\n-----\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n\\n>mathew writes:\\n>>As for rape, surely there the burden of guilt is solely on the rapist?\\n>\\n>Not so. If you are thrown into a cage with a tiger and get mauled, do you\\n>blame the tiger?\\n\\n\\tA human has greater control over his/her actions, than a \\npredominately instictive tiger.\\n\\n\\tA proper analogy would be:\\n\\n\\tIf you are thrown into a cage with a person and get mauled, do you \\nblame that person?\\n\\n\\tYes. [ providing that that person was in a responsible frame of \\nmind, eg not clinicaly insane, on PCB\\'s, etc. ]\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n',\n", + " \"Subject: Re: univesa driver\\nFrom: djlewis@ualr.edu\\nOrganization: University of Arkansas at Little Rock\\nNntp-Posting-Host: athena.ualr.edu\\nLines: 13\\n\\nIn article <13622@news.duke.edu>, seth@north13.acpub.duke.edu (Seth Wandersman) writes:\\n> \\n> \\tI got the univesa driver available over the net. I thought that finally\\n> my 1-meg oak board would be able to show 680x1024 256 colors. Unfortunately a\\n> program still says that I can't do this. Is it the fault of the program (fractint)\\n> or is there something wrong with my card.\\n> \\tunivesa- a free driver available over the net that makes many boards\\n> vesa compatible. \\nWHATS THIS 680x1024 256 color mode? Asking a lot of your hardware ?\\n\\nDon Lewis\\n\\n\\n\",\n", + " \"From: mathew \\nSubject: Re: KORESH IS GOD!\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 5\\n\\nThe latest news seems to be that Koresh will give himself up once he's\\nfinished writing a sequel to the Bible.\\n\\n\\nmathew\\n\",\n", + " 'From: arp@cooper!osd (Andrew Pinkowitz)\\nSubject: SIGGRAPH -- Conference on Understanding Images\\nKeywords: graphics animation nyc acm siggraph\\nOrganization: Online Systems Development ( NY, NY)\\nLines: 140\\n\\n======================================================================\\n NYC ACM/SIGGRAPH: UNDERSTANDING IMAGES\\n======================================================================\\n\\n SUBJECT:\\n\\n Pace University/SIGGRAPH Conference on UNDERSTANDING IMAGES\\n ===========================================================\\n\\n The purpose of this conference is to bring together a breadth of\\n disciplines, including the physical, biological and computational\\n sciences, technology, art, psychology, philosophy, and education,\\n in order to define and discuss the issues essential to image\\n understanding within the computer graphics context.\\n\\n FEATURED TOPICS INCLUDE:\\n\\n Psychology/Perception\\n Image Analysis\\n Design\\n Text\\n Sound\\n Philosophy\\n\\n DATE: Friday & Saturday, 21-22 May 1993\\n\\n TIME: 9:00 am - 6:00 pm\\n\\n PLACE: The Pace Downtown Theater\\n One Pace Plaza\\n (on Spruce Street between Park Row & Gold Street)\\n NY, NY 10038\\n\\n FEES:\\n\\n PRE-REGISTRATION (Prior to 1 May 1993):\\n Members $55.00\\n Non-Members $75.00\\n Students $40.00 (Proof of F/T Status Required)\\n\\n REGISTRATION (After 1 May 1993 or On-Site):\\n All Attendees $95.00\\n\\n (Registration Fee Includes Brakfast, Breaks & Lunch)\\n\\n\\n SEND REGISTRATION INFORMATION & FEES TO:\\n\\n Dr. Francis T. Marchese\\n Computer Science Department\\n NYC/ACM SIGGRAPH Conference\\n Pace University\\n 1 Pace Plaza (Room T-1704)\\n New York NY 10036\\n\\n voice: (212) 346-1803 fax: (212) 346-1933\\n email: MARCHESF@PACEVM.bitnet\\n\\n======================================================================\\nREGISTRATION INFORMATION:\\n\\nName _________________________________________________________________\\n\\nTitle ________________________________________________________________\\n\\nCompany ______________________________________________________________\\n\\nStreet Address _______________________________________________________\\n\\nCity ________________________________State____________Zip_____________\\n\\nDay Phone (___) ___-____ Evening Phone (___) ___-____\\n\\nFAX Phone (___) ___-____ Email_____________________________________\\n======================================================================\\n\\nDETAILED DESCRIPTION:\\n=====================\\n\\n Artists, designers, scientists, engineers and educators share the\\n problem of moving information from one mind to another.\\n Traditionally, they have used pictures, words, demonstrations,\\n music and dance to communicate imagery. However, expressing\\n complex notions such as God and infinity or a seemingly well\\n defined concept such as a flower can present challenges which far\\n exceed their technical skills.\\n\\n The explosive use of computers as visualization and expression\\n tools has compounded this problem. In hypermedia, multimedia and\\n virtual reality systems vast amounts of information confront the\\n observer or participant. Wading through a multitude of\\n simultaneous images and sounds in possibly unfamiliar\\n representions, a confounded user asks: \"What does it all mean?\"\\n\\n Since image construction, transmission, reception, decipherment and\\n ultimate understanding are complex tasks, strongly influenced by\\n physiology, education and culture; and, since electronic media\\n radically amplify each processing step, then we, as electronic\\n communicators, must determine the fundamental paradigms for\\n composing imagery for understanding.\\n\\n Therefore, the purpose of this conference is to bring together a\\n breadth of disciplines, including, but not limited to, the\\n physical, biological and computational sciences, technology, art,\\n psychology, philosophy, and education, in order to define and\\n discuss the issues essential to image understanding within the\\n computer graphics context.\\n\\n\\n FEATURED SPEAKERS INCLUDE:\\n\\n Psychology/Perception:\\n Marc De May, University of Ghent\\n Beverly J. Jones, University of Oregon\\n Barbara Tversky, Standfor University\\n Michael J. Shiffer, MIT\\n Tom Hubbard, Ohio State University\\n Image Analysis:\\n A. Ravishankar Rao, IBM Watson Research Center\\n Nalini Bhusan, Smith College\\n Xiaopin Hu, University of Illinois\\n Narenda Ahuja, University of Illinois\\n Les M. Sztander, University of Toledo\\n Design:\\n Mark Bajuk, University of Illinois\\n Alyce Kaprow, MIT\\n Text:\\n Xia Lin, Pace University\\n John Loustau, Hunter College\\n Jong-Ding Wang, Hunter College\\n Judson Rosebush, Judson Rosebush Co.\\n Sound:\\n Matthew Witten, University of Texas\\n Robert Wyatt, Center for High Performance Computing\\n Robert S. Williams, Pace University\\n Rory Stuart, NYNEX\\n Philosophy\\n Michael Heim, Education Foundation of DPMA\\n\\n======================================================================\\n',\n", + " \"From: mbeaving@bnr.ca (Michael Beavington)\\nSubject: Re: Ok, So I was a little hasty...\\nNntp-Posting-Host: bmerh824\\nReply-To: MBEAVING@BNR.CA\\nOrganization: BNR Ottawa, DMS Software Design\\nLines: 18\\n\\nIn article <13394@news.duke.edu>, infante@acpub.duke.edu (Andrew Infante) writes:\\n|> Apparently that last post was a little hasy, since I\\n|> called around to more places and got quotes for less\\n|> than 600 and 425. Liability only, of course.\\n|> \\n|> Plus, one palced will give me C7C for my car + liab on the bike for\\n|> only 1350 total, which ain't bad at all.\\n|> \\n|> So I won't go with the first place I called, that's\\n|> fer sure.\\n|> \\n\\nNevertheless, DWI is F*ckin serious. Hope you've got some \\nbrains now.\\n\\nMike Beavington\\nmbeaving@bnr.ca\\n* these opinions are my own and not my companies'.\\n\",\n", + " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Benediktine Metaphysics\\nLines: 24\\n\\nBenedikt Rosenau writes, with great authority:\\n\\n> IF IT IS CONTRADICTORY IT CANNOT EXIST.\\n\\n\"Contradictory\" is a property of language. If I correct this to\\n\\n\\n THINGS DEFINED BY CONTRADICTORY LANGUAGE DO NOT EXIST\\n\\nI will object to definitions as reality. If you then amend it to\\n\\n THINGS DESCRIBED BY CONTRADICTORY LANGUAGE DO NOT EXIST\\n\\nthen we\\'ve come to something which is plainly false. Failures in\\ndescription are merely failures in description.\\n\\n(I\\'m not an objectivist, remember.)\\n\\n\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Space Research Spin Off\\nOrganization: Express Access Online Communications USA\\nLines: 29\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article shafer@rigel.dfrf.nasa.gov (Mary Shafer) writes:\\n>Dryden flew the first digital fly by wire aircraft in the 70s. No\\n>mechnaical or analog backup, to show you how confident we were.\\n\\nConfident, or merely crazed? That desert sun :-)\\n\\n\\n>successful we were. (Mind you, the Avro Arrow and the X-15 were both\\n>fly-by-wire aircraft much earlier, but analog.)\\n>\\n\\nGee, I thought the X-15 was Cable controlled. Didn't one of them have a\\ntotal electrical failure in flight? Was there machanical backup systems?\\n\\n|\\n|The NASA habit of acquiring second-hand military aircraft and using\\n|them for testbeds can make things kind of confusing. On the other\\n|hand, all those second-hand Navy planes give our test pilots a chance\\n|to fold the wings--something most pilots at Edwards Air Force Base\\n|can't do.\\n|\\n\\nWhat do you mean? Overstress the wings, and they fail at teh joints?\\n\\nYou'll have to enlighten us in the hinterlands.\\n\\n\\npat\\n\\n\",\n", + " \"From: uphrrmk@gemini.oscs.montana.edu (Jack Coyote)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nReply-To: uphrrmk@gemini.oscs.montana.edu (Jack Coyote)\\nOrganization: Never Had It, Never Will\\nLines: 14\\n\\nIn sci.astro, dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n[ a nearly perfect parody -- needed more random CAPS]\\n\\n\\nThanks for the chuckle. (I loved the bit about relevance to people starving\\nin Somalia!)\\n\\nTo those who've taken this seriously, READ THE NAME! (aloud)\\n\\n-- \\nThank you, thank you, I'll be here all week. Enjoy the buffet! \\n\\n\\n\",\n", + " \"Organization: Queen's University at Kingston\\nFrom: Graydon \\nSubject: Re: What if the USSR had reached the Moon first?\\n <1993Apr7.124724.22534@yang.earlham.edu>\\n <1993Apr12.161742.22647@yang.earlham.edu>\\nLines: 9\\n\\nThis is turning into 'what's a moonbase good for', and I ought\\nnot to post when I've a hundred some odd posts to go, but I would\\nthink that the real reason to have a moon base is economic.\\n\\nSince someone with space industry will presumeably have a much\\nlarger GNP than they would _without_ space industry, eventually,\\nthey will simply be able to afford more stuff.\\n\\nGraydon\\n\",\n", + " 'From: fischer@iesd.auc.dk (Lars Peter Fischer)\\nSubject: Re: Rumours about 3DO ???\\nIn-Reply-To: archer@elysium.esd.sgi.com\\'s message of 6 Apr 93 18:18:30 GMT\\nOrganization: Mathematics and Computer Science, Aalborg University\\n\\t <1993Apr6.144520.2190@unocal.com>\\n\\t\\nLines: 11\\n\\n\\n>>>>> \"Archer\" == Archer (Bad Cop) Surly (archer@elysium.esd.sgi.com)\\n\\nArcher> How about \"Interactive Sex with Madonna\"?\\n\\nor \"Sexium\" for short.\\n\\n/Lars\\n--\\nLars Fischer, fischer@iesd.auc.dk | It takes an uncommon mind to think of\\nCS Dept., Aalborg Univ., DENMARK. | these things. -- Calvin\\n',\n", + " \"From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Bikes vs. Horses (was Re: insect impacts f\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 34\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nNNTP-Posting-Host: slc4.ins.cwru.edu\\n\\n\\nIn a previous article, npet@bnr.ca (Nick Pettefar) says:\\n\\n>Jonathan E. Quist, on the Thu, 15 Apr 1993 14:26:42 GMT wibbled:\\n>: In article txd@ESD.3Com.COM (Tom Dietrich) writes:\\n>: >>In a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n>\\n>: [lots of things, none of which are quoted here]\\n>\\n>The nice thing about horses though, is that if they break down in the middle of\\n>nowhere, you can eat them.\\n\\n\\tAnd they're rather tasty.\\n\\n\\n> Fuel's a bit cheaper, too.\\n>\\n\\n\\tPer gallon (bushel) perhaps. Unfortunately they eat the same amount\\nevery day no matter how much you ride them. And if you don't fuel them they\\ndie. On an annual basis, I spend much less on bike stuff than Amy the Wonder\\nWife does on horse stuff. She has two horses, I've got umm, lesseee, 11 bikes.\\nI ride constantly, she rides four or five times a week. Even if you count \\ninsurance and the cost of the garage I built, I'm getting off cheaper than \\nshe is. And having more fun (IMHO).\\n\\n\\n\\n>\\n>\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n\",\n", + " 'From: chrisb@seachg.com (Chris Blask)\\nSubject: Re: A silly question on x-tianity\\nReply-To: chrisb@seachg.com (Chris Blask)\\nOrganization: Sea Change Corporation, Mississauga, Ontario, Canada\\nLines: 44\\n\\nwerdna@cco.caltech.edu (Andrew Tong) writes:\\n>mccullou@snake2.cs.wisc.edu (Mark McCullough) writes:\\n>\\n>>Question 2: This attitude god character seems awfully egotistical\\n>>and proud. But Christianity tells people to be humble. What\\'s the deal?\\n>\\n>Well, God pretty much has a right to be \"egotistical and proud.\" I\\n>mean, he created _you_, doesn\\'t he have the right to be proud of such\\n>a job?\\n>\\n>Of course, people don\\'t have much of a right to be proud. What have\\n>they accomplished that can match God\\'s accomplishments, anyways? How\\n>do their abilities compare with those of God\\'s. We\\'re an \"imbecile\\n>worm of the earth,\" to quote Pascal.\\n\\nGrumblegrumble... \\n\\n>If you were God, and you created a universe, wouldn\\'t you be just a\\n>little irked if some self-organizing cell globules on a tiny planet\\n>started thinking they were as great and awesome as you?\\n\\nunfortunately the logic falls apart quick: all-perfect > insulted or\\nthreatened by the actions of a lesser creature > actually by offspring >\\n???????????????????\\n\\nHow/why shuold any all-powerful all-perfect feel either proud or offended?\\nAnything capable of being aware of the relationship of every aspect of every \\nparticle in the universe during every moment of time simultaneously should\\nbe able to understand the cause of every action of every \\'cell globule\\' on\\neach tniy planet...\\n\\n>Well, actually, now that I think of it, it seems kinda odd that God\\n>would care at all about the Earth. OK, so it was a bad example. But\\n>the amazing fact is that He does care, apparently, and that he was\\n>willing to make some grand sacrifices to ensure our happiness.\\n\\n\"All-powerful, Owner Of Everything in the Universe Makes Great Sacrifices\"\\nmakes a great headline but it doesn\\'t make any sense. What did he\\nsacrifice? Where did it go that he couldn\\'t get it back? If he gave\\nsomething up, who\\'d he give it up to?\\n\\n-chris\\n\\n[you guys have fun, I\\'m agoin\\' to Key West!!]\\n',\n", + " 'From: deniz@mandolin.ctr.columbia.edu (Deniz Akkus)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: Columbia University Center for Telecommunications Research\\nX-Posted-From: mandolin.ctr.columbia.edu\\nNNTP-Posting-Host: sol.ctr.columbia.edu\\nLines: 43\\n\\nIn article <1993Apr20.164517.20876@kpc.com> henrik@quayle.kpc.com writes:\\n>In article <1993Apr20.000413.25123@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n>My response to the \"shooting down\" of a Turkish airplane over the Armenian\\n>air space was because of the IGNORANT posting of the person from your \\n>Country. Turks and Azeris consistantly WANT to drag ARMENIA into the\\n>KARABAKH conflict with Azerbaijan. The KARABAKHI-ARMENIANS who have lived\\n>in their HOMELAND for 3000 years (CUT OFF FROM ARMENIA and GIVEN TO AZERIS \\n>BY STALIN) are the ones DIRECTLY involved in the CONFLICT. They are defending \\n>themselves against AZERI AGGRESSION. Agression that has NO MERCY for INOCENT \\n>people that are costantly SHELLED with MIG-23\\'s and othe Russian aircraft. \\n>\\n>At last, I hope that the U.S. insists that Turkey stay out of the KARABAKH \\n>crisis so that the repeat of the CYPRUS invasion WILL NEVER OCCUR again.\\n>\\n\\nArmenia is involved in fighting with Azarbaijan. It is Armenian\\nsoldiers from mainland Armenia that are shelling towns in Azarbaijan.\\nYou might wish to read more about whether or not it is Azeri aggression\\nonly in that region. It seems to me that the Armenians are better\\norganized, have more success militarily and shell Azeri towns\\nrepeatedly. \\n\\nI don\\'t wish to get into the Cyprus discussion. Turkey had the right to\\nintervene, and it did. Perhaps the intervention was not supposed to\\nlast for so long, but the constant refusal of the Greek governments both\\non the island and in Greece to deal with reality is also to be blamed\\nfor the ongoing standoff in the region. \\n\\nLastly, why is there not a soc.culture.armenia? I vote yes for it.\\nAfter all, it is now free. \\n\\nregards,\\nDeniz\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n',\n", + " 'From: chrisb@tafe.sa.edu.au (Chris BELL)\\nSubject: Re: Don\\'t more innocents die without the death penalty?\\nOrganization: South Australian Regional Academic and Research Network\\nLines: 19\\nDistribution: world\\nNNTP-Posting-Host: baarnie.tafe.sa.edu.au\\n\\n\"James F. Tims\" writes:\\n\\n>By maintaining classes D and E, even in prison, it seems as if we \\n>place more innocent people at a higher risk of an unjust death than \\n>we would if the state executed classes D and E with an occasional error.\\n\\nI would rather be at a higher risk of being killed than actually killed by\\n ^^^^ ^^^^^^^^\\nmistake. Though I do agree with the concept that the type D and E murderers\\nare a massive waste of space and resources I don\\'t agree with the concept:\\n\\n\\tkilling is wrong\\n\\tif you kill we will punish you\\n\\tour punishment will be to kill you.\\n\\nSeems to be lacking in consistency.\\n\\n--\\n\"I know\" is nothing more than \"I believe\" with pretentions.\\n',\n", + " \"From: Leigh Palmer \\nSubject: Re: Orion drive in vacuum -- how?\\nX-Xxmessage-Id: \\nX-Xxdate: Fri, 16 Apr 93 06:33:17 GMT\\nOrganization: Simon Fraser University\\nX-Useragent: Nuntius v1.1.1d17\\nLines: 15\\n\\nIn article <1qn4bgINN4s7@mimi.UU.NET> James P. Goltz, goltz@mimi.UU.NET\\nwrites:\\n> Background: The Orion spacedrive was a theoretical concept.\\n\\nIt was more than a theoretical concept; it was seriously pursued by\\nFreeman Dyson et al many years ago. I don't know how well-known this is,\\nbut a high explosive Orion prototype flew (in the atmosphere) in San\\nDiego back in 1957 or 1958. I was working at General Atomic at the time,\\nbut I didn't learn about the experiment until almost thirty years later,\\nwhen \\nTed Taylor visited us and revealed that it had been done. I feel sure\\nthat someone must have film of that experiment, and I'd really like to\\nsee it. Has anyone out there seen it?\\n\\nLeigh\\n\",\n", + " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Israel does not kill reporters.\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 12\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n Anas Omran has claimed that, \"the Israelis used to arrest, and\\nsometime to kill some of these neutral reporters.\" The assertion\\nby Anas Omran is, of course, a total fabrication. If there is an\\nonce of truth iin it, I\\'m sure Anas Omran can document such a sad\\nand despicable event. Otherwise we may assume that it is another\\npiece of anti-Israel bullshit posted by someone whose family does\\nnot know how to teach their children to tell the truth. If Omran\\nwould care to retract this \\'error\\' I would be glad to retract the\\naccusation that he is a liar. If he can document such a claim, I\\nwould again be glad to apologize for calling him a liar. Failing\\nto do either of these would certainly show what a liar he is.\\n',\n", + " \"From: coburnn@spot.Colorado.EDU (Nicholas S. Coburn)\\nSubject: Re: Shipping a bike\\nNntp-Posting-Host: spot.colorado.edu\\nOrganization: University of Colorado, Boulder\\nLines: 31\\n\\nIn article <1qkhrm$7go@agate.berkeley.edu> manish@uclink.berkeley.edu (Manish Vij) writes:\\n>\\n>Can someone recommend how to ship a motorcycle from San Francisco\\n>to Seattle? And how much might it cost?\\n>\\n>I remember a thread on shipping. If someone saved the instructions\\n>on bike prep, please post 'em again, or email.\\n>\\n>Thanks,\\n>\\n>Manish\\n\\nStep 1) Join the AMA (American Motorcycling Association). Call 1-800-AMA-JOIN.\\n\\nStep 2) After you become a member, they will ship your bike, UNCRATED to \\njust about anywhere across the fruited plain for a few hundred bucks.\\n\\nI have used this service and have been continually pleased. They usually\\nonly take a few days for the whole thing, and you do not have to prepare\\nthe bike in any way (other than draining the gas). Not to mention that\\nit is about 25% of the normal shipping costs (by the time you crate a bike\\nand ship it with another company, you can pay around $1000)\\n\\n\\n________________________________________________________________________\\nNick Coburn DoD#6425 AMA#679817\\n '88CBR1000 '89CBR600\\n coburnn@spot.colorado.edu\\n________________________________________________________________________\\n\\n\\n\",\n", + " 'From: brody@eos.arc.nasa.gov (Adam R. Brody )\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: NASA Ames Research Center\\nDistribution: na\\nLines: 14\\n\\nprb@access.digex.com (Pat) writes:\\n\\n\\n>AW&ST had a brief blurb on a Manned Lunar Exploration confernce\\n>May 7th at Crystal City Virginia, under the auspices of AIAA.\\n\\n>Does anyone know more about this? How much, to attend????\\n\\n>Anyone want to go?\\n\\n>pat\\n\\nI got something in the mail from AIAA about it. Cost is $75.\\nSpeakers include John Pike, Hohn Young, and Ian Pryke.\\n',\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: $1bil space race ideas/moon base on the cheap.\\nArticle-I.D.: aurora.1993Apr25.150437.1\\nOrganization: University of Alaska Fairbanks\\nLines: 28\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nThat is an idea.. The most efficient moon habitat.. \\n\\nalso the idea of how to get the people off the moon once the prize was won..\\n\\nAlso the idea of how to rescue someone who is \"dying\" on the moon.\\n\\nMaybe have a area where they can all \"see\" each other, and can help each other\\nif something happens.. \\n\\nI liek the idea of one prize for the first moon landing and return, by a\\nnon-governmental body..\\n\\nAlso the idea of then having a moon habitat race.. \\n\\nI know we need to do somthing to get people involved..\\n\\nEccentric millionaire/billionaire would be nice.. We see how old Ross feels\\nabout it.. After all it would be a great promotional thing and a way to show he\\ndoes care about commericalization and the people.. Will try to broach the\\nsubject to him.. \\n\\nMoonbase on the cheap is a good idea.. NASA and friends seem to take to much\\ntime and give us to expensive stuff that of late does not work (hubble and\\nsuch). Basically what is the difference between a $1mil peice of junk and a\\nmulti $1mil piece of junk.. I know junk..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", + " 'From: jcm@head-cfa.harvard.edu (Jonathan McDowell)\\nSubject: Re: Shuttle Launch Question\\nOrganization: Smithsonian Astrophysical Observatory, Cambridge, MA, USA\\nDistribution: sci\\nLines: 23\\n\\nFrom article , by tombaker@world.std.com (Tom A Baker):\\n>>In article , ETRAT@ttacs1.ttu.edu (Pack Rat) writes...\\n>>>\"Clear caution & warning memory. Verify no unexpected\\n>>>errors. ...\". I am wondering what an \"expected error\" might\\n>>>be. Sorry if this is a really dumb question, but\\n> \\n> Parity errors in memory or previously known conditions that were waivered.\\n> \"Yes that is an error, but we already knew about it\"\\n> I\\'d be curious as to what the real meaning of the quote is.\\n> \\n> tom\\n\\n\\nMy understanding is that the \\'expected errors\\' are basically\\nknown bugs in the warning system software - things are checked\\nthat don\\'t have the right values in yet because they aren\\'t\\nset till after launch, and suchlike. Rather than fix the code\\nand possibly introduce new bugs, they just tell the crew\\n\\'ok, if you see a warning no. 213 before liftoff, ignore it\\'.\\n\\n - Jonathan\\n\\n\\n',\n", + " 'Subject: Re: There must be a creator! (Maybe)\\nFrom: halat@pooh.bears (Jim Halat)\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 24\\n\\nIn article <16BA1E927.DRPORTER@SUVM.SYR.EDU>, DRPORTER@SUVM.SYR.EDU (Brad Porter) writes:\\n>\\n> Science is wonderful at answering most of our questions. I\\'m not the type\\n>to question scientific findings very often, but... Personally, I find the\\n>theory of evolution to be unfathomable. Could humans, a highly evolved,\\n>complex organism that thinks, learns, and develops truly be an organism\\n>that resulted from random genetic mutations and natural selection?\\n\\n[...stuff deleted...]\\n\\nComputers are an excellent example...of evolution without \"a\" creator.\\nWe did not \"create\" computers. We did not create the sand that goes\\ninto the silicon that goes into the integrated circuits that go into\\nprocessor board. We took these things and put them together in an\\ninteresting way. Just like plants \"create\" oxygen using light through \\nphotosynthesis. It\\'s a much bigger leap to talk about something that\\ncreated \"everything\" from nothing. I find it unfathomable to resort\\nto believing in a creator when a much simpler alternative exists: we\\nsimply are incapable of understanding our beginnings -- if there even\\nwere beginnings at all. And that\\'s ok with me. The present keeps me\\nperfectly busy.\\n\\n-jim halat\\n\\n',\n", + " 'From: loss@fs7.ECE.CMU.EDU (Doug Loss)\\nSubject: Re: Death and Taxes (was Why not give $1 billion to...\\nOrganization: Electrical and Computer Engineering, Carnegie Mellon\\nLines: 7\\n\\nIn my last post I referred to Michael Adams as \"Nick.\" Completely my\\nerror; Nick Adams was a film and TV actor from the \\'50\\'s and early \\'60\\'s\\n(remember Johnny Yuma, The Rebel?). He was from my part of the country,\\nand Michael\\'s email address of \"nmsca[...]\" probably helped confuse things\\nin my mind. Purely user headspace error on my part. Sorry.\\n\\nDoug Loss\\n',\n", + " 'From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Shuttle oxygen (was Budget Astronaut)\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 19\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article <1993Apr16.151729.8610@aio.jsc.nasa.gov>, kjenks@gothamcity.jsc.nasa.gov writes:\\n\\n>Josh Hopkins (jbh55289@uxa.cso.uiuc.edu) replied:\\n>: Double wow. Can you land a shuttle with a 5cm hole in the wall?\\n>Personnally, I don\\'t know, but I\\'d like to try it sometime.\\n\\nAre you volunteering? :)\\n\\n> But a\\n>hole in the pressure vessel would cause us to immediately de-orbit\\n>to the next available landing site.\\n\\nWill NASA have \"available landing sites\" in the Russian Republic, now that they\\nare Our Friends and Comrades?\\n\\n\\n\\n Software engineering? That\\'s like military intelligence, isn\\'t it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n',\n", + " \"From: tony@morgan.demon.co.uk (Tony Kidson)\\nSubject: Re: Insurance and lotsa points... \\nDistribution: world\\nOrganization: The Modem Palace\\nReply-To: tony@morgan.demon.co.uk\\nX-Newsreader: Simple NEWS 1.90 (ka9q DIS 1.21)\\nLines: 16\\n\\nIn article <1993Apr19.211340.12407@adobe.com> cjackson@adobe.com writes:\\n\\n>I am very glad to know that none of you judgemental little shits has\\n\\nHey Pal! Who're you calling litte?\\n\\n\\nTony\\n\\n+---------------+------------------------------+-------------------------+\\n|Tony Kidson | ** PGP 2.2 Key by request ** |Voice +44 81 466 5127 |\\n|Morgan Towers, | The Cat has had to move now |E-Mail(in order) |\\n|Morgan Road, | as I've had to take the top |tony@morgan.demon.co.uk |\\n|Bromley, | off of the machine. |tny@cix.compulink.co.uk |\\n|England BR1 3QE|Honda ST1100 -=<*>=- DoD# 0801|100024.301@compuserve.com|\\n+---------------+------------------------------+-------------------------+\\n\",\n", + " 'From: dmatejka@netcom.com (Daniel Matejka)\\nSubject: Re: Speeding ticket from CHP\\nOrganization: Netcom - Online Communication Services\\nLines: 47\\n\\nIn article <1pq4t7$k5i@agate.berkeley.edu> downey@homer.CS.Berkeley.EDU (Allen B. Downey) writes:\\n> Fight your ticket : California edition by David Brown 1st ed.\\n> Berkeley, CA : Nolo Press, 1982\\n>\\n>The second edition is out (but not in UCB\\'s library). Good luck; let\\n>us know how it goes.\\n>\\n Daniel Matejka writes:\\n The fourth edition is out, too. But it\\'s probably also not\\nvery high on UCB\\'s \"gotta have that\" list.\\n\\nIn article <65930405053856/0005111312NA1EM@mcimail.com> 0005111312@mcimail.com (Peter Nesbitt) writes:\\n>Riding to work last week via Hwy 12 from Suisun, to I-80, I was pulled over by\\n>a CHP black and white by the 76 Gas station by Jameson Canyon Road. The\\n>officer stated \"...it like you were going kinda fast coming down\\n>highway 12. You been going at least 70 or 75.\" I just said okay,\\n>and did not agree or disagree to anything he said. \\n\\n Can you beat this ticket? Personally, I think it\\'s your Duty As a Citizen\\nto make it as much trouble as possible for them, so maybe they\\'ll Give Up\\nand Leave Us Alone Someday Soon.\\n The cop was certainly within his legal rights to nail you by guessing\\nyour speed. Mr. Brown (the author of Fight Your Ticket) mentions an\\nOakland judge who convicted a speeder \"on the officer\\'s testimony that\\nthe driver\\'s car sounded like it was being driven at an excessive speed.\"\\n You can pay off the State and your insurance company, or you can\\ntake it to court and be creative. Personally, I\\'ve never won that way\\nor seen anyone win, but the judge always listens politely. And I haven\\'t\\nseen _that_ many attempts.\\n You could try the argument that since bikes are shorter than the\\ncars whose speed the nice officer is accustomed to guessing, they therefore\\nappear to be further away, and so their speed appears to be greater than\\nit actually is. I left out a step or two, but you get the idea. If you\\ncan make it convincing, theoretically you\\'re supposed to win.\\n I\\'ve never tried proving the cop was mistaken. I did get to see\\nsome other poor biker try it. He was mixing up various facts like\\nthe maximum acceleration of a (cop) car, and the distance at which\\nthe cop had been pacing him, and end up demonstrating that he couldn\\'t\\npossibly have been going as fast as the cop had suggested. He\\'d\\nbrought diagrams and a calculator. He was Prepared. He lost. Keep\\nin mind cops do this all the time, and their word is better than yours.\\nMaybe, though, they don\\'t guess how fast bikes are going all the time.\\nBesides, this guy didn\\'t speak English very well, and ended up absolutely\\nconfounding the judge, the cop, and everyone else in the room who\\'d been\\nrecently criminalized by some twit with a gun and a quota.\\n Ahem. OK, I\\'m better now. Maybe he\\'d have won had his presentation\\nbeen more polished. Maybe not. He did get applause.\\n',\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Space Station Redesign (30826) Option C\\nArticle-I.D.: aurora.1993Apr25.214653.1\\nOrganization: University of Alaska Fairbanks\\nLines: 22\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1993Apr25.151108.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\\n> I like option C of the new space station design.. \\n> It needs some work, but it is simple and elegant..\\n> \\n> Its about time someone got into simple construction versus overly complex...\\n> \\n> Basically just strap some rockets and a nose cone on the habitat and go for\\n> it..\\n> \\n> Might be an idea for a Moon/Mars base to.. \\n> \\n> Where is Captain Eugenia(sp) when you need it (reference to russian heavy\\n> lifter, I think).\\n> ==\\n> Michael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n> \\n> \\n> \\n> \\n\\n\\nThis is a report, I got the subject messed up..\\n\",\n", + " 'From: oberto@genes.icgeb.trieste.it (Jacques Oberto)\\nSubject: Re: HELP!!! GRASP\\nOrganization: ICGEB\\nLines: 33\\n\\nCBW790S@vma.smsu.edu.Ext (Corey Webb) writes:\\n\\n>In article <1993Apr19.160944.20236W@baron.edb.tih.no>\\n>havardn@edb.tih.no (Haavard Nesse,o92a) writes:\\n>>\\n>>Could anyone tell me if it\\'s possible to save each frame\\n>>of a .gl (grasp) animation to .gif, .jpg, .iff or any other\\n>>picture formats.\\n>>\\n> \\n> If you have the GRASP animation system, then yes, it\\'s quite easy.\\n>You simply use GLIB to extract the image (each \"frame\" in a .GL is\\n>actually a complete .PCX or .CLP file), then use one of MANY available\\n>utilities to convert it. If you don\\'t have the GRASP package, I\\'m afraid\\n>I can\\'t help you. Sorry.\\n> By the way, before you ask, GRASP (GRaphics Animation System for\\n>Professionals) is a commercial product that sells for just over US$300\\n>from most mail-order companies I\\'ve seen. And no, I don\\'t have it. :)\\n> \\n> \\n> Corey Webb\\n> \\n\\nThere are several public domain utilities available at your usual\\narchive site that allow \\'extraction\\' of single frames from a .gl\\nfile, check in the \\'graphics\\' directories under *grasp. The problem \\nis that the .clp files you generate cannot be decoded by any of \\nthe many pd format converters I have used. Any hint welcome!\\nLet me know if you have problems locating the utilities.\\nHope it helps.\\n\\n-- \\nJacques Oberto \\n',\n", + " 'From: clump@acaps.cs.mcgill.ca (Clark VERBRUGGE)\\nSubject: Re: BGI Drivers for SVGA\\nOrganization: SOCS, McGill University, Montreal, Canada\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 29\\n\\nDominic Lai (cs_cylai@cs.ust.hk) wrote:\\n: Simon Crowe (scrowe@hemel.bull.co.uk) wrote:\\n: 8~> I require BGI drivers for Super VGA Displays and Super XVGA Displays. Does \\n: 8~> anyone know where I could obtain the relevant drivers ? (FTP sites ??)\\n\\n: \\tI would like to know too!\\n\\n: Regards,\\n: Dominic\\n\\ngarbo.uwasa.fi (or one of its many mirrors) has a file\\ncalled \"svgabg40\" in the programming subdirectory.\\nThese are svga bgi drivers for a variety of cards.\\n\\n[from the README]:\\n\"Card types supported: (SuperVGA drivers)\\n Ahead, ATI, Chips & Tech, Everex, Genoa, Paradise, Oak, Trident (both 8800 \\n and 8900, 9000), Tseng (both 3000 and 4000 chipsets) and Video7.\\n These drivers will also work on video cards with VESA capability.\\n The tweaked drivers will work on any register-compatible VGA card.\"\\n\\nenjoy,\\nClark Verbrugge\\nclump@cs.mcgill.ca\\n\\n--\\n\\n HONK HONK BLAT WAK WAK WAK WAK WAK UNGOW!\\n\\n',\n", + " 'From: pooder@rchland.vnet.ibm.com (Don Fearn)\\nSubject: Re: Antifreeze/coolant\\nReply-To: pooder@msus1.msus.edu\\t\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM\\nNntp-Posting-Host: garnet.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 34\\n\\nIn article <1993Apr15.193938.8569@research.nj.nec.com>, behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n|> \\tFor those of you with motorcycles of the liquid-cooled persuasion,\\n|> what brand of coolant do you use and why? I am looking for aluminum-safe\\n|> coolant, preferably phosphate-free, and preferably cheaper than $13/gallon.\\n|> (Can you believe it: the Kaw dealer wants $4.95 a QUART for the Official\\n|> Blessed Holy Kawasaki Coolant!!! No way I\\'m paying that usury...)\\n|> \\n\\nPrestone. I buy it at ShopKo for less \\nthan that a _gallon_. BMW has even more\\nexpensive stuff than Kawasaki (must be \\nfrom grapes only grown in certain parts of\\nthe fatherland), but BMW Dave* said \"Don\\'t \\nworry about it -- just change it yearly and\\nkeep it topped off\". It\\'s been keeping \\nGretchen happy since \\'87, so I guess it\\'s OK.\\n\\nKept my Rabbit\\'s aluminum radiator hoppy for\\n12 years and 130,000 miles, too, so I guess\\nit\\'s aluminum safe. \\n\\n*Former owner of the late lamented Rochester \\nBMW Motorcycles and all around good guy.\\n\\n-- \\n\\n\\n Pooder - Rochester, MN - DoD #591 \\n -------------------------------------------------------------------------\\n \"What Do *You* Care What Other People Think?\" -- Richard Feynman \\n -------------------------------------------------------------------------\\n I share garage space with: Gretchen - \\'86 K75 Harvey - \\'72 CB500 \\n -------------------------------------------------------------------------\\n << Note the different \"Reply-To:\" address if you want to send me e-mail>>\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Vandalizing the sky\\nOrganization: University of Illinois at Urbana\\nLines: 50\\n\\nyamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n\\n>enzo@research.canon.oz.au (Enzo Liguori) writes:\\n>>WHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n\\n>>1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\n>>In 1950, science fiction writer Robert Heinlein published \"The\\n>>Man Who Sold the Moon,\" which involved a dispute over the sale of\\n>>rights to the Moon for use as billboard. NASA has taken the firsteps toward this\\n>>hideous vision of the future. Observers were\\n>>startled this spring when a NASA launch vehicle arrived at the\\n>>pad with \"SCHWARZENEGGER\" painted in huge block letters on the\\n>>side of the booster rockets. Space Marketing Inc. had arranged\\n>>for the ad to promote Arnold\\'s latest movie.\\n\\n>Well, if you\\'re going to get upset with this, you might as well direct\\n>some of this moral outrage towards Glavcosmos as well. They pioneered\\n>this capitalist application of booster adverts long before NASA.\\n\\nIn fact, you can all direct your ire at the proper target by ingoring NASA \\naltogether. The rocket is a commercial launch vechicle - a Conestoga flying \\na COMET payload. NASA is simply the primary customer. I believe SDIO has a\\nsmall payload as well. The advertising space was sold by the owners of the\\nrocket, who can do whatever they darn well please with it. In addition, these\\nanonymous \"observers\" had no reason to be startled. The deal made Space News\\nat least twice. \\n\\n>>Now, Space Marketing\\n>>is working with University of Colorado and Livermore engineers on\\n>>a plan to place a mile-long inflatable billboard in low-earth\\n>>orbit.\\n>>NASA would provide contractual launch services. However,\\n>>since NASA bases its charge on seriously flawed cost estimates\\n>>(WN 26 Mar 93) the taxpayers would bear most of the expense. \\n\\n>>Is NASA really supporting this junk?\\n\\n>And does anyone have any more details other than what was in the WN\\n>news blip? How serious is this project? Is this just in the \"wild\\n>idea\" stage or does it have real funding?\\n\\nI think its only fair to find that out before everyone starts having a hissy\\nfit. The fact that they bothered to use the conditional tense suggests that\\nit has not yet been approved.\\n\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " 'From: dewey@risc.sps.mot.com (Dewey Henize)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nOrganization: Motorola, Inc. -- Austin,TX\\nLines: 48\\nNNTP-Posting-Host: rtfm.sps.mot.com\\n\\nIn article <1993Apr15.212943.15118@bnr.ca> (Rashid) writes:\\n[deletions]\\n>\\n>The fatwa was levelled at the person of Rushdie - any actions of\\n>Rushdie that feed the situation contribute to the legitimization of\\n>the ruling. The book remains in circulation not by some independant\\n>will of its own but by the will of the author and the publishers. The fatwa\\n>against the person of Rushdie encompasses his actions as well. The\\n>crime was certainly a crime in progress (at many levels) and was being\\n>played out (and played up) in the the full view of the media.\\n>\\n>P.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\n>applies to Rushdie and may be encompassed under the umbrella\\n>of the \"fasad\" ruling.\\n\\nIf this is grounded firmly in Islam, as you claim, then you have just\\nexposed Islam as the grounds for terrorism, plain and simple.\\n\\nWhether you like it or not, whether Rushdie acted like a total jerk or\\nnot, there is no acceptable civilized basis for putting someone in fear\\nof their life for words.\\n\\nIt simply does not matter whether his underlying motive was to find the\\nworst possible way he could to insult Muslims and their beliefs, got that?\\nYou do not threaten the life of someone for words - when you do, you\\nquite simply admit the backruptcy of your position. If you support\\nthreatening the life of someone for words, you are not yet civilized.\\n\\nThis is exactly where I, and many of the people I know, have to depart\\nfrom respecting the religions of others. When those beliefs allow and\\nencourage (by interpretation) the killing of non-physical opposition.\\n\\nYou, or I or anyone, are more than privledged to believe that someone,\\nwhether it be Rushdie or Bush or Hussien or whover, is beyond the pale\\nof civilized society and you can condemn his/her soul, refuse to allow\\nany members of your association to interact with him/her, _peacably_\\ndemonstrate to try to convince others to disassociate themselves from\\nthe \"miscreants\", or whatever, short of physical force.\\n\\nBut once you physically threaten, or support physical threats, you get\\nmuch closer to your earlier comparison of rape - with YOU as the rapist\\nwho whines \"She asked for it, look how she was dressed\".\\n\\nBlaming the victim when you are unable to be civilized doesn\\'t fly.\\n\\nDew\\n-- \\nDewey Henize Sys/Net admin RISC hardware (512) 891-8637 pager 928-7447 x 9637\\n',\n", + " \"Subject: Re: Bikes vs. Horses (was Re: insect impac\\nFrom: emd@ham.almanac.bc.ca\\nDistribution: world\\nOrganization: Robert Smits\\nLines: 21\\n\\ncooper@mprgate.mpr.ca (Greg Cooper) writes:\\n\\n> In article <1qeftj$d0i@sixgun.East.Sun.COM>, egreen@east.sun.com (Ed Green - \\n> >In article sda@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturde\\n> >>\\n> >>\\tOnly exceptional ones like me. Average ones like you can barely fart\\n> >>by themselves.\\n> >\\n> >Fuck you very much, Mike.\\n> >\\n> \\n> Gentlemen _please_. \\n> -- \\n\\n\\nGreg's obviously confused. There aren't many (any) gentlemen on this \\nnewsgroup. Well, maybe. One or two.\\n\\n\\nRobert Smits Ladysmith BC | If Lucas built weapons, wars\\nemd@ham.almanac.bc.ca | would never start, either.\\n\",\n", + " \"From: collins@well.sf.ca.us (Steve Collins)\\nSubject: Re: Orbital RepairStation\\nNntp-Posting-Host: well.sf.ca.us\\nOrganization: Whole Earth 'Lectronic Link\\nLines: 29\\n\\n\\nThe difficulties of a high Isp OTV include:\\nLong transfer times (radiation damage from VanAllen belts for both\\n the spacecraft and OTV\\nArcjets or Xenon thrusters require huge amounts of power so you have\\nto have either nuclear power source (messy, dangerous and source of\\nradiation damage) or BIG solar arrays (sensitive to radiation, or heavy)\\nthat make attitude control and docking a big pain.\\n\\nIf you go solar, you have to replace the arrays every trip, with\\ncurrent technology. Nuclear power sources are strongly restricted\\nby international treaty.\\n\\nRefueling (even for very high Isp like xenon) is still required and]\\nturn out to be a pain.\\n\\nYou either have to develop autonomous rendezvous or long range teleoperation\\nto do docking or ( and refueling) .\\n\\nYou still can't do much plane change because the deltaV required is so high!\\n\\nThe Air Force continues to look at doing things this way though. I suppose\\nthey are biding their time till the technology becomes available and\\nthe problems get solved. Not impossible in principle, but hard to\\ndo and marginally cheaper than one shot rockets, at least today.\\n\\nJust a few random thoughts on high Isp OTV's. I designed one once...\\n\\n Steve Collins\\n\",\n", + " \"From: lm001@rrz.Uni-Koeln.DE (Erwin H. Keeve)\\nSubject: Marchin Cubes\\nOrganization: Regional Computing Center, University of Cologne\\nLines: 27\\nDistribution: world\\nNNTP-Posting-Host: rs1.rrz.uni-koeln.de\\nKeywords: Polygon Reduction\\n\\n\\n\\nHi there,\\n\\nis there anybody who know a polygon_reduction algorithm for\\nmarching cube surfaces. e.g. the algirithm of Schroeder,\\nSiggraph'92.\\n\\nFor any hints, hugs and kisses.\\n\\n- Erwin\\n\\n ,,,\\n (o o)\\n ___________________________________________oOO__(-)__OOo_____________\\n|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|_|\\n|_|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|\\n| | |\\n| Erwin Keeve | adress: Peter-Welter-Platz 2 |\\n| | W-5000 Cologne 1, Germany |\\n| | |\\n| Dept. of Computergraphics & | phone: +49-221-20189-132 (-192) |\\n| Computeranimation | FAX: +49-221-20189-17 |\\n| | |\\n| Academy of Media Arts Cologne | Email: keeve@khm.uni-koeln.de |\\n|_______________________________|_____________________________________|\\n\\n\",\n", + " \"From: shaig@Think.COM (Shai Guday)\\nSubject: Basil, opinions? (Re: Water on the brain)\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 40\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article <1993Apr15.204930.9517@thunder.mcrcim.mcgill.edu>, hasan@McRCIM.McGill.EDU writes:\\n|> \\n|> In article <1993Apr15.055341.6075@nysernet.org>, astein@nysernet.org (Alan Stein) writes:\\n|> |> I guess Hasan finally revealed the source of his claim that Israel\\n|> |> diverted water from Lebanon--his imagination.\\n|> |> -- \\n|> |> Alan H. Stein astein@israel.nysernet.org\\n|> Mr. water-head,\\n|> i never said that israel diverted lebanese rivers, in fact i said that\\n|> israel went into southern lebanon to make sure that no \\n|> water is being used on the lebanese\\n|> side, so that all water would run into Jordan river where there\\n|> israel will use it !#$%^%&&*-head.\\n\\nOf course posting some hard evidence or facts is much more\\ndifficult. You have not bothered to substantiate this in\\nany way. Basil, do you know of any evidence that would support\\nthis?\\n\\nI can just imagine a news report from ancient times, if Hasan\\nhad been writing it.\\n\\nNewsflash:\\nCairo AP (Ancient Press). Israel today denied Egypt acces to the Red\\nSea. In a typical display of Israelite agressiveness, the leader of\\nthe Israelite slave revolt, former prince Moses, parted the Red Sea.\\nThe action is estimated to have caused irreparable damage to the environment.\\nEgyptian authorities have said that thousands of fisherman have been\\ndenied their livelihood by the parted waters. Pharaoh's brave charioteers\\nwere successful in their glorious attempt to cause the waters of the\\nRed Sea to return to their normal state. Unfortunately they suffered\\nheavy casualties while doing so.\\n\\n|> Hasan \\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n\",\n", + " 'From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: images of earth\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM UK Labs\\nLines: 6\\n\\nLook in the /pub/SPACE directory on ames.arc.nasa.gov - there are a number\\nof earth images there. You may have to hunt around the subdirectories as\\nthings tend to be filed under the mission (ie, \"APOLLO\") rather than under\\t\\nthe image subject.\\t\\n\\nRick\\n',\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: DC-X update???\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 25\\n\\nIn article schumach@convex.com (Richard A. Schumacher) writes:\\n\\n>Would the sub-orbital version be suitable as-is (or \"as-will-be\") for use\\n>as a reuseable sounding rocket?\\n\\nDC-X as is today isn\\'t suitable for this. However, the followon SDIO\\nfunds will. A reusable sounding rocket was always SDIO\\'s goal.\\n\\n>Thank Ghod! I had thought that Spacelifter would definitely be the\\n>bastard Son of NLS.\\n\\nSo did I. There is a lot going on now and some reports are due soon \\nwhich should be very favorable. The insiders have been very bush briefing\\nthe right people and it is now paying off.\\n\\nHowever, public support is STILL critical. In politics you need to keep\\nconstant pressure on elected officials.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " 'From: moseley@u.washington.edu (Steve L. Moseley)\\nSubject: Re: Observation re: helmets\\nOrganization: Microbial Pathogenesis and Motorcycle Maintenance\\nLines: 20\\nDistribution: world\\nNNTP-Posting-Host: microb0.biostat.washington.edu\\n\\nIn article <1qk5oi$d0i@sixgun.East.Sun.COM>\\n egreen@east.sun.com (Ed Green - Pixel Cruncher) writes:\\n\\n>If your primary concern is protecting the passenger in the event of a\\n>crash, have him or her fitted for a helmet that is their size. If your\\n>primary concern is complying with stupid helmet laws, carry a real big\\n>spare (you can put a big or small head in a big helmet, but not in a\\n>small one).\\n\\nSo what should I carry if I want to comply with intelligent helmet laws?\\n\\n(The above comment in no way implies support for any helmet law, nor should \\nsuch support be inferred. A promise is a promise.)\\n\\nSteve\\n__________________________________________________________________________\\nSteve L. Moseley moseley@u.washington.edu\\nMicrobiology SC-42 Phone: (206) 543-2820\\nUniversity of Washington FAX: (206) 543-8297\\nSeattle, WA 98195\\n',\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Objective morality (was Re: Humans have \"gone somewhat beyond\" what, exactly? In one thread\\n>you\\'re telling us that natural morality is what animals do to\\n>survive, and in this thread you are claiming that an omniscient\\n>being can \"definitely\" say what is right and what is wrong. So\\n>what does this omniscient being use for a criterion? The long-\\n>term survival of the human species, or what?\\n\\nWell, that\\'s the question, isn\\'t it? The goals are probably not all that\\nobvious. We can set up a few goals, like happiness and liberty and\\nthe golden rule, etc. But these goals aren\\'t inherent. They have to\\nbe defined before an objective system is possible.\\n\\n>How does omniscient map into \"definitely\" being able to assign\\n>\"right\" and \"wrong\" to actions?\\n\\nIt is not too difficult, one you have goals in mind, and absolute\\nknoweldge of everyone\\'s intent, etc.\\n\\n>>Now you are letting an omniscient being give information to me. This\\n>>was not part of the original premise.\\n>Well, your \"original premises\" have a habit of changing over time,\\n>so perhaps you\\'d like to review it for us, and tell us what the\\n>difference is between an omniscient being be able to assign \"right\"\\n>and \"wrong\" to actions, and telling us the result, is. \\n\\nOmniscience is fine, as long as information is not given away. Isn\\'t\\nthis the resolution of the free will problem? An interactive omniscient\\nbeing changes the situation.\\n\\n>>Which type of morality are you talking about? In a natural sense, it\\n>>is not at all immoral to harm another species (as long as it doesn\\'t\\n>>adversely affect your own, I guess).\\n>I\\'m talking about the morality introduced by you, which was going to\\n>be implemented by this omniscient being that can \"definitely\" assign\\n>\"right\" and \"wrong\" to actions.\\n>You tell us what type of morality that is.\\n\\nWell, I was speaking about an objective system in general. I didn\\'t\\nmention a specific goal, which would be necessary to determine the\\nmorality of an action.\\n\\nkeith\\n',\n", + " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Serdar\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nWhat are you, retarded?\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", + " 'From: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nSubject: Re: rejoinder. Questions to Israelis\\nReply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nOrganization: The National Capital Freenet\\nLines: 34\\n\\n\\nIn a previous article, cpr@igc.apc.org (Center for Policy Research) says:\\n\\n>today ? Finally, if Israel wants peace, why can\\'t it declare what\\n>it considers its legitimate and secure borders, which might be a\\n>base for negotiations? Having all the above facts in mind, one\\n>cannot blame Arab countries to fear Israeli expansionism, as a\\n>number of wars have proved (1948, 1956, 1967, 1982).\\n\\nOh yeah, Israel was really ready to \"expand its borders\" on the holiest day\\nof the year (Yom Kippur) when the Arabs attacked in 1973. Oh wait, you\\nchose to omit that war...perhaps because it 100% supports the exact \\nOPPOSITE to the point you are trying to make? I don\\'t think that it\\'s\\nbecause it was the war that hit Israel the hardest. Also, in 1967 it was\\nEgypt, not Israel who kicked out the UN force. In 1948 it was the Arabs\\nwho refused to accept the existance of Israel BASED ON THE BORDERS SET\\nBY THE UNITED NATIONS. In 1956, Egypt closed off the Red Sea to Israeli\\nshipping, a clear antagonistic act. And in 1982 the attack was a response\\nto years of constant shelling by terrorist organizations from the Golan\\nHeights. Children were being murdered all the time by terrorists and Israel\\nfinally retaliated. Nowhere do I see a war that Israel started so that \\nthe borders could be expanded.\\n \\n Steve\\n-- \\n------------------------------------------------------------------------------\\n| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\\n| Mossad@qube.ocunix.on.ca |\\n| <> |\\n',\n", + " 'From: yamauchi@ces.cwru.edu (Brian Yamauchi)\\nSubject: Griffin / Office of Exploration: RIP\\nOrganization: Case Western Reserve University\\nLines: 19\\nDistribution: world\\nNNTP-Posting-Host: yuggoth.ces.cwru.edu\\n\\nAny comments on the absorbtion of the Office of Exploration into the\\nOffice of Space Sciences and the reassignment of Griffin to the \"Chief\\nEngineer\" position? Is this just a meaningless administrative\\nshuffle, or does this bode ill for SEI?\\n\\nIn my opinion, this seems like a Bad Thing, at least on the surface.\\nGriffin seemed to be someone who was actually interested in getting\\nthings done, and who was willing to look an innovative approaches to\\ngetting things done faster, better, and cheaper. It\\'s unclear to me\\nwhether he will be able to do this at his new position.\\n\\nDoes anyone know what his new duties will be?\\n--\\n_______________________________________________________________________________\\n\\nBrian Yamauchi\\t\\t\\tCase Western Reserve University\\nyamauchi@alpha.ces.cwru.edu\\tDepartment of Computer Engineering and Science\\n_______________________________________________________________________________\\n\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: sgi\\nLines: 24\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <115468@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n|> In article <1qg79g$kl5@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >You are amazed that I find it difficult to grasp it when\\n|> >people justify death-threats against Rushdie with the \\n|> >claim \"he was born Muslim?\"\\n|> \\n|> This is empty rhetoric. I am amazed at your inability to understand what\\n|> I am saying not that you find it difficult to \"grasp it when people\\n|> justify death-threats...\". I find it amazing that your ability to\\n|> consider abstract questions in isolation. You seem to believe in the\\n|> falsity of principles by the consequence of their abuse. You must *hate*\\n|> physics!\\n\\nYou\\'re closer than you might imagine. I certainly despised living\\nunder the Soviet regime when it purported to organize society according\\nto what they fondly imagined to be the \"objective\" conclusions of\\nMarxist dialectic.\\n\\nBut I don\\'t hate Physics so long as some clown doesn\\'t start trying\\nto control my life on the assumption that we are all interchangeable\\natoms, rather than individual human beings.\\n\\njon. \\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Metric vs English\\nArticle-I.D.: mksol.1993Apr6.131900.8407\\nOrganization: Texas Instruments Inc\\nLines: 31\\n\\nIn <1993Apr5.195215.16833@pixel.kodak.com> dj@ekcolor.ssd.kodak.com (Dave Jones) writes:\\n\\n>Keith Mancus (mancus@sweetpea.jsc.nasa.gov) wrote:\\n>> Bruce_Dunn@mindlink.bc.ca (Bruce Dunn) writes:\\n>> > SI neatly separates the concepts of \"mass\", \"force\" and \"weight\"\\n>> > which have gotten horribly tangled up in the US system.\\n>> \\n>> This is not a problem with English units. A pound is defined to\\n>> be a unit of force, period. There is a perfectly good unit called\\n>> the slug, which is the mass of an object weighing 32.2 lbs at sea level.\\n>> (g = 32.2 ft/sec^2, of course.)\\n>> \\n\\n>American Military English units, perhaps. Us real English types were once \\n>taught that a pound is mass and a poundal is force (being that force that\\n>causes 1 pound to accelerate at 1 ft.s-2). We had a rare olde tyme doing \\n>our exams in those units and metric as well.\\n\\nAmerican, perhaps, but nothing military about it. I learned (mostly)\\nslugs when we talked English units in high school physics and while\\nthe teacher was an ex-Navy fighter jock the book certainly wasn\\'t\\nproduced by the military.\\n\\n[Poundals were just too flinking small and made the math come out\\nfunny; sort of the same reason proponents of SI give for using that.] \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: arf@genesis.MCS.COM (Jack Schmidling)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: MCSNet Contributor, Chicago, IL\\nLines: 26\\nNNTP-Posting-Host: localhost.mcs.com\\n\\nIn article jim@specialix.com (Jim Maurer) writes:\\n>arf@genesis.MCS.COM (Jack Schmidling) writes:\\n>>>\\n>\\n>\\n>>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>\\n>The donations are tax deductible like any donations to a non-profit\\n>organization. I\\'ve donated money to a group restoring streetcars\\n>and it was tax deductible. Why don\\'t you contribute to a group\\n>helping the homeless if you so concerned?\\n\\nI do (did) contribute to the ARF mortgage fund but when interest\\nrates plumetted, I just paid it off.\\n\\nThe problem is, I couldn\\'t convince Congress to move my home to \\na nicer location on Federal land.\\n\\nBTW, even though the building is alleged to be funded by tax exempt\\nprivate funds, the maintainence and operating costs will be borne by \\ntaxpayers forever.\\n\\nWould anyone like to guess how much that will come to and tell us why\\nthis point is never mentioned?\\n\\njs\\n',\n", + " \"From: camter28@astro.ocis.temple.edu (Carter Ames)\\nSubject: Re: alt.raytrace (potential group)\\nOrganization: Temple University\\nLines: 7\\nNntp-Posting-Host: astro.ocis.temple.edu\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\n\\n\\n\\n Yes, please create the group alt.raytrace soon!!\\nI'm hooked on pov.\\ngeez. like I don't have anything better to do....\\nOH!! dave letterman is on...\\n\",\n", + " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Magellan Update - 04/23/93\\nOrganization: Jet Propulsion Laboratory\\nLines: 34\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Magellan, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from Doug Griffith, Magellan Project Manager\\n\\n MAGELLAN STATUS REPORT\\n April 23, 1993\\n\\n1. The Magellan spacecraft continues to operate normally, gathering\\ngravity data to plot the density variations of Venus in the\\nmid-latitudes. The solar panel offpoint was returned to zero degrees\\nand spacecraft temperatures dropped 2-3 degrees C.\\n\\n2. An end-to-end test of the Delayed Aerobraking Data readout\\nprocess was conducted this week in preparation for the Transition\\nExperiment. There was some difficulty locking up to the data frames,\\nand engineers are presently checking whether the problem was in\\nequipment at the tracking station.\\n\\n3. Magellan has completed 7277 orbits of Venus and is now 32 days\\nfrom the end of Cycle 4 and the start of the Transition Experiment.\\n\\n4. Magellan scientists were participating in the Brown-Vernadsky\\nMicrosymposium at Brown University in Providence, RI, this week. This\\njoint meeting of U.S. and Russian Venus researchers has been\\ncontinuing for many years.\\n\\n5. A three-day simulation of Transition Experiment aerobraking\\nactivities is planned for next week, including Orbit Trim Maneuvers\\nand Starcal (Star calibration) Orbits.\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n',\n", + " 'From: hasan@McRCIM.McGill.EDU\\nSubject: Re: ISLAM BORDERS. ( was :Israel: misisipi to ganges)\\nOriginator: hasan@lightning.mcrcim.mcgill.edu\\nNntp-Posting-Host: lightning.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 26\\n\\n\\nIn article <4805@bimacs.BITNET>, ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n|> \\n|> Hassan and some other seemed not to be a ware that Jews celebrating on\\n|> these days Thje Passover holliday the holidy of going a way from the\\n|> Nile.\\n|> So if one let his imagination freely work it seemed beter to write\\n|> that the Zionist drean is \"from the misisipi to the Nile \".\\n\\nthe question is by going East or West from the misisipi. on either choice\\nyou would loose Palestine or Broklyn, N.Y.\\n\\nI thought you\\'re gonna say fromn misisipi back to the misisipi !\\n\\n|> By the way :\\n|> \\n|> What are the borders the Islamic world dreams about ??\\n|> \\n|> Islamic readers, I am waiting to your honest answer.\\n\\nLet\\'s say : \" let\\'s establish the islamic state first\" or \"let\\'s free our\\noccupied lands first\". And then we can dream about expansion, Mr. Gideon\\n\\n\\nhasan\\n',\n", + " 'From: qpliu@phoenix.Princeton.EDU (q.p.liu)\\nSubject: Re: free moral agency\\nOriginator: news@nimaster\\nNntp-Posting-Host: phoenix.princeton.edu\\nReply-To: qpliu@princeton.edu\\nOrganization: Princeton University\\nLines: 26\\n\\nIn article kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n>In article <1993Apr15.000406.10984@Princeton.EDU> qpliu@phoenix.Princeton.EDU (q.p.liu) writes:\\n>\\n>>>So while Faith itself is a Gift, obedience is what makes Faith possible.\\n>>What makes obeying different from believing?\\n\\n>\\tI am still wondering how it is that I am to be obedient, when I have \\n>no idea to whom I am to be obedient!\\n\\nIt is all written in _The_Wholly_Babble:_the_Users_Guide_to_Invisible_\\n_Pink_Unicorns_.\\n\\nTo be granted faith in invisible pink unicorns, you must read the Babble,\\nand obey what is written in it.\\n\\nTo obey what is written in the Babble, you must believe that doing so is\\nthe way to be granted faith in invisible pink unicorns.\\n\\nTo believe that obeying what is written in the Babble leads to believing\\nin invisible pink unicorns, you must, essentially, believe in invisible\\npink unicorns.\\n\\nThis bit of circular reasoning begs the question:\\nWhat makes obeying different from believing?\\n-- \\nqpliu@princeton.edu Standard opinion: Opinions are delta-correlated.\\n',\n", + " \"From: hugo@hydra.unm.edu (patrice cummings)\\nSubject: polygon orientation in DXF?\\nOrganization: University of New Mexico, Albuquerque\\nLines: 21\\nNNTP-Posting-Host: hydra.unm.edu\\n\\n\\nHi. I'm writing a program to convert .dxf files to a database\\nformat used by a 3D graphics program I've written. My program stores\\nthe points of a polygon in CCW order. I've used 3D Concepts a \\nlittle and it seems that the points are stored in the order\\nthey are drawn.\\n\\nDoes the DXF format have a way of indicating which order the \\npoints are stored in, CW or CCW? Its easy enough to convert,\\nbut if I don't know which way they are stored, I dont know \\nwhich direction the polygon should be visible from.\\n\\nIf DXF doesn't handle this, can anyone recommend a workaround?\\nThe best I can think of is to create two polygons for each one\\nin the DXF file, one stored CW and the other CCW. But that\\ndoubles the number of polygons and decreases speed...\\n\\nThanks in advance for any help,\\n\\nPatrice\\nhugo@hydra.unm.edu \\n\",\n", + " \"From: ricardo@rchland.vnet.ibm.com (Ricardo Hernandez Muchado)\\nSubject: Re: Rumours about 3DO ???\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: rs43873.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 74\\n\\nIn article <1993Apr15.164940.11632@mercury.unt.edu>, Sean McMains writes:\\n|> In article <1993Apr15.144843.19549@rchland.ibm.com> Ricardo Hernandez\\n|> Muchado, ricardo@rchland.vnet.ibm.com writes:\\n|> > And CD-I's CPU doesn't help much either. I understand it is\\n|> >a 68070 (supposedly a variation of a 68000/68010) running at something\\n|> >like 7Mhz. With this speed, you *truly* need sprites.\\n|> \\n|> Wow! A 68070! I'd be very interested to get my hands on one of these,\\n|> especially considering the fact that Motorola has not yet released the\\n|> 68060, which is supposedly the next in the 680x0 lineup. 8-D\\n\\n Sean, the 68070 exists! :-)\\n\\n|> \\n|> Ricardo, the animation playback to which Lawrence was referring in an\\n|> earlier post is plain old Quicktime 1.5 with the Compact Video codec.\\n|> I've seen digitized video (some of Apple's early commercials, to be\\n|> precise) running on a Centris 650 at about 30fps very nicely (16-bit\\n|> color depth). I would expect that using the same algorithm, a RISC\\n|> processor should be able to approach full-screen full-motion animation,\\n|> though as you've implied, the processor will be taxed more with highly\\n|> dynamic material.\\n|> ========================================================================\\n|> Sean McMains | Check out the Gopher | Phone:817.565.2039\\n|> University of North Texas | New Bands Info server | Fax :817.565.4060\\n|> P.O. Box 13495 | at seanmac.acs.unt.edu | E-Mail:\\n|> Denton TX 76203 | | McMains@unt.edu\\n\\n\\n Sean, I don't want to get into a 'mini-war' by what I am going to say,\\nbut I have to be a little bit skeptic about the performance you are\\nclaiming on the Centris, you'll see why (please, no-flames, I reserve\\nthose for c.s.m.a :-) )\\n\\n I was in Chicago in the last consumer electronics show, and Apple had a\\nbooth there. I walked by, and they were showing real-time video capture\\nusing a (Radious or SuperMac?) card to digitize and make right on the spot\\nquicktime movies. I think the quicktime they were using was the old one\\n(1.5).\\n\\n They digitized a guy talking there in 160x2xx something. It played back quite\\nnicely and in real time. The guy then expanded the window (resized) to 25x by\\n3xx (320 in y I think) and the frame rate decreased enough to notice that it\\nwasn't 30fps (or about 30fps) anymore. It dropped to like 15 fps. Then he\\nincreased it just a bit more, and it dropped to 10<->12 fps. \\n\\n Then I asked him what Mac he was using... He was using a Quadra (don't know\\nwhat model, 900?) to do it, and he was telling the guys there that the Quicktime\\ncould play back at the same speed even on an LCII.\\n\\n Well, I spoiled his claim so to say, since a 68040 Quadra Mac was having\\na little bit of trouble. And this wasn't even from the hardisk! This was\\nfrom memory!\\n\\n Could it be that you saw either a newer version of quicktime, or some\\nhardware assisted Centris, or another software product running the \\nanimation (like supposedly MacroMind's Accelerator?)?\\n\\n Don't misunderstand me, I just want to clarify this.\\n\\n But for the sake of the posting about a computer doing it or not, I can\\nclaim 320x200 (a tad more with overscan) being done in 256,000+ colors in \\nmy computer (not from the hardisk) at 30fps with Scala MM210.\\n\\n But I agree, if we consider MPEG stuff, I think a multimedia consumer\\nlow-priced box has a lot of market... I just think 3DO would make it, \\nno longer CD-I.\\n\\n--------------------------------------\\nRaist New A1200 owner 320<->1280 in x, 200<->600 in y\\nin 256,000+ colors from a 24-bit palette. **I LOVE IT!**<- New Low Fat .sig\\n*don't e-mail me* -> I don't have a valid address nor can I send e-mail\\n\\n \\n\",\n", + " 'Reply-To: dcs@witsend.tnet.com\\nFrom: \"D. C. Sessions\" \\nOrganization: Nobody but me -- really\\nX-Newsposter: TMail version 1.20R\\nSubject: Re: Zionism is Racism\\nDistribution: world\\nLines: 23\\n\\nIn <1993Apr21.104330.16704@ifi.uio.no>, michaelp@ifi.uio.no (Michael Schalom Preminger) wrote:\\n# \\n# In article <20APR93.23565659.0109@VM1.MCGILL.CA>, B8HA000 writes:\\n# > In Re:Syria\\'s Expansion, the author writes that the UN thought\\n# > Zionism was Racism and that they were wrong. They were correct\\n# > the first time, Zionism is Racism and thankfully, the McGill Daily\\n# > (the student newspaper at McGill) was proud enough to print an article\\n# > saying so. If you want a copy, send me mail.\\n# > \\n# Was the article about zionism? or about something else. The majority\\n# of people I heard emitting this ignorant statement, do not really\\n# know what zionism is. They have just associated it with what they think\\n# they know about the political situation in the middle east. \\n# \\n# So Steve: Lets here, what IS zionism?\\n\\n Assuming that you mean \\'hear\\', you weren\\'t \\'listening\\': he just\\n told you, \"Zionism is Racism.\" This is a tautological statement.\\n\\n--- D. C. Sessions Speaking for myself ---\\n--- Note new network address: dcs@witsend.tnet.com ---\\n--- Author (and everything else!) of TMail (DOS mail/news shell) ---\\n',\n", + " \"From: aron@tikal.ced.berkeley.edu (Aron Bonar)\\nSubject: Re: 3d-Studio V2.01 : Any differences with previous version\\nOrganization: University of California, Berkeley\\nLines: 18\\nDistribution: world\\nNNTP-Posting-Host: tikal.ced.berkeley.edu\\n\\nIn article <1993Apr22.021708.13381@hparc0.aus.hp.com>, doug@hparc0.aus.hp.com (Doug Parsons) writes:\\n|> FOMBARON marc (fombaron@ufrima.imag.fr) wrote:\\n|> : Are there significant differences between V2.01 and V2.00 ?\\n|> : Thank you for helping\\n|> \\n|> \\n|> No. As I recall, the only differences are in the 3ds.set parameters - some\\n|> of the defaults have changed slightly. I'll look when I get home and let\\n|> you know, but there isn't enough to actually warrant upgrading.\\n|> \\n|> douginoz\\n\\nWrong...the major improvements for 2.01 and 2.01a are in the use of IPAS routines\\nfor 3d studio. They have increased in speed anywhere from 30-200% depending\\non which ones you use.\\n\\nAll the Yost group IPAS routines that you can buy separate from the 3d studio\\npackage require the use of 2.01 or 2.01a. They are too slow with 2.00.\\n\",\n", + " 'From: cbrooks@ms.uky.edu (Clayton Brooks)\\nSubject: Re: Changing sprocket ratios (79 Honda CB750)\\nOrganization: University Of Kentucky, Dept. of Math Sciences\\nLines: 15\\n\\nkarish@gondwana.Stanford.EDU (Chuck Karish) writes:\\n\\n>That\\'s a twin-cam, right? \\n\\nYep...I think it\\'s the only CB750 with a 630 chain.\\nAfter 14 years, it\\'s finally stretching into the \"replace\" zone.\\n\\n>Honda 750s don\\'t have the widest of power bands.\\n\\n I know .... I know.\\n-- \\n Clayton T. Brooks _,,-^`--. From the heart cbrooks@ms.uky.edu\\n 722 POT U o\\'Ky .__,-\\' * \\\\ of the blue cbrooks@ukma.bitnet\\n Lex. KY 40506 _/ ,/ grass and {rutgers,uunet}!ukma!cbrooks\\n 606-257-6807 (__,-----------\\'\\' bourbon country AMA NMA MAA AMS ACBL DoD\\n',\n", + " 'From: Dave Dal Farra \\nSubject: Re: CB750 C with flames out the exhaust!!!!---->>>\\nX-Xxdate: Tue, 20 Apr 93 14:15:17 GMT\\nNntp-Posting-Host: bcarm41a\\nOrganization: BNR Ltd.\\nX-Useragent: Nuntius v1.1.1d9\\nLines: 49\\n\\n\\nIn article <1993Apr20.045032.9199@research.nj.nec.com> Chris BeHanna,\\nbehanna@syl.nj.nec.com writes:\\n>In article <1993Apr19.204159.17534@bnr.ca> Dave Dal Farra \\nwrites:\\n>>Reminds me of a great editorial by Bruce Reeve a couple months ago\\n>>in Cycle Canada.\\n>>\\n>>He was so pissed off with cops pulling over speeders in dangerous\\n>>spots (and often blind corners) that one day he decided to get\\n>>revenge.\\n>>\\n>>Cruising on a factory loaner ZZR1100 test bike, he noticed a cop \\n>>had pulled over a motorist on an on or off ramp with almost no\\n>>shoulder. Being a bright lad, he hit his bike\\'s kill switch\\n>>just before passing the cop, who happened to be bending towards\\n>>the offending motorist there-by exposing his glutes to the\\n>>passing world.\\n>>\\n>>With his ignition system now dead, he pumped his throtle two\\n>>or three times to fill his exhaust canister\\'s with volatile raw fuel.\\n>>\\n>>All it took was a stab at the kill switch to re-light the ignition\\n>>and send a 10\\' flame in Sargeant Swell\\'s direction.\\n>>\\n>>I wonder if any cycle cops read Cycle Canada?\\n>\\n>\\tAlthough I agree with the spirit of the action, I do hope that\\n>the rider ponied up the $800 or so it takes to replace the exhaust system\\n>he just destroyed. The owner\\'s manual explicitly warns against such\\n>behavior for exactly that reason: you can destroy your muflers that way.\\n>\\n>Later,\\n>-- \\n>Chris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\n>behanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\n>Disclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\n>agree with any of this anyway? I was raised by a pack of wild corn dogs.\\n\\nYa, Fat Chance. The \"offending\" rider was a moto journalist. Those\\nguys can sell hundreds of bikes with one stroke of the pen and\\nas such get away with murder when it comes to test bikes.\\n\\nOne way or the other, it was probably worth the early expiration of \\none mufler to see a bone head get his butt baked.\\n\\nDave D.F.\\n\"It\\'s true they say that money talks. When mine spoke it said\\n\\'Buy me a Drink!\\'.\"\\n',\n", + " \"From: eder@hsvaic.boeing.com (Dani Eder)\\nSubject: Re: Elevator to the top floor\\nOrganization: Boeing AI Center, Huntsville, AL\\nLines: 56\\n\\n\\nReading from a Amoco Performance Products data sheet, their\\nERL-1906 resin with T40 carbon fiber reinforcement has a compressive\\nstrength of 280,000 psi. It has a density of 0.058 lb/cu in,\\ntherefore the theoretical height for a constant section column\\nthat can just support itself is 4.8 million inches, or 400,000 ft,\\nor 75 Statute miles.\\n\\nNow, a real structure will have horizontal bracing (either a truss\\ntype, or guy wires, or both) and will be used below the crush strength.\\nLet us assume that we will operate at 40% of the theoretical \\nstrength. This gives a working height of 30 miles for a constant\\nsection column. \\n\\nA constant section column is not the limit on how high you can\\nbuild something if you allow a tapering of the cross section\\nas you go up. For example, let us say you have a 280,000 pound\\nload to support at the top of the tower (for simplicity in\\ncalculation). This requires 2.5 square inches of column cross\\nsectional area to support the weight. The mile of structure\\nbelow the payload will itself weigh 9,200 lb, so at 1 mile \\nbelow the payload, the total load is now 289,200 lb, a 3.3% increase.\\n\\nThe next mile of structure must be 3.3% thicker in cross section\\nto support the top mile of tower plus the payload. Each mile\\nof structure must increase in area by the same ratio all the way\\nto the bottom. We can see from this that there is no theoretical\\nlimit on area, although there will be practical limits based\\non how much composites we can afford to by at $40/lb, and how\\nmuch load you need to support on the ground (for which you need\\na foundation that the bedrock can support.\\n\\nLet us arbitrarily choose $1 billion as the limit in costruction\\ncost. With this we can afford perhaps 10,000,000 lb of composites,\\nassuming our finished structure costs $100/lb. The $40/lb figure\\nis just for materials cost. Then we have a tower/payload mass\\nratio of 35.7:1. At a 3.3% mass ratio per mile, the tower\\nheight becomes 111 miles. This is clearly above the significant\\natmosphere. A rocket launched from the top of the tower will still\\nhave to provide orbital velocity, but atmospheric drag and g-losses\\nwill be almost eliminated. G-losses are the component of\\nrocket thrust in the vertical direction to counter gravity,\\nbut which do not contribute to horizontal orbital velocity. Thus\\nthey represent wasted thrust. Together with drag, rockets starting\\nfrom the ground have a 15% velocity penalty to contend with.\\n\\nThis analysis is simplified, in that it does not consider wind\\nloads. These will require more structural support over the first\\n15 miles of height. Above that, the air pressure drops to a low\\nenough value for it not to be a big factor.\\n\\nDani Eder\\n\\n-- \\nDani Eder/Meridian Investment Company/(205)464-2697(w)/232-7467(h)/\\nRt.1, Box 188-2, Athens AL 35611/Location: 34deg 37' N 86deg 43' W +100m alt.\\n\",\n", + " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 15\\n\\nWell i\\'m not sure about the story nad it did seem biased. What\\nI disagree with is your statement that the U.S. Media is out to\\nruin Israels reputation. That is rediculous. The U.S. media is\\nthe most pro-israeli media in the world. Having lived in Europe\\nI realize that incidences such as the one described in the\\nletter have occured. The U.S. media as a whole seem to try to\\nignore them. The U.S. is subsidizing Israels existance and the\\nEuropeans are not (at least not to the same degree). So I think\\nthat might be a reason they report more clearly on the\\natrocities.\\n\\tWhat is a shame is that in Austria, daily reports of\\nthe inhuman acts commited by Israeli soldiers and the blessing\\nreceived from the Government makes some of the Holocaust guilt\\ngo away. After all, look how the Jews are treating other races\\nwhen they got power. It is unfortunate.\\n',\n", + " 'From: cpr@igc.apc.org (Center for Policy Research)\\nSubject: Re: From Israeli press. Madness.\\nLines: 8\\nNf-ID: #R:cdp:1483500342:cdp:1483500347:000:151\\nNf-From: cdp.UUCP!cpr Apr 17 15:37:00 1993\\n\\n\\nBefore getting excited and implying that I am posting\\nfabrications, I would suggest the readers to consult the\\nnewspaper in question. \\n\\nTahnks,\\n\\nElias\\n',\n", + " \"Subject: Re: Vandalizing the sky.\\nFrom: thacker@rhea.arc.ab.ca\\nOrganization: Alberta Research Council\\nNntp-Posting-Host: rhea.arc.ab.ca\\nLines: 13\\n\\nIn article , enzo@research.canon.oz.au (Enzo Liguori) writes:\\n\\n<<>>\\n\\n> What about light pollution in observations? (I read somewhere else that\\n> it might even be visible during the day, leave alone at night).\\n\\n> Really, really depressed.\\n> \\n> Enzo\\n\\nNo need to be depressed about this one. Lights aren't on during the day\\nso there shouldn't be any daytime light pollution.\\n\",\n", + " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Motorcycle Security\\nKeywords: nothing will stop a really determined thief\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 24\\n\\nIn article <2500@tekgen.bv.tek.com>, davet@interceptor.cds.tek.com (Dave\\nTharp CDS) writes:\\n|> I saw his bike parked in front of a bar a few weeks later without\\n|> the\\n|> dog, and I wandered in to find out what had happened.\\n|> \\n|> He said, \"Somebody stole m\\' damn dog!\". They left the Harley\\n|> behind.\\n|> \\n\\nAnimal Rights people have been know to do that to other\\n\"Bike riding dogs.cats and Racoons. \\n\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", + " 'From: Patrick C Leger \\nSubject: Re: thoughts on christians\\nOrganization: Sophomore, Electrical and Computer Engineering, Carnegie Mellon, Pittsburgh, PA\\nLines: 51\\nNNTP-Posting-Host: po3.andrew.cmu.edu\\nIn-Reply-To: \\n\\nExcerpts from netnews.alt.atheism: 15-Apr-93 Re: thoughts on christians\\nby Dave Fuller@portal.hq.vi \\n> I\\'m sick of religious types being pampered, looked out for, and WORST\\n> OF ALL . . . . respected more than atheists. There must be an end\\n> in sight.\\n> \\nI think it\\'d help if we got a couple good atheists (or even some good,\\nsteadfast agnostics) in some high political offices. When was the last\\ntime we had an (openly) atheist president? Have we ever? (I don\\'t\\nactually know; these aren\\'t rhetorical questions.) How \\'bout some\\nSupreme court justices? \\n\\nOne thing that really ticked me off a while ago was an ad for a news\\nprogram on a local station...The promo said something like \"Who are\\nthese cults, and why do they prey on the young?\" Ahem. EVER HEAR OF\\nBAPTISM AT BIRTH? If that isn\\'t preying on the young, I don\\'t know what\\nis...\\n\\nI used to be (ack, barf) a Catholic, and was even confirmed...Shortly\\nthereafter I decided it was a load of BS. My mom, who really insisted\\nthat I continue to go to church, felt it was her duty (!) to bring me up\\nas a believer! That was one of the more presumptuous things I\\'ve heard\\nin my life. I suggested we go talk to the priest, and she agreed. The\\npriest was amazingly cool about it...He basically said that if I didn\\'t\\nbelieve it, there was no good in forcing it on me. Actually, I guess he\\nwasn\\'t amazingly cool about it--His response is what you\\'d hope for\\n(indeed, expect) from a human being. I s\\'pose I just _didn\\'t_ expect\\nit... \\n\\nI find it absurd that religion exists; Yet, I can also see its\\nusefulness to people. Facing up to the fact that you\\'re just going to\\nbe worm food in a few decades, and that there isn\\'t some cosmic purpose\\nto humanity and the universe, can be pretty difficult for some people. \\nHaving a readily-available, pre-digested solution to this is pretty\\nattractive, if you\\'re either a) gullible enough, b) willing to suspend\\nyour reasoning abilities for the piece of mind, or c) have had the stuff\\nrammed down your throat for as long as you can remember. Religion in\\ngeneral provides a nice patch for some human weaknesses; Organized\\nreligion provides a nice way to keep a population under control. \\n\\nBlech.\\n\\nChris\\n\\n\\n----------------------\\nChris Leger\\nSophomore, Carnegie Mellon Computer Engineering\\nRemember...if you don\\'t like what somebody is saying, you can always\\nignore them!\\n\\n',\n", + " \"From: maler@vercors.imag.fr (Oded Maler)\\nSubject: Re: Unconventional peace proposal\\nNntp-Posting-Host: pelvoux\\nOrganization: IMAG, University of Grenoble, France\\nLines: 43\\n\\nIn article <1483500348@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n|> \\n|> From: Center for Policy Research \\n|> Subject: Unconventional peace proposal\\n|> \\n|> \\n|> A unconventional proposal for peace in the Middle-East.\\n|> ---------------------------------------------------------- by\\n|> \\t\\t\\t Elias Davidsson\\n\\n|> \\n|> 1. A Fund should be established which would disburse grants\\n|> for each child born to a couple where one partner is Israeli-Jew\\n|> and the other Palestinian-Arab.\\n|> \\n|> 2. To be entitled for a grant, a couple will have to prove\\n|> that one of the partners possesses or is entitled to Israeli\\n|> citizenship under the Law of Return and the other partner,\\n|> although born in areas under current Isreali control, is not\\n|> entitled to such citizenship under the Law of Return.\\n|> \\n|> 3. For the first child, the grant will amount to $18.000. For\\n|> the second the third child, $12.000 for each child. For each\\n|> subsequent child, the grant will amount to $6.000 for each child.\\n...\\n\\n|> I would be thankful for critical comments to the above proposal as\\n|> well for any dissemination of this proposal for meaningful\\n|> discussion and enrichment.\\n|> \\n|> Elias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n\\nMaybe I'm a bit old-fashioned, but have you heard about something\\ncalled Love? It used to play some role in people's considerations\\nfor getting married. Of course I know some people who married \\nfictitiously in order to get a green card, but making a common\\nchild for 18,000$? The power of AA is limited. Your proposal is\\nindeed unconventional. \\n\\n===============================================================\\nOded Maler, LGI-IMAG, Bat D, B.P. 53x, 38041 Grenoble, France\\nPhone: 76635846 Fax: 76446675 e-mail: maler@imag.fr\\n===============================================================\\n\",\n", + " 'From: \"Robert Knowles\" \\nSubject: Re: Suggestion for \"resources\" FAQ\\nIn-Reply-To: \\nNntp-Posting-Host: 127.0.0.1\\nOrganization: Kupajava, East of Krakatoa\\nX-Mailer: PSILink-DOS (3.3)\\nLines: 34\\n\\n>DATE: Mon, 19 Apr 1993 15:01:10 GMT\\n>FROM: Bruce Stephens \\n>\\n>I think a good book summarizing and comparing religions would be good.\\n>\\n>I confess I don\\'t know of any---indeed that\\'s why I checked the FAQ to see\\n>if it had one---but I\\'m sure some alert reader does.\\n>\\n>I think the list of books suffers far too much from being Christian based;\\n>I agree that most of the traffic is of this nature (although a few Islamic\\n>references might be good) but I still think an overview would be nice.\\n\\nOne book I have which presents a fairly unbiased account of many religions\\nis called _Man\\'s Religions_ by John B. Noss. It was a textbook in a class\\nI had on comparative religion or some such thing. It has some decent\\nbibliographies on each chapter as a jumping off point for further reading.\\n\\nIt doesn\\'t \"compare\" religions directly but describes each one individually\\nand notes a few similarities. But nothing I have read in it could be even\\nremotely described as preachy or Christian based. In fact, Christianity\\nmercifully consumes only 90 or so of its nearly 600 pages. The book is\\ndivided according to major regions of the world where the biggies began \\n(India, East Asia, Near East). There is nothing about New World religions\\nfrom the Aztecs, Mayas, Incas, etc. Just the stuff people kill each\\nother over nowadays. And a few of the older religions snuffed out along\\nthe way. \\n\\nIf you like the old stuff, then a couple of books called \"The Ancient Near\\nEast\" by James B. Pritchard are pretty cool. Got the Epic of Gilgamesh,\\nCode of Hammurabi, all the stuff from way back when men were gods and gods\\nwere men. Essential reading for anyone who wishes to make up their own\\nreligion and make it sound real good.\\n\\n\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: \"Cruel\" (was Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n\\n>>>This whole thread started because of a discussion about whether\\n>>>or not the death penalty constituted cruel punishment, which is forbidden\\n>>>by the US Constitution.\\n>>Yes, but they didn\\'t say what they meant by \"cruel\", which is why\\n>>a) you have the Supreme Court, and b) it makes no sense to refer\\n>>to the Constitution, which is quite silent on the meaning of the\\n>>word \"cruel\".\\n>\\n>They spent quite a bit of time on the wording of the Constitution. They\\n>picked words whose meanings implied the intent. We have already looked\\n>in the dictionary to define the word. Isn\\'t this sufficient?\\n\\n\\tWe only need to ask the question: what did the founding fathers \\nconsider cruel and unusual punishment?\\n\\n\\tHanging? Hanging there slowing being strangled would be very \\npainful, both physically and psychologicall, I imagine.\\n\\n\\tFiring squad ? [ note: not a clean way to die back in those \\ndays ], etc. \\n\\n\\tAll would be considered cruel under your definition.\\n\\tAll were allowed under the constitution by the founding fathers.\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", + " 'From: (Rashid)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: 47.252.4.179\\nOrganization: NH\\nLines: 34\\n\\n> What about the Twelve Imams, who he considered incapable of error\\n> or sin? Khomeini supports this view of the Twelve Imans. This is\\n> heresy for the very reasons I gave above. \\n\\nI would be happy to discuss the issue of the 12 Imams with you, although\\nmy preference would be to move the discussion to another\\nnewsgroup. I feel a philosophy\\nor religion group would be more appropriate. The topic is deeply\\nembedded in the world view of Islam and the\\nesoteric teachings of the Prophet (S.A.). Heresy does not enter\\ninto it at all except for those who see Islam only as an exoteric\\nreligion that is only nominally (if at all) concerned with the metaphysical\\nsubstance of man\\'s being and nature.\\n\\nA good introductory book (in fact one of the best introductory\\nbooks to Islam in general) is Murtaza Mutahhari\\'s \"Fundamental\\'s\\nof Islamic Thought - God, Man, and the Universe\" - Mizan Press,\\ntranslated by R. Campbell. Truly a beautiful book. A follow-up book\\n(if you can find a decent translation) is \"Wilaya - The Station\\nof the Master\" by the same author. I think it also goes under the\\ntitle of \"Master and Mastership\" - It\\'s a very small book - really\\njust a transcription of a lecture by the author.\\nThe introduction to the beautiful \"Psalms of Islam\" - translated\\nby William C. Chittick (available through Muhammadi Trust of\\nGreat Britain) is also an excellent introduction to the subject. We\\nhave these books in our University library - I imagine any well\\nstocked University library will have them.\\n\\nFrom your posts, you seem fairly well versed in Sunni thought. You\\nshould seek to know Shi\\'ite thought through knowledgeable \\nShi\\'ite authors as well - at least that much respect is due before the\\ncharge of heresy is levelled.\\n\\nAs salaam a-laikum\\n',\n", + " 'From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Ok, So I was a little hasty...\\nOrganization: Louisiana Tech University\\nLines: 30\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr20.010734.18225@megatek.com> randy@megatek.com (Randy Davis) writes:\\n\\n>In article speedy@engr.latech.edu (Speedy Mercer) writes:\\n>|In article jnmoyne@lbl.gov (Jean-Noel Moyne) writes:\\n>|> What does \"DWI\" stand for ? I thought it was \"DUI\" for Driving Under\\n>|>Influence, so here what does W stand for ?\\n>|\\n>|Driving While Intoxicated.\\n\\n> Actually, I beleive \"DWI\" normally means \"Driving While Impaired\" rather\\n>than \"Intoxicated\", at least it does in the states I\\'ve lived in...\\n\\n>|This was changed here in Louisiana when a girl went to court and won her \\n>|case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\n> One can be imparied without necessarily being impaired by liquor - drugs,\\n>not enough sleep, being a total moron :-), all can impair someone etc... I\\'m\\n>surprised this got her off the hook... Perhaps DWI in Lousiana *is* confined\\n>to liquor?\\n\\nLets just say it is DUI here now!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n',\n", + " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Concerning God\\'s Morality (was: Americans and Evolution)\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 110\\nDistribution: world\\nNNTP-Posting-Host: syndicoot.engin.umich.edu\\n\\nIn article <1993Apr2.155057.808@batman.bmd.trw.com> jbrown@batman.bmd.trw.com writes:\\n[why do babies get diseases, etc.]\\n>What God did create was life according to a protein code which is\\n>mutable and can evolve. Without delving into a deep discussion of\\n>creationism vs evolutionism,\\n\\n Here\\'s the (main) problem. The scenario you outline is reasonably \\nconsistent, but all the evidence that I am familiar with not only does\\nnot support it, but indicates something far different. The Earth, by\\nlatest estimates, is about 4.6 billion years old, and has had life for\\nabout 3.5 billion of those years. Humans have only been around for (at\\nmost) about 200,000 years. But, the fossil evidence inidcates that life\\nhas been changing and evolving, and, in fact, disease-ridden, long before\\nthere were people. (Yes, there are fossils that show signs of disease...\\nmostly bone disorders, of course, but there are some.) Heck, not just\\nfossil evidence, but what we\\'ve been able to glean from genetic study shows\\nthat disease has been around for a long, long time. If human sin was what\\nbrought about disease (at least, indirectly, though necessarily) then\\nhow could it exist before humans?\\n\\n> God created the original genetic code\\n>perfect and without flaw. And without getting sidetracked into\\n>the theological ramifications of the original sin, the main effect\\n>of the so-called original sin for this discussion was to remove\\n>humanity from God\\'s protection since by their choice A&E cut\\n>themselves off from intimate fellowship with God. In addition, their\\n>sin caused them to come under the dominion of Satan, who then assumed\\n>dominion over the earth...\\n[deletions]\\n>Since humanity was no longer under God\\'s protection but under Satan\\'s\\n>dominion, it was no great feat for Satan to genetically engineer\\n>diseases, both bacterial/viral and genetic. Although the forces of\\n>natural selection tend to improve the survivability of species, the\\n>degeneration of the genetic code tends to more than offset this. \\n\\n Uh... I know of many evolutionary biologists, who know more about\\nbiology than you claim to, who will strongly disagree with this. There\\nis no evidence that the human genetic code (or any other) \\'started off\\'\\nin perfect condition. It seems to adapt to its envionment, in a\\ncollective sense. I\\'m really curious as to what you mean by \\'the\\ndegeneration of the genetic code\\'.\\n\\n>Human DNA, being more \"complex\", tends to accumulate errors adversely\\n>affecting our well-being and ability to fight off disease, while the \\n>simpler DNA of bacteria and viruses tend to become more efficient in \\n>causing infection and disease. It is a bad combination.\\n\\n Umm. Nah, we seem to do a pretty good job of adapting to viruses and\\nbacteria, and they to us. Only a very small percentage of microlife is\\nharmful to humans... and that small percentage seems to be reasonalby\\nconstant in size, but the ranks keep changing. For example, bubonic\\nplague used to be a really nasty disease, I\\'m sure you\\'ll agree. But\\nit still pops up from time to time, even today... and doesn\\'t do as\\nmuch damage. Part of that is because of better sanitation, but even\\nwhen people get the disease, the symptoms tend to be less severe than in\\nthe past. This seems to be partly because people who were very susceptible\\ndied off long ago, and because the really nasty variants \\'overgrazed\\',\\n(forgive the poor terminology, I\\'m an engineer, not a doctor! :-> ) and\\ndied off for lack of nearby hosts.\\n I could be wrong on this, but from what I gather acne is only a few\\nhundred years old, and used to be nastier, though no killer. It seems to\\nbe getting less nasty w/age...\\n\\n> Hence\\n>we have newborns that suffer from genetic, viral, and bacterial\\n>diseases/disorders.\\n\\n Now, wait a minute. I have a question. Humans were created perfect, right?\\nAnd, you admit that we have an inbuilt abiliy to fight off disease. It\\nseems unlikely that Satan, who\\'s making the diseases, would also gift\\nhumans with the means to fight them off. Simpler to make the diseases less\\nlethal, if he wants survivors. As far as I can see, our immune systems,\\nimperfect though they may (presently?) be, must have been built into us\\nby God. I want to be clear on this: are you saying that God was planning\\nahead for the time when Satan would be in charge by building an immune\\nsystem that was not, at the time of design, necessary? That is, God made\\nour immune systems ahead of time, knowing that Adam and Eve would sin and\\ntheir descendents would need to fight off diseases?\\n\\n>This may be more of a mystical/supernatural explanation than you\\n>are prepared to accept, but God is not responsible for disease.\\n>Even if Satan had nothing to do with the original inception of\\n>disease, evolution by random chance would have produced them since\\n>humanity forsook God\\'s protection.\\n\\n Here\\'s another puzzle. What, exactly, do you mean by \\'perfect\\' in the\\nphrase, \\'created... perfect and without flaw\\'? To my mind, a \\'perfect\\'\\nsystem would be incapable of degrading over time. A \\'perfect\\' system\\nthat will, without constant intervention, become imperfect is *not* a\\nperfect system. At least, IMHO.\\n Or is it that God did something like writing a masterpiece novel on a\\nbunch of gum wrappers held together with Elmer\\'s glue? That is, the\\noriginal genetic \\'instructions\\' were perfect, but were \\'written\\' in\\ninferior materials that had to be carefully tended or would fall apart?\\nIf so, why could God not have used better materials?\\n Was God *incapable* of creating a system that could maintain itself,\\nof did It just choose not to?\\n\\n[deletions]\\n>In summary, newborns are innocent, but God does not cause their suffering.\\n\\n My main point, as I said, was that there really isn\\'t any evidence for\\nthe explanation you give. (At least, that I\\'m aware of.) But, I couldn\\'t\\nhelp making a few nitpicks here and there. :->\\n\\nSincerely,\\n\\nRay Ingles || The above opinions are probably\\n || not those of the University of\\ningles@engin.umich.edu || Michigan. Yet.\\n',\n", + " 'From: backon@vms.huji.ac.il\\nSubject: Re: Go Hezbollah!!\\nDistribution: world\\nOrganization: The Hebrew University of Jerusalem\\nLines: 23\\n\\nIn article <1993Apr14.125813.21737@ncsu.edu>, hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n>\\n> Lebanese resistance forces detonated a bomb under an Israeli occupation\\n> patrol in Lebanese territory two days ago. Three soldiers were killed and\\n> two wounded. In \"retaliation\", Israeli and Israeli-backed forces wounded\\n> 8 civilians by bombarding several Lebanese villages. Ironically, the Israeli\\n> government justifies its occupation in Lebanon by claiming that it is\\n> necessary to prevent such bombardments of Israeli villages!!\\n>\\n> Congratulations to the brave men of the Lebanese resistance! With every\\n> Israeli son that you place in the grave you are underlining the moral\\n> bankruptcy of Israel\\'s occupation and drawing attention to the Israeli\\n> government\\'s policy of reckless disregard for civilian life.\\n>\\n> Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\n\\nI\\'m sure the Federal Bureau of Investigation (fbi.gov on the Internet) is going\\nto *love* reading your incitement to murder.\\n\\n\\nJosh\\nbackon@VMS.HUJI.AC.IL\\n',\n", + " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: islamic authority over women\\nOrganization: Cookamunga Tourist Bureau\\nLines: 21\\n\\nIn article <1993Apr19.120352.1574@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n>> The problem with your argument is that you do not _know_ who is a _real_\\n> believer and who may be \"faking it\". This is something known only by\\n> the person him/herself (and God). Your assumption that anyone who\\n> _claims_ to be a \"believer\" _is_ a \"believer\" is not necessarily true.\\n\\nSo that still leaves the door totally open for Khomeini, Hussein\\net rest. They could still be considered true Muslims, and you can\\'t\\njudge them, because this is something between God and the person.\\n\\nYou have to apply your rule as well with atheists/agnostics, you\\ndon\\'t know their belief, this is something between them and God.\\n\\nSo why the hoopla about Khomeini not being a real Muslim, and the\\nhoopla about atheists being not real human beings?\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", + " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Gibbons Outlines SSF Redesign Guidance\\nNews-Software: VAX/VMS VNEWS 1.41 \\nNntp-Posting-Host: tm0006.lerc.nasa.gov\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 76\\n\\nNASA Headquarters distributed the following press\\nrelease today (4/6). I\\'ve typed it in verbatim, for you\\nfolks to chew over. Many of the topics recently\\ndiscussed on sci.space are covered in this.\\n\\nGibbons Outlines Space Station Redesign Guidance\\n\\nDr. John H. Gibbons, Director, Office of Science and\\nTechnology Policy, outlined to the members-designate of\\nthe Advisory Committee on the Redesign of the Space\\nStation on April 3, three budget options as guidance to\\nthe committee in their deliberations on the redesign of\\nthe space station.\\n\\nA low option of $5 billion, a mid-range option of $7\\nbillion and a high option of $9 billion will be\\nconsidered by the committee. Each option would cover\\nthe total expenditures for space station from fiscal\\nyear 1994 through 1998 and would include funds for\\ndevelopment, operations, utilization, Shuttle\\nintegration, facilities, research operations support,\\ntransition cost and also must include adequate program\\nreserves to insure program implementation within the\\navailable funds.\\n\\nOver the next 5 years, $4 billion is reserved within\\nthe NASA budget for the President\\'s new technology\\ninvestment. As a result, station options above $7\\nbillion must be accompanied by offsetting reductions in\\nthe rest of the NASA budget. For example, a space\\nstation option of $9 billion would require $2 billion\\nin offsets from the NASA budget over the next 5 years.\\n\\nGibbons presented the information at an organizational\\nsession of the advisory committee. Generally, the\\nmembers-designate focused upon administrative topics\\nand used the session to get acquainted. They also\\nreceived a legal and ethics briefing and an orientation\\non the process the Station Redesign Team is following\\nto develop options for the advisory committee to\\nconsider.\\n\\nGibbons also announced that the United States and its\\ninternational partners -- the Europeans, Japanese, and\\nCanadians -- have decided, after consultation, to give\\n\"full consideration\" to use of Russian assets in the\\ncourse of the space station redesign process.\\n\\nTo that end, the Russians will be asked to participate\\nin the redesign effort on an as-needed consulting\\nbasis, so that the redesign team can make use of their\\nexpertise in assessing the capabilities of MIR and the\\npossible use of MIR and other Russian capabilities and\\nsystems. The U.S. and international partners hope to\\nbenefit from the expertise of the Russian participants\\nin assessing Russian systems and technology. The\\noverall goal of the redesign effort is to develop\\noptions for reducing station costs while preserving key\\nresearch and exploration capabilities. Careful\\nintegration of Russian assets could be a key factor in\\nachieving that goal.\\n\\nGibbons reiterated that, \"President Clinton is\\ncommitted to the redesigned space station and to making\\nevery effort to preserve the science, the technology\\nand the jobs that the space station program represents.\\nHowever, he also is committed to a space station that\\nis well managed and one that does not consume the\\nnational resources which should be used to invest in\\nthe future of this industry and this nation.\"\\n\\nNASA Administrator Daniel S. Goldin said the Russian\\nparticipation will be accomplished through the East-\\nWest Space Science Center at the University of Maryland\\nunder the leadership of Roald Sagdeev.\\n\\n',\n", + " 'From: looper@cco.caltech.edu (Mark D. Looper)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: California Institute of Technology, Pasadena\\nLines: 23\\nNNTP-Posting-Host: sandman.caltech.edu\\nKeywords: Galileo, JPL\\n\\nprb@access.digex.com (Pat) writes:\\n\\n>Galileo\\'s HGA is stuck. \\n\\n>The HGA was left closed, because galileo had a venus flyby.\\n\\n>If the HGA were pointed att he sun, near venus, it would\\n>cook the foci elements.\\n\\n>question: WHy couldn\\'t Galileo\\'s course manuevers have been\\n>designed such that the HGA did not ever do a sun point.?\\n\\nThe HGA isn\\'t all that reflective in the wavelengths that might \"cook the\\nfocal elements\", nor is its figure good on those scales--the problem is\\nthat the antenna _itself_ could not be exposed to Venus-level sunlight,\\nlest like Icarus\\' wings it melt. (I think it was glues and such, as well\\nas electronics, that they were worried about.) Thus it had to remain\\nfurled and the axis _always_ pointed near the sun, so that the small\\nsunshade at the tip of the antenna mast would shadow the folded HGA.\\n(A larger sunshade beneath the antenna shielded the spacecraft bus.)\\n\\n--Mark Looper\\n\"Hot Rodders--America\\'s first recyclers!\"\\n',\n", + " 'From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Ellipse from Its Offset\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\nKeywords: ellipse\\n\\n\\nHi! Everyone,\\n\\nSince some people quickly solved the problem of determining a sphere from\\n4 points, I suddenly recalled a problem which is how to find the ellipse\\nfrom its offset. For example, given 5 points on the offset, can you find\\nthe original ellipse analytically?\\n\\nI spent two months solving this problem by using analytical method last year,\\nbut I failed. Under the pressure, I had to use other method - nonlinear\\nprogramming technique to deal with this problem approximately.\\n\\nAny ideas will be greatly appreciated. Please post here, let the others\\nshare our interests.\\n\\nYeh\\nUSC\\n',\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Unconventional peace proposal\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 22\\n\\nIn article <1483500348@igc.apc.org> Center for Policy Research writes:\\n\\n>1. The idea of providing financial incentives to selected\\n>forms of partnership and marriage, is not conventional. However,\\n>it is based on the concept of affirmative action, which is\\n>recognized as a legitimate form of public policy to reverse the\\n>perverse effects of segregation and discrimination.\\n\\n\\tOther people have already shown this to be a rediculous\\nproposal. however, I wanted to point out that there are many people\\nwho do not think that affirmative action is a either intelligent or\\nproductive. It is demeaning to those who it supposedly helps and it\\nis discriminatory.\\n\\n\\tAny proposal based on it is likely bunk as well.\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " \"From: arens@ISI.EDU (Yigal Arens)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nOrganization: USC/Information Sciences Institute\\nLines: 43\\nNNTP-Posting-Host: grl.isi.edu\\nIn-reply-to: ehrlich@bimacs.BITNET's message of 19 Apr 93 14:58:49 GMT\\n\\nIn article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>\\n> In article arens@ISI.EDU (Yigal\\n> Arens) writes:\\n>\\n> >Los Angeles Times, Tuesday, April 13, 1993. P. A1.\\n> > ........\\n>\\n> The problem if transffering US government files about Yigal Arens\\n> and some other similar persons does or does not violate a federal\\n> or a local American law seemed to belong to some local american law\\n> forum not to this forum.\\n> The readers of this forum seemed to be more interested in the contents\\n> of those files.\\n> So It will be nice if Yigal will tell us:\\n> 1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\nI'm not aware that the US government considers me dangerous. In any\\ncase, that has nothing to do with the current case. The claim against\\nthe ADL is that it illegally obtained and disseminated information that\\nwas gathered by state and/or federal agencies in the course of their\\nstandard interaction with citizens such as myself. By that I refer to\\nthings such as: address and phone number, vehicle registration and\\nlicense information, photographs, etc.\\n\\n> 2. Why does the ADL have an interest in that person ?\\n\\nYou should ask the ADL, if you want an authoritative answer. My guess\\nis that they collected information on anyone who did or might engage in\\npolitical criticism of Israel. I further believe that they did this as\\nagents of the Israeli government, or at least in agreement with them.\\nAt least some of the information collected by the ADL was passed on to\\nIsraeli officials. In some cases it was used to influence, or attempt\\nto influence, people's access to jobs or public forums. These matters\\nwill be brought out as the court case unfolds, since California law\\nentitles people to compensation if such actions can be proven. As my\\nprevious posting shows, California law entitles people to compensation\\neven in the absence of any specific consequences -- just for the further\\ndissemination of certain types of private information about them.\\n--\\nYigal Arens\\nUSC/ISI TV made me do it!\\narens@isi.edu\\n\",\n", + " 'From: Center for Policy Research \\nSubject: Assistance to Palest.people\\nNf-ID: #N:cdp:1483500359:000:3036\\nNf-From: cdp.UUCP!cpr Apr 24 15:00:00 1993\\nLines: 78\\n\\n\\nFrom: Center for Policy Research \\nSubject: Assistance to Palest.people\\n\\n\\nU.N. General Assembly Resolution 46/201 of 20 December 1991\\n\\nASSISTANCE TO THE PALESTINIAN PEOPLE\\n---------------------------------------------\\nThe General Assembly\\n\\nRecalling its resolution 45/183 of 21 December 1990\\n\\nTaking into account the intifadah of the Palestinian people in the\\noccupied Palestinian territory against the Israeli occupation,\\nincluding Israeli economic and social policies and practices,\\n\\nRejecting Israeli restrictions on external economic and social\\nassistance to the Palestinian people in the occupied Palestinian\\nterritory,\\n\\nConcerned about the economic losses of the Palestinian people as a\\nresult of the Gulf crisis,\\n\\nAware of the increasing need to provide economic and social\\nassistance to the Palestinian people,\\n\\nAffirming that the Palestinian people cannot develop their\\nnational economy as long as the Israeli occupation persists,\\n\\n1. Takes note of the report of the Secretary-General on assistance\\nto the Palestinian people;\\n\\n2. Expresses its appreciation to the States, United Nations bodies\\nand intergovernmental and non-governmental organizations that have\\nprovided assistance to the Palestinian people,\\n\\n3. Requests the international community, the United Nations system\\nand intergovernmental and non-governmental organizations to\\nsustain and increase their assistance to the Palestinian people,\\nin close cooperation with the Palestine Liberation Organization\\n(PLO), taking in account the economic losses of the Palestinian\\npeople as a result of the Gulf crisis;\\n\\n4. Calls for treatment on a transit basis of Palestinian exports\\nand imports passing through neighbouring ports and points of exit\\nand entry;\\n\\n5. Also calls for the granting of trade concessions and concrete\\npreferential measures for Palestinian exports on the basis of\\nPalestinian certificates of origin;\\n\\n6. Further calls for the immediate lifting of Israeli restrictions\\nand obstacles hindering the implementation of assistance projects\\nby the United Nations Development Programme, other United Nations\\nbodies and others providing economic and social assistance to the\\nPalestinian people in the occupied Palestinian territory;\\n\\n7. Reiterates its call for the implementation of development\\nprojects in the occupied Palestinian territory, including the\\nprojects mentioned in its resolution 39/223 of 18 December 1984;\\n\\n8. Calls for facilitation of the establishment of Palestinian\\ndevelopment banks in the occupied Palestinian territory, with a\\nview to promoting investment, production, employment and income\\ntherein;\\n\\n9. Requests the Secretary-General to report to the General\\nThe General Assembly at its 47th session, through the Economic and Social\\nCouncil, on the progress made in the implementation of the present\\nresolution.\\n-----------------------------------------------\\n\\nIn favour 137 countries (Europe, Canada, Australia, New Zealand,\\nJapan, Africa, South America, Central America and Asia) Against:\\nUnited States and Israel Abstaining: None\\n\\n\\n',\n", + " \"From: daviss@sweetpea.jsc.nasa.gov (S.F. Davis)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: NSPC\\nDistribution: na\\nLines: 107\\n\\nIn article <1quule$5re@access.digex.net>, prb@access.digex.com (Pat) writes:\\n|> \\n|> AW&ST had a brief blurb on a Manned Lunar Exploration confernce\\n|> May 7th at Crystal City Virginia, under the auspices of AIAA.\\n|> \\n|> Does anyone know more about this? How much, to attend????\\n|> \\n|> Anyone want to go?\\n|> \\n|> pat\\n\\nHere are some selected excerpts of the invitation/registration form they\\nsent me. Retyped without permission, all typo's are mine.\\n\\n---------------------------------------------------------------------\\nLow-Cost Lunar Access: A one-day conference to explore the means and \\nbenefits of a rejuvenated human lunar program.\\n\\nFriday, May 7, 1993\\nHyatt Regency - Crystal City Hotel\\nArlington, VA\\n\\nABOUT THE CONFERENCE\\nThe Low-Cost Lunar Access conference will be a forum for the exchange of\\nideas on how to initiate and structure an affordable human lunar program.\\nInherent in such low-cost programs is the principle that they be \\nimplemented rapidly and meet their objectives within a short time\\nframe.\\n\\n[more deleted]\\n\\nCONFERENCE PROGRAM (Preliminary)\\n\\nIn the Washington Room:\\n\\n 9:00 - 9:10 a.m. Opening Remarks\\n Dr. Alan M. Lovelace\\n\\n 9:10 - 9:30 a.m. Keynote Address\\n Mr. Brian Dailey\\n\\n 9:30 - 10:00 a.m. U.S. Policy Outlook\\n John Pike, American Federation of Scientists\\n\\n A discussion of the prospects for the introduction of a new low-cost\\n lunar initiative in view of the uncertain direction the space\\n program is taking.\\n\\n 10:00 - 12:00 noon Morning Plenary Sessions\\n\\n Presentations on architectures, systems, and operational concepts.\\n Emphasis will be on mission approaches that produce significant\\n advancements beyond Apollo yet are judged to be affordable in the\\n present era of severely constrained budgets\\n\\n\\nIn the Potomac Room\\n\\n 12:00 - 1:30 p.m. Lunch\\n Guest Speaker: Mr. John W. Young,\\n NASA Special Assistant and former astronaut\\n\\nIn the Washington Room\\n\\n 1:30 - 2:00 p.m. International Policy Outlook\\n Ian Pryke (invited)\\n ESA, Washington Office\\n\\n The prevailing situation with respect to international space \\n commitments, with insights into preconditions for European \\n entry into new agreements, as would be required for a cooperative\\n lunar program.\\n\\n 2:00 - 3:30 p.m. Afternoon Plenary Sessions\\n\\n Presentations on scientific objectives, benefits, and applications.\\n Emphasis will be placed on the scientific and technological value\\n of a lunar program and its timeliness.\\n\\n\\n---------------------------------------------------------------------\\n\\nThere is a registration form and the fee is US$75.00. The mail address\\nis \\n\\n American Institute of Aeronautics and Astronautics\\n Dept. No. 0018\\n Washington, DC 20073-0018\\n\\nand the FAX No. is: \\n\\n (202) 646-7508\\n\\nor it says you can register on-site during the AIAA annual meeting \\nand on Friday morning, May 7, from 7:30-10:30\\n\\n\\nSounds interesting. Too bad I can't go.\\n\\n|--------------------------------- ******** -------------------------|\\n| * _!!!!_ * |\\n| Steven Davis * / \\\\ \\\\ * |\\n| daviss@sweetpea.jsc.nasa.gov * () * | \\n| * \\\\>_db_ Dale.James@cs.cmu.edu writes:\\n>GS1100E. It\\'s a great bike, but you\\'d better be damn careful! \\n>I got a 1983 as my third motorcycle, \\n[...deleta...]\\n>The bike is light for it\\'s size (I think it\\'s 415 pounds); but heavy for a\\n>beginner bike.\\n\\nHeavy for a beginner bike it is; 415 pounds it isn\\'t, except maybe in\\nsome adman\\'s dream. With a full tank, it\\'s in the area of 550 lbs,\\ndepending on year etc.\\n\\n>You\\'re 6\\'4\" -- you should have no problem physically managing\\n>it. The seat is roughly akin to a plastic-coated 2by6. Very firm to very\\n>painful, depending upon time in the saddle.\\n\\nThe 1980 and \\'81 versions had a much better seat, IMO.\\n\\n>The bike suffers from the infamous Suzuki regulator problem. I have so far\\n>avoided forking out the roughly $150 for the Suzuki part by kludging in\\n>different Honda regulator/rectifier units from junkyards. The charging system\\n>consistently overcharges the battery. I have to refill it nearly weekly.\\n>This in itself is not so bad, but battery access is gained only after removing\\n>the seat, the tank, and the airbox.\\n\\nMy regulator lasted over 100,000 miles, and didn\\'t overcharge the battery.\\nThe wiring connectors in the charging path did get toasty though,\\ntending to melt their insulation. I suspect they were underspecified;\\nit didn\\'t help that they were well removed from cool air.\\n\\nBattery access on the earlier bikes doesn\\'t require tank removal.\\nAfter you learn the drill, it\\'s pretty straightforward.\\n\\n[...]\\n>replacement parts, like all Suzuki parts, are outrageously expensive.\\n\\nHaving bought replacement parts for several brands of motorcycles,\\nI\\'ll offer a grain of salt to be taken with Dale\\'s assessment.\\n\\n[...]\\n>Good luck, and be careful!\\n>--Dale\\n\\nSentiments I can\\'t argue with...or won\\'t...\\n-- Dean Deeds\\n\\tdeeds@vulcan1.edsg.hac.com\\n',\n", + " \"From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Surface normal orientations\\nArticle-I.D.: cis.1993Apr6.181509.1973\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 16\\n\\nIn article <1993Apr6.175117.1848@cis.uab.edu> sloan@cis.uab.edu (Kenneth Sloan) writes:\\n\\nA brilliant algorithm. *NOT*\\n\\nSeriously - it's correct, up to a sign change. The flaw is obvious, and\\nwill therefore not be shown.\\n\\nsorry about that.\\n\\n\\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n\",\n", + " 'From: IMAGING.CLUB@OFFICE.WANG.COM (\"Imaging Club\")\\nSubject: Re: Signature Image Database\\nOrganization: Mail to News Gateway at Wang Labs\\nLines: 21\\n\\nContact Signaware Corp\\n800-4583820\\n800 6376564\\n\\n-------------------------------- Original Memo --------------------------------\\nBCC: Vincent Wall From: Imaging Club\\nSubject: Signature verification ? Date Sent: 05/04/93\\n\\nsci.image.processing\\nFrom: yyqi@ece.arizona.edu (Yingyong Qi)\\nSubject: Signature Image Database\\nOrganization: U of Arizona Electrical and Computer Engineering\\n\\nHi, All:\\n\\nCould someone tell me if there is a database of handwriting signature\\nimages available for evaluating signature verification systems.\\n\\nThanks.\\n\\nYY\\n',\n", + " \"From: David.Anderman@ofa123.fidonet.org\\nSubject: LRDPA news\\nX-Sender: newtout 0.08 Feb 23 1993\\nLines: 28\\n\\n Many of you at this point have seen a copy of the \\nLunar Resources Data Purchase Act by now. This bill, also known as the Back to \\nthe Moon bill, would authorize the U.S. \\ngovernment to purchase lunar science data from private \\nand non-profit vendors, selected on the basis of competitive bidding, with an \\naggregate cap on bid awards of $65 million. \\n If you have a copy of the bill, and can't or don't want to go through \\nall of the legalese contained in all Federal legislation,don't both - you have \\na free resource to evaluate the bill for you. Your local congressional office, \\nlisted in the phone book,is staffed by people who can forward a copy of the\\nbill to legal experts. Simply ask them to do so, and to consider supporting\\nthe Lunar Resources Data Purchase Act. \\n If you do get feedback, negative or positive, from your congressional \\noffice, please forward it to: David Anderman\\n3136 E. Yorba Linda Blvd., Apt G-14, Fullerton, CA 92631,\\nor via E-Mail to: David.Anderman@ofa123.fidonet.org. \\n Another resource is your local chapter of the National Space Society. \\nMembers of the chapter will be happy to work with you to evaluate and support \\nthe Back to the Moon bill. For the address and telephone number of the nearest \\nchapter to you, please send E-mail, or check the latest issue of Ad Astra, in \\na library near you.\\n Finally, if you have requested, and not received, information about\\nthe Back to the Moon bill, please re-send your request. The database for the\\nbill was recently corrupted, and some information was lost. The authors of the \\nbill thank you for your patience.\\n\\n\\n--- Maximus 2.01wb\\n\",\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: HST Servicing Mission Scheduled for 11 Days\\nOrganization: U of Toronto Zoology\\nLines: 35\\n\\nIn article <1rd1g0$ckb@access.digex.net> prb@access.digex.com (Pat) writes:\\n>How will said re-boost be done?\\n>Grapple, HST, stow it in Cargo bay, do OMS burn to high altitude, \\n>unstow HST, repair gyros, costar install, fix solar arrays,\\n>then return to earth?\\n\\nActually, the reboost will probably be done last, so that there is a fuel\\nreserve during the EVAs (in case they have to chase down an adrift\\nastronaut or something like that). But yes, you've got the idea -- the\\nreboost is done by taking the whole shuttle up.\\n\\n>My guess is why bother with usingthe shuttle to reboost?\\n>why not grapple, do all said fixes, bolt a small liquid fueled\\n>thruster module to HST, then let it make the re-boost...\\n\\nSomebody has to build that thruster module; it's not an off-the-shelf\\nitem. Nor is it a trivial piece of hardware, since it has to include\\nattitude control (HST's own is not strong enough to compensate for things\\nlike thruster imbalance), guidance (there is no provision to feed gyro\\ndata from HST's own gyros to an external device), and separation (you\\ndon't want it left attached afterward, if only to avoid possible\\ncontamination after the telescope lid is opened again). You also get\\nto worry about whether the lid is going to open after the reboost is\\ndone and HST is inaccessible to the shuttle (the lid stays closed for\\nthe duration of all of this to prevent mirror contamination from\\nthrusters and the like).\\n\\nThe original plan was to use the Orbital Maneuvering Vehicle to do the\\nreboost. The OMV was planned to be a sort of small space tug, well\\nsuited to precisely this sort of job. Unfortunately, it was costing\\na lot to develop and the list of definitely-known applications was\\nrelatively short, so it got cancelled.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " \"From: rm03@ic.ac.uk (Mr R. Mellish)\\nSubject: Re: university violating separation of church/state?\\nOrganization: Imperial College\\nLines: 33\\nNntp-Posting-Host: 129.31.80.14\\n\\nIn article <199304041750.AA17104@kepler.unh.edu> dmn@kepler.unh.edu (...until kings become philosophers or philosophers become kings) writes:\\n>\\n>\\n>\\n> Recently, RAs have been ordered (and none have resisted or cared about\\n>it apparently) to post a religious flyer entitled _The Soul Scroll: Thoughts\\n>on religion, spirituality, and matters of the soul_ on the inside of bathroom\\n>stall doors. (at my school, the University of New Hampshire) It is some sort\\n>of newsletter assembled by a Hall Director somewhere on campus.\\n[most of post deleted]\\n>\\n> Please respond as soon as possible. I'd like these religious postings to\\n>stop, NOW! \\n>\\n> \\n>Thanks,\\n>\\n> Dana\\n>\\n> \\n> \\nThere is an easy way out....\\nPost the flyers on the stall doors, but add at the bottom, in nice large\\ncapitals,\\n\\n EMERGENCY TOILET PAPER\\n\\n:)\\n\\n-- \\n------ Robert Mellish, FOG, IC, UK ------\\n Email: r.mellish@ic.ac.uk Net: rm03@sg1.cc.ic.ac.uk IRC: HobNob\\n------ and also the mrs joyful prize for rafia work. ------\\n\",\n", + " \"From: SRUHL@MECHANICAL.watstar.uwaterloo.ca (Stefan Ruhl)\\nSubject: crappy Honda CX650\\nLines: 24\\nOrganization: University of Waterloo\\n\\nHi, I just have a small question about my bike. \\nBeing a fairly experienced BMW and MZ-Mechanic, I just don't know what to \\nthink about my Honda. \\nShe was using too much oil for the last 5000 km (on my trip to Daytona bike \\nweek this spring), and all of a sudden, she trailed smoke like hell and \\nwas running only on one cylinder. \\nI towed the bike home and took it apart, but everything looks in perfect \\nworking order. No cracks in the heads or pistons, the cylinder walls look \\nvery clean, and the wear of pistons and cylinders is not measurable. All \\nstill within factory specs. The only thing I could find, however, was a \\nslightly bigger ring gap on the right cylinder (the one with the problem), \\nbut it is still way below the wear-limit given in the Clymer-manual for \\nthis bike. \\nAny syggestions??? What else could cause my problem??? Do I have to hone \\nthe cylinder walls (make them a little rougher in a criss-cross-pattern) in \\norder to get better breaking in of my new rings??? Won't that increase the \\nwear of my pistons??\\nPlease send comments to \\n\\tsruhl@mechanical.watstar.uwaterloo.ca\\nThanks in advance. Stef. \\n------------------------------------------------------------------------------ \\nStefan Ruhl \\ngerman exchange student. \\nDon't poke into my privacy ! \\n\",\n", + " \"From: george@ccmail.larc.nasa.gov (George M. Brown)\\nSubject: QC/MSC code to view/save images\\nOrganization: Client Specific Systems, Inc.\\nLines: 12\\nNNTP-Posting-Host: thrasher.larc.nasa.gov\\n\\nDear Binary Newsers,\\n\\nI am looking for Quick C or Microsoft C code for image decoding from file for\\nVGA viewing and saving images from/to GIF, TIFF, PCX, or JPEG format. I have\\nscoured the Internet, but its like trying to find a Dr. Seuss spell checker \\nTSR. It must be out there, and there's no need to reinvent the wheel.\\n\\nThanx in advance.\\n\\n//////////////\\n\\n The Internet is like a Black Hole....\\n\",\n", + " \"From: mtrost@convex.com (Matthew Trost)\\nSubject: Re: The best of times, the worst of times\\nNntp-Posting-Host: eugene.convex.com\\nOrganization: CONVEX Computer Corporation, Richardson, Tx., USA\\nX-Disclaimer: This message was written by a user at CONVEX Computer\\n Corp. The opinions expressed are those of the user and\\n not necessarily those of CONVEX.\\nLines: 17\\n\\nIn <1993Apr20.161357.20354@ttinews.tti.com> paulb@harley.tti.com (Paul Blumstein) writes:\\n\\n>(note: this is not about the L.A. or NY Times)\\n\\n\\n>Turned out to be a screw unscrewed inside my Mikuni HS40 \\n>carb. I keep hearing that one should keep all of the screws\\n>tight on a bike, but I never thought that I had to do that\\n>on the screws inside of a carb. At least it was roadside\\n>fixable and I was on my way in hardly any time.\\n\\nYou better check all the screws in that carb before you suck\\none into a jug and munge a piston, or valve. I've seen it\\nhappen before.\\n\\nMatthew\\n\\n\",\n", + " \"From: ken@cs.UAlberta.CA (Huisman Kenneth M)\\nSubject: images of earth\\nNntp-Posting-Host: cab101.cs.ualberta.ca\\nOrganization: University of Alberta\\nLines: 14\\n\\nI am looking for some graphic images of earth shot from space. \\n( Preferably 24-bit color, but 256 color .gif's will do ).\\n\\nAnyways, if anyone knows an FTP site where I can find these, I'd greatly\\nappreciate it if you could pass the information on. Thanks.\\n\\n\\n( please send email ).\\n\\n\\nKen Huisman\\n\\nken@cs.ualberta.ca\\n\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: An Iranian Azeri Who Would Drop an Atomic Bomb on Armenia\\nSummary: fool\\nArticle-I.D.: urartu.1993Apr15.231047.13120\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 70\\n\\nIn article <93104.101314FHM100F@ODUVM.BITNET> FARID \\nwrites:\\n\\n[FARID] In support of the preservation of the territorial integrity of \\n[FARID] Azerbaijan and its independence from Russian rule, the Iranians which \\n[FARID] includes millions of Azerbaijanis will have Armenia retreat from the \\n[FARID] territory of Azerbaijan. \\n\\nOh, they will? This should prove quite interesting!\\n\\n[FARID] To count on Iranian help to supposedly counter Turkish influence will \\n[FARID] be a fatal error on the part of Armenia as long as Armenia in \\n[FARID] violation of international law has Azerbaijani lands in occupation. \\n\\nArmenia is not counting on Iranian help. As far as violations of international\\nlaws, which international law gives Azerbaijan the right to attack and \\ndepopulate the Armenians in Karabakh?\\n\\n[FARID] If Armenian aggression continues in the territory of Azerbaijan, not \\n[FARID] only there won\\'t be any aid from Iran to Armenia but also steps will \\n[FARID] be taken to have Armenian army back in Armenia. \\n\\nAnd who do you speak for? Rafsanjani?\\n\\n[FARID] The Azerbaijanis of Iran will be the guarantors of this policy. As for \\n[FARID] scaring Iranians or Turks from the Russian power, experts on present \\n[FARID] and future military potentials of these people would not put much \\n[FARID] stock on the Russain power as the sole power in the region for long!!! \\n\\nWell, Farid, your supposed experts are not expert! The Russians have had\\nnon-stop influence in the Caucasus since the Treaty of Turkmanchay in 1828.\\nHmm... that makes it 1993-1828 = 165 years! \\n\\nOh, I see the Azeris from Iran are going to force out the Armenians from \\nKarabakh! That will be a real good trick! \\n\\n[FARID] Iran is not alian to developing the capability to produce the A bomb \\n[FARID] and a reliable delivery system (refer to recent news releases \\n[FARID] regarding the potential of Iran). \\n\\nSo the Azeris from Iran are going to force the Armenians from Karabakh by\\nforcing the Iranian government to drop an atomic bomb on these Armenians.\\n\\n[FARID] The moral of the story is that, you don\\'t go invading your neighbor\\'s \\n[FARID] home (Azerbaijan) and flash Russia\\'s guns when questioned about it. \\n\\nOh, but it\\'s just fine if you drop an atomic bomb on your neighbor! You are\\na damn fool, Farid!\\n\\n[FARID] (Marshal Shapashnikov may have to eat his words regarding Turkey in a \\n[FARID] few short years!). \\n\\nSo you are going to drop an atomic bomb on Russia as well. \\n\\n[FARID] Peaceful resolution of the Armenian-Azerbaijani conflict is the only \\n[FARID] way to go. Armenia may soon find the fruits of Aggression very bitter \\n[FARID] indeed.\\n\\nAnd the Armenians will take your \"peaceful\" dropping of an atomic bomb as\\nan example of Iranian Azeri benevolence! You sir are a poor example of an \\nIranian Azeri! \\n\\nHa! And to think I had a nice two day stay in Tabriz back in 1978! \\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orion drive in vacuum -- how?\\nOrganization: U of Toronto Zoology\\nLines: 15\\n\\nIn article <1qn4bgINN4s7@mimi.UU.NET> goltz@mimi.UU.NET (James P. Goltz) writes:\\n> Would this work? I can't see the EM radiation impelling very much\\n>momentum (especially given the mass of the pusher plate), and it seems\\n>to me you're going to get more momentum transfer throwing the bombs\\n>out the back of the ship than you get from detonating them once\\n>they're there.\\n\\nThe Orion concept as actually proposed (as opposed to the way it has been\\nsomewhat misrepresented in some fiction) included wrapping a thick layer\\nof reaction mass -- probably plastic of some sort -- around each bomb.\\nThe bomb vaporizes the reaction mass, and it's that which transfers\\nmomentum to the pusher plate.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", + " 'From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Hell-mets.\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 56\\n\\nIn article <217766@mavenry.altcit.eskimo.com> maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n>\\n> \\n> Having talked to a couple people about helmets & dropping, I\\'m getting \\n>about 20% \"Don\\'t sweat it\", 78% \"You might think about replacing it\" and the \\n>other 2% \"DON\\'T RIDE WITH IT! GO WITHOUT A HELMET FIRST!\"\\n> \\n> Is there any way to tell if a helmet is damaged structurally? I dropped it \\n>about 2 1/2 feet to cement off my seat, chipped the paint. Didn\\'t seem to \\n>screw up the actual shell. \\n\\nI\\'d bet the price of the helmet that it\\'s okay...From 6 feet\\nor higher, maybe not.\\n\\n> If I don\\'t end up replacing it in the real near future, would I do better \\n>to wear my (totally nondamaged) 3/4 face DOT-RATED cheapie which doesn\\'t fit \\n>as well or keep out the wind as well, or wearing the Shoei RF-200 which is a \\n>LOT more comfortable, keeps the wind out better, is quieter... but might \\n>have some minor damage?\\n\\nI\\'d wear the full facer, but then, I\\'d be *way* more worried\\nabout wind blast in the face, and inability to hear police\\nsirens, than the helmet being a little damaged.\\n\\n\\n> Also, what would you all reccomend as far as good helmets? I\\'m slightly \\n>disappointed by how badly the shoei has scratched & etc from not being \\n>bloody careful about it, and how little impact it took to chip the paint \\n>(and arguably mess it up, period)... Looking at a really good full-face with \\n>good venting & wind protection... I like the Shoei style, kinda like the \\n>Norton one I saw awhile back too... But suspect I\\'m going to have to get a \\n>much more expensive helmet if I want to not replace it every time I\\'m not \\n>being careful where I set it down.\\n\\nWell, my next helmet will be, subject to it fitting well, an AGV\\nsukhoi. That\\'s just because I like the looks. My current one is\\na Shoei task5, and it\\'s getting a little old, and I crashed in\\nit once a couple of years ago (no hard impact to head...My hip\\ntook care of that.). If price was a consideration I\\'d get\\na Kiwi k21, I hear they are both good and cheap.\\n\\n> Christ, I don\\'t treat my HEAD as carefully as I treated the shoei as far as \\n>tossing it down, and I don\\'t have any bruises on it. \\n\\nBe *mildly* mildly paranoid about the helmet, but don\\'t get\\ncarried away. There are people on the net (like those 2% you\\nmentioned) that do not consistently live on our planet...\\n\\nRegards, Charles\\nDoD0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n',\n", + " \"From: asphaug@lpl.arizona.edu (Erik Asphaug x2773)\\nSubject: Insurance discount\\nSummary: Two or more vehicles... discount?\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 26\\n\\nHola amigos,\\n\\nQuiero... I need an answer to a pressing question. I now own two\\nbikes and would love to keep them both. One is a capable and\\nsmooth street bike, low and lightweight with wide power and great\\nbrakes; the other is a Beemer G/S, kind of rough for the city but\\ngreat on the long road and backroad. A good start at a stable, but\\nI don't think it's going to work. Unfortunately, insurance is going\\nto pluck me by the short hairs. \\n\\nUnless... some insurance agent offers a multi-vehicle discount. They\\ndo this all the time for cars, assuming that you're only capable of \\ndriving one of the things at a time. I don't think I'll ever manage\\nto straddle both bikes and ride them tandem down the street. (Turn left...\\naccelerate the Zephyr; turn right... accelerate the Beemer.) Does\\nanybody know of an agency that makes use of this simple fact to\\ndiscount your rates? State Farm doesn't.\\n\\nBy the way, I'm moving to the Bay area so I'll be insuring the bikes\\nthere, and registering them. To ease me of the shock, can somebody\\nguesstimate the cost of insuring a ZR550 and a R800GS? Here in Tucson\\nthey only cost me $320 (full) and $200 (liability only) for the two,\\nper annum.\\n\\nMuchas gracias,\\n\\t\\t\\tEnrique\\n\",\n", + " 'From: jburnside@ll.mit.edu (jamie w burnside)\\nSubject: Re: GOT MY BIKE! (was Wanted: Advice on CB900C Purchase)\\nKeywords: CB900C, purchase, advice\\nReply-To: jburnside@ll.mit.edu (jamie w burnside)\\nOrganization: MIT Lincoln Laboratory\\nLines: 29\\n\\n--\\nIn article <1993Apr16.005131.29830@ncsu.edu>, jrwaters@eos.ncsu.edu \\n(JACK ROGERS WATERS) writes:\\n|>>\\n|>>>Being a reletively new reader, I am quite impressed with all the usefull\\n|>>>info available on this newsgroup. I would ask how to get my own DoD number,\\n|>>>but I\\'ll probably be too busy riding ;-).\\n|>>\\n|>>\\tDoes this count?\\n|>\\n|>Yes. He thought about it.\\n|>>\\n|>>$ cat dod.faq | mailx -s \"HAHAHHA\" jburnside@ll.mit.edu (waiting to press\\n|>>\\t\\t\\t\\t\\t\\t\\t return...)\\n\\nHey, c\\'mon guys (and gals), I chose my words very carefully and even \\ntried to get my FAQ\\'s straight. Don\\'t holler BOHICA at me!\\n \\n----------------------------------------------------------------------\\n| |\\\\/\\\\/\\\\/| ___________________ |\\n| | | / \\\\ |\\n| | | / Jamie W. Burnside \\\\ 1980 CB900 Custom |\\n| | (o)(o) ( jburnside@ll.mit.edu ) 1985 KDX200 (SOLD!) |\\n| C _) / \\\\_____________________/ 1978 CB400 (for sale) |\\n| | ,___| / |\\n| | / |\\n| / __\\\\ |\\n| / \\\\ |\\n----------------------------------------------------------------------\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Traditional and Historical Armenian Barbarism (Was Re: watch OUT!!).\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 106\\n\\nIn article <21APR199314025948@elroy.uh.edu> st156@elroy.uh.edu (Fazia Begum Rizvi) writes:\\n\\n>Seems to me that a lot of good muslims would care about those terms.\\n>Especially those affected by the ideology and actions that such terms\\n>decscribe. The Bosnians suffering from such bigotry comes to mind. They\\n>get it from people who call them \\'dirty descendants of Turks\\', from\\n>people who hate their religion, and from those who don\\'t think they are\\n>really muslims at all since they are white. The suffering that they are\\n\\nLet us not forget about the genocide of the Azeri people in \\'Karabag\\' \\nand x-Soviet Armenia by the Armenians. Between 1914 and 1920, Armenians \\ncommitted unheard-of crimes, resorted to all conceivable methods of \\ndespotism, organized massacres, poured petrol over babies and burned \\nthem, raped women and girls in front of their parents who were bound \\nhand and foot, took girls from their mothers and fathers and appropriated \\npersonal property and real estate. And today, they put Azeris in the most \\nunbearable conditions any other nation had ever known in history.\\n \\n\\nAREF SADIKOV sat quietly in the shade of a cafe-bar on the\\nCaspian Sea esplanade of Baku and showed a line of stitches in\\nhis trousers, torn by an Armenian bullet as he fled the town of\\nHojali just over three months ago, writes Hugh Pope.\\n\\n\"I\\'m still wearing the same clothes, I don\\'t have any others,\"\\nthe 51-year-old carpenter said, beginning his account of the\\nHojali disaster. \"I was wounded in five places, but I am lucky to\\nbe alive.\"\\n\\nMr Sadikov and his wife were short of food, without electricity\\nfor more than a month, and cut off from helicopter flights for 12\\ndays. They sensed the Armenian noose was tightening around the\\n2,000 to 3,000 people left in the straggling Azeri town on the\\nedge of Karabakh.\\n\\n\"At about 11pm a bombardment started such as we had never heard\\nbefore, eight or nine kinds of weapons, artillery, heavy\\nmachine-guns, the lot,\" Mr Sadikov said.\\n\\nSoon neighbours were pouring down the street from the direction\\nof the attack. Some huddled in shelters but others started\\nfleeing the town, down a hill, through a stream and through the\\nsnow into a forest on the other side.\\n\\nTo escape, the townspeople had to reach the Azeri town of Agdam\\nabout 15 miles away. They thought they were going to make it,\\nuntil at about dawn they reached a bottleneck between the two\\nArmenian villages of Nakhchivanik and Saderak.\\n\\n\"None of my group was hurt up to then ... Then we were spotted by\\na car on the road, and the Armenian outposts started opening\\nfire,\" Mr Sadikov said.\\n\\nAzeri militiamen fighting their way out of Hojali rushed forward\\nto force open a corridor for the civilians, but their efforts\\nwere mostly in vain. Mr Sadikov said only 10 people from his\\ngroup of 80 made it through, including his wife and militiaman\\nson. Seven of his immediate relations died, including his\\n67-year-old elder brother.\\n\\n\"I only had time to reach down and cover his face with his hat,\"\\nhe said, pulling his own big flat Turkish cap over his eyes. \"We\\nhave never got any of the bodies back.\"\\n\\nThe first groups were lucky to have the benefit of covering fire.\\nOne hero of the evacuation, Alif Hajief, was shot dead as he\\nstruggled to change a magazine while covering the third group\\'s\\ncrossing, Mr Sadikov said.\\n\\nAnother hero, Elman Memmedov, the mayor of Hojali, said he and\\nseveral others spent the whole day of 26 February in the bushy\\nhillside, surrounded by dead bodies as they tried to keep three\\nArmenian armoured personnel carriers at bay.\\n\\nAs the survivors staggered the last mile into Agdam, there was\\nlittle comfort in a town from which most of the population was\\nsoon to flee.\\n\\n\"The night after we reached the town there was a big Armenian\\nrocket attack. Some people just kept going,\" Mr Sadikov said. \"I\\nhad to get to the hospital for treatment. I was in a bad way.\\nThey even found a bullet in my sock.\"\\n\\nVictims of war: An Azeri woman mourns her son, killed in the\\nHojali massacre in February (left). Nurses struggle in primitive\\nconditions (centre) to save a wounded man in a makeshift\\noperating theatre set up in a train carriage. Grief-stricken\\nrelatives in the town of Agdam (right) weep over the coffin of\\nanother of the massacre victims. Calculating the final death toll\\nhas been complicated because Muslims bury their dead within 24\\nhours.\\n\\nPhotographs: Liu Heung / AP\\n Frederique Lengaigne / Reuter\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " 'From: rdl1@ukc.ac.uk (R.D.Lorenz)\\nSubject: Cold Gas tanks for Sounding Rockets\\nOrganization: Computing Lab, University of Kent at Canterbury, UK.\\nLines: 14\\nNntp-Posting-Host: eagle.ukc.ac.uk\\n\\n>Does anyone know how to size cold gas roll control thruster tanks\\n>for sounding rockets?\\n\\nWell, first you work out how much cold gas you need, then make the\\ntanks big enough.\\n\\nWorking out how much cold gas is another problem, depending on\\nvehicle configuration, flight duration, thruster Isp (which couples\\ninto storage pressure, which may be a factor in selecting tank\\nwall thickness etc.)\\n\\nRalph Lorenz\\nUnit for Space Sciences\\nUniversity of Kent, UK\\n',\n", + " \"From: osprey@ux4.cso.uiuc.edu (Lucas Adamski)\\nSubject: Fast polygon routine needed\\nKeywords: polygon, needed\\nOrganization: University of Illinois at Urbana-Champaign\\nLines: 6\\n\\nThis may be a fairly routine request on here, but I'm looking for a fast\\npolygon routine to be used in a 3D game. I have one that works right now, but\\nits very slow. Could anyone point me to one, pref in ASM that is fairly well\\ndocumented and flexible?\\n\\tThanx,\\n //Lucas.\\n\",\n", + " 'From: jbatka@desire.wright.edu\\nSubject: Re: Gamma Ray Bursters. WHere are they.\\nOrganization: Wright State University \\nLines: 16\\n\\nI assume that can only be guessed at by the assumed energy of the\\nevent and the 1/r^2 law. So, if the 1/r^2 law is incorrect (assume\\nsome unknown material [dark matter??] inhibits Gamma Ray propagation),\\ncould it be possible that we are actually seeing much less energetic\\nevents happening much closer to us? The even distribution could\\nbe caused by the characteristic propagation distance of gamma rays \\nbeing shorter then 1/2 the thickness of the disk of the galaxy.\\n\\nJust some idle babbling,\\n-- \\n\\n Jim Batka | Work Email: BATKAJ@CCMAIL.DAYTON.SAIC.COM | Elvis is\\n | Home Email: JBATKA@DESIRE.WRIGHT.EDU | DEAD!\\n\\n 64 years is 33,661,440 minutes ...\\n and a minute is a LONG time! - Beatles: _ Yellow Submarine_\\n',\n", + " 'From: west@next02cville.wam.umd.edu (Stilgar)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: next15csc.wam.umd.edu\\nReply-To: west@next02.wam.umd.edu\\nOrganization: Workstations at Maryland, University of Maryland, College Park\\nLines: 35\\n\\nIn article kmr4@po.CWRU.edu (Keith M. \\nRyan) writes:\\n> In article <1993Apr5.163050.13308@wam.umd.edu> \\nwest@next02cville.wam.umd.edu (Stilgar) writes:\\n> >In article kmr4@po.CWRU.edu (Keith M. \\n> >Ryan) writes:\\n> >> In article <1993Apr5.025924.11361@wam.umd.edu> \\n> >west@next02cville.wam.umd.edu (Stilgar) writes:\\n> >> \\n> >> >THE ILLIAD IS THE UNDISPUTED WORD OF GOD(tm) *prove me wrong*\\n> >> \\n> >> \\tI dispute it.\\n> >> \\n> >> \\tErgo: by counter-example: you are proven wrong.\\n> >\\n> >\\tI dispute your counter-example\\n> >\\n> >\\tErgo: by counter-counter-example: you are wrong and\\n> >\\tI am right so nanny-nanny-boo-boo TBBBBBBBTTTTTTHHHHH\\n> \\n> \\tNo. The premis stated that it was undisputed. \\n> \\n\\nFine... THE ILLIAD IS THE WORD OF GOD(tm) (disputed or not, it is)\\n\\nDispute that. It won\\'t matter. Prove me wrong.\\n\\nBrian West\\n--\\nTHIS IS NOT A SIG FILE * -\"To the Earth, we have been\\nTHIS IS NOT A SIG FILE * here but for the blink of an\\nOK, SO IT\\'S A SIG FILE * eye, if we were gone tomorrow, \\nposted by west@wam.umd.edu * we would not be missed.\"- \\nwho doesn\\'t care who knows it. * (Jurassic Park) \\n** DICLAIMER: I said this, I meant this, nobody made me do it.**\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: How many read sci.space?\\nOrganization: Texas Instruments Inc\\nLines: 16\\n\\nIn <1993Apr15.204210.26022@mksol.dseg.ti.com> pyron@skndiv.dseg.ti.com (Dillon Pyron) writes:\\n\\n\\n>There are actually only two of us. I do Henry, Fred, Tommy and Mary. Oh yeah,\\n>this isn\\'t my real name, I\\'m a bald headed space baby.\\n\\nYes, and I do everyone else. Why, you may wonder, don\\'t I do \\'Fred\\'?\\nWell, that would just be too *obvious*, wouldn\\'t it? Oh yeah, this\\nisn\\'t my real name, either. I\\'m actually Elvis. Or maybe a lemur; I\\nsometimes have difficulty telling which is which.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 102\\nDistribution: world\\nNNTP-Posting-Host: tm0006.lerc.nasa.gov\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr23.184732.1105@aio.jsc.nasa.gov>, kjenks@gothamcity.jsc.nasa.gov writes...\\n\\n {Description of \"External Tank\" option for SSF redesign deleted}\\n\\n>Mark proposed this design at Joe Shea\\'s committee in Crystal City,\\n>and he reports that he was warmly received. However, the rumors\\n>I hear say that a design based on a wingless Space Shuttle Orbiter\\n>seems more likely.\\n\\nYo Ken, let\\'s keep on-top of things! Both the \"External Tank\" and\\n\"Wingless Orbiter\" options have been deleted from the SSF redesign\\noptions list. Today\\'s (4/23) edition of the New York Times reports\\nthat O\\'Connor told the panel that some redesign proposals have\\nbeen dropped, such as using the \"giant external fuel tanks used\\nin launching space shuttles,\" and building a \"station around\\nan existing space shuttle with its wings and tail removed.\"\\n\\nCurrently, there are three options being considered, as presented\\nto the advisory panel meeting yesterday (and as reported in\\ntoday\\'s Times).\\n\\nOption \"A\" - Low Cost Modular Approach\\nThis option is being studied by a team from MSFC. {As an aside,\\nthere are SSF redesign teams at MSFC, JSC, and LaRC supporting\\nthe SRT (Station Redesign Team) in Crystal City. Both LeRC and\\nReston folks are also on-site at these locations, helping the respective\\nteams with their redesign activities.} Key features of this\\noption are:\\n - Uses \"Bus-1\", a modular bus developed by Lockheed that\\'s\\n qualified for STS and ELV\\'s. The bus provides propulsion, GN&C\\n Communications, & Data Management. Lockheed developed this\\n for the Air Force.\\n - A \"Power Station Capability\" is obtained in 3 Shuttle Flights.\\n SSF Solar arrays are used to provide 20 kW of power. The vehicle\\n flies in an \"arrow mode\" to optimize the microgravity environment.\\n Shuttle/Spacelab missions would utilize the vehilce as a power\\n source for 30 day missions.\\n - Human tended capability (as opposed to the old SSF sexist term\\n of man-tended capability) is achieved by the addition of the\\n US Common module. This is a modified version of the existing\\n SSF Lab module (docking ports are added for the International\\n Partners\\' labs, taking the place of the nodes on SSF). The\\n Shuttle can be docked to the station for 60 day missions.\\n The Orbiter would provide crew habitability & EVA capability.\\n - International Human Tended. Add the NASDA & ESA modules, and\\n add another 20 kW of power\\n - Permanent Human Presence Capability. Add a 3rd power module,\\n the U.S. habitation module, and an ACRV (Assured Crew Return\\n Vehicle).\\n\\nOption \"B\" - Space Station Freedom Derived\\nThe Option \"B\" team is based at LaRC, and is lead by Mike Griffin.\\nThis option looks alot like the existing SSF design, which we\\nhave all come to know and love :)\\n\\nThis option assumes a lightweight external tank is available for\\nuse on all SSF assembly flights (so does option \"A\"). Also, the \\nnumber of flights is computed for a 51.6 inclination orbit,\\nfor both options \"A\" and \"B\".\\n\\nThe build-up occurs in six phases:\\n - Initial Research Capability reached after 3 flights. Power\\n is transferred from the vehicle to the Orbiter/Spacelab, when\\n it visits.\\n - Man-Tended Capability (Griffin has not yet adopted non-sexist\\n language) is achieved after 8 flights. The U.S. Lab is\\n deployed, and 1 solar power module provides 20 kW of power.\\n - Permanent Human Presence Capability occurs after 10 flights, by\\n keeping one Orbiter on-orbit to use as an ACRV (so sometimes\\n there would be two Orbiters on-orbit - the ACRV, and the\\n second one that comes up for Logistics & Re-supply).\\n - A \"Two Fault Tolerance Capability\" is achieved after 14 flights,\\n with the addition of a 2nd power module, another thermal\\n control system radiator, and more propulsion modules.\\n - After 20 flights, the Internationals are on-board. More power,\\n the Habitation module, and an ACRV are added to finish the\\n assembly in 24 flights.\\n\\nMost of the systems currently on SSF are used as-is in this option, \\nwith the exception of the data management system, which has major\\nchanges.\\n\\nOption C - Single Core Launch Station.\\nThis is the JSC lead option. Basically, you take a 23 ft diameter\\ncylinder that\\'s 92 ft long, slap 3 Space Shuttle Main Engines on\\nthe backside, put a nose cone on the top, attached it to a \\nregular shuttle external tank and a regular set of solid rocket\\nmotors, and launch the can. Some key features are:\\n - Complete end-to-end ground integration and checkout\\n - 4 tangentially mounted fixed solar panels\\n - body mounted radiators (which adds protection against\\n micrometeroid & orbital debris)\\n - 2 centerline docking ports (one on each end)\\n - 7 berthing ports\\n - a single pressurized volume, approximately 26,000 cubic feet\\n (twice the volume of skylab).\\n - 7 floors, center passageway between floors\\n - 10 kW of housekeeping power\\n - graceful degradation with failures (8 power channels, 4 thermal\\n loops, dual environmental control & life support system)\\n - increased crew time for utilization\\n - 1 micro-g thru out the core module\\n',\n", + " \"Organization: Queen's University at Kingston\\nFrom: Graydon \\nSubject: Re: Gamma Ray Bursters. Where are they?\\n <1993Apr24.221344.1@vax1.mankato.msus.edu>\\nLines: 8\\n\\nIf all of these things have been detected in space, has anyone\\nlooked into possible problems with the detectors?\\n\\nThat is, is there some mechanism (cosmic rays, whatever) that\\ncould cause the dector to _think_ it was seeing one of these\\nthings?\\n\\nGraydon\\n\",\n", + " 'From: loss@fs7.ECE.CMU.EDU (Doug Loss)\\nSubject: Jemison on Star Trek\\nOrganization: Electrical and Computer Engineering, Carnegie Mellon\\nLines: 7\\n\\n I saw in the newspaper last night that Dr. Mae Jemison, the first\\nblack woman in space (she\\'s a physician and chemical engineer who flew\\non Endeavour last year) will appear as a transporter operator on the\\n\"Star Trek: The Next Generation\" episode that airs the week of May 31.\\nIt\\'s hardly space science, I know, but it\\'s interesting.\\n\\nDoug Loss\\n',\n", + " 'From: dgf1@quads.uchicago.edu (David Farley)\\nSubject: Re: Photoshop for Windows\\nReply-To: dgf1@midway.uchicago.edu\\nOrganization: University of Chicago\\nLines: 25\\n\\nIn article beaver@rot.qc.ca (Andre Boivert) writes:\\n>\\n>\\n>I am looking for comments from people who have used/heard about PhotoShop\\n>for Windows. Is it good? How does it compare to the Mac version? Is there\\n>a lot of bugs (I heard the Windows version needs \"fine-tuning)?\\n>\\n>Any comments would be greatly appreciated..\\n>\\n>Thank you.\\n>\\n>Andre Boisvert\\n>beaver@rot.qc.ca\\n>\\nAn review of both the Mac and Windows versions in either PC Week or Info\\nWorld this week, said that the Windows version was considerably slower\\nthan the Mac. A more useful comparison would have been between PhotoStyler\\nand PhotoShop for Windows. David\\n\\n\\n-- \\nDavid Farley The University of Chicago Library\\n312 702-3426 1100 East 57th Street, JRL-210\\ndgf1@midway.uchicago.edu Chicago, Illinois 60637\\n\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: nuclear waste\\nOrganization: Texas Instruments Inc\\nLines: 78\\n\\nIn <1993Apr2.150038.2521@cs.rochester.edu> dietz@cs.rochester.edu (Paul Dietz) writes:\\n\\n>In article <1993Apr1.204657.29451@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n\\n>>>This system would produce enough energy to drive the accelerator,\\n>>>perhaps with some left over. A very high power (100\\'s of MW CW or\\n>>>quasi CW), very sharp proton beam would be required, but this appears\\n>>>achievable using a linear accelerator. The biggest question mark\\n>>>would be the lead target chemistry and the on-line processing of all\\n>>>the elements being incinerated.\\n>>\\n>>Paul, quite frankly I\\'ll believe that this is really going to work on\\n>>the typical trash one needs to process when I see them put a couple\\n>>tons in one end and get (relatively) clean material out the other end,\\n>>plus be able to run it off its own residual power. Sounds almost like\\n>>perpetual motion, doesn\\'t it?\\n\\n>Fred, the honest thing to do would be to admit your criticism on\\n>scientific grounds was invalid, rather than pretend you were actually\\n>talking about engineering feasibility. Given you postings, I can\\'t\\n>say I am surprised, though.\\n\\nWell, pardon me for trying to continue the discussion rather than just\\ntugging my forelock in dismay at having not considered actually trying\\nto recover the energy from this process (which is at least trying to\\ngo the \\'right\\' way on the energy curve). Now, where *did* I put those\\nsackcloth and ashes?\\n\\n[I was not and am not \\'pretending\\' anything; I am *so* pleased you are\\nnot surprised, though.]\\n\\n>No, it is nothing like perpetual motion. \\n\\nNote that I didn\\'t say it was perpetual motion, or even that it\\nsounded like perpetual motion; the phrase was \"sounds almost like\\nperpetual motion\", which I, at least, consider a somewhat different\\npropposition than the one you elect to criticize. Perhaps I should\\nbeg your pardon for being *too* precise in my use of language?\\n\\n>The physics is well\\n>understood; the energy comes from fission of actinides in subcritical\\n>assemblies. Folks have talked about spallation reactors since the\\n>1950s. Pulsed spallation neutron sources are in use today as research\\n>tools. Accelerator design has been improving, particularly with\\n>superconducting accelerating cavities, which helps feasibility. Los\\n>Alamos has expertise in high current accelerators (LAMPF), so I\\n>believe they know what they are talking about.\\n\\nI will believe that this process comes even close to approaching\\ntechnological and economic feasibility (given the mixed nature of the\\ntrash that will have to be run through it as opposed to the costs of\\nseparating things first and having a different \\'run\\' for each\\nactinide) when I see them dump a few tons in one end and pull\\n(relatively) clean material out the other. Once the costs,\\ntechnological risks, etc., are taken into account I still class this\\none with the idea of throwing waste into the sun. Sure, it\\'s possible\\nand the physics are well understood, but is it really a reasonable\\napproach? \\n\\nAnd I still wonder at what sort of \\'burning\\' rate you could get with\\nsomething like this, as opposed to what kind of energy you would\\nreally recover as opposed to what it would cost to build and power\\nwith and without the energy recovery. Are we talking ounces, pounds,\\nor tons (grams, kilograms, or metric tons, for you SI fans) of\\nmaterial and are we talking days, weeks, months, or years (days,\\nweeks, months or years, for you SI fans -- hmmm, still using a\\nnon-decimated time scale, I see ;-))?\\n\\n>The real reason why accelerator breeders or incinerators are not being\\n>built is that there isn\\'t any reason to do so. Natural uranium is\\n>still too cheap, and geological disposal of actinides looks\\n>technically reasonable.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'Subject: Vonnegut/atheism\\nFrom: dmn@kepler.unh.edu (...until kings become philosophers or philosophers become kings)\\nOrganization: UTexas Mail-to-News Gateway\\nNNTP-Posting-Host: cs.utexas.edu\\nLines: 21\\n\\n\\n\\n Yesterday, I got the chance to hear Kurt Vonnegut speak at the\\nUniversity of New Hampshire. Vonnegut succeeded Isaac Asimov as the \\n(honorary?) head of the American Humanist Association. (Vonnegut is\\nan atheist, and so was Asimov) Before Asimov\\'s funeral, Vonnegut stood up\\nand said about Asimov, \"He\\'s in heaven now,\" which ignited uproarious \\nlaughter in the room. (from the people he was speaking to around the time\\nof the funeral)\\n\\n\\t \"It\\'s the funniest thing I could have possibly said\\nto a room full of humanists,\" Vonnegut said at yesterday\\'s lecture. \\n\\n If Vonnegut comes to speak at your university, I highly recommend\\ngoing to see him even if you\\'ve never read any of his novels. In my opinion,\\nhe\\'s the greatest living humorist. (greatest living humanist humorist as well)\\n\\n\\n Peace,\\n\\n Dana\\n',\n", + " 'From: ajackson@cch.coventry.ac.uk (Alan Jackson)\\nSubject: MPEG Location\\nNntp-Posting-Host: cc_sysh\\nOrganization: Coventry University\\nLines: 11\\n\\n\\nCan anyone tell me where to find a MPEG viewer (either DOS or\\nWindows).\\n\\nThanks in advance.\\n\\n-- \\nAlan M. Jackson Mail : ajackson@cch.cov.ac.uk\\n\\n Liverpool Football Club - Simply The Best\\n \"You\\'ll Never Walk Alone\"\\n',\n", + " \"From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Delaunay Triangulation\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 9\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\n\\n\\nDoes anybody know what Delaunay Triangulation is?\\nIs there any reference to it? \\nIs it useful for creating 3-D objects? If yes, what's the advantage?\\n\\nThanks in advance.\\n\\nYeh\\nUSC\\n\",\n", + " \"From: pnakada@oracle.com (Paul Nakada)\\nSubject: Eating and Riding was Re: Drinking and Riding\\nArticle-I.D.: pnakada.PNAKADA.93Apr5140811\\nOrganization: Oracle Corporation, Redwood Shores, CA\\nLines: 14\\nNntp-Posting-Host: pnakada.us.oracle.com\\nX-Disclaimer: This message was written by an unauthenticated user\\n at Oracle Corporation. The opinions expressed are those\\n of the user and not necessarily those of Oracle.\\n\\n\\nWhat's the feeling about eating and riding? I went out riding this\\nweekend, and got a little carried away with some pecan pie. The whole\\nride back I felt sluggish. I was certainly much more alert on the\\nride in. I'm sure others have the same feeling, but the strangest\\nthing is that eating is usually the turnaround point of weekend rides.\\n\\nFrom now on, a little snack will do. I'd much rather have a get that\\nfull/sluggish feeling closer to home.\\n\\n-Paul\\n--\\nPaul Nakada | Oracle Corporation | pnakada@oracle.com\\nDoD #7773 | '91 R100C | '90 K75S\\n\",\n", + " \"From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: Georgia Institute of Technology\\nLines: 19\\n\\nI see that our retarded translator, David, is still writing things that\\ndon't make sense. Hey David I can see where you are.. May be one day,\\nWe will have the chance to talk deeply about that freedom of speach of\\nyours.. And you now, killing or torture, these things are only easy\\nways out.. I have different plans for you and all empty headeds like \\nyou...\\n\\nLets get serious, DAVE, don't ever write bad things about Turkish people\\nor especially Cyprus.. If I hear a word from you again that I consider\\nto be a curse to my people I will retalliate...\\n\\nMuccccukkk..\\nTIMUCIN.\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n\",\n", + " 'From: srlnjal@grace.cri.nz\\nSubject: CorelDraw BITMAP to SCODAL (2)\\nOrganization: Industrial Research Ltd., New Zealand.\\nLines: 22\\nNNTP-Posting-Host: grv.grace.cri.nz\\n\\n\\nYes I am aware CorelDraw exports in SCODAL.\\nVersion 2 did it quite well, apart from a\\nfew hassles with radial fills. Version 3 RevB\\nis better but if you try to export in SCODAL\\nwith a bitmap image included in the drawing\\nit will say something like \"cannot export\\nSCODAL with bitmap\"- at least it does on my\\nversion.\\n If anyone out there knows a way around this\\nI am all ears.\\n Temporal images make a product called Filmpak\\nwhich converts Autocad plots to SCODAL, postscript\\nto SCODAL and now GIF to SCODAL but it costs $650\\nand I was just wondering if there was anything out\\nthere that just did the bitmap to SCODAL part a tad\\ncheaper.\\n\\nJeff Lyall\\nInst.Geo.&.Nuc.Sci.Ltd\\nLower Hutt New Zealand\\n\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: 2.5 million Muslims perished of butchery at the hands of Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 92\\n\\nIn article <1993Apr25.015551.23259@husc3.harvard.edu> verbit@brauer.harvard.edu (Mikhail S. Verbitsky) writes:\\n\\n>\\tActually, Jarmo is a permanent resident of my killfile\\n\\nAnyone care to speculate on this? I\\'ll let the rest of the net judge\\nthis on its own merits. Between 1914 and 1920, 2.5 million Turks perished \\nof butchery at the hands of Armenians. The genocide involved not only \\nthe killing of innocents but their forcible deportation from the Russian \\nArmenia. They were persecuted, banished, and slaughtered while much of \\nOttoman Army was engaged in World War I. The Genocide Treaty defines \\ngenocide as acting with a \\n\\n \\'specific intent to destroy, in whole or in substantial part, a \\n national, ethnic, racial or religious group.\\' \\n\\nHistory shows that the x-Soviet Armenian Government intended to eradicate \\nthe Muslim population. 2.5 million Turks and Kurds were exterminated by the \\nArmenians. International diplomats in Ottoman Empire at the time - including \\nU.S. Ambassador Bristol - denounced the x-Soviet Armenian Government\\'s policy \\nas a massacre of the Kurds, Turks, and Tartars. The blood-thirsty leaders of \\nthe x-Soviet Armenian Government at the time personally involved in the \\nextermination of the Muslims. The Turkish genocide museums in Turkiye honor \\nthose who died during the Turkish massacres perpetrated by the Armenians. \\n\\nThe eyewitness accounts and the historical documents established,\\nbeyond any doubt, that the massacres against the Muslim people\\nduring the war were planned and premeditated. The aim of the policy\\nwas clearly the extermination of all Turks in x-Soviet Armenian \\nterritories.\\n\\nThe Muslims of Van, Bitlis, Mus, Erzurum and Erzincan districts and\\ntheir wives and children have been taken to the mountains and killed.\\nThe massacres in Trabzon, Tercan, Yozgat and Adana were organized and\\nperpetrated by the blood-thirsty leaders of the x-Soviet Armenian \\nGovernment.\\n\\nThe principal organizers of the slaughter of innocent Muslims were\\nDro, Antranik, Armen Garo, Hamarosp, Daro Pastirmadjian, Keri,\\nKarakin, Haig Pajise-liantz and Silikian.\\n\\nSource: \"Bristol Papers\", General Correspondence: Container #32 - Bristol\\n to Bradley Letter of September 14, 1920.\\n\\n\"I have it from absolute first-hand information that the Armenians in \\n the Caucasus attacked Tartar (Turkish) villages that are utterly \\n defenseless and bombarded these villages with artillery and they murder\\n the inhabitants, pillage the village and often burn the village.\"\\n\\n\\nSources: (The Ottoman State, the Ministry of War), \"Islam Ahalinin \\nDucar Olduklari Mezalim Hakkinda Vesaike Mustenid Malumat,\" (Istanbul, 1918). \\nThe French version: \"Documents Relatifs aux Atrocites Commises par les Armeniens\\nsur la Population Musulmane,\" (Istanbul, 1919). In the Latin script: H. K.\\nTurkozu, ed., \"Osmanli ve Sovyet Belgeleriyle Ermeni Mezalimi,\" (Ankara,\\n1982). In addition: Z. Basar, ed., \"Ermenilerden Gorduklerimiz,\" (Ankara,\\n1974) and, edited by the same author, \"Ermeniler Hakkinda Makaleler -\\nDerlemeler,\" (Ankara, 1978). \"Askeri Tarih Belgeleri ...,\" Vol. 32, 83\\n(December 1983), document numbered 1881.\\n\"Askeri Tarih Belgeleri ....,\" Vol. 31, 81 (December 1982), document\\n numbered 1869.\\n\\n\"Those who were capable of fighting were taken away at the very beginning\\n with the excuse of forced labor in road construction, they were taken\\n in the direction of Sarikamis and annihilated. When the Russian army\\n withdrew, a part of the remaining people was destroyed in Armenian\\n massacres and cruelties: they were thrown into wells, they were locked\\n in houses and burned down, they were killed with bayonets and swords, in places\\n selected as butchering spots, their bellies were torn open, their lungs\\n were pulled out, and girls and women were hanged by their hair after\\n being subjected to every conceivable abominable act. A very small part \\n of the people who were spared these abominations far worse than the\\n cruelty of the inquisition resembled living dead and were suffering\\n from temporary insanity because of the dire poverty they had lived\\n in and because of the frightful experiences they had been subjected to.\\n Including women and children, such persons discovered so far do not\\n exceed one thousand five hundred in Erzincan and thirty thousand in\\n Erzurum. All the fields in Erzincan and Erzurum are untilled, everything\\n that the people had has been taken away from them, and we found them\\n in a destitute situation. At the present time, the people are subsisting\\n on some food they obtained, impelled by starvation, from Russian storages\\n left behind after their occupation of this area.\"\\n \\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'Subject: Re: islamic authority over women\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 29\\n\\nIn article <1993Apr6.124112.12959@dcs.warwick.ac.uk> simon@dcs.warwick.ac.uk (Simon Clippingdale) writes:\\n\\n>For the guy who said he\\'s just arrived, and asked whether Bobby\\'s for real,\\n>you betcha. Welcome to alt.atheism, and rest assured that it gets worse.\\n>I have a few pearls of wisdom from Bobby which I reproduce below. Is anyone\\n>(Keith?) keeping a big file of such stuff?\\n\\n\\tSorry, I was, but I somehow have misplaced my diskette from the last \\ncouple of months or so. However, thanks to the efforts of Bobby, it is being \\nreplenished rather quickly! \\n\\n\\tHere is a recent favorite:\\n\\n\\t--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", + " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 36\\n\\nIn kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n\\n>In article <1qj9gq$mg7@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank \\nO\\'Dwyer) writes:\\n\\n>>Is good logic *better* than bad? Is good science better than bad? \\n\\n> By definition.\\n\\n\\n> great - good - okay - bad - horrible\\n\\n> << better\\n> worse >>\\n\\n\\n> Good is defined as being better than bad.\\n\\n>---\\nHow do we come up with this setup? Is this subjective, if enough people agreed\\nwe could switch the order? Isn\\'t this defining one unknown thing by another? \\nThat is, good is that which is better than bad, and bad is that which is worse\\nthan good? Circular?\\n\\nMAC\\n> Only when the Sun starts to orbit the Earth will I accept the Bible. \\n> \\n\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", + " 'From: jfw@ksr.com (John F. Woods)\\nSubject: Re: A WRENCH in the works?\\nOrganization: Kendall Square Research Corp.\\nLines: 15\\n\\nnanderso@Endor.sim.es.com (Norman Anderson) writes:\\n>jmcocker@eos.ncsu.edu (Mitch) writes:\\n>>effect that one of the SSRBs that was recovered after the\\n>>recent space shuttle launch was found to have a wrench of\\n>>some sort rattling around apparently inside the case.\\n>I heard a similar statement in our local news (UTAH) tonight. They referred\\n>to the tool as \"...the PLIERS that took a ride into space...\". They also\\n>said that a Thiokol (sp?) employee had reported missing a tool of some kind\\n>during assembly of one SRB.\\n\\nI assume, then, that someone at Thiokol put on their \"manager\\'s hat\" and said\\nthat pissing off the customer by delaying shipment of the SRB to look inside\\nit was a bad idea, regardless of where that tool might have ended up.\\n\\nWhy do I get the feeling that Thiokol \"manager\\'s hats\" are shaped like cones?\\n',\n", + " \"From: rbarris@orion.oac.uci.edu (Robert C. Barris)\\nSubject: Re: Rumours about 3DO ???\\nNntp-Posting-Host: orion.oac.uci.edu\\nSummary: 3DO demonstration\\nOrganization: University of California, Irvine\\nKeywords: 3DO ARM QT Compact Video\\nLines: 73\\n\\nIn article <1993Apr16.212441.34125@rchland.ibm.com> ricardo@rchland.vnet.ibm.com (Ricardo Hernandez Muchado) writes:\\n>In article <1993Apr15.164940.11632@mercury.unt.edu>, Sean McMains writes:\\n>|> In article <1993Apr15.144843.19549@rchland.ibm.com> Ricardo Hernandez\\n>|> Muchado, ricardo@rchland.vnet.ibm.com writes:\\n>|> > And CD-I's CPU doesn't help much either. I understand it is\\n>|> >a 68070 (supposedly a variation of a 68000/68010) running at something\\n>|> >like 7Mhz. With this speed, you *truly* need sprites.\\n[snip]\\n(the 3DO is not a 68000!!!)\\n>|> \\n>|> Ricardo, the animation playback to which Lawrence was referring in an\\n>|> earlier post is plain old Quicktime 1.5 with the Compact Video codec.\\n>|> I've seen digitized video (some of Apple's early commercials, to be\\n>|> precise) running on a Centris 650 at about 30fps very nicely (16-bit\\n>|> color depth). I would expect that using the same algorithm, a RISC\\n>|> processor should be able to approach full-screen full-motion animation,\\n>|> though as you've implied, the processor will be taxed more with highly\\n>|> dynamic material.\\n[snip]\\n>booth there. I walked by, and they were showing real-time video capture\\n>using a (Radious or SuperMac?) card to digitize and make right on the spot\\n>quicktime movies. I think the quicktime they were using was the old one\\n>(1.5).\\n>\\n> They digitized a guy talking there in 160x2xx something. It played back quite\\n>nicely and in real time. The guy then expanded the window (resized) to 25x by\\n>3xx (320 in y I think) and the frame rate decreased enough to notice that it\\n>wasn't 30fps (or about 30fps) anymore. It dropped to like 15 fps. Then he\\n>increased it just a bit more, and it dropped to 10<->12 fps. \\n>\\n> Then I asked him what Mac he was using... He was using a Quadra (don't know\\n>what model, 900?) to do it, and he was telling the guys there that the Quicktime\\n>could play back at the same speed even on an LCII.\\n>\\n> Well, I spoiled his claim so to say, since a 68040 Quadra Mac was having\\n>a little bit of trouble. And this wasn't even from the hardisk! This was\\n>from memory!\\n>\\n> Could it be that you saw either a newer version of quicktime, or some\\n>hardware assisted Centris, or another software product running the \\n>animation (like supposedly MacroMind's Accelerator?)?\\n>\\n> Don't misunderstand me, I just want to clarify this.\\n>\\n\\n\\nThe 3DO box is based on an ARM RISC processor, one or two custom graphics\\nchips, a DSP, a double-speed CDROM, and 2MB of RAM/VRAM. (I'm a little\\nfuzzy on the breakdown of the graphics chips and RAM/VRAM capacity).\\n\\nIt was demonstrated at a recent gathering at the Electronic Cafe in\\nSanta Monica, CA. From 3DO, RJ Mical (of Amiga/Lynx fame) and Hal\\nJosephson (sp?) were there to talk about the machine and their plan. We\\ngot to see the unit displaying full-screen movies using the CompactVideo codec\\n(which was nice, very little blockiness showing clips from Jaws and Backdraft)\\n... and a very high frame rate to boot (like 30fps).\\n\\nNote however that the 3DO's screen resolution is 320x240.\\n\\nCompactVideo is pretty amazing... I also wanted to point out that QuickTime\\ndoes indeed slow down when one dynamically resizes material as was stated\\nabove... I'm sure if the material had been compressed at the large size\\nthen it would play back fine (I have a Q950 and do this quite a bit). The\\nprice of generality... personally I don't use the dynamic sizing of movies\\noften, if ever. But playing back stuff at its original size is plenty quick\\non the latest 040 machines.\\n\\nI'm not sure how a Centris/20MHz 040 stacks up against the 25 MHz ARM in\\nthe 3DO box. Obviously the ARM is faster, but how much?\\n\\nRob Barris\\nQuicksilver Software Inc.\\nrbarris@orion.oac.uci.edu\\n\",\n", + " \"From: charlie@elektro.cmhnet.org (Charlie Smith)\\nSubject: Re: Internet Discussion List\\nOrganization: Why do you suspect that?\\nLines: 17\\n\\nIn article <1qc5f0$3ad@moe.ksu.ksu.edu> bparker@uafhp..uark.edu (Brian Parker) writes:\\n> Hello world of Motorcyles lovers/soon-to-be-lovers!\\n>I have started a discussion list on the internet for people interested in\\n>talking Bikes! We discuss anything and everything. If you are interested in\\n>joining, drop me a line. Since it really isn't a 'list', what we do is if you \\n>have a post, you send it to me and I distribute it to everyone. C'mon...join\\n>and enjoy!\\n\\nHuh? Did this guy just invent wreck.motorcycles?\\n\\n\\tCurious minds want to know.\\n\\n\\nCharlie Smith charlie@elektro.cmhnet.org KotdohL KotWitDoDL 1KSPI=22.85\\n DoD #0709 doh #0000000004 & AMA, MOA, RA, Buckey Beemers, BK Ohio V\\n BMW K1100-LT, R80-GS/PD, R27, Triumph TR6 \\n Columbus, Ohio USA\\n\",\n", + " \"From: ktj@beach.cis.ufl.edu (kerry todd johnson)\\nSubject: army in space\\nOrganization: Univ. of Florida CIS Dept.\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: beach.cis.ufl.edu\\n\\n\\nIs anybody out there willing to discuss with me careers in the Army that deal\\nwith space? After I graduate, I will have a commitment to serve in the Army, \\nand I would like to spend it in a space-related field. I saw a post a long\\ntime ago about the Air Force Space Command which made a fleeting reference to\\nits Army counter-part. Any more info on that would be appreciated. I'm \\nlooking for things like: do I branch Intelligence, or Signal, or other? To\\nwhom do I voice my interest in space? What qualifications are necessary?\\nEtc, etc. BTW, my major is computer science engineering.\\n\\nPlease reply to ktj@reef.cis.ufl.edu\\n\\nThanks for ANY info.\\n=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=\\n= Whether they ever find life there or not, I think Jupiter should be =\\n= considered an enemy planet. -- Jack Handy =\\n---ktj@reef.cis.ufl.edu---cirop59@elm.circa.ufl.edu---endeavour@circa.ufl.edu--\\n\",\n", + " 'From: Chris W. Johnson \\nSubject: Re: New DC-x gif\\nOrganization: University of Texas at Austin Computation Center\\nLines: 20\\nDistribution: world\\nNNTP-Posting-Host: gargravarr.cc.utexas.edu\\nX-UserAgent: Nuntius v1.1.1d20\\nX-XXMessage-ID: \\nX-XXDate: Thu, 15 Apr 93 19:42:41 GMT\\n\\nIn article Andy Cohen,\\nCohen@ssdgwy.mdc.com writes:\\n> I just uploaded \"DCXart2.GIF\" to bongo.cc.utexas.edu...after Chris Johnson\\n> moves it, it\\'ll probably be in pub/delta-clipper.\\n\\nThanks again Andy.\\n\\nThe image is in pub/delta-clipper now. The name has been changed to \\n\"dcx-artists-concept.gif\" in the spirit of verboseness. :-)\\n\\n----Chris\\n\\nChris W. Johnson\\n\\nInternet: chrisj@emx.cc.utexas.edu\\nUUCP: {husc6|uunet}!cs.utexas.edu!ut-emx!chrisj\\nCompuServe: >INTERNET:chrisj@emx.cc.utexas.edu\\nAppleLink: chrisj@emx.cc.utexas.edu@internet#\\n\\n...wishing the Delta Clipper team success in the upcoming DC-X flight tests.\\n',\n", + " 'From: pmoloney@maths.tcd.ie (Paul Moloney)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nOrganization: Somewhere in the Twentieth Century\\nLines: 14\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy.\\n\\nFind an encyclopedia. Volume H. Now look up Hitler, Adolf. He had\\nmany more people than just Germans enamoured with him.\\n\\nP.\\n-- \\n moorcockpratchettdenislearydelasoulu2iainmbanksneworderheathersbatmanpjorourke\\nclive p a u l m o l o n e y Come, let us retract the foreskin of misconception\\njames trinity college dublin and apply the wire brush of enlightenment - GeoffM\\n brownbladerunnersugarcubeselectronicblaylockpowersspikeleekatebushhamcornpizza \\n',\n", + " \"From: wlm@wisdom.attmail.com (Bill Myers)\\nSubject: Re: graphics libraries\\nIn-Reply-To: ch41@prism.gatech.EDU's message of 21 Apr 93 12:56:08 GMT\\nOrganization: /usr1/lib/news/organization\\nLines: 28\\n\\n\\n> Does anyone out there have any experience with Figaro+ form TGS or\\n> HOOPS from Ithaca Software? I would appreciate any comments.\\n\\nYes, I do. A couple of years ago, I did a comparison of the two\\nproducts. Some of this may have changed, but here goes.\\n\\nAs far as a PHIGS+ implementation, Figaro+ is fine. But, its PHIGS!\\nPersonally, I hate PHIGS because I find it is too low level. I also\\ndislike structure editing, which I find impossible, but enough about\\nPHIGS.\\n\\nI have found HOOPS to be a system that is full-featured and easy to\\nuse. They support all of their rendering methods in software when\\nthere is no hardware support, their documentation is good, and they\\nare easily portable to other systems.\\n\\nI would be happy to elaborate further if you have more specific\\nquestions. \\n--\\n|------------------------------------------------------|\\n ~~~ Here's lookin' at ya.\\n ~~_ _~~\\n |`O-@'| Bill | wlm@wisdom.attmail.com\\n @| > |@ Phone: (216) 831-2880 x2002\\n |\\\\___/|\\n |_____|\\n|______________________________________________________|\\n\",\n", + " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: >Natural morality may specifically be thought of as a code of ethics that\\n>>a certain species has developed in order to survive.\\n>Wait. Are we talking about ethics or morals here?\\n\\nIs the distinction important?\\n\\n>>We see this countless\\n>>times in the animal kingdom, and such a \"natural\" system is the basis for\\n>>our own system as well.\\n>Huh?\\n\\nWell, our moral system seems to mimic the natural one, in a number of ways.\\n\\n>>In order for humans to thrive, we seem to need\\n>>to live in groups,\\n>Here\\'s your problem. \"we *SEEM* to need\". What\\'s wrong with the highlighted\\n>word?\\n\\nI don\\'t know. What is wrong? Is it possible for humans to survive for\\na long time in the wild? Yes, it\\'s possible, but it is difficult. Humans\\nare a social animal, and that is a cause of our success.\\n\\n>>and in order for a group to function effectively, it\\n>>needs some sort of ethical code.\\n>This statement is not correct.\\n\\nIsn\\'t it? Why don\\'t you think so?\\n\\n>>And, by pointing out that a species\\' conduct serves to propogate itself,\\n>>I am not trying to give you your tautology, but I am trying to show that\\n>>such are examples of moral systems with a goal. Propogation of the species\\n>>is a goal of a natural system of morality.\\n>So anybody who lives in a monagamous relationship is not moral? After all,\\n>in order to ensure propogation of the species, every man should impregnate\\n>as many women as possible.\\n\\nNo. As noted earlier, lack of mating (such as abstinence or homosexuality)\\nisn\\'t really destructive to the system. It is a worst neutral.\\n\\n>For that matter, in herds of horses, only the dominate stallion mates. When\\n>he dies/is killed/whatever, the new dominate stallion is the only one who\\n>mates. These seems to be a case of your \"natural system of morality\" trying\\n>to shoot itself in the figurative foot.\\n\\nAgain, the mating practices are something to be reexamined...\\n\\nkeith\\n',\n", + " 'From: globus@nas.nasa.gov (Al Globus)\\nSubject: Space Colony Size Preferences Summary\\nOrganization: Applied Research Office, NASA Ames Research Center\\nReply-To: globus@nas.nasa.gov\\nDistribution: sci.space\\nLines: 92\\n\\n\\nSome time ago I sent the following message:\\n Every once in a while I design an orbital space colony. I\\'m gearing up to\\n do another one. I\\'d some info from you. If you were to move\\n onto a space colony to live permanently, how big would the colony have\\n to be for you to view a permanent move as desirable? Specifically,\\n\\n How many people do you want to share the colony with?\\n \\n\\n What physical dimensions does the living are need to have? \\n\\n\\n Assume 1g living (the colony will rotate). Assume that you can leave\\n from time to time for vacations and business trips. If you\\'re young\\n enough, assume that you\\'ll raise your children there.\\n\\nI didn\\'t get a lot of responses, and they were all over the block.\\nThanx muchly to all those who responded, it is good food for thought.\\n\\n\\n\\n\\nHere\\'s the (edited) responses I got:\\n\\n\\n How many people do you want to share the colony with?\\n \\n100\\n\\n What physical dimensions does the living are need to have? \\n\\nCylinder 200m diameter x 1 km long\\n\\nRui Sousa\\nruca@saber-si.pt\\n\\n=============================================================================\\n\\n> How many people do you want to share the colony with?\\n\\n100,000 - 250,000\\n\\n> What physical dimensions does the living are need to have? \\n\\n100 square kms surface, divided into city, towns, villages and\\ncountryside. Must have lakes, rivers amd mountains.\\n\\n=============================================================================\\n\\n> How many\\n1000. 1000 people really isn\\'t that large a number;\\neveryone will know everyone else within the space of a year, and will probably\\nbe sick of everyone else within another year.\\n\\n>What physical dimensions does the living are need to have? \\n\\nHm. I am not all that great at figuring it out. But I would maximize the\\npercentage of colony-space that is accessible to humans. Esecially if there\\nwere to be children, since they will figure out how to go everywhere anyways.\\nAnd everyone, especially me, likes to \"go exploring\"...I would want to be able\\nto go for a walk and see something different each time...\\n\\n=============================================================================\\n\\nFor population, I think I would want a substantial town -- big enough\\nto have strangers in it. This helps get away from the small-town\\n\"everybody knows everything\" syndrome, which some people like but\\nI don\\'t. Call it several thousand people.\\n\\nFor physical dimensions, a somewhat similar criterion: big enough\\nto contain surprises, at least until you spent considerable time\\ngetting to know it. As a more specific rule of thumb, big enough\\nfor there to be places at least an hour away on foot. Call that\\n5km, which means a 10km circumference if we\\'re talking a sphere.\\n\\n Henry Spencer at U of Toronto Zoology\\n henry@zoo.toronto.edu utzoo!henry\\n\\n=============================================================================\\nMy desires, for permanent move to a space colony, assuming easy communication\\nand travel:\\n\\nSize: About a small-town size, say 9 sq. km. \\'Course, bigger is better :-)\\nPopulation: about 100/sq km or less. So, ~1000 for 9sqkm. Less is\\nbetter for elbow room, more for interest and sanity, so say max 3000, min 300.\\n\\n-Tommy Mac\\n-------------------------------------------------------------------------\\nTom McWilliams | 517-355-2178 (work) \\\\\\\\ Inhale to the Chief!\\n18084tm@ibm.cl.msu.edu | 336-9591 (hm)\\\\\\\\ Zonker Harris in 1996!\\n-------------------------------------------------------------------------\\n',\n", + " 'From: wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov\\nSubject: Re: NASA \"Wraps\"\\nOrganization: University of Houston\\nLines: 160\\nDistribution: world\\nNNTP-Posting-Host: judy.uh.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr18.034101.21934@iti.org>, aws@iti.org (Allen W. Sherzer) writes...\\n>In article <17APR199316423628@judy.uh.edu> wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov writes:\\n> \\n>>I don\\'t care who told you this it is not generally true. I see EVERY single\\n>>line item on a contract and I have to sign it. There is no such thing as\\n>>wrap at this university. \\n> \\n>Dennis, I have worked on or written proposals worth tens of millions\\n>of $$. Customers included government (including NASA), for profit and\\n>non-profit companies. All expected a wrap (usually called a fee). Much\\n>of the work involved allocating and costing the work of subcontractors.\\n>The subcontractors where universities, for-profits, non-profits, and\\n>even some of the NASA Centers for the Commercialization of Space. ALL\\n>charged fees as part of the work. Down the street is one of the NASA\\n>commercialization centers; they charge a fee.\\n> \\n\\nYou totally forgot the original post that you posted Allen. In that post\\nyou stated that the \"wrap\" was on top of and in addition to any overhead.\\nGeez in this post you finally admit that this is not true.\\n\\n>Now, I\\'m sure your a competent engineer Dennis, but you clearly lack\\n>experience in several areas. Your posts show that you don\\'t understand\\n>the importance of integration in large projects. You also show a lack\\n>of understanding of costing efforts as shown by your belief that it\\n>is reasonable to charge incremental costs for everything. This isn\\'t\\n>a flame, jsut a statement.\\n\\nCome your little ol buns down here and you will find out who is doing\\nwhat and who is working on integration. This is simply an ad hominum\\nattack and you know it.\\n\\n> \\n>Your employer DOES charge a fee. You may not see it but you do.\\n>\\n\\nOf course there is a fee. It is for administration. Geez Allen any\\norganization has costs but there is a heck of a difference in legitimate\\ncosts, such as libraries and other things that must be there to support\\na program and \"wrap\" as you originally stated it.You stated that wrap\\nwas on top of all of the overhead which a couple of sentences down you\\nsay is not true. Which is it Allen?\\n\\n>>>Sounds like they are adding it to their overhead rate. Go ask your\\n>>>costing people how much fee they add to a project.\\n> \\n>>I did they never heard of it but suggest that, like our president did, that\\n>>any percentage number like this is included in the overhead.\\n> \\n>Well there you are Dennis. As I said, they simply include the fee in\\n>their overhead. Many seoparate the fee since the fee structure can\\n>change depending on the customer.\\n>\\n\\nAs you have posted on this subject Allen, you state that wrap is over and\\nabove overhead and is a seperate charge. You admit here that this is wrong.\\nNasa has a line item budget every year. I have seen it Allen. Get some\\nnumbers from that detailed NASA budget and dig out the wrap numbers and then\\nhowl to high heaven about it. Until you do that you are barking in the wind.\\n\\n>>No Allen you did not. You merely repeated allegations made by an Employee\\n>>of the Overhead capital of NASA. \\n> \\n>Integration, Dennis, isn\\'t overhead.\\n> \\n>>Nothing that Reston does could not be dont\\n>>better or cheaper at the Other NASA centers where the work is going on.\\n>\\n\\nIntegration could be done better at the centers. Apollo integration was \\ndone here at Msfc and that did not turn out so bad. The philosophy of\\nReston is totally wrong Allen. There you have a bunch of people who are\\ncompletely removed from the work that they are trying to oversee. There\\nis no way that will ever work. It has never worked in any large scale project\\nthat it was ever tried on. Could you imagine a Reston like set up for \\nApollo?\\n\\n>Dennis, Reston has been the only NASA agency working to reduce costs. When\\n>WP 02 was hemoraging out a billion $$, the centers you love so much where\\n>doing their best to cover it up and ignore the problem. Reston was the\\n>only place you would find people actually interested in solving the\\n>problems and building a station.\\n>\\n\\nOh you are full of it Allen on this one. I agree that JSC screwed up big.\\nThey should be responsible for that screw up and the people that caused it\\nreplaced. To make a stupid statement like that just shows how deep your\\nbias goes. Come to MSFC for a couple of weeks and you will find out just\\nhow wrong you really are. Maybe not, people like you believe exactly what\\nthey want to believe no matter what the facts are contrary to it. \\n\\n>>Kinda funny isn\\'t it that someone who talks about a problem like this is\\n>>at a place where everything is overhead.\\n> \\n>When you have a bit more experience Dennis, you will realize that\\n>integration isn\\'t overhead. It is the single most important part\\n>of a successful large scale effort.\\n>\\n\\nI agree that integration is the single most important part of a successful\\nlarge scale effort. What I completly disagree with is seperating that\\nintegration function from the people that are doing the work. It is called\\nleadership Allen. That is what made Apollo work. Final responsibility for\\nthe success of Apollo was held by less than 50 people. That is leadership\\nand responsibility. There is neither when you have any organization set up\\nas Reston is. You could take the same people and move them to JSC or MSFC\\nand they could do a much better job. Why did it take a year for Reston to\\nfinally say something about the problem? If they were on site and part of the\\nprocess then the problem would have never gotten out of hand in the first place.\\n\\nThere is one heck of a lot I do not know Allen, but one thing I do know is that\\nfor a project to be successful you must have leadership. I remember all of the\\nturn over at Reston that kept SSF program in shambles for years do you? It is\\nlack of responsibility and leadership that is the programs problem. Lack of\\nleadership from the White House, Congress and at Reston. Nasa is only a\\nsymptom of a greater national problem. You are so narrowly focused in your\\nefforts that you do not see this.\\n\\n>>Why did the Space News artice point out that it was the congressionally\\n>>demanded change that caused the problems? Methinks that you are being \\n>>selective with the facts again.\\n> \\n>The story you refer to said that some NASA people blamed it on\\n>Congress. Suprise suprise. The fact remains that it is the centers\\n>you support so much who covered up the overheads and wouldn\\'t address\\n>the problems until the press published the story.\\n> \\n>Are you saying the Reston managers where wrong to get NASA to address\\n>the overruns? You approve of what the centers did to cover up the overruns?\\n>\\n\\nNo, I am saying that if they were located at JSC it never would have \\nhappened in the first place.\\n\\n>>If it takes four flights a year to resupply the station and you have a cost\\n>>of 500 million a flight then you pay 2 billion a year. You stated that your\\n>>\"friend\" at Reston said that with the current station they could resupply it\\n>>for a billion a year \"if the wrap were gone\". This merely points out a \\n>>blatent contridiction in your numbers that understandably you fail to see.\\n> \\n>You should know Dennis that NASA doesn\\'t include transport costs for\\n>resuply. That comes from the Shuttle budget. What they where saying\\n>is that operational costs could be cut in half plus transport.\\n> \\n>>Sorry gang but I have a deadline for a satellite so someone else is going\\n>>to have to do Allen\\'s math for him for a while. I will have little chance to\\n>>do so.\\n> \\n>I do hope you can find the time to tell us just why it was wrong of\\n>Reston to ask that the problems with WP 02 be addressed.\\n> \\nI have the time to reitereate one more timet that if the leadership that is\\nat reston was on site at JSC the problem never would have happened, totally\\nignoring the lack of leadership of congress. This many headed hydra that\\nhas grown up at NASA is the true problem of the Agency and to try to \\nchange the question to suit you and your bias is only indicative of\\nyour position.\\n\\nDennis, University of Alabama in Huntsville\\n\\n',\n", + " \"From: raible@nas.nasa.gov (Eric Raible)\\nSubject: Re: Need advice for riding with someone on pillion\\nIn-Reply-To: rwert@well.sf.ca.us's message of 21 Apr 93 01:07:56 GMT\\nOrganization: Applied Research Office, NASA Ames Research Center\\nReply-To: raible@nas.nasa.gov\\nDistribution: na\\nLines: 22\\n\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n\\n I need some advice on having someone ride pillion with me on my 750 Ninja.\\n This will be the the first time I've taken anyone for an extended ride\\n (read: farther than around the block :-). We'll be riding some twisty, \\n fairly bumpy roads (the Mines Road-Mt.Hamilton Loop for you SF Bay Areans).\\n\\nI'd say this is a very bad idea - you should start out with something\\nmuch mellower so that neither one of you get in over your head.\\nThat particular road requires full concentration - not the sort of\\nthing you want to take a passenger on for the first time.\\n\\nOnce you both decide that you like riding together, and want to do\\nsomething longer and more challenging, *then* go for a hard core road\\nlike Mines-Mt. Hamilton.\\n\\nIn any case, it's *your* (moral) responsibility to make sure that she\\nhas proper gear that fits - especially if you're going sport\\nriding.\\n\\n- Eric\\n\",\n", + " 'From: klf@druwa.ATT.COM (FranklinKL)\\nSubject: Re: Hell-mets.\\nSummary: Visual damage is NOT an indicator.\\nLines: 50\\n\\nIn article <1993Apr18.035125.29930@freenet.carleton.ca>, aa963@Freenet.carleton.ca (Lloyd Carr) writes:\\n> \\n> In a previous article, maven@mavenry.altcit.eskimo.com (Norman Hamer) says:\\n> \\n> >\\n> > \\n> > If I don\\'t end up replacing it in the real near future, would I do better \\n> >to wear my (totally nondamaged) 3/4 face DOT-RATED cheapie which doesn\\'t fit \\n> >as well or keep out the wind as well, or wearing the Shoei RF-200 which is a \\n> >LOT more comfortable, keeps the wind out better, is quieter... but might \\n> >have some minor damage?\\n> \\n> == Wear the RF200. Even after a few drops & paint chips, it is FAR better\\n> than no helmet or a poorly fitting one. I\\'ve had many scratches & bangs\\n> which have been repaired plus I\\'m still confident of the protection the\\n> helmet will continue to give me. Only when you actually see depressions\\n \\n> or actual cracks (using a magnifying glass) should you consider replacement.\\n\\n> -- \\n\\nThis is not good advice. A couple of years I was involved in a low-speed\\ngetoff in which I landed on my back on the pavement. My head (helmeted)\\nhit the pavement with a \"clunk\", leaving a couple of dings and chips in the\\npaint at the point of impact, but no other visible damage. I called the\\nhelmet manufacturer and inquired about damage. They said that the way a\\nfiberglass shell works is to first give, then delaminate, then crack.\\nThis is the way fiberglass serves to spread the force of the impact over a\\nwider area. After the fiberglass has done its thing, the crushable foam\\nliner takes care of absorbing (hopefully) the remaining impact force.\\nThey told me that the second stage of fiberglass functionality (delamination\\nof the glass/resin layers) can occur with NO visible signs, either inside or\\noutside of the helmet. They suggested that I send them the helmet and they\\nwould inspect it (including X-raying). I did so. They sent back the helmet\\nwith a letter stating that that they could find no damage that would\\ncompromise the ability of the helmet to provide maximum protection.\\n(I suspect that this letter would eliminate their being able to claim\\nprior damage to the helmet in the event I were to sue them.)\\n\\nThe bottom line, though, is that it appears that a helmets integrity\\ncan be compromised with no visible signs. The only way to know for sure\\nis to send it back and have it inspected. Note that some helmet\\nmanufacturers provide inspections services and some do not. Another point\\nto consider when purchasing a lid.\\n\\n--\\nKen Franklin \\tThey say there\\'s a heaven for people who wait\\nAMA \\tAnd some say it\\'s better but I say it ain\\'t\\nGWRRA I\\'d rather laugh with the sinners than cry with the saints\\nDoD #0126 The sinners are lots more fun, Y\\'know only the good die young\\n',\n", + " 'From: spl@ivem.ucsd.edu (Steve Lamont)\\nSubject: SGI sales practices (Was: Crimson (Was: Kubota Announcement?))\\nOrganization: University of Calif., San Diego/Microscopy and Imaging Resource\\nLines: 49\\nNNTP-Posting-Host: ivem.ucsd.edu\\n\\nIn article <30523@hacgate.SCG.HAC.COM> lee@luke.rsg.hac.com (C. Lee) writes:\\n>The original posting complained (1) about SGI coming out with newer (and\\n>better) architectures and not having an upgrade path from the older ones,\\n>and (2) that DEC did.\\n\\nNo. That\\'s *not* what I was complaining about, nor did I intend to\\nsuggest that DEC was any better than SGI (let me tell you about the\\nLynx some day, but be prepared with a large sedative if you do...). My\\ncomment regarding DEC was to indicate that I might be open to other vendors\\nthat supported OpenGL, rather than deal further with SGI.\\n\\nWhat I *am* annoyed about is the fact that we were led to believe that\\nwe *would* be able to upgrade to a multiprocessor version of the\\nCrimson without the assistance of a fork lift truck.\\n\\nI\\'m also annoyed about being sold *several* Personal IRISes at a\\nprevious site on the understanding *that* architecture would be around\\nfor a while, rather than being flushed.\\n\\nNow I understand that SGI is responsible to its investors and has to\\nkeep showing a positive quarterly bottom line (odd that I found myself\\npressured on at least two occasions to get the business on the books\\njust before the end of the quarter), but I\\'m just a little tired of\\ngetting boned in the process.\\n\\nMaybe it\\'s because my lab buys SGIs in onesies and twosies, so we\\naren\\'t entitled to a \"peek under the covers\" as the Big Kids (NASA,\\nfor instance) are. This lab, and I suspect that a lot of other labs\\nand organizations, doesn\\'t have a load of money to spend on computers\\nevery year, so we can\\'t be out buying new systems on a regular basis.\\nThe boxes that we buy now will have to last us pretty much through the\\nentire grant period of five years and, in some case, beyond. That\\nmeans that I need to buy the best piece of equipment that I can when I\\nhave the money, not some product that was built, to paraphrase one\\nprevious poster\\'s words, \\'to fill a niche\\' to compete with some other\\nvendor. I\\'m going to be looking at this box for the next five years.\\nAnd every time I look at it, I\\'m going to think about SGI and how I\\ncould have better spent my money (actually *your* money, since we\\'re\\nsupported almost entirely by Federal tax dollars).\\n\\nNow you\\'ll have to pardon me while I go off and hiss and fume in a\\ncorner somewhere and think dark, libelous thoughts.\\n\\n\\t\\t\\t\\t\\t\\t\\tspl\\n-- \\nSteve Lamont, SciViGuy -- (619) 534-7968 -- spl@szechuan.ucsd.edu\\nSan Diego Microscopy and Imaging Resource/UC San Diego/La Jolla, CA 92093-0608\\n\"My other car is a car, too.\"\\n - Bumper strip seen on I-805\\n',\n", + " \"From: santac@aix.rpi.edu (Christopher James Santarcangelo)\\nSubject: FORSALE: 1982 Yamaha Seca 650 Turbo\\nKeywords: forsale seca turbo\\nNntp-Posting-Host: aix.rpi.edu\\nDistribution: usa\\nLines: 17\\n\\nI don't want to do this, but I need money for school. This is\\na very snappy bike. It needs a little work and I don't have the\\nmoney for it. Some details:\\n\\n\\t~19000 miles\\n\\tMitsubishi turbo\\n\\tnot asthetically beautiful, but very fast!\\n\\tOne of the few factory turboed bikes... not a kit!\\n\\tMust see and ride to appreciate how fun this bike is!\\n\\nI am asking $700 or best offer. The bike can be seen in\\nBennington, Vermont. E-mail for more info!\\n\\nThanks,\\nChris\\nsantac@rpi.edu\\n\\n\",\n", + " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 25\\nDistribution: na\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , jbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n> I remeber reading the comment that General Dynamics was tied into this, in \\n> connection with their proposal for an early manned landing. Sorry I don\\'t \\n> rember where I heard this, but I\\'m fairly sure it was somewhere reputable. \\n> Anyone else know anything on this angle?\\n\\nThe General Chairman is Paul Bialla, who is some official of General\\nDynamics.\\n\\nThe emphasis seems to be on a scaled-down, fast plan to put *people*\\non the Moon in an impoverished spaceflight-funding climate. You\\'d\\nthink it would be a golden opportunity to do lots of precusor work for\\nmodest money using an agressive series of robot spacecraft, but\\nthere\\'s not a hint of this in the brochure.\\n\\n> Hrumph. They didn\\'t send _me_ anything :(\\n\\nYou\\'re not hanging out with the Right People, apparently.\\n\\nBill Higgins, Beam Jockey | \"I\\'m gonna keep on writing songs\\nFermilab | until I write the song\\nBitnet: HIGGINS@FNAL.BITNET | that makes the guys in Detroit\\nInternet: HIGGINS@FNAL.FNAL.GOV | who draw the cars\\nSPAN/Hepnet: 43011::HIGGINS | put tailfins on \\'em again.\"\\n --John Prine\\n',\n", + " 'From: arf@genesis.MCS.COM (Jack Schmidling)\\nSubject: NEWS YOU MAY HAVE MISSED, Apr 20\\nOrganization: MCSNet Contributor, Chicago, IL\\nLines: 111\\nDistribution: world\\nNNTP-Posting-Host: localhost.mcs.com\\n\\n \\n NEWS YOU MAY HAVE MISSED, APR 19, 1993\\n \\n Not because you were too busy but because\\n Israelists in the US media spiked it.\\n \\n ................\\n \\n \\n THOSE INTREPID ISRAELI SOLDIERS\\n \\n \\n Israeli soldiers have sexually taunted Arab women in the occupied Gaza Strip \\n during the three-week-long closure that has sealed Palestinians off from the \\n Jewish state, Palestinian sources said on Sunday.\\n \\n The incidents occurred in the town of Khan Younis and involved soldiers of\\n the Golani Brigade who have been at the centre of house-to-house raids for\\n Palestinian activists during the closure, which was imposed on the strip and\\n occupied West Bank.\\n \\n Five days ago girls at the Al-Khansaa secondary said a group of naked\\n soldiers taunted them, yelling: ``Come and kiss me.\\'\\' When the girls fled, \\n the soldiers threw empty bottles at them.\\n \\n On Saturday, a group of soldiers opened their shirts and pulled down their\\n pants when they saw girls from Al-Khansaa walking home from school. Parents \\n are considering keeping their daughters home from the all-girls school.\\n \\n The same day, soldiers harassed two passing schoolgirls after a youth\\n escaped from them at a boys\\' secondary school. Deputy Principal Srur \\n Abu-Jamea said they shouted abusive language at the girls, backed them \\n against a wall, and put their arms around them.\\n \\n When teacher Hamdan Abu-Hajras intervened the soldiers kicked him and beat\\n him with the butts of their rifles.\\n \\n On Tuesday, troops stopped a car driven by Abdel Azzim Qdieh, a practising\\n Moslem, and demanded he kiss his female passenger. Qdieh refused, the \\n soldiers hit him and the 18-year-old passenger kissed him to stop the \\n beating.\\n \\n On Friday, soldiers entered the home of Zamno Abu-Ealyan, 60, blindfolded\\n him and his wife, put a music tape on a recorder and demanded they dance. As\\n the elderly couple danced, the soldiers slipped away. The coupled continued\\n dancing until their grandson came in and asked what was happening.\\n \\n The army said it was checking the reports.\\n \\n ....................\\n \\n \\n ISRAELI TROOPS BAR CHRISTIANS FROM JERUSALEM\\n \\n Israeli troops prevented Christian Arabs from entering Jerusalem on Thursday \\n to celebrate the traditional mass of the Last Supper.\\n \\n Two Arab priests from the Greek Orthodox church led some 30 worshippers in\\n prayer at a checkpoint separating the occupied West Bank from Jerusalem after\\n soldiers told them only people with army-issued permits could enter.\\n \\n ``Right now, our brothers are celebrating mass in the Church of the Holy\\n Sepulchre and we were hoping to be able to join them in prayer,\\'\\' said Father\\n George Makhlouf of the Ramallah Parish.\\n \\n Israel sealed off the occupied lands two weeks ago after a spate of\\n Palestinian attacks against Jews. The closure cut off Arabs in the West Bank\\n and Gaza Strip from Jerusalem, their economic, spiritual and cultural centre.\\n \\n Father Nicola Akel said Christians did not want to suffer the humiliation\\n of requesting permits to reach holy sites.\\n \\n Makhlouf said the closure was discriminatory, allowing Jews free movement\\n to take part in recent Passover celebrations while restricting Christian\\n celebrations.\\n \\n ``Yesterday, we saw the Jews celebrate Passover without any interruption.\\n But we cannot reach our holiest sites,\\'\\' he said.\\n \\n An Israeli officer interrupted Makhlouf\\'s speech, demanding to see his\\n identity card before ordering the crowd to leave.\\n \\n ...................\\n \\n \\n \\n If you are as revolted at this as I am, drop Israel\\'s best friend email and \\n let him know what you think.\\n \\n \\n 75300.3115@compuserve.com (via CompuServe)\\n clintonpz@aol.com (via America Online)\\n clinton-hq@campaign92.org (via MCI Mail)\\n \\n \\n Tell \\'em ARF sent ya.\\n \\n ..................................\\n \\n If you are tired of \"learning\" about American foreign policy from what is \\n effectively, Israeli controlled media, I highly recommend checking out the \\n Washington Report. A free sample copy is available by calling the American \\n Education Trust at:\\n (800) 368 5788\\n \\n Tell \\'em arf sent you.\\n \\n js\\n \\n \\n\\n',\n", + " 'From: watson@madvax.uwa.oz.au (David Watson)\\nSubject: Re: Sphere from 4 points?\\nOrganization: Maths Dept UWA\\nLines: 23\\nDistribution: world\\nNNTP-Posting-Host: xanthorrhoea.maths.uwa.edu.au\\n\\nIn article <1qkgbuINNs9n@shelley.u.washington.edu>, \\nbolson@carson.u.washington.edu (Edward Bolson) writes:\\n \\n|> Given 4 points (non coplanar), how does one find the sphere, that is,\\n|> center and radius, exactly fitting those points? \\n\\nFinding the circumcenter of a tetrahedron is discussed on page 33 in\\n\\nCONTOURING: A guide to the analysis and display of spatial data,\\nby Dave Watson, Pergamon Press, 1992, ISBN 0 08 040286 0, 321p.\\n\\nEach pair of tetrahedral vertices define a plane which is a \\nperpendicular bisector of the line between that pair. Express each\\nplane in the form Ax + By + Cz = D\\nand solve the set of simultaneous equations from any three of those\\nplanes that have a vertex in common (all vertices are used). \\nThe solution is the circumcenter.\\n\\n-- \\nDave Watson Internet: watson@maths.uwa.edu.au\\nDepartment of Mathematics \\nThe University of Western Australia Tel: (61 9) 380 3359\\nNedlands, WA 6009 Australia. FAX: (61 9) 380 1028\\n',\n", + " 'From: keithley@apple.com (Craig Keithley)\\nSubject: Re: Moonbase race, NASA resources, why?\\nOrganization: Apple Computer, Inc.\\nLines: 44\\n\\nIn article , henry@zoo.toronto.edu (Henry\\nSpencer) wrote:\\n> \\n> The major component of any realistic plan to go to the Moon cheaply (for\\n> more than a brief visit, at least) is low-cost transport to Earth orbit.\\n> For what it costs to launch one Shuttle or two Titan IVs, you can develop\\n> a new launch system that will be considerably cheaper. (Delta Clipper\\n> might be a bit more expensive than this, perhaps, but there are less\\n> ambitious ways of bringing costs down quite a bit.) \\n\\nAh, there\\'s the rub. And a catch-22 to boot. For the purposes of a\\ncontest, you\\'ll probably not compete if\\'n you can\\'t afford the ride to get\\nthere. And although lower priced delivery systems might be doable, without\\ndemand its doubtful that anyone will develop a new system. Course, if a\\nlow priced system existed, there might be demand... \\n\\nI wonder if there might be some way of structuring a contest to encourage\\nlow cost payload delivery systems. The accounting methods would probably\\nbe the hardest to work out. For example, would you allow Rockwell to\\n\\'loan\\' you the engines? And so forth...\\n\\n> Any plan for doing\\n> sustained lunar exploration using existing launch systems is wasting\\n> money in a big way.\\n> \\n\\nThis depends on the how soon the new launch system comes on line. In other\\nwords, perhaps a great deal of worthwhile technology (life support,\\nnavigation, etc.) could be developed prior to a low cost launch system. \\nYou wouldn\\'t want to use the expensive stuff forever, but I\\'d hate to see\\nfolks waiting to do anything until a low cost Mac, oops, I mean launch\\nsystem comes on line.\\n\\nI guess I\\'d simplify this to say that \\'waste\\' is a slippery concept. If\\nyour goal is manned lunar exploration in the next 5 years, then perhaps its\\nnot \\'wasted\\' money. If your goal is to explore the moon for under $500\\nmillion, then you should put of this exploration for a decade or so.\\n\\nCraig\\n\\n\\nCraig Keithley |\"I don\\'t remember, I don\\'t recall, \\nApple Computer, Inc. |I got no memory of anything at all\"\\nkeithley@apple.com |Peter Gabriel, Third Album (1980)\\n',\n", + " 'From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Griffin / Office of Exploration: RIP\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 43\\n\\nyamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n\\n>Any comments on the absorbtion of the Office of Exploration into the\\n>Office of Space Sciences and the reassignment of Griffin to the \"Chief\\n>Engineer\" position? Is this just a meaningless administrative\\n>shuffle, or does this bode ill for SEI?\\n\\n>In my opinion, this seems like a Bad Thing, at least on the surface.\\n>Griffin seemed to be someone who was actually interested in getting\\n>things done, and who was willing to look an innovative approaches to\\n>getting things done faster, better, and cheaper. It\\'s unclear to me\\n>whether he will be able to do this at his new position.\\n\\n>Does anyone know what his new duties will be?\\n\\nFirst I\\'ve heard of it. Offhand:\\n\\nGriffin is no longer an \"office\" head, so that\\'s bad.\\n\\nOn the other hand:\\n\\nRegress seemed to think: we can\\'t fund anything by Griffin, because\\nthat would mean (and we have the lies by the old hardliners about the\\n$ 400 billion mars mission to prove it) that we would be buying into a\\nmission to Mars that would cost 400 billion. Therefore there will be\\nno Artemis or 20 million dollar lunar orbiter et cetera...\\n\\nThey were killing Griffin\\'s main program simply because some sycophants\\nsomewhere had Congress beleivin that to do so would simply be to buy into\\nthe same old stuff. Sorta like not giving aid to Yeltsin because he\\'s\\na communist hardliner.\\n\\nAt least now the sort of reforms Griffin was trying to bring forward\\nwon\\'t be trapped in their own little easily contained and defunded\\nghetto. That Griffin is staying in some capacity is very very very\\ngood. And if he brings something up, noone can say \"why don\\'t you go\\nback to the OSE where you belong\" (and where he couldn\\'t even get money\\nfor design studies).\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", + " 'Subject: Re: Gamma Ray Bursters. Where are they? \\nFrom: belgarath@vax1.mankato.msus.edu\\nOrganization: Mankato State University\\nNntp-Posting-Host: vax1.mankato.msus.edu\\nLines: 67\\n\\nIn article <1radsr$att@access.digex.net>, prb@access.digex.com (Pat) writes:\\n> What evidence indicates that Gamma Ray bursters are very far away?\\n> \\n> Given the enormous power, i was just wondering, what if they are\\n> quantum black holes or something like that fairly close by?\\n> \\n> Why would they have to be at galactic ranges? \\n> \\n> my own pet theory is that it\\'s Flying saucers entering\\n> hyperspace :-)\\n> \\n> but the reason i am asking is that most everyone assumes that they\\n> are colliding nuetron stars or spinning black holes, i just wondered\\n> if any mechanism could exist and place them closer in.\\n> \\n> pat \\n Well, lets see....I took a class on this last fall, and I have no\\nnotes so I\\'ll try to wing it... \\n Here\\'s how I understand it. Remember from stellar evolution that \\nblack holes and neutron stars(pulsars) are formed from high mass stars,\\nM(star)=1.4M(sun). High mass stars live fast and burn hard, taking\\nappoximately 10^5-10^7 years before going nova, or supernova. In this time,\\nthey don\\'t live long enough to get perturbed out of the galactic plane, so any\\nof these (if assumed to be the sources of GRB\\'s) will be in the plane of the\\ngalaxy. \\n Then we take the catalog of bursts that have been recieved from the\\nvarious satellites around the solar system, (Pioneer Venus has one, either\\nPion. 10 or 11, GINGA, and of course BATSE) and we do distribution tests on our\\ncatalog. These tests all show, that the bursts have an isotropic\\ndistribution(evenly spread out in a radial direction), and they show signs of\\nhomogeneity, i.e. they do not clump in any one direction. So, unless we are\\nsampling the area inside the disk of the galaxy, we are sampling the UNIVERSE.\\nNot cool, if you want to figure out what the hell caused these things. Now, I\\nsuppose you are saying, \"Well, we stil only may be sampling from inside the\\ndisk.\" Well, not necessarily. Remember, we have what is more or less an\\ninterplanetary network of burst detectors with a baseline that goes waaaay out\\nto beyond Pluto(pioneer 11), so we should be able, with all of our detectors de\\ntect some sort of difference in angle from satellite to satellite. Here\\'s an \\nanalogy: You see a plane overhead. You measure the angle of the plane from\\nthe origin of your arbitrary coordinate system. One of your friends a mile\\naway sees the same plane, and measures the angle from the zero point of his\\narbitrary system, which is the same as yours. The two angles are different,\\nand you should be able to triangulate the position of your burst, and maybe\\nfind a source. To my knowledge, no one has been able to do this. \\n I should throw in why halo, and corona models don\\'t work, also. As I\\nsaid before, looking at the possible astrophysics of the bursts, (short\\ntimescales, high energy) black holes, and pulsars exhibit much of this type of\\nbehavior. If this is the case, as I said before, these stars seem to be bound\\nto the disk of the galaxy, especially the most energetic of the these sources.\\nWhen you look at a simulated model, where the bursts are confined to the disk,\\nbut you sample out to large distances, say 750 mpc, you should definitely see\\nnot only an anisotropy towards you in all direction, but a clumping of sources \\nin the direction of the galactic center. As I said before, there is none of\\nthese characteristics. \\n \\n I think that\\'s all of it...if someone needs clarification, or knows\\nsomething that I don\\'t know, by all means correct me. I had the honor of\\ntaking the Bursts class with the person who has done the modeling of these\\ndifferent distributions, so we pretty much kicked around every possible\\ndistribution there was, and some VERY outrageous sources. Colliding pulsars,\\nblack holes, pulsars that are slowing down...stuff like that. It\\'s a fun\\nfield. \\n Complaints and corrections to: belgarath@vax1.mankato.msus.edu or \\npost here. \\n -jeremy\\n\\n \\n',\n", + " 'From: prange@nickel.ucs.indiana.edu (Henry Prange)\\nSubject: Re: (tangentially) Re: Live Free, but Quietly, or Die\\nNntp-Posting-Host: nickel.ucs.indiana.edu\\nOrganization: Indiana University\\nLines: 20\\n\\nIn article <1993Apr15.035406.29988@rd.hydro.on.ca> jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n\\nimpertinent stuff deleted\\n>\\n>Am I showing my Canadian University-ness here, of does anyone else know\\n>what I\\'m talking about?\\n>\\n>I\\'ve bike like | Jody Levine DoD #275 kV\\n> got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n> ride it | Toronto, Ontario, Canada\\n\\nThere you go again, you edu-breath poser! \"University-ness\" indeed!\\nLeave that stuff to us professionals.\\n\\nHenry Prange biker/professional edu-breath\\nPhysiology/IU Sch. Med., Blgtn., 47405\\nDoD #0821; BMWMOA #11522; GSI #215\\nride = \\'92 R100GS; \\'91 RX-7 conv = cage/2; \\'91 Explorer = cage*2\\nThe unifying trait of our species is the relentless pursuit of folly.\\nHypocrisy is the only national religion of this country.\\n',\n", + " \"From: af774@cleveland.Freenet.Edu (Chad Cipiti)\\nSubject: Good shareware paint and/or animation software for SGI?\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 15\\nReply-To: af774@cleveland.Freenet.Edu (Chad Cipiti)\\nNNTP-Posting-Host: hela.ins.cwru.edu\\n\\n\\nDoes anyone know of any good shareware animation or paint software for an SGI\\n machine? I've exhausted everyplace on the net I can find and still don't hava\\n a nice piece of software.\\n\\nThanks alot!\\n\\nChad\\n\\n\\n-- \\nKnock, knock. Chad Cipiti\\nWho's there? af774@cleveland.freenet.edu\\n cipiti@bobcat.ent.ohiou.edu\\nIt might be Heisenberg. chad@voxel.zool.ohiou.edu\\n\",\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Moonbase race\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 16\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu> sysmgr@king.eng.umd.edu writes:\\n\\n>So how much would it cost as a private venture, assuming you could talk the\\n>U.S. government into leasing you a couple of pads in Florida? \\n\\nWhy would you want to do that? The goal is to do it cheaper (remember,\\nthis isn\\'t government). Instead of leasing an expensive launch pad,\\njust use a SSTO and launch from a much cheaper facility.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------56 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " \"Subject: So what is Maddi?\\nFrom: madhaus@netcom.com (Maddi Hausmann)\\nOrganization: Society for Putting Things on Top of Other Things\\nLines: 12\\n\\nAs I was created in the image of Gaea, therefore I must\\nbe the pinnacle of creation, She which Creates, She which\\nBirths, She which Continues.\\n\\nOr, to cut all the religious crap, I'm a woman, thanks.\\nAnd it's sexism that started me on the road to atheism.\\n\\n-- \\nMaddi Hausmann madhaus@netcom.com\\nCentigram Communications Corp San Jose California 408/428-3553\\n\\nKids, please don't try this at home. Remember, I post professionally.\\n\",\n", + " 'From: ridout@bink.plk.af.mil (Brian S. Ridout)\\nSubject: Re: Virtual Reality for X on the CHEAP!\\nOrganization: Air Force Phillips Lab.\\nLines: 23\\nDistribution: world\\nNNTP-Posting-Host: bink.plk.af.mil\\n\\nIn article <1993Apr15.134802.21995@mfltd.co.uk>, sts@mfltd.co.uk (Steve Sherwood (x5543)) writes:\\n|> Has anyone got multiverse to work ?\\n|> \\n|> I have built it on 486 svr4, mips svr4s and Sun SparcStation.\\n|> \\n|> There seems to be many bugs in it. The \\'dogfight\\' and \\'dactyl\\' simply do nothing\\n|> (After fixing a bug where a variable is defined twice in two different modules - One needed\\n|> setting to static - else the client core-dumped)\\n|> \\n|> Steve\\n|> -- \\n|> \\n|> Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n|> +-----------------------------------+------------------------+ Micro Focus\\n|> | Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n|> | Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n|> | Need courage to survive the day. | | Berkshire\\n|> +-----------------------------------+------------------------+ England\\n|> (A)bort (R)etry (I)nfluence with large hammer\\nI built it on a rs6000 (my only Motif machine) works fine. I added some objects\\ninto dogfight so I could get used to flying. This was very easy. \\nAll in all Cool!. \\nBrian\\n',\n", + " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: lotto@laura.harvard.edu (Jerry Lotto)\\nDistribution: rec\\nOrganization: Chemistry Dept., Harvard University\\nNNTP-Posting-Host: laura.harvard.edu\\nIn-reply-to: xlyx@vax5.cit.cornell.edu\\'s message of 19 Apr 93 21:48:42 GMT\\nLines: 10\\n\\n>>>>> On 19 Apr 93 21:48:42 GMT, xlyx@vax5.cit.cornell.edu said:\\nMike> Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\nSure. In fact, you can do a wheelie on a shaft-drive motorcycle\\nwithout even moving. Just don\\'t try countersteering.\\n\\n:-)\\n--\\nJerry Lotto MSFCI, HOGSSC, BCSO, AMA, DoD #18\\nChemistry Dept., Harvard Univ. \"It\\'s my Harley, and I\\'ll ride if I want to...\"\\n',\n", + " \"From: bh437292@longs.LANCE.ColoState.Edu (Basil Hamdan)\\nSubject: Re: Go Hizbollah II!\\nReply-To: bh437292@lance.colostate.edu\\nNntp-Posting-Host: traver.lance.colostate.edu\\nOrganization: Engineering College, Colorado State University\\nLines: 15\\n\\nIn article <1993Apr24.202201.1@utxvms.cc.utexas.edu>, ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky) writes:\\n|> Paraphrasing a bit, with every rocket that \\n|> \\tthe Hizbollah fires on the Galilee, they justify Israel's \\n|> \\tholding to the security zone. \\n|> \\n|> Noam\\n\\n\\n\\nI only want to say that I agree with Noam on this point\\nand I hope that all sides stop targeting civilians.\\n\\nBasil \\n\\n\\n\",\n", + " 'From: hl7204@eehp22 (H L)\\nSubject: Re: Graphics Library Package\\nOrganization: University of Illinois at Urbana\\nLines: 2\\n\\n \\n\\n',\n", + " \"From: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nSubject: Re: Motorcycle Courier (S\\nReply-To: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nDistribution: world\\nOrganization: Computer Dynamics-Vancouver B.C.-(604)986-9937 (604)255-9937\\nLines: 19\\n\\nJL-NS>Subject: Re: Motorcycle Courier (Summer Job)\\n\\nI'd like to thank everyone who replied. I will probably start looking in\\nearnest after May, when I return from my trip down the Pacific Coast\\n(the geographical feature, not the bike).\\n\\nRyan Cousinetc.|1982 Yamaha Vision XZ550 -Black Pig of Inverness|Live to Ride\\nKotRB |1958 AJS 500 C/S -King Rat |to Work to\\nDoD# 0863 |I'd be a squid if I could afford the bike... |Flame to\\nryan.cousineau@compdyn.questor.org | Vancouver, BC, Canada |Live . . .\\n\\n\\n * SLMR 2.1a * Have bike, will travel. Quickly. Very quickly.\\n \\n----\\n+===============================================================+\\n|COMPUTER DYNAMICS BBS 604-255-9937(HST) 604-986-9937(V32)|\\n|Vancouver, BC, Canada - Easy Access, Low Rates, Friendly Sysop|\\n+===============================================================+\\n\",\n", + " 'From: sugarman@ra.cs.umb.edu (Steven R. Garman)\\nSubject: WANTED - Optical Shaft Encoders for Telescope\\nNntp-Posting-Host: ra.cs.umb.edu\\nOrganization: University of Massachusetts at Boston\\nLines: 23\\n\\n\\n[Also posted in misc.forsale.wanted,misc.wanted,ne.wanted,ny.wanted,nj.wanted]\\n\\nWANTED: Optical Shaft Encoders\\n\\nQuantity 2\\nSingle-ended\\nIncremental\\n\\nNeeded to encode the movements of a 16\" Cassegrain telescope. The telescope\\nis in the observatory of the Univ. of Mass. at Boston. The project is being\\nmanaged by Mr. George Tucker, a graduate student at UMB. Please call him, or\\nemail/call me, if you have one or two of the specified type of encoder. Of\\ncourse, due to our low funding level we are looking for a price that is\\nsufficiently lower than that given for new encoders. :)\\n\\nGeorge Tucker\\n617-965-3408\\n\\nME:\\n-- \\nsugarman@cs.umb.edu | 6172876077 univ | 6177313637 home | Standard Disclaimer\\nBoston Massachusetts USA\\n',\n", + " 'From: schultz@schultz.kgn.ibm.com (Karl Schultz)\\nSubject: Re: VESA standard VGA/SVGA programming???\\nReply-To: schultz@vnet.ibm.com\\nOrganization: IBM AWS Graphics Systems\\nKeywords: vga\\nLines: 45\\n\\n|> 1. How VESA standard works? Any documentation for VESA standard?\\n\\n\\tThe VESA standard can be requested from VESA:\\n\\tVESA\\n\\t2150 North First Street, Suite 440\\n\\tSan Jose, CA 95131-2029\\n\\n\\tAsk for the VESA VBE and Super VGA Programming starndards. VESA\\n\\talso defines local bus and other standards.\\n\\n\\tThe VESA standard only addresses ways in which an application\\n\\tcan find out info and capabilities of a specific super VGA\\n\\timplementation and to control the video mode selection\\n\\tand video memory access.\\n\\n\\tYou still have to set your own pixels.\\n\\n|> 2. At a higher resolution than 320x200x256 or 640x480x16 VGA mode,\\n|> where the video memory A0000-AFFFF is no longer sufficient to hold\\n|> all info, what is the trick to do fast image manipulation? I\\n|> heard about memory mapping or video memory bank switching but know\\n|> nothing on how it is implemented. Any advice, anyone? \\n\\n\\tVESA defines a \"window\" that is used to access video memory.\\n\\tThis window is anchored at the spot where you want to write,\\n\\tand then you can write as far as the window takes you (usually\\n\\t64K). Windows have granularities, so you can\\'t just anchor \\n\\tthem anywhere. Also, some implementations allow two windows.\\n\\n|> 3. My interest is in 640x480x256 mode. Should this mode be called\\n|> SVGA mode? What is the technique for fast image scrolling for the\\n|> above mode? How to deal with different SVGA cards?\\n\\n\\tThis is VESA mode 101h. There is a Set Display Start function\\n\\tthat might be useful for scrolling.\\n\\n|> Your guidance to books or any other sources to the above questions\\n|> would be greatly appreciated. Please send me mail.\\n\\n\\tYour best bet is to write VESA for the info. There have also\\n\\tbeen announcements on this group of VESA software.\\n\\n-- \\nKarl Schultz schultz@vnet.ibm.com\\nThese statements or opinions are not necessarily those of IBM\\n',\n", + " \"From: csundh30@ursa.calvin.edu (Charles Sundheim)\\nSubject: Looking for MOVIES w/ BIKES\\nSummary: Bike movies\\nKeywords: movies\\nNntp-Posting-Host: ursa\\nOrganization: Calvin College\\nLines: 21\\n\\nFolks,\\n\\nI am assembling info for a Film Criticism class final project.\\n\\nEssentially I need any/all movies that use motos in any substantial\\ncapacity (IE; Fallen Angles, T2, H-D & the Marlboro Man,\\nRaising Arizona, etc). \\nAny help you fellow r.m'ers could give me would be much `preciated.\\n(BTW, a summary of bike(s) or plot is helpful but not necessary)\\n\\nThanx\\n\\n-Erc.\\n\\n\\n_______________________________________________________________________________\\nC Eric Sundheim csundh30@ursa.Calvin.edu\\nGrandRapids, MI, USA\\n`90 Hondo VFR750f\\nDoD# 1138\\n-------------------------------------------------------------------------------\\n\",\n", + " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: ISLAM BORDERS vs Israeli borders\\nOrganization: University of Illinois at Urbana\\nLines: 15\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>I too strongly object to those that justify Israeli \"rule\" \\n>of those who DO NOT WANT THAT. The \"occupied territories\" are not\\n>Israel\\'s to control, to keep, or to dominate.\\n\\nThey certainly are until the Arabs make peace. Only the most leftist/Arabist\\nlunatics call upon Israel to withdraw now. Most moderates realize that an \\nIsraeli withdrawl will be based on the Camp David/242/338/Madrid formulas\\nwhich make full peace a prerequisite to territorial concessions.\\n\\n>Tim\\n\\nEd\\n\\n',\n", + " \"From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 153\\n\\nIn article <1993Apr20.143453.3127@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>Instabul was called Konstantinoupolis from 320 AD until about the 1920s.\\n>That's about 1600 years. There many people alive today who were born in \\n>a city called Konstantinoupolis. \\n\\nI know it doesn't make sense, but since when is 'Napoleon' about\\nsense, anyway? Further striking bigoted and racist attitude of \\ncertain Greeks still exists in our day. Most Greeks insist even \\ntoday, that the 537 year-old capital of the Ottoman Empire should \\nbe called not by its rightful name of Istanbul, but by its half \\na millennium-old moniker 'Cons*(whatever).'\\n\\nEveryone knows that New York City was once called 'New Amsterdam'\\nbut Dutch people do not persist on calling it that today. The name \\nof Stalingrad too is long gone, replaced by Volgagrad. China's\\nPeking traded its name for Beiging long ago. Ciudad Trujillo\\nof the Dominican Republic is now Santa Domingo. Zimbabve's\\nold colonial capital Salisburry became Harrare. These changes\\nhave all been accepted officially by everyone in the world.\\n\\nBut, Greeks are still determined on calling the Turkish Istanbul \\nby the name of 'Cons*.'\\n\\nHow can one explain this total intransigence? What makes Greeks\\nso different from other mortals? 18-year-old questionable\\ndemocracy? Why don't they seem to reconcile with the fact,\\nfor instance, that Istanbul changed hands 537 years ago in\\n1453 AD, and that this predates the discovery of the New \\nWorld, by 39 years. The declaration of U.S. independence\\nin 1776 will come 284 years later.\\n\\nShouldn't then, half a millennium be considered enough time for \\n'Cons*' to be called a Turkish city? Where is the logic in the \\nGreek reasoning, if there is any? How long can one sit on the \\nlaurels of an ancient civilization? Ancient Greece does not exist, \\nany more than any other 16 civilizations that existed on the soil \\nof Anatolia.\\n\\nThese undereducated 'wieneramus' live with an illusion. It \\nis the same mentality which allows them to rationalize\\nthat Cyprus is a Greek Island. No history book shows\\nthat it ever was. It belonged to the Ottoman Turks 'lock,\\nstock and barrel' for a period of well over 300 years.\\n\\nIn fact, prior to the Turks' acquisition of it, following\\nbloody naval battles with the Venetians in 1570 AD, the\\nisland of Cyprus belonged, invariably, to several nations:\\n\\nThe Assyrians, the Sumerians, the Phoenicians, the Egyptians,\\nthe Ottoman Turks, of course in that order, owned it as \\ntheir territory. But, it has never been the possession\\nof the government of Greece - not even for one day -\\nin the history of the world. Moreover, Cyprus is\\nlocated 1500 miles from the Greek mainland, but only \\n40 miles from Turkiye's southern coastline.\\n\\nSaddam Hussein claims that Kuwait was once Iraqi\\nterritory and the Greek Cypriot government and \\nthe terrorist Greek governments think that Cyprus\\nalso was once part of the Greek hegemony.\\n\\nThose 'Arromdians' involved in this grandiose hallucination\\nshould wake up from their sweet daydreams and confront \\nreality. Again, wishful thinking is unproductive, only \\nfacts count.\\n\\nAs for Selanik,\\n\\n <>\\n\\n <>\\n\\n[47] Robert Mantran, 'La structure sociale de la communaute juive de\\n Salonqiue a la fin du dix-neuvieme siecle', RH no.534 (1980), 391-92;\\n Nehama VII, 762; Joseph Nehama (Salonica) to AIU (Paris) no.2868/2,\\n 12 May 1903 (AIU Archives I-C-43); and no.2775, 10 January 1900 (AIU\\n Archives I-C-41), describing daily battles between Jewish and Greek\\n children in the streets of Salonica. Benghiat, Director of Ecole Moise\\n Allatini, Salonica, to AIU (Paris), no.7784, 1 December 1909 (AIU\\n Archives I-C-48), describing Greek attacks on Jews, boycotts of Jewish\\n shops and manufacturers, and Greek press campaigns leading to blood libel\\n attacks. Cohen, Ecole Secondaire Moise Allatini, Salonica, to AIU (Paris),\\n no.7745/4, 4 December 1912 (AIU Archives I-C-49) describes a week of terror\\n that followed the Greek army occupation of Salonica in 1912, with the\\n soldiers pillaging the Jewish quarters and destroying Jewish synagogues,\\n accompanied by what he described as an 'explosion of hatred' by local\\n Greek population against local Jews and Muslims. Mizrahi, President of the\\n AIU at Salonica, reported to the AIU (Paris), no.2704/3, 25 July 1913\\n (AIU Archives I-C-51) that 'It was not only the irregulars (Comitadjis)\\n that massacred, pillaged and burned. The Army soldiers, the Chief of\\n Police, and the high civil officials also took an active part in the\\n horrors...', Moise Tovi (Salonica) to AIU (Paris) no.3027 (20 August 1913)\\n (AIU Archives I-C-51) describes the Greek pillage of the Jewish quarter\\n during the night of 18-19 August 1913.\\n\\n(AIU = Alliance Israelite Universelle, Paris.)\\n\\nSerdar Argic\\n\\n 'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.'\\n (Ohanus Appressian - 1919)\\n 'In Soviet Armenia today there no longer exists \\n a single Turkish soul.' (Sahak Melkonian - 1920)\\n\\n\",\n", + " 'From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: r.m split (was: Re: insect impacts)\\nOrganization: the HP Corporate notes server\\nLines: 30\\n\\n/ hpcc01:rec.motorcycles / cookson@mbunix.mitre.org (Cookson) / 2:02 pm Apr 2, 1993 /\\n\\nAll right people, this inane bug wibbling is just getting to much. I\\npropose we split off a new group.\\nrec.motorcycles.nutrition \\nto deal with the what to do with squashed bugs thread.\\n\\n-- \\n| Dean Cookson / dcookson@mitre.org / 617 271-2714 | DoD #207 AMA #573534 |\\n| The MITRE Corp. Burlington Rd., Bedford, Ma. 01730 | KotNML / KotB |\\n| \"If I was worried about who saw me, I\\'d never get | \\'92 VFR750F |\\n| nekkid at all.\" -Ed Green, DoD #0111 | \\'88 Bianchi Limited |\\n----------\\nWhat?!?!? Haven\\'t you heard about cross-posting??!?!? Leave it intact and\\nsimply ignore the basenotes and/or responses which have zero interest for\\na being of your stature and discriminating taste. ;-)\\n\\nYesterday, while on Lonoak Rd, a wasp hit my faceshield with just\\nenough force to glue it between my eyes, but not enough to kill it as\\nthe legs were frantically wiggling away and I found that rather, shall\\nwe say, distracting. I flicked it off and wiped off the residue at the\\nnext gas stop in Greenfield. :-) BTW, Lonoak Rd leads from #25 into\\nKing City although we took Metz from KC into Greenfield. \\n \\n--------------------------------------------------------------------------\\nGraeme Harrison, Hewlett-Packard Co., Communications Components Division,\\n350 W Trimble Rd, San Jose, CA 95131 (gharriso@hpcc01.corp.hp.com) DoD#649 \\n--------------------------------------------------------------------------\\n\\n\\n',\n", + " \"From: rob@rjck.UUCP (Robert J.C. Kyanko)\\nSubject: Re: VGA 640x400 graphics mode\\nDistribution: world\\nOrganization: Neptune Software Inc\\nLines: 15\\n\\ngchen@essex.ecn.uoknor.edu writes in article :\\n> \\n> Greetings!\\n> \\n> Does anybody know if it is possible to set VGA graphics mode to 640x400\\n> instead of 640x480? Any info is appreciated!\\n\\nSome VESA bios's support this mode (0x100). And *any* VGA should be able to\\nsupport this (640x480 by 256 colors) since it only requires 256,000 bytes.\\nMy 8514/a VESA TSR supports this; it's the only VESA mode by card can support\\ndue to 8514/a restrictions. (A WD/Paradise)\\n\\n--\\nI am not responsible for anything I do or say -- I'm just an opinion.\\n Robert J.C. Kyanko (rob@rjck.UUCP)\\n\",\n", + " 'From: jack@shograf.com (Jack Ritter)\\nSubject: Help!!\\nArticle-I.D.: shograf.C531E6.7uo\\nDistribution: usa\\nOrganization: SHOgraphics, Sunnyvale\\nLines: 9\\n\\nI need a complete list of all the polygons\\nthat there are, in order.\\n\\nI\\'ll summarize to the net.\\n\\n\\n--------------------------------------------------------\\n \"If only I had been compiled with the \\'-g\\' option.\"\\n---------------------------------------------------------\\n',\n", + " 'From: doc@webrider.central.sun.com (Steve Bunis - Chicago)\\nSubject: Route Suggestions?\\nOrganization: Sun Microsystems, Inc.\\nLines: 33\\nDistribution: usa\\nReply-To: doc@webrider.central.sun.com\\nNNTP-Posting-Host: webrider.central.sun.com\\n\\nAs I won\\'t be able to make the Joust this summer (Job related time \\nconflict :\\'^{ ), I plan instead on going to the Rider Rally in \\nKnoxville.\\n\\nI\\'ll be leaving from Chicago. and generally plan on going down along\\nthe Indiana/Illinois border into Kentucky and then Tennessee. I would \\nbe very interested in hearing suggestions of roads/routes/areas that \\nyou would consider \"must ride\" while on the way to Knoxville.\\n\\nI can leave as early as 5/22 and need to arrive in Knoxville by 6PM\\non 5/25. That leaves me a pretty good stretch of time to explore on \\nthe way.\\n\\nBy the way if anyone else is going, and would like to partner for the \\nride down, let me know. I\\'ll be heading east afterward to visit family, \\nbut sure don\\'t mind company on the ride down to the Rally. Depending on \\nweather et al. my plan is motelling/tenting thru the trip.\\n\\nFrom the Rally I\\'ll be heading up the Blue Ridge Parkway, then jogging\\ninto West Va (I-77) to run up 219 -> Marlington, 28 -> Petersburg, \\n55E -> I-81/I-66E. After this point the route is presently undetermined\\ninto Pennsylvania, New York?, and back to Chicago (by 6/6). Suggestions \\nfor these areas would be of great interest also.\\n\\nMany thanks for your ideas,\\n\\nEnjoy,\\n\\n---\\nSteve Bunis, Sun Microsystems ***DoD #0795***\\t93-ST1100\\n Itasca, IL\\t ***AMA #682049***\\t78-KZ650\\n\\t(ARE YOU SURE THIS IS APRIL?????? B^| )\\n\\n',\n", + " 'From: KINDER@nervm.nerdc.ufl.edu (JIM COBB)\\nSubject: ET 4000 /W32 VL-Bus Cards\\nOrganization: University of Florida, NERDC\\nLines: 3\\nNNTP-Posting-Host: nervm.nerdc.ufl.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\nDoes anyone know of a VL-Bus video card based on the ET4000 /W32 card?\\nIf so: how much will it cost, where can I get one, does it come with more\\nthan 1MB of ram, and what is the windows performance like?\\n',\n", + " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Fortune-guzzler barred from bars!\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 44\\n\\nCharles Parr, on the Tue, 20 Apr 93 21:25:10 GMT wibbled:\\n: In article <1993Apr19.141959.4057@bnr.ca> npet@bnr.ca (Nick Pettefar) writes:\\n\\n: >If Satan rode a bike (CB1000?) would you stop to help him?\\n\\n: Of course! We riders have to stick together, you know...Besides,\\n: he\\'d stop for me.\\n\\n: Satan, by the way, rides a Vincent. So does God.\\n\\n: Jesus rides an RZ350, the Angels get Ariels, and the demons\\n: all ride Matchless 500s.\\n\\n: I know, because they talk to me through the fillings in my teeth.\\n\\n: Regards, Charles\\n: DoD0.001\\n: RZ350\\n: -- \\n: Within the span of the last few weeks I have heard elements of\\n: separate threads which, in that they have been conjoined in time,\\n: struck together to form a new chord within my hollow and echoing\\n: gourd. --Unknown net.person\\n\\n\\nI think that the Vincent is the wrong sort of bike for Satan to ride.\\nHonda have just brought out the CB1000 (look in BIKE Magazine) which\\nlooks so evil that Satan would not hesitate to ride it. 17-hole DMs,\\nLevi 501s and a black bomber jacket. I\\'m not sure about the helmet,\\noh, I know, one of those Darth Vader ones. There you go. Satan.\\nAnybody seen him lately? Just a cruisin\\'?\\n\\nGod would ride a Vincent White Lightning with rightous injection.\\nHe\\'d wear a one-piece leather suit with matching boots, helmet and gloves.\\n--\\n\\nNick (the Righteous Biker) DoD 1069 Concise Oxford New (non-leaky) gearbox\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n (-\\n',\n", + " \"From: kv07@IASTATE.EDU (Warren Vonroeschlaub)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nReply-To: kv07@IASTATE.EDU (Warren Vonroeschlaub)\\nOrganization: Ministry of Silly Walks\\nLines: 28\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nwrites:\\n>In <1qlapk$d7v@morrow.stanford.edu> salem@pangea.Stanford.EDU (Bruce Salem) \\n>writes:\\n>>In article cobb@alexia.lis.uiuc.edu (Mike \\n>Cobb) writes:\\n>>>Theory of Creationism: MY theistic view of the theory of creationism, (there\\n>>>are many others) is stated in Genesis 1. In the beginning God created\\n>>>the heavens and the earth.\\n>\\n>> Wonderful, now try alittle imaginative thinking!\\n>\\n>Huh? Imaginative thinking? What did that have to do with what I said? Would it\\n>have been better if I said the world has existed forever and never was created\\n>and has an endless supply of energy and there was spontaneous generation of \\n>life from non-life? WOuld that make me all-wise, and knowing, and\\nimaginative?\\n\\n No, but at least it would be a theory.\\n\\n | __L__\\n-|- ___ Warren Kurt vonRoeschlaub\\n | | o | kv07@iastate.edu\\n |/ `---' Iowa State University\\n/| ___ Math Department\\n | |___| 400 Carver Hall\\n | |___| Ames, IA 50011\\n J _____\\n\",\n", + " 'From: jim@specialix.com (Jim Maurer)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: Specialix Inc.\\nLines: 25\\n\\narf@genesis.MCS.COM (Jack Schmidling) writes:\\n\\n>In article jake@bony1.bony.com (Jake Livni) writes:\\n>>through private contributions on Federal land\". Your hate-mongering\\n>>article is devoid of current and historical fact, intellectual content\\n>>and social value. Down the toilet it goes.....\\n>>\\n\\n>And we all know what an unbiased source the NYT is when it comes to things\\n>concerning Israel.\\n\\n>Neither the Times nor the trained seals who have responded thus far seem to\\n>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>otherwords, American taxpayers put up at least 30% of the money. And\\n>finalyy, how does \"Federal land\" mitigate the offensiveness of this alien\\n>monument dedicated to perpetuating pitty and the continual flow of tax money\\n>to a foreign entity?\\n\\n>That \"Federal land\" and tax money could have been used to commerate\\n>Americans or better yet, to house homeless Americans.\\n\\nThe donations are tax deductible like any donations to a non-profit\\norganization. I\\'ve donated money to a group restoring streetcars\\nand it was tax deductible. Why don\\'t you contribute to a group\\nhelping the homeless if you so concerned?\\n',\n", + " \"Organization: Penn State University\\nFrom: Andrew Newell \\nSubject: Re: Christian Morality is\\n \\nLines: 32\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nsays:\\n>\\n>In <11836@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>\\n>>In article cobb@alexia.lis.uiuc.edu (Mike\\n>Cobb) writes:\\n>\\n>> If I'm wrong, god is free at any time to correct my mistake. That\\n>> he continues not to do so, while supposedly proclaiming his\\n>> undying love for my eternal soul, speaks volumes.\\n>\\n>What are the volumes that it speaks besides the fact that he leaves your\\n>choices up to you?\\n\\nLeaves the choices up to us but gives us no better reason\\nto believe than an odd story of his alleged son getting\\nkilled for us? And little new in the past few thousand\\nyears, leaving us with only the texts passed down through\\ncenturies of meddling with the meaning and even wording.\\n...most of this passing down and interpretation of course\\ncoming from those who have a vested interest in not allowing\\nthe possibility that it might not be the ultimate truth.\\nWhat about maybe talking to us directly, eh?\\nHe's a big god, right? He ought to be able to make time\\nfor the creations he loves so much...at least enough to\\ngive us each a few words of direct conversation.\\nWhat, he's too busy to get around to all of us?\\nOr maybe a few unquestionably-miraculous works here and\\nthere?\\n...speaks volumes upon volumes to me that I've never\\ngotten a chance to meet the guy and chat with him.\\n\",\n", + " 'From: bowmanj@csn.org (Jerry Bowman)\\nSubject: Re: Women\\'s Jackets? (was Ed must be a Daemon Child!!)\\nNntp-Posting-Host: fred.colorado.edu\\nOrganization: University of Colorado Boulder, OCS\\nDistribution: usa\\nLines: 48\\n\\nIn article bethd@netcom.com (Beth Dixon) writes:\\n>In article <1993Apr14.141637.20071@mnemosyne.cs.du.edu> jhensley@nyx.cs.du.edu (John Hensley) writes:\\n>>Beth Dixon (bethd@netcom.com) wrote:\\n>>: new Duc 750SS doesn\\'t, so I\\'ll have to go back to carrying my lipstick\\n>>: in my jacket pocket. Life is _so_ hard. :-)\\n>>\\n>>My wife is looking for a jacket, and most of the men\\'s styles she\\'s tried\\n>>don\\'t fit too well. If they fit the shoulders and arms, they\\'re too\\n>>tight across the chest, or something like that. Anyone have any \\n>>suggestions? I\\'m assuming that the V-Pilot, in addition to its handy\\n>>storage facilities, is a pretty decent fit. Is there any company that\\n>>makes a reasonable line of women\\'s motorcycling stuff? More importantly,\\n>>does anyone in Boulder or Denver know of a shop that bothers carrying any?\\n>\\n>I was very lucky I found a jacket I liked that actually _fits_.\\n>HG makes the v-pilot jackets, mine is a very similar style made\\n>by Just Leather in San Jose. I bought one of the last two they\\n>ever made.\\n>\\n>Finding decent womens motorcycling gear is not easy. There is a lot\\n>of stuff out there that\\'s fringed everywhere, made of fashion leather,\\n>made to fit men, etc. I don\\'t know of a shop in your area. There\\n>are some women rider friendly places in the San Francisco/San Jose\\n>area, but I don\\'t recommend buying clothing mail order. Too hard\\n>to tell if it\\'ll fit. Bates custom makes leathers. You might want\\n>to call them (they\\'re in L.A.) and get a cost estimate for the type\\n>of jacket your wife is interested in. Large manufacturers like\\n>BMW and H.G. sell women\\'s lines of clothing of decent quality, but\\n>fit is iffy.\\n>\\n>A while ago, Noemi and Lisa Sieverts were talking about starting\\n>a business doing just this sort of thing. Don\\'t know what they\\n>finally decided.\\n>\\n>Beth\\n Seems to me that Johns H.D. in Ft Collins used to carry some\\n honest to god womens garb.>\\n>=================================================================\\n>Beth [The One True Beth] Dixon bethd@netcom.com\\n>1981 Yamaha SR250 \"Excitable Girl\" DoD #0384\\n>1979 Yamaha SR500 \"Spike the Garage Rat\" FSSNOC #1843\\n>1992 Ducati 750SS AMA #631903\\n>1963 Ducati 250 Monza -- restoration project 1KQSPT = 1.8\\n>\"I can keep a handle on anything just this side of deranged.\"\\n> -- ZZ Top\\n>=================================================================\\n\\n\\n',\n", + " 'From: howard@sharps.astro.wisc.edu (Greg Howard)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: University of Wisconsin - Astronomy Department\\nLines: 10\\nNNTP-Posting-Host: uwast.astro.wisc.edu\\n\\n\\nActually, the \"ether\" stuff sounded a fair bit like a bizzare,\\nqualitative corruption of general relativity. nothing to do with\\nthe old-fashioned, ether, though. maybe somebody could loan him\\na GR text at a low level.\\n\\ndidn\\'t get much further than that, tho.... whew.\\n\\n\\ngreg\\n',\n", + " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: bikes with big dogs\\nOrganization: Ontario Hydro - Research Division\\nLines: 17\\n\\nIn article <1993Apr14.212827.2277@galaxy.gov.bc.ca> bclarke@galaxy.gov.bc.ca writes:\\n>In article <1993Apr14.234835.1@cua.edu>, 84wendel@cua.edu writes:\\n>> Has anyone ever heard of a rider giving a big dog such as a great dane a ride \\n>> on the back of his bike. My dog would love it if I could ever make it work.\\n>\\n>!!! Post of the month !!!\\n>Actually, I've seen riders carting around a pet dog in a sidecar....\\n>A great Dane on the back though; sounds a bit hairy to me.\\n\\nYeah, I'm sure that our lab would love a ride (he's the type that sticks his\\nhead out car windows) but I didn't think that he would enjoy being bungee-\\ncorded to the gas tank, and 65 lbs or squirming beast is a bit much for a\\nbackpack (ok who's done it....).\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", + " \"From: hap@scubed.com (Hap Freiberg)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nNntp-Posting-Host: s3saturn\\nOrganization: S-CUBED, A Division of Maxwell Labs; San Diego CA\\nLines: 26\\n\\nIn article smith@minerva.harvard.edu (Steven Smith) writes:\\n>dgannon@techbook.techbook.com (Dan Gannon) writes:\\n>> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>>\\n>> by Theodore J. O'Keefe\\n>> [Holocaust revisionism]\\n>> \\n>> Theodore J. O'Keefe is an editor with the Institute for Historical\\n>> Review. Educated at Harvard University . . .\\n>\\n>According to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\n>graduate. You may decide for yourselves if he was indeed educated\\n>anywhere.\\n>\\n>Steven Smith\\n\\nIs any education a prerequisite for employment at IHR ?\\nIs it true that IHR really stands for Institution of Hysterical Reviews?\\nCurious minds would like to know...\\n\\nHap\\n\\n--\\n****************************************************************************************************\\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Omnia Extares >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\\n****************************************************************************************************\\n\",\n", + " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Where are they now?\\nIn-Reply-To: acooper@mac.cc.macalstr.edu\\'s message of 15 Apr 93 11: 17:13 -0600\\nOrganization: Compaq Computer Corp\\n\\t<1993Apr15.111713.4726@mac.cc.macalstr.edu>\\nLines: 18\\n\\na> In article <1qi156INNf9n@senator-bedfellow.MIT.EDU>, tcbruno@athena.mit.edu (Tom Bruno) writes:\\n> \\n..stuff deleted...\\n> \\n> Which brings me to the point of my posting. How many people out there have \\n> been around alt.atheism since 1990? I\\'ve done my damnedest to stay on top of\\n...more stuff deleted...\\n\\nHmm, USENET got it\\'s collective hooks into me around 1987 or so right after I\\nswitched to engineering. I\\'d say I started reading alt.atheism around 1988-89.\\nI\\'ve probably not posted more than 50 messages in the time since then though.\\nI\\'ll never understand how people can find the time to write so much. I\\ncan barely keep up as it is.\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", + " 'From: jonas-y@isy.liu.se (Jonas Yngvesson)\\nSubject: Re: Point within a polygon\\nKeywords: point, polygon\\nOrganization: Dept of EE, University of Linkoping\\nLines: 129\\n\\nscrowe@hemel.bull.co.uk (Simon Crowe) writes:\\n\\n>I am looking for an algorithm to determine if a given point is bound by a \\n>polygon. Does anyone have any such code or a reference to book containing\\n>information on the subject ?\\n\\nWell, it\\'s been a while since this was discussed so i take the liberty of\\nreprinting (without permission, so sue me) Eric Haines reprint of the very\\ninteresting discussion of this topic...\\n\\n /Jonas\\n\\n O / \\\\ O\\n------------------------- X snip snip X ------------------------------\\n O \\\\ / O\\n\\n\"Give a man a fish, and he\\'ll eat one day.\\nGive a man a fishing rod, and he\\'ll laze around fishing and never do anything.\"\\n\\nWith that in mind, I reprint (without permission, so sue me) relevant\\ninformation posted some years ago on this very problem. Note the early use of\\nPostScript technology, predating many of this year\\'s papers listed in the\\nApril 1st SIGGRAPH Program Announcement posted here a few days ago.\\n\\n-- Eric\\n\\n\\nIntersection Between a Line and a Polygon (UNDECIDABLE??),\\n\\tby Dave Baraff, Tom Duff\\n\\n\\tFrom: deb@charisma.graphics.cornell.edu\\n\\tNewsgroups: comp.graphics\\n\\tKeywords: P, NP, Jordan curve separation, Ursyhon Metrization Theorem\\n\\tOrganization: Program of Computer Graphics\\n\\nIn article [...] ncsmith@ndsuvax.UUCP (Timothy Lyle Smith) writes:\\n>\\n> I need to find a formula/algorithm to determine if a line intersects\\n> a polygon. I would prefer a method that would do this in as little\\n> time as possible. I need this for use in a forward raytracing\\n> program.\\n\\nI think that this is a very difficult problem. To start with, lines and\\npolygons are semi-algebraic sets which both contain uncountable number of\\npoints. Here are a few off-the-cuff ideas.\\n\\nFirst, we need to check if the line and the polygon are separated. Now, the\\nJordan curve separation theorem says that the polygon divides the plane into\\nexactly two open (and thus non-compact) regions. Thus, the line lies\\ncompletely inside the polygon, the line lies completely outside the polygon,\\nor possibly (but this will rarely happen) the line intersects the polyon.\\n\\nNow, the phrasing of this question says \"if a line intersects a polygon\", so\\nthis is a decision problem. One possibility (the decision model approach) is\\nto reduce the question to some other (well known) problem Q, and then try to\\nsolve Q. An answer to Q gives an answer to the original decision problem.\\n\\nIn recent years, many geometric problems have been successfully modeled in a\\nnew language called PostScript. (See \"PostScript Language\", by Adobe Systems\\nIncorporated, ISBN # 0-201-10179-3, co. 1985).\\n\\nSo, given a line L and a polygon P, we can write a PostScript program that\\ndraws the line L and the polygon P, and then \"outputs\" the answer. By\\n\"output\", we mean the program executes a command called \"showpage\", which\\nactually prints a page of paper containing the line and the polygon. A quick\\nexamination of the paper provides an answer to the reduced problem Q, and thus\\nthe original problem.\\n\\nThere are two small problems with this approach. \\n\\n\\t(1) There is an infinite number of ways to encode L and P into the\\n\\treduced problem Q. So, we will be forced to invoke the Axiom of\\n\\tChoice (or equivalently, Zorn\\'s Lemma). But the use of the Axiom of\\n\\tChoice is not regarded in a very serious light these days.\\n\\n\\t(2) More importantly, the question arises as to whether or not the\\n\\tPostScript program Q will actually output a piece of paper; or in\\n\\tother words, will it halt?\\n\\n\\tNow, PostScript is expressive enough to encode everything that a\\n\\tTuring Machine might do; thus the halting problem (for PostScript) is\\n\\tundecidable. It is quite possible that the original problem will turn\\n\\tout to be undecidable.\\n\\n\\nI won\\'t even begin to go into other difficulties, such as aliasing, finite\\nprecision and running out of ink, paper or both.\\n\\nA couple of references might be:\\n\\n1. Principia Mathematica. Newton, I. Cambridge University Press, Cambridge,\\n England. (Sorry, I don\\'t have an ISBN# for this).\\n\\n2. An Introduction to Automata Theory, Languages, and Computation. Hopcroft, J\\n and Ulman, J.\\n\\n3. The C Programming Language. Kernighan, B and Ritchie, D.\\n\\n4. A Tale of Two Cities. Dickens, C.\\n\\n--------\\n\\nFrom: td@alice.UUCP (Tom Duff)\\nSummary: Overkill.\\nOrganization: AT&T Bell Laboratories, Murray Hill NJ\\n\\nThe situation is not nearly as bleak as Baraff suggests (he should know\\nbetter, he\\'s hung around The Labs for long enough). By the well known\\nDobbin-Dullman reduction (see J. Dullman & D. Dobbin, J. Comp. Obfusc.\\n37,ii: pp. 33-947, lemma 17(a)) line-polygon intersection can be reduced to\\nHamiltonian Circuit, without(!) the use of Grobner bases, so LPI (to coin an\\nacronym) is probably only NP-complete. Besides, Turing-completeness will no\\nlonger be a problem once our Cray-3 is delivered, since it will be able to\\ncomplete an infinite loop in 4 milliseconds (with scatter-gather.)\\n\\n--------\\n\\nFrom: deb@svax.cs.cornell.edu (David Baraff)\\n\\nWell, sure its no worse than NP-complete, but that\\'s ONLY if you restrict\\nyourself to the case where the line satisfies a Lipschitz condition on its\\nsecond derivative. (I think there\\'s an \\'89 SIGGRAPH paper from Caltech that\\ndeals with this).\\n\\n--\\n------------------------------------------------------------------------------\\n J o n a s Y n g v e s s o n email: jonas-y@isy.liu.se\\nDept. of Electrical Engineering\\t voice: +46-(0)13-282162 \\nUniversity of Linkoping, Sweden fax : +46-(0)13-139282\\n',\n", + " \"From: ednclark@kraken.itc.gu.edu.au (Jeffrey Clark)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nNntp-Posting-Host: kraken.itc.gu.edu.au\\nOrganization: ITC, Griffith University, Brisbane, Australia\\nLines: 70\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n\\nOr he was just convinced by religious fantasies of the time that he was the\\nMessiah, or he was just some rebel leader that an organisation of Jews built\\ninto Godhood for the purpose off throwing of the yoke of Roman oppression,\\nor.......\\n\\n>\\tSome reasons why he wouldn't be a liar are as follows. Who would \\n>die for a lie? \\n\\nAre the Moslem fanatics who strap bombs to their backs and driving into\\nJewish embassies dying for the truth (hint: they think they are)? Were the\\nNAZI soldiers in WWII dying for the truth? \\n\\nPeople die for lies all the time.\\n\\n\\n>Wouldn't people be able to tell if he was a liar? People \\n\\nWas Hitler a liar? How about Napoleon, Mussolini, Ronald Reagan? We spend\\nmillions of dollars a year trying to find techniques to detect lying? So the\\nanswer is no, they wouldn't be able to tell if he was a liar if he only lied\\nabout some things.\\n\\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n\\nWhy do you think he healed people, because the Bible says so? But if God\\ndoesn't exist (the other possibility) then the Bible is not divinely\\ninspired and one can't use it as a piece of evidence, as it was written by\\nunbiased observers.\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy. Very doubtful, in fact rediculous. For example \\n\\nWere Hitler or Mussolini lunatics? How about Genghis Khan, Jim Jones...\\nthere are thousands of examples through history of people being drawn to\\nlunatics.\\n\\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn't a liar or a lunatic, he must have been the \\n>real thing. \\n\\nSo we obviously cannot rule out liar or lunatic not to mention all the other\\npossibilities not given in this triad.\\n\\n>\\tSome other things to note. He fulfilled loads of prophecies in \\n>the psalms, Isaiah and elsewhere in 24 hrs alone. This in his betrayal \\n\\nPossibly self-fulfilling prophecy (ie he was aware what he should do in\\norder to fulfil these prophecies), possibly selective diting on behalf of\\nthose keepers of the holy bible for a thousand years or so before the\\ngeneral; public had access. possibly also that the text is written in such\\nriddles (like Nostradamus) that anything that happens can be twisted to fit\\nthe words of raving fictional 'prophecy'.\\n\\n>and Crucifixion. I don't have my Bible with me at this moment, next time I \\n>write I will use it.\\n [stuff about how hard it is to be a christian deleted]\\n\\nI severely recommend you reconsider the reasons you are a christian, they\\nare very unconvincing to an unbiased observer.\\n\\nJeff.\\n\\n\",\n", + " 'From: s127@ii.uib.no (Torgeir Veimo)\\nSubject: Re: sources for shading wanted\\nOrganization: Institutt for Informatikk UIB Norway\\nLines: 24\\n\\nIn article <1r3ih5INNldi@irau40.ira.uka.de>, S_BRAUN@IRAV19.ira.uka.de \\n(Thomas Braun) writes:\\n|> I\\'m looking for shading methods and algorithms.\\n|> Please let me know if you know where to get source codes for that.\\n\\n\\'Illumination and Color in Computer Generated Imagery\\' by Roy Hall contains c\\nsource for several famous illumination models, including Bouknight, Phong,\\nBlinn, Whitted, and Hall illumination models. If you want an introduction to\\nshading you might look through the book \\'Writing a Raytracer\\' edited by\\nGlassner. Also, the book \\'Procedural elements for Computer Graphics\\' by Rogers\\nis a good reference. Source for code in these book are available on the net i \\nbelieve, you might check out nic.funet.fi or some site closer to you carrying \\ngraphics related stuff. \\n\\nHope this is what you were asking for.\\n-- \\nTorgeir Veimo\\n\\nStudying at the University of Bergen\\n\\n\"...I\\'m gona wave my freak flag high!\" (Jimi Hendrix)\\n\\n\"...and it would be okay on any other day!\" (The Police)\\n\\n',\n", + " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: bike for sale in MA, USA\\nKeywords: wicked-sexist\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nLines: 18\\n\\nIn article <1993Apr19.194630.102@zorro.tyngsboro.ma.us> jd@zorro.tyngsboro.ma.us (Jeff deRienzo) writes:\\n>I\\'ve recently become father of twins! I don\\'t think I can afford\\n> to keep 2 bikes and 2 babies. Both babies are staying, so 1 of\\n> the Harleys is going.\\n>\\n>\\t1988 883 XLHD\\n>\\t~4000 mi. (hey, it was my wife\\'s bike :-)\\n\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n\\tWell that was pretty uncalled for. (No smile)\\n\\tIs our Harley manhood feeling challenged?\\n\\n> Jeff deRienzo\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", + " \"From: ahatcher@athena.cs.uga.edu (Allan Hatcher)\\nSubject: Re: Traffic morons\\nOrganization: University of Georgia, Athens\\nLines: 37\\n\\nIn article Stafford@Vax2.Winona.MSUS.Edu (John Stafford) writes:\\n>In article <10326.97.uupcb@compdyn.questor.org>,\\n>ryan_cousineau@compdyn.questor.org (Ryan Cousineau) wrote:\\n>> \\n>> NMM>From: nielsmm@imv.aau.dk (Niels Mikkel Michelsen)\\n>> NMM>Subject: How to act in front of traffic jerks\\n>> \\n>> NMM>The other day, it was raining cats and dogs, therefor I was going only to\\n>> NMM>the speed limit, on nothing more, on my bike. This guy in his BMW was\\n>> NMM>driving 1-2 meters behind me for 7-800 meters and at the next red light I\\n>> NMM>calmly put the bike on its leg, walked back to this car, he rolled down the\\n>> NMM>window, and I told him he was a total idiot (and the reason why).\\n>> \\n>> NMM>Did I do the right thing?\\n>\\n>\\timho, you did the wrong thing. You could have been shot\\n> or he could have run over your bike or just beat the shit\\n> out of you. Consider that the person is foolish enough\\n> to drive like a fool and may very well _act_ like one, too.\\n>\\n> Just get the heck away from the idiot.\\n>\\n> IF the driver does something clearly illegal, you _can_\\n> file a citizens arrest and drag that person into court.\\n> It's a hassle for you but a major hassle for the perp.\\n>\\n>====================================================\\n>John Stafford Minnesota State University @ Winona\\nYou can't make a Citizens arrest on anything but a felony.\\n.\\n \\n\\n\\n>\\n> All standard disclaimers apply.\\n\\n\\n\",\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: The Area Rule\\nOrganization: Express Access Online Communications USA\\nLines: 20\\nDistribution: sci\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nI am sure Mary or Henry can describe this more aptly then me.\\nBut here is how i understand it.\\n\\nAt Speed, Near supersonic. The wind behaves like a fluid pipe.\\nIt becomes incompressible. So wind has to bend away from the\\nwing edges. AS the wing thickens, the more the pipes bend.\\n\\nIf they have no place to go, they begin to stall, and force\\ncompression, stealing power from the vehicle (High Drag).\\n\\nIf you squeeze the fuselage, so that these pipes have aplace to bend\\ninto, then drag is reduced. \\n\\nEssentially, teh cross sectional area of the aircraft shoulf\\nremain constant for all areas of the fuselage. That is where the wings are\\nsubtract, teh cross sectional area of the wings from the fuselage.\\n\\npat\\n',\n", + " 'From: william.vaughan@uuserv.cc.utah.edu (WILLIAM DANIEL VAUGHAN)\\nSubject: Re: A silly question on x-tianity\\nLines: 9\\nOrganization: University of Utah Computer Center\\n\\nIn article pww@spacsun.rice.edu (Peter Walker) writes:\\n>From: pww@spacsun.rice.edu (Peter Walker)\\n>Subject: Re: A silly question on x-tianity\\n>Date: Mon, 12 Apr 1993 07:06:33 GMT\\n>In article <1qaqi1INNgje@gap.caltech.edu>, werdna@cco.caltech.edu (Andrew\\n>Tong) wrote:\\n>> \\n\\nso what\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Big amateur rockets\\nOrganization: U of Toronto Zoology\\nLines: 30\\n\\nIn article pbd@runyon.cim.cdc.com (Paul Dokas) writes:\\n>Anyhow, the ad stated that they\\'d sell rockets that were up to 20\\' in length\\n>and engines of sizes \"F\" to \"M\". They also said that some rockets will\\n>reach 50,000 feet.\\n>\\n>Now, aside from the obvious dangers to any amateur rocketeer using one\\n>of these beasts, isn\\'t this illegal? I can\\'t imagine the FAA allowing\\n>people to shoot rockets up through the flight levels of passenger planes.\\n\\nThe situation in this regard has changed considerably in recent years.\\nSee the discussion of \"high-power rocketry\" in the rec.models.rockets\\nfrequently-asked-questions list.\\n\\nThis is not hardware you can walk in off the street and buy; you need\\nproper certification. That can be had, mostly through Tripoli (the high-\\npower analog of the NAR), although the NAR is cautiously moving to extend\\nthe upper boundaries of what it considers proper too.\\n\\nYou need special FAA authorization, but provided you aren\\'t doing it under\\none of the LAX runway approaches or something stupid like that, it\\'s not\\nespecially hard to arrange.\\n\\nAs with model rocketry, this sort of hardware is reasonably safe if handled\\nproperly. Proper handling takes more care, and you need a lot more empty\\nair to fly in, but it\\'s basically just model rocketry scaled up. As with\\nmodel rocketry, the high-power people use factory-built engines, which\\neliminates the major safety hazard of do-it-yourself rocketry.\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: University of Illinois at Urbana\\nLines: 42\\n\\nmancus@sweetpea.jsc.nasa.gov (Keith Mancus) writes:\\n\\n>cook@varmit.mdc.com (Layne Cook) writes:\\n>> All of this talk about a COMMERCIAL space race (i.e. $1G to the first 1-year \\n>> moon base) is intriguing. Similar prizes have influenced aerospace \\n>>development before. The $25k Orteig prize helped Lindbergh sell his Spirit of \\n>> Saint Louis venture to his financial backers.\\n>> But I strongly suspect that his Saint Louis backers had the foresight to \\n>> realize that much more was at stake than $25,000.\\n>> Could it work with the moon? Who are the far-sighted financial backers of \\n>> today?\\n\\n> The commercial uses of a transportation system between already-settled-\\n>and-civilized areas are obvious. Spaceflight is NOT in this position.\\n>The correct analogy is not with aviation of the \\'30\\'s, but the long\\n>transocean voyages of the Age of Discovery.\\n\\nLindbergh\\'s flight took place in \\'27, not the thirties.\\n\\n>It didn\\'t require gov\\'t to\\n>fund these as long as something was known about the potential for profit\\n>at the destination. In practice, some were gov\\'t funded, some were private.\\n\\nCould you give examples of privately funded ones?\\n\\n>But there was no way that any wise investor would spend a large amount\\n>of money on a very risky investment with no idea of the possible payoff.\\n\\nYour logic certainly applies to standard investment strategies. However, the\\nconcept of a prize for a difficult goal is done for different reasons, I \\nsuspect. I\\'m not aware that Mr Orteig received any significant economic \\nbenefit from Lindbergh\\'s flight. Modern analogies, such as the prize for a\\nhuman powered helicopter face similar arguments. There is little economic\\nbenefit in such a thing. The advantage comes in the new approaches developed\\nand the fact that a prize will frequently generate far more work than the \\nequivalent amount of direct investment would. A person who puts up $ X billion\\nfor a moon base is much more likely to do it because they want to see it done\\nthan because they expect to make money off the deal.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 133\\n\\nIn article bh437292@lance.colostate.edu writes:\\n>\\n>It is NOT a \"terrorist camp\" as you and the Israelis like \\n>to view the villages they are small communities with kids playing soccer\\n>in the streets, women preparing lunch, men playing cards, etc.....\\n>SOME young men, usually aged between 17 to 30 years are members of\\n>the Lebanese resistance. Even the inhabitants of the village do not \\n>know who these are, they are secretive about it, but most people often\\n>suspect who they are and what they are up to. These young men are\\n>supported financially by Iran most of the time. They sneak arms and\\n>ammunitions into the occupied zone where they set up booby traps\\n>for Israeli patrols. Every time an Israeli soldier is killed or injured\\n>by these traps, Israel retalliates by indiscriminately bombing villages\\n>of their own choosing often killing only innocent civilians. \\n\\nThis a \"tried and true\" method utilized by guerilla and terrorists groups:\\nto conduct operations in the midst of the local populace, thus forcing the\\nopposing \"state\" to possible harm innocent civilians in their search or,\\nin order to avoid the deaths of civilians, abandon the search. Certainly the\\npeople who use the population for cover are *also* to blaim for dragging the\\ninnocent civilians into harm\\'s way.\\n\\nAre you suggesting that, when guerillas use the population for cover, Israel\\nshould totally back down? So...the easiest way to get away with attacking\\nanother is to use an innocent as a shield and hope that the other respects\\ninnocent lives?\\n\\n>If Israel insists that\\n>the so called \"Security Zone\" is necessary for the protection of \\n>Northern Israel, than it will have to pay the price of its occupation\\n>with the blood of its soldiers. \\n\\nYour damn right Israel insists on some sort of \"demilitarized\" or \"buffer\"\\nzone. Its had to put up with too many years of attacks from the territory\\nof Arab states and watched as the states did nothing. It is not exactly\\nsurprizing that Israel decided that the only way to stop such actions is to \\ndo it themselves.\\n\\n>If Israel is interested in peace, than it should withdraw from OUR land. \\n\\nWhat? So the whole bit about attacks on Israel from neighboring Arab states \\ncan start all over again? While I also hope for this to happen, it will\\nonly occur WHEN Arab states show that they are *prepared* to take on the \\nresponsibility and the duty to stop guerilla attacks on Israel from their \\nsoil. They have to Prove it (or provide some \"guaratees\"), there is no way\\nIsrael is going to accept their \"word\"- not with their past attitude of \\ntolerance towards \"anti-Israel guerillas in-residence\".\\n>\\n>I have written before on this very newsgroup, that the only\\n>real solution will come as a result of a comprehensive peace\\n>settlement whereby Israel withdraws to its own borders and\\n>peace keeping troops are stationed along the border to insure\\n>no one on either side of the border is shelled.\\n\\nGood lord, Brad. What in the world goves you the idea that UN troops stop\\nanything? They are ONLY stationed in a country because that country allows\\nthem in. It can ask them to leave *at any time*; as Nasser did in \\'56 and\\n\\'67. Somehow, with that \"limitation\" on the troops \"powers\" I don\\'t\\nthink that Israel is going to be any more comfortable. Without a *genuine* commitment to peace from the Arab states, and concrete (not intellectual or political exercises in jargon) \"guarantees\" by other parties, the UN is worthless\\nto Israel (but, perhaps useful as a \"ruse\"?).\\n\\n>This is the only realistic solution, it is time for Israel to\\n>realize that the concept of a \"buffer zone\" aimed at protecting\\n>its northern cities has failed. In fact it has caused much more\\n>Israeli deaths than the occasional shelling of Northern Israel\\n>would have resulted in. \\n\\nPerhaps you are aware that, to most communities of people, there is\\nthe feeling that it is better that \"many of us die fighting\\nagainst those who attack us than for few to die while we silently \\naccept our fate.\" If,however, you call on Israel to see the sense of \\nsuffering fewer casualties, I suggest you apply the same to Palestinian,\\nArab and Islamic groups.\\n\\n>If Israel really wants to save some Israeli lives it would withdraw \\n>unilaterally from the so-called \"Security Zone\" before the conclusion\\n>of the peace talks. Such a move would save Israeli lives,\\n>advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n>public image abroad and give it an edge in the peace negociations \\n>since Israel can rightly claim that it is genuinely interested in \\n>peace and has already offered some important concessions.\\n>Along with such a withdrawal Israel could demand that Hizbollah\\n>be disarmed by the Lebanese government and warn that it will not \\n>accept any attacks against its northern cities and that if such a\\n>shelling occurs than it will consider re-taking the buffer zone\\n>and will hold the Lebanese and Syrian government responsible for it.\\n\\nFrom Israel\\'s perspective, \"concessions\" gets it NOTHING...except the \\nrealization that it has given \"something\" up and now *can only \\nhope* that the other side decides to do likewise. Words *can be taken\\nback* by merely doing so; to \"take back\" tangible items (land,\\ncontrol of land) requires the sort of action you say Israel should\\nstay away from.\\n \\nIsrael put up with attacks from Arab state territories for decades \\nbefore essentially putting a stop to it through its invasion of Lebanon.\\nThe entire basis of that reality was exactly as you state above: 1) Israel \\nwould express outrage at these attacks and protest to the Arab state \\ninvolved, 2) that state promptly ignored the entire matter, secure \\nin the knowledge that IT could not be held responsible for the acts \\ncommitted by \"private groups\", 3) Israel would prepare for the next \\nround of attacks. What would Israel want to return to those days (and\\ndon\\'t be so idiotic as to suggest \"trust\" for the motivations of\\npresent-day Arab states)?\\n\\n>There seems to be very little incentive for the Syrian and Lebanese\\n>goovernment to allow Hizbollah to bomb Israel proper under such \\n>circumstances, \\n>\\nAh, ok...what is \"different\" about the present situation that tells\\nus that the Arab states will *not* pursue their past antagonistic \\npolicies towards Israel? Now, don\\'t talk about vague \"political factors\"\\nbut about those \"tangible\" (just like that which Israel gave up)\\nfactors that \"guarantee\" the responsibility of those states. Your\\nassessment of \"difference\" here is based on a whole lot of assumptions,\\nand most states don\\'t feel confortable basing their existence on that\\nsort of thing.\\n\\n>and now the Lebanese government has proven that it is\\n>capable of controlling and disarming all militias as they did\\n>in all other parts of Lebanon.\\n>\\n>Basil\\n\\nIt has not. Without the support, and active involvement, of Syria,\\nLebanon would not have been able to accomplish all that has occurred.\\nOnce Syria leaves who is to say that Lebanon will be able to retain \\ncontrol? If Syria stays thay may be even more dangerous for Israel.\\n> \\nTim\\n\\nYour view of this entire matter is far too serenely one-sided and\\nselectively naive.\\n',\n", + " 'From: waldo@cybernet.cse.fau.edu (Todd J. Dicker)\\nSubject: Re: Hamza Salah, the Humanist\\nOrganization: Cybernet BBS, Boca Raton, Florida\\nLines: 19\\n\\ndzk@cs.brown.edu (Danny Keren) writes:\\n\\n> He-he. The great humanist speaks. One has to read Mr. Salah\\'s posters,\\n> in which he decribes Jews as \"sons of pigs and monkeys\", keeps\\n> promising the \"final battle\" between Muslims and Jews (in which the\\n> stons and the trees will \"cry for the Muslims to come and kill the\\n> Jews hiding behind them\"), makes jokes about Jews dying from heart\\n> attacks etc, to realize his objective stance on the matters involved.\\n> \\n> -Danny Keren.\\n----------\\nDon\\'t worry, Danny, every blatantly violent and abusive posting made by \\nHamzah is immediately forwarded to the operator of the system in which he \\nhas an account. I\\'d imagine they have quite a file started on this \\nfruitcake--and have already indicated that they have rules governing \\nracist and threatening use of their resources. I\\'d imagine he\\'ll be out \\nof our hair in a short while.\\n\\nTodd\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: , mathew@mantis.co.uk (mathew) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> > And we, meaning people who drive,\\n|> > accept the risks of doing so, and contribute tax money to design systems\\n|> > to minimize those risks.\\n|> \\n|> Eh? We already have systems to minimize those risks. It\\'s just that you car\\n|> drivers don\\'t want to use them.\\n|> \\n|> They\\'re called bicycles, trains and buses.\\n\\nPoor Matthew. A million posters to call \"you car drivers\" and he\\nchooses me, a non car owner.\\n\\njon.\\n',\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nKeywords: Galileo, JPL\\nOrganization: Texas Instruments Inc\\nLines: 25\\n\\nIn <1993Apr23.103038.27467@bnr.ca> agc@bmdhh286.bnr.ca (Alan Carter) writes:\\n\\n>In article <22APR199323003578@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes:\\n>|> 3. On April 19, a NO-OP command was sent to reset the command loss timer to\\n>|> 264 hours, its planned value during this mission phase.\\n\\n>This activity is regularly reported in Ron\\'s interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n\\nThe Command Loss Timer is a timer that does just what its name says;\\nit indicates to the probe that it has lost its data link for receiving\\ncommands. Upon expiration of the Command Loss Timer, I believe the\\nprobe starts a \\'search for Earth\\' sequence (involving antenna pointing\\nand attitude changes which consume fuel) to try to reestablish\\ncommunications. No-ops are sent periodically through those periods\\nwhen there are no real commands to be sent, just so the probe knows\\nthat we haven\\'t forgotten about it.\\n\\nHope that\\'s clear enough to be comprehensible. \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 66\\n\\n\\nJames Hogan writes:\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes:\\n>>Jim Hogan quips:\\n\\n>>... (summary of Jim\\'s stuff)\\n\\n>>Jim, I\\'m afraid _you\\'ve_ missed the point.\\n\\n>>>Thus, I think you\\'ll have to admit that atheists have a lot\\n>>more up their sleeve than you might have suspected.\\n\\n>>Nah. I will encourage people to learn about atheism to see how little atheists\\n>>have up their sleeves. Whatever I might have suspected is actually quite\\n>>meager. If you want I\\'ll send them your address to learn less about your\\n>>faith.\\n\\n>Faith?\\n\\nYeah, do you expect people to read the FAQ, etc. and actually accept hard\\natheism? No, you need a little leap of faith, Jimmy. Your logic runs out\\nof steam!\\n\\n>>>Fine, but why do these people shoot themselves in the foot and mock\\n>>>the idea of a God? ....\\n\\n>>>I hope you understand now.\\n\\n>>Yes, Jim. I do understand now. Thank you for providing some healthy sarcasm\\n>>that would have dispelled any sympathies I would have had for your faith.\\n\\n>Bake,\\n\\n>Real glad you detected the sarcasm angle, but am really bummin\\' that\\n>I won\\'t be getting any of your sympathy. Still, if your inclined\\n>to have sympathy for somebody\\'s *faith*, you might try one of the\\n>religion newsgroups.\\n\\n>Just be careful over there, though. (make believe I\\'m\\n>whispering in your ear here) They\\'re all delusional!\\n\\nJim,\\n\\nSorry I can\\'t pity you, Jim. And I\\'m sorry that you have these feelings of\\ndenial about the faith you need to get by. Oh well, just pretend that it will\\nall end happily ever after anyway. Maybe if you start a new newsgroup,\\nalt.atheist.hard, you won\\'t be bummin\\' so much?\\n\\n>Good job, Jim.\\n>.\\n\\n>Bye, Bake.\\n\\n\\n>>[more slim-Jim (tm) deleted]\\n\\n>Bye, Bake!\\n>Bye, Bye!\\n\\nBye-Bye, Big Jim. Don\\'t forget your Flintstone\\'s Chewables! :) \\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", + " \"From: karr@cs.cornell.edu (David Karr)\\nSubject: Re: Fortune-guzzler barred from bars!\\nOrganization: Cornell Univ. CS Dept, Ithaca NY 14853\\nLines: 23\\n\\nIn article Russell.P.Hughes@dartmouth.edu (Knicker Twister) writes:\\n>In article <1993Apr19.141959.4057@bnr.ca>\\n>npet@bnr.ca (Nick Pettefar) writes:\\n>\\n>> With regards to the pub brawl, he might have a history of such things.\\n>> Just because he was a biker doesn't make him out to be a reasonable\\n>> person. Even the DoD might object to him joining, who knows?\\n\\nIf he had a history of such things, why was it not mentioned in the\\narticle, and why did they present the irrelevant detail of where he\\ngot his drinking money from?\\n\\nI can't say exactly who is at fault here, but from where I sit is\\nlooks like we're seeing the results either of the law going way out\\nof hand or of shoddy journalism.\\n\\nIf the law wants to attach strings to how you spend a settlement, they\\nshould put the money in trust. They don't, so I would assume it's\\nperfectly legitimate to drink it away, though I wouldn't spend it that\\nway myself.\\n\\n-- David Karr (karr@cs.cornell.edu)\\n\\n\",\n", + " 'From: S901924@mailserv.cuhk.hk\\nSubject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\nSummary: Dong .... Dong .... Do I hear the death-knell of relativity?\\nKeywords: space, curvature, nothing, tesla\\nNntp-Posting-Host: wksb14.csc.cuhk.hk\\nOrganization: Computer Services Centre, C.U.H.K.\\nDistribution: World\\nLines: 36\\n\\nIn article et@teal.csn.org (Eric H. Taylor) writes:\\n>From: et@teal.csn.org (Eric H. Taylor)\\n>Subject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\n>Summary: Dong .... Dong .... Do I hear the death-knell of relativity?\\n>Keywords: space, curvature, nothing, tesla\\n>Date: Sun, 28 Mar 1993 20:18:04 GMT\\n>In article metares@well.sf.ca.us (Tom Van Flandern) writes:\\n>>crb7q@kelvin.seas.Virginia.EDU (Cameron Randale Bass) writes:\\n>>> Bruce.Scott@launchpad.unc.edu (Bruce Scott) writes:\\n>>>> \"Existence\" is undefined unless it is synonymous with \"observable\" in\\n>>>> physics.\\n>>> [crb] Dong .... Dong .... Dong .... Do I hear the death-knell of\\n>>> string theory?\\n>>\\n>> I agree. You can add \"dark matter\" and quarks and a lot of other\\n>>unobservable, purely theoretical constructs in physics to that list,\\n>>including the omni-present \"black holes.\"\\n>>\\n>> Will Bruce argue that their existence can be inferred from theory\\n>>alone? Then what about my original criticism, when I said \"Curvature\\n>>can only exist relative to something non-curved\"? Bruce replied:\\n>>\"\\'Existence\\' is undefined unless it is synonymous with \\'observable\\' in\\n>>physics. We cannot observe more than the four dimensions we know about.\"\\n>>At the moment I don\\'t see a way to defend that statement and the\\n>>existence of these unobservable phenomena simultaneously. -|Tom|-\\n>\\n>\"I hold that space cannot be curved, for the simple reason that it can have\\n>no properties.\"\\n>\"Of properties we can only speak when dealing with matter filling the\\n>space. To say that in the presence of large bodies space becomes curved,\\n>is equivalent to stating that something can act upon nothing. I,\\n>for one, refuse to subscribe to such a view.\" - Nikola Tesla\\n>\\n>----\\n> ET \"Tesla was 100 years ahead of his time. Perhaps now his time comes.\"\\n>----\\n',\n", + " 'From: charlie@elektro.cmhnet.org (Charlie Smith)\\nSubject: Re: Where\\'s The Oil on my K75 Going?\\nOrganization: Why do you suspect that?\\nLines: 35\\n\\nIn article tim@intrepid.gsfc.nasa.gov (Tim Seiss) writes:\\n>\\n> After both oil changes, the oil level was at the top mark in the\\n>window on the lower right side of the motor, but I\\'ve been noticing\\n>that the oil level seen in the window gradually decreases over the\\n>miles. I\\'m always checking the window with the bike on level ground\\n>and after it has sat idle for awhile, so the oil has a chance to drain\\n>back into the pan. The bike isn\\'t leaking oil any place, and I don\\'t\\n>see any smoke coming out of the exhaust.\\n>\\n> My owner\\'s manual says the amount of oil corresponding to the\\n>high and low marks in the oil level window is approx. .5 quart. It\\n>looks like my bike has been using about .25 quarts/1000 miles. The\\n>owner\\'s manual also gives a figure for max. oil consumption of about\\n>.08oz/mile or .15L/100km.\\n>\\n> My question is whether the degree of \"oil consumption\" I\\'m seeing on\\n>my bike is normal? Have any other K75 owners seen their oil level\\n>gradually and consistently go down? Should I take the bike in for\\n>work? I\\'m asking local guys also, to get as many data points as I\\n>can. \\n\\n\\nIt\\'s normal for the BMW K bikes to use a little oil in the first few thousand \\nmiles. I don\\'t know why. I\\'ve had three new K bikes, and all three used a\\nbit of oil when new - max maybe .4 quart in first 1000 miles; this soon quits\\nand by the time I had 10,000 miles on them the oil consumption was about zero.\\nI\\'ve been told that the harder you run the bike (within reason) the sooner\\nit stops using any oil.\\n\\n\\nCharlie Smith charlie@elektro.cmhnet.org KotdohL KotWitDoDL 1KSPI=22.85\\n DoD #0709 doh #0000000004 & AMA, MOA, RA, Buckey Beemers, BK Ohio V\\n BMW K1100-LT, R80-GS/PD, R27, Triumph TR6 \\n Columbus, Ohio USA\\n',\n", + " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Re: Himmler\\'s speech on the extirpation of the Jewish race\\nOrganization: Brown University Department of Computer Science\\nLines: 56\\n\\nIt is appropriate to add what Himmler said other \"inferior races\" \\nand \"human animals\" in his speech at Posen and elsewhere:\\n\\n\\nFrom the speech of Reichsfuehrer-SS Himmler, before SS\\nMajor-Generals, Posen, October 4 1943\\n[\"Nazi Conspiracy and Aggression\", Vol. IV, p. 559]\\n-------------------------------------------------------------------\\nOne basic principal must be the absolute rule for the SS man: we\\nmust be honest, decent, loyal, and comradely to members of our own\\nblood and to nobody else. What happens to a Russian, to a Czech,\\ndoes not interest me in the slightest. What the nations can offer\\nin good blood of our type, we will take, if necessary by kidnapping\\ntheir children and raising them with us. Whether nations live in\\nprosperity or starve to death interests me only in so far as we\\nneed them as slaves for our culture; otherwise, it is of no interest\\nto me. Whether 10,000 Russian females fall down from exhaustion\\nwhile digging an anti-tank ditch interest me only in so far as\\nthe anti-tank ditch for Germany is finished. We shall never be rough\\nand heartless when it is not necessary, that is clear. We Germans,\\nwho are the only people in the world who have a decent attitude\\ntowards animals, will also assume a decent attitude towards these\\nhuman animals. But it is a crime against our own blood to worry\\nabout them and give them ideals, thus causing our sons and\\ngrandsons to have a more difficult time with them. When someone\\ncomes to me and says, \"I cannot dig the anti-tank ditch with women\\nand children, it is inhuman, for it will kill them\", then I\\nwould have to say, \"you are a murderer of your own blood because\\nif the anti-tank ditch is not dug, German soldiers will die, and\\nthey are the sons of German mothers. They are our own blood\".\\n\\n\\n\\nExtract from Himmler\\'s address to party comrades, September 7 1940\\n[\"Trials of Wa Criminals\", Vol. IV, p. 1140]\\n------------------------------------------------------------------\\nIf any Pole has any sexual dealing with a German woman, and by this\\nI mean sexual intercourse, then the man will be hanged right in\\nfront of his camp. Then the others will not do it. Besides,\\nprovisions will be made that a sufficient number of Polish women\\nand girls will come along as well so that a necessity of this\\nkind is out of the question.\\n\\nThe women will be brought before the courts without mercy, and\\nwhere the facts are not sufficiently proved - such borderline\\ncases always happen - they will be sent to a concentration camp.\\nThis we must do, unless these one million Poles and those\\nhundreds of thousands of workers of alien blood are to inflict\\nuntold damage on the German blood. Philosophizing is of no avail\\nin this case. It would be better if we did not have them at all -\\nwe all know that - but we need them.\\n\\n\\n\\n-Danny Keren.\\n\\n',\n", + " \"From: prestonm@cs.man.ac.uk (Martin Preston)\\nSubject: Problems grabbing a block of a Starbase screen.\\nKeywords: Starbase, HP\\nLines: 26\\n\\nAt the moment i'm trying to grab a portion of a Starbase screen, and store it\\nin an area of memory. The data needs to be in a 24-bit format (which\\nshouldn't be a problem as the app is running on a 24 bit screen), though\\ni'm not too fussy about the exact format.\\n\\n(I actually intend to write the data out as a TIFF but that bits not the\\nproblem)\\n\\nDoes anyone out there know how to grab a portion of the screen? The\\nblock_read call seems to grab the screen, but not in 24 bit colour,\\nwhatever the screen/window type i get 1 byte per pixel. \\n\\nthanks in advance,\\n\\nMartin\\n\\n\\n\\n\\n--\\n---------------------------------------------------------------------------\\n|Martin Preston, (m.preston@manchester.ac.uk) | Computer Graphics |\\n|Computer Graphics Unit, Manchester Computing Centre, | is just |\\n|University of Manchester, | a load of balls. |\\n|Manchester, U.K., M13 9PL Phone : 061 275 6095 | |\\n---------------------------------------------------------------------------\\n\",\n", + " \"From: B8HA000 \\nSubject: Zionism is Racism\\nLines: 8\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nIn Re:Syria's Expansion, the author writes that the UN thought\\nZionism was Racism and that they were wrong. They were correct\\nthe first time, Zionism is Racism and thankfully, the McGill Daily\\n(the student newspaper at McGill) was proud enough to print an article\\nsaying so. If you want a copy, send me mail.\\n\\nSteve\\n\\n\",\n", + " 'From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: Bellcore, Livingston, NJ\\nSummary: An Untried Approach\\nLines: 59\\n\\nIn article <1993Apr20.114746.3364@ncsu.edu>, hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n> \\n> In article <1993Apr19.214300.17989@unocal.com>, stssdxb@st.unocal.com (Dorin Baru) writes:\\n> \\n> |> (Brad Hernlem writes:\\n> |> \\n> |> \\n> |> >Well, you should have noted that I was cheering an attack on an Israeli \\n> |> >patrol INSIDE Lebanese territory while I was condemning the \"retaliatory\"\\n> |> >shelling of Lebanese villages by Israeli and Israeli-backed forces. My \"team\",\\n> |> >you see, was \"playing fair\" while the opposing team was rearranging the\\n> |> >faces of the spectators in my team\\'s viewing stands, so to speak. \\n> |> \\n> |> >I think that you should try to find more sources of news about what goes on\\n> |> >in Lebanon and try to see through the propaganda. There are no a priori\\n> |> >black and white hats but one sure wonders how the IDF can bombard villages in \\n> |> >retaliation to pin-point attacks on its soldiers in Lebanon and then call the\\n> |> >Lebanese terrorists.\\n> |> \\n> |> If the attack was justified or not is at least debatable. But this is not the\\n> |> issue. The issue is that you were cheering DEATH. [...]\\n> |> \\n> |> Dorin\\n> \\n> Dorin, of all the criticism of my post expressed on t.p.m., this one I accept.\\n> I regret that aspect of my post. It is my hope that the occupation will end (and\\n> the accompanying loss of life) but I believe that stiff resistance can help to \\n> achieve that end. Despite what some have said on t.p.m., I think that there is \\n> a point when losses are unacceptable. The strategy drove U.S. troops out of \\n> Lebanon, at least.\\n> \\n> Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nHi Brad,\\n\\nI have two comments: Regarding your hope that the \"occupation will end... \\nbelive that stiff resistance..etc. - how about an untried approach, i.e.,\\npeace and cooperation. I can\\'t help but wonder what would happen if all\\nviolence against Israelis stopped. Hopefully, violence against Arabs\\nwould stop at the same time. If a state of non-violence could be \\nmaintained, perhaps a state of cooperation could be achieved, i.e.,\\ngreater economic opportunities for both peoples living in the\\n\"territories\". \\n\\nOf course, given the current leadership of Israel, your way may work\\nalso - but if that leadership changes, e.g., to someone with Ariel\\nSharon\\'s mentality, then I would predict a considerable loss of life,\\ni.e., no winners.\\n\\nSecondly, regarding your comment about the U.S. troops responding\\nto \"stiff resistance\" - the analogy is not quite valid. The U.S.\\ntroops could get out of the neighborhood altogether. The Israelis\\ncould not.\\n\\nJust my $.02 worth, no offense intended.\\n\\nRespectfully, \\n\\nBen.\\n',\n", + " 'From: arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee)\\nSubject: Re: American Jewish Congress Open Letter to Clinton\\nOrganization: Johns Hopkins University CS Dept.\\nLines: 30\\n\\nIn article <22APR199300513566@vxcrna.cern.ch> casper@vxcrna.cern.ch (CASPER,DAVI./PPE) writes:\\n>>Are you aware that there is an arms embargo on all of what is/was\\n>>Yugoslavia, including Bosnia, which guarantees massive military\\n>>superiority of Serbian forces and does not allow the Bosnians to\\n>>try to defend themselves? \\n>Should we sell weapons to all sides, or just the losing one, then?\\n\\nEnding an embargo does not _we_ must sell anything at all.\\n\\n>If the Europeans want to sell weapons to one or both sides, they are welcome\\n>as far as I\\'m concerned.\\n\\nYou seem to oppose ending the embargo. You know, it is difficult for Europeans\\nto sell weapons when there is an embargo in place.\\n\\n>I do not automatically accept the argument that Bosnia is any worse than\\n>other recent civil wars, say Vietnam for instance. The difference is it is\\n>happening to white people inside Europe, with lots of TV coverage.\\n\\nBut if this was the reason, and if furthermore both sides are equal, wouldn\\'t\\nall us racist Americans be favoring the good Christians (Serbs) instead\\nof the non-Christians we really seem to favor?\\n--\\n\"On the first day after Christmas my truelove served to me... Leftover Turkey!\\nOn the second day after Christmas my truelove served to me... Turkey Casserole\\n that she made from Leftover Turkey.\\n[days 3-4 deleted] ... Flaming Turkey Wings! ...\\n -- Pizza Hut commercial (and M*tlu/A*gic bait)\\n\\nKen Arromdee (arromdee@jyusenkyou.cs.jhu.edu)\\n',\n", + " 'Subject: Re: Surviving Large Accelerations?\\nFrom: lpham@eis.calstate.edu (Lan Pham)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 25\\n\\nAmruth Laxman writes:\\n> Hi,\\n> I was reading through \"The Spaceflight Handbook\" and somewhere in\\n> there the author discusses solar sails and the forces acting on them\\n> when and if they try to gain an initial acceleration by passing close to\\n> the sun in a hyperbolic orbit. The magnitude of such accelerations he\\n> estimated to be on the order of 700g. He also says that this is may not\\n> be a big problem for manned craft because humans (and this was published\\n> in 1986) have already withstood accelerations of 45g. All this is very\\n> long-winded but here\\'s my question finally - Are 45g accelerations in\\n> fact humanly tolerable? - with the aid of any mechanical devices of\\n> course. If these are possible, what is used to absorb the acceleration?\\n> Can this be extended to larger accelerations?\\n\\nare you sure 45g is the right number? as far as i know, pilots are\\nblackout in dives that exceed 8g - 9g. 45g seems to be out of human\\ntolerance. would anybody clarify this please.\\n\\nlan\\n\\n\\n> \\n> Thanks is advance...\\n> -Amruth Laxman\\n> \\n',\n", + " 'From: stefan@prague (Stefan Fielding-Isaacs)\\nSubject: Racelist: WHO WHAT WHERE\\nDistribution: rec\\nOrganization: Gain Technology, Palo Alto, CA.\\nLines: 111\\nNntp-Posting-Host: prague.gain.com\\n\\n\\n Greetings fellow motorcycle roadracing enthusiasts!\\n\\n BACKGROUND\\n ----------\\n\\n The racing listserver (boogie.EBay.sun.com) contains discussions \\n devoted to racing and racing-related topics. This is a pretty broad \\n interest group. Individuals have a variety of backgrounds: motojournalism, \\n roadracing from the perspective of pit crew and racers, engineering,\\n motosports enthusiasts.\\n\\n The size of the list grows weekly. We are currently at a little\\n over one hundred and eighty-five members, with contributors from\\n New Zealand, Australia, Germany, France, England, Canada\\n Finland, Switzerland, and the United States.\\n\\n The list was formed (October 1991) in response to a perceived need \\n to both provide technical discussion of riding at the edge of \\n performance (roadracing) and to improve on the very low signal-to-noise \\n ratio found in rec.motorcycles. Anyone is free to join.\\n\\n Discussion is necessarily limited by the rules of the list to \\n issues related to racing motorcycles and is to be \"flame-free\". \\n\\n HOW TO GET THE DAILY DISTRIBUTION\\n ---------------------------------\\n\\n You are welcome to subscribe. To subscribe send your request to:\\n\\n\\n race-request@boogie.EBay.Sun.COM\\n\\n\\n Traffic currently runs between five and twenty-five messages per day\\n (depending on the topic). \\n\\n NB: Please do _not_ send your subscription request to the\\n list directly.\\n \\n After you have contacted the list administrator, you will receive\\n an RSVP request. Please respond to this request in a timely manner\\n so that you can be added to the list. The request is generated in\\n order to insure that there is a valid mail pathway to your site.\\n \\n Upon receipt of your RSVP, you will be added to either the daily\\n or digest distribution (as per your initial request).\\n\\n HOW TO GET THE DIGEST DISTRIBUTION\\n ----------------------------------\\n\\n It is possible to receive the list in \\'digest\\'ed form (ie. a\\n single email message). The RoadRacing Digest is mailed out \\n whenever it contains enough interesting content. Given the\\n frequency of postings this appears to be about every other\\n day.\\n\\n Should you wish to receive the list via digest (once every \\n 30-40K or so), please send a subscription request to:\\n\\n\\n digest-request@boogie.EBay.Sun.COM\\n\\n\\n HOW TO POST TO THE LIST\\n -----------------------\\n\\n This is an open forum. To post an article to the list, send to:\\n\\n\\n race@boogie.EBay.Sun.COM\\n\\n\\n Depending on how mail is set up at your site you may or may\\n not see the mail that you have posted. If you want to see it\\n (though this isn\\'t necessarily a guarantee that it went out)\\n you can include a \"metoo\" line in your .mailrc file (on UNIX\\n based mail systems). \\n\\n BOUNCES\\n -------\\n\\n Because I haven\\'t had the time (or the inclination to replace\\n the list distribution mechanism) we still have a problem with\\n bounces returning to the poster of a message. Occasionally,\\n sites or users go off-line (either leaving their place of\\n employment prematurely or hardware problems) and you will receive\\n bounces from the race list. Check the headers carefully, and\\n if you find that the bounce originated at Sun (from whence I\\n administer this list) contact me through my administration\\n hat (race-request@boogie.EBay.sun.com). If not, ignore the bounce. \\n\\n OTHER LISTS \\n -----------\\n\\n Two-strokes: 2strokes@microunity.com\\n Harleys: harley-request@thinkage.on.ca\\n or uunet!watmath!thinkage!harley-request\\n European bikes: majordomo@onion.rain.com\\n (in body of message write: subscribe euro-moto)\\n\\n\\n thanks, be seeing you, \\n Rich (race list administrator)\\n\\n rich@boogie.EBay.Sun.COM\\n-- \\nStefan Fielding-Isaacs 415.822.5654 office/fax\\ndba Art & Science \"Books By Design\" 415.599.4876 voice/pager\\nAMA/CCS #14\\n* currently providing consulting writing services to: Gain Technology, Verity *\\n',\n", + " \"From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Riceburner Respect\\nOrganization: NEC Systems Laboratory, Inc.\\nLines: 14\\n\\nIn article <1993Apr15.141927.23722@cbnewsm.cb.att.com> shz@mare.att.com (Keeper of the 'Tude) writes:\\n>Huh?\\n>\\n>- Roid\\n\\n\\tOn a completely different tack, what was the eventual outcome of\\nBabe vs. the Bad-Mouthed Biker?\\n\\nLater,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee's Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n\",\n", + " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Americans and Evolution\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 30\\n\\nRobert Singleton (bobs@thnext.mit.edu) wrote:\\n\\n: > Sure it isn\\'t mutually exclusive, but it lends weight to (i.e. increases\\n: > notional running estimates of the posterior probability of) the \\n: > atheist\\'s pitch in the partition, and thus necessarily reduces the same \\n: > quantity in the theist\\'s pitch. This is because the `divine component\\' \\n: > falls prey to Ockham\\'s Razor, the phenomenon being satisfactorily \\n: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n: > explained without it, and there being no independent evidence of any \\n: ^^^^^^^^^^^^^^^^^^^^\\n: > such component. More detail in the next post.\\n: > \\n\\nOccam\\'s Razor is not a law of nature, it is way of analyzing an\\nargument, even so, it interesting how often it\\'s cited here and to\\nwhat end. \\nIt seems odd that religion is simultaneously condemned as being\\nprimitive, simple-minded and unscientific, anti-intellectual and\\nchildish, and yet again condemned as being too complex (Occam\\'s\\nrazor), the scientific explanation of things being much more\\nstraightforeward and, apparently, simpler. Which is it to be - which\\nis the \"non-essential\", and how do you know?\\nConsidering that even scientists don\\'t fully comprehend science due to\\nits complexity and diversity. Maybe William of Occam has performed a\\nlobotomy, kept the frontal lobe and thrown everything else away ...\\n\\nThis is all very confusing, I\\'m sure one of you will straighten me out\\ntough.\\n\\nBill\\n',\n", + " \"From: u895027@franklin.cc.utas.edu.au (Mark Mackey)\\nSubject: Raytracers: which is best?\\nOrganization: University of Tasmania, Australia.\\nLines: 15\\n\\nHi all!\\n\\tI've just recently become seriously hooked on POV, but there are a few\\nthing that I want to do that POV won't do (penumbral shadows, dispersion\\netc.). I was just wondering: what other shareware/freeware raytracers are\\nout there, and what can they do? I've heard of Vivid and Polyray and \\nRayshade and so on, but I'd rather no wade through several hundred pages of \\nmanual for each trying to work out what their capabilities are. Can anyone\\nhelp? A comparison of tracing speed between each program would also be \\nmucho useful.\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tMark.\\n\\n-------------------------------------------------------------------------------\\nMark Mackey | Life is a terminal disease and oxygen is \\nmmackey@aqueous.ml.csiro.au | addictive. Are _you_ hooked? \\n-------------------------------------------------------------------------------\\n\",\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Moraltiy? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>>>What if I act morally for no particular reason? Then am I moral? What\\n|> >>>>if morality is instinctive, as in most animals?\\n|> >>>\\n|> >>>Saying that morality is instinctive in animals is an attempt to \\n|> >>>assume your conclusion.\\n|> >>\\n|> >>Which conclusion?\\n|> >\\n|> >You conclusion - correct me if I err - that the behaviour which is\\n|> >instinctive in animals is a \"natural\" moral system.\\n|> \\n|> See, we are disagreeing on the definition of moral here. Earlier, you said\\n|> that it must be a conscious act. By your definition, no instinctive\\n|> behavior pattern could be an act of morality. You are trying to apply\\n|> human terms to non-humans.\\n\\nPardon me? *I* am trying to apply human terms to non-humans?\\n\\nI think there must be some confusion here. I\\'m the guy who is\\nsaying that if animal behaviour is instinctive then it does *not*\\nhave any moral sugnificance. How does refusing to apply human\\nterms to animals get turned into applying human terms?\\n\\n|> I think that even if someone is not conscious of an alternative, \\n|> this does not prevent his behavior from being moral.\\n\\nI\\'m sure you do think this, if you say so. How about trying to\\nconvince me?\\n\\n|> \\n|> >>You don\\'t think that morality is a behavior pattern? What is human\\n|> >>morality? A moral action is one that is consistent with a given\\n|> >>pattern. That is, we enforce a certain behavior as moral.\\n|> >\\n|> >You keep getting this backwards. *You* are trying to show that\\n|> >the behaviour pattern is a morality. Whether morality is a behavior \\n|> >pattern is irrelevant, since there can be behavior pattern, for\\n|> >example the motions of the planets, that most (all?) people would\\n|> >not call a morality.\\n|> \\n|> I try to show it, but by your definition, it can\\'t be shown.\\n\\nI\\'ve offered, four times, I think, to accept your definition if\\nyou allow me to ascribe moral significence to the orbital motion\\nof the planets.\\n\\n|> \\n|> And, morality can be thought of a large class of princples. It could be\\n|> defined in terms of many things--the laws of physics if you wish. However,\\n|> it seems silly to talk of a \"moral\" planet because it obeys the laws of\\n|> phyics. It is less silly to talk about animals, as they have at least\\n|> some free will.\\n\\nAh, the law of \"silly\" and \"less silly\". what Mr Livesey finds \\nintuitive is \"silly\" but what Mr Schneider finds intuitive is \"less \\nsilly\".\\n\\nNow that\\'s a devastating argument, isn\\'t it.\\n\\njon.\\n',\n", + " \"From: seth@north1.acpub.duke.edu (Seth Wandersman)\\nSubject: Oak Driver NEEDED (30d studio)\\nReply-To: seth@north1.acpub.duke.edu (Seth Wandersman)\\nLines: 8\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\n\\n\\tHi, I'm looking for the 3-D studio driver for the\\n\\tOak card with 1 M of RAM.\\n\\tThis would be GREATLY (and I mean that) appreciated\\n\\n\\tMaybe I should have just gotten a more well know card.\\nthanks\\nseth@acpub.duke.edu\\n\",\n", + " 'From: raymaker@bcm.tmc.edu (Mark Raymaker)\\nSubject: graphics driver standards\\nOrganization: Baylor College of Medicine, Houston, Tx\\nLines: 21\\nNNTP-Posting-Host: bcm.tmc.edu\\nKeywords: graphics,standards\\n\\nI have a researcher who collecting electical impulses from\\nthe human heart through a complex Analog to Digital system\\nhe has designed and inputting this information into his EISA\\nbus HP Vectra Computer running DOS and the Phar Lap DOS extender. \\n\\nHe want to purchase a very high-performance video card for\\n3-D modeling. He is aware of a company called Matrox but\\nhe is concerned about getting married to a company and their\\nvideo routine library. He would hope some more flexibility:\\nto choose between several card manufacturers with a standard\\nvideo driver. He would like to write more generic code- \\ncode that could be easily moved to other cards or computer operating\\nsystems in the future. Is there any hope?\\nAny information would be greatly appreciated-\\nPlease, if possible, respond directly to internet mail \\nto raymaker@bcm.tmc.edu\\n\\nThanks\\n\\n\\n\\n',\n", + " 'From: thomsonal@cpva.saic.com\\nSubject: Cosmos 2238: an EORSAT\\nArticle-I.D.: cpva.15337.2bc16ada\\nOrganization: Science Applications Int\\'l Corp./San Diego\\nLines: 48\\n\\n>Date: Tue, 6 Apr 1993 15:40:47 GMT\\n\\n>I need as much information about Cosmos 2238 and its rocket fragment (1993-\\n>018B) as possible. Both its purpose, launch date, location, in short,\\n>EVERYTHING! Can you help?\\n\\n>-Tony Ryan, \"Astronomy & Space\", new International magazine, available from:\\n\\n------------------------------------------------------------------------------\\n\\nOcean Reconnaissance Launch Surprises West\\nSpace News, April 5-11, 1993, p.2\\n[Excerpts]\\n Russia launched its first ocean reconnaissance satellite in 26 months \\nMarch 30, confounding Western analysts who had proclaimed the program dead. \\n The Itar-TASS news agency announced the launch of Cosmos 2238 from \\nPlesetsk Cosmodrome, but provided little description of the payload\\'s mission. \\n However, based on the satellite\\'s trajectory, Western observers \\nidentified it as a military spacecraft designed to monitor electronic \\nemissions from foreign naval ships in order to track their movement. \\n Geoff Perry of the Kettering Group in England... [said] Western \\nobservers had concluded that no more would be launched. But days after the \\nlast [such] satellite re-entered the Earth\\'s atmosphere, Cosmos 2238 was \\nlaunched. \\n\\n\"Cosmos-2238\" Satellite Launched for Defense Ministry\\nMoscow ITAR-TASS World Service in Russian 1238 GMT 30 March 1993\\nTranslated in FBIS-SOV-93-060, p.27\\nby ITAR-TASS correspondent Veronika Romanenkova\\n Moscow, 30 March -- The Cosmos-2238 satellite was launched at 1600 Moscow \\ntime today from the Baykonur by a \"Tsiklon-M\" carrier rocket. An ITAR-TASS \\ncorrespondent was told at the press center of Russia\\'s space-military forces \\nthat the satellite was launched in the interests of the Russian Defense \\nMinistry. \\n\\nParameters Given\\nMoscow ITAR-TASS World Service in Russian 0930 GMT 31 March 1993\\nTranslated in FBIS-SOV-93-060, p.27\\n Moscow, 31 March -- Another artificial Earth satellite, Cosmos-2238, was \\nlaunched on 30 March from the Baykonur cosmodrome. \\n The satellite carries scientific apparatus for continuing space research. \\nThe satellite has been placed in an orbit with the following parameters: \\ninitial period of revolution--92.8 minutes; apogee--443 km; perigee--413 km; \\norbital inclination--65 degrees. \\n Besides scientific apparatus the satellite carries a radio system for the \\nprecise measurement of orbital elements and a radiotelemetry system for \\ntransmitting to Earth data about the work of the instruments and scientific \\napparatus. The apparatus aboard the satellite is working normally. \\n',\n", + " 'From: holler@holli.augs1.adsp.sub.org (Jan Holler)\\nSubject: Re: Newsgroup Split\\nReply-To: holli!holler@augs1.adsp.sub.org\\nOrganization: private\\nLines: 24\\nX-NewsSoftware: GRn 1.16f (10.17.92) by Mike Schwartz & Michael B. Smith\\n\\nIn article nerone@ccwf.cc.utexas.edu (Michael Nerone) writes:\\n> In article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n> \\n> CH> Concerning the proposed newsgroup split, I personally am not in\\n\\n> Also, it is readily observable that the current spectrum of amiga\\n> groups is already plagued with mega-crossposting; thus the group-split\\n> would not, in all likelihood, bring about a more structured\\n> environment.\\n\\nAm I glad you write that. I got flamed all along because I begged NOT to\\ncrosspost some nonsense articles.\\n\\nThe problem with crossposting is on the first poster. I am aware that this\\nposting is a crossposting too, but what else should one do. You never know\\nwhere the interested people stay in.\\n\\nTo split up newsgroups brings even more crossposting.\\n\\n-- \\n\\nJan Holler, Bern, Switzerland Good is not good enough, make it better!\\nholli!holler@augs1.adsp.sub.org ((Second chance: holler@iamexwi.unibe.ch))\\n-------------------------------------------------------------------------------\\n (( fast mail: cbmehq!cbmswi!augs1!holli!holler@cbmvax.commodore.com )) \\n',\n", + " 'From: sean@whiting.mcs.com (Sean Gum)\\nSubject: Re: CView answers\\nOrganization: -*- Whiting Corporation, Harvey, Illinois -*-\\nX-Newsreader: Tin 1.1 PL4\\nLines: 23\\n\\nbryanw@rahul.net (Bryan Woodworth) writes:\\n: In <1993Apr16.114158.2246@whiting.mcs.com> sean@whiting.mcs.com (Sean Gum) writes:\\n: \\n: >A stupid question, but what will CView run on and where can I get it? I\\n: >am still in need of a GIF viewer for Linux. (Without X-Windows.)\\n: >Thanks!\\n: > \\n: \\n: Ho boy. There is no way in HELL you are going to be able to view GIFs or do\\n: any other graphics in Linux without X windows! I love Linux because it is\\n: so easy to learn.. You want text? Okay. Use Linux. You want text AND\\n: graphics? Use Linux with X windows. Simple. Painless. REQUIRED to have\\n: X Windows if you want graphics! This includes fancy word processors like\\n: doc, image viewers like xv, etc.\\n:\\nUmmm, I beg to differ. A kind soul sent me a program called DPG-VIEW that\\nwill do exactly what I want, view GIF images under Linux without X-Windows.\\nAnd, it does support all the way up to 1024x768. The biggest complaint I\\nhave is it is painfully SLOW. It takes about 1 minute to display an image.\\nI am use to CSHOW under DOS which takes a split second. Any idea why it\\nis so slow under Linux? Anybody have anything better? Plus, anybody have\\nthe docs to DPG-View? Thanks!\\n \\n',\n", + " \"From: Nanci Ann Miller \\nSubject: Re: Bible Quiz\\nOrganization: Sponsored account, School of Computer Science, Carnegie Mellon, Pittsburgh, PA\\nLines: 14\\n\\t\\nNNTP-Posting-Host: andrew.cmu.edu\\nIn-Reply-To: \\n\\nkmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n> Would you mind e-mailing me the questions, with the pairs of answers?\\n> I would love to have them for the next time a Theist comes to my door!\\n\\nI'd like this too... maybe you should post an answer key after a while?\\n\\nNanci\\n\\n.........................................................................\\nIf you know (and are SURE of) the author of this quote, please send me\\nemail (nm0w+@andrew.cmu.edu):\\nIt is better to be a coward for a minute than dead for the rest of your\\nlife.\\n\\n\",\n", + " 'From: hm@cs.brown.edu (Harry Mamaysky)\\nSubject: Dir Yassin (was Re: no-Free man propaganda machine: Freeman, with blood greetings from Israel)\\nIn-Reply-To: hasan@McRCIM.McGill.EDU \\'s message of Tue, 13 Apr 93 14:15:18 GMT\\nOrganization: Dept. of Computer Science, Brown University\\nLines: 85\\n\\nIn article <1993Apr13.141518.13900@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n CHECK MENAHEM BEGIN DAIRIES (published book) you\\'ll find accounts of the\\n massacres there including Deir Yassen,\\n though with the numbers of massacred men, children and women are \\n greatly minimized.\\n\\nAs per request of Hasan:\\n\\nFrom _The Revolt_, by Menachem Begin, Dell Publishing, NY, 1977:\\n\\n[pp. 225-227]\\n\\n \"Apart from the military aspect, there is a moral aspect to the\\nstory of Dir Yassin. At that village, whose name was publicized\\nthroughout the world, both sides suffered heavy casualties. We had\\nfour killed and nearly forty wounded. The number of casualties was\\nnearly forty percent of the total number of the attackers. The Arab\\ntroops suffered casualties neraly three times as heavy. The fighting\\nwas thus very severe. Yet the hostile propaganda, disseminated\\nthroughout the world, deliberately ignored the fact that the civilian\\npopulation of Dir Yassin was actually given a warning by us before the\\nbattle began. One of our tenders carrying a loud speaker was stationed\\nat the entrance to the village and it exhorted in Arabic all women,\\nchildren and aged to leave their houses and to take shelter on the\\nslopes of the hill. By giving this humane warning our fighters threw\\naway the element of complete surprise, and thus increased their own\\nrisk in the ensuing battle. A substantial number of the inhabitants\\nobeyed the warning and they were unhurt. A few did not leave their\\nstone houses - perhaps because of the confusion. The fire of the enemy\\nwas murderous - to which the number of our casualties bears eloquent\\ntestimony. Our men were compelled to fight for every house; to\\novercome the enemy they used large numbers of hand grenades. And the\\ncivilians who had disregarded our warnings suffered inevitable\\ncasualties.\\n\\n \"The education which we gave our soldiers throughout the years of\\nrevolt was based on the observance of the traditional laws of war. We\\nnever broke them unless the enemy first did so and thus forced us, in\\naccordance with the accepted custom of war, to apply reprisals. I am\\nconvinced, too, that our officers and men wished to avoid a single\\nunnecessary casualty in the Dir Yassin battle. But those who throw\\nstones of denunciation at the conquerors of Dir Yassin [1] would do\\nwell not to don the cloak of hypocrisy [2].\\n\\n \"In connection with the capture of Dir Yassin the Jewish Agency\\nfound it necessary to send a letter of apology to Abdullah, whom Mr.\\nBen Gurion, at a moment of great political emotion, called \\'the wise\\nruler who seeks the good of his people and this country.\\' The \\'wise\\nruler,\\' whose mercenary forces demolished Gush Etzion and flung the\\nbodies of its heroic defenders to birds of prey, replied with feudal\\nsuperciliousness. He rejected the apology and replied that the Jews\\nwere all to blame and that he did not believe in the existence of\\n\\'dissidents.\\' Throughout the Arab world and the world at large a wave\\nof lying propaganda was let loose about \\'Jewish attrocities.\\'\\n\\n \"The enemy propaganda was designed to besmirch our name. In the\\nresult it helped us. Panic overwhelmed the Arabs of Eretz Israel.\\nKolonia village, which had previously repulsed every attack of the\\nHaganah, was evacuated overnight and fell without further fighting.\\nBeit-Iksa was also evacuated. These two places overlooked the main\\nroad; and their fall, together with the capture of Kastel by the\\nHaganah, made it possible to keep open the road to Jerusalem. In the\\nrest of the country, too, the Arabs began to flee in terror, even\\nbefore they clashed with Jewish forces. Not what happened at Dir\\nYassin, but what was invented about Dir Yassin, helped to carve the\\nway to our decisive victories on the battlefield. The legend of Dir\\nYassin helped us in particular in the saving of Tiberias and the\\nconquest of Haifa.\"\\n\\n\\n[1] (A footnote from _The Revolt_, pp.226-7.) \"To counteract the loss\\nof Dir yassin, a village of strategic importance, Arab headquarters at\\nRamallah broadcast a crude atrocity story, alleging a massacre by\\nIrgun troops of women and children in the village. Certain Jewish\\nofficials, fearing the Irgun men as political rivals, seized upon this\\nArab gruel propaganda to smear the Irgun. An eminent Rabbi was induced\\nto reprimand the Irgun before he had time to sift the truth. Out of\\nevil, however, good came. This Arab propaganda spread a legend of\\nterror amongst Arabs and Arab troops, who were seized with panic at\\nthe mention of Irgun soldiers. The legend was worth half a dozen\\nbattalions to the forces of Israel. The `Dir Yassin Massacre\\' lie\\nis still propagated by Jew-haters all over the world.\"\\n\\n[2] In reference to denunciation of Dir Yassin by fellow Jews.\\n',\n", + " 'From: mathew \\nSubject: Alt.Atheism FAQ: Introduction to Atheism\\nSummary: Please read this file before posting to alt.atheism\\nKeywords: FAQ, atheism\\nExpires: Thu, 6 May 1993 12:22:45 GMT\\nDistribution: world\\nOrganization: Mantis Consultants, Cambridge. UK.\\nSupersedes: <19930308134439@mantis.co.uk>\\nLines: 646\\n\\nArchive-name: atheism/introduction\\nAlt-atheism-archive-name: introduction\\nLast-modified: 5 April 1993\\nVersion: 1.2\\n\\n-----BEGIN PGP SIGNED MESSAGE-----\\n\\n An Introduction to Atheism\\n by mathew \\n\\nThis article attempts to provide a general introduction to atheism. Whilst I\\nhave tried to be as neutral as possible regarding contentious issues, you\\nshould always remember that this document represents only one viewpoint. I\\nwould encourage you to read widely and draw your own conclusions; some\\nrelevant books are listed in a companion article.\\n\\nTo provide a sense of cohesion and progression, I have presented this article\\nas an imaginary conversation between an atheist and a theist. All the\\nquestions asked by the imaginary theist are questions which have been cropped\\nup repeatedly on alt.atheism since the newsgroup was created. Some other\\nfrequently asked questions are answered in a companion article.\\n\\nPlease note that this article is arguably slanted towards answering questions\\nposed from a Christian viewpoint. This is because the FAQ files reflect\\nquestions which have actually been asked, and it is predominantly Christians\\nwho proselytize on alt.atheism.\\n\\nSo when I talk of religion, I am talking primarily about religions such as\\nChristianity, Judaism and Islam, which involve some sort of superhuman divine\\nbeing. Much of the discussion will apply to other religions, but some of it\\nmay not.\\n\\n\"What is atheism?\"\\n\\nAtheism is characterized by an absence of belief in the existence of God.\\nSome atheists go further, and believe that God does not exist. The former is\\noften referred to as the \"weak atheist\" position, and the latter as \"strong\\natheism\".\\n\\nIt is important to note the difference between these two positions. \"Weak\\natheism\" is simple scepticism; disbelief in the existence of God. \"Strong\\natheism\" is a positive belief that God does not exist. Please do not\\nfall into the trap of assuming that all atheists are \"strong atheists\".\\n\\nSome atheists believe in the non-existence of all Gods; others limit their\\natheism to specific Gods, such as the Christian God, rather than making\\nflat-out denials.\\n\\n\"But isn\\'t disbelieving in God the same thing as believing he doesn\\'t exist?\"\\n\\nDefinitely not. Disbelief in a proposition means that one does not believe\\nit to be true. Not believing that something is true is not equivalent to\\nbelieving that it is false; one may simply have no idea whether it is true or\\nnot. Which brings us to agnosticism.\\n\\n\"What is agnosticism then?\"\\n\\nThe term \\'agnosticism\\' was coined by Professor Huxley at a meeting of the\\nMetaphysical Society in 1876. He defined an agnostic as someone who\\ndisclaimed (\"strong\") atheism and believed that the ultimate origin of things\\nmust be some cause unknown and unknowable.\\n\\nThus an agnostic is someone who believes that we do not and cannot know for\\nsure whether God exists.\\n\\nWords are slippery things, and language is inexact. Beware of assuming that\\nyou can work out someone\\'s philosophical point of view simply from the fact\\nthat she calls herself an atheist or an agnostic. For example, many people\\nuse agnosticism to mean \"weak atheism\", and use the word \"atheism\" only when\\nreferring to \"strong atheism\".\\n\\nBeware also that because the word \"atheist\" has so many shades of meaning, it\\nis very difficult to generalize about atheists. About all you can say for\\nsure is that atheists don\\'t believe in God. For example, it certainly isn\\'t\\nthe case that all atheists believe that science is the best way to find out\\nabout the universe.\\n\\n\"So what is the philosophical justification or basis for atheism?\"\\n\\nThere are many philosophical justifications for atheism. To find out why a\\nparticular person chooses to be an atheist, it\\'s best to ask her.\\n\\nMany atheists feel that the idea of God as presented by the major religions\\nis essentially self-contradictory, and that it is logically impossible that\\nsuch a God could exist. Others are atheists through scepticism, because they\\nsee no evidence that God exists.\\n\\n\"But isn\\'t it impossible to prove the non-existence of something?\"\\n\\nThere are many counter-examples to such a statement. For example, it is\\nquite simple to prove that there does not exist a prime number larger than\\nall other prime numbers. Of course, this deals with well-defined objects\\nobeying well-defined rules. Whether Gods or universes are similarly\\nwell-defined is a matter for debate.\\n\\nHowever, assuming for the moment that the existence of a God is not provably\\nimpossible, there are still subtle reasons for assuming the non-existence of\\nGod. If we assume that something does not exist, it is always possible to\\nshow that this assumption is invalid by finding a single counter-example.\\n\\nIf on the other hand we assume that something does exist, and if the thing in\\nquestion is not provably impossible, showing that the assumption is invalid\\nmay require an exhaustive search of all possible places where such a thing\\nmight be found, to show that it isn\\'t there. Such an exhaustive search is\\noften impractical or impossible. There is no such problem with largest\\nprimes, because we can prove that they don\\'t exist.\\n\\nTherefore it is generally accepted that we must assume things do not exist\\nunless we have evidence that they do. Even theists follow this rule most of\\nthe time; they don\\'t believe in unicorns, even though they can\\'t conclusively\\nprove that no unicorns exist anywhere.\\n\\nTo assume that God exists is to make an assumption which probably cannot be\\ntested. We cannot make an exhaustive search of everywhere God might be to\\nprove that he doesn\\'t exist anywhere. So the sceptical atheist assumes by\\ndefault that God does not exist, since that is an assumption we can test.\\n\\nThose who profess strong atheism usually do not claim that no sort of God\\nexists; instead, they generally restrict their claims so as to cover\\nvarieties of God described by followers of various religions. So whilst it\\nmay be impossible to prove conclusively that no God exists, it may be\\npossible to prove that (say) a God as described by a particular religious\\nbook does not exist. It may even be possible to prove that no God described\\nby any present-day religion exists.\\n\\nIn practice, believing that no God described by any religion exists is very\\nclose to believing that no God exists. However, it is sufficiently different\\nthat counter-arguments based on the impossibility of disproving every kind of\\nGod are not really applicable.\\n\\n\"But what if God is essentially non-detectable?\"\\n\\nIf God interacts with our universe in any way, the effects of his interaction\\nmust be measurable. Hence his interaction with our universe must be\\ndetectable.\\n\\nIf God is essentially non-detectable, it must therefore be the case that he\\ndoes not interact with our universe in any way. Many atheists would argue\\nthat if God does not interact with our universe at all, it is of no\\nimportance whether he exists or not.\\n\\nIf the Bible is to be believed, God was easily detectable by the Israelites.\\nSurely he should still be detectable today?\\n\\nNote that I am not demanding that God interact in a scientifically\\nverifiable, physical way. It must surely be possible to perceive some\\neffect caused by his presence, though; otherwise, how can I distinguish him\\nfrom all the other things that don\\'t exist?\\n\\n\"OK, you may think there\\'s a philosophical justification for atheism, but\\n isn\\'t it still a religious belief?\"\\n\\nOne of the most common pastimes in philosophical discussion is \"the\\nredefinition game\". The cynical view of this game is as follows:\\n\\nPerson A begins by making a contentious statement. When person B points out\\nthat it can\\'t be true, person A gradually re-defines the words he used in the\\nstatement until he arrives at something person B is prepared to accept. He\\nthen records the statement, along with the fact that person B has agreed to\\nit, and continues. Eventually A uses the statement as an \"agreed fact\", but\\nuses his original definitions of all the words in it rather than the obscure\\nredefinitions originally needed to get B to agree to it. Rather than be seen\\nto be apparently inconsistent, B will tend to play along.\\n\\nThe point of this digression is that the answer to the question \"Isn\\'t\\natheism a religious belief?\" depends crucially upon what is meant by\\n\"religious\". \"Religion\" is generally characterized by belief in a superhuman\\ncontrolling power -- especially in some sort of God -- and by faith and\\nworship.\\n\\n[ It\\'s worth pointing out in passing that some varieties of Buddhism are not\\n \"religion\" according to such a definition. ]\\n\\nAtheism is certainly not a belief in any sort of superhuman power, nor is it\\ncategorized by worship in any meaningful sense. Widening the definition of\\n\"religious\" to encompass atheism tends to result in many other aspects of\\nhuman behaviour suddenly becoming classed as \"religious\" as well -- such as\\nscience, politics, and watching TV.\\n\\n\"OK, so it\\'s not a religion. But surely belief in atheism (or science) is\\n still just an act of faith, like religion is?\"\\n\\nFirstly, it\\'s not entirely clear that sceptical atheism is something one\\nactually believes in.\\n\\nSecondly, it is necessary to adopt a number of core beliefs or assumptions to\\nmake some sort of sense out of the sensory data we experience. Most atheists\\ntry to adopt as few core beliefs as possible; and even those are subject to\\nquestioning if experience throws them into doubt.\\n\\nScience has a number of core assumptions. For example, it is generally\\nassumed that the laws of physics are the same for all observers. These are\\nthe sort of core assumptions atheists make. If such basic ideas are called\\n\"acts of faith\", then almost everything we know must be said to be based on\\nacts of faith, and the term loses its meaning.\\n\\nFaith is more often used to refer to complete, certain belief in something.\\nAccording to such a definition, atheism and science are certainly not acts of\\nfaith. Of course, individual atheists or scientists can be as dogmatic as\\nreligious followers when claiming that something is \"certain\". This is not a\\ngeneral tendency, however; there are many atheists who would be reluctant to\\nstate with certainty that the universe exists.\\n\\nFaith is also used to refer to belief without supporting evidence or proof.\\nSceptical atheism certainly doesn\\'t fit that definition, as sceptical atheism\\nhas no beliefs. Strong atheism is closer, but still doesn\\'t really match, as\\neven the most dogmatic atheist will tend to refer to experimental data (or\\nthe lack of it) when asserting that God does not exist.\\n\\n\"If atheism is not religious, surely it\\'s anti-religious?\"\\n\\nIt is an unfortunate human tendency to label everyone as either \"for\" or\\n\"against\", \"friend\" or \"enemy\". The truth is not so clear-cut.\\n\\nAtheism is the position that runs logically counter to theism; in that sense,\\nit can be said to be \"anti-religion\". However, when religious believers\\nspeak of atheists being \"anti-religious\" they usually mean that the atheists\\nhave some sort of antipathy or hatred towards theists.\\n\\nThis categorization of atheists as hostile towards religion is quite unfair.\\nAtheist attitudes towards theists in fact cover a broad spectrum.\\n\\nMost atheists take a \"live and let live\" attitude. Unless questioned, they\\nwill not usually mention their atheism, except perhaps to close friends. Of\\ncourse, this may be in part because atheism is not \"socially acceptable\" in\\nmany countries.\\n\\nA few atheists are quite anti-religious, and may even try to \"convert\" others\\nwhen possible. Historically, such anti-religious atheists have made little\\nimpact on society outside the Eastern Bloc countries.\\n\\n(To digress slightly: the Soviet Union was originally dedicated to separation\\nof church and state, just like the USA. Soviet citizens were legally free to\\nworship as they wished. The institution of \"state atheism\" came about when\\nStalin took control of the Soviet Union and tried to destroy the churches in\\norder to gain complete power over the population.)\\n\\nSome atheists are quite vocal about their beliefs, but only where they see\\nreligion encroaching on matters which are not its business -- for example,\\nthe government of the USA. Such individuals are usually concerned that\\nchurch and state should remain separate.\\n\\n\"But if you don\\'t allow religion to have a say in the running of the state,\\n surely that\\'s the same as state atheism?\"\\n\\nThe principle of the separation of church and state is that the state shall\\nnot legislate concerning matters of religious belief. In particular, it\\nmeans not only that the state cannot promote one religion at the expense of\\nanother, but also that it cannot promote any belief which is religious in\\nnature.\\n\\nReligions can still have a say in discussion of purely secular matters. For\\nexample, religious believers have historically been responsible for\\nencouraging many political reforms. Even today, many organizations\\ncampaigning for an increase in spending on foreign aid are founded as\\nreligious campaigns. So long as they campaign concerning secular matters,\\nand so long as they do not discriminate on religious grounds, most atheists\\nare quite happy to see them have their say.\\n\\n\"What about prayer in schools? If there\\'s no God, why do you care if people\\n pray?\"\\n\\nBecause people who do pray are voters and lawmakers, and tend to do things\\nthat those who don\\'t pray can\\'t just ignore. Also, Christian prayer in\\nschools is intimidating to non-Christians, even if they are told that they\\nneed not join in. The diversity of religious and non-religious belief means\\nthat it is impossible to formulate a meaningful prayer that will be\\nacceptable to all those present at any public event.\\n\\nAlso, non-prayers tend to have friends and family who pray. It is reasonable\\nto care about friends and family wasting their time, even without other\\nmotives.\\n\\n\"You mentioned Christians who campaign for increased foreign aid. What about\\n atheists? Why aren\\'t there any atheist charities or hospitals? Don\\'t\\n atheists object to the religious charities?\"\\n\\nThere are many charities without religious purpose that atheists can\\ncontribute to. Some atheists contribute to religious charities as well, for\\nthe sake of the practical good they do. Some atheists even do voluntary work\\nfor charities founded on a theistic basis.\\n\\nMost atheists seem to feel that atheism isn\\'t worth shouting about in\\nconnection with charity. To them, atheism is just a simple, obvious everyday\\nmatter, and so is charity. Many feel that it\\'s somewhat cheap, not to say\\nself-righteous, to use simple charity as an excuse to plug a particular set\\nof religious beliefs.\\n\\nTo \"weak\" atheists, building a hospital to say \"I do not believe in God\" is a\\nrather strange idea; it\\'s rather like holding a party to say \"Today is not my\\nbirthday\". Why the fuss? Atheism is rarely evangelical.\\n\\n\"You said atheism isn\\'t anti-religious. But is it perhaps a backlash against\\n one\\'s upbringing, a way of rebelling?\"\\n\\nPerhaps it is, for some. But many people have parents who do not attempt to\\nforce any religious (or atheist) ideas upon them, and many of those people\\nchoose to call themselves atheists.\\n\\nIt\\'s also doubtless the case that some religious people chose religion as a\\nbacklash against an atheist upbringing, as a way of being different. On the\\nother hand, many people choose religion as a way of conforming to the\\nexpectations of others.\\n\\nOn the whole, we can\\'t conclude much about whether atheism or religion are\\nbacklash or conformism; although in general, people have a tendency to go\\nalong with a group rather than act or think independently.\\n\\n\"How do atheists differ from religious people?\"\\n\\nThey don\\'t believe in God. That\\'s all there is to it.\\n\\nAtheists may listen to heavy metal -- backwards, even -- or they may prefer a\\nVerdi Requiem, even if they know the words. They may wear Hawaiian shirts,\\nthey may dress all in black, they may even wear orange robes. (Many\\nBuddhists lack a belief in any sort of God.) Some atheists even carry a copy\\nof the Bible around -- for arguing against, of course!\\n\\nWhoever you are, the chances are you have met several atheists without\\nrealising it. Atheists are usually unexceptional in behaviour and\\nappearance.\\n\\n\"Unexceptional? But aren\\'t atheists less moral than religious people?\"\\n\\nThat depends. If you define morality as obedience to God, then of course\\natheists are less moral as they don\\'t obey any God. But usually when one\\ntalks of morality, one talks of what is acceptable (\"right\") and unacceptable\\n(\"wrong\") behaviour within society.\\n\\nHumans are social animals, and to be maximally successful they must\\nco-operate with each other. This is a good enough reason to discourage most\\natheists from \"anti-social\" or \"immoral\" behaviour, purely for the purposes\\nof self-preservation.\\n\\nMany atheists behave in a \"moral\" or \"compassionate\" way simply because they\\nfeel a natural tendency to empathize with other humans. So why do they care\\nwhat happens to others? They don\\'t know, they simply are that way.\\n\\nNaturally, there are some people who behave \"immorally\" and try to use\\natheism to justify their actions. However, there are equally many people who\\nbehave \"immorally\" and then try to use religious beliefs to justify their\\nactions. For example:\\n\\n \"Here is a trustworthy saying that deserves full acceptance: Jesus Christ\\n came into the world to save sinners... But for that very reason, I was\\n shown mercy so that in me... Jesus Christ might display His unlimited\\n patience as an example for those who would believe in him and receive\\n eternal life. Now to the king eternal, immortal, invisible, the only God,\\n be honor and glory forever and ever.\"\\n\\nThe above quote is from a statement made to the court on February 17th 1992\\nby Jeffrey Dahmer, the notorious cannibal serial killer of Milwaukee,\\nWisconsin. It seems that for every atheist mass-murderer, there is a\\nreligious mass-murderer. But what of more trivial morality?\\n\\n A survey conducted by the Roper Organization found that behavior\\n deteriorated after \"born again\" experiences. While only 4% of respondents\\n said they had driven intoxicated before being \"born again,\" 12% had done\\n so after conversion. Similarly, 5% had used illegal drugs before\\n conversion, 9% after. Two percent admitted to engaging in illicit sex\\n before salvation; 5% after.\\n [\"Freethought Today\", September 1991, p. 12.]\\n\\nSo it seems that at best, religion does not have a monopoly on moral\\nbehaviour.\\n\\n\"Is there such a thing as atheist morality?\"\\n\\nIf you mean \"Is there such a thing as morality for atheists?\", then the\\nanswer is yes, as explained above. Many atheists have ideas about morality\\nwhich are at least as strong as those held by religious people.\\n\\nIf you mean \"Does atheism have a characteristic moral code?\", then the answer\\nis no. Atheism by itself does not imply anything much about how a person\\nwill behave. Most atheists follow many of the same \"moral rules\" as theists,\\nbut for different reasons. Atheists view morality as something created by\\nhumans, according to the way humans feel the world \\'ought\\' to work, rather\\nthan seeing it as a set of rules decreed by a supernatural being.\\n\\n\"Then aren\\'t atheists just theists who are denying God?\"\\n\\nA study by the Freedom From Religion Foundation found that over 90% of the\\natheists who responded became atheists because religion did not work for\\nthem. They had found that religious beliefs were fundamentally incompatible\\nwith what they observed around them.\\n\\nAtheists are not unbelievers through ignorance or denial; they are\\nunbelievers through choice. The vast majority of them have spent time\\nstudying one or more religions, sometimes in very great depth. They have\\nmade a careful and considered decision to reject religious beliefs.\\n\\nThis decision may, of course, be an inevitable consequence of that\\nindividual\\'s personality. For a naturally sceptical person, the choice\\nof atheism is often the only one that makes sense, and hence the only\\nchoice that person can honestly make.\\n\\n\"But don\\'t atheists want to believe in God?\"\\n\\nAtheists live their lives as though there is nobody watching over them. Many\\nof them have no desire to be watched over, no matter how good-natured the\\n\"Big Brother\" figure might be.\\n\\nSome atheists would like to be able to believe in God -- but so what? Should\\none believe things merely because one wants them to be true? The risks of\\nsuch an approach should be obvious. Atheists often decide that wanting to\\nbelieve something is not enough; there must be evidence for the belief.\\n\\n\"But of course atheists see no evidence for the existence of God -- they are\\n unwilling in their souls to see!\"\\n\\nMany, if not most atheists were previously religious. As has been explained\\nabove, the vast majority have seriously considered the possibility that God\\nexists. Many atheists have spent time in prayer trying to reach God.\\n\\nOf course, it is true that some atheists lack an open mind; but assuming that\\nall atheists are biased and insincere is offensive and closed-minded.\\nComments such as \"Of course God is there, you just aren\\'t looking properly\"\\nare likely to be viewed as patronizing.\\n\\nCertainly, if you wish to engage in philosophical debate with atheists it is\\nvital that you give them the benefit of the doubt and assume that they are\\nbeing sincere if they say that they have searched for God. If you are not\\nwilling to believe that they are basically telling the truth, debate is\\nfutile.\\n\\n\"Isn\\'t the whole of life completely pointless to an atheist?\"\\n\\nMany atheists live a purposeful life. They decide what they think gives\\nmeaning to life, and they pursue those goals. They try to make their lives\\ncount, not by wishing for eternal life, but by having an influence on other\\npeople who will live on. For example, an atheist may dedicate his life to\\npolitical reform, in the hope of leaving his mark on history.\\n\\nIt is a natural human tendency to look for \"meaning\" or \"purpose\" in random\\nevents. However, it is by no means obvious that \"life\" is the sort of thing\\nthat has a \"meaning\".\\n\\nTo put it another way, not everything which looks like a question is actually\\na sensible thing to ask. Some atheists believe that asking \"What is the\\nmeaning of life?\" is as silly as asking \"What is the meaning of a cup of\\ncoffee?\". They believe that life has no purpose or meaning, it just is.\\n\\n\"So how do atheists find comfort in time of danger?\"\\n\\nThere are many ways of obtaining comfort; from family, friends, or even pets.\\nOr on a less spiritual level, from food or drink or TV.\\n\\nThat may sound rather an empty and vulnerable way to face danger, but so\\nwhat? Should individuals believe in things because they are comforting, or\\nshould they face reality no matter how harsh it might be?\\n\\nIn the end, it\\'s a decision for the individual concerned. Most atheists are\\nunable to believe something they would not otherwise believe merely because\\nit makes them feel comfortable. They put truth before comfort, and consider\\nthat if searching for truth sometimes makes them feel unhappy, that\\'s just\\nhard luck.\\n\\n\"Don\\'t atheists worry that they might suddenly be shown to be wrong?\"\\n\\nThe short answer is \"No, do you?\"\\n\\nMany atheists have been atheists for years. They have encountered many\\narguments and much supposed evidence for the existence of God, but they have\\nfound all of it to be invalid or inconclusive.\\n\\nThousands of years of religious belief haven\\'t resulted in any good proof of\\nthe existence of God. Atheists therefore tend to feel that they are unlikely\\nto be proved wrong in the immediate future, and they stop worrying about it.\\n\\n\"So why should theists question their beliefs? Don\\'t the same arguments\\n apply?\"\\n\\nNo, because the beliefs being questioned are not similar. Weak atheism is\\nthe sceptical \"default position\" to take; it asserts nothing. Strong atheism\\nis a negative belief. Theism is a very strong positive belief.\\n\\nAtheists sometimes also argue that theists should question their beliefs\\nbecause of the very real harm they can cause -- not just to the believers,\\nbut to everyone else.\\n\\n\"What sort of harm?\"\\n\\nReligion represents a huge financial and work burden on mankind. It\\'s not\\njust a matter of religious believers wasting their money on church buildings;\\nthink of all the time and effort spent building churches, praying, and so on.\\nImagine how that effort could be better spent.\\n\\nMany theists believe in miracle healing. There have been plenty of instances\\nof ill people being \"healed\" by a priest, ceasing to take the medicines\\nprescribed to them by doctors, and dying as a result. Some theists have died\\nbecause they have refused blood transfusions on religious grounds.\\n\\nIt is arguable that the Catholic Church\\'s opposition to birth control -- and\\ncondoms in particular -- is increasing the problem of overpopulation in many\\nthird-world countries and contributing to the spread of AIDS world-wide.\\n\\nReligious believers have been known to murder their children rather than\\nallow their children to become atheists or marry someone of a different\\nreligion.\\n\\n\"Those weren\\'t REAL believers. They just claimed to be believers as some\\n sort of excuse.\"\\n\\nWhat makes a real believer? There are so many One True Religions it\\'s hard\\nto tell. Look at Christianity: there are many competing groups, all\\nconvinced that they are the only true Christians. Sometimes they even fight\\nand kill each other. How is an atheist supposed to decide who\\'s a REAL\\nChristian and who isn\\'t, when even the major Christian churches like the\\nCatholic Church and the Church of England can\\'t decide amongst themselves?\\n\\nIn the end, most atheists take a pragmatic view, and decide that anyone who\\ncalls himself a Christian, and uses Christian belief or dogma to justify his\\nactions, should be considered a Christian. Maybe some of those Christians\\nare just perverting Christian teaching for their own ends -- but surely if\\nthe Bible can be so readily used to support un-Christian acts it can\\'t be\\nmuch of a moral code? If the Bible is the word of God, why couldn\\'t he have\\nmade it less easy to misinterpret? And how do you know that your beliefs\\naren\\'t a perversion of what your God intended?\\n\\nIf there is no single unambiguous interpretation of the Bible, then why\\nshould an atheist take one interpretation over another just on your say-so?\\nSorry, but if someone claims that he believes in Jesus and that he murdered\\nothers because Jesus and the Bible told him to do so, we must call him a\\nChristian.\\n\\n\"Obviously those extreme sorts of beliefs should be questioned. But since\\n nobody has ever proved that God does not exist, it must be very unlikely\\n that more basic religious beliefs, shared by all faiths, are nonsense.\"\\n\\nThat does not hold, because as was pointed out at the start of this dialogue,\\npositive assertions concerning the existence of entities are inherently much\\nharder to disprove than negative ones. Nobody has ever proved that unicorns\\ndon\\'t exist, but that doesn\\'t make it unlikely that they are myths.\\n\\nIt is therefore much more valid to hold a negative assertion by default than\\nit is to hold a positive assertion by default. Of course, \"weak\" atheists\\nwould argue that asserting nothing is better still.\\n\\n\"Well, if atheism\\'s so great, why are there so many theists?\"\\n\\nUnfortunately, the popularity of a belief has little to do with how \"correct\"\\nit is, or whether it \"works\"; consider how many people believe in astrology,\\ngraphology, and other pseudo-sciences.\\n\\nMany atheists feel that it is simply a human weakness to want to believe in\\ngods. Certainly in many primitive human societies, religion allows the\\npeople to deal with phenomena that they do not adequately understand.\\n\\nOf course, there\\'s more to religion than that. In the industrialized world,\\nwe find people believing in religious explanations of phenomena even when\\nthere are perfectly adequate natural explanations. Religion may have started\\nas a means of attempting to explain the world, but nowadays it serves other\\npurposes as well.\\n\\n\"But so many cultures have developed religions. Surely that must say\\n something?\"\\n\\nNot really. Most religions are only superficially similar; for example, it\\'s\\nworth remembering that religions such as Buddhism and Taoism lack any sort of\\nconcept of God in the Christian sense.\\n\\nOf course, most religions are quick to denounce competing religions, so it\\'s\\nrather odd to use one religion to try and justify another.\\n\\n\"What about all the famous scientists and philosophers who have concluded\\n that God exists?\"\\n\\nFor every scientist or philosopher who believes in a god, there is one who\\ndoes not. Besides, as has already been pointed out, the truth of a belief is\\nnot determined by how many people believe it. Also, it is important to\\nrealize that atheists do not view famous scientists or philosophers in the\\nsame way that theists view their religious leaders.\\n\\nA famous scientist is only human; she may be an expert in some fields, but\\nwhen she talks about other matters her words carry no special weight. Many\\nrespected scientists have made themselves look foolish by speaking on\\nsubjects which lie outside their fields of expertise.\\n\\n\"So are you really saying that widespread belief in religion indicates\\n nothing?\"\\n\\nNot entirely. It certainly indicates that the religion in question has\\nproperties which have helped it so spread so far.\\n\\nThe theory of memetics talks of \"memes\" -- sets of ideas which can propagate\\nthemselves between human minds, by analogy with genes. Some atheists view\\nreligions as sets of particularly successful parasitic memes, which spread by\\nencouraging their hosts to convert others. Some memes avoid destruction by\\ndiscouraging believers from questioning doctrine, or by using peer pressure\\nto keep one-time believers from admitting that they were mistaken. Some\\nreligious memes even encourage their hosts to destroy hosts controlled by\\nother memes.\\n\\nOf course, in the memetic view there is no particular virtue associated with\\nsuccessful propagation of a meme. Religion is not a good thing because of\\nthe number of people who believe it, any more than a disease is a good thing\\nbecause of the number of people who have caught it.\\n\\n\"Even if religion is not entirely true, at least it puts across important\\n messages. What are the fundamental messages of atheism?\"\\n\\nThere are many important ideas atheists promote. The following are just a\\nfew of them; don\\'t be surprised to see ideas which are also present in some\\nreligions.\\n\\n There is more to moral behaviour than mindlessly following rules.\\n\\n Be especially sceptical of positive claims.\\n\\n If you want your life to have some sort of meaning, it\\'s up to you to\\n find it.\\n\\n Search for what is true, even if it makes you uncomfortable.\\n\\n Make the most of your life, as it\\'s probably the only one you\\'ll have.\\n\\n It\\'s no good relying on some external power to change you; you must change\\n yourself.\\n\\n Just because something\\'s popular doesn\\'t mean it\\'s good.\\n\\n If you must assume something, assume something it\\'s easy to test.\\n\\n Don\\'t believe things just because you want them to be true.\\n\\nand finally (and most importantly):\\n\\n All beliefs should be open to question.\\n\\nThanks for taking the time to read this article.\\n\\n\\nmathew\\n\\n-----BEGIN PGP SIGNATURE-----\\nVersion: 2.2\\n\\niQCVAgUBK8AjRXzXN+VrOblFAQFSbwP+MHePY4g7ge8Mo5wpsivX+kHYYxMErFAO\\n7ltVtMVTu66Nz6sBbPw9QkbjArbY/S2sZ9NF5htdii0R6SsEyPl0R6/9bV9okE/q\\nnihqnzXE8pGvLt7tlez4EoeHZjXLEFrdEyPVayT54yQqGb4HARbOEHDcrTe2atmP\\nq0Z4hSSPpAU=\\n=q2V5\\n-----END PGP SIGNATURE-----\\n\\nFor information about PGP 2.2, send mail to pgpinfo@mantis.co.uk.\\nÿ\\n',\n", + " \"From: markus@octavia.anu.edu.au (Markus Buchhorn)\\nSubject: HDF readers/viewers\\nOrganization: Australian National University, Canberra\\nLines: 33\\nDistribution: world\\nNNTP-Posting-Host: 150.203.5.35\\nOriginator: markus@octavia\\n\\n\\n\\nG'day all,\\n\\nCan anybody point me at a utility which will read/convert/crop/whatnot/\\ndisplay HDF image files ? I've had a look at the HDF stuff under NCSA \\nand it must take an award for odd directory structure, strange storage\\napproaches and minimalist documentation :-)\\n\\nPart of the problem is that I want to look at large (5MB+) HDF files and\\ncrop out a section. Ideally I would like a hdftoppm type of utility, from\\nwhich I can then use the PBMplus stuff quite merrily. I can convert the cropped\\npart into another format for viewing/animation.\\n\\nOtherwise, can someone please explain how to set up the NCSA Visualisation S/W\\nfor HDF (3.2.r5 or 3.3beta) and do the above cropping/etc. This is for\\nSuns with SunOS 4.1.2.\\n\\nAny help GREATLY appreciated. Ta muchly !\\n\\nCheers,\\n\\tMarkus\\n\\n-- \\nMarkus Buchhorn, Parallel Computing Research Facility\\nemail = markus@octavia.anu.edu.au\\nAustralian National University, Canberra, 0200 , Australia.\\n[International = +61 6, Australia = 06] [Phone = 2492930, Fax = 2490747]\\n-- \\nMarkus Buchhorn, Parallel Computing Research Facility\\nemail = markus@octavia.anu.edu.au\\nAustralian National University, Canberra, 0200 , Australia.\\n[International = +61 6, Australia = 06] [Phone = 2492930, Fax = 2490747]\\n\",\n", + " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: New Member\\nOrganization: Cookamunga Tourist Bureau\\nLines: 20\\n\\nIn article ,\\ndfuller@portal.hq.videocart.com (Dave Fuller) wrote:\\n> He is right. Just because an event was explained by a human to have been\\n> done \"in the name of religion\", does not mean that it actually followed\\n> the religion. He will always point to the \"ideal\" and say that it wasn\\'t\\n> followed so it can\\'t be the reason for the event. There really is no way\\n> to argue with him, so why bother. Sure, you may get upset because his \\n> answer is blind and not supported factually - but he will win every time\\n> with his little argument. I don\\'t think there will be any postings from\\n> me in direct response to one of his.\\n\\nHey! Glad to have some serious and constructive contributors in this\\nnewsgroup. I agree 100% on the statement above, you might argue with\\nBobby for eons, and he still does not get it, so the best thing is\\nto spare your mental resources to discuss more interesting issues.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", + " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 76\\n\\n\\nChris Faehl writes:\\n\\n> >Many atheists do not mock the concept of a god, they are shocked that\\n> >so many theists have fallen to such a low level that they actually\\n> >believe in a god. You accuse all atheists of being part of a conspiracy,\\n> >again without evidence.\\n>\\n>> Rule *2: Condescending to the population at large (i.e., theists) will >not\\n>> win many people to your faith anytime soon. It only ruins your credibility.\\n\\n>Fallacy #1: Atheism is a faith. Lo! I hear the FAQ beckoning once again...\\n>[wonderful Rule #3 deleted - you\\'re correct, you didn\\'t say anything >about\\n>a conspiracy]\\n\\nCorrection: _hard_ atheism is a faith.\\n\\n>> Rule #4: Don\\'t mix apples with oranges. How can you say that the\\n>> extermination by the Mongols was worse than Stalin? Khan conquered people\\n>> unsympathetic to his cause. That was atrocious. But Stalin killed millions of\\n>> his own people who loved and worshipped _him_ and his atheist state!! How can\\n>> anyone be worse than that?\\n\\n>I will not explain this to you again: Stalin did nothing in the name of\\n>atheism. Whethe he was or was not an atheist is irrelevant.\\n\\nGet a grip, man. The Stalin example was brought up not as an\\nindictment of atheism, but merely as another example of how people will\\nkill others under any name that\\'s fit for the occasion.\\n\\n>> Rule #6: If you rely on evidence, state it. We\\'re waiting.\\n\\n>As opposed to relying on a bunch of black ink on some crumbling old paper...\\n>Atheism has to prove nothing to you or anyone else. It is the burden of\\n>dogmatic religious bullshit to provide their \\'evidence\\'. Which \\'we\\'\\n>might you be referring to, and how long are you going to wait?\\n\\nSo hard atheism has nothing to prove? Then how does it justify that\\nGod does not exist? I know, there\\'s the FAQ, etc. But guess what -- if\\nthose justifications were so compelling why aren\\'t people flocking to\\n_hard_ atheism? They\\'re not, and they won\\'t. I for one will discourage\\npeople from hard atheism by pointing out those very sources as reliable\\nstatements on hard atheism.\\n\\nSecond, what makes you think I\\'m defending any given religion? I\\'m merely\\nrecognizing hard atheism for what it is, a faith.\\n\\nAnd yes, by \"we\" I am referring to every reader of the post. Where is the\\nevidence that the poster stated that he relied upon?\\n>\\n>> Oh yes, though I\\'m not a theist, I can say safely that *by definition* many\\n>> theists are not arrogant, since they boast about something _outside_\\n>> themselves, namely, a god or gods. So in principle it\\'s hard to see how\\n>> theists are necessarily arrogant.\\n\\n>Because they say, \"Such-and-such is absolutely unalterably True, because\\n ^^^^\\n>my dogma says it is True.\" I am not prepared to issue blanket statements\\n>indicting all theists of arrogance as you are wont to do with atheists.\\n\\nBzzt! By virtue of your innocent little pronoun, \"they\", you\\'ve just issued\\na blanket statement. At least I will apologize by qualifying my original\\nstatement with \"hard atheist\" in place of atheist. Would you call John the\\nBaptist arrogant, who boasted of one greater than he? That\\'s what many\\nChristians do today. How is that _in itself_ arrogant?\\n>\\n>> I\\'m not worthy!\\n>Only seriously misinformed.\\nWith your sophisticated put-down of \"they\", the theists, _your_ serious\\nmisinformation shines through.\\n\\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", + " \"From: alan@saturn.cs.swin.OZ.AU (Alan Christiansen)\\nSubject: Re: Sphere from 4 points?\\nOrganization: Swinburne University of Technology\\nLines: 71\\nNNTP-Posting-Host: saturn.cs.swin.oz.au\\n\\nspworley@netcom.com (Steve Worley) writes:\\n\\n>bolson@carson.u.washington.edu (Edward Bolson) writes:\\n\\n>>Boy, this will be embarassing if it is trivial or an FAQ:\\n\\n>>Given 4 points (non coplanar), how does one find the sphere, that is,\\n>>center and radius, exactly fitting those points? I know how to do it\\n>>for a circle (from 3 points), but do not immediately see a \\n>>straightforward way to do it in 3-D. I have checked some\\n>>geometry books, Graphics Gems, and Farin, but am still at a loss?\\n>>Please have mercy on me and provide the solution? \\n\\n>It's not a bad question: I don't have any refs that list this algorithm\\n>either. But thinking about it a bit, it shouldn't be too hard.\\n\\n>1) Take three of the points and find the plane they define as well as\\n>the circle that they lie on (you say you have this algorithm already)\\n\\n>2) Find the center of this circle. The line passing through this center\\n>perpendicular to the plane of the three points passes through the center of\\n>the sphere.\\n\\n>3) Repeat with the unused point and two of the original points. This\\n>gives you two different lines that both pass through the sphere's\\n>origin. Their interection is the center of the sphere.\\n\\n>4) the radius is easy to compute, it's just the distance from the center to\\n>any of the original points.\\n\\n>I'll leave the math to you, but this is a workable algorithm. :-)\\n\\nGood I had a bad feeling about this problem because of a special case\\nwith no solution that worried me.\\n\\nFour coplanar points in the shape of a square have no unique sphere \\nthat they are on the surface of.\\nSimilarly 4 colinear point have no finite sized sphere that they are on the\\nsurface of.\\n\\nThese algorithms being geometrical designed rather than algebraically design\\nmeet these problems neatly.\\n\\nWhen determining which plane the 3 points are on if they are colinear\\nthe algorithm should afil or return infinite R.\\nWhen intersecting the two lines there are 2 possibilities\\nthey are the same line (the 4 points were on a planar circle)\\nthey are different lines but parallel. There is a sphere of in radius.\\n\\nThis last case can be achieved with 3 colinier points and any 4th point\\nby taking the 4th point and pairs of the first 3 parallel lines will be produced\\n\\nit can also be achieved by\\n\\nIf all 4 points are coplanar but are not on one circle. \\n\\nIt seems to me that the algorithm only fails when the 4 points are coplanar.\\nThe algorithm always fails when the points are coplanar.\\n(4 points being colinear => coplanar)\\n\\nTesting if the 4th point is coplanar when the plane of the first 3 points\\nhas been found is trivial.\\n\\n\\n>An alternate method would be to take pairs of points: the plane formed\\n>by the perpendicular bisector of each line segment pair also contains the\\n>center of the sphere. Three pairs will form three planes, intersecting\\n>at a point. This might be easier to implement.\\n\\n>-Steve\\n>spworley@netcom.com\\n\",\n", + " \"From: nsmca@aurora.alaska.edu\\nSubject: Eco-Freaks forcing Space Mining.\\nArticle-I.D.: aurora.1993Apr21.212202.1\\nOrganization: University of Alaska Fairbanks\\nLines: 24\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nHere is a way to get the commericial companies into space and mineral\\nexploration.\\n\\nBasically get the eci-freaks to make it so hard to get the minerals on earth..\\nYou think this is crazy. Well in a way it is, but in a way it is reality.\\n\\nThere is a billin the congress to do just that.. Basically to make it so\\nexpensive to mine minerals in the US, unless you can by off the inspectors or\\ntax collectors.. ascially what I understand from talking to a few miner friends \\nof mine, that they (the congress) propose to have a tax on the gross income of\\nthe mine, versus the adjusted income, also the state governments have there\\nnormal taxes. So by the time you get done, paying for materials, workers, and\\nother expenses you can owe more than what you made.\\nBAsically if you make a 1000.00 and spend 500. ofor expenses, you can owe\\n600.00 in federal taxes.. Bascially it is driving the miners off the land.. And\\nthe only peopel who benefit are the eco-freaks.. \\n\\nBasically to get back to my beginning statement, is space is the way to go\\ncause it might just get to expensive to mine on earth because of either the\\neco-freaks or the protectionist.. \\nSuch fun we have in these interesting times..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", + " 'From: mancus@sweetpea.jsc.nasa.gov (Keith Mancus)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: MDSSC\\nLines: 32\\n\\nIn article <1r3nuvINNjep@lynx.unm.edu>, cook@varmit.mdc.com (Layne Cook) writes:\\n> All of this talk about a COMMERCIAL space race (i.e. $1G to the first 1-year \\n> moon base) is intriguing. Similar prizes have influenced aerospace \\n> development before. The $25k Orteig prize helped Lindbergh sell his Spirit of \\n> Saint Louis venture to his financial backers.\\n> But I strongly suspect that his Saint Louis backers had the foresight to \\n> realize that much more was at stake than $25,000.\\n> Could it work with the moon? Who are the far-sighted financial backers of \\n> today?\\n\\n The commercial uses of a transportation system between already-settled-\\nand-civilized areas are obvious. Spaceflight is NOT in this position.\\nThe correct analogy is not with aviation of the \\'30\\'s, but the long\\ntransocean voyages of the Age of Discovery. It didn\\'t require gov\\'t to\\nfund these as long as something was known about the potential for profit\\nat the destination. In practice, some were gov\\'t funded, some were private.\\nBut there was no way that any wise investor would spend a large amount\\nof money on a very risky investment with no idea of the possible payoff.\\n I am sure that a thriving spaceflight industry will eventually develop,\\nand large numbers of people will live and work off-Earth. But if you ask\\nme for specific justifications other than the increased resource base, I\\ncan\\'t give them. We just don\\'t know enough. The launch rate demanded by\\nexisting space industries is just too low to bring costs down much, and\\nwe are very much in the dark about what the revolutionary new space industries\\nwill be, when they will practical, how much will have to be invested to\\nstart them, etc.\\n\\n-- \\n Keith Mancus |\\n N5WVR |\\n \"Black powder and alcohol, when your states and cities fall, |\\n when your back\\'s against the wall....\" -Leslie Fish |\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Lunar Colony Race! By 2005 or 2010?\\nOrganization: U of Toronto Zoology\\nLines: 18\\n\\nIn article <1993Apr21.140804.15028@draper.com> mrf4276@egbsun12.NoSubdomain.NoDomain (Matthew R. Feulner) writes:\\n>|> Need to find atleast $1billion for prize money.\\n>\\n>My first thought is Ross Perot. After further consideration, I think he\\'d\\n>be more likely to try to win it...but come in a disappointing third.\\n>Try Bill Gates. Try Sam Walton\\'s kids.\\n\\nWhen the Lunar Society\\'s $500M estimate of the cost of a lunar colony was\\nmentioned at Making Orbit, somebody asked Jerry Pournelle \"have you talked\\nto Bill Gates?\". The answer: \"Yes. He says that if he were going to\\nsink that much money into it, he\\'d want to run it -- and he doesn\\'t have\\nthe time.\"\\n\\n(Somebody then asked him about Perot. Answer: \"Having Ross Perot on your\\nboard may be a bigger problem than not having the money.\")\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " \"From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: FJ1100/1200 Owners: Tankbag Suggestions Wanted\\nOrganization: University of East Anglia\\nLines: 14\\n\\nmartenm@chess.ncsu.edu (Mark Marten) writes:\\n\\n\\n\\n>I am looking for a new tank bag now, and I wondered if you, as follow \\n>FJ1100/1200 owners, could make some suggestions as to what has, and has \\n>not worked for you. If there is already a file on this I apologize for \\n>asking and will gladly accept any flames that are blown my way!\\n\\nI've got a Belstaff tankbag on my FJ1100, and it ain't too good. It's\\ndifficult to fix it securely cos of the the tank/fairing/sidepanel layout,\\nand also with the bars on full lock the bag touches the handlebar switches,\\nso you get the horn on full left lock and the starter motor on full right!!\\nIf I was buying another I think I'd go for a magnetic one.\\n\",\n", + " \"From: smith@minerva.harvard.edu (Steven Smith)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nIn-Reply-To: dgannon@techbook.techbook.com's message of 21 Apr 1993 07:55:09 -0700\\nOrganization: Applied Mathematics, Harvard University\\nLines: 15\\n\\ndgannon@techbook.techbook.com (Dan Gannon) writes:\\n> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>\\n> by Theodore J. O'Keefe\\n>\\n> [Holocaust revisionism]\\n> \\n> Theodore J. O'Keefe is an editor with the Institute for Historical\\n> Review. Educated at Harvard University . . .\\n\\nAccording to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\ngraduate. You may decide for yourselves if he was indeed educated\\nanywhere.\\n\\nSteven Smith\\n\",\n", + " 'From: MAILRP%ESA.BITNET@vm.gmd.de\\nSubject: message from Space Digest\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 62\\n\\n\\n\\n\\n\\nPress Release No.19-93\\nParis, 22 April 1993\\n\\nUsers of ESA\\'s Olympus satellite report on the outcome of\\ntheir experiments\\n\\n\"Today Europe\\'s space telecommunications sector would not\\nbe blossoming as it now does, had OLYMPUS not provided\\na testbed for the technologies and services of the 1990s\". This\\nsummarises the general conclusions of 135 speakers and 300\\nparticipants at the Conference on Olympus Utilisation held in\\nSeville on 20-22-April 1993. The conference was organised by\\nthe European Space Agency (ESA) and the Spanish Centre for\\nthe Development of Industrial Technology (CDTI).\\n\\nOLYMPUS has been particularly useful :\\n- in bringing satellite telecommunications to thousands of\\n new users, thanks to satellite terminals with very small\\n antennas (VSATs). OLYMPUS experiments have tested\\n data transmission, videoconferencing, business television,\\n distance teaching and rural telephony, to give but a few\\n examples.\\n\\n- in opening the door to new telecommunications services\\n which could not be accommodated on the crowded lower-\\n frequency bands; OLYMPUS was the first satellite over\\n Europe to offer capacity in the 20/30 GHz band.\\n\\n- in establishing two-way data relay links OLYMPUS\\n received for the first time in Europe, over several months,\\n high-volume data from a low-Earth orbiting spacecraft and\\n then distributed it to various centres in Europe.\\n\\nWhen OLYMPUS was launched on 12 July 1989 it was the\\nworld\\'s largest telecommunications satellite; and no other\\nsatellite has yet equalled its versatility in combining four\\ndifferent payloads in a wide variety of frequency bands.\\n\\nOLYMPUS users range from individual experimenters to some\\nof the world\\'s largest businesses. Access to the satellite is\\ngiven in order to test new telecommunications techniques or\\nservices; over the past four years some 200 companies and\\norganisations made use of this opportunity, as well as over\\n100 members of the EUROSTEP distance-learning\\norganisation.\\n\\n\\n\\nAs the new technologies and services tested by these\\nOLYMPUS users enter the commercial market, they then\\nmake use of operational satellites such as those of\\nEUTELSAT.\\n\\nOLYMPUS utilisation will continue through 1993 and 1994,\\nwhen the spacecraft will run out of fuel as it approaches the\\nend of its design life.\\n\\n \\n',\n", + " \"From: sas58295@uxa.cso.uiuc.edu (Lord Soth )\\nSubject: MPEG for MS-DOS\\nOrganization: University of Illinois at Urbana\\nLines: 13\\n\\nDoes anyone know where I can FTP MPEG for DOS from? Thanks for any\\nhelp in advance. Email is preferred but posting is fine.\\n\\n\\t\\t\\t\\tScott\\n\\n\\n---------------------------------------------------------------------------\\n| Lord Soth, Knight |||| email to --> LordSoth@uiuc ||||||||\\n| of the Black Rose |||| NeXT to ---> sas58295@sumter.cso.uiuc.edu ||||||||\\n| @}--'-,--}-- |||||||||||||||||||||||||||||||||||||||||||||||||||||||\\n|-------------------------------------------------------------------------|\\n| I have no clue what I want to say in here so I won't say anything. |\\n---------------------------------------------------------------------------\\n\",\n", + " \"From: ezzie@lucs2.lancs.ac.uk (One of those daze...)\\nSubject: Borland turbo C libraries for S3 graphics card\\nOrganization: Lancaster University Computer Society\\nLines: 5\\n\\nI've recently got hold of a PC with an S3 card in it, and I'd like to do some\\nC programming with it, are there any libraries out there that will let me\\naccess the high resolution modes available via Borland Turbo C?\\n\\n\\tAndy\\n\",\n", + " \"From: renouar@amertume.ufr-info-p7.ibp.fr (Renouard Olivier)\\nSubject: Re: POV previewer\\nNntp-Posting-Host: amertume.ufr-info-p7.ibp.fr\\nOrganization: Universite PARIS 7 - UFR d'Informatique\\nLines: 10\\n\\nActually I am trying to write something like this but I encounter some\\nproblems, amongst them:\\n\\n- drawing a 3d wireframe view of a quadric/quartic requires that you have\\nthe explicit equation of the quadric/quartic (x, y, z functions of some\\nparameters). How to convert the implicit equation used by PoV to an\\nexplicit one? Is it mathematically always possible?\\n\\nI don't have enough math to find out by myself, has anybody heard about\\nuseful books on the subject?\\n\",\n", + " 'From: lucio@proxima.alt.za (Lucio de Re)\\nSubject: A fundamental contradiction (was: A visit from JWs)\\nReply-To: lucio@proxima.Alt.ZA\\nOrganization: MegaByte Digital Telecommunications\\nLines: 35\\n\\njbrown@batman.bmd.trw.com writes:\\n\\n>\"Will\" is \"self-determination\". In other words, God created conscious\\n>beings who have the ability to choose between moral choices independently\\n>of God. All \"will\", therefore, is \"free will\".\\n\\nThe above is probably not the most representative paragraph, but I\\nthought I\\'d hop on, anyway...\\n\\nWhat strikes me as self-contradicting in the fable of Lucifer\\'s\\nfall - which, by the way, I seem to recall to be more speculation\\nthan based on biblical text, but my ex RCism may be showing - is\\nthat, as Benedikt pointed out, Lucifer had perfect nature, yet he\\nhad the free will to \"choose\" evil. But where did that choice come\\nfrom?\\n\\nWe know from Genesis that Eve was offered an opportunity to sin by a\\ntempter which many assume was Satan, but how did Lucifer discover,\\ninvent, create, call the action what you will, something that God\\nhad not given origin to?\\n\\nAlso, where in the Bible is there mention of Lucifer\\'s free will?\\nWe make a big fuss about mankind having free will, but it strikes me\\nas being an after-the-fact rationalisation, and in fact, like\\nsalvation, not one that all Christians believe in identically.\\n\\nAt least in my mind, salvation and free will are very tightly\\ncoupled, but then my theology was Roman Catholic...\\n\\nStill, how do theologian explain Lucifer\\'s fall? If Lucifer had\\nperfect nature (did man?) how could he fall? How could he execute an\\nact that (a) contradicted his nature and (b) in effect cause evil to\\nexist for the first time?\\n-- \\nLucio de Re (lucio@proxima.Alt.ZA) - tab stops at four.\\n',\n", + " 'From: prange@nickel.ucs.indiana.edu (Henry Prange)\\nSubject: Re: BMW MOA members read this!\\nNntp-Posting-Host: nickel.ucs.indiana.edu\\nOrganization: Indiana University\\nLines: 21\\n\\nI first heard it about academic politics but the same thought seems to\\napply to the BMWMOA\\n\\n\"The politics is so dirty because the stakes are so small.\"\\n\\nWho cares? I get my dues-worth from the ads and occasional technical\\narticles in the \"News\". I skip the generally drab articles about someone\\'s\\ntrek across Iowa. If some folks get thrilled by the power of the BMWMOA,\\nthey deserve whatever thrills their sad lives provide.\\n\\nBTW, I voted for new blood just to keep things stirred up.\\n\\nHenry Prange\\nPhysiology/IU Sch. Med., Blgtn., 47405\\nDoD #0821; BMWMOA #11522; GSI #215\\nride = \\'92 R100GS; \\'91 RX-7 conv = cage/2; \\'91 Explorer = cage*2\\nThe four tenets of all major religions:\\n1. I am right.\\n2. You are wrong.\\n3. Hence, you deserve to be punished.\\n4. By me.\\n',\n", + " \"From: suopanki@stekt6.oulu.fi (Heikki T. Suopanki)\\nSubject: Re: A visit from the Jehovah's Witnesses\\nIn-Reply-To: jbrown@batman.bmd.trw.com's message of 5 Apr 93 11:24:30 MST\\nLines: 17\\nReply-To: suopanki@stekt.oulu.fi\\nOrganization: Unixverstas Olutensin, Finlandia\\n\\t<1993Apr3.183519.14721@proxima.alt.za>\\n\\t<1993Apr5.112430.825@batman.bmd.trw.com>\\n\\n>>>>> On 5 Apr 93 11:24:30 MST, jbrown@batman.bmd.trw.com said:\\n\\n:> God is eternal. [A = B]\\n:> Jesus is God. [C = A]\\n:> Therefore, Jesus is eternal. [C = B]\\n\\n:> This works both logically and mathematically. God is of the set of\\n:> things which are eternal. Jesus is a subset of God. Therefore\\n:> Jesus belongs to the set of things which are eternal.\\n\\nEverything isn't always so logical....\\n\\nMercedes is a car.\\nThat girl is Mercedes.\\nTherefore, that girl is a car?\\n\\n-Heikki\\n\",\n", + " \"From: stjohn@math1.kaist.ac.kr (Ryou Seong Joon)\\nSubject: WANTED: Multi-page GIF!!\\nOrganization: Korea Advanced Institute of Science and Technology\\nX-Newsreader: Tin 1.1 PL3\\nLines: 12\\n\\nHi!... \\n\\nI am searching for packages that could handle Multi-page GIF\\nfiles... \\n\\nAre there any on some ftp servers?\\n\\nI'll appreciate one which works on PC (either on DOS or Windows 3.0/3.1).\\nBut any package works on Unix will be OK..\\n\\nThanks in advance...\\n\",\n", + " 'From: bean@ra.cgd.ucar.edu (Gregory Bean)\\nSubject: Help! Which bikes are short?\\nOrganization: Climate and Global Dynamics Division/NCAR, Boulder, CO\\nLines: 18\\n\\nHelp! I\\'ve got a friend shopping for her first motorcycle. This is great!\\nUnfortunately, she needs at most a 28\" seat. This is not great. So far,\\nthe only thing we\\'ve found was an old and unhappy-looking KZ440.\\n\\nSo, it\\'s time to tap the collective memory of all the denizens out there.\\nAnybody know of models (old models and used bikes are not a problem)\\nwith a 28\" or lower seat? And, since she has to make this difficult ( 8-) ),\\nshe would prefer not to end up with a cruiser. So there\\'s bonus points\\nfor listing tiny standards.\\n\\nI seem to remember a thread with a point similar to this passing through\\nseveral months ago. Did anybody keep that list?\\n\\nThanks!\\n\\n--\\nGregory Bean DoD #580\\nbean@ncar.ucar.edu \"In fact, everything\\'s got that big reverb sound...\"\\n',\n", + " 'From: pinky@tamu.edu (The Man behind The Curtain)\\nSubject: Views on isomorphic perspectives?\\nOrganization: Texas A&M University\\nLines: 87\\nNNTP-Posting-Host: tamsun.tamu.edu\\nKeywords: isomorphic perspectives\\n\\n \\nI\\'m working upon a game using an isometric perspective, similar to\\nthat used in Populous. Basically, you look into a room that looks\\nsimilar to the following:\\n\\n xxxx\\n xxxxx xxxx\\n xxxx x xxxx\\n xxxx x xxxx\\n xxxx 2 xxxx 1 xxxx\\n x xxxx xxxx x\\n x xxxx xxxx x\\n x xxxx o xxxx x\\n xxxx 3 /|\\\\ xxxx\\n xxxx /~\\\\ xxxx\\n xxxx xxxx\\n xxxx xxxx\\n xxxx\\n\\nThe good thing about this perspective is that you can look and move\\naround in three dimensions and still maintain your peripheral vision. [*]\\n\\nSince your viewpoint is always the same, the routines can be hard-coded\\nfor a particular vantage. In my case, wall two\\'s rising edge has a slope\\nof 1/4. (I\\'m also using Mode X, 320x240).\\n\\nI\\'ve run into two problems; I\\'m sure that other readers have tried this\\nbefore, and have perhaps formulated their own opinions:\\n\\n1) The routines for drawing walls 1 & 2 were trivial, but when I ran a\\npacked->planar image through them, I was dismayed by the \"jaggies.\" I\\'m\\nnow considered some anti-aliasing routines (speed is not really necessary).\\nIs it worth the effort to have the artist draw the wall already skewed,\\nthus being assured of nice image, or is this too much of a burden?\\n\\n2) Wall 3 presents a problem; the algorithm I used tends to overly distort\\nthe original. I tried to decide on paper what pixels go where, and failed.\\nHas anyone come up with method for mapping a planar to crosswise sheared\\nshape?\\n\\nCurrently I take:\\n\\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16\\n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32\\n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48\\n 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64\\n\\nand produce:\\n \\n 1 2 3 4\\n33 34 35 36 17 18 19 20 5 6 7 8\\n49 50 51 52 37 38 39 40 21 22 23 24 9 10 11 12\\n 53 54 55 56 41 42 43 44 25 26 27 28 13 14 15 16\\n 57 58 59 60 45 46 47 48 29 30 31 32\\n 61 62 63 64\\n\\nLine 1 follows the slope. Line 2 is directly under line 1.\\nLine 3 moves up a line and left 4 pixels. Line 4 is under line 3.\\nThis fills the shape exactly without any unfilled pixels. But\\nit causes distortions. Has anyone come up with a better way?\\nPerhaps it is necessary to simply draw the original bitmap\\nalready skewed?\\n\\nAre there any other particularly sticky problems with this perspective?\\nI was planning on having hidden plane removal by using z-buffering.\\nLocations are stored in (x,y,z) form.\\n\\n[*] For those of you who noticed, the top lines of wall 2 (and wall 1)\\n*are* parallel with its bottom lines. This is why there appears to\\nbe an optical illusion (ie. it appears to be either the inside or outside\\nof a cube, depending on your mood). There are no vanishing points.\\nThis simplifies the drawing code for objects (which don\\'t have to\\nchange size as they move about in the room). I\\'ve decided that this\\napproximation is alright, since small displacements at a large enough\\ndistance cause very little change in the apparent size of an object in\\na real perspective drawing.\\n\\nHopefully the \"context\" of the picture (ie. chairs on the floor, torches\\nhanging on the walls) will dispell any visual ambiguity.\\n\\nThanks in advance for any help.\\n\\n-- \\nTill next time, \\\\o/ \\\\o/\\n V \\\\o/ V email:pinky@tamu.edu\\n<> Sam Inala <> V\\n\\n',\n", + " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 32\\nDistribution: world\\nNNTP-Posting-Host: syndicoot.engin.umich.edu\\n\\nIn article <1993Apr5.084042.822@batman.bmd.trw.com> jbrown@batman.bmd.trw.com writes:\\n>In article <1993Apr3.095220.24632@leland.Stanford.EDU>, galahad@leland.Stanford.EDU (Scott Compton) writes:\\n[deletions]\\n>> Now, back to your post. You have done a fine job at using \\n>> your seventh grade \\'life science\\' course to explain why\\n>> bad diseases are caused by Satan and good things are a \\n>> result of God. But I want to let you in on a little secret.\\n>> \"We can create an amino acid sequence in lab! -- And guess\\n>> what, the sequence curls into a helix! Wow! That\\'s right,\\n>> it can happen without a supernatural force.\" \\n>\\n>Wow! All it takes is a few advanced science degrees and millions\\n>of dollars of state of the art equipment. And I thought it took\\n>*intelligence* to create the building blocks of life. Foolish me!\\n\\n People with advanced science degrees use state of the art equipment\\nand spend millions of dollars to simulate tornadoes. But tornadoes\\ndo not require intelligence to exist.\\n Not only that, the equipment needed is not really \\'state of the art.\\'\\nTo study the *products*, yes, but not to generate them.\\n\\n>If you want to be sure that I read your post and to provide a\\n>response, send a copy to Jim_Brown@oz.bmd.trw.com. I can\\'t read\\n>a.a. every day, and some posts slip by. Thanks.\\n \\n Oh, I will. :->\\n\\nSincerely,\\n\\nRay Ingles || The above opinions are probably\\n || not those of the University of\\ningles@engin.umich.edu || Michigan. Yet.\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: U of Toronto Zoology\\nLines: 14\\n\\nIn article <1ralibINNc0f@cbl.umd.edu> mike@starburst.umd.edu (Michael F. Santangelo) writes:\\n>... The only thing\\n>that scares me is the part about simply strapping 3 SSME\\'s and\\n>a nosecone on it and \"just launching it.\" I have this vision\\n>of something going terribly wrong with the launch resulting in the\\n>complete loss of the new modular space station (not just a peice of\\n>it as would be the case with staged in-orbit construction).\\n\\nIt doesn\\'t make a whole lot of difference, actually, since they weren\\'t\\nbuilding spares of the station hardware anyway. (Dumb.) At least this\\nis only one launch to fail.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " \"From: rick@trystro.uucp (Richard Nickle)\\nSubject: Re: How to read sci.space without netnews\\nOrganization: The Trystro System (617) 625-7155 v.32/v.42bis\\nLines: 27\\n\\nIn article mwm+@cs.cmu.edu (Mark Maimone) writes:\\n>In article <734975852.F00001@permanet.org> Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado) writes:\\n>>If anyone knows anyone else who would like to get sci.space,\\n>>but doesn't have an Internet feed (or has a cryptic Internet\\n>>feed), I would be willing to feed it to them.\\t\\n>\\n>\\tKudos to Mark for his generous offer, but there already exists a\\n>large (email-based) forwarding system for sci.space posts: Space Digest.\\n>It mirrors sci.space exactly, and provides simple two-way communication.\\n>\\nI think Mark was talking about making it available to people who didn't\\nhave email in the first place.\\n\\nIf anybody in the Boston area wants a sci.space feed by honest-to-gosh UUCP\\n(no weird offline malreaders), let me know. I'll also hand out logins to\\nanyone who wants one, especially the Boston Chapter of NSS (which I keep forgetting\\nto re-attend).\\n\\n>Questions, comments to space-request@isu.isunet.edu\\n>-- \\n>Mark Maimone\\t\\t\\t\\tphone: +1 (412) 268 - 7698\\n>Carnegie Mellon Computer Science\\temail: mwm@cmu.edu\\n\\n\\n-- \\nrichard nickle\\t\\trick@trystro.uucp\\t617-625-7155 v.32/v.42bis\\n\\t\\t\\tthink!trystro!rick\\tsomerville massachusetts\\n\",\n", + " 'From: car377@cbnewsj.cb.att.com (charles.a.rogers)\\nSubject: Re: dogs\\nOrganization: AT&T\\nSummary: abnormal canine psychology\\nLines: 21\\n\\nIn article , mrc@Ikkoku-Kan.Panda.COM (Mark Crispin) writes:\\n> \\n> With a hostile dog, or one which you repeatedly encounter, stronger measures\\n> may be necessary. This is the face off. First -- and there is very important\\n> -- make sure you NEVER face off a dog on his territory. Face him off on the\\n> road, not on his driveway. If necessary, have a large stick, rolled up\\n> newspaper, etc. (something the beast will understand is something that will\\n> hurt him). Stand your ground, then slowly advance. Your mental attitude is\\n> that you are VERY ANGRY and are going to dispense TERRIBLE PUNISHMENT. The\\n> larger the dog, the greater your anger.\\n\\nThis tactic depends for its effectiveness on the dog\\'s conformance to\\na \"psychological norm\" that may not actually apply to a particular dog.\\nI\\'ve tried it with some success before, but it won\\'t work on a Charlie Manson\\ndog or one that\\'s really, *really* stupid. A large Irish Setter taught me\\nthis in *my* yard (apparently HIS territory) one day. I\\'m sure he was playing \\na game with me. The game was probably \"Kill the VERY ANGRY Neighbor\" Before \\nHe Can Dispense the TERRIBLE PUNISHMENT.\\n\\nChuck Rogers\\ncar377@torreys.att.com\\n',\n", + " 'From: horen@netcom.com (Jonathan B. Horen)\\nSubject: Investment in Yehuda and Shomron\\nLines: 40\\n\\nIn today\\'s Israeline posting, at the end (an afterthought?), I read:\\n\\n> More Money Allocated to Building Infrastructure in Territories to\\n> Create Jobs for Palestinians\\n> \\n> KOL YISRAEL reports that public works geared at building\\n> infrastructure costing 140 million New Israeli Shekels (about 50\\n> million dollars) will begin Sunday in the Territories. This was\\n> announced last night by Prime Minister Yitzhak Rabin and Finance\\n> Minister Avraham Shohat in an effort to create more jobs for\\n> Palestinian residents of the Territories. This infusion of money\\n> will bring allocations given to developing infrastructure in the\\n> Territories this year to 450 million NIS, up from last year\\'s\\n> figure of 120 million NIS.\\n\\nWhile I applaud investing of money in Yehuda, Shomron, v\\'Chevel-Azza,\\nin order to create jobs for their residents, I find it deplorable that\\nthis has never been an active policy of any Israeli administration\\nsince 1967, *with regard to their Jewish residents*. Past governments\\nfound funds to subsidize cheap (read: affordable) housing and the\\nrequisite infrastructure, but where was the investment for creating\\nindustry (which would have generated income *and* jobs)? \\n\\nAfter 26 years, Yehuda and Shomron remain barren, bereft of even \\nmiddle-sized industries, and the Jewish settlements are sterile\\n\"bedroom communities\", havens for (in the main) Israelis (both\\nsecular *and* religious) who work in Tel-Aviv or Jerusalem but\\ncannot afford to live in either city or their surrounding suburbs.\\n\\nThere\\'s an old saying: \"bli giboosh, ayn kivoosh\" -- just living there\\nwasn\\'t enough, we had to *really* settle it. But instead, we \"settled\"\\nfor Potemkin villages, and now we are paying the price (and doing\\nfor others what we should have done for ourselves).\\n\\n\\n-- \\nYonatan B. Horen | Jews who do not base their advocacy of Jewish positions and\\n(408) 736-3923 | interests on Judaism are essentially racists... the only \\nhoren@netcom.com | morally defensible grounds for the preservation of Jews as a\\n | separate people rest on their religious identity as Jews.\\n',\n", + " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: Observation re: helmets\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 21\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n> \\n> The question for the day is re: passenger helmets, if you don\\'t know for \\n>certain who\\'s gonna ride with you (like say you meet them at a .... church \\n>meeting, yeah, that\\'s the ticket)... What are some guidelines? Should I just \\n>pick up another shoei in my size to have a backup helmet (XL), or should I \\n>maybe get an inexpensive one of a smaller size to accomodate my likely \\n>passenger? \\n\\nIf your primary concern is protecting the passenger in the event of a\\ncrash, have him or her fitted for a helmet that is their size. If your\\nprimary concern is complying with stupid helmet laws, carry a real big\\nspare (you can put a big or small head in a big helmet, but not in a\\nsmall one).\\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #010\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 170\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #010\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +-------------------------------------------------------+\\n | |\\n | On the way the driver says, \"In fact there aren\\'t any |\\n | Armenians left. \\'They burned them all, beat them all, |\\n | and stabbed them.\" |\\n |\\t\\t\\t\\t\\t\\t\\t|\\n +-------------------------------------------------------+\\n\\nDEPOSITION OF VANYA BAGRATOVICH BAZIAN\\n\\n Born 1940\\n Foreman\\n Baku Spetsmontazh Administration (UMSMR-1)\\n\\n Resident at Building 36/7, Apartment 9\\n Block 14\\n Sumgait [Azerbaijan]\\n\\n\\nDuring the first days of the events, the 27th and the 28th [of February], I\\nwas away on a business trip. On the 10th I had got my crew, done the paper-\\nwork, and left for the Zhdanov District. That\\'s in Azerbaijan, near the\\nNagorno Karabagh region.\\n\\nAfter the 14th, rumors started to the effect that in Karabagh, specifically\\nin Stepanakert, an uprising had taken place. They said \"uprising\" in\\nAzerbaijani, but I don\\'t think it was really an uprising, just a \\ndemonstration. After that the unrest started. Several Armenians living in the \\nZhdanov District were injured. How were they injured? They were beaten, even \\nwomen; it was said that they were at the demonstrations, but they live here, \\nand went from here to Karabagh to demonstrate. After that I felt uneasy. There\\nwere some conversations about Armenians among the local population: the\\nArmenians had done this, the Armenians had done that. Right there at the site.\\nI was attacked a couple of times by kids. Well true, the guys from my crew \\nwouldn\\'t let them come at me with cables and knives. After that I felt really \\nbad. I didn\\'t know where to go. I up and called home. And my children tell me,\\n\"There\\'s unrest everywhere, be careful.\" Well I had a project going on. I told\\nthe Second Secretary of the District Party Committee what had been going on \\nand said I wanted to take my crew off the site. They wouldn\\'t allow it, they \\nsaid, \"Nothing\\'s going to happen to you, we\\'ve entrusted the matter to the \\npolice, we\\'ve warned everyone in the district, nothing will happen to you.\" \\nWell, in fact they did especially detail us a policeman to look after me, he \\nknows all the local people and would protect me if something happened. This\\nman didn\\'t leave me alone for five minutes: he was at work the whole time and \\nafterward he spent the night with us, too.\\n\\nI sense some disquiet and call home; my wife also tells me, \"The situation is\\nvery tense, be careful.\"\\n\\nWe finished the job at the site, and I left for Sumgait first thing on the\\nmorning of the 29th. When we left the guys warned me, they told me that I\\nshouldn\\'t tell anyone on the way that I was an Armenian. I took someone else\\'s\\nbusiness travel documents, in the name of Zardali, and hid my own. I hid it \\nand my passport in my socks. We set out for Baku. Our guys were on the bus, \\nthey sat behind, and I sat up front. In Baku they had come to me and said that\\nthey had to collect all of our travel documents just in case. As it turns out \\nthey knew what was happening in Sumgait.\\n\\nI arrive at the bus station and there they tell me that the city of Sumgait is\\nclosed, there is no way to get there. That the city is closed off and the \\nbuses aren\\'t running. Buses normally leave Baku for Sumgait almost every two\\nminutes. And suddenly--no buses. Well, we tried to get there via private\\ndrivers. One man, an Azerbaijani, said, \"Let\\'s go find some other way to get\\nthere.\" They found a light transport vehicle and arranged for the driver to\\ntake us to Sumgait.\\n\\nHe took us there. But the others had said, \"I wouldn\\'t go if you gave me a\\nthousand rubles.\" \"Why?\" \"Because they\\'re burning the city and killing the\\nArmenians. There isn\\'t an Armenian left.\" Well I got hold of myself so I could\\nstill stand up. So we squared it away, the four of us got in the car, and we \\nset off for Sumgait. On the way the driver says, \"In fact there aren\\'t any\\nArmenians left. \\'They burned them all, beat them all, and stabbed them.\" Well \\nI was silent. The whole way--20-odd miles--I was silent. The driver asks me, \\n\"How old are you, old man?\" He wants to know: if I\\'m being that quiet, not \\nsaying anything, maybe it means I\\'m an Armenian. \"How old are you?\" he asks \\nme. I say, \"I\\'m 47.\" \"I\\'m 47 too, but I call you \\'old man\\'.\" I say, \"It \\ndepends on God, each person\\'s life in this world is different.\" I look much\\nolder than my years, that\\'s why he called me old man. Well after that he was\\nsilent, too.\\n\\nWe\\'re approaching the city, I look and see tanks all around, and a cordon.\\nBefore we get to the Kavkaz store the driver starts to wave his hand. Well, he\\nwas waving his hand, we all start waving our hands. I\\'m sitting there with\\nthem, I start waving my hand, too. I realized that this was a sign that meant\\nthere were no Armenians with us.\\n\\nI look at the city--there is a crowd of people walking down the middle of the \\nstreet, you know, and there\\'s no traffic. Well probably I was scared. They\\nstopped our car. People were standing on the sidewalks. They have armature \\nshafts, and stones . . . And they stopped us . . .\\n\\nAlong the way the driver tells us how they know who\\'s an Armenian and who\\'s \\nnot. The Armenians usually . . . For example, I\\'m an Armenian, but I speak \\ntheir language very well. Well Armenians usually pronounce the Azeri word for \\n\"nut,\" or \"little nut,\" as \"pundukh,\" but \"fundukh\" is actually correct. The \\npronunciations are different. Anyone who says \"pundukh,\" even if they\\'re not \\nArmenian, they immediately take out and start to slash. Another one says, \\n\"There was a car there, with five people inside it,\" he says. \"They started \\nhitting the side of it with an axe and lit it on fire. And they didn\\'t let the\\npeople out,\" he says, \"they wouldn\\'t let them get out of the car.\" I only saw \\nthe car, but the driver says that he saw everything. Well he often drives from\\nBaku to Sumgait and back . . .\\n\\nWhen they stop us we all get out of the car. I look and there\\'s a short guy,\\nhis eyes are gleaming, he has an armature shaft in one hand and a stone in\\nthe other and asks the guys what nationality they are one by one. \"We\\'re\\nAzerbaijani,\\' they tell him, \\'no Armenians here.\" He did come up to me when \\nwe were pulling our things out and says, \"Maybe you\\'re an Armenian, old man?\" \\nBut in Azerbaijani I say, \"You should be ashamed of yourself!\" And . . . he \\nleft. Turned and left. That was all that happened. What was I to do? I had \\nto . . . the city was on fire, but I had to steal my children out of my own \\nhome.\\n\\nThey stopped us at the entrance to Mir Street, that\\'s where the Kavkaz store \\nand three large, 12-story buildings are. That\\'s the beginning of down-town. I \\nsaw that burned automobile there, completely burned, only metal remained. I \\ncouldn\\'t figure out if it was a Zhiguli or a Zaporozhets. Later I was told it \\nwas a Zhiguli. And the people in there were completely incinerated. Nothing \\nremained of them, not even any traces. That driver had told me about it, and I\\nsaw the car myself. The car was there. The skeleton, a metallic carcass. About\\n30 to 40 yards from the Kavkaz store.\\n\\nI see a military transport, an armored personnel carrier. The hatches are\\nclosed. And people are throwing armature shafts and pieces of iron at it, the\\ncrowd is. And I hear shots, not automatic fire, it\\'s true, but pistol shots.\\nSeveral shots. There were Azerbaijanis crowded around that personnel carrier. \\nSomeone in the crowd was shooting. Apparently they either wanted to kill the \\nsoldiers or get a machine gun or something. At that point there was only one \\narmored personnel carrier. And all the tanks were outside the city, cordoning \\noff Sumgait.\\n\\nI walked on. I see two Azerbaijanis going home from the plant. I can tell by \\ntheir gait that they\\'re not bandits, they\\'re just people, walking home. I\\njoined them so in case something happened, in case someone came up to us\\nand asked questions, either of us would be in a position to answer, you see.\\nBut I avoided the large groups because I\\'m a local and might be quickly \\nrecognized. I tried to keep at a distance, and walked where there were fewer\\npeople. Well so I walked into Microdistrict 2, which is across from our block.\\nI can\\'t get into our block, but I walked where there were fewer people, so as \\nto get around. Well there I see a tall guy and 25 to 30 people are walking \\nbehind him. And he\\'s shouting into a megaphone: \"Comrades, the Armenian-\\nAzerbaijani war has begun!\"\\n\\nThe police have megaphones like that. So they\\'re talking and walking around \\nthe second microdistrict. I see that they\\'re coming my way, and turn off \\nbehind a building. I noticed that they walked around the outside buildings, \\nand inside the microdistricts there were about 5 or 6 people standing on every\\ncorner, and at the middles of the buildings, and at the edges. What they were \\ndoing I can\\'t say, because I couldn\\'t get up close to them, I was afraid. But \\nthe most important thing was to get away from there, to get home, and at least\\nfind out if my children were alive or not . . .\\n\\n April 20, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 158-160\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Argic\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 6\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nHey Serdar:\\n Man without a brain, yare such a LOSER!!!\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", + " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Observation re: helmets\\nOrganization: Ontario Hydro - Research Division\\nDistribution: usa\\nLines: 19\\n\\nIn article <1993Apr15.220511.11311@research.nj.nec.com> behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n>\\tDo I have to be the one to say it?\\n>\\n>\\tDON'T BE SO STUPID AS TO LEAVE YOUR HELMET ON THE SEAT WHERE IT CAN\\n>\\tFALL DOWN AND GO BOOM!\\n\\nTrue enough. I put it on the ground if it's free of spooge, or directly\\non my head otherwise.\\n\\n>\\tThat kind of fall is what the helmet is designed to protect against.\\n\\nNot exactly. The helmet has a lot less energy if your head isn't in it, and\\nthere's no lump inside to compress the liner against the shell. Is a drop\\noff the seat enough to crack the shell? I doubt it, but you can always\\nsend it to be inspected.\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", + " \"From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: rejoinder. Questions to Israelis\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 38\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n Although I realize that principle is not one of your strongest\\npoints, I would still like to know why do do not ask any question\\nof this sort about the Arab countries.\\n\\n If you want to continue this think tank charade of yours, your\\nfixation on Israel must stop. You might have to start asking the\\nsame sort of questions of Arab countries as well. You realize it\\nwould not work, as the Arab countries' treatment of Jews over the\\nlast several decades is so bad that your fixation on Israel would\\nbegin to look like the biased attack that it is.\\n\\n Everyone in this group recognizes that your stupid 'Center for\\nPolicy Research' is nothing more than a fancy name for some bigot\\nwho hates Israel.\\n\\n Why don't you try being honest about your hatred of Israel? I\\nhave heard that your family once lived in Israel, but the members\\nof your family could not cut the competition there. Is this true\\nabout your family? Is this true about you? Is this actually not\\nabout Israel, but is really a personal vendetta? Why are you not\\nthe least bit objective about Israel? Do you think that the name\\nof your phony-baloney center hides your bias in the least? Get a\\nclue, Mr. Davidsson. Haven't you realized yet that when you post\\nsuch stupidity in this group, you are going to incur answers from\\npeople who are armed with the truth? Haven't you realized that a\\npiece of selective data here and a piece there does not make up a\\ntruth? Haven't you realized that you are in over your head? The\\npeople who read this group are not as stupid as you would hope or\\nneed them to be. This is not the place for such pseudo-analysis.\\nYou will be continually ripped to shreds, until you start to show\\nsome regard for objectivity. Or you can continue to show what an\\nanti-Israel zealot you are, trying to disguise your bias behind a\\npompous name like the 'Center for Policy Research.' You ought to\\nknow that you are a laughing stock, your 'Center' is considered a\\njoke, and until you either go away, or make at least some attempt\\nto be objective, you will have a place of honor among the clowns,\\nbigots, and idiots of Usenet.\\n\",\n", + " 'From: \"james kewageshig\" \\nSubject: articles on flocking?\\nReply-To: \"james kewageshig\" \\nOrganization: Canada Remote Systems\\nDistribution: comp\\nLines: 17\\n\\nHI All,\\nCan someone point me towards some articles on \\'boids\\' or\\nflocking algorithms... ?\\n\\nAlso, articles on particle animation formulas would be nice...\\n ________________________________________________________________________\\n|0 ___ ___ ____ ____ ____ 0|\\\\\\n| \\\\ \\\\// || || || James Kewageshig |\\\\|\\n| _\\\\//_ _||_ _||_ _||_ UUCP: james.kewageshig@canrem.com |\\\\|\\n| N E T W O R K V I I I FIDONET: James Kewageshig - 1:229/15 |\\\\|\\n|0______________________________________________________________________0|\\\\|\\n \\\\________________________________________________________________________\\\\|\\n---\\n þ DeLuxeý 1.25 #8086 þ Head of Co*& XV$# Hi This is a signature virus. Co\\n--\\nCanada Remote Systems - Toronto, Ontario\\n416-629-7000/629-7044\\n',\n", + " \"From: Center for Policy Research \\nSubject: Unconventional peace proposal\\nNf-ID: #N:cdp:1483500348:000:5967\\nNf-From: cdp.UUCP!cpr Apr 18 07:24:00 1993\\nLines: 131\\n\\n\\nFrom: Center for Policy Research \\nSubject: Unconventional peace proposal\\n\\n\\nA unconventional proposal for peace in the Middle-East.\\n---------------------------------------------------------- by\\n\\t\\t\\t Elias Davidsson\\n\\nThe following proposal is based on the following assumptions:\\n\\n1. Fundamental human rights, such as the right to life, to\\neducation, to establish a family and have children, to human\\ndignity, the right to free movement, to free expression, etc. are\\nmore important to human existence that the rights of states.\\n\\n2. In the event of a conflict between basic human rights and\\nrights of collectivities, basic human rights should prevail.\\n\\n3. Between the collectivities defining themselves as\\nJewish-Israeli and Palestinian-Arab, however labelled, an\\nunresolved conflict exists.\\n\\n4. This conflict has caused great sufferings for millions of\\npeople. It moreover poisons relations between communities, peoples\\nand nations.\\n\\n5. Each year, the United States expends billions of dollars\\nin economic and military aid to the conflicting parties.\\n\\n6. Attempts to solve the Israeli-Arab conflict by traditional\\npolitical means have failed.\\n\\n7. As long as the conflict is perceived as that between two\\ndistinct ethnical/religious communities/peoples which claim the\\nland, there is no just nor peaceful solution possible.\\n\\n8. Love between human beings can be capitalized for the sake\\nof peace and justice. When people love, they share.\\n\\nHaving stated my assumptions, I will now state my proposal.\\n\\n1. A Fund should be established which would disburse grants\\nfor each child born to a couple where one partner is Israeli-Jew\\nand the other Palestinian-Arab.\\n\\n2. To be entitled for a grant, a couple will have to prove\\nthat one of the partners possesses or is entitled to Israeli\\ncitizenship under the Law of Return and the other partner,\\nalthough born in areas under current Isreali control, is not\\nentitled to such citizenship under the Law of Return.\\n\\n3. For the first child, the grant will amount to $18.000. For\\nthe second the third child, $12.000 for each child. For each\\nsubsequent child, the grant will amount to $6.000 for each child.\\n\\n\\n4. The Fund would be financed by a variety of sources which\\nhave shown interest in promoting a peaceful solution to the\\nIsraeli-Arab conflict, including the U.S. Government, Jewish and\\nChristian organizations in the U.S. and a great number of\\ngovernments and international organizations.\\n\\n5. The emergence of a considerable number of 'mixed'\\nmarriages in Israel/Palestine, all of whom would have relatives on\\n'both sides' of the divide, would make the conflict lose its\\nethnical and unsoluble core and strengthen the emergence of a\\ntruly civil society. The existence of a strong 'mixed' stock of\\npeople would also help the integration of Israeli society into the\\nMiddle-East in a graceful manner.\\n\\nObjections to this proposal will certainly be voiced. I will\\nattempt to identify some of these:\\n\\n1. The idea of providing financial incentives to selected\\nforms of partnership and marriage, is not conventional. However,\\nit is based on the concept of affirmative action, which is\\nrecognized as a legitimate form of public policy to reverse the\\nperverse effects of segregation and discrimination. International\\nlaw clearly permits affirmative action when it is aimed at\\nreducing racial discrimination and segregation.\\n\\n2. It may be objected that the Israeli-Palestinian conflict\\nis not primarily a religious or ethnical conflict, but that it is\\na conflict between a colonialist settler society and an indigenous\\ncolonized society that can only regain its freedom by armed\\nstruggle. This objection is based on the assumption that the\\n'enemy' is not Zionism as ideology and practice, but\\nIsraeli-Jewish society and its members which will have to be\\ndefeated. This objection has no merit because it does not fulfill\\nthe first two assumptions concerning the primacy of fundamental\\nhuman rights over collective rights (see above)\\n\\n3. Fundamentalist Jews would certainly object to the use of\\nfinancial incentives to encourage 'mixed marriages'. From their\\npoint of view, the continued existence of a specific Jewish People\\noverrides any other consideration, be it human love, peace of\\nhuman rights. The President of the World Jewish Congress, Edgar\\nBronfman, reflected this view a few years ago in an interview he\\ngave to Der Spiegel, a German magazine. He called the increasing\\nassimilation of Jews in the world a , comparable in its\\neffects only with the Holocaust. This objection has no merit\\neither because it does not fulfill the first two assumptions (see\\nabove)\\n\\n4. It may objected that only a few people in\\nIsrael/Palestine, would request such grants and that it would thus\\nnot serve its purpose. To this objection one might respond that\\nalthough it is not possible to determine with certainty the effect\\nof such a proposal, the existence of such a Fund would help mixed\\ncouples to resist the pressure of their respective societies and\\nencourage young couples to reject fundamentalist and racist\\nattitudes.\\n\\n5. It may objected that such a Fund would need great sums to\\nbring about substantial demographic changes. This objection has\\nmerits. However, it must be remembered that huge sums, more than\\n$3 billion, are expended each year by the United States government\\nand by U.S. organizations to maintain an elusive peace in the\\nMiddle-East through armaments. A mere fraction of these sums would\\nsuffice to launch the above proposal and create a more favorable\\nclimate towards the existence of 'mixed' marriages in\\nIsrael/Palestine, thus encouraging the emergence of a\\nnon-segregated society in that worn-torn land.\\n\\nI would be thankful for critical comments to the above proposal as\\nwell for any dissemination of this proposal for meaningful\\ndiscussion and enrichment.\\n\\nElias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n\\n\",\n", + " \"From: lipman@oasys.dt.navy.mil (Robert Lipman)\\nSubject: Call for presentations: Navy SciViz/VR seminar\\nReply-To: lipman@oasys.dt.navy.mil (Robert Lipman)\\nOrganization: Carderock Division, NSWC, Bethesda, MD\\nLines: 74\\n\\n**********************************************************************\\n\\n\\t\\t 2ND CALL FOR PRESENTATIONS\\n\\t\\n NAVY SCIENTIFIC VISUALIZATION AND VIRTUAL REALITY SEMINAR\\n\\n\\t\\t\\tTuesday, June 22, 1993\\n\\n\\t Carderock Division, Naval Surface Warfare Center\\n\\t (formerly the David Taylor Research Center)\\n\\n\\t\\t\\t Bethesda, Maryland\\n\\n**********************************************************************\\n\\nSPONSOR: NESS (Navy Engineering Software System) is sponsoring a \\none-day Navy Scientific Visualization and Virtual Reality Seminar. \\nThe purpose of the seminar is to present and exchange information for\\nNavy-related scientific visualization and virtual reality programs, \\nresearch, developments, and applications.\\n\\nPRESENTATIONS: Presentations are solicited on all aspects of \\nNavy-related scientific visualization and virtual reality. All \\ncurrent work, works-in-progress, and proposed work by Navy \\norganizations will be considered. Four types of presentations are \\navailable.\\n\\n 1. Regular presentation: 20-30 minutes in length\\n 2. Short presentation: 10 minutes in length\\n 3. Video presentation: a stand-alone videotape (author need not \\n\\tattend the seminar)\\n 4. Scientific visualization or virtual reality demonstration (BYOH)\\n\\nAccepted presentations will not be published in any proceedings, \\nhowever, viewgraphs and other materials will be reproduced for \\nseminar attendees.\\n\\nABSTRACTS: Authors should submit a one page abstract and/or videotape to:\\n\\n Robert Lipman\\n Naval Surface Warfare Center, Carderock Division\\n Code 2042\\n Bethesda, Maryland 20084-5000\\n\\n VOICE (301) 227-3618; FAX (301) 227-5753 \\n E-MAIL lipman@oasys.dt.navy.mil\\n\\nAuthors should include the type of presentation, their affiliations, \\naddresses, telephone and FAX numbers, and addresses. Multi-author \\npapers should designate one point of contact.\\n\\n**********************************************************************\\nDEADLINES: The abstact submission deadline is April 30, 1993. \\nNotification of acceptance will be sent by May 14, 1993. \\nMaterials for reproduction must be received by June 1, 1993.\\n**********************************************************************\\n\\nFor further information, contact Robert Lipman at the above address.\\n\\n**********************************************************************\\n\\n\\t PLEASE DISTRIBUTE AS WIDELY AS POSSIBLE, THANKS.\\n\\n**********************************************************************\\n\\n\\nRobert Lipman | Internet: lipman@oasys.dt.navy.mil\\nDavid Taylor Model Basin - CDNSWC | or: lip@ocean.dt.navy.mil\\nComputational Signatures and | Voicenet: (301) 227-3618\\n Structures Group, Code 2042 | Factsnet: (301) 227-5753\\nBethesda, Maryland 20084-5000 | Phishnet: stockings@long.legs\\n\\t\\t\\t\\t \\nThe sixth sick shiek's sixth sheep's sick.\\n\\n\",\n", + " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nArticle-I.D.: mksol.1993Apr22.213815.12288\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1993Apr22.130923.115397@zeus.calpoly.edu> dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n> ETHER IMPLODES 2 EARTH CORE, IS GRAVITY!!!\\n\\nIf not for the lack of extraneously capitalized words, I\\'d swear that\\nMcElwaine had changed his name and moved to Cal Poly. I also find the\\nchoice of newsgroups \\'interesting\\'. Perhaps someone should tell this\\nguy that \\'sci.astro\\' doesn\\'t stand for \\'astrology\\'?\\n\\nIt\\'s truly frightening that posts like this are originating at what\\nare ostensibly centers of higher learning in this country. Small\\nwonder that the rest of the world thinks we\\'re all nuts and that we\\nhave the problems that we do.\\n\\n[In case you haven\\'t gotten it yet, David, I don\\'t think this was\\nquite appropriate for a posting to \\'sci\\' groups.]\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", + " \"From: lynn@pacesetter.com (Lynn E. Hall)\\nSubject: Re: story \\nKeywords: PARTY!!!!\\nNntp-Posting-Host: camellia\\nOrganization: Siemens Pacesetter, Inc.\\nLines: 20\\n\\n>lynn@pacesetter.com (Lynn E. Hall) writes:\\n>\\n>>allowed (yes, there is a God). No open containers on the street was the\\n>>signs in the bars. Yeah, RIGHT! The 20 or so cops on hand for the couple of\\n>>thousand of bikers in a 1 block main street were not citing anyone. The\\n>>street was filled with empty cans at least 2 feet deep in the gutter. The\\n>>crowd was raisin' hell - tittie shows everywhere. Can you say PARTY?\\n>\\n>\\n>And still we wonder why they stereotype us...\\n>\\n>-Erc.\\n\\n Whacha mean 'we'...ifin they (whom ever 'they' are) want to stereotype me\\nas one that likes to drink beer and watch lovely ladies display their\\nbeautiful bodies - I like that stereotype.\\n If you were refering 'stereotype' to infer a negative - you noticed we\\ndidn't rape, pillage, or burn down the town. We also left mucho bucks as in\\nMONEY with the town. Me thinks the town LIKES us. Least they said so.\\n Lynn Hall - NOS Bros\\n\",\n", + " 'From: mikej@PROBLEM_WITH_INEWS_GATEWAY_FILE (Mike Johnson)\\nSubject: Re: Paris-Dakar BMW touring???\\nNntp-Posting-Host: mikej.mentorg.com\\nOrganization: Mentor Graphics\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 8\\n\\n\\n--\\n-----------------------------------------------------------------------------\\n mike_johnson@mentorg.com\\n-----------------------------------------------------------------------------\\n Mentor Graphics | 8005 SW Boeckman Rd | Software Support \\n Corporation | Wilsonville, OR 97070-7777 | Framework Products Division \\n_____________________________________________________________________________\\n',\n", + " \"From: erick@andr.UB.com (Eric A. Kilpatrick)\\nSubject: Re: Drinking and Riding\\nNntp-Posting-Host: pixel.andr.ub.com\\nReply-To: erick@andr.UB.com\\nOrganization: Ungermann-Bass Inc./Andover, MA\\nLines: 7\\n\\nPersonally, I follow the no alcohol rule when I'm on a bike. My view is that you have to be in such a high degree of control that any alcohol could be potentially hazardous to my bike! If I get hurt it's my own fault, but I don't want to wreck my Katana. I developed this philosophy from an impromptu *experiment*. I had one beer at 6:00 in the evening and had volleyball practice at 7:00. I wasn't even close to leagle intoxication, but I couldn't perform even the most basic things until 8:30! This made\\n\\n\\n\\n me think about how I viewed alcohol and intoxication. You may seem fine, but your reactions may be affected such that you'll be unable to recover from hitting a rock or even just a gust of wind. I greatly enjoy social drinking but, for me, it just doesn't mix with riding.\\n\\nMax enjoyment!\\nEric\\n\\n\",\n", + " 'From: yoo@engr.ucf.edu (Hoi Yoo)\\nSubject: Ribbon Information ?\\nOrganization: engineering, University of Central Florida, Orlando\\nDistribution: usa\\nLines: 20\\n\\n\\n\\nDoes anyone out there have or know of, any kind of utility program for\\n\\nRibbons?\\n\\n\\nRibbons are a popular representation for 2D shape. I am trying to\\nfind symmetry axis in a given any 2D shape using ribbons.\\n\\n\\nAny suggestions will be greatly appreciated how to start program. \\n\\n\\nThanks very much in advance,\\nHoi\\n\\n\\nyoo@engr.ucf.edu\\n\\n',\n", + " \"From: small@tornado.seas.ucla.edu (James F. Small)\\nSubject: Re: Here's to the assholes\\nOrganization: School of Engineering and Applied Sciences, UCLA\\nLines: 26\\n\\nIn article you rambled on about:\\n)In article <9953@lee.SEAS.UCLA.EDU> small@thunder.seas.ucla.edu (James F. Small) writes:\\n)> Here's to the 3 asshole scooter owners who TRIPLE PARKED behind my\\n)> bike today. \\n)\\n)Jim calling other prople assholes, what's next?\\n ^^^^^^\\n\\nIf you're going to flame, learn to spell.\\n\\n)Besides, assholeism is endemic to the two-wheeled motoring community.\\n\\nWhy I do believe that Jason, the wise, respected (hahahha), has just made a\\nstereotypical remark. How unsophisticated of you. I'm so sorry you had to\\ncome out of your ivory tower and stoop (as you would say), to my , obviously,\\nlower level.\\n\\nBesides, geekism is endemic to the albino-phoosball playing community (and\\nthose who drive volvos)\\n\\n\\nRemember ,send your flames to jrobbins@cs.ucla.edu\\n-- \\nI need what a formal education can not provide.\\n---\\nDoD# 2024\\n\",\n", + " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: islamic genocide\\nOrganization: Technical University Braunschweig, Germany\\nLines: 23\\n\\nIn article <1qi83b$ec4@horus.ap.mchp.sni.de>\\nfrank@D012S658.uucp (Frank O'Dwyer) writes:\\n \\n(Deletion)\\n>#>Few people can imagine dying for capitalism, a few\\n>#>more can imagine dying for democracy, but a lot more will die for their\\n>#>Lord and Savior Jesus Christ who Died on the Cross for their Sins.\\n>#>Motivation, pure and simple.\\n>\\n>Got any cites for this nonsense? How many people will die for Mom?\\n>Patriotism? Freedom? Money? Their Kids? Fast cars and swimming pools?\\n>A night with Kim Basinger or Mel Gibson? And which of these things are evil?\\n>\\n \\nRead a history book, Fred. And tell me why so many religions command to\\ncommit genocide when it has got nothing to do with religion. Or why so many\\nreligions say that not living up to the standards of the religion is worse\\nthan dieing? Coincidence, I assume. Or ist part of the absolute morality\\nyou describe so often?\\n \\nTheism is strongly correlated with irrational belief in absolutes. Irrational\\nbelief in absolutes is strongly correlated with fanatism.\\n Benedikt\\n\",\n", + " 'From: flax@frej.teknikum.uu.se (Jonas Flygare)\\nSubject: Re: 18 Israelis murdered in March\\nOrganization: Dept. Of Control, Teknikum, Uppsala\\nLines: 184\\n\\t\\n\\t<1993Apr5.125419.8157@thunder.mcrcim.mcgill.edu>\\nNNTP-Posting-Host: frej.teknikum.uu.se\\nIn-reply-to: hasan@McRCIM.McGill.EDU\\'s message of Mon, 5 Apr 93 12:54:19 GMT\\n\\nIn article <1993Apr5.125419.8157@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n\\n[After a small refresh Hasan got on the track again.]\\n\\n In article , flax@frej.teknikum.uu.se (Jonas Flygare) writes:\\n\\n |> In article <1993Apr3.182738.17587@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n |> In article , flax@frej.teknikum.uu.se (Jonas Flygare) writes:\\n\\n |> |> I get the impression Hasan realized he goofed and is now\\n |> |> trying to drop the thread. Let him. It might save some\\n |> |> miniscule portion of his sorry face.\\n\\n |> Not really. since i am a logical person who likes furthering himself\\n |> from any \"name calling\", i started trashing any article that contains\\n |> such abuses without responding to, and sometimes not even reading articles \\n |> written by those who acquired such bad habits from bad company!\\n |> \\n |> Ah, but in my followup on the subject (which you, by the way, never bothered\\n |> responding to..) there was no name-calling. Hence the assumption.\\n |> Do you feel more up to it now, so that we might have an answer?\\n |> Or, to refresh your memory, does the human right issue in the area\\n |> apply to Palestinians only? Also, do you claim there is such a thing as \\n |> forfeiting a human right? If that\\'s possible, then explain to the rest of \\n |> us how there can exist any such thing?\\n |> \\n |> Use your logic, and convince us! This is your golden chance!\\n\\n |> Jonas Flygare,\\n\\n\\n well , ok. let\\'s see what Master of Wisdom, Mr. Jonas Flygare,\\n wrote that can be wisdomely responded to :\\n\\nAre you calling names, or giving me a title? If the first, read your \\nparagraph above, if not I accept the title, in order to let you get into the\\num, well, debate again.\\n\\n\\n Master of Wisdom writes in <1993Mar31.101957@frej.teknikum.uu.se>:\\n\\n |> [hasan]\\n\\n |> |> [flax]\\n\\n |> |> |> [hasan]\\n\\n |> |> |> In case you didNOT know, Palestineans were there for 18 months. \\n |> |> |> and they are coming back\\n |> |> |> when you agree to give Palestineans their HUMAN-RIGHTS.\\n\\n |> |> |> Afterall, human rights areNOT negotiable.\\n\\n |> |> |> Correct me if I\\'m wrong, but isn\\'t the right to one\\'s life _also_\\n |> |> |> a \\'human right\\'?? Or does it only apply to palestinians?\\n\\n |> |> No. it is EVERYBODY\\'s right. However, when a killer kills, then he is giving\\n |> |> up -willingly or unwillingly - his life\\'s right to the society. \\n |> |> the society represented by the goverment would exercise its duty by \\n |> |> depriving the killer off his life\\'s right.\\n\\n |> So then it\\'s all right for Israel to kill the people who kill Israelis?\\n |> The old \\'eye for an eye\\' thinking? Funny, I thought modern legal systems\\n |> were made to counter exactly that.\\n\\n So what do you expect me to tell you to tell you, Master of Wsidom, \\n\\t\\t\\t\\t\\t\\t\\t ^^^\\n------------------------------------------------------------------\\nIf you insist on giving me names/titles I did not ask for you could at\\nleast spell them correctly. /sigh.\\n\\n when you are intentionally neglecting the MOST important fact that \\n the whole israeli presence in the occupied territories is ILLEGITIMATE, \\n and hence ALL their actions, their courts, their laws are illegitimate on \\n the ground of occupied territories.\\n\\nNo, I am _not_ neglecting that, I\\'m merely asking you whether the existance\\nof Israeli citicens in the WB or in Gaza invalidates those individuals right\\nto live, a (as you so eloquently put it) human right. We can get back to the \\nquestion of which law should be used in the territories later. Also, you have \\nnot adressed my question if the israelis also have human rights.\\n\\n What do you expect me to tell you, Master of Wisdom, when I did explain my\\n point in the post, that you \"responded to\". The point is that since Israel \\n is occupying then it is automatically depriving itself from some of its rights \\n to the Occupied Palestineans, which is exactly similar the automatic \\n deprivation of a killer from his right of life to the society.\\n\\nIf a state can deprive all it\\'s citizens of human rights by its actions, then \\ntell me why _any_ human living today should have any rights at all?\\n\\n |> |> In conjugtion with the above, when a group of people occupies others \\n |> |> territories and rule them by force, then this group would be -willingly or \\n |> |> unwillingly- deprived from some of its rights. \\n\\n |> Such as the right to live? That\\'s nice. The swedish government is a group\\n |> of people that rule me by force. Does that give me the right to kill\\n |> them?\\n\\n Do you consider yourself that you have posed a worthy question here ?\\n\\nWorthy or not, I was just applying your logic to a related problem.\\nAm I to assume you admit it wouldn\\'t hold?\\n\\n |> |> What kind of rights and how much would be deprived is another issue?\\n |> |> The answer is to be found in a certain system such as International law,\\n |> |> US law, Israeli law ,...\\n\\n |> And now it\\'s very convenient to start using the legal system to prove a \\n |> point.. Excuse me while I throw up.\\n\\n ok, Master of Wisdom is throwing up. \\n You people stay away from the screen while he is doing it !\\n\\nOh did you too watch that comedy where they pipe water through the telephone?\\nI\\'ll let you in on a secret... It\\'s not for real.. Take my word for it.\\n\\n |> |> It seems that the US law -represented by US State dept in this case-\\n |> |> is looking to the other way around when violence occurs in occupied territories.\\n |> |> Anyway, as for Hamas, then obviously they turned to the islamic system.\\n\\n |> And which system do you propose we use to solve the ME problem?\\n\\n The question is NOT which system would solve the ME problem. Why ? because\\n any system can solve it. \\n The laws of minister Sharon says kick Palestineans out of here (all palestine). \\n\\nI asked for which system should be used, that will preserve human rights for \\nall people involved. I assumed that was obvious, but I won\\'t repeat that \\nmistake. Now that I have straightened that out, I\\'m eagerly awaiting your \\nreply.\\n\\n Joseph Weitz (administrator responsible for Jewish colonization) \\n said it best when writing in his diary in 1940:\\n\\t \"Between ourselves it must be clear that there is no room for both\\n\\t peoples together in this country.... We shall not achieve our goal\\n\\t\\t\\t\\t\\t\\t^^^ ^^^\\n\\t of being an independent people with the Arabs in this small country.\\n\\t The only solution is a Palestine, at least Western Palestine (west of\\n\\t the Jordan river) without Arabs.... And there is no other way than\\n\\t to transfer the Arabs from here to the neighbouring countries, to\\n\\t transfer all of them; not one village, not one tribe, should be \\n\\t left.... Only after this transfer will the country be able to\\n\\t absorb the millions of our own brethren. There is no other way out.\"\\n\\t\\t\\t\\t DAVAR, 29 September, 1967\\n\\t\\t\\t\\t (\"Courtesy\" of Marc Afifi)\\n\\nJust a question: If we are to disregard the rather obvious references to \\ngetting Israel out of ME one way or the other in both PLO covenant and HAMAS\\ncharter (that\\'s the english translations, if you have other information I\\'d\\nbe interested to have you translate it) why should we give any credence to \\na _private_ paper even older? I\\'m not going to get into the question if he\\nwrote the above, but it\\'s fairly obvious all parties in the conflict have\\ntheir share of fanatics. Guess what..? Those are not the people that will\\nmake any lasting peace in the region. Ever. It\\'s those who are willing to \\nmake a tabula rasa and start over, and willing to give in order to get \\nsomething back.\\n\\n\\n \"We\" and \"our\" either refers to Zionists or Jews (i donot know which). \\n\\n Well, i can give you an answer, you Master of Wisdom, I will NOT suggest the \\n imperialist israeli system for solving the ME problem !\\n\\n I think that is fair enough .\\n\\nNo, that is _not_ an answer, since I asked for a system that could solve \\nthe problem. You said any could be used, then you provided a contradiction.\\nGuess where that takes your logic? To never-never land. \\n\\n\\n \"The greatest problem of Zionism is Arab children\".\\n\\t\\t\\t -Rabbi Shoham.\\n\\nOh, and by the way, let me add that these cute quotes you put at the end are\\na real bummer, when I try giving your posts any credit.\\n--\\n\\n--------------------------------------------------------\\nJonas Flygare, \\t\\t+ Wherever you go, there you are\\nV{ktargatan 32 F:621\\t+\\n754 22 Uppsala, Sweden\\t+\\n',\n", + " 'From: cjackson@adobe.com (Curtis Jackson)\\nSubject: Re: New to Motorcycles...\\nOrganization: Adobe Systems Incorporated, Mountain View\\nLines: 26\\n\\nIn article <1993Apr20.131800.16136@alw.nih.gov> gregh@niagara.dcrt.nih.gov (Gregory Humphreys) writes:\\n}1) I only have about $1200-1300 to work with, so that would have \\n}to cover everything (bike, helmet, anything else that I\\'m too \\n}ignorant to know I need to buy)\\n\\nThe following numbers are approximate, and will no doubt get me flamed:\\n\\nHelmet (new, but cheap)\\t\\t\\t\\t\\t$100\\nJacket (used or very cheap)\\t\\t\\t\\t$100\\nGloves (nothing special)\\t\\t\\t\\t$ 20\\nMotorcycle Safety Foundation riding course (a must!)\\t$140\\n\\nThat leaves you between $900 and $1000 (depending on the accuracy\\nof my numbers) to buy a used bike, get it registered, get it\\ninsured, and get it running properly. I\\'d say you\\'re cutting\\nit close. Perhaps if your parents are reasonable, and you indicated\\nyour wish to learn to ride safely, you could get them to pick up\\nthe cost of the MSF course and some of the safety gear. Early\\nholiday presents or whatever. Those are one-time (well, long-term\\nanyway) investments, and you could spend your money on the actual\\nbike, insurance, registration, and maintenance.\\n-- \\nCurtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\nDoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\"\\n\"There is no justification for taking away individuals\\' freedom\\n in the guise of public safety.\" -- Thomas Jefferson\\n',\n", + " 'From: wallacen@CS.ColoState.EDU (nathan wallace)\\nSubject: ORION test film\\nReply-To: wallacen@CS.ColoState.EDU\\nNntp-Posting-Host: sor.cs.colostate.edu\\nOrganization: Colorado State University -=- Computer Science Dept.\\nLines: 11\\n\\nIs the film from the \"putt-putt\" test vehicle which used conventional\\nexplosives as a proof-of-concept test, or another one?\\n\\n---\\nC/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/\\nC/ Nathan F. Wallace C/C/ \"Reality Is\" C/\\nC/ e-mail: wallacen@cs.colostate.edu C/C/ ancient Alphaean proverb C/\\nC/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/\\n \\n\\n\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Case Western Reserve University\\nLines: 26\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1qkq9t$66n@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n\\n>I\\'ll take a wild guess and say Freedom is objectively valuable. I base\\n>this on the assumption that if everyone in the world were deprived utterly\\n>of their freedom (so that their every act was contrary to their volition),\\n>almost all would want to complain. Therefore I take it that to assert or\\n>believe that \"Freedom is not very valuable\", when almost everyone can see\\n>that it is, is every bit as absurd as to assert \"it is not raining\" on\\n>a rainy day. I take this to be a candidate for an objective value, and it\\n>it is a necessary condition for objective morality that objective values\\n>such as this exist.\\n\\n\\tYou have only shown that a vast majority ( if not all ) would\\nagree to this. However, there is nothing against a subjective majority.\\n\\n\\tIn any event, I must challenge your assertion. I know many \\nsocieties- heck, many US citizens- willing to trade freedom for \"security\".\\n\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", + " 'From: mini@csd4.csd.uwm.edu (Padmini Srivathsa)\\nSubject: WANTED : Info on Image Databases\\nOrganization: Computing Services Division, University of Wisconsin - Milwaukee\\nLines: 15\\nDistribution: world\\nNNTP-Posting-Host: 129.89.7.4\\nOriginator: mini@csd4.csd.uwm.edu\\n\\n Guess the subject says it all.\\n I would like references to any introductory material on Image\\n Databases.\\n Please send any pointers to mini@point.cs.uwm.edu\\n\\n Thanx in advance!\\n \\n\\n\\n\\n-- \\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n-< MINI >- mini@point.cs.uwm.edu | mini@csd4.csd.uwm.edu \\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n\\n',\n", + " 'From: Center for Policy Research \\nSubject: From Israeli press. Madness.\\nNf-ID: #N:cdp:1483500342:000:6673\\nNf-From: cdp.UUCP!cpr Apr 16 16:49:00 1993\\nLines: 130\\n\\n\\nFrom: Center for Policy Research \\nSubject: From Israeli press. Madness.\\n\\n/* Written 4:34 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n/* ---------- \"From Israeli press. Madness.\" ---------- */\\nFROM THE ISRAELI PRESS.\\n\\nPaper: Zman Tel Aviv (Tel Aviv\\'s time). Friday local Tel Aviv\\'s\\npaper, affiliated with Maariv.\\n\\nDate: 19 February 1993\\n\\nJournalist: Guy Ehrlich\\n\\nSubject: Interview with soldiers who served in the Duvdevan\\n(Cherry) units, which disguise themselves as Arabs and operate\\nwithin the occupied territories.\\n\\nExcerpts from the article:\\n\\n\"A lot has been written about the units who disguise themselves as\\nArabs, things good and bad, some of the falsehoods. But the most\\nimportant problem of those units has been hardly dealt with. It is\\nthat everyone who serves in the Cherry, after a time goes in one\\nway or another insane\".\\n\\nA man who said this, who will here be called Danny (his full name\\nis known to the editors) served in the Cherry. After his discharge\\nfrom the army he works as delivery boy. His pal, who will here be\\ncalled Dudu was also serving in the Cherry, and is now about to\\ndepart for a round-the-world tour. They both look no different\\nfrom average Israeli youngsters freshly discharged from conscript\\nservice. But in their souls, one can notice something completely\\ndifferent....It was not easy for them to come out with disclosures\\nabout what happened to them. And they think that to most of their\\nfellows from the Cherry it woundn\\'t be easy either. Yet after they\\nbegan to talk, it was nearly impossible to make them stop talking.\\nThe following article will contain all the horror stories\\nrecounted with an appalling openness.\\n\\n(...) A short time ago I was in command of a veteran team, in\\nwhich some of the fellows applied for release from the Cherry. We\\ncalled such soldiers H.I. \\'Hit by the Intifada\\'. Under my command\\nwas a soldier who talked to himself non-stop, which is a common\\nphenomenon in the Cherry. I sent him to a psychiatrist. But why I\\nshould talk about others when I myself feel quite insane ? On\\nFridays, when I come home, my parents know I cannot be talked to\\nuntil I go to the beach, surf a little, calm down and return. The\\nkeys of my father\\'s car must be ready for in advance, so that I\\ncan go there. I they dare talk to me before, or whenever I don\\'t\\nwant them to talk to me, I just grab a chair and smash it\\ninstantly. I know it is my nerve: Smashing chairs all the time\\nand then running away from home, to the car and to the beach. Only\\nthere I become normal.(...)\\n\\n(...) Another friday I was eating a lunch prepared by my mother.\\nIt was an omelette of sorts. She took the risk of sitting next to\\nme and talking to me. I then told my mother about an event which\\nwas still fresh in my mind. I told her how I shot an Arab, and how\\nexactly his wound looked like when I went to inspect it. She began\\nto laugh hysterically. I wanted her to cry, and she dared laugh\\nstraight in my face instead ! So I told her how my pal had made a\\nmincemeat of the two Arabs who were preparing the Molotov\\ncocktails. He shot them down, hitting them beautifully, exactly as\\nthey deserved. One bullet had set a Molotov cocktail on fire, with\\nthe effect that the Arab was burning all over, just beautifully. I\\nwas delighted to see it. My pal fired three bullets, two at the\\nArab with the Molotov cocktail, and the third at his chum. It hit\\nhim straight in his ass. We both felt that we\\'d pulled off\\nsomething.\\n\\nNext I told my mother how another pal of mine split open the guts\\nin the belly of another Arab and how all of us ran toward that\\nspot to take a look. I reached the spot first. And then that Arab,\\nblood gushing forth from his body, spits at me. I yelled: \\'Shut\\nup\\' and he dared talk back to me in Hebrew! So I just laughed\\nstraight in his face. I am usually laughing when I stare at\\nsomething convulsing right before my eyes. Then I told him: \\'All\\nright, wait a moment\\'. I left him in order to take a look at\\nanother wounded Arab. I asked a soldier if that Arab could be\\nsaved, if the bleeding from his artery could be stopped with the\\nhelp of a stone of something else like that. I keep telling all\\nthis to my mother, with details, and she keeps laughing straight\\ninto my face. This infuriated me. I got very angry, because I felt\\nI was becoming mad. So I stopped eating, seized the plate with he\\nomelette and some trimmings still on, and at once threw it over\\nher head. Only then she stopped laughing. At first she didn\\'t know\\nwhat to say.\\n\\n(...) But I must tell you of a still other madness which falls\\nupon us frequently. I went with a friend to practice shooting on a\\nfield. A gull appeared right in the middle of the field. My friend\\nshot it at once. Then we noticed four deer standing high up on the\\nhill above us. My friend at once aimed at one of them and shot it.\\nWe enjoyed the sight of it falling down the rock. We shot down two\\ndeer more and went to take a look. When we climbed the rocks we\\nsaw a young deer, badly wounded by our bullet, but still trying to\\nsuch some milk from its already dead mother. We carefully\\ninspected two paths, covered by blood and chunks of torn flesh of\\nthe two deer we had hit. We were just delighted by that sight. We\\nhad hit\\'em so good ! Then we decided to kill the young deer too,\\nso as spare it further suffering. I approached, took out my\\nrevolver and shot him in the head several times from a very short\\ndistance. When you shoot straight at the head you actually see the\\nbullets sinking in. But my fifth bullet made its brains fall\\noutside onto the ground, with the effect of splattering lots of\\nblood straight on us. This made us feel cured of the spurt of our\\nmadness. Standing there soaked with blood, we felt we were like\\nbeasts of prey. We couldn\\'t explain what had happened to us. We\\nwere almost in tears while walking down from that hill, and we\\nfelt the whole day very badly.\\n\\n(...) We always go back to places we carried out assignments in.\\nThis is why we can see them. When you see a guy you disabled, may\\nbe for the rest of his life, you feel you got power. You feel\\nGodlike of sorts.\"\\n\\n(...) Both Danny and Dudu contemplate at least at this moment\\nstudying the acting. Dudu is not willing to work in any\\nsecurity-linked occupation. Danny feels the exact opposite. \\'Why\\nshouldn\\'t I take advantage of the skills I have mastered so well ?\\nWhy shouldn\\'t I earn $3.000 for each chopped head I would deliver\\nwhile being a mercenary in South Africa ? This kind of job suits\\nme perfectly. I have no human emotions any more. If I get a\\nreasonable salary I will have no problem to board a plane to\\nBosnia in order to fight there.\"\\n\\nTransl. by Israel Shahak.\\n\\n',\n", + " \"Subject: Re: Americans and Evolution\\nFrom: rfox@charlie.usd.edu (Rich Fox, Univ of South Dakota)\\nReply-To: rfox@charlie.usd.edu\\nOrganization: The University of South Dakota Computer Science Dept.\\nNntp-Posting-Host: charlie\\nLines: 26\\n\\nIn article <1pik3i$1l4@fido.asd.sgi.com>, livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>In article , bil@okcforum.osrhe.edu (Bill Conner) writes:\\n>|>\\n>|> \\n>|> Why do you spend so much time posting here if your atheism is so\\n>|> incidental, if the question of God is trivial? Fess up, it matters to\\n>|> you a great deal.\\n>\\n>Ask yourself two questions.\\n>\\n>\\t1. How important is Mithras in your life today?\\n>\\n>\\t2. How important would Mithras become if there was a\\n>\\t well funded group of fanatics trying to get the\\n>\\t schools system to teach your children that Mithras\\n>\\t was the one true God?\\n>\\n>jon.\\n\\nRight on, Jon! Who cares who or whose, as long as it works for the individual.\\nBut don't try to impose those beliefs on us or our children. I would add the\\nwell-funded group tries also to purge science, to deny children access to great\\nwonders and skills. And how about the kids born to creationists? What a\\nburden with which to begin adult life. It must be a cruel awakening for those\\nwho finally see the light, provided it is possible to escape from the depths of\\nthis type of ignorance.\\n\",\n", + " 'From: kempmp@phoenix.oulu.fi (Petri Pihko)\\nSubject: Re: Idle questions for fellow atheists\\nOrganization: University of Oulu, Finland\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 59\\n\\nacooper@mac.cc.macalstr.edu wrote:\\n \\n: I wonder how many atheists out there care to speculate on the face of\\n: the world if atheists were the majority rather than the minority group\\n: of the population. \\n\\nI\\'ve been thinking about this every now and then since I cut my ties\\nwith Christianity. It is surprising to note that a large majority of\\npeople, at least in Finland, seem to be apatheists - even though\\n90 % of the population are members of the Lutheran Church of Finland,\\nreligious people are actually a minority. \\n\\nCould it be possible that many people believe in god \"just in case\"?\\nIt seems people do not want to seek the truth; they fall prey to Pascal\\'s\\nWager or other poor arguments. A small minority of those who do believe\\nreads the Bible regularly. The majority doesn\\'t care - it believes,\\nbut doesn\\'t know what or how. \\n\\nPeople don\\'t usually allow their beliefs to change their lifestyle,\\nthey only want to keep the virtual gate open. A Christian would say\\nthat they are not \"born in the Spirit\", but this does not disturb them.\\nReligion is not something to think about. \\n\\nI\\'m afraid a society with a true atheist majority is an impossible\\ndream. Religions have a strong appeal to people, nevertheless - \\na promise of life after death is something humans eagerly listen to.\\nCoupled with threats of eternal torture and the idea that our\\nmorality is under constant scrutiny of some cosmic cop, too many\\npeople take the poison with a smile. Or just pretend to swallow\\n(and unconsciously hope god wouldn\\'t notice ;-) )\\n\\n: Also, how many atheists out there would actually take the stance and accor a\\n: higher value to their way of thinking over the theistic way of thinking. The\\n: typical selfish argument would be that both lines of thinking evolved from the\\n: same inherent motivation, so one is not, intrinsically, different from the\\n: other, qualitatively. But then again a measuring stick must be drawn\\n: somewhere, and if we cannot assign value to a system of beliefs at its core,\\n: than the only other alternative is to apply it to its periphery; ie, how it\\n: expresses its own selfishness.\\n\\nIf logic and reason are valued, then I would claim that atheistic thinking\\nis of higher value than the theistic exposition. Theists make unnecessary\\nassumptions they believe in - I\\'ve yet to see good reasons to believe\\nin gods, or to take a leap of faith at all. A revelation would do.\\n\\nHowever, why do we value logic and reasoning? This questions bears\\nsome resemblance to a long-disputed problem in science: why mathematics\\nworks? Strong deep structuralists, like Atkins, have proposed that\\nperhaps, after all, everything _is_ mathematics. \\n\\nIs usefulness any criterion?\\n\\nPetri\\n\\n--\\n ___. .\\'*\\'\\'.* Petri Pihko kem-pmp@ Mathematics is the Truth.\\n!___.\\'* \\'.\\'*\\' \\' . Pihatie 15 C finou.oulu.fi Physics is the Rule of\\n \\' *\\' .* \\'* SF-90650 OULU kempmp@ the Game.\\n *\\' * .* FINLAND phoenix.oulu.fi -> Chemistry is The Game.\\n',\n", + " 'From: perlman@qso.Colorado.EDU (Eric S. Perlman)\\nSubject: Re: Final Solution for Gaza ?\\nSummary: Davidsson can\\'t even get the most basic facts right.\\nNntp-Posting-Host: qso.colorado.edu\\nOrganization: University of Colorado, Boulder\\nLines: 27\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n>\\n>[...]\\n>The Gaza strip, this tiny area of land with the highest population\\n>density in the world, has been cut off from the world for weeks.\\n>The Israeli occupier has decided to punish the whole population of\\n>Gaza, some 700.000 people, by denying them the right to leave the\\n>strip and seek work in Israel.\\n\\nAnyone who can repeate this choice piece of tripe without checking\\nhis/her sources does not deserve to be believed. The Gaza strip does\\nnot possess the highest population density in the world. In fact, it\\nisn\\'t even close. Just one example will serve to illustrate the folly\\nof this statement: the city of Hong Kong has nearly ten times the\\npopulation of the Gaza strip in a roughly comparable land area. The\\ncenters of numerous cities also possess comparable, if not far higher,\\npopulation densities. Examples include Manhattan Island (NY City), Sao\\nPaolo, Ciudad de Mexico, Bombay,... \\n\\nNeed I go on? The rest of Mr. Davidsson\\'s message is no closer to the\\ntruth than this oft-repeated statement is.\\n\\n-- \\n\"How sad to see/A model of decorum and tranquillity/become like any other sport\\nA battleground for rival ideologies to slug it out with glee.\" -Tim Rice,\"Chess\"\\n Eric S. Perlman \\t\\t\\t\\t \\n Center for Astrophysics and Space Astronomy, University of Colorado, Boulder\\n',\n", + " 'From: ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed)\\nSubject: Re: Desertification of the Negev\\nOriginator: ahmeda@ice.mcrcim.mcgill.edu\\nNntp-Posting-Host: ice.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 23\\n\\n\\nIn article <1993Apr26.021105.25642@cs.brown.edu>, dzk@cs.brown.edu (Danny Keren) writes:\\n|> This is nonsense. I lived in the Negev for many years and I can say\\n|> for sure that no Beduins were \"moved\" or harmed in any way. On the\\n|> contrary, their standard of living has climbed sharply; many of them\\n|> now live in rather nice, permanent houses, and own cars. There are\\n|> quite a few Beduin students in the Ben-Gurion university. There are\\n|> good, friendly relations between them and the rest of the population.\\n|> \\n|> All the Beduins I met would be rather surprised to read Mr. Davidson\\'s\\n|> poster, I have to say.\\n|> \\n|> -Danny Keren.\\n|> \\n\\nIt is nonsense, Danny, if you can refute it with proof. If you are citing your\\nexperience then you should have been there in the 1940\\'s (the article is\\ncomparing the condition then with that now).\\n\\nOtherwise, it is you who is trying to change the facts.\\n\\n-Ahmed.\\n',\n", + " \"From: lm001@rrz.Uni-Koeln.DE (Erwin H. Keeve)\\nSubject: Polygon Reduction for Marching Cubes\\nOrganization: Regional Computing Center, University of Cologne\\nLines: 36\\nDistribution: world\\nNNTP-Posting-Host: rs1.rrz.uni-koeln.de\\nKeywords: Polygon Reduction, Marching Cubes, Surfaces, Midical Visualisation\\n\\n\\nDear Reader,\\n\\n\\nI'am searching for an implementation of a polygon reduction algorithm\\nfor marching cubes surfaces. I think the best one is the reduction algorithm\\nfrom Schroeder et al., SIGGRAPH '92. So, is there any implementation of this \\nalgorithm, it would be very nice if you could leave it to me.\\n\\nAlso I'am looking for a fast !!! connectivity\\ntest for marching cubes surfaces.\\n\\nAny help or hints will be very useful.\\nThanks a lot\\n\\n\\n ,,,\\n (o o)\\n ___________________________________________oOO__(-)__OOo_____________\\n|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|_|\\n|_|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|\\n| | |\\n| Erwin Keeve | adress: Peter-Welter-Platz 2 |\\n| | W-5000 Cologne 1, Germany |\\n| | |\\n| Dept. of Computergraphics & | phone: +49-221-20189-132 (-192) |\\n| Computeranimation | FAX: +49-221-20189-17 |\\n| | |\\n| Academy of Media Arts Cologne | Email: keeve@khm.uni-koeln.de |\\n|_______________________________|_____________________________________|\\n\\n\\n\\n\\n\\n\\n\",\n", + " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 36\\n\\nIn article <93332@hydra.gatech.EDU> gt1091a@prism.gatech.EDU (gt1091a gt1091a\\nKAAN,TIMUCIN) wrote:\\n\\n[KAAN] Who the hell is this guy David Davidian. I think he talks too much..\\n\\nI am your alter-ego!\\n\\n[KAAN] Yo , DAVID you would better shut the f... up.. O.K ??\\n\\nNo, its\\' not OK! What are you going to do? Come and get me? \\n\\n[KAAN] I don\\'t like your attitute. You are full of lies and shit. \\n\\nIn the United States we refer to it as Freedom of Speech. If you don\\'t like \\nwhat I write either prove me wrong, shut up, or simply fade away! \\n\\n[KAAN] Didn\\'t you hear the saying \"DON\\'T MESS WITH A TURC!!\"...\\n\\nNo. Why do you ask? What are you going to do? Are you going to submit me to\\nbodily harm? Are you going to kill me? Are you going to torture me?\\n\\n[KAAN] See ya in hell..\\n\\nWrong again!\\n\\n[KAAN] Timucin.\\n\\nAll I did was to translate a few lines from Turkish into English. If it was\\nso embarrassing in Turkish, it shouldn\\'t have been written in the first place!\\nDon\\'t kill the messenger!\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", + " \"From: szabo@techbook.com (Nick Szabo)\\nSubject: SSF Redesign: Constellation\\nSummary: decentralize & automate functions\\nKeywords: space station, constellation\\nArticle-I.D.: techbook.C51z6E.CL1\\nOrganization: TECHbooks --- Public Access UNIX --- (503) 220-0636\\nLines: 89\\n\\nSSF is up for redesign again. Let's do it right this\\ntime! Let's step back and consider the functionality we want:\\n\\n[1] microgravity/vacuum process research\\n[2] life sciences research (adaptation to space)\\n[3] spacecraft maintenence \\n\\nThe old NASA approach, explified by Shuttle and SSF so far, was to\\ncentralize functionality. These projects failed to meet\\ntheir targets by a wide margin: the military and commercial users \\ntook most of their payloads off Shuttle after wasting much effort to \\ntie their payloads to it, and SSF has crumbled into disorganization\\nand miscommunication. Over $50 billion has been spent on these\\ntwo projects with no reduction in launch costs and littel improvement\\nin commercial space industrialization. Meanwhile, military and commercial \\nusers have come up with a superior strategy for space development: the \\nconstellation. \\n\\nFirstly, different functions are broken down into different \\nconstellations placed in the optimal orbit for each function:\\nthus we have the GPS/Navstar constellation in 12-hour orbits,\\ncomsats in Clarke and Molniya orbits, etc. Secondly, the task\\nis distributed amongst several spacecraft in a constellation,\\nproviding for redundancy and full coverage where needed.\\n\\nSSF's 3 main functions require quite different environments\\nand are also prime candidates for constellization.\\n\\n[1] We have the makings of a microgravity constellation now:\\nCOMET and Mir for long-duration flights, Shuttle/Spacelab for\\nshort-duration flights. The best strategy for this area is\\ninexpensive, incremental improvement: installation of U.S. facilities \\non Mir, Shuttle/Mir linkup, and transition from Shuttle/Spacelab\\nto a much less expensive SSTO/Spacehab/COMET or SSTO/SIF/COMET.\\nWe might also expand the research program to take advantage of \\ninteresting space environments, eg the high-radiation Van Allen belt \\nor gas/plasma gradients in comet tails. The COMET system can\\nbe much more easily retrofitted for these tasks, where a \\nstation is too large to affordably launch beyond LEO.\\n\\n[2] We need to study life sciences not just in microgravity,\\nbut also in lunar and Martian gravities, and in the radiation\\nenvironments of deep space instead of the protected shelter\\nof LEO. This is a very long-term, low-priority project, since\\nastronauts will have little practical use in the space program\\nuntil costs come down orders of magnitude. Furthermore, using\\nastronauts severely restricts the scope of the investigation,\\nand the sample size. So I propose LabRatSat, a constellation\\ntether-bolo satellites that test out various levels of gravity\\nin super-Van-Allen-Belt orbits that are representative of the\\nradiation environment encountered on Earth-Moon, Earth-Mars,\\nEarth-asteroid, etc. trips. The miniaturized life support\\nmachinery might be operated real-time from earth thru a VR\\ninterface. AFter several orbital missions have been flown,\\nfollow-ons can act as LDEFs on the lunar and Martian surface,\\ntesting out the actual environment at low cost before $billions\\nare spent on astronauts.\\n\\n[3] By far the largest market for spacecraft servicing is in \\nClarke orbit. I propose a fleet of small teleoperated\\nrobots and small test satellites on which ground engineers can\\npractice their skills. Once in place, robots can pry stuck\\nsolar arrays and antennas, attach solar battery power packs,\\ninject fuel, etc. Once the fleet is working, it can be\\nspun off to commercial company(s) who can work with the comsat\\ncompanies to develop comsat replaceable module standards.\\n\\nBy applying the successful constellation strategy, and getting\\nrid of the failed centralized strategy of STS and old SSF, we\\nhave radically improved the capability of the program while\\ngreatly cutting its cost. For a fraction of SSF's pricetag,\\nwe can fix satellites where the satellites are, we can study\\nlife's adaptation to a much large & more representative variety \\nof space environments, and we can do microgravity and vacuum\\nresearch inexpensively and, if needed, in special-purpose\\norbits.\\n\\nN.B., we can apply the constellation strategy to space exploration\\nas well, greatly cutting its cost and increasing its functionality. \\nMars Network and Artemis are two good examples of this; more ambitiously \\nwe can set up a network of native propellant plants on Mars that can be used\\nto fuel planet-wide rover/ballistic hopper prospecting and\\nsample return. The descendants of LabRatSat's technology can\\nbe used as a Mars surface LDEF and to test out closed-ecology\\ngreenhouses on Mars at low cost.\\n\\n\\n-- \\nNick Szabo\\t\\t\\t\\t\\t szabo@techboook.com\\n\",\n", + " 'From: jennise@opus.dgi.com (Milady Printcap the goddess of peripherals)\\nSubject: RE: Looking for a little research help\\nOrganization: Dynamic Graphics Inc.\\nLines: 6\\nDistribution: usa\\nNNTP-Posting-Host: opus.dgi.com\\n\\nFound it! Thanks. I got several offers for help. I appreciate it and\\nwill be contacting those people via e-mail.\\n\\nThanks again...\\n\\njennise\\n',\n", + " \"From: nraclaw@jade.tufts.edu (Nissan Raclaw)\\nSubject: Re: Go Hezbollah!!\\nOrganization: Tufts University - Medford, MA\\nLines: 13\\n\\nCongratulations also are due to the Hamas activists who blew up the \\nWorld Trade Center, no? After all, with every American that they put\\n\\nin the grave they are underlining the USA's bankrupt imperialist\\npolicies. Go HAmas!\\n\\nBlah blah blah blah blah\\n\\nBrad, you are only asking that that violence that you love so much\\ncome back to haunt you...............\\n\\nNissan\\n\\n\",\n", + " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Protective gear\\nOrganization: University College of Wales, Aberystwyth\\nLines: 19\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\nIn article <1993Apr3.200829.2207@galaxy.gov.bc.ca> bclarke@galaxy.gov.bc.ca writes:\\n>In article , maven@eskimo.com (Norman Hamer) writes:\\n>> What protective gear is the most important? I've got a good helmet (shoei\\n>> rf200) and a good, thick jacket (leather gold) and a pair of really cheap\\n>> leather gloves... What should my next purchase be? Better gloves, boots,\\n>> leather pants, what?\\n\\nIF you can remember to tuck properly, the bits that are going to take most \\npunishment with the gear you have will probably be your feet, then hips and \\nknees. Get boots then trousers. The gloves come last, as long as you've the \\nself control to pull your arms in when you tuck. If not, get good gloves \\nfirst - Hands are VERY easily wrecked if you put one down to steady your \\nfall at 70mph!! The other bits heal easier.\\n\\nOnce you are fully covered, you no longer tuck, just lie back and enjoy the \\nride.\\n\\nBest of all, take a mean of all the contradictory answers you get.\\n\",\n", + " 'From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: note to Bobby M.\\nLines: 52\\nOrganization: Walla Walla College\\nLines: 52\\n\\nIn article <1993Apr14.190904.21222@daffy.cs.wisc.edu> mccullou@snake2.cs.wisc.edu (Mark McCullough) writes:\\n>From: mccullou@snake2.cs.wisc.edu (Mark McCullough)\\n>Subject: Re: note to Bobby M.\\n>Date: Wed, 14 Apr 1993 19:09:04 GMT\\n>In article <1993Apr14.131548.15938@monu6.cc.monash.edu.au> darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n>>In madhaus@netcom.com (Maddi Hausmann) writes:\\n>>\\n>>>Mark, how much do you *REALLY* know about vegetarian diets?\\n>>>The problem is not \"some\" B-vitamins, it\\'s balancing proteins. \\n>>>There is also one vitamin that cannot be obtained from non-animal\\n>>>products, and this is only of concern to VEGANS, who eat no\\n>>>meat, dairy, or eggs. I believe it is B12, and it is the only\\n>>>problem. Supplements are available for vegans; yes, the B12\\n>>>does come from animal by-products. If you are on an ovo-lacto\\n>>>vegetarian diet (eat dairy and eggs) this is not an issue.\\n>\\n>I didn\\'t see the original posting, but...\\n>Yes, I do know about vegetarian diets, considering that several of my\\n>close friends are devout vegetarians, and have to take vitamin supplements.\\n>B12 was one of the ones I was thinking of, it has been a long time since\\n>I read the article I once saw talking about the special dietary needs\\n>of vegetarians so I didn\\'t quote full numbers. (Considering how nice\\n>this place is. ;)\\n>\\n>>B12 can also come from whole-grain rice, I understand. Some brands here\\n>>in Australia (and other places too, I\\'m sure) get the B12 in the B12\\n>>tablets from whole-grain rice.\\n>\\n>Are you sure those aren\\'t an enriched type? I know it is basically\\n>rice and soybeans to get almost everything you need, but I hadn\\'t heard\\n>of any rice having B12. \\n>\\n>>Just thought I\\'d contribute on a different issue from the norm :)\\n>\\n>You should have contributed to the programming thread earlier. :)\\n>\\n>> Fred Rice\\n>> darice@yoyo.cc.monash.edu.au \\n>\\n>M^2\\n>\\nIf one is a vegan (a vegetarian taht eats no animal products at at i.e eggs, \\nmilk, cheese, etc., after about 3 years of a vegan diet, you need to start \\ntaking B12 supplements because b12 is found only in animals.) Acutally our \\nbodies make B12, I think, but our bodies use up our own B12 after 2 or 3 \\nyears. \\nLacto-oveo vegetarians, like myself, still get B12 through milk products \\nand eggs, so we don\\'t need supplements.\\nAnd If anyone knows more, PLEASE post it. I\\'m nearly contridicting myself \\nwith the mish-mash of knowledge I\\'ve gleaned.\\n\\nTammy\\n',\n", + " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Solar Sail Data\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 56\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article <1993Apr15.051746.29848@news.duc.auburn.edu>, snydefj@eng.auburn.edu (Frank J. Snyder) writes:\\n> I am looking for any information concerning projects involving Solar\\n> Sails. [...]\\n> Are there any groups out there currently involved in such a project ?\\n\\nSure. Contact the World Space Foundation. They\\'re listed in the sci.space\\nFrequently Asked Questions file, which I\\'ll excerpt.\\n\\n WORLD SPACE FOUNDATION - has been designing and building a solar-sail\\n spacecraft for longer than any similar group; many JPL employees lend\\n their talents to this project. WSF also provides partial funding for the\\n Palomar Sky Survey, an extremely successful search for near-Earth\\n asteroids. Publishes *Foundation News* and *Foundation Astronautics\\n Notebook*, each a quarterly 4-8 page newsletter. Contributing Associate,\\n minimum of $15/year (but more money always welcome to support projects).\\n\\n\\tWorld Space Foundation\\n\\tPost Office Box Y\\n\\tSouth Pasadena, California 91301\\n\\nWSF put together a little paperback anthology of fiction and\\nnonfiction about solar sails: *Project Solar Sail*. I think Robert\\nStaehle, David Brin, or Arthur Clarke may be listed as editor.\\n\\nAlso there is a nontechnical book on solar sailing by Louis Friedman,\\na technical one by a guy whose name escapes me (help me out, Josh),\\nand I would expect that Greg Matloff and Eugene Mallove have something\\nto say about the subject in *The Starflight Handbook*, as well as\\nquite a few references.\\n\\n\\nCheck the following articles in *Journal of the British Interplanetary\\nSociety*:\\n\\nV36 p. 201-209 (1983)\\nV36 p. 483-489 (1983)\\nV37 p. 135-141 (1984)\\nV37 p. 491-494 (1984)\\nV38 p. 113-119 (1984)\\nV38 p. 133-136 (1984)\\n\\n(Can you guess that Matloff visited Fermilab and gave me a bunch of\\nreprints? I just found the file.)\\n\\nAnd K. Eric Drexler\\'s paper \"High Performance Solar Sails and Related\\nReflecting Devices,\" AIAA paper 79-1418, probably in a book called\\n*Space Manufacturing*, maybe the proceedings of the Second (?)\\nConference on Space Manufacturing. The 1979 one, at any rate.\\n\\nSubmarines, flying boats, robots, talking Bill Higgins\\npictures, radio, television, bouncing radar Fermilab\\nvibrations off the moon, rocket ships, and HIGGINS@FNAL.BITNET\\natom-splitting-- all in our time. But nobody HIGGINS@FNAL.FNAL.GOV\\nhas yet been able to figure out a music SPAN: 43011::HIGGINS\\nholder for a marching piccolo player. \\n --Meredith Willson, 1948\\n',\n", + " 'Organization: Ryerson Polytechnical Institute\\nFrom: Mike Mychalkiw \\nSubject: Re: Cobra Locks\\nDistribution: usa\\nLines: 33\\n\\nGreetings netters,\\n\\nSteve writes ... \\n\\nWell I have the mother of all locks. On Friday the 16th of April I took\\npossesion of a 12\\' Cobra Links lock, 1\" diameter. This was a special order.\\n\\nI weighs a lot. I had to carry it home and it was digging into my shoulder\\nafter about two blocks.\\n\\nI have currently a Kryptonite Rock Lock through the front wheel, a HD\\npadlock for the steering lock, a Master padlock to lock the cover to two\\nfront spokes, and the Cobra Links through the rear swing arm and around a\\npost in an underground parking garage.\\n\\nNext Friday the 30th I have an appointment to have an alarm installed on\\nme bike.\\n\\nWhen I travel the Cobra Links and the cover and padlock stay at home.\\n\\nBy the way. I also removed the plastic mesh that is on the Cobra Links\\nand encased the lock from end to end using bicycle inner tubes (two of\\nthem) I got the from bicycle dealer that sold me the Cobra Links. The\\nguys were really great and didn\\'t mark up the price of the lock much\\nand the inner tubes were free.\\n\\nLater.\\n\\n-------------------------------------------------------------------------------\\n1992 FXSTC Rock \\'N Roll Mike Mychalkiw\\nHOG Ryerson Polytechnical Institute -\\nDoD #665 Just THIS side of HELL. Academic Computing Information Centre\\ndoh #0000000667 Just the OTHER side. EMAIL : ACAD8059@RYEVM.RYERSON.CA\\n',\n", + " 'From: Dave Dal Farra \\nSubject: Re: Eating and Riding was Re: Drinking and Riding\\nX-Xxdate: Tue, 6 Apr 93 15:22:03 GMT\\nNntp-Posting-Host: bcarm41a\\nOrganization: BNR Ltd.\\nX-Useragent: Nuntius v1.1.1d9\\nLines: 30\\n\\nIn article Paul Nakada,\\npnakada@oracle.com writes:\\n>\\n>What\\'s the feeling about eating and riding? I went out riding this\\n>weekend, and got a little carried away with some pecan pie. The whole\\n>ride back I felt sluggish. I was certainly much more alert on the\\n>ride in. I\\'m sure others have the same feeling, but the strangest\\n>thing is that eating is usually the turnaround point of weekend rides.\\n>\\n>From now on, a little snack will do. I\\'d much rather have a get that\\n>full/sluggish feeling closer to home.\\n>\\n>-Paul\\n>--\\n>Paul Nakada | Oracle Corporation | pnakada@oracle.com\\n>DoD #7773 | \\'91 R100C | \\'90 K75S\\n>\\n\\nTo maintain my senses at their sharpest, I never eat a full meal\\nwithin 24 hrs of a ride. I\\'ve tried Slim Fast Lite before a \\nride but found that my lap times around the Parliament Buildings suffered \\n0.1 secs. The resultant 70 pound weight loss over the summer\\njust sharpens my bike\\'s handling and I can always look\\nforward to a winter of carbo-loading.\\n\\nObligatory 8:)\\n\\nDave D.F.\\n\"It\\'s true they say that money talks. When mine spoke it said\\n\\'Buy me a Drink!\\'.\"\\n',\n", + " 'From: wcd82671@uxa.cso.uiuc.edu (daniel warren c)\\nSubject: Hard Copy --- Hot Pursuit!!!!\\nSummary: SHIT!!!!!!!\\nKeywords: Running from the Police.\\nArticle-I.D.: news.C5J34y.2t4\\nDistribution: rec.motorcycles\\nOrganization: University of Illinois at Urbana\\nLines: 44\\n\\n\\nYo, did anybody see this run of HARD COPY?\\n\\nI guy on a 600 Katana got pulled over by the Police (I guess for\\nspeeding or something). But just as the cop was about to step\\nout of the car, the dude punches it down an interstate in Georgia.\\nAng then, the cop gives chase.\\n\\nNow this was an interesting episode because it was all videotaped!!!\\nEverything from the dramatic takeoff and 135mph chase to the sidestreet\\nbattle at about 100mph. What happened at the end? The guy (who is\\nbeing relentless chased down box the cage with the disco lights)\\nslows a couple of times to taunt the cop. After blowing a few stop\\nsigns and making car jump to the side, he goes up a dead end street.\\n\\nThe Kat, although not the latest machine, is still a high performance\\nmachine and he slams on the brakes. Of couse, we all know that cages,\\nespecially the ones with the disco lights, can\\'t stop as fast as our\\nhigh performance machines. So what happens?... The cage plows into the\\nKat.\\n\\nLuckily for this dude, he was wearing a helmet and was not hurt. But\\ndude, how crazy can you get!?! Yeah, we\\'ve all went out and played\\ncat and mouse with our friends but, with a cop!!???!!! How crazy can\\nyou get!?!?! It took just one look at a ZX-7 who tried this crap\\nto convince me not to try any shit like that. (Although the dude\\ncollided with a car head on at 140 mph, the Kawasaki team colors\\nstill looked good!!! Just a few scratches, like no front end....\\n3 inch long engine and other \"minor\" scratches...)\\n\\nIf you guys are out there, please, slow it down. I not being\\nan advocate for the cages (especially the ones that make that \\nannoying ass noises...), but just think... The next time you\\npunched it (whether you have an all mighty ZX-11 or a \"I can\\ndo it\" 250 Ninja), just remember, a kid could step out at any \\ntime.\\n\\nPeace & ride (kinda) safe.\\n\\nWarren -- \"Have Suzuki, Will travel...\"\\nWCD82671@uxa.cso.uiuc.edu\\n\\n\"What\\'s the big deal about riding one of these. I\\'m only going...\\n95!?!?!\" - Annie (Robotech)\\n',\n", + " 'From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 30\\n\\nIn article <1993Apr25.182253.1449@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>\\tI don\\'t know where you guys are from but in America\\n>such attempts to curtail someones first amendment rights are\\n>not appreciated. Here, we let everyone speak their mind\\n>regardless of how we feel about it. Take your fascistic\\n>repressive ideals back to where you came from.\\n\\n\\nHey tough guy, freedom necessitates responsibility, and\\nno freedom is absolute. \\nBTW, to anyone who defends Arafat, read on:\\n\\n\"Open fire on the new Jewish immigrants, be they from the Soviet\\nUnion, Ethiopia or anywhere else....I give you my instructions to\\nuse violence against the immigrants. I willjail anyone who\\nrefuses to do this.\"\\n\\t\\t\\t\\tYassir Arafat, Al-Muharar, 4/10/90\\n\\nAt least he\\'s not racist!\\nJust anti-Jewish\\n\\n\\nPete\\n\\n\\n\\n\\n\\n\\n',\n", + " 'From: dchien@hougen.seas.ucla.edu (David H. Chien)\\nSubject: Orbit data - help needed\\nOrganization: SEASnet, University of California, Los Angeles\\nLines: 43\\n\\nI have the \"osculating elements at perigee\" of an orbit, which I need\\nto convert to something useful, preferably distance from the earth\\nin evenly spaced time intervals. A GSM coordinate system is preferable,\\nbut I convert from other systems. C, pascal, or fortran code, or\\nif you can point me to a book or something that\\'d be great.\\n\\nhere\\'s the first few lines of the file.\\n\\n0 ()\\n1 (2X, A3, 7X, A30)\\n2 (2X, I5, 2X, A3, 2X, E24.18)\\n3 (4X, A3, 7X, E24.18)\\n1 SMA SEMI-MAJOR AXIS\\n1 ECC ECCENTRICITY\\n1 INC INCLINATION\\n1 OMG RA OF ASCENDING NODE\\n1 POM ARGUMENT OF PERICENTRE\\n1 TRA TRUE ANOMALY\\n1 HAP APOCENTRE HEIGHT\\n1 HPE PERICENTRE HEIGHT\\n2 3 BEG 0.167290000000000000E+05\\n3 SMA 0.829159999999995925E+05\\n3 ECC 0.692307999999998591E+00\\n3 INC 0.899999999999999858E+02\\n3 OMG 0.184369999999999994E+03\\n3 POM 0.336549999999999955E+03\\n3 TRA 0.359999999999999943E+03\\n3 HAP 0.133941270127999174E+06\\n3 HPE 0.191344498719999910E+05\\n2 1 REF 0.167317532658774153E+05\\n3 SMA 0.829125167527418671E+05\\n3 ECC 0.691472268118590319E+00\\n3 INC 0.899596754214342091E+02\\n3 OMG 0.184377521828175002E+03\\n3 POM 0.336683788851850579E+03\\n3 TRA 0.153847166458030088E-05\\n3 HAP 0.133866082767180880E+06\\n3 HPE 0.192026707383028306E+05\\n\\nThanks in advance,\\n\\nlarry kepko\\nlkepko@igpp.ucla.edu\\n',\n", + " ' howland.reston.ans.net!europa.eng.gtefsd.com!uunet!mcsun!Germany.EU.net!news.dfn.de!tubsibr!dbstu1.rz.tu-bs.de!I3150101\\nSubject: Re: Gospel Dating\\nFrom: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nOrganization: Technical University Braunschweig, Germany\\nLines: 35\\n\\nIn article <66015@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n(Deletion)\\n>I cannot see any evidence for the V. B. which the cynics in this group would\\n>ever accept. As for the second, it is the foundation of the religion.\\n>Anyone who claims to have seen the risen Jesus (back in the 40 day period)\\n>is a believer, and therefore is discounted by those in this group; since\\n>these are all ancients anyway, one again to choose to dismiss the whole\\n>thing. The third is as much a metaphysical relationship as anything else--\\n>even those who agree to it have argued at length over what it *means*, so\\n>again I don\\'t see how evidence is possible.\\n>\\n \\nNo cookies, Charlie. The claims that Jesus have been seen are discredited\\nas extraordinary claims that don\\'t match their evidence. In this case, it\\nis for one that the gospels cannot even agree if it was Jesus who has been\\nseen. Further, there are zillions of other spook stories, and one would\\nhardly consider others even in a religious context to be some evidence of\\na resurrection.\\n \\nThere have been more elaborate arguments made, but it looks as if they have\\nnot passed your post filtering.\\n \\n \\n>I thus interpret the \"extraordinary claims\" claim as a statement that the\\n>speaker will not accept *any* evidence on the matter.\\n \\nIt is no evidence in the strict meaning. If there was actual evidence it would\\nprobably be part of it, but the says nothing about the claims.\\n \\n \\nCharlie, I have seen Invisible Pink Unicorns!\\nBy your standards we have evidence for IPUs now.\\n Benedikt\\n',\n", + " 'From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Ok, So I was a little hasty...\\nOrganization: Ontario Hydro - Research Division\\nLines: 17\\n\\nIn article speedy@engr.latech.edu (Speedy Mercer) writes:\\n>In article jnmoyne@lbl.gov (Jean-Noel Moyne) writes:\\n>> Ok, hold on a second and clarify something for me:\\n>\\n>> What does \"DWI\" stand for ? I thought it was \"DUI\" for Driving Under\\n>>Influence, so here what does W stand for ?\\n>\\n>Driving While Intoxicated.\\n>\\n>This was changed here in Louisiana when a girl went to court and won her \\n>case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\nHere it\\'s driving while impaired. That about covers everything.\\n\\nI\\'ve bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n',\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: FLAME and a Jewish home in Palestine\\nOrganization: The Department of Redundancy Department\\nLines: 41\\n\\nIn article maler@vercors.imag.fr (Oded Maler) writes:\\n>In article , jake@bony1.bony.com (Jake Livni) writes:\\n\\n>|> Typical Arabic thinking. If we are guilty of something, so is\\n>|> everyone else. Unfortunately for you, Nabil, Jewish tribes are not\\n>|> nearly as susceptible to the fratricidal murdering that is still so\\n>|> common among Arabs in the Middle East. There were no \" killings\\n>|> between the Jewish tribes on the way.\"\\n\\n>I don\\'t like this comment about \"Typical\" thinking. You could state\\n>your interpretation of Exodus without it. As I read Exodus I can see \\n>a lot of killing there, which is painted by the author of the bible\\n>in ideological/religious colors. The history in the desert can be seen\\n>as an ethos of any nomadic people occupying a land. That\\'s why I think\\n>it is a great book with which descendants Arabs, Turks and Mongols can \\n>unify as well.\\n\\nYou somehow missed Nabil\\'s comments, even though you included it in\\nyour followup: \\n\\n >The number which could have arrived to the Holy Lands must have been\\n >substantially less ude to the harsh desert and the killings between the\\n >Jewish tribes on the way..\\n\\nI am not aware of \"killings between Jewish tribes\" in the desert.\\n\\nThe point of \"typical thinking\" here is that while Arabs STILL TODAY\\nact in the manner you describe, like \"any nomadic people occupying a \\nland\", killing and plundering each other with regularity, others have\\nsomehow progressed over time. It is not surprising then that Arabs\\noften accuse others (infidels) of things that they are quite familiar\\nwith: civil rights violations, religious discrimination, ethnic\\ncleansing, land theft, torture and murder. It is precisely this \\nmechanism at work that leads people to say that Jewish tribes were\\nkilling each other in the desert, even without support for such a\\nludicrous suggestion.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " \"From: roell@informatik.tu-muenchen.de (Thomas Roell)\\nSubject: Re: 24 bit Graphics cards\\nIn-Reply-To: rjs002c@parsec.paradyne.com's message of Wed, 14 Apr 1993 21:59:34 GMT\\nOrganization: Inst. fuer Informatik, Technische Univ. Muenchen, Germany\\nLines: 20\\n\\n>I am looking for EISA or VESA local bus graphic cards that support at least \\n>1024x786x24 resolution. I know Matrox has one, but it is very\\n>expensive. All the other cards I know of, that support that\\n>resoultion, are striaght ISA. \\n\\nWhat about the ELSA WINNER4000 (S3 928, Bt485, 4MB, EISA), or the\\nMetheus Premier-4VL (S3 928, Bt485, 4MB, ISA/VL) ?\\n\\n>Also are there any X servers for a unix PC that support 24 bits?\\n\\nAs it just happens, SGCS has a Xserver (X386 1.4) that does\\n1024x768x24 on those cards. Please email to info@sgcs.com for more\\ndetails.\\n\\n- Thomas\\n--\\n-------------------------------------------------------------------------------\\nDas Reh springt hoch, \\t\\t\\t\\te-mail: roell@sgcs.com\\ndas Reh springt weit,\\t\\t\\t\\t#include \\nwas soll es tun, es hat ja Zeit ...\\n\",\n", + " \"From: M. Burnham \\nSubject: Re: How to act in front of traffic jerks\\nX-Xxdate: Thu, 15 Apr 93 16:39:59 GMT\\nNntp-Posting-Host: 130.57.72.65\\nOrganization: Novell Inc.\\nX-Useragent: Nuntius v1.1.1d12\\nLines: 16\\n\\nIn article Robert Mugele,\\nrmugele@oracle.com writes:\\n>Absolutely, unless you are in the U.S. Then the cager will pull a gun\\n>and blow you away.\\n\\nWell, I would guess the probability of a BMW driver having a gun would\\nbe lower than some other vehicles. At least, I would be more likely \\nto say something to someone in a luxosedan, than a hopped-up pickup\\ntruck, for example.\\n\\n- Mark\\n\\n------------------------------------------------------------------------\\nMark S. Burnham (markb@wc.novell.com) AMA#668966 DoD#0747 \\nAlfa Romeo GTV-6 '90 Ninja 750\\n------------------------------------------------------------------------\\n\",\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 09/15 - Mission Schedules\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 177\\nDistribution: world\\nExpires: 6 May 1993 19:59:07 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/schedule\\nLast-modified: $Date: 93/04/01 14:39:23 $\\n\\nSPACE SHUTTLE ANSWERS, LAUNCH SCHEDULES, TV COVERAGE\\n\\n SHUTTLE LAUNCHINGS AND LANDINGS; SCHEDULES AND HOW TO SEE THEM\\n\\n Shuttle operations are discussed in the Usenet group sci.space.shuttle,\\n and Ken Hollis (gandalf@pro-electric.cts.com) posts a compressed version\\n of the shuttle manifest (launch dates and other information)\\n periodically there. The manifest is also available from the Ames SPACE\\n archive in SPACE/FAQ/manifest. The portion of his manifest formerly\\n included in this FAQ has been removed; please refer to his posting or\\n the archived copy. For the most up to date information on upcoming\\n missions, call (407) 867-INFO (867-4636) at Kennedy Space Center.\\n\\n Official NASA shuttle status reports are posted to sci.space.news\\n frequently.\\n\\n\\n WHY DOES THE SHUTTLE ROLL JUST AFTER LIFTOFF?\\n\\n The following answer and translation are provided by Ken Jenks\\n (kjenks@gothamcity.jsc.nasa.gov).\\n\\n The \"Ascent Guidance and Flight Control Training Manual,\" ASC G&C 2102,\\n says:\\n\\n\\t\"During the vertical rise phase, the launch pad attitude is\\n\\tcommanded until an I-loaded V(rel) sufficient to assure launch tower\\n\\tclearance is achieved. Then, the tilt maneuver (roll program)\\n\\torients the vehicle to a heads down attitude required to generate a\\n\\tnegative q-alpha, which in turn alleviates structural loading. Other\\n\\tadvantages with this attitude are performance gain, decreased abort\\n\\tmaneuver complexity, improved S-band look angles, and crew view of\\n\\tthe horizon. The tilt maneuver is also required to start gaining\\n\\tdownrange velocity to achieve the main engine cutoff (MECO) target\\n\\tin second stage.\"\\n\\n This really is a good answer, but it\\'s couched in NASA jargon. I\\'ll try\\n to interpret.\\n\\n 1)\\tWe wait until the Shuttle clears the tower before rolling.\\n\\n 2)\\tThen, we roll the Shuttle around so that the angle of attack\\n\\tbetween the wind caused by passage through the atmosphere (the\\n\\t\"relative wind\") and the chord of the wings (the imaginary line\\n\\tbetween the leading edge and the trailing edge) is a slightly\\n\\tnegative angle (\"a negative q-alpha\").\\tThis causes a little bit of\\n\\t\"downward\" force (toward the belly of the Orbiter, or the +Z\\n\\tdirection) and this force \"alleviates structural loading.\"\\n\\tWe have to be careful about those wings -- they\\'re about the\\n\\tmost \"delicate\" part of the vehicle.\\n\\n 3)\\tThe new attitude (after the roll) also allows us to carry more\\n\\tmass to orbit, or to achieve a higher orbit with the same mass, or\\n\\tto change the orbit to a higher or lower inclination than would be\\n\\tthe case if we didn\\'t roll (\"performance gain\").\\n\\n 4)\\tThe new attitude allows the crew to fly a less complicated\\n\\tflight path if they had to execute one of the more dangerous abort\\n\\tmaneuvers, the Return To Launch Site (\"decreased abort maneuver\\n\\tcomplexity\").\\n\\n 5)\\tThe new attitude improves the ability for ground-based radio\\n\\tantennae to have a good line-of-sight signal with the S-band radio\\n\\tantennae on the Orbiter (\"improved S-band look angles\").\\n\\n 6)\\tThe new attitude allows the crew to see the horizon, which is a\\n\\thelpful (but not mandatory) part of piloting any flying machine.\\n\\n 7)\\tThe new attitude orients the Shuttle so that the body is\\n\\tmore nearly parallel with the ground, and the nose to the east\\n\\t(usually). This allows the thrust from the engines to add velocity\\n\\tin the correct direction to eventually achieve orbit. Remember:\\n\\tvelocity is a vector quantity made of both speed and direction.\\n\\tThe Shuttle has to have a large horizontal component to its\\n\\tvelocity and a very small vertical component to attain orbit.\\n\\n This all begs the question, \"Why isn\\'t the launch pad oriented to give\\n this nice attitude to begin with? Why does the Shuttle need to roll to\\n achieve that attitude?\" The answer is that the pads were leftovers\\n from the Apollo days. The Shuttle straddles two flame trenches -- one\\n for the Solid Rocket Motor exhaust, one for the Space Shuttle Main\\n Engine exhaust. (You can see the effects of this on any daytime\\n launch. The SRM exhaust is dirty gray garbage, and the SSME exhaust is\\n fluffy white steam. Watch for the difference between the \"top\"\\n [Orbiter side] and the \"bottom\" [External Tank side] of the stack.) The\\n access tower and other support and service structure are all oriented\\n basically the same way they were for the Saturn V\\'s. (A side note: the\\n Saturn V\\'s also had a roll program. Don\\'t ask me why -- I\\'m a Shuttle\\n guy.)\\n\\n I checked with a buddy in Ascent Dynamics.\\tHe added that the \"roll\\n maneuver\" is really a maneuver in all three axes: roll, pitch and yaw.\\n The roll component of that maneuver is performed for the reasons\\n stated. The pitch component controls loading on the wings by keeping\\n the angle of attack (q-alpha) within a tight tolerance. The yaw\\n component is used to determine the orbital inclination. The total\\n maneuver is really expressed as a \"quaternion,\" a grad-level-math\\n concept for combining all three rotation matrices in one four-element\\n array.\\n\\n\\n HOW TO RECEIVE THE NASA TV CHANNEL, NASA SELECT\\n\\n NASA SELECT is broadcast by satellite. If you have access to a satellite\\n dish, you can find SELECT on Satcom F2R, Transponder 13, C-Band, 72\\n degrees West Longitude, Audio 6.8, Frequency 3960 MHz. F2R is stationed\\n over the Atlantic, and is increasingly difficult to receive from\\n California and points west. During events of special interest (e.g.\\n shuttle missions), SELECT is sometimes broadcast on a second satellite\\n for these viewers.\\n\\n If you can\\'t get a satellite feed, some cable operators carry SELECT.\\n It\\'s worth asking if yours doesn\\'t.\\n\\n The SELECT schedule is found in the NASA Headline News which is\\n frequently posted to sci.space.news. Generally it carries press\\n conferences, briefings by NASA officials, and live coverage of shuttle\\n missions and planetary encounters. SELECT has recently begun carrying\\n much more secondary material (associated with SPACELINK) when missions\\n are not being covered.\\n\\n\\n AMATEUR RADIO FREQUENCIES FOR SHUTTLE MISSIONS\\n\\n The following are believed to rebroadcast space shuttle mission audio:\\n\\n\\tW6FXN - Los Angeles\\n\\tK6MF - Ames Research Center, Mountain View, California\\n\\tWA3NAN - Goddard Space Flight Center (GSFC), Greenbelt, Maryland.\\n\\tW5RRR - Johnson Space Center (JSC), Houston, Texas\\n\\tW6VIO - Jet Propulsion Laboratory (JPL), Pasadena, California.\\n\\tW1AW Voice Bulletins\\n\\n\\tStation VHF\\t 10m\\t 15m\\t 20m\\t 40m\\t 80m\\n\\t------\\t ------ ------ ------ ------ -----\\t-----\\n\\tW6FXN\\t 145.46\\n\\tK6MF\\t 145.585\\t\\t\\t 7.165\\t3.840\\n\\tWA3NAN\\t 147.45 28.650 21.395 14.295 7.185\\t3.860\\n\\tW5RRR\\t 146.64 28.400 21.350 14.280 7.227\\t3.850\\n\\tW6VIO\\t 224.04\\t\\t 21.340 14.270\\n\\tW6VIO\\t 224.04\\t\\t 21.280 14.282 7.165\\t3.840\\n\\tW1AW\\t\\t 28.590 21.390 14.290 7.290\\t3.990\\n\\n W5RRR transmits mission audio on 146.64, a special event station on the\\n other frequencies supplying Keplerian Elements and mission information.\\n\\n W1AW also transmits on 147.555, 18.160. No mission audio but they\\n transmit voice bulletins at 0245 and 0545 UTC.\\n\\n Frequencies in the 10-20m bands require USB and frequencies in the 40\\n and 80m bands LSB. Use FM for the VHF frequencies.\\n\\n [This item was most recently updated courtesy of Gary Morris\\n (g@telesoft.com, KK6YB, N5QWC)]\\n\\n\\n SOLID ROCKET BOOSTER FUEL COMPOSITION\\n\\n Reference: \"Shuttle Flight Operations Manual\" Volume 8B - Solid Rocket\\n Booster Systems, NASA Document JSC-12770\\n\\n Propellant Composition (percent)\\n\\n Ammonium perchlorate (oxidizer)\\t\\t\\t69.6\\n Aluminum\\t\\t\\t\\t\\t\\t16\\n Iron Oxide (burn rate catalyst)\\t\\t\\t0.4\\n Polybutadiene-acrilic acid-acrylonitrile (a rubber) 12.04\\n Epoxy curing agent\\t\\t\\t\\t\\t1.96\\n\\n End reference\\n\\n Comment: The aluminum, rubber, and epoxy all burn with the oxidizer.\\n\\nNEXT: FAQ #10/15 - Historical planetary probes\\n',\n", + " 'From: mdennie@xerox.com (Matt Dennie)\\nSubject: Re: Flashing anyone?\\nKeywords: flashing\\nOrganization: Xerox\\n\\nIn <1993Apr15.123539.2228@news.columbia.edu> rdc8@cunixf.cc.columbia.edu (Robert D Castro) writes:\\n\\n>Hello all,\\n\\n>On my bike I have hazard lights (both front and back turn signals\\n>flash). Since I live in NJ and commute to NYC there are a number of\\n>tolls one must pay on route. Just before arriving at a toll booth I\\n>switch the hazards on. I do thisto warn other motorists that I will\\n>be taking longer than the 2 1/2 seconds to make the transaction.\\n>Taking gloves off, getting money out of coin changer/pocket, making\\n>transaction, putting gloves back on takes a little more time than the\\n>average cager takes to make the same transaction of paying the toll.\\n>I also notice that when I do this cagers tend to get the message and\\n>usually go to another booth.\\n\\n>My question, is this a good/bad thing to do?\\n\\n>Any others tend to do the same?\\n\\n>Just curious\\n\\n>o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o>\\n> Rob Castro | email - rdc8@cunixf.cc.columbia.edu | Live for today\\n> 1983 KZ550LTD | phone - (212) 854-7617 | For today you live!\\n> DoD# NYC-1 | New York, New York, USA | RC (tm)\\n\\nBeleive it or not: NY state once considered eliminating tolls for motor-\\ncycles based simply on the fact that motos clog up toll booths. But then\\nMario realized the foolishness of trading a few hundred K $`s a year for\\nsome relief in traffic congestion.\\n\\nToo bad he won`t take that Sumpreme Court Justice job - I thought we might\\nbe rid of him forever.\\n--\\n--Matt Dennie Internet: mmd.wbst207v@xerox.com\\nXerox Corporation, Rochester, NY (USA)\\n\"Reaching consensus in a group often\\n is confused with finding the right answer.\" -- Norman Maier\\n',\n", + " 'From: ray@unisql.UUCP (Ray Shea)\\nSubject: Re: What is it with Cats and Dogs ???!\\nOrganization: UniSQL, Inc., Austin, Texas, USA\\nLines: 17\\n\\nIn article <1993Apr14.200933.15362@cbnewsj.cb.att.com> jimbes@cbnewsj.cb.att.com (james.bessette) writes:\\n>In article <6130328@hplsla.hp.com> kens@hplsla.hp.com (Ken Snyder) writes:\\n>>ps. I also heard from a dog breeder that the chains of bicycles and\\n>>motorcycles produced high frequency squeaks that dogs loved to chase.\\n>\\n>Ask the breeder why they also chase BMWs also.\\n\\n\\nSqueaky BMW riders.\\n\\n\\n\\n-- \\nRay Shea \\t\\t \"they wound like a very effective method.\"\\nUniSQL, Inc.\\t\\t --Leah\\nunisql!ray@cs.utexas.edu some days i miss d. boon real bad. \\nDoD #0372 : Team Twinkie : \\'88 Hawk GT \\n',\n", + " \"From: leavitt@cs.umd.edu (Mr. Bill)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: The Cafe at the Edge of the Universe\\nLines: 43\\n\\nmjs@sys.uea.ac.uk (Mike Sixsmith) writes:\\nmjs>Secondly, it is the adhesion of the\\nmjs>tyre on the road, the suspension geometry and the ground clearance of the\\nmjs> motorcycle which dictate how quickly you can swerve to avoid obstacles, and\\nmjs>not the knowledge of physics between the rider's ears. Are you seriously\\n ^^^^^^^^^^^^^^^^^^^^\\nmjs>suggesting that countersteering knowledge enables you to corner faster\\nmjs>or more competentlY than you could manage otherwise??\\n\\negreen@east.sun.com writes:\\ned>If he's not, I will. \\n\\nHey Ed, you didn't give me the chance! Sheesh!\\n\\nThe answer is, absolutely!, as Ed so eloquently describes:\\n\\ned>Put two riders on identical machines. It's the\\ned>one who knows what he's doing, and why, that will be faster. It *may*\\ned>be possible to improve your technique if you have no idea what it is,\\ned>through trial and error, but it is not very effective methodology.\\ned>Only by understanding the technique of steering a motorcycle can one\\n ^^^^^^^^^^^^^^^^^^^^^\\ned>improve on that technique (I hold that this applies to any human\\ned>endeavor).\\n\\nHerein lies the key to this thread:\\n\\nKindly note the difference in the responses. Ed (and I) are talking\\nabout knowing riding technique, while Mike is arguing knowing the physics\\nbehind it. It *is* possible to be taught the technique of countersteering\\n(ie: push the bar on the inside of the turn to go that way) *without*\\nhaving to learn all the fizziks about gyroscopes and ice cream cones\\nand such as seen in the parallel thread. That stuff is mainly of interest\\nto techno-motorcycle geeks like the readers of rec.motorcycles ;^),\\nbut doesn't need to be taught to the average student learning c-steering.\\nMike doesn't seem to be able to make the distinction. I know people\\nwho can carve circles around me who couldn't tell you who Newton was.\\nOn the other hand, I know very intelligent, well-educated people who\\nthink that you steer a motorcycle by either: 1) leaning, 2) steering\\na la bicycles, or 3) a combination of 1 and 2. Knowledge of physics\\ndoesn't get you squat - knowledge of technique does!\\n\\nMr. Bill\\n\",\n", + " \"From: vwelch@ncsa.uiuc.edu (Von Welch)\\nSubject: Re: MOTORCYCLE DETAILING TIP #18\\nOrganization: Nat'l Ctr for Supercomp App (NCSA) @ University of Illinois\\nLines: 22\\n\\nIn article <1993Apr15.164644.7348@hemlock.cray.com>, ant@palm21.cray.com (Tony Jones) writes:\\n|> \\n|> How about someone letting me know MOTORCYCLE DETAILING TIP #19 ?\\n|> \\n|> The far side of my instrument panel was scuffed when the previous owner\\n|> dumped the bike. Same is true for one of the turn signals.\\n|> \\n|> Both of the scuffed areas are black plastic.\\n|> \\n|> I recall reading somewhere, that there was some plastic compound you could coat\\n|> the scuffed areas with, then rub it down, ending with a nice smooth shiny \\n|> finish ?\\n|> \\n\\nIn the May '93 Motorcyclist (pg 15-16), someone writes in and recomends using\\nrubberized undercoating for this. \\n\\n-- \\nVon Welch (vwelch@ncsa.uiuc.edu)\\tNCSA Networking Development Group\\n'93 CBR600F2\\t\\t\\t'78 KZ650\\t\\t'83 Subaru GL 4WD\\n\\n- I speak only for myself and those who think exactly like me -\\n\",\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: A Little Too Satanic\\nOrganization: sgi\\nLines: 16\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <66486@mimsy.umd.edu>, mangoe@cs.umd.edu (Charley Wingate) writes:\\n|> Jeff West writes:\\n|> \\n|> >You claimed that people that took the time to translate the bible would\\n|> >also take the time to get it right. But here in less than a couple\\n|> >generations you\\'ve been given ample proof (agreed to by yourself above)\\n|> >that the \"new\" versions \"tends to be out of step with other modern\\n|> >translations.\"\\n|> \\n|> What I said was that people took time to *copy* *the* *text* correctly.\\n|> Translations present completely different issues.\\n\\nSo why do I read in the papers that the Qumram texts had \"different\\nversions\" of some OT texts. Did I misunderstand?\\n\\njon. \\n',\n", + " 'From: harley-request@thinkage.on.ca (Harley Mailing List Digest)\\nSubject: Harley-Davidson Mailing List -- an Email taste sensation!\\nSummary: a sort of bi-monthly not really automated announcement\\nOriginator: hogreq@hog.thinkage.on.ca\\nKeywords: digests, lists, harley-davidson, hogaholics\\nSupersedes: <93mar09-hog-announce@hog.thinkage.on.ca>\\nOrganization: Thinkage Ltd.\\nExpires: Fri, 30 Apr 1993 11:00:00 GMT\\nLines: 36\\n\\n Anyone interesting in a mailing list for Harley-Davidson bikes, lifestyle,\\npolitics, H.O.G. and whatever over 310 members from 14 countries make it,\\nmay subscribe by sending a request to:\\n\\n harley-request@thinkage.on.ca\\n or uunet.ca!thinkage!harley-request\\n\\n***\\n* Your request to join should have a signature or something giving your full\\n* Email address. Do not RELY on the header \"From:\" field being useful to me.\\n*\\n* This is not an automated \"listserv\" facility. Do not expect instant\\n* gratification.\\n***\\n\\nThe list is a digest format scheduled for twice a day.\\n\\nMembers of the harley list may obtain back-issues and subject-index\\n listings, pictures, etc. via an Email archive server. \\nServer access is restricted to list subscribers only.\\nFTP access \"real soon\".\\n\\nOther motorcycle related lists i\\'ve heard of (not run by me),\\n these addresses may or may not be current:\\n\\n 2-stroke: 2strokes-request@microunity.com\\n Dirt: dirt-request@zygot.ati.com\\n European: listserv@frigg.isc-br.com\\n Racing: race-request@formula1.corp.sun.com\\n digest-request@formula1.corp.sun.com\\n Short Riding: short-request@smarmy.sun.com\\n Wet Leather: listserv@frigg.isc-br.com\\n\\n---\\nIt climbs the hills like a Matchless \\'cause my Honda\\'s built really light...\\n -Brian Wilson (Honda Honda)\\n',\n", + " 'From: cjackson@adobe.com (Curtis Jackson)\\nSubject: Re: Cultural Enquiries\\nOrganization: Adobe Systems Incorporated, Mountain View\\nLines: 32\\n\\n}>More like those who use their backs instead of their minds to make\\n}>their living who are usually ignorant and intolerant of anything outside\\n}>of their group or level of understanding.\\n\\nThere seems to be some confusion between rednecks and white trash.\\nThe confusion is understandable, as there is substantial overlap\\nbetween the two sets. Let me see if I can clarify:\\n\\nRednecks: Primarily use their backs instead of their minds to make a\\n\\tliving. Usually somewhat ignorant (by somebody\\'s standards,\\n\\tanyway) because they have never held education above basic\\n\\treading/writing/math skills to be that important to their\\n\\teventual vocation. Note I did not say stupid, just ignorant.\\n\\t(They might be stupid, but then so are some high percentage\\n\\tof any group).\\n\\nWhite trash: \"White trash fit the stereotype referred to by the\\n\\tword \\'nigger\\' better than any black person I ever met, only\\n\\twith the added \\'bonus\\' that white trash are mean as hell.\"\\n\\t-- my father. Genuinely lazy (not just out of work or under-\\n\\tqualified), good-for-nothing, dishonest, white people who are\\n\\tmean as snakes. The \"squeal like a pig\" boys in _Deliverance_\\n\\tmay or may not have been rednecks, but they were sure as hell\\n\\twhite trash.\\n\\nWhite trash are assuredly intolerant of anything outside of their\\ngroup or level of understanding. Rednecks may or may not be.\\n-- \\nCurtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\nDoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\"\\n\"There is no justification for taking away individuals\\' freedom\\n in the guise of public safety.\" -- Thomas Jefferson\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: How many read sci.space?\\nOrganization: Express Access Online Communications USA\\nLines: 9\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.184650.4833@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n>isn't my real name, either. I'm actually Elvis. Or maybe a lemur; I\\n>sometimes have difficulty telling which is which.\\n\\ndefinitely a lemur.\\n\\nElvis couldn't spell, just listen to any of his songs.\\n\\npat\\n\",\n", + " 'From: Center for Policy Research \\nSubject: From Israeli press. Short notes.\\nNf-ID: #N:cdp:1483500345:000:1466\\nNf-From: cdp.UUCP!cpr Apr 16 16:51:00 1993\\nLines: 39\\n\\n\\nFrom: Center for Policy Research \\nSubject: From Israeli press. Short notes.\\n\\n/* Written 4:43 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n/* ---------- \"From Israeli press. Short notes.\" ---------- */\\nFROM THE ISRAELI PRESS\\n\\nHadashot, 14 March 1993:\\n\\nThe Israeli Police Department announced on the evening of Friday,\\nMarch 12 that it is calling upon [Jewish] Israeli citizens with\\ngun permits to carry them at all times \"so as to contribute to\\ntheir security and that of their surroundings\".\\n\\nHa\\'aretz, 15 March 1993:\\n\\nYehoshua Matza (Likud), Chair of the Knesset Interior Committee,\\nstated that he intends to demand that the police department make\\nit clear to the public that anyone who wounds or kills\\n[non-Jewish] terrorists will not be put on trial.\\n\\nHa\\'aretz, 16 March1993:\\n\\nToday a private security firm and units from the IDF Southern\\nCommand will begin installation of four magnetic gates in the Gaza\\nstrip, as an additional stage in the upgrading of security\\nmeasures in the Strip.\\n\\nThe gates will aid in the searching of [non-Jewish] Gaza residents\\nas they leave for work in Israel. They can be used to reveal the\\npresence of knives, axes, weapons and other sharp objects.\\n\\nIn addition to the gates, which will be operated by a private\\ncivilian company, large quantities of magnetic-card reading\\ndevices are being brought to the inspection points, to facilitate\\nthe reading of the magnetic cards these [non-Jewish] workers must\\ncarry.\\n\\n',\n", + " 'From: mathew \\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 13\\n\\nfrank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n> In article <1993Apr15.125245.12872@abo.fi> MANDTBACKA@FINABO.ABO.FI (Mats\\n> Andtbacka) writes:\\n> | \"And these objective values are ... ?\"\\n> |Please be specific, and more importantly, motivate.\\n> \\n> I\\'ll take a wild guess and say Freedom is objectively valuable.\\n\\nYes, but whose freedom? The world in general doesn\\'t seem to value the\\nfreedom of Tibetans, for example.\\n\\n\\nmathew\\n',\n", + " \"From: cbrooks@ms.uky.edu (Clayton Brooks)\\nSubject: Re: V-max handling request\\nOrganization: University Of Kentucky, Dept. of Math Sciences\\nLines: 13\\n\\nbradw@Newbridge.COM (Brad Warkentin) writes:\\n\\n>............. Seriously, handling is probably as good as the big standards\\n>of the early 80's but not compareable to whats state of the art these days.\\n\\nI think you have to go a little further back.\\nThis opinion comes from riding CB750's GS1000's KZ1300's and a V-Max.\\nI find no enjoyment in riding a V-Max fast on a twisty road.\\n-- \\n Clayton T. Brooks _,,-^`--. From the heart cbrooks@ms.uky.edu\\n 722 POT U o'Ky .__,-' * \\\\ of the blue cbrooks@ukma.bitnet\\n Lex. KY 40506 _/ ,/ grass and {rutgers,uunet}!ukma!cbrooks\\n 606-257-6807 (__,-----------'' bourbon country AMA NMA MAA AMS ACBL DoD\\n\",\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 13/15 - Interest Groups & Publications\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.groups_733694492\\nExpires: 6 May 1993 20:01:32 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 354\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/groups\\nLast-modified: $Date: 93/04/01 14:39:08 $\\n\\nSPACE ACTIVIST/INTEREST/RESEARCH GROUPS AND SPACE PUBLICATIONS\\n\\n GROUPS\\n\\n AIA -- Aerospace Industry Association. Professional group, with primary\\n\\tmembership of major aerospace firms. Headquartered in the DC area.\\n\\tActs as the \"voice of the aerospace industry\" -- and it\\'s opinions\\n\\tare usually backed up by reams of analyses and the reputations of\\n\\tthe firms in AIA.\\n\\n\\t [address needed]\\n\\n AIAA -- American Institute of Aeronautics and Astronautics.\\n\\tProfessional association, with somewhere about 30,000-40,000\\n\\tmembers. 65 local chapters around the country -- largest chapters\\n\\tare DC area (3000 members), LA (2100 members), San Francisco (2000\\n\\tmembers), Seattle/NW (1500), Houston (1200) and Orange County\\n\\t(1200), plus student chapters. Not a union, but acts to represent\\n\\taviation and space professionals (engineers, managers, financial\\n\\ttypes) nationwide. Holds over 30 conferences a year on space and\\n\\taviation topics publishes technical Journals (Aerospace Journal,\\n\\tJournal of Spacecraft and Rockets, etc.), technical reference books\\n\\tand is _THE_ source on current aerospace state of the art through\\n\\ttheir published papers and proceedings. Also offers continuing\\n\\teducation classes on aerospace design. Has over 60 technical\\n\\tcommittees, and over 30 committees for industry standards. AIAA acts\\n\\tas a professional society -- offers a centralized resume/jobs\\n\\tfunction, provides classes on job search, offers low-cost health and\\n\\tlife insurance, and lobbies for appropriate legislation (AIAA was\\n\\tone of the major organizations pushing for IRAs - Individual\\n\\tRetirement Accounts). Very active public policy arm -- works\\n\\tdirectly with the media, congress and government agencies as a\\n\\tlegislative liaison and clearinghouse for inquiries about aerospace\\n\\ttechnology technical issues. Reasonably non-partisan, in that they\\n\\trepresent the industry as a whole, and not a single company,\\n\\torganization, or viewpoint.\\n\\n\\tMembership $70/yr (student memberships are less).\\n\\n\\tAmerican Institute of Aeronautics and Astronautics\\n\\tThe Aerospace Center\\n\\t370 L\\'Enfant Promenade, SW\\n\\tWashington, DC 20077-0820\\n\\t(202)-646-7400\\n\\n AMSAT - develops small satellites (since the 1960s) for a variety of\\n\\tuses by amateur radio enthusiasts. Has various publications,\\n\\tsupplies QuickTrak satellite tracking software for PC/Mac/Amiga etc.\\n\\n\\tAmateur Satellite Corporation (AMSAT)\\n\\tP.O. Box 27\\n\\tWashington, DC 20044\\n\\t(301)-589-6062\\n\\n ASERA - Australian Space Engineering and Research Association. An\\n\\tAustralian non-profit organisation to coordinate, promote, and\\n\\tconduct space R&D projects in Australia, involving both Australian\\n\\tand international (primarily university) collaborators. Activities\\n\\tinclude the development of sounding rockets, small satellites\\n\\t(especially microsatellites), high-altitude research balloons, and\\n\\tappropriate payloads. Provides student projects at all levels, and\\n\\tis open to any person or organisation interested in participating.\\n\\tPublishes a monthly newsletter and a quarterly technical journal.\\n\\n\\tMembership $A100 (dual subscription)\\n\\tSubscriptions $A25 (newsletter only) $A50 (journal only)\\n\\n\\tASERA Ltd\\n\\tPO Box 184\\n\\tRyde, NSW, Australia, 2112\\n\\temail: lindley@syd.dit.csiro.au\\n\\n BIS - British Interplanetary Society. Probably the oldest pro-space\\n\\tgroup, BIS publishes two excellent journals: _Spaceflight_, covering\\n\\tcurrent space activities, and the _Journal of the BIS_, containing\\n\\ttechnical papers on space activities from near-term space probes to\\n\\tinterstellar missions. BIS has published a design study for an\\n\\tinterstellar probe called _Daedalus_.\\n\\n\\tBritish Interplanetary Society\\n\\t27/29 South Lambeth Road\\n\\tLondon SW8 1SZ\\n\\tENGLAND\\n\\n\\tNo dues information available at present.\\n\\n ISU - International Space University. ISU is a non-profit international\\n\\tgraduate-level educational institution dedicated to promoting the\\n\\tpeaceful exploration and development of space through multi-cultural\\n\\tand multi-disciplinary space education and research. For further\\n\\tinformation on ISU\\'s summer session program or Permanent Campus\\n\\tactivities please send messages to \\'information@isu.isunet.edu\\' or\\n\\tcontact the ISU Executive Offices at:\\n\\n\\tInternational Space University\\n\\t955 Massachusetts Avenue 7th Floor\\n\\tCambridge, MA 02139\\n\\t(617)-354-1987 (phone)\\n\\t(617)-354-7666 (fax)\\n\\n L-5 Society (defunct). Founded by Keith and Carolyn Henson in 1975 to\\n\\tadvocate space colonization. Its major success was in preventing US\\n\\tparticipation in the UN \"Moon Treaty\" in the late 1970s. Merged with\\n\\tthe National Space Institute in 1987, forming the National Space\\n\\tSociety.\\n\\n NSC - National Space Club. Open for general membership, but not well\\n\\tknown at all. Primarily comprised of professionals in aerospace\\n\\tindustry. Acts as information conduit and social gathering group.\\n\\tActive in DC, with a chapter in LA. Monthly meetings with invited\\n\\tspeakers who are \"heavy hitters\" in the field. Annual \"Outlook on\\n\\tSpace\" conference is _the_ definitive source of data on government\\n\\tannual planning for space programs. Cheap membership (approx\\n\\t$20/yr).\\n\\n\\t [address needed]\\n\\n NSS - the National Space Society. NSS is a pro-space group distinguished\\n\\tby its network of local chapters. Supports a general agenda of space\\n\\tdevelopment and man-in-space, including the NASA space station.\\n\\tPublishes _Ad Astra_, a monthly glossy magazine, and runs Shuttle\\n\\tlaunch tours and Space Hotline telephone services. A major sponsor\\n\\tof the annual space development conference. Associated with\\n\\tSpacecause and Spacepac, political lobbying organizations.\\n\\n\\tMembership $18 (youth/senior) $35 (regular).\\n\\n\\tNational Space Society\\n\\tMembership Department\\n\\t922 Pennsylvania Avenue, S.E.\\n\\tWashington, DC 20003-2140\\n\\t(202)-543-1900\\n\\n Planetary Society - founded by Carl Sagan. The largest space advocacy\\n\\tgroup. Publishes _Planetary Report_, a monthly glossy, and has\\n\\tsupported SETI hardware development financially. Agenda is primarily\\n\\tsupport of space science, recently amended to include an\\n\\tinternational manned mission to Mars.\\n\\n\\tThe Planetary Society\\n\\t65 North Catalina Avenue\\n\\tPasadena, CA 91106\\n\\n\\tMembership $35/year.\\n\\n SSI - the Space Studies Institute, founded by Dr. Gerard O\\'Neill.\\n\\tPhysicist Freeman Dyson took over the Presidency of SSI after\\n\\tO\\'Neill\\'s death in 1992. Publishes _SSI Update_, a bimonthly\\n\\tnewsletter describing work-in-progress. Conducts a research program\\n\\tincluding mass-drivers, lunar mining processes and simulants,\\n\\tcomposites from lunar materials, solar power satellites. Runs the\\n\\tbiennial Princeton Conference on Space Manufacturing.\\n\\n\\tMembership $25/year. Senior Associates ($100/year and up) fund most\\n\\t SSI research.\\n\\n\\tSpace Studies Institute\\n\\t258 Rosedale Road\\n\\tPO Box 82\\n\\tPrinceton, NJ 08540\\n\\n SEDS - Students for the Exploration and Development of Space. Founded in\\n\\t1980 at MIT and Princeton. SEDS is a chapter-based pro-space\\n\\torganization at high schools and universities around the world.\\n\\tEntirely student run. Each chapter is independent and coordinates\\n\\tits own local activities. Nationally, SEDS runs a scholarship\\n\\tcompetition, design contests, and holds an annual international\\n\\tconference and meeting in late summer.\\n\\n\\tStudents for the Exploration and Development of Space\\n\\tMIT Room W20-445\\n\\t77 Massachusetts Avenue\\n\\tCambridge, MA 02139\\n\\t(617)-253-8897\\n\\temail: odyssey@athena.mit.edu\\n\\n\\tDues determined by local chapter.\\n\\n SPACECAUSE - A political lobbying organization and part of the NSS\\n\\tFamily of Organizations. Publishes a bi-monthly newsletter,\\n\\tSpacecause News. Annual dues is $25. Members also receive a discount\\n\\ton _The Space Activist\\'s Handbook_. Activities to support pro-space\\n\\tlegislation include meeting with political leaders and interacting\\n\\twith legislative staff. Spacecause primarily operates in the\\n\\tlegislative process.\\n\\n\\tNational Office\\t\\t\\tWest Coast Office\\n\\tSpacecause\\t\\t\\tSpacecause\\n\\t922 Pennsylvania Ave. SE\\t3435 Ocean Park Blvd.\\n\\tWashington, D.C. 20003\\t\\tSuite 201-S\\n\\t(202)-543-1900\\t\\t\\tSanta Monica, CA 90405\\n\\n SPACEPAC - A political action committee and part of the NSS Family of\\n\\tOrganizations. Spacepac researches issues, policies, and candidates.\\n\\tEach year, updates _The Space Activist\\'s Handbook_. Current Handbook\\n\\tprice is $25. While Spacepac does not have a membership, it does\\n\\thave regional contacts to coordinate local activity. Spacepac\\n\\tprimarily operates in the election process, contributing money and\\n\\tvolunteers to pro-space candidates.\\n\\n\\tSpacepac\\n\\t922 Pennsylvania Ave. SE\\n\\tWashington, DC 20003\\n\\t(202)-543-1900\\n\\n UNITED STATES SPACE FOUNDATION - a public, non-profit organization\\n\\tsupported by member donations and dedicated to promoting\\n\\tinternational education, understanding and support of space. The\\n\\tgroup hosts an annual conference for teachers and others interested\\n\\tin education. Other projects include developing lesson plans that\\n\\tuse space to teach other basic skills such as reading. Publishes\\n\\t\"Spacewatch,\" a monthly B&W glossy magazine of USSF events and\\n\\tgeneral space news. Annual dues:\\n\\n\\t\\tCharter\\t\\t$50 ($100 first year)\\n\\t\\tIndividual\\t$35\\n\\t\\tTeacher\\t\\t$29\\n\\t\\tCollege student $20\\n\\t\\tHS/Jr. High\\t$10\\n\\t\\tElementary\\t $5\\n\\t\\tFounder & $1000+\\n\\t\\t Life Member\\n\\n\\tUnited States Space Foundation\\n\\tPO Box 1838\\n\\tColorado Springs, CO 80901\\n\\t(719)-550-1000\\n\\n WORLD SPACE FOUNDATION - has been designing and building a solar-sail\\n spacecraft for longer than any similar group; many JPL employees lend\\n their talents to this project. WSF also provides partial funding for the\\n Palomar Sky Survey, an extremely successful search for near-Earth\\n asteroids. Publishes *Foundation News* and *Foundation Astronautics\\n Notebook*, each a quarterly 4-8 page newsletter. Contributing Associate,\\n minimum of $15/year (but more money always welcome to support projects).\\n\\n\\tWorld Space Foundation\\n\\tPost Office Box Y\\n\\tSouth Pasadena, California 91301\\n\\n\\n PUBLICATIONS\\n\\n Aerospace Daily (McGraw-Hill)\\n\\tVery good coverage of aerospace and space issues. Approx. $1400/yr.\\n\\n Air & Space / Smithsonian (bimonthly magazine)\\n\\tBox 53261\\n\\tBoulder, CO 80332-3261\\n\\t$18/year US, $24/year international\\n\\n ESA - The European Space Agency publishes a variety of periodicals,\\n\\tgenerally available free of charge. A document describing them in\\n\\tmore detail is in the Ames SPACE archive in\\n\\tpub/SPACE/FAQ/ESAPublications.\\n\\n Final Frontier (mass-market bimonthly magazine) - history, book reviews,\\n\\tgeneral-interest articles (e.g. \"The 7 Wonders of the Solar System\",\\n\\t\"Everything you always wanted to know about military space\\n\\tprograms\", etc.)\\n\\n\\tFinal Frontier Publishing Co.\\n\\tPO Box 534\\n\\tMt. Morris, IL 61054-7852\\n\\t$14.95/year US, $19.95 Canada, $23.95 elsewhere\\n\\n Space News (weekly magazine) - covers US civil and military space\\n\\tprograms. Said to have good political and business but spotty\\n\\ttechnical coverage.\\n\\n\\tSpace News\\n\\tSpringfield VA 22159-0500\\n\\t(703)-642-7330\\n\\t$75/year, may have discounts for NSS/SSI members\\n\\n Journal of the Astronautical Sciences and Space Times - publications of\\n\\tthe American Astronautical Society. No details.\\n\\n\\tAAS Business Office\\n\\t6352 Rolling Mill Place, Suite #102\\n\\tSpringfield, VA 22152\\n\\t(703)-866-0020\\n\\n GPS World (semi-monthly) - reports on current and new uses of GPS, news\\n\\tand analysis of the system and policies affecting it, and technical\\n\\tand product issues shaping GPS applications.\\n\\n\\tGPS World\\n\\t859 Willamette St.\\n\\tP.O. Box 10460\\n\\tEugene, OR 97440-2460\\n\\t(503)-343-1200\\n\\n\\tFree to qualified individuals; write for free sample copy.\\n\\n Innovation (Space Technology) -- Free. Published by the NASA Office of\\n\\tAdvanced Concepts and Technology. A revised version of the NASA\\n\\tOffice of Commercial Programs newsletter.\\n\\n Planetary Encounter - in-depth technical coverage of planetary missions,\\n\\twith diagrams, lists of experiments, interviews with people directly\\n\\tinvolved.\\n World Spaceflight News - in-depth technical coverage of near-Earth\\n\\tspaceflight. Mostly covers the shuttle: payload manifests, activity\\n\\tschedules, and post-mission assessment reports for every mission.\\n\\n\\tBox 98\\n\\tSewell, NJ 08080\\n\\t$30/year US/Canada\\n\\t$45/year elsewhere\\n\\n Space (bi-monthly magazine)\\n\\tBritish aerospace trade journal. Very good. $75/year.\\n\\n Space Calendar (weekly newsletter)\\n\\n Space Daily/Space Fax Daily (newsletter)\\n\\tShort (1 paragraph) news notes. Available online for a fee\\n\\t(unknown).\\n\\n Space Technology Investor/Commercial Space News -- irregular Internet\\n\\tcolumn on aspects of commercial space business. Free. Also limited\\n\\tfax and paper edition.\\n\\n\\t P.O. Box 2452\\n\\t Seal Beach, CA 90740-1452.\\n\\n All the following are published by:\\n\\n\\tPhillips Business Information, Inc.\\n\\t7811 Montrose Road\\n\\tPotomac, MC 20854\\n\\n\\tAerospace Financial News - $595/year.\\n\\tDefense Daily - Very good coverage of space and defense issues.\\n\\t $1395/year.\\n\\tSpace Business News (bi-weekly) - Very good overview of space\\n\\t business activities. $497/year.\\n\\tSpace Exploration Technology (bi-weekly) - $495/year.\\n\\tSpace Station News (bi-weekly) - $497/year.\\n\\n UNDOCUMENTED GROUPS\\n\\n\\tAnyone who would care to write up descriptions of the following\\n\\tgroups (or others not mentioned) for inclusion in the answer is\\n\\tencouraged to do so.\\n\\n\\tAAS - American Astronautical Society\\n\\tOther groups not mentioned above\\n\\nNEXT: FAQ #14/15 - How to become an astronaut\\n',\n", + " \"From: arnie@magnus.acs.ohio-state.edu (Arnie Skurow)\\nSubject: Re: Solar battery chargers -- any good?\\nNntp-Posting-Host: photon.magnus.acs.ohio-state.edu\\nOrganization: The Ohio State University\\nLines: 28\\n\\nIn article <1993Apr16.061736.8785@CSD-NewsHost.Stanford.EDU> robert@Xenon.Stanf\\nord.EDU (Robert Kennedy) writes:\\n>I've seen solar battery boosters, and they seem to come without any\\n>guarantee. On the other hand, I've heard that some people use them\\n>with success, although I have yet to communicate directly with such a\\n>person. Have you tried one? What was your experience? How did you use\\n>it (occasional charging, long-term leave-it-for-weeks, etc.)?\\n>\\n> -- Robert Kennedy\\n\\nI have a cheap solar charger that I keep in my car. I purchased it via\\nsome mail order catalog when the 4 year old battery in my Oldsmobile would\\nrun down during Summer when I was riding my bike more than driving my car.\\nKnowing I'd be selling the car in a year or so, I purchased the charger.\\nBelieve it or not, the thing worked. The battery held a charge and\\nenergetically started the car, many times after 4 or 5 weeks of just\\nsitting.\\n\\nEventually I had to purchase a new battery anyway because the Winter sun\\nwasn't strong enough due to its low angle.\\n\\nI think I paid $29 or $30 for the charger. There are more powerful, more\\nexpensive ones, but I purchased the cheapest one I could find.\\n\\nI've never used it on the bike because I have an E-Z Charger on it and\\nkeep it plugged in all the time the bike is garaged.\\n\\nArnie Skurow\\n\",\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenians serving in the Wehrmacht and the SS.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 63\\n\\nIn article <735426299@amazon.cs.duke.edu> wiener@duke.cs.duke.edu (Eduard Wiener) writes:\\n\\n>\\t I can see how little taste you actually have in the\\n>\\t cheap shot you took at me when I did nothing more\\n>\\t than translate Kozovski\\'s insulting reference\\n>\\t to Milan Pavlovic.\\n\\nC\\'mon, you still haven\\'t corrected yourself, \\'wieneramus\\'. In April \\n1942, Hitler was preparing for the invasion of the Caucasus. A \\nnumber of Nazi Armenian leaders began submitting plans to German\\nofficials in spring and summer 1942. One of them was Souren Begzadian\\nPaikhar, son of a former ambassador of the Armenian Republic in Baku.\\nPaikhar wrote a letter to Hitler, asking for German support to his\\nArmenian national socialist movement Hossank and suggesting the\\ncreation of an Armenian SS formation in order \\n\\n\"to educate the youth of liberated Armenia according to the \\n spirit of the Nazi ideas.\"\\n\\nHe wanted to unite the Armenians of the already occupied territories\\nof the USSR in his movement and with them conquer historic Turkish\\nhomeland. Paikhar was confined to serving the Nazis in Goebbels\\nPropaganda ministry as a speaker for Armenian- and French-language\\nradio broadcastings.[1] The Armenian-language broadcastings were\\nproduced by yet another Nazi Armenian Viguen Chanth.[2]\\n\\n[1] Patrick von zur Muhlen (Muehlen), p. 106.\\n[2] Enno Meyer, A. J. Berkian, \\'Zwischen Rhein und Arax, 900\\n Jahre Deutsch-Armenische beziehungen,\\' (Heinz Holzberg\\n Verlag-Oldenburg 1988), pp. 124 and 129.\\n\\n\\nThe establishment of Armenian units in the German army was favored\\nby General Dro (the Butcher). He played an important role in the\\nestablishment of the Armenian \\'legions\\' without assuming any \\nofficial position. His views were represented by his men in the\\nrespective organs. An interesting meeting took place between Dro\\nand Reichsfuehrer-SS Heinrich Himmler toward the end of 1942.\\nDro discussed matters of collaboration with Himmler and after\\na long conversation, asked if he could visit POW camp close to\\nBerlin. Himmler provided Dro with his private car.[1] \\n\\nA minor problem was that some of the Soviet nationals were not\\n\\'Aryans\\' but \\'subhumans\\' according to the official Nazi philosophy.\\nAs such, they were subject to German racism. However, Armenians\\nwere the least threatened and indeed most privileged. In August \\n1933, Armenians had been recognized as Aryans by the Bureau of\\nRacial Investigation in the Ministry for Domestic Affairs.\\n\\n[1] Meyer, Berkian, ibid., pp. 112-113.\\n\\nNeed I go on?\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Suicide Bomber Attack in the Territories \\nOrganization: Brown University Department of Computer Science\\nLines: 22\\n\\n Attention Israel Line Recipients\\n \\n Friday, April 16, 1993\\n \\n \\nTwo Arabs Killed and Eight IDF Soldiers Wounded in West Bank Car\\nBomb Explosion\\n \\nIsrael Defense Forces Radio, GALEI ZAHAL, reports today that a car\\nbomb explosion in the West Bank today killed two Palestinians and\\nwounded eight IDF soldiers. The blast is believed to be the work of\\na suicide bomber. Radio reports said a car packed with butane gas\\nexploded between two parked buses, one belonging to the IDF and the\\nother civilian. Both busses went up in flames. The blast killed an\\nArab man who worked at a nearby snack bar in the Mehola settlement.\\nAn Israel Radio report stated that the other man who was killed may\\nhave been the one who set off the bomb. According to officials at\\nthe Haemek Hospital in Afula, the eight IDF soldiers injured in the\\nblast suffered light to moderate injuries.\\n \\n\\n-Danny Keren\\n',\n", + " 'Subject: [ANNOUNCE] Ivan Sutherland to speak at Harvard\\nFrom: eekim@husc11.harvard.edu (Eugene Kim)\\nDistribution: harvard\\nOrganization: Harvard University Science Center\\nNntp-Posting-Host: husc11.harvard.edu\\nLines: 21\\n\\nThe Harvard Computer Society is pleased to announce its third lecture of\\nthe spring. Ivan Sutherland, the father of computer graphics and an\\ninnovator in microprocessing, will be speaking at Harvard University on\\nTuesday, April 20, 1993, at 4:00 pm in Aiken Computations building, room\\n101. The title of his talk is \"Logical Effort and the Conflict over the\\nControl of Information.\"\\n\\nCookies and tea will be served at 3:30 pm in the Aiken Lobby. Admissions\\nis free, and all are welcome.\\n\\nAiken is located north of the Science Center near the Law School.\\n\\nFor more information, send e-mail to eekim@husc.harvard.edu.\\n\\nThe lecture will be videotaped, and a tape will be made available.\\n\\nThanks.\\n\\n-- \\nEugene Kim \\'96 | \"Give me a place to stand, and I will\\nINTERNET: eekim@husc.harvard.edu | move the earth.\" --Archimedes\\n',\n", + " 'From: tom@igc.apc.org\\nSubject: computer cult\\nNf-ID: #N:cdp:1469100033:000:2451\\nNf-From: cdp.UUCP!tom Apr 24 09:26:00 1993\\nLines: 59\\n\\n\\nFrom: \\nSubject: computer cult\\n\\nFrom scott Fri Apr 23 16:31:21 1993\\nReceived: by igc.apc.org (4.1/Revision: 1.77 )\\n\\tid AA16121; Fri, 23 Apr 93 16:31:09 PDT\\nDate: Fri, 23 Apr 93 16:31:09 PDT\\nMessage-Id: <9304232331.AA16121@igc.apc.org>\\nFrom: Scott Weikart \\nSender: scott\\nTo: cdplist\\nSubject: Next stand-off?\\nStatus: R\\n\\nRedwood City, CA (API) -- A tense stand-off entered its third week\\ntoday as authorities reported no progress in negotiations with\\ncharismatic cult leader Steve Jobs.\\n\\nNegotiators are uncertain of the situation inside the compound, but\\nsome reports suggest that half of the hundreds of followers inside\\nhave been terminated. Others claim to be staying of their own free\\nwill, but Jobs\\' persuasive manner makes this hard to confirm.\\n\\nIn conversations with authorities, Jobs has given conflicting\\ninformation on how heavily prepared the group is for war with the\\nindustry. At times, he has claimed to \"have hardware which will blow\\nanything else away\", while more recently he claims they have stopped\\nmanufacturing their own.\\n\\nAgents from the ATF (Apple-Taligent Forces) believe that the group is\\nequipped with serious hardware, including 486-caliber pieces and\\npossibly Canon equipment.\\n\\nThe siege has attracted a variety of spectators, from the curious to\\nother cultists. Some have offered to intercede in negotiations,\\nincluding a young man who will identify himself only as \"Bill\" and\\nclaims to be the \"MS-iah\".\\n\\nFormer members of the cult, some only recently deprogrammed, speak\\nhesitantly of their former lives, including being forced to work\\n20-hour days, and subsisting on Jolt and Twinkies. There were\\nfrequent lectures in which they were indoctrinated into a theory of\\n\"interpersonal computing\" which rejects traditional roles.\\n\\nLate-night vigils on Chesapeake Drive are taking their toll on\\nfederal marshals. Loud rock and roll, mostly Talking Heads, blares\\nthroughout the night. Some fear that Jobs will fulfill his own\\napocalyptic prophecies, a worry reinforced when the loudspeakers\\ncarry Jobs\\' own speeches -- typically beginning with a chilling \"I\\nwant to welcome you to the \\'Next World\\' \".\\n\\n- - -- \\nRoland J. Schemers III | Networking Systems\\nSystems Programmer | G16 Redwood Hall (415) 723-6740\\nDistributed Computing Group | Stanford, CA 94305-4122\\nStanford University | schemers@Slapshot.Stanford.EDU\\n\\n\\n',\n", + " 'From: harmons@.WV.TEK.COM (Harmon Sommer)\\nSubject: Re: Countersteering_FAQ please post\\nLines: 15\\n\\nSender: \\nReply-To: harmons@gyro.WV.TEK.COM (Harmon Sommer)\\nDistribution: \\nOrganization: /usr/ens/etc/organization\\nKeywords: \\n\\n\\n>Hey Ed, how do you explain the fact that you pull on a horse\\'s reins\\n>left to go left? :-) Or am I confusing two threads here?\\n\\nUnless they have been taught to \"neck rein\". Then the left rein is brought\\nto bear on the left side of horse\\'s neck to go right.\\n\\nEquestrian counter steering?\\n',\n", + " \"From: viking@iastate.edu (Dan Sorenson)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Iowa State University, Ames IA\\nLines: 36\\n\\nryan_cousineau@compdyn.questor.org (Ryan Cousineau) writes:\\n\\n>Riding up the hill leading to my\\n>house, I encountered a liver-and-white Springer Spaniel (no relation to\\n>the Springer Softail, or the Springer Spagthorpe, a close relation to\\n>the Spagthorpe Viking).\\n\\n\\tI must have missed the article on the Spagthorpe Viking. Was\\nthat the one with the little illuminated Dragon's Head on the front\\nfender, a style later copied by Indian, and the round side covers?\\n\\n[accident deleted]\\n\\n>What worries me about the accident is this: I don't think I could have\\n>prevented it except by traveling much slower than I was. This is not\\n>necessarily an unreasonable suggestion for a residential area, but I was\\n>riding around the speed limit.\\n\\n\\tYou can forget this line of reasoning. When an animal\\ndecides to take you, there's nothing you can do about it. It has\\nsomething to do with their genetics. I was putting along at a\\nmere 20mph or so, gravel road with few loose rocks on it (as in,\\njust like bad concrete), and 2200lbs of swinging beef jumped a\\nfence, came out of the ditch, and rammed me! When I saw her jump\\nthe fence I went for the gas, since she was about 20 feet ahead\\nof me but a good forty to the side. Damn cow literally chased me\\ndown and nailed me. No damage to cow, a bent case guard and a\\nseverely annoyed rider were the only casualties. If I had my\\nshotgun I'd still be eating steak. Nope, if 2200lbs of cow\\ncan hit me when I'm actively evading, forget a much more\\nmanueverable dog. Just run them over.\\n\\n< Dan Sorenson, DoD #1066 z1dan@exnet.iastate.edu viking@iastate.edu >\\n< ISU only censors what I read, not what I say. Don't blame them. >\\n< USENET: Post to exotic, distant machines. Meet exciting, >\\n< unusual people. And flame them. >\\n\",\n", + " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Israeli Terrorism\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 46\\n\\nIn article <1rd7eo$1a4@usenet.INS.CWRU.Edu> cy779@cleveland.Freenet.Edu (Anas Omran) writes:\\n>\\n>In a previous article, tclock@orion.oac.uci.edu (Tim Clock) says:\\n\\n>>In article <1993Apr24.203620.6531@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>>Since one is also unlikely to get \"the truth\" from either Arab or \\n>>Palestinian news outlets, where do we go to \"understand\", to learn? \\n>>Is one form of propoganda more reliable than another?\\n\\n>There are many neutral human rights organizations which always report\\n>on the situation in the O.T.\\n\\n\\tA neutral organization would report on the situation in\\nIsrael, where the elderly and children are the victims of stabbings by\\nHamas \"activists.\" A neutral organization might also report that\\nIsraeli arabs have full civil rights.\\n\\n>The Israelis used to arrest and sometimes to kill some of these\\n>neutral reporters.\\n\\n\\tCare to name names, or is this yet another unsubstantiated\\nslander? \\n\\n>So, this is another kind of terrorism committed by the Jews in Palestine.\\n>They do not allow fair and neutral coverage of the situation in Palestine.\\n\\n\\tTerrorism, as you would know if you had a spine that allowed\\nyou to stand up, is random attacks on civilians. Terorism includes\\nsuch things as shooting a cripple and thowing him off the side of a\\nboat because he happens to be Jewish. Not allowing people to go where\\nthey are likely to be stabbed and killed, like a certain lawyer killed\\nlast week, is not terorism.\\n\\nAdam\\n\\n\\n\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 92\\n\\nIn article <1993Apr17.153728.12152@ncsu.edu> hernlem@chess.ncsu.edu \\n(Brad Hernlem) writes:\\n>\\n>In article <2BCF287A.25524@news.service.uci.edu>, tclock@orion.oac.uci.edu \\n(Tim Clock) writes:\\n>|\\n>|> \"Assuming\"? Also: come on, Brad. If we are going to get anywhere in \\n>|> this (or any) discussion, it doesn\\'t help to bring up elements I never \\n>|> addressed, *nor commented on in any way*. I made no comment on who is \\n>|> \"right\" or who is \"wrong\", only that civilians ARE being used as cover \\n>|> and that, having been placed \"in between\" the Israelis and the guerillas,\\n>|> they *will* be injured as both parties continue their fight.\\n>\\n>Pardon me Tim, but I do not see how it can be possible for the IDF to fail\\n>to detect the presence of those responsible for planting the bomb which\\n>killed the three IDF troops and then later know the exact number and \\n>whereabouts of all of them. Several villages were shelled. How could the IDF\\n>possibly have known that there were guerrillas in each of the targetted\\n>villages? You see, it was an arbitrary act of \"retaliation\".\\n>\\nI will again *repeat* my statement: 1) I *do not* condone these \\n*indiscriminate* Israeli acts (nor have I *ever*, 2) If the villagers do not know who these \"guerillas\" are (which you stated earlier), how do you expect the\\nIsraelis to know? It is **very** difficult to \"identify\" who they are (this\\n*is why* the \"guerillas\" prefer to lose themselves in the general population \\nby dressing the same, acting the same, etc.).\\n>\\n>|> The \"host\" Arab state did little/nothing to try and stop these attacks \\n>|> from its side of the border with Israel \\n>\\n>The problem, Tim, is that the original reason for the invasion was Palestinian\\n>attacks on Israel, NOT Lebanese attacks. \\n>\\nI agree; but, because Lebanon was either unwilling or unable to stop these\\nattacks from its territory should Israel simply sit quietly and accept its\\nsituation? Israel asked the Lebanese government over and over to control\\nthis \"third party state\" within Lebanese territory and the attacks kept\\noccuring. At **what point** does Israel (or ANY state) have the right to do\\nsomething ITSELF to stop such attacks? Never?\\n>|> >\\n>|> While the \"major armaments\" (those allowing people to wage \"civil wars\")\\n>|> have been removed, the weapons needed to cross-border attacks still\\n>|> remain to some extent. Rocket attacks still continue, and \"commando\"\\n>|> raids only require a few easily concealed weapons and a refined disregard\\n>|> for human life (yours of that of others). Such attacks also continue.\\n>\\n>Yes, I am afraid that what you say is true but that still does not justify\\n>occupying your neighbor\\'s land. Israel must resolve its disputes with the\\n>native Palestinians if it wants peace from such attacks.\\n>\\nIt is also the responsibility of *any* state to NOT ALLOW *any* outside\\nparty to use its territory for attacks on a neighboring state. If 1) Angola\\nhad the power, and 2) South Africa refused (or couldn\\'t) stop anti-Angolan\\nguerillas based on SA soil from attacking Angola, and 3) South Africa\\nrefused to have UN troops stationed on its territory between it and Angola,\\nwould Angola be justified in entering SA? If not, are you saying that\\nAngola HAD to accept the situation, do NOTHING and absorb the attacks?\\n>|> \\n>|> Bat guano. The situation you call for existed in the 1970s and attacks\\n>|> were commonplace.\\n>\\n>Not true. Lebanese were not attacking Israel in the 1970s. With a strong\\n>Lebanese government (free from Syrian and Israeli interference) I believe\\n>that the border could be adequately patrolled. The Palestinian heavy\\n>weapons have been siezed in past years and I do not see as significant a\\n>threat as once existed.\\n>\\nI refered above *at all times* to the Palestinian attacks on Israel from\\nLebanese soil, NOT to Lebanese attacks on Israel. \\n\\nOne hopes that a Lebanese government will be strong enough to patrol its \\nborder but there is NO reason to believe it will be any stronger. WHAT HAS \\nCHANGED is that the PLO was largely *driven out* of Lebanon (not by the \\nLebanese, not by Syria) and THAT is by far the most important making it \\nEASIER to control future Palestinian attacks from Lebanese soil. That\\n**change** was brought about by Israeli action; the PLO would *never*\\nhave been ejected by Lebanese, Arab state or UN actions. \\n>\\n>Please, Tim, don\\'t fall into the trap of treating Lebanese and Palestinians\\n>as all part of the same group. There are too many who think all Arabs or all\\n>Muslims are the same. Too many times I have seen people support the bombing\\n>of Palestinian camps in \"retaliation\" for an IDF death at the hands of the\\n>Lebanese Resistance or the shelling of Lebanese villages in \"retaliation\" for\\n>a Palestinian attack. \\n>|>\\nI fully recognize that the Lebanese do NOT WANT to be \"used\" by EITHER side,\\nand have been (and continue to be). But the most fundamental issue is that\\nif a state cannot control its borders and make REAL efforts to do so, it\\nshould expect others to do it for them. Hopefully that \"other\" will be\\nthe UN but it is (as we see in its cowardice regarding Bosnia) weak.\\n\\nTim \\n\\n',\n", + " ' zaphod.mps.ohio-state.edu!wupost!uunet!olivea!sgigate!odin!fido!solntze.wpd.sgi.com!livesey\\nSubject: Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> (reference line trimmed)\\n|> \\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> [...]\\n|> \\n|> >There is a good deal more confusion here. You started off with the \\n|> >assertion that there was some \"objective\" morality, and as you admit\\n|> >here, you finished up with a recursive definition. Murder is \\n|> >\"objectively\" immoral, but eactly what is murder and what is not itself\\n|> >requires an appeal to morality.\\n|> \\n|> Yes.\\n|> \\n|> >Now you have switch targets a little, but only a little. Now you are\\n|> >asking what is the \"goal\"? What do you mean by \"goal?\". Are you\\n|> >suggesting that there is some \"objective\" \"goal\" out there somewhere,\\n|> >and we form our morals to achieve it?\\n|> \\n|> Well, for example, the goal of \"natural\" morality is the survival and\\n|> propogation of the species. \\n\\n\\nI got just this far. What do you mean by \"goal\"? I hope you\\ndon\\'t mean to imply that evolution has a conscious \"goal\".\\n\\njon.\\n',\n", + " \"From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: Clintons views on Jerusalem\\nOrganization: Bellcore, Livingston, NJ\\nSummary: Verify statements\\nLines: 21\\n\\nIn article <16BB28ABD.DSHAL@vmd.cso.uiuc.edu>, DSHAL@vmd.cso.uiuc.edu writes:\\n> It seems that President Clinton can recognize Jerusalem as Israels capitol\\n> while still keeping his diplomatic rear door open by stating that the Parties\\n> concerned should decide the city's final status. Even as I endorse Clintons vie\\n> w (of course), it is definitely a matter to be decided upon by Israel (and\\n> other participating neighboring contries).\\n> I see no real conflict in stating both views, nor expect any better from\\n> politicians.\\n> -----\\n> David Shalhevet / dshal@vmd.cso.uiuc.edu / University of Illinois\\n> Dept Anim Sci / 220 PABL / 1201 W. Gregory Dr. / Urbana, IL 61801\\n\\nI was trying to avoid a discussion of the whether Clintons views\\nshould be endorsed or not. All I was trying to find out was \\nwhether the newspaper article was correct in making these\\nstatements about the President by obtaining some information\\nabout when and where he made these statements.\\n\\nThank you.\\n\\nBen.\\n\",\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nArticle-I.D.: aurora.1993Apr20.141137.1\\nOrganization: University of Alaska Fairbanks\\nLines: 33\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1993Apr20.101044.2291@iti.org>, aws@iti.org (Allen W. Sherzer) writes:\\n> In article <1qve4kINNpas@sal-sun121.usc.edu> schaefer@sal-sun121.usc.edu (Peter Schaefer) writes:\\n> \\n>>|> > Announce that a reward of $1 billion would go to the first corporation \\n>>|> > who successfully keeps at least 1 person alive on the moon for a year. \\n> \\n>>Oh gee, a billion dollars! That\\'d be just about enough to cover the cost of the\\n>>feasability study! Happy, Happy, JOY! JOY!\\n> \\n> Depends. If you assume the existance of a working SSTO like DC, on billion\\n> $$ would be enough to put about a quarter million pounds of stuff on the\\n> moon. If some of that mass went to send equipment to make LOX for the\\n> transfer vehicle, you could send a lot more. Either way, its a lot\\n> more than needed.\\n> \\n> This prize isn\\'t big enough to warrent developing a SSTO, but it is\\n> enough to do it if the vehicle exists.\\n> \\n> Allen\\n> \\n> -- \\n> +---------------------------------------------------------------------------+\\n> | Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n> | W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n> +----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n\\nOr have different classes of competetors.. and made the total purse $6billion\\nor $7billion (depending on how many different classes there are, as in auto\\nracing/motocycle racing and such)..\\n\\nWe shall see how things go..\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", + " 'From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Removing Distortion From Bitmapped Drawings?\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 135\\n\\nIn article <1993Apr19.141034.24731@sctc.com> boebert@sctc.com (Earl Boebert) writes:\\n>Let\\'s say you have a scanned image of a line drawing; in this case a\\n>boat, but it could be anything. On the drawing you have a set of\\n>reference points whose true x,y positions are known. \\n>\\n>Now you digitize the drawing manually (in this case, using Yaron\\n>Danon\\'s excellent Digitize program). That is, you use a program which\\n>converts cursor positions to x,y and saves those values when you click\\n>the mouse.\\n>\\n>Upon digitizing you notice that the reference point values that come\\n>out of the digitizing process differ in small but significant ways\\n>from the known true values. This is understandable because the\\n>scanned drawing is a reproduction of the original and there are\\n>successive sources of distortion such as differential expansion and\\n>contraction of paper, errors introduced in the printing process,\\n>scanner errors and what have you.\\n>\\n>The errors are not uniform over the entire drawing, so \"global\"\\n>adjustments such as stretching/contracting uniformly over x or y, or\\n>rotating the whole drawing, are not satisfactory.\\n>\\n>So the question is: does any kind soul know of an algorithm for\\n>removing such distortion? In particular, if I have three sets of\\n>points \\n>\\n>Reference(x,y) (the known true values)\\n>\\n>DistortedReference(x,y) (the same points, with known errors)\\n>\\n>DistortedData(x,y) (other points, with unknown errors)\\n>\\n>what function of Reference and Distorted could I apply to\\n>DistortedData to remove the errors.\\n>\\n>I suspect the problem could be solved by treating the distorted\\n>reference points as resulting from the projection of a \"bumpy\" 3d\\n>surface, solving for the surface and then \"flattening\" it to remove\\n>the errors in the other data points.\\n\\nIt helps to have some idea of the source of the distortion - or at least\\na reasonable model of the class of distortion. Below is a very short\\ndescription of the process which we use; if you have further questions,\\nfeel free to poke me via e-mail.\\n\\n================================================================\\n*ASSUME: locally smooth distortion\\n\\n0) Compute the Delaunay Triangulation of your (x,y) points. This\\n defines the set of neighbors for each point. If your data are\\n not naturally convex, you may have very long edges on the convex hull.\\n Consider deleting these edges.\\n\\n1) Now, there are two goals:\\n\\n a) move the DistortedData(x,y) to the Reference(x,y)\\n b) keep the Length(e) (as measured from the current (x,y)\\'s)\\n as close as possible to the DigitizedLength(e) (as measured \\n using the digitized (x,y)\\'s).\\n\\n2) For every point, compute a displacement based on a) and b). For\\n example:\\n\\n a) For (x,y) points for which you know the Reference(x,y), you\\n can move alpha0*(Reference(x,y) - Current(x,y)). This will\\n slowly move the DistortedReference(x,y) towards the\\n Reference(x,y). \\n b) For all other points, examine the current length of each edge.\\n For each edge, compute a displacement which would make that edge\\n the correct length (where \"correct\" is the DigitizedLength). \\n Take the vector sum of these edge displacements, and move the\\n point alpha1*SumOfEdgeDisplacements. This will keep the\\n triangulated mesh consistent with your Digitized mesh.\\n\\n3) Iterate 2) until you are happy (for example, no point moves very much).\\n\\nalpha0 and alpha1 need to be determined by experimentation. Consider\\nhow much you believe the Reference(x,y) - i.e., do you absolutely insist\\non the final points exactly matching the References, or do you want to\\nbalance some error in matching the Reference against changes in length\\nof the edges.\\n\\nWARNING: there are a couple of geometric invariants which must be\\nobserved (essentially, you can\\'t allow the convex hull to change, and\\nyou can\\'t allow triangles to \"fold over\" neighboring triangles. Both of\\nthese can be handled either by special case checks on the motion of\\nindividual points, or by periodically re-triangulating the points (using \\nthe current positions - but still calculating DigitizedLength from the\\noriginal positions. When we first did this, the triangulation time was\\nprohibitive, so we only did it once. If I were motivated to try and\\nchange code that has been working in production mode for 5 years, I\\n*might* go back and re-triangulate on every iteration. If you have more\\ncompute power than you know what to do with, you might consider having\\nevery point interact with every other point....but first read up on\\nlinear solutions to the n-body problem.\\n\\nThere are lots of papers in the last 10 years of SIGGRAPH proceedings on\\nsprings, constraints, and energy calculations which are relevant. The\\nabove method is described, in more or less detail in:\\n\\n@inproceedings{Sloan86,\\nauthor=\"Sloan, Jr., Kenneth R. and David Meyers and Christine A.~Curcio\",\\ntitle=\"Reconstruction and Display of the Retina\",\\nbooktitle=\"Proceedings: Graphics Interface \\'86 Vision Interface \\'86\",\\naddress=\"Vancouver, Canada\",\\npages=\"385--389\",\\nmonth=\"May\",\\nyear=1986 }\\n\\n@techreport{Curcio87b,\\nauthor=\"Christine A.~Curcio and Kenneth R.~Sloan and David Meyers\",\\ntitle=\"Computer Methods for Sampling, Reconstruction, Display, and\\nAnalysis of Retinal Whole Mounts\",\\nnumber=\"TR 87-12-03\",\\ninstitution=\"Department of Computer Science, University of Washington\",\\naddress=\"Seattle, WA\",\\nmonth=\"December\",\\nyear=1987 }\\n\\n@article{Curcio89,\\nauthor=\"Christine A.~Curcio and Kenneth R.~Sloan and David Meyers\",\\ntitle=\"Computer Methods for Sampling, Reconstruction, Display, and\\nAnalysis of Retinal Whole Mounts\",\\njournal=\"Vision Research\",\\nvolume=29,\\nnumber=5,\\npages=\"529--540\",\\nyear=1989 }\\n \\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n',\n", + " \"From: richter@fossi.hab-weimar.de (Axel Richter)\\nSubject: True Color Display in POV\\nKeywords: POV, Raytracing\\nNntp-Posting-Host: fossi.hab-weimar.de\\nOrganization: Hochschule fuer Architektur und Bauwesen Weimar, Germany\\nLines: 6\\n\\n\\nHallo POV-Renderers !\\nI've got a BocaX3 Card. Now I try to get POV displaying True Colors\\nwhile rendering. I've tried most of the options and UNIVESA-Driver\\nbut what happens isn't correct.\\nCan anybody help me ?\\n\",\n", + " \"From: add@sciences.sdsu.edu (James D. Murray)\\nSubject: Need specs/info on Apple QuickTime\\nOrganization: San Diego State University, College of Sciences\\nLines: 12\\nNNTP-Posting-Host: sciences.sdsu.edu\\nKeywords: quicktime\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nI need to get the specs, or at least a very verbose interpretation of the\\nspecs, for QuickTime. Technical articles from magazines and references to\\nbooks would be nice too.\\n\\nI also need the specs in a format usable on a Unix or MS-DOS system. I can't\\ndo much with the QuickTime stuff they have on ftp.apple.com in its present\\nformat.\\n\\nThanks in advance.\\n\\nJames D. Murray\\nadd@sciences.sdsu.edu\\n\",\n", + " 'From: morley@suncad.camosun.bc.ca (Mark Morley)\\nSubject: VGA Mode 13h Routines Available\\nNntp-Posting-Host: suncad.camosun.bc.ca\\nOrganization: Camosun College, Victoria B.C, Canada\\nX-Newsreader: Tin 1.1 PL4\\nLines: 31\\n\\nHi there,\\n\\nI\\'ve made a VGA mode 13h graphics library available via FTP. I originally\\nwrote the routines as a kind of exercise for myself, but perhaps someone\\nhere will find them useful. They are certainly useable as they are, but\\nare missing some higher-level functionality. They\\'re intended more as an\\nintro to mode 13h programming, a starting point.\\n\\n*** The library assumes a 386 processor, but it is trivial to modify it\\n*** for a 286. If enough people ask, I\\'ll make the mods and re-post it as a\\n*** different version.\\n\\nThe routines are written in assembly (TASM) and are callable from C. They\\nare fairly simple, but I\\'ve found them to be very fast (for my purposes,\\nanyway). Routines are included to enter and exit mode 13h, define a\\n\"virtual screen\", put and get pixels, put a pixmap (rectangular image with\\nno transparent spots), put a sprite (image with see-thru areas), copy\\nareas of the virtual screen into video memory, etc. I\\'ve also included a\\nsimple C routine to draw a line, as well as a C routine to load a 256\\ncolor GIF image into a buffer. I also wrote a quick\\'n\\'dirty(tm) demo program\\nthat bounces a bunch of sprites around behind three \"windows\".\\n\\nThe whole package is available on spang.camosun.bc.ca in /pub/dos/vgl.zip \\nIt is zipped with pkzip 2.04g\\n\\nIt is completely in the public domain, as far as I\\'m concerned. Do with\\nit whatever you like. However, it\\'d be nice to get credit where it\\'s due,\\nand maybe an e-mail telling me you like it (if you don\\'t like it don\\'t bother)\\n\\nMark\\nmorley@camosun.bc.ca\\n',\n", + " 'From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Re: What if the USSR had reached the Moon first?\\nIn-Reply-To: gary@ke4zv.uucp\\'s message of Sun, 18 Apr 1993 09:10:51 GMT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<1993Apr7.124724.22534@yang.earlham.edu> \\n\\t<1993Apr12.161742.22647@yang.earlham.edu>\\n\\t<93107.144339SAUNDRSG@QUCDN.QueensU.CA>\\n\\t<1993Apr18.091051.14496@ke4zv.uucp>\\nLines: 35\\n\\nIn article <1993Apr18.091051.14496@ke4zv.uucp> gary@ke4zv.uucp (Gary Coffman) writes:\\n\\n In article <93107.144339SAUNDRSG@QUCDN.QueensU.CA> Graydon writes:\\n\\n >This is turning into \\'what\\'s a moonbase good for\\', and I ought not\\n >to post when I\\'ve a hundred some odd posts to go, but I would\\n >think that the real reason to have a moon base is economic.\\n >\\n >Since someone with space industry will presumeably have a much\\n >larger GNP than they would _without_ space industry, eventually,\\n >they will simply be able to afford more stuff.\\n\\n If I read you right, you\\'re saying in essence that, with a larger\\n economy, nations will have more discretionary funds to *waste* on a\\n lunar facility. That was certainly partially the case with Apollo,\\n but real Lunar colonies will probably require a continuing\\n military, scientific, or commercial reason for being rather than\\n just a \"we have the money, why not?\" approach.\\n\\nAh, but the whole point is that money spent on a lunar base is not\\nwasted on the moon. It\\'s not like they\\'d be using $1000 (1000R?) bills\\nto fuel their moon-dozers. The money to fund a lunar base would be\\nspent in the country to which the base belonged. It\\'s a way of funding\\nhigh-tech research, just like DARPA was a good excuse to fund various\\nfields of research, under the pretense that it was crucial to the\\ndefense of the country, or like ESPRIT is a good excuse for the EC to\\nfund research, under the pretense that it\\'s good for pan-European\\ncooperation.\\n\\nNow maybe you think that government-funded research is a waste of\\nmoney (in fact, I\\'m pretty sure you do), but it does count as\\ninvestment spending, which does boost the economy (and just look at\\nthe size of that multiplier :->).\\n\\nNick Haines nickh@cmu.edu\\n',\n", + " \"From: srlnjal@grace.cri.nz\\nSubject: CorelDraw Bitmap to SCODAL\\nOrganization: Industrial Research Ltd., New Zealand.\\nLines: 10\\nNNTP-Posting-Host: grv.grace.cri.nz\\n\\n\\nDoes anyone know of software that will allow\\nyou to convert CorelDraw (.CDR) files\\ncontaining bitmaps to SCODAL, as this is the\\nonly format our bureau's filmrecorder recognises.\\n\\nJeff Lyall\\nInst.Geo.Nuc.Sci.Ltd\\nLower Hutt New Zealand\\n\\n\",\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Solar Sail Data\\nOrganization: University of Illinois at Urbana\\nLines: 24\\n\\nhiggins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey) writes:\\n\\n>snydefj@eng.auburn.edu (Frank J. Snyder) writes:\\n\\n>> I am looking for any information concerning projects involving Solar\\n>> Sails. [...]\\n>> Are there any groups out there currently involved in such a project ?\\n\\nBill says ...\\n\\n>Also there is a nontechnical book on solar sailing by Louis Friedman,\\n>a technical one by a guy whose name escapes me (help me out, Josh),\\n\\nI presume the one you refer to is \"Space Sailing\" by Jerome L. Wright. He \\nworked on solar sails while at JPL and as CEO of General Astronautics. I\\'ll\\nfurnish ordering info upon request.\\n\\nThe Friedman book is called \"Starsailing: Solar Sails and Interstellar Travel.\"\\nIt was available from the Planetary Society a few years ago, I don\\'t know if\\nit still is.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " \"From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: NONE\\nLines: 100\\n\\nIn article , mucit@cs.rochester.edu (Bulent Murtezaoglu) writes:\\n|> In article <1993Apr20.164517.20876@kpc.com> henrik@quayle.kpc.com writes:\\n|> [stuff deleted]\\n|> \\nhenrik] Country. Turks and Azeris consistantly WANT to drag ARMENIA into the\\nhenrik] KARABAKH conflict with Azerbaijan. \\n\\nBM] Gimme a break. CAPITAL letters, or NOT, the above is pure nonsense. It\\nBM] seems to me that short sighted Armenians are escalating the hostilities\\n\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n Again, Armenians in KARABAKH are SIMPLY defending themselves. What do\\n want them to do. Lay down their ARMS and let Azeris walk all over them.\\n\\nBM] while hoping that Turkey will stay out. Stop and think for a moment,\\nBM] will you? Armenia doesn't need anyone to drag her into the conflict, it\\nBM] is a part of it. \\n\\nArmenians KNEW from the begining that TURKS were FULLY engaged \\ntraining AZERIS militarily to fight against KARABAKHI-Armenians.\\n\\t\\nhenrik] The KARABAKHI-ARMENIANS who have lived in their HOMELAND for 3000 \\nhenrik] years (CUT OFF FROM ARMENIA and GIVEN TO AZERIS BY STALIN) are the \\nhenrik] ones DIRECTLY involved in the CONFLICT. They are defending \\nhenrik] themselves against AZERI AGGRESSION. \\n\\nBM] Huh? You didn't expect Azeri's to be friendly to forces fighting with them\\nBM] within their borders? \\n\\n\\tWell, history is SAD. Remember, those are relocated Azeris into \\n the Armenian LAND of KARABAKH by the STALIN regime.\\n\\nhenrik] At last, I hope that the U.S. insists that Turkey stay out of the \\nhenrik] KARABAKH crisis so that the repeat of the CYPRUS invasion WILL NEVER \\nhenrik] OCCUR again.\\n\\nBM] You're not playing with a full deck, are you? Where would Turkey invade?\\n\\n It is not up to me to speculate but I am sure Turkey would have stepped\\n into Armenia if SHE could.\\n \\nBM] Are you throwing the Cyprus buzzword around with s.c.g. in the header\\nBM] in hopes that the Greek netters will jump the gun? \\n\\n\\tAbsolutely NOT ! I am merely trying to emphasize that in many\\n cases, HISTORY repeats itself. \\n\\nBM] Yes indeed Turkey has the military prowess to intervene, what she wishes \\nBM] she had, however, is the diplomatic power to stop the hostilities and bring\\nBM] the parties to the negotiating table. That's hard to do when Armenians \\nBM] are attacking Azeri towns.\\n\\n\\tSo, let me understand in plain WORDS what you are saying; Turkey\\n wants a PEACEFUL END to this CONFLICT. NOT !!\\n\\n\\tI will believe it when I see it.\\n\\n\\tNow, as far as attacking, what do you do when you see a GUN pointing\\n to your HEAD ? Do you sit there and WATCH or DEFEND yoursef(fat chance)?\\n\\tDo you remember what Azeris did to the Armenians in BAKU ? All the\\n\\tBARBERIAN ACTS especially against MOTHERS and their CHILDREN. I mean\\n\\tBURNING people ALIVE !\\n\\nBM] Armenian leaders are lacking the statesmanship to recognize the \\nBM] futility of armed conflict and convince their nation that a compromise that \\nBM] leads to stability is much better than a military faits accomplis that's \\nBM] going to cause incessant skirmishes. \\n\\n\\tArmenians in KARABAKH want PEACE and their own republic. They are \\n NOT asking much. They simply want to get back what was TAKEN AWAY \\n\\tfrom them and GIVEN to AZERIS by STALIN. \\n\\nBM] Think of 10 or 20 years down the line -- both of the newly independent \\nBM] countries need to develop economically and neither one is going to wipe \\nBM] the other out. These people will be neighbors, would it not be better \\nBM] to keep the bad blood between them minimal?\\n\\n\\tDon't get me WRONG. I also want PEACEFUL solution to the\\n\\tconflict. But until Azeris realize that, the Armenians in\\n\\tKARABAKH will defend themselves against aggresion.\\n\\nBM] If you belong to the Armenian diaspora, keep in mind that what strikes\\nBM] your fancy on the map is costing the local Armenians dearly in terms of \\nBM] their blood and future. \\n\\n\\tAgain, you are taking different TURNS. Armenia HAS no intension\\n to GRAB any LAND from Azerbaijan. The Armenians in KARABAKH\\n are simply defending themselves UNTIL a solution is SET.\\n\\nBM] It's easy to be comfortable abroad and propagandize \\nBM] craziness to have your feelings about Turks tickled. The Armenians\\nBM] in Armenia and N-K will be there, with the same people you seem to hate \\nBM] as their neighbors, for maybe 3000 years more. The sooner there's peace in\\nBM] the region the better it is for them and everyone else. I'd push for\\nBM] compromise if I were you instead of hitting the caps-lock and spreading\\nBM] inflammatory half-truths.\\n\\n\\tIt is NOT up to me to decide the PEACE initiative. I am absolutely\\n for it. But, in the meantime, if you do not take care of yourself,\\n you will be WIPED out. Such as the case in the era of 1915-20 of\\n\\tThe Armenian Massacres.\\n\",\n", + " 'From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 49\\n\\nhoover@mathematik.uni-bielefeld.de (Uwe Schuerkamp) writes:\\n\\n>In article enzo@research.canon.oz.au \\n>(Enzo Liguori) writes:\\n\\n>> hideous vision of the future. Observers were\\n>>startled this spring when a NASA launch vehicle arrived at the\\n>>pad with \"SCHWARZENEGGER\" painted in huge block letters on the\\n\\n>This is ok in my opinion as long as the stuff *returns to earth*.\\n\\n>>What do you think of this revolting and hideous attempt to vandalize\\n>>the night sky? It is not even April 1 anymore.\\n\\n>If this turns out to be true, it\\'s time to get seriously active in\\n>terrorism. This is unbelievable! Who do those people think they are,\\n>selling every bit that promises to make money? I guess we really\\n>deserve being wiped out by uv radiation, folks. \"Stupidity wins\". I\\n>guess that\\'s true, and if only by pure numbers.\\n\\n>\\tAnother depressed planetary citizen,\\n>\\thoover\\n\\n\\nThis isn\\'t inherently bad.\\n\\nThis isn\\'t really light pollution since it will only\\nbe visible shortly before or after dusk (or during the\\nday).\\n\\n(Of course, if night only lasts 2 hours for you, you\\'re probably going\\nto be inconvienenced. But you\\'re inconvienenced anyway in that case).\\n\\nFinally: this isn\\'t the Bronze Age, and most of us aren\\'t Indo\\nEuropean; those people speaking Indo-Eurpoean languages often have\\nmuch non-indo-european ancestry and cultural background. So:\\nplease try to remember that there are more human activities than\\nthose practiced by the Warrior Caste, the Farming Caste, and the\\nPriesthood.\\n\\nAnd why act distressed that someone\\'s found a way to do research\\nthat doesn\\'t involve socialism?\\n\\nIt certianly doesn\\'t mean we deserve to die.\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", + " 'From: warren@itexjct.jct.ac.il (Warren Burstein)\\nSubject: Re: To be exact, 2.5 million Muslims were exterminated by the Armenians.\\nOrganization: ITEX, Jerusalem, Israel\\nLines: 33\\n\\nac = In <9304202017@zuma.UUCP> sera@zuma.UUCP (Serdar Argic)\\npl = linden@positive.Eng.Sun.COM (Peter van der Linden)\\n\\npl: 1. So, did the Turks kill the Armenians?\\n\\nac: So, did the Jews kill the Germans? \\nac: You even make Armenians laugh.\\n\\nac: \"An appropriate analogy with the Jewish Holocaust might be the\\nac: systematic extermination of the entire Muslim population of \\nac: the independent republic of Armenia which consisted of at \\nac: least 30-40 percent of the population of that republic. The \\nac: memoirs of an Armenian army officer who participated in and \\nac: eye-witnessed these atrocities was published in the U.S. in\\nac: 1926 with the title \\'Men Are Like That.\\' Other references abound.\"\\n\\nTypical Mutlu. PvdL asks if X happened, the response is that Y\\nhappened. Even if we grant that the Armenians *did* do what Cosar\\naccuses them of doing, this has no bearing on whether the Turks did\\nwhat they are accused of.\\n\\nWhile I can understand how an AI could be this stupid, I\\ncan\\'t understand how a human could be such a moron as to either let\\nsuch an AI run amok or to compose such pointless messages himself.\\n\\nI do not expect any followup to this article from Argic to do anything\\nto alleviate my puzzlement. But maybe I\\'ll see a new line from his\\nlist of insults.\\n-- \\n/|/-\\\\/-\\\\ \\n |__/__/_/ \\n |warren@ \\n/ nysernet.org\\n',\n", + " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 22\\n\\ntclock@orion.oac.uci.edu writes:\\n> Since one is also unlikely to get \"the truth\" from either Arab or \\n> Palestinian news outlets, where do we go to \"understand\", to learn? \\n> Is one form of propoganda more reliable than another? The only way \\n> to determine that is to try and get beyond the writer\\'s \"political\\n> agenda\", whether it is \"on\" or \"against\" our *side*.\\n> \\n> Tim \\n\\tFirst let me correct myself in that it was Goerbels and\\nnot Goering (Airforce) who ran the Nazi propaganda machine. I\\nagree that Arab news sources are also inherently biased. But I\\nbelieve the statement I was reacting to was that since the\\namerican accounts of events are not fully like the Israeli\\naccounts, the Americans are biased. I just thought that the\\nIsraelis had more motivation for bias.\\n\\tThe UN has tried many times to condemn Israel for its\\ngross violation of human rights. However the US has vetoed most\\nsuch attempts. It is interesting to note that the U.S. is often\\nthe only country opposing such condemnation (well the U.S. and\\nIsrael). It is also interesting to note that that means\\nother western countries realize these human rights violations.\\nSo maybe there are human rights violations going on after all. \\n',\n", + " 'Subject: Re: Drinking and Riding\\nFrom: bclarke@galaxy.gov.bc.ca\\nOrganization: BC Systems Corporation\\nLines: 11\\n\\nIn article , manes@magpie.linknet.com (Steve Manes) writes:\\n{drinking & riding}\\n> It depends on how badly you want to live. The FAA says \"eight hours, bottle\\n> to throttle\" for pilots but recommends twenty-four hours. The FARs specify\\n> a blood/alcohol level of 0.4 as legally drunk, I think, which is more than\\n> twice as strict as DWI minimums.\\n\\n0.20 is DWI in New York? Here the limit is 0.08 !\\n-- \\nBruce Clarke B.C. Environment\\n e-mail: bclarke@galaxy.gov.bc.ca\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: After all, Armenians exterminated 2.5 million Muslim people there.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 297\\n\\nIn article hovig@uxa.cso.uiuc.edu (Hovig Heghinian) writes:\\n\\n>article. I have no partisan interests --- I would just like to know\\n>what conversations between TerPetrosyan and Demirel sound like. =)\\n\\nVery simple.\\n\\n\"X-Soviet Armenian government must pay for their crime of genocide \\n against 2.5 million Muslims by admitting to the crime and making \\n reparations to the Turks and Kurds.\"\\n\\nAfter all, your criminal grandparents exterminated 2.5 million Muslim\\npeople between 1914 and 1920.\\n\\n\\n\\nhovig@uxa.cso.uiuc.edu (Hovig Heghinian)\\n\\n>To which I say:\\n>Hear, hear. Motion seconded.\\n\\nYou must be a new Armenian clown. You are counting on ASALA/SDPA/ARF \\ncrooks and criminals to prove something for you? No wonder you are in \\nsuch a mess. That criminal idiot and \\'its\\' forged/non-existent junk has \\nalready been trashed out by Mutlu, Cosar, Akgun, Uludamar, Akman, Oflazer \\nand hundreds of people. Moreover, ASALA/SDPA/ARF criminals are responsible \\nfor the massacre of the Turkish people that also prevent them from entering \\nTurkiye and TRNC. SDPA has yet to renounce its charter which specifically \\ncalls for the second genocide of the Turkish people. This racist, barbarian \\nand criminal view has been touted by the fascist x-Soviet Armenian government \\nas merely a step on the road to said genocide. \\n\\nNow where shall I begin?\\n\\n#From: ahmet@eecg.toronto.edu (Parlakbilek Ahmet)\\n#Subject: YALANCI, LIAR : DAVIDIAN\\n#Keywords: Davidian, the biggest liar\\n#Message-ID: <1991Jan10.122057.11613@jarvis.csri.toronto.edu>\\n\\nFollowing is the article that Davidian claims that Hasan Mutlu is a liar:\\n\\n>From: dbd@urartu.SDPA.org (David Davidian)\\n>Message-ID: <1154@urartu.SDPA.org>\\n\\n>In article <1991Jan4.145955.4478@jarvis.csri.toronto.edu> ahmet@eecg.toronto.\\n>edu (Ahmet Parlakbilek) asked a simple question:\\n\\n>[AP] I am asking you to show me one example in which mutlu,coras or any other\\n>[AP] Turk was proven to lie.I can show tens of lies and fabrications of\\n>[AP] Davidian, like changing quote , even changing name of a book, Anna.\\n\\n>The obvious ridiculous \"Armenians murdered 3 million Moslems\" is the most\\n>outragious and unsubstantiated charge of all. You are obviously new on this \\n>net, so read the following sample -- not one, but three proven lies in one\\n>day!\\n\\n>\\t\\t\\t- - - start yalanci.txt - - -\\n\\n[some parts are deleted]\\n\\n>In article <1990Aug5.142159.5773@cbnewsd.att.com> the usenet scribe for the \\n>Turkish Historical Society, hbm@cbnewsd.att.com (hasan.b.mutlu), continues to\\n>revise the history of the Armenian people. Let\\'s witness the operational\\n>definition of a revisionist yalanci (or liar, in Turkish):\\n\\n>[Yalanci] According to Leo:[1]\\n>[Yalanci]\\n>[Yalanci] \"The situation is clear. On one side, we have peace-loving Turks\\n>[Yalanci] and on the other side, peace-loving Armenians, both sides minding\\n>[Yalanci] their own affairs. Then all was submerged in blood and fire. Indeed,\\n>[Yalanci] the war was actually being waged between the Committee of \\n>[Yalanci] Dashnaktsutiun and the Society of Ittihad and Terakki - a cruel and \\n>[Yalanci] savage war in defense of party political interests. The Dashnaks \\n>[Yalanci] incited revolts which relied on Russian bayonets for their success.\"\\n>[Yalanci] \\n>[Yalanci] [1] L. Kuper, \"Genocide: Its Political Use in the Twentieth Century,\"\\n>[Yalanci] New York 1981, p. 157.\\n\\n>This text is available not only in most bookstores but in many libraries. On\\n>page 157 we find a discussion of related atrocities (which is title of the\\n>chapter). The topic on this page concerns itself with submissions to the Sub-\\n>Commission on Prevention of Discrimination of Minorities of the Commission on\\n>Human Rights of the United Nations with respect to the massacres in Cambodia.\\n>There is no mention of Turks nor Armenians as claimed above.\\n\\n\\t\\t\\t\\t- - -\\n\\n>Vay sarsak, vay yobaz, vay yalanci! Vay Turk milletinin yuz karasi Mutlu vay!\\n\\n>The depth of foolishness the Turkish Historical Society engages in, while\\n>covering up the Turkish genocide of the Armenians, is only surpassed by the \\n>ridiculous \"historical\" material publicly displayed!\\n\\n>David Davidian | The life of a people is a sea, and \\n\\nReceiving this message, I checked the reference, L.Kuper,\"Genocide...\" and\\nwhat I have found was totally consistent with what Davidian said.The book\\nwas like \"voice of Armenian revolutionists\" and although I read the whole book,\\nI could not find the original quota.\\nBut there was one more thing to check:The original posting of Mutlu.I found \\nthe original article of Mutlu.It is as follows:\\n\\n> According to Leo:[1]\\n\\n>\"The situation is clear. On one side, we have peace-loving Turks and on\\n> the other side, peace-loving Armenians, both sides minding their own \\n> affairs. Then all was submerged in blood and fire. Indeed, the war was\\n> actually being waged between the Committee of Dashnaktsutiun and the\\n> Society of Ittihad and Terakki - a cruel and savage war in defense of party\\n> political interests. The Dashnaks incited revolts which relied on Russian\\n> bayonets for their success.\" \\n\\n>[1] B. A. Leo. \"The Ideology of the Armenian Revolution in Turkey,\" vol II,\\n ======================================================================\\n> p. 157.\\n ======\\n\\nQUATO IS THE SAME, REFERENCE IS DIFFERENT !\\n\\nDAVIDIAN LIED AGAIN, AND THIS TIME HE CHANGED THE ORIGINAL POSTING OF MUTLU\\nJUST TO ACCUSE HIM TO BE A LIAR.\\n\\nDavidian, thank you for writing the page number correctly...\\n\\nYou are the biggest liar I have ever seen.This example showed me that tomorrow\\nyou can lie again, and you may try to make me a liar this time.So I decided\\nnot to read your articles and not to write answers to you.I also advise\\nall the netters to do the same.We can not prevent your lies, but at least\\nwe may save time by not dealing with your lies.\\n\\nAnd for the following line:\\n>Vay sarsak, vay yobaz, vay yalanci! Vay Turk milletinin yuz karasi Mutlu vay!\\n\\nI also return all the insults you wrote about Mutlu to you.\\nI hope you will be drowned in your lies.\\n\\nAhmet PARLAKBILEK\\n\\n#From: vd8@cunixb.cc.columbia.edu (Vedat Dogan)\\n#Message-ID: <1993Apr8.233029.29094@news.columbia.edu>\\n\\nIn article <1993Apr7.225058.12073@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>In article <1993Apr7.030636.7473@news.columbia.edu> vd8@cunixb.cc.columbia.edu\\n>(Vedat Dogan) wrote in response to article <1993Mar31.141308.28476@urartu.\\n>11sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>\\n \\n>[(*] Source: \"Adventures in the Near East, 1918-1922\" by A. Rawlinson,\\n>[(*] Jonathan Cape, 30 Bedford Square, London, 1934 (First published 1923) \\n>[(*] (287 pages).\\n>\\n>[DD] Such a pile of garbage! First off, the above reference was first published\\n>[DD] in 1924 NOT 1923, and has 353 pages NOT 287! Second, upon checking page \\n>[DD] 178, we are asked to believe:\\n> \\n>[VD] No, Mr.Davidian ... \\n> \\n>[VD] It was first published IN 1923 (I have the book on my desk,now!) \\n>[VD] ********\\n> \\n>[VD] and furthermore,the book I have does not have 353 pages either, as you\\n>[VD] claimed, Mr.Davidian..It has 377 pages..Any question?..\\n> \\n>Well, it seems YOUR book has its total page numbers closer to mine than the \\nn>crap posted by Mr. [(*]!\\n \\n o boy! \\n \\n Please, can you tell us why those quotes are \"crap\"?..because you do not \\n like them!!!...because they really exist...why?\\n \\n As I said in my previous posting, those quotes exactly exist in the source \\n given by Serdar Argic .. \\n \\n You couldn\\'t reject it...\\n \\n>\\n>In addition, the Author\\'s Preface was written on January 15, 1923, BUT THE BOOK\\n>was published in 1924.\\n \\n Here we go again..\\n In the book I have, both the front page and the Author\\'s preface give \\n the same year: 1923 and 15 January, 1923, respectively!\\n (Anyone can check it at her/his library,if not, I can send you the copies of\\n pages, please ask by sct) \\n \\n \\nI really don\\'t care what year it was first published(1923 or 1924)\\nWhat I care about is what the book writes about murders, tortures,et..in\\nthe given quotes by Serdar Argic, and your denial of these quotes..and your\\ngroundless accussations, etc. \\n \\n>\\n[...]\\n> \\n>[DD] I can provide .gif postings if required to verify my claim!\\n> \\n>[VD] what is new?\\n> \\n>I will post a .gif file, but I am not going go through the effort to show there \\n>is some Turkish modified re-publication of the book, like last time!\\n \\n \\n I claim I have a book in my hand published in 1923(first publication)\\n and it exactly has the same quoted info as the book published\\n in 1934(Serdar Argic\\'s Reference) has..You couldn\\'t reject it..but, now you\\n are avoiding the real issues by twisting around..\\n \\n Let\\'s see how you lie!..(from \\'non-existing\\' quotes to re-publication)\\n \\n First you said there was no such a quote in the given reference..You\\n called Serdar Argic a liar!..\\n I said to you, NO, MR.Davidian, there exactly existed such a quote...\\n (I even gave the call number, page numbers..you could\\'t reject it.)\\n \\n And now, you are lying again and talking about \"modified,re-published book\"\\n(without any proof :how, when, where, by whom, etc..)..\\n (by the way, how is it possible to re-publish the book in 1923 if it was\\n first published in 1924(your claim).I am sure that you have some \\'pretty \\n well suited theories\\', as usual)\\n \\n And I am ready to send the copies of the necessary pages to anybody who\\n wants to compare the fact and Mr.Davidian\\'s lies...I also give the call number\\n and page numbers again for the library use, which are: \\n 949.6 R 198\\n \\n and the page numbers to verify the quotes:218 and 215\\n \\n \\n \\n> \\n>It is not possible that [(*]\\'s text has 287 pages, mine has 353, and yours has\\n>377!\\n \\n Now, are you claiming that there can\\'t be such a reference by saying \"it is\\n not possible...\" ..If not, what is your point?\\n \\n Differences in the number of pages?\\n Mine was published in 1923..Serdar Argic\\'s was in 1934..\\n No need to use the same book size and the same letter \\n charachter in both publications,etc, etc.. does it give you an idea!!\\n \\n The issue was not the number of pages the book has..or the year\\n first published.. \\n And you tried to hide the whole point..\\n the point is that both books have the exactly the same quotes about\\n how moslems are killed, tortured,etc by Armenians..and those quotes given \\n by Serdar Argic exist!! \\n It was the issue, wasn\\'t-it? \\n \\n you were not able to object it...Does it bother you anyway? \\n \\n You name all these tortures and murders (by Armenians) as a \"crap\"..\\n People who think like you are among the main reasons why the World still\\n has so many \"craps\" in the 1993. \\n \\n Any question?\\n \\n\\n\\nhovig@uxa.cso.uiuc.edu (Hovig Heghinian)\\n\\n> Hmm ... Turks sure know how to keep track of deaths, but they seem to\\n>lose count around 1.5 million.\\n\\nWell, apparently we have another son of Dro \\'the Butcher\\' to contend with. \\nYou should indeed be happy to know that you rekindled a huge discussion on\\ndistortions propagated by several of your contemporaries. If you feel \\nthat you can simply act as an Armenian governmental crony in this forum \\nyou will be sadly mistaken and duly embarrassed. This is not a lecture to \\nanother historical revisionist and a genocide apologist, but a fact.\\n\\nI will dissect article-by-article, paragraph-by-paragraph, line-by-line, \\nlie-by-lie, revision-by-revision, written by those on this net, who plan \\nto \\'prove\\' that the Armenian genocide of 2.5 million Turks and Kurds is \\nnothing less than a classic un-redressed genocide. We are neither in \\nx-Soviet Union, nor in some similar ultra-nationalist fascist dictatorship, \\nthat employs the dictates of Hitler to quell domestic unrest. Also, feel \\nfree to distribute all responses to your nearest ASALA/SDPA/ARF terrorists,\\nthe Armenian pseudo-scholars, or to those affiliated with the Armenian\\ncriminal organizations.\\n\\nArmenian government got away with the genocide of 2.5 million Turkish men,\\nwomen and children and is enjoying the fruits of that genocide. You, and \\nthose like you, will not get away with the genocide\\'s cover-up.\\n\\nNot a chance.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", + " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Morality? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>>Explain to me\\n|> >>>how instinctive acts can be moral acts, and I am happy to listen.\\n|> >>For example, if it were instinctive not to murder...\\n|> >\\n|> >Then not murdering would have no moral significance, since there\\n|> >would be nothing voluntary about it.\\n|> \\n|> See, there you go again, saying that a moral act is only significant\\n|> if it is \"voluntary.\" Why do you think this?\\n\\nIf you force me to do something, am I morally responsible for it?\\n\\n|> \\n|> And anyway, humans have the ability to disregard some of their instincts.\\n\\nWell, make up your mind. Is it to be \"instinctive not to murder\"\\nor not?\\n\\n|> \\n|> >>So, only intelligent beings can be moral, even if the bahavior of other\\n|> >>beings mimics theirs?\\n|> >\\n|> >You are starting to get the point. Mimicry is not necessarily the \\n|> >same as the action being imitated. A Parrot saying \"Pretty Polly\" \\n|> >isn\\'t necessarily commenting on the pulchritude of Polly.\\n|> \\n|> You are attaching too many things to the term \"moral,\" I think.\\n|> Let\\'s try this: is it \"good\" that animals of the same species\\n|> don\\'t kill each other. Or, do you think this is right? \\n\\nIt\\'s not even correct. Animals of the same species do kill\\none another.\\n\\n|> \\n|> Or do you think that animals are machines, and that nothing they do\\n|> is either right nor wrong?\\n\\nSigh. I wonder how many times we have been round this loop.\\n\\nI think that instinctive bahaviour has no moral significance.\\nI am quite prepared to believe that higher animals, such as\\nprimates, have the beginnings of a moral sense, since they seem\\nto exhibit self-awareness.\\n\\n|> \\n|> \\n|> >>Animals of the same species could kill each other arbitarily, but \\n|> >>they don\\'t.\\n|> >\\n|> >They do. I and other posters have given you many examples of exactly\\n|> >this, but you seem to have a very short memory.\\n|> \\n|> Those weren\\'t arbitrary killings. They were slayings related to some \\n|> sort of mating ritual or whatnot.\\n\\nSo what? Are you trying to say that some killing in animals\\nhas a moral significance and some does not? Is this your\\nnatural morality>\\n\\n\\n|> \\n|> >>Are you trying to say that this isn\\'t an act of morality because\\n|> >>most animals aren\\'t intelligent enough to think like we do?\\n|> >\\n|> >I\\'m saying:\\n|> >\\t\"There must be the possibility that the organism - it\\'s not \\n|> >\\tjust people we are talking about - can consider alternatives.\"\\n|> >\\n|> >It\\'s right there in the posting you are replying to.\\n|> \\n|> Yes it was, but I still don\\'t understand your distinctions. What\\n|> do you mean by \"consider?\" Can a small child be moral? How about\\n|> a gorilla? A dolphin? A platypus? Where is the line drawn? Does\\n|> the being need to be self aware?\\n\\nAre you blind? What do you think that this sentence means?\\n\\n\\t\"There must be the possibility that the organism - it\\'s not \\n\\tjust people we are talking about - can consider alternatives.\"\\n\\nWhat would that imply?\\n\\n|> \\n|> What *do* you call the mechanism which seems to prevent animals of\\n|> the same species from (arbitrarily) killing each other? Don\\'t\\n|> you find the fact that they don\\'t at all significant?\\n\\nI find the fact that they do to be significant. \\n\\njon.\\n',\n", + " \"From: benali@alcor.concordia.ca ( ILYESS B. BDIRA )\\nSubject: Re: The Israeli Press\\nNntp-Posting-Host: alcor.concordia.ca\\nOrganization: Concordia University, Montreal, Canada\\nLines: 41\\n\\nbc744@cleveland.Freenet.Edu (Mark Ira Kaufman) writes:\\n\\n\\n...\\n>for your information on Israel. Since I read both American media\\n>and Israeli media, I can say with absolute certainty that anybody\\n>who reliesx exclusively on the American press for knowledge about\\n>Israel does not have a true picture of what is going on.\\n\\nOf course you never read Arab media,\\n\\nI read Arab, ISRAELI (Jer. Post, and this network is more than enough)\\nand Western (American, French, and British) reports and I can say\\nthat if we give Israel -10 and Arabs +10 on the bias scale (of course\\nyou can switch the polarities) Israeli newspapers will get either\\na -9 or -10, American leading newspapers and TV news range from -6\\nto -10 (yes there are some that are more Israelis than Israelis)\\nThe Montreal suburban (a local free newspaper) probably is closer\\nto Kahane's views than some Israeli right wing newspapers, British\\nrange from 0 (neutral) to -10, French (that Iknow of, of course) range\\nfrom +2 (Afro-french magazines) to -10, Arab official media range from\\n0 to -5 (Egyptian) to +9 in SA. Why no +10? Because they do not want to\\noverdo it and stir people against Israel and therefore against them since \\nthey are doing nothing.\\n\\n \\n> As to the claim that Israeli papers are biased, of course they\\n>are. Some may lean to the right or the left, just like the media\\n>here in America. But they still report events about which people\\n>here know nothing. I choose to form my opinions about Israel and\\n>the mideast based on more knowledge than does an average American\\n>who relies exclusively on an American media which does not report\\n>on events in the mideast with any consistency or accuracy.\\n\\nthe average bias of what you read would be probably around -9,\\nwhile that of the average American would be the same if they do\\nnot read or read the new-york times and similar News-makers, and\\n-8 if they read some other RELATIVELY less biased newspapers.\\n\\nso you are not better off.\\n\\n\",\n", + " 'From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: Maxima Chain wax\\nNntp-Posting-Host: amhux3.amherst.edu\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 31\\n\\nTom Dietrich (txd@ESD.3Com.COM) wrote:\\n: parr@acs.ucalgary.ca (Charles Parr) writes:\\n: \\n: >I bought it, I tried it:\\n: \\n: >It is, truly, the miracle spooge.\\n: \\n: >My chain is lubed, my wheel is clean, after 1000km.\\n: \\n: Good, glad to hear it, I\\'m still studying it.\\n: \\n: >I think life is now complete...The shaft drive weenies now\\n: >have no comeback when I discuss shaft effect.\\n: \\n: Sure I do, even though I don\\'t consider myself a weenie... \\n\\n---------------- rip! pithy \"I\\'m afraid to work on my bike\" stuff deleted ---\\n\\n: There is also damn little if any shaft effect\\n: with a Concours. So there! :{P PPPpppphhhhhttttttt!!!\\n: \\nHeh, heh...that\\'s pretty funny. So what do you call it instead of shaft\\neffect?\\n\\n\\nNathaniel\\nZX-10 <--- damn little if any shaft effect\\nDoD 0812\\nAMA\\n\\np.s. okay, so it\\'s flame bait, so what\\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 14/15 - How to Become an Astronaut\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.astronaut_733694515\\nExpires: 6 May 1993 20:01:55 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 313\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/astronaut\\nLast-modified: $Date: 93/04/01 14:39:02 $\\n\\nHOW TO BECOME AN ASTRONAUT\\n\\n First the short form, authored by Henry Spencer, then an official NASA\\n announcement.\\n\\n Q. How do I become an astronaut?\\n\\n A. We will assume you mean a NASA astronaut, since it\\'s probably\\n impossible for a non-Russian to get into the cosmonaut corps (paying\\n passengers are not professional cosmonauts), and the other nations have\\n so few astronauts (and fly even fewer) that you\\'re better off hoping to\\n win a lottery. Becoming a shuttle pilot requires lots of fast-jet\\n experience, which means a military flying career; forget that unless you\\n want to do it anyway. So you want to become a shuttle \"mission\\n specialist\".\\n\\n If you aren\\'t a US citizen, become one; that is a must. After that,\\n the crucial thing to remember is that the demand for such jobs vastly\\n exceeds the supply. NASA\\'s problem is not finding qualified people,\\n but thinning the lineup down to manageable length.\\tIt is not enough\\n to be qualified; you must avoid being *dis*qualified for any reason,\\n many of them in principle quite irrelevant to the job.\\n\\n Get a Ph.D. Specialize in something that involves getting your hands\\n dirty with equipment, not just paper and pencil. Forget computer\\n programming entirely; it will be done from the ground for the fore-\\n seeable future. Degree(s) in one field plus work experience in\\n another seems to be a frequent winner.\\n\\n Be in good physical condition, with good eyesight.\\t(DO NOT get a\\n radial keratomy or similar hack to improve your vision; nobody knows\\n what sudden pressure changes would do to RKed eyes, and long-term\\n effects are poorly understood. For that matter, avoid any other\\n significant medical unknowns.) If you can pass a jet-pilot physical,\\n you should be okay; if you can\\'t, your chances are poor.\\n\\n Practise public speaking, and be conservative and conformist in\\n appearance and actions; you\\'ve got a tough selling job ahead, trying\\n to convince a cautious, conservative selection committee that you\\n are better than hundreds of other applicants. (And, also, that you\\n will be a credit to NASA after you are hired: public relations is\\n a significant part of the job, and NASA\\'s image is very prim and\\n proper.) The image you want is squeaky-clean workaholic yuppie.\\n Remember also that you will need a security clearance at some point,\\n and Security considers everybody guilty until proven innocent.\\n Keep your nose clean.\\n\\n Get a pilot\\'s license and make flying your number one hobby;\\n experienced pilots are known to be favored even for non-pilot jobs.\\n\\n Work for NASA; of 45 astronauts selected between 1984 and 1988,\\n 43 were military or NASA employees, and the remaining two were\\n a NASA consultant and Mae Jemison (the first black female astronaut).\\n If you apply from outside NASA and miss, but they offer you a job\\n at NASA, ***TAKE IT***; sometimes in the past this has meant \"you\\n do look interesting but we want to know you a bit better first\".\\n\\n Think space: they want highly motivated people, so lose no chance\\n to demonstrate motivation.\\n\\n Keep trying. Many astronauts didn\\'t make it the first time.\\n\\n\\n\\n\\n NASA\\n National Aeronautics and Space Administration\\n Lyndon B. Johnson Space Center\\n Houston, Texas\\n\\n Announcement for Mission Specialist and Pilot Astronaut Candidates\\n ==================================================================\\n\\n Astronaut Candidate Program\\n ---------------------------\\n\\n The National Aeronautics and Space Administration (NASA) has a need for\\n Pilot Astronaut Candidates and Mission Specialist Astronaut Candidates\\n to support the Space Shuttle Program. NASA is now accepting on a\\n continuous basis and plans to select astronaut candidates as needed.\\n\\n Persons from both the civilian sector and the military services will be\\n considered.\\n\\n All positions are located at the Lyndon B. Johnson Space Center in\\n Houston, Texas, and will involved a 1-year training and evaluation\\n program.\\n\\n Space Shuttle Program Description\\n ---------------------------------\\n\\n The numerous successful flights of the Space Shuttle have demonstrated\\n that operation and experimental investigations in space are becoming\\n routine. The Space Shuttle Orbiter is launched into, and maneuvers in\\n the Earth orbit performing missions lastling up to 30 days. It then\\n returns to earth and is ready for another flight with payloads and\\n flight crew.\\n\\n The Orbiter performs a variety of orbital missions including deployment\\n and retrieval of satellites, service of existing satellites, operation\\n of specialized laboratories (astronomy, earth sciences, materials\\n processing, manufacturing), and other operations. These missions will\\n eventually include the development and servicing of a permanent space\\n station. The Orbiter also provides a staging capability for using higher\\n orbits than can be achieved by the Orbiter itself. Users of the Space\\n Shuttle\\'s capabilities are both domestic and foreign and include\\n government agencies and private industries.\\n\\n The crew normally consists of five people - the commander, the pilot,\\n and three mission specialists. On occasion additional crew members are\\n assigned. The commander, pilot, and mission specialists are NASA\\n astronauts.\\n\\n Pilot Astronaut\\n\\n Pilot astronauts server as both Space Shuttle commanders and pilots.\\n During flight the commander has onboard responsibility for the vehicle,\\n crew, mission success and safety in flight. The pilot assists the\\n commander in controlling and operating the vehicle. In addition, the\\n pilot may assist in the deployment and retrieval of satellites utilizing\\n the remote manipulator system, in extra-vehicular activities, and other\\n payload operations.\\n\\n Mission Specialist Astronaut\\n\\n Mission specialist astronauts, working with the commander and pilot,\\n have overall responsibility for the coordination of Shuttle operations\\n in the areas of crew activity planning, consumables usage, and\\n experiment and payload operations. Mission specialists are required to\\n have a detailed knowledge of Shuttle systems, as well as detailed\\n knowledge of the operational characteristics, mission requirements and\\n objectives, and supporting systems and equipment for each of the\\n experiments to be conducted on their assigned missions. Mission\\n specialists will perform extra-vehicular activities, payload handling\\n using the remote manipulator system, and perform or assist in specific\\n experimental operations.\\n\\n Astronaut Candidate Program\\n ===========================\\n\\n Basic Qualification Requirements\\n --------------------------------\\n\\n Applicants MUST meet the following minimum requirements prior to\\n submitting an application.\\n\\n Mission Specialist Astronaut Candidate:\\n\\n 1. Bachelor\\'s degree from an accredited institution in engineering,\\n biological science, physical science or mathematics. Degree must be\\n followed by at least three years of related progressively responsible,\\n professional experience. An advanced degree is desirable and may be\\n substituted for part or all of the experience requirement (master\\'s\\n degree = 1 year, doctoral degree = 3 years). Quality of academic\\n preparation is important.\\n\\n 2. Ability to pass a NASA class II space physical, which is similar to a\\n civilian or military class II flight physical and includes the following\\n specific standards:\\n\\n\\t Distant visual acuity:\\n\\t 20/150 or better uncorrected,\\n\\t correctable to 20/20, each eye.\\n\\n\\t Blood pressure:\\n\\t 140/90 measured in sitting position.\\n\\n 3. Height between 58.5 and 76 inches.\\n\\n Pilot Astronaut Candidate:\\n\\n 1. Bachelor\\'s degree from an accredited institution in engineering,\\n biological science, physical science or mathematics. Degree must be\\n followed by at least three years of related progressively responsible,\\n professional experience. An advanced degree is desirable. Quality of\\n academic preparation is important.\\n\\n 2. At least 1000 hours pilot-in-command time in jet aircraft. Flight\\n test experience highly desirable.\\n\\n 3. Ability to pass a NASA Class I space physical which is similar to a\\n military or civilian Class I flight physical and includes the following\\n specific standards:\\n\\n\\t Distant visual acuity:\\n\\t 20/50 or better uncorrected\\n\\t correctable to 20/20, each eye.\\n\\n\\t Blood pressure:\\n\\t 140/90 measured in sitting position.\\n\\n 4. Height between 64 and 76 inches.\\n\\n Citizenship Requirements\\n\\n Applications for the Astronaut Candidate Program must be citizens of\\n the United States.\\n\\n Note on Academic Requirements\\n\\n Applicants for the Astronaut Candidate Program must meet the basic\\n education requirements for NASA engineering and scientific positions --\\n specifically: successful completion of standard professional curriculum\\n in an accredited college or university leading to at least a bachelor\\'s\\n degree with major study in an appropriate field of engineering,\\n biological science, physical science, or mathematics.\\n\\n The following degree fields, while related to engineering and the\\n sciences, are not considered qualifying:\\n - Degrees in technology (Engineering Technology, Aviation Technology,\\n\\tMedical Technology, etc.)\\n - Degrees in Psychology (except for Clinical Psychology, Physiological\\n\\tPsychology, or Experimental Psychology which are qualifying).\\n - Degrees in Nursing.\\n - Degrees in social sciences (Geography, Anthropology, Archaeology, etc.)\\n - Degrees in Aviation, Aviation Management or similar fields.\\n\\n Application Procedures\\n ----------------------\\n\\n Civilian\\n\\n The application package may be obtained by writing to:\\n\\n\\tNASA Johnson Space Center\\n\\tAstronaut Selection Office\\n\\tATTN: AHX\\n\\tHouston, TX 77058\\n\\n Civilian applications will be accepted on a continuous basis. When NASA\\n decides to select additional astronaut candidates, consideration will be\\n given only to those applications on hand on the date of decision is\\n made. Applications received after that date will be retained and\\n considered for the next selection. Applicants will be notified annually\\n of the opportunity to update their applications and to indicate\\n continued interest in being considered for the program. Those applicants\\n who do not update their applications annually will be dropped from\\n consideration, and their applications will not be retained. After the\\n preliminary screening of applications, additional information may be\\n requested for some applicants, and person listed on the application as\\n supervisors and references may be contacted.\\n\\n Active Duty Military\\n\\n Active duty military personnel must submit applications to their\\n respective military service and not directly to NASA. Application\\n procedures will be disseminated by each service.\\n\\n Selection\\n ---------\\n\\n Personal interviews and thorough medical evaluations will be required\\n for both civilian and military applicants under final consideration.\\n Once final selections have been made, all applicants who were considered\\n will be notified of the outcome of the process.\\n\\n Selection rosters established through this process may be used for the\\n selection of additional candidates during a one year period following\\n their establishment.\\n\\n General Program Requirements\\n\\n Selected applicants will be designated Astronaut Candidates and will be\\n assigned to the Astronaut Office at the Johnson Space Center, Houston,\\n Texas. The astronaut candidates will undergo a 1 year training and\\n evaluation period during which time they will be assigned technical or\\n scientific responsibilities allowing them to contribute substantially to\\n ongoing programs. They will also participate in the basic astronaut\\n training program which is designed to develop the knowledge and skills\\n required for formal mission training upon selection for a flight. Pilot\\n astronaut candidates will maintain proficiency in NASA aircraft during\\n their candidate period.\\n\\n Applicants should be aware that selection as an astronaut candidate does\\n not insure selection as an astronaut. Final selection as an astronaut\\n will depend on satisfactory completion of the 1 year training and\\n evaluation period. Civilian candidates who successfully complete the\\n training and evaluation and are selected as astronauts will become\\n permanent Federal employees and will be expected to remain with NASA for\\n a period of at least five years. Civilian candidates who are not\\n selected as astronauts may be placed in other positions within NASA\\n depending upon Agency requirements and manpower constraints at that\\n time. Successful military candidates will be detailed to NASA for a\\n specified tour of duty.\\n\\n NASA has an affirmative action program goal of having qualified\\n minorities and women among those qualified as astronaut candidates.\\n Therefore, qualified minorities and women are encouraged to apply.\\n\\n Pay and Benefits\\n ----------------\\n\\n Civilians\\n\\n Salaries for civilian astronaut candidates are based on the Federal\\n Governments General Schedule pay scales for grades GS-11 through GS-14,\\n and are set in accordance with each individuals academic achievements\\n and experience.\\n\\n Other benefits include vacation and sick leave, a retirement plan, and\\n participation in group health and life insurance plans.\\n\\n Military\\n\\n Selected military personnel will be detailed to the Johnson Space Center\\n but will remain in an active duty status for pay, benefits, leave, and\\n other similar military matters.\\n\\n\\nNEXT: FAQ #15/15 - Orbital and Planetary Launch Services\\n',\n", + " \"From: clldomps@cs.ruu.nl (Louis van Dompselaar)\\nSubject: Re: images of earth\\nOrganization: Utrecht University, Dept. of Computer Science\\nLines: 16\\n\\nIn <1993Apr19.193758.12091@unocal.com> stgprao@st.unocal.COM (Richard Ottolini) writes:\\n\\n>Beware. There is only one such *copyrighted* image and the company\\n>that generated is known to protect that copyright. That image took\\n>hundreds of man-hours to build from the source satellite images,\\n>so it is unlikely that competing images will appear soon.\\n\\nSo they should sue the newspaper I got it from for printing it.\\nThe article didn't say anything about copyrights.\\n\\nLouis\\n\\n-- \\nI'm hanging on your words, Living on your breath, Feeling with your skin,\\nWill I always be here? -- In Your Room [ DM ]\\n\\n\",\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Symbiotics: Zionism-Antisemitism\\nOrganization: The Department of Redundancy Department\\nLines: 21\\n\\nIn article <1483500355@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n\\n>The first point to note regarding the appropriation of the history\\n>of the Holocaust by Zionist propaganda is that Zionism without\\n>anti-semitism is impossible. Zionism agrees with the basic tenet\\n>of anti-Semitism, namely that Jews cannot live with non- Jews.\\n\\nThat\\'s why the Zionists decided that Zion must be Gentile-rein.\\nWhat?! They didn\\'t?! You mean to tell me that the early Zionists\\nactually granted CITIZENSHIP in the Jewish state to Christian and\\nMuslim people, too? \\n\\nIt seems, Elias, that your \"first point to note\" is wrong, so the rest\\nof your posting isn\\'t worth much, either.\\n\\nTa ta...\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: rws@cs.arizona.edu (Ronald W. Schmidt)\\nSubject: outlining of spline surface\\nKeywords: spline rasterization\\nLines: 38\\n\\n\\n\\tAbout a year ago I started work on a problem that appeared to\\nbe very simple and turned out to be quite difficult. I am wondering if\\nanyone on the net has seen this problem and (hopefully) some published \\nsolutions to it.\\n\\n\\tThe problem is to draw an outline of a surface defined by two\\nroughly parallel cubic splines. For inputs the problem essentially\\nstarts with two sets of points where each set of points is on the \\nedge of an object which we treat as two dimensional, i.e. only extant\\nbetween the edges, but which exists in three dimensional space. To draw \\nthe object we \\n\\n1) fit a cubic spline through the points. Each spline is effectively\\n\\tcomputed as a sequence of line segments approximating the\\n curve. Each spline has an equal number of segments. We assume\\n\\tthat the nth segment along each spline is roughly, but not\\n\\texactly, the same distance along each spline by any reasonable\\n\\tmeasure.\\n2) Take each segment (n) along each spline and match it to the nth segment\\n\\tof the opposing spline. Use the pair of segments to form two\\n\\ttriangles which will be filled in to color the surface.\\n3) Depth sort the triangles\\n4) Take each triangle in sorted order, project onto a 2D pixmap, draw\\n\\tand color the triangle. Take the edge of the triangle that is\\n\\talong the edge of the surface and draw a line along that edge\\n\\tcolored with a special \"edge color\"\\n\\n\\tIt is the edge coloring in step 4 that is at the heart of the\\nproblem. The idea is to effectively outline the edge of the surface.\\nThe net result however generally has lots of breaks and gaps in\\nthe edge of the surface. The reasons for this are fairly complicated.\\nThey involve both rasterization problems and problems resulting\\nfrom the projecting the splines. If anything about this problem\\nsounds familiar we would appreciate knowing about other work in this\\narea.\\n\\n-Thanks\\n',\n", + " 'From: daviss@sweetpea.jsc.nasa.gov (S.F. Davis)\\nSubject: Re: japanese moon landing/temporary orbit\\nOrganization: NSPC\\nLines: 46\\n\\nIn article , pgf@srl03.cacs.usl.edu (Phil G. Fraering) writes:\\n|> rls@uihepa.hep.uiuc.edu (Ray Swartz (Oh, that guy again)) writes:\\n|> \\n|> >The gravity maneuvering that was used was to exploit \\'fuzzy regions\\'. These\\n|> >are described by the inventor as exploiting the second-order perturbations in a\\n|> >three body system. The probe was launched into this region for the\\n|> >earth-moon-sun system, where the perturbations affected it in such a way as to\\n|> >allow it to go into lunar orbit without large expenditures of fuel to slow\\n|> >down. The idea is that \\'natural objects sometimes get captured without\\n|> >expending fuel, we\\'ll just find the trajectory that makes it possible\". The\\n|> >originator of the technique said that NASA wasn\\'t interested, but that Japan\\n|> >was because their probe was small and couldn\\'t hold a lot of fuel for\\n|> >deceleration.\\n|> \\n|> \\n|> I should probably re-post this with another title, so that\\n|> the guys on the other thread would see that this is a practical\\n|> use of \"temporary orbits...\"\\n|> \\n|> Another possible temporary orbit:\\n|> \\n|> --\\n|> Phil Fraering |\"Seems like every day we find out all sorts of stuff.\\n|> pgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n|> \\n|> \\n\\nIf you are really interested in these orbits and how they are obtained\\nyou should try and find the following paper:\\n\\n Hiroshi Yamakawa, Jun\\'ichiro Kawaguchi, Nobuaki Ishii, \\n and Hiroki Matsuo, \"A Numerical Study of Gravitational Capture\\n Orbit in the Earth-Moon System,\" AAS-92-186, AAS/AIAA Spaceflight\\n Mechanics Meeting, Colorado Springs, Colorado, 1992.\\n\\nThe references included in this paper are quite interesting also and \\ninclude several that are specific to the HITEN mission itself. \\n\\n|--------------------------------- ******** -------------------------|\\n| * _!!!!_ * |\\n| Steven Davis * / \\\\ \\\\ * |\\n| daviss@sweetpea.jsc.nasa.gov * () * | \\n| * \\\\>_db_ jar2e@faraday.clas.Virginia.EDU (Virginia's Gentleman) writes:\\n\\n This post has all the earmarks of a form program, where the user types in\\n a nationality or ethnicity and it fills it in in certain places in the story. \\n If this is true, I condemn it. If it's a fabrication, then the posters have\\n horrible morals and should be despised by everyone on tpm who values truth.\\n\\n Jesse\\n\\nAgreed.\\n\\nHarry.\\n\",\n", + " \"From: amehdi@src.honeywell.com (Hossien Amehdi)\\nSubject: Re: was: Go Hezbollah!!\\nNntp-Posting-Host: tbilisi.src.honeywell.com\\nOrganization: Honeywell Systems & Research Center\\nLines: 25\\n\\nIn article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>amehdi@src.honeywell.com (Hossien Amehdi) writes:\\n>\\n>>You know when Israelis F16 (thanks to General Dynamics) fly high in the sky\\n>>and bomb the hell out of some village in Lebanon, where civilians including\\n>>babies and eldery getting killed, is that plain murder or what?\\n>\\n>If you Arabs wouldn't position guerilla bases in refugee camps, artillery \\n>batteries atop apartment buildings, and munitions dumps in hospitals, maybe\\n>civilians wouldn't get killed. Kinda like Saddam Hussein putting civilians\\n>in a military bunker. \\n>\\n>Ed.\\n\\nWho is the you Arabs here. Since you are replying to my article you\\nare assuming that I am an Arab. Well, I'm not an Arab, but I think you\\nare brain is full of shit if you really believe what you said. The\\nbombardment of civilian and none civilian areas in Lebanon by Israel is\\nvery consistent with its policy of intimidation. That is the only\\npolicy that has been practiced by the so called only democracy in\\nthe middle east!\\n\\nI was merley pointing out that the other side is also suffering.\\nLike I said, I'm not an Arab but if I was, say a Lebanese, you bet\\nI would defende my homeland against any invader by any means.\\n\",\n", + " \"From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nLines: 31\\nOrganization: Walla Walla College\\nLines: 31\\n\\nIn article <11820@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\n>Subject: Re: some thoughts.\\n>Keywords: Dan Bissell\\n>Date: 15 Apr 93 18:21:21 GMT\\n>In article bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n>>\\n>>\\tFirst I want to start right out and say that I'm a Christian. It \\n>>makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n>>lunatic, or the real thing? (I might be a little off on the title, but he \\n>>writes the book. Anyway he was part of an effort to destroy Christianity, \\n>>in the process he became a Christian himself.\\n>\\n> This should be good fun. It's been a while since the group has\\n> had such a ripe opportunity to gut, gill, and fillet some poor\\n> bastard. \\n>\\n> Ah well. Off to get the popcorn...\\n>\\n>/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n>\\n>Bob Beauchaine bobbe@vice.ICO.TEK.COM \\n>\\n>They said that Queens could stay, they blew the Bronx away,\\n>and sank Manhattan out at sea.\\n>\\n>^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nI hope you're not going to flame him. Please give him the same coutesy you'\\nve given me.\\n\\nTammy\\n\",\n", + " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Freezing and Riding\\nOrganization: University College of Wales, Aberystwyth\\nLines: 14\\nNntp-Posting-Host: 144.124.112.30\\n\\n>every spec of alertness to keep from getting squished, otherwise it's not\\n>only dangerous, it's unpleasant. The same goes for cold and fatigue, as I\\n>once took a half hour nap at a gas station to insure that I would make it\\n\\nYeah, hypothermia is MUCH more detrimemtal to your judgement and reactions\\nthan people realise. I wish I had the patience to stop when I should. One\\nday I'll pay for it....\\n\\nIf you begin to shiver - STOP and warm up thoroughly. If you leave it\\ntill the shivering stops, this doesnt mean you're OK again, it means \\nyou're a danger to yourself and everyone else on the road - your brain\\nand body are working about as fast as a tree grows. You will not realise\\nthis yourself till you hit something. The next stage is passing out. \\nThis usually means falling off.\\n\",\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Express Access Online Communications USA\\nLines: 18\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1r6f3a$2ai@news.umbc.edu> rouben@math9.math.umbc.edu (Rouben Rostamian) writes:\\n>how the length of the daylight varies with the time of the year.\\n>Experiment with various choices of latitudes and tilt angles.\\n>Compare the behavior of the function at locations above and below\\n>the arctic circle.\\n\\n\\n\\nIf you want to have some fun.\\n\\nPlug the basic formulas into Lotus.\\n\\nUse the spreadsheet auto re-calc, and graphing functions\\nto produce bar graphs based on latitude, tilt and hours of day light avg.\\n\\n\\npat\\n\\n',\n", + " 'From: mathew \\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 32\\n\\njaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n> Why would the Rushdie case be particularly legitimate? As I\\'ve said\\n> elsewhere on this issue, Rushdie\\'s actions had effects in Islamic\\n> countries so that it is not so simple to say that he didn\\'t commit\\n> a crime in an Islamic country.\\n\\nActually, it is simple.\\n\\nA person P has committed a crime C in country X if P was within the borders\\nof X at the time when C was committed. It doesn\\'t matter if the physical\\nmanifestation of C is outside X.\\n\\nFor instance, if I hack into NASA\\'s Ames Research Lab and delete all their\\nfiles, I have committed a crime in the United Kingdom. If the US authorities\\nwish to prosecute me under US law rather than UK law, they have no automatic\\nright to do so.\\n\\nThis is why the net authorities in the US tried to put pressure on some sites\\nin Holland. Holland had no anti-cracking legislation, and so it was viewed\\nas a \"hacker haven\" by some US system administrators.\\n\\nSimilarly, a company called Red Hot Television is broadcasting pornographic\\nmaterial which can be received in Britain. If they were broadcasting in\\nBritain, they would be committing a crime. But they are not, they are\\nbroadcasting from Denmark, so the British Government is powerless to do\\nanything about it, in spite of the apparent law-breaking.\\n\\nOf course, I\\'m not a lawyer, so I could be wrong. More confusingly, I could\\nbe right in some countries but not in others...\\n\\n\\nmathew\\n',\n", + " 'From: der10@cus.cam.ac.uk (David Rourke)\\nSubject: xs1100 timing\\nOrganization: U of Cambridge, England\\nLines: 4\\nNntp-Posting-Host: bootes.cus.cam.ac.uk\\n\\nCould some kind soul tell me the advance timing/revs for a 1981 xs1100 special\\n(bought in Canada).\\n\\nthanks.\\n',\n", + " 'From: u7711501@bicmos.ee.nctu.edu.tw (jih-shin ho)\\nSubject: disp135 [0/7]\\nOrganization: National Chiao Tung University\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 285\\n\\n\\n\\nI have posted disp135.zip to alt.binaries.pictures.utilities\\n\\n\\n****** You may distribute this program freely for non-commercial use\\n if no fee is gained.\\n****** There is no warranty. The author is not responsible for any\\n damage caused by this program.\\n\\n\\nImportant changes since version 1.30:\\n Fix bugs in file management system (file displaying).\\n Improve file management system (more user-friendly).\\n Fix bug in XPM version 3 reading.\\n Fix bugs in TARGA reading/writng.\\n Fix bug in GEM/IMG reading.\\n Add support for PCX and GEM/IMG writing.\\n Auto-skip macbinary header.\\n\\n\\n(1) Introduction:\\n This program can let you READ, WRITE and DISPLAY images with different\\n formats. It also let you do some special effects(ROTATION, DITHERING ....)\\n on image. Its main purpose is to let you convert image among different\\n formts.\\n Include simple file management system.\\n Support \\'slide show\\'.\\n There is NO LIMIT on image size.\\n Currently this program supports 8, 15, 16, 24 bits display.\\n If you want to use HiColor or TrueColor, you must have VESA driver.\\n If you want to modify video driver, please read section (8).\\n\\n\\n(2) Hardware Requirement:\\n PC 386 or better. MSDOS 3.3 or higher.\\n min amount of ram is 4M bytes(Maybe less memory will also work).\\n (I recommend min 8M bytes for better performance).\\n Hard disk for swapping(virtual memory).\\n\\n The following description is borrowed from DJGPP.\\n\\n Supported Wares:\\n\\n * Up to 128M of extended memory (expanded under VCPI)\\n * Up to 128M of disk space used for swapping\\n * SuperVGA 256-color mode up to 1024x768\\n * 80387\\n * XMS & VDISK memory allocation strategies\\n * VCPI programs, such as QEMM, DESQview, and 386MAX\\n\\n Unsupported:\\n\\n * DPMI\\n * Microsoft Windows\\n\\n Features: 80387 emulator, 32-bit unix-ish environment, flat memory\\n model, SVGA graphics.\\n\\n\\n(3) Installation:\\n Video drivers, emu387 and go32.exe are borrowed from DJGPP.\\n (If you use Western Digital VGA chips, read readme.wd)\\n (This GO32.EXE is a modified version for vesa and is COMPLETELY compatible\\n with original version)\\n+ *** But some people report that this go32.exe is not compatible with\\n+ other DJGPP programs in their system. If you encounter this problem,\\n+ DON\\'T put go32.exe within search path.\\n\\n *** Please read runme.bat for how to run this program.\\n\\n If you choose xxxxx.grn as video driver, add \\'nc 256\\' to environment\\n GO32.\\n\\n For example, go32=driver x:/xxxxx/xxxxx.grn nc 256\\n\\n If you don\\'t have 80x87, add \\'emu x:/xxxxx/emu387\\' to environment GO32.\\n\\n For example, go32=driver x:/xxxxx/xxxxx.grd emu x:/xxxxx/emu387\\n\\n **** Notes: 1. I only test tr8900.grn, et4000.grn and vesa.grn.\\n Other drivers are not tested.\\n 2. I have modified et4000.grn to support 8, 15, 16, 24 bits\\n display. You don\\'t need to use vesa driver.\\n If et4000.grn doesn\\'t work, please try vesa.grn.\\n 3. For those who want to use HiColor or TrueColor display,\\n please use vesa.grn(except et4000 users).\\n You can find vesa BIOS driver from :\\n wuarchive.wustl.edu: /mirrors/msdos/graphics\\n godzilla.cgl.rmit.oz.au: /kjb/MGL\\n\\n\\n(4) Command Line Switch:\\n\\n+ Usage : display [-d|--display initial_display_type]\\n+ [-s|--sort sort_method]\\n+ [-h|-?]\\n\\n Display type: 8(SVGA,default), 15, 16(HiColor), 24(TrueColor)\\n+ Sort method: \\'name\\', \\'ext\\'\\n\\n\\n(5) Function Key:\\n\\n F2 : Change disk drive\\n\\n+ CTRL-A -- CTRL-Z : change disk drive.\\n\\n F3 : Change filename mask (See match.doc)\\n\\n F4 : Change parameters\\n\\n F5 : Some effects on picture, eg. flip, rotate ....\\n\\n F7 : Make Directory\\n\\n t : Tag file\\n\\n + : Tag group files (See match.doc)\\n\\n T : Tag all files\\n\\n u : Untag file\\n\\n - : Untag group files (See match.doc)\\n\\n U : Untag all files\\n\\n Ins : Change display type (8,15,16,24) in \\'read\\' & \\'screen\\' menu.\\n\\n F6,m,M : Move file(s)\\n\\n F8,d,D : Delete file(s)\\n\\n r,R : Rename file\\n\\n c,C : Copy File(s)\\n\\n z,Z : Display first 10 bytes in Ascii, Hex and Dec modes.\\n\\n+ f,F : Display disk free space.\\n\\n Page Up/Down : Move one page\\n\\n TAB : Change processing target.\\n\\n Arrow keys, Home, End, Page Up, Page Down: Scroll image.\\n Home: Left Most.\\n End: Right Most.\\n Page Up: Top Most.\\n Page Down: Bottom Most.\\n in \\'screen\\' & \\'effect\\' menu :\\n Left,Right arrow: Change display type(8, 15, 16, 24 bits)\\n\\n s,S : Slide Show. ESCAPE to terminate.\\n\\n ALT-X : Quit program without prompting.\\n\\n+ ALT-A : Reread directory.\\n\\n Escape : Abort function and return.\\n\\n\\n(6) Support Format:\\n\\n Read: GIF(.gif), Japan MAG(.mag), Japan PIC(.pic), Sun Raster(.ras),\\n Jpeg(.jpg), XBM(.xbm), Utah RLE(.rle), PBM(.pbm), PGM(.pgm),\\n PPM(.ppm), PM(.pm), PCX(.pcx), Japan MKI(.mki), Tiff(.tif),\\n Targa(.tga), XPM(.xpm), Mac Paint(.mac), GEM/IMG(.img),\\n IFF/ILBM(.lbm), Window BMP(.bmp), QRT ray tracing(.qrt),\\n Mac PICT(.pct), VIS(.vis), PDS(.pds), VIKING(.vik), VICAR(.vic),\\n FITS(.fit), Usenix FACE(.fac).\\n\\n the extensions in () are standard extensions.\\n\\n Write: GIF, Sun Raster, Jpeg, XBM, PBM, PGM, PPM, PM, Tiff, Targa,\\n XPM, Mac Paint, Ascii, Laser Jet, IFF/ILBM, Window BMP,\\n+ Mac PICT, VIS, FITS, FACE, PCX, GEM/IMG.\\n\\n All Read/Write support full color(8 bits), grey scale, b/w dither,\\n and 24 bits image, if allowed for that format.\\n\\n\\n(7) Detail:\\n\\n Initialization:\\n Set default display type to highest display type.\\n Find allowable screen resolution(for .grn video driver only).\\n\\n 1. When you run this program, you will enter \\'read\\' menu. Whthin this\\n menu you can press any function key except F5. If you move or copy\\n files, you will enter \\'write\\' menu. the \\'write\\' menu is much like\\n \\'read\\' menu, but only allow you to change directory.\\n+ The header line in \\'read\\' menu includes \"(d:xx,f:xx,t:xx)\".\\n+ d : display type. f: number of files. t: number of tagged files.\\n pressing SPACE in \\'read\\' menu will let you select which format to use\\n for reading current file.\\n pressing RETURN in \\'read\\' menu will let you reading current file. This\\n program will automatically determine which format this file is.\\n The procedure is: First, check magic number. If fail, check\\n standard extension. Still fail, report error.\\n pressing s or S in \\'read\\' menu will do \\'Slide Show\\'.\\n If delay time is 0, program will wait until you hit a key\\n (except ESCAPE).\\n If any error occurs, program will make a beep.\\n ESCAPE to terminate.\\n pressing Ins in \\'read\\' menu will change display type.\\n pressing ALT-X in \\'read\\' menu will quit program without prompting.\\n\\n 2. Once image file is successfully read, you will enter \\'screen\\' menu.\\n Within this menu F5 is turn on. You can do special effect on image.\\n pressing RETURN: show image.\\n in graphic mode, press RETURN, SPACE or ESCAPE to return to text\\n mode.\\n pressing TAB: change processing target. This program allows you to do\\n special effects on 8-bit or 24-bit image.\\n pressing Left,Right arrow: change display type. 8, 15, 16, 24 bits.\\n pressing SPACE: save current image to file.\\n B/W Dither: save as black/white image(1 bit).\\n Grey Scale: save as grey image(8 bits).\\n Full Color: save as color image(8 bits).\\n True Color: save as 24-bit image.\\n\\n This program will ask you some questions if you want to write image\\n to file. Some questions are format-dependent. Finally This program\\n will prompt you a filename. If you want to save file under another\\n directory other than current directory, please press SPACE. after\\n pressing SPACE, you will enter \\'write2\\' menu. You can change\\n directory to what you want. Then,\\n\\n pressing SPACE: this program will prompt you \\'original\\' filename.\\n pressing RETURN: this program will prompt you \\'selected\\' filename\\n (filename under bar).\\n\\n\\n 3. This program supports 8, 15, 16, 24 bits display.\\n\\n 4. This Program is MEMORY GREEDY. If you don\\'t have enough memory,\\n the performance is poor.\\n\\n 5. If you want to save 8 bits image :\\n try GIF then TIFF(LZW) then TARGA then Sun Raster then BMP then ...\\n\\n If you want to save 24 bits image (lossless):\\n try TIFF(LZW) or TARGA or ILBM or Sun Raster\\n (No one is better for true 24bits image)\\n\\n 6. I recommend Jpeg for storing 24 bits images, even 8 bits images.\\n\\n 7. Not all subroutines are fully tested\\n\\n 8. This document is not well written. If you have any PROBLEM, SUGGESTION,\\n COMMENT about this program,\\n Please send to u7711501@bicmos.ee.nctu.edu.tw (140.113.11.13).\\n I need your suggestion to improve this program.\\n (There is NO anonymous ftp on this site)\\n\\n\\n(8) Tech. information:\\n Program (user interface and some subroutines) written by Jih-Shin Ho.\\n Some subroutines are borrowed from XV(2.21) and PBMPLUS(dec 91).\\n Tiff(V3.2) and Jpeg(V4) reading/writing are through public domain\\n libraries.\\n Compiled with DJGPP.\\n You can get whole DJGPP package from SIMTEL20 or mirror sites.\\n For example, wuarchive.wustl.edu: /mirrors/msdos/djgpp\\n\\n\\n(9) For Thoese who want to modify video driver:\\n 1. get GRX source code from SIMTEL20 or mirror sites.\\n 2. For HiColor and TrueColor:\\n 15 bits : # of colors is set to 32768.\\n 16 bits : # of colors is set to 0xc010.\\n 24 bits : # of colors is set to 0xc018.\\n\\n\\nAcknowledgment:\\n I would like to thank the authors of XV and PBMPLUS for their permission\\n to let me use their subroutines.\\n Also I will thank the authors who write Tiff and Jpeg libraries.\\n Thank DJ. Without DJGPP I can\\'t do any thing on PC.\\n\\n\\n Jih-Shin Ho\\n u7711501@bicmos.ee.nctu.edu.tw\\n',\n", + " 'From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: Re: No land for peace - No negotiatians\\nOrganization: Unocal Corporation\\nLines: 52\\n\\n\\n\\nhasan@McRCIM.McGill.EDU writes:\\n\\n\\n>Ok. I donot know why there are israeli voices against negotiations. However,\\n>i would guess that is because they refuse giving back a land for those who\\n>have the right for it.\\n\\nSounds like wishful guessing.\\n\\n\\n>As for the Arabian and Palestinean voices that are against the\\n>current negotiations and the so-called peace process, they\\n>are not against peace per se, but rather for their well-founded predictions\\n>that Israel would NOT give an inch of the West bank (and most probably the same\\n>for Golan Heights) back to the Arabs. An 18 months of \"negotiations\" in Madrid,\\n>and Washington proved these predictions. Now many will jump on me saying why\\n>are you blaming israelis for no-result negotiations.\\n>I would say why would the Arabs stall the negotiations, what do they have to\\n>loose ?\\n\\n\\n\\'So-called\\' ? What do you mean ? How would you see the peace process?\\n\\nSo you say palestineans do not negociate because of \\'well-founded\\' predictions ?\\nHow do you know that they are \\'well founded\\' if you do not test them at the \\ntable ? 18 months did not prove anything, but it\\'s always the other side at \\nfault, right ?\\n\\nWhy ? I do not know why, but if, let\\'s say, the Palestineans (some of them) want\\nALL ISRAEL, and these are known not to be accepted terms by israelis.\\n\\nOr, maybe they (palestinenans) are not yet ready for statehood ?\\n\\nOr, maybe there is too much politics within the palestinean leadership, too many\\nfractions aso ?\\n\\nI am not saying that one of these reasons is indeed the real one, but any of\\nthese could make arabs stall the negotiations.\\n\\n>Arabs feel that the current \"negotiations\" is ONLY for legitimizing the current\\n>status-quo and for opening the doors of the Arab markets for israeli trade and\\n>\"oranges\". That is simply unacceptable and would be revoked.\\n \\nI like California oranges. And the feelings may get sharper at the table.\\n\\n\\n\\nRegards,\\n\\nDorin\\n',\n", + " 'From: robinson@cogsci.Berkeley.EDU (Michael Robinson)\\nSubject: Krypto cables (was Re: Cobra Locks)\\nOrganization: Institute of Cognitive Studies, U.C. Berkeley\\nLines: 51\\nDistribution: usa\\nNNTP-Posting-Host: cogsci.berkeley.edu\\n\\nIn article <1993Apr20.184432.21485@research.nj.nec.com> behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n>\\tFor the same money, you can get a Kryptonite cable lock, which is\\n>anywhere from 1/2\" to 7/8\" thick steel cable (looks like steel rope), shielded\\n>in a flexible covering to protect your bike\\'s finish, and has a barrel-type\\n>locking mechanism. I don\\'t know if it\\'s adjustable, but my source says it\\'s\\n>more difficult to pick than most locks, and the cable tends to squish flat\\n>in bolt-cutter jaws rather than shear (5/8\" model).\\n>\\n>\\tFYI, I\\'ll be getting a Krypto cable next paycheck.\\n\\nA word of warning, though: Kryptonite also sells almost useless cable\\nlocks under the Kryptonite name.\\n\\nWhen I obtained my second motorcycle, I migrated one of my Kryptonite \\nU-locks from my bicycle to the new bike. I then went out shopping for\\na new lock for the bicycle.\\n\\nFor about the same money ($20) I had the choice of a Kryptonite cable lock\\n(advantages: lock front and back wheels on bicycle and keep them both,\\nKryptonite name) or a cheesy no-name U-lock (advantages: real steel).\\nI chose the Kryptonite cable. After less than a week, I took it back in\\ndisgust and exchanged it for the cheesy no-name U-lock.\\n\\nFirst, the Krypto cable I bought is not made by Kryptonite, is not covered by\\nthe Kryptonite guarantee, and doesn\\'t even approach Kryptonite standards of\\nquality and quality assurance. It is just some generic made-in-Taiwan cable\\nlock with the Kryptonite name on it.\\n\\nSecondly, the latch engagement mechanism is something of a joke. I\\ndon\\'t know if mine was a particularly poor example, but it was often\\nquite frustrating to get the latch to positively engage, and sometimes\\nit would seem to engage, only to fall open when I went to unlock it.\\n\\nThirdly, the lock has a little plastic door on the keyway which serves\\nthe sole purpose of frustrating any attempt to insert the key in the \\ndark. I didn\\'t try it (obviously), but I have my doubts that the \\nlock mechanism would stand up to an \"insert screwdriver and TORQUE\"\\nattack.\\n\\nFourthly, the cable was not, in my opinion, of sufficient thickness to \\ndeter theft (for my piece of crap bicycle, that is). All cables suffer the\\nweakness that they can be cut a few strands at a time. If you are patient\\nyou can cut cables with fingernail clippers. Aviation snips would go \\nthrough the cable in well under a minute.\\n\\n\\n\\n-- \\n ----------------------------------------------------------------------------\\n Michael Robinson UUCP: ucbvax!cogsci!robinson\\n INTERNET: robinson@cogsci.berkeley.edu\\n',\n", + " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: DC-X: Vehicle Nears Flight Test\\nArticle-I.D.: aurora.1993Apr5.191011.1\\nOrganization: University of Alaska Fairbanks\\nLines: 53\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n> In article <2736@snap> paj@uk.co.gec-mrc (Paul Johnson) writes:\\n>>This bit interests me. How much automatic control is there? Is it\\n>>purely autonomous or is there some degree of ground control?\\n> \\n> The \"stick-and-rudder man\" is always the onboard computer. The computer\\n> normally gets its orders from a stored program, but they can be overridden\\n> from the ground.\\n> \\n>>How is\\n>>the transition from aerodynamic flight (if thats what it is) to hover\\n>>accomplished? This is the really new part...\\n> \\n> It\\'s also one of the tricky parts. There are four different ideas, and\\n> DC-X will probably end up trying all of them. (This is from talking to\\n> Mitch Burnside Clapp, who\\'s one of the DC-X test pilots, at Making Orbit.)\\n> \\n> (1) Pop a drogue chute from the nose, light the engines once the thing\\n> \\tstabilizes base-first. Simple and reliable. Heavy shock loads\\n> \\ton an area of structure that doesn\\'t otherwise carry major loads.\\n> \\tNeeds a door in the \"hot\" part of the structure, a door whose\\n> \\toperation is mission-critical.\\n> \\n> (2) Switch off pitch stability -- the DC is aerodynamically unstable at\\n> \\tsubsonic speeds -- wait for it to flip, and catch it at 180\\n> \\tdegrees, then light engines. A bit scary.\\n> \\n> (3) Light the engines and use thrust vectoring to push the tail around.\\n> \\tProbably the preferred method in the long run. Tricky because\\n> \\tof the fuel-feed plumbing: the fuel will start off in the tops\\n> \\tof the tanks, then slop down to the bottoms during the flip.\\n> \\tKeeping the engines properly fed will be complicated.\\n> \\n> (4) Build up speed in a dive, then pull up hard (losing a lot of speed,\\n> \\tthis thing\\'s L/D is not that great) until it\\'s headed up and\\n> \\tthe vertical velocity drops to zero, at which point it starts\\n> \\tto fall tail-first. Light engines. Also a bit scary, and you\\n> \\tprobably don\\'t have enough altitude left to try again.\\n> -- \\n> All work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n> - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\\nSince the DC-X is to take off horizontal, why not land that way??\\nWhy do the Martian Landing thing.. Or am I missing something.. Don\\'t know to\\nmuch about DC-X and such.. (overly obvious?).\\n\\nWhy not just fall to earth like the russian crafts?? Parachute in then...\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n\\nPlease enlighten me... Ignorance is easy to correct. make a mistake and\\neveryone will let you know you messed up..\\n',\n", + " \"From: alanf@eng.tridom.com (Alan Fleming)\\nSubject: Re: New to Motorcycles...\\nNntp-Posting-Host: tigger.eng.tridom.com\\nReply-To: alanf@eng.tridom.com (Alan Fleming)\\nOrganization: AT&T Tridom, Engineering\\nLines: 22\\n\\nIn article <1993Apr20.163315.8876@adobe.com>, cjackson@adobe.com (Curtis Jackson) writes:\\n|> In article <1993Apr20.131800.16136@alw.nih.gov> gregh@niagara.dcrt.nih.gov (Gregory Humphreys) writes:\\n> }1) I only have about $1200-1300 to work with, so that would have \\n> }to cover everything (bike, helmet, anything else that I'm too \\n> }ignorant to know I need to buy)\\n> \\n> The following numbers are approximate, and will no doubt get me flamed:\\n> \\n> Helmet (new, but cheap)\\t\\t\\t\\t\\t$100\\n> Jacket (used or very cheap)\\t\\t\\t\\t$100\\n> Gloves (nothing special)\\t\\t\\t\\t$ 20\\n> Motorcycle Safety Foundation riding course (a must!)\\t$140\\n ^^^\\nWow! Courses in Georgia are much cheaper. $85 for both.\\n>\\n\\nThe list looks good, but I'd also add:\\n Heavy Boots (work, hiking, combat, or similar) $45\\n\\nThink Peace.\\n-- Alan (alanf@eng.tridom.com)\\nKotBBBB (1988 GSXR1100J) AMA# 634578 DOD# 4210 PGP key available\\n\",\n", + " \"From: astein@nysernet.org (Alan Stein)\\nSubject: Re: was: Go Hezbollah!\\nOrganization: NYSERNet, Inc.\\nLines: 21\\n\\nhernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n>Tell me Tim, what are these guerillas doing wrong? Assuming that they are using\\n>civilians for cover, are they not killing SOLDIERS in THEIR country?\\n\\nSo, it's okay to use civilians for cover if you're attacking soldiers\\nin your country. (Of course, many of those attacking claim that they\\naren't Lebanese, so it's not their country.)\\n\\nGot it. I think. Hmm. This is confusing.\\n\\nCould you perhaps repeat your rules explaining exactly when it is\\npermissible to use civilians as shields? Also please explain under\\nwhat conditions it is permissible for soldiers to defend themselves.\\nAlso please explain the particular rules that make it okay for\\nterrorists to launch missiles from Lebanon against Israeli civilians,\\nbut not okay for the Israelis to try to defend themselves against\\nthose missiles.\\n\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n\",\n", + " 'From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Ellipse Again\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 39\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\nKeywords: ellipse\\n\\n\\nHi! Everyone,\\n\\nBecause no one has touched the problem I posted last week, I guess\\nmy question was not so clear. Now I\\'d like to describe it in detail:\\n\\nThe offset of an ellipse is the locus of the center of a circle which\\nrolls on the ellipse. In other words, the distance between the ellipse\\nand its offset is same everywhere.\\n\\nThis problem comes from the geometric measurement when a probe is used.\\nThe tip of the probe is a ball and the computer just outputs the\\npositions of the ball\\'s center. Is the offset of an ellipse still\\nan ellipse? The answer is no! Ironically, DMIS - an American Indutrial\\nStandard says it is ellipse. So almost all the software which was\\nimplemented on the base of DMIS was wrong. The software was also sold\\ninternationaly. Imagine, how many people have or will suffer from this bug!!!\\nHow many qualified parts with ellipse were/will be discarded? And most\\nimportantly, how many defective parts with ellipse are/will be used?\\n\\nI was employed as a consultant by a company in Los Angeles last year\\nto specially solve this problem. I spent two months on analysis of this\\nproblem and six months on programming. Now my solution (nonlinear)\\nis not ideal because I can only reconstruct an ellipse from its entire\\nor half offset. It is very difficult to find the original ellipse from\\na quarter or a segment of its offset because the method I used is not\\nanalytical. I am now wondering if I didn\\'t touch the base and make things\\ncomplicated. Please give me a hint.\\n\\nI know you may argue this is not a CG problem. You are right, it is not.\\nHowever, so many people involved in the problem \"sphere from 4 poits\".\\nWhy not an ellipse? And why not its offset?\\n\\nPlease post here and let the others share our interests \\n(I got several emails from our netters, they said they need the\\nsummary of the answers).\\n\\nYeh\\nUSC\\n',\n", + " \"From: avi@duteinh.et.tudelft.nl (Avi Cohen Stuart)\\nSubject: Re: was: Go Hezbollah!!\\nOriginator: avi@duteinh.et.tudelft.nl\\nNntp-Posting-Host: duteinh.et.tudelft.nl\\nOrganization: Delft University of Technology, Dept. of Electrical Engineering\\nLines: 35\\n\\nFrom article <1993Apr15.031349.21824@src.honeywell.com>, by amehdi@src.honeywell.com (Hossien Amehdi):\\n> In article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>>amehdi@src.honeywell.com (Hossien Amehdi) writes:\\n>>\\n>>>You know when Israelis F16 (thanks to General Dynamics) fly high in the sky\\n>>>and bomb the hell out of some village in Lebanon, where civilians including\\n>>>babies and eldery getting killed, is that plain murder or what?\\n>>\\n>>If you Arabs wouldn't position guerilla bases in refugee camps, artillery \\n>>batteries atop apartment buildings, and munitions dumps in hospitals, maybe\\n>>civilians wouldn't get killed. Kinda like Saddam Hussein putting civilians\\n>>in a military bunker. \\n>>\\n>>Ed.\\n> \\n> Who is the you Arabs here. Since you are replying to my article you\\n> are assuming that I am an Arab. Well, I'm not an Arab, but I think you\\n> are brain is full of shit if you really believe what you said. The\\n> bombardment of civilian and none civilian areas in Lebanon by Israel is\\n> very consistent with its policy of intimidation. That is the only\\n> policy that has been practiced by the so called only democracy in\\n> the middle east!\\n> \\n> I was merley pointing out that the other side is also suffering.\\n> Like I said, I'm not an Arab but if I was, say a Lebanese, you bet\\n> I would defende my homeland against any invader by any means.\\n\\nTell me then, would you also fight the Syrians in Lebanon?\\n\\nOh, no of course not. They would be your brothers and you would\\ntell that you invited them. \\n\\nAvi.\\n\\n\\n\",\n", + " \"From: ednclark@kraken.itc.gu.edu.au (Jeffrey Clark)\\nSubject: Re: mathew writes:\\n\\n>>>Perhaps we shouldn't imprision people if we could watch them closely\\n>>>instead. The cost would probably be similar, especially if we just\\n>>>implanted some sort of electronic device.\\n>>Why wait until they commit the crime? Why not implant such devices in\\n>>potential criminals like Communists and atheists?\\n\\n>Sorry, I don't follow your reasoning. You are proposing to punish people\\n>*before* they commit a crime? What justification do you have for this?\\n\\nNo, Mathew is proposing a public defence mechanism, not treating the\\nelectronic device as an impropriety on the wearer. What he is saying is that\\nthe next step beyond what you propose is the permanent bugging of potential\\ncriminals. This may not, on the surface, sound like a bad thing, but who\\ndefines what a potential criminal is? If the government of the day decides\\nthat being a member of an opposition party makes you a potential criminal\\nthen openly defying the government becomes a lethal practice, this is not\\nconducive to a free society.\\n\\nMathew is saying that implanting electronic surveillance devices upon people\\nis an impropriety upon that person, regardless of what type of crime or\\nwhat chance of recidivism there is. Basically you see the criminal justice\\nsystem as a punishment for the offender and possibly, therefore, a deterrant\\nto future offenders. Mathew sees it, most probably, as a means of\\nrehabilitation for the offender. So he was being cynical at you, okay?\\n\\nJeff.\\n\\n\",\n", + " 'From: full_gl@pts.mot.com (Glen Fullmer)\\nSubject: Needed: Plotting package that does...\\nNntp-Posting-Host: dolphin\\nReply-To: glen_fullmer@pts.mot.com\\nOrganization: Paging and Wireless Data Group, Motorola, Inc.\\nComments: Hyperbole mail buttons accepted, v3.07.\\nLines: 27\\n\\nLooking for a graphics/CAD/or-whatever package on a X-Unix box that will\\ntake a file with records like:\\n\\nn a b p\\n\\nwhere n = a count - integer \\n a = entity a - string\\n b = entity b - string\\n p = type - string\\n\\nand produce a networked graph with nodes represented with boxes or circles\\nand the vertices represented by lines and the width of the line determined by\\nn. There would be a different line type for each type of vertice. The boxes\\nneed to be identified with the entity\\'s name. The number of entities < 1000\\nand vertices < 100000. It would be nice if the tool minimized line\\ncross-overs and did a good job of layout. ;-)\\n\\n I have looked in the FAQ for comp.graphics and gnuplot without success. Any\\nideas would be appreciated?\\n\\nThanks,\\n--\\nGlen Fullmer, glen_fullmer@pts.mot.com, (407)364-3296\\n*******************************************************************************\\n* \"For a successful technology, reality must take precedence *\\n* over public relations, for Nature cannot be fooled.\" - Richard P. Feynman *\\n*******************************************************************************\\n',\n", + " 'From: ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed)\\nSubject: Re: Final Solution in Palestine ?\\nOriginator: ahmeda@celeborn.mcrcim.mcgill.edu\\nNntp-Posting-Host: celeborn.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 59\\n\\n\\nIn article , hm@cs.brown.edu (Harry Mamaysky) writes:\\n|> In article <1483500354@igc.apc.org> Center for Policy Research writes:\\n|> \\n|> Final Solution for the Gaza ghetto ?\\n|> ------------------------------------\\n|> \\n|> While Israeli Jews fete the uprising of the Warsaw ghetto, they\\n|> repress by violent means the uprising of the Gaza ghetto and\\n|> attempt to starve the Gazans.\\n|> \\n|> [...]\\n|> \\n|> The Jews in the Warsaw ghetto were fighting to keep themselves and\\n|> their families from being sent to Nazi gas chambers. Groups like Hamas\\n|> and the Islamic Jihad fight with the expressed purpose of driving all\\n|> Jews into the sea. Perhaps, we should persuade Jewish people to help\\n ^^^^^^^^^^^^^^^^^^\\n|> these wnderful \"freedom fighters\" attain this ultimate goal.\\n|> \\n|> Maybe the \"freedom fighters\" will choose to spare the co-operative Jews.\\n|> Is that what you are counting on, Elias - the pity of murderers.\\n|> \\n|> You say your mother was Jewish. How ashamed she must be of her son. I\\n|> am sorry, Mrs. Davidsson.\\n|> \\n|> Harry.\\n\\nO.K., its my turn:\\n\\n DRIVING THE JEWS INTO THE SEA ?!\\n\\nI am sick and tired of this \\'DRIVING THE JEWS INTO THE SEA\\' sentance attributed\\nto Islamic movements and the PLO; it simply can\\'t be proven as part of their\\nplan !\\n\\n(Pro Israeli activists repeat it like parrots without checking its authenticity\\nsince it was coined by Bnai Brith)\\n\\nWhat Hamas and Islamic Jihad believe in, as far as I can get from the Arab media,\\nis an Islamic state that protects the rights of all its inhabitants under Koranic\\nLaw. This would be a reversal of the 1948 situation in which the Jews in\\nPalestine took control of the land and its (mostly Muslim) inhabitants.\\n\\nHowever, whoever committed crimes against humanity (torture, blowing up their\\nhomes, murders,...) must be treated and tried as a war criminal. The political\\nthought of these movements shows that a freedom of choice will be given to the\\nJews in living under the new law or leaving to the destintion of their choice.\\n\\nAs for the PLO, I am at a loss to explain what is going inside Arafat\\'s mind.\\n\\nAlthough their political thinking seems far fetched with Israel acting as a true\\nsuper-power in the region, the Islamic movements are using the same weapon the\\nJews used to establish their state : Religion.\\n\\n\\nAhmed.\\n\\n',\n", + " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: TRUE \"GLOBE\", Who makes it?\\nOrganization: U of Toronto Zoology\\nLines: 12\\n\\nIn article bill@xpresso.UUCP (Bill Vance) writes:\\n>It has been known for quite a while that the earth is actually more pear\\n>shaped than globular/spherical. Does anyone make a \"globe\" that is accurate\\n>as to actual shape, landmass configuration/Long/Lat lines etc.?\\n\\nI don\\'t think you\\'re going to be able to see the differences from a sphere\\nunless they are greatly exaggerated. Even the equatorial bulge is only\\nabout 1 part in 300 -- you\\'d never notice a 1mm error in a 30cm globe --\\nand the other deviations from spherical shape are much smaller.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Space Advertising (2 of 2)\\nOrganization: University of Illinois at Urbana\\nLines: 24\\n\\nWales.Larrison@ofa123.fidonet.org writes:\\n\\n>the \"Environmental\\n>Billboard\" is a large inflatable outer support structure of up to\\n>804x1609 meters. Advertising is carried by a mylar reflective area,\\n>deployed by the inflatable \\'frame\\'.\\n> To help sell the concept, the spacecraft responsible for\\n>maintaining the billboard on orbit will carry \"ozone reading\\n>sensors\" to \"continuously monitor the condition of the Earth\\'s\\n>delicate protective ozone layer,\" according to Mike Lawson, head of\\n>SMI. Furthermore, the inflatable billboard has reached its minimum\\n>exposure of 30 days it will be released to re-enter the Earth\\'s\\n>atmosphere. According to IMI, \"as the biodegradable material burns,\\n>it will release ozone-building components that will literally\\n>replenish the ozone layer.\"\\n ^^^^^^^^^ ^^^ ^^^^^ ^^^^^\\n\\n Can we assume that this guy studied advertising and not chemistry? Granted \\nit probably a great advertising gimic, but it doesn\\'t sound at all practical.\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", + " \"From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: Minority Abuses in Greece.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 201\\n\\nIn article mpoly@panix.com (Michael S. Polymenakos) writes:\\n\\n> Well, ZUMABOT claims just the opposite: That Greeks are not allowing\\n>Turks to exit the country. Now, explain this: The number of Turks in\\n>Thrace has steadily risen from 50,000 in 23 to 80,000, while the Greeks of\\n\\nDr. Goebels thought that a lie repeated enough times could finally \\nbe believed. I have been observing that 'Poly' has been practicing \\nGoebels' rule quite loyally. 'Poly's audience is mostly made of Greeks \\nwho are not allowed to listen to Turkish news. However, in today's \\ninformed world Greek propagandists can only fool themselves. For \\ninstance, those who lived in 1974 will remember the TV news they \\nwatched and the newspapers they read and the younger generation can \\nread the American newspapers of July and August 1974 to find out what \\nreally happened. \\n\\nThere are in Turkiye the Greek Hospital, The Greek Girls' Lycee \\nAlumni Association, the Principo Islands Greek Benevolent Society, \\nthe Greek Medical Foundation, the Principo Greek Orphanage Foundation, \\nthe Yovakimion Greek Girls' Lycee Foundation, and the Fener Greek \\nMen's Lycee Foundation. \\n\\nAs for Greece, the longstanding use of the adjective 'Turkish' \\nin titles and on signboards is prohibited. The Greek courts \\nhave ordered the closure of the Turkish Teachers' Association, \\nthe Komotini Turkish Youth Association and the Ksanti \\nTurkish Association on grounds that there are no Turks\\nin Western Thrace. Such community associations had been \\nactive until 1984. But they were first told to remove\\nthe word 'Turkish' on their buildings and on their official\\npapers and then eventually close down. This is also the \\nfinal verdict (November 4, 1987) of the Greek High Court.\\n\\nIn the city of Komotini, a former Greek Parliamentarian of Turkish\\nparentage, was sentenced recently to 18 months of imprisonment\\nwith no right to appeal, just for saying outloud that he was\\nof Turkish descent. This duly-elected ethnic Turkish official\\nwas also deprived of his political rights for a period of three \\nyears. Each one of these barbaric acts seems to be none other than \\na vehicle, used by the Greek governments, to cover-up their inferiority \\ncomplex they display, vis-a-vis, the people of Turkiye. \\n\\nThe Agreement on the Exchange of Minorities uses the term 'Turks,' \\nwhich demonstrates what is actually meant by the previous reference \\nto 'Muslims.' The fact that the Greek governments also mention the \\nexistence of a few thousand non-Turkish Muslims does not change the \\nessential reality that there lives in Western Thrace a much bigger \\nTurkish minority. The 'Pomaks' are also a Muslim people, whom all the \\nthree nations (Bulgarians, Turks, and Greeks) consider as part of \\nthemselves. Do you know how the Muslim Turkish minority was organized \\naccording to the agreements? Poor 'Poly.'\\n\\nIt also proves that the Turkish people are trapped in Greece \\nand the Greek people are free to settle anywhere in the world.\\nThe Greek authorities deny even the existence of a Turkish\\nminority. They pursue the same denial in connection with \\nthe Macedonians of Greece. Talk about oppression. In addition,\\nin 1980 the 'democratic' Greek Parliament passed Law No. 1091,\\nvirtually taking over the administration of the vakiflar and\\nother charitable trusts. They have ceased to be self-supporting\\nreligious and cultural entities. Talk about fascism. The Greek \\ngovernments are attempting to appoint the muftus, irrespective\\nof the will of the Turkish minority, as state official. Although\\nthe Orthodox Church has full authority in similar matters in\\nGreece, the Muslim Turkish minority will have no say in electing\\nits religious leaders. Talk about democracy.\\n\\nThe government of Greece has recently destroyed an Islamic \\nconvention in Komotini. Such destruction, which reflects an \\nattitude against the Muslim Turkish cultural heritage, is a \\nviolation of the Lausanne Convention as well as the 'so-called' \\nGreek Constitution, which is supposed to guarantee the protection \\nof historical monuments. \\n\\nThe government of Greece, on the other hand, is building new \\nchurches in remote villages as a complementary step toward \\nHellenizing the region.\\n\\nAnd you pondered. Sidiropoulos, the president of the Macedonian Human \\nRights Committee, became the latest victim of a tactic long used by \\nthe Greeks to silence critics of policies of forced assimilation \\nof the Macedonian minority. A forestry official by occupation, \\nSidiropoulos has been sent to 'internal exile' on the island of \\nKefalonia, hundreds of kilometers away from his native Florina. \\nHis employer, the Florina City Council, asked him to depart in \\n24 hours. The Greek authorities are trying to punish him for his \\ninvolvement in Copenhagen. He returned to Florina by his own choice \\nand remains without a job. \\n\\nHelsinki Watch, a well-known Human Rights group, had been investigating \\nthe plight of the Turkish Minority in Greece. In August 1990, their \\nfindings were published in a report titled \\n\\n 'Destroying Ethnic Identity: Turks of Greece.'\\n\\nThe report confirmed gross violations of the Human Rights of the \\nTurkish minority by the Greek authorities. It says for instance, \\nthe Greek government recently destroyed an Islamic convent in \\nKomotini. Such destruction, which reflects an attitude against \\nthe Muslim Turkish cultural heritage, is a violation of the \\nLausanne Convention. \\n\\nThe Turkish cemeteries in the village of Vafeika and in Pinarlik\\nwere attacked, and tombstones were broken. The cemetery in\\nKarotas was razed by bulldozers.\\n\\nShall I go on? Why not? The people of Turkiye are not going \\nto take human rights lessons from the Greek Government. The \\ndiscussion of human rights violations in Greece does not \\nstop at the Greek frontier. In several following articles \\nI shall dwell on and expose the Greek treatment of Turks\\nin Western Thrace and the Aegean Macedonians.\\n\\nIt has been reported that the Greek Cypriot administration \\nhas an intense desire for arms and that Greece has made \\nplans to supply it with the tanks and armored vehicles it \\nhas to destroy in accordance with the agreement reached on \\nconventional arms reductions in Europe. Meanwhile, Greek \\nand Greek Cypriot officials are reported to have planned \\nto take ostentatious measures aimed at camouflaging the \\ntransfer of these tanks and armored vehicles to southern \\nCyprus, a process that will conflict with the spirit of \\nthe agreement on conventional arms reduction in Europe.\\n\\nAn acceptable method may certainly be found when there\\nis a will. But we know of various kinds of violent\\nbehaviors ranging from physical attacks to the burning\\nof buildings. The rugs at the Amfia village mosque were \\ndragged out to the front of the building and burnt there. \\nShots were fired on the mosque in the village of Aryana.\\n\\nNow wait, there is more.\\n\\n 'Greek Atrocities in the Vilayet of Smyrna (May to July 1919), Inedited\\n Documents and Evidence of English and French Officers,' Published by\\n The Permanent Bureau of the Turkish Congress at Lausanne, Lausanne,\\n Imprimerie Petter, Giesser & Held, Caroline, 5 (1919).\\n\\n pages 82-83:\\n\\n<< 1. The train going from Denizli to Smyrna was stopped at Ephesus\\n and the 90 Turkish travellers, men and women who were in it ordered\\n to descend. And there in the open street, under the eyes of their\\n husbands, fathers and brothers, the women without distinction of age\\n were violated, and then all the travellers were massacred. Amongst\\n the latter the Lieutenant Salih Effendi, a native of Tripoli, and a\\n captain whose name is not known, and to whom the Hellenic authorities\\n had given safe conduct, were killed with specially atrocious tortures.\\n\\n 2. Before the battle, the wife of the lawyer Enver Bey coming from\\n her garden was maltreated by Greek soldiers, she was even stript\\n of her garments and her servant Assie was violated.\\n\\n 3. The two tax gatherers Mustapha and Ali Effendi were killed in the\\n following manner: Their arms were bound behind their backs with wire\\n and their heads were battered and burst open with blows from the butt\\n end of a gun.\\n\\n 4. During the firing of the town, eleven children, six little girls\\n and five boys, fleeing from the flames, were stopped by Greek soldiers\\n in the Ramazan Pacha quarter, and thrown into a burning Jewish house\\n near bridge, where they were burnt alive. This fact is confirmed on oath\\n by the retired commandant Hussein Hussni Effendi who saw it.\\n\\n 5. The clock-maker Ahmed Effendi and his son Sadi were arrested and\\n dragged out of their shop. The son had his eyes put out and was then\\n killed in the court of the Greek Church, but Ahmed Effendi has been\\n no more heard of.\\n\\n 6. At the market, during the fire, two unknown people were wounded\\n by bayonets, then bound together, thrown into the fire and burnt alive.\\n\\n The Greeks killed also many Jews. These are the names of some:\\n\\n Moussa Malki, shoemaker killed\\n Bohor Levy, tailor killed\\n Bohor Israel, cobbler killed\\n Isaac Calvo, shoemaker killed\\n David Aroguete killed\\n Moussa Lerosse killed\\n Gioia Katan killed\\n Meryem Malki killed\\n Soultan Gharib killed\\n Isaac Sabah wounded\\n Moche Fahmi wounded\\n David Sabah wounded\\n Moise Bensignor killed\\n Sarah Bendi killed\\n Jacob Jaffe wounded\\n Aslan Halegna wounded....>>\\n\\nSerdar Argic\\n\\n 'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.'\\n (Ohanus Appressian - 1919)\\n 'In Soviet Armenia today there no longer exists \\n a single Turkish soul.' (Sahak Melkonian - 1920)\\n\\n\\n\",\n", + " 'From: wats@scicom.AlphaCDC.COM (Bruce Watson)\\nSubject: Re: First Spacewalk\\nDistribution: sci\\nOrganization: Alpha Science Computer Network, Denver, Co.\\nLines: 13\\n\\nIn article , frank@D012S658.uucp (Frank\\nO\\'Dwyer) wrote:\\n> (1) Does the term \"hero-worship\" mean anything to you? \\n\\nYes, worshipping Jesus as the super-saver is indeed hero-worshipping\\nof the grand scale. Worshipping Lenin that will make life pleasant\\nfor the working people is, eh, somehow similar, or what.\\n \\n> (2) I understand that gods are defined to be supernatural, not merely\\n> superhuman.\\nThe notion of Lenin was on the borderline of supernatural insights\\ninto how to change the world, he wasn\\'t a communist God, but he was\\nthe man who gave presents to kids during Christmas.\\n \\n> #Actually, I agree. Things are always relative, and you can\\'t have \\n> #a direct mapping between a movement and a cause. However, the notion\\n> #that communist Russia was somewhat the typical atheist country is \\n> #only something that Robertson, Tilton et rest would believe in.\\n> \\n> Those atheists were not True Unbelievers, huh? :-)\\n\\nDon\\'t know what they were, but they were fanatics indeed.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: xSoviet Armenia denies the historical fact of the Turkish Genocide.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 52\\n\\nIn article <1993Apr17.172014.663@hellgate.utah.edu> tolman%asylum.cs.utah.edu@cs.utah.edu (Kenneth Tolman) writes:\\n\\n>>I sure hope so. Because, the unspeakable crimes of the Armenians must \\n>>be righted. Armenian invaders burned and sacked the fatherland of \\n\\n>No! NO! no no no no no. It is not justifiable to right wrongs of\\n>previous years. My ancestors tortured, enslaved, and killed blacks. I\\n>do not want to take responsibility for them. I may not have any direct\\n>relatives who did such things, but how am I to know?\\n>There is enough CURRENT torture, enslavement and genocide to go around.\\n>Lets correct that. Lets forget and forgive, each and every one of us has\\n>a historical reason to kill, torture or take back things from those around\\n>us. Pray let us not be infantile arbiters for past injustice.\\n\\nAre you suggesting that we should forget the cold-blooded genocide of\\n2.5 million Muslim people by the Armenians between 1914 and 1920? But \\nmost people aren\\'t aware that in 1939 Hitler said that he would pattern\\nhis elimination of the Jews based upon what the Armenians did to Turkish\\npeople in 1914.\\n\\n\\n \\'After all, who remembers today the extermination of the Tartars?\\'\\n (Adolf Hitler, August 22, 1939: Ruth W. Rosenbaum (Durusoy), \\n \"The Turkish Holocaust - Turk Soykirimi\", p. 213.)\\n\\n\\nI refer to the Turks and Kurds as history\\'s forgotten people. It does\\nnot serve our society well when most people are totally unaware of\\nwhat happened in 1914 where a vicious society, run by fascist Armenians,\\ndecided to simply use the phoniest of pretexts as an excuse, for wiping \\nout a peace-loving, industrious, and very intelligent and productive \\nethnic group. What we have is a demand from the fascist government of\\nx-Soviet Armenia to redress the wrongs that were done against our\\npeople. And the only way we can do that is if we can catch hold of and \\nnot lose sight of the historical precedence in this very century. We \\ncannot reverse the events of the past, but we can and we must strive to \\nkeep the memory of this tragedy alive on this side of the Atlantic, so as\\nto help prevent a recurrence of the extermination of a people because \\nof their religion or their race. Which means that I support the claims \\nof the Turks and Kurds to return to their lands in x-Soviet Armenia, \\nto determine their own future as a nation in their own homeland.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " \"From: sprattli@azores.crd.ge.com (Rod Sprattling)\\nSubject: Self-Insured (was: Should liability insurance be required?)\\nNntp-Posting-Host: azores.crd.ge.com\\nReply-To: sprattli@azores.crd.ge.com (Rod Sprattling)\\nOrganization: GE Corp R&D Center, Schenectady NY\\nLines: 27\\n\\nIn article ,\\nviking@iastate.edu (Dan Sorenson) writes:\\n|>\\tI get annoyed at insurance. Hence, I'm self-insured above\\n|>liability. Mandating that I play their game is silly if I've a better\\n|>game to play and everybody is still financially secure.\\n\\nWhat's involved in getting bonded? Anyone know if that's an option\\nrecognized by NYS DMV?\\n\\nRod\\n---\\nRoderick Sprattling\\t\\t| No job too great, no time too small\\nsprattli@azores.crd.ge.com\\t| With feet to fire and back to wall.\\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n\\n \\n\\n\",\n", + " 'From: echen@burn.ee.washington.edu (Ed Chen)\\nSubject: Windows BMP to Sun raster or others?\\nArticle-I.D.: shelley.1r49iaINNc3k\\nDistribution: world\\nOrganization: University of Washington\\nLines: 11\\nNNTP-Posting-Host: burn.ee.washington.edu\\n\\nHi,\\n\\n\\nAnyone has a converter from BMP to any format that xview or xv can\\n\\nhandle? This converter must run Unix.. I looked at the FAQ and downloaded\\nseveral packages but had no luck... thanks in advance.\\n\\ned\\n\\nechen@burn.ee.washington.edu\\n',\n", + " 'From: sp1marse@kristin (Marco Seirio)\\nSubject: Flat globe\\nLines: 13\\nX-Newsreader: Tin 1.1 PL3\\n\\n\\nDoes anybody have an algorithm for \"flattening\" out a globe, or any other\\nparametric surface, that is definied parametrically. \\nThat is, I would like to take a sheet of paper and a knife and to be\\nable to calculate how I must cut in the paper so I can fold it to a\\nglobe (or any other object).\\n\\n\\n Marco Seirio - In real life sp1marse@caligula.his.se\\n\\n \\n\\n \\n',\n", + " \"From: Center for Policy Research \\nSubject: Re: Final Solution for Gaza ?\\nNf-ID: #R:cdp:1483500354:cdp:1483500364:000:1767\\nNf-From: cdp.UUCP!cpr Apr 26 17:36:00 1993\\nLines: 38\\n\\n\\nDear folks,\\n\\nI am still awaiting for some sensible answer and comment.\\n\\nIt is a fact that the inhabitants of Gaza are not entitled to a normal\\ncivlized life. They habe been kept under occupation by Israel since 1967\\nwithout civil and political rights. \\n\\nIt is a fact that Gazans live in their own country, Palestine. Gaza is\\nnot a foriegn country. Nor is TelAviv, Jaffa, Askalon, BeerSheba foreign\\ncountry for Gazans. All these places are occupied as far as Palestinians\\nare concerned and as far as common sense has it. \\n\\nIt is a fact that Zionists deny Gazans equal rights as Israeli citizens\\nand the right to determine by themsevles their government. When Zionists\\nwill begin to consider Gazans as human beings who deserve the same\\nrights as themselves, there will be hope for peace. Not before.\\n\\nSomebody mentioned that Gaza is 'foreign country' and therefore Israel\\nis entitled to close its borders to Gaza. In this case, Gaza should be\\nentitled to reciprocate, and deny Israeli civilians and military personnel\\nto enter the area. As the relation is not symmetrical, but that of a master\\nand slave, the label 'foreign country' is inaccurate and misleading.\\n\\nTo close off 700,000 people in the Strip, deny them means of subsistence\\nand means of defending themselves, is a collective punishment and a\\ncrime. It is neither justifiable nor legal. It just reflects the abyss \\nto which Israeli society has degraded. \\n\\nI would like to ask any of those who heap foul langauge on me to explain\\nwhy Israel denies Gazans who were born and brought up in Jaffa to return\\nand live there ? Would they be allowed to, if they converted to Judaism ?\\nIs their right to live in their former town depdendent upon their\\nreligion or ethnic origin ? Please give an honest answer.\\n\\nElias\\n\\n\",\n", + " \"From: SITUNAYA@IBM3090.BHAM.AC.UK\\nSubject: (None set)\\nOrganization: The University of Birmingham, United Kingdom\\nLines: 5\\nNNTP-Posting-Host: ibm3090.bham.ac.uk\\n\\n==============================================================================\\nBear with me i'm new at this game, but could anyone explain exactly what DMORF\\ndoes, does it simply fade one bitmap into another or does it re shape one bitma\\np into another. Please excuse my ignorance, i' not even sure if i've posted thi\\ns message correctly.\\n\",\n", + " 'From: mas@Cadence.COM (Masud Khan)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: Cadence Design Systems, Inc.\\nLines: 48\\n\\nIn article <16BAFA9D9.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n> \\n> \\n>Yes, but, fortunately, religions have been replaced by systems\\n>that value Human Rights higher.\\n\\nSecular laws seem to value criminal life more than the victims life,\\nIslam places the rights of society and every member in it above \\nthe rights of the individual, this is what I call true human rights.\\n\\n> \\n>By the way, do you actually support the claim of precedence of Islamic\\n>Law? In case you do, what about the laws of other religions?\\n\\nAs a Muslim living in a non-Muslim land I am bound by the laws of the land\\nI live in, but I do not disregard Islamic Law it still remains a part of my \\nlife. If the laws of a land conflict with my religion to such an extent\\nthat I am prevented from being allowed to practise my religion then I must \\nleave the land. So in a way Islamic law does take precendence over secular law\\nbut we are instructed to follow the laws of the land that we live in too.\\n\\nIn an Islamic state (one ruled by a Khaliphate) religions other than Islam\\nare allowed to rule by their own religious laws provided they don\\'t affect\\nthe genral population and don\\'t come into direct conflict with state \\nlaws, Dhimmis (non-Muslim population) are exempt from most Islamic laws\\non religion, such as fighting in a Jihad, giving Zakat (alms giving)\\netc but are given the benefit of these two acts such as Military\\nprotection and if they are poor they will receive Zakat.\\n\\n> \\n>If not, what has it got to do with Rushdie? And has anyone reliable\\n>information if he hadn\\'t left Islam according to Islamic law?\\n>Or is the burden of proof on him?\\n> Benedikt\\n\\nAfter the Fatwa didn\\'t Rushdie re-affirm his faith in Islam, didn\\'t\\nhe go thru\\' a very public \"conversion\" to Islam? If so he is binding\\nhimself to Islamic Laws. He has to publicly renounce in his belief in Islam\\nso the burden is on him.\\n\\nMas\\n\\n\\n-- \\nC I T I Z E N +-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+\\n_____ _____ | C A D E N C E D E S I G N S Y S T E M S Inc. |\\n \\\\_/ | Masud Ahmed Khan mas@cadence.com All My Opinions|\\n_____/ \\\\_____ +-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+\\n',\n", + " 'From: dingebre@imp.sim.es.com (David Ingebretsen)\\nSubject: Re: images of earth\\nOrganization: Evans & Sutherland Computer Corp., Salt Lake City, UT\\nLines: 20\\nDistribution: world\\nReply-To: dingebre@imp.sim.es.com (David Ingebretsen)\\nNNTP-Posting-Host: imp.sim.es.com\\n\\nI downloaded an image of the earth re-constructed from elevation data taken\\nat 1/2 degree increments. The author (not me) wrote some c-code (included)\\nthat read in the data file and generated b&w and pseudo color images. They\\nwork very well and are not incumbered by copyright. They are at an aminet\\nsite near you called earth.lha in the amiga/pix/misc area...\\n\\nI refer you to the included docs for the details on how the author (sorry, I\\nforget his name) created these images. The raw data is not included.\\n\\n-- \\n\\tDavid\\n\\n\\tDavid M. Ingebretsen\\n\\tEvans & Sutherland Computer Corp.\\n\\tdingebre@thunder.sim.es.com\\n\\n\\tDisclaimer: The content of this message in no way reflects the\\n\\t opinions of my employer, nor are my actions\\n\\t\\t encouraged, supported, or acknowledged by my\\n\\t\\t employer.\\n',\n", + " \"From: bates@spica.ucsb.edu (Andrew M. Bates)\\nSubject: Renderman Shaders/Discussion?\\nOrganization: University of California, Santa Barbara\\nLines: 12\\n\\n\\n Does anyone know of a site where I could ftp some RenderMan shaders?\\nOr of a newsgroup which has discussion or information about RenderMan? I'm\\nnew to the RenderMan (Mac) family, and I'd like to get as much info I can\\nlay my hands on. Thanks!\\n\\n Andy Bates.\\n\\n\\n---------------------------------------------------------------------------\\nAndy Bates.\\n---------------------------------------------------------------------------\\n\",\n", + " 'From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Lezgians Astir in Azerbaijan and Daghestan\\nOrganization: Georgia Institute of Technology\\nLines: 16\\n\\nHELLO, shit face david, I see that you are still around. I dont want to \\nsee your shitty writings posted here man. I told you. You are getting\\nitchy as your fucking country. Hey , and dont give me that freedom\\nof speach bullshit once more. Because your freedom has ended when you started\\nwriting things about my people. And try to translate this \"ebenin donu\\nbutti kafa David.\".\\n\\nBYE, ANACIM HADE.\\nTIMUCIN\\n\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n',\n", + " \"From: mblock@reed.edu (Matt Block)\\nSubject: Re: Fortune-guzzler barred from bars!\\nArticle-I.D.: reed.1993Apr16.104158.27890\\nOrganization: Reed College, Portland, Oregon\\nLines: 37\\n\\nbclarke@galaxy.gov.bc.ca writes:\\n>Saw this in today's newspaper:\\n>------------------------------------------------------------------------\\n>FORTUNE-GUZZLER BARRED FROM BARS\\n>--------------------------------\\n>Barnstaple, England/Reuter\\n>\\n>\\tA motorcyclist said to have drunk away a $290,000 insurance payment in\\n>less than 10 years was banned Wednesday from every pub in England and Wales.\\n>\\n>\\tDavid Roberts, 29, had been awarded the cash in compensation for\\n>losing a leg in a motorcycle accident. He spent virtually all of it on cider, a\\n>court in Barnstaple in southwest England was told.\\n>\\n>\\tJudge Malcolm Coterill banned Roberts from all bars in England and\\n>Wales for 12 months and put on two years' probation after he started a brawl in\\n>a pub.\\n\\n\\tIs there no JUSTICE?!\\n\\n\\tIf I lost my leg when I was 19, and had to give up motorcycling\\n(assuming David didn't know that it can be done one-legged,) I too would want\\nto get swamped.... maybe even for ten years! I'll admit, I'd probably prefer\\nhomebrew to pubbrew, but still...\\n\\n\\tJudge Coterill is in some serious trouble, I can tell you that. Any\\nchance you can get to him and convince him his ruling was backward, Nick?\\n\\n\\tPerhaps the lad deserved something for starting a brawl (bad form...\\nhorribly bad form,) but for getting drunk? That, I thought, was ones natural\\nborn right! And for spending his own money? My goodness, who cares what one\\ndoes with one's own moolah, even if one spends it recklessly?\\n\\n\\tI'm ashamed of humanity.\\n\\n\\tMatt Block & Koch\\n\\tDoD# #007\\t\\t\\t1980 Honda CB650\\n\",\n", + " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Drinking and Riding\\nOrganization: University College of Wales, Aberystwyth\\nLines: 10\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\n>So, you can't ride the bike, but you will drive truck home? The\\n>judgement and motor skills needed to pilot a moto are not required in a\\n>cage? This scares the sh*t out of me.\\n> \\nThis is a piece of psychology its essential for any long term biker to\\nunderstand. People do NOT think 'if I do this will someone else suffer?'.\\nThey assess things purely on' if I do this will I suffer?.\\n\\nThis is a vital concept in bike-cage interaction.\\n\",\n", + " 'From: maven@eskimo.com (Norman Hamer)\\nSubject: Re: A Miracle in California\\nOrganization: -> ESKIMO NORTH (206) For-Ever <-\\nLines: 22\\n\\nRe: Waving...\\n\\nI must say, that the courtesy of a nod or a wave as I meet other bikers while\\nriding does a lot of good things to my mood... While riding is a lot of fun by\\nitself, there\\'s something really special about having someone say to you \"Hey,\\nit\\'s a great day for a ride... Isn\\'t it wonderful that we can spend some time\\non the road on days like this...\" with a gesture.\\n\\nWas sunny today for the first time in a week, took my bike out for a spin down\\nto the local salvage yard/bike shop... ran into about 20 other people who were\\ndown there for similar reasons (there\\'s this GREAT stretch of road on the way\\ndown there... no side streets, lotsa leaning bends... ;) ... Went on an\\nimpromptu coffee and bullshit run down to puyallup with a batch of people who \\nI didn\\'t know, but who were my kinda people nonetheless.\\n\\nAs a fellow commented to me while I was admiring his bike... \"Hey, it\\'s not\\nwhat you ride, it\\'s that you ride... As long as it has 2 wheels and an engine\\nit\\'s the same thing...\"\\n-- \\n----\\nmaven@eskimo.com (InterNet) maven@mavenry.altcit.eskimo.com (UseNet)\\nThe Maven@The Mavenry (AlterNet)\\n',\n", + " 'From: asphaug@lpl.arizona.edu (Erik Asphaug x2773)\\nSubject: Re: CAMPING was Help with backpack\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 24\\n\\nIn article <1993Apr14.193739.13359@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>In article <1993Apr13.152706.27518@bnr.ca> Dave Dal Farra writes:\\n>|My crafty girfriend makes campfire/bbq starters a la McGiver:\\n>Well, heck, if you\\'re going to make them yourself, you can buy\\n>candle-wax by the pound--much cheper than the candles themselves.\\n\\nHell, just save your candle stubs and bring them. Light them up, and\\ndribble the wax all over the kindling wood and light _that_. Although\\nI like the belly-button lint / eggshell case idea the best, if you\\'re\\nfeeling particularly industrious some eventful evening. Or you can\\ndo what I did one soggy summer: open the fuel line, drain some onto a \\npiece of rough or rotten wood, stick that into the middle of the soon-to-\\nbe inferno and CAREFULLY strike a match... As Kurt Vonnegut titled one\\nof the latter chapters in Cat\\'s Cradle, \"Ah-Whoom!\"\\n\\nWorks like a charm every time :-)\\n\\n\\n/-----b-o-d-y---i-s---t-h-e---b-i-k-e----------------------------\\\\\\n| |\\n| DoD# 88888 asphaug@hindmost.lpl.arizona.edu |\\n| \\'90 Kawi Zephyr (Erik Asphaug) |\\n| \\'86 BMW R80GS |\\n\\\\-----------------------s-o-u-l---i-s---t-h-e---r-i-d-e-r--------/\\n',\n", + " 'From: hasan@McRCIM.McGill.EDU \\nSubject: Re: No land for peace - No negotiatians\\nOriginator: hasan@haley.mcrcim.mcgill.edu\\nNntp-Posting-Host: haley.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 45\\n\\n\\nIn article <1993Apr5.175047.17368@unocal.com>, stssdxb@st.unocal.com (Dorin Baru) writes:\\n\\n|> Alan Stein writes:\\n|> \\n|> >What are you talking about? The Rabin government has clearly\\n|> >indicated its interest in a territorial compromise that would leave\\n|> >the vast majority of the Arabs in Judea, Samaria and Gaza outside\\n|> >Israeli control.\\n\\n(just an interrupting comment here) Since EARLY 1980\\'s , israelis said they are \\nwilling to give up the Adminstration rule of the occupied terretories to\\nPalestineans. Palestineans refused and will refuse such settlement that denies\\nthem their right of SELF-DETERMINATION. period.\\n\\n|> I know. I was just pointing out that not compromising may be a bad idea. And\\n|> there are, in Israel, voices against negotiations. And I think there are many\\n|> among palestineans also against any negociations. \\n|> \\n|> Just an opinion\\n|>\\n|> Dorin\\n\\nOk. I donot know why there are israeli voices against negotiations. However,\\ni would guess that is because they refuse giving back a land for those who\\nhave the right for it.\\n\\nAs for the Arabian and Palestinean voices that are against the\\ncurrent negotiations and the so-called peace process, they\\nare not against peace per se, but rather for their well-founded predictions\\nthat Israel would NOT give an inch of the West bank (and most probably the same\\nfor Golan Heights) back to the Arabs. An 18 months of \"negotiations\" in Madrid,\\nand Washington proved these predictions. Now many will jump on me saying why\\nare you blaming israelis for no-result negotiations.\\nI would say why would the Arabs stall the negotiations, what do they have to\\nloose ?\\n\\nArabs feel that the current \"negotiations\" is ONLY for legitimizing the current\\nstatus-quo and for opening the doors of the Arab markets for israeli trade and\\n\"oranges\". That is simply unacceptable and would be revoked. \\n\\nJust an opinion.\\n\\nHasan\\n',\n", + " 'From: cdw2t@dayhoff.med.Virginia.EDU (Dances With Federal Rangers)\\nSubject: Re: BMW MOA members read this!\\nOrganization: University of Virginia\\nLines: 19\\n\\nIn article <1993Apr15.065731.23557@cs.cornell.edu> karr@cs.cornell.edu (David Karr) writes:\\n\\n [riveting BMWMOA election soap-opera details deleted]\\n\\n>Well, there doesn\\'t seem to be any shortage of alternative candidates.\\n>Obviously you\\'re not voting for Mr. Vechorik, but what about the\\n>others?\\n\\nI\\'m going to buy a BMW just to cast a vote for Groucho.\\n\\nRide safe,\\n----------------------------------------------------------------------------\\n| Cliff Weston DoD# 0598 \\'92 Seca II (Tem) |\\n| |\\n| This bike is in excellent condition. |\\n| I\\'ve done all the work on it myself. |\\n| |\\n| -- Glen \"CRASH\" Stone |\\n----------------------------------------------------------------------------\\n',\n", + " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 10/15 - Planetary Probe History\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 527\\nDistribution: world\\nExpires: 6 May 1993 19:59:36 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/probe\\nLast-modified: $Date: 93/04/01 14:39:19 $\\n\\nPLANETARY PROBES - HISTORICAL MISSIONS\\n\\n This section was lightly adapted from an original posting by Larry Klaes\\n (klaes@verga.enet.dec.com), mostly minor formatting changes. Matthew\\n Wiener (weemba@libra.wistar.upenn.edu) contributed the section on\\n Voyager, and the section on Sakigake was obtained from ISAS material\\n posted by Yoshiro Yamada (yamada@yscvax.ysc.go.jp).\\n\\nUS PLANETARY MISSIONS\\n\\n\\n MARINER (VENUS, MARS, & MERCURY FLYBYS AND ORBITERS)\\n\\n MARINER 1, the first U.S. attempt to send a spacecraft to Venus, failed\\n minutes after launch in 1962. The guidance instructions from the ground\\n stopped reaching the rocket due to a problem with its antenna, so the\\n onboard computer took control. However, there turned out to be a bug in\\n the guidance software, and the rocket promptly went off course, so the\\n Range Safety Officer destroyed it. Although the bug is sometimes claimed\\n to have been an incorrect FORTRAN DO statement, it was actually a\\n transcription error in which the bar (indicating smoothing) was omitted\\n from the expression \"R-dot-bar sub n\" (nth smoothed value of derivative\\n of radius). This error led the software to treat normal minor variations\\n of velocity as if they were serious, leading to incorrect compensation.\\n\\n MARINER 2 became the first successful probe to flyby Venus in December\\n of 1962, and it returned information which confirmed that Venus is a\\n very hot (800 degrees Fahrenheit, now revised to 900 degrees F.) world\\n with a cloud-covered atmosphere composed primarily of carbon dioxide\\n (sulfuric acid was later confirmed in 1978).\\n\\n MARINER 3, launched on November 5, 1964, was lost when its protective\\n shroud failed to eject as the craft was placed into interplanetary\\n space. Unable to collect the Sun\\'s energy for power from its solar\\n panels, the probe soon died when its batteries ran out and is now in\\n solar orbit. It was intended for a Mars flyby with MARINER 4.\\n\\n MARINER 4, the sister probe to MARINER 3, did reach Mars in 1965 and\\n took the first close-up images of the Martian surface (22 in all) as it\\n flew by the planet. The probe found a cratered world with an atmosphere\\n much thinner than previously thought. Many scientists concluded from\\n this preliminary scan that Mars was a \"dead\" world in both the\\n geological and biological sense.\\n\\n MARINER 5 was sent to Venus in 1967. It reconfirmed the data on that\\n planet collected five years earlier by MARINER 2, plus the information\\n that Venus\\' atmospheric pressure at its surface is at least 90 times\\n that of Earth\\'s, or the equivalent of being 3,300 feet under the surface\\n of an ocean.\\n\\n MARINER 6 and 7 were sent to Mars in 1969 and expanded upon the work\\n done by MARINER 4 four years earlier. However, they failed to take away\\n the concept of Mars as a \"dead\" planet, first made from the basic\\n measurements of MARINER 4.\\n\\n MARINER 8 ended up in the Atlantic Ocean in 1971 when the rocket\\n launcher autopilot failed.\\n\\n MARINER 9, the sister probe to MARINER 8, became the first craft to\\n orbit Mars in 1971. It returned information on the Red Planet that no\\n other probe had done before, revealing huge volcanoes on the Martian\\n surface, as well as giant canyon systems, and evidence that water once\\n flowed across the planet. The probe also took the first detailed closeup\\n images of Mars\\' two small moons, Phobos and Deimos.\\n\\n MARINER 10 used Venus as a gravity assist to Mercury in 1974. The probe\\n did return the first close-up images of the Venusian atmosphere in\\n ultraviolet, revealing previously unseen details in the cloud cover,\\n plus the fact that the entire cloud system circles the planet in four\\n Earth days. MARINER 10 eventually made three flybys of Mercury from 1974\\n to 1975 before running out of attitude control gas. The probe revealed\\n Mercury as a heavily cratered world with a mass much greater than\\n thought. This would seem to indicate that Mercury has an iron core which\\n makes up 75 percent of the entire planet.\\n\\n\\n PIONEER (MOON, SUN, VENUS, JUPITER, and SATURN FLYBYS AND ORBITERS)\\n\\n PIONEER 1 through 3 failed to meet their main objective - to photograph\\n the Moon close-up - but they did reach far enough into space to provide\\n new information on the area between Earth and the Moon, including new\\n data on the Van Allen radiation belts circling Earth. All three craft\\n had failures with their rocket launchers. PIONEER 1 was launched on\\n October 11, 1958, PIONEER 2 on November 8, and PIONEER 3 on December 6.\\n\\n PIONEER 4 was a Moon probe which missed the Moon and became the first\\n U.S. spacecraft to orbit the Sun in 1959. PIONEER 5 was originally\\n designed to flyby Venus, but the mission was scaled down and it instead\\n studied the interplanetary environment between Venus and Earth out to\\n 36.2 million kilometers in 1960, a record until MARINER 2. PIONEER 6\\n through 9 were placed into solar orbit from 1965 to 1968: PIONEER 6, 7,\\n and 8 are still transmitting information at this time. PIONEER E (would\\n have been number 10) suffered a launch failure in 1969.\\n\\n PIONEER 10 became the first spacecraft to flyby Jupiter in 1973. PIONEER\\n 11 followed it in 1974, and then went on to become the first probe to\\n study Saturn in 1979. Both vehicles should continue to function through\\n 1995 and are heading off into interstellar space, the first craft ever\\n to do so.\\n\\n PIONEER Venus 1 (1978) (also known as PIONEER Venus Orbiter, or PIONEER\\n 12) burned up in the Venusian atmosphere on October 8, 1992. PVO made\\n the first radar studies of the planet\\'s surface via probe. PIONEER Venus\\n 2 (also known as PIONEER 13) sent four small probes into the atmosphere\\n in December of 1978. The main spacecraft bus burned up high in the\\n atmosphere, while the four probes descended by parachute towards the\\n surface. Though none were expected to survive to the surface, the Day\\n probe did make it and transmitted for 67.5 minutes on the ground before\\n its batteries failed.\\n\\n\\n RANGER (LUNAR LANDER AND IMPACT MISSIONS)\\n\\n RANGER 1 and 2 were test probes for the RANGER lunar impact series. They\\n were meant for high Earth orbit testing in 1961, but rocket problems\\n left them in useless low orbits which quickly decayed.\\n\\n RANGER 3, launched on January 26, 1962, was intended to land an\\n instrument capsule on the surface of the Moon, but problems during the\\n launch caused the probe to miss the Moon and head into solar orbit.\\n RANGER 3 did try to take some images of the Moon as it flew by, but the\\n camera was unfortunately aimed at deep space during the attempt.\\n\\n RANGER 4, launched April 23, 1962, had the same purpose as RANGER 3, but\\n suffered technical problems enroute and crashed on the lunar farside,\\n the first U.S. probe to reach the Moon, albeit without returning data.\\n\\n RANGER 5, launched October 18, 1962 and similar to RANGER 3 and 4, lost\\n all solar panel and battery power enroute and eventually missed the Moon\\n and drifted off into solar orbit.\\n\\n RANGER 6 through 9 had more modified lunar missions: They were to send\\n back live images of the lunar surface as they headed towards an impact\\n with the Moon. RANGER 6 failed this objective in 1964 when its cameras\\n did not operate. RANGER 7 through 9 performed well, becoming the first\\n U.S. lunar probes to return thousands of lunar images through 1965.\\n\\n\\n LUNAR ORBITER (LUNAR SURFACE PHOTOGRAPHY)\\n\\n LUNAR ORBITER 1 through 5 were designed to orbit the Moon and image\\n various sites being studied as landing areas for the manned APOLLO\\n missions of 1969-1972. The probes also contributed greatly to our\\n understanding of lunar surface features, particularly the lunar farside.\\n All five probes of the series, launched from 1966 to 1967, were\\n essentially successful in their missions. They were the first U.S.\\n probes to orbit the Moon. All LOs were eventually crashed into the lunar\\n surface to avoid interference with the manned APOLLO missions.\\n\\n\\n SURVEYOR (LUNAR SOFT LANDERS)\\n\\n The SURVEYOR series were designed primarily to see if an APOLLO lunar\\n module could land on the surface of the Moon without sinking into the\\n soil (before this time, it was feared by some that the Moon was covered\\n in great layers of dust, which would not support a heavy landing\\n vehicle). SURVEYOR was successful in proving that the lunar surface was\\n strong enough to hold up a spacecraft from 1966 to 1968.\\n\\n Only SURVEYOR 2 and 4 were unsuccessful missions. The rest became the\\n first U.S. probes to soft land on the Moon, taking thousands of images\\n and scooping the soil for analysis. APOLLO 12 landed 600 feet from\\n SURVEYOR 3 in 1969 and returned parts of the craft to Earth. SURVEYOR 7,\\n the last of the series, was a purely scientific mission which explored\\n the Tycho crater region in 1968.\\n\\n\\n VIKING (MARS ORBITERS AND LANDERS)\\n\\n VIKING 1 was launched from Cape Canaveral, Florida on August 20, 1975 on\\n a TITAN 3E-CENTAUR D1 rocket. The probe went into Martian orbit on June\\n 19, 1976, and the lander set down on the western slopes of Chryse\\n Planitia on July 20, 1976. It soon began its programmed search for\\n Martian micro-organisms (there is still debate as to whether the probes\\n found life there or not), and sent back incredible color panoramas of\\n its surroundings. One thing scientists learned was that Mars\\' sky was\\n pinkish in color, not dark blue as they originally thought (the sky is\\n pink due to sunlight reflecting off the reddish dust particles in the\\n thin atmosphere). The lander set down among a field of red sand and\\n boulders stretching out as far as its cameras could image.\\n\\n The VIKING 1 orbiter kept functioning until August 7, 1980, when it ran\\n out of attitude-control propellant. The lander was switched into a\\n weather-reporting mode, where it had been hoped it would keep\\n functioning through 1994; but after November 13, 1982, an errant command\\n had been sent to the lander accidentally telling it to shut down until\\n further orders. Communication was never regained again, despite the\\n engineers\\' efforts through May of 1983.\\n\\n An interesting side note: VIKING 1\\'s lander has been designated the\\n Thomas A. Mutch Memorial Station in honor of the late leader of the\\n lander imaging team. The National Air and Space Museum in Washington,\\n D.C. is entrusted with the safekeeping of the Mutch Station Plaque until\\n it can be attached to the lander by a manned expedition.\\n\\n VIKING 2 was launched on September 9, 1975, and arrived in Martian orbit\\n on August 7, 1976. The lander touched down on September 3, 1976 in\\n Utopia Planitia. It accomplished essentially the same tasks as its\\n sister lander, with the exception that its seisometer worked, recording\\n one marsquake. The orbiter had a series of attitude-control gas leaks in\\n 1978, which prompted it being shut down that July. The lander was shut\\n down on April 12, 1980.\\n\\n The orbits of both VIKING orbiters should decay around 2025.\\n\\n\\n VOYAGER (OUTER PLANET FLYBYS)\\n\\n VOYAGER 1 was launched September 5, 1977, and flew past Jupiter on March\\n 5, 1979 and by Saturn on November 13, 1980. VOYAGER 2 was launched\\n August 20, 1977 (before VOYAGER 1), and flew by Jupiter on August 7,\\n 1979, by Saturn on August 26, 1981, by Uranus on January 24, 1986, and\\n by Neptune on August 8, 1989. VOYAGER 2 took advantage of a rare\\n once-every-189-years alignment to slingshot its way from outer planet to\\n outer planet. VOYAGER 1 could, in principle, have headed towards Pluto,\\n but JPL opted for the sure thing of a Titan close up.\\n\\n Between the two probes, our knowledge of the 4 giant planets, their\\n satellites, and their rings has become immense. VOYAGER 1&2 discovered\\n that Jupiter has complicated atmospheric dynamics, lightning and\\n aurorae. Three new satellites were discovered. Two of the major\\n surprises were that Jupiter has rings and that Io has active sulfurous\\n volcanoes, with major effects on the Jovian magnetosphere.\\n\\n When the two probes reached Saturn, they discovered over 1000 ringlets\\n and 7 satellites, including the predicted shepherd satellites that keep\\n the rings stable. The weather was tame compared with Jupiter: massive\\n jet streams with minimal variance (a 33-year great white spot/band cycle\\n is known). Titan\\'s atmosphere was smoggy. Mimas\\' appearance was\\n startling: one massive impact crater gave it the Death Star appearance.\\n The big surprise here was the stranger aspects of the rings. Braids,\\n kinks, and spokes were both unexpected and difficult to explain.\\n\\n VOYAGER 2, thanks to heroic engineering and programming efforts,\\n continued the mission to Uranus and Neptune. Uranus itself was highly\\n monochromatic in appearance. One oddity was that its magnetic axis was\\n found to be highly skewed from the already completely skewed rotational\\n axis, giving Uranus a peculiar magnetosphere. Icy channels were found on\\n Ariel, and Miranda was a bizarre patchwork of different terrains. 10\\n satellites and one more ring were discovered.\\n\\n In contrast to Uranus, Neptune was found to have rather active weather,\\n including numerous cloud features. The ring arcs turned out to be bright\\n patches on one ring. Two other rings, and 6 other satellites, were\\n discovered. Neptune\\'s magnetic axis was also skewed. Triton had a\\n canteloupe appearance and geysers. (What\\'s liquid at 38K?)\\n\\n The two VOYAGERs are expected to last for about two more decades. Their\\n on-target journeying gives negative evidence about possible planets\\n beyond Pluto. Their next major scientific discovery should be the\\n location of the heliopause.\\n\\n\\nSOVIET PLANETARY MISSIONS\\n\\n Since there have been so many Soviet probes to the Moon, Venus, and\\n Mars, I will highlight only the primary missions:\\n\\n\\n SOVIET LUNAR PROBES\\n\\n LUNA 1 - Lunar impact attempt in 1959, missed Moon and became first\\n\\t craft in solar orbit.\\n LUNA 2 - First craft to impact on lunar surface in 1959.\\n LUNA 3 - Took first images of lunar farside in 1959.\\n ZOND 3 - Took first images of lunar farside in 1965 since LUNA 3. Was\\n\\t also a test for future Mars missions.\\n LUNA 9 - First probe to soft land on the Moon in 1966, returned images\\n\\t from surface.\\n LUNA 10 - First probe to orbit the Moon in 1966.\\n LUNA 13 - Second successful Soviet lunar soft landing mission in 1966.\\n ZOND 5 - First successful circumlunar craft. ZOND 6 through 8\\n\\t accomplished similar missions through 1970. The probes were\\n\\t unmanned tests of a manned orbiting SOYUZ-type lunar vehicle.\\n LUNA 16 - First probe to land on Moon and return samples of lunar soil\\n\\t to Earth in 1970. LUNA 20 accomplished similar mission in\\n\\t 1972.\\n LUNA 17 - Delivered the first unmanned lunar rover to the Moon\\'s\\n\\t surface, LUNOKHOD 1, in 1970. A similar feat was accomplished\\n\\t with LUNA 21/LUNOKHOD 2 in 1973.\\n LUNA 24 - Last Soviet lunar mission to date. Returned soil samples in\\n\\t 1976.\\n\\n\\n SOVIET VENUS PROBES\\n\\n VENERA 1 - First acknowledged attempt at Venus mission. Transmissions\\n\\t lost enroute in 1961.\\n VENERA 2 - Attempt to image Venus during flyby mission in tandem with\\n\\t VENERA 3. Probe ceased transmitting just before encounter in\\n\\t February of 1966. No images were returned.\\n VENERA 3 - Attempt to place a lander capsule on Venusian surface.\\n\\t Transmissions ceased just before encounter and entire probe\\n\\t became the first craft to impact on another planet in 1966.\\n VENERA 4 - First probe to successfully return data while descending\\n\\t through Venusian atmosphere. Crushed by air pressure before\\n\\t reaching surface in 1967. VENERA 5 and 6 mission profiles\\n\\t similar in 1969.\\n VENERA 7 - First probe to return data from the surface of another planet\\n\\t in 1970. VENERA 8 accomplished a more detailed mission in\\n\\t 1972.\\n VENERA 9 - Sent first image of Venusian surface in 1975. Was also the\\n\\t first probe to orbit Venus. VENERA 10 accomplished similar\\n\\t mission.\\n VENERA 13 - Returned first color images of Venusian surface in 1982.\\n\\t\\tVENERA 14 accomplished similar mission.\\n VENERA 15 - Accomplished radar mapping with VENERA 16 of sections of\\n\\t\\tplanet\\'s surface in 1983 more detailed than PVO.\\n VEGA 1 - Accomplished with VEGA 2 first balloon probes of Venusian\\n\\t atmosphere in 1985, including two landers. Flyby buses went on\\n\\t to become first spacecraft to study Comet Halley close-up in\\n\\t March of 1986.\\n\\n\\n SOVIET MARS PROBES\\n\\n MARS 1 - First acknowledged Mars probe in 1962. Transmissions ceased\\n\\t enroute the following year.\\n ZOND 2 - First possible attempt to place a lander capsule on Martian\\n\\t surface. Probe signals ceased enroute in 1965.\\n MARS 2 - First Soviet Mars probe to land - albeit crash - on Martian\\n\\t surface. Orbiter section first Soviet probe to circle the Red\\n\\t Planet in 1971.\\n MARS 3 - First successful soft landing on Martian surface, but lander\\n\\t signals ceased after 90 seconds in 1971.\\n MARS 4 - Attempt at orbiting Mars in 1974, braking rockets failed to\\n\\t fire, probe went on into solar orbit.\\n MARS 5 - First fully successful Soviet Mars mission, orbiting Mars in\\n\\t 1974. Returned images of Martian surface comparable to U.S.\\n\\t probe MARINER 9.\\n MARS 6 - Landing attempt in 1974. Lander crashed into the surface.\\n MARS 7 - Lander missed Mars completely in 1974, went into a solar orbit\\n\\t with its flyby bus.\\n PHOBOS 1 - First attempt to land probes on surface of Mars\\' largest\\n\\t moon, Phobos. Probe failed enroute in 1988 due to\\n\\t human/computer error.\\n PHOBOS 2 - Attempt to land probes on Martian moon Phobos. The probe did\\n\\t enter Mars orbit in early 1989, but signals ceased one week\\n\\t before scheduled Phobos landing.\\n\\n While there has been talk of Soviet Jupiter, Saturn, and even\\n interstellar probes within the next thirty years, no major steps have\\n yet been taken with these projects. More intensive studies of the Moon,\\n Mars, Venus, and various comets have been planned for the 1990s, and a\\n Mercury mission to orbit and land probes on the tiny world has been\\n planned for 2003. How the many changes in the former Soviet Union (now\\n the Commonwealth of Independent States) will affect the future of their\\n space program remains to be seen.\\n\\n\\nJAPANESE PLANETARY MISSIONS\\n\\n SAKIGAKE (MS-T5) was launched from the Kagoshima Space Center by ISAS on\\n January 8 1985, and approached Halley\\'s Comet within about 7 million km\\n on March 11, 1986. The spacecraft is carrying three instru- ments to\\n measure interplanetary magnetic field/plasma waves/solar wind, all of\\n which work normally now, so ISAS made an Earth swingby by Sakigake on\\n January 8, 1992 into an orbit similar to the earth\\'s. The closest\\n approach was at 23h08m47s (JST=UTC+9h) on January 8, 1992. The\\n geocentric distance was 88,997 km. This is the first planet-swingby for\\n a Japanese spacecraft.\\n\\n During the approach, Sakigake observed the geotail. Some geotail\\n passages will be scheduled in some years hence. The second Earth-swingby\\n will be on June 14, 1993 (at 40 Re (Earth\\'s radius)), and the third\\n October 28, 1994 (at 86 Re).\\n\\n\\n HITEN, a small lunar probe, was launched into Earth orbit on January 24,\\n 1990. The spacecraft was then known as MUSES-A, but was renamed to Hiten\\n once in orbit. The 430 lb probe looped out from Earth and made its first\\n lunary flyby on March 19, where it dropped off its 26 lb midget\\n satellite, HAGOROMO. Japan at this point became the third nation to\\n orbit a satellite around the Moon, joining the Unites States and USSR.\\n\\n The smaller spacecraft, Hagoromo, remained in orbit around the Moon. An\\n apparently broken transistor radio caused the Japanese space scientists\\n to lose track of it. Hagoromo\\'s rocket motor fired on schedule on March\\n 19, but the spacecraft\\'s tracking transmitter failed immediately. The\\n rocket firing of Hagoromo was optically confirmed using the Schmidt\\n camera (105-cm, F3.1) at the Kiso Observatory in Japan.\\n\\n Hiten made multiple lunar flybys at approximately monthly intervals and\\n performed aerobraking experiments using the Earth\\'s atmosphere. Hiten\\n made a close approach to the moon at 22:33 JST (UTC+9h) on February 15,\\n 1992 at the height of 423 km from the moon\\'s surface (35.3N, 9.7E) and\\n fired its propulsion system for about ten minutes to put the craft into\\n lunar orbit. The following is the orbital calculation results after the\\n approach:\\n\\n\\tApoapsis Altitude: about 49,400 km\\n\\tPeriapsis Altitude: about 9,600 km\\n\\tInclination\\t: 34.7 deg (to ecliptic plane)\\n\\tPeriod\\t\\t: 4.7 days\\n\\n\\nPLANETARY MISSION REFERENCES\\n\\n I also recommend reading the following works, categorized in three\\n groups: General overviews, specific books on particular space missions,\\n and periodical sources on space probes. This list is by no means\\n complete; it is primarily designed to give you places to start your\\n research through generally available works on the subject. If anyone can\\n add pertinent works to the list, it would be greatly appreciated.\\n\\n Though naturally I recommend all the books listed below, I think it\\n would be best if you started out with the general overview books, in\\n order to give you a clear idea of the history of space exploration in\\n this area. I also recommend that you pick up some good, up-to-date\\n general works on astronomy and the Sol system, to give you some extra\\n background. Most of these books and periodicals can be found in any good\\n public and university library. Some of the more recently published works\\n can also be purchased in and/or ordered through any good mass- market\\n bookstore.\\n\\n General Overviews (in alphabetical order by author):\\n\\n J. Kelly Beatty et al, THE NEW SOLAR SYSTEM, 1990.\\n\\n Merton E. Davies and Bruce C. Murray, THE VIEW FROM SPACE:\\n PHOTOGRAPHIC EXPLORATION OF THE PLANETS, 1971\\n\\n Kenneth Gatland, THE ILLUSTRATED ENCYCLOPEDIA OF SPACE\\n TECHNOLOGY, 1990\\n\\n Kenneth Gatland, ROBOT EXPLORERS, 1972\\n\\n R. Greeley, PLANETARY LANDSCAPES, 1987\\n\\n Douglas Hart, THE ENCYCLOPEDIA OF SOVIET SPACECRAFT, 1987\\n\\n Nicholas L. Johnson, HANDBOOK OF SOVIET LUNAR AND PLANETARY\\n EXPLORATION, 1979\\n\\n Clayton R. Koppes, JPL AND THE AMERICAN SPACE PROGRAM: A\\n HISTORY OF THE JET PROPULSION LABORATORY, 1982\\n\\n Richard S. Lewis, THE ILLUSTRATED ENCYCLOPEDIA OF THE\\n UNIVERSE, 1983\\n\\n Mark Littman, PLANETS BEYOND: DISCOVERING THE OUTER SOLAR\\n SYSTEM, 1988\\n\\n Eugene F. Mallove and Gregory L. Matloff, THE STARFLIGHT\\n HANDBOOK: A PIONEER\\'S GUIDE TO INTERSTELLAR TRAVEL, 1989\\n\\n Frank Miles and Nicholas Booth, RACE TO MARS: THE MARS\\n FLIGHT ATLAS, 1988\\n\\n Bruce Murray, JOURNEY INTO SPACE, 1989\\n\\n Oran W. Nicks, FAR TRAVELERS, 1985 (NASA SP-480)\\n\\n James E. Oberg, UNCOVERING SOVIET DISASTERS: EXPLORING THE\\n LIMITS OF GLASNOST, 1988\\n\\n Carl Sagan, COMET, 1986\\n\\n Carl Sagan, THE COSMIC CONNECTION, 1973\\n\\n Carl Sagan, PLANETS, 1969 (LIFE Science Library)\\n\\n Arthur Smith, PLANETARY EXPLORATION: THIRTY YEARS OF UNMANNED\\n SPACE PROBES, 1988\\n\\n Andrew Wilson, (JANE\\'S) SOLAR SYSTEM LOG, 1987\\n\\n Specific Mission References:\\n\\n Charles A. Cross and Patrick Moore, THE ATLAS OF MERCURY, 1977\\n (The MARINER 10 mission to Venus and Mercury, 1973-1975)\\n\\n Joel Davis, FLYBY: THE INTERPLANETARY ODYSSEY OF VOYAGER 2, 1987\\n\\n Irl Newlan, FIRST TO VENUS: THE STORY OF MARINER 2, 1963\\n\\n Margaret Poynter and Arthur L. Lane, VOYAGER: THE STORY OF A\\n SPACE MISSION, 1984\\n\\n Carl Sagan, MURMURS OF EARTH, 1978 (Deals with the Earth\\n information records placed on VOYAGER 1 and 2 in case the\\n probes are found by intelligences in interstellar space,\\n as well as the probes and planetary mission objectives\\n themselves.)\\n\\n Other works and periodicals:\\n\\n NASA has published very detailed and technical books on every space\\n probe mission it has launched. Good university libraries will carry\\n these books, and they are easily found simply by knowing which mission\\n you wish to read about. I recommend these works after you first study\\n some of the books listed above.\\n\\n Some periodicals I recommend for reading on space probes are NATIONAL\\n GEOGRAPHIC, which has written articles on the PIONEER probes to Earth\\'s\\n Moon Luna and the Jovian planets Jupiter and Saturn, the RANGER,\\n SURVEYOR, LUNAR ORBITER, and APOLLO missions to Luna, the MARINER\\n missions to Mercury, Venus, and Mars, the VIKING probes to Mars, and the\\n VOYAGER missions to Jupiter, Saturn, Uranus, and Neptune.\\n\\n More details on American, Soviet, European, and Japanese probe missions\\n can be found in SKY AND TELESCOPE, ASTRONOMY, SCIENCE, NATURE, and\\n SCIENTIFIC AMERICAN magazines. TIME, NEWSWEEK, and various major\\n newspapers can supply not only general information on certain missions,\\n but also show you what else was going on with Earth at the time events\\n were unfolding, if that is of interest to you. Space missions are\\n affected by numerous political, economic, and climatic factors, as you\\n probably know.\\n\\n Depending on just how far your interest in space probes will go, you\\n might also wish to join The Planetary Society, one of the largest space\\n groups in the world dedicated to planetary exploration. Their\\n periodical, THE PLANETARY REPORT, details the latest space probe\\n missions. Write to The Planetary Society, 65 North Catalina Avenue,\\n Pasadena, California 91106 USA.\\n\\n Good luck with your studies in this area of space exploration. I\\n personally find planetary missions to be one of the more exciting areas\\n in this field, and the benefits human society has and will receive from\\n it are incredible, with many yet to be realized.\\n\\n Larry Klaes klaes@verga.enet.dec.com\\n\\nNEXT: FAQ #11/15 - Upcoming planetary probes - missions and schedules\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The religious persecution, cultural oppression and economical...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 161\\n\\nIn article <1993Apr21.202728.29375@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>You may not be afraid of anything but you act as if you are.\\n\\nI always like your kind of odds. The Greek governments must be held \\nto account for the sub-human conditions of the Turkish minority living \\nin the Western Thrace under the brutal Greek domination. The religious \\npersecution, cultural oppression and economical ex-communication applied \\nto the Turkish population in that area are the dimensions of the human \\nrights abuse widespread in Greece.\\n\\n\"Greece\\'s Housing Policies Worry Western Thrace Turks\"\\n\\n...Newly built houses belonging to members of the minority\\ncommunity in Dedeagac province, had, he said, been destroyed\\nby Evros province public works department on Dec. 4.\\n\\nSungar added that they had received harsh treatment by the\\nsecurity forces during the demolition.\\n\\n\"This is not the first demolition in Dedeagac province; more\\nthan 40 houses were destroyed there between 1979-1984 and \\nmembers of that minority community were made homeless,\" he\\ncontinued. \\n\\n\"Greece Government Rail-Roads Two Turkish Ethnic Deputies\"\\n\\nWhile World Human Rights Organizations Scream, Greeks \\nPersistently Work on Removing the Parliamentary Immunity\\nof Dr. Sadik Ahmet and Mr. Ahmet Faikoglu.\\n\\nIn his 65-page confession, Salman Demirok, a former chief of PKK\\noperations in Hakkari confessed that high-level relations between\\nPKK, Greece and Greek Cypriot administration existed.\\n\\nAccording to Demirok, Greek Cypriot administration not only \\ngives shelter to PKK guerillas but also supplies them with \\nfood and weapons at the temporary camps set up in its territory. \\nDemirok disclosed that PKK has three safe houses in South Cyprus, \\nused by terrorists such as Ferhat. In the camps, he added, \\nterrorists were trained to use various weapons including RPG\\'s \\nand anti-aircraft guns which had been purchased directly from \\nthe Greek government. Greek Cypriot government has gone to the \\nextent of issuing special identification cards to PKK members so \\nthat they can travel from one region to another without being \\nconfronted by legal obstacles. Demirok\\'s account was confirmed \\nby another PKK defector, Fatih Tan, who gave himself over to \\npolice in Hakkari after spending four years with PKK. Tan explained\\nthat the terrorists went through a training in camps in South Cyprus, \\nsometimes for a period of 12 weeks or more.\\n\\n \"Torture in Greece: Hidden Reality\"\\n\\nCase 1: Kostas Andreadis and Dimitris Voglis.\\n\\n...Andreadis\\' head was covered with a hood and he was tortured\\nby falanga (beating on the soles of the feet), electric shocks,\\nand was threatened with being thrown out of the window. An \\nofficial medical report clearly documented this torture....\\n\\nCase 2: Horst Bosniatzki, a West German Citizen.\\n\\n...At midnight he was taken to the beach, chains were put to his \\nfeet and he was threatened to be thrown to the sea. He was dragged\\nalong the beach for about a 1.5 Km while being punched on the \\nhead and kidneys...Back on the police station, he was beaten\\non the finger tips with a thin stick until one of the fingertips\\nsplit open....\\n\\nCase 3: Torture of Dimitris Voglis.\\n\\nCase 4: Brothers Vangelis (16) and Christos Arabatzis (12),\\n Vasilis Papadopoulos (13), and Kostas Kiriazis (13).\\n\\nCase 5: Torture of Eight Students at Thessaloniki Police\\n Headquarters.\\n\\n SOURCE: The British Broadcasting Corporation, Summary of\\n World Broadcasting -July 6, 1987: Part 4-A: The\\n Middle East, ME/8612/A/1.\\n\\n \"Abu Nidal\\'s Advisers\" Reportedly Training\\n \"PKK & ASALA Militants\" in Cyprus\\n\\n Nicosia, Ankara, Tel Aviv. The Israeli secret service,\\n Mossad, is reported to have acquired significant\\n information in connection with the camps set up in the\\n Troodos mountains in Cyprus for the training of\\n militants of the PKK and ASALA {Armenian Secret Army for\\n the Liberation of Armenia}. According to sources close\\n to Mossad, about 700 Kurdish, Greek Cypriot and Armenian\\n militants are undergoing training in the Troodos\\n mountains in southern Cyprus. The same sources stated\\n that Abu Nidal\\'s special advisers are giving military\\n training to the PKK and ASALA militants in the camps.\\n They added that the militants leave southern Cyprus for\\n Libya, Lebanon, Syria, Greece and Iran after completing\\n their training. Mossad has established that due to the\\n clashes which were taking place among the terrorist\\n groups based in Syria, the PKK and ASALA organisations\\n moved to the Greek Cypriot part of Cyprus, where they\\n would be more comfortable. They also transferred a\\n number of their camps in northern Syria to the Troodos\\n mountains.\\n\\n Mossad revealed that the Armenian National Movement,\\n which is known as the MNA, has opened liaison offices in\\n Nicosia, Athens and Tripoli in order to meet the needs\\n of the camps. The offices are used to provide material\\n support for the Armenian camps. Meanwhile, the leader\\n of the Popular Front for the Liberation of Palestine,\\n George Habash, is reported to have ordered his men\\n not to participate in the operations carried out\\n by the PKK & ASALA, which he described as \"extreme\\n racist, extreme nationalist and fascist.\" Reliable\\n sources have said that Habash believed that the recent\\n operations carried out by the PKK militants show that\\n organisation to be a band of irregulars engaged in\\n extreme nationalist operations. They added that he\\n instructed his militants to sever their links with the\\n PKK and avoid clashing with it. It has been established\\n that George Habash expelled ASALA militants from his\\n camp after ASALA\\'s connections with drug trafficking\\n were exposed.\\n\\nSource: Alan Cowell, \\'U.S. & Greece in Dispute on Terror,\\' The New\\n York Times, June 27, 1987, p. 4.\\n\\n Special to The New York Times\\n\\nATHENS, June 26 - A dispute developed today between Athens and \\nWashington over United States intelligence reports saying that \\nAthens, for several months, conducted negotiations with the\\nterrorist known as Abu Nidal...\\n\\nThey said the contacts were verified in what were termed hard\\nintelligence reports.\\n\\nAbu Nidal leads the Palestinian splinter group Al Fatah \\nRevolutionary Council, implicated in the 1985 airport \\nbombings at Rome and Vienna that contributed to the Reagan \\nAdministration\\'s decision to bomb Tripoli, Libya, last year.\\n\\nIn Washington, State Department officials said that when\\nAdministration officials learned about the contacts, the\\nState Department drafted a strongly worded demarche. The\\nofficials also expressed unhappiness with Greece\\'s dealings\\nwith ASALA, the Armenian Liberation Army, which has carried\\nout terrorist acts against Turks....\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: DC-X update???\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 122\\n\\nIn article dragon@angus.mi.org writes:\\n\\n>Exactly when will the hover test be done, \\n\\nEarly to mid June.\\n\\n>and will any of the TV\\n>networks carry it. I really want to see that...\\n\\nIf they think the public wants to see it they will carry it. Why not\\nwrite them and ask? You can reach them at:\\n\\n\\n F: NATIONAL NEWS MEDIA\\n\\n\\nABC \"World News Tonight\" \"Face the Nation\"\\n7 West 66th Street CBS News\\nNew York, NY 10023 2020 M Street, NW\\n212/887-4040 Washington, DC 20036\\n 202/457-4321\\n\\nAssociated Press \"Good Morning America\"\\n50 Rockefeller Plaza ABC News\\nNew York, NY 10020 1965 Broadway\\nNational Desk (212/621-1600) New York, NY 10023\\nForeign Desk (212/621-1663) 212/496-4800\\nWashington Bureau (202/828-6400)\\n Larry King Live TV\\n\"CBS Evening News\" CNN\\n524 W. 57th Street 111 Massachusetts Avenue, NW\\nNew York, NY 10019 Washington, DC 20001\\n212/975-3693 202/898-7900\\n\\n\"CBS This Morning\" Larry King Show--Radio\\n524 W. 57th Street Mutual Broadcasting\\nNew York, NY 10019 1755 So. Jefferson Davis Highway\\n212/975-2824 Arlington, VA 22202\\n 703/685-2175\\n\"Christian Science Monitor\"\\nCSM Publishing Society \"Los Angeles Times\"\\nOne Norway Street Times-Mirror Square\\nBoston, MA 02115 Los Angeles, CA 90053\\n800/225-7090 800/528-4637\\n\\nCNN \"MacNeil/Lehrer NewsHour\"\\nOne CNN Center P.O. Box 2626\\nBox 105366 Washington, DC 20013\\nAtlanta, GA 30348 703/998-2870\\n404/827-1500\\n \"MacNeil/Lehrer NewsHour\"\\nCNN WNET-TV\\nWashington Bureau 356 W. 58th Street\\n111 Massachusetts Avenue, NW New York, NY 10019\\nWashington, DC 20001 212/560-3113\\n202/898-7900\\n\\n\"Crossfire\" NBC News\\nCNN 4001 Nebraska Avenue, NW\\n111 Massachusetts Avenue, NW Washington, DC 20036\\nWashington, DC 20001 202/885-4200\\n202/898-7951 202/362-2009 (fax)\\n\\n\"Morning Edition/All Things Considered\" \\nNational Public Radio \\n2025 M Street, NW \\nWashington, DC 20036 \\n202/822-2000 \\n\\nUnited Press International\\n1400 Eye Street, NW\\nWashington, DC 20006\\n202/898-8000\\n\\n\"New York Times\" \"U.S. News & World Report\"\\n229 W. 43rd Street 2400 N Street, NW\\nNew York, NY 10036 Washington, DC 20037\\n212/556-1234 202/955-2000\\n212/556-7415\\n\\n\"New York Times\" \"USA Today\"\\nWashington Bureau 1000 Wilson Boulevard\\n1627 Eye Street, NW, 7th Floor Arlington, VA 22229\\nWashington, DC 20006 703/276-3400\\n202/862-0300\\n\\n\"Newsweek\" \"Wall Street Journal\"\\n444 Madison Avenue 200 Liberty Street\\nNew York, NY 10022 New York, NY 10281\\n212/350-4000 212/416-2000\\n\\n\"Nightline\" \"Washington Post\"\\nABC News 1150 15th Street, NW\\n47 W. 66th Street Washington, DC 20071\\nNew York, NY 10023 202/344-6000\\n212/887-4995\\n\\n\"Nightline\" \"Washington Week In Review\"\\nTed Koppel WETA-TV\\nABC News P.O. Box 2626\\n1717 DeSales, NW Washington, DC 20013\\nWashington, DC 20036 703/998-2626\\n202/887-7364\\n\\n\"This Week With David Brinkley\"\\nABC News\\n1717 DeSales, NW\\nWashington, DC 20036\\n202/887-7777\\n\\n\"Time\" magazine\\nTime Warner, Inc.\\nTime & Life Building\\nRockefeller Center\\nNew York, NY 10020\\n212/522-1212\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", + " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian admission to the crime of Turkish Genocide.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 34\\n\\nSource: \"Men Are Like That\" by Leonard Ramsden Hartill. The Bobbs-Merrill\\nCompany, Indianapolis (1926). (305 pages). \\n(Memoirs of an Armenian officer who participated in the genocide of 2.5 \\n million Muslim people)\\n\\n\\np. 19 (first paragraph)\\n\\n\"The Tartar section of the town no longer existed, except as a pile of\\n ruins. It had been destroyed and its inhabitants slaughtered. The same \\n fate befell the Tartar section of Khankandi.\"\\n\\np. 130 (third paragraph)\\n\\n\"The city was a scene of confusion and terror. During the early days of \\n the war, when the Russian troops invaded Turkey, large numbers of the \\n Turkish population abandoned their homes and fled before the Russian \\n advance.\"\\n\\np. 181 (first paragraph)\\n\\n\"The Tartar villages were in ruins.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", + " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Successful Balloon Flight Measures Ozone Layer\\nOrganization: Jet Propulsion Laboratory\\nLines: 96\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from:\\nPUBLIC INFORMATION OFFICE\\nJET PROPULSION LABORATORY\\nCALIFORNIA INSTITUTE OF TECHNOLOGY\\nNATIONAL AERONAUTICS AND SPACE ADMINISTRATION\\nPASADENA, CALIF. 91109. (818) 354-5011\\n\\nContact: Mary A. Hardin\\n\\nFOR IMMEDIATE RELEASE April 15, 1993\\n#1506\\n\\n Scientists at NASA\\'s Jet Propulsion Laboratory report the\\nsuccessful flight of a balloon carrying instruments designed to\\nmeasure and study chemicals in the Earth\\'s ozone layer.\\n\\n The April 3 flight from California\\'s Barstow/Daggett Airport\\nreached an altitude of 37 kilometers (121,000 feet) and took\\nmeasurements as part of a program established to correlate data\\nwith the Upper Atmosphere Research Satellite (UARS). \\n\\n The data from the balloon flight will also be compared to\\nreadings from the Atmospheric Trace Molecular Spectroscopy\\n(ATMOS) experiment which is currently flying onboard the shuttle\\nDiscovery.\\n\\n \"We launch these balloons several times a year as part of an\\nongoing ozone research program. In fact, JPL is actively\\ninvolved in the study of ozone and the atmosphere in three\\nimportant ways,\" said Dr. Jim Margitan, principal investigator on\\nthe balloon research campaign. \\n\\n \"There are two JPL instruments on the UARS satellite,\" he\\ncontinued. \"The ATMOS experiment is conducted by JPL scientists,\\nand the JPL balloon research provides collaborative ground truth\\nfor those activities, as well as data that is useful in its own\\nright.\"\\n\\n The measurements taken by the balloon payload will add more\\npieces to the complex puzzle of the atmosphere, specifically the\\nmid-latitude stratosphere during winter and spring. \\nUnderstanding the chemistry occurring in this region helps\\nscientists construct more accurate computer models which are\\ninstrumental in predicting future ozone conditions.\\n\\n The scientific balloon payload consisted of three JPL\\ninstruments: an ultraviolet ozone photometer which measures\\nozone as the balloon ascends and descends through the atmosphere;\\na submillimeterwave limb sounder which looks at microwave\\nradiation emitted by molecules in the atmosphere; and a Fourier\\ntransform infrared interferometer which monitors how the\\natmosphere absorbs sunlight. \\n\\n Launch occurred at about noontime, and following a three-\\nhour ascent, the balloon floated eastward at approximately 130\\nkilometers per hour (70 knots). Data was radioed to ground\\nstations and recorded onboard. The flight ended at 10 p.m.\\nPacific time in eastern New Mexico when the payload was commanded\\nto separate from the balloon.\\n\\n \"We needed to fly through sunset to make the infrared\\nmeasurements,\" Margitan explained, \"and we also needed to fly in\\ndarkness to watch how quickly some of the molecules disappear.\"\\n\\n It will be several weeks before scientists will have the\\ncompleted results of their experiments. They will then forward\\ntheir data to the UARS central data facility at the Goddard Space\\nFlight Center in Greenbelt, Maryland for use by the UARS\\nscientists. \\n\\n The balloon was launched by the National Scientific Balloon\\nFacility, normally based in Palestine, Tex., operating under a\\ncontract from NASA\\'s Wallops Flight Facility. The balloon was\\nlaunched in California because of the west-to-east wind direction\\nand the desire to keep the operation in the southwest.\\n\\n The balloons are made of 20-micron (0.8 mil, or less than\\none-thousandth of an inch) thick plastic, and are 790,000 cubic\\nmeters (28 million cubic feet) in volume when fully inflated with\\nhelium (120 meters (400 feet) in diameter). The balloons weigh\\nbetween 1,300 and 1,800 kilograms (3,000 and 4,000 pounds). The\\nscientific payload weighs about 1,300 kilograms (3,000) pounds\\nand is 1.8 meters (six feet) square by 4.6 meters (15 feet) high.\\n\\n The JPL balloon research is sponsored by NASA\\'s Upper\\nAtmosphere Research Program and the UARS Correlative Measurements\\nProgram. \\n\\n #####\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | Being cynical never helps \\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | to correct the situation \\n|_____|/ |_|/ |_____|/ | and causes more aggravation\\n | instead.\\n',\n", + " 'From: bh437292@longs.LANCE.ColoState.Edu (Basil Hamdan)\\nSubject: Re: was:Go Hezbollah!\\nReply-To: bh437292@lance.colostate.edu\\nNntp-Posting-Host: parry.lance.colostate.edu\\nOrganization: Engineering College, Colorado State University\\nLines: 95\\n\\nIn article <1993Apr15.224353.24945@das.harvard.edu>, adam@endor.uucp (Adam Shostack) writes:\\n\\n|> \\tTell me, do these young men also attack Syrian troops?\\n\\nIn the South Lebanon area, only Israeli (and SLA) and Lebanese troops \\nare present.\\nSyrian troops are deployed north of the Awali river. Between the \\nAwali river and the \"Security Zone\" only Lebanese troops are stationed.\\n\\n|> \\n|> >with the blood of its soldiers. If Israel is interested in peace,\\n|> >than it should withdraw from OUR land.\\n|> \\n|> \\tThere must be a guarantee of peace before this happens. It\\n|> seems that many of these Lebanese youth are unable to restrain\\n|> themselves from violence, and unable to to realize that their actions\\n|> prolong Israels stay in South Lebanon.\\n\\nThat is your opinion and the opinion of the Israeli government.\\nI agree peace guarantees would be better for all, but I am addressing\\nthe problem as it stands now. Hopefully a comprehensive peace settlement\\nwill be concluded soon, and will include security guarantees for\\nboth sides. My proposal was aimed at decreasing the casualties\\nin the interim period. In my opinion, if Israel withdraws\\nunilaterally it would still be better off than staying.\\nThe Israeli gov\\'t obviously agrees with you and is not willing\\nto do such a move. I hope to be be able to change your opinion\\nand theirs, that\\'s why I post to tpm.\\n\\n|> \\tIf the Lebanese army was able to maintain the peace, then\\n|> Israel would not have to be there. Until it is, Israel prefers that\\n|> its soldiers die rather than its children.\\n\\nAs I explained, I contend that if Israel does withdraw unilaterally\\nI believe no attacks would ensue against northern Israel. I also\\nexplained why I believe that to be the case. My suggestion\\nis aimed at reducing the level of tension and casualties on all sides.\\nIt is unfortunate that Israel does not agree with my opinion.\\n\\n\\n|> \\n|> >If Israel really wants to save some Israeli lives it would withdraw \\n|> >unilaterally from the so-called \"Security Zone\" before the conclusion\\n|> >of the peace talks. Such a move would save Israeli lives,\\n|> >advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n|> >public image abroad and give it an edge in the peace negociations \\n|> >since Israel can rightly claim that it is genuinely interested in \\n|> >peace and has already offered some important concessions.\\n|> \\n|> \\tIsrael should withdraw from Lebanon when a peace treaty is\\n|> signed. Not a day before. Withdraw because of casualties would tell\\n|> the Lebanese people that all they need to do to push Israel around is\\n|> kill a few soldiers. Its not gonna happen.\\n\\n\\nThat is too bad.\\n \\n|> >Along with such a withdrawal Israel could demand that Hizbollah\\n|> >be disarmed by the Lebanese government and warn that it will not \\n|> >accept any attacks against its northern cities and that if such a\\n|> >shelling occurs than it will consider re-taking the buffer zone\\n|> >and will hold the Lebanese and Syrian government responsible for it.\\n|> \\n|> \\n|> \\tWhy should Israel not demand this while holding the buffer\\n|> zone? It seems to me that the better bargaining position is while\\n|> holding your neighbors land.\\n\\nBecause Israel is not occupying the \"Security Zone\" free of charge.\\nIt is paying the price for that. Once Israel withdraws it may have\\nlost a bargaining chip at the negociating table but it would save\\nsome soldiers\\' lives, that is my contention.\\n\\n If Lebanon were willing to agree to\\n|> those conditions, Israel would quite probably have left already.\\n|> Unfortunately, it doesn\\'t seem that the Lebanese can disarm the\\n|> Hizbolah, and maintain the peace.\\n\\nThat is completely untrue. Hizbollah is now a minor force in Lebanese\\npolitics. The real heavy weights are Syria\\'s allies. The gov\\'t is \\nsupported by Syria. The Lebanese Army is over 30,000 troops and\\nunified like never before. Hizbollah can have no moral justification\\nin attacking Israel proper, especially after Israeli withdrawal.\\nThat would draw the ire of the Lebanese the Syrian and the\\nIsraeli gov\\'ts. If Israel does withdraw and such an act \\n(Hizbolllah attacking Israel) would be akin to political and moral \\nsuicide.\\n\\nBasil\\n \\n|> Adam\\n|> Adam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n|> \\n|> \"If we had a budget big enough for drugs and sexual favors, we sure\\n|> wouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", + " 'From: gregh@niagara.dcrt.nih.gov (Gregory Humphreys)\\nSubject: New to Motorcycles...\\nOrganization: National Institutes of Health, Bethesda, MD\\nLines: 39\\n\\nHello everyone. I\\'m new to motorcycles so no flames please. I don\\'t\\nhave my bike yet so I need a few pieces of information:\\n\\n1) I only have about $1200-1300 to work with, so that would have \\nto cover everything (bike, helmet, anything else that I\\'m too \\nignorant to know I need to buy)\\n\\n2) What is buying a bike going to do to my insurance? I turn 18 in \\nabout a month so my parents have been taking care of my insurance up\\ntill now, and I need a comprehensive list of costs that buying a \\nmotorcycle is going to insure (I live in Washington DC if that makes\\na difference)\\n\\n3) Any recommendations on what I should buy/where I should look for it?\\n\\n4) In DC, as I imagine it is in every other state (OK, OK, we\\'re not a \\nstate - we\\'re not bitter ;)), you take the written test first and then\\nget a learners permit. However, I\\'m wondering how one goes about \\nlearning to ride the bike proficiently enough so as to a) get a liscence\\nand b) not kill oneself. I don\\'t know anyone with a bike who could \\nteach me, and the most advice I\\'ve heard is either \"do you live near a\\nfield\" or \"do you have a friend with a pickup truck\", the answers to both\\nof which are NO. Do I just ride around my neighborhood and hope for \\nthe best? I kind of live in a residential area but it\\'s not suburbs.\\nIt\\'s still the big city and I\\'m about a mile from downtown so that \\ndoesn\\'t seem too viable. Any stories on how you all learned?\\n\\nThanks for any replies in advance.\\n\\n\\t-Greg Humphreys\\n\\t:wq\\n\\t^^^\\n\\tMeant to do that. (Damn autoindent)\\n\\n--\\nGreg Humphreys | \"This must be Thursday. I never\\nNational Institutes of Health| could get the hang of Thursdays.\"\\ngregh@alw.nih.gov |\\n(301) 402-1817\\t | -Arthur Dent\\n',\n", + " 'From: joachim@kih.no (joachim lous)\\nSubject: Re: TIFF: philosophical significance of 42\\nOrganization: Kongsberg Ingeniorhogskole\\nLines: 30\\nNNTP-Posting-Host: samson.kih.no\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\nulrich@galki.toppoint.de wrote:\\n\\n> According to the TIFF 5.0 Specification, the TIFF \"version number\"\\n> (bytes 2-3) 42 has been chosen for its \"deep philosophical \\n> significance\".\\n\\n> When I first read this, I rotfl. Finally some philosphy in a technical\\n> spec. But still I wondered what makes 42 so significant.\\n\\n> Last week, I read the Hitchhikers Guide To The Galaxy, and rotfl the\\n> second time. (After millions of years of calculation, the second-best\\n> computer of all time reveals that 42 is the answer to the question\\n> about life, the universe and everything)\\n\\n> Is this actually how they picked the number 42?\\n\\nYes.\\n\\n> Does anyone have any other suggestions where the 42 came from?\\n\\nI don\\'t know where Douglas Adams took it from, but I\\'m pretty sure he\\'s\\nthe one who launched it (in the Guide). Since then it\\'s been showing up \\nall over the place.\\n\\n _______________________________\\n / _ L* / _ / . / _ /_ \"One thing is for sure: The sheep\\n / _) /()(/(/)//)) /_ ()(/_) / / Is NOT a creature of the earth.\"\\n / \\\\_)~ (/ Joachim@kih.no / / \\n/_______________________________/ / -The back-masking on \\'Haaden II\\'\\n /_______________________________/ from \\'Exposure\\' by Robert Fripp.\\n',\n", + " 'From: steinly@topaz.ucsc.edu (Steinn Sigurdsson)\\nSubject: Re: DC-X Rollout Report\\nArticle-I.D.: topaz.STEINLY.93Apr6170313\\nDistribution: sci\\nOrganization: Lick Observatory/UCO\\nLines: 29\\nNNTP-Posting-Host: topaz.ucsc.edu\\nIn-reply-to: buenneke@monty.rand.org\\'s message of Tue, 6 Apr 1993 22:34:39 GMT\\n\\nIn article buenneke@monty.rand.org (Richard Buenneke) writes:\\n\\n McDonnell Douglas rolls out DC-X\\n\\n ...\\n\\n\\n SSTO research remains cloudy. The SDI Organization -- which paid $60\\n million for the DC-X -- can\\'t itself afford to fund full development of a\\n follow-on vehicle. To get the necessary hundreds of millions required for\\n\\nThis is a little peculiar way of putting it, SDIO\\'s budget this year\\nwas, what, $3-4 billion? They _could_ fund all of the DC development\\nout of one years budget - of course they do have other irons in the\\nfire ;-) and launcher development is not their primary purpose, but\\nthe DC development could as easily be paid for by diverting that money\\nas by diverting the comparable STS ops budget...\\n\\n- oh, and before the flames start. I applaud the SDIO for funding DC-X\\ndevlopment and I hope it works, and, no, launcher development is not\\nNASAs primary goal either, IMHO they are supposed to provide the\\nenabling technology research for others to do launcher development,\\nand secondarily operate such launchers as they require - but that\\'s\\njust me.\\n\\n| Steinn Sigurdsson\\t|I saw two shooting stars last night\\t\\t|\\n| Lick Observatory\\t|I wished on them but they were only satellites\\t|\\n| steinly@lick.ucsc.edu |Is it wrong to wish on space hardware?\\t\\t|\\n| \"standard disclaimer\"\\t|I wish, I wish, I wish you\\'d care - B.B. 1983\\t|\\n',\n", + " \"From: rogerc@discovery.uk.sun.com (Roger Collier)\\nSubject: Re: Camping question?\\nOrganization: Sun Microsystems (UK) Ltd\\nLines: 26\\nDistribution: world\\nReply-To: rogerc@discovery.uk.sun.com\\nNNTP-Posting-Host: discovery.uk.sun.com\\n\\nIn article 10823@bnr.ca, npet@bnr.ca (Nick Pettefar) writes:\\n\\n>\\n>Back in my youth (ahem) the wiffy and moi purchased a gadget which heated up\\n>water from a 12V source. It was for car use but we thought we'd try it on my\\n>RD350B. It worked OK apart from one slight problem: we had to keep the revs \\n>above 7000. Any lower and the motor would die from lack of electron movement.\\n\\nOn my LC (RZ to any ex-colonists) I replaced the bolt at the bottom of the barrel\\nwith a tap. When I wanted a coffee I could just rev the engine until boiling\\nand pour out a cup of hot water.\\nI used ethylene glycol as antifreeze rather than methanol as it tastes sweeter.\\n\\n(-:\\n\\n #################################\\n _ # Roger.Collier@Uk.Sun.COM #\\no_/_\\\\_o # #\\n (O_O) # Sun Microsystems, #\\n \\\\H/ # Coventry, England. #\\n U # (44) 203 692255 #\\n # DoD#226 GSXR1100L #\\n #################################\\n Keeper of the GSXR1100 list.\\n\\n\\n\",\n", + " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Russian Operation of US Space Missions.\\nOrganization: University of Illinois at Urbana\\nLines: 10\\n\\nI know people hate it when someone says somethings like \"there was an article \\nabout that somewhere a while ago\" but I\\'m going to say it anyway. I read an\\narticle on this subject, almost certainly in Space News, and something like\\nsix months ago. If anyone is really interested in the subject I can probably\\nhunt it down given enough motivation.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n \"Tout ce qu\\'un homme est capable d\\'imaginer, d\\'autres hommes\\n \\t seront capable de le realiser\"\\n\\t\\t\\t -Jules Verne\\n',\n", + " 'From: r0506048@cml3 (Chun-Hung Lin)\\nSubject: Re: JPEG file format?\\nNntp-Posting-Host: cml3.csie.ntu.edu.tw\\nReply-To: r0506048@csie.ntu.edu.tw\\nOrganization: Communication & Multimedia Lab, NTU, Taiwan\\nX-Newsreader: Tin 1.1 PL3\\nLines: 20\\n\\npeterbak@microsoft.com (Peter Bako) writes:\\n: \\n: Where could I find a description of the JPG file format? Specifically\\n: I need to know where in a JPG file I can find the height and width of \\n: the image, and perhaps even the number of colors being used.\\n: \\n: Any suggestions?\\n: \\n: Peter\\n\\nTry ftp.uu.net, in /graphics/jpeg.\\n--\\n--------------------------------\\n=================================================================\\nChun-Hung Lin ( ªL«T§» ) \\nr0506048@csie.ntu.edu.tw \\nCommunication & Multimedia Lab.\\nDept. of Comp. Sci. & Info. Eng.\\nNational Taiwan University, Taipei, Taiwan, R.O.C.\\n=================================================================\\n',\n", + " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: H.R. violations by Israel/Arab st.\\nOrganization: The Department of Redundancy Department\\nLines: 37\\n\\nIn article <1483500360@igc.apc.org> Center for Policy Research writes:\\n\\n>I am born in Palestine (now Israel). I have family there. The lack of\\n>peace and utter injustice in my home country has affected me all my life.\\n\\nBullshit. You\\'ve been in Iceland for the past 30 years. You told us\\nso yourself. It had something to do with not wanting to suffer the\\nfate of your mother, who has lived with Jews for a long time or\\nsomesuch. Sounded awful.\\n\\n>I am concerned by Palestine (Israel) because I want peace to come to\\n>it. Peace AND justice. \\n\\nAre you as concerned about peace and justice in Palestine (Jordan)?\\n\\n>Israeli trights and Palestinian rights are not symmetrical. The first\\n>party has a state and the other has none. The first is an occupier and\\n>the second the occupied. \\n\\nLet\\'s say that Israel grants the PLO _EVERYTHING THEY EVER ASKED FOR_.\\nThat Israel goes back to the 1967 borders. What will the \"Palestinean\\nArabs\" in Tel-Aviv call themselves? The Palestineans in West\\nJerusalem? In Haifa? Will they still claim to be \"occupied\"?\\n\\nOr do you suggest that Israel expell or kill off any remaining Arabs,\\nmuch as the Arabs did to their Jews?\\n\\nIndeed, there is much which is not symmetrical about the conflict in\\nthe M.E. And most of this lack of symmetry does NOT favor Israel.\\n\\n>Elias Davidsson\\n>Iceland\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", + " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 29\\n\\n\\nRobert Knowles writes:\\n\\n>>\\n>>My my, there _are_ a few atheists with time on their hands. :)\\n>>\\n>>OK, first I apologize. I didn\\'t bother reading the FAQ first and so fired an\\n>>imprecise flame. That was inexcusable.\\n>>\\n\\n>How about the nickname Bake \"Flamethrower\" Timmons?\\n\\nSure, but Robert \"Koresh-Fetesh\" (sic) Knowles seems good, too. :) \\n>\\n>You weren\\'t at the Koresh compound around noon today by any chance, were you?\\n>\\n>Remember, Koresh \"dried\" for your sins.\\n>\\n>And pass that beef jerky. Umm Umm.\\n\\nThough I wasn\\'t there, at least I can rely on you now to keep me posted on what\\nwhat he\\'s doing.\\n\\nHave you any other fetishes besides those for beef jerky and David Koresh? \\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", + " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nArticle-I.D.: po.kmr4.1447.734101641\\nOrganization: Case Western Reserve University\\nLines: 28\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1993Apr6.041343.24997@cbnewsl.cb.att.com> stank@cbnewsl.cb.att.com (Stan Krieger) writes:\\n\\n>The point has been raised and has been answered. Roger and I have\\n>clearly stated our support of the BSA position on the issue;\\n>specifically, that homosexual behavior constitutes a violation of\\n>the Scout Oath (specifically, the promise to live \"morally straight\").\\n\\n\\tPlease define \"morally straight\". \\n\\n\\t\\n\\t\\n\\tAnd, don\\'t even try saying that \"straight\", as it is used here, \\nimplies only hetersexual behavior. [ eg: \"straight\" as in the slang word \\nopposite to \"gay\" ]\\n\\n\\n\\tThis is alot like \"family values\". Everyone is talking about them, \\nbut misteriously, no one knows what they are.\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n',\n", + " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Political Atheists?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 11\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\narromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>>The motto originated in the Star-Spangled Banner. Tell me that this has\\n>>something to do with atheists.\\n>The motto _on_coins_ originated as a McCarthyite smear which equated atheism\\n>with Communism and called both unamerican.\\n\\nNo it didn't. The motto has been on various coins since the Civil War.\\nIt was just required to be on *all* currency in the 50's.\\n\\nkeith\\n\",\n", + " 'From: manes@magpie.linknet.com (Steve Manes)\\nSubject: Re: Oops! Oh no!\\nOrganization: Manes and Associates, NYC\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 53\\n\\nWm. L. Ranck (ranck@joesbar.cc.vt.edu) wrote:\\n: I hate to admit this, and I\\'m still mentally kicking myself for it.\\n: I rode the brand new K75RT home last Friday night. 100 miles in rain\\n: and darkness. No problems. Got it home and put it on the center stand.\\n: The next day I pushed it off the center stand in preparation for going\\n: over to a friend\\'s house to pose. You guessed it. It got away from me\\n: and landed on its right side. \\n: Scratched the lower fairing, cracked the right mirror, and cracked the\\n: upper fairing. \\n: *DAMN* am I stupid! It\\'s going to cost me ~$200 to get the local\\n: body shop to fix it. And that is after I take the fairing off for them.\\n: Still, that\\'s probably cheaper than the mirror alone if I bought a \\n: replacement from BMW.\\n\\nYou got off cheap. My sister\\'s ex-boyfriend was such an incessant pain\\nin the ass about wanting to ride my bikes (no way, Jose) that I\\nfinally took him to Lindner\\'s BMW in New Canaan, CT last fall where\\nI had seen a nice, used K100RS in perfect condition. After telling\\neveryone in the shop his Norton war stories from fifteen years ago,\\nsigning the liability waiver, and getting his pre-flight, off he went...\\n\\nWell, not quite. I walked out of a pizza shop up the street,\\nfeeling good about myself (made my sister\\'s boyfriend happy and got\\nthe persistent wanker off my ass for good), heard the horrendous\\nracket of an engine tortured to its red line and then a crash. I\\nsaw people running towards the obvious source of the disturbance...\\nJeff laying under the BMW with the rear wheel spinning wildly and\\nsomeone groping for the kill switch. I stared in disbelief with\\na slice hanging out of my mouth as Matty, the shop manager, slid\\nup beside me and asked, \"Friend of yours, Steve?\". \"Shit, Matty,\\nit could have been worse. That could been my FLHS!\"\\n\\nJeff hadn\\'t made it 10 inches. Witnesses said he lifted his feet\\nbefore letting out the clutch and gravity got the best of him.\\nJeff claimed that the clutch didn\\'t engage. Matty was quick.\\nWhile Jeff was still stuttering in embarrassed shock he managed\\nto snatch Jeff\\'s credit card for a quick imprint and signature. Twenty\\nminutes later, when Jeff\\'s color had paled to a flush, Matty\\npresented him with an estimate of $580 for a busted right mirror\\nand a hairline crack in the fairing. That was for fixing the crack\\nand masking the damaged area, not a new fairing. Or he could buy the\\nbike.\\n\\nI\\'m not sure what happened later as my sister split up with Jeff shortly\\nafterwards (to hook up with another piece of work) except that Matty\\ntold me he ran the charge through in December and that it went\\nuncontested.\\n\\n\\n-- \\nStephen Manes\\t\\t\\t\\t\\t manes@magpie.linknet.com\\nManes and Associates\\t\\t\\t\\t New York, NY, USA =o&>o\\n\\n',\n", + " \"From: pmm7@ellis.uchicago.edu (peggy boucher murphy (you had to ask?))\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nReply-To: pmm7@midway.uchicago.edu\\nOrganization: University of Chicago\\nLines: 21\\n\\nIn article Steven Smith writes:\\n>dgannon@techbook.techbook.com (Dan Gannon) writes:\\n>> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>>\\n>> by Theodore J. O'Keefe\\n>>\\n>> [Holocaust revisionism]\\n>> \\n>> Theodore J. O'Keefe is an editor with the Institute for Historical\\n>> Review. Educated at Harvard University . . .\\n>\\n>According to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\n>graduate. You may decide for yourselves if he was indeed educated\\n>anywhere.\\n\\n(forgive any inaccuracies, i deleted the original post)\\nisn't this the same person who wrote the book, and was censured\\nin canada a few years back? \\n\\npeg\\n\\n\",\n", + " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Jemison on Star Trek (Better Ideas)\\nOrganization: Express Access Online Communications USA\\nLines: 11\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr25.154449.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n|\\n|Better idea for use of NASA Shuttle Astronauts and Crew is have them be found\\n|lost in space after a accident with a worm hole or other space/time glitch..\\n|\\n|Maybe age Jemison a few years (makeup and such) and have her as the only\\n>survivour of a failed shuttle mission that got lost.. \\n\\n\\nOf course that asumes the mission was able to launch :-)\\n\\n',\n", + " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: Express Access Online Communications USA\\nLines: 20\\nNNTP-Posting-Host: access.digex.net\\nKeywords: Galileo, JPL\\n\\n\\n\\nINteresting question about Galileo.\\n\\nGalileo's HGA is stuck. \\n\\nThe HGA was left closed, because galileo had a venus flyby.\\n\\nIf the HGA were pointed att he sun, near venus, it would\\ncook the foci elements.\\n\\nquestion: WHy couldn't Galileo's course manuevers have been\\ndesigned such that the HGA did not ever do a sun point.?\\n\\nAfter all, it would normally be aimed at earth anyway?\\n\\nor would it be that an emergency situation i.e. spacecraft safing\\nand seek might have caused an HGA sun point?\\n\\npat\\n\",\n", + " \"From: perrakis@embl-heidelberg.de\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: EMBL, European Molecular Biology Laboratory\\nLines: 76\\n\\nIn article <93105.134708FINAID2@auvm.american.edu>, writes:\\n>> Look Mr. Atakan: I have repeated it in the past, and I shall repeat it once\\n>> more, that when it comes to how Greeks are treating the Turks in Greece,\\n>> you and your copatriots should simply shut up.\\n>>\\n>> Because what you are hearing is simply a form of propaganda from your ethnic\\n>> fellows who studied at the Greek universities without paying any money for\\n>> tuition, food, and helth insurance.\\n>>\\n>> And any high school graduate can put down some simple math and compare the\\n>> grouth of the Turkish community in Greece with the destruction of the Greek\\n>> minority in Turkey.\\n>>\\n>> >Aykut Atalay Atakan\\n>>\\n>> Panos Tamamidis\\n> \\n> Mr. Tamamidis:\\n> \\n> Before repling your claims, I suggest you be kind to individuals\\n> who are trying to make some points abouts human rights, discriminations,\\n> and unequal treatment of Turkish minority in GREECE.I want the World\\n> know how bad you treat these people. You will deny anything I say but\\n> It does not make any difrence because I will write things that I saw with\\n> my eyes.You prove yourself prejudice by saying free insurance, school\\n> etc. Do you Greeks only give these things to Turkish minority or\\n> everybody has rights to get them.Your words even discriminate\\n> these people. You think that you are giving big favor to these\\n> people by giving these thing that in reality they get nothing.\\n> If you do not know unhuman practices that are being conducted\\n> by the Government of the Greece, I suggest that you investigate\\n> to see the facts. Then, we can discuss about the most basic\\n> human rights like fredom of religion,\\nIf you did not see with your 'eyes' freedom of religion you\\nmust ne at least blind !\\n> fredom of press of Turkish\\n2 weeks ago I read the interview of a Turkish journalist in a GReek magazine,\\nhe said nothing about being forbiden to have Turkish press in Greece !\\n> minority, ethnic cleansing of all Turks in Greece,\\nGive as a brake. You call athnic cleansing of apopulation when it doubles?\\n> freedom of\\n> right to have property without government intervention,\\nWhat do you mean by that ? Anyway in Greece, as in every country if you want\\nsome property you 'inform' the goverment .\\n> fredom of right to vote to choose your community leaders,\\nWell well well. When Turkish in Area of Komotini elect 1 out of 3\\nrepresenatives of this area to GReek parliament, if not freedom what is it?\\n3 out of 3 ? Maybe there are only Turks living there ....\\n> how Greek Government encourages people to destroy\\n> religious places, houses, farms, schools for Turkish minority then\\n> forcing them to go to turkey without anything with them.\\nI cannot deny that actions of fanatics from both sides were reported.\\nA minority of Greek idiots indeed attack religious places, which\\nwere protected by the Greek police. Photographs of Greek policemen \\npreventing Turks from this non brain minority were all over Greek press.\\n> Before I conclude my writing, let me point out how Greeks are\\n> treated in Turkey. We do not consider them Greek minority, instead\\n> we consider a part of our society. There is no difference among people in\\n> Turkey. We do not state that Greek minority go to Turkish universities,\\n> get free insurance, food, and health insurance because these are basic\\n> human needs and they are a part of turkish community. All big businesses\\n> belong to Greeks in Turkey and we are proud to have them.unlike the\\n> Greece which tries to destroy Turkish minority, We encourage all\\n> minorities in Turkey to be a part of Turkish society.\\n\\n\\nOh NO. PLEASE DO GIVE AS A BRAKE !\\nMinorities in Turkish treated like that ? YOur own countrymen die\\nin the prisons every day bacause of their political beliefs, an this\\nis reported by Turks, and you want us to believe tha Turkey is the paradise\\nof Human rights ? Business of Greeks i Turkey? Yes 80 years ago !\\nYou seem to be intelligent, so before presenting Turkey as the paradise of\\nHuman rights just invastigate this matter a bit more.\\n> \\n> Aykut Atalay Atakan\\n> \\n\",\n", + " \"From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: some thoughts.\\nOrganization: Cookamunga Tourist Bureau\\nLines: 24\\n\\nIn article , bissda@saturn.wwc.edu (DAN\\nLAWRENCE BISSELL) wrote:\\n> \\n> \\tFirst I want to start right out and say that I'm a Christian. It \\n> makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n> lunatic, or the real thing? (I might be a little off on the title, but he \\n> writes the book. Anyway he was part of an effort to destroy Christianity, \\n> in the process he became a Christian himself.\\n\\nSeems he didn't understand anything about realities, liar, lunatic\\nor the real thing is a very narrow view of the possibilities of Jesus\\nmessage.\\n\\nSigh, it seems religion makes your mind/brain filter out anything\\nthat does not fit into your personal scheme. \\n\\nSo anyone that thinks the possibilities with Jesus is bound to the\\nclassical Lewis notion of 'liar, lunatic or saint' is indeed bound\\nto become a Christian.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n\",\n", + " \"From: farzin@apollo3.ntt.jp (Farzin Mokhtarian)\\nSubject: News briefs from KH # 1026\\nOriginator: sehari@vincent1.iastate.edu\\nOrganization: NTT Corp. Japan\\nLines: 31\\n\\n\\nFrom: Kayhan Havai # 1026\\n--------------------------\\n \\n \\no Dr. Namaki, deputy minister of health stated that infant\\n mortality (under one year old) in Iran went down from 120 \\n per thousand before the revolution to 33 per thousand at\\n the end of 1371 (last month).\\n \\no Dr Namaki also stated that before the revolution only\\n 254f children received vaccinations to protect them\\n from various deseases but this figure reached 93at\\n the end of 1371.\\n \\no Dr. Malekzadeh, the minister of health mentioned that\\n the population growth rate in Iran at the end of 1371\\n went below 2.7\\n \\no During the visit of Mahathir Mohammad, the prime minister\\n of Malaysia, to Iran, agreements for cooperation in the\\n areas of industry, trade, education and tourism were\\n signed. According to one agreement, Iran will be in\\n charge of building Malaysia's natural gas network.\\n \\n----------------------------------------------------------\\n \\n - Farzin Mokhtarian\\n \\n\\n-- \\n\",\n", + " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: insect impacts\\nOrganization: Ontario Hydro - Research Division\\nLines: 64\\n\\nI feel childish.\\n\\nIn article <1ppvds$92a@seven-up.East.Sun.COM> egreen@East.Sun.COM writes:\\n>In article 7290@rd.hydro.on.ca, jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n>>>>\\n>>>>how _do_ the helmetless do it?\\n>>>\\n>>>Um, the same way people do it on \\n>>>horseback\\n>>\\n>>not as fast, and they would probably enjoy eating bugs, anyway\\n>\\n>Every bit as fast as a dirtbike, in the right terrain. And we eat\\n>flies, thank you.\\n\\nWho mentioned dirtbikes? We're talking highway speeds here. If you go 70mph\\non your dirtbike then feel free to contribute.\\n\\n>>>jeeps\\n>>\\n>>you're *supposed* to keep the windscreen up\\n>\\n>then why does it go down?\\n\\nBecause it wouldn't be a Jeep if it didn't. A friend of mine just bought one\\nand it has more warning stickers than those little 4-wheelers (I guess that's\\nbecuase it's a big 4 wheeler). Anyway, it's written in about ten places that\\nthe windshield should remain up at all times, and it looks like they've made\\nit a pain to put it down anyway, from what he says. To be fair, I do admit\\nthat it would be a similar matter to drive a windscreenless Jeep on the \\nhighway as for bikers. They may participate in this discussion, but they're\\nprobably few and far between, so I maintain that this topic is of interest\\nprimarily to bikers.\\n\\n>>>snow skis\\n>>\\n>>NO BUGS, and most poeple who go fast wear goggles\\n>\\n>So do most helmetless motorcyclists.\\n\\nNotice how Ed picked on the more insignificant (the lower case part) of the \\ntwo parts of the statement. Besides, around here it is quite rare to see \\nbikers wear goggles on the street. It's either full face with shield, or \\nopen face with either nothing or aviator sunglasses. My experience of \\nbicycling with contact lenses and sunglasses says that non-wraparound \\nsunglasses do almost nothing to keep the crap out of ones eyes.\\n\\n>>The question still stands. How do cruiser riders with no or negligible helmets\\n>>stand being on the highway at 75 mph on buggy, summer evenings?\\n>\\n>helmetless != goggleless\\n\\nOk, ok, fine, whatever you say, but lets make some attmept to stick to the\\npoint. I've been out on the road where I had to stop every half hour to clean\\nmy shield there were so many bugs (and my jacket would be a blood-splattered\\nmess) and I'd see guys with shorty helmets, NO GOGGLES, long beards and tight\\nt-shirts merrily cruising along on bikes with no windscreens. Lets be really\\nspecific this time, so that even Ed understands. Does anbody think that \\nsplattering bugs with one's face is fun, or are there other reasons to do it?\\nImage? Laziness? To make a point about freedom of bug splattering?\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", + " 'From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: UEA School of Information Systems, Norwich, UK.\\nLines: 86\\nNntp-Posting-Host: zen.sys.uea.ac.uk\\n\\nleavitt@cs.umd.edu (Mr. Bill) writes:\\n\\n>mjs@sys.uea.ac.uk (Mike Sixsmith) writes:\\n>mjs>Also, IMHO, telling newbies about countersteering is, er, counter-productive\\n>mjs>cos it just confuses them. I rode around quite happily for 10 years \\n>mjs>knowing nothing about countersteering. I cannot say I ride any differently\\n>mjs>now that I know about it.\\n\\n>I interpret this to mean that you\\'re representative of every other\\n>motorcyclist in the world, eh Mike? Rather presumptive of you!\\n\\nIMHO = in my humble opinion!!\\n\\n>leavitt@cs.umd.edu (Mr. Bill) writes:\\n>leavitt>The time to learn countersteering techniques is when you are first\\n>leavitt>starting to learn, before you develop any bad habits. I rode for\\n>leavitt>five years before taking my first course (MSF ERC) and learning\\n>leavitt>about how to countersteer. It\\'s now eight years later, and I *still*\\n>leavitt>have to consciously tell myself \"Don\\'t steer, COUNTERsteer!\" Old\\n>leavitt>habits die hard, and bad habits even harder.\\n\\n>mjs>Sorry Bill, but this is complete bollocks. You learned how to countersteer \\n>mjs>the first time you rode the bike, it\\'s natural and intuitive. \\n\\n>Sorry Mike, I\\'m not going to kick over the \"can you _not_ countersteer\\n>over 5mph?\" stone. That one\\'s been kicked around enough. For the sake of\\n>argument, I\\'ll concede that it\\'s countersteering (sake of argument only).\\n\\n>mjs>MSF did not teach you *how* to countersteer, it only told you what\\n>mjs>you were already doing.\\n\\n>And there\\'s no value in that? \\n\\n\\nI didn\\'t say there was no value - all I said was that it is very confusing\\nto newbies. \\n\\n> There\\'s a BIG difference in: 1) knowing\\n>what\\'s happening and how to make it do it, especially in the extreme\\n>case of an emergency swerve, and: 2) just letting the bike do whatever\\n>it does to make itself turn. Once I knew precisely what was happening\\n>and how to make it do it abruptly and on command, my emergency avoidance\\n>abilities improved tenfold, not to mention a big improvement in my normal\\n>cornering ability. I am much more proficient \"knowing\" how to countersteer\\n>the motorcycle rather than letting the motorcycle steer itself. That is,\\n>when I *remember* to take cognitive command of the bike rather than letting\\n>it run itself through the corners. Whereupon I return to my original\\n>comment - better to learn what\\'s happening right from the start and how\\n>to take charge of it, rather than developing the bad habit of merely going\\n>along for the ride.\\n\\nBill, you are kidding yourself here. Firstly, motorcycles do not steer\\nthemselves - only the rider can do that. Secondly, it is the adhesion of the\\ntyre on the road, the suspension geometry and the ground clearance of the\\n motorcycle which dictate how quickly you can swerve to avoid obstacles, and\\nnot the knowledge of physics between the rider\\'s ears. Are you seriously\\nsuggesting that countersteering knowledge enables you to corner faster\\nor more competentlY than you could manage otherwise??\\n\\n\\n>Mike, I\\'m extremely gratified for you that you have such a natural\\n>affinity and prowess for motorcycling that formal training was a total\\n>waste of time for you (assuming your total \"training\" hasn\\'t come from\\n>simply from reading rec.motorcycles). However, 90%+ of the motorcyclists\\n>I\\'ve discussed formal rider education with have regarded the experience\\n>as overwhelmingly positive. This regardless of the amount of experience\\n>they brought into the course (ranging from 10 minutes to 10+ years).\\n\\nFormal training in this country (as far as I am aware) does not include\\ncountersteering theory. I found out about countersteering about six years ago,\\nfrom a physics lecturer who was also a motorcyclist. I didn\\'t believe him\\nat first when he said I steered my bike to the right to make it turn left,\\nbut I went out and analysed closely what I was doing, and realized he was \\nright! It\\'s an interesting bit of knowledge, and I\\'ve had a lot of fun since\\nthen telling others about it, who were at first as sceptical as I was. But\\nthat\\'s all it is - an interesting bit of knowledge, and to claim that\\nit is essential for all bikers to know it, or that you can corner faster\\nor better as a result, is absurd.\\n\\nFormal training is in my view absolutely essential if you\\'re going to\\nbe able to ride a bike properly and safely. But by including countersteering\\ntheory in newbie courses we are confusing people unnecessarily, right at\\nthe time when there are *far* more important matters for them to learn.\\nAnd that was my original point.\\n\\nMike\\n',\n", + " \"From: frahm@ucsu.colorado.edu (Joel A. Frahm)\\nSubject: Re: Identify this bike for me\\nArticle-I.D.: colorado.1993Apr6.153132.27965\\nReply-To: frahm@ucsu.colorado.edu\\nOrganization: Department of Rudeness and Pomposity\\nLines: 17\\nNntp-Posting-Host: sluggo.colorado.edu\\n\\n\\nIn article <1993Apr6.002937.9237@adobe.com> cjackson@adobe.com (Curtis Jackson) writes:\\n>In article <1993Apr5.193804.18482@ucsu.Colorado.EDU> coburnn@spot.Colorado.EDU (Nicholas S. Coburn) writes:\\n>}first I thought it was an 'RC31' (a Hawk modified by Two Brothers Racing),\\n>}but I did not think that they made this huge tank for it. Additionally,\\n>\\nI think I've seen this bike. Is it all white, with a sea-green stripe\\nand just 'HONDA' for decals, I've seen such a bike numerous times over\\nby Sewall hall at CU, and I thought it was a race-prepped CBR. \\nI didn't see it over at the EC parking lot (I buzzed over there on my \\nway home, all of 1/2 block off my route!) but it was gone.\\n\\nIs a single sided swingarm available for the CBR? I would imagine so, \\nkinda neccisary for quick tire changes. When I first saw it, I assumed it\\nwas a bike repainted to cover crash damage.\\n\\nJoel.\\n\",\n", + " 'From: nanderso@Endor.sim.es.com (Norman Anderson)\\nSubject: COMET...when did/will she launch?\\nOrganization: Evans & Sutherland Computer Corp.\\nLines: 12\\n\\nCOMET (Commercial Experiment Transport) is to launch from Wallops Island\\nVirginia and orbit Earth for about 30 days. It is scheduled to come down\\nin the Utah Test & Training Range, west of Salt Lake City, Utah. I saw\\na message in this group toward the end of March that it was to launch \\non March 27. Does anyone know if it launched on that day, or if not, \\nwhen it is scheduled to launch and/or when it will come down.\\n\\nI would also be interested in what kind(s) of payload(s) are onboard.\\n\\nThanks for your help.\\n\\nNorman Anderson nanderso@endor.sim.es.com\\n',\n", + " ...],\n", + " 'filenames': array(['/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/sci.space/60862',\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76238',\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/alt.atheism/53093',\n", + " ...,\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/sci.space/60155',\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76058',\n", + " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76304'],\n", + " dtype='" ] @@ -809,7 +3038,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWmYZdlVHbhORGapKrOyRoQm3My2bDcgMwobhEyDoAViMBiBACHjbhfgBgEGIYZ2FQJhaH0MbguaUZZBTLIYDLSFhGQKSciAxNQMEmKokjWUpFKVasjMmjLj9o97d8aO9fba97yIyIz7xF7fF9+Ld8dzzj33vLP2XnufNgwDCoVCoVAoLB9bR12AQqFQKBQKfagf7UKhUCgUNgT1o10oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQzD7o91ae0ZrbWit3dVau5b2HZv23XTRSrihaK09sbV2U2tti7Z/wNRmzziiohUOAdN78eVHdO9h+lu5f2vtRa21W2nbrdPxPyOu95vT/teI+/DfizrKuNVa+6PW2jfQ9s9prb2qtfau1tp9rbU3t9Z+ubX26e4YG3M+pKMdbpory1FiqtsPHfI11XPxf7ce0r0un6737EO63odM4+L/FOx7R2vthw/jPgfFNH7/p9ban7XWzrfW3rjGuZ/eWvuZ1trfTH38r1pr/6G1dv1hlO3YGsdeDeCbABzKw/tbgCcCuBHAdwLYcdtvA/DxAP76CMpUODw8A+P784IjLMONrbUXDcPwYMex9wL4nNbaqWEY7rWNrbX3B/BJ0/4ILwTwI7Tt9o77fQmARwG48IPVWvsaAP8eY5s9D8AZAB8M4DMAfDKAX++47qbh2wH8XmvtB4ZheNMhXfPj6fsvAfhjADe5bQ8c0r0emO73Pw7peh+CcVx8RXDNJwN4zyHd56B4EoB/DOD1GMltW+Pcr5rO+XYAtwJ47PT/k1prjxuG4b6DFGydH+2XA/jq1tr3D8PwzoPc9G8zhmF4AMDvHHU5ChuPl2McWG4A8B86jv8NAJ8K4PMw/hAbvhTjwPIWANvBeW8bhmE//fUbAPzkMAxnadsvD8PwL922/wbgx9gitVS01h42vcNdGIbhD1trfwjgazEO5gcGP4/W2gMA3t37nNapwzBm37ok49UwDH9wKe7TiW8bhuFbAKC19hIA//Ma5/7LYRj8xPa3Wmu3AHgZgM8FEFq8erHOi/Kd0+e3zR3YWvvY1torWmunW2tnWmuvbK19LB3zwtbaW1tr/6i19urW2tnW2l+21r6ipzDrnN9a+8DW2k+31m5vrT0wme0+Nzjui1prb2yt3d9a+5PW2me11m5urd3sjrm8tfb9rbU/ner3jtbar7bWHuuOuQnjbBIAHjKT1bRvj3m8tfaNrbUHI9NJa+3PW2v/xX0/0Vr7ntbaLdM5t7TWvrVnwGutnWytfXdr7a+nNnhHa+0XWmuPcMes89w+urX22sn88xettc+Y9n99G82x97TW/ktr7eF0/tBae+5U7rdO57+qtfY4Oq611r5uuvaDrbXbWmvPb61dFVzvO1trXzO1x72ttd9qrf3DoA3+WWvtd6a+cldr7T83MtNNZX9Ra+0LW2tvmNrh9a21T3DH3IyRnf6TtmuOvHna98g2mtXePrXzba21X2utve/cM1oTrwPwywC+tbV2ouP4+wC8BOOPtMeXAvgpAIeWGrG19nEAPgyrg9N1AN4RnTMMw0603V3zo1tr72yt/WJr7fLkuI9orf1Ka+09U9/67dbaJ9IxH9Nae4nrf3/RWvuu1toVdNzNrbXXtNae0lr7wzb+OH7VtK+73wH4OQBfzNe/FGit/VwbzbNPmPr+fQCeM+17+lTm26fy/35r7Wl0/op5fBpHzrXWPrS19rLpHbmltfbNrTXJSNvoAnnp9PXV7t15/LR/j3m8tfYV0/6PaeNYZePtv5n2P6W19sfT/X+3tfYRwT2f2lr7vemdf8/UHo+Za7e5/jhzbmSJet30eeHerbWrW2s/1Fp7yzRWvLO19vI24xbCMAzpH0Yz4IDRrPE9GM0l7z/tOzbtu8kd/+EYB4jfB/D5GGf2r5u2fYQ77oUA7gHwBoxs4VMxvuQDgH/aUa6u8wH8HQDvAvCnGE12n4bRPLcD4LPccZ86bftljGaaLwPwNwDeDuBmd9zVAH4cwBdiHLg/FyOLeQ+AR07HvN90zADgnwB4PIDHT/s+YNr+jOn7YwCcB/BVVL+Pmo77PNfWrwZwB8ZZ+/8C4FsB3A/ge2fa6jIAr8Vojvw/p7p+PoAfA/DYfT63Pwfw5QA+fSrX/QC+F8CvYjR3fvl03IupLANGVvfbAD4HwFMB/MVUr+vccd81Hfv86Zl9HYDT07226Hq3YpzFftZU9lsA/BWAY+64r5iOfcH0fJ+Kse/cAuCUO+5WAG+e6v75AD4TwB8CuAvANdMx/wDAH2A0ST5++vsH077fAPAmAF8M4AkA/jmAHwbwAXN9uvdvqsd3AviHU995ttv3IgC30vG3TtufOB3/ftP2x0/X+mAANwN4TXCf52Lsexf+Osp34/Tst2j7fwNwFsA3Avi7PWPO9P1JGM33Pwxgm8rnx56PxNjHXzM9uycD+BWMY9ZHueM+DyP5+EyM7/BXYZxM/ByV42aMY8ctGPvzEwF8+Dr9bjr2o6fjP/mw+kD0fMW+n5v67punej4RwMe45/SVGMeDT8X4zp3HNDZNx1w+ld33se+ejvsTjGPRp2B0gwwAvigp59XT8QOAf4Xdd+fKaf87APxw8M7+BYBvnu7zH6dt/w7j+/cFU/u/CeN47fvH12Ic038EwP8K4IsA/OV07Ik12vclAN54wGf0OVO5P9Nt+ykAbwPwLzCOFf8MwA8A+Mj0Wh03ewZ2f7SvmzrAC6Z90Y/2S+AGuGnbVQDuBPCLbtsLsfoD+zCMg/ePdpSr63wAP4HRB3c9nf8bAP7IfX8txh/25rbZD+fNSTm2AZzAOKh8ndt+03Quv8AfAPej7cry3+m4H8A4EXjY9P1Lp/OeQMd9K4AHAbxvUsYvn879rOSYdZ/bE9y2D8fuy+Vfmu8D8BBWB9p3AzhJbfIQgO+Yvl+HcaB9IZXxS7ge0/e/BHDcbfv8afs/nr5fCeBuTP3WHfeBU9t9rdt269Tu17ptNug+zW27GfQjN20/DeBrDvKCd/T9AcB3Tv//1PSMrp6+Zz/abfr/2dP2HwLw26o+032ivw+ZKd9L7bq0/e8C+P/cdd4N4GcBPImOewZ2x5wvnp7Rt4t28GPPKzFOxC6j9/MNGM3yUVkbxnHsSzAO8Ne7fTdP2x4n7p32O7f9OMYfuW+5SP3hVuQ/2gOAT5u5xtbUDj8F4HfddvWjvecHemrHNwH4lZn7fPp07icE+9SP9rPctsswvp/3Y5p8Ttu/YDr246bv12CcwP1Q0AfPAfiKNdr3QD/aU1n+GsAfYS/h+CsA37Xu9dbyIw3DcCdGNvX01trfE4c9AcCvDcNwlzvvHowz3k+iY88Ow/Cb7rgHMD74CybLNirUL/ytez7GTvJfAdxN13kZgI9orV3VWtvGODD/wjC15nS938c4e96D1toXTOaYuzB2gDMYfxhUm8zhJwE83swiU/m+CCNLNd/Tp2OcLb+W6vFyjIPC45PrPwnAO4Zh+JXkmHWe25lhGF7lvpuy8hXDMJyn7ccwCpI8/uswDGfcfW7F6Dczgc3jMb6crFL+OYztzeX5jWEYHnLf/2T6tH7w8RgnID9NbfeWqYxPoOv992EYvCCGr5fhdQC+sbX2zNbah2XmQkNrbZv6+Trv5Y0Y+943zh049e0XAfjS1tplGK0NPzlz2gsAfAz9vWXmnEcjEKsNoxDrH2F8fs/FOIh9LoCXtdYit9vXYpwkPnMYhhuzG06m508C8J8B7Lhn3DCKnp7gjr2qjW6mv8Y4OXwI449VA/ChdOlbh2H4I3HbuX5n9X4I46Tx0TN1yMa6g+DsMAwvC+732Nbai1trb8f4Xj2EcfLSO479v/bP1Lf+DH3vyLowkzqGUXR5C4A/G4bhre4YG4P+zvT5iRjJFL/zfzP98Tt/UTC9Zy8GcD3GSY43u78OwL9qrX1Ta+0je9/7/Yg/vh/jzP45Yv91GBXSjHcAuJa2RUrBBzDO7tBa+wCMHenC37St6/wJ7wvg6XwdjOpVYGzM98H4w/eu4Hp7RHettacA+HmMs/enAfg4jAPZ7XTfdfCLGH/4zd/4pKncfkB9XwDvH9Tj91w9FK7HaIbJsM5zu8t/GXbVy/w8bDu3SyRkfCd2/T3XTZ97yjMMwzlMZnQ69076bhMdu6/5k1+B1fb7MKy23Z7ruYlTz/N9KsaJzrMwssq3tdb+7cwL+Uoq07/tuI+V7W8wWpOe2Ug/IPCTGM37NwI4ibEvZ7htGIbX09+ciOlyCPXyMAznh2F41TAM3zYMw6cA+CCMP3Y3NgopxeiCehuAX5i5HzD2iW2M7h9+xv8HgGvdM/iPGFnc/43RLPwxAP61K7tH9E4Y5vqdx30ApE+7Y6w7CFZ0BK21azC+D4/FOOH7BIzt8NPo6+fnp0m9B4+9h4VoXJkba+ydfw1W+8OHIh8vDwUTGfwZjG37lGEY3kCH3IBxUnwDRrfkO1trz2uJZgNYTz0OABiG4XRr7d9hZNzPCw65E8Ajg+2PxPpy/rdj7Ei8bR3cgdEP+j3JPWyWGYmFHoG9oQlfCOCvhmF4hm1orR3H6g9JN4ZhONNa+yWMpsAbMc52/2YYht92h92BcYb5BeIytya3eDfm1Y+H+dzm8AixzSYWNhg+EuPsHcAFC8T1WB0s53DH9PkMfz0HFe60NoZheBfGH4B/PVmjvgxjuMftAP4fcdoNAE657+v28e+Y7vMtHeV7U2vtdzGGbv6it6wcIu7A6kRPleftrbUfxxgK9qHYnYQCo+/5RwHc3Fr75GEYQhHbhLswmrJ/EMJ6MAzDzjQgfjZGs/q/t32ttQ9TReypRweuw/geKhzGWKcQ1eETMU6SP2cYhtfbxmkse2+AvfNPw+jGYPCE41AxWdhegNHf/tnDMLyaj5kmPc8C8KzW2gdiHNufi1H3IS1L+zXB/BCAr8euotzjtwA8ubl40NbaKQBPwegj6sbE4F4/e2COX8doHv2zIYmPa629HsDntdZuMhN5a+2jMPo9/Y/2CYw/8h5fitVwGZt1X4G+H4WfBPAlrbVPwyha4AnRr2McxE4Pw9Ad6D/h5QC+sLX2lGEYflUcc2jPrQNPbq2dNBP5xCgej9FXBoym8gcxTpBe6c57KsY+u255XovxGXzIMAz/ad+l3osHsPeHdgXDMPwFgG9pY0SDnDRNx+0b0w/fDwL4avSF5/xfGK1Pzz/IfRNELge01h41DEPEXC3ygn+U34ZROPWbAH5z+uEOme808X01gI8A8AeDVv8+DOO7+hBtf4Y4/sBorT0SIwOUz/mQxrp1YBEHF9qhjREOT77I9/Xj4sXEqzBaNz5oGIafvcj3ivB8jCTsacMwvHTu4GEYbgHwPa21L8MMwdrXj/YwDA+01p6DcRbM+A6MqsxXtta+B+Ms75swdhJlUr+Y+LcYZ++vaq09HyMjvRZjw3zQMAyWVepGjD9uv9Ra+1GMJvObMA4kfgD4dYxJKr4fwK9h9IV/NchkjFFdDQD/prX2UozmpOylfCXGmfVPYOzQP0X7fxqjyvCVrbXvxaicvAyj8vezMM6YzyLGiwD87wB+drKS/C7GH5xPA/AD0yTgUj63+wC8vLX2PIyD6LdjnPl+PzBqJ6Y6fnNr7QxGTcLfxzhJfA2cL60HwzDc01r7RgA/OJmQX4rRx/gYjH7Qm4dhWDd28s8BfFVr7akYRSb3Yuwrr8D4rN6IcUD8bIz97eVrXn9dfDdGRe4nYdQ+SAzD8IsYXTIXC68C8C9aa9cPw3CH2/6nrbVXYHyet2DUGTwZo6n6xcMwrCTwGIbhttbaEzEqz+2HWzHQr5/u/bLW2k9gNG2/D0ZV+fYwDM8ehuHu1trvYHwvb8PIfr8cLhTnIuDjps9XpUddWrwao0vuR6ax/CqMY+U7MUa/XCy8EeN4+r9N7/aDAN7gNS6HgWkMeTaA722tPRqjhulejM/5nwJ46TAML1HntzEU1kIFHwPgVGvt86fvf2IT7dbakzD256cNw/DiaduNGJX6Pwzgf7QppG3CO6cfaCOKL8Zo/TuDUR3/WIxWp7Ryc8q3ZyBQjGL8wX8TSME57fs4jIPX6akwrwTwsXTMCwG8NbjfzUjU2vs5H7shWG/D2Eluw6jY/hI67mkYZ8MPTA35uRjDfX7JHbOF8cfj7RjNGL+FUVxzK5zaGeNs/gcx+sl3cEGrsaoed+c8b9r3WlHnyzFOJN44lfFOjGKGmzATioNRrPQ8jAO6tcFL4FTnB3xuFxTNWd/BbhjRtwB4K0YV6KtBCl2MoqCvm56HlfcHAVzVcd+wjTH+QPwmxgnCWYxmsxdgCteajrkVgRIXq0rlR2J8We+d9t2McQLyI1PfOT3d53VwqvPD+IvqPG2/cdp3K20P6xS8N5F6fOU+HeW7FuPE7Mto+1dg9Pe/eXruZzC+X8/CXsV31G/eF6Pv+00AHhM9k2nb38coWHwXxnfkrdM9n0z946XTs3sXRlb0GdP1npi1yT773Y8BeP1h9oHe5zu1xV+JfZ+GcfJ/3/QufCXGyd/97hilHj8n7jWrssaoMbgVo8VywG44rFKPvx+d/zsYRa9+22OnY3lM/2yMY/S92H3nfxzA35spo6nco79nB8d9IZVPnevr930YxZh3Yxwv/hjAV861X5tOLgRorb0fRln+c4dh+I6jLs97A9qYZOa5wzDMJukpbC5aay/EONh+ylGX5Sgx+dBvA/ANwzD8xFGXp7D5OMywgo3GFDLyfRiZ5rsxqlqfhXF29uNHWLRCYRPx7QDe0Fr76CF3C7234waMbP6wtBSFv+WoH+1dnMdo8nw+RoXyGYxm238+CPFLoVCIMQzDLW1M1XvY6Vs3DQ9gNJezeLVQ2BfKPF4oFAqFwoZgI1bWKRQKhUKhUD/ahUKhUChsDOpHu1AoFAqFDcGihGgnTpwYrrnmmkO5ll+ngddsmPvee92DlOmgx0b793POQY692G3Bx5j+4k1vetO7h2HYk2f72muvHR71qEdha2vrwGXzOg/7nz97zu3dt845+9GgrHNOz/16y5S12TptcZi6m9tuu22l75w8eXLPuGN9x/oSAGxvb+/5tH28PRp3+PMgWMo1LhbW6e/r9NWdnZ09n+fPn9/z2dPHbrnllpW+cxRY1I/2NddcgxtuuOFA17CX6bLLLruw7dixsZr8Ms5991D7el5INUnIXvCoDOpcHki4Pj33m/v05VHttk5bqDaxZxXdx16wJzzhCSsZvx796Efj53/+5y88d/vMnqW9qOfOndtzffvu/3/ooYf2HGOfPBh48EDAx/AA4s9Rg419ZhMLdf/ouLn7+bYwqLrzdjvX15u38X35uz/nMH68b7rpppW+Y+OOXf9hD3sYAODkyZMXjrnyyisBAFdddRUA4NSpUxfOBYATJ8asoFdcsZud0/ry8eNjOm/+Yed+GEG9hz3vml03ez/VODN3zej6XObsHvwuqMmxPy56X/yx0fv74IPjOiL2/p45MyZeO3t2TB55++237/nu78PlfvrTn55mGrxUKPN4oVAoFAobgkUx7cNAxAyZgSoTamZaXWeG22uO348p7bBMW+uyFj/jNcagZtrrIGvXddv8+PHjF9hNZK7kcvOMPcKcGVex5+jYddp8jmH5ss+1f4+Jn+tj17drR/Waey4Rw7JnYOD78LX9dVSbHxQureSe6/ttc5Yofy0GM7d13m1+x/j667x7WdnU/fi+Wd9Rz9Dfg8dg2zdngYuO4ecUlcP6m/UzGx/YImsM3B9rjJ377FGjmHahUCgUChuC9zqmzf7daFvEwuYwN8NeR/iWbe8VrUQ+5nWw7jl+hm0zUeXfz/zIajvPwP0++zTfoLrO8ePHpWDIX0cx7R5GrFhedC6zCMVq9oMeX6Rigb4c+7EC9J7TY41ivYLB14/ZOLOnw0Z03R4/LR/X+46t41c+iLgtem6KvR6miC4bD5jF9vj37Rzl4/Y+7bnnxnonf111/aNGMe1CoVAoFDYE9aNdKBQKhcKG4L3GPM7mVW92sW0sQjgMs9Q6grSe688hErP0mu6zcwxK+OKPYzPrfsJPVH0yIVomCGmtYXt7e+VZR2Xicqv9vtwsemGTWRT6pYQyfO2e8C3eH0H1gx7T937uq8LEsrAdJRrK+o49yyy87jCxH9FdBO63SlzIx/v/uZ0yMducUMuQhW31imhVGebKOjc2ZcI77jvKbO3daHyMun80tth9LFxsKSimXSgUCoXChuC9hmlnAiQOA1JZjKLZZi9DjARIjP1ky+rBXMjFOky7d8YN9Cd16Sl7JA5ch2nb8Vk/mGO8ETPhZCqcHCTLrKSSkGQhWIr59FiF1DEZi1bJW7IkK7yNk9MwE4qsDwYlLsvY7sUOAVNl9WVYR5CqrIA9TFvdNwKHUfH1I0uFGjvmQr8y9GQlnAu/zSxkylJmZcsy2fE50bWyREZLQDHtQqFQKBQ2BO81TNvYNPutgdUZL890ebafncvbo3CeudSQhp5EHGpmmPlgeMYZzWbnmNt+kp4oH15URr5WFvKlmAmjtXbBn5WFcqiyZKkTeZ9imd6HplKe8vcsBEcxhZ6QP2ZekS+Qy6/KmNXLfH7KYpHVj8tq26NUsoyDhCGtC66TYp7raA7mtkf7Mq0Gl02FZkaWHXXfDMxS10nxrKwQGZT1KbNcWRmtj6rxJrr/OnnJLyWKaRcKhUKhsCHYeKZtaeiYYXkF4bo+14hVKqbTw7R7VpTp9YP3zLCVD7MnrWR27Nz9+HuUSlaVLfJbr5MMp7WGY8eOrZwTsQqlR1DWDUAnXLAFCaLFCmx2z35wvkbERFkFb/WJLElcV05YovzvUbm5LZiJ++vNPcMs8oDbPmNtqj5830vBiDL9gy8LoC16zJoNPYvyZH7wOV8sW16ievF1FXv3+/jdVtfMsM44x8dkbcSWKmX1jJ7bfhIPXQoU0y4UCoVCYUOwsUybE74zI4kYFqsqM2aloPzj0WxMxRFG6k6l2lWI/DYRw/Vljrb1zrCzMvA5EaNjRq80AZGVo9fftbW11aVCVYwtul8W/++vH8VycvvYMVzXTK2uZvt+6dm5+3L/j3zafK7yx0dlsXdvzt8bgf2u67Caix2v7aGsPcoiEh2r4oujukfMNrpWFlHBzzZ7Lspnb2XjJWr9OdwGGYuNNAu+HnZ/7lMRlHYosgpZGc0Cm+l99qOYv5Qopl0oFAqFwoZg45g2+4OYAa2jAO/xBc/5sKMZuFIzqthHvy/zO/njohm4zV5VfGbkL1ZsVi2mEZW/Jwl/L6Pyfj4+di5O22dEi8ptLEEx3qg+7He0mToz0cinzX5v+7z//vv3fPfPmlXpygLTY5FQ6v6e+Fluc68RUepddd2M2bEvPWpHlU+B2+iw4fvbwx72MAC77WCWDrb0eSg/PbPoLMZfZfSK3gkeA/m67Nf1/0f7PFjjAOy+R3w/1iBEVkGDiuixdo3eeTW+Re8B38+ud/nllwPYfRcj65odq6IXjgrFtAuFQqFQ2BDUj3ahUCgUChuCjTCPZ6ZANldHIi8217BoiE3u3iSjUiWyiaZHVKaSHfj7sClRiZYyk2CPqX0uFWCP+IIT2mShEkrgwvujtXB7zLq2n68bJelQwj0zgfr2YiGWEqfYfjN5R9seeOABAMDZs2cBAPfdd9/KOZwEwsBinyisRYUWsbnPm7pZPKRM3ZEZdk7wmCVzsXqyWTlrR+XGOuwkGFY/6w/+/xMnTgAATp48uaf82RrcPL5Y+2chWvY/J64xZOGCbCbvwdz4ErktlIvQrmGm5yxMzMzg3Eetvc2MDayG9aqyRuFbagzma/pzOMxyKSimXSgUCoXChmBZUwiBLNC+Z4EDm61m6SOBeGZqMz4OsbFjjRFEITg8e+TZXlSvOaHWQcLTImEYQ4X6+PLwLNUzEn+svwfPjpmlc5n9sVYGzxAVVNpRYPU5cFtn4XaKxWYhf9bvPFsAtNgsus5cQomojIqlZwtGqOcdsXO18I6BBX9ZYhbVz6PQKWVlmxNRrYuIfVkfv+KKK/bck9+XKNkJWxdUCKPfnoXcAbvjjh/nlGDT6mFl71kwhO8XhXzxPiu/WZTOnDmzcqzB2tjqwdYI7kN+nxKiGaJnwMzeyhYldbKyXWyh435RTLtQKBQKhQ3BRjBtP9PJfMn+2GgGqvxCPEv2MzU1S+aZoWcTzLCZVUYJBhSDYn9R5Bfvmbnz/dRyihwOFTFyrrN9WlmzMBhmKBGr4WOj2XCEYRhkqlJ/D2bWnIrU15kZiAr/sGsaywBWWQkzz4jlqOQwPT5t5ftX/nf/PzO3zOJj5ef25D6VJeTgfT1sRjHryKqiLEnqutvb2yv9N/KnWhnsOfP76Pux1ZG1EipUzj9TDoWzduLwQV9nY9Ks4TFWaVqKK6+88sI5bClivQL31ajvcLpeDnWMNEL8flpbq5C6DHZN1o74bTwGs4UpCoeNLBNLQDHtQqFQKBQ2BBvBtD1zsJkY+zeZ1fQscKBUpxE7U8pv9uP4c3jGnvlvlVq3h+kpPzf7Tn0ZmSkov6BSmXsw87LvfpbM/kj21UXMeM535WHKce4XfgbNdVH+1YgZcB9hpmj1iWb5zARMVRv1S2aT3O8iq8Pc0qXMbn0fsvKySjlTYnMbqwRHUURA5n9U91VMXqXR9Ohl3FFCnajvmOJf6WEiZT7Xka1LkfXE3p2598+3rZ2jjjWm7etlanhOZqKsAr49re+wVcDuz8pwv4/HSFPj8/ju9TLcj+cieoDdd87qrpT7WTIu1uwcNYppFwqFQqGwIdgIpu1nOjyrVrPviJHOKVUj35KKgeWZmo8rVepwnnn6meJcgvxMea7SO9pn5uthZbaKvY38ycxM2e/u78fXs2fKPq5othy1cQTvl4x8VcrnqlJF+ntz31Ax2Mai/T72R6pN3WDlAAAgAElEQVTFEqL7MOvLlNJcZ/YtMiPy/6v4854IB6s7x+1GjIj9oByJEN1PPTcu436Ztvm07f2MfJmZStzXI9KpcHmVBiTS7igfdjTOmRXAYMf4Pumv7f9XTJt96lF78juRWX54bOBPjtbxYz/7t+cU9r78fN9s+Vjri1bnHr/6pUQx7UKhUCgUNgSLZtqZT0SxpSwGmlmjihX2jI4ZKM/mMnWtlY3LkrFqLotiS5E1IFuijsuhYmzZ58wzcX8fVnry/X39mPUzy2DG7f/vWSKvtYbW2op/PbK4cGY85ceP7mls5j3veQ8A4N57791zLc9qosUIgFwVzz43ZqCRitfYA8fAK1925A83KN1FthAKsxjzk0ZtYvVh3zn7DyMfs9I02PZosZnI2sNoreHYsWOpYt7qys9S1QfYbZd77rlnz3el1fDvK8cx2zFmBcisC3w9fte8352fpdJ32PfIx8wM2+4TWVpsm71HrKWwevHCPMBuv+JxW2ks/DEqd4DVx78H7KtfGoppFwqFQqGwIVgk02Y2HWVjUirUaAaqZkyR3xOIl3PkY2w2xspZDxVXHPmweLbKSmyeAUeKY65n5Gfjcww8s2Z1tJ9h87FZVjCGWsrS7hNlPVOqaC7/MAwrit3ISmPIcj8brFwW63rHHXcAWFXf33333XvqA+yyiauvvhrAbhSBXTOKq1aZ4wxRxAPn8WaWztanbOlRldfbM1b2c9r12Hd6+vRpAHvbxPqRxQpbG2X5+ZXmxMrOLHE/iJTb/nrqfVc5C4BdxbJ9WjlNKc3tlpWBrTJRJICVhePCmZn6cYc1Oqy/YItVpIsxqDhxPw5yDge7r1muVPZKf79Tp04BAG6//XYAu/2cs9X5trBP9mmzVcC3ie1bJ+b/UqCYdqFQKBQKG4L60S4UCoVCYUOwSPO4gQVPgE7zyAHw3twxl3yCzYj+fmqRAjYfZqEqainQ6D4cemFgc1lkFlPL6UXiJTZxsgnNPqPl9XgBAjbPRyESKk2rWvDFl7HHPG7JVew+0cIGDDZFR+4EM23eeeedAHbN5CaKsXPNzGvbAeCqq64CsJowghcriPqBEhpFgkgVNsd9KmpPNrfOLarjz2fTrfUHKzO7A7iugBb9RKJJFn2xaTdKP9wD6zts+vbXYzcRvyeRCZVN5nZ9axdeSCa6hj07c7HY/aPwN3Y9cLtE74aqDz+nKLmKwe5nZv+eZ6mWu7T3yPqFbyM757rrrgOway4315SV0crh62r1YbN4ltRpnfHnUmJZpSkUCoVCoSCxSKbNDDtLMccztygsRIVlqAD7KNCez+Xl2zyYdavQq2i2OZfWMRJHWJ1tn0qm4O/HISxsQbBjjTlGM1FeltTa02bHkXiNRYYqWU1UlgytNRw/fnwlhMRDpbvMnpfVycQvVifuK9myoZzkghdJiJaAZEsLh/pFlh0lXuKwl8gKxX2U2yhKUsMWKusrVgf77gVLbCliMWMUDqmsWyzG8uPEOos8mIhRpRL2deVxhxlbFPJlFggrp303RhilyWS2b+cYIosLp01Wy65mqU/5HeG+5IVo/L7z/e35R0lquPzXX3/9nrKxWNOXybax9YEX+vDX53Gb+7e3DqpUp0tBMe1CoVAoFDYEi2TajCzZCTOPLBmIWoKTP/0Mm2d3atEJD2Z5nPw+mpWr8DC7P4ecZMxOhWBlKSn5XJV8xZ+jrB0R01aMOkojaOAUntmiJca0+brRog+qH0RhZ8awrU7mczNft1pYwe9j3YBaHMH/H1l9ojr4c1RyEJWCNYJKRRkthGHbOLkL+wKj8EvbZ+2bLSOrLGP8GS0B2othGFb8+16fwO+bfecFN3w9mOFyiBy/L5FFUfmlo3KpxXKYvXo/sVogRCWr8s9S6VF6xhDW27DPOUqyY7D6WN8x7UgETvDCzyRbyjmz2h0limkXCoVCobAhWDTTjpLUzy1wkSnFmXHw7DXzFyo/YQ9YNWpl9MyAl+dTS1lGfl6eJSslepS+UlkZuJ7RIvHMGDLfsHpO2YIVmYI5wtbWVpqWk/2o3KZRO0XLJvpzOOmEr7PSIxii5Qf5fmoRjghKmc/X9s9JLatqiN4nfk+YlXHSjWyBkrk0wUA/4/H+1swqw7A0plm6XLYqsQI8G3dUEiKO6sisA3z/aPzjvs/XtXY0hurLwO2vkjr590klHWHrQKRPYEtCz1K9fA017nhwvaKkNFwXNS4sBcW0C4VCoVDYECyaaUcpO5XqlGe6Uao+NRtW/iJ/7+wY3q58etmShWoJUHX/HnU0p+OLEver2b3yW0f7GFGqzTlLQnYdK2uvitwjUvNy2/X415X+wRD5kzn2lfshx8j6fexn58VNsuU8uX5cL9/mrNJlfUKPtsHA1obIUpK1sUcU26sWxOnRlczda3t7O33H7R6s1+A0n9HCKjyO8X2ihYWYTXI6zuxdUP5aO9f7vlUKXL5WxDpVCmfeHr2DDG7zqD2VlkFFIPiyqGeRtT1fYylYVmkKhUKhUChILJppG7KZumLREfNVbCmbSSlm0MPolNI8yxzG56gZYuZjVCzdz0BV/HmPH1mpk5WfPLuGsnqsWyY+J7JIzF2vx6dobchq4Sh+XjHcTC/Aal77ND9xFOGgfNnKKuPPVX5VVnlHfn5mONYGvGRnZu2YezejemUL/OwHwzBgZ2dnJd9BZs3iNo+WgmXLh+pfEUO0MjA75mtm/Zuz3PFCJVmZ1PgW+dCVBSvLNqasQ6xZ8lCRJ2r8i8qvFpmJxh2+71JQTLtQKBQKhQ1B/WgXCoVCobAh2AjzuAeb/pRgyptxlClOmbq8eWTO9ByFa3ASBUMWSqBMaOp7ZFLlY7JrzZmU1gk/mQuhi45RprTIJNkrXopMhVEImapbdA7DysmCoCxJg0GlyYxM3Sy24iQXWRhK5rrh/ZyStmfBEFV+7hfRNdTCJJEgSIH70GEkvzh//vxK//BlYVcW9+dIdKVEfMq1l7kg+P2I1u82cNpcduFYgiAPJfJSokZfNhYgcqrSSGipQrEyV6Uaz3h7FGLGfZPbLUqK05OM6ChQTLtQKBQKhQ3Bopi2hV7wLChivr0p9Pz5c8yH7+GPUQw7SijBCSs4vCBKy6mYdg+LUKwrW5qT76PCNrL7qVSyEXtX7chl87NyPmcu5CuqX8bcVUrDaNGSuXCjSIyjRHEZm+Tr8RKjWUpXJaBRzM7/z/Xkfh1ZLDiUTYk1s+Qaiqlmz22ODa6LYRj2MG1DNA7w+MP3jtInqwVqMovfXDKfKOGMChM0AVrUp9hSpNoy6rvM/o1xsygvWtREWUi5HJnQTok2o3PUAk8cEhYh23cUKKZdKBQKhcKGYHFM+9ixYxdmUJwOEdCsMvNH9YQgqf0qTIgTf0TLOarwjMwfOedLisrIzJ5ZC7O1rF7MjrIQOr5GlpRAhfaoBSoirJNOkJ9TVM65RQR6jsmYATM3FfoVMQPrV9xnetpAtXUWvmX7mIlwOYDdtuA0uer96gm7y8LxuK3ZqpElHOrFMKwuzRnVRyVTidKKZuGM0X4P5a9VGgd/LCfM4aVZo+sZ1LOM3nHuTzZeR0uNGuwYXiCErTbZ+7SOpYy1EnZ/lbY3qnP0O3SUKKZdKBQKhcKGYFFMGxhnb8y+MrbEzCRihj1LO3pEzIDvrxLcR9dRx/h6qWQDPX5QZkdq0Q8/057zf/L9o/qp5P6cGCY6n8uYPaMev5Odu85M3aBm7v5/Zpxz1/L/KwaX+cGzhUGAPDpC+fp6Uq2aX1JZJfh/f+466R7nGHZ0P2VN6+0fWVl2dnb2la6Sn1Nk4csiI/z2SKXMfVO9t74snPZXjQ/R9ZQ1KGLazJLtPqdPnwYAXHnllSv3M6gohXUsSYyonZUCnH3c0TjBqYOXgmLahUKhUChsCBbHtIHV+L7IT8R+XEM0a53zLWXgmabyOUf3U2pUjgOMrqe2R/Vj1SjfL2J8iiEolWxUBq5P1q5cZ+U7j8rP18ignpf/X7HmzKfN11CWkB7VsyGb5St/uCGKK+Vj52Lj/TFqUZsIKipBqcmzFJGMjHUaejUq68DYtr939I5xXa2dLPbZlNr+2DlmmNVVWYEii4xKPcvMO1KcG1SaWd7v78PWMmbc/h4nTpwI68fLMGd9VulJonOszvZ81KJN0TsfaQCWgGLahUKhUChsCBbFtIdhwIMPPhgupOGP8bDZEJ8TsZfeJTkzteucmtOfo+KY14kv7YnbVv4nQ8ZMVCxvDwOeY5lZ/TKfKd+HdQQKvn7ms4r8+HNsMto+x0DWifHOnn9vzLNvC9UuipVFx9v17T3ieOAoZpl9fty+B11KVdVDtetB4O8bLQtpdbV+xbqbLNJFLaSzzvuiGKl/lvbseOEWQ8TsFdufG+98mXj84XfPGLc/RinMe57lXD+IrqEYPLcrkC8msgQU0y4UCoVCYUNQP9qFQqFQKGwIFmceP3/+/EoAfJYoRaUX9ZhLapCZqZS5JkuuMifIidIWqmQGWUpXPleZcdZJ6amSHETnqKQqPcIaNstlSWM4hEnBh3xFiUTYTaI+vVmXxWLrhCpxH5kT//l7c7rHLAEMX5fN4erTg9vA7s8hb8CquVclguG0vVHdldAqElhxex5mKM7Ozs5KiKkvg2p/K3/mClDPPTOHc5uxWZwTqPgy2Php4Xtq7e+oLCr0MyozXz96f/xxwK6p3NrE+lmPm2TODJ6Zs1X6aytHlIZ6aWZxQzHtQqFQKBQ2BIti2q21PclVstALwzqJU+aEK9k1mPkya/HXVEzbZnucwi8qW9YGDG4DJfKKlo3k69uMk2fNUZiI+sxSHipxHpfLX6eXaZ8/f35lRh2FC6pFCrh+0TZuL2Y+/lq2jfsIMwIvouTUoHz9LNRHJf5hNhuJpuaSxkTCt7m0pdlzU2wzElgpEeA6gs4eZEJB1bYGfsczqPclCjtioRR/Xn755RfOsbAm7ndssfLnsPCQj+X31Au2zp49u6eMJi6zsK7I+sDjDL/j2Rg817aRRYf7Nb8rLLgElrdACKOYdqFQKBQKG4JFMW1gnC0xa4lmPjwzy2Zh64YmZQk5+JNnpv7/3nCx6N4q+J/DKqJj+L5Zek5mYcwCODED0MeS+XuvJSHz2c8ttHLu3DkZXuOhyq/qEe1jBszsxv8/x858vexYY03333//ns9sAQ8uk/Lj2bX8Nu6zfK3ISsPPlEOODJl2Q/XV6N3oOWY/MC0NLyIRsf2esD2GSvPLiN5PLgv70P39z5w5A2CXxSrf9tVXX33hHGPddqzdx8YXXgjFh2/Z/aysV1xxxZ5j7dr++bMVUoUH9vj958Iv/f9KE8Dbo+sszbddTLtQKBQKhQ3Bopi2V/8CeZC8SjWX+SMVm8ySNTBbUjPeSKWczeIYioWx7yWq35xvtmf5OZ6tckrE6H5swVAJQaLrRwp6hjonO77H9899JlOAKy2D8hv2sDNmXv4cY9jGfIzNGFtaxx+t/O92D19+ThnM/S5iy7aN/e187UxXwHXIrEIXSz1uTJuTBkV+Tv5khXwU6cIWIvV8IusJazPYGuCtJvZcjQ2z39hYsz/H7mn9y/zU5p82tmx1sP3++jwW2vWj6B+zwqgolczPryymmYVPWaHYshBFVGTRD0eJYtqFQqFQKGwIFsW0gXFW0+PPUKw5W9x8Lm1plCKS9/E1ohk2M2yOW81YrPLRZ0yEZ4Ks/DRkTFWlWs2YD6uwlVo+2jbHuCJkviVm2Vnb8r3WSYs5p2DuiaPn5TA9jPEYW2KmHbHaXk2D8q37fQpR9ICBGarSS3gotXB0DrN+tUzlQaFYGbDLzKLID1+WqA/25jGIWCW/Y+zL9u3EWgY7h2OhI3bOege2JEU+dLbOcJsww/fHcp/p0Qys854arPz8/rC/P0sLfNj97KAopl0oFAqFwoZgUUy7tYbLLrtsxRcTzXTmZvOexahlIQ09MzelAM2YlfJdZUw7Wsjdn5uxF7WQR5ZZjuOB1f0iP5G6f1QHxcLZh+Uxl8mOsbOzs3LvHp959vyVD3MuQ5YHLxzBylzfV22bygeQLVCj4sLXgbIkRTkFVEx8Fq2hLFeMdWKkDwvcDzzTZoam3v/M2sPtZJ+RP5Uz4ikdiX8u1nc4/p/91p5pRxoJfw1mor6vmt/b7svfObtfVEZlFcr6sHrnomeiVOL8PYqO6LH4HgWKaRcKhUKhsCFYHNM+duxYVwYsxWwi1aFafk4t4p4xRJ59RbNk9nvZscy0PJQCUilQM9bMPtPofsoPqfJTR/62uRlolhFtXRbdc8wwDF2x4uqZGiL/vYqbV7N9YJWlMvOwuFa/TOGpU6cA7GaVuvLKKwEA9957L4DV+G1g1+8dZWWbg5XXyqC0B1FUx1z0AN/Dn6MiHaI+tY4P8zAQjS0cNaDq7C0gWTSFvz5bxPx1WPfA/nzPYhVb7YnUYFiftX4RxVPb/6w05z4TRQ+o90hFaXhw1AXHU/tnoPLWZ3Ha3AcrTrtQKBQKhcK+UD/ahUKhUChsCBZnHt/a2uoy48yF2kRmUYNKhh8dr8yFPcKwKI0fsCrG8OerhCI9aTlZAMIJGaJzuf2USCYzHxlUW/n/I2GTqp8KKYtgIV/Zcp77CRVap58xlHmczeRmCvfbrrrqKgC75nIOAfPpJHmBBk5nmZlp2bSZ9WfDXIjZXHrbaFvWjkclBIrMrCzcYiFlFN40lwyEU4X6e88tlhK5DJQ5PDJxq/FGJVfJxmY2x0ciVxVSymbrLFkRl4HbqMc8zvfLRKhlHi8UCoVCobAvLIppA3tTma4TVnUYMv2M7Sm2Es3CeNY2J/KJrjsnvvH3ZebGTN72R2IyZk3MyqOwFJ7RqiUvI9EKs88eC0KvgMaHfEWz8rlEORHUsYr5RNeaE3dFaR45MYYxHhOv2ScAnDx5EsBuP7vnnnsA7Ibr8DP291OiSSUUAmJxUFT37L1lIWT2vl4qAVrGYjlxCdcjY7wqrJGfv9/P4lGVVMW/l9zne9INc+IVLjuzzehdNOuDlYXDFqOELErQm4UtqtSx/Nwypq1COLOxcWkopl0oFAqFwoZgkUw7CxmYC9vJWNl+zlF+OpVsIzrXPnlW6/26in1lIUUGDr1gFhv5llTyAm6LzJKgEplkPm31bKNn0cPcuKxZsou5ckblnksKw8gSiahjo+fC1grv92awv5EXbuhJY8rgBCOe0akFUBQb9PebC4MyZJqUi530IvKncugfpyaO3s+5JCr8jkcJbAwq5DBa/MPGGRUW6++jngdbEHhxEH8Mf+e28O2oxgFOesIhYP663AaKcfvz50LKsve2kqsUCoVCoVDYFxbHtIE+H+bcDDFKPqIWp+AZXDbLN/CMzR/HymXFnrL7sCKc4evC/mI1Q/QzfZ65z7HBzOfM36MFBJT6tOe59fierazraBu4TBHTnlv2NCuT6ndZgh5O4cvnZsxbMRBmMd4nzX2F+0W0eIZKC8z3y/y96v2N/IlZSt2Lgei5sJ82e/8NKo2pgdsgsmbMpcuNniXfh/Uq0fiqNCaZ75fHHRVxElkU1Xuq2HR0LNfb4NtEtSOr1KNEOiql9FGjmHahUCgUChuCRTHt1hq2t7dX4o0jtWrGALPt/lxD5MOaOzaaCfK91UIh0aLqahY5N1uP9qkY24hpz6nve9gNz7QjVq2U4Jm+IGPuDGPZWcywupdStvt9zF6j9LV8P2Vd4Nl+NsufW2DBb1MWAxXr6/fZpzF9/r5OGlt+TuvkXYi+X2o1L7+v0b05nWlURrV8J49NUb24H0RqcQazb+7ntt2nPmX2rTRDWRn5k9si8qFnWgCPSF+ilO2GKLZbxWtn8eDZeHOUKKZdKBQKhcKGYFFM25hSTwaa/fgZeLYYLRDCx7EPKfNhGZQikmeV0bJ67BdS8cGRslWVOWLgvcs39iiqVRxy5tNWavnIV5/54jwilaqHKjcz7KjcKose+22j+7KPl/1p0fKIXDZlAfHnc7ysxWnbdlMae7Y2t2RhZlHqjVX3baIiD/iaS4iRjeK0WY/C73akAFcx8NZOUVYu7qN8TGSZ6+nPfA5b5bg/Z5kfmdEzor7KY6PqD9E7z+OB0oZkcdr2LnBURJSHYmm+bEMx7UKhUCgUNgT1o10oFAqFwoZgUeZxIF+PNsJ+TBgqVCkSXSgTN5sCIxOgCn2IhA5mHmczOadPzEKj1Nq0UZIL3qbqk63FbVDnRqEe6jNKfcom6exZD8OAc+fOpceq87PQsjmzeCaSU89DiX38/8plE9WBzeN2DJsCo5AvNqmrkK/ovtw2diynRo0SjnA9M/P/EmDtNCfc8pgLTTJEJlolEFQJbfz/9nwtLDBLoKTM1Xwsj0f+HD6WzdWReI7djNyukYiNwa6KyA3IY7FKlxqVcU4kd1Qopl0oFAqFwoZgcUwbyFNp8kywJzRpbqbUk9Z0jnn4c5idqrL5WSQzKT+Dju4TzUDVjDNLWMEzbGsDFeqUIWOsiqHyp693T2iMhw/5itqcWQo/j6ifqCQgSigWpV20TxaCReI1tsYwU+A6+H3MFoxN3HfffXuuFYmJONSrB9w3OBFNT2pabrclCdE8OJ0nvx9Zut+5dJtZX1XpNy1sK0vqwu+ywY9PveNM9M7MPUtDZuHjY7JleOcsV1H/ZkupCvWKmDYL35aCYtqFQqFQKGwIFjWFGIZh1qfNPg/2D2fMUIUMKRYYncusJloCUs2+s8QfWfo+/71n1sezyGgmr5i1CqvI/NNzbDTax8w6mtXOLbjgwX0nwtxz4TLObYv2Z/1AJazw5TZWnKVZVPfh+rAPO1r0IQo36gX3HRXG55/pnK8+ep+y536pweF59l5YeF20z6AsR7bdll8FVv3CthgQP8OMNduzZctfNq6qFLXZO70fqxzfdy4cE9B9J0uUwj5s1nlEyYPYqrA0fUUx7UKhUCgUNgSLYtqtjctyMqv0s1vFkvgzmjmpBBislPazO17mjn0gUUC/YnyR33auXuq4KDUgJ3PIlL+GuUUzelizSqaR3Zd9ZlHbs680SmfrsbOz0+VjVBaXnkQyfIxK2BPdx74ba2IWAOwyNo5W4D4V9TG1YINKthOVvwdcD047zAw7UuMze87e36UxHWB3TMoSl1j7KEU2s+WINbOCuTf9pz+G37UoTe9cit9ozFKWNm4TnzaVz+FjWe8RWSOVpSrSdrBWw94r05dkSYM4GmIpKKZdKBQKhcKGYFFMGxhnYsrPCmhfr/Lr+f+V75WZdqZgZibQkwaPZ7o9cX9qBt8Tz2zI4jOzOPMIkT/cwLPmLIWoYtgcn+6P6Y3XP3fu3IrGIYvXVpaCzOfXo3/g8jNLUfoIYNevaZ/sg4uYN9eHfZlKke6vrywGmcJdxapnmoc55XQWj75EsMXDW02YrTLD5nYzZu7/V9cwRGpu1jSwn9r3R7sP92s7J1tMh8ckpZKPFlFhSxXnFojSLKtUu3YsnwusMmqzZGX6l6X3vWLahUKhUChsCBbJtNmn7X0KKnG+oUfxx+why8rF/gyVQSzywfF9mD1n/sRepbsvo8rstk5mH5WRK1JkqjJF/iq2YnBbZ9mzema+xrSZZUaLMCi1eJZtTh2T6SXsGGZNXK+ITShfXMREmYXbuRw3G+kv+Lq83GHUv7N9URtl8cfK3750tqMQKd35fbA6mq83UtmzxcWOtc9IUzGXETHq32wF4j7DZYwsbpGVLPruwX2GNQK82A2glwJVmf98PfiYDL3Wx6PCMktVKBQKhUJhBYti2q01bG9vy5kpsDtTYr+JymXst0XZpPjYrGzA7qwyU3srtqDYWQTlz41mgSo/dsZa5mJGs2xNNjtn/zGXI8qLbO1nM3hWr0ZMtYd9DcOABx98MFWjq/OVct6fr5ZKZWTPlPt1pMi1841h8TKbUVuwn05pG6JlZTkemH2Ayjrhwf7BTAmuNCjrZGJbMnw7cXQAvyc92Rytj1xxxRUA9Hvj78cWFfY9eyhWyUw7y8DI7zvXI9IkqcxoyrIU1Yt92Bx77Y/tXYrYY+5dPyoU0y4UCoVCYUNQP9qFQqFQKGwIFmUeB0ZTSxauw6bAHnOHSqrBpr8oraQyAWWist5FTaIEMFxGbovIbK5SAPYIuZTpOUubyWBzL4fQ+WOU+TqqP4c3Zc96Z2cH999//wVzXmQqVu4RQySg4+soV0QEM8nx/Vgk5/ezyZzN8pEpVZVBmV2jc7lfZWFwVl5ehEGlf8xEmkqQtqlCNA8WBqp3OVqspXdhiyxds3Jb+P6WJXzy52SmYhXil73TdgynheV33tdXmf/ZPB4JO9dJhTs31h81imkXCoVCobAhWBTTNiFaxuqMSakZWiSsUEyDP7NwDQ6FyJJrKEbIjDEKo1HJFFiUFTH7TFDl6+n/V0tzcrkiZq+S0kRJajhRDjPtbCafPR+Pc+fOyUUFIqgkMRGrVAxbCfp8uVXbRpYdPpdZBSeWiPYpNhuJcZjBqzStvl2jhRn894wtqwVCsvSzmw6rm1pshJPfAKvs0QSCLP701iyVVIXbNhJasoiMx5TIasRiOA7VzZ6/Sj2qQh39MVxGlWzF/3+QdL1LC/1aVmkKhUKhUChILI5pHz9+fMXn52egFgqT+c38druu38bfs3ATtRiHYZ3ZWI+PVi3nlzFtZWXgkLmsTeZSk0bsU/l+IqatEjCohRE8evycwzCklgR/b2Vp6bEqZOwIiJ/pnMZgnbAW+54lnVB9JVtARlmjsr6q6qHCuvw5qkwZ01ZWoP2wqKOAldOWX+W+H7FKDsFji5VPfWrgZ8YWGA8OZWWocM5oHy/sE40dXFern7WJ9WvTLkUWHmbWyrft962DTGezBCyrNIVCoVAoFCQWx7Qvu+yyFUYSpcNUqsAoGcScupZTN2a+07mUjb68c0rcLPHHnGozSubC+9ZJY6qSaESzc8U6mQV4pq3OySgwEUUAACAASURBVHzE6yZC2NraWmGq0eIv6yQOYcwtZRphbiGXCIqRRixWLcGprADZ/eeYMKAZ7lzijJ7rZ9oG9qFuWkIWpQFgFT6wyzhZgc7LoUaWJG4fldbUH8s+a/ZlR0pqlYI203lwmZhhnzlzBsAu0/Ztwu2k3glfv94xJFpSV6WfPmoU0y4UCoVCYUOwOKZ97NixFYbtF1E3MJvr8dcpZsVMO8LcbDJjBmohjcjX05O2dK6srPyMZptz18sYcO/SjH6GynXuaRN+LnO+Jc+0mSEA2ofN6LFIzMWmAqvPgRlwVA4VH6+ej/9/jnlG2gClDck0InMLU2SMfs7vncXSc7/i/hG9+0tjSR7GHK38ptcBVpdMVcw3043ws+3Jd6DyJxgiLQ23O1tisvhzY9rWFsawbXum9+DPnsVAesAWnaVFNBTTLhQKhUJhQ7A4pr29vZ0yIRWn2KOu9vfhY4Dcl60U2pF/OqpXdE6kUlbfs2XveGatzo0YFn9XZYx8PrxPffpj51h5lllOKVw9OCY5imeOFhPx8G2jWIvyaWfWAI7xz/p5r2XC72MGquLAI2sAH8PvSPRuqKUSeX8ExfasTSI9BLcTP7/I787Loi4JxiqZRQOr7wMvXMOZ//z/Pe+JQcXj9+g+MmuML48/jpfINPU4L/aRZTeb89XvhxlH75Oq11FjeT25UCgUCoVCiPrRLhQKhUJhQ7Ao8zgQL9bgzROcBpNNImZyisQ9bPKZSzfK1/HXysxGylSaiZbmTH9sro6SnTBU4pQIqsxZWZVYJROv9Qj4uPw9xwJjPTn9p09CosLNekRXvE+5ICKT+5wZ0UMJ3ViUmQm1OBySn0ckWFPhWz1pTFWoWSa0YzcDH5uZK1VazkxwuWRBmvVRMxUDum7c76I0pnNtGp2j3FU9pmblBjETd5TsxMZpTqbCYV2ReXxONLkOMtFsT/Kto0Ax7UKhUCgUNgSLYtosRIuEBcw4ePYVMZC5VKcqzCY6V7HlLCSGQ798fblevaFXkYhtLkFLD9TsPCqrQnY/tZhA9NyyOivw87IZPLDLMDiEkEU/WVIQxRSjNlHJetZJm2tgNhuJ5VTiH8Wio+spQZKHYjo9C4YoK4PVm8NtfD0M3J7ZM1hqKkoPDn/y4KQmSnToodKI8njk0bvYUCRi5O8sTPQWhDmmzYuCZFYh7ncHSZYUiWYNJUQrFAqFQqGwLyyKaRt4IQoPm/UYa7KZGs/UPbLEK0AfE1EsLGO+aiaY+eCYLfC5PeFiXPYe3zbPUjP/O5c1szrw9edYc7QgAV9DYRiGlJGq5B/sw8qSnShEvlhuS+UDjkKV1Gy/J2GFsgpEdWL/tDo3CsVTx87dH9D9K2J6qu/0+MGV7mKJ8PoLqxuHrLHVLrNQqTaOrBi9vuwsYQ77sKNQQPbfq3MiH75Ky5v5/ZUuhkMLM23A0rDMUhUKhUKhUFjB4pj21tbWWr5L809yMH5Pmk8+RiWa8Psy9sBlU9sjH9w6i3v4a0Tb1P2jejELVKzTz7BVmj8+J6qDSlITzeCjWbDCMAxhookIzEwzdqGeB5c3Sg6jkoJki3HM3S9a9GEujWjP0oXMcLLFP1QaSa5DhrnkMVn/V8dECuCL5dPej/90HfDyk9GCHUBsmeLxLeu7ynfNqvLofbLrGnvmdKKRepx92GoJ2ijJjkr4so56XCWNynz1S4s8KKZdKBQKhcKGYFFM29Tj/nt0DLCqkLQZGfs5/P/eZ+ShUlX66835tiMmqvyQVgevYmZGq9grHx9t65lhq+sz4+lRAiuG3eOXzOrJcaUZex6GYY/vLPMXM7vM/IRzDI37W+Zj5LJFTFv1L8WmfT2USp3rG7H0uUVAojIqrUjGQlmtqxh1tD16t/19Ml9tD7LFMQxsibrYymIrg41dWQRKtIiIv0b0HvH4yQy0x8fMx7AS3I+75stmZs0LpPTkb1DRQBkzZstepB6/VM92vyimXSgUCoXChmBRTBsYZ0I9CyrwTMlmkdnsns9l1WPkX52LX818L8xIskxcWVy0Rw/DzmbjBhXbymWPZr69Gb56ytoTr60YBCNSOEez7jmFdKZ+52uo7/4cZbWINBRqgQ5myX5/L1uOfNAq81mWEU31jZ6IAHtP7VlaPTKfNpepRw+RLUTDaK1ha2ur61h/jkfkGz2spSI9rGxRTDcvzcnjjln2/HvEDJtV6ipfgL++nWssmvuwZ9q8BCf77rlc/n78fPgdid51rofyaUeZOA1LU5EvqzSFQqFQKBQk6ke7UCgUCoUNwaLM41tbW7jssstWRBCRHJ/Na2YaylJRmnlImf54gQW/T4W1RInt2STDYRuRWY/X1J1bhCMTaqhQoyg8RJkaVfrWaJsyPWVCDlW/LDnJnJlqe3s7dS8okR3XKxPdKRPtOqGA/On7FofJ8DGReZyFaEroxvujOveIb+ZC+9iM2WOOzdpRJfwx9LjP5vqOmcj9uVkCIy4vm6D9OUoAexjwZnJeLInNx5aoJQqhZNOyGquicZXFwRz65c9h87gyRUfvKPdNLnMmQFPm92w8XZpZ3LDMUhUKhUKhUFjBoph2aw2XXXZZKvpR4Tq23WaRark4f6xKJOJnZcxaeBYezUDVgga+nnyfuWQTfG7GApQgLQqn4xloT6iXQpa+UgmNWAjiWdk6gpDW2p6QQbVIiy9XD0ueW0iB2z4SeSnRWsQmmKX0iMlUSJcSFUZCy7nUjVH4Hh/Lzzha/EOF+GVtwlAhZlEaU1VWhk/q1JNMgxmo1dUzbS6DMe6LFUrELPj06dN7vhu79e/Y3FjBY2TUd/haXM8o5a5qg0wAa5gL24qWVs4SW6nrZ9bMo0Qx7UKhUCgUNgSLYtrAOANiFpv5t3iWFZ0zl6iEj4tYuvJhZyExdizPVqOZnErS0cO01b6MtfOsXPkl18E6jJXvmyU56IX3S/YsPKHK76Gei9IARHqISCuh7seMhv3VWdgWs3OVhCJjS3PJdoBVq5AKV4zaRDEfbsfouak+28OMsr5kFpqMabNlz441Zp2FG3EZWK9wqRClFVWw+nFClqzPque0H0SJUtTYyLqFKAHMXFKfpSZSiVBMu1AoFAqFDUFb0gyjtXY7gDcfdTkKi8f7D8PwcL+h+k6hE9V3CvvFSt85CizqR7tQKBQKhYJGmccLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAgWFad96tSp4frrr0+zWs3FMUdQ8cM9yyvO7TvIOYedcWed+OO5e2f752LHs6xtczm7o5h8XmryjW9847tZxXnixInhmmuuSeu0H/TULfqeXWud++7n3KPGOvHS6nvWD1QmrixPteG2225b6TvXXnvt8OhHP1qWOcLFeB7rvHMXC/sRJu8na+JhXmOdfPlzn4DOwfGWt7xlpe8cBRb1o/3whz8cz3nOc2CDr32ePHnywjEnTpwAsJv8XiUB8Q/BEiNwcgFO92jI0jyqBRai1Ke952bgxCxZukn+IexZH1olqMgSV/DEiSdZ9mzsE9hNQnH55Zfv+W7JG3gtXmD3ud177717Ph/3uMethOdcc801uOGGG1bqeVBY+XgtYp5QRukg5wbangQwKhlEtoCLSmDC/SOCWgyk5weR65Bdn98bTiITLYhii2PwYhP2bHoW5rjppptW+s6jHvUovOhFL5LtFtWJ153O2qnnnVL3W2eRlN5Jeza+9RIcv43TDatrqzL4Y6I15tUxav347AfYxn7rK1HCmbNnz+75tP73zGc+cxFhgWUeLxQKhUJhQ7Aopt1aw/Hjxy8wNGZjwO7Mdi4dXTTbYmbNM7Me01x2H18PVb+5cxkqcX50rkpf2XMfxRgjNjg3K4/O4eVKDfYcjYEbi/JlueKKK1b2XWrMWU/YItKDbFEE1YeiBQ/Y2jS36EbP/fZjrpxLN5phLsVstq8nLWeGYRhw7ty5lXcgW4ZSLUDS4xKas2pF+/aDHtbcy7S5XP6Y3vHOg60+nG7Uzo0smKrt1Vjt96nPqA7ZcqRHiWLahUKhUChsCBbFtIGRkXFyd7/cHTNtZpPRggrst1ALK6zjg2FkPr85/00Enu3zwgpZGZSvJ/KDGhQLiFgzJ+hXSzT67fYMVfnNmhL522yb7weXCqoNzc/FzyUSTao6R/uZSc8taeq3GebYhO+fvYuoZOyMtxuiNuF9ahnR7Lrr7u/B+fPnV9oi8quqBW+i9lPWqnWeqdIpZGPUnHUw2qae5UEElplFR1nnlD7D72MLVY+GQi14ki1Xy8csBcW0C4VCoVDYENSPdqFQKBQKG4JFmcfbtB6ymUbMZOrXpWXRDZs/Igm/yftNyGTfVTxeJkBRYRzrnBOZ8NW5bDbK1hhXZvGetXDtk4UgkZmKw57sOfH1/TnKJWHgEBpfj0iQeKnAz0iFUUWmOhbbqLCdSFTG57BbKLoOl7HHbDln/ozeCWsTZbLlczKRD69PH61ln70nh4FhGPbULws7mstRELlH2NXB7xjvj66nzNfROMDPh+uRPX9lUs9M3VzG7J1gqHpF4xyHB67Tz1RZov69n9DcS4li2oVCoVAobAgWxbQNWUY0A8+GmU1bsg5gNymDHaOYdsZIFTIBCtdH1SGCCmuIGAknDuAZaZRERs0m51gBsPtcjAHzJ5fDX4+TlXDSkkxg5Vn4pYayjsyFAPl9ip1HLNbCHlkAF83+56xA64Qn8rHcl3x51bE9oTLKChS9gz3CzYOgtYbWWlfop0Im2GTLVE9Y5RwzjBgws0rFSD16krZEZc7KmIlYe5iu3+7fNxYo8/gWYa7vZGFpxbQLhUKhUCgcCItk2pGvz8Cs2FidsWlLPXfmzJkL59g2Y+GcBpFnbBGrUEwqmk0am7RP22esMprNsj+I68719pYETtNq9bPtZlmIUkOqWaRiCcAuC7SEKJyaNNIVWJ3tWC5zZFXJZuxLQcQIGJw4IrNiMEtivUDGlphpqVAv37eUZkJZofz/nHJUaSsyv6vyYUb1vJi+7SgcMguNyywfDG4P7uvqnff75p6tB48lPX1UWWd4u7/fXIrd6L2d89GzJdGfq5Jjqe899Vsn/HYpWN4oWCgUCoVCIcTimHY2cwRW2aMxztOnTwPYZdj2Hdhl4ZwsXqnK10mLaLNNr2w2NmnpNzkRjFJbA9pvq+rt/1f12Q/Y5+hTiJrlwhZvsX323drPM3u2NrAiPEqckqnRNxFzyUj8NmYAKmrC/z/nj2SfoN+nymZ9yJ6538YWHWaDmZ93rr6qrhcL5tdW92UdArPWSGvC9WfdhvX9zOKyTp9Xlo5M29KbSCTz/RrYEpZpG+YsO5G/mq2r3O8iq5CV145VjDvCYaSSvRgopl0oFAqFwoZgcUx7GAbpz/X/28yJmbZ9GrsGVn2szLQjH2wvohShPKO1fbadfd2AZhz2manjbZvV+WLHtaoZaBRjy+ewipz9vGad8OcsTb0ZYZ2yzsXg+m3Mork/+H0qtr4nlpj9uNnytcxoVLxxpIdQlqQsPlctq3iYyGJ8gdV2sjJkeRr42j0LhajyKP93Fm3B9ejJD6F82cp/7cs0p22IyqKWZI10ONw3ua9E4xI/F/VOZJECxbQLhUKhUCjsC4tj2q21roXlbbZljNNmZHau+Vejc9jnq2Z7wOqslNlFlLWNfVdKTelnyczKebbK8eh+BtkTr7hfnDp1CsDe9mSfHMdtZ75Ma/t77713zzWirFDGupeQsF8tpNIzY2fVMPdvD9W23KaZX1KVMep3bAXifmjPNPLvWhmVFSWyIKhIADvW+kfEtJmlHybjHoYh1RwoP6qVIfMXM8ONrAkMjt5Q/cG3CUetMDvuiZ+fiyGPrDR2DrcRj1n+mDmrp2koIqatyp9ZdtgykWVty5j7ElBMu1AoFAqFDUH9aBcKhUKhsCFYlHm8tYbt7e0Vs04kLGDRk4VZReIOtTgBm0F4v/+fzWFmdslMNmxqtKQk0cIXXJ+5pCfRuVH60DnY9ThRysmTJwHsmsXtuz9HmZo4uYP/3z45KY6Zwn1oWeYmuVRgIY7qQ1mqXf5u14gWQuE15Fm0GJnW2XTKrhuuS2TqtnOtj/LCJdYvfD3UYir8PXo3ooVo/H39+8AuoSuvvBLArotlPwJSxjAMK8/HX1eZfNms68vN76P6jASc/AztuagUwv5/Hmd4zPBtPre2t3pOfhuHB7LpOwpP5SRY9t6z+XwdU35kHuf3yPqxapuorioN9VGhmHahUCgUChuCxTHt48ePy3SPwN5QLmCVYUcpUNWMn2dmHIjvz7FZMYdVRTNsXx9/XZvdGXv1MzqbaapwmmwxA2Z5PNPlFKLA7gzUhGb2aSzGmC/PUD1UcoOIibHASoXQ+PtwQoQspOwwwCzXb+PZtlrwwj9TZmfcryO2xKyZhUiGLDWkWsAhE91wf/OWFWAv61Rsk8MfM/GSshxweBewy86YfVlftXfSM7p14YVo9tx8QhkuA9eZQ5X8PvXZwyYNzJ75/fT/Z2wc2NuXlXhUMfBocRsDh+Fa+/kx2/43hn3QZ+bLkS30YmWzcZYXKoqSOy0VxbQLhUKhUNgQLIppA+MML5Pa2yzRZp4c2B8xIxX6oGb73q9qs2H219lMMVpKkMttszhm2D6MyurDM8KeBPdcbruGzcaNvfr7WZ2vvfZaAMD111+/5xgrD6di9ddnxsA+rWgWzYzOyhExLGaoF8unbXWOwvcMatGXbKlEZmysH4gWSVEhUdY+dm62zKqVUfVzD2tjuy7fN1pYhsvIoZKcttffVy2WwpYYz3zsfOtPHOZpfdUjCo1UGIYB586du3CsXd8zRH7fM6uSgccBPicLJVIpVbNzlJaF37moj6owVX7n/D24bTlcK0qnfJBEVgb293OfjUJNub+xlciXkUMWl5bcqZh2oVAoFAobgsUx7SipQpRIn9V/rBKMFNoGlboxSq5is272vWb+1bkkBsZeowQwNqO3majyKUUJYJgNMluOlKbmuzT/IM+4MwZh17drGVuzGbb3TzML52fL7Mzf+2LNdFmRGyUuYSj2z2zGg9kj6zCyJSANvIRpxlTseqwIjxSzKuGHUj77/+3dYBU3948oAYjSrUTsyf6394U1KFYOfx8uS08f4vfftzFb3FTUQKTMVlEEyn/sr68Ss2TpXjnZCW/PlOC8j/t1NO7Y9dXCS5FVMBtf5mDXUGl0o2fA/YyftS8HP48lJHfyKKZdKBQKhcKGYHFM28+SMn8x+7YNEZuw8/lYXs6TPwHt+8hiotkfZGWyGRsrF4HV5TXZL8wM3/vdlSpe+UV92cz/9O53v3vPMcy4/XNhH7mxdLZuROkyeaarUmL6OrPv/KBgi4Tdu2dxDFZ1qwUkgFUrkLUXM+0oWkH5zM3P6n1w3J+UFSN6N6wtrJ9x7GvEtLlfX3XVVQB2+xL7nP1zs3L7hWH8/axfRwpnKxtbkjIFsh2bpTwdhgHnz59fiQTxz0Wp25lNR5Yifod5P+s7/D72ZfM1/f1YAa2sAP44thjw2MEWJT8Wq7GRtTUe+8klweDxji2NPbHXyqLgz49yLywByyxVoVAoFAqFFSySaXMsdpQxSsWzsr/Lw2Z5d911FwDgzjvvBADccccdAFaz8wCrscLs8+NyAbssgsvEDMEzf2MpNlu1NjB/ITNtP9tk35ExObs+z9J9HW2b3cdm8Oxz8tYHi+k2hmUK9Ec+8pEAVmN8gd12s+uyjzZiG9zm/rkoWL+IVM8Gew5mIVAqeL+NY+x5ARRrN69T4LLYc7F2ixZUsOfOFgmVJwBY7W+sV2Cftr8fMyy16EPkY7b7XHPNNQBW3yeD1zaYdYv91LykbqR0Z0sB950oRjpbUtJjGAYZXeLvpXQwUXYzfsfYimHXinQ43O4qXj/KHKfGwiwvAPcVRqTZsGfF8dm2PdMR2BjC9eB6+3GOLW+MyNrB7x5bEiK/dU/UxVGimHahUCgUChuCZU0hMM5ybLZvs75M2RcxNGAvK7MZ4O233w4AeM973gNgdxbOeXBt1u/vbWzSZm7GTG3WauzJX5fjpHnmG8UkK5U6+0yz/OWs6mZ1pwczLGYk73rXuwDE/h2bLb/5zW8GsMuwPviDPxjALgPz1+WZLrPNKKf2OuhZ9tCeh7UP+0T9rNva8hGPeAQA4LrrrgOw+/ytzTnWG9htH+tvVme7lll8fD9gFT1HC7BvHZhXSKt4an8ug68VxVqzGt6/N8BuW919990r17G6P+YxjwGw+668/e1vXykjW7vU8pRRH+1ZvtPWPGB9RaShYJ8sxx1H59gzfZ/3eZ899bD3xfpYlA2Q4+iNEVu/8G3O77CKcPDgyBLOkJZF1qilOVm7E4GZttUjyt5oYM2EjS/G7H0GOwNHGHDu8SgvAut5loZi2oVCoVAobAjqR7tQKBQKhQ3BoszjwzDgoYceumDKMPOKN9VFwhj/3cxh3iR3zz33ANgVyrAoymBmEW/WZVGHmUXZrOIFHJw8xT6tPpEpTSW9V2kyff3ZtMWmWhaX+evw9XiBkCwVpZnqrB7Wzu94xztWzuFnySZNe27REqCR2UvBrhuZAq1OnJqVxX3exG3lMfcIm/Wsn3HolK8Th01x8pEoPJFFTCqBDqCTaCiRXyTuYbFilhZY9U1OA8oiSl9nDvkz95L1Ifv0ZbJz+X7WFlkioMxd0lrDsWPHVtxy/v3kVMFsNs7M4jaeWKpgbh+D7zssKrV32q5l7eOfi53D4bDK1eLrwe3DAq2oH6gwKjZB+/vZs7K2YPO1ta+5Kv04x64OawvrO7fddtuea3mocTSqF5v1K41poVAoFAqFfWFxTNvPpiIxgs04VcL+iMXyAhrMsGxmxaEkfhunF+UUkdFMTYWbRAlS+H7MkvgafgbKyS449CcSLxlU8hCe4UdJT6wt7FhjoVHIFz8vFhFFM16VbjYDs6So3GoJRl62D9gVuXDyGWbLUTpE22btYf3PGFb0/Ln/stjH2ssnJ4kSrvh6MOP3/UAJtTj0KgoTYysMW2lMXOTbxPqIsSRrI2OOUdjlXD9goV20by4V5fb29sr74fsBW6JUaKG30lhIodWZn93VV18NYJcZRilJrX8Zm7S2jVK3chnZMhG9E2xpUwuGZGFwdg6/99E5Vne7L1slOfTVn2vXs77DQmW7v++r/Nx53OHy+PosLX2poZh2oVAoFAobgkUxbUa08ATvs9mjfWcfDLA7M2Ofjs3qbbZl7CJiQBx2YudES1cqnx+nHvTMgNk/swn2MUbnqgU2OKEJoBPps081Cn/gbfZ8jFlwiJsvm4HDUCK2xOXOZr4WtmPXU+Fc/p7Mmtkn6/+39rA+YsyH/eDZQhcGlTAnArMjTrnqj2GGoFJg+ufC7JLZUaQh4fbjPmTvm7GmKEzIymZhmMbK7dM/a6szv5dshfDtbM8p8k9H2NnZWbFu+eupBUMy/ycntTHY+/Hwhz98z7WjZS+Z2fMY4q9t7aFCTNmK5svPqXDZ5xsxXw75M7B2I9IacAIWY8n2na1i/nr2XOy61i+i943fcW7PKCyNrQ/Z+3kUKKZdKBQKhcKGYFFMu7WGK664YiVdofc3cKIQTngfqWt5MQr2yfJC8FFiBwMz62jxD5VAhK0BUTIItfQfs+lo+TmD1S9LIMDn8oyTZ8ee+XByEk6byrN1Xx8Gp5v0bIqff5bAnxd9iO7HjJrbMmKxXH5jCOw/5P7g97ESP0t9qZJ3MGvzZVQJUlhHEKVs5HZnbUHW9ur6xpqsLSKmotg6+2F9nVWaUfs0H3G0L7PSDMOAnZ2dlWcaWYqYmXLkQeRP5f7GbZyNc3xdHruicYD7M7Nyz0T5XWXrjCHqY6y/YetWZCHjPm/1YaudlTXy87PlktvV+9ZVlBEz7qjtD7KoycVEMe1CoVAoFDYEi2LaW1tbe1SxEWOLFszw3zM/CvvvOJ4xYqQqDjNTj/P1bEZo/jpOc+rvo2Z3HFPuy6iYFvulfP15Js+zWJ6hRrHyrHTmmN9smVUuW8SEmE3MLfrgr8/9AVhN68p+OpvlR7GoKo6d2ymKPGC9AC8K49mZWtaQFwXJUpGytYb90r4v8zvBceFRTgO11CdbbSJrBz9nKwtHZ0TWAPX8mWECq0t/zrGm8+fPy8gNv41ZOI8Pvp1Ys6C0GVG9VBw41yPqb2rBkGgc4PupeO3ofmxRZO1Blj6Zy5xZHbgsymoSpbNVqni2DkQLMEVWzSWgmHahUCgUChuCRTFtUwArpSYfC8SzbGDvjJQZB/vTlNra7+OZGvtC/DV4lmwsgpXH0QyO68Mzw8jHyOzYjlFx6P56qm2yDGx8X2baEVtXM3ie9We+s54ZL1sk/AyaZ+oqE5r3Syu/Hbdp5Atkqw+3U7QIA1tcOEqBl0P0x3L9VMYyfy5HAnCUQqRwZ+sIW52UnzQCP6/I4sSWFpUBzt8ney4RLCsaEI8p3LbRcqBcBm5/jpfP8g8obQszfZ+JkTMisj8/slgxE+VxzpBlGuR249wO/hkzi+VPLlfGuFUETJTrga0P/F5nWTeLaRcKhUKhUNgX6ke7UCgUCoUNwaLM48BoisgEBxz6xGacSK6vQn3YFJfdj00yfK0oNMHAYQ1sRozOYdOSCl3IzlGpQ7m8/hw2K0ZtwmY2FnZxCEZUbr5PZoridJwZuGz+ehw+xYlsovIqEZxqn6gfcGghmwIjM6xKDRkJktgErMx5kRmW0/JyAhY27fp6sXvBzmXXUWSOVebfSEzE9VOi08g03ZMC19xybG7156j+qerh/2dT7Dr9gNuFXTjePM6iWB7nInEm12sdsR+XTaUojkRe7HbJxmAFJbzLhKQsoozWTufnVObxQqFQKBQK+8LimDawmhTAg2dMhkxsw7NtNbvrmeUxa+LELL6MSlQUsQnFCBRzjBLcKzFJlnCEZ8dKeJYl1+C2j0JLxng+XgAAIABJREFU1HNjdhaFFjFz6EEkTmJGqJK1+PtwghxOrarq4+/N7cQsNmJ0LCriMJpIYLcf4YwxHmYrvGBFJCZSrJP3Z0l9GFH/5mfJ1q/I6sECy7nkKvanyqDKzYJE//xZtDgnQOth2nYtZor+HH7f2aqVLa85hyitKH+q8cgfY22hEl1FbcSWAhXO1WOFtHaM+ij3q1qas1AoFAqFwr6wOKa9tbW1kiIwSoeplmCMZtbKl80+zWx2p/zgURo8nj2qMLGoXlyWyA/FZWQ2aGBGEvmElU8u86krVs7nRGVUjCe7j2LpEVg/EMHCpniRAkMW/mHPX6U8jWblEePw14oSwFjZmD1FITIqVEk926x/c+hXxOjmnmXGgPlcpXGILEkcjmbPcT/+UIZPgRu90wzV56Nxx8YqxbB7/OHq019L+a6zd7k3cVHUrxXT5X4dJZ5Sfnfu51F7KutgFmKo2mBpLLoHxbQLhUKhUNgQLI5p7+zsrCQQiJiB8l9EikVm1iqwP1Keq2N4lhctq2dQM/foPiq9KB8XsVj75KXqIlYYJekAdCKTzNesZq89vkwue8boe5gUPy9fbuUT53JnWgrFFDOltIpwiHzQrApWCm0PxTTmUtP6Y1ibwctJen2C7ZtT/vYkV1F1yBKAcNmz5xaVn2ELhmRKc5Vul7crX726LxD7VbmuSsOT+XxVYqhMPc7347b1ZeTxmY/JtDTWh0zno8bkaFxVERvR81dWDWXRjFDq8UKhUCgUCvvC4pi2V3FGKmtWGfJMN5q1zsUiMtvwszv2exvY1+jj/DgWkJkiLz4S1Yv94ioW2oPZGZc1YgHMktQiHRELYCZvLDFamILLwirOKNWq4SB+p6ydDGydiVS8XBZVpixGlL/z0qn+fPb1ZX5p5ftXrM+XcS4CILMG2Cf7IbPn1cOKuezsX7cFeNRiPh6cjjUrF6ebzVTIinFn/tS575mvWY1ZURTBfvy32fse3T+Cev6RRoTzAbB1NaqfsiBFS9wa+Dpcxh7rXTHtQqFQKBQK+8LimPb29vaKfy1KAG9+W2Yg0SIMdiwvJK983f5cxbDVIu4AcOrUqT3n8OzOzo3YBC/baJ98brbIBLeFIWpHvq5CZLmIFqr3iBZwYCsEW1M8M86W7TwMMDviWFhfLpWxK4tvZ30AM6DIknT27FkAq8/Uzs2yPvExHPseqXkNSrOhlO/AasywUv5m+QF4X8TsWTeioiQ8MrbHaK1ha2trJc7c+/VZEc3vT6ShWDfLWMS0VfkzBb8dy5aczAqgMq/xNTPrg41VhkhfxO3F/TvLOaAy4/H7G92Py5qB63qxxp/9oph2oVAoFAobgvrRLhQKhUJhQ7Ao83hr45q2WTIAg1pEIkudx6IElfo0Sz7B17D7X3755RfOYZOMMgX5MpoJ30xMZia1TxZJefENh3hYWViEE4W92DEm7uE1saOystCMTWlsavNQKQh5P/8P9Jmpekxa1tbeDA7kyU7YpK3C3aJ+p86x7ZFISol6stSaXAYWBmbmcQO7S+wc37+Vy8Dul6UUZvOogZ9XZvZVIim/3Y61Z90Drrtve3Y1sCsqSmOqwifn7g9oYS23i6+z2qfSvgJaCKZCvvw7zfWy8cDaPHIP8Fis3A5Rm6nfBXatZYtFGVhQ6tskSvCzJBTTLhQKhUJhQ7Aopm1gAUUkRrB9nPKU2aw/lpcfVGzMM4Ms2N8jWhyDZ3lcNs+WbXZ65syZPZ/rMAVj5RySE82wbZu1NYdBcWKE6Fw1k4+eG7PMnhSLzDZ6mHaPeM2eg1k1mG1kSW8U8+UFN3xZmMUwa8tCVZTVJnonlDWAn3/ERFSYXsQWWUCnUrpG78oco47629xSuhlbmhNY2rE+1DTCXKIcPs6X0zAnLsuOVe3knxePjfacOHVoJBC1Y1hcmj0vfv/Z+pglKZpLIrVOkhpG9G4oK2sPO19aqtNi2oVCoVAobAgWxbSHYcCDDz54YdbHPkc7xn8aeBYZLa84l3RClcmDWaSV1fv8mJ1YWcxvHM3aeZa6DsM2MANRbDYro0Lk02Z2ac8rCp3i9Jx8bMTo1kmE0Fpb2wfFoXfRkp1sJeHQHr6n9++zFUP5RT0UW2LGGKV3tGOtLyq2FvUDZkBZgiM+l5MIsU84slxwetaMealzlE+Tz4/agvdtbW2lzH1uAZ+IlbGFg99DFcLkMaePiSwJ9jxs0Zkrr7wSQNxOvCAMs+ZsXGC9Bye7MUuWtwaoZXFVf8uem0q2Ei0yws+Ux5bISrNOApZLiWLahUKhUChsCBbFtIFxVsN+Ne8nVCyS0+J5zKUA7FkogGdm7BOOFqNXVoGeNI8HAbdfNltlXzP7wSMlLVsu5hTV/noqPWZW796lF7e2trquO5fkJFOuKuV0ZB1ibQEvsBCxDqXEZ4V5pFJW6WTnFtmJysiRAVHCGe4zSh3v30lOIsTMMUshyil2s+fVs2QqQ0WZRNfrSa7D9+Z9GYtVDNsscBHjNwvLiRMn9nza9qhs3I+5DbjPRjoVTobFOiM/HrFlQI3F3IejsvF7FEUrqAV3VFpTv2+pKKZdKBQKhcKGYHFMG1hld36mrlIYsv8hig3k2bFSP0b+DRVPHLEJ9h3xMZnvhZmNWujAl4eZIivBM19+lH7RI/KDMVNVcZORgp8ZBLd5VEaeLWfgZx2xGVZxsz/PP0tm0sZabElBZthe28BWC2YT0QI1bEFS1iBfRuUzj9I6AnuZD0cJqPj5iKkyO+PvUZpbZmWcljd6bva/tSf75iN9AfdBtmBw3R566KFUOc39V/XbzKfNFo+oHFxn7ivGtG2/r5f1PX4OahEgfyyXWVkLPYvlRY7U4hxZf+PUt1YfZtyA1l0oxh2Viftb5LtXiygtBcW0C4VCoVDYECyKaduMl5f8M9/MYd4HWGWGWRwr+82U+jHax2penl0Cu7M6O5YXNWEm7tk0L9zAcZmsdI/KrfyskfKc/VvKgpEtnqHu35ONTmFra2ul/BHTZibKcdQRi7XnYopcZum2P2IGzFIyJmJMKmLhvjzRNs5IxiyTGZcvi91XZbOzyAe/j4/NmC+fy9ng2JcdWZjmFmvpyRYXwcYdpTmIzmdLRGbhm2OvUd/ndmH/cOR3tzwNVg9+ppHVQeUQUDkm/HOx69t977333j3fT58+vec4Xw9lAVFx1b4eCpGiXkUeZBEOzMbnlnW91CimXSgUCoXChmBxTHtnZyfNSMN+jbnZbATln4qg/FBqJgrszoZZ1ctMJKoX5wlnP16W41rdj2Ok/fVZxcuI2ItSgGeMh89VPnRfDtYTZDmzgXhWHvk5+XpZO9n/9qnU4pHaldm+8qtFPr+5/u3vY/c2P7vyzbJC3P/P+aKZaUextqr9mD31RH8Yovc2yv4F5MxLZdqKwBY+vgagc6VnqnEDvy+KTXqGyMsIq/HMs8C7774bwOoSmVxWX0+zEPEn990of4RZX4xRcxbHbGzh/tXj55+L3Y6ym7FVs2f5WGbfPVn1LiWKaRcKhUKhsCGoH+1CoVAoFDYEizOPP/DAA1IcBayamHrS3TFUasospZ0yk0ehHmz2NCEdm998vVRKUCVW6RF5mbmURSb+fNvGYgs2G2VJ+HsSVyiRGpc5Mo+rcDGP1hq2t7elSA5YFaCxKZhN3X4fh+LxdxZjRXVSIUAeHKalUjRG91Fpa/mcaFETg1oQIyqr9W8V0sjtnNWPTe37SXARCeyiBVYUsmQnUZIhf92oP6v0pPwus9jM/8+mWTYr+/1mrr7jjjvkdYG944CNEfzJSavsWn6cMMGZmeM59XI0nnIfmRMv+rabc79F5nE2cUciYC7jfsa3S4li2oVCoVAobAgWxbSBcVaj5PnA6uxdMe6IGRqU+CVLX6iSTUSLP3DZbAbK6f18GA2H+KikLhEUc1MCGH8/lVSDZ/oRW2JBHX9mCW647JkAqacthmHA+fPn02VdudxzoUuADolRKUqjREDM9tja4BOycPpYTvDAoi8PDpuaW6ozOobZH6ez5P/9MSrxkX/mKtwyC82aC5WKGO1+FntYZ8EQLlvUvxUj5LJFjJjLopI7RYvbGPO966679lzf4J8f92MTWCqrUBSeqML2WBjr9/H1OVQz6lNzoXNZSlI1vkahelk/WAKKaRcKhUKhsCFYHNNuraWhEFG4FJ+vtqnZHfs7/P2itJHRfaLgfAOnHrR6RUzbjuWFAZgJefBska8VpbNkxhDNOP39IsbCDL7Hb6h8pny/aN/c9Xd2dlL/LVtp1PUiPzizcWYmUZpMO4cZCLMkz7Tter5vAKuaA/M9+nsrhs36hYj5zll6fFtxSNlcCGWUmIfTlhqy93cdBpRZfaJjd3Z2Vq4XWdzmxp2ed0BZ9qIUqCqsLvL9c9pkTuZk8N+NlWcWHF+2LN2nIQtPZU2ICp3NdCxqHM/Ct7h/830jy+x+rDWXAsW0C4VCoVDYECyOaQOr/hPPMlTauyzBh/J9qOTxfmal/LY8Y/OzV5WC8J577tlzTV8vTlsaqcSjcvhjrCys4mR26M9RVg2e4frvamabaQd61f3RrLaXWZlfG4hZ5X7Afjn+VKk1gVV2PLdgjdUD2I04YF9mtpwn+9W5zaPtyg/NFoYomQ8jU/7yMYrp9Ggb1P5s25xfMmLavN9/HqTPq5TIvo3V8qesrYgSf/D4ZmU0Vh3V087hxCxc5swSonQf3irE6X6VpSVqX1a0MxPOkqAoJXjWd9ZJ0HMpUUy7UCgUCoUNwSKZNvuYozSIhp60pXxuL1OMysQsif3H/n9jWuaf5FlltGDI3P2jeHG1tCgvMhLFuysGkcWuc/lVTHempOXrRf6xzFelkKluVWwmXzdSqc/FmXN7AvqZscYgU0zz9Vlb4Y9RLNn2m788KqPSJ/Qs/qJU/j3sTFmSIiU4X2ed1MXZ8opmoWE9RBaB0jN2KEatLC3eEsYWHsW0fTspi4t9mprcj1UcJaAQ9T/epqxQvl6sAVG+6+id57FKjec9kUOZ5kFZU5eCYtqFQqFQKGwIFse0h2FY8WVHsa9q1h3NfNVsWPnT/HHsa47isvm7MWvOvpNlXJpDdj/l4+EZo2cb2dKi/nsU76zUlT1q77nYVY8sjlVBZQVT9/D3yY6biw1WscrAKqvIsqdxPfh+kbpXLaOqMr9FegjVthHTZj++8k9HLEpZKBjZ+6tiiDO2ONd3vB4iKvccm18nlpfrEWUs5GV2+ZjoveR9ignbwh7A7lilImiyxWA4xpsXKopyFygNCI9Z0XKYc5kse5TgvD36Phcjf9Qopl0oFAqFwoagfrQLhUKhUNgQLMo8PgxjClMzT5jZJQqnYjNLJghh84kysUciGDYf8bGRuVyZVw5iHu+BWos5E9bMmWyj0LN1xH+950Rtz6a6ddqvx6y7zuIYSvSUncOCHCUQjNaqjvZF9/f1UGlLWaiTiYkMqn/463L7WVl7wi/34ybhY1SKSn9Mj8jUyqOETsCqGVe5L+bCEqPv0TumzNJzqXz9OQbuhz6Zj41v/MnlsPpFJnyVyjcyj6vysyuMXXt+W2/4nT/GoMSBkXl8zoVzVFhWaQqFQqFQKEgsimnv7Ozg/vvvX1ku0sQYwG64gprNZyEjasbOggbPblSyExZ9+NmtHWtlte82i41CfQ4jgF+lVrX7+xmvmrVamdga4WfYKpSnZ/EHVdZoQQIWAUbiFIZKqQisCrPU4gVRms+5kLVoYRWFTATDFh0WBFl9fFvYs+LlXNWzjfra3BKd0T5mKYqBRxYSxZYyywW/r1ko4DppRVtraK3JccJfh+vcU9e5MnAyFGDVSqLaNkpNzO8s9x0/DlgyFRtjjYUrEVZmuWJWHrFq9Z7Ye8/i3ShUT1k3MmvH3PsbCR8NxbQLhUKhUCjsC4tk2pz43vtgODRBzfoz37ZBhe1ES+TZrNVS8nF6U28N4Fkqzy6jpDFWZ2NQ6/iL1ULyahEQXx+eRTLTjqBm0uswbZVcJQrNsfZSKRatTFtbW+ksmS0OPQlS+Fyli4jO4f7EVpso7awdY6xZsYcsQYZKrhKxT2Vl4AUdIiaikvrwuxEtrcuJZ3qYtgpljPp3FoIXwTPt6LpRiNXcd+WzVlYmTj/s97FFL1o4SVmSeAyLQtmYnWeJZgzKz2/IEibxJ/uyDdHiTVkaYD5HMWw1/kT7KuSrUCgUCoXCvrAopj0MAx544IELs64oKT4zsmzJSn/dDD3pFhXTNkT+aU4bGS0Kb2C2NJdG1N+PFb4q2UZ0PvvOeny4fH2e4Uf+N7UwALPQSE9gDCRj2nZNXlQgWvxFpf3sUYsqph0pmO1/Ln/mi+XkErywgukiIgZpZeB0kplP1a7Lym9+ptFiM8rPq/yvvtzKP52lr2Q23mMZYZ9wD6Jz5hLzZEp5BbZEeKZ99uzZPWVQSYOiZS+91S8qq3/HIr2LL1PmJ2bLET+fSAHOibNUqt/o2c69t4ao381pKCLrKt93KSimXSgUCoXChmBRTNt82rx0pZ+Bmn+bfWNqyU7+30PN+v3MymatzLCZAUUKYDuGWVHkW2Lma3W3sth39vf7czgeU/m4/bZMMevLlfn35phXtE+lJPRtZc/dZueRz0/BzvGsg32wXJ+srgpcDz9jN2Z9+vTpPd+ZcUcWCWa42SIjrArmPsrMJPITMuPhc6JUlFw2ZfGJFMdKTxL5R5Wfex3/d49GRDF5YHWsUOdE+9h6pSIBsqgVQ6Yb4T6jWHo0DnCZmWlHlp25JTIjFsu5F9hPHfU3rrtaejYCj3NcVuVL773+UaCYdqFQKBQKG4LFMe3Tp09fYEc2AzX/DrDLtLPE+UDuE5vLTBQxYKVOj1ilirE0ZHGrqixK5e3/51mqysjl78ezYlVvXwelSs5mwEoxmy0UwFmaeuK0+fpRGRQDivyScwrsjMGxr9LqYQs2cBy/v5+ynhiirGbMjlV2qyiHgVpQg5+tL5MxOn4n2QoV5QdQWeL4OEDrOzLFufJdKkSsOnpPlbo5ek9V9jQVieCZNi/vy/fnxU38/8rSkSnA+RjFojMluNLlZG3PfZaP9X1nTnOSWVy4P3A8eHTNpcVnG5ZZqkKhUCgUCitYFNMehnF5PGPWkRrS2IPN7lmp2hMbrBTSWdynirU2ZD4YZtpRlh/2WTMDzpTZKgew8m0BqzPoyN+p6qBYZzajNzB74Zmv91tbm9gzn/Np7+zsrDx/Xx+OfZ5jFX7bXEalqO4qWoCtHJ5NMbO1svESjb5eHFvL1p+M+ayTbc7A+RPseqb74NwFUaYvZkWqX/D/UX0ia1GP+tlgMf7cL3y5OX/BnBrZQ6nceyJC5qIsIgsfv4/R2MTncJn4M7I+KCvdQcB+9ygfu8pDkVlcuPw8zkVRJjw2LgXFtAuFQqFQ2BDUj3ahUCgUChuCRZnHGRYaE4mTzFSqkkBkIRhzoqJIbKGEOnxtYNVcabCycWIBdW8PNptGwiC1vGZmsjOolJSZqEwJzzJRDqefte2R2IwXEYjcCv6e5l7x9fHXO3ny5J7ycjkjE+CcGdfAIVnArnnYym115KRBvu+wmMfXL7qfr6sKveO2jszIcwklMhGTSuUamaTnzMmZME69p1nq3d6wHZ/GNKoPlysTrxpUmk92w0UuKHb/KfN41E4s9ssEomrBk8M0eUfgpFVc1kiAqcIFDVEyFx53+B3PXHrrhAteShTTLhQKhUJhQ7Bopm1s2od8GVs1Fs4inyiR/hx7zdKYspCBQ1Wi9JVKYMKzZ88cmRkq5sPL7fH/qh6+HP766j48446uySFmGTtndqEEaJ45MLtYRyyVJYNQKVX5Wfv/WZTCLJ2fjz/HGDeHSNm5XmjJdWQWHaWvVGGJ/397567cuJIE0eaY46+9//9Za68/xkyIXKvi1h5mVoOkpCEi8jiiCLDxapDIevIcqPvAtW8sppSvOo46Lv6dyplS+UzBcrsgQHXdHuF2u63r9Xpnyenb3ZXsVOVXXXCsC5ad0jiPBlT1Za6ssQpIdSmtvAf7OeZ3Fe/p6RhrzlNRcz6qee6sNFOwnGtMMp2T6XfhbxKlHUIIIZyEt1baRS8SUYqMBSuOpHwVj7SU5FMWfS9KidIvuStj2F8zpYdP3KrAwFQAoa+r0hpqWW3PNRDpOF+ce1rv4xPGKCif9mf52ai0VeMWbodP764kJFVNf805w+IjPZWN+8R9Vfs+lTjdHV/h1ItSy1TfTDnk8U1FL+hTV/PO+Y8nvzLvvd05+fj4uCsdzOUdnq8pXdBZq1zjHbUOx1SxD7vtKfXqLEgura6fB847focUqliRK7nr4nI67txPTXtcqp6aF1HaIYQQQvgUTqG0u0+7fCEVCVxPx1Q66gm0cKp8KlZPHwwVqfIX7xSiagfn/Hdc3tfb+bCp8Lm/fXz35K2KhjiLhWoUoPz4a90r7K606U97JopTXRcXMa2ukytpyet+ZN/Y3pXtMPs4vM6T0ua1ctkDqtCIUy3OiqKOh+rI+dj7dng+lUpyn6HVZor25hiK2+22fv/+fRcLoL4HnE9bbZfXktYaqj0Vp8J72GU8rHVvnXNFSDq7TJMp7oef5Xfj9F3FSHDOpSPR3K7wizonvOePXGtu912I0g4hhBBOwimUdn/SYXvDimAthab8lDsVe0SRUukc8ZW5kpouF7d/xqnYI/myR5a7dfnkq5T21HpxLa20ndJhjEJX4vR3PxMd3Mej0qk5U/60Qu33LhKbamot77P8+fPn/43Ro8edFYD+4+lauuh4FQ/B4+K6SmnznijLwaRWCqpkp1inXHIqn1fzaW+32/rz5894L+8i2NU+uLxvqrtJxVK1TsdI9cjt72pBTGModt87k9LmdwetNbRk9v3mcXB+9Hue77lzoqL+1XjvQJR2CCGEcBJOobQ7VGb0c9VTkWoHSFzVp/7EvWu4PkXGuu0pxbCrJuUiwte696+6SFx1XMRFbU7NDHY5nmvdK/dSuVTYqj3hZJl4BNfmsPZNVbJz0eP1v4tx6OPU+SlFTzXTz3m9V/vqMg86zq/u8nNVNC+34yLf+z4wapzHrZQdr6HzZU/XgDDL4FEqT5v091jN8Eg1xT6+WrZr4dvH572t6lG4+4/vTzEULu98io5380t9nzoLzpHsHzevjkSP8zOuUYra3q4a5ncTpR1CCCGchPxohxBCCCfhdOZxBgfU3ykFq6Ap3ZlmJjOyK52nzFRuuyrA4dG0ph5wR/MhTZqqmYXDnUcV4OdcBpM5qT5T60yBaOwx/mrqRW2DqVEM7urX35kYp8DHgm4JNrNRvbGn3t4OZ6rl+yw325c5l4cqdsF5xfQjmtxVYJ8zaaoSrLtUvVcD0bgdFWBF14lrfDMVI2JA7JG0QQaiueVq/92+Ta4Al1Y1HR+Pc2qE4pa51DPlWnHuP+VGceWYXSCh2s6rbrnPJko7hBBCOAmnU9oFFRoDnVRhD/eUSDWpwv8LlhE8UnbRFa1X6UgMeCLq+ErxcF/4d2oyURx9El7LqyaOtdZ9YFUdO4uq9JKernnKq9S4bNKigq5YnMEF+ylLiQsemwKQqL6OpJsoC4HanlLa7vpSNfVgM86dncVFtaAteHyqIBE/swuaeobr9TqmztXYtFpN26bynYJJufxoUKGC82FKmXNKepcm218764yaH86i45qBKKXtCh0daa3r7pG+nrNYvQtR2iGEEMJJOK3SpjKrAg/qCdH5WKmEmJKzli+3qFRE4XwvrpE9t6n+J+pp0vmlClXSs6DvngpMqQ5aBTiGOo/0U/Nvbw7z1UUNaps1h6rISU8NK+sLfZi0mlSxnyk1jueU/vG17lNSqI6PFMbYzaV+nZR1oe+zshbQz+p8syoFizENzh+prFAcg1abV/jx48eoKp2afKaZjfOVqnv6kTabVK11jqdCIrv0MO7PhCu69EhBKPfd2V9zzrhSpQrGk3Dsvk+fFSvx2URphxBCCCfhtEq7nq5LmfGpqysDF5ntmjIonx+LKkzKx6lIKuzPeoKj4nDRvMpntvPbTEUcqJomX9Duqbj+Vw1Ddm0VX6W2qbZHCwHnyuSfLuXOZjNO1a7llecUAez8krymqn0oC8u4Yi4qzkM16nD7yGU8n1PUvCvL+VnRvZfLZbSQqG27IiFHCnHQQqWK+tQ4tP5NsSbOH00/vIqUVu2CFVN0vCu2pO5f9z3K76WpzeYzrXu5vamgUpHo8RBCCCE8xWmVdsEo5HpC7fmz7mnORTIqqESmdfmUSDX51T4SF9GqIjFdGUuu1993+ayT8qn3WEqUea8qZ7n4KsVd+1B+aRX1ToXjYhqUj5ExE5PvnwrENdhQ8RC77Aj6Y/u+Ta1Yd9CSw/nRYRaBywdWPm2OT8vIs2VMawzno+/7t2t40ee3szi4Y1Zqj3UoXPlPNe4juc9Ta9S+HRVlvUNZLHYKW/mnnRXqmTKj0z3j5ua7EKUdQgghnITTK236QlXDECobKt7JB8NIWT75lnqacgOL73pie8TXxyde+miZn6o+U9DH3c8jm35w3UklfZdPiaq6v3YR4C5yfq1/4i1qjPJts9lI/yy34/LDlSXJqWQX+ayOj589UvGP84EKu19bF6XMMabcbhdN/gqXy+VQNTp3bhntv5ZvB1lMMSeMnnbfO6oZB5ksEbRi7CLxJ6sQ11HncWcFnHLKqaw/I8r7SKR58rRDCCGE8BT50Q4hhBBOwunN4640aBVb6RwpzUcm06Iaq++TM6V9tZnclV49gjPHqZSfotahCbybOF0QHk12U2DId5nJe4EXpuVUIRZX5lOZK2s8rqMaKrCkLgOP1LnYzbOpv7GbK7xXpoAgdz9NgU9ch/NOzbddX+1X+Pj4sD3T+366fvNFPxfO1bQzk/ft8a8LTFPv8dqqxkFM9eL/LmBVsQsqU+s4c/g0d4pXzOJunvP1OxKlHUIIIZyE0yttPoGks0t3AAAB2klEQVQeebqfyiz25Z16+qpgoikIgqUHmYLxXakELq2iQyVFxTMVjdgFoqjCCG7fOOZ0PF+Fmg+VBlbK1zVaqeNQjTXqXP769WscY637ADe3XWV1cKUheZ0mpc37iAFx/bUL3KKK6ufVzX2XEtiXcY5O8/oRbrfbul6vdwFOU4tel+qnArVcIRHXfKaPz3KpNZY6T5NFZXq/L3NjqftylyY6lSJ1xYOmz+62/8g8mKx3r1gqv4Mo7RBCCOEknF5pF1ORgJ3f7gi7MoLKT+T8Q8VXNcQ44vvh+XJPy7WP6kmbJQC53ckf5d7viuYrfJePwkYmVL6FOgdUNjWGSg9yn3FtPXvKFz/rrBWq6IZTWFMBCxeXwJKvU+ohlSrXVXN1p85e4Xq93qnZvg/0B7vGJ6oELnExB6q4ivPjT1YTXh93jdW6bl+PWMBcnIKyILh1ppKkk7/7VdR5OBrH8N1EaYcQQggn4fJO9vrL5fLftdZ//vZ+hLfn37fb7V/9jcydcJDMnfAsd3Pnb/BWP9ohhBBC8MQ8HkIIIZyE/GiHEEIIJyE/2iGEEMJJyI92CCGEcBLyox1CCCGchPxohxBCCCchP9ohhBDCSciPdgghhHAS8qMdQgghnIT/Acb5l6lzmi67AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm8ZllZHvqsU1U9VHX1KDKZK4omRqOSK0S8KqBRNDhEI2FQQaKJcEkUZ1FypcFZf45BIo4E2ojGCWcmbQFnnOIEOHRzUbql6aaHquqp6uz8sfdb5z3P9z7vXt+pU3X2h+/z+53fd749rHmtbz3vtNowDCgUCoVCobB8bB10AQqFQqFQKPShfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAjqR7tQKBQKhQ3B7I92a+0ZrbWhtXZ7a+0qund4unfteSvhhqK19rjW2rWttS26/rCpzZ5xQEUr7AOmefH5B5T3MP2t5N9au661diNdu3F6/n+K9H59uv9GkQ//XddRxq3W2h+31r6Crn9Ga+31rbV3ttbubq29rbX2c621T3bP2JrzAR3tcO1cWQ4SU91evM9pqn7xfzfuU16XTOk9d5/S+4BpXfy/gns3t9a+fz/y2Q+01j6utfY70zh9R2vt21prF3e89ztJv/zcuZbr8BrPXgHgqwHsS+f9I8DjADwfwDcA2HbXbwLwUQD+5gDKVNg/PAPj/PmRAyzD81tr1w3DcF/Hs3cB+IzW2vFhGO6yi6219wXw2Ol+hJcCeAldu6Ujv88F8GAAZ3+wWmtfDOB7MLbZtwM4CeDhAD4FwMcD+NWOdDcNLwDwe6217x6G4a37lOZH0fefBfAnAK511+7dp7zunfL7//cpvQ/AuC6+NkjzCQDevU/5nBNaa4/EOB5fCeB5GMv97QAeCODzZl7/AgDH6dpjAXwLgJ8/17Kt86P9agBf1Fr7rmEY/uFcM/7HimEY7gXwOwddjsLG49UAHg/gmQD+W8fzrwHwiQA+C+MPseFpAG4E8HYAh4L3/n4Yhr2M168A8LJhGE7RtZ8bhuEL3LVfA/CDLJFaKlprF09zuAvDMPxRa+2PAHwJgGfvRxm4P1pr9wJ4V28/rVOHYYy+dUHWq2EY/vBC5NOJrwfw1wCeOgzDGQCva60NAF7SWvu2YRj+XL0Y3WutfRGAUwD+17kWbJ2J8g3T53+de7C19q9aa69trZ1orZ1srb2utfav6JmXttb+rrX2L1trb2itnWqt/VVr7Vk9hVnn/dba+7XWfqy1dktr7d5JbPeZwXNPba29ubV2T2vtT1trn95au761dr175pLW2ne11v5sqt/NrbVfaK19kHvmWoy7SQC430Qj071d4vHW2le21u5rrV0TlOcvWmuvdN+Ptta+tbV2w/TODa215/UseK21Y621b2mt/c3UBje31n66tfZA98w6/fbI1tpvTaKjt7TWPmW6/2VtFMfe2Vp7ZWvtAfT+0Fr7xqncfze9//rW2iPoudZa+9Ip7ftaaze11l7UWrs8SO8bWmtfPLXHXa2132itfUjQBv+ujaKrU21U9/yvRmK6qezXtdae0lr7y6kd3tRa+xj3zPUYd84f3XbEXtdP9x7UWvsfbRSn3TuV+xdba+8910dr4vcB/ByA57XWjnY8fzeAn8L4I+3xNAAvB7BvoRFbax8J4EMBsDj+agA3R+8Mw7AdXXdpPrK19g+ttZ9prV2SPPfhrbWfb629expbv9la+1h65lGttZ9y4+8trbVvaq1dSs9d31p7Y2vt01prf9TGH8dnT/e6xx2AVwD4HE7/QqC19orW2l+31h4zjf27Abxwuvf0qcy3TOX/g9baZ9P7K+LxaR053Vr7wNbaq6Y5ckNr7Wtaay0pyycD+JXp6xvc3Hn0dH+XeLy19qzp/qPauFbZevvl0/1Pa639yZT/77bWPjzI88mttd+b5vy7p/Z46EybHQXwCQBeMf1gG34cwBkAn569H6R3OYDPBPCzJOV6aBt/l26a1op3TGP3Kp0agGEY0j+MYsABo3jgWzGKS953und4unete/7DMC4QfwDgiRh39r8/Xftw99xLAdwJ4C8xsoVPxDjJBwAf11GurvcB/BMA7wTwZxhFdp+EUTy3DeDT3XOfOF37OYxims8D8LcA3gHgevfcFQB+CMBTMC7cn4mRxbwbwIOmZ95nemYA8NEAHg3g0dO9h03XnzF9fyjGgfBsqt9HTM99lmvrNwC4FeOu/V9jFNvcA+A7ZtrqIgC/hVEc+f9NdX0igB8E8EF77Le/APD5AD55Ktc9AL4DwC9gFHd+/vTcT1JZBoys7jcBfAaAJwN4y1Svq91z3zQ9+6Kpz74UwIkpry1K70YAr8I4mZ4I4AaMu+TD7rlnTc/+yNS/T8Y4dm4AcNw9dyOAt011fyKATwXwRwBuB3Dl9MwHA/hDjCLJR09/Hzzdew2AtwL4HACPAfDvAXw/gIfNjenev6ke3wDgQ6ax81x37zoAN9LzN07XHzc9/z7T9UdPaT0cwPUA3hjk840Yx97Zv47yPX/q+y26/msY2cZXAvinPWvO9P3xGMX33w/gEJXPrz3/N8Yx/sap756AURx5L4CPcM99Fkby8akY5/CzMW4mXkHluB7j2nEDxvH8OAAfts64m5595PT8x+/XGIj6V9x7xTR23zbV83EAHuX66f/FuB58IsY5dwbT2jQ9c8lUdj/GvmV67k8xrkWfgFENMmBkpqqcV0zPDwC+EDtz57Lp/s0Avj+Ys28B8DVTPj86XftmjPPvSVP7vxXjeu3Hx5dgXNNfAuDfAHgqgL+anj2alPMRUx6fGdz7WwAvX7N/vmBK7xPp+hswrqNPxbhWPAnjmvzgNL2ODJ+BnR/tq6cB8CPTvehH+6fgFrjp2uUAbgPwM+7aS7H6A3sxxsX7BzrK1fU+gB/GqIO7ht5/DYA/dt9/C+MPe3PX7Ifz+qQchwAcxbiofKm7fu30Lk/gh8H9aLuy/DY9990YNwIXT9+fNr33GHrueQDuA/DeSRk/f3r305Nn1u23x7hrH4adyeUnzXcCuB+rC+27AByjNrkfwNdP36/GuNC+lMr4uVyP6ftfATjirj1xuv7/TN8vA3AHpnHrnnu/qe2+xF27cWr3q9w1W3Q/2127HvQjN10/AeCL15nU6/5NZfmG6f+XT310xfQ9+9Fu0//Pna6/GMBvqvpM+UR/HzBTvl+xdOn6PwXwv10678LIXh5Pzz0DO2vO50x99ALRDn7teR3GjdhFND//EqNYPiprw7iOfS7GBf4ad+/66dojRN7puHPXj2D8kfva8zQebkT+oz0A+KSZNLamdng5gN9119WP9q4f6Kkd3wrg52fy+eTp3Y8J7qkf7a9y1y7COD/vwbT5nK4/aXr2I6fvV2LcwL04GIOnATwrKePHT2k9Lrj3JgC/tGb//AZGouLJRpvG9Reu299r6ZGGYbgNI5t6emvtn4nHHgPgF4dhuN29dyfGHe9j6dlTwzD8unvuXowdf1Zk2UYL9bN/676PcZD8MoA7KJ1XAfjw1trlrbVDGBfmnx6mFp3S+wOMu+ddaK09aRLH3I5xAJzE+MOg2mQOLwPw6DZZy07leypGlmq6p0/GuFv+LarHqzEuCo9O0n88gJuHYciMINbpt5PDMLzefX/z9PnaYbc46c0YF4IH0/u/PAzDSZfPjRj1ZmZg82iMk5OtlF+Bsb25PK8ZhuF+9/1Pp08bBx+FcQPyY9R2b5/K+BhK77eHYfAGMZxeht8H8JWttee01j40ExcaWmuHaJyvMy+fj3HsfeXcg9PYvg7A01prF2GUNrxs5rUfAfAo+nv7zDsPQWCsNoyGWP8SY/99I4A/xiipelVrLVK7fQnGTeJzhmF4fpbhJHp+LEad4bbr44bR6Okx7tnL26hm+huMm8P7Mf5YNQAfSEnfOAzDH4ts58ad1ft+jJvGh8zUIVvrzgWnhmF4VZDfB7XWfrK19g6M8+p+jJuX3nXsl+yfaWz9OfrmyLowkTqG0ejyBgB/PgzD37lnbA36J9Pnx2IkUzzn/3b64zl/XtBae7+pLC8fnApoaq8/APC1rbX/ItQqIfZi/PFdGHf2LxT3r8ZoIc24GQDL6iNLwXsx7u7QWnsYxoF09m+61vX+hPcG8HROB6MlIABcA+C9MP7wvTNIb5fRXWvt0wD8BMbd+2cD+EiMC9ktlO86+BmMP/ymb3z8VG6/oL43gPcN6vF7rh4K1wD4+5kyrNNvt/svw471MveHXed2iQwZ/wGjqsDKAi7PMAynMYnR6d3b6LttdCxf0ye/Fqvt96FYbbtd6bmNU0//PhnjRuerMLLKv2+tfd3MD/HrqExf15GPle1vMUqTntPIfkDgZRjF+88HcAzjWM5w0zAMb6K/OSOmSyCsl4dhODMMw+uHYfivwzB8AoD3x/hj9/xAl/cUjOP2p2fyA8YxcQij+of7+L8AuMr1wY9iZHHfi1Es/CgA/9mV3SOaE4a5cedxNwCp0+5Y684FK3YErbUrMc6HD8K44fsYjO3wY+gb52emTb0Hr737hWhdmVtrbM6/Eavj4QORr5eWdqRbvhqr/Z7haRg3g/8juPeZGC3Unwfgz9poY5HaBQDrWY8DAIZhONFa+2aMjPvbg0duA/Cg4PqDsL45/zswDiS+tg5uxag7+NYkD9tlRsZCD8Ru14SnAPjrYRieYRdaa0ew+kPSjWEYTrbWfhajKPD5GHe7fzsMw2+6x27FuMN8kkjmxiSLdwH4FzPF2M9+m8MDxTXbWNikeBDG3TuAsxKIa7DepAHGtgNGsWtk9ancndbGMAzvxPgD8J8nadTnYXT7uQXAfxevPRO7XUTWHeNfP+XztR3le2tr7Xcxum7+jJes7CNuRbzgReV5R2vthzC6gn0gdjahwKh7/gEA17fWPn4YhtCIbcLtGEXZ3wchPRiGYbuNRmz/FqNY/XvsXmvtQ1URe+rRgasxzkOF/VjrFKI6fCzGTfJnDMPwJrs4rWXvCbA5/9kY1RgM3nB4vAXjb8KHYHSnAwC01i7DKEn4wTXK8XSM6oa38I1pPD8LwLNaax8M4D9gtCu4GePGMsReRTAvBvBl2LEo9/gNAE9ozh+0tXYcwKdh1BF1Y2Jwb5p9MMevYhSP/vkwDHerh1prbwLwWa21a01E3lr7CIx6T/+jfRRjh3o8DavuMrbrvhR9PwovA/C5rbVPwmigxRuiX8W4iJ0YhuHN/PIMXg3gKa21TxuG4RfEM/vWbx14QmvtmInIJ0bxaIy6MmAUld+HcYP0OvfekzGO2XXL81sY++ADhmGIdrx7wb1Y9cXchWmifm0bPRrkpima0Otg+uH7PgBfhD73nG/DuJi86FzyTRCpHNBae/AwDBFzNc8L/lH+e4yGU78O4NenH+6Q+U4b3zcA+HAAfzhoa/SLMc7V++n6M8Tz54zW2oMwMkDZz/u01q0D8zg42w5t9HB4wnnO16+L5xOvxyjdeP9hGH58nReHYTjVWnsdxjXzm53K7ykYx45aQ3ehjR4nD8dIcOfy/AuMarVnY4Zg7elHexiGe1trL8S4C2Z8PUarzNe11r4V4y7vqzEOEiVSP5/4Ooy799e31l6EkZFehbFh3n8YBosq9XyMP24/21r7AYwi82sxLiR+AfhVjEEqvgvAL2LUhX8RSGSM0SoQAL68tfYrGMVJ2aR8Hcad9Q9jHNAvp/s/hnEn9rrW2ndgtJy8COOg+HSMO+ZTiHEdgP8E4McnKcnvYvzB+SQA3z1tAi5kv90N4NWttW/HuIi+AOPO97uA0XZiquPXtNZOYrRJ+OcYN4lvhNOl9WAYhjtba18J4PsmEfKvYNQxPhSjHvT6YRjCaGEJ/gLAs1trT8YYKOcujGPltRj76s0YF8R/i3G8vXrN9NfFt2C0yH0sRtsHiWEYfgajSuZ84fUA/kNr7ZphGG511/+stfZajP15A0Y7gydgZBs/OQzDSgCPYRhuaq09DqPluf1wKwb6ZVPer2qt/TBG0fZ7YbQqPzQMw3OHYbijtfY7GOflTRjZ7+djRzVzPvCR0+fr06cuLN6AUSX3kmktvxzjWvkPGL1fzhfejHE9/Y/T3L4PwF96G5f9wLSGPBfAd7TWHoLRhukujP38cQB+ZRiGn0qS+DqMa83/bK29BDvBVa4bhuHP7KHW2hdiJLEfPQzD71IaT8e4SXkFJ95GV9tXYvR4egtGQ8UnYlz7X5PV7VwCGvwoArHDMAz/G+Pu+E6McvyXY7SofewwDH9yDvntCdNC8EiMP3LfhLFB/jvGxe3X3HOvwSie/ucYRSJfDeDLMS7Ed7gkfxCjEc2TMe64noCRjfpngPEH/cUY3Sx+G6OBUlbObYwd+FCMhlB/Tffvx/gj+4MYF+dfxvjj8HkYmaSMijW9+/ip3vbuizEuaLdNz1zIfnsZxh/eF0153QLgX0+GjobnYVyE/w3Gtnzu9N6nJCxKYhiGl2Dc3PwzjHX7ZYybssMYDaLWxbdi3Gj9EMa+fQlGi9Y/xLhB+imM4+ijAHzOMAyvFOnsC6Yfx+88n3msgVdibItPpevPw7govRDjJuYnMLbPc7HqP34WkxjxcRg3Qdc34Wc7jME5HoVRNPq9Ux7fg9Fuwf9gPhWjEdD3YTR0uxnAc/qrtzY+FcAf8Jw+SEwbn8/C2B8/jXHT/t8wjtvzme9NGNv6IzH2ye9j7J/zkdf3Yvwh/BcY18pfwkjOBuwYDap3fw/j2vMwjGvFCzCuvf+JHt3CyL536aEnNcyTAPwCGbUaTkxleBbG9v9pjK5mTx6GIY0M2JyxdIHQWnsfjH6X3zgMw9cfdHneE9DGIDPfOAzDbJCewuaitfZSjC45n3DQZTlITIv3TQC+YhiGHz7o8hQ2H/vpVrDRmFxGvhOjePNdGK1avwpjMIgfOsCiFQqbiBcA+MvW2iNn1ELv6XgmRq+U/bKlKPwjR/1o7+AMRmvlF2G0UD6JUe/z75XxS6FQiDEMww1tDNW73+FbNw33YgykxMarhcKeUOLxQqFQKBQ2BBtxsk6hUCgUCoX60S4UCoVCYWNQP9qFQqFQKGwIFmWIdvTo0eHKK6/cl7R8+FYO5Tr3vTfdcynTuT4b3d/LO+fy7PluC37G7C/e+ta3vmsYhl1xtq+66qrhwQ9+MLa2ts65bN7Ow/7nz553e++t885ebFDWeacnv94yZW22Tlvsp93NTTfdtDJ2jh07tmvdsbFjYwkADh06tOvT7vH1aN3hz3PBUtI4X1hnvK8zVre3t3d9njlzZtdnzxi74YYbVsbOQWBRP9pXXnklnvnMZ55TGjaZLrroorPXDh8eq8mTce67h7rXMyHVJiGb4FEZ1Lu8kHB9evKb+/TlUe22TluoNrG+ivKxCfaYxzxmJeLXQx7yEPzET/zE2X63z6wvbaKePn16V/r23f9///3373rGPnkx8OCFgJ/hBcS/oxYb+8w2Fir/6Lm5/HxbGFTd+bq96+vN1zhf/u7f2Y8f72uvvXZl7Ni6Y+lffPHFAIBjx46dfeayyy4DAFx++eUAgOPHj599FwCOHh2jgl566U50ThvLR46M4bz5h53HYQQ1D3vmmqWbzU+1zsylGaXPZc7y4LmgNsf+uWi++Gej+XvffWPMKZu/J0+OgddOnRqDR95yyy27vvt8uNxPf/rT00iDFwolHi8UCoVCYUOwKKa9H4iYITNQJULNRKvr7HB7xfF7EaXtl2hrXdbid7zGGNROex1k7bpumx85cuQsu4nElVxu3rFHmBPjKvYcPbtOm88xLF/2ufbvEfFzfSx9Szuq11y/WHtn1zgfThvYqbtq83PFMAy72iSSZsxJonxaDGZu68xtnmOc/jpzLyubyo/zzcaO6kOfB6/Bdm9OAhc9w/0UlcPGm40zWx9YImsM3D9rjD0axweJYtqFQqFQKGwI3uOYNut3o2sRC5vD3A57HcO37Hqv0UqkY14H677jd9i2E1X6/UyPrK7zDtzfs0/TDap0jhw5Ig2GfDqKafcwYsXyoneZRShWsxf06CIVC/Tl2IsUYC/vqLKxvYLB14/ZOLOn/UaUbo+elp/rnWPr6JXPxbgt6jfFXvfTiC5bD5jF9uj37R2l4/Y67bl+Y3snn65K/6BRTLtQKBQKhQ1B/WgXCoVCobAheI8Rj7N41Ytd7BobIeyHWGodg7Se9OcQGbP0iu6zdwzK8MU/x2LWvbifqPpkhmiZQUhrDYcOHVrp66hMXG5135ebjV5YZBa5filDGU67x32L70dQ46BHjL2XfJWbWOa2o4yGsrFjfZm51+0n9mJ0F4HHrTIu5Of9/9xOmTHbnKGWIXPb6jWiVWWYK+ucuDozvOOxo8TWXo3Gz6j6RGuL5WPuYktBMe1CoVAoFDYE7zFMOzNAYjcgFcUo2m32MsTIAImxl2hZPZhzuViHaffuuIH+oC49ZY+MA9dh2vZ8Ng7mGG/ETDiYCgcHySIrqSAkmQuWYj49UiH1TMaiVfCWLMgKX+PgNMyEIumDQRmXZWz3fLuAqbL6MqxjkKqkgD1MW+Ubgd2oOP1IUqHWjjnXrww9UQnn3G8zCZmSlFnZskh2/E6UVhbIaAkopl0oFAqFwobgPYZpG5tmvTWwuuPlnS7v9rN3+XrkzjMXGtLQE4hD7QwzHQzvOKPd7Bxz20vQE6XDi8rIaWUuX4qZMMztC8hdOVRZstCJfE+xTK9DUyFP+XvmgqOYQo/LHzOvSBfI5VdlzOplOj8lscjqx2W161EoWca5uCGtC66TYp7r2BzMXY/uZbYaXDblmhlJdlS+GZilrhPiWUkhMijpUya5sjLaGFXrTZT/OnHJLySKaRcKhUKhsCHYeKZtYeiYYXkLwnV1rhGrVEynh2n3nCjTqwfPdEt8T7FaD6Unzna+cxbmkW5J7Yq57JHVf08wnNYaDh8+vPJOxCqUPYKSbgA64IIdSBAdVmC7e9aDcxoRE2UreKtPJEniunLAEqV/j8rNbcFM3Kc314eZ5wG3fcbaVH043wvBiDL7B18WQEv0mDUbeg7lyfTgc7pYlrxE9eJ0FXv393huqzQzZO0490zWRiypUlLPqN/2I4jQ+UAx7UKhUCgUNgQby7Q54DszkohhsVVlxqwUlH482o0pP8LIulNZ7faAGVu2G+drvTvsCIo1RYyOGb2yCYikHL36rq2trS4rVMXYovwy/3+ffuTLye1jz3BdM2t1tdv3R8/O5cvjP9Jp87tKHx+VxebenL43Autd12E159tf20NJe5REJHpW+RdHdY+YbZRW5lHBfZv1i9LZW9n4iFr/DrdBxmIjmwVfD8ufx1QEZTsUSYWsjCaBzex99mIxfyFRTLtQKBQKhQ3BxjFt1gcxA1rHAlwxg0zHyMww2oEra8Ys+hCz5Dkdd7QDt92r8s+M9MWKzarDNKLy9wTh72VUXs/Hz875afuIaFG5jSUoxhvVh/WOtlNnK/JIp816b/u85557dn33fc1W6UoC0yORUNb9Pf6z3ObeRkRZ76p0M2bHuvSoHVU8BW6j/YYfbxdffDGAnXYwSQdL+jyUnp5ZdObjryJ6RXOC10BOl/W6/v/ongfbOAA784jzYxuEyJrboDx6rF2jOa/Wt2gecH6W3iWXXAJgZy5G0jV7VnkvHBSKaRcKhUKhsCGoH+1CoVAoFDYEGyEez0SBLK6OjLxYXMNGQyxy9yIZFSqRRTQ9RmUq2IHPh0WJymgpEwn2iNrnQgH2GF9wQJvMVUIZuPD96CzcHrGu3ed0oyAdbHRj75gI1LcXG2Ip4xS7byLv6Nq9994LADh16hQA4O677155h4NAGNjYJ3JrUa5FLO7zom42HlIqnCw/Q4/hFRs0sVg5a0elxtrvIBhWPxsP/v+jR48CAI4dO7ar/NkZ3Ly+sIolctGy/zlwjSFzF2QxeQ/m1pdIbaFUhJaGiZ4zNzETg/MYtfY2MTaw6taryhq5b6k1mNP077Cb5VJQTLtQKBQKhQ3BsrYQApmjfc8BB7ZbzcJHAvHO1HZ87GJjzxojiFxwePfIu72oXnOGWufinhYZhjGUq48vD+9SPSPxz/o8eHfMLJ3L7J+1MniGqKDCjgKr/cBtnbnbKRabufzZuPNsAdDGZlE6cwElojIqlp4dGKH6m/sa0AfvGNjgLwvMosZ55DqlpGxzRlTrImJfNsYvvfTSXXnyfImCnbB0Qbkw+uuZyx2ws+74dU4ZbFo9rOw9B4ZwfpHLF9+z8ptE6eTJkyvPGqyNrR4sjeAx5O8pQzRD1AfM7K1sUVAnK9v5NnTcK4ppFwqFQqGwIdgIpu13Opku2T8b7UCVXoh3yX6npnbJvDP0bIIZNrPKKMCAYlCsL4r04j07d85PHafI7lARI+c626eVNXODYYYSsRp+NtoNRxiGQYYq9Xkws+ZQpL7OzECU+4elaSwDWGUlzDwjlqOCw/TotJXuX+nf/f/M3DKJj5Wf21O5v0UBOfheD5tRzDqSqihJkkr30KFDK+M30qdaGayfeT76cWx1ZFsJ5Srn+5Rd4ayd2H3Q19mYNNvwGKs0W4rLLrvs7DssKWJ7BR6r0djhcL3s6hjZCPH8tLZWLnUZLE22HfHXeA1mCVPkDhtJJpaAYtqFQqFQKGwINoJpe+ZgOzHWbzKr6TngQFmdRuxMWX6zHse/wzv2TH/L7EiFTYyYntJzs+7Ul5GZgtILKitzD2Ze9t3vklkfybq6iBnP6a48zHKcx4XfQXNdlH41YgY8RpgpWn2iXT4zAbOqjcYls0ked5HUYe7oUma3fgxZedlKObPE5jZWAY4ij4BM/6jyVUxehdH06GXcUUCdaOyYxb+yh4ks87mOLF2KpCc2d+bmn29be0c9a0zb18us4TmYiZIK+Pa0scNSAcufLcP9PV4jzRqf13dvL8PjeM6jB9iZc1Z3ZbmfBeNim52DRjHtQqFQKBQ2BBvBtP1Oh3fVavcdMdI5S9Uen1TlF+79SpV1OO88/U5xLkB+ZnmuwjvaZ6brYcts5Xsb6ZOZmbLe3efH6Vmfso4r2i1HbRzB6yUjXZXSuapQkT5vHhvKB9tYtL/H+kgfr1rAAAAgAElEQVR1WEKUD7O+zFKa68y6RWZE/n/lf97j4WB1Z7/diBGxHpSt06P8slCx/p29Mm3Tadv8jHSZmZW4r0dkp8LlVTYgke2O0mFH65xJAQz2jB+TPm3/v2LarFOP2pPnRCb54bWBP9lbx6/9rN+es7D35ed8s+NjbSxanXv06hcSxbQLhUKhUNgQLJppZzoRxZYyH2hmjcpX2DM6ZqC8m8usa61sXJaMVXNZFFuKpAHZEXVcDuVjyzpn3on7fNjSk/P39WPWzyyDGbf/v+eIvNYaWmsr+vVI4sKR8ZQeP8rT2My73/1uAMBdd921Ky3PaqLDCIDcKp51bsxAIyteYw/sA6902ZE+3KDsLrKDUJjFmJ40ahOrD+vOWX8Y6ZiVTYNdjw6biaQ9jNYaDh8+nFrMW125L1V9gJ12ufPOO3d9V7Yafr6yH7M9Y1KATLrA6fFc83p37ktl32HfIx0zM2zLJ5K02DWbR2xLYfWyMvo2sXHF67aysfDPqNgBVh8/D1hXvzQU0y4UCoVCYUOwSKbNbDqKxqSsUKMdqNoxRXpPID7OkZ+x3Rhbznoov+JIh8W7VbbE5h1wZHHM9Yz0bPyOgXfWbB3td9j8bBYVjMESEc4ninqmrKK5/MMwrFjsRlIaQxb72WDlMl/XW2+9FcCq9f0dd9yxqz7ADpu44oorAOx4EViakV+1ihxniDweOI43s3SWPmVHj6q43p6xsp7T0mPd6YkTJwDsbhMbR+YrbG2UxedXNidWdmaJe0Fkue3TU/NdxSwAdiyW7dPKaZbS3G5ZGVgqE3kCWFnYL5yZqV932EaH7S9YYhXZxRiUn7hfBzmGg+VrkisVvdLnd/z4cQDALbfcAmBnnHO0Ot8W9sk6bZYK+Daxe+v4/F8IFNMuFAqFQmFDUD/ahUKhUChsCBYpHjewwROgwzyyA7wXd8wFn2Axos9PHVLA4sPMVUUdBRrlw64XBhaXRWIxdZxeZLzEIk4WodlndLweH0DA4vnIRUKFaVUHvvgy9ojHLbiK5RMdbMBgUXSkTjDR5m233QZgR0xuRjH2rol57ToAXH755QBWA0bwYQXROFCGRpFBpHKb4zEVtSeLW+cO1fHvs+jWxoOVmdUBXFdAG/1ERpNs9MWi3Sj8cA9s7LDo26fHaiKeJ5EIlUXmlr61Cx8kE6VhfWcqFss/cn9j1QO3SzQ3VH24n6LgKgbLz8T+PX2pjru0eWTjwreRvXP11VcD2BGXm2rKymjl8HW1+rBYPAvqtM76cyGxrNIUCoVCoVCQWCTTZoadhZjjnVvkFqLcMpSDfeRoz+/y8W0ezLqV61W025wL6xgZR1id7Z4KpuDzYxcWliDYs8Yco50oH0tq7Wm748h4jY0MVbCaqCwZWms4cuTIiguJhwp3mfWX1cmMX6xOPFayY0M5yAUfkhAdAcmSFnb1iyQ7yniJ3V4iKRSPUW6jKEgNS6hsrFgd7Ls3WGJJERszRu6QSrrFxlh+nVjnkAczYlShhH1ded1hxha5fJkEwspp340RRmEyme3bO4ZI4sJhk9Wxq1noU54jPJa8IRrPd87f+j8KUsPlv+aaa3aVjY01fZnsGksf+KAPnz6v2zy+vXRQhTpdCoppFwqFQqGwIVgk02ZkwU6YeWTBQNQRnPzpd9i8u1OHTngwy+Pg99GuXLmHWf7scpIxO+WClYWk5HdV8BX/jpJ2RExbMeoojKCBQ3hmh5YY0+Z0o0Mf1DiI3M6MYVudTOdmum51sIK/x3YD6nAE/38k9Ynq4N9RwUFUCNYIKhRldBCGXePgLqwLjNwv7Z61b3aMrJKM8Wd0BGgvhmFY0e97+wSeb/adD9zw9WCGyy5yPF8iiaLSS0flUoflMHv1emJ1QIgKVuX7Utmj9KwhbG/DOucoyI7B6mNjx2xHInCAF+6T7CjnTGp3kCimXSgUCoXChmDRTDsKUj93wEVmKc6Mg3evmb5Q6Ql7wFajVkbPDPh4PnWUZaTn5V2yskSPwlcqKQPXMzoknhlDphtW/ZQdWJFZMEfY2tpKw3KyHpXbNGqn6NhE/w4HnfB1VvYIhuj4Qc5PHcIRQVnmZ3VRx6oaovnE84RZGQfdyA4omQsTDPQzHq9vzaQyDAtjmoXLZakSW4Bn644KQsReHZl0gPOP1j8e+5yutaMxVF8Gbn8V1MnPJxV0hKUDkX0CSxJ6jurlNNS648H1ioLScF3UurAUFNMuFAqFQmFDsGimHYXsVFanvNONQvWp3bDSF/m8s2f4utLpZUcWqiNAVf491tEcji8K3K9290pvHd1jRKE25yQJWTpW1l4rco/Impfbrke/ruwfDJE+mX1feRyyj6y/x3p2PtwkO86T65eNYdZZsn1Cj22DgaUNkaQka2OPyLdXHYjTY1cyl9ehQ4fSOW55sL0Gh/mMDlbhdYzziQ4WYjbJ4TizuaD0tfau132rELicVsQ6VQhnvh7NQQa3edSeypZBeSD4sqi+yNqe01gKllWaQqFQKBQKEotm2oZsp65YdMR8FVvKdlKKGfQwOmVpnkUO43fUDjHTMSqW7negyv+8R4+srJOVnjxLQ0k91i0TvxNJJObS69EpWhuytXDkP89lUdHOIlsDZkumJ448HJQuW0ll/LtKr8pW3pGenxmOtQEf2ZlJO+bmZlSv7ICfvWAYBmxvb6/EO8ikWdzm0VGwLPlQ4ytiiFYGZsecZja+OcodH1SSlUmtb5EOXUmwsmhjSjrENkseyvNErX9R+TlmQbS+r7MuHASKaRcKhUKhsCGoH+1CoVAoFDYEGyEe92DRnzKY8mIcJYpToi4vHpkTPUfuGhxEwZC5EigRmvoeiVT5mSytOZHSOu4ncy500TNKlBaJJHuNlyJRYeRCpuoWvWPgOrFBUBakgdMwREZeyvWGDca8+FCdLd9TDg5J23NgiCo/j4soDXUwSWQQpMBjaD+CX5w5c2ZlfPiysCqLx3NkdKWM+JRqL1NB8PyIzu82cNhcVuFYgCAPZeSljBp92dgAkUOVRoaWyhUrU1Wq9YyvRy5mPDbZ5Styg+wJRnQQKKZdKBQKhcKGYFFM21wvePcYMd/eEHr+/Tnmw3n4ZxTDjgJKcMAKdi+IwnIqpt3DIpTzf3Y0J+ej3Day/FQo2Yi9q7bmsvldOacz5/IV1S9j7iqkYXRoyZy7UWSMo4ziMjbJ6fERo9HYUVIKFQIzktJwPXlcRxILdmVTxppZcA3FVLN+m2OD62IYhl1M2xCtA7z+cN5R+GR1QE0m8ZsL5hMFnFFugmaAFo0plhSptozGLo87Y9xslBcdaqIkpFyOzNBOGW1G76gDntglLEJ27yBQTLtQKBQKhQ3B4pj24cOHz+6gOBwioFllpo/qcUFS95WbEAf+iI5zVO4ZWVi8OV1SVEZm9sxamK1l9WJ2lLnQcRpZUALl2qMOqIiwTjhB7qeonHOHCPQ8kzEDpWvO9PvMqHjM9LSBauvMfcvuMRPhcgA7bcFhcuekKf5/1W4RW+K2ZqlGFnCoF8OwejRnVB8VTCUKK5q5M0b3PZS+Vtk4+Gf5WEt2c4rSM6i+jOY4jydbr6OjRg32DB8QwlKbbD6tIyljWwnLX4Xtjeoc/Q4dJIppFwqFQqGwIVgU0wbG3Ruzr4wtMTOJmGHP0Y4eETPg/FWA+ygd9Yyvlwo20KMHZXakDv3wO+05/SfnH9VPBffnwDDR+1zGrI969E727jo7dYPaufv/mXHOpeX/Vwwu04NnB4MAuXeE0vX1hFo1vaSSSvD//t11wj3OMewoPyVN6x0fWVm2t7f3FK6S+ymS8GWeEf56ZKXMY1PNW18WDvur1ocoPSUNipg2s2TL58SJEwCAyy67bCU/g/JSWEeSxIjaWVmAs447Wic4dPBSUEy7UCgUCoUNweKYNrDq3xfpiViPa4h2rXO6pQy801Q65yg/ZY3KfoBReup6VD+2GuX8IsanGIKyko3KwPXJ2pXrrHTnUfk5jQyqv/z/ijVnOm1OQ0lCeqyeDdkuf873OvIr5WfnfOP9M+pQmwjKK0FZk2chIhkZ6zT02qisA2PbPu9ojnFdrZ3M99kstf2zc8wwq6uSAkUSGRV6lpl3ZHFuUGFm+b7Ph6VlzLh9HkePHg3rx8cwZ2NW2ZNE71idrX/UoU3RnI9sAJaAYtqFQqFQKGwIFsW0h2HAfffdFx6k4Z/xsN0QvxOxl94jOTNr1zlrTv+O8mNex7+0x29b6Z8MGTNRvrw9DHiOZWb1y3SmnA/bESj4+pnOKtLjz7HJ6PocA1nHxzvr/16fZ98Wql0UK4uet/RtHrE/cOSzzDo/bt9zPUpV1UO167nA5xsdC2l1tXHFdjeZp4s6SGed+aIYqe9L6zs+uMUQMXvF9ufWO18mXn947hnj9s8oC/OevpwbB1EaisFzuwKrsQn2U6KzHyimXSgUCoXChqB+tAuFQqFQ2BAsTjx+5syZFQf4LFCKCi/qMRfUIBNTKXFNFlxlziAnCluoghlkIV35XSXGWSekpwpyEL2jgqr0GNawWC4LGsMuTAre5SsKJMJqEvXpxbpsLLaOqxKPkTnjP583h3vMAsBwuiwOV58e3AaWP7u8AaviXhUIhsP2RnVXhlaRgRW353664mxvb6+4mPoyqPa38meqANXvmTic24zF4hxAxZfB1k9z31Nnf0dlUa6fUZk5/Wj++OeAHVG5tYmNsx41yZwYPBNnq/DXrAYC+gxrDxLFtAuFQqFQ2BAsimm31nYFV8lcLwzrBE6ZM1zJ0mDmy6zFp6mYtu32OIRfVLasDRjcBsrIKzo2ktO3XTrvmiM3EfWZhTxUxnlcLp9OL9M+c+bMyo46chdUhxRw/aJr3F7MfHxado3HCDMCb0TJoUE5/czVRwX+YTYbGU3NBY2JDN/mwpZm/abYZmRgpYwA1zHo7EFmKKja1sBzPIOaL5HbERtK8ecll1xy9h1za+JxxxIr/w4bHvKzPE89Iz116tSuMppxmbl1RdIHXmd4jmdr8FzbRhIdHtc8V+x7dODTUlFMu1AoFAqFDcGimDYw7paYtUQ7H96ZZbuwdV2TsoAc/Mk7U/9/r7tYlLdy/me3iugZzjcLz8ksjFkAB2YA+lgyf++VJGQ6+7mDVk6fPi3dazxU+VU9onvMgJnd+P/n2Jmvlz1rrOmee+7Z9Zkd4MFlUno8S8tf4zHLaUVSGu5TdjkyZLYbaqxGc6Pnmb3AbGn4EImI7fe47TFUmF9GND+5LKxD9/mfPHkSwA5rVLrtK6644uw7xrrtWcvH1hc+CMW7b1l+VtZLL71017OWtu9/lkIq98Aevf+c+6X/X9kE8PUonaXptotpFwqFQqGwIVgU0/bWv0DuJK9CzWX6SMUms2ANzJbUjjeyUs52cQzFwlj3EtVvTjfbc/wc71Y5JGKUH0swVECQKP3Igp6h3sme79H985jJLMCVLYPSG/awM2Ze/h1j2MZ8jM0YW1pHH63075aHLz+HDOZxF7Flu8b6dk47syvgOmRSofNlPW5Mm4MGRRbF/MkW8pGnC0uIVP9E0hO2zWBpgJeaWL8aG2a9sbFm/47laePL9NSmnza2bHWw+z59Xgst/cj7x6Qwyksl0/MriWkm4VNSKJYsRB4VmffDQaKYdqFQKBQKG4JFMW1g3NX06DMUa84ON58LWxqFiOR7nEa0w2aGzX6rGYtVOvqMifBOkC0/DRlTVaFWM+bDVtjKWj66Nse4ImS6JWbZWdtyXuuExZyzYO7xo+fjMD2M8RhbYqYdsdpemwalW/f3FCLvAQMzVGUv4aGshaN3mPWrYyrPFYqVATvMLPL88GWJxmBvHIOIVfIcY122bye2ZbB32Bc6Yuds78CSpEiHztIZbhNm+P5ZHjM9NgPrzFODlZ/nD+v7s7DA+z3OzhXFtAuFQqFQ2BAsimm31nDRRRet6GKinc7cbt6zGHUspKFn56YsQDNmpXRXGdOODnL372bsRR3kkUWWY39glV+kJ1L5R3VQLJx1WB5zkewY29vbK3n36Myz/lc6zLkIWR58cARb5vqxatdUPIDsgBrlF74OlCQpiimgfOIzbw0luWKs4yO9X+Bx4Jk2MzQ1/zNpD7eTfUb6VI6Ip+xIfL/Y2GH/f9Zbe6Yd2Uj4NJiJ+rFqem/Ll79zdL+ojEoqlI1hNeeiPlFW4vw98o7okfgeBIppFwqFQqGwIVgc0z58+HBXBCzFbCKrQ3X8nDrEPWOIvPuKdsms97JnmWl5KAtIZYGasWbWmUb5KT2kik8d6dvmdqBZRLR1WXTPM8MwdPmKqz41RPp75TevdvvAKktl5mF+rf6YwuPHjwPYiSp12WWXAQDuuusuAKv+28CO3juKyjYHK6+VQdkeRF4dc94DnId/R3k6RGNqHR3mfiBaW9hrQNXZS0AybwqfPkvEfDps98D6fM9iFVvt8dRg2Ji1cRH5U9v/bGnOYybyHlDzSHlpeLDXBftT+z5QceszP20eg+WnXSgUCoVCYU+oH+1CoVAoFDYEixOPb21tdYlx5lxtIrGoQQXDj55X4sIew7AojB+waozh31cBRXrCcrIBCAdkiN7l9lNGMpn4yKDayv8fGTap+imXsgjm8pUd57kXV6F1xhlDicdZTG6icH/t8ssvB7AjLmcXMB9Okg9o4HCWmZiWRZvZeDbMuZjNhbeNrmXteFCGQJGYlQ232JAycm+aCwbCoUJ93nOHpWQGnLzuRCJutd6o4CrZ2szi+MjIVbmUstg6C1bEZeA26hGPc36ZEWqJxwuFQqFQKOwJi2LawO5Qpuu4Ve2HmX7G9hRbiXZhvGubM/KJ0p0zvvH5MnNjJm/3I2MyZk3MyiO3FN7RqiMvI6MVZp89EoReAxrv8hXtyucC5URQzyrmE6U1Z9wVhXnkwBjGeMx4zT4B4NixYwB2xtmdd94JYMddh/vY56eMJpWhEBAbB0V1z+YtG0Jm8/VCGaBlLJYDl3A9ojLOuTVy//v7bDyqgqr4eRkdXuTfycabMgxlthnNRZM+WFnYbTEKyKIMejO3RRU6lvstY9rKhTNbG5eGYtqFQqFQKGwIFsm0M5eBObedjJXt5R2lp1PBNqJ37ZN3tX5HrNhX5lJkYNcLZrGRbkkFL+C2yCQJKpBJptNWfRv1RQ9z47JmwS7myhmVey4oTFbGORaZMQOWVni9N4P1jXxwQ08YUwYHGPGMTh2Aotigz2/ODcqQ2aSc76AXkT6VXf84NHE0P+eCqPAcjwLYGJTLYXT4h60zyi3W56P6gyUIfDiIf4a/c1v4dlTrAAc9YRcwny63gWLc/v05l7Js3lZwlUKhUCgUCnvC4pg20KfDnNshRsFH1OEUvIPLdvkG3rH559hyWbGnLB+2CGf4urC+WO0Q/U6fd+5zbDDTOfP36AABZX3a0289umcr6zq2DVymiGnPHXuaQY27LEAPh/DldzPmrRgIsxivk+axwuMiOjxDhQXm/DJ9r5q/kT4xC6l7PhD1C+tps/lvUGFMDdwGkTRjLlxu1Jecj7JX8f8rG5NM98vrjvI4iSSKap4qNh09y/U2+DZR7chW6lEgHRVS+qBRTLtQKBQKhQ3Boph2aw2HDh1a8TeOrFUzBphd9+8aIh3W3LPRTpDzVgeFRIeqq13k3G49uqd8bCOmPWd938NueKcdsWplCZ7ZF2TMnWEsO/MZVnkpy3Z/j9lrFL6W81PSBd7tZ7v8uQMW/DUlMVC+vv6efRrT5+/rhLHlflon7kL0/UJb8/J8jfLmcKZRGeesuFXaPm/uQzXufPpcNkvDrvvQpxzTQdkMZWXkT26LSIee2QJ4RPYlyrLdEPl2K3/tzB88W28OEsW0C4VCoVDYECyKaRtT6tEX7kXPwLvF6IAQfo51SJkOy6AsInlXGR2rx3oh5R8cWbaqMkcMvPf4xh6LauWHnOm0lRV2pKtnNqAQWal6qHIzw47KraLosd42ypd1vKxPi45HVLrGiOXa++wva37adt0sjT1bmzuyMJMo9fqqZ94fimEvwUc28tNmexSe25EFuPKBtzaIonLxGOVnovbrGc/8Dkvl1IEe0brDjJ4RjVVeG5UnSjTneT1QtiGZn7bNBfaKiCQYS9NlG4ppFwqFQqGwIagf7UKhUCgUNgSLEo8D+Xm0EfYiwlCuSpHRhRJxs5jPp8mGLGzYEBk6mHicxeQcPjFzjVJn00ZBLviaqk92FrdBvRu5eqjPKPQpi6Szvh6GAadPn06fVe9nrmVzYvHMSE71hzL28f8rlU1UBxaP2zMsCoxcvlikrly+ony5bexZDo0azWOuZyb+XwKsneYMtzzmXJMMkYhWGQiqgDb+f+tfcwvMAigpcTU/y+uRf4efZXF1JHpmNSO3a2TExmBVRaQG5LVYhUuNyhittUtAMe1CoVAoFDYEi2PaQB5Kk3eCPa5JczulnrCmc8zDv8PsVJXN7yKZSfkddJRPtANVO84sYAXvsK0NlKtThoyxKobKn77ePa4xHt7lK2pzZincHxkj5O/KUCwKu2ifbAgWGa+xNIaZAtfB32O2YGzi7rvv3pVWZEzErl494LHBgWh6QtNyuy3JEM2Dw3ny/MjC/c6F28zGqgq/aW5bWVAXnssGvz71rjPRnJnrS0Mm4eNnMunMnOQqGt8sKVWuXhHTZsO3paCYdqFQKBQKG4JFbSGGYZjVabPOg/XDGTNULkOKBUbvMquJjoBUu+8s8EcWvs9/79n18S4y2skrZq3cKjL99Bwbje4xs452tXMHLnjw2Ikw1y9cxrlr0f1sHKiAFb7cxoqzMIsqH64P67CjQx8id6Ne8NhRbny+T+d09dF8yvr9QoPd82xemHtddM+gJEd23Y5fBVb1wnYYEPdhxpqtb1nyl62rKkRtNqf3IpXjfOfcMQE9drJAKazDZjuPKHgQSxWWZl9RTLtQKBQKhQ3Boph2a+OxnMwq/e5WsST+jHZOKgAGW0r73R0fc8c6kMihXzG+SG87Vy/1XBQakIM5ZJa/hrlDM3pYswqmkeXLOrOo7VlXGoWz9dje3u7SMSqJS08gGX5GBeyJ8rHvxpqYBQA7jI29FXhMRWNMHdiggu1E5e8B14PDDjPDjqzxmT1n83dpTAfYWZOywCXWPsoim9lyxJrZOr03/Kd/hudaFKZ3LsRvtGYpSRu3iQ+bqg6ZMbC9RySNVJKqyLaDbTVsXpl9SRY0iL0hloJi2oVCoVAobAgWxbSBcSem9KyA1vUqvZ7/X+lemWlnFszMBKLdHbMG3un2+P2pHXyPP7Mh88/M/MwjRPpwA++asxCiimGzf7p/ptdf//Tp0ys2Dpm/tpIUZDq/HvsHLj+zFGUfAezoNe2TdXAR8+b6sC5TWaT79JXEILNwV77qmc3DnOV05o++RLDEw0tNmK0yw+Z2M2bu/1dpGCJrbrZpYD21H4+WD49reyc7TIfXJGUlHx2iwpIqji0QhVlWoXbtWX4XWGXUJsnK7F+WPvaKaRcKhUKhsCFYJNNmnbbXKajA+YYeiz9mD1lULtZnqAhikQ6O82H2nOkTey3dfRlVZLce/Renz+0XWWSqMkX6KpZicFtHrLpHN24wps0sMzpERFmLZ9Hm1DOZvYQ9w6yJyxGxCaWLi5gos3B7l/1mI/sLTpePO4zGd3YvaqPM/1jp25fOdhQiS3eeD1ZH0/VGVvYscbFn7TOyqZiLiBiNb5YC8ZjhMkYSt0hKFn334DHDNgJ82A2gjwJVkf98PaJ7Cr3Sx4PCMktVKBQKhUJhBYti2q01HDp0SO5MgZ2dEutNVCxjfy2KJsXPZmUDdnaVmbW3YguKnUVQ+txoF6jiY2esZc5nNIvWZLtz1h9zOaK4yNZ+toNn69WIqfawr2EYcN99963oyiM9PkNZzvs6qaNSGVmf8riOLHLtfWNYfMxm1Basp1O2DdGxsuwPzDpAJXnxYP1gZgmubFDWicS2ZPh2Yu8Anic90RxtjFx66aUA9Lzx+bFEhXXPHopVMtPOIjDyfOd6RDZJKjKakixF9WIdNvtez6U3h4o9XigUCoVC4ZxQP9qFQqFQKGwIFiUeB0aRROauw6LAHnGHCqrBor8orKQSAWVGZb2HmkQBYLiM3BaR2FyFAOwx5FKi5yxsJoPFvexC559RwVSi+rN7U9bX29vbuOeee86K87LwsnNGfr5vOR2liohgYjvOz+oelYdF5iyWj0SpqgxK7Bq9y+Mqc4Oz8vIhDCr8Y2akqQzSNtUQzYMNA9Vcjg5r6T3YIgvXrNQWfrxlAZ/8O5laSLn4ZXPanuGwsDznfX2V+J/F45Fh5zqhcLNgNEtAMe1CoVAoFDYEi2LaZoiWsTpjUmqHFhlWKKbBn5m7BrtCZME1FCNkxhi50ahgCmyUFTH7zKDK19P/r47m5HJFzF4FpYmC1KiDQeYYni/r3G759OnT8lCBCCpITMQqFcNWBn2+3KptI8kOv8usggNLRPcUm40CVjCDV2FafbtGBzP47xlbVgeEZOFnNx1WN3XYCAe/AVbZoxkIsvGnl2apoCrctpGhJRuR8ZoSSY3YGI5ddbP+V6FHlaujf4bLqIKt+P/PJVzv0ly/llWaQqFQKBQKEotj2keOHFnR+fkdqLnCZHozf93S9df4e+Zuog7jMKyzG+vR0arj/DKmraQM7DKXtclcaNKIfSo9f8S0VQAYdTCCR4+ecxiGVJLg81aSlh6pQsaOgLhP52wM1nFrse9Z0Ak1VrIDZJQ0Khurqh7Krcu/o8qUMW0lBdoLizoIWDnt+FUe+xGrZBc8llT50KcG7jOWwHiwKytDuXNG9/hgn2jt4Lpa/axNbFyb7VIk4WFmrXTb/t46yOxsloBllaZQKBQKhYLE4pj2RRddtMJIonCYyiowCgYxZ13LoRsz3elcyEZf3jlL3OyA9zmrzSiYC99bJ4ypCqIR7c4V61R66+ydTEe8DmpEEQ4AACAASURBVINqbTzWlZlqdPjLOoFDGHNHmUaYO8glgmKkEYtVR3AqKUCW/xwTBjTDnQuc0ZN+ZtvAOtRNC8iibADYCh/YYZxsgc7HoUaSJG4f7g//Dq95PJ7teuQ1o0LQZnYeXBZm2CdPngSww7R9m3A7qTnh69e7hkRH6qrw0weNYtqFQqFQKGwIFse0Dx8+vMKw/SHqBmZzPfo6xayYaUeY201mzEAdpBHpenrCls6VlS0/o93mXHoZA+49mtHvULnOPW3C/TKnW/JMmxkCoHXYjB6JxJxvKrDaD8yAo3Io/3jVP/7/OeYZ2QYo25DMRmTuYIqM0c/pvSNfYgOPKx4f0dxfGkvyMOZo5Td7HWD1yFTFfDO7Ee7bnngHKn6CIbKl4XZnSUzmf25M29rCGLZdz+w9+LPnMJAesERnaR4NxbQLhUKhUNgQLI5pHzp0KGVCyk+xx7ra58PPALkuW1loR/rpqF7RO5GVsvqeHXvHO2v1bsSw+LsqY6Tz4Xvq0z87x8qzyHLKwtWDfZIjf2ZmEwzfNoq1KJ12Jg1gH/9snPdKJvw9ZqDKDzySBvAzPEeiuaGOSuT7ERTbszaJ7CG4nbj/Ir07H4u6JBirZBYNrM4HPriGI//5/3vmiUH54/fYfWTSGF8e/xwfo2nW43zYRxbdTI3vHompQjSfVL0OGssbyYVCoVAoFELUj3ahUCgUChuCRYnHgfiwBi+e4FCZLBIxkVNk3MMin7lwo5yOTysTGylRaWa0NCf6Y3F1FOyEoQKnRFBlzsqqjFUy47UeAz4uf8+zwFhPDv/pg5Aod7Meoyu+p1QQkch9TozooQzd2CgzM9Rid0juj8hgTblv9YQxVa5mmaEdqxn42UxcqcJyZgaXSzZIszFqomJA143HXRTGdK5No3eUuqpH1KzUICbijoKd2DrNwVTYrSsSj88ZTa6DzGi2J/jWQaCYdqFQKBQKG4JFMW02RIsMC5hx8O4rYiBzoU6Vm030rmLLmUsMu375+nK9el2vIiO2uQAtPVC786isCll+6jCBqN+yOitwf9kOHthhGOxCyEY/WVCQOYO0KJgLM5F1wuYamM1GxnIq8I9i0VF6yiDJQzGdngNDlJTB6s3uNr4eBm7PjE0vNRSlB7s/eXBQE2V06KHCiPJ65NF72FBkxMjf2TDRSxDmmDYfCpJJhXjcnUuwpMho1lCGaIVCoVAoFPaERTFtQ8RaDLbrMdZkOzXeqXtkgVeAPiaiWFjGfNVOMNPBMVvgd3vcxbjsPbpt3qVm+ncuayZ14PTnWHN0IAGnoTAMQ8pIVfAP1mFlwU4UIrckbkulA45cldRuvydghZIKRHVi/bR6N3LFU8/O5Q/o8RUxPTV2evTgyu5iifD2F1Y3dlljqV0moVJtHEkxenXZWcAc1mFHroCsv1fvRDp8FZY30/sruxh2LcxsA5aGZZaqUCgUCoXCChbHtLe2ttbSXZp+kp3xe8J88jMq0IS/l7EHLpu6Hung1jncw6cRXVP5R/ViFqhYp99hqzB//E5UBxWkJtrBR7tghWEYwkATEZiZZuxC9QeXNwoOo4KCZIdxzOXHzDi6pnR+2dGFzHCywz9UGEmuQ4a54DHZ+FfPRBbA50unvRf96Trg4yejAzuAWDLF61s2dpXumq3Ko/lk6Rp75nCikfU467DVEbRRkB0V8GUd63EVNCrT1S/N86CYdqFQKBQKG4JFMW2zHvffo2eAVQtJ25GxnsP/73VGHipUpU9vTrcdMVGlh7Q6eCtmZrSKvfLz0bWeHbZKnxlPjyWwYtg9esmsnuxXmrHnYRh26c4yfTGzy0xPOMfQeLxlOkYuW8S01fhSbNrXQ1mpc30jlj53CEhURmUrkrFQttZVjDq6Hs1tn0+mq+1BdjiGgSVR59uy2Mpga1fmgRIdIuLTiOYRr5/MQHt0zPwMW4L7ddd02cys+YCUnvgNyhsoY8Ys2Yusxy9U3+4VxbQLhUKhUNgQLIppA+NOqOdABd4p2S4y293zu2z1GOlX5/xXM90LM5IsElfmF+3Rw7Cz3bhB+bZy2aOdb2+Er56y9vhrKwbBiCyco133nIV0Zv3Oaajv/h0ltYhsKNQBHcyS/f1ethzpoFXksywimhobPR4BNk+tL60emU6by9RjD5EdRMNorWFra6vrWf+OR6Qb3a+jIj2sbJFPNx/NyeuOSfb8PGKGzVbqKl6AT9/eNRbNY9gzbT6Ck3X3XC6fH/cPz5FornM9lE47isRpWJoV+bJKUygUCoVCQaJ+tAuFQqFQ2BAsSjy+tbWFiy66aMUIIjLHZ/GaiYayUJQmHlKiPz5gwd9Tbi1RYHsWybDbRiTW4zN15w7hyAw1lKtR5B6iRI0qfGt0TYmeMkMOVb/IIKTXqOjQoUOpekEZ2XG9MqM7JaJdxxWQP/3YYjcZfiYSj7MhmjJ04/tRnXuMb+Zc+1iM2SOOzdpRBfwx9KjP5saOicj9u1kAIy4vi6D9O8oAdj/gxeR8WBKLjy1QS+RCyaJltVZF6yobB7Prl3+HxeNKFB3NUR6bXObMAE2J37P1dGliccMyS1UoFAqFQmEFi2LarTVcdNFFqdGPctex67aLVMfF+WdVIBG/K2PWwrvwaAeqDjTw9eR85oJN8LsZC1AGaZE7He9Ae1y9FLLwlcrQiA1BPCtbxyCktbbLZVAd0uLL1cOS5w5S4LaPjLyU0VrEJjjYxJxRmf+fjdWUUWFkaDkXujFy3+NnuY+jwz+Ui1/WJgzlYhaFMVVlZfigTj3BNJiBWl090+YyWJ+eL1ciZsEnTpzY9d3YbXSojVoreI2Mxg6nxfWMQu6qNsgMYA1zblvR0cpZYCuVfibNPEgU0y4UCoVCYUOwKKYNjDugLEyd2jGxHi0KqjEXIlTpgvy7KtxjpCe0Z3m3Gu3kVJCOHqat7mWsnXflSi+5DtZhrJxvFuSgF14v2XPwhCq/h+oXZQMQ2UNEthIqP25D1ldnblusU1RBKDK2NBdsB1iVCil3xahNFPPhdoz6TY3ZHmaUjSWT0GRMmyV79qwx68zdiMvA9goXClFYUQWrHwdkycas6qe9IAqUotZGtluIAsCooD5zoZ+XiGLahUKhUChsCNqSdhittVsAvO2gy1FYPN53GIYH+As1dgqdqLFT2CtWxs5BYFE/2oVCoVAoFDRKPF4oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ7AoP+3jx48P11xzTRrVas6POYLyH+45XnHu3rm8s98Rd9bxP57LO7s/5zueRW2bi9kdxRrmqGBvfvOb38VWnEePHh2uvPLKtE57QU/dou9ZWuvku5d3Dxrr+Eur79k4UJG4sjjVhptuumll7Fx11VXDQx7yEFnmCOejP9aZc+cLezFM3kvUxP1MY514+XOfgI7B8fa3v31l7BwEFvWj/YAHPAAvfOELYYuvfR47duzsM0ePHgWwE/xeBQHxnWCBETi4AId7NGRhHtUBC1Ho0953M3BglizcJP8Q9pwPrQJUZIEreOPEmyzrG/sEdoJQXHLJJbu+W/AGPosX2Om3u+66a9fnIx7xiBX3nCuvvBLPfOYzV+p5rrDy8VnEvKGMwkHOLbQ9AWDUASjZAS4qgElPIAl1GEjPDyLXIUuf5w0HkYkORLHDMfiwCeubnoM5rr322pWx8+AHPxjXXXedbLeoTnzudNZOPXNK5bfOISm9m/ZsfeslOP4ahxtWaasy+GeiM+bVM+r8+OwH2NZ+GytRwJlTp07t+rTx95znPGcRboElHi8UCoVCYUOwKKbdWsORI0fOMjRmY8DOzlYxkEzcwcyad2Y9orksH18PVb+5dxkqcH70rgpf2ZOPYowRG5zblUfv8HGlButHY+DGonxZLr300pV7Fxpz0hOWiPQgOxRBjaHowAOWNs0dutGT317ElXPhRjPMhZjN7vWE5cwwDANOnz69MgeyYyjVASQ9KqE5qVZ0by/oYc29TJvL5Z/pXe88WOrD4Ubt3UiCqdperdX+nvqM6pAdR3qQKKZdKBQKhcKGYFFMGxgZGQd398fdMdNmNhkdqMB6C3Wwwjo6GEam85vT30Tg3T4frJCVQel6Ij2oQbGAiDVzgH51RKO/bn2oym/SlEjfZtf8OLhQUG1oei7ul8hoUtU5us9Meu5IU3/NMMcm/PjsPUQlY2d83RC1Cd9Tx4hm6a57vwdnzpxZaYtIr6oOvInaT0mr1ulTZaeQrVFz0sHomurLczGwzCQ6Sjqn7DP8PZZQ9dhQqANPsuNq+ZmloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8XibzkM20YiJTP25tGx0w+KPyITfzPvNkMm+K3+8zABFuXGs804kwlfvstgoMi6bE4v3nIVrn+q8WS+CYrcn6ydO37+jVBIGdqHx9YgMEi8UuI+UG1UkqmNjG+W2ExmV8TusForS4TL2iC3nxJ/RnLA2USJbficz8uHz6aOz7LN5sh8YhmFX/TK3o7kYBZF6hFUdPMf4fpSeEl9H6wD3D9cj638lUs9E3VzGbE4wVL2idY7dA9cZZ6os0fjei2vuhUQx7UKhUCgUNgSLYtqGLCKagXfDzKYtWAewE5TBnlFMO2OkCpkBCtdH1SGCcmuIGAkHDuAdaRRERu0m51gBsNMvxoD5k8vh0+NgJRy0JDOw8iz8QkNJR+ZcgPw9xc4jFmtuj2wAF+3+56RA67gn8rM8lnx51bM9rjJKChTNwR7DzXNBaw2ttS7XT4XMYJMlUz1ulXPMMGLAzCoVI/XoCdoSlTkrY2bE2sN0/XU/39hAmde3CHNjJ3NLK6ZdKBQKhULhnLBIph3p+gzMio3VGZu20HMnT548+45dMxbOYRB5xxaxCsWkot2ksUn7tHvGKqPdLOuDuO5cby9J4DCtVj+7bpKFKDSk2kUqlgDssEALiMKhSSO7AquzPctljqQq2Y59KYgYAYMDR2RSDGZJbC+QsSVmWsrVy48tZTOhpFD+fw45qmwrMr2r0mFG9Tyfuu3IHTJzjcskHwxuDx7ras77e3N968FrSc8YVdIZvu7zmwuxG83bOR09SxL9uyo4lvreU7913G+XguWtgoVCoVAoFEIsjmlnO0dglT0a4zxx4gSAHYZt34EdFs7B4pVV+TphEW236S2bjU1a+E0OBKOsrQGtt1X19v+r+uwFrHP0IURNcmGHt9g9+27t55k9SxvYIjwKnJJZo28i5oKR+GvMAJTXhP9/Th/JOkF/T5XNxpD1ub/GEh1mg5med66+qq7nC6bXVvmyHQKz1sjWhOvPdhs29jOJyzpjXkk6MtuW3kAime7XwJKwzLZhTrIT6atZusrjLpIKWXntWcW4I+xHKNnzgWLahUKhUChsCBbHtIdhkPpc/7/tnJhp26exa2BVx8pMO9LB9iIKEco7Wrtn11nXDWjGYZ+Zdbxdszqfb79WtQONfGz5HbYiZz2vSSf8O0uz3oywTlnnfHD9NWbRPB78PeVb3+NLzHrc7PhaZjTK3ziyh1CSpMw/Vx2ruJ/IfHyB1XayMmRxGjjtnoNCVHmU/jvztuB69MSHULpspb/2ZZqzbYjKoo5kjexweGzyWInWJe4XNScyT4Fi2oVCoVAoFPaExTHt1lrXwfK22zLGaTsye9f0q9E7rPNVuz1gdVfK7CKK2sa6K2VN6XfJzMp5t8r+6H4H2eOvuFccP34cwO72ZJ0c+21nukxr+7vuumtXGlFUKGPdSwjYrw5S6dmxs9Uwj28P1bbcppleUpUxGncsBeJxaH0a6XetjEqKEkkQlCeAPWvjI2LazNL3k3EPw5DaHCg9qpUh0xczw42kCQz23lDjwbcJe60wO+7xn5/zIY+kNPYOtxGvWf6ZOamn2VBETFuVP5PssGQii9qWMfcloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8XhrDYcOHVoR60SGBWz0ZG5WkXGHOpyAxSB83//P4jATu2QiGxY1WlCS6OALrs9c0JPo3Sh86BwsPQ6UcuzYMQA7YnH77t9RoiYO7uD/t08OimOicO9alqlJLhTYEEeNoSzULn+3NKKDUPgMeTZajETrLDpl1Q3XJRJ127s2RvngEhsXvh7qMBX+Hs2N6CAan6+fD6wSuuyyywDsqFj2YkDKGIZhpX98ukrky2JdX26ej+ozMuDkPrR+USGE/f+8zvCa4dt87mxv1U/+GrsHsug7ck/lIFg271l8vo4oPxKP8zyycazaJqqrCkN9UCimXSgUCoXChmBxTPvIkSMy3COw25ULWGXYUQhUtePnnRk74vt3bFfMblXRDtvXx6druztjr35HZztN5U6THWbALI93uhxCFNjZgZqhmX0aizHmyztUDxXcIGJibGClXGh8PhwQIXMp2w8wy/XXeLetDrzwfcrsjMd1xJaYAbAhkiELDakOcMiMbni8eckKsJt1KrbJ7o+Z8ZKSHLB7F7DDzph92Vi1OekZ3brwhmjWbz6gDJeB68yuSv6e+uxhkwZmzzw//f8ZGwd2j2VlPKoYeHS4jYHdcK39/Jpt/xvDPtc+8+XIDnqxstk6ywcVRcGdlopi2oVCoVAobAgWxbSBcYeXmdrbLtF2nuzYHzEj5fqgdvter2q7YdbX2U4xOkqQy227OGbY3o3K6sM7wp4A91xuS8N248ZefX5W56uuugoAcM011+x6xsrDoVh9+swYWKcV7aKZ0Vk5IobFDPV86bStzpH7nkEd+pIdlciMje0HokNSlEuUtY+9mx2zamVU49zD2tjS5Xyjg2W4jOwqyWF7fb7qsBSWxHjmY+/beGI3TxurHpFrpMIwDDh9+vTZZy19zxB5vmdSJQOvA/xO5kqkQqpm7yhbFp5z0RhVbqo853we3LbsrhWFUz6XQFYG1vfzmI1cTXm8sZTIl5FdFpcW3KmYdqFQKBQKG4LFMe0oqEIUSJ91f2wlGFloG1Toxii4iu26Wfea6VfnghgYe40CwNiO3naiSqcUBYBhNshsObI0Nd2l6Qd5x50xCEvf0jK2Zjtsr59mFs59y+zM532+drpskRsFLmEo9s9sxoPZI9thZEdAGvgI04ypWHpsER5ZzKqAH8ry2f9vc4OtuHl8RAFAlN1KxJ7sf5svbINi5fD5cFl6xhDPf9/GLHFTXgORZbbyIlD6Y5++CsyShXvlYCd8PbME53s8rqN1x9JXBy9FUsFsfZmDpaHC6EZ9wOOM+9qXg/tjCcGdPIppFwqFQqGwIVgc0/a7pExfzLptQ8QmWB9o4OM8+RPQuo/MJ5r1QVYmKwdbLgKrx2uyXpgZvte7K6t4pRf1ZTP907ve9a5dz7D1su8X1pEbS2fpRhQuk3e6KiSmrzPrzs8VLJGwvHsOx2CPA3WABLAqBbL2YqYdeSsonbnpWb0OjseTkmJEc8PawsYZ+75GTJvH9eWXXw5gZyyxztn3m5XbHwzj87NxHVk4W9lYkpRZINuzWcjTYRhw5syZFU8Q3y/Kup3ZdCQp4jnM99m+w99jXTan6fNjC2glBfDPscSA1w6WKPm1WK2NbFvjsZdYEgxe71jS2ON7rSQK/v0o9sISsMxSFQqFQqFQWMEimTb7YkcRo9jSV/lc+3dsl3f77bcDAG677TYAwK233gpgNToPsOorzDo/zgPYYRFcJmYIXkpgLMV2q9YGpi9kpu13m6w7MiZn6fMu3dfRrlk+toNnnZOXPphPtzEss0B/0IMeBGDVxxfYaTfuC2bynm1wm/t+UbBxEVk9G6wfTEKgrOD9Nfax5wNQrN28nQKXxfrF2i06UMH6nSUSKk4AsDre2F6Bddo+P2ZY6tCHSMds+Vx55ZUAVueTwUu4TLrFemo+UjeydFc+7GwR7MudHSnpMQyD9C7xeSk7mCi6Gc8xlmJYWpEdDre78tePIseptTCLC8BjhRHZbFhfsX+2Xc/sCGwN4Xpwvf06x5I3RiTt4LnHkoRIb93jdXGQKKZdKBQKhcKGYFlbCIy7HNvt264vs+yLGBqwm5XZDvCWW24BALz73e8GsLML5zi4tuv3eRubtLIZM7Vdq7Enny77SfPON/JJVlbqrDPN4pezVTdbd3oww2JG8s53vhNArN+x3fLb3vY2ADsM6+EPfziAHQbm0+WdLrPNKKb2Oug59tD6w9qHdaJ+121t+cAHPhAAcPXVVwPY6X9rc/b1Bnbax8ab1dnSMomPHwdsRc/eAqxbB+YtpJU/tX+XwWlFvtZsDe/nDbDTVnfcccdKOlb3hz70oQB25so73vGOlTKytEsdTxmN0Z7jO+3MA7aviGwoWCfLfsfRO9an7/Ve77WrHjZfbIxF0QDZj94YsY0L3+Y8h5WHgwd7lnCEtMyzRh3NybY7EZhpWz2i6I0Gtpmw9cWYvY9gZ2APA449HsVFYA+apaGYdqFQKBQKG4L60S4UCoVCYUOwKPH4MAy4//77z4oyTLziRXWRYYz/buIwL5K78847AewYyrBRlMHEIl6sy0Yd6lAEb8DBwVPs0+oTidJU0HsVJtPXn0VbLKpl4zKfDqfHB4RkoShNVGf1sHa++eabV97hvmSRpvVbdARoJPZS4H7ysDpxaFY27vMibiuPqUdYrGfjjF2nfJ3YbYqDj0SH27ARkwqgA+ggGsrILzLuYWPFLCywGpscBpSNKH2d2eXP1Es2huzTl8ne5fysLbJAQJm6pLWGw4cPr6jl/PzkUMEsNs7E4raeWKhgbh+DHztsVGpz2tKy9olcW9kdVqlafD24fdhAKxoHyo2KRdA+P+srawsWX1v7mqrSr3Os6rC2sLFz00037UrLQ62jUb1YrF9hTAuFQqFQKOwJi2PafjcVGSPYjlMF7I9YLB+gwQzLdlbsSuKvcXhRDhEZ7dSUu0kUIIXzY5bEafgdKAe7YNefyHjJoIKH8A4/CnpibWHPGguNXL64v9iIKNrxqnCzGZglReVWRzDysX3AjpELB59hthyFQ7Rr1h42/oxhRf3P45eNfay9fHCSKOCKrwczfj8OlKEWu15FbmIshWEpjRkX+TaxMWIsydrImGPkdjk3DtjQLro3F4ry0KFDK/PDjwOWRCnXQi+lMZdCqzP33RVXXAFghxlGIUltfBmbtLaNQrdyGVkyEc0JlrSpA0MyNzh7h+d99I7V3fJlqSS7vvp3LT0bO2yobPn7scr9zusOl8fXZ2nhSw3FtAuFQqFQ2BAsimkzooMn+J7tHu0762CAnZ0Z63RsV2+7LWMXEQNitxN7Jzq6Uun8OPSgZwbM/plNsI4xelcdsMEBTQAdSJ91qpH7A1+z/jFmwS5uvmwGdkOJ2BKXO9v5mtuOpafcuXyezJpZJ+v/t/awMWLMh/Xg2UEXBhUwJwKzIw656p9hhqBCYPp+YXbJ7CiyIeH24zFk881YU+QmZGUzN0xj5fbp+9rqzPOSpRC+na2fIv10hO3t7RXplk9PHRiS6T85qI3B5scDHvCAXWlHx14ys+c1xKdt7aFcTFmK5svPoXBZ5xsxX3b5M7DtRmRrwAFYjCXbd5aK+fSsXyxdGxfRfOM5zu0ZuaWx9CGbnweBYtqFQqFQKGwIFsW0W2u49NJLV8IVen0DBwrhgPeRdS0fRsE6WT4IPgrsYGBmHR3+oQKIsDQgCgahjv5jNh0dP2ew+mUBBPhd3nHy7tgzHw5OwmFTo0NGlD6aw016NsX9nwXw50MfovyYUXNbRiyWy28MgfWHPB78PbbEz0JfquAdzNp8GVWAFLYjiEI2cruzbUHW9ip9Y03WFhFTUWyd9bC+zirMqH2ajji6l0lphmHA9vb2Sp9GkiJmpux5EOlTebxxG2frHKfLa1e0DvB4ZlbumSjPVZbOGKIxxvY3LN2KJGQ85q0+LLWzskZ6fpZccrt63bryMmLGHbX9uRxqcj5RTLtQKBQKhQ3Bopj21tbWLqvYiLFFB2b475kehfV37M8YMVLlh5lZj3N6tiM0fR2HOfX5qN0d+5T7MiqmxXopX3/eyfMulneoka88Wzqzz292zCqXLWJCzCbmDn3w6fN4AFbDurKeznb5kS+q8mPndoo8D9hegA+F8exMHWvIh4JkoUhZWsN6aT+WeU6wX3gU00Ad9clSm0jawf1sZWHvjEgaoPqfGSawevTnHGs6c+ZMehwtW8hzP7BdAbBqs6BsM6J6KT9wrkc03tSBIdE6wPkpf+0oP5Yosu1BFj6Zy5xJHbgsSmoShbNVVvEsHYgOYIqkmktAMe1CoVAoFDYEi2LaZgGsLDX5WSDeZQO7d6TMOFifpqyt/T3eqbEuxKfBu2RjEWx5HO3guD68M4x0jMyO7Rnlh+7TU22TRWDjfJlpR2xd7eB515/pznp2vCyR8Dto3qmrSGheL630dtymkS6QpT7cTtEhDCxxYS8FPg7RP8v1UxHL/LvsCcBeCpGFO0tHWOqk9KQRuL8iiRNLWlQEuOg4XqWjZVhUNCBeU7hto+NAuQzc/uwvn8UfULYtzPR9JEaOiMj6/EhixUyU1zlDFmmQ241jO/g+ZhbLn1yujHErD5go1gNLH3heZ1E3i2kXCoVCoVDYE+pHu1AoFAqFDcGixOPAKIrIDA7Y9YnFOJG5vnL1YVFclh+LZDityDXBwG4NLEaM3mHRknJdyN5RoUO5vP4dFitGbcJiNjbsYheMqNycTyaK4nCcGbhsPj12n+JANlF5lRGcap9oHLBrIYsCIzGsCg0ZGSSxCFiJ8yIxLIfl5QAsLNr19WL1gr3LqqNIHKvEv5ExEddPGZ1GoumeELimlmNxq39HjU9VD/8/i2LXGQfcLqzC8eJxNorldS4yzuR6rWPsx2VTIYojIy9Wu2RrsIIyvMsMSdmIMjo7nfupxOOFQqFQKBT2hMUxbWA1KIAH75gMmbEN77bV7q5nl8esiQOz+DIqo6KITShGoJhjFOBeGZNkAUd4d6wMz7LgGtz2n3zBjAAAIABJREFUkWuJ6jdmZ5FrETOHHkTGScwIVbAWnw8HyOHQqqo+Pm9uJ2axEaNjoyJ2o4kM7PZiOGOMh9kKH1gRGRMp1sn3s6A+jGh8c1+y9CuSerCB5VxwFftTZVDlZoNE3/9stDhngNbDtC0tZor+HZ7vLNXKjtecQxRWlD/VeuSfsbZQga6iNmJJgXLn6pFCWjtGY5THVR3NWSgUCoVCYU9YHNPe2tpaCREYhcNURzBGO2uly2adZra7U3rwKAwe7x6Vm1hULy5LpIfiMjIbNDAjiXTCSieX6dQVK+d3ojIqxpPlo1h6BLYfiGBuU3xIgSFz/7D+VyFPo115xDh8WlEAGCsbs6fIRUa5Kqm+zcY3u35FjG6uLzMGzO8qG4dIksTuaNaPe9GHMnwI3GhOM9SYj9YdW6sUw+7Rh6tPn5bSXWdzuTdwUTSuFdPlcR0FnlJ6dx7nUXsq6WDmYqjaYGksugfFtAuFQqFQ2BAsjmlvb2+vBBCImIHSX0QWi8yslWN/ZHmunuFdXnSsnkHt3KN8VHhRfi5isfbJR9VFrDAK0gHoQCaZrlntXnt0mVz2jNH3MCnuL19upRPncme2FIopZpbSysMh0kGzVbCy0PZQTGMuNK1/hm0z+DhJb59g9+Ysf3uCq6g6ZAFAuOxZv0XlZ9iBIZmluQq3y9eVrl7lC8R6Va6rsuHJdL4qMFRmPc75cdv6MvL6zM9ktjQ2hszOR63J0bqqPDai/ldSDSXRjFDW44VCoVAoFPaExTFtb8UZWVmzlSHvdKNd65wvIrMNv7tjvbeBdY3ez499AZkp8uEjUb1YL658oT2YnXFZIxbALEkd0hGxAGbyxhKjgym4LGzFGYVaNZyL3ilrJwNLZyIrXi6LKlPmI8rf+ehU/z7r+jK9tNL9K9bnyzjnAZBJA+yT9ZBZf/WwYi4769ftAB51mI8Hh2PNysXhZjMrZMW4M33q3Pd14gRkXgR70d9m8z3KP4Lq/8hGhOMBsHQ1qp+SIEVH3Bo4HS5jj/SumHahUCgUCoU9YXFM+9ChQyv6tSgAvOltmYFEhzDYs3yQvNJ1+3cVw1aHuAPA8ePHd73Duzt7N2ITfGyjffK72SET3BaGqB05XXXAQiS5iA6q94gOcGApBEtTPDPOju3cDzA7Yl9YXy4VsSvzb2f7AGZAkSTp1KlTAFb71N7Noj7xM+z7njE6ZbOhLN+BVZ9hZfmbxQfgexGzZ7sR5SXhkbE9RmsNW1tbK37mXq/PFtE8fyIbinWjjEVW3ar8mQW/PcuSnEwKoCKvcZqZ9MHWKkNkX8TtxeM7izmgIuPx/I3y47Jm4Lqer/VnryimXSgUCoXChqB+tAuFQqFQ2BAsSjze2nimbRYMwKAOkchC57FRggp92hMOkQ3DLrnkkpV3DEoU5MtoInwTMZmY1D7ZSMob37CLh5WFjXAitxd7xox7+EzsqKxsaMaiNBa1eagQhHyf/wf6xFQ9Ii1ray8GB/JgJyzSVu5u0bhT79j1yEhKGfVkoTW5DGwYmInHDawusXf8+FYqA8svCynM88nA/ZWJfZWRlL9uz1pf90CpioBVVQOroqIwpsp9ci5/QBvWcrv4Oqt7KuwroA3BlMuXn9NcL1sPrM0j9QCvxUrtELWZ+l1g1Vp2WJSBDUp9mygV4VJQTLtQKBQKhQ3Bopi2gQ0oImMEu8chT5nN+mf5+EHFxrLgKipAR3Q4Bu/yuGyeLdvu9OTJk7s+12EKxsrZJSfaYds1a2t2g+LACNG7aicf9RuzzJ4Qi8w2eph2j/Ga9YNJNZhtZEFvFPPlAzd8WZjFMGvLXFWU1CaaE0oawP0fMRHlphexRTagUyFdo7kyx6ij8TZ3lG7GlqK2ZZibaWasNhcoh5/z5TTMGZdlz6p28v3Fa6P1E4cOjQxE7Rk2Ls36i+c/Sx+zIEVzQaTWCVLDiOaGkrL2sPOlhTotpl0oFAqFwoZgUUx7GAbcd999Z3d9rHO0Z/yngXeR0fGKc0EnVJk8mEVaWb3Oj9mJlcX0xtGunXep6zBsAzMQxWazMipEOm1ml9ZfkesUh+fkZyNGt04ghNba2joodr2LjuxkKQm79nCeXr/PUgylF/VQbIkZYxTe0Z61sajYWjQOmAFlAY74XQ4ixDrhSHLB9iMZ81LvKJ0mvx+1Bd/b2tpKmfvcAT4RK2MJB89D5cLkMWcfE0kSrD/s0JnLLrsMQNxOfCAMs+ZsXWB7Dw52Y5IsLw1Qx+Kq8Zb1mwq2Eh0ywn3Ka0skpVknAMuFRDHtQqFQKBQ2BIti2sC4q2G9mtcTKhbJYfE85kIA9hwUwDsz1glHh9ErqUBPmMdzAbdftltlXTPrwSNLWpZczFlU+/RUeMys3r1HL25tbXWlOxfkJLNcVZbTkXSIbQv4gIWIdShLfLYwj6yUVTjZuUN2ojKyZ0AUcIbHjLKO93OSgwgxc8xCiHKI3ay/eo5MZSgvkyi9nuA6nDffy1isYtgmgYsYv0lYjh49uuvTrkdl43HMbcBjNrJT4WBYbGfk1yOWDKi1mMdwVDbl2RMFnmLJgQpr6u8tFcW0C4VCoVDYECyOaQOr7M7v1FUIQ9Y/RL6BvDtW1o+RfkP5E0dsgnVH/Eyme2Fmow468OVhpsiW4JkuPwq/6BHpwZipKr/JyIKfGQS3eVTGyH9egfs6YjNsxc36PN+XzKSNtdiRgsywvW0DSy2YTUQH1LAESUmDfBmVzjwK6wjsZj7sJaD85yOmyuyMv0dhbpmVcVjeqN/sf2tP1s1H9gU8BlmCwXW7//77U8tpHr9q3GY6bZZ4ROXgOvNYMaZt9329bOxxP6hDgPyzXGYlLfQslg85UodzZOONQ99afZhxA9ruQjHuqEw83iLdvTpEaSkopl0oFAqFwoZgUUzbdrx85J/pZvYzH2CVGWZ+rKw3U9aP0T225uXdJbCzq7Nn+VATZuKeTfPBDeyXyZbuUbmVnjWyPGf9lpJgZIdnqPwj3dI6Om0uf8S0mYmyH3XEYq1fzCKXWbrdj5gBs5SMiRiTili4L090jSOSMctkxuXLYvmqaHbm+eDv8bMZ8+V3ORoc67IjCdPcYS090eIi2LqjbA6i91kSkUn45thrNPa5XVg/HOndLU6D1YP7NJI6qBgCKsaE7xdL3/K96667dn0/ceLErud8PZQERPlV+3ooRBb1yvMg83BgNj53rOuFRjHtQqFQKBQ2BItj2tvb22lEGtZrzO1mIyj9VASlh1I7UWBnN8xWvcxEonpxnHDW42UxrlV+7CPt02crXkbEXpQFeMZ4+F2lQ/flYHuCLGY2EO/KIz0np5e1k/1vn8paPLJ2Zbav9GqRzm9ufPt8LG/TsyvdLFuI+/85XjQz7cjXVrUfs6ce7w9DNG+j6F9AzrxUpK0ILOHjNAAdKz2zGjfwfFFs0jNEPkZYrWeeBd5xxx0AVo/I5LL6epqEiD957EbxI0z6YoyaozhmawuPrx49/5zvdhTdjKWaPcfHMvvuiap3IVFMu1AoFAqFDUH9aBcKhUKhsCFYnHj83nvvlcZRwKqIqSfcHUOFpsxC2ikxeeTqwWJPM6Rj8ZuvlwoJqoxVeoy8TFzKRib+fbvGxhYsNsqC8PcErlBGalzmSDyu3MU8Wms4dOiQNJIDVg3QWBTMom5/j13x+DsbY0V1Ui5AHuympUI0RvmosLX8TnSoiUEdiBGV1ca3cmnkds7qx6L2vQS4iAzsogNWFLJgJ1GQIZ9uNJ5VeFKey2xs5v9n0SyLlf19E1ffeuutMl1g9zpga4R9KvG4peXXCTM4M3E8h16O1lMeI3PGi77t5tRvkXicRdyRETCXcS/r24VEMe1CoVAoFDYEi2LawLirUeb5wOruXTHuiBkalPFLFr5QBZuIDn/gstkOlMP7eTcadvFRQV0iKOamDGB8fiqoBu/0I7bEBnX8mQW44bJnBkg9bTEMA86cOZMe68rlnnNdArRLjApRGgUCYrbH0gYfkIXDx3KABzb68mC3qbmjOqNnmP1xOEv+3z+jAh/5Plfulplr1pyrVMRo93LYwzoHhnDZovGtGCGXLWLEXBYV3Ck63MaY7+23374rfYPvPx7HZmCppEKRe6Jy22PDWH+P02dXzWhMzbnOZSFJ1foauepl42AJKKZdKBQKhcKGYHFMu7WWukJE7lL8vrqmdnes7/D5RWEjo3wi53wDhx60ekVM257lgwGYCXnwbpHTisJZMmOIdpw+v4ixMIPv0RsqnSnnF92bS397ezvV37KURqUX6cGZjTMzicJk2jvMQJgleaZt6fmxAazaHJgO0uetGDbbL0TMd07S49uKXcrmXCijwDwcttSQzd91GFAm9Yme3d7eXkkvkrjNrTs9c0BJ9qIQqMqtLtL9c9hkDuZk8N+NlWcSHF+2LNynIXNPZZsQ5Tqb2bGodTxz3+LxzflGktm9SGsuBIppFwqFQqGwIVgc0wZW9SeeZaiwd1mAD6X7UMHj/c5K6W15x+Z3ryoE4Z133rkrTV8vDlsaWYlH5fDPWFnYipPZoX9HSTV4h+u/q51tZjvQa90f7Wp7mZXptYGYVe4FrJfjTxVaE1hlx3MH1lg9gB2PA9ZlZsd5sl6d2zy6rvTQLGGIgvkwMstffkYxnR7bBnU/uzanl4yYNt/3n+cy5lVIZN/G6vhTtq2IAn/w+mZlNFYd1dPe4cAsXOZMEqLsPrxUiMP9KklL1L52T+mlsyAoyhI8GzvrBOi5kCimXSgUCoXChmCRTJt1zFEYRENP2FJ+t5cpRmVilsT6Y/+/MS3TT/KuMjowZC7/yF9cHS3Kh4xE/u6KQWS+61x+5dOdWdJyepF+LNNVKWRWt8o3k9ONrNTn/My5PQHdZ2xjkFlMc/psW+GfUSzZ7pu+PCqjsk/oOfxFWfn3sDMlSYoswTmddUIXZ8crmoSG7SEyD5SetUMxaiVp8ZIwlvAopu3bSUlc7NOsyf1axV4CCtH442tKCuXrxTYgSncdzXleq9R63uM5lNk8KGnqUlBMu1AoFAqFDcHimPYwDCu67Mj3Ve26o52v2g0rfZp/jnXNkV82fzdmzdF3sohLc8jyUzoe3jF6tpEdLeq/R/7Oyrqyx9p7znfVI/NjVVBRwVQePp/suTnfYOWrDKyyiix6GteD84use9UxqiryW2QPodo2Ytqsx1f66YhFKQkFI5u/yoc4Y4tzY8fbQ0TlnmPz6/jycj2iiIV8zC4/E81LvqeYsB3sAeysVcqDJjsMhn28+aCiKHaBsgHhNSs6DnMukmWPJThfj77P+cgfNIppFwqFQqGwIagf7UKhUCgUNgSLEo8PwxjC1MQTJnaJ3KlYzJIZhLD4RInYIyMYFh/xs5G4XIlXzkU83gN1FnNmWDMnso1cz9Yx/ut9J2p7FtWt0349Yt11DsdQRk/ZO2yQowwEo7Oqo3tR/r4eKmwpG+pkxkQGNT58utx+VtYe98u9qEn4GRWi0j/TY2Rq5VGGTsCqGFepL+bcEqPv0RxTYum5UL7+HQOPQx/Mx9Y3/uRyWP0iEb4K5RuJx1X5WRXGqj1/bc79LlKtGJRxYCQen1PhHBSWVZpCoVAoFAoSi2La29vbuOeee1aOizRjDGDHXUHt5jOXEbVjZ4MGz25UsBM2+vC7W3vWymrfbRcbufrshwO/Cq1q+fsdr9q18pF80Q5bufL0HP6gyhodSMBGgJFxCkOFVARWDbPU4QVRmM85l7XoYBWFzAiGJTpsEGT18W1hfcXHuaq+jcba3BGd0T1mKYqBRxISxZYyyQXP18wVcJ2woq01tNbkOuHT4Tr31HWuDBwMBViVkqi2jUIT85zlsePXAQumYmussXBlhJVJrpiVR6xazROb92y8G7nqKelGJu2Ym78ZOy+mXSgUCoVCYU9YJNPmwPdeB8OuCWrXn+m2DcptJzoiz3atFpKPw5t6aQDvUnl3GQWNsTobg1pHX6wOkleHgPj68C6SmXYEtZNeh2mr4CqRa461lwqxaGXa2tpKd8kscegJkMLvKruI6B0eTyy1icLO2jPGmhV7yAJkqOAqEftUUgY+0CFiIiqoD8+N6GhdDjzTw7SVK2M0vjMXvAieaUfpRi5Wc9+VzlpJmTj8sL/HEr3o4CQlSeI1LHJlY3aeBZoxKD2/IQuYxJ+syzZEhzdlYYD5HcWw1foT3SuXr0KhUCgUCnvCopj2MAy49957z+66oqD4zMiyIyt9uhl6wi0qpm2I9NMcNjI6FN7AbGkujKjPjy18VbCN6H3WnfXocDl93uFH+jd1MACz0MiewBhIxrQtTT5UIDr8RYX97LEWVUw7smC2/7n8mS6Wg0vwwQpmFxExSCsDh5PMdKqWLlt+c59Gh80oPa/Sv/pyK/10Fr6S2XiPZIR1wj2I3lFrCLPMLISmKmMUCvnUqVO7yqCCBkXHXnqpX1RWP8ciexdfpkxPzJIj7p/IApwDZ6lQv1Hfzs1bQzTu5mwoIukq57sUFNMuFAqFQmFDsCimbTptPrrS70BNv826MXVkJ//voXb9fmdlu1Zm2MyAIgtge4ZZUaRbYuZrdbey2HfW9/t32B9T6bj9tcxi1pcr0+/NMa/ongpJ6NvK+t1255HOT8He8ayDdbBcn6yuClwPv2M3Zn3ixIld35lxRxIJZrjZISNsFcxjlJlJpCdkxsPvRKEouWxK4hNZHCt7kkg/qvTc6+i/e2xEFJMHVtcK9U50j6VXyhMg81oxZHYjPGYUS4/WAS4zM+1IsjN3RGbEYjn2Auupo/HGdVdHz0bgdY7LqnTpvekfBIppFwqFQqGwIVgc0z5x4sRZdmQ7UNPvADtMOwucD+Q6sbnIRBEDVtbpEatUPpaGzG9VlUVZefv/eZeqInL5/HhXrOrt66CskrMdsLKYzQ4K4ChNPX7anH5UBsWAIr3knAV2xuBYV2n1sAMb2I/f56ekJ4YoqhmzYxXdKophoA7U4L71ZTJGx3OSpVBRfAAVJY6fA7R9R2ZxrnSXChGrjuapsm6O5qmKnqY8ETzT5uN9OX8+3MT/ryQdmQU4P6NYdGYJruxysrbnMcvP+rEzZ3OSSVx4PLA/eJTm0vyzDcssVaFQKBQKhRUsimkPw3g8njHryBrS2IPt7tlStcc3WFlIZ36fytfakOlgmGlHUX5YZ80MOLPMVjGAlW4LWN1BR/pOVQfFOrMdvYHZC+98vd7a2sT6fE6nvb29vdL/vj7s+zzHKvy1uYhKUd2VtwBLOTybYmZrZeMjGn292LeWpT8Z81kn2pyB4ydYemb3wbELokhfzIrUuOD/o/pE0qIe62eD+fjzuPDl5vgFc9bIHsrKvccjZM7LIpLw8XyM1iZ+h8vEn5H0QUnpzgWsd4/isas4FJnEhcvP61zkZcJr41JQTLtQKBQKhQ1B/WgXCoVCobAhWJR4nGGuMZFxkolKVRCIzAVjzqgoMrZQhjqcNrAqrjRY2TiwgMrbg8WmkWGQOl4zE9kZVEjKzKhMGZ5lRjkcftauR8ZmfIhApFbweZp6xdfHp3fs2LFd5eVyRiLAOTGugV2ygB3xsJXb6shBg/zYYWMeX78oP19X5XrHbR2JkecCSmRGTCqUaySSnhMnZ4Zxap5moXd73XZ8GNOoPlyuzHjVoMJ8shouUkGx+k+Jx6N2YmO/zEBUHXiynyLvCBy0issaGWAqd0FDFMyF1x2e45lKbx13wQuJYtqFQqFQKGwIFs20jU17ly9jq8bC2cgnCqQ/x16zMKZsyMCuKlH4SmVgwrtnzxyZGSrmw8ft8f+qHr4cPn2VD++4ozTZxSxj58wulAGaZw7MLtYxlvo/7Z27cuNKEkSbY46/9v7/Z629/hgzIXKtilt7mFkNkpKGiMjjiCLAxqtBIus5FYNwJVV5rftrBqVQpfP69M+U4maKVH22B1ryGKmiVflKl5bIc6DuA9e+sZhSvuo46rj4dypnSuUzBcvtggDVdXuE2+22rtfrnSWnb3dXslOVX3XBsS5YdkrjPBpQ1Ze5ssYqINWltPIe7OeY31W8p6djrDlPRc35qOa5s9JMwXKuMcl0Tqbfhb9JlHYIIYRwEt5aaRe9SEQpMhasOJLyVTzSUpJPWfS9KCVKv+SujGF/zZQePnGrAgNTAYS+rkprqGW1PddApON8ce5pvY9PGKOgfNqf5Wej0laNW7gdPr27kpBUNf015wyLj/RUNu4T91Xt+1TidHd8hVMvSi1TfTPlkMc3Fb2gT13NO+c/nvzKvPd25+Tj4+OudDCXd3i+pnRBZ61yjXfUOhxTxT7stqfUq7MgubS6fh447/gdUqhiRa7krovL6bhzPzXtcal6al5EaYcQQgjhUziF0u4+7fKFVCRwPR1T6agn0MKp8qlYPX0wVKTKX7xTiKodnPPfcXlfb+fDpsLn/vbx3ZO3KhriLBaqUYDy4691r7C70qY/7ZkoTnVdXMS0uk6upCWv+5F9Y3tXtsPs4/A6T0qb18plD6hCI061OCuKOh6qI+dj79vh+VQqyX2GVpsp2ptjKG632/r9+/ddLID6HnA+bbVdXktaa6j2VJwK72GX8bDWvXXOFSHp7DJNprgffpbfjdN3FSPBOZeORHO7wi/qnPCeP3Ktud13IUo7hBBCOAmnUNr9SYftDSuCtRSa8lPuVOwRRUqlc8RX5kpqulzc/hmnYo/kyx5Z7tblk69S2lPrxbW00nZKhzEKXYnT3/1MdHAfj0qn5kz50wq137tIbKqptbzP8ufPn/83Ro8ed1YA+o+na+mi41U8BI+L6yqlzXuiLAeTWimokp1inXLJqXxezae93W7rz58/4728i2BX++DyvqnuJhVL1TodI9Ujt7+rBTGNodh970xKm98dtNbQktn3m8fB+dHveb7nzomK+lfjvQNR2iGEEMJJOIXS7lCZ0c9VT0WqHSBxVZ/6E/eu4foUGeu2pxTDrpqUiwhf696/6iJx1XERF7U5NTPY5Xiuda/cS+VSYav2hJNl4hFcm8PaN1XJzkWP1/8uxqGPU+enFD3VTD/n9V7tq8s86Di/usvPVdG83I6LfO/7wKhxHrdSdryGzpc9XQPCLINHqTxt0t9jNcMj1RT7+GrZroVvH5/3tqpH4e4/vj/FULi88yk63s0v9X3qLDhHsn/cvDoSPc7PuEYpanu7apjfTZR2CCGEcBLyox1CCCGchNOZxxkcUH+nFKyCpnRnmpnMyK50njJTue2qAIdH05p6wB3NhzRpqmYWDnceVYCfcxlM5qT6TK0zBaKxx/irqRe1DaZGMbirX39nYpwCHwu6JdjMRvXGnnp7O5yplu+z3Gxf5lweqtgF5xXTj2hyV4F9zqSpSrDuUvVeDUTjdlSAFV0nrvHNVIyIAbFH0gYZiOaWq/13+za5Alxa1XR8PM6pEYpb5lLPlGvFuf+UG8WVY3aBhGo7r7rlPpso7RBCCOEknE5pF1RoDHRShT3cUyLVpAr/L1hG8EjZRVe0XqUjMeCJqOMrxcN94d+pyURx9El4La+aONZa94FVdewsqtJLerrmKa9S47JJiwq6YnEGF+ynLCUueGwKQKL6OpJuoiwEantKabvrS9XUg804d3YWF9WCtuDxqYJE/MwuaOoZrtfrmDpXY9NqNW2byncKJuXyo0GFCs6HKWXOKeldmmx/7awzan44i45rBqKUtit0dKS1rrtH+nrOYvUuRGmHEEIIJ+G0SpvKrAo8qCdE52OlEmJKzlq+3KJSEYXzvbhG9tym+p+op0nnlypUSc+CvnsqMKU6aBXgGOo80k/Nv705zFcXNaht1hyqIic9NaysL/Rh0mpSxX6m1DieU/rH17pPSaE6PlIYYzeX+nVS1oW+z8paQD+r882qFCzGNDh/pLJCcQxabV7hx48fo6p0avKZZjbOV6ru6UfabFK11jmeCons0sO4PxOu6NIjBaHcd2d/zTnjSpUqGE/Csfs+fVasxGcTpR1CCCGchNMq7Xq6LmXGp66uDFxktmvKoHx+LKowKR+nIqmwP+sJjorDRfMqn9nObzMVcaBqmnxBu6fi+l81DNm1VXyV2qbaHi0EnCuTf7qUO5vNOFW7lleeUwSw80vymqr2oSws44q5qDgP1ajD7SOX8XxOUfOuLOdnRfdeLpfRQqK27YqEHCnEQQuVKupT49D6N8WaOH80/fAqUlq1C1ZM0fGu2JK6f933KL+Xpjabz7Tu5famgkpFosdDCCGE8BSnVdoFo5DrCbXnz7qnORfJqKASmdblUyLV5Ff7SHaNFfo6rowl1+vvu3zWSfnUeywlyrxXlbNcfJXirn0ov7SKeqfCcTENysfImInJ908F4hpsqHiIXXYE/bF936ZWrDtoyeH86DCLwOUDK582x6dl5NkypjWG89H3/ds1vOjz21kc3DErtcc6FK78pxr3kdznqTVq346Kst6hLBY7ha38084K9UyZ0emecXPzXYjSDiGEEE7C6ZU2faGqYQiVDRXv5INhpCyffEs9TbmBxXc9sTnFOz1V0rdFP6JqwMLx6ePu55FNP7jupJK+y6dEVd1fuwhwFzm/1j/xFjVG+bbZbKR/lttx+eHKkuRUsot8VsfHzx6p+Mf5QIXdr62LUuYYU263iyZ/hcvlcqganTu3jPZfy7eDLKaYE0ZPu+8d1YyDTJYIWjF2kfiTVYjrqPPorICu6p3KQDkSFX+UI5HmydMOIYQQwlPkRzuEEEI4Cac3j7vSoFVspXOkNB+ZTItqrL5PzpT21WZyV3r1CM4cp1J+ilqHJvBu4nRBeDTZHTHhfzW9wAvTcqoQiyvzqcyVNR7XUQ0VWFKXgUfqXOzm2dTf2M0V3itTQJC7n6bAJ67Deafm266v9it8fHzYnul9P12/+aKfC+dq2pnJ+/b41wWmqfd4bVXjIKZ68X8XsKrYBZWpdZw5fJo7xStmcTfP+fodidIOIYQQTsKCBA6FAAAB30lEQVTplTafQI883U9lFvvyTj19VTDRFATB0oNMwfiuVAKXVtGhkqLimYpG7AJRVGEEt28cczqer0LNh0oDK+XrGq3UcajGGnUuf/36NY6x1n2Am9uusjq40pC8TpPS5n3EgLj+2gVuUUX18+rmvksJ7Ms4R6d5/Qi3221dr9e7AKepRa9L9VOBWq6QiGs+08dnudQaS52nyaIyvd+XubHUfblLE51KkbriQdNnd9t/ZB5M1rtXLJXfQZR2CCGEcBJOr7SLqUjAzm93hF0ZQeUncv6h4qsaYhzx/fB8uafl2kf1pM0SgNzu5I9y73dF8xW+y0dhIxMq30KdAyqbGkOlB7nPuLaePeWLn3XWClV0wymsqYCFi0tgydep2A6VKtdVc3Wnzl7her3eqdm+D/QHu8YnqgQucTEHqriK8+NPVhNeH3eN1bpuX49YwFycgrIguHWmkqSTv/tV1Hk4Gsfw3URphxBCCCfh8k72+svl8t+11n/+9n6Et+fft9vtX/2NzJ1wkMyd8Cx3c+dv8FY/2iGEEELwxDweQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEvKjHUIIIZyE/GiHEEIIJyE/2iGEEMJJyI92CCGEcBLyox1CCCGchP8BQ1/B0WsHM94AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -819,7 +3048,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAE9CAYAAADnDXB4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXncnVV1738770tGCIRZioKCVEUGKyogMkMCYRQoKCJcvbf2OvS29Xprq5ZYrVfbol6rtNKCgGARREQgzBISJkVEQBEiSurAIDMZIGR47h/P8z37d9Z53iEhmJO3e30+fMJ7zjPsvfba+6zfb629dqqqSkWKFClSpEiRsSXj1nYDihQpUqRIkSJrXsoPfJEiRYoUKTIGpfzAFylSpEiRImNQyg98kSJFihQpMgal/MAXKVKkSJEiY1DKD3yRIkWKFCkyBmXEH/iU0ikppSql9HRKaVr4brD5btZL1sJ1VFJK+6aUZqWUxoXPt210dspaalqRNSDNvHjPWnp31fzX8/6U0nkppQXhswXN9d8Y4nk3NN/fNMR74n/njaKN41JKP04p/e+W7/ZIKV2QUvpNSumFlNKzKaXbU0qfSim9bEQFvISSUpqTUpqzBp/3xZTS7DX1vOaZC4YZm85/a/B9j6SU/nUNPWvTZl3cueW721JKV62J97xYSSntmlL6t5TSnY2NPj/EddNSSp9PKc1NKS1sdL/7Kr7rAyml+Sml51NK96WU3rtmeiENrsK1G0r6K0kfXVMvH+Oyr6RTJX1a0kr7/GFJe0j6xVpoU5E1J6eonj9nrcU2nJpSOq+qqhdGce1CSUellDaoqmohH6aUtpG0T/N9m5wt6avhs8dG8b53SXqZpNP9w5TShyX9o6QbJH1c0i8lrS9pT0l/Imk3SYeM4vkvlbx/DT/vc5J+mVLar6qqG9bQM4+WNMH+Pl3SgKT3raHnRzlU0lNr6Fmbql4XH5B0d/juvZJWrKH3vFh5i6SDJd0h6QVJuwxx3RaSTpb0I0nXSzpyVV6SUvqQpC+q/p2YI2m6pH9PKa2oqurs1Wm4y6r8wF8j6UMppS9UVfXoi33xf1WpqmqppNvWdjuKrPNyjeoF6H2S/nkU118r6SBJx6j+0UZOkrRA0q9V/0hE+W1VVatjr/9b0rlVVS3hg5TSfqp/3P9fVVV/Ea6fnVL6v5KOW413rTGpqureNfy8h1NKl0n6iGqnZk08807/O6X0rKTB0Y5TSmlCsw6N9n0/WsUmrpZUVfXT38d7Rin/VlXVVyUppfRPGvoH/v6qqjZprjtMq/ADn1KaKOnvJP17VVWnNh/fkFJ6haTPpJS+XlXVi3J4ViUG/+nm34+PdGFK6c0ppetSSotSSotTStenlN4crjm7oejekFKal1JaklL6eUrpT0fTmFW5P6X0ypTS+Smlx1JKSxvq8OiW697RUCTPp5TuSSkdESm7lNLElNIXUko/afr3SErpspTSa+yaWaq9VEla5pRZChR9SukjDQW0SUt77k0pXWp/T04pfS6l9GBzz4MppY+lEAYYQl9TUkqfTSn9otHBIymli1NKW9g1qzJuu6WUbkkpPZdSuj+lNLP5/i9TTSE+m1K6NKW0Wbi/Sin9fdPu3zT3z00p7RquSymlv2ie/UJK6eGU0pdTSlNbnvfplNKfNfpYmFK6MaW0Y4sO3p5qGnBJqkNOFzWTya9ZkGqa+4SU0s8aPfwwpbSXXTNHNep9a8qU6Jzmuy1TSueklB5q9PxwSunylNLmI43RKsrtkr4j6WMppcmjuP45Sd9S/YPucpKkr0tak5TuWyTtJCmGBP5K0uPNvz1SVdXiiFpGY/OpDodVzXz9ckrp8ea/81JKG4Xn/a9mXJ9LKT3VjO3R9n2c7zz7qJTSV1NKTza288WU0kBK6U0ppZsaO/lpSml6S9cukDQ9pfTyUSlwDUoz55enlF7fzOdFks5tvjs0pXRVsxYsTvWa92dxPUmBok8p/WmjkzemlC5s5txvU0qnpZTGD9OW10j6WfPn123unNB830XRp5RmNN8fmlI6sxmvJ1NK/5DqENCeKaVbm/l8T0pp/5Z3HtiM6aLmvytSSq8dSW9VVa0c6Zrmuhczb94maSNJMeT1ddXsV2ftTXVI8K5mnJ5p/n/kEGFVVcP+p5qKrCRtr5puWippm+a7wea7WXb9zqoXkzskHasaMdzefLaLXXe2pGdVD/j7VKOLbzTP228U7RrV/ZJeLul3kn6imjacrppWXSnpCLvuoOaz76impE5WTR8+JGmOXbehpH+XdILqRf5o1ejoKUlbNtds3VxTSXqrpN0l7d58t23z+SnN33+gmpZ6f+jfG5vrjjFdz5P0hKQ/l3SApI9Jel7SaSPoarykWyQtlvSJpq/HSvo3Sa9ZzXG7V9J7JM1o2vW8pNMkXSZpZvPds5IuDG2pVKPFmyUdJel4Sfc3/drYrvtMc+2XmzH7C0mLmneNC89bIOlqSUc0bX9QNQU4aNf9aXPtWc34Hq/adh6UtIFdt0DSfzZ9P1bSYZLulPS0pI2aa16nmpK7i7GV9Lrmu2slzZd0oqS9VSPSf5W07Ug2Pdr/mn58WtKOje181L47T9KCcP2C5vN9m+u3bj7fvXnWdqrpwZta3vP3qm2v898o2ndqM/Y+ToONLZ2/Cv0clc03/aqasfxn1czGh5r3nWPXnShpuaS/lbRfYwcflfReu2aOuuc7z14g6fOq586nms/+ubGh96i20Xmq59imoR+bNde/Z03ZQHh+z9jZd59txvwXqh2r/STt3Xz3wUavMyTt3+hiiWw9b657RNK/tsyl+xtdHijpk81nfz1MOyeqnndVYyPMnU2a72+TdJVdP8PG9XON7j/XfPbFRvcnN9fdJukZNXO0uf/tTd+/pXptOFrSD1SHmF62Cvr9J0nPj+K6w5q27T7K5/55c/208Pkrms/f2/x9QPP3PzX/z3r4lyO+YxSNOEX5B35j1QvdWTYB4w/8t2SLYfPZVElPSvq2fXa2en+MJ6iezGeMol2jul/Smc2AbhLuv1bSj+3vW1Q7Ack+40d2zjDtGJA0WXUM8y/s81nNvYPh+m1lP/DWllvDdV9U7TRMaP4+qblv73Ddx1THiDYfpo3vae49YphrVnXc9rbPdlae8AP2+eclLQufVapR3JSgk2WSPtX8vbFqR/Ls0MZ3xX40f/9c0nr22bHN53s2f6+vevKfFZ73ykZ3f26fLWj0Ps0+26153jvtszlqWVRVOyF/NpoJvrr/NW35dPP/X2/GaMPm7+F+4FPz/x9tPj9d0s1D9ad5T9t/24/Qvit5rn22RXPv/225vtWBGK3NK/8InxOu+7JqZyDZ3z8aoe1z1P4DH23nR83ne7XMg5NbnvtrjWJdW017aLXF5rvPNm163wjPSI3+PyXp0fDdUD/wfx2uu07S3SO85zXNve9q+W6oH/jTw3X3Np/vZp+9ufns+ObvcY3OZ4d7+Q377Cro96X6gf+75voUPl+/+fwjzd8fl/TQ6tjGKm2Tq6rqSdUo7d0ppT8c4rK9JV1eVdXTdt+zkr6rGvG6LKks8aSq40LzVXswkjqZ+p3/VvV+1UYyW9Iz4TlXS9olpTQ1pTSgehG/uGo02jzvDtXeY5eklP44pfT9lNLTqhHBYtWDMpRORpJzJe2eUtqePkt6h2r0S6xshmpkeUvoxzWS1lPtCQ8lB0t6pKqq7w5zzaqM2+Kqquba3/c1/15XdceM7lO9aMTM6NlVVS229yxQPbn3aD7aXTXrEKmrC1TrO7bn2qqqltnf9zT/Ygd7qHZWzg+6+3XTxr3D826tqsqTiuLzhpPbJX2koYJ3SimlkW5oqF6381WZl6eqtr2PjHRhY9vnSTqpoVKPV0PXDiNnSXpT+O/XI9yzlUaXiKeU0paqnbvOfzbPV9Xmrwh/36Pa6ScMdbukXVNK/9xQt6MJbSBXhr/vUz0PbgqfSTVrGOUx1XoZUuJaNxrbWQW5pOV9WzfU96+U9f9xSZvH0MYQ0qbv0cyRVZU23T9ZVdUPw2dS1v2OqpnU84LtPKvaDuKc72e5XdLLUh0ePTSFMOVwsjr74L+gGjH83RDfb6w6UzzKI5Kmhc/aMjOXqqZylFLaVr2Tf9vR3t/I5pLeHZ+jOtlHkjZRndm5nmoqP0pXQmFK6XBJ31RND71Tdbblm1RP4Ik9d49Ovq3aSSA+enDTbl98N5e0TUs/fmD9GEo2kfTbEdqwKuP2tP9R5SzuOB58HvXSlqT5qOpwBW1RbE9VVcvVUPnh3ifD3zhFvJf493Xq1d9O6tVd1/PMyRrN+B6v2in6P6qzhH+bUvrbEX60rw9t+ttRvIe2/VI1S/W/Ush3GELOVR1iOFXSFNW2PJw8XFXVD8N/IyVoTVQeA+QJ1Wg6/gA8ruw4/Fv4blVtfiQ7OFfS/1Q9Z6+W9GRK6dthTRlK2mx7qHnQZifPSZo0wjtiP6Mju7qysqqqrrWt+bG7Qple31f1GLAujsbW2/S9umvgcNKm+5HWGub8+erV64Eafr38fQl9iM4U69uTklRV1dWqAd92ki6V9ERK6erUkmcUZVWy6NW8bFGqs11PUzYGlyclbdny+ZZa9a0WD6k2uvjZqsgTqmNjnxvmHctVD3xbItQWkn5lf58g6YGqqk7hg5TSeur90Rm1VFW1OKV0ieoY4amqqehfVlV1s132hGo24Y+HeMyCYV7xuKTXj9CMNTluI8kWQ3yGE8LCsaWkTmZtsyhtot6FZSR5ovn3FH+eyVBbxFZZmoX0A5I+0LBcJ6teQB+T9C9D3PY+SRvY36tq459q3vM3o2jf/JTS91XHW7/tjM0alCcUnMKqqpanlOZKOiilNJ4fw8Zp+6HUyUKOz1ldm++RhsH4qqSvprqmx8Gq17Fvqv7RfyllY/VuC4sS17r719C7q5bPXqs6pHBcVVXf4sOU0lrdxbAGhTn/YUlzW75v3df+exbWoh0lORP0uubfzo6OqqoukHRBSmkD1fkS/6DaQdt2uBes8g98I6dL+kvlzHqXGyUdmmy/bdOow1XHikYtzSLwwxEvHF6uUk3R/rSqqueGuiil9ENJx6SUZkHTp5TeqDpO6z/wk1U7BC4nqXeLEehhkkb3A3KupHelOgv3KPU6T1epTnxbVFXVffHmEeQaSSeklA6vquqyIa5ZY+M2Cjk0pTQFmr5BULurjhdKNV3/gmpn6nq773jVNruq7blF9RhsX1XVOavd6m5Zqu4f5R6pqup+SX+T6p0dQzpYzXWrLVVVPZRS+orqxLLRbJX6B9Ws1pdfzHuHkbawB++9VrWzHbfJtcmLsflhpQnBfDPVGf8v1f5xSXUIRjVzcdEIbXqxa92qCOGJTmgrpTRBNVJ8KcXXxZdS7lHtKL+2qqrPv8TvWl2Zqzo36ER1/8C/SzWj+YN4Q7M2X9qAh8+llKY2odRWWa0f+KqqlqaU/k7SGS1ff0p1ssH1KSUyHv9KtUENReu/lPK3qhU1N6X0ZdVe/zTVC+6rqqpiq8Gpqn8IL0kpnaGatp+lmqL2LRNXqS4Y8gVJl6uO3X9Iga5T9r4+nFK6UtKKESbw9aoN8kzVxv/18P35kv6bar2epjqDe7xq2uYISUdVtuc4yHmS/oek/2jYl++r/nGaLumLzeL5+xy35yRdk1L6R9Ux0k+qjo19QapzPZo+/nVKabHqHIrXqnYob1Jv7G9Yqarq2ZTSRyR9paGxr1Q9sf5ANQ06p6qq1ipvw8i9kt6fUjpedYbyQtW2cp3qsbpP9eJ5pGp7u2YVn7+q8lnVhWL2UR23HlKqqvq26rDQSyVzJf23lNImVVWBpFRV1fUppY9K+myqK5mdqxqhT5S0g2qHbrEy4nwxNt8jzbxeKOlW1eG4HVQ75y/12Lxe9TxqQ5JrS+5Wvd78g4WPPqxMdb9U8hvVc/3ElNL9qrP2fxFyXl60VFW1IqX0QUkXNbkWF6tG9Vuq3tk0v6qqIR3cBtyw5XEHSeNSSsc2f/+isloEDfM0UXVStiTtl1LaWtKzVVVdY9f9RtJdVVXNbNr4fKq3VJ+WUnpENciarvoH/7+Tz5RS+qzqHKIbVYctX6G6INNtw/24o4iRMv1OUUvmrGrnYL5CFn3z3VtUL3SLVE/Y6yW9OVxztqTftLxvjobJWl+d+5W3rf1WtQE/rBpJvCtc907VtNhS1fTJ0aq3SF1i14xT/UPzkGrjvFHSG1Q7DmfbdQOSvqJ6IVmpvGVyW4UservnH5vvbhmizxNVOx33NW18UnUCxiyNsH1JdSLWP6pe/NHBt2TZ9y9y3DqZ3cPZjvLWq79RPdmfVx1C2TXcm1SjvPutvV+RNHUU723VseptUTeoXmCWqM6+P0vNFrfmmgWSzhuif7Ps7y1VOx4Lm+/mqHZWvtrYziLlhJ53xue9mP/a+tx8fmrz3YLweWufWuZNWxZ9z3tG0b5pqp24k4f4/q2SLlSej+jpkwrbl0Zj88qZ7gcOYX/bNn+f3PTzd82zHlTtVE4Nephjfw/17LM1+nnwscZ+R9xiuJr20DN29t1nJS0f4rvdVDs7S1QnTn5C9Q9HpWbLb3PdUFn0W7e8azTZ5scpO8CVpBOaz4fKot8r3H+B6jBptJNK0sfD529T7dA/pXqteVD1duo3j9BGsv3b/vvXcO0jQ1x3X8t1V7W860Oqt/UuVb3e/Y/w/VGqf68eaa75lWpwvcVIumb7SJEWabywByT9fVVVn1rb7RkLkuqCP39fVdWIBZOKrLuSUjpb9Q/AgWu7LWtbUkr3qt6h84m13ZYi/7VkdWPwY05SSpNU79u+TnVS2qtUZ0IvUY3+ixQpMnr5pKSfpZR2q36/seW+kpTSkaoTSE9b220p8l9Pyg98lhWqadcvq87UXqyaOj6uqqq27WNFihQZQqqqejDV5ZjXdInedU0mqQ4FvhS7FYoUGVYKRV+kSJEiRYqMQVmdQjdFihQpUqRIkT6X8gNfpEiRIkWKjEEpP/BFihQpUqTIGJS+T7KbOnVqtdlmm+m55+oidAMDdcG4FSvymSbjxtV+ysqV3Uf4TpkyRZL0wgt17QbPN1i+fHnX8wYHB7uu4VkTJkyQJC1bls8y4Zr11luv6+/hzoagvVwzfnx9bDL94nPa4/dMnjy5q01Lly7tupZ/n38+V1+cOHFiV/ujDngWuot9lLJOaAfX8gzXJ99xD+8bTtBffD/Pijrzd3pfJenhhx9+vKqqrlrskydPrjbaaKOOLmjbokWLevrIv0h8t+sJ2xmqz9Eu2vpM++kzY8xY+ljwnqgfxpb28AxJevbZuv7F1KlTu/oc2057XMdDjQNCv9xWh/qOZ/B8bNf1iUSdxznJXHGhz7SZ/vD3BhvkYoPoHNvn7zbb2XDDDastttiiZw64zfKOaCPomGv5u61d6IPn09c45lLWKe2PNhvnp/8/90T7Gy4HK44D99Jm+uXPiPqin9hf/N4/G8rueO+SJUPXNGKOR93EtdKfH98X9ett5Dv6yvr9wAMP9NhOP0nf/8Cvv/76eve73936OeILtstrXvMaSdJ999VVLl/72td2vmMQH3usPvQKA9lii7pMOsbL9/6DwnMx3jvuuEOStPnmdcLwJpvU5xg8/HBOvscgXvGK+qyNxx9/XJK0ePHirvc+8sgjnXsmTZrU9d3PfvYzSdKb3/xmSdIvf/nLrr74osnCx6TYeOO6VP7vfve7rvf7jwKTgh8O2sZzN9qoPhPhySef7OqTlPXHhKJN3IMet9oqH6gVnQ7et/vu9SFht99+e1e7JOlHP/qRXN70prp898yZM3uqt22++eb6xCc+oR13rM9k2HDDDSVJd911V0+7n3iiLrjGjwjtf9WrXiUpj7Ek/cEf1GfivPGNdeGq226rq8OyIKC/bbfdVlL34vLQQ3WZ+Ti2v/3tb7ve7wv7llvWRwSgQ8Zss83qdWXBggVd75WkP/qjP5IkXXRRXR0Vm3nmmWe6nsHfL395PgCN/t1/f11B9ze/+Y2kvND+4R/WhyY+/XRODKeNP//5zyVJW2+9taSs81/96lddbfUfXt7HPKXv2AVtffTRfEbRzJkzJUl333131z0+fyTpDW94Q+f/77zzTrXJrFmzemxnq6220rnnntsZL9rC3Jay7WyzzTaS8nznGuYaNuSf/fSndRny17++rmAMGLnxxhsl5fnKXJOyzmjLU0/Vxd9Y1/gb507q1WX8odpzzz0lSXPn5iJ7rH2sZ7QVm/rFL34hKdswc17qBVlcg67uvfdeRUEH9A894pwuXLiwq188y/vHvbQNneOk+NrPOspa9J//+Z9d12666aZdz5KyPf/kJz/pet+HP/zhYatGrm0pFH2RIkWKFCkyBqXvEfzAwIA22GCDjheHDIXapV50ghfpqAHEhPcJkgIl4eGC/n784x937gV5/vrX9bHYsAl4nKDjadPygVq0Fw92u+2262ozyMYRLqjy1ltv7boHpAM6xgMFWUkZKaAL3gsT8bKX1Ue0OyraYYcdJGVmAGSF1w9C3HXXXSVJF198cedePOR9991XUvaS0QHjx5hIvVQcOgK10F/06cJ75syZ0/MdklLS4OCgfvjDus4K4/PHf5wPJ7vwwgslZV2CShlT/t5///0794CUYALw+EGPIDp061QfjAqIDWQLSwFqctQPQwCqg+kAvfC5MzivfOUrJUnHHVcfDjZv3jxJ0uteVx9Uhd2DWpwxALnAECDYI2wGqF3K84PnX3vttZLy3KON9At7lzJ7wPP32msvSZnt+sY36mMC9t47n1+DfUXaPYqjdvqDHbjtR1m5cqUWL16sI488UlJmjhh7KY8V7WZ+YK/0y9Ex+ob9wYYis8K/2IkkXX99fe4SrAQoFYSNDTvCffWrXy0pMys8jzWDNsNKSnlssGfGAbvgHtYYZzWwdZgobJVnwALwuZTX03vuuUeStMcee0jKNsP8ZfywbUm68sr6qHgQNnOPdYf5xRoqZd0yJ3beeWdJeT1nrXJ2kzFGvM/9LAXBFylSpEiRImNQ+h7Br1ixoge9R8FrwyslNgxKweP8wQ96Tt/rIHe8VrxGvDcQgKN/UB2IE1SC5w6a8FgY3ifIkNgebeR9HnMDnYAEQPezZ8+WlD1dkJsjXdoICgdJcQ3tcG8YVgNvGETw4IMPdv3NM9C79/lf/qU+8hyEQjvw4B944AFFAT1cdll9ki1MAghh++2371zLc4jTEb9rk8HBQW222WadmOJuu+0mKetP6k2MAyXG2CsoScrsB+MC+gbx0GfQ0/z58zv3om/0ABsCwwJScASPnpkH2DfvxXY8Ce2aa+pDrGCkyAeAbbj55pu7+s2YSxml8i/30Cb658ljCHpDDjywLkXP3IMpQDdSRq8nnXRSly5AZ29961u7rvPngMZhe2655Zau/sB2uS6YE8Mlgq5cuVKLFi3SddddJymPNTbqcvTRR0vK85U5DavhTAesAagURM/cYh7RbuaRlBE7axS2wtxGfL2kryBZ3gNaRV+MsZRZJmyf8cbOYFhgaTwfCvYAuwYlY0vY7k477dS5B12AimGsYg4G9sa6IOUcHPSIfpkbjLmzqTFZD33RdtZT1kMpjwPrzki/Sf0iBcEXKVKkSJEiY1DKD3yRIkWKFCkyBqXvKfrRSEyWgSqLe6Wh46VMhXEviRbQdiSjeJILAr0FtQx1BG0IDeXUGbRQvAY6mq1ITnfF/cfQdlB1hCRI9oGGlTKtxnNJwKMdUHJQd1LWD/QxtBqfQ5ES8vC2sh2KthG+gEKPiYFSTrQhqe/www/v0g3v8YRKKG7oSSjaNlm6dKl+/vOfd8aWRBt/HlQxfYlJb9iJ07nQfvT1+9//vqRMMRLCIPHQk9UId0D5Yn/0A51Aw0rS9OnTJeXQApQv40TCmYcy0PcxxxwjKeuLrYf0F1qfZ0jZRmh3pHcJV2G7UtYpfSeREV0de+yxkqRzzjmn6xneBhIm49ZUbNiTnrCRuO0TqtapeYT56gmzQ0lVVVq+fHln/jMXjzjiiM41cT89euNaKF+3HeYU1DnjQD/QKc90mjjW7GDOxToVfC7lRFhsE2oZXfBeH/+4V51+8gyS/bBhtzsS8biGe7Brwow+BoS80F98P59Ds/v8xa5jYjBUOiE9D33SbuyZMSC0wri97W1v69zjITqpe0tqP0tB8EWKFClSpMgYlL5H8AMDA9pwww27EmyixOpMeIQxOcy3EZGEA/rFU8YbxbNtSw4D2dAmZwak7E26xApIoDA8TbxI0It/Buon2SomjvA920yk7KXiseP1xmIS7u3j5fJcPGk+x7MloYkEGimPAf0DtZC86B40AqtAQRU8dpJseJ8zMegNdBwL37gsX75cTz/9dAfd4XV74RHQI9uI0Ad6ImnMURjsx0033dTVFsaB54NSfEsNthO3UmKj2JRXBwOFgU5IQqNNjBNIV8rjf8UVV0jKyInEz1iUyZOG6DuJRTAU9I+tcBT9kDJTw1jdcMMNkjL6Y35h08xNKY87eoOJwr6wHWfqmMska6ETmBDaDtsm9aJ65nabTJo0STvttFOnnejat2U6mpeybTK2IE+fYzAzkZ2DKQApwkR4IiP3kLDIs7ALbMZR/0EHHSRJuvrqqyXlMcQeaJtvreMzbIPiO9gocwIG0ZOJmdMx6S0myDlzGBkikDRsBm3jXl9LKOBEgivjhA3zbC/kxPNZpyNrwhrm6xtrPGtf3DbXr1IQfJEiRYoUKTIGpe8R/IoVK4ZF71JGH6AjvG486lj0QMqoC2SOR0ucj3uIe7lXzDYRkCdIZr/99ut6lm/NwJONjAGeO96+1wQH/eCh0y+egSfdVrcajxOECqp4y1veIikjkbaa5+QO4A3HLXagZrbpSb2FNEBHeMWgDS9vy3O4BhYAlMe2tvPPP79zD3rD24etaZOJEydqhx126KAKPHZHcrSXvlDEBZti/L0wB+NCESQQFddiW6AIvxcdci3XoAOQiMftYW5AxSAs8hHiVkt/J/rBVmKREsbWY4qMA1tEaQv6gw0CPUkZzYG2+Bsd8Xlb2VnYpBgbZ/6AXD0fhjZSKIatdMwRcg1c9/vss48OFlOBAAAgAElEQVSkPMa+HkQZHBzUpptu2nP2wSGHHNK5Js5h8l7QJXPQESfvZk7HssPMQdYU32LHuDOXjj/+eEnSl770JUm5qJGXWCVvg1wT1gOYtfh+KTNUbLXkvdiu54e4bqQ8p0HssWgMn3v+DoV7mJfoERvFPmCOXJ8gadZP/kW/oHPfqsp32CbrnJfclbq3KDJfec5oztroBykIvkiRIkWKFBmD0vcIfijxuCZeHLFpEG70Hh0B4CGDcHgeKAnBy/PSsjAKZKIS5yJ+xvv9sBmQGl4/z8AzBPF4djHeLiiL+GLMNiUG5kVreDdoC6ROfBsv3WO9XIt3CnIEJYGouKct8zaeAEY78Pq9FC/IDH1FxANyp7ylt43+uI6jpJQ0bty4DlLjXs/kZxxAISCLGAP1oj7ojgId9AO0iC1RTMaRQdzZwXsiS+WMUUSatAXES8zaD39Bz9gt48I98XNHcMwNkFssOASyd/aHOQayZrzJGkcHtMsRUMzFoC08E0TsKAyWBJulXzwXVOgHCxFL5vnDlbteuHCh5syZ02GcWCe8JC56hx1BX4wl65HH28kZiLtYmNMwYTBgHr8HmXPtBRdcICkXleFvvwcGIJbnxQ5B8hSMkTKrCernHtpMgRvmq7MxoGx0G3OPYnllKa9f6Iv1jrkdy227RCRN35k/bbts6DtsBjbK/OVfL6fMeDDHSqnaIkWKFClSpMhak3UWwfue73hwBzEWPEK8bi9RCJLAoyQjmmxLvG7YAc/CxIsDaca95XzuMVFQENn7IHeQDejbkSIxL/oVz6aPpVD9rGo8dxAibeJ9XOvlTdEjCAT0A3IA9cVz3KXshYNQ0H08S/qSSy7p3HPAAQd09ZP4HXEz4qqOLr/zne903dtWpwBJKWnSpEkdTxyv23cqYEegA49f+vM9FgrCgSE65ZRTJOX4L2gSxsORADoE2dB3/qbvnj1N7Bs0gi6xYWzJ2YGYac+YEgsHYYG+HP3TbvTEtR43lboRPAiHg1XicZ2gMrLaHcHFOhagc9As3zPmUs7sJ2bN3GCuMxY+n9D9cAcUIQMDA1p//fU7iDC+R8q7G2hXPFKWe3xXDesIdsUYMj4gXVCl2wHrDGwC1/B81htnAZn32Cr3MC677LJL1/dSZiZhqNghASpmrDmAiVi9P4f30r/IhPm+8niuPWtSZAjQq6N2z+mReksYowvP9Oe5sX4ApZKxO98lwjuJy8fywP0qBcEXKVKkSJEiY1DWWQRPNqqU0QBojNgNXhfo2OMmIJahsiHx0PDK3ZPG44tHbYK02/bXgqhAR/EgD7xURzYgc2KfeLa0CZTC3+6Fg5RoN21jBwBIx+PbIBvuYV81B7CANkEbHidGiKdSNY6dBVzr1aHoKwgElOzettSNgEGG9NnRSpTBwUFNmzatcy1sjCMG9OCoXso2wxhHZC9lezv77LMlZdSA/sgyb4vlwVbATvB8jzMj2CLvo888N6JMKWdUX3rppZJy3gHxWuZIGypCx7BOPB9kwz2+FzjuMcfO+Zy4JsjVWaA4B/14VX8/1dFcGCfmBgxFzE/xPjPnnIGIMm7cOE2dOrVTR4DjiT1/46ijjupqP8gaNhAd+MEqcVcG60A8WIU57/kXzC3eR+4KTNfll1/e0+fIjnAt7yf3xw9tYswYK+YnayZMEfbg7BbthsVizQBps7vBJVa5I6eBtpMfQDscPTvzJGX7Zu3i2eQGSHn9gpnCZmCFaLOPNc9jPWhjMftRCoIvUqRIkSJFxqCUH/giRYoUKVJkDErfU/SxVC00pdOe8TACqOqYKOf0d9wSFg9FgAaFrvFEGa6FpiFpg2dBt/oWNGgs3guFCLXYRhVH6h8KK55Hj068AARt4aAV6Fs+h5rzfpGciN6gpUg2QSe01ZOeGA90f9hhh0nKiTpQZ57Ux3MZF8IuMVGPpB8pU2R85+V5o1RVpWXLlnVsB326jknogjon7IGOod09yTIeEIQ9QG2j47YyumzDpE+xZDC0qBdogd6EMiTcw5iyXZHwi9RLP9IP6FfoXkI5XmAJ+2W82XJGYhT26ImujD9zIZ4Lj35pF1vipGxHbCtkrsTtUtinlMeHuU0/oaehkZ3OjeVh2QLbJs8884xmz57daRvz1cN89IF1B1qaseTdvn0VWpu1gfnA+EDRx6RIKa83rjsp2zWFfDxUx9rIZ8w56P24FU7KYSLGgeJYzE/CDNiO65X3Ed5hnAgFco8nx5H8iP6wc3RBf/nc5yK2z3f0CxtmvLxkMe3HJqOtso76nGjb+rwuSEHwRYoUKVKkyBiUvkfwsVQtSMGPqgTJgE7wnPHiQWyO+vHI2DaGRxnLMOLFeYEWPD4QBd4qQhKPo0sSctjmBbKO21jYRiflhBWuISEnFoQAtXhBFdpA4ghtJdkNROL9Bc2TLBTvoR149l5aNLIkoD3QDF4zxUaknISG1x+3VvEe39Y0Y8YMSRkBocdZs2YpysDAgDbaaKMO8mHcfGsdiJL2gRpiARpPQgIdgFxAw3j39Aeb8aQ+7Axbfec73ylJ+sY3viEpJ+g5gkcPjDs6hingc9/ChZ5pN1v7eBa2RHucWWErE6gOFob+gOB9PsEekGCGMF5XXXWVpIzWHB3BFMTtfugCFNhWyCeiSeYP48Y8l3JCI+PUlvCFTJ48WbvssktPmWbfaktfYTiYc/HoXGfJ4jZZ/oUVw/7425EuCaqwJOiDZzL+PseYy7yHe7BZ1g5/D0wA8x22jzbxfua8H7bF3KAfvBc2iyQ/P7yLpErsmjnNvI/3tJWaZvz5DntGJ/57ASPAusY8HioRWZJuueUWSXluxOS+fpWC4IsUKVKkSJExKH2P4IcS36ITPUn3sqUcxwIR+z18F1E/XjfowrdMxGIlIEOeD3ogviXl+BVxn7vvvrurzdzjKBwPEy+YWB/eKAeT8AwOPZF6i0fg4cZjFL0QCEwI/SF+xTYVEA/69fggSIlr2JZCG/GoveQv7QVlcA/boUAsfg/tpq2gpDZZtmyZHnnkkY4XD3LzdoO2QAK0E3aBmLyjfsYdlB230GFDceuYlJENqAtkC7pkjH27HDFWEBXxWsaYYiUeH5w+fbqknCcAGuGeaKNedpgYPyiZfqIr7iGe7PfH/IQYr4c58K1x6In3wYjtueeeknrzIbw/zjz43zBiPgexxbacnCgcNkM/WB98KyLbR+O2PuY4cw0ELOV5wnjzL0iauQV74fFtEC16YN6gY/p1wgkndO7BjmI+CPeA3H0dwJ5hWShwxNqEHvnX49sxVh0LhzHWsB1Sni/Yd0TH0YadlYllutEf8xU78O2GrCcwXzwDdiuyUFJeCxlL/z3oZykIvkiRIkWKFBmDss4ieC/LiYcZj6KM8Sw/eALvne9AKXiPsSCNZ6bimceiB3i+EVVI2Wvk+aCVeLyqF4+JGdB40LQZrxsk5RnDeLK0DRQb2+Z5At5H7x9oC2/c48MIqBa9wQLg6YIUPF/h4IMPlpS9et8FIGXk6v3C2yYL3RFVFMqNcg3xaEdUZOyTqwDiI+7MvfPmzevcw3jQp3gEa9Qx8U6/Jh5RCUvTljHO8/kXPaEf7nXWBhROX/kuHiQD8nYd8x5QF/2ELQHNkF3tz4GZAF3GAiGgL0dUMAPoFZshVhoL/EjZvrh3qANkPOOcQ6G41xmIKCtWrNDTTz/dYZXIkfA+YzMwKBxvjD2jN0erxMdB/8wb2o+eQN6OVtE/84+Do1hbGEOfR6xfntvj74tHAku9hZMYy1jem/45m0p/aBN9Zxy41o95xp64ljWSZ9Bf1vO2gmWgb+w9MkkeT+fdcf7ASLCuojtvN98Nd1BRP0lB8EWKFClSpMgYlHUWwbehyOhV4bV6jAjBywUle1xWyt5pjJlK7eVERyu8h0xRkCIxNw5w8PeAXEBJoDGYChCPZyaDFPFKKbVJHA8E4SV/Yxt5T5v+ooBSQUewKnjHIG/33PHqYRloM6gJD9sRMJ40nnrcExxl3LhxnWxv9rz7oSnkATDOcZcBiMTzOkBKtAW0DYpgXHiG2yWoALRK/gT2zL2ed4Dtfe9735OU9RVt1mOXoKGIDGEMQDjYuR/+ETO84+fowjOh0QGoEtRNnDOW9vS/QYqwP9Ee+Nz3ajsL49fEfdC+TrCDJbJzbbJ48WLdcccd2mOPPSTl+Qpql6SZM2dKyowH7AjX8L3vAqI+BOwBc5drmI+wTT6msB7cw64T7DDWNpByDglrCLFqntu2dx60y3jTNv6N+RzoU8pzg3EH8VIHg/XHmUrGgfkTkTTPp5+wDlKeP+RMYSOsHdiSjwHrKPOH56NXWFXvF8+nXzHPq1+lIPgiRYoUKVJkDMo6i+A9DoNnR+wI1BWRtscZQVB4fMT08XSjh+ZxNFABHiDPAKmBlj2LGoQIssD7xUsGxXibeQ/oHm819hPP3jO9iZfRRjxnEElE/1Lv0YvEYNFJjNG7gKTpJ94vz4xxO+87HjxePf+CuH0fMbkT/MvxjW3y/PPPa/78+R1kAJr1fcK0gbg5CJe+tyE3WAjsjvbCioCaQGF+7CQIE3QaD9ZBvMYAtkneQYzxg2Y9jhoPBCGrPu5/Rze+EwCEhs3Tz3jcrqNL7AhbwWZ5ho+h1F3dDR1wTRxjUK1XnsM2QM/xACb675n3oDnaFHeauGywwQbae++9O4cmYb+gcimPA/OcHJW3v/3tkjJqJEYv5dyIuHvDEabUbTMIz48V3hhDbJR941KeH7BY9Bn7hgXwnQD0FZvhWFzyU+gDTJjHt4l5x10psbKcz1v2mMfxwK5hsFi/fU87Ge/YXWQBfE4g2AptZM0lvwJb9h06sIrYPP3sdykIvkiRIkWKFBmDss4ieM/cxJvH44pHf7bt28ULBlHhUUevFKSLlyllJAE65lo8Q9CyVz+LNdPxbHkviMrjgrQR5I6nCTombhr3gkrZY8cbJSYKIolZ/d4v2AvyFMjwB1UeeuihkqTZs2crCvfCSNAf2AiP64K2QDhxZwPPcuaFMQaZ0Z82mTJlit74xjd2YsVf+9rXJGXUImUkjR0wZqBJ4pke70ZnPAebiXYHCnPEEePLCMfqglYd2YOoaBP2znjwTM/B4P95N3HLWNcBm/VxASmCELE/0DL9dxYNdod7aT86IQZLmxn7NmEnARXiQFYe84/5D7yf9+6+++6SumP1Efn6WQpRFi5cqLlz53bQMMyXrwPMKXRHX5mH7JRwNhDkB+uDXcVaCui87QhoJK5rzGnPMaH/xLPZDw+CZjx8rQL9ci3rDXYI+qdtbt/0FbaJdY91jvHy/sZ99jBkfB53O3j/mAusEbSZ+Uxb3VbJc7roooskZbtwls6fIeX5ypwvWfRFihQpUqRIkbUm5Qe+SJEiRYoUGYOyzlL0frBGLNYB7cU1bQUtoPige6CWKFEKvQYV49ttoL2gI6EbSfDgvU6zktARKVMSSHifU8HQS9DcUNgkEEEFQml6gQso7Ljlha000JROQ3mpWylT57EATRs1j0ABQxuTbAWd6JQpCTAUIIJWZRyhM6EGpd7COcPJsmXL9Oijj3YoOPTnW/WgqAkpkLDIGJKQ5fZGmACKkjaRiBPFKVrsgHAI1B+JWvFIUynTmbQ72gNj69vIeD52y7hjd/Q7zhl/H2NHCeYrr7yy6x7f6gaty5zgGnQEFYzNOkXvZVKlrE/6E4/z9P7Qd+ydfjCebcd7xnLRbTJ16lTtv//+na2JrANuB/QBXaIPaGLs2osW0T6o/5hch/Aep5axTXTL3GasaY9T5swh9MF6Ew9Z8sJDhA+ZY4wt44Ld8Qy3A8ab9Qzqn/AFuvIQK2tDfB7jw1Gz6NW3dCKENEiKjSWsWQMk6ZprrpHUe0QzuqZtnsyKXRMmGy65t5+kIPgiRYoUKVJkDMo6i+Dda4zJGSDDmMiDxyZlz5nn4J2CNOKBIm3PAdni+dEOklJ8+wgeYEQUeNgkb/hhM6A50AnvicmEoAJHf3HbEoid53MP/ZRyEQ50gEdNwlZEX47+eTfeb0xEw/P1RDCQTSyOQdtBHY6M0RfPJ8mmTZYuXaoHH3yw006Qmwv6IemJdzPuMA5uO7SXpCYQDsiXZ5BY5kxOPPQjHs7B327foCzQF8mW2DDj4luC0A9tBY0zR/iXxDVPsiKZC53ALsRDllwYZ8YsJiFhu9iOFy+KSVy0NR7v63ORNtJu2Ceey1j4NrnIrEXmwGXlypVavHixjjzyyK57PTkMHR9++OGS8hyjj9gt28q8vbTLGQEpH+wE6+jIGtTIusJcwFbiEdTex7jlERvlXk+2hcWMCaw8lzbzfmdYQOMwU7AAsTCRF3LC9iNzwFzgPdiQM3AkssL2kPhImziwynXC+omNsj0vJk06u4LN07+2AmH9KAXBFylSpEiRImNQ1lkE72UE8bjw0vBKQat4y3i4Uj48hKI0V199dde9oAgQnsdwiIHjDYPO8azb4nV4tHjUoEm8RLxS305HfgDtBknRNvrFMxw14f2C4LiW95K34Hq8/PLLJWXkiRdM24ntsc2krUwsz+e5IB7QpzMYoGJ0CxImjodn7QWDGA90TvnRNkkpaXBwsPPuiF68PcQV0TloknHxbW20K8aVQRG0Df351seI6mE29tprr642eoySLUcwHLyftsatllI+RAf9YAegShAi6PO6667r3AtijkWY0BVMgbNNcRsk44/dkZ+CnrFhvwd7Yh6he95LARkpl3gm1kscmufGIlQuzA0/fCpKSkkTJ07s2EEbmwT7wbtYQ9A9bSGGLGXbxjZAhtgQ7Axj4FtE+Q4WDDtDp8SmfbssaxV6gOFgncN2/D0c18xzeR/PiEXAvEAN17DOsV2XOQgadyaE+UgODlsR6Qf3oGefT+gpMmEUJIoI33XCuhML28A2OKvFujOast39JAXBFylSpEiRImNQUls8rZ9k6623rj70oQ91vK6Y6ShlJAMiJHaIB4qH6cdNgjhAjcSdyNzEWwRdgBT8uXi/IA48Xe710rEgmXgIAiiI+JNnM8fDcmgzsTiQLc/w94GgYiY6/WmLvVHeFg85FslAf+jZ0ThtA+VzbzzO1WPL6CvGvhhrdOJxe/rKc/DC99lnnzuqqtrN37XddttVn/nMZzp6aSt5yrN5F6wLfWM8HK1iC9hVPNCFz2MM2d8DKmcMyUfgGT4vYXVgR8h34D0wOP6eiGRj/3gGjELbzghYBeyhLXs5yjHHHCMpMxPsxIAxwpZAu95+BAQcGTHPauYzYv/0i/g3bAYoV8oIjXg0tnnIIYf02M6rX/3q6ktf+lJHT9iMH5LC/9NnSiDTTuzN2xDLHGPzvId+MJY+X+JuIb7jb+zSc39YQyjpytrBteSwePlm0HDcqRKPR2bcHB3zPnIi4m6eWIDGn8ucwyZhSLAZ5kpb+WHWcdYS8h74vdhzzz0798D0wmJFhoJ55uXJYS2cTZSkWbNm9dhOP0lB8EWKFClSpMgYlL6Pwa9cubKD6KT2fcIxix0BvXC/x33iIQR4aHjUIAO8SvekQacgeVAK74EFcEQFCuezmE2Mhwuyk7IXioeL50omNns/QQyeJwCCQiegIgTE7XF7YnygDDJd0Q2sAMjFUSbeL/eCEIi90gf39vHmYRGIueFh815nT2APGI+2XQ4u48aN6zA8scSwtxcdEmsnbkrb3HOH6YAVYVxAGsR2GWvPoidL+vbbb5eUdQraxy59XCipSvw2lgEmhuhzIx71CyoB2aM/bMwzyrErYv7oj3nGM7y8LaiOfePoJu5/5lmO2o844ghJGWXCOsEYca/H7WPJX/6FCYmMlQux/qEO+pFqVDcwMNB557nnnisp5+z4u8hdYbyZc7CCnovDeNB/EG/cQYJ9+G4DbJS6BLQNW8EOnTWLMWPWF3IusG9fD1lHWANjDBxkjb35+hzri8RDh7Bhr20R20D70SMlZNGvs7fE7WEO45HT2Ldn8bPWxnLR6Ib1x3e8kD3PWj9c/kY/SUHwRYoUKVKkyBiUvkfwg4ODmjZtWget4O35nua4xxJURGwFj8wzxvGYQSugRLxSPD8Qox/6gDfHc/GSYQhA9r73Eq8blIyHi7eKl+/xM9AHzyPORGyU90X0KWUkQPyWzFhQLOjF93eDIvGcIyPCzgPEUR/P5R7ijqBdslk9no6AwkEGxC45bMQRN7E99uzHNroMDAxoww037KAl9ONsBpnwIF7aAgNClrnnKsSMZ5gGnkUfQTagNCmjR/QCKgbR8H7PF2E/MtfG4y6xC2c6dtutDgsSd+Z5XMt8wv493oieQF+MB2wMtuv3xDg5eiPbHeaGZxG3lnJsnwNdELKpY0xWyvOUucB8xa5hmbwSXNxP72xZlKqqtGLFik58m6OAnZVDT7BA9JGxBfl6hjrrFu0DadI3mAnYAc9Y51reE6tftu05hyWLh8tgk7TD10bYKuyX55MRD7MHsibuLfXuiGGuMMYwY54Jz0FLjAuV5mAk0D399ip19BWmFX0xBogzOTF7nvegqzg3pLwWXXvttZK67aCfpSD4IkWKFClSZAxK+YEvUqRIkSJFxqD0PUU/MDCgqVOndqhsEiy8hCMUEls+oGugmNoSI6AboZKgh7gHWhw6x5PDoN6gcKDKoRKhkJxu5908D0qT90EjewIJVDI0GhQcNG+k5qCVpUwbQpHFs9bjQTlSpgX5l7bFJJ6YGOTXQp1C/UOdQmk5rU/7oTqhwQ855BBJmYL0ZD62u9Afp86jLFu2TA899FAnWShuSZJ6zziPoZO5c+dKyiUvJemb3/ympKwn+jFjxgxJOekKCtCTueg/44ytQgvG5EQph4SgQrmG52I7nlwFlXj88cd3/U3/oIKh2dmCJWUKlufxfuYI73fdY4McooLNMO5QwLzfy7dCCRPSgqqPJWy9NDJzj+19zCvOjifk4nQu48TzL730Ug0lixcv1g9+8APts88+knIoyJMfsUHax3jTFvTo85JQFiETErnYshUTQT1xlvnGXIPajmuYl2+GwmYOECpjHNq2gTLPsS/mJ/ZHSJJwjNPhhALRBW1mPWK98YRJEjNZM0gsjInA3ONrJP+PbcTEVtY/T5LG9pi/6Bg7hOb38A4hWuZpoeiLFClSpEiRImtN+h7Bs03OE1Wi4NG6pyxlZBMPB5Gyl3bUUUdJykkg8QAZL66B4J2CYPB48ThBD17ggs9AcBzbyTPwQL2MKm2JW31ADKAA/vYjDPHIQb940rHsqCNF9AQaw1vFGyZ5jGc5govlWeMWMsSZEDxzPGraz9jQfx97vHgQJ0ikTQYGBjRt2rQOaqBNzqyQ9ISHjxfP1jRsy0u5grKwGdpNP0iGIqHMk/pAaiAqdImd0VdPekKnJGryHpAV17qtYuu0my1I2Bd6JFHQERXjT9vQDe0A+TjqY6yYA9hKPHSGxDbsX8po/OSTT5YknXnmmV3tYM7ccMMNnXtA5vQLHWMXrAWuR2wdNmO4w2YmT56sXXfdtYNwGfPTTz+9c80HP/hBSTmRkDkOosZ2HO1hg1dccYWkzPqBgtE1OvFxQd+sFTCHrFXxkCApsy/MKdi3uK3VE8pYM2C6sAMSAbFD3u8lq2kLuoVB4Fmg5batddh+ZFPbtoEisUhWbAdrlNsqTAHjhS6Yk7TZ2+gJnlJ7snA/SkHwRYoUKVKkyBiUvkfwVVVp2bJlrYdGIHhreHN4W6AFPHcv+oAXx2fEFfEiQa18TnxVyqgE9AOKwFuMW+2k7CmDgkC8PJ+DDSiSI2WEHo+/jdvwiCN7vBGvF7SKh0tMCnTuBSdAEfQDrx/EAGJtOwYTvcXYJ22Lx8ZKWX+xJCpFK4h7efyMbXIUERmu0M3AwIA22GCDTtvoj28nZBshSA0bAmmjC9/ChYePHrgGWwI1th0gxNihH9BLRNiOxuk/z8G+iDeDdImvel9BcCB64p20LRYikXJ+CzYKq8H72B4F4pakc845R1IuBANCx3bQCVutiNVLucAN4wKaROcgdx9rEDvzhe+wN9YER6YUjyFG7UxOlAkTJmi77bbrjO2cOXMk5e1/Uo6f8y7mI1uqWIfc3sjfIS8I28T+WAeYa14QiLnL+hOPjYbNwsb8M+yM9QY9oRNnN9FL3Eob5wb24OiZ70D3rL2gYeaOF9aJ2/94DwwYdu1FfxDYBu6FIeDzthwqGBZ0jh4Za7by+VpMv3ie50b0sxQEX6RIkSJFioxB6XsEL40c7yC+AjoElYIW8B7bih2AuvDmYoY4nqAjT9AjqJSDM/B842E0Uo55E5PmvXjBxPH8UASKUuB9x+fHo2Y9WxtvNCIEdMLfjo7xUvkOtIFOQF144Z6tixcO+gNBgkjov98TD/RhnNAN6MORFu8hl4C+t8nChQs1b968TvwUT92z8kELMVYcs8AdAaAzEBXjBCqBgQDpEs+XcpYxdgBipzBNLJYjZb3EA2RAX7AmrgvsF6RG3DmiQFA6iFKSLr74YklZxxQaIb4Nm+WMATpmtwiIGgQHuo05FFIeX+yP8cfu6YMX/4HNQo+ME/kB2D96lbI9M29g09pk6dKlmj9/foc1YV767h0Yr5gZjl6IQ/uhTIxlLNjFvTBUrGFuB8ypeLhQPKrX0TH6pw3xcDFYTmfy4u6cyIChcz73/sX8DWwTJgWdeFEmxhvGjnGnDC06xw78+F2ujQfEwICgV8+DgHHhfTF/g/ntu1JYi+iP5y71sxQEX6RIkSJFioxB6XsEv3z58q59j22CZ48nSdwPDyweWiFlJAvCxKOMJWtBJh5HIwMW9AMCAUHhAXr8jENGQGh4kbQZb5i4kz8H7xQvGy+SbFneT7xVyp4ynizPAEGAXto8UXRAXI5+8DkMgqN/UAvX4LHDTODZexyVdsPA8FzaRh88m5UxRAe+jz8KmdD0kX44Eow7BkAvoCDQhaNjPgOFgQTi0eJotQ8AACAASURBVKjc46VDGYeYdf7d735XUtabl/KkLbBOsBgwR7AAbqPYk6NsKbMYIBoyoi+77LLONdh+jMUyTvTH9RjLmsIQMD6xfC9IW8rzldgof2NfvN/LUzOW6ATkCyMG4uaQGCkjbt7t8fkoxOCZt+Sb+C6XeLAS7UbHxKF9DGBz0EfcaRGRu699PJe+YzvoBV2wtkm9eUFRF6Byz99hTqAfsuRBseSHcK/PT9A97ceGov587eAe5jT9IUcHe6cdbncg9HhwUDx+13NaQPmxXgk22/aeWA59uPob/SQFwRcpUqRIkSJjUPoewSNx77kLKJj4It4c3jAxHK9MxLV4n8TnQHt4fm17IkHuICaeCwKJn0s5HosXDIKjPyApRwigOFAQqIv4FsiOfjpDQTwTJBer7/FvmzccK0bxXDx735uLgO5oP94wz6ffHsvGc6efeM7E+uOxsVL2zPHI244DRZYsWaIf//jHnSp0tM31BBqCraCdjPvOO+/c81zQD30ha5r4M8gOJHX00Ud37iUjnHFhHGAFQP8wS1LOYgbRxENO2qprYRuMIWNG/gixZbLdXSfYPkwKGfCgLuK2N998c+eeGG9+xzveIUm64IILur6HdXKGgjE97rjjJOUcAN7HGGN/Up6/oLCZM2dKki666CJJuTaBVyCkz/RruONiOWYYm2T+e02GWFGSeYr+0LlnqLMmsCaBWhlbxhq79Ng4DFeskBezwv0exo4MdPI2sG/06DUBbrzxxq73MdewL8aL93q9j3hQDSwDcz1WJ3QdwJawq4J7mFfok7VSyvbGnIgVSBkLz8CnjTyP9RSmABv1g7giy0D9glmzZqmfpSD4IkWKFClSZAxK+YEvUqRIkSJFxqCsMxS9U+RS9wEH0F5QcH4ohZST7ZyGjGdcQzHzLOiveK6wlKlD6FsSSKCuoIn8fSTiDHWYDTSYhyC4B4qS7VfQuVDO0J2eXBPPNoZWpfhGDDP4PbSFNkJl0Z+4TU/KeoNO5/mxWA198L7yHbQqOmLcvHAHlCw6IbmqTQYHB7XJJpt02g8t6AlFvAN6EKoU2j2Gefw76G2oWfoBjcd7oY2lnLQJvRtpx5jQJuXwCvQmeo+hqOnTp3fuOf/88yVlajGWc4a6hIZ022FbJHonFIFd3HbbbV33+vNp03nnnSept9AIVLAnfUGzoieSnmLREt/KGD/jgB+28PE+T1IjuQ5qebjwzvLly/X44493wgLMRcZP6k2yjAlf0N8eqmOtINGLPvJ85g/3Yo9SHnfeB+1MOAYbIvlSylQ89zK26IW/oa2lvHWUa3hPLALGPPItb8wn+sV8h/amfx7m4z1soeUaQgKE+bA/T3gj3ELYgrbRDubiLbfc0rmHfsRQG/3he//NoQ3Yw0iJ3/0iBcEXKVKkSJEiY1DWGQQPWsUjA9VIvQUrYqECPEH3pEHuEZ2QnAbCwWPzYit4byABvFO8VpC9oyLaH4vWOArytnsbQDugbbxVvHs8Ty+KwfPxUmkLOiH5xROzIosAMgDpgBRJSvHDbdj+x/tgChgv0Cc682vjVkG8Zd4LYpEyquS5p556qqT2ZJfx48drq6226iln6QUs2FoIsqIt9Ifx8eSqeNAN401yEgwLjIgzHWydIrkOuwB9xYN2vA2wMXE7Fn+zJdE/I/EKW4qJZfT34IMP7nxG33kfLACJRbAAvsWSJFL6EQtFYX+xuIiUdcvRrJdccomkbMPYqBebYk5wLwlStJ3+OosWj5weTlauXKklS5Z03s064IeOxMOLSHqEvYKlcUaRLWDYQWRJQLb0z20VBoL1Lh4uQ788cZYiRVdddZWkPA4kH6JTZ4wQ2sBaQYIeAivoJcBZg+JBSDyLtrUxRmzpjWVgYX24p62t6I/yxjC0MDy8w4W1ljYfeOCBknKJ2rZSxszL4bbn9pMUBF+kSJEiRYqMQVlnEDyeWCwp6gJCx6PF+8bT9rgPW7FAbnjKcasEiMORNm3gGt7LM4jNgjKl7jiylNEPKBnvNB6vKmWPFq+YfuC1gtI8ToyXD1ICGRL741+PvYFIQbVxuwhIFB15XAsPmT6je2JwfjANQntpP94x/0b0J2WUB/L95Cc/2fNcZHBwUJtvvnkH2YCAfIsO3jrthMUgzg7ycLsDHfA8kBrjDzMBWvGYIawHugSdsJ2M773cKO0HufD8WHCnrfAMz0GXIN6Igjg4xb+LsVjGm/c5y4CA3ON2U9rB3842YF+0ga18lPXFLrETKY9LLPpEW2m7b5OjXC+lTr3PURYuXKi5c+d2yqWCRB1dguqZh8SiQXcgQLffWJ4Ze2OewsrBtDjrCKMSC/TE/Bc/OIhDcmgD7B/rUdyeJ2X7okBPjNeDfPnc5xNx9Birjsjdy82CoNEb+TBRj/TbWSg+4xryQ7Bz7M2PDWbbHWsIzAu6gGX0+cR61lYsq5+lIPgiRYoUKVJkDMo6g+BjAZU2wVvkWjxLPFr3fCnSQUwMzwxUgscGgvcSq3wG6sPzI9sUJOeMAagHJMXzY9zJM1JBQzwXtIeHyfvxiinT6e3F2wWVg3hA+KAlKWekk98Qs+d5Jqjf2QaeB5olFsbnIBUvHEO+A7sf8NxpM+Pm2c7ohzg4McY24Zhh2skYgwilXpQNAok5BCABKcdUsR30AgoCAYNAvMQq+oCN4R5sFt06WqXdHKuL7aIL7MJj/SBYYr0R6WJ/FNThcynHVhn/iBwZD48Px0JUPJ8DmbgHm/ZStSBPDoahbC9sBu/1GDAMxUknnSRJ+o//+A9JeR6hi7ZStfTVj6yNsskmm+jEE0/s2GI8eEXKNoge0AF/E4v3cQFpgoLjLo3IsPkuFz4DjWJn8ShtZyaY3+gyHhTDe8mvkDJzwlwA4ZJjwlpCpn/bMcWsIdiSF6uSuu2NvA3ahs1id6z5zAlnRuk7eowHx7DutB0rjX0zt7Ed7MTXN/JdsMXhjqnuJykIvkiRIkWKFBmDss4geFAz6MnRMTEcYlF4p8RaQJXuSYMoQP14a3jsIIS2Ix8RvEM8XLxSPE5i1VL26mkbqB+PkPiWI3j+H48ahO4I1Pvv2awgBJAp+gKxghwpnSplT5Z78czxitFF26EWeLTE+NArsVJi2n5MKGgVpBDRJUjV43W0H/QS6yO4PPfcc/rJT36ifffdV1LWk6OHKCBs2gTi8vFnDKMeuCYenuNIl3FAl9gmbeMe3xHBeBNfhFFhTzaIzecENglSBlFhQ7Q17qX3/pBhjc6jDTmrwWfohvlE3DvmuHiGMmOIvcMqwAYQ+/cdH9jT1772ta7nx4NXnPGjbW37qaNwyBXZ5x/4wAe62ihlpMdzGTv+po+wFlJG9dgZ8yQeIwsD4+9jLsEu0TfmHPPfyxxjK6BkxhDmMB4OJGXbY0zjgUXMdVgNX49Yc7Fvnov9oTPf+cR6w7jwPNrM523H/LLmY7/YCr8TsJ9e5ph1h+/i7wNzx+cEwmfDMcn9JAXBFylSpEiRImNQ1hkET9zFY1JR8PC9+pOL74klvoPnT5YvMSkQAAjXs2dBdyAdMoZBRcTIHF0Sr8J7pC14p3iljtzw3kErtCFmsYJwL7300s69ZA+jN5AD8XtiSp6tjTcPigCR8Dk6o61ejQykCGphnCLq8Hg6SIO2wBSAHDmwxKvVEcuLcc42mTRpknbccccexOMH+oA0iZejUzx+4p4eQwShw0aAGtELiC0eCez6YFziHl/sz/NFaBs6xi64h7Z6Dgb5DaB7bBJd0E/yHryCIgiGtnItOR/MM2dw6CO6ZScJgg1jQ47+0RNzIu5OAHX6HAQpMn7MI+YXc9L3P2P72KivB1GqqtILL7ygY445puu5nj0da1rwfGwGO/aDXLB/5jl/H3bYYV3viYe2SNnWQdAgTtY75mkbY0TbsF3yXsjr8HUnVkzkuawp1BpgPrUdPsW99I8xZTwcAUd0D1uLXvkbG/U5z/OZT+QH8Px4BLGUbZR5ii2Sk4E+/UAkdAqC9xyZfpaC4IsUKVKkSJExKH2P4MePH69XvOIVXXu8pe595WS+49nyHbEcvEmP++H549lFdBdj8450yfLEoyRDlbgWXp7H/EF7oDzuYU816MvbCIIiTgoqwtPEawW5k7Es9aI7EAGeNN6rx/hAQXi0II9YwQrxTGieF+uxg/bog3v7vCciwljtzREJ8U28eK9oGIV64qATnuPV9Hgn6CHWmScW6nkA2BsxT/5F19gQffbqhPQV20Rv2BkxanQgZYYgHnsc2QfP7OXd6MvRiPeLtnu8EbsmRs04gJppj7MMEbGT94CueV+shujtBxkyTrFOuh+7CrJlbOlnjNf7nmnyTuK+7qGkqqrOe0DlzjzAKDBWoEnaS5s81s96w7vJcqdOBLqIxyxLefyxs5gRjy68xgFrENns7DbgCGP049X9Yl5LRP20jRwQ7x9oG0YHJoV1pu2o3kMOOURSHn/0iG3Sdhg+n/PYE/aFjugDzKnrhLbAVKBPbAc7cYaS93hVzXVBCoIvUqRIkSJFxqCUH/giRYoUKVJkDErfU/QvvPBCFz0PLdZWJjMeIgHVQ0JEG03jiUJSph/5HhrSjxiFro/JZ7HwiVM8UFNQwfG4WpKivF+HH354V7uhiaAfoaGg+7xEJYlptIl7eS/itD6UFW2CqiUkAN1Kv6H0vc9QcyTvkNRF6MHfB13P+6ApoS2hKz1JjaQn6DvfOhVl3LhxmjhxYidBjvHwRD/sib7SPp5Pm7xAD/ZIMhp0M9Qeut5vv/0kddPtvCdSo9gFoSKnMKFECeuQvEWSGG3z8YhH+8byxlCN6M+TCAk1xTZBL6M/T3iljTyHEqnoiP5g3051oy/sDyoYO4Oi9VARIRrmJbqnbejIi5Vgv4RQ2ra+IgMDA9poo4069zPmvhZhp9Do6JKQDGuHzznmLDbDOPghNlKm1n17F7aKbfIexiduRZTyGBJeIQRFm2KoQ8qUP+Mbk/pYb+iDJzUfeuihXf2KyYRtCXlXXnmlpEynxyTPmBzJ91K2HQ47Yusb6x5riId30AVzkefGwmEe1iIE4KGldUEKgi9SpEiRIkXGoPQ9go8CQvCSkSCXWMgCbyuW0WwTPF3uwbPFQ/StVfGQCdBC3DqB1yflBBKQPIlStIn3+eESeJr0h2vwpEEIJJ3EcpB+D0gO5EQSnCdK0S8Spig3y1YrPGq85Jj4KGXmA5RB20Hp8+bN61w7ffp0SRkB4JmDyhgT32ZEG0AIvoUuSlVVqqqqUwIVpHDEEUd0rsHzx8PnqFL0RBtuvfXWzj3okrFjzBivmTNnSsoFdRwdgaCuvvpqSb2HwaAvTyLlO1AwLAP6xw49aYx3Mh6MLWiYRDBKlGKf/m4QNcg9HjHsaIzxQI+gImwShgqk7wmBJE/RJuZa3FLlaJb2ogvsOSaesW1KynOB/vhxt1GeeuopXXLJJR12BBbN1wHmHWwCaBGd0/cZM2Z07mEuOSMo5YQ1+oodODqOh+6AiunrcOW8QfvYEOOw5557SpLmzp3buZaxjEfXIrHwja9Zs2fPlpTZBtqIrmKRKCnPbxKRGSf+pa08wwt6wVrEpGXmLTrz410Zd2yFcUJ/2L1vo2Q+0e62tbYfpSD4IkWKFClSZAzKOofgEY83DveZlD1R3+oGGsATA1GAPPBaQcuOOPD08IrxFkH78ejKNuE72oS36p5hLMRBm0GdeJrRe5VyPAmkAIKKx3h62Uf6BcKJh2ngSRNT9u1roAaKAOG5o8d4PKnUuw0LREq/OKrTj6X9zne+IynH+hxRRRk/fry23nrrnq0tHGbi93NsLOiVttB+z29gzHhuLBpDSVnGwNF/RHkgT8aWuJ8XVEGXII546AZ276gQ9MtzQY5sbQQ1UQbZ5waMB4iaNoP+EY+FYvNx++WBBx4oKR8PS3zfGQrmDXbAM0Dn2KHHzA844ICu58GiEcdlHvlxyDAu9MNZwCibbbaZ/uRP/qSDoBlrHxdsI27rZDz4149KZh7wL4wHfWT8WVucFQS5csASz6WkKzrwLY/M5Vi8CrvANn0doE3oB8SOTYGkyXtwJiRu3URA0qwTfnxrnJ+suYwh7+FvZx3jgTtcy9zAlvxQKlhE1lf6G/MgnJlgPGKuSb9LQfBFihQpUqTIGJS+R/Djx4/Xy1/+8q64y1CCtxsLNeA1OiLGA+MeYiyg/eihtR0PSKY4cS284ZgLMJwMl5WJ18jz8FZBYbGEoxfFAFUSMwJt0M/Yf/8MAfWDRMlmjTFTKaMI0AzImDbzuZeZ5P85kGSXXXaRlMfrK1/5iqRuhEDcnudRzrRNxo8fr2222aZT3ANP3eN/eP4xBgrCiMWGpMx+gChBDYwTCCrGB70vV1xxhaSsfxDvwQcfLCmjMakXETJOoBSe6WwG18QcCBAW/YQJ8Ux/0Dh2FrOzGVMvGATyBNXTNpgQ2AVslNiv95ViQsRxzz//fEk5ju6Z0DAuIFTyRWC3GDcfa4R5FXfQuDz22GM644wzOnOcdcFRXcx9AO0z3jGWLfXmAcFsEOuHKQIlOxLmPbBY8UAX5nZbljk7YYi1g0S5B7uT8viS3wKTwjihg7adSDAEQ8WqvWQsQl8ZX2wUho82YsOeE4A++Rek7jkFUnchJp7P7wEMIfqkX16ozOe/lBmkWbNm9fSnn6Qg+CJFihQpUmQMSt8jeA59wCMk/hJjPNLwR4dK7Sgcbw5UhjeKl9oWRwexEbOJsT32+nqMGu+QdoNKQCKIxwVBCHi9oD36gVdJzNTfB3rA6ycujJeMd+rIDYkHQ4AC999/f0nSNddcI6k71ocXHEuggtJ5r7+Pa0BfeOZertfbI2XUjD0cddRRkto96UWLFmnu3Lmdd6MTR2FkhDMuIE/GOKJnqZc1QA/EKtmDy9+Mj5T3cpNfACoBeUbWRMoMB3FyECHvRce+T5yxY76ASuI8IhvddUxfQTigc+wdhOfHkpL/ATombwC9ovuDDjpIUvceemyRuRdzZpjX6FXKc4MYPONILNnRPsL9IO22PdnIlClT9KY3vanDODC3PM+BOgfsiGDuMi/pF7Yk5flB//kOtIw9wCDBLEk5Tg9KZR1gvNraGEtTY1foCSTvcxm75bkgd3KNWO/a4tCsa8T4me+x3LKPD+yf5ypIvfU2QPJeQwG2AhuJyJ3++z30h+9iSWz6RR0SKbOVzH1yV/pdCoIvUqRIkSJFxqCsEwh++fLlHW+uDblHGU38Bw8arxD0ED3NNsH7ZT84yJN7iEM5SuH5eJwRuSNeyQ7PEi8fRIC3DQqEZXDPnXtA7ux3Jq6F9+pHjILMQHXoApaDz/HSfX93jEeDLkCBoDEfA2KHIBN0w/uIC3q/6DtxQeKRbZJS0uDgYAdFkDvgFapASIwHY0gbyIx3u2MvO7FqP2xDyugFFObePiwP44INoUuQljMGcf8z70fntJ04q5Tj4yBrzwOQcqU57MDtHXRM27CRm266SVLW480339y5B+TJuIMMYWOwC+aEx+85Fviyyy7ruhb9oXufM7AwIDOeSz9hhzzrPe7B9yp3UVauXKlFixZ1+srzfU256KKLup4DCgdNwhA4eqQWA/kM2DF2zXzBttj9IOVxx1a4h50rzCOvFsnzLr/8ckl5lwE2BePirBS5HNhb3Akz3LqK7TibKPXu+3e2FfaPHBzWM/rH89GnZ90zLrCA/E3bYVO8NgB2hY5ZA2CDsCF0JuUxbKsx0M9SEHyRIkWKFCkyBqX8wBcpUqRIkSJjUPqeoh83bpymTJkybAJdLMAQKSSoOafModWgxGOxFZLioLhIvpIyVQ6tBV1IYhG0nreD90BhkRgFhQldRJlTKdOoJEhBLUOzQfOyxcYPRIGWhl6NxXeg8Zw64/kkC0Gz8X6Sk6DMnIZDf4Qv+BtKC+q5LakPQefoF917UYy4/csTvaKMGzdOkyZN6oRMYklKKYcd+A56DloyJpxJmVLkO0qRQgtDC0I1Oz1OqIaQBTZEG7FLp+gZb8YOyj8evuGFOpgT2Cb9oZ/cg124kExF2/iXdhCS8NKxzDHmD7YUD/DAlnwr14033igph35ItmLOM1d8SynbybAZ6FXGlrnuBYri9i4v7hJlwoQJ2n777TthEBLLfFspY8g4v/e975WUqXoSyTz8cdJJJ3VdA83P3GXuYfOsF1LeRsg40zfsjr99jvE8tkOiQ+wAu/YiRrQNXTLP4+FWrLeerOhrrJRDg7SJsI+HBLB5wja8B/tm7eQ6PywqFgriHsaacIyvxXy37777SuotckVCnSdlD1cUqZ+lIPgiRYoUKVJkDErfI3iOi8VzxovzwgN4kkNJLIXIc6WcPEFiHklHJHjgnXqyDh4mSD2iUrxuT5hjewxtick0CAVQXOIhNniWoGTa6sWA0An/kohD0ljciibl5B0QE54y74vJg47ChjrgB6YAXfhRliT4cA1t5dAWkK+3lfGCTQBttsnKlSu1dOnSTt/pB2MvZTviGpAUCWSgZkcp/D9JT7QXRBi32nnRGsYM/cSSyYizFiSZxaNGjzzySEl5WxPoSMrbhXgf6Ag75qhTWCC3MU8Kk/K2LK5hmyTbxKSMUknMpD/MDfqJ7n3rWCwri12ge7bA+VYuEDXX0DbagQ3HrVdSTqryQ4yiPP30052kPykngLm9gUKZNyRlwcIxf5zpgP1BL2w9xcaxFdgBUKaUt0vSR2wW/TH+nsCInfEZ6w0JmZ4oiWDXMAUwdjwLndI2356JgJL9ECOpN9lOygmazGnWSvTKms/64OsOts/6HVmHmPAq5XkaD6piXrPOOYIfTdGyfpSC4IsUKVKkSJExKH2P4JF4hOCqCN6bb49CiPd6WUIpI814VKuUEdo999zT9fxYutG9Rt4NEgBhDVUGUsoeJSgMzzXGxGmPx5ZjoQ9iVDAU3OPlbWEVeC7xbfqOlwyK8djy9773PUkZeYAmKMVJ2x2N8/8gYIS4HV74DTfcoCi8uw2BICkljRs3roOWQDHHH3985xq8eWKt/At6IIfAj/4FQYFwQI/8G+PbjqxhcLg2HqgB4vCYP7ZIrJByvaCXffbZR5J01VVXde4hphqPO2bbHOgSW4oHyUiZKQBBg3iIwRL39nbTP/6OhXZgvXzrIExALLoDOsfeYrlQKeuNuYLemM8+n+KRvPEwJ5eJEydqhx126PQVFIsupByXhXFAeDfj7jFjciFA39gBNnrsscdKkq677jpJ3Qfs+HOkzJZgwzArbUWLuBd07mWmpW77pi3RVmNZbXKEHFFzbWSBGAfmtDNG3kcpr5/onDmIPfg6x3MZf/qL3bUd4kWZ5FishvEczi7ioTn9LgXBFylSpEiRImNQ1hkEH8WLOXiMs028IAuCZ4cHiPdGrJg4E+jJvbpYgpICEHiyeNTuxdJeClfELGf64JnpvIfn4rETG4olSz32RkYtmc8gKlAznq7vDiAWxr948Hj39BMU4vE00D3thwWgbejbPXdQHc8DecSjZr1cJ6gRJOolXdtkYGCg54hHkK+Ux513wKzAEPC36wmGAQQQGSKQB8jTiwmBzBhbYsnYEnrybGTGg2IeZJ2DaCjX6/YWEVp8VkRjzmChU/oDouJesuidoUIYs3hoDwxSW7ESCuiAhGMGPoyJx+DJIYAlIf8kZsb7OsGcoO8jFc1asWJFZyxpm+fMYKfYFbkKzJMzzzyzq61Stn8+44Aq5tjnP/95SdLb3vY2SfloUynbCHqBHaMdsHZ+oE0stc28BwXHHAYpMyWHHHKIpDw+Mf8JNiMicKk7Z6mtHS6RlY1lrf1oYf9cyrkW8SjZWKjMD6iJyD0+H914bhdrL20tCL5IkSJFihQpstZknUXwMWY+nIDK2Wcr5UM98CzjXul4r3uAcb+2ozspx9k9WxvUMxQi4B5nI4jTgcxArzEmDip39I9XD4qkn/QPZOX3wCbgmYPCQUEgubg/VcqoBaYDDz7G+h258f94zKAv2gFK9/gwmbvE/2Ao2uT555/X/PnzO+MF8vBYJveD5kBJIELKAWMvUtYl9sT4MKboh3wEULuU9Q/bElFRW5wZdEXGOygFRH3aaadJkt7//vd37ol5CzACjDu6p63OxsQDQRgXxhgk7HOC79ANzEjMmuaZbncg9mhXoH105bFlWBjGCz3CdnHAjzMZbWh1KEkpaeLEiZ0cj3h4j5TnN/ORuU0fOUDIM7AZf+Yy84N1gHtBj561H0vH0haeH3cCSZmBouwzczoe69xWDwEbYi5H9oe57tnmvLvted5GH3/QMKwZ8z7uNGGMfUcLcwzGlTWZsYaB9bUqCt/F97swJ6hFEPf796sUBF+kSJEiRYqMQVlnEXzb0a/IUIfNOAoDseMNg/KipxePSJRyLBDkBlrhGtrmMXE8PzzziFpphyNc3s2+evawf/vb35Yk7bXXXpKyN+mIiuecddZZkjJSJdZH3Azk5f3A+4VNAClE1oP4l5S97KgLdASy8r2n3M+9oDFQLHvSPXMZ5I4MFwubPHmydtlll45XDwrz+DN6IMYG4mN/Ms8n7i5lVIo+GEuYhqH2aLsesD+QAe8BLfneabLnQXv8y+fYyemnn965h/6AjuPRq7SN9rhOOL4zHnvqGelS97jE2DfPxYZAf+SgeD0EvgPVwoTEA0t8rNH5nXfeKSmzMtgQe9R9zoOO0R/20CaDg4PaeOONO21qq1eAbfMc5j3jgs34WDLf2IFBhTnmMAgbdsDnJywY8xyUjC7RNbt7pDzH0AdoP1aU88x01grGF7YEBM3nsABtOTJRmBu0ua02CeMb2wbrxHo3e/bszj3YEzUhPGdBysjebZf1jHmDDcU2efU69OaH/6wLUhB8kSJFihQpMgal7xH8wMCApkyZ0oPY2/bDxz2KoCTQjNfqxkPm2ngPSJ73OEIhJk3MEJREbDJWOJMyqwBCi3ta7G2O/QAAIABJREFU2cvs3neMfeId47ETJya+Txzf3w26IMZM/Arv1RECVbaIOx900EGSMutAXBPU64wBOsZjpk3EqS+99FJJ3fF04nV4ytyLhw1CctR+wgknSMqsRtseeWTJkiW66667evYwOzKkL4w76AGvngx4RybsygChgRphbEAevNeRInkM9JH3MT7YnVd683rkUkb9XBORrpTtG7QKuuN9IBIYHY+VMx4gNJAbaBC78yxjssJhaJiv6Jy5AtpzdivWGsBm0Ak247FsxgNkxvMjM0Jmu5TnBIwE87RNFi5cqHnz5nXyYGAZPPOe+QHrE6s4oi9nBZn/jBl5FaBH0Crxbc8+HyoTnbFjbru9MccYK5gCalxgQ65bxibmFjFOHuP3tkvZDrAdmBzfuTKUYFewJLBOrJX009E4axB1OGB/uJcx8XyouNMDfcGeMEZtLMO6JgXBFylSpEiRImNQyg98kSJFihQpMgal7yn6FStWdNHzbWUrI80OLQg1Fun4NoG6gjqNBW+8oArUMTQu9DT3QPU4xUPhCmivSEdT8MITVig9SnIQyVrQ/VCNUJhe6IQtH9B6cQsI9KEXDznggAO6dEF/0DmhiFi8RsqUHHQabaI/9NuTFfnMqX5/T1uxFqjE2LY2WW+99bTFFlt0Qje8z5OeoOcYQ6hYxgda1ylM9Ay9D50ak60oQOMHbkDNEs4hCYz+0FYP4UBdY7+0Px4F6+OPDvk3HueLTWGrPp/oD5RvDAEwvzzJEloXPUKNxi1WzEUvVkI/0AH6QkfYweGHH965h7Gk3cwN2hyPPJZ6t9b6UbJRKFVLCAt6mBCLlLfBkVSHnHjiiZIyLe6UOZ/R/ljmGD3GOSFlWyfZFnsgJHDxxRdL6i6NTAiAcBLhJeyOdrieoLnjdkLGHR1A73tRmVhgBhshXMUz3d4Iq2AbtBEbwnYJy3iBJco20/ehtsO10e2xrPFw166rUhB8kSJFihQpMgal7xF8FLwrR55RhttCh+A14g3G4xQRvGYvbIDnCiohKY3jImNCiySdccYZkrInC1IDNXNQRCwh6hK3X+F943H7FjSSw/C2+RePmoQ6P2SCa0BXlKoExeB1gxy8yAwoAsQAQiThjMQZLwsJE4GQKEUSIcgN/frzSKKJB9W4TJgwQdtuu21P4RZPDovjTxsYO/72o0VBfqD8eNAFNgOq8AN9GCsSPknaom2gJEeF9BU0DlKnHYyPb3UCDYH2+Y62MMbvfve7JWUGScqJnmztBPWTBMXc4+AYfy5oKJadRScUXqFPUk7EislUMETYsjNwzAXu4X2gPFCuJ9ZGicc8uyxbtkyPPvpoxz7o89FHH9255pJLLpGUEz9hHrAL2As/spakPdgf1jPGMibKeXIYrAQlauNaxVwebg3xI6WlzJ54Ah+JibQRXXIsbCzO5ImzPIfxpY3YKPPIGTESQFkbSX6kRC62S7Ipdillu6VNjBfvw3ZZq6U8x4YrnztWpCD4IkWKFClSZAzKOofg47GUbQLCJpYDOvKYLp4xyI3YEIgtxoy9wAUolHsvvPBCSTn+SGwHdC7lAw5AX8SKQEtsK3OUgneNNw/iiIV2HJEiXIPnSvESvOK2rUe0n3vREVtQ8OQZA0cKtC2WVWXrHmPh27/QH+gOdE6b2YbknjZbdOKBEW2SUtKECRM67ySW5ygGpAE64LlsI2J7j29VA0FgB/QZtMi9IC4/bITnk9MB24TOYRs4WEbqPeAC5gS0jF378b2gIZ4PkkHXtJ2Da7yQD/3Brti2BsMDsvOtg8yPaG+0HaTF964T2k/fGe94pCr2IWXEjg3xPPrtbBYCemSuDVfmeMWKFXrmmWc6OmYNIe9GysjyggsukJQLsYAQmT++rSyyIQiMGvrhe483g+5hRd7+9rdLynkUzF+fL+QJsIbAMhCnJ0fGt0li87Tb8w6kXICKtcQP4mJcnLWQenM+PO7NHIQ1i2Vg0Rk266VkI4sJoxOf4W0E3aNrGEPGIB56JWXbHK6cbT9KQfBFihQpUqTIGJR1BsHHMqrEXKTeAzrwnPGwiXO2xebxkIkh4t3hLbbFmTj6Mh5riGdNTNFZBuLN9AOmAGQISnLPk3g5KCsiGlBxPHRG6j1shjgX3in3gmb8M7xhyjKCWPFiQQMeJ0Y/6A2vHDSDblx4H+hvxowZkvLuAQ7I8NhyzL1AJ22ycuVKLV68uNNnUJ1nKIMKaT/MCigG+/A8AOyIa+PBNORTgBDoj5RZGWLRxE3RF7aLjUkZYYC60AEMCt/7DgVskngmbQNZwf4wjxxx8RnsCzFf7It/PVsb9gKbiGVU6Tco1OPfMCvMPTK6QZuMl6Mw/h8dMybEsmO5UymjPdgKLyoVhfwNkGZbvJ7cAOYQbBj6YR1Af37tfvvtJynPAfrDOkDbfJ3jWlgKxps5xnrjGfGwFNgTJV3pD+Pu8Xx2K3BIEm1gLQGFRyZJ6i7vKuX5AwpnTfN7YHmwVRgi1gXW4Hjsswv2xfizjrIexWJRwwm25LkziB90sy5IQfBFihQpUqTIGJS+R/ATJ07Udttt1/E4QTrDZcrjSXt8WWo/PCDuF0aI7YEQ/BhX7gVt4dnipeJBuyfNu+OefDxZUIyjcJA0pXFpI3EzPFs+d6+Y5+DtEtPFU8dr9qx23hdLRYIYiWESY3adcQ3jhMcMCo/v92uJa4FIQEaMge+3BwEQw/ZdAP+fvXuL1fWq6sc/9nl3lzalUEUqFq3iIcFgUuRUaCmn0nKoVOSkMUqIiZqYeOWFF7003htjiBjk0NKGgz0CxVIqUKBiIlxoPBGDhKgNIRx2u7tX9/5fmM87v+9Yz1pt8Z/49v3NcbP2Wu/7zGfOMcece3y/Y8wxu3z/+9+vL3/5y6s5hJKW4unYCXpz2Qw7y1KbkKDYJD35jtwB6CgzxrUHwekLlMQ+nO+tqrr77rurarAv/Rk6zfP9HdmaU0hHG5Bi9tF32aw2IGlsRyJqMVzzAul4FguDFcp8AehSe8YJwUNuyeT0GLZ5g/6wK3khTkfhkPCSnDp1ai323EufVo349kte8pK1PpgPOs44OgRPL+YM40Zv0GOe1cdGYDowd9l+1TqTg0WQT6Fk9Jvf/OaqGuxglu11MqUzA/Rnr2J/Wb5Xv+kL22gOs28EEyC/wZq2z7JDbSUzKr+GHulL3ZF++Uz2n661YY/Xx6W+qh9gPJsuE8FPmTJlypQpWygbj+APHjxY55133srbhnwzDsMj4zHzPHmYPd79RASaSMTgb5AlZAMd8SYza1//oQJoRFvQc/YRI+Az3qlMbM96/5JXSU/6IvYKHSWC553yvnnWPHTvkz2rX1UDVUAz2oeMxaXlLVSNuHCvxAbJQUiyk6sG8pGlvd9piiNHjtRFF120QkdYhmuvvXb1Hc+zETrotpKIs1cDZJPQi8+hyOwjNkb7kG+/+IKOqwZjAG17Lz2JKYuNpshZ6Wd+9RXSSTTu3T6DsM2POXZtcdVAQVCRGHivPoa5yPwNumdn0KT8CvHUvGTEnFpPPdNf7D8vU+oIvmdap5w4caKe97znrcYMlWcujjVlnukJ+2PM6iFUjQz0zooQ72Gr2JuqcYql15SAPCFcNpbP0521rc/mK6stmkv7aF//SycKiL2454D47lJcu6N864XusVr6IxehaugYuwF1Y0/1Odncvrb72uj/n6TQ/X4nMDZJJoKfMmXKlClTtlDmf/BTpkyZMmXKFsrGU/SnTp2qr33ta6sEMrRUUvQoHYlFPeFmP0EL9eMP2kC3ZhISegs9pC/a6sf2sv3+PpRclkIlaHy0kyQuFJJnjTsp+h4KoD9UnfehuqsGxdhDA3mJSdWgFZeODknq0T5dofWy9KZiOI7l9HvtlxJlUOVCJvsddTpy5Eg94xnP2JVIlqGTntBFhAUc/0oKG4WJZpWohyY0D/qfdDvdShzqx4okLuZcojB7YqTvmoe0u2uuuaaqhp6uvPLKqhq6pGMhlKQw0agKfwgRoCw/9KEPVdV6Up9Qw2WXXbbWrvf0I4ppO0kp57j0yXvyIhN2ZU7plX2jlXsCWtVIUs1CPV0eeeSR+vrXv76ibyUPLl1Yxaa1a930S3qqhs0Iq1jTwi7odv1+3etet+s91r22vE9yWh599Tf6si7ZtffkxTL0kuVdqwZFrmStMEiGoHqZXHNJf/SZ89KLl0la7kluQip5yZE118vnEn/PS2iEwYRBOhW/RM17RrJiJhZuskwEP2XKlClTpmyhbDyCP3ToUJ1//vm7SgTm8RfiWNVSIkfVuucH2fAae2nSLolW+vE7CXQ8Zwg7j/JB+dqBZHjyWSqS6BuUyfvmBfekQkgr+8Rz9V5JR5BIeqvdY4YuoS1tQGWJaiEAujEXPF1JKVn+kUDYWAeIxFzn5RId1e0nOzs7u66CrFqfF0hZ8hN9mQ/jyGQt8wBJSXrsFwlJeks0DoWzRchTPyVSZr+9x7EofaILl76kfUMa0JhnIbp+2c1v/uZvrp6FijAdkBxbMe9ZhEX7CvhIsqPPfgVoJnf2QirYLaVX6SRRGD0aJ1uVmGeOsBBVY44xAfslSp09e7Z2dnZWc7qUwEggQWva8Uh7TL6nF/yBDH0XA6a0byb16bf3GTPbpIvcG7VvbVmnbGrpelXzoX198l52x4by0iiIvSfoYvDsXcnAGrtESXOLfbRGuh5S6BWCl9y3hLT7ZUZdjCf7uFQO/MkgE8FPmTJlypQpWygbj+B3dnbqwQcfXHl5vPpEOD0+v+SVVi2jZLIXcid5nIVny5PNmFfVQN55JIxnKbbfY+MdiVQN5C7mBZ34LnThe4kyebnyECA371s6PqWd7rHTOWRnfInC6M+Yxe3FoUkW8vG+z33uc1U1YnoQsCI5jthVDTQPIfT8gP6u73znO7sKESnXWTXKiDqCRD90CYlmjgad0h09iLmyi351ZdWwI/OhLbqg28wfue6666pqxLGxIMYO0YtzVg0becMb3lBVVXfccUdVDZTMdiCc97znPatnIcBeTMrcQktZBhZCx0gZBx2Js0PUybJBSn1N0JX17Nhk9p89OA4GPTuC6crjqqr3v//9VTXma7/94MiRI/X0pz99z70k+7uEKKsGi5CI2r+1a6wYNTZEj0ulpLOPVUN/1m0e6e2X8fhd4SnzIx8m27FWMTj94h2M4RISZlf2jp6vs8SIYg70qa/BnpOUY+1IfekIH+k5LV3oM+ft8VxBvokyEfyUKVOmTJmyhbLxCP7QoUP1lKc8ZddFDkuxVYipe909Plw1EJNYFI+fJ9vjgTzfxyP6kZ5m74PfM25eNeL3VcOrF8PtF+KIhfo9L2IRb+Rt83DFl4w3Y/BQkXa0q89XXHFFVQ1UkXp+2cteVlUjBgthy9p2da64XdVABv2SGUgeGlO6NvsGPe7HvOzs7NS3v/3tVf6G8SnXWTWyzSFLuvaeJVQkvkd3Mp892y8qylieGPStt9661pb5yeJBRFEYCMdP8+B9WbgFypffAO3TKZ3QbWZCGxdbYaMQLzSYpWOtI4hNSVrjwUyxx1yL9GSNsR19UnzImqwaCPfOO++sFCyGPmMuUrSzdAESefjhh9dQJx1nv61vNtILs0CpmTHueTFxmfcEgte3F7/4xavPMF29SBYGgT0kC0gfxmLPcGIGK5hFhLBL8gDoCyvEhpdi1XRhTo2XnbGhLFntGe3a49lwz5RPNs27MUTmxN4kLyXXr+/Yg52K6dnzT1bUnjIR/JQpU6ZMmbKFsvEI/vTp0/Xf//3fK6+SV5eer0zhfo1gL32Y0s9LumCB9MzN/aTHWsWM7rnnnl3f5Sn7Li+fd5p95cnKksZa8Hh54+K1if6g/34hBQ8aU5AMAm+b3qAwSKEj0kSMXV/6yPs33oyZ85Bl+nYWwO9QYdWIo4qZX3/99VVVdcMNN1SXc845p37u535uleW+JHQH9Wj33nvvraoRh8tzwhC1GDFmwHxBokt1GCCZfi0tVAK90nnViL3SIaRjDqGTt7/97atnsCHQpPatI4yBS21SR2KTGBaIx3zcddddVbWetc+u/PTefsUnO8/8DePDmuibtUK/aav01q8/lu3uJzusGmjVvGU+yGNJr+dQNeZZ9je79R46yDoO5pce9JOuoXP2Jv+mavcZfOsHC9RLJlcNxoZ9ywtgM/bOPN3S9w76ouN+8U6eEvEMJgJSNx5tZXzbZ2yHjvplTt6XpxLYSl4GVrU7n2NJ9PUHKWH+ZJGJ4KdMmTJlypQtlI1H8CSvbqxaRw/9QgOy30Uk/bN+NWE/657izDyvscfysAF5TpjnCqV0L7lXp6saaKtXKhMz8ow20wvnqUORfqpcBw3llZkQh7it9p1D7vUFIJeqcV4XqscuQG69UlzViMtDY8YHRZuDZFfEf2WUJ8Lpcvbs2Tp16tTK48eEYCaqBmowPzfddFNVjes0vSczmLEGf/Inf1JVI2cAsjdvSxW5IDYI5nd/93erqur222+vqoFSMsuYrZtf9QGgFDab9m885lnMGlI3lzfeeGNVrcdgoUl2JQ7cq9Ol3Zv/Ps9sSjzXWLIypPfInsbYmH9rxDW8VeOaU7qlG7qHzjPDvTMqmLYfVOi2V8TzzqUYbs8uh6QxGtY6VJy1JnqORz+90/N7qgZz4xk67rk/+UzP22Bv9h1252eO03x4j7nzu70k9x3jwpJgIu0H8kXsJUtn2zG69k/92KsmSr7vB5G0302WieCnTJkyZcqULZT5H/yUKVOmTJmyhfKkoegVPVGYRKGGqqqbb765qgZVif7pxy72KmyQguZCR2kzj8mh+nriEJrSUbAsjoOq0hc0FEob5ZOXvygVitbyLHpN+35m0RqJa+gzSS9CHZ7JUEcvOOF9jsdoX4giwxjCFajAfuwLJZlH+dDF6ON+r7nQS4ZnjN2d26jzpSQ7R50codFOlp1E7RkLilfCFIo5k8JuueWWtfeg+VHWQhfo1rxICO1ofiRgoWLpKcdMl+hGdLQ59fe8eEeiF/qTDdGpPqPmM6nPkUG6kKglZON9WSimJ3gpsPOnf/qna787Hph2x0YlsBmXNdOLw1SNtUcXEhC9v19cUjUSQY2rX/TzeCSPzgll6J85RHfTado8YQcK8Qiv2GeEk3JOX/7yl1fV2H+sYbYi5JUJk2zRsThjN1/2xAy37VW4p5ehZkuOMVaN8A36vhe40Ua+o5fv9Qz9ChE48pchAZT8XhcHSS5euiTofyP9Up1NlYngp0yZMmXKlC2UjUfwJ06cqOc+97krNMvTzDKZUA8vHpLiSS8heKjKEQlIE2Lz7FKBG54lROsoDm97KUFPHyF2HqWf3psXq0je6leW9otWejGRquEhGzOvH3KUQJPJNrzSXixEW9CSthKZeDdk0gvdSJBSUrRqIDbfdQ0pgWqggtSBhLb9Lgw5fvx4XXrppbtQRCZXGQMGAtKEBD/xiU9U1frVmfSy14U3EvM8k4U56Ji+6FQ/9C2v1cUMmctefEl/svCMv1kTGAnvw3xAiomoJDX5m7XQj09mERbHCq0Jx/SIZDLsT14CA2UZc79SFYLLPnZbxS50RJ9oryPAfrnSfoLRy2NX9IIZ6Ove+l26qMaRQ+yIfismhYHII6L9+Jj5VtQKq2GNVw02zj7Hzuja3pi6gKi7jdpX7R2Qex5FxI71gk36yA6S1ZKYiWmzFvMSm6qhx/0S57pkgZv/F2Ui+ClTpkyZMmULZeMR/MmTJ+urX/1qXXvttVU1Sk+KR1UNLw3C6IULoIb0UvsRk+7573dMTrxHPCvZhJTLL7989W+eOq8bCoZiIXvItGp40NCYPvmd9w3hKmVZNVBKP14oFstrzuMxdACFe5bHLjaq7URHvGr5D+KzCrssXRMLFe2lP/HxRKZiy/QEGSyJGDxEop1830te8pKqGujEmMQsIVJ9rRp6Vu4XqoPYIXuIk51UDXSMiRJDxEwsFeXp8Vj5API2lmLJxqhdzBAmTFyfLSVjQE90I/aNzWCzeSTO/BqXedIGhO97eSwPSsXYGF8/crd0EZM1wTY924/e5b+X8hz2EuwJvWVRF88bi/mn27RbIm4tlwjqhmgdGdXXvEAoLwSqWo+bZ9+ytDOUzYY66wPh54VIxqwP9kq69l4sUNqOZzBR7M+ebK9iDzl2bCZ9aqtfMpNH1B4rtm58vbDZDyr61o8ZbqpMBD9lypQpU6ZsoRzIQgqbKAcOHPjvqvr3x/zilP/X5ZKzZ8+uVZ+YtjPlccq0nSk/qOyynU2Sjf8PfsqUKVOmTJnyxGVS9FOmTJkyZcoWyvwPfsqUKVOmTNlCmf/BT5kyZcqUKVso8z/4KVOmTJkyZQtl4w/znXvuuWcvvPDC1flZZy6ziphz2ip9qaKk4levqpTi/Kdzjc6F+7s28n0+U2nJWdZ+Pj3F35zLNA7ndfUxq+35m0RIZ339rs1e375q/XrTHEevY55Jlr5Dn8bld9/1Myu0+U7W38/xeW++r7dHx32O9SPFuXTnYP/jP/7jwZ7Net5555192tOetqs6YddN9r/bw5INed6Z+a5Tn/uZtkM/xtzrL5hL/UlhG73muWeysqDnVUTr7fU1oe85Zn1dsuccX35Hu71CX7e/rEbWK/R1+6a/7GPvm2eW6r4/lnzzm9/cZTsnTpw4e8EFF6zGo92cyzz/XbXbZox16U4K7TpbTpddb/ls39fMfx9zzpc+df0YR39v1dBzrwXChvq+s/Ru/dauGgZ9jrNd79OGZ/3unH/uB33+s65HjjfH19fgXpK6p0fvZr///M//vMt2Nkk2/j/4iy66qP7wD/9w7Z70qlG4oWoUGlFYRCEOE8SI8x5hxUcYnDKQChkwNsU3sjCHEpQm23cV3GF0WXBCAQsFYJRl7JcvvPKVr1w9o8CE+9H9rnSn9t2XniUjFZZQ4MQ4FKJRaCc3KZdmKCTBqJXipEd9zwsX/EdrE/IfsJ/KxaYe6YT0+9MtVqUrq0ahGJfy3HPPPVVV9Tu/8zu7jjQ99alPrd///d9f6cV4sviJ/pkHhXP012aXeqIHm7X/RJXSNF8+z/KmxuY/dJtWL8uZxZoUJ1JgRKEl+lEe1PeqRuEeBZSURjVndKCYUF4YYjPWV/rTlrWXF/B86lOfqqqxJvTNfyR+74VpqmqX804n3uc/gJw3f/Osue0FTVKvS45iVdUNN9ywy3YuuOCC+q3f+q3F7xNjokPrkiioo4xu1Sg7TcdsoztIyvfmnPb2FZMxT9q0jquGrSrKY21zqgCOvDiITrsTwma1YQ7SwWB3+uK7+rRUSEwfzaG+mS/P2qMTBOm3y4vMiTVizeReo9++a7zep++55v2H7t3G8da3vnWjj1JOin7KlClTpkzZQtl4BP/II4+soXeIi6dYNVACL47nxXvn1b/pTW9aPaNUZKcytdvRf9LRkItLN3xHGy57uP/++1fP8MShAtdm8gy9D9KuGh4l1KVkI2TgUhNecl6s0Nvj/XoGCs9x8ZShR+VA9ZFeoT3XU1ZVPfDAA1U10ARduGxGWdcsbwvZ0Dk0Q79LKMZcupgmrzntcvjw4fqhH/qhlZfvu2lPvHg61JdOe2d5W1cXK2fLJl0UQn90kWgVGoZGlTc1t1gmYzeOqjF37Mt76SQRKpvEmCg3a7z6gTXJq1j1pZcIpT9zm6hIH7VH5+aUbS1dT0rX/ZplrFAyBQTqYtdsUllqfVtC7f9/lS+FcCHrXsbUOKyNfLd5RxMbhzF3vVUNm4DcMTf2P+/LNdbDUubSd9lQ2qg+KTOMzcICeJ99KfuIIbSO7B36/JnPfKaqBstVNeaO7Vg/PTTIRr/4xS+unsXW6qP9rIezko73/4K5oBv7uTFkGEvfsJn77TubJBPBT5kyZcqUKVsoG4/gjx49Wj/6oz+68hIhA5561biasiMOsTEeWSZN8N7E+3hrPF6IraOkqoEAIVqeNVTBC8+rHiE2yJ0Hz/uHysTGq8alDy6I4EFDtBgL8XteZtW4pOKzn/1sVY14pis+IYS8SvW6666rqoG6xZl4qxCDcWZskX56DO6lL33p2nsSjdMPlIWBoJuly1qgWKiu52ak7Ozs1IMPPriyC2xGXlQkNn3zzTdX1fDue+w4r5jlxfuuuYU49BcyzVwFKIQterZf+ZvI07y7PtXvLu7wXci6aqwB/c7PqsblKdZV9lHOA2SD3fAd48skO2OnN7kS3tPZGPNYNeZSH+WN0AV02RM48xnt97yOJdFOz3t4ouLdcnJcKNWvWc11iTmzHuiWrYtNs7vMO6AHbVjTxm5PS7QqL6RfXGW+rOlcY9rTR+/B+ngGk9UvBaoazBeWy55oDC5Oqhp7ETvuV/3av62dvA7X2obkzQE7ZMt0VjV02lkfa8WzmQfj/wm6tQdsukwEP2XKlClTpmyhzP/gp0yZMmXKlC2UjafoH3nkkRUlVLU72aFq0Euot36mHOWHBqsalI5EOPQTagmFJWkD/VU1wgT9O536Q49lv9HaPpOE4thXUrMSb1D0jiehoVBLKKVMsrvtttuqaiSzoNn03XvznvNPf/rTa31Fr9KJedAv9H/2Af3d6XV0bh4ZMw5UJioOrUcneYSHLCWHdTl+/Hg95znPWYUNUKlpBzfeeGNVDQoOXYweFALI+5/NL92ZfzQkCtC4kgo2/4480i1KHUWbd4kbvyQ09u1eejR7hkzYIl16hg7ojy6S1r388suralCUfuoTSjZtRziCrZrnTmnqR46PbWjPM9ZCPxe/1C7qV9jKnGTIi2QS2l5y5MiR+pEf+ZFdz+cxT/PMjgkbooN8RnhF/7XPvujH2PNIGJr5rrvuWntfT/I1B1UjdCbsxSatCXrLUFc/nqhvqHPrFM2eCc+XXXZZVe2u86Ef7DJtle2j3r2ffq0r9pFn2q0XbfiMXo07j7wJQdibhO7sYZmkRsdDAAAgAElEQVRQS6w9ffxB6i38X8hE8FOmTJkyZcoWysYj+GPHjtUll1yyQjGSRfLoDM+Vl8jj9B1I881vfvPqGcesoETeIm8U6vqFX/iFqhoeXNXwEnnmvGBoAqrM6mEQu75BGhJZeOGZQCKpyZi9z/u/8pWvrI1BYl3VSN5R8EFCG+TOK15CF9CPvvSiKBBCJsz1BB+eOtRvfN5bNbxvetoLfaVO9kvs6fK9732v7r///vrFX/zFqtpdqKNqIFg6NU/6T6d//dd/vXpGP6HgXvGLPfRCSFXD88fGOELVE9ry+GI/fkWH7B16STbDd9hxZxcgKOsq0bjjQualHyH0d4l0+W7z3StC6iOdJWNgHHQg+Qkz4Weipp7gim3y97Qzop3HU+Hy7Nmza+iZZNIb+dmf/dmqGmyJsepbImq2Q8cSWNmIdeQZiZVVg0mhO/uCPQQ7Yz+oGvqnD89aE5///Oeraj3Jzl7XK3Va7xgQfTWmqpE03FG/udPnRMkYAfsn25FkjO1yhPQ1r3nN6lmfYVG0pU/2Pf2oGvsqhsV69V32ra2qqnvvvbdSzPmmy0TwU6ZMmTJlyhbKxiP4nZ2d+ta3vrXyCHmrGRvjcfHIlBuFKnjsGTMWg4cWoBFeJI9abDZjsFCfv/nJC+Z95zM8ZwU+FNoRi4QcM86onX6UhmfpCIhnMtZrzL5LRzxof8/jSjxZqF9eAobE+3nwd9xxx+pZsXft+445WEJhdAF9QSgQO68b2sn2oS/5APuJMXpfxn/FNXsJWWgSak20St/04rsYIzYE7eWz7AD70uv6s9E8YtlRnbgiezeeRJfsF6ozPrFWCI59Z21474OkIB668RPjk2PWF/khEKK/Q1ryYqqGvWER2Cpkr21HPKtGieI8ypRifWfteAibJKrrsrOzsxZbxnhkQRj60a4x0zE2I1E4dOz4qHizZ6xhc9xrq1dVXX311VVVddNNN6393RqDaqvGevE3tuh37FCyFforxm4/NR+eoZNkS+jU+mRfbOWSSy6pqvU4Ots3drqwBqBl+2uWrvYe80IH+uRn6gQzYJwf/OAHq2rMBRvNYkzmtueHbLpMBD9lypQpU6ZsoWw8gn/00Ufru9/97srrgjwzYxxy6reviUXx8nlo2q0acSXISRvizWIviY7FT6F/bUGrUGUiAN5iRzQ8at5y9hGqgu71iVfsWX2+++67V8+KdULhnvGepTKgPeao/wqqiG9C8vpTNVCYmC5vH0KGdiGKquEp8+rpBCLCgCSaNQ7vSzTe5fzzz69XvOIVK9SEPUgWod+uZS6hBDrOfvfSur7TTyj4mVn7/tYvjmE70FLG4BVvgUoh6o54s2So9/guG9HnjsZTx9gxcVKMinXlZMYXvvCF1TNsx3d9hu2gM+s3M9l9x1qE9votjXlyhu3RHzSpWAnWJovM/G9kL6YgxTyZW2PO3AjzAlGymeuvv76qBrNjPMnosX2MFpukc/tRsjHWHbuCnI3nqquuWvte1bAZ3xX77owbe0vmyH4jt8DasydiljIPBkvRyynTH/aJHWRGvHXLvu1rdEXPWSRJ/7VvfNbAu971rqoae3W+x/gejz1sgkwEP2XKlClTpmyhbDyCJxAC7z6RW8/25T26wlI2a3rz4pk9QxRy4jVCZ5m17dl+prPfj5wohYfcL06A2JdiOjxo7AXPVYxK3FsmNi89x8HjxEDwoHnd6X17nvfLw4Xk9Acqz5MFdM4bFhPrsbDMKO8Z3hBaL1WZ8Tp9ovNEx11Onz5d3/zmN1e2InaY8Tj9Ng+Quxi1v2cdBLZIT/fdd99aPzFHmJdkSTxDp+YUCsNM+V4KmxSfpct+Tjg/g/LoTewXwjVPWbJYn+iYTqwjazDjw1AffbF3iN13rZ20u57hbZ76WkmU2UsU9zP7JOO1T0QOHjxYJ06c2DfWCin3C06wQtZt1n4wpl6e1V7Fhow59zk6ZhvWdr/OOeuGuBDKe8yPduUCJavVr4XuJzDomB1mGW/2q09syPzbq+mmquqWW26pqpGX4f10Zd7pJNE/ZG18zrRrfymXAWtin3EB2J/92Z+t6SSZF7q48847d/V/k2Ui+ClTpkyZMmULZeMR/KFDh+rcc89doVUeVF7+ATXy4nhrkIifmTEOJfBkIR1eMgT04Q9/uKpGda+qgQp4264v1Bakk9mlzmV2dAcN8azzbK72oB5eJMTumR4/znFAfdrCVPCs89IHCIRnC8XSufb1Pa9MNFZIF7LuleYSzeo3JA/tQQjaynoC9Oi8rSzxJXnooYfWqoxBMxnfpv9+Jpo9QBGJqDE1UIqz8vQHQfVqYVUDKdMD2zQPzvhmv8U+6VLcmb5UD8u5NB89Vs0u2KG4bY5PHFjMn44hKcwKdJQ6sQahMHHaPu5EmcR8m/9+iUraEvvtpx96Wz/olbCHDh2qpzzlKSsd54kBQsfGaI3RhVhv6rZnxdMxvXkfhJ+MBJ12NCwnSN5DZu33y13ojV2Layf76N/QuPVpzzSepQqa5pd96SP76xX8qkaWvPaMQ1uYiiU0zr7//M//vKqqfu3Xfq2qRj4EO8j8jX7BjsvKoHL2nfNmP+t5CJsuE8FPmTJlypQpWyjzP/gpU6ZMmTJlC2XjKfpHH320vv/979dnPvOZqhrUeSaFJEVUNajRTIzqghJDe6PyUEgoRfRQFsnZ6x5p1C9aLY9Wodx6yU7JQmi2TApCR6OOhAte9apXVdWgUlGDmWTl3eh8VB166kUvelFVrZeopEcUmNAHChK9j9bNBCQJOBk6qRo0fqfwq8Zcon7ReZLgFJfIxDzUPKpx6Y5wcsEFF9Qb3/jG1Vz2gi1Vuy+tEYpB6bGHpMxRd57Rv16YCMWcghKlBxSteXGBTCYSsU0hIZSmEI0QURZ18R5JR/REB94vuS8pczaPIjU+YQxtZ4JjT+rTZ8mp/r5EzZO///u/r6ontn7NJZs1N718cEovwbokp0+fXjuySvIImvnQBzZpHfaEw/w3uruHEKw5un7ta1+7+qwnuwkb2G/sZUnr9xKx2hBW0p+lu88zuTX76lmJomy4aoSp7BF5VLhqHEUTbqgalLhn7YW9rO8LX/jCqhpJcNmOfex973tfVY3kaFR9hsm0Q3/2GXu0PcH+WjXCVBL0XvCCF9STQSaCnzJlypQpU7ZQNh7BHzx4sI4fP75K/IBEePspPH7JGLztXvoyhUcGfUNsvHBtJBrjlUKnkABkwHN3UU3VSMroz/D6IZtkJhRagOYUnIHytcX7zkSxXpoS2oTKeL6pE2PmZWMtoI1+JC2TrPRF+7xvyAFTkSVKHbMzb3SEBeB9ZzJfvy440VGXhx9+uP7hH/5hlRQIGWSSjnmFbPOK36oxp3m5BJsxfr8bB8YDI5KJhdgW8+070MtSYRa26X1shA1pMwuAKEYDZUH3EDsbgvoyiUz/oTC20gufZKEjzFS/Qrkjez9zPWE+zHO/qESRlFzz1oT5l9SFrVlC8Mb1eK6LJfrZ7STHCj32y2Ag4aWrca1V/exHHvUVc1k19hWI2e/QJZYJw1c11jB9Gbs5VP43j0lKgLM36b8+97lOVqOXzaY3behzInj/1if7HD1eccUVVTV0n+vJ+rGeFM1if9ZKlp2V8KffdGL+zEXuE5/4xCeqauyNyQhssjw5ejllypQpU6ZMeUKy8Qj+zJkz9fDDD68QhvhgHp2CTqFRCJC3yOPkkeZ3++UBUASkAZ1lfJMH2YttQDhiVFkIRvyahwupaR8ayvKIntFHz/LGebQ+T51A42LW4vgdHdFnjqd7p/RGJ55NZGIO7r///rXPevEf8eKqgR69t1/N6/dkNaALqG7pSk+C/RFzgyqyT95NPz1WLS6X8+Ld9ASlmH9tQlYZy8QQQOM93pzHeUi/8AgCwZKw5Zx/8UO26jP2BunQbeZvmG/sj6tyfde8iO9Xjbncq7CMNnup4dSF9Yox6sfMli6o8Rm2p1+pnEdVnwhyJ2yF3pIx6mwLe2A79oFkVqwTumRv+uloKjtP+4bc9QXSxWyY0zwuST/e87KXvayqRlxbPDuPhNEhxG7M+gTFQv3arBpH3CBodtWPkCb7R4/9WJxx0av+JPsD/b/jHe+oqrH/eIZOlvToSCLmQyyebWV+j7Wgj/sV2NokmQh+ypQpU6ZM2ULZeAT/lKc8pV784hevvKqO4KpGfAWKUPrwyiuvrKqBYhOFQxQQlMxU3l1Hs3mRB0ZA7I13yFOH0jI2xWPlwfsMKubp8jhzrErIQr+8/X6hTCIUcSTfgYb6tZeJpAjPXJ+hMvqDGDMeqQ+9L/oBFWT8DOrq1+HqG4SYWbrYCmhvP1R28uTJtUzY3/u936uqdZQMAbiop/fTPGUM3lyxA2PUl14WOFEtWzW3UL7v+DyzmtkV9APt99MjEH32m54geLqEjth1Pou10CfzjVHSNl1VDXQF3bENusD6sPe83KbPKTSpbzLxfW+pvX6FaZ56+N8I1sT+kEhXfgOR32B90mP2u5/AkDsAlduPrFt5EPkdfYKsFbbRtpyGqrGP6VtevVw1kPZSTNw47Ku9RLc8jyzjzTbsieawM3l5lbZnlHxmd70YlPW01Fd9sJdYG+wj9297YWdv9QkzkmvQ/NsnspjQJstE8FOmTJkyZcoWysYj+EceeaS+/vWvr2JWvbRs1UCcvHoxQh4nD3Epy/zVr351VVXdc889VTW8Nmh1qdyoeC3vt7MAJM8yQzRQv5guhANVZlY7L971qTxYOQYQb9dN1e6M634hhfPxmaFOT57RN3rklXsm9QmtQLfiZFCu97/uda9bPQPF8djpGBI2/tQr9GB8Gcvrcv7559dVV121at/Vv/kM1AgtyJw1x5AB9Fo15shPemAzfmJyMgZvLr1P37zX2JdOfOhDP6mADUjGCNrreQfsEFNg/HkBD2TjPf0yG3Oa9SCgLKiSrfbLQNhQ9jXj5FVjvjEV1lkyRtaWPuh/X4MpbNJ6zT7sJb29jMF3hNnPjffyvVXDxunHumDX2uwXrFSNODBGUt+wQPSU+oRc2YP2IFA6zXwiurWf+r1fkOP9uc8Zs3Fkzk3+PW0HS+GUizVgXHRkXBkb7yVkjc//D/ZEOqsa+5d9jZ1hM+2ReYYfs6p+yH7XVG+STAQ/ZcqUKVOmbKE8aRA8ESfJGJt4PK+Y1wotQYLZDm/0jjvuqKrdl1dAHt6XcZ/MqK4al5j06wyd66wa6IcnTXjDvpuZwjxkiEqfnCiAQIw7PWnj8D7ef/e6k5noFcvEyDEGPOh+eiCF129cPHYx0qxCxdvvqI6uoZg8j2pcPssM5S5sR/xcdn4iKn3wHfOQlQur1mP9kOBVV11VVaP6HBRpDqHjjMGaQ6gFeoA46CtPDkBZYvDmzjPsLt8DYZhT4zM/3c6X0CzdsJkeV009eh7q6WjT+tJWIlPoiC6813iWzqBDcXQuT4Vel87B96pqnTlIOXHiRD33uc9dy0ivWl9jvYqisak+hzHKinzYFvtBrzC3lK1P6BIL6DvmQwa5mHnVYIjMB+QsJ8N3M0Yuj8Z4nKJgK/psn8iLY8yV9SLnA8uqr1lvgi6sZXaFPWP31lXmEWhfuxhYdq6PyVTavzxjLcii71Usc4x9TWy6TAQ/ZcqUKVOmbKFsPII/evRoXXzxxbvOjaYnDXVB6pATxMEjSyTYz+3yGr2HpwZ5LHn7MlPFbnigPWO0ajAG+q+vzmLqa3qn2udJOm8qA9rnEH1Wo4LMjVl8jt6WqtPpt1hij7lmVmnVeiUz76ZHnjykxjteeh8Ex7N2ZeonP/nJNd1UVb3lLW+pqqpPfepTVbU7kzzlyJEj9YxnPGM1/9DdNddcs/qOWDfEjg2CgHsOQdXQqTHz5tWxN9c9Dp366PFgMVHzhD2pGugLKupn9OkvUav3QGxQkL8bH7vOtcGuel187VtfeR7ZuoGKEm1X7Y7bpshG11cIkn1Ae0t1F6wf39VHiC2Zgl5Vb7969SdPnqyvfvWrK7285CUvqaqBZlPEZWVnY6m0nyd+rCEImv4hROtSH5MlsR6td8yafBrPLqFxaL/PpfWYNUI8DwX363B79n7eL8A2sAx0woatpyWWwd7oNIB2jSvzRAiG1Z7lWfo0/3Jqqqpe+tKXVtXuq5KzbknVun1jjNU2MOebLhPBT5kyZcqUKVso8z/4KVOmTJkyZQtl4yn6s2fP1qOPPrqiqdFFmVzlOAWKB3WpRCnqN2lIlA4qqVOafqJ6MukFVbbf1Zdd0HRo1re97W1VVfWxj32sqgalnke4UGWOQ0nAQR2hrHqSStXuSyTQ+qglCTlZuAPdhd6kt07NG0uWN3V9ossxtCtpDNWIgs6/oVklaqHmzXXqWTgm372XSLJzhKZfwFI19M5WUM3e48hlJkqZQ5Rev+ZW2IAOUsfG1K8YRW0qspGFNNgtOhXN3cv1ZqlaR+r6hTdoVp+jcDP5E2Xak9vMj3KqSbdneCh11BOj2Faup56Y2dvab67pzU/Utr5lGEmS2n7UfBe2yR4yGZF+rCVzaTy+mxf5oJvtZ/Qj2ReFvpTMZV8jKHpjtk7zfZIr7W/CHUKESxfiWB9dl2xX4po9Je2OrVqz2hDiYrMZwlFmVlEqdsDO9FF4JItl6auwmznuIdg8lud5a0A4zP8j5iaPPfp/wmdPZO//v5SJ4KdMmTJlypQtlCcFgj99+vQKXUIxPKqqgdx5i5CsBA/HrvZLyOKpQ7iO2PFI0wOEQpXClajl2Ztuuqmq1pGC5BJJVe9+97urquqNb3xjVY1CO+k1Qjm8RUgeQvDel7/85VVVdfvtt6+elSDFMze+jsYzAQy6gHh7YQmoAprJo1wEQjNOjESW3OzfhUwgN+/zM0uiYhXoZqkgDDl+/Hj99E//9ArRaCcRB0QBQRFJQYphZKnLnvQDqbG3fgQqBWPQk8TMy6c//em1NlMgRkgD8oCoJMdVjXUiAQ+i1oZnoKVMzPKZv0FDnmXXS8mkBLrELuibv2eymjVmLtiXwieOqiVy80wvvtSPcC6VMjb/WbxoL9nvUpGeeEsv/WhoMofWMgT7pS99qapGASgoVr8zGc0zbMia6seBMwHZ+6xze0U/TqiN7G9HsvadXrI69ajfvkMX1rJ5yvLNH/jAByqlJwJD6d0+qsb/A9aptYF5lVCXx4H71dz2YOyGfRaTWDWYFnt/P+68qTIR/JQpU6ZMmbKFsvEI/tChQ3X++eevPLRXvepVVTWK/lcNz45HCWlAr9BRllbtxzn68R2/Qxz5OUYAguNRijP2oy75HjEifX3f+9639kx6wzxJzIO+dEQPDeXRDR46hAMp6rvYa1556d/GwUt95StfufZ3ek1006+YFLt2gYS+5pG3fjUrloYOPJMX4kAXkFpeWtLl1KlT9S//8i+r9yhQlAiHR85mtNePdSUKw3Dor/boxe/QWLIy/q0wC2bINZsKdyQ7wn69VzxTvB76YtP9+aox71CYS07YSSJfrAs0hi0xt3SWTAh7gpzYm3axNGw1L7eha9+B8iB3Osojb3Tsu9gffTJOrEqKz5IR6HL48OF62tOetm9BE+i6F68xDqxPlkmVB2LvELfHvvVjs8kcsh37HZvUZmf2qoZusZryRsyp9vOYXL+GWv6JNqBv+0UeJzN2fbAm2CgmR1+rRp6A71iv2A1rgn1bO1WDRcJ42aP8P6EfmfPBfiF2Y6dfY3jDG96wekbf6CLZsk2WieCnTJkyZcqULZSNR/AHDhyow4cPr7xJyD09TgiaJ9nLzEIeiaTEWHlmPM2/+qu/WvscAkjU168vhASgB33NGB1EJW7Pg/ddCDiRzd/8zd+s9V9xFwLpQvQy2at2X2VpPLxWOsqSv7zhjtygcGiGt5xldSEBuQbe/6u/+qtVNRDKUqyXV9yRIlSWpwO0j83Y77rYAwcO1DnnnLNCPFiFjOEpXHHzzTdX1UDwbMVlRDmXsocVz4B4ZPsqdAIJ5/Wd/mbOjDWZlKr1Mpl01uPL3qtviajNEd1ZG77LtowTcqzaO69BsSLX+GIBqsb8Ggf7tkasRag2x0fkC2RRoaqxNrLoC1vpBXUgQzaVOjF2feplaFN2dnYW0XsWrYE0sRf65930mOwPNkaZY7k3Tr1gxewpyXiZIwjUe+Vi0Ekiau+mhz63xpC2ZQ0Yh7nDSMmNYO9ZgAaLiM3AXrCdXkAs3+MnO8DYmDfjTqbKvozlMz/2NaxXMlreQ7f2FPYsZ+fWW29dPSO2v1fRr02VieCnTJkyZcqULZSNR/CEB8ozzBhOxmSqhqcnds1bzMzHXhZVbJBXzEt885vfXFXjrGvV8N54yh21+D0z1H0mvqMvECjkDh1WDXTFKxZfEvuDRJ31TaTIy4ZCOjLQ9zxZAA0lSqkaXjCd8Xzz2V4K1+/QP28/UZh5keEKzfLc01MnEDA9JuPR5ezZs/XQQw+t0LJyo3nOGnJnQ9qle/3Pc/Bihr0kLQQF8fh71jboeSHQqnFACIlwoC46NKf6YW4TnWFU+kUx/XpNCD+RIpTFjq01a4Tt5HrCEInxsn1zC32aW+usapRa9V19stbpM+PRkKlx9FoB2Jo8E97Rfp7O6HL48OG64IILVnZAj5lX0/ML1FJg49b261//+tUzmBMXqVgv1q622Gzajj3QWGV5Q9zWdu4D9gpIvZ+aME/JmpgHNS3YWc+jwcbkvEDO+s3OzbfP8xQUe9JXfbQPsT9t5rP2CPPTT0H1tqqG7umRbrCO3ufEQdVYW5inzOfaZJkIfsqUKVOmTNlC2XgEf+bMmTp58uQK+fTrFat2n0vmwaoW99GPfrSq1quD8fh6DLd7wxAeRFw1kBqUxaPl3UEgGWfUHi8VwvU+8a30hrUvjmXsUAoEJWbF464aGaDiSmJQmAhea8am6KRnjvPo9V3cMPMSfKcjeLqAPrKSHdTgMz/7+eu8qlffeNDQ316S51+huYytyomgSzZClxBioqI777yzqgYqoENj65nqGfOHzDACUJH3QB7mtGrkgUArbEYM+dprr62q9at42ag+9HPC/SreRIpf/OIXq2ro2PicKabzZHCsASwDxMZWoWeoL5/1XbYiQzlZhar1uYQ8oWgon46wNEv1F/Rhvwz5nZ2d+va3v70WP69az1mxHmWxs1t2hgGB2qtG7gibsP/oE9ZHfkeyJNaHdeP99GKd5B6iT5gB61Mfl5Ao+zUP5gUatxdiY3IP6TUn5Ol0nSSTp090YHxyjIzvuuuuq6r1c/PJrFWNXBBt9noPVUM/xsV2MDDi+VnHhB30+dp0mQh+ypQpU6ZM2UKZ/8FPmTJlypQpWygbT9EfPny4LrzwwhXVh6bKY0VoExSVAiCO1KGyJFdUjQQedA2KVIlV9BOaOI+RSISSeIHWVfBCOAH1UzUo+n6XtvE44uYIUtW4QOG9731vVVVddtllVTXoTs+ikjIxC82EokJHoebRX3mBhcsd0Ll0gebsl9/QQ9Wgqzs1j6Kjv6S66QSdpi9CG9pPGlH/+6VAS3Ls2LG69NJLV/SgceTlJXRpbKhjfeqXwlQNWhDth5bud5Gj45NuRzvrQz8uaTxZypMdsTf2zN4lv2X4A/3s2V5elO30u7erRsIcqhRFKlRAJ9ZMPm8O6cZ4jFe/0KEpvThTX4tZvtd7tJ/0fdUI4eWRMe3ZLzr9viT6Yv7zeBSdshlhD0fCJBxmQqF+0XsvimVO2WVeAqO/9C8pjN058pmhQetFv80/fQkFCB1UVX34wx9eG7P2vMccmuOcS9Q12t7cCQH10sI5VmELuugXM33wgx9c00PVmAPjYKP0pu+ZvEwnbMPa/8hHPlJVY8/P47nszbqUnL3pMhH8lClTpkyZsoWy8Qj+5MmTawUplpKCJKjx9ByH4plBgImOJZDwHnl1UBDkw/vOkqiekfzmvVAxLzURFfTB63aMB6rwMxPK/vIv/7KqhrcrwYdnCeE6NqJYRlXVvffeW1W7y6dmsmB/Xz+eZOwQMNTBK86LMCACSWI+g2Igh9QjvUFujiQZFySUiETyFBahF0VJcdWwcUDLeWQG04GFgUTNf09WqxpMDdaFfiCPfpVkJov1ssrGBr2Yr2QZ9Jsd05fjS1BFFhHqJXfptpd2lXSXxUqMx5xq10+2muPSFwgKO0Mn3od5SyaHvvrx047K89gp5G7N9eN3dGWuUnpZ3ccjxp6JuvTAVthzZz6y2A79GCM2wXz1xLU85sc27F3Wvbm1ltP+oG7MgX3AvNhbcx31i478DsXaK+0HLraqGvZNN+bJ745L5p7OjrAZxg6V+/yWW26pqlGGNsdqvq1Je6+fifq9hy6UsGYXxpvzhk3oCcGbLhPBT5kyZcqUKVsoG4/gjx8/Xs95znNWJVZ5c1B71Sj0AlmLSfKy+sUKVQOx8HqhAx46tM+7y2MRPOaMj1UN77sf0agaKEusCxr3fogt41mOPYnbQxG8YD956entQwjQBa9bP3i2iRS9pxeyUPBBHKuXQc2/QaTyHfRR2+K7+W7Ix3Gjj33sY1U19JnFbMy1nIzsf5fvfOc7dffdd69yGRzzyiOWECAEzQ7YjLgm/VXtZifo2FyadzHMLAPbSwX7DlvSj9RtL7Xcr9z0/kTUvQ/G3K8cxSglS6Jv7Arag/KU783rNOlEu+bH2DEFjoxhZ/LdbBa7xd7YDBRYNdYCG/E++TeZw0DYTq6Txyv0lpeWsB2f6Sd0ConmZUnmmZ56cRrryAUr/UraqqEn6BUitcby+CqBtjFHbNV7c6/CELBVn0HBPa8ni/9o19/sM2yHbeWxtd5/a+4Tn/hEVQ17MLdZ5KwzEuzC+/oFVlVjX/M+4+n5Cfkee5M1kQzUJstE8FOmTJkyZcoWysYj+IMHD9a555678nwhgoyFuVawXxQCJfPcs7gGz46H6RmFYKAkyCOvRrMUT2wAACAASURBVOWx8xp7Vju0l94+z5Zn2S/bgEQzT0D7vHyx6V5OlZefeQnQ3BVXXFFVA21BCL3QSdXwkH0HQlXYBhr0TJZ8lSmOJTFPkINnMy9B3FYsFOo3XjpLxNWv+twvjnreeefVlVdeufLyIZJEDxBFRyPmHfrKLHrzzNPvhY96UZ+8srQXNOmXV9BtZmubS6hO8RPIp8d88zv0pV1t+V1G9BIqgnqgYeuLThIp0ql2XTHsGlx9ZBfJiHQGBHNFn/qYBVWsAfZFrAVzkuVoewnZxyP9dEgWntEHeoGolT1mz5kx3vMMeglZ89PL0laN8WMvxaihSX1MZtF6tEdBwy6oufzyy6tq/XIqz9O/99gbzRM95t4ox0cmPkZSm3SWzFsyM1VjTRq7nBNjyQI05sOeJS+hrxHjrRq6Ny/WPARvDnLdYhX0IfNdNlkmgp8yZcqUKVO2UDYewZ86dar+6Z/+aeUtdgRSNbxT3iHPDMLgJUNlVSO+x1OGhnnSPEDeZcZEeaMdhYmviwuKZVUNBMNz7eetlzxCyIaHLpNbW2JH0MpSWUs5BLxiXj5PPpHbZz/72aoaSNHYecHQkf5kNrp4lvd0T9o4M1vX2XjMAzTuNIA5yj5CqT3Td0l2dnbqP//zP1fIHZpIxAB96B9dsqVePjf/hoWBcJR4lTPQM5ezfUiHrdI9+864PXuCZNmdcegPBqZq98kEfegx2M4c5LisK3ZoTtlUsjFQqzmF3OkGmhXL/PjHP756FvsDWbERGffmL1kvfbIvGF+ySlXrmff2AeuyI8eUgwcP1vHjx1c6sG4TPWIP1AOgF4yHuU0mT64CuzPf1rK1hn3M8+n6bYzsi21aJ5nhbQ1ptzOU/brsqmETdCxLXh/pgg1hSFMHV1999Vr79k9sR8awrWVIWv+hZTozF1me1t7BFrE/7LnnulTt3sewaj1P5Zd+6ZeqixyS1772tbs+20SZCH7KlClTpkzZQtl4BH/27Nk6c+bMKubqrGJe/QiN8nohakjK31VVqxpeou/wLCFO3imPPTPwIVfZshBvz+DNTF5ep/Z5x1DEUizZmHmYvdITrxXSycszePvGBSm4ctaz+QwkIsbK+6WrXmFKHYCqge7Ey8VvzQX0lOjCe4wTMuAlQxWZHd5j+ZnB2+XYsWP1Uz/1UyvEk2e9ibhmP+vtp3EkCoMoIU41BzAEYrHsQo5I1UBZEBwbYW+eSSTaM6mhLzaFDcqzxfotj0IVRCwDNsg4My+ho0rIGTqii6UrOOmEjWjfumUPv/Ebv7F6tlcYZCvGxWaWst/pC8thDsxRrivtZ/XGveTMmTNrdme9ZlVCY3SlMDvGMtkzMvfH+M2d/aVfpyzmmyyJ+fXdforC+DIXB2Ojb/a7nnGfZ+ftSa94xSuqaqwxexfbZbO5h9iLxK/ZLiYHG5D1MHyn5/bomzmkM6ekqsb1sJgJ9kB/7CDzN+xzbAYLZN7oLxmjfrHQD3IS4/9CJoKfMmXKlClTtlDmf/BTpkyZMmXKFsrGU/THjh2rZz/72auECBRt0l5oGNQeqqonOaGlqkbCHao/6c2qkeSEukqKHsWHXkODoY5QPuiiqkHN6otn0USSUDLZBfXWE30kwUicQSWh4apGcpVjd6hS9N7SRS50iqrSf+NDH3pvUpjGhd4yXmOgR0VzqgbV67toNX+nxzxmRDwjNLAkp0+frm984xu77hXPhLlektbvdErXGVrwvO9IEkJVmlMUZvbfe+i9XwqDjsykN2P101owLnafSWP6xp6sEeNAobKTPLaGzmTzvXxzvzikaj2htGpQ8tYcm0G/Zolk+hTyQX3ru6S7XBt0bm3oI7o/qW3yeKj5Lt5jvSwVE+rhNu+WcJhz2UNAQiWOvqGPrcE85kd3vdCVdem9mcCmfc+yTfOeF2IRR5D1QVjHfsA+vC8vHRJGFCJCZbNH6zXn0mf9+K/32H+EBjIE4RnH/YThhP/YpeS/qmF7+mgerQHzlQnB/ZhpXna2yTIR/JQpU6ZMmbKFsvEI/vTp0/Vf//VfKy9P0tDLXvay1Xegb4iDV6eQCq91KWGFF6xdx32gCAlSeWyJh6x93iIvX/JRMga8UEhXn3i8/SIXY8+f/YIS/YCW8jiZf/erS7XVj1hVDW+eR9svHaETbEMiU2PlmUOixuu4Dz1XDRaDviRq8dQlT2bRF2PXh/Tmu+zs7NS3vvWtlWfeixtVDW/eZ5JpoC+sQhYCMVf00oug6KP5ymM9ECEkICnNT4g+kwcddXKJEtuRBOlnonDzaj7okK04pgfZpe3oP1vpRXH0LftIf72cKekMnKSoqqrrr7++qnaXl7We+jHKqsFW9YI3aStVYz1XrZe3fiw5evRo/diP/djKFs1PHpPrZVI70wBZ51E9eoBS9V8SmnmDPFMn/YIlSNvvWJm8nlb/9cmV0L7bj4lWDXszl46p6XPXRRaRYd/WAsRu7sxTFhvyN+/rLEc/6paFdXxHIvWVV15ZVcM+sA8SBqvGvmbddnZ16WrrXi73/e9/fz0ZZCL4KVOmTJkyZQtl4xH8hRdeWG95y1tWFw9ARY4mVQ3kwsMVH3nggQeqalxskXE/sTuepCN0kG4vipExfx4yz1JsXHEH7ACkVTVQCC8Ygua9Qhp55IQHCSF4ph9F6vHuqt2erc+gCjkIGVPkuYr7aZeOjAfKwGBUjXnpF5QYn/dkXOs1r3lNVY1iGPoMZehzPqM9sezUV5dTp07V1772tRV7YA4SeULX0J1+QlT9qtyqgUqM1TN0a160nfFpsXDPQnDa8Pe01Y6gvMf8+G4e5fOZv4k3ehbq0tdEfWxdn+jLONiHI5dVg83oKAuS95NNJ7KGssw/FGi8vTR01UCI/tbj69bIEmrX/7wCuMvOzs5a4ailojhYK2N39Msc+ntnM/K7mChrACvm3Yl0+zWt9A/5uuwm14T5Z/sKEBkPHec+0I/h9qN0vTxw5hr147fsgd3ZG7M4ju9gDjBH/fIm8fWM3/dCZRgPuUfW/tKlPZ41F/3IqMupqsb8iOW/7W1vq6qqG264YVe7myQTwU+ZMmXKlClbKBuP4B988MF6z3vesysTOrOneY08SYhAbJdHluVNPc/ThBL8jgWABDLzmjfYy01qg6f9xje+cfWMyxegUu3xjiHt9E57gRteeEff+pyeNYTGu4fOjQu6lHVcNVBcL5LS451QRsZ8e2a5z8RRxa4Smeq3ZyGrfnoAgq0anrpnljLsydGjR+uZz3zmCiUtXZIDxfnMd/uFMlkIJvMIvCdFvz1D91Vjfs2VOaZbaCbjzZgp6J+eoDBMShYAoTPjg5zYM4SIoUh0rI8dSfWCJNrK/vdcE/rUhnGnTmRhQ77Grk8YhUSKdNALBZH9ytBaN/aJJVGqNue9i/FjS3pGf8+dqdpdEIrtaItesCWpY0jWd+xn3qMfWdSll8Y2dn+3PjMrXJ+cajAvbAmS15+0HfuJrHbvTR1Urce3sRTasTfJE2AfS0yIZ+wZdNJ1lTqRqyVfoxc367lcVcP2MQI33njjrr5sokwEP2XKlClTpmyhbDyCP3DgQB05cmQXgs9Sh+ItPUMVUuOdZoY6bw1CU4LST/Eg38sz5hAVD4/XCE3wABNReV4cG8Lp5WYz5sbbh+CVZdS3fiVmxt5clACl9IsctCE/oWrEmXi0LlQQt+NJYy54/1UDcdAnj1qcUplTiLVqdx0ByNDcYjWSrYEI6ClZhC5Hjhypiy++eDXGv/iLv9j1HVny5kW/ef7GmJdV0HPWRshxYG5cqJLf8yyUBNGyM/aQrADGwHchXN/x3kS4EEwvGcpW5BiIUefa6FdtWnvyVNhDv/K4aqwN8WEIVF/ZfepTrkxnN4xLPzKnpV8q0y+DYWdLV8N6j74uyeHDh+upT33q6p1sP3Nx8t8p1oKx5ll29tQviPFMX6cZO2ZHxupkjzWnraXz/t7XL3vx3RwL1sVJJWuXHXoGms31qd1kHqrGKRR5Ask22q+xjsbpuxgDc5EnmvQBQ+oz88X+83paz/S6KU7xYMSyxDSd9FMamy4TwU+ZMmXKlClbKBuP4A8ePFjnnHPOysuDdDImDoXxyHm0vgMtpNfPGxTPvuOOO9ba4gnywnmxVQMl6BME770QzxKi4u1iHbynV9LLsWoHGhFPEmftOQdVVXfddVdVjRg1777H3DLzWozf+Hi0+gjVitEvoXF98d6evZ2IhLff8wQwFliPzKKHsPUp+9/lzJkzdfLkyfrUpz5VVVVXXXVVVa3nHWAttEuHEA0kkmfZ6bLH+zAbbIk+nVfOz3q1LkIXiajEdnv8lH17b15pTO906DvQEBRmzSRDBaX0ymyQO53nxSudNZPPQTdsV7+S3bIG2ZA29M0ziZ7YvhoU7BlTkJdRdcn4/17y8MMP17/+67+u5rifdqjazZxZ2/RFf1ljwOkByJLee2U7/c/YuD2LbtnxL//yL1fVYOWyzkM/gWPNYmPMJT1WDVt3iU4/qWA/gsqTbdKefaBXJRTXTwbH+6w9OvB+7AbGKBE85K5PfU1qK3MA5LKYCzUZzJ/3ZoW+XiMEA7bpMhH8lClTpkyZsoWy8Qj+0Ucfre9973sr74oX+9nPfnb1HZ4fT7rH7sQsM0OdFwwt9LPf4jPQRcaZvAdC4233Pn7yk59cPePMtzh9v1qSR8izzz7wHnu2PAT8ute9rqrWWQBeNd1ALVCY92cMu9cE0Feee3r5XSe9/n4/d28OxL+yj70eO2QIuWdugXnTXrIIewkE4hytKm5VA9n6DntwTtfYM/7bs//7FaDaMj+uv60aOQ/izuKN0Ins6jwnTg/ahWjZF5YpT4lgBjyLUcEQmBdoJmso9Op3xNz2rPqqMf8QLhu1RuisM1dVgyWhY2sRWoLs0w68j94wMS94wQuqan8E/0SujTXGfvY7+0l31hLd+j1zFTAz5kcf6ABrgcVKxkA7veKbs9n6mtdi+0z7EHTP5k+xxsyR9SJfIxm1qvUTDHTS8xv83ZrP+vzEnNmjXvziF1fVsHs2nBn44vRyfYyz11vIExMYDqxsv3La+JMRpTfrdckeNlEmgp8yZcqUKVO2UOZ/8FOmTJkyZcoWysZT9FX/Q0U5MoXizcsRUHmdTkWZ9usv87uSQiTXoblQY0rk5lEX/5ZYhCZ2NAhF9va3v331jNK6+i0hxuUI6KJrrrlm9Qz62PERlBW6iC5uv/32qlpPXDFWdBe68IUvfGFVjeSTvEYRBZsJUFWDGkSRoXCTmkPj0f3nPve5qhpUIGo6k9XozzNo8X4RjjBJ1Tg657t5VK+LI5aoTLRghmpQ8vTVS9Oyg0xccowGLdhLq6KlfZ4X+tAtfXmGbr0/58BY0Y7myXw7+oT2TxHuQBu7sObmm2+uqmHLSevefffdVTXsyxrxfvS4ksJVY14kRPWLPKwrdGjaDluxjuhGEhnbzWS1TtsKJ6FizWcmgC1d+fpYIsltqXCOsJf59pMu6DYTQa0l608YxH5kDlH5uV4805Nd7X/0k6EVBabsN6hz32FDuTcKfwk9SLbtx0NdwCLsUjUSWa0rNLc5pPucA+FCc2r+e/lrIYIMv+gDW9RXNPtSqKOXfDZPElCNIde8fdu7l46IbqJMBD9lypQpU6ZsoWw8gj969GhdfPHFK4+QZ5slJB2Z6UkmvHsFGjIpiEfpQgEJWL38I+8yjzNBFo5R8AB5mFBYXhfLy+4FOrQFlWUZVH3k0RqzhDxeqn70JLjUAa+/H2PJ6ygl1UhUMh7eq/dJsslkG32D4KBuCIonnWVn+8UqEr4c9+JBp/cNfRtrHkXscvTo0XrWs561Ygh4+xiQqoF6oBaIRx8kQSbi1F5PyDRWCG7pilH2pL1+OQ+0n8ejerElrAuEBfUlywSpZXJgPkugMsinatibObNuet9z/n3HT8izIzYsSiZZ7XXcDIMF2ScTYp32hC9Cn0uXESUTsJc4nqv9TGAkGI68dKdq6AdjkImg1qN5sS+wod7fTOayV1hbbBZDRefJNtCDfa5fjAOR5v7Grjqy1jfjwejYL3IcfmIKrAXrN5kVexPd2CPtR2xHH/PqV2yS4kyepRNzoXRu1Vgv9iptsElJsUtMj/9b+rraVJkIfsqUKVOmTNlC2XgEf/r06XrwwQdXKFL8JI/18JR5h7xiaJjXmmUre1ENXqrv9GMr6eH6Li/Ue3jQ4p6J4KESz/DG9V38TlytasSE/IRo5QvwfOkmvWIeLRQGJWEXrrjiiqpaLxhETz2e6ndxQrrIYyT6qPiFtnjyvONEQv34Yo+D96OEVcODdkSsMyIp3/72t+u2225b6R4qzuNRGACoRKwSS2I8WerSmNgBFMQ2e6w0EZz30Rd9eC/UkiiTnnqstx9NzLggRE63YpTeo/gOtIfBqtp9pTD7hrCM1xhSF5Bhrs/8XfnTRL3mhS7YLPQsfyPzLSDDvY4rLSF39pz93kvOnDmzxrxYJ69+9atXf+ulVfWpX6+busVSmUNi7YqJs/n8HhvUnveaQ21kYSVrCXNn7dojsXJLMXEI3e/2ws56ZY6M3BHz/PKXv7yqqj760Y9W1WAFHW+rGvPORqwX+rcn0kmyjuzNOrV++uVRuRdbLxgi7XvmM5/5TFWts43eiUHOzzZZJoKfMmXKlClTtlA2HsEfOXKknv70p6+Q2vOf//yqWr521Hd4mP2K1PTIxVp5ZrxgXiRvDnr13qqBLCBnKIl3zsNOdCle18vnQl2800Q2vGqI3Xe9n8fOq0wEJ17ZY17+DuFlDFN/IQDt8tx5x/6eyAS6056+ZMZ61fL1l+aPtw35LJUUdRphvxK1XcyluL05rRoI6dZbb62q5aJBVesZteLM5pBexO76xS7JktAP9gPqoy922C/rqBr6ECNn57KNs2hRFiGqGpnOWCYouWfxVw32x9qA+iB5ayTzBGT6y4iHrLAM0CZ0lGyTPlkD0JhYq+9CzFUDVeoDHUBlS4JZezwI/tChQ3XeeeetTq44TWN8OTbxXcW3jB3jkHNpvtmEMUOxxsXeMmPc/Gahl6qq66+/fq1vyTZCw+zO79gAY8hSrtZhfx9mwn4AFbOXqlFYpu/JhF3m6YCef2RtKPqlP+wuGb2OtrVrnMaVe4n/OyB3+Uj6/gd/8Adr768aa8Gpp3797abKRPBTpkyZMmXKFsrGI/jTp0+vebEyIDM2xVPuVy7y2CHNzDKGlGSXunAAquQ1aiNL4zoHrV1xLp47xJFxW//m+UGg+szjzViYMfbrQaEueuH9Z/weQsNaeA8UJAaWCB5iMh6ecs8ap++8shcS6Ge1xXPF5PKiFx6z98huh3je+c53VlXVH//xH9de0hmClGPHjtWzn/3slT34mfEzqEF/6QMKd248T2CYK4wN1HXttddW1YhzG1eOWbxSNjtmp18nnJnQ/VpLCFf82bwkKjZWujQ/PfaPhci8BO1hJnqc07OZSazeQs+Ih7AxR+wjkXa/rMn7sBrWZpbv1Q702FFmsnUk0XfVOmvR5dFHH63vfve7K+ROls4/05d4tnf7mYjafCuta06xTOwRgs89i/573NyFK767xMp5j32tn+LI8s32KPbtWePs+RXsvWrU2WAPnjUv1lGeu8cIsgP2bpz2Bfk3uX4xAvpmTvUpUTi57rrrqqrqYx/7WFWNfBusyh/90R/tesa8mSdM4qbLRPBTpkyZMmXKFsrGI/hHH310Md6RMVgou1e3grB5/pBw1fDw/I1HCZ1CVBBCVu2CcPeKtfImExX1a1qhH15yVhIj2uOxQuXGCWEtxZkgNx61cdINNOBseI4L2oIieP19DKlPnjoWoJ+7d01qsgyYCLG8fq4ccs94nbEae2bHdjly5Eg985nPXM0TxiPzN3rmLgbHGCGgrLvA4zeHxgGJZCy8av3ayZ75DnVjpuRbZHwbCqEHdt3zN/KEAoSIqWHv7FxbkHZm7fuMvowLC8S2cv6xWv4G6fSTGcbr+9kHc4lVYKP0l/FcOu+yhNz3EnP9eMQaz6x964WuoUntirfnVbx0a656pT/zs3RNcd8HvYfNYGfy2mB9wgjRJf31PI6q3WxLrxrpJ9QPaVeN9cS+zZlcBntYslrmzD5u39Sn17/+9VVVddttt619r2o9D6hq7KP02Ks+Vg1G4Ld/+7erauQjsXM6ynljx/J4sHU33HBDbbJMBD9lypQpU6Zsocz/4KdMmTJlypQtlI2n6A8dOlTnnnvurgI0ScWhjNBNKBfHLVA+CpBU7S4JikqS4JMXKFSt016oS0cmPv3pT1fVoHE7tZXPoOR7oYRONVWNBDK0lmN5aFC0OMo5S3mi4FDldOE76MW8n92RE3QWqtnYUcIo1aS6/ZveUJmZJFS1HlpByTqCQvf+/oY3vKGqdidHVT0+KvZ73/teff7zn1+1m/ohwh0oTHOHfly6d9580KlnFfFAP2c4gjhKh+5GaaLS0ZLowqpBN7Jj4Qn2IZSSuk2Kv2rYihAN/S3Zu775ruIlvfBSijnTx35hjNCNtZLhK2NGiZondH6nhKvGHPQ764m2klLva+zxXDpjv0HRLh3PRFHbo/St96VqULzWknnpFxTRWyYyStBEMb/oRS9ae8Za70ckq8beRwf2B+v2vvvuW30X5c+OOzXfw2OpE3NpP2VL/eKgDHn5jrCFREPvEd4x3lz7/o1W167/C+xdGb5i132P974sZU2EMs3bfpdcbZJMBD9lypQpU6ZsoWw8gj927Fhdeumlq2M10FIeQYOUFSzoCVO84EzO4NnzxHhm/aiL92UxB6gUsoE4JBZBwHmlraMrvGsep2M4CunkuKAH3rbf9dl7MBZZUANqkKRDN93zTM8WEuwXRUBOEKrxZgEXR4EUEOLd98QpiLlqICies77QxXvf+95dOunv20+OHz9el1566S7UmmVM2Qg07F0Sp9hDHuuSuNMvxSH+Ds0kWsXc0BNkY56ghywDTHe9IBA2CPrP97Bvtk9f/UrlXsq4aswZ3UCX2A2sjyS4qoEeteM4pr47Zur3PMqFRaDXL33pS1U11rEENEev8pm9hP6SbehH+HrBmJQjR47URRddtHZEdy/RnnVq3bPr3DsgTMyNPth/PGudQtP5DLE3aZOdZ8IkW7E3YJV6AZy8wAW7533s2/qxNsxXJjza34zH3FlX9qU8vuYziab2aUW/lLslmVhrHFg+fdJnY0gG1nxZE/rfGb5MfGZv1tVSEa5NlIngp0yZMmXKlC2UjUfwJ0+erK985SsrD4onlmjlnnvuqardcUzxJV7x3XffvXqmH/nql8HwbB2JSm+f58xb5KHzCHnuWQCCBy3ezMOFaJauHxSL4qWKxSoa0494pVdMTxCMvuo7JJ3v1b4jLRAalEnnPb5bNfTpvf362CXELc5M9xD8xz/+8aoaeswYn7mEDPJijS6OyYkvutYyL6tQ5hMLYmyQDhYjvXtIyZjpSQlP8Ufo3ziqBlrohYi04VhjHrUzh/oAVWJW9CMRHrSq/9pL1iXHkojEs8r1QpFsZ+kCHu+GjqAfffe5tZkXP1lrbEcb0JL5z1g2RqUXCDLHGKuMwVuDSxfRdFFgqxfLSuksCSaRLs1T6kl/zQcWy34AxbKZjOezTWvZeu/vTUQNzesjHfvJ/vL6XugXg2MfYxfG0PNWsg9XXXVVVY292dqwh+RcdpRvP7W27W+33377rr7SCWbMWmDX2s5jgL00Ml0Yp3h7XjGLtTC+/QpsbZJMBD9lypQpU6ZsoWw8gif9EoksrgBli9lANj0OmIUtoHvoQVxRZqUrKnmnGU/nDYoF8Wz9nWebMX8IUV/7VY9Qn8+rxsUn4vS8cbFwKFOMNJG18UGrkIL30hGkkyLTmY49o03oI4tH9HK6ELxnfDfjkVgZOoDqoMyOMvq/89kl2dnZWbtqeGmsSsZiNMypPkCEefmMGCV0TO+eufrqq6tqxNOTyYEs2CL9YC+wJWk7dArJ0iUdG19mlLNr8wL1sVE2u5QRD+HKou65EpiXRGHGg2XIC32qBhozhkRh0L01oG+QJKS8VCYWMoXysvhO1Xr53v0uouly+PDhuvDCC1fIXaEr+QE5FiJDXv/9TEStD4pvyU2Qk6HNvrdUjbwdyF2uijUOedofqgYqhmT7yRg2lIxoFtdJ6euxlxauGghXn9i7fBF7VjI4/t0LNrEze3C3+6rByvT1ZD3bM3P/tsbMgXnDArCzzPkg5mm//I1Nkongp0yZMmXKlC2UJw2C58nyzBJ5QE4+6546rzHjj85UQlc83I4mII2M24nzyNTtWe484EQTLrXhLfYz7uJo+QwGgrcIMembPmVGMkmPvGqgcN4y5JDjwlpgG1y0wmPul9+kFy7/ge7phM6NIdGBPnkGEvA75JZIUV/Yw1JstAvvXTt5kgBaECOECCFRjE7GtyEY34HuxR0hhKXTFN4nPusn24VEclzdvvVxrwtysh3Z0U58sGf9YLOZJwA5iTtilayjRFCETUCg9KktqFMuRiJ4Nsj+jKdfxLR0SkCfzGlf+2nf0KS/ZQnhLkeOHKkf/uEf3pUjsZ/Qqfatl7zmlmBSIELPQOHmK2O9GCFz1a9RxbylvfVsbzbUc3KypoW1ys7sA/26aus383jsA/5Gf9Y9VibrSpg7jKE+0YkcHbaVTGUvB+w9mEKsQJ6GwGpYp2zROjNvOS7MTTI4TwaZCH7KlClTpkzZQnnSIHgeGq+VB1o1EC3vDRqGvqChRPDQp2p0rg7k3UHnvLxEAjx1cTLIALLhNWd8uMetEv1WDcSVcUYeO2TDK5VpDRUtoVkI+td//deramSg8u71MfVItCeLX594/9BTnmkXc+vXrKrc5ruZFew9+pTt5XvTk37HO95RVSPTfj956KGHVii0ajAEiR5kiGNy9AEqglISHfP42QpU4l2QXN+H8AAAGJdJREFUvTnPTG7ox9igEwgYOlG1rGpcl8p+vR/qYkt5nSpkIx6rXe+HINmjvIKqgRrpgu2zNwgnmZAej4bcxfG1TydZswHTAenSibUuByDzbtib9/aKiSSZCTbfmZcl2dnZqW9961ur2PtSdTPzIM7f8xvoOvtGlxknz37ay+wxyXj1S6z6+8xxsk32pH5ax3ftO1n9TkVL4ow5m+zx+zyr3+srvOlNb6qqqo985CNVNfayzKXBpFgT2B/ry7rVtn2pajc7S6+YBGsvL9WyTvslV/S43wVW2l2qaLiJMhH8lClTpkyZsoWy8Qj+2LFj9eM//uMrJA1RLdUVF8+CFiC1rOtNoBCoV7s8y45WxdCrhofrGQiD56dvWSXOd3jB/UrJfg67ani0kIfPZHeKjWojY29Q3Z133llVA5Vp0zll2a1VAz3w9iETKA8yMBeYi6qBZvSRjrAYr3rVq9barBpoRmZvz4CGXui5asQZPZux3C7nnHNO/czP/Myq3xBnnqaABuR0QBjG3BFB1W50DHH0a3TZUGbcYl+8F3rwPrpIxojtQE79TgLfzWxmNgjlYRmgJWuinwnO70JoPedAHD0RtXdDbn6HtPvph8wsNy89e7vnJWT9Ajpf0lfKEhrLSm+PJT1HJ9endrwb4jRPUF6yZHQKeVoffu9t5KkT7WFurAt66rXVq8a611ffZVNyC/JZ2eT9emDI156o7bzGl01a78bnlBKWJk8L2ZOs01tvvbWqBgtoDthB7iHsmy7sr96r7TzJQqfWr0p5dN6Z2ZTOMm66TAQ/ZcqUKVOmbKHM/+CnTJkyZcqULZSNp+ir/ieBAn2HksmjOug69ElSRlWDSkwKsJeGRTv1K0xR+HlcBS2MukLvoh174lbVoPj0rV9M4WcWCHGUT7KO90qmQodK0MlkLnSe7woBGIfP+wUWVYPO81PpWkfr9DWfNS7JOv0yFcdUkkrtl1nQiXnyfm1VjdKXZL8rPx966KH6x3/8x5V9eI/wTNXuQjnoT/Sd8SRViiJEZeqv+UA/doq7aiSq+dnLsaJFM2GSXaPGtUc/7DDHwt56ieB++Y9wQ+pxr6t4u10s0eIoZuvUnPaiL3lBj74KaWXCX9V60R8iqYoN+dnftxSe08d+lLTLgQMHdtH5mRzbSzf3AlBsJkNP7InejV0YBw3tvRmK7CEfIcieYJhJb0JwwiDCBUJES0ce2TMd29/YjoRnusiLkfrRuX4ETkgg7dJ32EQ/2ulZusmQhz75Tn+vtZohIeEoe6PvmC/jkSBcNZL00Pg9nLipMhH8lClTpkyZsoWy8Qj+1KlT9e///u+r4zZ5aQBxKcBtt91WVcPD42VBSYka+lWeEip4zLw8nmF6ur4DHXgPz08xhPQ0exLSa17zmqqq+tCHPlRVw2tWGrVqJL5AnI7qSJCD3KDnRKa9lGJPBIIQclx0AOUryuOYFp1BqHm5DfQFAUsMhDIg+LxExXf1iV7pE1OQqJ2OJSUtITRy5MiResYznrH6DqSTLIl++Yznz6YggkRy9I1Z4NWzM+jbWLOgikIsUFY/cghxZRlgiUKQE9TCdumpI998BvqByuiafSciYVf+Br3o+36XteiTue3HvyQr5vFFkkcRU5YYhb2u66SL/ezisZB71f/o/PTp06t1qQ9LxXZ6oSk6Zlt5JLCPWxu9ZDFWIMepL8r+Qp5sVLJYJp6af+ucbXoPfeW6xDIo7Wwv9HftYwUzAdk66iViza2LsrJQmXHRhdLc9vxMAK1at1U6Nk7zw969NxnbrvNeKpte82gdsbdn0u0my0TwU6ZMmTJlyhbKxiP4I0eO1EUXXbRWVKNqPe504403VtW45AOy5GlCRY5dVO0ujsPr5h3znHmGiY4gGDFyyFYck3eccVQxVu9z3IuIXWVJTH/zbn3DAohNQghLxRd6IRW5BYoBJTJdKgNcNS610I9e8KRq6A8a7yU+zVd6457hQfeylj2Xomr3JTaJjrqcPn16jckwb2k78gtcOsO7lztAJ1kkCRsDZUFljgIpoIIJSYSnsJL4ntixuTPnWYQFY6MvYv9yPJYuvsAaGIe5EuO3JqCVLP6jL/qPSXJBkXhmzj+7gpzo0RzSmThnMkc9hmyeMEr7FRWx1iC1J3IEbj85dOhQnXfeeasxipnL56gaLAGmzh4FVS5dxduvnxWLNkb6Mi9Z+Mr6w2JhjrShj6kvF1bddNNNVTXmlD3bHxLh/u3f/m1V7bZ98w652/8yVs1Gehld656t5rrVb33rZWc9Y72lvWPCIPe3vvWtVVV1yy23VNXuI55Vg/0zB3TMhh21y2f6EcSlwkebKBPBT5kyZcqUKVsoG4/gT58+vXZRADSZf+Px33fffVU1vN/uzWehDGgLwuTNic/yRHu2fdWIOfE0+5WI4pqJ+nxHez1GyStdyi5+17veVVVV7373u6tqxLX6hQ6Z6d/H7D28fR52FiuBrnwmBgaB8qCNUxnPqsFImBeoRRvGl/FouqdHjAsUA80m2uPt+5klXfcSCJGd5GkD/dQvNqPf0FBm/UKNYtIQgBieeCYElBm8SiJ7BvLQJwg4czHMM3vA4NAX/bHZqt1lWLUre9oawTplnFu7+kg3UL5+ZMwcEqTjfukLHbCtPNHiPT5jx+ZGPkLm3yhI1C9yyTW3l3TUv5ccPHhwhVbtF3maAhvCttOusv8p5hIz0Es4GyMd0EnV2EN8h87NJSYpxwVd98t/9NU8ZfGYjmgJ1K0f1qm4eo6Znny3F9rJPnZbfOUrX1lVo1gW2+n5UVVjzbE78fteJGvpKmVso1yDnr2PKavaXer5ySITwU+ZMmXKlClbKBuP4GVCQxgPPPBAVa2fje7XjPLQxcSyhCeBgnl6kPsVV1xRVcN71FZ651AQj5KXDenw9jLLHLLgBcvS5mF7Ji9SEHOH+vS5Z357fzIWXSekl1PlxVaN2JT2+qUSsrehpyxzCyFCea5OlXX6kz/5k1W17rn7G1TREY/YZqJR6JK3nxnxe4l5gmKyVO1eaA5yF/dMdgT7Qj/mln76lax/93d/t3pW/HQvRCNmnmWH/RuL4FlownzkVZZin2zE78bhdwho6cIQ82585gkblLFeaA/zgZkwvs5uJILvOR9dEn2RpStYqx4blT/e7xw6dKjOP//8lT1DpFn7Qb/tDebHM9Z6vg+iZENsEgLtNSDyNAXGQI0Gz5gHunfqJftrLp2A6fk9WTrW3sdWIfrOOvWy2znWjnithc4+VA0Er12MSD/xc++991YXOQbmQC6N9o0vr5zurCJ2BjNg3/G9qrEv2+P7hTybKhPBT5kyZcqUKVsoG4/gZUL3iyiySlwX8UsxeR5mepoQhexI5xqh/o60Mo7aq2fxSqHWpfPI0Lh2epa+rMys2qUvPEyoG/oX9+bBZzxafJtn6z3G08/UZp96BrzzoMYJPUGOVbsRCZQBQYpl5vWdEAlkKC7Js166ztN7nohAEVBqMg/mWe6DvuS54Kp15AZZmCs2BL3QOdR07bXXrp5lk/3SD6iZTrJiGrvFDOgrxNGvnq0aesJwyMQ3D9oyP2mzUKP3iLXK11iyb+1A28buJ51gA/IsPVbB2mCj9Nmr7qVgZ/bKnk8E3J/PkwNdTp48udJV1UDjGf/t7B7bpx8IP9e0XB/P9LoHvSpijsua6gwB5GtPfO1rX7vrGfNjPrCL+pb2nacjqnbnDRg3fWamP2bAnoRJNMfmNLPo6Yvta48ufK7yXOZZsE35B+zcd5ySyaz3m2++uapGzN0+Z1z67IrtqrFPPhbbtGkyEfyUKVOmTJmyhTL/g58yZcqUKVO2UDaeoieSQDKRiPREKSVrCQorKTkUGdrJZ2guR8DQxPks+hYNhP6SeNHLMlbtpqEkU2kLvZcUIJoOVYoeQt37KQkrC+soqGLsaCgUlqSoTFKTNCbEoQBNv38ahZX3tKOwUHPocFSzviaNjKZ+rLvdk87rl8Mo2LMkR48erWc961kr2l0SXBZWQfGiEPulRmhj85Zjcm81EUqhc4lZSWkbM3sSOvG792ZISsjCPKP1+2U9qb9ON/YSpf7uiFDec05fbJG+hIgcx8uEULbT7Vlb+ubzDJf1Y3LWlWSnpYJHeyWRdlmi9UmGQfYSa8Hay3lBC5u7foRT+Ccv8qHnfjGW7/SLpfYrCMQu2JA97a677lp9hw61ow1FaiSuWRvZru+ixnuiYS/SlH3oiabWgPnPeaEnOu4FytiKZzPMZ69lb5nQWjXmRj9StG+OrQV7/6tf/erVd+3Xwpeo/02XieCnTJkyZcqULZQnDYLvyQ2ZCAId8tZ60RBebB6zgMx4oRCOIxt33313VVW98IUvXPs838fDgyr7FYVZdhYagjigB4igj6FqeKo9gahf9pFFf4ijdZJ3oOBeNGXpeJT39WMqEKpSlomm9Ukbxtv7mgxMR+zmySU3Ck30ghspvrskBw4cWEOKPPVEnpCT+ehXyvarQKuqvvCFL1TVQP09+c0cQtx5/E9ion6bdwiE7SzNab+K0zFDY8xiNdrVNyyMv0Nw7Dt1IpnOeLRPR2wnk6usJ3+D9ujIeNhQrifPsDNsSUfueXTwsZD745GOiJcEqiNZeIZgHPrVxRi4FMivMwtsn53RX+57bMOz3c4gUnNaNY7uebZf4NTZyKqx79gbXRONpcN6QcW5z0H77AHr4wgum5Vsmn3yPmO3ZxmDNZN7P7bMXPars629LOTzK7/yK1U1WJSezGuPyqOD5l1fl67Z3USZCH7KlClTpkzZQnnSIHheo3jNkndM+tGwpQIJ0JD2ejxOwRtHZTKGw9sWg4OcHLtwfC0vpnBcBSLUR+8VM8+4Nu/9c5/7XFUN75Hn7r1QWl7Iw/uFWhWA4OE6+pYIWByOBy22hgXgqUNPS8d/6JM3rlSl8S9daWs8+rJf7JXXvXSFaJdTp07Vv/3bv+3y5peK7fTiReYBQkjkpthFR2zQqnnrMeyqEcszP8YBffluIip9Mr/mg772u76VLqF+rAuGBxLJqzF7ERT24L30l2WHPdNj+r10bKI90ouiZDnYlCxY1RmOvewi11NHXfvp7dxzz63nP//5K1tfusgFwwUFs/0ew0476ZeWWNOQrv1gKR8lyyVXjTlzbNV+t8T+sB1rHHOIpUk2znesXawTZsXea25zn8P2aN9+w76NP8tcW1vyNcwze2D/73znO6tqMIhVo3S59Wv+7fmdFawausUyeJ85tk9koTK5S2L8mKhNl4ngp0yZMmXKlC2UJw2C5zXyIhWmqRoeoFgKjznjilXrCIBHK/4HYYo/9nKNyRjwzMV1IA7eo7595CMfWT0j1s3DhfagPBcceF/VQMWQMuTUr/OEzjJDnUeOTYAMoADjzrgmhAYBQL48aOOlI6ipahRz8Sz0bb4gqbzqEYoVa9fH9Jy7dIS233Wxx44dq5/4iZ9YxfAhnSzugx2hY7FCyN14lrKx6Y5e+pWv5jqLiPgMavV+RYog3Iz/QTbsTJ8gJ/Okz1VDT56BNi+77LKqGmuDPSTqYzvYFutGhr/v5jP9oiNoOS9Pyn5kX/sFHhnbT9nvik766gj5fxMrPXPmzGpNmf9E49au+RW77UWyUjfWBRRJh9C3+Uj9kLy+tGrYRT9Vk4WV7rjjjqoa9mUOsQ7sMQt52QfE02Xl+7tx2xOTWdAH78ECeAaDlWPBXtAJ22U71kQvv1xV9YEPfKCqRj6U+camsq23v/3tq2c++MEP1pLYtzFTySRhcPupq02XieCnTJkyZcqULZSNR/BHjx6tiy++eBUvE99MJNdjaT2DmCSS4sF6FhKEhni0YtjpcfLCteHiGxfHQKKJqHuWtv7zXqGxzLju13JCjDKie9nHjG9D9cbDk6Y/KINHneMh+s9Dh1CcPU90BF1BiGJv/g7tJ+I21o7MPJtnc0k/p97PxaccOHCgDh8+vPLI6TxLkGIjsCV+0hc7UIa4arAQELv+itdCZZBbXloBFYhf9jLK7CzzD6C7XrIVyvP31AU9Q8zQnryRfsVx1l/AYhgHtMJWSV7ABOHo/17nz6FasdEcKzTZEfx+9uB9kHsve7sUZ19iEbp8//vfry9/+curfooZJ9vgXeZU3Qs2ZN3kMxgt82+d+m6/YGmpdof5kSPhO73mRNW42hpDiW3Cynhv6ha7hPkSbzZ3PRcg90b/ttasUzrXVu4DdGEc9mn7tz3Y+JwAqBoZ8ep5YOnYtz0m9/5+Laz9m07YUtavcDLB2k8mcpNlIvgpU6ZMmTJlC2XjEfwjjzxS3/jGN1YeoBhYXnPKS+dR80B5fD7Py1igHQgWMoSGoEreYmZR84K1AQXJ6NTH9KR5kj2zGtLg0WaMr1eo8j5j1yfPZJ4Ab9t39KXHwjLLmbfNw3Xemx550ktzoN28oCEFMsnzqL0GAVlCar2PvPtEgl2OHj1al1xyyQpNOM+bQj/YCuyIMbOHRA3YDxXdoFWIV1sYkRwPhINJ8R4x8Y7OqoZtygTG9vT4eeZEWAPm3drAWGAbzEfOpWd69j6b7bkgVWP+oWKom/56fkyuDdLRqz7tZw+9RkRvN68JhZbZzn4InmAX+gmJqsFgmTPsHHtWayArr5lDrJL+0x+dYkSy//YZseLUf0oyLewZOjbfEK85zqxwtsiGMId0q81+mqhq7HOyzvtV070ORz5j3+l1FpzMsL+muDiGyK/BBsnvwa6mXHPNNVU1dC33h47ySnL75NVXX11VVR//+Md3tbeJMhH8lClTpkyZsoUy/4OfMmXKlClTtlA2nqInnU5bKl+KQkJpoyxRi0kloQrRrf1yBzQr2juT+hwf0QZ6De2ljUx6Q6uimFGlaHfvz8sstI+KRWmji1DDPaGkaiSFOGKCbpIc0pN7qoa+JKF5H2oM9Yei69R61e57s1HgS0VrHq8sFcehm/1K1Z49e7ZOnTq1i5rPAi36hxLvx3okSOVxQvNL3y4o8ixboc9MtpTYY/7pCwWsH5nU98ADD1TVOGrZ768mSdmaV30QLujFefyu4E/VoIJRy+abTlCYSR+zjZ4Q5yfqVGgok9+Mq9vIfhT6fol3Kew8Zb8LaMiJEyfq53/+53cdGU0RQkBlK64iLKFvuXegoemLHiSusrdebrtq6LuHyOjJMzk+NmLPYBd0zt4yacxeJYxjzzL/Qg+OEi8V50Lzs2t0u1BBhjzz+HI+KxRhX6XPTFrVN+OzfxqnNZqhPKE1e28PCbH/FM9Yi08WmQh+ypQpU6ZM2ULZeAR/8ODBOn78+ApNZnJGF2jFkSDCI83kE94wT7JfKSthRhLKUplMnqtnILj777+/qtaPgvCqof/ucXpfohjMA8+yJ0rxUvUjUUa/SpT363desEt1qgbShFYhQolAEsL0Pa9qlSzYkaLxQDlZ+AS6gLIwMI4S9Qt6Unp50yX57ne/W/fdd9+qCIo5zqIe3ukSEHNrrP1oYtVggnzHfGBhjBlTsFS4R3vQHVbAHGaRDfPgmY4m2YVkr+xbR7AQob5aE0vHfnynl661JnI9YXn6pVD6lkcTu0BMxtWPfZG8sre/xzPQ834XFD0eOXPmTJ06dWrVpyUGSv+wEr5rXXomEaf5hizZF1tnS0sFlux97Bl75b32m1xjfX14H1YMg5DvwczZ8+xDyrRq3xpfOoqoL94HJZvDLJIEXWO3JPz5jiI2mKM80sm+/cS4YsCg9GRGfdeFN443+v3yyy+vqnV203rEfPTkzk2VieCnTJkyZcqULZSNR/CHDx+upz/96bs89iXpZUwd6+rXuObfoCwIo8dNoRclRauGF6d4BPTAM4RmMl4DWUC43g8NilFmrMh3IV3v83eMAS8dqq3aXSgDaoUclGbN90Fm0CTkiEHg6Toylh5uL6xDjEusLJGVv/VntLVUZpQu9kPu5MSJE/W85z1vNbcuzchYtfnloffrWr0HsqoaeRvYH0dxxMahVvrJ0pra78U9vG8pX4RNQlm+I64JcWXBkV4spMdCO2OViArKwpx4v7mkzywXbV73KjpF9isyQze9DWPYbw+App8Icl+60CXl7NmzK3ZBDDZtki1Cc+zKmoJ0k42hy36c0Lzov/0n2R9o+P9r7w5SGISBKIAmh+i65/Egnr6HsKtfYkRouwrDextBUeuYODg0Js+BSNzSb8YK1SzbEsv8jnGI5TxxT5Z53uR6c5/GSacSk7w55/i5nnH4Z6QykapC4jZ/dnjbttbaOZ45T44xTzCWvrHv+2efVCJSWZmHtaZvjh9cSjUmVY1UaVfnDR4ACup3Ezusovf+aq1d/64NZ8/jOB7jCm2HL2k7/OvSdlayfIIHAH6nRA8ABUnwAFCQBA8ABUnwAFCQBA8ABUnwAFCQBA8ABUnwAFCQBA8ABb0BlXImBACnIFUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZedZ3vl895ZKUpVK1lSSbBnkgU4TCIGsOExJGNJgaAeS0BlMAg4OSQNtyEAbEwwBGwzEOEy9MIQhcYNj0oEEHCBhMHhhJgeCAQfCIIMt2bIGa7RkTaWqurv/2Oe5572/8377nDuU6hx4n7Vqnbr77P3tb9r7vM87tmEYVCgUCoVCYf2xdbE7UCgUCoVCYTXUj3ahUCgUChuC+tEuFAqFQmFDUD/ahUKhUChsCOpHu1AoFAqFDUH9aBcKhUKhsCFY+qPdWntxa21orb2/tXY1vjs2++6VF6yHG4rW2ie11l7ZWtvC8WfN5uzFF6lrhSPA7Ln4/It072H2b+H+rbU3tNZuw7HbZuf/+057Pz/7/pc79+G/N6zQx63W2ttba1+WfPdxrbX/0Fp7b2vtydbaw621X2+tvaq19vSlE3AB0Vp7S2vtLUfY3re31n7yqNqbtXnbxNrs/jvC+93dWvvuI2rrutl78c8m3/1qa+2nj+I+h0Vr7R+01t7aWruvtXamtXZra+17Wms3rXj9s1prb5zt7Ydaaz+86rXLcGwf5z5N0j+X9BVHceM/AfgkSa+Q9PWSdsLxuyR9nKR3XoQ+FY4OL9b4/LzuIvbhFa21NwzD8OQK535A0t9orZ0ahuEDPthau1nSJ86+z/D9kr4Hx+5d4X6fK+npkr4rHmytvVTSv5L085L+haR3SbpC0sdL+gJJz5P0v6/Q/oXCS464vW+S9K7W2icPw/DzR9TmZ0m6NPz9XZK2JX3hEbVPvEDSg0fU1nUa34t/JOm38d0/lHT+iO5zWFwr6U0a1+/9kj5M0ldLen5r7cOHYXisd2Fr7UqN+/shjc/BMUnfIOnNrbWPGobhicN0bD8/2m+S9I9ba982DMP7DnPTP8kYhuGMpF+92P0obDzeJOn5Gl/U37HC+T8r6VMl/U2NP8TGiyTdJul2jS9+4o5hGA6yX79M0uvjy6219skaf7D/n2EYvhTn/2Rr7V9K+tsHuNeRYRiG3zvi9u5qrf2EpJdpfJEfRZu/Ff9urT0s6diq69Rau3T2Hlr1fr+5zy4eCMMw/O5TcZ9VMAzDN+PQL7TW7pT0nyV9sqT/OnH5/yXpJkmfOAzDeySptfZ7kn5P0ucLguxBOjf5TyOjGCT9ZUmPSvqO8N2x2XevxDUfLennJD0yu+bNkj4a53y/pPdK+nOSfknSY5L+UNIXLevTfq+X9GxJP6iRIZyR9HZJn5Wc93cl/YGkJyT9jqS/Juktkt4SzrlM0rdJ+p+z8d0t6SckfWg455Wzednzb/bds2Z/v3j298skPSnp2qQ/vyfpx8LfJzRKfrfOrrlV0ldJ2lphvk5KerVGhn9m1u8fkXTDAdfteZLeKulxSbdI+quz7/9vjT8CD0v6MUmncf2gUer8qlk7j0v6RUkfhfOapC+dtf2kRg3FayVdmbT39ZL+yWw+PiDpFyR9eDIH/4dGgekxjdLzf5T0wTjnNklvkPTZkn5/Ng9vk/SXwjlvSdb3LbPvbpT0A5LunM3zXZL+i6TrV9nXK+59j/mNs3U8Eb57g6TbOmN6naQ347tbJH3tbEy/nN3nAP37mNm1fw7Hf1rSPZKO76OtpXteo1Zr0Pi8vlbSfbN/b5B0Fdr7p7N1fVwje3ybwrtAi8+72/4bGjUOD8z2zrdrFHL+gqRfnu2T35X0aZ19d17SBx3VHkD7C2sXvnu1pHOS/ozG5/kRST80++4FszW5e9b/39H4HG2hjbslfXf4+4tmc/LnJf2wxmfuDknfMrW2kj40eW4GSZ89+/5XJf10OP/TZ9+/QNK/na3XA5Jeo9G0+/GS/pvG5/l3JP2V5J6fMpufR2b//qukP33Aef5Ls/4srDHO+xXhOZsd/zVJPxP+vknj79JdGt8Vd0r6cUlXT7a/QkdfPOvoh2h8eM5Iunn23cKPtqQ/O3sgfkPS39Io2f/67NhHhvO+X+OL/fc1soVPlfTvZ+198gr9Wul6SR+k8UXxPzWqKj5N48trR9JfC+d96uzYf55tks/TqLq7U3sf4qdJ+jcaX+qfqFFV9bOzDXXj7Jxnzs4ZJP1FSR8r6WNn3z1Le3+0b9L4QL8E4/vzs/P+ZpjrX5J0v6R/Jul/0/jyekLStyyZq+Maf2Af1aji+dTZ2nyfZsLGAdbNUuOnz/r1hMaH9ick/dXZdw9L+mH0ZdDI6n5F44vwhRp/OO6XdE047xtn5752tmZfqvGh+yXtfWEPGn+UfkbjS/tvaXyx/5FG9sEXzetm6/tCjXvnVkmnwnm3SXr3bOx/S9JnSPotjS/qq2bnfJik35T0P7y2kj5s9t3PSnqHpM+R9AkameN3S3rWQV4UnfX0j/aHz/bOV4Tvpn60P2l2/jNnxz921tZz1f/R/gaNe2/33wr9e8Vs7eM6HZvtpR/cxzhX2vOa/7DeqlHr8HxJ/3h2vx8I532Oxh+wr9HIll6g0dz3D8M5b1H+o32bpG/V+Oy8anbsO2Z76PM17tFf0viMXYdxnJ6d//lHtQfQ/sLahe9ePVvzd2o0b36ypE+Yffcls3n9dEl/ZTYXj2mRhPV+tG+ZzeWnaBT8Bkkvn+jnZRqfu2G2R/zsXDv7vvejfavG355PnX0OGoWm39f4nv702bUPKQhpmgtL/0nju+GzJP13jeTt6SvO7fas3x+lUUB4u6RLllzzfo3aJB5/naTbw9+/pPE9+nc1viv+jsZ38mTfVun0izX/0b5m1qHXhYeKP9r/SeEFNzt2pUYJ6UfDse/X4g/spRof0O9doV8rXa9RQrtXYLIaX65vD3+/VeMPewvH/MP5lol+bGtkAx+Q9KXh+Ctn1x7D+c9S+NEOfflvOO/bNQoCl87+ftHsuk/AeV+lkYF0mZzGl8qgIKQk5+x33T4hHPuzmj/E2+H4t0o6i2ODRhZ0EnNyVtKrZn9fo1E4/H708XM5jtnff6jwIGn8sR0kffzs7ys0PtCvQ3vPns3dPwvHbpvN+9Xh2PNm7f29cOwtSl6UGgWLf7Js/x7mnwIDlvTvZmv0tNnfUz/abfb/r5gd/y5Jv9Ibj3JWNEj6kCX9+ym3G47dMLv2Xybnp0LBqnte8x/WH8B5r9X4A9/C37+5pO9vUf6jzb3zm7PjUQPj5+DzknZv1wrvtQPuh3Qvzr579axPX7ikjTab/1dJeh++6/1ovxzn/Zyk315yH7Ptz02+6/1ofxfO+73Z8eeFYx89O/bC2d9bszn/SVzr37BXrzi3j4R9/1Yt0ZjN7rvnNzF8982SHg3z/aSkL9jveu8r5GsYhgc0sqm/31r7XzunfYKk/zIMw/vDdQ9rpP2fiHMfG4JzxjDaWd4h6YN9bOahvvtvv9drXPiflPQQ2vkZSR/ZWruytbat8cX8I8NsRmft/YZGKW8PWmt/p7X2a62192uU3B/V+MPQm5NleL2kj22tfYjHrFH6+uFhbnv6dI0M8K0Yx5skXaJRYu3h+ZLuHobhxyfO2c+6PToMwy+Gv/9g9vlzwzCcx/FjGh2SIn5yGIZHw31u0/jAftzs0Mdq1A7QS/k/aJxv9udnh2E4G/7+ndmn98HHaRRAfhBzd/usj5+A9v7bMAzR8YbtTeHXJb2stfZPW2sf0Vpryy5orW1jn+/nuXyFxr33smUnzvb2GyS9qLV2XCPref2Sy16nUQUc/92+5JpnaDVnNbXWbtQosO3+C8/5fvc87Yy/o1GQv2H2969L+qjW2ne01j6ltXZilT7O8FP4+w80Pge/jGPSqN0j7tU4L13wXbfK3tkH3pjc75mttX/bWnuP5vP/LyRd31q7aoU2s/le5RnZL7K5f2AYhrfhmDSf+w/XqPF8A/bOwxr3AZ/5Hv6yRm3pF2h8j72ptXbFAcawB7Nn8TckfWVr7Utaax++6rUHidP+No2S/dd1vr9Go46euFvS1TiWeSSe0aiOUGvtWVp8oJ+16vUzXC/p77MdjQ4x0ugleJ3Gl8A9SXt7nO5aa58p6Yc0qmb+nkb73V/Q+FBetnD1avhRjT/8L5r9/fxZv+ML9XpJNyfj+O9hHD1cq9HmNIX9rNv74x/D3HuZ6+HjnJfMkfF9Gk0F7ovYn2EYzmmmRse1D+BvCzq+7/Wzz5/T4vx9hBbnbk97QXBaZX1fqFHQ+XKN3rF3tNa+ZskP8ZvRp69Z4T7u27s0apP+aWvt9AqXvF6jev8VGv0cfmjJ+XcNw/A2/FvmxHSZ5mtg3K+R9fKlfp/mwsD34bv97vll++D1Gp2EPkaj0P5Aa+1H8U7pIdvbvecg2yePS7p8yT04TgqnB8XOMAx73m2zH7D/qrlq+5M0roHfi6vs9Wy+D/oOnEI298veNX7mf1CL8/opmn5f7mIYht8ahuGtwzB8n0ZzykdK+kcT5+9oFAz4zpTG91acs8/S6FPwVZL+5ywE8uXLhLX9eI+7U4/MvDy/RfMFjnhAozMOcaP2HzZwp8aNxGP7wf0abQffNHGPcxoX8/rk+xskvSf8/dmS/mgYhhf7QGvtEi3+kKyMYRgeba29UaPN7RUa1cDvGobhV8Jp92tk/X+n08xtE7e4T6MjyhSOct2W4YbOMQsW3tg3anTukbT7orlWiy+LZbh/9vni2F5AL9xp35i9HL9Y0hfPtFGfp/GleK+kf9257AslnQp/73ePv2p2n69coX/vaK39mkb75Y9GzcoR4n7hpTUMw7nW2i9K+tTW2nH/wM0EsbdJUmvtM5J2DrrnFzBjN98j6XvamHPi+RrfYz+k8Yf8QuIaLYY4EXzX3XJE9x6SY39aozr/bw/D8J98sLV2Ub33jxB+5l+q0dGV2HfY1TAMv99ae1SjqXgKv6uR6RMfplG17/bu1mhq+KLW2odJ+gcafXnulvT/9hrf94/2DN+l0Uv465PvfkHSC2I8aGvtlKTP1Gh7WRmzB/ttS0+cxk9rVI/+7jAMj/dOaq29TdLfbK290iry1tqf12j3jD/aJzT+yEe8SIvhMpbyL9dqPwqvl/S5rbVP0+igRYHopzU6hz0yDMMf8OIleJOkz26tfeYwDD/ROefI1m0FvKC1dtIq8hnT+ViN9jdpVJU/qVFAenO47oUa9+x++/NWjWvwIcMw/MCBe70XZ7T3h3YBwzDcolH99UWaEJpm5x0YwzDc2Vr7To3OV6uE/bxGo/bptYe57wQyk4Pv+7MaBWiGfGU4zJ6fxMz88UOttY/RhYtvljSaPzRqGP7jkj4d9l23H9g0sGtWaq1dqtEsdyER34sXEr+jUfj908MwfOtRNDj7PTip5Tk2flzS17XWPmgYhttn1/4pjULZP8kuGMZQw5e11l6iJQTrQD/awzCcaa19naTvTb5+lUaP2ze31uzp9881bpKeSv1C4ms0qtN+sbX2Wo3S+dUaJ+Y5wzA4q9QrNP64vbG19r0aVeav1Cj1xOQoP60xScW3aQzleZ7GlyUZiyWql7bWfkrS+SUP5Zs1brJ/q3FD/zt8/4MaJbE3t9a+RaPn8nGNnr9/TdLfGPoB/2+Q9H9K+v9mWpJf0/iD82mSvn32Qnwq1+1xjbahf6XR5vi1GlVK3yaNvhOzMb58Jtn+pEZm8PUaw2umYiQXMAzDw621l0n6zpkK+ac0OqbdpFEF+ZZhGNJsYRP4PUkvaa29UOND/AGNe+XnNK7VH2h8If51jfvtTftsf794tUa72ydqtAN3MQzDj2o0yVwo/KKkf9Bau3YYBjMeDcPw5tbaV0h6dRszYr1eI5O+TNKf0iikPao5MzzMnl/A7Ln+gEYv4Htm93yRLvza/BmNz1HG+C4Wflvj++Y1wXTzUs3VzBcK79X4rH9Oa+0Wjd7q74QPyaExDMP51tqXSPqPM9+FH9HIvm/UaKN+xzAMXaF1po36D5qHnH6kxtwDtymw4NbaF2gksX9xGIZfmx3+1xrNMD/eWvsajYTuGzW+J143u+4GjSGx/352j/MaHWgv1yjYdnFQpq1Zx18m6X+JB4dh+O3W2idpDBX5AY1ecr+qMdD8fxzifgfCMAzvaa09T+MP8DdqDL+4X6On+A+E8362tWb19Bs1hgy9VOOP/kOhye/T6Ozw+Rol9F/XyEbp6PFfNC7mS2ZttNm/Xj932phm8ss0OkL9Eb4/O2PhX6Hx5fxsjS+4d2r8Ees+bLNrnz8b2xfMPu/XGHb1wOycp3LdXj/r+2s1Cke/rjFWM6q9v0qjSvmLNM7h/bPrXj6zG+0LwzB8T2vtdo179u9p3Pt3aDSdvP0AY/gmjY6H/0ajI9gvaBSCflOjgHSzRmHvFkmfMwzDjx3gHitjGIb7W2vfqnGfX2z8mEb142coPGOSNAzDa1prv6IxXtrP4xMa5+mHNHopn5+de+A938GvaBQCXqQxdPNOjQLtK/Y/xH3hMzQKdG+5wPdZGcMwPN5a++saw9Z+ULOom9nnd17A+55trf0jjSThzRqfw7+r8QfyqO/1xjYm9PlKzcnQXRqFtmWpeP+7Rtu1fTDeozFy5pthUtrS+KO8+24fhuGh2bv02zUPQ36TxigVa3sf0agN+KLZPc5r9JN64TAMk6lcHQpRSNBae6bGH+9vGIbhVRe7P38c0MacyN8wDMO/uNh9KVw4tNa+X2M8+Kdc7L5cbLQxG9aPDMPw1Re7L4XNx2GY9h8rtNYu1xhX/HMaHbeeo9ED+DGNbKpQKKyOr5X0+6215z3Fttq1wozN3qDR4a1QODTqR3uO8xrtHa/V6KH8qEbV6d8ehiELhSoUCh0Mw3BrGyvZZREZf5JwucZEIhfCS7/wJxClHi8UCoVCYUNwkOQqhUKhUCgULgLqR7tQKBQKhQ1B/WgXCoVCobAhWCtHtBMnTgxXXXWVtrfH5GJOwXrs2LybtsHv7OShuj5+/vy8boXb2dra2vPJFK9Zylcf69n+fTx+32uXbcVr2L7/5rUHwbIxTPU562sPPCdbI7Z3EJ+Ku+66675hGPbk2T558uRwzTXXLOwZr3X8f28fTM31sn5n4+iNbWotl+2zVdo4CuxnXbhXjannqXc8eza5F3vPb9xv586NSQvPnh0Tfvl9cOutty7snSuvvHK4/vq5v1y2xsveGew/r18FU++Q3v32M8cH6ctBntNV3jOHef6PEt4f2buY74l3vvOdC3vnYmCtfrSvvvpqffEXf7GuuGIsouLJuu6663bP8SQ//vjejKTeDHxYIy67bMwlf/z4cUl7hYEICw38vzRfULfvF8XUi97fXXLJJXuudV+zdvi3++E5yR5wX8MHIb5Ien3cz/fut+/rF6I/3Y/sJepjTz455sXI1mkZXvnKVy5k/Lr22mv10pe+VJdfPmZHPHFizNLotZakq64aCxddeeWVkqRLL71U0nxdKCxK87lzfz0OfhpxvjgffNF6/2XCDddySohzH9mOj7uP2Xn+v/vCPmfrz/XuCcWZ4OS5zn7kpPkz6nXMxuM19afbjON69NGxiNytt45F+h57bEyc9oIXvGBh75w+fVrf9E3ftDtPHnNcW/eH8+Exsk/x3GXCRrYuvfXmuyu+wzj/3M+9+8djfH+6T/w7okegMmHOxyKpypC9V3vkI3sn8n5+fvk+vffesRid94skPfLII5K0+zvk/fV5n/d5k5kGnyqUerxQKBQKhQ3BWjHt1pq2trZ2pSFLOpHtkuXFa6W55BmvsbTl78hMKe1nzJTSHFlSJiXzb/bdElzWl17fprBMPR3/pgTPcy0JZ2osSslkZ2Rg8f9kAZk54yAYZgXiOR5L2BG9PvD7CJ/TU7tm/adWpqctyRhC75yMJfWYL9eFY4ngPHE88RqyFsP7mcwye37j3pfmDNJtxv5wnXpM1ZqT2H+/Q5aZJM6cOTO5DzI1aryPEdtwv30NmW9Pq5Yd45waU+PiHsreKey/14d7J9OIURvDZzxj1b3xcLx+v2YaRb7HOb64Blw3/+395/vH8bHfF1uFTxTTLhQKhUJhQ7BWTFsapVFLzLZL0q6cgbaKKKn37MWUPDPbiKU62i6JKL2SUfcktcx23rtmFSbaY45G1g8ySM4Nv4996Um6GSsgy9yPBmEVDMOgs2fPLrDOzG/B9/Y5/DvC4z5zZqwo+MQTT+w5l9J4HNcyB0RL95l9Oo4ru1/cO+wDmXbv73hNz4aeaUJ6+4tr7Gsiq/Y5Zta0U2cMq+d8Sg1GvI9t0P5c9vzu7OwsjD2O2W3z2V7FebGnGehpn+KxZc/JlIanh/g9130V/xSC71Hav7Nngs+nx04WPTUnvT2b7dWeJil7v9G34bBawKNGMe1CoVAoFDYE9aNdKBQKhcKGYO3U4+fPn99Vi2eq4l4YDdUcUyqSnrotU3FR5cdzMlUUVTu9kKxM9bPM2SZTOfVUV725if/3PFn9u4rKmH3k3GTzSwc+juuwKqidnR099thju3Pqz5MnTy7ci+EtDI2KTik+xpCvnmpuyomxN09xrXsOelTZZeAcr2JiWWZKyUK/emalXujNlOOb1c6Z2t/geHrPb3bN1VdfLWlvSA/RWtOll166EIoZx0GVL53M+BzFsVH1S3U43zH8f4YsPJH7ius95VTqa+m41XvfZuC8ZWp//9+hff60SZRq8/i+4HPbM+nFPrrdnkNatr/dB5vCHCK6LiimXSgUCoXChmCtmPbW1pZOnjy5IGVGidH/7yXlyJi2pbue88FU9p8emyBrilK/v7OkHUNR4veR+ZKd9xIITIWYcVxkjpYcpXlymsNkJuol1TCihE0p+UKFUXiMp06d2nPfCDIqamKciCMe8zlmUj2mnWXv49pOZfxjOCDXdCq5So/hTjmVkY31tBCZVoihjHwms9DG3tjtMOZzzcCkuUMqE7Nw3eJz5j762im2ZCdGsrHs+ewlrPE8xuQqdJDzmMgiOa7Ybi9ca5WsfTw+pZnoOZ5xD2eOnWT4HrfXI17DY1mI7qrj5Hsu03b4mO/LZCt8D8Z7fuADH0j7drFRTLtQKBQKhQ3BWjHt1pq2t7e79mqpn2bPkllkk7HdeG0vNGlKEl2GLKzBErSlOqY8zKS7ZcgC/snGLGmaMWZzchTohYkYGXOgVH6QNKZTIIuOUrePWYL2vHl+fG4MD7EtlAyb+y6zT/dsvdwfGRPtMY9VcqpzHfisZOlzs3Cw2I/4bHi+ekx+ipW5LxyPGbH/dlIUaW6XNluOLDz2PQvrcl+cwjbDzs6OnnjiiZXst73ETEypKs21B2Z5PodrTNt3/P9UCJSU293JJnthnbH/DMXqPa9xfL10qR5vlhzL12c269hm9jyxjz2NWZb/vRfytcr75+GHH156zlOJYtqFQqFQKGwI1oppS6NURqk72hjJjjLpkVjGpA/DsKfaoBciJetog2PSCUqgPTtOvLelSSYAuVjIklMYq2oWDgoz4yh1k6EZnjcXCohzy3S1Dz300IH7lBW2YL/IpDlP2f7oFYroRVTEdaHmiqlIs3XyPLnf/runaYnFP+KzHPG0pz1tz7mxLT8nHo/PpSYrsikmrpl6xodh0JNPPrnwbGU2cmrnyLDjuiyzadNrPGPa9IdhUhqOI/afTDRbf7Jxt99Lo5wxbfbJ72++x+O5Ux7m8ftMG+k+U7OUpe31/6nNYOKfzOufzH5dUEy7UCgUCoUNwdoxbWkuSRvR7kB72SpS0FEw6aMAJcJoa/a4LJ2SFVri9DXRS9WS9FQs6sVAXBv27ajTmBK0nUpzj3KmpHz/+98vaT7nUbqnN/9hmHbPfrbKutHGGdmL+00WQbud7xPtu95PB/F7iOwkg+esx66lRV8Uz+/dd9+9e47LJ3rdbr75Zkl95irN19px+vfdd99kP8+dO5d6EhO+lxnw1Lr0/BJ6tuzIYulZ3msjs/myL1MpO1kuuFc8yeON2gzGWrstz3lmq+/luejlLsjeIV4naliy3wL3we9L7zNGK0S7NZ+f+K5dBxTTLhQKhUJhQ7BWTNu2JUpbUaJflvVnU8E4X0rwngMfN5OQ5jbFTcKF0n5YcqaHszRnBJbMafc2A41syRK5Pc7NBC3tHwUiuzFLYWy9+3HNNddIkh588MHda+hVTc/5Bx54QNL82YmarEzrE8F9GPt2FGt4+vRpSXMmx8iH2Dc/I+9+97slzceR+XB4TnzOsvfEzs7O7r1pR5bmY/Y6ULuRxUIztp77jXM7VdCH9tupcp5sx/c1U43svVcIh7km+B6K39HeT43SVLlSguw57ksyaj+T3I9Tc0KNZpad0s+2r+35wlwsFNMuFAqFQmFDUD/ahUKhUChsCNZKPS6N6gumo4tOJFbxMFj+jwt6oRAME8uc86wStNroQqUKJaxWdl+tXooqZKqhemr/w5o73G6WutUOZ6zT7uQddjjJEqS4n0x20avtOwWGc914442737lv3uc+x85Ynh/3WVpM3sNEHF4HXxPnxO15De2Q43G4P1mI4WHgvj3jGc/Y0+Y999yzZyyxLz3HKu/7973vfbvXXHfddZKk66+/XtK04+MwDDp//vxCopkYqsa+9ApqZMVmeklnGKoXr/V+4z7j+yG+B/ks8X6Zytnn9pJV+b1jc0WcR4/9/vvvlzRPpkKzQObIxSRR/mSCoyxhjr+jc2FWeIVFonxfPxPuW1SBuw8+J0sSdDFRTLtQKBQKhQ3BWokQrTUdP358gU1HCbTHsCkZmiFIiyn4LG3ZgStzeDsMGEbRQ3R+oMTOcAmP239HadlSovtv5xvfnyEZ0pyNG70kFEz6Ii1Krddee+2ec/y92WHWf4PJHA4btsb9EZ2uPGYzTjvzsTxghMfic8y+3vWud0la1IRElt4raGAJ3m0997nP3b3G+9jncA29Z80kpbmjGR1neF/30WxWmj8nTNVoh7csIUzPCc/j4bzGfedrPc6nP/3pkuZ712vj+ZXme4KskNqP+Mx7TjwHy8J2dnZ2FphvfB/4ejr5MU1mlozZev6uAAAgAElEQVSGWjPPrZFpZ5jUp5eEJDrskVkzqYv3d3Rc9TE6+7GQi+c8OsCSrTK0LysOxJTSvbCtzNmRWi06WFI7FNtjml7PQbYvqNVYN61uMe1CoVAoFDYEa8e0t7e3dyW2LJ0gw5ss+Vlism0uSlsOoyGrc/iOpVdLz5kdhXZ2StbRxkg2YabAwgbuVzyHzI6pAikBx2Meh21LvaIW0twORSbF8BCWtov3I9tg2cjYR4aHMPwlK4RBbcAUtre3dcUVVyxI+1FSt03b9/rgD/5gSfM9lZXztMTvOfW+YmpaH482eZ/DdJLuo/thu6u0yJI9Bx/0QR8kaa69iIzH82zmQZZmm7n7GstUer59X5/L/RfZhveOWbKfOWs13L77Fdmh193j8rz603MWE8D0imfQVpylg/XezOzThm3atHvHvcNiH9SEZBoiMnfalsnap+zuXCf3Iyb76aVN5bsjvt/INJnMxaGFPh5DDfkOZNhgxlDdJ68//W+oxcsSHZFxk2nHeWTaa4O/I3HvUJO0bmHFxbQLhUKhUNgQrBXTlkapqZe6z99Lc6Zhqd7HLbFnxTiYSN+MgXaieH9KcbTTZQH9TEjg+zEZQLQt9qRhpg9kso3YHkv+eS5oJ43HLOWTYUeJOvYjzoHv63bNNjObvsfFRAVkoZkNelVsbW0t2OQjk6CfgFmKpW7PyU033bR7DctoMq0j7eCRGdCm7L/J1t7znvfsXmPW7ft5PXxfr2n0lHYf/EzQv8NzfMcdd0jay7Q9Pmt9yM4ym5/XyL4M/nQb/mSqT2m+R9wH982fnqtos+cce1/Qwzrz3H7nO98paa4V6CGuG73xpcWoFd/L88PCG9Ji6VUybhYFyUpKkuXxeFwf2vrpY+I+Zp7SZKT0oM/s1iwFyqQk/ozrTz8Pet27P1MpUKlZyTSJBouoMG2vP63Jin1aVxTTLhQKhUJhQ7BWTHtra0vHjx9f8ByM0pal0l7BEDOQaC+2JMYCEZSoM29v349J8A2yJmkxXpKekVMpMOkha1Baj23EscZx0jcgeghTKjUDotSaFVFwu7SZ0wM1Axm323CbU7bHKWxvb+vUqVMLXtBRaqaHvtfFLMI24chEzAjpeW1p3/32PEXtAO1oLDZBj3BpvneokaBNNWp2WDhjiq1Ie/eBWbLngrZaj89zI839N2ij7RVTyZ5fs3X6AsSIA15PrYCRMS3v+bvuumvPfTMMw6CzZ88ueGhnvi2MQaafQFaMw58sUsFIl7j3maqT6V3JaqXFdyK1A95DcS68zrRPMy0rx5t9xz1Kj22p7+fBveq2Mt8dluh0P7wv4hr4Pr2St/RWz86tgiGFQqFQKBQOhLVj2qdOndq1p1q6jGyaNjdmosqkfp9je6A9U+ndTUYizSVdt2vvWkuGWXxmL1tSFsNp0B7NDGiWIt32e9/73t1ro6etNJfGyRjiPJrduV3PjSV42wBdnCHCUqn7ZpbhNj1ncbxmE73YdfZ5v7AH8BSorWAGNEvY0V7sNr3vyJ5tj848V81obWs2WyUjietHT1yWEzWcSUyaz619NLwnyei8TpFp+xnzPvDYp5g9wbh8/+19kGmhXCjEnzfccIOkuW3x9ttv373G/TXr6mVIi3HVnhOP49Zbb53s//nz5xfGHL2fGXPM55UahHi9NXt+r/lZ83r4++x5sWbHNn7OQVxLemuzz75vlveCnuscn9cyjo9e3O6b14Mx2LFPft7df7Jofx+fRT8nzLtBDarHKS36Zrgvfq5oW+f8sL11QDHtQqFQKBQ2BGvFtHd2dvT444/vSuZmDtHblXYhxmzSk1pazC/LWFSzVkt30Tbmdp3F6DnPec6e45bu/CnNpWKyftsP6U3M/8dr6VnqPsc4XbMk2otoN4r2VsZf0hPT51LiluZrYKn72c9+tqQ5K7CXcrwfveIZc+lP2qRXxdmzZ3X33XcvHM/sUbTFx5h+aZHVStptm8zA2gVL49E+7T1BG5/3lzU8kb3TM9v74JnPfKak+fz5e2m+lowZ5j7IxkV7sPcSbeuRifj/3oOMo6bGIu5Vt+s95Dm68847JUkf8REfIWnOvGP79Bb3fbzPoq2WNsvMPh3P3d7e3t0rXsu4F+lVTduv+5Zdw7h5vw/8PTPkSdLNN9+8pz33if4Ece963Tkf/pv28HhPj4uaLvc5Y6Tuv+fN7XLuowbM/faeoE2Z44raE4+H9/Fx76WopWE0Bj3QremZKv98lGV4jwLFtAuFQqFQ2BDUj3ahUCgUChuCtVKPnz9/Xg899NCC41SW4J4hCEwkEOHvrFqyyo9hTm47qpyYrIVhBmxLmquprI6ik4rHFxOY0MGF46B6akotRnUciydIi450dGLyNUzbKc2doOhow/SsWflQJlFgQYejVkVFFb3Xmf3zOnmM0XGG4W1eS//tPUVzgzRfbzpO+T4+N4YwcV9xv2VpRX1vqtsZasgwstie18Nry8Q5US3KOfAaMn2uz4uOdlb32kTlvt5yyy2SlJo4vHeWOTNmaUDd/2zs8bqTJ08uvFPiNSwYwsIXHkcWguV2bNLwuV4v76GoWrdTn+fOJjd/WgUcVc9WBfecOd23+IwxSYv3IsPfModEr4fH6X3IENtotqBjrfeb3yHum/+OJgP/33Pg+/hd5ecp7rdlDoS+xu+/eK7B1MgXG8W0C4VCoVDYEKwV07YjGouOR2nS/7f0w7SiluQi47HTg50OGG5A5hUZKROGmAmwsEOUXu1o4mN2qmEoWGSv7q+1CgzF8N+WzqODVUyDGeeAzjEZE6EjHx3gMuc8S8Hug+fEbXncmROJ26OzyoVy9shKZVoy5xwznCteQ1ZMZ5WsOAa1FCyRyaQU0mKiFJ9LbUbmVOi9Qw2C++j7xJSNbteOT14HO3+SNcf/06GKCTLifQw71NEpilqwyKaZ4pQsl59xftzelIPj1taWTpw4sTDWLEkHn3sWusj2EDUdLExDZ8zYB7Nns0umcc5KV0bHv4gsWZXH1UvP6zW1FiXOidfM+87nMq1x5hTs9t0uHROzZDh0gDV8P++p+HtBR14WN8ocFZmiugqGFAqFQqFQOBDWimkPw6Ann3xyITwjsiVLP0w1x2uipG5GwPSitOeZRcUye7T9Wtpjic4ojTGMioXkKe3F/9OWxHM9zmjrscRrdkH7sM+N17B4AVmMv/c1U+VKDc9FJvGyjCeT5FwoZGkXvb4xTC/2KTIVM04WeeC6ZAUeWLaTJRhZZjG2Y/ZiLY1tnGYm99133+41Ppe+INxvTC4T++A2vJe4DyKDZOEJ2lC5t7Lnl6yWxWailobJOgyfw/SwsT1q5HqIhYqYFCn+v5f8iPs7HnN71vD4b68lw5/cn3gfaloyO2uPITLxVFz/XigU7boed5wTanKoUTLi/fydNR/0w+kVEsnmwuNhIabsvcqwS9/P/cj8bxhiti4opl0oFAqFwoZgrZi2kxywQHlmo7F0RzZh6Sgr08eSdfG+0pyRR1ZJyZpelBnTJ8NiOj/ajaVFxkvmQdtMZDeen8hOpDlLdl8j0+6xI7KMLOl/lqQjtklPzaxdJlO4UIiMgeUFyQiYEldanH+W+mNK1NgmC7bwmswL2vNhux3t77TfRXBv0l8hs4f7HJewNLN3MqHM/yLzjYhguceI3rU9jVnsA/vMNK1x3cximQa0h52dnYVnPCuzSfsz+xLRK/7DJDhZCtxeOWFqUeK7jH4jTDPqa7MSoPSdoZd1dj/3jUl16JeTlYLleKj9nErmwiIn1GjE9xzf9Rwv1yD+f6rw0cVEMe1CoVAoFDYEa8W0pVHiov0hSk60eVF6JDOO3/UKd/TsuFm7lu7oPZoVK2Aie0rpUeKlHaWX+pJFLmI7ttuxnGZmE7T9nlIy08RmfWVaSTM3+htEKZksMCuJdxhYS0NWFv+mrZXM12OOfbLNy3NL9spUjZGR9rQVZOdRs2RWwphr9y3zgiZLItMmu43aDeYqsK3cfcs0OwY9j3vxwXE+e9oArk20QVM70/PmnfINcFx4D1tbW5OFfXqaIWpNYt96uRfYfmaLzZhmbD9ry3uF7xL2NdOA8b7UjLHcazyH+4A27jgGPv9Gz1cpY/Y9zQHjxuP96Nfh8TA1bjw30xStA4ppFwqFQqGwIVgrpr21taXLLrtsIc40graPXlL+LDaQ3qwZi5Ty+Exm8vLfmTTme9vj19fYzub7R3ZODQGlVsb4RnsLvXmZxSvTBnC+aB9ijGWcT/afHvT+PrKlnn3Nc7QKpsp2ttZ07NixruYl/p/skhmw4twy41W8X/yeXqoR9DxnmdUsBtoZmnoZ8iID6TFq9oX9iNea4fu+jv2/6aabFu7v/mde1ll/Ijvr+YgwLjgyH7IyXsMY6thfZlPr4dy5cwvzl2lpetEcU+hlNyRDjWPme85rx+x6sc/MTGeQycc+8/1CTQI9z+Nak1Ez25n9MTIvfGobyG6piYngnPCa7N3ItY1+Hfz+qLWAR41i2oVCoVAobAjqR7tQKBQKhQ3BWqnHpVHFYWcoOlZIfccMOuFEdQfVN3T7p+o2a5/3oeo5hqU5dIyhXVbnWH0dVVHL1ONUH2WOdlR1slBIpgKiGo5pYrMwEaqlWCObTlvx3Avl5OHkGAx7i31wvxkGwuNZ2lyuAxNZcB7j/2licJt2Not7x7XIjV5ilqk64Vxvznl0SPQ53jN22HJ9a9YEj/+n2pdhi0Y8j/uObTDkKPabfabKOM4jk8VMhakNw6CdnZ1JEwTfGVx/9ile35sPmlSyPvK+3KtxLWNolbSY8IXPeETPZEj1eZY8iIVI/PzzfZvdj+p+zmtUUWchmdl4smeQ6JkQIyrkq1AoFAqFwqGwdkxbmjtSZIk9GFhvkEVk4R90nOkl9shCLxjixVJ2MfWpmb3PoVTs+0dJnmw5S/AQ287GnpXtlOYFPSILpQTKRBUMBcsKE9AJh/2IkuqUE1lEFnqxShtbW1u64oorFtJWxjX2MRZH8Dpk7L8XAjOVXCf2SVp0aOGcvvvd714Yo5OBcA58TdwHvrf3F5NQEJGZuC8+1+Uj3ff3vve9e/oV78PkPdzDmTMRQ+ao5eLzFdErE8mENNI8NM5lGpcVfTh//vyC01XcO352mOQoS9XKsfbC3IyM0XGs1Ez4M7JrHzPj5fszS3rUK1nZS6scQXbsOWf4aHxXs8Qp98HUXDFcrKflytg1GXzv3bUJKKZdKBQKhcKGYK2Y9tbWli699NJdKcj2qCh191JQGkxrGv/fs19Q+s+uNShdMrEI+ystsvVMOmcITM8+mNmWmACBITFmILZTSnPpl2FHtN1nTJvzxXnL/ApoI+thimlPsSXbtK2lIWOM15MtM6lK1m+OkXbCzG+A4WBMguK9E8dsZtgLfcmSeDBExUybWgLagKXFYgieN3/63Ghrd7/9LHrOqbniXo4gK1olKQ7b5fGstKWfxal9t7OzoyeffHL3XIYDRfQKamTPCb/jM95jwvHcXr+ztWTBjp7NPAvbopak93cWLmhG7f3gfmR2fq5Lr4hTNie90qzGFNN2+97vflbI7HnPdUQx7UKhUCgUNgRrx7RPnDixm0oxs+taQmNC/dgGr+nZkii5kUFKiwkpfD/ajTKbTy/lqRGvYTKTXupV240y+7SPsXynvWqj/cs2+AcffFDSYllKSq1RWibrZF+zpBq0nfUk6inb0pQEfP78eT300EMLGoOYuMRrlnnexnOn7JO9vzNvaLIlzznvG9eFdnCzPvplZMlOuA96xSAifB97W/taa7my9J9m3e6LoyU8jikv5WVargw9ps2ER04ME+8z5TXeQ/ZuYZlGP6+9fZD1oZcEp3c8a7entYnwvmNSKTJ8aTGBFd9jZNPRX4Zli/3p+zp6Ja55rxCS+zGVVGWZb0BPCxKPRd8jKdd6MgJl3VBMu1AoFAqFDcFaMm1L7Ja+ohesJSMzQtrtWMg+/r8XzzflIclCEPQ8zqRy95dsnF7rkYn6O8Y4UxKkvTK27/kiY7TNMaZ5pL2VzI6FQ7JCCOzjlNaBDCEridfDVBx97NO5c+d2x26JPrZPaZ6sNis40CvFyb5laUw9H2Yc/s5z689Ma+K9k0ULZGOP7VHjscxzOsKaHF9rFh9TY3qOyUh8rfcMn9HYN7IkssGp1JcZu5T2skZGUiyL0z5z5szu85HZOVlkplckI95nVW/xqThmzz/9R+iTEuH1oa9Blp6TtuVeWcrsHcmiMv7b7TPfRq8daa6lobYwnkf/EWq3pjQ7fI75/VTK0oz1X0wU0y4UCoVCYUOwVkx7GAadPXt2N0bVxSSyuFIfo3RHBul24zHGgrpNS6/Ro5ax1mS+Wdwss4iRrZKtS8vL9/m+Zg6RbTBLGr11Lb1aao99cR88bz6XXpaRQZiRuD3a7LOCKJRwpzx0jSmvV8Le42QTcY7tmU2P/17pzNiHqBWR9s6lNM8cds899+we8717WbkyVrMqK87Wkva6w8SeUksQY6BZ+IbaAM89NQyx314LMivGSsf2qN1yW9QwSP2sd1PwOLLCMbb5M38B3ynxGjLtnh8OtUMRvQIl2T5h36h9zPIGMIKCn7SDZ1oT3oflVWNfGZXC957XLfOeZz4CxpZnxaIIFjfy/qs47UKhUCgUCkeO+tEuFAqFQmFDsFbq8fPnz+vhhx/edUpwgoeourAKiyoShq5k6e96dW2pvs6KIxCsqx3VeW7H6iGPh0lQYh/pNMQ0f+xbVP8xxIOhP+yPtFhzl6on3j+Ozw5HVHFTPRbH1wuzohkgqrNZYGUZzp8/v1BnOK450256HG7fJoEsVM37znNKlbCvjWpkqmTpTJSZVuhoec011+w5N1PDOuRqPw5nPVCF73FFdbxV2+6r18zjmCoy4Tn3p8G615npyN/5eWJK0ayoDVNfZmitaXt7eyFxTWYmYegizWdZqClrhfM9xBSb2Tl8L2TpXulsRVNXZrbiu8N9pTNrlq63l+KZzrRxfzONaM8RleZPaXFvMEw0exfzGeO7ZJnJbaqPFwvFtAuFQqFQ2BCsFdPe2dnRY489tsuWM1ZJlsLEElmyhiwhRTyXqTwj01qW7ITJXqTF4gJkk5l0R0bPEAw6e2TOPQxHmUqTSGcbS7GUnungF/tP9kd2E+eRITN0HsnYku+9ipNIa03Hjh1bSCcZx+y2GdplKZxajXiMIXAcY+ZExDn0mjK0KCsc43P8yb5Fp7NVnWhWDZ2TFkMcIzvzfvMnC0TQeWmVUqe+xhqGuL/Zfs+pLM6j540ao96Yh2FYcEjNUnYaDBFiqth4PR3PliV5yr6b6jvb5TPcS4YU++v54hwzrDOOj452LBuaacroLJY5uEXEee6lKaVzXvb82lF0Pw5nLKazLiimXSgUCoXChmDtmPaZM2cm7XcsCMJgfUuKEb6G9hnaP2nfidfQNkZJNEqTbI8SL1lUPJfMmkkUbJ+K46Ska1bE8qGRLXEeaTeknSheuyzlKG158RoWfKEWYEqqXVbec3t7e8H2GNtjAQt/MoQp7reeHZoaAs59PIchN9yjcb8xEY/XmxqfOLdeX7MJwtd6nLGPvZSnHMNUch3vmR4rzLQdy8orxjnhs90rNZmlH+6VYoxoram1tsCwM5s22+cYs3nq7RlqB9mn2EbPrhrHxftx301p+KgxzDR68bz4Hd+r7EdWRGeZLTvTpvQKE/X8f+J3DIdcBesaBlZMu1AoFAqFDcFaMW0nV2G6zyiJkgFmbcRr4zFK5pREeY/YDm2NU2ypZ4ekJBrHRSm/x9KzEoA91kcWE9lZz/5lTBXPMLLEK9nfcXyZvTAi86hnGb3edceOHVtgKFmq2F75wWysZIZM+0oNTJzHXjEJakuYqEVaTC9JbUoW4eC57TEtr2l8NrxXqR1i36NWiPusVzY0Y+9MiGFkaWA5F/QWZxKROI+9c3rY3t6eTIdJjV4vzXBWWIdz2ht79p7jc2pfA9qNpfm+8j7w/uK8xXcHfVao6eC7JHvvGIxAYeKc+H9q+sjOMzs/NRR8v/H9HvvSS307hXXzGjeKaRcKhUKhsCFYK6YtjZKYJTSmjpQWvUJ5PGNljIMk86T0nzEu2+0szTNNYmTejkFl3Col06kScCxdRxaTlQDktb6GnsDxHHq40m6U2bYoJRPZcRbrYAlNahLiPbPvMuzs7Cx4dWcewFm50XicbcZ2qMmh70HG0sguPBe2szkWW5p7T9O/omc/lOb7iMymxzIzZk8WSI2F+xW/W7ZXMptgr0xlphkxOAcZo4rjzfq/LB73+PHjCxqDzJeGfeilSI796Wl02Kd4rf/PNfVamlVHDYj76E9qUbhP4n2olWG6UX9maUVpN+Z7J6aFZvRIT+uVFZbhXPOc7L3Nd/AqyMrsrhOKaRcKhUKhsCFYK6bteEmylihB0dvRUh2ZSeaxOsUepZzJ9bzUmf0rk0BpD2UxhCz2mRneekw0y4hGKZxSc5xHSta0oZOdZZnKGGvJrElxTizdcy2mpFmyv1UkX7KXzHOV7MHXZHb8Xgw3fSsyhk07p9tiPOn73ve+3Ws8TzfddJOkOVvKyrkazFXw4IMP7ukb+zOV6cvn+L4s85iNnWwms++yD9w7PVuxtOg/QibPIhdxjFMx0LFPW1tbC2wv8wSnL8Mqe7Nnt433711jcMws+xv/b8bLZznTBvjd4Kx67BNt3FkMtO/jPlmTxKyRUt/rPvM0j8eza+jzkuVmOIjXeFZYZZ1QTLtQKBQKhQ3BWjFtewCTqWZZf8wAKIllZfWWxWdTyosMmMcsRbJvMb+uJTTn5qb06HOj1ElJluycY4iswu05k5wl3Kk83LRzm631PFujhO17mwExx3mWCapXcrSXHSpiVZt27IuZYWYnpNd7z56X9YGMm9J4XBfu48xmHtuS5rHWtiF7HPapyNafTK63/zJWyL55HziHepbxj3nXPV8+Tm1A5hHes/Nmmbd6tmHut4xp97KSEcMwTEYnZCwutpvFXPdYJNchy3XOcfB+GQMlk/b6+xo/r1N5LzhftEFH9Hx0zG69L+K6+L3tfUX7dC9uX1p8J/Y0CNFmfxCmbVTu8UKhUCgUCodC/WgXCoVCobAhWCv1uDSqJOjskalFGcZF9U6WfKKnpqRzUeb4ZvSSu0QVJ9XuVltbdZ8ltmeKzV74WaYCytqL988cK6iSozMPnfViP+j8Z5UXw1Pi/ZYVCmExjXjPnlo5YhiGPSrQLB1ilpjG18ZrppJr0JmQ32dqWO6VnhNW/D/Dwuj4GEFVplWPXMNsfD7X6nd/MrVrHAPV0z0VbrZ3eipoqpLjeb0QvanwPl67DNvb2wvrkTld9dLtZuafnhNrps5nX3uFNfx3ZgZkeVA7JMaQq3he7K9V6VRpc/5i6J+f+15q0iyZT3Ys9qMXAhav6Tl/em6ykLb9gPvqIIlZLiSKaRcKhUKhsCFYK6btxP10rMkkUEpDU+y8lzqxlzgjS/fZS+5vKTNew7SLZk1OupI5PNmJx0yHUjOZXpT0GZZD5sXC77FdOrawqEUWBkXGxjnKJN5eoZUeY4ntMVSrB4cMxj5EVr0snGQq1WUvrIT3yZLQGB4z1zZLCuK+mC2ZCWVpTMlS3YbnP2OOhvcd7zsV0kRmxeeUmqsI7iem6TTiWvUcuKidigyS7HIVxj3lOEgHRGoZpkL+6GxFjQ+1hvEaMsWptKL+zk6E1GJ5fFPFf/yu4Jqy7Gpsz/A5fg9N7QPOhe/j/ZilO+6FavIze98dBCzVui4opl0oFAqFwoZgrZi2NEqYdO2PktpU6bZ4bmZHI9PuJZ7PpLue5JvZsmz3sbTPhP3+O7ZFqdTMqpd0ICac6CU1oQSahcHRhu2++e+s7CIZJCVunxsl3t789Yp4xHayknvEMAx70piyaEJsuxdWl+03MlCmMfVeYeKUbEw9e26mDbAt25/c91khlN44aVueSi9qtnrllVfu+ZxKlDKVRjL2Q5rPE9kg7ZVRc9XrK/uc7Z39hO1MlfHs+WJM2cF7PhnLirNk5/bC3eK6sF0marKmLytqw6RU1GK4zehz4ncDS6e6H/blyd7fvg/TQRtMoxqv8TH60rht3/egoA/UspLATzWKaRcKhUKhsCFYO6YtTdsue/a5nsQW0UvsMWXvolRnqZF2jii9uo9mE5ZAKWXGa3qpSJ1ekKwz2uzITnqpUCN78f/96b46uUYvAU085nNoF89sZ8ayAg5ZecIp21jEzs7OQpKauE69PeL+UvsgzeeQY+2lr8yiCHoFXTINAj3vuc99PK4/2SRT/TKRTtSU9FgE/TCixsLsu6fBIvuM93MfzdKo0fH4I6PjniH7o49AhmWlOaM/RMZie0lUeoU14rmMtugh7s+ettF/e36ygjj0Tndb1gBmSY+4d2izz8r7sg/0U2EilTiOnn+R58/7LVtTJkfyNX4mlr0nloHajSmtz8VAMe1CoVAoFDYEa8W0W2u65JJLuh6aPkda9KKmV2rmhUxm3bMFZ+k+mbqT0l2E2zUj6dma47U9L2SycrKBOC5qKFjI3mxGmnt4mln7k0XjmbIy3o9996ftsFHipQRPyT6Lc56y9RFbW1s6derUri+A1ym212Nk3kOZbZTSPG3wtM1laVN7a0qPdGk5I1wFbqNXbnWVa820vQ+i1sTt0abJqIUpz2q3z/hwa3wiesVzyOwyDZ2/myqDOwyDzpw5M+ll34t+yJ5Ho5dGmP4QWUy0+835930zb+5ee/QEj/fhd6umfI7/53rTPyYrjMQ96mtZqCbLLcEUwu7j1BrvB2T9q6RPfipRTLtQKBQKhQ3BeokQmvYAlfqFJygJZ7Y62vp4T0tu0euZntK0c2RZn6ZiheP3U6XfzHAz1hrbiN9R0mSJ0zhuMxtKtKtk+qIGhBoKsgJpsYRpj7lkhUlok83QWtP29lxfigsAACAASURBVPZuO74mlpQk86SXbWaDJlv2Ncs0PbEPhL1bWawhomcvzspQMtaZTIuMN7PtM7bb59imHQsvuP/XXnvtQl9iW1Nla8me/Zll+lpWTIL7PF7vY8uY9rlz5xbmJfPj4D7IzjW4dr1iPMxyFr8jI+U7JWOiPc1O9u7kXqE/Ao9nMdCeW3qPT2W09Jr1GH3mB0C/Epb+9L7M3sX7QU8buC4opl0oFAqFwoagfrQLhUKhUNgQrJV63CpOqraypCB0FugV3IjHqC7sJS7I0tZZJcNa2HY2i6o1qjB74TtRpebrrYakAw3VPFEF5HOoonNt5uz+vsbOcJwDOtxF9NKYem78mYWjUB1GlVc2Rq5thmEYdP78+W64W3YPr7NNBVlKTYaXMOTP65U5XVG13CtwMOX41DueqfB76RapAo0qVX5nh8SrrrpK0ty8cP/99+9e4zDEe++9d7KNTB1LtW9PpRuxzCkqWzeq4adMK1aP85ypuuO91K2ZgyjHxLSimRmt967weOjAFb/rpfucMkHR3EjHVCP+7X7b+dOqc6aVzUJN6bjJ8LTMVEXnP5/j58zq8czEuh/Q0e2wIWRHjWLahUKhUChsCNaKaQ/DoLNnz+5KY5kjGtkrHcGy4gF0qmDpQkqTmaNOr4RhVkiE7fuTBTwyVkHnJCajyNL79UJgfI0l0Mypw1KypX86Z2XOe14XOoix2ECWKIUFVshQskIYq6QTdLEZ99PjypgPw+jYl4zF+tNjdvsPPPDAnu+nigsw3SOTn8T/Z4lJIvYT3sI24rVcXxZnycIFmWqX7XsOnMwjXtvTrDCNaeZoR8c2atuysLSeporY2tqaXLtegRBqCjKnO84t311ZCCi1Ikxrm6U3Zvhh790YnyM6S/LZmEoIw4RTbpeOgTGtqM+57rrr9vS1V3wmSynMd66Zdi/l835B579MC3gxUUy7UCgUCoUNwVoxbWMq7R+D8HvFPqI0yTR0TMnH0Ih4XybcoLRvST5K6WQrZEUeX2QovdJ4tGVlbMCMx+glLsmYtm2Xvsb3p9Sa2d9p32VIURaCQymYKUQjo6eNblkayK2trd1SlkaWVpTts/9Tdnz316xoFcbrMfHT94lhacsSwBw1uEcMaoPiPLqPZtJeW88J5yr2vVc8g/fNmH2vWEeWDpZpbKdYtH1peG2GZXbOyLR9T+5bMm0j7qUY/iUt2pinCtT4O7/fmBI03pchjGTavdDD2D6fYdqEM7u7NQb0qaFtO84dtRtM9ZwlxzoM1s2WbRTTLhQKhUJhQ7BWTHsYBj355JO7kts111yzezyeIy0y354tVlpkNsuSHESmRanR9hlLilMB+EzAQTtVlP57RTF6xRey0oy0XVGyztKC0s5LTUJmQydz8FzQDpbZ99i3XiGG2G9jynt8Z2dHjz/++AKLyRgW+0d7/lTRErMYS/m9dKaxv26X3s9Z8hGmBjUL9znef3Fc+/VyzfYqbdi9tJZSv1iPr13GauN4qK3Jkpf0CsdM2T9X0Z7EPm1vb+8yRzO3KaxS+pPPOeel59cR26OmbWqN2QdqOjJNovvP8sH0/8l8LHqaqqkUr14H+m5QK5mtKd9JjmiYiso5DI4ipfCFQDHtQqFQKBQ2BGvFtHd2dvTYY48t2FcdCy0tenZbquNnZAa029H20kvDKc2lbtuN7anYKzqS9Y1MJLOD9wq803M6k/6YipSsialC4zFKvL37ZeyMHrpksFlxAYNpDDOPT2oQprxCz507tyeWOPME76UNdf+zcptM30iP+Skva9olaWv0Z7wfY1u5V506NO5R983sv8fsstKjvp8ZPdfQbUwVfaAHOvdOZLlZSck4Bttf4/h6BX162qF4/VT6TcNRB5yfVfwIVrGfLvN78HxG3xvaiam1ydg54e+sCcv2t7/je5VlT+ndLy1q4ViCOPOlYTGRXiEh2tbjMb+D4/N+IbGfwkVPBYppFwqFQqGwIVgrph0L0UtzSer06dO7x+jVSPacSb5k4bS90js1y2rl7E/33XefpAvvzWvmY+ZGO15WUIHSuZEVo+/FtVta9jVk5LGPnhuy5ixeknNNe2QWG8/7HSReMq5lr/AE90XGtM1i/Z3nycepGYnt+j5eS1/rNc48l8kee6VapUV2zP1Or/6oASDj4VxzzuL19PD1pz2djUxD4vuYAfe0EnEuemVSs3wOtI1O2dmlce74TBzVM87+MdtXZoPlM0uPfWc7jIVcGHPdY4hxf3Of0Q5OLVRWRKVXIjXbD5xj+hn1/I2k+bPmd/BThaPyRj8qFNMuFAqFQmFDsFZM21mtpkplWiLvxTpmHov0UObfZKpZHGPPAzuzt/a81SnFRqmVffI5zDrl76OdjOybrCzz6vW4HKd99dVX7+lHz6YuzSVeS/ts3/eNNjqzALLBXvnAOOYsZ/KqiFmmmCPbcLtZeU3aDt0/sk3GrEqLNj/vC44ni0V1v90e53aqDCXthkYWC8/verm1I1tyX6iV6UV0ZPkI4rpI8/n0eK3FibDGjTZTxifH/7tdZ67L4Lz1F9p2ScY2VZaW5Tr5TuF58Zxejvss3wGZNnOb+/tMm0EfBr7nMi0HI096+TWy2gFm2FP+CX8SUEy7UCgUCoUNQf1oFwqFQqGwIVgr9XgPUR1iRwwmYaAzR5ZoYSosTJo7CmXJB+g8ZMe0DFZpUbVOxPtYXdgrN8jwmqx8ZK/MHYuOxHPo8EZ1dRZa4rHTRNErV5iNi3M/VQwkMwmsirgP6EzDPWOValQF0+TgMTO5Spays5fe1Xs4K5XJfnNts/vQuae3zzM1rO/jvjHFLvdfvMbwuvTSWGZFH6jCnXJ44lw77I3hQlS5S/M1WJYwJTrB+tnI2jtK9IqQSItOZXY4oxNefIfQ+Y6heHwvRSwrV+z+ZGGjLKxBVX4009DxlE5sTGIU1+2ee+5Z6PdTgal308VAMe1CoVAoFDYEa8m0KYFGpxSnNqVT2VSoAJ03mFaSif0zRw3D0iyZSGS+vjelYX7GMBczeaZzJFvL0n1OFWiI58Y58v/pLESG5+/jGvj/LKtH5hPZAp186KSXMXqu8UGYdnT+IQPtJXzxWsTrs9KL0vQ+4Dh8bQzTif2RFvcb+5qFnzDUj+GPdKLMUkNS+8A9FP/mXuT4vO6ex6jh4f5mMhV/H69x+2RfdqI04v7wPFKDlcGOaHwPxD4cpfNTLy1r5lzYK5WaaYsYBss9k13Tc87kNZmTHveIGXWWxtjopTGmo6rX7Y477lho46lGMe1CoVAoFAoHwtox7a2trW5KO2nRjtorBBClQEqTDCWitDeVUJ9pJo2sRJ7BZCNZ6lOyILMGMrcpqa9XvN1sJpsrhpJxzl2gwuFdsZ2e/cthalmhgF7iF483Y9NHlbif4Wa9lIlx7/QSK9C3wMwgm+Mes/LcxhCsXnrXXrGMCGqdyLRX0QbwO85Z/D+T1HA+s6IP3L/UsHhOsiQehjUVPsc+CFna3CnfkzjGM2fOLMztVJGRw4AslmFV0vw56BUkmiqVSa0C1yE+Y9xvDL3iuzgrHETfHd4/SwRl0GfDn163dUhssg59iCimXSgUCoXChmCtmHZrTceOHVuQ7qJt1JI4PWYpqUWJzpKlGY1ZY88DOEqilh7JAFfxfu7ZI6eSONCzs9dGlmqz16fMVs/iCCxL6bl58MEH99xfmnuc0842Va60x+SohYjfM9XlYeF2nva0p0la9IilPU2a7xl6WdPWlzFgrjMjAMxyMu0Cbf5c26yAB/dxz3afeXMzzSe1J1N2UM8JbcL0SI/j4njo6R6ToVx//fV7zvUce296HaPGwnPtc6bS5Mb7S4t25AsF7pn4vNA/gZrFrBgHi7wYZNqZPwy1j0ycwvdtbJdaIO7ZLNFVr2iTU1dbW3cxwSicdUEx7UKhUCgUNgRrxbQN2lOipG4JjLZleh9mBQ7MtOjB2rPnxnv702VCfX/fN7MT0ZbJFKFTZSN7dnFK4LF9pg/1PNqmHb3V2Q7nkTGfZtfxXMZp0gM9ModeMROyg2xOjgq0XffsdlGy7tmYGVdKlptdY3DeppjIMnthbK+XxnYK2VrF+2flNXvpK33cNuYpb38+cz3PZ2kxfp7+HmbTTsUr9Z/BVcDokti/o2RdXJ+4T7hnPAcs45ldw3cg7dWZpq+XrtdrSg9+aVEbRL+VqZS7BtPW3n333Qt9u1jIYuHXAcW0C4VCoVDYEKwd026tLXgUR0nN9mhLgJaCLFmbTUZmSK9m2t56HprxGG1IZq+240YJlF66/i7THBhkbmTnU4U1erG9tH9lhVA4TttzfX+zm8jSOW+MXc9sWdQgMB6YzCh+d9Qsh/3kGkf20vMw73lKxz5yLVnsJgPbZTa/TBPDwiS9KIWMpdNWb/RyG8TvyLC8V5iBL/NJ4Fr2ND9xfPGZjuPKynuafa+C1pqOHz8+aYv1/BxlljQ+A1lZV6O3hhnT7kV10Mclfue562n0uOZZ+72ojDgW2vH9brzrrru0LuDvzzJ/iKcaxbQLhUKhUNgQ1I92oVAoFAobgrVSjzvky+oUq9cy93+rlByEnzlbGU576BSoVqexfrKvnVKP0nHHKsHogER1MVWoUw4avcQEdEyZSl9ItW8WZtMLZ6GqMavNTMezLAVp7HvsL80ZBucs4qjV476X90yv4EY85j3I+sasQ5yFfNEByGNfZVyZOUTau5Y9h0diKpUnayC7b1QVSotj79WFzhIgMS1vLwVrVMN6bm2KYtid24rFJbi/pubY6nGmVM3SvV4Ih7Rs3fhM03SXhaX1nn+qxeP+Xpa8pReiF9vpJS3K9huTxjiEt7A6imkXCoVCobAhWCumLY0SHiXGLHG/HU3MdOl0Q0lbmkt1dibphZtkpeR6sHRJJ5kMdGaakuR7hVCM6BzBMnc9pp0VDKGDm9uaSn3KUCWOi/eI55CV98pkRhx16JdBp5up9JVZ2VZp0YEushhfw9Cb3hzsBxnTm0pxump7vZKZ8Rk0emGJdFDMNDx+Bn2ONRh+9rICJWbSTrbS6+t+YQ0fNSLZ/j1ICNmqiO8st8/wSiN7LzDZDc/NQtmYSpWfXONVUvzy/Rb3N7UKLJ6zDmCJ1qlkWBcDxbQLhUKhUNgQrB3TlvrhNBlYPMASfJQ2mTiEYTQMd8hSNpJhMcl/7KPTZLpd98lSqvuR2c4ZgkM2m6UvpG2e48pSUbr/TDxjhs2CKFOFPFiekow//r9XAnQVu+5RgyxyqkSi54XjoO030wpQUmfaz2zsWZKRZTjKeaLNNLOD0pZJuzht3NJ8zExaREaZ3Y9M3u36WTgs0zZYPlKaa/T2E0p2GHhs2ftMytkfz+Hz73HFZ7tXvpXahsz2Tc1az9clnsdxZRrRiw33KUuCtQ4opl0oFAqFwoZg7Zj2uXPnFqTIrCwgpR+zVyecj17ktBMbvbKUkSFaeqVdmIkyMs9PepabzZLxS4ssn+y45xEsLTJt+gJkNmePi0ybPgJkxvE+7j9TLGbpEjm+ng01Y1gXGp4XM7aYDIR+AZ5resFPpRk1mBKUhTfiOQexc18IZFoTMt1eSld/xsRD9LJnG2bL8dmg9sLtHVVhj9aatre3J9eQz1T0VL+QoH8A+zO1dzw/TEUa0SsqY0yV2eQ7gr4umeaDKWjXZZ9ncF8rjWmhUCgUCoUDYa2Y9s7Ojp544olueUopTzEYz3E8bZSE6Yntvy010y4dmYFtmZYmae9iQYfYjo/5WsaBZkybaTJp0860AfQEz2xy0l6bFz2a6UVK1hztYPbCd/9pl8pKBDJtIddvFaZ6oeB+WsuQ9YHrzzS6XtPI+lYpxcprWM7yKNNmrgJ6ILO4SXYuyzqy5Gh2LVkh90xkabRpe056BVn2i2EY9jBIPoOxv9RQMe74qYLvm2khmUaZ44nPJX0IemlMM40LGTXTNjMlcrzfxWLY+/EV6ZUTvtgopl0oFAqFwoZgrZi2NEpA9MyNTKRXmJylDGOmHXoDskQmPYMj0zZzZ+wemXaWoYolMhnTHSU42gV7sc/0mI0g46D0H7UBbof26F6R+iiZUkpln+lZH9tdJuFmkvxThSz7U68IAlkMz5f62gPGxGdsiXvGc5GVMD1K0NM4iz/3nuHeZ9GZTEvgc8lQabuN88r54xwddp9sbW3p8ssvX9ijsV0/nyyg4/FkRVEuJNzHeF9qe5i9j2Vm47k9cG2nIgHItBlFEP9/UE//w2I/DD8rg7wOKKZdKBQKhcKGoH60C4VCoVDYEKydery11i3SIS06vfSSjkTHqSzESprX5qbaOqqPmGbP31E9FvvIY71awbGPWSKKbLwsxhDvQzU1HVMi6ETi9liMgeE10uI80qxwkLClgyQTOWqwhrg0N7PYTGJ1IkPhMgdBOvcsM+1EUFVPtfFRmw7o1DVlpvE57iP3g+eMzozS8mQ6WV11g/NEk9VBE3UMw6AzZ84smIqyutP+ziY1nnuhUu6uAoZRui/um8eXFRkx+O7g93Ef0JRGZ82s2AmLv6wzVnUkfapRTLtQKBQKhQ3BWjJtJqHIpHIybUtwZsDxGkvFlgzNWuwow1R9MTEL2YQdPyh9RWmSzmp0nGGqUmkx1IYsmdJz5vhGtkdnouhg5/+zqAMZBR3W4ncMG+P3+8Fhil0cFax5OXXq1O4xhjz5HGtJmJgnCxMiI+H8xX1AJ0zO5VR40zL23UtMlPVpqjCG9zcdD6fKq/b6uEqhH96X2g4WxFjWB2IYBp09e3ZBC5A5e/I7vyuyfl9M1i3N19DrQq2alDuLRTCcNI6J+4n7IoMZ9rqlBs2wrn0spl0oFAqFwoZg7Zi2tFoxdTMdFqy3JGx2Lc0ZdS8BvBOxWNq/+uqrd79jMg3eJ0tjSgbCazM7IUvi0cZoSX4qRKNXSs5SchYeQjZIjUIWvuNzfWwVmw9LCTKhzTokMvD6RNZEPwT32/NDlpetaY9FMoGJNN8bDCFapYTpFJOeOp5hirX3CsT0+jbVFud8P3uJcz+V+nQKwzDo3LlzKxWt6ZWfJfuXFkOt1gVxnMu0MyxbnK0x9znT18bwrsP4Ylwsv5eyaRcKhUKhUDgQ2jrp7Vtr90p698XuR2HtcfMwDKfjgdo7hRVRe6dwUCzsnYuBtfrRLhQKhUKh0EepxwuFQqFQ2BDUj3ahUCgUChuC+tEuFAqFQmFDUD/ahUKhUChsCNYqTvvKK68cTp8+neZxJnp5iLNYPp7buzZDlulq2d+8Ztm1U33rfT91PyI7zry6vTk5SIxi1kdmhzuIA6TX9o477riPXpwnTpwYrrrqqn31j2M7SPwnxzM1X70yn6v0jefuZ1328xyt0m5vrKvsv4PEkPfu08vtP9XenXfeubB3Tp48OVx99dWT69Kbw2XPXgZmIZsqAbnsvlPtEvvZM72+ZWU2V/17P31Z5Z3F41PXsPTwVNY7X8MaCrfffvvC3rkYWKsf7dOnT+s1r3lNmmje8IKdOHFC0mKBAx+PCQ2YkISJ9adSNvJc98mL72QK8X5MwNArpBF/JLjh3OdegpnsB5EJKng8K2bRS9Yy9SPUezj5GeeB9XPdl/0kwXCCk5e//OUL4TlXXXWVvvALv3Dy+izdpbRYy/mo0EsocxhkhRyY3IJpbJnEJfbLx1jMhPW8M4GGAjLT2mYJSVgQhPubSYti/90nt8F63X72Yx94zld/9Vene+clL3nJ5F5kQhfuddYHz+D969SnXJ+4L7kuvYJC8fnt9Y1JT7L3Kp8N7hXuqex+vWsiOJ7eXsneyb0fZ5/LIj4Rfgc/8MADkub7wkWisvZcJOj++++XJH35l3/5WoQFlnq8UCgUCoUNwVox7a2tLZ04cWKBxUYJ1NI0CzZQuorlFckaWe6SJeUiM2C7vSIgUXqlhGtJmpJixrw4ZqZA9H3itT4WC53EczIp2d8tU4tzvBkocVN6juOhNLyf1ISxsMZhQC0GC8asknayp6mI4/CYqVXwvjiIiSDbOz1W5vnisxLB9Llcy4yVESzjSdYU9477xPS4vecq6wPbyMB2lmk5lu2/nsaNc5/tHX/nd1ePaU8VEGLxn1VUwYavnVJxu49k3FS5x/3O+/TeKVlxI/aZ32cphXtmR2pnsr3jfnsNqA2I13hf8XdoXVBMu1AoFAqFDcHaMe3LLrtsV9LJnAUsMVlapbSVObGx6AYZIctvxjKUtlWReVJ6zaS7/Uj7tFmx6AgZcLwfpVNKzz4er6FUzPuSCUfpmZqJnl08rhvb3U+BiKMGSwmS1URwrGQrLHgSpfKeFiErLrEMXIc4t/4/mbbXmzbh2B+yPZbFzbRPZEdkJGQ+GVt6+OGHVxp3HA/3mfucFZnp2YB72K8TIp8pj8tajdg/a/38Sa0Gy3xm37ktagnj+Ohk1dPkZEybGsNMgyjtfa/2bMw9zUu8H32RuGfoKxDb4Xe+xu/t+Bx7rr0u/uSzEZ9F+l081QVKlqGYdqFQKBQKG4L60S4UCoVCYUOwVurx1pqOHTu24EgTVTSuk201B9WsWUgM1XcM7WHIwFQMdOYgEe8b7011IVVqcVx02qHa1aBDV2zfbTBsY8qZrOfcQaepqILs1TtnX+P9eiFF+4lzPaxDCPvbU23GWuxUQ/acb6hWju33wqZovojt0LmQZpI41+43Vfi8D/dD/I6OSBx3fGb4PD366KOS5nXpDxOLn8G1xelQN2V22o9pahiGffeVJpXsmXY4kT9jSJo0Xw/vt8zMtExNHcdFcwRDAKfC93qOp1Ox1zS39PJRZPHzVKHTATdT8fOdRLW492h8N/veNk3QFJHNr9vpmf0uNoppFwqFQqGwIVgrUaK1puPHj8uZrSxhx/AthkdYerX0ZSkpOpNZ8nJ7DBUhU42SaI/dZQlLDErBZNGUgCMYokB2mDlHkA33sihFJ5netf7sJcGIYF8oeWdhcGSDnN8pp4+4pgcBHc2oIaA0np3r/lLqz7QZZCtsNwuRYQgRHWYybQnP7X16nFFrkjmnSYvPzIMPPrj73SOPPLLQh4gLVe6XGjIzVLOmODceD5nbUYHhdO5D3GOnTp2SNH9H+ZNsbyokj5qPqeyKXleGLJG1xrngvCzLpja1/4gsnIpOmOyb+8yEVPEcPmtT4XDUBvEdcM0110jau7c8Hr8PVs20+FShmHahUCgUChuCtWLaTq5CNh2lI///aU97mqS5lGV7mlPPRWbQC0VhKJgRGR3Dz/zp4xmrsORMCZR2oyhZM1zH6OXBjX2mLd7nMrzB0ma8hoyKIT5M0JKNx2vSSwQT/99Lfeg5XyWxyUGRJX2R5ozIn3HdljEB95f2cWlxrXohSxl7Ybtk4BG0d64anha/I+PyXrnrrrvS79cBniPbjDM/llX6vbW1pUsvvXSlNLaea7J8z3lMi+m14nPpdeczlb0PDO6djDVzfXt7Ne5RnsuEQ0R2be/c7P3q9yZ9kfh+NTKbPefCa5AlQ/HYqYm11oOhtXE8XoMs1enFRDHtQqFQKBQ2BGvFtLe3t3Xq1KldScdMMUpblnBtb7DkZqboz8yusSxtJe258d60F2We5galN0qzq9glyXB7xUBiu2TwZOeZTXhKso2YsjVPed8TZCrUBhw10452fLJ926quu+46SfM9Fcfq/viTbMzXeDyRLflc70na8TOPdNrMmZox8xrmmi0r+hDRK9gRtTIXAmQzTDwyZZf0WlDrFW2P+0lB6agV7mOeE/vH+2SaFq4/31XUJE4VcvE+5jrFvcP1pcYle7+xAFLPxyE7Tk0O58/jjPNJRk9t1FSKZ9/nyiuvTPuWJanhb4j7NKUFm4rUWAesV28KhUKhUCh0sVZMe2trS1dcccVuisNMurXt2udY+vbflmbjNTHuNoLehpaMo8RrycygvdptREZHpp2xB2lv3KaZBm2nTOWaeQB7zO4Dr+3FGK8C3je27/sx1Wtm6+qxI9uRs3KeXtvDpBGM/hDXX3+9pPlc04btz7jm1M5wjqdKtHpMtE97DnolJiN6DCHuJWtQuDc8djMPr1N8HtyO23efOPdZrO1BcO211+7pg713Gasc59H/f//737+nry6zyL0lLWpVpjQ4wzDo/Pnzuwwus4f3CltQyxX3jteFqTmZitnvgTjH3mc+xr+zflFrxfh977OocevlgTB67654n17cdJYXg1qmLA9A/DuyZu9n+y0xSoUpeeP11HqyVOeNN97YnYNi2oVCoVAoFA6EtWLatmlbGnM8aJR87BVOmwdt3fF7xhxT+mZ2oyj1+Vx6nJO9xj6ScbKwgdsy05PmkqwlQCbFpy3LGocI2k5XKXvZiwem9D9lYyI78n2nvHHdnjUkp0+fljRnXvEcajumwJjoKHU//elPl7TISLwu7ku8H8fAeWC8dtTw9LLaea29ZzONBO2E3te2v5shSIvxv8wGxvWJ3rA+ZkZCDZLHH8dN2zztlB6v2zS7luZ73ud43ckks2xUvp/X6Q//8A8lSe973/sk7WWQvs8qe2dnZ0dPPPHEwp6JGgnao1lS9EKBrNl94nMbz3H/qUGirVla1IpRO0hP9ywjGn2DyLSzqBX6CvkcPl9Rg+k+kAmzGEh85qlx4bNP7/I4xnVj2MZ69qpQKBQKhcIC6ke7UCgUCoUNwVqpx1truuSSSxZCVKKqzOoNqoKpLsocghhGtUq4Awta9FJTZmEiVtOw4EHmMEH1OI8b/j6rjW1wfFndYZoTemryLHSGCVjsIOS/ra6N6Wc9dqv16fDk+bS6NPZxP+pxj93Jd2J4iFWmnlOrOO+///49fcsKnTAxC5NEeF3i/RiKQvWe24rX9JwIjSxFrNfD886iIx4PE0pI83W2ytzj8jXZnHB8DNexWtxrcPXVV+9e43myGcRrwgQdWS127ye35/G8/e1vl7RXDcu696uEEtKRKvbpsCl0DwqaiPgsxHeIggsN4QAAIABJREFU15D7gXMbx+J5orMin/Es6QrfTQzx8rUx7S2Leixzalzl2adJJXs2/P7xnDg8kIlZYv99jR3f1gXFtAuFQqFQ2BCsFdOWRjZi6dIMLjoj+P9mBGYplrYsRcYwGkp3lvwsbVkysxQWHVDs+MaQJLdpqSzej84pZgh0cInSP8NN3C4Zg/sRQyHsiGOQaWfOMpbKzXQy9h8RJV6mHmVCBEumZlpxzO6TGRxDZqJU3itEMAXPo8O77LgVx+A5vO+++yTNnbqyYizUsLj/DNPyNTF9Lsv/0ZmHYU/SItN2nz2nZpPxGrfvtbSjFhNIZGklb7jhhj33Y8ihxxAZEVmrx8E2vMZxTekMRe0DHaHiOLw3PXb3/TnPeY4k6d3vfvfuNXToXAU9rdY6IhsXnVZ9jp91aoXi/70evUQlmSMatUBM+ZyVysxKbh4WvVTPWR/pCOe9G50zmZAlvmvXAcW0C4VCoVDYEKwV097Z2dEjjzzSTeEozSUj2z4tzdHWGKVJsgezIdoHab+JYJgOpdcYGsRwHTMgJlOIdhQfM1M0WyKjN6IEaY0B07G6jyyUIs3ZCot++H4M/Ynw3Po738csMGNLlMIZpjFV+nMV2B/Cc+F5jGEbnlMzbGpNssIALBFIO/uUrZRrxtSNRmSi9LtgOJoRx+V+m9naRs/EPF6DqE1h6JL/vueeeyTlJRl9DkN+euuVJWZhkp2p8pTur9fU11qD5ecq2s75jK+CVQqG7AdMpnMQ9EpiZsVmmEiEiVH8jonvRrJTt8trszKyLEhCpm/ENT2KwjP0EZkKF/TzSk0pQ9xcGEeSnvWsZ+25XxZ+eDFRTLtQKBQKhQ3BeokQGiUgJmfIElZEe6m0mFYwJh+hlEXPbzNE2w0zSZRSMxMYxJSklDhp//T9Y3IVpvyjXch98n0j8/I5vg8LX9g3IGos6BHJ4gVmb7QDx3Y9n5Rms8QmLFZAT+NMmnV/vdZZQhmjtabW2oK2IbNL0vObaSYzxs1Ut6t4I6/KKqIdnB6/3u/WjGTJINxf2++pJaHfQEx2Ynbq8d1xxx2SFgspZDbUVceXaVHot0Iv73iN95efUybG8F6O+4PlYnu+GgcFI1uyeZpKT7sqGL1iZIUuekWGPE+ex8zmSy1jL2omS1rFIk3cw3EejoJpU/vAtMoZmDTK7x1rb6x9i/3tzf3FRjHtQqFQKBQ2BGvFtFtr2t7eXmAZ0YuYTLpnR4mskgVI7HVqyZ0l9KItkiyM6SqZJk+aS7SW5mhzpo09HmNxCd/fbCxLfWnJkHZQ2zaNGDcd7ahxPPTCz1IR+lyWAmV5xchuepqEXkGUOEZLx7TrRgzDoHPnzi2U0szsW9Zw+N4ca8YGPMeHYU+99Ihxnhgn633xjGc8Y8/3cY+6Pc8TyzqyFGm03XpOmB7Y2g2v8SqlOsnGs3Kl3N8sS5kV6yDzsWaB5V0jI/IcUFN2VKBnfi+u/kKBKWv5/wimcY7vHaZapn8CNW3x2p53PZ/xo0712tNyZT4JfL8Y1CxkRaWy2PR1QDHtQqFQKBQ2BGvFtM+fP6+HHnpoV+ojk4v/J+Ng4vnIsGy3YPJ7etmSeUmLGXQcE21pjxnF4v/dHu21vn9WApKSOjUJvibaXWlXp50tYyKM5aad8D3vec+e8cU1oERLtsTsQ3FcXiePw/fzusWYSNq7M1tzHM/ll1++q0HISkr63p4v2npZkCIeWxVxHyzzHs/WnHuefhjZ3DKW2vZvep6ztKE0tynffffde871uuwnVpnPQsbs/R3t0czalmWhokbEDNzevpHRMdvdKj4Ih8GFYti0nbMkbKbNYr4BFq6J7yNqfzIv8fj9Kh72+31mpPke5n5zkR9p/o7wHvGz7k9GpkjzfcTYa+9Da2zju9H7NtMurAOKaRcKhUKhsCFYK6bdWtOll166K/WYjUUva8YV+xwzhCkbFlm5r3H7jAOVFj2MLaVaurPkGe3FtNcZlup8nyj9MzadMcRmDszvLS3a0CmFZ2UjKbF7Xi3N0vM8i5818zWbcWzvzTffvNBHrynt3b5v5rlv2AdhKjPR1taWTpw4sdtfS9IZM6B9neUWD8OaVpHKaSvLWCA1E2YKmaes/29Wwlh/g9oNaT7/zgpHX4oMvXz7nj/vIfc1suZe7DI93qONkXZw+n8Yz33uc3f/f/vtt0s6+vzR9Fw+iL3W3vv0OYk56N3fqX0s5T4W7pvnyW34eY3PMkuy0tZLH4OjKlfptWS+CO9N+p3E/1Oj50/v4bgv/R33EOc1vqvp3xPfY+uAYtqFQqFQKGwI6ke7UCgUCoUNwdqpx48dO7YQXhJVgUwrafWU1R1WMU05pfiTCVJ8nh0RsvbpuJUVtbBa0kUr6DSXFYrwmK3iofqQasXoOGG1F53J6LSWJe6n2o1ObJljiueEoR2GCzdkairPzbLUlxG+JqapJBzyxTCgCCaD8Fz3nAAPgv0kYvBezQpqMEzH59DMIM3NB3E/xWup0oxmBptsmBqUjjtxbmhScXvso/d/HJ/HHBPKxDZ8bbzGfbrxxhv3tOFrGGoY/5/N8VHA7479OOrx+SSyPh4ktSr3IB33ormRhUEYauh9eJiQxywszc8pHRI5hpgwx8fuvffePeNweKLH4u/j/fh74b/93nVIZbyPn5ssHOxioph2oVAoFAobgrVj2tvb27tSV8YGLSnZOcCSoNmkpe7oiMai5j7XjMEMxQw8SoZ0PHMbLFkXnUjo3OE+UpqNzNft+zs6pjH0Kya4t+OXz7HkyQQwkXHRYcpzbemVYWSREbs9r5Odv+isEtmU54fJQ1ZJXGDpPoZ/EA4XNBtzu1lBBTvMmblbmp9yvqLzSwzX2y+4Hpm2gcfMSLwecS5uuukmSfN97b3kc+ns9+xnP3v32ltuuUXSPAWqWQZL3sa17DnHsc8OG4wMuMew/QwydW3sk/em7+s9aiYUmSoZ1VElyMieh2XgersNahRXafMwRUi8h6IWimGwfn/6OWVI2LJUwrF9lu6N7fQKoRhTmhGvOzUsvq81T7EPdHxlXyObprZhP+VdnwoU0y4UCoVCYUOwVkxbGqUbluLLwqkMBs8zkYA0l7JcztOSlBkiy3tGyZBlKNmmpb5o22aSCbdPphDZGtN4+hpK1rTpx3MZikPmFedkqhRibIsMU1pMx+r70F4V14o27P0whanQqNj+zs7Ogg0+S7voPpitun2GKsV2zI7I6twnz1ecJybEYZKYLM2ntT2+luUn7W9hdh3bdZ+8rz1e2vWysp7UYLEYTNzfbMfPgm3Y9PuITMV7lWGJHp/vlyWc4XzR/h/76HZ9zlS44CqgH4rn2PNFrZq0GPrpeWDZWLPXrGgOWd5Uqt1lyIp+GLRts29Z2Uu+i/13L1FKBNOHMsQ1u4fn0UyaCWGy5DFM/OS/ybDjfXw999m6oJh2oVAoFAobgrVi2q01XXbZZQtsOUpBtLGYvfp4xsZox6BXIL2go62Jkp+lfhZejzYRsxe3Z8m6l8AgnsM+mz35WqdRjdeS8WapXGPfpUXvZBZGITvMShuyKIfPoaQa22XSkFW8Uc1uVklFyX5mXu899uq9FCVrzpPHxhSdHmtk2r6378d0ul7TLK2k27Hd3eeazUYPYJcVZHITJiMh+4z9NnyO++z7xL1DBu/7UIuSjc99Y+IPj3fK14H2V8NsN5uToyrNyb3NNcw0YGST9Dj385olPWGSG5aE9frEdxV9d+h3kTF539s+BExbbE0m93m81s8yNSxuKz63vp4RG0wdSu1EhMfH/ZYVYjJYfIgaxDiP7stUWdqLiWLahUKhUChsCNaKae/s7Ojxxx9fKEw+lRTf0pyl18ymzbhFSoRkF1GyYgq7Xgq9yJR79m/GT8dxmfVZKiWboF0vSpOMm2b8auZx6j74frQBM31qZD5klWRLmcTLsoC+7yppP93uFCvf3t7WyZMnFzQG0a5mydme0h4TbYxRu8LCGSxmw88I2nzJSDL7pNmiWQz9OhxPGlmUtTFmCx57L91oFglAduF+0L9Emu9BsiX6Org/mQ3V92U+AOYJiOPpadmy1KtMFXvY9JuM6mDsblZa1ufSl8Lnen6yvvU8mFnCNLPF9uzd9F6PffEzxvniuyu+s6h98jX0Us9yWfAdTF8U7qX4f+/9Xu6KOCeMguG+y7Q37O9htTRHjWLahUKhUChsCNaOaT/22GO7Nkx6/knLy0JmHuD0lKbdkHaimFmKmXQsodG7OsvA5vbcFx+nDZpzEEEJm8UA4jUeB+2DWfJ9xghT2ifDjv2iVOy5oB0q2rJYeMXS8pS9iOs15cW5tbWlkydPLkjdccwcC4vAZDYsMmlqIqjFiWNmu76W44rREdxfXjt7zLKkoLRYvIY2P3ruZ5EVnievOz1x4zPIZ43PBtlgtgbL/CAiu+EzTpsp/T/iMbK/g4KMl88PM8jFe1Kr1HsfxTnme4DaK2ali+f0nulMC8lIF74/p/IT9DSV9qzPxkUtQC8z4tSzTi0ExxX3DssVuy9890bNifvCvBrrgmLahUKhUChsCOpHu1AoFAqFDcFa8f5hGHT27NmFMKosrMEqDKrbMuebXqgQ1VRUm8b2CV4TnaSsnmHSfauW7NQTHUKoOjd6yeujmoohZG6r54QRr2EIFlXeWfIBJnqhExvbjH3Lkp7E8UU1mfvtgiFTqvTWmi655JJdtXFWQ5zJGLzOdDTJalUz9GtKDW9QPc619DVZQhar5rxXHPrlNKAxHeiyOuC+bzZe94Wqe65P1keDoYz+3n3PktUw9Gcq1KsXlkanwHgfq8q9f5el32ytLaTfjFjmeOj+RzUrk4wsq1Ed2+T8EH42ormQzy4LIRlxLWky4nPKpCvRSYvhdP6MKWilvc8g9yifRar/4/jpNMd3YhYmxjrtLHKTOfTRNHTYxDxHjWLahUKhUChsCNaSaTuVoyWcKCUzqQkdaCz9RQmUrIiS+VRKQIabsA2GnklzCc19sGMGQ4yy0ASmLyWbYLL8rI+WWlk4IktS03ME8dwwvCJ+R2cVsvUsFSU1JSzJGFmO23Ufpkpz+r6eH7PzKPV7Ll26z/ekM06UrMkAe5oCIzIDMk+OPdMKuY92QHMBFMPj8jMS+0RW1tsXmVNhr7BGdtzjYvKUzNEpthHvzb5NFcLoOSX5Pt4fkVH2CuL0cOzYsUmm7WPeG9QYkJnGMfEa9mkqXJBMmIw4Y4juK51JmTI2gu1RS5RpaRiW1dN+ZqUt+Q7m3sw0DCyHzGcycxjjXuSzkqU+5XytG4ppFwqFQqGwIVg7pn3u3Dk98MADkqRrr71W0l6bdBYmI82lS5aUkxaZjtujrZupFeMx2i4toTl0IEqGWeEJaTEZf5Tu3BdKqT6X9rEoLdNGangubP+MrJN2VoPJSabs05ktMX4fGRLP5RxkbMNjZThKDzs7O7tjNCON4XvWODB8hawmrgsZB89lUpBMU0CGwIQtcb9ZCxP7Lc21TU44FO/TS8TDNcxK3TLMrWerjeA+o02b6xVtqAT7mtkyyb44Xj87USNHO/Gy0MLLL798IWlQnCcmG7ImhAw184fp+cV4nsja4/+5hrSLx3eY+0hfExaqyVglfYK4HiwgE+eCzwSvieNiiFzP74PjjX0iA+aezd4l7gtDwHyfOC724ajKuh4VimkXCoVCobAhWCumvbW1pUsvvXShOHxklZQws+Qf8XtpUXLqeYBm6TfJPHslNCMoofkaS7pMRiItJhvplTdk0YnYF0vYTvLva8y0MzusJU8m2eC8ZteSvfS8YmM7ZEtTUqzn1qxzKuXp+fPn9eijj+7OsVlXTLjhfrnoxh133LHnOBlCHCOZD1n/KvPDvcTEItLeohdxHLfddpsk6e6775Y0X2NpMQ0rmbCfBWuwWEhCms+J548+AZGJkFF5jlmiNWOQPZsi911krH5efI7njQw7rgn9OrJERoaZtvdbpv1hwqBekpUsWoEezNQy0YM+a5eMO9McMIkL0/ayUI60+I4iA6aWJmpNmNyG19BeHe/dS4FKjU/cy705J/PO2Hlv7rP3D4tQxXfIOqCYdqFQKBQKG4K1YtqtNR0/fnyX/ZlxRynZ0qTZI9NjMt4vopc2kGwys4n4Gttx6E0ZY655vSVSj2MqnpDFF9jHzOOY6UrpVUtGFK/3HLN8qO/LQizSIjMgs8sYHxmD58RzYWY3halzHHngfcGyq9JisQd7o5PdZT4NHMdUP3g/rmXP1hj75jm85ZZbJEnveMc7JM3XI+7vnh8EfTnMSKMmy/313vjQD/1QSYulHzO7NGP43bepcq696Asyx4wBkcGRPcX7ud9+Xk+fPr3QXsTOzs7C+yH2ifZulh/NNEe9EsM9W3emkTB6kQHxPcB3np9p+wZlaaG9hszLwL2bMV+uB+37fvZiH7ln9rMPuHd6Wq8sXfOyAjJRy8Gyu9ZQrQuKaRcKhUKhsCFYK6YtjdKT7WiWkiO7sfRjqdF/9zLrSP1sXLT9Mjl+bN/Slv9m2cuMiVIaZ8xjZL5mKWR9LO+X2dDJ3JjtJ4td933MXhkLzQxIkX26L+5/L6F+ZD5ZEZFl46Ltclk8/dbW1i6bzGJu///2zr03kvJq4me8yy2AFClZSILQy/f/VLwICWlBIG7JAmtP/kDlKf+6Ts94bO/2KKekldeevjy37nnqXOrIEqFxoZVBP33n3imEMQaAa8rPpRVFY6917uyCfdW6U245i2VULUuzkuHpc/rLqw5zyDWp/ukZ9LVKS5HYk8acsQFrZV1ZeCX5ahkrQa0GrT+3xGi8UllI4vr6un766adbhqW+ertZwpGWhxTZ3mUcdIU8kupgZ9nRuCWLotqm/qR1JlCbgH52rvNUbIYWA2YNeB9Ylrjzg6/FunCtMF5m7V3SxfC4pVTPltr60GIzj41h2oPBYDAYXAjmS3swGAwGgwvBpszjEleRaYTmzKqDGY+iFkxZSAFINGGlQImquyINMpHomC5lIBUloeiEzLGp5jfNQzJL0kXAlBMHi47Q7ObmQ5qH6GagOdBTfvSZzG8sjMI0Ee+XjqFJnaIO/n+mACaonrbGQAFpKV2QMoUsgOJmZJ3P8aH5kkFufh8GwVDkwte3riuZUl1X7UgmVj4TXT1tmQD9XK4ZrlXBzcwMHlKfKddJMZmqg/uAEphcq26uZCoW3Vzqv9Lh/Jy1VC/vz2+//bYwNfszTVGOTobVTcFcb116WxK2YUpUVwPezfT6TH3WZ3Qn+DOmOaPLg3OoNidRJ44bC5Q4WDyFQWU0z6f0Lbod+EymGuPqHwMJk7uD70S6M942ttWawWAwGAwGLTbFtHe7XT179mxR6MJ3Tvobd1Xc7Tkz6IKgKHqgXaAzRAZMkFUKzuzVRgU0kEUzYKfqEPwiNiymw+ArBqj5sakcpR+bJA8FsiLu6JPYRReM01kwqpbsU0gyoMfSqwixbb+PX0PjRJZCNuYWCTHDTu6zs974/7tArSQkIoYt1sgyq0nsRvPalbDkmPu5bJOK21AIRlYVv57apn7qGKZO+TrhPDOlSOemtUrGSKuUrx2KhHRFRxy0pqX0Js5ZSt8UmPK2luLF3ykFy2I8ScZUfdYzwBKWlAytOqx9ndOJKekcBWtWHZ4nygGvWSzItLuCHkKyPnSpeUk2lUyb1xB8rvX8q91rMrxvA8O0B4PBYDC4EGyKaV9dXdVf/vKX2x1OSvkStLsj46bvsWop70efBYsBODoBewp9uC/z008/rarDLpa+N93Hd6Tyo4vpsC1kdp5aJOh68smq317GsQOZCEVe3HJBH1InSek77E5ululK92XXwn6/r99//31R8jOlndFfz3742pHVhJ+lQioEU66YqsJ0vqrD/ItpMyUuzYeuxzKnHEuuPz+GKZNiUWJgSdqVLF1rUuNL5urncr7Z5lQ8Q3ORJEO7Ngop5qRD8mGS6XYlRZ1Ns1QlU0DXwJgJlh/VWHufmeJFmVH1y591lgJmfwn3aTNdj/OvY1PJVBYb4c8kgUt0aYKp2AzngIVLvL8U7zllvt4khmkPBoPBYHAh2BzTfu+9907y31Gik2w2lYXkZyzRmXyDLDOpY8iAxJDS9difJJfJnXvnH16TWhVbp5zkY8DH8xT/YAfu6NcEU3jO2rE3Nzf166+/LsZ2TSCjK+iRoqsZbdpJt/qc0oeon2KM9Ov6dRlj0MU2+LFqa5IPTf3ldaqW/tBUPIMMpItTSIyfkedkS8nv3jHqNfEgfXYfgQwy+JS1wmIp9Lf7PHVMsJPqXJMIpd+emSjefrWVlsTkf2epUWa8MIbHi83I2qh4HGVsaCxoGfF7M+OhyxTx5ymVNPa2pdK9jEniutPna+x8oscHg8FgMBichU0x7f1+Xzc3Nwu/VmJLAtkzc251XT+Gv3O35ztD+jKZt52gz77++us77ZePJ0Uj0rei9uvnfXy93E2ewlTfFM7xWZ96zn6/X0QL+05dPjeNC4uvsLBH1XLnT98mdQKcxTDiXNC6FquV5Ka3RXKyZJNpDhnJTHZOxpskfsW0VAZV/eHv3h8ykq5sZcq15bO3VgRC8SJ69vRTx9Df69f3fO9jYLSwt6FjXYwJWCv60flrk3WBhZA6C4W/h2Rp4xhqfOTzdr80Yxa0DjgvWlMeyyOJXTFsWRs15qmMMCO8uXZpYfJnn+PFjJ70/tbaITvnePpzxe+U8WkPBoPBYDA4C5ti2lV/7ni4Y0oqWVQT4s4zsQn6g7lDS4pBZFaCdn3amXoeq3ayjKakD9MZHaN23Xd0X2h3Sf+o77BPURl7CiS/02Oe06kkVS0j1WlhSQVjyKCYC7+miMX28xo8t+rAUrQeyIR03zR/aqsYju7H3Htng7q+zmFxEUUiu9+dFivmT5O9pAIOVLxi9LXPOX32fI6T35rlatfW+263q91ut2px43oi+6LP26/DLAKOASPqvS8dI0yxLcc0HpRF4rnWKlmqtlDzQX9n1HrVIcOB99F8pCh/rRW9Exkb0BXZ8f8zE4AM3Nc3tT5ofUpgNlEqtPM2MUx7MBgMBoMLwaaY9s3NTb169epeuY8pIrbq7u6OClTcRTJHMLF0/aTilhi2crOrDrtE+SVZZpF56H5MYiWnQm2i4hf9iN6Gh0SCPwY6FvKQa1Vl9pKigv28xF7oh+zyzNcipbnumOngVhUy6i7DwZ8JHUvNaVlWqPiWsgrEfMS0qB7n55C1sA5AZ9HwzzpWmxiWLEfMC2Y50TTXp5R1VTs63QH/G/OaGW3dXduv17HnlM/MfGKxPh2bLHLH+up+aV2fedPdGl3TFSdSJk+n6cC4n2T1FNS2FEdSdddSprXDeA5auXyuef2JHh8MBoPBYHAW5kt7MBgMBoMLwabM49fX1/XLL7/cmkiSeVxgaUzCTSY0YdEc3pVbrFqmscjUqGumQDSaCynrp2AOlxdV23QshV6YPpHKhwo0eSeRh05E4U3jPvc9JtyfAhaT2T0FZPk5awIZXTnFZM6jGZQBLkzJ8c+0VrS+tGZSKUEF2yioiG6SNUlIBvHweVJAVDIf0rSo+1EIxAPEOrMnXTjeP5q46fpQqpGvJZ3zzTff3GlTwtXVVX3wwQeLICxPVdJnqciLt2lt7XTBa0leluI2lOXVe+ghAatVB9eCftI8/VB54arT0gU7IRpHZ7rvCuX4Z0zrpNvHg9t0jsa4+455WximPRgMBoPBhWBTTHu/39erV69udziJhbEspAINtEtlwn3Vkg1RVIMpYR7QwkAQimkk4RIWTNBnCkwTM/IULO2YFSSiMdCuj9YHvx+Ddxigo8/XikwcCzBJQTmPwc7XrtEV3Fi71pqQTBc0pnPW0rbYFjKrVMZPx5LNaKwpSuLH6Lq63t/+9rc791VAZNXymaB4DEsnelAZA6oYuJPK2lLcpCvGkFiT+qdzdT9aMHytdsVEGLzp88Znbw273a7efffdWzbNkqqOrjRvCu7rxGcYmJjSyMh4dX0K8zw22Hf9TJarFGjo0HvOx0bvxq6sb5di63+jVYYWjCTjy/fmWmlOphG/LStkh2Hag8FgMBhcCDbFtKvusqU1+Tj6ibudW9WyWAD9eNyVe/oGGQj9ePrdfUtsG3dsSVRD9xHDZilGChWspbR1fhzHMQZC9unjST/QqUz4vuD1jpVXlEiGt8l31GSAHfP2XT4ZNtkRf/d5IbOmb1bH+lx0Fg+tJf6sOqw3MjiulZTKpL7yvvSLO+iDpa+e90spdLIo6bmR7179Svdl+p2ea4p5pHOO+SWT/Gy6nv5G1syx9791MrJ8H/ic0vJAi4d+/+STT27Pefny5WofT4Heo7QkJotLJz2qcySB63OpPmpeOHd8xtO8UTRI12Dbq3qZa7VD13frKt+fj5GO+pgYpj0YDAaDwYVgU0xbBUMYvZmS87VDoo8kFUWgNJ6uR9+FdmHuy5JfhvfhTi2xTO7YWCrPGQ+jQLm7o/iBgz4zXV/97fxwqa2MOKZ/1O9HxkhhmCSKIzyFn2i/3y/mNjEfFkFgeT4fY/2fc0driX5+9913t+cq4ruT0EzWAEZP08JDK07VsiiG5pnnpuIIjIM4pVRmt57ZnhRfwmdR65plRX29dKxT47vGiDsBDsdut6vnz58v2PIphSJorUmxNHy/dJaQVIaSLJ3Po8+9JGcpl9zNaQL7ofumwhucD8Vd6FhlvPg5FAmiiAxjRfwdQn+32qh1sOZ3Z8Q5342pfGj6LtkChmkPBoPBYHAh2BzT/u233253itqxOUNkzql25iyS4bsj5nce8+e67KMYDxkCfTy+S1apRfk0O7F/30WKabOtOlZsTYzEd9hkvsxH53FVy903c8oZGZrOJQvltRz0DT92mdDdblfvvPPOSfKsbAPZhbef0eG8vtaH/p4kIo8hjUXHYoVUFIFRyIowXivAw7Z2UqEPE+l+AAAWpklEQVTejsROqg5jQT9kGk/9TexQbIl+cj+WvlPlZyfQInfKXMivrjk85Rw+/0kroHumuzx3h8ZBfVa/9Jz62pH1Re9C5jWndyMtU1wHtEKtWU2kVcGiII7O6qf7M3shMWBaG+jnTznXzM9mNk4qH8pztoJh2oPBYDAYXAg2tYXY7/f1+vXrW9YppuAsln4N7YLWmHaX5ynQf+Tl5wSWbWROd1J9UnH4zpecfC/0Ielc+kWdSYqdyEKQcrmPgWxAWMt7pyIRmV7yRx2LAH8o1DaW/vP2CV10vfeVOaGaB/p6H9tycAy+dmTR6ZTQaK0Ru606sFXNoa71ENBq5DEi9FnzOdY5/gxqXesYPVeuCngMx2Iodrvd7X103fsU70l9FdRXjb/6rLHQ7x7XwkhoncuIZn/GGF9D9TzGLaQ2MgefBVL8PSRmzeuxuEh6BnWO/N60/KXIbb6/dawsTeqnjyMzAfidkqyDa3EKW8Aw7cFgMBgMLgTzpT0YDAaDwYVgU+bxqj9NEzQVJzGIruAA67JWLc22TAdhaowLTdC8wmskYYdkmvU2UZTEj6W4BAMlkhmWpu1OZOUUyMzfBfz59Wg2YvqTm+7OMdnf1yx1fX29kHv0OejSztRnuj78HAYCCXQNPDVSqo/aqLUjEyBlRfV3f544LzSx38dEzCC2NREhuqiYtpaKZ2jdyXx9SqDYWl1mHtcVEloD3STeJhblUfu5RpMpWM8bC4QwXTQF+bEfNJev1W/vnrlk6uZ9FYCrNiZxFQX70YXT1fVO4PrS2pGp3U34ahtN6GuiO0wxHPP4YDAYDAaDs7Appi1xFSbeO1Mka2YKhHZZzrR5bhIMqVqmSvj1tANUOU0GIGkHyf74fcTWUjpPFzzUpSOlgC6mwJzD/jrBGb8WmTt3rWln+tRM9Obmpl69erWQjk0pIwJFaVh4paoPoKOVhsU5HgssCdsVXPC26FgWH0nFOMS+GeR1jnQjhV8SY6UcL4WUEhvUOWJyLmDTQX0ls+qOff78+YK5pYDUY0hiPgyc6litv7PIkj140K+dCl2Q9XfCJVWHcRZL7Z5hjqf/jUG6+ql16MVN9J7UfVm+lXKjqX+8rwoxrT2DGj++45MlppOf3QqGaQ8Gg8FgcCHYFNO+ubmpf//737c7XTFH96dSGIO7oiSDyNKUZH0sg+i7Lu229Rl9vrqm78rFysR0mIqQfFj0E3N3fB+/9EOg3TGlAdek/NhW+smq7ucbPQf7/b6ur69v5ycxK64ZzV1XnIX/r1rOO/2HqegDWQNTSny9iQkwNYXlan090OpDSxULeqTSs51PO6XveZEKP1ZWqa7IiveV8Srdz6qD2IkY9n3SBk9hSVdXV/XBBx/ctjP5RoUuDSj57+ljpmzpmtgNRXwY88JyrH6OwHgMvVd9/tQPrTf1nddQm9O66wSukjjWV199dadNXRpX8ifzva3ri0VTZMX7o2MoCJPEnro2bQXDtAeDwWAwuBBsimnv9/v6/fffb3c9yTehHZ92atwxrfmuBDJuFljwXReZh44ho5cvUP2oOuzydAzl/XzXSp/eOf60Y1iTMaWwjHb09ylPJwanMerKTD4luBv3djOKljvpZA1gdKnGhTEMuo/8a1XLiGjeL0Wwduu3E/fx/5O90HIktu7MQetOz4D6xQIR3hf6Pyk8o3aoXWuCLZSVTGxJcSQssbsGxq8cg0ePa5xcKIUxJrx+ikImQ6OsbFc2smo5DnpnaSy5htL9kiWn6q4FjNYmxvms9VNtZOyC3ttqq7/LOobNdZYkUPncqkCJxlVtdOuD1ipjQBgzkApMHSvn+rYwTHswGAwGgwvBppj21dVVffTRRwu/g++wKT9HXw93wn4Moyn5kz7HqsOum2UcmU+tXZ+3Tedox0nfqe+StVtk/rfYKtmg74jpd9LOlv5xHxPmwlOSlLmKSXK1w9tg2ESKguXaYB8TmB3AsoOMh/Advc7RGtJnHHs/p9MoSMVMBK5NXY++dJavrTqwY0Y0s/iHr9WOyVNaM60DRup7cR5vq7OzrrTpGtQmteEY45aVr+rQD7cucF74d7+OwHgAWucoHesWCcqHMm875YXrWBb7YUyPrzdG12sMWFCD7wdvC2VrGbPh66B7N7Bfun+K6taz9+LFi6o6rF31RfnhVUuLEZ+fZI2gVetNxROdimHag8FgMBhcCDbFtKv+3KUxotF33V1h+c5P6ccy55bRlvS3VB12XV25tlTUROyBu1fmJPqulTtARc5rZ6rrJ/8X2bLOoYqb7xgZ2UymlaJhu3PfFE6JVxA05mssdq2AgsDcXTJDKlZ5TiqVr5ibqvu775TrjQp/aV64dsTw6WtUv1PpQqrY0Srga0fnU51Lx6z5NNUGxnvomjr2odkGSRGvw263q2fPni2i3VMGSodUoldjqbXD4h9CV66y6jB3eqbPsWJRF2ItxoDFTBh/k+IvaH3gnJ7ynmD/dF9/nhQvIoatiHAyYY83oaWiK0iyFpOwNd/2MO3BYDAYDC4Em2Ta2olqd5R2ucxfFHtJPj+yCCqt0ceUInOZk7hWjF6fiUGxnGjy1bP0HiNwdX0xLve3KY9V16CfMuXadhH0nX70m2bVCans4UNwjra0GGj3d28j1Zfo+9PvSUWL0bo6JmnBMwKbzwaZo9+PLEXX5dpJpUA73QF9TmtB1YEdiUFpnStCXGvZGZbW+suXL+tUUHHt2Fw/f/58oeTmY6PnolNYY3zMWpt0Lp81f3e9LT8qlf4Yw+MWzK4/jKE5592h95HKf1ZV/fOf/6yqqn/961932korqz8bjBrvVOL8O4btnTztwWAwGAwGZ2G+tAeDwWAwuBBsyjx+fX1dv/7660JK0wMLaI6UKVh/l1nHg4uYEiATHNMZBP+d0o8s8aaAMTcBMhWGgWiUmfRjGTTCdC797oE67Af7k4ItaB6ncMWbLjl5Cs4JCElBhef0iSZgBqloTr2NWitavzr3yy+/vPO7m+Y07hQqofvHTalsSwoe82un9BaKCNH06dAzpjYx4Irz5O3Qs63niv1joKmfwwC3NagNKd0xHfvxxx8vUiTdRM/r0EyegsmYPqVj9DtT53ysuZ40HzL9pqJDNG13ZX4dTO3T73QzpmePwWl0m6g9HjzHwEAGq+m+emZkEq+q+uKLL6pqKenL4DJvO8dW3ylM+/SxZxneKRgyGAwGg8HgLGyKaV9dXdX7779/G9qv3ZCnSDB9icUK9LvvDBlIwN8ZjJUKeTCoRn+nsL+DEoHa5ZFd8J5PhSST2GFru8uq85h2SnMTupSVtetoDsXCaHlJKT8UGxFT0LkevKb7iFFxrWgOnbGwiIXWt65LC4PPvdjYscAjZy8sRMJiKSy/6IFBtCDoGrqmzk3FZpK0pcOf6/sGD+ndU7VM66xaWtyYrpdkU7muGNTHwDe3INB6whSsJGfLPjNolRZH/z8DDxmAmvrHYFmmCSYxHwoaMdWURUA+//zz23NZRpbrK8n00jKm9bUmiUsL2H0K1LwJDNMeDAaDweBCsCmm/fz583rx4sXtjko7nCQoQOlE7dS0y/PdFv2z3FF3pRr9OmRNOob+j6rDDlA7Qh2bCqD8ryIJvhxDSud7CHS9tZ004xLop9Tn+t1ZjNaK5v3777+/cw6lUauWYkFkWGKqvr7pD+z6mVL/yMb0k7K6bqVR28isKJ+paycZy07yUqIr/jzJukEpTVoY3MpxX3/kzc3NIkXT3wO00tA/zFRA/z/fFfSjpvgBxh/Q95wklwU+W0wXTOUuGQOQfL1+rarDs6AYIa4Dfe7347uWcRBa55999llV3S0jyvgRtV1jxO8N/4yxCIyTSNYAXU8lYbeCYdqDwWAwGFwINsW0d7tdFDlIu6AUZVqVZQspW6ndHH09SXaPOzRB16JPzv9P6dPBAZqTU8p40pf1WDjFR065XJZopHCOMxOtEfkqxZLV53QOizvo+hofsXNfb4z45rmUKk2lZ7uoYTGR5CekBanzU3pMCn3zFCnSmHnGiCwUZJWMDPY20me55uO+ubmp//znP7fjliLBGTHfiba41YQRy4zDIXNMRYDYNwrkuDWA5Yr188cff7xzP78Po9IF3Y+le/1+fK/xGVnLjmCZYrVDxT4koOLjuRbX4fC+0BLKc1ia1tumY7dmIR2mPRgMBoPBhWCTTFv44YcfquruDls7r67sHf1cVQeWQp8YReSTfCFzH3Vd7b5kFUj+L/raWNDjfxmcp7VIbsYgnAuyomPlGhOYLcA5TTmpYlqUqqUFqOpgVdBuX31noRIfJzJt/UxlVb1djk4nIOXxM/KbZSR1PzE8nzf6YikDnHy1tByQhcoP7mOfnuUO+/2+Xr9+vShS4e0mS+VcMvbAz2dJTPqJyWqrltYYzmWyNNICovGgdSihi8zvCjJ5mzr/t/qdrk1rgKLF//GPf1RVnoMup1v9pWyw/1/WLlqUKBfs0Bzfp1DRm8C2WjMYDAaDwaDFppj29fV1/fzzz/Xtt99W1WFH7yyDuzsWORcDdj8EmTT9QmTCXowjCcpXLRm2szgyGfquWNjDz6EPdYv50uegi3rV7ymanGP+WOpsZC/0p64xEs0Z87LVHynkVR2Yjnb5p0TXck0yKp3+aQdZWOez97+TSXPtaoySX1o/1U+1kT5oZyqM+FX/6D/0Z1DHsKQln01fH2L5p+Dq6qree++923WQxpiKi8w31/vHy5CqPSzrSmtdyoVnRDnfWczJr1oqren6p1iUjlmx0rNHa+cpUfF8F2ts5MNmzIZbeLpId1rr/B3CvmuOaeXyuWYsypTmHAwGg8FgcBbmS3swGAwGgwvBpszjr1+/ru++++7WLCFTSTIf6m8KWKDJMZlkhDXBgKp1MxVNcmvBazQFCjTt+7FMVdHfZe47J3hqC+iKdWjcGPBX1QcePRQaQ8os3ifQTWZQmTxTeohEJzqTM+Us/TO1jebXFNzDtB0GDdHcmwpT8PnRz1Skg2Zx/c41murGM5CUKTdMl/R283pMnTq37vFut6t33313MU9pvTGQSXPIIkRVh+AqfSahEAbWMZjN75OknP3cFHTF8dL1dY37uNxozvb7dcVluB79fapj1Da945XqxcBObytdR4KeH42VBwWz1jy/H1IBHrWB9eK3gmHag8FgMBhcCDbFtK+vr+v777+/3Q0laUAyMwZxpIIh3EEzzJ+fO9s7xmy5c/Q2qh+UwiSrcXRBSpfKsIlOvpQiH46nKpHHsqenFBBhEAwZkO/yKanbFV/w4CWxSK59poCl8oOUuuQY677O6MhsdX+xDP0utpiO0X2YipOYL9MsGcTEsapapgcJtFicy7SFtYAmMk6xaKWlJgufxofSxxSUSe8QQedo3rn+3LLDZ0hBXhpLFjfx//N9Q0tCSksTaAXSffW7r1VaGcW0O7lgfxa78qhCYuddf5jylVLnpjTnYDAYDAaDB2FTTFtygtwVOTOg/0dlPJVqQ5m8ql5UoysYkXwYOvaYjKVfr/MTJnlTCiNsGZ1/eg3cHXOMuQOuOsQriIk+duqF2KNYE8thJnD3rWOZJlK1TInRuTpHLCPt5NlXsRdK/Hq7KcjBtlJcyI/RuuM65E/vI0WCeN9OGKZqyc4YI+JQux/KpI+hEz2pWlpNKOjCZ7tqGXdDyxulPD3NjUxTbaOAyJo1g0yUrLZqWVSks84knzZlStkfIZWrVT/4PuA7058NplmqH+xDkmmlpZJznay5w7QHg8FgMBg8CJti2vv9/vZfVfb1dOxObClJhJINUw6PfrU1n49AKUpniGTWFKNI5TzfNo6x54eyHI4xkZgW2eVjiasQinpOPkWC46A5TsVMyM7IVmQdckEW+te1RjQWjHj361M4gmwsFU2gD5n+3CS9S2uQ5ofrOcWX0J+rcyla4nPdxXXQgvEQRrTb7Rb+4lQkRWOn9ivqWZ8ncRWOIaP4U9EKjh1jD8T0nU13xTD47KX3Kd9nQjfmfiyjxbtYEf+/xpaxFBQI8swKjgWPZZyE/59WAT4T3k++n4dpDwaDwWAwOAubYtqSE9RuSP5q94npM7Jl+o98d0R5P+0AtfPlriuxSu3uyAR0LfeDslxnlzf7VMzxPmDBFfo2uVN1nBJtzft0xyZJT41tymN9CqT5ULvJGliEZk12ltK0a/Pefab1tZarznVLBvJUjIEsRs/gmtSmLAfqD/29CV2GwSl5tGvjpvcO2Z8zNmovsFTqX//610Vb+Cwx953WJZ8fymtq7bMdKedeoMUy5STz+l2BElp+OD5+DmM5UtEPPjcsf5msa4zNYM4/LRcOvnP1u+6TCuKkXPgtYFutGQwGg8Fg0GJTTPv6+rp+/PHHevHiRVXlaET9X37ATnXMfSECix/Qx6ydnO/kmT+qHSGL0Kfdq7AW6fkm4fenehJ3yWQbKWr0WH+Sb+k+6kLc9T+1cH9iotyZa21w3h9aNvRUnMOW31TsBIub0A9fdWBH+kyR6FoXKTaALIkR9Orf2hwcG7fdbre6ntUHRs6rveqXv6vog6VVUGuI+fVVSz+4jlmLHqdPm9YfvucczK3v/LmpZGoXs6H7+byoz5p/RoBzrj1+gqxfFlgy4bV3sdrCUqoes9FltmwFw7QHg8FgMLgQzJf2YDAYDAYXgk2Zx3e7Xb3//vu3AWgyv7hgBesKv3z5sqqq/v73v1fVwazipiJdR+kZNFN1xTqqlgFZDLJJQhMMrmFAyFOjC6zzVA8GbXQiCqx3XbWUE+yQCgV0pto0b6ee+1hYS3tj8AsDd1hfvWpbKX1PgWP1umkurzqMn+ZZAjcUW/FnRc8W1wHNpfcJ0kttpgvH+6fz1X65yZjWp4A07xtTrZh6p+N8nChxykDENPZqG6/P90Ay99I8zTFO0rQ0/+t3jU0KMuNY8F2i+2tcPYWOIkJ8Xlmb3fvB+zPNLqX5vmnX16kYpj0YDAaDwYVgU0z72bNn9eGHH94GKaTSnAx60C5Iu9UU7s8dJq9L4QIPRODOloFvup/v7rqCIZR3ZLGJh0I79U44wHfnDNSjRYE7bd+dn5qqlsr4deeuBccIqZjIY+KUfjF4iOshydluIbXvMcGgPMpyCl2hj6pDICmfgcQgKY7EoDX9fU0CeM3qIWEVBmUmIRGxPN1LDDiV22VpTr3XUnqj/93vR2GUNflkjgell4UkY9tZLzgfSSiHxUsohevPtsaA6Vtkt0m6VvdmuiD751ZPWUb1vuvSIlOgbXpvbgHDtAeDwWAwuBBsimnLp00RipSqREEH7u78HO5o6Yck3IdOFk6GlXyw3L2RabG8qB9zanqBsxr6yjhGlI7kvf0YpnN1u/VT4DvUU4RF/H6OVCrxbYEsSVabJA6y5je7NPh66UpKslAFRT2qDuPGdCEyryQ0QgnXriDKsfYT+/2+/vjjj8Wz7aBlTe8O+m/9OSGrFBR/o3icJNfMPp6SLtqNLdM4k9WBliI+/xpb90+zjWyrfortVi1Flvh+5TvT1w5ZOduezmFamCwjFNLxa2odUGJ1KximPRgMBoPBhWC3pQjX3W73bVX9/9tux2Dz+L/9fv/C/zBrZ3AiZu0MzsVi7bwNbOpLezAYDAaDQY8xjw8Gg8FgcCGYL+3BYDAYDC4E86U9GAwGg8GFYL60B4PBYDC4EMyX9mAwGAwGF4L50h4MBoPB4EIwX9qDwWAwGFwI5kt7MBgMBoMLwXxpDwaDwWBwIfgvtzF+Jty7kuwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -829,7 +3058,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bflZ1/ld59ypxtyq1E0qhpBSA9jg0Noik0BQiEBCQEFARYjzACj6qE8j2CaInThA2qdRUZB5EHFAGxQI3ZSCDIKIjR2RBDKnkkrNw62601n9x9rfc97z2e/723vfukmM5/0+z3n22Wuv9ZvXWu/3nX7TPM9qNBqNRuN/dOy9vxvQaDQajcb7Av3CazQajcaJQL/wGo1Go3Ei0C+8RqPRaJwI9Auv0Wg0GicC/cJrNBqNxonAdb3wpml6xTRN8zRNL7pRDZmm6d5pmu69UeW9vzBN04tXY/Pi92Idr5im6Q+/t8pvjDFN05dN0/R73g/13rNaW9nfV9/guvamaXplto6nafrqaZrW4pmmaTozTdOXTNP0E9M0PTpN06Vpmn5lmqZ/NE3T/5ycP61+n6dpeukNbv8nD8Yq/n3jDarvZavyfusNKu8l0zR9ZXL816/q+ZwbUc+NwDRNXzpN0xumaXp6mqbXT9P0iuso4znTND206ttHvxeaKUk69d4quPFexSu0zN03vZ/bcVLxZZJ+XNI/fz/V/2pJ/wrH3n6D69iT9FdX/9+76eRpmm6T9IOSfrOkr5f01ZKelPQhkr5A0uskXcBlHy/pV6/+/0JJP/BMGx3wHyR9TPj+QZK+d9WuWM/9N6i+H1/V919vUHkvkfQlWtob8curen7pBtXzjDBN05+T9LclvUrSv5P0UknfPE3TtXmev32Hol4r6dJ7oYnH0C+8RuMDD78yz/NPvb8bAfyfkv4XSZ8wz/N/CMf/raRvnKbpdyfXfJGkK1peqC+fpun8PM+P3IjGzPP8mKTDMQraqF/eZuymaZoknZrn+cqW9T0S63tvYZ7np94X9WyDaZpukvRKSV8/z/NXrQ7fO03TCyW9epqm75zn+WCLcl4i6TMk/UUtwtJ7D/M87/ynhWHMkl4Ujt2rRcr5ZEk/J+mipP8i6Xcn13++pF/U8kb//yT97tX19+K8C6sBeMfq3F+U9MeLtnyCpO+T9ISkByX9XUk34dybJf0NSW+SdHn1+RWS9sI5L16V93JJXyfpgdXfd0g6n7TvuyQ9JukRSd8m6bNW178Y5/4eLQv14urc75X0wTjnzat6Pl+LpPikpJ+V9NsxzjP+7uUYJ+38e5LethrHt0n6dklnwzmfKuknJT0l6dHVWH4YyvEcf6qkn1+d+58kfZQW4el/l3SfpIckfYukW8K196za+qclfa0WyfqipO+XdA/qOa1Fsn3zap7evPp+OinvT0j6qlW9j0j6vyR9UDIGf1zSf5b09Go+/5GkO3HOvKrnz6zWxuNaHtgfgTni+H/L6rcPlfQvVn17WtJbV/N86nrus6QP7vMf3XDen12ttYdWY/ITkj4V55yS9Ncl/UoYkx+X9LGr39jHWdJXrq79aklzKOsFkq5K+j926MvNWu6bf7laT7OkP3Ejxqmo70WrOl5R/P6AlmfNF0t6w6o/n7L67W+u1vvjq7n9YUm/Bde/bFX+bw3HflYL633pau1dXH1+2oa2/u1k7J9Y/fbrV98/J5z/T7U8Gz9OC7N9StLrJf1OSZOkv6zlnvdz5w7Ud0YLm3+DlufD27VoEU5vaOenrdryMTj+GavjH7nFvNykhbX+uTCGH41zfrukH5X08GoM3yjpa65rHVzn4nmF8hfefVpeYF+wWsSvWy2ceN4nSzrQ8mB66aqst66uvTecd7uk/7b67Y+trvtbkq5J+tKkLW9dLZSXSPpKLQ/Kb8EN/mNaXoZftloMX6HlZv+acN6LV+W9SYvU+hJJX7paRN+KcfgxLTftl0j6XVpUjG8TXniS/uTq2DdJ+nRJn6flhfYmSbeF894s6S2SfkbS56wWwH9aLdTzq3M+XItA8Z8lffTq78MHc3XHaiE/uFpUv1PS75P0j133aq6urebr5ZJ+/2pRvUfS8zHH75L0C1peyi/TcmO9W9I3SPrm1Th8mRbJ/W+Ga+9ZjcHbwtz/odW8/5KOv8y+S8u6+arV+L9yVd53JeW9eXX+p2lhDA9oXXB6zer6r1mV94e0CFE/LWk/nOfyfmg1Dp+zmqM3avXS0qKyu0/Lg8zj/2tXv71BywPnsyV94mocv0PSmWfysE76/Me1rOfDP5z3tZL+8GquP1XS39dyz31KOOevanmAf+mqrS+X9NckvXT1+8et6vrG0M/nr37jC+8LV+f+jh368gdW13y2pH1J75T072/EOBX1bfPCe4eWe+tztTxvXrj67dtW7X3xapz+hZbnwYeE66sX3tsl/b9a7rlP06L2e1qJUBau+2BJ36nl5eOx/8jVb9UL7yEtz94vXNXzM6v5/TtaXnKfpkU4vCjpm8K1kxb1+OOSvnzV7z+vhTh864Yx/QurttyG479mdfyLtpiXV2t5lu0reeFJuktHgtFLJX3Sam1/3XWtg+tcPK9Q/sK7gkXwHC0P0r8cjv17LQ/JyKo+WmAqkv7KamF8COr+htXiPIW2fD3O+4pV3R+6+v4HV+d9QnLeZUnPWX1/8eo8vty+btWeafX9U1bnfT7O+zcKLzxJt2phTN+E8371qt4vC8ferEWKuSMc+62r8n4/xvrHt5yrr1qNw28enPOzWh7Wp9C+K5K+NpnjXxOOvXzVvh9Bmf9c0pvC93tW53Hu/WD9I7ihX4nyvnJ1/DeivHtxnm/CXxXOuybpf8N5rvezwrF5NQ7x5fs5q+Mfi3n6DpR31+q8l1/PPbXlXLrP2V/KIrXY4k5J+n8k/bNw/Acl/ZNBXWZ5r0x+4wvvK1bn/tod+vLDWh7SZ1bf/9aqjA/Ztowdx26bF96jAvtJztvXwojeLumvh+PVC+8pSS9I5vDPbKjnb0t6OjlevfBmBdaphanPWgTmKRz/h5IeD9/N0n4P6vkTm+ZDi0bnanL8/OraP7ehj79By0v9YzGG8YX34tWxXzMqa9u/Gx2W8IZ5nt/gL/M8369FBfDBkjRN076kj5T0T+eg250XnfqbUdanapHA3zRN0yn/aZG+n62F6UT8E3z/x1pu9t8WynuLpJ9AeT+sRYVGzyAa0H9B0llJz119/xgtD9J/ltQb8TFa2Op3ot63aVFDfALO/8l5nh9GvdJqDK8DL5H0M/M8/6fsx2mabpH0WyR9zzzPV318nuc3aRFOPhGX/NI8z78Svv/i6vOHcN4vSvqglS0kgnP/77U8POxg4PH4Dlzn72zPv8Z3jtenaFkHHP+f1iLVcvxfNx+322w7/g9qUQ++ZpqmPzZN04dsOF/Sck/EdiXjleGrtdxHh39x7qZp+shpmn5gmqZ3a1mjV7RIxh8WyvgZSZ+x8rj8uGmazmzT3huBaZqer4V9fs88z5dXh7919fmFG66dMF77N7Bp/xb3nuv89Gmafmyapoe0aB4uSXq+jo9nhV+Y5/lt/jLP85u1sKfrvZ8r3D/P88+F774vf3hevTnC8VunaTq/+v6pWhjU9yfPRWlxLLrhWK3zfyDp2+d5/onBqa/XYtr55mmaft80Tb/qmdR7o194DyXHLkk6t/r/Li0vl3cn5/HYc7Q8jK7g73tXvz97w/X+/vxQ3guT8mxgZ3nsiz2I3JfnSXp4XjdqZ/2QpB9J6v4Nm+qd55n17opna+zBd4cWtcZ9yW/vknQnjvGBcHlw/JQWiTiimnvPk+tje96F341N8+Txf6PWx/827T7vKVYPlU/RItW/WtIvrVzu/9ToOi32i9imL9pwviS9ZZ7nn41//mHlMPAjWoSsL9EiSHykFnV17MNf08L+P0uL7e6BVfgAx3cb+IH+wi3P/4Nanj3/cpqm86uH79u12Py/YMNL/4/o+Hj9t+tob4W1e2Capt+uReX3bi1z81FaxvMN2u6e3PRMvFHY5b6Ujt8ft6/aFMfVQi3vD9a5v/LQjfAayvpu/CFJH6HFucVr4JbVb7dO03S7dEiafocWs843SHrHNE0/f71hLO9rL80HtAzmc5PfnquFgRkPamGHf7Yoiwv9uVp02PG7tOjlXd6btOjnM7y5OF7hPkl3TNN0Gi899u3B1ecr0D7j8R3r3RUP6OhlkuFhLSqDu5Pf7tZ40V4Pqrn/+dX/ru9uLS+D2Jb4+7bw+L9E6zd//P0ZY8V8v3D1wP5NWl44f2+apjfP8/xviss+Q4vmwHjTM2zGp2t5gP3eeZ4tJJjJx7Ze1vJifvU0TXev2vG1Wh6Ef2DHOn9Ui43wM7SoTjfBL/VqTD5RdSjE9+lorUiLmeFGYU6O/V4tqs7Pm+f5mg9O0zR6EXwg4UEt98VLit9HwrKfZx+h456j1r69fnDth2tZp29Mfnudluf2B0nSvHj9fuY0Tae1CBx/RdK/mKbp10HbtBHv0xfePM/Xpmn6GUmfM03TK63amqbpo7TotuML7we1GNTfunrLb8Ln6vjN9vlabsKfDuV9thZvp1/UM8dPamEvn63jaszPx3k/oeWl9qJ5nr9VNwaXtLCTbfDDkr5ymqbfNM/zf+aP8zw/OU3Tf5T0e1dzck06ZAofq8Vx50aCc/9xWhb2T65+/3erz8/X4kVo+CF87471vU7LOvjgeZ5fd10tXsclLd5lKVZs7+enafrzWhjJr1fxcJ/n+Rey488AN68+D4WwaZr+Jy0PijcXbXiXpG+YpukztLRV8zxfnabpQIN+huvfNk3Tt0v6U9M0ffd8PCzBbfiseZ6/b5qm3ybp12nxGv5enHZOC5v6IhXzPM+zvabfV7hZixrz8GU4TdPLta5puNG4JOn0NE378UX7XsAPavFM3Z/n+ac3nQzcq+XZ9gd0/IX3BVqckP7j4Nq/r8VDO+JjtNgFv1iL7fEYVsTix6dpepWWF/SH6YiJboX3RxzeX9XyEP6+aZr+gRaX+VfpSGVlvFaLN+OPTdP0Wi2M7hYtN8vHz/P8mTj/06dp+lursn/bqp5vCzbF79RCo//vaZq+Rotn0BlJv1aL48VnzfN8cdtOzPP8ummaflzSP5im6S4tKo7P0+qBEc57bJqmvyjp707TdEHLg+9RLazrE7U4XXzXtvWu8HpJf3qaps/TwoIen+e5Uu28Vou34I9MSzaOX9CiWv5MSX9ynufHtUhMP6BFj//3tDjavGrVzq/ZsW2bcJuOz/2rtYzdt0nSPM//ZZqm75b0ypUt4Se03Ah/RdJ37/qCmOf5l6dp+huSvm6apg/TEmbwtBZX+k+R9I3zPP/ojn14vaSPn6bpZVrW7QNapNW/I+l7tEit+1pY/VVtx3puFF6nxW73Hav75ldpmcu3xpOmafp+LQ+kn9OiLvotWsbj68Jpr9di53vd6px3zPOcqb6lRTj9EEk/Ok3T12tRqz6p5f76Akm/UQs7+yItAsjfmOf5rSxkmqZ/Jemzp2n64l3ux/ciflDSH5X0D1fr8iO0eDPyeXWj8Xotat+/ME3Tj0q6UtnhnyF+QIuQ8f3TNH2tFpX8nhantZdK+lPzPKcsb57ni9M0fZUWu/X9Ogo8/zwtzkGHtvppmr5H0u+a5/n86tpf1nENjqZpunX178+t/Do0TdPnahF+/5UWQnS7Fi/Sh1dt3Q3X4+miQRxecu6bFcIDVsd+n5YX2KY4vDu0PLDfpEX3fL+WUIAvS9ryCVpcV5/QovbK4vDOaXFxdwzgQ1qM96/Ukdfni1flfXLR53vCsQuSvluLlOM4vM9UHof36VpUP49pcQ1+g5YwhQ/HWH1HMobHvOW0qPf+9areNU/F5PrnaPHOum81jm/T4iQwisP7lyri8HDsHiWxYasxPfQe1Hoc3ntW4/ADkn41rj2jxTHjLVqYyltUx+GxXs8fx/8PapFCn1ytkf+q5eH+QeGcWdJXF/17RTj267Ssw4ur375lNcbfqiXE4qKWtfVvtdzkz9i7bNTn5DzfX09rsYt9rhannzeGc/6SFu3HQ6s5/2+S/jcd99T9BC2S9iUN4vAwb1+6WkePrdbar2ixvfyG1e8PSvqhQdvtNfgFN2rcVuVuFYdX/PaXVmvQQd8fr+Vh+/3hnDIOr6hr6FavxdfhG1fnHmiLODxcf+vqvP8Vx79kdfzucOyUlqDv/7JaM4+s5v3VCrG0g7b+WS0vL8dK/+HknH/qPgzKybw0f+Pq2res2vZuLS+/0ut89GcX+w9YTEvetm/W4j6b6YMb/x1gmqZ7tAguf2ye5xuSv7DRaDR2Qe+W0Gg0Go0TgX7hNRqNRuNE4ANepdloNBqNxjZohtdoNBqNE4F+4TUajUbjRKBfeI1Go9E4Edgp8PzMmTPzuXPntLe3vCdPnVou9/fqmCSNbIX+jZ/bXHsjwXqylH7bnLMJvGZUxvWU7zZW125Tnz9d1pUr6/tg+reDg4PDzyeffFKXLl1aq+D222+fL1y4cHjuru3ahGqN/Pdso+YY8/iNKv96zuM6qD7j/77nq/U9uubg4EBvf/vb9eCDD6415ty5c/Ott956eI3XUBy3Z/LM2HQ/jsaH36/nXh5ds+v63WbOd1lf76t7sjo3u0euXVsSz8R1cPHixfS5Q+z0wjt37pw+6qM+SufPL4m2b7vttmOfknTHHXdIkm6+eclw5AV9+fLlY42NHbh69eqxc/y56UUoae0m8Of+/n56XgaX67Zl11T1uH/xxiV4TiUwZPW5HzxnJFBwvHjN6dOnj5WdnXv27Nljx++/f8nu9vTTR6kLOV9PPPGEfuiHuGnCggsXLug1r3mNnnrqqWP1ZPPCueOLNfadDz/ODzFaQ2xLtu6qNTkSMqq1xzXjMji3WRtH9fJ6fmdZcby5Jv3da8bfz5w52lzBa8X3vM/1Oa7nppuOspSdO3fu2LnXrl3TJ33SJ631W5JuvfVWvexlLzss58knn5R0XAjzOHgtsu/ZfcN7q7ov/RnHiWuU9fj3eB7bkM3ztsjuBX7numM//BnXd3UvsH+bhGpp/cXkz/ic9THOm497fcT7+bHHHpMkPf74kob4ypUruvfee8t2HOvHVmc1Go1Go/EBjp0Y3jRNOn369FDysVRnKel6QMmX7KpqW/zcRRVAaWXEKDeVkbVxkyojk/Q4xuzfSDrk+FVsNJZRsQDP56233nqsrPi/WR+l3oh5nnXt2rW1uRxdM2LNWflZ+4nrUedmDC9Tq8Xju6xVYhv1P9uYsd5KGucaihK3z6VkbS2Mr43X+Dd/VuwnjgkZ4zRNG7UwLn/EFNh3tiFjeG4DmU/F2uL/z8TkULGkZ8L8snqq+96fcb1V7JPnZs/ZSs27zT3h8j3Hntts7KmRo2ZuhGZ4jUaj0TgR2JnhnTp1ak0KsD5eWtfxV7rm+Lan7pznUFLJJIVKih0ZSCubTewvsUn/7j5k/atsaJkNj+yZ9VXH4zGykcoumF3DMbd95tKlS4fXcG739/eHEu/Vq1cPJbiMmVTM53oM8bvYGnZhXCMJVzqSNjP7UsXOua7jfbCNdMxrKntLpS2IIHviOqzs3fE3ImPxHIvR2pnnWQcHB0PGQPZHO1xmU6OtkUyP7c/WamVLH41x9VvWxoqx8vfsucT7vWKyEZVmiWUao+crtQJZH6r7x8i0BpmGYlttXDO8RqPRaJwI9Auv0Wg0GicCO6s09/f3D+mlVZl2S5bWjdGmpP6eOQLw3CzOIn4fqTS3cUChmsD1jlz9N6nIRlSfKoXK9TuWQTUK1b0j55VNBvVMHVc53TBMIc611XZ2N/c4ZrBayu7HmZqDa8So1sEIuzgCbAphyRx1eO6ojbyG6iKqcbL+VX0eqfk3hUOMQjQqFVGm6qruS6pSR6rNTerw6NSS9blSxdPE4ueTdLSWfYymhpEJYFs1ePy9MpmMwlE2xTOPzCIMKaEqM4uZZp93ccrh2qdTiZ8PUd2/rco23iNZqMm27WyG12g0Go0TgZ1jB+y4Ih05Mtxyyy2Hv5v1VcGbI+mcQYiUkrKg9U3R/Jn7+KaAyOyaysV/m3ABSpvV58hluspgM3Itzlx6s77EvtsphdKnpUTPubQejjCStOZ51pUrVw6luxHjItOrQgBiO/l9UwBt/K1y2Bk5LVWsLHOVpos1+zNytKpCZKq5ZR/j92qNjvpZzUG8hu3mGIwYTKbdIPzMIRuIbI1hLnRIybRRPOZzq/CEzHFilzXEMazc6rOxoLMXweeFVDvlVMwv6yud8Pj8zjQZZHT+7ud6tmb9XPAn+zkKndgljKMZXqPRaDROBK4rLMGSkYORo9TPlEHEKKib6YEoEY1cogkyypi6hpIHpaesHraJkh2/j/TitCfQ7hnPraQ0tzGTluh+TAmcgcLSkWTla9x3zmMMQfH/WZ5NYp5nXbp0aeiqzLorZprZRba1qUSJdJtA81F/pHV3eK6teKyaj0qTwfZGuKyM/Y4Ci0d9iddU99hIqua6c7lcW1mbNjG8M2fOHN6DtPnHY26X7xfbl/2ZrV8yPN5z2f1JZlrZ2rJ1QA2WtSojG3WlIeN8xPRtVb/8SRtm7BfHk/3J1jlDctxP+nFkSUmsLWI/twnZ2sXO2Ayv0Wg0GicCOzO8s2fPHjK722+/XVIuVVh6qjzgMgnRb3XqcbdJ00RJhKlqYsC0/7dU4U9K3DFRcmV7ygJo4/H4Pz3G/JlJWr7G55hFbxMUW7WFrCSyXvfPbaR9Lps3z7HH8/Tp00Nvq0uXLh2eWwX5xnZSqhzZViudP69lm2Lf2HbPRyZd0h5He9VIg1F5CRvx+6Y0YUxmEI9V98RI0q6Ck5lIImOFXKvURkRNgNeB19A2NjyOV+YV7HFwuWR2GcOr7Hy8NibMpsaFz4UsAYH77ATqvOeoRYp9rOxUZKNR20bPajI+92+UPJyaBD5PMy1YdQ9kz3OOtcvgOyD2n8/Ry5cvt5dmo9FoNBoROzG8vb093XzzzYdemdSPS0cem5TymKoogtID7UYjT8jKQ8xwmVE6o7T3xBNPSDqSKka2ItqgtvHWpGRdpfrJbHj+rKRaS0ixrZa+Km+zzOOKsZWZnUQ6Pjeed2/TcebMmaENLdrwPJ6xz5WtiYw0tqnadmqb2M0KHouMeXMsq3mJ809WxHPJQiMroIdnFSeXMeUqnoysbaSN8LnUikRvRzMW2qLuvPPOY2XGe9PleL2NPO1swyNriuPEeNFKezLy0q00IZl2h+PN8rOtd4wqXjGzi7GtrJcel9lzrtraKbNNUitAexxZamyrfyPT472Z2dHpD3Dx4sVj3zOGFzUL23pqNsNrNBqNxonATgxvf39ft9122+GGr5YUYhye7Xp+Y1Nq9We0qVHqr+ximT67ynBCr6UoVVeJl6mXzmxqlM4ryTuTmlyebaCUsKN9ofJAIhsYxWFRD74pi0Y8hzaKLIbG6+DRRx9N2zoCmYu0bjPzfLgfGZsi+6tiLI0slor2KcYkZvYqo/IojufRi5X94T0SpWZeS2aZebRyvVUaBdqQIqo4UNYR21/F6vmZkEnh0f67bQLgrE30WnZdXEMjb79NGpjInvxc2WQnyzQLVUai7P6pMsjQi9v1xjEhk6ueVdGWTxbt8TPj8ua73oQ1+jnQg7Pq38hm6Dbz3sieczx3GzTDazQajcaJQL/wGo1Go3EisLNK8/bbbz9UZT3rWc+SdNwVlul5SJtNgTPXW9NnquQYuJipNKuEzAxWjf+bgkcDfDw+CuY1qgDJzAGFBnqqSa0uyM7hOPpzlPaoSsEzuobGaqpd45jQ9XuT4ThLqJ2503s8bBj3J43h0roarVLFZftqVcG1XLtxrXqN0tFqFEJDVSXVRjwey2Cf6XiUOYQwHVSVlHvkjLEpkDpL5mt4vqzq9u9RZU8HtdOnT290LKoSUcT2UMVcqVvjscoZxmVRbRj/tznHn0zKMUq7yHs6c8apnK8YFpOpbFmPf+MYRbUkVZh2SHvkkUeOffc1nutYHp/BVSJvaT0Y3uOWPR8MPt/aaaXRaDQaDWBnhnf+/PlDhmdmR4YkHUlNlhTs+k/nAulISjDDsfTna3zcb/EslRkD3SndZLuy0+242vol1m2Jg5LXKNWT63M9ZLmZMwalMEqdHleOQ2wrHU9oUM/GxGzNfffYjxhZXAeVpDXP87GdiTNmYimS4QdZOALbQAZaBffHOWZ6qEp6zrahIVtm2E1sK/u8adurzG2bDhTR0SD2L57j+fX8MIB6tO1NFd6RJTHmGLhc39dZgmgfM6O4dOlS6bQyTcu2ZNQ+ZFqiTQkAMjd6t9P3pZ87ZjO+Jj53/L8ZCbVd58+fl3QUmiGta0LIXnyvZen2qoQdVfq92HcyfsPj6PtOOnJGefDBByVJ999/vyTpoYceknQ0NhnTZ/A7Wa/XaBasTo1cfDbF36V8/DrwvNFoNBqNgJ0Dz2+55ZZDSSXTr1IfbcmA7C3aq6zr9zHabihpZSl+qm2J/D3q0qvNVS2BuA9RoquChzObXTw/joX7YSmJkmXU3fMYmbHLcF8sacY2kfXS5hYTBngcmTaOZcQ2Uu9+yy23bM3wyBgi3BbaNDK3Zs9ZlUarCrqPxzzPrsfzQptEVp7rp90xs+GyXm6Gm9VXbZ/j+XH9ca0aXvN33HGHpHXWy3Cf2AYGP9NNPV4zskHGa6K9x+2NAegjG97e3l6ZwDjWwfvUazRLMeh7iNont5PHM1uX72lfY0aX3QcM/Pfc0WYc20jNSmXbylz0yfD47PBz189o6egZ/M53vvPYp5mff/c4Z4kouKmAv1szGMfGY8DnAn0U4tqg1mae52Z4jUaj0WhEXNf2QBXLiccsCfiTrMbfpSNJw9ISpUy+5TNWQAmB9oRYn0FPPkvC2caIlpbp0UUpKvOW4nhZUnS/mUxWOrLRkQVQIqLNKrabdh+33eMc7UAeY9oXn/Oc5xwbk2gToW3q/PnzaYCoz33qqafW2E1styVB2i8ryTheX6Vy4hxvk4icdpOMFRoc68zDl8c4lrRVxvqqwGKPFQOe4zmWqM06yA6yBMdMxcckDGT2kIuNAAAgAElEQVRM0jr7pHcj05PF9nq9Pfnkk+Xc2IZXbSwbj7EtvI/ic4DPJreFQc/ZFjV83tC7MbPlUvNCppKl86Pn8KbNaeM68PgzXZcZ3QMPPCDp6HkgHdnz3v3udx87J85TbHvUZHgOqCGhj0LUHtj2aY0F+5eBazJLnFChGV6j0Wg0TgR2YnjSIlFwe4kISkeUYi1NRBueJRBLrYwXOWxsIgHxXEtrGfs0Kk8un3vhwgVJx6UlMzzGzlC6sBQVvSireB8js6WwTZZmrBcns7FXWKzP9XALlswuxMSvlHazGBpK3DfddFNpwzs4ODjG8BhzmbWbHoOeg2g3IIvYtEFmtgkpU4nRHpQxLnqKuQyPdWQfXvP0CmbS5YzhGbRVbrNlku8xagF432ZJxLlWeK9kHpWMK3U/3fZsq5xY3mhj53me1xhyltTb7WVCeDOX+NyhxzPvaa83bnkmraftorf4yGZMb22u67hGaXd323y/k2nF5xHZp8eE/Y3z4jXptjz3uc89VpbLyBKrV97nfKaM4qg5rkZmR8880zehGV6j0Wg0TgR2tuHt7++veehkWReoN6YHZmRv1GUza4Lf/tb3xrgRMjhmD8jsfazH51oSdz1ZvAglN7KBLD6FklQVU5OxUUpHlm7M9NzWKBF5zLmFB6WyyNbYJsak+dqMSUZ77Wh7oMuXL68xkmjXqbYVYaLeTLKjFEuJN/Pso6cl7cvZ+mb2Eo4lvTbj+LDPPk7PxzgvBhM9V/MVf3N5vl+sQeH9FSX8OL/xXB8faQdo1xptt8V74cqVKxuTR1cJzaWj+4H3I2Pqoqelx8fr63nPe56k9S3OmCxfWrdlcs5o44/nus98RtHrWTryK7CNizFu9EqP/SPTondmPNdw+a6P95Gv8e+xrfbo9Fj7WeX1R9tebDfvbXqHZzGckRW2l2aj0Wg0GgE7M7zTp0+vSbVZPAwzrNC2lWUV4W/0tPT3yPBoo6HEQ9thLCeLI5Ry2437RSkz254l1i8dSXmWjhgrxs0OY7m0N3Is3K5sq5R77rlH0pFE51iazJ5VZWehDS+LL/OxJ598cqhL39/fP+yjJdQomVWZOdimWIfXjjNCeCyf/exnH2tjFuPma8nwLKnau9HSLPuSfTKDSPyNY0PWmc1LlWkjs6ka3AbGbTGTcZnUaMS2uPx3vOMdko7Y6POf/3xJeV7Mym7vcY3X+Nw4tyMpfX9//3CeyMClI6bB7YCo7YjPHV//ghe8QJL0ohe96Ng17rPZbWY7dkYSt81j6XvtPe95z+E1bgNjWvkcivcY7ZVmm9R6ZNuukcnzOZPdE4zV5LPec3v33XevtZU+Ax/6oR8qSbrvvvskSW984xuPjY207v3p/rnNZJqxLfFYM7xGo9FoNAL6hddoNBqNE4GdU4vddNNNa0lBMxpttQMTAmdbldBoX7moZsHKlfGYqbdGlJiqBboCS0fGXLafzgRZUCy32slcyeO1sT8GU0h5DjIXXR+zeoDqjkzFxnAHf6cbfgQdAzbh4ODgUK2SOT/QuYbzn6WHYjoof7calyqhbHugKmjd6paYtouB3lRH0QEq9stgAHi1pY10pKqrVFpZcLxRJdbmFjZx7XDLILfVaiimK4vn0OmIzhnRwaFKmZZhb2/vWBsZwC0drYmHH374WJ187sRrrH584QtfKOnIBd9B11xbcU7poEPnsSx8o3KoYwquUfgDU+gZWQKCKoUhk2Uw/Cv+5rYwpMomhHg/xftSOlIFWy3p/ltNHo+5nzRFZUnfjWx7s01ohtdoNBqNE4GdGJ6DQzelc4q/WfKh1BelJUoiBKXOjG1E9+ZYfxasTAcNppSi5B//Zz0GHVGiNOt+WSo3y2GgvVlJrI+Sj8EUU9nmqk4hZMmOEldMqM0UVnSz55jFOuP2PZVruQPPybwji64Cokfb9bjdZhzRIC6tM/AsBRuTBHtMGeQdr6kYvr9H1svtsyw121DvPjCcINZHxs20UZnzisFQIUvimbu9f7NmpgoJye4NusHvsuHwKOh8miadOXNmjcXEMWbAtMeLGoWM4bm9ZodsGxNEx7563XE7mywUg1obrkn3Kz47GOLB4G0y2DiXHP+KBWWbB/vT4+hnU5ZYw3D7PSbcSigLbTIYCsLnUGSh1FDt7e01w2s0Go1GI2JnhnflypW1lDGZOz1tDXSzzzZxtUTAVEsuP5MCq61JmE6L/ZDWA0/dZiZzjW1g8HC1QWdkIS7fkqL7TtYb4XKod6cdINueiJKkpST3zwwvutvTruQ2jqREroNR4PA8z7p06dJWdp1qc9tRADDdp10+k0bH1FJ02zeYxmnk/sz1kAXX0u5LaZwsJI4j7wEySYa8xLGoNkP2GDARebzW/fQa4ZZSo/RQVWqxOK/UrsSto4h5nnX16tW1rcDitjauy+0lq8y2NfI1Di3wWPM5kGk3qMnxd26DFkH7nq9xfdzGKZ7LZ5ZB7Udk0Z4rsydq29iOWD5tdh5zs7PMV4Fj7vAebm0W2TCZHO2Y2WbVrjNu69UMr9FoNBqNgOtKLca3f5QuK087SqoZA2KgsaUlJleO1zJdD1PVjDZitNRgCYibnsZ6yLAYtMnA8EzysURCNppthUG2U6U2G9k+mP6KfYnXMliZbWcaNmldkh+1RVr6SaaYpWCj9EhvuXgNpVRK0WxTtnZoI95mCyGW67Z5zWaJBxhwzPnJtrjhettmHZjN8B5govUsAQNZLdeDxyzbmseglsPnRhsYN5HepB14+umn15hxZsulVyMZeLT7MQ2Z1za1Bn4eZH4ATLnFDZuz54DL8Rg4SYIZXhxzJpqoPLyz5xy3z/Hzh+kKM+ZaJck3w+PzkP/H8mnTjfV5DBjwziTcURPElGibUtJFNMNrNBqNxonAdcXhGZlemRIIPbe4BYuUJ1qV1r0nR7FGjFOhd2NkUZTcuA2I+xjbQ10521ZtNRRBCauKOYnn0tuM0nm2TRH7zLnwNdGexQ0/eXykI48Mr5K29vb2dPbs2bX0YRHVZrccpywtHb1oaeugpBz/p6TP8ctS0PFae/i53iiRciNjg4mo2dZ4jcugPS6Ly/K53IyU/Rkl5jXIRrK4zGrDZqZdi+PI5NEHBwdDG97ly5fX7PWxDdTKcEupbL1xTXBseS9k94D7UW39lNlyva6duu6uu+6SdHSvRybMlF5VsvxMO8FNYclUs/i7yqOzeu5l9kY+K+nvkK1vslFqP7Lk6KOtqio0w2s0Go3GicDOXppXr15diyvLsglU2SNGGQgoRVCyzmxdlBAoRfB3aV3SogREzz5pPYaJUga9KjN9f9aWWF+Uliwx0kNx5CFLUJKnRBuvrWwDBvsb/4+S90ja2tvbW6snk5rJtEeSN+19ZHZsT7buuN6qrA8RvsYsmZlIMo0C4+E4L9t43HJtZoyLtkKXwRgu2qHiMdrTPc6MwY1gm5jse2QrGsGbv7JtGTPlePGei97hXE9VnC/tZ/Gcalsw+jDE9nqNmNnZhhc1LgZtpkw4znnIbIa8n/wsyWIFyfqqxOdGZrfnNYwRzTbuHSXfj22NaIbXaDQajUaBfuE1Go1G40TgulKL0WEio7tUWdH4GKkwg9OZUHQbhxCqOahOyVx9mQCYqsbYRquDrNKkSoP1ZYG5VJ1kwZtsI/vDNEQjWj/amy6WHf9nKiPuZp0FnjPNUVXXqVOnyjmNfWOfObeZSpNq2mrNxPZTpUfVadYfzpmTCfh7lrQgU//F41RTxnljWrIqzVrmlLFJpW1kqcx4Lt3sszRhmVOClKtBeb/s7++XjlHTNGmapvKZIh056PC+oXo6qtcYxJ/VGzFKoF6pxbN58fPOTis+14H0WeJ53pfcJT27P6li5o7q/F1ad4rL1J4VqnXAccvU/bzXK7Vy7Gu8F7dVazbDazQajcaJwE4MT1re+EzJFKXQShqvmEo8xhCGatfvEartUuJ3SpxkFnS8kdYDS+nEwSDykUREgz0dUbJzR4l4Y1mxLSOJWcpZCJkrnXSybVpiQu3RHMVdq7O+0vGowrZphKR6/NyeWB7XX8a4eI6ZhZ0hsu2oeC37UX1KR/dW1SauR/4fv3MMMlawyXEjc17ieuIayFK0ZaESo3mdpmlt+7B4D7DOimVGmGnRMaQavxEYeuH6spAtMywnurCzSqb1qLRCTBqehSX4XK5Jf7r+ODZk8mR6I+c2rjM+UzL2RmZXaRgyjVlM4N4Mr9FoNBqNgOuy4VnKt5QRXX0pTVTb6ETwzZ/p9yOylF9016XbbpQQ6K7LwHZLOZGF8FjFZDPJniyQSYSZ8klaDxqmPYY2glGS7CwNEFFJcJyDrB5fc/HixbIO22G4jUrGFHxOZX/LAleJKmg4s3FwnFhvZlNxiqrKdpexmapNdKnPGBfty7SbxmDl0Rhn/Yv1ca1U9uZs3nhuFYAef4v9GzEpP3uk9cTp0tEY0sbONmZjy9SGIwbM8qiV4BhkvgNmVv6NCeIjK+TzhWn8mKYu3n9eGwy7qphfrJvPg1FYGcGx5lzEa6kVyNLGxbJiu+O2ZNuiGV6j0Wg0TgSuy4bHt29ME1YFh2ZJZ43K7sYyM1texez4e5QQKJUxCbb7E7cz8bHKo4vbkMQxoWcbPesoecV6LLm7bZWUlm1sWgX3VqmT4jUsN0vvxhRWTz/99JBF7u3trXmZZuNEVIx4dI1ByTTrc9XmzKvR9ha3u9rGJErNVcqyTams4jWZh2osK2oHvGbIrMjeRqn6KlY9svvRvklk3qqjjWsJsptMa1N5VmaJ2qvUZ9RmZAyvOod+B1miZK8R39N8hsW5pLbLY8DkBUamjXDbfM9ZI+c1HMvgfIzWSiw7A+/N7PldJfDgOo/fqd3YlPAiohleo9FoNE4EdrbhxSSvmUTH3ygBZTrgykOQeuqMxVWMi9IE45mkI0mYW7tExmJULNNSRrW5Y8SmxNbxGsYtkjmSJWZbpdBOMpJYKy+pyjYhHY2PEyeP2J3LcnmWMmlvko7m1P2o0ihtg8wOZ2yyS2RbIpHZMfE4WUJWH9vGsc+2bao8WDMNBje05XqobJaxHK6ZSkshrW+6ay9EemRnNrzM5k04zqry4o5lu69cQyM2S3s45y6zRVX2KYPb3mRt42axmU0q224s9qdKyxivYbpD9nOkjeIaGcX2Vs/4bFs3gzZIPuMzZj7yat+EZniNRqPROBHYieEdHBzoqaeeOpTOGf0vrXueMY4rs9eNNumMv4+8DatEsFkdlKzscffoo49KOmJ48RpL8NUGsNR9j7Iy+FyPYxX7JK1njKDEM/JCJSsYsezKBmKQZUtH4xUlrZEu/eDgYE06j96HnEOupWyjWc4HJcNN7cnOoU039tmMznPHJMGjOSTDquxxmS2XLGmULYXHKnvPCJviP7N1UrHcjGVvYycz5nnZHshjn81LlYSYtrTIKLkFTZWdaTSnXDvcgDb2y1l5/Hzh8zN7rrFfLJ9jHfvHLayY9J/bpEn1Fl3sdwaub2rqsixbVXwhxyLO6/Uwu8P6rvvKRqPRaDQ+gNAvvEaj0WicCOzstPL000+XTgVSvdcWVU+RolY7GVfBryNU4RCPPPLI4TlMYGynCydvpSNKrJvqqMxpJNYf4XFjYLWR7VZMh4ZqPLP0V3RL9rWZ2pf9o1qHzjPS+jhdvHhxqELc29tbU6dmbuJVIujMgE81yabA2Qi2hSog9y+qfLiHotfSJseHrC1U747U4LxveG62tyHnbJtAfqNady4jU0VvSiAxcpbapNK8dOnSmlo/OhNxj0uu28y5jUkCNiW8GDmicd5dv80l0pEphWq7asd1ad384b3s/L1KuJ6NgetxO7yuo9qSoT8MnSJGIQZV6sQs+QMddphGLsOm5N8ZmuE1Go1G40RgZ6eVp59++nB352c961lr51B6oYSYBdDSCFmlJhq5FlOasGE4CzGgIdbsz/2qJLzYtutJaE03d4+JpcBsm47KOaZi0Fkbq5CKrH8Vg8gchjgfoxQ/07RsD8S5zFzLKS1n24Fk5cfPynCeObxUaZuykBYyOku+1RZTWT1VOrwsLRmldNfH/mYhNJzLbSThymGDbv+xn2S7nL+RU1Z8Lmxieb6Xs7XovlXtHTFubnPFdmR9pjNJpZ2Iu5gzpMj1eU6zcSKz8yfTImb3NFmgn3NeKzGxhlEF0lOrN9JGcH0zWD7b3muThiw+W6rd7bdBM7xGo9FonAjsbMO7fPny4ZvVEkvm6kuX6ErPL61LRyP3eSmX7Ci10HU5Srcsl+miMilmZDOJbcrco+laTltEFjzMa1kG3YazwPrK9TsL+h3Zc6Q82HdXCWtvb6/coiaWV9lDMlZYJbmuEjVnTJhaCaYyy4KHyRxGLMZzw1RSnIdsDqvkvaw3m0sy+2pus4DwakuZLIi8CpEZBS2PmEKGU6dOlZv9xvIYgM37NLK0iuFViaczsC1M5h0ZHtvgMAsG6mdJJKxNc+LpKsTFZcV2+5ivsc8Cny2xPIP2N66LbezOZHGZDb5Kf5hp9UbB9pvQDK/RaDQaJwI7M7xLly4dSqqZRGpQquTGgpktiDreKqlq3AqFjI71+nOU/owS18iGR6mIEpbLyDw8XW7cTknaznutSpybpdmptqoZSWVkQPSUNWI9me2rsmnaRjPyytu0RVE2L5WtkfOesYzK+5PB/iP7D20bTI4trc8Z2fTIzuTyPO5mDF5nmRdq5Y1ZzWk2Z1XgeWbnokdf5Z2ZJZzexkvT8PhktiC2hcgCmvl8YRlMUpwFPPNZQo1ThNeEWdr58+clrT8PsuTRPofJKrillG18sW1MiuFr/BzNtDbWdlV25sxmSI1CZSOPc0DN0SjtnVFpb7ZBM7xGo9FonAjszPCuXLmytn1OjNHIUlBJ65JC5qnD+CeyKR+P0hPrYbocSyTRI4mSh3Xc1AlnumaXT6mlktqldS82S3asJ7NNud1M1UbJJzIXsoyKSYy8zpi0mPEyEXFuN8XhbUq6G0HP24wBVVveVImhR96slWdY5tkZ+5T1J0sPxvVFaTmLcaPXp8uiBJ5JzWx/ZcOL12a2zojM1su+V3Obses4L6O1c+3atbW433jvj+zgWX3ZsSoV2japxaptymJ9bj81MEz9Fu2xVeo6HjdG69vlWzvg41FjVsXQVc/vWD/jfKtrsmd/hZEtb9NazdAMr9FoNBonAjszvGvXrq0xspGti5J2pn/n5qpmcDyXcSzSuveYddxMkBpjBum56fos6bCtsW5K9LR5MYGudKRXt+7ejJISZWRPzEpAKcZtzaRd94deobQzjbZXIZMdxbHRZjQCt1EabduTxWyyHkqPVfLZ0dZSlRew5yBmy+D80+PWNrbICmgXYT308M3YGseamxVnHsUj1rkJFWPO2OImO9xoXYwy4RCjJPPMrDSywxsVE+WYZx6lVZwn11KWVYT+Bka2pRBt0VWGJX+PbI22R/9Gf4r43KGGjmupiiWN53C+ee7oGTLyyGd58fs28dBSM7xGo9FonBDszPCuXr26FhOWeUBWEnfmVUi7BO1U1IdnOm5LR/7k8WhnpOeot+3wJzOhSOsSjsuvmF300jPrtO6ccVdZvjrGEZLJ0M45yl4w8pzkNYzr4thnNoJttuKZpkn7+/tbxdBssqlltlXacsmqsnhMxmhVsU2ZjYPjT21HXDu0QdMOmuWGrMCsKWQh0nqsZjVG7FP8v7KfjuzNlceskTGy0XZDLIvrYmR7rLwLR3bEitWM7H+73APUKFlzwOepn1nSkXaINnVqVbJct66H2xIZ7m9cd1ybXEtGtg4q+zafHaNcuNuMI1nmJvvvsTZtdVaj0Wg0Gh/g6Bdeo9FoNE4ErissoQoQ9znxGFVyWXqozKEgljVyD+ZvdBfO3KitMmBqHx+3CiuqvOhIQ9dyOohkhmcG5lK9l6Vos9rT6k6qNKuxi+VW6oLM4Fyl+Mnc37OtPTapFjYlCI7l0oljlPy4Cm3h+MQyKicOtjGqeVy+E43bSYXJGLLtmtgmg05SmaGeyder1GaxPK79ygEmcwIyOAeZyomhJlxL2ZzTSerq1avDtTFN0zD5OX+rwoXi2NLho+rHyLFmk7NFdl/6XIZ3uY0xEJ3OawwmHyVw93PMKk2uv8xppdqqiqrUbcIEGBSfjVWV3H20dioV9DZohtdoNBqNE4Gdtwd66qmnDqXNbNuMTdvKjJhCZXCm1JG5RFdu1Aw1iNfbIGymZ6mJLCEeo9sumR63/IjnVFJLxnpZD6VahhZk41khc1un8wAZc1YPEwOMGN40TTp9+nQp9cU6yLxGRm+2hWuHbWRoQOxrtdVKtumt6zGzo6YhC51hPyqHoNh/MpRttodivVUy6Ywxcwwqt/RsG6SKodGFftv2G3ZYqVzy4zGyCK7bTcHv8ZNOMiMmUWlGMhbKNcS1G58dXntmaVXSAiOOY6Xl4D0Qy+CGqxxXMvNMu2eQZY9CkUbhHPw90za000qj0Wg0GgE7MTzDUi0DmaUjO1i1XctIN8tjVTBnlGIqd3DaK6JrOW1ElDYzt3j/Rnd0So5V8GXsRyXRR4nb7bXrcpbmKtaXSZIMuq22cYntJStg2yPImjZJWnt7e4drhhvcxnZX9o+RXYR2Mn+SmWfsiVItWVXs0yaG5/7FuazGlqwmY9EMe2Ey8SxNXGWHqRhKZstkcuIRE+M9vUlaj+Vta8PLGF48vwowp9YgjgHvc96fo3tik705axefTZzbEcv1uqO9r0qLFsur+jVqY5X8gc+OWBYZHdeQsQ0b4z2SjX0WDrcJzfAajUajcSJwXQyPjCQGLnK7ejIvSkTxXJZf2Tgy6ZkSN6W2KMWzXEpNmaRa2Qoru0wWFMsA5Cp1WvzfDI9S+CgZN2EGTi/RTLKjBMexivXQm3WapqENL27iWbEBqbbVjYLfabMjExvZuCqpNWPPTPjrz0ceeeTY71kbycZYf6ZZYBsqz9WM7VRerbuk+mLbRl6am1KLZRqTbe1j165d28rDd5MdMc7L6H7fhCqIn5qe+NyhHdag1iObS3pUsp9MHxjbQFTtiOVWdnM+50bbA/H4yI7KNbLNXFeajBGa4TUajUbjRGBnhndwcHD49rWEP7IfULeeSdyV1yLtZP507FO81kyo2lgytsMxVP503Atj3rLUYpWenR5QmQeZ2Se9pzKGx4TWmSQfv2cecPxOr9qRHZVj7rbGsXcbszjCDPv7+6X3Z4Yq9VP0nuVvZKSU2rNtmzbZ8OI1tFFzE80sPRjtbW4/t3HyOMa0dGTnTGScsZNqjVbxeVl6KLLSUezeNmnBYh+ya06dOrVRqh/Z2KuYrG08K6tPIkvfV9nsyeKzY7QRZs9Gxr9lduVYVtb2yi43eqZVduyRxoSoxj7TDmzamikyata9af0da9PWZzYajUaj8QGM60oeTWTb2jBOhzaIrByyMkqblqbNzKT1rTYoKWQeiZagHX/HODwmoM7Ko9RUbcwZfyMLoC00Y3hMfsx4P2aNie3mFjYjGx6lzSomMjKY0fZQFUbSdOW9OMp0wXayXM5/tFswW0nFNuNapnRcbeI5isOrMnpkm3pa2+DPyv6XMa5tmUsE4yR9P2+TPYXl857P7FmjLEoR0zStaY0yb9ZtNCCb2l3ZiLKYs8qj0xgxvIzRS8efjVX2GrYjmw/22fWMttuqErdnNnzWUbFrPtdjHyov05Gtn/bD06dPb83ymuE1Go1G40SgX3iNRqPROBG4LqcVqiOzJMvZLsEVqB6q0hm53riv00MPPSRJevTRRw/bJx1RYTukRDWR/7eayMmjXb9TjsUkrpVROguCjG2W1h1Pqv7Efvl/pgFymxmIHPfQqlRJVG1mKk0asulQE1WadHuvXLWNUdLY2AaeM0KVDqoy6mfrcVPSgKjSZOJfj7v7znmR1tPEUf3p9TcKg6juo6zNlau3sWms4m+VmjmiUiPS6SdTDW+LLFQjgmrCatf3DJnZQ9oupV2lNs7q5f3iMaYTS6byq1TKbFumYqzW/sgBaZTsP5aVqZWrtmZriW2iSjMLRcquaZVmo9FoNBoBOyePvnTp0uHb1NJslEjNTLKdv10GQUmEjMTX0MkgwtJTdGiJ7Yls7fbbb0/rp7t+Jvn4k8yLTiWZkZXMjumwIkMiK6DURCknjgmdH6rE0JkUuslZJaZoo0NDTP+UYZqmwzHOzquCm0fMj8Z0fq+ccaR1yZ5hCllIi8EEB5z/jBVyF3vDrD1jGkwWzbaMnEeq9FBsR2xP5dAwYsGVIw/HIra9amOFg4ODNYe4bP1yTY6SCFADUgX5s58RnMvqfo3lxWdRREyzZmxKwsD1nY3xplCNzMGOa4brO2Ojm0K3jNHaqRLHZ8H414NmeI1Go9E4EdiZ4T3xxBNrb+P4xjUDqLYxyVJvGZS4GJDra8+fP394jd/8toOY0VGKjTY8S1gMMGc4QraJa2UXoSSSBfOSDVCHH0MLKCVXG8K6L5G10pWdrtJZSp4qdZCZLD8joh1t5PoekxaMJETaOqj7j2O/KUEuxzizjxgVI4nroLJTeFw8H3HMKWlXCYbd5szeXLltZ5JxlTyAcztKwl2FDXA9xvrIjLbRmGzLCmJ7MyZchQuNUlaRBbJcaiMy7QDnn2XHMY7b/kjrNvUsHRnr43hRG5aFGDAZQxW2Iq2nzCPjykJMjFHi7FhWFopUsdHR2jE2JS2IaIbXaDQajROBnRnek08+ufYWzpgQvTWNbCscSgaWHiwRUfKNTOjChQvHrjFcf2Y3qaR0ekDGfpEhUFqh/j9KfNys1SxgG285M1cyZtoxsiB5nsO2j9J62RZixm7mnHlLbSOdu12UTDOWabDczGOL51YBslmZZNpkQB7HuFY5zzHpgrS+ZmP59Oytxi1LacdkArRRxvVGyd2/VZ59mZ2p6i9ZSexXZQsf2Vyi1mOkHfKWF9sAACAASURBVNjb2xvO7SYPwQxVIgAGiGearMo+OmLP1bOjShcW27ApZWJm/6u8Mrk1V5bonOtuGz+Kagsh9isL4Oe9R4acaYIiu22G12g0Go1GwM6pxaK067d99NyzRFDF4/FNLq1LYZWkSH21dMT2nvWsZx27hkwrxo9V6ZPYjii9075kicPf/bvZW2brohTGNGtR8qGXq5lDtR1OlIDihqwsN147Sn9lRuek3EwUHdtobPLQjBKn+5PF9VXb24xSZFFSpASebZXD+fA65hZXGaPYFH81si9ViXi5LuM1lX0nS8zM9HYsd+QZWTEH9iHzmqviPEcMhv3IME2T9vf3y8TWGSpb0KZ6svZn3qAcUzLwUUzqJs1C5qXJeeG9lqU0NKhVY1L+CNbDLYQ4FrGMTUnkRx761Saxmb9BlUh9GzTDazQajcaJwHVtAEsPvihpcXuUakuMrDyDempL3PaijB6Jd999tyTpec97nqT1rX6ot45ttMThfjARdMx84t/MAsgomE0is3W5/fQcZL8z0MPTzMvb9USW7XPdz8p2kLWRcXe0gY7aOPLSnOdZ8zwP44Y8R5XOP8v6UG0HVNn/Mu9ZsvVtmERlD622qZHWx67KzhPXKsuv4hhH/eJxYxRTV3lcZjFqFaMbZbfZJbH1NE3HPByzLbg2eX3S+zReU7F0MrxYH+d7m81kuY7I6KqsJrG8bddQdoybIo82ca3smRyr7F6k7a7yEo3HqjYb8VlJTUJ8rmxCM7xGo9FonAjszPD29/cPJQVLWlH6YqYVM4RsC3qDEvymGLQsa4pteHfccYekIzaVZdgwG2JsmftFL6bYD3rlbeOZ5N/cJurH3a8sOwfZtNvxyCOPSDrKJTryQjVoq8zi2aosMFmcTBXvVSFKYmR6EduwM/62idlx3rJrmIeR7D37jQxsNAa8lvVxq6GIimFnY0K7TxXf6POyOEOCWZWydWBUW75k8VeZFx6xt7enm2++ubTLjY5VuSfj/5Xmo8rAE0FbOu//OOZci1nMrpSzZ9pqaV8me4ttq3KCZp7SVf5dahb4fIrXcr4ru3o8RpCRZ1tLbWOXJZrhNRqNRuNEoF94jUaj0TgR2EmlOU2TTp06tebOnSUf3RT8mhkuSZNpPM4CWXmN66cTCd1r2S+pTsUk1TuBV67rmZGV6gGHVGQqE7rT0x15tNWPUSUCpgNEPEbV3DapmbZxaDGoLorqcDvibFKNZsmjqXKlGjRzxebc8XsW8rFtKEZUoVYJmKmKyZw8Ktf4ylkmtilrf/w+CjGonFXozBCvrwLaM+cItv/KlSulampvb0833XTT2rMkS/VVqdNGweNsE49n5hjejwxDyhJQ8BmYmXfYxip4nMieWZyPyhknu6fp/Ed1buYEVDnf8NmRBZ4TVbq3+Fu8x7dVazbDazQajcaJwM4M7/Tp04dv2JFEXklPmUs+mcEmo35m9IwhBNKRuz63XpHWmanPpSt+BA3OVTqwzEmGEoklRhq2s4TD/s2ONh7zaoNYaXMC1mwcM7YurTPHzK3bkmrmGMJ2uJ5sU1DWVTmiZFLsJuP3KOWTpVg7FY1SvpFJbCOlk11U285kaZvIBumEkTFvlsuyOFaZhM9Nkqvtdkb1UeIfOYyMUotZs+R58mfGornG+dwZBSlX2oJMs8R0gXREyZI5V8yeW/KMEnNXbR1pvzKHs3hNFtTNuWTb6JgUy2EaQs5Nlk6w2mA2u2e2DUHI0Ayv0Wg0GicCOzG8vb09nTt3bk1qHknAI7tYLDeWUwVZZq6wZj4u9+GHH5Z0JC1TFy0dSVRMkMwg7lhPZZeoJO0oxZg5WOrzdyeGdlujPYv2Cm7A+uijjx5r8ygdERmm69smWJlMLPar0tVXuHbtWmljiWVzPWyTnJo2BbZplJiX9iomec6kZra5CtiObakSDYwCnFkP+5vZnagRqeaWUnT8n6FAI7uPQWmddvXMtXzbwPMzZ86s2a+zPldrZRtWQN+BKkF8rIeJGsj0smdjFXRPjVbWFoaYjJ6vma0rtqNij/HcTWs3s61VqQF3STZfbc6btXGb8g7bsPWZjUaj0Wh8AGNnG965c+cO39zc0FBat0NU9rkIevtRiqx03tKRTeuxxx47Vobb5sD0uKWQYbZk6cxl+TPax9hu2oKY6DradtxeS6bVBrBZYKslRkqQbGtsDwPnq6DYTOolO6CNKpMGPY7RvlvB5blNGYuugviZbHsbcN4yNsPA/yrlVKw7s9XGa7M6tw2UzQK0NwXYj9KDVSw0W3dMVs51MLJRb0qGnHnnjWyCsfxTp06ViShindX6o2dqvOaZpKVjEgt6pG4KqB+1I9ZZsaMRQ97kpZnZf0drfxMqxjWyJfKZz+Qj2fpgUoxNW0tFNMNrNBqNxonAzja8s2fPHr5NbYviORHcQHAUN1bFslDCipKWGQ512mQ50aOLUuo2MWfV9hWVnXHkkcZ+ZpI/peSK6dkjKrLeKikt6xl59tG7dbRJbWRGlaQ+TZPOnj27FhuWMYUqCXHWXto9qnRGmS2CjKFKp5Yxyiph8jb2qk021ghKuJXH6simxrKsaaDtUjqad9psK41N1v5NtjDpaIxHNhr2hZ6jmbd2FXuaje1oe6FYppGtA8YEbrMlUuXZPZrDKh5vpFGpvHRH9xXPodZpxDg3aR+yODyCcZ4j+2l8HzTDazQajUYjYGeGF5O4jpiQJQOzwFHi4k22E3osZjpgMgefE7fNYX20S9jOlyXxZZYEI7MNsI3sX2WjjBIk4+/8nQyPWwBJ6+yw0sdnLMSgDYfjHI+5fzfddNNGSZ02jpgBx9oAepPxeLbZKaVHjmlmO642kNxmO5PMoy7+nsUnVSxpFOO26dpRfBnP9Vgz1i7OAe+NLDYw9pP/S+v3oj2lRxlyTp06VbIV2/Bo68/KY930ps7so0a1djNv9Cquk8+BLH6sijnLYjorhldhZP+ttm3K1ncVMzryCq20KiMvSv7GzC6ZdiBj3s3wGo1Go9EI6Bdeo9FoNE4Edg5LiOqP6BZqkBJTbZQFu1ZqGjpsGDGNGM+hyzKTScf/mS6H+9ZlahuquWigHwUNMxia/YzjyH7ROYVu/ZnLd2VgHgWcemyoWshUp5mKdGREn+d5LewhC22hOzXVGrHd3HfRoEt+luyWKp5Nzj6xDZWBPlMxVumfKnVolm6tSvxrxDZW11Sq9TgH1V6UIwePyglhFJZgbKOy83OnSvnFc+PnKO0d10S1DrIQGgZVV2OcPeeo1h8FWVep66hSZ6KPDNsE31dOP/yeOQPyvq2cAjO1a7VWjTj2nOP9/f2t0401w2s0Go3GicB1bQ9EVhNRGb2ZTDVea6nC51Q7j2duwZS+uKu4kSV+pcTILXeytDmbtsIZuYlX27bQ4C6t78bOXdmr1EIRlXE8cxziDseUUEf9HkncPK9y55fWHZwYMJ9pBwwm4GXb6IqfnVtpFLKx5XhU2ypJ6+us0gZUrvVZP0bMqxovur+bxUetTXXfVE46sb3VFmBc97Et0blkU3oxakiigwgdmiqtQBbKYJCZuL3u18hxgskLMibOsSSbyeaUTjBsI+uJY1yFRowC3RmSU/U3Y718FlGzkaW4q0JlOFYRvPc2hZdENMNrNBqNxonATgzPoDSVMSFKcH6DWxKKb3knQK506ZTeM1sX2zZyLd+0fY6R6c/ZZ0r4WVmVuy7tczGEwmPi35g8epTYtrKjEhnboU3N0m22kW4muW1yLefvWTo1BhiT8WX9YULsKkwkaz9thZyvTBuxiR1kyDZCjcjYemWzYx+yuazSNFWJobNyt0la4P89TwwnoQ07a9Om4OEsUXRcB1XoTZWYIOsTNUnuh++9TMNEm/fITlvZ90ZaiCrNXqYpi+3IxoLrPPMdYD1c79wcOUu3xrJYxih5xTbaIj5j9/b22obXaDQajUbETgxvnmddvXr18I2dBe7S/kAJi7aieA2D0xloarYRmRDZn6UxswNKJLEcBm/7GtpJpHXdMqXiUYAr++dz3Q+zuOh96pRpTHDN7YIyL0faZjIWJR2XkKlLp7dhJlEyIJy/R0zTpP39/eEGqmSm7If7PAoiN2iLHG04S7Y8SpxbsYKRlyHLGbHzqr5KCzEKdK88LXk8S9tkeM16nWUstGJIXJvZPeE2XL58eevg4SyBNRkjGWqWCqu6LyoGlPXZIOPJtBBk2BXTy2x41X1IW17GuDbZmUfjTg9bjknmPcnvI1Za2dwrdhrPaRteo9FoNBoFdrbhHRwcHErP2Uai1Rub0qXTDUVwiw2DHkGRrXE7eddndmBW8Pjjjx9ec9ttt0k62lLIKcUqz9LYfrJa6rqN+J3SEb3aaKeL/zP+rkppFKVpeopVaamylFKUnnzcbc2k4q3T+iRemrFN3EaJiZjdx8iEq613mEarSgEXr60k4HgNpX2PzzZMr0qqO/I+pcclPfroHRh/4xjwHszWbpX+inatkbcjMYpN3IXVVV60sV2VDdf3U8aEKyaUJauv2r8p7jieM4rZZRsrZl/Ff2ZtJPPm94wVVnG+/J7ZRCsvzYq9xT5vo/WgBuPq1attw2s0Go1GI+K6vDQZ65ZtvUOmNdqSxAyLMSCUou25GKUb2sOYvDpja7feeuuxc8wc6C2V2Xuq+KdR3EolWdH7MDJX/89ziFEsFaVxjkn06GJ/mDSarCBeE9nNyEvzzJkzaxJwZgPYxEjj2Hp86CXr8qsMLPEceqCRLW7DCiqpNh4beX9W/WY2FNrfRrbJylZXaSWy/vCaLB6z2u6IGpnYRo7XpmwZ8zyXDJn/S+vsNmOF1XqrMvxkiZKZQD1qH2LZsXyuUXozxnuCzGfkLUvQf4HxvlmmrGqbtSyBNuun1qnq7yjTSsX4s7mu2O8IzfAajUajcSLQL7xGo9FonAjsnFrs7Nmza4mFM1TJQDOVoH+jQZQGVKsp4o7hTH1ld/6RKyzd9anC3MZlnm7HIxUDVUdUG1BdFI9VSWK5d19sD9WcTCU12qme+9RZRcOxkY7UhduoFPb29nT27Nm1NZMFWY8cW2I/Ihj0TBVsljya9boezk/mJk4njioxeCyHv1Wp3rK1yjU6StG2KYiX6vFsDug8wD0KRwnjq6D8rM54r48cWK5duzZUadJZxX1kiEt8dhhcK1wzIxWwz8nSj8X6Y3urROBZ+bxfGJIxWtdVonl+RnXvJscW1h/rrZIvjPrJtZmFV8Rr4zUjZ68KzfAajUajcSKwM8M7ffr0GjPKpCayQO6AHlmGJQKHKlSur5kDB50SDIY4ZIlfN22fkkkOldvsKDHzKMFzRJTmaND2bw6pGDkteGwp6dNZJQvCrdJCkTlJ62O/adfqM2fODNlg5TgzCh5mqjpKhllwPMHxqbZzivVkrtFZ27NyqhRM2XqrnFRGru0sj84Ko13S6aREprQNG6EEnjHXXRieHVZG2wyxDV6bfkZlIU1krZUzRLYOiMwpJtYf68kC/uPvcX3wmcRn4qhtnHcmbsgYHkMxGM7DNsZ6qfWqkqHvkjZsdE50dOmwhEaj0Wg0Ap4Rw8vsWX6rW7Im0zP7iHYYShNMCxbTD8U6pPWAaH7698zln9vPxH7GT/4fy69+zzZKrbb08LUxGJ+2G44jj8fAc//vsa7c7COjYPJbMhimfZOO5p0soMI0TVsFHFepljKJkcyH5dMem80L2RIl4xHDY1szyZc2syoYPrO5bQpSzsBxqrZp2WbLJ4NSeqYxqeY0czkfbfm1CVl9tP1U2xrFZxVttVzzVcLm7JpKGxWvYSpDMiKyamndVkztQBUKENtUbWTL/sdrWB6fxfyM51Y23FHy7dFYE3x+dfLoRqPRaDSAadvUPpI0TdN7JL3lvdecxv8AeOE8zxd4sNdOYwv02mlcL9K1Q+z0wms0Go1G4wMVrdJsNBqNxolAv/AajUajcSLQL7xGo9FonAj0C6/RaDQaJwI7xeHddttt81133TXcCsVgLFsVexb/v56Yo00YbWM/ygrCa6pzt3H6qWLPdnEYYhmja0cZK6oyqs0iR9dwLvf39/Xggw/qiSeeWBusu+66a77nnnsOvzNnXyy72oAzy1izaUy3ydiwzbm7nMN2bJrnXdbQrnXveu3ofom/Z8eqLBnZPZ/Faj344IN6/PHH1yq45ZZb5jvuuGMtU8xoHVR1Z8+W69lm5n3l7LfLM+q9iU3PlF3KyO6NKn9pNjfc8u3UqVPl2iF2euHdeeed+vIv//LDncKztFYM/HRA8/nz5yUdBUNnu207ITL3siJGL68q4fA2i5kv5VE9m15AMYCzSoq9jeBQJdIevQSq8t0OB+NnSWN97OGHH5Z0tAdhltbNQaeet5tvvlmvfe1r1/ogSS984Qv1Uz/1U4fluNyYnsy70j/66KOSjhJXOyG4v2f7d23ar2uboO4qcH4XwWe0dxp/Y5Bvtk/eKGg3u3bUJn5maalGCRTi99hGBnXzXnRChZgcIZu3V73qVWnf7rjjDn3xF3+x7rvvPkk6fP54D8xYnsG9Lkc7w/OzWkPZnBpM4zaaD37nOhyt0Wp+dhHsR0Ih1yrX3+i5V6VOpOAanztcB0wU4mtiopILF5bogxe84AWH31/zmtekdROt0mw0Go3GicBODO/g4ECPP/74mjQV3/J+U3M7E7KOKN1aOqqktCr1V6ybUkuV3DleX0kzI4a3rWoxS9dTJcXO+lXVx3Oztm5SM4wkViYW5o7HMVE40w3t7+8P67569eqatJclAq/GKVNvVGuEyCTkSs1OaTlTnVWsjewp+43XVMmkWU5EpTbMfqvaniXj5lhXKdMyVsBUZVxLkeGxvk0q+itXrmy8f2Jdo2TuRjVO7PNoHeyiWtykdcrUrptUsqO1ms3vpjbzecJ0iNskYedaGaXdq7b6oUYjfmeKtqtXr26tWm2G12g0Go0TgZ0Z3lNPPbXGxOJ3Si3ciobJUKVc2pdqHXe2qeJIGsvalZ3rczKHCl5DCYSS2DYMr9rcNdZjZNJR1T9KgRWDzVgRJVfaDjO7X5T+KglwnudjkpivjTY86u+3mX9uSVOxNLK5eA4TgY8YWOVQU/2enWNs2i4qYpMjSMZcq/pY76it2zCYyjZILQHv720xz/Ph+pHy+7NiPtUWPPH/bG3E49l2SpX9tWpPdmzEmtmPTWVl93RV7shnoHom0i6bremq3CohfSzH11bJ6mN9fmbYhnvt2rVmeI1Go9FoRPQLr9FoNBonAjurNO0a7u9SHiNh+kpV2IhG8ztDHDJKXKnvjFFMXeWAku23xb5SdUW35GxfKn5mdL3qB/tLVUOmyqji2LZRaVC9yx3k4zlWMVy5cmWoppvnec05JjrB+P9qF+fMQYW7SG9ST2XqPh6r9pOT1sM3qnU9Un9V6320L10W8xg/o7s9z93kWJWt82qX9mwfu2qXbF4b1eF0Tjh9+vQwdOjatWtr+1jGtbbJASlbF5tUmsY2zxAe3yZMYFN9EZuccbZ5rrKsXeKNqzbGa7m/aObAFX+X1p+blRNaVk987rRKs9FoNBqNgJ0ZXnQyyKR5B5laArDkGa/Lys0+6UyQGWYrBwwGoI+kim2CySmBVJLwKCCzcnTYxXlhm52BKYXTaYDOM/Gayvjv+YtSOus+ffr0UNI6derU2m7LmRMM4TbFZAWxzvjJpAV0TBm5fHOeMgbkNtpg7jI8PpmDA9dM5VCVMQ33i+33d/c3BuZWjIVOQCO2xt/Y9uiAwrn0WFT1xWNRqzJiopcuXRomGWCf6eDEMZbWtVE8d7SWt9WajO7tbRxSRiE5m8qqHN2qIPasvIqNZv3ic5UOal6zcb1xjBnqlD2rsiD1ZniNRqPRaATsxPCk5e1qSctSbrQfELSLZW9svs0pEVDyGgUuVtJyZAcVK/O5GdMYBXrH/tH2Fc+trhkF0pJ5VfaReC3d+/mZ5SJkaAjnyd+jDddt8jm33377RkmL9py4DqpAVaasisyfNqyYX2/0GeupQjAyJlGFzlDq3CZMpHItj20kg/M5/u5g7hjUzXOr4GTeb7H97qe/k+Fl96DBcrOwo9E9TTjwnGsxsjXeF7TtZkzYx2jL26ZNFVuv/AGkWsNT2XSzNnD8RwHwfM5VTHaUtGBb5hTrq8JUsqQj1gb40+vN93M2Zi6X9+k2aIbXaDQajROBnW14ly9fPkz862S/tttJ64GJFWOIthtLp7Q5UTrbJjCz0ldHCXiTR1+mj/e5VdqcUYofo2K5leQXUUlPmScUPSDJqjJJi21jgml/j7ZYMrGzZ89ulSJKyqWzbRPlZlIsJW6vmSqtl1TbbEaMf1uvvMz+W60NSt6Znclr1t/J8JyUPfZ9k20ys6P6fzN5rpmRjdrH3Bba9CLD41zv7e1t9NJk+zOmz6TRHJ/4rPJYbsvstkkMsc09zbVSebdmbavKqBhnPLfyaM4SOdBzufKVyO7FKll01sbqHvRayTQz2TumbXiNRqPRaATsxPDmedbTTz99uD2HGV5mr/CxKFHxXB6rUm2NvIqqeBRKT5Hhcesievpl8TGUtCs24O8xvqzS85N5ZSnaqnpGdhiOEyXITAqsbHaUDuOWLJy3c+fObfRsY3szD0F6e9GzM0rNHjt60VJypDQf/6+kaHoJx7o9v/zMmCs9HTfZVkaxW1wPWbou2hGZxs1z6G2YsvRuMW1TbHs2joQZJhPIZ+ubjCyDNQORicYypPUx9L3tratuvfXWtXoylhnbxOMZqzXIZqjJyM6tbPdxbCs78zZ2RpZXMbu4zqlB4LiOGB7Xt8eC9rg4dkwNWNn4My1LjPVuhtdoNBqNRsB1xeHZhkdpUFrXuVKKzXTElKgovfjtzmS08X966jB+LHpnWcrjhrNse5REKK1WcTduY2R4bmP2m6Q1r9d4jBIdbTlZO3hu5cGWsStKVi7D4xfr8TqIEvwolurKlSulB2ms2+3zd2sUXF8cJ9uaOF6VPTSuA88/1wHXX5SAfayyU7g9cZzITCmh0ss581wls/OmuFmMG7UbHjdfY83M/ffff6zNsa1kpa7HGpuoufH4uR/+jZs9xzHhPbCNhD6ydVFL4zY961nPOtaWOP8cf97jvF8yexUz7vD3+Jyj1qTSuMT5rxhVFcuZeTNWydFHmgSufY9bpX3J4Gt5b3Lu42+0K2dxn5nncDO8RqPRaDQC+oXXaDQajROBnZ1WLl++vGaoz9Ia0R2YO59HtZRp++23336sPKsljEx9YHWM1TaVMf+RRx5Za6OvdVuZuiqqI9gPUn/WF2k7f6MTBkMApHWVnMckjnVsexZQSxUqHUWyPQndH6poOK/S0Zhn6bSIeZ516dKltfmK6jSvCbfvwQcflHQ0d1bFxWvoPk+nAaoeo/rQ6+u2226TdKSKq0IA4jhQlUgVV+ZMwHGiSs31RBVUldyBTkZxvVmNb1XwQw89JOloHKnajONJVSYD+z1G8d602tDjeOeddx47TtWmtL7n4S233FKqpeZ5STo+UjV7Xdo5xXW7ndnYVsH7dGaL7TA8Ph47jz8doLzOIzalHxulFiO2SRPGMqp0fNJR3zlnVGlmpgOqOelARMcn6WitstwqTEpafzb1jueNRqPRaAA7M7wrV64Mdx62REAJgRJxllyXzI6MLzNgWkq19EoJwdKAXbDjMbJNSyuWYqMkQUcDOuPQoB6vrYIo6ZQTJS1KX2R458+fPzZWmWMFt9GwtJklgqabuceAThhZYuMsvRlxcHCgJ5544nCs6RovSe95z3uOHTNDcRv8aYYi1eEBdMXPkpebDfjTDIVsIZsXg5Kp+xXHwmNZJbQebaHl8mNgeazH/Y1j4nk2s+O4+lomFYj1kdFXO6HHfrEtFy5ckHS0Rs38IiIrGK2fq1evrjlIxDXrufJ94fHicydb83R9pxObv8c15LZS40KNQnxWMWWi2xa1XbGt8Zrq+Ulml6Vb85qtGGxcW3Tu8dqlk1zmaLdtMH48jzucu41VAnxp3WllFzTDazQajcaJwHUxPEoXWeJa6nwp1Zq9SdIdd9whSXr2s58tad0mQPtZBF2umYTUrMASoLTuJk1bh6+J0hv10/4tY3RS7m5PKc39ctuiXcRjStZhKdmfZL/SkSRFl32zYUv87m88p9omyH2IbIfS5eXLl0up6+DgQE899dRhmzzm73znOw/Pede73iVpPVE1w18yV2i33+uANjyvi9gvaip8DZlr7BOlcYawuKxou3H7ydJoD2aQbzzHcH/cDq73eIyaC0rgWboouuZ73ZHtxHb5mM/1b1x/EV7zbtPFixfLtTPPs65evbrW3vjccXkeY9qis0Btj7Pbz7Xi70xTF3+r0uFl7Mn3KueQ6ywLqalCWEYB6B5bzhk1F/GeruaS9WSp03gfVckstkmszzmOYTDcKHpTWrpj5W51VqPRaDQaH+DYmeHF9FCU/qR1rxp66pDVSEcshszO5zCQNUqkvoaSLlmOGUVsiyUss0233QwoSvPsB+1v/sw2vGUybPfDLM39jazX/3NDXbNAs2LXl+m46Z0Vxzz+Hq+xnYeM1v3JApyzjUQJb+LpMbXNNdrwKgmRwfdZWiuyZ5dBLUSWhJZ95O9Reqw2qKw2II5t4XY0MTVSda3rpiev2+r1nSWrdjleQxnTYn2Er6mSpMfrq7RubnO0M/I+euKJJ4Y2mXme12xrkeGRlXMuXU9kM7QP8Z6mx+8oWQYZWBYgzjZ6DFy+74ksQTu/83iWlJ+/sc2jea88YpkCbuRZTmaXMVje83yOk6VKR89Ar6fLly+3l2aj0Wg0GhE7MbxpmnTq1Kk1KSNK6faSMiwR+A1sNhPtVdT5863PFFZRSqcOuJJIoo2j8i4088pSi/l6etZZIuE1kRVUXqi03WVbvDA91MMPPyzpyB6XMTwm7Pa5I49F2jXpycfUWbFtxijFz8HBB60EFgAAIABJREFUgZ588sm12Lo4xtyOxxIc7QVZYmba+9wPjyltorG8Kn2TxyD+7vJG0rF03NZCBpFtyxLbE6/lWLgsrwd6/knrNiiXZ40CvYYj86ItnEw58w70mFP6J2OL9yBjeDclAJ6mac3jO9vUuWJ2nvc4tu4/PSoZl5ulRqtSJ1ITlDFvMi3Xl6WJY/9cBueYcZOx3fSnGCWPdluqeFz2JT7HfW/QW7dqq7TO/qhtyeyZ9Haf57kZXqPRaDQaETszvNOnTx9KDJbWo23IkraZnt/CjHmKHpCWrFye4TKYCNp2uwyWaizNUiqU1uOPLF24Pv8ebXjM5OLfMtuAdJxJuB7aIKjvz3TbZDUeA27tEiVbe7t6jNl2S17Z5quU7DyfbofZonTE0qrMOBEHBwe6ePHi4VhkTIE2LTL+TIqj96Vtm9wO5jnPec6x77GPlkyZnDpLVu7fKP1Teo9s3e1n5hGDNssopXN+Pf6ef3r+xXY7Ds7leUzIMKLE7TF4+9vfLmk9BjKzx9Fmx2TcWQYeSu6nT5/emC2ENsK4HsjsXCft/vE+pQ2XyZ19f3rMow2U9zCfB/RqjX2mRzS9KON6o9c0tQW0i2Xe6PS8pCYrzo/L8b3ttlpr5Hn3eojX+pnLflSbukZ4/vgszO59xkS3l2aj0Wg0GsB1xeFZmmGUvHQkGdjLsNpeIkp4VUQ+42CMTA/PvJTUrUfJnhIc2ZSlmMjw3Ab31VKfr2VsS7YtCGPnWHZkhRwv9+8tb3nLsX5lW/3YI9X2Ps8JJf5oj2NmDY4bM4pI61LZyA5jGwwzOMQ2VFlyKq/TCI//85//fElHY+q5NOuNY+xxqjafzDYlZZwfJXBK/rFObkfEjDiZNEuvQ7fZbcy0HfQKpa2S2TQiM6dt1fPktfTAAw9Iku67777Da6yZoT2d3tVxTJjP8dSpU0MpfZqmNaYY17zvVWYR4XqLntCuz2zZ3tlur8fFrDcyE65JakSybZToO8B54b0nHc07M95w7Yw2BDbIrDKNAjMGuR4/7+j9Hq/12nFb3vrWt0o6GvNMo+D54f3KTWNjvzwm0Zu2bXiNRqPRaAT0C6/RaDQaJwI773j+1FNPrRmI43caShkgbZVMlrCUrv1UF1k1lKXtYtJqqlSjkd003eqgamf16KDBBLlUi47UUm6b1RtUcWWpxdgPj5v7Q7d0qkkjPEZW2WSqE6rK3E+mFsrUydu46u/t7aW7zkd1NdUSVUqsqJphIL7VxlavuI9WwWQqWaajcpme/yy4lunh6PgQxzZL/xbrY3B8XN9cX3Sd95jHe9Dj43VWBdZ7DcV1zrCXu+++W9KRQxeTpUtHO6e7fK9zOoFkW1hFR65Njge8t+IzxOPCnc75Ga+h+/y73/1uSUcOTqOkBQws97hwTWUhNHQMY2hJrIeqX4Zm+TudSaQjNT5DKKiujKp73i8GHdJoaon98Jg4VaDvRa+liGoboMqsIR2NsddTbw/UaDQajQawE8OTFsmO6Zui1G/JxudYYuR2GhkjsURqyZMpsTIHFErUlMYyd+TMLTYez1LguL2WOBjcbWQb3DLAlRuNMtVU/J+G5bvuuuvYtR6ryK7oQOHfLAWazcX+WWqqgkWzMAJKpFmQaMQ0TWvBrlHiZsolMlHXHcfe0rgleKYiYlLpyHLIGJj+Lkt+nDHdeC2TVsdrRm76sR1RWmXKKt8jVXhMbAu3FjIT82e2IafvV0v07o/LZHiRtM5UyNSyhBFMXjHaPNi/c1uvyJ68Jhiy4Loz5y6X43Z5DdGZzWOR3Z9MUs/Ua6PUYkzqwBRgsV9kdLyPXGZMocgUaZElSXlwPJ+9voapDrOE2h4Tr6EqKXf2/KY2x+va921sI0MltmV3UjO8RqPRaJwQ7Mzw9vf3D9/QfmPbfiIdvXX9m/W33BA2SsAMpqRrsUFbn9sjrb/lLRlkG5cyUNZttWRiKSmyULo5M2UZ7TNZQm26llMvnm1dY4mLqYPoMh+laiZ+pm0os91YQq0kK6ZSy+q5du1aKW05pIXuxlmANpOJu86MIVHC5fZTXo+jdE3UBrg+j3Vchz7mueM5dBuPfaTdkqnGMs0C7Sxcd1kaPIOb0bodnLeoHfC97P4x4J223XiN72OOCT/jOUwincGaAaYCjH1mMm9uJeXvcb15nN1XBj0zkXq8lvcFU5hl4Sm0e7E/HL9YjtcmNWMug8/k2GffA55D2qwz5up+sM1ZOILBTZgZMpMlciC7JftlisOIqFFoG16j0Wg0GgHXlTyaW8VnSY+pY6YkmtlSmHrGEoEZUWYzrDaYpfSaJbul3crBtAyel9YT8VbbcWQSvmFmRduQxzHq2DMvxtgvbheT6bh5jpGlPaJdxONGqTMyV87t/v5+KanP86xLly4dzqmlzswD0nZKt4npyOLaYXLtagNif8/SKJG9uiyya2mdnWX2nfi7lHvFxu/UUmRj6HXn+ulhGMENc5lE2J8x+S7b5HXAgGOmw4r/Z+nC4uco6fsoaYG3JaOdJ85Ltca5CW5sI8vheqb9N3ouZt6q8dqM1TJdFq/lVkxS7SnKscj8G8ggeTzb6smg/ZdJOTLbK23i1bMy87Kvkkhv4xORbQxeoRleo9FoNE4ErmsDWEqmWWwWbQ6UJqNERkkr81qMv0dJkZI89fDckj7WTVuW0yYZUVpy+iRKf5W0lHmdWfJmqqJs6x2yMCaeNtyvyA65ZQ43b6XHX1ZuFTMUWS+l/XPnzpUMzxvAMslyXDueS7eLfcvYrH+rtmuil2OEy7f0yPFyPVlaOq7zTR6qsTyuFdrwMhZND1Yyr8h6eR9xrMnw4pwxJtVgWqhowyGLJhv1fGYahejVOrLDxK2nMi9NeklyXLIUVWQgHIPKTiets0F6T2brjcyuYnyZDY+anm1iVDcxymqbqlhutYUVGVg8Vnmf8pk5+o327MxHgRqybdAMr9FoNBonAjt7aY62lJHWJRzGa2QJRJlxgtIZJTpKO9K6JEwpIDIgMgdml7DXWeYFRlsQGWWWZJmbNjLRbbYRKceWenHG2EVk0lcsI5s3SqiOsyJjimyH29xsQtzE08i2T6GUx+2N4jWew4zpxuPZ90qKZF8jq7Xt0ZlHmFScHsfS2JYVka1r/uZyY5ukPOEws794HI1sexiWRyaTtZ32HPeTtv5srkcakYh5nkvpPx4jC2Qy5XhPVAyHGqxsnHi/UMOU2au41RJ9CLJk+Syf9/ZoA1j6S1Sxj9nzm8yRz+hMC0dWyCxN9A6O13MdcB4zzdE23uFEM7xGo9FonAj0C6/RaDQaJwI7O60cHByUu3xLufu3tO5yG1ULNAqTVjN9WOaAQiM7XWGzYF6rFhxganAX43iMSXurfaiiaq0K3qaqJHMeMDxeNM5n11KVxc9MtVDtmcbUbNFATPfgLPjZcPLoKuluLI/OFQxbyZC5uWeIKjmuNzpaZWm0rNKkOprOHtk4VWm0qPLJdoH3mPgcO4IwUFhaD0vgPcB7JVMHcWzoPJWFBjEEiKE1mTNGDP4fhbQcHBys3f+ZAwpVfj4nMzUwmJuqTPYne2Zx7dNBJDrnMeyFTmxZED7bUD0XsrR0TCzONZqZAZjcg2szq8eonklVWETWL1+bOQoZfH5N09Q7njcajUajEbEzw7t69epaSp7s7ZpJRVIeLEgGV0kGI2ZSST6WsKJkzxRbZk3cTiVKZwwwpkRJySdzD2aiWbLFKPnTSaFyZc5YVRVwyrLi73S6qRyE4jiz7l226TAyqZ/SMiXfKJGSedANnawpC+qlg5VZHHexj9ewfBrdI8PbxiEjlh3HsEqkwBRnWb+8fj0m/swSXBt0EqgCqTNnKTJlMruMucStcbaV0o14f7pO3rsMh4r3JR0/qmQLGchMKoaX7dTt8u0kx7IyllY5nFTrI57D+Scrjc9ijhsdTzhHsa3VGIxYIbUN/J6Bz8LRPBHN8BqNRqNxIrBzWIIDiKUj1+zMflSxtExCrALNyd6yYEiywm3e9kxsTXf3bdyDaVMxmB4tO9cMj9uFREmLTDJjU1Juo8zsY5vAoGeXy2TFmW2s2hYmwnaYUXooMgHaj7IgcrfHtocqMW8m4Vf2KdorY5+rjX7dZiZJj+2l/Tqzv/J7tdUTxzGuezNTH2MqPYYtZEyf5Vb3aGxvZf8d9YtMMsM0Tdrb21tjGdlWP0xHt2lNSvUWWOzzNtoLssZ4X9KGz21uaEPM2sQwLzLy0RZj3ADY93iWULsKLeCcxjHheFafcd6qsKLRWPv6qJlpG16j0Wg0GgHXZcMz/H/0YqNOu0rQmtkcKimPZY0CZSsbRGy3bXc+Rs+kkR2mskvwM0uZRe9Pt8PSTayPW3hkGy7GdmWB9ZX0VzGLrHyDAd3S+nyMJC16UmUp37JUV9J6mqbMs5P2qMpukKXtInMceU1WNlum0Ms0GJyHShuRJRzmeDnw3FqK7L60fc+2aTILeu/G8qvxGyVHJ8hCMvYR53xU5v7+/nDcOP8Mus58Cqpg+srbMLafgd6ZxkLK2Qy32CGTjM8BMi3Wx884NpX93/VnHvO0v2ZJMWLZmQ2P9bGN8VlCezKfM5ntkEk4dkEzvEaj0WicCOxsw5PquC5pXXIz/CY3u4mscFMKnJG3F8uoPHdiYmZLEZaALS1bsvLxzJOU+n3Wk225YqnJrM1SebUdTWzTJok603VTMqXuPCvLY+yYxFE6ICPb6HMkpY9iaqTN9jd6xsbfsnHP2jqyj1R2523KY5q1kf20YhbZvUPPQUrN3B5JOlpXTBLOzXBHCYANzn+WwLuytY/GcdN9xHNPnTq1xm6yTZ1H6ceIKlaPjD+L/63YE+cnzouffVwzfu54fuJa4jNwkxYss5OSfXKrn6xf9Cuo1nO2DjYxvehdS89rtjVbQxyLUfwv0Qyv0Wg0GicCOzG8vb093XzzzWsbmMY3LD3CzG6Y3eRYI2D3qBJNZ1tvUCqmTSvTrdu7lMl8LWF5a/ooXTCRNRPLjhhRxQJiJhd+t/RlaYaxLcw+knkSWpKixJVJ4DyHnqUZK6H35EhKt5cmJfCIqt3GtvVItb0sXlsxEV4bJWAeM3vyOh9J2lVCZjLNuHaYLcWMgVujxD4w/o7rm/dR5inLeRqxbKPKqJHZ8GjrHm0e7PN5r2V2HYO2pyxzR2UXG23XxPrItGmTip6RLtdrxvVbo+T5yWxTVRwe74Usho/2Zc5hZFxMfl55FGeMr0r+zmdWZjPmPU8tRJw3bqi8S/xvM7xGo9FonAj0C6/RaDQaJwI7qTSnadLp06fX1GyRTpp6MsiS7q6Z40G1y/JoLy7udlulnbEaUzqi9Favcq+7LJShcn+vAjSz4Gj/xl3amQJIOlJl2YmEKjOqajO39GrvrFGqJwZw02idOQpENejIWWOe5zWVz8gZhk5M2ySsjXVFZCpUzmVlBI9qI4aQWB3FMJLYL59L1VIW9sB2+RqvB6bMy9Yb70GmyqIJIVO/VuaFLKQlU6tn5WdhKZucIiJGwepV+NPIIam6l6oxyEBX+6geZBu9Vrwe6KzCZ0ismwH1TJqfpQusQhr4DH7ooYcOr3H5HItRSjmOBZ9JDIOJ66SaA5pSRrukx6QEm9AMr9FoNBonAjszvFOnTh1KKpmESkmKEo8xcqevPkcu8pQumRDYjijSugMKpQizqkzqZJJWGoJ9PLbHDiiW0nmu22ZJL7alkpJHbteUbin9uf4sHRkT3FbOMrF81jtC5XQjrc83twcaJZal5FntBJ1tTWJU6cJivR47h9V47qxBcJtjAC13UHcZmdOXdHzd0fnBZbl8JyCO9xnd9quwlFFANe/jkZt4Fd4x2l6H87XJYSVqD7Jg6F3S6BFVEPdIC8HfslRi0nHNEpk1E2iPHIF4L1dORbEMrwlqlNwOayWyRAfUIMQk3/F4hpFjWoVqvY3GZBSmVqEZXqPRaDROBHYOPLe0JeUuo5UEssm2E8+hJMLPzPbE9F3cRDRew0TITLlD+1WsO45DBF3M46ay3I6I7sjZprkuzwzV55LZmTVG+x+DlF0/JdgogfkaMjtKsFmft5HovAGsxziT4GibqVKgZfVUW+xQWs8YCvtGF+k4L3Ypd2KA5z73uZKkF7zgBcfaHgOOK1sK1yFtvBHWErhNLt/zH8eRzJEB1rQZbcPMOb6ZVF0lfx+FarD8DNM0HQtbGM3hpvR5WbLj6ly2P7P/VTanLGyAc2d2PkoPRlSanyzQnRodMrsqHVr8jWyd4UrbhANUm/JK60yZz6FRSEuWxm8TmuE1Go1G40Tguhjepq08RhgFj5OdVYwvSsDcyoVt45Y80vo2KZSajFgW+2XJmm1n0G8Eg+KZEDqzhdLDj5Jl5sHK5NjUw4+S+VLqG21lw2ObdPb7+/trCbQjyCrZ3oxJVkHjlc0js1vS85FzazYnHc3ZnXfeKUl69rOfLemI+THYN7aR65rejW5HlrSc207RHjhK/uA++xpu4Jx59hG0UUWb4TbbQ1Vl75I8mmnWIlNg8Hi1qXSmjTJ4H/L3kc2Qzy4jttGMzqkF6d/ANGKxLVVwvMfP9UTNUpXgwAyPZcb6Kq0KfSVGKeaoHcqeD5u0Q9mayDSA7aXZaDQajUbAzl6aURLLNkGtUn0NG1FIIvSAZPyKtO7x5LZYEjGzi9KUf2PaM26JkaXrMiqPQdrLYvlkgYxVjGNFpuVryGCz2B3/T6ZCr7BRuyuvs9hGxneN4K2laHvIbINVSiL+PjpG1pl5sTE+yPPA7VOyVE+MpbPUniX5ZVxnFkcW2xPXKm21/jSL82dkzGYS0Z4T66c9M6a8c/sr29cunnejWEh6O1+6dGko5Z8+fXonmw0Z3jZp6YxqQ9jsHuOzi/dj1PTYDuu4N88z2xbXG7VP1VZW1E6M+ur59vMvaiMYK0qGaWTPh0oTw89NSeRjP7PnA8egN4BtNBqNRgO4ru2BjG2kJUpHGfNjOdkbPB7PvKUsSVmys6RjaT3a8Cw12FuNyUhp+4h1VpIv9fFZZgCeY4nPkniUtKlndxmUJI3YLiYUrmL2sjYyPo56+SyOLbK1ymvLWVbIaiLjqqS6kXcpWUHV54zheU14rbjPZk1uT5SAzeTuv/9+SUdrhVtY2aYnHc2Hz8mS38Z6o5TuNj7wwAOSpHe+853Hvr/jHe849j1eTwa+yT6TXVMlJ87uDbIqlp/dt1ETUzE8J623fSrL1lRlVNlkl2O7YvsZp5jZr2m7G8Uecv5pw888l6nhyeJ84zWZF+omTVnmE1FtXTW6F6u4z+oeHWHkDbzrtmTH+rHVWY1Go9FofIDjuhjeNhHujMwf2QCqTBO0OTBDRSyXUqYlY0vgZlPSEaMi07NUnmXYoNckJTgyrihJ0gvP/aMkHrNzMJbO3y0dMntCRCWZVnFZsXyynCqWLyt/tNmmf682CI7XV9ldRp6W7HvlVRjH2LYueoxSuoy2MDMsl1PZVKNnJ/Nt+jef6zXq9jz22GNrbTSDu++++yQdrWefG9sYcwxKR2um2som81wkw6OmIWMSxjYSPe/XkXZgb29P586dW7OBj/wDKpaZZbEx6AdArU6ca7KlynM9am0uXLhw7FpuPJt5lNMHgZqezCvY8DE/36L3Z7w223C4yoRDL9E4Z7TLVt6Z2TuA75JRFid6OzfD+//bO5sdN44tCSepVsuGZOjCwKzn/R9rdgYGhgxBNiBb6p7FRahDHyOySA9m4eGJDbtJVlZWVVbx/MSJMxgMBoMBMD94g8FgMLgL3BzSTBI/t1BTKUrqf8sVVoiptYhItF2SLShR46EshYOUBNf+2Qndj6slfJnkTeekdRHm3FOymudN+1WohG1pfJsW0uS58fPDkCap+45bRFuFJuq81ktoj4QZ/p8Kz1ubEcrGOU2c+6NotY7PQ7+ilOuV4WqtA4Ux13oJles9CU9rfBKrPPzO0OWHDx/WWvuO9wLJS02YN5XD8LOdjFwKb/m2SRIslQu09XQ6ndabN28uiCGJOOPbOBJxphHQWod6DwlSrovnIAlza3uth9YOzUOauv56ZRiUsoR+TAppenh9rZd7m8eb5i+Q/JPahfEziiLs9sfSjPa+/+0EyAlpDgaDwWBguMnDU/J4R8EnpZtC00L6xWaimVYlBUYdR0SH5BXIWiJ5gQXoa11SieVZ0cJK1ic9FRJ6hCQp1QpMNZbm7MlxWmMk4bBoea1LuTW9suFkIgokAQJCxcMaL9Go6Z3zeu+uJckUifbux8Vx1jou7l3r5XwoOuDNMx3u4Yk0IM9O/zeikHt4FAfXK6MfPket0VZELqRrQPJVs/hTU9zk1ay1l87b0c+F8/m8Hh8fv90fupZpDhy/eW0c31+5DtLzqZVrtPms9XJuda82oou3CVPUiW272vH6vBgNYhQizZXP0XacicjD6ACjXnzu+pwa0S6tj1tEz4nx8AaDwWBwF/hbZQmyHPWL7Z6C/73WpfVE6qqDlgAt7F3RehMsTaKuzNWw1YqwK8xu1O4dNb+Jqwo+x9beRpCVu8s30npiLizJrdGjo9flVhWLrY/KEtbaC063vBRfU+6GOTt6eCkqwBwNpZYS1Vvzdi9srXXR9sg/Z15PFjw9fl6D9FkTIPC5yqJ3L9OPV69NkGCty4a5fPV81q7UpIHe0zXC4ywBSNyB1h4oRR/oFfE4rmnTkwQN0vccuj46h8xNKhLg47LM5pr2XXz28bmahO6b6APXDP/34+Gzi5G6VMpAT24nCccc3i1cgvHwBoPBYHAX+F9Ji6U4Li0PWass3HbQW6LFQ0srNWZl+5TGGFrrxcLSNu/fv19rvVg6ScRVoFdDK3nn5bCZK9ud7ER8W5FtElhurXEoXZVaJrXmsSmmT8vqyMN7fn6uYruOxl5lbk9j8j3u0/fna5XtWFgg7tdDkHdGC/TXX39da73kgz1PwTyc8n+0lpOgQ5q3z5nto/xvzbU1L04eHs8nPbskINGKhlvxss+75YqI0+l0wZZMERiB90vyApoXQY9v5wlfK7qw1qWIOJnKbPnkaKLuzLUnqT5Ggfg8SOxwrpEmQJDOK3kbOyECet5NEs7XR2oMPizNwWAwGAwMN3l4z8/P30kA0Urjd9d6sW5pmewsoiYmnTwv5vXYAiexfPQdWskUnk65QjZiFXZizvQkFKOnFersLFrnzWJNnh8tOba9SYxF1ubRu2psPd/fly9fDpmalLvyvCkt7taUNnl4jSnINeOekK67zjU9O73vxyTWnGqb9L9qq3755Ze11vc5PAqbMy9H1lmaI6Me9JBTbpW5oiYtlnK5XN/XNHmlNc5r4Xk/RkjevHlToxhaN6x99XkzT0Ts2JnNs2sSY/6dxh3gvHxubADNa+jPEkZ6Wn2k/vfIQqv7vaWxbRPSFtL9zlo67i89+xNj2PeX2m0dsZATxsMbDAaDwV3g5gaw5/O5ij07GrsrbUPLhjVVOyFRWcOyKtjaR2O4dcn6FFnrsjKkapHyVcwfcI5JkFWftTqclGdUPqmpQdDbcWYfzzWbQ8r7SG1o2GA0iQXzuJxFufPw/LNU29Tyr0lF4lrQa1K+dq2Xc6zXxtL0daBzS9UUveraqo3QWpfnVv+TsUzP0vej98hcTnnuxjakxa11kGpGk/pPGiuBORZ6Mmn+b9++3YpB+/aJuUe0NkHpPHFdtTrClEe6JYdHD4s1y+lZyZo2em070WWygJkLT+Lh7fryPF4j3M3o2q6OtnmffHau1XPT12A8vMFgMBjcBeYHbzAYDAZ3gZtDmj/88MNFcfkOLbTpoZLWZTm53AQp5XJ3KZScumRTNFjutUKaKeGcksNrXYZj3TWn0CsFp1NPLR0HwwEkPIgGv+u/x4JmhX09pMmSBVKKd9fAqf/XkBp8Gw+N6DyQNMQQma+do3IEgUSltV7O8c8//7zWegkpsuDc59gKnDWWjsE7kGs9KZTJa8YO6F66o3EZXmW4MIXQWwdqigfv+tVp2500l9BEl9nD0T/z8NfR2mFoNJEtdsekcfh3E55uclfcd5oTRZ79OwLFEEhu8vdYDsU5axsnojW5RQrD78KxfAa3MLmPw892pJlW9sL9HQl3T1nCYDAYDAaGmzy8V69erZ9++unbr62siZ0sUJPI2rWbYSdo/vq7h0m5HHl6pOa7VcG2MGwHk8gKtNwotaVtKPLr47C0gcebrJQmo0MhWL8GbK/EZHWSFmMie5fsb3j37t2hB0Cr2a1+CnRTTEDf9Xkfidvu5tPOJUVvU5Jd+5UHpnMsb9HnpeOSZydPkvJ3ifDEtUmZqCR/1mTwSFpKrbNaK5cmw+XvUcqqvZ/G20UHzufzevv27bftJdidIgZNti95JM0b5DXm+vP3eL4YXUnCzJxrk/PyfdJ74rapxITr4Kj0yI9LaLJr6f7ieuM5SKUHR554KtWZwvPBYDAYDA5wc3ugd+/eXciDeT4rNaJcq+fN/DO9x1Y09CDdIpXws6wHWc+pSaDAHCG9tWQt0JKjiK+wa3fS6NopL8jCff1PD5KUd/+7WVipkeoux+rv+7VnMfLj42O1tE6n03r16tW2gJ25HrbCScIDR7km5nZcTo05FZ03lRgkiSd6LyxTYdG3H6tT8Nd6Wcc7T4jSebwnUtRDx8ESk5QjWut7r4DXtIk0OJpcHPOLqQTFj7154yo6ZwNVecw+Dp8/XB8pUsFcHteS5urXlM8qRnFS1Evz5bXjs8qvpY6ZOX0eLz29dMwtV7cryuczStAxpGbc5DFc08CZ4BrydcdoxzXRp2/HdfU3B4PBYDD4B+NmD+/x8fHbL6osSP+Vp1XOPEhqM0M2GVmgtBDcUmFbFlpLZM+t9T3jx0ELxePGzPc0YdlkxdBi1PGQeeWWtvYnq5Dxdp175t7871ZETHkiBz1Uyl+l1h7Cji3l4r8+birm1bWiFZtkhppHwuKhgygZAAARw0lEQVTkxEjTWuX+yAb09a01QQHwnRCAwHwcLe5UmMucKj391BRZUQ8KDPC6J6+IljulzXaC6i2Ckdr5cHzP7xKn07+bB2u+Eorw5rt6DvA+bAXojiaBxSiBP0OYd6fXweedg89Iftfvy8ZaZLu1a1jUHCN53szZ8jhZzJ7yqE1OMjGzuSa5NvX89mc2n5u7tUOMhzcYDAaDu8DN2iwPDw8X8V230mkt0QNKlhZjvWRU0QOSBbvWS72TsyLXerEUklwTRUf1qjFk1ShXsNZlrRyZfNomeRI8F03SKOXU5CnIgiUbTHDPq3kQzOH5NqxXpEeRYu2UPTry8N68eXPBTHTLjazMxgZOtVQEowZsIuuf0TvcsSYpA0bvUGMlb11ozWq1jZ+T5n3Q8/f9aa0wv02rPTUPvuVcCO3e2Amqc/xdHZ7qfzWu7ku/p3U+mlTVLi9/JIic7tfm2QkpZ6g1w2fVrrluYiT6HPksu4aFypxXYqO3dlA7humOI5DGSuORyZ5kxHjPvX79ejy8wWAwGAwcNyutuBWfYsCsg2mxc7dIWQcl0CpPOTyyFQWyplJrksasYtuYtS5VOMh84hh+vKx7YbuWBFpJyZJ3pPYZHJ/x95T3o+d4DdOrNSl1yMMjWzflcun9MX+QrFiyMfk5G2auddmYtSmUJJUHrgMqbaRcUWuima6HwLyr1jkZxjulHc6x5XR8/s1rE9I2vNfoGfk2Oy+TEEtT4+i+VC5vrUsPj55d8gBayy1GEo6aDPtYfCamtcq1w++6t5jqHtN+kzfHZxHXNb/n0DhaX+1ZlSJZ7ZlPL86/wzVCsfS0dlzBajy8wWAwGAwMN+fwPNaeLAb9+ip/0LQ0U+sdoakXJGUAWunCzoql1eBakD6+M+30tyxfWlS0OhLTTtYS833Jsqe1dNTYNqlAcCx63+4VtyalLaaf9n2kluFzpL6nH2NT+xDSHNoa4vs7dnDLqSW9z9aINVnLzeOm55Dyv/TWdL6uqalMOoSOlEdlfVyyyv197juBY/rfu/o4h3/OlkxrvXgEvE+Zw02MRHqiXH/pfmneq/ZLRq6Px/3s8qOtFRKfwbv6Vq4r3utJ25L3J73bFHHifloudHccjKCkfHA610etpb7N4apvDQaDwWDwD8f84A0Gg8HgLnBzSPP5+fkiPJDouolgstZlaMbHkavdkvopgZpClr7NTrCUydwmfuvfaeFCJpdT2YWwIxxw/juRaIe/z5Atx0pCswwfU/aKElq+Hy9O3lHLHx8fLwqbU4iRaGSP9B7DlAwXeWhGRKRGiklhG5ISGl18R3Bo17DdM75NK6ROZCaGg/TKUh0XWCDhpIXuUqiuzX/XWigRkRp4HP/617++faYidBZ183mUUintVeeWUn1rXaYWuJbYzd4/0/y5vlL4shXxt2fY7jy21FASk1BKimTAFu5N4/IeSfdEC2XqePnq4/lnQ1oZDAaDwcBwk4f3/Py8vn79+k2yKElU0RJt5Qj+Pq1kWn2k9aeEeUoSr5VFnuktUaBUslGp4JhUeXoWqQCUCXSSMZLlw/3weGhF7wqd2RZEVtuuWSTJEinBTSr+kaV1Op2+Hbu8C58DE9jXtKZpYuXpOnBbFguzEWvynkgeSOILa2W6Nj1VQePvGoCS9EW5sNR6h2LcLK1JDW/pQfB67jyIJlog7Aqcd1A5FO9x3adrvRBYdF5IoEieKT0qzoX3ZfKE6BVSri1JsbHBcZNB8/Eod9eK5h0tUkbvzI+TRLqd8LO/798lGvFprUtvTWuSwg470uEUng8Gg8FgANzk4T09Pa3ff/99ffjwYa2VY86t4JxWX4r9MrfEnF6yZhj7pUWVLKEmFiyLQZZjKgBtUj6N2uzHwzwZ4+NJ9qr936zDtbpYtMZXfN73Rw+Or0n0m3T3IxHXp6enC2s6iRbwetPzS/vg+qI8HaWYfA7MDdF7b5arbyM0Ly7Nnx6k1rB7lHpPOVXm6pLlzfuSNG56fjvRguaB7coSmqB6+o7w/Py8bQb6+vXri9ZEfi1VhK61zSbPvh+hlV6Qo7ATBqCnqv2mki1elyMZRt+meYytHZbPm9EBlid4lIUci9Qseq38nGuF5u241+o5O0bZUp55cniDwWAwGBTc5OF9/fp1/fbbbxfW/k48Wr/ushiSuC49OVoPtJbcyqEMGPNKOyYk4+I7y5fMzcbKTPkAtkdpBa6JSdqEoHfF2U2wmywtZ8oyV6fvcv/JM7+66PN8/nYudF12OZXW6icVMKfCeB8/5RFoFdO74Zr1Y+Z4tG5TgbOwa5fC/TXZrraG/Lt8ZX6Exb0+bpP6SpZ9y8eRFXyNlF7bp9/z2p/n8PS3jq01n025bnoHZDwmz475f+a6UuslFqWT75C8tN26SmOk80guBBsC754DvO+5v120pXElHPTg6PFxza718iz21m9TeD4YDAaDgeHmHN6nT58u4vtu9fMXnzm9lHOQpUHrtbGkkoxWy50kS4QxbDZRZYPWtS7rbOhJ0qpx7PII/r/PvQmx0sLeWXTMl1ImKNUV8btkzvq5Z37h8+fP25yPs6nS9Wq1N5Riu6aWip+nnFrz2sns83VIb4b5np2Ib7t2bT34Nm2uiU3ZPFfm8GQh72rq2vnzNe35lbV67sjB6M3T09M2h/fq1auL+8S9PnqtjNokdnhjorbrtPNmmONK/AY++1KLJIJrsq235Okzh6p7ms+BXS6/tRRLwuq8pqzdZFs5/6xJiiUmsbYXM3fXlowYD28wGAwGd4Gbc3ifPn2qaiNrXcaYyVpK32vqFLSaUq0d822yiFqTRZ8vvU+xJulZ+H5Y90fLN1lrzGc2KyrliojGhEp1Xy3/lhRE6LHo/Ok4k5Ay8xcfP37c1lWdTqdtC6b3799/ty+KG6ecWsvRNZbrrhaIzNvEKmuMt9Zs10HvsLHzfNujHI6QPLxmPTO/5eCxN4UXx1E7nR1jsR0n5/T09FTzmX4sWldcm/RM0j7pnTdmdDpWXsumAOXzJ1KtIOfGZ8UuOkCvsHl2/hygJ7xTDPLvrXWszuPtfATe4/yf13Otl3yte4OTwxsMBoPBwDA/eIPBYDC4C9wsLeYU1kRrTgSMtV5CZExwr9Xls4Sdu9qS6nT93TWX265tdEwUak7hCCZgGWZN5JUjIdtdF/EWJmJobRdquqa3HeXbhF1Igz36/vjjjy1pxYkHmot3rdZ5kHSdXrVmVFS8mwvDKY0u7t9p4fYUempSckzqJyJXS/zv5NtISmDpzk6YmeLeIgBwXfu2PE+tNCiFeVu/txQiPCIbOU6n0zqfzxdEsRRe1zEq7EWJPCdocJ6tUDqRVjhf7mcnmMy0B0Opfn1auJhzT/f0kQCFnnuJtMLxeF8nMZAmeNAEov29lhri2k3bHAleOMbDGwwGg8Fd4GYP7/n5+cIDSoQJgfTZa9qm8Nd+R8EXSJ+n5ZhIMq0cQXDSCosnGzkmUW+bVyAkcgQtOVqBtLyuEeFtslS+vbyo1iU7ESrcmz5q88JEtluzLD6lRc8x1jruks5i8mSR8nV3LnleGrXdx2gEB36erNRGWklWLsdj4r9FI9JceC9y7jsiT5OCS8Ljrfiec3p8fNzS93WdRYKShyehZt2nfk8nkhD363NL0YFGQErHw5IfeoNNoNnnzfNF0lSSFmPBOZ936Z5uHl6T/1vrsrUUr1eKCDbyn7ZJ5DZKAd6C8fAGg8FgcBe4ycM7n8/rxx9/vBBxTc0n+atOunuShzpCKuptsVu20fA5UzqKNO3UvLFZIK3gfGfhE8kLbdvs2tBw3y1Wv/NgWBKwE0NOedkjD49xfR+XFiCtv2TFHjXG5XGkPAxFpJk/9f0xP9GiAwnMBTXRYl9LvL6tSXFaO96Y179L7y15+s2D2BVhU3hYVnmKYOzE1onT6bQeHh4uro+fc64ZNrelULvPgd5MK8lI0YHmlekZkvJxDYyG+b5bxEdIBfDM3fEapujQETegiRr43LjeWB6TxMpZusDvuoeXxBcmhzcYDAaDgeEmD0+xdFo3blXIImAb+9b0UuP6K3Fk3TgYR05ewZHw7zXg8ciSTEXkySLld9b6PibN2Hmy/ta6ZJyudSkOSwHtnaQQc16cm1tnsprdstt5sQ8PD7VRrx8DvRjmTRPTjvF85mVSo9bGKGYedmcB7zxg7qdZzzyGtD96GYwoJEub9wLzp4mBx3uBIt8p50ZP8Yi16Z8Jnz9/3t7XDw8PVVze58DGwiy2T9BnqQWWH9dOeLzJIe7QZAnT84iePK8DW5D5vI+Y3Yk7wGvXcsepSTaFAfjdlAvluIy6pSbFO05Hw3h4g8FgMLgL3Ozhec1Dyt2RzSiWFBlJHlOnWK9AMWlhJ72ULI+1vvcAmojyLj/WmIK0TBprz8cj4y15B7QUGX+nd+Jej64LX8nKusbD0/vJQqZ3eT6ftx7e69evt/VJ9Ez0XdZYffz48ds2rW6seWCey6X3JOzq8Ggda26tXs7nyPPe8iPpvuJ3dmy5VqtHr0D3QcoZHbWDScfXGLNpnacc1G7tnM/ni3vQ12TLLVGE+JpoDtdmi66k/e1yYM0jIdMzees79qfPeefhHXng/h7XGT08Rg/8M7KruXZ2OTxGkhJTO/ElJoc3GAwGg4HhJg9vrX//0rLdRKrDowoHLZSUc5KyhuLwLZ+Ucg60Jtj6xC17xYOb9ZqsqJY/ZO5ol6+gZc0xfZumkqBtOZYr4HAMeodJ0YPHLi/DFQ7W+v66pTke5fCuyR+0/Ajryda6ZN817yxdW1rl3G+rA2zv+VjJA+J907yNtHaOWtn4fI4ExpvQ8VqX17Tdx34NGB3gNdbxprrWa/Pn7uFp3NQmjN4Z2Zse1WgqImRvpvpM5t2uaR4ssH611eOtdbmOySDeiZg3JueOM9FUeKiSkljPRznjnbfGSMWOJU6Vq11EhBgPbzAYDAZ3gfnBGwwGg8Fd4GZpsT///DP2UxOYmG8Cxp5wbkXpdHdTeLJ1Kafb64WLgtx/uc86niRwzRCGvkvqbZIrakQQFoh7OILnhKFivu/XooXMGMr0EBNDpnqVuHMiutwiG6fvNSFt/5vntCXQ/RjYDZ1STNyHj6PrzTAli+R9XM5tJwTO88Peiiyd2cl2ccxEh+d1aNsmYkULg3Gb3f4YXtztx8OqjXigcih2L/fwGyUFGzU+hWJ5DhlaTyQj3rPtHk9gKJnzSKFT3i98Jh7JpPl3uc78WdxIK03wYDe+0ESk02cMg6bwa5Ouuwbj4Q0Gg8HgLvC3PDxaE6m9SKPCJikeWoRHBaBukcgToXem92XRpUSprBkWp6bSBspPMXlLCz/JNdEqUskGSzjWuixSp7XZhGD9XDSiS/KuWnEqrVAniegc6Dt//fVXJa3Iu6MlnorINc9GD3fszvtal2soze+oeNzfb7TsdE4JtjzhtUskrealk/Lv54rnqUmaCTupvlb24/vT+mpCDumeb/dEwvl8Xo+Pjxf3ciJ5kdBCT9zPjQhZXJMC/0/39JGkXfJqGY3gmEnonv830tSOvKQ5cT3sSFm8f/hsTJ4XsSMFNkFw3pP+eSoFmbKEwWAwGAwMN3t4X79+vfDe3AppNHohtaSgBSDLhNJYavmRLATNhbF1WXGJ6kvLRt9NucIW1xcoQ7WjW7fCXPfwCJaAMNeWciqtJCRJWOlcNym45EmkRo87D+/Lly81f7nWy3nX9aY8nJBEfDlPegFJ0qyVSJAe7tu03N2O6k2RgGZhJ5Hltp7o0ezo7y1Hxe+l/TVR7OSFcD0Lu3ztrsjft0/SYmluvA4U0PbnUaO+t7INX/s8h/wOc8t+rMyhtfzcDm3/jqPC751YtcDvtpxbmlsrNdiVfZG3kZpwJw7CtRgPbzAYDAZ3gdNRO5fvvnw6/fda67/+76Yz+H+A/3x+fv4PvjlrZ3AFZu0M/i7i2iFu+sEbDAaDweCfiglpDgaDweAuMD94g8FgMLgLzA/eYDAYDO4C84M3GAwGg7vA/OANBoPB4C4wP3iDwWAwuAvMD95gMBgM7gLzgzcYDAaDu8D84A0Gg8HgLvA/VBLYIcCZHcQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu0bflV1/ld59x7695KvW5Sj5CCEBDEVtTWFhUxEGyIQCCgIKBGiO8HIGiro9ugJIiNDx7taLRRkJcQRBTRBgVCN1EQGkGDjR2QIKmkklSl3rmVVNV9nLP6j7W/58zz2XP+9t63bpIRz/yOccY+e+211u+xfmut+Z3PaZ5nNRqNRqPx3zr23t8daDQajUbjfYF+4TUajUbjVKBfeI1Go9E4FegXXqPRaDROBfqF12g0Go1TgX7hNRqNRuNU4LpeeNM0vXKapnmapo+4UR2Zpun10zS9/kad7/2FaZpespqbl7wX23jlNE1/5L11/sYY0zR92TRNv/f90O6LVmsr+/uqG9zW3jRNr87W8TRNXzVN01o80zRN56Zp+uJpmn5ymqZ3TdN0eZqmX5mm6R9O0/TfJ/tPq9/naZpedoP7/0mDuYp/33yD2vv01fl+yw0630unafryZPtHr9r5nBvRzo3ANE1fMk3Tm6ZpemaapjdO0/TKLY/7muKafOd7q69n3lsnbrxX8Uot1+5b3s/9OK34Mkk/Ien73k/tf7Wkf4ltb7vBbexJ+orV/6/ftPM0TbdK+iFJv0nSN0r6KknvkfSRkl4h6XWS7sJhL5b0Yav/v0DSDz7bTgf8e0kfG75/sKTvXfUrtvPQDWrvJ1bt/cINOt9LJX2xlv5G/NdVO790g9p5Vpim6c9J+hpJr5H0byW9TNK3TtN0MM/zP9riFFckfQK2PXxje3mMfuE1Gh94+JV5nv+f93cngP9d0v8g6ePnef73Yfu/kfTN0zT9nuSYL5R0VcsL9eXTNN0xz/MTN6Iz8zxfknQ0R0Eb9V+3mbtpmiZJZ+Z5vrple0/E9t5bmOf56fdFO9tgmqYLkl4t6Rvnef7K1ebXT9P0oZK+epqm75rn+XDDaeb36Vqe53nnPy0MY5b0EWHb67VIOZ8k6T9KekrSf5b0e5LjP1/SL0q6LOn/k/R7Vse/HvvdpUVafPtq31+U9CeKvny8pO+X9G5Jj0r6u5IuYN+bJf1NSW/WIlm8WdKrJO2FfV6yOt/LJX2DpEdWf98p6Y6kf6+VdEnSE5K+Q9JnrY5/Cfb9vVoW6lOrfb9X0guxz32rdj5fi6T4Hkk/K+l3Yp5n/L2ec5z08+9Jun81j/dL+keSbgr7fIqkn5L0tKR3rebyo3AeX+NPkfRzq33fIOm3aRGe/ldJD0h6TNK3SXpOOPZFq77+GUlfp0WyfkrSD0h6Edo5q0WyvW91ne5bfT+bnO9PSvrKVbtPSPo/JX1wMgd/QtJ/kvTM6nr+Q0nPxT7zqp0/u1obT2p5YP86XCPO/7etfvvVkv75amzPSHrr6jqfuZ77LBmDx/zHNuz3pau19thqTn5S0qdgnzOS/rqkXwlz8hOSfsfqN45xlvTlq2O/SsuDyuf6EEnXJP1vO4zlZi33zb9YradZ0p+8EfNUtPcRqzZeWfz+iJZnzRdJetNqPJ+8+u1vrdb7k6tr+yOSfjOO//TV+X9L2PazWljvy1Zr76nV56du6OvXJHP/7tVvH736/jlh/3+q5dn4cVqY7dOS3ijpf5Q0SfrLWu55P3cuor1zWtj8m7Q8H96mRYtwdkM/P3XVl4/F9s9Ybf+YLcb5zBbX7ndK+jFJj6/m8Jclfe11rYPrXDyvVP7Ce0DLC+wVq0X8utXCift9kqRDLQ+ml63O9dbVsa8P+90m6b+sfvvjq+P+tqQDSV+S9OWtqwl8qaQv1/Kg/Dbc4D+u5WX4ZavF8CotN/vXhv1esjrfm7VIrS+V9CWrRfTtmIcf13LTfrGk361FxXi/8MKT9KdW275F0qdJ+jwtL7Q3S7o17HefpLdI+hlJn6PlJnrDaqHesdrn12oRKP6TpN+++vu1g2t1cbWQH5X051bj/v2S/rHbXl2rg9X1ermkP7BaVA9LuhfX+EFJP6/lpfzpWm6sd0r6JknfupqHL9Miuf+tcOyLVnNwf7j2f3h13X9JJ19mr9Wybr5yNf+vXp3vtcn57lvt/6laGMMjWhec/sbq+K9dne8PaxGiflrSftjP5/vh1Tx8zuoa/bJWLy0tKrsHtDzIPP+/avXbm7Q8cD5bi5rmD2gRYM5dz32WXEuP+U9oWc9Hf9jv6yT9kdW1/hRJ/4eWe+6Twz5foeUB/iWrvr5c0l+T9LLV7x+3auubwzjvXf3GF94XrPb9XTuM5Q+ujvlsSfuS3iHp392IeSra2+aF93Yt99bnannefOjqt+9Y9fclq3n651qeBx8Zjq9eeG+T9P9quec+VYva7xklQlk47oWSvkvLy8dz/zGr36oX3mNanr1fsGrnZ1bX9+9oecl9qhbh8ClJ3xKOnbSox5+U9L+sxv3ntRCHb98wp39h1Zdbsf3DV9u/cMPxX7Nalw9qef68Wcs9fy7sc6eOBaOXSfrE1dr+hutaB9e5eF6p/IV3FYvg7tVA/nLY9u+0PCQjq/rtAlOR9FdWC+Mj0fY3rRbnGfTlG7Hfq1Zt/+rV9z+02u/jk/2uSLp79f0lq/34cvuGVX+m1fdPXu33+djvXyu88CTdooUxfQv2+7BVu18Wtt2nRYq5GLb9ltX5/gDm+ie2vFZfuZqH3zTY52e1PKzPoH9XJX1dco0/PGx7+ap/P4pzfp+kN4fvL1rtx2vvB+sfxQ39apzvy1fbfwPO93rs55vwBWG/A0l/Ffu53c8K2+bVPMSX7+estv8OXKfvxPnuXO338uu5p7a8lh5z9peySC22uDOS/m9J/yxs/yFJ/2TQllneq5Pf+MJ71WrfX7XDWH5Ey0P63Or7316d4yO3PceOc7fNC+9dAvtJ9tvXwojeJumvh+3VC+9pSR+SXMM/u6GdlP2ofuHNCqxTC1OftQjMU9j+DyQ9Gb6bpf1etPMnN10PLRqda8n2O1bH/rkNY/xjkv4nLS/Z363l5XxN0veHfV6yOteHj8617d+NDkt40zzPb/KXeZ4f0qICeKEkTdO0L+ljJP3TOeh250WHex/O9SlaJPA3T9N0xn9apO/naWE6Ef8E3/+xlpv9t4bzvUXST+J8P6JFhfbbcTwN6D8v6SZJ96y+f6yWB+k/S9qN+FgtbPW70O79WtQQH4/9f2qe58fRrrSaw+vASyX9zDzPb8h+nKbpOZJ+s6Tvmef5mrfP8/xmLcLJJ+CQX5rn+VfC919cff4w9vtFSR+8soVE8Nr/Oy0PDzsYeD7oqeXv7M+/wnfO1ydrWQec/5/WItVy/l83n7TbbDv/j2pRD/6NaZr++DRNH7lhf0nLPRH7lcxXhq/Sch8d/cVrN03Tx0zT9IPTNL1Tyxq9qkUy/qhwjp+R9Bkrj8uPm6bp3Db9vRGYpuleLezze+Z5vrLa/O2rzy/YcOyE+dq/gV37N7j33OanTdP049M0PablgXxZ0r06OZ8Vfn6e5/v9ZZ7n+7Swp+u9nys8NM/zfwzffV/+yLx6c4Ttt0zTdMfq+6doYVA/kDwXpcWx6L2CeZ6/eZ7nr53n+Ufnef7heZ6/VIvm4TOnafLz+I1aTDvfOk3T75+m6QXPps0b/cJ7LNl2WdL51f93anm5vDPZj9vu1vIwuoq/7139/rwNx/v7veF8H5qczwZ2no9jubz69Fg+SNLj87pROxuHJP1o0vav39TuPM9sd1c8T2MPvota1BoPJL89KOm52MYHwpXB9jNaJOKI6tr7Ork99udB/G5suk6e/1/W+vzfqt2ve4rVQ+WTtUj1Xy3pl1Yu9396dJwWr7vYpy/csL8kvWWe55+Nf/5h5TDwo1qErC/WIkh8jBZ1dRzDX9PC/j9Li+3ukVX4AOd3G/iB/qFb7v+HtDx7/sU0TXesHr5v02Lzf8WGl/4f1cn5+i/X0d8Ka/fANE2/U4vK751ars1v0zKfb9J29+SmZ+KNwi73pXTy/rht1ac4rxZqeX+wzf2Vh26E11A29k347tXnx0hHpOl3aTHrfJOkt0/T9HPXG8byvvbSfETLZN6T/HaPFgZmPKqFHX5pcS4u9Hu06LDjd2nRy/t8b9ain89wX7G9wgOSLk7TdBYvPY7t0dXnK9E/48kd290Vj+j4ZZLhcS0qg+cnvz1f17doR6iu/c+t/nd7z9fyMoh9ib9vC8//S7V+88ffnzVWzPcLVg/s36jlhfP3pmm6b57nf10c9hlaNAfGm59lNz5NywPs983zbCHBTD729YqWF/NXT9P0/FU/vk7Lg/AP7tjmj2mxxXyGFtXpJvilXs3JJ6gOhfh+Ha8VaTEz3CjMybbfp0XV+XnzPB944zRNoxfBBxIe1XJfvLT4fSQs+3n263TSc9Tatzc+i34dXYt58fr9zGmazmoROP6KpH8+TdOvgbZpI96nL7x5ng+mafoZSZ8zTdOrrdqapum3adFtxxfeD2kxqL919ZbfhM/VyZvt87XchD8dzvfZWrydflHPHj+lhb18tk6qMT8f+/2klpfaR8zz/O26MbishZ1sgx+R9OXTNP3GeZ7/E3+c5/k90zT9B0m/b3VNDqQjpvA7tDju3Ejw2n+clhipn1r9/m9Xn5+vxYvQ8EP49Tu29zot6+CF8zy/7rp6vI7Lki5UP67Y3s9N0/TntTCSj1bxcJ/n+eez7c8CN68+j4SwaZr+Oy0PivuKPjwo6ZumafoMLX3VPM/Xpmk61GCc4fj7p2n6R5L+9DRN3z2fDEtwHz5rnufvn6bpt0r6NVq8hr8Xu53Xwqa+UMV1nufZXtPvK9ysRY159ACepunlWtc03GhclnR2mqb9+KJ9L+CHtHim7s/z/NObdgZer+XZ9gd18oX3Ci1OSP/hOvrj+3xtDa2IxU9M0/QaLS/oj9IxE90K7484vK/Q8hD+/mma/r4Wl/nX6FhlZXy9Fm/GH5+m6eu1MLrnaLlZXjzP82di/0+bpulvr879W1ftfEewKX6XFu+8/2uapq/V4uV4TtKv0uJ48VnzPD+17SDmeX7dNE0/IenvT9N0pxYVx+dp9cAI+12apukvSvq70zTdpeXB9y4trOsTtDhdvHbbdld4o6Q/M03T52lhQU/O81ypdr5ei7fgj05LNo6f16Ja/kxJf2qe5ye1SEw/qEWP//e0ONq8ZtXPr92xb5twq05e+6/WMnffIUnzPP/naZq+W9KrV7aEn9Silvsrkr571xfEPM//dZqmvynpG6Zp+igtYQbPaHGl/2RJ3zzP84/tOIY3SnrxNE2frmXdPqKFVf0dSd+jRX26r4XVX9N2rOdG4XVa7HbfubpvXqDlWr417jRN0w9oeSD9Ry3qot+sZT6+Iez2Ri12vtet9nn7PM+Z6ltahNOPlPRj0zR9oxa16nu03F+vkPQbtLCzL9QigPzNeZ7fypNM0/QvJX32NE1ftMv9+F7ED2lxrvgHq3X567R4M/J5daPxRi1q378wTdOPSbpa2eGfJX5Qi5DxA9M0fZ0WlfyeFqe1l0n60/M8pyxvnuenpmn6Si1264d0HHj+eVqcg45s9dM0fY+k3z3P8x2r78/Rohn4Ti1e2ntatBN/Soud/9+v9vtcLcLvv9RCiG7T4kX6+Kqvu+F6PF00iMNL9r1PITxgte33a3mBbYrDu6jlgf1mLbrnh7SEAnxZ0peP1+K6+m4taq8sDu+8Fhd3xwA+psV4/2ode32+ZHW+TyrG/KKw7S4tOucndRyH95nK4/A+TcsFvqTFNfhNWsIUfi3m6juTOTzhLadFvfevVu2ueSomx9+txTvrgdU83q/FSWAUh/cvVMThYduLlMSGreb0yHtQ63F4D6/m4QclfRiOPafFMeMtWpjKW1TH4bFdXz/O/x/SIoW+Z7VGfkHLw/2Dwz6zpK8qxvfKsO3XaFmHT61++7bVHH+7lpv3KS1r699oucmftXfZaMzJfr6/ntFiF/tcLQ+WXw77/CUt2o/HVtf8v0j6qzrpqfvxWrz8LmsQh4fr9iWrdXRptdZ+RYvt5devfn9U0g8P+m6vwVfcqHlbnXerOLzit7+0WoMO+n6xloftD4R9yji8oq2hW70WX4dvXu17qC3i8HD8Lav9/mds/+LV9ueHbWck/cXVWnlGy7PsDVqE0eeM+rk6/ku1CN6Olf4jyT7/1GMIa+V7V+vj6VW7P7+a67gGf8Pq2Les9nmnlpdf6XU++rOL/QcspiVv27dqcZ/95fdzdxoFpml6kRbB5Y/P83xD8hc2Go3GLuhqCY1Go9E4FegXXqPRaDROBT7gVZqNRqPRaGyDZniNRqPROBXoF16j0Wg0TgX6hddoNBqNU4GdAs9vvfXW+c4779S1a0ueWn8eHh7X+Ds4WJIC0Da4t7e8W50mL6bL42/+fiOwjY1yu3y9u++7qQ+jvvG3TeMY9as6V3ZOb/N19HnPnj27tu/+/v6JzzNnzujhhx/WpUuX1jrznOc8Z7548eLa+sj6zTXi9cB1ku3L821z/XexY1/Pddh1zdzoPlfHPJtxx+9cT34e8HuchzNnzqx9Pvzww3ryySfXJmt/f3+O6y9bB1wj2zxT/NuzuT9vxL1d9etG73M9z7nqmNEYdmln01zwOSTl1/jSpUt6+umnNza80wvvzjvv1Fd8xVfo4YeXCuzvete7JElPPnmcDtLbLl++fKKjt912myTpppuWtIF+SErS+fPnT3x6Hy7SbIH6ZuIC54N1mwvkPmU3h4/3Dep9eHN7e9ZHvkz4GcHfeOz1vMh9rK+NBZbYR3++5z3vOdHOnXfeKen4GknH1/SOO5bE6xcvXtSrXvWqtC8XL17UF33RF+nxx0+ms4xz7f6eO7ck7vdD7jnPec6JtrOHn4/xNeTDluOM+1QPBh4bj+Hn6MGaPaBHiO2yD1X7sd3qxePrz2s9Wqu85yjsxv997FNPLQlSrlxZ8hR7LcXxX7x4UZJ0zz1LatXbb79dr3nNa9L5OHfunF70ohcd3Xt+PsR1cMstt0iSbr311hO/eT34++jedv/j2LLf4/+cUx4TUe3DZ1jsY0UUqu2xXe8Tn7WjYyOq9cxnZbZ22A77kQlLPtbX2PD7JJ775puX7Hm+5vv7+3rta7dLVtUqzUaj0WicCuzE8OZ51tWrV9ckxMhQLB15G9/Y1Xnj+a5evZoem0kxI0m3QiXRj9RjFaPahoWSdRpkcbE9znH1mTFY/0bG6nnNrhslVffFUrql9thH/8ZzZDg8PNTly5fX+h+ldF4Xzm0maVeMntdhNE881yZV1wgjNXGFqq/xN84bz53dE6N9svZvFHzfen14HT7zzHFhA69FaxtGa2eaJt10001r7MJMTzqW+s30M7ZEVM+xSpsS+1ipbY3rUdlnrIpjro7J+lGpd7dZ35Vpw+fy9thX95HPEmq9MvUkzSP+tHbHWoKIihWO0Ayv0Wg0GqcCOzO8a9euHUlnfmNHSd9vd+9DCZzbpWNWSGmW242MeVUMbxsnmepc2Xko+VQsJILj8XxVdrq4L1kvz5nZYdgHS0sju4Pbo8TlfZ5++mlJJ6UpS+zu27Vr14ZS48HBwdHYM2mWtgZiNNZNzjCZPa6yV1VraHRert2sj1xD29hSKLlXfY7sg9cgG/smVOt6kzODVF/H2C8zO39euXJlyEDPnj27tkajPdn/m+FV/R6tHX7yfskYHtfdNmuH8zN6vlkDwnnn/Zldl4oVjhyQKqZdHZvZG3leXzf6P0SQ2XmfCxeW6lTx+cfjz549u7WWohleo9FoNE4F+oXXaDQajVOB61JpUs2VqTRJ+enqG9UsNG5X4QGZKpIUu3J8yFRn3tdUuzKcxn3Zp23ckT0HHqfnIqoC42c8xvtUYRaZCmJTnzK136aYHaueoqMAHVpuvvnmYVzS1atXj44ZORVUjhqZGnlT3N3IQF/FiW3jcECwr3G/Sv2d7VudtwpHGanhq99GKs5t1fyZiWCT41hmxrBaPDo0ZcedOXPm6HerLa3uko5VmnSc2EbVRbMB1ca8T+M+VZ9H4Sn8XjmxZL9xn1EYTuXQUqnJ42+8B/j8zuaVfaqemdEsUo2Pz+D43MnOsy2a4TUajUbjVOC6whIYUPrud7/7aB+yGEpAfPtHMIiYkv7IxbgypmZs0YZgSwhuz9/5e/y/MsyOAsPprGKJka7ZGVPmMVUgdexXFbLgz9GcWFImA3Mfo3uwJWz/dnh4WDK8w8NDPfXUU2uhDBGVw0EVksH/I6rEANn5dwlt2cSER2EClcPLyPGJYT48Zpvg+G37HreNHBuqYyjRk/nFvnLNX716dagduHbt2pqzSmR4GQPI+j8ax7bhCXHfKrQl+53zTc1SpsHi9R49P4kq7InXI2OuRrV2M/bGNcn7OWvPz53KcYzvhHj89YTTNMNrNBqNxqnAdTE822ycUszfpXX24rew7X0jCcXb6Io7sqlssk9lLsw+P1kNt8egaNoIjEovHt1oydYs3dp+wc94DPcdBega1LcbnouMwVqC8vm9D0NQYh99Tb1tZBvy2uH54hz7N15/2sAySZssYxPLjefN+hoxkiTJmkeMcpN2gAkC4v/cd5R4oEJlU9nmGM7BKISksp9ltqKY5m7TGLxezewiq9sUmF35EsR9fX7a7jiu+H+lwRrZ2DmnFdOL5+F1r8IEYnu0/1fsM/MdIDifWW5db/OzhEkARuuvSkPmz8jm/dy5ngQRzfAajUajcSqwE8M7PDzUM888c2Szu3TpkqTjN6607n1VJUYdpcCpvG9GNpxK92wJwamHpGNpwdso0TFpcdynCmQls8uS61qa9Xz50wzZv0vrDM/7VHafXYKLPb+R9VJitfRMhhEl+4yxVv2g/dfni33gHFZ2qlESgZEdKI4zbuMnWcDIa459H3mdVtvZbmbL3eR9mnncVl6BVVLhbDxVe5sSDGwC77lNgef7+/tr921cO7Sx72Lj4jOrsrln93TF0rP0fUblX5A99zYlRRh5XNKPYptkDGynSsKdJXKvfhut1U0e5WSJ2b7N8BqNRqPRAHZmeO9+97vXbHeRmZi1sLwMS/5E6dKSDXXMsd34OfIqqiSsuB/tjIYlRx8T+5jZ9bLzM34u9rfaN/NiY2LUWAojbqekGfvo+aSHp7fTiyr2KbL2iHitLXFH+97IS/PKlStHUnSWEquSiiltxmtAlkIpklLtKAEwJf7MG6w6P+OHokRK21Bld87iMcl2N5U/iu2R0VFaZ7841tgX75vdTxWbIivI7KfRvj2S1M+cOXP0DGEZsfg/1wNtQVlfec9yXWQe57ynq++ZfazyKGeJq2xfMjC2E/evGD6/ZxoTeqyTvd1+++2Scjsqx8FYPj53Y78rb/RowxvFR25CM7xGo9FonArsxPAODg705JNPHjE8S/sxDo/2KSZ1tV3MhRqlYylhk+2OUo20rmentGZGkWVNoZ3M53d/YswZJdwq/s59jUzI/7tPPm/0eIzniOd1Xxl75O+ZRxzjCz1Ho3g2Sqj0CqUXoqS1dXBwcDCU0m3Hq85HadxjNLtlCZg41ipLzihjBDMFVeWTtvHSZH8yTzuycv5Ob17peG7JyozMdljZQSi1e35H9j8yFnpXSsfzSDsv119m/433a7V29vb2dOHChaO1n2Va8dqgFyG9q2MfNpWmoe0p3p++Pzx23uO+LvFa0kbIOR0Vqd0UQ8d7PI7D2zwXXEPRFkoPS8+r59qfz33uc0/sF/tdeUzThyFuoz8A2VtcoywZtI3N+KiPW+/ZaDQajcYHMPqF12g0Go1TgZ2dVi5durSWUiwLmDbVve222yRJd911l6Rj9VSk0aao/mSwuFWMmUNIpSakuioGx5sm0+W1Uk9Jm1VlxMg4TpWdx3fHHXeste1PqxY8n57HrO9U33HePCdRtZDVtpOkd73rXen2eB4fu417MNVFUcVEt3PPh9cFVXPS8Rz6GH5SrZOpmLiOPS/eHlX2MY1ahMfj849czCvVcpa0IHNGkMYOCQw78VrxPNLMEJ2AfGwVZpM5Hnj9MhTJ+3AtS7kz0SaVps0gvgdi2JD/91j4nKGqLu5LNSgdj7w9C+qmkx5NKVH1y/VF9SefLXEfo3J4Y7hP3Ifj833G7/F/O6V4rn0/+Vpn87kpWTWTaMS58PP5iSeeOLGPj8mc8tw2TUMjNMNrNBqNxqnATgzv2rVreuKJJ46cFbKUUpYI/BY2s7vzzjslrUsK0rE0cfHixRP7+Ls/LXGZdUjHjhPeRonBko+D5OM+mSE79j1z16WBlFLNKNmppU5K4GQp0rFTjyVXSlz+7vajlEPpk3OSMRfv43m0ZOW+MdlAbNPS7ajEi7TMEecpSv1kdmRpmVs/pVdKrT6H28mcLTxGpkrL0ieRmdD5gs5E0jqDqwLes7RkdFaho4n3zdiO15DXChleFniescw4niwcgn30GiUrjNe60qpk2N/f1y233LLmOOF2pOM143uM2hs67MTfmOLLyBiQ4flhELzXULa+6QhCrUoWJuTzjUKzpOPnaRaW4H2pWfJnXDvum9eM59VzQEeUrORTxTpHITQ+v7/zHZOFSUWNz7aJpJvhNRqNRuNUYGcb3lNPPXVCSpZOMhO7q/qN/YIXvEDSsbRJHbF0zP78aanCEpy/W4qJ7VsSMAMx26Bu/fHHHz86hkGvtOVY8uE4IzK9vpQH1lvCITvzXFFPnu3r75w/tx+ZlyVGj4fhI943HuPfLO09+uijko7n13MSJUj/72OfeuqpYWqxg4ODNbtIlJ7dNqVJMoQsBINByWQvVXkn6VhS9Foxy6UNVDpeix6n58e2Bx+TlauhraZy+c9CDMhGyNYi2/E2ry+yH6+zjC3QvsuwDx+TuZbTJsVj4/q2tmHbpNfnz58/WhceR7R5e6y87gwXiv1mP7m+3EeyLGmdvfgZ4vWQHUOmUyWAiPPk8VSB7VmoFsfHZMvUDmQluzgXFdOMDJb2Ns5RlliEQf0MDctC1hhqdvPNN2+dEL0ZXqPRaDROBXaqd7lEAAAgAElEQVSukX5wcLCWxidK6ZQ4aU/wp+1ykvS85z3vxCf18KOCf96H0itTZMVAd0sD9DJ84IEHThyTeVhRKmP6IfY5O4aeq2Zr0XPV0qt/o/ccWUK04cWSK/EY2lgy+wJtlZZYs2vgYyzZP/HEE8Mg0MPDw7Wg5CxwlYyhSokV/6cNr0omHI/12iSLcjuUMuP5vXa89j3HZsZZcnTaiCpbXlx3lOS53r0+MvsvNSW8FzNv3aqEzCg4nh7R9MajDSmOgzbQDNM06dy5c0Obt68LvRjpVZqxCwaykzVlpbnISGiPi8kYKjAhQaaFqOx9xqa0jNK4wGzsq7S+3qrEz75umd2RfaPnamT1vP4+f5XgP/7v8zXDazQajUYD2Jnh7e/vDxOkUhKgRG8WF/XvltisM/f5KD1bGsiS+dLjiDFGI1sBkyy/7W1vk3RS8rWdyufx+akfz+IMaV+qPMmilELJyfYlz5E/LeVEG6XH7HaZOsvHRCmdjIu2MHp+xm2+PqPk0R4fr0uWKJnsyXNLL97YTyaUrZIsZx6eXF9kxNGzj+u6ik/apqgmE6xn9xO1KP6kvTOyUN43jz32mKR1m26WjorrgPadrLSU9+WaZLxZnAd6aW6Kw7vpppuO2KwZahwzmQ0TY7OIcOy370cmQ+d9E+eCLJBjzOIwyXBoU3N/4lg8z26bzIuJ8OMcU1PhY6ihi+uNv5GxsjD0KK6R5+dY4ljpBcx7Jt7zme27vTQbjUaj0QjYmeHN83wkBVhijJKW397MeFB5G0rHb3lLiJQMLE3YxhY90qjz9bksBVqqiFJMzLoSjzWDsB0mk8wpFdPuk0mSlM4pRWe6+yoeylLiI488cqKvUWoyi7777rtPnH9TjFzsAyVUS+sPP/zw0TbaQG677baNRTwpmcbrwvXE+EUm0JaO590ep54HMq7MfsBEyd6H12eUNcdz6j56XNED1nZQSrO0W7D4rrSeCHyTliDOgZkdE1A/+OCDktZjVaVjr2qf1+Ogl2aU7C19UwtSZWmJv2XlhohpmnT27Nm1tZllFTGY0Sez8bBQqa+/x+zze+17PuMxVfJ6H+vrFNvjfFDDEG1qvkbWBvD5w/biWvV1cV+ZCHpUcNjPWjJWap6yOFqWMqNWIs6J9/HacXtMpJ0V467KvI3QDK/RaDQapwI7Mbx5nnX58uU1L6z4lufbnNlSMo9E6rApzVT5EqX1uBtLY2RPUaqg1E/vv1HuP0sXlrwoOZJZxLmgvYc69SjZ08ZBFkImFUsZ+Rq84Q1vkHQsLd1zzz0n2s0ybZDNUCqN0pSZS5TCRsUYDw8Pj453H6N06fg3rxXaVjJ7lSVdH/uOd7zjxDnMWCy1Z9k+mAvS15Y5XmMfqIVgCRTH5cV96DnMslRZ9hFmoGC+2VF5IK4d2gw9J5EdPfTQQyeO+YVf+AVJ0vOf/3xJ61mPpOP58/WyPZlMPa4dlhS6du1aqR2Y51mHh4drts7Yb2pWquKz2Zq3luQtb3nLifNbQ2JtSsbwaEP2uDJNj7VOtC8z41O8J5ijsyomnY2P9mtmLvI9k8XheW3QO5i2/Pi8oFbN8+l2/fzxp3QcP+l2svPGduN4otZhm3hOqRleo9FoNE4J+oXXaDQajVOB66p4zjQ6UU1kqs3gan/P3E5pEDeNNzWmY0BUE5jqMpg8qj3ZHoNCKxffGMxtis+E2XTfjgmZDVN9qiFovI6qM47HfWZYQmbsZyoxn8PtMDg/jpnJuNnHLPjW13aTU8y1a9fW3KsjfLydbpj0OAuu9VitRrP6iWpjnyOqfCq38FHyaCZrpot/VtWcwfwMjmeAcxwf1eGs7G3EcVFFxtRsTCKcJYI2rMbzevjwD/9wSScTOVCdy9CQLOibzhAjlabBxARxjulAxTmmO710rHa+//77JR0783j9GT6H1W+xHV4zz5PDrrL1xj7zemTPU+9DByQjK5HDxOqeP6ZMi/3y/Pi6e5z33nuvpOP1x6QN0nqCAz8zfU+yrI90PKd8JtEpJ46PjjwjMwrRDK/RaDQapwI7hyXs7e2tGd2zgFJKCgw5iAysSk/DIG+m4on/0y3ZfaNjhXQyUDqel+l7okTKVEt0WWcy6VjCyBKj++LvljDJNKV14zcZBCXMOJ9mN3YwsCTk9ixxxTmjM473ZbByDOlg8GkMOyDM8DjHUVI1g6cDAPuYFUi1VGmJkaEeTEAurSfGdd8qx4c4VjJUBsNmwcNkklV4Qpxjb6vKUmUOVpR4PV+eIxYRzkI1vEa8hshCY3s+P7UCTN2XrbdqfBno/JKlRCOLZfLheIwZCMtEMUzA8xavKUN97OzDhPNxnshgGeCeOSBlGoMIJmPPUnCRfdIBKnOS8fwxyTfvo6wQsJ/5LAbOPsdxMeSEBWDjOXjfbKMdOGp7q70ajUaj0fgAx04Mb29vT+fPn1+TgKOU7t/s6lsVP402ALqdM+iZYQNZgUwGmLpdS29ZuRa6Z1syYRCztG7PYaFPSzoZw4nlc2I7TEMVx8UUabSh0V04S+/GuWFC6GhvJJO0TYxpyKIunVL1KL2PA8+pAYjzyiKavg5mGZl2wOfzemJJIY8xS9+WJWuW1lOaZfZGplyyZMxAbWldC+HfyHyYCi7OhT/NvGk3jX1k+ina0ijFZ0Hrnj+X7CKyPpLZuR0WCo77ZOVziGmatLe3t2bPjmyNaa3oxs/SNdLxfNtWzOtilpslhmCYkGENA1l97BOvu/dhmEo8hqFg7IeR2Unp58DnQnzeut++7tWzi/eIdHx9fQxTwfkz9tnj4jOE2pws6XcsWdQMr9FoNBqNgJ1teNI6s4vsyW9aS6KWypjyaVQYkWXfaTeL0jM9kKhbzyQE2hzMRp02y9szJslPeibSI046lrQs+fgzpsiSTkrAPi9LltDDM5NsKKVT0qcUJa1Ln1nCXCkv5xM94kYs78yZM2nCWoMSKSX5KrEs24h9I/vIvOZ4DSs7XewbWahZs79H5sqUYVki67g9O7aakwxkbmR4Me1Z/F1at48woTH7Ef/nvcY1mhVfzZg3MU2Tzpw5sybZx7XmOSNbp50+zq3/Z0A4NSJZCSNeu6p0UXw2cs3THpp5QrOIKvflmskS63NuWXw5jsX9d9+saXJ79IzMEjkwlRl9MOJzLvPLkNa9n7P0YZEhd/LoRqPRaDQCdmJ4h4eHeuaZZ9bepvE7pXTGcTE1U/yfEik9rrIChpReKrtM5olkFmpmRwaWeROx0CQl1Yw9Mb7Q56eUlhVG9DgseTHOiPF6o75tE39Fe4I/mT4qIvapkrQshTH2LYupo72U3sBR2qO3bFV6JZOeuc48xiptlHTMLmzTMFuih2Jk70xhR4ZKthCl3YpZMYVd5lFMUEuQeTuS1dA2zWTF8bdNRWNHnqSbGN6FCxfWEjTHe7zqJ4sHx5SGvC+ocWFcbjavTOrNhNSZZolxhLwumTco7X1VarsIajXIcsnA4nlYHJjPA++X3e98NlXJxCOqIshMhxf7S5v4NmiG12g0Go1TgZ0Ynr2lWCQwA1kZpZcsdi/z+oy/ZzYcejxVpSOiR6KlFkvltr8wUWvsBxM808vMxzBhbuwbY9lo64geWJY23SfGW/EaZCybnmmMAxvZ0ay7d1/JemLbWR8IJwCmXSdLAEzQjpjZVrlG6GE5KrLLROMG4/OkdcnT3qz+zLzXGM9H26qRJfVm6SwW5s2YUVX81uAcZRlleE/ymMx2TLsfs2ZkXo6U7Cs4cf22YGHoLNaXMXr+PmKbBn0GOC9kytK6t2rleR3B2EPa9Pg8zWKUyQLppZv5RJAFMs40KzhL8Npm93yVdYoMMyJjwu2l2Wg0Go1GQL/wGo1Go3EqcF2pxeg4kdUqMmgYp0FTWjca0xA8cqdnu1QP0tga/7dKk67eWUopqjQrdW6mRuKcVCq6rCI0QzGqhLAZqDKh2iC2RyM0k+5miV/phHHhwoWhWvPg4KB0xY9tVurpLKSBatpKzZqpzqhepSt0VoGaISYOafF6s4t77GNVZ7FSBWcqW9bqI7IUT1yjm1SbcXzchw4Hsb2q2nhVoy6eZxuV5jzPunLlypqTR5ZEgI4MVCNnoQVM2kwX/5EqjiELo+B4OqtQ7c4wLGndNJONIyKr4el2/Z11EKO5x3NBdS+d8vhckNavIdWwo2vAZ5LXOdP9Sesq8m3VmVIzvEaj0WicElyX04rBIEVpnU3QPTdzM6XrPd3DKWVkb3RKCmR8UWpi2ZwYCBnbjxKpjbeUzsmMMocEpkSrUv3E9rLUS/EYut3H9io3cV6byDQrI7SvgeckMgy6n48Cz+d51sHBwZrUn6VEqxyPsqrODJSuEgRkIS1ViAQZXsYKvYYc2hJLO3FcTDPFPtG5IEvVx3AIsrfIuMiI6YxjjBxPNoUXZdoIfq9S3MXjt0lLZzCAPtOyZM4iUq4RIRurHFBGbvS8p/wsZAKHbBxMD8hk0lId4lElos62kcm7r3bWi88YBo9T67aNZqmam2wuOE7OX+bQM3Ly2YRmeI1Go9E4FdiZ4Z09e/bo7WvJNaYq4tuc6WvIvOJvLPa3ydYRUSVGzRie27G07H1oM4z2KjKdKrg7k4Dp9k1JJ0vTw+BwMq9tUoyN2BbPSSZJ+wIl/2zfW265ZWupKwvMpeRGCXx0/c2A2D6l9uwcVXq4zJ3efaEdhOsiY1W0N2YJANge2Z+ZpbdnzJwu6pUdJrOf8TpXZY+y9FeGr4XbzRI3k7lsYnjRd4DtxfMwOTm1BVm4iJ8Dm9ZuFmpEOxU1M1loE9MfGtm1zNKaxXGN7FnVM4OJ77NE4NzXfWeYxyjUhGslC47nc5Rl0bJ1waQCmW9AhWZ4jUaj0TgV2NlLM5Z4MWIwcpUuq/LgicdQ8qHEnwXmsi+UXslQpPVUVZZezEZtr4sljCjpUDJh3+N4M2/W2A8Wd41jZFA00xyRycZxcZ9R+jPasao0SBlzcbqxCxcuDKXkvb29NdtaZL+0T7gvVcqxuC89Ayv7S+bZVyWR9vYsLZ1ZAYOVszRVVfJuXie3E/vI9eZjbDuMpZI4LjI7XrsR02ffuJbiWq5sNvw9m/vocbkpLZ2RrbHKrsOSO5kNl6jsY5ndkmOuEjbH9qok0ln79GysbHlZSkWuZ97bvm8zD0iWu/J6pndmvCerJBAcf8b0eM/zXsk8iUfMsUIzvEaj0WicClyXlybf5JHhVV6MVfJTad3utympb1Zck1Izpdso+bg9S8eWdOxp5+KaMVEymRzj1UZSGtMz0cZhb6nIJCovsyrGKfNiqqTBkb2kshlktin36XnPe97G81ZSerST0puVXmtmVZHV0A7BPvB6jaTLKrYpevH6WrnfXiOeC6+hWBamSrSbxTZyP+/jdngtWepHWr/3GL9IyXvE8Kq1E1mKz5+V7YnItB4Za8/gEkHxPJm2gc8QrqFMO1SlwOJcZLGHVfo2xtHGPnAcmU0yjjvuW3k8jlKLbYpjzhL50yOWtmN+xmP4TOI5s2djZvOM58jSiEUv6rbhNRqNRqMRsBPD29vb0y233HIk5VbxPVLtZZN5eVHioYRAKSrzRCLjymJnDDM4M1NL5RcvXpR0XJo+jo9egIxXqQrCxvOwsK0ZS8Ys3H96plWZCTLPLkqBVSmjeN6K5WReWZ7HLDFvhhinlzH9Slr2vizm6nPGffiZ2cU2gZkhogRO+y6zZLBgr1Rfh0rSzjJReI69NplBJMZHek7c101ZTTJPWfaxKv0T/2d86QhVNpMM8zzr2rVrw+TOjJ3NvDLj9lHbvBdo+4q/GZyfbJ543/ma8d4eaUp8LVmmJ7Md0uuca5Oapgg+s2izHHk9E9tc40pDl8195nm/rR2vGV6j0Wg0TgX6hddoNBqNU4GdVZoXLlw4osam4lGlRfVGFTAZnTyYrqaiwJm7Kyk1VXzu23Of+9y18/jTqrm7775b0rEqIKqyqpQ+VKVmaiOqMlmHzcgMs1X9uE0OInF8VYqhrPo3a5kxSDVLqG3VyO233z50Ld/f31+71pnRuwpLyVQvlSMG+5GpcWkgr4KHo1PWHXfcceJ8VG1nquEqpRsdELJjvS8raVu16WOcCF1aT6iwqaZdphqiOo/XIktHxetTOTFkY92kBj08PEzV4AbvC9Z8zJ4pm9ZOVnct65e07niSObr4GjKhPoO94z1W1cOr1NRxfft54/s0JoiIiAmuObdcO1XoSew/55xOM1mwOp8LPH+8Jzj2bdSqR+1tvWej0Wg0Gh/A2Jnh3XzzzUfOHa7ynJWM4ZuahvtMWqcDCKWXTCKjcZpsytKMJfN4HksNlpbpIBJDGViWhZJu5docz8dwC3+6bwxtiOMiMx455VBK87F0AY/7UaqtgjpHAbWj5NF2K/ccZ9IeQ0kM9iFzLa8cQYzM0E2plSze544ScRVUS2k9C+bNSlXFc2Uu/3YQs5RuRxSvbzvPjBIrVGWBsrVaXT9K4CPWU6Uny+Z+m7SB8zzr8PCwDDmK5yO7qJ4p8fhsbcRjdgll4fMu3nNMhu6QErNzaqXitirR/ai6PdOB8fzZvczEFpXD4Cg8xahYe/bcqZxgMhbHdVA52mVohtdoNBqNU4HrSh7N0hERlhD89mVZiSwId9ugwUyHz7RgZHb8XVqXkhgQ7s+4H1146SJdFaCN+1D6Z0B9lOwooXpfSu9mnlEPzyBsMuPM1deoWEFWwqiyvVaY57lMBRfb5j6ZDYio7FTb2DyrQFleH+l4bsm0eV2i3Y/JsBmATMZizUk8r/tkRmebNAvfSuv3ZVaANfZ1VKKpcrMfhTLQfpVJ4Jl9bxSwfuXKlbUCrVmQ9aYQjCz5QVUotxpXto1rd7R2fK++4x3vkCQ9+OCDJ9rPEl54vTG4f5SYnj4KLKHltRSTJPAa8P4ZzWeVwnAbcF2N/DlGTH8TmuE1Go1G41RgZxve+fPn19hGxtAoefBtHN/KlKgpeZFVRQnIQeP0gGQ7USK1FGgGx3FQao/b3F6VLscSmJP7xr4xwWtMuhzHF/tdeXhWTDqOqyriuU3pjSrpcpYKLH5ukuqqRARSbXska4trZ5NHKveLrKAqJcSUTJkt95FHHpG0HgzvYzK7n6+Drw+1D577Rx999OhYplyypO/xeT3Gea20EERmH6ENrLKNZkypst2xvTiebdiAA89pa4trp/KWrgLCq7Fk+2RMkDZIP++YzDtqepyey4zOn2b0Pic1UNLxOqt8IRggHsfBtWLb4Uhr488q1SA9i+M+VYHj7NnPdVbdx5nPwvUUgm2G12g0Go1TgZ1teJHhWYqNUgWLHDLOItO/V+XkyV6YCiz+RiZHVhOlAEta/qRdcSQ5WNKi56O/mwFEVkAG6X38aV26de3SuvRP2wDjHeM1sJRJ9sE5ycqd8DfGpEXm7vmK3mAjSX1/f79kZBFVwtwRw+MxVWmp7NjKezazdfL60sbG8iqx/5xTS//+zNpjujHv67XrMUSbIT0TOQeUprO4qJEXMI+pStgYGZMkQ8pi6wx7+I7aqdLSVUwv+y0riJr9HvtLG7vvZW+Pmh573PraZV6Z7COZVJVEOrPlVhqzSnskHT87aHf2uqNdNotVrgoIjIoiV9+za83znD17dmt7YTO8RqPRaJwK7GzDu+mmm47esJYqR8lcK8+3+JbeVEaeDC+TFCgB+zOLqaPtzn2LUrJ0UtKilynPT+k8Slpuz8dUXmxRirGkaOnLx1KizxI3mwHT69TjZdaGbBsT2mbJaTNmVElaXjsex0iiN6p4scxbjsdQms1QMbsqFij+5rXK+WdR3/g/r3dVOiv2mZoRej1zv/h/5ek2in2ixqKy+8Y52ZQ4OTsms++MYjjPnj27ZsMbJeiuMnVkmVYqr2Uy1eyZZUbkT997tKPGPng9WKPDzDjR49r3i9eVf6syy8RnmJ8hd955pyTpBS94gaTjuN+77rpL0kl7s6+/z0/vdPc1s5WPPHm5b7WtWpuZzTgmbt/WjtcMr9FoNBqnAjvb8G666aa1fItZPkRKpPTyi5IImZ1ZDWNNKH1K69IZPy2RxFyDjKFiEU/3J/MCc9uU2jOvJYNzUMUMRRbqvlDCok00091XOvsqt13ch/GELEOTFd/dRkr3fqN4TKNiIpmHXRWzR0/BzFbE+eCxRhbjRgbhNeNjow3Pa5BaAd4rWR99fS2tm0lw/rIinkblLTmSuKuisaNcoVVWjuxaZ/akTXlYK+/PCK59tp2xdc4D11QWJ2sm5+tC5p3Zx/ycccFkrxFqoWJRX9sA/Wn7n68LmWZka47VdI5gt+t92PcIZn2i9zbLl8V9qvs3W9/VPcBnVrY2ooambXiNRqPRaAT0C6/RaDQapwLXpdJkoGzmMkqjLSlrZmSnsb0qHRFVDpUrsTFS21A9WaXV8tiz820y1ErrAfMMf8hUNOwbnVbo+ps5gfAaMDFsVEVn6mlpXQ2bqSN8/ptuumlj8uiRuo3hAAzqz0JM6GhC1fJInULV1SipsuG1GENjpGPVEp0I4v9WYdGxiaEnsV9UaWZV0XlM5YpPp4wsNIQhIEzQuylJd/xtpNLc5CiUYZRMgmuHxxhZuEUWNhGROSgxWQTNLVmiBjuL3HvvvSfaY4iLwxek4yQE/ozqTmk9mXgMfHdSfLfrNcR7Okt/xvuJqszsOcc1QrUkw83i/3yWjNIfsr2Dg4Ot01M2w2s0Go3GqcB1FYC1pDBiNZSoKdFlDI+GX0pPIweHKsDYknfWRzqv2LkgS71F5sN26YyRMZfKlTzrW+VazuDljLlQ2uE+Ixde9oXSeTYnvm6bGF5MPG5kbJ2sbMS4qpRElbE7Svh0hqlKrWSsgCEsLLKZlU2pipLS0SJL9VT11Yhzk4XGSDVLy0oZUQvANZM5rWwKTxgF/Y/g1GKjkkRMKUYmnIV8MDlBlcCYTnXS8bWk5oeamQizMIcJ2KmEYUqR4ZnR2WklOt/Fcbo/keFZC+FtVYB7ZFEsMEs2yHNkoSGcP/Yxc14i0+P6GDG90bogmuE1Go1G41RgZxve3t7ekcSQpbXaFLA8Sh5dSRPbSIGVG39me6r0+pWbevZblSIrYwW0W1aBzVnAseeajG/UniVS6uNHzK5yKc/6xnZiEHzVhl3LfU0z7QDZMaW/UbDrpiS0GevhNaULPm0s8TcmVmAITZS0fV6GLlTjHrnvc1xZUeTqWIYUjDQzld10G5s428lS9VWhMxWmaVqbpywZNcMR+BnnvkrbNUq9Vh1Lu3xWANb7xBSC0rFt3+1G+7CLbZsN0obH8Y80Z0xiziQd0nr6syr8pbKZxm20Y2bhDzyv9/E9lyXuJnvepQxRM7xGo9FonArsxPAM6rYzabZiILThRPAtTyk6S7ZaSWeUYmO7VaAxvYgyZlmVH6KOOdPh09uLdoYsqNtzW0n6ZH4RLG9DiTsrmcTfaAuL8+i+eVybmLg1BHHfbbz9qpI1cdsmZJ6ClP65dt3XyPDYLm1cTLuXtU2pmIHHkYVUtmKmforgvGWp+LL943lpm6qKu8Zt9OAbBYgbW6eESmxvUatR3Rdkg5lHOa8/2RvTFkaQ2fEcce69jc8dB4RTmyMd2/3o0cu+0X4W92GSDI8jS8phZmePYtqvR2WWsnRxUu6dSVQ+Epl3PBNm74JmeI1Go9E4FdiZ4e3v759I2inl5UzoAURWGFF5q5G9ZDFQfvPzNybqjdKmJRzvy7RZo4SllQ2P448Mj+wo81aK2+O+TJhdxQxldi1+Z4LoeN0oMZJZuP049+zbLt5SmeS2yX5Ee1ncVnlnjtKEEdvE/hhmY1WB1sjwaE+uPAezpMhcX5Wdc3T9OY9sd8TEuC6y0lLcVsVqZTbxKr51BCY4z46v7G9ZarHKe7Uq5xT3ZRww77HI1mx/8+djjz0m6Tj11z333CPp5D1WacR4zzGWL/bf22iz83YzPemY2bHgLNdMdi9WHvnUAI1iIfn8yTQKmcak4/AajUaj0QjY2UszlukwsvgU2hZGSUfLzhW6YMcBSuuMkYUKyfTiPiyXY4w83iiR0jtsZJtixgHageKcsPwPWQD189a9x21GxeyiNEhJqmJ48VpH263Pv0nSosSd2dT4fRuvucoWVGUmYdvS+jXL7D6cF7KBzCOxYh+VfS6yUNoVyZ4yhkTpvyrTMrKJcr2RycQ1VhUYruzBkta8dTdlyxh588Y2q0xBmWZkE2vx+bMMKGRLZIOZJ6nH7Ji6xx9/XJL00EMPSZIeeeQRSccZUqTj+40aH/oOuG8jtsbk5RlzrUqY0a+BCffjb/TF4HN8dJ35vOZayrDNc8dohtdoNBqNU4F+4TUajUbjVOC6As+pjsyCnklBqT7J1EQjRxMpr0zugEwGb/pcrDYe+8sqwqxmnjlUMB3YKKGtQVUVDfZ2/om1s2y4psqWalirMmL9tSrha1UzUMqNw7F9jyH2kXUR9/f3NyaPtnojc8E3KuN2VsdvlEQ5+x5RJZgeJavm9afKOTuG7VV9ztIoVY5Ao6Tl1ZqsHEXisUwizrng2sp+q+qiZUH/Ua1YrZ15ntN1kpkpMrVwROZkYXDemNg6qnF931kNSTXhqLahnze+Zx9++GFJx04sDlOQ1kN//J0hM1mYis0cdEBhWEI0bWTPvtg+n1Xx+UQVMZ1XjOzaVOs5W29ZOFGrNBuNRqPRCLiu5NF+q1uCiBIpkzVbehg5CNAwSQNwxRrdJ2k9ear3tSQSjbl2C66kCUskcVyUSKvg9MxRYFOarizEgel4qgDgjEmQBZIxZ448FZti5ebI8Ogyff78+VJKd0o6BsNnQc9GxW4yx4MswUA8f5bCisZ09j1La1T1ZRQAXwXcjpxweH5KsFwH2b1BZyj2NUtEnUnUcXsW9F0F7mcsrsK5c+eGcxhdz7MEzb6/q5RvRpbqi/flplSH2VhY1Z7lbrL2qudN1EZZ0wKEq0MAACAASURBVOP7jmWpGAwfr4uZHZPj+3qxXFXsm1E9B+iYEv+vEpuP0tJVqeAyp5Xsud0Mr9FoNBqNgJ0Y3v7+vm6//fY1m0CWkLVKM5RJy7RtMAE07WVZAlVvqwrORj21JRsyVIY0ROmJweNkDhxD5oJNPThtYFH/zrFSKnTfPIboMu19qKMfufZWqcrcRzP3yPAoyY/sMNO0FA9mMdTIvCnNVWnjsn7ThrYpmUHc5vNXSaqzxLVVgLGPyWzGPn8VmuPrFJmL54K23MyeabBUEW1RVWhDBCVslo2JqIKFKxtZ3HcbljvPsy5fvjxMIu7++R7i/Z8F9VfJw8kOPZ8upBrha+gkz74PyfSkWtPie4q2tdhvaqGqtIHx+lTFXPkcyLQ23ub73sySLM6+E/FY2o63KTxd+R1k4R1cm5cvX9466UUzvEaj0WicCuxsw3vOc56zJnFHaZaSoPfx9swuUrEkJjBl8Kt0HLxJT0tLIlF6YR+p//Y5MvsSpXIGVY7Kgvh/f1qC4/YsebT7xCBe95Eep7HfHCel6ujtyhRClPQs4cVxUdof6dFdHsggy439JEuuPH4j6OVF+1GW6IDBu1VC6DguJiXOPF7Z56rsTMW4R0HrZKNGHF+lGWHfMrbm8dEOPCqGu8kjO0suzms7Sio/z7OuXr26ZnOM46qYaOV5K9Up8aqSNTHhhb3D+Wyi53d8xlCrQY/OzBN6kwapWrPZsZXXZJx7PxPMZrOE1vGc2X3lOaHGjMfGfakJrHwK4hi3CUonmuE1Go1G41Rg5zi8c+fOrSVIjp5DlmwsKVQxR1FiqBLkjmJMDEtLjz766IljyMgim2H/q/RTMXUWJRp6YbGPmeTj9hi7xaTS8XyUlqpYocz7kPYsIytESzbgsVuqta4+Yx8V6yD29vbWyh5l66AqL5N5wFbshfa3UToqSs20PcV5qmxpTJKesfWKOVbxS9k+WZkmghIwWVqVaiyCczMqGpvZWbLxZN61xiiGs2J4Wfwv7Ua81zJbUJVajAnp4/PALKwqa+N7PdrjqHGh9qZKDB/7anA8Hv+ItXtfjyNb7/6NGpjKphtRpXMc+Tewv9uwNo/dfejk0Y1Go9FoADuXB5rnec17KUo+zARAySTzLiPjoDROe0KUmpx49R3veIek9YSplsAym5pBrzZLNdEDicmTKw+vjFVZ+nCfyAoz6ZMSPb2zPM9ZRhZv41zTyy2CzMTny2x3Bq/tmTNnNmZa4drJbE+0OdL2OIo5MyhNZnZb7kMGNmLCtL/yWsbrwZjNihmPsomMbJHxXNn5NyV3zjK7bPKWG8WZ8t6oYuLiPmfPnt2a4WUlxowqY5CvU1Y0tvLwo3botttuO/rNXpm2dfEaZ97hZHabPBNj32ibrOKBs0wyni8+CzPmTe0G1w7HELVulT1ulKyc93Rlu4vbq4xF26AZXqPRaDROBXZiePM868qVK2veRJFxmRX57WuGQPtBVsSTUhilG0sTsSS9bXfOaefSG9QxR1uPJR6W3mC8XCy5432jLVBatxFl7fk3zxNjtbLijTyP+8iYIH7GPlGyo50jSk1VSQ+ON5PsIzMaZcuY53nNtpYxb89LlRlkFLNF0LN3lB+V64FZJuLxnidmy8hYYVU6ivNHe1Pch2OP9guOi567/OScZHZNxhmyP/GY6pqPbKFc15sY3sHBwVHfeP/G/myK68s8Rfm9Yk0ZE/Q+fs4xbi1eF9//LM9Fr/DYThVDy/tolLuT46myREWw7Bhj+uhJH8fFtTqyb1f+BYw7zvLnbmLoGZrhNRqNRuNUoF94jUaj0TgV2EmleXh4qCtXrqwFdWeBi6bCpqLenqmWqLqisbtKKh3/r6plZ0HkVOVU6ruMelMtkCXgjeeW6krDniMGXMfz0lBPh5Qs7CIr3RHPlcHnoXqXKocsoDpT4xFWS9FVPUtrVIWJZOev0llVKZninFA9SeM610f8PyvlE48dpbDi+Kqk4tn5dgkToIPBNmWiqgDzUXq3SjVoZE4rVLOPkkd77YzShBnVfZgld6jUhOwvnUqk45R/3Mf35yignk5q2zi8VeEpdKLKArSr8jyZapNhFXzmMrA+PosZEsZ1Xz0rY/853qz4AFWZo5AWohleo9FoNE4FdnZauXr1apmgNf7PtzhdrzM3000ML0tgy1RiNB5nDJCBwEyMyhIcsS+bjOKZ5E0DvX8zu6GUKK3PScWqM6bhMbNUEsMSYh/J7ChF0Ygct7nfWRo3gtJ5dLOvXP3Zh8jW6aZflVHKQjF4XjqeZG7wFescBb4yEJeu1hVbjL9lzinV+Fimh676dISIoRqbkqJXwevxGH7PGF6W1HsU0uLSZLFPsQ/USGwKi4qo1jr7E+9Pz6GZHgtOMwWhtL52mMow037x2E0OT5FR+v6n843nMXuWeYxMsM+0aCyHFOfA4PkzTVA113yuZ4HuWRm3TWiG12g0Go1TgZ0Z3jPPPHMkbWR2noqtVfrxCLqbVtJ5VnrHbvlO6sog9Sid0e7lT4dUUAKKbZKZVOmhomRpKch9sGRnqYm2lnheSnBMZFulOIrtUbJiEHs8nlI5dfpZUdxRQHtEDEtgu3Fs7m9VziRrh9tYnoXjyH6rAtvjmFkChes4Y6FkxxWTyM6ZpWOSxgnVq0BmakjIBOO+VVKEjOFVgfWjAru0I21ieDfddNNagoiITYVfM5ta1V8yhixJPpNimAkxxCVjeFyLTIoQr2WVZo+sKUuwwfRgniP6NWSJFWir8/j8PGVatGx8VWmuuHaqsC7PX2bX5Po9PDxsG16j0Wg0GhE7e2k+/fTTa7r/TAdc2ToymwelL0tYVUqayArMyihFWEJxQcYYIFkFi/pcZk9ROqPun0lVR0VxaU+szhU9LasUVky+nDG8Kjk17WejZL5V4uEsOa37MPICtaedkQWhMjF3VUA0SsBMj0S2RDtjXKu0MfBaZtJ15dk5KsjKY40q8DfzYOY4mG4vJi2gBMwUVqOCwFU6t5EnqcF1RftzlkYuspBq7vb29tJUbSPvWWN0Pcjoq3JBmXaA9jaO1b9nSevJDqtEAfE39pl2/4w98RxcKxnDq+y9lVYqe46zj7zXM22U5433KRNdx77F8zbDazQajUYj4LoYnuG3fZZGy5/06KSNQDqWhujlV3lYRSmOyZNpY8vKEZEpUorN7DC0U1UxJpRus3Gw/EgWk8Yx05bH9GEZG63Gl3lnVQzPOvtReqXoeTuy48UyHlniWkruWfkSHkNPR7IySsJV8uW4D5lPbJ/SclWmKbNXMWVeVdpotHbI7LLYVP7GlFYcwyipcxV/F6X0il3zezzG69afIxuej+W9l6V8Y5+MbbQaBplYptWg5oPbs+ccn0n8zJ5vlVcsj828w9kXr52qHFv8n2uEHqVZqTZe58pLN96DvBeqmN54DfhciPG9m9AMr9FoNBqnAjszvHe/+91DWxCZnKVL67Iz9lRlSzFYUiZKTVXZeu/jY7I4JWbhMGPNMmy4/xWTo3Qe26OkVXkfZvGMUQKW1hme+xUlnIrhbQN6pFHyiudyXzyOuDaIeZ5TSTmCklvF8DLbFz0hq9IkWaFc2scqW0R2DGPosj6TMZDBjmI8KeFXnpZxbulRy8xCmXemkWkoYp84NxxrPC+ZWJTss1iwkQ3v3Llza+snrjU/Z6rSN9m4KuZdZY6J7WXesdnYMw923tN8hmVxn3y+ZOs5jinuw2fuKLaWGgN6kDI7z+jeqPqaMTz2n33PMtbEWORRIuyIZniNRqPROBXoF16j0Wg0TgV2Vmk+88wzR3STqWukdZpMdWUWmE2nispRI3Nlp8qNRtZMrUdKzzp0DrLMVIHcRho/SmFFtRDVX1maLYYsVAGn26R3q6oZxz5x/qhKiN+ZdmqT08rBwcHa+WKfqrqEdFXO1DabjPtZv6r58JodBfNT5VIliJbWU4pl48jOFcHrU6k4429UYVJ1Z2TqySq8w8jmhqATQ7z2VDkeHBwM1840TWuu6zEQvEpQPFIXb5M0IO6XOXdUaa0y1TZDB6qadlGlWaWUI0ZOOVTVjyqsVyESTHA/WqvsE7/HdcC5pQqTz4SISq07QjO8RqPRaJwK7JxaLEslE1EFu9LIGd/KDBY3m6G7fpZqjAzOgeZMzBwlMUorlOwrSTj21biewFz2PUuZRAmHyaKr7bGdSqLM+ui5YMqgUdqlzMA8kkT39/fXqjBHoz/dlr0OGCibBY9XY6sCqTNQKzEaSyXhZpI9pdYq4D0z0FeB/5TOs5RvXMe8pqPk79U8ZczO2+hUwrnIAsVHDDxif39/zekirh2vlSrYOXO6qpyGqJXKHNH4XDOqEKT4P9cM7/9sfRPVvGX70zmnckyJ/5Ph8R7M1kGVXKRyuMvO4+cP5yJjvbGdDjxvNBqNRiNgJ4Y3TUuZDkoMWekGBuaaVWVBt1VQelX6JUtRRFdrvvEzl2K7MtMOlzFJ2ogobdKWliVI3eSGPCri6mNZHiiT6Cp3+9GceF+mDKJtNJM+4/krSd3poTgHWTJnlkKiHSFef7ZHe9moiGyVtot26Mi4GMTL6565/LudkW1QylOZMaC4CrsYaVvYj5GrfgXamTKNAoP7ue6jlL6JSWZgSEQWoM0wId5bsb0q8D7TCsVzxv/JNkeB4Hy+MSXfyGegCjSvkotL62ujYm0Zw6uKBnPNZAkIeN2ZSHsbfwO37/HGpByZvb4ZXqPRaDQaATsxPOlkos6snAWT6tJOkQVdU8dLZkeblL1DpXVPPrKmzEOM57ME4vFYmogSXpVmiEwok9Yo8TBo3OnRohTDbSxlRPYTJaQsoXDsaybB0kZUebBFqYpt7+3tbbThVWncYptMzO1rmXnEVRLuNoGolacl+xbXapUs3Mik9IqFGkxanEmutOWNvPe4T5WEm+2z7YgRG6xslKOA6ur8Fa5du7aWGisLIud88NrGe6zS6JBBZrauKvCfjCjzHfCnx0PmE8dVMbwqiDwLdKedl74K8TnBZ0fl/TxKDUgNDddBpuHw2qF2xXMVn98sHTRKWkA0w2s0Go3GqcB12fBY1mIkkVSST4yhMWjfYYkI/i6tpyjy29/HWKp06R/pmD25DywSO5LoKkZRpZyKv9Fu4b65r9GGx99YHJXf43yyvBKlM5Z3iuMju/G5PM+R4VYlZDJ47VA6z7wZad9jajlfrwiel2wjk1TJxulNmLH1qnQM5zqLM61SLWX2t6q9KpYz62Mmhcft29iMqrUz8iRkuyN788gGZTAtHTUAsU0yHn5m8VxViR1668Y+UFPFZwcLEMc++pN2xUwrwWOqxM/Zdan8DSqv9Ph/5dk9Sm1GWy01WlksJJNFUyM3Oiben83wGo1Go9EI2NmGN8/zWqxWlJrosUk7X6Y3ZrHTKnuKmVnm5WMm5OKtbs/MLurSn3jiiRN94Xgy/Tu9ojZlGsgkkorhMaZOWs82QgnP53LcYWbf2lTQNF4DsrPK62wkQW7KtBI9fLNivlW/jSzrAouZVoVYR7YnHsN1l7FQsjK2n4GSdhWHlzE+96ny9Mxs4lUSbMaSxmu2KRvIKAmzQWl9VBw3s8cR8zzr8PBwTasR14d/Y/+qslHS8b3Fsly+7qNsMnweMH4tKx9EO+PIlmpU2WqqDCURlW2afghZYWYeS/+KLLaS9yfXjuc7Y70eh4+lfTOC59sUwxnRDK/RaDQapwL9wms0Go3GqcDOyaMvX768ZvSM1LyqLcZ0PZFGU4VAusyaY1m9KO9jtaepuFWakfbecccdJ/pUufFn6ZrozFEFhEZQVZEFYEonVU1VYK7bpxo2qpKtRq4CqTOHIYP7eD6zWnZUN1Qu7dIyf7Fu1ShFkduunDuicw9VzJW6iAmoI7iGqHrMVJpsZxRUzvPT2WsUrFzNV5X4IKJK3stzZ45IVRhClgC4cpUfVZcnRmtnb29P58+fX0sfFrFJpZk5hngf1rqkgwtDn+L5KgcQOsJJeRX0iFEyZKo2q+fOSG3Mdoy4dhgITvU3VauZGYZzXoWbZeNhnxmuIK07s2VjqtAMr9FoNBqnAjs7rRwcHKy5t2aODEwlxpIe0bXcEgGrFlMioNFaOpa+KgcHG6SjhHD77bdLWmedZBaZ1MnURTTIZ0yI0hgN6ZkLeBUUe+nSpRPtZK7FlC55rsxlmgHOVTmQLMlAnK+RAfnMmTNr85WVJvE2GuiNuN6YJJzzP3L5Nshq6KaeSZIMPK+uadb/ynklA9cZHWpGTj/VOKvyN7E9nmvkgLKJuWb3UxVInWGaltJAdOMf3Z9+LlQhJ3HfysGJ2qqo8eGzqVoX2X1JTdI2qJ4hWSpDHsMEDjxHdNqp0s5VzC/OA5kdnRAzpykWBmDfs0rnDJ3Yttq51Ayv0Wg0GqcEO5cHylzPM500AzD9NraUE+1IdNu3JOVCrD5X9ranxMvQApYako4lDYcwVMGqI1QpuDJsssf5HO95z3uOfqNdcVNwvG160noKI6NKkh3bIyukxBrH633jdavmbpqmo+DzCpwPMr3MBkIXZR5LLcSIFVSpxjLwfPy+TYHUSkuQscPK7pIxZUrUtO+M1jnHTjaQBZFXqdJGDI/tjbQDZnjU8GTrl3Yk2o+ygHnOJfuRFUr1fUlbFkNZ4rm2LcjLscfzVLa80TnIwBkONWKHTAvHa5CVfGLKxsonI+5bjTMLPK/W9zZohtdoNBqNU4Fpl6C9aZoelvSW9153Gv8N4EPneb6LG3vtNLZAr53G9SJdO8ROL7xGo9FoND5Q0SrNRqPRaJwK9Auv0Wg0GqcC/cJrNBqNxqlAv/AajUajcSqwUxzeuXPn5gsXLqzFVYxiJKo4ogxVHMxpwS5zdKPb2XTerAwJ86IeHh7q0qVLevrpp9dOdvHixfnee+8tcxxmYCxgFj+2qeAnzzWKPdvme7U2n82aHR27qb0bfa9UWUdG9zNjpTZlMMl+m+dZDzzwgJ544om1tXP77bfPd999d1k2iucZfd/mmPcVRhlvbgRu9Pmyc46eJdusnSorj5Ftz+JV77//fj366KMbB7zTC+/mm2/Wi1/84qPky07R5QTD0nGqGNY+Gt0M1SKtAmVHtc2qQOnRxd/lRbspSfEIVR+2WTTbVByuzrcpTVB2HraXJZ52MPy73vUuSUttvte+9rXpGO+991593/d939H6uHjxoqSTiaB5DRlUnwXUOwCYdch8LFOjxSDVqg4dv8f0UFWNweoznq9aO2w3oqpandVsrI7dtL6zlxfXCgOs43XzNXWidt/7TAaQpQQ0rl69qle84hVp/+6++259/dd//VEiCo85C+reVIE+e+4waXf1Isrmj/chX8YjAWub55pRPWdGz6Pq5bFNkHrVbvUsif8zLRirtsdgda8Dv0OYsszn9NqSjmufxnp4n/iJn1iO6cR4ttqr0Wg0Go0PcOycPHpvb69UYcRtFTJVTCWVVexsJAnz+6ii8vWoUKu+VvvFdnZhePyN4xnNc5XCbJf0WkSmvqZqe9M49vf311K9RQmR/eL1yVKLkekw5dpIHVoxq02JjCMqiT72sVoru7ABpqNiuqvsfmLF82qtZmuJSYlHCa99LZnei+eKoPTv1HMZ5nk+0fdRijKOaVTuiPfFplRVWf+qpM7ZNa+uN9d5Nj6mhxvNFf/neqjSeMV9KnCtZJoMpixju3E9UIuyiWFK+bNjW/VtM7xGo9FonArszPBiAmAmGPXv8TeDrC1KBtvq0DP4LV9JJttI6xVbGtkKNzkNZNsr5jVCpTPfhfFtA56vkoxHyWL39vY22iFG2oEqiTNterFEkW13tvOxqO82ziqbHF0yKbZijllB3kpyZ9LoTLIno2M5qGzdb+PcEdsdOQSwACdturEv27BBg9qBm266abiGr127tjbmbZyvRgVSq9JEWeJnHluxw1GC7so2XNlns7YrW/tofVeak9H15zkqVriNZoGsbRuGbmTtZInNm+E1Go1GoxHQL7xGo9FonArsrNKU1t1PM+NhRVEzx4MsnmtbbKuOHKltKvVdRqM3uRSPjL6ck23q8I3cgOMYMieCSr2THeO2WcdtFAbhfbNaYxUqFUn8n44aVls6HCHWDbSrulWa3pfrbKTy2bRmRypNrtUsXGDbtUIVV9zG83J7PIb3U1V3z8juDYYh+Bpn7v12D69CA0YOI9W6jrDTCtXVWb8rNfFI/Vm53m/T/03VtrO1w+9cB9m1rPo0cnyq2uO4R/ctq4pvs3aqUKrqHFlfjcz0wX3Pnj3bKs1Go9FoNCJ2Ynh2WKkqBUdQMqH0F4N5LbFRMq0YUQQlgG0yvZCZkrGOgrkrQ/DIXdfHUoIno82kwU3SWCYBUeqsxhfZHJ0TiCwzCh0bNhmPMxftjAl5XszozOKefPLJE5/xf7M+H0PHgG20B9uExVSVzrnOs2tZOS3xnohz4v/NXMl6/XumMeFvvF+zNcVAc1a8dpB57KOPd8iJmRgdymLg+TahMnHfzGklogoLGGkoqnupYnwZRmEIPFcVBM91n4XObHr+ZM57ldPN9Ti60Wktm08yuerZHJ873IfvAO4XMWKMFZrhNRqNRuNU4LpseNvoZKu0TZnbdsXw+JavwhZiHzaxt7iNAZJRAuUx27haV6BkR/aRSa6U9jYxu8y2Romq0qlLx9K5bTXbSE0jFk1YSve4Mtdrj9Vrg8zuiSeeOPEpSZcuXZJ0bMNjeIIZX2Zb4/oiO6M9SzqeH86Tv5NZRPg8lNa5DjyG2H/aMfmZsUIyPErpDA2I/zM9mNeHGV7so+GUT/70udz3iG1DJ6Rlni5fvryWLm6URqsKnM/u21GoTAXuu0uIEX0H+GzJ2DqZcGX3H2kWtgmdqMa3DRveFOaVtVNpFKgVG/lGNMNrNBqNRgPY2Ya3v78/DKAmO2NQamanqDzfqkDW0duekp33ZbqjuK9BJrSLt+g2Gf0pcTMdVrRrbgqyrZistO5h5/avZ3zbBN+yT9V5rl69epRwOmOZ7o/tcU5K/eijj574fPzxx4+OIcPz+f2dXpwx8bT/5xo1vGZiomQnub311ltP7ONPagmybbyWZKPus7QeWO+58T4eb6Yx4frinDPBexyrP5nc132M7Rnc13OSsfmMXVY4PDw8wfAyj+KKkYwSXlRekpXfwcjLlMdWwescV/wc7VvZl6mVGNk32e5IG0EWWmmLYp+p8fM+9PDNjnG/vXb4bI7j8jqwtmEXNMNrNBqNxqnAzja8/f39oXdmlWqJ7Ca+sakPrmJLMj38tixspKemZLKL/aqKdckYXmWjzOwZlUcXJVWW0cjGlSVbJapYSErnI4l8lFrs8PBQTz/99Nraiecz07LNzuzNjO6xxx47sT3ua+ZDWx6ZXrQnmR1V0rFZziiNlu1VPDaOKyszFM9h1kSWGrdxHzK8OK5NtrtqfcTfeJ2Z2mzknWemR5tl5rnsfff29kqGYxsevZxHzIRtMn4xjmWbBPAVKiY0ui83aawyrUflyVnZoeM+fL5RA5B53FbxvplGieDz3GvUcxJLQ/E+dZ9dPiwbl+8FlgnaBs3wGo1Go3EqcF1xeHy7b/LOi9im+CjtcEYW41Tp3y1NZOyGnmjsEyXTOI7KRmBkXpxVTBDbyfpoiZSSq3+3zjtKOZSwYnLn2Mdt7As+xv2Ic0K2tokZHxwclEmQ4/9mL2Zy0e4mnbTHujAk55BZYKzvzxJPex7IjNyfaMPzeckc2O42sZw+lqwtjpe2O3pncgyxD7TlMpbOdkhLynEcMbZytD22Z0n+oYceOtHe3XfffeLYOBcex9mzZzcyqsqOFc9dsZhsvdHDtWJNHKe0zmYNagAymy491emlHtcO+0aP3srvIe5DdsbnaOxjdZ0rT8/sOcdjPG9ed6NMQlwDLjKeaQd8/S5cuLAVG5ea4TUajUbjlKBfeI1Go9E4FdjZaeXMmTNpHTSiMpQb2yQsNUbJVekIQJVmZpjnb1T9ZHS9Up2yT5l6jwZ0qk4ylSbVnhyHPxkQnO27KS1R/K0KEdmmLtWmsIRr166tBZfHMVPFZ5UFU1dFFYy33XbbbWm73pcB6dK6I4bbq5xJpHV1kPvv+c9UfjyWc8lqz1FN5j7wmlqV7c84J7w/PUdWD3musrVTBUVXn7E9rnOHlbgdq58jYuLpkQNaptLK1IW+llUigswcUt3bHlcWGlQ5b3F75vBENR77EdthsD1V6VXoVjYu922UNN3rjAm6qdrOnpFUmVa1OyOi05J0fL1szvD2qHZnqNn58+e3dl5shtdoNBqNU4GdGN7e3p7Onz+/5hCSuWCT/dFtN0pn1du5ksDisVWAO9lalj6pYp0MJpZy54DYfuUCHEGpaZsE15xjsgBLz1ECqpxHKoYRf6PUTAadGYdj36q2HXjueaS0Ka272rufHmsWDsN9/N0OGWYVXhdZULfbY5A6A+Cl9YBrBvWbccU+bgpD4ZxHduj+04nJ/fCxkT157HfccYck6c477zzxaaaXsVGvUY+dgfx0tIhjrZyifGzGeuN5R+EB165dKx2ppOPQFTqn0HklY4qGf/Na4rMjCxvK7qX4PfaxSixNh404t1XgfBX+lYHPEDqgxWcjt1GrwmuYaXz4nVqdOA/UDpHpjZwOYxKEdlppNBqNRiNg57CEaMOjrcD7SMdSRBXsGt/Y1F1XSU4zJkS346qcBpkK+yCt68ejLcX/Vy7Eo1CNKnRhVEqkSvRLWxFTQGWgvYlp3qSaqY7schWbzzDPs65cubIWyB4Dpn0NWVDW+5DNScfMhsmcadvzeGLxWLMXj8NMjgHuMSyBdphqvmIfyTYYvM1zRWmV19XX7nnPe56kYxbn79Ixy/ygD/ogSdILX/hCScfMjmnRImu11MyAfs8FP6U6vRVDBLKSYD7PuXPnhgzv6tWra/deDNBnIgaWVTLifcl0g0znt01yfKbNanY1eAAAIABJREFUGrXHNULWRM1G/L8qWVSlxYt94zOYz4y4xrz23DevGT6PyNoiqvRn2TOYtkfeA0ytJx1rs2KITtvwGo1Go9EIuK7UYlngp8G3OBndKDVV5WFpZDY92kEoEWXB6pREKXmNSgpVXlEjT0W2U6Uyy+aT80VJMvPsqyRJMrvMzkRd+Oh6WYqOkmPF8pwAuLJnxf5wHViiy7z9GHhfJRGmxBj3oVRrFk2bbhyzpfHKdpvZfysplna5KDXTRug+3nXXXZKO7XIxFdNzn/tcSdK9994rSXrBC15woo9Mh5alluK8Mmm2maV0zNJoA62k9TieOPbKDuW0dEwuHp8PHhMZONdD1EZV5cC2uafpkViV2sm8tcmW6A2aab/YZ2oHMvsYU7z5vCwFlgXU+x6g97N/z54h9DY2uHbjHNHXgloe/x7XjvsWk603w2s0Go1GI+CG2PAyCZHpu8i4Mu8eShyV5DsqLTQqXWRQsiUjijYbgoyhYm1RIqENkqxp5GlFyYV2p8xWUZV4qfoT+09PTo4rzmeVpLjCwcHBkfRPhhr76fOZyVnKM3OJDI8SqeF5crFYs49ow2NfOJeZ7Yk2OrdL6TzOkxmQ7WJu17ZCprjK1oEZDEvvZF5sjD1829veduK8PhcZUzwv2QHv5wgyCNrCacuLffO2kQ3v8PBQTz311FH/fW2jZ7JRxa153jI2Y/CeZnxu5mVK9pp5gxpVkVOfIyvX5HVLzQjLNGVFdvk8y7xA435xn+jNLK2vi5G3tlH5UWRzQ3btcWUJ3Kkx2dvbG3qpnmhnq70ajUaj0fgAx84ML+q9Mw8d2j0oXWTSHt/ufoNbirFER4kxotL9ZtJE5XFEjEpgVMwyK4VSlTWh3joD9/XcUJI1e4htWwK2Ht7fswwVlb2C44pzxes2krIcS+V+ehzR1kU7Cz3FbDfKvMrMGJy42HFZLhob58cws6EU6U+3Hxme9/XaMdskK4jX1EzO28g2KbHG8VEj4t94LWMffX6yDc+Rx2Dm+cgjjxwd+/znP//E+T1ObzdTiuB683g855lWJ0uGPGJ4Tz/99Np9lJX68Tb3gdcragJ4/3FNMstIbI/2MMYt+rpk5Xr8SZaeJTinRocMj0wvi8dlAWAy1uz55319DX0Puq9ZMm4/Z6iZY4adrJSVwWtLjVP8LXqqdhxeo9FoNBoBOzE8S+l+c2cefGQEhN/YmY2rYhlV2RZpPZbG57LkZQkoYyZkcLRBZB6EVXkb6t+zLCYG5y3zAiNTpjcqbRRZjAvn2n22lJ6Vham8LEcMj+fI4LVDyTvOjaVZ2+ropenvWTHI++67T9KxvcrSMu1y8Zqa8VgyNTN6+OGHJeUekLRJU3pl6RePXVovf8R8j9ROSOtMgrY12hBjOz7W5/d2H/PAAw+c6F/sm8/31re+VZL04IMPSpI++qM/WtLJtUPtCr2szRKyGLjouVpJ6dYssVxTPF+VCanKVCQdrw1rA3wOX++RhyfXsb+//e1vl3QcFxm9HMlgq9Jp8VpWnuq89zKPS2pyKi/ozJ+CmhNqMrxOfK/GY9wHa1s8z/YsznIUUwvAvLpZ0e845k3+A0YzvEaj0WicCvQLr9FoNBqnAjsHnmeG5cxBg8ZjU1a6gkdY1WK1DdV0mbqN/WHAcRbsyFQ7VQXyTKVZqRKpJsgCMumWbGRBqwyGppNMFcwef2N4AkunZGV2ODejJAOGr+VoHzse0KU8Gq193R3cTPWKnSximiGnA7Mq09/pGs9gW2m9TM473/nOE+1lgbRM2m1jvvtkJxl/SrWTCu+RzBnD8+RP3yMMw8gSAFfpp3xt77nnnhP7xX2YDu0d73jHiXF/yId8yNExldrY8+btvq7S8dqL6cE2OR54jrNEDVUyB4ZRxLXDcCd/sqwR25CO5796Lvhax/apVuWxVs/HMJFK7clnCZMaZH3k8yALh6rMSkwj6PWYlTLinHs8DK2J/WeyAo/TcxJVw9ukPazQDK/RaDQapwLX5bQySjdFCZEJgLPAzCodGSVFH5u1TxdiGnez4EqjCizNXIoZjEypPAtep2RXMctM0mJfyVwzJyE6P7hdb6f0np2HzhFZSRay9pGE7uBhBl9Hllm5tfOaWuqT1kMLDCYV8GdkGe6vg9NZxobrLs6DQfdpMr24D4N3mSyYQbdxTqhB4H0VnUj4Gxm4x23njLjuzW7MSu2sQK2LHRLi+XwtqnRbo1SEh4eH5fqZ51mXL19ec36J1zxzguLY3A6P8TwwdIXJESKr9j3tMXuNmIlk4VdVomkm8Y6st7oP3e6o4Kz74H7zOcQE//EYw+0xRCwrxuw++dPjolYiS6zu81fhCJu0R9uiGV6j0Wg0TgV2tuFFjAJK6W5KRhRBXTYlX77dMxd8JmBlCZZ4jioMYmQXY1qzUWCklCeprdKfZdILU4dVAeEcUwTtfWSHI9sNbQRZyEFmN6gwTZP29/fX7Dq2gUnHEiHTgZl1ZKmXWOLEkqLPQTtWZF5cbx4P7ZkRlIrN6Oza7iDzaCuqkulWNojIYFkIs5LsI7MhK2SYjedmZAth0mjaZSILpV0+s89LJ5mLpf3Ioqp1dHh4eGJOsiBrFgVlCAjLSMX/mejA56CmKV5Tz23sV+xTplmqND0MH8qSKxMMu8oSbTCBgsHQqXgtqRXisZlmxmA4Cm2Gmd3Pc0L2S5thVh4orusOPG80Go1GI+C6UotV9qUIMhSywewtT++lykszky6qJM7sD8cT+8iAxiiZ0+5FzzeOK0pNZLCVfnoXr6NRkDfPR/tmJn3Su41eZ1l5p2wcla59b29PFy5cWGPR0Q5DidNsholks+TRZKS+hmYVWZJdFmQ16xjZfXyM++rz28PTDC87vmLptI9mAdVMB8Yk7aNCutS6eF6ze5HzyHtulOCAHtq85yPDYwLlbVB5DkrrHqLUWFSB6fG8fK5UhW3jeZm2a9Rn3lv+jd7T2XOA3pjuK5MxZAHa7DOZZTaPXm8VG8zmpCoBx2PjNeCar7xOI8NjQei24TUajUajAdwQhhff2JQIqsKiGUPhtqoUTwSlVErNmZ2psm2Q5WSS/ajERWwn/k4GW6UYyopFVqxvxK4p/VdFeLfxfKrsgPH4kfQf9z1//vxaouwsKWwlmWYszcdX6ec4j9kaYnkjFtXNpGbaCh2n5u3Roy9LaxZB+0vsIyVcS/RVzFvcRu/Mag6ydU5vXa7RUVJkg+sr2s8yL+pqPfK5k9lWabMnQ6G9NjsmG1v8HrfTV4BrnynN4vnZvlk7Y0YjeCzjdNluNh7OW3YvuA8ssstScNkzhMn43TfaxLO1Si0I282KFsR92obXaDQajUbAdXlpbpN9g2/uqjROhirLxyj+z6C0ST386Py0X2Q6+23Hk+m2K51zxij5G/s+suGR5bKPmTTE8fD6jfTkkbmOpPT9/f3hdSeT5/XOvOWqslOUvLPYQ7JCSpO0Q8c+eJtL69j703FYkRUyds4s0OzJ5xx5hbpPbtdMxV6U2fWpCm9yDcW+Vonb6Z0a2+NcV9qJLLHxKEbP8NrhuDKNSFXANrM5Ufs08iSP5+D/sZ3M/l+153VgT9JRAmgyrCqjVOZ3kCW/jueMxzBGj9oV7heP5XOHcb/Z3PC6V97hWRmxbYu+RjTDazQajcapQL/wGo1Go3EqcF3Jo6lmGbm3Uz1QGbjjtiqgeRt1GI/NVBms21Qlfo6qrEw1Km0XSkCVWRVQH8dbqU4rdegIvBYjlXR1/UaB7dE1fpMzDd3o43iYvoru+nQx5//SugqOYQTZOqgCjOnMEvdxuw44N5jGieOP4/QnVV2xj5UqmTUpo8qnUhNWISfZPgZVxCO1a5XQIXPgyJK6b3JaqeYrnq8KwcnuH6qsqbYbqVupSqTaOptjzrcdQxgOFa8lw6yojq6SZse+EXwOxOtSXbtMvR/Pxf/j+alazcxLHF+VHjH2Kc7BtuEtzfAajUajcSrwrFKLZc4kmVQcv2du+5vYIL9nEnflrEK2EP8ns6NBProaV+3QESAbn0GGVyW6jsdXQctVKEXVdrZvPIZzsoltx32joXuTezDTOGUhLZVzkqVLSpmxn2SDI4ZanYNjjims3LYdDVjuaMS4GHRflXjJnDEIpraK+2WVszNso50wkx2lmCOzo+aH7Cf2NzKzkZS+v7+/lnQ7WzubSsdkSeTJZiotTvYM4VrlustSGtLxiM4cmYPGJuex7J72fPF+YWKPbO1UznJVmEr8n+cYPRNHIWdSrh3gNb7pppua4TUajUajEbFzeaBM/5oVH60krFHC6U3hDtvYk6g7zxgSJZGK2Y3CEipJK2NE1INXAbmZzZDn3aZcxiZQsuX/EaNgfEpwV65c2cikPBe2dWVlohyoSnZBe5y0bluoyjdla6tidAaLrErHUrltdz6fGR5tOrGPZHaU6LM0VfytKr2TlZRh+xz3NiEBDOzPWDhtUCxAPEplF9nNaA3u7e2tubnHtcO55f2yDZsdpXjjd+7LkKMs/SKDur2vr1cWlkCbILd730yTVYUjMPQg2i7dF9rUdgkv43rnms1CGfh8qWyx2W/nzp3bOi1jM7xGo9FonArsbMPb5EFWSYujkjiUVrf9jH2oJPlRmQ5KPvTsGwUc0y5Dm1QW4FrpxX1slMwrWyQ9CjPGt6n80IglUoKnpJodkzGvDPM8rwUER2aySSpnoLa0nhSY80XGn60dtlsVWZXWC36yqKW/x7XFQqL8HAVHsy8cVxaEy9RLXDNMg5WxdqOyO48k6ooxZ8wlu6YZog0vKxnj8fN8ZBWZVqNK0DCygbK/1ZjjfkyGTm/dkYcv/SV4n2b3Z2WXJ0OK65vPs8q2NvLFqOZv9Hzg2hylouR9Os9zpxZrNBqNRiPiumx4lZ0sooqv2CYdWeUJmUlR3LdKa5QVfjQsrVvSyRgeE8iyMOvILkImSWmE3nrSuh3G3niU7EfeYGQujDvMpPRNUm8E52JTeqiYINjji2NmKZ8q2Xamz9+0ZkYMr/Ii85zHdcBSRbbdsdhlVjyYoG2XidfjWN3Ok08+eaJPmQRO2wy95mhTye5f9oVrJxY+9bV0ey7fRNtUJqVHe+3IIzWuHc9F5gnLeEHatjat0fjJORixUP7mfsR58v9cO2Z22TxVz7dsrUjjcj3bFJP2M5AstPISz1DNdZVaMfbba4feznFO6Om9C5rhNRqNRuNUYOfyQNM0rdkaMqnCqOxJmWenUXljZtsrW92mfkjrzM42gczWwQSzlJbIvGJ7nCcy5JHOnrbBqqBupsOu2GcG2mqqecySBkcmOZLSz58/f2THoPQfx+wYN44jY97uA7NlVPMUUWkFLIln9oRbb731RL8trdO7baSFqAqlGtkc0+5Mxp8lAPYceF/aYzPmwjlhHBTtaPG8ZiosB5Otb++TPQ+IeZ517dq1tXUc+0BtA/fJnlUc/6i8FVFpDnyOTDtALUClFchi2xg7VzG+LJMMGRGfVZkdjgnB+XzIUMXUVVqj2DY1PqN2rqd48FFfdj6i0Wg0Go0PQPQLr9FoNBqnAteVWoxqm8x9l0ZVUvNRqqpNQYRZwOkmVVwWAGrabjWb1RBZsDpVJpWjQWZMpsqkUs1kbtsM0OV8buM6XTmrZGqwrM5VbDe2l7k9V2rTvb09XbhwYS24OlNpep5iyIJ0PE+ZE0ilNqb6OJuvynnF313jTlp3MMhUs/Ec0vp6o0MDUz9lIQZcI3S/H6V48jxGN/643zbptjJVpkHnCCYXyFRZdKcfqcN9bBVqEM/nbZ63UaB0lWhimxADqoV9rM0j/ozOZ1SDUwU8clqpwiC4nrN1UKkUR6m+/Ok1s43piM+kKnh8ZMKpnlHZOyEe06nFGo1Go9EIuCGpxSI2JV7NgoqroPGK8WVu26NAc+mkFE3DMj9HCU0rZxFuzxJB032/MiJXbUvrCWGzFEbV/HH7SCqidLuNM86m4M9pmo6cPnhead0VmVKmpeYo1VYBuQxAz0oL0dHA3ymJ33777UfHuMI4GRel29gOK1tbo2DmVaWniv97Dsw2yZDi+qZ0TI0F5zG7n+jowCDpyGi5L9fbKAGwUYVu+DxnzpxZYyZxHdCph5qW0RqtnLuqdIVxn00p7bJQIzM7Mjx/xj5WiQbYtyyZRpZkOZubCLIytjdKncZrSgeULAE5SyJxHNmzis/PXZxXmuE1Go1G41RgZ4aXSZJZILBRJYQe6WS3YQpEVQgx01fTZkLJJHOVrsZljIK6qxRZTDQcpcFMny+thwKM9PHVeLIEwNzGfTO3brY5um5eOxxznNcqWTSTEmdhMOz/iDEQZGtuz0GwZnXxN3+SvTNsJYIss9KGZO7xZGWjMi2VzcbjM5PI2qF2o1qjkUlwTli8c1QyyTg8PCzXzzQtBWCrAPp4vqqMUbZ2Nmk8qnCSeB7a9FkcO9rwyJLJjJliLo6H9n/awbL7idgUNhD/r4LT+Zwb+QFUz5IsAUFlX8z6XBX33QbN8BqNRqNxKnBdDI+SYWZ7quxIo2THmxjDSJ+7idllemNKLZSwsnZYpoXjy+wV9Og0Y7Ck7e+ZXWQTc82ClzlvlWdVlOKqdirPxfh/tGOMWF70tCODiKC07GMYrCytz3dmW4jbo8RdjZUepNk8uU8MdM88fCsvxqrQbQQZ9qVLlyRJFy9ePPF7hPtAhsXkxLRvRlTsY2TDY/DwqCgrWdqm5NF7e3tbJawmk9smAUWVgKDyqub/Wf+rQqqxb7T/ZSmzWKqo8nzM2mOSAq9VllnKEt1X14NJ7EfaNmKXpPU8/zbPqm3QDK/RaDQapwLXFYdHyWdkj6viKOJbObNDZN+z7ZXUMNLPWxI1Y7CE5WSuZBixjz6Wdhgmw82Yi7cxQaol70y3zeK0lHiyMh5VEd6RVEaMUpYR23ppSuvsIzIFpmmrEudGbGKiLHaZeUDyGLdPe2lsj9fB62Lk+ViVXqI07TUUj2G8laX2rLxOJZ1X5YIyCZ92OLK4uL7pnUmWzbUqrbOLg4ODoQ0vFojN5q2ysY+eUVWi8SouLysIXaVFzJhSpbkg44uobMJcF5ltj3NCOzPTh8X/aTOubKKZlyafP6Nnf+VlP3oX8HmwSTsQ0Qyv0Wg0GqcCz8qGl0nNlQ1lpG+tysBk7ROVHWYbhlIxnswri/E1tPd53JSMpXUbIeNhKs+yeH5i5PW6qTzH9ei+jSyDzLbHPfPMM2ssOssqwfjEUVJf2gT9yWTOtGPEY7mOyfhckkdav85s1/FyowTn9HSjdJ5J6ZSSma3F8xqPqeJbK7tn3Leyb2d2Js5Fte6ye7FiShmo7cjOxzU50j7w+jM7S5XsW1q32fKcPlfMFsT73HPI7Czx+tMLuCpwnHm4kx3yOzNLxfMwVq/SsmTHMq6UmpvRs2pbT/14vm33l5rhNRqNRuOUYGcb3sHBwZokHLGJcY08dSjxVt+zYyt9/EiXTpbBPme5+ijFWFqiJDyS0ivPqpEXW+U9tQ3rrWJqdmF4o1Iyo77wd0r7mSdsFbeTlXHhXDLfJtlbPJZ22MrzLkrpLGfCYqeZ3YIlayidM8dmZsut4iIz0H5c5Vsc5bjctEYzOwwZTJZrlX3IbNCE4/DIiDJmShZBT+LM05LzU2VPyRheFdvm/sQCsHx2+Hp7PNmzg2uEfR3Z//jsrdjiKAMO2xmhyj7F+zezN1fZtLKsMFnWrm2fZc3wGo1Go3Eq0C+8RqPRaJwKXJfTSkWVpfVg2k3qtQyVu3ZGWysj9TYqTQZ8MiFvFlBfJdfl+DJnjEqVmrk9U53LcYwM99uEcxCbAmmza72La7nXDvuQqSep7qJqaYRN6qhRFfsqlCZeFyd+diJoq6McCJ452tBJgOWC6OgQUQWrO5RlFzU/HS3oJBTHXn0fJV/eFIKUHRtDGjappUaODVVYyv/f3rn0OHIkSThYbBUkSAKkw573//+sPc9J3YIe/SjOYWBV3h/NPJIU5tBLN6DRVax8REZGJt38Yc774cZAwW++H1xpQHo+kjBB3V9rSIlGWhfsfO7Gn57/JFe31nWyz5Gu4ilpheev9yyJcaT3Xf0sudDdmnAtssalORgMBoNBwc0M7/Pnz1fWUpe8cvR3h7SPs+ySBeICpSm42oGptino3lnaZBSpMLz+nCSTOvabWnik8gu3bbqGLvlnl7RyPp+vLEOXWszxJnHvI+A9dm2i0vy49iNkAzUpof69JrroM7FClTkweaArcKawAWXW6twnzwWTJSg1tdZ1YflOJorjrddBdIlqz8/PrWfi+fn5aq7dObkWXbKSkIrEU4G2Y+C7EqC63pjowrIArY8KeszIHBOTdcfQ/2KWHdMjw0vJgC55iWuWiVZOlCMxOpcUxCSpI+/v130PbzkYDAaDwTeMuxrAMhbQparz804mKm2b/u62TVZbJylFK9BZGykOQavFtcBI8QXOhSs45T4pFtH5ujn2WxhSN49HCsPr+KoAsJMFSkynExNIpRFM5xYj64SSK9tY680SdvE4fSYmx3FUa51jYCyP8mcuzsgx6hi8x/VnSn5pW1dwLPD+sNyjE1LuYvvch8/Jd9991zK88/n8el80j04EYVe+4zwKZE2MsXYSc6ktGO9p/ZleAsrtdQ2OnWekjtmJgLBkpvPIpPdKkg1z7CoJBBwRAeE7qnuvuXZKOwzDGwwGg8FD4B+JR8vycTJDjAkd+ZYX0j7OqkgZkC6DUKDlkeJhLsZFS46W5RGGx5iKaxNDRpcYn8sKTQX7u5heB2chO7mj7v6+e/fuUNx3x4QrksxduqddCyZm4CoTUnJhdRuK7Io1kYGt9ZaVR3bI83WMmQwveQ3Wul5PLhZZz9PFZRmrofVef74ldudaB3Xr8enp6SoW1cVudqLO9Wd6ePjucOsvZc+yKNo1ddba0HkU02WWeB1DEosn83JjTBnlXRzOZWG683XvVV6De8+RyaWs/hpn5HfM+XyeLM3BYDAYDCpuZng1hifrtjbVTNYe2YWzBlNGkEDfd92GGVDJaqvH4e+pnUU97q7FiqtFSgKztKYco9zVEXUxHP5+C7NLMVGXdVaZS2J4p9NpnU6nWAu21psFmtZBl1WbPAhkdpUJa91qn2S117VDq1nHo5hzZXhVfJrHq+PgmOvxdV5at671DrMzOQdk0k5Qu5OsWqv31KSazjrGLgZESFqMMn51jlNNGdeSYyQ7L4Fja65NUtpWYDyUsVwnf6bP6Flgey3tU9eS/kZB+1QvWa85ZZ12MbbkFehqO4+0A6pjr/vXWPUwvMFgMBgMCu6K4TF20/lxE3vqGN5ONaFapGJ7tES7Orzk3xe6+pQUp0hs1B3fKVxwH1pUyRJ2VtRRpYtqFTEmmCzjOs8UaK4qPMTlclmXy+XKmq3jTgyv8wpw/AQzFWtzVc6/s8q5naxlHUdjcpmDgrZRLDAp+jgWqnPrfLLglUHKllP152Q96zyOUTCDs3pT6thcrWAX8+J1UUi5U+nhGLt8gLRGXGZiylYk49dY3Ryn7EK33ug54H3Q+qjXoG0Yb0yi6TVGrRg0m1J3aiZHcy3c2krvDD7HnTcqNUuu10XG+O7du2F4g8FgMBhUzBfeYDAYDB4Cd7k0k9zVWm9uLroFu8SQ5FJICRPVrSaXC4tD6aJzLk3S5+SWqD8zeYVUmi6HI+jSunm+I8dNSSpH5N2SO5GJSvUzurgTai9F505zadI7pLIUwiUTpO7oPHb9/Mcff1xrvc2PXIsqPXAp8ypO/+2339Za19feuSDpqqKrR24rl7TCfXV83UONuZO0Y7JEV7TMuU99Deu2R2WhuiJzN55U0uTW1k6uz41/V3gu1N91n+n+pnhFvRaWgOl3jUXr0b0f+A7mHHVuyVQStJM4rH8TmAjTuTQ5drry67V2PRQThuENBoPB4CFwV3sgtsuojItp9Eyb7VLKyUy4j2vTwXR9HssVc7qgZ93GpfonayIVSrptksXrmEQK/KcCzW4bfu7AuU7s2jG8I4kHl8tlffny5Upyqc4rU7CFLuEppZZzrZDd1M8oqpuEc9d6S+qgODBT/N3a0fEoQkxWuCuyrdu65J9dYhVl1rqELoFsoFt3SaTBJbo4Sax0fiYZubUjJG9NJ6fF+52Sv9xxU5mCe29wm9Seqo6FrYsEiojXfXdrx70b+dzT08OieXdP6f3i8+sS7PQZSyj4fz0u2fsRDMMbDAaDwUPgZobnSgKqdSZLS9/U+ltnNdfjp/Ou1fv96a9O6a5122QFdlZsig04a0lIx+ffXSxlVzR+TxG54O5Bit1RWLduU+OnXTrzy8vLVYzIsTWBzKBLo05yZCzyrsXKKeVeTE/n0e91TFVurO4ri9tZzbS4U2G9Y4e0dFO7lrpNajQrYWsXe01zTUvcMZed/F4FmfnHjx+3ZSeMUzmhht1ad89LijExfs7xVKQmuDWdntsmtuYYS2KofHd0Mo/0SlCAoP6cpBk74QiKbwiMlbvcCIolMGbt9nEydzsMwxsMBoPBQ+CuGJ6+1ZXl9fPPP79uw2JKFv5238a7eFW3Dy0EWkKd35hszTExZ0nXbVNLDHe8bmzCzj99JB7H46ZMtvozrzO1tKk/O9bnxuSkx5wFnFq7uEzLNLeML7KdT91H61isTYxOFqlr26R50fEY23OsieuLbETHUOZdvY6UPSl0sVUKW3ftvVh8T0+D7lfNmhMz2bUScsLj+v+PP/7Yvht0HJ2vsmwy01usfiF5b4SOCTH7WPNY7wvXKOPllLqrP+9k93QsZe3W8TMLmdfVFfUnQQ/HpJOQQxKxrn9jDI/7OIHrKuu3K5R/3ffQVoPBYDAYfOO4i+HJmpDlWC0tWV+KG6RMofqNnOJUyR/v6mFSLVVXf5MEml2NXWJ4R+r+uliAO6YbI9HF41KLj042iJYj5Y5cvJa1QZfLpWV4Toi4y/Jfq75BAAAQXUlEQVRKjNRly6XYncYoFlcbswq6RrE1SjJV1kN5Oz0DOj4Fmuu2vE7Ka3VZyDpvstadOLruma45tbBxGXCs9yN7c/FmPuuJ0ax1LbLdWemn0+mr1lKUyqrHZvxyJyPo/sbnxmUk8nnXdVAI/Oi518q1vWtde65SrM3lKtALxvG4ONyuTtKxRX6W2JvLQk7/O4Z3xPOXMAxvMBgMBg+Bmxjey8vL+vvvv18tAsYx1nqzjvUtLuu2UyBI39jJInIxHFq+u2zB7nNn+XTZpWv17DDVobgmmMIuGzPVHXbbpDZFdRsyGLK4yiQYK+qyNL98+bI+fPhwJXrstk8ZvanB5Fo5LqHxa42+f//+qzHVfanuwNhUBeNjVFqpa5RZcTVTtP69sh1C++r54tqp94XNaZlRyga3XR0TWaBb30ct7hrP0v2oNYHdM/v09HSV7VrjvzoOnzUyIBeH2z0nXTYjM2FZf9w90zwPmT+vv4LxP1fjSW+He4brser1dM/aWn4daNskku1i8Cm+Rw/DEXWWIxiGNxgMBoOHwM0xvM+fP79++8tKqxYkfdlkeMw2q+jibXVf56emr9dpNRI7puesl38Cqr8wI+lIbROtNmeJHam34+c8LjVKu/hSjSd0DO/9+/dXjLRmlbmGq7vr2GkaMquyWsBatxxTasmz1jX71HyI4bmYB9WAOKe8x67hrP7XebpMO8akGX9lvVRtYZPqZllDdUTtRvPIeOda18o9uwxN/atzURleygPosja7rOUK9y5J3hKez8VHBbK0WzwYR5pWC4nBOtbbPb/1Gsjm6t/4O2PhTs+WzwCfZ+cxS++JDsPwBoPBYPAQmC+8wWAwGDwEbm4P9PLyciVVJDfLWmv99NNPa603GsuOva4FTHJHpESXui9pcgo4u+PQDZHSduu4U2CbY3OlEzuZpnq9KWhLGu8EgN346zU4N08Sie5cmrs5qXh5eflqnTj3BtumMLFF21a3JNcIXdt037j0/SQtJRdcdVNqfdONR4GFbp6OylK5z5L70M09XalHkjQ415oLumqdu59rhC7qrrVUV9LC82mua4G+Wi+57dfq3WC7QnNXlpCeZSaz1LlNIhy8D259872S1lKXLMfr4jPfjX+3ZuvPlFVL5Ql12+SKdmuCz+0trs1heIPBYDB4CNzF8GjJ1bIEplZTTFqfd0LJnfAz/05LtCuuJtguIzGxeh4yBY6VVlz9mdfJdPsjEmP3FF0mBlbniIXavH9kemtdW1pde6CXl5f1559/XhVQV4bH0og0L3UMvCZamV0iFJkdC85dMW+SsqOlWtmM5o4MNlm1FUmOjAkvzsolk6AHw4kp6LPkOXFzonOT0SkpyAmPszB8Jzx+Op2uxlaTifR+0Tl3ZT1r7e8Dn3VXeE4pts7bwblMHiXHnp1IgDu2S16hHB2v083N0Xew80akspeukS7XeSeoLtT7M9Jig8FgMBgU3FWWwLYq1boUw9M2tOS69NkkdpysgPo3Wr6db3vHAjv2lKyiTqh5Z3101yUkmbAOKe2aMaW1ru8XGV/X7HcnQ6Txf/jw4ZU9yfpzBdq1VGEtLzBN0OJObUeqhazz6LNff/11rfXGHMjI1sqxG56nPhOMh3btjogUn2Acvd4XxnlSrNUV9fL5JGNmfK5+RvaRrrv+fFTk+XK5tCyG95fvqE4KiyyKY3LPC4+XxOvr+XZMy70HeJzksXDxXyKVJdT7ksTwOXY3VsbomMfhGN7O69WVTtzizXu9vsNbDgaDwWDwDeOuBrAsXHVNNRNj2BWXu21oAXX+3CMxL7JBwmUm3cKs6vm766DF08UZUkaXa/GS2GEqWq8/p4avLtOOWV5dpt3Ly8v666+/Xi1HF2tJEkRkby6Gx/udCllrkbWYnDIvf/nll6/2dVmaXGcpVuSyCms7kw51DrsC84oaz+IcuPjrWj5TNon2cv3XayAjZmsc5x3YxaQqTqfTOp/PV3kATjA9iThQKL5eU3qvdBnfbGrKtdrF8shmungjx5i8XkcypRPjd++qdD36O9fJWm9zkdpFdc1wk1hG8tjVsXSs9up8h7ccDAaDweAbxl0xvJTFtNY1wyMzcNaUs77qNh0bpNVyhBWSoSb/sbOWkhRO54dnTV2yQjtGubPgnLXL4/J+1X1ohVNOyWXa8d6ez+c2Lno+n68apda1I2Fp1u90otfJSmYmnMvs0/yrgbFiep0QOK+dlqiuzzUc5u+uJnWtY16EJKXmjseYHT0LleFpftKzITj5M8qtKXvbxcCEIx6f0+m0fvjhh7beKokQc2zuPUCWkbwq9Z46drxW366HtbS8H05cOT3L6T3g3iFpXzcnO4+F1odjbYyJp0zmLmZ8hNnx+Tyfz4ez1ofhDQaDweAhcHMdXle7tdabhctYEH2+rv6KzNGplnAMKRsz1S+lz9y+DqmGhedzFn7HGNJ5hJ31WcG4FjOeXAyTsTpmcLmGmqzH/PTpU2Qniv+yCWyda60NraFbsjN3qjyuHVGKOdCCdIo0ZDNsitzd41sUaoQU63Jrlq2yGENMzV3rZ6kdkFs7vB4p6uj/LoNQ3oGucerp9B/haJ1HY6zZvMwI1dqhiH1975Ax8hqT2HY9TlLAEdy9TQo/jknyHbirL3Rsje/PIzVuvFeJ2dVnlJ4ZvuuP1JuyPZnLnaD36fn5eRjeYDAYDAYV84U3GAwGg4fAzUkrX758uUrqqC5NdlmWi4dJA10Ppp3brhNKTmnUR4RpO6mnlJ7LYxyR6dn9Xj9LhZhpztw+SUC5uhddcXDdly7PNJZdWYKOwx5ZdV+6p+i2dIF5rgm6XOiSqWNIEk/OZc9idP1OwYW6D8sQksQbXXYVTJJgTzjnQqdbkq5O1w8vuc70uSvG5zPOLvMUE3Zj6BKetD2vq7pB6XpnSKVzS9INqeMzccJJDTIMw/+7InkWxzMUweuvf0tF8q4/XSrZ4Xbub6lruebR9bNM3cu7sivCyRZyn/rOHWmxwWAwGAwK/hHDc0F3pmfLipEVSWu2/pyCq2Qd3bc5ZZU67AKdnUVySyp5SnQRUmp9/VtqMePkgXi8ZC25e8CAMIPxla0ckRQTLpfLV0ktTPpY65ohsCO5LPojDI9dy2srGYFWK0tpyBLqZ/pf61wJGhRPr8dNSQq8L85KJxurrGytr9kOz+M6hNdjdsXfTOQRnCzd77///tX5yWyrQIVKUHTuLuFprf/cIybZ1HnS8bRm9D+7rjuPQmqxlGTj1rp+ll2rHR4zlVC5bYkk+cY1VO8l31UpecmdJyU20VNX1xQ9E+ldXK87tWDiM+Lkz3iMIxiGNxgMBoOHwF1lCZ1lT+tYVp0sbMfa2GqHVntiHWv5MgBus0OS6XHbJOmytL3bt2N0wk5CrIvpJQbO++YKuHds0BWe19jDjlnrmilQsNa1RJXiA4yXudZLZEKyNmX5d9Zsan3TpZRznfP3el1kx2S5HevdWdouvsQyAFrjjIW5mFGSn3IxcW374cOHr/5Ga70yPsc6d6IFfF4qoxDj1bXqvrNMxDEgChykuXWNS1OhtIvHdaVE3edrXc8l35mdHCJ/5/vOFbpzvo7EjgWW83AbFzOkKDnXar0uxgS7tmTEMLzBYDAYPATuagBL37wr5qQFTwHbug+ZYpLvYtv5uk3KsLynyFtw1tLRAkd3HDK7xBrXyu1TaFF2WUypwNntw23J7Jwv3TXzPQrHTCnWLCtd1rvO5xgJx0ArU/JhXfEzY09O5DlJRyXZrrpPiql2Wbs8XmJ8NYbH4mBmozKW44p66V3hPXAeBRbhc127NmI67qdPn6JX5nQ6rXfv3sUMwnpsxm71v+KLToBCc6djMNbZZcKm+HXHOI6ykXr8JBJ9RJ6QjCh5RdbK8oeMZzrvQBIQcaIPBN9JyStWQXH0IxiGNxgMBoOHwF1ZmkT99k1tZZi9Wa2oZNnRT+781LQqGNPrBFJTDIXHdtjV0jkLmFYhLa2uvpAMi1ZNPR/jCYnhOTHeVE/UxQqFXUzy48ePV5ZjXU+q29I2XCuK6dUYFzM4U/2Yk0Kq0kRr5fVWMyJTTVMnR8c1mYRxXUNWjltzoDGptVGthyIzZs1jd5/4jOl/emhcPWaqN3QxUbLoXfz3fD5H0fV6bWRjYheaEzG9ug3nQ8foYoaJzTAO6NbFLi7q3lVCqtVztZuJnTEmWeOaZHD0BjCj13nbyNLS+67unzxoZIlr9VmfOwzDGwwGg8FD4K4YHuGYAq1YZvnVfVILDPqYO5aRGJazsFIWXmJE9fg7VRZaNd11ddmaKfuqY7tCUktJbNEdJ/nOXWZniicQT09PV/NXa7P0maxxxdbE/FzMaXcfEvNfK8cWmKFWx0g1CY2R8bLKCslm2MC0a1bM45GxKPu5MjxmZepvGntqAVXBeyuwvVOdA74H2PTZPROai64W8HQ6refn5yuG4t4hbFwrME5Xt9m1FiNrc9eYaoVdnJFrtovLpWeZ1+3A+G5qyFrHmJhdqvvrMnyZ/erqrdPcutZzAtfrNIAdDAaDwQCYL7zBYDAYPATuSlqhq6KC7sckHeNS4gUWI6ZUVbdtkgfqhKA7V2ZC54ZK50vB1c7tmvprpcLTbvzJTVXHmP7v3AbVRbpLuaZ71RVZ051BcWLXJ09uTyYtdEXkmjsej6ntrjieklWpaL6On2UPqdC9unw0BrpMUxJLHVvqys3nqiabpCJ8SgV2Ls2U0OGSjeq509p5enpa33///dV11O13wsVCLd/gGFwh9lq9+47rjHPrBKfp2usED1yRdf1dcAkhnAs+G5wz9zcel++diiSd14VSurmtf6/gd8stZR7D8AaDwWDwELiZ4X3+/PkqecSxGYFpzO5bmcHzFMB0KeC7lP8du0rXSSTrRWChs0st3hXJd4XnnDeybCdSe881p+ScjhUm8W+3fZewQytSkDBzl3qdWrkwlb2yDBYeKwGEVq6TlGLRq7bR75VxHWV47n6xu7fG2on4MrljV1Bf5yQxFK7Dug8L9xMLqXAtqrrC8+fn5/aZJtOiPJgrg6EAN9mL/t6VYlGgO3lmKrgmU1KZO08qBXKerFR+0LUHSuUUfOe7Z53vAW57ZG449iQduVbvsYrHPbzlYDAYDAbfMG4uS1jrWHwnlRp038r85qf14mKH9IuT6R2JQXGMTrA0FacnxnekHGIXB3Tn7USjOaYufrU7Dz93Vq4rik3+dMV/aQU61iaQtbFh5lpv1muSUaN16cYvy5fp+4KzLimCzaaeNYYnhkrZPa4Dx/SSaG8n8cRrpZeFMbVadsH2NkL3/Nb9HZieXo9XSzSOCj0cid1wfbl4peYuPUtM43d5B4nFHinuT6n+dV++E8kKyYAcw0seBLeu031OZVfdPThS2rTzQnWlSNUzeDSONwxvMBgMBg+B0y0ZLqfT6V9rrf/77w1n8P8A/3u5XP6HH87aGRzArJ3BvbBrh7jpC28wGAwGg28V49IcDAaDwUNgvvAGg8Fg8BCYL7zBYDAYPATmC28wGAwGD4H5whsMBoPBQ2C+8AaDwWDwEJgvvMFgMBg8BOYLbzAYDAYPgfnCGwwGg8FD4N95WEo6VJvZuQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -839,7 +3068,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmUZFld57+/3Koqs/au6rWGpptFRNxaNkXtVhE4joqAIGdkpAeVxnV0HBHcWA4uMx5lkBFtN9pWlEVFVIZFwLZtBRUBWZqmWXqju7qrq7oqqyqzqjIr884f930jbv7ivsiIzIjIiLjfzzl5Xr4bb7nx4r737vf3+93ftRAChBBCiHFnYqsrIIQQQgwCvfCEEEIUgV54QgghikAvPCGEEEWgF54QQogi0AtPCCFEEXT8wjOz7zKzm83siJmdMbO7zOyvzOwZ/ayg2DrM7AYzC2b2RTNraStm9orq82BmU0n5nWZ2wwbO9/DqWNcmZa9MzhHM7HzV9v7AzC7b4Pf6CTN79gb3vcnMbulw27G8Z8zsGvebnDGzW83sF81sh9vWzOx7zez9ZnbMzJar9vRmM/ummuP/XXXc/97jej/c1bvu76Yene8x1fGe36PjPb66H3a78u3VeV7Wi/NsFjN7dvX7fq6q17u72Pf5ZvZ2M7u7ale3mdmrzWyuF3WbWn8TwMx+HMDrAPwhgF8DsADgEQD+M4BvBtDxFxIjxyKASwB8E4D3u8++D8ApALtc+bMAnNzAuQ4D+FoAn8989vUAVgBMA3gsgFcB+BozuyqEsNrleX4CwC0A/nIDdeyIQu6ZHwfwbwBmATwdwCsAPBKxXcDMJgG8GbE9/BGA1wN4CMB/AvBcAO83s30hhHke0MwOIV4fVMd5XQ/ry/aV8kEANwC4PinbSNvNcWd1vs/26HiPR7zGv4+1dTxXnefuHp1nszwHwJcD+CfEttENPwPgtmp5GMDXIH7nq83smrDZgeMhhHX/EC/k22s+m+jkGL36A7BtkOcr+Q/xQfBFAO8DcIP77OsBrFbbBABTfarDK3PHB/ADVfmXbuCYdwL4kw3W5yYAt3Sw3djeMwCuqa79U135G6vy/dX6z1frz6k5ztMAzLqyl1f7vLNaPq7P1yYAeM1WXcsu6/qSqr6HtqoOHdZzIvn/wwDe3cW+BzNlL66+99dttm6dmjT3A7g/90FIetdmdm0lYb+xMt2crswYv5UxdbzKzD5iZifN7KiZfcDMnuy2oenk2Wb2e2b2IIAHqs8eXUnfI2Z2tpLAb3OmtYNm9jtmdq+Znavk8Ys7+cLVvm8ws3uqfe8xsz82s23JNs8wsw9W0nu++s5f4o5zk5ndUm37sWrbj5rZk8xsysx+2cwOm9lDFk2Ic8m+NMH8sJn9RvVdF83sb83s4Z18jx5xI4DnmFnaW/s+AP+I+PJYgzmTZtIunmxmb6p+8/vM7DfNbHuyXYtJsw3s4U4n+z/BzP68MpmdMbPPVNd3R7LNnQAuB/C9iQkrretXVu3qWHKMl2e+41Or9rtoZp80s2e5TYq7ZxDVHgA80sxmAPwUgHeGEP6i5jq8N4Sw6IpfCOBTiCqc61uCmX3IzN5XXcv/MLNzAF5UffaT1efHzeyEmf2TmT3N7d9i0rSmqe8JZvbPVfu53cxetE5dXgLgt6vVe5K2e7FlTJpm9qsWzf+Pqb7DYnVfvqD6/EXVeU9Xn1/uzmdm9iNm9omqrRwxs+vNbM961y10b3FJ930wU8x21XBhmNll1bPkcNVO7zOzvzazfe2O35FJE8C/AnihmX0BwDtCCLevs/2fAHgrgDcAeCKAXwQwB+DaZJvLALwWUUHMAXgBgJvN7GtCCJ9wx3s9gHcB+K8A+IB8J4DjAH4IwNHqeN+Gyi9p0c59C4AdiCrhDkSzy2+b2bYQwuvrKl9dtH9GfGi9BsDHAVwI4JkAZgCcs+iHeSeADwD4HgA7AbwawC1m9lUhhHuTQz4S0az1SwBOA/jfAP66+puqrsuXVtscAfBSV6WXA/gYgP9W1eOXAbzXzL4shLBc9z16yF8g/pbfBeBPq5fUcwH8T0TzVKf8MYA/A/BsRBPMKxF/w1d0sO+kmQFNk+bPIj4YP5ls8zDE63QDoqn1yxDb3pUA+NB5FoD/B+A/qvMDwIMAYGZPRFRwnwPwk4ht81EAvsLV5RGIprZfQWx7PwXgbWb2mBDC56ptirpnKq6olicQzW97Edt4R5jZkwB8CYCXhRA+a2YfROyYvCyEsNLpcXrM4xDvy1cjqnY+kC9HNIPehfhMeBaAd5vZt4QQ/n6dY16A2In89eqYLwbwB2b26RDCB2v2+UvE6/tSAN+Z1OMYgMmafQzA2wD8DuIz58cB3GhmXwbg6wD8NOJv/TrEe/Mbk31fC+CHq+X7Ee/zXwLwWDO7ejMvtQ1wdbX8dFL2ZsTr+D8A3AvgYgDfimZbz9OhzHw04kM/VH9HER9cT3PbXVt9/juu/OcQ/S+Prjn+JOKD/zMAXpeUX1Md7+1u+wNV+Xe2qfMvADgL4FGu/Peq+tea4BAb9wqAr26zzYcRbfNTSdkVAJYB/EZSdlNVdmVS9p1V/d/njvmXAO5I1h9ebXcr1poJnlKVf/9mJf46v/sNAL5Y/X8jKtMEgOch+vZ2I2NyRFR9N2Taxavc8f8WwO2Z73ttUsbj+79PA3hEm7pb1aZegGh6vcDVr8WkCeBmAPfAmdncNvw9H5WUXVi1l58t4Z5JzvG0qg67AXw3Ymfuo9U231Nt8/Qu2tsbqu98WbV+XXWMZ/SxjdeaNAF8qKpPW7M5Yodhqmo/b0nKH1Md//lJ2Zursq9NymYBzAP4zXXOkzVpIj7kA2JHgWW/WpU9z7XTgKj455Lyl1blFyVtdxXAS915vqXb3wNdmjQz+1+O6Pf9m6TMACwBeHG3x+vIpBli7/SrEd+0v4TYi34WgPeY2c9ndnmrW39z1SieyILKJPT3ZnYMwHnEh8ijEXt4nre79WMAvgDgV83sB83sUZl9ngHgXwDcYdF0OFWZbt6D2DN4bJuv/DQA/xZC+GjuQ4tmx6sQG/d5locQ7kB01F7tdrk9hPCFZP22avket91tAA5ZJWUS/jwkPaoQwj8h9vK9A74tlZliKvmr6xnmuBHAU83sYkRz5jtCCN0699/p1j+BqMo64ckAngDgSYgv3AVElXsRNzCz3Wb2v8zs84iO/GXEnqshKrVaLJprnwLgTaHVzOb5bAihEYgQQjiCqMwflpSVcM+8p6rDPKKS+HtEK0DXWHQVPB/AB0LTOvIWxN+xrVkz0647tVx1wmdCCJ/2hRZdEu8ysyOIL8VlAN+A/G/hOR4SJVe1ty+g83uhG96VnOcIosK/JYSwkGzD5xGtNU9HvGfe5K7pzYi/R6oE+0ZlPv1rxI7UD7A8xLfevwP4WTP70UqxdkTHwxJCCCshhJtDCD8fQngqopnoEwBekbGbPlCzfln1Ra5CNCudBvD9aD7M/gN5SXrY1SUgytcPI5qVbjezL5jZDyWbXYj4wyy7v7dVn1/Q5utegPhCqWMfYoM4nPnsfkRTaMpxt77UpnwKrSYKfz1Z1m1Y/gux9lrkoiHr+ADi9/1JxBvixi7PDcSeWso5ANtyG2b49xDCh0MI/xpCeBtitOMViCYN8kbEXvBvIraPJwD4keqz9qaO+JtOoP3vTvz3AOJ3WXOOAu6ZH6nq8DgAO0MI3xFCuKv67J5qeTk64zsQf4O3m9leM9tblb8HwDPNheI7rs7UuVe03ONmdiViINcsotnvaxGvwwewfjsDOmw/PWAlhHDKlS2h/nnE819YLb+Itdd0CfF+bffs7AmVqHgngEsRrSL+/ngWYqTzzwH4pEW//cszYmENG+4JhRDuM7PfR7T/PgrRZ0EuQvSvpOtAtLUCMWz1PIBnh8QHVT0ETuROlzn/FwB8X/UFvxLAjwJ4g5ndGUJ4F2KP9giAurE8n2nz9ejfqON4VaeLM59djHyD3gwX1ZR9rMvj/A3ijUnOdbpjCGHVzN6EaPc/AuC9XZ67p4QQHjCzo6j8a5Vf8ZkAXhlCaISym9mXd3jI44hmnA2N7euEMbxnbg8hfLhm2w9X9foOAL9bs00KVdxvVX+e5yGG4+f4d6xt172k5ToidrZ2IkafHmWhme3sUx0GzbFqeQ2iJcWTCyzpGZXafwfi0IZvCiHc5rcJIdyP2Ll9iZk9FjG+4ZcRBccb647dkcIzs0tqPnpMtfTRaM9z689HfJj8S7U+i2gGaDQmM/tmbEDSh8jH0OzpP65avruq392VMvB/vueT8l4ATzSzr6w55wLiTfbc1CxoMdLp6xD9PL3kuy0Z+G1mTwFwCHEMUceEEI65a+ADHdbjDxFfmq8JWxdEAKDRJg+gefNtQ1TGvnd/bWb3c4jO+gaVWekWAC8wFx25ifrlGNd7xp9jCTEo49vN7Dm5bczsW81s1swuRDSnvgNxvKf/ux9tzJohhFO+rp3Wc4MwWrnhzjCzxyEG6vQTdlA33T7X4b1o+gpz7eCu9Q6wUSrT6VsRVfO3hxA+st4+IYRbQwg/jRhX8Lh223aq8D5pZu9DNKncgeik/jbEN+xbQwh+wOO3mdmvoXpxIEbh3Zj4Pd6NGHZ8g5m9EdEP8Qto9mbbYmZfgdhLfgtiRN0k4oPtPKJZAYjRRd8D4B/N7LWIvdM5xBv6G0IIz2xzitcC+C8A3mdmr0E0Qx1AVBAvqW78X0CU3H9rZm9A7PG9CtGf8eudfI8u2AXgr8zsegAHEU1Sn0ViVjSzPwDwwhBCL/0Xa6j8Uhvy0fSAJ5nZCmIn7XJEpbmCGIGGEMK8mX0IwE+Z2WFElf4i5BXbrQC+wcy+HfFhejSEcCdi1Ok/APigmf06oknnSgBfFUL4sS7rW9o9k+NXEJXkWywO/fgbROvHIUTF+mxEM+b3Ij6LXhtC+IdM3f8IwEvN7ErnC98q3ouoJv7EzF6H+H1ehf4P/L61Wv6Ymf0p4m/XrZVnXUIIt5rZ/wHwu9WL/B8RX7YPQ4xveH0I4Z/r9q9MvldVq/sQI6y/u1r/UAjhi9V2L0YMVHpKCIEdu99DDOp7BYBlWzvs5u7KSnIRYufoTxHb6Api0NQOAH+33pfrJFLmJYjOw7sQo7gWAHwUMbpnJtnuWsSewTdWFTqN2MB/C8AOd8wfQ3wQnEEcZ/FURGV0U7LNNcgPcL0QMXPD7Yhv9YcQH1RPd9vtQ7yJ70C0Px9B/PF+ooPvfCGiKeZwte891Tm3Jds8A1FlnUF80b0DwJe449wEN1AZzWjEH3Dlr0QS8Zhs98MAfgNRzSwivmivcPvegMpV06s/JFGabbZZU+eq7E7kozQfmds3c12uzRyff6sA7kN8eD4xc13fhTgk4QiA/4tofgoArkm2e0zVDharz9K6fnV17BPV73obgJ9p93vWfOexvWfqzlHTPgwxUvYDiGbjZcSOxJ8hvkSB+ND+HACrOcajq/O9spftuzr2elGa76v57AXVtTyL2CF+DmKg0W2uneWiND9Xc651oxkRA6DuQ1PtX4z6KM3zmf3vB/D7ruwZ1f5f78pfVLWzRcR76lOI/vFL1qkjo0lzf8/PbPdkV7+6fV9WbTOH+GK8FfF+ma+u33PXu35WHaAnWBww/EbEsObPrbO5WAeLg8vvAPCDIYQ6/4UYYXTPCDE4NFuCEEKIItALTwghRBH01KQphBBCDCtSeEIIIYpALzwhhBBFoBeeEEKIIuhqkPLs7GzYu3fv+hu2ganO0pRnvsynQ9uIn5H78FidHKPdNv4z+T7z12B+fh6Li4st+ex60XbEeHPixAm1HbEh6tqOp6sX3t69e3HddddtvFYJk5PN/MhTU7EaMzMzAICJiYk126ysxCxWq6vrT8FU9yLKlbOMSx7fL3PblMq5c830m2fPnl3z2dTUFG68MZ9TupdtR4wn119/fbZcbUesR13b8cikKYQQogj6lndxPajagKaiW16OeX+9siNUV7kZILzy6sSU6VVbndJb7zglkf4muk5CiFFCCk8IIUQRbJnCS/FKzgecrDOnX5Z2SsMrujplJ7XSSqrm+P/58+cbS12zwUJrCK0k6f/+vpElQ5SOFJ4QQogi0AtPCCFEEQyFSdMHo3Dpy3NDA2jS8aYYH8SSDoOoC1bxn4smuWvFICN+try8PPTDNlLT33oM03dhvaenpwE0h/Bs374dALBt27bGthzmw324Tvgb0pWQ+01ppl5aWgLQHI6ysLDQk+8jxFYghSeEEKIIhkLhEfY4fRBLJ/v0ajuRJzf4n/+z97+VQSte6VDVUBF51QOsn9En951ZRiVEBcQlldFmrkOq1lh/lnG5Y8cOAMDOnTsBALOzs419qP78ktR9T6D5vZhUwC+p8E6cONHYZ35+vpuv1zPS8+7Zs2dL6iBGCyk8IYQQRTBUCk8MLzkfHsuobkIIA1F4qZqZm5sD0FQ8XFIJUflRKXEJrPXr5qBao+oBmkrnzJkza5aLi4trPuc18fsDrdYG1sPXOf2u/J5c7t69e82SSg9oXgMqOx6X6pbnT4eTEKp1//2o7Pg5zwsA9913HwDg2LFjGCRHjx5t/C+FJzpBCk8IIUQRSOGJjvCRfen/gxqoTxWT9uZZRlXEpfdx5dQTFZCPYvTKNU2YTSV38uTJNUuqNPoFc75Cr+x85CXrnNaR9aei4nfn7AEsp/JLj1fnw6OioxrNRaPWRUiTXbt2Nf4/ePAggOa1oSrsF953LESnSOEJIYQoAik80RFUQam/J6f6+gEVj1dzab3q6kQVQAXmpzRK9/HjP/ld02hOHocqius+CjQ336NPZUe4j1+mx/cpxLxqTH2Gvozfh+W8Brw26b4so1pjXemH9NGpaV2oPvut8BghmtZBiE6QwhNCCFEEUniiI/y4NqCpAqg+lpaW+uLH4zFPnTq1Zgk01QXr5xWYn1w49Wd5vx/38YosVWssoxKqi9pMlSS3rcsGxOOzbqmK9uP8vELNZT7xqszvy9+N+6aKzGdfqfPhtZscuZOpuTYDVe4ll1zSl+OL8UUKTwghRBHohSeEEKIIZNIUXZGaNPk/TXCrq6sbmrtwPWgS7HcYOk2bPulybrA6t6G58PTp02vWu4H7PPTQQ2vOAbQOaOcwCJ7fDxRPt+W+fuD7qMMhGUJ0ixSeEEKIIpDCEx3hkyYDzeAEKpLV1dWRnlopN2RhK0iHeTBBMq87A1u4TRrAI4RojxSeEEKIIpDCEx1BH1Eajl43sHmY8IO9u5kAdpigP47LzcDfa1SvxUc+8hEAwFVXXbXFNRH9ol9DW0azxQshhBBdIoUnOiKn3nzS4ZmZmb5EaZLcQHAP6+mTOPezXqPGqCo78vGPfxyAFJ7ontFu+UIIIUSHSOGJjqAqSG3qXkXt2LGjp+qB4/voK8xNvcMxcoxi5D6MZhx1NSOacKLZCy64AMBaq8N6k/mK0aJvaen6clQhhBBiyJDCEx1BdZXzhfUr6o/j4tiTz/XimWkkTbgMrM2OIsYDRqiyPTC7DbB2UmAh6pDCE0IIUQRSeKIjqJjSfJZUXPSfrays9MT2TsVI3x2Pzzqk5+D/fpJYMT6srq7i1KlTjTyinBYoHZMohSc6QQpPCCFEEeiFJ4QQoghk0hQdwalyuASaof80PU5NTfVkgDePQRMmTZw0bc7NzTW25Tbbtm3b9HnFcLKysoL5+fnG9Ek0Ww9Lsm+xtczMzHQcMCeFJ4QQogik8NAMvhjG5MfDAq9RGu5PtcchARMTEz0JWqHC86oyNyGrGH9WV1exsLCAo0ePAgCOHz8OADh06NBWVksMCd1YlaTwhBBCFIEUHqTsNgqVXarwesmOHTt6ejwxmpw/fx7Hjx9vKLt9+/YBaPqORZnweTM9Pd2xypPCE0IIUQRSeKIr0vRefuodJfAV/WBpaQl33nknFhYWADR9uIcPH25sc8UVVwDQNFAlIoUnhBBCOKTwRFekfjpGTXIM3OTkpHrYouecO3cOd9xxR6O90eeeppGjP0/jMcshjdqWwhNCCCESpPDEpmFPq1+TNgqxurra4iPetWvXFtVGDAMbiQqXwhNCCFEEeuEJIYQoApk0xYahCZPL5eVlmTVFX5iYmGgJTDh27Fjj/yuvvHLQVRJbDJ813czDKYUnhBCiCIpReKnDm9PNSI10D68d0Hr9zpw5s+ZzIXrBxMQEtm/f3riHqfRShSfKZXFxsePnjhSeEEKIIhh7hcfeYBrCqmTRG4eJolPYu5LCE/1iamqqReGlbZH3tNLblcO5c+ca/0vhCSGEEAnFKLzl5eUtrsl4kPaq2atiWTcpfoToFDNb065orTlz5kyjjL392dnZwVZOjBRSeEIIIYpg7BWefEq9gSoujcykamaZFJ7oByEErK6utrSttC2eOHECgBSeaI8UnhBCiCLQC090RQih8Xf+/HmcP38eExMTmJiYkMITfWF1dRWLi4uN9ZWVFaysrGBmZqbxd+LEiYbKE6IOvfCEEEIUgV54QgghimDsg1ZEb+DA3jQIiObLdLCvTJrdMz09DaB5bZUYYS0hBJw9exYzMzMAmvMvnjx5srENr6EGoPcHXs9hTMvoh620QwpPCCFEEUjhiY5gjy5VeOxpLy0tbUmdRhX2lhlC79VIOrj/9OnTg6vYkGJmmJ6extmzZwEA27dvB7BWCd9///0AgL179wIADh48OOBajjfDbHXoZuZzKTwhhBBFIIUnOiKn8HzZ+fPnh8q2PyzQv0RFTF/Utm3b1pTnkiKThYUFAMPlOxkUVHi8Lkx4kPbsH3jgAQDAgQMHAAC7du0C0FSDQgBSeEIIIQpBCk90RCcKT9MDNaGqA5pKjgqO143rVHhULOm+LOMyjUwshampKRw4cKCh4tjGUt8xfZ3chgrv0ksvBdCdn0eMFisrKx1bPtQKhBBCFIEUnmiL95ukPSlGbrGnvbS0VKSPKUeqdL3PyUdltkuKTLVHlcj1kqa7mp6exqFDh3D06FEAzeuT+jo5PRCV3t133w2gec33798PQD690pHCE0IIUQRSeKIt7EXnsoDwfy7Pnj0rH15F7joRqgxeW44v47XLXUP/O5TEzMwMLrnkEnzqU58CkI9U9f5kLo8fPw6g+RvMzc019uH/VM9i/JHCE0IIUQRSeCJLOrYOaPrpUrXiVYd8eJ1BRUffHRUG/XKpf86r6BKZnp7GpZde2hi/SH9dGnnpcz3yerE9lnz9RBMpPCGEEEWgF54QQogikElTZKHZyJvUcsEYNHcqtVh3nDlzZs1S5JmcnMT+/fuxe/duAMD8/DyAtcM5aNL0Qz78tFZp+xx0W+U9pSCZrUMKTwghRBFI4Yk1sNebqjYgHzLPbUoaBC22DiaGzgVQMaDFKz0Gtvi0bmlZP0nrSCXPujGlnBgcUnhCCCGKQF0MsQbfe/bDE3LDEogS9Ip+cujQIQDAQw89BGBtW+Rgfq/ofPLtQai6lNT6wXNzWMrOnTsHWhchhSeEEKIQpPDEGnw0G3vRnSi8EtNeicFx8OBBAE01l7bFOn+Yn4IpjeKk368f+IHvQFNlyne3dUjhCSGEKAJ1NQSApq+Bqs1PweKVXrqNxt6JQbB3714AwI4dOwA0fWHtoNXBK720rB/wvKlfm5PSiq1DCk8IIUQRSOEJAK3j7ryiyyU29p/Jhyf6CTOUXHTRRQCAe++9t/GZTw6dG3c3SDhRrxgupPCEEEIUgV54QgghikAmTQGgaZ70Jk2aK2nyZALc9H/uo4HnYhBweMIDDzzQ8plvg960OeiB52K40BNKCCFEEUjhFUxuiEGdouN6OpWNH8IwNTWlHrToO1R4aWouThlEvLLLDRMQ5aFfXwghRBFI4RUMVRvQ7AFT4VHZUdFxvd1gX6VMEoOAqcX279/fKGM7rbMwjLvlIff9lBCiFSk8IYQQRaAueYH4qX/SMi6p5BYXF9csU1Xo6WcyXiE8nBAWaE4ZRAsFFQ8HgNP6MK6qJ+eb5L3MhNl166POxMRExwpeCk8IIUQRSOEVCP1xaZowKjr6QqjouL6wsABgrSr0qcS66WkJsVmYYgwAjhw5AqAZrUkVw/bI9XR6oHEip9bo6+Q18FYcr35T0mjsYWd6eloKTwghhEiRwisQ+uHSiMs6RcdtctGZVHjy3Ymt5sILLwTQbLdULX5ZUlJnWnD43bnuJ3dOLT1M0D03N7dmX+5z8uTJfle7a6TwhBBCCIcUXkF4tXb69OnGZ/yfPWQqPpZTFaY9KT+pZjc9LSF6Cf15hw8fBtCcJJbWB7bLkjKteJ9dJ9BqwyxK9HnyunES21OnTvWsnhvF/7adUM6vL4QQomj0whNCCFEEMmkWBM2THJZAs2X6P00VfluaOlLzAU0KNGlu27ZNJk2xpTzsYQ8D0GzHGzF7lQwDWLzpl9exXeKJQcMAm8nJSQWtCCGEEClSeAXAQBQu2ftNFR4/o7LjNn5weTpIlZ9J4YlhYe/evQCaSoSDr5XYvDvqglfSCaCHhW4CkaTwhBBCFIG6PWMMe2NUaxxU7ocgpGUcssAeMm36HLCbpmbiYNSSQr3FcMO2SGXH9qrkCJsjtQYNC+mA+U6TgutJJYQQogik8MYY9sqo9Hx0Zjp41A9Kp8LzUZqpL4T/87NxmW5EjD4ceM42Oq5Jo/vNMN/T6bNJCk8IIYRIkMIbQ7yy8+qNn6cJob2SY3QWl4y+TO3m7EWTs2fPtkR1CrEVcIyWGF+o6paWljp+7kjhCSGEKAIpvDEh7eGsp/Co0nIKj747Kjv2orie4sc2LS0tdWxLF0KIQSOFJ4QQogj0whNCCFEEMmmOCekQA5ol/ZJmT5o005BjmjdZxiAVmii5b2qy9CbNlZUVmTSFEEOLFJ4QQogikMIbcXJT/bCMSo4BJ1zPDRRnGff1Mx1rcLkQYtSRwhNCCFEEUngjChUXE0Cn03b4tGDel5eDvjfvwyO5aX+oGOW3E0KMAlJ4QgghikAKb0TxacLSlF9+8LhPu1NXDjR9dj46k9MDpZGZ3jdoZlJ7QoihRQpPCCFEEUjhjRg+KjPnl6Mq8wqu3fp6Pjsqv3SyV/r7WAc/Lk+zuRSmAAAUW0lEQVQIIYYJKTwhhBBFoC75iEA1RjXloynbTY/RiV+Nx0kVHNA6gWZ6LJ9YWplWhBDDjBSeEEKIItALTwghRBHIpDkicBiCH1LgTZBpGZc0R3qzJctzn9E02ckAdJkxhRD9JH1WbSa9oRSeEEKIIpDCG3J8IujcND0er+i4zgAUqrhUrdUdj+VcpgPct23btuY4CloRQvSDVNX5qcu6QQpPCCFEEUjhDSl1wwxyPru6cj/Fj08Plg4U9+fjvn4QO32IOSYnJ7M+PiGE6BVSeEIIIcQ6WDdvSTN7EMBd/auOGAMuDyEc9IVqO6ID1HbERsm2HU9XLzwhhBBiVJFJUwghRBHohSeEEKII9MITQghRBHrhCSGEKIKuxuHNzs6GvXv3tpQzGwgAzM/Pr/nMZ/nw62mZzwGpMV2jx4kTJ7C4uNjyw01OTobp6elGxgQuma0FAHbv3s1tB1FVMWTUtZ26545ojw9I9FmTctvVbbPesbsh91z3uXy7fQfUtR1PVy+8vXv34rrrrmspv+WWWxr/33zzzQCAmZkZAMC+ffsAABdeeGHjGOkSaD7ouNyxYwcAYPv27d1UTwwB119/fbZ8amoKl112GY4dOwagmQz78Y9/fGObq6++GkBzgLwoi7q2U/fcEd3BpBFMD8i5NdNkEj45PTumfMH5RBRpwgqfvMKv+5cZ0Ozc8p6fm5sD0OwI812wHnVtxyOTphBCiCLoSWqxkydPNv5nr4EKz09F4xMb58pkyhw/QghYWlpqSYLNHh0gZSdEP6Ebiaot5zqoM3d6teaVX7rNembRdknrc8ftJVJ4QgghiqAnCm9xcbGlzE8gWqf00s/8tmJ8CCFgeXm5xUcgP60Qg4XP3rpJnoHWZ3Cd4kqn7fF+v7rzpsf2dfCJodtNdL0R9GYRQghRBHrhCSGEKIJNmTQpXXNzpHkTZrtxeD5cVSbN8YMmTe/Y1m8txGDJzYfp4TPdP+N5/3LsNYPQ0m38ttyG+6TurLo69Ou5oKeNEEKIItiUwuMQhBx8Q3tllwta8c5MTVk0foQQcP78+UaPkUMQdu7cuZXVEkJk8CowzYgEALt27QKw1rpHJVc3eJ3vizQzF/fxz/x+Wfuk8IQQQhTBphQe375paDnDStkzYE++XY60XJoaMX6srKy09OSk8IQYXVIfXDufYEo6jO348eMAWn2G/XoXSOEJIYQogp4MPE/trEwp5m3ALKfiy6UWy0VwivGCbYXtQAPPhSiL2dnZljIqvX5b+aTwhBBCFMGmpBRVG5dAM5qHPXe/TS5Kk719Hwkkxgsza6h3+u40950Q5eLV3sLCAoD+TSAghSeEEKIINqXwGHHHyTyB5vgMTvvCdfboOfErJ3sFOp/kT4w2ZtbouVHVp5kahBDjByMv/dRgQOsYbD+FUa+RwhNCCFEEeuEJIYQogk2ZNB988EEAwKlTpxplNGXSZMkly/1M6KIMzAyTk5MNkwXbhQKVhBhv/Fx3OTcGzZx+WFu7Ofs2gt46QgghimBTCu/06dMA1joYGaTCJYcn+NRiqeMyTSaa24ZLn65MjA5mhpmZmcZveODAAQD5QahCiPGBz3Nac3JWHT/dUC4FZU/q0tOjCSGEEEPKphSeH2Se/s+evJ8I1k8gCDTttNyHwxS4j6YLGn3MDNu2bWv8/o94xCO2uEZCiGHBqz8ljxZCCCE2waYUnvfTAa1+NtpgOTidNtrcwEK+3fmZT0PWr3Qzov8wSpNq/dChQ1tcIyHEsNKvKH4pPCGEEEWwKYXHKdvTSDsqO46noCrjG9tP9Ac0VaGP1qQvjwpS0ZmjCxNHX3zxxQCUNFpsntTiIz+/6AQpPCGEEEWwKYVHBZYmgqaC82MviI/IBJrKjb1+JphWFo7xgVGaHH8nxGaRqhPdIoUnhBCiCDal8O6++24Aa6f3oV+Pqo1LP64ijezk/sy3KcaPyclJ7Nq1S7+x6Au0KPG5wmjwTqafoiXJxxCI8UMKTwghRBHohSeEEKIIepJaLDVTcaogmilp0uQwBAarpAEpMnONPxMTE5ibm2sEJAmxWdJhCX4IE58z3qTJ4VJAM8BOpsxykMITQghRBJtSeEwAfM899zTKqOQYMsweFntTJB147FOJifGD0wPt2bNnq6sixoR0WAJTF1L11Q1ZYFCdGA34u6ZBjp5cmso6pPCEEEIUwaYUHllcXGz5f+fOnQBae1xcT9/KJ0+eBND09zFVWb8SiIrBMzExge3bt2vCV9EX+DyhP66bXr8YXvg7pr7YzaSY1BtFCCFEEfRE4aX2VdpcU9UHNKOm6KfL2dKp6Pg2V2qx8WFqagoXXHDBVldDjDmdDDQXowMtg2kkrVd43VgCpfCEEEIUQU8U3sLCQuN/P+6OKcWo7Kj00jE0/jNNAzR+TE9P45JLLtnqagghRgCv1NN1/u8nGe8EKTwhhBBF0PMoTcK3LhUe7ax+Ytj0Myq9QUVn+shR0V80zlII0Ql+soF03X/WDVJ4QgghikAvPCGEEEXQE5Pm/v37G/9//vOfbykDmuZDmrXSwBSaMNNZ0PsJh07wfIM6rxBCiHr4nuA7gcGPaWrKzbhGpPCEEEIUQU+kTW7KF4aO+iAVH6ACtA5K7wdpMln+L2UnhBDDg0/6nQtQqUsM3glSeEIIIYqgJxIn9cdR0flpgvim9sMUgMGEq6e9AqUsE+NGOrRmMz1gIbYSvheYSixnjeO7ZSMJSqTwhBBCFEFPFB6nAgKa6skPHvfRNmnUTS7dWK/RVENinEnbt6bGEb3GW+q4nloTfJyGf57nEn344/p3AS2G6ftiM+8JvQWEEEIUQU8UXvrG3bdvH4DmG5lve29vTXsGPsG0EKI7UlXH+0hKT/QKPuPZtnJ+Yh9RWafwcqrQR8zzPDxmLhXlRpDCE0IIUQQ9UXinT59u/E+bK7OZ+OhM31Pw/wshNgeVne+NbybprhgfaH3rZBxyXYL9nB9tved4N8qMx/d+QWBz08dJ4QkhhCgCvfCEEEIUQU9MmnNzc43/7733XgCtpkyaWZhyjCZPoClRNXRAiN7Be073lUihKTOXBMRDk+Kg5w71gVebMWOm6E4QQghRBD0flnDBBRes+cynGMuhnuj6+J6WEJ2iYBWRo90wAU8ng8g3Qp3K9NPJ9SrRv94wQgghiqDn8+Ps2bMHQNNXt7i4CKC1JyA11x1SdqJTfCg30/0xHH1paWlrKtYj+L2kXDcGrxvbQaqectO3Aa2pIXPpw7oZwuDPV1fe6/eE3jpCCCGKoOcKj9E0TDHGN3QalQms7Z2ppzb+rKysYH5+vmEBEP3D99K9/4O99VFNPSZrx8bwifup8FIVVaeofBIDHmMjA9Bzk3HzOJ1EjrY73npI4QkhhCiCnis8sn379jVLph/L+Q/UYxt/VldXcerUKSm8AeDHtebSM40yOR+eniHrQ1VGa9tG1BmtBVzmrASbSRW5kTbaTaToeNwBQgghxDr0TeF50kliRe8YlfF5q6urOHPmzMAzNpRCmonCZ6Xw13pcpg9KfZP8LooHaMXfc36Sbq5vhFFL/C+FJ4QQoggGpvBEb6kbJzOsrK6uNsZkio3j/XFUOTnfR132CvpyRoWJiQnMzMw0/P9UcamS5Xfldxv2+2GQeGVXMlJ4QgghikAvPCGEEEUgk2aP8KamfoVM05TJmeVzphuee5gCWUIIWF5eVtDKJqkL284N5vVtg+a+UQvsMLNGewdaEwun0MRL8ydTHA4TPtWbzK+DQwpPCCFEEUjh9Yi6XnWKT/XEnjbLffq1HBzI74+Z9trZq/WT7241ZoZz584BAHbs2LHFtRlN/G/J9VQBeYXPdV77USOEgJWVlYYyYvtOrQR+KIZXwsOk9HjPcsnfZVju03FGCk8IIUQRSOENgPVCyLk+OzvbUkY7vw8p98fK+XZ8+Pkw+PaOHz8OQAqv16Qp+0Z9+p86vM8uXffp1Pz9wG1TpbdViorDc2itGZdEAKOAFJ4QQogikMIbIHXRcbleqd/WKz2/zE3iyCV7jp1ERvZT/ZkZTp061bfji/HEzDAxMdHSrtP2TJXEMvo0vXUlF+1JH9qglXG7JM6iP0jhCSGEKAIpvAHA3med746kNvw6JUflR19Ezu7PHiOX7N36SRtzY7f6hZlhenq6Uf+NTPS4VeQiYHlNRy157ijCtkN1lrOUeIXn1SB/r1RN1Vk+Bq30hmm87Lgz/E8bIYQQogdI4fUIr+Jy/gX25LiNH7uX9vTWG0NXp/iAZsSaz2ris8Ckdex39g36Yfh95ufnAQD79u3r63k3g1fXQNMHJL/L1pGb0Nbfdz6KOdfmfeQzlxtReP78irgcTqTwhBBCFIFeeEIIIYpAJs0e4c2SaaqjnMM8t0/O3ELqTI65Oc64bTpUIT1+zuw6CBNMatJcWFgAMNwmTV4fBaZsLSGERnoxoDlgO70n2Kb5W/lUY7nUYtyH23J4Qi4BvMe7MJj2jHXk/ThMKc2EFJ4QQohCkMLrMTnF5XuddUorVVnclg50DlKtC2HOBbz41GK5RNODglO88HucPn0awNqExpqRWeRgwBPbc90wH6B537TbJj0u0GqBqbtPcoFo/nwKWhlupPCEEEIUgRRej8lNE0Q7vp+40vsZcirND9D2/r5cQmhfB59ijAyyFzoxMYGZmZmGomNv/cyZM41tpPBEDloHeB95fx3QOtWWt6ZwPefr9uosPS+QH55Cy0ud6pTvbjiRwhNCCFEEUngDoG6qH6qddimTfCSZH5CeGwBdpwK3Mo3XxMQEZmdnG9+ZPeA0mfTu3bsb2wpBJicnsXPnzobfNy0nvIdYRmtBXSRm+r9PE9dNUgFviRHDjZ4sQgghikAKbwCkvUqg1b7fzt7PSWF95Bh7oT4SE2hVeJ2O6esn9MPw+5w8eRJAczJMoOkX4TgrIcjk5GSj7fjxeEBrxDMVnVd+qSr0Y2Z9xOW4TqRbMlJ4QgghikAKb8hJFVDKjh07ADR7ozmlR4Yl0fHExERLTzvtcdNHI4XXxEfn+sTgPtIQaI0KHnVCCDh37lxLJGTq6/U+O65TFabHIrx2HBtKXx6vcRpBLMYDKTwhhBBFIIU3orD3SaWXjqnz/ow6X94gMTNMTU219LxT/yWnDDpw4MDgKzgE5HKcEp8VpKSowJWVFZw+fRq7du0C0DrGLi2jdYDti/dHbnws/6cVhW2T9xYVpbKmjA9SeEIIIYpALzwhhBBFIJPmiOKnrEnXvQmGZjA/PGKQmBmmp6cbdeMyNc3RREXT5p49ewZcy60lZ3L2psu64KRxNruFELC0tNQSuJMOG9i5cyeAVlMml7kUfLxmc3NzAJqmTQaxcH1crq1PWlGXZD79jM8VH/wzqkjhCSGEKAIpvBHFh2Gn+JRi7YYsDBImkAaavei0/lSipSbezSUp9pQ4GDqEgOXl5ZYgrFy7piJhW2J7yyVQZzujeqHSY9AKA2C20jLSS/h9vZUll1CbbZDPmdwk1aOIFJ4QQogikMIbMdhjJe0SLedCsbcaP31L6qNir1yIlBDCmjbMdp22fX8f+DRhVCppe6Nyo5+PSo9JzBcWFgA0EyIM0320Eerur1S1eRXNazPqyo5I4QkhhCgCdalHBB+V6VNL5RjGHqmPtEt75t73SJ+DnyhXlIWZwcwafl/61tIUdHX3g09TR8UCoGUyYio8lvuITz890ajhU7Plpg0bFyVXhxSeEEKIIpDCGzF8DywX0Zcb4zYs+Ak50+/Dz6jspPBECpUXl2m78BHJbDs+0XTqx6L6Y+QrozSpJP34vFFXeIT3nLcalYAUnhBCiCKQwhsCcnZzKjc/rshHo+XGx7CXO8zTw7Sb1oifDXP9xeAIITTG4gFNxZWqNaoy+t2o+KjeWJ6bUshnY+E+PkqT2wPjMzavNKTwhBBCFIFeeEIIIYpAJs0BQDMKTXV+frp2wSU+lNibMLlMU06NuimwRGe6aM/q6mqjjXszP9AMQKFpM5c2C1h7b/jZ0bmtT0TNefhoSgWA48ePAyg3Dd6oIoUnhBCiCKTweoxXc+n/PjiFyq7dYE+/r9/HD9IeZeoGxoqyYWox3/bT+4ZqjPcBE0BTtXHZLhUf2x/VIqenyt1jPM6pU6fWnE9tdriRwhNCCFEEUng9Jqfa/ODXOj9cbjLUdscFRn+6GJ8MW4g6eN+wzefShFFpcSgBt/VDDoBWtUefIH16TCKdww8T8opPDCdSeEIIIYpACq/H5Hx4vhfo7fw+ajPFR3L6iSyHMUF0N7TzX7bzt4hy8UoPaEZnzs/PA2iqNJb7VGNAazQwVZuf/JS+vHR7f8/6diylN5zoiSKEEKIIpPB6hO8t5pQLVVpuAstOYU9V0WCidNL0Xoys9L48jp1jmjBGc6as5y9nEunU3+wnV/Z+eK8sxXAghSeEEKIIpPA2ie8dUrW1SwhN2Bv0y9z+4+KzE6JXpPcLFRWnDOI6FR59auk+jPL0vnWv2ujbS6049Ov5bX2Gl4ceeqixj+7drUcKTwghRBHohSeEEKIIZNLcJJsxaXI9N3+dnxNO5hAh1pLeL7w/OFSBSwax0LSZm3+xbrgQg1Ry9zKDZPbv37+mLt71kB7zxIkTaz4Tg0cKTwghRBFI4W0S9v78sIS0Z7eeWvPDFdL/R32qHyEGAZWbHwbA4BUGnqT3Hu9dKjlvnfHKL72n/dRCTEPmt82pOSm9rUMKTwghRBFI4fUI31tLFV+dosspOyJlJ0Tn+MTsPlk0l6k/zg8W9z47HtNPPJvuw3ubwyE4SJ2Ks93EzJxEVkkkBocUnhBCiCKwbpSEmT0I4K7+VUeMAZeHEA76QrUd0QFqO2KjZNuOp6sXnhBCCDGqyKQphBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUgV54QgghikAvPCGEEEWgF54QQogi0AtPCCFEEeiFJ4QQogj+PztdORYhrPtNAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuUZFdd77+/fs1M98xkZjJ5kbkJCQ8R8RV5KWBQeWR5VQQEWVeuRFSCz6vXK1fwQXDh67oAkSsaFYlRFESNqFweAsYYBRUBeUQIgbzIeyYzPdPdM9M93fv+sc+3avev9qmu6q6qrqr9/azV6/TZdR67Tu1zzv7+fr/92xZCgBBCCDHuTGx3BYQQQohBoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKIKOX3hm9p1mdqOZPWBmJ83sDjP7KzO7op8VFNuHmV1rZsHMvmRmLW3FzF5dfR7MbCopv93Mrt3E+R5eHevKpOzq5BzBzM5Ube8tZnbhJr/XT5jZ8za57w1mdlOH247lPWNmT3e/yUkzu9nMfsHMdrltzcy+x8w+aGZHzGylak9vN7Nvqjn+31XH/R89rvfDXb3r/m7o0fkeUx3vRT063uOr+2GvK99ZnednenGerWJmz6t+31urer13E8d4jpndZGYLZnbczP7VzJ621bpNbbwJYGY/DuCNAP4AwK8DWATwCAD/FcA3A+j6C4mRYQnABQC+CcAH3WffC+AEgD2u/LkAjm/iXPcC+HoAX8h89lQAqwCmATwWwGsAfJ2ZXRZCWOvyPD8B4CYAf7mJOnZEIffMjwP4NwCzAJ4N4NUAHonYLmBmkwDejtge/hDAmwA8BOC/AHgBgA+a2f4QwjwPaGaHEK8PquO8sYf1ZftK+TCAawFck5Rtpu3muL063+d7dLzHI17j38f6Op6uznNnj86zVZ4P4CsB/BNi2+iK6t55HYDfAHA14nvqss0cq4UQwoZ/iBfy+prPJjo5Rq/+AOwY5PlK/kN8EHwJwAcAXOs+eyqAtWqbAGCqT3W4Ond8AD9QlX/5Jo55O4A/3mR9bgBwUwfbje09A+Dp1bV/hit/a1V+oFr/uWr9+TXHeRaAWVf2ymqfd1fLx/X52gQAr92ua9llXV9e1ffQdtWhw3pOJP9/FMB7u9j3UQCWAby8H3Xr1KR5AMB9uQ9C0rs2sysrCfuNlelmoTJj/FbG1PEaM/tYJVcPm9mHzOzJbhuaTp5nZr9nZg8CuL/67NFmdn1lLjplZnea2Tudae0cM/sdM7vbzE6b2WfN7GWdfOFq3zeb2V3VvneZ2R+Z2Y5kmyvM7MOVSWe++s5f5o5zQyXNrzCzT1TbftzMnmRmU2b2y2Z2r5k9ZNGEOJfsSxPMD5vZ66vvumRmf2tmD+/ke/SI6wA838zSHtb3AvhHxJfHOsyZNJN28WQze1v1m99jZr9pZjuT7VpMmm1gD3c62f8JZvbnlcnspJl9rrq+u5JtbgdwMYDvSUxYaV2/umpXR5JjvDLzHZ9Rtd8lM/u0mT3XbVLcPYOo9gDgkWY2A+CnALw7hPAXNdfh/SGEJVf8EgCfQVThXN8WzOwjZvaB6lr+h5mdBvDS6rOfrD4/ambHzOyfzOxZbv8Wk6Y1TX1PMLN/rtrPLWb20g3q8nIAv12t3pW03fMtY9I0s1+1aP5/TPUdlqr78sXV5y+tzrtQfX6xO5+Z2Y+Y2aeqtvKAmV1jZmdtdN1C9xaXlB9EtCq9pd1GZnZh9Sy5t2qn95jZX5vZ/nb7dWTSBPCvAF5iZl8E8K4Qwi0bbP/HAP4MwJsBPBHALwCYA3Blss2FAN6AqCDmALwYwI1m9nUhhE+5470JwHsA/HcAfEC+G8BRAD8E4HB1vG9F5Ze0aOe+CcAuRJVwG6LZ5bfNbEcI4U11la8u2j8jPrReC+CTAM4F8BwAMwBOW/TDvBvAhwB8N4DdAH4RwE1m9jUhhLuTQz4S0az1SwAWAPwfAH9d/U1V1+XLq20eAPAKV6VXAvgEgO+r6vHLAN5vZl8RQlip+x495C8Qf8vvBPAn1UvqBQD+F6J5qlP+CMCfAngeognmasTf8NUd7DtpZkDTpPkqxAfjp5NtLkK8Ttcimlq/ArHtXQqAD53nAvh/AP6jOj8APAgAZvZERAV3K4CfRGybjwLwVa4uj0A0tf0KYtv7KQDvNLPHhBBurbYp6p6puKRaHkM0v+1DbOMdYWZPAvBlAH4mhPB5M/swYsfkZ0IIq50ep8c8DvG+/EVE1f5gVX4xohn0DsRnwnMBvNfMviWE8PcbHPNsxE7k66pjvgzAW8zsP0MIH67Z5y8Rr+8rAHxHUo8jACZr9jEA7wTwO4jPnB8HcJ2ZfQWAbwDw04i/9RsR781vTPZ9A4AfrpYfRLzPfwnAY83s8i2+1NrxVMT7+koze1V13i8C+PUQwu8l270d8Tr+TwB3AzgfwDPRbOt5OpSZj0Z86Ifq7zDig+tZbrsrq89/x5X/LKL/5dE1x59EfPB/DsAbk/KnV8e73m1/sCr/jjZ1/nkApwA8ypX/XlX/WhMcYuNeBfC1bbb5KKJtfiopuwTACoDXJ2U3VGWXJmXfUdX/A+6YfwngtmT94dV2N2O9meApVfn390P2J+e5FsCXqv+vQ2WaAPBCxF7YXmRMjoiq79pMu3iNO/7fArgl832vTMp4fP/3nwAe0abuVrWpFyOaXs929WsxaQK4EcBdcGY2tw1/z0clZedW7eVVJdwzyTmeVdVhL4DvQuzMfbza5rurbZ7dRXt7c/WdL6zWr6qOcUUf23itSRPAR6r6tDWbI3YYpqr2846k/DHV8V+UlL29Kvv6pGwWwDyA39zgPFmTJuJDPiB2FFj2q1XZC107DYiKfy4pf0VVfl7SdtcAvMKd51u6/T3QvUnzdkTrzf2IavpbEH2WAcBV1TaGaPZ8Wbe/d0cmzRB7p18L4HLEt/wnEHs07zOzn8vs8mdu/e2IjeKJLKhMQn9vZkcAnEF8iDwasYfnud6tH0F86/+qmf2gmT0qs88VAP4FwG0WTYdTlenmfYg9g8e2+crPAvBvIYSP5z60aHa8DLFxn2F5COE2REft5W6XW0IIX0zWP1st3+e2+yyAQ1ZJmYQ/D0mPKoTwT4i9fO+Ab0tlpphK/up6hjmuA/AMMzsf0Zz5rhBCt879d7v1TyGqsk54MoAnAHgS4gt3EVHlnscNzGyvmf2amX0B0ZG/gthzNUSlVotFc+1TALwttJrZPJ8PITQCEUIIDyAq84uSshLumfdVdZhHVBJ/j2gF6BqLroIXAfhQaFpH3oH4O7Y1a2badaeWq074XAjhPzPnfJKZvcfMHkB8Ka4AeBryv4XnaEiUXNXevojO74VueE9yngcQFf5NIYTFZBs+j2iteTbiPfM2d01vRPw9UiXYayYQg+C+L4TwByGED4YQfgCxo/mq6nsEAP8O4FVm9qOVYu344B0RQlgNIdwYQvi5EMIzEM1EnwLw6ozd9P6a9QsBwMwuQzQrLQD4fjQfZv+BvCS919UlIMrXjyKalW4xsy+a2Q8lm52L+MOsuL93Vp+f3ebrno34QqljP2KDuDfz2X2IptCUo259uU35FFpNFP56sqzbsPyXYP21yEVD1vEhxO/7k4g3xHVdnhuIEXoppwHsyG2Y4d9DCB8NIfxrCOGdiNGOlyCaNMhbEXvBv4nYPp4A4Eeqz9qbOuJvOoH2vzvx3wOI32XdOQq4Z36kqsPjAOwOIXx7COGO6rO7quXF6IxvR/wNrjezfWa2ryp/H4DnmAvFd1yeqXOvaLnHzexSxECuWUSz39cjXocPYeN2BnTYfnrAagjhhCtbRv3ziOc/t1p+Ceuv6TLi/dru2blVjiCqSx8R/n4AF5kZn63PRYx0/lkAn7bot39lRiysY9M9oRDCPWb2+4j230ch+izIeYh22HQdiLZWIIatngHwvJD4oKqHwLHc6TLn/yKA762+4FcD+FEAbzaz20MI70G8cA8AqBvL87k2X4/+jTqOVnU6P/PZ+cg36K1wXk3ZJ7o8zt8g3pjkdKc7hhDWzOxtiHb/BxAb4LYRQrjfzA6j8q9VfsXnALg6hNAIZTezr+zwkEcRb7RNje3rhDG8Z24JIXy0ZtuPVvX6dgC/W7NNClXcb1V/nhcimrZy/DvWt+te0nIdETtbuxGjTw+z0Mx296kOg+ZItXw6oiXF82CmrFd8Bq0+85Q1AAgh3IfYuX25mT0WMb7hlxEFx1vrdu5I4ZnZBTUfPaZa+mi0F7r1F1UV/ZdqfRbRDNBoTGb2zdiEpA+RT6DZ039ctXxvVb87K2Xg/3zPJ+X9AJ5oZl9dc85FxJvsBalZ0GKk0zcgyu9e8l2WDPw2s6cAOIQ4hqhjQghH3DXwgQ4b8QeIL83Xhu0LIgDQaJMH0bz5diAqY9+7vzKz+2lEZ32Dyqx0E4AXm4uO3EL9cozrPePPsYwYlPFtZvb83DZm9kwzmzWzcxHNqe9CHO/p/+5DG7NmCOGEr2un9dwkjFZuuDPM7HGIgTr9hB3ULbfPDXg/mr7CXDu4Y6MDbIHrEd9Lz3TlzwZwawihpXMXQrg5hPDTiHEFj/Ofp3Sq8D5tZh9ANKnchuik/lbEN+yfhRD8gMdvNbNfR/XiQIzCuy7xe7wXMez4WjN7K6If4ufR7M22xcy+CrGX/A7EiLpJxAfbGUSzAhCji74bwD+a2RsQe6dziDf000IIz2lzijcA+G8APmBmr0U0Qx1EVBAvr278n0f0Sf2tmb0Zscf3GkR/xus6+R5dsAfAX5nZNQDOQTRJfR6JWdHM3gLgJSGEXvov1lH5pTblo+kBTzKzVcSb4WJEpbmKGIGGEMK8mX0EwE+Z2b2IKv2lyCu2mwE8zcy+DfFhejiEcDti1Ok/APiwmb0O0aRzKYCvCSH8WJf1Le2eyfEriEryHRaHfvwNovXjEKJifR6iGfN7EJ9Fbwgh/EOm7n8I4BVmdqnzhW8X70dUE39sZm9E/D6vQf8Hft9cLX/MzP4E8bfr1sqzISGEm83sNwD8bvUi/0fEl+1FiPENbwoh/HPd/pXJ97JqdT9ihPV3VesfCSF8qdruZYiBSk8JIbBjdz1ihPxbLUZp3oH4LL68WqLy278LwJ8gttFVxKCpXQD+bqMv10nkzMsRw4vvQIziWgTwccTonplkuysRewbfWFVoAbGB/xaAXe6YP4b4IDiJOH7nGYjK6IZkm6cjP8D1XMTMDbcgvtUfQnxQPdtttx/xJr4N0f78AOKP9xMdfOdzEU0x91b73lWdc0eyzRWIKusk4ovuXQC+zB3nBriBymhGI/6AK78aScRjst0PA3g9oppZQnzRXuL2vRaVq6ZXf0iiNNtss67OoRlpdW2mXTwyt2/mulyZOT7/1gDcg/jwfGLmur4HcUjCAwD+L6L5KQB4erLdY6p2sFR9ltb1a6tjH6t+188C+N/tfs+a7zy290zdOWrahyFGyn4I0Wy8gtiR+FPElygQH9q3ArCaYzy6Ot/VvWzf1bE3itL8QM1nL66u5SnEDvHzEQONPuvaWS5K89aac20YzYgYAHUPmmr/fNRHaZ7J7H8fgN93ZVdU+z/Vlb+0amdLiPfUZxD94xdsUEdGk+b+XpTZ7slu/32IQz4eRHzRfhzAC5LP5xAjh29GvF/mq+v3gnb1CiHEBtYrLA4YfitiWPOtG2wuNsDi4PLbAPxgCKHOfyFGGN0zQgwOzZYghBCiCPTCE0IIUQQ9NWkKIYQQw4oUnhBCiCLQC08IIUQR6IUnhBCiCLoapDw7Oxv27du38YZtYKqzNOWZL/Pp0DbjZ+Q+PFYnx2i3jf9Mvs/8NZifn8fS0lJLPrtetB0x3hw7dkxtR2yKurbj6eqFt2/fPlx11VWbr1XC5GQzP/LUVKzGzMwMAGBiYmLdNqurMYvV2trGUzDVvYhy5Szjksf3y9w2pXL6dDP95qlTp9Z9NjU1heuuy+eU7mXbEePJNddcky1X2xEbUdd2PDJpCiGEKIK+5V3cCKo2oKnoVlZi3l+v7AjVVW4GCK+8OjFletVWp/Q2Ok5JpL+JrpMQYpSQwhNCCFEE26bwUryS8wEnG8zpl6Wd0vCKrk7ZSa20kqo5/n/mzJnGUtdssNAaQitJ+r+/b2TJEKUjhSeEEKII9MITQghRBENh0vTBKFz68tzQAJp0vCnGB7GkwyDqglX856JJ7loxyIifraysDP2wjdT0txHD9F1Y7+npaQDNITw7d+4EAOzYsaOxLYf5cB+uE/6GdCXkflOaqZeXlwE0h6MsLi725PsIsR1I4QkhhCiCoVB4hD1OH8TSyT692k7kyQ3+5//s/W9n0IpXOlQ1VERe9QAbZ/TJfWeWUQlRAXFJZbSV65CqNdafZVzu2rULALB7924AwOzsbGMfqj+/JHXfE2h+LyYV8EsqvGPHjjX2mZ+f7+br9Yz0vGeddda21EGMFlJ4QgghimCoFJ4YXnI+PJZR3YQQBqLwUjUzNzcHoKl4uKQSovKjUuISWO/XzUG1RtUDNJXOyZMn1y2XlpbWfc5r4vcHWq0NrIevc/pd+T253Lt377ollR7QvAZUdjwu1S3Pnw4nIVTr/vtR2fFznhcA7rnnHgDAkSNHMEgOHz7c+F8KT3SCFJ4QQogikMITHeEj+9L/BzVQnyom7c2zjKqIS+/jyqknKiAfxeiVa5owm0ru+PHj65ZUafQL5nyFXtn5yEvWOa0j609Fxe/O2QNYTuWXHq/Oh0dFRzWai0ati5Ame/bsafx/zjnnAGheG6rCfuF9x0J0ihSeEEKIIpDCEx1BFZT6e3Kqrx9Q8Xg1l9arrk5UAVRgfkqjdB8//pPfNY3m5HGoorjuo0Bz8z36VHaE+/hlenyfQsyrxtRn6Mv4fVjOa8Brk+7LMqo11pV+SB+dmtaF6rPfCo8RomkdhOgEKTwhhBBFIIUnOsKPawOaKoDqY3l5uS9+PB7zxIkT65ZAU12wfl6B+cmFU3+W9/txH6/IUrXGMiqhuqjNVEly27psQDw+65aqaD/OzyvUXOYTr8r8vvzduG+qyHz2lTofXrvJkTuZmmsrUOVecMEFfTm+GF+k8IQQQhSBXnhCCCGKQCZN0RWpSZP/0wS3tra2qbkLN4ImwX6HodO06ZMu5warcxuaCxcWFtatdwP3eeihh9adA2gd0M5hEDy/Hyiebst9/cD3UYdDMoToFik8IYQQRSCFJzrCJ00GmsEJVCRra2sjPbVSbsjCdpAO82CCZF53BrZwmzSARwjRHik8IYQQRSCFJzqCPqI0HL1uYPMw4Qd7dzMB7DBBfxyXW4G/16hei4997GMAgMsuu2ybayL6Rb+GtoxmixdCCCG6RApPdEROvfmkwzMzM32J0iS5geAe1tMnce5nvUaNUVV25JOf/CQAKTzRPaPd8oUQQogOkcITHUFVkNrUvYratWtXT9UDx/fRV5ibeodj5BjFyH0YzTjqakY04USzZ599NoD1VoeNJvMVo0Xf0tL15ahCCCHEkCGFJzqC6irnC+tX1B/HxbEnn+vFM9NImnAZWJ8dRYwHjFBle2B2G2D9pMBC1CGFJ4QQogik8ERHUDGl+SypuOg/W11d7YntnYqRvjsen3VIz8H//SSxYnxYW1vDiRMnGnlEOS1QOiZRCk90ghSeEEKIItALTwghRBHIpCk6glPlcAk0Q/9pepyamurJAG8egyZMmjhp2pybm2tsy2127Nix5fOK4WR1dRXz8/ON6ZNoth6WZN9ie5mZmek4YE4KTwghRBFI4aEZfDGMyY+HBV6jNNyfao9DAiYmJnoStEKF51VlbkJWMf6sra1hcXERhw8fBgAcPXoUAHDo0KHtrJYYErqxKknhCSGEKAIpPEjZbRYqu1Th9ZJdu3b19HhiNDlz5gyOHj3aUHb79+8H0PQdizLh82Z6erpjlSeFJ4QQogik8ERXpOm9/NQ7SuAr+sHy8jJuv/12LC4uAmj6cO+9997GNpdccgkATQNVIlJ4QgghhEMKT3RF6qdj1CTHwE1OTqqHLXrO6dOncdtttzXaG33uaRo5+vM0HrMc0qhtKTwhhBAiQQpPbBn2tPo1aaMQa2trLT7iPXv2bFNtxDCwmahwKTwhhBBFoBeeEEKIIpBJU2wamjC5XFlZkVlT9IWJiYmWwIQjR440/r/00ksHXSWxzfBZ0808nFJ4QgghiqAYhZc6vDndjNRI9/DaAa3X7+TJk+s+F6IXTExMYOfOnY17mEovVXiiXJaWljp+7kjhCSGEKIKxV3jsDaYhrEoWvXmYKDqFvSspPNEvpqamWhRe2hZ5Tyu9XTmcPn268b8UnhBCCJFQjMJbWVnZ5pqMB2mvmr0qlnWT4keITjGzde2K1pqTJ082ytjbn52dHWzlxEghhSeEEKIIxl7hyafUG6ji0shMqmaWSeGJfhBCwNraWkvbStvisWPHAEjhifZI4QkhhCgCvfBEV4QQGn9nzpzBmTNnMDExgYmJCSk80RfW1tawtLTUWF9dXcXq6ipmZmYaf8eOHWuoPCHq0AtPCCFEEeiFJ4QQogjGPmhF9AYO7E2DgGi+TAf7yqTZPdPT0wCa11aJEdYTQsCpU6cwMzMDoDn/4vHjxxvb8BpqAHp/4PUcxrSMfthKO6TwhBBCFIEUnugI9uhShcee9vLy8rbUaVRhb5kh9F6NpIP7FxYWBlexIcXMMD09jVOnTgEAdu7cCWC9Er7vvvsAAPv27QMAnHPOOQOu5XgzzFaHbmY+l8ITQghRBFJ4oiNyCs+XnTlzZqhs+8MC/UtUxPRF7dixY115LikyWVxcBDBcvpNBQYXH68KEB2nP/v777wcAHDx4EACwZ88eAE01KAQghSeEEKIQpPBER3Si8DQ9UBOqOqCp5KjgeN24ToVHxZLuyzIu08jEUpiamsLBgwcbKo5tLPUd09fJbajwHvawhwHozs8jRovV1dWOLR9qBUIIIYpACk+0xftN0p4UI7fY015eXi7Sx5QjVbre5+SjMtslRabao0rkeknTXU1PT+PQoUM4fPgwgOb1SX2dnB6ISu/OO+8E0LzmBw4cACCfXulI4QkhhCgCKTzRFvaic1lA+D+Xp06dkg+vInedCFUGry3Hl/Ha5a6h/x1KYmZmBhdccAE+85nPAMhHqnp/MpdHjx4F0PwN5ubmGvvwf6pnMf5I4QkhhCgCKTyRJR1bBzT9dKla8apDPrzOoKKj744Kg3651D/nVXSJTE9P42EPe1hj/CL9dWnkpc/1yOvF9ljy9RNNpPCEEEIUgV54QgghikAmTZGFZiNvUssFY9DcqdRi3XHy5Ml1S5FncnISBw4cwN69ewEA8/PzANYP56BJ0w/58NNape1z0G2V95SCZLYPKTwhhBBFIIUn1sFeb6ragHzIPLcpaRC02D6YGDoXQMWAFq/0GNji07qlZf0krSOVPOvGlHJicEjhCSGEKAJ1McQ6fO/ZD0/IDUsgStAr+smhQ4cAAA899BCA9W2Rg/m9ovPJtweh6lJS6wfPzWEpu3fvHmhdhBSeEEKIQpDCE+vw0WzsRXei8EpMeyUGxznnnAOgqebStljnD/NTMKVRnPT79QM/8B1oqkz57rYPKTwhhBBFoK6GAND0NVC1+SlYvNJLt9HYOzEI9u3bBwDYtWsXgKYvrB20Onill5b1A5439WtzUlqxfUjhCSGEKAIpPAGgddydV3S5xMb+M/nwRD9hhpLzzjsPAHD33Xc3PvPJoXPj7gYJJ+oVw4UUnhBCiCLQC08IIUQRyKQpADTNk96kSXMlTZ5MgJv+z3008FwMAg5PuP/++1s+823QmzYHPfBcDBd6QgkhhCgCKbyCyQ0xqFN0XE+nsvFDGKamptSDFn2HCi9NzcUpg4hXdrlhAqI89OsLIYQoAim8gqFqA5o9YCo8KjsqOq63G+yrlEliEDC12IEDBxplbKd1FoZxtzzkvp8SQrQihSeEEKII1CUvED/1T1rGJZXc0tLSumWqCj39TMYrhIcTwgLNKYNooaDi4QBwWh/GVfXkfJO8l5kwu2591JmYmOhYwUvhCSGEKAIpvAKhPy5NE0ZFR18IFR3XFxcXAaxXhT6VWDc9LSG2ClOMAcADDzwAoBmtSRXD9sj1dHqgcSKn1ujr5DXwVhyvflPSaOxhZ3p6WgpPCCGESJHCKxD64dKIyzpFx21y0ZlUePLdie3m3HPPBdBst1QtfllSUmdacPjdue4nd04tPUzQPTc3t25f7nP8+PF+V7trpPCEEEIIhxReQXi1trCw0PiM/7OHTMXHcqrCtCflJ9XspqclRC+hP+/ee+8F0JwkltYHtsuSMq14n10n0GrDLEr0efK6cRLbEydO9Kyem8X/tp1Qzq8vhBCiaPTCE0IIUQQyaRYEzZMclkCzZfo/TRV+W5o6UvMBTQo0ae7YsUMmTbGtXHTRRQCa7XgzZq+SYQCLN/3yOrZLPDFoGGAzOTmpoBUhhBAiRQqvABiIwiV7v6nC42dUdtzGDy5PB6nyMyk8MSzs27cPQFOJcPC1Ept3R13wSjoB9LDQTSCSFJ4QQogiULdnjGFvjGqNg8r9EIS0jEMW2EOmTZ8DdtPUTByMWlKotxhu2Bap7NhelRxha6TWoGEhHTDfaVJwPamEEEIUgRTeGMNeGZWej85MB4/6QelUeD5KM/WF8H9+Ni7TjYjRhwPP2UbHNWl0vxnmezp9NknhCSGEEAlSeGOIV3ZevfHzNCG0V3KMzuKS0Zep3Zy9aHLq1KmWqE4htgOO0RLjC1Xd8vJyx88dKTwhhBBFIIU3JqQ9nI0UHlVaTuHRd0dlx14U11P82Kbl5eWObelCCDFopPCEEEIUgV54QgghikAmzTEhHWJAs6Rf0uxJk2YackzzJssYpEITJfdNTZbepLm6uiqTphBiaJHCE0IIUQRSeCNObqofllHJMeCE67mB4izjvn6mYw0uF0KMOlJ4QgghikAKb0Sh4mIC6HTaDp8WzPvyctD35n14JDftDxWj/HZCiFFACk8IIUQRSOGNKD5NWJryyw8e92l36sqBps/OR2dyeqA0MtP7Bs1Mak8IMbR5vCMfAAAUgUlEQVRI4QkhhCgCKbwRw0dl5vxyVGVewbVb38hnR+WXTvZKfx/r4MflCSHEMCGFJ4QQogjUJR8RqMaopnw0ZbvpMTrxq/E4qYIDWifQTI/lE0sr04oQYpiRwhNCCFEEeuEJIYQoApk0RwQOQ/BDCrwJMi3jkuZIb7Zkee4zmiY7GYAuM6YQop+kz6qtpDeUwhNCCFEEUnhDjk8EnZumx+MVHdcZgEIVl6q1uuOxnMt0gPuOHTvWHUdBK0KIfpCqOj91WTdI4QkhhCgCKbwhpW6YQc5nV1fup/jx6cHSgeL+fNzXD2KnDzHH5ORk1scnhBC9QgpPCCGE2ADr5i1pZg8CuKN/1RFjwMUhhHN8odqO6AC1HbFZsm3H09ULTwghhBhVZNIUQghRBHrhCSGEKAK98IQQQhSBXnhCCCGKoKtxeLOzs2Hfvn0t5cwGAgDz8/PrPvNZPvx6WuZzQGpM1+hx7NgxLC0ttfxwk5OTYXp6upExgUtmawGAvXv3cttBVFUMGXVtp+65I9rjAxJ91qTcdnXbbHTsbsg9130u327fAXVtx9PVC2/fvn246qqrWspvuummxv833ngjAGBmZgYAsH//fgDAueee2zhGugSaDzoud+3aBQDYuXNnN9UTQ8A111yTLZ+amsKFF16II0eOAGgmw3784x/f2Obyyy8H0BwgL8qiru3UPXdEdzBpBNMDcm7NNJmET07PjilfcD4RRZqwwiev8Ov+ZQY0O7e85+fm5gA0O8J8F2xEXdvxyKQphBCiCHqSWuz48eON/9lroMLzU9H4xMa5Mpkyx48QApaXl1uSYLNHB0jZCdFP6Eaiasu5DurMnV6teeWXbrORWbRd0vrccXuJFJ4QQogi6InCW1paainzE4jWKb30M7+tGB9CCFhZWWnxEchPK8Rg4bO3bpJnoPUZXKe40ml7vN+v7rzpsX0dfGLodhNdbwa9WYQQQhSBXnhCCCGKYEsmTUrX3Bxp3oTZbhyeD1eVSXP8oEnTO7b1WwsxWHLzYXr4TPfPeN6/HHvNILR0G78tt+E+qTurrg79ei7oaSOEEKIItqTwOAQhB9/QXtnlgla8M1NTFo0fIQScOXOm0WPkEITdu3dvZ7WEEBm8CkwzIgHAnj17AKy37lHJ1Q1e5/sizczFffwzv1/WPik8IYQQRbAlhce3bxpazrBS9gzYk2+XIy2XpkaMH6urqy09OSk8IUaX1AfXzieYkg5jO3r0KIBWn2G/3gVSeEIIIYqgJwPPUzsrU4p5GzDLqfhyqcVyEZxivGBbYTvQwHMhymJ2draljEqv31Y+KTwhhBBFsCUpRdXGJdCM5mHP3W+Ti9Jkb99HAonxwswa6p2+O819J0S5eLW3uLgIoH8TCEjhCSGEKIItKTxG3HEyT6A5PoPTvnCdPXpO/MrJXoHOJ/kTo42ZNXpuVPVppgYhxPjByEs/NRjQOgbbT2HUa6TwhBBCFIFeeEIIIYpgSybNBx98EABw4sSJRhlNmTRZcslyPxO6KAMzw+TkZMNkwXahQCUhxhs/113OjUEzpx/W1m7Ovs2gt44QQogi2JLCW1hYALDewcggFS45PMGnFksdl2ky0dw2XPp0ZWJ0MDPMzMw0fsODBw8CyA9CFUKMD3ye05qTs+r46YZyKSh7UpeeHk0IIYQYUrak8Pwg8/R/9uT9RLB+AkGgaaflPhymwH00XdDoY2bYsWNH4/d/xCMesc01EkIMC179KXm0EEIIsQW2pPC8nw5o9bPRBsvB6bTR5gYW8u3Oz3wasn6lmxH9h1GaVOuHDh3a5hoJIYaVfkXxS+EJIYQogi0pPE7ZnkbaUdlxPAVVGd/YfqI/oKkKfbQmfXlUkIrOHF2YOPr8888HoKTRYuukFh/5+UUnSOEJIYQogi0pPCqwNBE0FZwfe0F8RCbQVG7s9TPBtLJwjA+M0uT4OyG2ilSd6BYpPCGEEEWwJYV35513Alg/vQ/9elRtXPpxFWlkJ/dnvk0xfkxOTmLPnj36jUVfoEWJzxVGg3cy/RQtST6GQIwfUnhCCCGKQC88IYQQRdCT1GKpmYpTBdFMSZMmhyEwWCUNSJGZa/yZmJjA3NxcIyBJiK2SDkvwQ5j4nPEmTQ6XApoBdjJlloMUnhBCiCLYksJjAuC77rqrUUYlx5Bh9rDYmyLpwGOfSkyMH5we6KyzztruqogxIR2WwNSFVH11QxYYVCdGA/6uaZCjJ5emsg4pPCGEEEWwJYVHlpaWWv7fvXs3gNYeF9fTt/Lx48cBNP19TFXWrwSiYvBMTExg586dmvBV9AU+T+iP66bXL4YX/o6pL3YrKSb1RhFCCFEEPVF4qX2VNtdU9QHNqCn66XK2dCo6vs2VWmx8mJqawtlnn73d1RBjTicDzcXoQMtgGknrFV43lkApPCGEEEXQE4W3uLjY+N+Pu2NKMSo7Kr10DI3/TNMAjR/T09O44IILtrsaQogRwCv1dJ3/+0nGO0EKTwghRBH0PEqT8K1LhUc7q58YNv2MSm9Q0Zk+clT0F42zFEJ0gp9sIF33n3WDFJ4QQogi0AtPCCFEEfTEpHngwIHG/1/4whdayoCm+ZBmrTQwhSbMdBb0fsKhEzzfoM4rhBCiHr4n+E5g8GOamnIrrhEpPCGEEEXQE2mTm/KFoaM+SMUHqACtg9L7QZpMlv9L2QkhxPDgk37nAlTqEoN3ghSeEEKIIuiJxEn9cVR0fpogvqn9MAVgMOHqaa9AKcvEuJEOrdlKD1iI7YTvBaYSy1nj+G7ZTIISKTwhhBBF0BOFx6mAgKZ68oPHfbRNGnWTSzfWazTVkBhn0vatqXFEr/GWOq6n1gQfp+Gf57lEH/64/l1Ai2H6vtjKe0JvASGEEEXQE4WXvnH3798PoPlG5tve21vTnoFPMC2E6I5U1fE+ktITvYLPeLatnJ/YR1TWKbycKvQR8zwPj5lLRbkZpPCEEEIUQU8U3sLCQuN/2lyZzcRHZ/qegv9fCLE1qOx8b3wrSXfF+EDrWyfjkOsS7Of8aBs9x7tRZjy+9wsCW5s+TgpPCCFEEeiFJ4QQogh6YtKcm5tr/H/33XcDaDVl0szClGM0eQJNiaqhA0L0Dt5zuq9ECk2ZuSQgHpoUBz13qA+82ooZM0V3ghBCiCLo+bCEs88+e91nPsVYDvVEN8b3tIToFAWriBzthgl4OhlEvhnqVKafTq5Xif71hhFCCFEEPZ8f56yzzgLQ9NUtLS0BaO0JSM11h5Sd6BQfys10fwxHX15e3p6K9Qh+LynXzcHrxnaQqqfc9G1Aa2rIXPqwboYw+PPVlff6PaG3jhBCiCLoucJjNA1TjPENnUZlAut7Z+qpjT+rq6uYn59vWABE//C9dO//YG99VFOPydqxOXzifiq8VEXVKSqfxIDH2MwA9Nxk3DxOJ5Gj7Y63EVJ4QgghiqDnCo/s3Llz3ZLpx3L+A/XYxp+1tTWcOHFCCm8A+HGtufRMo0zOh6dnyMZQldHathl1RmsBlzkrwVZSRW6mjXYTKToed4AQQgixAX1TeJ50kljRO0ZlfN7a2hpOnjw58IwNpZBmovBZKfy1Hpfpg1LfJL+L4gFa8fecn6Sb65th1BL/S+EJIYQogoEpPNFb6sbJDCtra2uNMZli83h/HFVOzvdRl72CvpxRYWJiAjMzMw3/P1VcqmT5Xfndhv1+GCRe2ZWMFJ4QQogi0AtPCCFEEcik2SO8qalfIdM0ZXJm+ZzphucepkCWEAJWVlYUtLJF6sK2c4N5fduguW/UAjvMrNHegdbEwik08dL8yRSHw4RP9Sbz6+CQwhNCCFEEUng9oq5XneJTPbGnzXKffi0HB/L7Y6a9dvZq/eS7242Z4fTp0wCAXbt2bXNtRhP/W3I9VUBe4XOd137UCCFgdXW1oYzYvlMrgR+K4ZXwMCk93rNc8ncZlvt0nJHCE0IIUQRSeANgoxByrs/OzraU0c7vQ8r9sXK+HR9+Pgy+vaNHjwKQwus1acq+UZ/+pw7vs0vXfTo1fz9w21TpbZei4vAcWmvGJRHAKCCFJ4QQogik8AZIXXRcrlfqt/VKzy9zkzhyyZ5jJ5GR/VR/ZoYTJ0707fhiPDEzTExMtLTrtD1TJbGMPk1vXclFe9KHNmhl3C6Js+gPUnhCCCGKQApvALD3Wee7I6kNv07JUfnRF5Gz+7PHyCV7t37SxtzYrX5hZpienm7UfzMTPW4XuQhYXtNRS547irDtUJ3lLCVe4Xk1yN8rVVN1lo9BK71hGi877gz/00YIIYToAVJ4PcKruJx/gT05buPH7qU9vY3G0NUpPqAZseazmvgsMGkd+519g34Yfp/5+XkAwP79+/t63q3g1TXQ9AHJ77J95Ca09fedj2LOtXkf+czlZhSeP78iLocTKTwhhBBFoBeeEEKIIpBJs0d4s2Sa6ijnMM/tkzO3kDqTY26OM26bDlVIj58zuw7CBJOaNBcXFwEMt0mT10eBKdtLCKGRXgxoDthO7wm2af5WPtVYLrUY9+G2HJ6QSwDv8S4Mpj1jHXk/DlNKMyGFJ4QQohCk8HpMTnH5Xmed0kpVFrelA52DVOtCmHMBLz61WC7R9KDgFC/8HgsLCwDWJzTWjMwiBwOe2J7rhvkAzfum3TbpcYFWC0zdfZILRPPnU9DKcCOFJ4QQogik8HpMbpog2vH9xJXez5BTaX6Atvf35RJC+zr4FGNkkL3QiYkJzMzMNBQde+snT55sbCOFJ3LQOsD7yPvrgNaptrw1hes5X7dXZ+l5gfzwFFpe6lSnfHfDiRSeEEKIIpDCGwB1U/1Q7bRLmeQjyfyA9NwA6DoVuJ1pvCYmJjA7O9v4zuwBp8mk9+7d29hWCDI5OYndu3c3/L5pOeE9xDJaC+oiMdP/fZq4bpIKeEuMGG70ZBFCCFEEUngDIO1VAq32/Xb2fk4K6yPH2Av1kZhAq8LrdExfP6Efht/n+PHjAJqTYQJNvwjHWQlBJicnG23Hj8cDWiOeqei88ktVoR8z6yMux3Ui3ZKRwhNCCFEEUnhDTqqAUnbt2gWg2RvNKT0yLImOJyYmWnraaY+bPhopvCY+OtcnBveRhkBrVPCoE0LA6dOnWyIhU1+v99lxnaowPRbhtePYUPryeI3TCGIxHkjhCSGEKAIpvBGFvU8qvXRMnfdn1PnyBomZYWpqqqXnnfovOWXQwYMHB1/BISCX45T4rCAlRQWurq5iYWEBe/bsAdA6xi4to3WA7Yv3R258LP+nFYVtk/cWFaWypowPUnhCCCGKQC88IYQQRSCT5ojip6xJ170JhmYwPzxikJgZpqenG3XjMjXN0URF0+ZZZ5014FpuLzmTszdd1gUnjbPZLYSA5eXllsCddNjA7t27AbSaMrnMpeDjNZubmwPQNG0yiIXr43JtfdKKuiTz6Wd8rvjgn1FFCk8IIUQRSOGNKD4MO8WnFGs3ZGGQMIE00OxFp/WnEi018W4uSbGnxMHQIQSsrKy0BGHl2jUVCdsS21sugTrbGdULlR6DVhgAs52WkV7C7+utLLmE2myDfM7kJqkeRaTwhBBCFIEU3ojBHitpl2g5F4q93fjpW1IfFXvlQqSEENa1YbbrtO37+8CnCaNSSdsblRv9fFR6TGK+uLgIoJkQYZjuo81Qd3+lqs2raF6bUVd2RApPCCFEEahLPSL4qEyfWirHMPZIfaRd2jP3vkf6HPxEuaIszAxm1vD70reWpqCrux98mjoqFgAtkxFT4bHcR3z66YlGDZ+aLTdt2LgouTqk8IQQQhSBFN6I4XtguYi+3Bi3YcFPyJl+H35GZSeFJ1KovLhM24WPSGbb8YmmUz8W1R8jXxmlSSXpx+eNusIjvOe81agEpPCEEEIUgRTeEJCzm1O5+XFFPhotNz6Gvdxhnh6m3bRG/GyY6y8GRwihMRYPaCquVK1RldHvRsVH9cby3JRCPhsL9/FRmtweGJ+xeaUhhSeEEKII9MITQghRBDJpDgCaUWiq8/PTtQsu8aHE3oTJZZpyatRNgSU600V71tbWGm3cm/mBZgAKTZu5tFnA+nvDz47ObX0ias7DR1MqABw9ehRAuWnwRhUpPCGEEEUghddjvJpL//fBKVR27QZ7+n39Pn6Q9ihTNzBWlA1Ti/m2n943VGO8D5gAmqqNy3ap+Nj+qBY5PVXuHuNxTpw4se58arPDjRSeEEKIIpDC6zE51eYHv9b54XKTobY7LjD608X4ZNhC1MH7hm0+lyaMSotDCbitH3IAtKo9+gTp02MS6Rx+mJBXfGI4kcITQghRBFJ4PSbnw/O9QG/n91GbKT6S009kOYwJoruhnf+ynb9FlItXekAzOnN+fh5AU6Wx3KcaA1qjgana/OSn9OWl2/t71rdjKb3hRE8UIYQQRSCF1yN8bzGnXKjSchNYdgp7qooGE6WTpvdiZKX35XHsHNOEMZozZSN/OZNIp/5mP7my98N7ZSmGAyk8IYQQRSCFt0V875CqrV1CaMLeoF/m9h8Xn50QvSK9X6ioOGUQ16nw6FNL92GUp/ete9VG315qxaFfz2/rM7w89NBDjX10724/UnhCCCGKQC88IYQQRSCT5hbZikmT67n56/yccDKHCLGe9H7h/cGhClwyiIWmzdz8i3XDhRikkruXGSRz4MCBdXXxrof0mMeOHVv3mRg8UnhCCCGKQApvi7D354clpD27jdSaH66Q/j/qU/0IMQio3PwwAAavMPAkvfd471LJeeuMV37pPe2nFmIaMr9tTs1J6W0fUnhCCCGKQAqvR/jeWqr46hRdTtkRKTshOscnZvfJorlM/XF+sLj32fGYfuLZdB/e2xwOwUHqVJztJmbmJLJKIjE4pPCEEEIUgXWjJMzsQQB39K86Ygy4OIRwji9U2xEdoLYjNku27Xi6euEJIYQQo4pMmkIIIYpALzwhhBBFoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKAK98IQQQhSBXnhCCCGK4P8DudM0CwfANWAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -849,7 +3078,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Zddd3/nd79VcKlVJQlUqSZbkCWNM200aA4EmQBYQx2HMYhEaCDHgZkwg6dAJcbBxwIwJY4JtGojdTM4izDGTGWKGEAfSONgGbGFJVRqqJFVJVVJJVU9V9d7pP8793vN7n/Pb591bli0pb3/Xeuu+e+45e977/OZf6bpODQ0NDQ0N/7Nj5aluQENDQ0NDw4cC7YXX0NDQ0LAt0F54DQ0NDQ3bAu2F19DQ0NCwLdBeeA0NDQ0N2wLthdfQ0NDQsC3wtH7hlVJeUUrpZn8fnvz+yeH3TwvX31xKOXaFdR4rpbw5fP+UUIf/7i+l/Fop5WOvsI7PLaX8X1f47GtnbdixxX23oc1PzNr9O6WUf1xKOZA8s6nvC7bnFaWUL69c70opty1T3tMRs/V071PdjmUQ5v8VT3VbMszGlPsq+/uUJ6m+/1BKee+TUdasvG8spXx2cv27SilrT1Y9HwhKKR9fSvnNUsqJ2f4/WUr5T6WUl15BWT53fvuD0dYPFSYPzacRzkn6+5Jejev/YPYbD+9vk/SDV1jX50l6NLn+9ZL+RFKRdLOkfy7pt0spL+m67q4l6/hcSZ8m6fuusI3L4Dsl/Yr6uT4s6W9I+lZJ31BK+Vtd190e7q31fQqvmJX973H9VyX9dUknr6DNDR84Tqof/zue6oZU8G2S3hi+v1LSV0j63yWth+t/8STV982S9j9JZUnSN0p6q/q9FfHDkn7hSaznA8E1kt6nfm/eL+kGSf9U0h+WUj6u67r/sUghpZSPkPR/Szr1wWrohwrPlBfeL0j6klLKa7qZp3wpZa+kz5f08+oP3Tm6rrviTd513TsrP/1l13Xv8JdSyjsl/ZWkl0l6w5XW9yHAnbHdkn6hlPLDkv5I0n8spfyvHtOJvi+NrutO6Wm6QUopq5JK13WXn+q2LIpSyk5Jl7sFI0V0XfeEpHdseeNThNkene/TUsrLZv/+t0XmpZSye9bHRet7//KtXB5d190j6Z4PRV1boeu6X5f06/FaKeW31O/LL5a00AtPPWHyY5I+7klt4FOAp7VIM+AnJd2qnvozPk99+3+eN1OkGcQ7X1VK+dYZa392xt7fjGcXFeuZE9oZnr2+lPIjpZTbSynnSyn3lFJ+ppRyU2ybes70piC2OYYyXj979onZ50+WUnaj/meXUn61lPJYKeV4KeU1pZSF5rPrur+S9DpJL5b0N6f6Xkp59qz++2ftubOU8oOz394u6ZMlfWLoy9tnv41EmqWUnaWU183quTj7fN3sMPc9y8zVF5ZSfreUcmo2Du8spfwD9ndW3reXUr6plHKXpIuSXjprwzck9792Nn/XLDKe4bmvLKX8WSllrZRyupTy46WUa3HPPyyl/NdSysOzfr2jlPJ3cI/H4GtLKd9TSjkh6QlJh8K4fnwp5adLKY/ORFY/VErZk5TxinDtzaWUe0spH11K+YNZH/+qlPLVSV8+bTaea6WU95dSXsl99aFCKeVls7581qwND0k6PvvtI2bjcKyUcqGUckcp5d+WUq5GGZtEmrPnulLKl5VSvnO2vs+UUn6plHJ0i/bcL+mIpK8I6/6Ns982iTRLKXtmv796tv7uKaU8Xkr55VLKtaWUo6WUX5jN4/FSyj9J6nverP2nZ/Px/3HNLIFH1a//hYi90qsrPlxj6Zp/3zkbvzvDuv+DUsrT8uX4TOHwjkv6ffVizT+YXftSSb8o6bElyvkX6jmbL1cv3vteST8l6VMWeHal9HozizS/Q9J5Sf8p3HOtpLVZPack3ahehPBfSikf0XXdmnpRzvWSXirJOoAnJGl2wP7RrJzXSXrXrJ2fI2mX75vhFyW9SdL3S/osSf9KPWX5pkUGQtKvSfoBSZ8o6XeyG0opz5b0x7N+vkY9R3uLpM+Y3fK16sdvVdJXza5NiUT/X0lfoH7s/lDSJ0j6l5KeI+mLcO8ic/UcST8n6bskbagX1/5YKWVv13Vv1Ga8QtKd6kVRj8/+/yVJX6kg/i499/cVkn6267ozE33ZhFLKd6mf6x9SL/65Sf0cflQp5RO6rrOY7jb11PIx9fvvsyS9tZTyt7uu+w0U+y/Vi9G/Uv0YR93QT0p6i6S/q150+VpJZyR9yxZNvVrSz6if+2+V9GWS3lBKeV/Xdf951pePVC+S/mNJX6h+7b1a0kH14/xU4Y3q99v/Ickv95vUz+XPSjor6Xnqx+1/0WL7+lsk/Z769XGTpH8j6c2S/tbEMy+X9Fvq1/B3zq49sEU9r5T0TvX75Gb1+/bN6sWMvyDp9er3wPeVUv6s67rflaRSynMk/Tf1e/vrJT0k6Usk/Uop5eVd1/3mVh0sPSG8qv48erX6c4QqiOy56yX9a0n/sOu6R0sp2W2vkfR16vfre9SvkY9Vf4Y9/dB13dP2T/0i7NQv4i9Xv6H3SDqqnkL5dPWLupP0aeG5N0s6Fr7fNrvn7Sj/G2fXbwzXjkl6c/ju8vl3VtLLt2j/qqRnze7/PLTv3uT+b1Wvv/joiTJfOyvvy3D93ZLelvT5lZVyds9+f8NE339CPUFx40R73i7pDyfm7rbZ94+afX8t7vvm2fUXLztX+H1F/QvkRyX9GX7rJJ2QtBfXPbefFK599uzax281XxjrdUmvwfVPnJX1uVu0+W2SfjmZuz9VL3rNxvVf4fpbJd2elPEK9KOT9KlYBw9J+n/CtZ9RT7DtC9eOqn/hHquNwwfyF9b1juS3l81+e8sC5exQrx/vJL0wXP8Pkt4bvn/E7J7frKzHa7eo535JP5Zc/y5Ja+H7nll575a0Eq6/fnb9G8O1XerPuLgnf3q2dg+int+X9I4Fx/atGs6tE5I+bsHnfkrSb4fv74jfZ9d+W9LPfDDWxAfj75ki0pSk/6h+c36Wevnz/apwJhP4NXx/9+zzlgWe/Tr1XNlL1VN4v6FeB/bJ8aZSytfMxFqPqX8p3z376QUL1PEZkv6kW0yX9qv4/h4t1g/D5NqUTugzJL2167oTS5Rbw9+Yff4Urvv7J+P6lnNVSnl+KeUtpZT7JF2a/b1S+Vj/Rtd1F+KFruvert4o4qvC5a+S9K5us95zK3y6+pfXT5dSdvhPPWV+TkPfVUr530opby2lPKB+fVyaPZ+1+Ze62amSgPP/bi02/+e7GScnzXV9t+PZj5f0a13XnQ/3nVTPcU+ilLIax6AsKGZfEL+Y1LdnJi5830yUeEk99yUttueycZSW20uL4G1d10Xu2OLVOYfWdd1FSXepJ5KNl6nnah/H2nqberH8Hm2Nf6xe//b56qU0v1ZKecnUA6W3ev989VKcKfyJpM8tvfrhE0pQTzwd8Yx54XVdd069COrvqxdn/jQW0CJ4GN8tIlxk0dzedd1/n/39unqxyp2Svsc3lFL+kXrK7bfVi5o+Vv3hsWgd10la1Pw968sidRjeVFNWlMu0ZytYxMH67sfvxuRclVKuUn+wvUTSN0n6JPXEyL9XTxgRtX6+QdLnl1KuK6Xcqv6AoTh0Kxyefb5fw4vXfwfUj6NKKc9ST6RdK+kfqRfpvlQ98ZTN3dTcZOOT9ZvIxLRcO0clPZjct5XYTur7F/v/mgWeWRTZeHyveq7szZL+tvo994Wz3xbZDx/ImbAMOO4XJ657ja+qXytfqfG6+jb15/eWeuau697fdd0fd1338+pFtefUq0BSzIiUN87+HiylHCqlHFIvsdox+75rdvtrJX27+pfjf5F0upTyo2VJ/feHCs8UHZ7xE+opshX1L5ynDF3XdaWUv1TPcRpfKOl3uq77p74w04MtitPq9QgfCljp/YcT9zyZ7fHBcoM2m8rfgN8XxV9Xb8j0SV3XzftQ6v6JNU7pJ9TrYV6h/vA4r16MtAwemn1+hvIXin9/mXodxxd0XTcnJEop+yrlPlW5u05qeIlHHFng2a/SZjehJ0M6YGTj8fck/WjXddalqZTyYU9inU8Zuq5bL6U8ov7M+/7KbaeXLHOtlPIe9WqiGnZJeq6kb5j9EWckfY2kN84kBN8u6dtnxj6frZ4I2aXeOO9phWfaC++3NFNOd133509lQ2ZU0Iu02fR+n8ZGG1+WPP6EpL3J9bdJ+ubS+/b92ZPS0ASllOerp4rfqV4HV8PbJP3dUsrRmUgrwxMa+0Fm+P3Z5xeq3yDGF88+p9qRwS+JS74woyo/Z5lCul4Z/9PqD+qr1OuJlvVF/C31xhy3dF33WxP3ZW3+cPW6vqeTY/s7JL28lLLPYs3ZYfaJ2sKvsuu6930I2idJKr0VxV6F8Zwh23NPNmp7+MnGb6iXYry7W8INo4bSB5z4a+pFkTVclPSpyfXXS7qg3jjrdv44OyN+pJTyOep19k87PKNeeF1v6fZUcXYvnOnlpN7K8kslfaSkfxbu+Q1J/7yU8ir1Fm5/Uz2rT/yFpGtLKV8j6b+rV3K/Wz0V90XqHdpfp16f8GHqD/Gvnol1l8VzSikfr14ccb16XdlXqKcMv2BCRyT1Fmwvl/RHpZTvUC+yu0nSy7qu+5LQl68tpfw99ZzbuezQ67ruPaWUt0h67YwL+yP1XNqr1b9k3s1ntsAfqScufriU8i3qnYq/edavg0uW9XoNeryaOHNvKSWby/d3Xfc/SinfLenflVJeoN7qb0292PjT1Rs3/Gf1ou7Lkn6ilPK96kWH/0q9nvfppF54nfp1+5ullH+jXlT6avUizafSSnMTZlKWt0l6ZeldDo6p5/j+2oeg+r+Q9KmllJerF/8+2HXd3Vs8cyV4lXpd8NtLKa9Xv1auUe9SdGPXdSOXEqOU8iZJ96k3fnpYvSHT18+e/45w3wsk/bmkV3Vd9z0zVdHbk/IelfTYTPfta78+a9871RvyfYz6c6/GkT6leEa98J5i/FD4/4z6CAZf1HXdW8L1b5V0SNI/US+H/z31MvM7UdaPqdftfcfs/uPqrRnPllI+Uf2B803qdT8PSPpdDTL/ZfEvZn+XZu3+c/V6lR/f6gXadd2x2cvyderFflep30C/HG77bvXGAT82+/33VDcHf4X6sfhy9S+nE7Pnq/qEibadKqV8nnrxyc/NyvpB9TqPrUzzWda7Sim3S3q067o/rdx2rXrDKeKH1Zttv2om4v662V+n3pT8d9QbCqjruj8vpXyx+nXyK+oJhG9SL+r8lGXa/MFE13V/MfPz+tfqJSr3qZ+nl6k/NJ9O+GpJ/059+zbUG3h8qXp90gcT/0w9cfRz6jm9H5m15UlF13V3llI+Rr2u7LvVE8Cn1RPDW7kgvUM9t/u16qUL90r6r5K+uOu6vwz3FfUE8ZUQXb+vPnLU16s/8+7WcF487VCmCfyGhv/5MaNw/1LS/9l13Y8/1e15OmJmJPR+Sb/add1XPNXtaWi4ErQXXsO2RekjtzxPPYf5PEnPo+vCdkUp5d+qFxufUO+w/A2SPlrSS7uue9dT2baGhitFE2k2bGe8Ur1493b14un2shuwR70I7Yh6cfofqw/u0F52Dc9YNA6voaGhoWFb4OlkGdbQ0NDQ0PBBQ3vhNTQ0NDRsC7QXXkNDQ0PDtsBSRit79uzp9u/f7yjZ2rWrD6e2sjK8N3fsyIuspJbY8rfs90zvuMg9NfBef8/a5WtblR9/571b9TcrZ2NjY7KtU/VtdT1rU20Msravrq7OPx9++GE99thjo5sOHjzYHTlyRJcv92m4Ll7s3Qrdr6x9Xlcun9en+rHMGNfqv5J7svmojSHvnVpb/O3J7N8yeyWrl/3wnK6v9xmRPOexHp8TO3f2sYan1s6BAwe66667bj7vLs+fknTp0qVNdbJNU/NyJXYMWz27yDxdyRzW4LGJZbL8qX1DbNW2rN+1Psc9vtWz/J6V6fPA11ZXV/Xoo4/qwoULWw7oUi+8vXv36lM/dYg4c8stfUDxa64Z4oReffXVmxrjl6I7zc5L0r59+zY9Y8QOScNiji9VL3QPjO/1d2+KWDY3Du91PVOHe+3QctluV/zf5cYXRPyMC5Ib1y+ItbU+JRoPFX9m/WD/FjmUOU/Zy8fz4HKOHj2q7//+PMDC4cOH9QM/8AO67777JEn33NMnhT53bvB991oxrrrqKknSwYN94BQfjv6Mz7B9tQ0b++xn3Fd+j2Nq8Bq/+9k4/3wJc41wrOMYs01uv8cgO+hYL+vh+o994D2LvGj9zPnzfXKFCxd6Y9dHHnlEkvTQQ30oUa9dSdq/f78k6VnP6mOYHzlyRN/zPfM47Jtw7bXX6lWvetX8nHjssT7g0d13D4FNTp48uakO30PCKnvp+h73mS9qjnUcB44xx2nqoGZZrifOB/eY4ba5Tbt3795UR/yf+8Zlup6477i+amdh9tLyGLDvTzzRR0TL9pWveQ7cNq8hX4/9OnTo0Ka+HzhwQD//86M84CmaSLOhoaGhYVtgKQ6v6zpdvHhxRCFEjqtGRRpTFCmpGVKXmbiUFDCpiIzS4r21z4wrzKh+acxZTol+XIbL5PWsDeQO/Lspu0g9T1GM8VlTT7H95D44XxmHbpw7d646Pl3XaW1tbc4FPPpoH5/Z1F9sQ40SdlviOvA1U6nkEo2s3Rx/fjdin8hRk6olFy+NpQycH9YfQXEu7/XvU3vDbSRXYJiaztrPPRk510WRjavX6+OPP77Q817nEbEtnl9yrb7H/YnrwG3gmqUEhGVF1CQ+GWoSK+6xOOcUE0fpRlZ27J/vrbUtW288Nz2etfMtlsl1PvWeMFyuzyJymD4fYj3x3JJ6acGiYunG4TU0NDQ0bAsszeFdvnx5koMgpbV3b59Bg9REfNuTKicV47Iyziu2TRpTIlOyZlL9Nf1Fdi8peiKT95NiZFvjM+SMOQak/LIx8bjWdBSxT56PWj99Pc5bpt+p6c42Nja0trY21+uYq4jzQ26J8LrYs2fIzen/vc7INdU45execiKZ3tkUp9tqLqFmsBFBLt1YhALmmvSnOZ+Ms63pJNnWyD15rfgax8QceuxfTRowZUDkeqzDvXDhQlV6UErR7t27R+MWpQPcW9SlZtyM1+BWnD33YizfqNkZxDklt17b/1NGS/yk9CvTy/O8IdcW+0J7gxrXlkkLqG/jGGXSD3JrrM/9iXPtte41uozxT+PwGhoaGhq2BdoLr6GhoaFhW2Dp4NFd142Uq5GtrSngyYpbBCWNRW8UIVDUGMUpbEvNXSCy+mTtjZq7Av/PyqiJLeP/bIv7SxExn8++U+ybiRppluzrVBDH8mkYMuX7xDFfX1+vKo8t0ozGNfHZ2AaKKNwWrxm7K0i9SbI0mLlna7J23eJQilos1qGpuTSI9GhskZn410DRlsF5itf4m/eMTfXjfmLfKWqkmXg0xqCIyXC/PN7R0MViSc+tx6hmYBPrsfvAhQsXqmtnZWVF+/btG+2XuBZrIn+K16KYreYq5fVWEwHGa/6sGffEPnm9+ZNuAtnZybOvNkaZoZfXSHaeRcRxpPjb9fJs5pmW9dn95JjYdS2C5+Yi/rRRRbCoWLNxeA0NDQ0N2wJLc3illBGlkEXLqCnMTYlm1J6pRlOgpGpp5hrvcb0u39SNqc3MlJ0UPamLWE9NOVwzBMhMmN1WK1tJlcYxoZGI+0OzYCqR4/905iTVO6WMp1m6PyOH5j66X2tra1XDg42NDZ0/f37SMIicj+fSFKEdTv0pDRyHOR2Xa+qSxheZq0lNce51GNcB58H98bj4mcxoqWbUwXWXGXS5f66P/Y5cr59neeTwXG+cUxor1Mz8Y30cg8wgKdYfxyIa/9TWjjk8uhFkEhiucY8P51QacyA0iafUJs5pze2K+zGOLfcjn8mwaGQdj0k0QCIHyb2XSRT8G9dxzYUqW6tcXzw7436qRX/hXolGWR5HS3WWiSDTOLyGhoaGhm2BK0oAW3Oclurm2uSqog6A+hDqQfgGz0xvyZGYesv0B2yDnzE3SKom3kMqpuYsn5kjU+9Wi48pDeG0yBG7XlJ8kaN0P0jVuu00aY//+96aw2nUFWVh22oopWhlZWXEbWTzYsrtuuuuk9SHloqfUQdgCp6cnOefur1Mh0OTcvYr49Y4p17v2TO1cFM1B/Sp8F10Q3A/43rzPf6N8+62es1ENw9ycjXONXI2HmOvO+oVz549K2kzJ00OOXL/hDm8M2fObGpbFiaMYQrJfcb1S6dn7ospWwVymzV3oSmJCEG9Occg1kdpSGYH4H7Qad3PUocd20iplyUKNV1bLJ/zQy44rjevK3KFHKu4vj1ftXGcQuPwGhoaGhq2Ba6Iw+MbPOMu/PY1dWGq3NRmfIayXuoaTJVl8lxTCzXrPP8eqUtTgaRS/Kwp0khVRKok9q/mgB6p1Zrex/0yBRQ5F3N4pqxchh23ORaxPlPC5mDdH1LpGTVo3Yyt52iFFuvJuNmtrKpIxcY2kLPzePg6ubgIhhjzdzoXx/ZnOixpsDq05CHOLQMkM2yXf88CQHO9kUL1+ojtIUdFC79s/ZFa5p6kxV2cM+p/Kc0hx8//pWGeyF1n4aF8z8WLF6tWhA5oQF1XlFBQp1RrU5wXznvGLUdkVs2c/ykrRgZE5nnHsywrp3Zm0RlbGs45Sr18neeSNKwd73/q37x/KOGKY+F9S+mHxya2kb9xbWZcnJ/PdJBboXF4DQ0NDQ3bAktxeJalm/Ll2z7Cb11b1Jlz8HUHD5aGtzzDI7n8qdBjpkSMmoVnRl36N1Jp7EMEw5JllJy0mfLxb+6HuTZ/uj1Rv0BfI8q6/WluKNZnXRf1Pub0SPnHfnm+TA2ao6zpDmI9W1mbra+vj8IPmdqM7WSYMOoeMo6La5EhibK1WgvT5PXtNRqlAy4nrt+svsz6lNzSVsHLpbGFpUFuPT7j+sjt+tNj5r0TKW5yKNSNey7ivNH62G3z+jbFH3X11DNPwWuHOrUodamFYKOfZub36bVPLpD6ubj2Pf/U3WXWoIbPQD9bC+a8SFBnt5W6yzgv3ke818gkZhxHnpU1C0xprP+jlMrzH+uj9M7jSb1v3PPUPS4aOFpqHF5DQ0NDwzbBUhze6uqqDhw4MKfoMuqMFILfxubiaCEmDQlkGeWj5vsWKSBzIP7NVCs5yowScdtIWWeRCahLIcVNyi5S3KQcfQ8p7cz6lDoaUlimFiNlR12hqSX6R0WK221w+aaITZ1nbSR1u2PHjkl5etd18z577KM/V8atSMN8ea4jnFy05g9J3UDkaj1m9Nmjni7C5VKXOhVpx30kp0BulH5gsd01v09TyHHMano498f9O3HixKh/Brlt6puiLyQ5CXJg1BnFPmbWuoSD1vvs8HlgziH23331mLudmQUsdZt+hvowlx3XA/Xvrtd7zYhcFfeu9x/XWWYVzCDYtSDv8VlaOtYsl7OEs7XoVrTMjwmca/7Z1CFG6QgT2Fo6xfMt24vc64ugcXgNDQ0NDdsC7YXX0NDQ0LAtsLRI85prrpmz7TZ/jyIYOgebrWaG68h6P/zww31j4Nzte2jUEsUSLI8O25mjrEUJFMlSgRrNlt1Hl0dRksfCiKI6ilupsK/l54u/+VmaUnsuPO7SWCxBEW0mdjU8T+7PDTfcIGkQR0QxKF0LpoK40qycJvLSWDFPVww/H8UbVG7TKIYhrKJI06KdaCwkTedfpNEQxZFZMAb3i64tFBvxemy3++7+eR1YpJSZlruvfsbXPZ7ed3E8fQ9DltGd5OTJk/NnGM7Pe5BixiygehYaj+i6ThcvXpz3w/XEPcazyOcPDaCi6PT666/fVI/LrYXkOn369PxeGnUwPF3mnmLUcun5mWjw4n64rx43i2qPHDkiaSw+loa14f4wVJ/XQVQv0eWsFozbZcU1zSDvbov3WXZWeu25rX7Gaq4sn+EiAdpraBxeQ0NDQ8O2wNJuCfGNTqMSaaA8rIS0Ypzm41l2b18zNbOIgyGV6r63Rr1LA2VLJ0dTE5kztykRlmdqgxRepNJqYafoHJ2lMHL5NNH3GE2lXmH9NGaIqGXqtlGIqeFIDdJtZO/evZMc3q5du+Z9dZuygLw0tiB3Fo1XXB45OlKgNEyJ93hMa1x0hH9jkHC3OcsiXgtRRQOULAABjRRYTybBYFZ2GlS5D8w6Lg0cvsfG3z3H5vDjOjh8+PCm8iwV8KfnKHKSHmv349y5c1XKvZSi1dXV+b1uQ9xj5iq97/1Jw7QstRi5c7eTQReiQQrv4fxMpQeqZZO3EU48Y1yuz1XPgzkgS3YYYi9ec/t5JtK9LI4PUzx57XqtuJ+Ro/SzbiMDz2cSE3J/NIpyWT6zpfF5NhV4nGgcXkNDQ0PDtsBSHN6OHTt0+PDhkd4kmiibEiAVxmCkGTXHgM90mGRg41guXQuYEDFyoaZwaB7MMDZZGCIGnjalSgftzBnS/WP91F1KA7XnsSVFT91ArI+Bbf3dVJKp9qjPosk0g2Qz/FG8N4bKqnF4ly9f1kMPPZTqcA3qc6wz8Rhn7Ta8VjxupOinAmbTBYMSh8jNnDp1StKYOyIXHylSBhioBViYSnNSSyzqPsT9xMDWdCMyVe7xzPQw1KOS245jQneRu+++e1NZvjdyZNRNm0vMcPnyZZ0+fXre3iwgwAtf+MJNfWc6K3LisY++12PpZ3wukNuVhnknF0gdW9ynHssP+7AP23Qv92XUk/s37wVzdgzc4DUcz7BaIGuX5bIj51pzr3E/3bZsrVKf7TGn038cR0pvvBa9Z2688cZNfYj3xv3UEsA2NDQ0NDQELMXh7dy5U4cPH9a73vUuSbllkCkMv8Vr6eX91o//m2phaCRTS9T/SAPVyPoyqyzD1MI999yz6boprywotutkCiHruGx5RJ1i7AetpGrJFmO73QZzFh4DWsRFuG6GMOI4R8dj30tqPAb3JajzXARHjx6VNIxXliCTCYF9b8aJeyytY/R3WkRGiz6DiXCpY3XfM27dVLHLMLXsMYlUOsulFeBUqidKMOgUzbYFIGUlAAAgAElEQVTG8rxWSaUzxVCk8GnJa/gZj2+0tCM37XoffPBBSePgE9JYn3ngwIGq8/mlS5d06tSpEadiC8UI94kceCZRIufLT1pzZ4mAacXKe7PEzHTUf+CBB+b9lHJ9lfeq54pWqP6M0g/f67Z6jTAtWlw7tA3wOrBVLvdMFmCDOjvPQRZE3H2l7pspjeI7hnUvEp7OaBxeQ0NDQ8O2wNLpgVZWVkYcSqQQDFJUpvJMfWYUqT9NTZjysbVXxkmQ06GPUbRAM26++WZJAzXk7+bwTAFFvxtTX+bo/N2ULqnpqZQ59Kmi9Vn8nxwz0y25LLc9wmPusWCiXXNbsT++lz5J/h6pdPc9WmPVLO0clo5WXpnu0fA8sN1RZ2wqn3qRmuVb1OHRz9PULK13Ywgrjyn9TE29MvyVNOaAGEx5KqyW1xVTuVAakvnueS8woLqpeD8bx9Nt8rOeA5efWQN6TzBlTKZrM9yGaEU7pYdZX18fhaiKXDttBKgbygJO+3/30eNDi88seSyDrXtOfa/3hiUz8X/qDj0+Hq94ZsW1J40tyD1f9GPL6vEzHjdap0uD1aef9b3Pfe5zJQ3rwnMez3HaQNBKOAsN6efNjbq/7ofHxrpLaZi3+++/f96vpsNraGhoaGgIWNoPb/fu3SNrw/h2rVlL0roscgK+15yd7zVV4Xv9lo9WYaYqGaB3ymeHOpWbbrpJ0sAlZLoi6oToKzaVLoi+ekyT4Xsjdeb/3QZTobZmc33mgmP7/Iy5NVNYpA4jJen6Mp9AaaA+swDOnpezZ89ORkFwmpfYxsjVeVyogzJMTccIGb5mCtG6Do+Tx8X98XhJgwWY14brN5WZWcQy7UwmQZByDo+6FI8BLR8znTitJRmYN4479xqjVxiZb6L79/73v39T/b5uqUdm9czoM5zr6F/osY5B5afSvKysrIx8v7KoP+4TrSf9TNR5m0tx3/yb59vj5XMppiKjrpuW1m5HlKJQX+U16364PdFfkalwvN5pBZpZwjLCCqNDMbh0vOZ17f1uSYrb6v7G/rnvt9xyi6Rhrdxxxx2Shv0c1wGDY3ue3D/3J+5Bc8/Hjx+X1KdIm5KSRDQOr6GhoaFhW2ApDm99fV2PPvro/E1NnZfvkcap4qlPiG9kU2emqJjM8N5775U0UBORwj927JikgVJgklPK2KWBOnd59LfJ9HD0aSGlb9C6KPbZYHw49zPGw6QVoyluU1FO/Opnor7R9d1+++2SBln3i170IkkDJZtx2fTrcr+zhJ3mqmPUlKlIKzt37pz31eVEDomWex5/t9frI+pS3Ff7ftky0GuTFl1ZclVacHqtkPPL2uj15fqy9Fcun/FYqUM04ndarXm8OEZRL2JunPpy+pAy4os01uswNqm54vvuu2/+DP1jSbUzwao01hGur69XObxLly7pgQceGEmW4tqhztllMSJJlBr4Hs83k526bbbmjuec972vUadPX1hpsEWg3s26Pa/dTJdPq1BaEGd+cZxv6kA9H3HP+qz90z/9001t9ri5Peb47rrrrvmzHmuOo8ee604aJDH0l2XM2AhGgTl79uzClpqNw2toaGho2BZoL7yGhoaGhm2BpUSaGxsbeuKJJ+bstVnUKLJjtmiLPqywtXgqigI/6qM+StLAEls8ZxbfornbbrtN0mZxIVMGmY23uNLivOgoazbdIj6LLCweddui2JWOpO6f+0VxVXzWYggG0GZalWisYNGsx8SiJI+J2+NnoqjGym/fy/QwFjNHh2O3nyJNitKia4hFCh5bineJ1dXVuSjG7Y3PuG5/MoBsJoJjqiO6yDCorEXB8TcGOGA9WbBbj63Xs8XsXruxjR4n9sNl0dgjC3jAME1sYxS3+V6LiyjS9FyyL7ENXiO18H5x3riua+KozK3I6/fSpUtVkeb6+roeeugh3XrrrZv6Gg214phJw3zQECWuBxtXuP8Wz1nEyUzhmRGb++o9d+edd0oaxi32yXNmYwuPpfeP2xHr8fni/e8x9ZlSC2IR67aI2/3lOouGaO9973slDSoCGhy5Hoth4znnNrrNvofBMaLI1uVaROpnPZ5eh3E/+Xn36+zZsyO1UQ2Nw2toaGho2BZYisMrpWhlZWWUmDN7+5oTMiViSs4uAOaypIEaczk0OPiYj/kYSQPVFDkhUwSmWpj41ZRDNECxaTrTZzCYdKyHbhZGzZglUhzmHNxWt8kUOBXCcUxc7otf/GJJA+WVGUcYnp8XvOAFm8bC4+d6IvXJkGkxIHTsTzQYomPr1VdfPWke3HXdyF1kihMyakGQY3vtwsKUK6Quo+GE66G7hvuQhVVzXx2sgCmy4poxzA1YeU/DI8NzGs3f6XRPx1z3JxryuM/kzjzHdIfIkobSgIzJiyOnRE7V5bo/HqMYMiuuGakf85rB0+rqqq677rp5PT53ovGD2+OxJndLQwppOAfMibhvNO7weMW5MFfmufS4mTPJAh0wsIHHyVIB1x+N1wxydL7HZyVDLMb+eY+RK8uCsbs/PqNq7heeg7i/XJ/nwvf4uuuN0gG6zFjqZOMZtzFLJ+d2P/rooy09UENDQ0NDQ8QVhRYz1WJKJcrSaZIcOTlpHNZIGigAcmmWOTPlR+QKGNSWnBZNY92HWA7TwdCcN5ZDR2DXZ0okM382ZUjndZqNZxQrgwWbk+E4x/rMhVHfyOSlGWfOMErU7WXhldz+q666qprixm4JTNSbpU9xHTUuNn5n2p9aYOYsqLfBFEhe1x7TSKW7bjo4sw/xOrkyrmfrpkkJS2Nqmf112VkbGdqJ4f24xmIbPY50UiaXEsFwUJyLuN7ovjTllrB371595Ed+5Hw9eJxiGyit4Rgw5KA06Pe9d6kP5b6Je8z3Ug/vsc3M5OmQb87ObeP8SOOkrf7O+XcfssTTTL3D/R/dcvy8zzHfYw6f+zbuRd/jenymMFlubCMTGFM6YM45rg0GBn/ssccmA15ENA6voaGhoWFbYCkOr+s6Xb58eU5d0AlXGlMRljH7O3Ve0uZU7dJAEfgNTioqchmm6BgSi0F2I3XmNpkqIkWXpaJn6hDL8JkI1n3ILEldLq2z3J9IFTIsVM0pm5xsbIOpHiaLJNcYn2H6D/fL1yNVzTmdCg3loAWm+jJOn8FtDTrqRx0Aw8TVnPyNqMtlih22I0s/Qk6Y9WVBtmkhyNBStm5j6K/Y/lpCU67Z+Bt1RZxbtz22lb8xibB/j+uAjvRM4smgwrHcmJR2KgHuysrKnLOzHjuuE0t4PP7UV9K2IIJ7jOOUrWta3Nb0wZHz8Hx739s63Pd6vOKaoj7bbXF/GIA8nnNMTuzfaMkcdbjUX5r7rFlrxzOEab3IvWVnv9vksaAdheuL+zg6nLveqbMnonF4DQ0NDQ3bAktbae7cuXNOVZuqilQTfanIvdDnKN5rmDKgHN6Iz9asJhk8Nksaa+6FFIipiszCipQpKbksnYUpHpfnehk8OlrneYwZWsj98bi6/5HDi+l6YvlMyROpdOpsDOpl4tj73hi6qGZpt7GxoQsXLoy4nMyfi2lrKJ+PnAB1JqTOmaQ2cnik9jmHWZJLcpTkprKwdOSEXQYTprqNmR8eQ70xsWlm7Vrj0ugvFzkKSltoeZlxSLRuNXdAfVMW4Dr2vbZ21tfXdebMmZFfZNzTtVB4/D1ym7T+pVUrpURZslPf4z0QuQ722To7c3geS1tEMrVRbBvXm/tOi9VM0uMzxJxxzQ5AGubOa5E6Qlq7ZnNWC9HItsd6uO7cL89j5l+YndNboXF4DQ0NDQ3bAkvr8NbW1uZvbsqvI0wpkDoiBxZ/M6h7IhURv5OaIKXHJKvSOEKMKQRyn7Ee6ibddyZ+zXQcpEBIYVN3ENtAvSZ1lm5j5LxISdXGPlJa/o2+R9aTMGhx1uetkjBubGzMy89Sk5BrJceQcTMGdSdZxJvaswQjoWS6XOrSPD7+PeqZGfTYc+h73aaMC/WapO6Eayiub+p7GVCZAdynAp2To6W1cmw/fSDdX0sJsmgYGfdEXL58WWfOnJmXSxsCaZgHcyI1y97Ybrerlu6MHF9cO7TktXSGkUGipbc5Oz9ra2rq36LUg5GpvB/JYbLN0tjC1323vox6OmmQqrgc32OfUVr4xnOclpuZj3B8NoISGdo7xLOK5+ai+jupcXgNDQ0NDdsE7YXX0NDQ0LAtsLTRyq5du0ZilCiCocKXQZ2zvGR0Ro7lSWNDmCiWoAEAxaxua2ZE4Hv93WxzZq5OBSzFQswnF8MQ8dlMBMzrFiVQWZ0ZUsQ64j00C6aDdewfc2PVcmZFcYsV9DWDl4iNjQ2tra2NAnNnYmP2mWbvmQiDIkz2captNRGq5yuKpylipPGFn4niNl6jqJGGT3Gt0sze64oi58w1iOJPiqPo4hL7Q7Er2xrngC4ydGjP3A1Y95RYamNjY5MRSubczXBT7gdD/cW2WNzoNel5pjEZxWuxfDrk000kGqL5HjrJ+9zx9bhWKXbNAjbEfmYiW6pqbLzioCBxHOkK5v3vMWG9sT7+RoOnbA4Yfi7L3C5tPk/dXot7z50710KLNTQ0NDQ0RCzN4e3YsWNkPhtDZpEqoqEBFejxmqkIhuAyMuqyFtSZTpAx4zmVq6bCyElkzo5+lhQIKeHIubh8U+Pk9DIDCwZ8prEK2xXrqxn5kAqKlBY5VVO9bnvGudA0+fLly1umeKFhQBxH95VO/q6TWa1je2sSBX5mfa6ldvL1GJDXlKY5CabAYVlSnYuhtCNbd0zP4tBYDAAe94zr475ioOvMuMDzQeqc6z9KFMhFk4OlcVNEDGRdWzs+d2z0QZed2CcaE9EALuPwGFzBZU0Fy6ilC2PwhLg+oiGTNHBTDOcW54Nrnq4rHNP43eXa4ITB/h3oOsL9cFu9rngmcz1I43VAA0Jy3REux3PKtF/x3PP8xDNyK4O5eRsXuquhoaGhoeEZjqXdEtbX1yfNw6l3YdgphrWJ99Z0DAxgG9/m1Hv4N1NPpHalcYLKmoNkhLkPUlYMuZTJ0qnnYQoZl52ZlpNy4b2ZTpQ6E3JIGVdco1jdZlOJWUipqCedcjy/ePHiXO9n8+dIkZKyJoeXcc90HeDaIceX6Rxqz5rajHoY6ojoUpDpxagTJsc3tZ88BkyN5XaYSs+CcJPCph4uC3/FcaMeeArk0LgXMw4uCztGrKysaM+ePaPEtZF7ousK3TYyx3O3j6GwOF88f6Rh/Mn9mbPL6jO8rmj6P8X50FaBesVsnnyNARy8B7PQadz35D5pf5C5UnEfGdm5wwABTENE7jvW47k9dOjQPBD4VmgcXkNDQ0PDtsBSHJ6tpfzWZyBgaUy1+js5vigTprM2KV1+j297Oh8y6KgDRUcwTFbN0jNS6QxnxOSJ7EN0AGXiUreNTthZWKBaQN0aBx3rYf+YsDXWRwfPLFmjtFlvQovYGHaOWF1d1cGDB+d6mCzcFMOocZ4yK03qQ6lD4/c4nqRIqeO0ziP2uRZ2jGMd9TUMTlzjtNjPWB45SZdpnV7UxzB4M8OtGdmY+F46d1OSEUGditcS08PEtUGJyVTi4NXVVV199dXze7N0W3QspyNzFkaLZ0cWxEHKnay5VugQTudoacydMdCCEe0NfC/1oYavu6zYLoYwtFUjQypmzuMGOTCGLZzS6RvklOP4mluvWYVnlvvUK1933XWT62dTWxa6q6GhoaGh4RmOK0oP5Dc2A6ZKYx8mUq0ZN+P/mUQxC0UUy4wwx2Wq3NRtJh8n1Uq/v0zfQ07LFLYprlpyxXgv+2V/mGc961mSNlN2tGyirxBTv2T6PwZmpW9VNr7UKxhZmg76gk0l8VxZWdGuXbvmbSOnF/tMLpMJRSM1R86Dlnaxfj5Ljp46J6+pqCti6CpaLXrM41x6/slJ1FI8RT0JdTPU6XlMop7xxIkTkgbpBq2pp3SiW4Vey3TU5Ixqwaoz7j9LmJthx44devazny1Jeve73y1psz2A//f8LFIu/fnItXPNZJIFBnNnfXFe6ENJroTcTqyTwZyZ6msqvCN1uC7j1KlTkvLA+g5+773NMWGYugy0kM6srD1u/ozjJeXvC9979OjReRtaeqCGhoaGhoaApTi8lZUV7d27d64v8NvYiRmlQU7spJbU81COHf+nlZ5RS1wpjTkPRw8gVR31MP6/ljrGFESsh3oYJqWlT1OkmsgJ0f/PaUOy+hjxgFaHWQQEWv2R62QZse+0/ppKC8Ogu1N+eLbSpG4ts55lnRzjzGIr00fF/vB+aazX8Vpi4sxs7TB4by3FTETN4pHXs+TBLo8cJrm2rD/k5OhzGbk6WtLVdDbxGQZKpgWrv0duPtMj19B1nS5cuDBfZ05vc999983vMUftT0udavszti9LyxRBPRn/j8/yvLEkI9ZDPZ+tKHlmSQPXx/3CdUHJjzSsK7fVbfQZzdRW0qATps+j20idWmbhS8t42nPE9e/1zMTK3COR67XkwmNz8uTJhYLCS43Da2hoaGjYJmgvvIaGhoaGbYGljVYuXbo0d0K2YjOKNC1GsUEG8zgxsKzLjdcYAokBRrOAw24TWe0sO7LbaDDDtlnmaIxjFpvBeungarFOFh6NYgmLXzIRI8UBFjEwhFEWHJnO/xRt0gE99s/Psp7MkIfuAxTzRJRStLq6OnLjyBz0aeZOEW1m8ERRKRXmmfjOa8KiZRqpZHkD3UYq2712vN4zh2NmVM/yIEqb147/t4jZIieKfaNYioGLKYakwVUcz5q7y1Q4MoujKLqiODSC4um9e/dOZjx//PHH5/3JHJi9V30O+JOB4afCg9EFhCLPLKQd8+FNBdan4R6dujORH53HOZc09Y9uBF7PFqFaBGiRpsvymorl0YDHxoB0Yo9iaq5nqjeyEG08k3hu+h2TiSyPHz8uqR/jZrTS0NDQ0NAQsBSHt76+rrNnz44MN2ygIo0dFWsUY+TwaqGvsgzQ8f4IBjOlkj1SIqb+6Czq6xmVTkMTP0uqxaa+mfMwHc1N4ZniilQMU+W4DIfQ8ThnzrI0UojUP9tGkHpm0N2MM4+cQo1KdwBg98sUd1wvtYzzdOeIxj00FqFrC8OfZWGUmK2cgWtjfZRCuB5Tz14XcY0yNBUV8uQ+TUXHe71W3E8GrY7Bdclpuf2WEtD8PY4Js4pz/WXOypQGsO10sYmopcqKsNGK59p9j9yA5/DBBx+UND4jsvQx7GNtXszBxrXNEFw1V4ZYr7kVuky47TYGjKEHPVcMVebzzX3wHEdpm88it8XnNLmozC2FBltum/ubSTB8jQGneRbHdUBOmGHDMuMmt82fMfDJVmgcXkNDQ0PDtsDSocUee+yxTYn3pM3hpxgyyCBVkVF25ORqDppsU6yXeh9/j06qbr+v+VlTCqYmIuVA/UEtxY8RuQL3naHTyJVmXK8/aUpMTiOON+uhni+jPumgz3HMwl4ZmQ4yg7m8eG+WXJU6gKlktyynlhgzc6ugCwndIlxP5EK9Jkzhs37rOrKxpb6XbSLHLA3rzp90F8nCNRnUM5HbzfZXNi/xXtcf28hxM6h7z2A99vnz56tJPB20nmsntpvSE9aZ6fCoe+SzU07VtbQ55DZiG83huXzPqbmnLFk1ncOvvfZaSYM0yueA++L7s35YOuTz2mPhsyXWU3MnI+IYMfA8AyxkulyWwwTbmWTJ98REx1NSq4jG4TU0NDQ0bAssbaW5sbExcgjO9FWk1mh5l1GVtbBQ1FNFSpKybFMi5j4zqol6KZdnq6bMstP/M/yUqQzL3ZliJLaBaYI8RqbwIrXIwLL+Tq7Nz0RugQ6lfobUeaSCM4u9WH/GDTCt0hQl7xQvHmOGEYvlkHshtRfB4NAMtjsVeLpmYUsdS6yX+j7OaTb/DHPHtpK6jVbE/s1rxBZ1tCSNFDilD1k/YtlRH1MLqE4OKa43WiYaNUfu2DYGe85g63BzIm5LtAquWWUzQPdUCh6GHHT5WYoxc6bUMdECNoIcJNOT+bsDUUgDV8iQcl5TtCiNHCbX9z333CNprLt1iK5YPkMmMvhH5njO8H7sF98b8X9aeNfC8MXyKNVbBI3Da2hoaGjYFlg6tNju3bvnlCEt1CKyoMbZ7y43glTYVHgr6gLdNvvlmPK27Fsa5N0uz7J0y79N1USKjpSc+2WKm5xrpo9zeW6LKXm3NQuk7HKYjoj6rsyXihZcDIcVQSqM1nnkmDg+Uk9JTgWPPnDgwCgUXFwHbh8pxUV8bGr6Sc5bZl0YLRylzbqBWIY0zPfJkyc3tY1hozJLO3+aOqdFmtuR6UW4Vqjvi210W0ztZ756cUziHqVlb416znw4aW3KtRTLimvd9dXOio2NDT3++OO69dZbJeVrxxwCuSZyFbEOtsFrh+G8yDHH+ti3zGfP8PlCn71FUtswpRCtkTO7g9r4ew35GesDY7u9Rl0f25rp1+lbyzHgPovlTelvY1tjPzJfwK3QOLyGhoaGhm2Bpa0019bWRkFOM6s5v91JVTLYqTT2q6kFi858MmhpxzRB5uYySpW+O37W/WPy01gP9VamUEzFxPoOHz4saZyMlpxLFhSbOgHq5bJEsaSWqH/LdHjUk2ZJcPlMFiFiisPbs2fPfEzNqWYJJKnL49xlSVxJxbLP5KKksd+f2+b5MhUdk6tSz2Jq3fUxOXKsk1aLtUDdER4nl+d+UA+TcXj0g3IZlNDE/Usr3UWiZdDHlvdkHAx93Hbv3l1dO05LZliXF/cLJSy1pKOxr9RX8XxhWVHHTi7QZTDYe5xTcnZ8NrN29nqyVMjluh763MY2MuqTOTnrH11WTGVFC2XWT11i7B+j59Amw+2Ic7BVEmbqKKWx3+SUZIloHF5DQ0NDw7bA0pFWHnnkkVGamykLq0zP47IMxpBjhAZ+j7J0cj6811RGjIvpNpm6NDeY9Zftpv6A1l+mOuOYUKfi+nxPlKGzPlpDkbPMLPBqFpeZZZVRS0JKCizWw+glW8nSSykja9Y4l+QImPxxKp1NzbqwJgGI93herr/+eknSkSNHNrUxs0wlp8+4iNF3j750jMvK+YrjSE6V3MZUBBHqmTKLN7bVoJSF6yCuLf7G/tCyON5rSUYpZUsOz5y2OfBoO8CINIxBukhaMp5V1OFFvWwtdi+5xmh96ETPXmeunymfonTAdVKPSB+7zJ6ClsS33HLLpvrpDyiN061xv9JKM64Dt5trlYhcIVMz8Tzz2szOLHOwLZZmQ0NDQ0MD0F54DQ0NDQ3bAksbrVy4cGHkhJ1l2aVIsaZEjv9THMiwYAwQLI1DHpnVtgFCxnqTLbd4wvdkaW7oNEpzWj9L5XK8122ySbuD+VLkKY2dxelSQCOTKEKthQermY9nY0KH5kw8QbHepUuXJjOex7WTGVuwb1R6Z6Jzriv21eOXhZaiCTaNCFx/JspiSLuY9d1jYbgNFs/UXCWy8G033HCDpEGMd+LEiU39ydJD0VjFoGEDjUxiW2riqMyIoBZ2iul1sn0bRcQ10/RSinbu3DkXtzG9jTQOQOHxZz2ZGT0NtOjq430ZVQ80JnNZdB+K9bndL3zhCyUN56ZFgTaeiyJNGsfUXHUY1CDCIkyXRVFmPKt4tvN88zqfCidIAzKvfzryZ+XQcCtz87JKKIpxF3HtkBqH19DQ0NCwTbB0aLGLFy/OORRTnREMuMrQT5kDaCxfGrs2mCLITFfJMTL9jBG5UBq/1BKNRmqD3AepQhpARPPgmO5FGigqOq9nhgCkltjWLAwanV+Z7qZGScf+kDsgdxj/d1svXLgwWfbGxsacSqdRRLxGzqfmAhLvZd9qbhwRpJaZ8DUzImHQXirXXWacf88Dw3LREMH1xGC+psr9rE3Iydll42jUuO6MY66F4uJcxzLp7sK9kZn10yBoKni066OBQ5zTWhgwmspnkhCuOzp1ew4ip882+LulNl5D0YjEc+dyvJZsUJe5cnmc3D+GDaQELboYcGyY0igLu+h5NadKiQUNnzI3JZ5VXI9ZsmKGBKQTe5a42Wfttdde2zi8hoaGhoaGiKV1eE888cT8be83bKQq6FhOKjLTqRlbpfYwtZSZspPzIsUXXQ9MvTA9hrmPLHWRy7O+x3J2f7rtLiv2z1Qf2+qyTJ1kIaVqehjqtaY4r5reMXNlyBKlxmcyZ99ImU6ZB5dSRtxnRtVzDfmZRVxayG3UKMhYLjk9Uv6Rsvf/lm54Dj3HHpOo7/Ea8Tr2WnEZTE8VOUqPhZ918AKGnItgf0hxcx0yOESst8ZlT81zLZXUMiGgpsr1Po26doYDJEeSJbvlOJCjn0pcSjclzzHLjGcJ7QqYeJpO3bGPDJRs/ZvbZimSg03H38zRHT9+fFMbMy6N4fQYYq4m4craaPgZpjaLfabOk9KBCDrMHzx4sHF4DQ0NDQ0NEUtxeE7gSbl1ph/zm5ucXCaTraWFoT6E1nSxPtZLq8aMK6TOphaSKbaXegq3xfJxpiWK9fnT9ZhbIHcS20/9ZS2NRmb5RE7PbZqi7Glly7GKHBnDdk1ZabpeWtHF8G20PKxxsbEN5MZrOsiMW+N8u23U2UTdkzl4/2aKmhR+tLQzNc5UQtTdZVIPl2fuj3uAAQ+kug6N+sapgBFb6U+zPc/v5AYyaj0GuM7673J27949l9LYEjrqrWnNV9MFxTooLaFVMNOHxbB0tKL2mJJLjPVRskKrc1tTZgmHDT/L4M6WFsR17/Gi5SiDR2fWrl7fTJnFMctSw9UsSrOzn5wyrdKzhMPen5GrnUouG9E4vIaGhoaGbYGlObydO3dOhush1chAxabKIpdGTpE6AL/RTc1EapZUCjkSUzWRCmXalJoVUeQeTKWT0mVYLaa3j/fUrA8zebj7TCrZ9VAHFqldts3PMj1Hps/I9Jfx90hpTenhsucfe+yxqv+iVE89Qq46S/FiLozhtFhf5NZIhZuqdT9E6o0AACAASURBVBksUxonrPQ9XlMM2CsNlLvXlaUAvjfj0g1yT7QGjhayfIb+fUzb4jWT6T+20vtma4eWsLUgzNJYfzqFlZUV7d27d86ZWHcTOaGt6iY3HdtD3ZM/qZ+Pe8xnEJPfci7jnDJNE/WM1s9m45Sl1on9y6zT3UY/6/Xte2i9HdtPaYfHl+HXMstb6ihdfpbWiRayPLOok43l+rMFj25oaGhoaACWTgC7Z8+eOaVFqzNpoCIo66feKFJ2NQrRZbHMSGX4GVr5UD+XUQhGDEIa2xrrMcXhALbk1mhJmnGwNUsnUjfx+VrkGlI5ketlUFqOSaa7IaVKbiPj4szlxMDWNYq96zptbGyMKLHMUpRUMq27Yh3Uv7HcRXzB6LtVC2YuDeNkq0xSsVniVFLF1vvV/D9j/2oSBeqbsiTMnn9zKuTep4L8kqNjHzIJBp9lNJoMTDycwbYD1Ndna4dBnHlvtCinRbdBKU0WPcdnIBPMen3Rf1Iazijf43lhoOvoh8nUOgzi7Lbee++9kjbrVl2+16qfYRLZCM8H01C5LOpC4zpw0HVGYGIQ8bheeOYz0kpmme02RY55ESmT1Di8hoaGhoZtgvbCa2hoaGjYFljaaGXXrl2jfHJRoWp2nNltKfrLlLk06aUoM8v5ZBEjzbfNCru+yBJT4UwjkiwMFQ0csnxusW1ZDjUqsjNDCqNm4lszC47m/RYZUMzrMmyuHOeABkPMqJw5xTI3VymlGnTY7aBoLMLtY2gvhpjLlN40bKEoKxPfUaTM7OJGNA33b1TM+3tmCEBRjufbbaLbQmwjw0LVHL8zg5ea200tZ5w0dlVhAOgs9yFFmDU3oyysF0MAZvC54/bS2CPWWQtAkbkl8DfuE+61bJ/WwvVlYbUonraokYZWPtPivW6j783cX6TN4+nxduhChiPMgjl7bZw+fXpTuQyZaGf5mEvPbaSahYY1cY35HorqPccWy8d54x5vRisNDQ0NDQ3A0kYre/funVMGNq/OTOJrwY6NqVQvdGwn5xXrM9VgZbS/m0JhWCqp7hBLbiGaPTN4L0MHMdtvBKk/Btim2bg0Ts/jMaexQmbwkxnqSGNDF89f7AcpVpq2RyqXVHUppeo87LVDZ94pYwVSe1nwaFKIDMVEqUGUDtBsmxwxDa6kcWiv2jqP40STbnKuNSOd2LYsoHlsc9wT/t+GFe4HQ5jRwEIaZ2XnPLmt0YGfWbdrqV7iXJO73rVrV3Xt+D4avmXBJOgqxfmJbcjWkzR2viaXnfWxZviUuTbRPYWGaFkIMzvbU+rlc2fKwMrrwOVGc35p8/q2M7f7Y4kduVy3IxoB0WDL6zCeo9JmIyE67PvTY811F8u1VGttba1xeA0NDQ0NDRFLcXg7d+7UTTfdNKcCjh07JmmzjoNhkygHz4JK14IFU2+RhTUiBU9nWlNGkcogR8XvDPYrDZSP223qgo6ZpN6kgbIzJWwKiNRUFgDa8nfLzE1ZMcVHHBOPGyk4mlBnriEM/0PT/ci50FF8KrTYzp07dfTo0RG3EznTBx54YNMztcDZmT420yfG9nK+pDEX6LI8d/wuSffff7+kgbKl9MFlRcrXv7kNXg8MG0XXEGlYi+Ru6Bwdg0i7vdRJkZPhGMX+MAwapQaRc6FeiWORpfOhXnNK99t13SbuKuNMDJfjsWXf45onp0AOnFxb3GOeX0pE6MxuPZ00zLvnihIGr80oAeJ5RvcA6p3j/rOuvibpof5PGubFbaGbFYM/RE6f51gtrVucawYG4Psh2/PU4a2vrzcOr6GhoaGhIWJpK82VlZU5t2HKLlLNd999t6Q8MLG0+a08bwSoZFMt1BFleh9TKbR08nUGzI3l1KgCOoRKA4Vj6pnpSJh+JFJpNYdZWodGyzePXy3QL8NERW7IFGRWbux/vM4wawwMbYo2S+3heXv88cerDqC0tDNlGKl0c7O1tRPLImoSBddjij/qSbmuvI5ryT2lgeKm9IHzEOef1LHXFyUaDKArDfNPa12Dul1pvBb9rMciWvQSTEprMD1UlqSUOnBS+JmVZtyLtf24srKiffv2jfQ8kfNmIHY6WbMfsX0M10fJT+RiDO5PSm+y4BUeH69zlsVxi+3lePke2g7EvUGJAgOeW7cX66P1N0OyUXcd1xLDOFIn7v5lulCeibWAG9LYCX9R7k5qHF5DQ0NDwzbBFfnh1RIlSmNdCinSzKow6oBiebQUc1mnTp2aP0tOrhb6JvPZoUWdr1vvl4Xeue222yQN+jf6E5l6sTWfNHAO/o1ckKnQ2Ebq0EwtUfdhCivjQigfZ8DhLAgz08F4DqZCpkVOqEZtra6u6uDBgyMfu9gG+uiRA2aqEmnMDZJ7nwpSTO6ciY393etBGocoYxkZpW3KmuvOY07pROanxDBdXEuZfozrjEHYGcw49pncD/dZBPU6tVBjWRvjuq2tHZ87tCSOOnZagXvc6HOYpZYiV0sL7IzDo5Wk9WXug7mnqCfz+Ht9sY20YI7/W6rG9Dn0fZsaY4+XUwllfnH0DaZlL/2MMz9Dc5T0b8wCxtPKnWXRojQ+Y+zbt29SBxzROLyGhoaGhm2BKwoePeVXZmqFlDet/TIfGt5LPw6/9R988MH5vUzwSMs318frsVxaCGWRHMxJ0d+K0WZM2WX6MY8TdShZMFeOo8uPVl/SOEB0bCOjTVAPEEFql5FXqNfg/y6j5ku1urqqQ4cOzSlhWrXGutkm6gojspRBrk8ac+9Z8uBalBlfzyw77Z9EXQe5uXiN+mtyzZn/J4MrU1fEyC/xGeozyVFmqYVo1UhpS+Zf5ufJjZLqjvPHe6aC/5rDc7vNQUQdey2NUpZo2PC80D+VelFaZMZyOXfe/0YWrJpcM/39IufKaDW0LHb5ljhFULrl+fEzXt/RwpdRmHwvdciMoBXroU6S1vWZHQDtHKxn9F5wu6SxzvjQoUONw2toaGhoaIhYisPb2NjQ2traiFqKFImpFVJhTH2SUUvmwkhd2qrJlGSM32aKwNSSLbdMkbitmY8bIx+QworUGq2hKP+mXiFSJO4HfWmoV4jcjus+fvy4pHEEAlNrGcdMvRX9fMgVR9AalL5BkZKibH5Klu7kwe5zltDS83/ixAlJ4ySr9C+LfTQlSL9I/571lX5o1ruyjZF7oq6TqZ0yvS/jkfK6wUSZ0rCeqHelfjvjkLju3C9KNCJ3RCtHWtplXCH9Pg1aSGZty9I1ZVhZWZmPl6n/KWtWpuvx98w6nNbTtFHwuoyckEFpCSOTZNyax5a6O7c10+XXYsZy/8fxpI6dkh/qn6XxnmbEE38nh5uNCdd9pqMkp58l6o1lxLFoCWAbGhoaGhoqaC+8hoaGhoZtgaVEmlLPbjPtQxRlUBxkVtXP0FRVGhsw0GzabDvDabk9sZ6a8jpzlK2J7xhqKJZLlp5ikczFgP264YYbNpXve6MI1eI7uiHQdJrm8BE0c8+yzRt0/aDC22M1Fbh5ZWVlUrTQdd1IbB3nhaHW3Hc6qWcuJhTf0DGX90tjkY7bRsOT+EwtC3Zmcm1Q3Ogx8hzTECobQwZopul8FJ25vcxIz7b6enTgZkohOpr7M44rw47R4TwLH8Z1NmXw1HWd1tbW5uvDYsPYZ4YbY2gsI2YT557lecAgErF93qsnT57c9Iz7fN999216NpbH7OyeQ5eZZXJneEI/488sLRXnmwY2mTEYzwGqBOhOFI1yuCdoDMRQarEcimjpAB/nzf/TvWMRNA6voaGhoWFbYGnH89XV1TlllZkUM3wMqYnMgZnUCR1xDRqiSAOFw3BnNNzIAg7TBJ/UYaToSA2yTTQEiMYLptzMORw5ckTSQAnRuVQauA5TMzSOINUejWQMc8Su1/fSVF8aU7fuB51uM5cGr4ep5K4Gy4uGAJ5/GyXQaMTPxmfoykBXAxomRQU9nWipZM/6RWMlcjzZ+JBz4/csQK7h8hgcmPOVOXAzHJiNv7w2vZbjs76Xn2xH5App/FLrZ5QsMIzXvn37UslDhDkFpgSTxmuFrhgMwhDLIdfCAN1ZGrR77rlH0mBURi7dz0QXE4Yho/Fati/dJj/reWCYuEzaxmvk0rIgCd4v/o2GYzToiWuHUodaSMV4rtNdjEGjM7cypoK7dOnSZGqpiMbhNTQ0NDRsCyytw1tdXZ1TDJlJPHVPDgMWk/XF36WxaT8pQ1MZNhuPVIV/O3r0qKRxKo9ML0LHUsqeDZrGSnX5MZPTRorDoXwY/odcW2wj9UhuG02nM/0fE4pSl0IqLZZPapfuFlnw3egasJUDMYMsx7XjvnmeY4ABaVhDkYplglymSyGVHjl0umd4PMwtM1yUNMwL9TDmOjMTfXIbNc5uSmLidUZHXZYpjXVqTDFELjsLZUaJgSn/LB2RsVWIscjBkas+cODApEvLnj17RpypJSXxmhM/M3hzls7GbfB4eSw9xjzL4phYd0fH/5q0KLbFY0muhPMV28iQedRzZ2uHYbkYlD97hsGcmVaJNgsRfNbg+R7XAQN6+B4G8IhSPTrOt+DRDQ0NDQ0NwFIcnhMx1qyMpOHNbPnqXXfdJWnMkUQqgBaApoBITWQybr/5TQmQM8k4PN9r6osBmhlAVRonlGUZdEyP/SMlRz2Mv2fBcKnXoVUTHTalsVN3FiIr1s/nY7nkLKNOgvqzKcfhUopKKfP2u76ohzF1bo6YnIqfjf2grpi6FEoUMj0ZAwCYe/E6jPPidptar+mMpyyJaX3MRLqR8yZnzfIz3QW5Qdbn8aQUJLaBUg+WlXGw7B/3QtSFklubClrgkIaGpSvW9cbyaEXte7y2oi6IUg1yCr7udRDD+nm/U09KLjrOj61M/em9VAulGNvo8v0bpQNZwHAGW6dkIbN6rqXZMmgNH6ViniPqwLnn4jy7HJ+rXiN+1tKeLLyfOfCmw2toaGhoaACWDi12/vz5+duUQXalcZBeUyYM+ZVZZFHWTIvOjOqgXoxpdNgOaewnYirD3AatOGPdtGxics3MKpSULwMBZz5u5IRInVFXFqlnWvTRx8XIwiyROqd+I3I7tip96KGHJPXU2BSXt7q6OgozlIU18jyY6osWgdJmao9WXdRb1PzXpDH1zPnJdA78zf1wm5koUxqv31pgbnKp0lh3Rs41swqltSx11rQO5rqIbePYZP5e5C64BhheMML7Zv/+/ZM6vN27d484xrgOyNGZG3ObsgTAtDSkLt3z5LGOIQ0ZCJpzl0l66PdJCZPHOOoKfZ4xKLVBXWgmlWIQdnK2cU8weTDPepaR6X95BjJUZByTWpgz20p4fcT95DGJabwah9fQ0NDQ0BBwRcGj/WbNUkSQcmeaB1PrWYoIf9LCjjqQzLKPqX0YODlSl9SZ8Hvm60R/GFLtTBeUpQeijpDcTqRY6c/HwLy03otjQsqVulBStLENTIrrNnuMog7EYxs5la0oLfrqRH0FLbVM5dGvK1Kx1BOQi8nGx6BOi7ouctexbbU1w/5JYyqV/l5cS7E+Skw85qTO4zPUM5LSnrIOrnE3Hkf64GblkMshlxDh8rYKPL5jx45RVJHIeTMVFnVrWXow+gLyDKnNj9sbQa6ZEqDYRtoicM9Ei0SvSftQ1iQ7UxIT2jNQipOlFqNEi1xoJmli4mnWk0UucntZPtNvZSmzYkq4rXw45/1b6K6GhoaGhoZnONoLr6GhoaFhW+ADCh5tRHaSIh+L6WzqbUf0KL6jOIom/hYfUNQV7yH7blBcJeWiqlgWc55Jg2ikptQ16BCa3UvxA8VIsS0GnTdpFh3b6mdpfMMxigYPFD9RXJmJaKxcj+GOthJL0RQ/9tO/2TjAYigaikQjlkzcJA1j6zZm7WdAc44FRZCxrxR78plMMc91VzPgivuLYjeKpbJQdhwLrp3a79IgLqoZxWSBBbiuaADlvW4jJGns1M1QaUTXdSNRWXS/odFDlsuQYF46jwvF4S4jiho5phzbzFCMBk00OMnyxbme66+/flM93GeZ8zVdl+jekxk81YJW1MTiERQ1UsRNUbtUH3vm94vrg4ZCUwZPROPwGhoaGhq2BZYOHh0plszM2G/ae++9V9JgTus3t03YTbFI9XA2fsbUGp0T47OkmknNRAqoZoZMLidLJUOFPB2ATbFEKp3GEEwxQ0fN2Cb3ncYyVKxnLhQGqfLMiMDl+Rq5bN4nDfNvk/ypsGJ2Hs6MRwxTbnSupcFM1u7MAEOqpw+ShrEzt8F16LmMZTKILin5LECuQYU/78kobwYJZxmZsp7Bo5l9m1KYuO54D43C3P8Y9o2SERo00DAhPhNDDtbWTylFKysrI24tmur7PLn//vs33UOz94zzNuim5D5SAiUNHAgDM2RBK/hMLcA197b7Hn/jfmd4vMyJ3GCgcxqqxb5zX9HdKzv7DWazp8QsjjsNmfx+MDyedtaPcDCBAwcONKOVhoaGhoaGiKV1eCsrK6NwXVEHYP2a39Q2p/V3v4kzPUyUyUrjJJ6+L3KHdKqkeWuW9JTUMs3eXX+ktBhYljobuglECigLvBzLcv+inJo6CHJ01B3EZ0lBkoM0VZ3pNxiWjG2NnKupM3NeU1S666PONVJ4DLjrexg2Lj5Dt5MaN2vEOSU37raZMs3M32spVmpuCvFehuKrBeKNfaBOhWbvnOP4G/cCuUWPXXSo9hphwmGPxRQHS46C6yueEw5a4LWzSABgBl2PQZZdHvWuPmd8LkV3IXLCNJ93WZQAxHI8luaAeB7EuWQoN+9D6gwz7rDGRVMPHNvIUHW1YBxZaimvDepLyeFl0o9a8ljqLqWx9MHrgUHYYwhCBlLY2NhYOIB04/AaGhoaGrYFrkiHR0udLGGh3+qWs5KKiRZbtMTx29oUEC0HI0XKYKfUW2SUVtRZRLBf0dmxZlnlTzqVR6rJFCLDNU21x2Nh6owBtbO0MOwHKVZS+Jk+jXpMt91lxLQwt912m6TNVmA1SmtlZUX79u0bWWNFToEh32iBSCpaGidtpY6D3E5mXUZndY819cKxblpj1pz7pbHzO9e5Qao69odWjKSw4+8Mc0XOwuPIpKKxrQYd6cnpSWOOhMmDM92NpTSxjbWgBSsrK7rqqqtGgYtjn7P1FOvmuRT7ZpDz4d6L6457i+nPstQ1TCVEaQcd3eNv3KvUSU6FJ3R/qMPLgnLUQjQyIbC5rNg/WtXTrsGfcd5cHrnRWqCF+JuDmtTO8wyNw2toaGho2BZYmsNbXV0d6byifwqDDZvKsC7Pslj740nSTTfdJGlMXZLTo6WnNA4pRN1KpuOo+aW4P36GSTCztlGXRm5BGqilWgJQ35uFIWKySHKYTDwZ/3d95EIyy05aJrpechjRf5LjFqlwYmVlRbt27RpR51mQbYP+l6bo4ryQKqdVHvsc208OyN+5DjOOshbUmxa/8ZrrYZg4poeKVDPD0jF4NOcg3ksrTIYHy8KEsc+msOlLFa3man54tM6LnCD1tF3XTXJ4e/bsGXFrcRwZUNjBo8kFRG7AXKb7SKkNpSyZf5x/83hYolXT20vDWrG0hPrfeFbVklPX/DPjnuba4Xeu83gPx5jW6FnyWCZS9lrxnPh6rNfnDM94I5OKZWHUmh9eQ0NDQ0NDwFIc3sWLF3XPPfeM9CVRr0P5rRP43XfffX2FScBUpnCpBeg1tRapAPviUG/hezKLJ1oikTqgJVzsq0FrRlpNRUqyFoWhlhA09p3faSWY+WORAmJKFz8T20jL1FpyyhjlxtdM1V5zzTVp9IbYLlosxnbTB5AUfaa3pFUsrXW9HjOdCq1ZyXF7Xcc1RCrWbfZYZFF8yElxnZOyz4KWUzdEaj2OO3WQnFNy15k+rhZ4PEtDQ/21+2c9ve+NlnauO0qCahzexsaGnnjiiVGKqkx/ZE4h8zGLbYvPcy0yQgglJVkb3DePW5bMlRw3LcgzC1hLMzyG9AOt6apjPbU0WEYcI1qhc414P9FqXRrG3hwdOXuXGd8XtfmhHj9a1/p8yILgb4XG4TU0NDQ0bAu0F15DQ0NDw7bAUiLNlZUV7d27d85mW4Rx/PjxoUCY3D772c+WJL33ve+VNLChz33uc+fP3HnnnZIGsYA/bRJvcRuVy7E+/8Ys7HQQj8+bPadok7nt4vMUF1KZS1FX/I0KbBrcZEYkFLtQvJeJX+mGQIOKTNxDkRyV13QQlaSbb755UzlRZEk4PBTFKXEuaQJN0XaWD4+iNubHqxnsxL5yLuk8nJlRU5TuNnouo4iR4aa4Zgy3PYrLaVpOAxS6vEhjkSbFb5nS36AYme3IkBkwxLI8ntEVyXsvzumUwVPMeG5k+fVoROKxzDKe0w2G7jo+h3zexfpdHg1A/AxVINI4AAS/ZwHpKbJnzjm6ZcU2cs3QSC+ba65nikyZ2zGKGj0f0TBMGtYZ1268t5aHz2OUqRUyg62t0Di8hoaGhoZtgSvKeE7DBBumSAM1xDfzi1/8YkmD8Uo0fjBFWstOTC4ncl4M10Tzbd4njZXDDJTr+mI72B+2iSbMsb5amDB/N9WUKZxr1DOp3UgV1kKm0Yk4chI1wwOXYbeSzNzelN3Zs2ernEDXddrY2BgFP45cLbNGe12YWs9SyHjtnTx5ctOzmQl0rQyOJanc+Iw5KjrM0iAhUr5co7VQXxlXQOMhjtFUeCgaqbCfTOMiDfNBYxxypZmRFJ2HDRplSMPeinthyrR8x44d873nZ+NaoxGFDSgYrCByeHZv8lnEkG/uazYv5F5pJJcFO/a5RQdzGitlQardFqa0qmWbj2BQahqORe6JQQrIibP/MfM7jXsomckMCXkPU5tlBnaWFMQ92NwSGhoaGhoaApbi8NbX1/Xwww/P37p07owwZUKz0uc///mSNlPedgB93/veJ2mgzkwlmZIzxZ9RijZ1db2WDWehngxS8KSAo96PDuw0uaWeJgbHdj/IadF5NLaRVFItHBUpIrZbGihLhmrLuNBa8li7HsQxOnbsmKQhcO8tt9xSTf/TdZ0uX7480i/G/phaPHHiRNp3U+uR4ja151QupM5rqZ+kcUokP0vz7dhG6tSon/VcZg76NbN6hkaK9dWCeZPDi2OSza80DupLPU3sM/U85HbiOqDulSbyTKUljV0+rr766i1TvNA0PkuUy9BXLtPrJHNpoSShliA1008zQPaUntTl0b2KwezjHiJ3yXMnC+DA9lKaMsWRkxunm43v9RxkEh9Ku8iVTknbqIPPEly7P9Hmg0mca2gcXkNDQ0PDtkBZxmmvlHJK0vEtb2zYzri167rrebGtnYYF0NZOw5UiXTvEUi+8hoaGhoaGZyqaSLOhoaGhYVugvfAaGhoaGrYF2guvoaGhoWFboL3wGhoaGhq2BZbywzt48GB35MiRUaqaCPtP0M+KCVMjaDiz1fcp1O59Msr4QPFklFsbm0XKnrqHv9GHJ4vzx7pLKXrkkUd0/vz5kcPSNddc0914441p8k7Dv9G3iNFfPhDEMthHfk5h0cgOsbzaXDFN0CKY2iOsp/a5yLO1+qIvFeen5k+Xjb39q3bu3KmzZ8/q8ccfHw3+nj17uquuumpUbmwTfVszv8usH4v+tuiz2T6p3bvIeuNvy+yB2p5e5sy4ElxJ/xjtysjeF4yhOXXuEEu98A4fPqzv+77vmwcNdlinGOrLjoMOMWanQzrzZjm/eODx+tShy3umNnntN4a3iZuak8ZNzgmL/aNDpr8z11gEHVg5FnZWzQJBMzxQ1qZ4PZbLEGq1INYRMWP7m970ptHvUp/V/md/9mfnIcruvffeUd+9jk6dOiVpcE5meLDoKMtM55yHWlBaaXBO5mFJZ9s4TgynxkMkm1MGrqajsb9nzvic39o6j3PLTO6st/YZ72VZDKUW87w5yIKftUOwAx3UAjtIgxP2c57zHL3hDW8Y/S71wSU+8zM/cx5kgjnipCE82OHDhzfVzeAF8QDlwcm1PnXu1HIZLhXIGIHNs7XD/JdckxzTLHQez66psIu10IC1rOzZmDD7+hSDxMAgtcARsV0+JxyU4fz583rLW96StptoIs2GhoaGhm2BpTg8qX9bM5N2pBAp0iRlyuvx+Zo4lNRUpGpqXKDBDNjx3hqm2Gj2s0aJZFmEyRUyLVFGfZLiYbDqKbEBw6CxniwcFbN+kyrLggbH8qbEJCsrK/O0OuRCYt9q4kKXHTk+Uoi1tCZZu1hfjTOOY8C5IxXLtSzVg3mTm3LZmXSAgX+5ruPaYWgvcgnkZLKxIYfM/kV4LNh3hkXLOPOYsX1KHXHx4sVRdncGqY7t5f40Mm7G9dYCZGfrklKTZcSD5JZ4dsQ9RgkSOTzOR/zOfc+2Z2cGf6tJthhSLbZtKnwg21MLws/g2FlbPV/LqBcah9fQ0NDQsC2wFIdXStHOnTsn5dbU0fGTQW+lQe/HILo16nxKh1fjuDKqIuMY4/dYLylGysHJAcZnyeEtIven3mPKeKQGcmtTymRStwz0yuSY8X/P28bGRpXS3djY0Pnz50cBkzP9EaUC5JozHZevkZuhcUSWRom6k5pOJ5bP9UbuKa436lu5hkjFRw6PVDp1NJlBTy1IOTmXqRRNfNbcFal4adDhkeulvjlLimx93COPPFLVf3Vdn1rKQZ6NTNpQ091OSVHYd66HTH/NPtYkLplhDddXxtmxjZz3GlcY+8QgzsQUZ8SA9pk+u/YM95VROzulsZ7ZZ0tmfMRytpLYRTQOr6GhoaFhW6C98BoaGhoatgWWFmmurq5OitVqokyLMKMpqWFRBfOEUSxQU0THeygmyMzRaWhA5T5FaVPl10RMmTjUbDuNL6YMHWp+OFNzUDNhpkI/GmPUXCdqRhPSWFSSmURHbGxsjDIYx3Gqmed73DIDgZp5Nk2jKdrK2l1zaYjPUNRHsXhmWl4znKABisuMoqBaZvspMT8NC9hnj7NzmkVVAse45tYRQUBqpAAAIABJREFU16pz/9mNhP2lEUP8321ZW1uriqYuX76shx56aC4SzUR0zAzOnH9Tqg0/Y2M8zk825lu5Fk25J9T8FBdxf6gZz2Vl1wyPpvrFe2puHdn5VDuTaj6R0nAG1sqdcmmJos1FjYYah9fQ0NDQsC2wFIfXdZ3W19dH3FOk7OnMao7Oyml/j87qdFyliWrNrDuDKT1StZEq9D3MikxEaoqULhXyU4YHvNef5nKzrNXsc436zUyMOT4cE1K/8Te2mYYvEXQF6LquSmnZ4KlmkBLLIxfoccm4Z2ZgNpVubol9nnI5qRlsZFxBjBBSuzf2XRpTr+RUPE/RMIhSCI4ff9+qvKy/mWsIP31PlnXe/5vT83f3L5MO1BzpM3Rdp7W1tXn52frlGq8Z6sT5Zzm1LNtTAS/o0kIpR+ZCUwuSMBVRqCahmDJA8pjQeIRBJbLzj5ILGo5lHB7Hj0ZfWZAMw+NHY7bM2CgzMlw0Ak3j8BoaGhoatgWWdjzf2NgYcTGRqjEHZwfj06dPSxooQ4Yqiv8z/FjmwsD6aqb2pGrMAUgDJep7a6GkMt1NzYmTnMOU87DHgtxuRjXXqPGaHjKD750y9SXVNxVmzSCHN0VplVK0Z8+eUTmxz+6rqTzPe+ZSYDiM1aFDhyQNXLv7w/GZCr3kttE9JrvX5ZqLYaixLNRXDZ4XcouxHqO2rmOYLYZI8zNuo9ef2xjnwGuROl2PiX+Pe9J1ez1YmuO2u/zoVlDjXDNYckDOO3LI/t/hxxxajA7aXi/xGY9TFqRCyt0GeFbwzOJalsZh8OgKlK1NBieo6ckyqYH/9/z7O8cvk2AY1Jtmkhk+W9NR04ZB0jzUIMPt+WzM9jzr3rNnT+PwGhoaGhoaIq5Ih0cnwUjtWR9niy1Tk5QBT3Ez1IdNhYfim51cp6mbjCJl+VORuinvp+MpdV1ZKLNamLWsPoNydgacNQUWuYJaGDfPBYPVZuXWrL+y0EXmmC9fvjypi1lfX5/k3skBm3shRer6pCH4MHVqpvCnwmeRAyJ1Ts5cqgdHoIVlpNbdR4+hqVdS+J6DKI2g/o3z7f5HzqUWjs5lUXcc95C5M+5Jl2EOL+rguWYeeOABScNZEC0xDT/voM979+6dlA6UUqp6U2lYE+bw3FePpcfNv0ubxyy2vxb6K9Ph0YqQuve4dijJ8afXA/eGNB7DGheaBWb2ePm886fHgFKi2G7q4ZiFwr9nYfeoT6XkJFroG+zf1NhzD+7atWvh8GKNw2toaGho2BZYWoe3vr4+4hQyHQD1blMUiakwyoepr8h8t5i2hMj8ZPwMdR3Ul2RcGimOmsVVlKWbanE/3SZ/N4UXKRdaRVLP6TJMrdXCB0nDnLj8LPCrQY6FvnFZaK5oTbmVP4zXjvU5ce1Qx+F5MRdw/fXXSxq4GmnoP/WuHg+Xn1npUS9hcB1Gjsvtdj/IFWSUby3EFttGfaA0TnPDT3MpkXNxOdShua3uT6bD8zUGauaajeuNweQZNDrT3fhez/H+/fur1tKun5x+HCe3gZycU5h5zfg7n5fGFojUUWfwenBZlKpknL7HhwG0pzigrawXMw6HHBalbRlXWLN2ZX20yZDGZ5DXLiUOkbOOumdpbO2aBe4mF7hz586mw2toaGhoaIhYmsOTxlZLkaIzxeO3MHUOfhNH6mqrFDh+u5uqsFw7XvMz5CyNSKWxLaRqMi5lK3+4WuDhWB8pLkbYiHozUrM12XrmS1OLxuJ+ZmmdSIXT2jXrN8d8x44dVUqr6zpdvnx55MeVWbG5naYQb7rpJkkDZRg5VD/DKBlek14r7lfk1gwGPeYcTukHXO/UXNZ0Qu6fn3HbIhdiTsXPkHu77rrrRm2q+dCRembQZ6kuXbGUgJIFadjLbrfnxPXbYjuuDVrTTkXLWFlZ0e7du+f3upyoy7UU4OjRo2mb6BMY+0Rd2pSu26DEx/VPRQZx++mvSKtkj5dU923jHnf/4hj7XpfvfcUzZSrQPSNlEXHt0O/T9TKCVeQEvQdoA0Edf9yDtg+JbW6RVhoaGhoaGgLaC6+hoaGhYVtgabeEmPPMIgGbMkvjLLQUwWSBi32NymjXQ6feyPJbhEoTaxpbRNEZxXNucy0UT7xWM06gcj+KbP2M20pRifsZlbk1ZTGR5fTzNddHx+apvFTMV2dkIduYK2vKGMaggVImTrPI5/Dhw5Kka6+9ttpurwU/w3VgsZ3Hwg7q0iBiqgWpdhlRDErRNfuTGQLQuIdGOW67P7NgvhaZsX477mbrm0YRDArhMTlz5sz8WZdD0RwDesd+uh6Kp9yfLEi14TF//PHHJ8Pn7du3bz53njevC0m64YYbJA3GKb4nli/l6hBfc/0PPfTQpvqz4At0R/Le9b0MXygN4mcGvqCRTGYYRjWE59Jnpn+Pzv10JfAny4rnt+fX7ece4TqIc8qwflwrHotMFO158lqxgZrnIq63OIfSdB5OonF4DQ0NDQ3bAlcUWozK3UhVmHo1tUdFc/YmNqVRC3lDBWqkmnxPdISNZWTf3V5TCqZaTEHSYTO2nybkVPLSOVYaB0EmR5uZFnMMaETCZ7MAwFnA59iH2EZT/aS0auli4m++duHChSqV7oznHMcsuC453xMnTmxqY+yX1yIV44bLd4i7LPQSUTO8koZxMZVKYwG3MXLcNvAwJe3xMnVL5/FoEOJy3U9/khuIVDrTbT344IOSBodw7xW3PXLZdD/xXNCkPfbP1yiZ8ZzYyCByA3Son+LwduzYoeuuu24+Pq7H4ycN8+E9HcdDGnN60rAmOC+UGrnvcR0wrQ25l0wiQhcJryUaUmXh9gya6/u7ufTYP9fttvm795P7ZSmBNA5wUeOcsrZ7figpYYCKKGVxu73m6cJjRK7X5UT3oeaW0NDQ0NDQEHBFocVMuWUmuH7LU57PEEVZgswsZFD8PdP/+Tea1TNobKQoKd83VcjQO1k9dKGoJS2NFAqDYjMMVWb+XNN91nSJmT6OugI/Q31XrI/ULeuP8ndSY1Pm++vr63r00UfnVL7XR9THkjo3tWpKlFR7bCfDklEv52ejntQ6IHLllFzEdUAXAusZPcamWKPUw/XUEouSio/rgLpIj4nXkrmnqHfytfvvv3/T2JiSp2N4pI65Fs2VUJcT9zzdENw2rymPiTkqaaDyvS8feeSRagJhnzt0xYhz6TnzeqIZvccvrjfqP6l/Y9DrqDticGiG78okWuasrG+88cYbJQ3njeuP9bgfHkOmEvM69DPRaZ0clvvleXD/I0dZS4LrehiWLK5dt8H1UpKQjaPH58iRI5KG/cVgHNlZ5XV99uzZpsNraGhoaGiIWIrDW11d1f79+0cUQ9SF8E1LB81MNmyqglZ+tEhiSJ4MNQfxyAGZuyAFwhA8UedADsuI8u/Yl8hRMiEmP7N0PdThmTI19c5nM8qulnKFlKw06EMYYNjUWJbglGHdMqduo+s6Xbx4cT72p06d2tSfWCe5GLfB9WV6iprlMLmozFLQbfI8ZUGVDVrfcZ2R05QGbsbcsdeQuUPOZdwbDEZNzp4hoKQxJc3gBAxPlyXhZT+8PhjKLZZrcE4yZ3a30WPw2GOPVXV4Bi0i41y6neZqGZCClqtZuS6P3FRmhRz11tI4jY/nNNoBMPUSJUyWBERdIW0EfA5w3rP9SV0a91d2VlH/y/n3eFIaJo3Hlim62IdYj3/z3DJoQWwjA4WfPn26cXgNDQ0NDQ0RS3F4pRTt3bt3FHopcni04qKVX6b3Y2BUWv+R8o7UM8PjMLRTlqTWVITbbT2F22TuIHJITOFh6uW+++7bVK/LyvyionVSLDOz6GJQ6Fp6pYxq4hww0HUtxYg0tpg115b5Inmc3K9z585VqfTLly/rzJkzI8ot09tE2bw0jKXHK+ryPA+U9bsM63sccipyoW4316bHiwG742+m9q0PMZfotkUdnterfYvcBustPP8em2h96HJtYUk/V/8edcZMo8R96v56bKL+z3omWi7WEpFK45BZ5Ci8JmIYtCxEWs2Pc2VlRfv375/Pl/dGHGPqsMzF0Ccszj+lTzXumXotaVhv5sbIVXv8zMFmbbT1LPV/kcOzRaf1fq6XgegzXT7PBur03O+4vt02plDz/NPvNQv+zvPHa9PrPZ47bi99IRm2Mp6d3kfeN+fOnVvIB1hqHF5DQ0NDwzbB0hzezp07R2lFonyVlojUMfltn/ma+M1vWTYTcpIDlAaKxxSjuTfqDyJXaOrIVMOznvUsSWNdIalaaaB8GPnCYFqa2AZyDgwmHUE/FFI+9CGMXDZl9NQDZPoMpukgZex7o87NbXBw5zvuuKNqaWc/PHIMUQdw7733ShrrD9jeaCnq50310R/Pv5vDi+PK9CUMsmv9bOSAqCN0m2+++WZJuR8efc6YToeWv3EuLDG48847JQ3j5nlwGeYApWHc3HfvCXMbbqO5h8hR3HHHHZKk97znPZIGfRbXUBZw2PW679ybMSi26/Y47t+/v2rlu3PnTh05cmSku4t6S6472hdkemvOt8szl8tIQhEu12PpM4WBuyMXSv9Yj6375fHxWpaGNeG5fN7znidpOKOY+su68Tgmbr/XFa10Mz9Tj4Xb72coeYqSJe9LzpPXjNsa9y/12jwbXY8tWqXh7PW+PHjw4GQKp4jG4TU0NDQ0bAssxeGZSidlFLkZUkvUqWRWmqYazNmZUjx27NimZ6k/cZukgQIxhcI0RFEG7GumCqgTyBLbMtVGloQyInIu1FsypU02JuYuXI7HxGX5urmsqDNktARy274+pZsitU1fpdh+cxdTcvR9+/bpJS95iU6ePClp4Kqz9EDWizIOahYhhmlm/Ol1QJ1k1I8xtYo5IN9jriqL98kxMLdonV4WS9VcGTk8WsBFqtnlel95jZKyj210f3yPyzU36rl2vVEneuutt266x3vAY2EOIq4dr8WaJbPbnkWQmUo/ZayururQoUPzPmb6OK5bRm3y73Gc2Md77rln07PmVBiRRdqsm4t99NwxOpQ0cDOeF98b16SUj5PPL1oq8zNKsrxWzE1T+lFLBRX7Q/2lpTncb7GtHnNaCWeWzYwc5fXs/sRkzwat68+cObOlha/ROLyGhoaGhm2B9sJraGhoaNgWWFqkee7cuVGA1Gh0wTBNZsGpaI5iKRpiMBCq2fTMsdlsstticQfFlNFZ2eIIph1ieLIIijlpvkuz/SjSookvRXVm+bOwXWbbLU6pBQ+OxhgUoVF0O5XKxuPI8FcMvyYN4gb3Yyrj+e7du/X85z9/FHIpGsHwN4+5xWgWLUXxtB2NGTbtuc997qYyaEYuDWvTY2zRkufDpuDR0MFir7vuukvSsCYZCDoLD+Y2UuzuT4r0pWEv1MLQ2cAhjjuNvVyv+84UQO5L7KsNAjyOL3rRiyRJ73rXuyTlLgGce2ZHz5y+o2isZrSysrKiPXv2zMciC1TB/c60OlkwCV/z+vK+9DxY/B7bYTAEHw2TvK6jqI2iZrqUxH1kMASf6/UzDOcV2+F6rD7wp0XbnuM4Jq7bLiReM66HgTbiXqTxIVMyuR7vK2kcNpLvD54/8VpMR9SCRzc0NDQ0NAQs7ZawZ8+eOTVlCiFyeKaa/Jan+XSW/oEOxjXlKoMux3L4hqdiPoKO86xnitMjJ8mkh+5/ZjLttjKUVRYOjalWXA+NFbI0HRwvphDJgnCTC3B5HiM6rUtjzqWUUqW0VlZWtHv37lEg5dhuj4c5ORtKmKqku0VsDzl598N9vO222yRt5ii9jj0fXF9uY1Sc07GZxlLuXxb+jBw1uQL/7vZEWCphDtMGFTRbl8Ypa2jy7f1m46BI4Xt8/EyWOJVtdz1e37UQZtHow/syhl2rcXhOSeZxcX3x3PHYuS+UIDBsoDQOJsE97L4z8IU03hfkOty/eFa5LUwtxcDgsR6eN24LjbV8Fsd1QIMqpjaj8VT8jVInr2sG3I4GVi6f4cE8zlxD/397Z7ZkR3Wl4VWlkhAYOxyBGQQON47wpd//SfwAtC0ZcDMZDEJSDX3h+Or89eXaWXWI6Av3Wf9NDSdz5x7zrPFfVQetk3H5/WFLYc5FR0ByH0bDGwwGg8FJ4CgN7/z8vJ48ebKxr6bkipTnhMW9oqS27SM9cI/DnrMNf7O79I/L6WQ7/LQG0RUnRWp2gjaw9J59XPXFiaHZR0udDsW2xpWSkT+z9OTxJ1ys1qkT2UeuYax7aQlnZ2d1cXGxkS73ClZa6zTBbNW2mCZaxIoiKX0Olo6toXSh5S4Km37XnIP8P/Nsn7d9N6R3ZOIxQErnM7TfLj3GNE0+c+wp78vsG/OJf8skAF3f7Jt2KlJXhsiWjA5oeGhNnQWGubXW7D2aWiR+KqdGpOZQtdWMciw+0ysi7WyffjvFif2Yz0ErdHI/Pxkv1pu810Vx2TvMo0mz8zkutsyZ20svMw0ic8MZ7Yg8aM+WMlsHErTDz8ePH4+GNxgMBoNB4ugCsDc3N7vEtUgkLrxqP1lKQiaAdvmhPQouJ1OvSq2k78ZJqI4kdb+qtqU2/H+eh2abUqIjU2mD55vcOdtzQVNLkl0pIEeDOiqQ8XeaMj+d5AtW1GHuQ/fZDz/8cKtN760lkqnJZulvamlInvahuSSTC47mZ6ZTcjJ3Jis78Rrp1VpMlxRtajwkb2sYScFFf+3/5R7TU1UdpGVbW1zuBuS+Y04c1bhXAsr7iz6zFp2feVWwucPl5WV9/fXXt9c6SrzqsHYueux208fliFeupZ+eg9z7K7pD72trnFXb0jqsnaPGq7b0dvxtyrfOH8ez6b+jgldaaY6DvWNCh87SZW2X5zCPjoquOswf//M6OgrfY2R8k3g+GAwGg0HgaA3v559/3vgkUiKxz8mSVuf3M+Ey7VtS6Oy5lioczeTyE1UHKcU+Gvrh/LVsD9gfYymqI4+mPUdjuY3si+fPGu3e3KyK7jqCsWorqfK3+5Y+t1UZog5XV1f1/fff3+bNdYVELfmiIdgPl5I2Y3J+kqXYrqir++t8IftP8jnsITQ8F8pNidO5kvbhILXTZuY64WdiP6Gp8hzWI/PirP37J2vqOao6rAf7qSuNk2PIvpjGi5/uc7bH8/ZKS93c3NSbN29u5xjpP/ttWitHUXaRli7/ZI2HM+4zkffYkmWNJDUTrqX/zAt7iL4nETi+NP5nqxRtOseyakv/habl8kC5lia6B+wzn69cU+cOr+jjupxRa3+OoM/3jsf8zTffjA9vMBgMBoPE0Rre5eXlUiOr2kr7Llja+eNcMsiaibWZlOws9du23vkILB27MKajUKu2ZSwcOWhNM0vKOM9uNScpnVlDtma35/OwTd5RenvaoO38jlxLbcfsMm+99dayXy4tlXZ8gGZHfymQaY0hpXT721zM1QTK6XtwX70+1pSqDusOyTLPw7fW+TZsCXG+n8nYcx/Yd+xcJ5B+xq7ocT7f2lVK6T4D1grtZ892HA3MfJocO69lHJ999tnSP3xzc1MvX77c+NpyD3lPdxqd4ZJl+byqw5x2EYmsA+vuaF2Q+4F7XDDXeyfnweW/uNaaD/ekn5RxMf++hv3WzZG1P591v8OqttHhjtvYe2d5f3mOco3od2cRuQ+j4Q0Gg8HgJDBfeIPBYDA4CRxl0qz6t8rpJOtUwW3aM5HtXhg9sEnECZt5vU1xptVyOHf2zWZKnOJ2Vuf/MGmtKLdsfsvP6KtNCbTRhczb/ORxd+YWBxjwfIf3d2Zlm71sZulqESZR7yrw4NGjR/XrX/96k8Sb7WFCciVum9HSbMM9XGvSYM9bR6dmEzB/87xMMaHysoOWvIc606lNO+4ba5AOetrheZh5CegxTV3V9izwmYOMHCCQsCmNNpnvbh699pyvrtK2TZCXl5e7gQcXFxebwLHsg+fUprcuoMquC641IXQXgOL0Jz/fqRo5ZqdOOIgsz6WJJWwWZW86JcTt5PNxHTh4peqwRk7Yt7nZ7/e8x+9k39P1Cfg9xDx35PjM17fffrubEpUYDW8wGAwGJ4GjNbxHjx5tnOwpIVjj6EJf87r83QEvK+2tk0j9P0sTKXE72XGlRXVVpC0VObDB2mh+5hIeSIFIRun4NoGx58JBDF0SuTWwleaczwG0a6mtS8Z3XztcXl7WN998cztmtJhMIl+RKbN2XTIx7VlbW1XfzntdisQBSLYS5Pi5ljWjlMxe6gznxoFV1gBTo+yqhVcdKNT+/Oc/V1XVX/7yl9vPXH4GjeUhyd4mirDFpgvoAnzGuXG5pdTQWLdMAbqPeNxaRp4XE887DcWVtfNa722fl715ol1rYF2AFc9zsJD/zhQqBy1Zi2afd4FK9JH1sLZOykueaacfmBzD1qEcn4MYV6lpHTwXvBecblZ10IiTDH2PECMxGt5gMBgMTgJHk0c/ffr0ll6J0OzOb+Pw9r1vd2stq2R1h4vnsy1Zr7S2qq2PzhLvHjlt59fp2sj+ONHc0iDSexf+vtIgrUl20nFH2pv/77QdS4pIeKZOq9qG2++t8evXr+v58+e3YegkoGfpHVNigS79ATjZ1aTbluLT72PpnPbRHLg2S6AwfrQXp0PspXyYNNr+n27P8uxVKgPawJ/+9KfbeyCWNuG5/eedFtz5kbJPfn7VNt3CKSfs/25uknxh5cO7ubmp6+vrzRnI94D3rxPnnXKSv3sfeP91CdNeO4f82wqWz3EMgQnv07IEfC5trel8bbTnvcqeQcN79uzZ7T2cS9p1aSFreKm1uw8rq1fn12SenHbT7R3ejZTK+uqrr0bDGwwGg8Eg8Ys0POzu0N1kaRJHx1nCXpGsVm19dA+xAdv/h8SBBtaRj/rZfm6XHL0qGeMISNMSVR0kOFNKcQ1zlPdYs1pRie1p1+476DQ8R2WtfIZduRP6//bbb7eRWLT38uXLDWEzxV65P59t8Oz0G9jf5r/56ei2qq2vgb6hcbMGXWFeFxR1ona3Lh6XS6NYE+yeg+RrX1U+D4ndvjtHOZoiMK9ZEbqbLD1/N6GDaaNy7tGU+fn69evddX/y5MnG6pDjsfboNe3eIdZ0rYnYt9pZUUzXh9bm8lQJ+/CZN/yync94dT79M/eB34X2SfMeorhwjhkrnv9vko7s64pCb49g2z5qR7+yd9Jfy/7aI6JfYTS8wWAwGJwEjtLwrq+v6+eff76VWpACkubIUUqOvLOmt/eZNbpOSuN/LjiL7Zmfqa2ZNNaSpSmM8jmOtHREKfekZLeiAULyohxMasruK3B0pp+RfbBd3JJQl+9jzYh57SL7PNY9Hx5gzzDmjhJrla/Y+ZcsTVrSXxHa5rUuX0OfTM2UfXRBVPtUck8hSa/8Pg/R8PC7sJ+RysnL64oVZ+5p9tF+x3yeczXt37LGnPfQR+/Zbk7YVy9evNi0Z5ydnd2J0qR9fDhVB63WGpXfM52/0lpUF52b40g4P5cz3hVM5j3p3Eru6ajO7KPzO8u+6a70DutijbIbjyNr6ZOtA11ern3Qfh/weedHdx4te7SLdkUTRsN7+vTpLnF9YjS8wWAwGJwEjs7DOz8/30hNRPZUbdkE7NvotDT70FY2ddDlggFswfzstBtHy5k1A0koJS1HgZmtwlGpqdm6ZJDnAoklpUHmb+Vv7CJJDUcDeizd/7oSPNlGSlL2Z1EguMPl5WV9++23t+3gu+vGvIq87faDfXcuJGmfXmoA9hewDowHNpOUhJMUPD9z1G6nFbK/XejTxWkp7ll1kM5Nhk2EHUVy//73v9/eY+3TZ4Fxuc0cuzV6+7u6kjJobY7o63LEiAPIyNuVlH5zc1OvXr26bRfrQGoKRLO66Owq4rfq/vzePSsKe4f/Wbu1Pzj7a78smkoXSer/WStfWZjyM7+DmftufwP2JP13OaLunK8iyFdRm/n7ql3WICOlyXnlnDx9+vRB1qWq0fAGg8FgcCKYL7zBYDAYnASOMmmenZ3Vo0ePbtVHHOeoyFUH1ROTFaq+zRVd1ep8TtU2udF0XlUHE5VJm02Y24Vem44K9b2r89eFcOffqzqA+buTUk3em3PkpGHusSmjI4JeOY331H6HYDvMuWtzFTK/B1JZ6H8SQWMG5Ocf/vCHO+07eKXqYB50kJSrp3NdOvXpP6Y4PsNcSBtpssf8two0YDwZMGLzvsG88TP7aHN4l5qRfe36xpz8/ve/r6ptuHhXtdpnz6bBTDzv0jfy3u4efv/kk0+q6t/viZVJk2A52vvrX/9aVVWffvrp7TUmLWBMJmruCKftJnAAV2fmX9HDubZdPi9Nx1WHdyXz16VD2QXkvtr9k+tkMzTgeZzFPNOcE/YxZ9Hz60CfBJ+ZhLsz2a7Io7mGvubc2a10H/F4YjS8wWAwGJwEflFaAlIMUlomBa5CfNMRX9WXmQHWYhz2nhreKjndie8pPZpuyFpaJ9Wa1qrTGHJceS8asLUatF/mL7VHJ7BzjzU+U2olVpXi7cTO/jr025pFzqOJa1elgXjms2fPbsPorbFmO2gmSKC0yxx0IfjW1i0Rd5qwk9FNUoAE3pH5sqYOQOJsZLACgSVIy1zLHPD/TsNzea1V8EJHt8e9qaFWHQISuhQhn1+n8HjNq+4vzUObOY/MOX158+bNbtDK69evN2H8WekaijprQNb0u0RpB1tYI+qI0x0M5Xmib51WyPo6EIQ+d3Rk/I+zgeazKoOV7fkdyV5hPTrLA/uYuTAZQ2dt8xlblRbqAhZNysG9jLejTOPaLghvhdHwBoPBYHASODot4erqakMkm5KPqa+cWAjyHvsHLOk55D/vdXrAquRPShUmj7bEheSQ9mlLNi5LY2kxpUQnNNum7TnLz+iTC8/SZme7N4XPqhBojm8l1XZrvLrm+vp6aUt//Phxffjhh7dj95pnH6yVoxV2NHHWQO1j3fNjrgizXRql2285ruwbknH6Jv2Z/cy+UUegAAAgAElEQVRoIWj6GYKNP9EWE/pK27mW9JH+u2irE/tz33kebSlxMnPV4bz4J33qNDeX2zo/P19qeFdXV/Xdd9/VRx99dKf/6RP0WbK2iVaYz3Aov0vR7JU4Y07th0Mj6YgQ0ORtRQHsmSyZ5Xce828LQ/c89hVrxficspFn0QnuzA3zt0eSvqI9W1G25XP8vtujxTOh+kP9d1Wj4Q0Gg8HgRPCLCsCuEsX5vGpLLGxC6DudEH2RtQpLfp3Eba3N/qBMBHbpECfKIq2lBGnyVGsh9n2kRGKtDGmJ53dlWkxlxk/brbtEfn8G9opJ2ve1KvKbc++oyT0fHvfaf9nRKLmAqec8YQos+uS/9wrzuoAtY+8IAew7Mxm2tbWqrd+PdbHvlsjm3HdOYHYf7ePNPnANc8C82qLRzavPdke3B1bJw44k7vxZqbncJ6n7LHeladwH+3I7CjPucX9tCcl1Yf+ibdA3v8NSW7Olh79ZD/ZDriV9gPDA0cDe3/kO4Tm2jPC3KfSqtpqkr1mVVMvfXQbJn6dma3+f9yx/J7GDYy9++OGHe989t3140FWDwWAwGPyH4+g8vNQaVvleVVsfg0lPH0r2mffsRZU5J8wlMVJ6tBTjciZduQkkKtNCIeGt7PJVW3+IJT1rXlXb/EJHL618LVVbCYi+IknuSdz0yZGyHUWbtYC9fJibm5u6vLy8jUQkarfzPdIHtBr3Ice6ygfy3uzmydIq+XjsB55HtGjVQdJ2hBvrg78x9zfz7sKeK5q4HIslaUe37pEUr6wBthrkPrAfyxGMez485s00W86pyj6mP3MlpUMejcbN+ck55rzbEmOi7lz/VVFT+m2fbhY/Rlu3FcB5oV2JMSwX9MVRvHnGiPZkzIyTa6BZ64oH21LGnNvC0NGRWcPzPu/Ouc+nNb0uL3BV/sh/5x61n36vtJQxGt5gMBgMTgJHaXhI6aArjOgyFXyG5LNna3U0pqXK7l4zXSCBcC3PTU2Ce7gWaQ2JxwTUOS76xj1Is0h6SIHpF0Gioy9uiznNXEWkPZPU7kU8gft8oJ00uMpBWpVoqjpIWjnne0U833777Q2pc0r9PIs5tFZmH1SHlW+1K5BpSd59Zz/A7FFV9dlnn1XVoczR+++/X1UHxhDQzRPMRKwtz0OK557UnuwDX0ngeS5dwoo+OofO/q3uOVxriTt9KvZbWzOyllW1zR/dK+IJeTT7DKtK+sfss6cvK3827ebPVa4h/+eMVx3OP2OkL6wtxMwZO+AIb94LROI6wjz7wFqipXFGnOuYc2xrk0u3Ya3IteQ5qzxMv1/3NEpreH6HJWyhWRFPV23P/0P9d1Wj4Q0Gg8HgRHB0lOa9DaqoJhKQ/UedTw2s+Pxcsr7qbuRU1ZZNxAU0835HdrmgaWpptp1bqrAEmfyiZtSwduO8qWzPfemYY7LvXd9W2mBnuweredzLobkv0u7i4mLjY0m/iHkjmUP7MbvIMEt9rCnz55y0qq0Eb60DzSsle3x0aBmWTJHaOzYY7vnjH/9YVducOnyFuVdXEY/WFnLNmSc+QyswO0dXANbR1YD9YC0o58D+F+cbZps8m7l99erVUlK/vr6uly9fbvyHGQlrNg/62eW4+h5rE44WZo/mmWZMZtbhpyPAqw7vEP6H786FWXMs1pqcv+hCqXk2HH3Kc+g785glr6wp2wqwKprtseZ4/P/u3hUbSxdRztxmlPEUgB0MBoPBIDBfeIPBYDA4CRwdtJIhoHsBE1ZjTS2WWCWu2uTQJVdi1nBgi8v0ZPkUB9B4HKbR6fpoRyz9wOSQZlenSqzo17oEUDv17dzvnP0O/rFZoKMWs3lyVf0558TPfuutt3ZLELF/sv2OTs3V1538nv22kx0zipOFu5QGV/zmJ+PCpElCeNWaBg+zFz+7QC5+Up2ca005RUBM1TYIw6YlTGgZqs08ETjh1IW9oCYHnKzKXnVVq232dwBMPod2mdvf/OY3bVI4/by6utokynfk7iuzaJeWYBO502L4nHVKc7gJ57k3TbTZr4QJFValx7rxeF871aULXgL0lf2Fed5li/I5HVl4tpWwCXN1frvSaf5OsVm8I+WwO+shGA1vMBgMBieBX5SWgFRBSY6UMiwR+pvb3+j5P0uRJontQpit+ViLQbpIh7kTLk0SbCk64URIO0s7smw77/1/U1xluyt6JkteKXFZo3Bi85706YRtS+k5Brd7n/P4+vp6Mxc5ZtbZAROWELsABFOsWWvu+s+6I5V7jpHsU5Ngz6+KBiMtdwEaLiSKRoTE7cCQfLYDuKz5ZdCOg1QctMB8dgEIlsJN6N2lcHQlivLvLuCJ+zMoa2UduLm5uRMQ1a3lfek0XVqKA7Ks3e5pUytrFNp6F2DlYBgsCKSrJKUYcEFjn12nTGRgjQsBm3CjI7xwGoeT7v2uyjX3u8/Wl85KZA3WNH+dZYZ7kl5vglYGg8FgMAgcnZZAEmjVtpBq1f0E0F2yuiVfh4t39newoq1xuHpqXEh2SECrENiOhmhFrmoNo7Nx05dVUmXa8GnHvklrIfydIdrWci01dWTBHrMLqnaJ6dbS9iQt/DD4L9x+wlKmC/OmhLhKyHbSepfA6nQXS8+df8x+FmtJLgyafSIM3LRknCPGkMnKSP32DVpjyXn3WXPaBbCG07Vrv+meT8WpLCaM75Lxs929vXN5ebkhfc+1XPm27XPN/eYzZp8dWlNHdO59a5+eqQGrDnOKZsdP0lVM/VW1JSe3FYw5oI+phTIO2nfKyV7JL+A54jkuTJt9XRWe3vPv3+d7zfPEurBeGZ9xH0bDGwwGg8FJ4BeVB7JNNr/lXVTVvq7OT9ElF1YdpIik+KrqC86uaHQ6KcalXYC1qc5XaKl5VZw2x7Ian6PmUopZlTty8Vj3L9uhj6u56LQCS2N7tD3u/56Gd319XT/88MMmUTevt7ZsaZmxpxS7IsR2G52W4TVl3iytd9oaErd9eB2hOp+54KoLsVoyzj4ajJt7u71q392KrCDX2GQM1vQ6ad1alPcu96aVhT6lr2bPD3N1dXX77C46zwQXq+jFLkrXbawosDo/Odo4+4Axmkaw6nAes6xN1cHShCaW59Ran334PoMdLRmw79NFrLNvtkIxHvrqAq3Zfvr0q7b7uiO8sMbq92quJ5G9Xcmv+zAa3mAwGAxOAkeXBzo/P99EjnXSnqXnvbJAtvXbT7DnF1tFPvrzzs+48lN1Pi5LlX7OXhSb/WPW6KwV5++O5FzlOHV+rVV+I0gJ0IVULd064rNqWwrl/Px8KaWfnZ3VkydPbrW1LiINn8MqHwspOvOGrPl6jl3stOufS7t0ka8AkmB8ps7D63Kp/EznpO5FvrkPzJupppKOrNO881oXD004/8r5md34fD69J1lz8gK7e/YifKEWY4wdVVnny8w+rPLJ8h77NJ0n1+19l96yZtSVMHKJJzS7LtoVzYZ7bS3iHgioE6uIdVsu8r3jOWAPOVeU/d4VkV5FlnfR1X5XrfLx8Hfm/1LrnfJAg8FgMBgEjtLwrq+v70iFSNodi4r9CKArgWENyDZgS1EdQ4glfEcoZr/NjrAiZE7Jx34JF0Lck2JWPhuX/kmJ1USvzifzWPbKqzjvpvOFrHw2wJF/2Q793isPRKSd/Qe5lvYPWVOw3yefvbICsO72M2V7zktDI3HUWdVhz680SMbT+RnRDh11ar9wFx3sM+Zxp8Zsy4Ujp62l5XzymRlDfG47i4LL7Vhzyr1LKawsDntfAVhyzFif7APzbcsIbfL/3POO5La/1/7yjsXEFi2ztHT+2FVEaZKUG2hUtoLtsY5gEfE5dWHoLj/S0Zn8vSrKXLXdI7a27FlOVtq937fZPlaWIY8eDAaDwUCYL7zBYDAYnASOTku4urraULtk0vPKCblSxau2ZrlVgEtHhWOV28SyXbCFzY+YSBy4kfeswrJtOu2So53+QBv8v6sbhYnKphOb5rpKx55zjxt0pgybaDyfaVpw+3uh5dfX1/Xjjz9ukrqTZNvV6R1o0CWY2mzi8GybejpSZ9qgL6ROdPvAqTi0x3ho6/nz57f3OCz/vsrj3VraVO5x51rS/1UNvYeY35nrXJ/8POsY2iWB2Zfn059cC9rNtJKVSfPRo0f17rvv1hdffHHn/zlPtMe56ZLTq+6ahr0XHZzi5PE8n6ugIe7lndiZ+B0sYqrDXBfMnF4rB005PSb7bxOizZVduoXNrzyPa1nTrl3vawcBdm6RzuWQ43FwYrZ/X0rLnXsedNVgMBgMBv/hOJo8+vr6+vYbGikvw41XSc+rIJaqrfP+vlDilAYctGJiXj8j+2CJ25JqOpetSdoRaykm78WRbQl2ryqz/+cAjhVlW47V13gtuvB3h6VbOsx5tVN/jzrozZs39eWXX95KopAw55idRA4c9JD3OGACOCS7c7KjcfDTGlYnVZrCiT2EZuHQ/6qtZsr4TEu2R45NH63B2jpRdTiXDnRZWUMSzBMSvQm09+ionCzsgJece+/bJIc2zs/P61e/+tXteGxtqTpolQQGAWtTXRCJk/f525pXWrI8Dlcz554Mp3///fer6pBMTt84C11gGknWTmVAwzK5dHeegAPGKFOVZ9rpQvSVsduSkcGAfrf77HUavAPpfPY87hxXVorfe/ckRsMbDAaDwUng6MTzi4uLW+nW38JVfWJqwppEVR/qXLVNXESaSKnJvqbOp1F1N0zcBSvt66CPJITujcNhsy4imp/xkyRO+mxttOogqVpKegjllzVjz4m14rzHkrxLKHWlRDIZdtWv169f1/Pnz+uTTz6pql5aXiWPr9Y4++uQcifOdn5NpGIn9xIyDz788MPb35HG6T8/WVsk4pwnpHE0FPwypovqzgbSLH21ttj51AjfNzWbiQg66j5rKta6O613ZX1wuk2+J3zP1dXVUsM7OzurR48ebVJAcg+t/P/2k3f701YU9qGpt/bIo50G0VGZOc2FdWFP8e5I/xhaIddiYXBqk2MWck5s9aItnpPz6LmgPZf8cWJ41WEPWptelSfLdmzdoK/MSUfgntro+PAGg8FgMAgcreE9fvx4U+wytSf7Bbqy7lV3pXTT5aySoNG4KE1ftS3pgoRt8uqO6suRSPYVpiSChGMJ19GTzEVKg/bZuKxFJ31+/fXXVbWVgOwPcYmZvMeanaW3vfJHJnW1nyt/zzVYaXiQRyO5oeV0EVtOyLc/McvnoO17LS2Vd5GJzFm2l8+lHxTozN8tZdI+/uykP+OZpvRCE7ME3GlCPhO04WT5BGfB1g5rdvm8+/aBI1rzWs+5k5TzOfYvvfPOO0s/zPn5eb377ru3Z5CCudnGKlHadFq536xVmOBg5dur2iZx+6yhiaX2xLWOQrbfLzUXfv/444+rqupvf/vbnWtdtinfT7xDVhosezW1VfaTSwg5GhSkNsq7jzGv3uMdsb6/J/aiMzPhnP6PhjcYDAaDQeDoKM03b97cSgx8gycljql9gL+5U4pB8rPk48jOrsyOpUq0P/scuuKTzkui3a6ciumGkOD4vzW71HrpkzVIJKw9Qm1HQKKN2A6fc2K/jyVw59zl/4Alxi5PpvPrrPwwjx49qt/+9rdLQtuE6cAsvafGRRQb97AujjbraPBYDz5jPegTEmT68Eye6/3V+cVcSJY58tp1fh/nhJnwmXtzDdDs6IujG70Gee8qgnSPug5wjtlnjBstPPe/owvfeeedJWl41b/nl3HRXmqMtO2yQNaiOvJoa3K2onRWC/aGc/i4tiuj5BxBNFX61OWm8hz8yuxV7z/2Uo7PvjTPeedTo4/OiXUEbqeNO+/PPryuLJv3PlYP1tE0k1UHDS+tLHt7JzEa3mAwGAxOAkeTR798+XJjF0+pCm0PTaSLxqq6KyFY0rTd2JpfSghmvshotaqtRF51kCKQgC1N8HfHRMJPxrnKGeukZmtySHK2l+e19t3RNxfSzb667NDKhp798Thonz52BR/5H316+vTpbsHSTz/9dJMP1+UNOYfJ1oHstwnFLZXTf9Y873XOD1K0WSVSC0XC9l5FO+x8N2bUWBVZ7fwwLgvjIrl8nuWBaNd5ZD5PXY6T13Tlb0rY925tgznqogFTe15J6fh/+RxND+2+6rBX0DLs2wKpPVkTNun2isw8sSKE79aS+XFpIUAbGR3Oe8u+er8XOqYVQP9ZbzPi5LvDFgRrpV6j1H4dv+Hi1aBj2aJvLoPGtZlfyf7q8kjvw2h4g8FgMDgJHO3De/Xq1SYiqWMk4acj7uxHSvjb3dL7im+tqmenqDpIAenTMVuG/XH2GVZtJRAzX/j5XbkOl2dB4nU+W9WWScN2670CsKvIp853B6yFMjfcizSYEp5zZV69erXU8C4uLuqDDz7YaGkpzSK5Ic05n6xbF3KYiEhjjNxr/2mOnTl18U7u4e/My1tFgfJ8xpdaIe2vSlgBf15Vm5zXzqdRddeC8fnnn1fVYe88e/asqra+vI67kfVYlVXq9pC1Alt+Ov5c1ppzeX19vRtpd3FxsTk3OWZbIszV6Zzb7Cdz6/eZo3U7HtZVGS1Hb1Yd3jOOzsVa1MUOWBvnJ3PrfuSesjWAc+pCtLlXuYf1cQ6prXEZjQys0dmilJ/bGuWIWb8Tqg7rn3t0Ly85MRreYDAYDE4C84U3GAwGg5PA0SbNy8vLDTVRquAmljblTtsJVSV3oqrD3zNIxs5h0/Z0gS6YwXieqZ1MRF21NQesElztIM5rTczrCsE5LvqGSu8k3lUJpQTtOpCHtXAId7bHOJ2U35FUPxRQ01UdxpVBBLT33nvvVdWWGqsLJoJ6CVMcbTBmJ2hnn1lTJ21jeuoCa7zurIPpu7oyLQ4/x5xjOrouMMjh27RpM2XVNjgFk5kDYLrQeRMN2AXhoJbsm8stAeYvzbAOattLHmbfuOp2pkM5IMPmSeY001JWldqBieFznzjAirmmhJGJs7v27eYxiUZ+5krqDmYxyXf2fxW00pX88jvd7yiXhss1dbs25e99B/idzz2sdbqk6KP36EMwGt5gMBgMTgJHpyX89NNPGzLfTLK1cx1p2dJbak+rshJICpZMu5QGhz6jQZgUOe/3cxiHpZquL9ZuTJCbn6N9mPzYWlpKkEj9Dgv2uDvqNNM/Ofzc5VvyHocSe873AnnuCxO+ubnZUBTluFaasLWqlBTR1tEYnLhqSjQ+z/lgrbxXu+fRnumnCK/vAkFMz2WCZlPOkZCc/7OGbctCSsD8j58rkvQu5NtBZgb7MrUC02yZVMAFcLP/q78TUBoCtJkMtlgFkTnArks8dyqLA8L8jqnakqwzx5z1riSYz8mq/U57trWLdVgR7nfjs+Wqmwvm1u1m2kuC1I6qw1m25ryiVPPvVYfxJiFB1V1NuaOum/JAg8FgMBgEjtLwrq6u6l//+tcmsTWlAUvUSM9I4J3kSHt8qyNl2H/khNAEkoA1hz1/FVilCSScyGrJZJUKULUNe7dm58TXqrvEqAlLn3tkvva3OOm/C3/3nHucqbl2fr0VKPGCRNhRiqEBMGa0dJKKrTHk7x999NGda1fJ6tlX5oz9ltpftt3tnd/97ndVtdUcXJYon7mycpjqq7vGGgxt0eeubBPt2WfsPZTak6VyE3h36Qqm5gImA08Nj3vy/bCS0s/OzurJkyebMPu0Dqz2okkyUlNwCok1eqfzpEXElg/74xhr3uOULWCrQGpNTkNZ+db3YiXsW/Uau1Bwtu9UAtMU5t7xu9HvG5NZ5DWrdCuXaMq+gIemJFSNhjcYDAaDE8HRPrzvv/9+Q72UUoyTqJGikFr2ogstNXQlXeiHn4cfwhLdnhRrglzQ2biRsB3t56hG00UlVkVq7dPLdg1riaYJyt/to3TSdOdzM3kw8HpmH7qE0g4XFxe3Ujn3ZHkR+0Xcv4641tG5SIQrQoA9P9IqIg3asPzMRLwuxJnwOlg7cLQk2mP+zpwwXvt9Umo2ubvH473Z+eNsIXEEYVeQ0yVdfObT12/LxU8//bQrqWd0uH1gVYf5N+ED+6GjfFsl83vvuwhy1bbwMHBb+bnJCuyH72IUrPHYCtLR7bkvpvNz9HFXWoq+2O8LOmuLS6h11GVVd8kmmCdHdK4ID6p6X/iKtN4YDW8wGAwGJ4GjNLzLy8v67rvvNqUi0i6OVGd7taMl93InTJTsiLSU4kzaamnZdmvG0bXnyKqUmu27sJ3aEklqFqsikYC/O3s4MHWQpdCU8JyfYsm502BXEWMrSqOqg2SYhMorKR0fnsea2oyL3loj9r7r/oc25pI09gN37Tt6kbVNrZB7Ol9d1UGD6CisbHVwmx0dlfti3zjrkpGW1hx8JtjXna/aviHncHW5t/bdrUoY5f6m/5zbV69eLaX0m5ubO8WFO9JrtEdr0/STKNqu5NeqEKuJ2dO6YbJyW5ZA56t2Lq37ke8SWzVMlejn5d+rott79Gd+njXIPSJoP8fvV+cDJ5zb/ZDI1czbHmqxwWAwGAwCRzOtZHkg50dVHSRsk8yiBXT+KkvAtuta8ktfgHM/TKZqTaxqLaWYZSIlkvsIrLvn+HnuoyX7lAatBVricVHFPcnVkYSd38e+NZej6aRq+1J+/vnnB9vSXWS16pB/5qjVlbab/eFaJHkIn71eufZm7vCc8tz0+9gn7MjHLmLR/kRriV7rlNJXOar2l+VaOp/M9zh3L+fEGoPXnXu6HFUkbsbp6MwuytGRyh1gWmHeTHBddVhDnw/eO1gSOg3I2qB9q53/2mfae6YrLeVITkeBWoNN+B1ha0F3PsHK6rXH0uT9vNKG9zR9zxt7NP32XgMXPGY+M0bBlpnXr1+PD28wGAwGg8R84Q0Gg8HgJPCLyKMJ8bXaWXUwJRG8AsErZiES0DuaHtozcbLDnruK56sE7S5NwCY+O/mdeJrtdLXrqrZmqjRLrEwKNk90piwHk9g525laOyqkfC73dOTYjMMVr7vk6xXBcAfMUjaDJyWWUy1sRqMPad6wCQTz2ccff1xVW0qkLnXCJkf2H89Ns6tNcTyXoJEusd7pOzbr2/STJk6brDrSgLyuautqcKAVffa5yj45WIW54BznGjhlgTmgT5z5XAuf172gFajFuvV3v00A4NSjfHfwfsF1wTzY5dDRhNk94cT2jmzAidmr+nsddaKpDFdE1PkudtCS++p0BY+xqk8/yOvyHen3jq/pTKhOqHdfWaN8vzn5fRLPB4PBYDAQjk48z6rWXdCKyUeR6vgGh+w3newr8mGkSRzSOKtTIkFa3QvtdR8tEVjCspSbz7QU5kAA+pPP5392tq6oePJ5K/opE0DnfIIVBU8nfVqTc1mavWrpmey9V+Ll8ePHG4075xhpDquAgysYY7d32HdOBIdy7MWLF3fGl+37b0vrHXHtKsUE5B51sIqDBizd5j7wXnSydKddOyXIZZZ4bpe0bKmfdtHauvNlTYLneC1IO8k56WitDNISOP9onRn8YM0bOEE7LQrcz9x+9dVXd64lAM/vh6rDu8nn3sE3XTCZrTZ75MreE15/U3J16VBdGaj8u0t0d+qWA2ycWlF12Mded+jvutJpLuPGfvC7MtfNCe2PHz/eDcC5M+YHXTUYDAaDwX84jtLwqv79jb6SIKsOkrbLmiDdPXv27M7/sx1rHiZi7ezGlppNAdbRUa18W9Ywu6KDDr21vd8FQfNeS3+WvDpbtMds7aBLIrd/BInI0mDno3Tyt/2bGQrOmNO3ukeJ9vr16w39UPp18IOxh1wqpEuUpQ/uP2tHODr9zuc5QdbPc+pBXmvKJfs4cz3cjjUrWyfyXvukrAV0IeZoLi53xJzsUevxPxfH5ec//vGPO5/n2NGIbPlxoeX8PbW0FS4vL+urr7661cBAZ6FwSamVNadquy4mK/e9mZ7iNIGVf6yzEvksdecox573uk+0b+KNHKvPpBPes83OupVtARdhzb4Cv6NsNcrPmPtVMeScE/ZBfj+MhjcYDAaDQeBoDe/6+nrjA0g7vIszOjKM5OIuMsgSCTbhh5SxAJbWTQGUv99XrqeLyloVfl2RyGa71qy6KCnfbzu7Jf69iFJL/06wT43WybxJ+ZRtdgnVjpTsgGUAf2wXIcj6opWhTfBM+pT99pqtfLgkpOMfrNr6HOxL7aRGj9E+oi5qln67IK8TnDu/5qrUitc058TXeo/aL5xrYMnec9MRN1uTAyYv6D5L6rpVtN2bN2/qxYsXt++Wbsz2i9EuUeNYljrQf2v2LpzbvX+8RxyBnViVUfJe3TvLTl7fI2y3Bu8zYiLqrm/2GXof7BVeZb2cVN75tz0O3keOvk6wr7q5XmE0vMFgMBicBI7W8Kq238YpFRCRsyJzxceS38p8e3e+papttFxXxNFUP3mNsbKzr3KcchyrQosPLTGf1zrnJKVFR51Zo2M+O+nG9D8rCSjX0eWNrMV3eYDeB5eXl/dS/FirTjC3+IKw1SOld4VE2W+dzyT7yzjIz6uq+uKLL+6Mo8tl8jhXWhNzjNSZWpOj8Zzv5X3fRelZg1mtj/ub7TuS15J//r7yLzGGpPfz2J2Tyhqlv8f76ccff1xqeFdXV/X9999v5jE1PPrDGNkjzAW+oey3r/H/Ox8XWMUBrNYp+7sqCNyRozuuwNqgrUP5ufMwVyV/8nnum987e/vOc2DrUBfZbLo4W1fsS84xZybAkEcPBoPBYBA4SsND0toD395ISfapIAVmO0j0LjppTYVInpRIrL3Y99VFNzmHyX4KlwXJz0xO6xzCrhRK5/9yn7I/OS6zWKzYSDofpSUhS4fpc7GN3n4mX5f3Z7TufZLWnjZDeyaNZq/A2JHjWM2LfR1dnhJ+vefPn1fV1krQMda4KPGqiG+uhzUFS+22LHTamqPWzMpi33LVVtK2D8WaWDfmFSk7eXlVh/UhKvS+wsrdOPasAzrTOeAAAAQTSURBVET42j+W7wFrHPZx0bcPPvhg0/6qxI/L2+y9Qxxxu5fjSHvsY/rWjd+lnNyuI6/3LCyO+HTB5bzG/j5btrwfq7bvbzMxddHqtIMmx7WO/MXKk2PPMkEdaXaH0fAGg8FgcBKYL7zBYDAYnASOJo++vr7emKMy7BjVmiRNmwkxjaQ5jVBx0+WYNqoLePA9Vrm74BWbwVa1uTo6Mgc0MA6bRRMeh/tuFT2fvQoLtjkxzWSraug2YXSErB6vQ7LTFO3aaPclf56dnW2IkruQeCcqu7ZZ3mNTj03Mq0Taqi392Oeff37n+Q8h812lweTcOhx9ldTv/ZD3uEaaK5Dn87z+NjU5wb6jpWNtTTLBWPJcmWSCPnGuMUWn+8HEA3tBX5DWg652nk28dql0KRjeI1zDu8tuiu5s+11it0GeK5sy/R518FTe7zl2Yr3rguZnq7SHLkjQ9xyTSmU3CH33PGcC/5dfftmOAxNmR3jh9JQhjx4MBoPBQDg6aOWf//znxpHZhShbalyVKqk6fGO7vIildweiVB0kAO6x071zlFpqcXiunddVW02uC+nOv7sK66bBcgJtSmLWxuwMXyWX57XWSh1SvOfgtmTfjcsa8l7y8PX1df3444+31oCuCvZ7771XVds9xNpyb2rKDqqwJOxQ7047MNmt91uOyZqWtaaOANrSK3BASkfyex9JtbW5hANqHETQJQJbg2MNnJyd59tajrVSEwFXbTWuPXoo9k5qBlU9EbjTENBU90i2uYa+5Pssx5EaakcDl3BJqOwvz2WOnVKzZ/VYWQkc8NX1ZUVWkRSKqzJkq1S0tCxZO1wRKuTZYJ1W6UqkJuXcYxVYUTbuYTS8wWAwGJwEjvbhdSGg+a3MtzlSOFKZpeZOU3CxTiQtpAjaTGmD9u2n6kKX3UdLzw4XT+lsVSZjlZib95o+x9pZV5DVmhw/Ta7qMWXfHCptDbkrTumxO5Q+19qFMfeKeFLixXPQUbA5DNz+kW6e3D/b/tESc41XKQV+bia645daUSK5rbzGofOW2jv/GFj5+/h/d8+qxArP47x1/jiPhzmgj+nLtQbhorGdhmR/1fn5+dI6AC3dXhqPiYp5psv25D43NaKJ4P3uyLmxxcDaeueP23tvJvIea0c8zwQH1nDz2lVxbI8ln2ct0O+sPd+495DfmZli4Gts/eK8pXXEZ6DTalcYDW8wGAwGJ4Gz+6ig7lx8dvY/VfXf/3fdGfw/wH/d3Ny873/O3hk8ALN3Br8U7d4xjvrCGwwGg8HgPxVj0hwMBoPBSWC+8AaDwWBwEpgvvMFgMBicBOYLbzAYDAYngfnCGwwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUngfwH0LzUL9xcSKQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZddd3/vdVT1Ud6vVGlC3WpIleQoYEzvwMDjwCDgLiPFjzMoiBBMw4AcEkpC8kIQ42BhjxhfMkIAhmNiBgLMc5pjJDDFDiAM8O9gGbGFJLUvqltSSuqWWukvdXXXeH+d+7/nV5/z2qXvbsiWl9netWrfuuefsee/zm3+l6zo1NDQ0NDT8746VJ7oBDQ0NDQ0NHwm0F15DQ0NDw45Ae+E1NDQ0NOwItBdeQ0NDQ8OOQHvhNTQ0NDTsCLQXXkNDQ0PDjsCT+oVXSnlZKaWb/f2V5PdPD79/Zrj+plLKsUus81gp5U3h+2eEOvx3TynlV0spn3SJdXxhKeX/ucRnXz1rw65t7rsZbX5s1u7fLqX8k1LKweSZLX1fsD0vK6V8VeV6V0q5eZnynoyYrae7nuh2LIMw/y97otuSYTam3FfZ32c8TvX951LK+x6PsmblfVMp5fOT699dSll/vOr5UFBKeWEp5TdKKcdn+/9EKeW/llJesOCzP1FKeX8p5Wwp5Y5Syn8spdz4kWj7hwuTh+aTCGck/X1Jr8T1r5j9xsP72yX94CXW9UWSHk6u/2NJfyypSLpB0r+U9FullOd3XXf7knV8oaTPlPS6S2zjMvguSb+sfq4PS/obkl4j6RtLKX+r67pbwr21vk/hZbOy/wOu/4qkvy7pxCW0ueFDxwn143/rE92QCr5d0o+G7y+X9NWS/k9JG+H6nz9O9X2LpAOPU1mS9E2S3qp+b0X8sKSffxzr+VBwpaT3q9+b90i6VtI/k/QHpZRP7rruf008+1JJz1Z/Rr1P0tMkfaukPymlPK/runs+rC3/MOGp8sL7eUlfVkp5VTfzlC+l7JP0dyT9nPpDd46u6y55k3dd967KT3/Rdd07/KWU8i5JfynpxZJef6n1fQRwW2y3pJ8vpfywpD+U9F9KKX/NYzrR96XRdd1JSScfr/IeT5RSViWVrusuPtFtWRSllN2SLnYLRorouu4xSe/Y9sYnCLM9Ot+npZQXz/79n4vMSyll76yPi9b3geVbuTy6rrtT0p0fibq2Q9d1vybp1+K1Uspvqt+XL5U09cJ7zWwPx2f/SP0L9Kskfefj29qPDJ7UIs2An5J0k3rqz/gi9e3/Od5MkWYQ73xtKeU1M9b+9Iy9vwHPLirWMye0Ozx7TSnlx0opt8zEAHeWUn6mlHJ9bJt6zvT6ILY5hjJ+ZPbsY7PPnyql7EX9Ty+l/Eop5ZGZuOFVpZSF5rPrur+U9FpJz5P0N6f6Xkp5+qz+e2btua2U8oOz394u6dMlfWroy9tnv41EmqWU3aWU187qOT/7fO3sMPc9y8zVl5RSfqeUcnI2Du8qpXwF+zsr7ztKKd9cSrld0nlJL5i14RuT+189m78rFxnP8NzXlFL+tJSyXkq5fyYSugr3/MNSyv8opTw469c7Sin/F+7xGHx9KeV7SynHJT0m6Yowri8spfx0KeXh0ousfqiUspaU8bJw7U2llLtKKR9fSvn9WR//spTydUlfPnM2nuullA+UUl7OffWRQinlxbO+fN6sDQ9IumP228fMxuFYKeVcKeXWUsq/LaVcjjK2iDRnz3WllK8spXzXbH2fKqX8Yinl6DbtuUfSEUlfHdb9j85+2yLSLKWszX5/5Wz93VlKebSU8kullKtKKUdLKT8/m8c7Sin/NKnvWbP23z+bj/+Pa2YJPKx+/U8SFXzZza7dMns+nme7Z+N3W1j3v19K+eRLbN+HFU8VDu8OSb+nXqz5+7NrXy7pFyQ9skQ5/0o9Z/NV6sV73yfpP0n6jAWeXSm93swize+UdFbSfw33XCVpfVbPSUnXqRch/PdSysd0XbeuXpRzjaQXSLIO4DFJmh2wfzgr57WS3j1r5xdI2uP7ZvgFSW+U9P2SPk/St6mnLN+4yEBI+lVJPyDpUyX9dnZDKeXpkv5o1s9Xqedob5T02bNbvl79+K1K+trZtSmR6H+U9MXqx+4PJH2KpH8t6RmSvhT3LjJXz5D0s5K+W9KmenHtG0op+7qu+1Ftxcsk3aZeFPXo7P9flPQ1CuLv0nN/Xy3pLV3XnZroyxaUUr5b/Vz/kKR/rv5QeK2kjyulfErXdRbT3SzpDZKOqd9/nyfpraWUz+m67tdR7L9WL0b/GvVjHHVDPyXpzZL+tnrR5aslnVIvdprC5ZJ+Rv3cv0bSV0p6fSnl/V3X/bdZXz5WvUj6jyR9ifq190pJh9SP8xOFH1W/3/6eJL/cr1c/l2+RdFrSs9SP21/VYvv6WyX9rvr1cb2kfyPpTZL+1sQzL5H0m+rX8HfNrt27TT0vl/Qu9fvkBvX79k3qxYw/L+lH1O+B15VS/rTrut+RpFLKMyT9T/V7+x9LekDSl0n65VLKS7qu+43tOlh6QnhV/Xn0SvXnCFUQ26KU8tfUr5+/CJdfJekb1O/X96pfI5+k/gx78qHruiftn/pF2KlfxF+lfkOvSTqqnkL5LPWLupP0meG5N0k6Fr7fPLvn7Sj/m2bXrwvXjkl6U/ju8vl3WtJLtmn/qnrZdyfpi9C+u5L7X6Nef/HxE2W+elbeV+L6eyS9Lenzyyvl7J39/vqJvv+keoLiuon2vF3SH0zM3c2z7x83+/5q3Pcts+vPW3au8PuK+hfIj0v6U/zWSTouaR+ue24/LVz7/Nm1F243XxjrDUmvwvVPnZX1hdu0+W2SfimZu3eqF71m4/ptuP5WSbckZbwM/egkvQjr4AFJ/z5c+xn1BNv+cO2o+hfusdo4fCh/YV3vSn578ey3Ny9Qzi71+vFO0nPC9f8s6X3h+8fM7vmNynq8apt67pH0huT6d0taD9/XZuW9R9JKuP4js+vfFK7tUX/GxT3507O1ewj1/J6kdyw4tm/VcG4dl/TJlzA/eyT9D0l3SzoYrv+WpJ/5cKyJD8ffU0WkKUn/Rf3m/Dz18ud7VOFMJvCr+P6e2ecilkffoJ4re4F6Cu/X1evAPj3eVEr5BzOx1iPqX8ofnP300QvU8dmS/rhbTJf2K/j+Xi3WD6PMPqd0Qp8t6a1d1x1fotwa/sbs8z/hur9/Oq5vO1ellGeXUt5cSrlb0oXZ38uVj/Wvd113Ll7ouu7t6o0ivjZc/lpJ7+626j23w2epf3n9dClll//UU+ZnNPRdpZT/o5Ty1lLKverXx4XZ81mbf7GbnSoJOP/v0WLzf7abcXLSXNd3C559oaRf7brubLjvhHqOexKllNU4BmVBMfuC+IWkvrWZuPD9M1HiBfXcl7TYnsvGUVpuLy2Ct3VdF7lji1fnHFrXdecl3a6eSDZerJ6rfRRr623qxfJr2h7/RNInq7d5+EtJv1pKef6iDS+lFEn/XtInSHpp13Vnws9/LOkLS69++JQS1BNPRjxlXnizQf5F9WLNL5f001hAi+BBfLeIcJFFc0vXdX8y+/s19WKV2yR9r28opfwj9ZTbb6kXNX2S+sNj0TqulrSo+XvWl0XqMLyppqwol2nPdrCIg/Xdg9+NybkqpVym/mB7vqRvlvRp6omR/6CeMCJq/Xy9pL9TSrm6lHKT+gOG4tDtcHj2+QENL17/HVQ/jiqlPE09kXaVpH+kXqT7AvXEUzZ3U3OTjU/WbyIT03LtHJV0X3LfdmI7qe9f7P+rFnhmUWTj8X3qubI3Sfoc9XvuS2a/LbIfPpQzYRlw3M9PXPcaX1W/Vr5G43X17erP7231zF3XfaDruj/quu7n1Itqz6hXgSyK16k/d//+jEiMeLWk71D/Mv3vku4vpfx4WVL//ZHCU0WHZ/ykeopsRf0L5wlD13VdKeUv1HOcxpdI+u2u6/6ZL8z0YIvifgWF8IcZVnr/wcQ9j2d7fLBcq62m8tfi90Xx19UbMn1a13XzPpS6f2KNU/pJ9XqYl6k/PM6qFyMtgwdmn5+t/IXi31+sXsfxxV3XzQmJUsr+SrlPVO6uExpe4hFHFnj2a7XVTejxkA4Y2Xj8XUk/3nWddWkqpXzU41jnE4au6zZKKQ+pP/O+v3Lb/UuWuV5Kea96NdG2KKV8u3oO8f/uuu4tSXmPqX/hfcfM2Ofz1RMhe9Qb5z2p8FR74f2mZsrpruv+7IlsyExU81xtNb3fr7HRxlcmjz8maV9y/W2SvqX0vn1/+rg0NEEp5dnqqeJ3qdfB1fA2SX+7lHJ0JtLK8JjGfpAZfm/2+SXqN4jx0tnnVDsy+CVxwRdmVOUXLFNI13UPl1J+Wv1BfZl6PdGyvoi/qd6Y48au635z4r6szX9Fva7vyeTY/g5JLyml7LdYc3aYfaq28avsuu79H4H2SZqL2vYpjOcM2Z57vFHbw483fl29FOM93RJuGDWUPuDEJ6gXRW537z9Xf058U9d1b9ju/tkZ8WOllC9Qr7N/0uEp9cLreku3J4qze85MLyf1VpZfLuljJf2LcM+vS/qXpZRXqLdw+5vqWX3izyVdVUr5B5L+RL2S+z3qqbgvVe/Q/lr1+oSPUn+Ifx1k54viGaWUF6o3oLlGva7sq9VThl88oSOSegu2l0j6w1LKd6oX2V0v6cVd131Z6MvXl1L+rnrO7Ux26HVd995SypslvXrGhf2hei7tlepfMu/hM9vgD9UTFz9cSvlW9U7F3zLr16Ely/oRDXq8mjhzXyklm8sPdF33v0op3yPp35VSPlq91d+6erHxZ6k3bvhv6kXdFyX9ZCnl+9SLDr9NvZ73yaReeK36dfsbpZR/o15U+kr1Is0n0kpzC2ZSlrdJennpXQ6Oqef4PuEjUP2fS3pRKeUl6sW/93Vd98FtnrkUvEK9LvjtpZQfUb9WrlTvUnRd13UjlxKjlPJG9UYm71QvQblZvaXnlQp+dLM1+2eSXtF13ffOrn2FenXNL6m3Mn9hKPp013Xvm933a7P2vUu9Id8nqj/3ahzpE4qn1AvvCcYPhf9PqXfA/NKu694crr9G0hWS/ql6OfzvqpeZ34ay3qBet/eds/vvUG/NeLqU8qnqD5xvVq/7uVfS72iQ+S+LfzX7uzBr95+p16v8xHYv0K7rjs0W+mvVi/0uU7+Bfinc9j3qjQPeMPv9d1U3B3+Z+rH4KvUvp+Oz55fRJ7htJ0spX6RefPKzs7J+UL3OYzvTfJb17lLKLZIe7rrunZXbrlJvOEX8sKR/2HXdK2Yi7m+Y/XXqTcl/W72hgLqu+7NSykvVr5NfVk8gfLN6UednLNPmDye6rvvzmZ/X/6teonK3+nl6sfpD88mEr5P079S3b1O9gceXq9cnfTjxL9QTRz+rntP7sVlbHld0XXdbKeUT1evKvkc9AXy/emJ4Oxekd6jndr9evXThLvWWli/tui66FhT1BHEkuj5n9vkFGktNfkP9WpB6yc0Xqn+Rrql/Ifu8eNKhTBP4DQ3/+2NG4f6Fej3FTzzR7XkyYmYk9AFJv9J13Vc/0e1paLgUtBdew45F6SO3PEs9h/ksSc+i68JORSnl36oXGx9X77D8jZI+XtILuq579xPZtoaGS0UTaTbsZLxcvXj3FvXi6fayG7CmXoR2RL04/Y/UB3doL7uGpywah9fQ0NDQsCPwZLIMa2hoaGho+LChvfAaGhoaGnYE2guvoaGhoWFHYCmjlbW1te7AgQOOkq09e/ZIklZWhvfmrl15kX1QhBxTv2W/Z3rHRe6pgff6e9YuX9uu/Pg7792uv1k5m5ubk22dqm+761mbamOQtX11dXX++eCDD+qRRx4Z3XTo0KHuyJEjunixT8N1/nzvVuh+Ze3zunL5vD7Vj2XGuFb/pdyTzUdtDHnv1Nrib49n/5bZK1m97IfndGOjz4jkOY/1+JzYvbuPNTy1dg4ePNhdffXV83l3ef6UpAsXLmypk22ampdLsWPY7tlF5ulS5rAGj00sk+VP7Rtiu7Zl/a71Oe7x7Z7l96xMnwe+trq6qocffljnzp3bdkCXeuHt27dPL3rRi+bfb7yxDyh+5ZVDnNDLL798S2P8UnSn2XlJ2r9//5ZnjNghaVjM8aXqhe6B8b3+7k0Ry+bG4b2uZ+pwrx1aLtvtiv+73PiCiJ9xQXLj+gWxvt6nROOh4s+sH+zfIocy5yl7+XgeXM7Ro0f1/d+fB1g4fPiwfuAHfkB33323JOnOO/uk0GfODL7vXivGZZddJkk6dKgPnOLD0Z/xGbavtmFjn/2M+8rvcUwNXuN3Pxvnny9hrhGOdRxjtsnt9xhkBx3rZT1c/7EPvGeRF62fOXu2T65w7lxv7PrQQw9Jkh54oA8l6rUrSQcOHJAkPe1pfQzzI0eO6Hu/dx6HfQuuuuoqveIVr5ifE4880gc8+uAHh8AmJ06c2FKH7yFhlb10fY/7zBc1xzqOA8eY4zR1ULMs1xPng3vMcNvcpr17926pI/7PfeMyXU/cd1xftbMwe2l5DNj3xx7rI6Jl+8rXPAdum9eQr8d+XXHFFVv6fvDgQf3cz43ygKdoIs2GhoaGhh2BpTi8rut0/vz5EYUQOa4aFWlMUaSkZkhdZuJSUsCkIjJKi/fWPjOuMKP6pTFnOSX6cRkuk9ezNpA78O+m7CL1PEUxxmdNPcX2k/vgfGUcunHmzJnq+HRdp/X19TkX8PDDfXxmU3+xDTVK2G2J68DXTKWSSzSydnP8+d2IfSJHTaqWXLw0ljJwflh/BMW5vNe/T+0Nt5FcgWFqOms/92TkXBdFNq5er48++uhCz3udR8S2eH7Jtfoe9yeuA7eBa5YSEJYVUZP4ZKhJrLjH4pxTTBylG1nZsX++t9a2bL3x3PR41s63WCbX+dR7wnC5PovIYfp8iPXEc0vqpQWLiqUbh9fQ0NDQsCOwNId38eLFSQ6ClNa+fX0GDVIT8W1PqpxUjMvKOK/YNmlMiUzJmkn11/QX2b2k6IlM3k+KkW2Nz5Az5hiQ8svGxONa01HEPnk+av309ThvmX6npjvb3NzU+vr6XK9jriLOD7klwutibW3Izen/vc7INdU45execiKZ3tkUp9tqLqFmsBFBLt1YhALmmvSnOZ+Ms63pJNnWyD15rfgax8QceuxfTRowZUDkeqzDPXfuXFV6UErR3r17R+MWpQPcW9SlZtyM1+B2nD33YizfqNkZxDklt17b/1NGS/yk9CvTy/O8IdcW+0J7gxrXlkkLqG/jGGXSD3JrrM/9iXPtte41uozxT+PwGhoaGhp2BNoLr6GhoaFhR2Dp4NFd142Uq5GtrSngyYpbBCWNRW8UIVDUGMUpbEvNXSCy+mTtjZq7Av/PyqiJLeP/bIv7SxExn8++U+ybiRppluzrVBDH8mkYMuX7xDHf2NioKo8t0ozGNfHZ2AaKKNwWrxm7K0i9SbI0mLlna7J23eJQilos1qGpuTSI9GhskZn410DRlsF5itf4m/eMTfXjfmLfKWqkmXg0xqCIyXC/PN7R0MViSc+tx6hmYBPrsfvAuXPnqmtnZWVF+/fvH+2XuBZrIn+K16KYreYq5fVWEwHGa/6sGffEPnm9+ZNuAtnZybOvNkaZoZfXSHaeRcRxpPjb9fJs5pmW9dn95JjYdS2C5+Yi/rRRRbCoWLNxeA0NDQ0NOwJLc3illBGlkEXLqCnMTYlm1J6pRlOgpGpp5hrvcb0u39SNqc3MlJ0UPamLWE9NOVwzBMhMmN1WK1tJlcYxoZGI+0OzYCqR4/905iTVO6WMp1m6PyOH5j66X+vr61XDg83NTZ09e3bSMIicj+fSFKEdTv0pDRyHOR2Xa+qSxheZq0lNce51GNcB58H98bj4mcxoqWbUwXWXGXS5f66P/Y5cr59neeTwXG+cUxor1Mz8Y30cg8wgKdYfxyIa/9TWjjk8uhFkEhiucY8P51QacyA0iafUJs5pze2K+zGOLfcjn8mwaGQdj0k0QCIHyb2XSRT8G9dxzYUqW6tcXzw7436qRX/hXolGWR5HS3WWiSDTOLyGhoaGhh2BS0oAW3Oclurm2uSqog6A+hDqQfgGz0xvyZGYesv0B2yDnzE3SKom3kMqpuYsn5kjU+9Wi48pDeG0yBG7XlJ8kaN0P0jVuu00aY//+96aw2nUFWVh22oopWhlZWXEbWTzYsrt6quvltSHloqfUQdgCp6cnOefur1Mh0OTcvYr49Y4p17v2TO1cFM1B/Sp8F10Q3A/43rzPf6N8+62es1ENw9ycjXONXI2HmOvO+oVT58+LWkrJ00OOXL/hDm8U6dObWlbFiaMYQrJfcb1S6dn7ospWwVymzV3oSmJCEG9Occg1kdpSGYH4H7Qad3PUocd20iplyUKNV1bLJ/zQy44rjevK3KFHKu4vj1ftXGcQuPwGhoaGhp2BC6Jw+MbPOMu/PY1dWGq3NRmfIayXuoaTJVl8lxTCzXrPP8eqUtTgaRS/Kwp0khVRKok9q/mgB6p1Zrex/0yBRQ5F3N4pqxchh23ORaxPlPC5mDdH1LpGTVo3Yyt52iFFuvJuNntrKpIxcY2kLPzePg6ubgIhhjzdzoXx/ZnOixpsDq05CHOLQMkM2yXf88CQHO9kUL1+ojtIUdFC79s/ZFa5p6kxV2cM+p/Kc0hx8//pWGeyF1n4aF8z/nz56tWhA5oQF1XlFBQp1RrU5wXznvGLUdkVs2c/ykrRgZE5nnHsywrp3Zm0RlbGs45Sr18neeSNKwd73/q37x/KOGKY+F9S+mHxya2kb9xbWZcnJ/PdJDboXF4DQ0NDQ07AktxeJalm/Ll2z7Cb11b1Jlz8HUHD5aGtzzDI7n8qdBjpkSMmoVnRl36N1Jp7EMEw5JllJy0lfLxb+6HuTZ/uj1Rv0BfI8q6/WluKNZnXRf1Pub0SPnHfnm+TA2ao6zpDmI921mbbWxsjMIPmdqM7WSYMOoeMo6La5EhibK1WgvT5PXtNRqlAy4nrt+svsz6lNzSdsHLpbGFpUFuPT7j+sjt+tNj5r0TKW5yKNSNey7ivNH62G3z+jbFH3X11DNPwWuHOrUodamFYKOfZub36bVPLpD6ubj2Pf/U3WXWoIbPQD9bC+a8SFBnt5W6yzgv3ke818gkZhxHnpU1C0xprP+jlMrzH+uj9M7jSb1v3PPUPS4aOFpqHF5DQ0NDww7BUhze6uqqDh48OKfoMuqMFILfxubiaCEmDQlkGeWj5vsWKSBzIP7NVCs5yowScdtIWWeRCahLIcVNyi5S3KQcfQ8p7cz6lDoaUlimFiNlR12hqSX6R0WK221w+aaITZ1nbSR1u2vXrkl5etd18z577KM/V8atSMN8ea4jnFy05g9J3UDkaj1m9Nmjni7C5VKXOhVpx30kp0BulH5gsd01v09TyHHMano498f9O378+Kh/Brlt6puiLyQ5CXJg1BnFPmbWuoSD1vvs8HlgziH23331mLudmQUsdZt+hvowlx3XA/Xvrtd7zYhcFfeu9x/XWWYVzCDYtSDv8VlaOtYsl7OEs7XoVrTMjwmca/7Z1CFG6QgT2Fo6xfMt24vc64ugcXgNDQ0NDTsC7YXX0NDQ0LAjsLRI88orr5yz7TZ/jyIYOgebrWaG68h6P/jgg31j4Nzte2jUEsUSLI8O25mjrEUJFMlSgRrNlt1Hl0dRksfCiKI6ilupsK/l54u/+VmaUnsuPO7SWCxBEW0mdjU8T+7PtddeK2kQR0QxKF0LpoK40qycJvLSWDFPVww/H8UbVG7TKIYhrKJI06KdaCwkTedfpNEQxZFZMAb3i64tFBvxemy3++7+eR1YpJSZlruvfsbXPZ7ed3E8fQ9DltGd5MSJE/NnGM7Pe5BixiygehYaj+i6TufPn5/3w/XEPcazyOcPDaCi6PSaa67ZUo/LrYXkuv/+++f30qiD4eky9xSjlkvPz0SDF/fDffW4WVR75MgRSWPxsTSsDfeHofq8DqJ6iS5ntWDcLiuuaQZ5d1u8z7Kz0mvPbfUzVnNl+QwXCdBeQ+PwGhoaGhp2BJZ2S4hvdBqVSAPlYSWkFeM0H8+ye/uaqZlFHAypVPe9NepdGihbOjmamsicuU2JsDxTG6TwIpVWCztF5+gshZHLp4m+x2gq9QrrpzFDRC1Tt41CTA1HapBuI/v27Zvk8Pbs2TPvq9uUBeSlsQW5s2i84vLI0ZECpWFKvMdjWuOiI/wbg4S7zVkW8VqIKhqgZAEIaKTAejIJBrOy06DKfWDWcWng8D02/u45Nocf18Hhw4e3lGepgD89R5GT9Fi7H2fOnKlS7qUUra6uzu91G+IeM1fpfe9PGqZlqcXInbudDLoQDVJ4D+dnKj1QLZu8jXDiGeNyfa56HswBWbLDEHvxmtvPM5HuZXF8mOLJa9drxf2MHKWfdRsZeD6TmJD7o1GUy/KZLY3Ps6nA40Tj8BoaGhoadgSW4vB27dqlw4cPj/Qm0UTZlACpMAYjzag5BnymwyQDG8dy6VrAhIiRCzWFQ/NghrHJwhAx8LQpVTpoZ86Q7h/rp+5SGqg9jy0peuoGYn0MbOvvppJMtUd9Fk2mGSSb4Y/ivTFUVo3Du3jxoh544IFUh2tQn2Odicc4a7fhteJxI0U/FTCbLhiUOERu5uTJk5LG3BG5+EiRMsBALcDCVJqTWmJR9yHuJwa2phuRqXKPZ6aHoR6V3HYcE7qLfPCDH9xSlu+NHBl10+YSM1y8eFH333//vL1ZQIDnPOc5W/rOdFbkxGMffa/H0s/4XCC3Kw3zTi6QOra4Tz2WH/VRH7XlXu7LqCf3b94L5uwYuMFrOJ5htUDWLstlR8615l7jfrpt2VqlPttjTqf/OI6U3ngtes9cd911W/oQ7437qSWAbWhoaGhoCFiKw9u9e7cOHz6sd7/73ZJyyyBTGH6L19LL+60f/zfVwtBIppao/5EGqpH1ZVZZhqmFO++8c8t1U15ZUGzXyRRC1nHZ8og6xdgPWknVki3GdrsN5iw8BrSIi3DdDGHEcY6Ox76X1HgM7ktQ57kIjh49KmkYryxBJhMC+96ME/dYWseZ30AJAAAgAElEQVTo77SIjBZ9BhPhUsfqvmfcuqlil2Fq2WMSqXSWSyvAqVRPlGDQKZptjeV5rZJKZ4qhSOHTktfwMx7faGlHbtr13nfffZLGwSeksT7z4MGDVefzCxcu6OTJkyNOxRaKEe4TOfBMokTOl5+05s4SAdOKlfdmiZnpqH/vvffO+ynl+irvVc8VrVD9GaUfvtdt9RphWrS4dmgb4HVgq1zumSzABnV2noMsiLj7St03UxrFdwzrXiQ8ndE4vIaGhoaGHYGl0wOtrKyMOJRIIRikqEzlmfrMKFJ/mpow5WNrr4yTIKdDH6NogWbccMMNkgZqyN/N4ZkCin43pr7M0fm7KV1S01Mpc+hTReuz+D85ZqZbcllue4TH3GPBRLvmtmJ/fC99kvw9Uunue7TGqlnaOSwdrbwy3aPheWC7o87YVD71IjXLt6jDo5+nqVla78YQVh5T+pmaemX4K2nMATGY8lRYLa8rpnKhNCTz3fNeYEB1U/F+No6n2+RnPQcuP7MG9J5gyphM12a4DdGKdkoPs7GxMQpRFbl22ghQN5QFnPb/7qPHhxafWfJYBlv3nPpe7w1LZuL/1B16fDxe8cyKa08aW5B7vujHltXjZzxutE6XBqtPP+t7n/nMZ0oa1oXnPJ7jtIGglXAWGtLPmxt1f90Pj411l9Iwb/fcc8+8X02H19DQ0NDQELC0H97evXtH1obx7VqzlqR1WeQEfK85O99rqsL3+i0frcJMVTJA75TPDnUq119/vaSBS8h0RdQJ0VdsKl0QffWYJsP3RurM/7sNpkJtzeb6zAXH9vkZc2umsEgdRkrS9WU+gdJAfWYBnD0vp0+fnoyC4DQvsY2Rq/O4UAdlmJqOETJ8zRSidR0eJ4+L++PxkgYLMK8N128qM7OIZdqZTIIg5RwedSkeA1o+ZjpxWksyMG8cd+41Rq8wMt9E9+8DH/jAlvp93VKPzOqZ0Wc419G/0GMdg8pPpXlZWVkZ+X5lUX/cJ1pP+pmo8zaX4r75N8+3x8vnUkxFRl03La3djihFob7Ka9b9cHuivyJT4Xi90wo0s4RlhBVGh2Jw6XjN69r73ZIUt9X9jf1z32+88UZJw1q59dZbJQ37Oa4DBsf2PLl/7k/cg+ae77jjDkl9irQpKUlE4/AaGhoaGnYEluLwNjY29PDDD8/f1NR5+R5pnCqe+oT4RjZ1ZoqKyQzvuusuSQM1ESn8Y8eOSRooBSY5pYxdGqhzl0d/m0wPR58WUvoGrYtinw3Gh3M/YzxMWjGa4jYV5cSvfibqG13fLbfcImmQdT/3uc+VNFCyGZdNvy73O0vYaa46Rk2ZirSye/fueV9dTuSQaLnn8Xd7vT6iLsV9te+XLQO9NmnRlSVXpQWn1wo5v6yNXl+uL0t/5fIZj5U6RCN+p9Wax4tjFPUi5sapL6cPKSO+SGO9DmOTmiu+++6758/QP5ZUOxOsSmMd4cbGRpXDu3Dhgu69996RZCmuHeqcXRYjkkSpge/xfDPZqdtma+54znnf+xp1+vSFlQZbBOrdrNvz2s10+bQKpQVx5hfH+aYO1PMR96zP2ne+851b2uxxc3vM8d1+++3zZz3WHEePPdedNEhi6C/LmLERjAJz+vTphS01G4fX0NDQ0LAj0F54DQ0NDQ07AkuJNDc3N/XYY4/N2WuzqFFkx2zRFn1YYWvxVBQFftzHfZykgSW2eM4svkVzN998s6St4kKmDDIbb3GlxXnRUdZsukV8FllYPOq2RbErHUndP/eL4qr4rMUQDKDNtCrRWMGiWY+JRUkeE7fHz0RRjZXfvpfpYSxmjg7Hbj9FmhSlRdcQixQ8thTvEqurq3NRjNsbn3Hd/mQA2UwEx1RHdJFhUFmLguNvDHDAerJgtx5br2eL2b12Yxs9TuyHy6KxRxbwgGGa2MYobvO9FhdRpOm5ZF9iG7xGauH94rxxXdfEUZlbkdfvhQsXqiLNjY0NPfDAA7rpppu29DUaasUxk4b5oCFKXA82rnD/LZ6ziJOZwjMjNvfVe+62226TNIxb7JPnzMYWHkvvH7cj1uPzxfvfY+ozpRbEItZtEbf7y3UWDdHe9773SRpUBDQ4cj0Ww8Zzzm10m30Pg2NEka3LtYjUz3o8vQ7jfvLz7tfp06dHaqMaGofX0NDQ0LAjsBSHV0rRysrKKDFn9vY1J2RKxJScXQDMZUkDNeZyaHDwiZ/4iZIGqilyQqYITLUw8asph2iAYtN0ps9gMOlYD90sjJoxS6Q4zDm4rW6TKXAqhOOYuNznPe95kgbKKzOOMDw/H/3RH71lLDx+ridSnwyZFgNCx/5EgyE6tl5++eWT5sFd143cRaY4IaMWBDm21y4sTLlC6jIaTrgeumu4D1lYNffVwQqYIiuuGcPcgJX3NDwyPKfR/J1O93TMdX+iIY/7TO7Mc0x3iCxpKA3ImLw4ckrkVF2u++MxiiGz4pqR+jGvGTytrq7q6quvntfjcycaP7g9HmtytzSkkIZzwJyI+0bjDo9XnAtzZZ5Lj5s5kyzQAQMbeJwsFXD90XjNIEfne3xWMsRi7J/3GLmyLBi7++MzquZ+4TmI+8v1eS58j6+73igdoMuMpU42nnEbs3RybvfDDz/c0gM1NDQ0NDREXFJoMVMtplSiLJ0myZGTk8ZhjaSBAiCXZpkzU35EroBBbclp0TTWfYjlMB0MzXljOXQEdn2mRDLzZ1OGdF6n2XhGsTJYsDkZjnOsz1wY9Y1MXppx5gyjRN1eFl7J7b/sssuqKW7slsBEvVn6FNdR42Ljd6b9qQVmzoJ6G0yB5HXtMY1UuuumgzP7EK+TK+N6tm6alLA0ppbZX5edtZGhnRjej2ssttHjSCdlcikRDAfFuYjrje5LU24J+/bt08d+7MfO14PHKbaB0hqOAUMOSoN+33uX+lDum7jHfC/18B7bzEyeDvnm7Nw2zo80Ttrq75x/9yFLPM3UO9z/0S3Hz/sc8z3m8Llv4170Pa7HZwqT5cY2MoExpQPmnOPaYGDwRx55ZDLgRUTj8BoaGhoadgSW4vC6rtPFixfn1AWdcKUxFWEZs79T5yVtTdUuDRSB3+CkoiKXYYqOIbEYZDdSZ26TqSJSdFkqeqYOsQyfiWDdh8yS1OXSOsv9iVQhw0LVnLLJycY2mOphskhyjfEZpv9wv3w9UtWc06nQUA5aYKov4/QZ3Nago37UATBMXM3J34i6XKbYYTuy9CPkhFlfFmSbFoIMLWXrNob+iu2vJTTlmo2/UVfEuXXbY1v5G5MI+/e4DuhIzySeDCocy41JaacS4K6srMw5O+ux4zqxhMfjT30lbQsiuMc4Ttm6psVtTR8cOQ/Pt/e9rcN9r8crrinqs90W94cByOM5x+TE/o2WzFGHS/2luc+atXY8Q5jWi9xbdva7TR4L2lG4vriPo8O56506eyIah9fQ0NDQsCOwtJXm7t2751S1qapINdGXitwLfY7ivYYpA8rhjfhszWqSwWOzpLHmXkiBmKrILKxImZKSy9JZmOJxea6XwaOjdZ7HmKGF3B+Pq/sfObyYrieWz5Q8kUqnzsagXiaOve+NoYtqlnabm5s6d+7ciMvJ/LmYtoby+cgJUGdC6pxJaiOHR2qfc5gluSRHSW4qC0tHTthlMGGq25j54THUGxObZtauNS6N/nKRo6C0hZaXGYdE61ZzB9Q3ZQGuY99ra2djY0OnTp0a+UXGPV0LhcffI7dJ619atVJKlCU79T3eA5HrYJ+tszOH57G0RSRTG8W2cb2577RYzSQ9PkPMGdfsAKRh7rwWqSOktWs2Z7UQjWx7rIfrzv3yPGb+hdk5vR0ah9fQ0NDQsCOwtA5vfX19/uam/DrClAKpI3Jg8TeDuidSEfE7qQlSekyyKo0jxJhCIPcZ66Fu0n1n4tdMx0EKhBQ2dQexDdRrUmfpNkbOi5RUbewjpeXf6HtkPQmDFmd93i4J4+bm5rz8LDUJuVZyDBk3Y1B3kkW8qT1LMBJKpsulLs3j49+jnplBjz2HvtdtyrhQr0nqTriG4vqmvpcBlRnAfSrQOTlaWivH9tMH0v21lCCLhpFxT8TFixd16tSpebm0IZCGeTAnUrPsje12u2rpzsjxxbVDS15LZxgZJFp6m7Pzs7ampv4tSj0Ymcr7kRwm2yyNLXzdd+vLqKeTBqmKy/E99hmlhW88x2m5mfkIx2cjKJGhvUM8q3huLqq/kxqH19DQ0NCwQ9BeeA0NDQ0NOwJLG63s2bNnJEaJIhgqfBnUOctLRmfkWJ40NoSJYgkaAFDM6rZmRgS+19/NNmfm6lTAUizEfHIxDBGfzUTAvG5RApXVmSFFrCPeQ7NgOljH/jE3Vi1nVhS3WEFfM3iJ2Nzc1Pr6+igwdyY2Zp9p9p6JMCjCZB+n2lYToXq+oniaIkYaX/iZKG7jNYoaafgU1yrN7L2uKHLOXIMo/qQ4ii4usT8Uu7KtcQ7oIkOH9szdgHVPiaU2Nze3GKFkzt0MN+V+MNRfbIvFjV6Tnmcak1G8FsunQz7dRKIhmu+hk7zPHV+Pa5Vi1yxgQ+xnJrKlqsbGKw4KEseRrmDe/x4T1hvr4280eMrmgOHnsszt0tbz1O21uPfMmTMttFhDQ0NDQ0PE0hzerl27RuazMWQWqSIaGlCBHq+ZimAILiOjLmtBnekEGTOeU7lqKoycRObs6GdJgZASjpyLyzc1Tk4vM7BgwGcaq7Bdsb6akQ+poEhpkVM11eu2Z5wLTZMvXry4bYoXGgbEcXRf6eTvOpnVOra3JlHgZ9bnWmonX48BeU1pmpNgChyWJdW5GEo7snXH9CwOjcUA4HHPuD7uKwa6zowLPB+kzrn+o0SBXDQ5WBo3RcRA1rW143PHRh902Yl9ojERDeAyDo/BFVzWVLCMWrowBk+I6yMaMkkDN8VwbnE+uObpusIxjd9drg1OGOzfga4j3A+31euKZzLXgzReBzQgJNcd4XI8p0z7Fc89z088I7czmJu3caG7GhoaGhoanuJY2i1hY2Nj0jyceheGnWJYm3hvTcfAALbxbU69h38z9URqVxonqKw5SEaY+yBlxZBLmSydeh6mkHHZmWk5KRfem+lEqTMhh5RxxTWK1W02lZiFlIp60inH8/Pnz8/1fjZ/jhQpKWtyeBn3TNcBrh1yfJnOofasqc2oh6GOiC4FmV6MOmFyfFP7yWPA1Fhuh6n0LAg3KWzq4bLwVxw36oGnQA6NezHj4LKwY8TKyorW1tZGiWsj90TXFbptZI7nbh9DYXG+eP5Iw/iT+zNnl9VneF3R9H+K86GtAvWK2Tz5GgM4eA9modO478l90v4gc6XiPjKyc4cBApiGiNx3rMdze8UVV8wDgW+HxuE1NDQ0NOwILMXh2VrKb30GApbGVKu/k+OLMmE6a5PS5ff4tqfzIYOOOlB0BMNk1Sw9I5XOcEZMnsg+RAdQJi512+iEnYUFqgXUrXHQsR72jwlbY3108MySNUpb9Sa0iI1h54jV1VUdOnRorofJwk0xjBrnKbPSpD6UOjR+j+NJipQ6Tus8Yp9rYcc41lFfw+DENU6L/YzlkZN0mdbpRX0Mgzcz3JqRjYnvpXM3JRkR1Kl4LTE9TFwblJhMJQ5eXV3V5ZdfPr83S7dFx3I6MmdhtHh2ZEEcpNzJmmuFDuF0jpbG3BkDLRjR3sD3Uh9q+LrLiu1iCENbNTKkYuY8bpADY9jCKZ2+QU45jq+59ZpVeGa5T73y1VdfPbl+trRlobsaGhoaGhqe4rik9EB+YzNgqjT2YSLVmnEz/p9JFLNQRLHMCHNcpspN3WbycVKt9PvL9D3ktExhm+KqJVeM97Jf9od52tOeJmkrZUfLJvoKMfVLpv9jYFb6VmXjS72CkaXpoC/YVBLPlZUV7dmzZ942cnqxz+QymVA0UnPkPGhpF+vns+ToqXPymoq6IoauotWixzzOpeefnEQtxVPUk1A3Q52exyTqGY8fPy5pkG7QmnpKJ7pd6LVMR03OqBasOuP+s4S5GXbt2qWnP/3pkqT3vOc9krbaA/h/z88i5dKfj1w710wmWWAwd9YX54U+lORKyO3EOhnMmam+psI7UofrMk6ePCkpD6zv4Pfe2xwThqnLQAvpzMra4+bPOF5S/r7wvUePHp23oaUHamhoaGhoCFiKw1tZWdG+ffvm+gK/jZ2YURrkxE5qST0P5djxf1rpGbXEldKY83D0AFLVUQ/j/2upY0xBxHqoh2FSWvo0RaqJnBD9/5w2JKuPEQ9odZhFQKDVH7lOlhH7TuuvqbQwDLo75YdnK03q1jLrWdbJMc4stjJ9VOwP75fGeh2vJSbOzNYOg/fWUsxE1CweeT1LHuzyyGGSa8v6Q06OPpeRq6MlXU1nE59hoGRasPp75OYzPXINXdfp3Llz83Xm9DZ33333/B5z1P601Km2P2P7srRMEdST8f/4LM8bSzJiPdTz2YqSZ5Y0cH3cL1wXlPxIw7pyW91Gn9FMbSUNOmH6PLqN1KllFr60jKc9R1z/Xs9MrMw9ErleSy48NidOnFgoKLzUOLyGhoaGhh2C9sJraGhoaNgRWNpo5cKFC3MnZCs2o0jTYhQbZDCPEwPLutx4jSGQGGA0CzjsNpHVzrIju40GM2ybZY7GOGaxGayXDq4W62Th0SiWsPglEzFSHGARA0MYZcGR6fxP0SYd0GP//CzryQx56D5AMU9EKUWrq6sjN47MQZ9m7hTRZgZPFJVSYZ6J77wmLFqmkUqWN9BtpLLda8frPXM4Zkb1LA+itHXt+H+LmC1yotg3iqUYuJhiSBpcxfGsubtMhSOzOIqiK4pDIyie3rdv32TG80cffXTen8yB2XvV54A/GRh+KjwYXUAo8sxC2jEf3lRgfRru0ak7E/nReZxzSVP/6Ebg9WwRqkWAFmm6LK+pWB4NeGwMSCf2KKbmeqZ6IwvRxjOJ56bfMZnI8o477pDUj3EzWmloaGhoaAhYisPb2NjQ6dOnR4YbNlCRxo6KNYoxcni10FdZBuh4fwSDmVLJHikRU390FvX1jEqnoYmfJdViU9/MeZiO5qbwTHFFKoapclyGQ+h4nDNnWRopROqfbSNIPTPobsaZR06hRqU7ALD7ZYo7rpdaxnm6c0TjHhqL0LWF4c+yMErMVs7AtbE+SiFcj6lnr4u4Rhmaigp5cp+mouO9XivuJ4NWx+C65LTcfksJaP4ex4RZxbn+MmdlSgPYdrrYRNRSZUXYaMVz7b5HbsBzeN9990kanxFZ+hj2sTYv5mDj2mYIrporQ6zX3ApdJtx2GwPG0IOeK4Yq8/nmPniOo7TNZ5Hb4nOaXFTmlkKDLbfN/c0kGL7GgNM8i+M6ICfMsGGZcZPb5s8Y+GQ7NA6voaGhoWFHYOnQYo888siWxHvS1vBTDBlkkKrIKDtycjUHTbYp1ku9j79HJ1W339f8rCkFUxORcqD+oJbix4hcgfvO0GnkSjOu1580JSanEceb9VDPl1GfdNDnOGZhr4xMB5nBXF68N0uuSh3AVLJbllNLjJm5VdCFhG4RridyoV4TpvBZv3Ud2dhS38s2kWOWhnXnT7qLZOGaDOqZyO1m+yubl3iv649t5LgZ1L1nsB777Nmz1SSeDlrPtRPbTekJ68x0eNQ98tkpp+pa2hxyG7GN5vBcvufU3FOWrJrO4VdddZWkQRrlc8B98f1ZPywd8nntsfDZEuupuZMRcYwYeJ4BFjJdLsthgu1MsuR7YqLjKalVROPwGhoaGhp2BJa20tzc3Bw5BGf6KlJrtLzLqMpaWCjqqSIlSVm2KRFznxnVRL2Uy7NVU2bZ6f8ZfspUhuXuTDES28A0QR4jU3iRWmRgWX8n1+ZnIrdAh1I/Q+o8UsGZxV6sP+MGmFZpipJ3ihePMcOIxXLIvZDai2BwaAbbnQo8XbOwpY4l1kt9H+c0m3+GuWNbSd1GK2L/5jViizpakkYKnNKHrB+x7KiPqQVUJ4cU1xstE42aI3dsG4M9Z7B1uDkRtyVaBdesshmgeyoFD0MOuvwsxZg5U+qYaAEbQQ6S6cn83YEopIErZEg5rylalEYOk+v7zjvvlDTW3TpEVyyfIRMZ/CNzPGd4P/aL7434Py28a2H4YnmU6i2CxuE1NDQ0NOwILB1abO/evXPKkBZqEVlQ4+x3lxtBKmwqvBV1gW6b/XJMeVv2LQ3ybpdnWbrl36ZqIkVHSs79MsVNzjXTx7k8t8WUvNuaBVJ2OUxHRH1X5ktFCy6Gw4ogFUbrPHJMHB+ppySngkcfPHhwFAourgO3j5TiIj42Nf0k5y2zLowWjtJW3UAsQxrm+8SJE1vaxrBRmaWdP02d0yLN7cj0Ilwr1PfFNrotpvYzX704JnGP0rK3Rj1nPpy0NuVaimXFte76amfF5uamHn30Ud10002S8rVjDoFcE7mKWAfb4LXDcF7kmGN97Fvms2f4fKHP3iKpbZhSiNbImd1Bbfy9hvyM9YGx3V6jro9tzfTr9K3lGHCfxfKm9LexrbEfmS/gdmgcXkNDQ0PDjsDSVprr6+ujIKeZ1Zzf7qQqGexUGvvV1IJFZz4ZtLRjmiBzcxmlSt8dP+v+MflprId6K1MopmJifYcPH5Y0TkZLziULik2dAPVyWaJYUkvUv2U6POpJsyS4fCaLEDHF4a2trc3H1JxqlkCSujzOXZbElVQs+0wuShr7/bltni9T0TG5KvUsptZdH5MjxzpptVgL1B3hcXJ57gf1MBmHRz8ol0EJTdy/tNJdJFoGfWx5T8bB0Mdt79691bXjtGSGdXlxv1DCUks6GvtKfRXPF5YVdezkAl0Gg73HOSVnx2cza2evJ0uFXK7roc9tbCOjPpmTs/7RZcVUVrRQZv3UJcb+MXoObTLcjjgH2yVhpo5SGvtNTkmWiMbhNTQ0NDTsCCwdaeWhhx4apbmZsrDK9Dwuy2AMOUZo4PcoSyfnw3tNZcS4mG6TqUtzg1l/2W7qD2j9Zaozjgl1Kq7P90QZOuujNRQ5y8wCr2ZxmVlWGbUkpKTAYj2MXrKdLL2UMrJmjXNJjoDJH6fS2dSsC2sSgHiP5+Waa66RJB05cmRLGzPLVHL6jIsYfffoS8e4rJyvOI7kVMltTEUQoZ4ps3hjWw1KWbgO4trib+wPLYvjvZZklFK25fDMaZsDj7YDjEjDGKSLpCXjWUUdXtTL1mL3kmuM1odO9Ox15vqZ8ilKB1wn9Yj0scvsKWhJfOONN26pn/6A0jjdGvcrrTTjOnC7uVaJyBUyNRPPM6/N7MwyB9tiaTY0NDQ0NADthdfQ0NDQsCOwtNHKuXPnRk7YWZZdihRrSuT4P8WBDAvGAMHSOOSRWW0bIGSsN9lyiyd8T5bmhk6jNKf1s1Qux3vdJpu0O5gvRZ7S2FmcLgU0Moki1Fp4sJr5eDYmdGjOxBMU6124cGEy43lcO5mxBftGpXcmOue6Yl89flloKZpg04jA9WeiLIa0i1nfPRaG22DxTM1VIgvfdu2110oaxHjHjx/f0p8sPRSNVQwaNtDIJLalJo7KjAhqYaeYXifbt1FEXDNNL6Vo9+7dc3Eb09tI4wAUHn/Wk5nR00CLrj7el1H1QGMyl0X3oVif2/2c5zxH0nBuWhRo47ko0qRxTM1Vh0ENIizCdFkUZcazimc7zzev86lwgjQg8/qnI39WDg23Mjcvq4SiGHcR1w6pcXgNDQ0NDTsES4cWO3/+/JxDMdUZwYCrDP2UOYDG8qWxa4Mpgsx0lRwj088YkQul8Ust0WikNsh9kCqkAUQ0D47pXqSBoqLzemYIQGqJbc3CoNH5leluapR07A+5A3KH8X+39dy5c5Nlb25uzql0GkXEa+R8ai4g8V72rebGEUFqmQlfMyMSBu2lct1lxvn3PDAsFw0RXE8M5muq3M/ahJycXTaORo3rzjjmWiguznUsk+4u3BuZWT8NgqaCR7s+GjjEOa2FAaOpfCYJ4bqjU7fnIHL6bIO/W2rjNRSNSDx3LsdryQZ1mSuXx8n9Y9hAStCiiwHHhimNsrCLnldzqpRY0PApc1PiWcX1mCUrZkhAOrFniZt91l511VWNw2toaGhoaIhYWof32GOPzd/2fsNGqoKO5aQiM52asV1qD1NLmSk7OS9SfNH1wNQL02OY+8hSF7k863ssZ/en2+6yYv9M9bGtLsvUSRZSqqaHoV5rivOq6R0zV4YsUWp8JnP2jZTplHlwKWXEfWZUPdeQn1nEpYXcRo2CjOWS0yPlHyl7/2/phufQc+wxifoerxGvY68Vl8H0VJGj9Fj4WQcvYMi5CPaHFDfXIYNDxHprXPbUPNdSSS0TAmqqXO/TqGtnOEByJFmyW44DOfqpxKV0U/Ics8x4ltCugImn6dQd+8hAyda/uW2WIjnYdPzNHN0dd9yxpY0Zl8ZwegwxV5NwZW00/AxTm8U+U+dJ6UAEHeYPHTrUOLyGhoaGhoaIpTg8J/Ck3DrTj/nNTU4uk8nW0sJQH0Jrulgf66VVY8YVUmdTC8kU20s9hdti+TjTEsX6/Ol6zC2QO4ntp/6ylkYjs3wip+c2TVH2tLLlWEWOjGG7pqw0XS+t6GL4Nloe1rjY2AZy4zUdZMatcb7dNupsou7JHLx/M0VNCj9a2pkaZyoh6u4yqYfLM/fHPcCAB1Jdh0Z941TAiO30p9me53dyAxm1HgNcZ/13OXv37p1LaWwJHfXWtOar6YJiHZSW0CqY6cNiWDpaUXtMySXG+ihZodW5rSmzhMOGn2VwZ0sL4rr3eNFylMGjM2tXr2+mzOKYZanhahal2dlPTplW6VnCYe/PyNVOJZeNaBxeQ0NDQ8OOwNIc3u7duyfD9ZBqZKBiU2WRSyOnSB2A3+imZiI1SyqFHImpmkiFMm1KzYoocg+m0knpMqwW09vHe2rWh5k83H0mlex6qAOL1C7b5meZniPTZ+mB3AEAACAASURBVGT6y/h7pLSm9HDZ84888kjVf1Gqpx4hV52leDEXxnBarC9ya6TCTdW6DJYpjRNW+h6vKQbslQbK3evKUgDfm3HpBrknWgNHC1k+Q/8+pm3xmsn0H9vpfbO1Q0vYWhBmaaw/ncLKyor27ds350ysu4mc0HZ1k5uO7aHuyZ/Uz8c95jOIyW85l3FOmaaJekbrZ7NxylLrxP5l1uluo5/1+vY9tN6O7ae0w+PL8GuZ5S11lC4/S+tEC1meWdTJxnL92YJHNzQ0NDQ0AEsngF1bW5tTWrQ6kwYqgrJ+6o0iZVejEF0Wy4xUhp+hlQ/1cxmFYMQgpLGtsR5THA5gS26NlqQZB1uzdCJ1E5+vRa4hlRO5Xgal5ZhkuhtSquQ2Mi7OXE4MbF2j2Luu0+bm5ogSyyxFSSXTuivWQf0by13EF4y+W7Vg5tIwTrbKJBWbJU4lVWy9X83/M/avJlGgvilLwuz5N6dC7n0qyC85OvYhk2DwWUajycDEwxlsO0B9fbZ2GMSZ90aLclp0G5TSZNFzfAYywazXF/0npeGM8j2eFwa6jn6YTK3DIM5u61133SVpq27V5Xut+hkmkY3wfDANlcuiLjSuAwddZwQmBhGP64VnPiOtZJbZblPkmBeRMkmNw2toaGho2CFoL7yGhoaGhh2BpY1W9uzZM8onFxWqZseZ3Zaiv0yZS5NeijKznE8WMdJ826yw64ssMRXONCLJwlDRwCHL5xbbluVQoyI7M6Qwaia+NbPgaN5vkQHFvC7D5spxDmgwxIzKmVMsc3OVUqpBh90OisYi3D6G9mKIuUzpTcMWirIy8R1FyswubkTTcP9Gxby/Z4YAFOV4vt0mui3ENjIsVM3xOzN4qbnd1HLGSWNXFQaAznIfUoRZczPKwnoxBGAGnztuL409Yp21ABSZWwJ/4z7hXsv2aS1cXxZWi+JpixppaOUzLd7rNvrezP1F2jqeHm+HLmQ4wiyYs9fG/fffv6Vchky0s3zMpec2Us1Cw5q4xnwPRfWeY4vl47xxjzejlYaGhoaGBmBpo5V9+/bNKQObV2cm8bVgx8ZUqhc6tpPzivWZarAy2t9NoTAslVR3iCW3EM2eGbyXoYOY7TeC1B8DbNNsXBqn5/GY01ghM/jJDHWksaGL5y/2gxQrTdsjlUuqupRSdR722qEz75SxAqm9LHg0KUSGYqLUIEoHaLZNjpgGV9I4tFdtncdxokk3OdeakU5sWxbQPLY57gn/b8MK94MhzGhgIY2zsnOe3NbowM+s27VUL3GuyV3v2bOnunZ8Hw3fsmASdJXi/MQ2ZOtJGjtfk8vO+lgzfMpcm+ieQkO0LISZne0p9fK5M2Vg5XXgcqM5v7R1fduZ2/2xxI5crtsRjYBosOV1GM9RaauREB32/emx5rqL5Vqqtb6+3ji8hoaGhoaGiKU4vN27d+v666+fUwHHjh2TtFXHwbBJlINnQaVrwYKpt8jCGpGCpzOtKaNIZZCj4ncG+5UGysftNnVBx0xSb9JA2ZkSNgVEaioLAG35u2XmpqyY4iOOiceNFBxNqDPXEIb/oel+5FzoKD4VWmz37t06evToiNuJnOm999675Zla4OxMH5vpE2N7OV/SmAt0WZ47fpeke+65R9JA2VL64LIi5evf3AavB4aNomuINKxFcjd0jo5BpN1e6qTIyXCMYn8YBo1Sg8i5UK/EscjS+VCvOaX77bpuC3eVcSaGy/HYsu9xzZNTIAdOri3uMc8vJSJ0ZreeThrm3XNFCYPXZpQA8TyjewD1znH/WVdfk/RQ/ycN8+K20M2KwR8ip89zrJbWLc41AwPw/ZDteerwNjY2GofX0NDQ0NAQsbSV5srKypzbMGUXqeYPfvCDkvLAxNLWt/K8EaCSTbVQR5TpfUyl0NLJ1xkwN5ZTowroECoNFI6pZ6YjYfqRSKXVHGZpHRot3zx+tUC/DBMVuSFTkFm5sf/xOsOsMTC0KdostYfn7dFHH606gNLSzpRhpNLNzdbWTiyLqEkUXI8p/qgn5bryOq4l95QGipvSB85DnH9Sx15flGgwgK40zD+tdQ3qdqXxWvSzHoto0UswKa3B9FBZklLqwEnhZ1aacS/W9uPKyor2798/0vNEzpuB2OlkzX7E9jFcHyU/kYsxuD8pvcmCV3h8vM5ZFscttpfj5XtoOxD3BiUKDHhu3V6sj9bfDMlG3XVcSwzjSJ24+5fpQnkm1gJuSGMn/EW5O6lxeA0NDQ0NOwSX5IdXS5QojXUppEgzq8KoA4rl0VLMZZ08eXL+LDm5WuibzGeHFnW+br1fFnrn5ptvljTo3+hPZOrF1nzSwDn4N3JBpkJjG6lDM7VE3YcprIwLoXycAYezIMxMB+M5mAqZFjmhGrW1urqqQ4cOjXzsYhvoo0cOmKlKpDE3SO59KkgxuXMmNvZ3rwdpHKKMZWSUtilrrjuPOaUTmZ8Sw3RxLWX6Ma4zBmFnMOPYZ3I/3GcR1OvUQo1lbYzrtrZ2fO7Qkjjq2GkF7nGjz2GWWopcLS2wMw6PVpLWl7kP5p6inszj7/XFNtKCOf5vqRrT59D3bWqMPV5OJZT5xdE3mJa99DPO/AzNUdK/MQsYTyt3lkWL0viMsX///kkdcETj8BoaGhoadgQuKXj0lF+ZqRVS3rT2y3xoeC/9OPzWv+++++b3MsEjLd9cH6/HcmkhlEVyMCdFfytGmzFll+nHPE7UoWTBXDmOLj9afUnjANGxjYw2QT1ABKldRl6hXoP/u4yaL9Xq6qquuOKKOSVMq9ZYN9tEXWFEljLI9Ulj7j1LHlyLMuPrmWWn/ZOo6yA3F69Rf02uOfP/ZHBl6ooY+SU+Q30mOcostRCtGiltyfzL/Dy5UVLdcf54z1TwX3N4brc5iKhjr6VRyhING54X+qdSL0qLzFgu587738iCVZNrpr9f5FwZrYaWxS7fEqcISrc8P37G6zta+DIKk++lDpkRtGI91EnSuj6zA6Cdg/WM3gtulzTWGV9xxRWNw2toaGhoaIhYisPb3NzU+vr6iFqKFImpFVJhTH2SUUvmwkhd2qrJlGSM32aKwNSSLbdMkbitmY8bIx+QworUGq2hKP+mXiFSJO4HfWmoV4jcjuu+4447JI0jEJhayzhm6q3o50OuOILWoPQNipQUZfNTsnQnD3afs4SWnv/jx49LGidZpX9Z7KMpQfpF+vesr/RDs96VbYzcE3WdTO2U6X0Zj5TXDSbKlIb1RL0r9dsZh8R1535RohG5I1o50tIu4wrp92nQQjJrW5auKcPKysp8vEz9T1mzMl2Pv2fW4bSepo2C12XkhAxKSxiZJOPWPLbU3bmtmS6/FjOW+z+OJ3XslPxQ/yyN9zQjnvg7OdxsTLjuMx0lOf0sUW8sI45FSwDb0NDQ0NBQQXvhNTQ0NDTsCCwl0pR6dptpH6Iog+Igs6p+hqaq0tiAgWbTZtsZTsvtifXUlNeZo2xNfMdQQ7FcsvQUi2QuBuzXtddeu6V83xtFqBbf0Q2BptM0h4+gmXuWbd6g6wcV3h6rqcDNKysrk6KFrutGYus4Lwy15r7TST1zMaH4ho65vF8ai3TcNhqexGdqWbAzk2uD4kaPkeeYhlDZGDJAM03no+jM7WVGerbV16MDN1MK0dHcn3FcGXaMDudZ+DCusymDp67rtL6+Pl8fFhvGPjPcGENjGTGbOPcszwMGkYjt8149ceLElmfc57vvvnvLs7E8Zmf3HLrMLJM7wxP6GX9maak43zSwyYzBeA5QJUB3omiUwz1BYyCGUovlUERLB/g4b/6f7h2LoHF4DQ0NDQ07Aks7nq+urs4pq8ykmOFjSE1kDsykTuiIa9AQRRooHIY7o+FGFnCYJvikDiNFR2qQbaIhQDReMOVmzuHIkSOSBkqIzqXSwHWYmqFxBKn2aCRjmCN2vb6XpvrSmLp1P+h0m7k0eD1MJXc1WF40BPD82yiBRiN+Nj5DVwa6GtAwKSro6URLJXvWLxorkePJxoecG79nAXINl8fgwJyvzIGb4cBs/OW16bUcn/W9/GQ7IldI45daP6NkgWG89u/fn0oeIswpMCWYNF4rdMVgEIZYDrkWBujO0qDdeeedkgajMnLpfia6mDAMGY3Xsn3pNvlZzwPDxGXSNl4jl5YFSfB+8W80HKNBT1w7lDrUQirGc53uYgwanbmVMRXchQsXJlNLRTQOr6GhoaFhR2BpHd7q6uqcYshM4ql7chiwmKwv/i6NTftJGZrKsNl4pCr829GjRyWNU3lkehE6llL2bNA0VqrLj5mcNlIcDuXD8D/k2mIbqUdy22g6nen/mFCUuhRSabF8Urt0t8iC70bXgO0ciBlkOa4d983zHAMMSMMailQsE+QyXQqp9Mih0z3D42FumeGipGFeqIcx15mZ6JPbqHF2UxITrzM66rJMaaxTY4ohctlZKDNKDEz5Z+mIjO1CjEUOjlz1wYMHJ11a1tbWRpypJSXxmhM/M3hzls7GbfB4eSw9xjzL4phYd0fH/5q0KLbFY0muhPMV28iQedRzZ2uHYbkYlD97hsGcmVaJNgsRfNbg+R7XAQN6+B4G8IhSPTrOt+DRDQ0NDQ0NwFIcnhMx1qyMpOHNbPnq7bffLmnMkUQqgBaApoBITWQybr/5TQmQM8k4PN9r6osBmhlAVRonlGUZdEyP/SMlRz2Mv2fBcKnXoVUTHTalsVN3FiIr1s/nY7nkLKNOgvqzKcfhUopKKfP2u76ohzF1bo6YnIqfjf2grpi6FEoUMj0ZAwCYe/E6jPPidptar+mMpyyJaX3MRLqR8yZnzfIz3QW5Qdbn8aQUJLaBUg+WlXGw7B/3QtSFklubClrgkIaGpSvW9cbyaEXte7y2oi6IUg1yCr7udRDD+nm/U09KLjrOj61M/em9VAulGNvo8v0bpQNZwHAGW6dkIbN6rqXZMmgNH6ViniPqwLnn4jy7HJ+rXiN+1tKeLLyfOfCmw2toaGhoaACWDi129uzZ+duUQXalcZBeUyYM+ZVZZFHWTIvOjOqgXoxpdNgOaewnYirD3AatOGPdtGxics3MKpSULwMBZz5u5IRInVFXFqlnWvTRx8XIwiyROqd+I3I7tip94IEHJPXU2BSXt7q6OgozlIU18jyY6osWgdJWao9WXdRb1PzXpDH1zPnJdA78zf1wm5koUxqv31pgbnKp0lh3Rs41swqltSx11rQO5rqIbePYZP5e5C64BhheMML75sCBA5M6vL179444xrgOyNGZG3ObsgTAtDSkLt3z5LGOIQ0ZCJpzl0l66PdJCZPHOOoKfZ4xKLVBXWgmlWIQdnK2cU8weTDPepaR6X95BjJUZByTWpgz20p4fcT95DGJabwah9fQ0NDQ0BBwScGj/WbNUkSQcmeaB1PrWYoIf9LCjjqQzLKPqX0YODlSl9SZ8Hvm60R/GFLtTBeUpQeijpDcTqRY6c/HwLy03otjQsqVulBStLENTIrrNnuMog7EYxs5le0oLfrqRH0FLbVM5dGvK1Kx1BOQi8nGx6BOi7ouctexbbU1w/5JYyqV/l5cS7E+Skw85qTO4zPUM5LSnrIOrnE3Hkf64GblkMshlxDh8rYLPL5r165RVJHIeTMVFnVrWXow+gLyDKnNj9sbQa6ZEqDYRtoicM9Ei0SvSftQ1iQ7UxIT2jNQipOlFqNEi1xoJmli4mnWk0UucntZPtNvZSmzYkq47Xw45/1b6K6GhoaGhoanONoLr6GhoaFhR+BDCh5tRHaSIh+L6WzqbUf0KL6jOIom/hYfUNQV7yH7blBcJeWiqlgWc55Jg2ikptQ16BCa3UvxA8VIsS0GnTdpFh3b6mdpfMMxigYPFD9RXJmJaKxcj+GOthNL0RQ/9tO/2TjAYigaikQjlkzcJA1j6zZm7WdAc44FRZCxrxR78plMMc91VzPgivuLYjeKpbJQdhwLrp3a79IgLqoZxWSBBbiuaADlvW4jJGns1M1QaUTXdSNRWXS/odFDlsuQYF46jwvF4S4jiho5phzbzFCMBk00OMnyxbmea665Zks93GeZ8zVdl+jekxk81YJW1MTiERQ1UsRNUbtUH3vm94vrg4ZCUwZPROPwGhoaGhp2BJYOHh0plszM2G/au+66S9JgTus3t03YTbFI9XA2fsbUGp0T47OkmknNRAqoZoZMLidLJUOFPB2ATbFEKp3GEEwxQ0fN2Cb3ncYyVKxnLhQGqfLMiMDl+Rq5bN4nDfNvk/ypsGJ2Hs6MRwxTbnSupcFM1u7MAEOqpw+ShrEzt8F16LmMZTKILin5LECuQYU/78kobwYJZxmZsp7Bo5l9m1KYuO54D43C3P8Y9o2SERo00DAhPhNDDtbWTylFKysrI24tmur7PLnnnnu23EOz94zzNuim5D5SAiUNHAgDM2RBK/hMLcA197b7Hn/jfmd4vMyJ3GCgcxqqxb5zX9HdKzv7DWazp8QsjjsNmfx+MDyedtaPcDCBgwcPNqOVhoaGhoaGiKV1eCsrK6NwXVEHYP2a39Q2p/V3v4kzPUyUyUrjJJ6+L3KHdKqkeWuW9JTUMs3eXX+ktBhYljobuglECigLvBzLcv+inJo6CHJ01B3EZ0lBkoM0VZ3pNxiWjG2NnKupM3NeU1S666PONVJ4DLjrexg2Lj5Dt5MaN2vEOSU37raZMs3M32spVmpuCvFehuKrBeKNfaBOhWbvnOP4G/cCuUWPXXSo9hphwmGPxRQHS46C6yueEw5a4LWzSABgBl2PQZZdHvWuPmd8LkV3IXLCNJ93WZQAxHI8luaAeB7EuWQoN+9D6gwz7rDGRVMPHNvIUHW1YBxZaimvDepLyeFl0o9a8ljqLqWx9MHrgUHYYwhCBlLY3NxcOIB04/AaGhoaGnYELkmHR0udLGGh3+qWs5KKiRZbtMTx29oUEC0HI0XKYKfUW2SUVtRZRLBf0dmxZlnlTzqVR6rJFCLDNU21x2Nh6owBtbO0MOwHKVZS+Jk+jXpMt91lxLQwN998s6StVmA1SmtlZUX79+8fWWNFToEh32iBSCpaGidtpY6D3E5mXUZndY819cKxblpj1pz7pbHzO9e5Qao69odWjKSw4+8Mc0XOwuPIpKKxrQYd6cnpSWOOhMmDM92NpTSxjbWgBSsrK7rssstGgYtjn7P1FOvmuRT7ZpDz4d6L6457i+nPstQ1TCVEaQcd3eNv3KvUSU6FJ3R/qMPLgnLUQjQyIbC5rNg/WtXTrsGfcd5cHrnRWqCF+JuDmtTO8wyNw2toaGho2BFYmsNbXV0d6byifwqDDZvKsC7Pslj740nS9ddfL2lMXZLTo6WnNA4pRN1KpuOo+aW4P36GSTCztlGXRm5BGqilWgJQ35uFIWKySHKYTDwZ/3d95EIyy05aJrpechjRf5LjFqlwYmVlRXv27BlR51mQbYP+l6bo4ryQKqdVHvsc208OyN+5DjOOshbUmxa/8ZrrYZg4poeKVDPD0jF4NOcg3ksrTIYHy8KEsc+msOlLFa3man54tM6LnCD1tF3XTXJ4a2trI24tjiMDCjt4NLmAyA2Yy3QfKbWhlCXzj/NvHg9LtGp6e2lYK5aWUP8bz6pacuqaf2bc01w7/M51Hu/hGNMaPUsey0TKXiueE1+P9fqc4RlvZFKxLIxa88NraGhoaGgIWIrDO3/+vO68886RviTqdSi/dQK/u+++u68wCZjKFC61AL2m1iIVYF8c6i18T2bxREskUge0hIt9NWjNSKupSEnWojDUEoLGvvM7rQQzfyxSQEzp4mdiG2mZWktOGaPc+Jqp2iuvvDKN3hDbRYvF2G76AJKiz/SWtIqlta7XY6ZToTUrOW6v67iGSMW6zR6LLIoPOSmuc1L2WdBy6oZIrcdxpw6Sc0ruOtPH1QKPZ2loqL92/6yn973R0s51R0lQjcPb3NzUY489NkpRlemPzClkPmaxbfF5rkVGCKGkJGuD++Zxy5K5kuOmBXlmAWtphseQfqA1XXWsp5YGy4hjRCt0rhHvJ1qtS8PYm6MjZ+8y4/uiNj/U40frWp8PWRD87dA4vIaGhoaGHYH2wmtoaGho2BFYSqS5srKiffv2zdlsizDuuOOOoUCY3D796U+XJL3vfe+TNLChz3zmM+fP3HbbbZIGsYA/bRJvcRuVy7E+/8Ys7HQQj8+bPadok7nt4vMUF1KZS1FX/I0KbBrcZEYkFLtQvJeJX+mGQIOKTNxDkRyV13QQlaQbbrhhSzlRZEk4PBTFKXEuaQJN0XaWD4+iNubHqxnsxL5yLuk8nJlRU5TuNnouo4iR4aa4Zgy3PYrLaVpOAxS6vEhjkSbFb5nS36AYme3IkBkwxLI8ntEVyXsvzumUwVPMeG5k+fVoROKxzDKe0w2G7jo+h3zexfpdHg1A/AxVINI4AAS/ZwHpKbJnzjm6ZcU2cs3QSC+ba65nikyZ2zGKGj0f0TBMGtYZ1268t5aHz2OUqRUyg63t0Di8hoaGhoYdgUvKeE7DBBumSAM1xDfz8573PEmD8Uo0fjBFWstOTC4ncl4M10Tzbd4njZXDDJTr+mI72B+2iSbMsb5amDB/N9WUKZxr1DOp3UgV1kKm0Yk4chI1wwOXYbeSzNzelN3p06ernEDXddrc3BwFP45cLbNGe12YWs9SyHjtnThxYsuzmQl0rQyOJanc+Iw5KjrM0iAhUr5co7VQXxlXQOMhjtFUeCgaqbCfTOMiDfNBYxxypZmRFJ2HDRplSMPeinthyrR8165d873nZ+NaoxGFDSgYrCByeHZv8lnEkG/uazYv5F5pJJcFO/a5RQdzGitlQardFqa0qmWbj2BQahqORe6JQQrIibP/MfM7jXsomckMCXkPU5tlBnaWFMQ92NwSGhoaGhoaApbi8DY2NvTggw/O37p07owwZUKz0mc/+9mStlLedgB9//vfL2mgzkwlmZIzxZ9RijZ1db2WDWehngxS8KSAo96PDuw0uaWeJgbHdj/IadF5NLaRVFItHBUpIrZbGihLhmrLuNBa8li7HsQxOnbsmKQhcO+NN95YTf/TdZ0uXrw40i/G/phaPH78eNp3U+uR4ja151QupM5rqZ+kcUokP0vz7dhG6tSon/VcZg76NbN6hkaK9dWCeZPDi2OSza80DupLPU3sM/U85HbiOqDulSbyTKUljV0+Lr/88m1TvNA0PkuUy9BXLtPrJHNpoSShliA1008zQPaUntTl0b2KwezjHiJ3yXMnC+DA9lKaMsWRkxunm43v9RxkEh9Ku8iVTknbqIPPEly7P9Hmg0mca2gcXkNDQ0PDjkBZxmmvlHJS0h3b3tiwk3FT13XX8GJbOw0LoK2dhktFunaIpV54DQ0NDQ0NT1U0kWZDQ0NDw45Ae+E1NDQ0NOwItBdeQ0NDQ8OOQHvhNTQ0NDTsCCzlh3fo0KHuyJEjo1Q1EfafoJ8VE6ZG0HBmu+9TqN37eJTxoeLxKLc2NouUPXUPf6MPTxbnj3WXUvTQQw/p7NmzI4elK6+8srvuuuvS5J2Gf6NvEaO/fCiIZbCP/JzCopEdYnm1uWKaoEUwtUdYT+1zkWdr9UVfKs5PzZ8uG3v7V+3evVunT5/Wo48+Ohr8tbW17rLLLhuVG9tE39bM7zLrx6K/Lfpstk9q9y6y3vjbMnugtqeXOTMuBZfSP0a7MrL3BWNoTp07xFIvvMOHD+t1r3vdPGiwwzrFUF92HHSIMTsd0pk3y/nFA4/Xpw5d3jO1yWu/MbxN3NScNG5yTljsHx0y/Z25xiLowMqxsLNqFgia4YGyNsXrsVyGUKsFsY6IGdvf+MY3jn6X+qz2b3nLW+Yhyu66665R372OTp48KWlwTmZ4sOgoy0znnIdaUFppcE7mYUln2zhODKfGQySbUwaupqOxv2fO+Jzf2jqPc8tM7qy39hnvZVkMpRbzvDnIgp+1Q7ADHdQCO0iDE/YznvEMvf71rx/9LvXBJT73cz93HmSCOeKkITzY4cOHt9TN4AXxAOXBybU+de7UchkuFcgYgc2ztcP8l1yTHNMsdB7Prqmwi7XQgLWs7NmYMPv6FIPEwCC1wBGxXT4nHJTh7NmzevOb35y2m2gizYaGhoaGHYGlODypf1szk3akECnSJGXK6/H5mjiU1FSkampcoMEM2PHeGqbYaPazRolkWYTJFTItUUZ9kuJhsOopsQHDoLGeLBwVs36TKsuCBsfypsQkKysr87Q65EJi32riQpcdOT5SiLW0Jlm7WF+NM45jwLkjFcu1LNWDeZObctmZdICBf7mu49phaC9yCeRksrEhh8z+RXgs2HeGRcs485ixfUodcf78+VF2dwapju3l/jQybsb11gJkZ+uSUpNlxIPklnh2xD1GCRI5PM5H/M59z7ZnZwZ/q0m2GFIttm0qfCDbUwvCz+DYWVs9X8uoFxqH19DQ0NCwI7AUh1dK0e7duyfl1tTR8ZNBb6VB78cgujXqfEqHV+O4Mqoi4xjj91gvKUbKwckBxmfJ4S0i96feY8p4pAZya1PKZFK3DPTK5Jjxf8/b5uZmldLd3NzU2bNnRwGTM/0RpQLkmjMdl6+Rm6FxRJZGibqTmk4nls/1Ru4prjfqW7mGSMVHDo9UOnU0mUFPLUg5OZepFE181twVqXhp0OGR66W+OUuKbH3cQw89VNV/dV2fWspBno1M2lDT3U5JUdh3rodMf80+1iQumWEN11fG2bGNnPcaVxj7xCDOxBRnxID2mT679gz3lVE7O6WxntlnS2Z8xHK2k9hFNA6voaGhoWFHoL3wGhoaGhp2BJYWaa6urk6K1WqiTIswoympYVEF84RRLFBTRMd7KCbIzNFpaEDlPkVpU+XXREyZONRsO40vpgwdan44U3NQM2GmQj8aY9RcJ2pGE9JYVJKZREdsbm6OMhjHcaqZ53vcMgOBmnk2TaMp2sraXXNpORQttgAAIABJREFUiM9Q1EexeGZaXjOcoAGKy4yioFpm+ykxPw0L2GePs3OaRVUCx7jm1hHXqnP/2Y2E/aURQ/zfbVlfX6+Kpi5evKgHHnhgLhLNRHTMDM6cf1OqDT9jYzzOTzbm27kWTbkn1PwUF3F/qBnPZWXXDI+m+sV7am4d2flUO5NqPpHScAbWyp1yaYmizUWNhhqH19DQ0NCwI7AUh9d1nTY2NkbcU6Ts6cxqjs7KaX+Pzup0XKWJas2sO4MpPVK1kSr0PcyKTERqipQuFfJThge815/mcrOs1exzjfrNTIw5PhwTUr/xN7aZhi8RdAXouq5KadngqWaQEssjF+hxybhnZmA2lW5uiX2ecjmpGWxkXEGMEFK7N/ZdGlOv5FQ8T9EwiFIIjh9/3668rL+Zawg/fU+Wdd7/m9Pzd/cvkw7UHOkzdF2n9fX1efnZ+uUarxnqxPlnObUs21MBL+jSQilH5kJTC5IwFVGoJqGYMkDymNB4hEElsvOPkgsajmUcHsePRl9ZkAzD40djtszYKDMyXDQCTePwGhoaGhp2BJZ2PN/c3BxxMZGqMQdnB+P7779f0kAZMlRR/J/hxzIXBtZXM7UnVWMOQBooUd9bCyWV6W5qTpzkHKachz0W5HYzqrlGjdf0kBl875SpL6m+qTBrBjm8KUqrlKK1tbVRObHP7qupPM975lJgOIzVFVdcIWng2t0fjs9U6CW3je4x2b0u11wMQ41lob5q8LyQW4z1GLV1HcNsMUSan3Ebvf7cxjgHXovU6XpM/Hvck67b68HSHLfd5Ue3ghrnmsGSA3LekUP2/w4/5tBidND2eonPeJyyIBVS7jbAs4JnFteyNA6DR1egbG0yOEFNT5ZJDfy/59/fOX6ZBMOg3jSTzPDZmo6aNgyS5qEGGW7PZ2O251n32tpa4/AaGhoaGhoiLkmHRyfBSO1ZH2eLLVOTlAFPcTPUh02Fh+KbnVynqZuMImX5U5G6Ke+n4yl1XVkos1qYtaw+g3J2Bpw1BRa5gloYN88Fg9Vm5dasv7LQReaYL168OKmL2djYmOTeyQGbeyFF6vqkIfgwdWqm8KfCZ5EDInVOzlyqB0eghWWk1t1Hj6GpV1L4noMojaD+jfPt/kfOpRaOzmVRdxz3kLkz7kmXYQ4v6uC5Zu69915Jw1kQLTENP++gz/v27ZuUDpRSqnpTaVgT5vDcV4+lx82/S1vHLLa/Fvor0+HRipC697h2KMnxp9cD94Y0HsMaF5oFZvZ4+bzzp8eAUqLYburhmIXCv2dh96hPpeQkWugb7N/U2HMP7tmzZ+HwYo3Da2hoaGjYEVhah7exsTHiFDIdAPVuUxSJqTDKh6mvyHy3mLaEyPxk/Ax1HdSXZFwaKY6axVWUpZtqcT/dJn83hRcpF1pFUs/pMkyt1cIHScOcuPws8KtBjoW+cVlormhNuZ0/jNeO9Tlx7VDH4XkxF3DNNddIGrgaaeg/9a4eD5efWelRL2FwHUaOy+12P8gVZJRvLcQW20Z9oDROc8NPcymRc3E51KG5re5PpsPzNQZq5pqN643B5Bk0OtPd+F7P8YEDB6rW0q6fnH4cJ7eBnJxTmHnN+Dufl8YWiNRRZ/B6cFmUqmScvseHAbSnOKDtrBczDoccFqVtGVdYs3ZlfbTJkMZnkNcuJQ6Rs466Z2ls7ZoF7iYXuHv37qbDa2hoaGhoiFiaw5PGVkuRojPF47cwdQ5+E0fqarsUOH67m6qwXDte8zPkLI1IpbEtpGoyLmU7f7ha4OFYHykuRtiIejNSszXZeuZLU4vG4n5maZ1IhdPaNes3x3zXrl1VSqvrOl28eHHkx5VZsbmdphCvv/56SQNlGDlUP8MoGV6TXivuV+TWDAY95hxO6Qdc79Rc1nRC7p+fcdsiF2JOxc+Qe7v66qtHbar50JF6ZtBnqS5dsZSAkgVp2Mtut+fE9dtiO64NWtNORctYWVnR3r175/e6nKjLtRTg6NGjaZvoExj7RF3alK7boMTH9U9FBnH76a9Iq2SPl1T3beMed//iGPtel+99xTNlKtA9I2URce3Q79P1MoJV5AS9B2gDQR1/3IO2D4ltbpFWGhoaGhoaAtoLr6GhoaFhR2Bpt4SY88wiAZsyS+MstBTBZIGLfY3KaNdDp97I8luEShNrGltE0RnFc25zLRRPvFYzTqByP4ps/YzbSlGJ+xmVuTVlMZHl9PM110fH5qm8VMxXZ2Qh25gra8oYxqCBUiZOs8jn8OHDkqSrrrqq2m6vBT/DdWCxncfCDurSIGKqBal2GVEMStE1+5MZAtC4h0Y5brs/s2C+FpmxfjvuZuubRhEMCuExOXXq1PxZl0PRHAN6x366Hoqn3J8sSLXhMX/00Ucnw+ft379/PneeN68LSbr22mslDcYpvieWL+XqEF9z/Q888MCW+rPgC3RH8t71vQxfKA3iZwa+oJFMZhhGNYTn0memf4/O/XQl8CfLiue359ft5x7hOohzyrB+XCsei0wU7XnyWrGBmucirrc4h9J0Hk6icXgNDQ0NDTsClxRajMrdSFWYejW1R0Vz9iY2pVELeUMFaqSafE90hI1lZN/dXlMKplpMQdJhM7afJuRU8tI5VhoHQSZHm5kWcwxoRMJnswDAWcDn2IfYRlP9pLRq6WLib7527ty5KpXujOccxyy4Ljnf48ePb2lj7JfXIhXjhst3iLss9BJRM7yShnExlUpjAbcxctw28DAl7fEydUvn8WgQ4nLdT3+SG4hUOtNt3XfffZIGh3DvFbc9ctl0P/Fc0KQ99s/XKJnxnNjIIHIDdKif4vB27dqlq6++ej4+rsfjJw3z4T0dx0Mac3rSsCY4L5Qaue9xHTCtDbmXTCJCFwmvJRpSZeH2DJrr+7u59Ng/1+22+bv3k/tlKYE0DnBR45yytnt+KClhgIooZXG7vebpwmNErtflRPeh5pbQ0NDQ0NAQcEmhxUy5ZSa4fstTns8QRVmCzCxkUPw90//5N5rVM2hspCgp3zdVyNA7WT10oaglLY0UCoNiMwxVZv5c033WdImZPo66Aj9DfVesj9Qt64/yd1JjU+b7Gxsbevjhh+dUvtdH1MeSOje1akqUVHtsJ8OSUS/nZ6Oe1DogcuWUXMR1QBcC6xk9xqZYo9TD9dQSi5KKj+uAukiPideSuaeod/K1e+65Z8vYmJKnY3ikjrkWzZVQlxP3PN0Q3DavKY+JOSppoPK9Lx966KFqAmGfO3TFiHPpOfN6ohm9xy+uN+o/qX9j0OuoO2JwaIbvyiRa5qysb7zuuuskDeeN64/1uB8eQ6YS8zr0M9FpnRyW++V5cP8jR1lLgut6GJYsrl23wfVSkpCNo8fnyJEjkob9xWAc2VnldX369Ommw2toaGhoaIhYisNbXV3VgQMHRhRD1IXwTUsHzUw2bKqCVn60SGJIngw1B/HIAZm7IAXCEDxR50AOy4jy79iXyFEyISY/s3Q91OGZMjX1zmczyq6WcoWUrDToQxhg2NRYluCUYd0yp26j6zqdP39+PvYnT57c0p9YJ7kYt8H1ZXqKmuUwuajMUtBt8jxlQZUNWt9xnZHTlAZuxtyx15C5Q85l3BsMRk3OniGgpDElzeAEDE+XJeFlP7w+GMotlmtwTjJndrfRY/DII49UdXgGLSLjXLqd5moZkIKWq1m5Lo/cVGaFHPXW0jiNj+c02gEw9RIlTJYERF0hbQR8DnDes/1JXRr3V3ZWUf/L+fd4UhomjceWKbrYh1iPf/PcMmhBbCMDhd9///2Nw2toaGhoaIhYisMrpWjfvn2j0EuRw6MVF638Mr0fA6PS+o+Ud6SeGR6HoZ2yJLWmItxu6yncJnMHkUNiCg9TL3ffffeWel1W5hcVrZNimZlFF4NC19IrZVQT54CBrmspRqSxxay5tswXyePkfp05c6ZKpV+8eFGnTp0aUW6Z3ibK5qVhLD1eUZfneaCs32VY3+OQU5ELdbu5Nj1eDNgdfzO1b32IuUS3LerwvF7tW+Q2WG/h+ffYROtDl2sLS/q5+veoM2YaJe5T99djE/V/1jPRcrGWiFQah8wiR+E1EcOgZSHSan6cKysrOnDgwHy+vDfiGFOHZS6GPmFx/il9qnHP1GtJw3ozN0au2uNnDjZro61nqf+LHJ4tOq33c70MRJ/p8nk2UKfnfsf17bYxhZrnn36vWfB3nj9em17v8dxxe+kLybCV8ez0PvK+OXPmzEI+wFLj8BoaGhoadgiW5vB27949SisS5au0RKSOyW/7zNfEb37LspmQkxygNFA8phjNvVF/ELlCU0emGp72tKdJGusKSdVKA+XDyBcG09LENpBzYDDpCPqhkPKhD2Hksimjpx4g02cwTQcpY98bdW5ug4M733rrrVVLO/vhkWOIOoC77rpL0lh/wPZGS1E/b6qP/nj+3RxeHFemL2GQXetnIwdEHaHbfMMNN0jK/fDoc8Z0OrT8jXNhicFtt90maRg3z4PLMAcoDePmvntPmNtwG809RI7i1ltvlSS9973vlTTos7iGsoDDrtd9596MQbFdt8fxwIEDVSvf3bt368iRIyPdXdRbct3RviDTW3O+XZ65XEYSinC5HkufKQzcHblQ+sd6bN0vj4/XsjSsCc/ls571LEnDGcXUX9aNxzFx+72uaKWb+Zl6LNx+P0PJU5QseV9ynrxm3Na4f6nX5tnoemzRKg1nr/floUOHJlM4RTQOr6GhoaFhR2ApDs9UOimjyM2QWqJOJbPSNNVgzs6U4rFjx7Y8S/2J2yQNFIgpFKYhijJgXzNVQJ1AltiWqTayJJQRkXOh3pIpbbIxMXfhcjwmLsvXzWVFnSGjJZDb9vUp3RSpbfoqxfabu5iSo+/fv1/Pf/7zdeLECUkDV52lB7JelHFQswgxTDPjT68D6iSjfoypVcwB+R5zVVm8T46BuUXr9LJYqubKyOHRAi5SzS7X+8prlJR9bKP743tcrrlRz7XrjTrRm266acs93gMeC3MQce14LdYsmd32LILMVPopY3V1VVdcccW8j5k+juuWUZv8exwn9vHOO+/c8qw5FUZkkbbq5mIfPXeMDiUN3IznxffGNSnl4+Tzi5bK/IySLK8Vc9OUftRSQcX+UH9paQ73W2yrx5xWwpllMyNHeT27PzHZs0Hr+lOnTm1r4Ws0Dq+hoaGhYUegvfAaGhoaGnYElhZpnjlzZhQgNRpdMEyTWXAqmqNYioYYDIRqNj1zbDab7LZY3EExZXRWtjiCaYcYniyCYk6a79JsP4q0aOJLUZ1Z/ixsl9l2i1NqwYOjMQZFaBTdTqWy8Tgy/BXDr0mDuMH9mMp4vnfvXj372c8ehVyKRjD8zWNuMZpFS1E8bUdjhk175jOfuaUMmpFLw9r0GFu05PmwKXg0dLDY6/bbb5c0rEkGgs7Cg7mNFLv7kyJ9adgLtTB0NnCI405jL9frvjMFkPsS+2qDAI/jc5/7XEnSu9/9bkm5SwDnntnRM6fvKBqrGa2srKxobW1tPhZZoArud6bVyYJJ+JrXl/el58Hi99gOgyH4aJjkdR1FbRQ106Uk7iODIfhcr59hOK/YDtdj9YE/Ldr2HMcxcd12IfGacT0MtBH3Io0PmZLJ9XhfSeOwkXx/8PyJ12I6ohY8uqGhoaGhIWBpt4S1tbU5NWUKIXJ4ppr8lqf5dJb+gQ7GNeUqgy7HcviGp2I+go7zrGeK0yMnyaSH7n9mMu22MpRVFg6NqVZcD40VsjQdHC+mEMmCcJMLcHkeIzqtS2POpZRSpbRWVla0d+/eUSDl2G6Phzk5G0qYqqS7RWwPOXn3w328+eabJW3lKL2OPR9cX25jVJzTsZnGUu5fFv6MHDW5Av/u9kRYKmEO0wYVNFuXxilraPLt/WbjoEjhe3z8TJY4lW13PV7ftRBm0ejD+zKGXatxeE5J5nFxffHc8di5L/9/e2e2ZEd1peFVpZIQGDscgRkEDjeO8KXf/0n8ALQtGXAzGQxCUg194fjq/PXl2ll1iOgL91n/TQ0nc+ce86zxX7YgmDawaksm4TPM2E18UbU9F9Y6GF++q+iLS0uZGDyf4/cNfXGwFu/i3AcOqHJpMwdP5We2OrGvTbidAVa0b3ow5tl7qOqgdTIuvz9sKcy56AhI7sNoeIPBYDA4CRyl4Z2fn9eTJ0829tWUXJHynLC4V5TUtn2kB+5x2HO24W92l/5xOZ1sh5/WILripEjNTtAGlt6zj6u+ODE0+2ip06HY1rhSMvJnlp48/oSL1Tp1IvvINYx1Ly3h7OysLi4uNtLlXsFKa50mmK3aFtNEi1hRJKXPwdKxNZQutNxFYdPvmnOQ/2ee7fO274b0jkw8BkjpfIb226XHmKbJZ4495X2ZfWM+8W+ZBKDrm33TTkXqyhDZktEBDQ+tqbPAMLfWmr1HU4vET+XUiNQcqraaUY7FZ3pFpJ3t02+nOLEf8zlohU7u5yfjxXqT97ooLnuHeTRpdj7HxZY5c3vpZaZBZG44ox2RB+3ZUmbrQIJ2+Pn48ePR8AaDwWAwSBxdAPbm5maXuBaJxIVX7SdLScgE0C4/tEfB5WTqVamV9N04CdWRpO5X1bbUhv/P89BsU0p0ZCpt8HyTO2d7LmhqSbIrBeRoUEcFMv5OU+ank3zBijrMfeg+++GHH2616b21RDI12Sz9TS0NydM+NJdkcsHR/Mx0Sk7mzmRlJ14jvVqL6ZKiTY2H5G0NIym46K/9v9xjeqqqg7Rsa4vL3YDcd8yJoxr3SkB5f9Fn1qLzM68KNne4vLysr7/++vZaR4lXHdbORY/dbvq4HPHKtfTTc5B7f0V36H1tjbNqW1qHtXPUeNWW3o6/TfnW+eN4Nv13VPBKK81xsHdM6NBZuqzt8hzm0VHRVYf5439eR0fhe4yMbxLPB4PBYDAIHK3h/fzzzxufREok9jlZ0ur8fiZcpn1LCp0911KFo5lcfqLqIKXYR0M/nL+W7QH7YyxFdeTRtOdoLLeRffH8WaPdm5tV0V1HMFZtJVX+dt/S57YqQ9Th6uqqvv/++9u8ua6QqCVfNAT74VLSZkzOT7IU2xV1dX+dL2T/ST6HPYSG50K5KXE6V9I+HKR22sxcJ/xM7Cc0VZ7DemRenLV//2RNPUdVh/VgP3WlcXIM2RfTePHTfc72eN5eaambm5t68+bN7Rwj/We/TWvlKMou0tLln6zxcMZ9JvIeW7KskaRmwrX0n3lhD9H3JALHl8b/bJWiTedYVm3pv9C0XB4o19JE94B95vOVa+rc4RV9XJczau3PEfT53vGYv/nmm/HhDQaDwWCQOFrDu7y8XGpkVVtp3wVLO3+cSwZZM7E2k5KdpX7b1jsfgaVjF8Z0FGrVtoyFIwetaWZJGefZreYkpTNryNbs9nwetsk7Sm9PG7Sd35Frqe2YXeatt95a9sulpdKOD9Ds6C8FMq0xpJRuf5uLuZpAOX0P7qvXx5pS1WHdIVnmefjWOt+GLSHO9zMZe+4D+46d6wTSz9gVPc7nW7tKKd1nwFqh/ezZjqOBmU+TY+e1jOOzzz5b+odvbm7q5cuXG19b7iHv6U6jM1yyLJ9XdZjTLiKRdWDdHa0Lcj9wjwvmeu/kPLj8F9da8+Ge9JMyLubf17Dfujmy9uez7ndY1TY63HEbe+8s7y/PUa4R/e4sIvdhNLzBYDAYnATmC28wGAwGJ4GjTJpV/1Y5nWSdKrhNeyay3QujBzaJOGEzr7cpzrRaDufOvtlMiVPczur8HyatFeWWzW/5GX21KYE2upB5m5887s7c4gADnu/w/s6sbLOXzSxdLcIk6l0FHjx69Kh+/etfb5J4sz1MSK7EbTNamm24h2tNGux56+jUbALmb56XKSZUXnbQkvdQZzq1acd9Yw3SQU87PA8zLwE9pqmr2p4FPnOQkQMEEjal0Sbz3c2j157z1VXatgny8vJyN/Dg4uJiEziWffCc2vTWBVTZdcG1JoTuAlCc/uTnO1Ujx+zUCQeR5bk0sYTNouxNp4S4nXw+rgMHr1Qd1sgJ+zY3+/2e9/id7Hu6PgG/h5jnjhyf+fr22293U6ISo+ENBoPB4CRwtIb36NGjjZM9JQRrHF3oa16XvzvgZaW9dRKp/2dpIiVuJzuutKiuirSlIgc2WBvNz1zCAykQySgd3yYw9lw4iKFLIrcGttKc8zmAdi21dcn47muHy8vL+uabb27HjBaTSeQrMmXWrksmpj1ra6vq23mvS5E4AMlWghw/17JmlJLZS53h3DiwyhpgapRdtfCqA4Xan//856qq+stf/nL7mcvPoLE8JNnbRBG22HQBXYDPODcut5QaGuuWKUD3EY9by8jzYuJ5p6G4snZe673t87I3T7RrDawLsOJ5Dhby35lC5aAla9Hs8y5QiT6yHtbWSXnJM+30A5Nj2DqU43MQ4yo1rYPngveC082qDhpxkqHvEWIkRsMbDAaDwUngaPLop0+f3tIrEZrd+W0c3r737W6tZZWs7nDxfLYl65XWVrX10Vni3SOn7fw6XRvZHyeaWxpEeu/C31capDXJTjruSHvz/522Y0kRCc/UaVXbcPu9NX79+nU9f/78NgydBPQsvWNKLNClPwAnu5p021J8+n0sndM+mgPXZgkUxo/24nSIvZQPk0bb/9PtWZ69SmVAG/jTn/50ew/E0iY8t/+804I7P1L2yc+v2qZbOOWE/d/NTZIvrHx4Nzc3dX19vTkD+R7w/nXivFNO8nfvA++/LmHaa+eQf1vB8jmOITDhfVqWgM+lrTWdr432vFfZM2h4z549u72Hc0m7Li1kDS+1dvdhZfXq/JrMk9Nuur3Du5FSWV999dVoeIPBYDAYJH6RhofdHbqbLE3i6DhL2CuS1aqtj+4hNmD7/5A40MA68lE/28/tkqNXJWMcAWlaoqqDBGdKKa5hjvIea1YrKrE97dp9B52G56islc+wK3dC/99+++02Eov2Xr58uSFsptgr9+ezDZ6dfgP72/w3Px3dVrX1NdA3NG7WoCvM64KiTtTu1sXjcmkUa4Ldc5B87avK5yGx23fnKEdTBOY1K0J3k6Xn7yZ0MG1Uzj2aMj9fv369u+5PnjzZWB1yPNYevabdO8SarjUR+1Y7K4rp+tDaXJ4qYR8+84ZftvMZr86nf+Y+8LvQPmneQxQXzjFjxfP/TdKRfV1R6O0RbNtH7ehX9k76a9lfe0T0K4yGNxgMBoOTwFEa3vX1df3888+3UgtSQNIcOUrJkXfW9PY+s0bXSWn8zwVnsT3zM7U1k8ZasjSFUT7HkZaOKOWelOxWNEBIXpSDSU3ZfQWOzvQzsg+2i1sS6vJ9rBkxr11kn8e658MD7BnG3FFirfIVO/+SpUlL+itC27zW5Wvok6mZso8uiGqfSu4pJOmV3+chGh5+F/YzUjl5eV2x4sw9zT7a75jPc66m/VvWmPMe+ug9280J++rFixeb9oyzs7M7UZq0jw+n6qDVWqPye6bzV1qL6qJzcxwJ5+dyxruCybwnnVvJPR3VmX10fmfZN92V3mFdrFF243FkLX2ydaDLy7UP2u8DPu/86M6jZY920a5owmh4T58+3SWuT4yGNxgMBoOTwNF5eOfn5xupicieqi2bgH0bnZZmH9rKpg66XDCALZifnXbjaDmzZiAJpaTlKDCzVTgqNTVblwzyXCCxpDTI/K38jV0kqeFoQI+l+19XgifbSEnK/iwKBHe4vLysb7/99rYdfHfdmFeRt91+sO/OhSTt00sNwP4C1oHxwGaSknCSgudnjtrttEL2twt9ujgtxT2rDtK5ybCJsKNI7t///vfbe6x9+iwwLreZY7dGb39XV1IGrc0RfV2OGHEAGXm7ktJvbm7q1atXt+1iHUhNgWhWF51dRfxW3Z/fu2dFYe/wP2u39gdnf+2XRVPpIkn9P2vlKwtTfuZ3MHPf7W/AnqT/LkfUnfNVBPkqajN/X7XLGmSkNDmvnJOnT58+yLpUNRreYDAYDE4E84U3GAwGg5PAUSbNs7OzevTo0a36iOMcFbnqoHpiskLVt7miq1qdz6naJjeazqvqYKIyabMJc7vQa9NRob53df66EO78e1UHMH93UqrJe3OOnDTMPTZldETQK6fxntrvEGyHOXdtrkLm90AqC/1PImjMgPz8wx/+cKd9B69UHcyDDpJy9XSuS6c+/ccUx2eYC2kjTfaY/1aBBownA0Zs3jeYN35mH20O71Izsq9d35iT3//+91W1DRfvqlb77Nk0mInnXfpG3tvdw++ffPJJVf37PbEyaRIsR3t//etfq6rq008/vb3GpAWMyUTNHeG03QQO4OrM/Ct6ONe2y+el6bjq8K5k/rp0KLuA3Fe7f3KdbIYGPI+zmGeac8I+5ix6fh3ok+Azk3B3JtsVeTTX0NecO7uV7iMeT4yGNxgMBoOTwC9KS0CKQUrLpMBViG864qv6MjPAWozD3lPDWyWnO/E9pUfTDVlL66Ra01p1GkOOK+9FA7ZWg/bL/KX26AR27rHGZ0qtxKpSvJ3Y2V+HfluzyHk0ce2qNBDPfPbs2W0YvTXWbAfNBAmUdpmDLgTf2rol4k4TdjK6SQqQwDsyX9bUAUicjQxWILAEaZlrmQP+32l4Lq+1Cl7o6Pa4NzXUqkNAQpci5PPrFB6vedX9pXloM+eROacvb9682Q1aef369SaMPytdQ1FnDciafpco7WALa0QdcbqDoTxP9K3TCllfB4LQ546OjP9xNtB8VmWwsj2/I9krrEdneWAfMxcmY+isbT5jq9JCXcCiSTm4l/F2lGlc2wXhrTAa3mAwGAxOAkenJVxdXW2IZFPyMfWVEwtB3mP/gCU9h/znvU4PWJX8SanC5NGWuJAc0j5tycZlaSwtppTohGbbtD1n+Rl9cuFZ2uxs96bwWRUCzfGtpNpujVfXXF9fL23pjx8/rg8//PDT7GvRAAAgAElEQVR27F7z7IO1crTCjibOGqh9rHt+zBVhtkujdPstx5V9QzJO36Q/s58ZLQRNP0Ow8SfaYkJfaTvXkj7SfxdtdWJ/7jvPoy0lTmauOpwX/6RPnebmclvn5+dLDe/q6qq+++67+uijj+70P32CPkvWNtEK8xkO5Xcpmr0SZ8yp/XBoJB0RApq8rSiAPZMls/zOY/5tYeiex75irRifUzbyLDrBnblh/vZI0le0ZyvKtnyO33d7tHgmVH+o/65qNLzBYDAYnAh+UQHYVaI4n1dtiYVNCH2nE6IvslZhya+TuK212R+UicAuHeJEWaS1lCBNnmotxL6PlEislSEt8fyuTIupzPhpu3WXyO/PwF4xSfu+VkV+c+4dNbnnw+Ne+y87GiUXMPWcJ0yBRZ/8915hXhewZewdIYB9ZybDtrZWtfX7sS723RLZnPvOCczuo3282QeuYQ6YV1s0unn12e7o9sAqediRxJ0/KzWX+yR1n+WuNI37YF9uR2HGPe6vLSG5LuxftA365ndYamu29PA368F+yLWkDxAeOBrY+zvfITzHlhH+NoVe1VaT9DWrkmr5u8sg+fPUbO3v857l7yR2cOzFDz/8cO+757YPD7pqMBgMBoP/cBydh5dawyrfq2rrYzDp6UPJPvOevagy54S5JEZKj5ZiXM6kKzeBRGVaKCS8lV2+ausPsaRnzatqm1/o6KWVr6VqKwHRVyTJPYmbPjlStqNosxawlw9zc3NTl5eXt5GIRO12vkf6gFbjPuRYV/lA3pvdPFlaJR+P/cDziBatOkjajnBjffA35v5m3l3Yc0UTl2OxJO3o1j2S4pU1wFaD3Af2YzmCcc+Hx7yZZss5VdnH9GeupHTIo9G4OT85x5x3W2JM1J3rvypqSr/t083ix2jrtgI4L7QrMYblgr44ijfPGNGejJlxcg00a13xYFvKmHNbGDo6Mmt43ufdOff5tKbX5QWuyh/579yj9tPvlZYyRsMbDAaDwUngKA0PKR10hRFdpoLPkHz2bK2OxrRU2d1rpgskEK7lualJcA/XIq0h8ZiAOsdF37gHaRZJDykw/SJIdPTFbTGnmauItGeS2r2IJ3CfD7STBlc5SKsSTVUHSSvnfK+I59tvv70hdU6pn2cxh9bK7IPqsPKtdgUyLcm77+wHmD2qqj777LOqOpQ5ev/996vqwBgCunmCmYi15XlI8dyT2pN94CsJPM+lS1jRR+fQ2b/VPYdrLXGnT8V+a2tG1rKqtvmje0U8IY9mn2FVSf+Yffb0ZeXPpt38uco15P+c8arD+WeM9IW1hZg5Ywcc4c17gUhcR5hnH1hLtDTOiHMdc45tbXLpNqwVuZY8Z5WH6ffrnkZpDc/vsIQtNCvi6art+X+o/65qNLzBYDAYnAiOjtK8t0EV1UQCsv+o86mBFZ+fS9ZX3Y2cqtqyibiAZt7vyC4XNE0tzbZzSxWWIJNf1Iwa1m6cN5XtuS8dc0z2vevbShvsbPdgNY97OTT3RdpdXFxsfCzpFzFvJHNoP2YXGWapjzVl/pyTVrWV4K11oHmlZI+PDi3DkilSe8cGwz1//OMfq2qbU4evMPfqKuLR2kKuOfPEZ2gFZufoCsA6uhqwH6wF5RzY/+J8w2yTZzO3r169Wkrq19fX9fLly43/MCNhzeZBP7scV99jbcLRwuzRPNOMycw6/HQEeNXhHcL/8N25MGuOxVqT8xddKDXPhqNPeQ59Zx6z5JU1ZVsBVkWzPdYcj//f3btiY+kiypnbjDKeArCDwWAwGATmC28wGAwGJ4Gjg1YyBHQvYMJqrKnFEqvEVZscuuRKzBoObHGZniyf4gAaj8M0Ol0f7YilH5gc0uzqVIkV/VqXAGqnvp37nbPfwT82C3TUYjZPrqo/55z42W+99dZuCSL2T7bf0am5+rqT37PfdrJjRnGycJfS4Irf/GRcmDRJCK9a0+Bh9uJnF8jFT6qTc60ppwiIqdoGYdi0hAktQ7WZJwInnLqwF9TkgJNV2auuarXN/g6AyefQLnP7m9/8pk0Kp59XV1ebRPmO3H1lFu3SEmwid1oMn7NOaQ434Tz3pok2+5UwocKq9Fg3Hu9rp7p0wUuAvrK/MM+7bFE+pyMLz7YSNmGuzm9XOs3fKTaLd6Qcdmc9BKPhDQaDweAk8IvSEpAqKMmRUoYlQn9z+xs9/2cp0iSxXQizNR9rMUgX6TB3wqVJgi1FJ5wIaWdpR5Zt573/b4qrbHdFz2TJKyUuaxRObN6TPp2wbSk9x+B273MeX19fb+Yix8w6O2DCEmIXgGCKNWvNXf9Zd6RyzzGSfWoS7PlV0WCk5S5Aw4VE0YiQuB0Yks92AJc1vwzacZCKgxaYzy4AwVK4Cb27FI6uRFH+3QU8cX8GZa2sAzc3N3cCorq1vC+dpktLcUCWtds9bWpljUJb7wKsHAyDBYF0laQUAy5o7LPrlIkMrHEhYBNudIQXTuNw0r3fVbnmfvfZ+tJZiazBmuavs8xwT9LrTdDKYDAYDAaBo9MSSAKt2hZSrbqfALpLVrfk63Dxzv4OVrQ1DldPjQvJDgloFQLb0RCtyFWtYXQ2bvqySqpMGz7t2DdpLYS/M0TbWq6lpo4s2GN2QdUuMd1a2p6khR8G/4XbT1jKdGHelBBXCdlOWu8SWJ3uYum584/Zz2ItyYVBs0+EgZuWjHPEGDJZGanfvkFrLDnvPmtOuwDWcLp27Tfd86k4lcWE8V0yfra7t3cuLy83pO+5livftn2uud98xuyzQ2vqiM69b+3TMzVg1WFO0ez4SbqKqb+qtuTktoIxB/QxtVDGQftOOdkr+QU8RzzHhWmzr6vC03v+/ft8r3meWBfWK+Mz7sNoeIPBYDA4Cfyi8kC2yea3vIuq2tfV+Sm65MKqgxSRFF9VfcHZFY1OJ8W4tAuwNtX5Ci01r4rT5lhW43PUXEoxq3JHLh7r/mU79HE1F51WYGlsj7bH/d/T8K6vr+uHH37YJOrm9daWLS0z9pRiV4TYbqPTMrymzJul9U5bQ+K2D68jVOczF1x1IVZLxtlHg3Fzb7dX7btbkRXkGpuMwZpeJ61bi/Le5d60stCn9NXs+WGurq5un91F55ngYhW92EXpuo0VBVbnJ0cbZx8wRtMIVh3OY5a1qTpYmtDE8pxa67MP32ewoyUD9n26iHX2zVYoxkNfXaA120+fftV2X3eEF9ZY/V7N9SSytyv5dR9GwxsMBoPBSeDo8kDn5+ebyLFO2rP0vFcWyLZ++wn2/GKryEd/3vkZV36qzsdlqdLP2Ytis3/MGp214vzdkZyrHKfOr7XKbwQpAbqQqqVbR3xWbUuhnJ+fL6X0s7OzevLkya221kWk4XNY5WMhRWfekDVfz7GLnXb9c2mXLvIVQBKMz9R5eF0ulZ/pnNS9yDf3gXkz1VTSkXWad17r4qEJ5185P7Mbn8+n9yRrTl5gd89ehC/UYoyxoyrrfJnZh1U+Wd5jn6bz5Lq979Jb1oy6EkYu8YRm10W7otlwr61F3AMBdWIVsW7LRb53PAfsIeeKst+7ItKryPIuutrvqlU+Hv7O/F9qvVMeaDAYDAaDwFEa3vX19R2pEEm7Y1GxHwF0JTCsAdkGbCmqYwixhO8Ixey32RFWhMwp+dgv4UKIe1LMymfj0j8psZro1flkHsteeRXn3XS+kJXPBjjyL9uh33vlgYi0s/8g19L+IWsK9vvks1dWANbdfqZsz3lpaCSOOqs67PmVBsl4Oj8j2qGjTu0X7qKDfcY87tSYbblw5LS1tJxPPjNjiM9tZ1FwuR1rTrl3KYWVxWHvKwBLjhnrk31gvm0ZoU3+n3vekdz299pf3rGY2KJllpbOH7uKKE2ScgONylawPdYRLCI+py4M3eVHOjqTv1dFmau2e8TWlj3LyUq79/s228fKMuTRg8FgMBgI84U3GAwGg5PA0WkJV1dXG2qXTHpeOSFXqnjV1iy3CnDpqHCscptYtgu2sPkRE4kDN/KeVVi2TaddcrTTH2iD/3d1ozBR2XRi01xX6dhz7nGDzpRhE43nM00Lbn8vtPz6+rp+/PHHTVJ3kmy7Or0DDboEU5tNHJ5tU09H6kwb9IXUiW4fOBWH9hgPbT1//vz2Hofl31d5vFtLm8o97lxL+r+qofcQ8ztzneuTn2cdQ7skMPvyfPqTa0G7mVayMmk+evSo3n333friiy/u/D/nifY4N11yetVd07D3ooNTnDye53MVNMS9vBM7E7+DRUx1mOuCmdNr5aApp8dk/21CtLmyS7ew+ZXncS1r2rXrfe0gwM4t0rkccjwOTsz270tpuXPPg64aDAaDweA/HEeTR19fX99+QyPlZbjxKul5FcRStXXe3xdKnNKAg1ZMzOtnZB8scVtSTeeyNUk7Yi3F5L04si3B7lVl9v8cwLGibMux+hqvRRf+7rB0S4c5r3bq71EHvXnzpr788stbSRQS5hyzk8iBgx7yHgdMAIdkd052NA5+WsPqpEpTOLGH0Cwc+l+11UwZn2nJ9six6aM1WFsnqg7n0oEuK2tIgnlCojeB9h4dlZOFHfCSc+99m+TQxvn5ef3qV7+6HY+tLVUHrZLAIGBtqgsicfI+f1vzSkuWx+Fq5tyT4fTvv/9+VR2SyekbZ6ELTCPJ2qkMaFgml+7OE3DAGGWq8kw7XYi+MnZbMjIY0O92n71Og3cgnc+ex53jykrxe++exGh4g8FgMDgJHJ14fnFxcSvd+lu4qk9MTViTqOpDnau2iYtIEyk12dfU+TSq7oaJu2ClfR30kYTQvXE4bNZFRPMzfpLESZ+tjVYdJFVLSQ+h/LJm7DmxVpz3WJJ3CaWulEgmw6769fr163r+/Hl98sknVdVLy6vk8dUaZ38dUu7E2c6viVTs5F5C5sGHH354+zvSOP3nJ2uLRJzzhDSOhoJfxnRR3dlAmqWv1hY7nxrh+6ZmMxFBR91nTcVad6f1rqwPTrfJ94Tvubq6Wmp4Z2dn9ejRo00KSO6hlf/ffvJuf9qKwj409dYeebTTIDoqM6e5sC7sKd4d6R9DK+RaLAxObXLMQs6JrV60xXNyHj0XtOeSP04MrzrsQWvTq/Jk2Y6tG/SVOekI3FMbHR/eYDAYDAaBozW8x48fb4pdpvZkv0BX1r3qrpRuupxVEjQaF6Xpq7YlXZCwTV7dUX05Esm+wpREkHAs4Tp6krlIadA+G5e16KTPr7/+uqq2EpD9IS4xk/dYs7P0tlf+yKSu9nPl77kGKw0P8mgkN7ScLmLLCfn2J2b5HLR9r6Wl8i4ykTnL9vK59IMCnfm7pUzax5+d9Gc805ReaGKWgDtNyGeCNpwsn+As2NphzS6fd98+cERrXus5d5JyPsf+pXfeeWfphzk/P69333339gxSMDfbWCVKm04r95u1ChMcrHx7Vdskbp81NLHUnrjWUcj2+6Xmwu8ff/xxVVX97W9/u3Otyzbl+4l3yEqDZa+mtsp+cgkhR4OC1EZ59zHm1Xu8I9b398RedGYmnNP/0fAGg8FgMAgcHaX55s2bW4mBb/CkxDG1D/A3d0oxSH6WfBzZ2ZXZsVSJ9mefQ1d80nlJtNuVUzHdEBIc/7dml1ovfbIGiYS1R6jtCEi0Edvhc07s97EE7py7/B+wxNjlyXR+nZUf5tGjR/Xb3/52SWibMB2YpffUuIhi4x7WxdFmHQ0e68FnrAd9QoJMH57Jc72/Or+YC8kyR167zu/jnDATPnNvrgGaHX1xdKPXIO9dRZDuUdcBzjH7jHGjhef+d3ThO++8syQNr/r3/DIu2kuNkbZdFshaVEcebU3OVpTOasHecA4f13ZllJwjiKZKn7rcVJ6DX5m96v3HXsrx2ZfmOe98avTRObGOwO20cef92YfXlWXz3sfqwTqaZrLqoOGllWVv7yRGwxsMBoPBSeBo8uiXL19u7OIpVaHtoYl00VhVdyUES5q2G1vzSwnBzBcZrVa1lcirDlIEErClCf7umEj4yThXOWOd1GxNDknO9vK81r47+uZCutlXlx1a2dCzPx4H7dPHruAj/6NPT58+3S1Y+umnn27y4bq8Iecw2TqQ/TahuKVy+s+a573O+UGKNqtEaqFI2N6raIed78aMGqsiq50fxmVhXCSXz7M8EO06j8znqctx8pqu/E0J+96tbTBHXTRgas8rKR3/L5+j6aHdVx32ClqGfVsgtSdrwibdXpGZJ1aE8N1aMj8uLQRoI6PDeW/ZV+/3Qse0Aug/621GnHx32IJgrdRrlNqv4zdcvBp0LFv0zWXQuDbzK9lfXR7pfRgNbzAYDAYngaN9eK9evdpEJHWMJPx0xJ39SAl/u1t6X/GtVfXsFFUHKSB9OmbLsD/OPsOqrQRi5gs/vyvX4fIsSLzOZ6vaMmnYbr1XAHYV+dT57oC1UOaGe5EGU8JzrsyrV6+WGt7FxUV98MEHGy0tpVkkN6Q555N160IOExFpjJF77T/NsTOnLt7JPfydeXmrKFCez/hSK6T9VQkr4M+rapPz2vk0qu5aMD7//POqOuydZ8+eVdXWl9dxN7Ieq7JK3R6yVmDLT8efy1pzLq+vr3cj7S4uLjbnJsdsS4S5Op1zm/1kbv0+c7Rux8O6KqPl6M2qw3vG0blYi7rYAWvj/GRu3Y/cU7YGcE5diDb3KvewPs4htTUuo5GBNTpblPJzW6McMet3QtVh/XOP7uUlJ0bDGwwGg8FJYL7wBoPBYHASONqkeXl5uaEmShXcxNKm3Gk7oarkTlR1+HsGydg5bNqeLtAFMxjPM7WTiairtuaAVYKrHcR5rYl5XSE4x0XfUOmdxLsqoZSgXQfysBYO4c72GKeT8juS6ocCarqqw7gyiID23nvvvaraUmN1wURQL2GKow3G7ATt7DNr6qRtTE9dYI3XnXUwfVdXpsXh55hzTEfXBQY5fJs2baas2ganYDJzAEwXOm+iAbsgHNSSfXO5JcD8pRnWQW17ycPsG1fdznQoB2TYPMmcZlrKqlI7MDF87hMHWDHXlDAycXbXvt08JtHIz1xJ3cEsJvnO/q+CVrqSX36n+x3l0nC5pm7Xpvy97wC/87mHtU6XFH30Hn0IRsMbDAaDwUng6LSEn376aUPmm0m2dq4jLVt6S+1pVVYCScGSaZfS4NBnNAiTIuf9fg7jsFTT9cXajQly83O0D5MfW0tLCRKp32HBHndHnWb6J4efu3xL3uNQYs/5XiDPfWHCNzc3G4qiHNdKE7ZWlZIi2joagxNXTYnG5zkfrJX3avc82jP9FOH1XSCI6blM0GzKORKS83/WsG1ZSAmY//FzRZLehXw7yMxgX6ZWYJotkwq4AG72f/V3AkpDgDaTwRarIDIH2HWJ505lcUCY3zFVW5J15piz3pUE8zlZtd9pz7Z2sQ4rwv1ufLZcdXPB3LrdTHtJkNpRdTjL1pxXlGr+veow3iQkqLqrKXfUdVMeaDAYDAaDwFEa3tXVVf3rX//aJLamNGCJGukZCbyTHGmPb3WkDPuPnBCaQBKw5rDnrwKrNIGEE1ktmaxSAaq2Ye/W7Jz4WnWXGDVh6XOPzNf+Fif9d+HvnnOPMzXXzq+3AiVekAg7SjE0AMaMlk5SsTWG/P2jjz66c+0qWT37ypyx31L7y7a7vfO73/2uqraag8sS5TNXVg5TfXXXWIOhLfrclW2iPfuMvYdSe7JUbgLvLl3B1FzAZOCp4XFPvh9WUvrZ2Vk9efJkE2af1oHVXjRJRmoKTiGxRu90nrSI2PJhfxxjzXucsgVsFUityWkoK9/6XqyEfateYxcKzvadSmCawtw7fjf6fWMyi7xmlW7lEk3ZF/DQlISq0fAGg8FgcCI42of3/fffb6iXUopxEjVSFFLLXnShpYaupAv98PPwQ1ii25NiTZALOhs3Eraj/RzVaLqoxKpIrX162a5hLdE0Qfm7fZROmu58biYPBl7P7EOXUNrh4uLiVirnniwvYr+I+9cR1zo6F4lwRQiw50daRaRBG5afmYjXhTgTXgdrB46WRHvM35kTxmu/T0rNJnf3eLw3O3+cLSSOIOwKcrqki898+vptufjpp592JfWMDrcPrOow/yZ8YD90lG+rZH7vfRdBrtoWHgZuKz83WYH98F2MgjUeW0E6uj33xXR+jj7uSkvRF/t9QWdtcQm1jrqs6i7ZBPPkiM4V4UFV7wtfkdYbo+ENBoPB4CRwlIZ3eXlZ33333aZURNrFkepsr3a05F7uhImSHZGWUpxJWy0t227NOLr2HFmVUrN9F7ZTWyJJzWJVJBLwd2cPB6YOshSaEp7zUyw5dxrsKmJsRWlUdZAMk1B5JaXjw/NYU5tx0VtrxN533f/QxlySxn7grn1HL7K2qRVyT+erqzpoEB2Fla0ObrOjo3Jf7BtnXTLS0pqDzwT7uvNV2zfkHK4u99a+u1UJo9zf9J9z++rVq6WUfnNzc6e4cEd6jfZobZp+EkXblfxaFWI1MXtaN0xWbssS6HzVzqV1P/JdYquGqRL9vPx7VXR7j/7Mz7MGuUcE7ef4/ep84IRzux8SuZp520MtNhgMBoNB4GimlSwP5PyoqoOEbZJZtIDOX2UJ2HZdS37pC3Duh8lUrYlVraUUs0ykRHIfgXX3HD/PfbRkn9KgtUBLPC6quCe5OpKw8/vYt+ZyNJ1UbV/Kzz///GBbuousVh3yzxy1utJ2sz9ciyQP4bPXK9fezB2eU56bfh/7hB352EUs2p9oLdFrnVL6KkfV/rJcS+eT+R7n7uWcWGPwunNPl6OKxM04HZ3ZRTk6UrkDTCvMmwmuqw5r6PPBewdLQqcBWRu0b7XzX/tMe890paUcyekoUGuwCb8jbC3ozidYWb32WJq8n1fa8J6m73ljj6bf3mvggsfMZ8Yo2DLz+vXr8eENBoPBYJCYL7zBYDAYnAR+EXk0Ib5WO6sOpiSCVyB4xSxEAnpH00N7Jk522HNX8XyVoN2lCdjEZye/E0+zna52XdXWTJVmiZVJweaJzpTlYBI7ZztTa0eFlM/lno4cm3G44nWXfL0iGO6AWcpm8KTEcqqFzWj0Ic0bNoFgPvv444+rakuJ1KVO2OTI/uO5aXa1KY7nEjTSJdY7fcdmfZt+0sRpk1VHGpDXVW1dDQ60os8+V9knB6swF5zjXAOnLDAH9Ikzn2vh87oXtAK1WLf+7rcJAJx6lO8O3i+4LpgHuxw6mjC7J5zY3pENODF7VX+vo040leGKiDrfxQ5acl+druAxVvXpB3ldviP93vE1nQnVCfXuK2uU7zcnv0/i+WAwGAwGwtGJ51nVugtaMfkoUh3f4JD9ppN9RT6MNIlDGmd1SiRIq3uhve6jJQJLWJZy85mWwhwIQH/y+fzPztYVFU8+b0U/ZQLonE+wouDppE9rci5Ls1ctPZO990q8PH78eKNx5xwjzWEVcHAFY+z2DvvOieBQjr148eLO+LJ9/21pvSOuXaWYgNyjDlZx0ICl29wH3otOlu60a6cEucwSz+2Sli310y5aW3e+rEnwHK8FaSc5Jx2tlUFaAucfrTODH6x5Aydop0WB+5nbr7766s61BOD5/VB1eDf53Dv4pgsms9Vmj1zZe8Lrb0quLh2qKwOVf3eJ7k7dcoCNUyuqDvvY6w79XVc6zWXc2A9+V+a6OaH98ePHuwE4d8b8oKsGg8FgMPgPx1EaXtW/v9FXEmTVQdJ2WROku2fPnt35f7ZjzcNErJ3d2FKzKcA6OqqVb8saZld00KG3tve7IGjea+nPkldni/aYrR10SeT2jyARWRrsfJRO/rZ/M0PBGXP6Vvco0V6/fr2hH0q/Dn4w9pBLhXSJsvTB/WftCEen3/k8J8j6eU49yGtNuWQfZ66H27FmZetE3muflLWALsQczcXljpiTPWo9/ufiuPz8xz/+cefzHDsakS0/LrScv6eWtsLl5WV99dVXtxoY6CwULim1suZUbdfFZOW+N9NTnCaw8o91ViKfpe4c5djzXveJ9k28kWP1mXTCe7bZWbeyLeAirNlX4HeUrUb5GXO/Koacc8I+yO+H0fAGg8FgMAgcreFdX19vfABph3dxRkeGkVzcRQZZIsEm/JAyFsDSuimA8vf7yvV0UVmrwq8rEtls15pVFyXl+21nt8S/F1Fq6d8J9qnROpk3KZ+yzS6h2pGSHbAM4I/tIgRZX7QytAmeSZ+y316zlQ+XhHT8g1Vbn4N9qZ3U6DHaR9RFzdJvF+R1gnPn11yVWvGa5pz4Wu9R+4VzDSzZe2464mZrcsDkBd1nSV23irZ78+ZNvXjx4vbd0o3ZfjHaJWocy1IH+m/N3oVzu/eP94gjsBOrMkreq3tn2cnre4Tt1uB9RkxE3fXNPkPvg73Cq6yXk8o7/7bHwfvI0dcJ9lU31yuMhjcYDAaDk8DRGl7V9ts4pQIiclZkrvhY8luZb+/Ot1S1jZbrijia6ievMVZ29lWOU45jVWjxoSXm81rnnKS06Kgza3TMZyfdmP5nJQHlOrq8kbX4Lg/Q++Dy8vJeih9r1QnmFl8Qtnqk9K6QKPut85lkfxkH+XlVVV988cWdcXS5TB7nSmtijpE6U2tyNJ7zvbzvuyg9azCr9XF/s31H8lryz99X/iXGkPR+HrtzUlmj9Pd4P/34449LDe/q6qq+//77zTymhkd/GCN7hLnAN5T99jX+f+fjAqs4gNU6ZX9XBYE7cnTHFVgbtHUoP3ce5qrkTz7PffN7Z2/feQ5sHeoim00XZ+uKfck55swEGPLowWAwGAwCR2l4SFp74NsbKck+FaTAbAeJ3kUnrakQyZMSibUX+7666CbnMNlP4bIg+ZnJaZ1D2JVC6fxf7lP2J8dlFosVG0nno7QkZOkwfS620dvP5Ovy/ozWvU/S2tNmaM+k0ewVGDtyHKt5sa+jy1PCr/f8+fOq2loJOsYaFyVeFfHN9bCmYKndlgcdm1YAAAQ6SURBVIVOW3PUmllZ7Fuu2kra9qFYE+vGvCJlJy+v6rA+RIXeV1i5G8eedYAIX/vH8j1gjcM+Lvr2wQcfbNpflfhxeZu9d4gjbvdyHGmPfUzfuvG7lJPbdeT1noXFEZ8uuJzX2N9ny5b3Y9X2/W0mpi5anXbQ5LjWkb9YeXLsWSaoI83uMBreYDAYDE4C84U3GAwGg5PA0eTR19fXG3NUhh2jWpOkaTMhppE0pxEqbroc00Z1AQ++xyp3F7xiM9iqNldHR+aABsZhs2jC43DfraLns1dhwTYnpplsVQ3dJoyOkNXjdUh2mqJdG+2+5M+zs7MNUXIXEu9EZdc2y3ts6rGJeZVIW7WlH/v888/vPP8hZL6rNJicW4ejr5L6vR/yHtdIcwXyfJ7X36YmJ9h3tHSsrUkmGEueK5NM0CfONabodD+YeGAv6AvSetDVzrOJ1y6VLgXDe4RreHfZTdGdbb9L7DbIc2VTpt+jDp7K+z3HTqx3XdD8bJX20AUJ+p5jUqnsBqHvnudM4P/yyy/bcWDC7AgvnJ4y5NGDwWAwGAhHB63885//3DgyuxBlS42rUiVVh29slxex9O5AlKqDBMA9drp3jlJLLQ7PtfO6aqvJdSHd+XdXYd00WE6gTUnM2pid4avk8rzWWqlDivcc3Jbsu3FZQ95LHr6+vq4ff/zx1hrQVcF+7733qmq7h1hb7k1N2UEVloQd6t1pBya79X7LMVnTstbUEUBbegUOSOlIfu8jqbY2l3BAjYMIukRga3CsgZOz83xby7FWaiLgqq3GtUcPxd5JzaCqJwJ3GgKa6h7JNtfQl3yf5ThSQ+1o4BIuCZX95bnMsVNq9qweKyuBA766vqzIKpJCcVWGbJWKlpYla4crQoU8G6zTKl2J1KSce6wCK8rGPYyGNxgMBoOTwNE+vC4ENL+V+TZHCkcqs9TcaQou1omkhRRBmylt0L79VF3osvto6dnh4imdrcpkrBJz817T51g76wqyWpPjp8lVPabsm0OlrSF3xSk9dofS51q7MOZeEU9KvHgOOgo2h4HbP9LNk/tn2z9aYq7xKqXAz81Ed/xSK0okt5XXOHTeUnvnHwMrfx//7+5ZlVjheZy3zh/n8TAH9DF9udYgXDS205Dsrzo/P19aB6Cl20vjMVExz3TZntznpkY0EbzfHTk3thhYW+/8cXvvzUTeY+2I55ngwBpuXrsqju2x5POsBfqdtecb9x7yOzNTDHyNrV+ct7SO+Ax0Wu0Ko+ENBoPB4CRwdh8V1J2Lz87+p6r++/+uO4P/B/ivm5ub9/3P2TuDB2D2zuCXot07xlFfeIPBYDAY/KdiTJqDwWAwOAnMF95gMBgMTgLzhTcYDAaDk8B84Q0Gg8HgJDBfeIPBYDA4CcwX3mAwGAxOAvOFNxgMBoOTwHzhDQaDweAkMF94g8FgMDgJ/C+w5E3PhBpKYgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -859,7 +3088,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu4ZnlV3/n9nXOqqi9Vfb+AzVUgtpdRZx5RMYpEGXCiolEeRQPKqJPRTDRmTKKMt47RoMagmYxGo2aMaESMGhWjiAioo+gYoyjKHYRuuqG7qm9Uddft7Pljv+u863z2Wr+936pumeas7/Oc5z3vvvzue7/r+v21YRhUKBQKhcKHOrY+2A0oFAqFQuGvA/WDVygUCoUDgfrBKxQKhcKBQP3gFQqFQuFAoH7wCoVCoXAgUD94hUKhUDgQeEh+8FprT2utvby19t7W2pnW2vHW2qtaa1/eWtteXfPC1trQWnvCQ1En6n9Ga+2W1tqH7A94a+3zW2v/+we7HReC1fwMq79nBeef0FrbXZ3/Knf8ltbaBeXNtNZe21p7LeoY8HdXa+11rbVnX0S/LmjduefhyQuuHVpr34ljl7bWXtlae7C19tmrY7esrn2gtXZlUM6Xu77P1vtIRjDX0d+7HqK6LlmV900PUXlPXs3l44Jzd7TWfvihqOehQGvtb7XWXr9ac+9trX1va+3Igvs+Z/WMvq+1drq19p7W2s+01j7i4WzvRf9AtNa+XtL/I+kaSd8o6ZmSvkLSWyT9W0mfc7F1LMAzJH27PrQ11s+X9Ij8wXO4X9ILguNfJukDwfEfk/S0C6zr76/+iBevynyapK+UdEbSK1prn3QBdTxDH4R111o7Kum/SPpUSZ87DMOv4pKzkp4b3PrlGufgIOBp+LtD0itx7O88RHWdXpX3kw9ReU/WuK4mP3iS/rak73mI6rkotNY+QdKvS3q3xvf8P5P01ZL+3YLbr5X0B5K+RtKzJH2LpP9B0utbax/2sDRY0s7F3Nxae7qkl0j6v4Zh+Dqc/qXW2kskXX4xdXyw0Fo7MgzD6Q92Ox5OfBD6+AuSnttau3wYhpPu+Ask/bykF/qLh2G4VdKtF1LRMAx/kZx6xzAMr7cvrbVXSbpH0hdofAD/f43W2hWSfk3Sx0r6n4Zh+O3gsl/QOKY/7u57rMYf6P8gjPOHIvwcS1Jr7bSku3g8wybPxjCydywq92IxDMMf/3XUsxD/XNLbJH3JMAznJb16ZZH5kdba9w7D8MbsxmEY/gMOva619ieS/kSjIPKDD0eDL1Yy/UZJJyT90+jkMAxvH4bhDdnNKzPALThmpqcXumNPXZlIj69U53e01n5ode4WjdKQJJ01c4W797LW2ve01t65Mre+s7X2zd4M5UxuX9Ba+9HW2p2S3tfreGvtia21l65MDKdXbfrXuObTW2uvbq3d31o7uTJBfQyueW1r7Xdba89srf1xa+1Ua+3PW2t/x13zExql85sic0xr7frW2g+31m5bteVNrbW/h3rMhPb01trPtdbu0eoF3xvfhxi/IGnQ+ONi7foUSU+S9FJe3AKT5qoP39la+7rVXN7fRrPkR+O6fSbNDh7UqOUdcvde0lr7/tU8fGA1x7/SWrvZt039dXd5a+27W2tvX83JHa21n2+t3Yj6r2ut/XRr7b6VSej/bK1dEjW0tXa1pN+U9NGSnpX82EmjpvH01trj3bEXSPorSeE9q7X/+tX6u2e1Rh6Ha57XWvut1tqdq3H5b621Lw/KWjpHz26t/V5r7d5VeW9urX1b0qeHDa21l7XW3rZ6Nl7fWntA0neszn3Zqu13rvrxX1trX4r7JybN1dyfa609ZfXcn1yNxYtaa63Tls/SKNBI0u+45/2TV+f3mTRba1+9Ov/U1fqy9foNq/Of21r701X9f9Ba+7igzi9urf3hau7vXo3HTTNjdplGa97LVj92hp+RdF7Sc3r3Jzi++jzn6vmo1tovr8b/wdbau1trP3sBZUu6CA2vjb65vyXpPw/D8OCFlrOgnqMaTRF/qFEyvV/SEyR9yuqSH5P0GI3mqU/VONh2787q3o/SKI38maRPlvStGk2w34Dq/o3GxfYCSeFLZ1XuE1ftOSXp2yS9VaP54Vnums+W9EuSflXS81eHv1HjIv7YYRje44p8kqR/rdHcdteqXT/XWrt5GIa3rdp+vaSnar2QTq/quULS70q6VNItkt4p6dmS/m0bpdR/g+b/tMZF+VxJOwvG96HEKY2a3Au0/oH7Mo0m8XdsUM7zJb1Z0j+UdFjSv9RoUbh5GIZz3TulrdW6kKQbJP0TjXP98+6aI5KOSfpOSbdrXCt/X9Lvt9Y+chiGO9Rfd4clvUrSx0n6bo3S/5Ua5+Vq7RemXqpxPr5Ao1nsFkl3a/1jarhO0m9pXGefOQzDf+308XckvUvS35X0L1bHXiDppzQKHPvQWvtqje6H/1vji/7Yqh2vW61VM4N+uKT/tOrTrqSnS/qx1tqlwzDQr9Sdo9bah0v65VV536FR6HjKqo4PBq7TOBffI+kvJJkF4omSXqZRk5HGd95LW2uHh2H4iZkym0Yh78c19v8LNM7HuzTOeYTfl/SPJH2/pP9VkikMfz5T109J+gmN8/h3JX1fa+06jSbQ79Io2H2fpF9srT3FfqTa6JJ6iaQf1bjmrtI4H69prX38MAynkvr+hsbfj33tGobh/tbauzW+c2ex+h3Z1jjO36fRovNzq3NN4/v4Vo1jcVzjM/fZS8oOMQzDBf1JulHjw/Pihde/cHX9E9yxQdItuO4Jq+MvXH3/hNX3j+2Ufcvqmh0cf8Hq+NNx/Js1PmA3rL4/Y3XdLy7sy09q9Dl9WOeat0l6NY5dofEH7Qfcsddq9Lk8xR27QeML9P9wx35C0q1BPd+qcTE/Bcd/dFXXDsb/+3Hd7Phe7J8b32dK+oxV3z5M4w/LCUn/i5v3r+K8oqxBo4BxyB177ur4p2BcXxusK/49KOkrZtq/LekyjcLAP1qw7r5idfw5C56Hf4bjr5D0lqDP9vcZS54DjS+tv1wd/8TV8ae4ep+8OndU0r2S/j3KeqLGZ+Trk7q2VvX8qKQ/3XSO3PcrHq51hza9S9JPJedetmrLs2fKsD6/VNIfuOOXrO7/Jnfsu1fHvsQdaxpjG355pp7PWt37qcG5OyT9sPv+1atr/6k7dlij0PSgpMe441+0uvaTVt+v0vjD/kOo429o1LK+utPGz1iV9Yzg3B9J+tWF8/Lnbm3/pfa/Bx+zOv6sh2odPBKCPN6q0cfyI62157fRF7EUn6XRjPN7rbUd+5P0GxpNWJ+M639xYbnPkvSKYRjeG51srT1Fo9b206j3lEYJ7um45a3DMLzVvgzD8H5J71fstCY+S6Np8p2o65UaHcOUtNjHCxpfX9fqLzXTAK+RdJtGKfRzNWqmL194r+FVwzCcdd//bPW5ZLy+U6Om/FSNGtePSvp3rbXn+Ytaa1+0MgHdo/HhP6nxx2FJFNmzJN0xDMMvL7iWASd/prgfr5H0gEbJ/aoF5f6kpJtba0/VqEW/3q8xh6dpFMS4Vt8j6U1ya3VlnvuZ1tptGoW0s5K+SvGYzM3Rn6zuf1lr7bmttRsW9Gmy7pbcsxCnhmF4ZVDfzW0Vga5xHZzVqL0ujSbcm99hfIu/UcvW6aYwM6iGYTij0dLzxmH0gxvetPq0Z/zTNApynPt3rP74nno48MUa1+DzNQpYr2qtPWZ17g6N2t33tda+srX2pIut7GJ+8I5rfAAfP3fhxWAYhns1mhHeK+mHJL27jb6VL1xw+w2r9p3F3x+uzl+L629f2Kxr1Q+msIf3x4O6Pyeo90RQxml1zKqo6+lBPT/n2uqxr48XMb6s79MXtNUe+p/SqH1/uUZp994l9zpwvCy4YMl4/dUwDH+0+vuNYRi+VqNw8AP2o91a+1xJP6tR4vxSSZ+k8QfyzoV1XKvxR30Jor5EYd2/J+nzNAowr1yZslMMoyn89zWaXJ+nPILQ1upvajqn/51W62dl+jYz7TdpfFk+VdK/T9rbnaNV+56t8R30Ukl3tNF/lq6jNqY07Wtje+jSnO4I6rtK47jcrNH0/aka+/zTWrYOzg/DcB+OLX2uN8Xd+H4mOSZXv83972o690/R9N0R1Xd1cO4axe+0CYZheOMwDK8fhuGnJX2mRtPyP16dO6dRk3yDRpPw29roa/3KJWVHuGAJaRjt8K+V9D+2C4/2O61R/faYDPIwDH8i6QtX0scnSHqRpJe31j5uGIaebfu4Rknni5Lz72JVSxqt0VTYc+qa8/VFGh8Y4kxw7EJxXKM2+A+T82/G90kfL3B8nzpTTw8/uarjo3Vhzu2HGm/U6Ou4QaN/7XmS3jYMwwvtgtbaIY0P8hLcJeljZq/aEMMwvKq19lyNfqH/0lp79rA/2pX4SY3Rbuc0mu0i2Fp9ocZxIMx/9zSNwuOnDcPwu3byYrSsYRheo9FXdETS39Rohv3V1toThmG4K7jlvZquu9DKciHNCY59msbn/POHYfgjO7haCx8KsLn/Uo2WHoI/1h5v1riuPlrOarQSjB6n0XKyEYZhuKuNwXhPdsfeKun5bQwy/HhJX6/Rb/yO1frZCBdrEvhujb6S71Xwwl0Fdxwb8kjNv9L0xZA6JFe/+K9vrX2rxhflR2q0AduP7aXan2f065K+UNIHhmF4kx46/IakL2itPXoYhkgrfLPGH9OPHobhux+iOk9r7B/x65K+VtK7V6bQC0ZnfKNr/yg6vrCeN7XWflBjIM7EjPRBwMdqFEJM07xMLlJshRdo9OV5ZOvuNyQ9r7X2ucMw/MpD2dBhGF6xMr/+rKRfaa199jAMDySX/6xGLeoNwzBQ2jf8nsa2P3mYhop7XLb63DNTtjFq9PM26kCAlbD8W6uX5S9p9B9OfvBWproLXncXgKjPN2gUjh5O+HX1cOK3NVrpPnwYhiyIJsQwDKdaa6/WuM5fPKwjNZ+n8TnZeN23MTL0yZJeHdS3K+mPW2v/WOOz+DEazfwb4aJ+8IZh+O02sn+8pLX2URoDK96tUc39TI32/S/VOtKIeJmkb2mtfbPGSLZPk/Ql/oLW2udI+nuS/rNGbe1ySV+n8SH9/dVllnP1Da21X9NoSvgjjaaH/1ljfsi/kvSnGjXKJ2l8oX/+kEch9fDtGhf977XW/oXGAJWbJH3WMAzPH4ZhaK39bxqj0g5r9FHdpTHQ51M0/ji9ZMM6/0LSNa21r9H40D84DMOfaYzm+mKN0Z/fr/HH9nKNZphPG4ah+0JaOL4POYZh+AcPV9kz+PC2CvHWuE6fo/FH4YeGdbTxr0v6/NV4vkKj1vu1Gn2dHtm6+ymNgTg/01p7sUYf67FVPT9wscLXMAy/0FqzqMtfbK19XmRhWf3IdZOrh2G4r7X2TyT9YGvteo2+oHs1rudP1xj48x81/jDet7ru2zWuk2/RuK4nrC5zaGNk6NM1JtC/R6Mp60UaNba5iMS/LvyORt/tj7TWvkOjr/PbNFoBHtO78SLxJo1RsF/VWjupURj7yxltfmMMw3CijakU/6qNyd6v1Pjc36TRzfFrwzD8p04R36bRHPofW2s/ovHH6l9qDA7am8M2pkj9kKS/OQyDpUK9QuOa+vNVnTdrJNY4KekHVtd8osao1pdLervGuIuv0jger73QTj8UEVCfotFndLtGaeiERin3+ZK2Vte8UNMozUs0huPfvur0z2odUfbC1TUfsTr+To1RR3dqfEg+yZWzrdF0836NC2VAHbdoXESnV237f1fHLILxGas6n7lBn5+kMbT4rlW73i7pJbjmaRpfmBYx9S6NP/JPc9e8VtLvBuW/S9JPuO+Xr+q7e9XWd7lzV2v84XunxsXwfo0P69e7a2z8n4x6Zsf3IVgfs+OrzaI0vzO594UY19cG1/i/eyX9scaUgx137ZbG4Jb3agw0ep2k/z6Yk966O6rx4f+r1ZzcrjEE3yKDs/lY1OfV8S9b1fvLGl8GtyiIGsU9Wb1/W6PEfN+qz2/V6J/7KHfNZ0j6bxq1grdrFIwuaI40Phu/pPHH7vRqfH5O0kc8VOsueJ56UZpvS849W6Og/MBqTL5Go2XrQXdNFqV5LqnrTQva+w9WbT63KvuTV8ezKM3H4P7XS/pNHLt5de3zcfzzVmv8fjf3P7ZkLjQqNn+g8d1xu8bUgktwjbXxk92xb1mtpXtWdb5J44/iY901N2n07751dc3x1Rr9zAtdB21VcKFQKBQKH9J4JKQlFAqFQqFw0agfvEKhUCgcCNQPXqFQKBQOBOoHr1AoFAoHAvWDVygUCoUDgfrBKxQKhcKBwEaJ51dfffVw0003yXiC7XNra/27accs3cE+d3d395Xl0yGYGsF7LyR1YpN7Hspro/MXk/qxdGx69Waffk6yes6dO7fvM4LnjX7ggQd05syZCZH0sWPHhmuvvXZSd7QONmk3753jsH641sXF3PNwYWlbemO2dFyja/h+8Oe3t7cnn8ePH9f9998/qejIkSPDZZddNulPVN7cc9Fbb9E1c+i1icjOLbmH87CkXv9ejq6J7smuydoYvft75fM414h9cn14nD8/krqcPTsS4AzDoBMnTugDH/jA7CLd6Afvpptu0stf/vK9Rlx22WX7Pn0HrFEPPjiSV5w+fXrfcfuUpDNnRmpJe6myQ9HLkZh7OUYL3dqa/Rj7e6xNdszaRkT12b380YheBFm/WBbL9GXb/9ZG+845sO/S+EPlz9m99947sm0dP35833F/ra2HQ4cO6fWvjzd+vu6663TLLbfo5MmRLMLm3Jdn7bExtPLtWjvv+8prDRw3G+voR57jb9dYPZv8KFs7/IuA68vGi9fadf5evrTYDva7h+zZ8HXYOTu25AeP5w4dGqkmDx8+HH6XpCuvHMlZrr565B6+/PLL9V3f9V1h+Zdffrme+cxn7rXF1sEll6w5mO0dxPeOfykSds4+s7GMntOe8OXvmSvHH+fYe8zNw87OzuRe+9/G3e619cd6/TG7huWyTJtbf48d44+lHfdttPJt/o4dOyZpvT6uuOKKffVJ63fV7bePrI6nTp3Si1/84nBciDJpFgqFQuFAYCMNbxgGnTt3LpQMDNRwKAlRg/DHIlXVI5JuWN8SbW2ujWyXv4ZtXWJ2pabAayO13ZBJ2nY8kuzYH/u0evjd/5+ZTqI5Z/lR39gXSop+TjNtxq6xvnrYPHBtLNF82AbW39MKszGO1iglakq8S9po4BrtWQk4F3wGo/7x3sykFWmwkZky6oMvv6fVGFprOnz48J5mF82X/W/WAD6fhuiZZhlLxtiusTnkO4XPk78/e96jfmUaJBE90wZaYqLnltfaO5iaXmZS9feyLbzHP8cc88xy5TU80+yPHj26d29v/XiUhlcoFAqFA4GNNbzz589PpD4vNWUSQCYR+/spccw5TKP66JeL2tOTUvy9ka+IkkgmDfYw50zunaPU3PNvmiQVaYEsOwtO6Wmy0T3ZmLbWtL29nWo7S/sU9UOaSq+c48i3Rmk880VF2mLmO4zWbKbVbuInyzTI3nrj2qTPLpLwOfZsazRWtr7ow7FPno/q2dnZ6QY57OzsTKwrvfGy9trajJ7pyI/cgx+vbO6yzwg2Lr2AFGqK7BcRvedYbmbhitpiY8M5pbYdtc3KMo0sep7tnszKF/nRbdxMw/NWxzmUhlcoFAqFA4H6wSsUCoXCgcDGG8AOwzBRTSNVP1ObezlgVEtphurlmmSmRlOJ/b1zJpFeME52nO2IAkIImvcic1tmGumZbJmWYGYI1mfhvdLa7GDh3FmwUZT+4D97Js2dnZ3JWPjv1l6aOQw9M2gW4LQk6CZbm9G8zQUpRYEJXNcM6ojMrVkbs/p6azZKBZKm5r7omqz8aH1znUXpCCx3aVDG1tbWZD569/L5t+9mxpTW682O8VnuBedlQV694A6G9HOd9+aS6zhLZYnMoXxu+E6M8uKy73xG/HhmQV8MVvFrzNrCNXPppZfuOx+Zao8cOSJpfHctyROVSsMrFAqFwgHBxkEr3sFrv7pe6rdfaJ7LJCF/jNJzFNpLUHrJJNFIC6X0xwCHSPLJnMh05ntpJwvPZiJmJOFnGh7b6Ocgqy/Ttv3/punRKR1pCUzYPXv27OK0BJt/Py/ZfNu1kbRnmNNMonHkfGeBSZH2zDKIniaZSc1RcEyUxuPRCzGnBpOVHY1JL33EX+fPcW7t0yTxSNvxGkNv7USI2p1p6yQv4P9STKTAegyZ1YZaXBTQx3I5xlHqRKZ5Zakg/v8skCbqQ2aBySwm0RzwWj4z/t1PcomMWMOPCd+5W1tbpeEVCoVCoeBxUT48+ojsvJSnGEQhylno+9IE8agefo9ComlDp7Qc1ZPZ7lmPbwdDenl8SYIuJS9qpz1/U5ZyEIWWkzKo5zeh9LW9vd2V0odhmGgOUfJwJmFHoeVZuku2hnz7Mx8X10NPWyMiC0akzfjjSxKBOXdsRxSmnvUjk9b9uSwdobdW57SOJeQIEYZh0JkzZ/a0gEgjniOcsHcVtTp/DYkNrPyI8MDA95k9P5dffrmkOLXJNF4bDyZ5e20+mzv68Jkg7svP2rwkNYjopcWwbXx3RVR2pD2bi8Xw5XrLz1LrQGl4hUKhUDgQ2FjDk6ZSpdcCMlt6L+KJ/pyM4qvne8qk80jypXRJTSVKKs4opLJIqEiKsX7Sdxf5szLNJJOEepFdVj4p26L6qDEywi7yL1i5Ozs7XUlrd3d3r3xrUy/Kq0f1ZqDtn/NN7XbOB+n7lSWX+7ZmCcgmxUtTLZlj1KOeY7uzJOIl5AVco70keWo1WXJ5VA6tBfRr+XZ7f3rPH3r69OnJ+ETzMpdkHVlC6FvLxikCnxP7tPn368DaQEsPrUJ+7LP1S+tH9rxG7c/oEf21Vh/XQeYX9OVwvrl2IsuSkUdn9GeRpuyJIUrDKxQKhULBYWMNb2trayIheCkgI2/tSZWMpJqjmYmk9Oic/96L6DJQmoo0IOawLNHwKPHShs4+eND3YG3m9ieRNprltfUoweh3sbZa9Ob999+/d0+mVUUYhmFfJF7kW6Wmw37we9R/aqgc6yjai3PK71FkcpbLydw6X0/mb8v8c6w7KqtHPJ5RV/Genr+Z4xlpeHPb6kQ+bOYe9si+h2EIox09TJOycydOnNh33p49/8wzojzT8CJfJ9cb10rP18l56VmWbG1wCzVaGKJ1l20D1LMsZVYO+7T3jo1V9OxbDp3BrrV3SBQHQGthL4fU/vfv04rSLBQKhULBYSMNr7Wmra2tLotJZksm+4ePlqKGRz+VHTdmEO/3sXIYwZUxEfjyaVumthD5CukXywiZozxD+vB6dmr7/9SpU/v6yQ11eb1v/5xP1DOtWL+Ys2VtjXwS9913375r51gzPPF45Iex8bc+UurvSc0ZehG+Wd4d11TEBsPNarOIX/9/FmHHNvq5zDSGTMKX8kjbLOIy8qkY5qJR/T2Uxm2Moo0/mXM2l4e3tbU1sbxYJKQ0XbdWl/mGetGH/jnw7eV8Rflj1LiuuuoqSeOGx9L+8bN6OF6R5YL94rPA91CkvV9zzTWStLfpMtdMRI4+tykuNUDfZlt33BiceZl+rqzdfPfTUua1Rrbp8OHDpeEVCoVCoeBRP3iFQqFQOBDYOGiltTYJsoiSh0kZY59mrvJmBKryZjbL9inzKq2ZTUxtNzCIxZuJGDZrzlSrx8yI3hyRBXEwcIeBKf4amglsLOzTq/r2vwWJcNzse2TSYr291AVea9dYPT7lwPdbmjqne6ZGCzygKcvPfTQOvm9RyDWDFcw8RJNvZPLgMQYIMFDAl0uzJ9vq53/O/M3gCT8mvJfzQHORP2efHD+a1KJEZ/ar9wzSZJ+RwEf0d36+5tantYkuAWm9Xu3cox71KEnrPdMYKCKt3xl33XXXvnbSFGz9i9YfA14e97jHSVqbNv1YfOADH9hXj7Xf2mHjY8+BRxTwIU3Xv9UrSceOHdt3z/XXX7+vrfb8+vpsXdO0SZdHZvKU1qbMq6++Omz7Pffcs3ctzd1mpra2Wb9s7KT1PFxxxRV7ZZRJs1AoFAoFhwva8bwXQszQbpO8THKwX2ovVVJCnKMn85KWSRx2jFK5SS+mtfnyWS4DNCJiYybTMiCAmq0vhw5aC522MfH3MGjFPtk/JrpGbeE4RoE8PGblmjRGYl1p6vTe3t5OJa3d3V2dPn16r3ymVUh5MBHXhb8nIzfmPJnE6O9lci0Dn6JwdLuW1FFZEIvvR0YSzgCeiKqPbaEW5zVvBg0wqZdrq7cOsrQID4bkW1ttDiJScGp9rbVu4rmnNLS5jNpidZl2Y+MSUeVZ3XYtUz24pvy8ZFs+URP37yorz6w21FTtXenn0pClwfBaC1SRpHvvvVfSWrMz7ZNtNA13SX29XewzSjmbr8h6wGfePu0e+4yS8W28LrvsssWBbKXhFQqFQuFAYGMN79y5c2HovYHSo0kZ9mvc23qHvq1IwpbiROBeeK4v2//PpEfTtEwSMRuxtJZsGCZOjbaXjH333XdLWo+JaU9e+2Qb6WfJfIkRbZOBbaQfypdPYlumMPhxXRrCbudOnz6dhub7vrB8as3R2mHiLdvSs0oYmFQdJUVT4+Emp1ZGpK1HUnHUxojo3MDQb/q7o2M2RnwGbd15fzrD9+0crSt+7in1s7+Rz410d5FW47G7u5sSN7A90jQlgs+vNNVEM8pBplR5MAmafjnTHj3s/ZZRbkW+To4ttTTrX7QVlL3HaGEwTdOnF9kxvrcNpPXy7x1bd/RJ2xhF1ohMw6OlIdpQ2cb4yiuvLB9eoVAoFAoeG0dpeg3PftG9RGJakv36msRAiqKenTrb6iWSKmh3Z3SeScLe/s7NID1dlm+7lxrpB8nor2xMvDTICFUrnz4b30b6W6KtmKS1jdv78KiV0bdiZUQaHvvOqK1o+xGvFcxpeTaOkb+CidgZ6bWX5khHlmnGkeaXkUPzHt/nOSLoKJouo0jjXEbH6aOkb5Ias293RjzAxOpIozBkZOVR4jmThmmhiWivDHNbvAzDMInsjKwNGW0XSQ38MZI6mOabJdCPbTQtAAAgAElEQVRH7bc+WlQoyTKkqeZt/WBEYkTkQe2SVjGLzvQanj1rfB/wved9eBZXkFnkqK1FNH98v9in+b295czKsTGw/nKsIrJyHzla5NGFQqFQKDhc0PZAlG7M3iutJQDTFEh6zPw1aX7TP9YXSRWRX8p/95IPo/0yyTuK/LH2mwTC7xF9DvtHjYWRf75ualaMNouiz+jXyiLtvHbFcWTOUBbx6ctrrXVt6ZEU5ttAf0GmnUXzws0153LP/DHmGNEnFfWJGgXnNNrOxDQIRhRTY/H5jZT65yjGpGmOHjVYtt1L3PRbmcZCRNF51MB7JPO9uczQ2xIpWtO+zijnkFqYnbPj9JNTI5fyTW6jaF1q5VYfo059G/leoYbFqGf/3rF5tfKOHz8uaWqF8zEE1jbzPdJf6vPh2D9DRkRvbfc+Q1r8oqhzgv7MTVAaXqFQKBQOBDYmj/ZZ7abZRblUZK2gFOjvMQmL0qVpG/ad0o60lhbo82J0j9mzpWk0KCOD7B6f05L5EWmDjrYHMkmKtmdGdnrt1NrEiFUDc1q8lGZtZA4fyb695J/5dWyeon5FPtZMw7PtgbINLH15Wd5gtK0TiZINmUbkx4kSKNdZRDicsW9w2ybvK8q2OmH5EYE3JXmuv8hnzHXFtUPrhO+flWtr0cYr8yH68jm3XKPe9x4xxGRrp7WmI0eOTNZgjxCevseIFcrmyMbDCJ/tvXbllVfu++61WuuracBWD/OMI4Yn+r9IEO0tHRkbFK1QjBPwY2Ewnx3Zm/x1jDa2sbHjzAf2zC533nmnpCnDisG0Rj/P9m60a2n1iqxtfF+fP18bwBYKhUKhsA8XxKVp0p9pTV4iNenEPk0ioI3W23Gp4VE7o7TkpQpKArS3R8wnZFagH8YkIC810O5uklwmkUQRXcyV4ThGUjNhdnjTKO1efz2jzugrIl+mb6ONn0le1Gz9OEYRtz0pfXt7e+IL8HlK9FNkG/X6+qjheH+ytB4nsnT4/tsYMl+NXJTSNJ+LlozIX0XfILda4vYtXhOiv4++L861b1vGfMFovR5HKX020bpkW+hzt+N+TKgZ9aI0t7a2dPjw4UnOmwetA9zc18r2Gr5d+8QnPlGSdMMNN0iS3vnOd0paz4utD68Jcx3Q6kXLj2+TtYF5v1F+JvPtsvORL425s3x38X0g5ZsRMx/Q5sD7eMnve/PNN0tav+vf9773SVozvkg5d6e1gxYO3xbD2bNnS8MrFAqFQsGjfvAKhUKhcCBwQUEr3IrDO8xNRWWIeRYiLa3VVqYUkPiXpKH+Gqq+FpJrarY3zVi77RojV7WkS6Yp+HtI3UNzKAMepKkKTlOgmWi9OcFMJNY2mmYj8l0DgwiY6MrrpPU40Slu3zk3/twSAmCrj5RVPiQ+S+pmyoE3F1vdZkoyx7mNKevzwUtmlsmIxiOTJnegN1j5PWLuLHy/R/ZN0xxJC6L6bC0alZ3VY2NNSq1objkmNA17E2qWnMxgrIj0PQqGysDAmSgsnSZGbvXkSSb4fmFKkb0Prr32WknxFjW2Hhi0Yt99UrcFwXAurT4GiETIaAMjwmu+p5luE5HWW39sHG2bJZqtSR/n223jya2aomR8W5Ncxz0qwIxsYglKwysUCoXCgcDGQSvDMOz9ckehvpROqIFx+wdpLQmY1GhOTgYAcMNRaZrYzjD1KIiC0qQ5XhlE4iUHBhQw3YHksb4OSyg3idu0j4zg1pdvQR0MOPBBP1K8fYbVy/BwSpa+LQyKYLJstHWN1xCixHTfJ5tjpob4Y5TcsoRmaaqNUytjP3yfmbRr42JjbFqjX9McDwaAROsu2/Yok9a9BMwk24xmza83EriTwCHa/spgY2BjYv2KSKoNpE5juD23svLtzoIxIjDFwI9TFuhEi5PXCu2at7zlLZLW1hRrkz2vdo9ZD6TpumI/bOwj6wDTAUzLibaHYhK8ge/Z6Pk0cnrrJwO8uHb9OX63tluZkeXHNFgbR3tH2ZqysjzBBkkEmE7CtDZ/zgcxFXl0oVAoFAoOG28PNAzD3i905IfxWzZIU4JU+/QSCjU5UuxQevOSKbectzJIWh35RZggSwnLSyKUsKhBsD1RAmhGim1SUhTCzKT1nsZisH6YREd/Xxbu7+thkrzBjyMlN79JZ1Tuzs7OJMzdS9z0oVC6i0L+DdZXJm+bRBrRhEU0YNKUyLa3DQ01FVvXUcoHQ7upHURh4kwxmEvZ8OWa9YGh37Y2o2cjIyunv7ZHmZURBXjtgYnGPd9va02HDx+epNnY3EpT/y59eNRCfV+ozZrFx95rpul7/x/nkj5Og0+Toa/Onh+rh3EHvh6OcUbYHdGfZVq7fdp5D1vH9ryS6ou+PGltjbJ5IWkGibWl6Vrh995Gun4Tg9LwCoVCoVBw2EjD297e1uWXX55ua+L/Z/QNSZb9LzLpmDJfTi+KjdFjJoFQMpLyDQoZceWTomnLpnbAeryUxqgyaiGMjPL3UPu0fnFMvF8r2xqF9vlIo+S97F+kDRh6/jsrm7RaS5D59DyijSJ9GyP6Ns4hx9ykSy/d0ndGwucehVm2WSzb4fvHhHn6dKL1TWk309IiEmbOD60Qm0QFM4nYj4lJ+0slc7MQ+HqiuSQVGsv3a5TnGLVIAnJPeEGLS7apr9f0rW4S2pN4wFsRaKXJNGNqRL7dpnFxHZgFYMmmuLR+RduSmUUsoz8zRBqsgWuShB7+muidNIfS8AqFQqFwILBxlObW1tZE8vUSArfUoMQYSbH02TDXbBO/BSWSiLaHFEiUYqOtKbilhoHbz0Sai93DLXcYLeX9W9xwNtvQNNvE1B9jnhTzmXy5mYZH7TDCzs5OV2Lf2trqStzsW3QNv5PyzZBJwNE40W9A7c2D7eezwPxTaRo5TL9MRqkmTTVs5lL1iJSzcYy0NEPkJ/fXMs8ta0N0b2SFiN4HUZvOnz8/iW6N/FVZnix9br5Omx/Ok7XXrFXRdlp8Tng+yq3ltRwf3y9aZ/ge5TMebQBLkn+uuyj6naTV2bZbnlrMjtl4kRYvepdk2hojfaNYhcxv2kNpeIVCoVA4ENg4SvP06dMTKdMj2pBUmuZVeFDipOS5ROKm9Mcyow0rTWqx6Cva6r2PwPplEg1t95TavRTHDSaZExRpaeaLiKRYj2gusm2AMpYWaarlMkctiugju0Mvp6q1tk/Di/qcRYb2vme5bdTsuC6iPlELYFt9eZnEHUW8sTyWMafdSFMtPWK6yEDpOYsWjtqS5ZlFPjwDfXmRn5H37u7uzo4DLTJRpDe19OydEp2j9kJfe+S/zuayZ3Gx59/eM2R68e8qapK0BmRbT/lyLWLeWF+y7dCk6XzzPWcaHzcDkNbvRka/Z33w5XOMaAHwfj+bL2tDj3icKA2vUCgUCgcC9YNXKBQKhQOBjU2au7u7eyo5d/n2x3wIstQPo6f6n4WW98x7VNNN1Y4SMhkSbeqymRgiomgzf9JRmoXg9tIEsjQLbx7I+pqFQUeBDiw/C3jx9xgYQp0l2vu6IzJfD0sg9uX6MWZodZaUGtXNT45P1Gc6zBn4FJmnGDzEBN2IRovl9oJwpDgghOkI2e7w/hqaUDNzZVa3/94zS7INfF6joBW2bXt7uxvw5InHI/o+Bsdl5tTI9EU3S2ZW8y4OJvMzuCgK7rFjZoq75pprJMVBIwb22erhpyGaUyO/5h6ltk68uZDm4qx+fw/rprmXYxOZe/k+5fGeK+Ls2bOLUxNKwysUCoXCgcDGGt65c+f2JKIoeZQSFn/NexpQRrLbS7JlufwkybM0pfax8u0ak9a9lkDHNvuVSSi+LYZMGvH3kmw7CzGPJH0GVDCwJmoHy6fE3AvgWLo9kJQ7tP25TOKO+krJPUthiYKlCLY92iaK6Q8mLTNZ2WvoXBNcDwy4idZHJmlTe/TnWN+SgA62jePY08KyNkVkAyy3RwBsaQlcg1G7GVzTW788xt3jaYmJaMnYR6s/0kxsnk2z84ns/t6e1s4gmSVEDvYuefSjHy1Jes973rOvLJ+GZes5C17pWXPsGLdIs36TxNyXZyApdvQ+4ficPn26glYKhUKhUPDYOPH83LlzE7u1l6qYPGlSU5Y+IM0TyFIz6UmkDC2OwmczwumeH4i+DLaVibm90Pls887Iv5RJPNRcotDyLGWCm736NjHRlaHgUdKoPzcXWk7JMaLgoqSfkV/7/+fSEXrIfGqRNYL1MAWEtGG+nGwLlKy/vp7MUhJJ2kxhyHyThh4tWbZ5cXQP1x3bFhEdeNLnTMNrre2zHkQ+vGyt98Yp8xHzM0rj4VrM2u7njZodKQ57qT8ZIQRTCyIt2s5dffXVktbvZNv+yK8He1/yvcL1ztQNaUrgTmtHlFifpTT1UpE4p0vp6aTS8AqFQqFwQLCRhre7u6vTp09PCHK9f4xSSxbF2KNCogaU0TlJefIzNaMoyodShGk+kRTLNtm9lN4pXUvTrUsoATNR15fPiDdqyCSX9eeyiM4o4TSjgON2N1FUJTc/jTAMw96fv9bfY+uJ0b/09/Xs+pmG2Ut6jvw7/nuUoM9rqWH0rAPZVj92PNo+heQBHOso0i7z3fYsKnNaaOQzyvzaXKPRmHhfdSapb21t6ejRo3sUWVxDHhkRQWRFmfNPZhGD0TXZM+a3TjMNi1YAWlf8/Gfavz2P9u6NxoKWOKv3hhtukLQeE0tIl9bPsk/q9mURkU80G8deHEBmdeiNub0vagPYQqFQKBSAjX14u7u7E5ow/ytMHxqJQyntSvM5Z5TAooikLBor0p7myKgjuiZKOtS8MiJgaS3h2vYZRmVGjdZrEjzW0yDYBxt7apvst5faTKtifhHnz7fRtApPldQjEN7Z2Znk2kVb71iULK0FkT+LGlcWgRhJ+Fn0JMc+0vBYBqX2iAbP+pxRl/U0b7vH2mLzEkm2zJ3MKNPYh6h/vCbSpLM8PFpKfD30sfci7Sw63Ciy3v/+90uKtcxs66Voi6w532ZGVyZN55L5khbBfv311+/dY33NorajNmYaqj17va2Fsr5bO0zTi2IHSG3IMVgaFemvzbYL8sjKj8bexro0vEKhUCgUgI00PGPKuO+++yTFTCsZE4XBJJNIm5kjt41swNkmmiZFcPPVqJyMIcRLWpnUT58BI5J822y8/JYa0tR36EFpeW4rlqgcbqfSy/NiDl9vqx5rt/fH9SLtDh06NInOi8aePuJepCXHIdPsIl8LtUNqT72thOgr7vmoDWQe4dqNCLXp7yWTBzVmaT22ZLMhaXq0pVW2lVQPS/x8/M757xEAD8OgBx98UNddd52kKYuS71v2nPSYgjjPZEkh+4gvj/Ngm0bbM+7XG5+XjAmnx4DE3FBq0X4LI/pyabmy/hgTi6+PLCzZc+Wtc1mUNeMPohiMLNc60vjMQmb+y7ltyTxKwysUCoXCgUD94BUKhULhQOCCdjw3FdWCFbxJgGazJYm5ZnrJ9ofrkeDyGpoWSbrr7zeTWUa2HIUH01TC/ehIuippzwRsMLNDltzN8fFtZHuy8x5ZCH2UzJk5jXtJsTTRRtja2tLhw4f31kwUtEKzsZmASfXU61sW2BT1iwEAGSFvtJciCQ1oUusFgpDKim4A3yeag3hN5CLg2No1TCOJSNm5NnpmRmKOGjAiqMhSj4itra2Ja8CTOTO4J5uPnkmbbSKps3dxWLCIjZ2Z1ywwzWDmN2k9DzYvlmZB82FEzJy9V+0ddfz48X1lSevnkvv5sY2+n0yKt7ZwrVo90drhu5DvZP9scrf5LAE9oiC0cazE80KhUCgUgI0Tz0+dOjWRNry0RydntC2LP+7/n5Mqo7Ii56m/JqIWsjaSUJhajJcc2GdKLUwujwIPGJyS7Q7vj2Wh0Rl9k0dGWRSF6HPbj2gbJ3+vNA0Imgs8GIZhQl3kJbpox2d/PErqz6S7iPbMf4/67Nvqy/btMWk4k16jJGxqjtaWTLP0Y8zgK/bX+mmpHFG7qd32tPlst3JDlICcBepk2rdHZG0gGPCU0VH5chioE4FBHQwIYhv9OrEUCVsPpuHZPDFlx5fD+e5ZGGxdcd1FKSzSfq3X2sR6Io3bYFqhjQW1aVrDImRpZNZWr1Hy+ckozDy5SbT1WwWtFAqFQqHgsLEP7/z585Nf7Mg2n0nW/AX3/2dpCD2JjucobVp7PEmx2d8pXVgZ1mavNXpfky83S0CNNDxKjtwOJEquzCjL7DMK76cUlmkFHtRUMwm5J0nNJaN6DZBjHZW9iVabhXb3JNLsHo6xXwfZPDMUP9LwaFmgPy4iSehtA5X1i1u8sFxu3xL1LyOtjkLn54i6o6ToaKuv3tqKrC1+vfFebp/Dev05rgOuY7vHtDppraWYxaIXes97ON8RpZjBNJuIBD9qo9eEaG3IUqj8euP7LGtjZG3jeuYaYnqUb7eBsR7mb4zWjvcjloZXKBQKhYLDxhvAnj17diJhRVFs1BBIyRUho4HqEQNnGojdYzZ0Hy1lyKSyiB6KvjnzmZhtm3bliMLKys+onzwySZs0PT3Jhj47+jN9G6l1RDRHvn7fRkPPrm/XZyTcHvQtUSLu1cNtW6KtZAyZH4RSpr+XfjhG9EbzQd+TYW6jW183rQGkGouQUZZxTpeQ+RKRZsbnJ0si9uht6kxYmxhlKE3HONICs3p4jWlTGXmBvyYixvbnI+sXrTbUwCPrUOZ3Y+SqJ6smmQTbaG33yerc1o2RvdwWKIp65rPA9RFFh2c+8civz/W1vb1dGl6hUCgUCh4bR2k+8MADe7/GJiFE2kxPsuY9Bko8c1uxRKDNmf4MaS3RmL2bEgjz86Sp/8U0x4zKLMqp85IUy/dlS1PpnLlU9IVFklYWpckcHv+/9d3qW6KZW/96BMBGHt0jEWduD30PUdmZvyWT7COfA/vBCLWIHspyKxnZF0U30o9IPwz93L5d9EVlVoHID0Nth3lLSzZFzXwsUd2ZpaSnVXmLRY+Wbnt7e9ImH+3H+V5iATFkFoNetC7zxjKi+14cAJ/hiNw787tSo7V3S5QTy/VFzcv3iz7J7Bnpge+5jKRd0uS3hO+AKHeP10T+0gyl4RUKhULhQGBjDe/kyZMTyTfa6ifzdUR5cXOkvdH2HAYrj/lj1CS83d/+ZxQbtUKfd0ONh3lktHFH0iAle/MD2mckabI/HEdqw/4a9qvnP2OeTRbl1vMvnTx5clbDo+8pss3zs6cV9nILPZYwg5AI2iwAS/LUetunZMS4c+2Rps+GlUFJPNp6h22kXytiBVq67YufN0Zt9zQ7wtbZ0aNH0+ttA1j6laJ8xSyCPHqHcO1Q8yGRsp8XaiCZf86PbeR7lNbajX369wTr4RhYmdG9tBhEvnt+z6JADT1LD+s1ZDEZvj62n/2OLBh+vZUPr1AoFAoFh42jNM+dO7en7XCjUWnqK8l8QJH/KOPSzGzP0tS3RYk7kqqZC2hl3HPPPZKku+++e9JGsiDQL8c+RBK+jZdJaeYHuvPOO0XQnk97u+USRpGEWf6Lfbe2elYGzhM1vIgFhBrJkSNHZnOpelvGZJoCc4K8tJexiLDMKNcxi4CzObXPyB/L/EeOn38mqFFHa8Qfj3LOrD67J4qwM0RbBkXfo0g7to3zGfkQqeln0ZqRpuwl+mzt7Ozs6Nprr917TqK20YdOrbq3ua6B5dJXFFltaHXgevBMKxZBSa2GLE1+TslmlGn6xoEZ5XDa+41WIW727EGNmXMaPU9LGX38OqBmx+9RTAQjY4tLs1AoFAoFoH7wCoVCoXAgsDG1mLRWgb1JzBDt2uyPRyHxDK6wculcjcJ2aULNwrd9AIrVzU8mqfs2RkmhUb2Rs9qCUqzv3In6xIkTk7LNVBHtKi9NzclRuHBmSrN7emMSbVXDdnDsezsPW2g5TUDezMbd1rMgliiwIkuy75nDmeTKEOheQIjtbM1xi7aWYsAT00V6od4kJ2biOZOkpWkARZYaFKX9ZO4Emiej0PJNTJpWjzfnZe3c2trSpZdeujcGkQkuM0v3kKW7zAXA+GN03dinuRw8paGZZB/72MdKWs8tzbE+lSEjx6BZz8ry9zKQj89mLwgsC5Jj/yMXR4Zofq29NGH2Es+zZ3wJSsMrFAqFwoHABW0AazCNKArQyJI5ewnnGZlvlkAtTTURSi1R4IFJD6Z52UaMvS1+WC61JEpTXgq1c1YfA1yYxOzbmznd6XiOttkxUOuwefNaCB3YnL8oaIXlzyWeHzp0aKJB9iiDMse5bxsd45mWECXZUorMNJNeYiu1jsjCYVK+zXNGfxU9MyRJYHBEpKVwLueCByLiCNKecfyi9ZZR8/W2v+K2XhHOnz+v++67b1GCMce2F7Rk4JrN1mGkZXCs7dmK1retA/u8/vrr99Vv9/h+Wrst4CWycvnrojXEJPJM45OmVii+h7K59tdkZAXReZbHYKNoWyyuxQpaKRQKhUIB2EjDI8VPRJibhVxntmF/jOHyphll201IuTbQI3clOTCT5SOJgVoZ+0X/Y0RLFiW0S2up0Cd9kmpnjjTYS4XsMzU8r5Gxf1H7/T1R4qnVfebMma49fXt7eyLB8XzUR/bDawWUpKlN9PxlmUbX86llWgzTBvwa5T3mIyY9VBRun22T0kvz6SVwS/3EY7aF2x5FY5RJ8JGfh/1aouGdPXtWt9122+SeiEzCpwH4NkRzyvFgu3tWA1qb6MPrpZhkG78eP35c0n56sBtvvFHSdJugaENjgpvRkmax16/M6tZLK8o0457fnmNNDbbX1k00u732bnxHoVAoFAqPQGyceB7REHl/FaVHXhNF/1Gjo/0425hTmkpwTN60z96mpxZxR80rSuKkjTsjWfYSOG3n9MPQH+OvNcnd2pptmTSnWfl66EeL2sh+9zQ8PyYZtZclnfek/4wKq7eVUBY9xmjZSFrnsZ42YJhLyI4ixyjZWr+ocUdgVB7bzjXl28JI3sz3EW08yo2AWW/kU8kk+t52W4zwjLC7u7tvbZkv1DQiae0PIxFDRu7MPvTab/D3ZkQTGeG9v9Y0fIvONtgzeOutt+4ds2hPO3fttdfuu8faGm0EbW2w2AEbL+uX+QX9M9+jyOO1viz/f/Yc8bmWco2uFxXMvveiw4nS8AqFQqFwILBxlOb58+cn0kvkUzOYJkSNJdIuqD3M+QakaTRWRi3UoxSiFE0iaGnq08iiGnv1Ma/LxpE5d9LaZp9JS71IK7Y50z57lFKsh37bqJ5z587N5sRQE/frICP85Xrzaywiz/b3ZJKjryf7ZA6a/z/z99Hn6vvKe5ZsaMv5zcjEe9rvHP2a7wOvIbVTpP1E9H3+uH16LZW+u9Za1/fo8+qi3NrbbrtN0loDIkE8rQUeWd/YniiPMIv+jObF5s58aXfccYekqZ/WvwfMJ2n9szIYtcsocWnql6d2nll1fJsyi13UP45Bpr31Isr5juz5+jMttIfS8AqFQqFwILCxDy/afj6yG2fbZERRmtmvORkVIlaRTLJnGZHGlWk1kcSQ2a4zO7+XYHnM2miSnLXDpDZpLe1RkmKeUaTp8VoS2kbk0dkGsxwrL1VTgpvbpmMYhjRPzpc3twFwVEemBVKqjfwH9HkxPy7y+1G6ZLRe5OvOIh45Jv55YlRmRgge+dSoqdKCEmkymbRMqdrfE62DqH9+7Mmas7u7283hvOSSSybEydEzTf8/+xppaXNMNNG9czmj9Ln6e2yczLdG64m3LNk7wtpqfjh7DrlNlPn8pOlG1lau3RONY2bByKI3PbKx6DHWLI3o9GuX47jEsrRX36KrCoVCoVB4hKN+8AqFQqFwILBx0ErkhPVggi8DNKJyaEajCa63nxKduBlBc0TbxXQAmmSiNpJKjCS4NAH6urPAmmj374jeLCoj2n/NwKCILLHfnzNkwRKR6WCJSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNL7e7u7jPVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw21113naTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQuFAYOOgFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201vba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdOXNGt956614gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5J0+e7JI3eJSGVygUCoUDgY01vHPnzk1Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCwwUlnptEEv36RpFGHlFk2JzPjvBSkxGxMnk7oxyTpiS+jLSLJF8rl4S7di01Ph8BadIXty7JIgx9PZlfgdJ0FEEW0bhFZXlQ62CkVy8ybs6Ht7u7O/FBRiBUE7gAACAASURBVITZGa1VJDlSW7d7uYYimjCeY9RuRKxA6ZySto15LwqZ/cjIGqI2ZhHLESFElszLyOWIjD1DFGmX+VtsrURJ2OxXT4tqrenw4cN7zw+Trn0dNpYkgo98+9k8ZFGaUXkZTVv03qFPmGvXEG31RHIEnjf4sWZsAD+jZyUj+zBftd1jml4U/d6Lqpf2P78cWz6nJBn3/dokOtNQGl6hUCgUDgQ23gB2a2trImFFfhhKQPQfeNBvlEmmBi8xZHRDlKYirYCRVEb1E2mp9Otl0XP23UskjIajBESCbd/eLEeR4+ulHebdURvNNnn1sHtIORb1y+fZzPnwKDX78qjpUsrraT4ZOXAWGenv5Tjwu19v1Fbov+KY+3NZjli29Y+/dy5aMopiy8jYMw3Qt2mOmi3S8DKp3I5HxONeu+pRi21vb0/WQeQnZV3UOny7GZXLvkbarIH0c1nOYTRO/M73QfQ+zSgFe/4y+mP5zrCyvDbMdyC1UK7dyB/H3Osl/jU+pz0Njz7hpf47qTS8QqFQKBwQbKzhHTlyZGJL97+49GFlEoKXPjNNg5JjJKUzR4bSGCPSfBv4yWg5Xw/9XhkBdcRUYX4wRjpSGlwSQZhpyv47fXf2afMW5QpmEZ1LyGI9c0xPw9ve3p702fthOJaRP0yKNZIe0a9HxHyRbbkT5WOyz5nPJmKg4NxlkmqPwSjL2erlKGY5gpkFJTrHXDvfdmp9WWRsz7ozB3v3+P70tnrK/KF+7Vh5zPfMCKD9ONHCQ18u10fUhuydEeV9Zv7FXk4d28QoYOb4RmNi7y6WH8U50JKRRV5GWqGB6yvS8OjHLPLoQqFQKBSAjbk0pfWvvP36eymdEYn0pfV+iTNWFtrnozwsk0juu+8+SVO+Sq/5UZKnv6pnE6ZkRWkzyjki/6aBuYpecqEtm9Ig/Z4ezOux/tlx+7T5k9bjQ/5SQ6S59lhMCPPDUBPyEjj71ONWJOgn5TVRJCw1XW6jEvluMqk1y3XrtTvT6KIoNqs3Yv3wbff3eyaKqA/R88R1l/HARmvVtAM+C1EkKcetl8Npa4eaQ7Q+yDFrz9wVV1yxV5YvV8rZmXrvLPro6HdmBLb/n+XRcuWf6blIR46tr4/vG4JR474t1i/Lv+O4GqI5o3WA7+DIIki/Irk8/W9MxK5UGl6hUCgUCg71g1coFAqFA4GNTZrnz5+fmG28apyFyVL19efp7CSNFlXjyKxGkxUd9d58RxOCtc2SKSOzFIM3sq0voqTuyMErTYMmIoczv9NMZOhRtZlJy0wc0Y7nNI3QfBSFozOo48iRI4vTEmj+itrNeY9o4hgAwrQNzqU3F0XBO758mqmkKSk1aaiiHc95L9NhuKairXeyRPPe9lC9c9LUpO7rM2Smpsh0zyAJG6PItMbx2dramiUeJ6l41C+aaUn5FiVKR8FJHhHhudVtfaMZPjJpMoWKa5RpQ/4YST4YnMPrfX1LyAoyMJWB7+DIHM70BJrJo/WWbSEUrTc+y6dPny6TZqFQKBQKHhcVtBIlSnIbjmxjRo8opHZJ/R6UIighRFKzgcEKURIzA1ysDE/W6s97rdfu9Y5XX29EvhulfERtN3jpk5K9nbMyrW3ROFJTpsRlTmxpKskvIY/OAhx8edyCyRAloDMxlwENvfSNjMaI0nmUNkNptqdJsp6MTinSYPn8kIg8CoRgKhDHoBf0wTbRssAQd19elF4Tfff9iYjas/ZkW0FJ0+A4ak/UzFl21Ba+5/xatbptPozikCkOfoy5VvmOjNI3GHhmzzDXErcc82NhGmO2xViUBkFrWxZM0ks8Zxuj9Z8l+TOtIyLH92lWRR5dKBQKhYLDBW0PRP9B9OtrUoPZ0Hubas5tgULJILI90x/BMiOpgloMQ/wjqZPlkcqMElevf7zHS6xWdxaGzmRy7yfJyKN7lGL0M1Lrjvw9lPrnEs+3trZCzY7lcYx76Q5cC9lWNT2/hdVDAuLIV5TVR00rkjizLXc4H1GqyRwReI+QN/veI4rOpPUoBYXzlNGgeWsFy+m1xd47vZB/+mGpbdp7yG8plG0szPcMLUC+PrvXNDz7ZB2+3bSCZalHvm5qY/xu/YuS8aPnlPUYSAxCqxe3OPL12blM64zqpdbZS2EwcMz9puRzKA2vUCgUCgcCG2t4ESlulAhOQmS7jxFq0lQizEhcWYY/R7qZntTEa9ifSPLm/ZnGENESZXRnPdJY1scoMBtfRjZ6kMiY2kFkuzcwGjSypRu8FJhpeKbdUcuNfACZ1B9J5GxXtn1Sb+NSSpmM8O0lkS/Z5JJjy/JZT2/bpmzboyhy1ZA9Gz0NmpJ2z0+Xncu2UPLlGs6ePZuund3dXT344IN72llEG0bSCL47Ir81taVIa/HX9QgP6LuP+kwNKCMr6Fm/DFnyekQizv5k90bHevRzvu0emXUt8uFR67T3Zo+azTS7u+66a68NpeEVCoVCoeCwkYa3u7urM2fOpBFxHvTvUbvwtllKOplPIPLPZBJIJmX6+rINOHv9yUiKSQ/mpXSOU0aS7CUfto1ap+XWRRoeI/joi+rll7Hv1h+TTv28kXaoh9baPg0wyk2k3Z6+1miu5wjGuYYiiZHaBq0QUe5WFpEYjWNGnE7tLIq4zLSALB/UH8v8PtRoI+k9ox+LohwzzZwRi5H/1z4/8IEPdP2/u7u7E9q7iDDdNCyLnrZxoh9bWufdsrxs/fUiAe35uPrqqyXF0aymvdCP3dO4svcbx3rJOsj8pD2NMtvmLdI8GQnLOe75f7N3fOSvPX78uCTpnnvu2bt3Lsp3r6+LrioUCoVC4RGOjX14p0+f7vpzKLVQI4qkM95DbTCT1v291FooiUfbtWTonc9YMdivKLJv7jPK++M1ZHaIIgmp4XFsorxHSnBZdGbkk/D29rkoTY6Jvz4jbeZ6iPKhqL1EdbLszIezNHLQX5uNX1S+YYn/b47EO3omsnNZrqq/l/3Jcql685z5zyPLiffBzzGtmHbGfFZpuonzlVdeua8tPfJt9pXMK4w899faMdMWs8hI/z+1JmpGkZ+ZY8P5yLbk8eUzCjrSuDJSbFonDFHkLceRYxHVR58d++vzmu++++59bdsEpeEVCoVC4UCgfvAKhUKhcCCwsUkzCgGNHNmmotKEYA7bKC2BDsosET1ylG5CiEonNIMiegnnrJffIxNjtuN0bxdr+z9L72B6QtQ/tp3mgiiUnQ7unvmD1y4h/+W1vq0ZMTGp3vw4zYVnM/UgMqtm5ppev+aCVyKzJMd4LtUg6l+WyhAFIPFctn9hZObN6NZ6Yeo0ZWbpOPzfrs3WjwU8mTk/orUi9RpNm6QGlNbPztGjR7t9ZMqLP8cka5qJfXoSTbE060djS3Mwy7dP1h+10drSS//JzO48HplQM+oyQy+lhdfSRWBmTGmdluCJtHvkFPvKXXRVoVAoFAqPcGxMHm1anjRN7vSYoyaKpL05zS7aCZsO0SxsO+uLr9cQ7ZpNaTwLWY6S1jNNggEpS1ILqNlF1FLZdhwm/UbaDjXHbBuSXuLuHLa2+lvAGEhfxPXAMv0nA5wYKBCNMQnBiSgAJUtHiMZpLnWmZ6XguUzDi8rNAquovUVaQaYp99ZBbxsnab+Gw3W7VEKX1uvYa098hk+cOCFpmjoTaXimBc6Nm+9PpjWx71HQSqZ5R+/TbEf1LJk72omebeml+WRE41ngYC/gKbMW+P7xmWbQjVGm3XnnnXvHTMOzaz2hxRxKwysUCoXCgcBGGl5rTTs7O5Mw8d5GovShRPZ9+jB6YcxSTMFl0ksmAfcSzym19LaDydISKBn5Ptk15oPINuaMtlnitXN0YR7WRm5KGm2k26NPkuJw5yW+T17Pe7yUTuo4rh1DT8tkP3obVjIJPiMk6IU/U1OJfJNck1xf9On6dUGLxRLLxZykzVDwyKdCqTwjQPfHmBpCP4x/5pdQ/3lENGJ+7dACcu+990paa3g33njjpN12j607Sy3gWo/axvHJnoUl89TbHo3lZBs0R7ELfDfy3uiZ57xkz1dk1TPQqrJJcrzB6jdN3ZLNo/ZvgtLwCoVCoXAgcEHbA/XIbilZ+3v9eQ8eo6ZFycBLM0zAptTS8xFkm9JGkj3LzRLso3sz6YyfURuo6VEqNURUVgbTwKl9RFI6y6N/y0ti1BzPnj3bJXH1FEBRhJj9bxI8/XDmAzK7vq878+H1fA4sw8B1F23IyXsvJjo4i9r15zg/PTKGTBrPqNuiOTDtiddSa/PI/PWGaKuXbPsrj2EYNAxDOk/Sejy4cfIdd9whaa3pea2QlhfT8LKISN8f0pxl2nSkrbMf1HIj0ops/jlfvXcW6R7tvH+X2DPG/hh6xONZAj/XQbRVG/trn6bhWdRtVI+tjyUoDa9QKBQKBwIba3gPPvjgnhTgJXuDHSONDCMwoyhG5rtQazNE2lqWQxVpnBl5ryHSBuhXzKI1Df47+26f1JCiftm53uatbCt9RfQvZOPq781yBv04kpB3jkS6tTaRWKOILUqr3DAzkuznojUjKZ1a+Zxv14Nt6+WBZmsjy8OMpOa5/kZaGvMaM00vupfXEtGYsJ6ef8nabXPtqaMieP8vI5h9HaQBM+3ttttuk7TW4nwfMg27t5Fu5hclIkrDzLLUG6+M3J3WMN9Gmw8+PzbmvfXN+qgVRs9vRjjOe3z/+ExbfWbF8fl37LNhbuNpj9LwCoVCoXAgsLGGd/bs2cmvcuRzMLsw81QiKZb5UFnEIG3QvnyDlUENM4pEyqLvojw8nqOU1mOvoPTF7xHBNTXhjN0mkvyyXJqMlNvXR98dxyLyTXofQDamW1tbuuSSSyZEtn7+7F47R4YaRgH6PmW+PN4TsXNkjCCRj5Xrl5r+kvnI8gp7a5VtzRhx/DXU8JhbGW0Qmvk6eyTFcxF80TrhVjnnz5/vSum7u7tpdKv/nz5uK9+2krFNQyXpsY99rKTcMtFj06H2xPdbpMVlFgX2oacVZuvazkcbT2frOdLwqN1mDChRziBzorM8wyjvj/N33333SVpr6FE+I5/9JSgNr1AoFAoHAvWDVygUCoUDgY1NmsMwhPtDGTInPk2dXkU1lddCT6k205wWBWiwfqvHdj5mP6LvvdBWmgMzwt9eyH8WRBIlvFv76aDPEkOjtASaJ2ge6FFY0ewRpUNYud58lJmlWmv7AgasH55uivPO3dyZiuHbkPUjCupgGxgunwXN+Guz0PIlaSlzScpRoMhcakFER0X6Kz/+UmzSygIZlgQFZMEqUbBCRHDdo3aLKOGi5H4+/zSr+fB2o6t6whOeIGm93jI6r+iZ5rrqUczRRJqtoR4tXWZSZAqPr4efXI8RCUiWYpJR9kk50XhWvx8Dm6+TJ09KWps0e8+EJ06ooJVCoVAoFBw2Jo/2kpZJ5xG1WJSUnpVjiBIhpak06yXFLDgmS7b095OOKAt88NcspZ+KkuMzrYnfpWlCLiVGBgj48aTGku3C7BO4M+mTCb2RJuHXQS9o5dJLL00TWX27bBxMO2fyu5eAowTY6NrevZxT0uBFwT3Zdk1LtJm5NIVI42IyNAMB/JwzWCVLF+glrWdtj67jOPKZi9JJOC9zO557UCvwfSF5gZV5xRVXTO65/fbbJUlXX321pPU2QXzWoyC2jAjaPiNrRJY6ZegFy/F5z0L+/XPAeZ+jC4vKp/WhR+SQpXkx0CmyRtn7Lkvo92NFK9pll11W5NGFQqFQKHhs7MPb3d2dhK5HGyPSd0dp0yea0u9HXxol/CjxmNoTtUUvAWeUXj0/HOmm6Efo+dQMWRitHTep1N+fkfZmEqYH7d60sfsxoaZioP8x0ubn0jyiNkQJu9Sw+D0Kwc/GiSQGPc0rkjyl2KKQJbbTahD5HDIfcUZe7TEn4fd8NwwT70nD2Rj0tNC55HRaX6Q8nSPD9vZ212rETWG5IaxpeH4ubZsZ8xeRYJo+8Ii0gFoZLQ7+meYzzGc2mhf6wajhU6uK2kitjPUv8cPRkhDdm1mH2Bc/JlnaVS/VhRaESksoFAqFQgFoS0k3Jam1dqekv3r4mlP4EMDjh2G4ngdr7RQWoNZO4UIRrh1iox+8QqFQKBQeqSiTZqFQKBQOBOoHr1AoFAoHAvWDVygUCoUDgfrBKxQKhcKBwEZ5eNvb28OhQ4cm+XK9wJeMi83ni2RsAZtszJpta8Lr5o5lmLu2d36Ol/Bi2rbkurmxiZAxy/Suba3pzjvv1H333Tep6NChQ4PfuiTKhZzLxYnyyJZyP/bW6MUEbmWMFBGyazaZF0PGarFJfZusi946YC4qOUN7zEV+Lk+ePKnTp09PGnPkyJHh6NGje7lYEY8j8+KY49Zrd9aPjHM3Opc9H9E9S8rPypmbq14bszYvqTdjLIruzcpb8p6L2F+ye/2Ynzp1SmfOnJldyBv94B06dEiPecxj9pI5o0RqJqZawue1114rSTp27Ni+T0m6/PLLJa3JbW1Bc2H3kh15rrc/XbbHE8uMflizF1yWsB3dm+2W7O/JklIzqp+ovuyHokcLxH5YkiepmqQpufP29rZe9KIXKcLhw4f1kR/5kXvzcOLECUnrpF9pmoxs7bX1ceWVV0raTwhu/5OMOtspPFqr1v6MAi7a6dpg9VkbSevmEe0ByPKl/ktyCWVa9oOWJf1HtGSs38bK6Oh88rCNlx0zAmC71vrriZu5f9v29rZe/epXK8KxY8f0nOc8Z2//usc97nGTttr4X3PNNfvOGVGCtcUTJ/A9lhG2c51LUwIKJsPzx1+arrdsx/uIyIM/qBmJeY/Sjus7Ig5hG7i/H/vi6RCz/nD9RXv2sV+kQfRgAvvu7q5e97rXTa6LUCbNQqFQKBwIXNCO5/arHml4kalCyrUcf65Xr//0mDMlRHQ9GdVORhvlr+G5Jeo7yyWVVWSuyOqJKMTYjk3MHjzGenvmL7bN085F5Z89e3YyX5FZKjOf9bb6Mcyth57Jh+MWbQ+UbXnCsqJ+sVzSOM31IepHb+1kZjBK4JTefZtYz5ItwbIyfD0mnXtNJVs7W1tbuuyyy/Y0fJP6/dZSds6sROybfUZbcJnWZ20iqTw1I38u0nSkmJZuzgUU0cQZOEfZO8yXnW1Lxjb2jrGf0TgS1PT4/vN9yWjvejR4Vo5pimfOnKntgQqFQqFQ8HhINLyedpGRnkZ+uCwAISvbo0ei7M/7cuYcwRHZLaWVJVJTdg+lJ9/2pUE4vT7MBXREmnlGhh1JWtzOZ875fe7cucmWSH4dUAKMNA/WM7fVTjZP0T302UT1Rf5dX0Y0XpRaM022N9YZ2XI0RtlGw0uCzbitDQl6I38Wx439ibQBkjtvbW2l62d7e1vHjh3b89faujO/nbTW9qLtsnxfff9MszPfon1y/qN10dNaon56cD303muZps33Q89HzXEl0XlvLm28eG1PwzNYvVyPfn3bOZvTbPPYHnqbBxOl4RUKhULhQKB+8AqFQqFwILCxSfP8+fMTdTcy31A15T5RUQg+w6SzFINeDh/NBNG+a0tyPKRlOUfR/mBZmVlwwhKTRpYOEZlF2Ocs8CQy2bJtND366+zYEuexmcNprvTzYiYrv1eivyYKZrFAg8z0QZNPZE7JENU3F+gSOdu5jjnvPRMX5yrbP8yb6rKdtc2E50PzeS/DxDn2UdACy81MwxH8XpeZ2bm1pksuuWTvvWCmTNuhXNqf3uDBwBPfV0tVsH3x7DNLT+C69OUv2XGbz6W1uZfKwueO9WS5j/5/BvBYPyx9JDJpMqAnS9Hw987tpWd98esi2/uSZfh6+Jxk5uQIpeEVCoVC4UBgIw1PWgcfSNOdZz0yzS7aHZkSLhkVsvP+GLVCSkK9pO4sAGATFoElyLSfSAu1frBfmUYRpQts0h7u3J0lyUaasrWxJ2nt7u7qgQce6AZoUONheDaT4P0x7qrNcYqCGbK0Bwtt7wV3UJOjhuFD5lk+5ywjIvDn2B+TknuJ5+wnNb8oeKmngUf1+2uzoBgGPrBOaVxDvQCt7e3tvXkx0go/xvY/+8jAFNNqpLWGZ8fsGltf1i9qOf4YNa8eqQXfVdYP7pbuQatAlArk2+E1WDtn/bFz7Ld/nnitfVpZHItI88qSx6MgJhsvpppkVpFoDJa+76TS8AqFQqFwQLCxD+/cuXOpH8FjSXqAgX4Bao4Z16a0lgwoVZjEHf36Z4nA1Gai8Hd+UkqPuOCy9vdodKjN2jWZBLlEG2XyepQGwRSDJXx71u7d3d3Z8GArP+M8lHIpnWVIU+3S7iWNVqT5Z9og5ydaQ/TD2KdJqH4us9ByA9vmfTqZz5Yaa+SPzdZqlizfa2tGU+bry7QRuzbSzP2a7JE4HDp0aM/Ha5qep6iydlGLMeo6O+6tENRMOV5Mv/LaU6YB0Vrk146Ng7Wf8x69O2g1ydIQogR4+h7NR2ljc++99+777v+nLy+zEkT94zm7x757OkFDxpNKS6E/5lN1Ki2hUCgUCgWHC4rS3IRd27BJsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktaSRElqt5kv0dedEbFm0bD+nrkI1igaMPPlRfXQ/t7zw1iZGRmurzPzG0a+PUr99p0So60Hf2+2Rugb8JIr1wx90/RB+PKZdG/1WJts7CLNJSP1jmijskRzziWTzP012Wc0f9Zn0w4yH4vvl2kd3heWRWlubW3p8ssvn/hp/fPDKMKM4D7yBXGt8PmP5mCOmJnrwx+jNmprl+3y1/Jclkzuj1t9NsbmszMNyzQ8H31qWniWAJ4R+0tT6xp9klamt9iQzs2+M4K1R7dWPrxCoVAoFICNozSlPims/RKbpG25MibF9CI6DaSkMckximaipkWJN/LdsA2RH4T9oi8ji2YjBZQ/Rm2Q0mdvbOb8gD27Pwlao3EkTVimWfby/XoUP+b/pW3et5X5QlaubTF11VVXSdq/PZBFupE8mD68SPPi2uD4U6r142Jrco6ezpfP73YvLRfR9ilLSMNZfubLM0TrPqPMyjRbfy3z2u655x5JMYWVzVOkZUb9ueSSS7r0hKYZZDRWUR6mjXPmj7fyrV9+HdDHxS2SMsJmKfcvMx7BX8PtlKxcn8foP7NjHvQl+mN8v1i9mSUluiejd/PHbW0wRoHj68eeuYlL8j332rj4ykKhUCgUHsHYSMOzaJhexJZJ4yYBmGRNacbn0HDj1yyKsrcdkZXLnJ+eT4W2dJMYMgJaKbcXZ+S+0tpmTUmS9msPjjG1NGtjtDEr+2nIIj19+zOmDR/JxXPezt/T8M6cObM3BvRbSNNtP0x7u/766yX1Nbyrr75a0nS9McrL948RnQSjaP391gZqTxHLSJarRemZfmh/DeeFUm60aWiWH8f+ey2b/syMTNj7Yaw+kjtbuZbfFrFy2LU91pvWmo4cOdKNwM5yALN17evOIm17G8Bm/mYbF/OLRRos8/DsnWnWsKitXKt8Z1g90Vq2a+2Z6xGp2/zbXGaRsfTleVDb5XffRpsnv5mrb0dkRaTvvTS8QqFQKBSA+sErFAqFwoHAxkErOzs7E/OQNzGZOYCfNB9GjnJTa80skAUeeJU4C1Wm+u5NaBFdjTQN9vAmQQYn0BlOGh+vZmchxAaGP0dtoGmEZjE/JpkZLEtE9+Uz3JgO6Mh8YMeOHDkymwBKsmdvvjNSYBvbG264Yd+nBabYp5SbXKL9z3w/pDzknqa+iLYroz2L0mAy6iia0KIgAgatcF4ikxnNbD1S5uxew9zu3NJ0x3CbRzPVRRRmdi1TgbJ2emoxBm74OkixRRNdtKcdTW1WD82hUSAazdVWL99lvr0MVrJxsk//3onMqb5cOx69G7l+7TvJETwJt/1vnzaXUZCK75PvO6nL7LiVFZnQbcztnowi0iOjW+yhNLxCoVAoHAhspOFtbW3pyJEjkwANL6VTaqDUHEl0dG4yNJVhz74+kzwiuixfVkTMzHPcnsZLDtkO4BnVj5e8M3JlamJLEs8NPacutTC2sUf2zGsYPNPTQud2J26tTZz9XvNm0MM111wjab2W6OT312ZksxEtFMGE9t72UQxOMGmZ29D49U26NmqhHL8oaIGaXRZ45f+ntYFpCNGWMhlpeUaH5usxmJTOd4Ffw/aMLSFj39ra0tGjR/c0BBu/SFNgYBjHy683m8Ns3VLL8O8dA9eVjTWDV/y1do7jw/5F5XAuaWmIqNMYKGj1WBCYBXxJa+sJNTsSfNiYRLRklpZiY29tj943TOC3ueBajSwm/p1U1GKFQqFQKDhsrOFdeumlE40rIhC1Y6RTooQsrSUAbs+SJV1HvrUs5L9nAzYphpKctc1Lb1lysoFalK+XIfjZBq1e0qYWxnGk5hxJyqTpYf+8xJVRFpHiJ/LhmeZ17ty5blqC3wA2Sk+hdkE/MP21vr30qVASpubqy+GGn/SL+vqYYkKfdBReH2l9Uu4HjspgugX9JJbkLU23eJnb9ioK76ekzaR4Xyb9O9xINUqop19+GIZ07ezs7Oi6667b0+ztnmgrHG5Kzblcss0MyQuiZysjls78dP4c3y+0MEXbHmXEy3wv+XnhurJ5sOfVNDz7lNbWE6ZBZeQJvn88xm22ohQRWj/ss2cBiDS8pSgNr1AoFAoHAhcUpUkppkfbRQmo92vMKDUmmlLyl6aRfWwTpXdpKoWRTicij6a0F21g6fvnpRhGqs5t4ihNpUBK2oxyjKjF7JhJ3Fnysi+HEqWht+2Rtf/o0aOzRK6cn14krH1y/CJQ4jYtZ4mPiFoAx6C3TRS15YgmjtfOUX9FY0INlpuTRmQMBruGfsZouy3SXPHTxsbXxy1lrDwjJ7a2RlsmLYm029nZ0VVXXTWh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4hICez25G7h6RVRts7kyTjMbG+uN9j9J6PGl1Z1fSIgAAIABJREFUiSJlmVhvx2nJ8+ey55Sas+9Xpn32UBpeoVAoFA4ELohajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvtw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxuPHz8uaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlrenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwoHABW0PFEW8ZddkOT9eSieJq0ncRhpMzc7/2ptESuaBXqSdSWfU0qhNRVtfUEujP8Ta6MumnZrSOPOzpLWERaYTa5P1oRc9ykgxK//EiRP72uXbRDs7NedIgrRjp06dShkzdnd3dfLkyT1tI2KDoRZNCTgiv7WoNeuTXWO5ReZHePvb3y5JetSjHrV3r91jc/jYxz5237jcdtttkzYy95RRoTYvkXUgy7ujdO6tAxk7DiV/r2lwY9lrr71WknTrrbfuO28SuI/8u+uuuyRJT3rSkySt5+L973//vv5HuXsZqXzkuyFbU49pxaLDeywfVpe9D+iHpd/H32PjYZrcO97xDknS7bffvu+4zzmzck0bJGsKfeLSNCrcvjMCN7L0kBSf33sk4vRN8p3on2krl9avu+++e19bI8uZ9+X7sbBn0SwoUaQ3LXJ8Jny/+AwWeXShUCgUCsBGGp5t4mmg/VjKuexok/V2c/vfsvxNEqBEZ5JKZE+mPZrbAkU5Z9z0lJvX9ngj6X+jlOs1POYjWfmM1vLSIDVJk+RNauLYR7lpJskxJ9HG22sP1jb6uqwf0UakkQ+0FzE1DEOXTcTam/lurWyTNv3/pskZ76ZJlXfccce+dvtxMo3uzW9+s6T12vn4j/94SesxNk1QirfU8ccjRhfPNer7Tv9rtEFmtmmwtdU0DD+e1CRsbFjfJ37iJ0qSXvOa1+zda2vTyr355pv3teN973vfvrb6+jKWoyiam/Pvt46KsLW1NbGq+OeTEZf+WfLXRnlqpvm+8Y1vlLSeb7M0mc/IrztuUUNN3/rMdvh7M4aVSOMiNyc35GUEsDTN/+WYR3lsHFt713JuIiuZjYVZDOxe+27Pt/f108rBPG6+f/w1/jelmFYKhUKhUHCoH7xCoVAoHAhcUNAKTYFedY4SIP13JnlKa5OLmTRpnrzuuuv2leXNBOZI5rYtdFZ71ZumHZK5RrtxZw7fjN7G949beJhKb2aBKJiFAUE0cZq5xcbIxlBam2BI+WTX0nTr67PxzCi6vLmFofdzZgXb5kWKk8mZNEwzq5l1LLBCWpt8Hv3oR0taBzqZSfMtb3nLvjLf/e53791rY2jl2rjZOEWkx2bqM3PNEhKBbK0wxSDazocpJZkpPaJos3abScnutXB7GxuPG2+8UdL0mbSxMpOmN+8ZSBhPc1WUDsMUnQjmSmEAVxSoQxLp3k70FpTyhje8QdJ6zqzv9l6w94QnWaYZmibFqD6aW+3Txi0id+B821rlLvIMavPlZ4TM0fOakSDYs25jY+3w70pSTdrzdOedd0paP1ePf/zj9+5hQA3dFzTh+v97ayZDaXiFQqFQOBDYOGhld3d3EvThpUuG9NPByMRjD5MAssTcKOnV/qf0QrLjKJiCUgXL8iA9FAM2SAvkt7Bhf0w74Fj0KHfsO53INs6R85j1MKHbt9HqpvZJJ3JEI7eE+qu1psOHD0/SEXrUYja2plVFm2raXFlwikmgDJKysTCpU1oHJ1iQlI2LaS/R9jG2Rm18TDrvETTTymD94HpjEJOv2+4hSXKkUZI03NpiGoqlKbznPe/ZV5YfA1sb733veyWtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537bvXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+tNN90kaf3e4fuBGqA/FhEazKE0vEKhUCgcCGys4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJa2l6A/7sA+TNPWt+DaYn9T8XFamzYHfjohtsnq43qPkYW996G0tdebMmYlPN1oHfA6t3dZe0zJ8O03zpdZC61BE1MBUI1q9/DNGGjpq+NHm0SQWYNoAKfSilAYbf1oDSE/n20SNMUvHidJTuD0QfeX+HltPfM/YPVznvhy/QcBSerHS8AqFQqFwILCxhvfggw9ONKDIBswIGmoo3vbLCEsmi5uGR4lRmm51Tzu1p70ykOTW7jFJl5FJUflZf9kXfw+lEPo3vQRMSSojpY18a5FEGh3v0UNlmpofe256eujQoVRKtwhNUpRFUZqkzfJzx7axHG6Qaf4XJvf6cyQ/tk9GAPN/ae0bpN/HX0d/ckYtZ4h8yNQG6f/1Pg5aO0jrZ9eaZmN+SH8No+N6UaF2rVlq+PxQa5CmSfhHjx5NN1c2H17krzSwnTamth7oc5Wm0cAG6wfr8d+tHuuT+eoiyjwDI70ZiR1tPE3Niu8srilfLyM3+a6IrEdZBGdWf0T+TkJ/A58rX64dY7StISLJiMZ4DqXhFQqFQuFA4IKoxTJaJbtGmkoK9N1FUjO1ioxAOYqWYllZHpk0jZLLtqjwZUfb7/g2UmqPSGoZZcb6fBnWJo5fL2rSMEdWbeiRrnJOIt9r5tfMytvZ2Zlo3n5cOT6mPVFS7eUaMeKW681rJsz3tPq4djzsGLcDysjSpfWcRXl2vn+96GDm4y2hsLK2cMsXO25ar28P1yR9YpFVJ9OEuB58PSSMP3LkyGy0Hccv2pg3206H1GP+f0Z0ckspUgFKy59P30bTLjmGGSG0v5/rmM8/tXjWHbU1Ip7P5pkbDVs/ozgH+uk59v79zeco21IqymvNLGc9lIZXKBQKhQOBC2Ja6Wkm0UaL0jQqq7eJI3O0+D0ioaVfilut+Eg0k1YowVPi8n3IWArm/DG+jYx09H5Mf51Hpg0wes+PJ230lDqjts9tsUEp2N/vpbCetLWzs5MyyPj20V9Fic7PS0YaHGnprI/aWcaW4vvMXFG2I+o/fcaMyqOGF+VjMmeLfmcf4cu+Z1J5ROps40gNJWqbIbMk9NiIqJH3/L+8l/X6um2sqZFEjC5RtGeESJuh/51rKLJGZf5+Rhr7NmZrk4iilakdUgvk+vN9zMicWU/0PmCbCD8mtExkGxtHGl5Wbw+l4RUKhULhQKB+8AqFQqFwILCxSTNyUkZmnMhpK8WBBzRZkWC6Z9KMQvql6b5h3qRpocrZTtqmPnvVm/v7ZYjMYAa2nyTcUYIz+8nghcgsFZlg/PdozKL94nr1+/+jPQeJ1lpovvTtzsL22aa5cnxbemayzLTD5HFvJmJABs2UkUmf6ykzw0d94VjQJBwlKzPIh/1kGUtM9wyEisgforXo741C5v2Y9Obq/PnzkwAaj4yAmyZBv365Rvj899wVpAHLzO8eUVCSLyMC+8V3CMfMt5GUhrwmIkkgBWRG7h0F69FEO0eS7kETsWHO3Gz3VOJ5oVAoFAoOFxS0siTwgFIrAw56Sd3UgBjyG4GaFYNVfEIyJR/S53Bn5ajv1GAp8US7VhuysFpfH4MVovDcDJSk6HCO0kCosVAijpzw7HuP4qe1ti8kPJJQM3qojL4tOseAgEiKNWSkzZTEI4mUErwlNkcJwAzGilI8fP3RmHDOmKQfhaMzvSLbsisCxzFKBWA52ZqNtB4GVM0Frfg2RO3PAheszOhZzqjs5jT/6JyBlpKIRJzaDINVIq2J5c0RQ/tyWS/fC1G/GGi1RKPMCBRYhn+H8Z7s98NjifUmQ2l4hUKhUDgQ2EjDM3ooajdeW8t8T74MXkefEz97ZVKy5xYslkzsJTxqkNRiIlLsng/Dt8O0mChJ1c4tSZykj85AzaInpVPa7NGGZZJbT0qn784Ti0dtueqqqybScpQwHZF3+3p6min9RdSEorUzF/IdJeaSCDragNOQjTv7E/lW59JeuIaj8tnWzPoStT/T7Px6oU+SbY0kcR6b8+H58iIrR6a9ZhYLabomsjD+iIiA15I0gRYGfw01q2z7qKgNJBrP1r8HtbXMWuDPZf70KD0pA9sW3UNLAi0K3KTbl5t976E0vEKhUCgcCFwQtZiBNmEP/mJndEP+Gmp6S6Q02sGjTUKl/ZLrHPloFDVJjSGzI1u9XuK0Y0aj4zde9WVGmoRpqLTdUyuI/Khz6PkKsoTnKLKTRLoRtra2dMkll+z5VLOINWleavWSts0Lpdi5qL0eqBn7ebH7bS6tLSRUiEh1+cmIzigiLhsLuybS8Ej0nG0tZPDrhfOS+WE8OE5ZVK0/zvfApZdemq7bYRj2aQfR2skiuVl3RINIK1EWaR1tR0R/f49gg+OTaZA+4pZaH99zJM+PEsHplyNxiEe2zrJo+J52lfl2Ix8eNeUs0jy6Z4m2udemxVcWCoVCofAIxsYa3tmzZydSbE+jyCLRonyRjD4pingyUPMg4XSkdXC7kh4pLdGTQn07vIbJzSi5SWTkQ/LbpkjraFPSIUVSdc9G7xFJ3FluZRQFxvGaoxbb2tqaaIWRtJ5FhvW0C/vkWupJf5nfxz65hY003caE/qtIm8kovahZkM5JyvO8OE/eF+o3xpRiSd6XFdE2UfugFhdFSGb9i2D9sudkzoe3u7vb1TaoWVnfM8J2326+d7JtiCLKL1oMSOsWafqk57Jn27Q2X2ZGqpzljEaWLEby2pgbKXaUE03LQeZLjJ5J+uUMvfXASH1GskZWPf9bUnl4hUKhUCg4XJAPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+CXsJtbNIG8m2eOH2JNEGsHbOtnKhhBdppZn/IsutipBFkPqxj3wEPUmrtTYZ2x5RbpZjFGmmmb83u85fy3pIRB35Og3ZxsAeNneGzE8RbWFDbSZjMPJaHDeHzYiuexJ3lh/V07az5ydaZ7x2bgPY8+fPT3xR/nmhBsz4gshf3yPt9mVF+ZkcO1srnFtfL3109izfc889ktYbz3ptnZsSM2fP2mR5oH590oJkGp21I7qH1q9e7jOR5eHRvxr5NTk/jGT1ZbPvRR5dKBQKhQJQP3iFQqFQOBDYmFrMmxYiUyR37aXaacczR7pHZj6JEmUZDNFrI+8x0OHsTQsZpVhmFusl43MsogAbjp+1mXRrkYOd5XMsaP6J+mGgKTBK3PWmq8ykubW1pcOHD++1k+1nOb4tNKdFxMUZSQFNs9FeekxTMdNPFPjCe1hfRDLOtWNzaPXQ9ORBSiwzdzIIw7eDZjXeQ1NdZLLtmRcJritDjwqMJr+eSdiC5fhcRqkKWWpBLx2K6yzb6y5aO5xTPp9RsjoDdsy0GaX3mJnTPvlMLyE65zxb2yzlyZvQOS989tjGiMiBYHBQ5JLgOs76F91z9uzZClopFAqFQsFjY2qxQ4cOTYIuPOhkZxh9tEv6HH1RRr7rzzGxNEs89v/7kGhpP5Et6+mRIkeI6HoYOs9AmygYh9pab4sU1k2pubcNDY9lgQee9ogaV895vLW1tafR+P5E2nrWt+g4JW0GtmQ7OPtrbU1y3iMp3ULIuaWUScu9wIMrr7xy373Hjh3b10ab2xMnTuzde++99+5rC3d0j4gOuK4YYm73RFI61yKfn2i9M/2FcxE93zbWPkk+e5aGYdDp06cnKSf++eS7KAuAiygG+Z3rMNKEGVSW3RPRxHEe+IxbEIu0ToOhhsd2RJYeakI2vvYcWtt8UBVTcbKE/ig1hM90RpofgWsosxr4cpemQ+2rZ9FVhUKhUCg8wrGxD6+1NtGmoq03TGrIwvijY3MaXqSZzFFIReHolKiIKHw22xiT6KVO0J9k2hIlcf//XBJvNna+3mxrDw/6OijBRRs0RkTZc5IWfWle4+oRIUuxLyXrI32pdtxrAryGGj59utLUf2QamGll1kbT3qQp1ddVV121r1zrL6V59lVaa4uZNurvoRZi9TBk3493Rs3WS0vICA7sWtNk/DrJfOIRdnd3derUqT0NOVrPvXdE1LboWmplbGOkrWXvm4hMgu8b+vBMs4u2MstoyKjZReH7tA7wXeJJMkjRZ8jWRYTMutKzLFFD7m10y76WD69QKBQKBeCCNoDNNkiUpn4qbo0TgVJRL2LL1xu1gZJPlEBJGh5GjNLGLk2lPEZl8TovcWeRT7StRwmZlNIp0UVa2xxZcIS56NOeJG4Sai/ydhiGfVGcPX9slgCcnZdyaTJqB+/hOuglk5uUbFI4qcaYtC5J1113naS11YOaIzX9yKdmfr+MqDmyDli59OlRU/b9zLYsMvSI4nt+PtZj8JRZPSvG7u7u3rNN/6lvL58/am3RPZk2uyT5mXOWRXxKU78rrU+MqvXXMN6APv1Iw7N7jJ7Qxi3bzsmXQ22UVoIlZOzU1qL5Z1v43EZE3owyniO82NemRVcVCoVCofAIx8ZRmj6XqufDY66JfdJPIk1zl6I8MbbDwNwWbu0TRRMZKPn0tmmhRsLoJd4bRR/SV9STjOc2P90kAoro+fSyqMaeNLhUuprL92LUZxYBF2lphkwCjaRarkV+RuTKBjtmmpxpb/Zpa8v/b9dmVGb+HoM9N/S/UJPxzxP9rZn0zGfHX5NF+Bp69FAct4ieyq4xf2Vv/VrcgI1F5FvN2tfzPUbR0VH7SUHm743GUFqPhb1bpDx60a658cYbpf+vvbPbkdw6knB2T2swAxiGJXkAC7rY93+sBQwDgiTII48ka6arai8W0Z39MeKQNYu9kCvjprqriuTh4SErI38i66V3QHE9ZrzKs8B6zH7dtJ4UM9arWLWyNfv1SZ4jl1Xdz38Fxv9Wmb5OGJrbkG2uMtY3xzn8zcFgMBgM/sD4rDo8+o9dtX1q5bHKDEt1MYRT++D+9T+FWvv2tGZlWbk4EMdIZse4j8tE4r6YQejUYPayopyFlRpxHrGwOEbBCewmgeaEu7u7TQyvW5eJ0a2aq9LyTXV4zLzs7/GVFmRXr6A3QlYya+u6Zc8YLsdGz0Zneoy7kEmIUbr2QMlaTxmsfQxkRklgvf+9t4YcI+vqKav7/fHxceNR6nOc4uEcm4vDcbzpGea+y/pUzanzemm8GgubIVPkuer5+jKDkxnNrhZW607ZrX2/Vc9rpr+fvHY832tYlbDKJeD++dxzXr1+Hx31cA3DGwwGg8FN4GqG9/DwsMlectYeWWBqqpiO018Zt3JZmvyfzRXl8+6fUfeTShjdIlGcRa/6jqykbmFX+TiTtmU244oVMltzr0atKmfy7cVJ3Pip5LGq99vb/8PDwyaes4qpcfwu2yuxFWbnuuvkGrz2c2SjzqqXmbt9W1qvWnd9f7LWXU1jH1ufI61btoU50paIzJg1Vq4FFOMtq3uPx0lZj2QhVc/z0/eX1ra0NFn/29fOXszOneveul1tm55nnDfHTPTs+Pbbb6vqeU3xedSPrfc0b/RG8XnUt/3yyy9ffKYxuXuCz02n71nlVZF47zklnz6u/p2Vqg334TLvj2IY3mAwGAxuAvODNxgMBoObwNUuzVevXj3RWSdDQxfIXudzbt/3IazobWqBwXTh7opiQDZJSnXK3IPr/ZVuMZcYkgLoqy7pAhM5UqGpK1bm/6ukAo6b86c56S6cPTknHuuLL76IrUqqtnOr/bnrIaTyECbFrK6p4Dq485zpTtP8yPVI4YOqrSubSSzpHql6TtvX/ukOZzFz1dY1SkmxlJjS97cnWu7EJngP8Fr3uZfYtj77y1/+Et2zp9OpPnz4UO/evXuxjRtDEq525Ra8/9JzaOX6pGSd/meZSj9/ys+pXEAdyLu0nLZXYsmf//znF/ugKH8/HttP0b3vnjssu+ru/I5V6VZyZQpuHlOyiuB+L7qb92jX82F4g8FgMLgJXC0tdn9/vwkaul/XJD+2SrNnCcMeM6raWpFsnOqkadgeRVaMrE4G4fvfqWkrG7U69kSkQuAOnh8ZjCusT3JHRwpAk3V+RCxWBcIJl8tlE5x2CSiyQFMRvAuUk+mReTvZppSow5IWZ10mxkM21b8rlubkx6q2bLHvl5JPLMJ2clQccyoqd+s8eQVcWQIlAbn+nCg4k6G++uqryPDO53N9+PBhI+vX2QfXRvKMHEl0SQXibp4omcgmwk6AguzMiXHwONqf5pBCBLx3qrIcHctgVglvek3iIKtSEz5vnDeK2/J/x0L1mUo1jgpfVA3DGwwGg8GN4LNieLQC3K8vreUV49JnZF57lkIHrSYVgvK4fb9khZRB6/ESbdOtb36nyhdUp9jZqmyAMbTUBmTVPoOskPPnLDuBFpdjZNxm1YhRxcOrYt7UiJdxGSc4nYQAUtysnyNfWY7Q2fNe2ybGTaqeWUAq5uZ16mtKRegs1Uhtafr+91LJXbslgeuL53nEg8GxyoNStW2Z9Pbt22Xh+adPn57u6d56iWNILI0ekX5u9CBQnpAsp7/HOaWnoa+dVFq0EuWgx0L7YCmNuz/3BK31fz8vPiP4jFoJ3ifPnHtOCCn3IXkpqp6f7VpPr1+/nsLzwWAwGAw6Pqs9kCvEFGjFkOExPlK1tZLIymj5ubbyLCandd4tAFphPA+xOOezP9JChu/TSuLcuJhaEuhmRp9j2amx7RErKDGXVfZp32blT7+7u9uMfxV7ZJxkxfBStmZqzeTOjefuimB1zl3Wqn9HjKyzEGXOMQ5CFkK5sj5eMUYWcbsi3LSuOUcrts25WHkAEnMhk+zeERcLT+tTogUqhtarm6fEalxcLrGltM+OPXEEoQsQJPnDFC+r2rYSYsya92m/98mi0/Om74NrgusrPVs6kizYEYk2jkPoY9Q66nM/DG8wGAwGg4arGd7Dw8PSQkwZgWRi3aqiPzxlSTlhU/lzZQnpfzIix0zE0mjhOasjxUxSxptjeLR4aQl1K4YsQ+dHi44Mp+8vSUg5i2uVudnhai6PNJiVlb46HuOvjGm5OJyQmN2RGkFeh9QItO+fGXYakxPqVZ0VM9tSrLUzIWasCrTaXdYk1wFbGq2EebnOGAtzrIDrikyGsmz9vH7++efdBrCqTxO77rFOnRPv91XLsZWnit/l8eR10POMNY+qqevnrOuq9c3ngGugzJyBJL3F/Ieq52cg17Hmj7WDbr/CNTJefH6u2vnwmtNb4BrS0uvRGwPsYRjeYDAYDG4Cn9UeaOXPTf5aMrxuMcg6oXUupLhg/4zqGBxbH0/KBqR6isu00+uKbfRzqcpKKjyv7u+n1eIa2PZxOGaWrCUX99tTu3FZWUdEozsul8umbtGNl2vFtbFJY0jqL6vxJzUO12iU49e2qbaunwezNbV2tP5d6xUySnolUuyoKjN6qoN0q95lF/bjO6a8JwzP69n3r7H8+uuvyxZYnz592syTY2Zkz0mEvb+Xaih5rftzifeU5vLHH3+squd7ud/Hau3De1vjcNmnOrb2x2xN1m728+MzkAyPz73+Xorh8T5zajf8Toqrum2o7OPiw+l5egTD8AaDwWBwE5gfvMFgMBjcBK5yad7f39ebN282LgqXbCEwEcCl18tVQRcLXXCuYJr7Ty7GDro0kyB0DyJrG7q5VgkOQkpsSfuo2lJ8FsOujkc3AVPLk2zUCi5BhWNY9Tq8XC4vXJpObirNS3LnVmVpseTGc3NMlynnZSWjlcR7nZswlTLQzd9dTEz4YAd0wSUEUbSA957rB8i1wbXrrsVeggj7vVV5l9VKtODjx49LsWe6MNN3j0hh0a3n7jWek9yU33333Yt9v3//frNNkpQTXImJEnbk9mTZEvvm9fHLHZpCG0qwqXoWp6brnC70o4LxfVueU0dK5HPCIbxuU3g+GAwGgwHwWQyPXXH7rzwLyykwzaBk1VZeZiUwzW1pcTKFfVX0SGYn60lWdN8mFT+zIH0VUKW0Dy3JbgnpM6YlM4DuimNp1SYRXGcVpWJlZ1VfU4yqsgTN00ryjeNmgohjJP04q3N05Slkh6mLef9M64EF1Co876AAMM9H602v7n5KosHah0tpp6QXk2XcHO1JPK1ExOlJoHfCbbsq7u7fefv2rX12CLwvKNTs1i/XCrfhePu9KEanVwkZs1N4L0tIYvHah2sBlYrEObcU4+5zoblRQg3n0cl2ff3111W1FaDm2uni2bynyfxXz51Vu7M+ZjeWDx8+HBaQHoY3GAwGg5vAZ5UlMJ7Vf335HuV7nCAvY3dJ3oZptf27SQrL/Z9kp2iJuPRwWn3cxonUEkcKMtnuI8kDraxmYsWgk6Awx7gSj17h/v7+heXq2KfWRm9iWbW1GF18LLUTWTF8gayd6emOPTM9nDEvFysiY03z19dyYqgamysXoERVGhtbWrmxEivhca6hJJbg9rMnSff69esNqzlSMM1z788drm0W8XMNdbaWmB2FItg+qB+HrN3J3zHeyqJ1znmfB8qf6bsaqxhlv98o4KFz13fo8XE5E1yz9JQ4jwL/53PdrTeXQ7KHYXiDwWAwuAl8lrQYM9J62w/++tLyZmZa1VbqKPlxXbNLWTEUjSbDdELQZGW0iFy21F42kcboRGoFNhZdxf3IQlNBZreikg/nfB5jAAASsElEQVSdbKfPL/fHGKFrJePifYm13N/f15/+9KenbDPHcmRxSopLoLXnmp0yFsRMNOcJYNyLVqs+d1nIZANsWeLYR1pflNxy8QodV9a5i/cJFGpPMV3Hesg+UmxlxchSrM01Q+0ZpasszcfHx6f7xsl2Kf6eJPIYn63K3hrH0nk+fN6QGWkt92Jyxt/0v56jjhEzNsei9STWULWNJ6ZWRh36ruaYnjnK03W4OGnHKmbM/5nz0b/HsawyfDdjOPStwWAwGAz+4PisBrDMtOsWN7N3KAfkJH5SjIMWGOMX/T0yEX7e398TyJUF4TK6mHVKoWNnAZNhCTxOn8cUZxRoxXdwjITLjEs1R2SQK3mvPZzP5yg71P+WZSrLlw1ZXVuYdG6uMaaQrj/jMK62SdBnWgesy+vvUXA6tfzpzCVJvkmkmkLAfUy858gWOb7+d7LWHYNK9xPvBdcUeZX1KZzP5/r111+fjqn1ofhZ1fNc6hhk76tmt8ye1vwlmbV+PNWtcf+OzWgbZUAye9bdY3wvSSY6b4Rrc9a/64THOX4dT3Oe6l37Z6kW0j0nGKPjXLvYpJ4Dmr+Vd4AYhjcYDAaDm8D/SWnFievqVzfV7zC7rP9NJYIUB+xsJ1kVtBRWdXFiEhSt7vtgzCFZIoLLZqQoMa3NbqUzrsi5pmqGiy84Nt3H47I0yVQdY+E2R2qpHh8f68cff9zE1FzbD7ElXZd0Hn2bpASRWiW591gXxbhMH4O+KyuasV0XM05Zsho7lX6qttddY9Z95rIBGatl7FBYeQkEjtWp6qzquvo++pxQoeSrr76K6+fx8bF++OGHpxpHsdoffvjh6Tt6T8yX87aKdQppPbt4M+tvFavjWnVsjWNmvGz1rKJCEVl7PwaftWm9ubh8mgNmi3ekZrhcu6uYOHMuXFawRLj1end3NwxvMBgMBoOOq2N4b9682Vh7XYEg+e2p79etCll5zAhi3Y09AfiU6Z92rT0Yn2D2p6ulI9NiFiP31VkojyfmQmvKxTjIavm/U3RIdYz8fKU6caS2ZS9+2nE6ner9+/dP45a17qzLpNfnaupSDWWqX3OWKdcZW6309d2z4Po5s/XPqkYxfcc1u6TlyoxmwbGPpPOa2EF/j2OkB8BlIes7zEJ2jEVzqtfHx8fINE+nU/3000+bDNIOMV4xvKSP6Z4lyRvAOe7bMmaXGF4/JzE63auKRXPeujeFc0elnVUdHtnYEa+XQD1hPtdc3JaqQ4np93lkfJ7bUNGm6llXtNdjDsMbDAaDwaBhfvAGg8FgcBO4Omnl9evXT/RR1NwJCouuM0XaBYDplqNLk0We3V3IpAUWj7riyiQouyp8T0KzDES7RB6mnfPVpfiyHIDHSa1NeOz+WUqWcJ/tuXfcGPeSHy6Xy9M1Vjq3C+rTTbMKlPMa7pUp9PNgSQHXoZM1YnIAE51W7mmOma4fJ2XmpPiqtq51d31Sijmxcm2nc+guJro5UzihC1Rw/T4+Pka31Pl8rl9++WUz1z1RJ8mYMYGizwHLQJIb2j1DmPjBBBG3L42BpVps+eSSllL5C59Zq3s6PUuc4LRbi31frqUZ3d4Ur14lPHH9Mqmtrx3eC1dJHB7+5mAwGAwGf2BcnbTy+vXrJwvFWWSpUJpFvX1bWobaPxkfWw45cF8uLZnvkQXIqnAsbSV54/7v+0lCxm4bzh8TDbivPlbKkJGBOVaYCrSTKEA/Tv9sFTy+XC4b9u4C9EeLyft4U9JKEv3u39GrEigo3+REC8heaGG7xJq0DyZrOaFcXhcyGidWzWa0KW3cFQ+TKR2RmKO1zjXb1w7XweVyiUlPp9Opfv7556e1wrKVqq2M1qrQnEj3FD0YXU4ryREyacU9d5SwpbT6VArQx0RG5/bP/8m02ErKPTs4Bzw+RUH6/ZuEwJPAf9X2Ocp7g+Ur7lzfvHlzWPxiGN5gMBgMbgJXM7wuEMzU/KpnK4jtJWjRuxRf+v61D1lv2rdrkMjCxVRk2cdNVrCyBuknTjEVVwrAmF2ygFfCzEkGy8VcaC0dSWEmC6T1tyo56NdtxfBOp9MmbtKvZYpx8pxdGj0tU7bvcdeWBdNcO07onGtFY1QchjGQvk2K76T4hXuPMXDXKiel72tOUjPjvh/O9aqVVWJ4SUqvatvmZnXvqaSF8XPFgau27JzjdjF9eox4fTg/q7UqcD325wSvK+9Pl6PAfIkjzyqOMYlFu1g+kZ57Gle/pvqu7gXGjJ13j940tpaitFn/7lFW1zEMbzAYDAY3gavbA7169WqTXditWf1CUxh3ZfmkWIZeyfBcW/mUPeSs6iRgTIu4W1Fp/4wZpThd/4yWl8syoiXP+NuqCJdjXcUIBO5X86Zs2xSbrXppja0Y3qtXr572K0u8N/PVMfQeYyir7NlkaZPpOTk1vepcGYdZWaT0SlAgoIPXO8ngufj2Kg7Sx9z/plRfyijtx9srUqeXoo+f3haNQ+xLBcP9PV2f1bo5n8/122+/PR3z3bt3VfUcA6t6flbovb/+9a9VtRVVXgkdJC+GY3grMfX+vouTU2aRIh1OeID3cDovx9bd2u/bOKbEuUleo45UlK59uBg150BrR+vDZWmyTZgywI9gGN5gMBgMbgJXM7yqrTXtBHmZUUXLsO+DQsisPRLDY+1R1fOvPK1kxhcpCdXHon2s2lgkSydlMbqaur1tO7ifJBPmWAj3n+oM+3Ujs9trE+O22cvQ7NeIguFV23qkNOfOO5CyMRnD6duyZi7Vw3XL3q0jhx5zoIXL/eseoaXvzof7dELkvE8oi0d2ssrSY6zItTCiJBrXrphdz7Q7ErfsY3p4eNg0gO3PEDE7Hev9+/cvvkMvQT/vVD+616LLwa1RfuZqEPv7q3rTVQ1d30dVvi/T/eW+u7r3Ehj7Ts2zO3iPMDuzewcErbe3b98u10/HMLzBYDAY3ASuZnjn83ljbayaKqaYgMt8S9lxbBvjFBuS8oiLk3H/tHRcKxyyJFpJtCBdzDD5tp3FQ+uMllxicW4MnCPHhqj+IKSYZdXWGjudTpHl3d3d2Rhej8cKrAXjfLlxMx5BMWfXeiW1a2LGbV/f9Cik2IrLgNVnXDPMXHYZvlx3PE/XMosxUcXyyNqPCF2nDMYOxoq0LhzDc4LNq7XzxRdfPM2X2HOf43/84x9V9SweLYanOZC4cx93ajvFmJ3G1TO9ycpSpq/zRlzjRUlempTx6RheUpSid6SfO/eXmvv2+4lemz31pv43GZ3eF3PvcU3Xxm1ieIPBYDAYNMwP3mAwGAxuAp+VtCLQJVO1DVTSBSNquhJ1ZvIKA+WrXnMUGnapt3TTJTky10U6uWrpjnAUOwWEjyR9MBEgdQZ2+0lu3554QIkfJv04dwTdH3tlCXd3dxuXZl87Kb09Xad+DtqfZJvS9erj1/VN7vA+bo6RgsOr5Ai6kOnS7K4ybpvKLZhQ4RLH9Jn2T/fuqqSFY6F7zKX3s4CaxeCuJOSIK4oJT06E+O9//3tVPV9/uTYpPOHcadwvX53bnYX/PB8n2EA3aCrZ4rl3MLWfYZFV8sbKZSwwuYv7W42V/SNTX7x+LVlYz2e/XNMdqbznCIbhDQaDweAmcDXDu1wum3RnJ+bLID4ZirOahMTwVoWSqVRilfJP9kmLxFmDey1+hFVpQxJ8dXJrAllgKsp250m261pypOSUZPGvzifhdDptWFwvHv7222/tOa6YqdaXrEoJCnOtuLTqozJNTiZslWJdtS445r44jj6fTKghg1i1weKa5VjpLejv8Tw5VtfiRaDou5sjbrO6Bio8T/da1XOpgpJX/va3v1XVc8KOG0sSjTjChJO81UqgnXPK5BUnrJDKAXhd+H7/TPtPZRWrZ1U6jis8T16oVTkHS1kEJSa565YS+Y5gGN5gMBgMbgJXMzyll1d5C4gMjkXkK+FPWlJkeg6plEBjZJwmnVMfkxMATowuMYl+Lox/cC7cNkkyTSArdDHKNG8rmS0yl1TQ7z579epVTHFXHIYWW2dryTpObLefoyx8SqGtykUEit2mmGffj5OB6mNz5Rss+Ob8OUHixDbI8Drr2YtFcr05FsLrT7bYSwzErgla7/17Pe5b9b/3b7pHT6dT/etf/3q6xzUGXeuO77///sXr119/XVXPjMG1t0oiy1x/bp4IV5bCbRKzX8XyEztnaVW/N3heia118B5MLHclyk5ml0oaqraxOxaaO6GDVYx9D8PwBoPBYHAT+Kz2QPqFdkK5tJrYzDW1qqh6/pUnW2PmZZdtEmiBrERjEzi2vg3lmSjtlDK+Oui7T5JfVVu2Qeaw8rGTPXH+XIwyFZyvrCfuZ4/hffz4ccM6+3FTXIcWomu5QqbHGLGL6bKY+5omnu78Vp9XbVlSyvB0bJ1rJrGR/l7KhEzZotxP35aehH4PduGBvg0L6ldyW6vCc60djqGPm2P47rvvqqrqm2++qaqqn376qaqeszf7uFjIzFi+Y8J8nui42pbPuw6uu9QEtZ9Xkh1LsT2Ot4NrdcUo9+KcjlHy+By7y1zVfLHQ3LFE3stHJN+EYXiDwWAwuAlcHcN7eHiIsYeqLeNIjRJXcmTcB9udOFky/q/vOEsrWZJ7mXdV+5mJq9gk543isU5cOcXUjtQx8Xisz3L1ZRzTSpqLDGjFbs7nc/373//e7LdbbpQmouXNOq+qbT2fZOcoLaZ4j8vSS7VTrgVMio8lBua2oQeDNY/OMuccr1hhaqfE83MSemR/tNJlefcYHuUCdY15Xk4eSvPmxtL3//vvv29yB3pch0Lc//znP6vqmTGI4TmR7VRjmLwq/Xg8R3qp+vpOTap5j/d5InMVUoZnBxlxal3l2FNqQ5Xq8/p+uf7opXD1v4rZ6ZXsrY+HjPv+/v5wHG8Y3mAwGAxuAlfH8O7v72O2Uf871e+wFU8HLQMK5zpWyLiPLC62JepjlOoCfcv0qa/Oi9lYqX7JIdWZOSuG1iAzoBzTozWeGNiqtiVZkP0acP8rK0tW+oqRaty6dqlOrl/z3ny26qWweB8TM/yqMuPm+TgWSkZCK53stIPxRWYHd9CaZZyRrYb6/jjX6b7t55csa8aDXQZwygp2Y+Q9sBIAvlwu9enTp83ad7FczZPWkBieGH5fo19++eWLc+TYeI87Dwbvdwp3u5jxnuKSux7pOZCucUfKY3DNsXnctFbcM5lxTMXTOUf9ujH2ztrrlNHc99fzSvYwDG8wGAwGN4H5wRsMBoPBTeDqpJX7+/sljaabjkFvuROd+GwqjGVxpaPRqWu6qLJLYWZJQSoI7aB7JqWJdwpOlwGD1a4QPLk96X51hcfJVcdtVmnidOscKU9YQUkrq6C4xqNr2YuS+7id65cJE5wnuRFXguDJHdnnlm6p5D7s++A6olh0+l7fbyo8ptu/jyndT0ckmTiP7JfIUELV1qXF6+jKH3piUFpH5/P5RdKK1kNPnOHa5jhV9L7qDM+EN4oYuBDHniutb8Pz45zqfPrcpj57TNtfyZIJSVBhdf9yvacCdHdeTF7SmHtJC7+bysdcgpJzle9hGN5gMBgMbgKflbQiuMJcgV1vU7Ft1TY4TMuALLFbFUxScQknVS+TGZjKzYA2LeO+DVmHQFa4kiFKAehVgJtMj/JnzrLbY7BOHJvJKdzGFbZybA6Xy+VFR3TX3TsV2VMgumNPEk1JCzofSU1VbZkcr+ER0duUvOKYBPfLe8KxhtRSRtC2nTWmdPpU6uLWjs6P+1K6f2chjsHxO1Uv2TXv8ZWVrsJzeiYc8xYSm+pyZEqBT88BjUnSc/0+TsXp9Gy5hCf+z7l2heecS/7virD3mPyqKJ7g88CVJ5Cpcj3ofVeqQW+Tzm9ViuaSrvYwDG8wGAwGN4GrGN7lcqnz+Rzjc1Vbf/cqHibI8ktWZSpA1pg6ksXQ/cbJZ01/eT8Oz0cWdZLg6eebRINTIWrfLy1HxijcvCZ2loqJOzj+xE779t2aTZa6YjSM66w8Btq/1kdvJZTOmXNL0eA+PqWla/+02l2BPj9LQsz9OIxbM3VdWJWYpHR0F3dM8R1aws5jIkuaBc/av+azx1QYR+a2+r+zUDKEPTZyOp3iXPRzJWsmU3DiDpTvIrPX52J6/bsC2Yab870SA45rtU0Soljd00kucCUtxrngdXK5CnwmsnRo5cnSefI+Xnl3Pn78uPQuvdjm0LcGg8FgMPiD4+6aDJe7u7vvq+q///+GM/gPwH9dLpd3fHPWzuAAZu0MPhd27RBX/eANBoPBYPBHxbg0B4PBYHATmB+8wWAwGNwE5gdvMBgMBjeB+cEbDAaDwU1gfvAGg8FgcBOYH7zBYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE/gfv3VZUE2/cMQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bWlV3vt+e+/TVJ1zqupUCxStQG4Rc9U/RMUodggaFTsexQZFr9dwjV2u1ygBtWJQ1Cia5Go0qJeIDWLUqNgHAfUqEs21QwGlrw6qzqn2nKrT7Xn/mGvsNfZvjvHNtfapkqfY432e/ay9ZvP1c67Rvl8bhkGFQqFQKHywY+MD3YBCoVAoFP4hUD94hUKhUNgXqB+8QqFQKOwL1A9eoVAoFPYF6gevUCgUCvsC9YNXKBQKhX2BB+UHr7X2tNbaq1trt7TWzrbWTrTWfre19uWttc3FNc9vrQ2ttcc/GHWi/k9srd3YWvug/QFvrX1Oa+3//EC3Yy9YzM+w+HtmcP7xrbXtxfmvcsdvbK3tKW+mtfb61trrUceAvztaa29orT3rIvq1p3XnnocnrXDt0Fp7CY5d0lr77dbaA621z1gcu3Fx7f2ttcuDcr7c9X223oczgrmO/t71INV1eFHetz5I5T1pMZePDc7d1lr70QejngcDrbVPaq29cbHmbmmtfV9r7dAeynndYgxf/FC003DRPxCttW+U9P9KulLSt0h6hqSvlPQ2Sf9J0mdebB0r4BMlfYc+uDXWz5H0sPzBc7hX0vOC418m6b7g+I9Letoe6/qaxR/x0kWZT5P0v0k6K+k1rbWP3kMdn6gPwLprrR2V9BuSPk7SZw3D8Ou45Jyk5wS3frnGOdgPeBr+bpP02zj2uQ9SXWcW5f3Ug1TekzSuq8kPnqR/Jul7H6R6LgqttY+U9FuS3qPxPf9vJL1A0n9es5yvkHTDg97AAFsXc3Nr7emSXibp/x6G4etx+ldaay+TdORi6vhAobV2aBiGMx/odjyU+AD08ZckPae1dmQYhlPu+PMk/aKk5/uLh2G4SdJNe6loGIa/SU69YxiGN9qX1trvSrpL0udJ+pO91PUPidbaZZJ+U9KHSfr0YRh+P7jslzSO6U+4+x6j8Qf6vwjj/MEIP8eS1Fo7I+kOHs+wzrMxjOwdK5V7sRiG4X/+Q9SzIv6tpL+X9EXDMFyQ9NqFRebHWmvfNwzDm+cKaK1dLenfSfo6ST/7kLZWFy+Zfoukk5L+VXRyGIa3D8Pwl9nNCxX2Rhwz09Pz3bGnLkykJxaq8ztaaz+yOHejRmlIks6ZucLde2lr7Xtba+9cmFvf2Vp7kTdDOZPb57XWXt5au13S+3odb609obX2yoWJ4cyiTf8e13xCa+21rbV7W2unFiaof4JrXt9a+8PW2jNaa/+ztXa6tfbXrbXPdde8QqN0fn1kjmmtXdNa+9HW2s2LtryltfbVqMdMaE9vrf1Ca+0uLV7wvfF9kPFLkgaNPy7Wro+V9ERJr+TFLTBpLvrwktba1y/m8t42miU/FNftMml28IBGLe+Au/dwa+0HF/Nw32KOf621doO75kb1192R1tr3tNbevpiT21prv9hauw71X91a+5nW2j0Lk9B/aK0djhraWjsu6b9L+lBJz0x+7KRR03h6a+1x7tjzJL1bUnjPYu2/cbH+7lqskcfimue21n6vtXb7Ylz+v9balwdlrTpHz2qt/VFr7e5FeW9trX170qeHDK21V7XW/n7xbLyxtXa/pO9cnPuyRdtvX/Tjz1prX4z7JybNxdyfb609efHcn1qMxQtba63Tlk/TKNBI0h+45/1jFud3mTRbay9YnH/qYn3Zev2mxfnPaq39xaL+P2mtfXhQ5xe21t60mPs7F+Nx/cyYXarRmveqxY+d4eckXZD07N79Di/TKCz8clLP9Yvn49bFc3RLa+1XF8/C2tizhtdG39wnSfpvwzA8sNdyVqjnqEZTxJs0Sqb3Snq8pI9dXPLjkh6t0Tz1cRoH2+7dWtz7jzVKI38l6WMkfZtGE+w3obr/qHGxPU9S+NJZlPuERXtOS/p2SX+n0fzwTHfNZ0j6FUm/LulLF4e/ReMi/rBhGN7rinyipH+v0dx2x6Jdv9Bau2EYhr9ftP0aSU/VciGdWdRzmaQ/lHSJpBslvVPSsyT9pzZKqf8Rzf8ZjYvyOZK2VhjfBxOnNWpyz9PyB+7LNJrE37FGOV8q6a2SvkHSQY0S4q8sxuv8zL0bi3UhSddK+maNc/2L7ppDko5JeomkWzWula+R9MettacMw3Cb+uvuoKTflfThkr5H4wN9ucZ5Oa7dwtQrNc7H52k0i90o6U4tf0wNV0v6PY3r7FOGYfizTh//QNK7JH2JpO9eHHuepJ/WKHDsQmvtBRrdD/+Pxhf9sUU73rBYq2YG/RBJ/3XRp21JT5f04621S4ZhoF+pO0ettQ+R9KuL8r5To9Dx5EUdHwhcrXEuvlfS30gyC8QTJL1KoyYjje+8V7bWDg7D8IqZMptGIe8nNPb/8zTOx7s0znmEP5b0LyX9oKR/LskUhr+eqeunJb1C4zx+iaTvb6P29M8kfZdGwe77Jf1ya+3J9iPVRpfUyyS9XOOau0LjfLyutfYRwzCcTur7Rxp/P3a1axiGe1tr79H4zu2itfYpGt9D/6Rz2askXaXRnXOzpEdI+lR13s9dDMOwpz9J12l8eF664vXPX1z/eHdskHQjrnv84vjzF98/cvH9wzpl37i4ZgvHn7c4/nQcf5HGB+zaxfdPXFz3yyv25ac0+pwe1bnm7yW9Fscu0/iD9kPu2Os1+lye7I5dq/EF+q/dsVdIuimo59s0LuYn4/jLF3VtYfx/ENfNju/F/rnxfYakT1707VEaf1hOSvrf3bx/FecVZQ0aBYwD7thzFsc/FuP6+mBd8e8BSV850/5NSZdqFAb+5Qrr7isXx5+9wvPwb3D8NZLeFvTZ/j55ledA40vrbxfHP2px/Mmu3ictzh2VdLekn0RZT9D4jHxjUtfGop6XS/qLdefIfb/soVp3aNO7JP10cu5Vi7Y8a6YM6/MrJf2JO354cf+3umPfszj2Re5Y0xjb8Ksz9Xza4t6PC87dJulH3fcXLK79V+7YQY1C0wOSHu2Of8Hi2o9efL9C4w/7j6COfyTpvKQXdNr4yYuyPjE496eSfn2mj4cXa+TFGMMXY7zOSvrqB2sdPByCPP5Oo4/lx1prX9pGX8Sq+DSNZpw/aq1t2Z+k39FowvoYXB+q1QGeKek1wzDcEp1srT1Zo9b2M6j3tEYJ7um45e+GYfg7+zIMw/slvV+x05r4NI2myXeirt/WKBlR0mIf9zS+vq7FX2qmAV6nUVL7EkmfpVEzffWK9xp+dxiGc+77Xy0+Vxmvl2jUlJ+qUeN6uaT/3Fp7rr+otfYFCxPQXRof/lMafxz+lxXqeKak24Zh+NUVrmXAyV8p7sfrJN2vUXK/YoVyf0rSDa21p2rUot/o15jD0zQKYlyr75X0Frm1ujDP/Vxr7WaNQto5SV+leEzm5ujPF/e/qrX2nNbatSv0abLuVrlnRZwehuG3g/puaIsIdI3r4JxG7XWVdSC5+R3Gt/ibtdo6XRdmBtUwDGc1WnrePIx+cMNbFp/2jH+8RkGOc/+OxR/fUw8mXqzRSvB92QWL8fozSf+6tfa1DSbxveBifvBOaHwAHzd34cVgGIa7NZoRbpH0I5Le00bfyuevcPu1i/adw9+bFuevwvW3rtisq9QPprCH9yeCuj8zqPdkUMYZraa2X6txYbKeX3Bt9djVx4sYX9b3CSu01RbxT2vUvr9co7R79yr3OnC8LLhglfF69zAMf7r4+51hGL5Oo3DwQ/aj3Vr7LEk/L+lvJX2xpI/W+AN5+4p1XKXxR30VRH2Jwrr/SNJnaxRgfnthyk4xjKbwP9Zocn2u8ghCW6v/XdM5/V+1WD8L07eZab9V48vyqZJ+Mmlvd44W7XuWxnfQKyXd1kb/WbqO2pjStKuN7cFLc7otqO8KjeNyg0bT98dp7PPPaLV1cGEYhntwbNXnel3cie9nk2Ny9dvc/6Gmc/9kTd8dUX2RL+1Kxe80SWPahca4jxdJunQxzpZGc7i1dkVbxlh8rsZI0BdJ+uvW2k1zftAe9iwhDaMd/vWSPrXtPdrvjEb122MyyMMw/Lmkz19IHx8p6YWSXt1a+/BhGHq27RMaJZ0vSM6/i1Wt0miNpsKeU/fE4vOFGh8Y4mxwbK84oVEb/Ibk/FvxfdLHPY7vU2fq6eGnFnV8qFZ3bj+UeLNGX8e1Gv1rz5X098MwPN8uaK0d0Pggr4I71PdL7AnDMPxua+05Gv1Cv9Fae9awO9qV+ClJP6xRM3lVco2t1edrHAfC/HdP0yg8fvwwDH9oJy9GyxqG4XUafUWHJP1TjWbYX2+tPX4YhjuCW27RdN2FVpa9NCc49vEan/PPGYbhT+3gYi18MMDm/os1WnoI/lh7vFXjuvpQOavRQjB6rEbLSYYnabSw/UJw7kWLv6dIessw+stfIOkFrbV/LOkrNPpBb9Poc14LF2sS+B6NvpLvU/DCXQR3HBvySM13a/pi+IyssmEMSHhja+3bNL4on6LRaWo/tpdod57Rb0n6fEn3DcPwFj14+B1Jn9dae+QwDJFW+FaNP6YfOgzD9zxIdZ7R2D/itzSG9L5nYQrdMzrjG137p9HxFet5S2vthzUG4kzMSB8AfJhGIcQ0zUs1Pswez9Poy/PI1t3vSHpua+2zhmH4tQezocMwvGZhfv15Sb/WWvuMYRjuTy7/eY1a1F8Ow0Bp3/BHGtv+pGEY/kun6ksXnztmykWk3Gev1YEAC2H59xYvy1/R6D+c/OAtTHV7Xnd7QNTnazUKRw8l/Lp6KPH7Gq10HzIMQxZEE2IYhtOttddqXOcvHZaRms/V+Jz01v2bNFqVPA5qfBf8pEaN/z1BnX8j6Ztba1+jPQqUF/WDNwzD77eR/eNli1/fVywaelzSp2i073+xlpFGxKskvbi19iKNkWwfL+mL/AWttc+U9NWS/ptGbe2IpK/X+JD+8eIyy7n6ptbab2o0JfypRtPDV2jMD/kBSX+hcWCfqPGF/jlDHoXUw3doXPR/1Fr7bo0BKtdL+rRhGL50GIahtfYvNEalHdToo7pDY6DPx2r8cXrZmnX+jaQrW2v/h8aH/oFhGP5KYzTXF2qM/vxBjT+2RzSaYT5+GIbuC2nF8X3QMQzD1z5UZc/gQ9oixFvjOn22xh+FHxmW0ca/JelzFuP5Go1a79dp9HV6ZOvupzUG4vxca+2lGn2sxxb1/NDFCl/DMPxSa82iLn+5tfbZkYVl8SPXTa4ehuGe1to3S/rh1to1Gn1Bd2tcz5+gMfDnZzX+MN6zuO47NK6TF2tc1xNWlzm0MTL06RoT6N+rMUryhRo1trmIxH8o/IFG3+2Ptda+U6Ov89s1WgEe/RDW+xaN/q2vaq2d0iiM/e2MNr82hmE42cZUih9orT1K4w/OvRrn/pMk/eYwDP+1U8S3azSH/mxr7cc0am7/TmNw0M4ctjFF6kck/dNhGP5kGIaTGhUluWvMzPrOYRhevzh2nUYB6Gc1vtcuaAx2ukSjeX1tXLTTdxiGH2qtvUljKO33a1y492p8Kf9z9X/pX6oxUuhrNfoFfkOjJO0TgP9OoxTybZIeuSj7f0j6VOeQfY3GAf0ajZPQJLVhGM61kTbqWzW+1J+gcQG/XaMzeU+mxWEY3rV4ab5k0YejGn02v+Ku+Y02Jua/SGMI+yUa1fA3apS818WPawyy+W6NY/ZujRGvd7cxl+3bNaY9XK/xxfxW7Q61z7DK+H4w4YWLP2l8gb9d0r/QbnaIl2t07H+lxjX8PzQG2DDgp7funqlRMPrqxecJjekXqW9jHQzD8KqFMPUKjSksq/i0s7J+rLX2Xo1+qi/W+F64WeML/88X19zextzQH9CYSnCLxlSaKzVNoVgFfyHp0zU+P9dqHJc/lPQlHY31HxTDMNyyGNfv0/gs3aQxhP9xkr7xIaz31tbaN0j6vzRqYZsaTcoPenL7MAz/obX2bo1h/1+2qOtmSW/QMtAou/dNrbVP1/hO+g2Nfr2XaxSEPDYW5a7rd7tv0YYXaDSTXtDoV//CYRh+a82yJI0P517uKxQKhULhYYWHQ1pCoVAoFAoXjfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvUD94hUKhUNgXqB+8QqFQKOwLrJWHd/z48eH666+X0ZjZ58bG8nfTjlm6g31ub2/vKsunQzA1gvfuJXVinXsezGuj8xeT+rHq2PTqzT79nGT1nD9/ftdnBE9rd//99+vs2bOTfJtjx44NV1111aTuaB2s027eO0ex91Cti4u556HCqm3pjdmq4xpdw/eDP7+5uTn5PHHihO69995JRYcOHRouvfTSSX+i8uaei956i66ZQ69NRHZulXs4D6vU69/L0TXRPdk1WRujd3+vfB7nGrFPrg+PCxdGUpdz50YCnGEYdPLkSd13332zi3StH7zrr79er371q3cacemll+769B2wRj3wwEhecebMmV3H7VOSzp4d87/tpcoORS9HYu7lGC10a2v2Y+zvsTbZMWsbEdVn9/JHI3oRZP1iWSzTl23/WxvtO+fAvkvjD5U/Z/fefffItnXixIldx/21th4OHDigN74xzo29+uqrdeONN+rUqZEswubcl2ftsTG08u1aO+/7ymsNHDcb6+hHnuNv11g96/woWzv8i4Dry8aL19p1/l6+tNgO9ruH7Nnwddg5O7bKDx7PHTgwUk0ePHgw/C5Jl18+krMcPz5yDx85ckTf9V3fFZZ/5MgRPeMZz9hpi62Dw4eXHMz2DuJ7x78UCTtnn9lYRs9pT/jy98yV449z7D3m5mFra2tyr/1v42732vpjvf6YXcNyWabNrb/HjvHH0o77Nlr5Nn/Hjh2TtFwfl1122a76pOW76tZbR1bH06dP66UvfWk4LkSZNAuFQqGwL7CWhjcMg86fPx9KBgZqOJSEqEH4Y5Gq6hFJN6xvFW1tro1sl7+GbV3F7EpNgddGarshk7TteCTZsT/2afXwu/8/M51Ec87yo76xL5QU/Zxm2oxdY331sHng2lhF82EbWH9PK8zGOFqjlKgp8a7SRgPXaM9KwLngMxj1j/dmJq1Ig43MlFEffPk9rcbQWtPBgwd3NLtovux/swbw+TREzzTLWGWM7RqbQ75T+Dz5+7PnPepXpkES0TNtoCUmem55rb2DqellJlV/L9vCe/xzzDHPLFdewzPN/ujRozv39taPR2l4hUKhUNgXWFvDu3DhwkTq81JTJgFkErG/nxLHnMM0qo9+uag9PSnF3xv5iiiJZNJgD3PO5N45Ss09/6ZJUpEWyLKz4JSeJhvdk41pa02bm5uptrNqn6J+SFPplXMc+dYojWe+qEhbzHyH0ZrNtNp1/GSZBtlbb1yb9NlFEj7Hnm2NxsrWF3049snzUT1bW1vdIIetra2JdaU3XtZeW5vRMx35kXvw45XNXfYZwcalF5BCTZH9IqL3HMvNLFxRW2xsOKfUtqO2WVmmkUXPs92TWfkiP7qNm2l43uo4h9LwCoVCobAvUD94hUKhUNgXWHs/vGEYUme4lJulVskBo1pKM1Qv1yQzNZpK7O+dM4n0gnGy42xHFBBC0LwXmdsy00jPZMu0BDNDsD4L75WWZgcL586CjaL0B//ZM2lubW1NxsJ/t/bSzGHomUGzAKdVgm6ytRnN21yQUhSYwHXNoI7I3Jq1Mauvt2ajVCBpau6LrsnKj9Y311mUjsByVw3K2NjYmMxH714+//bdzJjScr3ZMT7LveC8LMirF9zBkH6u895cch1nqSyROZTPDd+JUV5c9p3PiB/PLOiLwSp+jVlbuGYuueSSXecjU+2hQ4ckje+uVfJEpdLwCoVCobBPsHbQinfw2q+ul/rtF5rnMknIH6P0HIX2EpReMkk00kIp/THAIZJ8Micynfle2snCs5mIGUn4mYbHNvo5yOrLtG3/v2l6dEpHWgITds+dO7dyWoLNv5+XbL7t2kjaM8xpJtE4cr6zwKRIe2YZRE+TzKTmKDgmSuPx6IWYU4PJyo7GpJc+4q/z5zi39mmSeKTteI2ht3YiRO3OtHWSF/B/KSZSYD2GzGpDLS4K6GO5HOModSLTvLJUEP9/FkgT9SGzwGQWk2gOeC2fGf/uJ7lERqzhx4Tv3I2NjdLwCoVCoVDwuCgfHn1Edl7KUwyiEOUs9H3VBPGoHn6PQqJpQ6e0HNWT2e5Zj28HQ3p5fJUEXUpe1E57/qYs5SAKLSdlUM9vQulrc3OzK6UPwzDRHKLk4UzCjkLLs3SXbA359mc+Lq6HnrZGRBaMSJvxx1dJBObcsR1RmHrWj0xa9+eydITeWp3TOlYhR4gwDIPOnj27owVEGvEc4YS9q6jV+WtIbGDlR4QHBr7P7Pk5cuSIpDi1yTReGw8meXttPps7+vCZIO7Lz9q8SmoQ0UuLYdv47oqo7Eh7NheL4cv1lp9VrQOl4RUKhUJhX2BtDU+aSpVeC8hs6b2IJ/pzMoqvnu8pk84jyZfSJTWVKKk4o5DKIqEiKcb6Sd9d5M/KNJNMEupFdln5pGyL6qPGyAi7yL9g5W5tbXUlre3t7Z3yrU29KK8e1ZuBtn/ON7XbOR+k71eWXO7bmiUgmxQvTbVkjlGPeo7tzpKIVyEv4BrtJclTq8mSy6NyaC2gX8u32/vTe/7QM2fOTMYnmpe5JOvIEkLfWjZOEfic2KfNv18H1gZaemgV8mOfrV9aP7LnNWp/Ro/or7X6uA4yv6Avh/PNtRNZlow8OqM/izRlTwxRGl6hUCgUCg5ra3gbGxsTCcFLARl5a0+qZCTVHM1MJKVH5/z3XkSXgdJUpAExh2UVDY8SL23o7IMHfQ/WZm5/EmmjWV5bjxKMfhdrq0Vv3nvvvTv3ZFpVhGEYdkXiRb5VajrsB79H/aeGyrGOor04p/weRSZnuZzMrfP1ZP62zD/HuqOyesTjGXUV7+n5mzmekYY3t61O5MNm7mGP7HsYhjDa0cM0KTt38uTJXeft2fPPPCPKMw0v8nVyvXGt9HydnJeeZcnWBrdQo4UhWnfZNkA9y1Jm5bBPe+/YWEXPvuXQGexae4dEcQC0FvZySO1//z6tKM1CoVAoFBzW0vBaa9rY2OiymGS2ZLJ/+Ggpanj0U9lxYwbxfh8rhxFcGROBL5+2ZWoLka+QfrGMkDnKM6QPr2entv9Pnz69q5/cUJfX+/bP+UQ904r1izlb1tbIJ3HPPffsunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN64orrpA0bngs7R4/q4fjFVku2C8+C3wPRdr7lVdeKUk7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3iEY+QtNwzjYEi0vKdcccdd+xqJ03B1r9o/THg5bGPfaykpWnTj8V99923qx5rv7XDxseeA48o4EOarn+rV5KOHTu2655rrrlmV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bftddd+1cS3O3mamtbdYvGztpOQ+XXXbZThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2tM2fO7JTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT33XdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbr0svvXTlQLbS8AqFQqGwL7C2hnf+/Pkw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+8847JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzpw5k4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+PLLLy8fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych+u4J89AAAgAElEQVQ5WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6SKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67/PLLd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aX22+/XdKUYcVgWqOfZ3s32rW0ekXWNr6vL1yoDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7hCU+QJF177bWSpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95www2Slu/6973vfZKWjC9Szt1p7aCFw7fFcO7cudLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg6uuukpSvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zdve9jZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy5cmES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV55syZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/LKKyXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi3LlzK6cmlIZXKBQKhX2BtTW88+fP70hEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75JHPvKRkqT3vve9u8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz5kzZypopVAoFAoFj7UTz8+fPz+xW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zpw5MyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3muvvVbSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHr/+98vKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPs111yzc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8Y999wjKWZayZgoDCaZRNrMHLltZAPONtE0KYKbr0blZAwhXtLKpH76DBiR5Ntm4+W31JCmvkMPSstzW7FE5XA7lV6eF3P4elv1WLu9P64XaXfgwIFJdF409vQR9yItOQ6ZZhf5WqgdUnvqbSVEX3HPR20g8wjXbkSoTX8vmTyoMUvLsSWbDUnToy2tsq2keljFz8fvnP8eAfAwDHrggQd09dVXS5qyKPm+Zc9JjymI80yWFLKP+PI4D7ZptD3jfr3xecmYcHoMSMwNpRbttzCiL5eWK+uPMbH4+sjCkj1X3jqXRVkz/iCKwchyrSONzyxk5r+c25bMozS8QqFQKOwL1A9eoVAoFPYF9rTjuamoFqzgTQI0m62SmGuml2x/uB4JLq+haZGku/5+M5llZMtReDBNJdyPjqSrknZMwAYzO2TJ3Rwf30a2JzvvkYXQR8mcmdO4lxRLE22EjY0NHTx4cGfNREErNBubCZhUT72+ZYFNUb8YAJAR8kZ7KZLQgCa1XiAIqazoBvB9ojmI10QuAo6tXcM0koiUnWujZ2Yk5qgBI4KKLPWI2NjYmLgGPJkzg3uy+eiZtNkmkjp7F4cFi9jYmXnNAtMMZn6TlvNg82JpFjQfRsTM2XvV3lEnTpzYVZa0fC65nx/b6PvJpHhrC9eq1ROtHb4L+U72zyZ3m88S0CMKQhvHSjwvFAqFQgFYO/H89OnTE2nDS3t0ckbbsvjj/v85qTIqK3Ke+msiaiFrIwmFqcV4yYF9ptTC5PIo8IDBKdnu8P5YFhqd0Td5ZJRFUYg+t/2ItnHy90rTgKC5wINhGCbURV6ii3Z89sejpP5Muotoz/z3qM++rb5s3x6ThjPpNUrCpuZobck0Sz/GDL5if62flsoRtZvabU+bz3YrN0QJyFmgTqZ9e0TWBoIBTxkdlS+HgToRGNTBgCC20a8TS5Gw9WAans0TU3Z8OZzvnoXB1hXXXZTCIu3Weq1NrCfSuA2mFdpYUJumNSxClkZmbfUaJZ+fjMLMk5tEW79V0EqhUCgUCg5r+/AuXLgw+cWObPOZZM1fcP9/lobQk+h4jtKmtceTFJv9ndKFlWFt9lqj9zX5crME1EjDo+TI7UCi5MqMssw+o/B+SmGZVuBBTTWTkHuS1FwyqtcAOdZR2etotVlod08ize7hGPt1kM0zQ/EjDY+WBfrjIpKE3jZQWb+4xQvL5fYtUf8y0uoodH6OqDtKio62+uqtrcja4tcb7+X2OazXn+M64Dq2e0yrk5ZailkseqH3vIfzHVGKGUyziUjwozZ6TYjWhiyFyq83vs+yNkbWNq5nriGmR/l2GxjrYf7GaO14P2JpeIVCoVAoOKy9Aey5c+cmElYUxUYNgZRcETIaqB4xcKaB2D1mQ/fRUoZMKovooeibM5+J2bZpV44orKz8jPrJI5O0SdPTk2zos6M/07eRWkdEc+Tr92009Oz6dn1Gwu1B3xIl4l493LYl2krGkPlBKGX6e+mHY0RvNB/0PRnmNrr1ddMaQKqxCBllGed0FTJfItLM+PxkScQevU2dCWsTowyl6RhHWmBWD68xbSojL/DXRMTY/nxk/aLVhhp4ZB3K/G6MXPVk1SSTYBut7T5Zndu6MbKX2wJFUc98Frg+oujwzCce+fW5vjY3N0vDKxQKhULBY+0ozfvvv3/n19gkhEib6UnWvMdAiWduK5YItDnTnyEtJRqzd1MCYX6eNPW/mOaYUZlFOXVekmL5vmxpKp0zl4q+sEjSyqI0mcPj/7e+W32raObWvx4BsJFH90jEmdtD30NUduZvyST7yOfAfjBCLaKHstxKRvZF0Y30I9IPQz+3bxd9UZlVIPLDUNth3tIqm6JmPpao7sxS0tOqvMWiR0u3ubk5aZOP9uN8r2IBMWQWg160LvPGMqL7XhwAn+GI3Dvzu1KjtXdLlBPL9UXNy/eLPsnsGemB77mMpF3S5LeE74Aod4/XRP7SDKXhFQqFQmFfYG0N79SpUxPJN9rqJ/N1RHlxc6S90fYcBiuP+WPUJLzd3/5nFBu1Qp93Q42HeWS0cUfSICV78wPaZyRpsj8cR2rD/hr2q+c/Y55NFuXW8y+dOnVqVsOj7ymyzfOzpxX2cgs9VmEGIRG0WQBWyVPrbZ+SEePOtUeaPhtWBiXxaOsdtpF+rYgVaNVtX/y8MWq7p9kRts6OHj2aXm8bwNKvFOUrZhHk0TuEa4eaD4mU/bxQA8n8c35sI9+jtNRu7NO/J1gPx8DKjO6lxSDy3fN7FgVq6Fl6WK8hi8nw9bH97HdkwfDrrXx4hUKhUCg4rB2lef78+R1thxuNSlNfSeYDivxHGZdmZnuWpr4tStyRVM1cQCvjrrvukiTdeeedkzaSBYF+OfYhkvBtvExKMz/Q7bffLoL2fNrbLZcwiiTM8l/su7XVszJwnqjhRSwg1EgOHTo0m0vV2zIm0xSYE+SlvYxFhGVGuY5ZBJzNqX1G/ljmP3L8/DNBjTpaI/54lHNm9dk9UYSdIdoyKPoeRdqxbZzPyIdITT+L1ow0ZS/RZ2tna2tLV1111c5zErWNPnRq1b3NdQ0sl76iyGpDqwPXg2dasQhKajVkafJzSjajTNM3Dswoh9Peb7QKcbNnD2rMnNPoeVqV0cevA2p2/B7FRDAytrg0C4VCoVAA6gevUCgUCvsCa1OLSUsV2JvEDNGuzf54FBLP4Aorl87VKGyXJtQsfNsHoFjd/GSSum9jlBQa1Rs5qy0oxfrOnahPnjw5KdtMFdGu8tLUnByFC2emNLunNybRVjVsB8e+t/OwhZbTBOTNbNxtPQtiiQIrsiT7njmcSa4Mge4FhNjO1hy3aGspBjwxXaQX6k1yYiaeM0lamgZQZKlBUdpP5k6geTIKLV/HpGn1eHNe1s6NjQ1dcsklO2MQmeAys3QPWbrLXACMP0bXjX2ay8FTGppJ9jGPeYyk5dzSHOtTGTJyDJr1rCx/LwP5+Gz2gsCyIDn2P3JxZIjm19pLE2Yv8Tx7xldBaXiFQqFQ2BfY0wawBtOIogCNLJmzl3CekflmCdTSVBOh1BIFHpj0YJqXbcTY2+KH5VJLojTlpVA7Z/UxwIVJzL69mdOdjudomx0DtQ6bN6+F0IHN+YuCVlj+XOL5gQMHJhpkjzIoc5z7ttExnmkJUZItpchMM+kltlLriCwcJuXbPGf0V9EzQ5IEBkdEWgrnci54ICKOIO0Zxy9abxk1X2/7K27rFeHChQu65557Vkow5tj2gpYMXLPZOoy0DI61PVvR+rZ1YJ/XXHPNrvrtHt9Pa7cFvERWLn9dtIaYRJ5pfNLUCsX3UDbX/pqMrCA6z/IYbBRti8W1WEErhUKhUCgAa2l4pPiJCHOzkOvMNuyPMVzeNKNsuwkp1wZ65K4kB2ayfCQxUCtjv+h/jGjJooR2aSkV+qRPUu3MkQZ7qZB9pobnNTL2L2q/vydKPLW6z54927Wnb25uTiQ4no/6yH54rYCSNLWJnr8s0+h6PrVMi2HagF+jvMd8xKSHisLts21Semk+vQRuqZ94zLZw26NojDIJPvLzsF+raHjnzp3TzTffPLknIpPwaQC+DdGccjzY7p7VgNYm+vB6KSbZxq8nTpyQtJse7LrrrpM03SYo2tCY4Ga0pFns9SuzuvXSijLNuOe351hTg+21dR3Nbqe9a99RKBQKhcLDEGsnnkc0RN5fRemR10TRf9ToaD/ONuaUphIckzfts7fpqUXcUfOKkjhp485Ilr0ETts5/TD0x/hrTXK3tmZbJs1pVr4e+tGiNrLfPQ3Pj0lG7WVJ5z3pP6PC6m0llEWPMVo2ktZ5rKcNGOYSsqPIMUq21i9q3BEYlce2c035tjCSN/N9RBuPciNg1hv5VDKJvrfdFiM8I2xvb+9aW+YLNY1IWvrDSMSQkTuzD732G/y9GdFERnjvrzUN36KzDfYM3nTTTTvHLNrTzl111VW77rG2RhtBWxssdsDGy/plfkH/zPco8nitL8v/nz1HfK6lXKPrRQWz773ocKI0vEKhUCjsC6wdpXnhwoWJ9BL51AymCVFjibQLag9zvgFpGo2VUQv1KIUoRZMIWpr6NLKoxl59zOuycWTOnbS02WfSUi/Sim3OtM8epRTrod82quf8+fOzOTHUxP06yAh/ud78GovIs/09meTo68k+mYPm/8/8ffS5+r7ynlU2tOX8ZmTiPe13jn7N94HXkNop0n4i+j5/3D69lkrfXWut63v0eXVRbu3NN98saakBkSCe1gKPrG9sT5RHmEV/RvNic2e+tNtuu03S1E/r3wPmk7T+WRmM2mWUuDT1y1M7z6w6vk2ZxS7qH8cg0956EeV8R/Z8/ZkW2kNpeIVCoVDYF1jbhxdtPx/ZjbNtMqIozezXnIwKEatIJtmzjEjjyrSaSGLIbNeZnd9LsDxmbTRJztphUpu0lPYoSTHPKNL0eC0JbSPy6GyDWY6Vl6opwc1t0zEMQ5on58ub2wA4qiPTAinVRv4D+ryYHxf5/ShdMlov8nVnEY8cE/88MSozIwSPfGrUVGlBiTSZTFqmVO3vidZB1D8/9mTN2d7e7uZwHj58eEKcHD3T9P+zr5GWNsdEE907lzNKn6u/x8bJfGu0nnjLkr0jrK3mh7PnkNtEmc9Pmm5kbeXaPdE4ZhaMLHrTIxuLHmPNqhGdfu1yHFexLO3Ut9JVhUKhUCg8zFE/eIVCoVDYF1g7aCVywnowwZcBGlE5NKPRBNfbT4lO3IygOaLtYjoATTJRG0klRhJcmgB93VlgTbT7d0RvFpUR7b9mYFBEltjvzxmyYInIdLCKSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNLbW9v7zLVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw2V199taTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQmFfYO2gFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201nba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdPXtWN910004gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5p06d6pI3eJSGVygUCoV9gbU1vPPnz09Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCw54Sz00iiX59o0gjjygybM5nR3ipyYhYmbydUY5JUxJfRtpFkq+VS8Jdu5Yan4+ANOmLW5dkEYa+nsyvQGk6iiCLaNyisjyodTDSqxcZN+fD297envggI8LsjNYqkhyprdu9XEMRTRjPMWo3IlagdE5J28a8F4XMfmRkDVEbs4jliBAiS+Zl5HJExp4hirTL/C22VqIkbParp6biXQYAACAASURBVEW11nTw4MGd54dJ174OG0sSwUe+/WwesijNqLyMpi1679AnzLVriLZ6IjkCzxv8WDM2gJ/Rs5KRfZiv2u4xTS+Kfu9F1Uu7n1+OLZ9Tkoz7fq0TnWkoDa9QKBQK+wJrbwC7sbExkbAiPwwlIPoPPOg3yiRTg5cYMrohSlORVsBIKqP6ibRU+vWy6Dn77iUSRsNRAiLBtm9vlqPI8fXSDvPuqI1mm7x62D2kHIv65fNs5nx4lJp9edR0KeX1NJ+MHDiLjPT3chz43a83aiv0X3HM/bksRyzb+sffOxctGUWxZWTsmQbo2zRHzRZpeJlUbscj4nGvXfWoxTY3NyfrIPKTsi5qHb7djMplXyNt1kD6uSznMBonfuf7IHqfZpSCPX8Z/bF8Z1hZXhvmO5BaKNdu5I9j7vUq/jU+pz0Njz7hVf13Uml4hUKhUNgnWFvDO3To0MSW7n9x6cPKJAQvfWaaBiXHSEpnjgylMUak+Tbwk9Fyvh76vTIC6oipwvxgjHSkNLhKBGGmKfvv9N3Zp81blCuYRXSuQhbrmWN6Gt7m5uakz94Pw7GM/GFSrJH0iH49IuaLbMudKB+Tfc58NhEDBecuk1R7DEZZzlYvRzHLEcwsKNE55tr5tlPryyJje9adOdi7x/ent9VT5g/1a8fKY75nRgDtx4kWHvpyuT6iNmTvjCjvM/Mv9nLq2CZGATPHNxoTe3ex/CjOgZaMLPIy0goNXF+Rhkc/ZpFHFwqFQqEArM2lKS1/5e3X30vpjEikL633S5yxstA+H+VhmURyzz33SJryVXrNj5I8/VU9mzAlK0qbUc4R+TcNzFX0kgtt2ZQG6ff0YF6P9c+O26fNn7QcH/KXGiLNtcdiQpgfhpqQl8DZpx63IkE/Ka+JImGp6XIblch3k0mtWa5br92ZRhdFsVm9EeuHb7u/3zNRRH2Inieuu4wHNlqrph3wWYgiSTluvRxOWzvUHKL1QY5Ze+Yuu+yynbJ8uVLOztR7Z9FHR78zI7D9/yyPliv/TM9FOnJsfX183xCMGvdtsX5Z/h3H1RDNGa0DfAdHFkH6Fcnl6X9jInal0vAKhUKhUHCoH7xCoVAo7AusbdK8cOHCxGzjVeMsTJaqrz9PZydptKgaR2Y1mqzoqPfmO5oQrG2WTBmZpRi8kW19ESV1Rw5eaRo0ETmc+Z1mIkOPqs1MWmbiiHY8p2mE5qMoHJ1BHYcOHVo5LYHmr6jdnPeIJo4BIEzb4Fx6c1EUvOPLp5lKmpJSk4Yq2vGc9zIdhmsq2nonSzTvbQ/VOydNTeq+PkNmaopM9wySsDGKTGscn42NjVnicZKKR/2imZaUb1GidBSc5BERnlvd1jea4SOTJlOouEaZNuSPkeSDwTm83te3CllBBqYy8B0cmcOZnkAzebTesi2EovXGZ/nMmTNl0iwUCoVCweOiglaiREluw5FtzOgRhdSuUr8HpQhKCJHUbGCwQpTEzAAXK8OTtfrzXuu1e73j1dcbke9GKR9R2w1e+qRkb+esTGtbNI7UlClxmRNbmkryq5BHZwEOvjxuwWSIEtCZmMuAhl76RkZjROk8SpuhNNvTJFlPRqcUabB8fkhEHgVCMBWIY9AL+mCbaFlgiLsvL0qvib77/kRE7Vl7sq2gpGlwHLUnauYsO2oL33N+rVrdNh9GccgUBz/GXKt8R0bpGww8s2eYa4lbjvmxMI0x22IsSoOgtS0LJuklnrON0frPkvyZ1hGR4/s0qyKPLhQKhULBYU/bA9F/EP36mtRgNvTepppzW6BQMohsz/RHsMxIqqAWwxD/SOpkeaQyo8TV6x/v8RKr1Z2FoTOZ3PtJMvLoHqUY/YzUuiN/D6X+ucTzjY2NULNjeRzjXroD10K2VU3Pb2H1kIA48hVl9VHTiiTObMsdzkeUajJHBN4j5M2+94iiM2k9SkHhPGU0aN5awXJ6bbH3Ti/kn35Yapv2HvJbCmUbC/M9QwuQr8/uNQ3PPlmHbzetYFnqka+b2hi/W/+iZPzoOWU9BhKD0OrFLY58fXYu0zqjeql19lIYDBxzvyn5HErDKxQKhcK+wNoaXkSKGyWCkxDZ7mOEmjSVCDMSV5bhz5Fupic18Rr2J5K8eX+mMUS0RBndWY80lvUxCszGl5GNHiQypnYQ2e4NjAaNbOkGLwVmGp5pd9RyIx9AJvVHEjnblW2f1Nu4lFImI3x7SeSrbHLJsWX5rKe3bVO27VEUuWrIno2eBk1Ju+eny85lWyj5cg3nzp1L18729rYeeOCBHe0sog0jaQTfHZHfmtpSpLX463qEB/TdR32mBpSRFfSsX4YseT0iEWd/snujYz36Od92j8y6FvnwqHXae7NHzWaa3R133LHThtLwCoVCoVBwWEvD297e1tmzZ9OIOA/696hdeNssJZ3MJxD5ZzIJJJMyfX3ZBpy9/mQkxaQH81I6xykjSfaSD9tGrdNy6yINjxF89EX18svYd+uPSad+3kg71ENrbZcGGOUm0m5PX2s013ME41xDkcRIbYNWiCh3K4tIjMYxI06ndhZFXGZaQJYP6o9lfh9qtJH0ntGPRVGOmWbOiMXI/2uf9913X9f/u729PaG9iwjTTcOy6GkbJ/qxpWXeLcvL1l8vEtCej+PHj0uKo1lNe6Efu6dxZe83jvUq6yDzk/Y0ymybt0jzZCQs57jn/83e8ZG/9sSJE5Kku+66a+feuSjfnb6udFWhUCgUCg9zrO3DO3PmTNefQ6mFGlEknfEeaoOZtO7vpdZCSTzariVD73zGisF+RZF9c59R3h+vIbNDFElIDY9jE+U9UoLLojMjn4S3t89FaXJM/PUZaTPXQ5QPRe0lqpNlZz6cVSMH/bXZ+EXlG1bx/82ReEfPRHYuy1X197I/WS5Vb54z/3lkOfE++DmmFdPOmM8qTTdxvvzyy3e1pUe+zb6SeYWR5/5aO2baYhYZ6f+n1kTNKPIzc2w4H9mWPL58RkFHGldGik3rhCGKvOU4ciyi+uizY399XvOdd965q23roDS8QqFQKOwL1A9eoVAoFPYF1jZpRiGgkSPbVFSaEMxhG6Ul0EGZJaJHjtJ1CFHphGZQRC/hnPXye2RizHac7u1ibf9n6R1MT4j6x7bTXBCFstPB3TN/8NpVyH95rW9rRkxMqjc/TnPh2Uw9iMyqmbmm16+54JXILMkxnks1iPqXpTJEAUg8l+1fGJl5M7q1Xpg6TZlZOg7/t2uz9WMBT2bOj2itSL1G0yapAaXls3P06NFuH5ny4s8xyZpmYp+eRFMszfrR2NIczPLtk/VHbbS29NJ/MrM7j0cm1Iy6zNBLaeG1dBGYGVNapiV4Iu0eOcWucle6qlAoFAqFhznWJo82LU+aJnd6zFETRdLenGYX7YRNh2gWtp31xddriHbNpjSehSxHSeuZJsGAlFVSC6jZRdRS2XYcJv1G2g41x2wbkl7i7hw2NvpbwBhIX8T1wDL9JwOcGCgQjTEJwYkoACVLR4jGaS51pmel4LlMw4vKzQKrqL1FWkGmKffWQW8bJ2m3hsN1u6qELi3Xsdee+AyfPHlS0jR1JtLwTAucGzffn0xrYt+joJVM847ep9mO6lkyd7QTPdvSS/PJiMazwMFewFNmLfD94zPNoBujTLv99tt3jpmGZ9d6Qos5lIZXKBQKhX2BtTS81pq2trYmYeK9jUTpQ4ns+/Rh9MKYpZiCy6SXTALuJZ5TaultB5OlJVAy8n2ya8wHkW3MGW2zxGvn6MI8rI3clDTaSLdHnyTF4c6r+D55Pe/xUjqp47h2DD0tk/3obVjJJPiMkKAX/kxNJfJNck1yfdGn69cFLRarWC7mJG2Ggkc+FUrlGQG6P8bUEPph/DO/CvWfR0Qj5tcOLSB33323pKWGd911103abffYurPUAq71qG0cn+xZWGWeetujsZxsg+YodoHvRt4bPfOcl+z5iqx6BlpV1kmON1j9pqlbsnnU/nVQGl6hUCgU9gX2tD1Qj+yWkrW/15/34DFqWpQMvDTDBGxKLT0fQbYpbSTZs9wswT66N5PO+Bm1gZoepVJDRGVlMA2c2kckpbM8+re8JEbN8dy5c10SV08BFEWI2f8mwdMPZz4gs+v7ujMfXs/nwDIMXHfRhpy892Kig7OoXX+O89MjY8ik8Yy6LZoD0554LbU2j8xfb4i2esm2v/IYhkHDMKTzJC3Hgxsn33bbbZKWmp7XCml5MQ0vi4j0/SHNWaZNR9o6+0EtNyKtyOaf89V7Z5Hu0c77d4k9Y+yPoUc8niXwcx1EW7Wxv/ZpGp5F3Ub12PpYBaXhFQqFQmFfYG0N74EHHtiRArxkb7BjpJFhBGYUxch8F2pthkhby3KoIo0zI+81RNoA/YpZtKbBf2ff7ZMaUtQvO9fbvJVtpa+I/oVsXP29Wc6gH0cS8s6RSLfWJhJrFLFFaZUbZkaS/Vy0ZiSlUyuf8+16sG29PNBsbWR5mJHUPNffSEtjXmOm6UX38loiGhPW0/MvWbttrj11VATv/2UEs6+DNGCmvd18882Sllqc70OmYfc20s38okREaZhZlnrjlZG70xrm22jzwefHxry3vlkftcLo+c0Ix3mP7x+faavPrDg+/459NsxtPO1RGl6hUCgU9gXW1vDOnTs3+VWOfA5mF2aeSiTFMh8qixikDdqXb7AyqGFGkUhZ9F2Uh8dzlNJ67BWUvvg9IrimJpyx20SSX5ZLk5Fy+/rou+NYRL5J7wPIxnRjY0OHDx+eENn6+bN77RwZahgF6PuU+fJ4T8TOkTGCRD5Wrl9q+qvMR5ZX2FurbGvGiOOvoYbH3Mpog9DM19kjKZ6L4IvWCbfKuXDhQldK397eTqNb/f/0cVv5tpWMbRoqSY95zGMk5ZaJHpsOtSe+3yItLrMosA89rTBb13Y+2ng6W8+RhkftNmNAiXIGmROd5RlGeX+cv3vuuUfSUkOP8hn57K+C0vAKhUKhsC9QP3iFQqFQ2BdY26Q5DEO4P5Qhc+LT1OlVVFN5LfSUajPNaVGABuu3emznY/Yj+t4LbaU5MCP87YX8Z0EkUcK7tZ8O+iwxNEpLoHmC5oEehRXNHlE6hJXrzUeZWaq1titgwPrh6aY479zNnakYvg1ZP6KgDraB4fJZ0Iy/NgstXyUtZS5JOQoUmUstiOioSH/lx1+KTVpZIMMqQQFZsEoUrBARXPeo3SJKuCi5n88/zWo+vN3oqh7/+MdLWq63jM4reqa5rnoUczSRZmuoR0uXmRSZwuPr4SfXY0QCkqWYZJR9Uk40ntXvx8Dm69SpU5KWJs3eM+GJEypopVAoFAoFh7XJo72kZdJ5RC0WJaVn5RiiREhpKs16STELjsmSLf39pCPKAh/8NavST0XJ8ZnWxO/SNCGXEiMDBPx4UmPJdmH2CdyZ9MmE3kiT8OugF7RyySWXpImsvl02DqadM/ndS8BRAmx0be9ezilp8KLgnmy7plW0mbk0hUjjYjI0AwH8nDNYJUsX6CWtZ22PruM48pmL0kk4L3M7nntQK/B9IXmBlXnZZZdN7rn11lslScePH5e03CaIz3oUxJYRQdtnZI3IUqcMvWA5Pu9ZyL9/Djjvc3RhUfm0PvSIHLI0LwY6RdYoe99lCf1+rGhFu/TSS4s8ulAoFAoFj7V9eNvb25PQ9WhjRPruKG36RFP6/ehLo4QfJR5Te6K26CXgjNKr54cj3RT9CD2fmiELo7XjJpX6+zPS3kzC9KDdmzZ2PybUVAz0P0ba/FyaR9SGKGGXGha/RyH42TiRxKCneUWSpxRbFLLEdloNIp9D5iPOyKs95iT8nu+GYeI9aTgbg54WOpecTuuLlKdzZNjc3OxajbgpLDeENQ3Pz6VtM2P+IhJM0wcekRZQK6PFwT/TfIb5zEbzQj8YNXxqVVEbqZWx/lX8cLQkRPdm1iH2xY9JlnbVS3WhBaHSEgqFQqFQANqqpJuS1Fq7XdK7H7rmFD4I8LhhGK7hwVo7hRVQa6ewV4Rrh1jrB69QKBQKhYcryqRZKBQKhX2B+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC+wVh7e5ubmcODAgUm+XC/wJeNi8/kiGVvAOhuzZtua8Lq5Yxnmru2dn+MlvJi2rXLd3NhEyJhlete21nT77bfrnnvumVR04MCBwW9dEuVCzuXiRHlkq3I/9tboxQRuZYwUEbJr1pkXQ8ZqsU5966yL3jpgLio5Q3vMRX4uT506pTNnzkwac+jQoeHo0aM7uVgRjyPz4pjj1mt31o+Mczc6lz0f0T2rlJ+VMzdXvTZmbV6l3oyxKLo3K2+V91zE/pLd68f89OnTOnv27OxCXusH78CBA3r0ox+9k8wZJVIzMdUSPq+66ipJ0rFjx3Z9StKRI0ckLcltbUFzYfeSHXmutz9dtscTy4x+WLMXXJawHd2b7Zbs78mSUjOqn6i+7IeiRwvEfliSJ6mapCm58+bmpl74whcqwsGDB/WUpzxlZx5OnjwpaZn0K02Tka29tj4uv/xySbsJwe1/klFnO4VHa9Xan1HARTtdG6w+ayNp3TyiPQBZvtR/Sa5CmZb9oGVJ/xEtGeu3sTI6Op88bONlx4wA2K61/nriZu7ftrm5qde+9rWKcOzYMT372c/e2b/usY997KStNv5XXnnlrnNGlGBt8cQJfI9lhO1c59KUgILJ8Pzxl6brLdvxPiLy4A9qRmLeo7Tj+o6IQ9gG7u/Hvng6xKw/XH/Rnn3sF2kQPZjAvr29rTe84Q2T6yKUSbNQKBQK+wJ72vHcftUjDS8yVUi5luPP9er1nx5zpoSIriej2sloo/w1PLeK+s5ySWUVmSuyeiIKMbZjHbMHj7HenvmLbfO0c1H5586dm8xXZJbKzGe9rX4Mc+uhZ/LhuEXbA2VbnrCsqF8slzROc32I+tFbO5kZjBI4pXffJtazypZgWRm+HpPOvaaSrZ2NjQ1deumlOxq+Sf1+ayk7Z1Yi9s0+oy24TOuzNpFUnpqRPxdpOlJMSzfnAopo4gyco+wd5svOtiVjG3vH2M9oHAlqenz/+b5ktHc9GjwrxzTFs2fP1vZAhUKhUCh4PCgaXk+7yEhPIz9cFoCQle3RI1H25305c47giOyW0soqUlN2D6Un3/ZVg3B6fZgL6Ig084wMO5K0uJ3PnPP7/Pnzky2R/DqgBBhpHqxnbqudbJ6ie+izieqL/Lu+jGi8KLVmmmxvrDOy5WiMso2GVwk247Y2JOiN/FkcN/Yn0gZI7ryxsZGun83NTR07dmzHX2vrzvx20lLbi7bL8n31/TPNznyL9sn5j9ZFT2uJ+unB9dB7r2WaNt8PPR81x5VE5725tPHitT0Nz2D1cj369W3nbE6zzWN76G0eTJSGVygUCoV9gfrBKxQKhcK+wNomzQsXLkzU3ch8Q9WU+0RFIfgMk85SDHo5fDQTRPuurZLjIa2WcxTtD5aVmQUnrGLSyNIhIrMI+5wFnkQmW7aNpkd/nR1bxXls5nCaK/28mMnK75Xor4mCWSzQIDN90OQTmVMyRPXNBbpEznauY857z8TFucr2D/OmumxnbTPh+dB83sswcY59FLTAcjPTcAS/12Vmdm6t6fDhwzvvBTNl2g7l0u70Bg8Gnvi+WqqC7Ytnn1l6AtelL3+VHbf5XFqbe6ksfO5YT5b76P9nAI/1w9JHIpMmA3qyFA1/79xeetYXvy6yvS9Zhq+Hz0lmTo5QGl6hUCgU9gXW0vCkZfCBNN151iPT7KLdkSnhklEhO++PUSukJNRL6s4CANZhEVgFmfYTaaHWD/Yr0yiidIF12sOdu7Mk2UhTtjb2JK3t7W3df//93QANajwMz2YSvD/GXbU5TlEwQ5b2YKHtveAOanLUMHzIPMvnnGVEBP4c+2NSci/xnP2k5hcFL/U08Kh+f20WFMPAB9YpjWuoF6C1ubm5My9GWuHH2P5nHxmYYlqNtNTw7JhdY+vL+kUtxx+j5tUjteC7yvrB3dI9aBWIUoF8O7wGa+esP3aO/fbPE6+1TyuLYxFpXlnyeBTEZOPFVJPMKhKNwarvO6k0vEKhUCjsE6ztwzt//nzqR/BYJT3AQL8ANceMa1NaSgaUKkzijn79s0RgajNR+Ds/KaVHXHBZ+3s0OtRm7ZpMglxFG2XyepQGwRSDVfj2rN3b29uz4cFWfsZ5KOVSOsuQptql3UsarUjzz7RBzk+0huiHsU+TUP1cZqHlBrbN+3Qyny011sgfm63VLFm+19aMpszXl2kjdm2kmfs12SNxOHDgwI6P1zQ9T1Fl7aIWY9R1dtxbIaiZcryYfuW1p0wDorXIrx0bB2s/5z16d9BqkqUhRAnw9D2aj9LG5u6779713f9PX15mJYj6x3N2j333dIKGjCeVlkJ/zKfqVFpCoVAoFAoOe4rSXIdd27BOsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktYqiZLUbjNfoq87I2LNomH9PXMRrFE0YObLi+qh/b3nh7EyMzJcX2fmN4x8e5T67TslRlsP/t5sjdA34CVXrhn6pumD8OUz6d7qsTbZ2EWaS0bqHdFGZYnmnEsmmftrss9o/qzPph1kPhbfL9M6vC8si9Lc2NjQkSNHJn5a//wwijAjuI98QVwrfP6jOZgjZub68MeojdraZbv8tTyXJZP741afjbH57EzDMg3PR5+aFp4lgGfE/tLUukafpJXpLTakc7PvjGDt0a2VD69QKBQKBWDtKE2pTwprv8QmaVuujEkxvYhOAylpTHKMopmoaVHijXw3bEPkB2G/6MvIotlIAeWPURuk9Nkbmzk/YM/uT4LWaBxJE5Zplr18vx7Fj/l/aZv3bWW+kJVrW0xdccUVknZvD2SRbiQPpg8v0ry4Njj+lGr9uNianKOn8+Xzu91Ly0W0fcoqpOEsP/PlGaJ1n1FmZZqtv5Z5bXfddZekmMLK5inSMqP+HD58uEtPaJpBRmMV5WHaOGf+eCvf+uXXAX1c3CIpI2yWcv8y4xH8NdxOycr1eYz+MzvmQV+iP8b3i9WbWVKiezJ6N3/c1gZjFDi+fuyZm7hKvudOG1e+slAoFAqFhzHW0vAsGqYXsWXSuEkAJllTmvE5NNz4NYui7G1HZOUy56fnU6Et3SSGjIBWyu3FGbmvtLRZU5Kk/dqDY0wtzdoYbczKfhqySE/f/oxpw0dy8Zy38/c0vLNnz+6MAf0W0nTbD9PerrnmGkl9De/48eOSpuuNUV6+f4zoJBhF6++3NlB7ilhGslwtSs/0Q/trOC+UcqNNQ7P8OPbfa9n0Z2Zkwt4PY/WR3NnKtfy2iJXDru2x3rTWdOjQoW4EdpYDmK1rX3cWadvbADbzN9u4mF8s0mCZh2fvTLOGRW3lWuU7w+qJ1rJda89cj0jd5t/mMouMpS/Pg9ouv/s22jz5zVx9OyIrIn3vpeEVCoVCoQDUD16hUCgU9gXWDlrZ2tqamIe8icnMAfyk+TBylJtaa2aBLPDAq8RZqDLVd29Ci+hqpGmwhzcJMjiBznDS+Hg1OwshNjD8OWoDTSM0i/kxycxgWSK6L5/hxnRAR+YDO3bo0KHZBFCSPXvznZEC29hee+21uz4tMMU+pdzkEu1/5vsh5SH3NPVFtF0Z7VmUBpNRR9GEFgURMGiF8xKZzGhm65EyZ/ca5nbnlqY7hts8mqkuojCza5kKlLXTU4sxcMPXQYotmuiiPe1oarN6aA6NAtForrZ6+S7z7WWwko2Tffr3TmRO9eXa8ejdyPVr30mO4Em47X/7tLmMglR8n3zfSV1mx62syIRuY273ZBSRHhndYg+l4RUKhUJhX2AtDW9jY0OHDh2aBGh4KZ1SA6XmSKKjc5OhqQx79vWZ5BHRZfmyImJmnuP2NF5yyHYAz6h+vOSdkStTE1sl8dzQc+pSC2Mbe2TPvIbBMz0tdG534tbaxNnvNW8GPVx55ZWSlmuJTn5/bUY2G9FCEUxo720fxeAEk5a5DY1f36RroxbK8YuCFqjZZYFX/n9aG5iGEG0pk5GWZ3Rovh6DSel8F/g1bM/YKmTsGxsbOnr06I6GYOMXaQoMDON4+fVmc5itW2oZ/r1j4LqysWbwir/WznF82L+oHM4lLQ0RdRoDBa0eCwKzgC9paT2hZkeCDxuTiJbM0lJs7K3t0fuGCfw2F1yrkcXEv5OKWqxQKBQKBYe1NbxLLrlkonFFBKJ2jHRKlJClpQTA7VmypOvIt5aF/PdswCbFUJKztnnpLUtONlCL8vUyBD/boNVL2tTCOI7UnCNJmTQ97J+XuDLKIlL8RD4807zOnz/fTUvwG8BG6SnULugHpr/Wt5c+FUrC1Fx9Odzwk35RXx9TTOiTjsLrI61Pyv3AURlMt6CfxJK8pekWL3PbXkXh/ZS0mRTvy6R/hxupRgn19MsPw5Cuna2tLV199dU7mr3dE22Fw02pOZerbDND8oLo2cqIpTM/nT/H9wstTNG2RxnxMt9Lfl64rmwe7Hk1Dc8+paX1hGlQGXmC7x+PcZutKEWE1g/77FkAIg1vVZSGVygUCoV9gT1FaVKK6dF2UQLq/RozSo2JppT8pWlkH9tE6V2aSmGk04nIoyntRRtY+v55KYaRqnObOEpTKZCSNqMcI2oxO2YSd5a87MuhRGnobXtk7T969OgskSvnpxcJa58cvwiUuE3LWcVHRC2AY9DbJorackQTx2vnqL+iMaEGy81JIzIGg11DP2O03RZprvhpY+Pr45YyVp6RE1tboy2TVom029ra0hVXXDGh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4CgE9n92M3D0iqzbY3JkmGY2N9cf7HqXleNLqEkXKMrHejtOS589lzyk1Z9+vTPvsoTS8QqFQKOwL7IlajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvt5ta3DgAAIABJREFUw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxtPnDghaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlLenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwr7AnrYHiiLesmuynB8vpZPE1SRuIw2mZud/7U0iJfNAL9LOpDNqadSmoq0vqKXRH2Jt9GXTTk1pnPlZ0lLCItOJtcn60IseZaSYlX/y5Mld7fJtop2dmnMkQdqx06dPp4wZ29vbOnXq1I62EbHBUIumBByR31rUmvXJrrHcIvMjvP3tb5ckPeIRj9i51+6xOXzMYx6za1xuvvnmSRuZe8qoUJuXyDqQ5d1ROvfWgYwdh5K/1zS4sexVV10lSbrpppt2nTcJ3Ef+3XHHHZKkJz7xiZKWc/H+979/V/+j3L2MVD7y3ZCtqce0YtHhPZYPq8veB/TD0u/j77HxME3uHe94hyTp1ltv3XXc55xZuaYNkjWFPnFpGhVu3xmBG1l6SIrP7z0Scfom+U70z7SVS+vXnXfeuautkeXM+/L9WNizaBaUKNKbFjk+E75ffAaLPLpQKBQKBWAtDc828TTQfizlXHa0yXq7uf1vWf4mCVCiM0klsifTHs1tgaKcM256ys1re7yR9L9RyvUaHvORrHxGa3lpkJqkSfImNXHso9w0k+SYk2jj7bUHaxt9XdaPaCPSyAfai5gahqHLJmLtzXy3VrZJm/5/0+SMd9Okyttuu21Xu/04mUb31re+VdJy7XzER3yEpOUYmyYoxVvq+OMRo4vnGvV9p/812iAz2zTY2moahh9PahI2Nqzvoz7qoyRJr3vd63butbVp5d5www272vG+971vV1t9fRnLURTNzfn3W0dF2NjYmFhV/PPJiEv/LPlrozw103zf/OY3S1rOt1mazGfk1x23qKGmb31mO/y9GcNKpHGRm5Mb8jICWJrm/3LMozw2jq29azk3kZXMxsIsBnavfbfn2/v6aeVgHjffP/4a/5tSTCuFQqFQKDjUD16hUCgU9gX2FLRCU6BXnaMESP+dSZ7S0uRiJk2aJ6+++updZXkzgTmSuW0LndVe9aZph2Su0W7cmcM3o7fx/eMWHqbSm1kgCmZhQBBNnGZusTGyMZSWJhhSPtm1NN36+mw8M4oub25h6P2cWcG2eZHiZHImDdPMamYdC6yQliafRz7ykZKWgU5m0nzb2962q8z3vOc9O/faGFq5Nm42ThHpsZn6zFyzColAtlaYYhBt58OUksyUHlG0WbvNpGT3Wri9jY3HddddJ2n6TNpYmUnTm/cMJIynuSpKh2GKTgRzpTCAKwrUIYl0byd6C0r5y7/8S0nLObO+23vB3hOeZJlmaJoUo/pobrVPG7eI3IHzbWuVu8gzqM2XnxEyR89rRoJgz7qNjbXDvytJNWnP0+233y5p+Vw97nGP27mHATV0X9CE6//vrZkMpeEVCoVCYV9g7aCV7e3tSdCHly4Z0k8HIxOPPUwCyBJzo6RX+5/SC8mOo2AKShUsy4P0UAzYIC2Q38KG/THtgGPRo9yx73Qi2zhHzmPWw4Ru30arm9onncgRjdwq1F+tNR08eHCSjtCjFrOxNa0q2lTT5sqCU0wCZZCUjYVJndIyOMGCpGxcTHuJto+xNWrjY9J5j6CZVgbrB9cbg5h83XYPSZIjjZKk4dYW01AsTeG9733vrrL8GNjauOWWWyQtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537brXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+v1118vafne4fuBGqA/FhEazKE0vEKhUCjsC6yt4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJS2l6Ec96lGSpr4V3wbzk5qfy8q0OfDbEbFNVg/Xe5Q87K0Pva2lzp49O/HpRuuAz6G129prWoZvp2m+1FpoHYqIGphqRKuXf8ZIQ0cNP9o8msQCTBsghV6U0mDjT2sA6el8m6gxZuk4UXoKtweir9zfY+uJ7xm7h+vcl+M3CFiVXqw0vEKhUCjsC6yt4T3wwAMTDSiyATOChhqKt/0ywpLJ4qbhUWKUplvd007taa8MJLm1e0zSZWRSVH7WX/bF30MphP5NLwFTkspIaSPfWiSRRsd79FCZpubHnpueHjhwIJXSLUKTFGVRlCZps/zcsW0shxtkmv+Fyb3+HMmP7ZMRwPxfWvoG6ffx19GfnFHLGSIfMrVB+n+9j4PWDtL62bWm2Zgf0l/D6LheVKhda5YaPj/UGqRpEv7Ro0fTzZXNhxf5Kw1sp42prQf6XKVpNLDB+sF6/Herx/pkvrqIMs/ASG9GYkcbT1Oz4juLa8rXy8hNvisi61EWwZnVH5G/k9DfwOfKl2vHGG1riEgyojGeQ2l4hUKhUNgX2BO1WEarZNdIU0mBvrtIaqZWkREoR9FSLCvLI5OmUXLZFhW+7Gj7Hd9GSu0RSS2jzFifL8PaxPHrRU0a5siqDT3SVc5J5HvN/JpZeVtbWxPN248rx8e0J0qqvVwjRtxyvXnNhPmeVh/Xjocd43ZAGVm6tJyzKM/O968XHcx8vFUorKwt3PLFjpvW69vDNUmfWGTVyTQhrgdfDwnjDx06NBttx/GLNubNttMh9Zj/nxGd3FKKVIDS6s+nb6NplxzDjBDa3891zOefWjzrjtoaEc9n88yNhq2fUZwD/fQce//+5nOUbSkV5bVmlrMeSsMrFAqFwr7AnphWeppJtNGiNI3K6m3iyBwtfo9IaOmX4lYrPhLNpBVK8JS4fB8yloI5f4xvIyMdvR/TX+eRaQOM3vPjSRs9pc6o7XNbbFAK9vd7KawnbW1tbaUMMr599FdRovPzkpEGR1o666N2lrGl+D4zV5TtiPpPnzGj8qjhRfmYzNmi39lH+LLvmVQekTrbOFJDidpmyCwJPTYiauQ9/y/vZb2+bhtraiQRo0sU7Rkh0mbof+caiqxRmb+fkca+jdnaJKJoZWqH1AK5/nwfMzJn1hO9D9gmwo8JLRPZxsaRhpfV20NpeIVCoVDYF6gfvEKhUCjsC6xt0oyclJEZJ3LaSnHgAU1WJJjumTSjkH5pum+YN2laqHK2k7apz1715v5+GSIzmIHtJwl3lODMfjJ4ITJLRSYY/z0as2i/uF79/v9oz0GitRaaL327s7B9tmmuHN+WnpksM+0wedybiRiQQTNlZNLnesrM8FFfOBY0CUfJygzyYT9ZxiqmewZCReQP0Vr090Yh835MenN14cKFSQCNR0bATZOgX79cI3z+e+4K0oBl5nePKCjJlxGB/eI7hGPm20hKQ14TkSSQAjIj946C9WiinSNJ96CJ2DBnbrZ7KvG8UCgUCgWHPQWtrBJ4QKmVAQe9pG5qQAz5jUDNisEqPiGZkg/pc7izctR3arCUeKJdqw1ZWK2vj8EKUXhuBkpSdDhHaSDUWCgRR0549r1H8dNa2xUSHkmoGT1URt8WnWNAQCTFGjLSZkrikURKCd4Sm6MEYAZjRSkevv5oTDhnTNKPwtGZXpFt2RWB4xilArCcbM1GWg8DquaCVnwbovZngQtWZvQsZ1R2c5p/dM5AS0lEIk5thsEqkdbE8uaIoX25rJfvhahfDLRaRaPMCBRYhn+H8Z7s98NjFetNhtLwCoVCobAvsJaGZ/RQ1G68tpb5nnwZvI4+J372yqRkzy1YLJnYS3jUIKnFRKTYPR+Gb4dpMVGSqp1bJXGSPjoDNYuelE5ps0cblkluPSmdvjtPLB615YorrphIy1HCdETe7evpaab0F1ETitbOXMh3lJhLIuhoA05DNu7sT+RbnUt74RqOymdbM+tL1P5Ms/PrhT5JtjWSxHlszofny4usHJn2mlkspOmayML4IyICXkvSBFoY/DXUrLLto6I2kGg8W/8e1NYya4E/l/nTo/SkDGxbdA8tCbQocJNuX272vYfS8AqFQqGwL7AnajEDbcIe/MXO6Ib8NdT0VpHSaAePNgmVdkuuc+SjUdQkNYbMjmz1eonTjhmNjt941ZcZaRKmodJ2T60g8qPOoecryBKeo8hOEulG2NjY0OHDh3d8qlnEmjQvtXpJ2+aFUuxc1F4P1Iz9vNj9NpfWFhIqRKS6/GREZxQRl42FXRNpeCR6zrYWMvj1wnnJ/DAeHKcsqtYf53vgkksuSdftMAy7tINo7WSR3Kw7okGklSiLtI62I6K/v0ewwfHJNEgfcUutj+85kudHieD0y5E4xCNbZ1k0fE+7yny7kQ+PmnIWaR7ds4q2udOmla8sFAqFQuFhjLU1vHPnzk2k2J5GkUWiRfkiGX1SFPFkoOZBwulI6+B2JT1SWqInhfp2eA2Tm1Fyk8jIh+S3TZGW0aakQ4qk6p6N3iOSuLPcyigKjOM1Ry22sbEx0QojaT2LDOtpF/bJtdST/jK/j31yCxtpuo0J/VeRNpNRelGzIJ2TlOd5cZ68L9RvjCnFkrwvK6JtovZBLS6KkMz6F8H6Zc/JnA9ve3u7q21Qs7K+Z4Ttvt1872TbEEWUX7QYkNYt0vRJz2XPtmltvsyMVDnLGY0sWYzktTE3UuwoJ5qWg8yXGD2T9MsZeuuBkfqMZI2sev63pPLwCoVCoVBw2JMPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+FfYSameRNpJt8cLtSaINYO2cbeVCCS/SSjP/RZZbFSGLIPVjH/kIepJWa20ytj2i3CzHKNJMM39vdp2/lvWQiDrydRqyjYE9bO4MmZ8i2sKG2kzGYOS1OG4OmxFd9yTuLD+qp21nz0+0znjt3AawFy5cmPii/PNCDZjxBZG/vkfa7cuK8jM5drZWOLe+Xvro7Fm+6667JC03nvXaOjclZs6etcnyQP36pAXJNDprR3QPrV+93Gciy8OjfzXya3J+GMnqy2bfizy6UCgUCgWgfvAKhUKhsC+wNrWYNy1Epkju2ku1045njnSPzHwSJcoyGKLXRt5joMPZmxYySrHMLNZLxudYRAE2HD9rM+nWIgc7y+dY0PwT9cNAU2CUuOtNV5lJc2NjQwcPHtxpJ9vPcnxbaE6LiIszkgKaZqO99JimYqafKPCF97C+iGSca8fm0Oqh6cmDlFhm7mQQhm8HzWq8h6a6yGTbMy8SXFeGHhUYTX49k7AFy/G5jFIVstSCXjoU11m21120djinfD6jZHUG7JhpM0rvMTOnffKZXoXonPNsbbOUJ29C57zw2WMbIyIHgsFBkUuC6zjrX3TPuXPnKmilUCgUCgWPtanFDhw4MAm68KCTnWH00S7pc/RFGfmuP8fE0izx2P/vQ6Kl3US2rKdHihwhouth6DwDbaJgHGprvS1SWDel5t42NDyWBR542iNqXD3n8cbGxo5G4/sTaetZ36LjlLQZ2JLt4OyvtTXJeY+kdAsh55ZSJi33Ag8uv/zyXfceO3ZsVxttbk+ePLlz7913372rLdzRPSI64LpiiLndE0npXIt8fqL1zvQXzkX0fNtY+yT57FkahkFnzpyZpJz455PvoiwALqIY5Heuw0gTZlBZdk9EE8d54DNuQSzSMg2GGh7bEVl6qAnZ+NpzaG3zQVVMxckS+qPUED7TGWl+BK6hzGrgy101HWpXPStdVSgUCoXCwxxr+/BaaxNtKtp6w6SGLIw/Ojan4UWayRyFVBSOTomKiMJns40xiV7qBP1Jpi1REvf/zyXxZmPn68229vCgr4MSXLRBY0SUPSdp0ZfmNa4eEbIU+1KyPtKXase9JsBrqOHTpytN/UemgZlWZm007U2aUn1dccUVu8q1/lKaZ1+lpbaYaaP+HmohVg9D9v14Z9RsvbSEjODArjVNxq+TzCceYXt7W6dPn97RkKP13HtHRG2LrqVWxjZG2lr2vonIJPi+oQ/PNLtoK7OMhoyaXRS+T+sA3yWeJIMUfYZsXUTIrCs9yxI15N5Gt+xr+fAKhUKhUAD2tAFstkGiNPVTcWucCJSKehFbvt6oDZR8ogRK0vAwYpQ2dmkq5TEqi9d5iTuLfKJtPUrIpJROiS7S2ubIgiPMRZ/2JHGTUHuRt8Mw7Iri7PljswTg7LyUS5NRO3gP10EvmdykZJPCSTXGpHVJuvrqqyUtrR7UHKnpRz418/tlRM2RdcDKpU+PmrLvZ7ZlkaFHFN/z87Eeg6fM6lkxtre3d55t+k99e/n8UWuL7sm02VWSnzlnWcSnNPW70vrEqFp/DeMN6NOPNDy7x+gJbdyy7Zx8OdRGaSVYhYyd2lo0/2wLn9uIyJtRxnOEF7vatNJVhUKhUCg8zLF2lKbPper58JhrYp/0k0jT3KUoT4ztMDC3hVv7RNFEBko+vW1aqJEweon3RtGH9BX1JOO5zU/XiYAiej69LKqxJw2uKl3N5Xsx6jOLgIu0NEMmgUZSLdciPyNyZYMdM03OtDf7tLXl/7drMyozf4/Bnhv6X6jJ+OeJ/tZMeuaz46/JInwNPXoojltET2XXmL+yt34tbsDGIvKtZu3r+R6j6Oio/aQg8/dGYygtx8LeLVIevWjXXHfddZJ2WwfMr8eIV7MsMB/Tz5utJ/MZ///tnd2O5NaRhLN7WoMZwDAsyQNY0MW+/2MtYBgQJEEeeSRZM11Ve7GI7uyPEYesWeyFXBk31V1VJA8PD1kZ+ROpV7FqZWv265M8Ry6rup//Coz/rTJ9nTA0tyHbXGWsb45z+JuDwWAwGPyB8Vl1ePQfu2r71MpjlRmW6mIIp/bB/et/CrX27WnNyrJycSCOkcyOcR+XicR9MYPQqcHsZUU5Cys14jxiYXGMghPYTQLNCXd3d5sYXrcuE6NbNVel5Zvq8Jh52d/jKy3Irl5Bb4SsZNbWdcueMVyOjZ6NzvQYdyGTEKN07YGStZ4yWPsYyIySwHr/e28NOUbW1VNW9/vj4+PGo9TnOMXDOTYXh+N40zPMfZf1qZpT5/XSeDUWNkOmyHPV8/VlBiczml0trNadslv7fque10x/P3nteL7XsCphlUvA/fO557x6/T466uEahjcYDAaDm8DVDO/h4WGTveSsPbLA1FQxHae/Mm7lsjT5P5sryufdP6PuJ5UwukWiOIte9R1ZSd3CrvJxJm3LbMYVK2S25l6NWlXO5NuLk7jxU8ljVe+3t/+Hh4dNPGcVU+P4XbZXYivMznXXyTV47efIRp1VLzN3+7a0XrXu+v5krbuaxj62Pkdat2wLc6QtEZkxa6xcCyjGW1b3Ho+Tsh7JQqqe56fvL61taWmy/revnb2YnTvXvXW72jY9zzhvjpno2fHtt99W1fOa4vOoH1vvad7ojeLzqG/75ZdfvvhMY3L3BJ+bTt+zyqsi8d5zSj59XP07K1Ub7sNl3h/FMLzBYDAY3ATmB28wGAwGN4GrXZqvXr16orNOhoYukL3O59y+70NY0dvUAoPpwt0VxYBskpTqlLkH1/sr3WIuMSQF0Fdd0gUmcqRCU1eszP9XSQUcN+dPc9JdOHtyTjzWF198EVuVVG3nVvtz10NI5SFMilldU8F1cOc5052m+ZHrkcIHVVtXNpNY0j1S9Zy2r/3THc5i5qqta5SSYikxpe9vT7TciU3wHuC17nMvsW199pe//CW6Z0+nU3348KHevXv3Yhs3hiRc7coteP+l59DK9UnJOv3PMpV+/pSfU7mAOpB3aTltr8SSP//5zy/2QVH+fjy2n6J73z13WHbV3fkdq9Kt5MoU3DymZBXB/V50N+/RrufD8AaDwWBwE7haWuz+/n4TNHS/rkl+bJVmzxKGPWZUtbUi2TjVSdOwPYqsGFmdDML3v1PTVjZqdeyJSIXAHTw/MhhXWJ/kjo4UgCbr/IhYrAqEEy6XyyY47RJQZIGmIngXKCfTI/N2sk0pUYclLc66TIyHbKp/VyzNyY9Vbdli3y8ln1iE7eSoOOZUVO7WefIKuLIESgJy/TlRcCZDffXVV5Hhnc/n+vDhw0bWr7MPro3kGTmS6JIKxN08UTKRTYSdAAXZmRPj4HG0P80hhQh471RlOTqWwawS3vSaxEFWpSZ83jhvFLfl/46F6jOVahwVvqgahjcYDAaDG8FnxfBoBbhfX1rLK8alz8i89iyFDlpNKgTlcft+yQopg9bjJdqmW9/8TpUvqE6xs1XZAGNoqQ3Iqn0GWSHnz1l2Ai0ux8i4zaoRo4qHV8W8qREv4zJOcDoJAaS4WT9HvrIcobPnvbZNjJtUPbOAVMzN69TXlIrQWaqR2tL0/e+lkrt2SwLXF8/ziAeDY5UHpWrbMunt27fLwvNPnz493dO99RLHkFgaPSL93OhBoDwhWU5/j3NKT0NfO6m0aCXKQY+F9sFSGnd/7gla6/9+XnxG8Bm1ErxPnjn3nBBS7kPyUlQ9P9u1nl6/fj2F54PBYDAYdHxWeyBXiCnQiiHDY3ykamslkZXR8nNt5VlMTuu8WwC0wngeYnHOZ3+khQzfp5XEuXExtSTQzYw+x7JTY9sjVlBiLqvs077Nyp9+d3e3Gf8q9sg4yYrhpWzN1JrJnRvP3RXB6py7rFX/jhhZZyHKnGMchCyEcmV9vGKMLOJ2RbhpXXOOVmybc7HyACTmQibZvSMuFp7Wp0QLVAytVzdPidW4uFxiS2mfHXviCEIXIEjyhyleVrVtJcSYNe/Tfu+TRafnTd8H1wTXV3q2dCRZsCMSbRyH0MeoddTnfhjeYDAYDAYNVzO8h4eHpYWYMgLJxLpVRX94ypJywqby58oS0v9kRI6ZiKXRwnNWR4qZpIw3x/Bo8dIS6lYMWYbOjxYdGU7fX5KQchbXKnOzw9VcHmkwKyt9dTzGXxnTcnE4ITG7IzWCvA6pEWjfPzPsNCYn1Ks6K2a2pVhrZ0LMWBVotbusSa4DtjRaCfNynTEW5lgB1xWZDGXZ+nn9/PPPuw1gVZ8mdt1jnTon3u+rlmMrTxW/y+PJ66DnGWseVVPXz1nXVeubzwHXQJk5A0l6i/kPVc/PQK5jzR9rB91+hWtkvPj8XLXz4TWnt8A1pKXXozcG2MMwvMFgMBjcBD6rPdDKn5v8tWR43WKQdULrXEhxwf4Z1TE4tj6elA1I9RSXaafXFdvo51KVlVR4Xt3fT6vFNbDt43DMLFlLLu63p3bjsrKOiEZ3XC6XTd2iGy/Ximtjk8aQ1F9W409qHK7RKMevbVNtXT8PZmtq7Wj9u9YrZJT0SqTYUVVm9FQH6Va9yy7sx3dMeU8Yntez719j+fXXX5ctsD59+rSZJ8fMyJ6TCHt/L9VQ8lr35xLvKc3ljz/+WFXP93K/j9Xah/e2xuGyT3Vs7Y/Zmqzd7OfHZyAZHp97/b0Uw+N95tRu+J0UV3XbUNnHxYfT8/QIhuENBoPB4CYwP3iDwWAwuAlc5dK8v7+vN2/ebFwULtlCYCKAS6+Xq4IuFrrgXME0959cjB10aSZB6B5E1jZ0c60SHISU2JL2UbWl+CyGXR2PbgKmlifZqBVcggrHsOp1eLlcXrg0ndxUmpfkzq3K0mLJjefmmC5TzstKRiuJ9zo3YSploJu/u5iY8MEO6IJLCKJoAe891w+Qa4Nr112LvQQR9nur8i6rlWjBx48fl2LPdGGm7x6RwqJbz91rPCe5Kb/77rsX+37//v1mmyQpJ7gSEyXsyO3JsiX2zevjlzs0hTaUYFP1LE5N1zld6EcF4/u2PKeOlMjnhEN43abwfDAYDAYD4LMYHrvi9l95FpZTYJpByaqtvMxKYJrb0uJkCvuq6JHMTtaTrOi+TSp+ZkH6KqBKaR9akt0S0mdMS2YA3RXH0qpNIrjOKkrFys6qvqYYVWUJmqeV5BvHzQQRx0j6cVbn6MpTyA5TF/P+mdYDC6hVeN5BAWCej9abXt39lESDtQ+X0k5JLybLuDnak3haiYjTk0DvhNt2Vdzdv/P27Vv77BB4X1Co2a1frhVuw/H2e1GMTq8SMman8F6WkMTitQ/XAioViXNuKcbd50Jzo4QazqOT7fr666+raitAzbXTxbN5T5P5r547q3ZnfcxuLB8+fDgsID0MbzAYDAY3gc8qS2A8q//68j3K9zhBXsbukrwN02r7d5MUlvs/yU7REnHp4bT6uI0TqSWOFGSy3UeSB1pZzcSKQSdBYY5xJR69wv39/QvL1bFPrY3exLJqazG6+FhqJ7Ji+AJZO9PTHXtmejhjXi5WRMaa5q+v5cRQNTZXLkCJqjQ2trRyYyVWwuNcQ0kswe1nT5Lu9evXG1ZzpGCa596fO1zbLOLnGupsLTE7CkWwfVA/Dlm7k79jvJVF65zzPg+UP9N3NVYxyn6/UcBD567v0OPjcia4ZukpcR4F/s/nultvLodkD8PwBoPBYHAT+CxpMWak9bYf/PWl5c3MtKqt1FHy47pml7JiKBpNhumEoMnKaBG5bKm9bCKN0YnUCmwsuor7kYWmgsxuRSUfOtlOn1/ujzFC10rGxfsSa7m/v68//elPT9lmjuXI4pQUl0BrzzU7ZSyImWjOE8C4F61Wfe6ykMkG2LLEsY+fUGtBAAAScklEQVS0vii55eIVOq6scxfvEyjUnmK6jvWQfaTYyoqRpViba4baM0pXWZqPj49P942T7VL8PUnkMT5blb01jqXzfPi8ITPSWu7F5Iy/6X89Rx0jZmyORetJrKFqG09MrYw69F3NMT1zlKfrcHHSjlXMmP8z56N/j2NZZfhuxnDoW4PBYDAY/MHxWQ1gmWnXLW5m71AOyEn8pBgHLTDGL/p7ZCL8vL+/J5ArC8JldDHrlELHzgImwxJ4nD6PKc4o0Irv4BgJlxmXao7IIFfyXns4n89Rdqj/LctUli8bsrq2MOncXGNMIV1/xmFcbZOgz7QOWJfX36PgdGr505lLknyTSDWFgPuYeM+RLXJ8/e9krTsGle4n3guuKfIq61M4n8/166+/Ph1T60Pxs6rnudQxyN5XzW6ZPa35SzJr/XiqW+P+HZvRNsqAZPasu8f4XpJMdN4I1+asf9cJj3P8Op7mPNW79s9SLaR7TjBGx7l2sUk9BzR/K+8AMQxvMBgMBjeB/5PSihPX1a9uqt9hdln/m0oEKQ7Y2U6yKmgprOrixCQoWt33wZhDskQEl81IUWJam91KZ1yRc03VDBdfcGy6j8dlaZKpOsbCbY7UUj0+PtaPP/64iam5th9iS7ou6Tz6NkkJIrVKcu+xLopxmT4GfVdWNGO7LmacsmQ1dir9VG2vu8as+8xlAzJWy9ihsPISCByrU9VZ1XX1ffQ5oULJV199FdfP4+Nj/fDDD081jmK1P/zww9N39J6YL+dtFesU0np28WbW3ypWx7Xq2BrHzHjZ6llFhSKy9n4MPmvTenNx+TQHzBbvSM1wuXZXMXHmXLisYIlw6/Xu7m4Y3mAwGAwGHVfH8N68ebOx9roCQfLbU9+vWxWy8pgRxLobewLwKdM/7Vp7MD7B7E9XS0emxSxG7quzUB5PzIXWlItxkNXyf6fokOoY+flKdeJIbcte/LTjdDrV+/fvn8Yta91Zl0mvz9XUpRrKVL/mLFOuM7Za6eu7Z8H1c2brn1WNYvqOa3ZJy5UZzYJjH0nnNbGD/h7HSA+Ay0LWd5iF7BiL5lSvj4+PkWmeTqf66aefNhmkHWK8YnhJH9M9S5I3gHPct2XMLjG8fk5idLpXFYvmvHVvCueOSjurOjyysSNeL4F6wnyuubgtVYcS0+/zyPg8t6GiTdWzrmivxxyGNxgMBoNBw/zgDQaDweAmcHXSyuvXr5/oo6i5ExQWXWeKtAsA0y1HlyaLPLu7kEkLLB51xZVJUHZV+J6EZhmIdok8TDvnq0vxZTkAj5Nam/DY/bOULOE+23PvuDHuJT9cLpena6x0bhfUp5tmFSjnNdwrU+jnwZICrkMna8TkACY6rdzTHDNdP07KzEnxVW1d6+76pBRzYuXaTufQXUx0c6ZwQheo4Pp9fHyMbqnz+Vy//PLLZq57ok6SMWMCRZ8DloEkN7R7hjDxgwkibl8aA0u12PLJJS2l8hc+s1b3dHqWOMFptxb7vlxLM7q9KV69Snji+mVSW187vBeukjg8/M3BYDAYDP7AuDpp5fXr108WirPIUqE0i3r7trQMtX8yPrYccuC+XFoy3yMLkFXhWNpK8sb93/eThIzdNpw/JhpwX32slCEjA3OsMBVoJ1GAfpz+2Sp4fLlcNuzdBeiPFpP38aaklST63b+jVyVQUL7JiRaQvdDCdok1aR9M1nJCubwuZDROrJrNaFPauCseJlM6IjFHa51rtq8droPL5RKTnk6nU/38889Pa4VlK1VbGa1VoTmR7il6MLqcVpIjZNKKe+4oYUtp9akUoI+JjM7tn/+TabGVlHt2cA54fIqC9Ps3CYEngf+q7XOU9wbLV9y5vnnz5rD4xTC8wWAwGNwErmZ4XSCYqflVz1YQ20vQoncpvvT9ax+y3rRv1yCRhYupyLKPm6xgZQ3ST5xiKq4UgDG7ZAGvhJmTDJaLudBaOpLCTBZI629VctCv24rhnU6nTdykX8sU4+Q5uzR6WqZs3+OuLQumuXac0DnXisaoOAxjIH2bFN9J8Qv3HmPgrlVOSt/XnKRmxn0/nOtVK6vE8JKUXtW2zc3q3lNJC+PnigNXbdk5x+1i+vQY8fpwflZrVeB67M8JXlfeny5HgfkSR55VHGMSi3axfCI99zSufk31Xd0LjBk77x69aWwtRWmz/t2jrK5jGN5gMBgMbgJXtwd69erVJruwW7P6haYw7srySbEMvZLhubbyKXvIWdVJwJgWcbei0v4ZM0pxuv4ZLS+XZURLnvG3VREux7qKEQjcr+ZN2bYpNlv10hpbMbxXr1497VeWeG/mq2PoPcZQVtmzydIm03NyanrVuTIOs7JI6ZWgQEAHr3eSwXPx7VUcpI+5/02pvpRR2o+3V6ROL0UfP70tGofYlwqG+3u6Pqt1cz6f67fffns65rt376rqOQZW9fys0Ht//etfq2orqrwSOkheDMfwVmLq/X0XJ6fMIkU6nPAA7+F0Xo6tu7Xft3FMiXOTvEYdqShd+3Axas6B1o7Wh8vSZJswZYAfwTC8wWAwGNwErmZ4VVtr2gnyMqOKlmHfB4WQWXskhsfao6rnX3layYwvUhKqj0X7WLWxSJZOymJ0NXV723ZwP0kmzLEQ7j/VGfbrRma31ybGbbOXodmvEQXDq7b1SGnOnXcgZWMyhtO3Zc1cqofrlr1bRw495kALl/vXPUJL350P9+mEyHmfUBaP7GSVpcdYkWthREk0rl0xu55pdyRu2cf08PCwaQDbnyFidjrW+/fvX3yHXoJ+3ql+dK9Fl4Nbo/zM1SD291f1pqsaur6PqnxfpvvLfXd17yUw9p2aZ3fwHmF2ZvcOCFpvb9++Xa6fjmF4g8FgMLgJXM3wzufzxtpYNVVMMQGX+Zay49g2xik2JOURFyfj/mnpuFY4ZEm0kmhBuphh8m07i4fWGS25xOLcGDhHjg1R/UFIMcuqrTV2Op0iy7u7u7MxvB6PFVgLxvly42Y8gmLOrvVKatfEjNu+vulRSLEVlwGrz7hmmLnsMny57niermUWY6KK5ZG1HxG6ThmMHYwVaV04hucEm1dr54svvniaL7HnPsf/+Mc/qupZPFoMT3Mgcec+7tR2ijE7jatnepOVpUxf5424xouSvDQp49MxvKQoRe9IP3fuLzX37fcTvTZ76k39bzI6vS/m3uOaro3bxPAGg8FgMGiYH7zBYDAY3AQ+K2lFoEumahuopAtG1HQl6szkFQbKV73mKDTsUm/ppktyZK6LdHLV0h3hKHYKCB9J+mAiQOoM7PaT3L498YASP0z6ce4Iuj/2yhLu7u42Ls2+dlJ6e7pO/Ry0P8k2pevVx6/rm9zhfdwcIwWHV8kRdCHTpdldZdw2lVswocIljukz7Z/u3VVJC8dC95hL72cBNYvBXUnIEVcUE56cCPHf//73qnq+/nJtUnjCudO4X746tzsL/3k+TrCBbtBUssVz72BqP8Miq+SNlctYYHIX97caK/tHpr54/VqysJ7PfrmmO1J5zxEMwxsMBoPBTeBqhne5XDbpzk7Ml0F8MhRnNQmJ4a0KJVOpxCrln+yTFomzBvda/Air0oYk+Ork1gSywFSU7c6TbNe15EjJKcniX51Pwul02rC4Xjz87bff2nNcMVOtL1mVEhTmWnFp1UdlmpxM2CrFumpdcMx9cRx9PplQQwaxaoPFNcux0lvQ3+N5cqyuxYtA0Xc3R9xmdQ1UeJ7utarnUgUlr/ztb3+rqueEHTeWJBpxhAkneauVQDvnlMkrTlghlQPwuvD9/pn2n8oqVs+qdBxXeJ68UKtyDpayCEpMctctJfIdwTC8wWAwGNwErmZ4Si+v8hYQGRyLyFfCn7SkyPQcUimBxsg4TTqnPiYnAJwYXWIS/VwY/+BcuG2SZJpAVuhilGneVjJbZC6poN999urVq5jirjgMLbbO1pJ1nNhuP0dZ+JRCW5WLCBS7TTHPvh8nA9XH5so3WPDN+XOCxIltkOF11rMXi+R6cyyE159ssZcYiF0TtN7793rct+p/7990j55Op/rXv/71dI9rDLrWHd9///2L16+//rqqnhmDa2+VRJa5/tw8Ea4shdskZr+K5Sd2ztKqfm/wvBJb6+A9mFjuSpSdzC6VNFRtY3csNHdCB6sY+x6G4Q0Gg8HgJvBZ7YH0C+2Ecmk1sZlralVR9fwrT7bGzMsu2yTQAlmJxiZwbH0byjNR2illfHXQd58kv6q2bIPMYeVjJ3vi/LkYZSo4X1lP3M8ew/v48eOGdfbjprgOLUTXcoVMjzFiF9NlMfc1TTzd+a0+r9qypJTh6dg610xiI/29lAmZskW5n74tPQn9HuzCA30bFtSv5LZWhedaOxxDHzfH8N1331VV1TfffFNVVT/99FNVPWdv9nGxkJmxfMeE+TzRcbUtn3cdXHepCWo/ryQ7lmJ7HG8H1+qKUe7FOR2j5PE5dpe5qvliobljibyXj0i+CcPwBoPBYHATuDqG9/DwEGMPVVvGkRolruTIuA+2O3GyZPxf33GWVrIk9zLvqvYzE1exSc4bxWOduHKKqR2pY+LxWJ/l6ss4ppU0FxnQit2cz+f697//vdlvt9woTUTLm3VeVdt6PsnOUVpM8R6XpZdqp1wLmBQfSwzMbUMPBmsenWXOOV6xwtROiefnJPTI/mily/LuMTzKBeoa87ycPJTmzY2l7//333/f5A70uA6FuP/5z39W1TNjEMNzItupxjB5VfrxeI70UvX1nZpU8x7v80TmKqQMzw4y4tS6yrGn1IYq1ef1/XL90Uvh6n8Vs9Mr2VsfDxn3/f394TjeMLzBYDAY3ASujuHd39/HbKP+d6rfYSueDloGFM51rJBxH1lcbEvUxyjVBfqW6VNfnRezsVL9kkOqM3NWDK1BZkA5pkdrPDGwVW1LsiD7NeD+V1aWrPQVI9W4de1SnVy/5r35bNVLYfE+Jmb4VWXGzfNxLJSMhFY62WkH44vMDu6gNcs4I1sN9f1xrtN9288vWdaMB7sM4JQV7MbIe2AlAHy5XOrTp0+bte9iuZonrSExPDH8vka//PLLF+fIsfEedx4M3u8U7nYx4z3FJXc90nMgXeOOlMfgmmPzuGmtuGcy45iKp3OO+nVj7J211ymjue+v55XsYRjeYDAYDG4C84M3GAwGg5vA1Ukr9/f3SxpNNx2D3nInOvHZVBjL4kpHo1PXdFFll8LMkoJUENpB90xKE+8UnC4DBqtdIXhye9L96gqPk6uO26zSxOnWOVKesIKSVlZBcY1H17IXJfdxO9cvEyY4T3IjrgTBkzuyzy3dUsl92PfBdUSx6PS9vt9UeEy3fx9Tup+OSDJxHtkvkaGEqq1Li9fRlT/0xKC0js7n84ukFa2HnjjDtc1xquh91RmeCW8UMXAhjj1XWt+G58c51fn0uU199pi2v5IlE5Kgwur+5XpPBejuvJi8pDH3khZ+N5WPuQQl5yrfwzC8wWAwGNwEPitpRXCFuQK73qZi26ptcJiWAVlityqYpOISTqpeJjMwlZsBbVrGfRuyDoGscCVDlALQqwA3mR7lz5xlt8dgnTg2k1O4jSts5dgcLpfLi47orrt3KrKnQHTHniSakhZ0PpKaqtoyOV7DI6K3KXnFMQnul/eEYw2ppYygbTtrTOn0qdTFrR2dH/eldP/OQhyD43eqXrJr3uMrK12F5/RMOOYtJDbV5ciUAp+eAxqTpOf6fZyK0+nZcglP/J9z7QrPOZf83xVh7zH5VVE8weeBK08gU+V60PuuVIPeJp3fqhTNJV3tYRjeYDAYDG4CVzG8y+VS5/M5xueqtv7uVTxMkOWXrMpUgKwxdSSLofuNk8+a/vJ+HJ6PLOokwdPPN4kGp0LUvl9ajoxRuHlN7CwVE3dw/Imd9u27NZssdcVoGNdZeQy0f62P3koonTPnlqLBfXxKS9f+abW7An1+loSY+3EYt2bqurAqMUnp6C7umOI7tISdx0SWNAuetX/NZ4+pMI7MbfV/Z6FkCHts5HQ6xbno50rWTKbgxB0o30Vmr8/F9Pp3BbINN+d7JQYc12qbJESxuqeTXOBKWoxzwevkchX4TGTp0MqTpfPkfbzy7nz8+HHpXXqxzaFvDQaDwWDwB8fdNRkud3d331fVf///DWfwH4D/ulwu7/jmrJ3BAczaGXwu7NohrvrBGwwGg8Hgj4pxaQ4Gg8HgJjA/eIPBYDC4CcwP3mAwGAxuAvODNxgMBoObwPzgDQaDweAmMD94g8FgMLgJzA/eYDAYDG4C84M3GAwGg5vA/OANBoPB4CbwPximwMjo/OuiAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -879,7 +3108,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUJflV33l/WVlZ1WtVb1Jrly3ArGPACIRZzWZjYXbGAktIFvKRz3gM2EaGMRKLDeaAMAcEBg77gIZFg20hBpBAAjEjIwzIIBBCbNqlbvXeVd1dXUtmzB8R33w3P+/eX8SrruoW5P2ek+fley/iF78t4t31e9swDFYoFAqFwl93bD3SHSgUCoVC4eFA/eAVCoVC4VCgfvAKhUKhcChQP3iFQqFQOBSoH7xCoVAoHArUD16hUCgUDgUu+w9ea+05rbUh+fuMy3C957bWnnOp211w3dZae+s0rqc/TNd8aWvtLy5Du8+bxvH4S9124eLRWru+tfZNrbWPfASu/bzOffypwfFfMX33+svQl9/u9MX/3XyJrvcHrbWXX6K2jk9r+HeD717eWvuDS3GdS4HW2lNaa7/YWjvdWruntfYzS+a0tXaysyZPvvw9z7H9MF7rS8zs3fjszZfhOs81swtm9hOXoe0ePsnM/sb0/5eb2S89zNe/lPgFM3uTmd32SHekcADXm9k3mtnbzeyRejB+oZndgs+i+/jZ0+vTWmsfNAzDn13CPnyFmV3j3v8HM/tgG58xHndeous9y8zOXqK2jtu4hveZ2W/hu39rZscu0XUeElpr15nZa83sfWb2pTb2+9vM7Ndaa39nGIZzC5r5XjP7aXzGvfOw4uH8wfuDYRguuTbycKC1dmwYhrkN/2wzO2/jJvnc1trJYRjuueyduwwYhuF2M7v9ke5H4f0Svz8Mw9t7B7TW/qaZfaKZ/bKZ/UMbBcAXXqoODMPwx7jenWZ2dhiG315y/sL72V/vjzbs4kXhEgsFDxVfaWY3mdnHDsNwi5lZa+3PzOyNZvZMM/uxBW28c+maPFx4v/DhtdauaK19T2vtj1tr97fWbmmtvaK19reCY5/SWvu/Wmvva62dncyI3zV99zoz+wQz+xSnQr/anfu01tprpmvc11r7tdbax6D9l7bW3t5a+4TW2utba2fM7D/O9P9KG6XLXzGz77JRGvrHwXGva629trX2Wa2132+tPdBae1Nr7XNx3Ae5fpxprf1la+0/t9ZOzszhXa21FwffPa+1ttda+0A3D6+ejn9gav97cfwBk2Zr7VmTaef+1tq9rbU/bK09rzcv03kf1Vr7helaZ1prb2mtfa37vrXW/k1r7c+m9Xxva+17W2tXu2O2p/58U2vtBa21d079+MXW2o2ttUe31n6+tXZq+u5rgvEPrbVPnPbVfa21O6brHMexj5vm/o7W2oOttTe21r4sae+pbTTznJr6/d2ttWM49urW2ountTw37deva601d8xnTO09vbX2A621O1trt7fWfrK1dmI65gPM7M+nU37c7e9nTt9/9rRf753G95bW2tfPrc9lwpebWTOzrzOzN5jZs/x4H0601r56mqePmdb+lJm9avruk6a9+Z7pPviT1tqLWms7aOOASbO19vlTm5/eWvvR1trdbXwe/Yjft0FfTprZ3dPbF7s1/Orp+wMmzdbaR2qNp711+7TXfqi1ttNa+/DW2q9P98Kftta+KLjmx7XWXjntiwdaa7/RWnvqgqn7XDN7jX7szMyGYfhDM/tDM/u8BefPorV2zN0bZ6fx/WZr7aMvRfshhmG4rH9m9hwzG8zsb9moUerviDvmejP7IRt/JD7FRrPJa8zsLjN7lDvuKTaaKd5mZv/MzD5tav+l0/cfaqME8j/N7GnT34dM332UmT1oZr9rZl88/b3BzB4wsw9313ipmZ0ys3eY2b8ws0+1UcrpjfGfTGP8IjM7YmbvNbP/Hhz3uum7N03n/INpnOfN7G+44/6emX2rjRvrk2000/6Fmb0O7b3UzP7Cvf8uGzWzHRz3u2b26un/EzbedL9sZp8zje85ZvaD7vjnTeN5/PT+U81sb2r/083ss8zsq83sBTPz8vFmdsZG89uzpvX652b2EnfMd0zXesnU7r82s/tt1JS3pmO2p2PeYWavsFFreJ6ZnbbRdPzbZvbvzOwzzOxHpmM/KxjPO83s26frfMM07z/ijrtmmufbbNxfn21mPzOd+9ygvT8zs2+arvuN0xy9yB131Eaz1R1m9lXT3L3IRvPYt7vjPmNq761m9j1T/77Kxv36o9Mxx2zcs4ONJjzt7xvN7APN7JyZ/aSNe+rTp3n+tkt4H2vMT7HkPp6Oa9M4fn96/5XTeX/vMj5jftbcfYDvvnq6/tvN7N9Pc/MZ03dfbmZfa2ZPt3GPf5WNz5wfRBt/YGYvd+8/f2rzL6f9+5lm9oJpDb6n088jbq1f4tbw5un7l9toCdPxH2mrff8D0774P6Z99kM2mpKfP33+qun6T3Tnf/K0137NxmfqPzKzV9t4f33wzJye8XvUff7TZvbnM+eenPp9x9Sn02b2SjN7Ko57sY3Pon9u43P/82w0m376Zdsrl6thN6jnTIPn3+s65xwxs6ts/DH6l5jsU9ogybmvM7PXBp+/fNrM12Jh7jGzl7nPXjr17+kbjPFXp7Z33EIOZvaBQd/OmdnfdJ89Zjr233ba355uyMHMPgJ99T94HzjdDF/qPvvo6bwvnt4/bXr/oZ3r8Qfv68zstotY+9+abtYrku9vmubjR/C59sw/dOMfzOxP7KCg9JLp869znx2dbrQfDsbzfbjON9ro733K9F4Px0/Eca+10fewhfZehONeaWZvdu//6XTc3w2ue9bMbpje6yH4ozjuB83sfvf+A6bjnoPjnjF9ftWlum87e4J/r8Vxnzx9/q+m9zdOa/wTl7FvS37wvnGmjTbts/99Wpvj7rvsB+970MZL5+4TW/0YfE3wXfaD919x3K9Pn3+O++yJ02df5T57g43Crr9njtso+KXrYWZX8r5y332fmd05M8arzexHbRTQPsnG+/ktNgpwH+OOe52Z/djl2hfR38Np0vwCM3uq+/sK/2Vr7Rmttd9prd1r40PoPjO7wkbNUPgsM3vFMAy3XsT1P3k695Q+GEYf2/9jo3ThcdZGDWgWrbXH2Sg1/tywcuT+n9PrlwenvGUYhre6Ptxi4wP6ia7NY621F05mqTM2aiK/MX29ZuZ1bf25jRLc893HzzezW20MRDEz+1MbhYYfbq39k7YsEvN3zeymycT2dJnZemitXWPjj+tPDcNwJjns4238gXopPv8ZG3+4uS6/OgzDrnv/lun1VfpgGIbzNmoYTwiu9zK8/1kbhSuZeD7ZzN4xDMPrcNxLzexmW597Bib9kbl1tFHb+ksz+502mmW3W2vbNgpIO2b2cQvau7K1dmMwFo/ft/Ge+bnW2he11m6aOd7M9k3Fvl9L8Ll28D5+Pr5/9tSXnzYzG4bhDhvvpS9qrV01058j6NOlNIP+t+B6N7TRlfI2G+/58zYGWuyY2ZMXtBmt102ttSseYl+JX8H7t9h4f/yaPhiG4Z02amVPMDOb9sBH23gvNbfGF8zsN23c65cFwzDcNwzDVwzD8PPDMPx/wzD8hI0+3VM2WkSE3zWzL2mtfWMb3SyXPabk4fzBe9MwDL/n/v5UX7TWvsDGhXmTjRFBH2fjzXSXjRKJcL2tR3rOYrpxrrM4QujWqV2P9w2TCLIAz7JxHn+hjeG4J6c+vsnMnhnctHcFbZy1g+P8DhtNbj9po7nlY20VgXbc+vh+G32YHzz96HyZjVLUeTOzYRjuttFk+j4bNYh3tdb+qLX2+VmDwzC8xkZz85NtlELvaK39amvtwzv9uN5Gqbm3Xpr3A+syjAEFd9v6utyN9+c6n0fz9L7k/eNcf7I94vsrcC25jo+y0QR4Hn+KzrthQXtmM2s+3Uv/wFbCw/smf94nZedMPsED/Voo/PxR5z6WL/s3zeysux/+m41S/xfOtP0e9GnND/4QEK3ry2y8P15so5b9VButGWbz95lZvl6XOtIy2t9nhvXAG7/vHzW9/idb33/PtPW9t49hGB6wcSzXBV9fb/EzrItJ8Hm1rYRLs9E8+502PvNfb+Nz5Qdaa9du2v5SPJxRmj08w0bN57n6oI3BBAzSuNNWD6fFGIZhaK3dbaOUTtxs6wu49MfObBV+TSlM+BQbTWKb4Bk2/kjtB8u0TsAK8Itm9i4bJe8/tdE88cP+gGEY/qeZfeEkUT3VzL7ezH6+tfbhwzC8xQIMw/AyM3vZ5JT/NBt9Yb/SWntiIhzcZeM89tZL837z1FczM5uCBq6zi7ixZvBof53pvdn4oFV/Pio472b3/Sa400af4Jcm379tw/ZSTELJa6b75hNs9PP9cmvtScMwRP1+lx18+JitCwSb4gts9IN+uq0/pM3Ge+WnOuf/fRt/tIW/fIj98TiwRyet+dNsdJl8v/s8FRL+ikEpGf/RAu3WzHaDzzzebGYfFnz+ofbQ0sn212EYhgfN7JvN7JsnS9nn2/gDuGXrloNLgveXH7wrbVS1Pb7c1jXQXzWzz2utPWoYhixH7KyN0iTxm2b2Oa21q4ZhuN/MbDLNPX1qd2O01j7Wxvyf7zez/xtfH7cxwOLZtvkP3hU2SmIe/3TJicMw7LbWfsjG4I/3mNmrhiSMfBiGC2b2+tbaN9g4Dx9iKzNh1v59ZvaKSUP4T5b8MA3DcLqNScfPaq1967S5idfbOM5n2Lg+wpfauPav7fXlIvC/mtn/694/w8Yb/3em979pZl/QWvu4YRj+hzvuy2zU8vyP5RK80sZAgXsnc/NDhST61GQ2zfNrpr39X8zsSRavz1kz+71L0CePZ5vZvTZqcnv47p+Z2TNaa08YhuFd0cnDMLzxEvenB5lX9++z1tqWxW6IS4nZNbwUGIbh1tbaG230+V9MtO4rzOxrW2s3y4XUWvsIM/vbNpp9N8JkYv1MG+/5qL/vMbP/PEWa9ixHDwnvLz94rzSz72utfaeNmtJTbXQen8JxL7LRdPP61tq32Sg9P8HMPnMYBm3UN5vZ81prX2KjBH1qGPNb/r2Nk/3qNobuK2z6mI3S8MXg2Tbe2N8+2dAPoLX2Cht9F/9iMhMsxavM7LmttTfbKOV+iY1mzaX4YRtNoh9uo/bm+/R5NkZ9vtzGyLWrbXTsnzKz/2EBWmvfaqMJ5DdsNA090cb1+b1EexD+zXTOb7UxdeQ9Npr4PmIYhq8ahuH21tp3m9nXTL7KV9ooVf4HG398XpW0e7H4R621+200rTzNxtywH3c+1R8zs39pZi9vrb3QxojaZ9poAv6KYRj4EJ/DT9rosP+NaW//kY3+oQ+w0Rf2OYFZqof32hhk9aWttT+2MajrrTYKCB9v4/y9y8ZgoH9nozn5cpA7rMH5sn9oGIZfD76/x0bB4Zk2RuI90ninjUFQL2pjqsJpM/vf7GBC+yXHMAxnWmtvt9HC8t9tvO/e2RHgHwq+0sx+dXoO/ZSN0cePsvFZcmoYht5z7yU2CimvaK19s60Sz//YnJbeWvvbNgbH/OthGF4yffbNNj4vXmejoPgUG6Nhr7IxYEvnvtrG+/yNNgpKT7PR1/etD3XgKS53VIytIu4+oHPMERtV7/faeBP/ho2SxLttPYLvA8zs52xU2R+08QfhO933j7Xxxj89XffV7ruPtzHC6X4bg2JebS5qaFhFWr19wbh2pj68qnPMZ099eOawikp6bXDcgXHa+MB6mY0Pt7tt3GAf59tyfc2i015j48OPYeMfMrX9tmn+brPR+e6jpxil+bk2asG32CihvsvGH9U0Wta19Xem9u+10an+J+Yi1GwUPL7GxhD/c9Me+F4zu9odoyjNb0Lb6ueT8fmBeXbHfYKNJt/7prX7XnPReNOxj5vm9c5prG80sy9beN1vMbML+OwKG4WtP53au9NGweIbbRX1qSjNT02u83j32RdNc3he+2Ea1yumfXR2WqefM7MPuoT3cThm9/3XTd8/tdPGG2x0XVzqZ8ySKM0bg+8+eLpP7pvm7MU2+g0HM/tId1wWpclnh651cqa/n2ljPtu56fivnj7PojS/GOd/t5ndF7R7j61HIn+Umf1XGwPjztr4Q/9fzOzTFszrB9p4795n4/37s2b2GBzzkX4M02f/2MZUoTunfXq7mf28mf0vOPcbbAxcudvG5/6bbfxh3LrUe0R/bbpw4a8RWms32Lixv2MYhm9+pPvzSKONCfI/bGOu49sf4e4UCoVHCO8vJs3CJcBkJ/9gM/tXNkpdP/DI9qhQKBTef/B+QS1WuGT4PBuDMj7azJ41XB6/QKFQKPyVRJk0C4VCoXAoUBpeoVAoFA4F6gevUCgUCocC9YNXKBQKhUOBjaI0t7e3h6NHj9re3ph/q1fvByR15NbWVvfV/69z/XdRmxGn7Nwxl+ucJd8vvc6lPrfXpzloTXvt0/87DIPddtttdurUqbWDr7rqquH6669fO8evNa819zr3XYSLmeOl7WyKJf7zaI6X9ic7l6+9Y7LPde976LPd3d3wfW+8rTU7ffq0Pfjgg2sDufLKK4eTJ0/ut3fu3Eihev78iozowoULYT+X3Ftze2iTe+tSHTsHju9SnZOt0SafZ/ss+r3Ifkv4WxDd8/pue3vbzpw5Y+fOnZudjI1+8I4ePWpPfvKT7f777zcz23/1G+/IkSP7nTAzu/LKK83M7Nprrz3wXq9mZldcMbLsHD9+fP86/lVtRoPXd/ose69X3w7b0Od87//nMUJvgTgnbIOf9/rC8elcvfr/e33KoA2nh5TO3dnZWeujjtHD5sKFC/aCF7wgbPfkyZP2/Oc/f/9hpfa09r7fXH8do3P8WNUf7R3OpV6jmz1b055wJqidJQ9WoXfj+8/9jwl/PHidXt/4Q6N10ud89cfoVdfVe63f2bMrghj9r9fTp0+bmdmpUyNR0j333GNmZg8+uGKX0zX9PfBLv8TiAyNOnDhhz33uc+2uu0ZSn3e9a2Qmu+22VRCyrnXmzMHCHNpD0X1y7Nix8Bi97+2DuXWIPudnfF2ypgLvz01+xPhsjH6A+Bzg+2ivUujQe627Xv0a6X/9lmgP6TflmmtG4hvd+37MV189MkjecMMN9oY3vCEdv0eZNAuFQqFwKLCRhjcMg124cGH/15dSoEckpfjPl0jakXbG92zvcpmaMvWckn4EStzZ5702MlU/MjHpf87bEvA62Xg3xd7enj3wwAP7Y6WUGV2DEmhkbuM8ZBpXT+LO0FuPbM2WSNrZuT2TT7b+0XX1vzQV3p+8z3Qf+3P1mu3zSCvM9qbgz5GmqGN2dna68723t7evIej5ozZ8H3iP0UoUWUKkPVDTE3rm0Owe28QsHpnoCD7nsmdJ7zoXow1mWltkHeB+4p5hG2YrjY57Rmv8wAMPHGjbf6fPHnzwwUXuAbPS8AqFQqFwSLCxhnf+/Pn9X1jvuxMyjYf+ES/FLPGhZZ9n9u8lUg39YZsEQPQc/+xjpiUtcahnmnIPmTbGtqJgI45L50RaI+d2qYTu2/F91Pn6Tj4WoufrpK+m58vN5meT4AJqYL1gDoF+EF7fz+OcEz+ax2wcmhP22Uvcc767SMPQc2AuSCE6x7dPrcVjb29vLQgm6jd9gxx75MNj7MASywjvD99Ps4vz4dGH6JGNJxtv73r8PNqzXDPNr64bWfdovaGVQOf6+1rPhGgfm600PO/D45jPnj0bjiFCaXiFQqFQOBSoH7xCoVAoHApsbNLc3d3dV2dllohMTFnwQBTiS3NUFq4fpQTMmTKX5P1RjY7U68ystSS3Zc60sMT8kZlfe/3LzGyRmZTmpMxkG/VR7ffMr8Mw2Llz5/aPiczhUZh0dG2//jJ1yCyl9zRhRqb0uXzPbBxm66aeJTlnmcmP90wvHSZLR4lMzVlaBfdDZJbK0hAURu7PYRAB90UUwh65RXq5XvrzfeyZ0DUv2hd69eY0pUZx72wS3JEF9URrOfcsjEyac33hHuo9G3mdngmd72kyjkya2iv6jgEpvEfMVush0yb7GqXBCDJ3nj9/voJWCoVCoVDw2Lge3u7u7r5UFjmZKT1mKQZReLAkGyYYZwno0WdZ8rAHJa25AJTo2KytSNLKJO5ekE4mwWdBC5FWQGSh+73x9d7rOlqf3d3driZ84cKFbuCMd0x7MMxeErnZupQuiTHbd9HeyYJXov2g/U0NhdYOH1DBcRAZUYD/jMdwnFEQGL+j5iVEKQaSrLOgAj83Gru0P+7R6HmxiYbXWrOtra1uigy1F+0lBqZ4wgslLpP4YklgUKS1evT2zlxgX6ThZc8dapJRgjatHllgV28c0rCo4UVrqmOpnbEfvh2SF/SIDhh8deHChdLwCoVCoVDwuKjE84y3zv+fSRORBpT5WSQRUOOLtEOeS82oJ3FFtuXovT82CxePxse+ZHPTk9LnaK8uRlvz56j9THKN/IGUfHs+vNaatdb2z6d93yz3zXC+vIZHH83cnumlVXBOo/1NuiSuj8YV7Tf6Mqi99bRQ0q3x1Uv2bE/fUcOTRO7XVFpaRjyg8XtfWBbWT83Ba3Naa33WWutK6UeOHFmzpvi1JB2YtDZpcSdOnDCzFcWh2Yq2SmPROVlCeuQfy+6xKHWCHKBqgykf0frzmSvweeOp+ngvaBwar157tIR8Nqqv9NeZre4J+db0XveE+ub7qOvo2Pvuu+9AP9RHv0d7hAZzKA2vUCgUCocCFxWl2YvcyzQSSpuRnyLTfDJJJfpsiYaXSWFZxF10bDYHm2hrWXSqnxNKyRkdVYRNEulpF6f035O+vWY0F+nY0xR4zFzStVnu29T7jCDYf5Yl0EcaJxOvqRH35jpLVu5RStGPTek8Ghe1QrbLfe730Fz0b6TF05fLJOjoOrzHesnerTU7cuTI2r3unwNq56qrrjKzlWZ3/fXXH3j1Gp6OpYZHvx+tB/7/TBOidmO20nz0qnNImdaLJKbVgRq+xu37rfHIf6lxk3Ddt8f1IJWYxuCfkdLO9J0IoUUmzvn0kMaoNvRe/fH3IJPfN0FpeIVCoVA4FNg4SnMYhv1ff1LJmK1LovSlLKWh8u0zAs5LPZnPaYmPK6Pgiqif5uh4llCZZRGska+ImgTLgVAy7tGTLYlKzXwR9OFEtvSlNGittTVKKS+lRRRUEXxfJUGzVpo+l/TMqEazdQ1PYFt+brkejF6LiI0zfyg1u+ieoJaZ0YL5a5B2iueyXIvvKyMuGS0XjU/Xod+FkZIRKbba91GYRGvNtre31yJUvXWAGo+0mBtvvNHMVhqe14Co6TBaM9Om/f+8tzQeajkaYzR2zkn0rOIeoQUjikLl+PSqOdCxXsNjJCUtW4ym9PcqtUO1xev4eeQzkFGagvf/9qL251AaXqFQKBQOBTbW8DyiCDFJFSzayWP9ObQX89c9ixQzW/3yS3phfkgk2c8xbERa6Fy+TU876fk8e217ZL4q9tn/n+VhRb6iuZJC9O35YzeRtLIyLh7UWnVNScsRCTX9VnPMNGbzBOfqaxRRTN8CxxXll7EPLN+jeyKKhGWfyFQTVf9mX7Lcpih6kq/UPnrRh+qrNAn5ZbxGpoKtjA6OMAyD7e3trREYR3tVz4GTJ0+a2Uq7iPLZGCnM/cu5jjQ8gud4H15W0qeXM0ytkFYBzSn9kdF3WaFbD64794o0VxXflX8uGjstCD2rjnyrN99884Fz77jjjrVz6N/z2v8cSsMrFAqFwqFA/eAVCoVC4VDgokyaVKt9IiFDePWe5qmICotOdposGBDjP6PJVH2SOh9R7nhKLLN+NV+admieiEx+As1uWZBHZEKlCTOrtxUljzIhmGYxPye6ds/cwT5y3ubSEiITlG+P86TvGN4cBWgwsECvMn9E6RVcb81Hj2qOe5Dm4ohGK0t/yEgZovExlFvHyFzozbw0MWqcDEQRIko7Bk3RLOv3G1NYSDAd1UHTeHy7PVq6qA5nVKk9Sl3yfYmCSGSmy9Zd/fb9Y3qVxujXwezgnqfZlqa/yKwbpTn569NlsyT1Q/OmufB7VWOnG0H7TPfgvffea2Zmd9111/65NJFzz0RuHwZdyQx+0003hf3w8JSDZdIsFAqFQsFhIw2vtRaGlHrpgwETlDKiEGwf4uxBiUBtRtRSDIVlGL0P12WSNQMbIlogaggZEXOPUopzkNE3+Wtn9GdZkr7Zesi0QA0qmnc697lePQqzKBjGH7u1tbUW7tyrEC6pMiMG8P3NkqwZPu212iwJPtMOPDgvXAe/dyiF90gKeC61I825tKh77rnHzGINT2OXdKxzhEgbWlr125/DgCdqENE+Y8DOnIZ39uzZNY3cr4towmTREXTtKJgou6cj2iyzWBOmJUttMDWD49GYfZ+kPfnrMHCKVqLeenF8TNnQdfy+0D7SvpIGd/fddx/4XPemgo88MqtbFJyjdaH1QedoXb1WyPu2NLxCoVAoFICNNbwjR46s2fV7JXgyRP4x0pAtodeilpaRE/s2JH1R4shCsv01M/8bJazI3p+FzEd0ZdQ26Ruk5hdpllkyfLQ2lM6XJNIz+XUJtRg1ID+PGqN8KiRizogCfLvZ3Aq99ASuQ+RTk2+Y0rEkYJ3bs0JEpL2+b5EfmMnkTGyOfJMs8ZMVWPbaGvvEOWCbvr/UsnUsfWT+f83NXGmp3d3dNaKLaI7ZT/WfJWt8v6nBM8k6smDQLytNROH1UaoO91f2rPJak+aZyeOZj9+DqVnqszRJrYv8cX5Obr31VjMze8973mNmK01P56qPfj6p2WUJ7z75n+dw7qOSYNT0PbH4HErDKxQKhcKhwMbk0ZK2zGKNIZO0ScUUlWzPSGh7BTIpVZIahxFqGod/ZQmKLLnXX5vjyyRj3z6lsYy2x/eXkU/UJCMybkZj0j4e+bvoT5pLljfL6dUybG1trRHk+uuQ8oplVCI/Iv1h9PPKd0uCYH8ONXqurR8nJWxG/8nH4ddS8y4tIIu4VX/8XqXGTW008qMLakfnaOyco8gfR4on3ut+fIxMVLuMqoxo6fz9lO0fxQ5oDXukwdRdFeP8AAAgAElEQVSS1TfNhe8rfYGM6KUWFZW1YVkozkVkJSJpAX2c0ryi9njfZH463zfSxWmvSkvzyeO69vve9z4zM7v99tsPHJNZXaI50Dnqk7Rffz19RiJr9TXyvZNwPipokKE0vEKhUCgcCmych7e7u7tWOr5XsJLSbORzoiSiY5jTF0npJHrNopYiOjJKg4wKjaIBs9xARn5GoFTUIxyWlERfV1Zapqf1CD3NlVqo5pgReNGc+DXtSVo+ype+FbPVOmeaQZQbyIhTzg8jxSKtVsiiaCMpnX4yah0RlR1p9xh5R+3KX497h/43P5aMMov5rdHeUXukxqIWEkVZM+JOiOjkIpqrjJpOEZzMSfRjlmaisSiKUPOl76MoTR1LTVi+JpJLm60TS/NZ1Yue1DHqk46RL81rePQJcg64xr6P3DNZYdYod097VVRfzIuLSJ6luemVUdZRviF97Yx2je5rlnHa2dlZTCBdGl6hUCgUDgUuqjxQVmzVbN6PI0QSsF7ld7nhhhvMbCXlRFrWiRMnzGzd3t7zL2URj/RT+DYYTZRpcoz4NMvJr+k78vMoKYbahqQaEvL6yCf66sgoQ7+A2UqSknROH8USJoeelLW1tWXHjh3bl+Aokft+0xfQ84+SGULH+rxL38eorA01yl4pK+a4cb50XX99+sros9NaR74pSf3UziMyZIFrx2g5WgD8GlCyJmmw/D+R5kLpv1c2iv7SuVyqra2tfR+oNCSvCau/1LjJFBIxBekekhaj66ikUGTJYn4dGZ6iiGLtZ1oJ1EcRJXtWEfWFfrDrrrvuQJ/06p9tZLlSu4ya9WvJnFFdnzEReq/nr9l6JKf27tve9jYzW61BFJktZFGnEfuQcOWVV5aGVygUCoWCx8Yans+1ivLHBEZh8Rc78vtJKqZkxbwbL5HoGEUc6br0B3npmZFGPSYXIcthykoZReUsOHZqlD76iNdj3pLa1Jx5iZPrw2Mi7ZRaLTUK+vj8sZ7HsCel++80Dq9tZoVJ6VONrAPcQ5TAWYLHn0MNVf4LSuAe9GMz9yyK0uUca5w9H17mm6RFw+9ZaQOaC/pQaEnx8P4jD7Wvvika1V+PlgSykETcl54hac46JO1JmoPfB7Jw+AhAXtO34fv1hCc8wcxWFiW1wb0UFUrVc0ft6tkV5bgxh1EaD7lHo3uZlhxG/PZKPekY+vAiywwtJhoXLSRPfOITD3zuj9X8fdiHfZiZmT3mMY8xM7M3vvGNZraK/PTXoebIfR1ZP3xfK0qzUCgUCgWH+sErFAqFwqHARZUHojkioibKSuFEqqfUVpkDek58s5jslOYAmlujitA0BzDE2JtMOGYGp/SIoHUMTT9RcAxBcytpjhge749lsEJGfO3Hw+TuXt8iEuRe8vD29vZauLZfFzqwmYagufBmKZmdSNulc2UCIumyH6v6r0AAVctm8r9vh0QHmn+aSX2f2EeaxyNKO6boZMQDkRlMAQ6a11tuueXAeGSq9fPMquK8nzTfvo9MEua5DOE3W923fj/09o4/V33o0U2R6EImQK2t2Wp+9NyhO4T3mN+fmrs5yj9vsifhsl7pNvCmZqY5cI7UxyjViFR9CirR+6hNmtW5/jJXvvvd7zazg/eT9qaO0Rzpvnryk59sZgefVdmzWNAaa+58H33AzFKUhlcoFAqFQ4GNNby9vb01CS6iNcrCRCMiVtLzkCaHocZRiGpGMRWF4Gf0SaSsicalvjAogmUtvNRMx3OUiOvH7f+nhkzi7kiyi4Ju/Lm94Bxq4EwU93NPDX9JaDCpufycZ2QBJJCVZG62CjBh0EiWcB6VJpHGKElU7zX3XiLl3mRSL4N+fL8z7ZBaod9bTE9hakGP/IGalbQbBZxEVG0ZwTnLLHkthHsxI4Pwa80gqL29vTTw4MiRI3bttdfuty/J3h8vTYOBMtSe/J7XsVnBWgZL+eAlXVt9Ufskkegl6DNoTntZwTPRsVmgYJQOxb0Z0Sz6z/05WTqSjhX1mH/+yJqivaH5kmap935/8z4lDVpEVs57sFdaiigNr1AoFAqHAhtpeHt7e3bu3Lm14oM+lJk+BaYWRMnjpC+ShCCJp6dJsPCrQP9fj85GyJLW/Wc8RtIgy1l4aZZ+PtKQMYHbf0afYVaYM6LMooQn9LQChiozOTm6jvdN9kq8XLhwYS1p2PvjeG29UnKMimpSImWyt64T+X3YZ/ruImJuhuBznbyviPuWvklqxn58pMEjon0hCVh+D2p8ms8ozYP3IlNoopJCmluSInMfRhoc74EIKh6sY9R/JWr78+WrYwFWFhE2W2kefJ5xftSGX1PuM/rSmHzv2+er5k/tR+vP+5B95j70n9FnzP0Y3RMZRZ/6SIJ3s3Ut9LbbbjOzVWpGREfGclu0nERWD1rkemTiRGl4hUKhUDgU2Lg8kE/yi8oDMaosIvw1O+gXyaRm0ihFpMiUQLNf+8hOnRWwjfxjHAfPpTTrj6d9ndpIFNkpZBoefVJesqP/hX2Oxsd5zMiqo3H593P0UBxPVOqJJX0ktQtRhCATVzPKMfbHbJ16iVhiHeB+YJ/9ufTLCL2oZ1oYmBQfJeNzn1ObiiwL9JlkpZq8BUPSd0Tf5s+JStcswe7urp0+fXrteeBBvyj9o4xYjMZGzYH+Uz9m0iuyrR65A/e5okRl0fI+NkZSZmsb+eVJTk0igp7VJtPKqdH6+yAraRZp10IWq0D/qrcE0ee6NOncrDS8QqFQKBwSXBR5NCN2ImmNv9zUOqIcMGo+GYlvRACbXV/SZpSHF0UK+s89Mg0vky7855mWm5XxMcv9WZwjakz+f85bLyo0I9DmukWahDAXKeULNUaUc5SkWZYl8htk0iP9F9oHfq4zEvSe9sE8L0rg8v/4PSVfGqndslzH3hwLXNOopJDAdWHhYT93pCFjXlSkhWYk4tQkI01iCfH47u6unTp1au0+iUqMEfzca0D0v2f3TRQJnd3/JN3uRUDeeOONZmb2qEc96sCx3tJAjSorBBxFB2f7gJGXvcK82Xj5/PHg844apX8O8blGa4Ta8lovrRy9CF+iNLxCoVAoHApspOEpWirzDfFYD2ozS86h5BvloLBsBfsUsSRQamUkqY71kUGMtCQzCTVa38cswirLx/PHEPTlRP6grNBnRlrd63/my4vQk7L29vbs7Nmza1K670OmvWb+Uv5vtq69+OsT1OiyMfbIqim1y0/Sk5p7ZXMIln3JfMYe9CP1IiDZj4xFqbe2jPCVdkufaHQdYa6PPv838t1kWhnvrcg/ynxB5iJG2kzGjiPN2BOqc4xqR3mfyit9z3ve0x2/f2WcQ6ThURMS6B+LSplxn2X7vle2h8TTnDPfLrU/atWRRTDKy55DaXiFQqFQOBSoH7xCoVAoHAo8pHp4kYMzog47cMGA4knIKo5TZY1qshFU8X2otEya7AvNk171plkgq8LdC5XN0gUiM2hmQuK4IvMkTTLsY2QunQs4ic6NqKl6EHGBWb+2YWZ6jcxrNHtmKTOkJ/OfZakevZQPXYdV2XVOREPVM3trfsxiE3dGrB0FkTAhN6PmiwKRGCyQBaBEiCpoe0TJ8d710AsAi1JDPGSeY+i9wHD36DuSWGTPMA/e76Rzi4KydKwCnLQ+UVpMllJCE3f03MkozGiu9HPFtcvWO9o7XFPNo9ItmHYW9ZsJ+xGhuqA1Z9BhD6XhFQqFQuFQYOOglSjE3ksxWag1HfURuTKlhsxhGl1PoEQUaXgMk2bgSy98Nuuz0AsiycKeeZwHpXFeP+pfpiH1zsnOJaK592vek9LPnTu3VmYm2gdRQrtZTCNHqTVLp4i03izVY0kwCcmUWSbIB0ZlVHKZpSRKF6Gky3skqsYtMHCLCcERIXimHUTWD64BgxR6mqsPUpgLPiDdWZSeos8ycuXo+cW5zErxRPc0A95oSfCkxySe16unSCOy/bwEDPJjqhYJtj1oyRB6mv5coIvmJqrKzrShXmkmFgY4evRopSUUCoVCoeBxUT48SnKRnZoSQC8Zds6HMqd1+PYzW3cUPktJmJJqJGkLWd+iMh0sm5KF4kbaE30RGfXXEsmPPqReSPGS9nr9j67t/TQRcTHb5ZxHkne2VzI/nNfeMto2zr3fB5l2xJQWjt1sXRukNhVZB6iZyM9D4l+/fhH9V9SPKPGc4fxZYVVvMeE9pj6yZFOkFXgaqp6/aGtra618mO+3xqwkf429l9ieaclZGpEH1yXTTPyYWOA1sj5lfcysD0xT8vuApdGYaM/nUoTMR8jSSb6P/C4its7a1yv9zv6eIMH1JlpvaXiFQqFQOBTY2Ie3JBrQLJdEekmjcxJ39EtO+3SUgGkWF5ylJkfNIpIgKZFkdEp+/CwKKQmvp3FlSer8PnpP3xC1qWgeM3qrJQStSyP4/BgkffpCohl9W1ZeyWw9+o7rxPfRPuB89Xw39CkwCVbH9nzU1D57FFYskKnrUNvx1opMu832RUQeTU2PWlqkKWfJ8dL4oqjnaMxEa822t7f3yZAjjZH7k9oyE8LN1p9fnDf6+KNoXWqJ1Iij6Fn6oDJ/o/9/rkxY9CwmsTqL1Eb0Z4qopHUg8wf6NaAVgBYE+pCjsQs9gvMoNmGpllcaXqFQKBQOBTb24Zn1qZ4yW/OSyDdKj1ne0ib+pSh3i5JcJLWaHZQqMgJoSiIRnY8+k0Ql6Skr/eL/pzQzR5bt/5/zrfnrqb+UVDcp4zJH4uq1PEm3USkUzgu1Gr/fOFb2l/txCZ1aj5CX/gNGs0W5Rhk9G/d5j8Yr8pmYrebE+2uU35UhIwb2fSA4r5GWnWm99Mf4cfiIwd59vbW1taYZ+UhY+jKZExjlc/Vosvz33Jf+u8wSEuXyUVvWfPE6UW4qi8XqGaK51nu/ljpWfk2WJVoSccuoU86Rf59pdFqvSOvN6OhYnsrvnSyKdglKwysUCoXCocBGGp6YMuhPiCIuM5tvTwOYyzXr+fKyfJVMMua4/DmRRJ6Vw8hy6iI2GEp41D4iBoLMj0mJchMy7l7UGbXNJbl7wtJcGLN1Cc5sNVZJptpnZGHwfZiT9jiPEYExNa2MiNy3I9BXFJGjZ/mQ2Z6KpGbec973aXZQ25GUTM2EfpfID5NFU2f+P7P1yNXMGuHfa92XRmDv7u6uWUY8M4ksBfJBcTyaP19IVFoLC76SRDpih8qYQJgr6vfSXXfdFR7LQrP+OuyjxseIb8HvpcwXzSjUaP2z6M+edYDEz1nBXt8vkm6ziGz0GyP452bl4RUKhUKh4FA/eIVCoVA4FNg4aGV3d3ctoMGrxFmCIl99aOocSWsW1u3/p9lG7Udh/ZlpJws19v9n4e7Z5/7/LPE3MhfQJMxk+SWmYgZlsB89M2hmhvBrHSXoZxiGIaxJ6INWssRfmi17ATpZKkaU6H4xZlv2PyPx9vPEwIOMwioan+YnC9+XaSsyaaq9a6655kA/eJ0ewcImtcYyc2+UYE36sTlT+fnz57tBawy1l5mQwTERBVsW8p9Rz6lP/hiSbUc0WlldOo1H773pV+NQIJJMmvqcAUNRzT5BaR06tldTkeOj2VWIaukxyEzt873vi9aHr4LfH7zHK/G8UCgUCgVg48TznZ2dtdDsyOkZ0SRlYFgwQ72ZcBwlgEZ98W1EGl4mZUZEs9T6suCVSBrMaMeylAZ/nSzAoCfVZEESWX+iflP7ieZxLhmW2NvbW0uViCjYKN1RAu6RKwtZWkeEzBoRSb7SuCQtZ6ksPhGcIeokD+4FLzE5ma861ycKq98MDGGwRC/VJSM2zywAZuvh6JT0vTbPcWxtbaVrJGoxjSe6BzhGprBE1iimyGRaZnRPZ9ogLVjaJ/479okUh76P0uClpUvDU9CS5kD3TM9qozlRn5gk75HtFZb1irQ1vWq9SajurRE8h8/EKDVI8+Wfm5V4XigUCoWCw0WVB+pJwlFRwaytOWQUSZGGR98JNS5ve6bfhUUbI0JeSmVzCbo9Qlb2OdKQKEFl2mGPeHrpe98ONYcsTJn/6/3culIi9fskGxt9QVHBUmp0S0r+0N/L6zAdwszW6K0YHh6txxw5Oj/3Gm5mMen5/Tj2bL8JUQpN5jeP7nlK6fTDkKzYt+sl+cwa1Fqz48ePr/mgepYl3Z8R+bDAe5rlh/h5lKCfWWCk3fjUiYz2kL47fx1eO0thiVIA6BOnL0197BW65prKlxeVD+L9I81Z66breU1f86Nj9L6nfQo9a0OG0vAKhUKhcCiwcZRma61LyUP7fWabjSLtsuTt7NWD/pYeaTAjkDINL0o0ZaRdRmXlfSpZFColsMgHRls6o7KyxPceIr8WpVr2qSdNLfErKnmYmoLXZhjN1yMC4DmMeBMycm/+H41H/fB+GBIXc30iiwLXSO1l2lpES8d254i6PWjRYORv5NeitJ7d12a5j4aUUtHcLyEeF3k06bP83mHEMMkdImqx7JmUEVH7ddEYM+o/jT3a36Reo6YVRS4zIVsgfVdk6eG4mOTtz8k0Rmqn9D/7/mf7IYrAzOjnes8z9cU/i8uHVygUCoWCw0X58EiuG2l4mR8mOof5aFkJikgK7EV2eUT2/kxzjDSgjG4oy8/r5Xsx6jTSYLJzqAVwLP6YTGLt0fRkJVF65Mub5FKRXNlTi0lqzOiLIuuArs3ouKz/keSY+YEjgmsdo7wo7gMhikSjRkWfDbV3/x19UtRcenmYlLAzn6LvG/MMM2Jgfyx9NJT0IxJuv5/nrBTMz/Sgr4fPoUibzZ4vjEjuRfpuQp1ILYbWgihGgQTQis5kn2U18PcT14zHaF2iiHJa8bIyUZFVivstK5rM/83y515EHu3zW0vDKxQKhULBYSMNb2try44dO7ZG4ttjMcki37wk1CMXjRD5ngRelzZu/x2lP+Z3RCSn1EIyTW+Jr4s+nIhwOIvKYpTUErLiHlNFFjHa09qiSL65tWN/vT2fUXKUuNV2RDjN/mbFPaPoSfpWaJWI8v4o/VOajTQJ7R0W1+yxm0TRjP76kfakc6jtLtkPlKiplfC6ZqvIOml21CAidiX6YTyTCrG1tWVXXHHFvobCvLVobMQm7EJcf5bi6YH7z681fZvUfEia7r/TOadOnTrwucBoR7P1ArDUztTHKCqY0ehZPm4Ujc9nfs+6l/lueW9GEfO92IcMpeEVCoVC4VBg4yjN7e3tLm8ko5WyiKcIWX4QpfReLhg1vKhAJnn12FdK5GbrUl7GixhJG7Rdb1LAMNPkODcRpx3Xp1f6Z46ZZImm1wOjNKm5mK1reNm6RPmKlPaogUW5jlk+HPeoP0f76c477zxwbCbV+vPl92OBVkq+vUhCalh6jfLwGIWc5Vb2IiSpuZKz0mzlX5J2oVf6cqLr+Pnr5eFtb2+nvnff9txe7JXPoRUn4zo1W/cJ0vISncMcXWllfB5F8Q3U0jKmJ389WhIyfsoo+jSLWO/NLzW5zL8ZtUHLSC9Cm/3ehO+1NLxCoVAoHArUD16hUCgUDgU2TkvY3t5Onf06xmyd6mcuudMfw7Z6ZoJMTc5MQGYr82ZEj+MRfS4Vn4nOPbU6+25pWR2PXrAKr5elSkTzmAXJbNLXnrmjtZEAODNTmq2bXDhW0kaZ5SWFMnOlP5fpIXTARyHR2kcy4+mV44rIbrXvGNpPc3lEHs2wcL0y8d2PkSkgpMPjvPr/M4KAyEXA6vVZWkIUWNUjPfbHHjt2bM1U6wMZSFZARCZtHsvgNbopIjJ5IbvHvVtEz47rr7/ezMzuvffeA6+R2ZB94vX4/POUhkxh0TFZ4Auv7cE57xFeZGlQkXkyIynPrsvzo/c9lIZXKBQKhUOBi6IWo3N/jlLKbFnode+aZsuIgDMyV389lg5heK6c7pE0KCmWc5ClJ/i+ZBpWNB7OSRaIQhJb36fsnJ4Tnt9FpNHs49Kkz9Zat/QOy7/QiU+NyB+TUaBxXbwWyWRurh2v689nuPhciRn/3enTpw+0FSUc83q8Du89r30ovJ0a3BI6uix9iEETkcUkC7dnMJL/3yfHZ1qSnjksTeO1HgaNsK1obrPnCteDic5m6/c/10Njj/YqNXDeR15L02ekP8yCA/0cs5yWziGlmJ8rpmYRmfXAX5tBJdznkWVJ4LxG/VhS3ipDaXiFQqFQOBTYWMMz69NoZZpJj4Jnzj+UJVL7c7N0BJZ+YX/9uQwp95K9JJ8oLNu3EYXOzyWlk6Kr1+6c1hYdS0Sa5Vyi+ZyPRX1dupaR/0hg+gY1LS/1ZdpRVmQzI/Luwe8D/3/UXo9wgHuT0nlE10TC36xsSi8tgRJ3loDu+0D/DtMuIsIAlpLhsX6umE7ToxYbhsEuXLiwpoFFGl52X0Q+PGoKTBanv95fj9pF5lfy54gWjKk0up7akoYeHct9Tr93NIfcs1mRXI/M6kGLSbSm0iA1nz0yjox0pOev5b7dhDi/NLxCoVAoHApclIbHX98lEYqZNBudz19sSp1eKsgoj1ieI9IKKHkwKtBLuWqHtmv2PYqayyJIhaiYLDWgjCx6iV18LmrKf9bTpvl+LsqVfZgj/44Sr/37KIqRvkeWZ6L27PtKv0vm94m0J50jaTwjwfXnUJLm3o32DqFxsYRRNI/0N/ckbYL7m5Gl3sLBcVAjj+7bjHqw1x9qTd7XRT/hkj1PfxSp35iw79cvKrjqryN4H576q1dpfNddd52ZrebAPw+yaHBSJkbP4owI/Nprrz1w7pJxMWK1FwfAmAhGQS/Zf0s08+i7OZSGVygUCoVDgY3z8I4cObImMUY+gCxKMtKMKOFmJYWEKGqOdmlqRJFPLXuN/D2ZFEEfUuQLy2h5GFEW+TUpAWeaRKQlzmltvo9ZmaM5jW8TeD9MNGYio1HyGh79BIwy4zz2tNosorgXXUjNUv4Lv3dIQ9ezWETjjb7rRSFm2kCWDxVZB3hu5qeLvstKyXgtLrLqzFkKpBlJq/btedLkCFEuHX1oemVx0949Ta2d5Zy8D48apDQ8WiH8WuoY+q9pcVJ//LpkJZM4Bg/mhHJ8tHr4vZPlvOpVz+aeRTDb+5Fm7qN2lz6XSsMrFAqFwqHAReXhLfHhZdGTfDVb1/ConVES9pKdpBYe2yOazcpLUMOL7O+SLin9USuMbM7Z+4hoOyupQc0lktLor1qS/5dpdktIY3t5XQT77deSOY0cc3QdsqVQo8vIpD3YF72P/Bn0GWqPZJKwP197hNomtUZ/bkZKzFzFyM9IqwDPjXIsswhi+oMiKwsJpnl9r31Evq/eHtva2lrz3fk+cB44p9F9yc8yv3ik4fE5wHFR0zNbf0Zwv/eI53kOmVe0Lr05pG9N15MW6a+XRW1zD/X2Xeb3i9rLnjPR85tRtNvb26XhFQqFQqHgUT94hUKhUDgU2DhoZWtrq+v0FrI6eBHVV2TmNMud+lHtN56bkQr79hioweCCiJDXq9H+3B5BamZSzAJ8onFlCcE9VX6uZlaUzJmZMKJx8dieM7q1Zjs7O2tJ/b1AHe6VXr0wJjJnVcujAA2a3rimEXEtk5W5L3qBJzRTqa1etfTMjRCl0PAY7pnoHIF9ytIHvDmRa0qT5pIE4bnQ8tbaWmK4T42QiTEjkY5C2Hm/855moIs/lykLGaGC7wfnUAFO6ruu7+dW7V911VUH2mPqCefao3cP++v6seockghwf0e1G9UGUyaWBGNlz59e8E+ZNAuFQqFQADYOWpnT8DIJNEsqjo4l2EZPo8wczhyD2brkloUlR8dmCc89rZfHUOtYUuk6C8aJEk4pDfacx0IWtNJLAF0iwW9tbdmVV165FprspdmMYDyjbzJb1/BIR8b9Fmmh3H/qU08iZci1NDztoShNhKkz1BKjpG5qCtw7UcAT0wG4R7hnvaZHq0pG6xaVFGICOoPRIpJi9eGKK65IE5K3trbs2LFja+TKvkQRCbM5jih5PKPtYiBajzw6S8hnupQ/R9oaCcgVPBKlWKhd9cWTbvv3fh9kpBwM4Ir6mJXp0RxE2iL3Rqb19rRQ3p/qj6dbYwJ/aXiFQqFQKAAXRS0mLNHwMh9UlDzcI5j2bfeShwVKt1FoOe3wfN9LOI58Qtn1spD/JUUkM/8iEfnCsnlckkaQafE9yrQ5zXFnZ2fNX+WRJYtT8/Jz0AvPj95H/gq2xXFEezWSjs1iTYJzx1B5htn7vROV1vHvMzJpf66whHicmlHmy+tpePT7MPE9m4OehnfFFVesaW9e4yLlmrSmzPLjx8g15TlcJw9dR0VcWeJKBYJ9uydOnDjQLgvneg2fRAOZBUNj8evCYsGZZufPYemgOUuWf2bxGbnEGtGLKzBbJwXwffBpKkvoysxKwysUCoXCIcHGUZrb29trUnWUUJr58iKy2IyGjNJ5RA9ELSaKIvP9idrha1RyJqJR05xEfYyocHpUYgT9O4xQzGiwojYyTSzSCoVMs+tFaS6xo2fE3WbrEij9llHSbSbx0mog9EjLM79fFKVJSqfMb+GPFajpcf9F94YwRzHn+5vtjShSOjuG+4wRmNFnGR1Z7749fvx4un9aawd8fNR2zNaT+pcQUGT+9oxOz1+P90XmB/ag1ucTvs1W2pVfF1qdGFmrYzX+iPKN7VKz61lMWERW4H1gdtCn6tvvxXFkEcTy2UWlmejD6+0dojS8QqFQKBwKXBINz//K0weQ2W8jIllKApmGF0XPUbLvkR1n2gvt1ZFkn0VWqo2I8HguVyfLj4nGOlc2KBonsUmU5hIC3ch/ELW7vb2d5qBFY+NeidpnvhDLAvXA9rLo3V7xSUbCCf49aahoGcmiBH1fsjJUPVJsakRql5F9fh7oY6XGElGLMfqPx0aaOXNhjx49mu5L+fA4J/4zXov3R0/D4/2ZEZL7c5l7SH9clGfKdvmciXL3dL72SqZpRf44alRso0esz8jUni+Ufc0sdtH4Mgo4+u78byyDLagAACAASURBVIzW3ZdZKh9eoVAoFAoOG2t4x48fT3+NzXLmk17kYGZbZtQcpUL/XWbjjnwqGeMJv/dtsRCjkNmgI+0wY+GICn9SYqFkRX9XxFxDqbbnc8vy7ugD6ZFiz0V9Hj9+fF8Sj/wnjLBjJGK0Lpxv7iX6yyIwSpdaVS8yNWPaifY3z+EYIg0263emgUft6HrMgeTamuVlaLQmzDPz51C7Yb5hpEnIj9XT8I4cOWLXXHPNWt7aNddcs38M894yX5q/LzPC7ywyOiqUmj2betaajKw+isDmM4NaItcwYqFinmeWJxm1z/uIz9OIcSeL2+CYornQdX3pH//ezOzqq682s4NaYGl4hUKhUCg4bKThSUrvZcwzb4gaXa88UBaVR3hJkFIR+eh6OUBZxFPP/0cpjRJeZOPOJBxGeEUaV5afkkXvReeyb0v8cWyr5wMRelF/YlqhROrPoZae5dT5ucj8fBkDiwc1O2kbXJdIeqR/gtpANE9zJWx4fHQ9aqxRtBwjOTkeaj09XltpU7qvpbV5NhBqfcz7ikooRSwmvTy8K6+8Mi0bZrZiL+HYstw6/z/vD96PUcRv5v9nrh4jF317mc/YPwd4LPczcx97zCdZYd4ospN7SH6zXt5f5qvjczbKhVX7fN6RncZstXd0v/r83jmUhlcoFAqFQ4H6wSsUCoXCocDGQSvHjh1bU3d90ArDcWn+jBLPdY5UVb2XmpuFt3rMlRfx5giSA0s9Z5h4FD67xNzFz7Mk8V46QhRQ4NEL5KFJJiuVFAXWZIhMBjSZ7e7udoMsjh07tm/iWVJGJyN+9vOodqJgCv99FL6v/aZ9pn2cmRr9tTn/GXlB9N2cadFfN0uH6aXfZO4E9oM0WP5/mray1IPoM5asUZBBFDDiA4V6iec7OzsHnjNmZvfff//+/0xy53NH/e+RCPBzvu+5ACKTufouaF5oDmWfWc3cn8M56qXH0MzPZ0pGcWi2vg8yl8oSSsMeHVlmzqWLwJuKGeRTJs1CoVAoFICNg1Z2dnbWQsu9dCMpLCouaRZLzVmyaPbaSwRmCRbfd/6f0SYJUag3Hb+Zo7sncVPD3ERKz4h/I2c1gzx6tF4ZzZIQaalMGzh37txsagLbieiaWHqFFoVonqiJ6HPNNbUD9isaY0975l7JSJfNYgonf0wvZScLQOpZACix0+rCefbX4z5nigG1N38M798eLR1D8ueoxY4ePbqWwO+JmRkww/ufWq7vz1zZrJ7mHdEr+utEaTckrSBhs+87g3vYV7bRW5c5OjR/TPZcXULsMZeWEgUOkcyEKUL+/qWGV2kJhUKhUCgAG5cHOnLkSJdYVLZWSjxLCnFSos8SJXth1FkpjF44cpYsGtE1UfKhNhBpQpSCKHH3krAzH07P/5elNGSpFL3+90oYkYbqwoULXQ1vb29vLSTa+yuygpwZYbLZerIrNS+GiUf+Kvo6GPodEQJw70ekygQ1qiztwiPTxuiT7Glp1Mp4j/hzeUyWcuDD7bmm3Ks9MnY/xz1qsauuump/LXWcfIO+3+qvQtbp9+1ZNbjnuS98/7gno9gE/73ZOkVZRqocaVzUUEk5FhXZzaxBTG3ppVBF48g+51zzOUeCb7N1H7vGp7WN0oqyZPUlKA2vUCgUCocCG0dpbm1trf2y+l9fRm5mRTUjLY0Sd6bpRXQ2TDSntB5JIvTrZAna/rvs2CVRQpSoMi0x6r/Qk87mxtHT8Cjl0v/Xi9KklBlhGIbQN+EhCZ4RdXwfRQgyuotSeqSBUSvgvuDeitrPiJoj+rPemkVtROdSC+S+9/+Tqo3+bUZe+v+5ppk/3V9vjtIuopTqWSqEra2D5NFqR4VU/bXl12MEbnbPm83fu5EmnJVAoi83IuamxsVoxui5k/lwe/R+mQWJ9/iSaGQho4w0y8k+qDn7tVR7LIOkRHOSQ/hz5iLzI5SGVygUCoVDgY19eGZ56Qj/nV4ZLRXZgufox9QGI5bM1v1IlEAi8mheJ6MnWxLF2Issmzsm68+SczISY/9dZuvuaWvUNimlRUTDXkPKfHh7e3t29uzZNYnN90WfaZ0ZlRtJnRmNkc8NNFv3W/n+s12ONSI9zqInBd9HaoOZ7yGKmsz6lkVTmq377PSeOWlR7iJ9dZy3XjkqfkZKMT+PpJLq+X41bhK4e7op+u6k6TGmILpPhIwCTugVvc183pG2llGaRUTnGc1iFiUZWYn4HTXx6JmcaaNZdLr/jn5MzkkUrcvfFK1bREsn9DTUDKXhFQqFQuFQYGMNz/vw9Ksc+W7I7tGLRMpKwTNKihqFWV4WSOiVeFmSfydQOsrs0z1kUlOkJdD+Pufr6LFA8Do9DY9tZP5Gs9g/1pO2dnd316TbKMJXUh1ZHqi9eVB7EaTdRPmhme+Jmr/fH5Gfxayfc0YtLYu4jZAVfuXe9fcg/UuUvDMtzp+bMXhE92/GrMFngPfbUsNfksPZs1SobeZvkb2kZ0WZi2aM5ph9puYTRRdm0as9/2L2fGOUoz8ui/Cm9SO6p7knswLHvVgMWkp6ea3qk6Izpb1HMQS8986ePVtMK4VCoVAoeNQPXqFQKBQOBTZOS4hIcSN1m+HbdJBGKiq/o8lMr5HTk+hRb1HFzoJmemZKttsLs84qHffU8MwsyetHaRGZ+TOrj+aRhTIvCZnvpSWoDZq4IzOXAhpomovMoEKW2sLAJ1/HjWk1NA/xuOzaZsuSrDPSAJrHPegKyJJ7I7PkXABKZNKkaYx9WpIOwwCEKNiMRNpzxOM7OzuLiAgyom6mZvj/eV/SrBft7ywwg8QE0XOOSeS9yudMNM+I9COTPkn4MwJwP490CXDOaZYnwYg/hnskGl9m5qd7w88953Fvb69MmoVCoVAoeGwctOK1PEpG+t5sXaqjdhaF7Wc0VpRIo7D0LJgg0oAoaTMIpyelM8Q6e42SbOeocHokrpkkFElTWZJ/lnjq/9+EpiejG8qwtbW1lnDu+8BSIKTGIsGsP5/zk4XkR+NTKDuDVaKSL3OadpTKwPFlZAVRHxkkRW2jV7U6owWjxcSfy7SDjC7Mrxslbq0fNb2oPBDHHkGEFzw2+oxkw9TW/bpQU2QfMu06OkZ90dij9c/2CANtojQYncP14bp4C0ZGdE9S54iUg+1znLSgeDCtI3tGmsXav38fzWekmRZ5dKFQKBQKDhdFHk0JK/KjUaqjhhelCWR2WFJARVoBX5ckgC6l4PL/Z36XTEqMxjVHMeWP4euStAS2QURS2VxCfZTkybH3sLW1ZcePH1/T8DwJMQsAq135ICSpRlR2WYkp7Zmef5G0ZJIq1YYnoOb6Z9YBP84sLJv7vpcATF9JT/vIfN9M6+nRrXG+eppS5qvJkoijdnoS+jAMtru729Weqf3zmRT5rbOUKb6Pnju+b76tSEvj9bh3sld/rNrNUg2itKHIIha99347ame0kPR8vNn+FnrxBkpHoMVOx3o6Mmqq0bUylIZXKBQKhUOBjaM0t7e316L9etoapXOhp3FlCdksQ2IWkxCbrSSQKDk+o7qhry2KKqOklfn2IgqjLMqwR69EyS3z6UWgtLQJ6Wp2nShKU+hJ6Yq0o+Tt10/rS58aKcdIFMB++b7QDxxFaTIyTIhKk/Dc7Fj/feYb5r6LkpnVNxLyClEieEa+3vPd8dyIBNtfP7J+UEOhX8treNl+zjAMw9oxfh+wcCijJCMSgblnh86VJuHvmzlSfEaJRn3Jnne95ykLsFIb9fcXtXJGn6otvw+y+33uc99v9lVzzvJI0Vxkz1F/D0YlhUrDKxQKhULBYWMNb2dnZ/8XOyJZpcRJbSkiIabUz197SuteSsskREq3/nv2ISMh7eXuZfl3kT8moyXL/GQePQ3LXz/Khcz8ij0Nb077i7QPn7+USVraOyQV95IbJUCShstaENEncQ9lVEj+c0qTjCqLfIa8boZe1Cz9L5SWo1wx7lFSikV+ON4DzMPqFaulPyuLDjZbLp1HGlJW5sZDkeGRli5Ii1R79CNyr3IM/j3nJcpBzaKme77VSFvxn0dzm9GR0adPrTTqU0ZTFyEqeusR+UQzf2wW2e7/n/NvepB68Pz586XhFQqFQqHg8ZAKwPbKykvioKQVRRtmUgw1yEjSogZHjSciQ6VEmkVE9sp0UMLrnUvS48yX599n2iclykhKy47t+f2osbL9iL0l87VGkP83I102y60A+ly+Pb/+999/f3gOJcOer4uRnNl+9OdzTzIirufDzaIyI78Z2VHOnDlzoK9RAVhqdhGjiu9HtId6UZlEFpnISG3//Rwrj4eiNBlV6jUlWgX0nuVl/BzM+cWXaEACWaciHxfnO9PAlkQU96LCBeakZmOInnOcE/oI6Vs26+egmq2zxvj2+OwgC02U15zlWvZQGl6hUCgUDgXqB69QKBQKhwIXlXguROYj0tj0nI8CHc10btIs6c0EVNvpxI8Ip+k07pkFiLkkzqhNmgUyCiOPXpXvuetlZk+GNHtkJtQeCTfXac60MAxDGuYefZali/gkVF1Tpr5sPFHwEinrdKyqZUcBVjQ7MWggChCQmY1rmtFreTMRzZxKBGYgik/g1/96pcl2SSpARobeo8fjXs0qh0fnz5nmdnd31/ob1VVjf0k1FlFv0TQ2R77O/83y2orRHNMsyECUKGgl2hv+82jf8V4mLVnUtyxwj7R/rFXpr83nQZbK5b/LzP7Rc4fm40pLKBQKhUIBuKjyQFmSr9l64AGlvchRTkmHr1mitr8OqaWoHUYJmXPaU49UNUOUPpAlC0fXYTtZQEhG6uqRadVR4BAlq0zC75EGz2EYhm5odKb5ZqVXzFaBLAKJpntrnDn1e+WBGDCRBa9EdGRcoyxYwveH+1oSPjU9r7nof6YhcNzR3mIfGazAFBv/fxZSThJjf2yvVBX7nAW1mR3UcH170t4ijStLuVhCREzNXnOekSH7/tLqFJEhC1nKDIMDlwS8CJk2xf99n0ki0AvKETKrUZSWMBdoF6V3aK739vaKPLpQKBQKBY+NfXhRuPWS43s+vEzyzfwGkZYxp81ExRszstjIHp6RRNMv1/P7zCWRR8m80Xd+vJFfbi7RubdumQ29l3C8VLoyy+fLbN3HIJC2K0p2zcpQUUPpaRL0/0bjo/9NfaWfIkqOjwpXRuOKtCf2jakG3odJCj5aPbgfesnYmQ8+0kIzv72u58l+e6W4MvSo3jJ/fy9dJUt+z54lPd83nynRPZGlJ7GvkTaT0SEueWbxeco+RhpXZtmhTzSKVcgKNkdaYUaKzev3fKE7OzvlwysUCoVCwaNtGKF4u5m94/J1p/DXAE8ahuEmflh7p7AAtXcKF4tw7xAb/eAVCoVCofBXFWXSLBQKhcKhQP3gFQqFQuFQoH7wCoVCoXAoUD94hUKhUDgU2CgP75prrhluuOGGbi6VcDHBMA/XOY8UluaKLDlnybgvx/UiVg6fu3P77bfb6dOn1xq59tprh5tuuiktjeSvzfwo5hhF+22OqYPX4P/R+7nze1hStuVyYa79i9kXPDeax4ypJCpLxby13d1dO3XqlD3wwANrnWutDb5d5m6ZrZcg6pXCEpiPmB2bFYjuHbsE2bGXah9mxyzJx82OyXJ8HyqyUmlRbm70PLhw4YLt7e3NTspGP3g33HCDvfCFL7TTp0+b2aoWmU9C5YMnqy0VJfNyY2UPsYgoOUPvx3huI1/Mw7FHzDqX1N1rf5ONlp27JEE8q1qspGFP3Hz11VebmdnJkyfNbKQd+vqv//qw3RtvvNG+5Vu+Za2mXTR2JlWLtol0WmbrJOGkucqqL/uxCjy2R73Efmd72H8398NNKjWP7P6JqPqyZN2MyqxHeMBjouRsJnWzBh2rkZuZ3XPPPWZmdscdd5jZSNj94z/+42vjFra3t+3EiRNmNu4lM9t/bzY+m/y1ltB28R7KKP/URnTPcd8RPZLt7H6MCNqz+nsZAbk/NyMAjxLs56gFSXSxRNDs1clj4jyf/bfffruZrX5rzGzt9+eBBx7YP262L4uOKhQKhULhrzg2phYz62tGmYSYlZ0wy00KmSTcK4VDRG1nVF+ZWh21l2ETza5HH3Yx18kwJ/Gb5fRjehVRa9RHalW9PvdKI81pQNG8UWrMtLaIJozmr2x+lpjFlpRpyaTYHuY0u0hLWEILN4fM9Nxrg6WMSLslzc8s11AitNbs6NGj++frXE8izu/Yp0gjybSUTZ4HGQG50Fuf7NjIbcD1ICVbtJcyrZzvIyqzJWZpHkdtNNs7vWID3O/XXnutmR2kpZt7bvdQGl6hUCgUDgU21vBUjNGs74fJJIKoRMScfyojbvafZYhK2FDClnQ2R+4c9XWJ9kRkUlRUXJfIpKaeBpv5pnoaOrWCSBKPyIl74x6GoUuUy33FMfa0mjnyYZan8p/x3J6PN9uLPUtDjyQ8QrQu1Ea5hyIC4Lnrza1VhJ4WwvtJ0nvk36KWtr293dV8jh8/vn+sXn1pKPoPs+eO9//2rA1mOemyPzZ7/vSeS3Nk+V5zzQimM9Jt30f66ny7GeYCdzYhvOe9EZVqYzv0HSpmwJfbiqxNS1EaXqFQKBQOBeoHr1AoFAqHAhcVtNIL0+1VyPafRyaYuVD/SK1eUinZrG+OyEwyvo80Wc05k5fkuNB5vEmtQZoPoiCJTfKisir2vevwenNoraVVkM0OmpuiPkT5V1zDzCQbpVv0wqV9276PWX26LIcwGitzGntmItaA45r20gQeStDK0vsqQhaiHwVHLKlp1lqzY8eO7ZswlQ7jzVz6PwuCierU0cyZBWEtzfFk+2ax64amRt7//pysFijvCSGqFZmlGkV7lWvAQJTsmekx547xAT4cH+9Xmah9OpRMmvrOpyzMoTS8QqFQKBwKbKThKWAl0wb8/1l4uH7BvWRCKSULBImkyixZlNpgVPE8C5/mcRHmknp76QmUyqMQ7aXJwxEyDY+f96rAZwnHSzSXCFtbW3bs2LG0L9k5ZutSYE+qpIbNuY6c7JzrXhK55kdaAZPkI+uA2uV+mtNGfb+p3VLz8/dQptVm69NjrlkSss854T3XCxiStN4LeNra2rKdnZ19De+aa64xs1XIutkqgCULcIruZVZq1xoKvE+iSutZ4ncvqZ9j12tmVWE7vs8M4PDrkq17Rgbiv5u7N6I+ZhYM3reRls1AJ11PWtxVV121f45ICyLL2BxKwysUCoXCocDGGp6XlHqJwF5y86/85TbLefB4nV7ip0BbM+mB/P+S6JZoTdQGMyzRWDhHpGIyW9f6liSrZ33JNDAv4WlOqP0uCa9ekqBtNo6bibK+/5TuiCV94X7j3ur5jpckkUe+oOjcnn87OyayfjChmuPSHvLnULPLLCWR9YNjznhzN6Hsi3zv9EH1EtBba3b8+PF9ze66664zs5Wm59uZS3b2fdDc6TP1gdaOqG2OKdLOzQ4+d7L7X/5HvY+050x70v7oPQeoydFX7vvMtAeuS48ikhoXn11R2hG1zej3wewgjZw0PFGMzaVDHejvoqMKhUKhUPgrjo2jNP0vfCQFSBrSL7Skl0wyNculZaHnMyTof6GdPjqf0mwvuZZ9XOJnpJSZ2fB91Nmc76Z33TkJO5K4dR1qepnG7PuwRLpShGZvHHO+uoyyqIceNRbXJdNUI1+H+ppFa0Z9yLSCzN/o/89ee/7fzHdDwu0o6pkaPsfVI2XwyeTRuD28LzLbR0eOHLGTJ0/aTTfdZGZm119/vZkd1AIy7V/t8znk/+eYM0TncmyMavTalCxK3A+KQNR4vC9RhOnZdejD83OYaeWk84qec1o7n9zvz4nmZC46WPOrMfnPBD6DIx+1tD1per0IX6I0vEKhUCgcClxUHp4QRWRKSpFkIOmlFy2X+Yt6OVRzoF0+0goYUZflfXlkUvoSZFGTkS8lO2ZJdGNWcqOnGWX5ktS2/HFzErFHa822t7e7Pjxem/2m9hn1IZMyl+Q4cR9kfiHffz++7Pu5CNjevma71DajXDFaN6jRiYhXr1FfeW/QvxhpBb18Sd+vqN89arHt7W274YYb9ksAKTozyp/MNK+IRi6LsKQWRX+ZH6OguSUNmd+fXrPx75lz5jW8M2fOHGiH+zqLcPfj4T1Cf/ASPxzbj+i9sihw7kdPBM04CoHj9eum8lB33nmnmY3ae2l4hUKhUCg4bKzh+Ui7/UacFCAphdFj1BS8pKpfedqUexKf748/R2Cl3CjSjlIYNaPIPk3Jnn1eokVRAvISD5H5ySg1RX6YTLOLoiHnJKSoH5Em1iOf3dvb6+YrUnuRdHvq1CkzWxWC1avZSkrOokvpl/MSsawQeuXeld8nGjPnWNfVXo5yHKkFCCzT0tPWBEYaR+uv7zRHYqS47777Drx6DSBj1KBv3vt2OH+eFcMsjj4kepF229vbdvLkyX3NTu1Hzx0SVme5gf78LD+W1qgo11FjUp4Y+xFFhzM3kCxN/nmgSETmCGa+8MhaQA1cfaS2tqR9vdea+2ekxseCzRqnxuU1Ze439UXn6BkQRfHedtttZjYWEV5q/SsNr1AoFAqHAvWDVygUCoVDgY1Mmq21AybNKLiDYdJM/KYa74/JAjMyh6ZH1kZkYpJqre9oHooczjSV0VyYkaD6Y2hW6QUkqI9Z4inNsv7cjN5I6xbVpbqYpH/Br/HccTQ9epOPzBdah7vvvtvMVuHHMpXoOLOVyUef6VXmOxIGRCbNkydPmtmKlJimTn1utm4OygJE/N7h3udc89xeyD9D6Ll3zVamJJksNX/33nuvma3mjMErvi8069Fc6c2Wmj8mhit8XPMXBZlkRNMeSktQOzJt+v2rtaK5UHOh18gsqTmVCVtrqj0UEUMwfJ5Ub/rcpxqp/wwI4X3pyZD1Hc2DDMYRvHmS6U9Z6kSUbsG0FyFLFfJgGoL2V/Tc5nNa49R6Rmk3SktRENN73/veMmkWCoVCoeBxSdIS/K+rfvHpZJUkGoWWU0rOwrajEGwmb1OLijS8LLmaju4ojJphx3NBJf6crDpxFPLPkiVsNwvW8O1R+suSls3WAzSyisoeS0qF+H7v7e2tabteW5MTWhoIg1W0lv4cHaNzssAMnRtJ3NIYpKHoVRpKRFKcEVvreh4ZPRO1kYjoWNKx1oGpBdoHmgc/F9KQb7/99gPHaD6jRH5WIpcmp3FHFhqBgTu0oPi9xJSPnmVge3vbHv3oR+9L9AoQ8fuX2oy02qzklNlqDrWfNJd6r/nTPfHoRz96/9ys+jrv6UijpIVF44kIKJh4zudPL/FcfaKWq/FFQVLZXuWaLilLRY0uIh3RMfqMgS/RM1/jetSjHmVmo4Wh95zyKA2vUCgUCocCF1UeiFK69wFQ0qBUHml41HAYStzTHGRf934Wf91e0nCWbC1ENGoZeTMTXntlOjIi6l5St6QjzQ2ltp4tPUtW9dInJS36IqK0C/oC5lIbhmHYXxdpYkoeNTN73/veZ2Z5WDMlVP9/phVynnzyL9NCImsAxyw/mMZOn5bO9akT9B9mydBRki1D49VH9UMapcbvP7vjjjvMbJ1sl9Kz34f0Y2W0Z73SMvqOvkR/Hflh/DmZlnf06FF79KMfve8rJLGw2WoNNS8aOzVkv/70DdOfdNdddx14f8stt+yfS6oyJnPr1T+XeH9Is9O4hMc97nH7//MZQesT770oTUCWE41X49JcRCkttByoH/pczwlP6qy+8FlMX7gv9aPrMZ1Dr5EFS2sqjfu6667rko97lIZXKBQKhUOBh0QeLcknKvWj75gsTL9Z1Hb0q24Wa1mU0pl0K0SUO7Q5M1k0imJkkib9V5HURJt2Rn/k/Q1MnKbkQ8nPj5dS35LIVR2rPtDH4v0KApN8L1y4sDhKU5Kj93lxDakRR5Gd9BtJ41NbTDiPJOAs8izaq0yQJWmA5imar4wsmlaBXiShNGNqtF5z0TFZZB+LbUb+D84rNTyvZTPRnFoO7w2z1fNgaVL6iRMn9tdL14souDR2+qn0Xhqg2WrvkfKLGnjkO85Ij/lsIfmyHzMT6PUc9etB/x59Xb3yYbSm6b3Grb3j97f2lbRAHSu/tuZK2lpUlkrn6B7gs9+vm/qr+0jarsZNq5//TNd7/OMfHybPRygNr1AoFAqHAhtpeHt7e3bu3Lm1qEb/K09pjhJXFNFHP1GWA6Rf8V7ZHpKtCpEUm0VARvZgaoNZiaEoupLaGimGerRAlIokFdKH4K+n9jUXWV5eRBpMX12WZ+S/WxKlube3Z2fPnl2LjPPISu7oVZKjz1Oi9EiNmHvJS4KMMuXYqYWYrfairqdjKK37ecoIv6kFRnlRvA6jT+kbN1vde7qe/CySmhnl6PvF+0dzwuhQf4/oHGkz2d7x4F7paXitNTt69Oj+fEkLkBZitpp/9VsaiPpLP50/RtoL/aOaH+UVRhRsnBdq7xF9H61fijZknp7Zepk1UrzRaiM/ndlqXdRX3nNqw99P0vAyS0/PwkHLjKJq+Rz39wap8WiZ017186j9rTU/ceJERWkWCoVCoeCxcZTm2bNn9yUG/cJ6aY15FJKWmJfipea5YoqSbvRr38t1YkRfpK2RBYYRT5HGQqYGRihK0tH4vV+TuTPU7NgffywjEzMt2I9TEr0kN0q3EXuK+p2V9BCiYr9+bbNITUVo0vfgJTOtM5kZqNn5CEi1J+mYEW+aL0npvv8ZETj9P8zlMlv3x1Eb9JFq3POURulL9FJupuFJko/YK3QdzUUUlWsWF0VVRJ+iZ7WP2UevLWhOmbNHDTraO14jzvbO1tbWAW1Y15Fm5j+jVkMmml70dMZ8pHn02gw1bN43Otb3Uc8vRrdrXyvq0O83rTvzZOnvjvKfGZ3LUjwRsw+1c86F1laRpP5e1J7hs0TPo8i/TX8mNX0Wx/XnL43M9CgNr1AoFAqHAhtzae7sMKkUwwAAIABJREFU7OxLBuQVNFvPEyPLAosdmq1+1ZknpF9y2uM9dCylJ7EkSEJgbkgPkj6jnC31iWUsKOFF/HTUKMieEbHB0A/HEhvqo9ds6Mdg7hg1M/9/xuvY889FxSCJra2tMH/KS3u6pvpLCZisKWrXj/VJT3rSgWOU2xfxL9L/Ql8erRW+D9k9EJUU4p7JfHdcc/+Z5l/XV5+5D/21eR1GDFLy9tB8PfaxjzWzlean+ypidmFOrNZN1/VWnai8TG//HDlyZM1/5fcT/ePkXY1yOHUs10V7h/4///zRZ2qDBa+pAfrz9azKfN/+uZNpycybjWIXtK/UF0bpSgP0z2+tO88lo5DmKPI3Svsj+9Ctt95qZjHjDksV8b72e5Tzd+211xaXZqFQKBQKHvWDVygUCoVDgY1NmkePHl0zd0WJ4AxrlhoaVSsm7RMTIm+++eYD1/OmkSwRnKZUbwZjOzy2R7mUmTRJXeSdr0yUpdO4RwDNEHOOOwp0YGg0E2ujcicZgTeDcnyScZbKEKG1dsAsQeqg6JokhO4FaNx4441mtgrxlvlE8yMzaZQuQnOkzFMiXY4SzzXfJCtgWSd/Dt8zSCsyh9KMq1eafvzc6DOtFStpM63Ir4vmXH3wBL1mZm9961vNLE5LyAIdoorhEc3aXNAKSb2jxHO9KmWB5AVRKSTNpZ5RCqdXEAYT+T1IIcagtsiMT8IGnRuZ7x7zmMcc6KPmS89Ifa7r+DnRWvL5w3Qy/wzVHGgeOQ6mSfg1157QXiFZga7vafBuuummA33RuVpj3dcRYYTW5eqrr660hEKhUCgUPDaO61Rqgtk6rY3ZunNVEoF+sSU9+9BbOmJZPoOJhtH1WC6FJMhRqR+B6QIRqOFlhVGZtOxBbTNLuI/GwfBqzVFEXaRrU1OmY91LdtQkSUsVaS6RRD6n5ZFKykvA6jfTUSgR+3WS1K+5Y8qKJGJJ/JGWyMKvTB+ICgFzrzCJO0rqJ00SC8BGmhAp7Rgkw0Rds/U9qvWWZC3NpbfvpNlJilY/NN9+Tij9Z1pOVEqGpAwRhmGwCxcu7Ev/SjHxmgLnR8dGxY4FBq3QMkKKMX+/kHKP95TO9WkJ6gs1Lu7hKECDKTq0NOi6voQR03uktWlu9Or3EOeEFiymEUQaM4sIS4vT/EbBS2pPfdL+01r754T2pIJuetYBojS8QqFQKBwKbJx47gmCozI7UWFA/z6SliRhSAtkKQrSa0XSGql91Fav5IpAYlYmhJutS9YZAbDaiKQmgT4dtmm27iuk/Z1+Ld9X+uEUaswkzogSjn1i+SHvx2ApmZ6GLMtARL3FPkjilf2eYfu+D5wfSf1aF7Wh+YqSyBmWLyk60lZZtJOkCNp3Swrnkgw90naoQWgt1ccs5cVsNWb6KKXRRudo7iV5S4qmbz7SQtQXvdd1otQgjv3cuXNd0oKzZ8+uzWn0HGAJIZZP8s+djAhCY1cJI+0tb03hGtKilFFlma32oNZSr5FWqOcaSZ2pfeocPz75IlkqS/uC1hx/LOeacxSRKHAONF8an95HVintGWl0Gg/3v+9vj7ouQ2l4hUKhUDgU2NiH50u8MJHRI/JHZMfyM2pTjN7zfiRK/7wui2+arfseqdFFfhpKEzyXWo63OTMajtGBEY0Xr0cJi5pXRFbMc/W5bPkRhVVG/KvPI1o3L+1lPrxhGOz8+fNr7UbUYpLyqIFI2vV9YGI8E7KpKfv+ZWWTGDXsz6GvSNKrtBe9j/YO9zl9uOyX/45WCK13lADM+1N7RH2W9BwVK6aW5f1kZrGFhlRPkuAltUfn8L7Z29ubLREk0J/tx8r7vld6KSKy8JCGx1JTZuvPCCZmR2AcgNqn5uPbIEUjSRJIi+bPJcUck9UjGkRStGWWn4hsgnOsdqnh+wKwgo6lDzz6jeGzqkeKQZSGVygUCoVDgY01PC9BUII0y8vyMJ8ryjkjjRJ/yaOisZQEqNGRpNb/nxVRZdScP4d+g4x4NvKpzbXlkRXBzYqT9qRVSqHSXDYpmRRpAyx2u7Oz09XwLly4sFbk0kvckgSZn8QCnH4+SanESMhsffw5LFnESFjfR0apSVtSXyOqL/aJEZ29PEb6PFlUk2MxW99vnL/evcH7lZaFSKrOiOEj/wvP8fd2tneUh0drjh8nrRnMsVMfIs2bz5eoEKs/zmzdl8Wxa84j0mt9phw7+X0Zw+CvSY2SmlC0V3WuIh4ZZ0ArkW9H9wRfs0hM37eM2D563mS/D5q/yJ8e5Qj3rAMepeEVCoVC4VBg8/oKDpHUT4mav+rUUPxn1Bij9oksaojRopFtndIgNcyohJGQ9ZXRU36s1EJ5bKSFUpPTe2owUd8ISon+OGpAWcmmyI8RRbVGaK2trUdUMobSMlkkvM+BUioLSmbr5PvP7+iLikq8yM8o/4g+j6wQAv2jm/jwmL8ajUfI/C+UziP/XxZ1SG3Q3w+MLqUvJ8rXFbyWO5eLxxJMUTwA9ymfC9EejbQV/3lEki8wz5eRnl7DIwOOfHjy++o63loj3518qZklSzm3vo/Uakm6zGLGZutk2Hw2k/En2qvZfRxFowsk/47KHQm85+f8vx6l4RUKhULhUKB+8AqFQqFwKLCxSbO1tmYKjGpa0cxBB/GS+kXZMVHV4ij9wCOixKIpk9W4IwdwZirj+yjRXe1z/qKaczQdZabayHw5F6bbMylk48uo1PyxvTUV8TiDC7wZiaZRBmqQfNv3hxRzTDBnGonZOvG43tMc5ROmGazC0HuZlqK90zMPZ30khRXTbzSfPpmXicaci57ZlfcrTZxRTT+GqGcpAn5cvYR5QgFPSpjW3HvTNoknssAwfw4p61hzkns+um+4lnwe+eeAjqEZnOZDjdNsZdLUZ+yL1iEiAud3ug7dChHNI59Nui7rjkYmTT67ehSKWbAfTaj+HM2FPltqzjQrDa9QKBQKhwQblwdqra2R6vaqe1NDyBz1/hg6o5cErTDIgn3rSbUM8e71kZLNksAalpBh8EDkoKXUzL6wj5HWu6RvAo+hhDdHG2Y2jjMLPPCWAd9+RJSchberbV9FWhK7pFfNIQOQIlACZQg7E6r9MdQGmRbix5VpWFlKTZTSQHowfu41PAVBsHK3+sEgqmh/ZGvBV/8/Sb97QUxqdy75WxiGYS1dxKc7kFKO9FNR8JrmiZo35yfaQ1xDIUv6N1vtVWlJur5AGjGz1bNpjlif2qnZesV5amkMgPPgvPUS3IUsMKhn3cueKwwo8/NMK9r58+craKVQKBQKBY+L8uFRY/G/vgxFXkKnlNFzLSkdImRh2pGEQE2SaQi98NnM7yJE51ILpS8voi6i1J9RmkV+H/Y10/Si682NM0qKFY4cOdIlAPbhw1G4MaX+LGnY90FzqWMy6Tzyw1AizRJlI3J0JifTbxUlKVPqzwroRonAJGbm/oi0Kc41fdU9q4eQ+ZIjYnX6E3spSjo/2vvROPz+lOaisH6zdR8+ydWj9eee5lizYsj+GGpJPMdfT75gpbToutLoRNTtNTyNw/v1zFZzTu3MH5elQbGEkh8XtWimlPTSU/iMyigU/VpnMQJcT6+5cu/ce++9i/ayWWl4hUKhUDgk2NiHt729veZP8L+u1BRIG7YkUmcOUaJ7JiFGBTkzwuleuYnMhp1JL71IwqzwZ0TmzHIjmUbXK5FB6adHD5VF2lF688d4ibi3Dq21tXO8hJoRS0t7i3wAvSRkjpHncg4Z4RtZGKjhZdHIflzcG/RPcH2ideH6SjqXRO8lYF2HWqH2V4+qL9ur7E9EkkDtr3dfb0oe7dc3Ij+XVqkoWSYyc078/1niPO+T6DmX+cF0rvetSiOl/019vuOOO8xsVaDXbLW+8uVlcQ70z/pzBT2vpUGKckxlhPz5ig4lHV2mifnPsmdUFOmdPU91f0X3iPoojfjUqVOl4RUKhUKh4HFR5NGMbouIoPmLyxw3tumRRdb1qMzmpLKovAR9Nj0S3150kv+e/YqOoY+AfgazdVs6I+EyUl//fyadU9Pw7dFn1Bs352uTMh3U/KPzmVMladlHaVLj4rxnPuToM/o6SJHlr6fvaLmI9n9kZfDv6evw68acTe5VaXre76P56eXq+TFE4LpnffXtZEWSozmnZtTz/+7t7dnZs2fXihBLM/JgceNexGWWu0utIiK8Z7uE1knrY7bSsLQ+6v+tt95qZmbvfe97zWylufj2GXWqNjgGr/Uy/1canY7VnvHleqTtac+oL/T/RnunV0Db9zWKKM/OiZ5V6ve73/3u/T5VlGahUCgUCg4baXjKhenlZFFbYSRapHFl/oKM6SDycWSMJ5Ftm5FGGcF0JA0KGWtGL6JLYG5LRMQq8Dv61JYUnmSfI+k0i2akryLygQg9H94wjAVgaZuP+pDlh0UsOpnvjuTBPYafKNrUH+vPkWStVzJDRKWluL+z6NAoKpTzT+JcFg/10LEkWO/51rJ7cUlOZxZJHGlXLGTa0/B2d3ft1KlTa4VMvSbEdY6iZc0OWhTUB/rwqNlFebKZ75ZFXv2elR9Or/LVveMd7zAzs9tvv93MDlowGKWo8WR7J3pmkTlGvkRpmN7/q3kUm43aZ5meXq4yrUVkb/HgPZ39Tmgvm600u6gY9RxKwysUCoXCoUD94BUKhULhUGBjk+bu7m7qQPef+XPMcnOlPyYLfuiR7mbBKQz6iELZSZ+UmWQi0GSajcVfO0sdUH88xVlWBy9LOO4FA2XBKr3Ec46z911G2O2hvUOntzcTcZ54bBQwQYJiHtsjvaaZNqvM7NdYa0R6I5qa/HwyMTtLdBcic6jMXDI/0cTkabZkTmPfskCknvk1M/NHycNZvcXovtaY59JKdN7999+/dq/5+4XE4nNjjo7NnlWRmTpzLSi5XMcqvN+fo7W85ZZbDrxGQTgMmOEe5b3sTX8aqz7L3B/+/tU+Ig2a3nP/R3uHoEm7R8qvNVZKhcbp11pzIjP+3XffvThgrjS8QqFQKBwKbJx4vrW1tUb4GklNdPz3yJbpLBYyap9eErleKRl5CVjINLoocZbSYFY+I9IomDycOf79+EnblpHHMvzabF1KzyTWCBmVVG/deknvguihGKzg+50RAPQCJpYEU/i2Iik9S/GIyrVkKS2sJh0FSbGKeBacE82np1EyG6Vas3WJ27efWSgYcNCzZPS0NIGBDFlARZTA39PsfB/uu+8+u+2228zsYKK0QKo6EoJH65LRjnFeoornmVVA/ZBW5QNQNHcKq9d4tKY+RYPjoBWAzxQm2vvPBAX5kMjBk1hngW2yGvg0C3+8P5bn6n20zzJLAo+NCK7V7pkzZ0rDKxQKhULB46ISz4XeL/ec9LgkUZDSRkTjQ41OEha1GF8Ykf0njReleLN1iVSSGyXUqCih+kZfF+3uflwMhSahsi9kmSHzp1Lr9pgj+46kzyWh5a21A+dG6SkZJVVGjebHsMRX7I/357ANltPxUjrDtiXxSusgbZTZuq+Y4eKUXk+cOLHWf/WBlgr58qJ7IvN90jrg9+WcDy/6PEu76KXKRCkocyktXA8/F/qfc6r25e/x52SWJX7eowtkzACJuv0+UN88JZY/hqkm2bV9+zwuSvOR9UHrwmdJpD1lBB4kGfDPmEwb5XMv2m8Cn99MDTFbzbmsG5V4XigUCoUCcFHlgYSe3TQjxO0VnaTUn/nnvL2en2VldXxfGcFJqYW+Fj9unUMfYUbF5MFijYIkFS8NMmqJ46NW6vvKxHr68qIEfka1UcKL1o3tzfnyIgnZg1LkXHJ/1i9/LVKAeY0yo5CSBsF9YbaSlh/72Mea2YquSRqfrtsjc6akTb8m/SRm61GZTET2Sbgaq/ZVlqws+HVhAjfnNUoiF2jd6Pn9es+B6Nhz586tPQ8iCwxfo6Rxgfdqps1G1ggmrXNuaXny/9OCJOtARNsVUfB56PvI8kP6MVkOGGHqn9XsPzVWft8jomCb0fUyKx7vjSgiV7710vAKhUKhUAAuKkpzSdRfRvklRGTH9NFRE4ty36ilkUw10tYybZB9jUq8UMOKqMTMYl8XJbgoFy27npDlHUYFEvlKTSyKQmWfGVEYSetLac3OnTvXpRbL/BW8dnQO5z8jc458XfTDeJ+d2cG1lA9I+VbyDbPv2nf+fM6T1kVzEhHoMleQRXGjvD9GCDL/KfPt+v+XkJQLWQ4ktbieZP/ggw92pfS9vb01Umy/T7R29CPxXovyB+k3Yj+izxkFyqhN+eH8PtBYswKsevX7T2upfab3fDZqP/hYBfVBBWdvuummA33VOX5d9BljB0hTJ0R5eNwP1Loja1QW/U5Nz38X5QLOoTS8QqFQKBwKbKzhHT16dP9XOZJ8+EtN22wkaTGiihJX9urbYZkY+ra8pMXrZswaUdQkpb/MzxTlRWX+sYipJMuVy6KnPMh4kRXojCKs2OcltnEvcfdKvJw5c2Zt7/TysLLSND3Sa4ESMDVzs5XUysg+lvzx+0DnyGfGudY+85I2rQxZ4VG99/44XU/+Ckb46XOfKyh/B32DQo+FRmPN+jynhUXji9aI1pyzZ8/O5lJlfiUPWnqWEFhnPv0sP9dspeHTd0bric8ZlP9Xa6f2tF70B/r/WRiVz0ztN7/WIom++eabzWyl6akNjcFbmDR2T8ztP9d+5HPdj5nWAVonIutHtr94Pf+/X5elWl5peIVCoVA4FLgoDS/yAQmZNka/mNdMsujMOTYTs3XJmpJpFL2k/+e0zyj3gywzGatFFGnFCLjMb+bPYfRnVogxms9edCPfR9GeUV8jtgwh4vP07Vy4cGFNo4sKpdK/04v6y3ycfKU0b7Ze6ofageA1CZV0odRPa4GiNs1Wkj1zwciOEfVR2p4kbjGskNHDa3iMIMx8iL2yN9xDXFu/9lk+G305PR9eL9JuGIbuuf4z9oX3jT8nixVgviR9XmbrGh33mdqQFuXP5z2mPqsfXgNivi2jjukX823Tz6zr6H3kZ2T/tb8yX3hvDdi3aH2zMmdZhL6/5tLITI/S8AqFQqFwKFA/eIVCoVA4FNg48dzTR0UmzYx8lKppz0TRo5Lie5od+BpV5tV3Uu1pQu0RsdIJnlX+jUqhMGCDY/CgQ36uEnUUqj+XwO2RJZH3wpCXUEh5XLhwYc0U69ujGY2vUZDFHMGBvpdpJqJ6YhtM4/AmP5kWvQnRH6O5kBnTbEXOKxMT6cFkUiU9lb+OrusTcKPrm+XzlZEj9IKA9Eqz2BJzEk3eUXDbEtJfpbTQHB4FTETX8u/9WvPaMu3RvBaZ5EgHxuswfcS3o30gc6WCWPjMNMtJsekmYd/9sQzoI4lGRAhBU6PaZ38ilwTnlSkiUaCavuMzMjJpMn2oR4ZPlIZXKBQKhUOBh5R4TknSLJesKGFFIcqZZE9pMHKYZ+8jqULSgqQJJg9HVEM6VpI7Q6PZ56gobkbBpe99HzNJe0m5lkwzojYaEQBnGnNEGkwpsCf1K/AgS773/c2K3vq2+H+WFsKAEC8pZpIo5yBKcCbxL+faBytIO2MQAVMlmOxrtpJiGbou9Ei9M6onavORlJ4RKDNILDonoyOLgrKygCqef//99+9ru5E209Mm/fU85spnZSkO/rvsftS6eYuCgkRE8aXAJu2HaL8zACmzRkh78+kw/39759Mbt5UE8SfJShwfnATGBgFy2O//sfaaDYIEiAM7lmb2VFLrx6omR4s9ZKfrMtLMkHyPfOR09Z/qvSQiSs/V8VIGjftwz6x0DTuPYFo7KYFtLX9Pj7TYYDAYDAYFr4rh0fLtfl1TbMjJdhFHirpTPILWjRMNpkVPJtZJLonxMaXZWWlkSxy7ULdhPDP51pN0W51HenUMIBWNdqww+e6J0+m0KdR28SPGVGlldtJiieF1kmg6l7KOUxPctbatnLRfMr3K0rRW1PhT1niSRXPWLI/HdVDT0dn0lHNP66Eem5JyWueO9ZLhH43LrfXyWnfPgYeHhydGoutU55yaOac51zF05RN1PjV+lVoKaYz6bmWhiudpf2J4vMYuTp68HLyfnPeLzyReJ1eqQ6H7JL9YkUqEBBfrT96nLucjia4fwTC8wWAwGFwFLo7hqfh8Le/bTuyBrSG6DM+9WF6X2UdL2G0jq0uWDS0hMr+6H4LSS44dJr83i0hdK5E9v3gnBJ2aebrrtmclddt0jFE4n8+WMXfvkbW5gtM9htfFngQK/vKa1nmRPfEcKM7kBID1Wbo3WMxc95uKecUaaoEyxRB4Xx3xzKTmzi4ex7HuxRArkmSfA9seVfbEuB7H4jL5eB6YJcs1UzNkU96BrrtjH2KmEhNQTJei3s6Lwv/p9ZD3wDW4ZeNcnQtdH7dW6bFIz3x3L6bMdfecSPvrGunq/FUWPTG8wWAwGAwKLo7hvXnzZiNjU33AqaniEXaRfP9dlib3l2Rn6jZkg3VudR9OKitZy9y3A+N8tCgrw3PNIOvxunhJYgWpRpF/O3TWWY0jHd2Py/pMsSZ+3sXw+H7HNijIK+vYtZQSZKXzlevQsQG+asydx0TvaWysDdPYXcZiirF2cRiB92/yEtTPkkxUxwbqPZ0EgJUdrntCFn7NSKS3hnFYV4NKaTUxcLIzbSNZt/odxsEYe6pMTGOhxJyyNsX49HkF6+H4vNN6q2uWjY1Zw6l9uqxgPpsoys//69joBUnXtY6Ra5TPxDr2lLF8BMPwBoPBYHAVuJjhnc/nVjxaSP58Z9kn65G+ZsFtS592p85Ci5NZm0diUgmOmfE8udYo9f+1ti2S0r5cjJLfTfE+V1PHOfO7lUkw9nB/f9+uiTpeWs9uvGSLFGrm9u44tPjdnGmZkuHVOVMRIrVVUkxlrdyGaE8laK1to9cjrZ46plRfXZzJtUTqjl+3YcZo1/qFGYlff/11HLdqOFOcZ61tdin37xoAk8XUZrQVYpQ///zz5j022WVWYR2jxsJmrcrWVDufyvAYm6RHITUtXmsrRk6VFI25sicyV44jjbmOibFPXtfO26LjMxZax6jrc6T+d3Ocw98cDAaDweBvjPnBGwwGg8FV4GKXZnUtdKUFSTLIJREkWa69Qm23LV0Yeq1p29ov5XNIkbv+bqT8DI47mTAmDdDVUN0tLK+gezel/jpc4lJIr67AmW6uPXdmnYdbQ6kTONdD1/F+T0jWievK9ZKSPZwMHseshAPnvuN50vXmOqOo+Vrb5IA992EF1yiTZVziVSp05nE7KTN+x6XSX+KG0niYkFb3R/cs72UnYpD6LfJzudd+//33p89++eWXF68MZbjyF41N+5PrUv+78Izcn1zfFDhw9x5LZPhMlNu9Swih/KKkFTWX2veRouhCFxpiaIPPRLkv6xjpmq3j3cMwvMFgMBhcBS5meLe3t20a9VGGV0HrhVYyky7cr/lea5lqZZC5JQkeN1aOKbUWctvQymSA27HClG6fyhUq9lr8uESHlEBB632tvtSEOJ/P68uXLzGFvW6/VyBdmTAteb52IrSpW7lek3h1nXNaS3WM3C9lu8gAnTeC33GMW2ASBhMqmBBV15gs+SRw7hgl55W8D66c5IhX4HQ6rc+fPz+NW8dxDE/7Y+uvrqSF9zvXhduWBdpKYtE+WHqw1rbsgO2ixJ6q8DgZPp87TGpxYuz6jEwvJajU7+h4LEdw96ZL8qr7531V32MCH5NVKsPjdfv06dMUng8Gg8FgUHExwzudTm37FFogBNPS3XsplicLovrH+WufLDqXWi4kGaU6hyROy/iEs245htS2w8UMGQdhvMyl8GssKQbqtkmxO1d6wG0cy3A4nU5PVqZbO2QzTC1n8e1aW5ZClkHvgWuUKui8keXU9aLPWFxLVuW2YXxE8+O5rQyPZQKMebiYcSoeZuyDrKEbE+ftPCYpptuJvleml9je6XRaf/7556Y1U411stUN14yTMEsepVSeVJnXd9999+J8JCnDuo0KzMXwNH69z//XyvcYZQn1fy0i1xg4Rs1b8bcahyMb2yvdqQyWz2mB90R9zvG+1HVkWYJr9luf8cPwBoPBYDAouJjhrbX1k9dfbAqv7jE9t98kSsxMIR67btNlZ6U2NILLEk2ZRknCyhXHJ3+4k3pKWaDOuiFS7OmIqC/PecpkrO9VK3ovjpfazdS/6evvZMJSvDVlCFaWo/gLM+qU3eYECGTRyipOjLuCQs/0KHBeToKL+6V0VY0ZkuFR0owNj11BeJIuc16IxPDJTusYeW47C/10Oq0//vhjE1eq7CkxO/3vhBwYK3ax7bWe18cPP/zw9J4Krl3Wat13ZUD0CmgbrqVaeN5lNbs5KJa41jZmy3m5vAOOyQlEpPFwbPwNcJKOZKrKhNU8eC+6ub958+ZQLHitYXiDwWAwuBK8Sjxav9yuEaOsCLKolF3YgXErCvautZVeYhzIWRUpk5Oo77uYw1rb2iYXw0tZjKmVTT02P0sSRk4yif79LpsyZWXSZ+8Y3iUSbGR49VoyDpJaoVQky5fMwWVpJiac5NXW2jbIpJC6UGMpQoov8xo674DANjSOuZLZJWbvzh0ZfScpJiSx4NSyq+4nSZlVPD4+ro8fP24YSa2Lo6QYM28FVwuYhKbFbvm8W+vZy/Thw4cX3+2aBwvMc+A5qGPkvcx5UpC6ay3F+KzLtNRnrLdTbI0NkOt1o8cs3ccuq58ttHifubVzaS3nWsPwBoPBYHAluLgB7P39/cYyqjEQ/SInNnGkZoufdVZmalfBZppd/Q1ZW6qBc9teArLOjmkm658WvbOaUsZqysRca5uNufdat3FWpcPt7e3G2qvWLNcGLVBmbVbwGjLj140/sWjGPtx54tpgfMQxvAQyl054nLVUjj1xbIy1p7rAtfbVZ4SOSZBRkMm4eT08PLRC4J8+fdpk4ooNrPUy07Aeq2NaSSCbx9G5qMf48ccf11pr/fTTTy8+o0ff6pJqAAAPq0lEQVSkgteFHhixqDovbcPmwczE1jVW9uhanpmutWWude0ybq7rpOe6WiQx1rbW9nmaPBmuDo91jXp13h2uk0uexcPwBoPBYHAVuJjh3d3dbar8ayZS/cVfa+tvdS1/9lRDUuxrrazDmZoR1u1TI9iOce2N2VmpZFR78Tk3tlRX6LIUU5ZryrxcaxuL4vlzdXi0mveyP2v811lwKa5Dy9hpafI8MH6gcdcMX80tNe907IktZMgcXSyKMZvEXN38OC8X5yN0HmXJa570ejg2kuovu3syZWKn+lY3n8fHx92YDK9LbeMjdkQG1J2vPd1V3j+1PlLrSDVzYlZk0XXuR+NxdY3qs++///7FPKjHSu9U/S4ZPpVd6vVnjD21H9K5Y1PZehyNXdt2NcrJO8B9rrVloVOHNxgMBoMBMD94g8FgMLgKvEo8mgHhWgD622+/rbW2CRN0b7jiYbo/k/RTpbui1AyMMzDbBdm5f5YaONB1lpIm6t9HiyPr/jjn5A51x6OLkUkm1ZVBVwzdYW4bl+ae5qiEJ7piOiFoonNbJKHiVEC91nMqt84xO0TL9dO1I6EL2K0duvN57bQPl+jC85m6SDsZPM1Pr3RLO6m+JAju1rVAF5MTUiDY3ubLly/x+sodzvNU147ee//+/Yux6H3nmk3us5Tw0iW+0LXnSqjSOmBRvJPeSoLzdNnW43Eeus5yZerVJS1pTApR6Tyy/KZbD3z2u1AKk1L0GZPDXOmMS4bawzC8wWAwGFwFLk5aqZaWK+alfJKslSRovNY2kSVZhq7ImgxLY5PF5SSsaBGkdHSXEpvkh7rEm73geNeckqyDDMKxYY4xpaHXObDEJCU8OJGBS0QFuua6DOYTjpmnlk5JtsuJHjMNXefcCU4TZERHSln2RKvr5zw2E2DcPcM2Q0xOYRJDtbjJelKrH8fkWcaRhIjrZ10JUD3W27dvn8YpL5KTC+Q9m8TF19pefxZmixnzvNXvqImqBK11rfUcrAl9nDOLquk1qGD7nFS6U8GmqoKejdqna9wqZqdtVRZBcedOLGOvdGet7fNM82EbIlfgTq/KEQzDGwwGg8FV4GKG99VXXz35fp3/WlYRfc2yFDpZK6ao0hLu5Idce4y1clNCB6Y9O8s++fMZw3PpyEISAnZxn5Qy38VHEsNLacpr5TIEfVcWV03NJsPbKwCtraXqewK9AGRpzopNxa5J1PlIvEpwbNS1/6nHTYXa3Zh5fNcKJbVYcQX1ZPKM4TCG57wfZJJEnT/HRo+JK8J2bb2Sh+Du7m59++23T4xI7MLJTTHWRS+UEyvX+MgyWKJR1wcblP76669rra00l2NPzlPl/q9IXgZ62yo75PXWs1ljdmLVAqXrxPBUeC4G6CQbU6yapVRrbRvAch6aQy1BYezuIrnKw98cDAaDweBvjIsY3u3t7Xr37t3GIqoWnBiBLCD9MncirmzSKexJf621jdHRP+0y0WiF0wp0PmGOZS8uV5HYIIs8XVuYlDmarNH6XrJUXTE+4zls+Clm5+IYwsPDQ8tsFANeaxsn4/w7OCs9XY9UfL/Wls2QodDjUP9mjOtILEpw17tu69aBkETSXWwqZWUyY7W7ZqlY3hXH0/JmJmb1Dri4eZelWTN8xZqcxGDKsGa2Zt2+yy+o+64QAxLjUVxRbMm1deL9vicXWJHGyHVQzzEZHs+vrpPLDtZ7etV8xez4nHX7YWY+8zrcWPg/57fW8zNIrPOSZ/EwvMFgMBhcBV7F8JjxVK0K/S0rjC3andVc99/932XACWKUbHpYrTTG9bq4EsHPUvsWN+49MdVOPJqvXQsbMlfGdFirWP8m02Msz9Xu6fWvv/5qaw3v7u42/vwuLpdqceoxmGm3ZylWJGHz1OKqvrcXh3PzSUyfx3cZl+lVx+vWNy19soHOs7An5F0/47lhHLAyF8axujo8HZc1iPVap3ZAqR64zp/nPWWm1v/FeJgNXu+FtV6yntROq2uhluL/jHN3nifOnZmeVTaMkobM0mQNZM3fIKtNHpNu7nzuuMa9ehYpQ3akxQaDwWAwAF5Vh8df45rlw8p8Zm26LMNkHdNCdFZ8Yk2pvXx9z9WWJdAKpFXbCVwnBQpavtWKScoqR1RbmPWa2itVtsYsTbIBl9npGvSmOIjWDhmqY6b8P7VzcnNOmZdUe6j743fJGit4LZlZ56z0JKKcGGYdI2OPqbbS1VQyZuuyMjmOo5ayq4Hbq0ms54rxq85Kv729Xd98883TcfSMqfe0GAhZFONmLotxT7HDMX2xIjKwjsXrPLNdDxV/6rll7JFqVB0LZaz+CCvUsVlvx5wMF4NP9xOfc+4ZwgxybavYqHuuMG57BMPwBoPBYHAVmB+8wWAwGFwFXtXxXBAlrhSd0mIMgssd4VwiycWTkj7qd0jPkwuy/k1XBY/vaHSSWOoKz5NLjvOpLh+XyFJB94FLt04FyE5SioXlyWXmUorrdzvxaOfSrPtL4rqUp6vnhK6d5Mp0ouWpUzfn2Ankco26wnQm6KQ+aO6ccB90U3XF47xmvLbCkb6P6dq4behO7Fxn9d7r3PS3t7ebIuWabKE5SzyacG5JhllcB/i6bT0eO3PTbexCD7yG3OYI9spwXHkSv9uJfOs9Fvlzvjx3db8ukaruu94bqbyGQtP1N8YJVBwV5h+GNxgMBoOrwKuSVmg9VwtBAViyF4oguwC1k55xqNt27G+t3E5lrZys0CEJ43bFj7RsUhG5Yy6cD9kGg9n8e61tAopjBY711e+4wlaWGOy16TidTpv5uFYo3D9Z3JGykbRNXTscr2shxOOlgDzXnxPz5nfJ7BwTIjNNCSgd82bhudBZ+Hvd2d02PDdkZE4c/UiSjCx4sQ0nxafnDudEtlvHkOS6KNTMea619VRRyLgrv9J5YQshlkms5QX66/v0VrltWZYgluZKTPaSVbprkJ6Bmpdj2ZQ3o0fGtT1SOcIl7daEYXiDwWAwuAq8qgEs/65Mgdac/u9KAFjInopeXSo7rZcUj6ugVcnYimu54mJzdVta5y4tPRWRd5Z2suTIDtx8ec7J9Fwq+17ae2V4tMI65nU+n9fDw0NkYPW9vVjnEeHsxDqcRZpieYy11f2RvVBqzJWl7I2/mxdjGiw8d/HmlMrOVxdP59hZhuHifhQ853ErY3IlJ4ntnc/ndT6fn1iV4DwULIhWc2qtWyeFldYvz08tshbT0RjouXLNTlNs3cXhiVTuw2eHa9dD6TKxNRaT1/cYu6NYNFsp1eMxvuzuI0Ji2xTl1nxqk3F9puO8e/fucBPYYXiDwWAwuApcHMOrAsD6Va2/3BQb1meUpnJNPFM7CSfEKtCyoRXhYgWpBT2LVrsszZQB1TE8WvgsNK2WNq3wxEKczBLjcalo2WV2JtFWF+fU/qslvMeseU1dU1CyCu6znvO9YnVXcM7jMbZApu8yfAmyGYfEbpm56qz0xOhdsTpZ354XwhXuppidY6GpyTPPa703ua4eHh7iuTudTuvjx49PTVY7QXjtQwxF+3fi52IvfP7wvhczUhF0nQvzDjiOer6Yx6DjK7NdzMWJMaSm1VxTLr+BXjcdl/G6+reYXmKDOvf1mqbYpNDlSnBd8xlZ56XzpfXw/v37yICJYXiDwWAwuApcHMO7ubnZ+KCrRaJfdVpA+q5+nV2d2t7rXlPK+l3nYxZkLZHZyfJy4sp1/g6JvdUx0TruMkxTnFHoMiMTUyV7c0LQZAe8xo5Jujk71G1dPRfPE8fSSUAdERqv+6rHSy2YOqkv1qCmjNL6nhNRXmvLvN3Y6VnoGH5qjMlz3mVKJq+E27eLQdf5uNhN57UhTqfTi/iZy0wWGD/U9RFzUaxorefMQLEXjp9tfGoTUj4rKAFGFlWPp5ZC+p9jreckZeGmZ0fdNjXBTfJhdV5sAEsxaZc9mVqKsVWba+vEWmR6B1zmcn3+jHj0YDAYDAYFFzO8u7u7p1/yLmuSjV/ZSsiJqqZ4FS2Uery9rMxOrJoWDxlFrdNJWZqcd8fWOB9aZc5KSYLDZB+uPUyqi3JWY9rfnvpF3d/pdGq/f3Nzs7GiO5WPlLV2hBUcOcfpepAlHLG4UxZtfY/rmGPr1kEX5+MYUz0jM+wcy2I7Fs7L1XvtZZ+6et0kMO1wPp/X58+fN9mMjuHpGLwHXHPVKnq/1jPTY8YtY31uf/QWMSN6rWfvlsAYF8dc50gvTYrhudwI/q+xc72797jOeP1d82/OK2Wl1r8Z/+X/dYx8Vh1ld2sNwxsMBoPBlWB+8AaDwWBwFXhVx/OUbrrWM+UltWfBrCtgJi1nIoJcC86dQpcPpW+6InK6b1Iq8BE4t04nLF3h3k9JI52oc3KDJIHWuv9UjuBEBui+23M1ns/njVCvEyFmuYNA90fdj0vLrvt0/1MEIUm/dS5NFql323CN8jjcp9tfcmV2Yux7UnaXuCcFJxPGtcKkGPecOAKJFqRzX/9mEgSTiKprTAksep6lfpVdkhSlt+QWddeLiWbJTenk9hhq2Av/1HnwenAd1nuQ77GMTOfMlXmoOJzz6eTd0jWlW9kl43QhgIRheIPBYDC4ClzM8N6+fbtJ13eFwAxUOmbHbVKCBv+vUjgsrqQ8mRPk3UvpdUzsiHzWUaTOw5cUgpOtdQkonE9X+PnfJLpUYXHifD6vx8fHmHbs5qa0aZZZVKTkClqXHcvgfrnOnARbnVd95fs8pjtOB7ImMRSyt060IHVcd2t5r6TBbasxJWbeeT2ErrWUGJ5jdhwfrw/vE9dmRp/VkoW1skxiPR7vLa0ZJ5idEk1YqO8Yt0CPBp8PHVsTkvTXWlvRCo1fbZfYrqeezyQ8n0TT6zZJBo8JZPW9I/cPMQxvMBgMBleBi6XF7u7uokW8VmZ4LEtwflxa6Uk2ysWRKJd0pF2LkKzXepw9a+KI9SzsxSrrZym2lkSe3X73ZMmO7NdZ17xOe+fo8fFxE0eqlv5eSrJjs6loPMVHKjj+1HDWFczzM8YVjghBp/G4c5wEx12x/54IMj0LXQyE1rkr89nbxoGx9k44Wc+drlQm3R9keJXN8N4SxFrY6sw9d9SqhmIOrgwilTJ0Rf18nqWWZk7cguuMMmuO2fK+0Xx0LtjKqJZ2JK+T4ptiv/U8siUS16j+r149Xv/7+/vDbG8Y3mAwGAyuAjeXZLjc3Nz8e631r//dcAb/B/jn+Xz+B9+ctTM4gFk7g9fCrh3ioh+8wWAwGAz+rhiX5mAwGAyuAvODNxgMBoOrwPzgDQaDweAqMD94g8FgMLgKzA/eYDAYDK4C84M3GAwGg6vA/OANBoPB4CowP3iDwWAwuArMD95gMBgMrgL/Ads367dYGYP3AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4delZ1nm/5zvfUPOcVBIIkUlkuFQUiBPaKGoLDkCjYUwIaWNrK06IGBAQEBW1RRBpEBCMoIhtiKAQBgMdiYJIYoAGxSBkqKSqUpX6aso3nLP6j7Xvc57z28/zrrW/+ioJnve+rnPts/de613vtNZ+7mds0zRpYGBgYGDgf3bsvac7MDAwMDAw8O7A+MEbGBgYGDgVGD94AwMDAwOnAuMHb2BgYGDgVGD84A0MDAwMnAqMH7yBgYGBgVOBp/0Hr7X2otbaVPz9nqfhei9urb3oere74rqttfbGzbg+4d10zZe31n7xaWj3JZtxvM/1bnvg2tFau7O19qWttd/wHrj2Szr38e9Kjv/czXevfRr68h86fYl/916n672utfaK69TWhc0a/tbku1e01l53Pa5zPdBa+4DW2r9urT3aWntna+07r2VOW2t/Y7Me3/t09HMX7L8br/Wpkt6Mz37uabjOiyVdlfSPn4a2e/gdkn7N5v/PlvR97+brX098j6SfkXT/e7ojAydwp6QvkfQ/JL2nHoyfLOk+fJbdxy/cvD6/tfbB0zT91+vYh8+VdEt4/+WSPkTzMybiHdfpep8l6dJ1auuC5jV8TNKP47u/JOn8dbrOU0Jr7Q5Jr5b0dkmfprnfXyXpB1trv2mapssr2/kISX9G128tnhLenT94r5um6bqzkXcHWmvnp2la2vAvlHRF8yb5Q62126dpeufT3rmnAdM0PSDpgfd0PwbeK/HT0zT9j94BrbX3l/TbJf0bSX9AswD4RderA9M0/Syu9w5Jl6Zp+g9rzl95P8frvWHHLl4TrrNQ8FTxZyTdI+mjp2m6T5Jaa/9V0uslfaakb1lqoLW2J+kbJX2tpN/39HV1B0zT9LT+SXqRpEnSB3aOuUHS10j6WUmPa5YgXynp1ybHfoCkf6pZ8rgk6Y2S/u7mu9dsrhX/fiic+3xJP7y5xmOSflDSb0b7L9csQf82Sa+V9KSkv7MwxhslXdTMjH7/5rovTY57jeYfxN8r6aclPaGZSf0hHPfBoR9PSvrvkv6BpNuTvv5imMOHJH11ct2XSDqU9EFhHn5oc/wTm/a/FsdPkt4nfPZZmlnF45IekfRfJL1kxfr/xs28PLQZy89L+oLwfZP0FyT91816vlXzDXJzOGZ/058vlfT5kn5l049/LeluSc+U9N2bNfgVSX8xGf+k+SH8ys3aP7i5zgUc+5zNvD4o6V2ab/BPL9r7KEnfubnuWyX9PUnncezNkr56s5aXNe/XvyyphWN+z6a9T5D0DzVLww9I+nZJt22O+UBt7+1J0mduvv9fNe/XRzbj+3lJL7uO97HH/LwVx37p5tiPkPSfJP1yHO/T8Iz5Z9rcB8l3f3bTl9+8WfuLkl69+e53bPbmWzb3wf8n6YslnUMbr5P0ivD+j2za/N2SvlnSw5qfR/8o7tukL7cXa/hnN9+/QjMx8PG/wWu82VsPbPr/jZLOSfpwST+i+V74BUmfklzzYyR9/2ZfPCHp30n6qBVz+lOSvi/5/PWSvmfluvzJzdrftJnD78X358O9cWkzvh+V9JFP1155dzK8M621eL1pmqaDzf83bP7+mqS3SbpL0p+S9NrW2odM03S/NOuUJf2E5kX/Is0P6udqfmBI0h/X/AA60DzZ0rzQaq39Rs0/Nm/QsbrlCyX9WGvto6dp+pnQtzslfYekv7U55omFsX2SZhXLt2v+Eb1Ps1T7fyfHfrCkv6tZPfAOzQ/wf7lR+/zS5pjnaN4o/0LzzfSBkv6KpF+v+aG9hWmanmyt/WNJL2qtvWw6qXJ4qaQfmabpv7XWbpP0bzU/HD9b88PxeZp/BFNsbDTfpvmm+wuSzkj6UEl3VOdszvstmm/IX5D0eZofLB+8Odf4m5s5+FpJ36v5Jv5ySR/RWvu4aZoOw7Gfo/mG+xOSni3p/9r06y7ND7NvkPQCSV/dWvsv0zS9Cl36Ds374+s24/1izfvuJZv+3qL5hrtV87q/eTNH/7S1dmGaJkq1/3TT5jdrFpC+RPOafvmmvbOSXrUZ85drFm5+q6Qv28zdF6C9r9X8I/5pkn7dZm6uaFbhvUmzyu5fSPoKHavMf7G19kGaH9z/bNP2FUkfJOn9dP3Ru4/VWmua5+x10zS9obX27ZqF2d+l+WH7nsJ3a74/v0azkCXNJogf1/wD8rjm++tLNN9/f2JFm98o6V9K+qOaf5y+ctPO5xXHPyrp4zU/I75W896R5gd+D1+pmS1/hqTftHkvzc+Cr5H0NzTfl9/ZWvvAaZp+RZJaax+7udaPab53rmz69uqNWvLnO9f8UM1CMfGzmgW9Llprz9b8jHvRNE2Pz9tiC1+h+d77Qs3Cxu2a78vuc+Up4en6JQ2/4i9SLtW8pnPOGc1SwROS/nT4/Ds0/9jd2zn3NdpIcPj8FZpZxq2QuN4p6bvCZy/f9O8TdhjjqzZtn9u8/+pNGx+U9O2ypPcPnz1rc+xf6rS/r/mBMUn6CPT1F8P7D9LM5D4tfPaRm/P+t83752/ef2jneicYnmZGcv81rP2Pa/7hvqH4/p7NfPyjYs/8gTD+SfNNcSYc9/c3n//l8NlZzezsm5LxfB2u8yWa7b0fsHlvNvDbcdyrNQsxe2jvi3Hc90v6ufD+czbH/dbkupck3bV5b4b3zTjuGyQ9Ht6b5b0Ix71g8/lN1+u+7ewJ/r0ax33s5vM/t3l/92aN//HT2Lc1DO9LFtpom332f27W5kL4rmJ4X4M2Xr50n+iY5f3F5LuK4f0/OO5HNp9/YvjsuZvPPi989lOSfhL3zAXNWpByPTRrrE7cV+G7r5P0jhVr8t0KjE45w3uNpG95uvZF9vfuDEv4JM2Sgf8+N37ZWntBa+0nWmuPaH4IPaZZ+v614bDfK+mV0zS97Rqu/7Gbcy/6g2m2sX2vpN+JYy9plqgW0Vp7jmbVxj+fjlnVt21ePzs55eenaXpj6MN9mh/Qzw1tnm+tfVFr7edba09qlswsHf9aFZim6b9plspeGj5+qWbW/D2b97+gWWj4ptbaZ6z0xPxJSfe01r69tfYJG5bYxYYtPV/SP5mm6cnisN+i+Qfq5fj8OzX/cHNdXjUFNqFZbSdJP+APpmm6ollt+L7J9b4L7/+ZZuHKEuvHSvrlaZpeg+NeLulebc89HZPeoLCOmtXb/13ST7TW9v2nWUA6p1ndtNTeja21u5OxRPy05nvmn7fWPqW1ds/C8ZKk2Cewth7+kE7exy/F9y/c9OU7JGmapgc130uf0lq7aaE/Z9CnlBZcI/5Vcr27Wmtf01r7Jc33/BXNzOucZq3HErL1uqe1dsNT7Cvxb/H+5zXfHz/oD6aZ1T2pzb7f7IGP1HwvtbDGVzVrMT72OvfxCK21T9Rsu/3TC4f+pKRPba19SWvt+TvswWvGu/MH72emafpP4e8X/EVr7ZM0L8zPaFbnfIzmm+khzRKJcae2PT0Xsblx7tC2d5k0/xjcic/ePm1EkBX4LM3z+D2ttdtba7dv+vgzkj4zuWkfStq4pJPj/FuS/qpmFcwnSPpoHXugXVAfXy/pd7bWPmTzo/PpmqWoK5I0TdPDkv4XzTaHb5D0ptbaG1prf6RqcJqmH5b0xzQ/BF4h6cHW2qtaax/e6cedmqXm3np53k+syzQ7FDys7XV5GO8vdz7P5untxfvnhP5UeyT21+Bach2fodnmfAV/9s67a0V70sKab+6l369j4eHtrbXXttZ+R3VOa+0D2a+Vws8bOvfxjZr36Y9KuhTuh3+l2Zb5yQttvwV9+mMr+rMW2bp+l+b746s1s+yP0qzNkJbvM6ler+vtaZnt7yenbcebuO+fsXn9O9ref5+p7b13hGmantA8lky1eKfyZ5ikIzX+P9CsfXk47IEzkvY3789tDv9CSX9b8zP/tZqfK/+wtXZr1f5TxbvThtfDCzQznxf7g9baBc30P+IdOn44rcY0TVNr7WHNUjpxr7YXcO2PnXRsD6QUZvxOzSqxXfACzT9Sf90fbDbNGvxrzfael2pmczdK+qZ4wDRN/1nSJ28kqo+S9DJJ391a+/Cp0OtP0/Rdkr6rtXazpI/TbF/6t6215xbCwUOa57G3Xp73ezd9lSRtbog71LmxrhHPjNfZvJfmB6378xuT8+4N3++Cd0j6Rc03dIZfKj7fGRuh5Ic3981v02wz/Dettfebpinr95u0bYuhQLArbMv+3dp+SEvzvfJPOuf/Ps0/2sZ/f4r9iTixRzes+eM0m0y+PnxeCgm/yuAwgL+uhN1q9nPo4eckfVjy+YeqH052k2Ytxxdo20b94Zr3xedoVqm+S7PN+cs2mrI/ovkHcE/bmoPrgveWH7wbNVPtiM/WNgN9laQ/3Fp7xrRxZElwSbM0SfyopE9srd00TdPjkrRRzX3Cpt2d0Vr7aM3xP1+v2Zkg4oJmR4oXavcfvBs0S2IRn7PmxGmaDlpr3yjpz2t+kP/AVLiRT9N0VbNj0F/VPA+/Tsdqwqr9xyS9csMQ/o6KH6Zpmh5tc9DxZ7XWvnKzuYnXah7nCzSvj/Fpmtf+1b2+XAP+qGYDvvECzTf+T2ze/6ikT2qtfcw0Tf8xHPfpmlle/LFcg++X9AclPbJRNz9VWKIvVWabef7hzd7+l5odV7L1uaTZg/J64oWancQ+WbPKLeJ/l/SC1tr7TtP0puzkaZpef53704PVq0f32caNPjNDXE8sruH1wDRNb2utvV6zzf9l19DEKyV9QWvtXpuQ2hxT9+s1q30rPKZZg0T8I81emF+o5BkzTdNbJP2D1tqnaP5hfFrw3vKD9/2Svq619rc1M6WP0mw8vojjvliz6ua1rbWv0iw9v6+kj5+myRv15yS9pLX2qZol6IvTHN/y1zQ/YH+otfbVmtVtf1mz+uHLr7HfL9R8Y//NjQ79BFprr9Rsu/hTGzXBWvyApBe31n5Os5T7qZrVmmvxTZpVoh+umb3FPv1hzcH5r9DsHXazZsP+RUn/UQlaa1+pWQXy7zSrhp6reX3+U8EejL+wOefHW2t/V/MP8Adovgk/b5qmB1prf0/SX9zYKr9fs1T55Zp/fH6gaPda8Qdba49rtnM+X7On77cGm+q3aLY7vKK19kWaQw0+U/MN/LnTSY/RNfh2zQ44/26zt9+g2T70gZptYZ+YqKV6eKtmJ6tPa639rGanrjdqFhB+i+b5e5NmZ6C/olmd/HQkd9hCsGV/4zRNP5J8/07NgsNnavbee0/jV7QJQ2itXdTsQfkndTKg/bpjmr2p/4dmDcu/1yaUpiPAPxX8GUmv2jyH/onmRBLP0PwsuThNU++59/c1CymvbK19mY4Dz39WgaW31n69ZueYPz9N09/fCNGvZmOttcc0O7u8Onz2Q5rv89drFpSer9nz9Ct5/vXCe0suzW/QPJmfrlkl9/s0M45H40GbB9PHaJZM/6bmG/xLdTIjyFdpnsRv0WwU/frNuT+t+cH1pOYF+zbNk/yx08mQhFXYqN1eoDnOb+vHboNv1nwDLdkuiD+p2SD+VZL+uebN9hlrT56m6e2S/l/NDzwa1h3v9lc1CxffrDne7HdP0/TWosn/KOn9NYcl/OCmXz+smb30+vEfNG/g+zTr9f+N5h/BKOF/geYME5+o2YHo8yV9q+Yfg11/YJbw6ZpVMv9K84/8NygY1qdpelSzCvqHNdtRX6FZaPiMaTskYREbJ6aP17wX/w/N43+55of+a7TN4pfaO9DsLXnPpo8/qdk54HWaQyn+hmZtxddK+m+a1/R6ZQhZgm3Z6TxN0/Q6Sf9ZxyaA9yg2avhP1szav2nz97OCgPg04Y9rtml9v+Y1/PSn4yLTNP2YZkHoqub4zldp1sq8v6R/v3DuQ5o9wx/Q/Az6Fs3r9/HTyZCnpnks1/Jb8mOaBb9v0/wseqFmUnOtBGQRbb1vxsCvFrTW7tIswf6taZq+7D3dn/c0Wmsv0fxA+zWVendgYOB/fry3qDQHrgM2rsgfIunPaTbS/8P3bI8GBgYG3nvw3qLSHLg++MOa1QQfKemznia7wMDAwMCvSgyV5sDAwMDAqcBgeAMDAwMDpwLjB29gYGBg4FRg/OANDAwMDJwK7OSlub+/P509e1aHh3N4lF+jHZCpI/f29rqv8X+fG7/L2sxyyi4d83Sds+b7tde53uf2+rQEr2mvfdp/p2nS/fffr4sXL24dfNNNN0133nnn1jlxrXmtpdel7zJcyxyvbWdXrLGfZ3O8tj/VuXztHVN97ns/wp8dHByk73vjba3p0Ucf1bve9a6tgdx4443T7bffftTe5ctzGNiVK8dhjFevXk37uebeWtpDu9xb1+vYJXB81+ucao12+bzaZ9nvRfVbwt+C7J73d/v7+3ryySd1+fLlxcnY6Qfv7Nmzet7znqfHH39cko5e48Y7c+bMUSck6cYbb5Qk3XrrrSfe+1WSbrhhzrJz4cKFo+vEV7eZDd7f+bPqvV9jO2zDn/N9/J/HGL0F4pywDX7e6wvH53P9Gv/v9amCN5wfUj733LlzW330MX7YXL16VZ//+Z+ftnv77bfrpS996dHDyu157WO/uf4+xufEsbo/3jucS79mN3u1pj3hzHA7ax6sRu/Gj5/HHxP+ePA6vb7xh8br5M/5Go/xq6/r916/S5eO49n9v18ffXTOF3Hx4pwo6Z3vfKck6V3vOs4u52vGe+D7vo85EmbcdtttevGLX6yHHpqT+rzpTXPegvvvP3ZC9rWefPJkYQ7voew+OX/+fHqM3/f2wdI6ZJ/zM76uWVOD9+cuP2J8NmY/QHwO8H22Vyl0+L3X3a9xjfy/f0u8h/ybcsstc+Ib3/txzDffPGeQvOuuu/RTP/VT5fgjhkpzYGBgYOBUYCeGN02Trl69evTrSykwIpNS4udrJO2MnfE923u6VE0VPaekn4ESd/V5r42K6mcqJv/PeVsDXqca7644PDzUE088cTRWSpnZNSiBZuo2zkPFuHoSd4XeelRrtkbSrs7tqXyq9c+u6//NVHh/8j7zfRzP9Wu1zzNWWO1NI55jpuhjzp07153vw8PDI4bg54/biH3gPUYtUaYJMXsg0zN66tDqHttFLZ6p6Ag+56pnSe8618IGK9aWaQe4n7hn2IZ0zOi4Z7zGTzzxxIm243f+7F3vetcq84A0GN7AwMDAwCnBzgzvypUrR7+w0XZnVIyH9pEoxayxoVWfV/rvNVIN7WG7OED0DP/sY8WS1hjUK6bcQ8XG2FbmbMRx+ZyMNXJu10rosZ3YR5/v72xjIXq2Ttpqerbcan52cS4gA+s5cxi0g/D6cR6XjPjZPFbj8Jywz1HiXrLdZQzDz4ElJ4XsnNg+WUvE4eHhlhNM1m/aBjn2zIZH34E1mhHeH7Gf0rXZ8GhDjKjGU423dz1+nu1Zrpnn19fNtHvU3lBL4HPjfe1nQraPpWOGF214HPOlS5fSMWQYDG9gYGBg4FRg/OANDAwMDJwK7KzSPDg4OKKzVktkKqbKeSBz8aU6qnLXz0ICllSZa+L+SKMzel2ptdbEtiypFtaoPyr1a69/lZotU5NSnVSpbLM+uv2e+nWaJl2+fPnomEwdnrlJZ9eO629Vh9VSfk8VZqZKX4r3rMYhbat61sScVSo/3jO9cJgqHCVTNVdhFdwPmVqqCkOwG3k8h04E3BeZC3tmFunFevkv9rGnQve8eF/4NarTHBrFvbOLc0fl1JOt5dKzMFNpLvWFe6j3bOR1eip0vqfKOFNpeq/4Ozqk8B6RjtfDqk32NQuDMazuvHLlynBaGRgYGBgYiNi5Ht7BwcGRVJYZmSk9ViEGmXuwJRsGGFcB6NlnVfBwBCWtJQeU7NiqrUzSqiTunpNOJcFXTgsZKyAq1/3e+HrvfR2vz8HBQZcJX716tes4Ew3TEXSzt0QubUvplhirfZftncp5JdsP3t9kKNR2RIcKjoOoEgXEz3gMx5k5gfE7Mi8jCzGwZF05FcS58djN/rhHs+fFLgyvtaa9vb1uiAzZi/cSHVNiwgsHLjPxxRrHoIy1RvT2zpJjX8bwqucOmWQWoE2tR+XY1RuHGRYZXramPpbsjP2I7TB5QS/RAZ2vrl69OhjewMDAwMBAxDUFnld56+L/lTSRMaDKzmKJgIwvY4c8l8yoJ3FluuXsfTy2chfPxse+VHPTk9KX0l5dC1uL57j9SnLN7IGUfHs2vNaaWmtH51O/L9W2Gc5XZHi00SztmV5YBec0299Ml8T18biy/UZbBtlbj4Uy3Rpfo2TP9vwdGZ4l8rimZmlV4gGPP9rCKrd+MofI5rzW/qy11pXSz5w5s6VNiWvJdGBmbWZxt912m6TjFIfScdoqj8XnVAHpmX2susey0AnmAHUbDPnI1p/PXIPPm5iqj/eCx+Hx+rWXlpDPRveV9jrp+J6wbc3vfU+4b7GPvo6Pfeyxx070w32Me7SX0GAJg+ENDAwMDJwKXJOXZs9zr2IklDYzO0XFfCpJJftsDcOrpLDK4y47tpqDXdha5Z0a54RScpWOKsMugfTUi1P670nfkRkteTr2mAKPWQq6lmrbpt9XCYLjZ1UAfcY4GXhNRtyb6ypYuZdSinZsSufZuMgK2S73edxDS96/GYunLZdB0Nl1eI/1gr1bazpz5szWvR6fA27npptuknTM7O68884Tr5Hh+VgyPNr9qD2I/1dMiOxGOmY+fvU5TJnW8ySm1oEM3+OO/fZ4bL/0uJlwPbbH9WAqMY8hPiPNzvydE0I7mTjnM8KM0W34vfsT70EGv++CwfAGBgYGBk4FdvbSnKbp6NefqWSkbUmUtpS1aahi+/SAi1JPZXNaY+OqUnBlqZ+W0vGsSWVWebBmtiIyCZYDoWTcS0+2xiu1skXQhpPp0temQWutbaWUilJaloIqQ+yrJWjWSvPnlp7p1ShtMzyDbcW55XrQey1LbFzZQ8nssnuCLLNKCxavwbRTPJflWmJf6XFJb7lsfL4O7S70lMySYrv96IVJtNa0v7+/5aEatQNkPGYxd999t6RjhhcZEJkOvTUrNh3/573l8ZDleIzZ2Dkn2bOKe4QajMwLlePzq+fAx0aGR09KarboTRnvVbJDt8XrxHnkM5Bemka0//a89pcwGN7AwMDAwKnAzgwvIvMQs1TBop08Np5DfTF/3StPMen4l9/SC+NDMsl+KcNGxkKX4m167KRn8+y1HVHZqtjn+H8Vh5XZipZKCtG2F4/dRdKqyrhEkLX6mpaWsyTUtFstZaaRlhOcu6+ZRzFtCxxXFl/GPrB8j++JzBOWfWKmmqz6N/tSxTZl3pN8JfvoeR+6r2YStstERuaCrfQOzjBNkw4PD7cSGGd71c+B22+/XdIxu8ji2egpzP3Luc4YHsFzog2vKunTixkmK6RWwHNKe2T2XVXoNoLrzr1i5uriu7bPZWOnBqGn1bFt9d577z1x7oMPPrh1Du17kf0vYTC8gYGBgYFTgfGDNzAwMDBwKnBNKk3S6hhISBdev6d6KkuFRSM7VRZ0iImfUWXqPpnOZyl3YkosqV/Nl6odqicylZ9BtVvl5JGpUKnCrOptZcGjDAimWizOia/dU3ewj5y3pbCETAUV2+M8+Tu6N2cOGnQs8KvVH1l4Bdfb89FLNcc9SHVxlkarCn+okjJk46Mrt4+xujCqeali9DjpiGJkKe3oNEW1bNxvDGFhgumsDprHE9vtpaXL6nBmldqz0KXYl8yJxGq6at3d79g/hld5jHEdpJN7nmpbqv4ytW4W5hSvT5PNmtAPz5vnIu5Vj51mBO8z34OPPPKIJOmhhx46Opcqcu6ZzOxDpyurwe+55560HxEx5eBQaQ4MDAwMDATsxPBaa6lLaZQ+6DBBKSNzwY4uzhGUCNxmllqKrrB0o4/uugyypmNDlhaIDKFKxNxLKcU5qNI3xWtX6c+qIH1p22XaIIPK5p3Gfa5XL4VZ5gwTj93b29tyd+5VCLdUWSUGiP2tgqzpPh1ZbRUEX7GDCM4L1yHuHUrhvSQFPJfsyHNuFvXOd75TUs7wPHZLxz7HyNjQ2qrf8Rw6PJFBZPuMDjtLDO/SpUtbjDyui9OEWaNj+NqZM1F1T2dps6ScCVOT5TYYmsHxeMyxT2ZP8Tp0nKKWqLdeHB9DNnyduC+8j7yvzOAefvjhE5/73rTzUUSldcucc7wu1D74HK9rZIW8bwfDGxgYGBgYAHZmeGfOnNnS6/dK8FTI7GNMQ7YmvRZZWpWcOLZh6YsSR+WSHa9Z2d8oYWX6/splPktXRrZJ2yCZX8Ysq2D4bG0ona8JpGfw65rUYmRAcR49RttUmIi5ShQQ263m1uiFJ3AdMpuabcOUji0B+9yeFiJL2hv7ltmBGUzOwObMNskSP1WB5cjW2CfOAduM/SXL9rG0kcX/PTdLpaUODg62El1kc8x+uv8sWRP7TQbPIOtMg0G7rJmI3euzUB3ur+pZFVmT55nB45WNP4KhWe6zmaTXxfa4OCdve9vbJElvectbJB0zPZ/rPsb5JLOrAt5j8D/P4dxnJcHI9GNi8SUMhjcwMDAwcCqwc/JoS1tSzhgqSZupmLKS7VUS2l6BTEqVTI1DDzWPI76yBEUV3BuvzfFVknFsn9JYlbYn9peeT2SSWTJuemNSP57Zu2hPWgqWl+r0ahX29va2EuTG6zDlFcuoZHZE2sNo57XtlgmC4zlk9FzbOE5K2PT+s40jrqXn3Syg8rh1f+JeJeMmG83s6Ibb8TkeO+cos8cxxRPv9Tg+eia6XXpVZmnp4v1U7R/7DngNe0mDyZLdN89F7CttgfToJYvKytqwLBTnItMSMWkBbZxmXll7vG8qO13sG9PFea+apcXgcV/77W9/uyTpgQceOHFMpXXJ5sDnuE9mv/F6/oyJrN3XzPbOhPNZQYMKg+ENDAwMDJwK7ByHd3BwsFU6vlewktLPc1rYAAAgAElEQVRsZnOiJOJjGNOXSelM9Fp5LWXpyCgN0is08wasYgPp+ZmBUlEv4bClJNq6qtIyPdZj9JgrWajnmB542ZzENe1JWtHLl7YV6XidK2aQxQbS45TzQ0+xjNUalRdtJqXTTkbWkaWyY9o9et6RXcXrce/Q/hbHUqXMYnxrtnfcHlNjkYVkXtb0uDOydHJZmqsqNZ09OBmTGMdsZuKx2IvQ8+XvMy9NH0smbFsTk0tL24ml+azqeU/6GPfJx9iWFhkebYKcA65x7CP3TFWYNYvd8151qi/GxWVJns3c/Eov6yzekLZ2ertm9zXLOJ07d251AunB8AYGBgYGTgWuqTxQVWxVWrbjGJkE7FfbXe666y5Jx1JOxrJuu+02Sdv69p59qfJ4pJ0itkFvoorJ0eNTqpNf03YU59FSDNmGpRom5I2eT7TVMaMM7QLSsSRl6Zw2ijWZHHpS1t7ens6fP38kwVEij/2mLaBnH2VmCB8b4y5jH7OyNmSUvVJWjHHjfPm68fq0ldFm57XObFOW+snOs2TIBteO3nLUAMQ1oGTNpMG2/2TMhdJ/r2wU7aVLsVR7e3tHNlAzpMiE3V8ybmYKyTIF+R4yi/F1XFIo02Qxvo4ZnjKPYu9nagncRydKjllF3Bfawe64444TffJrfLYxy5XbpddsXEvGjPr69Inwez9/pW1PTu/dX/qlX5J0vAaZZ7ZReZ1m2YeMG2+8cTC8gYGBgYGBiJ0ZXoy1yuLHDHph8Rc7s/tZKqZkxbibKJH4GHsc+bq0B0XpmZ5GvUwuRhXDVJUyyspZcOxklNH7iNdj3JLb9JxFiZPrw2MydkpWS0ZBG188NuYx7Enp8TuPI7LNqjApbaqZdoB7iBI4S/DEc8hQbb+gBB5BOzZjzzIvXc6xx9mz4VW2SWo04p41G/Bc0IZCTUpEtB9FuH33zd6o8XrUJDALSZb7MmZIWtIOmT2ZOcR9YA1H9ADkNWMbsV/v+77vK+lYo+Q2uJeyQql+7rhdP7uyGDfGMJrxMPdodi9Tk0OP316pJx9DG16mmaHGxOOihuS5z33uic/jsZ6/D/uwD5MkPetZz5Ikvf71r5d07PkZr0PmyH2daT9iX4eX5sDAwMDAQMD4wRsYGBgYOBW4pvJAVEdkqYmqUjgZ9TRttTqgZ8SX8mSnVAdQ3ZpVhKY6gC7GUWXCMdM5pZcI2sdQ9ZM5xxBUtzLNEd3j47F0VqgSX8fxMLi717csCXIveHh/f3/LXTuuCw3YDEPwXES1lNVOTNvlc60CYtLlOFb3344ArpbN4P/YDhMdeP6pJo19Yh+pHs9S2jFEp0o8kKnB7ODgeb3vvvtOjMeq2jjPrCrO+8nzHfvIIGGeSxd+6fi+jfuht3fiue5DL90UE11YBei1lY7nx88dmkN4j8X96blbSvkXVfZMuOxXmg2iqplhDpwj9zELNWKqPjuV+H3WJtXqXH+rK9/85jdLOnk/eW/6GM+R76vnPe95kk4+q6pnseE19tzFPkaHmbUYDG9gYGBg4FRgZ4Z3eHi4JcFlaY0qN9EsESvT8zBNDl2NMxfVKsVU5oJfpU9iyppsXO4LnSJY1iJKzTQ8Z4G4cdzxfzJkJu7OJLvM6Sae23POIQNnoHicezL8Na7BTM0V57xKFsAEspbMpWMHEzqNVAHnWWkSM0ZLon7vuY8SKfcmg3rp9BP7XbFDssK4txiewtCCXvIHMiuzGzucZKnaqgTnLLMUWQj3YpUMIq41naAODw9Lx4MzZ87o1ltvPWrfkn083kyDjjJkT3HP+9iqYC2dpaLzkq/tvrh9JpHoBejTac572c4z2bGVo2AWDsW9maVZjJ/Hc6pwJB/r1GPx+WNtiveG58vM0u/j/uZ9yjRoWbJy3oO90lLEYHgDAwMDA6cCOzG8w8NDXb58eav4YHRlpk2BoQVZ8DjTF1lCsMTTYxIs/GrQ/tdLZ2NUQevxMx5jaZDlLKI0Szsf05AxgDt+RpthVZgzS5lFCc/osQK6KjM4ObtOtE32SrxcvXp1K2g42uN4bb9ScsyKalIiZbC3r5PZfdhn2u6yxNx0wec6RVsR9y1tk2TGcXxMg0dk+8ISsO0eZHyezyzMg/ciQ2iykkKeWyZF5j7MGBzvgQwuHuxj3H8HasfzbatjAVYWEZaOmQefZ5wftxHXlPuMtjQG38f2+er5c/vZ+vM+ZJ+5D+NntBlzP2b3RJWiz31kgndpm4Xef//9ko5DM7J0ZCy3Rc1JpvWgRq6XTJwYDG9gYGBg4FRg5/JAMcgvKw9Er7Is4a900i5SSc1Mo5QlRaYEWv3aZ3rqqoBtZh/jOHgupdl4PPXrZCOZZ6dRMTzapKJkR/sL+5yNj/NYJavOxhXfL6WH4niyUk8s6WOp3cg8BBm4WqUcY3+k7dRLxBrtAPcD+xzPpV3G6Hk9U8PAoPgsGJ/7nGwq0yzQZlKVaooaDEvfWfq2eE5WumYNDg4O9Oijj249DyJoF6V9lB6L2djIHGg/jWNmekW21UvuwH1uL1FrtKKNjZ6U1dpmdnkmp2Yigp7WpmLlZLTxPqhKmmXs2qh8FWhfjZog2lzXBp1Lg+ENDAwMDJwSXFPyaHrsZNIaf7nJOrIYMDKfKolvlgC2ur6lzSwOL/MUjJ9HVAyvki7i5xXLrcr4SLU9i3NExhT/57z1vEKrBNpct4xJGEueUrFQY5ZyjpI0y7JkdoNKeqT9wvsgznWVBL3HPhjnRQnc9p+4p2xLY2q3KtaxN8cG1zQrKWRwXVh4OM4d05AxLipjoVUScTLJjEmsSTx+cHCgixcvbt0nWYkxgp9HBkT7e3XfZJ7Q1f3PpNs9D8i7775bkvSMZzzjxLFR00BGVRUCzryDq31Az8teYd5qvHz+RPB5R0YZn0N8rlEb4bYi66WWo+fhSwyGNzAwMDBwKrATw7O3VGUb4rERZDNrzqHkm8WgsGwF+5RlSaDUSk9SHxs9g+hpycwkZLSxj5WHVRWPF48haMvJ7EFVoc8qaXWv/5UtL0NPyjo8PNSlS5e2pPTYh4q9VvZS/i9ts5d4fYKMrhpjL1k1pXbbSXpSc69sDsGyL5XNOIJ2pJ4HJPtRZVHqrS09fM1uaRPNrmMs9THG/2a2m4qV8d7K7KOMF2QsYsZmquw4ZsYxoTrH6HYc9+m40re85S3d8cdX+jlkDI9MyKB9LCtlxn1W7fte2R4mnuacxXbJ/siqM41gFpe9hMHwBgYGBgZOBcYP3sDAwMDAqcBTqoeXGTiz1GEnLpikeDKqiuOkrFlNNoIUP7pKW6XJvlA9Gak31QJVFe6eq2wVLpCpQSsVEseVqSepkmEfM3XpksNJdm6WmqoHJy6Q+rUNK9Vrpl6j2rMKmWF6svhZFerRC/nwdViV3edkaah6am/Pj5SruKvE2pkTCQNyq9R8mSMSnQUqB5QMWQXtiCw4Ppoeeg5gWWhIhNVzdL036O6efcckFtUzLIL3O9O5ZU5ZPtYOTl6fLCymCimhijt77lQpzKiujHPFtavWO9s7XFPPo8MtGHaW9ZsB+1lCdcNrTqfDHgbDGxgYGBg4FdjZaSVzsY9STOVqTUN9llyZUkNlMM2uZ1Aiyhge3aTp+NJzn636bPScSCq3Zx4XQWmc18/6VzGk3jnVuUQ293HNe1L65cuXt8rMZPsgC2iX8jRylFqrcIqM9VahHmucSZhMmWWComNUlUqu0pRk4SKUdHmPZNW4DTpuMSA4SwhesYNM+8E1oJNCj7lGJ4Ul5wOmO8vCU/xZlVw5e35xLqtSPNk9TYc3ahJi0mMmnvdrTJFGVPt5Dejkx1AtJtiOoCbD6DH9JUcXz01WlZ1hQ73STCwMcPbs2RGWMDAwMDAwEHFNNjxKcpmemhJALxh2yYayxDpi+5WuO3OfpSRMSTWTtI2qb1mZDpZNqVxxM/ZEW0SV+muN5EcbUs+leE17vf5n1452mixxMdvlnGeSd7VXKjtcZG9V2jbOfdwHFTtiSAvHLm2zQbKpTDtAZmI7DxP/xvXL0n9l/cgCz+nOXxVWjRoT3mPuI0s2ZawgpqHq2Yv29va2yofFfnvMDvL32HuB7RVLrsKIIrguFTOJY2KB10z7VPWx0j4wTCnuA5ZGY6A9n0sZKhshSyfFPvK7LLF11b5faXeO9wQTXO/CegfDGxgYGBg4FdjZhrfGG1CqJZFe0OiSxJ39klM/nQVgSnnBWTI5MotMgqREUqVTiuNnUUhLeD3GVQWp8/vsPW1DZFPZPFbprdYkaF3rwRfHYOkzFhKt0rdV5ZWkbe87rhPfZ/uA89Wz3dCmwCBYH9uzUZN99lJYsUCmr0O2E7UVFbut9kWWPJpMjywtY8pVcLwZX+b1nI2ZaK1pf3//KBlyxhi5P8mWGRAubT+/OG+08WfeumSJZMSZ9yxtUJW9Mf6/VCYsexYzsTqL1Gbpz+xRSe1AZQ+Ma0AtADUItCFnYzd6Cc4z34S1LG8wvIGBgYGBU4GdbXhSP9VTpWte4/lG6bGKW9rFvpTFblGSy6RW6aRUUSWApiSSpfPxZ5aoLD1VpV/i/5RmlpJlx/+XbGvxeu4vJdVdyrgsJXGNLM/SbVYKhfNCVhP3G8fK/nI/rkmn1kvIS/sBvdmyWKMqPRv3eS+NV2YzkY7nJNprHN9VoUoMHPtAcF4zll2xXtpj4jiix2Dvvt7b29tiRtETlrZMxgRm8Vy9NFnxe+7L+F2lCcli+ciWPV+8ThabymKxfoZ4rv0+rqWPtV2TZYnWeNzS65RzFN9XjM7rlbHeKh0dy1PFvVN50a7BYHgDAwMDA6cCOzE8Z8qgPSHzuKx0vj0GsBRr1rPlVfEqlWTMccVzMom8KodRxdRl2WAo4ZF9ZBkIKjsmJcpdknH3vM7INtfE7hlrY2GkbQlOOh6rJVPvM2ZhiH1YkvY4j1kCYzKtKhF5bMegrShLjl7FQ1Z7KpOaec9F26d0ku1YSiYzod0ls8NU3tSV/U/a9lyttBHxvdd9rQf2wcHBlmYkZiaxpsA2KI7H8xcLiZq1sOArk0hn2aGqTCCMFY176aGHHkqPZaHZeB320eOjx7cR91Jli6YXarb+lfdnTzvAxM9Vwd7YLybdZhHZ7DfGiM/NEYc3MDAwMDAQMH7wBgYGBgZOBXZ2Wjk4ONhyaIiUuApQ5Gt0TV1K0lq5dcf/qbZx+5lbf6XaqVyN4/+Vu3v1efy/CvzN1AVUCTNYfo2qmE4Z7EdPDVqpIeJaZwH6FaZpSmsSRqeVKvCXasueg04VipEFul+L2pb9r5J4x3mi40GVwiobn+enct+3aitTabq9W2655UQ/eJ1egoVdao1V6t4swJrpx5ZU5VeuXOk6rdHV3mpCOsdkKdgql/8q9Zz7FI9hsu0sjVZVl87j8fuo+vU47IhklaY/p8NQVrPPcFiHj+3VVOT4qHY1slp6dDJz+3wf++L14asR9wfv8RF4PjAwMDAwAOwceH7u3Lkt1+zM6JmlSapAt2C6ejPgOAsAzfoS28gYXiVlZolmyfoq55VMGqzSjlUhDfE6lYNBT6qpnCSq/mT9JvvJ5nEpGJY4PDzcCpXIUrBRuqME3EuubFRhHRkqbUQm+ZpxWVquQlliIDhd1Jk8uOe8xOBkvvrcGCjsftMxhM4SvVCXKrF5pQGQtt3RKelHNs9x7O3tlWvk1GIeT3YPcIwMYcm0UQyRqVhmdk9XbJAaLO+T+B37xBSHsY9m8GbpZnh2WvIc+J7paW08J+4Tg+Qjqr3Csl4ZW/Or15sJ1aM2gufwmZiFBnm+4nNzBJ4PDAwMDAwEXFN5oJ4knBUVrNpaQpUiKWN4tJ2QcUXdM+0uLNqYJeSlVLYUoNtLyMo+ZwyJElTFDnuJp9e+j+2QOVRuyvzf75fWlRJp3CfV2GgLygqWktGtKflDey+vw3AISVvpregenq3HUnJ0fh4ZbqUx6dn9OPZqvxlZCE1lN8/ueUrptMMwWXFsN0rylTaotaYLFy5s2aB6miXfn1nyYYP3NMsP8fMsQL/SwJjdxNCJKu0hbXfxOrx2FcKShQDQJk5bmvvYK3TNNbUtLysfxPvHzNnr5utFpu/58TF+32OfRk/bUGEwvIGBgYGBU4GdvTRba92UPNTfV7rZzNOuCt6uXiNob+klDaYHUsXwskBTetpVqayiTaXyQqUEltnAqEunV1YV+N5DZteiVMs+9aSpNXZFBw+TKUQ2Q2++XiIAnkOPN6NK7s3/s/G4H9EOw8TFXJ9Mo8A1cnsVW8vS0rHdpUTdEdRo0PM3s2tRWq/ua6m20TClVDb3axKPO3k002fFvUOPYSZ3yFKLVc+kKhF1XBePsUr957Fn+5up18i0Ms9lBmQbTN+VaXo4LgZ5x3Mqxkh2Svtz7H+1HzIPzCr9XO955r7EZ/Gw4Q0MDAwMDARckw2PyXUzhlfZYbJzGI9WlaDIpMCeZ1dEpu+vmGPGgKp0Q1V8Xi/ei16nGYOpziEL4FjiMZXE2kvTU5VE6SVf3iWWismVY2oxS41V+qJMO+Br0zuu6n8mOVZ24CzBtY9xXBT3gZF5opFR0WZD9h6/o02KzKUXh0kJu7Ipxr4xzrBKDByPpY2Gkn6WhDvu5yUtBeMzI2jr4XMoY7PV84UeyT1P311SJ5LFUFuQ+SgwAbS9M9lnaw3i/cQ14zFel8yjnFq8qkxUppXifquKJvN/qX7uZcmjY3zrYHgDAwMDAwMBOzG8vb09nT9/fiuJby+LSeX5FiWhXnLRDJntyeB1qeOO31H6Y3xHluSULKRiemtsXbThZAmHK68sekmtSVbcy1RReYz2WFvmybe0duxv1OfTS44St9vOEk6zv1Vxz8x7krYVaiWyuD9K/5RmMybhvcPimr3sJpk3Y7x+xp58Dtnumv1AiZqshNeVjj3rzOzIILLsSrTDxEwqxN7enm644YYjhsK4tWxsxC7Zhbj+LMXTA/dfXGvaNsl8mDQ9fudzLl68eOJzg96O0nYBWLIz9zHzCqY3ehWPm3nj85nf0+5Vtlvem5nHfM/3ocJgeAMDAwMDpwI7e2nu7+9380bSW6nyeMpQxQdRSu/FgpHhZQUymVePfaVELm1LeVVexEzaoO56lwKGFZPj3GQ57bg+vdI/S5lJ1jC9HuilSeYibTO8al2yeEVKe2RgWaxjFQ/HPRrP8X56xzveceLYSqqN59vuxwKtlHx7noRkWH7N4vDohVzFVvY8JMlcmbNSOrYvmV34lbac7Dpx/npxePv7+6XtPba9tBd75XOoxalynUrbNkFqXrJzGKNrVsbnUebfQJZWZXqK16MmocpPmXmfVh7rvfklk6vsm1kb1Iz0PLTZ713yvQ6GNzAwMDBwKjB+8AYGBgYGTgV2DkvY398vjf0+RtpO9bMU3BmPYVs9NUFFkysVkHSs3szS40Rkn5viM9C5R6ur79aW1YnoOavwelWoRDaPlZPMLn3tqTtamxMAV2pKaVvlwrEybZRUlxSq1JXxXIaH0ACfuUR7H1mN51eOK0t2631H136qy7Pk0XQL9ysD3+MYGQLCdHic1/h/lSAgMxGwen0VlpA5VvWSHsdjz58/v6WqjY4MTFZAZCptHkvnNZopsmTyRnWPR7OInx133nmnJOmRRx458ZqpDdknXo/Pv5jSkCEsPqZyfOG1IzjnvYQXVRhUpp6skpRX1+X52fseBsMbGBgYGDgVuKbUYjTuL6WUkta5XveuKa1LBFwlc43XY+kQuufa6J5Jg5ZiOQdVeELsS8WwsvFwTipHFCaxjX2qzukZ4fldljSafVwb9Nla65beYfkXGvHJiOIxVQo0rktkkQzm5trxuvF8uosvlZiJ3z366KMn2soCjnk9Xof3XmQfdm8ng1uTjq4KH6LTRKYxqdzt6YwU/4/B8RVL8jOHpWki66HTCNvK5rZ6rnA9GOgsbd//XA+PPdurZOC8jyJL82dMf1g5B8Y5Zjktn8OUYnGuGJpFVNqDeG06lXCfZ5olg/Oa9WNNeasKg+ENDAwMDJwK7MzwpH4arYqZ9FLwLNmHqkDqeG4VjsDSL+xvPJcu5VGyt+STuWXHNjLX+aWgdKbo6rW7xNqyY4mMWS4Fmi/ZWNzXtWuZ2Y8Mhm+QaUWpr2JHVZHNKpF3D3EfxP+z9noJB7g3KZ1n6ZqY8Lcqm9ILS6DEXQWgxz7QvsOwiyxhAEvJ8Ng4Vwyn6aUWm6ZJV69e3WJgGcOr7ovMhkemwGBx2uvj9cguKrtSPMdpwRhK4+u5LTP07Fjuc9q9sznknq2K5EZUWg9qTLI1NYP0fPaScVRJR3r2Wu7bXRLnD4Y3MDAwMHAqcE0Mj7++azwUK2k2O5+/2JQ6o1RQpTxieY6MFVDyoFdglHLdDnXX7HvmNVd5kBpZMVkyoCpZ9Bq9+JLXVPysx6b5fsnLlX1YSv6dBV7H95kXI22PLM9E9hz7SrtLZffJ2JPPsTReJcGN51CS5t7N9g7hcbGEUTaPtDf3JG2C+5uepVHDwXGQkWf3bZV6sNcfsqZo66KdcM2epz2Kqd8YsB/XLyu4Gq9jRBue++tXM7477rhD0vEcxOdB5Q3OlInZs7hKBH7rrbeeOHfNuOix2vMDoE8EvaDX7L81zDz7bgmD4Q0MDAwMnArsHId35syZLYkxswFUXpIZM6KEW5UUMjKvOeqlyYgym1r1mtl7KimCNqTMFlal5aFHWWbXpARcMYmMJS6xttjHqszREuPbBdEOk42ZqNIoRYZHOwG9zDiPPVZbeRT3vAvJLG2/iHuHaeh6GotsvNl3PS/Eig1U8VCZdoDnVna67LuqlExkcZlWZ0lTYGZkVh3bi0mTM2SxdLSh+ZXFTXv3NFk7yzlFGx4ZpBketRBxLX0M7dfUOLk/cV2qkkkcQwRjQjk+aj3i3qliXv3qZ3NPI1jt/YyZR6/dtc+lwfAGBgYGBk4FrikOb40Nr/Ke5Ku0zfDIzigJR8nOUguP7SWarcpLkOFl+ndLl5T+yAoznXP1Pku0XZXUIHPJpDTaq9bE/1XMbk3S2F5cF8F+x7VkTCPHnF2H2VLI6Kpk0hHsi99n9gzaDL1HKkk4nu89QrZJ1hjPrZISM1YxszNSK8BzsxjLyoOY9qBMy8IE07x+ZB+Z7au3x/b29rZsd7EPnAfOaXZf8rPKLp4xPD4HOC4yPWn7GcH93ks8z3OYecXr0ptD2tZ8PbPIeL3Ka5t7qLfvKrtf1l71nMme3/Si3d/fHwxvYGBgYGAgYvzgDQwMDAycCuzstLK3t9c1ehtVHbws1Vem5pRqo35W+43nVkmFY3t01KBzQZaQN9LoeG4vQWqlUqwcfLJxVQHBPSq/VDMrC+asVBjZuHhszxjdWtO5c+e2gvp7jjrcK716YQxkrqqWZw4aVL1xTbPEtQxW5r7oOZ5QTeW2etXSKzNCFkLDY7hnsnMM9qkKH4jqRK4pVZprAoSXXMtba1uB4TE0wirGKol05sLO+533NB1d4rkMWagSKsR+cA7t4OS++/pxbt3+TTfddKI9hp5wriN693C8bhyrz2ESAe7vrHaj22DIxBpnrOr503P+GSrNgYGBgYEBYGenlSWGV0mgVVBxdizBNnqMsjI4cwzStuRWuSVnx1YBzz3Wy2PIOtZUuq6ccbKAU0qDPeOxUTmt9AJA10jwe3t7uvHGG7dck6M0WyUYr9I3SdsMj+nIuN8yFsr95z71JFK6XJvheQ9lYSIMnSFLzIK6yRS4dzKHJ4YDcI9wz0amR61KldYtKynEAHQ6o2VJit2HG264oQxI3tvb0/nz57eSK8cSRUyYzXFkweNV2i46ovWSR1cB+QyXiueYrTEBuZ1HshALt+u+xKTb8X3cB1VSDjpwZX2syvR4DjK2yL1Rsd4eC+X96f7EdGsM4B8Mb2BgYGBgALim1GLGGoZX2aCy4OFegunYdi942KB0m7mWUw/P972A48wmVF2vcvlfU0Sysi8SmS2smsc1YQQVi++lTFtijufOnduyV0VUweJkXnEOeu752fvMXsG2OI5sr2bSsZQzCc4dXeXpZh/3TlZaJ76vkknHc401icfJjCpbXo/h0e7DwPdqDnoM74Ybbthib5FxMeWaWVOl+Ylj5JryHK5ThK/jIq4sceUCwbHd22677US7LJwbGT4TDVQaDI8lrguLBVfMLp7D0kFLmqz4zOIzco02oudXIG0nBYh9iGEqa9KVSYPhDQwMDAycEuzspbm/v78lVWcBpZUtL0sWW6Uho3SepQcii8m8yGJ/snb4mpWcydKoeU6yPmapcHqpxAjad+ihWKXBytqomFjGCo2K2fW8NNfo0avE3dK2BEq7ZRZ0W0m81BoYvaTlld0v89JkSqfKbhGPNcj0uP+ye8NYSjEX+1vtjcxTujqG+4wemNlnVTqy3n174cKFcv+01k7Y+Mh2pO2g/jUJKCp7e5VOL16P90VlB44g64sB39Ixu4rrQq0TPWt9rMefpXxju2R2PY0Ji8gavA+kkzbV2H7Pj6PyILbNLivNRBteb+8Qg+ENDAwMDJwKXBeGF3/laQOo9LdZIllKAhXDy7znKNn3kh1X7IX66kyyrzwr3UaW8HgpVqeKj8nGulQ2KBsnsYuX5poEupn9IGt3f3+/jEHLxsa9krXPeCGWBeqB7VXeu73ik/SEM+J7pqGiZqTyEox9qcpQ9ZJikxG5XXr2xXmgjZWMJUstRu8/Hpsxc8bCnj17ttyXtuFxTuJnvBbvjx7D4/1ZJSSP5zL2kPa4LM6U7fI5k8Xu+XzvlYppZfY4Miq20UusT8/Uni2Ufa00dtn4qhRwtN3F3xiveyyzNGx4AwMDAwMDATszvAsXLpS/xlKd+aTnOVjpluk1R6kwflfpuDObSpXxhN/HtliI0ah00Bk7rLJwZIU/KbFQsqK9K8tcQ6m2Z3Or4u5oA+klxV7y+rxw4cKRJH+7OLcAACAASURBVJ7ZT+hhR0/EbF0439xLtJdloJcuWVXPM7XKtJPtb57DMWQMtup3xcCzdnw9xkBybaW6DI3XhHFm8RyyG8YbZkzCdqwewztz5oxuueWWrbi1W2655egYxr1VtrR4X1YJvyvP6KxQavVs6mlrqmT1mQc2nxlkiVzDLAsV4zyrOMmsfd5HfJ5mGXcqvw2OKZsLXzeW/onvJenmm2+WdJIFDoY3MDAwMDAQsBPDs5Tei5hn3BAZXa88UOWVR0RJkFIR89H1YoAqj6ee/Y9SGiW8TMddSTj08MoYVxWfUnnvZeeyb2vscWyrZwMxel5/zrRCiTSeQ5ZexdTFuajsfFUGlggyO7MNrksmPdI+QTaQzdNSCRsen12PjDXzlqMnJ8dD1tPLa2s25fvarC1mAyHrY9xXVkIpy2LSi8O78cYby7Jh0nH2Eo6tiq2L//P+4P2YefxW9n/G6tFzMbZX2Yzjc4DHcj8z9rGX+aQqzJt5dnIP2W7Wi/urbHV8zmaxsG6fzztmp5GO947v1xjfu4TB8AYGBgYGTgXGD97AwMDAwKnAzk4r58+f36K70WmF7rhUf2aB5z7HVNXvTXMr99aIpfIiUR3B5MCm53QTz9xn16i7+HkVJN4LR8gcCiJ6jjxUyVSlkjLHmgqZyoAqs4ODg66Txfnz549UPGvK6FSJn+M8up3MmSJ+n7nve795n3kfV6rGeG3Of5W8IPtuSbUYr1uFw/TCbypzAvvBNFjxf6q2qtCD7DOWrLGTQeYwEh2FeoHn586dO/GckaTHH3/86H8GufO54/73kgjwc77vmQAylbn7bnheqA5ln1nNPJ7DOeqFx1DNz2dKleJQ2t4HlUllTUrDXjqySp1LE0FUFdPJZ6g0BwYGBgYGgJ2dVs6dO7flWh6lG0thWXFJKZeaq2DR6rUXCMwSLLHv/L9Km2Rkrt40/FaG7p7ETYa5i5ReJf7NjNV08uil9arSLBkZS2XYwOXLlxdDE9hOlq6JpVeoUcjmiUzEn3uuyQ7Yr2yMPfbMvVIlXZbyFE7xmF7ITuWA1NMAUGKn1oXzHK/Hfc4QA7K3eAzv315aOrrkL6UWO3v27FYAf0zMTIcZ3v9kubE/S2Wzesw7S68Yr5OF3TBpBRM2x77TuYd9ZRu9dVlKhxaPqZ6raxJ7LIWlZI5DTGbCEKF4/5LhjbCEgYGBgYEBYOfyQGfOnOkmFrWulRLPmkKclOirQMmeG3VVCqPnjlwFi2bpmij5kA1kTIhSECXuXhB2ZcPp2f+qkIYqlKLX/14JI6ahunr1apfhHR4ebrlER3tFVZCzSpgsbQe7knnRTTyzV9HWQdfvLCEA936WVJkgo6rCLiIqNkabZI+lkZXxHonn8pgq5CC623NNuVd7ydjjHPdSi910001Ha+njbBuM/XZ/7bJOu29Pq8E9z30R+8c9mfkmxO+l7RRlVVLljHGRoTLlWFZkt9IGMbSlF0KVjaP6nHPN5xwTfEvbNnaPz2ubhRVVweprMBjewMDAwMCpwM5emnt7e1u/rPHXl56bVVHNjKVR4q6YXpbOhoHmlNYzSYR2nSpAO35XHbvGS4gSVcUSs/4bPelsaRw9hkcpl/a/npcmpcwM0zSltokIS/D0qOP7zEOQ3l2U0jMGRlbAfcG9lbVfJWrO0p/11ixrIzuXLJD7Pv7PVG20b9PzMv7PNa3s6fF6SyntspRSPU2Fsbd3Mnm023Eh1Xht2/XogVvd89LyvZsx4aoEEm25WWJuMi56M2bPncqG20vvV2mQeI+v8UY2qpSRUp3sg8w5rqXbYxkkB5ozOUQ8Z8kzP8NgeAMDAwMDpwI72/CkunRE/M6v9JbKdMFL6cfcBj2WpG07EiWQLHk0r1OlJ1vjxdjzLFs6purPmnOqJMbxu0rX3WNrZJuU0rJEw5EhVTa8w8NDXbp0aUtii33xZ15neuVmUmeVxijGBkrbdqvYf7bLsWZJjyvvSSP2kWywsj1kXpNV3ypvSmnbZuf3jEnLYhdpq+O89cpR8TOmFIvzyFRSPduvx80E7jHdFG13Znr0KcjuE6NKAWf0it5WNu+MrVUpzbJE51WaxcpLMtMS8Tsy8eyZXLHRyjs9fkc7Juck89blb4rXLUtLZ/QYaoXB8AYGBgYGTgV2ZnjRhudf5cx2w+wePU+kqhQ8vaTIKKS6LJDRK/GyJv7OoHRU6ad7qKSmjCVQ/75k6+hlgeB1egyPbVT2Rim3j/WkrYODgy3pNvPwtVTHLA9kbxFkL4bZTRYfWtmeyPzj/sjsLFI/5owsrfK4zVAVfuXejfcg7UuUvCsWF8+tMnhk92+VWYPPgGi3JcNfE8PZ01S4bcZvMXtJT4uy5M2YzTH7TOaTeRdW3qs9+2L1fKOXYzyu8vCm9iO7p7knqwLHPV8Makp6ca3uk70zzd4zHwLee5cuXRqZVgYGBgYGBiLGD97AwMDAwKnAzmEJWVLcjG7TfZsG0oyi8juqzPyaGT2JXuotUuzKaaanpmS7PTfrqtJxj4ZXaklePwuLqNSfVX20iMqVeY3LfC8swW1QxZ2puezQQNVcpgY1qtAWOj7FOm4Mq6F6iMdV15bWBVlXSQOoHo+gKaAK7s3UkksOKJlKk6ox9mlNOAwdEDJnMybSXko8fu7cuVWJCKpE3QzNiP/zvqRaL9vflWMGExNkzzkGkfcqnzPQvEqkn6n0mYS/SgAe55EmAc451fJMMBKP4R7Jxlep+WneiHPPeTw8PBwqzYGBgYGBgYidnVYiy6Nk5O+lbamO7Cxz26/SWFEizdzSK2eCjAFR0qYTTk9Kp4t19ZoF2S6lwuklca0koUyaqoL8q8DT+P8uaXqqdEMV9vb2tgLOYx9YCoSpsZhgNp7P+alc8rPx2ZWdzipZyZclpp2FMnB8VbKCrI90kiLb6FWtrtKCUWMSz2XYQZUuLK4bJW6vH5leVh6IY8/ghBc8NvuMyYbJ1uO6kCmyDxW7zo5xXzz2bP2rPUJHmywMxudwfbguUYNRJbpnUucsKQfb5zipQYlgWEf1jJRy9h/fZ/OZMdORPHpgYGBgYCDgmpJHU8LK7GiU6sjwsjCBSg/LFFAZK+DrmgDQtSm44v+V3aWSErNxLaWYisfwdU1YAtsgMqlsKaA+C/Lk2HvY29vThQsXthheTELMAsBu1zYIS6pZKruqxJT3TM++yLRklirdRkxAzfWvtANxnJVbNvd9LwCYtpIe+6hs3wzr6aVb43z1mFJlq6mCiLN2ehL6NE06ODjosmeyfz6TMrt1FTLF99lzJ/YttpWxNF6Pe6d6jce63SrUIAsbyjRi2ftotyM7o4akZ+Ot9rfR8zdwOAI1dj42piMjU82uVWEwvIGBgYGBU4GdvTT39/e3vP16bI3SudFjXFVANsuQSHkSYulYAsmC46tUN7S1ZV5llLQq216WwqjyMuylV6LkVtn0MlBa2iXpanWdzEvT6Enp9rSj5B3Xz+tLmxpTjjFRAPsV+0I7cOalSc8wIytNwnOrY+P3lW2Y+y4LZnbfmJDXyALBq+TrPdsdz82SYMfrZ9oPMhTatSLDq/ZzhWmato6J+4CFQ+klmSURWHp2+FwziXjfLCXFp5do1pfqedd7nrIAK9lovL/Iyul96rbiPqju96XPY7/ZV885yyNlc1E9R+M9mJUUGgxvYGBgYGAgYGeGd+7cuaNf7CzJKiVOsqUsCTGlfv7aU1qPUlolIVK6jd+zD1US0l7sXhV/l9ljqrRklZ0sosew4vWzWMjKrthjeEvsL2MfMX6pkrS8d5hUPEpulACZNNzagix9EvdQlQopfk5pkl5lmc2Q163Q85ql/YXSchYrxj3KlGKZHY73AOOwesVqac+qvIOl9dJ5xpCqMjcR9gzPWLphFun2aEfkXuUY4nvOSxaDWnlN92yrGVuJn2dzW6Ujo02frDTrU5WmLkNW9DYis4lW9tjKsz3+v2TfjGDqwStXrgyGNzAwMDAwEPGUCsD2yspb4qCklXkbVlIMGWQmaZHBkfFkyVApkVYekb0yHZTweucy6XFly4vvK/ZJiTKT0qpje3Y/Mla2n2VvqWytGWz/rZIuS7UWwJ/bthfX//HHH0/PoWTYs3XRk7Paj/F87kl6xPVsuJVXZmY3Y3aUJ5988kRfswKwZHZZRpXYj2wP9bwyicozkZ7a8fulrDwR9tKkV2lkStQK+D3Ly8Q5WLKLr2FABrNOZTYuznfFwNZ4FPe8wg3GpFZjyJ5znBPaCGlblvoxqNJ21pjYHp8dzEKTxTVXsZY9DIY3MDAwMHAqMH7wBgYGBgZOBa4p8NzI1EdMY9MzPho0NNO4SbVkVBOQttOInyWcptG4pxYgloI4szapFqhSGEX0qnwvXa9Se9KlOaJSofaScHOdllQL0zSVbu7ZZ1W4SAxC9TWt6qvGkzkvMWWdj3W17MzBimonOg1kDgJWs3FNq/RaUU1ENacDgemIEgP4/b9fqbJdEwpQJUPvpcfjXq0qh2fnL6nmDg4Otvqb1VVjf5lqLEu9RdXYUvJ1/i/VtRWzOaZakI4omdNKtjfi59m+473MtGRZ3yrHPab9Y63KeG0+D6pQrvhdpfbPnjtUH4+whIGBgYGBAeCaygNVQb7StuMBpb3MUE5Jh69VoHa8DlNLkR1mAZlL7KmXVLVCFj5QBQtn12E7lUNIldQ1omLVmeMQJatKwu8lDV7CNE1d1+iK+ValV6RjRxaDiaZ7a1wZ9XvlgegwUTmvZOnIuEaVs0TsD/e1JXwyvchc/D/DEDjubG+xj3RWYIhN/L9yKWcS43hsr1QV+1w5tUknGW5sz+wtY1xVyMWaRMRk9p7zKhly7C+1TlkyZKMKmaFz4BqHF6NiU/w/9plJBHpOOUalNcrCEpYc7bLwDs/14eHhSB49MDAwMDAQsbMNL3O3XnN8z4ZXSb6V3SBjGUtsJiveWCWLzfThVZJo2uV6dp+lIPIsmDf7Lo43s8stBTr31q3SofcCjtdKV1I9X9K2jcFg2q4s2LUqQ0WG0mMStP9m46P9zX2lnSILjs8KV2bjytgT+8ZQg2jDZAo+aj24H3rB2JUNPmOhld3e14vJfnuluCr0Ur1V9v5euEoV/F49S3q2bz5TsnuiCk9iXzM2U6VDXPPM4vOUfcwYV6XZoU0081WoCjZnrLBKis3r92yh586dGza8gYGBgYGBiLajh+IDkn756evOwP8EeL9pmu7hh2PvDKzA2DsD14p07xA7/eANDAwMDAz8asVQaQ4MDAwMnAqMH7yBgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBXaKw7vlllumu+66qxtLZVyLM8y765z3FNbGiqw5Z824n47rZVk5YuzOAw88oEcffXSrkVtvvXW65557ytJI8dqMj2KMUbbfljJ18Br8P3u/dH4Pa8q2PF1Yav9a9gXPzeaxylSSlaVi3NrBwYEuXryoJ554YqtzrbUptsvYLWm7BFGvFJbBeMTq2KpAdO/YNaiOvV77sDpmTTxudUwV4/tUUZVKy2Jzs+fB1atXdXh4uDgpO/3g3XXXXfqiL/oiPfroo5KOa5HFIFQ+eKraUlkwLzdW9RDLEiVX6P0YL23ka3k49hKzLgV199rfZaNV564JEK+qFjtoOCZuvvnmmyVJt99+u6Q57dDLXvaytN27775bX/EVX7FV0y4bO4OqnbaJ6bSk7SThTHNVVV+OYzV4bC/1Evtd7eH43dIPN1OpRVT3T5aqrwrWrVKZ9RIe8JgsOJtB3axBx2rkkvTOd75TkvTggw9KmhN2f+u3fuvWuI39/X3ddtttkua9JOnovTQ/m+K11qTt4j1UpfxzG9k9x31H9JJsV/djlqC9qr9XJSCP51YJwLMA+6XUgkx0sUbQ7NXJY+A8n/0PPPCApOPfGklbvz9PPPHE0XGLfVl11MDAwMDAwK9y7JxaTOozo0pCrMpOSLVKoZKEe6VwiKztKtVXRauz9irswux66cOu5ToVliR+qU4/5lcnas36SFbV63OvNNISA8rmjVJjxdqyNGFUf1Xzs0YttqZMSyXF9rDE7DKWsCYt3BIq1XOvDZYyYtotMz+pZigZWms6e/bs0fk+NyYR53fsU8ZIKpayy/OgSkBu9NanOjYzG3A9mJIt20sVK+f7LJXZGrU0jyMbrfZOr9gA9/utt94q6WRauqXndg+D4Q0MDAwMnArszPBcjFHq22EqiSArEbFkn6oSN8fPKmQlbChhWzpbSu6c9XUNeyIqKSorrktUUlOPwVa2qR5DJyvIJPEsOXFv3NM0dRPlcl9xjD1Ws5R8mOWp4mc8t2fjrfZiT9PQSxKeIVsXslHuoSwB8NL1ltYqQ4+F8H6y9J7Zt8jS9vf3u8znwoULR8f6NZaGov2weu5E+29P2yDVSZfjsdXzp/dcWkqWH5lrlWC6Srod+0hbXWy3wpLjzi4J73lvZKXa2A5th/YZiOW2Mm3TWgyGNzAwMDBwKjB+8AYGBgYGTgWuyWml56bbq5AdP89UMEuu/hmtXlMpWeqrIyqVTOwjVVZLxuQ1MS40Hu9Sa5Dqg8xJYpe4qKqKfe86vN4SWmtlFWTppLop60MWf8U1rFSyWbhFz106th37WNWnq2IIs7EyprGnJmINOK5pL0zgqTitrL2vMlQu+plzxJqaZq01nT9//kiF6XCYqOby/5UTTFanjmrOyglrbYwn25dy0w1Vjbz/4zlVLVDeE0ZWK7IKNcr2KteAjijVMzNiyRwTHXw4Pt6vVlHHcCirNP1dDFlYwmB4AwMDAwOnAjsxPDusVGwg/l+5h/sXPEomlFIqR5BMqqyCRckGs4rnlfs0j8uwFNTbC0+gVJ65aK8NHs5QMTx+3qsCXwUcr2EuGfb29nT+/PmyL9U50rYU2JMqybA515mRnXPdCyL3/JgVMEg+0w64Xe6nJTYa+012S+YX76GK1Vbr08tcs8Zln3PCe67nMGRpvefwtLe3p3Pnzh0xvFtuuUXSscu6dOzAUjk4ZfcyK7V7DQ3eJ1ml9SrwuxfUz7H7tdKqsJ3YZzpwxHWp1r1KBhK/W7o3sj5WGgzetxnLpqOTr2cWd9NNNx2d46QFmWZsCYPhDQwMDAycCuzM8KKk1AsEjpJbfOUvt1TnweN1eoGfBnXNTA8U/7dEt4Y1kQ1WWMNYOEdMxSRts741wepVXyoGFiU8zwnZ7xr36jUB2tI8bgbKxv5TuiPW9IX7jXurZzteE0Se2YKyc3v27eqYTPvBgGqOy3sonkNmV2lKMu0Hx1zlzd0lZV9me6cNqheA3lrThQsXjpjdHXfcIemY6cV2loKdYx88d/7MfaC2I2ubY8rYuXTyuVPd/7Y/+n3Gniv25P3Rew6QydFWHvvMsAeuSy9FJBkXn11Z2BHZZvb7IJ1MI2eG5xRjS+FQJ/q76qiBgYGBgYFf5djZSzP+wmdSgKUh/0JbeqkkU6mWlo2ezZCg/YV6+ux8SrO94Fr2cY2dkVJmpcOPXmdLtpvedZck7Ezi9nXI9CrGHPuwRrqyh2ZvHEu2uiplUQ+91Fhcl4qpZrYO97Xy1sz6ULGCyt4Y/69ee/bfynbDhNuZ1zMZPsfVS8oQg8mzcUdEW2S1j86cOaPbb79d99xzjyTpzjvvlHSSBVTs3+3zORT/55grZOdybPRqjGzKGiXuB3sgejzRluiE6dV1aMOLc1ixcqbzyp5zXrsY3B/PyeZkyTvY8+sxxc8MPoMzG7XZnplez8OXGAxvYGBgYOBU4Jri8IzMI9NSiiUDSy89b7nKXtSLoVoC9fIZK6BHXRX3FVFJ6WtQeU1mtpTqmDXejVXJjR4zquIlybbicUsScURrTfv7+10bHq/NfpN9Zn2opMw1MU7cB5VdKPY/jq/6fskDtrev2S7ZZhYrRu0GGZ0T8fo16yvvDdoXM1bQi5eM/cr63Usttr+/r7vuuuuoBJC9M7P4yYp5ZWnkKg9Lsijay+IYDc8t05DF/RmZTXzPmLPI8J588skT7XBfVx7ucTy8R2gPXmOHY/tZeq/KC5z7MSaCph+FwfHGdXN5qHe84x2SZvY+GN7AwMDAwEDAzgwvetodNRKkAEsp9B4jU4iSqn/lqVPuSXyxP/Ecg5VyM087SmFkRpl+mpI9+7yGRVECihIPUdnJKDVldpiK2WXekEsSUtaPjIn1ks8eHh524xXJXizdXrx4UdJxIVi/SsdScuVdSrtclIithfAr967tPtmYOce+rvdyFuNIFmCwTEuPrRn0NM7W3995jpyR4rHHHjvxGhlAlVGDtvlo2+H8xawYUu59SPQ87fb393X77bcfMTu3nz13mLC6ig2M51fxsdRGZbGOHpPjxNiPzDucsYHM0hSfB/ZEZIxgZQvPtAVk4O4j2dqa9v3eax6fkR4fCzZ7nB5XZMrcb+6Lz/EzIPPivf/++yXNRYTXav8GwxsYGBgYOBUYP3gDAwMDA6cCO6k0W2snVJqZcwfdpBn4TRofj6kcMyqDZkTVRqZiMrX2d1QPZQZnqsqoLqySoMZjqFbpOSS4j1XgKdWy8dwqvZHXLatLdS1B/0Zc46XjqHqMKh+rL7wODz/8sKRj92OrSnycdKzy8Wd+tfqOCQMylebtt98u6TgpMVWd/lzaVgdVDiJx73Dvc655bs/lny703LvSsSrJKkvP3yOPPCLpeM7ovBL7QrUe1ZVRben5Y2C43cc9f5mTSZVoOsJhCW7Hqs24f71WVBd6LvyaqSU9p1Zhe029h7LEEHSfZ6o3fx5Djdx/OoTwvozJkP0d1YN0xjGiepLhT1XoRBZuwbAXowoVimAYgvdX9tzmc9rj9HpmYTcOS7ET01vf+tah0hwYGBgYGIi4LmEJ8dfVv/g0sloSzVzLKSVXbtuZCzaDt8miMoZXBVfT0J25UdPteMmpJJ5TVSfOXP5ZsoTtVs4asT1Kf1XQsrTtoFFVVI5YUyok9vvw8HCL7Ua2ZiO0GQidVbyW8Rwf43Mqxwyfm0ncZgxmKH41Q8mSFFeJrX29iCo9E9lIlujY0rHXgaEF3geehzgXZsgPPPDAiWM8n1kgPyuRm8l53JmGxqDjDjUocS8x5KOnGdjf39czn/nMI4neDiJx/5LNmNVWJaek4zn0fvJc+r3nz/fEM5/5zKNzq+rrvKczRkkNi8eTJaBg4DmfP73Ac/eJLNfjy5ykqr3KNV1TloqMLks64mP8GR1fsme+x/WMZzxD0qxh6D2nIgbDGxgYGBg4Fbim8kCU0qMNgJIGpfKM4ZHh0JW4xxysX492lnjdXtBwFWxtZGnUquTNDHjtlemoElH3grotHXluKLX1dOlVsGqUPilp0RaRhV3QFrAU2jBN09G6mIk5eFSS3v72t0uq3Zopocb/K1bIeYrBvwwLybQBHLPtYB47bVo+N4ZO0H5YBUNnQbZ0jXcf3Q8zSo8/fvbggw9K2k62S+k57kPasaq0Z73SMv6OtsR4Hdth4jkVyzt79qye+cxnHtkKmVhYOl5Dz4vHToYc15+2YdqTHnrooRPv77vvvqNzmaqMwdx+jc8l3h9mdh6X8ZznPOfofz4jqH3ivZeFCVhz4vF6XJ6LLKSFmgP3w5/7ORGTOrsvfBbTFh5L/fh6DOfwa6bB8pqacd9xxx3d5OMRg+ENDAwMDJwKPKXk0ZZ8slI//o7BwrSbZW1nv+pSzrIopTPo1shS7lDnzGDRzIuRQZq0X2VSE3XaVfqjaG9g4DQlH0p+cbyU+tZ4rvpY94E2lmhXMBjke/Xq1dVempYco82La0hGnHl20m5kxue2GHCeScCV51m2Vxkgy6QBnqdsvqpk0dQK9DwJzYzJaCNz8TGVZx+LbWb2D84rGV5k2Qw0J8vhvSEdPw/WBqXfdtttR+vl62UpuDx22qn83gxQOt57TPlFBp7Zjqukx3y2MPlyHDMD6P0cjetB+x5tXb3yYdSm+b3H7b0T97f3lVmgj7Vd23NltpaVpfI5vgf47I/r5v76PjLb9bip9Yuf+Xrv8z7vkwbPZxgMb2BgYGDgVGAnhnd4eKjLly9veTXGX3lKc5S4Mo8+2omqGCD/ivfK9jDZqpFJsZUHZKYPJhusSgxl3pVka0wx1EsLRKnIUiFtCPF6bt9zUcXlZUmDaaur4ozid2u8NA8PD3Xp0qUtz7iIquSOXy05xjglSo9kxNxLURKklynHThYiHe9FX8/HUFqP81Ql/CYLzOKieB16n9I2Lh3fe76e7SyWmunlGPvF+8dzQu/QeI/4HLOZau9EcK/0GF5rTWfPnj2aL7MAsxDpeP7dbzMQ95d2uniM2Qvto54fxxVmKdg4L2TvWfo+ar/sbcg4PWm7zBpTvFFrYzuddLwu7ivvObcR7yczvErT09NwUDNjr1o+x+O9wdR41Mx5r8Z59P72mt92223DS3NgYGBgYCBiZy/NS5cuHUkM/oWN0hrjKCwtMS4lSs1LxRQt3fjXvhfrRI++jK0xCww9njLGwkwN9FC0pOPxR7smY2fI7NifeCw9EysWHMdpid6SG6XbLHuK+12V9DCyYr9xbStPTXto0vYQJTOvMzMzkNlFD0i3Z+mYHm+eL0vpsf9VInDafxjLJW3b48gGo6ca9zylUdoSo5RbMTxL8ln2Cl/Hc5F55Up5UVR79Nl71vuYfYxswXPKmD0y6GzvREZc7Z29vb0TbNjXMTOLn5HVMBNNz3u6ynzkeYxshgyb942PjX3084ve7d7X9jqM+83rzjhZ2ruz+Gd657IUT5bZh+ycc+G1tSdpvBe9Z/gs8fMos2/Tnkmmz+K48fy1npkRg+ENDAwMDJwK7JxL89y5c0eSAfMKSttxYsyywGKH0vGvOuOE/EtOfXyEj6X05CwJlhAYG9KDpc8sZst9YhkLSnhZfjoyCmbPyLLB0A7HEhvuY2Q2tGMwdozMLP5f5XXs2eey1oPeOwAAIABJREFUYpDE3t5eGj8VpT1f0/2lBMysKW43jvX93u/9Thzj2L4s/yLtL7TlUVsR+1DdA1lJIe6ZynbHNY+fef59ffeZ+zBem9ehxyAl7wjP17Of/WxJx8zP91WW2YUxsV43XzdqdbLyMr39c+bMmS37VdxPtI8z72oWw+ljuS7eO7T/xeePP3MbLHhNBhjP97Oqsn3H507Fkhk3m/kueF+5L/TSNQOMz2+vO89lRiHPUWZvNPtj9qG3ve1tkvKMOyxVxPs67lHO36233jpyaQ4MDAwMDESMH7yBgYGBgVOBnVWaZ8+e3VJ3ZYHgdGs2Dc2qFTPtEwMi77333hPXi6qRKhCcqtSoBmM7PLaXcqlSaTJ1UTS+MlCWRuNeAmi6mHPcmaMDXaMZWJuVO6kSeNMpJwYZV6EMGVprJ9QSTB2UXZMJoXsOGnfffbekYxdvq088P1aTZuEiVEdaPeWky1ngueebyQpY1imew/d00srUoVTj+pWqnzg3/sxrxUraDCuK6+I5dx9igl5JeuMb3ygpD0uoHB2yiuFZmrUlpxUm9c4Cz/3qkAUmL8hKIXku/YyyO72dMBjIH8EUYnRqy9T4TNjgczP13bOe9awTffR8+Rnpz32dOCdeSz5/GE4Wn6GeA88jx8Ewibjm3hPeK0xW4OvHNHj33HPPib74XK+x7+ssYYTX5eabbx5hCQMDAwMDAxE7+3U6NEHaTmsjbRtXLRH4F9vSc3S9pSGW5TMYaJhdj+VSmAQ5K/VjMFwgAxleVRiVQcsRZJtVwH02DrpXe46y1EW+NpkyDetRsiOTZFqqjLlkEvkSy2MqqSgBu98MR6FEHNfJUr/njiErlogt8WcskYVfGT6QFQLmXmEQdxbUzzRJLACbMSGmtKOTDAN1pe096vW2ZG3m0tt3ZnaWot0Pz3ecE0r/FcvJSskwKUOGaZp09erVI+nfISaRKXB+fGxW7Nig0wo1I0wxFu8XptzjPeVzY1iC+0LGxT2cOWgwRIeaBl83ljBieI9Zm+fGr3EPcU6owWIYQcaYWUTYLM7zmzkvuT33yfvPax2fE96TdrrpaQeIwfAGBgYGBk4Fdg48jwmCszI7WWHA+D6TlixhmAWyFAXTa2XSGlP7uK1eyRWDiVkZEC5tS9ZVAmC3kUlNBm06bFPathVS/067Vuwr7XB2NWYQZ5YSjn1i+aFox2ApmR5DtmYgS73FPljitf6ebvuxD5wfS/1eF7fh+cqCyOmWbyk6Y6ss2smkCN53awrnMhl6xnbIILyW7mMV8iIdj5k2SjPa7BzPvSVvS9G0zWcsxH3xe18nCw3i2C9fvtxNWnDp0qWtOc2eAywhxPJJ8blTJYLw2F3CyHsralO4htQoVamypOM96LX0a8YK/VxjUmeyT58Tx2dbJEtleV9QmxOP5VxzjrIkCpwDz5fH5/eZVsp7xozO4+H+j/3tpa6rMBjewMDAwMCpwM42vFjihYGMEZk9ojqWn5FN0Xsv2pEo/fO6LL4pbdseyegyOw2lCZ5LlhN1zvSGo3dglsaL16OEReaVJSvmuf7cuvwshVWV+NefZ2ndorRX2fCmadKVK1e22s1Si1nKIwOxtBv7wMB4BmSTKcf+VWWT6DUcz6GtyNKr2YvfZ3uH+5w2XPYrfkcthNc7CwDm/ek94j5bes6KFZNlRTuZlGtomOrJEryl9uwc3jeHh4eLJYIM2rPjWHnf90ovZYksIszwWGpK2n5GMDA7A/0A3D6ZT2yDKRqZJIFp0eK5TDHHYPUsDSJTtFWanyzZBOfY7ZLhxwKwho+lDTz7jeGzqpcUgxgMb2BgYGDgVGBnhhclCEqQUl2Wh/FcWcwZ0yjxlzwrGktJgIyOSWrj/1URVXrNxXNoN6gSz2Y2taW2IqoiuFVx0p60SinUzGWXkkkZG2Cx23PnznUZ3tWrV7eKXEaJ25Ig45NYgDPOJ1Mq0ROyWp94DksW0RM29pFeamZL7muW6ot9okdnL46RNk8W1eRYpO39xvnr3Ru8X6lZyKTqKjF8Zn/hOfHervaO4/CozYnjpDaDMXbuQ8a8+XzJCrHG46RtWxbH7jnPkl77M8fY2e5LH4Z4TTJKMqFsr/pcezzSz4BaotiO7wm+Vp6YsW9VYvvseVP9Pnj+Mnt6FiPc0w5EDIY3MDAwMHAqsHt9hYBM6qdEzV91MpT4GRlj1j5ReQ3RWzTTrVMaJMPMShgZVV/pPRXHShbKYzMWSibn92QwWd8ISonxODKgqmRTZsfIvFoztNa21iMrGUNpmVkkos2BUioLSlbrFPvP72iLykq82M5o+4g/z7QQBu2ju9jwGL+ajceo7C+UzjP7X+V1SDYY7wd6l9KWk8XrGpHlLsXisQRT5g/AfcrnQrZHM7YSP8+S5BuM86WnZ2R4zIBjG57tvr5O1NbYdmdbaqXJcsxt7CNZLZMus5ixtJ0Mm89mZvzJ9mp1H2fe6AaTf2fljgze80v234jB8AYGBgYGTgXGD97AwMDAwKnAzirN1tqWKjCraUU1Bw3Ea+oXVcdkVYuz8IOILCUWVZmsxp0ZgCtVGd9nge5un/OX1Zyj6qhS1WbqyyU33Z5KoRpflUotHttbUycep3NBVCNRNUpHDSbfjv1hijkGmDOMRNpOPO73VEfFgGk6q9D13qqlbO/01MNVH5nCiuE3ns8YzMtAY85FT+3K+5UqzqymH13UqxCBOK5ewDxhhycHTHvuo2qbiScqx7B4DlPWseYk93x233At+TyKzwEfQzU41Ycep3Ss0vRn7IvXIUsEzu98HZoVsjSPfDb5uqw7mqk0+ezqpVCsnP2oQo3neC782Vp1pjQY3sDAwMDAKcHO5YFaa1tJdXvVvckQKkN9PIbG6DVOK3SyYN96Ui1dvHt9pGSzxrGGJWToPJAZaCk1sy/sY8Z61/TN4DGU8JbShknzOCvHg6gZiO1niZIr93a3HatIW2K39Oo5pANSBkqgdGFnQHU8hmyQYSFxXBXDqkJqspAGpgfj55Hh2QmClbvdDzpRZfujWgu+xv+Z9LvnxOR2l4K/jWmatsJFYrgDU8ox/VTmvOZ5IvPm/GR7iGtoVEH/0vFeNUvy9Q2mEZOOn01LifXJTqXtivNkaXSAi+C89QLcjcoxqKfdq54rdCiL80wt2pUrV4bTysDAwMDAQMQ12fDIWOKvL12R16RTqtJzrSkdYlRu2pmEQCbJMISe+2xldzGyc8lCacvLUhdR6q9SmmV2H/a1YnrZ9ZbGmQXFGmfOnOkmAI7uw5m7MaX+Kmg49sFz6WMq6Tyzw1AirQJls+ToDE6m3SoLUqbUXxXQzQKBmZiZ+yNjU5xr2qp7Wg+jsiVnidVpT+yFKPn8bO9n44j708zFbv3Stg2fydWz9eee5lirYsjxGLIknhOvZ1uwQ1p8XTM6J+qODM/jiHY96XjOyc7icVUYFEsoxXGRRTOkpBeewmdUlUIxrnXlI8D1jMyVe+eRRx5ZtZelwfAGBgYGBk4Jdrbh7e/vb9kT4q8rmQLThq3x1FlCFuheSYhZQc4q4XSv3ESlw66kl54nYVX4M0vmzHIjFaPrlcig9NNLD1V52lF6i8dEibi3Dq21rXOihFolljZ7y2wAvSBkjpHncg7p4ZtpGMjwKm/kOC7uDdonuD7ZunB9LZ1boo8SsK9DVuj91UvVV+1V9idLkkD217uvd00eHdc3S35uVmkvWQYyc07i/1XgPO+T7DlX2cF8brStmpHS/uY+P/jgg5KOC/RKx+trW17l50D7bDzX8PPaDNIpx1xGKJ5v71Cmo6uYWPysekZlnt7V89T3V3aPuI9mxBcvXhwMb2BgYGBgIOKakkfTuy1LBM1fXMa4sc2IyrOul8psSSrLykvQZtNL4tvzTorfs1/ZMbQR0M4gbevS6QlXJfWN/1fSOZlGbI82o964OV+7lOkg88/OZ0yVpeXopUnGxXmvbMjZZ7R1MEVWvJ6/o+Yi2/+ZliG+p60jrhtjNrlXzfSi3cfz04vVi2PIwHWv+hrbqYokZ3NOZtSz/x4eHurSpUtbRYjNjCJY3LjncVnF7pJVZAnv2S7hdfL6SMcMy+vj/r/tbW+TJL31rW+VdMxcYvv0OnUbHENkvYz/NaPzsd4zsVyP2Z73jPtC+2+2d3oFtGNfM4/y6pzsWeV+v/nNbz7q0/DSHBgYGBgYCNiJ4TkWpheTRbZCT7SMcVX2girTQWbjqDKeZLptehpVCaYzadCosmb0PLoMxrZkiVgNfkeb2prCk+xzJp1W3oy0VWQ2EKNnw5umuQAsdfNZH6r4sCyLTmW7Y/LgXoafzNs0HhvPsWTtV2aGyEpLcX9X3qGZVyjnn4lzWTw0wscywXrPtlbdi2tiOitP4oxdsZBpj+EdHBzo4sWLW4VMIxPiOmfestJJjYL7QBsemV0WJ1vZblnkNe5Z2+H8alvdL//yL0uSHnjgAUknNRj0UvR4qr2TPbOYOca2RDPMaP/1PDqbjdtnmZ5erDK1RczeEsF7uvqd8F6WjpldVox6CYPhDQwMDAycCowfvIGBgYGBU4GdVZoHBwelAT1+Fs+RanVlPKZyfugl3a2cU+j0kbmyM31SpZLJQJVpNZZ47Sp0wP2JKc6qOnhVwHHPGahyVukFnnOcve+qhN0R3js0ekc1EeeJx2YOE0xQzGN7Sa+ppq0qM8c19hoxvRFVTXE+GZhdBbobmTrUai6rn6hiimm2rE5j3ypHpJ76tVLzZ8HDVb3F7L72mJfCSnze448/vnWvxfuFicWXxpwdWz2rMjV1ZVpwcLmPtXt/PMdred999514zZxw6DDDPcp7Oar+PFZ/Vpk/4v3rfcQ0aH7P/Z/tHYIq7V5Sfq+xQyo8zrjWnhOr8R9++OHVDnOD4Q0MDAwMnArsHHi+t7e3lfA1k5po+O8lW6ax2KhS+/SCyP1KyShKwEbF6LLAWUqDVfmMjFEweLgy/MfxM21blTyW7tfStpReSawZqlRSvXXrBb0bTg9FZ4XY7yoBQM9hYo0zRWwrk9KrEI+sXEsV0sJq0pmTFKuIV8452XzGNErSLNVK2xJ3bL/SUNDhoKfJ6LE0g44MlUNFFsDfY3axD4899pjuv/9+SScDpQ2mqmNC8GxdqrRjnJes4nmlFXA/zKqiA4rnzm71Ho/XNIZocBzUAvCZwkD7+JlhJx8mcohJrCvHNmsNYphFPD4ey3P9PttnlSaBx2YJrt3uk08+ORjewMDAwMBAxDUFnhu9X+4l6XFNoCCljSyNDxmdJSyymFgYkf1nGi9K8dK2RGrJjRJqVpTQfaOti3r3OC66QjOhcixkWaGyp5J1Rywl+86kzzWu5a21E+dm4SlVSqoqNVocwxpbcTw+nsM2WE4nSul027bEa9bBtFHStq2Y7uKUXm+77bat/rsP1FTYlpfdE5Xtk9qBuC+XbHjZ51XYRS9UJgtBWQpp4XrEufD/nFO3b3tPPKfSLPHzXrpA+gwwUXfcB+5bTIkVj2GoSXXt2D6Py8J8rH3wuvBZkrGnKoEHkwzEZ0zFRvncy/abwec3Q0Ok4zm3dmMEng8MDAwMDADXVB7I6OlNq4S4vaKTlPor+1zU1/OzqqxO7Cs9OCm10NYSx+1zaCOsUjFFsFijYUklSoP0WuL4yEpjXxlYT1teFsBPrzZKeNm6sb0lW14mIUdQilwK7q/6Fa/FFGCRUVYppMwguC+kY2n52c9+tqTjdE1mfL5uL5kzJW3aNWknkba9MhmIHINwPVbvqypY2YjrwgBuzmsWRG5Qu9Gz+/WeA9mxly9f3noeZBoYvmZB4wbv1YrNZtoIBq1zbql5iv9Tg2TtQJa2K0vBF+HvM80P049Zc0AP0/isZv/JWPl9LxEF28yuV2nxeG9kHrm2rQ+GNzAwMDAwAFyTl+Yar78q5ZeRJTumjY5MLIt9I0tjMtWMrVVskH3NSryQYWWpxKTc1kUJLotFq65nVHGHWYFEvpKJZV6o7DM9CjNpfW1as8uXL3dTi1X2Cl47O4fzXyVzzmxdtMNEm510ci1tA3K8lW3D7Lv3XTyf8+R18ZxkCXQZK8iiuFncHz0EGf9U2Xbj/2uSlBtVDCRZXE+yf9e73tWV0g8PD7eSYsd94rWjHYn3WhY/SLsR+5F9Ti9Qem3aDhf3gcdaFWD1a9x/XkvvM7/ns9H7IfoquA8uOHvPPfec6KvPieviz+g7wDR1RhaHx/1A1p1poyrvdzK9+F0WC7iEwfAGBgYGBk4FdmZ4Z8+ePfpVziQf/lJTN5tJWvSoosRVvcZ2WCaGtq0oafG6VWaNzGuS0l9lZ8rioir7WJappIqVq7ynIpjxoirQmXlYsc9rdONR4u6VeHnyySe39k4vDqsqTdNLem1QAiYzl46lVnr2seRP3Ac+xzYzzrX3WZS0qWWoCo/6fbTH+Xq2V9DDz5/HWEHbO2gbNHpZaDzWqs9LLCwbX7ZG1OZcunRpMZaqsitFUNOzJoF1ZdOv4nOlY4ZP2xm1JzFm0PZfr53b83rRHhj/Z2FUPjO93+JaO0n0vffeK+mY6bkNjyFqmDz2mJg7fu79yOd6HDO1A9ROZNqPan/xevH/uC5rWd5geAMDAwMDpwLXxPAyG5BRsTHaxSIzqbwzl7KZSNuSNSXTzHvJ/y+xzyz2g1lmqqwWmacVPeAqu1k8h96fVSHGbD573o18n3l7Zn3NsmUYWT7P2M7Vq1e3GF1WKJX2nZ7XX2Xj5CuleWm71A/ZgRGZhEu6UOqntsBem9KxZM9YMGbHyPpotmeJ2xlWmNEjMjx6EFY2xF7ZG+4hrm1c+yqejbacng2v52k3TVP33PgZ+8L7Jp5T+QowXpI2L2mb0XGfuQ2zqHg+7zH32f2IDIjxtvQ6pl0stk07s6/j95mdkf33/qps4b01YN+y9a3KnFUe+vGaaz0zIwbDGxgYGBg4FRg/eAMDAwMDpwI7B57H9FGZSrNKPkpq2lNR9FJJ8T3VDnzNKvP6O1N7qlB7iVhpBK8q/2alUOiwwTFE0CC/VIk6c9VfCuCOqILIe27Ia1JIRVy9enVLFRvboxqNr5mTxVKCA39v1UyW6oltMIwjqvysWowqxHiM58JqTOk4Oa9VTEwPZpUq01PF6/i6MQA3u75Uz1eVHKHnBORXqsXWqJOo8s6c29Yk/XVIC9XhmcNEdq34Pq41r23VHtVrmUqO6cB4HYaPxHa8D6yutBMLn5lSnRSbZhL2PR5Lhz4m0cgSQlDV6PbZn8wkwXlliEjmqObv+IzMVJoMH+olwycGwxsYGBgYOBV4SoHnlCSlWrKihJW5KFeSPaXBzGBevc+kCksLliYYPJylGvKxltzpGs0+Z0VxqxRc/j72sZK015RrqZgR2WiWALhizFnSYEqBPanfjgdV8H3sb1X0NrbF/6uwEDqEREmxkkQ5B1mAMxP/cq6js4LZGZ0IGCrBYF/pWIql67rRS+pdpXoim8+k9CqBMp3EsnOqdGSZU1blUMXzH3/88SO2m7GZHpuM14tYKp9VhTjE76r70esWNQp2EnGKLzs2eT9k+50OSJU2wuwthsMsOREx9VzsL9OgsY3smVWtYU8jWO2dyoFNyu/pkVpsYGBgYGAg4P9v73x647aSIP4kWYnjg5PA2CBADvv9P9Zes0GQAHFgx9LMnkpq/VjV5Gixh+x0XUaaGZLvkY+crv5T/aoYHi3f7tc1xYacbBdxpKg7xSNo3TjRYFr0ZGKd5JIYH1OanZVGtsSxC3UbxjOTbz1Jt9V5pFfHAFLRaMcKk++eOJ1Om0JtFz9iTJVWZictlhheJ4mmcynrODXBXWvbykn7JdOrLE1rRY0/ZY0nWTRnzfJ4XAc1HZ1NTzn3tB7qsSkpp3XuWC8Z/tG43Fovr3X3HHh4eHhiJLpOdc6pmXOacx1DVz5R51PjV6mlkMao71YWqnie9ieGx2vs4uTJy8H7yXm/+EzidXKlOhS6T/KLFalESHCx/uR96nI+kuj6EQzDGwwGg8FV4OIYnorP1/K+7cQe2Bqiy/Dci+V1mX20hN02srpk2dASIvOr+yEoveTYYfJ7s4jUtRLZ84t3QtCpmae7bntWUrdNxxiF8/lsGXP3HlmbKzjdY3hd7Emg4C+vaZ0X2RPPgeJMTgBYn6V7g8XMdb+pmFesoRYoUwyB99URz0xq7uzicRzrXgyxIkn2ObDtUWVPjOtxLC6Tj+eBWbJcMzVDNuUd6Lo79iFmKjEBxXQp6u28KPyfXg95D1yDWzbO1bnQ9XFrlR6L9Mx392LKXHfPibS/rpGuzl9l0RPDGwwGg8Gg4OIY3ps3bzYyNtUHnJoqHmEXyfffZWlyf0l2pm5DNljnVvfhpLKStcx9OzDOR4uyMjzXDLIer4uXJFaQahT5t0NnndU40tH9uKzPFGvi510Mj+93bIOCvLKOXUspQVY6X7kOHRvgq8bceUz0nsbG2jCN3WUsphhrF4cReP8mL0H9LMlEdWyg3tNJAFjZ4bonZOHXjER6axiHdTWolFYTAyc70zaSdavfYRyMsafKxDQWSswpa1OMT59XsB6Ozzutt7pm2diYNZzap8sK5rOJovz8v46NXpB0XesYuUb5TKxjTxnLRzAMbzAYDAZXgYsZ3vl8bsWjheTPd5Z9sh7paxbctvRpd+ostDiZtXkkJpXgmBnPk2uNUv9fa9siKe3LxSj53RTvczV1nDO/W5kEYw/39/ftmqjjpfXsxku2SKFmbu+OQ4vfzZmWKRlenTMVIVJbJcVU1sptiPZUgtbaNno90uqpY0r11cWZXEuk7vh1G2aMdq1fmJH49ddfx3GrhjPFedbaZpdy/64BMFlMbUZbIUb5888/b95jk11mFdYxaixs1qpsTbXzqQyPsUl6FFLT4rW2YuRUSdGYK3sic+U40pjrmBj75HXtvC06PmOhdYy6PkfqfzfHOfzNwWAwGAz+xpgfvMFgMBhcBS52aVbXQldakCSDXBJBkuXaK9R229KFodeatq39Uj6HFLnr70bKz+C4kwlj0gBdDdXdwvIKundT6q/DJS6F9OoKnOnm2nNn1nm4NZQ6gXM9dB3v94RknbiuXC8p2cPJ4HHMSjhw7jueJ11vrjOKmq+1TQ7Ycx9WcI0yWcYlXqVCZx63kzLjd1wq/SVuKI2HCWl1f3TP8l52Igap3yI/l3vt999/f/rsl19+efHKUIYrf9HYtD+5LvW/C8/I/cn1TYEDd++xRIbPRLndu4QQyi9KWlFzqX0fKYoudKEhhjb4TJT7so6Rrtk63j0MwxsMBoPBVeBihnd7e9umUR9leBW0XmglM+nC/ZrvtZapVgaZW5LgcWPlmFJrIbcNrUwGuB0rTOn2qVyhYq/Fj0t0SAkUtN7X6ktNiPP5vL58+RJT2Ov2ewXSlQnTkudrJ0KbupXrNYlX1zmntVTHyP1StosM0Hkj+B3HuAUmYTChgglRdY3Jkk8C545Rcl7J++DKSY54BU6n0/r8+fPTuHUcx/C0P7b+6kpaeL9zXbhtWaCtJBbtg6UHa23LDtguSuypCo+T4fO5w6QWJ8auz8j0UoJK/Y6Ox3IEd2+6JK+6f95X9T0m8DFZpTI8XrdPnz5N4flgMBgMBhUXM7zT6dS2T6EFQjAt3b2XYnmyIKp/nL/2yaJzqeVCklGqc0jitIxPOOuWY0htO1zMkHEQxstcCr/GkmKgbpsUu3OlB9zGsQyH0+n0ZGW6tUM2w9RyFt+utWUpZBn0HrhGqYLOG1lOXS/6jMW1ZFVuG8ZHND+e28rwWCbAmIeLGafiYcY+yBq6MXHezmOSYrqd6HtleontnU6n9eeff25aM9VYJ1vdcM04CbPkUUrlSZV5fffddy/OR5IyrNuowFwMT+PX+/x/rXyPUZZQ/9cico2BY9S8FX+rcTiysb3Sncpg+ZwWeE/U5xzvS11HliW4Zr/1GT8MbzAYDAaDgosZ3lpbP3n9xabw6h7Tc/tNosTMFOKx6zZddlZqQyO4LNGUaZQkrFxxfPKHO6mnlAXqrBsixZ6OiPrynKdMxvpetaL34nip3Uz9m77+TiYsxVtThmBlOYq/MKNO2W1OgEAWrazixLgrKPRMjwLn5SS4uF9KV9WYIRkeJc3Y8NgVhCfpMueFSAyf7LSOkee2s9BPp9P6448/NnGlyp4Ss9P/TsiBsWIX217reX388MMPT++p4NplrdZ9VwZEr4C24VqqheddVrObg2KJa21jtpyXyzvgmJxARBoPx8bfACfpSKaqTFjNg/eim/ubN28OxYLXGoY3GAwGgyvBq8Sj9cvtGjHKiiCLStmFHRi3omDvWlvpJcaBnFWRMjmJ+r6LOay1rW1yMbyUxZha2dRj87MkYeQkk+jf77IpU1YmffaO4V0iwUaGV68l4yCpFUpFsnzJHFyWZmLCSV5trW2DTAqpCzWWIqT4Mq+h8w4IbEPjmCuZXWL27tyR0XeSYkISC04tu+p+kpRZxePj4/r48eOGkdS6OEqKMfNWcLWASWha7JbPu7WevUwfPnx48d2uebDAPAeegzpG3sucJwWpu9ZSjM+6TEt9xno7xdbYALleN3rM0n3ssvrZQov3mVs7l9ZyrjUMbzAYDAZXgosbwN7f328soxoD0S9yYhNHarb4WWdlpnYVbKbZ1d+QtaUaOLftJSDr7Jhmsv5p0TurKWWspkzMtbbZmHuvdRtnVTrc3t5urL1qzXJt0AJl1mYFryEzft34E4tm7MOdJ64Nxkccw0sgc+mEx1lL5dgTx8ZYe6oLXGtffUbomAQZBZmMm9fDw0MrBP7p06dNJq7YwFovMw3rsTqmlQSyeRydi3qMH3/8ca211k8//fTiM3pEKnhd6IERi6rz0jZsHsxMbF1jZY+u5ZnpWlvmWtcu4+a6Tnquq0USY21rbZ+nyZPh6vBY16hX593hOrnkWTwMbzAYDAbLCsAfAAAPZklEQVRXgYsZ3t3d3abKv2Yi1V/8tbb+VtfyZ081JMW+1so6nKkZYd0+NYLtGNfemJ2VSka1F59zY0t1hS5LMWW5pszLtbaxKJ4/V4dHq3kv+7PGf50Fl+I6tIydlibPA+MHGnfN8NXcUvNOx57YQobM0cWiGLNJzNXNj/NycT5C51GWvOZJr4djI6n+srsnUyZ2qm9183l8fNyNyfC61DY+YkdkQN352tNd5f1T6yO1jlQzJ2ZFFl3nfjQeV9eoPvv+++9fzIN6rPRO1e+S4VPZpV5/xthT+yGdOzaVrcfR2LVtV6OcvAPc51pbFjp1eIPBYDAYAPODNxgMBoOrwKvEoxkQrgWgv/3221prmzBB94YrHqb7M0k/VborSs3AOAOzXZCd+2epgQNdZylpov59tDiy7o9zTu5Qdzy6GJlkUl0ZdMXQHea2cWnuaY5KeKIrphOCJjq3RRIqTgXUaz2ncuscs0O0XD9dOxK6gN3aoTuf1077cIkuPJ+pi7STwdP89Eq3tJPqS4Lgbl0LdDE5IQWC7W2+fPkSr6/c4TxPde3ovffv378Yi953rtnkPksJL13iC117roQqrQMWxTvprSQ4T5dtPR7noessV6ZeXdKSxqQQlc4jy2+69cBnvwulMClFnzE5zJXOuGSoPQzDGwwGg8FV4OKklWppuWJeyifJWkmCxmttE1mSZeiKrMmwNDZZXE7CihZBSkd3KbFJfqhLvNkLjnfNKck6yCAcG+YYUxp6nQNLTFLCgxMZuERUoGuuy2A+4Zh5aumUZLuc6DHT0HXOneA0QUZ0pJRlT7S6fs5jMwHG3TNsM8TkFCYxVIubrCe1+nFMnmUcSYi4ftaVANVjvX379mmc8iI5uUDes0lcfK3t9Wdhtpgxz1v9jpqoStBa11rPwZrQxzmzqJpegwq2z0mlOxVsqiro2ah9usatYnbaVmURFHfuxDL2SnfW2j7PNB+2IXIF7vSqHMEwvMFgMBhcBS5meF999dWT79f5r2UV0dcsS6GTtWKKKi3hTn7ItcdYKzcldGDas7Pskz+fMTyXjiwkIWAX90kp8118JDG8lKa8Vi5D0HdlcdXUbDK8vQLQ2lqqvifQC0CW5qzYVOyaRJ2PxKsEx0Zd+5963FSo3Y2Zx3etUFKLFVdQTybPGA5jeM77QSZJ1PlzbPSYuCJs19YreQju7u7Wt99++8SIxC6c3BRjXfRCObFyjY8sgyUadX2wQemvv/661tpKczn25DxV7v+K5GWgt62yQ15vPZs1ZidWLVC6TgxPhedigE6yMcWqWUq11rYBLOehOdQSFMbuLpKrPPzNwWAwGAz+xriI4d3e3q53795tLKJqwYkRyALSL3Mn4somncKe9Nda2xgd/dMuE41WOK1A5xPmWPbichWJDbLI07WFSZmjyRqt7yVL1RXjM57Dhp9idi6OITw8PLTMRjHgtbZxMs6/g7PS0/VIxfdrbdkMGQo9DvVvxriOxKIEd73rtm4dCEkk3cWmUlYmM1a7a5aK5V1xPC1vZmJW74CLm3dZmjXDV6zJSQymDGtma9btu/yCuu8KMSAxHsUVxZZcWyfe73tygRVpjFwH9RyT4fH86jq57GC9p1fNV8yOz1m3H2bmM6/DjYX/c35rPT+DxDoveRYPwxsMBoPBVeBVDI8ZT9Wq0N+ywtii3VnNdf/d/10GnCBGyaaH1UpjXK+LKxH8LLVvcePeE1PtxKP52rWwIXNlTIe1ivVvMj3G8lztnl7/+uuvttbw7u5u48/v4nKpFqceg5l2e5ZiRRI2Ty2u6nt7cTg3n8T0eXyXcZledbxufdPSJxvoPAt7Qt71M54bxgErc2Ecq6vD03FZg1ivdWoHlOqB6/x53lNmav1fjIfZ4PVeWOsl60nttLoWain+zzh353ni3JnpWWXDKGnILE3WQNb8DbLa5DHp5s7njmvcq2eRMmRHWmwwGAwGA+BVdXj8Na5ZPqzMZ9amyzJM1jEtRGfFJ9aU2svX91xtWQKtQFq1ncB1UqCg5VutmKSsckS1hVmvqb1SZWvM0iQbcJmdrkFvioNo7ZChOmbK/1M7JzfnlHlJtYe6P36XrLGC15KZdc5KTyLKiWHWMTL2mGorXU0lY7YuK5PjOGopuxq4vZrEeq4Yv+qs9Nvb2/XNN988HUfPmHpPi4GQRTFu5rIY9xQ7HNMXKyID61i8zjPb9VDxp55bxh6pRtWxUMbqj7BCHZv1dszJcDH4dD/xOeeeIcwg17aKjbrnCuO2RzAMbzAYDAZXgfnBGwwGg8FV4FUdzwVR4krRKS3GILjcEc4lklw8Kemjfof0PLkg6990VfD4jkYniaWu8Dy55Dif6vJxiSwVdB+4dOtUgOwkpVhYnlxmLqW4frcTj3Yuzbq/JK5Lebp6TujaSa5MJ1qeOnVzjp1ALteoK0xngk7qg+bOCfdBN1VXPM5rxmsrHOn7mK6N24buxM51Vu+9zk1/e3u7KVKuyRaas8SjCeeWZJjFdYCv29bjsTM33cYu9MBryG2OYK8Mx5Un8budyLfeY5E/58tzV/frEqnqvuu9kcprKDRdf2OcQMVRYf5heIPBYDC4CrwqaYXWc7UQFIAle6EIsgtQO+kZh7ptx/7Wyu1U1srJCh2SMG5X/EjLJhWRO+bC+ZBtMJjNv9faJqA4VuBYX/2OK2xlicFem47T6bSZj2uFwv2TxR0pG0nb1LXD8boWQjxeCshz/Tkxb36XzM4xITLTlIDSMW8Wngudhb/Xnd1tw3NDRubE0Y8kyciCF9twUnx67nBOZLt1DEmui0LNnOdaW08VhYy78iudF7YQYpnEWl6gv75Pb5XblmUJYmmuxGQvWaW7BukZqHk5lk15M3pkXNsjlSNc0m5NGIY3GAwGg6vAqxrA8u/KFGjN6f+uBICF7Kno1aWy03pJ8bgKWpWMrbiWKy42V7elde7S0lMReWdpJ0uO7MDNl+ecTM+lsu+lvVeGRyusY17n83k9PDxEBlbf24t1HhHOTqzDWaQplsdYW90f2QulxlxZyt74u3kxpsHCcxdvTqnsfHXxdI6dZRgu7kfBcx63MiZXcpLY3vl8Xufz+YlVCc5DwYJoNafWunVSWGn98vzUImsxHY2BnivX7DTF1l0cnkjlPnx2uHY9lC4TW2MxeX2PsTuKRbOVUj0e48vuPiIktk1Rbs2nNhnXZzrOu3fvDjeBHYY3GAwGg6vAxTG8KgCsX9X6y02xYX1GaSrXxDO1k3BCrAItG1oRLlaQWtCzaLXL0kwZUB3Do4XPQtNqadMKTyzEySwxHpeKll1mZxJtdXFO7b9awnvMmtfUNQUlq+A+6znfK1Z3Bec8HmMLZPouw5cgm3FI7JaZq85KT4zeFauT9e15IVzhborZORaamjzzvNZ7k+vq4eEhnrvT6bQ+fvz41GS1E4TXPsRQtH8nfi72wucP73sxIxVB17kw74DjqOeLeQw6vjLbxVycGENqWs015fIb6HXTcRmvq3+L6SU2qHNfr2mKTQpdrgTXNZ+RdV46X1oP79+/jwyYGIY3GAwGg6vAxTG8m5ubjQ+6WiT6VacFpO/q19nVqe297jWlrN91PmZB1hKZnSwvJ65c5++Q2FsdE63jLsM0xRmFLjMyMVWyNycETXbAa+yYpJuzQ93W1XPxPHEsnQTUEaHxuq96vNSCqZP6Yg1qyiit7zkR5bW2zNuNnZ6FjuGnxpg8512mZPJKuH27GHSdj4vddF4b4nQ6vYifucxkgfFDXR8xF8WK1nrODBR74fjZxqc2IeWzghJgZFH1eGoppP851npOUhZuenbUbVMT3CQfVufFBrAUk3bZk6mlGFu1ubZOrEWmd8BlLtfnz4hHDwaDwWBQcDHDu7u7e/ol77Im2fiVrYScqGqKV9FCqcfby8rsxKpp8ZBR1DqdlKXJeXdsjfOhVeaslCQ4TPbh2sOkuihnNab97alf1P2dTqf2+zc3NxsrulP5SFlrR1jBkXOcrgdZwhGLO2XR1ve4jjm2bh10cT6OMdUzMsPOsSy2Y+G8XL3XXvapq9dNAtMO5/N5ff78eZPN6BiejsF7wDVXraL3az0zPWbcMtbn9kdvETOi13r2bgmMcXHMdY700qQYnsuN4P8aO9e7e4/rjNffNf/mvFJWav2b8V/+X8fIZ9VRdrfWMLzBYDAYXAnmB28wGAwGV4FXdTxP6aZrPVNeUnsWzLoCZtJyJiLIteDcKXT5UPqmKyKn+yalAh+Bc+t0wtIV7v2UNNKJOic3SBJorftP5QhOZIDuuz1X4/l83gj1OhFiljsIdH/U/bi07LpP9z9FEJL0W+fSZJF6tw3XKI/Dfbr9JVdmJ8a+J2V3iXtScDJhXCtMinHPiSOQaEE69/VvJkEwiai6xpTAoudZ6lfZJUlRektuUXe9mGiW3JRObo+hhr3wT50HrwfXYb0H+R7LyHTOXJmHisM5n07eLV1TupVdMk4XAkgYhjcYDAaDq8DFDO/t27ebdH1XCMxApWN23CYlaPD/KoXD4krKkzlB3r2UXsfEjshnHUXqPHxJITjZWpeAwvl0hZ//TaJLFRYnzufzenx8jGnHbm5Km2aZRUVKrqB12bEM7pfrzEmw1XnVV77PY7rjdCBrEkMhe+tEC1LHdbeW90oa3LYaU2LmnddD6FpLieE5Zsfx8frwPnFtZvRZLVlYK8sk1uPx3tKacYLZKdGEhfqOcQv0aPD50LE1IUl/rbUVrdD41XaJ7Xrq+UzC80k0vW6TZPCYQFbfO3L/EMPwBoPBYHAVuFha7O7uLlrEa2WGx7IE58ellZ5ko1wciXJJR9q1CMl6rcfZsyaOWM/CXqyyfpZia0nk2e13T5bsyH6ddc3rtHeOHh8fN3GkaunvpSQ7NpuKxlN8pILjTw1nXcE8P2Nc4YgQdBqPO8dJcNwV+++JINOz0MVAaJ27Mp+9bRwYa++Ek/Xc6Upl0v1BhlfZDO8tQayFrc7cc0etaijm4MogUilDV9TP51lqaebELbjOKLPmmC3vG81H54KtjGppR/I6Kb4p9lvPI1sicY3q/+rV4/W/v78/zPaG4Q0Gg8HgKnBzSYbLzc3Nv9da//rfDWfwf4B/ns/nf/DNWTuDA5i1M3gt7NohLvrBGwwGg8Hg74pxaQ4Gg8HgKjA/eIPBYDC4CswP3mAwGAyuAvODNxgMBoOrwPzgDQaDweAqMD94g8FgMLgKzA/eYDAYDK4C84M3GAwGg6vA/OANBoPB4CrwH/7FpVj8bf0vAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -967,11 +3196,7 @@ " \n", " ('Non-negative components - NMF (Gensim)',\n", " NmfWrapper(\n", - " chunksize=100,\n", - "# use_r=True,\n", - " lambda_=0.05,\n", - " passes=10,\n", - " eval_every=1000,\n", + " chunksize=10,\n", " id2word={idx:idx for idx in range(faces.shape[1])},\n", " num_topics=n_components,\n", " minimum_probability=0\n", @@ -1053,17 +3278,17 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 42, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -1076,7 +3301,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1085,7 +3310,7 @@ "(183, 256)" ] }, - "execution_count": 43, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1104,15 +3329,15 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 527 ms, sys: 476 ms, total: 1 s\n", - "Wall time: 279 ms\n" + "CPU times: user 374 ms, sys: 560 ms, total: 934 ms\n", + "Wall time: 262 ms\n" ] } ], @@ -1127,17 +3352,17 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 45, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1155,7 +3380,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1166,7 +3391,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 22, "metadata": { "scrolled": true }, @@ -1175,15 +3400,272 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 00:56:44,027 : INFO : Loss (no outliers): 2009.7411222788025\tLoss (with outliers): 2009.7411222788025\n" + "2018-08-20 22:15:22,726 : INFO : h_r_error: 17211892.5\n", + "2018-08-20 22:15:22,729 : INFO : h_r_error: 12284515.111163257\n", + "2018-08-20 22:15:22,731 : INFO : h_r_error: 11201387.638214733\n", + "2018-08-20 22:15:22,734 : INFO : h_r_error: 10815579.549704548\n", + "2018-08-20 22:15:22,738 : INFO : h_r_error: 10646539.06006998\n", + "2018-08-20 22:15:22,747 : INFO : h_r_error: 10558409.831047071\n", + "2018-08-20 22:15:22,755 : INFO : h_r_error: 10507775.272428757\n", + "2018-08-20 22:15:22,757 : INFO : h_r_error: 10475469.606854783\n", + "2018-08-20 22:15:22,759 : INFO : h_r_error: 10453925.335400445\n", + "2018-08-20 22:15:22,762 : INFO : h_r_error: 10439939.102116534\n", + "2018-08-20 22:15:22,784 : INFO : w_error: 10430366.610691467\n", + "2018-08-20 22:15:22,788 : INFO : w_error: 11466405.186009312\n", + "2018-08-20 22:15:22,791 : INFO : w_error: 10938537.274967317\n", + "2018-08-20 22:15:22,793 : INFO : w_error: 10835183.946454465\n", + "2018-08-20 22:15:22,799 : INFO : w_error: 10808896.588521175\n", + "2018-08-20 22:15:22,803 : INFO : w_error: 10800700.69189361\n", + "2018-08-20 22:15:22,813 : INFO : w_error: 10797625.389554728\n", + "2018-08-20 22:15:22,822 : INFO : w_error: 10796326.877290638\n", + "2018-08-20 22:15:22,887 : INFO : h_r_error: 10439939.102116534\n", + "2018-08-20 22:15:22,892 : INFO : h_r_error: 5219717.607766112\n", + "2018-08-20 22:15:22,903 : INFO : h_r_error: 4876433.68440713\n", + "2018-08-20 22:15:22,912 : INFO : h_r_error: 4716452.5126186535\n", + "2018-08-20 22:15:22,919 : INFO : h_r_error: 4646689.620867923\n", + "2018-08-20 22:15:22,924 : INFO : h_r_error: 4608559.674039051\n", + "2018-08-20 22:15:22,930 : INFO : h_r_error: 4584190.709493502\n", + "2018-08-20 22:15:22,938 : INFO : h_r_error: 4572961.429340482\n", + "2018-08-20 22:15:22,946 : INFO : h_r_error: 4565401.692201527\n", + "2018-08-20 22:15:22,950 : INFO : h_r_error: 4559558.680005681\n", + "2018-08-20 22:15:22,967 : INFO : w_error: 10796326.877290638\n", + "2018-08-20 22:15:22,975 : INFO : w_error: 3930758.885860101\n", + "2018-08-20 22:15:22,981 : INFO : w_error: 3677458.2627771287\n", + "2018-08-20 22:15:22,987 : INFO : w_error: 3533600.150892006\n", + "2018-08-20 22:15:22,997 : INFO : w_error: 3445283.399413136\n", + "2018-08-20 22:15:23,021 : INFO : w_error: 3387724.0695435745\n", + "2018-08-20 22:15:23,027 : INFO : w_error: 3348095.1397870793\n", + "2018-08-20 22:15:23,038 : INFO : w_error: 3319186.5294471537\n", + "2018-08-20 22:15:23,043 : INFO : w_error: 3297270.6048084307\n", + "2018-08-20 22:15:23,051 : INFO : w_error: 3280135.5493962015\n", + "2018-08-20 22:15:23,058 : INFO : w_error: 3266430.893683863\n", + "2018-08-20 22:15:23,063 : INFO : w_error: 3255269.075502726\n", + "2018-08-20 22:15:23,072 : INFO : w_error: 3246056.4386206362\n", + "2018-08-20 22:15:23,077 : INFO : w_error: 3238390.701615569\n", + "2018-08-20 22:15:23,082 : INFO : w_error: 3231955.0349307293\n", + "2018-08-20 22:15:23,102 : INFO : w_error: 3226518.9403491775\n", + "2018-08-20 22:15:23,111 : INFO : w_error: 3221892.863625709\n", + "2018-08-20 22:15:23,119 : INFO : w_error: 3217939.686304069\n", + "2018-08-20 22:15:23,140 : INFO : w_error: 3214547.861387841\n", + "2018-08-20 22:15:23,147 : INFO : w_error: 3211625.5540026743\n", + "2018-08-20 22:15:23,153 : INFO : w_error: 3209100.973817354\n", + "2018-08-20 22:15:23,162 : INFO : w_error: 3206909.4902177462\n", + "2018-08-20 22:15:23,170 : INFO : w_error: 3205002.806936681\n", + "2018-08-20 22:15:23,175 : INFO : w_error: 3203339.106714502\n", + "2018-08-20 22:15:23,191 : INFO : w_error: 3201884.296535962\n", + "2018-08-20 22:15:23,200 : INFO : w_error: 3200609.651616765\n", + "2018-08-20 22:15:23,204 : INFO : w_error: 3199490.8536888813\n", + "2018-08-20 22:15:23,210 : INFO : w_error: 3198507.2616635645\n", + "2018-08-20 22:15:23,217 : INFO : w_error: 3197641.816993364\n", + "2018-08-20 22:15:23,220 : INFO : w_error: 3196878.7555294256\n", + "2018-08-20 22:15:23,222 : INFO : w_error: 3196205.0327337375\n", + "2018-08-20 22:15:23,225 : INFO : w_error: 3195609.4184782924\n", + "2018-08-20 22:15:23,229 : INFO : w_error: 3195082.3236335893\n", + "2018-08-20 22:15:23,239 : INFO : w_error: 3194615.5831228425\n", + "2018-08-20 22:15:23,246 : INFO : w_error: 3194201.5683043436\n", + "2018-08-20 22:15:23,252 : INFO : w_error: 3193834.8146398743\n", + "2018-08-20 22:15:23,254 : INFO : w_error: 3193508.7771292524\n", + "2018-08-20 22:15:23,347 : INFO : h_r_error: 4559558.680005681\n", + "2018-08-20 22:15:23,364 : INFO : h_r_error: 4177748.0244537\n", + "2018-08-20 22:15:23,376 : INFO : h_r_error: 3628705.265115735\n", + "2018-08-20 22:15:23,379 : INFO : h_r_error: 3462026.1148307407\n", + "2018-08-20 22:15:23,380 : INFO : h_r_error: 3401243.761839247\n", + "2018-08-20 22:15:23,384 : INFO : h_r_error: 3374010.723758998\n", + "2018-08-20 22:15:23,387 : INFO : h_r_error: 3359732.557542593\n", + "2018-08-20 22:15:23,389 : INFO : h_r_error: 3352317.7179698027\n", + "2018-08-20 22:15:23,394 : INFO : h_r_error: 3348280.3675716706\n", + "2018-08-20 22:15:23,397 : INFO : w_error: 3193508.7771292524\n", + "2018-08-20 22:15:23,405 : INFO : w_error: 3035675.9706508047\n", + "2018-08-20 22:15:23,414 : INFO : w_error: 2869288.8789675366\n", + "2018-08-20 22:15:23,417 : INFO : w_error: 2764186.2959779585\n", + "2018-08-20 22:15:23,426 : INFO : w_error: 2693213.432438592\n", + "2018-08-20 22:15:23,429 : INFO : w_error: 2643268.1644628057\n", + "2018-08-20 22:15:23,435 : INFO : w_error: 2606976.7410476464\n", + "2018-08-20 22:15:23,438 : INFO : w_error: 2579925.699628573\n", + "2018-08-20 22:15:23,441 : INFO : w_error: 2559341.912315733\n", + "2018-08-20 22:15:23,445 : INFO : w_error: 2543405.243066019\n", + "2018-08-20 22:15:23,450 : INFO : w_error: 2530852.4896410117\n", + "2018-08-20 22:15:23,453 : INFO : w_error: 2520776.369602926\n", + "2018-08-20 22:15:23,458 : INFO : w_error: 2512659.270346705\n", + "2018-08-20 22:15:23,463 : INFO : w_error: 2505998.37537577\n", + "2018-08-20 22:15:23,468 : INFO : w_error: 2500465.83441612\n", + "2018-08-20 22:15:23,471 : INFO : w_error: 2495824.830527703\n", + "2018-08-20 22:15:23,476 : INFO : w_error: 2491898.009297832\n", + "2018-08-20 22:15:23,485 : INFO : w_error: 2488567.934214808\n", + "2018-08-20 22:15:23,487 : INFO : w_error: 2485706.556587448\n", + "2018-08-20 22:15:23,492 : INFO : w_error: 2483219.241524508\n", + "2018-08-20 22:15:23,498 : INFO : w_error: 2481038.43800671\n", + "2018-08-20 22:15:23,505 : INFO : w_error: 2479120.047007517\n", + "2018-08-20 22:15:23,507 : INFO : w_error: 2477421.760689254\n", + "2018-08-20 22:15:23,512 : INFO : w_error: 2475910.438868984\n", + "2018-08-20 22:15:23,517 : INFO : w_error: 2474556.023699714\n", + "2018-08-20 22:15:23,524 : INFO : w_error: 2473336.203138627\n", + "2018-08-20 22:15:23,534 : INFO : w_error: 2472234.09824528\n", + "2018-08-20 22:15:23,537 : INFO : w_error: 2471233.9127539126\n", + "2018-08-20 22:15:23,539 : INFO : w_error: 2470324.4109078967\n", + "2018-08-20 22:15:23,545 : INFO : w_error: 2469496.304810781\n", + "2018-08-20 22:15:23,548 : INFO : w_error: 2468738.397048462\n", + "2018-08-20 22:15:23,554 : INFO : w_error: 2468042.8434290714\n", + "2018-08-20 22:15:23,556 : INFO : w_error: 2467403.1448129206\n", + "2018-08-20 22:15:23,583 : INFO : w_error: 2466814.194397469\n", + "2018-08-20 22:15:23,586 : INFO : w_error: 2466270.9455591654\n", + "2018-08-20 22:15:23,593 : INFO : w_error: 2465770.2129656817\n", + "2018-08-20 22:15:23,596 : INFO : w_error: 2465305.808378511\n", + "2018-08-20 22:15:23,603 : INFO : w_error: 2464874.412077462\n", + "2018-08-20 22:15:23,607 : INFO : w_error: 2464473.0854899157\n", + "2018-08-20 22:15:23,610 : INFO : w_error: 2464099.220703231\n", + "2018-08-20 22:15:23,616 : INFO : w_error: 2463750.4974501343\n", + "2018-08-20 22:15:23,620 : INFO : w_error: 2463424.9738803557\n", + "2018-08-20 22:15:23,624 : INFO : w_error: 2463120.930349401\n", + "2018-08-20 22:15:23,627 : INFO : w_error: 2462836.387742595\n", + "2018-08-20 22:15:23,630 : INFO : w_error: 2462570.2390546994\n", + "2018-08-20 22:15:23,635 : INFO : w_error: 2462320.878029416\n", + "2018-08-20 22:15:23,703 : INFO : h_r_error: 3348280.3675716706\n", + "2018-08-20 22:15:23,705 : INFO : h_r_error: 4253706.044704209\n", + "2018-08-20 22:15:23,709 : INFO : h_r_error: 3619969.593220182\n", + "2018-08-20 22:15:23,714 : INFO : h_r_error: 3503684.15961777\n", + "2018-08-20 22:15:23,719 : INFO : h_r_error: 3470696.317669814\n", + "2018-08-20 22:15:23,723 : INFO : h_r_error: 3459238.1820447627\n", + "2018-08-20 22:15:23,727 : INFO : h_r_error: 3454845.2734097256\n", + "2018-08-20 22:15:23,731 : INFO : w_error: 2462320.878029416\n", + "2018-08-20 22:15:23,735 : INFO : w_error: 2866194.263650794\n", + "2018-08-20 22:15:23,740 : INFO : w_error: 2676748.594518999\n", + "2018-08-20 22:15:23,745 : INFO : w_error: 2574223.0662252144\n", + "2018-08-20 22:15:23,749 : INFO : w_error: 2506119.5762679265\n", + "2018-08-20 22:15:23,759 : INFO : w_error: 2456743.2571549844\n", + "2018-08-20 22:15:23,764 : INFO : w_error: 2419389.81180092\n", + "2018-08-20 22:15:23,768 : INFO : w_error: 2390167.633219041\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:23,774 : INFO : w_error: 2366899.5684030103\n", + "2018-08-20 22:15:23,780 : INFO : w_error: 2347964.180692087\n", + "2018-08-20 22:15:23,787 : INFO : w_error: 2332331.149509242\n", + "2018-08-20 22:15:23,791 : INFO : w_error: 2319290.024670701\n", + "2018-08-20 22:15:23,794 : INFO : w_error: 2308301.644607859\n", + "2018-08-20 22:15:23,811 : INFO : w_error: 2298998.176426708\n", + "2018-08-20 22:15:23,814 : INFO : w_error: 2291054.8383098356\n", + "2018-08-20 22:15:23,818 : INFO : w_error: 2284233.8267418565\n", + "2018-08-20 22:15:23,821 : INFO : w_error: 2278346.4815429775\n", + "2018-08-20 22:15:23,823 : INFO : w_error: 2273239.326070163\n", + "2018-08-20 22:15:23,824 : INFO : w_error: 2268800.1953844256\n", + "2018-08-20 22:15:23,826 : INFO : w_error: 2264918.837606525\n", + "2018-08-20 22:15:23,828 : INFO : w_error: 2261511.2618650706\n", + "2018-08-20 22:15:23,830 : INFO : w_error: 2258510.001427239\n", + "2018-08-20 22:15:23,831 : INFO : w_error: 2255858.510132532\n", + "2018-08-20 22:15:23,833 : INFO : w_error: 2253518.01968442\n", + "2018-08-20 22:15:23,834 : INFO : w_error: 2251442.662145877\n", + "2018-08-20 22:15:23,861 : INFO : w_error: 2249597.3768979134\n", + "2018-08-20 22:15:23,863 : INFO : w_error: 2247952.8598014205\n", + "2018-08-20 22:15:23,866 : INFO : w_error: 2246485.5245242286\n", + "2018-08-20 22:15:23,875 : INFO : w_error: 2245172.528538167\n", + "2018-08-20 22:15:23,878 : INFO : w_error: 2243996.834264229\n", + "2018-08-20 22:15:23,880 : INFO : w_error: 2242941.92831139\n", + "2018-08-20 22:15:23,890 : INFO : w_error: 2241993.1507367296\n", + "2018-08-20 22:15:23,892 : INFO : w_error: 2241138.981282724\n", + "2018-08-20 22:15:23,894 : INFO : w_error: 2240372.9035035283\n", + "2018-08-20 22:15:23,898 : INFO : w_error: 2239682.3493660195\n", + "2018-08-20 22:15:23,901 : INFO : w_error: 2239058.568720074\n", + "2018-08-20 22:15:23,903 : INFO : w_error: 2238494.4270380144\n", + "2018-08-20 22:15:23,905 : INFO : w_error: 2237984.220099477\n", + "2018-08-20 22:15:23,907 : INFO : w_error: 2237520.9884815286\n", + "2018-08-20 22:15:23,909 : INFO : w_error: 2237101.4608067865\n", + "2018-08-20 22:15:23,913 : INFO : w_error: 2236722.197668247\n", + "2018-08-20 22:15:23,917 : INFO : w_error: 2236378.2100734715\n", + "2018-08-20 22:15:23,919 : INFO : w_error: 2236065.4883022504\n", + "2018-08-20 22:15:23,921 : INFO : w_error: 2235780.7662224914\n", + "2018-08-20 22:15:23,928 : INFO : w_error: 2235521.2506842595\n", + "2018-08-20 22:15:23,934 : INFO : w_error: 2235284.50782033\n", + "2018-08-20 22:15:24,015 : INFO : h_r_error: 3454845.2734097256\n", + "2018-08-20 22:15:24,022 : INFO : h_r_error: 2904795.303667716\n", + "2018-08-20 22:15:24,027 : INFO : h_r_error: 1815403.6929314781\n", + "2018-08-20 22:15:24,032 : INFO : h_r_error: 1671979.8610838044\n", + "2018-08-20 22:15:24,036 : INFO : h_r_error: 1646880.9983210769\n", + "2018-08-20 22:15:24,040 : INFO : h_r_error: 1641779.1711565189\n", + "2018-08-20 22:15:24,044 : INFO : w_error: 2235284.50782033\n", + "2018-08-20 22:15:24,051 : INFO : w_error: 1409895.717238072\n", + "2018-08-20 22:15:24,054 : INFO : w_error: 1302982.9901564536\n", + "2018-08-20 22:15:24,056 : INFO : w_error: 1241643.1836578501\n", + "2018-08-20 22:15:24,058 : INFO : w_error: 1202010.8537802538\n", + "2018-08-20 22:15:24,060 : INFO : w_error: 1174256.300835889\n", + "2018-08-20 22:15:24,062 : INFO : w_error: 1153846.4792943266\n", + "2018-08-20 22:15:24,069 : INFO : w_error: 1138188.0072938434\n", + "2018-08-20 22:15:24,071 : INFO : w_error: 1125814.6795108886\n", + "2018-08-20 22:15:24,073 : INFO : w_error: 1115797.5567339717\n", + "2018-08-20 22:15:24,085 : INFO : w_error: 1107544.5916628074\n", + "2018-08-20 22:15:24,093 : INFO : w_error: 1100632.5763251274\n", + "2018-08-20 22:15:24,095 : INFO : w_error: 1094768.0463676567\n", + "2018-08-20 22:15:24,098 : INFO : w_error: 1089733.3497174797\n", + "2018-08-20 22:15:24,100 : INFO : w_error: 1085368.0977918073\n", + "2018-08-20 22:15:24,103 : INFO : w_error: 1081553.7274452301\n", + "2018-08-20 22:15:24,105 : INFO : w_error: 1078197.974529183\n", + "2018-08-20 22:15:24,107 : INFO : w_error: 1075221.1960310491\n", + "2018-08-20 22:15:24,110 : INFO : w_error: 1072567.0519346807\n", + "2018-08-20 22:15:24,112 : INFO : w_error: 1070184.5128907093\n", + "2018-08-20 22:15:24,115 : INFO : w_error: 1068036.0176788152\n", + "2018-08-20 22:15:24,119 : INFO : w_error: 1066090.4127692194\n", + "2018-08-20 22:15:24,127 : INFO : w_error: 1064327.6259531814\n", + "2018-08-20 22:15:24,131 : INFO : w_error: 1062721.1800760324\n", + "2018-08-20 22:15:24,134 : INFO : w_error: 1061253.957796574\n", + "2018-08-20 22:15:24,138 : INFO : w_error: 1059907.3810685019\n", + "2018-08-20 22:15:24,140 : INFO : w_error: 1058667.3010715283\n", + "2018-08-20 22:15:24,143 : INFO : w_error: 1057522.661485047\n", + "2018-08-20 22:15:24,146 : INFO : w_error: 1056463.766328158\n", + "2018-08-20 22:15:24,148 : INFO : w_error: 1055481.284770791\n", + "2018-08-20 22:15:24,156 : INFO : w_error: 1054567.852474613\n", + "2018-08-20 22:15:24,159 : INFO : w_error: 1053717.0477835708\n", + "2018-08-20 22:15:24,162 : INFO : w_error: 1052923.1639589816\n", + "2018-08-20 22:15:24,164 : INFO : w_error: 1052181.239545011\n", + "2018-08-20 22:15:24,168 : INFO : w_error: 1051486.7537766937\n", + "2018-08-20 22:15:24,171 : INFO : w_error: 1050835.5528771807\n", + "2018-08-20 22:15:24,179 : INFO : w_error: 1050224.2841197972\n", + "2018-08-20 22:15:24,183 : INFO : w_error: 1049649.9491698176\n", + "2018-08-20 22:15:24,186 : INFO : w_error: 1049109.5181107703\n", + "2018-08-20 22:15:24,189 : INFO : w_error: 1048600.1347902017\n", + "2018-08-20 22:15:24,192 : INFO : w_error: 1048119.4565463454\n", + "2018-08-20 22:15:24,196 : INFO : w_error: 1047665.3804627837\n", + "2018-08-20 22:15:24,204 : INFO : w_error: 1047235.9988371491\n", + "2018-08-20 22:15:24,207 : INFO : w_error: 1046832.1737272177\n", + "2018-08-20 22:15:24,211 : INFO : w_error: 1046452.970740819\n", + "2018-08-20 22:15:24,219 : INFO : w_error: 1046094.0422380052\n", + "2018-08-20 22:15:24,222 : INFO : w_error: 1045753.8434798977\n", + "2018-08-20 22:15:24,226 : INFO : w_error: 1045431.0670550654\n", + "2018-08-20 22:15:24,228 : INFO : w_error: 1045125.6449549346\n", + "2018-08-20 22:15:24,235 : INFO : w_error: 1044835.281707322\n", + "2018-08-20 22:15:24,238 : INFO : w_error: 1044559.003901511\n", + "2018-08-20 22:15:24,241 : INFO : w_error: 1044295.9426706597\n", + "2018-08-20 22:15:24,244 : INFO : w_error: 1044045.9285662061\n", + "2018-08-20 22:15:24,248 : INFO : w_error: 1043808.7970637546\n", + "2018-08-20 22:15:24,251 : INFO : w_error: 1043582.7109886903\n", + "2018-08-20 22:15:24,254 : INFO : w_error: 1043366.9643033193\n", + "2018-08-20 22:15:24,263 : INFO : w_error: 1043160.9585288618\n", + "2018-08-20 22:15:24,266 : INFO : w_error: 1042964.1438447876\n", + "2018-08-20 22:15:24,269 : INFO : w_error: 1042776.0120289348\n", + "2018-08-20 22:15:24,272 : INFO : w_error: 1042596.091452744\n", + "2018-08-20 22:15:24,276 : INFO : w_error: 1042423.9432487075\n", + "2018-08-20 22:15:24,279 : INFO : w_error: 1042259.1581987607\n", + "2018-08-20 22:15:24,285 : INFO : w_error: 1042101.5438366913\n", + "2018-08-20 22:15:24,288 : INFO : w_error: 1041950.5711721119\n", + "2018-08-20 22:15:24,290 : INFO : w_error: 1041805.8915701783\n", + "2018-08-20 22:15:24,293 : INFO : w_error: 1041667.1853462582\n", + "2018-08-20 22:15:24,298 : INFO : w_error: 1041534.1552983838\n", + "2018-08-20 22:15:24,303 : INFO : w_error: 1041406.5861844597\n", + "2018-08-20 22:15:24,306 : INFO : w_error: 1041284.254338951\n", + "2018-08-20 22:15:24,309 : INFO : w_error: 1041166.8169666711\n", + "2018-08-20 22:15:24,312 : INFO : w_error: 1041054.0409667041\n", + "2018-08-20 22:15:24,316 : INFO : w_error: 1040945.70739374\n", + "2018-08-20 22:15:24,322 : INFO : Loss (no outliers): 1442.803948351552\tLoss (with outliers): 1442.803948351552\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 413 ms, sys: 0 ns, total: 413 ms\n", - "Wall time: 415 ms\n" + "CPU times: user 1.3 s, sys: 1.91 s, total: 3.22 s\n", + "Wall time: 1.63 s\n" ] } ], @@ -1206,27 +3688,988 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 23, "metadata": {}, "outputs": [ { - "ename": "ValueError", - "evalue": "setting an array element with a sequence.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmatutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDense2Corpus\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg_matrix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproba\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgensim_nmf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mH\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mValueError\u001b[0m: setting an array element with a sequence." + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:24,333 : INFO : h_r_error: 1641779.1711565189\n", + "2018-08-20 22:15:24,335 : INFO : h_r_error: 118028.68383364937\n", + "2018-08-20 22:15:24,337 : INFO : h_r_error: 105616.73503369163\n", + "2018-08-20 22:15:24,339 : INFO : h_r_error: 105376.48023111676\n", + "2018-08-20 22:15:24,344 : INFO : h_r_error: 105376.48023111676\n", + "2018-08-20 22:15:24,345 : INFO : h_r_error: 88296.81129174746\n", + "2018-08-20 22:15:24,347 : INFO : h_r_error: 75598.49700209008\n", + "2018-08-20 22:15:24,350 : INFO : h_r_error: 75202.00810070324\n", + "2018-08-20 22:15:24,352 : INFO : h_r_error: 75202.00810070324\n", + "2018-08-20 22:15:24,353 : INFO : h_r_error: 40896.39022296863\n", + "2018-08-20 22:15:24,354 : INFO : h_r_error: 32494.67090191547\n", + "2018-08-20 22:15:24,356 : INFO : h_r_error: 32239.868252556797\n", + "2018-08-20 22:15:24,366 : INFO : h_r_error: 32239.868252556797\n", + "2018-08-20 22:15:24,368 : INFO : h_r_error: 44930.159607806534\n", + "2018-08-20 22:15:24,370 : INFO : h_r_error: 36557.7492240496\n", + "2018-08-20 22:15:24,371 : INFO : h_r_error: 35312.9484972738\n", + "2018-08-20 22:15:24,373 : INFO : h_r_error: 35184.5687269612\n", + "2018-08-20 22:15:24,380 : INFO : h_r_error: 35184.5687269612\n", + "2018-08-20 22:15:24,383 : INFO : h_r_error: 55889.096964695964\n", + "2018-08-20 22:15:24,386 : INFO : h_r_error: 45781.767631924326\n", + "2018-08-20 22:15:24,387 : INFO : h_r_error: 44138.99627893232\n", + "2018-08-20 22:15:24,388 : INFO : h_r_error: 43952.375976439565\n", + "2018-08-20 22:15:24,390 : INFO : h_r_error: 43952.375976439565\n", + "2018-08-20 22:15:24,391 : INFO : h_r_error: 78794.06131625794\n", + "2018-08-20 22:15:24,393 : INFO : h_r_error: 67664.25272873385\n", + "2018-08-20 22:15:24,394 : INFO : h_r_error: 65282.3178957933\n", + "2018-08-20 22:15:24,395 : INFO : h_r_error: 65014.955716781675\n", + "2018-08-20 22:15:24,397 : INFO : h_r_error: 65014.955716781675\n", + "2018-08-20 22:15:24,398 : INFO : h_r_error: 115824.20033686075\n", + "2018-08-20 22:15:24,399 : INFO : h_r_error: 97829.78400236492\n", + "2018-08-20 22:15:24,400 : INFO : h_r_error: 94585.44160249463\n", + "2018-08-20 22:15:24,402 : INFO : h_r_error: 94376.15747523532\n", + "2018-08-20 22:15:24,403 : INFO : h_r_error: 94376.15747523532\n", + "2018-08-20 22:15:24,405 : INFO : h_r_error: 114744.06992294117\n", + "2018-08-20 22:15:24,406 : INFO : h_r_error: 89437.25014346528\n", + "2018-08-20 22:15:24,408 : INFO : h_r_error: 85408.47209298614\n", + "2018-08-20 22:15:24,409 : INFO : h_r_error: 85172.43982700528\n", + "2018-08-20 22:15:24,411 : INFO : h_r_error: 85172.43982700528\n", + "2018-08-20 22:15:24,413 : INFO : h_r_error: 129231.1344055495\n", + "2018-08-20 22:15:24,414 : INFO : h_r_error: 95296.99614410217\n", + "2018-08-20 22:15:24,415 : INFO : h_r_error: 90493.41027642736\n", + "2018-08-20 22:15:24,417 : INFO : h_r_error: 90223.42598619989\n", + "2018-08-20 22:15:24,418 : INFO : h_r_error: 90223.42598619989\n", + "2018-08-20 22:15:24,420 : INFO : h_r_error: 181731.42136797323\n", + "2018-08-20 22:15:24,421 : INFO : h_r_error: 138104.21628540446\n", + "2018-08-20 22:15:24,422 : INFO : h_r_error: 132501.6357796059\n", + "2018-08-20 22:15:24,424 : INFO : h_r_error: 132152.80413014264\n", + "2018-08-20 22:15:24,426 : INFO : h_r_error: 132152.80413014264\n", + "2018-08-20 22:15:24,427 : INFO : h_r_error: 192166.82022383242\n", + "2018-08-20 22:15:24,428 : INFO : h_r_error: 148475.97120526063\n", + "2018-08-20 22:15:24,429 : INFO : h_r_error: 142884.97822597128\n", + "2018-08-20 22:15:24,430 : INFO : h_r_error: 142515.8680913862\n", + "2018-08-20 22:15:24,446 : INFO : h_r_error: 142515.8680913862\n", + "2018-08-20 22:15:24,448 : INFO : h_r_error: 160074.94464316766\n", + "2018-08-20 22:15:24,449 : INFO : h_r_error: 118917.36421921203\n", + "2018-08-20 22:15:24,451 : INFO : h_r_error: 113071.95801308611\n", + "2018-08-20 22:15:24,452 : INFO : h_r_error: 112649.3520833024\n", + "2018-08-20 22:15:24,455 : INFO : h_r_error: 112649.3520833024\n", + "2018-08-20 22:15:24,456 : INFO : h_r_error: 109774.25286602361\n", + "2018-08-20 22:15:24,458 : INFO : h_r_error: 70630.6630087\n", + "2018-08-20 22:15:24,459 : INFO : h_r_error: 65862.60865989806\n", + "2018-08-20 22:15:24,461 : INFO : h_r_error: 65236.19068167282\n", + "2018-08-20 22:15:24,463 : INFO : h_r_error: 65236.19068167282\n", + "2018-08-20 22:15:24,465 : INFO : h_r_error: 97716.73332566798\n", + "2018-08-20 22:15:24,466 : INFO : h_r_error: 45699.60910087229\n", + "2018-08-20 22:15:24,469 : INFO : h_r_error: 39362.1075187331\n", + "2018-08-20 22:15:24,473 : INFO : h_r_error: 38607.62156919656\n", + "2018-08-20 22:15:24,475 : INFO : h_r_error: 38542.879127641194\n", + "2018-08-20 22:15:24,480 : INFO : h_r_error: 38542.879127641194\n", + "2018-08-20 22:15:24,482 : INFO : h_r_error: 108334.77768707108\n", + "2018-08-20 22:15:24,483 : INFO : h_r_error: 45414.682916660764\n", + "2018-08-20 22:15:24,485 : INFO : h_r_error: 37024.4176799266\n", + "2018-08-20 22:15:24,487 : INFO : h_r_error: 36458.157875334204\n", + "2018-08-20 22:15:24,489 : INFO : h_r_error: 36421.29482582344\n", + "2018-08-20 22:15:24,491 : INFO : h_r_error: 36421.29482582344\n", + "2018-08-20 22:15:24,493 : INFO : h_r_error: 136592.18547993482\n", + "2018-08-20 22:15:24,495 : INFO : h_r_error: 77617.26173564204\n", + "2018-08-20 22:15:24,497 : INFO : h_r_error: 68748.33469269038\n", + "2018-08-20 22:15:24,499 : INFO : h_r_error: 68271.3071049404\n", + "2018-08-20 22:15:24,503 : INFO : h_r_error: 68271.3071049404\n", + "2018-08-20 22:15:24,507 : INFO : h_r_error: 164620.9918105678\n", + "2018-08-20 22:15:24,509 : INFO : h_r_error: 107083.22841187923\n", + "2018-08-20 22:15:24,510 : INFO : h_r_error: 100170.32759387848\n", + "2018-08-20 22:15:24,511 : INFO : h_r_error: 99456.89058438297\n", + "2018-08-20 22:15:24,514 : INFO : h_r_error: 99456.89058438297\n", + "2018-08-20 22:15:24,515 : INFO : h_r_error: 166146.2986450904\n", + "2018-08-20 22:15:24,517 : INFO : h_r_error: 111973.73165621341\n", + "2018-08-20 22:15:24,519 : INFO : h_r_error: 107003.97112908355\n", + "2018-08-20 22:15:24,520 : INFO : h_r_error: 106511.38556261087\n", + "2018-08-20 22:15:24,522 : INFO : h_r_error: 106511.38556261087\n", + "2018-08-20 22:15:24,524 : INFO : h_r_error: 133504.83113404203\n", + "2018-08-20 22:15:24,525 : INFO : h_r_error: 83253.38023127089\n", + "2018-08-20 22:15:24,527 : INFO : h_r_error: 80084.52684233678\n", + "2018-08-20 22:15:24,529 : INFO : h_r_error: 79823.1245934147\n", + "2018-08-20 22:15:24,532 : INFO : h_r_error: 79823.1245934147\n", + "2018-08-20 22:15:24,534 : INFO : h_r_error: 90889.69640460412\n", + "2018-08-20 22:15:24,536 : INFO : h_r_error: 46853.105489898364\n", + "2018-08-20 22:15:24,537 : INFO : h_r_error: 45133.70200421212\n", + "2018-08-20 22:15:24,540 : INFO : h_r_error: 45133.70200421212\n", + "2018-08-20 22:15:24,541 : INFO : h_r_error: 84327.47728746234\n", + "2018-08-20 22:15:24,543 : INFO : h_r_error: 48406.07253927901\n", + "2018-08-20 22:15:24,545 : INFO : h_r_error: 47435.009425067314\n", + "2018-08-20 22:15:24,547 : INFO : h_r_error: 47435.009425067314\n", + "2018-08-20 22:15:24,551 : INFO : h_r_error: 82409.89836879147\n", + "2018-08-20 22:15:24,554 : INFO : h_r_error: 52766.03488097161\n", + "2018-08-20 22:15:24,555 : INFO : h_r_error: 51394.05480640483\n", + "2018-08-20 22:15:24,556 : INFO : h_r_error: 51304.428858608226\n", + "2018-08-20 22:15:24,558 : INFO : h_r_error: 51304.428858608226\n", + "2018-08-20 22:15:24,560 : INFO : h_r_error: 106935.22488025115\n", + "2018-08-20 22:15:24,562 : INFO : h_r_error: 80237.15440778974\n", + "2018-08-20 22:15:24,576 : INFO : h_r_error: 79209.7234310819\n", + "2018-08-20 22:15:24,580 : INFO : h_r_error: 79209.7234310819\n", + "2018-08-20 22:15:24,582 : INFO : h_r_error: 136751.76043962757\n", + "2018-08-20 22:15:24,586 : INFO : h_r_error: 111108.69335643484\n", + "2018-08-20 22:15:24,589 : INFO : h_r_error: 110470.36624680427\n", + "2018-08-20 22:15:24,595 : INFO : h_r_error: 110470.36624680427\n", + "2018-08-20 22:15:24,599 : INFO : h_r_error: 132718.3075324984\n", + "2018-08-20 22:15:24,603 : INFO : h_r_error: 109060.80819403294\n", + "2018-08-20 22:15:24,607 : INFO : h_r_error: 108828.29185697387\n", + "2018-08-20 22:15:24,612 : INFO : h_r_error: 108828.29185697387\n", + "2018-08-20 22:15:24,613 : INFO : h_r_error: 130349.3102692345\n", + "2018-08-20 22:15:24,615 : INFO : h_r_error: 106333.5621825021\n", + "2018-08-20 22:15:24,616 : INFO : h_r_error: 106021.90676445854\n", + "2018-08-20 22:15:24,618 : INFO : h_r_error: 106021.90676445854\n", + "2018-08-20 22:15:24,619 : INFO : h_r_error: 153480.24107840055\n", + "2018-08-20 22:15:24,620 : INFO : h_r_error: 129031.03040291351\n", + "2018-08-20 22:15:24,621 : INFO : h_r_error: 128846.01926523249\n", + "2018-08-20 22:15:24,622 : INFO : h_r_error: 128846.01926523249\n", + "2018-08-20 22:15:24,638 : INFO : h_r_error: 141576.1910210185\n", + "2018-08-20 22:15:24,640 : INFO : h_r_error: 119978.94995744752\n", + "2018-08-20 22:15:24,645 : INFO : h_r_error: 119825.8687034397\n", + "2018-08-20 22:15:24,654 : INFO : h_r_error: 119825.8687034397\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:24,658 : INFO : h_r_error: 134685.80489629053\n", + "2018-08-20 22:15:24,661 : INFO : h_r_error: 113538.95669792594\n", + "2018-08-20 22:15:24,665 : INFO : h_r_error: 113353.41144229252\n", + "2018-08-20 22:15:24,669 : INFO : h_r_error: 113353.41144229252\n", + "2018-08-20 22:15:24,671 : INFO : h_r_error: 122345.42442740352\n", + "2018-08-20 22:15:24,672 : INFO : h_r_error: 101206.04117840753\n", + "2018-08-20 22:15:24,673 : INFO : h_r_error: 100993.62587045786\n", + "2018-08-20 22:15:24,674 : INFO : h_r_error: 100993.62587045786\n", + "2018-08-20 22:15:24,676 : INFO : h_r_error: 116266.06525752878\n", + "2018-08-20 22:15:24,677 : INFO : h_r_error: 96812.1429100881\n", + "2018-08-20 22:15:24,683 : INFO : h_r_error: 96671.85729303533\n", + "2018-08-20 22:15:24,686 : INFO : h_r_error: 96671.85729303533\n", + "2018-08-20 22:15:24,687 : INFO : h_r_error: 124976.11247413699\n", + "2018-08-20 22:15:24,689 : INFO : h_r_error: 105696.72347766797\n", + "2018-08-20 22:15:24,690 : INFO : h_r_error: 105516.7395837665\n", + "2018-08-20 22:15:24,691 : INFO : h_r_error: 105516.7395837665\n", + "2018-08-20 22:15:24,693 : INFO : h_r_error: 146470.2640249488\n", + "2018-08-20 22:15:24,694 : INFO : h_r_error: 127731.6923564533\n", + "2018-08-20 22:15:24,695 : INFO : h_r_error: 127533.0140907293\n", + "2018-08-20 22:15:24,696 : INFO : h_r_error: 127533.0140907293\n", + "2018-08-20 22:15:24,698 : INFO : h_r_error: 116516.53968187683\n", + "2018-08-20 22:15:24,729 : INFO : h_r_error: 98550.36989787972\n", + "2018-08-20 22:15:24,731 : INFO : h_r_error: 98348.73507292234\n", + "2018-08-20 22:15:24,734 : INFO : h_r_error: 98348.73507292234\n", + "2018-08-20 22:15:24,736 : INFO : h_r_error: 83893.40980768634\n", + "2018-08-20 22:15:24,738 : INFO : h_r_error: 70661.46051854167\n", + "2018-08-20 22:15:24,743 : INFO : h_r_error: 70518.89065328502\n", + "2018-08-20 22:15:24,746 : INFO : h_r_error: 70518.89065328502\n", + "2018-08-20 22:15:24,747 : INFO : h_r_error: 84886.38848637952\n", + "2018-08-20 22:15:24,749 : INFO : h_r_error: 75403.0417830475\n", + "2018-08-20 22:15:24,752 : INFO : h_r_error: 75308.00746994432\n", + "2018-08-20 22:15:24,754 : INFO : h_r_error: 75308.00746994432\n", + "2018-08-20 22:15:24,761 : INFO : h_r_error: 85316.80762722554\n", + "2018-08-20 22:15:24,765 : INFO : h_r_error: 77251.27417314934\n", + "2018-08-20 22:15:24,773 : INFO : h_r_error: 77143.82662566137\n", + "2018-08-20 22:15:24,779 : INFO : h_r_error: 77143.82662566137\n", + "2018-08-20 22:15:24,783 : INFO : h_r_error: 73553.39387109454\n", + "2018-08-20 22:15:24,788 : INFO : h_r_error: 66152.79219166574\n", + "2018-08-20 22:15:24,792 : INFO : h_r_error: 65835.47220932409\n", + "2018-08-20 22:15:24,795 : INFO : h_r_error: 65835.47220932409\n", + "2018-08-20 22:15:24,796 : INFO : h_r_error: 50775.99401955186\n", + "2018-08-20 22:15:24,803 : INFO : h_r_error: 43830.36067690958\n", + "2018-08-20 22:15:24,805 : INFO : h_r_error: 43195.603195800686\n", + "2018-08-20 22:15:24,807 : INFO : h_r_error: 43103.14299130767\n", + "2018-08-20 22:15:24,810 : INFO : h_r_error: 43103.14299130767\n", + "2018-08-20 22:15:24,818 : INFO : h_r_error: 63341.13752266902\n", + "2018-08-20 22:15:24,822 : INFO : h_r_error: 53924.846649871244\n", + "2018-08-20 22:15:24,824 : INFO : h_r_error: 52977.50569965488\n", + "2018-08-20 22:15:24,827 : INFO : h_r_error: 52861.032501429065\n", + "2018-08-20 22:15:24,829 : INFO : h_r_error: 52861.032501429065\n", + "2018-08-20 22:15:24,830 : INFO : h_r_error: 82441.4874200672\n", + "2018-08-20 22:15:24,832 : INFO : h_r_error: 70092.19085069446\n", + "2018-08-20 22:15:24,833 : INFO : h_r_error: 68857.66881113088\n", + "2018-08-20 22:15:24,835 : INFO : h_r_error: 68719.78360373998\n", + "2018-08-20 22:15:24,837 : INFO : h_r_error: 68719.78360373998\n", + "2018-08-20 22:15:24,839 : INFO : h_r_error: 116068.82475570982\n", + "2018-08-20 22:15:24,841 : INFO : h_r_error: 98936.2974353597\n", + "2018-08-20 22:15:24,844 : INFO : h_r_error: 97280.67673289865\n", + "2018-08-20 22:15:24,846 : INFO : h_r_error: 97074.42498967852\n", + "2018-08-20 22:15:24,849 : INFO : h_r_error: 97074.42498967852\n", + "2018-08-20 22:15:24,851 : INFO : h_r_error: 193771.07280092753\n", + "2018-08-20 22:15:24,853 : INFO : h_r_error: 167714.14690177588\n", + "2018-08-20 22:15:24,855 : INFO : h_r_error: 165261.32276745175\n", + "2018-08-20 22:15:24,857 : INFO : h_r_error: 165026.16476628813\n", + "2018-08-20 22:15:24,860 : INFO : h_r_error: 165026.16476628813\n", + "2018-08-20 22:15:24,862 : INFO : h_r_error: 216721.62053218845\n", + "2018-08-20 22:15:24,867 : INFO : h_r_error: 183723.35667939033\n", + "2018-08-20 22:15:24,868 : INFO : h_r_error: 180291.11958318867\n", + "2018-08-20 22:15:24,871 : INFO : h_r_error: 179885.7411508071\n", + "2018-08-20 22:15:24,875 : INFO : h_r_error: 179885.7411508071\n", + "2018-08-20 22:15:24,877 : INFO : h_r_error: 177050.13720251067\n", + "2018-08-20 22:15:24,880 : INFO : h_r_error: 143961.610710226\n", + "2018-08-20 22:15:24,882 : INFO : h_r_error: 139724.63504639387\n", + "2018-08-20 22:15:24,884 : INFO : h_r_error: 139082.44374033014\n", + "2018-08-20 22:15:24,886 : INFO : h_r_error: 139082.44374033014\n", + "2018-08-20 22:15:24,888 : INFO : h_r_error: 147607.24267108657\n", + "2018-08-20 22:15:24,890 : INFO : h_r_error: 120018.73888155147\n", + "2018-08-20 22:15:24,892 : INFO : h_r_error: 116287.06398890018\n", + "2018-08-20 22:15:24,894 : INFO : h_r_error: 115522.0139159181\n", + "2018-08-20 22:15:24,896 : INFO : h_r_error: 115334.43041489228\n", + "2018-08-20 22:15:24,899 : INFO : h_r_error: 115334.43041489228\n", + "2018-08-20 22:15:24,901 : INFO : h_r_error: 118365.81663670983\n", + "2018-08-20 22:15:24,902 : INFO : h_r_error: 93132.88915954153\n", + "2018-08-20 22:15:24,903 : INFO : h_r_error: 89122.17715497369\n", + "2018-08-20 22:15:24,905 : INFO : h_r_error: 88231.49030112062\n", + "2018-08-20 22:15:24,906 : INFO : h_r_error: 88057.2036447887\n", + "2018-08-20 22:15:24,908 : INFO : h_r_error: 88057.2036447887\n", + "2018-08-20 22:15:24,910 : INFO : h_r_error: 112031.45144655604\n", + "2018-08-20 22:15:24,913 : INFO : h_r_error: 85282.34307749954\n", + "2018-08-20 22:15:24,917 : INFO : h_r_error: 81608.4108547704\n", + "2018-08-20 22:15:24,920 : INFO : h_r_error: 81068.52518153662\n", + "2018-08-20 22:15:24,922 : INFO : h_r_error: 81068.52518153662\n", + "2018-08-20 22:15:24,924 : INFO : h_r_error: 113120.94754019415\n", + "2018-08-20 22:15:24,926 : INFO : h_r_error: 77189.01208482559\n", + "2018-08-20 22:15:24,927 : INFO : h_r_error: 73025.66214248759\n", + "2018-08-20 22:15:24,929 : INFO : h_r_error: 72376.99859107213\n", + "2018-08-20 22:15:24,931 : INFO : h_r_error: 72280.48483968731\n", + "2018-08-20 22:15:24,934 : INFO : h_r_error: 72280.48483968731\n", + "2018-08-20 22:15:24,936 : INFO : h_r_error: 110118.08448968553\n", + "2018-08-20 22:15:24,947 : INFO : h_r_error: 63147.328257194524\n", + "2018-08-20 22:15:24,956 : INFO : h_r_error: 57647.812476420404\n", + "2018-08-20 22:15:24,958 : INFO : h_r_error: 56870.72573548426\n", + "2018-08-20 22:15:24,960 : INFO : h_r_error: 56778.257092080545\n", + "2018-08-20 22:15:24,963 : INFO : h_r_error: 56778.257092080545\n", + "2018-08-20 22:15:24,965 : INFO : h_r_error: 105876.5962159224\n", + "2018-08-20 22:15:24,967 : INFO : h_r_error: 51779.48545739382\n", + "2018-08-20 22:15:24,969 : INFO : h_r_error: 45563.46975869903\n", + "2018-08-20 22:15:24,970 : INFO : h_r_error: 44990.10718859484\n", + "2018-08-20 22:15:24,973 : INFO : h_r_error: 44990.10718859484\n", + "2018-08-20 22:15:24,975 : INFO : h_r_error: 81356.83817164302\n", + "2018-08-20 22:15:24,977 : INFO : h_r_error: 30402.09748446639\n", + "2018-08-20 22:15:24,978 : INFO : h_r_error: 27546.96495755806\n", + "2018-08-20 22:15:24,980 : INFO : h_r_error: 27213.517074651434\n", + "2018-08-20 22:15:24,981 : INFO : h_r_error: 27181.21158620719\n", + "2018-08-20 22:15:24,983 : INFO : h_r_error: 27181.21158620719\n", + "2018-08-20 22:15:24,985 : INFO : h_r_error: 84928.95919387031\n", + "2018-08-20 22:15:24,987 : INFO : h_r_error: 32417.693628730725\n", + "2018-08-20 22:15:24,988 : INFO : h_r_error: 29007.221465319304\n", + "2018-08-20 22:15:24,990 : INFO : h_r_error: 28741.252041050557\n", + "2018-08-20 22:15:24,992 : INFO : h_r_error: 28741.252041050557\n", + "2018-08-20 22:15:24,994 : INFO : h_r_error: 93950.90077407988\n", + "2018-08-20 22:15:24,998 : INFO : h_r_error: 56249.61615828003\n", + "2018-08-20 22:15:25,000 : INFO : h_r_error: 52924.363341441735\n", + "2018-08-20 22:15:25,002 : INFO : h_r_error: 52751.541989180885\n", + "2018-08-20 22:15:25,004 : INFO : h_r_error: 52751.541989180885\n", + "2018-08-20 22:15:25,005 : INFO : h_r_error: 75506.66154775783\n", + "2018-08-20 22:15:25,006 : INFO : h_r_error: 57242.30005666704\n", + "2018-08-20 22:15:25,007 : INFO : h_r_error: 55345.64041769668\n", + "2018-08-20 22:15:25,008 : INFO : h_r_error: 55186.16186036283\n", + "2018-08-20 22:15:25,010 : INFO : h_r_error: 55186.16186036283\n", + "2018-08-20 22:15:25,012 : INFO : h_r_error: 55186.16186036283\n", + "2018-08-20 22:15:25,013 : INFO : h_r_error: 65626.41064582833\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:25,015 : INFO : h_r_error: 58344.200783367785\n", + "2018-08-20 22:15:25,020 : INFO : h_r_error: 56997.1979143896\n", + "2018-08-20 22:15:25,023 : INFO : h_r_error: 56864.86772938072\n", + "2018-08-20 22:15:25,025 : INFO : h_r_error: 56864.86772938072\n", + "2018-08-20 22:15:25,031 : INFO : h_r_error: 55804.84516396389\n", + "2018-08-20 22:15:25,032 : INFO : h_r_error: 49720.76312800324\n", + "2018-08-20 22:15:25,034 : INFO : h_r_error: 48669.3293093283\n", + "2018-08-20 22:15:25,036 : INFO : h_r_error: 48566.79973146436\n", + "2018-08-20 22:15:25,039 : INFO : h_r_error: 48566.79973146436\n", + "2018-08-20 22:15:25,042 : INFO : h_r_error: 50232.78247908833\n", + "2018-08-20 22:15:25,045 : INFO : h_r_error: 43460.18499959944\n", + "2018-08-20 22:15:25,047 : INFO : h_r_error: 42583.76639804095\n", + "2018-08-20 22:15:25,049 : INFO : h_r_error: 42583.76639804095\n", + "2018-08-20 22:15:25,051 : INFO : h_r_error: 70689.83802178742\n", + "2018-08-20 22:15:25,053 : INFO : h_r_error: 54799.329874802635\n", + "2018-08-20 22:15:25,057 : INFO : h_r_error: 53914.8316747843\n", + "2018-08-20 22:15:25,059 : INFO : h_r_error: 53848.05269206547\n", + "2018-08-20 22:15:25,062 : INFO : h_r_error: 53848.05269206547\n", + "2018-08-20 22:15:25,064 : INFO : h_r_error: 108449.9769402526\n", + "2018-08-20 22:15:25,065 : INFO : h_r_error: 75225.82220714819\n", + "2018-08-20 22:15:25,067 : INFO : h_r_error: 72609.7918222791\n", + "2018-08-20 22:15:25,069 : INFO : h_r_error: 72378.78725369519\n", + "2018-08-20 22:15:25,073 : INFO : h_r_error: 72378.78725369519\n", + "2018-08-20 22:15:25,075 : INFO : h_r_error: 127164.30656219537\n", + "2018-08-20 22:15:25,077 : INFO : h_r_error: 84579.9832644276\n", + "2018-08-20 22:15:25,079 : INFO : h_r_error: 80803.72888974627\n", + "2018-08-20 22:15:25,083 : INFO : h_r_error: 80503.5077458557\n", + "2018-08-20 22:15:25,086 : INFO : h_r_error: 80503.5077458557\n", + "2018-08-20 22:15:25,088 : INFO : h_r_error: 174296.9674397971\n", + "2018-08-20 22:15:25,091 : INFO : h_r_error: 115868.15218188912\n", + "2018-08-20 22:15:25,094 : INFO : h_r_error: 107516.90754969341\n", + "2018-08-20 22:15:25,096 : INFO : h_r_error: 106698.60961349803\n", + "2018-08-20 22:15:25,099 : INFO : h_r_error: 106698.60961349803\n", + "2018-08-20 22:15:25,101 : INFO : h_r_error: 188764.71900915547\n", + "2018-08-20 22:15:25,103 : INFO : h_r_error: 120666.83609976483\n", + "2018-08-20 22:15:25,105 : INFO : h_r_error: 109728.74724218929\n", + "2018-08-20 22:15:25,107 : INFO : h_r_error: 108173.7827542977\n", + "2018-08-20 22:15:25,110 : INFO : h_r_error: 108003.53821445782\n", + "2018-08-20 22:15:25,112 : INFO : h_r_error: 108003.53821445782\n", + "2018-08-20 22:15:25,115 : INFO : h_r_error: 182992.56219648672\n", + "2018-08-20 22:15:25,117 : INFO : h_r_error: 122929.88482513907\n", + "2018-08-20 22:15:25,118 : INFO : h_r_error: 110308.97418968279\n", + "2018-08-20 22:15:25,120 : INFO : h_r_error: 108628.82457256186\n", + "2018-08-20 22:15:25,122 : INFO : h_r_error: 108461.95196544233\n", + "2018-08-20 22:15:25,125 : INFO : h_r_error: 108461.95196544233\n", + "2018-08-20 22:15:25,128 : INFO : h_r_error: 205178.2828927736\n", + "2018-08-20 22:15:25,129 : INFO : h_r_error: 140432.38605897967\n", + "2018-08-20 22:15:25,131 : INFO : h_r_error: 125174.444634394\n", + "2018-08-20 22:15:25,132 : INFO : h_r_error: 122620.12145656205\n", + "2018-08-20 22:15:25,134 : INFO : h_r_error: 122338.49688463559\n", + "2018-08-20 22:15:25,175 : INFO : h_r_error: 122338.49688463559\n", + "2018-08-20 22:15:25,176 : INFO : h_r_error: 237457.227950885\n", + "2018-08-20 22:15:25,178 : INFO : h_r_error: 145906.50129498472\n", + "2018-08-20 22:15:25,184 : INFO : h_r_error: 131773.8442483685\n", + "2018-08-20 22:15:25,191 : INFO : h_r_error: 128797.05540441698\n", + "2018-08-20 22:15:25,196 : INFO : h_r_error: 128424.53309311552\n", + "2018-08-20 22:15:25,202 : INFO : h_r_error: 128424.53309311552\n", + "2018-08-20 22:15:25,206 : INFO : h_r_error: 275412.50869024196\n", + "2018-08-20 22:15:25,207 : INFO : h_r_error: 157717.62339863132\n", + "2018-08-20 22:15:25,208 : INFO : h_r_error: 141486.70261398956\n", + "2018-08-20 22:15:25,213 : INFO : h_r_error: 139232.8703803961\n", + "2018-08-20 22:15:25,215 : INFO : h_r_error: 138984.25764109177\n", + "2018-08-20 22:15:25,219 : INFO : h_r_error: 138984.25764109177\n", + "2018-08-20 22:15:25,222 : INFO : h_r_error: 300650.3506786036\n", + "2018-08-20 22:15:25,223 : INFO : h_r_error: 152930.16348874537\n", + "2018-08-20 22:15:25,224 : INFO : h_r_error: 133210.48458463038\n", + "2018-08-20 22:15:25,226 : INFO : h_r_error: 131243.98671354743\n", + "2018-08-20 22:15:25,228 : INFO : h_r_error: 131243.98671354743\n", + "2018-08-20 22:15:25,229 : INFO : h_r_error: 272716.1610946117\n", + "2018-08-20 22:15:25,230 : INFO : h_r_error: 107439.07817534365\n", + "2018-08-20 22:15:25,231 : INFO : h_r_error: 86009.70672732047\n", + "2018-08-20 22:15:25,232 : INFO : h_r_error: 83692.29377563702\n", + "2018-08-20 22:15:25,233 : INFO : h_r_error: 83581.00674929329\n", + "2018-08-20 22:15:25,234 : INFO : h_r_error: 83581.00674929329\n", + "2018-08-20 22:15:25,236 : INFO : h_r_error: 254441.12230500238\n", + "2018-08-20 22:15:25,237 : INFO : h_r_error: 72013.57418846728\n", + "2018-08-20 22:15:25,238 : INFO : h_r_error: 48278.794818697526\n", + "2018-08-20 22:15:25,239 : INFO : h_r_error: 45514.994923329155\n", + "2018-08-20 22:15:25,240 : INFO : h_r_error: 45241.60017170514\n", + "2018-08-20 22:15:25,241 : INFO : h_r_error: 45179.15646442517\n", + "2018-08-20 22:15:25,243 : INFO : h_r_error: 45179.15646442517\n", + "2018-08-20 22:15:25,244 : INFO : h_r_error: 209933.23754358318\n", + "2018-08-20 22:15:25,245 : INFO : h_r_error: 41462.79385360789\n", + "2018-08-20 22:15:25,246 : INFO : h_r_error: 17256.968824554147\n", + "2018-08-20 22:15:25,247 : INFO : h_r_error: 14469.27786394224\n", + "2018-08-20 22:15:25,249 : INFO : h_r_error: 14277.901689417691\n", + "2018-08-20 22:15:25,250 : INFO : h_r_error: 14223.800438013002\n", + "2018-08-20 22:15:25,252 : INFO : h_r_error: 14223.800438013002\n", + "2018-08-20 22:15:25,258 : INFO : h_r_error: 176449.76277944492\n", + "2018-08-20 22:15:25,260 : INFO : h_r_error: 40292.9864638591\n", + "2018-08-20 22:15:25,265 : INFO : h_r_error: 17918.368196309668\n", + "2018-08-20 22:15:25,267 : INFO : h_r_error: 15750.866831518895\n", + "2018-08-20 22:15:25,268 : INFO : h_r_error: 15653.663346471416\n", + "2018-08-20 22:15:25,270 : INFO : h_r_error: 15653.663346471416\n", + "2018-08-20 22:15:25,272 : INFO : h_r_error: 164832.90258332962\n", + "2018-08-20 22:15:25,273 : INFO : h_r_error: 48424.8934538084\n", + "2018-08-20 22:15:25,274 : INFO : h_r_error: 27926.21987864753\n", + "2018-08-20 22:15:25,277 : INFO : h_r_error: 25891.390224328195\n", + "2018-08-20 22:15:25,278 : INFO : h_r_error: 25771.69994539886\n", + "2018-08-20 22:15:25,287 : INFO : h_r_error: 25771.69994539886\n", + "2018-08-20 22:15:25,288 : INFO : h_r_error: 191912.09950543175\n", + "2018-08-20 22:15:25,290 : INFO : h_r_error: 83090.77071204718\n", + "2018-08-20 22:15:25,292 : INFO : h_r_error: 64829.64668925761\n", + "2018-08-20 22:15:25,293 : INFO : h_r_error: 62052.54176189226\n", + "2018-08-20 22:15:25,295 : INFO : h_r_error: 61519.16586221018\n", + "2018-08-20 22:15:25,296 : INFO : h_r_error: 61519.16586221018\n", + "2018-08-20 22:15:25,297 : INFO : h_r_error: 169908.2691991225\n", + "2018-08-20 22:15:25,298 : INFO : h_r_error: 82613.65835938942\n", + "2018-08-20 22:15:25,299 : INFO : h_r_error: 65795.5031022393\n", + "2018-08-20 22:15:25,300 : INFO : h_r_error: 63315.871900203485\n", + "2018-08-20 22:15:25,301 : INFO : h_r_error: 62680.183691267695\n", + "2018-08-20 22:15:25,302 : INFO : h_r_error: 62433.146777739734\n", + "2018-08-20 22:15:25,303 : INFO : h_r_error: 62361.1412724006\n", + "2018-08-20 22:15:25,305 : INFO : h_r_error: 62361.1412724006\n", + "2018-08-20 22:15:25,306 : INFO : h_r_error: 175890.65408062979\n", + "2018-08-20 22:15:25,307 : INFO : h_r_error: 100326.13910647832\n", + "2018-08-20 22:15:25,308 : INFO : h_r_error: 83816.92879282839\n", + "2018-08-20 22:15:25,309 : INFO : h_r_error: 80521.84957427568\n", + "2018-08-20 22:15:25,310 : INFO : h_r_error: 80348.23286437501\n", + "2018-08-20 22:15:25,312 : INFO : h_r_error: 80348.23286437501\n", + "2018-08-20 22:15:25,313 : INFO : h_r_error: 139159.32181461973\n", + "2018-08-20 22:15:25,314 : INFO : h_r_error: 81428.8231076188\n", + "2018-08-20 22:15:25,316 : INFO : h_r_error: 69224.97642667429\n", + "2018-08-20 22:15:25,317 : INFO : h_r_error: 67175.86485018545\n", + "2018-08-20 22:15:25,319 : INFO : h_r_error: 66967.7538071723\n", + "2018-08-20 22:15:25,321 : INFO : h_r_error: 66967.7538071723\n", + "2018-08-20 22:15:25,322 : INFO : h_r_error: 117301.19850489953\n", + "2018-08-20 22:15:25,323 : INFO : h_r_error: 75610.89667328351\n", + "2018-08-20 22:15:25,338 : INFO : h_r_error: 66713.5978221731\n", + "2018-08-20 22:15:25,340 : INFO : h_r_error: 65738.56677856592\n", + "2018-08-20 22:15:25,342 : INFO : h_r_error: 65631.24459072924\n", + "2018-08-20 22:15:25,354 : INFO : h_r_error: 65631.24459072924\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:25,356 : INFO : h_r_error: 123923.46378028487\n", + "2018-08-20 22:15:25,357 : INFO : h_r_error: 91401.7915719367\n", + "2018-08-20 22:15:25,359 : INFO : h_r_error: 85191.39582673303\n", + "2018-08-20 22:15:25,361 : INFO : h_r_error: 84532.90616743342\n", + "2018-08-20 22:15:25,364 : INFO : h_r_error: 84532.90616743342\n", + "2018-08-20 22:15:25,365 : INFO : h_r_error: 111957.92974291708\n", + "2018-08-20 22:15:25,367 : INFO : h_r_error: 90673.10717043538\n", + "2018-08-20 22:15:25,368 : INFO : h_r_error: 86795.48708018255\n", + "2018-08-20 22:15:25,370 : INFO : h_r_error: 86359.0193082306\n", + "2018-08-20 22:15:25,372 : INFO : h_r_error: 86359.0193082306\n", + "2018-08-20 22:15:25,374 : INFO : h_r_error: 78116.94232451699\n", + "2018-08-20 22:15:25,389 : INFO : h_r_error: 64864.185952766085\n", + "2018-08-20 22:15:25,403 : INFO : h_r_error: 62627.20138398043\n", + "2018-08-20 22:15:25,406 : INFO : h_r_error: 62387.88488623845\n", + "2018-08-20 22:15:25,417 : INFO : h_r_error: 62387.88488623845\n", + "2018-08-20 22:15:25,418 : INFO : h_r_error: 49500.7753928332\n", + "2018-08-20 22:15:25,419 : INFO : h_r_error: 42087.7938861251\n", + "2018-08-20 22:15:25,420 : INFO : h_r_error: 40919.547444569056\n", + "2018-08-20 22:15:25,422 : INFO : h_r_error: 40797.118344441675\n", + "2018-08-20 22:15:25,423 : INFO : h_r_error: 40797.118344441675\n", + "2018-08-20 22:15:25,425 : INFO : h_r_error: 33133.46717145053\n", + "2018-08-20 22:15:25,427 : INFO : h_r_error: 28187.64325842917\n", + "2018-08-20 22:15:25,428 : INFO : h_r_error: 27457.524480600925\n", + "2018-08-20 22:15:25,431 : INFO : h_r_error: 27363.275532166514\n", + "2018-08-20 22:15:25,435 : INFO : h_r_error: 27363.275532166514\n", + "2018-08-20 22:15:25,437 : INFO : h_r_error: 36510.654255069974\n", + "2018-08-20 22:15:25,439 : INFO : h_r_error: 31872.903080009222\n", + "2018-08-20 22:15:25,440 : INFO : h_r_error: 31217.98548164642\n", + "2018-08-20 22:15:25,441 : INFO : h_r_error: 31085.040361192147\n", + "2018-08-20 22:15:25,443 : INFO : h_r_error: 31085.040361192147\n", + "2018-08-20 22:15:25,451 : INFO : h_r_error: 32717.539038069233\n", + "2018-08-20 22:15:25,453 : INFO : h_r_error: 29045.52539605171\n", + "2018-08-20 22:15:25,455 : INFO : h_r_error: 28541.895937532478\n", + "2018-08-20 22:15:25,456 : INFO : h_r_error: 28461.38852698747\n", + "2018-08-20 22:15:25,458 : INFO : h_r_error: 28461.38852698747\n", + "2018-08-20 22:15:25,461 : INFO : h_r_error: 39530.97336392132\n", + "2018-08-20 22:15:25,463 : INFO : h_r_error: 34691.260614155886\n", + "2018-08-20 22:15:25,466 : INFO : h_r_error: 34552.31704531897\n", + "2018-08-20 22:15:25,471 : INFO : h_r_error: 34552.31704531897\n", + "2018-08-20 22:15:25,473 : INFO : h_r_error: 51147.598069400025\n", + "2018-08-20 22:15:25,474 : INFO : h_r_error: 45291.99255837201\n", + "2018-08-20 22:15:25,475 : INFO : h_r_error: 45214.75981765208\n", + "2018-08-20 22:15:25,477 : INFO : h_r_error: 45214.75981765208\n", + "2018-08-20 22:15:25,478 : INFO : h_r_error: 46016.409572444805\n", + "2018-08-20 22:15:25,479 : INFO : h_r_error: 42227.240327538966\n", + "2018-08-20 22:15:25,480 : INFO : h_r_error: 42073.032303607266\n", + "2018-08-20 22:15:25,482 : INFO : h_r_error: 42073.032303607266\n", + "2018-08-20 22:15:25,483 : INFO : h_r_error: 27327.849983908094\n", + "2018-08-20 22:15:25,484 : INFO : h_r_error: 24777.228358306573\n", + "2018-08-20 22:15:25,485 : INFO : h_r_error: 24678.74334174119\n", + "2018-08-20 22:15:25,487 : INFO : h_r_error: 24678.74334174119\n", + "2018-08-20 22:15:25,489 : INFO : h_r_error: 28624.20791140836\n", + "2018-08-20 22:15:25,490 : INFO : h_r_error: 27007.89226208855\n", + "2018-08-20 22:15:25,491 : INFO : h_r_error: 26876.018329480405\n", + "2018-08-20 22:15:25,493 : INFO : h_r_error: 26876.018329480405\n", + "2018-08-20 22:15:25,495 : INFO : h_r_error: 47763.61557444882\n", + "2018-08-20 22:15:25,496 : INFO : h_r_error: 46266.525376300975\n", + "2018-08-20 22:15:25,497 : INFO : h_r_error: 46150.63200927735\n", + "2018-08-20 22:15:25,502 : INFO : h_r_error: 46150.63200927735\n", + "2018-08-20 22:15:25,508 : INFO : h_r_error: 44637.420943173915\n", + "2018-08-20 22:15:25,511 : INFO : h_r_error: 43081.22221036457\n", + "2018-08-20 22:15:25,514 : INFO : h_r_error: 43027.272112547\n", + "2018-08-20 22:15:25,517 : INFO : h_r_error: 43027.272112547\n", + "2018-08-20 22:15:25,521 : INFO : h_r_error: 34197.1970988031\n", + "2018-08-20 22:15:25,523 : INFO : h_r_error: 32315.875508897345\n", + "2018-08-20 22:15:25,524 : INFO : h_r_error: 32232.402902709637\n", + "2018-08-20 22:15:25,526 : INFO : h_r_error: 32232.402902709637\n", + "2018-08-20 22:15:25,527 : INFO : h_r_error: 70710.40068384536\n", + "2018-08-20 22:15:25,528 : INFO : h_r_error: 66320.87213896835\n", + "2018-08-20 22:15:25,530 : INFO : h_r_error: 66030.65492802096\n", + "2018-08-20 22:15:25,531 : INFO : h_r_error: 66030.65492802096\n", + "2018-08-20 22:15:25,532 : INFO : h_r_error: 105979.34962699868\n", + "2018-08-20 22:15:25,533 : INFO : h_r_error: 98450.75207245885\n", + "2018-08-20 22:15:25,534 : INFO : h_r_error: 98016.97785205963\n", + "2018-08-20 22:15:25,536 : INFO : h_r_error: 98016.97785205963\n", + "2018-08-20 22:15:25,537 : INFO : h_r_error: 129788.72803970131\n", + "2018-08-20 22:15:25,538 : INFO : h_r_error: 115670.68870158785\n", + "2018-08-20 22:15:25,539 : INFO : h_r_error: 114852.65676091662\n", + "2018-08-20 22:15:25,543 : INFO : h_r_error: 114852.65676091662\n", + "2018-08-20 22:15:25,548 : INFO : h_r_error: 191581.60964479294\n", + "2018-08-20 22:15:25,551 : INFO : h_r_error: 166679.56805275375\n", + "2018-08-20 22:15:25,552 : INFO : h_r_error: 164422.30428484583\n", + "2018-08-20 22:15:25,553 : INFO : h_r_error: 164252.21597441917\n", + "2018-08-20 22:15:25,555 : INFO : h_r_error: 164252.21597441917\n", + "2018-08-20 22:15:25,556 : INFO : h_r_error: 169298.78806069307\n", + "2018-08-20 22:15:25,558 : INFO : h_r_error: 134116.76721492808\n", + "2018-08-20 22:15:25,559 : INFO : h_r_error: 130643.93672028101\n", + "2018-08-20 22:15:25,561 : INFO : h_r_error: 130325.27402663218\n", + "2018-08-20 22:15:25,567 : INFO : h_r_error: 130325.27402663218\n", + "2018-08-20 22:15:25,570 : INFO : h_r_error: 129358.04990250216\n", + "2018-08-20 22:15:25,571 : INFO : h_r_error: 85641.97969093166\n", + "2018-08-20 22:15:25,573 : INFO : h_r_error: 80836.42049500016\n", + "2018-08-20 22:15:25,574 : INFO : h_r_error: 80486.27356277718\n", + "2018-08-20 22:15:25,576 : INFO : h_r_error: 80486.27356277718\n", + "2018-08-20 22:15:25,578 : INFO : h_r_error: 132531.56364256528\n", + "2018-08-20 22:15:25,579 : INFO : h_r_error: 74126.80733985627\n", + "2018-08-20 22:15:25,580 : INFO : h_r_error: 67086.79041257549\n", + "2018-08-20 22:15:25,581 : INFO : h_r_error: 66678.55813885953\n", + "2018-08-20 22:15:25,583 : INFO : h_r_error: 66678.55813885953\n", + "2018-08-20 22:15:25,584 : INFO : h_r_error: 133703.17505022846\n", + "2018-08-20 22:15:25,590 : INFO : h_r_error: 59914.01632175076\n", + "2018-08-20 22:15:25,593 : INFO : h_r_error: 51397.657582639105\n", + "2018-08-20 22:15:25,595 : INFO : h_r_error: 50837.980834824186\n", + "2018-08-20 22:15:25,598 : INFO : h_r_error: 50774.91197243039\n", + "2018-08-20 22:15:25,607 : INFO : h_r_error: 50774.91197243039\n", + "2018-08-20 22:15:25,612 : INFO : h_r_error: 109490.15716808783\n", + "2018-08-20 22:15:25,614 : INFO : h_r_error: 30568.832146996563\n", + "2018-08-20 22:15:25,615 : INFO : h_r_error: 22869.001662211296\n", + "2018-08-20 22:15:25,617 : INFO : h_r_error: 22525.15024264768\n", + "2018-08-20 22:15:25,620 : INFO : h_r_error: 22433.24745937775\n", + "2018-08-20 22:15:25,623 : INFO : h_r_error: 22409.331483770882\n", + "2018-08-20 22:15:25,625 : INFO : h_r_error: 22409.331483770882\n", + "2018-08-20 22:15:25,626 : INFO : h_r_error: 108240.89575392664\n", + "2018-08-20 22:15:25,628 : INFO : h_r_error: 27445.072240102305\n", + "2018-08-20 22:15:25,629 : INFO : h_r_error: 19796.62179594789\n", + "2018-08-20 22:15:25,630 : INFO : h_r_error: 19498.064804576392\n", + "2018-08-20 22:15:25,630 : INFO : h_r_error: 19420.473673215376\n", + "2018-08-20 22:15:25,632 : INFO : h_r_error: 19420.473673215376\n", + "2018-08-20 22:15:25,633 : INFO : h_r_error: 123079.47395167682\n", + "2018-08-20 22:15:25,634 : INFO : h_r_error: 39846.8436024557\n", + "2018-08-20 22:15:25,635 : INFO : h_r_error: 32839.06177875537\n", + "2018-08-20 22:15:25,637 : INFO : h_r_error: 32558.16857171215\n", + "2018-08-20 22:15:25,638 : INFO : h_r_error: 32469.203239033526\n", + "2018-08-20 22:15:25,640 : INFO : h_r_error: 32469.203239033526\n", + "2018-08-20 22:15:25,641 : INFO : h_r_error: 117859.05084752497\n", + "2018-08-20 22:15:25,642 : INFO : h_r_error: 41915.78317479446\n", + "2018-08-20 22:15:25,644 : INFO : h_r_error: 36438.94043937608\n", + "2018-08-20 22:15:25,645 : INFO : h_r_error: 35911.77701625004\n", + "2018-08-20 22:15:25,647 : INFO : h_r_error: 35706.468029702366\n", + "2018-08-20 22:15:25,649 : INFO : h_r_error: 35706.468029702366\n", + "2018-08-20 22:15:25,650 : INFO : h_r_error: 123474.67107920357\n", + "2018-08-20 22:15:25,658 : INFO : h_r_error: 53669.768012712586\n", + "2018-08-20 22:15:25,661 : INFO : h_r_error: 48567.784931206465\n", + "2018-08-20 22:15:25,664 : INFO : h_r_error: 48154.9212966142\n", + "2018-08-20 22:15:25,666 : INFO : h_r_error: 47988.29822300928\n", + "2018-08-20 22:15:25,669 : INFO : h_r_error: 47936.77092657334\n", + "2018-08-20 22:15:25,673 : INFO : h_r_error: 47936.77092657334\n", + "2018-08-20 22:15:25,675 : INFO : h_r_error: 151207.18006761468\n", + "2018-08-20 22:15:25,676 : INFO : h_r_error: 88235.71146256049\n", + "2018-08-20 22:15:25,678 : INFO : h_r_error: 84277.38424942065\n", + "2018-08-20 22:15:25,679 : INFO : h_r_error: 83899.85690983165\n", + "2018-08-20 22:15:25,680 : INFO : h_r_error: 83751.41595126623\n", + "2018-08-20 22:15:25,682 : INFO : h_r_error: 83751.41595126623\n", + "2018-08-20 22:15:25,683 : INFO : h_r_error: 167269.31497447164\n", + "2018-08-20 22:15:25,684 : INFO : h_r_error: 113582.2386863772\n", + "2018-08-20 22:15:25,685 : INFO : h_r_error: 110085.49161310388\n", + "2018-08-20 22:15:25,686 : INFO : h_r_error: 109782.77676110268\n", + "2018-08-20 22:15:25,687 : INFO : h_r_error: 109663.78283456886\n", + "2018-08-20 22:15:25,689 : INFO : h_r_error: 109663.78283456886\n", + "2018-08-20 22:15:25,690 : INFO : h_r_error: 157753.94573886512\n", + "2018-08-20 22:15:25,691 : INFO : h_r_error: 109400.55521635251\n", + "2018-08-20 22:15:25,692 : INFO : h_r_error: 106008.96079804211\n", + "2018-08-20 22:15:25,693 : INFO : h_r_error: 105728.251929925\n", + "2018-08-20 22:15:25,695 : INFO : h_r_error: 105728.251929925\n", + "2018-08-20 22:15:25,696 : INFO : h_r_error: 112759.45896297898\n", + "2018-08-20 22:15:25,697 : INFO : h_r_error: 72052.2044476772\n", + "2018-08-20 22:15:25,698 : INFO : h_r_error: 68415.34243474793\n", + "2018-08-20 22:15:25,699 : INFO : h_r_error: 68209.29331201482\n", + "2018-08-20 22:15:25,701 : INFO : h_r_error: 68209.29331201482\n", + "2018-08-20 22:15:25,711 : INFO : h_r_error: 91114.10750748111\n", + "2018-08-20 22:15:25,713 : INFO : h_r_error: 55697.261271592106\n", + "2018-08-20 22:15:25,716 : INFO : h_r_error: 51122.896399245685\n", + "2018-08-20 22:15:25,717 : INFO : h_r_error: 50771.213410520046\n", + "2018-08-20 22:15:25,721 : INFO : h_r_error: 50685.706279457336\n", + "2018-08-20 22:15:25,724 : INFO : h_r_error: 50685.706279457336\n", + "2018-08-20 22:15:25,725 : INFO : h_r_error: 120533.10241786917\n", + "2018-08-20 22:15:25,727 : INFO : h_r_error: 85840.68793886981\n", + "2018-08-20 22:15:25,728 : INFO : h_r_error: 81085.6932420261\n", + "2018-08-20 22:15:25,729 : INFO : h_r_error: 80618.2449916983\n", + "2018-08-20 22:15:25,731 : INFO : h_r_error: 80618.2449916983\n", + "2018-08-20 22:15:25,733 : INFO : h_r_error: 144346.3875923771\n", + "2018-08-20 22:15:25,734 : INFO : h_r_error: 104051.51661938874\n", + "2018-08-20 22:15:25,735 : INFO : h_r_error: 98387.68309223754\n", + "2018-08-20 22:15:25,736 : INFO : h_r_error: 97738.32758740771\n", + "2018-08-20 22:15:25,738 : INFO : h_r_error: 97738.32758740771\n", + "2018-08-20 22:15:25,739 : INFO : h_r_error: 145594.31678220004\n", + "2018-08-20 22:15:25,740 : INFO : h_r_error: 98721.32836014092\n", + "2018-08-20 22:15:25,741 : INFO : h_r_error: 93324.51688015206\n", + "2018-08-20 22:15:25,742 : INFO : h_r_error: 92520.57319065594\n", + "2018-08-20 22:15:25,744 : INFO : h_r_error: 92520.57319065594\n", + "2018-08-20 22:15:25,746 : INFO : h_r_error: 102650.24369218039\n", + "2018-08-20 22:15:25,747 : INFO : h_r_error: 48669.42225203629\n", + "2018-08-20 22:15:25,750 : INFO : h_r_error: 45178.66059215797\n", + "2018-08-20 22:15:25,751 : INFO : h_r_error: 44778.850508414784\n", + "2018-08-20 22:15:25,762 : INFO : h_r_error: 44778.850508414784\n", + "2018-08-20 22:15:25,765 : INFO : h_r_error: 95042.43849410885\n", + "2018-08-20 22:15:25,766 : INFO : h_r_error: 32548.73505120907\n", + "2018-08-20 22:15:25,767 : INFO : h_r_error: 30347.04943881905\n", + "2018-08-20 22:15:25,769 : INFO : h_r_error: 29957.108359922466\n", + "2018-08-20 22:15:25,770 : INFO : h_r_error: 29913.8437520984\n", + "2018-08-20 22:15:25,772 : INFO : h_r_error: 29913.8437520984\n", + "2018-08-20 22:15:25,774 : INFO : h_r_error: 100337.72340120646\n", + "2018-08-20 22:15:25,775 : INFO : h_r_error: 38042.32645009931\n", + "2018-08-20 22:15:25,776 : INFO : h_r_error: 35150.77154243809\n", + "2018-08-20 22:15:25,779 : INFO : h_r_error: 34969.334772222064\n", + "2018-08-20 22:15:25,784 : INFO : h_r_error: 34969.334772222064\n", + "2018-08-20 22:15:25,788 : INFO : h_r_error: 83514.52007176694\n", + "2018-08-20 22:15:25,789 : INFO : h_r_error: 38908.94580453252\n", + "2018-08-20 22:15:25,791 : INFO : h_r_error: 36604.933153747384\n", + "2018-08-20 22:15:25,792 : INFO : h_r_error: 36143.1596455028\n", + "2018-08-20 22:15:25,794 : INFO : h_r_error: 36074.38352930394\n", + "2018-08-20 22:15:25,796 : INFO : h_r_error: 36074.38352930394\n", + "2018-08-20 22:15:25,797 : INFO : h_r_error: 86384.23941232702\n", + "2018-08-20 22:15:25,799 : INFO : h_r_error: 54522.63022871282\n", + "2018-08-20 22:15:25,800 : INFO : h_r_error: 52269.22838283751\n", + "2018-08-20 22:15:25,801 : INFO : h_r_error: 51784.41198322365\n", + "2018-08-20 22:15:25,802 : INFO : h_r_error: 51694.78405021233\n", + "2018-08-20 22:15:25,803 : INFO : h_r_error: 51694.78405021233\n", + "2018-08-20 22:15:25,805 : INFO : h_r_error: 59934.5201301244\n", + "2018-08-20 22:15:25,806 : INFO : h_r_error: 38003.956341161625\n", + "2018-08-20 22:15:25,807 : INFO : h_r_error: 35824.68084150275\n", + "2018-08-20 22:15:25,809 : INFO : h_r_error: 35416.27744903075\n", + "2018-08-20 22:15:25,811 : INFO : h_r_error: 35350.79590335559\n", + "2018-08-20 22:15:25,813 : INFO : h_r_error: 35350.79590335559\n", + "2018-08-20 22:15:25,814 : INFO : h_r_error: 52773.46998561132\n", + "2018-08-20 22:15:25,816 : INFO : h_r_error: 34438.140590869916\n", + "2018-08-20 22:15:25,818 : INFO : h_r_error: 32127.70173508694\n", + "2018-08-20 22:15:25,820 : INFO : h_r_error: 31801.275101390467\n", + "2018-08-20 22:15:25,821 : INFO : h_r_error: 31763.039930469866\n", + "2018-08-20 22:15:25,823 : INFO : h_r_error: 31763.039930469866\n", + "2018-08-20 22:15:25,825 : INFO : h_r_error: 89658.92124894459\n", + "2018-08-20 22:15:25,827 : INFO : h_r_error: 69134.68778135825\n", + "2018-08-20 22:15:25,829 : INFO : h_r_error: 66797.29744618708\n", + "2018-08-20 22:15:25,831 : INFO : h_r_error: 66608.52339570905\n", + "2018-08-20 22:15:25,832 : INFO : h_r_error: 66608.52339570905\n", + "2018-08-20 22:15:25,843 : INFO : h_r_error: 84060.26038757557\n", + "2018-08-20 22:15:25,848 : INFO : h_r_error: 62823.13539430651\n", + "2018-08-20 22:15:25,849 : INFO : h_r_error: 60924.35270401313\n", + "2018-08-20 22:15:25,852 : INFO : h_r_error: 60672.5727604889\n", + "2018-08-20 22:15:25,856 : INFO : h_r_error: 60672.5727604889\n", + "2018-08-20 22:15:25,857 : INFO : h_r_error: 82400.69532648215\n", + "2018-08-20 22:15:25,858 : INFO : h_r_error: 62296.81077464238\n", + "2018-08-20 22:15:25,860 : INFO : h_r_error: 60300.12575851453\n", + "2018-08-20 22:15:25,861 : INFO : h_r_error: 60033.39538330248\n", + "2018-08-20 22:15:25,863 : INFO : h_r_error: 60033.39538330248\n", + "2018-08-20 22:15:25,864 : INFO : h_r_error: 77801.37356392771\n", + "2018-08-20 22:15:25,865 : INFO : h_r_error: 58931.06891529856\n", + "2018-08-20 22:15:25,866 : INFO : h_r_error: 57270.16822998984\n", + "2018-08-20 22:15:25,867 : INFO : h_r_error: 57140.20891464639\n", + "2018-08-20 22:15:25,869 : INFO : h_r_error: 57140.20891464639\n", + "2018-08-20 22:15:25,870 : INFO : h_r_error: 75958.60475923998\n", + "2018-08-20 22:15:25,871 : INFO : h_r_error: 61089.03212278704\n", + "2018-08-20 22:15:25,872 : INFO : h_r_error: 59996.78681582652\n", + "2018-08-20 22:15:25,873 : INFO : h_r_error: 59932.34782600625\n", + "2018-08-20 22:15:25,875 : INFO : h_r_error: 59932.34782600625\n", + "2018-08-20 22:15:25,876 : INFO : h_r_error: 76836.89003462985\n", + "2018-08-20 22:15:25,877 : INFO : h_r_error: 65865.27153834907\n", + "2018-08-20 22:15:25,878 : INFO : h_r_error: 64995.8870329025\n", + "2018-08-20 22:15:25,879 : INFO : h_r_error: 64918.239951684365\n", + "2018-08-20 22:15:25,881 : INFO : h_r_error: 64918.239951684365\n", + "2018-08-20 22:15:25,882 : INFO : h_r_error: 48980.581814778896\n", + "2018-08-20 22:15:25,883 : INFO : h_r_error: 41808.449457535935\n", + "2018-08-20 22:15:25,885 : INFO : h_r_error: 41252.6125794878\n", + "2018-08-20 22:15:25,886 : INFO : h_r_error: 41189.66801287636\n", + "2018-08-20 22:15:25,887 : INFO : h_r_error: 41189.66801287636\n", + "2018-08-20 22:15:25,889 : INFO : h_r_error: 40785.75997818555\n", + "2018-08-20 22:15:25,890 : INFO : h_r_error: 34891.36854438516\n", + "2018-08-20 22:15:25,892 : INFO : h_r_error: 33600.54177970833\n", + "2018-08-20 22:15:25,901 : INFO : h_r_error: 33323.966042387816\n", + "2018-08-20 22:15:25,902 : INFO : h_r_error: 33280.73672451113\n", + "2018-08-20 22:15:25,904 : INFO : h_r_error: 33280.73672451113\n", + "2018-08-20 22:15:25,905 : INFO : h_r_error: 26454.37120000968\n", + "2018-08-20 22:15:25,907 : INFO : h_r_error: 21540.39479576784\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:25,908 : INFO : h_r_error: 20608.810430887163\n", + "2018-08-20 22:15:25,910 : INFO : h_r_error: 20433.54257729559\n", + "2018-08-20 22:15:25,911 : INFO : h_r_error: 20400.741509122505\n", + "2018-08-20 22:15:25,913 : INFO : h_r_error: 20400.741509122505\n", + "2018-08-20 22:15:25,916 : INFO : h_r_error: 28200.31679054761\n", + "2018-08-20 22:15:25,919 : INFO : h_r_error: 23300.098733814248\n", + "2018-08-20 22:15:25,929 : INFO : h_r_error: 22137.1510942318\n", + "2018-08-20 22:15:25,931 : INFO : h_r_error: 21810.085864093246\n", + "2018-08-20 22:15:25,932 : INFO : h_r_error: 21775.213278946343\n", + "2018-08-20 22:15:25,934 : INFO : h_r_error: 21775.213278946343\n", + "2018-08-20 22:15:25,935 : INFO : h_r_error: 15260.366709589653\n", + "2018-08-20 22:15:25,936 : INFO : h_r_error: 11872.08315938859\n", + "2018-08-20 22:15:25,937 : INFO : h_r_error: 10908.905597899073\n", + "2018-08-20 22:15:25,938 : INFO : h_r_error: 10684.630020773682\n", + "2018-08-20 22:15:25,939 : INFO : h_r_error: 10651.271246929588\n", + "2018-08-20 22:15:25,941 : INFO : h_r_error: 10651.271246929588\n", + "2018-08-20 22:15:25,942 : INFO : h_r_error: 21032.87159613912\n", + "2018-08-20 22:15:25,944 : INFO : h_r_error: 16982.111213920845\n", + "2018-08-20 22:15:25,945 : INFO : h_r_error: 15866.510855147071\n", + "2018-08-20 22:15:25,953 : INFO : h_r_error: 15662.38695739796\n", + "2018-08-20 22:15:25,968 : INFO : h_r_error: 15638.966745766626\n", + "2018-08-20 22:15:25,970 : INFO : h_r_error: 15638.966745766626\n", + "2018-08-20 22:15:25,972 : INFO : h_r_error: 35159.7164846516\n", + "2018-08-20 22:15:25,973 : INFO : h_r_error: 29103.083952578443\n", + "2018-08-20 22:15:25,974 : INFO : h_r_error: 27679.57023556275\n", + "2018-08-20 22:15:25,975 : INFO : h_r_error: 27554.425552082583\n", + "2018-08-20 22:15:25,978 : INFO : h_r_error: 27554.425552082583\n", + "2018-08-20 22:15:25,981 : INFO : h_r_error: 66821.6687468943\n", + "2018-08-20 22:15:25,983 : INFO : h_r_error: 57882.03046952179\n", + "2018-08-20 22:15:25,986 : INFO : h_r_error: 56709.66844688913\n", + "2018-08-20 22:15:25,988 : INFO : h_r_error: 56615.34344199158\n", + "2018-08-20 22:15:25,990 : INFO : h_r_error: 56615.34344199158\n", + "2018-08-20 22:15:25,991 : INFO : h_r_error: 102536.44589819173\n", + "2018-08-20 22:15:25,992 : INFO : h_r_error: 89790.53104875541\n", + "2018-08-20 22:15:25,993 : INFO : h_r_error: 88797.37168870388\n", + "2018-08-20 22:15:25,995 : INFO : h_r_error: 88797.37168870388\n", + "2018-08-20 22:15:25,996 : INFO : h_r_error: 94256.0865083771\n", + "2018-08-20 22:15:25,997 : INFO : h_r_error: 81796.94144023153\n", + "2018-08-20 22:15:26,012 : INFO : h_r_error: 79914.31899253973\n", + "2018-08-20 22:15:26,026 : INFO : h_r_error: 79801.96367959536\n", + "2018-08-20 22:15:26,028 : INFO : h_r_error: 79801.96367959536\n", + "2018-08-20 22:15:26,030 : INFO : h_r_error: 103681.66251015848\n", + "2018-08-20 22:15:26,032 : INFO : h_r_error: 91149.66390562967\n", + "2018-08-20 22:15:26,034 : INFO : h_r_error: 88039.71971343001\n", + "2018-08-20 22:15:26,037 : INFO : h_r_error: 87725.90055568086\n", + "2018-08-20 22:15:26,040 : INFO : h_r_error: 87725.90055568086\n", + "2018-08-20 22:15:26,046 : INFO : h_r_error: 56004.11426043542\n", + "2018-08-20 22:15:26,050 : INFO : h_r_error: 47197.703146981876\n", + "2018-08-20 22:15:26,052 : INFO : h_r_error: 44837.80243648732\n", + "2018-08-20 22:15:26,053 : INFO : h_r_error: 44443.57942939128\n", + "2018-08-20 22:15:26,055 : INFO : h_r_error: 44374.80930404322\n", + "2018-08-20 22:15:26,057 : INFO : h_r_error: 44374.80930404322\n", + "2018-08-20 22:15:26,058 : INFO : h_r_error: 43292.4267967832\n", + "2018-08-20 22:15:26,059 : INFO : h_r_error: 35378.8097280495\n", + "2018-08-20 22:15:26,061 : INFO : h_r_error: 34196.54479859938\n", + "2018-08-20 22:15:26,062 : INFO : h_r_error: 33921.22257936816\n", + "2018-08-20 22:15:26,069 : INFO : h_r_error: 33882.99653972745\n", + "2018-08-20 22:15:26,072 : INFO : h_r_error: 33882.99653972745\n", + "2018-08-20 22:15:26,073 : INFO : h_r_error: 83106.68092031234\n", + "2018-08-20 22:15:26,074 : INFO : h_r_error: 72006.9979466662\n", + "2018-08-20 22:15:26,075 : INFO : h_r_error: 70987.0810195443\n", + "2018-08-20 22:15:26,077 : INFO : h_r_error: 70703.88128074924\n", + "2018-08-20 22:15:26,079 : INFO : h_r_error: 70703.88128074924\n", + "2018-08-20 22:15:26,080 : INFO : h_r_error: 34056.68769062177\n", + "2018-08-20 22:15:26,082 : INFO : h_r_error: 22340.518976325024\n", + "2018-08-20 22:15:26,085 : INFO : h_r_error: 21202.2807999469\n", + "2018-08-20 22:15:26,092 : INFO : h_r_error: 21018.168130075122\n", + "2018-08-20 22:15:26,094 : INFO : h_r_error: 20985.179625872217\n", + "2018-08-20 22:15:26,104 : INFO : h_r_error: 20985.179625872217\n", + "2018-08-20 22:15:26,107 : INFO : h_r_error: 47079.4827339218\n", + "2018-08-20 22:15:26,108 : INFO : h_r_error: 28040.444823154972\n", + "2018-08-20 22:15:26,111 : INFO : h_r_error: 26012.050369414745\n", + "2018-08-20 22:15:26,112 : INFO : h_r_error: 25778.668392323463\n", + "2018-08-20 22:15:26,114 : INFO : h_r_error: 25752.543285183405\n", + "2018-08-20 22:15:26,118 : INFO : h_r_error: 25752.543285183405\n", + "2018-08-20 22:15:26,120 : INFO : h_r_error: 53830.62087925428\n", + "2018-08-20 22:15:26,122 : INFO : h_r_error: 28056.31895396446\n", + "2018-08-20 22:15:26,125 : INFO : h_r_error: 25538.969559838195\n", + "2018-08-20 22:15:26,130 : INFO : h_r_error: 25231.784702255714\n", + "2018-08-20 22:15:26,135 : INFO : h_r_error: 25231.784702255714\n", + "2018-08-20 22:15:26,137 : INFO : h_r_error: 98623.57824868678\n", + "2018-08-20 22:15:26,138 : INFO : h_r_error: 56869.718676174605\n", + "2018-08-20 22:15:26,139 : INFO : h_r_error: 52575.08611645739\n", + "2018-08-20 22:15:26,140 : INFO : h_r_error: 52194.0055934277\n", + "2018-08-20 22:15:26,142 : INFO : h_r_error: 52194.0055934277\n", + "2018-08-20 22:15:26,144 : INFO : h_r_error: 151046.2615779934\n", + "2018-08-20 22:15:26,146 : INFO : h_r_error: 85671.1807956229\n", + "2018-08-20 22:15:26,157 : INFO : h_r_error: 78721.59964559798\n", + "2018-08-20 22:15:26,158 : INFO : h_r_error: 78253.8217480222\n", + "2018-08-20 22:15:26,161 : INFO : h_r_error: 78253.8217480222\n", + "2018-08-20 22:15:26,163 : INFO : h_r_error: 170143.0368298679\n", + "2018-08-20 22:15:26,164 : INFO : h_r_error: 88169.30243474309\n", + "2018-08-20 22:15:26,165 : INFO : h_r_error: 81485.62257891156\n", + "2018-08-20 22:15:26,167 : INFO : h_r_error: 81043.05017860854\n", + "2018-08-20 22:15:26,168 : INFO : h_r_error: 81043.05017860854\n", + "2018-08-20 22:15:26,170 : INFO : h_r_error: 193290.35730186303\n", + "2018-08-20 22:15:26,171 : INFO : h_r_error: 92326.29391460496\n", + "2018-08-20 22:15:26,173 : INFO : h_r_error: 85478.74125628427\n", + "2018-08-20 22:15:26,174 : INFO : h_r_error: 84863.23013863043\n", + "2018-08-20 22:15:26,175 : INFO : h_r_error: 84863.23013863043\n", + "2018-08-20 22:15:26,177 : INFO : h_r_error: 143000.39477505267\n", + "2018-08-20 22:15:26,180 : INFO : h_r_error: 47690.38239901879\n", + "2018-08-20 22:15:26,181 : INFO : h_r_error: 42535.89066549057\n", + "2018-08-20 22:15:26,183 : INFO : h_r_error: 42191.861043280165\n", + "2018-08-20 22:15:26,185 : INFO : h_r_error: 42191.861043280165\n", + "2018-08-20 22:15:26,196 : INFO : h_r_error: 142675.06428208412\n", + "2018-08-20 22:15:26,199 : INFO : h_r_error: 48176.866217790404\n", + "2018-08-20 22:15:26,200 : INFO : h_r_error: 40416.058453941805\n", + "2018-08-20 22:15:26,201 : INFO : h_r_error: 40017.15421775054\n", + "2018-08-20 22:15:26,204 : INFO : h_r_error: 40017.15421775054\n", + "2018-08-20 22:15:26,206 : INFO : h_r_error: 167788.56160431716\n", + "2018-08-20 22:15:26,207 : INFO : h_r_error: 65451.04391470968\n", + "2018-08-20 22:15:26,208 : INFO : h_r_error: 58775.61705137578\n", + "2018-08-20 22:15:26,210 : INFO : h_r_error: 58166.916215643076\n", + "2018-08-20 22:15:26,213 : INFO : h_r_error: 58166.916215643076\n", + "2018-08-20 22:15:26,216 : INFO : h_r_error: 144878.72484764503\n", + "2018-08-20 22:15:26,218 : INFO : h_r_error: 47990.718678389516\n", + "2018-08-20 22:15:26,220 : INFO : h_r_error: 42459.08584400939\n", + "2018-08-20 22:15:26,221 : INFO : h_r_error: 42374.837127099265\n", + "2018-08-20 22:15:26,223 : INFO : h_r_error: 42374.837127099265\n", + "2018-08-20 22:15:26,225 : INFO : h_r_error: 147093.6388017975\n", + "2018-08-20 22:15:26,226 : INFO : h_r_error: 61741.05478800946\n", + "2018-08-20 22:15:26,227 : INFO : h_r_error: 56000.0869573749\n", + "2018-08-20 22:15:26,229 : INFO : h_r_error: 55724.81891032926\n", + "2018-08-20 22:15:26,230 : INFO : h_r_error: 55724.81891032926\n", + "2018-08-20 22:15:26,231 : INFO : h_r_error: 177070.46954423655\n", + "2018-08-20 22:15:26,232 : INFO : h_r_error: 86813.13608230506\n", + "2018-08-20 22:15:26,234 : INFO : h_r_error: 80750.06541413112\n", + "2018-08-20 22:15:26,235 : INFO : h_r_error: 80108.79492326386\n", + "2018-08-20 22:15:26,236 : INFO : h_r_error: 80018.0835706642\n", + "2018-08-20 22:15:26,238 : INFO : h_r_error: 80018.0835706642\n", + "2018-08-20 22:15:26,248 : INFO : h_r_error: 191498.891043512\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:26,250 : INFO : h_r_error: 89193.15992567304\n", + "2018-08-20 22:15:26,251 : INFO : h_r_error: 82326.7193949022\n", + "2018-08-20 22:15:26,253 : INFO : h_r_error: 81654.10188430984\n", + "2018-08-20 22:15:26,254 : INFO : h_r_error: 81550.8364588384\n", + "2018-08-20 22:15:26,256 : INFO : h_r_error: 81550.8364588384\n", + "2018-08-20 22:15:26,258 : INFO : h_r_error: 195202.30314943343\n", + "2018-08-20 22:15:26,259 : INFO : h_r_error: 87377.33791727532\n", + "2018-08-20 22:15:26,261 : INFO : h_r_error: 80672.67496760779\n", + "2018-08-20 22:15:26,262 : INFO : h_r_error: 80479.76631168138\n", + "2018-08-20 22:15:26,268 : INFO : h_r_error: 80479.76631168138\n", + "2018-08-20 22:15:26,271 : INFO : h_r_error: 144824.23872960033\n", + "2018-08-20 22:15:26,272 : INFO : h_r_error: 55900.50694270172\n", + "2018-08-20 22:15:26,273 : INFO : h_r_error: 50456.945266342926\n", + "2018-08-20 22:15:26,275 : INFO : h_r_error: 50209.455574301464\n", + "2018-08-20 22:15:26,277 : INFO : h_r_error: 50209.455574301464\n", + "2018-08-20 22:15:26,278 : INFO : h_r_error: 120497.96569875091\n", + "2018-08-20 22:15:26,279 : INFO : h_r_error: 54942.81832456545\n", + "2018-08-20 22:15:26,280 : INFO : h_r_error: 51139.536326477886\n", + "2018-08-20 22:15:26,282 : INFO : h_r_error: 50931.89498627135\n", + "2018-08-20 22:15:26,283 : INFO : h_r_error: 50931.89498627135\n", + "2018-08-20 22:15:26,284 : INFO : h_r_error: 118560.7658767246\n", + "2018-08-20 22:15:26,286 : INFO : h_r_error: 66209.35306663823\n", + "2018-08-20 22:15:26,287 : INFO : h_r_error: 63672.851013482956\n", + "2018-08-20 22:15:26,288 : INFO : h_r_error: 63532.512372798665\n", + "2018-08-20 22:15:26,290 : INFO : h_r_error: 63532.512372798665\n", + "2018-08-20 22:15:26,299 : INFO : h_r_error: 145281.10256636093\n", + "2018-08-20 22:15:26,301 : INFO : h_r_error: 99879.7345641714\n", + "2018-08-20 22:15:26,303 : INFO : h_r_error: 98089.94579477502\n", + "2018-08-20 22:15:26,305 : INFO : h_r_error: 98089.94579477502\n", + "2018-08-20 22:15:26,306 : INFO : h_r_error: 165137.3997750682\n", + "2018-08-20 22:15:26,308 : INFO : h_r_error: 121745.46955607059\n", + "2018-08-20 22:15:26,309 : INFO : h_r_error: 120148.35468973644\n", + "2018-08-20 22:15:26,312 : INFO : h_r_error: 120148.35468973644\n", + "2018-08-20 22:15:26,316 : INFO : h_r_error: 158538.77643486226\n", + "2018-08-20 22:15:26,320 : INFO : h_r_error: 117514.12100067486\n", + "2018-08-20 22:15:26,322 : INFO : h_r_error: 115814.83388310859\n", + "2018-08-20 22:15:26,324 : INFO : h_r_error: 115814.83388310859\n", + "2018-08-20 22:15:26,325 : INFO : h_r_error: 136038.15608420633\n", + "2018-08-20 22:15:26,326 : INFO : h_r_error: 96742.83001877212\n", + "2018-08-20 22:15:26,328 : INFO : h_r_error: 94559.96804935293\n", + "2018-08-20 22:15:26,329 : INFO : h_r_error: 94383.14616395722\n", + "2018-08-20 22:15:26,331 : INFO : h_r_error: 94383.14616395722\n", + "2018-08-20 22:15:26,332 : INFO : h_r_error: 101367.71763481224\n", + "2018-08-20 22:15:26,334 : INFO : h_r_error: 62548.2325397448\n", + "2018-08-20 22:15:26,335 : INFO : h_r_error: 59882.78131770487\n", + "2018-08-20 22:15:26,336 : INFO : h_r_error: 59454.59463196322\n", + "2018-08-20 22:15:26,337 : INFO : h_r_error: 59378.02619761801\n", + "2018-08-20 22:15:26,339 : INFO : h_r_error: 59378.02619761801\n", + "2018-08-20 22:15:26,341 : INFO : h_r_error: 95865.50790628867\n", + "2018-08-20 22:15:26,342 : INFO : h_r_error: 62378.63362038054\n", + "2018-08-20 22:15:26,343 : INFO : h_r_error: 59242.72783463293\n", + "2018-08-20 22:15:26,344 : INFO : h_r_error: 58609.456228255316\n", + "2018-08-20 22:15:26,345 : INFO : h_r_error: 58496.34350233016\n", + "2018-08-20 22:15:26,347 : INFO : h_r_error: 58496.34350233016\n", + "2018-08-20 22:15:26,348 : INFO : h_r_error: 90515.55027129139\n", + "2018-08-20 22:15:26,349 : INFO : h_r_error: 58018.099802026285\n", + "2018-08-20 22:15:26,360 : INFO : h_r_error: 55105.19055132983\n", + "2018-08-20 22:15:26,362 : INFO : h_r_error: 54665.30390811013\n", + "2018-08-20 22:15:26,365 : INFO : h_r_error: 54665.30390811013\n", + "2018-08-20 22:15:26,367 : INFO : h_r_error: 83134.14281795638\n", + "2018-08-20 22:15:26,369 : INFO : h_r_error: 55442.09864068202\n", + "2018-08-20 22:15:26,371 : INFO : h_r_error: 52963.28200871138\n", + "2018-08-20 22:15:26,373 : INFO : h_r_error: 52586.908681102745\n", + "2018-08-20 22:15:26,387 : INFO : h_r_error: 52586.908681102745\n", + "2018-08-20 22:15:26,389 : INFO : h_r_error: 73598.27979210831\n", + "2018-08-20 22:15:26,391 : INFO : h_r_error: 45715.61157809627\n", + "2018-08-20 22:15:26,392 : INFO : h_r_error: 41437.58248913924\n", + "2018-08-20 22:15:26,395 : INFO : h_r_error: 40707.77290896303\n", + "2018-08-20 22:15:26,398 : INFO : h_r_error: 40609.36114776876\n", + "2018-08-20 22:15:26,413 : INFO : h_r_error: 40609.36114776876\n", + "2018-08-20 22:15:26,417 : INFO : h_r_error: 59503.97001493072\n", + "2018-08-20 22:15:26,422 : INFO : h_r_error: 33432.097819146526\n", + "2018-08-20 22:15:26,425 : INFO : h_r_error: 29486.32651237871\n", + "2018-08-20 22:15:26,427 : INFO : h_r_error: 28926.026181920453\n", + "2018-08-20 22:15:26,430 : INFO : h_r_error: 28926.026181920453\n", + "2018-08-20 22:15:26,432 : INFO : h_r_error: 50217.117754469546\n", + "2018-08-20 22:15:26,434 : INFO : h_r_error: 27138.614025112507\n", + "2018-08-20 22:15:26,436 : INFO : h_r_error: 24091.11630445048\n", + "2018-08-20 22:15:26,441 : INFO : h_r_error: 23798.914970480397\n", + "2018-08-20 22:15:26,445 : INFO : h_r_error: 23798.914970480397\n", + "2018-08-20 22:15:26,450 : INFO : h_r_error: 46011.29451609649\n", + "2018-08-20 22:15:26,455 : INFO : h_r_error: 23339.291405321692\n", + "2018-08-20 22:15:26,458 : INFO : h_r_error: 21141.855440357434\n", + "2018-08-20 22:15:26,460 : INFO : h_r_error: 20948.160112459424\n", + "2018-08-20 22:15:26,463 : INFO : h_r_error: 20948.160112459424\n", + "2018-08-20 22:15:26,465 : INFO : h_r_error: 56099.969883942176\n", + "2018-08-20 22:15:26,467 : INFO : h_r_error: 31558.214159141873\n", + "2018-08-20 22:15:26,469 : INFO : h_r_error: 29543.03148778048\n", + "2018-08-20 22:15:26,471 : INFO : h_r_error: 29371.947464451052\n", + "2018-08-20 22:15:26,473 : INFO : h_r_error: 29371.947464451052\n", + "2018-08-20 22:15:26,475 : INFO : h_r_error: 72350.54561082687\n", + "2018-08-20 22:15:26,477 : INFO : h_r_error: 45607.577200019216\n", + "2018-08-20 22:15:26,480 : INFO : h_r_error: 42697.75965676168\n", + "2018-08-20 22:15:26,482 : INFO : h_r_error: 42435.09532013215\n", + "2018-08-20 22:15:26,485 : INFO : h_r_error: 42435.09532013215\n", + "2018-08-20 22:15:26,486 : INFO : h_r_error: 81673.58262360246\n", + "2018-08-20 22:15:26,487 : INFO : h_r_error: 55028.966308308285\n", + "2018-08-20 22:15:26,488 : INFO : h_r_error: 50879.5437727653\n", + "2018-08-20 22:15:26,492 : INFO : h_r_error: 50430.705456493\n", + "2018-08-20 22:15:26,496 : INFO : h_r_error: 50430.705456493\n", + "2018-08-20 22:15:26,503 : INFO : h_r_error: 85259.06957006888\n", + "2018-08-20 22:15:26,506 : INFO : h_r_error: 56417.15576227808\n", + "2018-08-20 22:15:26,507 : INFO : h_r_error: 51950.01266205731\n", + "2018-08-20 22:15:26,509 : INFO : h_r_error: 51427.891558767784\n", + "2018-08-20 22:15:26,512 : INFO : h_r_error: 51427.891558767784\n", + "2018-08-20 22:15:26,514 : INFO : h_r_error: 87542.85171726909\n", + "2018-08-20 22:15:26,516 : INFO : h_r_error: 54471.47858022249\n", + "2018-08-20 22:15:26,519 : INFO : h_r_error: 51692.16694423167\n", + "2018-08-20 22:15:26,520 : INFO : h_r_error: 51314.94085991872\n", + "2018-08-20 22:15:26,525 : INFO : h_r_error: 51314.94085991872\n", + "2018-08-20 22:15:26,527 : INFO : h_r_error: 74989.53473624078\n", + "2018-08-20 22:15:26,530 : INFO : h_r_error: 40437.67511528515\n", + "2018-08-20 22:15:26,532 : INFO : h_r_error: 38660.661040941544\n", + "2018-08-20 22:15:26,534 : INFO : h_r_error: 38179.70126096432\n", + "2018-08-20 22:15:26,539 : INFO : h_r_error: 38065.50275211432\n", + "2018-08-20 22:15:26,543 : INFO : h_r_error: 38065.50275211432\n", + "2018-08-20 22:15:26,545 : INFO : h_r_error: 108828.80093509772\n", + "2018-08-20 22:15:26,547 : INFO : h_r_error: 60212.67760110461\n", + "2018-08-20 22:15:26,549 : INFO : h_r_error: 57812.19815738934\n", + "2018-08-20 22:15:26,551 : INFO : h_r_error: 57190.44665422103\n", + "2018-08-20 22:15:26,555 : INFO : h_r_error: 57021.325789113616\n", + "2018-08-20 22:15:26,557 : INFO : h_r_error: 57021.325789113616\n", + "2018-08-20 22:15:26,559 : INFO : h_r_error: 78817.5512140593\n", + "2018-08-20 22:15:26,561 : INFO : h_r_error: 27383.623063646068\n", + "2018-08-20 22:15:26,563 : INFO : h_r_error: 24613.083436085217\n", + "2018-08-20 22:15:26,565 : INFO : h_r_error: 24366.273428677887\n", + "2018-08-20 22:15:26,566 : INFO : h_r_error: 24324.814654375365\n", + "2018-08-20 22:15:26,569 : INFO : h_r_error: 24324.814654375365\n", + "2018-08-20 22:15:26,571 : INFO : h_r_error: 72411.94794136818\n", + "2018-08-20 22:15:26,573 : INFO : h_r_error: 21870.11709181413\n", + "2018-08-20 22:15:26,577 : INFO : h_r_error: 19136.87592728228\n", + "2018-08-20 22:15:26,580 : INFO : h_r_error: 18959.722842143907\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2018-08-20 22:15:26,582 : INFO : h_r_error: 18959.722842143907\n", + "2018-08-20 22:15:26,583 : INFO : h_r_error: 83876.31226742358\n", + "2018-08-20 22:15:26,584 : INFO : h_r_error: 27066.441250717817\n", + "2018-08-20 22:15:26,586 : INFO : h_r_error: 23671.276967366928\n", + "2018-08-20 22:15:26,587 : INFO : h_r_error: 23588.035853516478\n", + "2018-08-20 22:15:26,590 : INFO : h_r_error: 23588.035853516478\n", + "2018-08-20 22:15:26,591 : INFO : h_r_error: 87851.09522030315\n", + "2018-08-20 22:15:26,593 : INFO : h_r_error: 36557.55519906569\n", + "2018-08-20 22:15:26,596 : INFO : h_r_error: 32920.158554937225\n", + "2018-08-20 22:15:26,605 : INFO : h_r_error: 32884.0633641823\n" ] } ], "source": [ "W = gensim_nmf.get_topics().T\n", - "H = np.zeros((W.shape[1], len(matutils.Dense2Corpus(img_matrix.T))))\n", - "for bow_id, bow in enumerate(matutils.Dense2Corpus(img_matrix.T)):\n", - " for topic_id, proba in gensim_nmf[bow]:\n", - " H[topic_id, bow_id] = proba" + "H = np.hstack(gensim_nmf[bow] for bow in matutils.Dense2Corpus(img_matrix.T))" ] }, { @@ -1238,9 +4681,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUWElEQVR4nF39754cOZIkCIqoAmbuEfyTWVU9vbN7N/e7e/+3uBfYF9hPezvTMz1dlUwywt0MUJX7oLAga1lVrEwy3M0MBihURUQF/EumUqAEAP319gg1J0RDayT6fv+0NT4f//jxnHPGnEh1VwqA5NJ+H+8zCRj6PR7GyUbeR7g1UkrThE4BUuNnp+X5eASNr9u3vT0GKJG0dgpGUHLfGkV3WnOzBrgxAWRkJv39MRN2jxnc45kpMWR5TtGbzUhYmnmCNLackTLvoKcJOLkr3ZvnmA0AANbvUkwBIOt/AoDMFGgEIEmAKAkSQF2fpQEgjWZGI0mQ+OU/AkBBCoEZua7LTH38dd0JCYBIypIWCtoUHUwASmWyz4gEIjJMAEzr+wB+fA1+3h/dRCfqtkQASkCZ2WamJBASgYgxAhk1AuYgZhujOcbx/TlmRIZAM5eE+hhyhmBIGpAJ0Iypc6aFr1GcUAgUktOMuabPZJCZpJK0ZIpJAFCmTJKMEtcrqQHITOYICTkzUyMTdElRk1iJ1PVWaTRzb6RSlsgkCDFqtAxsEQmhlgDB4JggIRm5bXLmPJ9mzOMYGTMlkDSrAQiaRAJyAWIOc+tmmUMGMzOQ5jZjWgIQkATpZpR0zPxlvqFejZGgkwZ4d5Bwl3kKBGAUaz5Kde9upGGEmKxfRjOJpoCZmZs7EQmR4panpYGEkbSWmRAoCSBzYsy6EmmuNOZICbATQk4JoNG7IAZFisgEm9IaJXrb3MfAJJIpwglBKYGmVLARfU7G1IxaVEyIRK0+pwHNZUTbNgTVWrrXWIlKKUFDIgXCurubHgGRFIk085aiJdDM3Pu2OWbMJOCf9MNSNKSZgc0IKIWEBArKWFGAoMstNM8UfLRasEZv3Ha05CQpKM8RMEmqx0w3zUwHMhISxUgB9E4QbO5bDAQEATTQ65EgIT0JICm4+3bXpLYtrI8ZNa81R8BJIwhwu/funjxyJlJCik4H0Uhr7s23+8vG5zhPAf5pcw+1niE6vLmARMU0kN6MWrORbbfdJxQQWjjJSJDutu1AkkymRBJsCZoAk7dtixFyAIIgiVLWxAZa31rcx1NWy9AN9EmYUZYijQ60ltba/vqqk9hvw7dzDoAyYdjEzJBBgt1e9615xFvKau3XkibM5K233vbXTzc+zueRYvttz5zqew7R6c1JRqQkADJvvMKp2f5y3tswBMQ+uyGmYOsiViu15jcQCaWkBHJa0q2vXQvItZ9YI2p8Pp3vFcDpfRq8TXiTDHJ3GtlbeG/3z1/zyXx5fdp+zoOEHHzayTMsXQnjy+dbR84V+GqZGMBry5Jino+wsBZ03v7TCzS07fMZgNCaG+eMDAISee2IBNhuuDefJ13WWjOsPS2prA2LFZ0FZEKpRJrCptiwAwpmsIIzSWsMkTTt3WGmtaGghdBcYZC5wcjWYN76y6cQYr8nNjFIoNlbMzNXrFW6vbx4HDFD0Hr7JExUEpJSMQzTbDPrG1//9vr+HNr3QyOUaq05CdBSAGj+MQNo21337uMwwJo3z3pkAgQNoBu1Nroabai2ENFsAzSRgERLAuZOg7e+xX13GAnQm0vuCW9Rn3M4rTeyb7fXL1OIT19N9z6dBLo9OGGC5Aq43z692IhfMgCCJl6ZAAAopmx35X6zz397/fZ+ar/1tBnIlgnLrNEDbNuuESDZtrl3bftzqnYXubRien1AylRCQkiQpLSUEGm5tj3WXWjtymjb7R63RlTUt8aKnbWvVq5i5g5rfbu9RDK+/u56PeeDhLqdHU/AmE2TzfZ9NzDryakVdlbSpnUfSeOdtGZ9v3WzpNEcCLURZISQkgTrm31kVNb2uW/atq4EYQaZCUIykwmkUlFJDRJQ1hBQjDQQ8o908WNQ6X2/zW6qC9JcGYhAWGYmKhjRHN77drsrPT5/MX0+450mNXt4WCaVTYZu++3GdNJk5IqBWXkeAE8mFQm7wcwb+9ZMM9jmFAG1h8BEY+VRbN1+LoG+z9uW+9Md8NYaYFYvfBpDCBsZmbV7AqoZkUllQCe4WVakMKupCYDemhoz62W7STMyMBmZQioogZbm3m4vOX3eX6UvZzSzVLM/dSimIpvI3u6fXohGc3gLrzUQciAgGZGsRC0Is8a+dY7neeTxlhbjbKfSZM5KyeluHy/Lbp/x5dbHo6XhlneXeTKUmYMMKPqMrOoAufafhEKJRCQdRlpYooJD6zjSrHW9bOYMGnnbm800A5GpFWbNeof37f71bwE/P/9GfT2zOZWbf8v3yJEzN03b+2//+ll/vPXWHGFhQGMyISSVZjSjUmrayNfP9vv/cv//3Z6nkHN6zNmoekegQNAb+ZFHb/fz5ZZ7dyd77y6ZKStzXb/j5/SGCH1MHxDmzdOEBNNrvcvT+7bxZW/IoNP2vaWTkK3Exgxu3ru8b/unL/Ow/ulL5pcj0Sy0+8u4zTxiZhd9316//pb6dNu7NOkAXKAsVwQkjUnQ+k7eXuzTX16+3B/T92xwKhsr71ENhG+3GgFzc8PU8IHeR2pkyGCeNBitEVBN4opvVXJJIFCBQDBFplJJmCmkAH27vX45e++I7p32+rofDqMgGggjQVLw5sZ5wDd/ub3iy8juFtH4aX7Kc4uIjua37jmVaLd7MG0SaAASPwsDmM0Ec3icBx//eHx/jkCqtT6bN6+sqUoua7eXzQWyNbfNhIxs99dk0gFa48yk6I2CYGsvXyVNE6Rr+zGzZlfJSPNUImh2e/n05ejeEtLuur9sg2aWQTOR7qwytG2t2Txav+H1DvsaujtySp/jmW+7MjaT7W5xaGbbbxNpJ0CD0gDRTGZmcApCjJzng2//sf35OIKh1rc5rLXrFRIw8/3Wm2hwb+YaGpx2+5w+m7nI5siE0Z1ZIyCltQhIpKUsV05Nom82DTUmvo1MTaPvt5fXRnMDcGtxf9neDc5M0QRyZW/ZnIjn95uZN9t8F5opzxH77X4crXW2JtuIZ+Ixue2mRAdI01xJjYxGOiOg8dgGjf2/tf/4/pBG2HYfplZlrGAQrGbAmuXG+YjHOP2WQwaPcDkmDQZrTMlhtKQ1RBWTgGVICgNdsJypGqe+YzKHt3Z7+fR5e2ebNLv3+frpRod7DsFEKGmBOFsz5Pzunz+xN259d9ws8/l+3M7X8631ibaLG+KH4fFUvyFTlatlGlAIA8k0I6Djx55jYJr9tz+G94Z+u3dnU21glUHItp0KpuAyPt6Qdt7v+Xw7YotEymu6uFtAqro8MxMJIiIjghBJpDzPRyYg9wYSGWdrvt0///Y43A0yst1eNgDwhVUgky3lR9shzXe2L/3lZe/7l04w9G72Kc5n6xnwJtsi3sDjQN/mNDeCMpJZ/0eSQTdI5wPSiZj4x/fctPN2ex3ONqvKNGHBXDkDBBiKyDQfbu/fvz2im7smIkUzs5qvgKCcIQGJyLxAKDE1H3MU9BOpmOd0SkqRyHE+MzWc37fHcUpKmbdK5t2auxlpZt5a733r29YhCz16b80BGqFAzvEk7Pl49vfn2zGOU5CPmTLQuPYpKqdaSjXItYPVBhnNLaEMAKovnDFBEBY+T8EP6O3H98f0fWsIzVxVkEEJ8wxkFMSX0NrxAZpZg5QJIJgROTJMmXPOOWfEjJEn/cftPCeVEgEJtlLazGRERP0w7TgEBh7neZ7nMeaMmSJ4CODxdvj78/2I5ynKUomPfXqhdtlnKGky+oZtf8Ftc1M2ZfJnKZlzXHAloIykYtpMSZkZTKZIb70xJYJmMrgSriRhAMysvjEU1xdnYauSNM/z8XgeY84xjfb+fswq2+iOqJqjUEtTxpzj6I/e4t1TFnj8eLw/nueYMUMUcFBqYQ0xx4g5V+5N0LzJvZttO9vIbW8pKcIkRSYzU7S2cqCqWKE5de0JQEaaptcMj0rwUjT21jEFg5nLYAY2DZKSy1uzORN2AccUFFUnKDPmeTyPEXOOSfLxHAHLhHlrABw0Y5WUmZnzPPqzt9yZQvLx9niv4YtpQOpkqgs+c84RMyQCBsKseXprbn33LcK2Nglk8CN/EWltzoCwYA7mOGLtYoJiCDaouRDdRBUr5mZapY/qlbFpmiMr1fMjp2Ihgai9DVWg5Tge/f39mKnCoc/4gKOMpFUEpeYE5tmej02MvgMhBp9vjz9/vD2OY45JIXOY4NavrLTSuqREmlW0als35TRPhMYR56EzzHOnEq1W6Vq4zLGWgARkTIExOXNBv1DNe9Kzik+SZj7JljAHZPC+tRy4lpIWb7DKZcU4ns8zFmjNjFxZdGbRBQQIiwhgjPF8dFj2YZpi4nh/vL29P88xZ5BIZMrom7Gbm8wqG18BwGje0LfWPR8TYamYyJDmVMxJtvYzlQcAxRoAQoVp2jRGqhgJJCSytd7SRQPNITMjWpAmS0fbbj1OS3ygDICU1wyY43w+zxEZMZM4njMcCZi5m2gys9oPLTNinoc5p1pMIXk81hKICBIRg2lmvR+ZETFDWYuONPdsrXVu+37vac+YFLOwBwhSNvrHACxAaa4kCgCUociYleZAFQMgCVn8RIW1wh8KGOKa6j+/Fh8zEwBSMc9+jsgqG1DbIhe+ZteLQGYAc47zPGjoyRxC2vF8Pp7HeY6Yk0BwmmyYYUQUnABBhESpqnNGRFhGRERKVXZHYI6RGR8DUDeZMT9IpiIeGIbIhergl1e6Hhy/bjirTjR30sSLb/k5HFLGPNt5xvVdMfOafqictLDJjADnaOfTheyhHEJyPI73x/MYI+ckkIiQahUJIC3FVZz98ove0leNNi0ymcGYQ1L7px/E4gYLVVJGoZoXZnyNLn5egBetY/r4QzNjwUOA6pk+giCUMccoGFoAMmp3YGZERBXlIjODYTHHOGkMWNQAHM/jOMeMjGQiELGqMlaIqmH8mH4kzaxte3bPWtd1aaUyBf7TAJAa7dq7BcVUcmLVFlIiLU0XGrwGoBgKU710S/PW3dYY1lu9UCYoc55PPI95jUrO1Pqyol9BUWJGQDzNHphx9jHnKaSN43h/Pp/HyDkppCalSK4kMy9gGGtJGc3Nt9td7+8TkjAtUqoZsOr6jwUAxMn4eS8x0jjDRwiEriVPdzfxI9SaGayR5lK62rbfHl7wBi6Mp+aBoBzH+zweY9WMiJE0N4O5uxdwRiZyWqaAxNievd32cUriHOfjOB/PqZh0RgakKd+8Jhp14SA09zRzb95vnz7p7ccgEuEWmYjJeZo3/t+XwLQszJuEMlIMrRkAKWuNWrvI8itlWmEMNDPz5u7uH/HCVEj6KnTHqWOEAMKq+nNvRtu2HVFbawBcWRNPxGwtxnlKYozzOMcxJiIARIaJs3apSixqXgJcCRUBsDXUHEFOj0xE2Jxz0trPgL2m6IoBFYkTSKa0iNuPdZz5gWT/0+fXX9dMWX/yMwbU3pMTMz5w9YUES6hSkioGLhgQaRyQMqk1APM8x5gRyGAwMwORkbFo1l+jdLJw+lWuZm3kmZn1CDHDrP2k0wQIGSpQGgv3LpRzPXo9dMo05pyMSCpzZcpAAoQp5gh6FxKJIrQ/WDtlzqExQgLplNFba2jw/b5vSWQAtqiPzOCEYrYc44TEiHGMmCMQQTEyKB2PH/l+jMg06SOzB5ExDWGt9RPf3h7PcyLIGZIPyYTW28cLvNYoQFoTIFsw77XP4yLbYJjnDERkSSIEzCSy1kFMJnuJbhJXdnuRRpkTEanCndLo6r03tv3lPkXNETJT6UGQGRV95hxCWsSYM2bUAFhGUDifP+bbMWfKUCkmVGR5TIoy4qFvP47nOZHkCGmaxJS3BrJu7WPn5C/rmoS5YbO82GhAOY6wOQIzg1JSEKYUpDCTJ+OcURHCCm3ntcF/LKC1hjIzc0Jigook5kzNkAlKJziLEVWkVn1U7ymllYnFPJ/5LK3Btd8iOYdNAkk+yVM/nueIXFdnZnCSPpsJH4lDAaMmc9PHDofmzVMaKaZgUMaUzRn8CASEophhk3KapmBpoISLcF0luqBgPQxgVrnbGpeIJCJSUSvPmAFjujI9QhArn1sp3tqYcp4ex8/cglXYZihBCvaUDr0955gJcWbKcgpGTLYq/FDToKASmTuAtNrszGkp+QgyRSCHO2Jkpau18BTFRxqUI31OEWwo/kd0MjLXJCsdEUjb27m1AYMZldNTJn2IlqBMYMIyLVoRmBmxJlCmiaS5AI2YoiPqMaJqq2kTSoPiPBoeZ86ZKHwKDIEKsFnBgRRRohlv8tYMSHNPgq17ChnPUxmIVM4RiJlIpUwLAgTNaE2JCJPohCsTMiZgPmY9v1EAzQjzl+2xeZPRjaoNYc3DyqulZFDF860KRqt4V92vGkRNBp1mWWqNtTIslElq0htGKANiKlKWEIgAmpc+rPg4ADJn23oHYiEarXdQEUKGJSOkiMqZS5FlNAPY2matB6FIh/WMhkgk/UyZGVnTPSdW3ev7fq59ayVAMLNCD6xqExZlTnoxvxFZ23gmBFOQSCkA0T1SgYoMVKZSEokpOlKXCE1BYbIY1GYV+FfMg2SN2217oc4WIwBrbSOVY0YwM5SQMkpKJHlRvoBZv/m+nZYjYOa3yI4IJFsOuodVaaBQ1l7j/XZ/inSYmaW7k61hDDlAIZFESXAIL2FY5trUFQY4Br0EGzQaMzWJmbnygBREi0wYQeYigCoQSUGgOQWJlGBWxKRt99tvls9+vM+Et76RCrRGZRoSxsKCCkYxdxB02z/1l+29DRM26/fQjjERtp0Bc49cl0+DYETbX1/fplw09xZt24N7t3HgJBhSjsLBVrF85SISRJHmO07bap5Y0F1Tg3pe6DTq5z6gIl07OQEhCRpaYbG/JnK0tt2+tGk3n0hawarKSk9rd6uMjxeKAHM2u3/aX7vboRPUqkuSaLciDpdEM4GgOTz79vp6e6YD1nqztnXj/eajoYMaiQA0V0lpl0xSS4sGEp3mzU3MMLJ57UPDrsTroxalGygtBWEWBRMysCkzBUOuGmymGcDe6a0KjMyUEvMY0iykl8aKnbWqQ27WrO/7zc8t3STFSJjOYRCL8kfJESNJtFLHuTtJl7k39NaM+621NIKpAMykQGEbqfpDZcZV0tIAWpfNlbwIsIKrRZJUkbf07kLKjN44A0RxeLQm1QZbO2htr/B+2/y9M+YkRM8ZOWISkRnpvq/1jCXHoXvbsN3unxzuMdLSwfnkmG7tZTuBGesjkwZMQcnj6Y93DRhord1fb8Gvn/3Y7KGcTI2p9dzgBGpe1QAAGRiJg2CgSRhmDQdTOgNuQrspY8kzjJAilVIqg8hMMAG1zJiVOFAihmjwfv9tfzxeH4hpOcF5jjwpq6AGNB0FPyUoTnXvbcfLp8+/WbvZ4TEzhEOYsW1fX7sjswr9QBRj45YpMofS3ft+99cv9+C//O7Pf/jbjMOH/NSEhAwQqBwEknLCMCVBh5RJVyIaGx5G4whzCNseRyCRMNp0KdJY4LYiS7pJLrHSVUdColnbbq83u9+7AVqAcJZSNQmBrZgkLLyLNHdn326vDD67m+AJJkGa70agUCVVlgrWHCRzVvbpre8vL9M+f2nbMM2Jk5kWmZmMCUJrANa9UEoja2Y2AUkrdh650k//CPklBY0UYTmRhjUAYDPjB4pMCjBv/Xb/+rJ9//Jnb0kTXWEJlhCp9Fgl7KpF4Obe2sb99fNXox97C6QLMWmxb/fXzbVQdCxUrXgItm3VPAS9b5vx9rr50zUHh6daKSe0mDdAyRLrAyJR0sWkVEwIGq0XsSdYgRYlHbtquaWKxwrSRGsrQS2MXzTzvr98+uun25+//dHbpNy6hkEoAXuyCpkLSAbp3nvf7fW3v/zNrB03ZyYSMzgzuX3eu5h1TWopC81l/f7ygUgZaAb2+80fPWPYPEM9lLU8eSFLVXHLaDS/We0AAujuTcneaXKyWi+47hAoWRoEDQOphXuwXcN0lYI0877dPn/Cy+utNydk7s5fsFaal6CnxrAU+a3bfnv57Gfe9z6SFrCksbX9deulsjcVT8aFLcB8ldA07/v9bvby5ba9bxEnTo/oMRpK2L6KNSFNShppZLNaEHnJ3UUYBZpJ3rKg6iXDxprlWHL7WvLtgxgthSKNZm1/eX2d+21rbtCi2QnU64Dtn+05fwIkIV/FI91I5JwKb1JgBPH259//HYEFxFzEgVJst5etw/Z9f3398vKXf/1y2P/jf9u+Pfw8cRjoVsJhGfEL+oacdAK0VkzyUkdGmpsCc07IDPeVexf6rIw5CAthDRcAoP1Kqq2My2it9+7u9qEIozVdkgPz3q26VGpFSjAjvTVzo9WoM71pSBkxJ9FyXLORhHnvtr98/vr5e3K/ba+fv+yvr59v9tuXNm7cFM2q4cJWKoxFxWHB5kYzb9a4SbaJpp2b7Y6urqW4+3jNoPkC4TIhfsR8Y5uhK1RKooLzfPz487/ev//78ff354EMi3NMWS4JFNm20y0/ZmUi5xHub/+A2d/fvz8TbM2yMTwU5490wxYrdwFhTHe37sj9dXK77a+fX7Zt2zfb8nx/6v35+P72zOeIvLabRLLqg1IAQsl4GCBr5msL0OYj1aIWZquZnrI1GLUgVJvCWvDtjJA+JLYtAwd+/GP/P7Yf/9frv/3548RM+hxDkVLpWKzfRzNDApQphThg6a4/v/vb+OM9ab5beJiZ4v3vs7ZBgKsvRMog5vMfeibgbdv3ftv3u3nP4/vb/P7++PbHkeehrBFGhoK1nxkK3UfoDx6piCruJ4Z3e6YWGOVbuOXHHlJwb82m1EUBZzsUurYG+C6LM7nvk49/377/eJ8aImdkpbCQjNuX/7x/n2eGUmoYsDyDw+efn/5nS387Gvvtk8UzMZP5/Ie6IlVYu4FmOhXZ5/OPPDvs9fOnv/319tuX/+f/ttkX/P0fe1qM4zlmWueWyKcwRs7KpZNABGiJ+I4ZMxKrdcz7v7THO2YC9H7/bX6LUASYuaBCWinRRK/dXO3VpIgoJl8zaMw8H92OaSmQPhOwxTelCMb73/88ouS8MFJKmhKRc2TYeZ4hOzv2iNOBjAhFKpOkUoLDYaacx+N5YHu6f8v9+SN+NPtk3//rfz/+/PH88Tgjj4jzzByYY0bk2ogqlRpMnZjZmlAyYyifEaTgEjXe5hSgagQwmmTO3iwJZ0bEzFT7AH2vMlGZc54PPp85qrBec2flcb/8+ol1W3D6gDXPNuKDFicp5fj5b9d2u3QMUQTR+ppMKXKcY4wx5pgh0fyqhSv5AQt8Lw5tVgZxQdd1uz950Z+cK6rDxZzefRT8V8/c3E0zhFwKRSQzzgM8jhjxywBct02sFrDC36xGAIBG0hztnJkCaa1PoxAjr4FjyUZJl5HQGKGqtmOOcTyCwo+3x/P5PI5xVg9UXfMq5VcNfskpFze1MgtkZspW+F8Z88deUDOgbY2Am+Zpg4H29dZwPN9mzGp5AKGcp3GG5ap8L5yukgnnfEx4sxygeYSQhfhbTgGRoZRve+zv55yREZHJWj5GwbrtIpLImTIqMZ/hatm44+3b9+P9eYyIZIYiU+Zrpq0k4spAqxbjTzZc1dbHLRPMkfSSXiIFEtaabZ+2o7Vb03E8n8ep9vVT5/v3OExIVcUFKLB0QosmWHGysgCOx5A1T4Dup8OrH8Bbay4zR3V82elH0Pb7UUpp0ZAUrfsOYJCZmc4InZqYOBybH2+Pc2SKBikUmQuq+sl5X7XLxYGgUGYzTsEdfFEkWoY1BSnmTCNpfbPbp95u99c9Ho/Hj7eW7fayE6NFCcwlpGWMwzjOnFE55pqFLLmDIadozRVAM7dC4MRJY1OLFGneb2zP3iIh85TS0kwkk946hChBDglQGXM85TrteH+M8zxHRC4hVoXri/u7wC5AiBWHdAWy6n70Lovq0RF04UOEebN+2/jy8uUWvdmcma23Zq35Ii3qS2Ic4DxTkhmopTyvSoZEDCVgSaa5mW8/Y6Po2IB+39tu/XjJFrevt4hznDPhkUyaeUcyEtNUDDGAAU5Hs/OcKZi5ItnByUp1aiDMKJljouBdkM1Y4LEDgLdu/RM1ZtuPBoTYSE3vG7aXm336G/3+8rJHzLO5oXFJJQCsN3xFbDPRzTUDYFUJStIITUVRVEXgbvWavW+72T4TbLe9d/r9E3q8/n6LeDzsTDlHrWJLmmUVMqmYkAwuR7YEzMUZFpGNbJFm5lnlnZkJ1qVYdY5a85oWrVHN1TZuN+N5ep9G0Og0yXvHdrvZ/TUPN0rKSEHtx+F8vB9jpmCrVs2MwRms7uTKPQS6WxPcrHEqRiIyRXi7n2e2Aj+sNdrm2+d76/DPuY9x/3qL2SjMVYYo8BBbhJATQ8Q7mysNojRHIlOQZWYqMkMKQbTVlEK2+Fnpmhm43cfhm/Fu7+rZmzvQ9pOkYE2m4W7YOhHP5/f393ePt8fj/Ui090yM81EYEXPVVdMYgZwTYqREKABHgZNxzMyTnJnZaPunQ3Oj+u1l577PfWvcx0MTid5uv/1raPzx97+/j5FpkdLMB1tDZkbQBgO++bGdu9O3UHQza80tMjOUGTNYHByEBNr9GFWFQYizedvaAewMoHGft9f99ni0fj7CmW7cfbScebuTnj9+oPWM5xhngm28n4g5peouB5CWGdXcPafEERCgUHoMwIwRck0xI0nH/uV56s6xv77ueNnnp5s/7f3bM2hB3/72X9yPf7/Zn8/niFMSU4NutpDJAB8NPgMy6xa97eZIbceUBY1Iyf2MWNYNbC94ZiUySrFv/XZvMzxHOttmL5+/fPrx3vw84AFv++f76M8/x+s92ez5FHnmqUz31uL5kJRX6+GiOK2RaczqkLRcI6AJOES4W3GdMkN/QY+7ve+vn/f83Odvd/82z+8zrLFZe/1L68f88eepkF8x37SQGGWonWoIRoQ7reNmTmDnIWZWl2CDFTwpEW0/XZDgAJTNtk+f/Xm2qdN362r76xew+22bW9D3179+je0Pe7zuw2gZgXxmgPRtbzkOrRr7AhagjGBWIrZUxKpyg5XAPmnzTJuZENlu6VbQ+Jb7ft52390lWG/7/uVv/3nfn3r/PiieHoISSrhBQYMiT0sPBIZ5Nm0yV4vY61uNC8xbBJ7RfH9WMlzBaVEXbDCx9R33z7/9buYs4tMB5DSB/dbMXgyp+cy5yH9eifla35SQE2BOm1ViVFf46oaCNJ9B5JBFCpkpM+p05YzMZMbMbN2b+t5vt9fPv7/uz7f/eHnPGasvt1Awm4FOQhGeTFl4tzNvJZyjLRD14gJWvQbQuiEjJDBTmOf7t3EcpUUwb9pfXj/P00I5eeaI5PvbNr/PFzb2W63zGATzbL/K5YuEZlKKgcXGVBJkAGU1AxQ5AQUtxJmSzJGHYxwHNeaczuytdWz7fru9fPr0+/3xx+eX2zxHMVQ1BAZNuXPJkGPKtkzPPc6UhUqtT2WmMtYA1EzstlhSUyZiwM44mEqC5thfXj8dbzylnCMsAz/+2P1Q0LltBMjMSSDMGsxXKbjy6/pvFUAN6D2zm1Mx1NOXjcvqbgVVfHXO9Ha892Dnox2YiELxjJjHaKN0uotSTYNypiTUI2QMC4XFPJFNTdiO4eeYnrUZ5lyiko/EL5VCiDAyTx04W+R0RoRynMdx6jjO059h8zjz79td/hyNubLG0iIIjeY/nx8oCxxDJosKaBvtpXeL+WO0aBISa+2lQGRK9XTg+UR75mENmY844ac5H3/+e94f/3h7Hsd5jJSX/DFn0PYyqoEyNMMtw5gNFLcz8H5MO3iOMRWMaivIJHOteVp5CAiQqnJRZgTOHxv/+KbzcY6cKSZj2pnt+dYxxvfnFOdYEuXmfS7xF0DBGg1ujKAnzLC9ZP/ycvNx/McbxoyUSP1SJwFAVjQ8n8Q5RzOCJ1OREfN8+ztv79/eHs9zzCm26hDImWLvo3S2S4QetCOfMDFm2hmrmZwgYHBTNYJWj4axTxFN5S+zOrjnHHb8cHz7rnHOpW2fqQzFOFIRIwNuy7FJzVuv6FJ9C73D4A0z2ILN2F95/+vn1/Z8lw2bpcWiEbEqsrVJpIhxeDszGmk2uYjI8f6H3d7/fH+cY4wgt2AtAYHbnuZGu7SSGWk6i7zWDJEGbzLOFi5zsSXMemvuoN2PhG05EkZjqYVjzna+Mb//UJxRShhkKAMWA6kIJVk+FUo10YSSThQxBIM7JHNYN2vdttv93h17TzOT1VvQ1WOSiuOYmZgaRo8Bk1s8UnIo2uh87O/f/vjxdhznTJlYHKVgfT9tWU8VhUfMfDJlSeVzlKqmNM+CW6kuqRkg3VokbIcnWi0ECBlD+nMcbz+Qxwgt6q27gfNUpokoeXlhgqInSEQtiZQ3tE6S3dsd3V+x37/8to0/vh8Kq24Mt6LTyzoqzxGZJRjs8XTKW54e4WbM/FNHf//+jz/f5hmK2eYRdsswQuaaGcZqXa0OPk1kGi3mOVvr48yRbUxNPEk0s+TzfUZESTd861skZ0yOmOSJI858f3s+gOeYFqaYhiqjksD+tSm8NUSZqGQBH0vLaNVl1A1gi1bqnb7f7hu7+4IkYT+tdpRSzBk56VLazMMRvimaBmnyoTn97e3bn88cY6zEYkamEWM+YZNekrS2n4QHpdS0zJmrpY+rTl0UDj9CODIZes7AjMk+n86I1jX8OQ5aVBeJDeWwrTV4RpvPMRe5CUW0c0ylymkKpZ8D6JFAWgh5IP6w2ccf3x9HvWp6Q2QtAGbofH9GComMOD3ETCBtjoTcOM5hj/cfjzMXPFbsYBLI6lo1Nlpj3xthoao9JktPTFouXUuxelIcs/huQUqzMnHCDJEZQ5LlHNYykkJWT0ZxY4niE3VhvO2YJaiMXPmQBSLbDExYBPyIRzy/tfz+x9vzPIcyzXrh7IAyMs/3MxZcmrPuyyLPGME0Y2Ta8/39HJlS5ggBVlMpRuGE7mab9b2TNmNilvsI2BwusxYJwUq4OxXVb6GZguSbx5whFluQIdCj8FxBohIqjT8N7Y7ZIHouVPiIgGCo1kCq/lmRCVo/5WPE+/dbw/v78xwzkGC7zbig4gyN95/82ixFUCZFRADEnA+ej+dzJpiZvzQlMYME3X1rtrftDtLO45RPr8251iTcgTJJMTMgnkMQVB2t8NqSkPLNDk2ymlZVwoDUBf0rphJOIsVFkLaRNRS5vB+ghMyqr/Q5wjSnvW/OY8xZKKz1/SKsgZTiuLoMpIBDTnMzDRkSmUnN5zlmghEFZZeul0ubbq112/rtxQl4tb5kIDHOnDOUM/PSOKRSOCJU0n5pntV7aEbrN5uZBLPg3co7LzIOslTYeJzzEhqBrV7lB3KPqteLN5gYwzKD4zCOynYA2nbXk7aYlMpqP95qZatm3TWmVVuCMs4xZwKVzlGX44I5ad63fffb9vqpkfkAY01eacyMVM7M1XiYQCJHpFBIVQ4ilQlS9N0fmUSUo5pdpC+knODME+ecjyO02rqJdnX24IMkh0ATLZljVi2ayQpJDiXadp/VEbNMchbbvqRpoLftdmtA+DwzFTNjROZP2J2RVjZaTsL7tt/9vn/+2oHwM0dGEpA0pFlpTK4O64RQ5meLJ4ihBGmgW3/xH6tDE4TZJSwBoAApws84M5eOkWRbUACv11l3WBLozKjVYV5uDM2ROfvt9fDqBBBM5qzeR8vSqfC2ffr0esN9tPMxbJTb0kctI32kN82dsL7d7y/+ev/6l405+okTOY0gMlOBjMwIUVAuZXtc+yAAZdLM01q//cV/KFC9K2wyE5bNlJSkgGAEZFyILhoMLGqLq9DCos4ARaSSGXC4WlteH+328sO9QiZJYPVsr8gGmO+3Ty+GYY8QYzwOBLKaaiipektKHCa0vt3uL/768vX3nXHyx8QcRWsrJ7J0bXNlXUI1TxiEdIhKpRUv0vbXtj1C0AR9PYWWSGo1dpggA51IyQxtWXZizWFLiqSDSi8/NipLWmDed4tAv71sboIxqqck8tLykjSx314//fbF7PQ39uM854mkMhdTx6v2ttZC8Lbtt7u/fvr6+x3ziW9Dc4Rb2qK+Cqvnyj51KZy4NJCe8uaQtf3Tb+32HqmMdMgclNUwrIaVQAk7Sk4hGlo1VWjRTCazpLVuAbnShKKMilfZbozI7eXzvVkplUhDQ0C27L9sk728fvn9b18NR9/5eI5oLlhRg7C8DOjMWt9TaPvt5fVz+/3zv/znF8zH/h3NZOPMCW4DJBzIpBNTLM4saZDRWRSd9wZZv7/+3l6+FzcL8y08YKAbKuRgkV9EcJldonkR/IBUEhyR9G2aJqrAWn6AiJkEUzN5u2+NCVrSMucyITK5mfeU5nkeD3t7+J9/PN8HWFWMFvJKk8HprW17QNvt5fXLb+33z3/9Ty+Mh/+hxrTzSIJbddFBYSphjK63VUTxgsssIJvq37fHCIie7v02W1QgQUpr8ZGEo7mhuiCbObm6rnWJzS7wrzoOIms3mbKcFDRHsGop1oK0RR+XKivz0Df6wf/xzj//PL+P1dFOLuJhzd6awKK5mbfmRbC6ubuZLTyGC3SgqjkSVTMCSJmEEC3FNIA29D+3789py6dtedzEaqldhYQRDnchLSk0LJ2XBJXrBUF6lhTnn2ZAMgbljGBzy6UAxzITrZydZokcz/d98B9v+v5jPNmsiUYlr+fHgjTMDHBvrW9t2/Z9p/F+38e+nc2VlKcEGbIaQ/QRoS/xVLkWlhcWp75t76cgGsy9V5tJ5EdoX3qGS18BCW095qV7BWSkeV7eoeuDsEwgCLQm67d9Q5aRbelUUW3KZmYO4zzeRv7xI78/5ujLq7AiCXW9CtK8uWDeWt/6vt9ebtbsftvP3lrzdKopJTfALZbnxjUELLFPlouFRyCnfuzPAaZBoDW4AQg0mGHOMjuCqbqWlhns2gC09ufKIrJEyktlSCF5CatIywjRVvv0yp+XmGA1BOY4+tDjEe/PCLa45lg9upnKKEEZuXC8ifM8HrBWBimrI6AGSg6mpySVVsk+1tDavcyscu5njuAy/ChUthhLt0Ws02AyVZKYgDU3KySq5pQhJcWYlYwZildY/gT1EnW+LQVfDddqgkTEdMEigeZHR60gRWQ1OlTuZnDHTEIZ4xxm83zub71x7v1mfvz7P769vT2e54xc9kLekZDPkq9odWOrRBFLPrCa/mdZlUBSziMiE1kGQJiV+pmZnH6127P1ZpxTUdDikknNM3Im2YqOS4CWXH4Q1Hg/EiYJpR1FikpExhRPFdRBowdJlKceJFk5P7eG5WgzfDRhHMe7u07nRj/+/o9vj7dHdQLDGiZz82FWeGzV8klCpFn6ahLXpAmYWFIyoiBBwqzMmZoEGNvWhqM3RmZEqt125zjKGVcAGVDGiJxJIKD8EGgUPUJjnGnN1M4UfdjH0oECqwLJhG+ZRAYX9ZrLmZR9Qyx/pxHmmjMOd85unXb+8e3H4/F8nBEpnUmZwbzyHxBVaIv0UkwLmW7mVEiYheq4QGgmXaCyk8SIpW2GbW3fmJlzhNrrfePTJ6vSy+p2zRmKIJBaf4SVewt0aibdmEo4T1vhs0ppi0JNvd8+tWzOy0Lqg3mBwEZkkEqlXGBODXtsDTx/PJ7PY4wZEaZR61hzjjlrAFQ9w0wt+w1Qy9KwPLBJNk2aQjUA0UhDKimab1u+bK83xJzHOdQ+fbrx3Q6ELg1uSSRqyS6NfQFT1VRDoxJ1dELQ+XR5XF3ShSm50/vtlbf4cXrUlHSp+t+gaqPUQGtN7o2+kYgYTxePx3GOMhALabUN+nOec2Z+xACBKVpFStJ7wxTSAIM3btUyjopfbG4NQECkb7te719ecI7TzNhev96txfco3+ZqdVWMZXFb5GAJFa89wRgHYG6aZKdXZwakZIK5HtjajeOtt/KT/fCUqlyLDmgojpyNhhkRFiNPSuP9+9tzHMeIiBVezTHmGaOKftVzrRAbAZnYMjNDOm31wklglCAWcjcrr05j2+/5+vn3T3mcDxFs90+vjmMbnFG2cnWHqr6tvMShhguWNdN42JluoqFpgbQz9ZFwDLlt98/3+XgZS216la4rGa92T0X5U0SOyWjzYRnjeLwfMY5zRhAFeXWd84yIGgAiL0Yqyk4ePHOULztNLJmJ8ix3YcWYIs4hM9C2LV8+//Y5Hg8+T6LdP322+b6d8MsEbr3p8kVFRXsAZTJJ9MbxZs9qt7JiqyBFuecyjJFot9evf0XE0+zH4MLuFq0BWmumsNRMUJrnPJKnv5vFnGM8T8Q5Cv1JJNGQkVcL6IrxwFVZAMiphJn5jVPW+y1sTszM4i5HjkSijFJve9xfv36extyM0e6fv/h825q8rHiwsM2a1StvrHLUrDmwdWlwujkcbFmGqMpgFLgCZvr+6be/uc7vM0KhwNUwRIL01ims7RPM1JwIgyyOmXGepnMyAutYCKAwL9Plw3CpYWFWdisArXm7YQTNm4zIM+skEMx4Dpibi7Rty/unr78N99y7q7Xt1vbNPX4mVh+NZ8trFqwYZyQpo3K4KqeiC0BML/QdSmamcYykNTmQ43keE6XXWikgaQwoEaRlZuQ4MSyD8xjIcTqOsAwiCplSZl5hSFjyxaoHazosvrYI0ox5HmOI7FcLbUJpigxF0tp2u7dzPrfe0MyrNebXCXYVLBd8YaUFuIoDXJb5tatVKfEBP2aWJ1TWNpLKiAkzgGtRVYJb8QCZysgYMObEfE5qDnEmMg0pqMCLj4uXMhofIOZHKl9vTldyumyi9OHiVH9TEdo9vWw7G69DcT4uwKurr56+iLM6S6UYlrX3fFiEadEsJVxL5XLCNI0x5yzHlI9b/hA2A7+M8YdMBz//4SfORlzfvrIJFG7BC9GvCjkIRZQVg5T8qG0ukFkfQ/BRSbRxPP0453KmuN7MRwTAigC1Ic666bBuUKp8V385mqgANA6pvzRs+j//69//8eMZcYGtWmA4l9dQElJmjAgJMcq+rd43SYMBYGutAyxgTgKQvKxHF6CfVGIQVNIb45oygpBp1qr7bSW1czyfc1Rq2I735m+PMWc1XRijyiQCdJOvDbek8ylgLki/HqHqNujSGEZJm8bjz713/f3b97fn+OXNVeNtMys/oyC6IuIcozQTMePq6wbdzElYv23n3GtwWA3QXJ0H8iryyTmryR2OYHm+X2iiuZfDufVmrbfI8XzPc4Ro3s5nt+Oc5a8Ea/bRUwmUvZ9Yep5/WidmNafy8l4r2GbhnVSM4xE6i4gtGKvQerrtW/clBJexrFMD4GXyVKvFALMSxb30iFApSyIjNWpiKuUlIC776IUYqBq8roiW3hLArJ+DlON87jpn0h3t+SP9+2PMWNjrpbr5+bi8zt2QrcbPWnAToWQdPAU4wowyI90debx/33hVzQb3ddhG5W+cUf2AdGbmKAfqmZkBZRLBrAVrUkaF4Kv65zpOhhWfSW/dpo0IoY6tyUvKLRKOThqOIVA5nxZvbQ88j+OY9HY8YI9j1kyu6mTFIZS7iMAsj5yF66SRsIVHFgIL0JF0Jg30mmWPsHOuAwhAuywey3/lOszIkGXapiibr1gGXhYV1dPEI05kVjkcRZZ8zEWS3vutHSGyohgvCGoB9ey9bfhRazHHiOf+gzjP4whZO96mvT3GrEfJsI+sldcJZqw3cW13glX5WXMWdJnQOc1hcLVt3w6dj97t/SwOqyhKIS0VOQ6LnIq5KveT5xGqDpqMhcZ+xGElbJ7UnCkRmcp1asTCogzs992OkdV4oOBUrrzF3Ay3+8uN/c9nzMA8WzybJ8c8j6C3Jw4+3s+plGi/eCGvEeCVEJY0ToDoZh2xnJxohjltt8OaCT37/WXnMR7W7DETdJinLWiVCcbJzMRcphAcdhyp9FoDXFrKtdKUnLTpOUep1vPiF6t+l6Vs+/SCtzNw4Xflz9zMvLXm9vr1t09s8PMQNOd8FDEwT3hvZzqP5yyTlOo4p5Y/zNWORMF8ub+AsN76riOLCzJ3juRuP7yntM395fNd8Ty9cQrmIjyJsvUGkwowterGIGYbp5BgpfwiUQb3pEwElTBOfHC41yZuyjRn215++4IfQyq8DzUtvBva1nvvn//lX79SJ59ITGWOJ+RSRu8vbU7jWTO1Wmw+AkB5Daw2tSwjYdYhBG27K6d7psHReQTvbm1Labfb57+8KoYURm+YIHyZDpEljBUF/yAkZ+YUZE5JIo1BepqBslyG7AW4WllRrAFgdVG3/dPf/qpvJ8QpDwNhoPtObPt+2/ff/9f/118t3vmmqQQwje4mcLt/bscQYo7iRWwBYNcSEH/plPLKGA2+ed/L/lSgcffn4N297WK8nC+//fVrHG/HNENnCzjaiGAojUAwZjY4MyRYGHKeJyAzZpbBMASDUxSL+WHTeRQ4MoXGq7cBAmj95a//+vy3N6XNIqnNPb3fkH2/vbzc//Kf/z//at//Y9p4aipnzOdojeRrv7fnIwrxTS7TiZ/xdSWNCRFmjiYjOr2bdWJBRrROAj1BT9Lg2/31ZTMm4JvliJBm7fFlBKCcUFrEwts1z4OQs8VMaDTMYRb20wwomslsdW+tp7ZqF7DNbvdPv//Ln5/eqhXxQORAZmWO3rbb6+tv//Kf7a9fvh8NmrRxMEfbrDX0WxvnxOWoYIs2uQZgIf+Fp7vL5DW7aJ4r9VWxtTSrFZQpmJsiZJ1SxjnTowzzLX+eYlRuC5dxD0v+rUxMYE6zSUft+FJex5msKiqrfnGSvvX7y6evX7+83rKMF2WaiCSmZ1mibPfPv9v/97Y1SoEeQ+l1CFDfm34+8of09ypz1niwbOs8TZe2/qfcIRcvoFWDxYw5Zlx25Jkxz/DwduUmAJaZnpuTiqCZmS4VUBWTynXu58dkLDiMtKjdbhFsrW/7vpWNq9MlS2ZOyjHLR1S5xNx11/Tgz/fMlqsjFAAUvzw9l2FwebsZSTc4wIxTw+P9iHFMZNjIUL6fGs+cOfJ8+94ObObWfPZpQJnEFiCYQmS40ua0BJWJUU3CqwaCFtsowMASMk8uz/AqQ5VRImAxcjy+/Vv827fHGXDMSh6ozDOSVGrmp/u3//1//x//+P6MpFWT9gBtfHM1Oj/We7k+XjBg9W2DpOjWstHZmJZxJpDvI+IMITxT0vvI+VRo5nj/7qO90uktzuHA/NhXJUFRjHpEiVYSYVVqlD3eB5GYoLBwhbPOAtNVa+gylOA0cPuvj//+/ZjyXeeq4JGxUM4cD8//zv/jv/39x/uZMY8RQs6EjT8x2sILynVrLewlE7CqiGh1OqfRWkcKecYYesbUKSExI1LvM8cBccTxtjHt3p3e8jnqaJdFDEplUls6nmtFXMeewhCleYGWiq1SdCQ5V+ZXn5AqH2fGTPn+9sfbCXrTc1U8CnEtwIPj7RX/9j/eHs+nhmIOchKieTwbudKb9ei0XEJgJ2SiW8IaHc3YOiOYMY/QyMRUHYIq6AjFafRUnM+tN785fMt2jmP8KtyrAJICMkELEIoV37DsHVZEWsWJBHBc8VOo/q5cFIsUEfbH+facbr6pGUu2dumLghHx3PXt23mMmYGIoNWYu462QCVLgpZGlpRDolNpgrWkdxqb2X7jGEOGkZhJCwqig0QElGhGQrQ722tD2/PtwJwGi7prsE5uzXKRtSuoVkRzcOhjCS6dJ0rDKfxMkZcnVcGMbhlzjLS2bS8vej4LAynngxIBH4Z3vT1mebJLYS0iARuuBjoAGUrAS1r5hIk0yRJcuDi92+2V43lMw5iQnFnH6SmVI6XpplDMwL6//NbR7vHtcf5wVMfTxQ58rOUrEotLqM4s3UXpVa8mKQmI8tpMJmmxqHYB5t5maJxhtt+//KYfbxll9Vln5AJzvs8HdQ5FRIgL21Aimke7XBa0jEoXHbbQi9obhiU8O327macnNHKVsgClOVNDkuAp5oxs9y+/7+ov07Zvm6nwtvU8l3m3lm3FBb4tKqvy4SXQIbCqBJjTFKVqjA+VDM07pTgE77fPv+llO1llfS2yzGFvT4ZIKwHpOvyjjHXZsrDlK0r9kgj+RAUv4FVadHuh1JmJD+JEHypIZc6IOUwoRBTF11wJ9j8hnzXqqeudL+R2waP69QMLUKiKSCVTvLKPaUoWBv0RWiEpyYgIYOpKNTJSnJojxJhsV1zBJZLh0kqU+JRwR28bOZvmkxzPY+YpoMjZZM7xEd4ypeB4b39/vD9d/Z4/nn+8j1LGoTBcfmxmoNvAFdQVmtV9pQ94eG1EAKqbNaI2wMLtZFLMiTFkQ2k549Qf72do5gIzJHIwhVgYLCAwkQhJyMm26IRyybiQJuLKjwije9+qle4Q5jFmzrptKm2J/tcAZiphD+vPx2nyGx7Ht/dj5i8wLa5AwI8UHIvRiMsKtypyfWDmBfQBmYsU+5gVGRMzZFNJxRz6/hizsPG6SnIiVh/kh/kVsIJIoq3YtNKn0pxgPV9tNCwmZKYyBuI8M2cFbwFpq8t0vaZUxjxoj+1B+YZj/nhbvjofPKsDF9gkkKmPumrZ0dTErylTfSIAL5oZqMPmcQWoOasPjTmOAz+OWUvzmtY5i2KtQwjLqHdFOFJoa1H93KAraZWYNIejSHirFtapnDNZT5T1Uzl/7mQlExm0cZxEaxjxOCMBg2Ep0wTQM5f7RSXKH5l4cYaliyXYTKGkJa4eatZlf4Yq6y1LC51TKhspGNdSYjUekDSjHGlNY8jWWSNCw89wpJUBwEgDWUZFZsQIQJEg6zDtj/cHURnXyW5u5mVgY9NOsllGnpMSq0mmhGgGLrvDZlqzYdmWwyvAlQ6u8G9AAV7cUn78DhRPOTOrazCQgYkFCFViq9JFSIggQuJR3mmLbWbzD+oIhaiXgrNTsmpNyuKvFFH17yU85CqqlAAdpHVrzJASp9k0NkUqrmO8FvuVC9Ch6O4Z191W0WFWVjtYXdxLdHApv9cwVOMV5ajWoOWukcWTCTQgl93SElhWt/O6E/PVupGskxAVH5tS/THGFbEqReWSdizZDAorEUGmpq+epsQ6wdummZtnzMjS8PDi3sEiD0DRjc1rYK2CNDGxIgCvOUwue1ZdleoHL5msiqA2y1iNNVyV75rXybzyTRF1FKatmo9sRoLrlIgrROvqoyTq9NakEUgs8WRF52sdlseKoBr0wjTd0mTzKH/9cjniNXBmVufxePklFtMWS6a1csQPkrLA1J+b58fyu0K01UBJClVFcSH6XKH30nGSMJZD2Wq1s2ZmCNg6XKd6537yvmvYyDS/SrFfIOOaB7WnCD9PEql/87ZUdix1ycfNmznhYa3XQb0iTVMr0q0A/nED68sXWP1PqWP1CxgkGWWrnrcykV/DtyaNXTJlU5o3yyoYrZkbWScT/HpJ8oqJEGuRx4f/7KUVWh3oy13CzJXIK6bSWhtFHIjNrjdKkNbcYPS2uTLBNHq6IFsiiH8GplgMfQ12uSNq4UFmdG9Qojq9ArSLwbtSxnU3uiIX6d5NqWTSm1kpb3FBoLVgO5UWsRABiaVgJ68b4yVjX+FF8LYpMaVMIa9zQQXaLLD54w6MZnD4dmsxU0mjW53tThPjmu8LGllaz49qemUJVmfUe3MgqiHDALpY2ij9OoSrcfjjHtah6LZOnPyYMOISBToX2HnpRX7+BP7p189crQ5OLm6x4nxBl+Z52bEKH4/BS9B/3eZC+kvVfJWEa3X/DNAftMV6MP3f7uUnls1r8fz6A1wJrn0IYloWOPVrqop1hBcjL3lyvWpDBU/iQ6xAI8xyhSoK7qlerlPbnjlS3gOt9SOv/mRkpUEl7JRUSRqACpRWA7B6OVHnFV0zQFCVbpJyWVyJBoO8ZrNAqo2LgQVRuytgTpnPZAwolClnGwKLef1wzAGgINYBDUtFLykXd1rik0shnFd9kxkQys4cAfiYxyPE5b5zMasoIJSWiEDJiWAFbcEsZXnF/PphrunxT+B1bVYSklnQQQpLjMSPVtk1d5bWuerxErXgQqHbVWKurOaKAY1I5vzoz7k2MFKA/yRniaqcCuiGKmJWVMqoxsOc8L6PMVfjCsvatjwsi2HPWBY+lYrrl6m9kiRb9flqhK0dwF1Wp5cQMz/SzSnNCKwNjKS3zc9RQMnayEFQ1lrTEiLUurz6+aybwkIrIFdNv3olJRCGJY0CaUhag9oGqRQ0dWDM5YusX+q+uiMzmqxtbdYKqq9ewMGVM4I1SFzkLJlaoEDtOtY9vLdmbqYjiKyTCqvfE6uT1Yx9v/nzOeNSka1ai9a2JnJJYnnFGVZOllQdswcl4F5bzUdGf61IISXHBGNGaCZU6ZDRGTMQc5JoabiSYPfm7NHvL65x0qd8y4dSZpyrPXTlNlhxLYsSWvP4WiRp3tq+EYI1gtEAhlcrWcU7kGCk+jlnsj7JKxZXMUTyUt5ddTPqyC4jzBRK0babhSsA4NIoXbiFKkF2ZZyrh67Iy34qE0p6v722Mdd7Fezm3GN7/dx4PuwY2ff5Y2Y2IrKazNbkskylsaY3MyF+1GIg2Lf9850awXMSw0SG8xwRvCo2ApS1kMwgNo2oujVBWMu81jMvrGBV7qR5NkuFQGs9m6+fvRhKXcnNL7BNNbsVvnUd+EfztqWbag6RbI5u27Y39zyE2XdrHmhNdmV5EmHdcyjNQGcdWmdVW6q0Udb6/vqJeY6F6QKgu9nlpg3CRO+3vQjutA3vZQWVCbPWfq3szLC6ZirbNWfzlBJm/aaza1o1GS5IZmX3JiPlbUNU1LG0TLRbbHKa+fby9S8/jjmhSBq83xpe5+3Lb709fTptv7sjy2OXNKGJILy3VMIcbGTtDyaRloA3821/ef39K+J5qg3XMWoGeB1SoUoYiyOmIbuF32IGqleL8DUAyw7BKv581Fy+xd5CSVrb7zh7nl4isp9RAKvEAMy7xkp5TALbPXqGubf99fNX/njWvDa0fu/5Ol++/qVv73Y22v21dSe9Z2kD0DBBtts2FbQGdlpaknQlzULw5rbdX77+7S8c3x+y6eqnaLMlTEN1IB0EpOhdlto9+qcZMWZJacDWzCu/4S8JEtf+4Q53mJFm7TZLXXvRZ1fqJUTCmWsbnHZNC/b7QWXmDOzYuq1CwNX6reser1//svcbng3+6cvj9jyx73mg4gyyEtti+QNGpzG5PIfAst7Y7y9ff8cRQo5WPkujPw7MOecFcqbGWTb1tKxZDRnCAPPWWIfFmoy+atbKMqxOJZBvbr2/fonvfXiDMmQX3FDHXRickLdtOgOEili+fT77EM36/vLpt7xtWVm/+tZ2vs7Pv/+nu//Aw9E+/7a/PGa8vObJ+dEcCM1nRCpGMKoRCiktZwSz7n3bt9bU93Q7Nvkp2diPqcMrgK6gb61HBgIT3+f7GYs08r63e9JSM1sa3ZwoMwQlqTyYRm5ufXt5/U7Am9KcXevgZNIyretKH9xakIC7d7x+emvFsJv1W3ciQOsWlRxjv336BL29jPBPX/rrk/z6KU4va26ZtDq9hJlUb9ScmBDNyure3Ijxoyke0d2d3pWWW3cHYO0CrwhB59sDk4NzDLEx0Bt6783oVofXJqUyU5FZ7eU1B4H0Fq/vD8zZBHO/64gK9TQhJ90g79s8wlwkrPfmn758MwXMwLbdb93NIAN822/37dP49OXra+vjB/r4y396/2ve+Z8+h/14HJGRM5ACy/Vghfw6EUfVJklSbK1ZuyEyb+DGSAyz2+2O9y3UcwRWM4V3Xx5gyDBvlslU324tE0vhUXnDgq51BbpSNFiMi5Mh6bc59bMWK7GsvG+zs5lksN7N29aNoPXW9vvry+YeTKPBW9tu9/765fdPvT3/CD+//u3t67H7377k7P0Rc0YpF60OO4fV9MqraValgmx92/f7J0zEndZNwEHe9z26O/ayS4dIa1t3oyNtHZaHoCRr7W2agRqharCkSHjTR1f2z18LOE34Vuc1SQnPwPSV1y8AXjKC+v7n2+N5QrPp7f0Yc84ozH2O87Qzs8DMumDfbr59+aIfMWNoCWZXRZC/IJYAoMBlfFE8WmWICRiSc57vb2+PwzbEFDLEqP5ZCAPHOXRlwjrOlqmV3mCxl0XKXPmQrkuM+dErYTT3VamTVpugypnGCPeCUOdzCKCUOY/354jM2stjjIPPeP/xLf3bn2/vz/P9x+MYEeehMeM6kfWXoecyy7vq4dqDlTHH+XxQiRhn2GE4dfhxzqgUYEnOby8v90dvWWzBKmdqXTXjBcKS5CXRDSs9NEs/IRJThDkpk03tfiYzjUw5krwl2GdTT+tbG2cIMWXeReQ8nj/ejxlpgMSMOewcP779/bA///6P78cQHv/2bbTnq/79/XloDJXNWGJpt73ZSn5XlmbmZlbt6m3bm84DqUMz5+OcU6ICXg39/bf/5b98/r9aO/Pk7G5TctLMP3/5rbWFsRegkRfQ+EJMm4eKhjIYzuIXISAf3l1hETSRDcPaa577p27jOH1r/e39Pfj2/e2cQbZzHI8fb8eYASppOefg8Wzf/xz5x//8+/fzfDuO//rjxN/v9j00bZTEOEMrmTH3BfOYKMjMzc16y8hxcr/vpyE1/0xyzuc5U9KoQ523dvtP/+X//SmP+TgjWXI7p7m1l9dP10lTq7qoNglz31xsOFcpIUFlhZQAzOh71qlxprSGMNtz+obphnZr28mYOB/HDIGuHMfbY0QkTUrGnIPns/34c57f/vzxNsbw8X4MIdqBQhbq96ipKbr/quNfFRyMc8zjwZvvMyPyeFOzs47gJWhsve/b9vqXf/nX1/94/RFBKy9FOZt7u91uZaW1tCcqJkiclCktxjq9I4CYAcGsspzr18JRNTHieHw/3kYcW+/e++bs1raYyiOV4zjnx8JWzoHn+fjxj4d+PI4jRh7njEDMeIqymfQoa1ddQN8VhFcNKmXGARvn8bTt1o/ziBzKoUMzLne7AmCNzA947yfUTFJqNcUWBhFsnCkQJwlpJckTyDlh3n3LkFJTOsMzEil5TMN7zuf38zHnTEZEf4V9esn3NkYkIsbzmCmly7z1xtDz4NufB57neY7w54jS30dCFqLq/C7rNfH3jTTOmdX7V65yijBlnMD8cfw4BG455lDMMTMwTOVOMYzH/f/8jx+PY87rsDokYOf7H+3KKUBSaY0ZEHDSTGaEyUrUlmytsceZoRgTU6mpOvsxpPfM549xxMiQ1G73bn/9y03fj/fHk8p5XmeYmLk7Mp7Tn+/D5hxjhMZZbU4zFKX+WK/dvE7x2lozGyNnhM5IGghFEkQceTQ9p/nm+X2kpOo9p3LOMeNtPP/c//HH4ywX+UhSmgYe762tC9WEFnsdlFKXdhkIzwwhg33z1odNESMggQklQQXzkM1nhAJxtn6/7/f2298Ovz//wJwR4yiTXHLNgLDJx1unznGemW0k6qgAXLC6A6B5a2Zuftt25xhx5pCNCStfVDNjzvk0H2m+WRyHInNGxgXAwp7n4/v2POdQPfvK+KR5vDVd8lPSKDMvXKGZteZJEC2GKRW9923vJw4xy+u/NjVrY+UQKZeD5v319vq5f/lr9P2BcYxRS2A1JZDIORHwrYHncZ5Ii6Q1L2a/sKAGycy9mbvbtt/dTkum5cykica615hGtqT1+xZ/EpE5Q1JSaUoykNkilcrVumIlIFCO9lH8G23ZhYBkM7aO4OrzAjWbW791zpa+GMxCG1ofC2QDjQn2++vX25ff+qevdHs73t7eFefjGJHIZAzRMueMgLXUfHtMgyLMyjfXRFX2oUqJiv9Lup1HnjF1nEEXpuinj2PM1j1CsO1lNuRZxqUr1Hnr5qvtTRHJOsRcCjBjNlxAUmWWH3T2Io0TVt2cTBDm5m61Ka/eVaO3ZkSZtzkbbL+9vt5eXrf7zecT933rbohc+GEoZKlEwJ8tch4jkUyt47WNC5yWlGBkkHSLkW7nkSMDx6jDJkRDOzunmhVr70uPDSsE2+net9637ufMgrnLiyUTQEqNi2esZ87BYmJE7tLpCccY6cv4qbVsZnVcNUDRROut3ldMygS2++vn2+cv2/1z5/A/9r6P3szqfDpFIAxkZs4zFGNeCTdAZGiWiqSc+ykaAOfWh9txaKb4UJrTxEyMMWw6XRSt3aKRlahTlIxmrXnfNl8CibJLzcyohtCmn4lF4Q2+yOGC5QOwOUXEFNm2jtO9T0SNn1RdU6XlDjeXe9/vXz79/tdb/3x74e37P37MaM4SR6FUfTBHinTFmAkabd/8toEn64jkKC+vlCwTxrGZ2/FEJOxkWhXiYjsbzmGB02T9NTcjzJ0I2AxBqTwRT5uBUCYQRdaMhPk22wch8Gu19bMroqi7JMJE89bCzbyVKdVPQLXUv1Xskebb/fXzrb284Efs3a3WVgFNKLMRmDAt67Abkmib33adxJAoKj4YqatQ++UGV92WZTQ/bTgTYLulXwXi4nwlKcqpgoGLnhNKmFlCyfW9+qC6VjgyWYU5Y5NBipgYkYK3n7zj+lTda32mjtkck3gc50igxLs/HyCLPUwtHN3YwL2/bJpdmRlJwitWiYCWmGrd+8/MUBHzzFMbOf14PN71HHNGSIB5DWJmMW5LhKuPRxWU0ezD5ndpE7i4zku4ZOZdXc1Nyok5Yx7PY9YqrrdfR0+UoVoCyHk83vbdU49jJPt+IzDNPga/kPeMqYicCYUDpz+7fgSfQMLKBxRZ7GcCSpTlRsGVi6BSZmRYTE7N+fyhEQK9gZN5MWnXZK3TDAJaPB2lbDVPsBp7AZV5qUBfx2TSOjsbkPNofj7OU4/lBSalK4M+lKjDolI2j8d3RWx+v59/vL9PtBsySF+puOrVA5KHNCqdUnC43tImmfRcx9ReFFbGpM0or3HXcngCvSnGtIkwAMpvj3NKVjpiCso5rxYyrZPSV/FDaKqtKmDpES5gjBfassrjTkvlPIzjOabmJY0RgIw6H5pKSyegebxhZud+jx/Px0TrH92OWuxjVR9pIUSSQTI8rjzEltudLS6NoDTJmUxR9EwBWa6XI0bTwTDFnPr2dpzMaqsrDV1MJQIsD5sC1K6lOKNV8F9ZQNE6Atcub5Y0g/lGzOrmWagMfo2ctsikdSgNlqBcbFfDB65DQiouMUvaFT7AlDFAX5j3Bxy7mK3rWpI+ZLwXgSzBpsYIF8IP813HOSb1061kLe6oEx5XDKznFZBoVlQ5L7jRrKiZLNEO4U3ed2qSdTLFT03NVQ5fO8KCz2onaCY3lM/UR2BGdQNjcZF2sSjX19V0/0lPQr+M9Mc/kSzFSpIfB0L+Up8Dvw7ALwKgn8jHRZ6jxKpXQVRRbwkvOxMutIa+7dR5bZj/9DVFAnld2sxbptlHRK3A460h3Vbb4U9+lTCvJ1mA3NK6EKJRfsV+/vPzk/BZvYwrffn5eFVSFreBJYb9NdNdU+djBgBt9UxZrJrQTKADSaO5gXvDfr+bHiMmIucs9fF6R/Woxd0jU0JazvNwbZZn2vMc8WE7aC6WS6/XPLQFdF10+yLzliqOBkdMLRk7E2T5Jfs61VEQ3EOOUPgwuI4ZH043C+Ct3N/M2MzMLAabvLT3aq0K2yXNsNIwNmOyM2XArfnr64vH9vaIUIwxQ+UjpKUvze40gGitbZHU+XyLJxD94ed8zGvKXBO96H+R3PbnOiC95mCKday7ucmcKHqOLB+5JUhEaRtJZ3nRJAYV1jSm3k9kZiAvfFcZSSWSWfrJ6gctC7BU62aZJfQzCt6bs2/uSeM5Ter77S+fP/lzy3FmzjkiMn4aShCSNQ+R7G27j0md7KN7zO3ZZj7GslIEkOn18gMA6bf7j1mLsU7FlegGQVZljaL8WyTA5ppiZnUAGdgUZ8b4MW0604Z04DGtzlGOlaEyTKlUTGdwYg4P6zmq9lHz6mODEgYrtKLvLsHSukv7y6d/+evX/v5HjHPEmDNkrQoVGEhl0jIDpunq4621nLZtt/Noe1M8H0/EE3OunqC+8pIkbbs3IuGOtGbb7kpgYtYMmyj5m1b1eB38JfNat22khJyDKOJ4dDyj2ThPQtZKRh2IUClYw4cOMQSUG5eybRl1HEXNwrb1jbdb06DnkCM/v/7+v/7rX7bvr9/f32OWR1aKFz5PgNtwq6K17aRhqMd4eTy3c6cCZvTq/LC0bBVtJJjtL16Cp1X9j7LthGiNuZzh0xZcvZI60vfpAbMNOWDMaibCxINIOlVkuNkVHXU14y0T4AKHZUo1w4ewnFeohCJO08xq8m7b7b7Hy2amiMgMhV3urWscVBGFz2Mc8jOf09/fzpxpiDk3d/M+S15pRgOQdG+tdebKqqZmvhfkO8NF01h9HZlMpeVVTYjriBJKNNo6lhjKIdDhRhMSYVfRU3lX4dlrX7gAneZG46xKbeHuiz26lIVaUHad/7nyGZokwuwSIQvKXxvZmFBwOurUes25tNa6SsIInOc5kYLlNIMyV5F5XfPnvl8zhBdvt0i7jJjzPE+mTPJ8Ct66x8phP1KA8qWpt2yw5t22zYQMtQavXpLyH6mNoJnBmk066a31bdt6d7v4gAWg1PvM5VdDurN1lY7EvM/s3kzyNNTRXgtCqi2jJpcZIHOmG9xt3TO9NcukAZYlf19ZTiVtJcAwul89/vVoVDUmmKkknlyd/7xSD9LoaFtsnUKkWqUNUlkQlzlyJrsBPQPS+Xj7ts3+/X/++X6MMaMwy9V+UpvXOemisfvrjbcGQqkAmYNKceTJuY6gR6R+4tCXZLFgYDN5Myim984EisxcwqsVcATEmOu8CYdiwZhgCWqM+bOhgx9Ctpr1ApzObYu9QSna/x9gC2VgMTbu+QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "Image.fromarray(np.uint8(W.dot(H).T), 'L')" ] @@ -1250,7 +4705,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "class TestClass:" + ] } ], "metadata": { @@ -1269,7 +4726,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.7.0" } }, "nbformat": 4, diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 3899288c5a..6c2214cca4 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -7,6 +7,7 @@ from gensim import interfaces from gensim.models import basemodel from gensim.models.nmf_pgd import solve_h, solve_r +import itertools logger = logging.getLogger(__name__) @@ -229,7 +230,8 @@ def get_document_topics(self, bow, minimum_probability=None): def _setup(self, corpus): self._h, self._r = None, None - first_doc = next(iter(corpus)) + corpus, first_doc_it = itertools.tee(corpus) + first_doc = next(first_doc_it) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] self.n_features = first_doc.shape[0] self.w_avg = np.sqrt( From cde937f6a7ce18ca32eeeea81ac1ef317bc94093 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 26 Sep 2018 23:35:44 +0300 Subject: [PATCH 067/144] Fix init error| --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 3899288c5a..d59808731b 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -234,7 +234,7 @@ def _setup(self, corpus): self.n_features = first_doc.shape[0] self.w_avg = np.sqrt( first_doc.mean() - / self.n_features * self.num_topics + / (self.n_features * self.num_topics) ) self._W = np.abs( From 18dbb6be6c5a3163747ed967afdeba0beb43278e Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 26 Sep 2018 23:37:57 +0300 Subject: [PATCH 068/144] Resolve conflict --- docs/notebooks/nmf_benchmark.ipynb | 3959 ++-------------------------- 1 file changed, 204 insertions(+), 3755 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index d7384ff9c3..f1cd978167 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -78,11 +78,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-12 20:53:12,761 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-09-12 20:53:13,091 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", - "2018-09-12 20:53:13,156 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2018-09-12 20:53:13,157 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2018-09-12 20:53:13,165 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2018-09-26 16:17:36,495 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-09-26 16:17:37,601 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", + "2018-09-26 16:17:37,670 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2018-09-26 16:17:37,671 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2018-09-26 16:17:37,684 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], @@ -119,13 +119,13 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "training_params = dict(\n", " corpus=corpus,\n", - " chunksize=100,\n", + " chunksize=1000,\n", " num_topics=5,\n", " id2word=dictionary,\n", " passes=5,\n", @@ -143,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 14, "metadata": { "scrolled": true }, @@ -152,29 +152,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-12 20:58:50,218 : INFO : Loss (no outliers): 230.22475241071896\tLoss (with outliers): 181.72478704101758\n", - "2018-09-12 20:58:51,164 : INFO : Loss (no outliers): 163.48810664663065\tLoss (with outliers): 144.25987095642046\n", - "2018-09-12 20:58:52,081 : INFO : Loss (no outliers): 159.0804739083802\tLoss (with outliers): 146.29286144958536\n", - "2018-09-12 20:58:52,988 : INFO : Loss (no outliers): 226.95806797833993\tLoss (with outliers): 164.64238869319595\n", - "2018-09-12 20:58:53,934 : INFO : Loss (no outliers): 315.60393412205065\tLoss (with outliers): 212.8099190508261\n", - "2018-09-12 20:58:54,829 : INFO : Loss (no outliers): 273.15289715620474\tLoss (with outliers): 209.02117087605416\n", - "2018-09-12 20:58:55,760 : INFO : Loss (no outliers): 193.84147325913466\tLoss (with outliers): 153.92610633268097\n", - "2018-09-12 20:58:56,816 : INFO : Loss (no outliers): 224.72348560200965\tLoss (with outliers): 159.7287973966028\n", - "2018-09-12 20:58:57,725 : INFO : Loss (no outliers): 141.73839636051133\tLoss (with outliers): 137.34458298895294\n", - "2018-09-12 20:58:58,692 : INFO : Loss (no outliers): 231.1934996846037\tLoss (with outliers): 154.27316332572826\n", - "2018-09-12 20:58:59,685 : INFO : Loss (no outliers): 165.65316969374092\tLoss (with outliers): 156.48227904440301\n", - "2018-09-12 20:59:00,581 : INFO : Loss (no outliers): 132.40930008872843\tLoss (with outliers): 127.87618135922182\n", - "2018-09-12 20:59:01,588 : INFO : Loss (no outliers): 170.3045897536692\tLoss (with outliers): 157.52168859114607\n", - "2018-09-12 20:59:02,602 : INFO : Loss (no outliers): 238.01261892204263\tLoss (with outliers): 183.77404452641522\n", - "2018-09-12 20:59:02,986 : INFO : Loss (no outliers): 114.00397662927625\tLoss (with outliers): 84.69507030838965\n" + "2018-09-26 16:21:23,154 : INFO : Loss (no outliers): 605.4539794750594\tLoss (with outliers): 532.3720940408144\n", + "2018-09-26 16:21:24,937 : INFO : Loss (no outliers): 618.9506306166222\tLoss (with outliers): 505.24146249601546\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 25.5 s, sys: 29 s, total: 54.5 s\n", - "Wall time: 14.1 s\n" + "CPU times: user 8.69 s, sys: 954 ms, total: 9.65 s\n", + "Wall time: 9.7 s\n" ] } ], @@ -187,45 +174,33 @@ " **training_params,\n", " use_r=True,\n", " lambda_=10,\n", + " sparse_coef=3\n", ")" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 15, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-12 20:59:04,192 : INFO : Loss (no outliers): 230.34056054984242\tLoss (with outliers): 182.08434566569053\n", - "2018-09-12 20:59:05,164 : INFO : Loss (no outliers): 163.71642098551374\tLoss (with outliers): 144.36487487868305\n", - "2018-09-12 20:59:06,122 : INFO : Loss (no outliers): 160.56477083345212\tLoss (with outliers): 147.25872435716468\n", - "2018-09-12 20:59:07,112 : INFO : Loss (no outliers): 225.67612281887742\tLoss (with outliers): 163.077985626035\n", - "2018-09-12 20:59:08,196 : INFO : Loss (no outliers): 316.7881583440518\tLoss (with outliers): 213.8086221268407\n", - "2018-09-12 20:59:09,173 : INFO : Loss (no outliers): 271.1781810297604\tLoss (with outliers): 207.501789900391\n", - "2018-09-12 20:59:10,163 : INFO : Loss (no outliers): 194.54551260476714\tLoss (with outliers): 154.11575594904286\n", - "2018-09-12 20:59:11,168 : INFO : Loss (no outliers): 218.4376400812092\tLoss (with outliers): 155.60139243917698\n", - "2018-09-12 20:59:12,103 : INFO : Loss (no outliers): 142.12546252260182\tLoss (with outliers): 137.74580193804698\n", - "2018-09-12 20:59:13,151 : INFO : Loss (no outliers): 242.40810680411292\tLoss (with outliers): 159.84160763324005\n", - "2018-09-12 20:59:14,231 : INFO : Loss (no outliers): 164.883419850243\tLoss (with outliers): 155.95439133118154\n", - "2018-09-12 20:59:15,124 : INFO : Loss (no outliers): 132.61922037805198\tLoss (with outliers): 128.13075115895393\n", - "2018-09-12 20:59:16,211 : INFO : Loss (no outliers): 168.62539060060425\tLoss (with outliers): 156.09394981216414\n", - "2018-09-12 20:59:17,308 : INFO : Loss (no outliers): 249.5104152633981\tLoss (with outliers): 191.7913452921991\n", - "2018-09-12 20:59:17,729 : INFO : Loss (no outliers): 114.18469106347206\tLoss (with outliers): 84.45559195399146\n" + "2018-09-26 16:22:24,489 : INFO : Loss (no outliers): 616.4966110494801\tLoss (with outliers): 533.5107297438328\n", + "2018-09-26 16:22:26,366 : INFO : Loss (no outliers): 603.170374269566\tLoss (with outliers): 498.6201255460912\n" ] } ], "source": [ - "%lprun -f GensimNmf._solveproj GensimNmf(**training_params, use_r=True, lambda_=10)" + "%lprun -f GensimNmf._solveproj gensim_nmf = GensimNmf(**training_params, use_r=True, lambda_=10)" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 49, "metadata": { "scrolled": true }, @@ -234,1325 +209,59 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-12 20:59:17,750 : INFO : using symmetric alpha at 0.2\n", - "2018-09-12 20:59:17,751 : INFO : using symmetric eta at 0.2\n", - "2018-09-12 20:59:17,752 : INFO : using serial LDA version on this node\n", - "2018-09-12 20:59:17,758 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 100 documents, evaluating perplexity every 1000 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-09-12 20:59:17,759 : INFO : PROGRESS: pass 0, at document #100/2819\n", - "2018-09-12 20:59:17,865 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:17,872 : INFO : topic #0 (0.200): 0.007*\"com\" + 0.007*\"jew\" + 0.006*\"think\" + 0.006*\"oper\" + 0.006*\"new\" + 0.005*\"host\" + 0.005*\"lunar\" + 0.005*\"univers\" + 0.005*\"model\" + 0.005*\"nntp\"\n", - "2018-09-12 20:59:17,873 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.006*\"univers\" + 0.005*\"space\" + 0.005*\"like\" + 0.005*\"peac\" + 0.005*\"nasa\" + 0.004*\"liar\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"dai\"\n", - "2018-09-12 20:59:17,875 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.007*\"palestinian\" + 0.007*\"com\" + 0.007*\"isra\" + 0.005*\"new\" + 0.005*\"right\" + 0.005*\"univers\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"think\"\n", - "2018-09-12 20:59:17,876 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"space\" + 0.006*\"jew\" + 0.005*\"new\" + 0.005*\"year\" + 0.005*\"time\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.004*\"world\"\n", - "2018-09-12 20:59:17,877 : INFO : topic #4 (0.200): 0.007*\"com\" + 0.006*\"time\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"like\" + 0.005*\"univers\" + 0.005*\"israel\" + 0.004*\"work\" + 0.004*\"world\" + 0.004*\"level\"\n", - "2018-09-12 20:59:17,878 : INFO : topic diff=4.583228, rho=1.000000\n", - "2018-09-12 20:59:17,878 : INFO : PROGRESS: pass 0, at document #200/2819\n", - "2018-09-12 20:59:17,984 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:17,988 : INFO : topic #0 (0.200): 0.013*\"dod\" + 0.008*\"sai\" + 0.007*\"imag\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"com\" + 0.005*\"went\" + 0.005*\"kill\" + 0.004*\"armenian\" + 0.004*\"murder\"\n", - "2018-09-12 20:59:17,989 : INFO : topic #1 (0.200): 0.008*\"peopl\" + 0.006*\"univers\" + 0.006*\"dod\" + 0.006*\"like\" + 0.005*\"prison\" + 0.005*\"earth\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"god\" + 0.004*\"right\"\n", - "2018-09-12 20:59:17,990 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.008*\"right\" + 0.007*\"said\" + 0.006*\"arab\" + 0.005*\"state\" + 0.005*\"univers\" + 0.005*\"com\" + 0.005*\"palestinian\" + 0.005*\"think\"\n", - "2018-09-12 20:59:17,991 : INFO : topic #3 (0.200): 0.008*\"univers\" + 0.007*\"physic\" + 0.007*\"time\" + 0.006*\"theori\" + 0.006*\"van\" + 0.006*\"com\" + 0.005*\"case\" + 0.005*\"space\" + 0.005*\"mass\" + 0.004*\"gener\"\n", - "2018-09-12 20:59:17,992 : INFO : topic #4 (0.200): 0.009*\"god\" + 0.007*\"greek\" + 0.007*\"time\" + 0.007*\"turkish\" + 0.006*\"like\" + 0.005*\"com\" + 0.004*\"know\" + 0.004*\"work\" + 0.004*\"motorcycl\" + 0.004*\"said\"\n", - "2018-09-12 20:59:17,992 : INFO : topic diff=1.706693, rho=0.707107\n", - "2018-09-12 20:59:17,993 : INFO : PROGRESS: pass 0, at document #300/2819\n", - "2018-09-12 20:59:18,091 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:18,096 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.009*\"dod\" + 0.006*\"think\" + 0.006*\"access\" + 0.006*\"like\" + 0.006*\"imag\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"sai\" + 0.004*\"look\"\n", - "2018-09-12 20:59:18,096 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.007*\"like\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"bike\" + 0.005*\"dog\" + 0.005*\"univers\" + 0.005*\"com\" + 0.005*\"know\" + 0.004*\"dod\"\n", - "2018-09-12 20:59:18,097 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"arab\" + 0.007*\"right\" + 0.006*\"com\" + 0.006*\"think\" + 0.006*\"law\" + 0.006*\"said\" + 0.005*\"peopl\" + 0.005*\"state\"\n", - "2018-09-12 20:59:18,098 : INFO : topic #3 (0.200): 0.008*\"com\" + 0.007*\"univers\" + 0.006*\"space\" + 0.005*\"physic\" + 0.005*\"time\" + 0.005*\"theori\" + 0.004*\"host\" + 0.004*\"case\" + 0.004*\"know\" + 0.004*\"van\"\n", - "2018-09-12 20:59:18,098 : INFO : topic #4 (0.200): 0.007*\"com\" + 0.007*\"like\" + 0.006*\"armenian\" + 0.005*\"time\" + 0.005*\"god\" + 0.005*\"muslim\" + 0.004*\"bike\" + 0.004*\"work\" + 0.004*\"turkish\" + 0.004*\"greek\"\n", - "2018-09-12 20:59:18,099 : INFO : topic diff=0.960692, rho=0.577350\n", - "2018-09-12 20:59:18,100 : INFO : PROGRESS: pass 0, at document #400/2819\n", - "2018-09-12 20:59:18,194 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:18,199 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.007*\"dod\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"access\" + 0.006*\"like\" + 0.005*\"think\" + 0.005*\"imag\" + 0.005*\"need\" + 0.004*\"thank\"\n", - "2018-09-12 20:59:18,200 : INFO : topic #1 (0.200): 0.007*\"bike\" + 0.006*\"like\" + 0.006*\"peopl\" + 0.005*\"thing\" + 0.005*\"univers\" + 0.005*\"com\" + 0.005*\"dai\" + 0.005*\"nasa\" + 0.005*\"ride\" + 0.004*\"know\"\n", - "2018-09-12 20:59:18,201 : INFO : topic #2 (0.200): 0.009*\"isra\" + 0.008*\"israel\" + 0.007*\"right\" + 0.007*\"arab\" + 0.006*\"think\" + 0.006*\"state\" + 0.006*\"peopl\" + 0.006*\"said\" + 0.005*\"women\" + 0.005*\"law\"\n", - "2018-09-12 20:59:18,202 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"univers\" + 0.005*\"time\" + 0.005*\"space\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"know\" + 0.004*\"gener\" + 0.004*\"new\" + 0.004*\"theori\"\n", - "2018-09-12 20:59:18,203 : INFO : topic #4 (0.200): 0.007*\"com\" + 0.007*\"turkish\" + 0.007*\"armenian\" + 0.006*\"greek\" + 0.006*\"like\" + 0.005*\"bike\" + 0.004*\"time\" + 0.004*\"work\" + 0.004*\"muslim\" + 0.004*\"state\"\n", - "2018-09-12 20:59:18,203 : INFO : topic diff=0.790763, rho=0.500000\n", - "2018-09-12 20:59:18,204 : INFO : PROGRESS: pass 0, at document #500/2819\n", - "2018-09-12 20:59:18,293 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:18,298 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.007*\"went\" + 0.006*\"like\" + 0.006*\"know\" + 0.006*\"think\" + 0.006*\"look\" + 0.005*\"need\" + 0.005*\"said\" + 0.005*\"save\" + 0.005*\"host\"\n", - "2018-09-12 20:59:18,299 : INFO : topic #1 (0.200): 0.010*\"peopl\" + 0.007*\"bike\" + 0.007*\"like\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"nasa\" + 0.005*\"dai\" + 0.005*\"left\" + 0.005*\"gov\" + 0.005*\"com\"\n", - "2018-09-12 20:59:18,300 : INFO : topic #2 (0.200): 0.012*\"peopl\" + 0.009*\"said\" + 0.008*\"right\" + 0.007*\"think\" + 0.006*\"kill\" + 0.006*\"women\" + 0.005*\"apart\" + 0.005*\"isra\" + 0.005*\"father\" + 0.005*\"came\"\n", - "2018-09-12 20:59:18,301 : INFO : topic #3 (0.200): 0.010*\"space\" + 0.010*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"time\" + 0.005*\"know\" + 0.004*\"graphic\" + 0.004*\"curv\" + 0.004*\"like\"\n", - "2018-09-12 20:59:18,302 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.008*\"peopl\" + 0.007*\"turkish\" + 0.007*\"like\" + 0.006*\"know\" + 0.006*\"said\" + 0.005*\"time\" + 0.005*\"com\" + 0.004*\"year\" + 0.004*\"turk\"\n", - "2018-09-12 20:59:18,302 : INFO : topic diff=0.817144, rho=0.447214\n", - "2018-09-12 20:59:18,303 : INFO : PROGRESS: pass 0, at document #600/2819\n", - "2018-09-12 20:59:18,385 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:18,390 : INFO : topic #0 (0.200): 0.010*\"imag\" + 0.009*\"com\" + 0.007*\"file\" + 0.006*\"know\" + 0.006*\"like\" + 0.006*\"need\" + 0.006*\"think\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"look\"\n", - "2018-09-12 20:59:18,391 : INFO : topic #1 (0.200): 0.008*\"peopl\" + 0.008*\"like\" + 0.007*\"bike\" + 0.006*\"gov\" + 0.006*\"com\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"nasa\" + 0.005*\"univers\" + 0.005*\"rider\"\n", - "2018-09-12 20:59:18,392 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.009*\"isra\" + 0.008*\"said\" + 0.007*\"right\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"adam\" + 0.005*\"kill\" + 0.005*\"state\"\n", - "2018-09-12 20:59:18,392 : INFO : topic #3 (0.200): 0.011*\"space\" + 0.009*\"com\" + 0.009*\"univers\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"know\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"distribut\"\n", - "2018-09-12 20:59:18,393 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.006*\"greek\" + 0.005*\"know\" + 0.005*\"said\" + 0.005*\"turk\" + 0.005*\"time\" + 0.004*\"govern\"\n", - "2018-09-12 20:59:18,394 : INFO : topic diff=0.581547, rho=0.408248\n", - "2018-09-12 20:59:18,394 : INFO : PROGRESS: pass 0, at document #700/2819\n", - "2018-09-12 20:59:18,473 : INFO : merging changes from 100 documents into a model of 2819 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:18,478 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.010*\"com\" + 0.006*\"host\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"like\" + 0.006*\"think\" + 0.006*\"file\" + 0.005*\"need\" + 0.005*\"alaska\"\n", - "2018-09-12 20:59:18,478 : INFO : topic #1 (0.200): 0.007*\"bike\" + 0.007*\"like\" + 0.007*\"nasa\" + 0.007*\"peopl\" + 0.006*\"orbit\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"gov\" + 0.006*\"god\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:18,479 : INFO : topic #2 (0.200): 0.012*\"isra\" + 0.011*\"israel\" + 0.011*\"peopl\" + 0.008*\"right\" + 0.006*\"jew\" + 0.006*\"think\" + 0.006*\"said\" + 0.005*\"arab\" + 0.005*\"men\" + 0.005*\"kill\"\n", - "2018-09-12 20:59:18,480 : INFO : topic #3 (0.200): 0.010*\"space\" + 0.009*\"univers\" + 0.009*\"com\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"graphic\" + 0.005*\"new\" + 0.004*\"know\" + 0.004*\"like\" + 0.004*\"program\"\n", - "2018-09-12 20:59:18,481 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"know\" + 0.005*\"com\" + 0.005*\"time\" + 0.005*\"greek\" + 0.005*\"said\" + 0.004*\"turk\"\n", - "2018-09-12 20:59:18,481 : INFO : topic diff=0.586025, rho=0.377964\n", - "2018-09-12 20:59:18,482 : INFO : PROGRESS: pass 0, at document #800/2819\n", - "2018-09-12 20:59:18,564 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:18,569 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.010*\"com\" + 0.007*\"know\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"like\" + 0.006*\"need\" + 0.005*\"think\" + 0.005*\"look\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:18,570 : INFO : topic #1 (0.200): 0.009*\"bike\" + 0.008*\"like\" + 0.008*\"nasa\" + 0.007*\"peopl\" + 0.007*\"ride\" + 0.006*\"thing\" + 0.006*\"gov\" + 0.006*\"com\" + 0.005*\"univers\" + 0.005*\"orbit\"\n", - "2018-09-12 20:59:18,571 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.011*\"isra\" + 0.010*\"peopl\" + 0.006*\"right\" + 0.006*\"said\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"think\" + 0.005*\"women\"\n", - "2018-09-12 20:59:18,572 : INFO : topic #3 (0.200): 0.011*\"space\" + 0.009*\"univers\" + 0.008*\"com\" + 0.006*\"host\" + 0.005*\"nntp\" + 0.005*\"new\" + 0.005*\"graphic\" + 0.005*\"know\" + 0.004*\"program\" + 0.004*\"like\"\n", - "2018-09-12 20:59:18,573 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.008*\"peopl\" + 0.008*\"turkish\" + 0.005*\"greek\" + 0.005*\"like\" + 0.005*\"year\" + 0.005*\"time\" + 0.005*\"said\" + 0.005*\"know\" + 0.004*\"armenia\"\n", - "2018-09-12 20:59:18,573 : INFO : topic diff=0.522439, rho=0.353553\n", - "2018-09-12 20:59:18,574 : INFO : PROGRESS: pass 0, at document #900/2819\n", - "2018-09-12 20:59:18,653 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:18,658 : INFO : topic #0 (0.200): 0.011*\"com\" + 0.009*\"imag\" + 0.006*\"host\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"like\" + 0.006*\"need\" + 0.005*\"look\" + 0.005*\"thank\" + 0.005*\"think\"\n", - "2018-09-12 20:59:18,658 : INFO : topic #1 (0.200): 0.009*\"bike\" + 0.007*\"like\" + 0.007*\"ride\" + 0.007*\"thing\" + 0.007*\"com\" + 0.006*\"nasa\" + 0.006*\"peopl\" + 0.006*\"gov\" + 0.005*\"god\" + 0.005*\"orbit\"\n", - "2018-09-12 20:59:18,659 : INFO : topic #2 (0.200): 0.011*\"atheist\" + 0.011*\"peopl\" + 0.009*\"isra\" + 0.009*\"israel\" + 0.008*\"right\" + 0.007*\"god\" + 0.007*\"atheism\" + 0.007*\"religion\" + 0.007*\"believ\" + 0.006*\"arab\"\n", - "2018-09-12 20:59:18,660 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.008*\"com\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"point\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"satellit\" + 0.004*\"program\" + 0.004*\"year\"\n", - "2018-09-12 20:59:18,660 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.008*\"peopl\" + 0.006*\"turkish\" + 0.005*\"time\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"year\" + 0.004*\"know\" + 0.004*\"work\" + 0.004*\"greek\"\n", - "2018-09-12 20:59:18,661 : INFO : topic diff=0.589248, rho=0.333333\n", - "2018-09-12 20:59:18,808 : INFO : -8.126 per-word bound, 279.3 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", - "2018-09-12 20:59:18,808 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2018-09-12 20:59:18,884 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:18,888 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.011*\"com\" + 0.007*\"file\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"bit\" + 0.005*\"need\" + 0.005*\"like\" + 0.005*\"know\" + 0.005*\"want\"\n", - "2018-09-12 20:59:18,889 : INFO : topic #1 (0.200): 0.009*\"bike\" + 0.007*\"orbit\" + 0.007*\"ride\" + 0.007*\"com\" + 0.006*\"like\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"peopl\"\n", - "2018-09-12 20:59:18,890 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.009*\"peopl\" + 0.009*\"right\" + 0.008*\"atheist\" + 0.008*\"arab\" + 0.006*\"human\" + 0.006*\"state\" + 0.006*\"believ\" + 0.006*\"religion\"\n", - "2018-09-12 20:59:18,891 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.007*\"com\" + 0.007*\"point\" + 0.006*\"univers\" + 0.006*\"program\" + 0.006*\"new\" + 0.006*\"probe\" + 0.005*\"year\" + 0.005*\"orbit\" + 0.005*\"problem\"\n", - "2018-09-12 20:59:18,891 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.009*\"greek\" + 0.007*\"peopl\" + 0.006*\"turk\" + 0.005*\"time\" + 0.005*\"like\" + 0.004*\"year\" + 0.004*\"armenia\" + 0.004*\"argic\"\n", - "2018-09-12 20:59:18,892 : INFO : topic diff=0.519242, rho=0.316228\n", - "2018-09-12 20:59:18,892 : INFO : PROGRESS: pass 0, at document #1100/2819\n", - "2018-09-12 20:59:18,966 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:18,970 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.011*\"com\" + 0.009*\"file\" + 0.006*\"us\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"displai\" + 0.005*\"packag\" + 0.005*\"avail\" + 0.005*\"like\"\n", - "2018-09-12 20:59:18,971 : INFO : topic #1 (0.200): 0.010*\"bike\" + 0.007*\"gov\" + 0.007*\"com\" + 0.007*\"nasa\" + 0.007*\"ride\" + 0.006*\"like\" + 0.006*\"orbit\" + 0.006*\"thing\" + 0.005*\"moon\" + 0.005*\"time\"\n", - "2018-09-12 20:59:18,972 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.010*\"peopl\" + 0.010*\"isra\" + 0.008*\"arab\" + 0.008*\"atheist\" + 0.008*\"right\" + 0.007*\"god\" + 0.007*\"religion\" + 0.007*\"think\" + 0.006*\"jew\"\n", - "2018-09-12 20:59:18,972 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.007*\"com\" + 0.007*\"data\" + 0.006*\"program\" + 0.006*\"point\" + 0.006*\"univers\" + 0.005*\"graphic\" + 0.005*\"new\" + 0.004*\"year\" + 0.004*\"host\"\n", - "2018-09-12 20:59:18,973 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.008*\"peopl\" + 0.006*\"turk\" + 0.006*\"greek\" + 0.004*\"armi\" + 0.004*\"time\" + 0.004*\"argic\" + 0.004*\"armenia\" + 0.004*\"soviet\"\n", - "2018-09-12 20:59:18,974 : INFO : topic diff=0.491061, rho=0.301511\n", - "2018-09-12 20:59:18,974 : INFO : PROGRESS: pass 0, at document #1200/2819\n", - "2018-09-12 20:59:19,046 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,050 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.011*\"com\" + 0.008*\"file\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.006*\"like\" + 0.005*\"packag\" + 0.005*\"know\" + 0.005*\"format\"\n", - "2018-09-12 20:59:19,051 : INFO : topic #1 (0.200): 0.009*\"bike\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"gov\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"time\" + 0.005*\"peopl\" + 0.005*\"orbit\"\n", - "2018-09-12 20:59:19,052 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"peopl\" + 0.009*\"isra\" + 0.008*\"god\" + 0.007*\"right\" + 0.007*\"arab\" + 0.006*\"argument\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"atheist\"\n", - "2018-09-12 20:59:19,053 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.007*\"data\" + 0.007*\"program\" + 0.007*\"point\" + 0.006*\"com\" + 0.006*\"univers\" + 0.005*\"graphic\" + 0.005*\"new\" + 0.004*\"develop\" + 0.004*\"year\"\n", - "2018-09-12 20:59:19,053 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.009*\"greek\" + 0.008*\"peopl\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"genocid\" + 0.004*\"time\" + 0.004*\"argic\"\n", - "2018-09-12 20:59:19,054 : INFO : topic diff=0.360480, rho=0.288675\n", - "2018-09-12 20:59:19,054 : INFO : PROGRESS: pass 0, at document #1300/2819\n", - "2018-09-12 20:59:19,124 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,129 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"mail\" + 0.008*\"graphic\" + 0.007*\"format\" + 0.006*\"packag\" + 0.006*\"send\" + 0.006*\"host\" + 0.006*\"ftp\"\n", - "2018-09-12 20:59:19,130 : INFO : topic #1 (0.200): 0.010*\"bike\" + 0.008*\"com\" + 0.007*\"like\" + 0.007*\"gov\" + 0.007*\"thing\" + 0.006*\"nasa\" + 0.005*\"time\" + 0.005*\"ride\" + 0.004*\"dai\" + 0.004*\"peopl\"\n", - "2018-09-12 20:59:19,130 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"peopl\" + 0.009*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"arab\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"right\" + 0.006*\"argument\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:19,131 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.009*\"graphic\" + 0.006*\"pub\" + 0.006*\"data\" + 0.006*\"com\" + 0.006*\"rai\" + 0.006*\"program\" + 0.005*\"univers\" + 0.005*\"new\" + 0.005*\"point\"\n", - "2018-09-12 20:59:19,132 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"turkish\" + 0.008*\"peopl\" + 0.007*\"greek\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"like\" + 0.004*\"org\" + 0.004*\"time\"\n", - "2018-09-12 20:59:19,132 : INFO : topic diff=0.403653, rho=0.277350\n", - "2018-09-12 20:59:19,133 : INFO : PROGRESS: pass 0, at document #1400/2819\n", - "2018-09-12 20:59:19,207 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,212 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.012*\"com\" + 0.010*\"file\" + 0.008*\"mail\" + 0.007*\"graphic\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.006*\"format\" + 0.006*\"send\"\n", - "2018-09-12 20:59:19,212 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"bike\" + 0.008*\"like\" + 0.007*\"gov\" + 0.006*\"thing\" + 0.006*\"nasa\" + 0.005*\"time\" + 0.005*\"ride\" + 0.004*\"know\" + 0.004*\"dai\"\n", - "2018-09-12 20:59:19,213 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.009*\"isra\" + 0.007*\"god\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"atheist\" + 0.005*\"moral\" + 0.005*\"exist\"\n", - "2018-09-12 20:59:19,214 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.008*\"graphic\" + 0.007*\"program\" + 0.006*\"com\" + 0.006*\"data\" + 0.005*\"univers\" + 0.005*\"pub\" + 0.005*\"rai\" + 0.005*\"new\" + 0.004*\"point\"\n", - "2018-09-12 20:59:19,215 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.007*\"peopl\" + 0.006*\"henrik\" + 0.006*\"greek\" + 0.006*\"turkei\" + 0.006*\"turk\" + 0.005*\"armenia\" + 0.005*\"org\" + 0.005*\"like\"\n", - "2018-09-12 20:59:19,216 : INFO : topic diff=0.329007, rho=0.267261\n", - "2018-09-12 20:59:19,216 : INFO : PROGRESS: pass 0, at document #1500/2819\n", - "2018-09-12 20:59:19,282 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,287 : INFO : topic #0 (0.200): 0.028*\"imag\" + 0.011*\"com\" + 0.009*\"file\" + 0.007*\"mail\" + 0.007*\"host\" + 0.006*\"graphic\" + 0.006*\"nntp\" + 0.006*\"us\" + 0.006*\"bit\" + 0.005*\"packag\"\n", - "2018-09-12 20:59:19,288 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.008*\"jesu\" + 0.006*\"thing\" + 0.006*\"nasa\" + 0.006*\"gov\" + 0.006*\"dai\" + 0.005*\"time\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:19,288 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.011*\"peopl\" + 0.007*\"isra\" + 0.007*\"arab\" + 0.007*\"god\" + 0.007*\"right\" + 0.006*\"think\" + 0.006*\"state\" + 0.006*\"christian\" + 0.006*\"jew\"\n", - "2018-09-12 20:59:19,289 : INFO : topic #3 (0.200): 0.010*\"space\" + 0.008*\"graphic\" + 0.007*\"program\" + 0.007*\"data\" + 0.006*\"com\" + 0.005*\"univers\" + 0.005*\"process\" + 0.005*\"new\" + 0.004*\"pub\" + 0.004*\"softwar\"\n", - "2018-09-12 20:59:19,290 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.009*\"turkish\" + 0.007*\"peopl\" + 0.007*\"turk\" + 0.007*\"turkei\" + 0.006*\"greek\" + 0.005*\"armenia\" + 0.005*\"like\" + 0.005*\"henrik\" + 0.005*\"muslim\"\n", - "2018-09-12 20:59:19,291 : INFO : topic diff=0.378576, rho=0.258199\n", - "2018-09-12 20:59:19,292 : INFO : PROGRESS: pass 0, at document #1600/2819\n", - "2018-09-12 20:59:19,354 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,359 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.012*\"com\" + 0.009*\"file\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"graphic\" + 0.006*\"bit\" + 0.006*\"mail\" + 0.006*\"us\" + 0.005*\"thank\"\n", - "2018-09-12 20:59:19,359 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"bike\" + 0.008*\"like\" + 0.007*\"jesu\" + 0.006*\"thing\" + 0.006*\"nasa\" + 0.006*\"gov\" + 0.005*\"dai\" + 0.005*\"time\" + 0.004*\"good\"\n", - "2018-09-12 20:59:19,360 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.006*\"god\" + 0.006*\"jew\" + 0.005*\"islam\"\n", - "2018-09-12 20:59:19,361 : INFO : topic #3 (0.200): 0.011*\"space\" + 0.007*\"graphic\" + 0.007*\"program\" + 0.006*\"data\" + 0.006*\"com\" + 0.006*\"univers\" + 0.005*\"point\" + 0.004*\"new\" + 0.004*\"process\" + 0.004*\"host\"\n", - "2018-09-12 20:59:19,362 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.009*\"turkish\" + 0.007*\"armenia\" + 0.007*\"peopl\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.005*\"muslim\" + 0.005*\"time\" + 0.005*\"like\" + 0.005*\"greek\"\n", - "2018-09-12 20:59:19,363 : INFO : topic diff=0.263111, rho=0.250000\n", - "2018-09-12 20:59:19,363 : INFO : PROGRESS: pass 0, at document #1700/2819\n", - "2018-09-12 20:59:19,428 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,433 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.012*\"com\" + 0.011*\"file\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"bit\" + 0.006*\"need\" + 0.006*\"thank\" + 0.006*\"mail\" + 0.006*\"graphic\"\n", - "2018-09-12 20:59:19,434 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.006*\"nasa\" + 0.006*\"gov\" + 0.006*\"time\" + 0.005*\"ride\" + 0.005*\"jesu\" + 0.005*\"dai\"\n", - "2018-09-12 20:59:19,435 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.009*\"think\" + 0.007*\"isra\" + 0.007*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.006*\"god\" + 0.005*\"jew\" + 0.005*\"moral\"\n", - "2018-09-12 20:59:19,435 : INFO : topic #3 (0.200): 0.012*\"space\" + 0.007*\"graphic\" + 0.006*\"program\" + 0.006*\"data\" + 0.006*\"univers\" + 0.006*\"com\" + 0.005*\"point\" + 0.004*\"new\" + 0.004*\"nasa\" + 0.004*\"host\"\n", - "2018-09-12 20:59:19,436 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.008*\"turkish\" + 0.007*\"peopl\" + 0.006*\"armenia\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"org\" + 0.005*\"muslim\" + 0.005*\"like\" + 0.005*\"turkei\"\n", - "2018-09-12 20:59:19,437 : INFO : topic diff=0.276904, rho=0.242536\n", - "2018-09-12 20:59:19,437 : INFO : PROGRESS: pass 0, at document #1800/2819\n", - "2018-09-12 20:59:19,505 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,510 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.013*\"com\" + 0.011*\"file\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.006*\"bit\" + 0.006*\"graphic\" + 0.006*\"mail\" + 0.006*\"need\" + 0.006*\"thank\"\n", - "2018-09-12 20:59:19,511 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.009*\"bike\" + 0.008*\"like\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"time\" + 0.005*\"gov\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:19,512 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"right\" + 0.007*\"god\" + 0.007*\"jew\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"islam\"\n", - "2018-09-12 20:59:19,513 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.006*\"program\" + 0.006*\"point\" + 0.006*\"univers\" + 0.006*\"graphic\" + 0.006*\"com\" + 0.005*\"data\" + 0.005*\"nasa\" + 0.005*\"new\" + 0.004*\"host\"\n", - "2018-09-12 20:59:19,513 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.007*\"turkish\" + 0.006*\"peopl\" + 0.005*\"armenia\" + 0.005*\"muslim\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"org\" + 0.004*\"serdar\" + 0.004*\"like\"\n", - "2018-09-12 20:59:19,514 : INFO : topic diff=0.250504, rho=0.235702\n", - "2018-09-12 20:59:19,515 : INFO : PROGRESS: pass 0, at document #1900/2819\n", - "2018-09-12 20:59:19,576 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,583 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.013*\"com\" + 0.011*\"file\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.006*\"graphic\" + 0.006*\"univers\" + 0.006*\"know\" + 0.006*\"thank\" + 0.006*\"need\"\n", - "2018-09-12 20:59:19,584 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.008*\"like\" + 0.008*\"bike\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"time\" + 0.005*\"dod\" + 0.005*\"nntp\" + 0.005*\"gov\" + 0.005*\"host\"\n", - "2018-09-12 20:59:19,585 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.009*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.007*\"jew\" + 0.006*\"right\" + 0.006*\"moral\" + 0.005*\"arab\" + 0.005*\"state\"\n", - "2018-09-12 20:59:19,586 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.007*\"univers\" + 0.007*\"graphic\" + 0.006*\"program\" + 0.006*\"point\" + 0.006*\"com\" + 0.005*\"data\" + 0.005*\"nasa\" + 0.005*\"new\" + 0.005*\"host\"\n", - "2018-09-12 20:59:19,587 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"turkish\" + 0.007*\"peopl\" + 0.007*\"armenia\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.006*\"turk\" + 0.005*\"muslim\" + 0.005*\"argic\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:19,588 : INFO : topic diff=0.247034, rho=0.229416\n", - "2018-09-12 20:59:19,720 : INFO : -8.001 per-word bound, 256.2 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:19,720 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2018-09-12 20:59:19,787 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,792 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.012*\"com\" + 0.012*\"file\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.006*\"univers\" + 0.006*\"graphic\" + 0.006*\"know\" + 0.006*\"need\" + 0.006*\"bit\"\n", - "2018-09-12 20:59:19,793 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"bike\" + 0.008*\"like\" + 0.006*\"nasa\" + 0.006*\"thing\" + 0.005*\"time\" + 0.005*\"gov\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:19,794 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.010*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"jew\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"moral\"\n", - "2018-09-12 20:59:19,795 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.007*\"data\" + 0.007*\"program\" + 0.006*\"univers\" + 0.005*\"orbit\" + 0.005*\"com\" + 0.005*\"graphic\" + 0.005*\"satellit\" + 0.005*\"center\"\n", - "2018-09-12 20:59:19,796 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.007*\"armenia\" + 0.007*\"peopl\" + 0.006*\"genocid\" + 0.005*\"turk\" + 0.005*\"serdar\" + 0.005*\"argic\" + 0.005*\"muslim\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:19,796 : INFO : topic diff=0.269817, rho=0.223607\n", - "2018-09-12 20:59:19,797 : INFO : PROGRESS: pass 0, at document #2100/2819\n", - "2018-09-12 20:59:19,860 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,866 : INFO : topic #0 (0.200): 0.027*\"imag\" + 0.021*\"jpeg\" + 0.019*\"file\" + 0.011*\"gif\" + 0.010*\"color\" + 0.009*\"format\" + 0.008*\"com\" + 0.008*\"bit\" + 0.007*\"us\" + 0.007*\"version\"\n", - "2018-09-12 20:59:19,867 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"bike\" + 0.008*\"like\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.005*\"nasa\" + 0.005*\"gov\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"nntp\"\n", - "2018-09-12 20:59:19,868 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.006*\"right\" + 0.006*\"jew\" + 0.006*\"god\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"state\"\n", - "2018-09-12 20:59:19,869 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.008*\"data\" + 0.007*\"nasa\" + 0.006*\"program\" + 0.005*\"orbit\" + 0.005*\"univers\" + 0.005*\"graphic\" + 0.005*\"com\" + 0.005*\"us\" + 0.004*\"satellit\"\n", - "2018-09-12 20:59:19,870 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.010*\"turkish\" + 0.007*\"armenia\" + 0.006*\"peopl\" + 0.006*\"turk\" + 0.006*\"argic\" + 0.005*\"serdar\" + 0.005*\"genocid\" + 0.005*\"soviet\" + 0.005*\"muslim\"\n", - "2018-09-12 20:59:19,871 : INFO : topic diff=0.308571, rho=0.218218\n", - "2018-09-12 20:59:19,871 : INFO : PROGRESS: pass 0, at document #2200/2819\n", - "2018-09-12 20:59:19,934 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:19,939 : INFO : topic #0 (0.200): 0.025*\"imag\" + 0.018*\"jpeg\" + 0.018*\"file\" + 0.010*\"color\" + 0.010*\"gif\" + 0.009*\"com\" + 0.009*\"format\" + 0.008*\"bit\" + 0.007*\"us\" + 0.007*\"graphic\"\n", - "2018-09-12 20:59:19,940 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"ride\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"nasa\"\n", - "2018-09-12 20:59:19,941 : INFO : topic #2 (0.200): 0.012*\"peopl\" + 0.009*\"isra\" + 0.008*\"think\" + 0.008*\"israel\" + 0.006*\"right\" + 0.006*\"jew\" + 0.006*\"god\" + 0.006*\"arab\" + 0.005*\"kill\" + 0.005*\"human\"\n", - "2018-09-12 20:59:19,942 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.007*\"data\" + 0.007*\"nasa\" + 0.006*\"program\" + 0.005*\"softwar\" + 0.005*\"satellit\" + 0.005*\"univers\" + 0.005*\"graphic\" + 0.005*\"com\" + 0.005*\"orbit\"\n", - "2018-09-12 20:59:19,943 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.009*\"peopl\" + 0.008*\"turkish\" + 0.007*\"armenia\" + 0.005*\"said\" + 0.005*\"turk\" + 0.005*\"time\" + 0.004*\"like\" + 0.004*\"know\" + 0.004*\"turkei\"\n", - "2018-09-12 20:59:19,943 : INFO : topic diff=0.254874, rho=0.213201\n", - "2018-09-12 20:59:19,944 : INFO : PROGRESS: pass 0, at document #2300/2819\n", - "2018-09-12 20:59:20,006 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,012 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.017*\"file\" + 0.015*\"jpeg\" + 0.011*\"gif\" + 0.010*\"color\" + 0.009*\"format\" + 0.009*\"com\" + 0.008*\"bit\" + 0.007*\"us\" + 0.007*\"host\"\n", - "2018-09-12 20:59:20,014 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"gov\" + 0.005*\"think\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\"\n", - "2018-09-12 20:59:20,015 : INFO : topic #2 (0.200): 0.012*\"peopl\" + 0.009*\"isra\" + 0.008*\"israel\" + 0.008*\"think\" + 0.007*\"right\" + 0.006*\"jew\" + 0.006*\"god\" + 0.005*\"human\" + 0.005*\"islam\" + 0.005*\"arab\"\n", - "2018-09-12 20:59:20,016 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.007*\"nasa\" + 0.006*\"data\" + 0.006*\"program\" + 0.006*\"softwar\" + 0.005*\"orbit\" + 0.005*\"com\" + 0.005*\"univers\" + 0.005*\"point\" + 0.005*\"inform\"\n", - "2018-09-12 20:59:20,016 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"armenia\" + 0.006*\"said\" + 0.005*\"turk\" + 0.005*\"time\" + 0.004*\"like\" + 0.004*\"live\" + 0.004*\"come\"\n", - "2018-09-12 20:59:20,017 : INFO : topic diff=0.235805, rho=0.208514\n", - "2018-09-12 20:59:20,017 : INFO : PROGRESS: pass 0, at document #2400/2819\n", - "2018-09-12 20:59:20,077 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,081 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.017*\"file\" + 0.014*\"jpeg\" + 0.010*\"gif\" + 0.010*\"color\" + 0.009*\"com\" + 0.008*\"format\" + 0.007*\"bit\" + 0.007*\"host\" + 0.007*\"us\"\n", - "2018-09-12 20:59:20,082 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"gov\" + 0.005*\"think\" + 0.005*\"time\"\n", - "2018-09-12 20:59:20,083 : INFO : topic #2 (0.200): 0.012*\"jew\" + 0.012*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"human\" + 0.005*\"state\" + 0.005*\"arab\"\n", - "2018-09-12 20:59:20,084 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.007*\"nasa\" + 0.006*\"data\" + 0.006*\"program\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.005*\"com\" + 0.005*\"orbit\" + 0.005*\"new\" + 0.005*\"point\"\n", - "2018-09-12 20:59:20,085 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.014*\"turkish\" + 0.010*\"peopl\" + 0.007*\"turkei\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"know\" + 0.005*\"turk\" + 0.005*\"time\" + 0.004*\"russian\"\n", - "2018-09-12 20:59:20,085 : INFO : topic diff=0.271897, rho=0.204124\n", - "2018-09-12 20:59:20,086 : INFO : PROGRESS: pass 0, at document #2500/2819\n", - "2018-09-12 20:59:20,142 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,147 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.011*\"jpeg\" + 0.010*\"com\" + 0.009*\"color\" + 0.009*\"gif\" + 0.007*\"format\" + 0.007*\"need\" + 0.007*\"bit\" + 0.007*\"host\"\n", - "2018-09-12 20:59:20,147 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"gov\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"time\" + 0.005*\"think\"\n", - "2018-09-12 20:59:20,148 : INFO : topic #2 (0.200): 0.011*\"jew\" + 0.011*\"peopl\" + 0.008*\"isra\" + 0.008*\"god\" + 0.007*\"right\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"human\" + 0.005*\"state\"\n", - "2018-09-12 20:59:20,149 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.010*\"nasa\" + 0.006*\"com\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.005*\"faq\" + 0.005*\"program\" + 0.005*\"data\" + 0.005*\"inform\" + 0.005*\"new\"\n", - "2018-09-12 20:59:20,150 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.010*\"peopl\" + 0.007*\"turkei\" + 0.007*\"armenia\" + 0.006*\"said\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:20,151 : INFO : topic diff=0.203641, rho=0.200000\n", - "2018-09-12 20:59:20,151 : INFO : PROGRESS: pass 0, at document #2600/2819\n", - "2018-09-12 20:59:20,211 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,216 : INFO : topic #0 (0.200): 0.018*\"imag\" + 0.016*\"file\" + 0.011*\"com\" + 0.010*\"jpeg\" + 0.008*\"color\" + 0.007*\"gif\" + 0.007*\"need\" + 0.007*\"format\" + 0.007*\"host\" + 0.007*\"us\"\n", - "2018-09-12 20:59:20,217 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"ride\" + 0.005*\"gov\" + 0.005*\"time\"\n", - "2018-09-12 20:59:20,218 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.009*\"god\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"right\" + 0.005*\"know\" + 0.005*\"state\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:20,219 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.010*\"launch\" + 0.008*\"nasa\" + 0.008*\"satellit\" + 0.006*\"program\" + 0.006*\"data\" + 0.006*\"new\" + 0.005*\"orbit\" + 0.005*\"inform\" + 0.005*\"com\"\n", - "2018-09-12 20:59:20,219 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.013*\"turkish\" + 0.009*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"turk\" + 0.004*\"soviet\"\n", - "2018-09-12 20:59:20,220 : INFO : topic diff=0.243524, rho=0.196116\n", - "2018-09-12 20:59:20,220 : INFO : PROGRESS: pass 0, at document #2700/2819\n", - "2018-09-12 20:59:20,276 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,281 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.015*\"file\" + 0.012*\"com\" + 0.008*\"jpeg\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.007*\"gif\" + 0.006*\"us\"\n", - "2018-09-12 20:59:20,281 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"ride\" + 0.005*\"dod\" + 0.005*\"gov\"\n", - "2018-09-12 20:59:20,282 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"peopl\" + 0.009*\"jew\" + 0.008*\"isra\" + 0.008*\"god\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"state\"\n", - "2018-09-12 20:59:20,283 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.008*\"nasa\" + 0.008*\"launch\" + 0.008*\"satellit\" + 0.005*\"new\" + 0.005*\"inform\" + 0.005*\"program\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"orbit\"\n", - "2018-09-12 20:59:20,284 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"know\" + 0.004*\"azerbaijan\"\n", - "2018-09-12 20:59:20,285 : INFO : topic diff=0.185262, rho=0.192450\n", - "2018-09-12 20:59:20,285 : INFO : PROGRESS: pass 0, at document #2800/2819\n", - "2018-09-12 20:59:20,348 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,353 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.014*\"file\" + 0.011*\"com\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.007*\"jpeg\" + 0.007*\"version\" + 0.006*\"graphic\"\n", - "2018-09-12 20:59:20,354 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"dod\" + 0.005*\"ride\" + 0.005*\"think\"\n", - "2018-09-12 20:59:20,354 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"peopl\" + 0.009*\"god\" + 0.009*\"jew\" + 0.009*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"islam\"\n", - "2018-09-12 20:59:20,355 : INFO : topic #3 (0.200): 0.023*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.007*\"satellit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"inform\" + 0.005*\"orbit\" + 0.005*\"univers\" + 0.005*\"program\"\n", - "2018-09-12 20:59:20,356 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"time\" + 0.005*\"know\" + 0.004*\"turk\" + 0.004*\"year\"\n", - "2018-09-12 20:59:20,356 : INFO : topic diff=0.199321, rho=0.188982\n", - "2018-09-12 20:59:20,392 : INFO : -7.831 per-word bound, 227.7 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", - "2018-09-12 20:59:20,393 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2018-09-12 20:59:20,405 : INFO : merging changes from 19 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,410 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.008*\"need\" + 0.008*\"access\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.007*\"version\" + 0.007*\"thank\" + 0.007*\"program\"\n", - "2018-09-12 20:59:20,410 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"dod\" + 0.005*\"einstein\" + 0.004*\"gov\"\n", - "2018-09-12 20:59:20,411 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.008*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.006*\"state\"\n", - "2018-09-12 20:59:20,412 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.008*\"inform\" + 0.008*\"nasa\" + 0.006*\"launch\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"satellit\" + 0.005*\"scienc\" + 0.005*\"program\" + 0.005*\"point\"\n", - "2018-09-12 20:59:20,412 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:20,413 : INFO : topic diff=0.277507, rho=0.185695\n", - "2018-09-12 20:59:20,413 : INFO : PROGRESS: pass 1, at document #100/2819\n", - "2018-09-12 20:59:20,470 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,474 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.012*\"imag\" + 0.012*\"com\" + 0.008*\"need\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"access\" + 0.007*\"program\" + 0.006*\"version\" + 0.006*\"thank\"\n", - "2018-09-12 20:59:20,475 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"like\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.004*\"gov\" + 0.004*\"time\"\n", - "2018-09-12 20:59:20,476 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.008*\"believ\" + 0.007*\"think\" + 0.007*\"exist\" + 0.007*\"atheist\" + 0.007*\"jew\" + 0.006*\"state\"\n", - "2018-09-12 20:59:20,476 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.007*\"nasa\" + 0.007*\"inform\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.005*\"satellit\" + 0.004*\"scienc\" + 0.004*\"program\" + 0.004*\"point\"\n", - "2018-09-12 20:59:20,477 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"world\" + 0.005*\"compromis\" + 0.005*\"time\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:20,478 : INFO : topic diff=0.162565, rho=0.181999\n", - "2018-09-12 20:59:20,478 : INFO : PROGRESS: pass 1, at document #200/2819\n", - "2018-09-12 20:59:20,536 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,541 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.014*\"imag\" + 0.012*\"com\" + 0.008*\"host\" + 0.008*\"access\" + 0.008*\"nntp\" + 0.008*\"need\" + 0.007*\"graphic\" + 0.007*\"bit\" + 0.006*\"thank\"\n", - "2018-09-12 20:59:20,541 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.011*\"dod\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"ride\" + 0.005*\"thing\" + 0.005*\"motorcycl\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"nntp\"\n", - "2018-09-12 20:59:20,542 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"believ\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", - "2018-09-12 20:59:20,543 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.005*\"launch\" + 0.004*\"time\" + 0.004*\"system\"\n", - "2018-09-12 20:59:20,544 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"turkish\" + 0.009*\"said\" + 0.008*\"peopl\" + 0.006*\"turkei\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"time\"\n", - "2018-09-12 20:59:20,544 : INFO : topic diff=0.220737, rho=0.181999\n", - "2018-09-12 20:59:20,545 : INFO : PROGRESS: pass 1, at document #300/2819\n", - "2018-09-12 20:59:20,604 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,609 : INFO : topic #0 (0.200): 0.013*\"file\" + 0.013*\"imag\" + 0.013*\"com\" + 0.009*\"host\" + 0.009*\"access\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.007*\"graphic\" + 0.007*\"bit\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:20,609 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"dod\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"ride\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"motorcycl\"\n", - "2018-09-12 20:59:20,610 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"exist\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"jew\"\n", - "2018-09-12 20:59:20,611 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.004*\"system\" + 0.004*\"program\" + 0.004*\"com\"\n", - "2018-09-12 20:59:20,612 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.009*\"turkish\" + 0.009*\"said\" + 0.008*\"peopl\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"greek\" + 0.004*\"time\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:20,613 : INFO : topic diff=0.158672, rho=0.181999\n", - "2018-09-12 20:59:20,614 : INFO : PROGRESS: pass 1, at document #400/2819\n", - "2018-09-12 20:59:20,670 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,675 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"com\" + 0.012*\"imag\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.009*\"access\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"graphic\" + 0.006*\"us\"\n", - "2018-09-12 20:59:20,676 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"dod\" + 0.009*\"bike\" + 0.009*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"motorcycl\"\n", - "2018-09-12 20:59:20,677 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"state\" + 0.006*\"jew\"\n", - "2018-09-12 20:59:20,678 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.005*\"inform\" + 0.004*\"orbit\" + 0.004*\"scienc\" + 0.004*\"com\" + 0.004*\"time\" + 0.004*\"point\"\n", - "2018-09-12 20:59:20,679 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"turkish\" + 0.009*\"said\" + 0.008*\"peopl\" + 0.006*\"greek\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"world\" + 0.004*\"armenia\" + 0.004*\"kill\"\n", - "2018-09-12 20:59:20,679 : INFO : topic diff=0.154223, rho=0.181999\n", - "2018-09-12 20:59:20,680 : INFO : PROGRESS: pass 1, at document #500/2819\n", - "2018-09-12 20:59:20,738 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,742 : INFO : topic #0 (0.200): 0.014*\"com\" + 0.013*\"file\" + 0.011*\"imag\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"access\" + 0.008*\"need\" + 0.007*\"graphic\" + 0.007*\"thank\" + 0.006*\"us\"\n", - "2018-09-12 20:59:20,743 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.009*\"dod\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"think\"\n", - "2018-09-12 20:59:20,744 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"exist\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:20,744 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.006*\"univers\" + 0.006*\"nasa\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"com\" + 0.005*\"orbit\" + 0.004*\"scienc\" + 0.004*\"launch\" + 0.004*\"time\"\n", - "2018-09-12 20:59:20,745 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"said\" + 0.011*\"peopl\" + 0.008*\"turkish\" + 0.006*\"know\" + 0.006*\"kill\" + 0.005*\"went\" + 0.005*\"time\" + 0.005*\"sai\" + 0.005*\"live\"\n", - "2018-09-12 20:59:20,745 : INFO : topic diff=0.210690, rho=0.181999\n", - "2018-09-12 20:59:20,746 : INFO : PROGRESS: pass 1, at document #600/2819\n", - "2018-09-12 20:59:20,802 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,807 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.014*\"imag\" + 0.013*\"com\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"access\" + 0.007*\"thank\" + 0.007*\"us\" + 0.006*\"univers\"\n", - "2018-09-12 20:59:20,808 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"motorcycl\"\n", - "2018-09-12 20:59:20,809 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:20,810 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.005*\"com\" + 0.004*\"launch\" + 0.004*\"includ\"\n", - "2018-09-12 20:59:20,811 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"said\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"greek\" + 0.005*\"went\" + 0.005*\"turk\" + 0.005*\"time\"\n", - "2018-09-12 20:59:20,811 : INFO : topic diff=0.147515, rho=0.181999\n", - "2018-09-12 20:59:20,812 : INFO : PROGRESS: pass 1, at document #700/2819\n", - "2018-09-12 20:59:20,867 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,872 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.014*\"file\" + 0.013*\"com\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.008*\"need\" + 0.007*\"graphic\" + 0.007*\"univers\" + 0.007*\"access\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:20,873 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"bike\" + 0.009*\"like\" + 0.007*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"think\"\n", - "2018-09-12 20:59:20,873 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.010*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"jew\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"state\"\n", - "2018-09-12 20:59:20,874 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.008*\"univers\" + 0.006*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"launch\" + 0.005*\"scienc\" + 0.004*\"com\" + 0.004*\"year\"\n", - "2018-09-12 20:59:20,875 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"said\" + 0.009*\"turkish\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"time\"\n", - "2018-09-12 20:59:20,875 : INFO : topic diff=0.156674, rho=0.181999\n", - "2018-09-12 20:59:20,876 : INFO : PROGRESS: pass 1, at document #800/2819\n", - "2018-09-12 20:59:20,930 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:20,936 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.013*\"com\" + 0.012*\"file\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.007*\"univers\" + 0.007*\"graphic\" + 0.007*\"thank\" + 0.007*\"know\"\n", - "2018-09-12 20:59:20,937 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"dod\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"time\"\n", - "2018-09-12 20:59:20,938 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.010*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"state\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"islam\"\n", - "2018-09-12 20:59:20,939 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.007*\"univers\" + 0.007*\"nasa\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.005*\"inform\" + 0.004*\"launch\" + 0.004*\"com\" + 0.004*\"year\" + 0.004*\"scienc\"\n", - "2018-09-12 20:59:20,940 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.010*\"said\" + 0.009*\"turkish\" + 0.005*\"greek\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"turk\" + 0.005*\"time\" + 0.005*\"armenia\"\n", - "2018-09-12 20:59:20,940 : INFO : topic diff=0.159971, rho=0.181999\n", - "2018-09-12 20:59:20,941 : INFO : PROGRESS: pass 1, at document #900/2819\n", - "2018-09-12 20:59:20,996 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,000 : INFO : topic #0 (0.200): 0.014*\"com\" + 0.013*\"imag\" + 0.011*\"file\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"thank\" + 0.007*\"univers\" + 0.007*\"graphic\" + 0.007*\"know\"\n", - "2018-09-12 20:59:21,001 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"dod\" + 0.007*\"ride\" + 0.006*\"thing\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.005*\"time\"\n", - "2018-09-12 20:59:21,003 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"atheist\" + 0.007*\"believ\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.006*\"religion\"\n", - "2018-09-12 20:59:21,003 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"nasa\" + 0.006*\"orbit\" + 0.005*\"point\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.004*\"year\" + 0.004*\"com\"\n", - "2018-09-12 20:59:21,004 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.010*\"said\" + 0.008*\"turkish\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"greek\" + 0.005*\"time\" + 0.004*\"sai\" + 0.004*\"turk\"\n", - "2018-09-12 20:59:21,005 : INFO : topic diff=0.189405, rho=0.181999\n", - "2018-09-12 20:59:21,131 : INFO : -7.850 per-word bound, 230.7 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", - "2018-09-12 20:59:21,132 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2018-09-12 20:59:21,189 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,194 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.013*\"com\" + 0.013*\"file\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"bit\" + 0.007*\"need\" + 0.007*\"thank\" + 0.007*\"univers\" + 0.007*\"graphic\"\n", - "2018-09-12 20:59:21,195 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"time\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:21,195 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.009*\"god\" + 0.007*\"believ\" + 0.007*\"right\" + 0.007*\"atheist\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"state\"\n", - "2018-09-12 20:59:21,196 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.008*\"orbit\" + 0.007*\"nasa\" + 0.006*\"new\" + 0.006*\"mission\" + 0.006*\"univers\" + 0.006*\"point\" + 0.005*\"launch\" + 0.005*\"probe\" + 0.005*\"year\"\n", - "2018-09-12 20:59:21,197 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.009*\"said\" + 0.008*\"greek\" + 0.006*\"turk\" + 0.005*\"know\" + 0.004*\"time\" + 0.004*\"kill\" + 0.004*\"armenia\"\n", - "2018-09-12 20:59:21,198 : INFO : topic diff=0.191512, rho=0.181999\n", - "2018-09-12 20:59:21,198 : INFO : PROGRESS: pass 1, at document #1100/2819\n", - "2018-09-12 20:59:21,253 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,258 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.013*\"com\" + 0.013*\"file\" + 0.009*\"graphic\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.007*\"program\" + 0.006*\"bit\" + 0.006*\"univers\"\n", - "2018-09-12 20:59:21,259 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"bike\" + 0.008*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.005*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"know\" + 0.005*\"time\"\n", - "2018-09-12 20:59:21,260 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"think\" + 0.007*\"atheist\" + 0.007*\"arab\" + 0.006*\"believ\" + 0.006*\"right\" + 0.006*\"religion\"\n", - "2018-09-12 20:59:21,260 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"data\" + 0.006*\"univers\" + 0.005*\"point\" + 0.005*\"mission\" + 0.005*\"year\" + 0.004*\"inform\"\n", - "2018-09-12 20:59:21,261 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"greek\" + 0.006*\"turk\" + 0.004*\"soviet\" + 0.004*\"armenia\" + 0.004*\"russian\" + 0.004*\"know\"\n", - "2018-09-12 20:59:21,262 : INFO : topic diff=0.199847, rho=0.181999\n", - "2018-09-12 20:59:21,262 : INFO : PROGRESS: pass 1, at document #1200/2819\n", - "2018-09-12 20:59:21,319 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,324 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.013*\"com\" + 0.012*\"file\" + 0.010*\"graphic\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.007*\"program\" + 0.007*\"univers\" + 0.006*\"format\"\n", - "2018-09-12 20:59:21,324 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.006*\"dod\" + 0.005*\"nntp\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"good\"\n", - "2018-09-12 20:59:21,325 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.006*\"right\" + 0.006*\"atheist\"\n", - "2018-09-12 20:59:21,326 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.006*\"orbit\" + 0.006*\"point\" + 0.006*\"data\" + 0.006*\"new\" + 0.006*\"univers\" + 0.005*\"program\" + 0.005*\"year\" + 0.005*\"mission\"\n", - "2018-09-12 20:59:21,326 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.007*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"genocid\"\n", - "2018-09-12 20:59:21,327 : INFO : topic diff=0.144722, rho=0.181999\n", - "2018-09-12 20:59:21,327 : INFO : PROGRESS: pass 1, at document #1300/2819\n", - "2018-09-12 20:59:21,383 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,388 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.016*\"graphic\" + 0.014*\"file\" + 0.012*\"com\" + 0.008*\"mail\" + 0.008*\"format\" + 0.007*\"host\" + 0.007*\"ftp\" + 0.007*\"packag\" + 0.007*\"us\"\n", - "2018-09-12 20:59:21,389 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"nntp\" + 0.005*\"dod\" + 0.005*\"host\" + 0.005*\"time\" + 0.005*\"know\"\n", - "2018-09-12 20:59:21,390 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.005*\"right\"\n", - "2018-09-12 20:59:21,391 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.006*\"data\" + 0.005*\"univers\" + 0.005*\"point\" + 0.004*\"rai\" + 0.004*\"program\" + 0.004*\"mission\"\n", - "2018-09-12 20:59:21,391 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"greek\" + 0.007*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.004*\"soviet\" + 0.004*\"time\"\n", - "2018-09-12 20:59:21,392 : INFO : topic diff=0.193399, rho=0.181999\n", - "2018-09-12 20:59:21,392 : INFO : PROGRESS: pass 1, at document #1400/2819\n", - "2018-09-12 20:59:21,446 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,451 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.013*\"com\" + 0.008*\"mail\" + 0.008*\"host\" + 0.007*\"program\" + 0.007*\"nntp\" + 0.007*\"format\" + 0.007*\"us\"\n", - "2018-09-12 20:59:21,451 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.005*\"host\" + 0.005*\"know\" + 0.005*\"time\"\n", - "2018-09-12 20:59:21,452 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.006*\"exist\" + 0.005*\"right\"\n", - "2018-09-12 20:59:21,453 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.007*\"nasa\" + 0.006*\"orbit\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"program\" + 0.004*\"point\" + 0.004*\"mission\" + 0.004*\"launch\"\n", - "2018-09-12 20:59:21,454 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"henrik\" + 0.004*\"time\"\n", - "2018-09-12 20:59:21,454 : INFO : topic diff=0.145858, rho=0.181999\n", - "2018-09-12 20:59:21,455 : INFO : PROGRESS: pass 1, at document #1500/2819\n", - "2018-09-12 20:59:21,507 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,512 : INFO : topic #0 (0.200): 0.026*\"imag\" + 0.014*\"graphic\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"host\" + 0.008*\"program\" + 0.007*\"mail\" + 0.007*\"us\" + 0.007*\"nntp\" + 0.007*\"format\"\n", - "2018-09-12 20:59:21,512 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"thing\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.005*\"host\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"dai\"\n", - "2018-09-12 20:59:21,513 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"god\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"arab\" + 0.006*\"state\" + 0.006*\"christian\" + 0.006*\"right\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:21,514 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.007*\"nasa\" + 0.006*\"data\" + 0.006*\"new\" + 0.005*\"orbit\" + 0.005*\"program\" + 0.005*\"univers\" + 0.004*\"point\" + 0.004*\"includ\" + 0.004*\"process\"\n", - "2018-09-12 20:59:21,514 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.007*\"said\" + 0.007*\"turk\" + 0.006*\"turkei\" + 0.006*\"greek\" + 0.005*\"armenia\" + 0.004*\"time\" + 0.004*\"henrik\"\n", - "2018-09-12 20:59:21,515 : INFO : topic diff=0.183537, rho=0.181999\n", - "2018-09-12 20:59:21,515 : INFO : PROGRESS: pass 1, at document #1600/2819\n", - "2018-09-12 20:59:21,571 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,576 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.013*\"graphic\" + 0.012*\"com\" + 0.011*\"file\" + 0.008*\"host\" + 0.007*\"program\" + 0.007*\"nntp\" + 0.007*\"us\" + 0.007*\"mail\" + 0.007*\"bit\"\n", - "2018-09-12 20:59:21,576 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"dod\" + 0.005*\"know\" + 0.005*\"good\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:21,577 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.007*\"isra\" + 0.006*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:21,578 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.007*\"nasa\" + 0.006*\"data\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"point\" + 0.005*\"orbit\" + 0.005*\"program\" + 0.005*\"center\" + 0.005*\"research\"\n", - "2018-09-12 20:59:21,579 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.007*\"said\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.005*\"greek\" + 0.005*\"time\" + 0.004*\"muslim\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:21,579 : INFO : topic diff=0.130285, rho=0.181999\n", - "2018-09-12 20:59:21,580 : INFO : PROGRESS: pass 1, at document #1700/2819\n", - "2018-09-12 20:59:21,631 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,635 : INFO : topic #0 (0.200): 0.022*\"imag\" + 0.013*\"file\" + 0.012*\"graphic\" + 0.012*\"com\" + 0.008*\"host\" + 0.008*\"program\" + 0.007*\"nntp\" + 0.007*\"bit\" + 0.007*\"us\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:21,636 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.005*\"host\" + 0.005*\"time\" + 0.005*\"ride\" + 0.005*\"know\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:21,637 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"christian\"\n", - "2018-09-12 20:59:21,637 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"data\" + 0.005*\"univers\" + 0.005*\"new\" + 0.005*\"point\" + 0.005*\"program\" + 0.005*\"center\" + 0.004*\"research\"\n", - "2018-09-12 20:59:21,638 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.009*\"turkish\" + 0.009*\"peopl\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.004*\"sai\"\n", - "2018-09-12 20:59:21,638 : INFO : topic diff=0.140251, rho=0.181999\n", - "2018-09-12 20:59:21,639 : INFO : PROGRESS: pass 1, at document #1800/2819\n", - "2018-09-12 20:59:21,692 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,696 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.013*\"com\" + 0.012*\"graphic\" + 0.012*\"file\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"program\" + 0.007*\"univers\" + 0.007*\"us\" + 0.007*\"mail\"\n", - "2018-09-12 20:59:21,697 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"dod\" + 0.005*\"time\"\n", - "2018-09-12 20:59:21,698 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.008*\"isra\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"islam\"\n", - "2018-09-12 20:59:21,699 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"point\" + 0.005*\"univers\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"program\" + 0.005*\"center\" + 0.004*\"research\"\n", - "2018-09-12 20:59:21,699 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.009*\"peopl\" + 0.008*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"time\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"serdar\"\n", - "2018-09-12 20:59:21,700 : INFO : topic diff=0.138975, rho=0.181999\n", - "2018-09-12 20:59:21,701 : INFO : PROGRESS: pass 1, at document #1900/2819\n", - "2018-09-12 20:59:21,751 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,757 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.013*\"graphic\" + 0.012*\"com\" + 0.012*\"file\" + 0.009*\"host\" + 0.008*\"nntp\" + 0.008*\"univers\" + 0.007*\"program\" + 0.007*\"thank\" + 0.006*\"us\"\n", - "2018-09-12 20:59:21,759 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"time\"\n", - "2018-09-12 20:59:21,759 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.008*\"god\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"moral\" + 0.005*\"arab\" + 0.005*\"state\"\n", - "2018-09-12 20:59:21,760 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"point\" + 0.006*\"univers\" + 0.005*\"new\" + 0.005*\"program\" + 0.005*\"data\" + 0.005*\"center\" + 0.004*\"research\"\n", - "2018-09-12 20:59:21,761 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.006*\"genocid\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"serdar\" + 0.005*\"soviet\" + 0.005*\"argic\"\n", - "2018-09-12 20:59:21,762 : INFO : topic diff=0.137672, rho=0.181999\n", - "2018-09-12 20:59:21,874 : INFO : -7.872 per-word bound, 234.3 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n", - "2018-09-12 20:59:21,875 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2018-09-12 20:59:21,935 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:21,940 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.013*\"file\" + 0.012*\"graphic\" + 0.012*\"com\" + 0.008*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"ftp\" + 0.007*\"univers\" + 0.006*\"us\"\n", - "2018-09-12 20:59:21,941 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"nntp\" + 0.005*\"host\" + 0.005*\"dod\" + 0.005*\"time\"\n", - "2018-09-12 20:59:21,941 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.008*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"moral\"\n", - "2018-09-12 20:59:21,942 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"data\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"new\" + 0.005*\"program\" + 0.005*\"satellit\" + 0.005*\"point\"\n", - "2018-09-12 20:59:21,943 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.006*\"said\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.005*\"argic\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:21,943 : INFO : topic diff=0.151601, rho=0.181999\n", - "2018-09-12 20:59:21,944 : INFO : PROGRESS: pass 1, at document #2100/2819\n", - "2018-09-12 20:59:21,999 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,005 : INFO : topic #0 (0.200): 0.027*\"imag\" + 0.019*\"file\" + 0.019*\"jpeg\" + 0.011*\"graphic\" + 0.011*\"gif\" + 0.010*\"color\" + 0.010*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", - "2018-09-12 20:59:22,006 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"thing\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:22,007 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"god\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"state\"\n", - "2018-09-12 20:59:22,008 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.007*\"data\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"center\" + 0.004*\"program\" + 0.004*\"research\" + 0.004*\"scienc\"\n", - "2018-09-12 20:59:22,009 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.008*\"peopl\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"argic\" + 0.006*\"serdar\" + 0.005*\"genocid\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:22,009 : INFO : topic diff=0.198995, rho=0.181999\n", - "2018-09-12 20:59:22,010 : INFO : PROGRESS: pass 1, at document #2200/2819\n", - "2018-09-12 20:59:22,061 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,066 : INFO : topic #0 (0.200): 0.025*\"imag\" + 0.018*\"file\" + 0.017*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"color\" + 0.010*\"gif\" + 0.009*\"format\" + 0.009*\"com\" + 0.008*\"program\" + 0.008*\"us\"\n", - "2018-09-12 20:59:22,067 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"ride\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:22,068 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"jew\" + 0.006*\"right\" + 0.006*\"arab\" + 0.005*\"moral\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:22,068 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"data\" + 0.005*\"satellit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"univers\" + 0.005*\"scienc\" + 0.005*\"point\"\n", - "2018-09-12 20:59:22,069 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"time\" + 0.005*\"happen\"\n", - "2018-09-12 20:59:22,070 : INFO : topic diff=0.167868, rho=0.181999\n", - "2018-09-12 20:59:22,070 : INFO : PROGRESS: pass 1, at document #2300/2819\n", - "2018-09-12 20:59:22,125 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,129 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.017*\"file\" + 0.015*\"jpeg\" + 0.011*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.010*\"format\" + 0.009*\"com\" + 0.008*\"program\" + 0.008*\"us\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:22,130 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"think\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.005*\"gov\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:22,131 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"arab\" + 0.005*\"human\"\n", - "2018-09-12 20:59:22,131 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"data\" + 0.005*\"point\" + 0.005*\"new\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"scienc\" + 0.004*\"inform\"\n", - "2018-09-12 20:59:22,132 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.008*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"come\" + 0.005*\"live\"\n", - "2018-09-12 20:59:22,133 : INFO : topic diff=0.149647, rho=0.181999\n", - "2018-09-12 20:59:22,133 : INFO : PROGRESS: pass 1, at document #2400/2819\n", - "2018-09-12 20:59:22,184 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,189 : INFO : topic #0 (0.200): 0.022*\"imag\" + 0.017*\"file\" + 0.013*\"jpeg\" + 0.011*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.009*\"com\" + 0.009*\"format\" + 0.008*\"program\" + 0.008*\"us\"\n", - "2018-09-12 20:59:22,189 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"think\" + 0.006*\"host\" + 0.005*\"dod\" + 0.005*\"time\"\n", - "2018-09-12 20:59:22,191 : INFO : topic #2 (0.200): 0.012*\"jew\" + 0.011*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"state\" + 0.005*\"arab\"\n", - "2018-09-12 20:59:22,192 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"data\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"point\" + 0.005*\"launch\" + 0.004*\"inform\" + 0.004*\"program\"\n", - "2018-09-12 20:59:22,193 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.014*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"time\"\n", - "2018-09-12 20:59:22,193 : INFO : topic diff=0.195605, rho=0.181999\n", - "2018-09-12 20:59:22,194 : INFO : PROGRESS: pass 1, at document #2500/2819\n", - "2018-09-12 20:59:22,245 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,250 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.011*\"jpeg\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.009*\"color\" + 0.009*\"gif\" + 0.008*\"format\" + 0.008*\"program\" + 0.007*\"us\"\n", - "2018-09-12 20:59:22,251 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"gov\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:22,252 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"human\" + 0.005*\"state\"\n", - "2018-09-12 20:59:22,252 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"faq\" + 0.005*\"univers\" + 0.005*\"inform\" + 0.005*\"center\" + 0.005*\"data\" + 0.005*\"launch\"\n", - "2018-09-12 20:59:22,253 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.007*\"armenia\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"kill\"\n", - "2018-09-12 20:59:22,254 : INFO : topic diff=0.139030, rho=0.181999\n", - "2018-09-12 20:59:22,254 : INFO : PROGRESS: pass 1, at document #2600/2819\n", - "2018-09-12 20:59:22,307 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,312 : INFO : topic #0 (0.200): 0.019*\"imag\" + 0.016*\"file\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.010*\"jpeg\" + 0.008*\"color\" + 0.008*\"gif\" + 0.008*\"format\" + 0.008*\"program\" + 0.007*\"us\"\n", - "2018-09-12 20:59:22,313 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"thing\" + 0.005*\"think\" + 0.005*\"ride\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:22,314 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"believ\" + 0.005*\"know\"\n", - "2018-09-12 20:59:22,315 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.012*\"launch\" + 0.010*\"nasa\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"inform\" + 0.005*\"program\" + 0.004*\"center\"\n", - "2018-09-12 20:59:22,315 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:22,316 : INFO : topic diff=0.179603, rho=0.181999\n", - "2018-09-12 20:59:22,317 : INFO : PROGRESS: pass 1, at document #2700/2819\n", - "2018-09-12 20:59:22,375 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,380 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.016*\"file\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.009*\"jpeg\" + 0.008*\"program\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"gif\" + 0.007*\"host\"\n", - "2018-09-12 20:59:22,381 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"think\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:22,382 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"jew\" + 0.009*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\"\n", - "2018-09-12 20:59:22,382 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.010*\"launch\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"program\"\n", - "2018-09-12 20:59:22,383 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.012*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"soviet\"\n", - "2018-09-12 20:59:22,383 : INFO : topic diff=0.135327, rho=0.181999\n", - "2018-09-12 20:59:22,384 : INFO : PROGRESS: pass 1, at document #2800/2819\n", - "2018-09-12 20:59:22,439 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,443 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.015*\"file\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.008*\"need\" + 0.008*\"color\" + 0.007*\"program\" + 0.007*\"host\" + 0.007*\"version\" + 0.007*\"nntp\"\n", - "2018-09-12 20:59:22,444 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:22,445 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"jew\" + 0.008*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"right\"\n", - "2018-09-12 20:59:22,446 : INFO : topic #3 (0.200): 0.024*\"space\" + 0.010*\"nasa\" + 0.009*\"launch\" + 0.007*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"inform\" + 0.005*\"univers\" + 0.004*\"scienc\"\n", - "2018-09-12 20:59:22,447 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"kill\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:22,447 : INFO : topic diff=0.149077, rho=0.181999\n", - "2018-09-12 20:59:22,483 : INFO : -7.772 per-word bound, 218.6 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", - "2018-09-12 20:59:22,484 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2018-09-12 20:59:22,497 : INFO : merging changes from 19 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,501 : INFO : topic #0 (0.200): 0.018*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"version\" + 0.008*\"thank\" + 0.007*\"host\" + 0.007*\"access\"\n", - "2018-09-12 20:59:22,502 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"think\" + 0.005*\"einstein\"\n", - "2018-09-12 20:59:22,503 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.008*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.005*\"state\"\n", - "2018-09-12 20:59:22,503 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"inform\" + 0.006*\"new\" + 0.006*\"satellit\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.005*\"design\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:22,504 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.005*\"soviet\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:22,504 : INFO : topic diff=0.228487, rho=0.181999\n", - "2018-09-12 20:59:22,505 : INFO : PROGRESS: pass 2, at document #100/2819\n", - "2018-09-12 20:59:22,561 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,566 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.008*\"program\" + 0.008*\"need\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"version\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:22,566 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.005*\"think\" + 0.004*\"good\"\n", - "2018-09-12 20:59:22,567 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.007*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", - "2018-09-12 20:59:22,568 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.008*\"nasa\" + 0.007*\"launch\" + 0.007*\"new\" + 0.006*\"inform\" + 0.005*\"univers\" + 0.005*\"satellit\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.004*\"design\"\n", - "2018-09-12 20:59:22,569 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"compromis\" + 0.005*\"world\" + 0.005*\"know\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:22,569 : INFO : topic diff=0.130049, rho=0.179057\n", - "2018-09-12 20:59:22,570 : INFO : PROGRESS: pass 2, at document #200/2819\n", - "2018-09-12 20:59:22,626 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,631 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.015*\"imag\" + 0.011*\"com\" + 0.011*\"graphic\" + 0.008*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"need\" + 0.008*\"access\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:22,631 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.011*\"dod\" + 0.009*\"like\" + 0.007*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"thing\" + 0.005*\"motorcycl\"\n", - "2018-09-12 20:59:22,633 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"believ\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", - "2018-09-12 20:59:22,633 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.006*\"univers\" + 0.006*\"new\" + 0.006*\"inform\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"scienc\" + 0.004*\"time\" + 0.004*\"year\"\n", - "2018-09-12 20:59:22,634 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"turkei\" + 0.005*\"sai\" + 0.005*\"turk\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"know\"\n", - "2018-09-12 20:59:22,635 : INFO : topic diff=0.178614, rho=0.179057\n", - "2018-09-12 20:59:22,635 : INFO : PROGRESS: pass 2, at document #300/2819\n", - "2018-09-12 20:59:22,688 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,693 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"imag\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"need\" + 0.008*\"nntp\" + 0.008*\"access\" + 0.007*\"thank\" + 0.007*\"version\"\n", - "2018-09-12 20:59:22,694 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"dod\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"ride\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"think\"\n", - "2018-09-12 20:59:22,695 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"exist\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"jew\"\n", - "2018-09-12 20:59:22,696 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.007*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"orbit\" + 0.005*\"inform\" + 0.005*\"launch\" + 0.005*\"scienc\" + 0.004*\"year\" + 0.004*\"develop\"\n", - "2018-09-12 20:59:22,698 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"said\" + 0.009*\"turkish\" + 0.009*\"peopl\" + 0.005*\"turkei\" + 0.005*\"sai\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"greek\"\n", - "2018-09-12 20:59:22,698 : INFO : topic diff=0.133321, rho=0.179057\n", - "2018-09-12 20:59:22,699 : INFO : PROGRESS: pass 2, at document #400/2819\n", - "2018-09-12 20:59:22,753 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,758 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.012*\"com\" + 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"need\" + 0.008*\"nntp\" + 0.008*\"access\" + 0.008*\"thank\" + 0.007*\"program\"\n", - "2018-09-12 20:59:22,759 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.010*\"dod\" + 0.009*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"think\"\n", - "2018-09-12 20:59:22,759 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"state\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:22,760 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.005*\"orbit\" + 0.005*\"inform\" + 0.005*\"launch\" + 0.005*\"scienc\" + 0.004*\"year\" + 0.004*\"develop\"\n", - "2018-09-12 20:59:22,761 : INFO : topic #4 (0.200): 0.015*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"greek\" + 0.005*\"kill\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"world\" + 0.005*\"armenia\"\n", - "2018-09-12 20:59:22,761 : INFO : topic diff=0.130123, rho=0.179057\n", - "2018-09-12 20:59:22,762 : INFO : PROGRESS: pass 2, at document #500/2819\n", - "2018-09-12 20:59:22,817 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,822 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"com\" + 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"access\" + 0.007*\"thank\" + 0.007*\"us\"\n", - "2018-09-12 20:59:22,823 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:22,824 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"exist\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:22,824 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"orbit\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"time\"\n", - "2018-09-12 20:59:22,825 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.012*\"peopl\" + 0.008*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.006*\"went\" + 0.005*\"apart\" + 0.005*\"sai\" + 0.005*\"time\"\n", - "2018-09-12 20:59:22,826 : INFO : topic diff=0.183301, rho=0.179057\n", - "2018-09-12 20:59:22,826 : INFO : PROGRESS: pass 2, at document #600/2819\n", - "2018-09-12 20:59:22,877 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,882 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.014*\"imag\" + 0.013*\"com\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.009*\"graphic\" + 0.008*\"need\" + 0.008*\"thank\" + 0.008*\"us\" + 0.007*\"access\"\n", - "2018-09-12 20:59:22,883 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"think\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:22,884 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:22,884 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.007*\"nasa\" + 0.007*\"univers\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.006*\"launch\" + 0.006*\"inform\" + 0.005*\"scienc\" + 0.004*\"year\" + 0.004*\"includ\"\n", - "2018-09-12 20:59:22,885 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"said\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"children\"\n", - "2018-09-12 20:59:22,885 : INFO : topic diff=0.122262, rho=0.179057\n", - "2018-09-12 20:59:22,886 : INFO : PROGRESS: pass 2, at document #700/2819\n", - "2018-09-12 20:59:22,938 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:22,945 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.015*\"imag\" + 0.013*\"com\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.008*\"need\" + 0.008*\"univers\" + 0.007*\"thank\" + 0.007*\"us\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:22,946 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:22,947 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"jew\" + 0.006*\"islam\" + 0.005*\"right\" + 0.005*\"state\"\n", - "2018-09-12 20:59:22,948 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.007*\"univers\" + 0.006*\"launch\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"earth\"\n", - "2018-09-12 20:59:22,948 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.011*\"said\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"time\"\n", - "2018-09-12 20:59:22,949 : INFO : topic diff=0.130615, rho=0.179057\n", - "2018-09-12 20:59:22,949 : INFO : PROGRESS: pass 2, at document #800/2819\n", - "2018-09-12 20:59:23,003 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,008 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.013*\"file\" + 0.013*\"com\" + 0.010*\"host\" + 0.010*\"graphic\" + 0.010*\"nntp\" + 0.008*\"need\" + 0.008*\"univers\" + 0.007*\"thank\" + 0.007*\"know\"\n", - "2018-09-12 20:59:23,011 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"think\"\n", - "2018-09-12 20:59:23,012 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"state\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"right\"\n", - "2018-09-12 20:59:23,013 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.009*\"nasa\" + 0.007*\"univers\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"inform\" + 0.004*\"scienc\" + 0.004*\"point\"\n", - "2018-09-12 20:59:23,014 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"armenia\" + 0.005*\"time\"\n", - "2018-09-12 20:59:23,015 : INFO : topic diff=0.134384, rho=0.179057\n", - "2018-09-12 20:59:23,015 : INFO : PROGRESS: pass 2, at document #900/2819\n", - "2018-09-12 20:59:23,068 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,073 : INFO : topic #0 (0.200): 0.013*\"com\" + 0.013*\"imag\" + 0.012*\"file\" + 0.010*\"host\" + 0.010*\"graphic\" + 0.009*\"nntp\" + 0.008*\"univers\" + 0.008*\"thank\" + 0.008*\"need\" + 0.007*\"know\"\n", - "2018-09-12 20:59:23,074 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"ride\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\"\n", - "2018-09-12 20:59:23,075 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"atheist\" + 0.007*\"believ\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"religion\"\n", - "2018-09-12 20:59:23,075 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.007*\"new\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"point\" + 0.004*\"inform\" + 0.004*\"scienc\"\n", - "2018-09-12 20:59:23,076 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.011*\"peopl\" + 0.011*\"said\" + 0.008*\"turkish\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"greek\" + 0.005*\"time\" + 0.004*\"sai\" + 0.004*\"children\"\n", - "2018-09-12 20:59:23,077 : INFO : topic diff=0.160567, rho=0.179057\n", - "2018-09-12 20:59:23,204 : INFO : -7.821 per-word bound, 226.1 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", - "2018-09-12 20:59:23,205 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2018-09-12 20:59:23,259 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,264 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.013*\"file\" + 0.013*\"com\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.009*\"graphic\" + 0.008*\"program\" + 0.008*\"thank\" + 0.008*\"univers\" + 0.008*\"need\"\n", - "2018-09-12 20:59:23,264 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"time\"\n", - "2018-09-12 20:59:23,265 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"believ\" + 0.007*\"atheist\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"think\" + 0.006*\"state\"\n", - "2018-09-12 20:59:23,266 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.009*\"orbit\" + 0.008*\"nasa\" + 0.007*\"new\" + 0.006*\"launch\" + 0.006*\"mission\" + 0.005*\"univers\" + 0.005*\"probe\" + 0.005*\"year\" + 0.005*\"point\"\n", - "2018-09-12 20:59:23,266 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.009*\"said\" + 0.008*\"greek\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"time\"\n", - "2018-09-12 20:59:23,267 : INFO : topic diff=0.162359, rho=0.179057\n", - "2018-09-12 20:59:23,268 : INFO : PROGRESS: pass 2, at document #1100/2819\n", - "2018-09-12 20:59:23,319 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,324 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"us\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.006*\"avail\"\n", - "2018-09-12 20:59:23,325 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"think\"\n", - "2018-09-12 20:59:23,325 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"peopl\" + 0.010*\"god\" + 0.009*\"isra\" + 0.007*\"think\" + 0.007*\"atheist\" + 0.007*\"arab\" + 0.006*\"believ\" + 0.006*\"right\" + 0.006*\"religion\"\n", - "2018-09-12 20:59:23,326 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"mission\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"data\"\n", - "2018-09-12 20:59:23,327 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.008*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.005*\"soviet\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.004*\"armi\"\n", - "2018-09-12 20:59:23,327 : INFO : topic diff=0.173305, rho=0.179057\n", - "2018-09-12 20:59:23,328 : INFO : PROGRESS: pass 2, at document #1200/2819\n", - "2018-09-12 20:59:23,383 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,387 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.012*\"file\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.008*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.007*\"univers\" + 0.007*\"format\"\n", - "2018-09-12 20:59:23,388 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"ride\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"dod\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"think\"\n", - "2018-09-12 20:59:23,389 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.006*\"right\" + 0.006*\"atheist\"\n", - "2018-09-12 20:59:23,389 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"point\" + 0.005*\"data\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"develop\" + 0.005*\"mission\"\n", - "2018-09-12 20:59:23,390 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.012*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.008*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"know\"\n", - "2018-09-12 20:59:23,391 : INFO : topic diff=0.125231, rho=0.179057\n", - "2018-09-12 20:59:23,391 : INFO : PROGRESS: pass 2, at document #1300/2819\n", - "2018-09-12 20:59:23,447 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,452 : INFO : topic #0 (0.200): 0.017*\"graphic\" + 0.016*\"imag\" + 0.014*\"file\" + 0.011*\"com\" + 0.009*\"mail\" + 0.008*\"pub\" + 0.008*\"format\" + 0.008*\"ftp\" + 0.008*\"program\" + 0.007*\"host\"\n", - "2018-09-12 20:59:23,453 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"ride\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"time\"\n", - "2018-09-12 20:59:23,454 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.005*\"right\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:23,455 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"univers\" + 0.005*\"mission\" + 0.004*\"launch\"\n", - "2018-09-12 20:59:23,455 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.012*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.007*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"know\"\n", - "2018-09-12 20:59:23,456 : INFO : topic diff=0.174433, rho=0.179057\n", - "2018-09-12 20:59:23,456 : INFO : PROGRESS: pass 2, at document #1400/2819\n", - "2018-09-12 20:59:23,513 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,517 : INFO : topic #0 (0.200): 0.016*\"graphic\" + 0.016*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.008*\"mail\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"pub\" + 0.007*\"us\" + 0.007*\"format\"\n", - "2018-09-12 20:59:23,518 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\" + 0.005*\"know\" + 0.005*\"time\"\n", - "2018-09-12 20:59:23,519 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.005*\"right\"\n", - "2018-09-12 20:59:23,520 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"launch\" + 0.005*\"univers\" + 0.005*\"mission\" + 0.004*\"point\" + 0.004*\"program\"\n", - "2018-09-12 20:59:23,521 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"henrik\" + 0.004*\"know\"\n", - "2018-09-12 20:59:23,521 : INFO : topic diff=0.126654, rho=0.179057\n", - "2018-09-12 20:59:23,521 : INFO : PROGRESS: pass 2, at document #1500/2819\n", - "2018-09-12 20:59:23,573 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,577 : INFO : topic #0 (0.200): 0.025*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"mail\" + 0.007*\"host\" + 0.007*\"us\" + 0.007*\"nntp\" + 0.007*\"format\"\n", - "2018-09-12 20:59:23,578 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"thing\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"dod\" + 0.005*\"time\"\n", - "2018-09-12 20:59:23,579 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.009*\"god\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"arab\" + 0.006*\"christian\" + 0.006*\"state\" + 0.006*\"right\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:23,579 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"program\" + 0.004*\"point\" + 0.004*\"research\" + 0.004*\"develop\"\n", - "2018-09-12 20:59:23,580 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.008*\"said\" + 0.007*\"turk\" + 0.006*\"greek\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.004*\"time\" + 0.004*\"henrik\"\n", - "2018-09-12 20:59:23,581 : INFO : topic diff=0.159517, rho=0.179057\n", - "2018-09-12 20:59:23,581 : INFO : PROGRESS: pass 2, at document #1600/2819\n", - "2018-09-12 20:59:23,633 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,637 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.007*\"mail\" + 0.007*\"us\" + 0.007*\"univers\"\n", - "2018-09-12 20:59:23,639 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"good\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:23,640 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:23,640 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.008*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"data\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"program\"\n", - "2018-09-12 20:59:23,641 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turk\" + 0.006*\"turkei\" + 0.006*\"greek\" + 0.005*\"time\" + 0.004*\"muslim\"\n", - "2018-09-12 20:59:23,642 : INFO : topic diff=0.115286, rho=0.179057\n", - "2018-09-12 20:59:23,642 : INFO : PROGRESS: pass 2, at document #1700/2819\n", - "2018-09-12 20:59:23,695 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,700 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.012*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.007*\"us\" + 0.007*\"mail\" + 0.007*\"bit\"\n", - "2018-09-12 20:59:23,700 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"think\" + 0.005*\"time\"\n", - "2018-09-12 20:59:23,701 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.007*\"god\" + 0.007*\"isra\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:23,702 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"data\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"earth\"\n", - "2018-09-12 20:59:23,703 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.009*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.004*\"kill\"\n", - "2018-09-12 20:59:23,704 : INFO : topic diff=0.124904, rho=0.179057\n", - "2018-09-12 20:59:23,704 : INFO : PROGRESS: pass 2, at document #1800/2819\n", - "2018-09-12 20:59:23,758 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,763 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.012*\"file\" + 0.012*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.007*\"mail\" + 0.007*\"us\"\n", - "2018-09-12 20:59:23,763 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:23,764 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:23,765 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"point\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"research\" + 0.004*\"earth\" + 0.004*\"data\"\n", - "2018-09-12 20:59:23,766 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.009*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"time\" + 0.005*\"turkei\" + 0.005*\"armi\"\n", - "2018-09-12 20:59:23,767 : INFO : topic diff=0.126077, rho=0.179057\n", - "2018-09-12 20:59:23,768 : INFO : PROGRESS: pass 2, at document #1900/2819\n", - "2018-09-12 20:59:23,816 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,820 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.015*\"graphic\" + 0.013*\"file\" + 0.012*\"com\" + 0.009*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"univers\" + 0.007*\"thank\" + 0.007*\"mail\"\n", - "2018-09-12 20:59:23,821 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.009*\"like\" + 0.008*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"know\" + 0.005*\"good\"\n", - "2018-09-12 20:59:23,822 : INFO : topic #2 (0.200): 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.008*\"god\" + 0.008*\"think\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"moral\" + 0.005*\"state\"\n", - "2018-09-12 20:59:23,822 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"point\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"earth\" + 0.004*\"program\"\n", - "2018-09-12 20:59:23,823 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"said\" + 0.006*\"serdar\" + 0.006*\"soviet\" + 0.005*\"argic\"\n", - "2018-09-12 20:59:23,824 : INFO : topic diff=0.123488, rho=0.179057\n", - "2018-09-12 20:59:23,938 : INFO : -7.843 per-word bound, 229.6 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:23,939 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2018-09-12 20:59:23,991 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:23,996 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.013*\"graphic\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"ftp\" + 0.008*\"host\" + 0.008*\"univers\" + 0.008*\"nntp\" + 0.007*\"us\"\n", - "2018-09-12 20:59:23,997 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"like\" + 0.009*\"bike\" + 0.006*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:23,998 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.008*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:23,999 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"data\" + 0.005*\"center\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.005*\"research\" + 0.005*\"satellit\"\n", - "2018-09-12 20:59:24,000 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.007*\"said\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.006*\"argic\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:24,001 : INFO : topic diff=0.134523, rho=0.179057\n", - "2018-09-12 20:59:24,002 : INFO : PROGRESS: pass 2, at document #2100/2819\n", - "2018-09-12 20:59:24,052 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,057 : INFO : topic #0 (0.200): 0.026*\"imag\" + 0.019*\"file\" + 0.019*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.010*\"format\" + 0.009*\"program\" + 0.008*\"us\" + 0.008*\"version\"\n", - "2018-09-12 20:59:24,058 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.009*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"think\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"good\"\n", - "2018-09-12 20:59:24,059 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"state\"\n", - "2018-09-12 20:59:24,060 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"data\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"scienc\"\n", - "2018-09-12 20:59:24,062 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.008*\"peopl\" + 0.008*\"armenia\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"argic\" + 0.006*\"serdar\" + 0.006*\"genocid\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:24,062 : INFO : topic diff=0.179297, rho=0.179057\n", - "2018-09-12 20:59:24,063 : INFO : PROGRESS: pass 2, at document #2200/2819\n", - "2018-09-12 20:59:24,111 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,116 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.018*\"file\" + 0.016*\"jpeg\" + 0.013*\"graphic\" + 0.010*\"color\" + 0.009*\"gif\" + 0.009*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", - "2018-09-12 20:59:24,116 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:24,117 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"believ\" + 0.005*\"moral\"\n", - "2018-09-12 20:59:24,118 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"data\" + 0.005*\"satellit\" + 0.005*\"new\" + 0.005*\"scienc\" + 0.005*\"univers\" + 0.005*\"point\"\n", - "2018-09-12 20:59:24,118 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turkei\"\n", - "2018-09-12 20:59:24,119 : INFO : topic diff=0.153771, rho=0.179057\n", - "2018-09-12 20:59:24,119 : INFO : PROGRESS: pass 2, at document #2300/2819\n", - "2018-09-12 20:59:24,174 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,179 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.017*\"file\" + 0.014*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.010*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", - "2018-09-12 20:59:24,179 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-09-12 20:59:24,181 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"arab\" + 0.005*\"human\"\n", - "2018-09-12 20:59:24,182 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.005*\"data\" + 0.005*\"new\" + 0.005*\"point\" + 0.005*\"launch\" + 0.005*\"scienc\" + 0.005*\"univers\" + 0.004*\"satellit\"\n", - "2018-09-12 20:59:24,183 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"time\" + 0.005*\"come\"\n", - "2018-09-12 20:59:24,183 : INFO : topic diff=0.133881, rho=0.179057\n", - "2018-09-12 20:59:24,184 : INFO : PROGRESS: pass 2, at document #2400/2819\n", - "2018-09-12 20:59:24,236 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,240 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.017*\"file\" + 0.013*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.009*\"format\" + 0.009*\"com\" + 0.008*\"program\" + 0.008*\"us\"\n", - "2018-09-12 20:59:24,241 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"look\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:24,242 : INFO : topic #2 (0.200): 0.011*\"jew\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"state\" + 0.005*\"arab\"\n", - "2018-09-12 20:59:24,243 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"data\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"point\" + 0.004*\"scienc\"\n", - "2018-09-12 20:59:24,243 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"time\"\n", - "2018-09-12 20:59:24,244 : INFO : topic diff=0.180343, rho=0.179057\n", - "2018-09-12 20:59:24,244 : INFO : PROGRESS: pass 2, at document #2500/2819\n", - "2018-09-12 20:59:24,294 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,299 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.012*\"graphic\" + 0.011*\"jpeg\" + 0.010*\"com\" + 0.009*\"color\" + 0.009*\"gif\" + 0.008*\"format\" + 0.008*\"program\" + 0.007*\"version\"\n", - "2018-09-12 20:59:24,300 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"think\" + 0.005*\"look\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:24,301 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"believ\" + 0.005*\"islam\"\n", - "2018-09-12 20:59:24,301 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"faq\" + 0.005*\"center\" + 0.005*\"launch\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"inform\"\n", - "2018-09-12 20:59:24,302 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.015*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.007*\"armenia\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"kill\"\n", - "2018-09-12 20:59:24,303 : INFO : topic diff=0.124272, rho=0.179057\n", - "2018-09-12 20:59:24,303 : INFO : PROGRESS: pass 2, at document #2600/2819\n", - "2018-09-12 20:59:24,358 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,363 : INFO : topic #0 (0.200): 0.018*\"imag\" + 0.016*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.010*\"jpeg\" + 0.008*\"program\" + 0.008*\"color\" + 0.008*\"gif\" + 0.008*\"format\" + 0.007*\"us\"\n", - "2018-09-12 20:59:24,364 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"look\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:24,365 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"jew\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"believ\" + 0.005*\"know\"\n", - "2018-09-12 20:59:24,365 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.012*\"launch\" + 0.011*\"nasa\" + 0.008*\"satellit\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"year\" + 0.005*\"inform\" + 0.005*\"center\"\n", - "2018-09-12 20:59:24,366 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:24,367 : INFO : topic diff=0.166120, rho=0.179057\n", - "2018-09-12 20:59:24,367 : INFO : PROGRESS: pass 2, at document #2700/2819\n", - "2018-09-12 20:59:24,422 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,427 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.015*\"file\" + 0.011*\"com\" + 0.010*\"graphic\" + 0.008*\"jpeg\" + 0.008*\"program\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"gif\" + 0.007*\"us\"\n", - "2018-09-12 20:59:24,427 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:24,428 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"jew\" + 0.009*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"state\"\n", - "2018-09-12 20:59:24,429 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"technolog\" + 0.005*\"center\" + 0.004*\"research\"\n", - "2018-09-12 20:59:24,430 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.012*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:24,430 : INFO : topic diff=0.122824, rho=0.179057\n", - "2018-09-12 20:59:24,431 : INFO : PROGRESS: pass 2, at document #2800/2819\n", - "2018-09-12 20:59:24,483 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,488 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.015*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"need\" + 0.007*\"color\" + 0.007*\"version\" + 0.007*\"host\" + 0.007*\"nntp\"\n", - "2018-09-12 20:59:24,489 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:24,489 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.008*\"jew\" + 0.008*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"right\"\n", - "2018-09-12 20:59:24,490 : INFO : topic #3 (0.200): 0.025*\"space\" + 0.011*\"nasa\" + 0.009*\"launch\" + 0.007*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"inform\" + 0.004*\"scienc\" + 0.004*\"project\"\n", - "2018-09-12 20:59:24,491 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"know\" + 0.005*\"kill\" + 0.005*\"time\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:24,491 : INFO : topic diff=0.135455, rho=0.179057\n", - "2018-09-12 20:59:24,524 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", - "2018-09-12 20:59:24,525 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2018-09-12 20:59:24,536 : INFO : merging changes from 19 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,541 : INFO : topic #0 (0.200): 0.018*\"file\" + 0.013*\"imag\" + 0.010*\"com\" + 0.010*\"graphic\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"version\" + 0.008*\"thank\" + 0.007*\"host\" + 0.007*\"nntp\"\n", - "2018-09-12 20:59:24,542 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.007*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"thing\" + 0.005*\"think\" + 0.005*\"dod\" + 0.005*\"einstein\"\n", - "2018-09-12 20:59:24,542 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.007*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.005*\"state\"\n", - "2018-09-12 20:59:24,543 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.007*\"inform\" + 0.006*\"new\" + 0.006*\"satellit\" + 0.005*\"orbit\" + 0.005*\"scienc\" + 0.005*\"design\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:24,544 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:24,544 : INFO : topic diff=0.213418, rho=0.179057\n", - "2018-09-12 20:59:24,545 : INFO : PROGRESS: pass 3, at document #100/2819\n", - "2018-09-12 20:59:24,597 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,602 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.011*\"graphic\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"version\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:24,603 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.009*\"like\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.007*\"bike\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.004*\"good\"\n", - "2018-09-12 20:59:24,604 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.007*\"atheist\" + 0.006*\"jew\" + 0.005*\"state\"\n", - "2018-09-12 20:59:24,604 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"new\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"satellit\" + 0.005*\"univers\" + 0.005*\"scienc\" + 0.005*\"design\"\n", - "2018-09-12 20:59:24,605 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"compromis\" + 0.005*\"turk\" + 0.005*\"world\" + 0.005*\"know\"\n", - "2018-09-12 20:59:24,606 : INFO : topic diff=0.119734, rho=0.176254\n", - "2018-09-12 20:59:24,607 : INFO : PROGRESS: pass 3, at document #200/2819\n", - "2018-09-12 20:59:24,662 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,667 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.015*\"imag\" + 0.012*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"need\" + 0.008*\"nntp\" + 0.007*\"thank\" + 0.007*\"mail\"\n", - "2018-09-12 20:59:24,668 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.011*\"dod\" + 0.010*\"like\" + 0.007*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.005*\"ride\" + 0.005*\"thing\" + 0.005*\"think\"\n", - "2018-09-12 20:59:24,668 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"believ\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", - "2018-09-12 20:59:24,669 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.006*\"orbit\" + 0.006*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"time\"\n", - "2018-09-12 20:59:24,670 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"turkei\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"greek\" + 0.005*\"armenia\" + 0.005*\"kill\"\n", - "2018-09-12 20:59:24,671 : INFO : topic diff=0.165077, rho=0.176254\n", - "2018-09-12 20:59:24,671 : INFO : PROGRESS: pass 3, at document #300/2819\n", - "2018-09-12 20:59:24,720 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,725 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"imag\" + 0.011*\"com\" + 0.011*\"graphic\" + 0.009*\"host\" + 0.008*\"need\" + 0.008*\"nntp\" + 0.008*\"access\" + 0.007*\"program\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:24,726 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.010*\"dod\" + 0.008*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2018-09-12 20:59:24,726 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"exist\" + 0.006*\"islam\" + 0.006*\"jew\" + 0.006*\"state\"\n", - "2018-09-12 20:59:24,727 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"develop\"\n" + "2018-09-26 15:05:58,281 : INFO : using symmetric alpha at 0.2\n", + "2018-09-26 15:05:58,283 : INFO : using symmetric eta at 0.2\n", + "2018-09-26 15:05:58,287 : INFO : using serial LDA version on this node\n", + "2018-09-26 15:05:58,295 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2018-09-26 15:05:58,297 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2018-09-26 15:05:59,253 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-26 15:05:59,260 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"like\" + 0.005*\"think\" + 0.004*\"host\" + 0.004*\"peopl\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"new\"\n", + "2018-09-26 15:05:59,262 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.003*\"know\" + 0.003*\"new\" + 0.003*\"armenian\" + 0.003*\"right\"\n", + "2018-09-26 15:05:59,263 : INFO : topic #2 (0.200): 0.006*\"right\" + 0.005*\"com\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"israel\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"host\" + 0.004*\"like\" + 0.004*\"think\"\n", + "2018-09-26 15:05:59,264 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"space\" + 0.005*\"know\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"peopl\" + 0.003*\"host\"\n", + "2018-09-26 15:05:59,265 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"said\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenian\"\n", + "2018-09-26 15:05:59,266 : INFO : topic diff=1.649447, rho=1.000000\n", + "2018-09-26 15:05:59,267 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2018-09-26 15:06:00,504 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-26 15:06:00,513 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.007*\"com\" + 0.006*\"graphic\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\" + 0.004*\"know\"\n", + "2018-09-26 15:06:00,516 : INFO : topic #1 (0.200): 0.006*\"nasa\" + 0.006*\"peopl\" + 0.005*\"time\" + 0.005*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"imag\" + 0.003*\"thing\"\n", + "2018-09-26 15:06:00,519 : INFO : topic #2 (0.200): 0.008*\"israel\" + 0.008*\"isra\" + 0.006*\"peopl\" + 0.006*\"right\" + 0.005*\"com\" + 0.005*\"think\" + 0.005*\"arab\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"state\"\n", + "2018-09-26 15:06:00,521 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.009*\"space\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"know\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"host\" + 0.003*\"program\" + 0.003*\"nntp\"\n", + "2018-09-26 15:06:00,523 : INFO : topic #4 (0.200): 0.007*\"armenian\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"think\" + 0.004*\"know\" + 0.004*\"muslim\" + 0.004*\"islam\" + 0.004*\"turkish\" + 0.004*\"time\"\n", + "2018-09-26 15:06:00,537 : INFO : topic diff=0.868179, rho=0.707107\n", + "2018-09-26 15:06:01,900 : INFO : -8.029 per-word bound, 261.2 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", + "2018-09-26 15:06:01,901 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2018-09-26 15:06:02,659 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2018-09-26 15:06:02,666 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.007*\"file\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"program\"\n", + "2018-09-26 15:06:02,667 : INFO : topic #1 (0.200): 0.008*\"nasa\" + 0.006*\"space\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"univers\" + 0.004*\"orbit\"\n", + "2018-09-26 15:06:02,669 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"god\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"think\" + 0.005*\"know\" + 0.004*\"com\"\n", + "2018-09-26 15:06:02,670 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.012*\"com\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.003*\"know\"\n", + "2018-09-26 15:06:02,672 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.009*\"peopl\" + 0.007*\"turkish\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenia\" + 0.004*\"islam\"\n", + "2018-09-26 15:06:02,673 : INFO : topic diff=0.663742, rho=0.577350\n", + "2018-09-26 15:06:02,674 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2018-09-26 15:06:03,553 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2018-09-26 15:06:03,560 : INFO : topic #0 (0.200): 0.010*\"imag\" + 0.008*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"us\" + 0.005*\"need\"\n", + "2018-09-26 15:06:03,562 : INFO : topic #1 (0.200): 0.007*\"nasa\" + 0.006*\"space\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"univers\" + 0.004*\"moon\" + 0.004*\"time\" + 0.004*\"launch\"\n", + "2018-09-26 15:06:03,570 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"isra\" + 0.007*\"god\" + 0.007*\"peopl\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"state\" + 0.005*\"think\" + 0.005*\"univers\"\n", + "2018-09-26 15:06:03,571 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.012*\"com\" + 0.004*\"bike\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"univers\" + 0.004*\"year\" + 0.004*\"dod\" + 0.004*\"host\" + 0.004*\"like\"\n", + "2018-09-26 15:06:03,573 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.010*\"peopl\" + 0.007*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"greek\" + 0.004*\"islam\"\n", + "2018-09-26 15:06:03,575 : INFO : topic diff=0.449256, rho=0.455535\n", + "2018-09-26 15:06:03,577 : INFO : PROGRESS: pass 1, at document #2000/2819\n" ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:24,728 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"said\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"kill\" + 0.005*\"greek\"\n", - "2018-09-12 20:59:24,728 : INFO : topic diff=0.124056, rho=0.176254\n", - "2018-09-12 20:59:24,729 : INFO : PROGRESS: pass 3, at document #400/2819\n", - "2018-09-12 20:59:24,777 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,784 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.012*\"imag\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.009*\"host\" + 0.009*\"need\" + 0.008*\"nntp\" + 0.008*\"thank\" + 0.007*\"access\" + 0.007*\"program\"\n", - "2018-09-12 20:59:24,785 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"dod\" + 0.009*\"bike\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"ride\" + 0.005*\"know\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2018-09-12 20:59:24,786 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"state\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:24,788 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"orbit\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"develop\"\n", - "2018-09-12 20:59:24,789 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"greek\" + 0.006*\"kill\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"sai\"\n", - "2018-09-12 20:59:24,789 : INFO : topic diff=0.121423, rho=0.176254\n", - "2018-09-12 20:59:24,790 : INFO : PROGRESS: pass 3, at document #500/2819\n", - "2018-09-12 20:59:24,844 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,849 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"com\" + 0.012*\"imag\" + 0.011*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"access\" + 0.007*\"program\"\n", - "2018-09-12 20:59:24,850 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:24,851 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.005*\"state\" + 0.005*\"exist\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:24,851 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.006*\"univers\" + 0.005*\"year\" + 0.005*\"scienc\" + 0.005*\"inform\" + 0.004*\"design\"\n", - "2018-09-12 20:59:24,852 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.012*\"peopl\" + 0.008*\"turkish\" + 0.007*\"kill\" + 0.006*\"know\" + 0.006*\"went\" + 0.005*\"apart\" + 0.005*\"sai\" + 0.005*\"time\"\n", - "2018-09-12 20:59:24,853 : INFO : topic diff=0.174145, rho=0.176254\n", - "2018-09-12 20:59:24,853 : INFO : PROGRESS: pass 3, at document #600/2819\n", - "2018-09-12 20:59:24,903 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,908 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.014*\"imag\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"thank\" + 0.008*\"us\" + 0.007*\"univers\"\n", - "2018-09-12 20:59:24,909 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:24,910 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:24,910 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.008*\"nasa\" + 0.007*\"univers\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.006*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"project\"\n", - "2018-09-12 20:59:24,911 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"children\"\n", - "2018-09-12 20:59:24,912 : INFO : topic diff=0.113469, rho=0.176254\n", - "2018-09-12 20:59:24,912 : INFO : PROGRESS: pass 3, at document #700/2819\n", - "2018-09-12 20:59:24,965 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:24,970 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.015*\"imag\" + 0.013*\"com\" + 0.011*\"graphic\" + 0.010*\"host\" + 0.010*\"nntp\" + 0.008*\"univers\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"us\"\n", - "2018-09-12 20:59:24,970 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"know\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:24,971 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"jew\" + 0.006*\"islam\" + 0.005*\"right\" + 0.005*\"state\"\n", - "2018-09-12 20:59:24,972 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.007*\"univers\" + 0.006*\"launch\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"earth\"\n", - "2018-09-12 20:59:24,972 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"children\"\n", - "2018-09-12 20:59:24,973 : INFO : topic diff=0.121962, rho=0.176254\n", - "2018-09-12 20:59:24,973 : INFO : PROGRESS: pass 3, at document #800/2819\n", - "2018-09-12 20:59:25,025 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,030 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"univers\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"know\"\n", - "2018-09-12 20:59:25,031 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\"\n", - "2018-09-12 20:59:25,032 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"state\" + 0.005*\"jew\" + 0.005*\"islam\" + 0.005*\"right\"\n", - "2018-09-12 20:59:25,032 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.007*\"univers\" + 0.006*\"new\" + 0.006*\"launch\" + 0.005*\"year\" + 0.004*\"inform\" + 0.004*\"scienc\" + 0.004*\"earth\"\n", - "2018-09-12 20:59:25,033 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.006*\"greek\" + 0.005*\"turk\" + 0.005*\"armenia\" + 0.005*\"live\"\n", - "2018-09-12 20:59:25,034 : INFO : topic diff=0.125259, rho=0.176254\n", - "2018-09-12 20:59:25,034 : INFO : PROGRESS: pass 3, at document #900/2819\n", - "2018-09-12 20:59:25,087 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,092 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.013*\"com\" + 0.012*\"file\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"univers\" + 0.008*\"thank\" + 0.008*\"need\" + 0.007*\"know\"\n", - "2018-09-12 20:59:25,092 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"ride\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"think\"\n", - "2018-09-12 20:59:25,093 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"atheist\" + 0.007*\"believ\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"state\"\n", - "2018-09-12 20:59:25,094 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.007*\"new\" + 0.006*\"launch\" + 0.006*\"univers\" + 0.005*\"year\" + 0.005*\"point\" + 0.004*\"scienc\" + 0.004*\"inform\"\n", - "2018-09-12 20:59:25,095 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.005*\"know\" + 0.005*\"greek\" + 0.005*\"time\" + 0.005*\"children\" + 0.004*\"turk\"\n", - "2018-09-12 20:59:25,095 : INFO : topic diff=0.150314, rho=0.176254\n", - "2018-09-12 20:59:25,215 : INFO : -7.806 per-word bound, 223.7 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", - "2018-09-12 20:59:25,216 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2018-09-12 20:59:25,266 : INFO : merging changes from 100 documents into a model of 2819 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:25,271 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.009*\"host\" + 0.009*\"graphic\" + 0.009*\"nntp\" + 0.008*\"program\" + 0.008*\"univers\" + 0.008*\"thank\" + 0.007*\"need\"\n", - "2018-09-12 20:59:25,271 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"dod\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"think\"\n", - "2018-09-12 20:59:25,272 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"god\" + 0.009*\"isra\" + 0.007*\"believ\" + 0.006*\"atheist\" + 0.006*\"right\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"state\"\n", - "2018-09-12 20:59:25,273 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.009*\"orbit\" + 0.008*\"nasa\" + 0.007*\"new\" + 0.007*\"launch\" + 0.006*\"mission\" + 0.006*\"year\" + 0.005*\"probe\" + 0.005*\"point\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:25,274 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.009*\"said\" + 0.008*\"greek\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"time\"\n", - "2018-09-12 20:59:25,275 : INFO : topic diff=0.151185, rho=0.176254\n", - "2018-09-12 20:59:25,276 : INFO : PROGRESS: pass 3, at document #1100/2819\n", - "2018-09-12 20:59:25,330 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,335 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"us\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.007*\"avail\"\n", - "2018-09-12 20:59:25,336 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"dod\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2018-09-12 20:59:25,337 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.010*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.007*\"atheist\" + 0.007*\"arab\" + 0.006*\"believ\" + 0.006*\"right\" + 0.005*\"religion\"\n", - "2018-09-12 20:59:25,337 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"mission\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"data\"\n", - "2018-09-12 20:59:25,338 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.008*\"said\" + 0.007*\"greek\" + 0.007*\"turk\" + 0.005*\"soviet\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.004*\"kill\"\n", - "2018-09-12 20:59:25,339 : INFO : topic diff=0.163387, rho=0.176254\n", - "2018-09-12 20:59:25,339 : INFO : PROGRESS: pass 3, at document #1200/2819\n", - "2018-09-12 20:59:25,391 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,396 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.012*\"file\" + 0.012*\"graphic\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.007*\"univers\" + 0.007*\"format\"\n", - "2018-09-12 20:59:25,397 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"dod\" + 0.005*\"think\"\n", - "2018-09-12 20:59:25,397 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.006*\"right\" + 0.005*\"atheist\"\n", - "2018-09-12 20:59:25,398 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"point\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"develop\" + 0.005*\"data\" + 0.005*\"launch\"\n", - "2018-09-12 20:59:25,399 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.008*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.005*\"know\"\n", - "2018-09-12 20:59:25,399 : INFO : topic diff=0.117799, rho=0.176254\n", - "2018-09-12 20:59:25,400 : INFO : PROGRESS: pass 3, at document #1300/2819\n", - "2018-09-12 20:59:25,450 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,455 : INFO : topic #0 (0.200): 0.017*\"graphic\" + 0.016*\"imag\" + 0.014*\"file\" + 0.011*\"com\" + 0.009*\"mail\" + 0.009*\"pub\" + 0.008*\"format\" + 0.008*\"ftp\" + 0.008*\"program\" + 0.007*\"host\"\n", - "2018-09-12 20:59:25,456 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"think\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:25,457 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.005*\"right\"\n", - "2018-09-12 20:59:25,458 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"year\" + 0.005*\"data\" + 0.005*\"launch\" + 0.005*\"mission\"\n", - "2018-09-12 20:59:25,458 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.007*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"know\"\n", - "2018-09-12 20:59:25,459 : INFO : topic diff=0.166254, rho=0.176254\n", - "2018-09-12 20:59:25,459 : INFO : PROGRESS: pass 3, at document #1400/2819\n", - "2018-09-12 20:59:25,510 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,515 : INFO : topic #0 (0.200): 0.016*\"graphic\" + 0.015*\"imag\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"mail\" + 0.008*\"program\" + 0.008*\"pub\" + 0.008*\"host\" + 0.007*\"us\" + 0.007*\"format\"\n", - "2018-09-12 20:59:25,516 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"ride\" + 0.005*\"think\"\n", - "2018-09-12 20:59:25,517 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"right\"\n", - "2018-09-12 20:59:25,517 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"mission\" + 0.005*\"univers\" + 0.004*\"research\" + 0.004*\"data\" + 0.004*\"year\"\n", - "2018-09-12 20:59:25,518 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.007*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.005*\"henrik\" + 0.004*\"know\"\n", - "2018-09-12 20:59:25,519 : INFO : topic diff=0.118707, rho=0.176254\n", - "2018-09-12 20:59:25,519 : INFO : PROGRESS: pass 3, at document #1500/2819\n", - "2018-09-12 20:59:25,568 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,573 : INFO : topic #0 (0.200): 0.025*\"imag\" + 0.016*\"graphic\" + 0.011*\"file\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"mail\" + 0.007*\"host\" + 0.007*\"us\" + 0.007*\"nntp\" + 0.007*\"format\"\n", - "2018-09-12 20:59:25,574 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"ride\" + 0.005*\"dod\" + 0.005*\"think\"\n", - "2018-09-12 20:59:25,575 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.009*\"god\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"arab\" + 0.006*\"christian\" + 0.006*\"state\" + 0.005*\"right\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:25,576 : INFO : topic #3 (0.200): 0.015*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"research\" + 0.005*\"develop\" + 0.004*\"center\" + 0.004*\"earth\"\n", - "2018-09-12 20:59:25,576 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.008*\"said\" + 0.007*\"turk\" + 0.007*\"greek\" + 0.007*\"turkei\" + 0.006*\"armenia\" + 0.004*\"time\" + 0.004*\"know\"\n", - "2018-09-12 20:59:25,577 : INFO : topic diff=0.150018, rho=0.176254\n", - "2018-09-12 20:59:25,577 : INFO : PROGRESS: pass 3, at document #1600/2819\n", - "2018-09-12 20:59:25,626 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,631 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"mail\" + 0.007*\"nntp\" + 0.007*\"us\" + 0.007*\"univers\"\n", - "2018-09-12 20:59:25,631 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"know\" + 0.005*\"dod\" + 0.005*\"good\" + 0.005*\"think\"\n", - "2018-09-12 20:59:25,632 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:25,633 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"univers\" + 0.004*\"scienc\" + 0.004*\"data\"\n", - "2018-09-12 20:59:25,634 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turk\" + 0.006*\"turkei\" + 0.006*\"greek\" + 0.005*\"time\" + 0.004*\"kill\"\n", - "2018-09-12 20:59:25,634 : INFO : topic diff=0.108742, rho=0.176254\n", - "2018-09-12 20:59:25,635 : INFO : PROGRESS: pass 3, at document #1700/2819\n", - "2018-09-12 20:59:25,684 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,689 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.007*\"mail\" + 0.007*\"us\" + 0.007*\"univers\"\n", - "2018-09-12 20:59:25,690 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"ride\" + 0.005*\"time\"\n", - "2018-09-12 20:59:25,690 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.007*\"isra\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:25,691 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"univers\" + 0.005*\"earth\" + 0.005*\"research\" + 0.005*\"data\"\n", - "2018-09-12 20:59:25,692 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"kill\"\n", - "2018-09-12 20:59:25,693 : INFO : topic diff=0.117992, rho=0.176254\n", - "2018-09-12 20:59:25,693 : INFO : PROGRESS: pass 3, at document #1800/2819\n", - "2018-09-12 20:59:25,745 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,750 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.012*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.007*\"mail\" + 0.007*\"us\"\n", - "2018-09-12 20:59:25,751 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"good\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:25,752 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:25,753 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"point\" + 0.006*\"new\" + 0.005*\"center\" + 0.005*\"univers\" + 0.005*\"research\" + 0.005*\"earth\" + 0.005*\"launch\"\n", - "2018-09-12 20:59:25,754 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.009*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"armi\"\n", - "2018-09-12 20:59:25,754 : INFO : topic diff=0.120008, rho=0.176254\n", - "2018-09-12 20:59:25,755 : INFO : PROGRESS: pass 3, at document #1900/2819\n", - "2018-09-12 20:59:25,803 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,809 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.015*\"graphic\" + 0.012*\"file\" + 0.011*\"com\" + 0.009*\"host\" + 0.008*\"program\" + 0.008*\"nntp\" + 0.008*\"univers\" + 0.007*\"mail\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:25,811 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:25,811 : INFO : topic #2 (0.200): 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"isra\" + 0.008*\"think\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"moral\" + 0.005*\"state\"\n", - "2018-09-12 20:59:25,812 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"point\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"year\" + 0.005*\"earth\"\n", - "2018-09-12 20:59:25,813 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"said\" + 0.006*\"serdar\" + 0.006*\"soviet\" + 0.006*\"argic\"\n", - "2018-09-12 20:59:25,813 : INFO : topic diff=0.116874, rho=0.176254\n", - "2018-09-12 20:59:25,932 : INFO : -7.828 per-word bound, 227.3 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n", - "2018-09-12 20:59:25,933 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2018-09-12 20:59:25,985 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:25,990 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"ftp\" + 0.008*\"host\" + 0.008*\"univers\" + 0.007*\"nntp\" + 0.007*\"us\"\n", - "2018-09-12 20:59:25,991 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:25,991 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.008*\"isra\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:25,992 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"center\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"data\" + 0.005*\"univers\" + 0.005*\"research\" + 0.005*\"scienc\"\n", - "2018-09-12 20:59:25,993 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.007*\"said\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.006*\"argic\" + 0.006*\"soviet\"\n", - "2018-09-12 20:59:25,993 : INFO : topic diff=0.127076, rho=0.176254\n", - "2018-09-12 20:59:25,994 : INFO : PROGRESS: pass 3, at document #2100/2819\n", - "2018-09-12 20:59:26,043 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,048 : INFO : topic #0 (0.200): 0.026*\"imag\" + 0.019*\"file\" + 0.018*\"jpeg\" + 0.013*\"graphic\" + 0.010*\"gif\" + 0.010*\"format\" + 0.010*\"color\" + 0.009*\"program\" + 0.008*\"us\" + 0.008*\"version\"\n", - "2018-09-12 20:59:26,049 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.006*\"think\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"good\"\n", - "2018-09-12 20:59:26,050 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:26,051 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.005*\"data\" + 0.005*\"launch\" + 0.005*\"new\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"scienc\" + 0.004*\"univers\"\n", - "2018-09-12 20:59:26,052 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.008*\"peopl\" + 0.008*\"armenia\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"argic\" + 0.006*\"serdar\" + 0.006*\"genocid\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:26,053 : INFO : topic diff=0.170265, rho=0.176254\n", - "2018-09-12 20:59:26,053 : INFO : PROGRESS: pass 3, at document #2200/2819\n", - "2018-09-12 20:59:26,101 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,106 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.018*\"file\" + 0.016*\"jpeg\" + 0.013*\"graphic\" + 0.010*\"color\" + 0.009*\"gif\" + 0.009*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", - "2018-09-12 20:59:26,107 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:26,108 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"believ\" + 0.005*\"moral\"\n", - "2018-09-12 20:59:26,109 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.005*\"satellit\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"scienc\" + 0.004*\"univers\" + 0.004*\"point\"\n", - "2018-09-12 20:59:26,110 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turkei\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:26,110 : INFO : topic diff=0.146208, rho=0.176254\n", - "2018-09-12 20:59:26,111 : INFO : PROGRESS: pass 3, at document #2300/2819\n", - "2018-09-12 20:59:26,165 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,170 : INFO : topic #0 (0.200): 0.023*\"imag\" + 0.017*\"file\" + 0.014*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"format\" + 0.010*\"color\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", - "2018-09-12 20:59:26,170 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-09-12 20:59:26,171 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"arab\" + 0.005*\"human\"\n", - "2018-09-12 20:59:26,172 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"point\" + 0.005*\"data\" + 0.005*\"scienc\" + 0.005*\"project\" + 0.004*\"satellit\"\n", - "2018-09-12 20:59:26,173 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"come\"\n", - "2018-09-12 20:59:26,173 : INFO : topic diff=0.125927, rho=0.176254\n", - "2018-09-12 20:59:26,174 : INFO : PROGRESS: pass 3, at document #2400/2819\n", - "2018-09-12 20:59:26,223 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,227 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.017*\"file\" + 0.013*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"color\" + 0.009*\"format\" + 0.009*\"com\" + 0.009*\"program\" + 0.008*\"us\"\n", - "2018-09-12 20:59:26,228 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-09-12 20:59:26,229 : INFO : topic #2 (0.200): 0.011*\"jew\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"state\" + 0.005*\"arab\"\n", - "2018-09-12 20:59:26,230 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.012*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"research\" + 0.005*\"data\" + 0.005*\"earth\" + 0.004*\"scienc\" + 0.004*\"point\"\n", - "2018-09-12 20:59:26,230 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"time\"\n", - "2018-09-12 20:59:26,231 : INFO : topic diff=0.172883, rho=0.176254\n", - "2018-09-12 20:59:26,231 : INFO : PROGRESS: pass 3, at document #2500/2819\n", - "2018-09-12 20:59:26,282 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,287 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.012*\"graphic\" + 0.011*\"jpeg\" + 0.009*\"com\" + 0.009*\"color\" + 0.008*\"gif\" + 0.008*\"program\" + 0.008*\"format\" + 0.007*\"us\"\n", - "2018-09-12 20:59:26,287 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-09-12 20:59:26,289 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"believ\" + 0.005*\"state\"\n", - "2018-09-12 20:59:26,290 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"faq\" + 0.005*\"univers\" + 0.005*\"scienc\"\n", - "2018-09-12 20:59:26,290 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.015*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.007*\"armenia\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"kill\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:26,291 : INFO : topic diff=0.117342, rho=0.176254\n", - "2018-09-12 20:59:26,291 : INFO : PROGRESS: pass 3, at document #2600/2819\n", - "2018-09-12 20:59:26,345 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,350 : INFO : topic #0 (0.200): 0.018*\"imag\" + 0.016*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.010*\"jpeg\" + 0.008*\"program\" + 0.008*\"color\" + 0.007*\"gif\" + 0.007*\"format\" + 0.007*\"us\"\n", - "2018-09-12 20:59:26,351 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\" + 0.005*\"look\"\n", - "2018-09-12 20:59:26,351 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"jew\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"believ\" + 0.005*\"know\"\n", - "2018-09-12 20:59:26,352 : INFO : topic #3 (0.200): 0.022*\"space\" + 0.012*\"launch\" + 0.011*\"nasa\" + 0.008*\"satellit\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"year\" + 0.005*\"center\" + 0.005*\"data\" + 0.005*\"project\"\n", - "2018-09-12 20:59:26,353 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.014*\"turkish\" + 0.011*\"peopl\" + 0.009*\"said\" + 0.007*\"armenia\" + 0.007*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:26,353 : INFO : topic diff=0.159922, rho=0.176254\n", - "2018-09-12 20:59:26,354 : INFO : PROGRESS: pass 3, at document #2700/2819\n", - "2018-09-12 20:59:26,403 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,408 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.015*\"file\" + 0.011*\"graphic\" + 0.011*\"com\" + 0.008*\"jpeg\" + 0.008*\"program\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"us\" + 0.007*\"gif\"\n", - "2018-09-12 20:59:26,409 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:26,409 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"jew\" + 0.009*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"state\"\n", - "2018-09-12 20:59:26,410 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"technolog\"\n", - "2018-09-12 20:59:26,411 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.012*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"turk\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:26,411 : INFO : topic diff=0.115902, rho=0.176254\n", - "2018-09-12 20:59:26,412 : INFO : PROGRESS: pass 3, at document #2800/2819\n", - "2018-09-12 20:59:26,464 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,469 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.014*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"need\" + 0.007*\"color\" + 0.007*\"version\" + 0.007*\"host\" + 0.007*\"nntp\"\n", - "2018-09-12 20:59:26,469 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.011*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:26,470 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.008*\"jew\" + 0.008*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"right\"\n", - "2018-09-12 20:59:26,471 : INFO : topic #3 (0.200): 0.025*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.007*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"inform\" + 0.004*\"project\" + 0.004*\"year\"\n", - "2018-09-12 20:59:26,472 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:26,473 : INFO : topic diff=0.128170, rho=0.176254\n", - "2018-09-12 20:59:26,509 : INFO : -7.744 per-word bound, 214.3 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", - "2018-09-12 20:59:26,509 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2018-09-12 20:59:26,520 : INFO : merging changes from 19 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,525 : INFO : topic #0 (0.200): 0.018*\"file\" + 0.013*\"imag\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"version\" + 0.007*\"thank\" + 0.007*\"host\" + 0.007*\"nntp\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:26,526 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.007*\"bike\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"einstein\"\n", - "2018-09-12 20:59:26,527 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.007*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.005*\"state\"\n", - "2018-09-12 20:59:26,528 : INFO : topic #3 (0.200): 0.022*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"inform\" + 0.006*\"new\" + 0.006*\"satellit\" + 0.005*\"orbit\" + 0.005*\"design\" + 0.005*\"scienc\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:26,529 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"turk\" + 0.005*\"soviet\" + 0.005*\"know\"\n", - "2018-09-12 20:59:26,529 : INFO : topic diff=0.205506, rho=0.176254\n", - "2018-09-12 20:59:26,530 : INFO : PROGRESS: pass 4, at document #100/2819\n", - "2018-09-12 20:59:26,579 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,584 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.013*\"imag\" + 0.011*\"graphic\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.007*\"version\" + 0.007*\"univers\"\n", - "2018-09-12 20:59:26,584 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.007*\"bike\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"dod\" + 0.005*\"thing\" + 0.004*\"good\"\n", - "2018-09-12 20:59:26,585 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.008*\"peopl\" + 0.008*\"believ\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.007*\"atheist\" + 0.006*\"jew\" + 0.005*\"state\"\n", - "2018-09-12 20:59:26,586 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"new\" + 0.006*\"inform\" + 0.005*\"orbit\" + 0.005*\"satellit\" + 0.005*\"year\" + 0.005*\"design\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:26,587 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"turkei\" + 0.005*\"compromis\" + 0.005*\"turk\" + 0.005*\"world\" + 0.005*\"know\"\n", - "2018-09-12 20:59:26,587 : INFO : topic diff=0.113642, rho=0.173579\n", - "2018-09-12 20:59:26,588 : INFO : PROGRESS: pass 4, at document #200/2819\n", - "2018-09-12 20:59:26,642 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,647 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.014*\"imag\" + 0.012*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"need\" + 0.008*\"nntp\" + 0.007*\"mail\" + 0.007*\"univers\"\n", - "2018-09-12 20:59:26,647 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.011*\"dod\" + 0.010*\"like\" + 0.007*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:26,648 : INFO : topic #2 (0.200): 0.013*\"god\" + 0.010*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"believ\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"jew\" + 0.006*\"state\"\n", - "2018-09-12 20:59:26,650 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.006*\"new\" + 0.006*\"launch\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"design\"\n", - "2018-09-12 20:59:26,650 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.011*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"turkei\" + 0.006*\"turk\" + 0.005*\"sai\" + 0.005*\"armenia\" + 0.005*\"greek\" + 0.005*\"kill\"\n", - "2018-09-12 20:59:26,651 : INFO : topic diff=0.158000, rho=0.173579\n", - "2018-09-12 20:59:26,651 : INFO : PROGRESS: pass 4, at document #300/2819\n", - "2018-09-12 20:59:26,699 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,704 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.013*\"imag\" + 0.011*\"graphic\" + 0.011*\"com\" + 0.009*\"host\" + 0.008*\"need\" + 0.008*\"nntp\" + 0.007*\"program\" + 0.007*\"version\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:26,705 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.010*\"dod\" + 0.008*\"bike\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"ride\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\"\n", - "2018-09-12 20:59:26,705 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"exist\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"jew\"\n", - "2018-09-12 20:59:26,706 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"develop\"\n", - "2018-09-12 20:59:26,707 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.010*\"said\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"kill\" + 0.005*\"turk\" + 0.005*\"sai\" + 0.005*\"greek\"\n", - "2018-09-12 20:59:26,707 : INFO : topic diff=0.118663, rho=0.173579\n", - "2018-09-12 20:59:26,708 : INFO : PROGRESS: pass 4, at document #400/2819\n", - "2018-09-12 20:59:26,754 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,759 : INFO : topic #0 (0.200): 0.015*\"file\" + 0.012*\"imag\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.009*\"need\" + 0.009*\"host\" + 0.008*\"nntp\" + 0.007*\"thank\" + 0.007*\"program\" + 0.007*\"softwar\"\n", - "2018-09-12 20:59:26,759 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"dod\" + 0.009*\"bike\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"know\" + 0.006*\"ride\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2018-09-12 20:59:26,760 : INFO : topic #2 (0.200): 0.012*\"god\" + 0.009*\"israel\" + 0.008*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"state\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:26,761 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.008*\"nasa\" + 0.006*\"new\" + 0.006*\"univers\" + 0.006*\"orbit\" + 0.005*\"launch\" + 0.005*\"inform\" + 0.005*\"year\" + 0.005*\"scienc\" + 0.004*\"develop\"\n", - "2018-09-12 20:59:26,762 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"turkish\" + 0.010*\"said\" + 0.009*\"peopl\" + 0.006*\"greek\" + 0.006*\"kill\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"sai\"\n", - "2018-09-12 20:59:26,762 : INFO : topic diff=0.116203, rho=0.173579\n", - "2018-09-12 20:59:26,763 : INFO : PROGRESS: pass 4, at document #500/2819\n", - "2018-09-12 20:59:26,813 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,817 : INFO : topic #0 (0.200): 0.014*\"file\" + 0.012*\"com\" + 0.012*\"imag\" + 0.011*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.007*\"thank\" + 0.007*\"program\" + 0.007*\"us\"\n", - "2018-09-12 20:59:26,818 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:26,819 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.008*\"think\" + 0.007*\"isra\" + 0.007*\"believ\" + 0.006*\"islam\" + 0.005*\"state\" + 0.005*\"exist\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:26,820 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.006*\"new\" + 0.006*\"launch\" + 0.006*\"orbit\" + 0.005*\"univers\" + 0.005*\"year\" + 0.005*\"scienc\" + 0.004*\"inform\" + 0.004*\"design\"\n", - "2018-09-12 20:59:26,820 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.012*\"peopl\" + 0.008*\"turkish\" + 0.007*\"kill\" + 0.006*\"know\" + 0.006*\"went\" + 0.005*\"apart\" + 0.005*\"sai\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:26,821 : INFO : topic diff=0.168337, rho=0.173579\n", - "2018-09-12 20:59:26,821 : INFO : PROGRESS: pass 4, at document #600/2819\n", - "2018-09-12 20:59:26,871 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,876 : INFO : topic #0 (0.200): 0.017*\"file\" + 0.014*\"imag\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.008*\"need\" + 0.008*\"thank\" + 0.008*\"us\" + 0.008*\"univers\"\n", - "2018-09-12 20:59:26,877 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.008*\"dod\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"know\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:26,878 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"believ\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"jew\"\n", - "2018-09-12 20:59:26,878 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.006*\"new\" + 0.005*\"inform\" + 0.005*\"year\" + 0.005*\"scienc\" + 0.004*\"project\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:26,879 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"said\" + 0.012*\"peopl\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"greek\" + 0.005*\"went\" + 0.005*\"turk\" + 0.005*\"children\"\n", - "2018-09-12 20:59:26,880 : INFO : topic diff=0.107799, rho=0.173579\n", - "2018-09-12 20:59:26,880 : INFO : PROGRESS: pass 4, at document #700/2819\n", - "2018-09-12 20:59:26,937 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:26,942 : INFO : topic #0 (0.200): 0.016*\"file\" + 0.015*\"imag\" + 0.012*\"com\" + 0.011*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.008*\"univers\" + 0.008*\"need\" + 0.007*\"us\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:26,943 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:26,944 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"israel\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"right\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:26,944 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.007*\"launch\" + 0.006*\"univers\" + 0.006*\"new\" + 0.005*\"year\" + 0.005*\"inform\" + 0.005*\"scienc\" + 0.004*\"earth\"\n", - "2018-09-12 20:59:26,945 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.010*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.005*\"went\" + 0.005*\"greek\" + 0.005*\"turk\" + 0.005*\"children\"\n", - "2018-09-12 20:59:26,946 : INFO : topic diff=0.116856, rho=0.173579\n", - "2018-09-12 20:59:26,946 : INFO : PROGRESS: pass 4, at document #800/2819\n", - "2018-09-12 20:59:26,997 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,002 : INFO : topic #0 (0.200): 0.014*\"imag\" + 0.013*\"file\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.009*\"univers\" + 0.008*\"need\" + 0.007*\"know\" + 0.007*\"thank\"\n", - "2018-09-12 20:59:27,003 : INFO : topic #1 (0.200): 0.014*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"host\" + 0.007*\"nntp\" + 0.006*\"thing\" + 0.006*\"ride\" + 0.006*\"know\" + 0.006*\"think\"\n", - "2018-09-12 20:59:27,004 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"state\" + 0.005*\"jew\" + 0.005*\"islam\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:27,005 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"univers\" + 0.006*\"launch\" + 0.006*\"new\" + 0.005*\"year\" + 0.004*\"scienc\" + 0.004*\"inform\" + 0.004*\"earth\"\n", - "2018-09-12 20:59:27,005 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.012*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.006*\"know\" + 0.006*\"greek\" + 0.005*\"turk\" + 0.005*\"armenia\" + 0.005*\"live\"\n", - "2018-09-12 20:59:27,006 : INFO : topic diff=0.119888, rho=0.173579\n", - "2018-09-12 20:59:27,006 : INFO : PROGRESS: pass 4, at document #900/2819\n", - "2018-09-12 20:59:27,061 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,066 : INFO : topic #0 (0.200): 0.013*\"imag\" + 0.012*\"file\" + 0.012*\"com\" + 0.010*\"graphic\" + 0.010*\"host\" + 0.009*\"nntp\" + 0.009*\"univers\" + 0.008*\"thank\" + 0.008*\"need\" + 0.007*\"know\"\n", - "2018-09-12 20:59:27,066 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.007*\"dod\" + 0.007*\"ride\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"think\"\n", - "2018-09-12 20:59:27,067 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"atheist\" + 0.007*\"believ\" + 0.006*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"state\"\n", - "2018-09-12 20:59:27,068 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.008*\"nasa\" + 0.007*\"orbit\" + 0.007*\"new\" + 0.006*\"launch\" + 0.006*\"univers\" + 0.005*\"year\" + 0.005*\"point\" + 0.004*\"scienc\" + 0.004*\"center\"\n", - "2018-09-12 20:59:27,068 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.012*\"peopl\" + 0.011*\"said\" + 0.009*\"turkish\" + 0.006*\"kill\" + 0.005*\"know\" + 0.005*\"greek\" + 0.005*\"time\" + 0.005*\"children\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:27,069 : INFO : topic diff=0.144073, rho=0.173579\n", - "2018-09-12 20:59:27,188 : INFO : -7.797 per-word bound, 222.4 perplexity estimate based on a held-out corpus of 100 documents with 16075 words\n", - "2018-09-12 20:59:27,188 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2018-09-12 20:59:27,237 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,244 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.014*\"file\" + 0.012*\"com\" + 0.009*\"graphic\" + 0.009*\"host\" + 0.009*\"nntp\" + 0.009*\"program\" + 0.008*\"univers\" + 0.008*\"thank\" + 0.007*\"need\"\n", - "2018-09-12 20:59:27,245 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.010*\"like\" + 0.007*\"ride\" + 0.006*\"host\" + 0.006*\"dod\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"think\"\n", - "2018-09-12 20:59:27,246 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"believ\" + 0.006*\"atheist\" + 0.006*\"right\" + 0.006*\"think\" + 0.006*\"arab\" + 0.006*\"state\"\n", - "2018-09-12 20:59:27,247 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.009*\"orbit\" + 0.009*\"nasa\" + 0.007*\"new\" + 0.007*\"launch\" + 0.006*\"mission\" + 0.006*\"year\" + 0.005*\"probe\" + 0.005*\"point\" + 0.005*\"univers\"\n", - "2018-09-12 20:59:27,247 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.010*\"said\" + 0.008*\"greek\" + 0.006*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"soviet\"\n", - "2018-09-12 20:59:27,248 : INFO : topic diff=0.144795, rho=0.173579\n", - "2018-09-12 20:59:27,248 : INFO : PROGRESS: pass 4, at document #1100/2819\n", - "2018-09-12 20:59:27,301 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,306 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.013*\"file\" + 0.011*\"com\" + 0.011*\"graphic\" + 0.008*\"program\" + 0.008*\"host\" + 0.008*\"us\" + 0.008*\"nntp\" + 0.007*\"univers\" + 0.007*\"avail\"\n", - "2018-09-12 20:59:27,307 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"bike\" + 0.009*\"like\" + 0.007*\"ride\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"dod\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"thing\"\n", - "2018-09-12 20:59:27,308 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.009*\"isra\" + 0.007*\"think\" + 0.007*\"atheist\" + 0.006*\"arab\" + 0.006*\"believ\" + 0.006*\"right\" + 0.005*\"religion\"\n", - "2018-09-12 20:59:27,309 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.006*\"year\" + 0.005*\"launch\" + 0.005*\"mission\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"earth\"\n", - "2018-09-12 20:59:27,309 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"peopl\" + 0.011*\"turkish\" + 0.009*\"said\" + 0.007*\"greek\" + 0.007*\"turk\" + 0.005*\"soviet\" + 0.005*\"armenia\" + 0.005*\"know\" + 0.005*\"kill\"\n", - "2018-09-12 20:59:27,311 : INFO : topic diff=0.157374, rho=0.173579\n", - "2018-09-12 20:59:27,311 : INFO : PROGRESS: pass 4, at document #1200/2819\n", - "2018-09-12 20:59:27,362 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,366 : INFO : topic #0 (0.200): 0.016*\"imag\" + 0.012*\"file\" + 0.012*\"graphic\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"host\" + 0.008*\"nntp\" + 0.008*\"us\" + 0.008*\"univers\" + 0.007*\"format\"\n", - "2018-09-12 20:59:27,367 : INFO : topic #1 (0.200): 0.015*\"com\" + 0.010*\"bike\" + 0.010*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"ride\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"dod\" + 0.005*\"think\"\n", - "2018-09-12 20:59:27,368 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"israel\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"arab\" + 0.006*\"right\" + 0.005*\"atheist\"\n", - "2018-09-12 20:59:27,369 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.006*\"year\" + 0.006*\"point\" + 0.005*\"develop\" + 0.005*\"launch\" + 0.005*\"earth\" + 0.005*\"center\"\n", - "2018-09-12 20:59:27,369 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.013*\"turkish\" + 0.012*\"peopl\" + 0.008*\"greek\" + 0.008*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.005*\"know\"\n", - "2018-09-12 20:59:27,370 : INFO : topic diff=0.112615, rho=0.173579\n", - "2018-09-12 20:59:27,370 : INFO : PROGRESS: pass 4, at document #1300/2819\n", - "2018-09-12 20:59:27,424 : INFO : merging changes from 100 documents into a model of 2819 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:27,429 : INFO : topic #0 (0.200): 0.017*\"graphic\" + 0.016*\"imag\" + 0.013*\"file\" + 0.010*\"com\" + 0.009*\"mail\" + 0.008*\"pub\" + 0.008*\"format\" + 0.008*\"program\" + 0.008*\"ftp\" + 0.007*\"host\"\n", - "2018-09-12 20:59:27,430 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"bike\" + 0.010*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"think\" + 0.005*\"ride\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:27,431 : INFO : topic #2 (0.200): 0.011*\"god\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"atheist\" + 0.006*\"arab\" + 0.005*\"right\"\n", - "2018-09-12 20:59:27,432 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"year\" + 0.005*\"launch\" + 0.005*\"center\" + 0.005*\"point\" + 0.005*\"mission\" + 0.005*\"earth\"\n", - "2018-09-12 20:59:27,432 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.013*\"turkish\" + 0.011*\"peopl\" + 0.008*\"greek\" + 0.008*\"said\" + 0.007*\"turk\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"soviet\" + 0.004*\"know\"\n", - "2018-09-12 20:59:27,433 : INFO : topic diff=0.160612, rho=0.173579\n", - "2018-09-12 20:59:27,433 : INFO : PROGRESS: pass 4, at document #1400/2819\n", - "2018-09-12 20:59:27,485 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,490 : INFO : topic #0 (0.200): 0.016*\"graphic\" + 0.015*\"imag\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"mail\" + 0.008*\"program\" + 0.008*\"pub\" + 0.007*\"host\" + 0.007*\"us\" + 0.007*\"format\"\n", - "2018-09-12 20:59:27,491 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"dod\" + 0.005*\"ride\" + 0.005*\"think\"\n", - "2018-09-12 20:59:27,491 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"god\" + 0.009*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"atheist\" + 0.005*\"exist\" + 0.005*\"arab\" + 0.005*\"right\"\n", - "2018-09-12 20:59:27,492 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"mission\" + 0.005*\"research\" + 0.004*\"center\" + 0.004*\"earth\"\n", - "2018-09-12 20:59:27,493 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.007*\"greek\" + 0.006*\"turk\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.005*\"henrik\" + 0.004*\"know\"\n", - "2018-09-12 20:59:27,493 : INFO : topic diff=0.113705, rho=0.173579\n", - "2018-09-12 20:59:27,494 : INFO : PROGRESS: pass 4, at document #1500/2819\n", - "2018-09-12 20:59:27,544 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,549 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"mail\" + 0.007*\"host\" + 0.007*\"us\" + 0.006*\"nntp\" + 0.006*\"format\"\n", - "2018-09-12 20:59:27,550 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"ride\" + 0.005*\"think\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:27,551 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.009*\"god\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"arab\" + 0.006*\"state\" + 0.006*\"christian\" + 0.005*\"right\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:27,551 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.010*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"develop\" + 0.005*\"research\" + 0.005*\"data\" + 0.005*\"earth\" + 0.005*\"center\" + 0.004*\"launch\"\n", - "2018-09-12 20:59:27,552 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"turkish\" + 0.010*\"peopl\" + 0.008*\"said\" + 0.007*\"turk\" + 0.007*\"greek\" + 0.007*\"turkei\" + 0.006*\"armenia\" + 0.004*\"time\" + 0.004*\"know\"\n", - "2018-09-12 20:59:27,553 : INFO : topic diff=0.144029, rho=0.173579\n", - "2018-09-12 20:59:27,553 : INFO : PROGRESS: pass 4, at document #1600/2819\n", - "2018-09-12 20:59:27,607 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,612 : INFO : topic #0 (0.200): 0.022*\"imag\" + 0.015*\"graphic\" + 0.011*\"file\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"mail\" + 0.007*\"us\" + 0.007*\"nntp\" + 0.007*\"univers\"\n", - "2018-09-12 20:59:27,612 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"dod\" + 0.005*\"think\" + 0.005*\"good\"\n", - "2018-09-12 20:59:27,613 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.010*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"right\" + 0.006*\"state\" + 0.006*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:27,614 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.010*\"nasa\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"scienc\"\n", - "2018-09-12 20:59:27,615 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turk\" + 0.006*\"turkei\" + 0.006*\"greek\" + 0.005*\"time\" + 0.004*\"kill\"\n", - "2018-09-12 20:59:27,615 : INFO : topic diff=0.104411, rho=0.173579\n", - "2018-09-12 20:59:27,616 : INFO : PROGRESS: pass 4, at document #1700/2819\n", - "2018-09-12 20:59:27,664 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,669 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.011*\"com\" + 0.009*\"program\" + 0.008*\"host\" + 0.007*\"mail\" + 0.007*\"nntp\" + 0.007*\"us\" + 0.007*\"univers\"\n", - "2018-09-12 20:59:27,670 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"think\" + 0.005*\"ride\" + 0.005*\"time\"\n", - "2018-09-12 20:59:27,671 : INFO : topic #2 (0.200): 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.007*\"isra\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"arab\" + 0.005*\"jew\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:27,672 : INFO : topic #3 (0.200): 0.016*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"center\" + 0.005*\"point\" + 0.005*\"earth\" + 0.005*\"research\" + 0.005*\"univers\" + 0.004*\"year\"\n", - "2018-09-12 20:59:27,672 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"kill\"\n", - "2018-09-12 20:59:27,673 : INFO : topic diff=0.113257, rho=0.173579\n", - "2018-09-12 20:59:27,674 : INFO : PROGRESS: pass 4, at document #1800/2819\n", - "2018-09-12 20:59:27,720 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,725 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.014*\"graphic\" + 0.012*\"file\" + 0.011*\"com\" + 0.008*\"program\" + 0.008*\"host\" + 0.007*\"univers\" + 0.007*\"nntp\" + 0.007*\"mail\" + 0.007*\"us\"\n", - "2018-09-12 20:59:27,726 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"good\" + 0.005*\"dod\"\n", - "2018-09-12 20:59:27,727 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"think\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:27,728 : INFO : topic #3 (0.200): 0.017*\"space\" + 0.011*\"nasa\" + 0.007*\"orbit\" + 0.006*\"point\" + 0.006*\"new\" + 0.005*\"center\" + 0.005*\"earth\" + 0.005*\"univers\" + 0.005*\"research\" + 0.005*\"launch\"\n", - "2018-09-12 20:59:27,728 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"greek\" + 0.005*\"turkei\" + 0.005*\"armi\" + 0.005*\"time\"\n", - "2018-09-12 20:59:27,729 : INFO : topic diff=0.115689, rho=0.173579\n", - "2018-09-12 20:59:27,729 : INFO : PROGRESS: pass 4, at document #1900/2819\n", - "2018-09-12 20:59:27,777 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,782 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.015*\"graphic\" + 0.012*\"file\" + 0.011*\"com\" + 0.008*\"host\" + 0.008*\"program\" + 0.008*\"univers\" + 0.008*\"nntp\" + 0.007*\"mail\" + 0.007*\"us\"\n", - "2018-09-12 20:59:27,783 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:27,784 : INFO : topic #2 (0.200): 0.009*\"peopl\" + 0.009*\"israel\" + 0.008*\"god\" + 0.008*\"isra\" + 0.008*\"think\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"moral\" + 0.005*\"state\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:27,785 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.012*\"nasa\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"univers\" + 0.005*\"center\" + 0.005*\"year\" + 0.005*\"research\" + 0.005*\"earth\"\n", - "2018-09-12 20:59:27,785 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"said\" + 0.006*\"serdar\" + 0.006*\"soviet\" + 0.006*\"argic\"\n", - "2018-09-12 20:59:27,786 : INFO : topic diff=0.112068, rho=0.173579\n", - "2018-09-12 20:59:27,900 : INFO : -7.820 per-word bound, 225.9 perplexity estimate based on a held-out corpus of 100 documents with 11906 words\n", - "2018-09-12 20:59:27,900 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2018-09-12 20:59:27,954 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:27,959 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.014*\"graphic\" + 0.013*\"file\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"univers\" + 0.008*\"ftp\" + 0.008*\"host\" + 0.007*\"nntp\" + 0.007*\"us\"\n", - "2018-09-12 20:59:27,959 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:27,960 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"god\" + 0.008*\"isra\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"state\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:27,961 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.014*\"nasa\" + 0.008*\"orbit\" + 0.006*\"center\" + 0.005*\"launch\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"research\" + 0.005*\"univers\" + 0.005*\"earth\"\n", - "2018-09-12 20:59:27,962 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.007*\"armenia\" + 0.007*\"said\" + 0.006*\"turk\" + 0.006*\"genocid\" + 0.006*\"serdar\" + 0.006*\"argic\" + 0.006*\"soviet\"\n", - "2018-09-12 20:59:27,962 : INFO : topic diff=0.121759, rho=0.173579\n", - "2018-09-12 20:59:27,963 : INFO : PROGRESS: pass 4, at document #2100/2819\n", - "2018-09-12 20:59:28,011 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,016 : INFO : topic #0 (0.200): 0.026*\"imag\" + 0.019*\"file\" + 0.018*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"format\" + 0.010*\"color\" + 0.009*\"program\" + 0.008*\"us\" + 0.008*\"version\"\n", - "2018-09-12 20:59:28,017 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.010*\"bike\" + 0.006*\"think\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"good\"\n", - "2018-09-12 20:59:28,018 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.009*\"israel\" + 0.008*\"think\" + 0.008*\"isra\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"right\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:28,018 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.005*\"launch\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"year\" + 0.004*\"scienc\"\n", - "2018-09-12 20:59:28,019 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.008*\"armenia\" + 0.006*\"turk\" + 0.006*\"said\" + 0.006*\"argic\" + 0.006*\"serdar\" + 0.006*\"genocid\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:28,020 : INFO : topic diff=0.164339, rho=0.173579\n", - "2018-09-12 20:59:28,020 : INFO : PROGRESS: pass 4, at document #2200/2819\n", - "2018-09-12 20:59:28,069 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,074 : INFO : topic #0 (0.200): 0.024*\"imag\" + 0.018*\"file\" + 0.016*\"jpeg\" + 0.013*\"graphic\" + 0.010*\"color\" + 0.009*\"format\" + 0.009*\"gif\" + 0.009*\"program\" + 0.008*\"us\" + 0.008*\"com\"\n", - "2018-09-12 20:59:28,075 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.009*\"bike\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:28,075 : INFO : topic #2 (0.200): 0.010*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.008*\"think\" + 0.007*\"god\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"believ\" + 0.005*\"moral\"\n", - "2018-09-12 20:59:28,076 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.005*\"satellit\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"scienc\" + 0.005*\"year\" + 0.004*\"research\"\n", - "2018-09-12 20:59:28,077 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.006*\"turk\" + 0.006*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turkei\"\n", - "2018-09-12 20:59:28,077 : INFO : topic diff=0.141308, rho=0.173579\n", - "2018-09-12 20:59:28,078 : INFO : PROGRESS: pass 4, at document #2300/2819\n", - "2018-09-12 20:59:28,129 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,134 : INFO : topic #0 (0.200): 0.022*\"imag\" + 0.017*\"file\" + 0.014*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.010*\"format\" + 0.010*\"color\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", - "2018-09-12 20:59:28,135 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.006*\"nntp\" + 0.006*\"know\" + 0.006*\"host\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-09-12 20:59:28,135 : INFO : topic #2 (0.200): 0.011*\"peopl\" + 0.008*\"israel\" + 0.008*\"isra\" + 0.007*\"think\" + 0.007*\"god\" + 0.006*\"right\" + 0.006*\"jew\" + 0.005*\"islam\" + 0.005*\"arab\" + 0.005*\"believ\"\n", - "2018-09-12 20:59:28,136 : INFO : topic #3 (0.200): 0.019*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"point\" + 0.005*\"project\" + 0.005*\"data\" + 0.005*\"scienc\" + 0.004*\"satellit\"\n", - "2018-09-12 20:59:28,137 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"peopl\" + 0.009*\"turkish\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"come\"\n", - "2018-09-12 20:59:28,137 : INFO : topic diff=0.120548, rho=0.173579\n", - "2018-09-12 20:59:28,138 : INFO : PROGRESS: pass 4, at document #2400/2819\n", - "2018-09-12 20:59:28,186 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,191 : INFO : topic #0 (0.200): 0.021*\"imag\" + 0.017*\"file\" + 0.013*\"jpeg\" + 0.012*\"graphic\" + 0.010*\"gif\" + 0.009*\"color\" + 0.009*\"format\" + 0.009*\"program\" + 0.008*\"com\" + 0.008*\"us\"\n", - "2018-09-12 20:59:28,191 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"think\" + 0.007*\"know\" + 0.007*\"nntp\" + 0.006*\"thing\" + 0.006*\"host\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-09-12 20:59:28,192 : INFO : topic #2 (0.200): 0.011*\"jew\" + 0.010*\"peopl\" + 0.008*\"isra\" + 0.008*\"israel\" + 0.007*\"think\" + 0.006*\"god\" + 0.006*\"right\" + 0.005*\"islam\" + 0.005*\"state\" + 0.005*\"arab\"\n", - "2018-09-12 20:59:28,193 : INFO : topic #3 (0.200): 0.018*\"space\" + 0.012*\"nasa\" + 0.007*\"orbit\" + 0.005*\"new\" + 0.005*\"launch\" + 0.005*\"research\" + 0.005*\"earth\" + 0.004*\"data\" + 0.004*\"point\" + 0.004*\"scienc\"\n", - "2018-09-12 20:59:28,194 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.014*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"kill\" + 0.005*\"time\"\n", - "2018-09-12 20:59:28,194 : INFO : topic diff=0.167668, rho=0.173579\n", - "2018-09-12 20:59:28,195 : INFO : PROGRESS: pass 4, at document #2500/2819\n", - "2018-09-12 20:59:28,244 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,249 : INFO : topic #0 (0.200): 0.020*\"imag\" + 0.016*\"file\" + 0.012*\"graphic\" + 0.011*\"jpeg\" + 0.009*\"com\" + 0.008*\"color\" + 0.008*\"gif\" + 0.008*\"program\" + 0.008*\"format\" + 0.007*\"us\"\n", - "2018-09-12 20:59:28,250 : INFO : topic #1 (0.200): 0.018*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"know\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"look\" + 0.005*\"good\"\n", - "2018-09-12 20:59:28,251 : INFO : topic #2 (0.200): 0.010*\"jew\" + 0.010*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"israel\" + 0.007*\"think\" + 0.006*\"right\" + 0.006*\"exist\" + 0.005*\"believ\" + 0.005*\"state\"\n", - "2018-09-12 20:59:28,251 : INFO : topic #3 (0.200): 0.020*\"space\" + 0.013*\"nasa\" + 0.008*\"orbit\" + 0.006*\"new\" + 0.005*\"launch\" + 0.005*\"center\" + 0.005*\"research\" + 0.004*\"scienc\" + 0.004*\"earth\" + 0.004*\"mission\"\n", - "2018-09-12 20:59:28,252 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.015*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.007*\"armenia\" + 0.007*\"turkei\" + 0.006*\"know\" + 0.005*\"time\" + 0.005*\"kill\" + 0.005*\"turk\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-12 20:59:28,253 : INFO : topic diff=0.112645, rho=0.173579\n", - "2018-09-12 20:59:28,253 : INFO : PROGRESS: pass 4, at document #2600/2819\n", - "2018-09-12 20:59:28,302 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,307 : INFO : topic #0 (0.200): 0.018*\"imag\" + 0.016*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.009*\"jpeg\" + 0.008*\"program\" + 0.008*\"color\" + 0.007*\"format\" + 0.007*\"gif\" + 0.007*\"us\"\n", - "2018-09-12 20:59:28,307 : INFO : topic #1 (0.200): 0.018*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.006*\"thing\" + 0.005*\"ride\" + 0.005*\"look\"\n", - "2018-09-12 20:59:28,308 : INFO : topic #2 (0.200): 0.010*\"god\" + 0.010*\"jew\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.006*\"right\" + 0.005*\"believ\" + 0.005*\"know\"\n", - "2018-09-12 20:59:28,309 : INFO : topic #3 (0.200): 0.022*\"space\" + 0.012*\"launch\" + 0.011*\"nasa\" + 0.008*\"satellit\" + 0.007*\"orbit\" + 0.006*\"new\" + 0.005*\"year\" + 0.005*\"center\" + 0.005*\"project\" + 0.004*\"data\"\n", - "2018-09-12 20:59:28,310 : INFO : topic #4 (0.200): 0.022*\"armenian\" + 0.014*\"turkish\" + 0.011*\"peopl\" + 0.009*\"said\" + 0.007*\"armenia\" + 0.007*\"turkei\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:28,311 : INFO : topic diff=0.155260, rho=0.173579\n", - "2018-09-12 20:59:28,312 : INFO : PROGRESS: pass 4, at document #2700/2819\n", - "2018-09-12 20:59:28,360 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,365 : INFO : topic #0 (0.200): 0.017*\"imag\" + 0.015*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.008*\"jpeg\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"us\" + 0.007*\"host\"\n", - "2018-09-12 20:59:28,366 : INFO : topic #1 (0.200): 0.018*\"com\" + 0.010*\"like\" + 0.008*\"bike\" + 0.007*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"ride\"\n", - "2018-09-12 20:59:28,366 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"jew\" + 0.009*\"peopl\" + 0.008*\"god\" + 0.008*\"isra\" + 0.007*\"think\" + 0.006*\"exist\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"state\"\n", - "2018-09-12 20:59:28,367 : INFO : topic #3 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.008*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"center\" + 0.005*\"research\" + 0.005*\"technolog\" + 0.005*\"year\"\n", - "2018-09-12 20:59:28,368 : INFO : topic #4 (0.200): 0.023*\"armenian\" + 0.012*\"turkish\" + 0.012*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"turk\" + 0.005*\"time\" + 0.005*\"know\" + 0.005*\"soviet\"\n", - "2018-09-12 20:59:28,368 : INFO : topic diff=0.111450, rho=0.173579\n", - "2018-09-12 20:59:28,369 : INFO : PROGRESS: pass 4, at document #2800/2819\n", - "2018-09-12 20:59:28,420 : INFO : merging changes from 100 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,425 : INFO : topic #0 (0.200): 0.015*\"imag\" + 0.014*\"file\" + 0.011*\"graphic\" + 0.010*\"com\" + 0.008*\"program\" + 0.007*\"need\" + 0.007*\"color\" + 0.007*\"version\" + 0.007*\"host\" + 0.007*\"mail\"\n", - "2018-09-12 20:59:28,426 : INFO : topic #1 (0.200): 0.017*\"com\" + 0.011*\"like\" + 0.008*\"bike\" + 0.006*\"know\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"good\"\n", - "2018-09-12 20:59:28,427 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.010*\"god\" + 0.009*\"peopl\" + 0.008*\"jew\" + 0.008*\"isra\" + 0.007*\"think\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"exist\" + 0.005*\"right\"\n", - "2018-09-12 20:59:28,427 : INFO : topic #3 (0.200): 0.025*\"space\" + 0.011*\"nasa\" + 0.010*\"launch\" + 0.007*\"satellit\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"point\" + 0.005*\"year\" + 0.005*\"project\" + 0.004*\"inform\"\n", - "2018-09-12 20:59:28,428 : INFO : topic #4 (0.200): 0.021*\"armenian\" + 0.011*\"turkish\" + 0.011*\"peopl\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.006*\"turkei\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"time\" + 0.005*\"turk\"\n", - "2018-09-12 20:59:28,428 : INFO : topic diff=0.123355, rho=0.173579\n", - "2018-09-12 20:59:28,465 : INFO : -7.738 per-word bound, 213.4 perplexity estimate based on a held-out corpus of 19 documents with 4556 words\n", - "2018-09-12 20:59:28,466 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2018-09-12 20:59:28,480 : INFO : merging changes from 19 documents into a model of 2819 documents\n", - "2018-09-12 20:59:28,486 : INFO : topic #0 (0.200): 0.018*\"file\" + 0.013*\"imag\" + 0.010*\"graphic\" + 0.010*\"com\" + 0.009*\"program\" + 0.008*\"need\" + 0.008*\"version\" + 0.007*\"thank\" + 0.007*\"host\" + 0.007*\"nntp\"\n", - "2018-09-12 20:59:28,486 : INFO : topic #1 (0.200): 0.016*\"com\" + 0.010*\"like\" + 0.007*\"bike\" + 0.007*\"know\" + 0.007*\"nntp\" + 0.007*\"host\" + 0.006*\"think\" + 0.005*\"thing\" + 0.005*\"dod\" + 0.005*\"einstein\"\n", - "2018-09-12 20:59:28,487 : INFO : topic #2 (0.200): 0.014*\"god\" + 0.009*\"israel\" + 0.009*\"peopl\" + 0.008*\"believ\" + 0.007*\"atheist\" + 0.007*\"isra\" + 0.007*\"think\" + 0.007*\"exist\" + 0.006*\"islam\" + 0.005*\"state\"\n", - "2018-09-12 20:59:28,488 : INFO : topic #3 (0.200): 0.022*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.006*\"new\" + 0.006*\"inform\" + 0.006*\"satellit\" + 0.005*\"orbit\" + 0.005*\"design\" + 0.005*\"scienc\" + 0.005*\"year\"\n", - "2018-09-12 20:59:28,489 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.010*\"peopl\" + 0.010*\"turkish\" + 0.008*\"said\" + 0.006*\"armenia\" + 0.005*\"compromis\" + 0.005*\"turkei\" + 0.005*\"turk\" + 0.005*\"soviet\" + 0.005*\"know\"\n", - "2018-09-12 20:59:28,489 : INFO : topic diff=0.199679, rho=0.173579\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 10.8 s, sys: 676 ms, total: 11.4 s\n", - "Wall time: 10.7 s\n" + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, corpus, num_topics, id2word, distributed, chunksize, passes, update_every, alpha, eta, decay, offset, eval_every, iterations, gamma_threshold, minimum_probability, random_state, ns_conf, minimum_phi_value, per_word_topics, callbacks, dtype)\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcorpus\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 514\u001b[0m \u001b[0muse_numpy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatcher\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 515\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunks_as_numpy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0muse_numpy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 516\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 517\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minit_dir_prior\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprior\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunksize, decay, offset, passes, update_every, eval_every, iterations, gamma_threshold, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 961\u001b[0m \u001b[0mpass_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunk_no\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunk\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlencorpus\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 962\u001b[0m )\n\u001b[0;32m--> 963\u001b[0;31m \u001b[0mgammat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdo_estep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 965\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimize_alpha\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36mdo_estep\u001b[0;34m(self, chunk, state)\u001b[0m\n\u001b[1;32m 723\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstate\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 724\u001b[0m \u001b[0mstate\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 725\u001b[0;31m \u001b[0mgamma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msstats\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minference\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcollect_sstats\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 726\u001b[0m \u001b[0mstate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msstats\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0msstats\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 727\u001b[0m \u001b[0mstate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumdocs\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mgamma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;31m# avoids calling len(chunk) on a generator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36minference\u001b[0;34m(self, chunk, collect_sstats)\u001b[0m\n\u001b[1;32m 675\u001b[0m \u001b[0;31m# the update for gamma gives this update. Cf. Lee&Seung 2001.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 676\u001b[0m \u001b[0mgammad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malpha\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mexpElogthetad\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcts\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mphinorm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexpElogbetad\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 677\u001b[0;31m \u001b[0mElogthetad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdirichlet_expectation\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgammad\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 678\u001b[0m \u001b[0mexpElogthetad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mElogthetad\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 679\u001b[0m \u001b[0mphinorm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexpElogthetad\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexpElogbetad\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0meps\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], @@ -1573,24 +282,24 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-12 20:59:28,530 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-09-12 20:59:28,549 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + "2018-09-26 16:19:18,699 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-09-26 16:19:18,724 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { "data": { "text/plain": [ - "-1.8725255613516496" + "-1.4685017455113438" ] }, - "execution_count": 24, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -1607,24 +316,24 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-12 20:59:28,613 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-09-12 20:59:28,633 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + "2018-09-25 15:43:37,196 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-09-25 15:43:37,224 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { "data": { "text/plain": [ - "-1.7277803594076822" + "-1.7217224975861698" ] }, - "execution_count": 25, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1648,7 +357,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1667,18 +376,36 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 22, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "55656.79384893339" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anotherbugmaster/Documents/gensim/gensim/models/nmf.py:94: RuntimeWarning: invalid value encountered in true_divide\n", + " return self._W.T.toarray() / self._W.T.toarray().sum(axis=1).reshape(-1, 1)\n", + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/scipy/sparse/base.py:594: RuntimeWarning: invalid value encountered in true_divide\n", + " return np.true_divide(self.todense(), other)\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mperplexity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgensim_nmf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mperplexity\u001b[0;34m(model, corpus)\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mH\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mW\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproba\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, bow, eps)\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meps\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 99\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_document_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meps\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 100\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mshow_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_topics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_words\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformatted\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36mget_document_topics\u001b[0;34m(self, bow, minimum_probability)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_document_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mminimum_probability\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[0mv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmatutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcorpus2csc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mid2word\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtocsr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 212\u001b[0;31m \u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_solveproj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv_max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 213\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormalize\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m_solveproj\u001b[0;34m(self, v, W, h, r, v_max)\u001b[0m\n\u001b[1;32m 414\u001b[0m \u001b[0mh_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 415\u001b[0m \u001b[0merror_\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0msolve_h\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWt_v_minus_r\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWtW\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kappa\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 416\u001b[0;31m \u001b[0mh\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msparse\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcsr_matrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh_\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 417\u001b[0m \u001b[0;31m# h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 418\u001b[0m \u001b[0;31m# error_ += error_h\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.6/site-packages/scipy/sparse/compressed.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, arg1, shape, dtype, copy)\u001b[0m\n\u001b[1;32m 77\u001b[0m self.format)\n\u001b[1;32m 78\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mcoo\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcoo_matrix\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 79\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_self\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcoo_matrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 80\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;31m# Read matrix dimensions given, if any\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.6/site-packages/scipy/sparse/coo.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, arg1, shape, dtype, copy)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[0;31m#dense argument\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 178\u001b[0;31m \u001b[0mM\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_2d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mM\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.6/site-packages/numpy/core/shape_base.py\u001b[0m in \u001b[0;36matleast_2d\u001b[0;34m(*arys)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mary\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 109\u001b[0;31m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 110\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] } ], "source": [ @@ -1687,20 +414,9 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "103360.93300773863" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "perplexity(gensim_lda, corpus)" ] @@ -1714,25 +430,25 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.031*\"armenian\" + 0.013*\"turkish\" + 0.008*\"peopl\" + 0.007*\"armenia\" + 0.007*\"turk\" + 0.006*\"govern\" + 0.006*\"turkei\" + 0.006*\"world\" + 0.006*\"russian\" + 0.005*\"villag\"'),\n", + " '0.025*\"said\" + 0.020*\"peopl\" + 0.020*\"know\" + 0.016*\"went\" + 0.015*\"apart\" + 0.014*\"azerbaijani\" + 0.013*\"came\" + 0.013*\"sai\" + 0.013*\"come\" + 0.012*\"start\"'),\n", " (1,\n", - " '0.017*\"peopl\" + 0.016*\"said\" + 0.015*\"know\" + 0.010*\"like\" + 0.009*\"sai\" + 0.009*\"come\" + 0.008*\"went\" + 0.008*\"time\" + 0.008*\"look\" + 0.007*\"go\"'),\n", + " '0.037*\"imag\" + 0.037*\"jpeg\" + 0.020*\"file\" + 0.016*\"format\" + 0.014*\"program\" + 0.013*\"us\" + 0.012*\"displai\" + 0.011*\"softwar\" + 0.011*\"version\" + 0.011*\"avail\"'),\n", " (2,\n", - " '0.019*\"god\" + 0.011*\"exist\" + 0.010*\"believ\" + 0.007*\"atheist\" + 0.007*\"christian\" + 0.007*\"atheism\" + 0.007*\"argument\" + 0.006*\"peopl\" + 0.006*\"religion\" + 0.006*\"evid\"'),\n", + " '0.016*\"peopl\" + 0.012*\"israel\" + 0.011*\"like\" + 0.009*\"isra\" + 0.009*\"right\" + 0.009*\"god\" + 0.009*\"think\" + 0.008*\"know\" + 0.008*\"time\" + 0.008*\"question\"'),\n", " (3,\n", - " '0.035*\"jpeg\" + 0.023*\"imag\" + 0.013*\"file\" + 0.011*\"program\" + 0.011*\"format\" + 0.009*\"us\" + 0.009*\"softwar\" + 0.009*\"displai\" + 0.009*\"avail\" + 0.007*\"set\"'),\n", + " '0.083*\"armenian\" + 0.033*\"turkish\" + 0.021*\"turk\" + 0.019*\"armenia\" + 0.017*\"peopl\" + 0.016*\"russian\" + 0.015*\"genocid\" + 0.014*\"muslim\" + 0.014*\"turkei\" + 0.014*\"argic\"'),\n", " (4,\n", - " '0.027*\"space\" + 0.011*\"nasa\" + 0.008*\"satellit\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.005*\"mission\" + 0.005*\"new\" + 0.005*\"data\" + 0.005*\"technolog\" + 0.005*\"shuttl\"')]" + " '0.040*\"space\" + 0.016*\"nasa\" + 0.012*\"orbit\" + 0.011*\"satellit\" + 0.010*\"launch\" + 0.010*\"data\" + 0.009*\"new\" + 0.008*\"mission\" + 0.008*\"includ\" + 0.008*\"technolog\"')]" ] }, - "execution_count": 18, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -1743,29 +459,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(0,\n", - " '0.015*\"imag\" + 0.011*\"file\" + 0.010*\"graphic\" + 0.007*\"program\" + 0.007*\"jpeg\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"com\" + 0.006*\"color\" + 0.006*\"format\"'),\n", - " (1,\n", - " '0.014*\"space\" + 0.012*\"nasa\" + 0.008*\"orbit\" + 0.006*\"gov\" + 0.006*\"launch\" + 0.006*\"earth\" + 0.005*\"year\" + 0.005*\"like\" + 0.005*\"moon\" + 0.005*\"new\"'),\n", - " (2,\n", - " '0.010*\"israel\" + 0.009*\"god\" + 0.008*\"isra\" + 0.008*\"peopl\" + 0.006*\"think\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"com\" + 0.005*\"right\" + 0.005*\"exist\"'),\n", - " (3,\n", - " '0.015*\"com\" + 0.010*\"space\" + 0.008*\"bike\" + 0.005*\"dod\" + 0.005*\"like\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"ride\" + 0.004*\"new\" + 0.004*\"time\"'),\n", - " (4,\n", - " '0.018*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turkei\" + 0.005*\"time\" + 0.005*\"turk\" + 0.004*\"like\"')]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "gensim_lda.show_topics()" ] @@ -1779,7 +475,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -1792,16 +488,16 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8.563342468627981" + "8.762690688242715" ] }, - "execution_count": 139, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1812,15 +508,15 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 31 s, sys: 7.28 s, total: 38.3 s\n", - "Wall time: 11.5 s\n" + "CPU times: user 32.2 s, sys: 7.12 s, total: 39.3 s\n", + "Wall time: 12.2 s\n" ] } ], @@ -1835,7 +531,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1844,7 +540,7 @@ "8.300690481807766" ] }, - "execution_count": 143, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1862,7 +558,7 @@ }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -1903,1040 +599,6 @@ " return self.nmf.get_topics()" ] }, - { - "cell_type": "code", - "execution_count": 155, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'data': ['From: John Lussmyer \\nSubject: Re: DC-X update???\\nOrganization: Mystery Spot BBS\\nReply-To: dragon@angus.mi.org\\nLines: 12\\n\\nhenry@zoo.toronto.edu (Henry Spencer) writes:\\n\\n> The first flight will be a low hover that will demonstrate a vertical\\n> landing. There will be no payload. DC-X will never carry any kind\\n\\nExactly when will the hover test be done, and will any of the TV\\nnetworks carry it. I really want to see that...\\n\\n--\\nJohn Lussmyer (dragon@angus.mi.org)\\nMystery Spot BBS, Royal Oak, MI --------------------------------------------?--\\n\\n',\n", - " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 25\\n\\nDear Mr. Beyer:\\n\\nIt is never wise to confuse \"freedom of speech\" with \"freedom\"\\nof racism and violent deragatory.\"\\n\\nIt is unfortunate that many fail to understand this crucial \\ndistinction.\\n\\nIndeed, I find the latter in absolute and complete contradiction\\nto the former. Racial invective tends to create an atmosphere of\\nintimidation where certain individuals (who belong to the group\\nunder target group) do not feel the ease and liberty to exercise \\n*their* fundamental \"freedom of speech.\"\\n\\nThis brand of vilification is not sanctioned under \"freedom of\\nspeech.\\n\\nSalam,\\n\\nJohn Absood\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", - " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 16\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n \\n> \"Wait. You just said that humans are rarely reasonable. Doesn\\'t that\\n> contradict atheism, where everything is explained through logic and\\n> reason? This is THE contradiction in atheism that proves it false.\"\\n> --- Bobby Mozumder proving the existence of Allah, #2\\n\\nDoes anybody have Bobby\\'s post in which he said something like \"I don\\'t\\nknow why there are more men than women in islamic countries. Maybe it\\'s\\natheists killing the female children\"? It\\'s my personal favorite!\\n\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", - " \"From: gdoherty@us.oracle.com (Greg Doherty)\\nSubject: BMW '90 K75RT For Sale\\nDistribution: ca\\nOrganization: Oracle Corporation\\nLines: 11\\nOriginator: gdoherty@kr2seq.us.oracle.com\\nNntp-Posting-Host: kr2seq.us.oracle.com\\nX-Disclaimer: This message was written by an unauthenticated user\\n at Oracle Corporation. The opinions expressed are those\\n of the user and not necessarily those of Oracle.\\n\\n[this is posted for a friend, please reply to dschick@holonet.net]\\n\\n1990 BMW K75RT FOR SALE\\n\\nAsking 5900.00 or best offer.\\nThis bike has a full faring and is great for touring or commuting. It has\\nabout 30k miles and has been well cared for. The bike comes with one hard\\nsaddle bag (the left one; the right side bag was stolen), a Harro tank bag\\n(the large one), and an Ungo Box alarm. Interested? Then Please drop me a\\nline.\\nDAS\\n\",\n", - " 'From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: NONE\\nLines: 21\\n\\nIn article <1993Apr17.185118.10792@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n|> In article <1993Apr16.195452.21375@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n|> >04/16/93 1045 ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\n|> >\\n|> \\n|> Ermenistan kasiniyor...\\n|> \\n|> Let me translate for everyone else before the public traslation service gets\\n|> into it\\t: Armenia is getting itchy. \\n|> \\n|> Esin.\\n\\n\\nLet me clearify Mr. Turkish;\\n\\nARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that SHE\\nWILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\ntricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\nCYPRESS WHILE the world simply WATCHED. \\n\\n\\n',\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: End of the Space Age?\\nOrganization: Express Access Online Communications USA\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nOddly, enough, The smithsonian calls the lindbergh years\\nthe golden age of flight. I would call it the granite years,\\nreflecting the primitive nature of it. It was romantic,\\nswashbuckling daredevils, \"those daring young men in their flying\\nmachines\". But in reality, it sucked. Death was a highly likely\\noccurence, and the environment blew. Ever see the early navy\\npressure suits, they were modified diving suits. You were ready to\\nstar in \"plan 9 from outer space\". Radios and Nav AIds were\\na joke, and engines ran on castor oil. They picked and called aviators\\n\"men with iron stomachs\", and it wasn\\'t due to vertigo.\\n\\nOddly enough, now we are in the golden age of flight. I can hop the\\nshuttle to NY for $90 bucks, now that\\'s golden.\\n\\nMercury gemini, and apollo were romantic, but let\\'s be honest.\\nPeeing in bags, having plastic bags glued to your butt everytime\\nyou needed a bowel movement. Living for days inside a VW Bug.\\nRomantic, but not commercial. The DC-X points out a most likely\\nnew golden age. An age where fat cigar smoking business men in\\nloud polyester space suits will fill the skys with strip malls\\nand used space ship lots.\\n\\nhhhmmmmm, maybe i\\'ll retract that golden age bit. Maybe it was\\nbetter in the old days. Of course, then we\\'ll have wally schirra\\ntelling his great grand children, \"In my day, we walked on the moon.\\nEvery day. Miles. no buses. you kids got it soft\".\\n\\npat\\n',\n", - " 'From: dean@fringe.rain.com (Dean Woodward)\\nSubject: Re: Drinking and Riding\\nOrganization: Organization for Mass Confusion.\\nLines: 36\\n\\ncjackson@adobe.com (Curtis Jackson) writes:\\n\\n> In article MJMUISE@1302.wats\\n> }I think the cops and \"Don\\'t You Dare Drink & Drive\" (tm) commercials will \\n> }usually say 1hr/drink in general, but after about 5 drinks and 5 hrs, you \\n> }could very well be over the legal limit. \\n> }Watch yourself.\\n> \\n> Indeed, especially if you are \"smart\" and eat some food with your\\n> drink. The food coating the stomach lining (especially things like\\n> milk) can temporarily retard the absorption of alcohol. When the\\n> food is digested, the absorption will proceed, and you will\\n> actually be drunker (i.e., have a higher instantaneous BAC) than\\n> you would have been if you had drunk 1 drink/hr. on an empty stomach.\\n> \\n> Put another way, food can cause you to be less drunk than drinking on\\n> an empty stomach early on in those five hours, but more drunk than\\n> drinking on an empty stomach later in those five hours.\\n> -- \\n> Curtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\n> DoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\\n> \"There is no justification for taking away individuals\\' freedom\\n> in the guise of public safety.\" -- Thomas Jefferson\\n\\nAgain, from my alcohol server\\'s class:\\nThe absolute *most* that eating before drinking can do is slow the absorption\\ndown by 15 minutes. That gives me time to eat, slam one beer, and ride like\\nhell to try to make it home in the 10 minutes left after paying, donning \\nhelmet & gloves, starting bike...\\n\\n\\n--\\nDean Woodward | \"You want to step into my world?\\ndean@fringe.rain.com | It\\'s a socio-psychotic state of Bliss...\"\\n\\'82 Virago 920 | -Guns\\'n\\'Roses, \\'My World\\'\\nDoD # 0866\\n',\n", - " 'From: klinger@ccu.umanitoba.ca (Jorg Klinger)\\nSubject: Re: Riceburner Respect\\nNntp-Posting-Host: ccu.umanitoba.ca\\nOrganization: University of Manitoba, Winnipeg, Canada\\nLines: 28\\n\\nIn <1993Apr15.192558.3314@icomsim.com> mmanning@icomsim.com (Michael Manning) writes:\\n\\n>In article craig@cellar.org (Saint Craig) \\n>writes:\\n>> shz@mare.att.com (Keeper of the \\'Tude) writes:\\n>> \\n\\n>Most people wave or return my wave when I\\'m on my Harley.\\n>Other Harley riders seldom wave back to me when I\\'m on my\\n>duck. Squids don\\'t wave, or return waves ever, even to each\\n>other, from what I can tell.\\n\\n\\n When we take a hand off the bars we fall down!\\n\\n__\\n Jorg Klinger | GSXR1100 | If you only new who\\n Arch. & Eng. Services |\"Lost Horizons\" CR500 | I think I am. \\n UManitoba, Man. Ca. |\"The Embalmer\" IT175 | - anonymous\\n\\n --Squidonk-- \\n\\n\\n\\n\\n\\n\\n\\n',\n", - " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Israeli Terrorism\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 8\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n As someone who reads Israeli newpapaers every day, I can state\\nwith absolute certainty, that anybody who relies on western media\\nto get a picture of what is happening in Israel is not getting an\\naccurate picture. There is tremendous bias in those stories that\\ndo get reported. And the stories that NEVER get mentioned create\\na completely false picture of the mideast.\\n\\n',\n", - " 'From: dwarner@sceng.ub.com (Dave Warner)\\nSubject: Sabbatical (and future flames)\\nSummary: I\\'m outta here\\nLines: 32\\nNntp-Posting-Host: 128.203.2.156\\nOrganization: Ungermann-Bass SSE\\n\\nSo, I begin my 6 week sabbatical in about 15 minutes. Six wonderful weeks\\nof riding, and no phones or email.\\n\\nI won\\'t have any way to check mail (or setup a vacation agent, no sh*t!), \\nthough I can dial in and get newsfeed, (dont ask), so if there are any \\noutstanding CFC\\'s or such things,please try my compuserve address:\\n\\n72517.3356@compuserve.com\\n\\nAnybody wants to do some WEEKDAY rides around the BA, send me a mail\\nto above or post here.\\n\\nI\\'ll be thinking about all of you stuck if front of your\\nterminals......\"Sheeyaahhh, and monkeys might fly out of my butt...\"\\nride safe,\\ndave\\n\\n\\n\\n-------------------------------------------------------------------------\\n Sense AIN\\'T common....\\n\\nDave Warner Opinions unlikely to be shared\\nAMA 687955/HOG 0588773/DoD 870\\t by my employer or anyone else\\ndwarner@sceng.ub.com _Signature on file_ \\ndwarner@milo.ub.com 72517.3356@compuserve.com \\n\\'93 FXSTS \\'71 T120 (Stolen)\\n\\n-------------------------------------------------------------------------\\n\\n\\n\\n',\n", - " \"From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Anti-Zionism is Racism\\nOrganization: NYSERNet, Inc.\\nLines: 14\\n\\nB8HA000 writes:\\n\\n>In Re:Syria's Expansion, the author writes that the UN thought\\n>Zionism was Racism and that they were wrong. They were correct\\n>the first time, Zionism is Racism and thankfully, the McGill Daily\\n>(the student newspaper at McGill) was proud enough to print an article\\n>saying so. If you want a copy, send me mail.\\n\\n>Steve\\n\\nJust felt it was important to add four letters that Steve left out of\\nhis Subject: header.\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n\",\n", - " 'From: Center for Policy Research \\nSubject: Desertification of the Negev\\nNf-ID: #N:cdp:1483500361:000:5123\\nNf-From: cdp.UUCP!cpr Apr 25 05:25:00 1993\\nLines: 104\\n\\n\\nFrom: Center for Policy Research \\nSubject: Desertification of the Negev\\n\\n\\nThe desertification of the arid Negev\\n------------------------------------- by Moise Saltiel, I&P March\\n1990\\n\\nI. The Negev Bedouin Before and After 1948 II. Jewish\\nAgricultural Settlement in the Negev III. Development of the\\nNegev\\'s Rural Population IV. Economic Situation of Jewish\\nSettlements in 1990 V. Failure in Settling the Arava Valley\\nVI. Failure in Settling the Central Mountains VII. Failure in\\nMaking the Negev \"Bedouinenrein\" (Cleansing the Negev of Bedouins)\\nVIII. Transforming Bedouin into Low-Paid Workers IX.. Failure\\nin Settling the \"Development Towns\" X. Jordan Water to the\\nNegev: A Strategic Asset XI. The Negev Becomes a Dumping\\nGround XII. The Dimona Nuclear Plant XIII. The Negev as a\\nMilitary Base XIV. The Negev in the Year 2000\\n\\nJust after the creation of the State of Israel, the phrase \"the\\nJewish pioneers will make the desert bloom\" was trumpeted\\nthroughout the Western world. After the Six Day War in 1967, David\\nBen-Gurion declared in a letter to Charles de Gaulle: \"It\\'s by our\\npioneering creation that we have transformed a poor and arid land\\ninto a fertile land, created built-up areas, towns and villages in\\nabandoned desert areas\".\\n\\nContrary to Ben-Gurion\\'s assertion, it must be affirmed that\\nduring the 26 years of the British mandate over Palestine and for\\ncenturies previous, a productive human presence was to be found in\\nall parts of the Negev desert - in the very arid hills and valleys\\nof the southern Negev as well as in the more fertile north. These\\nwere the Bedouin Arabs.\\n\\nThe real desertification of the Negev, mainly in the southern\\npart, occurred after Israel\\'s dispossession of the Bedouin\\'s\\ncultivated lands and pastures. Nowadays, the majority of the\\n12,800 square-kilometer Negev, which represents 62 percent of the\\nState of Israel (pre-1967 borders), has been desertified beyond\\nrecognition. The main new occupiers of the formerly Bedouin Negev\\nare the Israeli army; the Nature Reserves Authority, whose chief\\nrole is to prevent Bedouin from roaming their former pasture\\nlands; and vast industrial zones, including nuclear reactors and\\ndumping grounds for chemical, nuclear and other wastes. Israeli\\nJews in the Negev today cultivate less than half the surface area\\ncultivated by the Bedouin before 1948, and there is no Jewish\\npastoral activity.\\n\\nI. Agricultural and pastoral activities of the Negev Bedouin\\nbefore and after 1948\\n-------------------------------------------------- In 1942,\\naccording to British mandatory statistics, the Beersheba\\nsub-district (which corresponds more or less to Israel\\'s Negev, or\\nSouthern, district) had 52,000 inhabitants, almost all Bedouin\\nArabs, who held 11,500 camels, 6,000 cows and oxen, 42,000 sheep\\nand 22,000 goats.\\n\\nThe majority of the Bedouin lived a more or less sedentary life in\\nthe north, where precipitation ranged between 200 and 350 mm per\\nyear. In 1944 they cultivated about 200,000 hectares of the\\nBeersheba district - i.e. 16 percent of its total area and *more\\nthan double the area cultivated by the Negev\\'s Jewish settlers\\nafter 40 years of \"making the desert bloom\"*\\n\\nThe Bedouin had a very low crop yield - 350 to 400 kilograms of\\nbarley per hectare during rainy years - and their farming\\ntechniques were primitive, but production was based solely on\\nanimal and human labor. It must also be underscored that animal\\nproduction, although low, was based entirely on pasturing.\\nProduction increased considerably during the rainy years and\\ndiminished significantly during drought years. All Bedouin pasture\\nanimals - goats, camels and sheep - had the ability to gain weight\\nquickly over the relatively rainy winters and to withstand many\\nwaterless days during the hot summers. These animals were the\\nresult of a centuries-old process of natural selection in harsh\\nlocal conditions.\\n\\nAfter the creation of the State of Israel, 80 percent of the Negev\\nBedouin were expelled to the Sinai or to Southern Jordan. The\\n10,000 who were allowed to remain were confined to a territory of\\n40,000 hectares in a region were annual mean precipiation was 150\\nmm - a quantity low enough to ensure a crop failure two years out\\nof three. The rare water wells in the south and central Negev,\\nspring of life in the desert, were cemented to prevent Bedouin\\nshepherds from roaming.\\n\\nA few Bedouin shepherds were allowed to stay in the central Negev.\\nBut after 1982, when the Sinai was returned to Egypt, these\\nBedouin were also eliminated. At the same time, strong pressure\\nwas applied on the Bedouin to abandon cultivation of their fields\\nin order that the land could be transferred to the army.\\n\\nNo reliable statistics exist concerning the amount of land held\\ntoday by Negev Bedouin. It is a known fact that a large part of\\nthe 40,000 hectares they cultivated in the 1950s has been seized\\nby the Israeli authorities. Indeed, most of the Bedouin are now\\nconfined to seven \"development towns\", or *sowetos*, established\\nfor them.\\n\\n(the rest of the article is available from Elias Davidsson, email:\\nelias@ismennt.is)\\n\\n',\n", - " 'From: mcguire@cs.utexas.edu (Tommy Marcus McGuire)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: CS Dept, University of Texas at Austin\\nLines: 36\\nDistribution: world\\nNNTP-Posting-Host: cash.cs.utexas.edu\\n\\nIn article <1qmetg$g2n@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n[...]\\n>horse\\'s neck in the direction you wish to go. When training a\\n>plow-steering horse to neck-rein, one technique is to cross the reins\\n>under his necks. Thus, when neck-reining to the left, the right rein\\n ^^^^^\\n[...]\\n>Ed Green, former Ninjaite |I was drinking last night with a biker,\\n[...]\\n\\n\\nGiven my desire to stay as far away as possible from farming and ranching\\nequipment, I really hate to jump into this thread. I\\'m going to anyway,\\nbut I really hate it.\\n\\nEd, exactly what kind of mutant horse-like entity do you ride, anyway?\\nDoes countersteering work on the normal, garden-variety, one-necked horse?\\n\\nObmoto: I was flipping through the March (I think) issue of Rider, and I\\nsaw a small pseudo-ad for a book on hand signals appropriate to motorcycling.\\nIt mentioned something about a signal for \"Your passenger is on fire.\" Any\\nbody know the title and author of this book, and where I could get a copy?\\nThis should not be understood as implying that I have grown sociable enough\\nto ride with anyone, but the book sounded cute.\\n\\n\\n\\n\\n-----\\nTommy McGuire\\nmcguire@cs.utexas.edu\\nmcguire@austin.ibm.com\\n\\n\"...I will append an appropriate disclaimer to outgoing public information,\\nidentifying it as personal and as independent of IBM....\"\\n\\n',\n", - " \"From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: Boom! Dog attack!\\nOrganization: the HP Corporate notes server\\nLines: 30\\n\\nSeveral years ago, while driving a cage, a dog darted out at a quiet\\nintersection right in front of me but there was enough distance\\nbetween us so I didn't have to slow down. However, a 2nd dog\\nsuddenly appeared and collided with my right front bumper and\\nthe force of the impact was enough to kill that Scottish Terrier.\\n\\nApparently, it was following the 1st dog. Henceforth, if a dog\\ndecides to cross the street, keep an eye out for a 2nd dog as\\nmany dogs like to travel in pairs or packs. \\n\\nI've yet to experience a dog chasing me on my black GL1200I which\\nhas a pretty loud OEM horn (not as good as Fiamms, but good enuff)\\nbut the bike is large and heavy enough to run right over one of\\nthe smaller nippers while the larger ones would have trouble\\ngetting my leg between the saddlebags and engine guards. I'd\\ndef feel more vulnerable on my '68 Trump as that'd be easier\\nleg chewing target for those mongrels.\\n\\nIf there's a persistent dog running after bikers despite\\ncomplaints to the owner I wouldn't be adverse to running\\nover it with my truck as a dogs life isn't worth much IMHO\\ncompared to a child riding a bike who gets knocked to the\\nground by said dog and dies from a head injury. \\n\\nAny dog in the neighborhood that's vicious or a public menace\\nrunning about unleashed is fair game as road kill candidate.\\n\\nGraeme Harrison\\n(gharriso@hpcc01.corp.hp.com) DoD#649 \\n\\n\",\n", - " 'Subject: Re: Video in/out\\nFrom: djlewis@ualr.edu\\nOrganization: University of Arkansas at Little Rock\\nNntp-Posting-Host: athena.ualr.edu\\nLines: 40\\n\\nIn article <1993Apr18.080719.4773@nwnexus.WA.COM>, mscrap@halcyon.com (Marta Lyall) writes:\\n> Organization: \"A World of Information at your Fingertips\"\\n> Keywords: \\n> \\n> In article <628@toontown.columbiasc.ncr.com> craig@toontown.ColumbiaSC.NCR.COM (Craig S. Williamson) writes:\\n>>\\n>>I\\'m getting ready to buy a multimedia workstation and would like a little\\n>>advice. I need a graphics card that will do video in and out under windows.\\n>>I was originally thinking of a Targa+ but that doesn\\'t work under Windows.\\n>>What cards should I be looking into?\\n>>\\n>>Thanks,\\n>>Craig\\n>>\\n>>-- \\n>> \"To forgive is divine, to be\\n>>-Craig Williamson an airhead is human.\"\\n>> Craig.Williamson@ColumbiaSC.NCR.COM -Balki Bartokomas\\n>> craig@toontown.ColumbiaSC.NCR.COM (home) Perfect Strangers\\n> \\n> \\n> Craig,\\n> \\n> You should still consider the Targa+. I run windows 3.1 on it all the\\n> time at work and it works fine. I think all you need is the right\\n> driver. \\n> \\n> Josh West \\n> email: mscrap@halcyon.com\\n> \\nAT&T also puts out two new products for windows, Model numbers elude me now,\\na 15 bit video board with framegrabber and a 16bit with same. Yesterday I\\nwas looking at a product at a local Software ETC store. Media Vision makes\\na 15bit (32,768 color) frame capture board that is stand alone and doesnot\\nuse the feature connector on your existing video card. It claims upto 30 fps\\nlive capture as well as single frame from either composite NTSC or s-video\\nin and out.\\n\\nDon Lewis\\n\\n',\n", - " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Yeah, Right\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 49\\nDistribution: world\\nNNTP-Posting-Host: agar.engin.umich.edu\\n\\nIn article <66014@mimsy.umd.edu> mangoe@cs.umd.edu (Charley Wingate) writes:\\n>Benedikt Rosenau writes:\\n>\\n>>And what about that revelation thing, Charley?\\n>\\n>If you\\'re talking about this intellectual engagement of revelation, well,\\n>it\\'s obviously a risk one takes.\\n\\n Ah, now here is the core question. Let me suggest a scenario.\\n\\n We will grant that a God exists, and uses revelation to communicate\\nwith humans. (Said revelation taking the form (paraphrased from your\\nown words) \\'This infinitely powerful deity grabs some poor schmuck,\\nmakes him take dictation, and then hides away for a few hundred years\\'.)\\n Now, there exists a human who has not personally experienced a\\nrevelation. This person observes that not only do these revelations seem\\nto contain elements that contradict rather strongly aspects of the\\nobserved world (which is all this person has ever seen), but there are\\nmany mutually contradictory claims of revelation.\\n\\n Now, based on this, can this person be blamed for concluding, absent\\na personal revelation of their own, that there is almost certainly\\nnothing to this \\'revelation\\' thing?\\n\\n>I\\'m not an objectivist, so I\\'m not particularly impressed with problems of\\n>conceptualization. The problem in this case is at least as bad as that of\\n>trying to explain quantum mechanics and relativity in the terms of ordinary\\n>experience. One can get some rough understanding, but the language is, from\\n>the perspective of ordinary phenomena, inconsistent, and from the\\n>perspective of what\\'s being described, rather inexact (to be charitable).\\n>\\n>An analogous situation (supposedly) obtains in metaphysics; the problem is\\n>that the \"better\" descriptive language is not available.\\n\\n Absent this better language, and absent observations in support of the\\nclaims of revelation, can one be blamed for doubting the whole thing?\\n\\n Here is what I am driving at: I have thought a long time about this. I\\nhave come to the honest conclusion that if there is a deity, it is\\nnothing like the ones proposed by any religion that I am familiar with.\\n Now, if there does happen to be, say, a Christian God, will I be held\\naccountable for such an honest mistake?\\n\\n Sincerely,\\n\\n Ray Ingles ingles@engin.umich.edu\\n\\n \"The meek can *have* the Earth. The rest of us are going to the\\nstars!\" - Robert A. Heinlein\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nOrganization: Express Access Online Communications USA\\nLines: 7\\nNNTP-Posting-Host: access.digex.net\\n\\n Besides this was the same line of horse puckey the mining companies claimed\\nwhen they were told to pay for restoring land after strip mining.\\n\\nthey still mine coal in the midwest, but now it doesn't look like\\nthe moon when theyare done.\\n\\npat\\n\",\n", - " 'From: beck@irzr17.inf.tu-dresden.de (Andre Beck)\\nSubject: Re: Fonts in POV??\\nOrganization: Dept. of Computer Science, TU Dresden, Germany.\\nLines: 57\\nDistribution: world\\nReply-To: Andre_Beck@IRS.Inf.TU-Dresden.DE\\nNNTP-Posting-Host: irzr17.inf.tu-dresden.de\\nKeywords: fonts, raytrace\\n\\n\\nIn article <1qg9fc$et9@wampyr.cc.uow.edu.au>, g9134255@wampyr.cc.uow.edu.au (Coronado Emmanuel Abad) writes:\\n|> \\n|> \\n|> \\tI have seen several ray-traced scenes (from MTV or was it \\n|> RayShade??) with stroked fonts appearing as objects in the image.\\n|> The fonts/chars had color, depth and even textures associated with\\n|> them. Now I was wondering, is it possible to do the same in POV??\\n|> \\n\\nHi Noel,\\n\\nI\\'ve made some attempts to write a converter that reads Adobe Type 1 fonts,\\ntriangulates them, bevelizes them and extrudes them to result in a generic\\n3d object which could be used with PoV f.i.\\n\\nThe problem I\\'m currently stuck on is that theres no algorithm which\\ntriangulates any arbitrary polygonal shape. Delaunay seems to be limited\\nto convex hulls. Constrained delaunay may be okay, but I have no code\\nexample of how to do it.\\n\\nAnother way to do the bartman may be\\n\\n- TGA2POV\\n- A selfmade variation of this, using heightfields.\\n\\n Create a b/w picture (BIG) of the text you need, f.i. using a PostScript\\n previewer. Then, use this as a heightfield. If it is white on black,\\n the heightfield is exactly the images white parts (it\\'s still open\\n on the backside). To close it, mirror it and compound it with the original.\\n\\nExample:\\n\\nobject {\\n union {\\n height_field { gif \"abp2.gif\" }\\n height_field { gif \"abp2.gif\" scale <1 -1 1>}\\n }\\n texture {\\n Glass\\n }\\n translate <-0.5 0 -0.5> //center\\n rotate <-90 0 0> // rotate upwards\\n scale <10 5 100> // scale bigger and thicker\\n translate <0 2 0> // final placement\\n}\\n\\n\\nabp2.gif is a GIF of arbitrary size containing \"ABP\" black on white in\\nTimes-Roman 256 points.\\n\\n--\\n+-o-+--------------------------------------------------------------+-o-+\\n| o | \\\\\\\\\\\\- Brain Inside -/// | o |\\n| o | ^^^^^^^^^^^^^^^ | o |\\n| o | Andre\\' Beck (ABPSoft) mehl: Andre_Beck@IRS.Inf.TU-Dresden.de | o |\\n+-o-+--------------------------------------------------------------+-o-+\\n',\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: \"Conventional Proposales\": Israel & Palestinians\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 117\\n\\nIn article <2BCA3DC0.13224@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n>\\n>The latest Israeli \"proposal\", first proposed in February of 1992, contains \\n>the following assumptions concerning the nature of any \"interim status\" refering to the WB and Gaza, the Palestinians, implemented by negotiations. It\\n>states that: \\n> >Israel will remain the existing source of authority until \"final status\"\\n> is agreed upon;\\n> >Israel will negiotiate the delegation of power to the organs of the \\n> Interim Self-Government Arrangements (ISGA);\\n> >The ISGA will apply to the \"Palestinian inhabitants of the territories\"\\n> under Israeli military administration. The arrangements will not have a \\n> territorial application, nor will they apply to the Israeli population \\n> of the territories or to the Palestinian inhabitants of Jerusalem;\\n> >Residual powers not delegated under the ISGA will be reserved by Israel;\\n> >Israelis will continue to live and settle in the territoriesd;\\n> >Israel alone will have responsibility for security in all its aspects-\\n> external, internal- and for the maintenance of public order;\\n> >The organs of the ISGA will be of an administrative-functional nature;\\n> >The exercise of powers under the ISGA will be subject to cooperation and \\n> coordination with Israel. \\n> >Israel will negotiate delegation of powers and responsibilities in the \\n> areas of administration, justice, personnel, agriculture, education,\\n> business, tourism, labor and social welfare, local police,\\n> local transportation and communications, municipal affairs and religious\\n> affairs.\\n>\\n>The Palestinian counterproposal of March 1992:\\n> >The establishment of a Palestinian Interim Self-Governing Authority \\n> (PISGA) whose authority is vested by the Palestinian people;\\n> >Its (PISGA) powers cannot be delegated by Israel;\\n> >In the interim phase the Israeli military government and civil adminis-\\n> tration will be abolished, and the PISGA will asume the powers previous-\\n> ly enjoyed by Israel;\\n> >There will be no limitations on its (PISGA) powers and responsibilities \\n> \"except those which derive from its character as an interim arrangement\";\\n> >By the time PISGA is inaugurated, the Israeli armed forces will have \\n> completed their withdrawal to agreed points along the borders of the \\n> Occupied Palestinian Territory (OPT). The OPT includes Jerusalem;\\n> >The jurisdiction of the PISGA shall extend to all of the OPT, including \\n> its land, water and air space;\\n> >The PISGA shall have legislative powers to enact, amend and abrogate laws;\\n> >It will wield executive power withput foreign control;\\n> >It shall determine the nature of its cooperation with any state or \\n> international body, and shall be empowered to conclude binding coopera-\\n> tive agreements free of any control by Israel;\\n> >The PISGA shall administer justice throughout the OPT and will have sole\\n> and exclusive jruisdiction;\\n> >It will have a strong police force responsible for security and public\\n> order in the OPT;\\n> >It can request the assistance of a UN peacekeeping force;\\n> >Disputes with Israel over self-governing arrangements will be settled by \\n> a committee composed of representatives of the five permanent members of\\n> the UN Security Council, the Secretary General (of the UN), the PISGA, \\n> Jordan, Egypt, Syria and Israel.\\n>\\n>But perhaps the \"bargaining\" attitude behind these very different visions\\n>of the \"interim stage\" is wrong? For two reasons: 1) the present Palestinian \\n>and Israeli leadership are *as moderate* as is likely to exist for many years,\\n>so the present opportunity may be the last for a significant period, 2) since\\n>these negotiations *are not* designed to, or even attempting to, resolve the \\n>conflict, attention to issues dealing with a desired \"final status\" are mis-\\n>placed and potentially destructive.\\n>\\n>Given this, how should proposals (from either side) be altered to temper\\n>their \"maximalist\" approaches as stated above? How can Israeli worries ,and \\n>desire for some \"interim control\", be addressed while providing for a very \\n>*real* interim Palestinian self-governing entity?\\n>\\n>Tim\\n> \\nApril 13, 1993 response by Al Moore (L629159@LMSC5.IS.LMSC.LOCKHEED.COM):\\n\\nBasically the problem is that Israel may remain, or leave, the occupied \\nterritories; it cannot do both, it cannot do neither. So far, Israe \\ncontinues to propose that they remain. The Palestinians propose that they \\nleave. Why should either change their view? It is worth pointing out that \\nthe only area of compromise accomodating both views seems to require a\\nreduction in the Israeli presence. Israel proposes no such reduction....\\nand in fact may be said to *not* be negotiating.\\n------------------------------------------------------------------------\\n\\nTim: \\n\\nThere seem to be two perceptions that **have to be addressed**. The\\nfirst is that of Israel, where there is little trust for Arab groups, so\\nthere is little support for Israel giving up **tangible** assets in \\nexchange for pieces of paper, \"expectations\", \"hopes\", etc. The second\\nis that of the Arab world/Palestinians, where there is the demand that\\nthese \"tangible concessions\" be made by Israel **without** it receiving\\nanything **tangible** back. Given this, the gap between the two stances\\nseems to be the need by Israel of receiving some ***tangible*** returns\\nfor its expected concessions. By \"tangible\" is meant something that\\n1) provides Israel with \"comparable\" protection (from the land it is to \\ngive up), 2) in some way ensures that the Arab states and Palestine \\n**will be** accountable and held actively (not just \"diplomatically) \\nresponsible for the upholding of all actions on its territory (by citizens \\nor \"visitors\").\\n\\nIn essence I do not believe that Israel objections to Palestinian\\nstatehood would be anywhere near as strong as they are now IF Israel\\nwas assured that any new Palestinian state *would be committed to** \\nco-existing with Israel and held responsible for ALL attacks on Israel \\nfrom its territory.\\n\\tAside from some of the rather slanted proposals above,\\n\\thow *could* such \"guarantees\" be instilled? For example,\\n\\thow could such \"guarantees\"/\"controls\" be added to the\\n\\tPalestinian PISGA proposals?\\n\\nIsrael is hanging on largely because it is scared stiff that the minute\\nit lets go (gives lands back to Arab states, no more \"buffer zone\", gives\\nfull autonomy to Palestinians), ANY and/or ALL of the Arab parties\\ncould (and *would*, if not \"controlled\" somehow) EASILY return to the \\ntraditional anti-Israel position. The question then is HOW to *really*\\nensure that that will not happen.\\n\\nTim\\n\\n',\n", - " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: Re: Israel\\'s Expansion\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 34\\n\\n\\nIn article <18APR93.15729846.0076@VM1.MCGILL.CA>, B8HA000 writes:\\n>Just a couple of questions for the pro-Israeli lobby out there:\\n>\\n>1) Is Israel\\'s occupation of Southern Lebanon temporary? For Mr.\\n>Stein: I am working on a proof for you that Israel is diverting\\n>water to the Jordan River (away from Lebanese territory).\\n\\nYes. As long as the goverment over there can force some authority and prevent\\nterrorists attack against Israel. \\n\\n>\\n>2) Is Israel\\'s occupation of the West Bank, Gaza, and Golan\\n>temporary? If so (for those of you who support it), why were so\\n>many settlers moved into the territories? If it is not temporary,\\n>let\\'s hear it.\\n\\nSinai had several big cities that were avcuated when isreal gave it back to\\nEgypth, but for a peace agreement. So it is my opinin that the settlers will not\\nbe an obstacle for withdrawal as long it is combined with a real peace agreement\\nwith the Arabs and the Palastinians.\\n\\n>\\n>Steve\\n>\\n\\n\\nNaftaly\\n\\n---\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", - " \"From: sproulx@bmtlh204.BNR.CA (Stephane Proulx)\\nSubject: Re: Cobra Locks\\nReply-To: sproulx@bmtlh204.BNR.CA (Stephane Proulx)\\nOrganization: Bell-Northern Research Ltd.\\nLines: 105\\n\\n\\nYou may find it useful.\\n(This is a repost. The original sender is at the bottom.)\\n-------------------cut here--------------------------------------------------\\nArticle 39994 of rec.motorcycles:\\nPath:\\nscrumpy!bnrgate!corpgate!news.utdallas.edu!hermes.chpc.utexas.edu!cs.ute\\nexas.edu!swrinde!mips!pacbell.com!iggy.GW.Vitalink.COM!widener!eff!ibmpc\\ncug!pipex!unipalm!uknet!cf-cm!cybaswan!eeharvey\\nFrom: eeharvey@cybaswan.UUCP (i t harvey)\\nNewsgroups: rec.motorcycles\\nSubject: Re: Best way to lock a bike ?\\nMessage-ID: <861@cybaswan.UUCP>\\nDate: 15 Jul 92 09:47:10 GMT\\nReferences: <1992Jul14.165538.9789@usenet.ins.cwru.edu>\\nLines: 84\\n\\n\\nThese are the figures from the Performance Bikes lock test, taken without\\npermission of course. The price is for comparison. All the cable locks\\nhave some sort of armour, the chain locks are padlock and chain. Each\\nlock was tested for a maximum of ten minutes (600 secs) for each test:\\n\\n\\tBJ\\tBottle jack\\n\\tCD\\tCutting disc\\n\\tBC\\tBolt croppers\\n\\tGAS\\tGas flame\\n\\nThe table should really be split into immoblisers (for-a-while) and\\nlock-to-somethings (for-a-short-while) to make comparisons.\\n\\n\\t\\tType\\tWeight\\tBJ\\tCD\\tBC\\tGAS\\tTotal\\tPrice\\n\\t\\t\\t(kg)\\t(sec)\\t(sec)\\t(sec)\\t(sec)\\t(sec)\\t(Pounds)\\n========================================================================\\n=========\\n3-arm\\t\\tFolding\\t.8\\t53\\t5\\t13\\t18\\t89\\t26\\nCyclelok\\tbar\\n\\nAbus Steel-o-\\tCable\\t1.4\\t103\\t4\\t20\\t26\\t153\\t54\\nflex\\n\\nOxford\\t\\tCable\\t2.0\\t360\\t4\\t32\\t82\\t478\\t38\\nRevolver\\n\\nAbus Diskus\\tChain\\t2.8\\t600\\t7\\t40\\t26\\t675\\t77\\n\\n6-arm\\t\\tFolding\\t1.8\\t44\\t10\\t600\\t22\\t676\\t51\\nCyclelok\\tbar\\n\\nAbus Extra\\tU-lock\\t1.2\\t600\\t10\\t120\\t52\\t782\\t44\\n\\nCobra\\t\\tCable\\t6.0(!)\\t382\\t10\\t600\\t22\\t1014\\t150\\n(6ft)\\n\\nAbus closed\\tChain\\t4.0\\t600\\t11\\t600\\t33\\t1244\\t100\\nshackle\\t\\n\\nKryptonite\\tU-lock\\t2.5\\t600\\t22\\t600\\t27\\t1249\\t100\\nK10\\n\\nOxford\\t\\tU-lock\\t2.0\\t600\\t7\\t600\\t49\\t1256\\t38\\nMagnum\\n\\nDisclock\\tDisc\\t.7\\tn/a\\t44\\tn/a\\t38\\t1282\\t43\\n\\t\\tlock\\n\\nAbus 58HB\\tU-lock\\t2.5\\t600\\t26\\t600\\t64\\t1290\\t100\\n\\nMini Block\\tDisc\\t.65\\tn/a\\t51\\tn/a\\t84\\t1335\\t50\\n\\t\\tlock\\n========================================================================\\n=========\\n\\nPretty depressing reading. I think a good lock and some common sense about\\nwhere and when you park your bike is the only answer. I've spent all my\\nspare time over the last two weeks landscaping (trashing) the garden of\\nmy (and two friends with bikes) new house to accommodate our three bikes in\\nrelative security (never underestimate how much room a bike requires to\\nmanouver in a walled area :( ). Anyway, since the weekend there are only two\\nbikes :( and no, he didn't use his Abus closed shackle lock, it was too much\\nhassle to take with him when visiting his parents. A minimum wait of 8\\nweeks (if they don't decide to investigate) for the insurance company\\nto make an offer and for the real haggling to begin.\\n\\nAbus are a German company and it would seem not well represented in the US\\nbut very common in the UK. The UK distributor, given in the above article\\nis:\\n\\tMichael Brandon Ltd,\\n\\t15/17 Oliver Crescent,\\n\\tHawick,\\n\\tRoxburgh TD9 9BJ.\\n\\tTel. 0450 73333\\n\\nThe UK distributors for the other locks can also given if required.\\n\\nDon't lose it\\n\\tIan\\n\\n-- \\n_______________________________________________________________________\\n Ian Harvey, University College Swansea Too old to rock'n'roll\\n eeharvey@uk.ac.swan.pyr Too young to die\\n '79 GS750E \\n\\n\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Morality? (was Re: >>Explain to me\\n>>>how instinctive acts can be moral acts, and I am happy to listen.\\n>>For example, if it were instinctive not to murder...\\n>Then not murdering would have no moral significance, since there\\n>would be nothing voluntary about it.\\n\\nSee, there you go again, saying that a moral act is only significant\\nif it is \"voluntary.\" Why do you think this?\\n\\nAnd anyway, humans have the ability to disregard some of their instincts.\\n\\n>>So, only intelligent beings can be moral, even if the bahavior of other\\n>>beings mimics theirs?\\n>You are starting to get the point. Mimicry is not necessarily the \\n>same as the action being imitated. A Parrot saying \"Pretty Polly\" \\n>isn\\'t necessarily commenting on the pulchritude of Polly.\\n\\nYou are attaching too many things to the term \"moral,\" I think.\\nLet\\'s try this: is it \"good\" that animals of the same species\\ndon\\'t kill each other. Or, do you think this is right? \\n\\nOr do you think that animals are machines, and that nothing they do\\nis either right nor wrong?\\n\\n\\n>>Animals of the same species could kill each other arbitarily, but \\n>>they don\\'t.\\n>They do. I and other posters have given you many examples of exactly\\n>this, but you seem to have a very short memory.\\n\\nThose weren\\'t arbitrary killings. They were slayings related to some sort\\nof mating ritual or whatnot.\\n\\n>>Are you trying to say that this isn\\'t an act of morality because\\n>>most animals aren\\'t intelligent enough to think like we do?\\n>I\\'m saying:\\n>\\t\"There must be the possibility that the organism - it\\'s not \\n>\\tjust people we are talking about - can consider alternatives.\"\\n>It\\'s right there in the posting you are replying to.\\n\\nYes it was, but I still don\\'t understand your distinctions. What\\ndo you mean by \"consider?\" Can a small child be moral? How about\\na gorilla? A dolphin? A platypus? Where is the line drawn? Does\\nthe being need to be self aware?\\n\\nWhat *do* you call the mechanism which seems to prevent animals of\\nthe same species from (arbitrarily) killing each other? Don\\'t\\nyou find the fact that they don\\'t at all significant?\\n\\nkeith\\n',\n", - " \"From: hesh@cup.hp.com (Chris Steinbroner)\\nSubject: Re: Tracing license plates of BDI cagers?\\nArticle-I.D.: cup.C535HL.C6H\\nReply-To: Chris Steinbroner \\nOrganization: HP-UX Kernel Lab, Cupertino, CA\\nLines: 12\\nNntp-Posting-Host: hesh.cup.hp.com\\nX-Newsreader: TIN [version 1.1 PL9.1]\\n\\nCurtis Jackson (cjackson@adobe.com) wrote:\\n: The driver had looked over at me casually a couple of times; I\\n: know he knew I was there.\\n\\noh, okay. then in that case it was\\nattemped vehicular manslaughter.\\nhe definitely wanted to kill you.\\nall cagers want to kill bikers.\\nthat's the only explanation that\\ni can think of.\\n\\n-- hesh\\n\",\n", - " \"From: halat@pooh.bears (Jim Halat)\\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 37\\n\\nIn article <30121@ursa.bear.com>, halat@pooh.bears (Jim Halat) writes:\\n>In article <115288@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n>>\\n>>He'd have to be precise about is rejection of God and his leaving Islam.\\n>>One is perfectly free to be muslim and to doubt and question the\\n>>existence of God, so long as one does not _reject_ God. I am sure that\\n>>Rushdie has be now made his atheism clear in front of a sufficient \\n>>number of proper witnesses. The question in regard to the legal issue\\n>>is his status at the time the crime was committed. \\n>\\n\\nI'll also add that it is impossible to actually tell when one\\n_rejects_ god. Therefore, you choose to punish only those who\\n_talk_ about it. \\n\\n>\\n>-jim halat \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n\",\n", - " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: Newbie\\nOrganization: NASA Science Internet Project Office\\nLines: 16\\n\\nIn article , os048@xi.cs.fsu.edu () writes:\\n|> hey there,\\n|> Yea, thats what I am....a newbie. I have never owned a motorcycle,\\n\\nThis makes 5! It IS SPRING!\\n\\n|> Matt\\n|> PS I am not really sure what the purpose of this article was but...oh well\\n\\nNeither were we. Read for a few days, then try again.\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", - " \"From: valo@cvtstu.cvt.stuba.cs (Valo Roman)\\nSubject: Re: Text Recognition software availability\\nOrganization: Slovak Technical University Bratislava, Slovakia\\nLines: 23\\nNNTP-Posting-Host: sk2eu.eunet.sk\\nReplyTo: valo@cvtstu.cvt.stuba.cs (Valo Roman)\\n\\nIn article , ab@nova.cc.purdue.edu (Allen B) writes:\\n|> One more time: is there any >free< OCR software out there?\\n|>\\n|> I ask this question periodically and haven't found anything. This is\\n|> the last time. If I don't find anything, I'm going to write some\\n|> myself.\\n|> \\n|> Post here or email me if you have any leads or suggestions, else just\\n|> sit back and wait for me. :)\\n|> \\n|> ab\\n\\nI'm not sure if this is free or shareware, but you can try to look to wsmrsimtel20.army.mil,\\ndirectory PD1: file OCR104.ZIP .\\nFrom the file SIMIBM.LST :\\nOCR104.ZIP B 93310 910424 Optical character recognition for scanners.\\n\\nHope this helps.\\n\\nRoman Valo valo@cvt.stuba.cs\\nSlovak Technical University\\nBratislava \\nSlovakia\\n\",\n", - " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: Investment in Yehuda and Shomron\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , horen@netcom.com (Jonathan B. Horen) writes:\\n|> \\n|> While I applaud investing of money in Yehuda, Shomron, v\\'Chevel-Azza,\\n|> in order to create jobs for their residents, I find it deplorable that\\n|> this has never been an active policy of any Israeli administration\\n|> since 1967, *with regard to their Jewish residents*. Past governments\\n|> found funds to subsidize cheap (read: affordable) housing and the\\n|> requisite infrastructure, but where was the investment for creating\\n|> industry (which would have generated income *and* jobs)? \\n\\nThe investment was there in the form of huge tax breaks, and employer\\nbenfits. You are overlooking the difference that these could have\\nmade to any company. Part of the problem was that few industries\\nwere interested in political settling, as much as profit.\\n\\n|> After 26 years, Yehuda and Shomron remain barren, bereft of even \\n|> middle-sized industries, and the Jewish settlements are sterile\\n|> \"bedroom communities\", havens for (in the main) Israelis (both\\n|> secular *and* religious) who work in Tel-Aviv or Jerusalem but\\n|> cannot afford to live in either city or their surrounding suburbs.\\n\\nTrue, which leads to the obvious question, should any investment have\\nbeen made there at the taxpayer\\'s expense. Obviously, the answer was\\nand still is a resounding no.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n',\n", - " \"From: house@helios.usq.EDU.AU (ron house)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nOrganization: University of Southern Queensland\\nLines: 42\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tFirst I want to start right out and say that I'm a Christian. It \\n\\nI _know_ I shouldn't get involved, but... :-)\\n\\n[bit deleted]\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n>\\tSome reasons why he wouldn't be a liar are as follows. Who would \\n>die for a lie? Wouldn't people be able to tell if he was a liar? People \\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy. Very doubtful, in fact rediculous. For example \\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn't a liar or a lunatic, he must have been the \\n>real thing. \\n\\nRighto, DAN, try this one with your Cornflakes...\\n\\nThe book says that Muhammad was either a liar, or he was crazy ( a \\nmodern day Mad Mahdi) or he was actually who he said he was.\\nSome reasons why he wouldn't be a liar are as follows. Who would \\ndie for a lie? Wouldn't people be able to tell if he was a liar? People \\ngathered around him and kept doing it, many gathered from hearing or seeing \\nhow his son-in-law made the sun stand still. Call me a fool, but I believe \\nhe did make the sun stand still. \\nNiether was he a lunatic. Would more than an entire nation be drawn \\nto someone who was crazy. Very doubtful, in fact rediculous. For example \\nanyone who is drawn to the Mad Mahdi is obviously a fool, logical people see \\nthis right away.\\nTherefore since he wasn't a liar or a lunatic, he must have been the \\nreal thing. \\n\\n--\\n\\nRon House. USQ\\n(house@helios.usq.edu.au) Toowoomba, Australia.\\n\",\n", - " \"From: B8HA \\nSubject: Re: Israel's Expansion II\\nLines: 24\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nIn article <1993Apr22.093527.15720@donau.et.tudelft.nl> avi@duteinh.et.tudelft.nl (Avi Cohen Stuart) writes:\\n>From article <93111.225707PP3903A@auvm.american.edu>, by Paul H. Pimentel :\\n>> What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n>> s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n>> k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n>> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n>> ore they have a right to Jerusaleum as much as Isreal does.\\n>\\n>\\n>There is one big difference between Israel and the Arabs, Christians in this\\n>respect.\\n>\\n>Israel allows freedom of religion.\\n>\\n>Avi.\\n>.\\n>.\\nAvi,\\n For your information, Islam permits freedom of religion - there is\\nno compulsion in religion. Does Judaism permit freedom of religion\\n(i.e. are non-Jews recognized in Judaism). Just wondering.\\n\\nSteve\\n\\n\",\n", - " \"From: jk87377@lehtori.cc.tut.fi (Kouhia Juhana)\\nSubject: Re: More gray levels out of the screen\\nOrganization: Tampere University of Technology\\nLines: 21\\nDistribution: inet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn article <1993Apr6.011605.909@cis.uab.edu> sloan@cis.uab.edu\\n(Kenneth Sloan) writes:\\n>\\n>Why didn't you create 8 grey-level images, and display them for\\n>1,2,4,8,16,32,64,128... time slices?\\n\\nBy '8 grey level images' you mean 8 items of 1bit images?\\nIt does work(!), but it doesn't work if you have more than 1bit\\nin your screen and if the screen intensity is non-linear.\\n\\nWith 2 bit per pixel; there could be 1*c_1 + 4*c_2 timing,\\nthis gives 16 levels, but they are linear if screen intensity is\\nlinear.\\nWith 1*c_1 + 2*c_2 it works, but we have to find the best\\ncompinations -- there's 10 levels, but 16 choises; best 10 must be\\nchosen. Different compinations for the same level, varies a bit, but\\nthe levels keeps their order.\\n\\nReaders should verify what I wrote... :-)\\n\\nJuhana Kouhia\\n\",\n", - " \"From: gfk39017@uxa.cso.uiuc.edu (George F. Krumins)\\nSubject: Re: space news from Feb 15 AW&ST\\nOrganization: University of Illinois at Urbana\\nLines: 23\\n\\njbreed@doink.b23b.ingr.com (James B. Reed) writes:\\n\\n>In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>|> [Pluto's] atmosphere will start to freeze out around 2010, and after about\\n>|> 2005 increasing areas of both Pluto and Charon will be in permanent\\n>|> shadow that will make imaging and geochemical mapping impossible.\\n\\nIt's my understanding that the freezing will start to occur because of the\\ngrowing distance of Pluto and Charon from the Sun, due to it's\\nelliptical orbit. It is not due to shadowing effects. \\n\\n>Where does the shadow come from? There's nothing close enough to block\\n>sunlight from hitting them. I wouldn't expect there to be anything block\\n>our view of them either. What am I missing?\\n\\nPluto can shadow Charon, and vice-versa.\\n\\nGeorge Krumins\\n-- \\n--------------------------------------------------------------------------------\\n| George Krumins |\\n| gfk39017@uxa.cso.uiuc.edu |\\n| Pufferfish Observatory |\\n\",\n", - " 'From: Mark A. Cartwright \\nSubject: Re: TIFF: philosophical significance of 42 (SILLY)\\nOrganization: University of Texas @ Austin, Comp. Center\\nLines: 21\\nDistribution: world\\nNNTP-Posting-Host: aliester.cc.utexas.edu\\nX-UserAgent: Nuntius v1.1\\n\\nWell,\\n\\n42 is 101010 binary, and who would forget that its the\\nanswer to the Question of \"Life, the Universe, and Everything else.\"\\nThat is to quote Douglas Adams in a round about way.\\n\\nOf course the Question has not yet been discovered...\\n\\n--\\nMark A. Cartwright, N5SNP\\nUniversity of Texas @ Austin\\nComputation Center, Graphics Facility\\nmarkc@emx.utexas.edu\\nmarkc@sirius.cc.utexas.edu\\nmarkc@hermes.chpc.utexas.edu\\n(512)-471-3241 x 362\\n\\nPP-ASEL 9-92\\n\\na.) \"Often in error, never in doubt.\"\\nb.) \"This situation has no gravity, I would like a refund please.\"\\n',\n", - " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Nazi Eugenic Theories Circulated by CPR => (unconventianal peace)\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 36\\n\\nIn article <1993Apr19.223054.10273@cirrus.com> chrism@cirrus.com (Chris Metcalfe) writes:\\n>Now we have strong evidence of where the CPR really stands.\\n>Unbelievable and disgusting. It only proves that we must\\n>never forget...\\n>\\n>\\n>>A unconventional proposal for peace in the Middle-East.\\n>\\n>Not so unconventional. Eugenic solutions to the Jewish Problem\\n>have been suggested by Northern Europeans in the past.\\n>\\n> Eugenics: a science that deals with the improvement (as by\\n> control of human mating) of hereditory qualities of race\\n> or breed. -- Webster's Ninth Collegiate Dictionary.\\n>\\n>>I would be thankful for critical comments to the above proposal as\\n>>well for any dissemination of this proposal for meaningful\\n>>discussion and enrichment.\\n>>\\n>>Elias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n>\\n>Critical comment: you can take the Nazi flag and Holocaust photos\\n>off of your bedroom wall, Elias; you'll never succeed.\\n>\\n>-- Chris Metcalfe\\n\\nChris, solid job at discussing the inherent Nazism in Mr. Davidsson's post.\\nOddly, he has posted an address for hate mail, which I think we should\\nall utilize. And Elias,\\n\\nWie nur dem Koph nicht alle Hoffnung schwindet,\\nDer immerfort an schalem Zeuge klebt?\\n\\nPeace,\\npete\\n\\n\",\n", - " ' zaphod.mps.ohio-state.edu!wupost!uunet!olivea!sgigate!odin!fido!solntze.wpd.sgi.com!livesey\\nSubject: Re: <1p88fi$4vv@fido.asd.sgi.com> \\n <1993Mar30.051246.29911@blaze.cs.jhu.edu> <1p8nd7$e9f@fido.asd.sgi.com> <1pa0stINNpqa@gap.caltech.edu> <1pan4f$b6j@fido.asd.sgi.com>\\nOrganization: sgi\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\nLines: 20\\n\\nIn article <1pieg7INNs09@gap.caltech.edu>, keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >Now along comes Mr Keith Schneider and says \"Here is an \"objective\\n|> >moral system\". And then I start to ask him about the definitions\\n|> >that this \"objective\" system depends on, and, predictably, the whole\\n|> >thing falls apart.\\n|> \\n|> It only falls apart if you attempt to apply it. This doesn\\'t mean that\\n|> an objective system can\\'t exist. It just means that one cannot be\\n|> implemented.\\n\\nIt\\'s not the fact that it can\\'t exist that bothers me. It\\'s \\nthe fact that you don\\'t seem to be able to define it.\\n\\nIf I wanted to hear about indefinable things that might in\\nprinciple exist as long as you don\\'t think about them too\\ncarefully, I could ask a religious person, now couldn\\'t I?\\n\\njon.\\n',\n", - " \"From: mrf4276@egbsun12.NoSubdomain.NoDomain (Matthew R. Feulner)\\nSubject: Re: Lunar Colony Race! By 2005 or 2010?\\nNntp-Posting-Host: egbsun12.draper.com\\nOrganization: Draper Laboratory\\nLines: 18\\n\\nIn article <1993Apr20.234427.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\\n|> Okay here is what I have so far:\\n|> \\n|> Have a group (any size, preferibly small, but?) send a human being to the moon,\\n|> set up a habitate and have the human(s) spend one earth year on the moon. Does\\n|> that mean no resupply or ?? \\n|> \\n|> Need to find atleast $1billion for prize money.\\n\\n\\nMy first thought is Ross Perot. After further consideration, I think he'd\\nbe more likely to try to win it...but come in a disappointing third.\\n\\nTry Bill Gates. Try Sam Walton's kids.\\n\\nMatt\\n\\nmatthew_feulner@qmlink.draper.com\\n\",\n", - " 'From: wawers@lif.de (Theo Wawers)\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Lahmeyer International, Frankfurt\\nLines: 15\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\n\\nThere is a nice little tool in Lucid emacs. It\\'s called \"calendar\".\\nOn request it shows for given longitude/latitude coordinates times for\\nsunset and sunrise. The code is written in lisp.\\nI don\\'t know if you like the idea that an editor is the right program to\\ncalculate these things.\\n\\n\\nTheo W.\\n\\nTheo Wawers LAHMEYER INTERNATIONAL GMBH\\nemail : wawers@sunny.lif.de Lyonerstr. 22\\nphone : +49 69 66 77 639 D-6000 Frankfurt/Main\\nfax : +49 69 66 77 571 Germany\\n\\n',\n", - " 'From: eder@hsvaic.boeing.com (Dani Eder)\\nSubject: Re: NASP\\nDistribution: sci\\nOrganization: Boeing AI Center, Huntsville, AL\\nLines: 39\\n\\nI have before me a pertinent report from the United States General\\nAccounting Office:\\n\\nNational Aero-Space Plane: Restructuring Future Research and Development\\nEfforts\\nDecember 1992\\nReport number GAO/NSIAD-93-71\\n\\nIn the back it lists the following related reports:\\n\\nNASP: Key Issues Facing the Program (31 Mar 92) GAO/T-NSIAD-92-26\\n\\nAerospace Plane Technology: R&D Efforts in Japan and Australia\\n(4 Oct 91) GAO/NSIAD-92-5\\n\\nAerospace Plane Technology: R&D Efforts in Europe (25 July 91)\\nGAO/NSIAD-91-194\\n\\nAerospace Technology: Technical Data and Information on Foreign\\nTest Facilities (22 Jun 90) GAO/NSIAD-90-71FS\\n\\nInvestment in Foreign Aerospace Vehicle Research and Technological\\nDevelopment Efforts (2 Aug 89) GAO/T-NSIAD-89-43\\n\\nNASP: A Technology Development and Demonstration Program to Build\\nthe X-30 (27 Apr 88) GAO/NSIAD-88-122\\n\\n\\nOn the inside back cover, under \"Ordering Information\" it says\\n\\n\"The first copy of each GAO report is free. . . . Orders\\nmay also be placed by calling (202)275-6241\\n\"\\n\\nDani\\n\\n-- \\nDani Eder/Meridian Investment Company/(205)464-2697(w)/232-7467(h)/\\nRt.1, Box 188-2, Athens AL 35611/Location: 34deg 37\\' N 86deg 43\\' W +100m alt.\\n',\n", - " \"From: jamesf@apple.com (Jim Franklin)\\nSubject: Re: Tracing license plates of BDI cagers?\\nOrganization: Apple Computer, Inc.\\nLines: 30\\n\\nIn article <1993Apr09.182821.28779@i88.isc.com>, jeq@lachman.com (Jonathan\\nE. Quist) wrote:\\n> \\n\\n> You could file a complaint for dangerous operation of a motor vehicle,\\n> and sign it. Be willing to show up in court if it comes to it.\\n\\nNo... you can do this? Really? The other morning I went to do a lane change\\non the freeway and looked in my mirror, theer was a car there, but far\\nenough behind. I looked again about 3-5 seconds later, car still in same\\nposition, i.e. not accelerating. I triple check with a head turn and decide\\nI have plenty of room, so I do it, accelerating. I travel about 1/4 mile\\nstaying ~200\\nfeet off teh bumper of the car ahead, and I do a casual mirror check. This\\nguy is RIGHT on my tail, I mean you couldn't stick a hair between my tire &\\nhis fender. I keep looking in the mirror at him a,d slowly let off teh\\nthrottle. He stays there until I had lost about 15mph and then comes around\\nme and cuts me off big time. I follow him for about 10 miles and finally\\nget bored and turn back into work. \\n\\nI can file a complaint about this? And actually have the chance to have\\nsomething done? How? Who? Where?\\n\\njim\\n\\n* Jim Franklin * jamesf@apple.com Jim Bob & Sons *\\n* 1987 Cagiva Alazzurra 650 | .signature remodling *\\n* 1969 Triumph 650 (slalom champ) | Low price$ Quality workman- * \\n* DoD #469 KotP(un) | ship * \\n Call today for free estimit\\n\",\n", - " 'From: bobc@sed.stel.com (Bob Combs)\\nSubject: Re: Blow up space station, easy way to do it.\\nOrganization: SED, Stanford Telecom, Reston, VA 22090\\nLines: 16\\n\\nIn article <1993Apr5.184527.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>This might a real wierd idea or maybe not..\\n>\\n>\\n>Why musta space station be so difficult?? why must we have girders? why be\\n>confined to earth based ideas, lets think new ideas, after all space is not\\n>earth, why be limited by earth based ideas??\\n>\\nChoose any or all of the following as an answer to the above:\\n \\n\\n1. Politics\\n2. Traditions\\n3. Congress\\n4. Beauracrats\\n\\n',\n", - " 'From: nerone@ccwf.cc.utexas.edu (Michael Nerone)\\nSubject: Re: Newsgroup Split\\nOrganization: The University of Texas at Austin\\nLines: 25\\nDistribution: world\\n\\t<1993Apr19.193758.12091@unocal.com>\\n\\t<1quvdoINN3e7@srvr1.engin.umich.edu>\\nNNTP-Posting-Host: sylvester.cc.utexas.edu\\nIn-reply-to: tdawson@engin.umich.edu\\'s message of 19 Apr 1993 19:43:52 GMT\\n\\nIn article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n\\n CH> Concerning the proposed newsgroup split, I personally am not in\\n CH> favor of doing this. I learn an awful lot about all aspects of\\n CH> graphics by reading this group, from code to hardware to\\n CH> algorithms. I just think making 5 different groups out of this\\n CH> is a wate, and will only result in a few posts a week per group.\\n CH> I kind of like the convenience of having one big forum for\\n CH> discussing all aspects of graphics. Anyone else feel this way?\\n CH> Just curious.\\n\\nI must agree. There is a dizzying number of c.s.amiga.* newsgroups\\nalready. In addition, there are very few issues which fall cleanly\\ninto one of these categories.\\n\\nAlso, it is readily observable that the current spectrum of amiga\\ngroups is already plagued with mega-crossposting; thus the group-split\\nwould not, in all likelihood, bring about a more structured\\nenvironment.\\n\\n--\\n /~~~~~~~~~~~~~~~~~~~\\\\/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\\\\\n / Michael Nerone \\\\\"I shall do so with my customary lack of tact; and\\\\\\n / Internet Address: \\\\since you have asked for this, you will be obliged\\\\\\n/nerone@ccwf.cc.utexas.edu\\\\to pardon it.\"-Sagredo, fictional char of Galileo.\\\\\\n',\n", - " \"From: lmp8913@rigel.tamu.edu (PRESTON, LISA M)\\nSubject: Another CVIEW question (was CView answers)\\nOrganization: Texas A&M University, Academic Computing Services\\nLines: 12\\nDistribution: world\\nNNTP-Posting-Host: rigel.tamu.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\n\\n\\tHas anybody gotten CVIEW to work in 32k or 64k color mode on a Trident\\n8900c hi-color card? At best the colors come out screwed up, and at worst the \\nprogram hangs. I loaded the VESA driver, and the same thing happens on 2 \\ndifferent machines.\\n\\n\\tIf it doesn't work on the Trident, does anybody know of a viewer that \\ndoes?\\n\\nThanx!\\nLISA \\n\\n\",\n", - " 'From: bcash@crchh410.NoSubdomain.NoDomain (Brian Cash)\\nSubject: Re: New Member\\nNntp-Posting-Host: crchh410\\nOrganization: BNR, Inc.\\nLines: 47\\n\\nIn article , dfuller@portal.hq.videocart.com (Dave Fuller) writes:\\n|> Hello. I just started reading this group today, and I think I am going\\n|> to be a large participant in its daily postings. I liked the section of\\n|> the FAQ about constructing logical arguments - well done. I am an atheist,\\n|> but I do not try to turn other people into atheists. I only try to figure\\n|> why people believe the way they do - I don\\'t much care if they have a \\n|> different view than I do. When it comes down to it . . . I could be wrong.\\n|> I am willing to admit the possibility - something religious followers \\n|> dont seem to have the capability to do.\\n\\nWelcome aboard!\\n\\n|> \\n|> I notice alot of posts from Bobby. Why does anybody ever respond to \\n|> his posts ? He always falls back on the same argument:\\n\\n(I think you just answered your own question, there)\\n\\n|> \\n|> \"If the religion is followed it will cause no bad\"\\n|> \\n|> He is right. Just because an event was explained by a human to have been\\n|> done \"in the name of religion\", does not mean that it actually followed\\n|> the religion. He will always point to the \"ideal\" and say that it wasn\\'t\\n|> followed so it can\\'t be the reason for the event. There really is no way\\n|> to argue with him, so why bother. Sure, you may get upset because his \\n|> answer is blind and not supported factually - but he will win every time\\n|> with his little argument. I don\\'t think there will be any postings from\\n|> me in direct response to one of his.\\n\\nMost responses were against his postings that spouted the fact that\\nall atheists are fools/evil for not seeing how peachy Islam is.\\nI would leave the pro/con arguments of Islam to Fred Rice, who is more\\nlevel headed and seems to know more on the subject, anyway.\\n\\n|> \\n|> Happy to be aboard !\\n\\nHow did you know I was going to welcome you abord?!?\\n\\n|> \\n|> Dave Fuller\\n|> dfuller@portal.hq.videocart.com\\n|> \\n|> \\n\\nBrian /-|-\\\\\\n',\n", - " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Happy Birthday Israel!\\nOrganization: University of Illinois at Urbana\\nLines: 2\\n\\nIsrael - Happy 45th Birthday!\\n\\n',\n", - " 'From: ken@sugra.uucp (Kenneth Ng)\\nSubject: Re: nuclear waste\\nOrganization: Private Computer, Totowa, NJ\\nLines: 18\\n\\nIn article <1993Mar31.191658.9836@mksol.dseg.ti.com: mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n:Just a bit off, Phil. We don\\'t reprocess nuclear fuel because what\\n:you get from the reprocessing plant is bomb-grade plutonium. It is\\n:also cheaper, given current prices of things, to simply fabricate new\\n:fuel rods rather than reprocess the old ones, creating potentially\\n:dangerous materials (from a national security point of view) and then\\n:fabricate that back into fuel rods.\\n\\nFabricating with reprocessed plutonium may result in something that may go\\nkind of boom, but its hardly decent bomb grade plutonium. If you want bomb\\ngrade plutonium use a research reactor, not a power reactor. But if you want\\na bomb, don\\'t use plutonium, use uranium.\\n\\n-- \\nKenneth Ng\\nPlease reply to ken@eies2.njit.edu for now.\\n\"All this might be an elaborate simulation running in a little device sitting\\non someone\\'s table\" -- J.L. Picard: ST:TNG\\n',\n", - " 'From: pmoloney@maths.tcd.ie (Paul Moloney)\\nSubject: Re: THE POPE IS JEWISH!\\nOrganization: Somewhere in the Twentieth Century\\nLines: 47\\n\\nwest@next02cville.wam.umd.edu (Stilgar) writes:\\n\\n>The pope is jewish.... I guess they\\'re right, and I always thought that\\n>the thing on his head was just a fancy hat, not a Jewish headpiece (I\\n>don\\'t remember the name). It\\'s all so clear now (clear as mud.)\\n\\nAs to what that headpiece is....\\n\\n(by chort@crl.nmsu.edu)\\n\\nSOURCE: AP NEWSWIRE\\n\\nThe Vatican, Home Of Genetic Misfits?\\n\\nMichael A. Gillow, noted geneticist, has revealed some unusual data\\nafter working undercover in the Vatican for the past 18 years. \"The\\nPopehat(tm) is actually an advanced bone spur.\", reveals Gillow in his\\ngroundshaking report. Gillow, who had secretly studied the innermost\\nworkings of the Vatican since returning from Vietnam in a wheel chair,\\nfirst approached the scientific community with his theory in the late\\n1950\\'s.\\n\\n\"The whole hat thing, that was just a cover up. The Vatican didn\\'t\\nwant the Catholic Community(tm) to realize their leader was hefting\\nnearly 8 kilograms of extraneous bone tissue on the top of his\\nskull.\", notes Gillow in his report. \"There are whole laboratories in\\nthe Vatican that experiment with tissue transplants and bone marrow\\nexperiments. What started as a genetic fluke in the mid 1400\\'s is now\\nscientifically engineered and bred for. The whole bone transplant idea\\nstarted in the mid sixties inspired by doctor Timothy Leary\\ntransplanting deer bone cells into small white rats.\" Gillow is quick\\nto point out the assassination attempt on Pope John Paul II and the\\ndisappearance of Dr. Leary from the public eye.\\n\\n\"When it becomes time to replace the pope\", says Gillow, \"The old pope\\nand the replacement pope are locked in a padded chamber. They butt\\nheads much like male yaks fighting for dominance of the herd. The\\nvictor emerges and has earned the privilege of inseminating the choir\\nboys.\"\\n\\n\\nP.\\n-- \\n moorcockpratchettdenislearydelasoulu2iainmbanksneworderheathersbatmanpjorourke\\nclive p a u l m o l o n e y Come, let us retract the foreskin of misconception\\njames trinity college dublin and apply the wire brush of enlightenment - GeoffM\\n brownbladerunnersugarcubeselectronicblaylockpowersspikeleekatebushhamcornpizza \\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: HLV for Fred (was Re: Prefab Space Station?)\\nArticle-I.D.: zoo.C51875.67p\\nOrganization: U of Toronto Zoology\\nLines: 28\\n\\nIn article jbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n>>>Titan IV launches ain't cheap \\n>>Granted. But that's because titan IV's are bought by the governemnt. Titan\\n>>III is actually the cheapest way to put a pound in space of all US expendable\\n>>launchers.\\n>\\n>In that case it's rather ironic that they are doing so poorly on the commercial\\n>market. Is there a single Titan III on order?\\n\\nThe problem with Commercial Titan is that MM has made little or no attempt\\nto market it. They're basically happy with their government business and\\ndon't want to have to learn how to sell commercially.\\n\\nA secondary problem is that it is a bit big. They'd need to go after\\nmulti-satellite launches, a la Ariane, and that complicates the marketing\\ntask quite significantly.\\n\\nThey also had some problems with launch facilities at just the wrong time\\nto get them started properly. If memory serves, the pad used for the Mars\\nObserver launch had just come out of heavy refurbishment work that had\\nprevented launches from it for a year or so.\\n\\nThere have been a few CT launches. Mars Observer was one of them. So\\nwas that stranded Intelsat, and at least one of its brothers that reached\\norbit properly.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Unconventional peace proposal\\nOrganization: The Department of Redundancy Department\\nLines: 85\\n\\nIn article <1483500348@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n>\\n>From: Center for Policy Research \\n>\\n>A unconventional proposal for peace in the Middle-East.\\n>---------------------------------------------------------- by\\n>\\t\\t\\t Elias Davidsson\\n\\nOf all the stupid postings you\\'ve brought here recently, it is\\nilluminating that you chose to put your own name on perhaps the\\nstupidest of them.\\n\\n>The following proposal is based on the following assumptions:\\n>\\n>1. Fundamental human rights, such as the right to life, to\\n>education, to establish a family and have children, to human\\n>dignity, the right to free movement, to free expression, etc. are\\n>more important to human existence that the rights of states.\\n\\nDoes this mean that you are calling for the dismantling of the Arab\\nstates? \\n\\n>2. In the event of a conflict between basic human rights and\\n>rights of collectivities, basic human rights should prevail.\\n\\nApparently, your answer is yes.\\n\\n>6. Attempts to solve the Israeli-Arab conflict by traditional\\n>political means have failed.\\n\\nAttempts to solve these problem by traditional military means and\\nnon-traditional terrorist means has also failed. But that won\\'t stop\\nthem from trying again. After all, it IS a Holy War, you know.... \\n\\n>7. As long as the conflict is perceived as that between two\\n>distinct ethnical/religious communities/peoples which claim the\\n>land, there is no just nor peaceful solution possible.\\n\\n\"No just solution possible.\" How very encouraging.\\n\\n>Having stated my assumptions, I will now state my proposal.\\n\\nYou mean that it gets even funnier?\\n\\n>1. A Fund should be established which would disburse grants\\n>for each child born to a couple where one partner is Israeli-Jew\\n>and the other Palestinian-Arab.\\n[...]\\n>3. For the first child, the grant will amount to $18.000. For\\n>the second the third child, $12.000 for each child. For each\\n>subsequent child, the grant will amount to $6.000 for each child.\\n>\\n>4. The Fund would be financed by a variety of sources which\\n>have shown interest in promoting a peaceful solution to the\\n>Israeli-Arab conflict, \\n\\nNo, the Fund should be financed by the Center for Policy Research. It\\nIS a major organization, isn\\'t it? Isn\\'t it?\\n\\n>5. The emergence of a considerable number of \\'mixed\\'\\n>marriages in Israel/Palestine, all of whom would have relatives on\\n>\\'both sides\\' of the divide, would make the conflict lose its\\n>ethnical and unsoluble core and strengthen the emergence of a\\n>truly civil society. \\n\\nYeah, just like marriages among Arabs has strengthened their\\nsocieties. \\n\\n>The existence of a strong \\'mixed\\' stock of\\n>people would also help the integration of Israeli society into the\\n>Middle-East in a graceful manner.\\n\\nThe world could do with a bit less Middle Eastern \"grace\".\\n\\n>Objections to this proposal will certainly be voiced. I will\\n>attempt to identify some of these:\\n\\nBoy, you\\'re a one-man band. Listen, if you\\'d like to Followup on your\\nown postings and debate with yourself, just tell us and we\\'ll leave\\nyou alone.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " \"From: uk02183@nx10.mik.uky.edu (bryan k williams)\\nSubject: Re: CView answers\\nKeywords: Stupid Programming\\nNntp-Posting-Host: nx10.mik.uky.edu\\nOrganization: University of Kentucky\\nLines: 6\\n\\nre: majority of users not readding from floppy.\\nWell, how about those of us who have 1400-picture CD-ROMS and would like to use\\nCVIEW because it is fast and it works well, but can't because the moron lacked\\nthe foresight to create the temp file in the program's path, not the current\\ndidrectory?\\n\\n\",\n", - " 'From: madhaus@netcom.com (Maddi Hausmann)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: Society for Putting Things on Top of Other Things\\nLines: 40\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes: >\\n\\n>OK, you have disproved one thing, but you failed to \"nail\" me.\\n>\\n>See, nowhere in my post did I claim that something _must_ be believed in. Here\\n>are the three possibilities:\\n>\\n>\\t1) God exists. \\n>\\t2) God does not exist.\\n>\\t3) I don\\'t know.\\n>\\n>My attack was on strong atheism, (2). Since I am (3), I guess by what you said\\n>below that makes me a weak atheist.\\n [snip]\\n>First of all, you seem to be a reasonable guy. Why not try to be more honest\\n>and include my sentence afterwards that \\n\\nHonest, it just ended like that, I swear! \\n\\nHmmmm...I recognize the warning signs...alternating polite and\\nrude...coming into newsgroup with huge chip on shoulder...calls\\npeople names and then makes nice...whirrr...click...whirrr\\n\\n\"Clam\" Bake Timmons = Bill \"Shit Stirrer Connor\"\\n\\nQ.E.D.\\n\\nWhirr click whirr...Frank O\\'Dwyer might also be contained\\nin that shell...pop stack to determine...whirr...click..whirr\\n\\n\"Killfile\" Keith Allen Schneider = Frank \"Closet Theist\" O\\'Dwyer =\\n\\nthe mind reels. Maybe they\\'re all Bobby Mozumder.\\n\\n-- \\nMaddi Hausmann madhaus@netcom.com\\nCentigram Communications Corp San Jose California 408/428-3553\\n\\nKids, please don\\'t try this at home. Remember, I post professionally.\\n\\n',\n", - " 'From: simon@dcs.warwick.ac.uk (Simon Clippingdale)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: nin\\nOrganization: Department of Computer Science, Warwick University, England\\nLines: 49\\n\\nIn article <1993Apr5.023044.19580@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n> One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n> because of the love of their mom. It makes for more virile men.\\n> Compare that with how homos are raised. Do a study and you will get my\\n> point.\\n\\nOh, Bobby. You\\'re priceless. Did I ever tell you that?\\n\\nMy policy with Bobby\\'s posts, should anyone give a damn, is to flick\\nthrough the thread at high speed, searching for posts of Bobby\\'s which\\nhave generated a whole pile of followups, then go in and extract the\\nhilarious quote inevitably present for .sig purposes. Works for me.\\n\\nFor the guy who said he\\'s just arrived, and asked whether Bobby\\'s for real,\\nyou betcha. Welcome to alt.atheism, and rest assured that it gets worse.\\nI have a few pearls of wisdom from Bobby which I reproduce below. Is anyone\\n(Keith?) keeping a big file of such stuff?\\n\\n \"In Allah\\'s infinite wisdom, the universe was created from nothing,\\n just by saying \"Be\", and it became. Therefore Allah exists.\"\\n --- Bobby Mozumder proving the existence of Allah, #1\\n\\n \"Wait. You just said that humans are rarely reasonable. Doesn\\'t that\\n contradict atheism, where everything is explained through logic and\\n reason? This is THE contradiction in atheism that proves it false.\"\\n --- Bobby Mozumder proving the existence of Allah, #2\\n\\n \"Plus, to the believer, it would be contradictory\\n to the Quran for Allah not to exist.\"\\n --- Bobby Mozumder proving the existence of Allah, #3\\n\\nand now\\n\\n \"One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n because of the love of their mom. It makes for more virile men. Compare\\n that with how homos are raised. Do a study and you will get my point.\"\\n -- Bobby Mozumder being Islamically Rigorous on alt.atheism\\n\\nMmmmm. Quality *and* quantity from the New Voice of Islam (pbuh).\\n\\nCheers\\n\\nSimon\\n-- \\nSimon Clippingdale simon@dcs.warwick.ac.uk\\nDepartment of Computer Science Tel (+44) 203 523296\\nUniversity of Warwick FAX (+44) 203 525714\\nCoventry CV4 7AL, U.K.\\n',\n", - " 'From: mogal@deadhead.asd.sgi.com (Joshua Mogal)\\nSubject: Re: SGI sales practices (Was: Crimson (Was: Kubota Announcement?))\\nOrganization: Silicon Graphics, Inc.\\nLines: 123\\nNNTP-Posting-Host: deadhead.asd.sgi.com\\n\\n|> My\\n|> comment regarding DEC was to indicate that I might be open to other\\n|> vendors\\n|> that supported OpenGL, rather than deal further with SGI.\\n\\nOpenGL is a graphics programming library and as such is a great, portable\\ninterface for the development of interactive 3D graphics applications. It\\nis not, however, an indicator of performance, as that will vary strongly\\nfrom machine to machine and vendor to vendor. SGI is committed to high\\nperformance interactive graphics systems and software tools, so OpenGL\\nmeans that you can port easily from SGI to other platforms, there is no\\nguarantee that your performance would be comparable.\\n\\n|> \\n|> What I *am* annoyed about is the fact that we were led to believe that\\n|> we *would* be able to upgrade to a multiprocessor version of the\\n|> Crimson without the assistance of a fork lift truck.\\n\\nIf your sales representative truly mislead you, then you should have a\\nvalid grievance against us which you should carry up to your local SGI\\nsales management team. Feel free to contact the local branch manager...we\\nunderstand that repeat sales come from satisfied customers, so give it a\\nshot.\\n\\n|> \\n|> I\\'m also annoyed about being sold *several* Personal IRISes at a\\n|> previous site on the understanding *that* architecture would be around\\n|> for a while, rather than being flushed.\\n\\nAs one of the previous posts stated, the Personal IRIS was introduced in\\n1988 and grew to include the 4D/20, 4D/25, 4D/30 and 4D/35 as clock rates\\nsped up over time. As a rule of thumb, SGI platforms live for about 4-5\\nyears. This was true of the motorola-based 3000 series (\\'85-\\'89), the PI\\n(\\'88-\\'93), the Professional Series (the early 4D\\'s - \\'86-\\'90), the Power\\nSeries parallel systems (\\'88-\\'93). Individual CPU subsystems running at a\\nparticular clock rate usually live for about 2 years. New graphics\\narchitectures at the high end (GT, VGX, RealityEngine) are released every\\n18 months to 2 years.\\n\\nThese are the facts of life. If we look at these machines, they become\\nalmost archaic after four years, and we have to come out with a new\\nplatform (like Indigo, Onyx, Challenge) which has higher bus bandwidths,\\nfaster CPUs, faster graphics and I/O, and larger disk capacities. If we\\ndon\\'t, we become uncompetitive.\\n\\nFrom the user perspective, you have to buy a machine that meets your\\ncurrent needs and makes economic sense today. You can\\'t wait to buy, but\\nif you need a guaranteed upgrade path for the machine, ask the Sales Rep\\nfor one in writing. If it\\'s feasible, they should be able to do that. Some\\nof our upgrade paths have specific programs associated with them, such as\\nthe Performance Protection Program for older R3000-based Power Series\\nmultiprocessing systems which allowed purchasers of those systems to obtain\\na guaranteed upgrade price for moving to the new Onyx or Challenge\\nR4400-based 64-bit multiprocessor systems.\\n\\n|> \\n|> Now I understand that SGI is responsible to its investors and has to\\n|> keep showing a positive quarterly bottom line (odd that I found myself\\n|> pressured on at least two occasions to get the business on the books\\n|> just before the end of the quarter), but I\\'m just a little tired of\\n|> getting boned in the process.\\n|> \\n\\nIf that\\'s happening, it\\'s becausing of misunderstandings or\\nmis-communication, not because SGI is directly attempting to annoy our\\ncustomer base.\\n\\n|> Maybe it\\'s because my lab buys SGIs in onesies and twosies, so we\\n|> aren\\'t entitled to a \"peek under the covers\" as the Big Kids (NASA,\\n|> for instance) are. This lab, and I suspect that a lot of other labs\\n|> and organizations, doesn\\'t have a load of money to spend on computers\\n|> every year, so we can\\'t be out buying new systems on a regular basis.\\n\\nMost SGI customers are onesy-twosey types, but regardless, we rarely give a\\ngreat deal of notice when we are about to introduce a new system because\\nagain, like a previous post stated, if we pre-announced and the schedule\\nslipped, we would mess up our potential customers schedules (when they were\\ncounting on the availability of the new systems on a particular date) and\\nwould also look awfully bad to both our investors and the financial\\nanalysts who watch us most carefully to see if we are meeting our\\ncommitments.\\n\\n|> The boxes that we buy now will have to last us pretty much through the\\n|> entire grant period of five years and, in some case, beyond. That\\n|> means that I need to buy the best piece of equipment that I can when I\\n|> have the money, not some product that was built, to paraphrase one\\n|> previous poster\\'s words, \\'to fill a niche\\' to compete with some other\\n|> vendor. I\\'m going to be looking at this box for the next five years.\\n|> And every time I look at it, I\\'m going to think about SGI and how I\\n|> could have better spent my money (actually *your* money, since we\\'re\\n|> supported almost entirely by Federal tax dollars).\\n|> \\n\\nFive years is an awfully long time in computer years. New processor\\ntechnologies are arriving every 1-2 years, making a 5 year old computer at\\nleast 2 and probably 3 generations behind the times. The competitive nature\\nof the market is demanding that rate of development, so if your timing is\\nreally 5 years between purchases, you have to accept the limited viability\\nof whatever architecture you buy into from any vendor.\\n\\nThere are some realities about the computer biz that we all have to live\\nwith, but keeping customers happy is the most important, so don\\'t give up,\\nwe know it.\\n\\nJosh |:-)\\n\\n-- \\n\\n\\n**************************************************************************\\n**\\t\\t\\t\\t **\\t\\t\\t\\t\\t**\\n**\\tJoshua Mogal\\t\\t **\\tProduct Manager\\t\\t\\t**\\n**\\tAdvanced Graphics Division **\\t Advanced Graphics Systems\\t**\\n**\\tSilicon Graphics Inc.\\t **\\tMarket Manager\\t\\t\\t**\\n**\\t2011 North Shoreline Blvd. **\\t Virtual Reality\\t\\t**\\n**\\tMountain View, CA 94039-7311 **\\t Interactive Entertainment\\t**\\n**\\tM/S 9L-580\\t\\t **\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t *************************************\\n**\\tTel:\\t(415) 390-1460\\t\\t\\t\\t\\t\\t**\\n**\\tFax:\\t(415) 964-8671\\t\\t\\t\\t\\t\\t**\\n**\\tE-mail:\\tmogal@sgi.com\\t\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t\\t\\t\\t\\t\\t**\\n**************************************************************************\\n',\n", - " 'From: buenneke@monty.rand.org (Richard Buenneke)\\nSubject: White House outlines options for station, Russian cooperation\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 71\\n\\n------- Blind-Carbon-Copy\\n\\nTo: spacenews@austen.rand.org, cti@austen.rand.org\\nSubject: White House outlines options for station, Russian cooperation\\nDate: Tue, 06 Apr 93 16:00:21 PDT\\nFrom: Richard Buenneke \\n\\n4/06/93: GIBBONS OUTLINES SPACE STATION REDESIGN GUIDANCE\\n\\nNASA Headquarters, Washington, D.C.\\nApril 6, 1993\\n\\nRELEASE: 93-64\\n\\n Dr. John H. Gibbons, Director, Office of Science and Technology\\nPolicy, outlined to the members-designate of the Advisory Committee on the\\nRedesign of the Space Station on April 3, three budget options as guidance\\nto the committee in their deliberations on the redesign of the space\\nstation.\\n\\n A low option of $5 billion, a mid-range option of $7 billion and a\\nhigh option of $9 billion will be considered by the committee. Each\\noption would cover the total expenditures for space station from fiscal\\nyear 1994 through 1998 and would include funds for development,\\noperations, utilization, Shuttle integration, facilities, research\\noperations support, transition cost and also must include adequate program\\nreserves to insure program implementation within the available funds.\\n\\n Over the next 5 years, $4 billion is reserved within the NASA\\nbudget for the President\\'s new technology investment. As a result,\\nstation options above $7 billion must be accompanied by offsetting\\nreductions in the rest of the NASA budget. For example, a space station\\noption of $9 billion would require $2 billion in offsets from the NASA\\nbudget over the next 5 years.\\n\\n Gibbons presented the information at an organizational session of\\nthe advisory committee. Generally, the members-designate focused upon\\nadministrative topics and used the session to get acquainted. They also\\nreceived a legal and ethics briefing and an orientation on the process the\\nStation Redesign Team is following to develop options for the advisory\\ncommittee to consider.\\n\\n Gibbons also announced that the United States and its\\ninternational partners -- the Europeans, Japanese and Canadians -- have\\ndecided, after consultation, to give \"full consideration\" to use of\\nRussian assets in the course of the space station redesign process.\\n\\n To that end, the Russians will be asked to participate in the\\nredesign effort on an as-needed consulting basis, so that the redesign\\nteam can make use of their expertise in assessing the capabilities of MIR\\nand the possible use of MIR and other Russian capabilities and systems.\\nThe U.S. and international partners hope to benefit from the expertise of\\nthe Russian participants in assessing Russian systems and technology. The\\noverall goal of the redesign effort is to develop options for reducing\\nstation costs while preserving key research and exploration capabilitiaes.\\nCareful integration of Russian assets could be a key factor in achieving\\nthat goal.\\n\\n Gibbons reiterated that, \"President Clinton is committed to the\\nredesigned space station and to making every effort to preserve the\\nscience, the technology and the jobs that the space station program\\nrepresents. However, he also is committed to a space station that is well\\nmanaged and one that does not consume the national resources which should\\nbe used to invest in the future of this industry and this nation.\"\\n\\n NASA Administrator Daniel S. Goldin said the Russian\\nparticipation will be accomplished through the East-West Space Science\\nCenter at the University of Maryland under the leadership of Roald\\nSagdeev.\\n\\n------- End of Blind-Carbon-Copy\\n',\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Second Law (was: Albert Sabin)\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 20\\n\\nJoel Hanes (jjh00@diag.amdahl.com) wrote:\\n\\n: Mr Connor\\'s assertion that \"more complex\" == later in paleontology\\n: is simply incorrect. Many lineages are known in which whole\\n: structures are lost -- for example, snakes have lost their legs.\\n: Cave fish have lost their eyes. Some species have almost completely\\n: lost their males. Kiwis are descended from birds with functional\\n: wings.\\n\\nJoel,\\n\\nThe statements I made were illustrative of the inescapably\\nanthrpomorphic quality of any desciption of an evolutionary process.\\nThere is no way evolution can be described or explained in terms other\\nthan teleological, that is my whole point. Even those who have reason\\nto believe they understand evolution (biologists for instance) tend to\\npersonify nature and I can\\'t help but wonder if it\\'s because of the\\nlimits of the language or the nature of nature.\\n\\nBill\\n',\n", - " \"From: stgprao@st.unocal.COM (Richard Ottolini)\\nSubject: Re: Rumours about 3DO ???\\nOrganization: Unocal Corporation\\nLines: 5\\n\\nThey need a hit software product to encourage software sales of the product,\\ni.e. the Pong, Pacman, VisiCalc, dBase, or Pagemaker of multi-media.\\nThere are some multi-media and digital television products out there already,\\nalbeit, not as capable as 3DO's. But are there compelling reasons to buy\\nsuch yet? Perhaps someone in this news group will write that hit software :-)\\n\",\n", - " 'From: et@teal.csn.org (Eric H. Taylor)\\nSubject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\nSummary: Dong .... Dong .... Do I hear the death-knell of relativity?\\nKeywords: space, curvature, nothing, tesla\\nNntp-Posting-Host: teal.csn.org\\nOrganization: 4-L Laboratories\\nDistribution: World\\nExpires: Wed, 28 Apr 1993 06:00:00 GMT\\nLines: 30\\n\\nIn article metares@well.sf.ca.us (Tom Van Flandern) writes:\\n>crb7q@kelvin.seas.Virginia.EDU (Cameron Randale Bass) writes:\\n>> Bruce.Scott@launchpad.unc.edu (Bruce Scott) writes:\\n>>> \"Existence\" is undefined unless it is synonymous with \"observable\" in\\n>>> physics.\\n>> [crb] Dong .... Dong .... Dong .... Do I hear the death-knell of\\n>> string theory?\\n>\\n> I agree. You can add \"dark matter\" and quarks and a lot of other\\n>unobservable, purely theoretical constructs in physics to that list,\\n>including the omni-present \"black holes.\"\\n>\\n> Will Bruce argue that their existence can be inferred from theory\\n>alone? Then what about my original criticism, when I said \"Curvature\\n>can only exist relative to something non-curved\"? Bruce replied:\\n>\"\\'Existence\\' is undefined unless it is synonymous with \\'observable\\' in\\n>physics. We cannot observe more than the four dimensions we know about.\"\\n>At the moment I don\\'t see a way to defend that statement and the\\n>existence of these unobservable phenomena simultaneously. -|Tom|-\\n\\n\"I hold that space cannot be curved, for the simple reason that it can have\\nno properties.\"\\n\"Of properties we can only speak when dealing with matter filling the\\nspace. To say that in the presence of large bodies space becomes curved,\\nis equivalent to stating that something can act upon nothing. I,\\nfor one, refuse to subscribe to such a view.\" - Nikola Tesla\\n\\n----\\n ET \"Tesla was 100 years ahead of his time. Perhaps now his time comes.\"\\n----\\n',\n", - " 'From: ednobles@sacam.OREN.ORTN.EDU (Edward d Nobles)\\nSubject: windows imagine??!!\\nOrganization: Oak Ridge National Laboratory\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 10\\n\\n\\nI sent off for my copy today... Snail Mail. Hope to get it back in\\nabout ten days. (Impulse said \"a week\".)\\n\\nI hope it\\'s as good as they claim...\\n\\nJim Nobles\\n\\n(Hope I have what it takes to use it... :>)\\n\\n',\n", - " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nOrganization: University of Illinois at Urbana\\nLines: 48\\n\\nanwar+@cs.cmu.edu (Anwar Mohammed) writes:\\n\\n>In article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>>The readers of this forum seemed to be more interested in the contents\\n>>of those files.\\n>>So It will be nice if Yigal will tell us:\\n>>1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\n>ADL authorities seem to view a lot of people as dangerous, including\\n>the millions of Americans of Arab ancestry. Perhaps you can answer\\n>the question as to why the ADL maintained files and spied on ADC members\\n>in California (and elsewhere??)? Friendly rivalry perhaps?\\n\\nCome on! Most if not all Arabs are sympathetic to the Palestinian war \\nagainst Israel. That is why the ADL monitors Arab organizations. That is\\nthe same reason the US monitored communist organizations and Soviet nationals\\nonly a few years ago. \\n\\n>Perhaps Yigal is a Greenpeace member? Or the NAACP? Or a reporter? \\n>Or a member of any of the dozens of other political organizations/ethnic \\n>minorities/occupations that the ADL spied on.\\n\\nAll of these groups have, in the past, associated with or been a part of anti-\\nIsrael activity or propoganda. The ADL is simply monitoring them so that if\\nanything comes up, they won\\'t be caught by surprise.\\n\\n>>2. Why does the ADL have an interest in that person ?\\n\\n>Paranoia?\\n\\nNo, that is why World Trade Center bombings don\\'t happen in Israel (aside from\\nthe fact that there is no world trade center) and why people like Zein Isa (\\nPalestinian whose American group planned to bow up the Israeli Embassy and \\n\"kill many Jews.\") are caught. As Mordechai Levy of the JDL said, Paranoid\\nJews live longer.\\n\\n>>3. If one does trust either the US government or the ADL what an\\n>> additional information should he send them ?\\n\\n>The names of half the posters on this forum, unless they already \\n>have them.\\n\\nThey probably do.\\n\\n>>Gideon Ehrlich\\n>-anwar\\nEd.\\n\\n',\n", - " 'From: n8643084@henson.cc.wwu.edu (owings matthew)\\nSubject: Re: Riceburner Respect\\nArticle-I.D.: henson.1993Apr15.200429.21424\\nOrganization: Western Washington University\\n \\n The 250 ninja and XL 250 got ridden all winter long. I always wave. I\\nLines: 13\\n\\nam amazed at the number of Harley riders who ARE waving even to a lowly\\nbaby ninja. Let\\'s keep up the good attitudes. Brock Yates said in this\\nmonths Car and Driver he is ready for a war (against those who would rather\\nwe all rode busses). We bikers should be too.\\n\\nIt\\'s a freedom that we all wanna know\\nand it\\'s an obsession to some\\nto keep the world in your rearview mirror\\nwhile you try to run down the sun\\n\\n\"Wheels\" by Rhestless Heart\\nMarty O.\\n87 250 ninja\\n73 XL 250 Motosport\\n',\n", - " 'From: todd@phad.la.locus.com (Todd Johnson)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Locus Computing Corporation, Los Angeles, California\\nLines: 28\\n\\nIn article enzo@research.canon.oz.au (Enzo Liguori) writes:\\n;From the article \"What\\'s New\" Apr-16-93 in sci.physics.research:\\n;\\n;........\\n;WHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n;\\n;1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\n;What about light pollution in observations? (I read somewhere else that\\n;it might even be visible during the day, leave alone at night).\\n;Is NASA really supporting this junk?\\n;Are protesting groups being organized in the States?\\n;Really, really depressed.\\n;\\n; Enzo\\n\\nI wouldn\\'t worry about it. There\\'s enough space debris up there that\\na mile-long inflatable would probably deflate in some very short\\nperiod of time (less than a year) while cleaning up LEO somewhat.\\nSort of a giant fly-paper in orbit.\\n\\nHmm, that could actually be useful.\\n\\nAs for advertising -- sure, why not? A NASA friend and I spent one\\ndrunken night figuring out just exactly how much gold mylar we\\'d need\\nto put the golden arches of a certain American fast food organization\\non the face of the Moon. Fortunately, we sobered up in the morning.\\n\\n\\n',\n", - " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: Morality? (was Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>\\n>What I've been saying is that moral behavior is likely the null behavior.\\n\\n Do I smell .sig material here?\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", - " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Hamza Salah, the Humanist\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 13\\n\\nAre you people sure his posts are being forwarded to his system operator???\\nWho is forwarding them???\\n\\nIs there a similar file being kept on Mr. Omran???\\n\\nSalam,\\n\\nJohn Absood\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", - " 'From: kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran)\\nSubject: We don\\'t need no stinking subjects!\\nX-Disclaimer: Nyx is a public access Unix system run by the University\\n\\tof Denver for the Denver community. The University has neither\\n\\tcontrol over nor responsibility for the opinions of users.\\nOrganization: The Loyal Order Of Keiths.\\nLines: 93\\n\\nIn article <1ql1avINN38a@gap.caltech.edu> keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran) writes:\\n>>keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>>>kcochran@nyx.cs.du.edu (Keith \"Justified And Ancient\" Cochran) writes:\\n>\\n>>No, if you\\'re going to claim something, then it is up to you to prove it.\\n>>Think \"Cold Fusion\".\\n>\\n>Well, I\\'ve provided examples to show that the trend was general, and you\\n>(or others) have provided some counterexamples, mostly ones surrounding\\n>mating practices, etc. I don\\'t think that these few cases are enough to\\n>disprove the general trend of natural morality. And, again, the mating\\n>practices need to be reexamined...\\n\\nSo what you\\'re saying is that your mind is made up, and you\\'ll just explain\\naway any differences at being statistically insignificant?\\n\\n>>>Try to find \"immoral\" non-mating-related activities.\\n>>So you\\'re excluding mating-related-activities from your \"natural morality\"?\\n>\\n>No, but mating practices are a special case. I\\'ll have to think about it\\n>some more.\\n\\nSo you\\'ll just explain away any inconsistancies in your \"theory\" as being\\n\"a special case\".\\n\\n>>>Yes, I think that the natural system can be objectively deduced with the\\n>>>goal of species propogation in mind. But, I am not equating the two\\n>>>as you so think. That is, an objective system isn\\'t necessarily the\\n>>>natural one.\\n>>Are you or are you not the man who wrote:\\n>>\"A natural moral system is the objective moral system that most animals\\n>> follow\".\\n>\\n>Indeed. But, while the natural system is objective, all objective systems\\n>are not the natural one. So, the terms can not be equated. The natural\\n>system is a subset of the objective ones.\\n\\nYou just equated them. Re-read your own words.\\n\\n>>Now, since homosexuality has been observed in most animals (including\\n>>birds and dolphins), are you going to claim that \"most animals\" have\\n>>the capacity of being immoral?\\n>\\n>I don\\'t claim that homosexuality is immoral. It isn\\'t harmful, although\\n>it isn\\'t helpful either (to the mating process). And, when you say that\\n>homosexuality is observed in the animal kingdom, don\\'t you mean \"bisexuality?\"\\n\\nA study release in 1991 found that 11% of female seagulls are lesbians.\\n\\n>>>Well, I\\'m saying that these goals are not inherent. That is why they must\\n>>>be postulates, because there is not really a way to determine them\\n>>>otherwise (although it could be argued that they arise from the natural\\n>>>goal--but they are somewhat removed).\\n>>Postulate: To assume; posit.\\n>\\n>That\\'s right. The goals themselves aren\\'t inherent.\\n>\\n>>I can create a theory with a postulate that the Sun revolves around the\\n>>Earth, that the moon is actually made of green cheese, and the stars are\\n>>the portions of Angels that intrudes into three-dimensional reality.\\n>\\n>You could, but such would contradict observations.\\n\\nNow, apply this last sentence of your to YOUR theory. Notice how your are\\ncontridicting observations?\\n\\n>>I can build a mathematical proof with a postulate that given the length\\n>>of one side of a triangle, the length of a second side of the triangle, and\\n>>the degree of angle connecting them, I can determine the length of the\\n>>third side.\\n>\\n>But a postulate is something that is generally (or always) found to be\\n>true. I don\\'t think your postulate would be valid.\\n\\nYou don\\'t know much math, do you? The ability to use SAS to determine the\\nlength of the third side of the triangle is fundemental to geometry.\\n\\n>>Guess which one people are going to be more receptive to. In order to assume\\n>>something about your system, you have to be able to show that your postulates\\n>>work.\\n>\\n>Yes, and I think the goals of survival and happiness *do* work. You think\\n>they don\\'t? Or are they not good goals?\\n\\nGoals <> postulates.\\n\\nAgain, if one of the \"goals\" of this \"objective/natural morality\" system\\nyou are proposing is \"survival of the species\", then homosexuality is\\nimmoral.\\n--\\n=kcochran@nyx.cs.du.edu | B(0-4) c- d- e++ f- g++ k(+) m r(-) s++(+) t | TSAKC=\\n=My thoughts, my posts, my ideas, my responsibility, my beer, my pizza. OK???=\\n',\n", - " 'From: djf@cck.coventry.ac.uk (Marvin Batty)\\nSubject: Re: Moonbase race\\nNntp-Posting-Host: cc_sysk\\nOrganization: Starfleet, Coventry, UK\\nLines: 22\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu> sysmgr@king.eng.umd.edu writes:\\n>In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>\\n>>Apollo was done the hard way, in a big hurry, from a very limited\\n>>technology base... and on government contracts. Just doing it privately,\\n>>rather than as a government project, cuts costs by a factor of several.\\n>\\n>So how much would it cost as a private venture, assuming you could talk the\\n>U.S. government into leasing you a couple of pads in Florida? \\n>\\nWhy use a ground launch pad. It is entirely posible to launch from altitude.\\nThis was what the Shuttle was originally intended to do! It might be seriously\\ncheaper. \\n\\nAlso, what about bio-engineered CO2 absorbing plants instead of many LOX bottles?\\nStick \\'em in a lunar cave and put an airlock on the door.\\n\\n-- \\n**************************************************************************** \\n Marvin Batty - djf@uk.ac.cov.cck\\n\"And they shall not find those things, with a sort of rafia like base,\\nthat their fathers put there just the night before. At about 8 O\\'clock!\"\\n',\n", - " 'From: mlj@af3.mlb.semi.harris.com (Marvin Jaster )\\nSubject: FOR SALE\\nNntp-Posting-Host: sunsol.mlb.semi.harris.com\\nOrganization: Harris Semiconductor, Melbourne FL\\nKeywords: FOR SALE\\nLines: 46\\n\\nI am selling my Sportster to make room for a new FLHTCU.\\nThis scoot is in excellent condition and has never been wrecked or abused.\\nAlways garaged.\\n\\n\\t1990 Sportster 883 Standard (blue)\\n\\n\\tfactory 1200cc conversion kit\\n\\n\\tless than 8000 miles\\n\\n\\tBranch ported and polished big valve heads\\n\\n\\tScreamin Eagle carb\\n\\n\\tScreamin Eagle cam\\n\\n\\tadjustable pushrods\\n\\n\\tHarley performance mufflers\\n\\n\\ttachometer\\n\\n\\tnew Metzeler tires front and rear\\n\\n\\tProgressive front fork springs\\n\\n\\tHarley King and Queen seat and sissy bar\\n\\n\\teverything chromed\\n\\n\\tO-ring chain\\n\\n\\tfork brace\\n\\n\\toil cooler and thermostat\\n\\n\\tnew Die-Hard battery\\n\\n\\tbike cover\\n\\nprice: $7000.00\\nphone: hm 407/254-1398\\n wk 407/724-7137\\nMelbourne, Florida\\n\\n\\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orion drive in vacuum -- how?\\nOrganization: U of Toronto Zoology\\nLines: 12\\n\\nIn article <1993Apr17.053333.15696@sfu.ca> Leigh Palmer writes:\\n>... a high explosive Orion prototype flew (in the atmosphere) in San\\n>Diego back in 1957 or 1958... I feel sure\\n>that someone must have film of that experiment, and I'd really like to\\n>see it. Has anyone out there seen it?\\n\\nThe National Air & Space Museum has both the prototype and the film.\\nWhen I was there, some years ago, they had the prototype on display and\\nthe film continuously repeating.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " \"From: Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado)\\nSubject: Conference on Manned Lunar Exploration. May 7 Crystal City\\nLines: 25\\n\\nReply address: mark.prado@permanet.org\\n\\n > From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\n >\\n > In article <1993Apr19.230236.18227@aio.jsc.nasa.gov>,\\n > daviss@sweetpea.jsc.nasa.gov (S.F. Davis) writes:\\n > > |> AW&ST had a brief blurb on a Manned Lunar Exploration\\n > confernce> |> May 7th at Crystal City Virginia, under the\\n > auspices of AIAA.\\n >\\n > Thanks for typing that in, Steven.\\n >\\n > I hope you decide to go, Pat. The Net can use some eyes\\n > and ears there...\\n\\nI plan to go. It's about 30 minutes away from my home.\\nI can report on some of it (from my perspective ...)\\nAnyone else on sci.space going to be there? If so, send me\\nnetmail. Maybe we can plan to cross paths briefly...\\nI'll maintain a list of who's going.\\n\\nmark.prado@permanet.org\\n\\n * Origin: Just send it to bill.clinton@permanet.org\\n(1:109/349.2)\\n\",\n", - " 'From: wmiler@nyx.cs.du.edu (Wyatt Miler)\\nSubject: Diaspar Virtual Reality Network Announcement\\nOrganization: Nyx, Public Access Unix @ U. of Denver Math/CS dept.\\nLines: 185\\n\\n\\nPosted to the Internet by wmiler@nyx.cs.du.edu\\n \\n000062David42 041493003715\\n \\n The Lunar Tele-operation Model One (LTM1)\\n =========================================\\n By David H. Mitchell\\n March 23, 1993\\n \\nINTRODUCTION:\\n \\nIn order to increase public interest in space-based and lunar operations, a\\nreal miniature lunar-like environment is being constructed on which to test\\ntele-operated models. These models are remotely-controlled by individuals\\nlocated world-wide using their personal computers, for EduTainment\\npurposes.\\nNot only does this provide a test-bed for simple tele-operation and\\ntele-presence activities but it also provides for the sharing of\\ninformation\\non methods of operating in space, including, but not limited to, layout of\\na\\nlunar colony, tele-operating machines for work and play, disseminating\\neducational information, providing contests and awards for creativity and\\nachievement and provides a new way for students worldwide to participate in\\nTwenty-First century remote learning methods.\\n \\nBecause of the nature of the LTM1 project, people of all ages, interests\\nand\\nskills can contribute scenery and murals, models and structures,\\ninterfacing\\nand electronics, software and graphics. In operation LTM1 is an evolving\\nplayground and laboratory that can be used by children, students and\\nprofessionals worldwide. Using a personal computer at home or a terminal at\\na participating institution a user is able to tele-operate real models at\\nthe\\nLTM1 base for experimental or recreational purposes. Because a real\\nfacility\\nexists, ample opportunity is provided for media coverage of the\\nconstruction\\nof the lunar model, its operation and new features to be added as suggested\\nby the users themselves.\\n \\nThis has broad inherent interest for a wide range of groups:\\n - tele-operations and virtual reality research\\n - radio control, model railroad and ham radio operation\\n - astronomy and space planetariums and science centers\\n - art and theater\\n - bbs and online network users\\n - software and game developers\\n - manufacturers and retailers of model rockets, cars and trains\\n - children\\n - the child in all of us\\n \\nLTM1 OVERALL DESIGN:\\n \\nA room 14 feet by 8 feet contains the base lunar layout. The walls are used\\nfor murals of distant moon mountains, star fields and a view of the earth.\\nThe \"floor\" is the simulated lunar surface. A global call for contributions\\nis hereby made for material for the lunar surface, and for the design and\\ncreation of scale models of lunar colony elements, scenery, and\\nmachine-lets.\\n \\n The LTM1 initial design has 3 tele-operated machinelets:\\n 1. An SSTO scale model which will be able to lift off, hover and land;\\n 2. A bulldozerlet which will be able to move about in a quarry area; and\\n 3. A moon-train which will traverse most of the simulated lunar surface.\\n \\n Each machinelet has a small TV camera utilizing a CCD TV chip mounted on\\n it. A personal computer digitizes the image (including reducing picture\\n content and doing data-compression to allow for minimal images to be sent\\n to the operator for control purposes) and also return control signals.\\n \\nThe first machinelet to be set up will be the moon-train since model trains\\nwith TV cameras built in are almost off-the-shelf items and control\\nelectronics for starting and stopping a train are minimal. The user will\\nreceive an image once every 1 to 4 seconds depending on the speed of their\\ndata link to LTM1.\\n \\nNext, an SSTO scale model with a CCD TV chip will be suspended from a\\nservo-motor operated wire frame mounted on the ceiling allowing for the\\nSSTO\\nto be controlled by the operator to take off, hover over the entire lunar\\nlandscape and land.\\n \\nFinally, some tank models will be modified to be CCD TV chip equipped\\nbulldozerlets. The entire initial LTM1 will allow remote operators\\nworldwide\\nto receive minimal images while actually operating models for landing and\\ntakeoff, traveling and doing work. The entire system is based on\\ncommercially\\navailable items and parts that can be easily obtained except for the\\ninterface electronics which is well within the capability of many advanced\\nham radio operator and computer hardware/software developers.\\n \\nBy taking a graphically oriented communications program (Dmodem) and adding\\na tele-operations screen and controls, the necessary user interface can be\\nprovided in under 80 man hours.\\n \\nPLAN OF ACTION:\\n \\nThe Diaspar Virtual Reality Network has agreed to sponsor this project by\\nproviding a host computer network and Internet access to that network.\\nDiaspar is providing the 14 foot by 8 foot facility for actual construction\\nof the lunar model. Diaspar has, in stock, the electronic tanks that can be\\nmodified and one CCD TV chip. Diaspar also agrees to provide \"rail stock\"\\nfor the lunar train model. Diaspar will make available the Dmodem graphical\\ncommunications package and modify it for control of the machines-lets.\\nAn initial \"ground breaking\" with miniature shovels will be performed for\\na live photo-session and news conference on April 30, 1993. The initial\\nmodels will be put in place. A time-lapse record will be started for\\nhistorical purposes. It is not expected that this event will be completely\\nserious or solemn. The lunar colony will be declared open for additional\\nbuilding, operations and experiments. A photographer will be present and\\nthe photographs taken will be converted to .gif images for distribution\\nworld-wide to major online networks and bbs\\'s. A press release will be\\nissued\\ncalling for contributions of ideas, time, talent, materials and scale\\nmodels\\nfor the simulated lunar colony.\\n \\nA contest for new designs and techniques for working on the moon will then\\nbe\\nannounced. Universities will be invited to participate, the goal being to\\nfind instructors who wish to have class participation in various aspects of\\nthe lunar colony model. Field trips to LTM1 can be arranged and at that\\ntime\\nthe results of the class work will be added to the model. Contributors will\\nthen be able to tele-operate any contributed machine-lets once they return\\nto\\ntheir campus.\\n \\nA monthly LTM1 newsletter will be issued both electronically online and via\\nconventional means to the media. Any major new tele-operated equipment\\naddition will be marked with an invitation to the television news media.\\nHaving a large, real model space colony will be a very attractive photo\\nopportunity for the television community. Especially since the \"action\"\\nwill\\nbe controlled by people all over the world. Science fiction writers will be\\ninvited to issue \"challenges\" to engineering and human factors students at\\nuniversities to build and operate the tele-operated equipment to perform\\nlunar tasks. Using counter-weight and pulley systems, 1/6 gravity may be\\nsimulated to some extent to try various traction challenges.\\n \\nThe long term goal is creating world-wide interest, education,\\nexperimentation\\nand remote operation of a lunar colony. LTM1 has the potential of being a\\nlong\\nterm global EduTainment method for space activities and may be the generic\\nexample of how to teach and explore in many other subject areas not limited\\nto space EduTainment. All of this facilitates the kind of spirit which can\\nlead to a generation of people who are ready for the leap to the stars!\\n \\nCONCLUSION:\\n \\nEduTainment is the blending of education and entertainment. Anyone who has\\never enjoyed seeing miniatures will probably see the potential impact of a\\nglobally available layout for recreation, education and experimentation\\npurposes. By creating a tele-operated model lunar colony we not only create\\nworld-wide publicity, but also a method of trying new ideas that require\\nreal\\n(not virtual) skills and open a new method for putting people\\'s minds in\\nspace.\\n \\n \\nMOONLIGHTERS:\\n \\n\"Illuminating the path of knowledge about space and lunar development.\"\\nThe following people are already engaged in various parts of this work:\\nDavid42, Rob47, Dash, Hyson, Jzer0, Vril, Wyatt, The Dark One, Tiggertoo,\\nThe Mad Hatter, Sir Robin, Jogden.\\n \\nCome join the discussion any Friday night from 10:30 to midnight PST in\\n \\nDiaspar Virtual Reality Network. Ideas welcome!\\n \\nInternet telnet to: 192.215.11.1 or diaspar.com\\n \\n(voice) 714-376-1776\\n(2400bd) 714-376-1200\\n(9600bd) 714-376-1234\\n \\nEmail inquiries to LTM1 project leader Jzer@Hydra.unm.edu\\nor directly to Jzer0 on Diaspar.\\n\\n',\n", - " 'From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: Countersteering, to know or not to know - what is the question?\\nOrganization: University of East Anglia\\nDistribution: net\\nLines: 22\\n\\nlotto@husc4.harvard.edu (Jerry Lotto) writes:\\n\\n>There has been a running thread on the need to understand\\n>countersteering. I have seen a lot of opinion, but not much of it has\\n>any basis in fact or study. The bottom line is:\\n\\n>The understanding and ability to swerve was essentially absent among\\n>the accident-involved riders in the Hurt study.\\n\\n>The \"average rider\" does not identify that countersteering alone\\n>provides the primary input to effect motorcycle lean by themselves,\\n>even after many years of practice.\\n\\nI would agree entirely with these three paragraphs. But did the Hurt\\nstudy make any distinction between an *ability* to swerve and a *failure*\\nto swerve? In most of the accidents and near accidents that I\\'ve seen, riders\\nwill almost always stand on the brakes as hard as they dare, simply because\\nthe instinct to brake in the face of danger is so strong that it over-rides\\neverything else. Hard braking and swerving tend to be mutually exclusive\\nmanouvres - did Hurt draw any conclusions on which one is generally preferable?\\n\\n\\n',\n", - " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israel\\'s Expansion II\\nOrganization: University of Virginia\\nLines: 29\\n\\nwaldo@cybernet.cse.fau.edu writes:\\n> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n> \\n> > First of all I never said the Holocaust. I said before the\\n> > Holocaust. I\\'m not ignorant of the Holocaust and know more\\n> > about Nazi Germany than most people (maybe including you). \\n> \\n> Uh Oh! The first sign of an argument without merit--the stating of one\\'s \\n> \"qualifications\" in an area. If you know something about Nazi Germany, \\n> show it. If you don\\'t, shut up. Simple as that.\\n> \\n> > \\tI don\\'t think the suffering of some Jews during WWII\\n> > justifies the crimes commited by the Israeli government. Any\\n> > attempt to call Civil liberterians like myself anti-semetic is\\n> > not appreciated.\\n> \\n> ALL Jews suffered during WWII, not just our beloved who perished or were \\n> tortured. We ALL suffered. Second, the name-calling was directed against\\n> YOU, not civil-libertarians in general. Your name-dropping of a fancy\\n> sounding political term is yet another attempt to \"cite qualifications\" \\n> in order to obfuscate your glaring unpreparedness for this argument. Go \\n> back to the minors, junior.\\n\\tAll humans suffered emotionally, some Jews and many\\nothers suffered physically. It is sad that people like you are\\nso blinded by emotions that they can\\'t see the facts. Thanks\\nfor calling me names, it only assures me of what kind of\\nignorant people I am dealing with. I included your letter since\\nI thought it demonstrated my point more than anything I could\\nwrite. \\n',\n", - " 'From: Thomas.Enblom@eos.ericsson.se (Thomas Enblom)\\nSubject: NAVSTAR positions\\nReply-To: Thomas.Enblom@eos.ericsson.se\\nOrganization: Ericsson Telecom AB\\nLines: 16\\nNntp-Posting-Host: eos8c29.ericsson.se\\n\\nI\\'ve just read Richard Langley\\'s latest \"Navstar GPS Constellation Status\".\\n\\nIt states that the latest satellite was placed in Orbit Plane Position C-3.\\nThere is already one satellite in that position. I know that it\\'s almost\\nten years since that satellite was launched but it\\'s still in operation so\\nwhy not use it until it goes off?\\n\\nWhy not instead place the new satellite at B-4 since that position is empty\\nand by this measure have an almost complete GPS-constellation\\n(23 out of 24)?\\n\\n/Thomas\\n================================================================================\\nEricsson Telecom, Stockholm, Sweden\\n \\nThomas Enblom, just another employee. \\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Arafat (Re: Sampson)\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 61\\n\\nIn article <5897@copper.Denver.Colorado.EDU> aaldoubo@copper.denver.colorado.edu (Shaqeeqa) writes:\\n>In article <1993Apr10.182402.11676@colorado.edu> perlman@qso.Colorado.EDU (Eric S. Perlman) writes:\\n\\n>>Perhaps, though one can argue about whether or not the current\\n>>Palestinian delegation represents the PLO (I would hope it does not, as\\n>>the PLO really doesn\\'t have that kind of legitimacy).\\n\\n>Does it matter to you, Naftaly, Adam, and others, that Arafat\\n>advises the delegation and that the PLO, overall, supports it? Does\\n>it also matter that Arafat, on behalf of the PLO, recognizes Israel\\n>and its right to exist? Further, does Israel\\'s new policy concerning\\n>direct negotiations with the PLO hold any substance to the situation\\n>as a whole?\\n\\nNo, he does not. Arafat explicitly *denies* this claim.\\n\\n\\nfrom a Libyan televison interview with Yasser Arafat 7-19-1991\\nQ: Some people say that the Palestinian revolution has many times changed\\n its strategies and tactics, something which has left its imprint on the\\n Palestinian problem and on the Palestinian Liberation Front. The\\n [strategies and tactics] have not been clear. The question is, is the\\n direction of the Palestinian problem clear? The Palestinian leadership\\n has stopped, or at least this is what has been said in the media, this\\n happened on the way to the dialogue with the United States, the PLO\\n recognized something called \"Israel\"...\\n\\nA: No, no, no! We do not recognize the State of Israel. We said\\n \"recognition\" -- when a Palestinian state is established. It will then\\n decide if to recognize Israel or not. When it is established, its\\n parliament will convene and decide.\\n\\n>policies which it can justify through occupation. Because of this,\\n>you have the grassroot movements that reject Israel\\'s authority and\\n>disregard for human rights; and, if Israel was serious about peace, it\\n>would abandon these policies.\\n\\n\\tAnd replace them with what? If Israel is to withdraw its\\ncontrol of any territory, there must be two prerequsites. One is that\\nit leads to a reduction in deaths. The second is that it should not\\nweaken Israels bargianing position with respect to peace talks.\\n\\n\\tLeaving Gaza unilateraly is a bad idea because it encourages\\narabs to think they can get what they want by killing Jews. The only\\nway Israel should pull out of Gaza is at the end of negotiations.\\nThese negotiations should lead to a mutually agreeable solution with\\nsecurity guarantees for both sides.\\n\\n\\tUntil arabs are ready to sit down at the table and talk again,\\nthey should not expect, or recieve more concessions.\\n\\n\\nAdam\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'Subject: Need rgb data from saved images\\nFrom: \\nOrganization: Penn State University\\nLines: 4\\n\\n Could someone please help me find a program or figure out how to extract a li\\nst of R G B values for each pixel in an image. I can convert between tga and s\\neveral other popular formats but I need the R G B values for use in a program I\\n am writing. Thanks for the help\\n',\n", - " 'From: Center for Policy Research \\nSubject: Symbiotics: Zionism-Antisemitism\\nNf-ID: #N:cdp:1483500355:000:10647\\nNf-From: cdp.UUCP!cpr Apr 23 15:14:00 1993\\nLines: 197\\n\\n\\nFrom: Center for Policy Research \\nSubject: Symbiotics: Zionism-Antisemitism\\n\\n\\nZionism and the Holocaust\\n-------------------------- by Haim Bresheeth\\n\\nThe first point to note regarding the appropriation of the history\\nof the Holocaust by Zionist propaganda is that Zionism without\\nanti-semitism is impossible. Zionism agrees with the basic tenet\\nof anti-Semitism, namely that Jews cannot live with non- Jews.\\n\\nThe history and roots of the Holocaust go back a long way. While\\nthe industru of death and destruction did not operate before 1942,\\nits roots were firmly placed in the 19th Century. Jewish\\naspirations for emancipation emerged out of the national struggles\\nin Europe. When the hopes for liberation through\\nbourgeois-democratic change were dashed, other alternatives for\\nimproving the lot of the Jews of Europe achieved prominence.\\n\\nThe socialist Bund, a mass movement with enormous following, had\\nto contend with opposition from a new and small, almost\\ninsignificant opponent, the political Zionists. In outline these\\ntwo offered diametrically opposed options for Jews in Europe.\\nWhile the Bund was suggesting joining forces with the rest of\\nEurope\\'s workers, the Zionists were proposing a new programme\\naimed at ridding Europe of its Jews by setting up some form of a\\nJewish state.\\n\\nHistorically, nothing is inevitable, all depends on the balance of\\nforces involved in the struggle. History can be seen as an option\\ntree: every time a certain option is chosen, other routes become\\nbarred. Because of that choice, movement backwards to the point\\nbefore that choice was made is impossible. While Zionism as an\\noption was taken by many young Jews, it remained a minority\\nposition until the first days of the 3rd Reich. The Zionist\\nFederation of Germany (ZVfD), an organisation representing a tiny\\nminority of German Jews, was selected by the Nazis as the body to\\nrepresent the Jews of the Reich. Its was the only flag of an\\ninterantional organisation allowed to fly in Berlin, and this was\\nthe only international organisation allowed to operate during this\\nperiod. From a marginal position, the leaders of the Zionist\\nFederation were propelled to a prominence and centrality that\\nsurprised even them. All of a sudden they attained political\\npower, power based not on representation, but from being selected\\nas the choice of the Nazi regime for dealing with the the \\'Jewish\\nproblem\\'. Their position in negotiating with the Nazis agreements\\nthat affected the lives of many tens of thousands of the Jews in\\nGermany transformed them from a utopian, marginal organisation in\\nGermany (and some other countries in Europe) into a real option to\\nbe considered by German Jews.\\n\\nThe best example of this was the \\'Transfer Agreement\\' of 1934.\\nImmediately after the Nazi takeover in 1933, Jews all over the\\nworld supported or were organising a world wide boycott of German\\ngoods. This campaign hurt the Nazi regime and the German\\nauthorities searched frantically for a way disabling the boycott.\\nIt was clear that if Jews and Jewish organisations were to pull\\nout, the campaign would collapse.\\n\\nThis problem was solved by the ZVfD. A letter sent to the Nazi\\nparty as early as 21. June 1933, outlined the degree of agreement\\nthat existed between the two organisations on the question of\\nrace, nation, and the nature of the \\'Jewish problem\\', and it\\noffered to collaborate with the new regime:\\n\\n\"The realisation of Zionism could only be hurt by resentment of\\nJews abroad against the German development. Boycott propaganda -\\nsuch as is currently being carried out against Germany in many\\nways - is in essence unZionist, because Zionism wants not to do\\nbattle but to convince and build.\"\\n\\nIn their eagerness to gain credence and the backing of the new\\nregime, the Zionist organisation managed to undermine the boycott.\\nThe main public act was the signature of the \"Transfer Agreement\"\\nwith the Nazi authorities during the Zionist Congress of 1934. In\\nessence, the agreement was designed to get Germany\\'s Jews out of\\nthe country and into Mandate Palestine. It provided a possibility\\nfor Jews to take a sizeable part of their property out of the\\ncountry, through a transfer of German goods to Palestine. This\\nright was denied to Jews leaving to any other destination. The\\nZionist organisation was the acting agent, through its financial\\norganisations. This agreement operated on a number of fronts -\\n\\'helping\\' Jews to leave the country, breaking the ring of the\\nboycott, exporting German goods in large quantities to Palestine,\\nand last but not least, enabling the regime to be seen as humane\\nand reasonable even towards its avowed enemies, the Jews. After\\nall, they argued, the Jews do not belong in Europe and now the\\nJews come and agree with them.\\n\\nAfter news of the agreement broke, the boycott was doomed. If the\\nZionist Organization found it possible and necessary to deal with\\nthe Nazis, and import their goods, who could argue for a boycott ?\\nThis was not the first time that the interests of both movements\\nwere presented to the German public as complementary. Baron Von\\nMildenstein, the first head of the Jewish Department of the SS,\\nlater followed by Eichmann, was invited to travel to Palestine.\\nThis he did in early 1933, in the company of a Zionist leader,\\nKurt Tuchler. Having spent six months in Palestine, he wrote a\\nseries of favourable articles in Der STURMER describing the \\'new\\nJew\\' of Zionism, a Jew Nazis could accept and understand.\\n\\nThis little-known episode established quite clearly the\\nrelationship during the early days of Nazism, between the new\\nregime and the ZVfD, a relationship that was echoed later in a\\nnumber of key instances, even after the nature of the Final\\nSolution became clear. In many cases this meant a silencing of\\nreports about the horrors of the exterminations. A book\\nconcentrating on this aspect of the Zionist reaction to the\\nHolocaust is Post-Ugandan Zionism in the Crucible of the\\nHolocaust, by S. B. Beth-Zvi.\\n\\nIn the case of the Kastner episode, around which Jim Allen\\'s play\\nPERDITION is based, even the normal excuse of lack of knowledge of\\nthe real nature of events does not exist. It occured near the end\\nof the war. The USSR had advanced almost up to Germany. Italy and\\nthe African bases had been lost. The Nazis were on the run, with a\\nnumber of key countries, such as Rumania, leaving the Axis. A\\nsecond front was a matter of months away, as the western Allies\\nprepared their forces. In the midst of all this we find Eichmann,\\nthe master bureaucrat of industrial murder, setting up his HZ in\\noccupied Budapest, after the German takeover of the country in\\nApril 1944. His first act was to have a conference with the Jewish\\nleadership, and to appoint Zionist Federation members, headed by\\nKastner as the agent and clearing house for all Jews and their\\nrelationship with the SS and the Nazr authorities. Why they did\\nthis is not difficult to see. As opposed to Poland, where its\\nthree and a half million Jews lived in ghettoes and were visibly\\ndifferent from the rest of the Polish population, the Hungarian\\nJews were an integrated part of the community. The middle class\\nwas mainly Jewish, the Jews were mainly middle-class. They enjoyed\\nfreedom of travel, served in the Hungarian (fascist) army in\\nfronline units, as officers and soldiers, their names were\\nHungarian - how was Eichmann to find them if they were to be\\nexterminated ? The task was not easy, there were a million Jews in\\nHungary, most of them resident, the rest being refugees from other\\ncountries. Many had heard about the fate of Jews elsewhere, and\\nwere unlikely to believe any statements by Nazi officials.\\n\\nLike elsewhere, the only people who had the information and the\\near of the frightened Jewish population were the Judenrat. In this\\ncase the Judenrat comprsied mainly the Zionist Federation members.\\nWithout their help the SS, with 19 officers and less than 90 men,\\nplus a few hundred Hungarian police, could not have collected and\\ncontrolled a million Jews, when they did not even know their\\nwhereabouts. Kastner and the others were left under no illusions.\\nEichmann told Joel Brand, one of the members of Kastner\\'s\\ncommittee, that he intended to send all Hungary\\'s Jews to\\nAuschwitz, before he even started the expulsions! He told them\\nclearly that all these Jews will die, 12,000 a day, unless certain\\nconditions were met.\\n\\nThe Committee faced a simple choice - to tell the Jews of Hungary\\nabout their fate, (with neutral Rumania, where many could escape,\\nbeing in most cases a few hours away) or to collaborate with the\\nNazis by assisting in the concentration process. What would not\\nhave been believed when coming from the SS, sounded quite\\nplausible when coming from the mouths of the Zionist leadership.\\nThus it is, that most of the Hungarian Jews went quietly to their\\ndeath, assured by their leadership that they were to be sent to\\nwork camps.\\n\\nTo be sure, there are thirty pieces of silver in this narrative of\\ndestruction: the trains of \\'prominents\\' which Eichmann promised to\\nKastner - a promise he kept to the last detail. For Eichmann it\\nwas a bargain: allowing 1,680 Jews to survive, as the price paid\\nfor the silent collaboration over the death of almost a million\\nJews.\\n\\nThere was no way in which the Jews of Hungary could even be\\nlocated, not to say murdered, without the full collaboration of\\nKastner and his few friends. No doubt the SS would hunt a few Jews\\nhere and there, but the scale of the operation would have been\\nminiscule compared to the half million who died in Auschwitz.\\n\\nIt is important to realise that Kastner was not an aberration,\\nlike say Rumkovsky in Lodz. Kastner acted as a result of his\\nstrongly held Zionist convictions. His actions were a logical\\noutcome of earlier positions. This is instanced when he exposed to\\nthe Gestapo the existence of a British cell of saboteurs, Palgi\\nand Senesh, and persuaded them to give themselves up, so as not to\\ndisrupt his operations. At no point during his trial or elsewhere,\\ndid Kastner deny that he knew exactly what was to happen to those\\nJews.\\n\\nTo conclude, the role played by Zionists in this period, was\\nconnected to another role they could, and should have played, that\\nof alarming the whole world to what was happening in Europe. They\\nhad the information, but politically it was contrary to their\\npriorities. The priorities were, and still are, quite simple: All\\nthat furthers the Zionist enterprise in Palestine is followed,\\nwhatever the price. The lives of individuals, Jews and non-Jews,\\nare secondary. If this process requires dealing with fascists,\\nNazis and other assorted dictatorial regimes across the world, so\\nbe it.\\n\\n',\n", - " \"From: jgarland@kean.ucs.mun.ca\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nLines: 26\\nOrganization: Memorial University. St.John's Nfld, Canada\\n\\nIn article <1993Apr19.020359.26996@sq.sq.com>, msb@sq.sq.com (Mark Brader) writes:\\n>> > Can these questions be answered for a previous\\n>> > instance, such as the Gehrels 3 that was mentioned in an earlier posting?\\n> \\n>> Orbital Elements of Comet 1977VII (from Dance files)\\n>> p(au) 3.424346\\n>> e 0.151899\\n>> i 1.0988\\n>> cap_omega(0) 243.5652\\n>> W(0) 231.1607\\n>> epoch 1977.04110\\n> \\n> \\n>> Also, perihelions of Gehrels3 were:\\n>> \\n>> April 1973 83 jupiter radii\\n>> August 1970 ~3 jupiter radii\\n> \\n> Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. So the\\n> 1970 figure seems unlikely to actually be anything but a perijove.\\n> Is that the case for the 1973 figure as well?\\n> -- \\nSorry, _perijoves_...I'm not used to talking this language.\\n\\nJohn Garland\\njgarland@kean.ucs.mun.ca\\n\",\n", - " 'From: svoboda@rtsg.mot.com (David Svoboda)\\nSubject: Re: Ok, So I was a little hasty...\\nNntp-Posting-Host: corolla18\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 16\\n\\nIn article speedy@engr.latech.edu (Speedy Mercer) writes:\\n|\\n|This was changed here in Louisiana when a girl went to court and won her \\n|case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\nGeez, what happened? She got a ticket for driving too slow???\\n\\n| ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\nOh, are you saying you\\'re not an edu.breath, then? Okay.\\n\\n\\nDave Svoboda (svoboda@void.rtsg.mot.com) | \"I\\'m getting tired of\\n90 Concours 1000 (Mmmmmmmmmm!) | beating you up, Dave.\\n84 RZ 350 (Ring Ding) (Woops!) | You never learn.\"\\nAMA 583905 DoD #0330 COG 939 (Chicago) | -- Beth \"Bruiser\" Dixon\\n',\n", - " \"From: robert@Xenon.Stanford.EDU (Robert Kennedy)\\nSubject: Solar battery chargers -- any good?\\nOrganization: Computer Science Department, Stanford University.\\nLines: 12\\n\\nI've seen solar battery boosters, and they seem to come without any\\nguarantee. On the other hand, I've heard that some people use them\\nwith success, although I have yet to communicate directly with such a\\nperson. Have you tried one? What was your experience? How did you use\\nit (occasional charging, long-term leave-it-for-weeks, etc.)?\\n\\n\\t-- Robert Kennedy\\n\\nRobert Kennedy\\t\\t\\t\\t\\t(415) 723-4532 (office)\\nrobert@cs.stanford.edu\\t\\t\\t\\t(415) 322-7367 (home voice)\\nComputer Science Dept., Stanford University\\t(415) 322-7329 (home tty)\\n\\n\",\n", - " \"From: jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll)\\nSubject: Re: Vandalizing the sky.\\nOrganization: University of Western Ontario, London\\nNntp-Posting-Host: prism.engrg.uwo.ca\\nLines: 15\\n\\nIn article nickh@CS.CMU.EDU (Nick Haines) writes:\\n>\\n>Would they buy it, given that it's a _lot_ more expensive, and not\\n>much more impressive, than putting a large set of several-km\\n>inflatable billboards in LEO (or in GEO, visible 24 hours from your\\n>key growth market). I'll do _that_ for only $5bn (and the changes of\\n>identity).\\n\\n\\tI've heard of sillier things, like a well-known utility company\\nwanting to buy an 'automated' boiler-cleaning system which uses as many\\noperators as the old system, and which rumour has it costs three million\\nmore per unit. Automation is more 'efficient' although by what scale they are\\nnot saying...\\n\\n\\t\\t\\t\\t\\t\\t\\tJames Nicoll\\n\",\n", - " 'From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Absood\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nOrganization: Columbia University\\nLines: 11\\n\\nTo my fellow Columbian, I must ask, why do you say that I engage\\nin fantasies? Arafat is a terrorist, who happens to have\\n a lot of pull among Palestinians. Can we ignore the two facts?\\nI doubt it.\\n\\nPeace, roar lion roar, and other niceties,\\nPete\\n\\n\\n\\n\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: DC-Y trajectory simulation\\nKeywords: SSTO, Delta Clipper\\nOrganization: University of Illinois at Urbana\\nLines: 91\\n\\n\\nI\\'ve been to three talks in the last month which might be of interest. I\\'ve \\ntranscribed some of my notes below. Since my note taking ability is by no means\\ninfallible, please assume that all factual errors are mine. Permission is \\ngranted to copy this without restriction.\\n\\nNote for newbies: The Delta Clipper project is geared towards producing a\\nsingle staget to orbit, reusable launch vehicle. The DC-X vehicle is a 1/3\\nscale vehicle designed to test some of the concepts invovled in SSTO. It is \\ncurrently undergoing tests. The DC-Y vehicle would be a full scale \\nexperimental vehicle capable of reaching orbit. It has not yet been funded.\\n\\nOn April 6th, Rocky Nelson of MacDonnell Douglas gave a talk entitled \\n\"Optimizing Techniques for Advanced Space Missions\" here at the University of\\nIllinois. Mr Nelson\\'s job involves using software to simulate trajectories and\\ndetermine the optimal trajectory within given requirements. Although he is\\nnot directly involved with the Delta Clipper project, he has spent time with \\nthem recently, using his software for their applications. He thus used \\nthe DC-Y project for most of his examples. While I don\\'t think the details\\nof implicit trajectory simulation are of much interest to the readers (I hope\\nthey aren\\'t - I fell asleep during that part), I think that many of you will\\nbe interested in some of the details gleaned from the examples.\\n\\nThe first example given was the maximization of payload for a polar orbit. The\\nmain restriction is that acceleration must remain below 3 Gs. I assume that\\nthis is driven by passenger constraints rather than hardware constraints, but I\\ndid not verify that. The Delta Clipper Y version has 8 engines - 4 boosters\\nand 4 sustainers. The boosters, which have a lower isp, are shut down in \\nmid-flight. Thus, one critical question is when to shut them down. Mr Nelson\\nshowed the following plot of acceleration vs time:\\n ______\\n3 G /| / |\\n / | / | As ASCII graphs go, this is actually fairly \\n / | / |\\t good. The big difference is that the lines\\n2 G / |/ | made by the / should be curves which are\\n / | concave up. The data is only approximate, as\\n / | the graph wasn\\'t up for very long.\\n1 G / |\\n |\\n |\\n0 G |\\n\\n ^ ^\\n ~100 sec ~400 sec\\n\\n\\nAs mentioned before, a critical constraint is that G levels must be kept below\\n3. Initially, all eight engines are started. As the vehicle burns fuel the\\naccelleration increases. As it gets close to 3G, the booster engines are \\nthrotled back. However, they quickly become inefficient at low power, so it\\nsoon makes more sense to cut them off altogether. This causes the dip in \\naccelleration at about 100 seconds. Eventually the remaining sustainer engines\\nbring the G level back up to about 3 and then hold it there until they cut\\nout entirely.\\n\\nThe engine cutoff does not acutally occur in orbit. The trajectory is aimed\\nfor an altitude slightly higher than the 100nm desired and the last vestiges of\\nair drag slow the vehicle slightly, thus lowering the final altitude to \\nthat desired.\\n\\nQuestions from the audience: (paraphrased)\\n\\nQ: Would it make sense to shut down the booster engines in pairs, rather than\\n all at once?\\n\\nA: Very perceptive. Worth considering. They have not yet done the simulation. Shutting down all four was part of the problem as given.\\n\\nQ: So what was the final payload for this trajectory?\\n\\nA: Can\\'t tell us. \"Read Aviation Leak.\" He also apparently had a good \\n propulsion example, but was told not to use it. \\n\\nMy question: Does anyone know if this security is due to SDIO protecting\\nnational security or MD protecting their own interests?\\n\\nThe second example was reentry simulation, from orbit to just before the pitch\\nup maneuver. The biggest constraint in this one is aerodynamic heating, and \\nthe parameter they were trying to maximize was crossrange. He showed graphs\\nof heating using two different models, to show that both were very similar,\\nand I think we were supposed to assume that this meant they were very accurate.\\nThe end result was that for a polar orbit landing at KSC, the DC-Y would have\\nabout 30 degrees of crossrange and would start it\\'s reentry profile about \\n60 degrees south latitude.\\n\\nI would have asked about the landing maneuvers, but he didn\\'t know about that\\naspect of the flight profile.\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " 'From: laszlo@eclipse.cs.colorado.edu (Laszlo Nemeth)\\nSubject: New DoD listing. Membership is at 1148\\nNntp-Posting-Host: eclipse.cs.colorado.edu\\nOrganization: University of Colorado Boulder, Pizza Disposal Group\\nLines: 23\\n\\nThere is a new DoD listing. To get a copy use one of these commands:\\n\\n\\t\\tfinger motohead@cs.colorado.edu\\n\\t\\t\\t\\tOR\\n\\t\\tmail motohead@cs.colorado.edu\\n\\nIf you send mail make sure your \"From\" line is correct (ie \"man vacation\").\\nI will not try at all to fix mail problems (unless they are mine ;-). And I\\nmay just publicly tell the world what a bad mailer you have. I do scan the \\nmail to find bounces but I will not waste my time answering your questions \\nor requests.\\n\\nFor those of you that want to update your entry or get a # contact the KotL.\\nOnly the KotL can make changes. SO STOP BOTHERING ME WITH INANE MAIL\\n\\nI will not tell what \"DoD\" is! Ask rec.motorcycles. I do not give out the #\\'s.\\n\\n\\nLaszlo Nemeth\\nlaszlo@cs.colorado.edu\\n\"hey - my tool works (yeah, you can quote me on that).\" From elef@Sun.COM\\n\"Flashbacks = free drugs.\"\\nDoD #0666 UID #1999\\n',\n", - " 'From: tychay@cco.caltech.edu (Terrence Y. Chay)\\nSubject: TIFF (NeXT Appsoft draw) -> GIF conversion?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 27\\nNNTP-Posting-Host: punisher.caltech.edu\\nSummary: Help!\\nKeywords: TIFF GIF graphics conversion NeXT Appsoft\\n\\nOkay all my friends are bitching at me that the map I made in Appsoft Draw\\ncan\\'t be displayed in \"xv\"... I checked... It\\'s true, at least with version\\n1.0. My readers on the NeXT have very little trouble on it (Preview messes\\nup the .eps, but does fine with the TIFF and ImageViewer0.9a behaves with\\nflying colors except it doesn\\'t convert worth *&^^% ;-) )\\n\\n Please is there any way I can convert this .drw from Appsoft 1.0 on the NeXT\\nto something more reasonable like .gif? I have access to a sun4 and NeXTstep\\n3.0 systems. any good reliable conversion programs would be helpful... please\\nemail, I\\'ll post responses if anyone wants me to... please email that to.\\n\\nYes I used alphachannel... (god i could choke steve jobs right now ;-) )\\n\\nYes i know how to archie, but tell me what to archie for ;-)\\n\\nAlso is there a way to convert to .ps plain format? ImageViiewer0.9 turns\\nout nothing recognizable....\\n\\n terrychay\\n\\n---\\nsmall editorial\\n\\n-rw-r--r-- 1 tychay 2908404 Apr 18 08:03 Undernet.tiff\\n-rw-r--r-- 1 tychay 73525 Apr 18 08:03 Undernet.tiff.Z\\n\\nand not using gzip! is it me or is there something wrong with this format?\\n',\n", - " \"From: deweeset@ptolemy2.rdrc.rpi.edu (Thomas E. DeWeese)\\nSubject: Finding equally spaced points on a sphere.\\nArticle-I.D.: rpi.4615trd\\nOrganization: Rensselaer Polytechnic Institute, Troy, NY\\nLines: 8\\nNntp-Posting-Host: ptolemy2.rdrc.rpi.edu\\n\\n\\n Hello, I know that this has been discussed before. But at the time\\nI didn't need to teselate a sphere. So if any kind soul has the code\\nor the alg, that was finally decided upon as the best (as I recall it\\nwas a nice, iterative subdivision meathod), I would be very \\nappreciative.\\n\\t\\t\\t\\t\\t\\t\\tThomas DeWeese\\ndeweeset@rdrc.rpi.edu\\n\",\n", - " \"From: diablo.UUCP!cboesel (Charles Boesel)\\nSubject: Alias phone number wanted\\nOrganization: Diablo Creative\\nReply-To: diablo.UUCP!cboesel (Charles Boesel)\\nX-Mailer: uAccess LITE - Macintosh Release: 1.6v2\\nLines: 9\\n\\nWhat is the phone number for Alias?\\nA toll-free number is preferred, if available.\\n\\nThanks\\n\\n--\\ncharles boesel @ diablo creative | If Pro = for and Con = against\\ncboesel@diablo.uu.holonet.net | Then what's the opposite of Progress?\\n+1.510.980.1958(pager) | What else, Congress.\\n\",\n", - " 'From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: NEWS YOU MAY HAVE MISSED, Apr 20\\nOrganization: Bellcore, Livingston, NJ\\nSummary: Totally Unbiased Magazine\\nLines: 134\\n\\nIn article <1qu7op$456@genesis.MCS.COM>, arf@genesis.MCS.COM (Jack Schmidling) writes:\\n> \\n> NEWS YOU MAY HAVE MISSED, APR 19, 1993\\n> \\n> Not because you were too busy but because\\n> Israelists in the US media spiked it.\\n> \\n> ................\\n> \\n> \\n> THOSE INTREPID ISRAELI SOLDIERS\\n> \\n> \\n> Israeli soldiers have sexually taunted Arab women in the occupied Gaza Strip \\n> during the three-week-long closure that has sealed Palestinians off from the \\n> Jewish state, Palestinian sources said on Sunday.\\n> \\n> The incidents occurred in the town of Khan Younis and involved soldiers of\\n> the Golani Brigade who have been at the centre of house-to-house raids for\\n> Palestinian activists during the closure, which was imposed on the strip and\\n> occupied West Bank.\\n> \\n> Five days ago girls at the Al-Khansaa secondary said a group of naked\\n> soldiers taunted them, yelling: ``Come and kiss me.\\'\\' When the girls fled, \\n> the soldiers threw empty bottles at them.\\n> \\n> On Saturday, a group of soldiers opened their shirts and pulled down their\\n> pants when they saw girls from Al-Khansaa walking home from school. Parents \\n> are considering keeping their daughters home from the all-girls school.\\n> \\n> The same day, soldiers harassed two passing schoolgirls after a youth\\n> escaped from them at a boys\\' secondary school. Deputy Principal Srur \\n> Abu-Jamea said they shouted abusive language at the girls, backed them \\n> against a wall, and put their arms around them.\\n> \\n> When teacher Hamdan Abu-Hajras intervened the soldiers kicked him and beat\\n> him with the butts of their rifles.\\n> \\n> On Tuesday, troops stopped a car driven by Abdel Azzim Qdieh, a practising\\n> Moslem, and demanded he kiss his female passenger. Qdieh refused, the \\n> soldiers hit him and the 18-year-old passenger kissed him to stop the \\n> beating.\\n> \\n> On Friday, soldiers entered the home of Zamno Abu-Ealyan, 60, blindfolded\\n> him and his wife, put a music tape on a recorder and demanded they dance. As\\n> the elderly couple danced, the soldiers slipped away. The coupled continued\\n> dancing until their grandson came in and asked what was happening.\\n> \\n> The army said it was checking the reports.\\n> \\n> ....................\\n> \\n> \\n> ISRAELI TROOPS BAR CHRISTIANS FROM JERUSALEM\\n> \\n> Israeli troops prevented Christian Arabs from entering Jerusalem on Thursday \\n> to celebrate the traditional mass of the Last Supper.\\n> \\n> Two Arab priests from the Greek Orthodox church led some 30 worshippers in\\n> prayer at a checkpoint separating the occupied West Bank from Jerusalem after\\n> soldiers told them only people with army-issued permits could enter.\\n> \\n> ``Right now, our brothers are celebrating mass in the Church of the Holy\\n> Sepulchre and we were hoping to be able to join them in prayer,\\'\\' said Father\\n> George Makhlouf of the Ramallah Parish.\\n> \\n> Israel sealed off the occupied lands two weeks ago after a spate of\\n> Palestinian attacks against Jews. The closure cut off Arabs in the West Bank\\n> and Gaza Strip from Jerusalem, their economic, spiritual and cultural centre.\\n> \\n> Father Nicola Akel said Christians did not want to suffer the humiliation\\n> of requesting permits to reach holy sites.\\n> \\n> Makhlouf said the closure was discriminatory, allowing Jews free movement\\n> to take part in recent Passover celebrations while restricting Christian\\n> celebrations.\\n> \\n> ``Yesterday, we saw the Jews celebrate Passover without any interruption.\\n> But we cannot reach our holiest sites,\\'\\' he said.\\n> \\n> An Israeli officer interrupted Makhlouf\\'s speech, demanding to see his\\n> identity card before ordering the crowd to leave.\\n> \\n> ...................\\n> \\n> \\n> \\n> If you are as revolted at this as I am, drop Israel\\'s best friend email and \\n> let him know what you think.\\n> \\n> \\n> 75300.3115@compuserve.com (via CompuServe)\\n> clintonpz@aol.com (via America Online)\\n> clinton-hq@campaign92.org (via MCI Mail)\\n> \\n> \\n> Tell \\'em ARF sent ya.\\n> \\n> ..................................\\n> \\n> If you are tired of \"learning\" about American foreign policy from what is \\n> effectively, Israeli controlled media, I highly recommend checking out the \\n> Washington Report. A free sample copy is available by calling the American \\n> Education Trust at:\\n> (800) 368 5788\\n> \\n> Tell \\'em arf sent you.\\n> \\n> js\\n> \\n> \\n> \\n\\nI took your advice and ordered a copy of the Washinton Report. I\\nheartily recommend it to all pro-Israel types for the following \\nreasons:\\n\\n1. It is an excellent absorber of excrement. I use it to line\\n the bottom of my parakeet\\'s cage. A negative side effect is\\n that my bird now has a somewhat warped view of the mideast.\\n\\n2. It makes a great April Fool\\'s joke, i.e., give it to someone\\n who knows nothing about the middle east and then say \"April\\n Fools\".\\n\\nAnyway, I plan to call them up every month just to keep getting\\nthose free sample magazines (you know how cheap we Jews are).\\n\\nBTW, when you call them, tell \\'em barf sent you.\\n\\nJust Kidding,\\n\\nBen.\\n\\n',\n", - " 'From: hernlem@chess.ncsu.edu (Brad Hernlem)\\nSubject: Israeli Media (was Re: Israeli Terrorism)\\nReply-To: hernlem@chess.ncsu.edu (Brad Hernlem)\\nOrganization: NCSU Chem Eng\\nLines: 33\\n\\n\\nIn article <2BD9C01D.11546@news.service.uci.edu>, tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n|> In article <1993Apr24.203620.6531@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n|> >I think the Israeli press might be a tad bit biased in\\n|> >reporting the events. I doubt the Propaganda machine of Goering\\n|> >reported accurately on what was happening in Germany. It is\\n|> >interesting that you are basing the truth on Israeli propaganda.\\n|> \\n|> Since one is also unlikely to get \"the truth\" from either Arab or \\n|> Palestinian news outlets, where do we go to \"understand\", to learn? \\n|> Is one form of propoganda more reliable than another? The only way \\n|> to determine that is to try and get beyond the writer\\'s \"political\\n|> agenda\", whether it is \"on\" or \"against\" our *side*.\\n|> \\n|> Tim \\n\\nTo Andi,\\n\\nI have to disagree with you about the value of Israeli news sources. If you\\nwant to know about events in Palestine it makes more sense to get the news\\ndirectly from the source. EVERY news source is inherently biased to some\\nextent and for various reasons, both intentional and otherwise. However, \\nthe more sources relied upon the easier it is to see the \"truth\" and to discern \\nthe bias. \\n\\nGo read or listen to some Israeli media. You will learn more news and more\\nopinion about Israel and Palestine by doing so. Then you can form your own\\nopinions and hopefully they will be more informed even if your views don\\'t \\nchange.\\n\\nBrad Hernlem (hernlem@chess.ncsu.EDU)\\nJake can call me Doctor Mohandes Brad \"Ali\" Hernlem (as of last Wednesday)\\n',\n", - " \"From: oehler@picard.cs.wisc.edu (Eric Oehler)\\nSubject: Translating TTTDDD to DXF or Swiv3D.\\nArticle-I.D.: cs.1993Apr6.020751.13389\\nDistribution: usa\\nOrganization: University of Wisconsin, Madison -- Computer Sciences Dept.\\nLines: 8\\n\\nI am a Mac-user when it comes to graphics (that's what I own software and hardware for) and\\nI've recently come across a large number of TTTDDD format modeling databases. Is there any\\nsoftware, mac or unix, for translating those to something I could use, like DXF? Please\\nreply via email.\\n\\nThanx.\\nEric Oehler\\noehler@picard.cs.wisc.edu\\n\",\n", - " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Re: Vulcan? No, not Spock or Haphaestus\\nOrganization: NASA Langley Research Center\\nLines: 16\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\n> Another legend with the name Vulcan was the planet, much like Earth,\\n> in the same orbit\\n\\nThere was a Science fiction movie sometime ago (I do not remember its \\nname) about a planet in the same orbit of Earth but hidden behind the \\nSun so it could never be visible from Earth. Turns out that that planet \\nwas the exact mirror image of Earth and all its inhabitants looked like \\nthe Earthings with the difference that their organs was in the opposite \\nside like the heart was in the right side instead in the left and they \\nwould shake hands with the left hand and so on...\\n\\n C.O.EGALON@LARC.NASA.GOV\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", - " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Re: Space Station Redesign Chief Resigns for Health Reasons\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 30\\nDistribution: world\\nNNTP-Posting-Host: tm0006.lerc.nasa.gov\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article , xrcjd@mudpuppy.gsfc.nasa.gov (Charles J. Divine) writes...\\n>Writer Kathy Sawyer reported in today\\'s Washington Post that Joseph Shea, the \\n>head of the space station redesign has resigned for health reasons.\\n> \\n>Shea was hospitalized shortly after his selection in February. He returned\\n>yesterday to lead the formal presentation to the independent White House panel.\\n>Shea\\'s presentation was rambling and almost inaudible.\\n\\nI missed the presentations given in the morning session (when Shea gave\\nhis \"rambling and almost inaudible\" presentation), but I did attend\\nthe afternoon session. The meeting was in a small conference room. The\\nspeaker was wired with a mike, and there were microphones on the table for\\nthe panel members to use. Peons (like me) sat in a foyer outside the\\nconference room, and watched the presentations on closed circuit TV. In\\ngeneral, the sound system was fair to poor, and some of the other\\nspeakers (like the committee member from the Italian Space Agency)\\nalso were \"almost inaudible.\"\\n\\nShea didn\\'t \"lead the formal presentation,\" in the sense of running\\nor guiding the presentation. He didn\\'t even attend the afternoon\\nsession. Vest ran the show (President of MIT, the chair of the\\nadvisory panel).\\n\\n> \\n>Shea\\'s deputy, former astronaut Bryan O\\'Connor, will take over the effort.\\n\\nNote that O\\'Connor has been running the day-to-day\\noperations of the of the redesign team since Shea got sick (which\\nwas immediately after the panel was formed).\\n\\n',\n", - " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 47\\n\\nIn emarsh@hernes-sun.Eng.Sun.COM (Eric \\nMarsh) writes:\\n\\n>In article lis450bw@ux1.cso.uiuc.edu (lis450 \\nStudent) writes:\\n>>Hmmmm. Define objective morality. Well, depends upon who you talk to.\\n>>Some say it means you can\\'t have your hair over your ears, and others say\\n>>it means Stryper is acceptable. _I_ would say that general principles\\n>>of objective morality would be listed in one or two places.\\n\\n>>Ten Commandments\\n\\n>>Sayings of Jesus\\n\\n>>the first depends on whether you trust the Bible, \\n\\n>>the second depends on both whether you think Jesus is God, and whether\\n>> you think we have accurate copies of the NT.\\n\\n>Gong!\\n\\n>Take a moment and look at what you just wrote. First you defined\\n>an \"objective\" morality and then you qualified this \"objective\" morality\\n>with subjective justifications. Do you see the error in this?\\n\\n>Sorry, you have just disqualified yourself, but please play again.\\n\\n>>MAC\\n>>\\n\\n>eric\\n\\nHuh? Please explain. Is there a problem because I based my morality on \\nsomething that COULD be wrong? Gosh, there\\'s a heck of a lot of stuff that I \\nbelieve that COULD be wrong, and that comes from sources that COULD be wrong. \\nWhat do you base your belief on atheism on? Your knowledge and reasoning? \\nCOuldn\\'t that be wrong?\\n\\nMAC\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: He has risen!\\nOrganization: Case Western Reserve University\\nLines: 16\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\n\\n\\n\\tOur Lord and Savior David Keresh has risen!\\n\\n\\n\\tHe has been seen alive!\\n\\n\\n\\tSpread the word!\\n\\n\\n\\n\\n--------------------------------------------------------------------------------\\n\\t\\t\\n\\t\\t\"My sole intention was learning to fly.\"\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: While Armenians destroyed all the Moslem villages in the plain...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 48\\n\\nIn article <1pol62INNa5u@cascade.cs.ubc.ca> kvdoel@cs.ubc.ca (Kees van den Doel) writes:\\n\\n>>See, you are a pathological liar.\\n\\n>You got a crack in your record I think. \\n\\nThis is the point we seem to disagree about. Not a chance.\\n\\n>I keep seeing that line over and over. That\\'s pathetic, even for \\n>Serdar Argic!\\n\\nWell, \"Arromdian\" of ASALA/SDPA/ARF Terrorism and Revisionism Triangle\\nis a compulsive liar. Now try dealing with the rest of what I wrote.\\n\\nU.S. Ambassador Bristol:\\n\\nSource: \"U.S. Library of Congress:\" \\'Bristol Papers\\' - General Correspondence\\nContainer #34.\\n\\n \"While the Dashnaks were in power they did everything in the world to keep the\\n pot boiling by attacking Kurds, Turks and Tartars; by committing outrages\\n against the Moslems; by massacring the Moslems; and robbing and destroying\\n their homes;....During the last two years the Armenians in Russian Caucasus\\n have shown no ability to govern themselves and especially no ability to \\n govern or handle other races under their power.\"\\n\\nA Kurdish scholar:\\n\\nSource: Hassan Arfa, \"The Kurds,\" (London, 1968), pp. 25-26.\\n\\n \"When the Russian armies invaded Turkey after the Sarikamish disaster \\n of 1914, their columns were preceded by battalions of irregular \\n Armenian volunteers, both from the Caucasus and from Turkey. One of \\n these was commanded by a certain Andranik, a blood-thirsty adventurer.\\n These Armenian volunteers committed all kinds of excesses, more\\n than six hundred thousand Kurds being killed between 1915 and 1916 in \\n the eastern vilayets of Turkey.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " \"From: tdawson@llullaillaco.engin.umich.edu (Chris Herringshaw)\\nSubject: Re: Sun IPX root window display - background picture\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 15\\nDistribution: world\\nNNTP-Posting-Host: llullaillaco.engin.umich.edu\\nKeywords: sun ipx background picture\\nOriginator: tdawson@llullaillaco.engin.umich.edu\\n\\n\\nI'm not sure if you got the information you were looking for, so I'll\\npost it anyway for the general public. To load an image on your root\\nwindow add this line to the end of your .xsession file:\\n\\n xloadimage -onroot -fullscreen &\\n\\nThis is assuming of course you have the xloadimage client, and as\\nfor the switches, I think they pretty much explain what is going on.\\nIf you leave out the <&>, the terminal locks till you kill it.\\n(You already knew that though...)\\n\\nHope this helps.\\n\\nDaemon\\n\",\n", - " \"From: arthurc@sfsuvax1.sfsu.edu (Arthur Chandler)\\nSubject: Stereo Pix of planets?\\nOrganization: California State University, Sacramento\\nLines: 5\\n\\nCan anyone tell me where I might find stereo images of planetary and\\nplanetary satellite surfaces? GIFs preferred, but any will do. I'm\\nespecially interested in stereos of the surfaces of Phobos, Deimos, Mars\\nand the Moon (in that order).\\n Thanks. \\n\",\n", - " 'Subject: Re: If You Feed Armenians Dirt -- You Will Bite Dust!\\nFrom: senel@vuse.vanderbilt.edu (Hakan)\\nOrganization: Vanderbilt University\\nSummary: Armenians correcting the geo-political record.\\nNntp-Posting-Host: snarl02\\nLines: 18\\n\\nIn article <1993Apr5.194120.7010@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n\\n>In article <1993Apr5.064028.24746@kth.se> hilmi-er@dsv.su.se (Hilmi Eren) \\n>writes:\\n\\n>David Davidian says: Armenians have nothing to lose! They lack food, fuel, and\\n>warmth. If you fascists in Turkey want to show your teeth, good for you! Turkey\\n>has everything to lose! You can yell and scream like barking dogs along the \\n\\nDavidian, who are fascists? Armenians in Azerbaijan are killing Azeri \\npeople, invading Azeri soil and they are not fascists, because they \\nlack food ha? Strange explanation. There is no excuse for this situation.\\n\\nHerkesi fasist diye damgala sonra, kendileri fasistligin alasini yapinca,\\n\"ac kaldilar da, yiyecekleri yok amcasi, bu seferlik affedin\" de. Yurrruuu, \\nyuru de plaka numarani alalim......\\n\\nHakan\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Level 5?\\nOrganization: Texas Instruments Inc\\nDistribution: sci\\nLines: 33\\n\\nIn 18084TM@msu.edu (Tom) writes:\\n\\n\\n>Nick Haines sez;\\n>>(given that I\\'ve heard the Shuttle software rated as Level 5 in\\n>>maturity, I strongly doubt that this [having lots of bugs] is the case).\\n\\n>Level 5? Out of how many? What are the different levels? I\\'ve never\\n>heard of this rating system. Anyone care to clue me in?\\n\\nSEI Level 5 (the highest level -- the SEI stands for Software\\nEngineering Institute). I\\'m not sure, but I believe that this rating\\nonly applies to the flight software. Also keep in mind that it was\\n*not* achieved through the use of sophisticated tools, but rather\\nthrough a \\'brute force and ignorance\\' attack on the problem during the\\nChallenger standdown - they simply threw hundreds of people at it and\\ndid the whole process by hand. I would not consider receiving a \\'Warning\\'\\nstatus on systems which are not yet in use would detract much (if\\nanything) from such a rating -- I\\'ll have to get the latest copy of\\nthe guidelines to make sure (they just issued new ones, I think).\\n\\nAlso keep in mind that the SEI levels are concerned primarily with\\ncontrol of the software process; the assumption is that a\\nwell controlled process will produce good software. Also keep in mind\\nthat SEI Level 5 is DAMNED HARD. Most software in this country is\\nproduced by \\'engineering practicies\\' that only rate an SEI Level 1 (if\\nthat). \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Deriving Pleasure from Death\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 13\\n\\n\\n>them. (By the way, I do not applaud the killing of _any_ human being,\\n>including prisoners sentenced to death by our illustrious justice department)\\n>\\n>Peace.\\n>-marc\\n>\\n\\nBoy, you really are a stupid person. Our justice department does\\nnot sentence people to death. That's up to state courts. Again,\\nget a brain.\\n\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Method employed by the Armenians in \\'Genocide of the Muslim People\\'.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 28\\n\\nSource: \"Men Are Like That\" by Leonard Ramsden Hartill. The Bobbs-Merrill\\nCompany, Indianapolis (1926). (305 pages). \\n(Memoirs of an Armenian officer who participated in the genocide of 2.5 \\n million Muslim people)\\n\\n\\np. 133 (first paragraph)\\n\\n\"In this movement we took with us three thousand Turkish soldiers who\\n had been captured by the Russians and left on our hands when the Russians\\n abandoned the struggle. During our retreat to Karaklis two thousand of\\n these poor devils were cruelly put to death. I was sickened by the\\n brutality displayed, but could not make any effective protest. Some,\\n mercifully, were shot. Many of them were burned to death. The method\\n employed was to put a quantity of straw into a hut, and then after\\n crowding the hut with Turks, set fire to the straw.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: jbrown@batman.bmd.trw.com\\nSubject: Re: Gulf War and Peace-niks\\nLines: 67\\n\\nIn article <1993Apr20.062328.19776@bmerh85.bnr.ca>, \\ndgraham@bmers30.bnr.ca (Douglas Graham) writes:\\n\\n[...]\\n> \\n> Wait a minute. You said *never* play a Chamberlain. Since the US\\n> *is* playing Chamberlain as far as East Timor is concerned, wouldn\\'t\\n> that lead you to think that your argument is irrelevant and had nothing\\n> to do with the Gulf War? Actually, I rather like your idea. Perhaps\\n> the rest of the world should have bombed (or maybe missiled) Washington\\n> when the US invaded Nicaragua, Grenada, Panama, Vietnam, Mexico, Hawaii,\\n> or any number of other places.\\n\\nWait a minute, Doug. I know you are better informed than that. The US \\nhas never invaded Nicaragua (as far as I know). We liberated Grenada \\nfrom the Cubans\\tto protect US citizens there and to prevent the completion \\nof a strategic air strip. Panama we invaded, true (twice this century). \\nVietnam? We were invited in by the government of S. Vietnam. (I guess \\nwe \"invaded\" Saudi Arabia during the Gulf War, eh?) Mexico? We have \\ninvaded Mexico 2 or 3 times, once this century, but there were no missiles \\nfor anyone to shoot over here at that time. Hawaii? We liberated it from \\nSpain.\\n\\nSo if you mean by the word \"invaded\" some sort of military action where\\nwe cross someone\\'s border, you are right 5 out of 6. But normally\\n\"invaded\" carries a connotation of attacking an autonomous nation.\\n(If some nation \"invades\" the U.S. Virgin Islands, would they be\\ninvading the Virgin Islands or the U.S.?) So from this point of\\nview, your score falls to 2 out of 6 (Mexico, Panama).\\n\\n[...]\\n> \\n> What\\'s a \"peace-nik\"? Is that somebody who *doesn\\'t* masturbate\\n> over \"Guns\\'n\\'Ammo\" or what? Is it supposed to be bad to be a peace-nik?\\n\\nNo, it\\'s someone who believes in \"peace-at-all-costs\". In other words,\\na person who would have supported giving Hitler not only Austria and\\nCzechoslakia, but Poland too if it could have averted the War. And one\\nwho would allow Hitler to wipe all *all* Jews, slavs, and political \\ndissidents in areas he controlled as long as he left the rest of us alone.\\n\\n\"Is it supposed to be bad to be a peace-nik,\" you ask? Well, it depends\\non what your values are. If you value life over liberty, peace over\\nfreedom, then I guess not. But if liberty and freedom mean more to you\\nthan life itself; if you\\'d rather die fighting for liberty than live\\nunder a tyrant\\'s heel, then yes, it\\'s \"bad\" to be a peace-nik.\\n\\nThe problem with most peace-niks it they consider those of us who are\\nnot like them to be \"bad\" and \"unconscionable\". I would not have any\\nargument or problem with a peace-nik if they held to their ideals and\\nstayed out of all conflicts or issues, especially those dealing with \\nthe national defense. But no, they are not willing to allow us to\\nlegitimately hold a different point-of-view. They militate and \\nmany times resort to violence all in the name of peace. (What rank\\nhypocrisy!) All to stop we \"warmongers\" who are willing to stand up \\nand defend our freedoms against tyrants, and who realize that to do\\nso requires a strong national defense.\\n\\nTime to get off the soapbox now. :)\\n\\n[...]\\n> --\\n> Doug Graham dgraham@bnr.ca My opinions are my own.\\n\\nRegards,\\n\\nJim B.\\n',\n", - " 'From: geigel@seas.gwu.edu (Joseph Geigel)\\nSubject: Looking for AUTOCAD .DXF file parser\\nOrganization: George Washington University\\nLines: 16\\n\\n\\n Hello...\\n\\n Does anyone know of any C or C++ function libraries in the public domain\\n that assist in parsing an AUTOCAD .dxf file? \\n\\n Please e-mail.\\n\\n\\n Thanks,\\n\\n-- \\n\\n -- jogle\\n geigel@seas.gwu.edu\\n\\n',\n", - " 'From: JDB1145@tamvm1.tamu.edu\\nSubject: Re: A Little Too Satanic\\nOrganization: Texas A&M University\\nLines: 21\\nNNTP-Posting-Host: tamvm1.tamu.edu\\n\\nIn article <65934@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n>\\n>Nanci Ann Miller writes:\\n>\\n]The \"corrupted over and over\" theory is pretty weak. Comparison of the\\n]current hebrew text with old versions and translations shows that the text\\n]has in fact changed very little over a space of some two millennia. This\\n]shouldn\\'t be all that suprising; people who believe in a text in this manner\\n]are likely to makes some pains to make good copies.\\n \\nTell it to King James, mate.\\n \\n]C. Wingate + \"The peace of God, it is no peace,\\n] + but strife closed in the sod.\\n]mangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\n]tove!mangoe + the marv\\'lous peace of God.\"\\n \\n \\nJohn Burke, jdb1145@summa.tamu.edu\\n',\n", - " 'From: mau@herky.cs.uiowa.edu (Mau Napoleon)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nNntp-Posting-Host: herky.cs.uiowa.edu\\nOrganization: University of Iowa, Iowa City, IA, USA\\nLines: 63\\n\\nFrom article <1993Apr15.092101@IASTATE.EDU>, by tankut@IASTATE.EDU (Sabri T Atan):\\n> Well, Panos, Mr. Tamamidis?, the way you put it it is only the Turks\\n> who bear the responsibility of the things happening today. That is hard to\\n> believe for somebody trying to be objective.\\n> When it comes to conflicts like our countries having you cannot\\n> blame one side only, there always are bad guys on both sides.\\n> What were you doing on Anatolia after the WW1 anyway?\\n> Do you think it was your right to be there?\\n\\nThere were a couple millions of Greeks living in Asia Minor until 1923.\\nSomeone had to protect them. If not us who??\\n\\n> I am not saying that conflicts started with that. It is only\\n> not one side being the aggressive and the ither always suffering.\\n> It is sad that we (both) still are not trying to compromise.\\n> I remember the action of the Turkish government by removing the\\n> visa requirement for greeks to come to Turkey. I thought it\\n> was a positive attempt to make the relations better.\\n> \\nCompromise on what, the invasion of Cyprus, the involment of Turkey in\\nGreek politics, the refusal of Turkey to accept 12 miles of territorial\\nwaters as stated by international law, the properties of the Greeks of \\nKonstantinople, the ownership of the islands in the Greek lake,sorry, Aegean.\\n\\nThere are some things on which there can not be a compromise.\\n\\n\\n> The Greeks I mentioned who wouldn\\'t talk to me are educated\\n> people. They have never met me but they know! I am bad person\\n> because I am from Turkey. Politics is not my business, and it is\\n> not the business of most of the Turks. When it comes to individuals \\n> why the hatred?\\n\\nAny person who supports the policies of the Turkish goverment directly or\\nindirecly is a \"bad\" person.\\nIt is not your nationality that makes you bad, it is your support of the\\nactions of your goverment that make you \"bad\".\\nPeople do not hate you because of who you are but because of what you\\nare. You are a supporter of the policies of the Turkish goverment and\\nas a such you must pay the price.\\n\\n> So that makes me think that there is some kind of\\n> brainwashing going on in Greece. After all why would an educated person \\n> treat every person from a nation the same way? can you tell me about your \\n> history books and things you learn about Greek-Turkish\\n> encounters during your schooling. \\n> take it easy! \\n> \\n> --\\n> Tankut Atan\\n> tankut@iastate.edu\\n> \\n> \"Achtung, baby!\"\\n\\nYou do not need brainwashing to turn people against the Turks. Just talk to\\nGreeks, Arabs, Slavs, Kurds and all other people who had the luck to be under\\nTurkish occupation.\\nThey will talk to you about murders,rapes,distruction.\\n\\nYou do not learn about Turks from history books, you learn about them from\\npeople who experienced first hand Turkish friendliness.\\n\\nNapoleon\\n',\n", - " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 8\\n\\nKeith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n\\n: \\tNice cop out bill.\\n\\nI'm sure you're right, but I have no idea to what you refer. Would you\\nmind explaining how I copped out?\\n\\nBill\\n\",\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: Final Solution for Gaza ?\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 66\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: Final Solution for Gaza ?\\n>\\n>While Israeli Jews fete the uprising of the Warsaw ghetto,\\n\\n\"fete\"??? Since this word both formally and commonly refers to\\npositive/joyous events, your misuse of it here is rather unsettling.\\n \\n>they repress by violent means the uprising of the Gaza ghetto \\n>and attempt to starve the Gazans.\\n\\nI certainly abhor those Israeli policies and attitudes that are\\nabusive towards the Palestinians/Gazans. Given that, however, there \\n*is no comparison* between the reality of the Warsaw Ghetto and in \\nGaza. \\n>\\n>The right of the Gazan population to resist occupation is\\n>recognized in international law and by any person with a sense of\\n>justice. \\n\\nJust as international law recognizes the right of the occupying \\nentity to maintain order, especially in the face of elements\\nthat are consciously attempting to disrupt the civil structure. \\nIronically, international law recognizes each of these focusses\\n(that of the occupied and the occupier) even though they are \\ninherently in conflict.\\n>\\n>As Israel denies Gazans the only two options which are compatible\\n>with basic human rights and international law, that of becoming\\n>Israeli citizens with full rights or respecting their right for\\n>self-determination, it must be concluded that the Israeli Jewish\\n>society does not consider Gazans full human beings.\\n\\nIsrael certainly cannot, and should not, continue its present\\npolicies towards Gazan residents. There is, however, a third \\nalternative- the creation and implementation of a jewish \"dhimmi\"\\nsystem with Gazans/Palestinians as benignly \"protected\" citizens.\\nWould you find THAT as acceptable in that form as you do with\\nregard to Islam\\'s policies towards its minorities?\\n \\n>Whether they have some Final Solution up their sleeve ?\\n\\nIt is a race, then? Between Israel\\'s anti-Palestinian/Gazan\\n\"Final Solution\" and the Arab World\\'s anti-Israel/jewish\\n\"Final Solution\". Do you favor one? neither? \\n>\\n>I urge all those who have slight human compassion to do whatever\\n>they can to help the Gazans regain their full human, civil and\\n>political rights, to which they are entitled as human beings.\\n\\nSince there is justifiable worry by various parties that Israel\\nand Arab/Palestinian \"final solution\" intentions exist, isn\\'t it\\nimportant that BOTH Israeli *and* Palestinian/Gazan \"rights\"\\nbe secured?\\n>\\n>Elias Davidsson Iceland\\n>\\n\\n\\n--\\nTim Clock Ph.D./Graduate student\\nUCI tel#: 714,8565361 Department of Politics and Society\\n fax#: 714,8568441 University of California - Irvine\\nHome tel#: 714,8563446 Irvine, CA 92717\\n',\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: thoughts on christians\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 24\\n\\nKent Sandvik (sandvik@newton.apple.com) wrote:\\n\\n\\n: > This is a good point, but I think \"average\" people do not take up Christianity\\n: > so much out of fear or escapism, but, quite simply, as a way to improve their\\n: > social life, or to get more involved with American culture, if they are kids of\\n: > immigrants for example. Since it is the overwhelming major religion in the\\n: > Western World (in some form or other), it is simply the choice people take if\\n: > they are bored and want to do something new with their lives, but not somethong\\n: > TOO new, or TOO out of the ordinary. Seems a little weak, but as long as it\\n: > doesn\\'t hurt anybody...\\n\\n: The social pressure is indeed a very important factor for the majority\\n: of passive Christians in our world today. In the case of early Christianity\\n: the promise of a heavenly afterlife, independent of your social status,\\n: was also a very promising gift (reason slaves and non-Romans accepted\\n: the religion very rapidly).\\n\\nIf this is a hypothetical proposition, you should say so, if it\\'s\\nfact, you should cite your sources. If all this is the amateur\\nsociologist sub-branch of a.a however, it would suffice to alert the\\nunwary that you are just screwing around ...\\n\\nBill\\n',\n", - " \"From: neideck@nestvx.enet.dec.com (Burkhard Neidecker-Lutz)\\nSubject: Re: Rumours about 3DO ???\\nOrganization: CEC Karlsruhe\\nLines: 17\\nNNTP-Posting-Host: NESTVX\\n\\nIn article <1993Apr15.164940.11632@mercury.unt.edu> Sean McMains writes:\\n>Wow! A 68070! I'd be very interested to get my hands on one of these,\\n>especially considering the fact that Motorola has not yet released the\\n>68060, which is supposedly the next in the 680x0 lineup. 8-D\\n\\nThe 68070 is a variation of the 68010 that was done a few years ago by\\nthe European partners of Motorola. It has some integrated I/O controllers\\nand half a MMU, but otherwise it's a 68010. Think of it the same as\\nthe 8086 and 80186 were.\\n\\n\\t\\tBurkhard Neidecker-Lutz\\n\\nDistributed Multimedia Group, CEC Karlsruhe EERP Portfolio Manager\\nSoftware Motion Pictures & BERKOM II Project Multimedia Base Technology\\nDigital Equipment Corporation\\nneidecker@nestvx.enet.dec.com\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: DESTROYING ETHNIC IDENTITY: TURKS OF GREECE (& Macedonians...)\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 145\\n\\nIn article ptg2351@uxa.cso.uiuc.edu (Panos Tamamidis ) writes:\\n\\n>> Sure your memory is weak. \\n>> Let me refresh your memory (if that\\'s not to late):\\n\\n>> First of all: it is called ISTANBUL. \\n>> Let me even spell it for you: I S T A N B U L\\n\\n> When my grandfather came in Greece, the official name of the city was\\n> Constantinoupolis. \\n\\nAre you related to \\'Arromdian\\' of ASALA/SDPA/ARF Terrorism and Revisionism \\nTriangle?\\n\\n>Now, read carefully the following, and then speak:\\n>The recent Helsinki Watch 78 page report, Broken Promises: Torture and\\n\\nDitto.\\n\\n|1|\\n\\nHELSINKI WATCH: \"PROBLEMS OF TURKS IN WESTERN THRACE CONTINUE\"\\n\\nAnkara (A.A) In a 15-page report of the \"Helsinki Watch\" it is\\nstated that the Turkish minority in Western Thrace is still faced\\nwith problems and stipulated that the discriminatory policy being\\nimplemented by the Greek Government be brought to an end.\\n\\nThe report on Western Thrace emphasized that the Greek government\\nshould grant social and political rights to all the members of\\nminorities that are equal to those enjoyed by Greek citizens and\\nin addition they must recognize the existence of the \"Turkish\\nMinority\" in Western Thrace and grant them the right to identify\\nthemselves as \\'Turks\\'.\\n\\nNEWSPOT, May 1992\\n\\n|2|\\n\\nGREECE ISOLATES WEST THRACE TURKS\\n\\nThe Xanthi independent MP Ahmet Faikoglu said that the Greek\\nstate is trying to cut all contacts and relations of the Turkish\\nminority with Turkey.\\n\\nPointing out that while the Greek minority living in Istanbul is\\ncalled \"Greek\" by ethnic definition, only the religion of the\\nminority in Western Thrace is considered. In an interview with\\nthe Greek newspaper \"Ethnos\" he said: \"I am a Greek citizen of\\nTurkish origin. The individuals of the minority living in Western\\nTrace are also Turkish.\"\\n\\nEmphasizing the education problem for the Turkish minority in\\nWestern Thrace Faikoglu said that according to an agreement\\nsigned in 1951 Greece must distribute textbooks printed in Turkey\\nin Turkish minority schools in Western Thrace.\\n\\nRecalling his activities and those of Komotini independent MP Dr.\\nSadIk Ahmet to defend the rights of the Turkish minority,\\nFaikoglu said. \"In fact we helped Greece. Because we prevented\\nGreece, the cradle of democracy, from losing face before European\\ncountries by forcing the Greek government to recognize our legal\\nrights.\"\\n\\nOn Turco-Greek relations, he pointed out that both countries are\\npredestined to live in peace for geographical and historical\\nreasons and said that Turkey and Greece must resist the foreign\\npowers who are trying to create a rift between them by\\ncooperating, adding that in Turkey he observed that there was\\nwill to improve relations with Greece.\\n\\nNEWSPOT, January 1993\\n\\n|3|\\n\\nMACEDONIAN HUMAN RIGHTS ACTIVISTS TO FACE TRIAL IN GREECE.\\n\\nTwo ethnic Macedonian human rights activists will face trial in\\nAthens for alleged crimes against the Greek state, according to a\\nCourt Summons (No. 5445) obtained by MILS.\\n\\n Hristos Sideropoulos and Tashko Bulev (or Anastasios Bulis)\\nhave been charged under Greek criminal law for making comments in\\nan Athenian magazine.\\n\\n Sideropoulos and Bulev gave an interview to the Greek weekly\\nmagazine \"ENA\" on March 11, 1992, and said that they as\\nMacedonians were denied basic human rights in Greece and would\\nfield an ethnic Macedonian candidate for the up-coming Greek\\ngeneral election.\\n\\n Bulev said in the interview: \"I am not Greek, I am Macedonian.\"\\nSideropoulos said in the article that \"Greece should recognise\\nMacedonia. The allegations regarding territorial aspirations\\nagainst Greece are tales... We are in a panic to secure the\\nborder, at a time when the borders and barriers within the EEC\\nare falling.\"\\n\\n The main charge against the two, according to the court\\nsummons, was that \"they have spread...intentionally false\\ninformation which might create unrest and fear among the\\ncitizens, and might affect the public security or harm the\\ninternational interests of the country (Greece).\"\\n\\n The Greek state does not recognise the existence of a\\nMacedonian ethnicity. There are believed to be between 350,000 to\\n1,000,000 ethnic Macedonians living within Greece, largely\\nconcentrated in the north. It is a crime against the Greek state\\nif anyone declares themselves Macedonian.\\n\\n In 1913 Greece, Serbia-Yugoslavia and Bulgaria partioned\\nMacedonia into three pieces. In 1919 Albania took 50 Macedonian\\nvillages. The part under Serbo-Yugoslav occupation broke away in\\n1991 as the independent Republic of Macedonia. There are 1.5\\nmillion Macedonians in the Republic; 500,000 in Bulgaria; 150,000\\nin Albania; and 300,000 in Serbia proper.\\n\\n Sideropoulos has been a long time campaigner for Macedonian\\nhuman rights in Greece, and lost his job as a forestry worker a\\nfew years ago. He was even exiled to an obscure Greek island in\\nthe mediteranean. Only pressure from Amnesty International forced\\nthe Greek government to allow him to return to his home town of\\nFlorina (Lerin) in Northern Greece (Aegean Macedonia), where the\\nmajority of ethnic Macedonians live.\\n\\n Balkan watchers see the Sideropoulos affair as a show trial in\\nwhich Greece is desperate to clamp down on internal dissent,\\nespecially when it comes to the issue of recognition for its\\nnorthern neighbour, the Republic of Macedonia.\\n\\n Last year the State Department of the United States condemned\\nGreece for its bad treatment of ethnic Macedonians and Turks (who\\nlargely live in Western Thrace). But it remains to be seen if the\\nUS government will do anything until the Presidential elections\\nare over.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " 'From: perry@dsinc.com (Jim Perry)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: Decision Support Inc.\\nLines: 80\\nNNTP-Posting-Host: dsi.dsinc.com\\n\\n(References: deleted to move this to a new thread)\\n\\nIn article <114133@bu.edu> jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n>In article <1phkf7INN86p@dsi.dsinc.com> perry@dsinc.com (Jim Perry) writes:\\n\\n>>}Rushdie is, however, as I understand, a muslim.\\n>>}The fact that he\\'s a British citizen does not preclude his being muslim.\\n>\\n>>Rushdie was an atheist (to use local terminology, not to put words in\\n>>his mouth) at the time of writing TSV and at the time of the fatwa in\\n>>February 1989.[...]\\n>\\n>Well, if he was born muslim (I am fairly certain he was) then he _is_ \\n>muslim until he explicitly renounces Islam. So far as I know he has never\\n>explicitly renounced Islam, though he may have been in extreme doubt\\n>about the existence of God. Being muslim is a legal as well as\\n>intellectual issue, according to Islam.\\n\\n\"To put it as simply as possible: *I am not a Muslim*.[...] I do not\\n accept the charge of apostacy, because I have never in my adult life\\n affirmed any belief, and what one has not affirmed one can not be\\n said to have apostasized from. The Islam I know states clearly that\\n \\'there can be no coercion in matters of religion\\'. The many Muslims\\n I respect would be horrified by the idea that they belong to their\\n faith *purely by virtue of birth*, and that a person who freely chose\\n not to be a Muslim could therefore be put to death.\"\\n \\t \\t \\t \\tSalman Rushdie, \"In Good Faith\", 1990\\n\\n\"God, Satan, Paradise, and Hell all vanished one day in my fifteenth\\n year, when I quite abruptly lost my faith. [...]and afterwards, to\\n prove my new-found atheism, I bought myself a rather tasteless ham\\n sandwich, and so partook for the first time of the forbidden flesh of\\n the swine. No thunderbolt arrived to strike me down. [...] From that\\n day to this I have thought of myself as a wholly seculat person.\"\\n \\t \\t \\t \\tSalman Rushdie, \"In God We Trust\", 1985\\n \\n>>[I] think the Rushdie affair has discredited Islam more in my eyes than\\n>>Khomeini -- I know there are fanatics and fringe elements in all\\n>>religions, but even apparently \"moderate\" Muslims have participated or\\n>>refused to distance themselves from the witch-hunt against Rushdie.\\n>\\n>Yes, I think this is true, but there Khomenei\\'s motivations are quite\\n>irrelevant to the issue. The fact of the matter is that Rushdie made\\n>false statements (fiction, I know, but where is the line between fact\\n>and fiction?) about the life of Mohammad. \\n\\nOnly a functional illiterate with absolutely no conception of the\\nnature of the novel could think such a thing. I\\'ll accept it\\n(reluctantly) from mobs in Pakistan, but not from you. What is\\npresented in the fictional dream of a demented character cannot by the\\nwildest stretch of the imagination be considered a reflection on the\\nactual Mohammad. What\\'s worse, the novel doesn\\'t present the\\nMahound/Mohammed character in any worse light than secular histories\\nof Islam; in particular, there is no \"lewd\" misrepresentation of his\\nlife or that of his wives.\\n\\n>That is why\\n>few people rush to his defense -- he\\'s considered an absolute fool for \\n>his writings in _The Satanic Verses_. \\n\\nDon\\'t hold back; he\\'s considered an apostate and a blasphemer.\\nHowever, it\\'s not for his writing in _The Satanic Verses_, but for\\nwhat people have accepted as a propagandistic version of what is\\ncontained in that book. I have yet to find *one single muslim* who\\nhas convinced me that they have read the book. Some have initially\\nclaimed to have done so, but none has shown more knowledge of the book\\nthan a superficial Newsweek story might impart, and all have made\\nfactual misstatements about events in the book.\\n\\n>If you wish to understand the\\n>reasons behind this as well has the origin of the concept of \"the\\n>satanic verses\" [...] see the\\n>Penguin paperback by Rafiq Zakariyah called _Mohammad and the Quran_.\\n\\nI\\'ll keep an eye out for it. I have a counter-proposal: I suggest\\nthat you see the Viking hardcover by Salman Rushdie called _The\\nSatanic Verses_. Perhaps then you\\'ll understand.\\n-- \\nJim Perry perry@dsinc.com Decision Support, Inc., Matthews NC\\nThese are my opinions. For a nominal fee, they can be yours.\\n',\n", - " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Re: Space Debris\\nOrganization: NASA Langley Research Center\\nLines: 7\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\nThere is a guy in NASA Johnson Space Center that might answer \\nyour question. I do not have his name right now but if you follow \\nup I can dig that out for you.\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", - " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: Rejetting carbs..\\nKeywords: air pump\\nDistribution: na\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 58\\n\\nIn article jburney@hydra.nodc.noaa.gov (Jeff Burney) writes:\\n>\\n>If we are only talking about 4-stroke (I think I can understand exhaust\\n>pulse affect in a 2-stroke), the intake valve is closed on the\\n>exhaust stroke and the gas is pushed out by the cyclinder. I guess\\n>there is some gas compression that may affect the amount pushed out\\n>but the limiting factor seems to be the header pipe and not the \\n>canister. Meaning: would gases \"so far\" down the line (the canister)\\n>really have an effect on the exhaust stroke? Do the gases really \\n>compress that much?\\n\\n For discussion purposes, I will ignore dynamic effects like pulses\\nin the exhaust pipe, and try to paint a useful mental picture.\\n\\n1. Unless an engine is supercharged, the pressure available to force\\nair into the intake tract is _atmospheric_. At the time the intake\\nvalve is opened, the pressure differential available to move air is only\\nthe difference between the combustion chamber pressure (left over after\\nthe exhaust stroke) and atmospheric. As the piston decends on the\\nintake stroke, combustion chamber pressure is decreased, allowing\\natmospheric pressure to move more air into the intake tract. At no time\\ndoes the pressure ever become \"negative\", or even approach a good\\nvacuum.\\n\\n2. At the time of the exhaust valve closing, the pressure in the\\ncombustion chamber is essentially the pressure of the exhaust system up\\nto the first major flow restriction (the muffler). Note that the volume\\nof gas that must flow through the exhaust is much larger than the volume\\nthat must flow through the intake, because of the temperature\\ndifference and the products of combustion.\\n\\n3. In the last 6-8 years, the Japanese manufacturers have started\\npaying attention to exhaust and intake tuning, in pursuit of almighty\\nhorsepower. At this point in time, on high-performance bikes,\\nsubstitution of an aftermarket free-flow air filter will have almost\\nzero affect on performance, because the stock intake system flows very\\nwell anyway. Substitution of an aftermarket exhaust system will make\\nvery little difference, unless (in general) the new exhaust system is\\n_much_ louder than the stocker.\\n\\n4. On older bikes, exhaust back-pressure was the dominating factor.\\nIf free-flowing air filters were substituted, very little difference\\nwas noted, unless a free-flowing exhaust system was installed as well.\\n\\n5. In general, an engine can be visualized as an air pump. At any\\ngiven RPM, anything that will cause the engine to pump more air, be it\\non the intake or exhaust side, will cause it to produce more horsepower.\\nPumping more air will require recalibration (rejetting) of the carburetor.\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", - " \"From: ari@tahko.lpr.carel.fi (Ari Suutari)\\nSubject: Any graphics packages available for AIX ?\\nOrganization: Carelcomp Oy\\nLines: 24\\nNNTP-Posting-Host: tahko.lpr.carel.fi\\nKeywords: gks graphics\\n\\n\\n\\tDoes anybody know if there are any good 2d-graphics packages\\n\\tavailable for IBM RS/6000 & AIX ? I'm looking for something\\n\\tlike DEC's GKS or Hewlett-Packards Starbase, both of which\\n\\thave reasonably good support for different output devices\\n\\tlike plotters, terminals, X etc.\\n\\n\\tI have tried also xgks from X11 distribution and IBM's implementation\\n\\tof Phigs. Both of them work but we require more output devices\\n\\tthan just X-windows.\\n\\n\\tOur salesman at IBM was not very familiar with graphics and\\n\\tI am not expecting for any good solutions from there.\\n\\n\\n\\t\\tAri\\n\\n---\\n\\n\\tAri Suutari\\t\\t\\tari@carel.fi\\n\\tCarelcomp Oy\\n\\tLappeenranta\\n\\tFINLAND\\n\\n\",\n", - " 'From: jaskew@spam.maths.adelaide.edu.au (Joseph Askew)\\nSubject: Re: Small Astronaut (was: Budget Astronaut)\\nOrganization: Statistics, Pure & Applied Mathematics, University of Adelaide\\nLines: 25\\n\\nIn article <1pfkf5$7ab@access.digex.com> prb@access.digex.com (Pat) writes:\\n\\n>Only one problem with sending a corp of Small astronauts.\\n>THey may want to start a galactic empire:-) Napoleon\\n>complex you know. Genghis Khan was a little guy too. I\\'d bet\\n>Julius caesar never broke 5\\'1\".\\n\\nI think you would lose your money. Julius was actually rather tall\\nfor a Roman. He did go on record as favouring small soldiers though.\\nThought they were tougher and had more guts. He was probably right\\nif you think about it. As for Napoleon remember that the French\\navergae was just about 5 feet and that height is relative! Did he\\nreally have a complex?\\n\\nObSpace : We have all seen the burning candle from High School that goes\\nout and relights. If there is a large hot body placed in space but in an\\natmosphere, exactly how does it heat the surroundings? Diffusion only?\\n\\nJoseph Askew\\n\\n-- \\nJoseph Askew, Gauche and Proud In the autumn stillness, see the Pleiades,\\njaskew@spam.maths.adelaide.edu Remote in thorny deserts, fell the grief.\\nDisclaimer? Sue, see if I care North of our tents, the sky must end somwhere,\\nActually, I rather like Brenda Beyond the pale, the River murmurs on.\\n',\n", - " 'From: mt90dac@brunel.ac.uk (Del Cotter)\\nSubject: Re: Crazy? or just Imaginitive?\\nOrganization: Brunel University, West London, UK\\nLines: 26\\n\\n<1993Apr21.205403.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n\\n>So some of my ideas are a bit odd, off the wall and such, but so was Wilbur and\\n>Orville Wright, and quite a few others.. Sorry if I do not have the big degrees\\n>and such, but I think (I might be wrong, to error is human) I have something\\n>that is in many ways just as important, I have imagination, dreams. And without\\n>dreams all the knowledge is worthless.. \\n\\nOh, and us with the big degrees don\\'t got imagination, huh?\\n\\nThe alleged dichotomy between imagination and knowledge is one of the most\\npernicious fallacys of the New Age. Michael, thanks for the generous\\noffer, but we have quite enough dreams of our own, thank you.\\n\\nYou, on the other hand, are letting your own dreams go to waste by\\nfailing to get the maths/thermodynamics/chemistry/(your choices here)\\nwhich would give your imagination wings.\\n\\nJust to show this isn\\'t a flame, I leave you with a quote from _Invasion of \\nthe Body Snatchers_:\\n\\n\"Become one of us; it\\'s not so bad, you know\"\\n-- \\n \\',\\' \\' \\',\\',\\' | | \\',\\' \\' \\',\\',\\'\\n \\', ,\\',\\' | Del Cotter mt90dac@brunel.ac.uk | \\', ,\\',\\' \\n \\',\\' | | \\',\\' \\n',\n", - " 'From: rlennip4@mach1.wlu.ca (robert lennips 9209 U)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nX-Newsreader: TIN [version 1.1 PL6]\\nOrganization: Wilfrid Laurier University\\nLines: 2\\n\\nPlease get a REAL life.\\n\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Final Solution for Gaza ?\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 31\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n\\n\\tOther people have commented on most of this swill, I figured\\nI\\'d add a few comments of my own.\\n\\n>The Gaza strip, this tiny area of land with the highest population\\n>density in the world, has been cut off from the world for weeks.\\n\\n\\tHong Kong, and Cairo both have higher population densities.\\n\\n>The Israeli occupier has decided to punish the whole population of\\n>Gaza, some 700.000 people, by denying them the right to leave the\\n>strip and seek work in Israel.\\n\\n\\tThere is no fundamental right to work in another country. And\\nthe closing of the strip is not a punishment, it is a security measure\\nto stop people from stabbing Israelis.\\n\\n\\n>The only help given to Gazans by Israeli\\n>Jews, only dozens of people, is humanitarian assistance.\\n\\n\\tDozens minus one, since one of them was stabbed to death a few\\ndays ago.\\n\\n\\tAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: lochem@fys.ruu.nl (Gert-Jan van Lochem)\\nSubject: Dutch: symposium compacte objecten\\nSummary: U wordt uitgenodigd voor het symposium compacte objecten 26-4-93\\nKeywords: compacte objecten, symposium\\nOrganization: Physics Department, University of Utrecht, The Netherlands\\nLines: 122\\n\\nSterrenkundig symposium \\'Compacte Objecten\\'\\n op 26 april 1993\\n\\n\\nIn het jaar 1643, zeven jaar na de oprichting van de\\nUniversiteit van Utrecht, benoemde de universiteit haar\\neerste sterrenkundige waarnemer. Hiermee ontstond de tweede\\nuniversiteitssterrenwacht ter wereld. Aert Jansz, de eerste\\nwaarnemer, en zijn opvolgers voerden de Utrechtse sterrenkunde\\nin de daaropvolgende jaren, decennia en eeuwen naar de\\nvoorhoede van het astronomisch onderzoek. Dit jaar is het 350\\njaar geleden dat deze historische benoeming plaatsvond.\\n\\nDe huidige generatie Utrechtse sterrenkundigen en studenten\\nsterrenkunde, verenigd in het Sterrekundig Instituut Utrecht,\\nvieren de benoeming van hun \\'oervader\\' middels een breed scala\\naan feestelijke activiteiten. Zo is er voor scholieren een\\nplanetenproject, programmeert de Studium Generale een aantal\\nvoordrachten met een sterrenkundig thema en wordt op de Dies\\nNatalis aan een astronoom een eredoctoraat uitgereikt. Er\\nstaat echter meer op stapel.\\n\\nStudenten natuur- en sterrenkunde kunnen op 26 april aan een\\nsterrenkundesymposium deelnemen. De onderwerpen van het\\nsymposium zijn opgebouwd rond een van de zwaartepunten van het\\nhuidige Utrechtse onderzoek: het onderzoek aan de zogeheten\\n\\'compacte objecten\\', de eindstadia in de evolutie van sterren.\\nBij de samenstelling van het programma is getracht de\\ndeelnemer een zo aktueel en breed mogelijk beeld te geven van\\nde stand van zaken in het onderzoek aan deze eindstadia. In de\\neerste, inleidende lezing zal dagvoorzitter prof. Lamers een\\nbeknopt overzicht geven van de evolutie van zware sterren,\\nwaarna de zeven overige sprekers in lezingen van telkens een\\nhalf uur nader op de specifieke evolutionaire eindprodukten\\nzullen ingaan. Na afloop van elke lezing is er gelegenheid tot\\nhet stellen van vragen. Het dagprogramma staat afgedrukt op\\neen apart vel.\\nHet niveau van de lezingen is afgestemd op tweedejaars\\nstudenten natuur- en sterrenkunde. OOK ANDERE BELANGSTELLENDEN\\nZIJN VAN HARTE WELKOM!\\n\\nTijdens de lezing van prof. Kuijpers zullen, als alles goed\\ngaat, de veertien radioteleskopen van de Radiosterrenwacht\\nWesterbork worden ingezet om via een directe verbinding tussen\\nhet heelal, Westerbork en Utrecht het zwakke radiosignaal van\\neen snel roterende kosmische vuurtoren, een zogeheten pulsar,\\nin de symposiumzaal door te geven en te audiovisualiseren.\\nProf. Kuijpers zal de binnenkomende signalen (elkaar snel\\nopvolgende scherp gepiekte pulsen radiostraling) bespreken en\\ntrachten te verklaren.\\nHet slagen van dit unieke experiment staat en valt met de\\ntechnische haalbaarheid ervan. De op te vangen signalen zijn\\nnamelijk zo zwak, dat pas na een waarnemingsperiode van 10\\nmiljoen jaar genoeg energie is opgevangen om een lamp van 30\\nWatt een seconde te laten branden! Tijdens het symposium zal\\ner niet zo lang gewacht hoeven te worden: de hedendaagse\\ntechnologie stelt ons in staat live het heelal te beluisteren.\\n\\nDeelname aan het symposium kost f 4,- (exclusief lunch) en\\nf 16,- (inclusief lunch). Inschrijving geschiedt door het\\nverschuldigde bedrag over te maken op ABN-AMRO rekening\\n44.46.97.713 t.n.v. stichting 350 JUS. Het gironummer van de\\nABN-AMRO bank Utrecht is 2900. Bij de inschrijving dient te\\nworden aangegeven of men lid is van de NNV. Na inschrijving\\nwordt de symposiummap toegestuurd. Bij inschrijving na\\n31 maart vervalt de mogelijkheid een lunch te reserveren.\\n\\nHet symposium vindt plaats in Transitorium I,\\nUniversiteit Utrecht.\\n\\nVoor meer informatie over het symposium kan men terecht bij\\nHenrik Spoon, p/a S.R.O.N., Sorbonnelaan 2, 3584 CA Utrecht.\\nTel.: 030-535722. E-mail: henriks@sron.ruu.nl.\\n\\n\\n\\n******* DAGPROGRAMMA **************************************\\n\\n\\n 9:30 ONTVANGST MET KOFFIE & THEE\\n\\n10:00 Opening\\n Prof. dr. H.J.G.L.M. Lamers (Utrecht)\\n\\n10:10 Dubbelster evolutie\\n Prof. dr. H.J.G.L.M. Lamers\\n\\n10:25 Radiopulsars\\n Prof. dr. J.M.E. Kuijpers (Utrecht)\\n\\n11:00 Pulsars in dubbelster systemen\\n Prof. dr. F. Verbunt (Utrecht)\\n\\n11:50 Massa & straal van neutronensterren\\n Prof. dr. J. van Paradijs (Amsterdam)\\n\\n12:25 Theorie van accretieschijven\\n Drs. R.F. van Oss (Utrecht)\\n\\n13:00 LUNCH\\n\\n14:00 Hoe zien accretieschijven er werkelijk uit?\\n Dr. R.G.M. Rutten (Amsterdam)\\n\\n14:35 Snelle fluktuaties bij accretie op neutronensterren\\n en zwarte gaten\\n Dr. M. van der Klis (Amsterdam)\\n\\n15:10 THEE & KOFFIE\\n\\n15:30 Zwarte gaten: knippen en plakken met ruimte en tijd\\n Prof. dr. V. Icke (leiden)\\n\\n16:05 afsluiting\\n\\n16:25 BORREL\\n\\n-- \\nGert-Jan van Lochem\\t \\\\\\\\\\t\\t\"What is it?\"\\nFysische informatica\\t \\\\\\\\\\t\"Something blue\"\\nUniversiteit Utrecht \\\\\\\\\\t\"Shapes, I need shapes!\"\\n030-532803\\t\\t\\t\\\\\\\\\\t\\t\\t- HHGG -\\n',\n", - " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: GGRRRrrr!! Cages double-parking motorc\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 32\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 1@cs.cmu.edu, jfriedl+@RI.CMU.EDU (Jeffrey Friedl) writes:\\n>egreen@east.sun.com (Ed Green - Pixel Cruncher) writes:\\n>|> \\n>|> An apartment complex where I used to live tried this, only they put the\\n>|> thing over the driver\\'s window, \"so they couldn\\'t miss it.\" \\n>\\n>I can see the liability of putting stickers on the car while it was moving,\\n>or something, but it\\'s the BDI that chooses to start and then drive the car\\n>in a known unsafe condition that would (seem to be) liable. \\n\\nAn effort was made to remove the sticker. It came to pieces, leaving\\nmost of it firmly attached to the window. It was dark, and around\\n10:00 pm. The sticker (before being mangled in an ineffective attempt\\nto be torn off) warned the car would be towed if not removed. A\\n\"reasonable person\" would arguably have driven the car. Had an\\naccident occured, I don\\'t think my friend\\'s attorney would have much\\ntrouble fixing blame on the apartment mangement.\\n\\nAs a practical matter, even without a conviction, the cost and\\ninconvenience of defending against the suit would be considerable.\\n\\nAs a moral matter, it was a pretty fucking stupid thing to do for so\\npaltry a violation as parking without an authorization sticker (BTW, it\\nwasn\\'t \"somebody\\'s\" spot, it was resident-only, but unassigned,\\nparking).\\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", - " 'From: enzo@research.canon.oz.au (Enzo Liguori)\\nSubject: Vandalizing the sky.\\nOrganization: Canon Information Systems Research Australia\\nLines: 38\\n\\nFrom the article \"What\\'s New\" Apr-16-93 in sci.physics.research:\\n\\n........\\nWHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n\\n1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\nIn 1950, science fiction writer Robert Heinlein published \"The\\nMan Who Sold the Moon,\" which involved a dispute over the sale of\\nrights to the Moon for use as billboard. NASA has taken the firsteps toward this\\n hideous vision of the future. Observers were\\nstartled this spring when a NASA launch vehicle arrived at the\\npad with \"SCHWARZENEGGER\" painted in huge block letters on the\\nside of the booster rockets. Space Marketing Inc. had arranged\\nfor the ad to promote Arnold\\'s latest movie. Now, Space Marketing\\nis working with University of Colorado and Livermore engineers on\\na plan to place a mile-long inflatable billboard in low-earth\\norbit. NASA would provide contractual launch services. However,\\nsince NASA bases its charge on seriously flawed cost estimates\\n(WN 26 Mar 93) the taxpayers would bear most of the expense. This\\nmay look like environmental vandalism, but Mike Lawson, CEO of\\nSpace Marketing, told us yesterday that the real purpose of the\\nproject is to help the environment! The platform will carry ozone\\nmonitors he explained--advertising is just to help defray costs.\\n..........\\n\\nWhat do you think of this revolting and hideous attempt to vandalize\\nthe night sky? It is not even April 1 anymore.\\nWhat about light pollution in observations? (I read somewhere else that\\nit might even be visible during the day, leave alone at night).\\nIs NASA really supporting this junk?\\nAre protesting groups being organized in the States?\\nReally, really depressed.\\n\\n Enzo\\n-- \\nVincenzo Liguori | enzo@research.canon.oz.au\\nCanon Information Systems Research Australia | Phone +61 2 805 2983\\nPO Box 313 NORTH RYDE NSW 2113 | Fax +61 2 805 2929\\n',\n", - " 'From: mscrap@halcyon.com (Marta Lyall)\\nSubject: Re: Video in/out\\nOrganization: Northwest Nexus Inc. (206) 455-3505\\nLines: 29\\n\\nOrganization: \"A World of Information at your Fingertips\"\\nKeywords: \\n\\nIn article <628@toontown.columbiasc.ncr.com> craig@toontown.ColumbiaSC.NCR.COM (Craig S. Williamson) writes:\\n>\\n>I\\'m getting ready to buy a multimedia workstation and would like a little\\n>advice. I need a graphics card that will do video in and out under windows.\\n>I was originally thinking of a Targa+ but that doesn\\'t work under Windows.\\n>What cards should I be looking into?\\n>\\n>Thanks,\\n>Craig\\n>\\n>-- \\n> \"To forgive is divine, to be\\n>-Craig Williamson an airhead is human.\"\\n> Craig.Williamson@ColumbiaSC.NCR.COM -Balki Bartokomas\\n> craig@toontown.ColumbiaSC.NCR.COM (home) Perfect Strangers\\n\\n\\nCraig,\\n\\nYou should still consider the Targa+. I run windows 3.1 on it all the\\ntime at work and it works fine. I think all you need is the right\\ndriver. \\n\\nJosh West \\nemail: mscrap@halcyon.com\\n\\n',\n", - " \"From: adams@bellini.berkeley.edu (Adam L. Schwartz)\\nSubject: Re: Final Solution in Palestine ?\\nNntp-Posting-Host: bellini.berkeley.edu\\nOrganization: U.C. Berkeley -- ERL\\nLines: 27\\n\\nIn article hm@cs.brown.edu (Harry Mamaysky) writes:\\n>In article <1993Apr25.171003.10694@thunder.mcrcim.mcgill.edu> ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed) writes:\\n>\\n>\\t DRIVING THE JEWS INTO THE SEA ?!\\n>\\n> I am sick and tired of this 'DRIVING THE JEWS INTO THE SEA' sentance attributed\\n> to Islamic movements and the PLO; it simply can't be proven as part of their\\n> plan !\\n>\\n\\nProven? Maybe not. But it can certainly be verified beyond a reasonable doubt. This\\nstatement and statements like it are a matter of public record. Before the Six Day War (1967)\\nI think Nasser and some other Arab leaders were broadcasting these statements on\\nArab radio. You might want to check out some old newspapers Ahmed.\\n\\n\\n> What Hamas and Islamic Jihad believe in, as far as I can get from the Arab media,\\n> is an Islamic state that protects the rights of all its inhabitants under Koranic\\n> Law.\\n\\nI think if you take a look at the Hamas covenant (written in 1988) you might get a \\ndifferent impression. I have the convenant in the original arabic with a translation\\nthat I've verified with Arabic speakers. The document is rife with calls to kill jews\\nand spread Islam and so forth.\\n\\n-Adam Schwartz\\n\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: First, I\\'ll make the assumption that you agree that a murderer is one\\n>who has commited murder.\\n\\nWell, I\\'d say that a murderer is one who intentionally committed a murder.\\nFor instance, if you put a bullet into a gun that was thought to contain\\nblanks, and someone was killed with such a gun, the person who actually\\nperformed the action isn\\'t the murderer (but I guess this is actually made\\nclear in the below definition).\\n\\n>I\\'d be interested to see a more reasonable definition. \\n\\nWhat do you mean by \"reasonable?\"\\n\\n>Otherwise, your inductive definition doesn\\'t bottom out:\\n>Your definition, in essence, is that\\n>>Murder is the intentional killing of someone who has not commited \\n>>murder, against his will.\\n>Expanding the second occurence of `murder\\' in the above, we see that\\n[...]\\n\\nYes, it is bad to include the word being defined in the definition. But,\\neven though the series is recursively infinite, I think the meaning can\\nstill be deduced.\\n\\n>I assume you can see the problem here. To do a correct inductive\\n>definition, you must define something in terms of a simpler case, and\\n>you must have one or several \"bottoming out\" cases. For instance, we\\n>can define the factorial function (the function which assigns to a\\n>positive integer the product of the positive integers less than or\\n>equal to it) on the positive integers inductively as follows:\\n\\n[math lesson deleted]\\n\\nOkay, let\\'s look at this situation: suppose there is a longstanding\\nfeud between two families which claim that the other committed some\\ntravesty in the distant past. Each time a member of the one family\\nkills a member of the other, the other family thinks that it is justified\\nin killing a that member of the first family. Now, let\\'s suppose that this\\nsequence has occurred an infinite number of times. Or, if you don\\'t\\nlike dealing with infinities, suppose that one member of the family\\ngoes back into time and essentially begins the whole thing. That is, there\\nis a never-ending loop of slayings based on some non-existent travesty.\\nHow do you resolve this?\\n\\nWell, they are all murders.\\n\\nNow, I suppose that this isn\\'t totally applicable to your \"problem,\" but\\nit still is possible to reduce an uninduced system.\\n\\nAnd, in any case, the nested \"murderer\" in the definition of murder\\ncannot be infintely recursive, given the finite existence of humanity.\\nAnd, a murder cannot be committed without a killing involved. So, the\\nfirst person to intentionally cause someone to get killed is necessarily\\na murderer. Is this enough of an induction to solve the apparently\\nunreducable definition? See, in a totally objective system where all the\\ninformation is available, such a nested definition isn\\'t really a problem.\\n\\nkeith\\n',\n", - " 'From: dwestner@cardhu.mcs.dundee.ac.uk (Dominik Westner)\\nSubject: need a viewer for gl files\\nOrganization: Maths & C.S. Dept., Dundee University, Scotland, UK\\nLines: 10\\nNNTP-Posting-Host: cardhu.mcs.dundee.ac.uk\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nHi, \\n\\nthe subject says it all. Is there a PD viewer for gl files (for X)?\\n\\nThanks\\n\\n\\nDominik\\n\\n\\n',\n", - " 'From: msb@sq.sq.com (Mark Brader)\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nOrganization: SoftQuad Inc., Toronto, Canada\\nLines: 34\\n\\n> > Can these questions be answered for a previous\\n> > instance, such as the Gehrels 3 that was mentioned in an earlier posting?\\n\\n> Orbital Elements of Comet 1977VII (from Dance files)\\n> p(au) 3.424346\\n> e 0.151899\\n> i 1.0988\\n> cap_omega(0) 243.5652\\n> W(0) 231.1607\\n> epoch 1977.04110\\n\\nThanks for the information!\\n\\nI assume p is the semi-major axis and e the eccentricity. The peri-\\nhelion and aphelion are then given by p(1-e) and p(1+e), i.e., about\\n2.90 and 3.95 AU respectively. For Jupiter, they are 4.95 and 5.45 AU.\\nIf 1977 was after the temporary capture, this means that the comet\\nended up in an orbit that comes no closer than 1 AU to Jupiter\\'s --\\nwhich I take to be a rough indication of how far from Jupiter it could\\nget under Jupiter\\'s influence.\\n\\n> Also, perihelions of Gehrels3 were:\\n> \\n> April 1973 83 jupiter radii\\n> August 1970 ~3 jupiter radii\\n\\nWhere 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. So the\\n1970 figure seems unlikely to actually be anything but a perijove.\\nIs that the case for the 1973 figure as well?\\n-- \\nMark Brader, SoftQuad Inc., Toronto\\t\\t\"Remember the Golgafrinchans\"\\nutzoo!sq!msb, msb@sq.com\\t\\t\\t\\t\\t-- Pete Granger\\n\\nThis article is in the public domain.\\n',\n", - " 'From: ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky)\\nSubject: Re: Ten questions about Israel\\nLines: 66\\nNntp-Posting-Host: taupe.cc.utexas.edu\\nOrganization: University of Texas @ Austin\\nLines: 66\\n\\nIn article <1483500349@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n> \\n> From: Center for Policy Research \\n> Subject: Ten questions about Israel\\n> \\n> \\n> Ten questions to Israelis\\n> -------------------------\\n> \\n> I would be thankful if any of you who live in Israel could help to\\n> provide\\n> accurate answers to the following specific questions. These are\\n> indeed provocative questions but they are asked time and again by\\n> people around me. \\n> \\n> 1. Is it true that the Israeli authorities don\\'t recognize\\n> Israeli nationality ? And that ID cards, which Israeli citizens\\n> must carry at all times, identify people as Jews or Arabs, not as\\n> Israelis ?\\n\\n\\n\\tThat\\'s true. Israeli ID cards do not identify people\\n\\tas Israelies. Smart huh?\\n\\n\\n> 3. Is it true that Israeli stocks nuclear weapons ? If so,\\n> could you provide any evidence ?\\n\\n\\tYes. There\\'s one warhead in my parent\\'s backyard in\\n\\tBeer Sheva (that\\'s only some 20 miles from Dimona,\\n\\tyou know). Evidence? I saw it!\\n\\n \\n> 4. Is it true that in Israeli prisons there are a number of\\n> individuals which were tried in secret and for which their\\n> identities, the date of their trial and their imprisonment are\\n> state secrets ?\\n\\n\\tYes. But unfortunately I can\\'t give you more details.\\n\\tThat\\'s _secret_, you see.\\n\\n\\n\\t\\t\\t[...]\\n\\n> \\n> Thanks,\\n> \\n> Elias Davidsson Iceland email: elias@ismennt.is\\n\\n\\n\\tYou\\'re welcome. Now, let me ask you a few questions, if you\\n\\tdon\\'t mind:\\n\\n\\t1. Is it true that the Center for Policy Research is a \\n\\t one-man enterprise?\\n\\n\\t2. Is it true that your questions are not being asked\\n\\t bona fide?\\n\\n\\t3. Is it true that your statement above, \"These are indeed \\n\\t provocative questions but they are asked time and again by\\n\\t people around me\" is not true?\\n\\n\\nNoam\\n\\n',\n", - " 'From: Club@spektr.msk.su (Koltovoy Nikolay Alexeevich)\\nSubject: [NEWS]Re:List or image processing systems?\\nDistribution: eunet\\nReply-To: Club@spektr.msk.su\\nOrganization: Moscow Scientific Industrial Ass. Spectrum\\nLines: 137\\n\\n\\n Moscow Scientific Inductrial Association \"Spectrum\" offer\\n VIDEOSCAN vision system for PC/AT,wich include software and set of\\n controllers.\\n\\n SOFTWARE\\n\\n For support VIDEOSCAN family program kit was developed. Kit\\n includes more then 200 different functions for image processing.\\n Kit works in the interactive regime, and has include Help for\\n non professional users.\\n There are next possibility:\\n - input frame by any board of VIDEOSCAN family;\\n - read - white image to - from disk;\\n - print image on the printer;\\n - makes arithmetic with 2 frames;\\n - filter image;\\n - work with gistogramme;\\n - edit image.\\n - include users exe modules.\\n\\n CONTROLLER VS9\\n\\n The function of VS-9 controller is to load TV-images into PC/AT.\\n VS-9 controller allows one to load a fragment of the TV-frame from\\n a field of 724x600 pixels.\\n The clock rate is 14,7 MHz when loading an image with 512 pixel in\\n the line and 7,4 MHz when loading a 256 pixels image. This\\n provides the equal pixel size of input image in both horizontal\\n and vertical directions.\\n The number of gray levels in any input modes is 256.\\n Video signal capture time - 2.5s.\\n\\n CONTROLLER VS52\\n\\n The purpose of the controller is to enter the TV images into a IBM\\n PC AT or any other machine of that type. The controller was\\n created on the base of modern elements, including user\\n programmable gate arrays.\\n The controller allows to digitize a input signal with different\\n resolutions. Its flexible architecture makes possible to change\\n technical parameters. Instead of TV signal one can process any\\n other analog signal (including signals from slow-speed scanning\\n devices).\\n The controller has the following technical characteristics:\\n - memory volume - from 256 K to 2 Mb ;\\n - resolution when working with standard video signal - from 64x64\\n to 1024x512 pixels ;\\n - resolution when working in slow input regime - up to 2048x1024\\n pixels;\\n - video signal capture time - 40 ms.\\n - maximum size of a screen when memory volume is 2Mb - 2048x1024\\n pixels ;\\n - number of gray level - 256 ;\\n - clock rate for input - up to 30 MHz ;\\n - 4 input video multiplexer ;\\n - input/output lookup table (LUT);\\n - possibility to realize \"scroll\" and \"zoom\";\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n - 8 lines for external synchronization (an input using external\\n controlling signal) ;\\n - electronic adjustment of black and white reference for analog -\\n digital converter;\\n - possibility output image to the color RGB monitor.\\n One can change all listed above functions and parameters of the\\n controller by reprogramming it.\\n\\n\\n IMAGE PROCESSOR VS100\\n\\n\\n Image processor VS100 allows to digitize and process TV\\n signal in real time. It is possible digitize TV signal with\\n 512*512*8 resolution and realize arithmetic and logic operation\\n with two images.\\n Processor was created on the base of modern elements\\n including user programmable gate arrays and designed as a board\\n for PC.\\n Memory volume allows write to the 256 frames with 512*512*8\\n format. It is possible to accumulate until 16 images.\\n The processor has the following technical characteristics:\\n - memory volume to 64 Mb;\\n - number of the gray level - 256;\\n - 4 input video multiplexer;\\n - input/output lookup table;\\n - electronic adjustment for black and white ADC reference;\\n - image size from 256*256 to 8192*8192;\\n - possibility color and black / white output;\\n - possibility input from slow-scan video sources.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Morality? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>So, you are saying that it isn\\'t possible for an instinctive act\\n|> >>to be moral one?\\n|> >\\n|> >I like to think that many things are possible. Explain to me\\n|> >how instinctive acts can be moral acts, and I am happy to listen.\\n|> \\n|> For example, if it were instinctive not to murder...\\n\\nThen not murdering would have no moral significance, since there\\nwould be nothing voluntary about it.\\n\\n|> \\n|> >>That is, in order for an act to be an act of morality,\\n|> >>the person must consider the immoral action but then disregard \\n|> >>it?\\n|> >\\n|> >Weaker than that. There must be the possibility that the\\n|> >organism - it\\'s not just people we are talking about - can\\n|> >consider alternatives.\\n|> \\n|> So, only intelligent beings can be moral, even if the bahavior of other\\n|> beings mimics theirs?\\n\\nYou are starting to get the point. Mimicry is not necessarily the \\nsame as the action being imitated. A Parrot saying \"Pretty Polly\" \\nisn\\'t necessarily commenting on the pulchritude of Polly.\\n\\n|> And, how much emphasis do you place on intelligence?\\n\\nSee above.\\n\\n|> Animals of the same species could kill each other arbitarily, but \\n|> they don\\'t.\\n\\nThey do. I and other posters have given you many examples of exactly\\nthis, but you seem to have a very short memory.\\n\\n|> Are you trying to say that this isn\\'t an act of morality because\\n|> most animals aren\\'t intelligent enough to think like we do?\\n\\nI\\'m saying:\\n\\n\\t\"There must be the possibility that the organism - it\\'s not \\n\\tjust people we are talking about - can consider alternatives.\"\\n\\nIt\\'s right there in the posting you are replying to.\\n\\njon.\\n',\n", - " 'From: rubery@saturn.aitc.rest.tasc.com. (Dan Rubery)\\nSubject: Graphic Formats\\nOrganization: TASC\\nLines: 7\\nNNTP-Posting-Host: saturn.aitc.rest.tasc.com\\n\\nI am writing some utilies to convert Regis and Tektonic esacpe sequences \\ninto some useful formats. I would rather not have to goto a bitmap format. \\nI can convert them to Window Meta FIles easily enough, but I would rather \\nconvert them to Corel Draw, .CDR, or MS Power Point, .PPT, files. \\nMicrosoft would not give me the format. I was wondering if anybody out \\nthere knows the formats for these two applications.\\n\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n>livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>\\n>>>Well, chimps must have some system. They live in social groups\\n>>>as we do, so they must have some \"laws\" dictating undesired behavior.\\n>>So, why \"must\" they have such laws?\\n>\\n>The quotation marks should enclose \"laws,\" not \"must.\"\\n>\\n>If there were no such rules, even instinctive ones or unwritten ones,\\n>etc., then surely some sort of random chance would lead a chimp society\\n>into chaos.\\n\\t\\n\\n\\tThe \"System\" refered to a \"moral system\". You havn\\'t shown any \\nreason that chimps \"must\" have a moral system. \\n\\tExcept if you would like to redefine everything.\\n\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: For JOHS@dhhalden.no (3) - Last\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 33\\n\\n: un021432@wvnvms.wvnet.edu writes:\\n\\n: >DUCATI3.UUE\\n: >QUUNCD Ver. 1.4, by Theodore A. Kaldis.\\n: >BEGIN--cut here--CUT HERE--Part 3\\n: >MG@NH)C1M+AV4)I;^**3NYR7,*(.H&\"3V\\'!X12(&E+AFKIN0@APYT;C[#LI2T\\n\\nThis GIF was GREAT!! I have it as the backdrop on my Apollo thingy and many\\npeople stop by and admire it. Of course I tell them that I did it myself....\\n\\nIt\\'s far too much trouble to contact archive sites to get stuff like this, so\\nif anybody else has any good GIFs, please, please don\\'t hesitate to post them.\\n\\nIs the bra thing still going?\\n--\\n\\nNick (the Idiot Biker) DoD 1069 Concise Oxford No Bras\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 16\\n\\nKeith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n: \\n: \\tWild and fanciful claims require greater evidence. If you state that \\n: one of the books in your room is blue, I certainly do not need as much \\n: evidence to believe than if you were to claim that there is a two headed \\n: leapard in your bed. [ and I don\\'t mean a male lover in a leotard! ]\\n\\nKeith, \\n\\nIf the issue is, \"What is Truth\" then the consequences of whatever\\nproposition argued is irrelevent. If the issue is, \"What are the consequences\\nif such and such -is- True\", then Truth is irrelevent. Which is it to\\nbe?\\n\\n\\nBill\\n',\n", - " 'From: arens@ISI.EDU (Yigal Arens)\\nSubject: Re: Ten questions about Israel\\nOrganization: USC/Information Sciences Institute\\nLines: 184\\nDistribution: world\\nNNTP-Posting-Host: grl.isi.edu\\nIn-reply-to: backon@vms.huji.ac.il\\'s message of 20 Apr 93 21:38:19 GMT\\n\\nIn article <1993Apr20.213819.664@vms.huji.ac.il> backon@vms.huji.ac.il writes:\\n>\\n> In article <1483500349@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n> >\\n> > 4. Is it true that in Israeli prisons there are a number of\\n> > individuals which were tried in secret and for which their\\n> > identities, the date of their trial and their imprisonment are\\n> > state secrets ?\\n>\\n>\\n> Apart from Mordechai Vanunu who had a trial behind closed doors, there\\n> was one other espionage case (the nutty professor at the Nes Ziona\\n> Biological Institute who was a K.G.B. mole) who was tried \"in camera\".\\n> I wouldn\\'t exactly call it a state secret. The trial was simply tried\\n> behind closed doors. I hate to disappoint you but the United States\\n> has tried a number of espionage cases in camera.\\n\\nAt issue was not a trial behind closed doors, but arrest, trial and\\nimprisonment in complete secrecy. This was appraently attempted in the\\ncase of Vanunu and failed. It has happened before, and there is reason\\nto believe it still goes on.\\n\\nRead this:\\n\\nFrom Ma\\'ariv, February 18 (possibly 28), 1992\\n\\nPUBLICATION BAN\\n\\n The State of Israel has never officially admitted that for many\\n years there have been in its prisons Israeli citizens who were\\n sentenced to long prison terms without either the fact of\\n their arrest or the crimes of which they were accused ever\\n being made public.\\n\\nBy Baruch Me\\'iri\\n\\nAll those involved in this matter politely refused my request, one way\\nor another: \"Look, the subject is too delicate. If I comment on it, I\\nwill be implicitly admitting that it is true; If I mention a specific\\ncase, even hint at it, I might be guilty of making public something\\nwhich may legally not be published\".\\n\\nThe State of Israel has never officially admitted that for many years\\nthere have been in its prisons Israeli citizens who were sentenced to\\nlong prison terms without either the fact of their arrest or the\\ncrimes of which they were accused ever being made public. More\\nprecisely: A court ordered publication ban was placed on the fact of\\ntheir arrest, and later on their imprisonment.\\n\\nIn Israel of 1993, citizens are imprisoned without us, the citizens of\\nthis country, knowing anything about it. Not knowing anything about\\nthe fact that one person or another were tried and thrown in prison,\\nfor security offenses, in complete secrecy.\\n\\nIn the distant past -- for example during the days of the [Lavon - YA]\\naffair -- we heard about \"the third man\" being in prison. But many\\nyears have passed since then, and what existed then can today no\\nlonger be found even in South American countries, or in the former\\nCommunist countries.\\n\\nBut it appears that this is still possible in Israel of 1993.\\n\\nThe Chair of the Knesset Committee on Law, the Constitution and\\nJustice, MK David Zucker, sent a letter on this subject early this\\nweek to the Prime Minister, the Minister of Justice, and the Cabinet\\nLegal Advisor. Ma\\'ariv has obtained the content of the letter:\\n\\n\"During the past several years a number of Israeli citizens have been\\nimprisoned for various periods for security offenses. In some of\\nthese cases a legal publication ban was imposed not only on the\\nspecifics of the crimes for which the prisoners were convicted, but\\neven on the mere fact of their imprisonment. In those cases, after\\nbeing legally convicted, the prisoners spend their term in prison\\nwithout public awareness either of the imprisonment or of the\\nprisoner\", asserts MK Zucker.\\n\\nOn the other hand Zucker agrees in his letter that, \"There is\\nabsolutely no question that it is possible, and in some cases it is\\nimperative, that a publication ban be imposed on the specifics of\\nsecurity offenses and the course of trials. But even in such cases\\nthe Court must weigh carefully and deliberately the circumstances\\nunder which a trial will not be held in public.\\n\\n\"However, one must ask whether the imposition of a publication ban on\\nthe mere fact of a person\\'s arrest, and on the name of a person\\nsentenced to prison, is justified and appropriate in the State of\\nIsrael. The principle of public trial and the right of the public to\\nknow are not consistent with the disappearance of a person from public\\nsight and his descent into the abyss of prison.\"\\n\\nZucker thus decided to turn to the Prime Minister, the Minister of\\nJustice and the Cabinet Legal Advisor and request that they consider\\nthe question. \"The State of Israel is strong enough to withstand the\\ncost incurred by abiding by the principle of public punishment. The\\nState of Israel cannot be allowed to have prisoners whose detention\\nand its cause is kept secret\", wrote Zucker.\\n\\nThe legal counsel of the Civil Rights Union, Attorney Mordechai\\nShiffman said that, \"We, as the Civil Rights Union, do not know of any\\ncases of security prisoners, Citizens of Israel, who are imprisoned,\\nand whose imprisonment cannot be made public. This is a situation\\nwhich, if it actually exists, is definitely unhealthy. Just like\\ncensorship is an unhealthy matter\".\\n\\n\"The Union is aware\", says Shiffman, \"of cases where notification of a\\nsuspect\\'s arrest to family members and lawyers is withheld. I am\\nspeaking only of several days. I know also of cases where a detainee\\nwas not allowed to meet with an attorney -- sometimes for the whole\\nfirst month of arrest. That is done because of the great secrecy.\\n\\n\"The suspect himself, his family, his lawyer -- or even a journalist --\\ncan challenge the publication ban in court. But there are cases where\\nthe family members themselves are not interested in publicity. The\\njournalist knows nothing of the arrest, and so almost everyone is\\nhappy...\"\\n\\nAttorney Yossi Arnon, an official of the Bar, claims that given the\\nlaws as they exist in Israel today, a situation where the arrest of a\\nperson for security offenses is kept secret is definitely possible. \\n\"Nothing is easier. The court orders a publication ban, and that\\'s\\nthat. Someone who has committed security offenses can spend long\\nyears in prison without us knowing anything about it.\"\\n\\n-- Do you find this situation acceptable?\\n\\nAttorney Arnon: \"Definitely not. We live in a democratic country, and\\nsuch a state of affairs is impermissible. I am well aware that\\npublication can be damaging -- from the standpoint of security -- but\\ntotal non-publication, silence, is unacceptable. Consider the trial of\\nMordechai Vanunu: at least in his case we know that he was charged\\nwith aggravated espionage and sentenced to 18 years in prison. The\\ntrial was held behind closed doors, nobody knew the details except for\\nthose who were authorized to. It is somehow possible to understand,\\nthough not to accept, the reasons, but, as I have noted, we at least\\nare aware of his imprisonment.\"\\n\\n-- Why is the matter actually that serious? Can\\'t we trust the\\ndiscretion of the court?\\n\\nAttorney Arnon: \"The judges have no choice but to trust the\\npresentations made to them. The judges do not have the tools to\\ninvestigate. This gives the government enormous power, power which\\nthey can misuse.\"\\n\\n-- And what if there really is a security issue?\\n\\nAttorney Arnon: \"I am a man of the legal system, not a security expert.\\n Democracy stands in opposition to security. I believe it is possible\\nto publicize the matter of the arrest and the charges -- without\\nentering into detail. We have already seen how the laws concerning\\npublication bans can be misused, in the case of the Rachel Heller\\nmurder. A suspect in the murder was held for many months without the\\nmatter being made public.\"\\n\\nAttorney Shiffman, on the other hand, believes that state security can\\nbe a legitimate reason for prohibiting publication of a suspect\\'s\\narrest, or of a convicted criminal\\'s imprisonment. \"A healthy\\nsituation? Definitely not. But I am aware of the fact that mere\\npublication may be harmful to state security\".\\n\\nA different opinion is expressed by attorney Uri Shtendal, former\\nadvisor for Arab affairs to Prime Ministers Levi Eshkol and Golda\\nMeir. \"Clearly, we are speaking of isolated special cases. Such\\nsituations contrast with the principle that a judicial proceeding must\\nbe held in public. No doubt this contradicts the principle of freedom\\nof expression. Definitely also to the principle of individual freedom\\nwhich is also harmed by the prohibition of publication.\\n\\n\"Nevertheless\", adds Shtendal, \"the legislator allowed for the\\npossibility of such a ban, to accommodate special cases where the\\ndamage possible as a consequence of publication is greater than that\\nwhich may follow from an abridgment of the principles I\\'ve mentioned.\\nThe authority to decide such matters of publication does not rest with\\nthe Prime Minister or the security services, but with the court, which\\nwe may rest assured will authorize a publication ban only if it has\\nbeen convinced of its need beyond a shadow of a doubt.\"\\n\\nNevertheless, attorney Shtendal agrees: \"As a rule, clearly such a\\nphenomenon is undesirable. Such an extreme step must be taken only in\\nthe most extreme circumstances.\"\\n--\\nYigal Arens\\nUSC/ISI TV made me do it!\\narens@isi.edu\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: A visit from the Jehovah\\'s Witnesses\\nOrganization: Case Western Reserve University\\nLines: 48\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article suopanki@stekt6.oulu.fi (Heikki T. Suopanki) writes:\\n>:> God is eternal. [A = B]\\n>:> Jesus is God. [C = A]\\n>:> Therefore, Jesus is eternal. [C = B]\\n>\\n>:> This works both logically and mathematically. God is of the set of\\n>:> things which are eternal. Jesus is a subset of God. Therefore\\n>:> Jesus belongs to the set of things which are eternal.\\n>\\n>Everything isn\\'t always so logical....\\n>\\n>Mercedes is a car.\\n>That girl is Mercedes.\\n>Therefore, that girl is a car?\\n\\n\\tThis is not strickly correct. Only by incorrect application of the \\nrules of language, does it seem to work.\\n\\n\\tThe Mercedes in the first premis, and the one in the second are NOT \\nthe same Mercedes. \\n\\n\\tIn your case, \\n\\n\\tA = B\\n\\tC = D\\n\\t\\n\\tA and D are NOT equal. One is a name of a person, the other the\\nname of a object. You can not simply extract a word without taking the \\ncontext into account. \\n\\n\\tOf course, your case doesn\\'t imply that A = D.\\n\\n\\tIn his case, A does equal D.\\n\\n\\n\\tTry again...\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n\\n',\n", - " 'From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Vast Bandwidth Over-runs on NASA thread (was Re: NASA \"Wraps\")\\nIn-Reply-To: wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov\\'s message of 18 Apr 1993 13:56 CDT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<17APR199316423628@judy.uh.edu> <1993Apr18.034101.21934@iti.org>\\n\\t<18APR199313560620@judy.uh.edu>\\nLines: 12\\n\\nIn article <18APR199313560620@judy.uh.edu>, Dennis writes about a\\nzillion lines in response to article <1993Apr18.034101.21934@iti.org>,\\nin which Allen wrote a zillion lines in response to article\\n<17APR199316423628@judy.uh.edu>, in which Dennis wrote another zillion\\nlines in response to Allen.\\n\\nHey, can it you guys. Take it to email, or talk.politics.space, or\\nalt.flame, or alt.music.pop.will.eat.itself.the.poppies.are.on.patrol,\\nor anywhere, but this is sci.space. This thread lost all scientific\\ncontent many moons ago.\\n\\nNick Haines nickh@cmu.edu\\n',\n", - " \"From: jr0930@eve.albany.edu (REGAN JAMES P)\\nSubject: Re: Pascal-Fractals\\nOrganization: State University of New York at Albany\\nLines: 10\\n\\nApparently, my editor didn't do what I wanted it to do, so I'll try again.\\n\\ni'm looking for any programs or code to do simple animation and/or\\ndrawing using fractals in TurboPascal for an IBM\\n Thanks in advance\\n-- \\n ||||||||||| \\t\\t \\t ||||||||||| \\n_|||||||||||_______________________|||||||||||_ jr0930@eve.albany.edu\\n-|||||||||||-----------------------|||||||||||- jr0930@Albnyvms.bitnet\\n ||||||||||| GO HEAVY OR GO HOME |||||||||||\\n\",\n", - " 'From: davec@silicon.csci.csusb.edu (Dave Choweller)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: California State University, San Bernardino\\nLines: 45\\nNntp-Posting-Host: silicon.csci.csusb.edu\\n\\nIn article <1qif1g$fp3@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n>In article <1qialf$p2m@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>|In article <1qi921$egl@horus.ap.mchp.sni.de>, frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n[stuff deleted...]\\n>||> To the newsgroup at large, how about this for a deal: recognise that what \\n>||> happened in former Communist Russia has as much bearing on the validity \\n>||> of atheism as has the doings of sundry theists on the validity of their \\n>||> theism. That\\'s zip, nada, none. The fallacy is known as ad hominem, and \\n>||> it\\'s an old one. It should be in the Holy FAQ, in the Book of Constructing\\n>||> a Logical Argument :-)\\n>|\\n>|Apart from not making a lot of sense, this is wrong. There\\n>|is no \"atheist creed\" that taught any communist what to do \"in\\n>|the name of atheism\". There clearly are theistic creeds and\\n>|instructions on how to act for theists. They all madly\\n>|conflict with one another, but that\\'s another issue.\\n>\\n>Lack of instructions on how to act might also be evil.\\n\\nThat\\'s like saying that, since mathematics includes no instructions on\\nhow to act, it is evil. Atheism is not a moral system, so why should\\nit speak of instructions on how to act? *Atheism is simply lack of\\nbelief in God*.\\n\\n Plenty of theists\\n>think so. So one could argue the case for \"atheism causes whatever\\n>I didn\\'t like about the former USSR\" with as much validity as \"theism\\n>causes genocide\" - that is to say, no validity at all.\\n\\nI think the argument that a particular theist system causes genocide\\ncan be made more convincingly than an argument that atheism causes genocide.\\nThis is because theist systems contain instructions on how to act,\\nand one or more of these can be shown to cause genocide. However, since\\nthe atheist set of instructions is the null set, how can you show that\\natheism causes genocide?\\n--\\nDavid Choweller (davec@silicon.csci.csusb.edu)\\n\\nThere are scores of thousands of human insects who are\\nready at a moment\\'s notice to reveal the Will of God on\\nevery possible subject. --George Bernard Shaw.\\n-- \\nThere are scores of thousands of human insects who are\\nready at a moment\\'s notice to reveal the Will of God on\\nevery possible subject. --George Bernard Shaw.\\n',\n", - " 'From: todd@psgi.UUCP (Todd Doolittle)\\nSubject: Fork Seals \\nDistribution: world\\nOrganization: Not an Organization\\nLines: 23\\n\\nI\\'m about to undertake changing the fork seals on my \\'88 EX500. My Clymer\\nmanual says I need the following tools from Kawasaki:\\n\\n57001-183 (T handle looking thing in illustration)\\n57001-1057 (Some type of adapter for the end of the T handle)\\n57001-1091 No illustration of this tool and the manual just refers to it\\n as \"the kawasaki tool.\"\\n57001-1058 Oil seal and bearing remover.\\n\\nHow necessary are these tools? Considering the dealers around here didn\\'t\\nhave the Clymer manual, fork seals, and a turn signal assembly in stock I\\nreally doubt they have these tools in stock and I\\'d really like to get this\\ndone this week. Any help would be appreciated as always.\\n\\n--\\n\\n--------------------------------------------------------------------------\\n ..vela.acs.oakland.edu!psgi!todd | \\'88 RM125 The only bike sold without\\n Todd Doolittle | a red-line. \\n Troy, MI | \\'88 EX500 \\n DoD #0832 | \\n--------------------------------------------------------------------------\\n\\n',\n", - " 'From: abdkw@stdvax (David Ward)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nNews-Software: VAX/VMS VNEWS 1.4-b1 \\nOrganization: Goddard Space Flight Center - Robotics Lab\\nLines: 34\\n\\nIn article <20APR199321040621@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes...\\n>In article <1993Apr20.204335.157595@zeus.calpoly.edu>, jgreen@trumpet.calpoly.edu (James Thomas Green) writes...\\n>>Why do spacecraft have to be shut off after funding cuts. For\\n>>example, Why couldn\\'t Magellan just be told to go into a \"safe\"\\n>>mode and stay bobbing about Venus in a low-power-use mode and if\\n>>maybe in a few years if funding gets restored after the economy\\n>>gets better (hopefully), it could be turned on again. \\n> \\n>It can be, but the problem is a political one, not a technical one.\\n\\nAlso remember that every dollar spent keeping one spacecraft in safe mode\\n(probably a spin-stabilized sun-pointing orientation) is a dollar not\\nspent on mission analysis for a newer spacecraft. In order to turn the\\nspacecraft back on, you either need to insure that the Ops guys will be\\navailable, or you need to retrain a new team.\\n\\nHaving said that, there are some spacecraft that do what you have proposed.\\nMany of the operational satellites Goddard flies (like the Tiros NOAA \\nseries) require more than one satellite in orbit for an operational set.\\nExtras which get replaced on-orbit are powered into a \"standby\" mode for\\nuse in an emergency. In that case, however, the same ops team is still\\nrequired to fly the operational birds; so the standby maintenance is\\nrelatively cheap.\\n\\nFinally, Pat\\'s explanation (some spacecraft require continuous maintenance\\nto stay under control) is also right on the mark. I suggested a spin-\\nstabilized control mode because it would require little power or \\nmaintenance, but it still might require some momentum dumping from time\\nto time.\\n\\nIn the end, it *is* a political decision (since the difference is money),\\nbut there is some technical rationale behind the decision.\\n\\nDavid W. @ GSFC \\n',\n", - " \"From: ruca@pinkie.saber-si.pt (Rui Sousa)\\nSubject: Re: Potential World-Bearing Stars?\\nIn-Reply-To: dan@visix.com's message of Mon, 12 Apr 1993 19:52:23 GMT\\nLines: 17\\nOrganization: SABER - Sistemas de Informacao, Lda.\\n\\nIn article dan@visix.com (Daniel Appelquist) writes:\\n\\n\\n I'm on a fact-finding mission, trying to find out if there exists a list of\\n potentially world-bearing stars within 100 light years of the Sun...\\n Is anyone currently working on this sort of thing? Thanks...\\n\\n Dan\\n -- \\n\\nIn principle, any star resembling the Sun (mass, luminosity) might have planets\\nlocated in a suitable orbit. There several within 100 ly of the sun. They are\\nsingle stars, for double or multiple systems might be troublesome. There's a\\nlist located at ames.arc.nasa.gov somewhere in pub/SPACE. I think it is called\\nstars.dat. By the way, what kind of project, if I may know?\\n\\nRui\\n-- \\n*** Infinity is at hand! Rui Sousa\\n*** If yours is big enough, grab it! ruca@saber-si.pt\\n\\n All opinions expressed here are strictly my own\\n\",\n", - " \"From: decay@cbnewsj.cb.att.com (dean.kaflowitz)\\nSubject: Re: some thoughts.\\nOrganization: AT&T\\nDistribution: na\\nLines: 13\\n\\nIn article , edm@twisto.compaq.com (Ed McCreary) writes:\\n> >>>>> On Thu, 15 Apr 1993 04:54:38 GMT, bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) said:\\n> \\n> DLB> \\tFirst I want to start right out and say that I'm a Christian. It \\n> DLB> makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n> DLB>lunatic, or the real thing? (I might be a little off on the title, but he \\n> DLB>writes the book. Anyway he was part of an effort to destroy Christianity, \\n> DLB> in the process he became a Christian himself.\\n> \\n> Here we go again...\\n\\nJust the friendly folks at Christian Central, come to save you.\\n\\n\",\n", - " \"From: mjw19@cl.cam.ac.uk (M.J. Williams)\\nSubject: Re: Rumours about 3DO ???\\nKeywords: 3DO ARM QT Compact Video\\nReply-To: mjw19@cl.cam.ac.uk\\nOrganization: The National Society for the Inversion of Cuddly Tigers\\nLines: 32\\nNntp-Posting-Host: earith.cl.cam.ac.uk\\n\\nIn article <2BD07605.18974@news.service.uci.edu> rbarris@orion.oac.uci.edu (Robert C. Barris) writes:\\n> We\\n>got to see the unit displaying full-screen movies using the CompactVideo codec\\n>(which was nice, very little blockiness showing clips from Jaws and Backdraft)\\n>... and a very high frame rate to boot (like 30fps).\\n\\nAcorn Replay running on a 25MHz ARM 3 processor (the ARM 3 is about 20% slower\\nthan the ARM 6) does this in software (off a standard CD-ROM). 16 bit colour at\\nabout the same resolution (so what if the computer only has 8 bit colour\\nsupport, real-time dithering too...). The 3D0/O is supposed to have a couple of\\nDSPs - the ARM being used for housekeeping.\\n\\n>I'm not sure how a Centris/20MHz 040 stacks up against the 25 MHz ARM in\\n>the 3DO box. Obviously the ARM is faster, but how much?\\n\\nA 25MHz ARM 6xx should clock around 20 ARM MIPS, say 18 flat out. Depends\\nreally on the surrounding system and whether you are talking ARM6x or ARM6xx\\n(the latter has a cache, and so is essential to run at this kind of speed with\\nslower memory).\\n\\nI'll stop saying things there 'cos I'll hopefully be working for ARM after\\ngraduation...\\n\\nMike\\n\\nPS Don't pay heed to what reps from Philips say; if the 3D0/O doesn't beat the\\n pants off 3DI then I'll eat this postscript.\\n--\\n____________________________________________________________________________\\n\\\\ / / Michael Williams Part II Computer Science Tripos\\n|\\\\/|\\\\/\\\\ MJW19@phx.cam.ac.uk University of Cambridge\\n| |(__)Cymdeithas Genedlaethol Traddodiad Troi Teigrod Mwythus Ben I Waered\\n\",\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 159\\n\\n>In article <1993Apr16.130037.18830@ncsu.edu>, hernlem@chess.ncsu.edu \\n (Brad Hernlem) writes:\\n>|> \\n>|> In article <2BCE0918.6105@news.service.uci.edu>, tclock@orion.oac.uci.edu \\n (Tim Clock) writes:\\n>|> \\n>|> Are you suggesting that, when guerillas use the population for cover, \\n>|> Israel should totally back down? So...the easiest way to get away with \\n>|> attacking another is to use an innocent as a shield and hope that the \\n>|> other respects innocent lives?\\n\\n> Tell me Tim, what are these guerillas doing wrong? Assuming that they are \\n> using civilians for cover, \\n\\n\"Assuming\"? Also: come on, Brad. If we are going to get anywhere in \\nthis (or any) discussion, it doesn\\'t help to bring up elements I never \\naddressed, *nor commented on in any way*. I made no comment on who is \\n\"right\" or who is \"wrong\", only that civilians ARE being used as cover \\nand that, having been placed \"in between\" the Israelis and the guerillas,\\nthey *will* be injured as both parties continue their fight.\\n \\n\\t[The *purpose* of an army\\'s use of military uniforms \\n\\tis *to set its members apart* from the civilians so that \\n\\tcivilians will not be thought of by the other side as\\n\\t\"combatants\". So, what do you think is the \"meaning behind\", \\n\\tthe intention and the effect when an \"army\" purposely \\n\\t*does not were uniforms but goes out of its way to *look \\n\\tlike civilians\\'? *They are judging that the benefit they will \\n\\treceive from this \"cover\" is more important that the harm\\n\\tthat will come to civilians.*\\n\\nThis is a comment on the Israeli experience and is saying\\nthat the guerillas *do* have some responsibility in putting civilians\\nin \"the middle\" of this fight. By putting on uniforms and living apart\\nfrom civilians (barracks, etc.), the guerillas would significantly lower\\nthe risk to civilians.\\n\\n\\tBut if the guerillas do this aren\\'t *they* putting themselves\\n\\tat greater risk? Absolutely, they ask themselves \"why set \\n\\tourselves apart (by wearing uniforms) when there is a ready-made \\n\\tcover for us (civilians)? That makes sense from their point of \\n\\tview, BUT when this cover is used, the guerillas should accept \\n\\tsome of the responsibility for subsequent harm to civilians.\\n\\n> If the buffer zone is to prevent attacks on Israel, is it not working? Why\\n> is it further neccessary for Israeli guns to pound Lebanese villages? Why \\n> not just kill those who try to infiltrate the buffer zone? You see, there \\n> is more to the shelling of the villages.... it is called RETALIATION... \\n> \"GETTING BACK\"...\"GETTING EVEN\". It doesn\\'t make sense to shell the \\n> villages. The least it shows is a reckless disregard by the Israeli \\n> government for the lives of civilians.\\n\\nI agree with you here. I have always thought that Israel\\'s bombing\\nsortees and bombing policy is stupid, thoughtless, inhumane AND\\nineffective. BUT, there is no reason that Israel should passive wait \\nuntil attackers chose to act; there is every reason to believe that\\n\"taking the fight *to* the enemy\" will do more to stop attacks. \\n\\nAs I said previously, Israel spent several decades \"sitting passively\"\\non its side of a border and only acting to stop these attacks *after*\\nthe attackers had entered Israeli territory. It didn\\'t work very well.\\nThe \"host\" Arab state did little/nothing to try and stop these attacks \\nfrom its side of the border with Israel so the number of attacks\\nwere considerably higher, as was their physical and psychological impact \\non the civilians caught in their path. \\n>\\n>|> What?So the whole bit about attacks on Israel from neighboring Arab states \\n>|> can start all over again? While I also hope for this to happen, it will\\n>|> only occur WHEN Arab states show that they are *prepared* to take on the \\n>|> responsibility and the duty to stop guerilla attacks on Israel from their \\n>|> soil. They have to Prove it (or provide some \"guaratees\"), there is no way\\n>|> Israel is going to accept their \"word\"- not with their past attitude of \\n>|> tolerance towards \"anti-Israel guerillas in-residence\".\\n>|> \\n> If Israel is not willing to accept the \"word\" of others then, IMHO, it has\\n> no business wasting others\\' time coming to the peace talks. \\n\\nThis is just another \"selectively applied\" statement.\\n \\nThe reason for this drawn-out impasse between Ababs/Palestinians and Israelis\\nis that NEITHER side is willing to accept the Word of the other. By your\\ncriteria *everyone* should stay away from the negotiations.\\n\\nThat is precisely why the Palestinians (in their recent PISGA proposal for \\nthe \"interim\" period after negotiations and leading up to full autonomy) are\\ndemanding conditions that essentially define \"autonomy\" already. They DO\\nNOT trust that Israel will \"follow through\" the entire process and allow\\nPalestinians to reach full autonomy. \\n\\nDo you understand and accept this viewpoint by the Palestinians? \\nIf you do, then why should Israel\\'s view of Arabs/Palestinians \\nbe any different? Why should they trust the Arab/Palestinians\\' words?\\nSince they don\\'t, they are VERY reluctant to give up \"tangible assets \\n(land, control of areas) in exchange for \"words\". For this reason,\\nthey are also concerned about the sorts of \"guarantees\" they will have \\nthat the Arabs WILL follow through on their part of any agreement reached.\\n>\\n>But don\\'t you see that the same statement can be made both ways?\\n>If Lebanon was interested in peace then it should accept the word\\n>of Israel that the attacks were the cause for war and disarming the\\n>Hizbollah will remove the cause for its continued occupancy. \\n\\nAbsolutely, so are the Arabs/Palestinians asking FIRST for the\\nIsraelis \"word\" in relation to any agreement? NO, what is being\\ndemanded FIRST is LAND. When the issue is LAND, and one party\\nfinally gets HOLD of this \"land\", what the \"other party\" does\\nis totally irrelevent. If I NOW have possession of this land,\\nyour words have absolutely no power; whether Israel chooses to\\nkeeps its word does NOT get the land back.\\n\\n>Afterall, Israel has already staged two parts of the withdrawal from \\n>areas it occupied in Lebanon during SLG.\\n>\\n> Tim, you are ignoring the fact that the Palestinians in Lebanon have been\\n> disarmed. Hezbollah remains the only independent militia. Hezbollah does\\n> not attack Israel except at a few times such as when the IDF burned up\\n> Sheikh Mosavi, his wife, and young son. \\n\\nWhile the \"major armaments\" (those allowing people to wage \"civil wars\")\\nhave been removed, the weapons needed to cross-border attacks still\\nremain to some extent. Rocket attacks still continue, and \"commando\"\\nraids only require a few easily concealed weapons and a refined disregard\\nfor human life (yours of that of others). Such attacks also continue.\\n\\n> Of course, if Israel would withdraw from Lebanon\\n> and stop assassinating people and shelling villages they wouldn\\'t\\n> make the Lebanese so mad as to do that.\\n\\nBat guano. The situation you call for existed in the 1970s and attacks\\nwere commonplace.\\n\\n>Furthermore, with Hezbollah subsequently disarmed, it would not be possible.\\n\\nThere is NO WAY these groups can be effectively \"disarmed\" UNLESS the state\\nis as authoritarian is Syria\\'s. The only other way is for Lebanon to take\\nit upon itself to constantly patrol the entire border with Israel, essentially\\nmirroring Israel\\'s border secirity on its side. It HAS TO PROVE TO ISREAL that\\nit is this committed to protecting Israel from attack from Lebanese territory.\\n>\\n>|> Once Syria leaves who is to say that Lebanon will be able to retain \\n>|> control? If Syria stays thay may be even more dangerous for Israel.\\n>|> \\n> Tim, when is the last time that you recall any trouble on the Syrian border?\\n> Not lately, eh?\\n\\nThat\\'s what I said, ok? But, doesn\\'t that mean that Syria has to \"take over\"\\nLebanon? I don\\'t think Israel or Lebanon would like that.\\n> \\nWhat both \"sides\" need is to receive something \"tangible\". The Arabs/\\nPalestinians are looking for \"land\" and demanding that they receive it\\nprior to giving anything to Israel. Israel has two problems: 1) if it\\ngives up real *land* it IS exposing itself to a changed geostrategic\\nsituation (and that change doesn\\'t help Israel\\'s position), and 2) WHEN\\nit gives up this land IT NEEDS to receive something in return to\\ncompensate for the increased risks\\n\\nTim\\n\\n\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Rights Violations in Azerbaijan #013\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 339\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #013\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +---------------------------------------------------------------------+\\n | |\\n | I said that on February 27, when those people were streaming down |\\n | our street, they were shouting, \"Long live Turkey!\" and \"Glory to |\\n | Turkey!\" And during the trial I said to that Ismailov, \"What does |\\n | that mean, \\'Glory to Turkey\\'?\" I still don\\'t understand what Turkey |\\n | has to do with this, we live in the Soviet Union. That Turkey told |\\n | you to or is going to help you kill Armenians? I still don\\'t |\\n | understand why \"Glory to Turkey!\" I asked that question twice and |\\n | got no answer . . . No one answered me . . . |\\n | |\\n +---------------------------------------------------------------------+\\n\\nDEPOSITION OF EMMA SETRAKOVNA SARGISIAN\\n\\n Born 1933\\n Cook\\n Sumgait Emergency Hospital\\n\\n Resident at Building 16/13, Apartment 14\\n Block 5\\n Sumgait [Azerbaijan]\\n\\n\\nTo this day I can\\'t understand why my husband, an older man, was killed. What \\nwas he killed for. He hadn\\'t hurt anyone, hadn\\'t said any word he oughtn\\'t \\nhave. Why did they kill him? I want to find out--from here, from there, from \\nthe government--why my husband was killed.\\n\\nOn the 27th, when I returned from work--it was a Saturday--my son was at home.\\nHe doesn\\'t work. I went straight to the kitchen, and he called me, \"Mamma, is \\nthere a soccer game?\" There were shouts from Lenin Street. That\\'s where we \\nlived. I say, \"I don\\'t know, Igor, I haven\\'t turned on the TV.\" He looked \\nagain and said, \"Mamma, what\\'s going on in the courtyard?!\" I look and see so \\nmany people, it\\'s awful, marching, marching, there are hundreds, thousands, \\nyou can\\'t even tell how many there are. They\\'re shouting, \"Down with the \\nArmenians! Kill the Armenians! Tear the Armenians to pieces!\" My God, why is \\nthat happening, what for? I had known nothing at that point. We lived together\\nwell, in friendship, and suddenly something like this. It was completely \\nunexpected. And they were shouting, \"Long live Turkey!\" And they had flags,\\nand they were shouting. There was a man walking in front well dressed, he\\'s \\naround 40 or 45, in a gray raincoat. He is walking and saying something, I \\ncan\\'t make it out through the vent window. He is walking and saying something,\\nand the children behind him are shouting, \"Tear the Armenians to pieces!\" and \\n\"Down with the Armenians!\" They shout it again, and then shout, \"Hurrah!\" The \\npeople streamed without end, they were walking in groups, and in the groups I \\nsaw that there were women, too. I say, \"My God, there are women there too!\" \\nAnd my son says, \"Those aren\\'t women, Mamma, those are bad women.\" Well we \\ndidn\\'t look a long time. They were walking and shouting and I was afraid, I \\nsimply couldn\\'t sit still. I went out onto the balcony, and my Azerbaijani \\nneighbor is on the other balcony, and I say, \"Khalida, what\\'s going on, what \\nhappened?\" She says, \"Emma, I don\\'t know, I don\\'t know, I don\\'t know what \\nhappened.\" Well she was quite frightened too. They had these white sticks, \\neach second or third one had a white rod. They\\'re waving the rods above their \\nheads as they walk, and the one who\\'s out front, like a leader, he has a white\\nstick too. Well maybe it was an armature shaft, but what I saw was white, I \\ndon\\'t know.\\n\\nMy husband got home 10 or 15 minutes later. He comes home and I say, \"Oh \\ndear, I\\'m frightened, they\\'re going to kill us I bet.\" And he says, \"What are \\nyou afraid of, they\\'re just children.\" I say, \"Everything that happens comes \\nfrom children.\" There had been 15- and 16-year kids from the Technical and \\nVocational School. \"Don\\'t fear,\" he said, \"it\\'s nothing, nothing all that \\nbad.\" He didn\\'t eat, he just lay on the sofa. And just then on television they\\nbroadcast that two Azerbaijanis had been killed in Karabakh, near Askeran. \\nWhen I heard that I couldn\\'t settle down at all, I kept walking here and \\nthere and I said, \"They\\'re going to kill us, the Azerbaijanis are going to \\nkill us.\" And he says, \"Don\\'t be afraid.\" Then we heard--from the central \\nsquare, there are women shouting near near the stage, well, they\\'re shouting\\ndifferent things, and you couldn\\'t hear every well. I say, \"You speak\\nAzerbaijani well, listen to what they\\'re saying.\" He says \"Close the window\\nand go to bed, there s nothing happening there.\" He listened a bit and then \\nclosed the window and went to bed, and told us, \"Come on, go to sleep, it\\'s\\nnothing.\" Sleep, what did he mean sleep? My Son and I stood at the window\\nuntil two in the morning watching. Well he\\'s sick, and all of this was\\naffecting him. I say, \"Igor, you go to bed, I\\'m going to go to bed in a minute\\ntoo.\" He went and I sat at the window until three, and then went to bed. \\nThings had calmed down slightly.\\n\\nThe 28th, Sunday, was my day off. My husband got up and said, \"Come on, Emma, \\nget up.\" I say, \"Today\\'s my day off, let me rest.\" He says, \"Aren\\'t you going \\nto make me some tea?\" Well I felt startled and got up, and said, \"Where are \\nyou going?\" He says, \"I\\'m going out, I have to.\" I say, \"Can you really go \\noutside on a day like today? Don\\'t go out, for God\\'s sake. You never listen to\\nme, I know, and you\\'re not going to listen to me now, but at least don\\'t take \\nthe car out of the garage, go without the car.\" And he says, \"Come on, close \\nthe door!\" And then on the staircase he muttered something, I couldn\\'t make it\\nout, he probably said \"coward\" or something.\\n\\nI closed the door and he left. And I started cleaning . . . picking things up\\naround the house . . . Everything seemed quiet until one o\\'clock in the after-\\nnoon, but at the bus station, my neighbor told me, cars were burning. I said,\\n\"Khalida, was it our car?\" She says, \"No, no, Emma, don\\'t be afraid, they\\nwere government cars and Zhigulis.\\'\\' Our car is a GAZ-21 Volga. And I waited,\\nit was four o\\'clock, five o\\'clock . . . and when he wasn\\'t home at seven I\\nsaid, \"Oh, they\\'ve killed Shagen!\"\\n\\nTires are burning in town, there\\'s black smoke in town, and I\\'m afraid, I\\'m \\nstanding on the balcony and I\\'m all . . . my whole body is shaking. My God, \\nthey\\'ve probably killed him! So basically I waited like that until ten \\no\\'clock and he still hadn\\'t come home. And I\\'m afraid to go out. At ten\\no\\'clock I look out: across from our building is a building with a bookstore,\\nand from upstairs, from the second floor, everything is being thrown outside. \\nI\\'m looking out of one window and Igor is looking out of the other, and I \\ndon\\'t want him to see this, and he, as it turns out, doesn\\'t want me to see \\nit. We wanted to hide it from one another. I joined him. \"Mamma,\" he says,\\n\"look what they\\'re doing over there!\" They were burning everything, and there \\nwere police standing there, 10 or 15 of them, maybe twenty policemen standing \\non the side, and the crowd is on the other side, and two or three people are \\nthrowing everything down from the balcony. And one of the ones on the balcony \\nis shouting, \"What are you standing there for, burn it!\" When they threw the \\ntelevision, wow, it was like a bomb! Our neighbor on the third floor came out \\non her balcony and shouted, \"Why are you doing that, why are you burning those\\nthings, those people saved with such difficulty to buy those things for their \\nhome. Why are you burning them?\" And from the courtyard they yell at her, \"Go \\ninside, go inside! Instead why don\\'t you tell us if they are any of them in \\nyour building or not?\" They meant Armenians, but they didn\\'t say Armenians, \\nthey said, \"of them.\" She says, \"No, no, no, none!\" Then she ran downstairs to\\nour place, and says, \"Emma, Emma, you have to leave!\" I say, \"They\\'ve killed\\nShagen anyway, what do we have to live for? It won\\'t be living for me without \\nShagen. Let them kill us, too!\" She insists, saying, \"Emma, get out of here, \\ngo to Khalida\\'s, and give me the key. When they come I\\'ll say that it\\'s my \\ndaughter\\'s apartment, that they\\'re off visiting someone.\" I gave her the key \\nand went to the neighbor\\'s, but I couldn\\'t endure it. I say, \"Igor, you stay \\nhere, I\\'m going to go downstairs, and see, maybe Papa\\'s . . . Papa\\'s there.\"\\n\\nMeanwhile, they were killing the two brothers, Alik and Valery [Albert and \\nValery Avanesians; see the accounts of Rima Avanesian and Alvina Baluian], in \\nthe courtyard. There is a crowd near the building, they\\'re shouting, howling, \\nand I didn\\'t think that they were killing at the time. Alik and Valery lived\\nin the corner house across from ours. When I went out into the courtyard I saw\\nan Azerbaijani, our neighbor, a young man about 30 years old. I say, \"Madar, \\nUncle Shagen\\'s gone, let\\'s go see, maybe he\\'s dead in the garage or near the \\ngarage, let\\'s at least bring the corpse into the house. \"He shouts, \"Aunt \\nEmma, where do you think you\\'re going?! Go back into the house, I\\'ll look for \\nhim.\" I say, \"Something will happen to you, too, because of me, no, Madar, \\nI\\'m coming too.\" Well he wouldn\\'t let me go all the same, he says, \"You stay \\nhere with us, I\\'m go look.\" He went and looked, and came back and said, \"Aunt \\nEmma, there\\'s no one there, the garage is closed. \"Madar went off again and \\nthen returned and said, \"Aunt Emma, they\\'re already killed Alik, and Valery\\'s \\nthere . . . wheezing.\"\\n\\nMadar wanted to go up to him, but those scoundrels said, \"Don\\'t go near him, \\nor we\\'ll put you next to him.\" He got scared--he\\'s young--and came back and \\nsaid, \"I\\'m going to go call, maybe an ambulance will come, at least to take \\nAlik, maybe he\\'ll live . . . \" They grew up together in our courtyard, they \\nknew each other well, they had always been on good terms. He went to call, but\\nnot a single telephone worked, they had all been shut off. He called, and \\ncalled, and called, and called--nothing.\\n\\nI went upstairs to the neighbor\\'s. Igor says, \"Two police cars drove up over \\nthere, their headlights are on, but they\\'re not touching them, they are still \\nlying where they were, they\\'re still lying there . . . \"We watched out the\\nwindow until four o\\'clock, and then went downstairs to our apartment. I didn\\'t\\ntake my clothes off. I lay on the couch so as not to go to bed, and at six\\no\\'clock in the morning I got up and said, \"Igor, you stay here at home, don\\'t\\ngo out, don\\'t go anywhere, I\\'m going to look, I have to find Papa, dead or\\nalive . . . let me go . . . I\\'ve got the keys from work.\"\\n\\nAt six o\\'clock I went to the Emergency Hospital. The head doctor and another \\ndoctor opened the door to the morgue. I run up to them and say, \"Doctor, is \\nShagen there?\" He says, \"What do you mean? Why should Shagen be here?!\" I \\nwanted to go in, but he wouldn\\'t let me. There were only four people in there,\\nthey said. Well, they must have been awful because they didn\\'t let me in. They\\nsaid, \"Shagen\\'s not here, he\\'s alive somewhere, he\\'ll come back.\"\\n\\nIt\\'s already seven o\\'clock in the morning. I look and there is a panel truck\\nwith three policemen. Some of our people from the hospital were there with\\nthem. I say, \"Sara Baji [\"Sister\" Sara, term of endearment], go look, they\\'ve\\nprobably brought Shagen.\" I said it, shouted it, and she went and came back\\nand says, \"No, Emma, he has tan shoes on, it\\'s a younger person.\" Now Shagen \\njust happened to have tan shoes, light tan, they were already old. When they \\nsaid it like that I guessed immediately. I went and said, \"Doctor, they\\'ve \\nbrought Shagen in dead.\" He says, \"Why are you carrying on like that, dead, \\ndead . . . he\\'s alive.\" But then he went all the same, and when he came back \\nthe look on his face was . . . I could tell immediately that he was dead. They\\nknew one another well, Shagen had worked for him a long time. I say, \"Doctor, \\nis it Shagen?\" He says, \"No, Emma, it\\'s not he, it\\'s somebody else entirely.\" \\nI say, \"Doctor, why are you deceiving me, I\\'ll find out all the same anyway, \\nif not today, then tomorrow.\" And he said . . . I screamed, right there in the\\noffice. He says, \"Emma, go, go calm down a little.\" Another one of our \\ncolleagues said that the doctor had said it was Shagen, but . . . in hideous \\ncondition. They tried to calm me down, saying it wasn\\'t Shagen. A few minutes \\nlater another colleague comes in and says, \"Oh, poor Emma!\" When she said it \\nlike that there was no hope left.\\n\\n That day was awful. They were endlessly bringing in dead and injured \\npeople.\\n\\nAt night someone took me home. I said, \"Igor, Papa\\'s been killed.\"\\n\\nOn the morning of the 1st I left Igor at home again and went to the hospital: \\nI had to bury him somehow, do something. I look and see that the hospital is \\nsurrounded by soldiers. They are wearing dark clothes. \"Hey, citizen, where \\nare you going?\" I say, \"I work here,\" and from inside someone shouts, \"Yes, \\nyes, that\\'s our cook, let her in.\" I went right to the head doctor\\'s office\\nand there is a person from the City Health Department there, he used to\\nwork with us at the hospital. He says, \"Emma, Shagen\\'s been taken to Baku.\\nIn the night they took the wounded and the dead, all of them, to Baku.\" I\\nsay, \"Doctor, how will I bury him?\" He says, \"We\\'re taking care of all that,\\ndon\\'t you worry, we\\'ll do everything, we\\'ll tell you about it. Where did you\\nspend the night?\" I say, \"I was at home.\" He says, \"What do you mean you\\nwere at home?! You were at home alone?\" I say, \"No, Igor was there too.\" He\\nsays, \"You can\\'t stay home, we\\'re getting an ambulance right now, wait just\\none second, the head doctor is coming, we\\'re arranging an ambulance right\\nnow, you put on a lab coat and take one for Igor, you go and bring Igor here\\nlike a patient, and you\\'ll stay here and we\\'ll se~ later what to do next ...\"\\nHis last name is Kagramanov. The head doctor\\'s name is Izyat Jamalogli\\nSadukhov.\\n\\nThe \"ambulance\" arrived and I went home and got Igor. They admitted him as a \\npatient, they gave us a private room, an isolation room. We stayed in the \\nhospital until the 4th.\\n\\nSome police car came and they said, \"Emma, let\\'s go.\" And the women, our \\ncolleagues, then they saw the police car, became anxious and said, \"Where are \\nyou taking her?\" I say, \"They\\'re going to kill me, too . . . \" And the\\ninvestigator says, \"Why are you saying that, we\\'re going to make a positive\\nidentification.\" We went to Baku and they took me into the morgue . . . I\\nstill can\\'t remember what hospital it was . . . The investigator says, \"Let\\'s \\ngo, we need to be certain, maybe it\\'s not Shagen.\" And when I saw the caskets,\\nlying on top of one another, I went out of my mind. I say, \"I can\\'t look, no.\"\\nThe investigator says, \"Are there any identifying marks?\" I say, \"Let me see\\nthe clothes, or the shoes, or even a sock, I\\'ll recognize them.\" He says, \\n\"Isn\\'t they\\'re anything on his body?\" I say he has seven gold teeth and his \\nfinger, he only has half of one of his fingers. Shagen was a carpenter, he had\\nbeen injured at work . . .\\n\\nThey brought one of the sleeves of the shirt and sweater he was wearing, they \\nbrought them and they were all burned . . . When I saw them I shouted, \"Oh, \\nthey burned him!\" I shouted, I don\\'t know, I fell down . . . or maybe I sat \\ndown, I don\\'t remember. And that investigator says, \"Well fine, fine, since \\nwe\\'ve identified that these are his clothes, and since his teeth . . . since\\nhe has seven gold teeth . . . \"\\n\\nOn the 4th they told me: \"Emma, it\\'s time to bury Shagen now.\" I cried, \"How, \\nhow can I bury Shagen when I have only one son and he\\'s sick? I should inform \\nhis relatives, he has three sisters, I can\\'t do it by myself.\" They say, \"OK, \\nyou know the situation. How will they get here from Karabagh? How will they \\nget here from Yerevan? There\\'s no transportation, it s impossible.\"\\n\\nHe was killed on February 28, and I buried him on March 7. We buried him in \\nSumgait. They asked me, \"Where do you want to bury him?\" I said, \"I want to \\nbury him in Karabagh, where we were born, let me bury him in Karabagh,\" I\\'m \\nshouting, and the head of the burial office, I guess, says, \"Do you know what \\nit means, take him to Karabagh?! It means arson!\" I say, \"What do you mean, \\narson? Don\\'t they know what\\'s going on in Karabagh? The whole world knows that\\nthey killed them, and I want to take him to Karabagh, I don\\'t have anyone \\nanymore.\" I begged, I pleaded, I grieved, I even got down on my knees. He\\nsays, \"Let\\'s bury him here now, and in three months, in six months, a year, \\nif it calms down, I\\'ll help you move him to Karabagh . . . \"\\n\\nOur trial was the first in Sumgait. It was concluded on May 16. At the\\ninvestigation the murderer, Tale Ismailov, told how it all happened, but then\\nat the trial he . . . tried to wriggle . . . he tried to soften his crime. \\nThen they brought a videotape recorder, I guess, and played it, and said, \\n\"Ismailov, look, is that you?\" He says, \"Yes.\" \"Well look, here you\\'re \\ndescribing everything as it was on the scene of the crime, right?\" He says, \\n\"Yes.\" \"And now you\\'re telling it differently?\" He says, \"Well maybe I \\nforgot!\" Like that.\\n\\nThe witnesses and that criminal creep himself said that when the car was going\\nalong Mir Street, there was a crowd of about 80 people . . . Shagen had a \\nVolga GAZ-21. The 80 people surrounded his car, and all 80 of them were \\ninvolved. One of them was this Ismailov guy, this Tale. They--it\\'s unclear\\nwho--started pulling Shagen out of the car. Well, one says from the left side\\nof the car, another says from the right side. They pulled off his sports \\njacket. He had a jacket on. Well they ask him, \"What\\'s your nationality?\" He \\nsays, \"Armenian.\" Well they say from the crowd they shouted, \"If he\\'s an\\nArmenian, kill him, kill him!\" They started beating him, they broke seven of\\nhis ribs, and his heart . . . I don\\'t know, they did something there, too \\n. . . it\\'s too awful to tell about. Anyway, they say this Tale guy . . . he \\nhad an armature shaft. He says, \"I picked it up, it was lying near a bush, \\nthat\\'s where I got it.\" He said he picked it up, but the witnesses say that he\\nhad already had it. He said, \"I hit him twice,\" he said, \" . . . once or twice\\non the head with that rod.\" And he said that when he started to beat him \\nShagen was sitting on the ground, and when he hit him he fell over. He said, \\n\"I left, right nearby they were burning things or something in an apartment,\\nkilling someone,\" he says, \"and I came back to look, is that Shagen alive or\\nnot?\" I said, \"You wanted to finish him, right, and if he was still alive, you\\ncame back to hit him again?\" He went back and looked and he was already dead.\\n\"After that,\" that bastard Tale said, \"after that I went home.\"\\n\\nI said, \"You . . . you . . . little snake,\" I said, \"Are you a thief and a \\nmurderer?\" Shagen had had money in his jacket, and a watch on his wrist. They\\nwere taken. He says he didn\\'t take them\\n\\nWhen they overturned and burned the car, that Tale was no longer there, it was\\nother people who did that. Who it was, who turned over the car and who burned\\nit, that hasn\\'t been clarified as yet. I told the investigator, \"How can you \\nhave the trial when you don\\'t know who burned the car?\" He said something, but\\nI didn\\'t get what he was saying. But I said, \"You still haven\\'t straightened \\neverything out, I think that\\'s unjust.\"\\n\\nWhen they burned the car he was lying next to it, and the fire spread to him. \\nIn the death certificate it says that he had third-degree burns over 80\\npercent of his body . . .\\n\\nAnd I ask again, why was he killed? My husband was a carpenter; he was a good \\ncraftsman, he knew how to do everything, he even fixed his own car, with his \\nown hands. We have three children. Three sons. Only Igor was with me at the \\ntime. The older one was in Pyatigorsk, and the younger one is serving in the \\nArmy. And now they\\'re fatherless...\\n\\nI couldn\\'t sit all the way through it. When the Procurator read up to 15\\nyears\\' deprivation of freedom, I just . . . I went out of my mind, I didn\\'t\\nknow what to do with myself, I said, \"How can that be? You,\" I said, \"you are \\nsaying that it was intentional murder and the sentence is 15 years\\' \\ndeprivation of freedom?\" I screamed, I had my mind! I said, \"Let me at that\\ncreep, with my bare hands I\\'ll . . . \" A relative restrained me, and there\\nwere all those military people there . . . I lest. I said,\" This isn\\'t a \\nSoviet trial, this is unjust!\" That\\'s what I shouted, l said it and left . . .\\n\\nI said that on February 27, when those people were streaming down our street, \\nthey were shouting, \"Long live Turkey!\" and \"Glory to Turkey!\" And during the \\ntrial I said to that Ismailov, \"What does that mean, \\'Glory to Turkey\\'?\" I \\nstill don\\'t understand what Turkey has to do with this, we live in the Soviet \\nUnion. That Turkey told you to or is going to help you kill Armenians? I still\\ndon\\'t understand why \"Glory to Turkey!\" I asked that question twice and got no\\nanswer . . . No one answered me . . .\\n\\n May 19, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 178-184\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: Ivanov Sergey \\nSubject: Re: Re: VGA 640x400 graphics mode\\nDistribution: world\\nOrganization: Commercial and Industrial Group ARGUS\\nReply-To: serge@argus.msk.su\\nLines: 7\\n\\n> My 8514/a VESA TSR supports this\\n\\n Can You report CRT and other register state in this mode ?\\n Thank's.\\n\\n Serge Ivanov (serge@argus.msk.su)\\n\\n\",\n", - " 'From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Surface normal orientations\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 42\\n\\nIn article <1pscti$aqe@travis.csd.harris.com> srp@travis.csd.harris.com (Stephen Pietrowicz) writes:\\n>...\\n>How do you go about orienting all normals in the same direction, given a \\n>set of points, edges and faces? \\n\\nLook for edge inconsistencies. Consider two vertices, p and q, which\\nare connected by at least one edge.\\n\\nIf (p,q) is an edge, then (q,p) should *not* appear. \\n\\nIf *both* (p,q) and (q,p) appear as edges, then the surface \"flips\" when\\nyou travel across that edge. This is bad. \\n\\nAssuming (warning...warning...warning) that you have an otherwise\\nacceptable surface - you can pick an edge, any edge, and traverse the\\nsurface enforcing consistency with that edge. \\n\\n 0) pick an edge (p,q), and mark it as \"OK\"\\n 1) for each face, F, containing this edge (if more than 2, oops)\\n make sure that all edges in F are consistent (i.e., the Face\\n should be [(p,q),(q,r),(r,s),(s,t),(t,p)]). Flip those which\\n are wrong. Mark all of the edges in F as \"OK\",\\n and add them to a queue (check for duplicates, and especially\\n inconsistencies - don\\'t let the queue have both (p,q) and (q,p)). \\n 2) remove an edge from the queue, and go to 1).\\n\\nIf a *marked* edge is discovered to be inconsistent, then you lose.\\n\\nIf step 1) finds more than one face sharing a particular edge, then you\\nlose. \\n \\nOtherwise, when done, all of the edges will be consistent. Which means\\nthat all of the surface normals will either point IN or OUT. Deciding\\nwhich way is OUT is left as an exercise...\\n\\n\\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n',\n", - " 'From: kimd@rs6401.ecs.rpi.edu (Daniel Chungwan Kim)\\nSubject: WANTED: Super 8mm Projector with SOUNDS\\nKeywords: projector\\nNntp-Posting-Host: rs6401.ecs.rpi.edu\\nLines: 9\\n\\n\\tI am looking for Super 8mm Projector with SOUNDS.\\nIf anybody out there has one for sale, send email with\\nthe name of brand, condition of the projector, and price\\nfor sale to kimd@rpi.edu\\n(IT MUST HAVE SOUND CAPABILITY)\\n\\nDanny\\nkimd@rpi.edu\\n\\n',\n", - " 'From: mac@utkvx.bitnet (Richard J. McDougald)\\nSubject: Re: Why does Illustrator AutoTrace so poorly?\\nOrganization: University of Tennessee \\nLines: 22\\n\\nIn article <0010580B.vmcbrt@diablo.UUCP> diablo.UUCP!cboesel (Charles Boesel) writes:\\n\\nYeah, Corel Draw and WordPerfect Presentations pretty limited here, too.\\n\\tSince there\\'s no (not really) such thing as a decent raster to\\nvector conversion program, this \"tracing\" technique is about it. Simple\\nstuff, like b&w logos, etc. do pretty well, while more complicated stuff\\ngoes haywire. I suspect (even though I don\\'t write code) that a good\\nbitmapped to vector conversion program would probably be as big as most\\nof these application softwares we\\'re using -- but even so, how come one\\nhasn\\'t been written? (to my knowledge). I mean, even Hijaak, one of the\\ncommercial industry standards of file conversion, hasn\\'t attempted it yet.\\n\\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\\n Mac McDougald * Any opinions expressed herein \\n The Photography Center * are not necessarily (actually,\\n Univ. of Tenn. Knoxville 37996 * are almost CERTAINLY NOT) those\\n mac@utkvx.utk.edu * of The University of Tennessee. \\n mac@utkvx.bitnet * \\n (615-974-3449) * \"Things are more like they are now \\n (615-974-6435) FAX * than they\\'ve ever been before.\"\\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\\n \\n',\n", - " 'From: vdp@mayo.edu (Vinayak Dutt)\\nSubject: Re: Islamic Banks (was Re: Slavery\\nReply-To: vdp@mayo.edu\\nOrganization: Mayo Foundation/Mayo Graduate School :Rochester, MN\\nLines: 39\\n\\nIn article 28833@monu6.cc.monash.edu.au, darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n#In <1993Apr14.143121.26376@bmw.mayo.edu> vdp@mayo.edu (Vinayak Dutt) writes:\\n#>So instead of calling it interest on deposits, you call it *returns on investements*\\n#>and instead of calling loans you call it *investing in business* (that is in other words\\n#>floating stocks in your company). \\n#\\n#No, interest is different from a return on an investment. For one\\n#thing, a return on an investment has greater risk, and not a set return\\n#(i.e. the amount of money you make can go up or down, or you might even\\n#lose money). The difference is, the risk of loss is shared by the\\n#investor, rather than practically all the risk being taken by the\\n#borrower when the borrower borrows from the bank.\\n#\\n\\nBut is it different from stocks ? If you wish to call an investor in stocks as\\na banker, well then its your choice .....\\n\\n#>Relabeling does not make it interest free !!\\n#\\n#It is not just relabeling, as I have explained above.\\n\\nIt *is* relabeling ...\\nAlso its still not interest free. The investor is still taking some money ... as\\ndividend on his investment ... ofcourse the investor (in islamic *banking*, its your\\nso called *bank*) is taking more risk than the usual bank, but its still getting some\\nthing back in return .... \\n\\nAlso have you heard of junk bonds ???\\n\\n\\n---Vinayak\\n-------------------------------------------------------\\n vinayak dutt\\n e-mail: vdp@mayo.edu\\n\\n standard disclaimers apply\\n-------------------------------------------------------\\n\\n\\n',\n", - " 'From: grw@HQ.Ileaf.COM (Gary Wasserman)\\nSubject: Stuff For Sale is GONE!!!\\nNntp-Posting-Host: ars\\nReply-To: grw@HQ.Ileaf.COM (Gary Wasserman)\\nOrganization: Interleaf, Inc.\\nDistribution: usa\\nLines: 10\\n\\n\\nThanks to all who responded. The three items (electric vest,\\nAerostitch Suit, and Scarf) are all spoken for.\\n\\n-Gary\\n\\n-- \\nGary Wasserman \"A completely irrational attraction to BMW bikes\"\\nInterleaf, Inc. Prospect Place, 9 Hillside Ave, Waltham, MA 02154\\ngrw@ileaf.com 617-290-4990x3423 FAX 617-290-4970 DoD#0216\\n',\n", - " 'From: Nanci Ann Miller \\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: Sponsored account, School of Computer Science, Carnegie Mellon, Pittsburgh, PA\\nLines: 56\\n\\t<1993Apr5.084042.822@batman.bmd.trw.com>\\nNNTP-Posting-Host: po5.andrew.cmu.edu\\nIn-Reply-To: <1993Apr5.084042.822@batman.bmd.trw.com>\\n\\n\\njbrown@batman.bmd.trw.com writes:\\n> > Sorry, but there are no supernatural\\n> > forces necessary to create a pathogen. You are saying, \"Since\\n> > diseases are bad, the bad entity must have created it.\" So\\n> > what would you say about acid rain, meteors falling from the\\n> > sky, volcanoes, earthquakes, and other QUOTE UNQUOTE \"Acts\\n> > of God?\" \\n> \\n> I would say that they are not \"acts of God\" but natural\\n> occurrences.\\n\\nIt amazes me that you have the audacity to say that human creation was not\\nthe result of the natural process of evolution (but rather an \"act of God\")\\nand then in the same post say that these other processes (volcanos et al.)\\nare natural occurrences. Who gave YOU the right to choose what things are\\nnatural processes and what are direct acts of God? How do you know that\\nGod doesn\\'t cause each and every natural disaster with a specific purpose\\nin mind? It would certainly go along with the sadistic nature I\\'ve seen in\\nthe bible.\\n\\n> >>Even if Satan had nothing to do with the original inception of\\n> >>disease, evolution by random chance would have produced them since\\n> >>humanity forsook God\\'s protection. If we choose to live apart from\\n> >>God\\'s law (humanity collectively), then it should come as no surprise\\n> >>that there are adverse consequences to our (collective) action. One\\n> >>of these is that we are left to deal with disease and disorders which\\n> >>inevitably result in an entropic universe.\\n> > \\n> > May I ask, where is this \\'collective\\' bullcrap coming from? \\n>\\n> By \"collective\" I was referring to the idea that God works with\\n> humanity on two levels, individually and collectively. If mankind\\n> as a whole decides to undertake a certain action (the majority of\\n> mankind), then God will allow the consequences of that action to\\n> affect mankind as a whole.\\n\\nAdam & Eve (TWO PEOPLE), even tho they had the honor (or so you christians\\nclaim) of being the first two, definitely do NOT represent a majority in\\nthe billions and trillions (probably more) of people that have come after\\nthem. Perhaps they were the majority then, but *I* (and YOU) weren\\'t\\naround to vote, and perhaps we might have voted differently about what to\\ndo with that tree. But your god never asked us. He just assumes that if\\nyou have two bad people then they ALL must be bad. Hmm. Sounds like the\\nsame kind of false generalization that I see many of the theists posting\\nhere resorting to. So THAT\\'s where they get it... shoulda known.\\n\\n> Jim B.\\n\\nNanci\\n\\n.........................................................................\\nIf you know (and are SURE of) the author of this quote, please send me\\nemail (nm0w+@andrew.cmu.edu):\\nLying to ourselves is more deeply ingrained than lying to others.\\n\\n',\n", - " \"From: chico@ccsun.unicamp.br (Francisco da Fonseca Rodrigues)\\nSubject: New planet/Kuiper object found?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 28\\n\\n\\n\\tTonigth a TV journal here in Brasil announced that an object,\\nbeyond Pluto's orbit, was found by an observatory at Hawaii. They\\nnamed the object Karla.\\n\\n\\tThe program said the object wasn't a gaseous giant planet, and\\nshould be composed by rocks and ices.\\n\\n\\tCan someone confirm these information? Could this object be a\\nnew planet or a Kuiper object?\\n\\n\\tThanks in advance.\\n\\n\\tFrancisco.\\n\\n-----------------------=====================================----the stars,----\\n| ._, | Francisco da Fonseca Rodrigues | o o |\\n| ,_| |._/\\\\ | | o o |\\n| | |o/^^~-._ | COTUCA-Colegio Tecnico da UNICAMP | o |\\n|/-' BRASIL | ~| | o o o |\\n|\\\\__/|_ /' | Depto de Processamento de Dados | o o o o |\\n| \\\\__ Cps | . | | o o o o |\\n| | * __/' | InterNet : chico@ccsun.unicamp.br | o o o |\\n| > /' | cotuca@ccvax.unicamp.br| o |\\n| /' /' | Fone/Fax : 55-0192-32-9519 | o o |\\n| ~~^\\\\/' | Campinas - SP - Brasil | o o |\\n-----------------------=====================================----like dust.----\\n\\n\",\n", - " 'From: blgardne@javelin.sim.es.com (Dances With Bikers)\\nSubject: FAQ - What is the DoD?\\nSummary: Everything you always wanted to know about DoD, but were afraid to ask\\nKeywords: DoD FAQ\\nArticle-I.D.: javelin.DoD.monthly_733561501\\nExpires: Sun, 30 May 1993 07:05:01 GMT\\nReply-To: blgardne@javelin.sim.es.com\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 849\\nSupersedes: \\n\\nThis is a periodic posting intended to answer the Frequently Asked\\nQuestion: What is the DoD? It is posted the first of each month, with\\nan expiration time of over a month. Thus, unless your site\\'s news\\nsoftware is ill-mannered, this posting should always be available.\\nThis WitDoDFAQ is crossposted to all four rec.motorcycles groups in an\\nattempt to catch most new users, and followups are directed to\\nrec.motorcycles.\\n\\nLast changed 9-Feb-93 to add a message from the KotL, and a bit of\\nHalon.\\n\\n\\t\\t\\tVERSION 1.1\\n\\nThis collection was originally assembled by Lissa Shoun, from the\\noriginal postings. With Lissa\\'s permission, I have usurped the title of\\nKotWitDoDFAQ. Any corrections, additions, bribes, etc. should be aimed at\\nblgardne@javelin.sim.es.com.\\n\\n------------------------------------------------------------------------\\n\\nContents:\\nHow do I get a DoD number?\\tby Blaine Gardner\\tDoD #46\\nDoD \"Road Rider\" article\\tby Bruce Tanner\\t\\tDoD #161\\nWhat is the DoD?\\t\\tby John Sloan\\t\\tDoD #11\\nThe DoD Logo\\t\\t\\tby Chuck Rogers\\t\\tDoD #3\\nThe DoD (this started it all)\\tby The Denizen of Doom\\tDoD #1\\nThe DoD Anthem\\t\\t\\tby Jonathan Quist\\tDoD #94\\nWhy you have to be killed\\tby Blaine Gardner\\tDoD #46\\nThe rec.moto.photo.archive\\tcourtesy of Bruce Tanner DoD #161\\nPatches? What patches?\\t\\tby Blaine Gardner\\tDoD #46\\nLetter from the AMA museum by Jim Rogers, Director DoD #395\\nThe DoD Rules\\t\\t\\tby consensus\\nOther rec.moto resources\\tby various Keepers\\tDoD #misc\\nThe rec.moto.reviews.archive\\tcourtesy of Loki Jorgenson DoD #1210\\nUpdated stats & rides info\\tby Ed Green (DoD #111) and others\\n\\n------------------------------------------------------------------------\\n\\t\\t\\tHow do I get a DoD number?\\n\\nIf the most Frequently Asked Question in rec.motorcycles is \"What is the\\nDoD?\", then the second most Frequently Asked Question must be \"How do I\\nget a DoD number?\" That is as simple as asking the Keeper of the List\\n(KotL, accept no substitue Keepers) for a number. If you\\'re feeling\\ncreative, and your favorite number hasn\\'t been taken already, you can\\nmake a request, subject to KotL approval. (Warning, non-numeric, non-\\nbase-10 number requests are likely to earn a flame from the KotL. Not\\nthat you won\\'t get it, but you _will_ pay for it.)\\n\\nOh, and just one little, tiny suggestion. Ask the KotL in e-mail. You\\'ll\\njust be playing the lightning rod for flames if you post to the whole\\nnet, and you\\'ll look like a clueless newbie too.\\n\\nBy now you\\'re probably asking \"So who\\'s the KotL already?\". Well, as\\nJohn Sloan notes below, that\\'s about the only real \"secret\" left around\\nhere, but a few (un)subtle hints can be divulged. First, it is not myself,\\nnor anyone mentioned by name in this posting (maybe :-), though John was\\nthe original KotL. Second, in keeping with the true spirit of Unix, the\\nKotL\\'s first name is only two letters long, and can be spelled entirely\\nwith hexadecimal characters. (2.5, the KotL shares his name with a line-\\noriented text utility.) Third, he has occasionally been seen posting\\nmessages bestowing new DoD numbers (mostly to boneheads with \"weenie\\nmailers\"). Fourth, there is reason to suspect the KotL of being a\\nDead-Head.\\n\\n***************** Newsflash: A message from the KotL ******************\\n\\nOnce you have surmounted this intellectual pinnacle and electronically\\ngroveled to the KotL, please keep in mind that the KotL does indeed\\nwork for a living, and occasionally must pacify its boss by getting\\nsomething done. Your request may languish in mailer queue for (gasp!)\\ndays, perhaps even (horrors!) a week or two. During such times of\\neconomic activity on the part of the KotL\\'s employers, sending yet\\nanother copy of your request will not speed processing of the queue (it\\njust makes it longer, verification of this phenominon is left as an\\nexcersize for the reader). If you suspect mailer problems, at least\\nannotate subsequent requests with an indication that a former request\\nwas submitted, lest you be assigned multiple numbers (what, you think\\nthe KotL *memorizes* the list?!?).\\n\\n***********************************************************************\\n\\nOne more thing, the KotL says that its telepathic powers aren\\'t what\\nthey used to be. So provide some information for the list, will ya?\\nThe typical DoD List entry contains number, name, state/country, &\\ne-mail address. For example:\\n\\n0111:Ed Green:CA:ed.green@East.Sun.COM\\n\\n(PS: While John mentions below that net access and a bike are the only\\nrequirements for DoD membership, that\\'s not strictly true these days, as\\nthere are a number of Denizens who lack one or both.)\\n\\nBlaine (Dances With Bikers) Gardner blgardne@javelin.sim.es.com\\n\\n------------------------------------------------------------------------\\n\\n \"Denizens of Doom\", by Bruce Tanner (DoD 0161)\\n\\n [Road Rider, August 1991, reprinted with Bruce\\'s permission]\\n\\nThere is a group of motorcyclists that gets together and does all the normal \\nthings that a bunch of bikers do. They discuss motorcycles and \\nmotorcycling, beverages, cleaning fluids, baklavah, balaclava, caltrops, \\nhelmets, anti-fog shields, spine protectors, aerodynamics, three-angle valve\\nseats, bird hits, deer whistles, good restaurants, racing philosophy, \\ntraffic laws, tickets, corrosion control, personalities, puns, double \\nentendres, culture, absence of culture, first rides and friendship. They \\nargue with each other and plan rides together.\\n\\nThe difference between this group and your local motorcycle club is that, \\nalthough they get together just about everyday, most have never seen each \\nother face to face. The members of this group live all over the known world \\nand communicate with each other electronically via computer.\\n\\nThe computers range from laptops to multi-million dollar computer centers; \\nthe people range from college and university students to high-tech industry \\nprofessionals to public-access electronic bulletin-board users. Currently, \\nrec.motorcycles (pronounced \"wreck-dot-motorcycles,\" it\\'s the file name for \\nthe group\\'s primary on-line \"meeting place\") carries about 2250 articles per \\nmonth; it is read by an estimated 29,000 people. Most of the frequent \\nposters belong to a motorcycle club, the Denizens of Doom, usually referred \\nto as the DoD.\\n\\nThe DoD started when motorcyclist John R. Nickerson wrote a couple of \\nparodies designed to poke fun at motorcycle stereotypes. Fellow computer \\nenthusiast Bruce Robinson posted these articles under the pen name, \"Denizen \\nof Doom.\" A while later Chuck Rogers signed off as DoD nr. 0003 Keeper of \\nthe Flame. Bruce was then designated DoD nr. 0002, retroactively and, of \\ncourse, Nickerson, the originator of the parodies, was given DoD nr. 0001.\\n\\nThe idea of a motorcycle club with no organization, no meetings and no rules \\nappealed to many, so John Sloan -- DoD nr. 0011 -- became Keeper of the \\nList, issuing DoD numbers to anyone who wanted one. To date there have been \\nalmost 400 memberships issued to people all over the United States and \\nCanada, as well as Australia, New Zealand, the United Kingdom, France, \\nGermany, Norway and Finland.\\n\\nKeeper of the List Sloan eventually designed a club patch. The initial run \\nof 300 patches sold out immediately. The profits from this went to the \\nAmerican Motorcycle Heritage Foundation. Another AMHF fund raiser -- \\nselling Denizens of Doom pins to members -- was started by Arnie Skurow a \\nfew months later. Again, the project was successful and the profits were \\ndonated to the foundation. So far, the Denizens have contributed over $1500 \\nto the AMA museum. A plaque in the name of the Denizens of Doom now hangs \\nin the Motorcycle Heritage Museum.\\n\\nAs often as possible, the DoD\\'ers crawl out from behind their CRTs and go \\nriding together. It turns out that the two largest concentrations of \\nDoD\\'ers are centered near Denver/Boulder, Colorado, and in California\\'s \\n\"Silicon Valley.\" Consequently, two major events are the annual Assault on \\nRollins Pass in Colorado, and the Northern versus Southern California \\n\"Joust.\"\\n\\nThe Ride-and-Feed is a bike trip over Rollins Pass, followed by a big \\nbarbecue dinner. The concept for the Joust is to have riders from Northern \\nCalifornia ride south; riders from Southern California to ride north, \\nmeeting at a predesignated site somewhere in the middle. An additional plan \\nfor 1991 is to hold an official Denizens of Doom homecoming in conjunction \\nwith the AMA heritage homecoming in Columbus, Ohio, in July.\\n\\nThough it\\'s a safe bet the the Denizens of Doom and their collective \\ncommunications hub, rec.motorcycles, will not replace the more traditional \\nmotorcycle organizations, for those who prowl the electronic pathways in \\nsearch of two-wheeled camaraderie, it\\'s a great way for kindred spirits to \\nget together. Long may they flame.\\n\\n\\n\"Live to Flame -- Flame to Live\"\\t[centerbar]\\n\\nThis official motto of the Denizens of Doom refers to the ease with which \\nyou can gratuitously insult someone electronically, when you would not do \\nanything like that face to face. These insults are known as \"flames\"; \\nissuing them is called \"flaming.\" Flames often start when a member \\ndisagrees with something another member has posted over the network. A \\ntypical, sophisticated, intelligent form of calm, reasoned rebuttal would be \\nsomething like: \"What an incredibly stupid statement, you Spandex-clad \\nposeur!\" This will guarantee that five other people will reply in defense \\nof the original poster, describing just what they think of you, your riding \\nability and your cat.\\n\\n------------------------------------------------------------------------\\n\\n _The Denizens of Doom: The Saga Unfolds_\\n\\n by John Sloan DoD #0011\\n\\nPeriodically the question \"What is DoD?\" is raised. This is one of\\nthose questions in the same class as \"Why is the sky blue?\", \"If there\\nis a God, why is there so much suffering in the world?\" and \"Why do\\nwomen inevitably tell you that you\\'re such a nice guy just before they\\ndump you?\", the kinds of questions steeped in mysticism, tradition,\\nand philosophy, questions that have inspired research and discussion\\nby philosophers in locker rooms, motorcycle service bays, and in the\\nhalls of academe for generations. \\n\\nA long, long time ago (in computer time, where anything over a few\\nminutes is an eternity and the halting problem really is a problem) on\\na computer far, far away on the net (topologically speaking; two\\nmachines in the same room in Atlanta might route mail to one another\\nvia a system in Chicago), a chap who wished to remain anonymous (but\\nwho was eventually assigned the DoD membership #1) wrote a satire of\\nthe various personalities and flame wars of rec.motorcycles, and\\nsigned it \"The Denizen of Doom\". Not wishing to identify himself, he\\nasked that stalwart individual who would in the fullness of time\\nbecome DoD #2 to post it for him. DoD #2, not really giving a whit\\nabout what other people thought and generally being a right thinking\\nindividual, did so. Flaming and other amusements followed. \\n\\nHe who would become the holder of DoD membership #3 thought this was\\nthe funniest thing he\\'d seen in a while (being the sort that is pretty\\neasily amused), so he claimed membership in the Denizens of Doom\\nMotorcycle Club, and started signing his postings with his membership\\nnumber. \\n\\nPerhaps readers of rec.motorcycles were struck with the vision of a\\nmotorcycle club with no dues, no rules, no restrictions as to brand or\\nmake or model or national origin of motorcycle, a club organized\\nelectronically. It may well be that readers were yearning to become a\\npart of something that would provide them with a greater identity, a\\ngestalt personality, something in which the whole was greater than the\\nsum of its parts. It could also be that we\\'re all computer nerds who\\nwear black socks and sneakers and pocket protectors, who just happen\\nto also love taking risks on machines with awesome power to weight\\nratios, social outcasts who saw a clique that would finally be open\\nminded enough to accept us as members. \\n\\nIn a clear case of self fulfilling prophesy, The Denizens of Doom\\nMotorcycle Club was born. A club in which the majority of members have\\nnever met one another face to face (and perhaps like it that way), yet\\nfeel that they know one another pretty well (or well enough given some\\nof the electronic personalities in the newsgroup). A club organized\\nand run (in the loosest sense of the word) by volunteers through the\\nnetwork via electronic news and mail, with a membership/mailing list\\n(often used to organize group rides amongst members who live in the\\nsame region), a motto, a logo, a series of photo albums circulating\\naround the country (organized by DoD #9), club patches (organized by\\n#11), and even an MTV-style music video (produced by #47 and\\ndistributed on VHS by #18)! \\n\\nWhere will it end? Who knows? Will the DoD start sanctioning races,\\nplacing limits on the memory and clock rate of the on-board engine\\nmanagement computers? Will the DoD organize poker runs where each\\nparticipant collects a hand of hardware and software reference cards?\\nWill the DoD have a rally in which the attendees demand a terminal\\nroom and at least a 386-sized UNIX system? Only time will tell. \\n\\nThe DoD has no dues, no rules, and no requirements other than net\\naccess and a love for motorcycles. To become a member, one need only\\nask (although we will admit that who you must ask is one of the few\\nreally good club secrets). New members will receive via email a\\nmembership number and the latest copy of the membership list, which\\nincludes name, state, and email address. \\n\\nThe Denizens of Doom Motorcycle Club will live forever (or at least\\nuntil next year when we may decided to change the name). \\n\\n Live to Flame - Flame to Live\\n\\n------------------------------------------------------------------------\\n\\n The DoD daemon as seen on the patches, pins, etc. by\\n\\n\\tChuck Rogers, car377@druhi.att.com, DoD #0003\\n \\n\\n :-( DoD )-: \\n :-( x __ __ x )-: \\n :-( x / / \\\\ \\\\ x )-: \\n :-( x / / -\\\\-----/- \\\\ \\\\ x )-: \\n :-( L | \\\\/ \\\\ / \\\\/ | F )-: \\n :-( I | / \\\\ / \\\\ | L )-: \\n :-( V \\\\/ __ / __ \\\\/ A )-: \\n :-( E / / \\\\ / \\\\ \\\\ M )-: \\n :-( | | \\\\ / | | E )-: \\n :-( T | | . | _ | . | | )-: \\n :-( O | \\\\___// \\\\\\\\___/ | T )-: \\n :-( \\\\ \\\\_/ / O )-: \\n :-( F \\\\___ ___/ )-: \\n :-( L \\\\ \\\\ / / L )-: \\n :-( A \\\\ vvvvv / I )-: \\n :-( M | ( ) | V )-: \\n :-( E | ^^^^^ | E )-: \\n :-( x \\\\_______/ x )-: \\n :-( x x )-: \\n :-( x rec.motorcycles x )-:\\n :-( USENET )-:\\n\\n\\n------------------------------------------------------------------------\\n\\n The DoD\\n\\n by the Denizen of Doom DoD #1\\n \\nWelcome one and all to the flamingest, most wonderfullest newsgroup of\\nall time: wreck.mudder-disciples or is it reak.mudder-disciples? The\\nNames have been changes to protect the Guilty (riders) and Innocent\\n(the bikes) alike. If you think you recognize a contorted version of\\nyour name, you don\\'t. It\\'s just your guilt complex working against\\nyou. Read \\'em and weep. \\n\\nWe tune in on a conversation between some of our heros. Terrible\\nBarbarian is extolling the virtues of his Hopalonga Puff-a-cane to\\nReverend Muck Mudgers and Stompin Fueling-Injection: \\n\\nTerrible: This Hopalonga is the greatest... Beats BMWs dead!! \\n\\nMuck: I don\\'t mean to preach, Terrible, but lighten up on the BMW\\n crowd eh? I mean like I like riding my Yuka-yuka Fudgeo-Jammer\\n 11 but what the heck. \\n\\nStompin: No way, the BMW is it, complete, that\\'s all man.\\n\\nTerrible: Nahhhh, you\\'re sounding like Heritick Ratatnack! Hey, at\\n least he is selling his BMW and uses a Hopalonga Intercorruptor!\\n Not as good as a Puff-a-cane, should have been called a\\n Woosh-a-stream.\\n\\nStompin: You mean Wee-Stream.\\n\\nTerrible: Waddya going to do? Call in reinforcements???\\n\\nStompin: Yehh man. Here comes Arlow Scarecrow and High Tech. Let\\'s see\\n what they say, eh? \\n\\nMuck: Now men, let\\'s try to be civil about this.\\n\\nHigh Tech: Hi, I\\'m a 9 and the BMW is the greatest.\\n\\nArlow: Other than my B.T. I love my BMW!\\n\\nTerrible: B.T.???\\n\\nArlow: Burley Thumpison, the greatest all American ride you can own.\\n\\nMuck: Ahhh, look, you\\'re making Terrible gag.\\n\\nTerrible: What does BMW stand for anyway??? \\n\\nMuck, Arlow, High: Beats Me, Wilhelm.\\n\\nTerrible: Actually, my name is Terrible. Hmmm, I don\\'t know either.\\n\\nMuck: Say, here comes Chunky Bear.\\n\\nChunky: Hey, Hey, Hey! Smarter than your average bear!\\n\\nTerrible: Hey, didn\\'t you drop your BMW???\\n\\nChunky: All right eh, a little BooBoo, but I left him behind. I mean \\n even Villy Ogle flamed me for that! \\n\\nMuck: It\\'s okay, we all makes mistakes.\\n\\nOut of the blue the West coasters arrive, led by Tread Orange with\\nDill Snorkssy, Heritick Ratatnack, Buck Garnish, Snob Rasseller and\\nthe perenial favorite: Hooter Boobin Brush! \\n\\nHeritick: Heya Terrible, how\\'s yer front to back bias?\\n\\nTerrible: Not bad, sold yer BMW?\\n\\nHeritick: Nahhh.\\n\\nHooter: Hoot, Hoot.\\n\\nBuck: Nice tree Hooter, how\\'d ya get up there?\\n\\nHooter: Carbujectors from Hell!!!\\n\\nMuck: What\\'s a carbujector?\\n\\nHooter: Well, it ain\\'t made of alumican!!! Made by Tilloslert!!\\n\\nMuck: Ahh, come on down, we aren\\'t going to flame ya, honest!!\\n\\nDill: Well, where do we race?\\n\\nSnob: You know, Chunky, we know about about your drop and well, don\\'t\\n ride! \\n\\nMuck: No! No! Quiet!\\n\\nTread: BMW\\'s are the greatest in my supreme level headed opinion.\\n They even have luggage made by Sourkraut!\\n\\nHigh: My 9 too!\\n\\nTerrible, Heritick, Dill, Buck: Nahhhhh!!!\\n\\nStompin, Tread, High, Chunky, Snob: Yesss Yessssss!!!\\n\\nBefore this issue could be resolved the Hopalonga crew called up more\\ncohorts from the local area including Polyanna Stirrup and the\\ninfamous Booster Robiksen on his Cavortin! \\n\\nPolyanna: Well, men, the real bikers use stirrups on their bikes like\\n I use on my Hopalonga Evening-Bird Special. Helpful for getting\\n it up on the ole ventral stand! \\n\\nTerrible: Hopalonga\\'s are great like Polyanna says and Yuka-Yuka\\'s and\\n Sumarikis and Kersnapis are good too! \\n\\nBooster: I hate Cavortin.\\n\\nAll: WE KNOW, WE KNOW.\\n\\nBooster: I love Cavortin.\\n\\nAll: WE KNOW WE KNOW.\\n\\nMuck: Well, what about Mucho Guzlers and Lepurras?\\n\\nSnob, Tread: Nawwwwww.\\n\\nMuck: What about a Tridump?\\n\\nTerrible: Isn\\'t that a chewing gum?\\n\\nMuck: Auggggg, Waddda about a Pluck-a-kity?\\n\\nHeritick: Heyya Muck, you tryin\\' to call up the demon rider himself?\\n\\nMuck: No, no. There is more to Mudder-Disciples than arguing about make.\\n\\nTwo more riders zoom in, in the form of Pill Turret and Phalanx Lifter.\\nPill: Out with dorsal stands and ventral stands forever.\\n\\nPhalanx: Hey, I don\\'t know about that.\\n\\nAnd Now even more west coasters pour in.\\nRoad O\\'Noblin: Hopalonga\\'s are the greatest!\\n\\nMaulled Beerstein: May you sit on a bikejector!\\n\\nSuddenly more people arrived from the great dark nurth:\\nKite Lanolin: Hey, BMW\\'s are great, men.\\n\\nRobo-Nickie: I prefer motorcycle to robot transformers, personally.\\n\\nMore riders from the west coast come into the discussion:\\nAviator Sourgas: Get a Burley-Thumpison with a belted-rigged frame.\\n\\nGuess Gasket: Go with a BMW or Burley-Thumpison.\\n\\nWith a roar and a screech the latest mudder-disciple thundered in. It\\nwas none other that Clean Bikata on her Hopalonga CaBammerXorn. \\nClean: Like look, Hopalonga are it but only CaBammerXorns. \\n\\nMuck: Why??\\n\\nClean: Well, like it\\'s gotta be a 6-banger or nothin.\\n\\nMuck: But I only have a 4-banger.\\n\\nClean: No GOOD!\\n\\nChunky: Sob, some of us only have 2-bangers!\\n\\nClean: Inferior!\\n\\nStompin: Hey, look, here\\'s proof BMW\\'s are better. The Bimmer-Boys\\nburst into song: (singing) Beemer Babe, Beemer Babe give me a\\nthrill... \\n\\nRoad, Terrible, Polyanna, Maulled, Dill etc.: Wadddoes BMW stand for? \\n\\nHeritick, Stompin, Snob, Chunky, Tread, Kite, High, Arlow: BEAT\\'S ME,\\n WILHEM! \\n\\nRoad, Terrible, Polyanna, Maulled, Dill etc.: Oh, don\\'t you mean BMW? \\n\\nAnd so the ensuing argument goes until the skies clouded over and the\\nthunder roared and the Greatest Mudder-Disciple (G.M.D.) of them all\\nboomed out.\\nG.M.D.: Enough of your bickering! You are doomed to riding\\n Bigot & Suction powered mini-trikes for your childish actions. \\n\\nAll: no, No, NO!!! Puhlease.\\n\\nDoes this mean that all of the wreck.mudder-disciples will be riding\\nmini-trikes? Are our arguing heros doomed? Tune in next week for the\\nnext gut wretching episode of \"The Yearning and Riderless\" with its\\never increasing cast of characters. Where all technical problems will\\nbe flamed over until well done. Next week\\'s episode will answer the\\nquestion of: \"To Helmet or Not to Helmet\" will be aired, this is heady\\nmaterial and viewer discretion is advised. \\n\\n------------------------------------------------------------------------\\n\\n Script for the Denizens of Doom Anthem Video\\n\\n by Jonathan E. Quist DoD #94\\n\\n\\n[Scene: A sterile engineering office. A lone figure, whom we\\'ll call\\nChuck, stands by a printer output bin, wearing a white CDC lab coat,\\nwith 5 mechanical pencils in a pocket protector.] \\n\\n(editor\\'s note: For some reason a great deal of amusement was had at\\nthe First Annual DoD Uni-Coastal Ironhorse Ride & Joust by denizens\\nreferring to each other as \"Chuck\". I guess you had to be there. I\\nwasn\\'t.) \\n\\nChuck: I didn\\'t want to be a Software Systems Analyst,\\n cow-towing to the whims of a machine, and saying yessir, nosir,\\n may-I-have-another-sir. My mother made me do it. I wanted\\n to live a man\\'s life,\\n[Music slowly builds in background]\\n riding Nortons and Triumphs through the highest mountain passes\\n and the deepest valleys,\\n living the life of a Motorcyclist;\\n doing donuts and evading the police;\\n terrorizing old ladies and raping small children;\\n eating small dogs for tea (and large dogs for dinner). In short,\\n\\n\\tI Want to be A Denizen!\\n\\n[Chuck rips off his lab coat, revealing black leather jacket (with\\nfringe), boots, and cap. Scene simultaneously changes to the top of\\nan obviously assaulted Rollins Pass. A small throng of Hell\\'s Angels\\nsit on their Harleys in the near background, gunning their engines,\\nshowering lookers-on with nails as they turn donuts, and leaking oil\\non the tarmac. Chuck is standing in front of a heavily chromed Fat\\nBoy.] \\n\\nChuck [Sings to the tune of \"The Lumberjack Song\"]:\\n\\nI\\'m a Denizen and I\\'m okay,\\nI flame all night and I ride all day.\\n\\n[Hell\\'s Angels Echo Chorus, surprisingly heavy on tenors]:\\nHe\\'s a Denizen and he\\'s okay,\\nHe flames all night and he rides all day.\\n\\nI ride my bike;\\nI eat my lunch;\\nI go to the lavat\\'ry.\\nOn Wednesdays I ride Skyline,\\nRunning children down with glee.\\n\\n[Chorus]:\\nHe rides his bike;\\nHe eats his lunch;\\nHe goes to the lavat\\'ry.\\nOn Wednesdays he rides Skyline,\\nRunning children down with glee.\\n\\n[Chorus refrain]:\\n\\'Cause He\\'s a Denizen...\\n\\nI ride real fast,\\nMy name is Chuck,\\nIt somehow seems to fit.\\nI over-rate the worst bad f*ck,\\nBut like a real good sh*t.\\n\\nOh, I\\'m a Denizen and I\\'m okay!\\nI flame all night and I ride all day.\\n\\n[Chorus refrain]:\\nOh, He\\'s a Denizen...\\n\\nI wear high heels\\nAnd bright pink shorts,\\n full leathers and a bra.\\nI wish I rode a Harley,\\n just like my dear mama.\\n\\n[Chorus refrain]\\n\\n------------------------------------------------------------------------\\n\\n Why you have to be killed.\\n\\nWell, the first thing you have to understand (just in case you managed\\nto read this far, and still not figure it out) is that the DoD started\\nas a joke. And in the words of one Denizen, it intends to remain one.\\n\\nSometime in the far distant past, a hapless newbie asked: \"What does DoD\\nstand for? It\\'s not the Department of Defense is it?\" Naturally, a\\nDenizen who had watched the movie \"Top Gun\" a few times too many rose\\nto the occasion and replied:\\n\\n\"That\\'s classified, we could tell you, but then we\\'d have to kill you.\"\\n\\nAnd the rest is history.\\n\\nA variation on the \"security\" theme is to supply disinformation about\\nwhat DoD stands for. Notable contributions (and contributers, where\\nknown) include:\\n\\nDaughters of Democracy (DoD 23)\\t\\tDoers of Donuts\\nDancers of Despair (DoD 9)\\t\\tDebasers of Daughters\\nDickweeds of Denver\\t\\t\\tDriveway of Death\\nDebauchers of Donuts\\t\\t\\tDumpers of Dirtbikes\\n\\nNote that this is not a comprehensive list, as variations appear to be\\nlimited only by the contents of one\\'s imagination or dictionary file.\\n\\n------------------------------------------------------------------------\\n\\n The rec.moto.photo archive\\n\\nFirst a bit of history, this all started with Ilana Stern and Chuck\\nRogers organizing a rec.motorcycles photo album. Many copies were made,\\nand several sets were sent on tours around the world, only to vanish in\\nunknown locations. Then Bruce Tanner decided that it would be appropriate\\nfor an electronic medium to have an electronic photo album. Bruce has not\\nonly provided the disk space and ftp & e-mail access, but he has taken\\nthe time to scan most of the photos that are available from the archive.\\n\\nNot only can you see what all these folks look like, you can also gawk\\nat their motorcycles. A few non-photo files are available from the\\nserver too, they include the DoD membership list, the DoD Yellow Pages,\\nthe general rec.motorcycles FAQ, and this FAQ posting.\\n\\nHere are a couple of excerpts from from messages Bruce posted about how\\nto use the archive.\\n\\n**********************************************************\\n\\nVia ftp:\\n\\ncerritos.edu [130.150.200.21]\\n\\nVia e-mail:\\n\\nThe address is server@cerritos.edu. The commands are given in the body of the\\nmessage. The current commands are DIR and SEND, given one per line. The\\narguments to the commands are VMS style file specifications. For\\nrec.moto.photo the file spec is [DOD]file. For example, you can send:\\n\\ndir [dod]\\nsend [dod]bruce_tanner.gif\\nsend [dod]dodframe.ps\\n\\nand you\\'ll get back 5 mail messages; a directory listing, 3 uuencoded parts\\nof bruce_tanner.gif, and the dodframe.ps file in ASCII.\\n\\nOh, wildcards (*) are allowed, but a maximum of 20 mail messages (rounded up to\\nthe next whole file) are send. A \\'send [dod]*.gif\\' would send 150 files of\\n50K each; not a good idea.\\n-- \\nBruce Tanner (213) 860-2451 x 596 Tanner@Cerritos.EDU\\nCerritos College Norwalk, CA cerritos!tanner\\n\\n**********************************************************\\n\\nA couple of comments: Bruce has put quite a bit of effort into this, so\\nwhy not drop him a note if you find the rec.moto.photo archive useful?\\nSecond, since Bruce has provided the server as a favor, it would be kind\\nof you to access it after normal working hours (California time). \\n\\n------------------------------------------------------------------------\\n\\n Patches? What patches?\\n\\nYou may have heard mention of various DoD trinkets such as patches &\\npins. And your reaction was probably: \"I want!\", or \"That\\'s sick!\", or\\nperhaps \"That\\'s sick! I want!\"\\n\\nWell, there\\'s some good news and some bad news. The good news is that\\nthere\\'s been an amazing variety of DoD-labeled widgets created. The bad\\nnews is that there isn\\'t anywhere you can buy any of them. This isn\\'t\\nbecause of any \"exclusivity\" attempt, but simply because there is no\\n\"DoD store\" that keeps a stock. All of the creations have been done by\\nindividual Denizens out of their own pockets. The typical procedure is\\nsomeone says \"I\\'m thinking of having a DoD frammitz made, they\\'ll cost\\n$xx.xx, with $xx.xx going to the AMA museum. Anyone want one?\" Then\\norders are taken, and a batch of frammitzes large enough to cover the\\npre-paid orders is produced (and quickly consumed). So if you want a\\nDoD doodad, act quickly the next time somebody decides to do one. Or\\nproduce one yourself if you see a void that needs filling, after all\\nthis is anarchy in action.\\n\\nHere\\'s a possibly incomplete list of known DoD merchandise (and\\nperpetrators). Patches (DoD#11), pins (DoD#99), stickers (DoD#99),\\nmotorcycle license plate frames (DoD#216), t-shirts (DoD#99), polo shirts\\n(DoD#122), Zippo lighters (DoD#99) [LtF FtL], belt buckles (DoD#99), and\\npatches (DoD#99) [a second batch was done (and rapidly consumed) by\\npopular demand].\\n\\nAll \"profits\" have been donated to the American Motorcyclist Association\\nMotorcycle Heritage Museum. As of June 1992, over $5500 dollars has been\\ncontributed to the museum fund by the DoD. If you visit the museum,\\nyou\\'ll see a large plaque on the Founders\\' Wall in the name of \"Denizens\\nof Doom, USENET, The World\", complete with a DoD pin.\\n\\n------------------------------------------------------------------------\\n\\nHere\\'s a letter from the AMA to the DoD regarding our contributions.\\n\\n~Newsgroups: rec.motorcycles\\n~From: Arnie Skurow \\n~Subject: A letter from the Motorcycle Heritage Museum\\n~Date: Mon, 13 Apr 1992 11:04:58 GMT\\n\\nI received the following letter from Jim Rogers, director of the Museum,\\nthe other day.\\n\\n\"Dear Arnie and all members of the Denizens of Doom:\\n\\nCongratulations and expressions of gratitude are in order for you and the\\nDenizens of Doom! With your recent donation, the total amount donated is\\nnow $5,500. On behalf of the AMHF, please extend my heartfeld gratitude\\nto all the membership of the Denizens. The club\\'s new plaque is presently\\nbeing prepared. Of course, everyone is invited to come to the museum to \\nsee the plaque that will be installed in our Founders Foyer. By the way,\\nI will personally mount a Denizens club pin on the plaque. Again, thank \\nyou for all your support, which means so much to the foundation, the\\nmuseum, and the fulfillment of its goals.\\n\\n Sincerely,\\n\\n\\n Jim Rogers, D.O.D. #0395\\n Director\\n\\nP.S. Please post on your computer bulletin board.\"\\n\\nAs you all know, even though the letter was addressed to me personally,\\nit was meant for all of you who purchased DoD goodies that made this\\namount possible.\\n\\nArnie\\n\\n------------------------------------------------------------------------\\n\\nThe Rules, Regulations, & Bylaws of the Denizens of Doom Motorcycle Club\\n\\nFrom time to time there is some mention, discussion, or flame about the\\nrules of the DoD. In order to fan the flames, here is the complete text\\nof the rules governing the DoD.\\n\\n\\t\\t\\tRule #1. There are no rules.\\n\\t\\t\\tRule #0. Go ride.\\n\\n------------------------------------------------------------------------\\n\\n\\t\\tOther rec.motorcycles information resources.\\n\\nThere are several general rec.motorcycles resources that may or may not\\nhave anything to do with the DoD. Most are posted on a regular basis,\\nbut they can also be obtained from the cerritos ftp/e-mail server (see\\nthe info on the photo archive above).\\n\\nA general rec.motorcycles FAQ is maintained by Dave Williams.\\nCerritos filenames are FAQn.TXT, where n is currently 1-5.\\n\\nThe DoD Yellow Pages, a listing of motorcycle industry vendor phone\\nnumbers & addresses, is maintained by bob pakser.\\nCerritos filename is YELLOW_PAGES_Vnn, where n is the rev. number.\\n\\nThe List of the DoD membership is maintained by The Keeper of the List.\\nCerritos filename is DOD.LIST.\\n\\nThis WitDoD FAQ (surprise, surprise!) is maintained by yours truly.\\nCerritos filename is DOD_FAQ.TXT.\\n\\nAdditions, corrections, etc. for any of the above should be aimed at\\nthe keepers of the respective texts.\\n\\n------------------------------------------------------------------------\\n\\n(Loki Jorgenson loki@Physics.McGill.CA) has provided an archive site\\nfor motorcycle and accessory reviews, here\\'s an excerpt from his\\nperiodic announcement.\\n\\n**********************************************************\\n\\n\\tThe Rec.Motorcycles.Reviews Archives (and World Famous Llama\\n Emporium) contains a Veritable Plethora (tm) of bike (and accessories)\\n reviews, written by rec.moto readers based on their own experiences.\\n These invaluable gems of opinion (highly valued for their potential to\\n reduce noise on the list) can be accessed via anonymous FTP, Email\\n server or by personal request:\\n\\n Anonymous FTP:\\t\\tftp.physics.mcgill.ca (132.206.9.13)\\n\\t\\t\\t\\t\\tunder ~ftp/pub/DoD\\n Email archive server:\\t\\trm-reviews@ftp.physics.mcgill.ca\\n Review submissions/questions:\\trm-reviews@physics.mcgill.ca\\n\\n NOTE: There is a difference in the addresses for review submission\\n and using the Email archive server (ie. an \"ftp.\").\\n\\n To get started with the Email server, send an Email message with a line\\n containing only \"send help\". \\n\\n NOTE: If your return address appears like\\n\\tdomain!subdomain!host!username\\n in your mail header, include a line like (or something similar)\\n\\tpath username@host.subdomain.domain \\n\\n\\tIf you are interested in submitting a review of a bike that you\\n already own(ed), PLEASE DO! There is a template of the format that the\\n reviews are kept in (more or less) available at the archive site .\\n For those who have Internet access but are unsure of how anonymous\\n FTP works, an example script is available on request.\\n\\n**********************************************************\\n\\nReviews of any motorcycle related accessory or widget are welcome too.\\n\\n------------------------------------------------------------------------\\n\\n Updated stats & rec.motorcycles rides info\\n\\nSome of the info cited above in various places tends to be a moving\\ntarget. Rather than trying to catch every occurence, I\\'m just sticking\\nthe latest info down here.\\n\\nEstimated rec.motorcycles readership: 35K [news.groups]\\n \\nApproximate DoD Membership: 975 [KotL]\\n\\nDoD contributions to the American Motorcyclist Association Motorcycle\\nHeritage Museum. Over $5500 [Arnie]\\n \\n Organized (?) Rides:\\n\\nSummer 1992 saw more organized rides, with the Joust in its third\\nyear, and the Ride & Feed going strong, but without the Rollins Pass\\ntrip due to the collapse of a tunnel. The East Coast Denizens got\\ntogether for the Right Coast Ride (RCR), with bikers from as far north\\nas NH, and as far south as FL meeting in the Blueridge Mountains of\\nNorth Carolina. The Pacific Northwest crew organized the first Great\\nPacific Northwest Dryside Gather (GPNDG), another successful excuse for\\nriding motorcycles, and seeing the faces behind the names we all have\\ncome to know so well. [Thanks to Ed Green for the above addition.]\\n\\nAlso worth mentioning are: The first rec.moto.dirt ride, held in the\\nMoab/Canyonlands area of southern Utah. Riders from 5 states showed up,\\nriding everything from monster BMWs to itty-bitty XRs to almost-legal\\n2-strokes. And though it\\'s not an \"official\" (as if anything could be\\nofficial with this crowd) rec.moto event, the vintage motorcycle races\\nin Steamboat Springs, Colorado always provides a good excuse for netters\\nto gather. There\\'s also been the occasional Labor Day gather in Utah.\\nEuropean Denizens have staged some gathers too. (Your ad here,\\nreasonable rates!)\\n------------------------------------------------------------------------\\n-- \\nBlaine Gardner @ Evans & Sutherland 580 Arapeen Drive, SLC, Utah 84108\\n blgardne@javelin.sim.es.com BIX: blaine_g@bix.com FJ1200\\nHalf of my vehicles and all of my computers are Kickstarted. DoD#46\\n-- \\nBlaine Gardner @ Evans & Sutherland 580 Arapeen Drive, SLC, Utah 84108\\n blgardne@javelin.sim.es.com BIX: blaine_g@bix.com FJ1200\\nHalf of my vehicles and all of my computers are Kickstarted. DoD#46\\n',\n", - " 'From: frank@marvin.contex.com (Frank Perdicaro)\\nSubject: ST1100 ride\\nKeywords: heavy\\nLines: 95\\n\\nSixteen days I had put off test driving the Honda ST1100. Finally,\\nthe 17th was a Saturday without much rain. In fact it cleared up, \\nbecame warm and sunny, and the wind died. About three weeks ago, I\\ntook a long cool ride on the Hawk down to Cycles! 128 for a test ride.\\nThey had sold, and delivered, the demo ST1100 about fifteen hours\\nbefore I arrived. And the demo VFR was bike-locked in the showroom --\\nsurrounded by 150 other bikes, and not likely to move soon.\\n\\nToday was different. There were even more bikes. 50 used dirt bikes,\\n50 used street bikes, 35 cars, and a big tent full of Outlandishly Fat\\nTouring Bikes With Trailers were all squeezed in the parking lot.\\nSome sort of fat bike convention. Shelly and Dave were running one\\nMSF course each, at the same time. One in the classroom and one on\\nthe back lot. Plus, there was the usuall free cookout food that\\nCycles! gives away every weekend in the summer. Hmmm, it seemed like\\na big moto party.\\n\\nAfter about ten minutes of looking for Rob C, cheif of sales slime,\\nand another 5 minutes reading and signing a long disclosure/libility/\\npray-to-god form I helped JT push the ST out into the mess in the\\nparking lot. We went over the the controls, I put the tank bag from \\nthe Hawk into the right saddlebag, and my wife put everything else\\ninto the left saddlebag. ( Thats nice.... ) Having helped push the \\nST out to the lot, I thought it best to have JT move it to the edge of\\nthe road, away from the 100+ bikes and 100+ people. He rode it like a\\nbicycle! \\'It cant be that heavy\\' I thought.\\n\\nWell I was wrong. As I sat on the ST, both feet down, all I could \\nthink was \"big\". Then I put one foot up. \"Heavy\" came to mind very\\nquickly. With Cindy on the back -- was she on the back? Hard to \\ntell with seat three times as large as a Hawk seat -- the bike seemed\\nnearly out of control just idling on the side of the road.\\n\\nBy 3000 rpm in second gear, all the weight seemed to dissappear. Even\\non bike with 4.1 miles on the odometer, slippery new tires, and pads that \\ndid not yet bite the disks, things seems smooth and sure. Cycles! is\\non a section of 128 that few folks ever ride. About 30 miles north\\nof the computer concentration, about five miles north of where I95\\nsplits away, 128 is a lighly travelled, two lane limited access\\nhighway. It goes through heavily forested sections of Hamilton, \\nManchester-by-the-Sea and Newbury on its way to Gloucester.\\nOn its way there, it meets 133, a road that winds from the sea about\\n30 miles inland to Andover. On its way it goes through many\\nthoroughly New England spots. Perfect, if slow, sport touring sections.\\n\\nCindy has no difficulty with speed. 3rd gear, 4th gear, purring along\\nin top gear. This thing has less low rpm grunt that my Hawk. Lane \\nchanges were a new experience. A big heft is required to move this \\nthing. Responds well though. No wallowing or complaint. Behind the\\nfairing it was fairly quiet, but the helmet buffeting was\\nnon-trivial. Top gear car passing at 85mph was nearly effortless.\\nSmooth, smooth, smooth. Not sure what the v4 sound reminds me of,\\nbut it is pleasant. If only the bars were not transmitting an endless\\nbuzz.\\n\\nThe jump on to 133 caused me to be less than impressed with the\\nbrakes. Its a down hill, reversing camber, twice-reversing radius,\\ndecreasing radius turn. A real squeeze is needed on the front binder. \\nThe section of 133 we were on was tight, but too urban. The ST works ok\\nin this section, but it shows its weight. We went by the clam shack\\noft featured in \"Spencer for Hire\" -- a place where you could really \\nfind \"Spencer\", his house was about 15 miles down 133. After putting\\nthrough traffic for a while, we turned and went back to 128.\\n\\nAbout half way through the onramp, I yanked Cindy\\'s wrist, our singal\\nfor \"hold on tight\". Head check left, time to find redline. Second\\ngear gives a good shove. Third too. Fourth sees DoD speed with a \\nshort shift into top. On the way to 133 we saw no cops and very light\\ntraffic. Did not cross into DoD zone because the bike was too new.\\nWell, now it had 25 miles on it, so it was ok. Tried some high effort\\nlane changes, some wide sweeping turns. Time to wick it up? I went \\nuntil the buffeting was threating to pull us off the seat. And stayed\\nthere. When I was comfortable with the wind and the steering, \\nI looked down to find an indicated 135mph. Not bad for 2-up touring.\\n\\nBeverly comes fast at more than twice the posted limit. At the \"get\\noff in a mile\" sign, I rolled off the throttle and coasted. I wanted\\nto re-adjust to the coming slowness. It was a good idea: there were\\nseveral manhole-sized patches of sand on the exit ramp. Back to the \\nslow and heavy behavior. Cycles! is about a mile from 128. I could \\nsee even more cars stacked up outside right when I got off. I managed\\nto thread the ST through the cars to the edge of the concrete pad\\nout front. Heavy. It took way too much effort for Cindy and I to put\\nthe thing on the center stand. I am sure that if I used the side\\nstand the ST would have been on its side within a minute.\\n\\n\\nMy demo opinion? Heavy. Put it on a diet. Smooth, comfortable,\\nhardly notices the DoD speed. I\\'d buy on for about $3000 less than \\nlist, just like it is. Too much $ for the bike as it is.\\n-- \\n\\t Frank Evan Perdicaro \\t\\t\\t\\tXyvision Color Systems\\n Legalize guns, drugs and cash...today.\\t\\t101 Edgewater Drive\\n inhouse: frank@marvin, x5572\\t\\t\\t\\tWakefield MA\\nouthouse: frank@contex.com, 617-245-4100x5572\\t\\t018801285\\n',\n", - " \"From: havardn@edb.tih.no (Haavard Nesse,o92a)\\nSubject: HELP!!! GRASP\\nReply-To: havardn@edb.tih.no\\nPosting-Front-End: Winix Conference v 92.05.15 1.20 (running under MS-Windows)\\nLines: 13\\n\\nHi!\\n\\nCould anyone tell me if it's possible to save each frame\\nof a .gl (grasp) animation to .gif, .jpg, .iff or any other\\npicture formats.\\n\\n(I've got some animations that I'd like to transfer to my Amiga)\\n \\nI really hope that someone can help me.\\n\\nCheers\\n\\nHaavard Nesse - Trondheim College of Engineering, Trondheim, Norway\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Let the Turks speak for themselves.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 95\\n\\nIn article <1993Apr16.142935.535@cs.yale.edu> karage@scus1.ctstateu.edu (Angelos Karageorgiou) writes:\\n\\n>\\tIf Turks in Greece were so badly mistreated how come they\\n>elected two,m not one but two, representatives in the Greek government?\\n\\nPardon me?\\n\\n\"Greece Government Rail-Roads Two Turkish Ethnic Deputies\"\\n\\nWhile World Human Rights Organizations Scream, Greeks \\nPersistently Work on Removing the Parliamentary Immunity\\nof Dr. Sadik Ahmet and Mr. Ahmet Faikoglu.\\n\\n\\nDr. Sadik Ahmet, Turkish Ethnic Member of Greek Parliament, Visits US\\n\\nWashington DC, July 7- Doctor Sadik Ahmet, one of the two ethnic\\nTurkish members of the Greek parliament visited US on june 24 through\\nJuly 5th and held meetings with human rights organizations and\\nhigh-level US officials in Washington DC and New York.\\n\\nAt his press conference at the National Press Club in Washington DC,\\nSadik Ahmet explained the plight of ethnic Turks in Greece and stated\\nsix demands from Greek government.\\n\\nAhmet said \"our only hope in Greece is the pressure generated from\\nWestern capitals for insisting that Greece respects the human rights.\\nWhat we are having done to ethnic Turks in Greece is exactly the same\\nas South African Apartheid.\" He added: \"What we are facing is pure\\nGreek hatred and racial discrimination.\"\\n\\nSpelling out the demands of the Turkish ethnic community in Greece\\nhe said \"We want the restoration of Greek citizenship of 544 ethnic\\nTurks. Their citizenship was revoked by using the excuse that this\\npeople have stayed out of Greece for too long. They are Greek citizens\\nand are residing in Greece, even one of them is actively serving in\\nthe Greek army. Besides, other non-Turkish citizens of Greece are\\nnot subject to this kind of interpretation at an extent that many of\\nGreek-Americans have Greek citizenship and they permanently live in\\nthe United States.\"\\n\\n\"We want guarantee for Turkish minority\\'s equal rights. We want Greek\\ngovernment to accept the Turkish minority and grant us our civil rights.\\nOur people are waiting since 25 years to get driving licenses. The Greek\\ngovernment is not granting building permits to Turks for renovating\\nour buildings or building new ones. If your name is Turkish, you are\\nnot hired to the government offices.\"\\n\\n\"Furthermore, we want Greek government to give us equal opportunity\\nin business. They do not grant licenses so we can participate in the\\neconomic life of Greece. In my case, they denied me a medical license\\nnecessary for practicing surgery in Greek hospitals despite the fact\\nthat I have finished a Greek medical school and followed all the\\nnecessary steps in my career.\"\\n\\n\"We want freedom of expression for ethnic Turks. We are not allowed\\nto call ourselves Turks. I myself have been subject of a number of\\nlaw suits and even have been imprisoned just because I called myself\\na Turk.\"\\n\\n\"We also want Greek government to provide freedom of religion.\"\\n\\nIn separate interview with The Turkish Times, Dr. Sadik Ahmet stated\\nthat the conditions of ethnic Turks are deplorable and in the eyes of\\nGreek laws, ethnic Greeks are more equal than ethnic Turks. As an example,\\nhe said there are about 20,000 telephone subscribers in Selanik (Thessaloniki)\\nand only about 800 of them are Turks. That is not because Turks do not\\nwant to have telephone services at their home and businesses. He said\\nthat Greek government changed the election law just to keep him out\\nof the parliament as an independent representative and they stated\\nthis fact openly to him. While there is no minimum qualification\\nrequirement for parties in terms of receiving at least 3% of the votes,\\nthey imposed this requirement for the independent parties, including\\nthe Turkish candidates.\\n\\nAhmet was born in a small village at Gumulcine (Komotini), Greece 1947.\\nHe earned his medical degree at University of Thessaloniki in 1974.\\nhe served in the Greek military as an infantryman.\\n\\nIn 1985 he got involved with community affairs for the first time\\nby collecting 15,000 signatures to protest the unjust implementation\\nof laws against ethnic Turks. In 1986, he was arrested by the police\\nfor collecting signatures.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " \"From: gwh@soda.berkeley.edu (George William Herbert)\\nSubject: Re: Moonbase race\\nOrganization: Retro Aerospace\\nLines: 14\\nNNTP-Posting-Host: soda.berkeley.edu\\nSummary: Hmm...\\n\\nHmm. $1 billion, lesse... I can probably launch 100 tons to LEO at\\n$200 million, in five years, which gives about 20 tons to the lunar\\nsurface one-way. Say five tons of that is a return vehicle and its\\nfuel, a bigger Mercury or something (might get that as low as two\\ntons), leaving fifteen tons for a one-man habitat and a year's supplies?\\nGee, with that sort of mass margins I can build the systems off\\nthe shelf for about another hundred million tops. That leaves\\nabout $700 million profit. I like this idea 8-) Let's see\\nif you guys can push someone to make it happen 8-) 8-)\\n\\n[slightly seriously]\\n\\n-george william herbert\\nRetro Aerospace\\n\",\n", - " \"From: jk87377@lehtori.cc.tut.fi (Kouhia Juhana)\\nSubject: XV problems\\nOrganization: Tampere University of Technology\\nLines: 113\\nDistribution: world\\nNNTP-Posting-Host: cc.tut.fi\\n\\n[Please, note the Newsgroups.]\\n\\nRecent discussion about XV's problems were held in some newsgroup.\\nHere is some text users of XV might find interesting.\\nI have added more to text to this collection article, so read on, even\\nyou so my articles a while ago.\\n\\nI hope author of XV corrects those problems as best he can, so fine\\nprogram XV is that it is worth of improving.\\n(I have also minor ideas for 24bit XV, e-mail me for them.)\\n\\nAny misundertanding of mine is understandable.\\n\\n\\nJuhana Kouhia\\n\\n\\n==clip==\\n\\n[ ..deleted..]\\n\\nNote that 'xv' saves only 8bit/rasterized images; that means that\\nthe saved jpegs are just like jpeg-to-gif-to-jpeg quality.\\nAlso, there's three kind of 8bit quantizers; your final image quality\\ndepends on them too.\\n \\nThis were the situation when I read jpeg FAQ a while ago.\\n \\nIMHO, it is design error of 'xv'; there should not be such confusing\\nerrors in programs.\\nThere's two errors:\\n -xv allows the saving of 8bit/rasterized image as jpeg even the\\n original is 24bit -- saving 8bit/rasterized image instead of\\n original 24bit should be a special case\\n -xv allows saving the 8bit/rasterized image made with any quantizer\\n -- the main case should be that 'xv' quantizes the image with the\\n best quantizer available before saving the image to a file; lousier\\n quantizers should be just for viewing purposes (and a special cases\\n in saving the image, if at all)\\n \\n==clip==\\n\\n==clip==\\n\\n[ ..deleted..]\\n\\nIt is limit of *XV*, but not limit of design.\\nIt is error in design.\\nIt is error that 8bit/quantized/rasterized images are stored as jpegs;\\njpeg is not designed to that.\\n\\nAs matter of fact, I'm sure when XV were designed 24bit displays were\\nknown. It is not bad error to program a program for 8bit images only\\nat that time, but when 24bit image formats are included to program the\\nwhole design should be changed to support 24bit images.\\nThat were not done and now we have\\n -the program violate jpeg design (and any 24bit image format)\\n -the program has human interface errors.\\n\\nOtherway is to drop saving images as jpegs or any 24bit format without\\nclearly saying that it is special case and not expected in normal use.\\n\\n[ ..deleted.. ]\\n\\n==clip==\\n\\nSome new items follows.\\n\\n==clip==\\n\\nI have seen that XV quantizes the image sometimes poorly with -best24\\noption than with default option we have.\\nThe reason surely is the quantizer used as -best24; it is (surprise)\\nthe same than used in ppmquant.\\n\\nIf you remember, I have tested some quantizers. In that test I found\\nthat rlequant (with default) is best, then comes djpeg, fbmquant, xv\\n(our default) in that order. In my test ppmquant suggeeded very poorly\\n-- it actually gave image with bad artifacts.\\n\\nI don't know is ppmquant improved any, but I expect no.\\nSo, use of XV's -best24 option is not very good idea.\\n\\nI suggest that author of XV changes the quantizer to the one used in\\nrlequant -- I'm sure rle-people gives permission.\\n(Another could be one used in ImageMagick; I have not tested it, so I\\ncan say nothing about it.)\\n\\n==clip==\\n\\n==clip==\\n\\nSome minor bugs in human interface are:\\n\\nKey pressings and cursor clicks goes to a buffer; Often it happens\\nthat I make click errors or press keyboard when cursor is in the wrong\\nplace. It is very annoying when you have waited image to come about\\nfive minutes and then it is gone away immediately.\\nThe buffer should be cleaned when the image is complete.\\n\\nAlso, good idea is to wait few seconds before activating keyboard\\nand mouse for XV after the image is completed.\\nOften it happens that image pops to the screen quickly, just when\\nI'm writing something with editor or such. Those key pressings\\nthen go to XV and image has gone or something weird.\\n\\nIn the color editor, when I turn a color meter and release it, XV\\nupdates the images. It is impossible to change all RGB values first\\nand then get the updated image. It is annoying wait image to be\\nupdated when the setting are not ready yet.\\nI suggest of adding an 'apply' button to update the exchanges done.\\n\\n==clip==\\n\",\n", - " 'From: mvp@netcom.com (Mike Van Pelt)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: Netcom - Online Communication Services (408 241-9760 guest)\\nLines: 17\\n\\nIn article <1r64pb$nkk@genesis.MCS.COM> arf@genesis.MCS.COM (Jack Schmidling) writes:\\n>Neither the Times nor the trained seals who have responded thus far seem to\\n>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>otherwords, American taxpayers put up at least 30% of the money.\\n\\nDammit, how did ArfArf\\'s latest excretion escape my kill file?\\n\\nOh, he changed sites. Again. *sigh* OK, I assume no other person\\non this planet will ever use the login name of arf.\\n\\n/arf@/aK:j \\n\\n-- \\nMike Van Pelt mvp@netcom.com\\n\"... Local prohibitions cannot block advances in military and commercial\\ntechnology.... Democratic movements for local restraint can only restrain\\nthe world\\'s democracies, not the world as a whole.\" -- K. Eric Drexler\\n',\n", - " \"From: nancyo@fraser.sfu.ca (Nancy Patricia O'Connor)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: Simon Fraser University, Burnaby, B.C., Canada\\nLines: 11\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes:\\n\\n>Rule #4: Don't mix apples with oranges. How can you say that the\\n>extermination by the Mongols was worse than Stalin? Khan conquered people\\n>unsympathetic to his cause. That was atrocious. But Stalin killed millions of\\n>his own people who loved and worshipped _him_ and his atheist state!! How can\\n>anyone be worse than that?\\n\\nYou're right. And David Koresh claimed to be a Christian.\\n\\n\\n\",\n", - " 'From: lpzsml@unicorn.nott.ac.uk (Steve Lang)\\nSubject: Re: Objective Values \\'v\\' Scientific Accuracy (was Re: After 2000 years, can we say that Christian Morality is)\\nOrganization: Nottingham University\\nLines: 38\\n\\nIn article , tk@dcs.ed.ac.uk (Tommy Kelly) wrote:\\n> In article <1qjahh$mrs@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n> \\n> >Science (\"the real world\") has its basis in values, not the other way round, \\n> >as you would wish it. \\n> \\n> You must be using \\'values\\' to mean something different from the way I\\n> see it used normally.\\n> \\n> And you are certainly using \\'Science\\' like that if you equate it to\\n> \"the real world\".\\n> \\n> Science is the recognition of patterns in our perceptions of the Universe\\n> and the making of qualitative and quantitative predictions concerning\\n> those perceptions.\\n\\nScience is the process of modeling the real world based on commonly agreed\\ninterpretations of our observations (perceptions).\\n\\n> It has nothing to do with values as far as I can see.\\n> Values are ... well they are what I value.\\n> They are what I would have rather than not have - what I would experience\\n> rather than not, and so on.\\n\\nValues can also refer to meaning. For example in computer science the\\nvalue of 1 is TRUE, and 0 is FALSE. Science is based on commonly agreed\\nvalues (interpretation of observations), although science can result in a\\nreinterpretation of these values.\\n\\n> Objective values are a set of values which the proposer believes are\\n> applicable to everyone.\\n\\nThe values underlaying science are not objective since they have never been\\nfully agreed, and the change with time. The values of Newtonian physic are\\ncertainly different to those of Quantum Mechanics.\\n\\nSteve Lang\\nSLANG->SLING->SLINK->SLICK->SLACK->SHACK->SHANK->THANK->THINK->THICK\\n',\n", - " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: some thoughts.\\nIn-Reply-To: healta@saturn.wwc.edu\\'s message of Fri, 16 Apr 1993 02: 51:29 GMT\\nOrganization: Compaq Computer Corp\\n\\t\\nLines: 47\\n\\n>>>>> On Fri, 16 Apr 1993 02:51:29 GMT, healta@saturn.wwc.edu (Tammy R Healy) said:\\nTRH> I hope you\\'re not going to flame him. Please give him the same coutesy you\\'\\nTRH> ve given me.\\n\\nBut you have been courteous and therefore received courtesy in return. This\\nperson instead has posted one of the worst arguments I have ever seen\\nmade from the pro-Christian people. I\\'ve known several Jesuits who would\\nlaugh in his face if he presented such an argument to them.\\n\\nLet\\'s ignore the fact that it\\'s not a true trilemma for the moment (nice\\nword Maddi, original or is it a real word?) and concentrate on the\\nliar, lunatic part.\\n\\nThe argument claims that no one would follow a liar, let alone thousands\\nof people. Look at L. Ron Hubbard. Now, he was probably not all there,\\nbut I think he was mostly a liar and a con-artist. But look at how many\\nthousands of people follow Dianetics and Scientology. I think the \\nBaker\\'s and Swaggert along with several other televangelists lie all\\nthe time, but look at the number of follower they have.\\n\\nAs for lunatics, the best example is Hitler. He was obviously insane,\\nhis advisors certainly thought so. Yet he had a whole country entralled\\nand came close to ruling all of Europe. How many Germans gave their lives\\nfor him? To this day he has his followers.\\n\\nI\\'m just amazed that people still try to use this argument. It\\'s just\\nso obviously *wrong*.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", - " 'From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Why is sex only allowed in marriage: Rationality (was: Islamic marriage)?\\nOrganization: Monash University, Melb., Australia.\\nLines: 115\\n\\nIn <1993Apr4.093904.20517@proxima.alt.za> lucio@proxima.alt.za (Lucio de Re) writes:\\n\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n\\n>>My point of view is that the argument \"all sexism is bad\" just simply\\n>>does not hold. Let me give you an example. How about permitting a\\n>>woman to temporarily leave her job due to pregnancy -- should that be\\n>>allowed? It happens to be sexist, as it gives a particular right only\\n>>to women. Nevertheless, despite the fact that it is sexist, I completely \\n>>support such a law, because I think it is just.\\n\\n>Fred, you\\'re exasperating... Sexism, like racialism, is a form of\\n>discrimination, using obvious physical or cultural differences to deny\\n>one portion of the population the same rights as another.\\n\\n>In this context, your example above holds no water whatsoever:\\n>there\\'s no discrimination in \"denying\" men maternity leave, in fact\\n>I\\'m quite convinced that, were anyone to experiment with male\\n>pregnancy, it would be possible for such a future father to take\\n>leave on medical grounds.\\n\\nOkay... I argued this thoroughly about 3-4 weeks ago. Men and women are\\ndifferent ... physically, physiologically, and psychologically. Much\\nrecent evidence for this statement is present in the book \"Brainsex\" by\\nAnne Moir and David Jessel. I recommend you find a copy and read it.\\nTheir book is an overview of recent scientific research on this topic\\nand is well referenced. \\n\\nNow, if women and men are different in some ways, the law can only\\nadequately take into account their needs in these areas where they are\\ndifferent by also taking into account the ways in which men and women\\nare different. Maternity leave is an example of this -- it takes into\\naccount that women get pregnant. It does not give women the same rules\\nit would give to men, because to treat women like it treats men in this\\ninstance would be unjust. This is just simply an obvious example of\\nwhere men and women are intrinsically different!!!!!\\n\\nNow, people make the _naive_ argument that sexism = oppression.\\nHowever, maternity leave is sexist because MEN DO NOT GET PREGNANT. \\nMen do not have the same access to leave that women do (not to the same\\nextent or degree), and therefore IT IS SEXIST. No matter however much a\\nman _wants_ to get pregnant and have maternity leave, HE NEVER CAN. And\\ntherefore the law IS SEXIST. No man can have access to maternity leave,\\nNO MATTER HOW HARD HE TRIES TO GET PREGNANT. I hope this is clear.\\n\\nMaternity leave is an example where a sexist law is just, because the\\nsexism here just reflects the \"sexism\" of nature in making men and women\\ndifferent. There are many other differences between men and women which\\nare far more subtle than pregnancy, and to find out more of these I\\nrecommend you have a look at the book \"Brainsex\".\\n\\nYour point that perhaps some day men can also be pregnant is fallacious.\\nIf men can one day become pregnant it will be by having biologically\\nbecome women! To have a womb and the other factors required for\\npregnancy is usually wrapped up in the definition of what a woman is --\\nso your argument, when it is examined, is seen to be fallacious. You\\nare saying that men can have the sexist maternity leave privilege that \\nwomen can have if they also become women -- which actually just supports\\nmy statement that maternity leave is sexist.\\n\\n>The discrimination comes in when a woman is denied opportunities\\n>because of her (legally determined) sexual inferiorities. As I\\n>understand most religious sexual discrimination, and I doubt that\\n>Islam is exceptional, the female is not allowed into the priestly\\n>caste and in general is subjugated so that she has no aspirations to\\n>rights which, as an equal human, she ought to be entitled to.\\n\\nThere is no official priesthood in Islam -- much of this function is\\ntaken by Islamic scholars. There are female Islamic scholars and\\nfemale Islamic scholars have always existed in Islam. An example from\\nearly Islamic history is the Prophet\\'s widow, Aisha, who was recognized\\nin her time and is recognized in our time as an Islamic scholar.\\n\\n>No matter how sweetly you coat it, part of the role of religions\\n>seems, historically, to have served the function of oppressing the\\n>female, whether by forcing her to procreate to the extent where\\n>there is no opportunity for self-improvement, or by denying her\\n>access to the same facilities the males are offered.\\n\\nYou have no evidence for your blanket statement about all religions, and\\nI dispute it. I could go on and on about women in Islam, etc., but I\\nrecently reposted something here under the heading \"Islam and Women\" --\\nif it is still at your news-site I suggest you read it. It is reposted\\nfrom soc.religion.islam, so if it has disappeared from alt.atheism it\\nstill might be in soc.religion.islam (I forgot what its original title\\nwas though). I will email it to you if you like. \\n\\n>The Roman Catholic Church is the most blatant of the culprit,\\n>because they actually istitutionalised a celibate clergy, but the\\n>other religious are no different: let a woman attempt to escape her\\n>role as child bearer and the wrath of god descends on her.\\n\\nYour statement that \"other religions are no different\" is, I think, a\\nstatement based simply on lack of knowledge about religions other than\\nChristianity and perhaps Judaism.\\n\\n>I\\'ll accept your affirmation that Islam grants women the same rights\\n>as men when you can show me that any muslim woman can aspire to the\\n>same position as (say) Khomeini and there are no artificial religious\\n>or social obstacles on her path to achieve this.\\n\\nAisha, who I mentioned earlier, was not only an Islamic scholar but also\\nwas, at one stage, a military leader.\\n\\n>Show me the equivalent of Hillary Rhodam-Clinton within Islam, and I\\n>may consider discussing the issue with you.\\n\\nThe Prophet\\'s first wife, who died just before the \"Hijra\" (the\\nProphet\\'s journey from Mecca to Medina) was a successful businesswoman.\\n\\nLucio, you cannot make a strong case for your viewpoint when your\\nviewpoint is based on ignorance about world religions.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n',\n", - " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Israeli Terrorism\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 7\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n How many of you readers know anything about Jews living in the\\nArab countries? How many of you know if Jews still live in these\\ncountries? How many of you know what the circumstances of Arabic\\nJews leaving their homelands were? Just curious.\\n\\n\\n',\n", - " 'Organization: Penn State University\\nFrom: Andrew Newell \\nSubject: Re: free moral agency\\nDistribution: na\\n \\nLines: 119\\n\\nIn article , bil@okcforum.osrhe.edu (Bill\\nConner) says:\\n>\\n>dean.kaflowitz (decay@cbnewsj.cb.att.com) wrote:\\n>\\n>: Now, what I am interested in is the original notion you were discussing\\n>: on moral free agency. That is, how can a god punish a person for\\n>: not believing in him when that person is only following his or her\\n>: nature and it is not possible for that person to deny what his or\\n>: her reason tells him or her, which is that there is no god?\\n>\\n>I think you\\'re letting atheist mythology confuse you on the issue of\\n\\n(WEBSTER: myth: \"a traditional or legendary story...\\n ...a belief...whose truth is accepted uncritically.\")\\n\\nHow does that qualify?\\nIndeed, it\\'s almost oxymoronic...a rather amusing instance.\\nI\\'ve found that most atheists hold almost no atheist-views as\\n\"accepted uncritically,\" especially the few that are legend.\\nMany are trying to explain basic truths, as myths do, but\\nthey don\\'t meet the other criterions.\\nAlso...\\n\\n>Divine justice. According to the most fundamental doctrines of\\n>Christianity, When the first man sinned, he was at that time the\\n\\nYou accuse him of referencing mythology, then you procede to\\nlaunch your own xtian mythology. (This time meeting all the\\nrequirements of myth.)\\n\\n>salvation. The idea of punishment is based on the proposition that\\n>everyone knows (instinctively?) that God exists, is their creator and\\n\\nAh, but not everyone \"knows\" that god exists. So you have\\na fallacy.\\n\\n>There\\'s nothing terribly difficult in all this and is well known to\\n>any reasonably Biblically literate Christian. The only controversy is\\n\\nAnd that makes it true? Holding with the Bible rules out controversy?\\nRead the FAQ. If you\\'ve read it, you missed something, so re-read.\\n(Not a bad suggestion for anyone...I re-read it just before this.)\\n\\n>with those who pretend not to know what is being said and what it\\n>means. When atheists claim that they do -not- know if God exists and\\n>don\\'t know what He wants, they contradict the Bible which clearly says\\n>that -everyone- knows. The authority of the Bible is its claim to be\\n\\n...should I repeat what I wrote above for the sake of getting\\nit across? You may trust the Bible, but your trusting it doesn\\'t\\nmake it any more credible to me.\\n\\nIf the Bible says that everyone knows, that\\'s clearly reason\\nto doubt the Bible, because not everyone \"knows\" your alleged\\ngod\\'s alleged existance.\\n\\n>refuted while the species-wide condemnation is justified. Those that\\n>claim that there is no evidence for the existence of God or that His will is\\n>unknown, must deliberately ignore the Bible; the ignorance itself is\\n>no excuse.\\n\\n1) No, they don\\'t have to ignore the Bible. The Bible is far\\nfrom universally accepted. The Bible is NOT a proof of god;\\nit is only a proof that some people have thought that there\\nwas a god. (Or does it prove even that? They might have been\\nwriting it as series of fiction short-stories. As in the\\ncase of Dionetics.) Assuming the writers believed it, the\\nonly thing it could possibly prove is that they believed it.\\nAnd that\\'s ignoring the problem of whether or not all the\\ninterpretations and Biblical-philosophers were correct.\\n\\n2) There are people who have truly never heard of the Bible.\\n\\n3) Again, read the FAQ.\\n\\n>freedom. You are free to ignore God in the same way you are free to\\n>ignore gravity and the consequences are inevitable and well known\\n>in both cases. That an atheist can\\'t accept the evidence means only\\n\\nBzzt...wrong answer!\\nGravity is directly THERE. It doesn\\'t stop exerting a direct and\\nrationally undeniable influence if you ignore it. God, on the\\nother hand, doesn\\'t generally show up in the supermarket, except\\non the tabloids. God doesn\\'t exert a rationally undeniable influence.\\nGravity is obvious; gods aren\\'t.\\n\\n>Secondly, human reason is very comforatble with the concept of God, so\\n>much so that it is, in itself, intrinsic to our nature. Human reason\\n>always comes back to the question of God, in every generation and in\\n\\nNo, human reason hasn\\'t always come back to the existance of\\n\"God\"; it has usually come back to the existance of \"god\".\\nIn other words, it doesn\\'t generally come back to the xtian\\ngod, it comes back to whether there is any god. And, in much\\nof oriental philosophic history, it generally doesn\\'t pop up as\\nthe idea of a god so much as the question of what natural forces\\nare and which ones are out there. From a world-wide view,\\nhuman nature just makes us wonder how the universe came to\\nbe and/or what force(s) are currently in control. A natural\\ntendancy to believe in \"God\" only exists in religious wishful\\nthinking.\\n\\n>I said all this to make the point that Christianity is eminently\\n>reasonable, that Divine justice is just and human nature is much\\n>different than what atheists think it is. Whether you agree or not\\n\\nXtianity is no more reasonable than most other religions, and\\nit\\'s reasonableness certainly doesn\\'t merit eminence.\\nDivine justice...well, it only seems just to those who already\\nbelieve in the divinity.\\nFirst, not all atheists believe the same things about human\\nnature. Second, whether most atheists are correct or not,\\nYOU certainly are not correct on human nature. You are, at\\nthe least, basing your views on a completely eurocentric\\napproach. Try looking at the outside world as well when\\nyou attempt to sum up all of humanity.\\n\\nAndrew\\n',\n", - " 'From: thester@nyx.cs.du.edu (Uncle Fester)\\nSubject: Re: CView answers\\nX-Disclaimer: Nyx is a public access Unix system run by the University\\n\\tof Denver for the Denver community. The University has neither\\n\\tcontrol over nor responsibility for the opinions of users.\\nOrganization: Nyx, Public Access Unix at U. of Denver Math/CS dept.\\nLines: 36\\n\\nIn article <5103@moscom.com> mz@moscom.com (Matthew Zenkar) writes:\\n>Cyberspace Buddha (cb@wixer.bga.com) wrote:\\n>: renew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n>: >over where it places its temp files: it just places them in its\\n>: >\"current directory\".\\n>\\n>: I have to beg to differ on this point, as the batch file I use\\n>: to launch cview cd\\'s to the dir where cview resides and then\\n>: invokes it. every time I crash cview, the 0-byte temp file\\n>: is found in the root dir of the drive cview is on.\\n>\\n>I posted this as well before the cview \"expert\". Apparently, he thought\\nhe\\n>knew better.\\n>\\n>Matthew Zenkar\\n>mz@moscom.com\\n\\n\\n Are we talking about ColorView for DOS here? \\n I have version 2.0 and it writes the temp files to its own\\n current directory.\\n What later versions do, I admit that I don\\'t know.\\n Assuming your \"expert\" referenced above is talking about\\n the version that I have, then I\\'d say he is correct.\\n Is the ColorView for unix what is being discussed?\\n Just mixed up, confused, befuddled, but genuinely and\\n entirely curious....\\n\\n Uncle Fester\\n\\n--\\n : What God Wants : God wants gigolos :\\n : God gets : God wants giraffes :\\n : God help us all : God wants politics :\\n : *thester@nyx.cs.du.edu* : God wants a good laugh :\\n',\n", - " 'From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES \\nOrganization: NONE\\nLines: 52\\n\\nIn article <1993Apr20.110021.5746@kth.se>, hilmi-er@dsv.su.se (Hilmi Eren) writes:\\n\\n\\nhenrik] The Armenians in Nagarno-Karabagh are simply DEFENDING their \\nhenrik] RIGHTS to keep their homeland and it is the AZERIS that are \\nhenrik] INVADING their homeland.\\n\\n\\nHE] Homeland? First Nagarno-Karabagh was Armenians homeland today\\nHE] Fizuli, Lacin and several villages (in Azerbadjan)\\nHE] are their homeland. Can\\'t you see the\\nHE] the \"Great Armenia\" dream in this? With facist methods like\\nHE] killing, raping and bombing villages. The last move was the\\nHE] blast of a truck with 60 kurdish refugees, trying to\\nHE] escape the from Lacin, a city that was \"given\" to the Kurds\\nHE] by the Armenians.\\n\\nNagorno-Karabakh is in Azerbaijan not Armenia. Armenians have lived in Nagorno-\\nKarabakh ever since there were Armenians. Armenians used to live in the areas\\nbetween Armenia and Nagorno-Karabakh and this area is being used to invade \\nNagorno- Karabakh. Armenians are defending themselves. If Azeris are dying\\nbecause of a policy of attacking Armenians, then something is wrong with this \\npolicy.\\n\\nIf I recall correctly, it was Stalin who caused all this problem with land\\nin the first place, not the Armenians.\\n\\nhenrik] However, I hope that the Armenians WILL force a TURKISH airplane\\nhenrik] to LAND for purposes of SEARCHING for ARMS similar to the one\\nhenrik] that happened last SUMMER. Turkey searched an AMERICAN plane\\nhenrik] (carrying humanitarian aid) bound to ARMENIA.\\n\\nHE] Don\\'t speak about things you don\\'t know: 8 U.S. Cargo planes\\nHE] were heading to Armenia. When the Turkish authorities\\nHE] announced that they were going to search these cargo\\nHE] planes 3 of these planes returned to it\\'s base in Germany.\\nHE] 5 of these planes were searched in Turkey. The content of\\nHE] of the other 3 planes? Not hard to guess, is it? It was sure not\\nHE] humanitarian aid.....\\n\\nWhat story are you talking about? Planes from the U.S. have been sending\\naid into Armenian for two years. I would not like to guess about what were in\\nthe 3 planes in your story, I would like to find out.\\n\\n\\nHE] Search Turkish planes? You don\\'t know what you are talking about.\\nHE] Turkey\\'s government has announced that it\\'s giving weapons\\nHE] to Azerbadjan since Armenia started to attack Azerbadjan\\nHE] it self, not the Karabag province. So why search a plane for weapons\\nHE] since it\\'s content is announced to be weapons?\\n\\nIt\\'s too bad you would want Turkey to start a war with Armenia.\\n',\n", - " 'From: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixa.cc.columbia.edu\\nReply-To: jaa12@cunixa.cc.columbia.edu (John A Absood)\\nOrganization: Columbia University\\nLines: 14\\n\\nMr. Freeman:\\n\\nPlease find something more constructive to do with your time rather\\nthan engaging in fantasy..... Not that I have a particular affinty\\nto Arafat or anything.\\n\\nJohn\\n\\n\\n\\n\"Marlow ceased, and sat apart, indistinct and silent, in the pose of a\\n meditating Buddha. Nobody moved for a time...The offing was barred by\\n a black bank of clouds, and the tranquil waterway leading to the utter-\\n most ends of the earth flowed sombre under an overcast sky - seemed to\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Rejetting carbs..\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nDistribution: na\\nLines: 53\\n\\nMark Kromer, on the Thu, 15 Apr 1993 00:42:46 GMT wibbled:\\n: In an article rtaraz@bigwpi (Ramin Taraz) wrote:\\n\\n: >Does the \"amount of exhaust allowed to leave the engine through the\\n: >exhaust pipe\" make that much of a difference? the amount of air/fuel\\n: >mixture that a cylender sucks in (tries to suck in) depends on the\\n: >speed of the piston when it goes down. \\n\\n: ...and the pressure in the cylinder at the end of the exhaust stroke.\\n\\n: With a poor exhaust system, this pressure may be above atmospheric.\\n: With a pipe that scavenges well this may be substantially below\\n: atmospheric. This effect will vary with rpm depending on the tune of\\n: the pipe; some pipes combined with large valve overlap can actually\\n: reverse the intake flow and blow mixture out of the carb when outside\\n: the pipes effective rev range.\\n\\n: >Now, my question is which one provides more resistence as far as the\\n: >engine is conserned:\\n: >) resistance that the exhaust provides \\n: >) or the resistance that results from the bike trying to push itself and\\n: > the rider\\n\\n: Two completely different things. The state of the pipe determines how\\n: much power the motor can make. The load of the bike determines how\\n: much power the motor needs to make.\\n\\n: --\\n: - )V(ark)< FZR400 Pilot / ZX900 Payload / RD400 Mechanic \\n: You\\'re welcome.\\n\\nWell I, for one, am so very glad that I have fuel injection! All those \\nneedles and orifices and venturi and pressures... It\\'s worse than school human\\nbiology reproduction lessons (sex). Always made me feel a bit queasy.\\n--\\n\\nNick (the Simple Minded Biker) DoD 1069 Concise Oxford Tube Rider\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", - " \"From: ralph.buttigieg@f635.n713.z3.fido.zeta.org.au (Ralph Buttigieg)\\nSubject: Why not give $1 billion to first year-lo\\nOrganization: Fidonet. Gate admin is fido@socs.uts.edu.au\\nLines: 34\\n\\nOriginal to: keithley@apple.com\\nG'day keithley@apple.com\\n\\n21 Apr 93 22:25, keithley@apple.com wrote to All:\\n\\n kc> keithley@apple.com (Craig Keithley), via Kralizec 3:713/602\\n\\n\\n kc> But back to the contest goals, there was a recent article in AW&ST\\nabout a\\n kc> low cost (it's all relative...) manned return to the moon. A General\\n kc> Dynamics scheme involving a Titan IV & Shuttle to lift a Centaur upper\\n kc> stage, LEV, and crew capsule. The mission consists of delivering two\\n kc> unmanned payloads to the lunar surface, followed by a manned mission.\\n kc> Total cost: US was $10-$13 billion. Joint ESA(?)/NASA project was\\n$6-$9\\n kc> billion for the US share.\\n\\n kc> moon for a year. Hmmm. Not really practical. Anyone got a\\n kc> cheaper/better way of delivering 15-20 tonnes to the lunar surface\\nwithin\\n kc> the decade? Anyone have a more precise guess about how much a year's\\n kc> supply of consumables and equipment would weigh?\\n\\nWhy not modify the GD plan into Zurbrin's Compact Moon Direct scheme? let\\none of those early flight carry an O2 plant and make your own.\\n\\nta\\n\\nRalph\\n\\n--- GoldED 2.41+\\n * Origin: VULCAN'S WORLD - Sydney Australia (02) 635-1204 3:713/6\\n(3:713/635)\\n\",\n", - " \"From: naren@tekig1.PEN.TEK.COM (Naren Bala)\\nSubject: Re: Slavery (was Re: Why is sex only allowed in marriage: ...)\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 21\\n\\nIn article sandvik@newton.apple.com (Kent Sandvik) writes:\\n>Looking at historical evidence such 'perfect utopian' islamic states\\n>didn't survive. I agree, people are people, and even if you might\\n>start an Islamic revolution and create this perfect state, it takes \\n>some time and the internal corruption will destroy the ground rules --\\n>again.\\n>\\n\\nNothing is perfect. Nothing is perpetual. i.e. even if it is perfect,\\nit isn't going to stay that way forever. \\n\\nPerpetual machines cannot exist. I thought that there\\nwere some laws in mechanics or thermodynamics stating that.\\n\\nNot an atheist\\nBN\\n--\\n---------------------------------------------------------------------\\n- Naren Bala (Software Evaluation Engineer)\\n- HOME: (503) 627-0380\\t\\tWORK: (503) 627-2742\\n- All standard disclaimers apply. \\n\",\n", - " 'From: g9134255@wampyr.cc.uow.edu.au (Coronado Emmanuel Abad)\\nSubject: Fonts in POV??\\nOrganization: University of Wollongong, NSW, Australia.\\nLines: 11\\nNNTP-Posting-Host: wampyr.cc.uow.edu.au\\nKeywords: fonts, raytrace\\n\\n\\n\\n\\tI have seen several ray-traced scenes (from MTV or was it \\nRayShade??) with stroked fonts appearing as objects in the image.\\nThe fonts/chars had color, depth and even textures associated with\\nthem. Now I was wondering, is it possible to do the same in POV??\\n\\n\\nThanks,\\n\\nNoel\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Space Research Spin Off\\nOrganization: Express Access Online Communications USA\\nLines: 30\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article henry@zoo.toronto.edu (Henry Spencer) writes:\\n>In article <1ppm7j$ip@access.digex.net> prb@access.digex.com (Pat) writes:\\n|>I thought the area rule was pioneered by Boeing.\\n|>NASA guys developed the rule, but no-one knew if it worked\\n|>until Boeing built the hardware 727 and maybe the FB-111?????\\n|\\n|Nope. The decisive triumph of the area rule was when Convair's YF-102 --\\n|contractually commmitted to being a Mach 1.5 fighter and actually found\\n|to be incapable of going supersonic in level flight -- was turned into\\n|the area-ruled YF-102A which met the specs. This was well before either\\n|the 727 or the FB-111; the 102 flew in late 1953, and Convair spent most\\n|of the first half of 1954 figuring out what went wrong and most of the\\n|second half building the first 102A.\\n|-- \\n|All work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n| - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\\n\\n\\nGood thing i stuck in a couple of question marks up there.\\n\\nI seem to recall, somebody built or at least proposed a wasp waisetd\\nPassenger civil transport. I thought it was a 727, but maybe it\\nwas a DC- 8,9??? Sure it had a funny passenger compartment,\\nbut on the other hand it seemed to save fuel.\\n\\nI thought Area rules applied even before transonic speeds, just\\nnot as badly.\\n\\npat\\n\",\n", - " 'From: jgreen@amber (Joe Green)\\nSubject: Re: Weitek P9000 ?\\nOrganization: Harris Computer Systems Division\\nLines: 14\\nDistribution: world\\nNNTP-Posting-Host: amber.ssd.csd.harris.com\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nRobert J.C. Kyanko (rob@rjck.UUCP) wrote:\\n> abraxis@iastate.edu writes in article :\\n> > Anyone know about the Weitek P9000 graphics chip?\\n> As far as the low-level stuff goes, it looks pretty nice. It\\'s got this\\n> quadrilateral fill command that requires just the four points.\\n\\nDo you have Weitek\\'s address/phone number? I\\'d like to get some information\\nabout this chip.\\n\\n--\\nJoe Green\\t\\t\\t\\tHarris Corporation\\njgreen@csd.harris.com\\t\\t\\tComputer Systems Division\\n\"The only thing that really scares me is a person with no sense of humor.\"\\n\\t\\t\\t\\t\\t\\t-- Jonathan Winters\\n',\n", - " 'From: yohan@citation.ksu.ksu.edu (Jonathan W Newton)\\nSubject: Re: Societally acceptable behavior\\nOrganization: Kansas State University\\nLines: 35\\nDistribution: world\\nNNTP-Posting-Host: citation.ksu.ksu.edu\\n\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n>Merely a question for the basis of morality\\n>\\n>Moral/Ethical behavior = _Societally_ _acceptable_ _behavior_.\\n\\nI disagree with these. What society thinks should be irrelevant. What the\\nindividual decides is all that is important.\\n\\n>\\n>1)Who is society\\n\\nI think this is fairly obvious\\n\\n>\\n>2)How do \"they\" define what is acceptable?\\n\\nGenerally by what they \"feel\" is right, which is the most idiotic policy I can\\nthink of.\\n\\n>\\n>3)How do we keep from a \"whatever is legal is what is \"moral\" \"position?\\n\\nBy thinking for ourselves.\\n\\n>\\n>MAC\\n>--\\n>****************************************************************\\n> Michael A. Cobb\\n> \"...and I won\\'t raise taxes on the middle University of Illinois\\n> class to pay for my programs.\" Champaign-Urbana\\n> -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n> \\n>With new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", - " 'From: bleve@hoggle2.uucp (Bennett Lee Leve)\\nSubject: Re: Choking Ninja Problem\\nIn-Reply-To: starr@kuhub.cc.ukans.edu\\'s message of 13 Apr 93 15:34:41 CST\\nOrganization: Organized?? Surely you jest!\\nLines: 22\\n\\nIn article <1993Apr13.153441.49118@kuhub.cc.ukans.edu> starr@kuhub.cc.ukans.edu writes:\\n\\n\\n > I need help with my \\'85 ZX900A, I put Supertrapp slip-on\\'s on it and\\n > had the carbs re-jetted to match a set of K&N filters that replaced\\n > the stock airbox. Now I have a huge flat spot in the carburation at\\n > about 5 thousand RPM in most any gear. This is especially frustrating\\n > on the highway, the bike likes to cruise at about 80mph which happens\\n > to be 5,0000 RPM in sixth gear. I\\'ve had it \"tuned\" and this doesn\\'t\\n > seem to help. I am thinking about new carbs or the injection system\\n > from a GPz 1100. Does anyone have any suggestions for a fix besides\\n > restoring it to stock?\\n > Starr@kuhub.ukans.cc.edu\\t the brain dead.\" -Ted Nugent\\n\\nIt sound like to me that your carbs are not jetted properly.\\nIf you did it yourself, take it to a shop and get it done right.\\nIf a shop did it, get your money back, and go to another shop.\\n-- \\n-----------------------------------------------------------------------\\n|Bennett Leve 84 V-65 Sabre | I\\'m drowning, throw |\\n|Orlando, FL 73 XL 250 | me a bagel. |\\n|hoggle!hoggle2!bleve@peora.sdc.ccur.com | |\\n',\n", - " \"From: steel@hal.gnu.ai.mit.edu (Nick Steel)\\nSubject: Re: F*CK OFF TSIEL, logic of Mr. Emmanuel Huna\\nKeywords: Conspiracy, Nutcase\\nOrganization: /etc/organization\\nLines: 24\\nNNTP-Posting-Host: hal.ai.mit.edu\\n\\nIn article <4806@bimacs.BITNET> huna@bimacs.BITNET (Emmanuel Huna) writes:\\n>\\n> Mr. Steel, from what I've read Tsiel is not a racist, but you\\n>are an anti semitic. And stop shouting, you fanatic,\\n\\nMr. Emmanuel Huna,\\n\\nGive logic a break will you. Gosh, what kind of intelligence do\\nyou have, if any?\\n\\n\\nTesiel says : Be a man not an arab for once.\\nI say : Fuck of Tsiel (for saying the above).\\n\\nI get tagged as a racist, and he gets praised?\\nWell Mr. logicless, Tsiel has apologized for his racist remark.\\nI praise him for that courage, but I tell Take a hike to whoever calls me\\na racist without a proof because I am not.\\n\\nYou have proven to us that your brain has been malfunctioning\\nand you are just a moron that's loose on the net.\\n\\nAbout being fanatic: I am proud to be a fanatic about my rights and\\nfreedom, you idiot.\\n\",\n", - " \"From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)\\nSubject: header paint\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: relva.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 8\\n\\nit seems the 200 miles of trailering in the rain has rusted my bike's headers.\\nthe metal underneath is solid, but i need to sand off the rust coating and\\nrepaint the pipes black. any recommendations for paint and application\\nof said paint?\\n\\nthanks!\\n\\naxel\\n\",\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race\\nOrganization: U of Toronto Zoology\\nLines: 11\\n\\nIn article 18084TM@msu.edu (Tom) writes:\\n>On the other hand, if Apollo cost ~25billion, for a few days or weeks\\n>in space, in 1970 dollars, then won't the reward have to be a lot more\\n>than only 1 billion to get any takers?\\n\\nApollo was done the hard way, in a big hurry, from a very limited\\ntechnology base... and on government contracts. Just doing it privately,\\nrather than as a government project, cuts costs by a factor of several.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: sigma@rahul.net (Kevin Martin)\\nSubject: Re: XV under MS-DOS ?!?\\nNntp-Posting-Host: bolero\\nOrganization: a2i network\\nLines: 11\\n\\nIn <1993Apr20.083731.260@eicn.etna.ch> NO E-MAIL ADDRESS@eicn.etna.ch writes:\\n>Do somenone know the solution to run XV ??? any help would be apprecied..\\n\\nI would guess that it requires X, almost certainly DV/X, which commonly\\nuses the GO32 (DJGPP) setup for its programs. If you don\\'t have DV/X\\nrunning, you can\\'t get anything which requires interfacing with X.\\n\\n-- \\nKevin Martin\\nsigma@rahul.net\\n\"I gotta get me another hat.\"\\n',\n", - " 'From: mcelwre@cnsvax.uwec.edu\\nSubject: LARSONIAN Astronomy and Physics\\nOrganization: University of Wisconsin Eau Claire\\nLines: 552\\n\\n\\n\\n LARSONIAN Astronomy and Physics\\n\\n Orthodox physicists, astronomers, and astrophysicists \\n CLAIM to be looking for a \"Unified Field Theory\" in which all \\n of the forces of the universe can be explained with a single \\n set of laws or equations. But they have been systematically \\n IGNORING or SUPPRESSING an excellent one for 30 years! \\n\\n The late Physicist Dewey B. Larson\\'s comprehensive \\n GENERAL UNIFIED Theory of the physical universe, which he \\n calls the \"Reciprocal System\", is built on two fundamental \\n postulates about the physical and mathematical natures of \\n space and time: \\n \\n (1) \"The physical universe is composed ENTIRELY of ONE \\n component, MOTION, existing in THREE dimensions, in DISCRETE \\n UNITS, and in two RECIPROCAL forms, SPACE and TIME.\" \\n \\n (2) \"The physical universe conforms to the relations of \\n ORDINARY COMMUTATIVE mathematics, its magnitudes are \\n ABSOLUTE, and its geometry is EUCLIDEAN.\" \\n \\n From these two postulates, Larson developed a COMPLETE \\n Theoretical Universe, using various combinations of \\n translational, vibrational, rotational, and vibrational-\\n rotational MOTIONS, the concepts of IN-ward and OUT-ward \\n SCALAR MOTIONS, and speeds in relation to the Speed of Light \\n (which Larson called \"UNIT VELOCITY\" and \"THE NATURAL \\n DATUM\"). \\n \\n At each step in the development, Larson was able to \\n MATCH objects in his Theoretical Universe with objects in the \\n REAL physical universe, (photons, sub-atomic particles \\n [INCOMPLETE ATOMS], charges, atoms, molecules, globular star \\n clusters, galaxies, binary star systems, solar systems, white \\n dwarf stars, pulsars, quasars, ETC.), even objects NOT YET \\n DISCOVERED THEN (such as EXPLODING GALAXIES, and GAMMA-RAY \\n BURSTS). \\n \\n And applying his Theory to his NEW model of the atom, \\n Larson was able to precisely and accurately CALCULATE inter-\\n atomic distances in crystals and molecules, compressibility \\n and thermal expansion of solids, and other properties of \\n matter. \\n\\n All of this is described in good detail, with-OUT fancy \\n complex mathematics, in his books. \\n \\n\\n\\n BOOKS of Dewey B. Larson\\n \\n The following is a complete list of the late Physicist \\n Dewey B. Larson\\'s books about his comprehensive GENERAL \\n UNIFIED Theory of the physical universe. Some of the early \\n books are out of print now, but still available through \\n inter-library loan. \\n \\n \"The Structure of the Physical Universe\" (1959) \\n \\n \"The Case AGAINST the Nuclear Atom\" (1963)\\n \\n \"Beyond Newton\" (1964) \\n \\n \"New Light on Space and Time\" (1965) \\n \\n \"Quasars and Pulsars\" (1971) \\n \\n \"NOTHING BUT MOTION\" (1979) \\n [A $9.50 SUBSTITUTE for the $8.3 BILLION \"Super \\n Collider\".] \\n [The last four chapters EXPLAIN chemical bonding.]\\n\\n \"The Neglected Facts of Science\" (1982) \\n \\n \"THE UNIVERSE OF MOTION\" (1984)\\n [FINAL SOLUTIONS to most ALL astrophysical\\n mysteries.] \\n \\n \"BASIC PROPERTIES OF MATTER\" (1988)\\n\\n All but the last of these books were published by North \\n Pacific Publishers, P.O. Box 13255, Portland, OR 97213, and \\n should be available via inter-library loan if your local \\n university or public library doesn\\'t have each of them. \\n\\n Several of them, INCLUDING the last one, are available \\n from: The International Society of Unified Science (ISUS), \\n 1680 E. Atkin Ave., Salt Lake City, Utah 84106. This is the \\n organization that was started to promote Larson\\'s Theory. \\n They have other related publications, including the quarterly \\n journal \"RECIPROCITY\". \\n\\n \\n\\n Physicist Dewey B. Larson\\'s Background\\n \\n Physicist Dewey B. Larson was a retired Engineer \\n (Chemical or Electrical). He was about 91 years old when he \\n died in May 1989. He had a Bachelor of Science Degree in \\n Engineering Science from Oregon State University. He \\n developed his comprehensive GENERAL UNIFIED Theory of the \\n physical universe while trying to develop a way to COMPUTE \\n chemical properties based only on the elements used. \\n \\n Larson\\'s lack of a fancy \"PH.D.\" degree might be one \\n reason that orthodox physicists are ignoring him, but it is \\n NOT A VALID REASON. Sometimes it takes a relative outsider \\n to CLEARLY SEE THE FOREST THROUGH THE TREES. At the same \\n time, it is clear from his books that he also knew ORTHODOX \\n physics and astronomy as well as ANY physicist or astronomer, \\n well enough to point out all their CONTRADICTIONS, AD HOC \\n ASSUMPTIONS, PRINCIPLES OF IMPOTENCE, IN-CONSISTENCIES, ETC.. \\n \\n Larson did NOT have the funds, etc. to experimentally \\n test his Theory. And it was NOT necessary for him to do so. \\n He simply compared the various parts of his Theory with OTHER \\n researchers\\' experimental and observational data. And in \\n many cases, HIS explanation FIT BETTER. \\n \\n A SELF-CONSISTENT Theory is MUCH MORE than the ORTHODOX \\n physicists and astronomers have! They CLAIM to be looking \\n for a \"unified field theory\" that works, but have been \\n IGNORING one for over 30 years now! \\n \\n \"Modern physics\" does NOT explain the physical universe \\n so well. Some parts of some of Larson\\'s books are FULL of \\n quotations of leading orthodox physicists and astronomers who \\n agree. And remember that \"epicycles\", \"crystal spheres\", \\n \"geocentricity\", \"flat earth theory\", etc., ALSO once SEEMED \\n to explain it well, but were later proved CONCEPTUALLY WRONG. \\n \\n \\n Prof. Frank H. Meyer, Professor Emeritus of UW-Superior, \\n was/is a STRONG PROPONENT of Larson\\'s Theory, and was (or \\n still is) President of Larson\\'s organization, \"THE \\n INTERNATIONAL SOCIETY OF UNIFIED SCIENCE\", and Editor of \\n their quarterly Journal \"RECIPROCITY\". He moved to \\n Minneapolis after retiring. \\n \\n\\n\\n \"Super Collider\" BOONDOGGLE!\\n \\n I am AGAINST contruction of the \"Superconducting Super \\n Collider\", in Texas or anywhere else. It would be a GROSS \\n WASTE of money, and contribute almost NOTHING of \"scientific\" \\n value. \\n \\n Most physicists don\\'t realize it, but, according to the \\n comprehensive GENERAL UNIFIED Theory of the late Physicist \\n Dewey B. Larson, as described in his books, the strange GOOFY \\n particles (\"mesons\", \"hyperons\", ALLEGED \"quarks\", etc.) \\n which they are finding in EXISTING colliders (Fermi Lab, \\n Cern, etc.) are really just ATOMS of ANTI-MATTER, which are \\n CREATED by the high-energy colliding beams, and which quickly \\n disintegrate like cosmic rays because they are incompatible \\n with their environment. \\n \\n A larger and more expensive collider will ONLY create a \\n few more elements of anti-matter that the physicists have not \\n seen there before, and the physicists will be EVEN MORE \\n CONFUSED THAN THEY ARE NOW! \\n \\n Are a few more types of anti-matter atoms worth the $8.3 \\n BILLION cost?!! Don\\'t we have much more important uses for \\n this WASTED money?! \\n \\n \\n Another thing to consider is that the primary proposed \\n location in Texas has a serious and growing problem with some \\n kind of \"fire ants\" eating the insulation off underground \\n cables. How much POISONING of the ground and ground water \\n with insecticides will be required to keep the ants out of \\n the \"Supercollider\"?! \\n \\n \\n Naming the \"Super Collider\" after Ronald Reagon, as \\n proposed, is TOTALLY ABSURD! If it is built, it should be \\n named after a leading particle PHYSICIST. \\n \\n\\n\\n LARSONIAN Anti-Matter\\n \\n In Larson\\'s comprehensive GENERAL UNIFIED Theory of the \\n physical universe, anti-matter is NOT a simple case of \\n opposite charges of the same types of particles. It has more \\n to do with the rates of vibrations and rotations of the \\n photons of which they are made, in relation to the \\n vibrational and rotational equivalents of the speed of light, \\n which Larson calls \"Unit Velocity\" and the \"Natural Datum\". \\n \\n In Larson\\'s Theory, a positron is actually a particle of \\n MATTER, NOT anti-matter. When a positron and electron meet, \\n the rotational vibrations (charges) and rotations of their \\n respective photons (of which they are made) neutralize each \\n other. \\n \\n In Larson\\'s Theory, the ANTI-MATTER half of the physical \\n universe has THREE dimensions of TIME, and ONLY ONE dimension \\n of space, and exists in a RECIPROCAL RELATIONSHIP to our \\n MATERIAL half. \\n \\n\\n\\n LARSONIAN Relativity\\n \\n The perihelion point in the orbit of the planet Mercury \\n has been observed and precisely measured to ADVANCE at the \\n rate of 574 seconds of arc per century. 531 seconds of this \\n advance are attributed via calculations to gravitational \\n perturbations from the other planets (Venus, Earth, Jupiter, \\n etc.). The remaining 43 seconds of arc are being used to \\n help \"prove\" Einstein\\'s \"General Theory of Relativity\". \\n \\n But the late Physicist Dewey B. Larson achieved results \\n CLOSER to the 43 seconds than \"General Relativity\" can, by \\n INSTEAD using \"SPECIAL Relativity\". In one or more of his \\n books, he applied the LORENTZ TRANSFORMATION on the HIGH \\n ORBITAL SPEED of Mercury. \\n \\n Larson TOTALLY REJECTED \"General Relativity\" as another \\n MATHEMATICAL FANTASY. He also REJECTED most of \"Special \\n Relativity\", including the parts about \"mass increases\" near \\n the speed of light, and the use of the Lorentz Transform on \\n doppler shifts, (Those quasars with red-shifts greater than \\n 1.000 REALLY ARE MOVING FASTER THAN THE SPEED OF LIGHT, \\n although most of that motion is away from us IN TIME.). \\n \\n In Larson\\'s comprehensive GENERAL UNIFIED Theory of the \\n physical universe, there are THREE dimensions of time instead \\n of only one. But two of those dimensions can NOT be measured \\n from our material half of the physical universe. The one \\n dimension that we CAN measure is the CLOCK time. At low \\n relative speeds, the values of the other two dimensions are \\n NEGLIGIBLE; but at high speeds, they become significant, and \\n the Lorentz Transformation must be used as a FUDGE FACTOR. \\n [Larson often used the term \"COORDINATE TIME\" when writing \\n about this.] \\n \\n \\n In regard to \"mass increases\", it has been PROVEN in \\n atomic accelerators that acceleration drops toward zero near \\n the speed of light. But the formula for acceleration is \\n ACCELERATION = FORCE / MASS, (a = F/m). Orthodox physicists \\n are IGNORING the THIRD FACTOR: FORCE. In Larson\\'s Theory, \\n mass STAYS CONSTANT and FORCE drops toward zero. FORCE is \\n actually a MOTION, or COMBINATIONS of MOTIONS, or RELATIONS \\n BETWEEN MOTIONS, including INward and OUTward SCALAR MOTIONS. \\n The expansion of the universe, for example, is an OUTward \\n SCALAR motion inherent in the universe and NOT a result of \\n the so-called \"Big Bang\" (which is yet another MATHEMATICAL \\n FANTASY). \\n \\n \\n \\n THE UNIVERSE OF MOTION\\n\\n I wish to recommend to EVERYONE the book \"THE UNIVERSE \\n OF MOTION\", by Dewey B. Larson, 1984, North Pacific \\n Publishers, (P.O. Box 13255, Portland, Oregon 97213), 456 \\n pages, indexed, hardcover. \\n \\n It contains the Astrophysical portions of a GENERAL \\n UNIFIED Theory of the physical universe developed by that \\n author, an UNrecognized GENIUS, more than thirty years ago. \\n \\n It contains FINAL SOLUTIONS to most ALL Astrophysical \\n mysteries, including the FORMATION of galaxies, binary and \\n multiple star systems, and solar systems, the TRUE ORIGIN of \\n the \"3-degree\" background radiation, cosmic rays, and gamma-\\n ray bursts, and the TRUE NATURE of quasars, pulsars, white \\n dwarfs, exploding galaxies, etc.. \\n \\n It contains what astronomers and astrophysicists are ALL \\n looking for, if they are ready to seriously consider it with \\n OPEN MINDS! \\n \\n The following is an example of his Theory\\'s success: \\n In his first book in 1959, \"THE STRUCTURE OF THE PHYSICAL \\n UNIVERSE\", Larson predicted the existence of EXPLODING \\n GALAXIES, several years BEFORE astronomers started finding \\n them. They are a NECESSARY CONSEQUENCE of Larson\\'s \\n comprehensive Theory. And when QUASARS were discovered, he \\n had an immediate related explanation for them also. \\n \\n\\n \\n GAMMA-RAY BURSTS\\n\\n Astro-physicists and astronomers are still scratching \\n their heads about the mysterious GAMMA-RAY BURSTS. They were \\n originally thought to originate from \"neutron stars\" in the \\n disc of our galaxy. But the new Gamma Ray Telescope now in \\n Earth orbit has been detecting them in all directions \\n uniformly, and their source locations in space do NOT \\n correspond to any known objects, (except for a few cases of \\n directional coincidence). \\n \\n Gamma-ray bursts are a NECESSARY CONSEQUENCE of the \\n GENERAL UNIFIED Theory of the physical universe developed by \\n the late Physicist Dewey B. Larson. According to page 386 of \\n his book \"THE UNIVERSE OF MOTION\", published in 1984, the \\n gamma-ray bursts are coming from SUPERNOVA EXPLOSIONS in the \\n ANTI-MATTER HALF of the physical universe, which Larson calls \\n the \"Cosmic Sector\". Because of the relationship between the \\n anti-matter and material halves of the physical universe, and \\n the way they are connected together, the gamma-ray bursts can \\n pop into our material half anywhere in space, seemingly at \\n random. (This is WHY the source locations of the bursts do \\n not correspond with known objects, and come from all \\n directions uniformly.) \\n \\n I wonder how close to us in space a source location \\n would have to be for a gamma-ray burst to kill all or most \\n life on Earth! There would be NO WAY to predict one, NOR to \\n stop it! \\n \\n Perhaps some of the MASS EXTINCTIONS of the past, which \\n are now being blamed on impacts of comets and asteroids, were \\n actually caused by nearby GAMMA-RAY BURSTS! \\n \\n\\n\\n LARSONIAN Binary Star Formation\\n \\n About half of all the stars in the galaxy in the \\n vicinity of the sun are binary or double. But orthodox \\n astronomers and astrophysicists still have no satisfactory \\n theory about how they form or why there are so many of them. \\n \\n But binary star systems are actually a LIKELY \\n CONSEQUENCE of the comprehensive GENERAL UNIFIED Theory of \\n the physical universe developed by the late Physicist Dewey \\n B. Larson. \\n \\n I will try to summarize Larsons explanation, which is \\n detailed in Chapter 7 of his book \"THE UNIVERSE OF MOTION\" \\n and in some of his other books. \\n \\n First of all, according to Larson, stars do NOT generate \\n energy by \"fusion\". A small fraction comes from slow \\n gravitational collapse. The rest results from the COMPLETE \\n ANNIHILATION of HEAVY elements (heavier than IRON). Each \\n element has a DESTRUCTIVE TEMPERATURE LIMIT. The heavier the \\n element is, the lower is this limit. A star\\'s internal \\n temperature increases as it grows in mass via accretion and \\n absorption of the decay products of cosmic rays, gradually \\n reaching the destructive temperature limit of lighter and \\n lighter elements. \\n \\n When the internal temperature of the star reaches the \\n destructive temperature limit of IRON, there is a Type I \\n SUPERNOVA EXPLOSION! This is because there is SO MUCH iron \\n present; and that is related to the structure of iron atoms \\n and the atom building process, which Larson explains in some \\n of his books [better than I can]. \\n \\n When the star explodes, the lighter material on the \\n outer portion of the star is blown outward in space at less \\n than the speed of light. The heavier material in the center \\n portion of the star was already bouncing around at close to \\n the speed of light, because of the high temperature. The \\n explosion pushes that material OVER the speed of light, and \\n it expands OUTWARD IN TIME, which is equivalent to INWARD IN \\n SPACE, and it often actually DISAPPEARS for a while. \\n \\n Over long periods of time, both masses start to fall \\n back gravitationally. The material that had been blown \\n outward in space now starts to form a RED GIANT star. The \\n material that had been blown OUTWARD IN TIME starts to form a \\n WHITE DWARF star. BOTH stars then start moving back toward \\n the \"MAIN SEQUENCE\" from opposite directions on the H-R \\n Diagram. \\n \\n The chances of the two masses falling back into the \\n exact same location in space, making a single lone star \\n again, are near zero. They will instead form a BINARY \\n system, orbiting each other. \\n \\n According to Larson, a white dwarf star has an INVERSE \\n DENSITY GRADIENT (is densest at its SURFACE), because the \\n material at its center is most widely dispersed (blown \\n outward) in time. This ELIMINATES the need to resort to \\n MATHEMATICAL FANTASIES about \"degenerate matter\", \"neutron \\n stars\", \"black holes\", etc.. \\n \\n\\n\\n LARSONIAN Solar System Formation\\n\\n If the mass of the heavy material at the center of the \\n exploding star is relatively SMALL, then, instead of a single \\n white dwarf star, there will be SEVERAL \"mini\" white dwarf \\n stars (revolving around the red giant star, but probably \\n still too far away in three-dimensional TIME to be affected \\n by its heat, etc.). These will become PLANETS! \\n \\n In Chapter 7 of THE UNIVERSE OF MOTION, Larson used all \\n this information, and other principles of his comprehensive \\n GENERAL UNIFIED Theory of the physical universe, to derive \\n his own version of Bode\\'s Law. \\n \\n\\n\\n \"Black Hole\" FANTASY!\\n\\n I heard that physicist Stephen W. Hawking recently \\n completed a theoretical mathematical analysis of TWO \"black \\n holes\" merging together into a SINGLE \"black hole\", and \\n concluded that the new \"black hole\" would have MORE MASS than \\n the sum of the two original \"black holes\". \\n \\n Such a result should be recognized by EVERYone as a RED \\n FLAG, causing widespread DOUBT about the whole IDEA of \"black \\n holes\", etc.! \\n \\n After reading Physicist Dewey B. Larson\\'s books about \\n his comprehensive GENERAL UNIFIED Theory of the physical \\n universe, especially his book \"THE UNIVERSE OF MOTION\", it is \\n clear to me that \"black holes\" are NOTHING more than \\n MATHEMATICAL FANTASIES! The strange object at Cygnus X-1 is \\n just an unusually massive WHITE DWARF STAR, NOT the \"black \\n hole\" that orthodox astronomers and physicists so badly want \\n to \"prove\" their theory. \\n \\n \\n By the way, I do NOT understand why so much publicity is \\n being given to physicist Stephen Hawking. The physicists and \\n astronomers seem to be acting as if Hawking\\'s severe physical \\n problem somehow makes him \"wiser\". It does NOT! \\n \\n I wish the same attention had been given to Physicist \\n Dewey B. Larson while he was still alive. Widespread \\n publicity and attention should NOW be given to Larson\\'s \\n Theory, books, and organization (The International Society of \\n Unified Science). \\n \\n \\n \\n ELECTRO-MAGNETIC PROPULSION\\n\\n I heard of that concept many years ago, in connection \\n with UFO\\'s and unorthodox inventors, but I never was able to \\n find out how or why they work, or how they are constructed. \\n \\n I found a possible clue about why they might work on \\n pages 112-113 of the book \"BASIC PROPERTIES OF MATTER\", by \\n the late Physicist Dewey B. Larson, which describes part of \\n Larson\\'s comprehensive GENERAL UNIFIED Theory of the physical \\n universe. I quote one paragraph: \\n \\n \"As indicated in the preceding chapter, the development \\n of the theory of the universe of motion arrives at a totally \\n different concept of the nature of electrical resistance. \\n The electrons, we find, are derived from the environment. It \\n was brought out in Volume I [Larson\\'s book \"NOTHING BUT \\n MOTION\"] that there are physical processes in operation which \\n produce electrons in substantial quantities, and that, \\n although the motions that constitute these electrons are, in \\n many cases, absorbed by atomic structures, the opportunities \\n for utilizing this type of motion in such structures are \\n limited. It follows that there is always a large excess of \\n free electrons in the material sector [material half] of the \\n universe, most of which are uncharged. In this uncharged \\n state the electrons cannot move with respect to extension \\n space, because they are inherently rotating units of space, \\n and the relation of space to space is not motion. In open \\n space, therefore, each uncharged electron remains permanently \\n in the same location with respect to the natural reference \\n system, in the manner of a photon. In the context of the \\n stationary spatial reference system the uncharged electron, \\n like the photon, is carried outward at the speed of light by \\n the progression of the natural reference system. All \\n material aggregates are thus exposed to a flux of electrons \\n similar to the continual bombardment by photons of radiation. \\n Meanwhile there are other processes, to be discussed later, \\n whereby electrons are returned to the environment. The \\n electron population of a material aggregate such as the earth \\n therefore stabilizes at an equilibrium level.\" \\n \\n Note that in Larson\\'s Theory, UNcharged electrons are \\n also massLESS, and are basically photons of light of a \\n particular frequency (above the \"unit\" frequency) spinning \\n around one axis at a particular rate (below the \"unit\" rate). \\n (\"Unit velocity\" is the speed of light, and there are \\n vibrational and rotational equivalents to the speed of light, \\n according to Larson\\'s Theory.) [I might have the \"above\" and \\n \"below\" labels mixed up.] \\n \\n Larson is saying that outer space is filled with mass-\\n LESS UN-charged electrons flying around at the speed of \\n light! \\n \\n If this is true, then the ELECTRO-MAGNETIC PROPULSION \\n fields of spacecraft might be able to interact with these \\n electrons, or other particles in space, perhaps GIVING them a \\n charge (and mass) and shooting them toward the rear to \\n achieve propulsion. (In Larson\\'s Theory, an electrical charge \\n is a one-dimensional rotational vibration of a particular \\n frequency (above the \"unit\" frequency) superimposed on the \\n rotation of the particle.) \\n \\n The paragraph quoted above might also give a clue to \\n confused meteorologists about how and why lightning is \\n generated in clouds. \\n\\n\\n\\n SUPPRESSION of LARSONIAN Physics\\n\\n The comprehensive GENERAL UNIFIED Theory of the physical \\n universe developed by the late Physicist Dewey B. Larson has \\n been available for more than 30 YEARS, published in 1959 in \\n his first book \"THE STRUCTURE OF THE PHYSICAL UNIVERSE\". \\n \\n It is TOTALLY UN-SCIENTIFIC for Hawking, Wheeler, Sagan, \\n and the other SACRED PRIESTS of the RELIGION they call \\n \"science\" (or \"physics\", or \"astronomy\", etc.), as well as \\n the \"scientific\" literature and the \"education\" systems, to \\n TOTALLY IGNORE Larson\\'s Theory has they have. \\n \\n Larson\\'s Theory has excellent explanations for many \\n things now puzzling orthodox physicists and astronomers, such \\n as gamma-ray bursts and the nature of quasars. \\n \\n Larson\\'s Theory deserves to be HONESTLY and OPENLY \\n discussed in the physics, chemistry, and astronomy journals, \\n in the U.S. and elsewhere. And at least the basic principles \\n of Larson\\'s Theory should be included in all related courses \\n at UW-EC, UW-Madison, Cambridge, Cornell University, and \\n elsewhere, so that students are not kept in the dark about a \\n worthy alternative to the DOGMA they are being fed. \\n \\n \\n\\n For more information, answers to your questions, etc., \\n please consult my CITED SOURCES (especially Larson\\'s BOOKS). \\n\\n\\n\\n UN-altered REPRODUCTION and DISSEMINATION of this \\n IMPORTANT partial summary is ENCOURAGED. \\n\\n\\n Robert E. McElwaine\\n B.S., Physics and Astronomy, UW-EC\\n \\n\\n',\n", - " 'Subject: Technical Help Sought\\nFrom: jiu1@husc11.harvard.edu (Haibin Jiu)\\nOrganization: Harvard University Science Center\\nNntp-Posting-Host: husc11.harvard.edu\\nLines: 9\\n\\nHi! I am in immediate need for details of various graphics compression\\ntechniques. So if you know where I could obtain descriptions of algo-\\nrithms or public-domain source codes for such formats as JPEG, GIF, and\\nfractals, I would be immensely grateful if you could share the info with\\nme. This is for a project I am contemplating of doing.\\n\\nThanks in advance. Please reply via e-mail if possible.\\n\\n--hBJ\\n',\n", - " 'From: keith@hydra.unm.edu ()\\nSubject: Where can I AFFORD a Goldwing mirror?\\nOrganization: University of New Mexico, Albuquerque\\nLines: 9\\nDistribution: usa\\nNNTP-Posting-Host: hydra.unm.edu\\n\\nSearched without luck for a FAQ here. I need a left 85 Aspencade\\nmirror and Honda wants $75 for it. Now if this were another piece\\nof chrome to replace the black plastic that wings come so liberally\\nsupplied with I might be able to see that silly price, but a mirror\\nis a piece of SAFETY EQUIPMENT. The fact that Honda clearly places\\nconcern for their profits ahead of concern for my safety is enough\\nto convince me that this (my third) wing will likely be my last.\\nIn the mean time, anyboby have a non-ripoff source for a mirror?\\nkeith smith keith@hydra.unm.edu\\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 06/15 - Constants and Equations\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.constants_733694246\\nExpires: 6 May 1993 19:57:26 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 189\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/constants\\nLast-modified: $Date: 93/04/01 14:39:04 $\\n\\nCONSTANTS AND EQUATIONS FOR CALCULATIONS\\n\\n This list was originally compiled by Dale Greer. Additions would be\\n appreciated.\\n\\n Numbers in parentheses are approximations that will serve for most\\n blue-skying purposes.\\n\\n Unix systems provide the \\'units\\' program, useful in converting\\n between different systems (metric/English, etc.)\\n\\n NUMBERS\\n\\n\\t7726 m/s\\t (8000) -- Earth orbital velocity at 300 km altitude\\n\\t3075 m/s\\t (3000) -- Earth orbital velocity at 35786 km (geosync)\\n\\t6371 km\\t\\t (6400) -- Mean radius of Earth\\n\\t6378 km\\t\\t (6400) -- Equatorial radius of Earth\\n\\t1738 km\\t\\t (1700) -- Mean radius of Moon\\n\\t5.974e24 kg\\t (6e24) -- Mass of Earth\\n\\t7.348e22 kg\\t (7e22) -- Mass of Moon\\n\\t1.989e30 kg\\t (2e30) -- Mass of Sun\\n\\t3.986e14 m^3/s^2 (4e14) -- Gravitational constant times mass of Earth\\n\\t4.903e12 m^3/s^2 (5e12) -- Gravitational constant times mass of Moon\\n\\t1.327e20 m^3/s^2 (13e19) -- Gravitational constant times mass of Sun\\n\\t384401 km\\t ( 4e5) -- Mean Earth-Moon distance\\n\\t1.496e11 m\\t (15e10) -- Mean Earth-Sun distance (Astronomical Unit)\\n\\n\\t1 megaton (MT) TNT = about 4.2e15 J or the energy equivalent of\\n\\tabout .05 kg (50 gm) of matter. Ref: J.R Williams, \"The Energy Level\\n\\tof Things\", Air Force Special Weapons Center (ARDC), Kirtland Air\\n\\tForce Base, New Mexico, 1963. Also see \"The Effects of Nuclear\\n\\tWeapons\", compiled by S. Glasstone and P.J. Dolan, published by the\\n\\tUS Department of Defense (obtain from the GPO).\\n\\n EQUATIONS\\n\\n\\tWhere d is distance, v is velocity, a is acceleration, t is time.\\n\\tAdditional more specialized equations are available from:\\n\\n\\t ames.arc.nasa.gov:pub/SPACE/FAQ/MoreEquations\\n\\n\\n\\tFor constant acceleration\\n\\t d = d0 + vt + .5at^2\\n\\t v = v0 + at\\n\\t v^2 = 2ad\\n\\n\\tAcceleration on a cylinder (space colony, etc.) of radius r and\\n\\t rotation period t:\\n\\n\\t a = 4 pi**2 r / t^2\\n\\n\\tFor circular Keplerian orbits where:\\n\\t Vc\\t = velocity of a circular orbit\\n\\t Vesc = escape velocity\\n\\t M\\t = Total mass of orbiting and orbited bodies\\n\\t G\\t = Gravitational constant (defined below)\\n\\t u\\t = G * M (can be measured much more accurately than G or M)\\n\\t K\\t = -G * M / 2 / a\\n\\t r\\t = radius of orbit (measured from center of mass of system)\\n\\t V\\t = orbital velocity\\n\\t P\\t = orbital period\\n\\t a\\t = semimajor axis of orbit\\n\\n\\t Vc\\t = sqrt(M * G / r)\\n\\t Vesc = sqrt(2 * M * G / r) = sqrt(2) * Vc\\n\\t V^2 = u/a\\n\\t P\\t = 2 pi/(Sqrt(u/a^3))\\n\\t K\\t = 1/2 V**2 - G * M / r (conservation of energy)\\n\\n\\t The period of an eccentric orbit is the same as the period\\n\\t of a circular orbit with the same semi-major axis.\\n\\n\\tChange in velocity required for a plane change of angle phi in a\\n\\tcircular orbit:\\n\\n\\t delta V = 2 sqrt(GM/r) sin (phi/2)\\n\\n\\tEnergy to put mass m into a circular orbit (ignores rotational\\n\\tvelocity, which reduces the energy a bit).\\n\\n\\t GMm (1/Re - 1/2Rcirc)\\n\\t Re = radius of the earth\\n\\t Rcirc = radius of the circular orbit.\\n\\n\\tClassical rocket equation, where\\n\\t dv\\t= change in velocity\\n\\t Isp = specific impulse of engine\\n\\t Ve\\t= exhaust velocity\\n\\t x\\t= reaction mass\\n\\t m1\\t= rocket mass excluding reaction mass\\n\\t g\\t= 9.80665 m / s^2\\n\\n\\t Ve\\t= Isp * g\\n\\t dv\\t= Ve * ln((m1 + x) / m1)\\n\\t\\t= Ve * ln((final mass) / (initial mass))\\n\\n\\tRelativistic rocket equation (constant acceleration)\\n\\n\\t t (unaccelerated) = c/a * sinh(a*t/c)\\n\\t d = c**2/a * (cosh(a*t/c) - 1)\\n\\t v = c * tanh(a*t/c)\\n\\n\\tRelativistic rocket with exhaust velocity Ve and mass ratio MR:\\n\\n\\t at/c = Ve/c * ln(MR), or\\n\\n\\t t (unaccelerated) = c/a * sinh(Ve/c * ln(MR))\\n\\t d = c**2/a * (cosh(Ve/C * ln(MR)) - 1)\\n\\t v = c * tanh(Ve/C * ln(MR))\\n\\n\\tConverting from parallax to distance:\\n\\n\\t d (in parsecs) = 1 / p (in arc seconds)\\n\\t d (in astronomical units) = 206265 / p\\n\\n\\tMiscellaneous\\n\\t f=ma -- Force is mass times acceleration\\n\\t w=fd -- Work (energy) is force times distance\\n\\n\\tAtmospheric density varies as exp(-mgz/kT) where z is altitude, m is\\n\\tmolecular weight in kg of air, g is local acceleration of gravity, T\\n\\tis temperature, k is Bolztmann\\'s constant. On Earth up to 100 km,\\n\\n\\t d = d0*exp(-z*1.42e-4)\\n\\n\\twhere d is density, d0 is density at 0km, is approximately true, so\\n\\n\\t d@12km (40000 ft) = d0*.18\\n\\t d@9 km (30000 ft) = d0*.27\\n\\t d@6 km (20000 ft) = d0*.43\\n\\t d@3 km (10000 ft) = d0*.65\\n\\n\\t\\t Atmospheric scale height\\tDry lapse rate\\n\\t\\t (in km at emission level)\\t (K/km)\\n\\t\\t -------------------------\\t--------------\\n\\t Earth\\t 7.5\\t\\t\\t 9.8\\n\\t Mars\\t 11\\t\\t\\t 4.4\\n\\t Venus\\t 4.9\\t\\t\\t 10.5\\n\\t Titan\\t 18\\t\\t\\t 1.3\\n\\t Jupiter\\t 19\\t\\t\\t 2.0\\n\\t Saturn\\t 37\\t\\t\\t 0.7\\n\\t Uranus\\t 24\\t\\t\\t 0.7\\n\\t Neptune\\t 21\\t\\t\\t 0.8\\n\\t Triton\\t 8\\t\\t\\t 1\\n\\n\\tTitius-Bode Law for approximating planetary distances:\\n\\n\\t R(n) = 0.4 + 0.3 * 2^N Astronomical Units (N = -infinity for\\n\\t Mercury, 0 for Venus, 1 for Earth, etc.)\\n\\n\\t This fits fairly well except for Neptune.\\n\\n CONSTANTS\\n\\n\\t6.62618e-34 J-s (7e-34) -- Planck\\'s Constant \"h\"\\n\\t1.054589e-34 J-s (1e-34) -- Planck\\'s Constant / (2 * PI), \"h bar\"\\n\\t1.3807e-23 J/K\\t(1.4e-23) - Boltzmann\\'s Constant \"k\"\\n\\t5.6697e-8 W/m^2/K (6e-8) -- Stephan-Boltzmann Constant \"sigma\"\\n 6.673e-11 N m^2/kg^2 (7e-11) -- Newton\\'s Gravitational Constant \"G\"\\n\\t0.0029 m K\\t (3e-3) -- Wien\\'s Constant \"sigma(W)\"\\n\\t3.827e26 W\\t (4e26) -- Luminosity of Sun\\n\\t1370 W / m^2\\t (1400) -- Solar Constant (intensity at 1 AU)\\n\\t6.96e8 m\\t (7e8)\\t -- radius of Sun\\n\\t1738 km\\t\\t (2e3)\\t -- radius of Moon\\n\\t299792458 m/s\\t (3e8) -- speed of light in vacuum \"c\"\\n\\t9.46053e15 m\\t (1e16) -- light year\\n\\t206264.806 AU\\t (2e5) -- \\\\\\n\\t3.2616 light years (3)\\t -- --> parsec\\n\\t3.0856e16 m\\t (3e16) -- /\\n\\n\\nBlack Hole radius (also called Schwarzschild Radius):\\n\\n\\t2GM/c^2, where G is Newton\\'s Grav Constant, M is mass of BH,\\n\\t\\tc is speed of light\\n\\n Things to add (somebody look them up!)\\n\\tBasic rocketry numbers & equations\\n\\tAerodynamical stuff\\n\\tEnergy to put a pound into orbit or accelerate to interstellar\\n\\t velocities.\\n\\tNon-circular cases?\\n\\n\\nNEXT: FAQ #7/15 - Astronomical Mnemonics\\n',\n", - " 'From: B8HA \\nSubject: RE: Jews/Islam Dr. Frankenstien\\nLines: 99\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nSome of your article was cut off on the right margin, but I will try\\nand answer from what I can read.\\n\\nIn article kaveh@gate-koi.corp.sgi.com (Kaveh Smith ) writes:\\n>I have found Jewish people very imagentative and creative. Jewish religion was the foundation for Christianity and\\n>Islam. In other words Judaism has fathered both religions. Now Islam has turned against its father I may say.\\n>It is Ironic that after communizem threat is almost gone, religion wars are going to be on the raise.\\n>I thought the idea of believing on one God, was to Unite all man kind. How come both Jews and Islam which believe\\n>on the same God, \"the God of Ebrahim\" are killing each other? Is this like Dr. Frankenstien\\'s story?\\n>How are you going to stop this from happening? How are you going to deal with so many Muslims. Nuking them\\n>would distroy the whole world? Would God get mad, since you have killed his followers, you believe on the same\\n>God, same heaven and the same hell after all? What is the peacefull way of ending this Saga?\\n>\\nJudaism did not father Islam. We had many of the same prophets, but\\nJudaism ignores prophets later prophets including Jesus Christ (who\\nChristians and Muslims believe in) and Mohammed. The idea of believing\\nin one God should unite all peoples. However, note that Christianity\\nand Islam reflect the fact that there are people with different views\\nand the rights of non-Christians and non-Muslims are stated in each\\nreligion.\\n\\n\\n>Man kind needs religion, since it sets up the rules and the regulations which keeps the society in a healthy state.\\n>A religion is mostly a sets of rules which people have experienced and know it works for the society.\\n>The praying, keeps the sole healthy and meditates it. God does not care for man kinds pray, but man kind hopes\\n>that God will help him when he prays.\\n>Religion works mostly on the moral issues and trys to put away the materialistic things in the life. But the\\n>religious leaders need to make a living through religion? So they may corrupt it, or turn it to their own way to\\n>make their living. i.e Muslims have to pay %20 percent of their income to the Mullahs. I guess the rabie gets his\\n>cut too!\\n>\\nWe are supposed to pay 6% of our income after all necessities are\\npaid. Please note that this 6% is on a personal basis - if you are\\npoor, there is no need to pay (quite the contrary, this money most\\noften goes to the poor in each in country and to the poor Muslims\\naround the world). Also, this money is not required in the human\\nsense (i.e. a Muslim never knocks at your door to ask for money\\nand nobody makes a list at the mosque to make sure you have paid\\n(and we surely don\\'t pass money baskets around during our prayer\\nservices)).\\n\\n>Is in it that religion should be such that everybody on planet earth respects each other, be good toward each other\\n>helps one another, respect the mother nature. Is in that heaven and hell are created on earth through the acts\\n>that we take today? Is in it that within every man there is good and bad, he could choose either one, then he will\\n>see the outcome of his choice. How can we prevent man kind from going crazy over religion. How can we stop\\n>another religious killing field, under poor Gods name? What are your thoughts? Do you think man kind would\\n>to come its senses, before it is too late?\\n>\\n>\\n>P.S. on the side\\n>\\n>Do you think that Moses saw the God on mount Sina? Why would God go to top of the mountain? He created\\n>the earth, he could have been anywhere? why on top the mountain? Was it because people thought to see God\\n>you have to reach to the skies/heavens? Why God kept coming back to Middle East? Was it because they created\\n>God through their imagination? Is that why Jewish people were told by God, they were the chosen ones?\\n>\\nGod\\'s presence is certainly on Earth, but since God is everywhere,\\nGod may show signs of existence in other places as well. We can not\\nsay for sure where God has shown signs of his existence and where\\nhe has not/.\\n\\n>Profit Mohammad was married to Khadijeh. She was a Jewish. She taught him how to trade. She probably taught\\n>him about Judaism. Quran is mostly copy right of Taurah (sp? old testement). Do you think God wrote Quran?\\n>Makeh was a trade city before Islam. Do you think it was made to be the center of Islamic world because Mohammad\\n>wanted to expand his trade business? Is that why God has put his house in there?\\n>\\nThe Qur\\'an is not a copyright of the Taurah. Muslims believe that\\nthe Taurah, the Bible, and the Qur\\'an originally contained much the same\\nmessage, thus the many similiarities. However, the Taurah and the\\nBible have been \\'translated\\' into other languages which has changed\\ntheir meaning over time (a translation also reflects some of the\\npersonal views of the translator(s). The Qur\\'an still exists in the\\nsame language that it was revealed in - Arabic. Therefore, we know\\nthat mankind has not changed its meaning. It is truly what was revealed\\nto Mohammed at that time. There are many scientific facts which\\nwere not discovered by traditional scientific methods until much later\\nsuch as the development of the baby in the mother\\'s womb.\\n\\n\\n>I think this religious stuff has gone too far. All man kind are going to hurt from it if they do not wise up.\\n>Look at David Koresh, how that turned out? I am afraid in the bigger scale, the Jews and the Muslims will\\n>have the same ending!!!!!!!!\\n>\\nOnly God knows for sure how it will turn out. I hope it won\\'t, but if\\nthat happens, it was the will of God.\\n\\n>Religion is needed in the sense to keep people in harmony and keep them doing good things, rather than\\n>plotting each others distruction. There is one earth, One life and one God. Let\\'s all man kind be good toward\\n>each other.\\n>\\n>God help us all.\\n>Peace\\n>.\\n>.\\nPlease send this mail to me again so I can read the rest of what\\nyou said. And yes, may God help us all.\\n\\nSteve\\n\\n',\n", - " \"From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Commercial mining activities on the moon\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 10\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article , steinly@topaz.ucsc.edu (Steinn Sigurdsson) writes:\\n\\n>Very cost effective if you use the right accounting method :-)\\n\\nSherzer Methodology!!!!!!\\n\\n\\n\\n Software engineering? That's like military intelligence, isn't it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\",\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: space food sticks\\nOrganization: Express Access Online Communications USA\\nLines: 9\\nNNTP-Posting-Host: access.digex.net\\nKeywords: food\\n\\ndillon comments that Space Food Sticks may have bad digestive properties.\\n\\nI don't think so. I think most NASA food products were designed to\\nbe low fiber 'zero-residue' products so as to minimize the difficulties\\nof waste disposal. I'd doubt they'd deploy anything that caused whole sale\\nGI distress. There aren't enough plastic baggies in the world for\\na bad case of GI disease.\\n\\npat\\n\",\n", - " 'From: mogal@deadhead.asd.sgi.com (Joshua Mogal)\\nSubject: Re: Hollywood Hits, Virtual Reality\\nOrganization: Silicon Graphics, Inc.\\nLines: 137\\nNNTP-Posting-Host: deadhead.asd.sgi.com\\n\\nSorry I missed you Raymond, I was just out in Dahlgren last month...\\n\\nI\\'m the Virtual Reality market manager for Silicon Graphics, so perhaps I\\ncan help a little.\\n\\nIn article <1993Mar17.185725.13487@relay.nswc.navy.mil>,\\nrchui@nswc-wo.nswc.navy.mil (Raymond Chui) writes:\\n|> Hello, the real reality. Our agency started to express interest in\\n|> virtual reality(VR). So far, we do not know much about VR. All we\\n|> know about are the Hollywood movies \"The Terminater 2\" and \"Lawnmover\\n|> Man\". We also know something about VR from ABC news magazine and\\n|> Computer Graphics World magazine.\\n\\n\\nUnfortunately, while SGI systems were used to create the special effects\\nfor both Terminator 2 and Lawnmower Man, those are film-quality computer\\ngraphics, rendered in software and written to film a frame at a time. Each\\nframe of computer animation for those films took hours to render on\\nhigh-end parallel processing computer systems. Thus, that level of graphics\\nwould be difficult, if not impossible, to acheive in real time (30 frames\\nper second).\\n\\n\\n|> \\n|> We certainly want to know more about VR. Who are the leading\\n|> companies,\\n|> agencies, universities? What machines support VR (i.e. SGI, Sun4,\\n|> HP-9000, BIM-6000, etc.)?\\n\\n\\nIt depends upon how serious you are and how advanced your application is.\\nTrue immersive visualization (VR), requires the rendering of complex visual\\ndatabases at anywhere from 20 to 60 newly rendered frames per second. This\\nis a similar requirement to that of traditional flight simulators for pilot\\ntraining. If the frame rate is too low, the user notices the stepping of\\nthe frames as they move their head rapidly around the scene, so the motion\\nof the graphics is not smooth and contiguous. Thus the graphics system\\nmust be powerful enough to sustain high frame rates while rendering complex\\ndata representations.\\n\\nAdditionally, the frame rate must be constant. If the system renders 15\\nframes per second at one point, then 60 frames per second the next (perhaps\\ndue to the scene in the new viewing direction being simpler than what was\\nvisible before), the user can get heavily distracted by the medium (the\\ngraphics computer) rather than focusing on the data. To maintain a constant\\nframe rate, the system must be able to run in real-time. UNIX in general\\ndoes not support real-time operation, but Silicon Graphics has modified the\\nUNIX kernel for its multi-processor systems to be able to support real-time\\noperation, bypassing the usual UNIX process priority-management schemes. \\nUniprocessor systems running UNIX cannot fundamentally support real-time\\noperation (not Sun SPARC10, not HP 700 Series systems, not IBM RS-6000, not\\neven SGI\\'s uniprocessor systems like Indigo or Crimson). Only our\\nmultiprocessor Onyx and Challenge systems support real-time operation due\\nto their Symmetric Multi-Processing (SMP) shared-memory architecture.\\n\\nFrom a graphics perspective, rendering complex virtual environments\\nrequires advanced rendering techniques like texture mapping and real-time\\nmulti-sample anti-aliasing. Of all of the general purpose graphics systems\\non the market today, only Crimson RealityEngine and Onyx RealityEngine2\\nsystems fully support these capabilities. The anti-aliasing is particularly\\nimportant, as the crawling jagged edges of aliased polygons is an\\nunfortunate distraction when immersed in a virtual environment.\\n\\n\\n|> What kind of graphics languages are used with VR\\n|> (GL, opengl, Phigs, PEX, GKS, etc.)?\\n\\nYou can use the general purpose graphics libraries listed above to develop\\nVR applications, but that is starting at a pretty low level. There are\\noff-the- shelf software packages available to get you going much faster,\\nbeing targeted directly at the VR application developer. Some of the most\\npopular are (in no particular order):\\n\\n\\t- Division Inc.\\t\\t (Redwood City, CA) - dVS\\n\\t- Sens8 Inc.\\t\\t (Sausalito, CA) - WorldToolKit\\n\\t- Naval Postgraduate School (Monterey, CA) - NPSnet (FREE!)\\n\\t- Gemini Technology Corp (Irvine, CA) - GVS Simation Series\\n\\t- Paradigm Simulation Inc. (Dallas, TX) - VisionWorks, AudioWorks\\n\\t- Silicon Graphics Inc.\\t (Mountain View,CA) - IRIS Performer\\n\\nThere are some others, but not off the top of my head...\\n\\n\\t\\n|> What companies are making\\n|> interface devices for VR (goggles or BOOM (Binocular Omni-Orientational\\n|> Monitor), hamlets, gloves, arms, etc.)?\\n\\nThere are too many to list here, but here is a smattering:\\n\\n\\t- Fake Space Labs\\t (Menlo Park,CA) - BOOM\\n\\t- Virtual Technologies Inc. (Stanford, CA) - CyberGlove\\n\\t- Digital Image Design\\t (New York, NY) - The Cricket (3D input)\\n\\t- Kaiser Electro Optics\\t (Carlsbad, CA) - Sim Eye Helmet Displays\\n\\t- Virtual Research\\t (Sunnyvale, CA) - Flight Helmet display\\n\\t- Virtual Reality Inc.\\t (Pleasantville,NY) - Head Mtd Displays, s/w\\n\\t- Software Systems\\t (San Jose, CA) - 3D Modeling software\\n\\t- etc., etc., etc.\\n\\n\\n|> What are those company\\'s\\n|> addresses and phone numbers? Where we can get a list name of VR\\n|> experts\\n|> and their phone numbers and Email addresses?\\n\\n\\nRead some of the VR books on the market:\\n\\n\\t- Virtual Reality - Ken Pimental and Ken Texiera (sp?)\\n\\t- Virtual Mirage\\n\\t- Artificial Reality - Myron Kreuger\\n\\t- etc.\\n\\nOr check out the newsgroup sci.virtual_worlds\\n\\nFeel free to contact me for more info.\\n\\nRegards,\\n\\nJosh\\n\\n-- \\n\\n\\n**************************************************************************\\n**\\t\\t\\t\\t **\\t\\t\\t\\t\\t**\\n**\\tJoshua Mogal\\t\\t **\\tProduct Manager\\t\\t\\t**\\n**\\tAdvanced Graphics Division **\\t Advanced Graphics Systems\\t**\\n**\\tSilicon Graphics Inc.\\t **\\tMarket Manager\\t\\t\\t**\\n**\\t2011 North Shoreline Blvd. **\\t Virtual Reality\\t\\t**\\n**\\tMountain View, CA 94039-7311 **\\t Interactive Entertainment\\t**\\n**\\tM/S 9L-580\\t\\t **\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t *************************************\\n**\\tTel:\\t(415) 390-1460\\t\\t\\t\\t\\t\\t**\\n**\\tFax:\\t(415) 964-8671\\t\\t\\t\\t\\t\\t**\\n**\\tE-mail:\\tmogal@sgi.com\\t\\t\\t\\t\\t\\t**\\n**\\t\\t\\t\\t\\t\\t\\t\\t\\t**\\n**************************************************************************\\n',\n", - " \"From: amehdi@src.honeywell.com (Hossien Amehdi)\\nSubject: Re: was: Go Hezbollah!!\\nNntp-Posting-Host: tbilisi.src.honeywell.com\\nOrganization: Honeywell Systems & Research Center\\nLines: 26\\n\\nIn article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>\\n>What the hell do you know about Israeli policy? What gives you the fiat\\n>to look into the minds of Israeli generals? Has this 'policy of intimidation'\\n>been published somewhere? For your information, the actions taken by Arabs,\\n>specifically the PLO, were not uncommon in the Lebanon Campaign of 1982. My\\n>brain is full of shit? At least I don't look into the minds of others and \\n>make Israeli policy for them!\\n>\\n... deleted\\n\\nI am not in the business of reading minds, however in this case it would not\\nbe necessary. Israelis top leaders in the past and present, always come across\\nas arrogant with their tough talks trying to intimidate the Arabs. \\n\\nThe way I see it, Israelis and Arabs have not been able to achieve peace\\nafter almost 50 years of fighting because of the following two major reasons:\\n\\n 1) Arab governments are not really representative of their people, currently\\n most of their leaders are stupid, and/or not independent, and/or\\n dictators.\\n\\n 2) Israeli government is arrogant and none comprising.\\n\\n\\n\\n\",\n", - " 'From: mlee@eng.sdsu.edu (Mike Lee)\\nSubject: MPEG for x-windows MONO needed.\\nOrganization: San Diego State University Computing Services\\nLines: 4\\nNNTP-Posting-Host: eng.sdsu.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nHello, and thank you for reading this request. I have a Mpeg viewer for x-windows and it did not run because I was running it on a monochrome monitor. I need the mono-driver for mpeg_play. \\n\\nPlease post the location of the file or better yet, e-mail me at mlee@eng.sdsu.edu.\\n\\n',\n", - " 'From: jaeger@buphy.bu.edu (Gregg Jaeger)\\nSubject: Re: An Anecdote about Islam\\nOrganization: Boston University Physics Department\\nLines: 117\\n\\nIn article <16BB112949.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n>In article <115287@bu.edu> jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n\\n \\n>>>>>A brutal system filtered through \"leniency\" is not lenient.\\n\\n\\n>>>>Huh?\\n\\n\\n>>>How do you rate public floggings or floggings at all? Chopping off the\\n>>>hands, heads, or other body parts? What about stoning?\\n\\n\\n>>I don\\'t have a problem with floggings, particularly, when the offenders\\n>>have been given a chance to change their behavior before floggings are\\n>>given. I do have a problem with maiming in general, by whatever means.\\n>>In my opinion no-one who has not maimed another should be maimed. In\\n>>the case of rape the victim _is_ maimed, physically and emotionally,\\n>>so I wouldn\\'t have a problem with maiming rapists. Obviously I wouldn\\'t\\n>>have a problem with maiming murderers either.\\n\\n\\n>May I ask if you had the same opinion before you became a Muslim?\\n\\n\\n\\nSure. Yes, I did. You see I don\\'t think that rape and murder should\\nbe dealt with lightly. You, being so interested in leniency for\\nleniency\\'s sake, apparently think that people should simply be\\ntold the \"did a _bad_ thing.\"\\n\\n\\n>And what about the simple chance of misjudgements?\\n\\nMisjudgments should be avoided as much as possible.\\nI suspect that it\\'s pretty unlikely that, given my requirement\\nof repeated offenses, that misjudgments are very likely.\\n\\n \\n>>>>>>\"Orient\" is not a place having a single character. Your ignorance\\n>>>>>>exposes itself nicely here.\\n\\n\\n>>>>>Read carefully, I have not said all the Orient shows primitive machism.\\n\\n\\n>>>>Well then, why not use more specific words than \"Orient\"? Probably\\n>>>>because in your mind there is no need to (it\\'s all the same).\\n\\n\\n>>>Because it contains sufficient information. While more detail is possible,\\n>>>it is not necessary.\\n\\n\\n>>And Europe shows civilized bullshit. This is bullshit. Time to put out\\n>>or shut up. You\\'ve substantiated nothing and are blabbering on like\\n>>\"Islamists\" who talk about the West as the \"Great Satan.\" You\\'re both\\n>>guilty of stupidities.\\n\\n\\n>I just love to compare such lines to the common plea of your fellow believers\\n>not to call each others names. In this case, to substantiate it: The Quran\\n>allows that one beATs one\\'s wife into submission. \\n\\n\\nReally? Care to give chapter and verse? We could discuss it.\\n\\n\\n>Primitive Machism refers to\\n>that. (I have misspelt that before, my fault).\\n \\n\\nAgain, not all of the Orient follows the Qur\\'an. So you\\'ll have to do\\nbetter than that.\\n\\n\\nSorry, you haven\\'t \"put out\" enough.\\n\\n \\n>>>Islam expresses extramarital sex. Extramarital sex is a subset of sex. It is\\n>>>suppressedin Islam. That marial sexis allowed or encouraged in Islam, as\\n>>>it is in many branches of Christianity, too, misses the point.\\n\\n>>>Read the part about the urge for sex again. Religions that run around telling\\n>>>people how to have sex are not my piece of cake for two reasons: Suppressing\\n>>>a strong urge needs strong measures, and it is not their business anyway.\\n\\n>>Believe what you wish. I thought you were trying to make an argument.\\n>>All I am reading are opinions.\\n \\n>It is an argument. That you doubt the validity of the premises does not change\\n>it. If you want to criticize it, do so. Time for you to put up or shut up.\\n\\n\\n\\nThis is an argument for why _you_ don\\'t like religions that suppress\\nsex. A such it\\'s an irrelevant argument.\\n\\nIf you\\'d like to generalize it to an objective statement then \\nfine. My response is then: you have given no reason for your statement\\nthat sex is not the business of religion (one of your \"arguments\").\\n\\nThe urge for sex in adolescents is not so strong that any overly strong\\nmeasures are required to suppress it. If the urge to have sex is so\\nstrong in an adult then that adult can make a commensurate effort to\\nfind a marriage partner.\\n\\n\\n\\nGregg\\n\\n\\n\\n\\n\\n\\n',\n", - " \"From: cpr@igc.apc.org (Center for Policy Research)\\nSubject: Ten questions about Israel\\nLines: 55\\nNf-ID: #N:cdp:1483500349:000:1868\\nNf-From: cdp.UUCP!cpr Apr 19 14:38:00 1993\\n\\n\\nFrom: Center for Policy Research \\nSubject: Ten questions about Israel\\n\\n\\nTen questions to Israelis\\n-------------------------\\n\\nI would be thankful if any of you who live in Israel could help to\\nprovide\\n accurate answers to the following specific questions. These are\\nindeed provocative questions but they are asked time and again by\\npeople around me.\\n\\n1. Is it true that the Israeli authorities don't recognize\\nIsraeli nationality ? And that ID cards, which Israeli citizens\\nmust carry at all times, identify people as Jews or Arabs, not as\\nIsraelis ?\\n\\n2. Is it true that the State of Israel has no fixed borders\\nand that Israeli governments from 1948 until today have refused to\\nstate where the ultimate borders of the State of Israel should be\\n?\\n\\n3. Is it true that Israeli stocks nuclear weapons ? If so,\\ncould you provide any evidence ?\\n\\n4. Is it true that in Israeli prisons there are a number of\\nindividuals which were tried in secret and for which their\\nidentities, the date of their trial and their imprisonment are\\nstate secrets ?\\n\\n5. Is it true that Jews who reside in the occupied\\nterritories are subject to different laws than non-Jews?\\n\\n6. Is it true that Jews who left Palestine in the war 1947/48\\nto avoid the war were automatically allowed to return, while their\\nChristian neighbors who did the same were not allowed to return ?\\n\\n7. Is it true that Israel's Prime Minister, Y. Rabin, signed\\nan order for ethnical cleansing in 1948, as is done today in\\nBosnia-Herzegovina ?\\n\\n8. Is it true that Israeli Arab citizens are not admitted as\\nmembers in kibbutzim?\\n\\n9. Is it true that Israeli law attempts to discourage\\nmarriages between Jews and non-Jews ?\\n\\n10. Is it true that Hotel Hilton in Tel Aviv is built on the\\nsite of a muslim cemetery ?\\n\\nThanks,\\n\\nElias Davidsson Iceland email: elias@ismennt.is\\n\",\n", - " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 42\\n\\nIn <1qjahh$mrs@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) \\nwrites:\\n\\n>In article pww@spacsun.rice.edu \\n(Peter Walker) writes:\\n>#In article <1qie61$fkt@horus.ap.mchp.sni.de>, frank@D012S658.uucp (Frank\\n>#O\\'Dwyer) wrote:\\n>#> Objective morality is morality built from objective values.\\n>#\\n>#But where do those objective values come from? How can we measure them?\\n>#What mediated thair interaction with the real world, a moralon? Or a scalar\\n>#valuino field?\\n\\n>Science (\"the real world\") has its basis in values, not the other way round, \\n>as you would wish it. If there is no such thing as objective value, then \\n>science can not objectively be said to be more useful than a kick in the head.\\n>Simple theories with accurate predictions could not objectively be said\\n>to be more useful than a set of tarot cards. You like those conclusions?\\n>I don\\'t.\\n\\n>#And how do we know they exist in the first place?\\n\\n>One assumes objective reality, one doesn\\'t know it. \\n\\n>-- \\n>Frank O\\'Dwyer \\'I\\'m not hatching That\\'\\n>odwyer@sse.ie from \"Hens\", by Evelyn Conlon\\n\\nHow do we measure truth, beauty, goodness, love, friendship, trust, honesty, \\netc.? If things have no basis in objective fact then aren\\'t we limited in what\\nwe know to be true? Can\\'t we say that we can examples or instances of reason,\\nbut cannot measure reason, or is that semantics?\\n\\nMAC\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", - " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: rec\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 9\\n\\n>>>>> On 19 Apr 93 21:48:42 GMT, xlyx@vax5.cit.cornell.edu said:\\n> Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\n\\tYes, but the _rear_ wheel comes off the ground, not the front.\\n See, it just HOPS into the air! Figure.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: Gospel Dating\\nOrganization: Case Western Reserve University\\nLines: 26\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1993Apr6.021635.20958@wam.umd.edu> west@next02cville.wam.umd.edu (Stilgar) writes:\\n\\n>Fine... THE ILLIAD IS THE WORD OF GOD(tm) (disputed or not, it is)\\n>\\n>Dispute that. It won\\'t matter. Prove me wrong.\\n\\n\\tThe Illiad contains more than one word. Ergo: it can not be\\nthe Word of God. \\n\\n\\tBut, if you will humbly agree that it is the WORDS of God, I \\nwill conceed.\\n\\n\\t:-D\\n\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n\\n',\n", - " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Ontario Hydro - Research Division\\nLines: 12\\n\\nIn article <1993Apr15.200857.10631@adobe.com> cjackson@adobe.com (Curtis Jackson) writes:\\n>\\n>So perhaps it is only *some* waterski bikes on which one countersteers...\\n\\nA Sea Doo is a boat. It turns by changing the angle of the duct behind the\\npropeller. A waterski bike looks like a motorcycle but has a ski where each\\nwheel should be. Its handlebars are connected through a familiar looking\\nsteering head to the front ski. It handles like a motorcycle.\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", - " \"From: ukrphil@prlhp1.prl.philips.co.uk (M.J.Phillips)\\nSubject: Re: Rumours about 3DO ???\\nReply-To: ukrphil@prlhp1.UUCP (M.J.Phillips)\\nOrganization: Philips Research Laboratories, Redhill, UK\\nLines: 7\\n\\nThe 68070 _does_ exist. It's number was licensed to Philips to make their\\nown variant. This chip includes extra featurfes such as more I/O ports, \\nI2C bus... making it more microcontroller like.\\n\\nBecause of the confusion with numbering (!), Philips other products in the\\n[range with the 68??? core have been given differend numbers like PCF...\\nor PCD7.. or something.\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Turkish Government Agents on UseNet Lie Through Their Teeth!\\nArticle-I.D.: urartu.1993Apr15.204512.11971\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 63\\n\\nIn revision of history <9304131827@zuma.UUCP> as posted by Turkish Government\\nAgents under the guise of sera@zuma.UUCP (Serdar Argic) LIE in response to\\narticle <1993Apr13.033213.4148@urartu.sdpa.org> hla@urartu.sdpa.org and\\nscribed: \\n\\n[(*] Orhan Gunduz is blown up. Gunduz receives an ultimatum: Either \\n[(*] he gives up his honorary position or he will be \"executed\". He \\n[(*] refuses. \"Responsibility\" is claimed by JCAG and SDPA.\\n\\n[(*] May 4, 1982 - Cambridge, Massachusetts\\n[(*]\\tOrhan Gunduz, the Turkish honorary consul in Boston, would not bow \\n[(*]\\tto the Armenian terrorist ultimatum that he give up his title of \\n[(*]\\t\"honorary consul\". Now he is attacked and murdered in cold blood.\\n[(*]\\tPresident Reagan orders an all-out manhunt-to no avail. An eye-\\n[(*]\\twitness who gave a description of the murderer is shot down. He \\n[(*]\\tsurvives... but falls silent. One of the most revolting \"triumphs\" in \\n[(*]\\tthe senseless, mindless history of Armenian terrorism. Such a murder \\n[(*]\\tbrings absolutely nothing - except an ego boost for the murderer \\n[(*]\\twithin the Armenian terrorist underworld, which is already wallowing \\n[(*]\\tin self-satisfaction.\\n[(*] \\n[(*] Were you involved in the murder of Sarik Ariyak? \\n\\n[(*] \\tDecember 17, 1980 - Sydney\\n[(*]\\tTwo Nazi Armenians massacre Sarik Ariyak and his bodyguard, Engin \\n[(*] Sever. JCAG and SDPA claim responsibility.\\n\\nMr. Turkish Governmental Agent: prove that the SDPA even existed in 1980 or\\n1982! Go ahead, provide us the newspaper accounts of the assassinations and \\nshow us the letters SDPA! The Turkish government is good at excising text from\\ntheir references, let\\'s see how good thay are at adding text to verifiable \\nnewspaper accounts! \\n\\nThe Turkish government can\\'t support any of their anti-Armenian claims as\\ntypified in the above scribed garbage! That government continues to make \\nfalse and libelous charges for they have no recourse left after having made \\nfools out of through their attempt at a systematic campaign at denying and \\ncovering up the Turkish genocide of the Armenians. \\n\\nJust like a dog barking at a moving bus, it barks, jumps, yells, until the\\nbus stops, at which point it just walks away! Such will be with this posting!\\nTurkish agents level the most ridiculous charges, and when brought to answer, \\nthey are silent, like the dog after the bus stops!\\n\\nThe Turkish government feels it can funnel a heightened state of ultra-\\nnationalism existing in Turkey today onto UseNet and convince people via its \\nrevisionist, myopic, and incidental view of themselves and their place in the \\nworld. \\n\\nThe resulting inability to address Armenian and Greek refutations of Turkey`s\\nre-write of history is to refer to me as a terrorist, and worse, claim --\\nas part of the record -- I took responsibility for the murder of 2 people!\\n\\nWhat a pack of raging fools, blinded by anti-Armenian fascism. It\\'s too bad\\nthe socialization policies of the Republic of Turkey requires it to always \\nfind non-Turks to de-humanize! Such will be their downfall! \\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: apryan@vax1.tcd.ie\\nSubject: Order MOORE\\'s book to restore Great Telescope\\nLines: 41\\nNntp-Posting-Host: vax1.tcd.ie\\nOrganization: Trinity College Dublin\\nLines: 41\\n\\nSeveral people have enquired about the availability of the book about the\\nGreat 72\" reflector built at Birr Castle, Ireland in 1845 which remained the\\nlargest in the world until the the start of the 20th century.\\n\\n\"The Astronomy of Birr Castle\" was written by Patrick Moore who now sits on\\nthe committee which is going to restore the telescope. (The remains are on\\npublic display all year round - the massive support walls, the 60 foot long\\ntube, and other bits and pieces). This book is the definitivie history of\\nhow one man, the Third Earl of Rosse, pulled off the most impressive\\ntechnical achievement, perhaps ever, in the history of the telescope, and\\nthe discoveries made with the instrument.\\n\\nPatrick Moore is donating all proceeds from the book\\'s sale to help restore\\nthe telescope. Astronomy Ireland is making the book available world wide by\\nmail order. It\\'s a fascinating read and by ordering a copy you bring the day\\nwhen we can all look through it once again that little bit nearer.\\n\\n=====ORDERING INFORMATION=====\\n\"The Astronomy of Birr Castle\" Dr. Patrick Moore, xii, 90pp, 208mm x 145mm.\\nPrice:\\nU.S.: US$4.95 + US$2.95 post & packing (add $3.50 airmail)\\nU.K. (pounds sterling): 3.50 + 1.50 post & packing\\nEUROPE (pounds sterling): 3.50 + 2.00 post and packing\\nREST OF WORLD: as per U.S. but funds payable in US$ only.\\n\\nPAYMENT:\\nMake all payments to \"Astronomy Ireland\".\\nCREDIT CARD: MASTERCARD/VISA/EUROCARD/ACCESS accepted by email or snail\\nmail: give card number, name & address, expiration date, and total amount.\\nPayments otherwise must be by money order or bank draft.\\nSend to our permanent address: P.O.Box 2888, Dublin 1, Ireland.\\n\\nYou can also subscribe to \"Astronomy & Space\" at the same time. See below:\\n----------------------------------------------------------------------------\\nTony Ryan, \"Astronomy & Space\", new International magazine, available from:\\n Astronomy Ireland, P.O.Box 2888, Dublin 1, Ireland.\\n6 issues (one year sub.): UK 10.00 pounds, US$20 surface (add US$8 airmail).\\nACCESS/VISA/MASTERCARD accepted (give number, expiration date, name&address).\\n\\n (WORLD\\'S LARGEST ASTRO. SOC. per capita - unless you know better? 0.033%)\\nTel: 0891-88-1950 (UK/N.Ireland) 1550-111-442 (Eire). Cost up to 48p per min\\n',\n", - " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 30\\n\\nIn article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>The readers of this forum seemed to be more interested in the contents\\n>of those files.\\n>So It will be nice if Yigal will tell us:\\n>1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\nADL authorities seem to view a lot of people as dangerous, including\\nthe millions of Americans of Arab ancestry. Perhaps you can answer\\nthe question as to why the ADL maintained files and spied on ADC members\\nin California (and elsewhere??)? Friendly rivalry perhaps?\\n\\nPerhaps Yigal is a Greenpeace member? Or the NAACP? Or a reporter? \\nOr a member of any of the dozens of other political organizations/ethnic \\nminorities/occupations that the ADL spied on.\\n\\n>2. Why does the ADL have an interest in that person ?\\n\\nParanoia?\\n\\n>3. If one does trust either the US government or the ADL what an\\n> additional information should he send them ?\\n\\nThe names of half the posters on this forum, unless they already \\nhave them.\\n\\n>\\n>\\n>Gideon Ehrlich\\n\\n-anwar\\n',\n", - " 'From: wats@scicom.AlphaCDC.COM (Bruce Watson)\\nSubject: Quotation Was:(Re: , nerone@ccwf.cc.utexas.edu (Michael Nerone) writes:\\n|> In article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n|> \\n|> CH> Concerning the proposed newsgroup split, I personally am not in\\n|> CH> favor of doing this. I learn an awful lot about all aspects of\\n|> CH> graphics by reading this group, from code to hardware to\\n|> CH> algorithms. I just think making 5 different groups out of this\\n|> CH> is a wate, and will only result in a few posts a week per group.\\n|> CH> I kind of like the convenience of having one big forum for\\n|> CH> discussing all aspects of graphics. Anyone else feel this way?\\n|> CH> Just curious.\\n|> \\n|> I must agree. There is a dizzying number of c.s.amiga.* newsgroups\\n|> already. In addition, there are very few issues which fall cleanly\\n|> into one of these categories.\\n|> \\n|> Also, it is readily observable that the current spectrum of amiga\\n|> groups is already plagued with mega-crossposting; thus the group-split\\n|> would not, in all likelihood, bring about a more structured\\n|> environment.\\n|> \\n|> --\\n|> /~~~~~~~~~~~~~~~~~~~\\\\/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\\\\\n|> / Michael Nerone \\\\\"I shall do so with my customary lack of tact; and\\\\\\n|> / Internet Address: \\\\since you have asked for this, you will be obliged\\\\\\n|> /nerone@ccwf.cc.utexas.edu\\\\to pardon it.\"-Sagredo, fictional char of Galileo.\\\\\\n\\nHi,\\nIt might be nice to know, what\\'s possible on different hard ware platforms.\\nBut usually the hard ware is fixed ( in my case either Unix or DOS- PC ).\\nSo I\\'m not much interested in Amiga news. \\n\\nIn the case of Software, I won\\'t get any comercial software mentioned in this\\nnewgroup to run on a Unix- platform, so I\\'m not interested in this information.\\n\\nI would suggest to split the group. I don\\'t see the problem of cross-posting.\\nThen you need to read just 2 newgroups with half the size. \\n\\nBUT WHAT WOULD BE MORE IMPORTANT IS TO HAVE A FAQ. THIS WOULD REDUCE THE\\nTRAFFIC A LOT.\\n\\nSincerely, Gerhard\\n-- \\nI\\'m writing this as a privat person, not reflecting any opinions of the Inst.\\nof Hydromechanics, the University of Karlsruhe, the Land Baden-Wuerttemberg,\\nthe Federal Republic of Germany and the European Community. The address and\\nphone number below are just to get in touch with me. Everything I\\'m saying, \\nwriting and typing is always wrong ! (Statement necessary to avoid law suits)\\n=============================================================================\\n- Dipl.-Ing. Gerhard Bosch M.Sc. voice:(0721) - 608 3118 -\\n- Institute for Hydromechanic FAX:(0721) - 608 4290 -\\n- University of Karlsruhe, Kaiserstrasse 12, 7500-Karlsruhe, Germany -\\n- Internet: bosch@ifh-hp2.bau-verm.uni-karlsruhe.de -\\n- Bitnet: nd07@DKAUNI2.BITNET -\\n=============================================================================\\n',\n", - " \"From: amann@iam.unibe.ch (Stephan Amann)\\nSubject: Re: more on radiosity\\nReply-To: amann@iam.unibe.ch\\nOrganization: University of Berne, Institute of Computer Science and Applied Mathematics, Special Interest Group Computer Graphics\\nLines: 80\\n\\nIn article 66319@yuma.ACNS.ColoState.EDU, xz775327@longs.LANCE.ColoState.Edu (Xia Zhao) writes:\\n>\\n>\\n>In article <1993Apr19.131239.11670@aragorn.unibe.ch>, you write:\\n>|>\\n>|>\\n>|> Let's be serious... I'm working on a radiosity package, written in C++.\\n>|> I would like to make it public domain. I'll announce it in c.g. the minute\\n>|> I finished it.\\n>|>\\n>|> That were the good news. The bad news: It'll take another 2 months (at least)\\n>|> to finish it.\\n>\\n>\\n> Are you using the traditional radiosity method, progressive refinement, or\\n> something else in your package?\\n>\\n\\nMy package is based on several articles about non-standard radiosity and\\nsome unpublished methods.\\n\\nThe main articles are:\\n\\n- Cohen, Chen, Wallace, Greenberg : \\n A Progressive Refinement Approach to fast Radiosity Image Generation\\n Computer Graphics (SIGGRAPH), V. 22(No. 4), pp 75-84, August 1988\\n\\n- Silion, Puech\\n A General Two-Pass Method Integrating Specular and Diffuse Reflection\\n Computer Graphics (SIGGRAPH), V23(No. 3), pp335-344, July 1989 \\n\\n> If you need to project patches on the hemi-cube surfaces, what technique are\\n> you using? Do you have hardware to facilitate the projection?\\n>\\n\\nI do not use hemi-cubes. I have no special hardware (SUN SPARCstation).\\n\\n>\\n>|>\\n>|> In the meantime you may have a look at the file\\n>|> Radiosity_code.tar.Z\\n>|> located at\\n>|> compute1.cc.ncsu.edu\\n>\\n>\\n> What are the guest username and password for this ftp site?\\n>\\n\\nUse anonymous as username and your e-mail address as password.\\n\\n>\\n>|>\\n>|> (there are some other locations; have a look at archie to get the nearest)\\n>|>\\n>|> Hope that'll help.\\n>|>\\n>|> Yours\\n>|>\\n>|> Stephan\\n>|>\\n>\\n>\\n> Thanks, Stephan.\\n>\\n>\\n> Josephine\\n\\n\\nStephan.\\n\\n\\n----------------------------------------------------------------------------\\n\\n Stephan Amann SIG Computer Graphics, University of Berne, Switzerland\\n amann@iam.unibe.ch\\n\\t Tel +41 31 65 46 79\\t Fax +41 31 65 39 65\\n\\n Projects: Radiosity, Raytracing, Computer Graphics\\n\\n----------------------------------------------------------------------------\\n\",\n", - " 'Subject: Re: Request for Support\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 16\\n\\nIn article <1993Apr5.095148.5730@sei.cmu.edu> dpw@sei.cmu.edu (David Wood) writes:\\n\\n>2. If you must respond to one of his articles, include within it\\n>something similar to the following:\\n>\\n> \"Please answer the questions posed to you in the Charley Challenges.\"\\n\\n\\tAgreed.\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", - " 'From: hasan@McRCIM.McGill.EDU \\nSubject: Re: Water on the brain (was Re: Israeli Expansion-lust)\\nOriginator: hasan@lightning.mcrcim.mcgill.edu\\nNntp-Posting-Host: lightning.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 15\\n\\n\\nIn article <1993Apr15.055341.6075@nysernet.org>, astein@nysernet.org (Alan Stein) writes:\\n|> I guess Hasan finally revealed the source of his claim that Israel\\n|> diverted water from Lebanon--his imagination.\\n|> -- \\n|> Alan H. Stein astein@israel.nysernet.org\\nMr. water-head,\\ni never said that israel diverted lebanese rivers, in fact i said that\\nisrael went into southern lebanon to make sure that no \\nwater is being used on the lebanese\\nside, so that all water would run into Jordan river where there\\nisrael will use it !#$%^%&&*-head.\\n\\nHasan \\n',\n", - " 'From: tffreeba@indyvax.iupui.edu\\nSubject: Death and Taxes (was Why not give $1 billion to...\\nArticle-I.D.: indyvax.1993Apr22.162501.747\\nLines: 10\\n\\nIn my first posting on this subject I threw out an idea of how to fund\\nsuch a contest without delving to deep into the budget. I mentioned\\ngranting mineral rights to the winner (my actual wording was, \"mining\\nrights.) Somebody pointed out, quite correctly, that such rights are\\nnot anybody\\'s to grant (although I imagine it would be a fait accompli\\nsituation for the winner.) So how about this? Give the winning group\\n(I can\\'t see one company or corp doing it) a 10, 20, or 50 year\\nmoratorium on taxes.\\n\\nTom Freebairn \\n',\n", - " 'From: sts@mfltd.co.uk (Steve Sherwood (x5543))\\nSubject: Re: Virtual Reality for X on the CHEAP!\\nReply-To: sts@mfltd.co.uk\\nOrganization: Micro Focus Ltd, Newbury, England\\nLines: 39\\n\\nIn article <1r6v3a$rj2@fg1.plk.af.mil>, ridout@bink.plk.af.mil (Brian S. Ridout) writes:\\n|> In article <1993Apr15.134802.21995@mfltd.co.uk>, sts@mfltd.co.uk (Steve Sherwood (x5543)) writes:\\n|> |> Has anyone got multiverse to work ?\\n|> |> \\n|> |> I have built it on 486 svr4, mips svr4s and Sun SparcStation.\\n|> |> \\n|> |> There seems to be many bugs in it. The \\'dogfight\\' and \\'dactyl\\' simply do nothing\\n|> |> (After fixing a bug where a variable is defined twice in two different modules - One needed\\n|> |> setting to static - else the client core-dumped)\\n|> |> \\n|> |> Steve\\n|> |> -- \\n|> |> \\n|> |> Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n|> |> +-----------------------------------+------------------------+ Micro Focus\\n|> |> | Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n|> |> | Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n|> |> | Need courage to survive the day. | | Berkshire\\n|> |> +-----------------------------------+------------------------+ England\\n|> |> (A)bort (R)etry (I)nfluence with large hammer\\n|> I built it on a rs6000 (my only Motif machine) works fine. I added some objects\\n|> into dogfight so I could get used to flying. This was very easy. \\n|> All in all Cool!. \\n|> Brian\\n\\nThe RS6000 compiler is so forgiving, I think that if you mixed COBOL & pascal\\nthe C compiler still wouldn\\'t complain. :-)\\n\\nSteve\\n-- \\n\\n Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n+-----------------------------------+------------------------+ Micro Focus\\n| Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n| Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n| Need courage to survive the day. | | Berkshire\\n+-----------------------------------+------------------------+ England\\n (A)bort (R)etry (I)nfluence with large hammer\\n\\n',\n", - " 'From: arnie@magnus.acs.ohio-state.edu (Arnie Skurow)\\nSubject: Re: Live Free, but Quietly, or Die\\nArticle-I.D.: magnus.1993Apr6.184322.18666\\nOrganization: The Ohio State University\\nLines: 14\\nNntp-Posting-Host: bottom.magnus.acs.ohio-state.edu\\n\\nIn article Russell.P.Hughes@dartmouth.edu (R\\nussell P. Hughes) writes:\\n>What a great day! Got back home last night from some fantastic skiing\\n>in Colorado, and put the battery back in the FXSTC. Cleaned the plugs,\\n>opened up the petcock, waited a minute, hit the starter, and bingo it\\n>started up like a charm! Spent a restless night anticipating the first\\n>ride du saison, and off I went this morning to get my state inspection\\n>done. Now my bike is stock (so far) except for HD slash-cut pipes, and\\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nTherein lies the rub. The HD slash cut, or baloney cuts as some call\\nthem, ARE NOT STOCK mufflers. They\\'re sold for \"off-road use only,\"\\nand are much louder than stock mufflers.\\n\\nArnie\\n',\n", - " 'From: lcd@umcc.umcc.umich.edu (Leon Dent)\\nSubject: Re: MPEG for x-windows MONO needed.\\nOrganization: UMCC, Ann Arbor, MI\\nLines: 20\\nNNTP-Posting-Host: umcc.umcc.umich.edu\\n\\nOn sunsite.unc.edu in pub/multimedia/utilities/unix find \\n mpeg_play-2.0.tar.Z.\\n\\nI find for mono it works best as mpeg_play -dither threshold \\n though you can use mpeg_play -dither mono\\n\\nFace it, this is not be the best viewing situation.\\n\\nAlso someone has made a patch for mpeg_play that gives two more mono\\nmodes (mono2 and halftone).\\n\\nThey are by jan@pandonia.canberra.edu.au (Jan Newmarch).\\nAnd the patch can be found on csc.canberra.edu.au (137.92.1.1) under\\n/pub/motif/mpeg2.0.mono.patch.\\n\\n\\nLeon Dent\\nlcd@umcc.umich.edu\\n \\n\\n',\n", - " \"From: robert@Xenon.Stanford.EDU (Robert Kennedy)\\nSubject: Battery storage -- why not charge and store dry?\\nOrganization: Computer Science Department, Stanford University.\\nLines: 24\\n\\nSo it looks like I'm going to have to put a couple of bikes in storage\\nfor a few months, starting several months from now, and I'm already\\ncontemplating how to do it so they're as easy to get going again as\\npossible. I have everything under control, I think, besides the\\nbatteries. I know that if I buy a $50.00 Battery Tender for each one\\nand leave them plugged in the whole time the bikes are in storage,\\nthey'll be fine. But I'm not sure that's necessary. I've never heard\\nanyone discussing this idea, so maybe there's some reason why it isn't\\nso great. But maybe someone can tell me.\\n\\nWould it be a mistake to fully charge the batteries, drain the\\nelectrolyte into separate containers (one for each battery), seal the\\ncontainer, close up the batteries, and leave them that way? Then it\\nwould seem that when the bikes come out of storage, I could put the\\nelectrolyte back in the batteries and they should still be fully\\ncharged. What's wrong with this?\\n\\nOn a related, but different note for you Bay Area Denizens, wasn't\\nthere someone who had a bunch of spare EDTA a few months back? Who was\\nit? Is there still any of it left?\\n\\nThanks for any and all help!\\n\\n\\t-- Robert\\n\",\n", - " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: Need advice for riding with someone on pillion\\nKeywords: advice, pillion, help!\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nDistribution: na\\nLines: 44\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n\\t<...>\\t<...>\\n>This person is <100 lbs. and fairly small, so I don\\'t see weight as too much\\n>of a problem, but what sort of of advice should I give her before we go?\\n>I want her to hold onto me :-) rather than the grab rail out back, and\\n>I\\'ve heard that she should look over my shoulder in the direction we\\'re\\n>turning so she leans *with* me, but what else? Are there traditional\\n>signals for SLOW DOWN!! or GO FASTER!! or I HAFTA GO PEE!! etc.???\\n\\n\\tI\\'ve never liked my passengers to try and shift their weight with the\\n\\tturns at all... I find the weight shift can be very sudden and\\n\\tunnerving. It\\'s one thing if they\\'re just getting comfortable or\\n\\tdecide to look over your other shoulder, but I don\\'t recommend having\\n\\thim/her shift her weight with each turn... too violent.\\n\\t\\n\\tAlso (I think someone already said this) make sure your passenger\\n\\twears good gear. I sometimes choose to ride without a helmet or\\n\\tlacking other safety gear (depends on how squidly I feel) but I\\n\\twon\\'t let passengers do it. What I do to myself I can handle, but\\n\\tI wouldn\\'t want to hurt anyone else, so I don\\'t let them on without\\n\\tgloves, jacket, (at least) jeans, heavy boots, and a helmet that *fits*\\n\\n>I really want this to be a positive experience for us both, mainly so that\\n>she\\'ll want to go with me again, so any help will be appreciated...\\n\\n\\tGo *real* easy. It\\'s amazing how solid a grip you have on the\\n\\thandle bars that your passenger does not. Don\\'t make her feel like\\n\\tshe\\'s going to slide off the back, and \"snappy\" turns for you are\\n\\tsickening lurches for her. In general, it feels much less controlled\\n\\tand smooth as a passenger. I can\\'t stand being on the back of my\\n\\tbrother\\'s bike, and I ride aggressively when i ride and I know he\\'s\\n\\ta good pilot... still, everything feels very unsteady when you\\'re\\n\\ta passenger. \\n\\n\\n>Thanks,\\n> -Bob-\\n\\n\\tShow off by not showing off the first time out...\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", - " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: Happy Easter!\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 17\\n\\nIn article <1993Apr15.171757.10890@i88.isc.com> jeq@lachman.com (Jonathan E. Quist) writes:\\n>Rolls-Royce owned by a non-British firm?\\n>\\n>Ye Gods, that would be the end of civilization as we know it.\\n\\n Why not? Ford owns Aston-Martin and Jaguar, General Motors owns Lotus\\nand Vauxhall. Rover is only owned 20% by Honda.\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", - " \"From: tom@inferno.UUCP (Tom Sherwin)\\nSubject: Re: XV under MS-DOS ?!?\\nOrganization: Periphonics Corporation\\nLines: 30\\nNNTP-Posting-Host: ablaze\\n\\n|> Hi ... Recently I found XV for MS-DOS in a subdirectory of GNU-CC (GNUISH). I \\n|> use frequently XV on a Sun Spark Station 1 and I never had problems, but when I\\n|> start it on my computer with -h option, it display the help menu and when I\\n|> start it with a GIF-File my Hard disk turns 2 or 3 seconds and the prompt come\\n|> back.\\n|> \\n|> My computer is a little 386/25 with copro, 4 Mega rams, Tseng 4000 (1M) running\\n|> MS-DOS 5.0 with HIMEM.SYS and no EMM386.SYS. I had the GO32.EXE too... but no\\n|> driver who run with it.\\n|> \\n|> Do somenone know the solution to run XV ??? any help would be apprecied..\\n|> \\t\\t\\n\\nYou probably need an X server running on top of MS DOS. I use Desqview/X\\nbut any MS-DOS X server should do.\\n\\n-- \\n\\n XX X Technical documentation is writing 90% of the words\\n XX X for 10% of the features that only 1% of the customers\\n XX X actually use.\\n XX X -------------------------------------------------------\\n A PC to XX X I don't have opinions, I have factual interpretations...\\n the power XX X -Me\\n of X XX ---------------------------------------------------------\\n X XX ...uunet!rutgers!mcdhup!inferno!tom can be found at\\n X XX Periphonics Corporation\\n X XX 4000 Veterans Memorial Highway Bohemia, NY 11716\\n X XX ----------------------------------------------------\\n X XX They pay me to write, not express their opinions...\\n\",\n", - " \"From: kardank@ERE.UMontreal.CA (Kardan Kaveh)\\nSubject: Re: Newsgroup Split\\nOrganization: Universite de Montreal\\nLines: 8\\n\\nI haven't been following this thread, so appologies if this has already been\\nmentioned, but how about\\n\\n\\tcomp.graphics.3d\\n\\n-- \\nKaveh Kardan\\nkardank@ERE.UMontreal.CA\\n\",\n", - " 'From: svoboda@rtsg.mot.com (David Svoboda)\\nSubject: Re: edu breaths\\nNntp-Posting-Host: corolla18\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 29\\n\\nIn article <1993Apr15.214910.5676@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n|In article <1993Apr15.003749.15710@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n|>In article <1993Apr14.220252.14731@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n|>|\\n|>|The difference of opinion, and difference in motorcycling between the sport-bike\\n|>|riders and the cruiser-bike riders. \\n|>\\n|>That difference is only in the minds of certain closed-minded individuals. I\\n|>have had the very best motorcycling times with riders of \"cruiser\" \\n|>bikes (hi Don, Eddie!), yet I ride anything but.\\n|\\n|Continuously, on this forum, and on the street, you find quite a difference\\n|between the opinions of what motorcycling is to different individuals.\\n\\nYes, yes, yes. Motorcycling is slightly different to each and every one of us. This\\nis the nature of people, and one of the beauties of the sport. \\n\\n|Cruiser-bike riders have a different view of motorcycling than those of sport bike riders\\n|(what they like and dislike about motorcycling). This is not closed-minded. \\n\\nAnd what view exactly is it that every single rider of cruiser bikes holds, a veiw\\nthat, of course, no sport-bike rider could possibly hold? Please quantify your\\ngeneralization for us. Careful, now, you\\'re trying to pigeonhole a WHOLE bunch\\nof people.\\n\\nDave Svoboda (svoboda@void.rtsg.mot.com) | \"I\\'m getting tired of\\n90 Concours 1000 (Mmmmmmmmmm!) | beating you up, Dave.\\n84 RZ 350 (Ring Ding) (Woops!) | You never learn.\"\\nAMA 583905 DoD #0330 COG 939 (Chicago) | -- Beth \"Bruiser\" Dixon\\n',\n", - " \"From: nicho@vnet.IBM.COM (Greg Stewart-Nicholls)\\nSubject: Re: Vandalizing the sky.\\nReply-To: nicho@vnet.ibm.com\\nDisclaimer: This posting represents the poster's views, not those of IBM\\nNews-Software: UReply 3.1\\nX-X-From: nicho@vnet.ibm.com\\n \\nLines: 9\\n\\nIn George F. Krumins writes:\\n>It is so typical that the rights of the minority are extinguished by the\\n>wants of the majority, no matter how ridiculous those wants might be.\\n Umm, perhaps you could explain what 'rights' we are talking about\\nhere ..\\n -----------------------------------------------------------------\\nGreg Nicholls ... : Vidi\\nnicho@vnet.ibm.com or : Vici\\nnicho@olympus.demon.co.uk : Veni\\n\",\n", - " \"From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: bikes with big dogs\\nOrganization: AT&T\\nDistribution: na\\nLines: 20\\n\\nIn article <1993Apr14.234835.1@cua.edu> 84wendel@cua.edu writes:\\n>Has anyone ever heard of a rider giving a big dog such as a great dane a ride \\n>on the back of his bike. My dog would love it if I could ever make it work.\\n>\\tThanks\\n>\\t\\t\\t84wendel@cua.edu\\n \\n If a large Malmute counts then yes someone has heard(and seen) such\\nan irresponsible childish stunt. The dog needed assistance straightening\\nout once on board. The owner would lift the front legs of dog and throw\\nthem over the driver/pilots shoulders. Said dog would get shit eating\\ngrin on its face and away they'd go. The dogs ass was firmly planted\\non the seat.\\n \\n My dog and this dog actively seek each other out at camping party's.\\nThey hate each other. I think it's something personal.\\n \\n================================================================================\\n Steatopygias's 'R' Us. doh#0000000005 That ain't no Hottentot.\\n Sesquipedalian's 'R' Us. ZX-10. AMA#669373 DoD#564. There ain't no more.\\n================================================================================\\n\",\n", - " 'Subject: Quotation? Lowest bidder...\\nFrom: bioccnt@otago.ac.nz\\nOrganization: University of Otago, Dunedin, New Zealand\\nNntp-Posting-Host: thorin.otago.ac.nz\\nLines: 12\\n\\n\\nCan someone please remind me who said a well known quotation? \\n\\nHe was sitting atop a rocket awaiting liftoff and afterwards, in answer to\\nthe question what he had been thinking about, said (approximately) \"half a\\nmillion components, each has to work perfectly, each supplied by the lowest\\nbidder.....\" \\n\\nAttribution and correction of the quote would be much appreciated. \\n\\nClive Trotman\\n\\n',\n", - " 'From: mlj@af3.mlb.semi.harris.com (Marvin Jaster )\\nSubject: FOR SALE \\nNntp-Posting-Host: sunsol.mlb.semi.harris.com\\nOrganization: Harris Semiconductor, Melbourne FL\\nKeywords: FOR SALE\\nLines: 44\\n\\nI am selling my Sportster to make room for a new FLHTCU.\\nThis scoot is in excellent condition and has never been wrecked or abused.\\nAlways garaged.\\n\\n\\t1990 Sportster 883 Standard (blue)\\n\\n\\tfactory 1200cc conversion kit\\n\\n\\tless than 8000 miles\\n\\n\\tBranch ported and polished big valve heads\\n\\n\\tScreamin Eagle carb\\n\\n\\tScreamin Eagle cam\\n\\n\\tadjustable pushrods\\n\\n\\tHarley performance mufflers\\n\\n\\ttachometer\\n\\n\\tnew Metzeler tires front and rear\\n\\n\\tProgressive front fork springs\\n\\n\\tHarley King and Queen seat and sissy bar\\n\\n\\teverything chromed\\n\\n\\tO-ring chain\\n\\n\\tfork brace\\n\\n\\toil cooler and thermostat\\n\\n\\tnew Die-Hard battery\\n\\n\\tbike cover\\n\\nprice: $7000.00\\nphone: hm 407/254-1398\\n wk 407/724-7137\\nMelbourne, Florida\\n',\n", - " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: Fundamentalism - again.\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , khan0095@nova.gmi.edu (Mohammad Razi Khan) writes:\\n|> One of my biggest complaints about using the word \"fundamentalist\"\\n|> is that (at least in the U.S.A.) people speak of muslime\\n|> fundamentalists ^^^^^^^muslim\\n|> but nobody defines what a jewish or christan fundamentalist is.\\n|> I wonder what an equal definition would be..\\n|> any takers..\\n\\nWell, I would go as far as saying that Naturei Karta are definitely\\nJewish fundamentalists. Other ultra-orthodox Jewish groups might very\\nwell be, though I am hesitant of making such a broad generalization.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n',\n", - " \"From: howard@netcom.com (Howard Berkey)\\nSubject: Re: Shipping a bike\\nOrganization: Netcom Online Communications Services (408-241-9760 login: guest)\\nLines: 23\\n\\nIn article mellon@ncd.com (Ted Lemon) writes:\\n>\\n>>Can someone recommend how to ship a motorcycle from San Francisco\\n>>to Seattle? And how much might it cost?\\n>\\n>I'd recommend that you hop on the back of it and cruise - that's a\\n>really nice ride, if you choose your route with any care at all.\\n>Shouldn't cost more than about $30 in gas, and maybe a night's motel\\n>bill...\\n>\\n\\nYes! Up the coast, over to Portland, then up I-5. Really nice most\\nof the way, and I'm sure there's even better ways.\\n\\nWatch the weather, though... I got about as good a drenching as\\npossible in the Oregon coast range once... \\n\\n\\n-- \\n::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\\nHoward Berkey \\t\\t\\t\\t\\t\\t howard@netcom.com\\n\\t\\t\\t\\t Help!\\n... .. ... ... .. ... ... .. ... ... .. ... ... .. ... ... .. ...\\n\",\n", - " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: free moral agency and Jeff Clark\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 21\\n\\nIn article sandvik@newton.apple.com (Kent Sandvik) writes:\\n>\\n>This is the reason I like the controversy of post-modernism, the\\n>issues of polarities -- evil and good -- are just artificial \\n>constructs, and they fall apart during a closer inspection.\\n>\\n>The more I look into the notion of a constant struggle between\\n>the evil and good forces, the more it sounds like a metaphor\\n>that people just assume without closer inspection.\\n>\\n\\n More info please. I'm not well exposed to these ideas.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", - " \"From: bob1@cos.com (Bob Blackshaw)\\nSubject: Re: No humanity in Bosnia\\nKeywords: Barbarism\\nOrganization: Corporation for Open Systems\\nDistribution: world \\nLines: 47\\n\\nIn <1993Apr15.135934.23814@julian.uwo.ca> mrizvi@gfx.engga.uwo.ca (Mr. Mubashir Rizvi) writes:\\n\\n>It is very encouraging that a number of people took so interest in my posting.I recieved a couple of letters too,some has debated the statement that events in Bosnia are unprecedented in the history of the modern world.Those who contest this statement present the figures of the World War II.However we must keep in mind that it was a World War and no country had the POWER to stop it,today is the matter not of the POWER but of the WILL.It\\n>seems to be that what we lack is the will.\\n\\nThe idea of the U.S, or any other nation, taking action, i.e., military\\nintervention, in Bosnia has not been well thought out by those who \\nadvocate such action. After the belligerants are subdued, it would require\\nan occupation force for one or two generations. If you will stop and\\nthink about it, you will realize that these people have never forgotten\\na single slight or injury, they have imbibed hatred with their mother's\\nmilk. If we stop the fighting, seize and destroy all weapons, they will\\nsimply go back to killing each other with clubs. And the price for this\\nfutility will be the lives of the young men and women we send there to\\ndie. A price I am unwilling to even consider.\\n\\n>Second point of difference (which makes it different from the holocast(sp?) ) is that at that time international community\\n>didnot have enough muscle to prevent the unfortunate event,\\n\\nThere is no valid comparison to the Holocaust. All of the Jewish people\\nthat I have known as friends were not brought up to hate. To be wary of\\nothers, most certainly, but not to hate. And except for the Warsaw\\nuprising, they were unarmed (and even in Warsaw badly out-gunned).\\nIt is very easy to speak of muscle when they are someone else's muscles.\\nSuppose we do this thing, what will you tell the parents, wives, children,\\nlovers of those we are sending to die? That they gave their lives in some noble cause? Noble cause, separating some mad dogs who will turn on them.\\n\\nWell, I will offer you some muscle. Suppose we tell them that they have\\none week (this will give foreign nationals time to leave) to cease\\ntheir bloodshed. At the end of that week, bring in the Tomahawk firing\\nships and destroy Belgrade as they destroyed the Bosnian cities. Perhaps\\nwhen some of their cities are reduced to rubble they will have a sudden\\nattack of brains. Send in missiles by all means, but do not send in\\ntroops.\\n\\n>today inspite of all the might,the international community is not just standing neutral but has placed an arms embargo which\\n\\nBy all means lift the embargo.\\n\\n>is to the obvious disadvantage of the weeker side and therefore to the advantage of the bully.Hence indirecltly and possibly\\n>unintentionally, mankind has sided with the killers.And this,I think is unprecedented in the history of the modern world.\\n\\nWhich killers? Do you honestly believe they are all on one side?\\n\\n>M.Rizvi\\n> \\nREB\\n\",\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Alaska Pipeline and Space Station!\\nOrganization: Express Access Online Communications USA\\nLines: 25\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr5.160550.7592@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n|\\n|I think this would be a great way to build it, but unfortunately\\n|current spending rules don't permit it to be workable. For this to\\n|work it would be necessary for the government to guarantee a certain\\n|minimum amount of business in order to sufficiently reduce the risk\\n|enough to make this attractive to a private firm. Since they\\n|generally can't allocate money except one year at a time, the\\n|government can't provide such a tenant guarantee.\\n\\n\\nFred.\\n\\n\\tTry reading a bit. THe government does lots of multi year\\ncontracts with Penalty for cancellation clauses. They just like to be\\ndamn sure they know what they are doing before they sign a multi year\\ncontract. THe reason they aren't cutting defense spending as much\\nas they would like is the Reagan administration signed enough\\nMulti year contracts, that it's now cheaper to just finish them out.\\n\\nLook at SSF. THis years funding is 2.2 Billion, 1.8 of which will\\ncover penalty clauses, due to the re-design.\\n\\npat\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian slaughter of defenseless Muslim children and pregnant women.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 81\\n\\nIn article <1993Apr20.232449.22318@kpc.com> henrik@quayle.kpc.com writes:\\n\\nBM] Gimme a break. CAPITAL letters, or NOT, the above is pure nonsense. \\nBM] It seems to me that short sighted Armenians are escalating the hostilities\\n\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n> Again, Armenians in KARABAKH are SIMPLY defending themselves. What do\\n\\nThe winding down of winter puts you in a heavy \\'Arromdian\\' mood? I\\'ll \\nsee if I can get our dear \"Mehmetcik\" to write you a letter giving\\nyou and your criminal handlers at the ASALA/SDPA/ARF Terrorism and\\nRevisionism Triangle some military pointers, like how to shoot armed\\nadult males instead of small Muslim children and pregnant women.\\n\\n\\nSource: \\'The Times,\\' 3 March 1992\\n\\nMASSACRE UNCOVERED....\\n\\nBy ANATOL LIEVEN,\\n\\nMore than sixty bodies, including those of women and children, have \\nbeen spotted on hillsides in Nagorno-Karabakh, confirming claims \\nthat Armenian troops massacred Azeri refugees. Hundreds are missing.\\n\\nScattered amid the withered grass and bushes along a small valley \\nand across the hillside beyond are the bodies of last Wednesday\\'s \\nmassacre by Armenian forces of Azerbaijani refugees.\\n\\nFrom that hill can be seen both the Armenian-controlled town of \\nAskeran and the outskirts of the Azerbaijani military headquarters \\nof Agdam. Those who died very nearly made it to the safety of their \\nown lines.\\n\\nWe landed at this spot by helicopter yesterday afternoon as the last \\ntroops of the Commonwealth of Independent states began pulling out. \\nThey left unhindered by the warring factions as General Boris Gromov, \\nwho oversaw the Soviet withdrawal from Afghanistan, flew to Stepanakert \\nto ease their departure.\\n\\nA local truce was enforced to allow the Azerbaijaines to collect their \\ndead and any refugees still hiding in the hills and forest. All the \\nsame, two attack helicopters circled continuously the nearby Armenian \\npositions.\\n\\nIn all, 31 bodies could be counted at the scene. At least another \\n31 have been taken into Agdam over the past five days. These figures \\ndo not include civilians reported killed when the Armenians stormed \\nthe Azerbaijani town of Khodjaly on Tuesday night. The figures also \\ndo not include other as yet undiscovered bodies\\n\\nZahid Jabarov, a survivor of the massacre, said he saw up to 200 \\npeople shot down at the point we visited, and refugees who came \\nby different routes have also told of being shot at repeatedly and \\nof leaving a trail of bodies along their path. Around the bodies \\nwe saw were scattered possessions, clothing and personnel documents. \\nThe bodies themselves have been preserved by the bitter cold which\\nkilled others as they hid in the hills and forest after the massacre. \\nAll are the bodies of ordinary people, dressed in the poor, ugly \\nclothing of workers.\\n\\nOf the 31 we saw, only one policeman and two apparent national \\nvolunteers were wearing uniform. All the rest were civilians, \\nincluding eight women and three small children. TWO GROUPS, \\nAPPARENTLY FAMILIES, HAD FALLEN TOGETHER, THE CHILDREN CRADLED \\nIN THE WOMEN\\'S ARMS.\\n\\nSEVERAL OF THEM, INCLUDING ONE SMALL GIRL, HAD TERRIBLE HEAD \\nINJURIES: ONLY HER FACE WAS LEFT. SURVIVORS HAVE TOLD HOW THEY \\nSAW ARMENIANS SHOOTING THEM POINT BLANK AS THEY LAY ON THE GROUND.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: shaig@Think.COM (Shai Guday)\\nSubject: Re: The Israeli Press\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 48\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article , benali@alcor.concordia.ca ( ILYESS B. BDIRA ) writes:\\n|> \\n|> Of course you never read Arab media,\\n\\nI don\\'t, though when I was in Israel I did make a point of listening\\nto JTV news, as well as Monte Carlo Radio. In the United States,\\nI generally read the NYT, and occasionally, a mainstream Israeli\\nnewpaper.\\n\\n|> I read Arab, ISRAELI (Jer. Post, and this network is more than enough)\\n|> and Western (American, French, and British) reports and I can say\\n|> that if we give Israel -10 and Arabs +10 on the bias scale (of course\\n|> you can switch the polarities) Israeli newspapers will get either\\n|> a -9 or -10, American leading newspapers and TV news range from -6\\n|> to -10 (yes there are some that are more Israelis than Israelis)\\n|> The Montreal suburban (a local free newspaper) probably is closer\\n|> to Kahane\\'s views than some Israeli right wing newspapers, British\\n|> range from 0 (neutral) to -10, French (that Iknow of, of course) range\\n|> from +2 (Afro-french magazines) to -10, Arab official media range from\\n|> 0 to -5 (Egyptian) to +9 in SA. Why no +10? Because they do not want to\\n|> overdo it and stir people against Israel and therefore against them since \\n|> they are doing nothing.\\n\\nWhat you may not be taking into account is that the JP is no longer\\nrepresentative of the mainstream in Israel. It was purchased a few\\nyears ago and in the battle for control, most of the liberal and\\nleft-wing reporters walked out. The new owner stated in the past,\\nmore than once, that the JP\\'s task should be geared towards explaining\\nand promoting Israel\\'s position, more than attacking the gov\\'t (Likud\\nat the time). The paper that I would recommend reading, being middle\\nstream and factual is \"Ha-Aretz\" - or at least this was the case two\\nyears ago.\\n\\n|> the average bias of what you read would be probably around -9,\\n|> while that of the average American would be the same if they do\\n|> not read or read the new-york times and similar News-makers, and\\n|> -8 if they read some other RELATIVELY less biased newspapers.\\n\\nAnd what about the \"Nat\\'l Enquirer\"? 8^)\\nBut seriously, if one were to read some of the leftist newspapers\\none could arrive at other conclusions. The information you received\\nwas highly selective and extrapolating from it is a bad move.\\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninja of the skies.\\nCambridge, MA |\\n',\n", - " 'From: dpw@sei.cmu.edu (David Wood)\\nSubject: Re: Gospel Dating\\nIn-Reply-To: mangoe@cs.umd.edu\\'s message of 4 Apr 93 10:56:03 GMT\\nOrganization: Software Engineering Institute\\nLines: 33\\n\\n\\n\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n\\n>>David Wood writes:\\n>>\\n>> \"Extraordinary claims require extraordinary evidence.\"\\n>\\n>More seriously, this is just a high-falutin\\' way of saying \"I don\\'t believe\\n>what you\\'re saying\".\\n\\nAre you making a meta-argument here? In any case, you are wrong. \\nThink of those invisible pink unicorns.\\n\\n>Also, the existence if Jesus is not an extradinary claim. \\n\\nI was responding to the \"historical accuracy... of Biblical claims\",\\nof which the existence of Jesus is only one, and one that was not even\\nmentioned in my post.\\n\\n>You may want to\\n>complain that the miracles attributed to him do constitute such claims (and\\n>I won\\'t argue otherwise), but that is a different issue.\\n\\nWrong. That was exactly the issue. Go back and read the context\\nincluded within my post, and you\\'ll see what I mean.\\n\\nNow that I\\'ve done you the kindness of responding to your questions,\\nplease do the same for me. Answer the Charley Challenges. Your claim\\nthat they are of the \"did not!/ did so!\" variety is a dishonest dodge\\nthat I feel certain fools only one person.\\n\\n--Dave Wood\\n',\n", - " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Observation re: helmets\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 40\\n\\nIn article <211353@mavenry.altcit.eskimo.com>,\\nmaven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n|> \\n|> Grf. Dropped my Shoei RF-200 off the seat of my bike while trying to\\n|> rock \\n|> it onto it\\'s centerstand, chipped the heck out of the paint on it...\\n|> \\n|> So I cheerfully spent $.59 on a bottle of testor\\'s model paint and \\n|> repainted the scratches and chips for 20 minutes.\\n|> \\n|> The question for the day is re: passenger helmets, if you don\\'t know\\n|> for \\n|> certain who\\'s gonna ride with you (like say you meet them at a ....\\n|> church \\n|> meeting, yeah, that\\'s the ticket)... What are some guidelines? Should\\n|> I just \\n|> pick up another shoei in my size to have a backup helmet (XL), or\\n|> should I \\n|> maybe get an inexpensive one of a smaller size to accomodate my\\n|> likely \\n|> passenger? \\n\\n My rule of thumb is \"Don\\'t give rides to people that wear\\na bigger helmet than you\", unless your taste runs that way,\\nor they are family.friends.\\nGee, reminds me of a *dancer* in Hull, just over the river \\nfrom Ottowa, that I saw a few years ago, for her I would a\\nbought a bigger helmet (or even her own bike) or anything \\nelse she wanted ;->\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", - " 'From: csc3phx@vaxa.hofstra.edu\\nSubject: Color problem.\\nLines: 8\\n\\n\\nI am scanning in a color image and it looks fine on the screen. When I \\nconverted it into PCX,BMP,GIF files so as to get it into MS Windows the colors\\ngot much lighter. For example the yellows became white. Any ideas?\\n\\nthanks\\nDan\\ncsc3phx@vaxc.hofstra.edu\\n',\n", - " \"From: weber@sipi.usc.edu (Allan G. Weber)\\nSubject: Need help with Mitsubishi P78U image printer\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 26\\nDistribution: na\\nNNTP-Posting-Host: sipi.usc.edu\\n\\nOur group recently bought a Mitsubishi P78U video printer and I could use some\\nhelp with it. We bought this thing because it (1) has a parallel data input in\\naddition to the usual video signal inputs and (2) claimed to print 256 gray\\nlevel images. However, the manual that came with it only describes how to\\nformat the parallel data to print 1 and 4 bit/pixel images. After some initial\\nproblems with the parallel interface I now have this thing running from a\\nparallel port of an Hewlett-Packard workstation and I can print 1 and 4\\nbit/pixel images just fine. I called the Mitsubishi people and asked about the\\n256 level claim and they said that was only available when used with the video\\nsignal inputs. This was not mentioned in the sales literature. However they\\ndid say the P78U can do 6 bit/pixel (64 level) images in parallel mode, but\\nthey didn't have any information about how to program it to do so, and they\\nwould call Japan, etc.\\n\\nFrankly, I find it hard to believe that if this thing can do 8 bit/pixel images\\nfrom the video source, it can't store 8 bits/pixel in the memory. It's not\\nlike memory is that expensive any more. If anybody has any information on\\ngetting 6 bit/pixel (or even 8 bit/pixel) images out of this thing, I would\\ngreatly appreciate your sending it to me.\\n\\nThanks.\\n\\nAllan Weber\\nSignal & Image Processing Institute\\nUniversity of Southern California\\nweber@sipi.usc.edu\\n\",\n", - " 'From: shag@aero.org (Rob Unverzagt)\\nSubject: Re: space food sticks\\nKeywords: food\\nArticle-I.D.: news.1pscc6INNebg\\nOrganization: Organization? You must be kidding.\\nLines: 35\\nNNTP-Posting-Host: aerospace.aero.org\\n\\nIn article <1pr5u2$t0b@agate.berkeley.edu> ghelf@violet.berkeley.edu (;;;;RD48) writes:\\n> I had spacefood sticks just about every morning for breakfast in\\n> first and second grade (69-70, 70-71). They came in Chocolate,\\n> strawberry, and peanut butter and were cylinders about 10cm long\\n> and 1cm in diameter wrapped in yellow space foil (well, it seemed\\n> like space foil at the time). \\n\\nWasn\\'t there a \"plain\" flavor too? They looked more like some\\nkind of extruded industrial product than food -- perfectly\\nsmooth cylinders with perfectly smooth ends. Kinda scary.\\n\\n> The taste is hard to describe, although I remember it fondly. It was\\n> most certainly more \"candy\" than say a modern \"Power Bar.\" Sort of\\n> a toffee injected with vitamins. The chocolate Power Bar is a rough\\n> approximation of the taste. Strawberry sucked.\\n\\nAn other post described it as like a \"microwaved Tootsie Roll\" --\\nwhich captures the texture pretty well. As for taste, they were\\nlike candy, only not very sweet -- does that make sense? I recall\\nliking them for their texture, not taste. I guess I have well\\ndeveloped texture buds.\\n\\n> Man, these were my \"60\\'s.\"\\n\\nIt was obligatory to eat a few while watching \"Captain Scarlet\".\\nDoes anybody else remember _that_, as long as we\\'re off the\\ntopic of space?\\n\\nShag\\n\\n-- \\n----------------------------------------------------------------------\\n Rob Unverzagt |\\n shag@aerospace.aero.org | Tuesday is soylent green day.\\nunverzagt@courier2.aero.org | \\n',\n", - " 'From: pbd@runyon.cim.cdc.com (Paul Dokas)\\nSubject: Big amateur rockets\\nOrganization: ICEM Systems, Inc.\\nLines: 23\\n\\nI was reading Popular Science this morning and was surprised by an ad in\\nthe back. I know that a lot of the ads in the back of PS are fringe\\nscience or questionablely legal, but this one really grabbed my attention.\\nIt was from a company name \"Personal Missle, Inc.\" or something like that.\\n\\nAnyhow, the ad stated that they\\'d sell rockets that were up to 20\\' in length\\nand engines of sizes \"F\" to \"M\". They also said that some rockets will\\nreach 50,000 feet.\\n\\nNow, aside from the obvious dangers to any amateur rocketeer using one\\nof these beasts, isn\\'t this illegal? I can\\'t imagine the FAA allowing\\npeople to shoot rockets up through the flight levels of passenger planes.\\nNot to even mention the problem of locating a rocket when it comes down.\\n\\nAnd no, I\\'m not going to even think of buying one. I\\'m not that crazy.\\n\\n\\n-Paul \"mine\\'ll do 50,000 feet and carries 50 pounds of dynamite\" Dokas\\n-- \\n#include \\n#define FULL_NAME \"Paul Dokas\"\\n#define EMAIL \"pbd@runyon.cim.cdc.com\"\\n/* Just remember, you *WILL* die someday. */\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n|> \\n|> >>But chimps are almost human...\\n|> >Does this mean that Chimps have a moral will?\\n|> \\n|> Well, chimps must have some system. They live in social groups\\n|> as we do, so they must have some \"laws\" dictating undesired behavior.\\n\\nAh, the verb \"to must\". I was warned about that one back\\nin Kindergarten.\\n\\nSo, why \"must\" they have such laws?\\n\\njon.\\n',\n", - " \"From: jfreund@taquito.engr.ucdavis.edu (Jason Freund)\\nSubject: Info on Medical Imaging systems\\nOrganization: College of Engineering - University of California - Davis\\nLines: 10\\n\\n\\n\\tHi, \\n\\n\\tIs anyone into medical imaging? I have a good ray tracing background,\\nand I'm interested in that field. Could you point me to some sources? Or\\nbetter yet, if you have any experience, do you want to talk about what's\\ngoing on or what you're working on?\\n\\nThanks,\\nJason Freund\\n\",\n", - " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: So, do any XXXX, I mean police officers read this stuff?\\nOrganization: Louisiana Tech University\\nLines: 22\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr20.163629.29153@iscnvx.lmsc.lockheed.com> jrlaf@sgi502.msd.lmsc.lockheed.com (J. R. Laferriere) writes:\\n\\n>I was just wondering if there were any law officers that read this. I have\\n>several questions I would like to ask pertaining to motorcycles and cops.\\n>And please don't say get a vehicle code, go to your local station, or obvious\\n>things like that. My questions would not be found in those places nor\\n>answered face to face with a real, live in the flesh, cop.\\n>If your brother had a friend who had a cousin whos father was a cop, etc.\\n>don't bother writing in. Thanks.\\n\\nI just gotta ask... What ARE these questions you want to ask an active cop?\\nWorking on your DoD qualfications? B-)\\n\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", - " \"From: mmadsen@bonnie.ics.uci.edu (Matt Madsen)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nNntp-Posting-Host: bonnie.ics.uci.edu\\nReply-To: mmadsen@ics.uci.edu (Matt Madsen)\\nOrganization: Univ. of Calif., Irvine, Info. & Computer Sci. Dept.\\nLines: 27\\n\\nRobert G. Carpenter writes:\\n\\n>Hi Netters,\\n>\\n>I'm building a CAD package and need a 3D graphics library that can handle\\n>some rudimentry tasks, such as hidden line removal, shading, animation, etc.\\n>\\n>Can you please offer some recommendations?\\n>\\n>I'll also need contact info (name, address, email...) if you can find it.\\n>\\n>Thanks\\n>\\n>(Please Post Your Responses, in case others have same need)\\n>\\n>Bob Carpenter\\n>\\n\\nI too would like a 3D graphics library! How much do C libraries cost\\nanyway? Can you get the tools used by, say, RenderMan, and can you get\\nthem at a reasonable cost?\\n\\nSorry that I don't have any answers, just questions...\\n\\nMatt Madsen\\nmmadsen@ics.uci.edu\\n\\n\",\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: pushing the envelope\\nOrganization: Texas Instruments Inc\\nDistribution: na\\nLines: 35\\n\\nIn <1993Apr3.233154.7045@Princeton.EDU> lije@cognito.Princeton.EDU (Elijah Millgram) writes:\\n\\n\\n>A friend of mine and I were wondering where the expression \"pushing\\n>the envelope\" comes from. Anyone out there know?\\n\\nEvery aircraft has flight constraints for speed/AOA/power. When\\ngraphed, these define the \\'flight envelope\\' of that aircraft,\\npresumably so named because the graphed line encloses (envelopes) the\\narea on the graph that represents conditions where the aircraft\\ndoesn\\'t fall out of the sky. Hence, \\'pushing the envelope\\' becomes\\n\\'operating at (or beyond) the edge of the flight (or operational)\\nenvelope\\'. \\n\\nNote that the envelope isn\\'t precisely known until someone actually\\nflies the airplane in those regions -- up to that point, all there are\\nare the theoretical predictions. Hence, one of the things test pilots\\ndo for a living is \\'push the envelope\\' to find out how close the\\ncorrespondence between the paper airplane and the metal one is -- in\\nessence, \\'pushing back\\' the edges of the theoretical envelope to where\\nthe airplane actually starts to fail to fly. Note, too, that this is\\ndone is a quite calculated and careful way; flight tests are generally\\ncarefully coreographed and just what is going to be \\'pushed\\' and how\\nfar is precisely planned (despite occasional deviations from plans,\\nsuch as the \\'early\\' first flight of the F-16 during its high-speed\\ntaxi tests).\\n\\nI\\'m sure Mary can tell you everything you ever wanted to know about\\nthis process (and then some).\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: gawne@stsci.edu\\nSubject: Re: Vulcan? (No, not the guy with the ears!)\\nDistribution: na\\nOrganization: Space Telescope Science Institute\\nLines: 42\\n\\nIn article , victor@inqmind.bison.mb.ca \\n(Victor Laking) writes:\\n> Does anyone have any info on the apparent sightings of Vulcan?\\n> \\n> All that I know is that there were apparently two sightings at \\n> drastically different times of a small planet that was inside Mercury\\'s \\n> orbit. Beyond that, I have no other info.\\n\\nThe sightings were apparently spurious. There is no planet inside of\\nthe orbit of Mercury.\\n\\nThe idea of Vulcan came from the differences between Mercury\\'s observed\\nperihelion precession and the value it should have had according to\\nNewtonian physics. Leverrier made an extensive set of observations\\nand calculations during the mid 19th century, and Simon Newcombe later\\nimproved on the observations and re-calculated using Leverrier\\'s system\\nof equations. Now Leverrier was one of the co-discoverers of Neptune\\nand since he had predicted its existence based on anomalies in the orbit\\nof Uranus his inclination was to believe the same sort of thing was\\nafoot with Mercury.\\n\\nBut alas, \\'twere not so. Mercury\\'s perihelion precesses at the rate\\nit does because the space where it resides near the sun is significantly\\ncurved due to the sun\\'s mass. This explanation had to wait until 1915\\nand Albert Einstein\\'s synthesis of his earlier theory of the electrodynamics\\nof moving bodies (commonly called Special Relativity) with Reimanian \\ngeometry. The result was the General Theory of Relativity, and one of\\nit\\'s most noteworthy strengths is that it accounts for the precession\\nof Mercury\\'s perihelion almost exactly. (Exactly if you use Newcomb\\'s\\nnumbers rather than Leverrier\\'s.)\\n\\nOf course not everybody believes Einstein, and that\\'s fine. But subsequent\\nefforts to find any planets closer to the sun than Mercury using radar\\nhave been fruitless.\\n\\n-Bill Gawne\\n\\n \"Forgive him, he is a barbarian, who thinks the customs of his tribe\\n are the laws of the universe.\" - G. J. Caesar\\n\\nAny opinions are my own. Nothing in this post constitutes an official\\nstatement from any person or organization.\\n',\n", - " \"From: rytg7@fel.tno.nl (Q. van Rijt)\\nSubject: Re: Sphere from 4 points?\\nOrganization: TNO Physics and Electronics Laboratory\\nLines: 26\\n\\nThere is another useful method based on Least Sqyares Estimation of the sphere equation parameters.\\n\\nThe points (x,y,z) on a spherical surface with radius R and center (a,b,c) can be written as \\n\\n (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2\\n\\nThis equation can be rewritten into the following form: \\n\\n 2ax + 2by + 2cz + R^2 - a^2 - b^2 -c^2 = x^2 + y^2 + z^2\\n\\nApproximate the left hand part by F(x,y,z) = p1.x + p2.x + p3.z + p4.1\\n\\nFor all datapoints, i.c. 4, determine the 4 parameters p1..p4 which minimise the average error |F(x,y,z) - x^2 - y^2 - z^2|^2.\\n\\nIn 'Numerical Recipes in C' can be found algorithms to solve these parameters.\\n\\nThe best fitting sphere will have \\n- center (a,b,c) = (p1/2, p2/2, p3/2)\\n- radius R = sqrt(p4 + a.a + b.b + c.c).\\n\\nSo, at last, will this solve you sphere estination problem, at least for the most situations I think ?.\\n\\nQuick van Rijt, rytg7@fel.tno.nl\\n\\n\\n\\n\",\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Jews can\\'t hide from keith@cco.\\nOrganization: sgi\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article , karner@austin.ibm.com (F. Karner) writes:\\n>\\n> So, you consider the german poster\\'s remark anti-semitic? \\n\\nWhen someone says:\\n\\n\\t\"So after 1000 years of sightseeing and roaming around its \\n\\tok to come back, kill Palastinians, and get their land back, \\n\\tright?\"\\n\\nYes, that\\'s casual antisemitism. I can think of plenty of ways\\nto criticize Israeli policy without insulting Jews or Jewish history.\\n\\nCan\\'t you?\\n\\njon \\n',\n", - " \"From: nicho@vnet.IBM.COM (Greg Stewart-Nicholls)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nReply-To: nicho@vnet.ibm.com\\nDisclaimer: This posting represents the poster's views, not those of IBM\\nNews-Software: UReply 3.1\\nX-X-From: nicho@vnet.ibm.com\\n \\nLines: 15\\n\\nIn Greg Hennessy writes:\\n>In article <1r6aqr$dnv@access.digex.net> prb@access.digex.com (Pat) writes:\\n>#The better question should be.\\n>#Why not transfer O&M of all birds to a separate agency with continous funding\\n>#to support these kind of ongoing science missions.\\n>\\n>Since we don't have the money to keep them going now, how will\\n>changing them to a seperate agency help anything?\\n>\\nHow about transferring control to a non-profit organisation that is\\nable to accept donations to keep craft operational.\\n -----------------------------------------------------------------\\nGreg Nicholls ... : Vidi\\nnicho@vnet.ibm.com or : Vici\\nnicho@olympus.demon.co.uk : Veni\\n\",\n", - " 'From: joerg@sax.sax.de (Joerg Wunsch)\\nSubject: About the various DXF format questions\\nOrganization: SaxNet, Dresden, Germany\\nLines: 25\\nDistribution: world\\nNNTP-Posting-Host: sax.sax.de\\nSummary: List of sites holding documentation of DXF format\\nKeywords: DXF, graphics formats\\n\\nArchie told me the following sites holding documentation about DXF:\\n\\nHost nic.funet.fi (128.214.6.100)\\nLast updated 15:11 7 Apr 1993\\n\\n Location: /pub/csc/graphics/format\\n FILE rwxrwxr-- 95442 Dec 4 1991 dxf.doc\\n\\nHost rainbow.cse.nau.edu (134.114.64.24)\\nLast updated 17:09 1 Jun 1992\\n\\n Location: /graphics/formats\\n FILE rw-r--r-- 95442 Mar 23 23:31 dxf.doc\\n\\nHost ftp.waseda.ac.jp (133.9.1.32)\\nLast updated 00:47 5 Apr 1993\\n\\n Location: /pub/data/graphic\\n FILE rw-r--r-- 39753 Nov 18 1991 dxf.doc.Z\\n\\n-- \\nJ\"org Wunsch, ham: dl8dtl : joerg_wunsch@uriah.sax.de\\nIf anything can go wrong... : ...or:\\n .o .o : joerg@sax.de,wutcd@hadrian.hrz.tu-chemnitz.de,\\n <_ ... IT WILL! : joerg_wunsch@tcd-dresden.de\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Shuttle oxygen (was Budget Astronaut)\\nOrganization: Express Access Online Communications USA\\nLines: 11\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nI thought that under emergency conditions, the STS can\\nput down at any good size Airport. IF it could take a C-5 or a\\n747, then it can take an orbiter. You just need a VOR/TAC\\n\\nI don't know if they need ILS.\\n\\npat\\n\\nANyone know for sure.\\n\",\n", - " 'From: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nSubject: Re: How many israeli soldiers does it take to kill a 5 yr old child?\\nReply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nOrganization: The National Capital Freenet\\nLines: 27\\n\\n\\nIn a previous article, steel@hal.gnu.ai.mit.edu (Nick Steel) says:\\n\\n>Q: How many occupying israeli soldiers (terrorists) does it \\n> take to kill a 5 year old native child?\\n>\\n>A: Four\\n>\\n>Two fasten his arms, one shoots in the face,\\n>and one writes up a false report.\\n\\nThis newsgroup is for intelligent discussion. I want you to either smarten\\nup and stop this bullshit posting or get the fuck out of my face and this\\nnet.\\n\\n Steve\\n\\n-- \\n------------------------------------------------------------------------------\\n| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\\n| Mossad@qube.ocunix.on.ca |\\n| <> |\\n',\n", - " \"From: tony@morgan.demon.co.uk (Tony Kidson)\\nSubject: Re: Info on Sport-Cruisers \\nDistribution: world\\nOrganization: The Modem Palace\\nReply-To: tony@morgan.demon.co.uk\\nX-Newsreader: Simple NEWS 1.90 (ka9q DIS 1.21)\\nLines: 25\\n\\nIn article <4foNhvm00WB4E5hUxB@andrew.cmu.edu> jae+@CMU.EDU writes:\\n\\n>I'm looking for a sport-cruiser - factory installed fairings (\\n>full/half ), hard saddle bags, 750cc and above, and all that and still\\n>has that sporty look.\\n>\\n>I particularly like the R100RS and K75 RT or S, or any of the K series\\n>BMW bikes.\\n>\\n>I was wondering if there are any other comparable type bikes being\\n>produced by companies other than BMW.\\n\\n\\nThe Honda ST1100 was designed by Honda in Germany, originally for the \\nEuropean market, as competition for the BMW 'K' series. Check it out.\\n\\nTony\\n\\n+---------------+------------------------------+-------------------------+\\n|Tony Kidson | ** PGP 2.2 Key by request ** |Voice +44 81 466 5127 |\\n|Morgan Towers, | The Cat has had to move now |E-Mail(in order) |\\n|Morgan Road, | as I've had to take the top |tony@morgan.demon.co.uk |\\n|Bromley, | off of the machine. |tny@cix.compulink.co.uk |\\n|England BR1 3QE|Honda ST1100 -=<*>=- DoD# 0801|100024.301@compuserve.com|\\n+---------------+------------------------------+-------------------------+\\n\",\n", - " 'Subject: Cornerstone DualPage driver wanted\\nFrom: tkelder@ebc.ee (Tonis Kelder)\\nNntp-Posting-Host: kask.ebc.ee\\nX-Newsreader: TIN [version 1.1 PL8]Lines: 12\\nLines: 12\\n\\n\\n\\nI am looking for a WINDOW 3.1 driver for \\n Cornerstone DualPage (Cornerstone Technology, Inc) \\nvideo card. Does anybody know, that has these? Is there one?\\n\\nThanks for any info,\\n\\nTo~nis\\n-- \\nTo~nis Kelder Estonian Biocentre (tkelder@kask.ebc.ee)\\n\\n',\n", - " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: YOU WILL ALL GO TO HELL!!!\\nOrganization: Technical University Braunschweig, Germany\\nLines: 18\\n\\nIn article <93108.020701TAN102@psuvm.psu.edu>\\nAndrew Newell writes:\\n \\n>>In article <93106.155002JSN104@psuvm.psu.edu> writes:\\n>>>YOU BLASHEPHEMERS!!! YOU WILL ALL GO TO HELL FOR NOT BELIEVING IN GOD!!!! BE\\n>>>PREPARED FOR YOUR ETERNAL DAMNATION!!!\\n>>\\n>>readers of the group. How convenient that he doesn't have a real name...\\n>>Let's start up the letters to the sysadmin, shall we?\\n>\\n>His real name is Jeremy Scott Noonan.\\n>vmoper@psuvm.psu.edu should have at least some authority,\\n>or at least know who to email.\\n>\\n \\nPOSTMAST@PSUVM.BITNET respectively P_RFOWLES or P_WVERITY (the sys admins)\\nat the same node are probably a better idea than the operator.\\n Benedikt\\n\",\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Ten questions about Israel\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 64\\n\\nIn article <1483500349@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\nTen Questions about arab countries\\n----------------------------------\\n\\nI would be thankful if any of you who live in arab countries could\\nhelp to provide accurate answers to the following specific questions.\\nThese are indeed provocative questions but they are asked time and\\nagain by people around me.\\n\\n1. Is it true that many arab countries don\\'t recognize\\nIsraeli nationality ? That people with Israeli stamps on their\\npassports can\\'t enter arabic countries?\\n\\n2. Is it true that arabic countries such as Jordan and Syria\\nhave undefined borders and that arab governments from 1948 until today\\nhave refused to state where the ultimate borders of their states\\nshould be?\\n\\n3. Is it true that arab countires refused to sign the Chemical\\nweapon convention treaty in Paris in 1993?\\n\\n4. Is it true that in arab prisons there are a number of\\nindividuals which were tried in secret and for which their\\nidentities, the date of their trial and their imprisonment are\\nstate secrets ?\\n\\n4a.\\tIs it true that some arab countries, like Syria, harbor Nazi\\nwar criminals, and refuse to extradite them?\\n\\n4b.\\tIs it true that some arab countries, like Saudi Arabia,\\nprohibit women from driving cars?\\n\\n5. Is it true that Jews who reside in the Muslim\\ncountries are subject to different laws than Muslims?\\n\\n6. Is it true that arab countries confiscated the property of\\nentire Jewish communites forced to flee by anti-Jewish riots?\\n\\n7. Is it true that Israel\\'s Prime Minister, Y. Rabin, signed\\na chemical weapons treaty that no arab nation was willing to sign?\\n\\n8. Is it true that Syrian Jews are required to leave a $10,000\\ndeposit before leaving the country, and are no longer allowed to\\nemmigrate, despite promises made by Hafez Assad to George Bush?\\n\\n9.\\t Is it true that Jews in Muslim lands are required to pay a\\nspecial tax, for being Jews?\\n\\n10. Is it true that Intercontinental Hotel in Jerusalem was built\\non a Jewish cemetary, with roads being paved over grave sites, and\\ngravestones being used in Jordanian latrines?\\n\\n11.\\tIs it really cheesy and inappropriate to post lists of biased\\nleading questions?\\n\\n11a.\\tIs it less appropriate if information implied in Mr.\\nDavidsson\\'s questions is highly misleading?\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 162\\n\\nC.Wainwright (eczcaw@mips.nott.ac.uk) wrote:\\n: I\\n: |> Jim,\\n: |> \\n: |> I always thought that homophobe was only a word used at Act UP\\n: |> rallies, I didn\\'t beleive real people used it. Let\\'s see if we agree\\n: |> on the term\\'s definition. A homophobe is one who actively and\\n: |> militantly attacks homosexuals because he is actually a latent\\n: |> homosexual who uses his hostility to conceal his true orientation.\\n: |> Since everyone who disapproves of or condemns homosexuality is a\\n: |> homophobe (your implication is clear), it must necessarily follow that\\n: |> all men are latent homosexuals or bisexual at the very least.\\n: |> \\n: \\n: Crap crap crap crap crap. A definition of any type of \\'phobe comes from\\n: phobia = an irrational fear of. Hence a homophobe (not only in ACT UP meetings,\\n: the word is apparently in general use now. Or perhaps it isn\\'t in the bible? \\n: Wouldst thou prefer if I were to communicate with thou in bilespeak?)\\n: \\n: Does an arachnophobe have an irrational fear of being a spider? Does an\\n: agoraphobe have an irrational fear of being a wide open space? Do you\\n: understand English?\\n: \\n: Obviously someone who has phobia will react to it. They will do their best\\n: to avoid it and if that is not possible they will either strike out or\\n: run away. Or do gaybashings occur because of natural processes? People\\n: who definately have homophobia will either run away from gay people or\\n: cause them (or themselves) violence.\\n: \\n\\nIsn\\'t that what I said ...\\nWhat are you taking issue with here, your remarks are merely\\nparenthetical to mine and add nothing useful.\\n\\n: [...]\\n: \\n: |> It would seem odd if homosexuality had any evolutionary function\\n: |> (other than limiting population growth) since evolution only occurs\\n: |> when the members of one generation pass along their traits to\\n: |> subsequent generations. Homosexuality is an evolutionary deadend. If I\\n: |> take your usage of the term, homophobe, in the sense you seem to\\n: |> intend, then all men are really homosexual and evolution of our\\n: |> species at least, is going nowhere.\\n: |> \\n: \\n: So *every* time a man has sex with a woman they intend to produce children?\\n: Hmm...no wonder the world is overpopulated. Obviously you keep to the\\n: Monty Python song: \"Every sperm is sacred\". And if, as *you* say, it has\\n: a purpose as a means to limit population growth then it is, by your own \\n: arguement, natural.\\n\\nConsider the context, I\\'m talking about an evolutionary function. One\\nof the most basic requirements of evolution is that members of a\\nspecies procreate, those who don\\'t have no purpose in that context.\\n\\n: \\n: |> Another point is that if the offspring of each generation is to\\n: |> survive, the participation of both parents is necessary - a family must\\n: |> exist, since homosexuals do not reproduce, they cannot constitute a\\n: |> family. Since the majority of humankind is part of a family,\\n: |> homosexuality is an evolutionary abberation, contrary to nature if you\\n: |> will.\\n: |> \\n: \\n: Well if that is true, by your own arguements homosexuals would have \\n: vanished *years* ago due to non-procreation. Also the parent from single\\n: parent families should put the babies out in the cold now, cos they must,\\n: by your arguement, die.\\n\\nBy your argument, homosexuality is genetically determined. As to your\\nsecond point, you prove again that you have no idea what context\\nmeans. I am talking about evolution, the preservation of the species,\\nthe fundamental premise of the whole process.\\n: \\n: |> But it gets worse. Since the overwhelming majority of people actually\\n: |> -prefer- a heterosexual relationship, homosexuality is a social\\n: |> abberation as well. The homosexual eschews the biological imperative\\n: |> to reproduce and then the social imperative to form and participate in\\n: |> the most fundamental social element, the family. But wait, there\\'s\\n: |> more.\\n: |> \\n: \\n: Read the above. I expect you to have at least ten children by now, with\\n: the family growing. These days sex is less to do with procreation (admittedly\\n: without it there would be no-one) but more to do with pleasure. In pre-pill\\n: and pre-condom days, if you had sex there was the chance of producing children.\\n: These days is just ain\\'t true! People can decide whether or not to have \\n: children and when. Soon they will be able to choose it\\'s sex &c (but that\\'s \\n: another arguement...) so it\\'s more of a \"lifestyle\" decision. Again by\\n: your arguement, since homosexuals can not (or choose not) to reproduce they must\\n: be akin to people who decide to have sex but not children. Both are \\n: as \"unnatural\" as each other.\\n\\nYet another non-sequitur. Sex is an evolutionary function that exists\\nfor procreation, that it is also recreation is incidental. That\\nhomosexuals don\\'t procreate means that sex is -only- recreation and\\nnothing more; they serve no -evolutionary- purpose.\\n\\n: \\n: |> Since homosexuals have come out the closet and have convinced some\\n: |> policy makers that they have civil rights, they are now claiming that\\n: |> their sexuality is a preference, a life-style, an orientation, a\\n: |> choice that should be protected by law. Now if homosexuality is a mere\\n: |> choice and if it is both contrary to nature and anti-social, then it\\n: |> is a perverse choice; they have even less credibility than before they\\n: |> became prominent. \\n: |> \\n: \\n: People are people are people. Who are you to tell anyone else how to live\\n: their life? Are you god(tm)? If so, fancy a date?\\n\\nHere\\'s pretty obvious dodge, do you really think you\\'ve said anything\\nor do you just feel obligated to respond to every statement? I am not\\ntelling anyone anything, I am demonstrating that there are arguments\\nagainst the practice of homosexuality (providing it\\'s a merely an\\nalternate lifestlye) that are not homophobic, that one can reasonably\\ncall it perverse in a context even a atheist can understand. I realize\\nof course that this comes dangerously close to establishing a value,\\nand that atheists are compelled to object on that basis, but if you\\nare to be consistent, you have no case in this regard.\\n: \\n: |> To characterize any opposition to homosexuality as homophobic is to\\n: |> ignore some very compelling arguments against the legitimization of\\n: |> the homosexual \"life-style\". But since the charge is only intended to\\n: |> intimidate, it\\'s really just demogoguery and not to be taken\\n: |> seriously. Fact is, Jim, there are far more persuasive arguments for\\n: |> suppressing homosexuality than those given, but consider this a start.\\n: |> \\n: \\n: Again crap. All your arguments are based on outdated ideals. Likewise the\\n: bible. Would any honest Christian condemn the ten generations spawned by\\n: a \"bastard\" to eternal damnation? Or someone who crushes his penis (either\\n: accidently or not..!). Both are in Deuteronomy.\\n\\nI\\'m sure your comment pertains to something, but you\\'ve disguised it\\nso well I can\\'t see what. Where did I mention ideals, out-dated or\\notherwise? Your arguments are very reactionary; do you have anything\\nat all to contribute?\\n\\n: \\n: |> As to why homosexuals should be excluded from participation in\\n: |> scouting, the reasons are the same as those used to restrict them from\\n: |> teaching; by their own logic, homosexuals are deviates, social and\\n: |> biological. Since any adult is a role model for a child, it is\\n: |> incumbent on the parent to ensure that the child be isolated from\\n: |> those who would do the child harm. In this case, harm means primarily\\n: |> social, though that could be extended easily enough.\\n: |> \\n: |> \\n: \\n: You show me *anyone* who has sex in a way that everyone would describe as\\n: normal, and will take of my hat (Puma baseball cap) to you. \"One man\\'s meat\\n: is another man\\'s poison\"!\\n: \\n\\nWhat has this got to do with anything? Would you pick a single point\\nthat you find offensive and explain your objections, I would really\\nlike to believe that you can discuss this issue intelligibly.\\n\\nBill\\n\\n\\n',\n", - " 'From: tcora@pica.army.mil (Tom Coradeschi)\\nSubject: Re: \"Beer\" unto bicyclists\\nOrganization: Elect Armts Div, US Army Armt RDE Ctr, Picatinny Arsenal, NJ\\nLines: 23\\nNntp-Posting-Host: b329-gator-3.pica.army.mil\\n\\nIn article <31MAR199308594057@erich.triumf.ca>, ivan@erich.triumf.ca (Ivan\\nD. Reid) wrote:\\n> \\n> In article ,\\n> \\t tcora@pica.army.mil (Tom Coradeschi) writes...\\n> >mxcrew@PROBLEM_WITH_INEWS_DOMAIN_FILE (The MX-Crew) wrote:\\n> >> just an information (no flame war please): Budweiser is a beer from the\\n> >> old CSFR (nowadays ?Tschechien? [i just know the german word]).\\n> \\n> >Czechoslovakia. Budweiser Budwar (pronounced bud-var).\\n> ^^^^^^^^^^^^^^\\n> \\tNot any more, a short while ago (Jan 1st?) it split into The Czech\\n> Republic and Slovakia. Actually, I think for a couple of years its official\\n> name was \"The Czech and Slovak Republics\". Sheesh! Don\\'t you guys get CNN??\\n\\nCNN=YuppieTV\\n\\n tom coradeschi <+> tcora@pica.army.mil\\n \\n \"Usenet is like a herd of performing elephants with diarrhea -- massive,\\ndifficult to redirect, awe-inspiring, entertaining, and a source of mind-\\nboggling amounts of excrement when you least expect it.\"\\n --gene spafford, 1992\\n',\n", - " \"From: ()\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: nstlm66\\nOrganization: Bell-Northern Research, Ottawa, Canada\\nLines: 21\\n\\nIn article <115561@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) wrote:\\n\\n>Khomeini advocates the view that\\n> there was a series of twelve Islamic leaders (the Twelve Imams) who\\n> are free of error or sin. This makes him a heretic.\\n> \\n\\nWow, you're quicker to point out heresy than the Church in the\\nMiddle ages. Seriously though, even the Sheiks at Al-Azhar don't\\nclaim that the Shi'ites are heretics. Most of the accusations\\nand fabrications about Shi'ites come out of Saudi Arabia from the\\nWahabis. For that matter you should read the original works of\\nthe Sunni Imams (Imams of the four madhabs). The teacher of\\nat least two of them was Imam Jafar Sadiq (the sixth Imam of the\\nShi'ites). \\n\\nAlthough there is plenty of false propaganda floating around\\nabout the Shi'ites (esp. since the revolution), there are also\\nmany good works by Shi'ites which present the views and teachings\\nof their school. Why make assumptions and allegations (like\\npeople in this group have done about Islam in general) about Shi'ites.\\n\",\n", - " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: Re: rejoinder. Questions to Israelis\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 25\\n\\n\\nIn article <1483500352@igc.apc.org>, Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: rejoinder. Questions to Israelis\\n>\\n>\\n>To: shaig@Think.COM\\n>\\n>Subject: Ten questions to Israelis\\n>\\n>Dear Shai,\\n>\\n>Your answers to my questions are unsatisfactory.\\n\\n\\n\\nSo why don\\'t ypu sue him.\\n\\n----\\n\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", - " \"From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Ancient islamic rituals\\nOrganization: Monash University, Melb., Australia.\\nLines: 21\\n\\nIn <16BA6C947.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n\\n>In article <1993Apr3.081052.11292@monu6.cc.monash.edu.au>\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n> \\n>>There has been some discussion on the pros and cons about sex outside of\\n>>marriage.\\n>>\\n>>I personally think that part of the value of having lasting partnerships\\n>>between men and women is that this helps to provide a stable and secure\\n>>environment for children to grow up in.\\n>(Deletion)\\n> \\n>As an addition to Chris Faehl's post, what about homosexuals?\\n\\nWell, from an Islamic viewpoint, homosexuality is not the norm for\\nsociety. I cannot really say much about the Islamic viewpoint on homosexuality \\nas it is not something I have done much research on.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n\",\n", - " \"From: robert@cpuserver.acsc.com (Robert Grant)\\nSubject: Virtual Reality for X on the CHEAP!\\nOrganization: USCACSC, Los Angeles\\nLines: 187\\nDistribution: world\\nReply-To: robert@cpuserver.acsc.com (Robert Grant)\\nNNTP-Posting-Host: cpuserver.acsc.com\\n\\nHi everyone,\\n\\nI thought that some people may be interested in my VR\\nsoftware on these groups:\\n\\n*******Announcing the release of Multiverse-1.0.2*******\\n\\nMultiverse is a multi-user, non-immersive, X-Windows based Virtual Reality\\nsystem, primarily focused on entertainment/research.\\n\\nFeatures:\\n\\n Client-Server based model, using Berkeley Sockets.\\n No limit to the number of users (apart from performance).\\n Generic clients.\\n Customizable servers.\\n Hierachical Objects (allowing attachment of cameras and light sources).\\n Multiple light sources (ambient, point and spot).\\n Objects can have extension code, to handle unique functionality, easily\\n attached.\\n\\nFunctionality:\\n\\n Client:\\n The client is built around a 'fast' render loop. Basically it changes things\\n when told to by the server and then renders an image from the user's\\n viewpoint. It also provides the server with information about the user's\\n actions - which can then be communicated to other clients and therefore to\\n other users.\\n\\n The client is designed to be generic - in other words you don't need to\\n develop a new client when you want to enter a new world. This means that\\n resources can be spent on enhancing the client software rather than adapting\\n it. The adaptations, as will be explained in a moment, occur in the servers.\\n\\n This release of the client software supports the following functionality:\\n\\n o Hierarchical Objects (with associated addressing)\\n\\n o Multiple Light Sources and Types (Ambient, Point and Spot)\\n\\n o User Interface Panels\\n\\n o Colour Polygonal Rendering with Phong Shading (optional wireframe for\\n\\tfaster frame rates)\\n\\n o Mouse and Keyboard Input\\n\\n (Some people may be disappointed that this software doesn't support the\\n PowerGlove as an input device - this is not because it can't, but because\\n I don't have one! This will, however, be one of the first enhancements!)\\n\\n Server(s):\\n This is where customization can take place. The following basic support is\\n provided in this release for potential world server developers:\\n\\n o Transparent Client Management\\n\\n o Client Message Handling\\n\\n This may not sound like much, but it takes away the headache of\\naccepting and\\n terminating clients and receiving messages from them - the\\napplication writer\\n can work with the assumption that things are happening locally.\\n\\n Things get more interesting in the object extension functionality. This is\\n what is provided to allow you to animate your objects:\\n\\n o Server Selectable Extension Installation:\\n What this means is that you can decide which objects have extended\\n functionality in your world. Basically you call the extension\\n initialisers you want.\\n\\n o Event Handler Registration:\\n When you develop extensions for an object you basically write callback\\n functions for the events that you want the object to respond to.\\n (Current events supported: INIT, MOVE, CHANGE, COLLIDE & TERMINATE)\\n\\n o Collision Detection Registration:\\n If you want your object to respond to collision events just provide\\n some basic information to the collision detection management software.\\n Your callback will be activated when a collision occurs.\\n\\n This software is kept separate from the worldServer applications because\\n the application developer wants to build a library of extended objects\\n from which to choose.\\n\\n The following is all you need to make a World Server application:\\n\\n o Provide an initWorld function:\\n This is where you choose what object extensions will be supported, plus\\n any initialization you want to do.\\n\\n o Provide a positionObject function:\\n This is where you determine where to place a new client.\\n\\n o Provide an installWorldObjects function:\\n This is where you load the world (.wld) file for a new client.\\n\\n o Provide a getWorldType function:\\n This is where you tell a new client what persona they should have.\\n\\n o Provide an animateWorld function:\\n This is where you can go wild! At a minimum you should let the objects\\n move (by calling a move function) and let the server sleep for a bit\\n (to avoid outrunning the clients).\\n\\n That's all there is to it! And to prove it here are the line counts for the\\n three world servers I've provided:\\n\\n generic - 81 lines\\n dactyl - 270 lines (more complicated collision detection due to the\\n stairs! Will probably be improved with future\\n versions)\\n dogfight - 72 lines\\n\\nLocation:\\n\\n This software is located at the following site:\\n ftp.u.washington.edu\\n\\n Directory:\\n pub/virtual-worlds\\n\\n File:\\n multiverse-1.0.2.tar.Z\\n\\nFutures:\\n\\n Client:\\n\\n o Texture mapping.\\n\\n o More realistic rendering: i.e. Z-Buffering (or similar), Gouraud shading\\n\\n o HMD support.\\n\\n o Etc, etc....\\n\\n Server:\\n\\n o Physical Modelling (gravity, friction etc).\\n\\n o Enhanced Object Management/Interaction\\n\\n o Etc, etc....\\n\\n Both:\\n\\n o Improved Comms!!!\\n\\nI hope this provides people with a good understanding of the Multiverse\\nsoftware,\\nunfortunately it comes with practically zero documentation, and I'm not sure\\nwhether that will ever be able to be rectified! :-(\\n\\nI hope people enjoy this software and that it is useful in our explorations of\\nthe Virtual Universe - I've certainly found fascinating developing it, and I\\nwould *LOVE* to add support for the PowerGlove...and an HMD :-)!!\\n\\nFinally one major disclaimer:\\n\\nThis is totally amateur code. By that I mean there is no support for this code\\nother than what I, out the kindness of my heart, or you, out of pure\\ndesperation, provide. I cannot be held responsible for anything good or bad\\nthat may happen through the use of this code - USE IT AT YOUR OWN RISK!\\n\\nDisclaimer over!\\n\\nOf course if you love it, I would like to here from you. And anyone with\\nPOSITIVE contributions/criticisms is also encouraged to contact me. Anyone who\\nhates it: > /dev/null!\\n\\n************************************************************************\\n*********\\nAnd if anyone wants to let me do this for a living: you know where to\\nwrite :-)!\\n************************************************************************\\n*********\\n\\nThanks,\\n\\nRobert.\\n\\nrobert@acsc.com\\n^^^^^^^^^^^^^^^\\n\",\n", - " 'From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Need advice for riding with someone on pillion\\nKeywords: advice, pillion, help!\\nOrganization: NEC Systems Laboratory, Inc.\\nDistribution: na\\nLines: 40\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n>I need some advice on having someone ride pillion with me on my 750 Ninja.\\n>This will be the the first time I\\'ve taken anyone for an extended ride\\n>(read: farther than around the block :-). We\\'ll be riding some twisty, \\n>fairly bumpy roads (the Mines Road-Mt.Hamilton Loop for you SF Bay Areans).\\n\\n\\tYou sonuvabitch. Rub it in, why don\\'t you? \"We have great weather\\nand great roads here, unlike the rest of you putzes in the U.S. Nyah, nyah,\\nnyah.\"\\n\\n\\t:-) for the severely humor-impaired.\\n\\n>This person is <100 lbs. and fairly small, so I don\\'t see weight as too much\\n>of a problem, but what sort of of advice should I give her before we go?\\n>I want her to hold onto me :-) rather than the grab rail out back, and\\n>I\\'ve heard that she should look over my shoulder in the direction we\\'re\\n>turning so she leans *with* me, but what else? Are there traditional\\n>signals for SLOW DOWN!! or GO FASTER!! or I HAFTA GO PEE!! etc.???\\n\\n\\tYou\\'ll likely not notice her weight too much. A piece of advice\\nfor you: don\\'t be abrupt with the throttle. No wheelies, accelerate a\\nwee bit more slowly than usual. Consciously worry about spitting her off\\nthe back. It\\'s as much your job to keep her on the pillion as it is hers,\\nand I guarantee she\\'ll be put off by the bike ripping out from under her\\nwhen you whack it open. Keep the lean angles pretty tame the first time\\nout too. You and her need to learn each other\\'s body English. She needs\\nto learn what your idea is about how to take the turn, and you need to\\nlearn her idea of \"shit! Don\\'t crash now!\" so you don\\'t work at cross\\npurposes while leaned over. You can work up to more aggressive riding over\\ntime.\\n\\n\\tA very important thing: tell her to put her hand against the tank\\nwhen you brake--this could save you some severely crushed cookies.\\n\\nHave fun,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n',\n", - " \"From: bgardner@bambam.es.com (Blaine Gardner)\\nSubject: Re: Why I won't be getting my Low Rider this year\\nKeywords: congratz\\nArticle-I.D.: dsd.1993Apr6.044018.23281\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 23\\nNntp-Posting-Host: bambam\\n\\nIn article <1993Apr5.182851.23410@cbnewsj.cb.att.com> car377@cbnewsj.cb.att.com (charles.a.rogers) writes:\\n>In article <1993Mar30.214419.923@pb2esac.uucp>, prahren@pb2esac.uucp (Peter Ahrens) writes:\\n \\n>> That would be low drag bars and way rad rearsets for the FJ, so that the \\n>> ergonomic constraints would have contraceptive consequences?\\n>\\n>Ouch. :-) This brings to mind one of the recommendations in the\\n>Hurt Study. Because the rear of the gas tank is in close proximity\\n>to highly prized and easily damaged anatomy, Hurt et al recommended\\n>that manufacturers build the tank so as to reduce the, er, step function\\n>provided when the rider's body slides off of the seat and onto the\\n>gas tank in the unfortunate event that the bike stops suddenly and the \\n>rider doesn't. I think it's really inspiring how the manufacturers\\n>have taken this advice to heart in their design of bikes like the \\n>CBR900RR and the GTS1000A.\\n\\nI dunno, on my old GS1000E the tank-seat junction was nice and smooth.\\nBut if you were to travel all the way forward, you'd collect the top\\ntriple-clamp in a sensitive area. I'd hate to have to make the choice,\\nbut I think I'd prefer the FJ's gas tank. :-)\\n-- \\nBlaine Gardner @ Evans & Sutherland\\nbgardner@dsd.es.com\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The wholesale extermination of the Muslim population by the Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 82\\n\\nIn article arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>But some of this is verifiable information. For instance, the person who\\n>knows about the buggy product may be able to tell you how to reproduce the\\n>bug on your own, but still fears retribution if it were to be known that he\\n>was the one who told the public how to do so.\\n\\nTypical \\'Arromdian\\' of the ASALA/SDPA/ARF Terrorism and Revisionism \\nTriangle. Well, does it change the fact that during the period of 1914 \\nto 1920, the Armenian Government ordered, incited, assisted and participated \\nin the genocide of 2.5 million Muslim people because of race, religion\\nand national origin?\\n\\n\\n1) Armenians did slaughter the entire Muslim population of Van.[1,2,3,4,5]\\n2) Armenians did slaughter 42% of Muslim population of Bitlis.[1,2,3,4]\\n3) Armenians did slaughter 31% of Muslim population of Erzurum.[1,2,3,4]\\n4) Armenians did slaughter 26% of Muslim population of Diyarbakir.[1,2,3,4]\\n5) Armenians did slaughter 16% of Muslim population of Mamuretulaziz.[1,2,3,4]\\n6) Armenians did slaughter 15% of Muslim population of Sivas.[1,2,3,4]\\n7) Armenians did slaughter the entire Muslim population of the x-Soviet\\n Armenia.[1,2,3,4]\\n8) .....\\n\\n[1] McCarthy, J., \"Muslims and Minorities, The Population of Ottoman \\n Anatolia and the End of the Empire,\" New York \\n University Press, New York, 1983, pp. 133-144.\\n\\n[2] Karpat, K., \"Ottoman Population,\" The University of Wisconsin Press,\\n 1985.\\n\\n[3] Hovannisian, R. G., \"Armenia on the Road to Independence, 1918. \\n University of California Press (Berkeley and \\n Los Angeles), 1967, pp. 13, 37.\\n\\n[4] Shaw, S. J., \\'On Armenian collaboration with invading Russian armies \\n in 1914, \"History of the Ottoman Empire and Modern Turkey \\n (Volume II: Reform, Revolution & Republic: The Rise of \\n Modern Turkey, 1808-1975).\" (London, Cambridge University \\n Press 1977). pp. 315-316.\\n\\n[5] \"Gochnak\" (Armenian newspaper published in the United States), May 24, \\n 1915.\\n\\n\\nSource: \"Adventures in the Near East\" by A. Rawlinson, Jonathan Cape, \\n30 Bedford Square, London, 1934 (First published 1923) (287 pages).\\n(Memoirs of a British officer who witnessed the Armenian genocide of 2.5 \\n million Muslim people)\\n\\np. 178 (first paragraph)\\n\\n\"In those Moslem villages in the plain below which had been searched for\\n arms by the Armenians everything had been taken under the cloak of such\\n search, and not only had many Moslems been killed, but horrible tortures \\n had been inflicted in the endeavour to obtain information as to where\\n valuables had been hidden, of which the Armenians were aware of the \\n existence, although they had been unable to find them.\"\\n\\np. 175 (first paragraph)\\n\\n\"The arrival of this British brigade was followed by the announcement\\n that Kars Province had been allotted by the Supreme Council of the\\n Allies to the Armenians, and that announcement having been made, the\\n British troops were then completely withdrawn, and Armenian occupation\\n commenced. Hence all the trouble; for the Armenians at once commenced\\n the wholesale robbery and persecution of the Muslem population on the\\n pretext that it was necessary forcibly to deprive them of their arms.\\n In the portion of the province which lies in the plains they were able\\n to carry out their purpose, and the manner in which this was done will\\n be referred to in due course.\"\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Objective morality (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >In another part of this thread, you\\'ve been telling us that the\\n|> >\"goal\" of a natural morality is what animals do to survive.\\n|> \\n|> That\\'s right. Humans have gone somewhat beyond this though. Perhaps\\n|> our goal is one of self-actualization.\\n\\nHumans have \"gone somewhat beyond\" what, exactly? In one thread\\nyou\\'re telling us that natural morality is what animals do to\\nsurvive, and in this thread you are claiming that an omniscient\\nbeing can \"definitely\" say what is right and what is wrong. So\\nwhat does this omniscient being use for a criterion? The long-\\nterm survival of the human species, or what?\\n\\nHow does omniscient map into \"definitely\" being able to assign\\n\"right\" and \"wrong\" to actions?\\n\\n|> \\n|> >But suppose that your omniscient being told you that the long\\n|> >term survival of humanity requires us to exterminate some \\n|> >other species, either terrestrial or alien.\\n|> \\n|> Now you are letting an omniscient being give information to me. This\\n|> was not part of the original premise.\\n\\nWell, your \"original premises\" have a habit of changing over time,\\nso perhaps you\\'d like to review it for us, and tell us what the\\ndifference is between an omniscient being be able to assign \"right\"\\nand \"wrong\" to actions, and telling us the result, is. \\n\\n|> \\n|> >Does that make it moral to do so?\\n|> \\n|> Which type of morality are you talking about? In a natural sense, it\\n|> is not at all immoral to harm another species (as long as it doesn\\'t\\n|> adversely affect your own, I guess).\\n\\nI\\'m talking about the morality introduced by you, which was going to\\nbe implemented by this omniscient being that can \"definitely\" assign\\n\"right\" and \"wrong\" to actions.\\n\\nYou tell us what type of morality that is.\\n\\njon.\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Happy Easter!\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 37\\n\\nkevinh, on the Tue, 20 Apr 1993 13:23:01 GMT wibbled:\\n\\n: In article <1993Apr19.154020.24818@i88.isc.com>, jeq@lachman.com (Jonathan E. Quist) writes:\\n: |> In article <2514@tekgen.bv.tek.com> davet@interceptor.cds.tek.com (Dave Tharp CDS) writes:\\n: |> >In article <1993Apr15.171757.10890@i88.isc.com> jeq@lachman.com (Jonathan E. Quist) writes:\\n: |> >>Rolls-Royce owned by a non-British firm?\\n: |> >>\\n: |> >>Ye Gods, that would be the end of civilization as we know it.\\n: |> >\\n: |> > Why not? Ford owns Aston-Martin and Jaguar, General Motors owns Lotus\\n: |> >and Vauxhall. Rover is only owned 20% by Honda.\\n: |> \\n: |> Yes, it\\'s a minor blasphemy that U.S. companies would ?? on the likes of A.M.,\\n: |> Jaguar, or (sob) Lotus. It\\'s outright sacrilege for RR to have non-British\\n: |> ownership. It\\'s a fundamental thing\\n\\n\\n: I think there is a legal clause in the RR name, regardless of who owns it\\n: it must be a British company/owner - i.e. BA can sell the company but not\\n: the name.\\n\\n: kevinh@hasler.ascom.ch\\n\\nI don\\'t believe that BA have anything to do with RR. It\\'s a seperate\\ncompany from the RR Aero-Engine company. I think that the government\\nown a stake. Unfortunately they owned a stake of Jaguar too, until\\nthey decided to make a quick buck and sold it to Ford. Bastards.\\nThis is definitely the ultimate Arthur-Daley government.\\n--\\n\\nNick (the Cynical Biker) DoD 1069 Concise Oxford Leaky Gearbox\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n',\n", - " 'From: pashdown@slack.sim.es.com (Pete Ashdown)\\nSubject: Need parts/info for 1963 Maicoletta scooter\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 15\\nNNTP-Posting-Host: slack\\n\\n\\nPosted for a friend:\\n\\nLooking for tires, dimensions 14\" x 3.25\" or 3.35\"\\n\\nAlso looking for brakes or info on relining existing shoes.\\n\\nAlso any other Maicoletta owners anywhere to have contact with.\\n\\nCall Scott at 801-583-1354 or email me.\\n-- \\n I saw fops by the thousand sew themselves together round the Lloyds building.\\n\\nDISCLAIMER: My writings have NOTHING to do with my employer. Keep it that way.\\nPete Ashdown pashdown@slack.sim.es.com Salt Lake City, Utah\\n',\n", - " 'From: mikec@sail.LABS.TEK.COM (Micheal Cranford)\\nSubject: Disney Animation\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 5\\n\\n------------------------------------\\n\\n Can anyone tell me anything about the Disney Animation software package?\\nNote the followup line (this is not for me but for a colleague).\\n\\n',\n", - " \"From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Israeli Expansion-lust\\nOrganization: The Department of Redundancy Department\\nLines: 13\\n\\nIn article <1993Apr14.224726.15612@bnr.ca> zbib@bnr.ca writes:\\n>Jake Livni writes\\n>> Sam Zbib writes\\n\\n[all deleted...]\\n\\nSam Zbib's posting is so confused and nonsensical as not to warrant a\\nreasoned response. We're getting used to this, too.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n\",\n", - " 'From: karish@gondwana.Stanford.EDU (Chuck Karish)\\nSubject: Re: Living\\nOrganization: Mindcraft, Inc.\\nLines: 31\\n\\nIn article amc@crash.wpd.sgi.com\\n(Allan McNaughton) writes:\\n>In article <1993Mar27.040606.4847@eos.arc.nasa.gov>, phil@eos.arc.nasa.gov\\n(Phil Stone) writes:\\n>|> Alan, nothing personal, but I object to the \"we all\" in that statement.\\n>|> (I was on many of those rides that Alan is describing.) Pushing the\\n>|> envelope does not necessarily equal taking insane chances.\\n\\nMoreover, if two riders are riding together at the same speed,\\none might be riding well beyond his abilities and the other\\nmay have a safety margin left.\\n\\n>Oh come on Phil. You\\'re an excellent rider, but you still take plenty of\\n>chances. Don\\'t tell me that it\\'s just your skill that keeps you from \\n>getting wacked. There\\'s a lot of luck thrown in there too. You\\'re a very\\n>good rider and a very lucky one too. Hope your luck holds.... \\n\\nAllan, I know the circumstances of several of your falls.\\nOn the ride when you fell while I was next behind you,\\nyou made an error of judgement by riding too fast when\\nyou knew the road was damp, and you reacted badly when\\nyou were surprised by an oncoming car. That crash was\\ndue to factors that were subject to your control.\\n\\nI won\\'t deny that there\\'s a combination of luck and skill\\ninvolved for each of us, but it seems that you\\'re blaming\\nbad luck for more of your own pain than is warranted.\\n--\\n\\n Chuck Karish karish@mindcraft.com\\n (415) 323-9000 x117 karish@pangea.stanford.edu\\n',\n", - " \"From: alaa@peewee.unx.dec.com (Alaa Zeineldine)\\nSubject: Re: THE HAMAS WAY of DEATH\\nOrganization: Digital Equipment Corp.\\nX-Newsreader: Tin 1.1 PL3\\nLines: 12\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n: \\n: While you brought up the separate question of Israel's unjustified\\n: policies and practices, I am still unclear about your reaction to\\n: the practices and polocies reflected in the article above.\\n: \\n: Tim\\n\\nNot a separate question Mr. Clock. It is deceiving to judge the \\nresistance movement out of the context of the occupation.\\n\\nAlaa Zeineldine\\n\",\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: Express Access Online Communications USA\\nLines: 12\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.164801.7530@julian.uwo.ca> jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll) writes:\\n>\\tHmmm. I seem to recall that the attraction of solid state record-\\n>players and radios in the 1960s wasn't better performance but lower\\n>per-unit cost than vacuum-tube systems.\\n>\\n\\n\\nI don't think so at first, but solid state offered better reliabity,\\nid bet, and any lower costs would be only after the processes really scaled up.\\n\\npat\\n\\n\",\n", - " \"From: jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: University of Western Ontario, London\\nNntp-Posting-Host: prism.engrg.uwo.ca\\nLines: 9\\n\\n\\tHmmm. I seem to recall that the attraction of solid state record-\\nplayers and radios in the 1960s wasn't better performance but lower\\nper-unit cost than vacuum-tube systems.\\n\\n\\tMind you, my father was a vacuum-tube fan in the 60s (Switched\\nto solid-state in the mid-seventies and then abruptly died; no doubt\\nthere's a lesson in that) and his account could have been biased.\\n\\n\\t\\t\\t\\t\\t\\t\\tJames Nicoll\\n\",\n", - " 'From: \"danny hawrysio\" \\nSubject: radiosity\\nReply-To: \"danny hawrysio\" \\nOrganization: Canada Remote Systems\\nDistribution: comp\\nLines: 9\\n\\n\\n-> I am looking for source-code for the radiosity-method.\\n\\n I don\\'t know what kind of machine you want it for, but the program\\nRadiance comes with \\'C\\' source code - I don\\'t have ftp access so I\\ncouldn\\'t tell you where to get it via that way.\\n--\\nCanada Remote Systems - Toronto, Ontario\\n416-629-7000/629-7044\\n',\n", - " 'From: dkusswur@falcon.depaul.edu (Daniel C. Kusswurm)\\nSubject: Siggraph 1987 Course Notes\\nNntp-Posting-Host: falcon.depaul.edu\\nOrganization: DePaul University, Chicago\\nDistribution: usa\\nLines: 7\\n\\nI am looking for a copy of the following Siggraph publication: Gomez, J.E.\\n\"Comments on Event Driven Annimation,\" Siggraph Course Notes, 10, 1987.\\n\\nIf anyone knows of a location where I can obtain a copy of these notes, I\\nwould appreciate if they could let me know. Thanks.\\n\\ndkusswur@falcon.depaul.edu\\n',\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nOrganization: Express Access Online Communications USA\\nLines: 54\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.003719.101323@zeus.calpoly.edu> jgreen@trumpet.calpoly.edu (James Thomas Green) writes:\\n>prb@access.digex.com (Pat) Pontificated: \\n>>\\n>>\\n>\\n>I heard once that the voyagers had a failsafe routine built in\\n>that essentially says \"If you never hear from Earth again,\\n>here\\'s what to do.\" This was a back up in the event a receiver\\n>burnt out but the probe could still send data (limited, but\\n>still some data). \\n>\\n\\nVoyager has the unusual luck to be on a stable trajectory out of the\\nsolar system. All it\\'s doing is collecting fields data, and routinely\\nsquirting it down. One of the mariners is also in stable\\nsolar orbit, and still providing similiar solar data. \\n\\nSomething in a planetary orbit, is subject to much more complex forces.\\n\\nComsats, in \"stable \" geosynch orbits, require almost daily\\nstationkeeping operations. \\n\\nFor the occasional deep space bird, like PFF after pluto, sure\\nit could be left on \"auto-pilot\". but things like galileo or\\nmagellan, i\\'d suspect they need enough housekeeping that\\neven untended they\\'d end up unusable after a while.\\n\\nThe better question should be.\\n\\nWhy not transfer O&M of all birds to a separate agency with continous funding\\nto support these kind of ongoing science missions.\\n\\npat\\n\\n\\tWhen ongoing ops are mentioned, it seems to always quote Operations\\nand Data analysis. how much would it cost to collect the data\\nand let it be analyzed whenever. kinda like all that landsat data\\nthat sat around for 15 years before someone analyzed it for the ozone hole.\\n\\n>>Even if you let teh bird drift, it may get hosed by some\\n>>cosmic phenomena. \\n>>\\n>Since this would be a shutdown that may never be refunded for\\n>startup, if some type of cosmic BEM took out the probe, it might\\n>not be such a big loss. Obviously you can\\'t plan for\\n>everything, but the most obvious things can be considered.\\n>\\n>\\n>/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n>| \"I know you believe you understand what it is that you | \\n>| think I said. But I am not sure that you realize that |\\n>| what I said is not what I meant.\" |\\n\\n\\n',\n", - " 'From: jaeger@buphy.bu.edu (Gregg Jaeger)\\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nOrganization: Boston University Physics Department\\nLines: 63\\n\\nIn article <1993Apr14.121134.12187@monu6.cc.monash.edu.au> darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n\\n>>In article khan@itd.itd.nrl.navy.mil (Umar Khan) writes:\\n\\n>I just borrowed a book from the library on Khomeini\\'s fatwa etc.\\n\\n>I found this useful passage regarding the legitimacy of the \"fatwa\":\\n\\n>\"It was also common knowledge as prescribed by Islamic law, that the\\n>sentence was only applicable where the jurisdiction of Islamic law\\n>applies. Moreover, the sentence has to be passed by an Islamic court\\n>and executed by the state machinery through the due process of the law.\\n>Even in Islamic countries, let alone in non-Muslim lands, individuals\\n>cannot take the law into their own hands. The sentence when passed,\\n>must be carried out by the state through the usual machinery and not by\\n>individuals. Indeed it becomes a criminal act to take the law into\\n>one\\'s own hands and punish the offender unless it is in the process of\\n>self-defence. Moreover, the offender must be brought to the notice of\\n>the court and it is the court who shoud decide how to deal with him.\\n>This law applies equally to Muslim as well as non-Muslim territories.\\n\\n\\nI agree fully with the above statement and is *precisely* what I meant\\nby my previous statements about Islam not being anarchist and the\\nlaw not being _enforcible_ despite the _law_ being applicable. \\n\\n\\n>Hence, on such clarification from the ulama [Islamic scholars], Muslims\\n>in Britain before and after Imam Khomeini\\'s fatwa made it very clear\\n>that since Islamic law is not applicable to Britain, the hadd\\n>[compulsory] punishment cannot be applied here.\"\\n\\n\\nI disagree with this conclusion about the _applicability_ of the \\nIslamic law to all muslims, wherever they may be. The above conclusion \\ndoes not strictly follow from the foregoing, but only the conclusion \\nthat the fatwa cannot be *enforced* according to Islamic law. However, \\nI do agree that the punishment cannot be applied to Rushdie even *were*\\nit well founded.\\n\\n>Wow... from the above, it looks like that from an Islamic viewpoint\\n>Khomeini\\'s \"fatwa\" constitutes a \"criminal act\" .... perhaps I could\\n>even go out on a limb and call Khomeini a \"criminal\" on this basis....\\n\\n\\nCertainly putting a price on the head of Rushdie in Britain is a criminal \\nact according to Islamic law. \\n\\n\\n>Anyhow, I think it is understood by _knowledgeable_ Muslims that\\n>Khomeini\\'s \"fatwa\" is Islamically illegitimate, at least on the basis\\n>expounded above. Others, such as myself and others who have posted here\\n>(particularly Umar Khan and Gregg Jaeger, I think) go further and say\\n>that even the punishment constituted in the fatwa is against Islamic law\\n>according to our understanding.\\n\\nYes.\\n\\n\\n\\n\\n\\nGregg\\n',\n", - " 'From: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nSubject: Boom! Dog attack!\\nReply-To: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nDistribution: world\\nOrganization: Computer Dynamics-Vancouver B.C.-(604)986-9937 (604)255-9937\\nLines: 59\\n\\nMy previous posting on dog attacks must have generated some bad karma or\\nsomething. I\\'ve weathered attempted dog attacks before using the\\napproved method: Slow down to screw up dog\\'s triangulation of target,\\nthen take off and laugh at the dog, now far behind you. This time, it\\ndidn\\'t work because I didn\\'t have time. Riding up the hill leading to my\\nhouse, I encountered a liver-and-white Springer Spaniel (no relation to\\nthe Springer Softail, or the Springer Spagthorpe, a close relation to\\nthe Spagthorpe Viking). Actually, the dog encountered me with intent to\\nharm.\\n\\nBut I digress: I was riding near the (unpainted) centerline of the\\nroughly 30-foot wide road, doing between forty and sixty clicks (30 mph\\nfor the velocity-impaired). The dog shot at me from behind bushes on the\\nleft side of the road at an impossibly high speed. I later learned he\\nhad been accelerating from the front porch, about thirty feet away,\\nheading down the very gently sloped approach to the side of the road. I\\nsaw the dog, and before you could say SIPDE, he was on me. Boom! I took\\nthe dog in the left leg, and from the marks on the bike my leg was\\ndriven up the side of the bike with considerable force, making permanent\\nmarks on the plastic parts of the bike, and cracking one panel. I think\\nI saw the dog spin around when I looked back, but my memory of this\\nmoment is hazy.\\n\\nI next turned around, and picked the most likely looking house. The\\napologetic woman explained that the dog was not seriously hurt (cut\\nmouth) and hoped I was not hurt either. I could feel the pain in my\\nshin, and expected a cool purple welt to form soon. Sadly, it has not.\\nSo I\\'m left with a tender shin, and no cool battle scars!\\n\\nInterestingly, the one thing that never happened was that the bike never\\nmoved off course. The not inconsiderable impact did not push the bike\\noff course, nor did it cause me to put the bike out of control from some\\ngut reaction to the sudden impact. Delayed pain may have helped me\\nhere, as I didn\\'t feel a sudden sharp pain that I can remember.\\n\\nWhat worries me about the accident is this: I don\\'t think I could have\\nprevented it except by traveling much slower than I was. This is not\\nnecessarily an unreasonable suggestion for a residential area, but I was\\nriding around the speed limit. I worry about what would have happened if\\nit had been a car instead of a dog, but I console myself with the\\nthought that it would take a truly insane BDI cager to whip out of a\\nblind driveway at 15-30 mph. For that matter, how many driveways are\\nlong enough for a car to hit 30 mph by the end?\\n\\nI eagerly await comment.\\n\\nRyan Cousinetc.|1982 Yamaha Vision XZ550 -Black Pig of Inverness|Live to Ride\\nKotRB |1958 AJS 500 C/S -King Rat |to Work to\\nDoD# 0863 |I\\'d be a squid if I could afford the bike... |Flame to\\nryan.cousineau@compdyn.questor.org | Vancouver, BC, Canada |Live . . .\\n\\n\\n * SLMR 2.1a * \"He\\'s hurt.\" \"Dammit Jim, I\\'m a Doctor -- oh, right.\"\\n \\n----\\n+===============================================================+\\n|COMPUTER DYNAMICS BBS 604-255-9937(HST) 604-986-9937(V32)|\\n|Vancouver, BC, Canada - Easy Access, Low Rates, Friendly Sysop|\\n+===============================================================+\\n',\n", - " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Re: rejoinder. Questions to Israelis\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 22\\n\\nIn article <1483500353@igc.apc.org> Center for Policy Research writes:\\n>\\n>From: Center for Policy Research \\n>Subject: rejoinder. Questions to Israelis\\n>\\n>\\n>Dear Josh\\n>\\n>I appreciate the fact that you sought to answer my questions.\\n>\\n>Having said that, I am not totally happy with your answers.\\n>\\n>1. You did not fully answer my question whether Israeli ID cards\\n>identify the holders as Jews or Arabs. You imply that U.S.\\n>citizens must identify themselves by RACE. Is that true ? Or are\\n>just trying to mislead the reader ? \\n\\nI think he is trying to mislead people. In cases where race\\ninformation is sought, it is completely voluntary (the census\\npossibly excepted).\\n\\n-anwar\\n',\n", - " \"From: cheinan@access.digex.com (Cheinan Marks)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nOrganization: Express Access Online Communications, Greenbelt, MD USA\\nLines: 100\\nNNTP-Posting-Host: access.digex.net\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\n: Robert G. Carpenter writes:\\n\\n: >Hi Netters,\\n: >\\n: >I'm building a CAD package and need a 3D graphics library that can handle\\n: >some rudimentry tasks, such as hidden line removal, shading, animation, etc.\\n: >\\n: >Can you please offer some recommendations?\\n: >\\n: >I'll also need contact info (name, address, email...) if you can find it.\\n: >\\n: >Thanks\\n: >\\n: >(Please Post Your Responses, in case others have same need)\\n: >\\n: >Bob Carpenter\\n: >\\n\\nThe following is extracted from sumex-aim.stanford.edu. It should also be on\\nthe mirrors. I think there is source for some applications that may have some\\nbearing on your project. Poke around the source directory. I've never used\\nthis package, nor do I know anyone who did, but the price is right :-)\\n\\nHope this helps.\\n\\n\\t\\t\\t\\t\\tCheinan\\n\\nAbstracts of files as of Thu Apr 1 03:11:39 PST 1993\\nDirectory: info-mac/source\\n\\n#### BINHEX 3d-grafsys-121.hqx ****\\n\\nDate: Fri, 5 Mar 93 14:13:07 +0100\\nFrom: Christian Steffen Ove Franz \\nTo: questions@mac.archive.umich.edu\\nSubject: 3d GrafSys 1.21 in incoming directory\\nA 3d GrafSys short description follows:\\n\\nProgrammers 3D GrafSys Vers 1.21 now available. \\n\\nVersion 1.21 is mainly a bugfix for THINK C users. THIS VERSION\\nNOW RUNS WITH THINK C, I PROMISE! The Docs now contain a chapter for\\nC programmers on how to use the GrafSys. If you have problems, feel free \\nto contact me.\\nThe other change is that I removed the FastPerfTrig calls from\\nthe FPU version to make it run faster.\\n\\nThose of you who don't know what all this is about, read on.\\n\\n********\\n\\nProgrammers 3D GrafSys -- What it is:\\n-------------------------------------\\n\\nDidn't you always have this great game in mind where you needed some way of \\ndrawing three-dimensional scenes? \\n\\nDidn't you always want to write this program that visualized the structure \\nof three-dimensional molecules?\\n\\nAnd didn't the task of writing your 3D conversions routines keep you from \\nactually doing it?\\n\\nWell if the answer to any of the above questions is 'Yes, but what has it to \\ndo with this package???' , read on.\\n\\nGrafSys is a THINK Pascal/C library that provides you with simple routines \\nfor building, saving, loading (as resources), and manipulating \\n(independent rotating around arbitrary achses, translating and scaling) \\nthree dimensional objects. Objects, not just simple single-line drawings.\\n\\nGrafSys supports full 3D clipping, animation and some (primitive) hidden-\\nline/hidden-surface drawing with simple commands from within YOUR PROGRAM.\\n\\nGrafSys also supports full eye control with both perspective and parallel\\nprojections (If you can't understand a word, don't worry, this is just showing\\noff for those who know about it. The docs that come with it will try to explain\\nwhat it all means later on). \\n\\nGrafSys provides a powerful interface to supply your own drawing routines with\\ndata so you can use GrafSys to do the 3D transformations and your own routines\\nto do the actual drawing. (Note that GrafSys also provides drawing routines so\\nyou don't have to worry about that if you don't want to)\\n\\nGrafSys 1.11 comes in two versions. One for the 881 and 020 or above \\nprocessors. The other version uses fixed-point arithmetic and runs on any Mac.\\nBoth versions are *100% source compatibel*. \\n\\nGrafSys comes with an extensive manual that teaches you the fundamentals of 3D\\ngraphics and how to use the package.\\n\\nIf demand is big enough I will convert the GrafSys to an object-class library. \\nHowever, I feelt that the way it is implemented now makes it easier to use for\\na lot more people than the select 'OOP-Guild'.\\n\\nGrafSys is free for any non-commercial usage. Read the documentation enclosed.\\n\\n\\nEnjoy,\\nChristian Franz\\n\",\n", - " 'Subject: Re: Looking for Tseng VESA drivers\\nFrom: t890449@patan.fi.upm.es ()\\nOrganization: /usr/local/lib/organization\\nNntp-Posting-Host: patan.fi.upm.es\\nLines: 10\\n\\nHi, this is my first msg to the Net (actually the 3rd copy of it, dam*ed VI!!).\\n\\n Look for the new VPIC6.0, it comes with updated VESA 1.2 drivers for almost every known card. The VESA level is 1.2, and my Tseng4000 24-bit has a nice affair with the driver. \\n\\n Hope it is useful!!\\n\\n\\n\\t\\t\\t\\t\\t\\t\\tBye\\n\\n\\n',\n", - " 'From: pww@spacsun.rice.edu (Peter Walker)\\nSubject: Re: Rawlins debunks creationism\\nOrganization: I didn\\'t do it, nobody saw me, you can\\'t prove a thing.\\nLines: 30\\n\\nIn article <1993Apr15.223844.16453@rambo.atlanta.dg.com>,\\nwpr@atlanta.dg.com (Bill Rawlins) wrote:\\n> \\n> We are talking about origins, not merely science. Science cannot\\n> explain origins. For a person to exclude anything but science from\\n> the issue of origins is to say that there is no higher truth\\n> than science. This is a false premise.\\n\\nSays who? Other than a hear-say god.\\n\\n> By the way, I enjoy science.\\n\\nYou sure don\\'t understand it.\\n\\n> It is truly a wonder observing God\\'s creation. Macroevolution is\\n> a mixture of 15 percent science and 85 percent religion [guaranteed\\n> within three percent error :) ]\\n\\nBill, I hereby award you the Golden Shovel Award for the biggist pile of\\nbullshit I\\'ve seen in a whils. I\\'m afraid there\\'s not a bit of religion in\\nmacroevolution, and you\\'ve made a rather grand statement that Science can\\nnot explain origins; to a large extent, it already has!\\n\\n> // Bill Rawlins //\\n\\nPeter W. Walker \"Yu, shall I tell you what knowledge is? When \\nDept. of Space Physics you know a thing, say that you know it. When \\n and Astronomy you do not know a thing, admit you do not know\\nRice University it. This is knowledge.\"\\nHouston, TX - K\\'ung-fu Tzu\\n',\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Lunar Colony Race! By 2005 or 2010?\\nArticle-I.D.: aurora.1993Apr20.234427.1\\nOrganization: University of Alaska Fairbanks\\nLines: 27\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nOkay here is what I have so far:\\n\\nHave a group (any size, preferibly small, but?) send a human being to the moon,\\nset up a habitate and have the human(s) spend one earth year on the moon. Does\\nthat mean no resupply or ?? \\n\\nNeed to find atleast $1billion for prize money.\\n\\nContest open to different classes of participants.\\n\\nNew Mexico State has semi-challenged University of Alaska (any branch) to put a\\nteam together and to do it..\\nAny other University/College/Institute of Higher Learning wish to make a\\ncounter challenge or challenge another school? Say it here.\\n\\nI like the idea of having atleast a russian team.\\n\\n\\nSome prefer using new technology, others old or ..\\n\\nThe basic idea of the New Moon Race is like the Solar Car Race acrossed\\nAustralia.. Atleast in that basic vein of endevour..\\n\\nAny other suggestions?\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", - " \"From: dgraham@bmers30.bnr.ca (Douglas Graham)\\nSubject: Re: Jews can't hide from keith@cco.\\nOrganization: Bell-Northern Research, Ottawa, Canada\\nLines: 40\\n\\nIn article <1pqdor$9s2@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>In article <1993Apr3.071823.13253@bmerh85.bnr.ca>, dgraham@bmers30.bnr.ca (Douglas Graham) writes:\\n>The poster casually trashed two thousand years of Jewish history, and \\n>Ken replied that there had previously been people like him in Germany.\\n\\nI think the problem here is that I pretty much ignored the part\\nabout the Jews sightseeing for 2000 years, thinking instead that\\nthe important part of what the original poster said was the bit\\nabout killing Palestinians. In retrospect, I can see how the\\nsightseeing thing would be offensive to many. I originally saw\\nit just as poetic license, but it's understandable that others\\nmight see it differently. I still think that Ken came on a bit\\nstrong though. I also think that your advice to Masud Khan:\\n\\n #Before you argue with someone like Mr Arromdee, it's a good idea to\\n #do a little homework, or at least think.\\n\\nwas unnecessary.\\n\\n>That's right. There have been. There have also been people who\\n>were formally Nazis. But the Nazi party would have gone nowhere\\n>without the active and tacit support of the ordinary man in the\\n>street who behaved as though casual anti-semitism was perfectly\\n>acceptable.\\n>\\n>Now what exactly don't you understand about what I wrote, and why\\n>don't you see what it has to do with the matter at hand?\\n\\nThroughout all your articles in this thread there is the tacit\\nassumption that the original poster was exhibiting casual\\nanti-semitism. If I agreed with that, then maybe your speech\\non why this is bad might have been relevant. But I think you're\\nreading a lot into one flip sentence. While probably not\\ntrue in this case, too often the charge of anti-semitism gets\\nthrown around in order to stifle legitimate criticism of the\\nstate of Israel.\\n\\nAnyway, I'd rather be somewhere else, so I'm outta this thread.\\n--\\nDoug Graham dgraham@bnr.ca My opinions are my own.\\n\",\n", - " \"From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: Recommendation for a front tire.\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 11\\n\\nHey folks--\\n\\nI've got a pair of Dunlop sportmax radials of my ZX-10, and they've been\\nvery sticky (ie no slides yet), but all this talk about the Metzelers has\\nme wondering if my next set should be a Lazer comp K and a radial Metzeler\\nrear...for hard sport-touring, how do the choices stack up?\\n\\nNathaniel\\nZX-10\\nDoD 0812\\nAMA\\n\",\n", - " 'From: tmc@spartan.ac.BrockU.CA (Tim Ciceran)\\nSubject: Re: Newsgroup Split\\nOrganization: Brock University, St. Catharines Ontario\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 19\\n\\nChris Herringshaw (tdawson@engin.umich.edu) wrote:\\n: Concerning the proposed newsgroup split, I personally am not in favor of\\n: doing this. I learn an awful lot about all aspects of graphics by reading\\n: this group, from code to hardware to algorithms. I just think making 5\\n: different groups out of this is a wate, and will only result in a few posts\\n: a week per group. I kind of like the convenience of having one big forum\\n: for discussing all aspects of graphics. Anyone else feel this way?\\n: Just curious.\\n\\n\\n: Daemon\\n\\nWhat he said...\\n\\n-- \\n\\nTMC\\n(tmc@spartan.ac.BrockU.ca)\\n\\n',\n", - " 'From: tjohnson@tazmanian.prime.com (Tod Johnson (617) 275-1800 x2317)\\nSubject: Re: Live Free, but Quietly, or Die\\nDistribution: The entire Nugent family\\nOrganization: Computervision\\nLines: 29\\n\\n\\n In article <1qc2fu$c1r@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n >Loud pipes are a biligerent exercise in ego projection,\\n\\nNo arguements following, just the facts.\\n\\nI was able to avoid an accident by revving my engine and having my\\n*stock* Harley pipes make enough noise to draw someones attention.\\n\\nI instinctively revved my engine before I went for my horn. Don\\'t know\\nwhy, but I did it and it worked. Thats rather important.\\n\\nI am not saying \"the louder the pipes the better\". My Harley is loud\\nand it gets me noticed on the road for that reason. I personally do\\nnot feel it is to loud. If you do, well thats to bad; welcome to \\nAmerica - \"Home of the Free, Land of the Atlanta Braves\".\\n\\nIf you really want a fine tuned machine like our federal government\\nto get involved and pass Db restrictions; it should be generous\\nenough so that a move like revving your engine will get you noticed.\\nSure there are horns but my hand is already on the throttle. Should we\\nget into how many feet a bike going 55mph goes in .30 seconds; or\\nhow long it would take me to push my horn button??\\n\\nAnd aren\\'t you the guy that doesn\\'t even have a bike???\\n\\nTod J. Johnson\\nDoD #883\\n\"Go Slow, Take Geritol\"\\n',\n", - " 'From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Cobra Locks\\nOrganization: NEC Systems Laboratory, Inc.\\nDistribution: usa\\nLines: 55\\n\\nIn article <1r1b3rINNale@cronkite.Central.Sun.COM> doc@webrider.central.sun.com writes:\\n>I was posting to Alt.locksmithing about the best methods for securing \\n>a motorcycle. I got several responses referring to the Cobra Lock\\n>(described below). Has anyone come across a store carrying this lock\\n>in the Chicago area?\\n\\n\\tIt is available through some dealerships, who in turn have to back\\norder it from the manufacturer directly. Each one is made to order, at least\\nif you get a nonstandard length (standard is 5\\', I believe).\\n\\n>Any other feedback from someone who has used this?\\n\\n\\tSee below\\n\\n>In article 1r1534INNraj@shelley.u.washington.edu, basiji@stein.u.washington.edu (David Basiji) writes:\\n>> \\n>> Incidentally, the best lock I\\'ve found for bikes is the Cobra Lock.\\n>> It\\'s a cable which is shrouded by an articulated, hardened steel sleeve.\\n>> The lock itself is cylindrical and the locking pawl engages the joints\\n>> at the articulation points so the chain can be adjusted (like handcuffs).\\n>> You can\\'t get any leverage on the lock to break it open and the cylinder\\n>> is well-protected. I wouldn\\'t want to cut one of these without a torch\\n>> and/or a vice and heavy duty cutting wheel.\\n\\n\\tI have a 6\\' long CobraLinks lock that I used to use for my Harley (she\\ndoesn\\'t get out much anymore, so I don\\'t use the lock that often anymore). It\\nis made of 3/4\" articulated steel shells covering seven strands of steel cable.\\nIt is probably enough to stop all the joyriders, but, unfortunately,\\nprofessionals can open it rather easily:\\n\\n\\t1) Freeze a link.\\n\\n\\t2) Break frozen link with your favorite method (hammers work well).\\n\\n\\t3) Snip through the steel cables (which, I have on authority, are\\n\\t\\tfrightfully thin) with a set of boltcutters.\\n\\n\\tFor the same money, you can get a Kryptonite cable lock, which is\\nanywhere from 1/2\" to 7/8\" thick steel cable (looks like steel rope), shielded\\nin a flexible covering to protect your bike\\'s finish, and has a barrel-type\\nlocking mechanism. I don\\'t know if it\\'s adjustable, but my source says it\\'s\\nmore difficult to pick than most locks, and the cable tends to squish flat\\nin bolt-cutter jaws rather than shear (5/8\" model).\\n\\n\\tAll bets are off if the thief has a die grinder with a cutoff wheel.\\nEven the most durable locks tested yield to this tool in less than one minute.\\n\\n\\tFYI, I\\'ll be getting a Krypto cable next paycheck.\\n\\nLater,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n',\n", - " \"From: roland@sics.se (Roland Karlsson)\\nSubject: Re: Magellan Venus Maps (Thanks)\\nIn-Reply-To: baalke@kelvin.jpl.nasa.gov's message of 30 Mar 1993 00:34 UT\\nLines: 14\\nOrganization: Swedish Institute of Computer Science, Kista\\n\\n\\nThanks Ron and Peter for some very nice maps.\\n\\nI have an advice though. You wrote that the maps were reduced to 256\\ncolors. As far ad I understand JPEG pictures gets much better (and\\nthe compressed files smaller) if you use the original 3 color 24 bit\\ndata when converting to JPEG.\\n\\nThanks again,\\n\\n--\\nRoland Karlsson SICS, PO Box 1263, S-164 28 KISTA, SWEDEN\\nInternet: roland@sics.se Tel: +46 8 752 15 40 Fax: +46 8 751 72 30\\nTelex: 812 6154 7011 SICS Ttx: 2401-812 6154 7011=SICS\\n\",\n", - " 'From: glover@casbah.acns.nwu.edu (Eric Glover)\\nSubject: Re: What if the USSR had reached the Moon first?\\nNntp-Posting-Host: unseen1.acns.nwu.edu\\nOrganization: Northwestern University, Evanston Illinois.\\nLines: 45\\n\\nIn article <1993Apr06.020021.186145@zeus.calpoly.edu> jgreen@trumpet.calpoly.edu (James Thomas Green) writes:\\n>Suppose the Soviets had managed to get their moon rocket working\\n>and had made it first. They could have beaten us if either:\\n>* Their rocket hadn\\'t blown up on the pad thus setting them back,\\n>and/or\\n>* A Saturn V went boom.\\n\\nThe Apollo fire was harsh, A Saturn V explosion would have been\\nhurtful but The Soviets winning would have been crushing. That could have\\nbeen *the* technological turning point for the US turning us\\nfrom Today\\'s \"We can do anything, we\\'re *the* Super Power\" to a much more\\nreserved attitude like the Soviet Program today.\\n\\nKennedy was gone by 68\\\\69, the war was still on is the east, I think\\nthe program would have stalled badly and the goal of the moon\\nby 70 would have been dead with Nasa trying to figure were they went wrong.\\n \\n>If they had beaten us, I speculate that the US would have gone\\n>head and done some landings, but we also would have been more\\n>determined to set up a base (both in Earth Orbit and on the\\n>Moon). Whether or not we would be on Mars by now would depend\\n>upon whether the Soviets tried to go. Setting up a lunar base\\n>would have stretched the budgets of both nations and I think\\n>that the military value of a lunar base would outweigh the value\\n>of going to Mars (at least in the short run). Thus we would\\n>have concentrated on the moon.\\n\\nI speulate that:\\n+The Saturn program would have been pushed into\\nthe 70s with cost over runs that would just be too evil. \\nNixon still wins.\\n+The Shuttle was never proposed and Skylab never built.\\n+By 73 the program stalled yet again under the fuel crisis.\\n+A string of small launches mark the mid seventies.\\n+By 76 the goal of a US man on the moon is dead and the US space program\\ndrifts till the present day.\\n\\n\\n>/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n>| \"I believe that this nation should commit itself to achieving\\t| \\n>| the goal, before this decade is out, of landing a man on the \\t|\\n>| Moon and returning him safely to the Earth.\" \\t\\t|\\n>| \\t\\t|\\n\\n\\n',\n", - " \"From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: thoughts on christians\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 19\\n\\nIn article pl1u+@andrew.cmu.edu (Patrick C Leger) writes:\\n>EVER HEAR OF\\n>BAPTISM AT BIRTH? If that isn't preying on the young, I don't know what\\n>is...\\n>\\n \\n No, that's praying on the young. Preying on the young comes\\n later, when the bright eyed little altar boy finds out what the\\n priest really wears under that chasible.\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\",\n", - " 'From: gnb@leo.bby.com.au (Gregory N. Bond)\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nIn-Reply-To: gene@theporch.raider.net\\'s message of Sun, 18 Apr 1993 19:29:40 GMT\\nNntp-Posting-Host: leo-gw\\nOrganization: Burdett, Buckeridge & Young, Melbourne, Australia\\nLines: 32\\n\\nIn article <6ZV82B2w165w@theporch.raider.net> gene@theporch.raider.net (Gene Wright) writes:\\n\\n Announce that a reward of $1 billion would go to the first corporation \\n who successfully keeps at least 1 person alive on the moon for a\\n year. \\n\\nAnd with $1B on offer, the problem of \"keeping them alive\" is highly\\nlikely to involve more than just the lunar environment! \\n\\n\"Oh Dear, my freighter just landed on the roof of ACME\\'s base and they\\nall died. How sad. Gosh, that leaves us as the oldest residents.\"\\n\\n\"Quick Boss, the slime from YoyoDyne are back, and this time they\\'ve\\ngot a tank! Man the guns!\"\\n\\nOne could imagine all sorts of technologies being developed in that\\nsort of environment.....\\n\\nGreg.\\n\\n(I\\'m kidding, BTW, although the problem of winner-takes-all prizes is\\nthat it encourages all sorts of undesirable behaviour - witness\\nmilitary procurement programs. And $1b is probably far too small a\\nreward to encourage what would be a very expensive and high risk\\nproposition.)\\n\\n\\n--\\nGregory Bond Burdett Buckeridge & Young Ltd Melbourne Australia\\n Knox\\'s 386 is slick. Fox in Sox, on Knox\\'s Box\\n Knox\\'s box is very quick. Plays lots of LSL. He\\'s sick!\\n(Apologies to John \"Iron Bar\" Mackin.)\\n',\n", - " 'From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: OPINIONS WANTED -- HELP\\nNntp-Posting-Host: amhux3.amherst.edu\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 9\\n\\nWhat size dirtbikes did you ride? and for how long? You might be able to\\nslip into a 500cc bike. Like I keep telling people, though, buy an older,\\ncheaper bike and ride that for a while first...you might like a 500 Interceptor\\nas an example\\n\\nNathaniel\\nZX-10\\nDoD 0812\\nAMA\\n',\n", - " 'From: viking@iastate.edu (Dan Sorenson)\\nSubject: Re: Flashing anyone?\\nKeywords: flashing\\nOrganization: Iowa State University, Ames IA\\nLines: 29\\n\\nbehanna@syl.nj.nec.com (Chris BeHanna) writes:\\n\\n>>Just before arriving at a toll booth I\\n>>switch the hazards on. I do thisto warn other motorists that I will\\n>>be taking longer than the 2 1/2 seconds to make the transaction.\\n>>My question, is this a good/bad thing to do?\\n\\n>\\tThis sounds like a VERY good thing to do.\\n\\n\\tI\\'ll second that. In addition, I find my hazards to be more\\noften used than my horn. At speeds below 40mph on the interstates,\\nquite common in mountains with trucks, some states require flashers.\\nIn rural areas, flashers let the guy behind you know there is a tractor\\nwith a rather large implement behind it in the way. Use them whenever \\nyou need to communicate that things will deviate from the norm. \\n\\n>-- \\n>Chris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\n>behanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\n>Disclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\n\\n\\tIs that ZX-11 painted green? Since the green Triumph 650 that\\na friend owned was sold off, her name is now free for adoption. How\\ndoes the name \"Thunderpickle\" grab you?\\n\\n< Dan Sorenson, DoD #1066 z1dan@exnet.iastate.edu viking@iastate.edu >\\n< ISU only censors what I read, not what I say. Don\\'t blame them. >\\n< USENET: Post to exotic, distant machines. Meet exciting, >\\n< unusual people. And flame them. >\\n',\n", - " 'From: davet@interceptor.cds.tek.com (Dave Tharp CDS)\\nSubject: Re: uh, der, whassa deltabox?\\nOrganization: Tektronix - Colorado Data Systems, Englewood, CO\\nLines: 21\\n\\nIn article <5227@unisql.UUCP> ray@unisql.UUCP (Ray Shea) writes:\\n>\\n>Can someone tell me what a deltabox frame is, and what relation that has,\\n>if any, to the frame on my Hawk GT? That way, next time some guy comes up\\n>to me in some parking lot and sez \"hey, dude, nice bike, is that a deltabox\\n>frame on there?\" I can say something besides \"duh, er, huh?\"\\n\\n Deltabox (tm) is a registered trademark of Yamaha, used to describe\\ntheir aluminum perimeter frame design, used on the FZR400 and FZR1000.\\nIn cross-section, it has a five-sided appearance, so it probably really\\nshould be called a \"Pentabox\".\\n\\n-----------------------------------------------------------------------------\\n| Dave Tharp | DoD #0751 | \"You can\\'t wear out |\\n| davet@interceptor.CDS.TEK.COM | MRA #151 | an Indian Scout, |\\n| \\'88 K75S \\'48 Indian Chief | AHRMA #751 | Or its brother the Chief.|\\n| \\'75 R90S(#151) \\'72 TR-2B(#751) | AMA #524737 | They\\'re built like rocks |\\n| \\'65 R50/2/Velorex \\'57 NSU Max | | to take the knocks, |\\n| 1936 BMW R12 | (Compulsive | It\\'s the Harleys that |\\n| My employer has no idea. | Joiner) | give you grief.\" |\\n-----------------------------------------------------------------------------\\n',\n", - " \"From: palmer@cco.caltech.edu (David M. Palmer)\\nSubject: Re: Gamma Ray Bursters. WHere are they.\\nOrganization: California Institute of Technology, Pasadena\\nLines: 53\\nNNTP-Posting-Host: alumni.caltech.edu\\n\\nprb@access.digex.com (Pat) writes:\\n\\n> What evidence indicates that Gamma Ray bursters are very far away?\\n\\n>Given the enormous power, i was just wondering, what if they are\\n>quantum black holes or something like that fairly close by?\\n\\n>Why would they have to be at galactic ranges? \\n\\nGamma Ray Bursts (GRBs) are seen coming equally from all directions.\\nHowever, given the number of bright ones, there are too few faint\\nones to be consistent with being equally dense for as far\\nas we can see--it is as if they are all contained within\\na finite sphere (or a sphere with fuzzy edges) with us at the\\ncenter. (These measurements are statistical, and you can\\nalways hide a sufficiently small number of a different\\ntype of GRB with a different origin in the data. I am assuming\\nthat there is only one population of GRBs).\\n\\nThe data indicates that we are less than 10% of the radius of the center\\nof the distribution. The only things the Earth is at the exact center\\nof are the Solar system (at the scale of the Oort cloud of comets\\nway beyond Pluto) and the Universe. Cosmological theories, placing\\nGRBs throughout the Universe, require supernova-type energies to\\nbe released over a timescale of milliseconds. Oort cloud models\\ntend to be silly, even by the standards of astrophysics.\\n\\nIf GRBs were Galactic (i.e. distributed through the Milky Way Galaxy)\\nyou would expect them to be either concentrated in the plane of\\nthe Galaxy (for a 'disk' population), or towards the Galactic center\\n(for a spherical 'halo' population). We don't see this, so if they\\nare Galactic, they must be in a halo at least 250,000 light years in\\nradius, and we would probably start to see GRBs from the Andromeda\\nGalaxy (assuming that it has a similar halo.) For comparison, the\\nEarth is 25,000 light-years from the center of the Galaxy.\\n\\n>my own pet theory is that it's Flying saucers entering\\n>hyperspace :-)\\n\\nThe aren't concentrated in the known spacelanes, and we don't\\nsee many coming from Zeta Reticuli and Tau Ceti.\\n\\n>but the reason i am asking is that most everyone assumes that they\\n>are colliding nuetron stars or spinning black holes, i just wondered\\n>if any mechanism could exist and place them closer in.\\n\\nThere are more than 130 GRB different models in the refereed literature.\\nRight now, the theorists have a sort of unofficial moratorium\\non new models until new observational evidence comes in.\\n\\n-- \\n\\t\\tDavid M. Palmer\\t\\tpalmer@alumni.caltech.edu\\n\\t\\t\\t\\t\\tpalmer@tgrs.gsfc.nasa.gov\\n\",\n", - " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Keith Schneider - Stealth Poster?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 12\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\nsandvik@newton.apple.com (Kent Sandvik) writes:\\n\\n>>To borrow from philosophy, you don't truly understand the color red\\n>>until you have seen it.\\n>Not true, even if you have experienced the color red you still might\\n>have a different interpretation of it.\\n\\nBut, you wouldn't know what red *was*, and you certainly couldn't judge\\nit subjectively. And, objectivity is not applicable, since you are wanting\\nto discuss the merits of red.\\n\\nkeith\\n\",\n", - " 'From: buenneke@monty.rand.org (Richard Buenneke)\\nSubject: DC-X Rollout Report\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 124\\n\\n\\nMcDonnell Douglas rolls out DC-X\\n\\n HUNTINGTON BEACH, Calif. -- On a picture-perfect Southern\\nCalifornia day, McDonnell Douglas rolled out its DC-X rocket ship last\\nSaturday. The company hopes this single-stage rocket technology\\ndemonstrator will be the first step towards a single-stage-to-orbit (SSTO)\\nrocket ship.\\n\\n The white conical vehicle was scheduled to go to the White Sands\\nMissile Range in New Mexico this week. Flight tests will start in\\nmid-June.\\n\\n Although there wasn\\'t a cloud in the noonday sky, the forecast for\\nSSTO research remains cloudy. The SDI Organization -- which paid $60\\nmillion for the DC-X -- can\\'t itself afford to fund full development of a\\nfollow-on vehicle. To get the necessary hundreds of millions required for\\na sub-orbital DC-XA, SDIO is passing a tin cup among its sister government\\nagencies.\\n\\n SDIO originally funded SSTO research as a way to cut the costs for\\norbital deployments of space-based sensors and weapns. However, recent\\nchanges in SDI\\'s political marching orders and budget cuts have made SSTO\\nless of a priority. Today, the agency is more interested in using DC-X as\\na step towards a low-cost, reusable sounding rocket.\\n\\n SDIO has already done 50 briefings to other government agencies,\\nsaid Col. Simon \"Pete\" Worden, SDIO\\'s deputy for technology. But Worden\\ndeclined to say how much the agencies would have to pony up for the\\nprogram. \"I didn\\'t make colonel by telling my contractors how much money I\\nhave available to spend,\" he quipped at a press conference at McDonnell\\nDouglas Astronautics headquarters.\\n\\n While SDIO has lowered its sights on the program\\'s orbital\\nobjective, agency officials hail the DC-X as an example of the \"better,\\nfaster, cheaper\" approach to hardware development. The agency believes\\nthis philosophy can produce breakthroughs that \"leapfrog\" ahead of\\nevolutionary technology developments.\\n\\n Worden said the DC-X illustrates how a \"build a little, test a\\nlittle\" approach can produce results on time and within budget. He said\\nthe program -- which went from concept to hardware in around 18 months --\\nshowed how today\\'s engineers could move beyond the \"miracles of our\\nparents\\' time.\"\\n\\n \"The key is management,\" Worden said. \"SDIO had a very light hand\\non this project. We had only one overworked major, Jess Sponable.\"\\n\\n Although the next phase may involve more agencies, Worden said\\nlean management and a sense of government-industry partnership will be\\ncrucial. \"It\\'s essential we do not end up with a large management\\nstructure where the price goes up exponentially.\"\\n\\n SDIO\\'s approach also won praise from two California members of the\\nHouse Science, Space and Technology Committee. \"This is the direction\\nwe\\'re going to have to go,\" said Rep. George Brown, the committee\\'s\\nDemocratic chairman. \"Programs that stretch aout 10 to 15 years aren\\'t\\nsustainable....NASA hasn\\'t learned it yet. SDIO has.\"\\n\\n Rep. Dana Rohrbacher, Brown\\'s Republican colleague, went further.\\nJoking that \"a shrimp is a fish designed by a NASA design team,\"\\nRohrbacher doubted that the program ever would have been completed if it\\nwere left to the civil space agency.\\n\\n Rohrbacher, whose Orange County district includes McDonnell\\nDouglas, also criticized NASA-Air Force work on conventional, multi-staged\\nrockets as placing new casings around old missile technology. \"Let\\'s not\\nbuild fancy ammunition with capsules on top. Let\\'s build a spaceship!\"\\n\\n Although Rohrbacher praised SDIO\\'s sponsorship, he said the\\nprivate sector needs to take the lead in developing SSTO technology.\\n\\n McDonnell Douglas, which faces very uncertain prospects with its\\nC-17 transport and Space Station Freedom programs, were more cautious\\nabout a large private secotro commitment. \"On very large ventures,\\ncompanies put in seed money,\" said Charles Ordahl, McDonnell Douglas\\'\\nsenior vice president for space systems. \"You need strong government\\ninvestments.\"\\n\\n While the government and industry continue to differ on funding\\nfor the DC-XA, they agree on continuing an incremental approach to\\ndevelopment. Citing corporate history, they liken the process to Douglas\\nAircraft\\'s DC aircraft. Just as two earlier aircraft paved the way for\\nthe DC-3 transport, a gradual evolution in single-stage rocketry could\\neventually lead to an orbital Delta Clipper (DC-1).\\n\\n Flight tests this summer at White Sands will \"expand the envelope\"\\nof performance, with successive tests increasing speed and altitude. The\\nfirst tests will reach 600 feet and demonstrate hovering, verticle\\ntake-off and landing. The second series will send the unmanned DC-X up to\\n5,000 feet. The third and final series will take the craft up to 20,000\\nfeet.\\n\\n Maneuvers will become more complex on third phase. The final\\ntests will include a \"pitch-over\" manever that rotates the vehicle back\\ninto a bottom-down configuration for a soft, four-legged landing.\\n\\n The flight test series will be supervised by Charles \"Pete\"\\nConrad, who performed similar maneuvers on the Apollo 12 moon landing.\\nNow a McDonnell Douglas vice president, Conrad paised the vehicles\\naircraft-like approach to operations. Features include automated\\ncheck-out and access panels for easy maintainance.\\n\\n If the program moves to the next stage, engine technology will\\nbecome a key consideration. This engine would have more thrust than the\\nPratt & Whitney RL10A-5 engines used on the DC-X. Each motor uses liquid\\nhydrogen and liquid oxygen propellants to generate up to 14,760 pounds of\\nthrust\\n\\n Based on the engine used in Centaur upper stages, the A-5 model\\nhas a thrust champer designed for sea level operation and three-to-on\\nthrottling capability. It also is designed for repeat firings and rapid\\nturnaround.\\n\\n Worden said future single-stage rockets could employ\\ntri-propellant engine technology developed in the former Soviet Union.\\nThe resulting engines could burn a dense hydrocarbon fuel at takeoff and\\nthen switch to liquid hydrogen at higher altitudes.\\n\\n The mechanism for the teaming may already be in place. Pratt has\\na technology agreement with NPO Energomash, the design bureau responsible\\nfor the tri-propellant and Energia cryogenic engines.\\n\\n\\n',\n", - " 'From: mancus@sweetpea.jsc.nasa.gov (Keith Mancus)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: MDSSC\\nLines: 60\\n\\njbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n>mancus@sweetpea.jsc.nasa.gov (Keith Mancus) writes:\\n>>cook@varmit.mdc.com (Layne Cook) writes:\\n>>> The $25k Orteig prize helped Lindbergh sell his Spirit\\n>>> of Saint Louis venture to his financial backers. But I strongly suspect\\n>>> that his Saint Louis backers had the foresight to realize that much more\\n>>> was at stake than $25,000. Could it work with the moon? Who are the\\n>>> far-sighted financial backers of today?\\n \\n>> The commercial uses of a transportation system between already-settled-\\n>>and-civilized areas are obvious. Spaceflight is NOT in this position.\\n>>The correct analogy is not with aviation of the \\'30\\'s, but the long\\n>>transocean voyages of the Age of Discovery.\\n> Lindbergh\\'s flight took place in \\'27, not the thirties.\\n \\n Of course; sorry for the misunderstanding. I was referring to the fact\\nthat far more aeronautical development took place in the \\'30\\'s. For much\\nof the \\'20\\'s, the super-abundance of Jennies and OX-5 engines held down the\\nindustry. By 1926, many of the obsolete WWI aircraft had been retired\\nand Whirlwind had their power/weight ratio and reliability up to the point\\nwhere long-distance flights became practical. It\\'s important to note that\\nthe Atlantic was flown not once but THREE times in 1927: Lindbergh,\\nChamberlin and Levine, and Byrd\\'s _America_. \"When it\\'s time to railroad,\\nyou railroad.\"\\n\\n>>It didn\\'t require gov\\'t to fund these as long as something was known about\\n>>the potential for profit at the destination. In practice, some were gov\\'t\\n>>funded, some were private.\\n>Could you give examples of privately funded ones?\\n\\n Not off the top of my head; I\\'ll have to dig out my reference books again.\\nHowever, I will say that the most common arrangement in Prince Henry the\\nNavigator\\'s Portugal was for the prince to put up part of the money and\\nmerchants to put up the rest. They profits from the voyage would then be\\nshared.\\n\\n>>But there was no way that any wise investor would spend a large amount\\n>>of money on a very risky investment with no idea of the possible payoff.\\n>A person who puts up $X billion for a moon base is much more likely to do\\n>it because they want to see it done than because they expect to make money\\n>off the deal.\\n\\n The problem is that the amount of prize money required to inspire a\\nMoon Base is much larger than any but a handful of individuals or corporations\\ncan even consider putting up. The Kremer Prizes (human powered aircraft),\\nOrteig\\'s prize, Lord Northcliffe\\'s prize for crossing the Atlantic (won in\\n1919 by Alcock and Brown) were MUCH smaller. The technologies required were\\nwithin the reach of individual inventors, and the prize amounts were well\\nwithin the reach of a large number of wealthy individuals. I think that only\\na gov\\'t could afford to set up a $1B+ prize for any purpose whatsoever.\\n Note that Burt Rutan suggested that NASP could be built most cheaply by\\ntaking out an ad in AvWeek stating that the first company to build a plane\\nthat could take off and fly the profile would be handed $3B, no questions\\nasked.\\n\\n-- \\n Keith Mancus |\\n N5WVR |\\n \"Black powder and alcohol, when your states and cities fall, |\\n when your back\\'s against the wall....\" -Leslie Fish |\\n',\n", - " 'From: neal@cmptrc.lonestar.org (Neal Howard)\\nSubject: Do Splitfires Help Spagthorpe Diesels ?\\nKeywords: Using Splitfire plugs for performance.\\nDistribution: rec.motorcycles\\nOrganization: CompuTrac Inc., Richardson TX\\nLines: 34\\n\\nIn article wcd82671@uxa.cso.uiuc.edu (daniel warren c) writes:\\n>Earlier, I was reading on the net about using Splitfire plugs. One\\n>guy was thinking about it and almost everybody shot him to hell. Well,\\n>I saw one think that someone said about \"Show me a team that used Split-\\n>fires....\" Well, here\\'s some additional insight and some theories\\n>about splitfire plugs and how they boost us as oppossed to cages.\\n>\\n>Splitfires were originally made to burn fuel more efficiently and\\n>increased power for the 4x4 cages. Well, for these guys, splitfires\\n>\\n>Now I don\\'t know about all of this (and I\\'m trying to catch up with\\n>somebody about it now), but Splitfires should help twins more than\\n\\nSplitfires work mainly by providing a more-or-less unshrouded spark to the\\ncombustion chamber. If an engine\\'s cylinder head design can benefit from this,\\nthen the splitfires will yield a slight performance increase, most noticeably\\nin lower rpm range torque. Splitfires didn\\'t do diddly-squat for my 1992 GMC\\npickup (4.3l V6) but do give a noticeable performance boost in my 1991 Harley\\nSportster 1200 and my best friend\\'s 1986 Sportster 883. Folks I know who\\'ve\\ntried them in 1340 Evo motors can\\'t tell any performance boost over plain\\nplugs (which is interesting since the XLH and big twin EVO combustion chambers\\nare pretty much the same shape, just different sizes). Two of my friends who\\nhave shovelhead Harleys swear by the splitfires but if I had a shovelhead,\\nI\\'d dual-plug it instead since they respond well enough to dual plugs to make\\nthe machine work and extra ignition system worth the expense (plus they look\\nreally cool with a spark plug on each side of each head)\\n-- \\n=============================================================================\\nNeal Howard \\'91 XLH-1200 DoD #686 CompuTrac, Inc (Richardson, TX)\\n\\t doh #0000001200 |355o33| neal@cmptrc.lonestar.org\\n\\t Std disclaimer: My opinions are mine, not CompuTrac\\'s.\\n \"Let us learn to dream, gentlemen, and then perhaps\\n we shall learn the truth.\" -- August Kekule\\' (1890)\\n=============================================================================\\n',\n", - " 'From: MANDTBACKA@FINABO.ABO.FI (Mats Andtbacka)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Unorganized Usenet Postings UnInc.\\nLines: 24\\nIn-Reply-To: frank@D012S658.uucp\\'s message of 15 Apr 1993 23:15:09 GMT\\nX-News-Reader: VMS NEWS 1.24\\n\\nIn <1qkq9t$66n@horus.ap.mchp.sni.de> frank@D012S658.uucp writes:\\n\\n(Attempting to define \\'objective morality\\'):\\n\\n> I\\'ll take a wild guess and say Freedom is objectively valuable. I base\\n> this on the assumption that if everyone in the world were deprived utterly\\n> of their freedom (so that their every act was contrary to their volition),\\n> almost all would want to complain.\\n\\n So long as you keep that \"almost\" in there, freedom will be a\\nmostly valuable thing, to most people. That is, I think you\\'re really\\nsaying, \"a real big lot of people agree freedom is subjectively valuable\\nto them\". That\\'s good, and a quite nice starting point for a moral\\nsystem, but it\\'s NOT UNIVERSAL, and thus not \"objective\".\\n\\n> Therefore I take it that to assert or\\n> believe that \"Freedom is not very valuable\", when almost everyone can see\\n> that it is, is every bit as absurd as to assert \"it is not raining\" on\\n> a rainy day.\\n\\n It isn\\'t in Sahara.\\n\\n-- \\n Disclaimer? \"It\\'s great to be young and insane!\"\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Biosphere II\\nOrganization: Express Access Online Communications USA\\nLines: 22\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <19930419.062802.166@almaden.ibm.com> nicho@vnet.ibm.com writes:\\n|In <1q77ku$av6@access.digex.net> Pat writes:\\n|>The Work is privately funded, the DATA belongs to SBV. I don't see\\n|>either george or Fred, scoriating IBM research division for\\n|>not releasing data.\\n| We publish plenty kiddo,you just have to look.\\n\\n\\nNever said you didn't publish, merely that there is data you don't\\npublish, and that no-one scoriates you for those cases. \\n\\nIBM research publishes plenty, it's why you ended up with 2 Nobel\\nprizes in the last 10 years, but that some projects are deemed\\ncompany confidential. ATT Bell Labs, keeps lots of stuff private,\\nLike Karamankars algorithm. Private moeny is entitled to do what\\nit pleases, within the bounds of Law, and For all the keepers of the\\ntemple of SCience, should please shove their pointy little heads\\nup their Conically shaped Posterior Orifices. \\n\\npat\\n\\n\\twho just read the SA article on Karl Fehrabend(sp???)\\n\",\n", - " 'From: alaa@peewee.unx.dec.com (Alaa Zeineldine)\\nSubject: Re: WTC bombing\\nOrganization: Digital Equipment Corp.\\nX-Newsreader: Tin 1.1 PL3\\nLines: 13\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n: \\n: \"But Hadas might be a fictitious character invented by the two men for \\n: billing purposes, said Mohammed Mehdi, head of the Arab-American Relations Committee.\"\\n: \\n: Tim\\n\\nI would remind readers of the fact that the NY Daily News on March 5th \\nreported the arrest of Joise Hadas. Foreign newspapers reported her\\nrelease shortly afterwards. I can provide copies of the articles \\nupon request.\\n\\nAlaa Zeineldine\\n',\n", - " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Re: Gospel Dating\\nLines: 73\\n\\nBenedikt Rosenau writes:\\n\\n>The argument goes as follows: Q-oid quotes appear in John, but not in\\n>the almost codified way they were in Matthew or Luke. However, they are\\n>considered to be similar enough to point to knowledge of Q as such, and\\n>not an entirely different source.\\n\\nAssuming you are presenting it accurately, I don\\'t see how this argument\\nreally leads to any firm conclusion. The material in John (I\\'m not sure\\nexactly what is referred to here, but I\\'ll take for granted the similarity\\nto the Matt./Luke \"Q\" material) IS different; hence, one could have almost\\nany relationship between the two, right up to John getting it straight from\\nJesus\\' mouth.\\n\\n>We are talking date of texts here, not the age of the authors. The usual\\n>explanation for the time order of Mark, Matthew and Luke does not consider\\n>their respective ages. It says Matthew has read the text of Mark, and Luke\\n>that of Matthew (and probably that of Mark).\\n\\nThe version of the \"usual theory\" I have heard has Matthew and Luke\\nindependently relying on Mark and \"Q\". One would think that if Luke relied\\non Matthew, we wouldn\\'t have the grating inconsistencies in the geneologies,\\nfor one thing.\\n\\n>As it is assumed that John knew the content of Luke\\'s text. The evidence\\n>for that is not overwhelming, admittedly.\\n\\nThis is the part that is particularly new to me. If it were possible that\\nyou could point me to a reference, I\\'d be grateful.\\n\\n>>Unfortunately, I haven\\'t got the info at hand. It was (I think) in the late\\n>>\\'70s or early \\'80s, and it was possibly as old as CE 200.\\n\\n>When they are from about 200, why do they shed doubt on the order on\\n>putting John after the rest of the three?\\n\\nBecause it closes up the gap between (supposed) writing and the existing\\ncopy quit a bit. The further away from the original, the more copies can be\\nwritten, and therefore survival becomes more probable.\\n\\n>>And I don\\'t think a \"one step removed\" source is that bad. If Luke and Mark\\n>>and Matthew learned their stories directly from diciples, then I really\\n>>cannot believe in the sort of \"big transformation from Jesus to gospel\" that\\n>>some people posit. In news reports, one generally gets no better\\n>>information than this.\\n\\n>>And if John IS a diciple, then there\\'s nothing more to be said.\\n\\n>That John was a disciple is not generally accepted. The style and language\\n>together with the theology are usually used as counterargument.\\n\\nI\\'m not really impressed with the \"theology\" argument. But I\\'m really\\npointing this out as an \"if\". And as I pointed out earlier, one cannot make\\nthese arguments about I Peter; I see no reason not to accept it as an\\nauthentic letter.\\n\\n\\n>One step and one generation removed is bad even in our times. Compare that\\n>to reports of similar events in our century in almost illiterate societies.\\n\\nThe best analogy would be reporters talking to the participants, which is\\nnot so bad.\\n\\n>In other words, one does not know what the original of Mark did look like\\n>and arguments based on Mark are pretty weak.\\n\\nBut the statement of divinity is not in that section, and in any case, it\\'s\\nagreed that the most important epistles predate Mark.\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", - " 'From: u1452@penelope.sdsc.edu (Jeff Bytof - SIO)\\nSubject: End of the Space Age?\\nOrganization: San Diego Supercomputer Center @ UCSD\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: penelope.sdsc.edu\\n\\nWe are not at the end of the Space Age, but only at the end of Its\\nbeginning.\\n\\nThat space exploration is no longer a driver for technical innovation,\\nor a focus of American cultural attention is certainly debatable; however,\\ntechnical developments in other quarters will always be examined for\\npossible applications in the space area and we can look forward to\\nmany innovations that might enhance the capabilities and lower the\\ncost of future space operations. \\n\\nThe Dream is Alive and Well.\\n\\n-Jeff Bytof\\nmember, technical staff\\nInstitute for Remote Exploration\\n\\n',\n", - " \"From: clarke@acme.ucf.edu (Thomas Clarke)\\nSubject: Re: Vandalizing the sky.\\nOrganization: University of Central Florida\\nLines: 19\\n\\nI posted this over in sci.astro, but it didn't make it here.\\nThought you all would like my wonderful pithy commentary :-)\\n\\nWhat? You guys have never seen the Goodyear blimp polluting\\nthe daytime and nightime skies?\\n\\nActually an oribital sign would only be visible near\\nsunset and sunrise, I believe. So pollution at night\\nwould be minimal.\\n\\nIf it pays for space travel, go for it. Those who don't\\nlike spatial billboards can then head for the pristine\\nenvironment of Jupiter's moons :-)\\n\\n---\\nThomas Clarke\\nInstitute for Simulation and Training, University of Central FL\\n12424 Research Parkway, Suite 300, Orlando, FL 32826\\n(407)658-5030, FAX: (407)658-5059, clarke@acme.ucf.edu\\n\",\n", - " 'From: sieferme@stein.u.washington.edu (Eric Sieferman)\\nSubject: Re: some thoughts.\\nOrganization: University of Washington, Seattle\\nLines: 75\\nNNTP-Posting-Host: stein.u.washington.edu\\nKeywords: Dan Bissell\\n\\nIn article bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\nIt appears that Walla Walla College will fill the same role in alt.atheist\\nthat Allegheny College fills in alt.fan.dan-quayle.\\n\\n>\\tFirst I want to start right out and say that I\\'m a Christian. It \\n>makes sense to be one. Have any of you read Tony Campollo\\'s book- liar, \\n>lunatic, or the real thing? (I might be a little off on the title, but he \\n>writes the book. Anyway he was part of an effort to destroy Christianity, \\n>in the process he became a Christian himself.\\n\\nConverts to xtianity have this tendency to excessively darken their\\npre-xtian past, frequently falsely. Anyone who embarks on an\\neffort to \"destroy\" xtianity is suffering from deep megalomania, a\\ndefect which is not cured by religious conversion.\\n\\n>\\tThe arguements he uses I am summing up. The book is about whether \\n>Jesus was God or not. I know many of you don\\'t believe, but listen to a \\n>different perspective for we all have something to gain by listening to what \\n>others have to say. \\n\\nDifferent perspective? DIFFERENT PERSPECTIVE?? BWAHAHAHAHAHAHAHAH!!!\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n\\n(sigh!) Perhaps Big J was just mistaken about some of his claims.\\nPerhaps he was normally insightful, but had a few off days. Perhaps\\nmany (most?) of the statements attributed to Jesus were not made by\\nhim, but were put into his mouth by later authors. Other possibilities\\nabound. Surely, someone seriously examining this question could\\ncome up with a decent list of possible alternatives, unless the task\\nis not serious examination of the question (much less \"destroying\"\\nxtianity) but rather religious salesmanship.\\n\\n>\\tSome reasons why he wouldn\\'t be a liar are as follows. Who would \\n>die for a lie?\\n\\nHow many Germans died for Nazism? How many Russians died in the name\\nof the proletarian dictatorship? How many Americans died to make the\\nworld safe for \"democracy\". What a silly question!\\n\\n>Wouldn\\'t people be able to tell if he was a liar? People \\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n\\nIs everyone who performs a healing = God?\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy.\\n\\nIt\\'s probably hard to \"draw\" an entire nation to you unless you \\nare crazy.\\n\\n>Very doubtful, in fact rediculous. For example \\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn\\'t a liar or a lunatic, he must have been the \\n>real thing. \\n\\nAnyone who is convinced by this laughable logic deserves\\nto be a xtian.\\n\\n>\\tSome other things to note. He fulfilled loads of prophecies in \\n>the psalms, Isaiah and elsewhere in 24 hrs alone. This in his betrayal \\n>and Crucifixion. I don\\'t have my Bible with me at this moment, next time I \\n>write I will use it.\\n\\nDon\\'t bother. Many of the \"prophecies\" were \"fulfilled\" only in the\\neyes of xtian apologists, who distort the meaning of Isaiah and\\nother OT books.\\n\\n\\n\\n',\n", - " \"From: lmh@juliet.caltech.edu (Henling, Lawrence M.)\\nSubject: Re: Americans and Evolution\\nOrganization: California Institute of Technology\\nLines: 13\\nDistribution: world\\nNNTP-Posting-Host: juliet.caltech.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr3.195642.25261@njitgw.njit.edu>, dmu5391@hertz.njit.edu (David Utidjian Eng.Sci.) writes...\\n>In article <31MAR199321091163@juliet.caltech.edu> lmh@juliet.caltech.edu (Henling, Lawrence M.) writes:\\n>\\tFor a complete description of what is, and is not atheism\\n>or agnosticism see the FAQ for alt.atheism in alt.answers... I think.\\n>utidjian@remarque.berkeley.edu\\n\\n I apologize for posting this. I thought it was only going to talk.origins.\\nI also took my definitions from a 1938 Websters.\\n Nonetheless, the apparent past arguments over these words imply that like\\n'bimonthly' and 'biweekly' they have no commonly accepted definitions and\\nshould be used with care.\\n\\nlarry henling lmh@shakes.caltech.edu\\n\",\n", - " \"From: gunning@cco.caltech.edu (Kevin J. Gunning)\\nSubject: stolen CBR900RR\\nOrganization: California Institute of Technology, Pasadena\\nLines: 12\\nDistribution: usa\\nNNTP-Posting-Host: alumni.caltech.edu\\nSummary: see above\\n\\nStolen from Pasadena between 4:30 and 6:30 pm on 4/15.\\n\\nBlue and white Honda CBR900RR california plate KG CBR. Serial number\\nJH2SC281XPM100187, engine number 2101240.\\n\\nNo turn signals or mirrors, lights taped over for track riders session\\nat Willow Springs tomorrow. Guess I'll miss it. :-(((\\n\\nHelp me find my baby!!!\\n\\nkjg\\n\\n\",\n", - " 'Subject: E-mail of Michael Abrash?\\nFrom: gmontem@eis.calstate.edu (George A. Montemayor)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 0\\n\\n',\n", - " \"From: James Leo Belliveau \\nSubject: First Bike??\\nOrganization: Freshman, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA\\nLines: 17\\nNNTP-Posting-Host: andrew.cmu.edu\\n\\n Anyone, \\n\\n I am a serious motorcycle enthusiast without a motorcycle, and to\\nput it bluntly, it sucks. I really would like some advice on what would\\nbe a good starter bike for me. I do know one thing however, I need to\\nmake my first bike a good one, because buying a second any time soon is\\nout of the question. I am specifically interested in racing bikes, (CBR\\n600 F2, GSX-R 750). I know that this may sound kind of crazy\\nconsidering that I've never had a bike before, but I am responsible, a\\nfast learner, and in love. Please give me any advice that you think\\nwould help me in my search, including places to look or even specific\\nbikes that you want to sell me.\\n\\n Thanks :-)\\n\\n Jamie Belliveau (jbc9@andrew.cmu.edu) \\n\\n\",\n", - " 'From: Wingert@vnet.IBM.COM (Bret Wingert)\\nSubject: Re: Level 5?\\nOrganization: IBM, Federal Systems Co. Software Services\\nDisclaimer: This posting represents the poster\\'s views, not those of IBM\\nNews-Software: UReply 3.1\\n <1993Apr23.124759.1@fnalf.fnal.gov>\\nLines: 29\\n\\nIn <1993Apr23.124759.1@fnalf.fnal.gov> Bill Higgins-- Beam Jockey writes:\\n>In article <19930422.121236.246@almaden.ibm.com>, Wingert@vnet.IBM.COM (Bret Wingert) writes:\\n>> 3. The Onboard Flight Software project was rated \"Level 5\" by a NASA team.\\n>> This group generates 20-40 KSLOCs of verified code per year for NASA.\\n>\\n>Will someone tell an ignorant physicist where the term \"Level 5\" comes\\n>from? It sounds like the RISKS Digest equivalent of Large, Extra\\n>Large, Jumbo... Or maybe it\\'s like \"Defcon 5...\"\\n>\\n>I gather it means that Shuttle software was developed with extreme\\n>care to have reliablility and safety, and almost everything else in\\n>the computing world is Level 1, or cheesy dime-store software. Not\\n>surprising. But who is it that invents this standard, and how come\\n>everyone but me seems to be familiar with it?\\n\\nLevel 5 refers to the Carnegie-Mellon Software Engineering Institute\\'s\\nCapability Maturity Model. This model rates software development\\norg\\'s from1-5. with 1 being Chaotic and 5 being Optimizing. DoD is\\nbeginning to use this rating system as a discriminator in contracts. I\\nhave more data on thifrom 1 page to 1000. I have a 20-30 page\\npresentation that summarizes it wethat I could FAX to you if you\\'re\\ninterested...\\nBret Wingert\\nWingert@VNET.IBM.COM\\n\\n(713)-282-7534\\nFAX: (713)-282-8077\\n\\n\\n',\n", - " 'From: jcopelan@nyx.cs.du.edu (The One and Only)\\nSubject: Re: New Member\\nOrganization: Salvation Army Draft Board\\nLines: 28\\n\\nIn article dfuller@portal.hq.videocart.com (Dave Fuller) writes:\\n>\\n> Hello. I just started reading this group today, and I think I am going\\n>to be a large participant in its daily postings. I liked the section of\\n>the FAQ about constructing logical arguments - well done. I am an atheist,\\n>but I do not try to turn other people into atheists. I only try to figure\\n>why people believe the way they do - I don\\'t much care if they have a \\n>different view than I do. When it comes down to it . . . I could be wrong.\\n>I am willing to admit the possibility - something religious followers \\n>dont seem to have the capability to do.\\n>\\n> Happy to be aboard !\\n>\\n>Dave Fuller\\n>dfuller@portal.hq.videocart.com\\n\\nWelcome. I am the official keeper of the list of nicknames that people\\nare known by on alt.atheism (didn\\'t know we had such a list, did you).\\nYour have been awarded the nickname of \"Buckminster.\" So the next time\\nyou post an article, sign with your nickname like so:\\nDave \"Buckminster\" Fuller. Thanks again.\\n\\nJim \"Humor means never having to say you\\'re sorry\" Copeland\\n--\\nIf God is dead and the actor plays his part | -- Sting,\\nHis words of fear will find their way to a place in your heart | History\\nWithout the voice of reason every faith is its own curse | Will Teach Us\\nWithout freedom from the past things can only get worse | Nothing\\n',\n", - " \"From: 18084TM@msu.edu (Tom)\\nSubject: Space Clippers launched\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 14\\n\\n\\n\\n> SPACE CLIPPERS LAUNCHED SUCCESSFULLY\\n\\nWhen I first saw this, I thought for a second that it was a headline from\\nThe Star about the pliers found in the SRB recently.\\n\\nY'know, sometimes they have wire-cutters built in :-)\\n\\n-Tommy Mac\\n-------------------------------------------------------------------------\\nTom McWilliams 517-355-2178 wk \\\\\\\\ As the radius of vision increases,\\n18084tm@ibm.cl.msu.edu 336-9591 hm \\\\\\\\ the circumference of mystery grows.\\n-------------------------------------------------------------------------\\n\",\n", - " 'From: jimh@carson.u.washington.edu (James Hogan)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nKeywords: slander calumny\\nOrganization: University of Washington, Seattle\\nLines: 60\\nNNTP-Posting-Host: carson.u.washington.edu\\n\\nIn article <1993Apr16.222525.16024@bnr.ca> (Rashid) writes:\\n>In article <1993Apr16.171722.159590@zeus.calpoly.edu>,\\n>jmunch@hertz.elee.calpoly.edu (John Munch) wrote:\\n>> \\n>> In article <1993Apr15.212943.15118@bnr.ca> (Rashid) writes:\\n>> >P.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\n>> >applies to Rushdie and may be encompassed under the umbrella\\n>> >of the \"fasad\" ruling.\\n>> \\n>> Please define the words \"shatim\" and \"fasad\" before you use them again.\\n>\\n>My apologies. \"Shatim\", I believe, refers to slandering or spreading\\n>slander and lies about the Prophets(a.s) - any of the Prophets.\\n\\nBasically, any prophet I\\'ve ever dealt with has either been busy \\nhawking stolen merchandise or selling swampland house lots in \\nFlorida. Then you hear all the stories of sexual abuse by prophets\\nand how the families of victims were paid to keep quiet about it.\\n\\n>It\\'s a kind of willful caulmny and \"cursing\" that\\'s indicated by the\\n>word. This is the best explanation I can come up with off the top\\n>of my head - I\\'ll try and look up a more technical definition when I\\n>have the time.\\n\\nNever mind that, but let me tell you about this Chevelle I bought \\nfrom this dude (you guessed it, a prophet) named Mohammed. I\\'ve\\ngot the car for like two days when the tranny kicks, then Manny, \\nmy mechanic, tells me it was loaded with sawdust! Take a guess\\nwhether \"Mohammed\" was anywhere to be found. I don\\'t think so.\\n\\n>\\n>\"Fasad\" is a little more difficult to describe. Again, this is not\\n>a technical definition - I\\'ll try and get that later. Literally,\\n\\nOh, Mohammed!\\n\\n>the word \"fasad\" means mischief. But it\\'s a mischief on the order of\\n>magnitude indicated by the word \"corruption\". It\\'s when someone who\\n>is doing something wrong to begin with, seeks to escalate the hurt,\\n\\nYeah, you, Mohammed!\\n\\n>disorder, concern, harm etc. (the mischief) initially caused by their \\n>actions. The \"wrong\" is specifically related to attacks against\\n>\"God and His Messenger\" and mischief, corruption, disorder etc.\\n\\nYou slimy mass of pond scum!\\n\\n>resulting from that. The attack need not be a physical attack and there\\n>are different levels of penalty proscribed, depending on the extent\\n>of the mischief and whether the person or persons sought to \\n>\"make hay\" of the situation. The severest punishment is death.\\n\\nYeah, right! You\\'re the one should be watching your butt. You and\\nyour buddy Allah. The stereo he sold me croaked after two days.\\nYour ass is grass!\\n\\nJim\\n\\nYeah, that\\'s right, Jim.\\n',\n", - " \"From: pes@hutcs.cs.hut.fi (Pekka Siltanen)\\nSubject: Re: detecting double points in bezier curves\\nNntp-Posting-Host: hutcs.cs.hut.fi\\nOrganization: Helsinki University of Technology, Finland\\nLines: 26\\n\\nIn article <1993Apr19.234409.18303@kpc.com> jbulf@balsa.Berkeley.EDU (Jeff Bulf) writes:\\n>In article , ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck) writes:\\n>|> I'm looking for any information on detecting and/or calculating a double\\n>|> point and/or cusp in a bezier curve.\\n>|> \\n>|> An algorithm, literature reference or mail about this is very appreciated,\\n>\\n>There was a very useful article in one of the 1989 issues of\\n>Transactions On Graphics. I believe Maureen Stone was one of\\n>the authors. Sorry not to be more specific. I don't have the\\n>reference here with me.\\n\\n\\nStone, DeRose: Geometric characterization of parametric cubic curves.\\nACM Trans. Graphics 8 (3) (1989) 147 - 163.\\n\\n\\nManocha, Canny: Detecting cusps and inflection points in curves.\\nComputer aided geometric design 9 (1992) 1-24.\\n\\nPekka Siltanen\\n\\n\\n\\n\\n\\n\",\n", - " \"Subject: Re: Deriving Pleasure from Death\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 30\\n\\n> Brad Hernlem writes...\\n> >\\n> >Congratulations to the brave men of the Lebanese resistance! With every\\n> >Israeli son that you place in the grave you are underlining the moral\\n> >bankruptcy of Israel's occupation and drawing attention to the Israeli\\n> >government's policy of reckless disregard for civilian life.\\n> >\\n> >Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nTo which Mark Ira Kaufman responds:\\n> \\n> Your delight in the death of human beings says more about you\\n> than anything that I could say.\\n\\nMark,\\nWere you one of the millions of Americans cheering the slaughter of Iraqi\\ncivilians by US forces in 1991? Your comment could also apply to all of\\nthem. (By the way, I do not applaud the killing of _any_ human being,\\nincluding prisoners sentenced to death by our illustrious justice department)\\n\\nPeace.\\n-marc\\n\\n\\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", - " 'From: Mike_Peredo@mindlink.bc.ca (Mike Peredo)\\nSubject: Re: \"Fake\" virtual reality\\nOrganization: MIND LINK! - British Columbia, Canada\\nLines: 11\\n\\nThe most ridiculous example of VR-exploitation I\\'ve seen so far is the\\n\"Virtual Reality Clothing Company\" which recently opened up in Vancouver. As\\nfar as I can tell it\\'s just another \"chic\" clothes spot. Although it would be\\ninteresting if they were selling \"virtual clothing\"....\\n\\nE-mail me if you want me to dig up their phone # and you can probably get\\nsome promotional lit.\\n\\nMP\\n(8^)-\\n\\n',\n", - " 'From: lotto@laura.harvard.edu (Jerry Lotto)\\nSubject: Re: where to put your helmet\\nOrganization: Chemistry Dept., Harvard University\\nLines: 25\\nDistribution: world\\nNNTP-Posting-Host: laura.harvard.edu\\nIn-reply-to: ryan_cousineau@compdyn.questor.org\\'s message of 19 Apr 93 18:25:00 GMT\\n\\n>>>>> On 19 Apr 93 18:25:00 GMT, ryan_cousineau@compdyn.questor.org (Ryan Cousineau) said:\\nCB> DON\\'T BE SO STUPID AS TO LEAVE YOUR HELMET ON THE SEAT WHERE IT CAN\\nCB> FALL DOWN AND GO BOOM!\\n\\nRyan> Another good place for your helmet is your mirror (!). I kid you not.\\n\\nThis is very bad advice. Helmets have two major impact absorbing\\nlayers... a hard outer shell and a closed-cell foam impact layer.\\nMost helmets lose their protective properties because the inner liner\\ncompacts over time, long before the outer shell is damaged or\\ndelaminates from age. Dr. Hurt tested helmets for many years\\nfollowing his landmark study and has estimated that a helmet can lose\\nup to 80% of it\\'s effectiveness from inner liner compression. I have\\na video he produced that discusses this phenomenon in detail.\\n\\nPuncture compression of the type caused by mirrors, sissy bars, and\\nother relatively sharp objects is the worst offender. Even when the\\ncomfort liner is unaffected, dents and holes in the foam can seriously\\ndegrade the effectiveness of a helmet. If you are in the habit of\\n\"parking your lid\" on the mirrors, I suggest you look under the\\ncomfort liner at the condition of the foam. If it is significantly\\ndamaged (or missing :-), replace the helmet.\\n--\\nJerry Lotto MSFCI, HOGSSC, BCSO, AMA, DoD #18\\nChemistry Dept., Harvard Univ. \"It\\'s my Harley, and I\\'ll ride if I want to...\"\\n',\n", - " 'From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Drinking and Riding\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 30\\n\\nIn article maven@eskimo.com (Norman Hamer) writes:\\n\\n> What is a general rule of thumb for sobriety and cycling? Couple hours after\\n>you \"feel\" sober? What? Or should I just work with \"If I drink tonight, I\\n>don\\'t ride until tomorrow\"?\\n\\nInteresting discussion.\\n\\nI limit myself to *one* \\'standard serving\\' of alcohol if I\\'m\\ngoing to ride. And mostly, unless the alcohol is something\\nspecial (fine ale, good wine, or someone else\\'s vsop), I usually\\njust don\\'t drink *any*.\\n\\nBut then alcohol just isn\\'t really important to me, mainly\\nfor financial reasons...\\n\\nAt least one of the magazines claims to follow the\\naviation guideline of \"no alcohol whatsoever\" within\\n24hrs of riding a \\'company\\' bike.\\n\\nDon\\'t remember which mag though, it was a few years ago.\\n\\nRegards, Charles (hicc.)\\nDoD:0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Though his book was dealing with the Genocide of Muslims by Armenians..\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 45\\n\\nIn article arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>Then repeat everything I said before with the word \"race-related\" \\n>substituted for \"racist\". All that changes is the phrasing; complaining \\n>that I used the wrong word is a quibble.\\n\\nWell, your Armenian grandparents were fascist. As early as 1934, K. S. \\nPapazian asserted in \\'Patriotism Perverted\\' that the Armenians\\n\\n \\'lean toward Fascism and Hitlerism.\\'[1]\\n\\nAt that time, he could not have foreseen that the Armenians would\\nactively assume a pro-German stance and even collaborate in World\\nWar II. His book was dealing with the Armenian genocide of Turkish\\npopulation of eastern Anatolia. However, extreme rightwing ideological\\ntendencies could be observed within the Dashnagtzoutune long before\\nthe outbreak of the Second World War.\\n\\nIn 1936, for example, O. Zarmooni of the \\'Tzeghagrons\\' was quoted\\nin the \\'Hairenik Weekly:\\' \\n\\n\"The race is force: it is treasure. If we follow history we shall \\n see that races, due to their innate force, have created the nations\\n and these have been secure only insofar as they have reverted to\\n the race after becoming a nation. Today Germany and Italy are\\n strong because as nations they live and breath in terms of race.\\n On the other hand, Russia is comparatively weak because she is\\n bereft of social sanctities.\"[2]\\n\\n[1] K. S. Papazian, \\'Patriotism Perverted,\\' (Boston, Baikar Press\\n 1934), Preface.\\n[2] \\'Hairenik Weekly,\\' Friday, April 10, 1936, \\'The Race is our\\n Refuge\\' by O. Zarmooni.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " \"From: dannyb@panix.com (Daniel Burstein)\\nSubject: japanese moon landing?\\nOrganization: PANIX Public Access Unix, NYC\\nLines: 17\\n\\nAfraid I can't give any more info on this.. and hoping someone in greter\\nNETLAND has some details.\\n\\nA short story in the newspaper a few days ago made some sort of mention\\nabout how the Japanese, using what sounded like a gravity assist, had just\\nmanaged to crash (or crash-land) a package on the moon.\\n\\nthe article was very vague and unclear. and, to make matters worse, I\\ndidn't clip it.\\n\\ndoes this jog anyone's memory?\\n\\n\\nthanks\\ndannyb@panix.com\\n\\n\\n\",\n", - " \"From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Fat Boy versus ZX-11 (new math)\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 32\\n\\nIn article <1pimfd$cre@agate.berkeley.edu> robinson@cogsci.Berkeley.EDU (Michael Robinson) writes:\\n>In article klinger@ccu.umanitoba.ca (Jorg Klinger) writes:\\n>>In <1993Apr1.130432.11009@bnr.ca> npet@bnr.ca (Nick Pettefar) writes:\\n>>>Manual Velcro, on the 31 Mar 93 09:19:29 +0200 wibbled:\\n>>>: But 14 is greater than 11, or 180 is greater than 120, or ...\\n>>>No! 10 is the best of all.\\n>>No No No!\\n>> It should be obvious that 8 is the best number by far. Last year 10\\n>>was hot but with the improvements to 8 this year there can be no\\n>>question.\\n>\\n>Hell, my Dad used to have an old 5 that would beat out today's 8 without \\n>breaking a sweat.\\n>\\n>(Well, in the twisties, anyway.)\\n>\\n>This year's 8 is just too cumbersome for practical use in anything other \\n>than repeating decimals.\\n>\\nRemember the good old days, when Hexadecimals, and even Binaries\\nwere still legal? Sure, they smoked a little blue stuff out the\\npipes, but I had a hex 7 that could slaughter any decimal 10 on\\nthe road. Sigh, such nostalgia!\\n\\nRegards, Charles\\nDoD0,001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n\",\n", - " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: some thoughts.\\nOrganization: Technical University Braunschweig, Germany\\nLines: 12\\n\\nIn article \\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n \\n> The arguements he uses I am summing up. The book is about whether\\n>Jesus was God or not. I know many of you don't believe, but listen to a\\n>different perspective for we all have something to gain by listening to what\\n>others have to say.\\n \\nRead the FAQ first, watch the list fr some weeks, and come back then.\\n \\nAnd read some other books on the matter in order to broaden your view first.\\n Benedikt\\n\",\n", - " 'From: ivan@erich.triumf.ca (Ivan D. Reid)\\nSubject: Re: Carrying crutches (was Re: Living\\nOrganization: TRIUMF: Tri-University Meson Facility\\nLines: 16\\nDistribution: world\\nNNTP-Posting-Host: erich.triumf.ca\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1pqhkl$g48@usenet.INS.CWRU.Edu>,\\n\\t ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes...\\n>\\tWhen I got my knee rebuilt I got back on the street bike ASAP. I put\\n>the crutches on the rack and the passenger seat and they hung out back a\\n>LONG way. Just make sure they\\'re tied down tight in front and no problemo.\\n ^^^^\\n\\tHmm, sounds like a useful trick -- it\\'d keep the local cagers at least\\na crutch-length off my tail-light, which is more than they give me now. But\\ndo I have to break a leg to use it?\\n\\n\\t(When I broke my ankle dirt-biking, I ended up strapping the crutches\\nto the back of the bike & riding to the lab. It was my right ankle, but the\\nbike was a GT380 and started easily by hand.)\\n\\nIvan Reid, Paul Scherrer Institute, CH. \\t\\t\\tivan@cvax.psi.ch\\nGSX600F, RG250WD. \"Beware drainage ditches on firetrails\"\\tDoD #484\\n',\n", - " 'From: cliff@watson.ibm.com (cliff)\\nSubject: Reprints\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM.\\nNntp-Posting-Host: cliff.watson.ibm.com\\nOrganization: A\\nLines: 17\\n\\nI have a few reprints left of chapters from my book \"Visions of the \\nFuture\". These include reprints of 3 chapters probably of interest to \\nreaders of this forum, including: \\n \\n1. Current Techniques and Development of Computer Art, by Franz Szabo \\n \\n2. Forging a Career as a Sculptor from a Career as Computer Programmer, \\nby Stewart Dickson \\n \\n3. Fractals and Genetics in the Future by H. Joel Jeffrey \\n \\nI\\'d be happy to send out free reprints to researchers for scholarly \\npurposes, until the reprints run out. \\n \\nJust send me your name and address. \\n \\nThanks, Cliff cliff@watson.ibm.com \\n',\n", - " \"From: friedenb@silver.egr.msu.edu (Gedaliah Friedenberg)\\nSubject: Re: Zionism is Racism\\nOrganization: College of Engineering, Michigan State University\\nLines: 26\\nDistribution: world\\nReply-To: friedenb@silver.egr.msu.edu (Gedaliah Friedenberg)\\nNNTP-Posting-Host: silver.egr.msu.edu\\n\\nIn article <20APR93.23565659.0109@VM1.MCGILL.CA>, B8HA000 writes:\\n|> In Re:Syria's Expansion, the author writes that the UN thought\\n|> Zionism was Racism and that they were wrong. They were correct\\n|> the first time, Zionism is Racism and thankfully, the McGill Daily\\n|> (the student newspaper at McGill) was proud enough to print an article\\n|> saying so. If you want a copy, send me mail.\\n\\nIf you want info claiming that blacks were brought to earth 60 trillion\\nyears ago by Aliens from the plante Shabazz, I can send you literature from\\nthe Nation of Islam (Farrakhan's group) who believe this.\\n\\nIf you want info claiming that the Holocaust never happened, I can send you\\ninfo from IHR (Institute for Historical Review - David Irving's group), or\\njust read Dan Gannon's posts on alt.revisionism.\\n\\nI just wanted to put Steve's post in with the company that it deserves.\\n\\n|> Steve\\n\\nGedaliah Friedenberg\\n-=-Department of Mechanical Engineering\\n-=-Department of Metallurgy, Mechanics and Materials Science\\n-=-Michigan State University\\n\\n\\n \\n\",\n", - " 'From: bandy@catnip.berkeley.ca.us (Andrew Scott Beals -- KC6SSS)\\nSubject: Re: Your opinion and what it means to me.\\nOrganization: The San Jose, California, Home for Perverted Hackers\\nLines: 10\\n\\ninfante@acpub.duke.edu (Andrew Infante) writes:\\n\\n>Since the occurance, I\\'ve paid many\\n>dollars in renumerance, taken the drunk class, \\n>and, yes, listened to all the self-righteous\\n>assholes like yourself that think your SO above the\\n>rest of the world because you\\'ve never had your\\n>own little DD suaree.\\n\\n\"The devil made me do it!\"\\n',\n", - " \"From: rwf2@ns1.cc.lehigh.edu (ROBERT WILLIAM FUSI)\\nSubject: Bike advice\\nOrganization: Lehigh University\\nLines: 11\\n\\nI have an '89 Kawasaki KX 80. It is in mint condition and starts on the first\\nkick EVERY time. I have outgrown the bike, and am considering selling it. I\\nwas told I should ask around $900. Does that sound right or should it be\\nhigher/lower?\\n Also, I am looking for a used ZX-7. How much do I have to spend, and what\\nyear should I look for to get a bike without paying an arm and a leg????\\n Thanks for the help!\\n\\n Rob Fusi\\n rwf2@lehigh.edu\\n-- \\n\",\n", - " 'From: randy@megatek.com (Randy Davis)\\nSubject: Re: A Miracle in California\\nArticle-I.D.: megatek.1993Apr5.223941.11539\\nReply-To: randy@megatek.com\\nOrganization: Megatek Corporation, San Diego, California\\nLines: 15\\n\\nIn article <1ppvof$92a@seven-up.East.Sun.COM> egreen@East.Sun.COM writes:\\n|Bikers wave to bikers the world over. Whether or not Harley riders\\n|wave to other bikers is one of our favorite flame wars...\\n\\n I am happy to say that some Harley riders in our area are better than most\\nthat are flamed about here: I (riding a lowly sport bike, no less) and my\\ngirlfriend were the recipient of no less than twenty waves from a group of\\nat least twenty-five Harley riders. I was leading a group of about four\\nsport bikes at the time (FJ1200/CBR900RR/VFR750). I initiated *some* of the\\nwaves, but not all. It was a perfect day, and friendly riders despite some\\nbrand differences made it all the better...\\n\\nRandy Davis Email: randy@megatek.com\\nZX-11 #00072 Pilot {uunet!ucsd}!megatek!randy\\nDoD #0013\\n',\n", - " 'From: jamshid@cgl.ucsf.edu (J. Naghizadeh)\\nSubject: PR Campaign Against Iran (PBS Frontline)\\nOrganization: Computer Graphics Laboratory, UCSF\\nLines: 51\\nOriginator: jamshid@socrates.ucsf.edu\\n\\nThere have been a number of articles on the PBS frontline program\\nabout Iranian bomb. Here is my $0.02 on this and related subjects.\\n\\nOne is curious to know the real reasons behind this and related\\npublic relations campaign about Iran in recent months. These include:\\n\\n1) Attempts to implicate Iran in the bombing of the New York Trade\\n Center. Despite great efforts in this direction they have not\\n succeeded in this. They, however, have indirectly created\\n the impression that Iran is behind the rise of fundamentalist\\n Islamic movements and thus are indirectly implicated in this matter.\\n\\n2) Public statements by the Secretary of State Christoffer and\\n other official sources regarding Iran being a terrorist and\\n outlaw state.\\n\\n3) And finally the recent broadcast of the Frontline program. I \\n suspect that this PR campaign against Iran will continue and\\n perhaps intensify.\\n\\nWhy this increased pressure on Iran? A number of factors may have\\nbeen behind this. These include:\\n\\n1) The rise of Islamic movements in North-Africa and radical\\n Hamas movement in the Israeli occupied territories. This\\n movement is basically anti-western and is not necessarily\\n fueled by Iran. The cause for accelerated pace of this \\n movement is probably the Gulf War which sought to return\\n colonial Shieks and Amirs to their throne in the name of\\n democracy and freedom. Also, the obvious support of Algerian\\n military coup against the democratically elected Algerian\\n Islamic Front which clearly exposed the democracy myth.\\n A further cause of this may be the daily broadcast of the news\\n on the slaughter of Bosnian Moslems.\\n\\n2) Possible future implications of this movement in Saudi Arabia\\n and other US client states and endangerment of the cheap oil\\n sources from this region.\\n\\n3) A need to create an enemy as an excuse for huge defense\\n expenditures. This has become necessary after the demise of\\n Soveit Union.\\n\\nThe recent PR campaign against Iran, however, seems to be directed\\nfrom Israel rather than Washington. There is no fundamental conflict\\nof interest between Iran and the US and in my opinion, it is in the\\ninterest of both countries to affect reestablishment of normal\\nand friendly relations. This may have a moderating effect on the\\nrise of radical movements within the Islamic world and Iran .\\n\\n--jamshid\\n',\n", - " \"From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: Reasons : was Re: was: Go Hezbollah!!\\nOrganization: Unocal Corporation\\nLines: 35\\n\\n\\n\\nHossien Amehdi writes:\\n\\n>I am not in the business of reading minds, however in this case it would not\\n>be necessary. Israelis top leaders in the past and present, always come across\\n>as arrogant with their tough talks trying to intimidate the Arabs. \\n\\n>The way I see it, Israelis and Arabs have not been able to achieve peace\\n>after almost 50 years of fighting because of the following two major reasons:.\\n\\n> 1) Arab governments are not really representative of their people, currently\\n > most of their leaders are stupid, and/or not independent, and/or\\n> dictators.\\n\\n> 2) Israeli government is arrogant and none comprising.\\n\\n\\n\\nIt's not relevant whether I agree with you or not, there is some reasonable\\nthought in what you say here an I appreciate your point. However, I would make 2\\nremarks: \\n\\n - you forgot about hate, and this is not only at government level.\\n - It's not only 'arab' governments.\\n\\nNow, about taugh talk and arrogance, we are adults, aren't we ? Do you listen \\nto tough talk of american politicians ? or switch the channel ? \\nI would rather be 'intimidated' by some dummy 'talking tough' then by a \\nbomb ready to blow under my seat in B747.\\n\\n\\n\\nDorin\\n\\n\",\n", - " 'From: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nSubject: Portuguese Launch Complex (was:*Doppelganger*)\\nOrganization: NASA Langley Research Center\\nLines: 14\\nDistribution: world\\nReply-To: C.O.EGALON@LARC.NASA.GOV (CLAUDIO OLIVEIRA EGALON)\\nNNTP-Posting-Host: tahiti.larc.nasa.gov\\n\\n> Portugese launch complex were *wonderful\\n\\nPortuguese launch complex??? Gosh.... Polish are for American in the \\nsame way as Portuguese are for Brazilians (I am from Brazil). There is \\na joke about the Portuguese Space Agency that wanted to send a \\nPortuguese astronaut to the surface of the Sun (if there is such a thing).\\nHow did they solve all problems of sending a man to the surface of the \\nSun??? Simple... their astronauts travelled during the night...\\n\\n C.O.EGALON@LARC.NASA.GOV\\n\\nC.O.Egalon@larc.nasa.gov\\n\\nClaudio Oliveira Egalon\\n',\n", - " 'From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: Yeah, Right\\nOrganization: Technical University Braunschweig, Germany\\nLines: 54\\n\\nIn article <66014@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n>>And what about that revelation thing, Charley?\\n>\\n>If you\\'re talking about this intellectual engagement of revelation, well,\\n>it\\'s obviously a risk one takes.\\n>\\n \\nI see, it is not rational, but it is intellectual. Does madness qualify\\nas intellectual engagement, too?\\n \\n \\n>>Many people say that the concept of metaphysical and religious knowledge\\n>>is contradictive.\\n>\\n>I\\'m not an objectivist, so I\\'m not particularly impressed with problems of\\n>conceptualization. The problem in this case is at least as bad as that of\\n>trying to explain quantum mechanics and relativity in the terms of ordinary\\n>experience. One can get some rough understanding, but the language is, from\\n>the perspective of ordinary phenomena, inconsistent, and from the\\n>perspective of what\\'s being described, rather inexact (to be charitable).\\n>\\n \\nExactly why science uses mathematics. QM representation in natural language\\nis not supposed to replace the elaborate representation in mathematical\\nterminology. Nor is it supposed to be the truth, as opposed to the\\nrepresentation of gods or religions in ordinary language. Admittedly,\\nnot every religion says so, but a fancy side effect of their inept\\nrepresentations are the eternal hassles between religions.\\n \\nAnd QM allows for making experiments that will lead to results that will\\nbe agreed upon as being similar. Show me something similar in religion.\\n \\n \\n>An analogous situation (supposedly) obtains in metaphysics; the problem is\\n>that the \"better\" descriptive language is not available.\\n>\\n \\nWith the effect that the models presented are useless. And one can argue\\nthat the other way around, namely that the only reason metaphysics still\\nflourish is because it makes no statements that can be verified or falsified -\\nshowing that it is bogus.\\n \\n \\n>>And in case it holds reliable information, can you show how you establish\\n>>that?\\n>\\n>This word \"reliable\" is essentially meaningless in the context-- unless you\\n>can show how reliability can be determined.\\n \\nHaven\\'t you read the many posts about what reliability is and how it can\\nbe acheived respectively determined?\\n Benedikt\\n',\n", - " 'From: Center for Policy Research \\nSubject: conf:mideast.levant\\nNf-ID: #N:cdp:1483500358:000:1967\\nNf-From: cdp.UUCP!cpr Apr 24 14:55:00 1993\\nLines: 47\\n\\n\\nFrom: Center for Policy Research \\nSubject: conf:mideast.levant\\n\\n\\nRights of children violated by the State of Israel (selected\\narticles of the IV Geneva Convention of 1949)\\n-------------------------------------------------------------\\nArticle 31: No physical or moral coercion shall be exercised\\nagainst protected persons, in particular to obtain information\\nfrom them or from third parties.\\n\\nArticle 32: The High Contracting Parties specifically agree that\\neach of them is prohibited from taking any measure of such a\\ncharacter as to cause the physical suffering or extermination of\\nprotected persons in their hands. This prohibition applies not\\nonly to murder, torture, corporal punishment (...) but also to any\\nother measures of brutality whether applied by civilian or\\nmilitary agents.\\n\\nArticle 33: No protected person may be punished for an offence he\\nor she has not personally committed. Collective penalties and\\nlikewise measures of intimidation or of terrorism are prohibited.\\n\\nArticle 34: Taking of hostages is prohibited.\\n\\nArticle 49: Individual or mass forcible transfers, as well as\\ndeportations of protected persons from occupied territory to the\\nterritory of the Occupying Power or to that of any other country,\\noccupied or not, are prohibited, regardless of their motive.\\n\\nArticle 50: The Occupying Power shall, with the cooperation of\\nthe national and local authorities, facilitate the proper working\\nof all institutions devoted to the care and education of\\nchildren.\\n\\nArticle 53: Any destruction by the Occupying Power of real or\\npersonal property belonging individually or collectively to\\nprivate persons, or to the State, or to other public authorities,\\nor to social or cooperative organizations, is prohibited, except\\nwhere such destruction is rendered absolutely necessary by\\nmilitary operations.\\n\\nPS: It is obvious that violations of the above articles are also\\nviolations of the International Convention of the Rights of the\\nChild.\\n\\n',\n", - " 'From: twpierce@unix.amherst.edu (Tim Pierce)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nArticle-I.D.: unix.C52Cw7.I6t\\nOrganization: Blasny Blasny, Consolidated (Amherst, MA Offices)\\nLines: 37\\n\\nIn article <1993Apr6.041343.24997@cbnewsl.cb.att.com> stank@cbnewsl.cb.att.com (Stan Krieger) writes:\\n\\n>Roger and I have\\n>clearly stated our support of the BSA position on the issue;\\n>specifically, that homosexual behavior constitutes a violation of\\n>the Scout Oath (specifically, the promise to live \"morally straight\").\\n>\\n>There is really nothing else to discuss.\\n\\nApparently not.\\n\\nIn response to his claim that it \"terrifies\" gay people not to be able\\nto \"indoctrinate children to our lifestyle\" (or words to that effect),\\nI sent Roger a very calm, carefully-written, detailed letter\\nexplaining simply why the BSA policy does, indeed terrify me. I did\\nnot use inflammatory language and left myself extremely open for an\\nanswer. Thus far, I have not received an answer. I can conclude only\\nthat Roger considers his position either indefensible or simply not\\nworth defending.\\n\\n>Trying to cloud the issue\\n>with comparisons to Blacks or other minorities is also meaningless\\n>because it\\'s like comparing apples to oranges (i.e., people can\\'t\\n>control their race but they can control their behavior).\\n\\nIn fact, that\\'s exactly the point: people can control their behavior.\\nBecause of that fact, there is no need for a blanket ban on\\nhomosexuals.\\n\\n>What else is there to possibly discuss on rec.scouting on this issue?\\n\\nYou tell me.\\n\\n-- \\n____ Tim Pierce / ?Usted es la de la tele, eh? !La madre\\n\\\\ / twpierce@unix.amherst.edu / del asesino! !Ay, que graciosa!\\n \\\\/ (BITnet: TWPIERCE@AMHERST) / -- Pedro Almodovar\\n',\n", - " 'From: crash@ckctpa.UUCP (Frank \"Crash\" Edwards)\\nSubject: Re: forms for curses\\nReply-To: crash%ckctpa@myrddin.sybus.com (Frank \"Crash\" Edwards)\\nOrganization: Edwards & Edwards Consulting\\nLines: 40\\n\\nNote the Followup-To: header ...\\n\\nsteelem@rintintin.Colorado.EDU (STEELE MARK A) writes:\\n>Is there a collection of forms routines that can be used with curses?\\n>If so where is it located?\\n\\nOn my SVR4 Amiga Unix box, I\\'ve got -lform, -lmenu, and -lpanel for\\nuse with the curses library. Guess what they provide? :-)\\n\\nUnix Press, ie. Prentice-Hall, has a programmer\\'s guide for these\\ntools, referred to as the FMLI (Forms Mgmt Language Interface) and\\nETI (Extended Terminal Interface), now in it\\'s 2nd edition. It is\\nISBN 0-13-020637-7.\\n\\nParaphrased from the outside back cover:\\n\\n FMLI is a high-level programming tool for creating menus, forms,\\n and text frames. ETI is a set of screen management library\\n subroutines that promote fast development of application programs\\n for window, panel, menu, and form manipulation.\\n\\nThe FMLI is a shell package which reads ascii text files and produces\\nscreen displays for data entry and presentation. It consists of a\\n\"shell-like\" environment of the \"fmli\" program and it\\'s database\\nfiles. It is section 1F in the Unix Press manual.\\n\\nThe ETI are subroutines, part of the 3X manual section, provide\\nsupport for a multi-window capability on an ordinary ascii terminal\\nwith controls built on top of the curses library.\\n\\n>Thanks\\n>-Mark Steele\\n>steelem@rintintin.colorado.edu\\n\\n-- \\nFrank \"Crash\" Edwards Edwards & Edwards Consulting\\nVoice: 813/786-3675 crash%ckctpa@myrddin.sybus.com, but please\\nData: 813/787-3675 don\\'t ask UUNET to route it -- it\\'s sloooow.\\n There will be times in life when everyone you meet smiles and pats you on\\n the back and tells you how great you are ... so hold on to your wallet.\\n',\n", - " \"From: ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky)\\nSubject: Go Hizbollah II!\\nLines: 28\\nNntp-Posting-Host: purple.cc.utexas.edu\\nOrganization: University of Texas @ Austin\\nLines: 28\\n\\n\\nFrom Israel Line, Thursday, April 22, 1993:\\n \\nToday's HA'ARETZ reports that three women were injured when a\\nKatyusha rocket fell in the center of their community. The rocket\\nwas one of several dozen fired at the communities of the Galilee in\\nnorthern Israel yesterday by the terrorist Hizbullah organization [...] \\n\\n\\nIn article <1993Apr14.125813.21737@ncsu.edu> hernlem@chess.ncsu.edu \\n(Brad Hernlem) wrote:\\n\\nCongratulations to the brave men of the Lebanese resistance! With every\\nIsraeli son that you place in the grave you are underlining the moral\\nbankruptcy of Israel's occupation and drawing attention to the Israeli\\ngovernment's policy of reckless disregard for civilian life.\\n\\n\\n\\tApparently, the Hizbollah were encouraged by Brad's cheers\\n\\t(good job, Brad). Someone forgot to tell them, though, that \\n\\tBrad asks them to place only Israeli _sons_ in the grave, \\n\\tnot daughters. Paraphrasing a bit, with every rocket that \\n\\tthe Hizbollah fires on the Galilee, they justify Israel's \\n\\tholding to the security zone. \\n\\nNoam\\n \\n \\n\",\n", - " \"From: SHICKLEY@VM.TEMPLE.EDU\\nSubject: For Sale (sigh)\\nOrganization: Temple University\\nLines: 34\\nNntp-Posting-Host: vm.temple.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\n\\n FOR SALE (RELUCTANTLY)\\n ---- Classic Bike -----\\n 1972 YAMAHA XS-2 650 TWIN\\n \\n<6000 Original miles. Always stored inside. 1979 front end with\\naftermarket tapered steering head bearings. Racer's supply rear\\nbronze swingarm bushings, Tsubaki chain, Pirrhana 1/4 fairing\\nwith headlight cutout, one-up Carrera racing seat, superbike bars,\\nvelo stacks on twin carbs. Also have original seat. Tank is original\\ncherry/white paint with no scratches, dents or dings. Needs a\\nnew exhaust as original finally rusted through and was discarded.\\nI was in process of making Kenney Roberts TT replica/ cafe racer\\nwhen graduate school, marriage, child precluded further effort.\\nWife would love me to unload it. It does need re-assembly, but\\nI think everything is there. I'll also throw in manuals, receipts,\\nand a collection of XS650 Society newsletters and relevant mag\\narticles. Great fun, CLASSIC bike with over 2K invested. Will\\nconsider reasonable offers.\\n___________________________________________________________________________\\n \\nTimothy J. Shickley, Ph.D. Director, Neurourology\\nDepartments of Urology and Anatomy/Cell Biology\\nTemple University School of Medicine\\n3400 North Broad St.\\nPhiladelphia, PA 19140\\n(voice/data) 215-221-8966; (voice) 21-221-4567; (fax) 21-221-4565\\nINTERNET: shickley@vm.temple.edu BITNET: shickley@templevm.bitnet\\nICBM: 39 57 08N\\n 75 09 51W\\n_________________________________________________________________________\\n \\n \\nw\\n\",\n", - " 'From: pearson@tsd.arlut.utexas.edu (N. Shirlene Pearson)\\nSubject: Re: Sunrise/ sunset times\\nNntp-Posting-Host: wren\\nOrganization: Applied Research Labs, University of Texas at Austin\\nLines: 13\\n\\njpw@cbis.ece.drexel.edu (Joseph Wetstein) writes:\\n\\n\\n>Hello. I am looking for a program (or algorithm) that can be used\\n>to compute sunrise and sunset times.\\n\\nWould you mind posting the responses you get?\\nI am also interested, and there may be others.\\n\\nThanks,\\n\\nN. Shirlene Pearson\\npearson@titan.tsd.arlut.utexas.edu\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: For JOHS@dhhalden.no (3) - Last \\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 37\\n\\nPete Young, on the Tue, 20 Apr 93 08:29:21 GMT wibbled:\\n: Nick Pettefar (npet@bnr.ca) wrote:\\n\\n: : Tsk, tsk, tsk. Another newbie bites the dust, eh? They\\'ll learn.\\n\\n: Newbie. Sorry to disappoint you, but as far as the Internet goes I was\\n: in Baghdad while you were still in your dads bag.\\nIs this bit funny?\\n\\n: Most of the people who made this group interesting 3 or 4 years ago\\n: are no longer around and I only have time to make a random sweep\\n: once a week or so. Hence I missed most of this thread. \\nI\\'m terribly sorry.\\n\\n: Based on your previous postings, apparently devoid of humour, sarcasm,\\n: wit, or the apparent capacity to walk and chew gum at the same time, I\\n: assumed you were serious. Mea culpa.\\nI know, I know. Subtlety is sort of, you know, subtle, isn\\'t it.\\n\\n: Still, it\\'s nice to see that BNR are doing so well that they can afford\\n: to overpay some contractors to sit and read news all day.\\nThat\\'s foreign firms for you.\\n\\n\\n..and a touchy newbie, at that.\\n\\nWhat\\'s the matter, too much starch in the undies?\\n--\\n\\nNick (the Considerate Biker) DoD 1069 Concise Oxford None Gum-Chewer\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n (-\\n',\n", - " 'From: ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck)\\nSubject: Re: detecting double points in bezier curves\\nOrganization: My own node in Groningen, NL.\\nLines: 34\\n\\nrenner@adobe.com (John Renner) writes:\\n\\n> In article <19930420.090030.915@almaden.ibm.com> capelli@vnet.IBM.COM (Ron Ca\\n> >In Ferdinand Oeinck writes:\\n> >>I\\'m looking for any information on detecting and/or calculating a double\\n> >>point and/or cusp in a bezier curve.\\n> >\\n> >See:\\n> > Maureen Stone and Tony DeRose,\\n> > \"A Geometric Characterization of Parametric Cubic Curves\",\\n> > ACM TOG, vol 8, no 3, July 1989, pp. 147-163.\\n> \\n> I\\'ve used that reference, and found that I needed to go to their\\n> original tech report:\\n> \\n> \\tMaureen Stone and Tony DeRose,\\n> \\t\"Characterizing Cubic Bezier Curves\"\\n> \\tXerox EDL-88-8, December 1988\\n> \\n\\nFirst, thanks to all who replied to my original question.\\n\\nI\\'ve implemented the ideas from the article above and I\\'m very satisfied\\nwith the results. I needed it for my bezier curve approximation routine.\\nIn some cases (generating offset curves) loops can occur. I now have a\\nfast method of detecting the generation of a curve with a loop. Although\\nI did not follow the article above strictly. The check if the fourth control\\npoint lies in the the loop area, which is bounded by two parabolas and\\none ellips is too complicated. Instead I enlarged the loop-area and\\nsurrounded it by for straight lines. The check is now simple and fast and\\nmy approximation routine never ever outputs self-intersecting bezier curves\\nagain!\\nFerdinand.\\n\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: U of Toronto Zoology\\nLines: 10\\n\\nIn article <23APR199317452695@tm0006.lerc.nasa.gov> dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock) writes:\\n> - Man-Tended Capability (Griffin has not yet adopted non-sexist\\n> language) ...\\n\\nGlad to see Griffin is spending his time on engineering rather than on\\nritual purification of the language. Pity he got stuck with the turkey\\nrather than one of the sensible options.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: backon@vms.huji.ac.il\\nSubject: Re: From Israeli press. Madness.\\nDistribution: world\\nOrganization: The Hebrew University of Jerusalem\\nLines: 165\\n\\nIn article <1483500342@igc.apc.org>, Center for Policy Research writes:\\n>\\n> From: Center for Policy Research \\n> Subject: From Israeli press. Madness.\\n>\\n> /* Written 4:34 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n> /* ---------- \"From Israeli press. Madness.\" ---------- */\\n> FROM THE ISRAELI PRESS.\\n>\\n> Paper: Zman Tel Aviv (Tel Aviv\\'s time). Friday local Tel Aviv\\'s\\n> paper, affiliated with Maariv.\\n>\\n> Date: 19 February 1993\\n>\\n> Journalist: Guy Ehrlich\\n>\\n> Subject: Interview with soldiers who served in the Duvdevan\\n> (Cherry) units, which disguise themselves as Arabs and operate\\n> within the occupied territories.\\n>\\n> Excerpts from the article:\\n>\\n> \"A lot has been written about the units who disguise themselves as\\n> Arabs, things good and bad, some of the falsehoods. But the most\\n> important problem of those units has been hardly dealt with. It is\\n> that everyone who serves in the Cherry, after a time goes in one\\n> way or another insane\".\\n\\n\\nGee, I\\'d better tell this to the Mental Health Branch of the Israeli Army\\nMedical Corps ! Where would we be without you, Davidson ?\\n\\n\\n\\n\\n\\n>\\n> A man who said this, who will here be called Danny (his full name\\n> is known to the editors) served in the Cherry. After his discharge\\n> from the army he works as delivery boy. His pal, who will here be\\n> called Dudu was also serving in the Cherry, and is now about to\\n> depart for a round-the-world tour. They both look no different\\n> from average Israeli youngsters freshly discharged from conscript\\n> service. But in their souls, one can notice something completely\\n> different....It was not easy for them to come out with disclosures\\n> about what happened to them. And they think that to most of their\\n> fellows from the Cherry it woundn\\'t be easy either. Yet after they\\n> began to talk, it was nearly impossible to make them stop talking.\\n> The following article will contain all the horror stories\\n> recounted with an appalling openness.\\n>\\n> (...) A short time ago I was in command of a veteran team, in\\n> which some of the fellows applied for release from the Cherry. We\\n> called such soldiers H.I. \\'Hit by the Intifada\\'. Under my command\\n> was a soldier who talked to himself non-stop, which is a common\\n> phenomenon in the Cherry. I sent him to a psychiatrist. But why I\\n> should talk about others when I myself feel quite insane ? On\\n> Fridays, when I come home, my parents know I cannot be talked to\\n> until I go to the beach, surf a little, calm down and return. The\\n> keys of my father\\'s car must be ready for in advance, so that I\\n> can go there. I they dare talk to me before, or whenever I don\\'t\\n> want them to talk to me, I just grab a chair and smash it\\n> instantly. I know it is my nerve: Smashing chairs all the time\\n> and then running away from home, to the car and to the beach. Only\\n> there I become normal.(...)\\n>\\n> (...) Another friday I was eating a lunch prepared by my mother.\\n> It was an omelette of sorts. She took the risk of sitting next to\\n> me and talking to me. I then told my mother about an event which\\n> was still fresh in my mind. I told her how I shot an Arab, and how\\n> exactly his wound looked like when I went to inspect it. She began\\n> to laugh hysterically. I wanted her to cry, and she dared laugh\\n> straight in my face instead ! So I told her how my pal had made a\\n> mincemeat of the two Arabs who were preparing the Molotov\\n> cocktails. He shot them down, hitting them beautifully, exactly as\\n> they deserved. One bullet had set a Molotov cocktail on fire, with\\n> the effect that the Arab was burning all over, just beautifully. I\\n> was delighted to see it. My pal fired three bullets, two at the\\n> Arab with the Molotov cocktail, and the third at his chum. It hit\\n> him straight in his ass. We both felt that we\\'d pulled off\\n> something.\\n>\\n> Next I told my mother how another pal of mine split open the guts\\n> in the belly of another Arab and how all of us ran toward that\\n> spot to take a look. I reached the spot first. And then that Arab,\\n> blood gushing forth from his body, spits at me. I yelled: \\'Shut\\n> up\\' and he dared talk back to me in Hebrew! So I just laughed\\n> straight in his face. I am usually laughing when I stare at\\n> something convulsing right before my eyes. Then I told him: \\'All\\n> right, wait a moment\\'. I left him in order to take a look at\\n> another wounded Arab. I asked a soldier if that Arab could be\\n> saved, if the bleeding from his artery could be stopped with the\\n> help of a stone of something else like that. I keep telling all\\n> this to my mother, with details, and she keeps laughing straight\\n> into my face. This infuriated me. I got very angry, because I felt\\n> I was becoming mad. So I stopped eating, seized the plate with he\\n> omelette and some trimmings still on, and at once threw it over\\n> her head. Only then she stopped laughing. At first she didn\\'t know\\n> what to say.\\n>\\n> (...) But I must tell you of a still other madness which falls\\n> upon us frequently. I went with a friend to practice shooting on a\\n> field. A gull appeared right in the middle of the field. My friend\\n> shot it at once. Then we noticed four deer standing high up on the\\n\\n\\nSigh.\\n\\nFour (4) deer in Tel Aviv ?? Well, this is probably as accurate as the rest of\\nthis fantasy.\\n\\n\\n\\n\\n\\n> hill above us. My friend at once aimed at one of them and shot it.\\n> We enjoyed the sight of it falling down the rock. We shot down two\\n> deer more and went to take a look. When we climbed the rocks we\\n> saw a young deer, badly wounded by our bullet, but still trying to\\n> such some milk from its already dead mother. We carefully\\n> inspected two paths, covered by blood and chunks of torn flesh of\\n> the two deer we had hit. We were just delighted by that sight. We\\n> had hit\\'em so good ! Then we decided to kill the young deer too,\\n> so as spare it further suffering. I approached, took out my\\n> revolver and shot him in the head several times from a very short\\n> distance. When you shoot straight at the head you actually see the\\n> bullets sinking in. But my fifth bullet made its brains fall\\n> outside onto the ground, with the effect of splattering lots of\\n> blood straight on us. This made us feel cured of the spurt of our\\n> madness. Standing there soaked with blood, we felt we were like\\n> beasts of prey. We couldn\\'t explain what had happened to us. We\\n> were almost in tears while walking down from that hill, and we\\n> felt the whole day very badly.\\n>\\n> (...) We always go back to places we carried out assignments in.\\n> This is why we can see them. When you see a guy you disabled, may\\n> be for the rest of his life, you feel you got power. You feel\\n> Godlike of sorts.\"\\n>\\n> (...) Both Danny and Dudu contemplate at least at this moment\\n> studying the acting. Dudu is not willing to work in any\\n> security-linked occupation. Danny feels the exact opposite. \\'Why\\n> shouldn\\'t I take advantage of the skills I have mastered so well ?\\n> Why shouldn\\'t I earn $3.000 for each chopped head I would deliver\\n> while being a mercenary in South Africa ? This kind of job suits\\n> me perfectly. I have no human emotions any more. If I get a\\n> reasonable salary I will have no problem to board a plane to\\n> Bosnia in order to fight there.\"\\n>\\n> Transl. by Israel Shahak.\\n>\\n\\nYisrael Shahak the crackpot chemist ? Figures. I often see him in the\\nRechavia (Jerusalem) post office. A really sad figure. Actually, I feel sorry\\nfor him. He was in a concentration camp during the Holocaust and it must have\\naffected him deeply.\\n\\n\\n\\n\\nJosh\\nbackon@VMS.HUJI.AC.IL\\n\\n\\n\\n',\n", - " 'From: un034214@wvnvms.wvnet.edu\\nSubject: M-MOTION VIDEO CARD: YUV to RGB ?\\nOrganization: West Virginia Network for Educational Telecomputing\\nLines: 21\\n\\nI am trying to convert an m-motion (IBM) video file format YUV to RGB \\ndata...\\n\\nTHE Y portion is a byte from 0-255\\nTHE V is a byte -127-127\\nTHe color is U and V\\nand the intensity is Y\\n\\nDOes anyone have any ideas for algorhtyms or programs ?\\n\\nCan someone tell me where to get info on the U and V of a television signal ?\\n\\nIF you need more info reply at the e-mail address...\\nBasically what I am doing is converting a digital NTSC format to RGB (VGA)\\nfor displaying captured video pictures.\\n\\nThanks.\\n\\n\\nTHE U is a byte -127-127\\n\\n',\n", - " \"From: sherry@a.cs.okstate.edu (SHERRY ROBERT MICH)\\nSubject: Re: .SCF files, help needed\\nOrganization: Oklahoma State University\\nLines: 27\\n\\nFrom article <1993Apr21.013846.1374@cx5.com>, by tlc@cx5.com:\\n> \\n> \\n> I've got an old demo disk that I need to view. It was made using RIX Softworks. \\n> The files on the two diskette set end with: .scf\\n> \\n> The demo was VGA resolution (256 colors), but I don't know the spatial \\n> resolution.\\n> \\n\\nAccording to my ColoRIX manual .SCF files are 640x480x256\\n\\n> First problem: When I try to run the demo, the screen has two black bars that \\n> cut across (horizontally) the screen, in the top third and bottom third of the \\n> screen. The bars are about 1-inch wide. Other than this, the demo (the \\n> animation part) seems to be running fine.\\n> \\n> Second problem: I can't find any graphics program that will open and display \\n> these files. I have a couple of image conversion programs, none mention .scf \\n> files.\\n> \\n\\nYou may try VPIC, I think it handles the 256 color RIX files OK..\\n\\n\\nRob Sherry\\nsherry@a.cs.okstate.edu\\n\",\n", - " \"From: nick@sfb256.iam.uni-bonn.de ( Nikan B Firoozye )\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Applied Math, University of Bonn, Germany\\nLines: 15\\n\\nA related question (which I haven't given that much serious thought \\nto): at what lattitude is the average length of the day (averaged \\nover the whole year) maximized? Is this function a constant=\\n12 hours? Is it truly symmetric about the equator? Or is\\nthere some discrepancy due to the fact that the orbit is elliptic\\n(or maybe the difference is enough to change the temperature and\\nmake the seasons in the southern hemisphere more bitter, but\\nis far too small to make a sizeable difference in daylight\\nhours)?\\n\\nI want to know where to move.\\n\\n\\t-Nick Firoozye\\n\\tnick@sfb256.iam.uni-bonn.de\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Given the massacre of the Muslim population of Karabag by Armenians...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nLines: 124\\n\\nIn article <1993Apr19.155856.8260@kpc.com> henrik@quayle.kpc.com writes:\\n\\n>Let me clearify Mr. Turkish;\\n>ARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that \\n>SHE WILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\n>tricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\n>CYPRESS WHILE the world simply WATCHED. \\n\\nAnd the \\'Turkish Karabag\\' is next. As for \\'Cyprus\\', In 1974, Turkiye \\nstepped into Cyprus to preserve the lives of the Turkish population \\nthere. This is nothing but a simple historical fact. Unfortunately, \\nthe intervention was too late at least for some of the victims. Mass \\ngraves containing numerous bodies of women and children already showed \\nwhat fate had been planned for a peaceful minority.\\n\\nThe problems in Cyprus have their origin in decades of \\noppression of the Turkish population by the Greek Cypriot \\nofficials and their violation of the co-founder status of \\nthe Turks set out in the constitution. The coup d\\'etat \\nengineered by Greece in 1974 to execute a final solution \\nto the Turkish problem was the savage blow that invoked \\nTurkiye\\'s intervention. Turkiye intervened reluctantly and \\nonly as a last resort after exhausting all other avenues \\nconsulting with Britain and Greece as the other two signatories \\nto the treaty to protect the integrity of Cyprus. There simply \\nwas not any expansionist motivation in the Turkish action at \\nall. This is in dramatic contrast to the Greek motivation which \\nwas openly expansionist, stated as \\'Enosis,\\' union with Greece. \\nSince the creation of independent Cyprus in 1960, the Turkish \\npopulation, although smaller, legally had status as the co-founder\\nof the republic with the Greek population.\\n\\nThe Greek Cypriots, with the support of \\'Enosis\\'-minded\\nGreeks in the mainland, have consistently ignored that\\nstatus and portrayed the Island as a Greek island with\\na minority population of Turks. The Turks of Cyprus are\\nnot a minority in a Greek Republic and they found the\\nonly way they could show that was to assert their \\nautonomy in a separate republic.\\n\\nTurkiye is not satisfied with the status quo. She would\\nrather not be involved with the island. But, given the\\ndismal record of brutal Greek oppression of the Turkish\\npopulation in Cyprus, she simply cannot leave the fate\\nof the island\\'s Turks in the hands of the Greeks until\\nthe Turkish side is satisfied with whatever accord\\nthe two communities finally reach to guarantee that\\nhistory will not repeat itself to rob Turkish Cypriots\\nof their rights, liberties and their very lives.\\n\\n\\n Source: \\'Cyprus: The Tale Of An Island,\\' A. H. Rizvi, p. 42\\n\\n 21-12-1963 Throughout Cyprus\\n \"Following the Greek Cypriot premeditated onslaught of 21 December,\\n 1963, the Turkish Sectors all over Cyprus were completely besieged\\n by Greeks; all telephonic, telegraphic and postal communications\\n between these sectors were cut off and the Turkish Cypriot\\n Community\\'s contact with each other and with the outside world\\n was thus prevented.\"\\n\\n 21-12-63 -- 31-12-63 Turkish Quarter of Nicosia and suburbs\\n \"Greek Cypriot armed elements broke into hundreds of Turkish\\n homes and fired at the unarmed occupants with automatic\\n weapons killing at random many Turks, including women, children\\n and elderly persons (51 Turks were killed and 82 wounded). They\\n also carried away as hostages more than 700 Turks, including\\n women and children, whom they forced to walk bare-footed and\\n in night-dresses across rough fields and river beds.\"\\n\\n 21-12-63 -- 12-12-64 Throughout Cyprus\\n \"The Greek Cypriot Administration deprived Turkish Cypriots \\n including Ministers, MPs, and Turkish members of the Public\\n services of the republic, of their right to freedom of movement.\"\\n\\n In his report No. S/6102 of 12 December, 1964 to the Security\\n Council, the UN Secretary-General stated in this respect the\\n following:\\n\\n \"Restrictions on the free movement of civilians have been one of\\n the major features of the situation in Cyprus since the early\\n stages of the disturbances, these restrictions have inflicted\\n considerable hardship on the population, especially the Turkish\\n Cypriot Community, and have kept tension high.\"\\n\\n 25-9-1964 -- 31-3-1968 Throughout Cyprus\\n \\n \"Supply of petrol was completely denied to the Turkish sections.\"\\n\\n Makarios Addresses UN Security Council On 19 July 1974\\n After being Ousted by the Greek Junta Coup\\n\\n \"In the beginning I wish to express my sincere thanks to all the\\n members of the Security Council for the great interest they have\\n shown in the critical situation which has been created in Cyprus\\n after the coup organized by the military regime in Greece and\\n carried out by the Greek army officers who were serving in the\\n National Guard and were commanding it.\\n\\n [..]\\n\\n 13-3-1975 On the road travelling to the South to the freedom of\\n the North\\n\\n \"A Turkish woman was seriously wounded and her four-month old\\n baby was riddled with bullets from an automatic weapon fired by\\n a Greek Cypriot mobile patrol which had ambushed the car in which\\n the mother and her baby were travelling to the Turkish region.\\n The baby died in her mother\\'s arms.\\n\\n This wanton murder of a four-month-old baby, which shocked foreign\\n observers as much as the Turkish Community, was not committed by\\n irresponsible persons, but by members of the Greek Cypriot security\\n forces. According to the mother\\'s statement the Greek police patrol\\n had chased their car and deliberately fired upon it.\"\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n',\n", - " \"From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Enough Freeman Bashing! Was: no-Free man propaganda machine: Freemanwith blood greetings from Israel\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 18\\n\\nIn article mafifi@eis.calstate.edu (Marc A Afifi) writes:\\n>pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman) writes:\\n>\\n>\\n>Peter,\\n>\\n>I believe this is your most succinct post to date. Since you have nothing\\n>to say, you say nothing! It's brilliant. Did you think of this all by\\n>yourself?\\n>\\n>-marc \\n>--\\n\\nHey tough guy, read the topic. That's the message. Get a brain. Go to \\na real school.\\n\\n\\n\\n\",\n", - " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 22\\n\\nJim Perry (perry@dsinc.com) wrote:\\n\\n: The Bible says there is a God; if that is true then our atheism is\\n: mistaken. What of it? Seems pretty obvious to me. Socrates said\\n: there were many gods; if that is true then your monotheism (and our\\n: atheism) is mistaken, even if Socrates never existed.\\n\\n\\nJim,\\n\\nI think you must have come in late. The discussion (on my part at\\nleast) began with Benedikt's questioning of the historical acuuracy of\\nthe NT. I was making the point that, if the same standards are used to\\nvalidate secular history that are used here to discredit NT history,\\nthen virtually nothing is known of the first century.\\n\\nYou seem to be saying that the Bible -cannot- be true because it\\nspeaks of the existence of God as it it were a fact. Your objection\\nhas nothing to do with history, it is merely another statement of\\natheism.\\n\\nBill\\n\",\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Level 5?\\nOrganization: U of Toronto Zoology\\nLines: 18\\n\\nIn article <1raejd$bf4@access.digex.net> prb@access.digex.com (Pat) writes:\\n>what ever happened to the hypothesis that the shuttle flight software\\n>was a major factor in the loss of 51-L. to wit, that during the\\n>wind shear event, the Flight control software indicated a series\\n>of very violent engine movements that shocked and set upa harmonic\\n>resonance leading to an overstress of the struts.\\n\\nThis sounds like another of Ali AbuTaha\\'s 57 different \"real causes\" of\\nthe Challenger accident. As far as I know, there has never been the\\nslightest shred of evidence for a \"harmonic resonance\" having occurred.\\n\\nThe windshear-induced maneuvering probably *did* contribute to opening\\nup the leak path in the SRB joint again -- it seems to have sealed itself\\nafter the puffs of smoke during liftoff -- but the existing explanation\\nof this and related events seems to account for the evidence adequately.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: Where are they now?\\nOrganization: Case Western Reserve University\\nLines: 34\\nDistribution: world\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1ql0d3$5vo@dr-pepper.East.Sun.COM> geoff@East.Sun.COM (Geoff Arnold @ Sun BOS - R.H. coast near the top) writes:\\n\\n>Your posting provoked me into checking my save file for memorable\\n>posts. The first I captured was by Ken Arromdee on 19 Feb 1990, on the\\n>subject \"Re: atheist too?\". That was article #473 here; your question\\n>was article #53766, which is an average of about 48 articles a day for\\n>the last three years. As others have noted, the current posting rate is\\n>such that my kill file is depressing large...... Among the posting I\\n>saved in the early days were articles from the following notables:\\n\\n\\tHey, it might to interesting to read some of these posts...\\nEspecially from ones who still regularly posts on alt.atheism!\\n\\n\\n>>From: loren@sunlight.llnl.gov (Loren Petrich)\\n>>From: jchrist@nazareth.israel.rel (Jesus Christ of Nazareth)\\n>>From: mrc@Tomobiki-Cho.CAC.Washington.EDU (Mark Crispin)\\n>>From: perry@apollo.HP.COM (Jim Perry)\\n>>From: lippard@uavax0.ccit.arizona.edu (James J. Lippard)\\n>>From: minsky@media.mit.edu (Marvin Minsky)\\n>\\n>An interesting bunch.... I wonder where #2 is?\\n\\n\\tHee hee hee.\\n\\n\\t*I* ain\\'t going to say....\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", - " \"Subject: Re: Traffic morons\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 28\\n\\nIn article <10326.97.uupcb@compdyn.questor.org>,\\nryan_cousineau@compdyn.questor.org (Ryan Cousineau) wrote:\\n> \\n> NMM>From: nielsmm@imv.aau.dk (Niels Mikkel Michelsen)\\n> NMM>Subject: How to act in front of traffic jerks\\n> \\n> NMM>The other day, it was raining cats and dogs, therefor I was going only to\\n> NMM>the speed limit, on nothing more, on my bike. This guy in his BMW was\\n> NMM>driving 1-2 meters behind me for 7-800 meters and at the next red light I\\n> NMM>calmly put the bike on its leg, walked back to this car, he rolled down the\\n> NMM>window, and I told him he was a total idiot (and the reason why).\\n> \\n> NMM>Did I do the right thing?\\n\\n\\timho, you did the wrong thing. You could have been shot\\n or he could have run over your bike or just beat the shit\\n out of you. Consider that the person is foolish enough\\n to drive like a fool and may very well _act_ like one, too.\\n\\n Just get the heck away from the idiot.\\n\\n IF the driver does something clearly illegal, you _can_\\n file a citizens arrest and drag that person into court.\\n It's a hassle for you but a major hassle for the perp.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n\",\n", - " \"From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Re: Vandalizing the sky.\\nIn-Reply-To: todd@phad.la.locus.com's message of Wed, 21 Apr 93 16:28:00 GMT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<1993Apr21.162800.168967@locus.com>\\nLines: 33\\n\\nIn article <1993Apr21.162800.168967@locus.com> todd@phad.la.locus.com (Todd Johnson) writes:\\n\\n As for advertising -- sure, why not? A NASA friend and I spent one\\n drunken night figuring out just exactly how much gold mylar we'd need\\n to put the golden arches of a certain American fast food organization\\n on the face of the Moon. Fortunately, we sobered up in the morning.\\n\\nHmmm. It actually isn't all that much, is it? Like about 2 million\\nkm^2 (if you think that sounds like a lot, it's only a few tens of m^2\\nper burger that said organization sold last year). You'd be best off\\nwith a reflective substance that could be sprayed thinly by an\\nunmanned craft in lunar orbit (or, rather, a large set of such craft).\\nIf you can get a reasonable albedo it would be visible even at new\\nmoon (since the moon itself is quite dark), and _bright_ at full moon.\\nYou might have to abandon the colour, though.\\n\\nBuy a cheap launch system, design reusable moon -> lunar orbit\\nunmanned spraying craft, build 50 said craft, establish a lunar base\\nto extract TiO2 (say: for colour you'd be better off with a sulphur\\ncompound, I suppose) and some sort of propellant, and Bob's your\\nuncle. I'll do it for, say, 20 billion dollars (plus changes of\\nidentity for me and all my loved ones). Delivery date 2010.\\n\\nCan we get the fast-food chain bidding against the fizzy-drink\\nvendors? Who else might be interested?\\n\\nWould they buy it, given that it's a _lot_ more expensive, and not\\nmuch more impressive, than putting a large set of several-km\\ninflatable billboards in LEO (or in GEO, visible 24 hours from your\\nkey growth market). I'll do _that_ for only $5bn (and the changes of\\nidentity).\\n\\nNick Haines nickh@cmu.edu\\n\",\n", - " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Boom! Hubcap attack!\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nLines: 57\\n\\nIn article , speedy@engr.latech.edu (Speedy\\nMercer) writes:\\n|> I was attacked by a rabid hubcap once. I was going to work on a\\n|> Yamaha\\n|> 750 Twin (A.K.A. \"the vibrating tank\") when I heard a wierd noise off\\n|> to my \\n|> left. I caught a glimpse of something silver headed for my left foot\\n|> and \\n|> jerked it up about a nanosecond before my bike was hit HARD in the\\n|> left \\n|> side. When I went to put my foot back on the peg, I found that it\\n|> was not \\n|> there! I pulled into the nearest parking lot and discovered that I\\n|> had been \\n|> hit by a wire-wheel type hubcap from a large cage! This hubcap\\n|> weighed \\n|> about 4-5 pounds! The impact had bent the left peg flat against the\\n|> frame \\n|> and tweeked the shifter in the process. Had I not heard the\\n|> approaching \\n|> cap, I feel certian that I would be sans a portion of my left foot.\\n|> \\n|> Anyone else had this sort of experience?\\n|> \\n\\n Not with a hub cap but one of those \"Lumber yard delivery\\ntrucks\" made life interesting when he hit a \\'dip\\' in the road\\nand several sheets of sheetrock and a dozen 5 gallon cans of\\nspackle came off at 70 mph. It got real interesting for about\\n20 seconds or so. Had to use a wood mallet to get all the dried\\nspackle off Me, the Helmet and the bike when I got home. Thanks \\nto the bob tail Kenworth between me and the lumber truck I had\\na \"Path\" to drive through he made with his tires (and threw up\\nthe corresponding monsoon from those tires as he ran over\\nwhat ever cans of spackle didn\\'t burst in impact). A car in\\nfront of me in the right lane hit her brakes, did a 360 and\\nnailed a bridge abutment half way through the second 360.\\n\\nThe messiest time was in San Diego in 69\\' was on my way\\nback to the apartment in ocean beach on my Sportster and\\nhad just picked up a shake, burger n fries from jack in\\nthe box and stuffed em in my foul weather jacket when the\\nmilk shake opened up on Nimitz blvd at 50 mph, nothing\\nlike the smell of vanilla milk shake cooking on the\\nengine as it runs down your groin and legs and 15 people\\nwaiting in back of you to make the same left turn you are.\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Camping question?\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 46\\n\\nSanjay Sinha, on the 12 Apr 93 00:23:19 GMT wibbled:\\n\\n: Thanks to everyone who posted in my previous quest for camping info..\\n\\n: Another question. \\n: Well, not strictly r.m. stuff\\n\\n: I am looking for a thermos/flask to keep coffee hot. I mean real\\n: hot! Of course it must be the unbreakable type. So far, what ever\\n: metal type I have wasted money on has not matched the vacuum/glass \\n: type.\\n\\n: Any info appreciated.\\n\\n: Sanjay\\n\\n\\nBack in my youth (ahem) the wiffy and moi purchased a gadget which heated up\\nwater from a 12V source. It was for car use but we thought we\\'d try it on my\\nRD350B. It worked OK apart from one slight problem: we had to keep the revs \\nabove 7000. Any lower and the motor would die from lack of electron movement.\\n\\nIt made for interesting cups of coffee, anyhow. We would plot routes that\\ncontained straights of over three miles so that we had sufficient time to\\nget the water to boiling point. This is sometimes difficult in England.\\n\\nGood luck on your quest.\\n--\\n\\nNick (the Biker) DoD 1069 Concise Oxford\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", - " 'From: arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee)\\nSubject: Re: American Jewish Congress Open Letter to Clinton\\nOrganization: Johns Hopkins University CS Dept.\\nLines: 46\\n\\nIn article <22APR199307534304@vxcrna.cern.ch> casper@vxcrna.cern.ch (CASPER,DAVI./PPE) writes:\\n>> [I said the fixation on Bosnia is due to it being in a European country,\\n>> rather than the third world]\\n>>I recall, before we did anything for Somalia, (apparent) left-wingers saying\\n>>that the reason everyone was more willing to send troops to Bosnia than to\\n>>Somalia was because the Somalis are third-worlders who Americans consider\\n>>unworthy of help. They suddenly shut up when the US decided to send troops to\\n>>the opposite place than that predicted by the theory.\\n>I am a staunch Republican, BTW. The irony of arguing against military\\n>intervention with arguments based on Vietnam has not escaped me. I was opposed\\n>to US intervention in Somalia for the same reasons, although clearly it was\\n>not nearly as risky.\\n\\nBased on the same reasons? You mean you were opposed to US intervention in\\nSomalia because since Somalia is a European country instead of the third world,\\nthe desire to help Somalia is racist? I don\\'t think this \"same reason\" applies\\nto Somalia at all.\\n\\nThe whole point is that Somalia _is_ a third world country, and we were more\\nwilling to send troops there than to Bosnia--exactly the _opposite_ of what\\nthe \"fixation on European countries\" theory would predict. (Similarly, the\\ndesire to help Muslims being fought by Christians is also exactly the opposite\\nof what that theory predicts.)\\n\\n>>For that matter, this theory of yours suggests that Americans should want to\\n>>help the Serbs. After all, they\\'re Christian, and the Muslims are not. If\\n>>the desire to intervene in Bosnia is based on racism against people that are\\n>>less like us, why does everyone _want_ to help the side that _is_ less like us?\\n>>Especially if both of the sides are equal as you seem to think?\\n>Well, one thing you have to remember is, the press likes a good story. Good\\n>for business, don\\'t you know. And BTW, not \"everyone\" wants to help the\\n>side that is less like us.\\n\\nI\\'m referring to people who want to help at all, of course. You don\\'t see\\npeople sending out press releases \"help Bosnian Serbs with ethnic cleansing!\\nThe Muslim presence in the Balkans should be eliminated now!\" (Well, except\\nfor some Serbs, but I admit that the desire of Serbs in America to help the\\nSerbian side probably _is_ because those are people more like them.)\\n--\\n\"On the first day after Christmas my truelove served to me... Leftover Turkey!\\nOn the second day after Christmas my truelove served to me... Turkey Casserole\\n that she made from Leftover Turkey.\\n[days 3-4 deleted] ... Flaming Turkey Wings! ...\\n -- Pizza Hut commercial (and M*tlu/A*gic bait)\\n\\nKen Arromdee (arromdee@jyusenkyou.cs.jhu.edu)\\n',\n", - " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Should liability insurance be required?\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 13\\n\\nIf I have one thing to say about \"No Fault\" it would be\\n\"It isn\\'t\"\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", - " 'From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: BMW MOA members read this!\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 10\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nAs a new BMW owner I was thinking about signing up for the MOA, but\\nright now it is beginning to look suspiciously like throwing money\\ndown a rathole.\\n When you guys sort this out let me know.\\n\\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n',\n", - " \"From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: M-MOTION VIDEO CARD: YUV to RGB ?\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM UK Labs\\nLines: 3\\n\\nI'll contact you offline about this.\\n\\nRick\\n\",\n", - " \"From: delilah@next18pg2.wam.umd.edu (Romeo DeVerona)\\nSubject: Re: New to Motorcycles...\\nNntp-Posting-Host: next18pg2.wam.umd.edu\\nOrganization: Workstations at Maryland, University of Maryland, College Park\\nLines: 10\\n\\n> > Motorcycle Safety Foundation riding course (a must!)\\t$140\\n> ^^^\\n> Wow! Courses in Georgia are much cheaper. $85 for both.\\n> >\\n> \\nin maryland, they were $25 each when i learned to ride 3 years ago. now,\\nit's $125 (!) for the beginner riders' course and $60 for the experienced\\nriders' course (which, admittedly, takes only about half the time ).\\n\\n-D-\\n\",\n", - " 'From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Shaft-drives and Wheelies\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 15\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, xlyx@vax5.cit.cornell.edu () says:\\n\\nMike Terry asks:\\n\\n>Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n>\\nNo Mike. It is imposible due to the shaft effect. The centripital effects\\nof the rotating shaft counteract any tendency for the front wheel to lift\\noff the ground.\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n',\n", - " 'From: yamauchi@ces.cwru.edu (Brian Yamauchi)\\nSubject: DC-X: Choice of a New Generation (was Re: SSRT Roll-Out Speech)\\nOrganization: Case Western Reserve University\\nLines: 27\\nDistribution: world\\nNNTP-Posting-Host: yuggoth.ces.cwru.edu\\nIn-reply-to: jkatz@access.digex.com\\'s message of 21 Apr 1993 22:09:32 -0400\\n\\nIn article <1r4uos$jid@access.digex.net> jkatz@access.digex.com (Jordan Katz) writes:\\n\\n>\\t\\t Speech Delivered by Col. Simon P. Worden,\\n>\\t\\t\\tThe Deputy for Technology, SDIO\\n>\\n>\\tMost of you, as am I, are \"children of the 1960\\'s.\" We grew\\n>up in an age of miracles -- Inter-Continental Ballistic Missiles,\\n>nuclear energy, computers, flights to the moon. But these were\\n>miracles of our parent\\'s doing. \\n\\n> Speech by Pete Worden\\n> Delivered Before the U.S. Space Foundation Conference\\n\\n> I\\'m embarrassed when my generation is compared with the last\\n>generation -- the giants of the last great space era, the 1950\\'s\\n>and 1960\\'s. They went to the moon - we built a telescope that\\n>can\\'t see straight. They soft-landed on Mars - the least we\\n>could do is soft-land on Earth!\\n\\nJust out of curiousity, how old is Worden?\\n--\\n_______________________________________________________________________________\\n\\nBrian Yamauchi\\t\\t\\tCase Western Reserve University\\nyamauchi@alpha.ces.cwru.edu\\tDepartment of Computer Engineering and Science\\n_______________________________________________________________________________\\n\\n',\n", - " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Keeping Spacecraft on after Funding Cuts.\\nIn-Reply-To: nicho@vnet.IBM.COM\\'s message of Fri, 23 Apr 93 09: 06:09 BST\\nOrganization: Compaq Computer Corp\\n\\t<1r6aqr$dnv@access.digex.net> \\n\\t<19930423.010821.639@almaden.ibm.com>\\nLines: 14\\n\\n>>>>> On Fri, 23 Apr 93 09:06:09 BST, nicho@vnet.IBM.COM (Greg Stewart-Nicholls) said:\\nGS> How about transferring control to a non-profit organisation that is\\nGS> able to accept donations to keep craft operational.\\n\\nI seem to remember NASA considering this for some of the Apollo\\nequipment left on the moon, but that they decided against it.\\n\\nOr maybe not...\\n\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", - " 'From: MUNIZB%RWTMS2.decnet@rockwell.com (\"RWTMS2::MUNIZB\")\\nSubject: How do they ignite the SSME?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 21\\n\\non Date: Sat, 3 Apr 1993 12:38:50 GMT, Paul Dietz \\nwrites:\\n\\n/in essence, holding a match under the nozzle, is just *nuts*. One\\n/thing you absolutely must do in such an engine is to guarantee that\\n/the propellants ignite as soon as they mix, within milliseconds. To\\n/do otherwise is to fill your engine with a high explosive mixture\\n/which, when it finally does ignite, blows everything to hell.\\n\\nDefinitely! In one of the reports of an early test conducted by Rocketdyne at \\ntheir Santa Susanna Field Lab (\"the Hill\" above the San Fernando and Simi \\nValleys), the result of a hung start was described as \"structural failure\" of \\nthe combustion chamber. The inspection picture showed pumps with nothing below\\n, the CC had vaporized! This was described in a class I took as a \"typical\\nengineering understatement\" :-)\\n\\nDisclaimer: Opinions stated are solely my own (unless I change my mind).\\nBen Muniz MUNIZB%RWTMS2.decnet@consrt.rockwell.com w(818)586-3578\\nSpace Station Freedom:Rocketdyne/Rockwell:Structural Loads and Dynamics\\n \"Man will not fly for fifty years\": Wilbur to Orville Wright, 1901\\n\\n',\n", - " \"From: lulagos@cipres.cec.uchile.cl (admirador)\\nSubject: OAK VGA 1Mb. Please, I needd VESA TSR!!! 8^)\\nOriginator: lulagos@cipres\\nNntp-Posting-Host: cipres.cec.uchile.cl\\nOrganization: Centro de Computacion (CEC), Universidad de Chile\\nLines: 15\\n\\n\\n\\tHi there!...\\n\\t\\tWell, i have a 386/40 with SVGA 1Mb. (OAK chip 077) and i don't\\n\\t\\thave VESA TSR program for this card. I need it . \\n\\t\\t\\tPlease... if anybody can help me, mail me at:\\n\\t\\t\\tlulagos@araucaria.cec.uchile.cl\\n\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tThanks.\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tMackk. \\n _ /| \\n \\\\'o.O' \\n =(___)=\\n U \\n Ack!\\n\",\n", - " \"From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: FAQs\\nArticle-I.D.: mojo.1pst9uINN7tj\\nReply-To: sysmgr@king.eng.umd.edu\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 10\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article <10505.2BBCB8C3@nss.org>, freed@nss.org (Bev Freed) writes:\\n>I was wondering if the FAQ files could be posted quarterly rather than monthly\\n>. Every 28-30 days, I get this bloated feeling.\\n\\nOr just stick 'em on sci.space.news every 28-30 days? \\n\\n\\n\\n Software engineering? That's like military intelligence, isn't it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\",\n", - " 'From: revans@euclid.ucsd.edu ( )\\nSubject: Himmler\\'s speech on the extirpation of the Jewish race\\nLines: 42\\nNntp-Posting-Host: euclid.ucsd.edu\\n\\n\\n WASHINGTON - A stark reminder of the Holocaust--a speech by Nazi \\nSS leader Heinrich Himmler that refers to \"the extermination of the\\nJewish race\"--went on display Friday at the National Archives.\\n\\tThe documents, including handwritten notes by Himmler, are\\namong the best evidence that exists to rebut claims that the\\nHolocaust is a myth, archivists say.\\n\\t\"The notes give them their authenticity,\" said Robert Wolfe,\\na supervisory archivist for captured German records. \"He was\\nsupposed to destroy them. Like a lot of bosses, he didn\\'t obey his\\nown rules.\"\\n\\tThe documents, moved out of Berlin to what Himmler hoped\\nwould be a safe hiding place, were recovered by Allied forces after\\nWorld War II from a salt mine near Salzburg, Austria.\\n\\tHimmler spoke on Oct.4, 1943, in Posen, Poland, to more than\\n100 German secret police generals. \"I also want to talk to you,\\nquite frankly, on a very grave matter. Among ourselves it should be\\nmentioned quite frankly, and yet we will never speak of it publicly.\\nI mean the clearing out of the Jew, the extermination of the Jewish\\nrace. This is a page of GLORY in our history which has never been\\nwritten and is never to be written.\" [Emphasis mine--rje]\\n\\tThe German word Himmler uses that is translated as\\n\"extermination\" is *Ausrottung*.\\n\\tWolfe said a more precise translation would be \"extirpation\"\\nor \"tearing up by the roots.\"\\n\\tIn his handwritten notes, Himmler used a euphemism,\\n\"Judenevakuierung\" or \"evacuation of the Jews.\" But archives\\nofficials said \"extermination\" is the word he actually\\nspoke--preserved on an audiotape in the archives.\\n\\tHimmler, who oversaw Adolf Hitler\\'s \"final solution of the\\nJewish question,\" committed suicide after he was arrested in 1945.\\n\\tThe National Archives exhibit, on display through May 16, is\\na preview of the opening of the United States Holocaust Memorial\\nMuseum here on April 26.\\n\\tThe National Archives exhibit includes a page each of\\nHimmler\\'s handwritten notes, a typed transcript from the speech and\\nan offical translation made for the Nuremberg war crimes trials.\\n\\n\\t---From p.A10 of Saturday\\'s L.A. Times, 4/17/93\\n\\t(Associated Press)\\n-- \\n(revans@math.ucsd.edu)\\n',\n", - " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Fortune-guzzler barred from bars!\\nOrganization: Louisiana Tech University\\nLines: 19\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr16.104158.27890@reed.edu> mblock@reed.edu (Matt Block) writes:\\n\\n>(assuming David didn't know that it can be done one-legged,) I too would \\n\\nIn New Orleans, LA, there was a company making motorcycles for WHEELCHAIR \\nbound people! The rig consists of a flat-bed sidecar rig that the \\nwheelchair can be clamped to. The car has a set of hand controls mounted on \\nconventional handlebars! Looks wierd as hell to see this legless guy \\ndriving the rig from the car while his girlfriend sits on the bike as a \\npassenger!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", - " 'From: robinson@cogsci.Berkeley.EDU (Michael Robinson)\\nSubject: Passenger helmet sizing\\nOrganization: Institute of Cognitive Studies, U.C. Berkeley\\nLines: 32\\nNNTP-Posting-Host: cogsci.berkeley.edu\\n\\nIn article <1qk5oi$d0i@sixgun.East.Sun.COM> egreen@east.sun.com writes:\\n>In article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n>> \\n>> The question for the day is re: passenger helmets, if you don\\'t know for \\n>>certain who\\'s gonna ride with you (like say you meet them at a .... church \\n>>meeting, yeah, that\\'s the ticket)... What are some guidelines? Should I just \\n>>pick up another shoei in my size to have a backup helmet (XL), or should I \\n>>maybe get an inexpensive one of a smaller size to accomodate my likely \\n>>passenger? \\n>\\n>If your primary concern is protecting the passenger in the event of a\\n>crash, have him or her fitted for a helmet that is their size. If your\\n>primary concern is complying with stupid helmet laws, carry a real big\\n>spare (you can put a big or small head in a big helmet, but not in a\\n>small one).\\n\\nWhile shopping for a passenger helmet, I noticed that in many cases the\\nexternal dimensions of the helmets were the same from S through XL. The\\ndifference was the amount of inside padding.\\n\\nMy solution was to buy a large helmet, and construct a removable liner \\nfrom a sheet of .5\" closed-cell foam and some satin (glued to the inside\\nsurface). The result is a reasonably snug fit on my smallest-headed pillion\\nwith the liner in, and a comfortable fit on my largest-headed pillion with\\nthe liner out. Everyone else gets linered or not by best fit.\\n\\n\\n\\n-- \\n ----------------------------------------------------------------------------\\n Michael Robinson UUCP: ucbvax!cogsci!robinson\\n INTERNET: robinson@cogsci.berkeley.edu\\n',\n", - " \"From: khan0095@nova.gmi.edu (Mohammad Razi Khan)\\nSubject: Looking for a good book for beginners\\nOrganization: GMI Engineering&Management Institute, Flint, MI\\nLines: 10\\n\\nI wanted to know if any of you out there can recommend a good\\nbook about graphics, still and animated, and in VGA/SVGA.\\n\\nThanks in advance\\n\\n--\\nMohammad R. Khan / khan0095@nova.gmi.edu\\nAfter July '93, please send mail to mkhan@nyx.cs.du.edu\\n\\n\\n\",\n", - " 'From: marshall@csugrad.cs.vt.edu (Kevin Marshall)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Virginia Tech Computer Science Dept, Blacksburg, VA\\nLines: 42\\nNNTP-Posting-Host: csugrad.cs.vt.edu\\n\\nsnm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>If Saddam believed in God, he would pray five times a\\n>day.\\n>\\n>Communism, on the other hand, actually committed genocide in the name of\\n>atheism, as Lenin and Stalin have said themselves. These two were die\\n>hard atheist (Look! A pun!) and believed in atheism as an integral part\\n>of communism.\\n\\nNo, Bobby. Stalin killed millions in the name of Socialism. Atheism was a\\ncharacteristic of the Lenin-Stalin version of Socialism, nothing more.\\nAnother characteristic of Lenin-Stalin Socialism was the centralization of\\nfood distribution. Would you therefore say that Stalin and Lenin killed\\nmillions in the name of rationing bread? Of course not.\\n\\n\\n>More horrible deaths resulted from atheism than anything else.\\n\\nIn earlier posts you stated that true (Muslim) believers were incapable of\\nevil. I suppose if you believe that, you could reason that no one has ever\\nbeen killed in the name of religion. What a perfect world you live in,\\nBobby. \\n\\n\\n>One of the reasons that you are atheist is that you limit God by giving\\n>God a form. God does not have a \"face\".\\n\\nBobby is referring to a rather obscure law in _The Good Atheist\\'s \\nHandbook_:\\n\\nLaw XXVI.A.3: Give that which you do not believe in a face. \\n\\nYou must excuse us, Bobby. When we argue against theism, we usually argue\\nagainst the Christian idea of God. In the realm of Christianity, man was\\ncreated in God\\'s image. \\n\\n-- \\n|\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"|\\n| Kevin Marshall Sophomore, Computer Science |\\n| Virginia Tech, Blacksburg, VA USA marshall@csugrad.cs.vt.edu |\\n|____________________________________________________________________|\\n',\n", - " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 19\\n\\nIn article <1r16ja$dpa@news.ysu.edu>, ak296@yfn.ysu.edu (John R. Daker)\\nwrote:\\n> \\n> \\n> In a previous article, xlyx@vax5.cit.cornell.edu () says:\\n> \\n> Mike Terry asks:\\n> \\n> >Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n> >\\n> No Mike. It is imposible due to the shaft effect. The centripital effects\\n> of the rotating shaft counteract any tendency for the front wheel to lift\\n> off the ground.\\n\\n\\tThis is true as evinced by the popularity of shaft-drive drag bikes.\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orbital RepairStation\\nOrganization: U of Toronto Zoology\\nLines: 21\\n\\nIn article collins@well.sf.ca.us (Steve Collins) writes:\\n>The difficulties of a high Isp OTV include...\\n>If you go solar, you have to replace the arrays every trip, with\\n>current technology.\\n\\nYou\\'re assuming that \"go solar\" = \"photovoltaic\". Solar dynamic power\\n(turbo-alternators) doesn\\'t have this problem. It also has rather less\\nair drag due to its higher efficiency, which is a non-trivial win for big\\nsolar plants at low altitude.\\n\\nNow, you might have to replace the *rest* of the electronics fairly often,\\nunless you invest substantial amounts of mass in shielding.\\n\\n>Nuclear power sources are strongly restricted\\n>by international treaty.\\n\\nReferences? Such treaties have been *proposed*, but as far as I know,\\nnone of them has ever been negotiated or signed.\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: djmst19@unixd2.cis.pitt.edu (David J Madura)\\nSubject: Re: Rumours about 3DO ???\\nLines: 13\\nX-Newsreader: Tin 1.1 PL3\\n\\ndave@optimla.aimla.com (Dave Ziedman) writes:\\n\\n: 3DO is still a concept.\\n: The software is what sells and what will determine its\\n: success.\\n\\n\\nApparantly you dont keep up on the news. 3DO was shown\\nat CES to developers and others at private showings. Over\\n300 software licensees currently developing software for it.\\n\\nI would say that it is a *LOT* more than just a concept.\\n\\n',\n", - " 'From: sgoldste@aludra.usc.edu (Fogbound Child)\\nSubject: Re: \"Fake\" virtual reality\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 31\\nNNTP-Posting-Host: aludra.usc.edu\\n\\nMike_Peredo@mindlink.bc.ca (Mike Peredo) writes:\\n\\n>The most ridiculous example of VR-exploitation I\\'ve seen so far is the\\n>\"Virtual Reality Clothing Company\" which recently opened up in Vancouver. As\\n>far as I can tell it\\'s just another \"chic\" clothes spot. Although it would be\\n>interesting if they were selling \"virtual clothing\"....\\n\\n>E-mail me if you want me to dig up their phone # and you can probably get\\n>some promotional lit.\\n\\nI understand there have been a couple of raves in LA billing themselves as\\n\"Virtual Reality\" parties. What I hear they do is project .GIF images around\\non the walls, as well as run animations through a Newtek Toaster.\\n\\nSeems like we need to adopt the term Really Virtual Reality or something, except\\nfor the non-immersive stuff which is Virtually Really Virtual Reality.\\n\\n\\netc.\\n\\n\\n\\n>MP\\n>(8^)-\\n\\n___Samuel___\\n-- \\n_________Pratice Safe .Signature! Prevent Dangerous Signature Virii!_______\\nGuildenstern: Our names shouted in a certain dawn ... a message ... a\\n summons ... There must have been a moment, at the beginning,\\n where we could have said -- no. But somehow we missed it.\\n',\n", - " 'From: mayne@pipe.cs.fsu.edu (William Mayne)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nOrganization: Florida State University Computer Science Department\\nReply-To: mayne@cs.fsu.edu\\nLines: 21\\n\\nIn article jvigneau@cs.ulowell.edu (Joe Vigneau) writes:\\n>\\n>If anything, the BSA has taught me, I don\\'t know, tolerance or something.\\n>Before I met this guy, I thought all gays were \\'faries\\'. So, the BSA HAS\\n>taught me to be an antibigot.\\n\\nI could give much the same testimonial about my experience as a scout\\nback in the 1960s. The issue wasn\\'t gays, but the principles were the\\nsame. Thanks for a well put testimonial. Stan Krieger and his kind who\\nthink this discussion doesn\\'t belong here and his intolerance is the\\nonly acceptable position in scouting should take notice. The BSA has\\nbeen hijacked by the religious right, but some of the core values have\\nsurvived in spite of the leadership and some scouts and former scouts\\nhaven\\'t given up. Seeing a testimonial like this reminds me that\\nscouting is still worth fighting for.\\n\\nOn a cautionary note, you must realize that if your experience with this\\ncamp leader was in the BSA you may be putting him at risk by publicizing\\nit. Word could leak out to the BSA gestapo.\\n\\nBill Mayne\\n',\n", - " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: What is it with Cats and Dogs ???!\\nOrganization: NASA Science Internet Project Office\\nLines: 29\\n\\nIn article , \\nryang@ryang1.pgh.pa.us (Robert H. Yang) writes:\\n|> Hi,\\n|> \\n|> \\tSorry, just feeling silly.\\n|> \\n|> Rob\\n\\n\\nNo need to appologise, as a matter of fact\\nthis reminds me to bring up something I\\nhave found consistant with dogs-\\n\\nMost of the time, they do NOT like having\\nme and my bike anywhere near them, and will\\nchase as if to bite and kill. \\n\\nAn instructor once said it was because the \\nsound from a bike was painfull to their \\nears. As silly as this seams, no other options\\nhave arrizen. \\n\\nnet.wisdom?\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nOrganization: U of Toronto Zoology\\nLines: 22\\n\\nIn article <1993Apr21.212202.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>Here is a way to get the commericial companies into space and mineral\\n>exploration.\\n>\\n>Basically get the eco-freaks to make it so hard to get the minerals on earth.\\n\\nThey aren't going to leave a loophole as glaring as space mining. Quite a\\nfew of those people are, when you come right down to it, basically against\\nindustrial civilization. They won't stop with shutting down the mines here;\\nthat is only a means to an end for them now.\\n\\nThe worst thing you can say to a true revolutionary is that his revolution\\nis unnecessary, that the problems can be corrected without radical change.\\nTelling people that paradise can be attained without the revolution is\\ntreason of the vilest kind.\\n\\nTrying to harness these people to support spaceflight is like trying to\\nharness a buffalo to pull your plough. He's got plenty of muscle, all\\nright, but the furrow will go where he wants, not where you want.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: Used Bikes, East vs. West Coasts\\nOrganization: the HP Corporate notes server\\nLines: 16\\n\\n/ hpcc01:rec.motorcycles / groverc@gold.gvg.tek.com (Grover Cleveland) / 9:07 am Apr 14, 1993 /\\nShop for your bike in Sacramento - the Bay area prices are\\nalways much higher than elsewhere in the state.\\n\\nGC\\n----------\\nAffirmative! Check Sacramento Bee, Fresno Bee, Modesto, Stockton,\\nBakersfield and other newspapers for prices of motos in the\\nclassifieds...a large main public library ought to have a\\nnumber of out-of-town papers. \\n\\n--------------------------------------------------------------------------\\nGraeme Harrison, Hewlett-Packard Co., Communications Components Division,\\n350 W Trimble Rd, San Jose, CA 95131 (gharriso@hpcc01.corp.hp.com) DoD#649 \\n--------------------------------------------------------------------------\\n\\n',\n", - " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Re: LONG TRIPS\\nOrganization: Duke University; Durham, N.C.\\nLines: 27\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nIn article <18859.1076.uupcb@freddy.ersys.edmonton.ab.ca> mark.harrison@freddy.ersys.edmonton.ab.ca (Mark Harrison) writes:\\n>I am new to motorcycliing (i.e. Don't even have a bike yet) and will be\\n>going on a long trip from Edmonton to Vancouver. Any tips on bare\\n>essentials for the trip? Tools, clothing, emergency repairs...?\\n\\nEr, without a bike (Ed, maybe you ought to respond to this...), how\\nyou gonna get there?\\n\\nIf yer going by cage, what's this got to do with r.m?\\n\\n>\\n>I am also in the market for a used cycle. Any tips on what to look for\\n>so I don't get burnt?\\n>\\n>Much appreciated\\n>Mark\\n> \\n\\nMaybe somebody oughta gang-tool-FAQ this guy, hmmm?\\n\\n\\n\\n-- \\nAndy Infante | You can listen to what everybody says, but the fact remains |\\n'71 BMW R60/5 | that you've got to get out there and do the thing yourself. | \\nDoD #2426 | -- Joan Sutherland | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", - " \"From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Thoughts on a 1982 Yamaha Seca Turbo?\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 18\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, howp@skyfox () says:\\n\\n>I was wondering if anybody knows anything about a Yamaha Seca Turbo. I'm \\n>considering buying a used 1982 Seca Turbo for $1300 Canadian (~$1000 US)\\n>with 30,000 km on the odo. This will be my first bike. Any comments?\\n\\t\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nBecause of this I cannot in good faith recommend a Seca Turbo. Power\\ndelivery is too uneven for a novice. The Official (tm) Dod newbie\\nbike of choice would be more appropriate because the powerband is so wide\\nand delivery is very smooth. Perfect for the beginner.\\n\\n\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n\",\n", - " 'From: todd@psgi.UUCP (Todd Doolittle)\\nSubject: Re: Motorcycle Courier (Summer Job)\\nDistribution: world\\nOrganization: Not an Organization\\nLines: 37\\n\\nIn article <1poj23INN9k@west.West.Sun.COM> gaijin@ale.Japan.Sun.COM (John Little - Nihon Sun Repair Depot) writes:\\n>In article <8108.97.uupcb@compdyn.questor.org> \\\\\\n>ryan_cousineau@compdyn.questor.org (Ryan Cousineau) writes:\\n>%\\n>% I think I\\'ve found the ultimate summer job: It\\'s dangerous, involves\\n>% motorcycles, requires high speeds in traffic, and it pays well.\\n>% \\n>% So my question is as follows: Has anyone here done this sort of work?\\n>% What was your experience?\\n>% \\n[Stuff deleted]\\n> Get a -good- \"AtoZ\" type indexed streetmap for all of the areas you\\'re\\n> likely to work. Always carry plenty of black-plastic bin liners to\\n\\nCheck with the local fire department. My buddy is a firefighter and they\\nhave these small map books which are Amazing! They are compact, easy to\\nuse (no folding). They even have a cross reference section in which you\\nmatch your current cross streets with the cross streets you want to go to\\nand it details the quickest route. They gave me an extra they had laying\\naround. But then again I know all those people I\\'m not really sure if they\\nare supposed to give/sell them. (The police may also have something\\nsimilar).\\n \\n>-- \\n> ------------------------------------------------------------------------\\n> | John Little - gaijin@Japan.Sun.COM - Sun Microsystems. Atsugi, Japan | \\n> ------------------------------------------------------------------------\\n\\n--\\n\\n--------------------------------------------------------------------------\\n ..vela.acs.oakland.edu!psgi!todd | \\'88 RM125 The only bike sold without\\n Todd Doolittle | a red-line. \\n Troy, MI | \\'88 EX500 \\n DoD #0832 | \\n--------------------------------------------------------------------------\\n\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: The systematic genocide of the Muslim population by the Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 226\\n\\nIn article <1993Apr5.091410.4108@massey.ac.nz> CBlack@massey.ac.nz (C.K. Black) writes:\\n\\n>Mr. Furr does it again,\\n\\nVery sensible.\\n\\n> He says \\n\\n>>>How many Mutlus can dance on the head of a pin?\\n\\n>And lo and behold, he invokes the Mr.666 of the net himself, our beloved\\n>Serdar, a program designed to seek out the words TERRX and GHEX in the\\n>same sentence and gets the automated reply....\\n\\nMust you rave so? Fascist x-Soviet Armenian Government engaged in \\ndisgusting cowardly massacres of Azeri women and children. I am\\nreally sorry if that fact bothers you.\\n\\n>>Our \"Mutlu\"? Oboy, this is exciting. First you discuss your literature \\n>>tastes, then your fantasies, and now your choices of entertainment. Have \\n>>you considered just turning on the TV and leaving those of us who aren\\'t\\n>>brain dead to continue to discuss the genocide of 2.5 million Muslim \\n>>people by the x-Soviet Armenian Government? \\n\\n>etc. etc. etc........\\n\\nMore ridicule, I take it? Still not addressing the original points made.\\n\\n>Joel, don\\'t do this to me mate! I\\'m only a poor plant scientist, I don\\'t\\n>know how to make \\'kill\\' files. My \\'k\\' key works overtime as it is just to\\n\\nThen what seems to be the problem? Did you ever read newspaper at all?\\n\\n\\n\"PAINFUL SEARCH ..\"\\n\\nTHE GRUESOME extent of February\\'s killings of Azeris by Armenians\\nin the town of Hojali is at last emerging in Azerbaijan - about\\n600 men, women and children dead in the worst outrage of the\\nfour-year war over Nagorny Karabakh.\\n\\nThe figure is drawn from Azeri investigators, Hojali officials\\nand casualty lists published in the Baku press. Diplomats and aid\\nworkers say the death toll is in line with their own estimates.\\n\\nThe 25 February attack on Hojali by Armenian forces was one of\\nthe last moves in their four-year campaign to take full control\\nof Nagorny Karabakh, the subject of a new round of negotiations\\nin Rome on Monday. The bloodshed was something between a fighting\\nretreat and a massacre, but investigators say that most of the\\ndead were civilians. The awful number of people killed was first\\nsuppressed by the fearful former Communist government in Baku.\\nLater it was blurred by Armenian denials and grief-stricken\\nAzerbaijan\\'s wild and contradictory allegations of up to 2,000\\ndead.\\n\\nThe State Prosecuter, Aydin Rasulov, the cheif investigator of a\\n15-man team looking into what Azerbaijan calls the \"Hojali\\nDisaster\", said his figure of 600 people dead was a minimum on\\npreliminary findings. A similar estimate was given by Elman\\nMemmedov, the mayor of Hojali. An even higher one was printed in\\nthe Baku newspaper Ordu in May - 479 dead people named and more\\nthan 200 bodies reported unidentified. This figure of nearly 700\\ndead is quoted as official by Leila Yunusova, the new spokeswoman\\nof the Azeri Ministry of Defence.\\n\\nFranCois Zen Ruffinen, head of delegation of the International\\nRed Cross in Baku, said the Muslim imam of the nearby city of\\nAgdam had reported a figure of 580 bodies received at his mosque\\nfrom Hojali, most of them civilians. \"We did not count the\\nbodies. But the figure seems reasonable. It is no fantasy,\" Mr\\nZen Ruffinen said. \"We have some idea since we gave the body bags\\nand products to wash the dead.\"\\n\\nMr Rasulov endeavours to give an unemotional estimate of the\\nnumber of dead in the massacre. \"Don\\'t get worked up. It will\\ntake several months to get a final figure,\" the 43-year-old\\nlawyer said at his small office.\\n\\nMr Rasulov knows about these things. It took him two years to\\nreach a firm conclusion that 131 people were killed and 714\\nwounded when Soviet troops and tanks crushed a nationalist\\nuprising in Baku in January 1990.\\n\\nThose nationalists, the Popular Front, finally came to power\\nthree weeks ago and are applying pressure to find out exactly\\nwhat happened when Hojali, an Azeri town which lies about 70\\nmiles from the border with Armenia, fell to the Armenians.\\n\\nOfficially, 184 people have so far been certified as dead, being\\nthe number of people that could be medically examined by the\\nrepublic\\'s forensic department. \"This is just a small percentage\\nof the dead,\" said Rafiq Youssifov, the republic\\'s chief forensic\\nscientist. \"They were the only bodies brought to us. Remember the\\nchaos and the fact that we are Muslims and have to wash and bury\\nour dead within 24 hours.\"\\n\\nOf these 184 people, 51 were women, and 13 were children under 14\\nyears old. Gunshots killed 151 people, shrapnel killed 20 and\\naxes or blunt instruments killed 10. Exposure in the highland\\nsnows killed the last three. Thirty-three people showed signs of\\ndeliberate mutilation, including ears, noses, breasts or penises\\ncut off and eyes gouged out, according to Professor Youssifov\\'s\\nreport. Those 184 bodies examined were less than a third of those\\nbelieved to have been killed, Mr Rasulov said.\\n\\nFiles from Mr Rasulov\\'s investigative commission are still\\ndisorganised - lists of 44 Azeri militiamen are dead here, six\\npolicemen there, and in handwriting of a mosque attendant, the\\nnames of 111 corpses brought to be washed in just one day. The\\nmost heartbreaking account from 850 witnesses interviewed so far\\ncomes from Towfiq Manafov, an Azeri investigator who took a\\nhelicopter flight over the escape route from Hojali on 27\\nFebruary.\\n\\n\"There were too many bodies of dead and wounded on the ground to\\ncount properly: 470-500 in Hojali, 650-700 people by the stream\\nand the road and 85-100 visible around Nakhchivanik village,\" Mr\\nManafov wrote in a statement countersigned by the helicopter\\npilot.\\n\\n\"People waved up to us for help. We saw three dead children and\\none two-year-old alive by one dead woman. The live one was\\npulling at her arm for the mother to get up. We tried to land but\\nArmenians started a barrage against our helicopter and we had to\\nreturn.\"\\n\\nThere has been no consolidation of the lists and figures in\\ncirculation because of the political upheavals of the last few\\nmonths and the fact that nobody knows exactly who was in Hojali\\nat the time - many inhabitants were displaced from other villages\\ntaken over by Armenian forces.\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\n\\nHEROES WHO FOUGHT ON AMID THE BODIES\\n\\nAREF SADIKOV sat quietly in the shade of a cafe-bar on the\\nCaspian Sea esplanade of Baku and showed a line of stitches in\\nhis trousers, torn by an Armenian bullet as he fled the town of\\nHojali just over three months ago, writes Hugh Pope.\\n\\n\"I\\'m still wearing the same clothes, I don\\'t have any others,\"\\nthe 51-year-old carpenter said, beginning his account of the\\nHojali disaster. \"I was wounded in five places, but I am lucky to\\nbe alive.\"\\n\\nMr Sadikov and his wife were short of food, without electricity\\nfor more than a month, and cut off from helicopter flights for 12\\ndays. They sensed the Armenian noose was tightening around the\\n2,000 to 3,000 people left in the straggling Azeri town on the\\nedge of Karabakh.\\n\\n\"At about 11pm a bombardment started such as we had never heard\\nbefore, eight or nine kinds of weapons, artillery, heavy\\nmachine-guns, the lot,\" Mr Sadikov said.\\n\\nSoon neighbours were pouring down the street from the direction\\nof the attack. Some huddled in shelters but others started\\nfleeing the town, down a hill, through a stream and through the\\nsnow into a forest on the other side.\\n\\nTo escape, the townspeople had to reach the Azeri town of Agdam\\nabout 15 miles away. They thought they were going to make it,\\nuntil at about dawn they reached a bottleneck between the two\\nArmenian villages of Nakhchivanik and Saderak.\\n\\n\"None of my group was hurt up to then ... Then we were spotted by\\na car on the road, and the Armenian outposts started opening\\nfire,\" Mr Sadikov said.\\n\\nAzeri militiamen fighting their way out of Hojali rushed forward\\nto force open a corridor for the civilians, but their efforts\\nwere mostly in vain. Mr Sadikov said only 10 people from his\\ngroup of 80 made it through, including his wife and militiaman\\nson. Seven of his immediate relations died, including his\\n67-year-old elder brother.\\n\\n\"I only had time to reach down and cover his face with his hat,\"\\nhe said, pulling his own big flat Turkish cap over his eyes. \"We\\nhave never got any of the bodies back.\"\\n\\nThe first groups were lucky to have the benefit of covering fire.\\nOne hero of the evacuation, Alif Hajief, was shot dead as he\\nstruggled to change a magazine while covering the third group\\'s\\ncrossing, Mr Sadikov said.\\n\\nAnother hero, Elman Memmedov, the mayor of Hojali, said he and\\nseveral others spent the whole day of 26 February in the bushy\\nhillside, surrounded by dead bodies as they tried to keep three\\nArmenian armoured personnel carriers at bay.\\n\\nAs the survivors staggered the last mile into Agdam, there was\\nlittle comfort in a town from which most of the population was\\nsoon to flee.\\n\\n\"The night after we reached the town there was a big Armenian\\nrocket attack. Some people just kept going,\" Mr Sadikov said. \"I\\nhad to get to the hospital for treatment. I was in a bad way.\\nThey even found a bullet in my sock.\"\\n\\nVictims of war: An Azeri woman mourns her son, killed in the\\nHojali massacre in February (left). Nurses struggle in primitive\\nconditions (centre) to save a wounded man in a makeshift\\noperating theatre set up in a train carriage. Grief-stricken\\nrelatives in the town of Agdam (right) weep over the coffin of\\nanother of the massacre victims. Calculating the final death toll\\nhas been complicated because Muslims bury their dead within 24\\nhours.\\n\\nPhotographs: Liu Heung / AP\\n Frederique Lengaigne / Reuter\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Fundamentalism - again.\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 19\\n\\nIn article khan0095@nova.gmi.edu (Mohammad Razi Khan) writes:\\n>One of my biggest complaints about using the word \"fundamentalist\"\\n>is that (at least in the U.S.A.) people speak of muslime\\n>fundamentalists ^^^^^^^muslim\\n>but nobody defines what a jewish or christan fundamentalist is.\\n>I wonder what an equal definition would be..\\n>any takers..\\n\\n\\tThe American press routinely uses the word fundamentalist to\\nrefer to both Christians and Jews. Christian fundementalists are\\noften refered to in the context of anti-abortion protests. The\\nAmerican media also uses fundamentalist to refer to Jews who live in\\nJudea, Samaria or Gaza, and to any Jew who follows the torah.\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: sturges@oasys.dt.navy.mil (Richard Sturges)\\nSubject: Re: DOT Tire date codes\\nReply-To: sturges@oasys.dt.navy.mil (Richard Sturges)\\nDistribution: usa\\nOrganization: Carderock Division, NSWC, Bethesda, MD\\nLines: 12\\n\\nIn rec.motorcycles, cookson@mbunix.mitre.org (Cookson) writes:\\n>To the nedod mailing list, and Jack Tavares suggested I check out\\n>how old the tire is as one tactic for getting it replaced. Does\\n>anyone have the file on how to read the date codes handy?\\n\\nIt\\'s quite simple; the code is the week and year of manufacture.\\n\\n\\t<================================================> \\n / Rich Sturges (h) 703-536-4443 \\\\\\n / NSWC - Carderock Division (w) 301-227-1670 \\\\\\n / \"I speak for no one else, and listen to the same.\" \\\\\\n <========================================================>\\n',\n", - " \"From: mbeaving@bnr.ca (M Beavington)\\nSubject: Re: Insurance and lotsa points...\\nNntp-Posting-Host: bmerh824\\nReply-To: MBEAVING@BNR.CA\\nOrganization: BNR Ottawa, DMS Software Design\\nLines: 15\\n\\nIn article <13386@news.duke.edu>, infante@acpub.duke.edu (Andrew Infante) writes:\\n|> Well, it looks like I'm F*cked for insurance.\\n|> \\n|> I had a DWI in 91 and for the beemer, as a rec.\\n|> vehicle, it'll cost me almost $1200 bucks to insure/year.\\n|> \\n|> Now what do I do?\\n|> \\n\\nGo bikeless. You drink and drive, you pay. No smiley.\\n\\n\\nMike Beavington\\nmbeaving@bnr.ca\\n*opinions are my own and not my companies'.\\n\",\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nOrganization: sgi\\nLines: 31\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <115565@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n|> In article <1qi3l5$jkj@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >I hope an Islamic Bank is something other than BCCI, which\\n|> >ripped off so many small depositors among the Muslim\\n|> >community in the Uk and elsewhere.\\n|> \\n|> >jon.\\n|> \\n|> Grow up, childish propagandist.\\n\\nGregg, I\\'m really sorry if having it pointed out that in practice\\nthings aren\\'t quite the wonderful utopia you folks seem to claim\\nthem to be upsets you, but exactly who is being childish here is \\nopen to question.\\n\\nBBCI was an example of an Islamically owned and operated bank -\\nwhat will someone bet me they weren\\'t \"real\" Islamic owners and\\noperators? - and yet it actually turned out to be a long-running\\nand quite ruthless operation to steal money from small and often\\nquite naive depositors.\\n\\nAnd why did these naive depositors put their life savings into\\nBCCI rather than the nasty interest-motivated western bank down\\nthe street? Could it be that they believed an Islamically owned \\nand operated bank couldn\\'t possibly cheat them? \\n\\nSo please don\\'t try to con us into thinking that it will all \\nwork out right next time.\\n\\njon.\\n',\n", - " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Victims of various \\'Good Fight\\'s\\nIn-Reply-To: 9051467f@levels.unisa.edu.au\\'s message of 12 Apr 93 21: 36:33 +0930\\nOrganization: Compaq Computer Corp\\n\\t<9454@tekig7.PEN.TEK.COM> <1993Apr12.213633.20143@levels.unisa.edu.au>\\nLines: 12\\n\\n>>>>> On 12 Apr 93 21:36:33 +0930, 9051467f@levels.unisa.edu.au (The Desert Brat) said:\\n\\nTDB> 12. Disease introduced to Brazilian * oher S.Am. tribes: x million\\n\\nTo be fair, this was going to happen eventually. Given time, the Americans\\nwould have reached Europe on their own and the same thing would have \\nhappened. It was just a matter of who got together first.\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", - " 'From: weston@ucssun1.sdsu.edu (weston t)\\nSubject: graphical representation of vector-valued functions\\nOrganization: SDSU Computing Services\\nLines: 13\\nNNTP-Posting-Host: ucssun1.sdsu.edu\\n\\ngnuplot, etc. make it easy to plot real valued functions of 2 variables\\nbut I want to plot functions whose values are 2-vectors. I have been \\ndoing this by plotting arrays of arrows (complete with arrowheads) but\\nbefore going further, I thought I would ask whether someone has already\\ndone the work. Any pointers??\\n\\nthanx in advance\\n\\n\\nTom Weston | USENET: weston@ucssun1.sdsu.edu\\nDepartment of Philosophy | (619) 594-6218 (office)\\nSan Diego State Univ. | (619) 575-7477 (home)\\nSan Diego, CA 92182-0303 | \\n',\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Moraltiy? (was Re: >>>What if I act morally for no particular reason? Then am I moral? What\\n>>>>if morality is instinctive, as in most animals?\\n>>>Saying that morality is instinctive in animals is an attempt to \\n>>>assume your conclusion.\\n>>Which conclusion?\\n>You conclusion - correct me if I err - that the behaviour which is\\n>instinctive in animals is a \"natural\" moral system.\\n\\nSee, we are disagreeing on the definition of moral here. Earlier, you said\\nthat it must be a conscious act. By your definition, no instinctive\\nbehavior pattern could be an act of morality. You are trying to apply\\nhuman terms to non-humans. I think that even if someone is not conscious\\nof an alternative, this does not prevent his behavior from being moral.\\n\\n>>You don\\'t think that morality is a behavior pattern? What is human\\n>>morality? A moral action is one that is consistent with a given\\n>>pattern. That is, we enforce a certain behavior as moral.\\n>You keep getting this backwards. *You* are trying to show that\\n>the behaviour pattern is a morality. Whether morality is a behavior \\n>pattern is irrelevant, since there can be behavior pattern, for\\n>example the motions of the planets, that most (all?) people would\\n>not call a morality.\\n\\nI try to show it, but by your definition, it can\\'t be shown.\\n\\nAnd, morality can be thought of a large class of princples. It could be\\ndefined in terms of many things--the laws of physics if you wish. However,\\nit seems silly to talk of a \"moral\" planet because it obeys the laws of\\nphyics. It is less silly to talk about animals, as they have at least\\nsome free will.\\n\\nkeith\\n',\n", - " \"From: edimg@willard.atl.ga.us (Ed pimentel)\\nSubject: HELP! Need JPEG / MPEG encod-decode \\nOrganization: Willard's House BBS, Atlanta, GA -- +1 (404) 664 8814\\nLines: 41\\n\\nI am involve in a Distant Learning project and am in need\\nof Jpeg and Mpeg encode/decode source and object code.\\nThis is a NOT-FOR PROFIT project that once completed I\\nhope to release to other educational and institutional\\nlearning centers.\\nThis project requires that TRUE photographic images be sent\\nover plain telephone lines. In addition if there is a REAL Good\\nGUI lib with 3D objects and all types of menu classes that can\\nbe use at both end of the transaction (Server and Terminal End)\\nI would like to hear about it.\\n \\nWe recently posted an RFD announcing the OTG (Open Telematic Group)\\nthat will concern itself with the developement of such application\\nand that it would incorporate NAPLPS, JPEG, MPEG, Voice, IVR, FAX\\nSprites, Animation(fli, flc, etc...).\\nAt present only DOS and UNIX environment is being worked on and it\\nour hope that we can generate enough interest where all the major\\nplatform can be accomodated via a plaform independent API/TOOLKIT/SDK\\nWe are of the mind that it is about time that such project and group\\nbe form to deal with these issues.\\nWe want to setup a repository where these files may be access such as\\nSimte20 and start putting together a OTG FAQ.\\nIf you have some or any information that in your opinion would be \\nof interest to the OTG community and you like to see included in our\\nfirst FAQ please send it email to the address below.\\n \\nThanks in Advance\\n \\nEd\\nP.O. box 95901\\nAtlanta Ga. 30347-0901\\n(404)985-1198 zyxel 14.4\\nepimntl@world.std.com \\ned.pimentel@gisatl.fidonet.org\\n\\n\\n-- \\nedimg@willard.atl.ga.us (Ed pimentel)\\ngatech!kd4nc!vdbsan!willard!edimg\\nemory!uumind!willard!edimg\\nWillard's House BBS, Atlanta, GA -- +1 (404) 664 8814\\n\",\n", - " 'From: tankut@IASTATE.EDU (Sabri T Atan)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: tankut@IASTATE.EDU (Sabri T Atan)\\nOrganization: Iowa State University\\nLines: 43\\n\\nIn article , ptg2351@uxa.cso.uiuc.edu (Panos\\nTamamidis ) writes:\\n> Yeah, too much Mutlu/Argic isn\\'t helping. I could, one day, proceed and\\n\\nYou shouldn\\'t think many Turks read Mutlu/Argic stuff.\\nThey are in my kill file, likewise any other fanatic.\\n \\n> >(I have nothing against Greeks but my problem is with fanatics. I have met\\n> >so many Greeks who wouldn\\'t even talk to me because I am Turkish. From my\\n> >experience, all my friends always were open to Greeks)\\n> \\n> Well, the history, wars, current situations, all of them do not help.\\n\\nWell, Panos, Mr. Tamamidis?, the way you put it it is only the Turks\\nwho bear the responsibility of the things happening today. That is hard to\\nbelieve for somebody trying to be objective.\\nWhen it comes to conflicts like our countries having you cannot\\nblame one side only, there always are bad guys on both sides.\\nWhat were you doing on Anatolia after the WW1 anyway?\\nDo you think it was your right to be there?\\nI am not saying that conflicts started with that. It is only\\nnot one side being the aggressive and the ither always suffering.\\nIt is sad that we (both) still are not trying to compromise.\\nI remember the action of the Turkish government by removing the\\nvisa requirement for greeks to come to Turkey. I thought it\\nwas a positive attempt to make the relations better.\\n\\nThe Greeks I mentioned who wouldn\\'t talk to me are educated\\npeople. They have never met me but they know! I am bad person\\nbecause I am from Turkey. Politics is not my business, and it is\\nnot the business of most of the Turks. When it comes to individuals \\nwhy the hatred? So that makes me think that there is some kind of\\nbrainwashing going on in Greece. After all why would an educated person \\ntreat every person from a nation the same way? can you tell me about your \\nhistory books and things you learn about Greek-Turkish\\nencounters during your schooling. \\ntake it easy! \\n\\n--\\nTankut Atan\\ntankut@iastate.edu\\n\\n\"Achtung, baby!\"\\n',\n", - " 'From: maxg@microsoft.com (Max Gilpin)\\nSubject: HONDA CBR600 For Sale\\nOrganization: Microsoft Corp.\\nKeywords: CBR Hurricane \\nDistribution: usa\\nLines: 8\\n\\nFor Sale 1988 Honda CBR600 (Hurricane). I bought the bike at the end of\\nlast summer and although I love it, the bills are forcing me to part with\\nit. The bike has a little more than 6000 miles on it and runs very strong.\\nIt is in nead of a tune-up and possibly break pads but the rubber is good.\\nI am also tossing in a TankBag and a KIWI Helmet. Asking $3000.00 or best\\noffer. Add hits newspaper 04-20-93 and Micronews 04-23-93. Interested \\nparties can call 206-635-2006 during the day and 889-1510 in the evenings\\nno later than 11:00PM. \\n',\n", - " \"Subject: Re: How many israeli soldiers does it take to kill a 5 yr old child?\\nFrom: jhsegal@wiscon.weizmann.ac.il (Livian Segal)\\nOrganization: Weizmann Institute of Science, Computation Center\\nLines: 16\\n\\nIn article <1qhv50$222@bagel.cs.huji.ac.il> ranen@falafel.cs.huji.ac.il (Ranen Goren) writes:\\n>Q: How many Nick Steel's does it take to twist any truth around?\\n>A: Only one, and thank God there's only one.\\n>\\n>\\tRanen.\\n\\nAbsolutely not true!\\nThere are lots of them!\\n\\n _____ __Livian__ ______ ___ __Segal__ __ __ __ __ __\\n *\\\\ /* | | \\\\ \\\\ \\\\ | | | | \\\\ |\\n***\\\\ /*** | | |__ | /_ \\\\ \\\\ | | | | \\\\ |\\n|---O---| | | / | \\\\ | | | | \\\\ |\\n\\\\ /*\\\\ / \\\\___ / | \\\\ | | | \\\\ | | \\\\___ / | / |\\n \\\\/***\\\\/ / | \\\\ | | | | | / | |\\nVM/CMS: JhsegalL@Weizmann.weizmann.ac.il UNIX: Jhsegal@wiscon.weizmann.ac.il\\n\",\n", - " 'From: CGKarras@world.std.com (Christopher G Karras)\\nSubject: Need Maintenance tips\\nOrganization: The World Public Access UNIX, Brookline, MA\\nLines: 29\\n\\n\\nAfter reading the service manual for my bike (Suzuki GS500E--1990) I have\\na couple of questions I hope you can answer:\\n\\nWhen checking the oil level with the dip stick built into the oil fill\\ncap, does one check it with the cap screwed in or not? I am more used to\\nthe dip stick for a cage where the stick is extracted fully, wiped clean\\nand reinserted fully, then withdrawn and read. The dip stick on my bike\\nis part of the oil filler cap and has about 1/2 inch of threads on it. Do\\nI remove the cap, wipe the stick clean and reinsert it with/without\\nscrewing it down before reading?\\n\\nThe service manual calls for the application of Suzuki Bond No. 1207B on\\nthe head cover. I guess this is some sort of liquid gasket material. do\\nyou know of a generic (cheaper) substitute?\\n\\nMy headlight is a Halogen 60/55 W bulb. Is there an easy, brighter\\nreplacement bulb available? Where should I look for one?\\n\\nAs always, I very much appreciate your help. The weather in Philadelphia\\nhas finally turned WARM. This weekend I saw lotsa bikes, and the riders\\nALL waved. A nice change of tone from what Philadelphia can be like. . . .\\n\\nChris\\n\\n-- \\n*******************************************************************\\nChristopher G. Karras\\nInternet: CGKarras@world.std.com\\n',\n", - " \"From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Bikes vs. Horses (was Re: insect impac\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 27\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nNNTP-Posting-Host: slc4.ins.cwru.edu\\n\\n\\nIn a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n\\n>In article sda@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes:\\n\\n> The only people who train for years to jump a horse 2 feet\\n>are equistrian posers who wear velvet tails and useless helmets.\\n>\\n\\n\\tWhich, as it turns out, is just about everybody that's serious about\\nhorses. What a bunch of weenie fashion nerds. And the helmets suck. I'm wearing\\nmy Shoei mountain bike helmet - fuck em.>>>\\n\\n\\n>>\\tOr I'm permanently injured.\\n>\\n>Oops. too late.\\n>\\n\\n\\tNah, I can still walk unaided.\\n\\n\\n\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n\",\n", - " \"From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Louisiana Tech University\\nLines: 17\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article csundh30@ursa.calvin.edu (Charles Sundheim) writes:\\n\\n\\n\\n>Moral: I'm not really sure, but more and more I believe that bikers ought \\n> to be allowed to carry handguns.\\n\\nCome to Louisiana where it is LEGAL to carry concealed weapons on a bike!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n\",\n", - " 'From: freed@nss.org (Bev Freed)\\nSubject: FAQs\\nOrganization: The NSS BBS, Pittsburgh PA (412) 366-5208\\nLines: 8\\n\\nI was wondering if the FAQ files could be posted quarterly rather than monthly. Every 28-30 days, I get this bloated feeling.\\n \\n\\n\\n-- \\nBev Freed - via FidoNet node 1:129/104\\nUUCP: ...!pitt!nss!freed\\nINTERNET: freed@nss.org\\n',\n", - " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Mars Observer Update - 04/23/93\\nOrganization: Jet Propulsion Laboratory\\nLines: 48\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Mars Observer, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from the Mars Observer Project\\n\\n MARS OBSERVER STATUS REPORT\\n April 23, 1993\\n 10:00 AM PDT\\n\\nFlight Sequence C8 is active, the Spacecraft subsystems and instrument\\npayload performing well in Array Normal Spin and outer cruise\\nconfiguration, with uplink and downlink via the High Gain Antenna; uplink\\nat 125 bps, downlink at the 2 K Engineering data rate.\\n\\nAs a result of the spacecraft entering Contingency Mode on April 9, all\\npayload instruments were automatically powered off by on-board fault\\nprotection software. Gamma Ray Spectrometer Random Access Memory\\nwas successfully reloaded on Monday, April 19. To prepare for\\nMagnetometer Calibrations which were rescheduled for execution in Flight\\nSequence C9 on Tuesday and Wednesday of next week, a reload of Payload\\nData System Random Access Memory will take place this morning\\nbeginning at 10:30 AM.\\n\\nOver this weekend, the Flight Team will send real-time commands to\\nperform Differential One-Way Ranging to obtain additional data for\\nanalysis by the Navigation Team. Radio Science Ultra Stable Oscillator\\ntesting will take place on Monday .\\n\\nThe Flight Sequence C9 uplink will occur on Sunday, April 25, with\\nactivation at Midnight, Monday evening April 26. C9 has been modified to\\ninclude Magnetometer Calibrations which could not be performed in C8 due\\nto Contingency Mode entry on April 9. These Magnetometer instrument\\ncalibrations will allow the instrument team to better characterize the\\nspacecraft-generated magnetic field and its effect on their instrument.\\nThis information is critical to Martian magnetic field measurements\\nwhich occur during approach and mapping phases. MAG Cals will require\\nthe sequence to command the spacecraft out of Array Normal Spin state\\nand perform slew and roll maneuvers to provide the MAG team data points\\nin varying spacecraft attitudes and orientations.\\n\\nToday, the spacecraft is 22,971,250 km (14,273,673 mi.) from Mars\\ntravelling at a velocity of 2.09 kilometers/second (4,677 mph) with\\nrespect to Mars. One-way light time is approximately 10 minutes, 38\\nseconds.\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n',\n", - " \"Organization: Penn State University\\nFrom: \\nSubject: scanned grey to color equations?\\nLines: 7\\n\\nA while back someone had several equations which could be used for changing 3 f\\niltered grey scale images into one true color image. This is possible because\\nit's the same theory used by most color scanners. I am not looking for the obv\\nious solution which is to buy a color scanner but what I do need is those equat\\nions becasue I am starting to write software which will automate the conversion\\n process. I would really appreciate it if someone would repost the 3 equations\\n/3 unknowns. Thanks for the help!!!\\n\",\n", - " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 48\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn <1993Apr9.154316.19778@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>In article kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n \\n>>\\tIf I state that I know that there is a green marble in a closed box, \\n>>which I have _never_ seen, nor have any evidence for its existance; I would\\n>>be guilty of deceit, even if there is, in fact, a green marble inside.\\n>>\\n>>\\tThe question of whether or not there is a green marble inside, is \\n>>irrelevent.\\n\\n>You go ahead and play with your marbles.\\n\\nI love it, I love it, I love it!! Wish I could fit all that into a .sig\\nfile! (If someone is keeping a list of Bobby quotes, be sure to include\\nthis one!)\\n\\n>>\\n>>\\tStating an unproven opinion as a fact, is deceit. And, knowingly \\n>>being decietful is a falsehood and a lie.\\n\\n>So why do you think its an unproven opinion? If I said something as\\n>fact but you think its opinion because you do not accept it, then who\\'s\\n>right?\\n\\nThe Flat-Earthers state that \"the Earth is flat\" is a fact. I don\\'t accept\\nthis, I think it\\'s an unproven opinion, and I think the Round-Earthers are\\nright because they have better evidence than the Flat-Earthers do.\\n\\nAlthough I can\\'t prove that a god doesn\\'t exist, the arguments used to\\nsupport a god\\'s existence are weak and often self-contradictory, and I\\'m not\\ngoing to believe in a god unless someone comes over to me and gives me a\\nreason to believe in a god that I absolutely can\\'t ignore.\\n\\nA while ago, I read an interesting book by a fellow called Von Daenicken,\\nin which he proved some of the wildest things, and on the last page, he\\nwrote something like \"Can you prove it isn\\'t so?\" I certainly can\\'t, but\\nI\\'m not going to believe him, because he based his \"proof\" on some really\\nquestionable stuff, such as old myths (he called it \"circumstancial\\nevidence\" :] ).\\n\\nSo far, atheism hasn\\'t made me kill anyone, and I\\'m regarded as quite an\\nagreeable fellow, really. :)\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", - " 'From: mmaser@engr.UVic.CA (Michael Maser)\\nSubject: Re: extraordinary footpeg engineering\\nNntp-Posting-Host: uglv.uvic.ca\\nReply-To: mmaser@engr.UVic.CA\\nOrganization: University of Victoria, Victoria, BC, Canada\\nLines: 38\\n\\n--In a previous article, exb0405@csdvax.csd.unsw.edu.au () says:\\n--\\n-->Okay DoD\\'ers, here\\'s a goddamn mystery for ya !\\n-->\\n-->Today I was turning a 90 degree corner just like on any other day, but there\\n-->was a slight difference- a rough spot right in my path caused the suspension\\n-->to compress in mid corner and some part of the bike hit the ground with a very\\n-->tangible \"thunk\". I pulled over at first opportunity to sus out the damage. \\n--== some deleted\\n-->\\n-->Barry Manor DoD# 620 confused accidental peg-scraper\\n-->\\n-->\\n--Check the bottom of your pipes Barry -- suspect that is what may\\n--have hit. I did the same a few years past & thought it was the\\n--peg but found the bottom of my pipe has made contact & showed a\\n--good sized dent & scratch.\\n\\n-- Believe you\\'d feel the suddent change on your foot if the peg\\n--had bumped. As for the piece missing -- contribute that to \\n--vibration loss.\\n\\nYep, the same thing happened to me on my old Honda 200 Twinstar.\\n\\n\\n*****************************************************************************\\n* Mike Maser | DoD#= 0536 | SQUID RATING: 5.333333333333333 *\\n* 9235 Pinetree Rd. |----------------------------------------------*\\n* Sidney, B.C., CAN. | Hopalonga Twinfart Yuka-Yuka EXCESS 400 *\\n* V8L-1J1 | wish list: Tridump, Mucho Guzler, Burley *\\n* home (604) 656-6131 | Thumpison, or Bimotamoeba *\\n* work (604) 721-7297 |***********************************************\\n* mmaser@sirius.UVic.CA |JOKE OF THE MONTH: What did the gay say to the*\\n* University of Victoria | Indian Chief ? *\\n* news: rec.motorcycles | ANSWER: Can I bum a couple bucks ? *\\n*****************************************************************************\\n\\n\\n',\n", - " 'From: David.Rice@ofa123.fidonet.org\\nSubject: islamic authority [sic] over women\\nX-Sender: newtout 0.08 Feb 23 1993\\nLines: 62\\n\\n \\nwho: kmr4@po.CWRU.edu (Keith M. Ryan)\\nwhat: \\nwith: rush@leland.Stanford.EDU \\nwhat: <1993Apr5.050524.9361@leland.Stanford.EDU>\\n \\n>>> Other readers: I just joined, but is this guy for real?\\n>>> I\\'m simply amazed.\\n \\nKR> \"Sadly yes. Don\\'t loose any sleep over Old \\'Zlumber. Just\\nKR> have some fun with him, but he is basically harmless. \\nKR> At least, if you don\\'t work in NY city.\"\\n \\nI don\\'t find it hard to believe that \"Ole \\'Zlumber\" really believes\\nthe hate and ignorant prattle he writes. The frightening thought is,\\nthere are people even worse than he! To say that feminism equals\\n\"superiority\" over men is laughable as long as he doesn\\'t then proceed\\nto pick up a rifle and start to shoot women as a preemptive strike---\\naka the Canada slaughter that occured a few years ago. But then, men\\nkilling women is nothing new. Islamic Fundamentalists just have a\\n\"better\" excuse (Qu\\'ran).\\n \\n from the Vancouver Sun, Thursday, October 4, 1990\\n by John Davidson, Canadian Press\\n \\n MONTREAL-- Perhaps it\\'s the letter to the five-year old\\n daughter that shocks the most.\\n \\n \"I hope one day you will be old enough to understand what\\n happened to your parents,\" wrote Patrick Prevost. \"I loved\\n your mother with a passion that went as far as hatred.\"\\n \\n Police found the piece of paper near Prevost\\'s body in his\\n apartment in northeast Montreal.\\n \\n They say the 39-year-old mechanic committed suicide after\\n killing his wife, Jocelyne Parent, 31.\\n \\n The couple had been separated for a month and the woman had\\n gone to his apartment to talk about getting some more money\\n for food. A violent quarrel broke out and Prevost attacked\\n his wife with a kitchen knife, cutting her throat, police said.\\n \\n She was only the latest of 13 women slain by a husband or\\n lover in Quebec in the last five weeks.\\n \\n Five children have also been slain as a result of the same\\n domestic \"battles.\"\\n \\n Last year in Quebec alone, 29 [women] were slain by their\\n husbands. That was more than one-third of such cases across\\n Canada, according to statistics from the Canadian Centre for\\n Justice. [rest of article ommited]\\n \\nThen to say that women are somehow \"better\" or \"should\" be the\\none to \"stay home\" and raise a child is also laughable. Women\\nhave traditionally done hard labor to support a family, often \\nmore than men in many cultures, throughout history. Seems to me\\nit takes at least two adults to raise a child, and that BOTH should\\nstay home to do so!\\n\\n--- Maximus 2.01wb\\n',\n", - " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: Hamza Salah, the Humanist\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 8\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\nMr. Salah, why are you such a homicidal racist? Do you feel this\\nsame hatred towards Christans, or is it only Jews? Are you from\\na family of racists? Did you learn this racism in your home? Or\\nare you a self-made bigot? How does one become such a racist? I\\nwonder what you think your racism will accomplish. Are you under\\nthe impression that your racism will help bring peace in the mid-\\neast? I would like to know your thoughts on this.\\n',\n", - " 'From: laszlo@eclipse.cs.colorado.edu (Laszlo Nemeth)\\nSubject: Re: Protective gear\\nNntp-Posting-Host: eclipse.cs.colorado.edu\\nOrganization: University of Colorado Boulder, Pizza Disposal Group\\nLines: 19\\n\\nIn article , maven@eskimo.com (Norman Hamer) writes:\\n|> Question for the day:\\n|> \\n|> What protective gear is the most important? I\\'ve got a good helmet (shoei\\n|> rf200) and a good, thick jacket (leather gold) and a pair of really cheap\\n|> leather gloves... What should my next purchase be? Better gloves, boots,\\n|> leather pants, what?\\n\\ncondom\\n\\n\\nduring wone of the 500 times i had to go over my accident i\\nwas asked if i was wearing \"protection\" my responces was\\n\"yes i was wearing a condom\"\\n\\n\\n\\nlaz\\n\\n',\n", - " 'From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: Georgia Institute of Technology\\nLines: 21\\n\\nWho the hell is this guy David Davidian. I think he talks too much..\\n\\n\\nYo , DAVID you would better shut the f... up.. O.K ?? I don\\'t like \\n\\nyour attitute. You are full of lies and shit. Didn\\'t you hear the \\n\\nsaying \"DON\\'T MESS WITH A TURC!!\"...\\n\\nSee ya in hell..\\n\\nTimucin.\\n\\n\\n\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n',\n", - " \"From: ernie@woody.apana.org.au (Ernie Elu)\\nSubject: MGR NAPLPS & GUI BBS Frontends\\nOrganization: Woody - Public Access Linux - Melbourne\\nLines: 28\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\n\\n\\nHi all,\\nI am looking into methods I can use to turn my Linux based BBS into a full color\\nGraphical BBS that supports PC, Mac, Linux, and Amiga callers. \\nOriginally I was inspired by the NAPLPS graphics standard (a summary of \\nwhich hit this group about 2 weeks ago). \\nFollowing up on software availability of NAPLPS supporting software I find\\nthat most terminal programs are commercial the only resonable shareware one being\\nPP3 which runs soley on MSDOS machines leaving Mac and Amiga users to buy full\\ncommercial software if they want to try out the BBS (I know I wouldn't)\\n\\nNext most interesting possibility is to port MGR to PC, Mac, Amiga. I know there\\nis an old version of a Mac port on bellcore.com that doesn't work under System 7\\nBut I can't seem to find the source anywhere to see if I can patch it.\\n\\nIs there a color version of MGR for Linux? \\nI know there was an alpha version of the libs out last year but I misplaced it.\\n\\nDoes anyone on this group know if MGR as been ported to PC or Amiga ?\\nI can't seem to send a message to the MGR channel without it bouncing.\\n\\nDoes anyone have any other suggestions for a Linux based GUI BBS ?\\n\\nThanks in advan\\n\",\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Why DC-1 will be the way of the future.\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1r6ub0$mgl@access.digex.net> prb@access.digex.com (Pat) writes:\\n\\n>In article <1993Apr22.164801.7530@julian.uwo.ca> jdnicoll@prism.ccs.uwo.ca (James Davis Nicoll) writes:\\n>>\\tHmmm. I seem to recall that the attraction of solid state record-\\n>>players and radios in the 1960s wasn\\'t better performance but lower\\n>>per-unit cost than vacuum-tube systems.\\n>>\\n\\n\\n>I don\\'t think so at first, but solid state offered better reliabity,\\n>id bet, and any lower costs would be only after the processes really scaled up.\\n\\nCareful. Making statements about how solid state is (generally) more\\nreliable than analog will get you a nasty follow-up from Tommy Mac or\\nPat. Wait a minute; you *are* Pat. Pleased to see that you\\'re not\\nsuffering from the bugaboos of a small mind. ;-)\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: andersen@me.udel.edu (Stephen Andersen)\\nSubject: Riding Jacket Recommendations\\nNntp-Posting-Host: me.udel.edu\\nOrganization: Center for Composite Materials/University of Delaware\\nLines: 36\\n\\nMy old jacket is about to bite the dust so I\\'m in the market for a new riding\\njacket. I\\'m looking for recommendations for a suitable replacement. I would\\nlike to buy a full Aerostich suit but I can\\'t afford $700 for it right now.\\n\\nI\\'m considering two basic options:\\n\\n1) Buy the Aerostich jacket only. Dunno how much it costs\\n due to recent price increases, but I\\'d imagine over $400.\\n That may be pushing my limit. Advantages include the fact\\n that I can later add the pants, and that it nearly eliminates\\n the need for the jacket portion of a rainsuit.\\n\\n2) Buy some kind of leather jacket. I like a few of the new \\n Hein-Gericke FirstGear line, however they may be a bit pricey\\n unless I can work some sort of deal. Advantages of leather\\n are potentially slightly better protection, enhanced pose\\n value (we all know how important that is :-), possibly cheaper\\n than upper Aerostich.\\n\\nRequirements for a jacket are that it must fit over a few other \\nlayers (mainly a sizing thing), if leather i\\'d prefer a zip-out \\nlining, it MUST have some body armor similar to aerostich (elbows, \\nshoulders, forearms, possibly back/kidney protection, etc.), a \\nreasonable amount of pocket space would be nice, ventilation would \\nbe a plus, however it must be wearable in cold weather (below\\nfreezing) with layers or perhaps electrics.\\n\\nPlease fire away with suggestions, comments, etc...\\n\\nSteve\\n--\\n-- \\n Steve Andersen DoD #0239 andersen@me.udel.edu\\n (302) 832-0136 andersen@zr1.ccm.udel.edu\\n 1992 Ducati 907 I.E. 1987 Yamaha SRX250\\n \"Life is simply a consequence of the complexities of carbon chemistry...\"\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 B\\nSummary: Part B \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 912\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 Part B\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n\\t\\t\\t\\t(Part B of #008)\\n\\n +------------------------------------------------------------------+\\n | |\\n | \"Oh, yes, I just remembered. While they were raping me they |\\n | repeated quite frequently, \"Let the Armenian women have babies |\\n | for us, Muslim babies, let them bear Azerbaijanis for the |\\n | struggle against the Armenians.\" Then they said, \"Those |\\n | Muslims can carry on our holy cause. Heroes!\" They repeated |\\n | it very often.\" |\\n | |\\n +------------------------------------------------------------------+\\n\\n...continued from PART A:\\n\\nThe six of them left. They left and I had an attack. I realized that the dan-\\nger was past, and stopped controlling myself. I relaxed for a moment and the \\nphysical pain immediately made itself felt. My heart and kidneys hurt. I had \\nan awful kidney attack. I rolled back and forth on top of those Christmas\\nornaments, howling and howling. I didn\\'t know where I was or how long this \\nwent on. When we figured out the time, later it turned out that I howled and \\nwas in pain for around an hour. Then all my strength was gone and I burst into\\ntears, I started feeling sorry for myself, and so on and so forth . . .\\n\\nThen someone came into the room. I think I hear someone calling my name. I \\nwant to respond and restrain myself, I think that I\\'m hallucinating. I am \\nsilent, and then it continues: it seems that first a man\\'s voice is calling\\nme, then a woman\\'s. Later I found out that Mamma had sent our neighbor, the\\none whose apartment she was hiding in, Uncle Sabir Kasumov, to our place, \\ntelling him, \"I know that they\\'ve killed Lyuda. Go there and at least bring \\nher corpse to me so they don\\'t violate her corpse.\" He went and returned empty\\nhanded, but Mamma thought he just didn\\'t want to carry the corpse into his \\napartment. She sent him another time, and then sent his wife, and they were \\nwalking through the rooms looking for me, but I didn\\'t answer their calls. \\nThere was no light, they had smashed the chandeliers and lamps.\\n\\nThey started the pogrom in our apartment around five o\\'clock, and at 9:30 I \\nwent down to the Kasumovs\\'. I went down the stairs myself. I walked out of the\\napartment: how long can you wait for your own death, how long can you be \\ncowardly, afraid? Come what will. I walked out and started knocking on the \\ndoors one after the next. No one, not on the fifth floor, not on the fourth, \\nopened the door. On the third floor, on the landing of the stairway, Uncle \\nSabir\\'s son started to shout, \"Aunt Roza, don\\'t cry, Lyuda\\'s alive!\" He \\nknocked on his own door and out came Aunt Tanya, Igor, and after them, Mamma. \\nAunt Tanya, Uncle Sabir\\'s wife, is an Urdmurt. All of us were in their \\napartment. I didn\\'t see Karina, but she was in their home, too, Lying\\ndelirious, she had a fever. Marina was there too, and my father and mother.\\nAll of my family had gathered there.\\n \\nAt the door I lost consciousness. Igor and Aunt Tanya carried me into the\\napartment.\\n\\nLater I found out what they had done to our Karina. Mamma said, \"Lyuda, \\nKarina\\'s in really serious condition, she\\'s probably dying. If she recognizes \\nyou, don\\'t cry, don\\'t tell her that her face looks so awful.\" It was as though\\nher whole face was paralyzed, you know, everything was pushed over to one \\nside, her eye was all swollen, and everything flowed together, her lips, her \\ncheeks . . . It was as though they had dragged her right side around the whole\\nmicrodistrict, that\\'s how disfigured her face was. I said, \"Fine.\" Mamma was \\nafraid to go into the room, because she went in and hugged Karina and started \\nto cry. I went in. As soon as I saw her my legs gave way. I fell down near the\\nbed, hugged her legs and started kissing them and crying. She opened the eye \\nthat was intact, looked at me, and said, \"Who is it?\" But I could barely talk, \\nmy whole face was so badly beaten. I didn\\'t say, but rather muttered something\\ntender, something incomprehensible, but tender, \"My Karochka, my Karina, my \\nlittle golden one . . . \" She understood me.\\n\\nThen Igor brought me some water, I drank it down and moistened Karina\\'s lips. \\nShe started to groan. She was saying something to me, but I couldn\\'t \\nunderstand it. Then I made out, \"It hurts, I hurt all over.\" Her hair was \\nglued down with blood. I stroked her forehead, her head, she had grit on her \\nforehead, and on her lips . . . She was groaning again, and I don\\'t know how \\nto help her. She calls me over with her hand, come closer. I go to her. She\\'s\\nsaying something to me, but I can\\'t understand her. Igor brings her a pencil \\nand paper and says, \"Write it down.\" She shakes her head as if to say, no, I \\ncan\\'t write. I can\\'t understand what she\\'s saying. She wanted to tell me \\nsomething, but she couldn\\'t. I say, \"Karina, just lie there a little while,\\nthen maybe you\\'ll feel better and you can tell me then.\" And then she says,\\n\"Maybe it\\'ll be too late.\" And I completely . . . just broke down, I couldn\\'t\\ncontrol myself.\\n\\nThen I moistened my hand in the water and wiped her forehead and eye. I dipped\\na handkerchief into the water and squeezed a little water onto her lips. She \\nsays, \"Lyuda, we\\'re not saved yet, we have to go somewhere else. Out of this \\ndamned house. They want to kill us, I know. They\\'ll find us here, too. We need\\nto call Urshan.\" She repeated this to me for almost a whole hour, Until I \\nunderstood her every word. I ask, \"What\\'s his number?\" Urshan Feyruzovich, \\nthat\\'s the head of the administration where she works. \"We have to call him.\" \\nBut I didn\\'t know his home number. I say, \"Karina, what\\'s his number?\" She \\nsays, \"I can\\'t remember.\" I say, \"Who knows his number? Who can I call?\" She \\nsays, \"I don\\'t know anything, leave me alone.\"\\n\\nI went out of the room. Igor stayed to watch over her and sat there, he was \\ncrying, too. I say, \"Mamma, Karina says that we have to call Urshan. How can \\nwe call him? Who knows his telephone number?\" I tell Marina, \"Think, think, \\nwho can we call to find out?\" She started calling; several people didn\\'t \\nanswer. She called a girlfriend, her girlfriend called another girlfriend and \\nfound out the number and called us back. The boss\\'s wife answered and said he \\nwas at the dacha. My voice keeps cracking, I can\\'t talk normally. She says, \\n\"Lyuda, don\\'t panic, get a hold of yourself, go out to those hooligans and \\ntell them that they just can\\'t do that.\" She still didn\\'t know what was really\\ngoing on. I said, \"It\\'s easy for you to say that, you don\\'t understand what\\'s \\nhappening. They are killing people here. I don\\'t think there is a single \\nArmenian left in the building, they\\'ve cut them all up. I\\'m even surprised \\nthat we managed to save ourselves. \"She says, \"Well, OK, if it\\'s that serious \\n. . . \" And all the same she\\'s thinking that my emotions are all churned up \\nand that I\\'m fearing for my life, that in fact it\\'s not all that bad. \"OK, \\nfine, fine,\" she says, \"if you\\'re afraid, OK, as soon as Urshan comes back \\nI\\'ll send him over.\"\\n\\nWe called again because they had just started robbing the apartment directly \\nunder Aunt Tanya\\'s, on the second floor, Asya Dallakian\\'s apartment. She \\nwasn\\'t home, she was staying with her daughter in Karabagh. They destroyed \\neverything there . . . We realized that they still might come back. We kept on\\ntrying to get through to Aunt Tanya--Urshan\\'s wife is named Tanya too and \\nfinally we get through. She says, \"Yes, he\\'s come home, he\\'s leaving for your \\nplace now.\" He came. Of course he didn\\'t know what was happening, either, \\nbecause he brought two of his daughters with him. He came over in his jeep \\nwith his two daughters, like he was going on an outing. He came and saw what \\nshape we were in and what was going on in town and got frightened. He has \\ngrown up daughters, they\\'re almost my age.\\n\\nThe three of us carried out Karina, tossed a coat on her and a warm scarf, and\\nwent down to his car. He took Karina and me to the Maternity Home. . . No, \\nfirst they took us to the po]ice precinct. They had stretchers ready. As\\nsoon as we got out of the car they put Karina and me on stretchers and said\\nthat we were in serious condition and that we mustn\\'t move, we might have\\nfractures. From the stretcher I saw about 30 soldiers sitting and lying on the\\nfirst floor, bandaged, on the concrete floor, groaning . . . This was around\\neleven o\\'clock at night. We had left the house somewhere around 1:30. When I \\nsaw those soldiers I realized that a war was going on: soldiers, enemies\\n. . . everything just like a war.\\n\\nThey carried me into some office on the stretcher. The emergency medical\\npeople from Baku were there. The medical attendant there was an older \\nArmenian. Urshan told him what they had done to Karina because she\\'s so proud \\nshe would never have told. And this aging Armenian . . . his name was Uncle \\nArkady, I think, because someone said \"Arkady, get an injection ready,\" he \\nstarted to fill a syringe, and turned around so as to give Karina a shot. But \\nwhen he looked at her face he became ill. And he was an old man, in his \\nsixties, his hair was all grey, and his moustache, too. He hugged Karina and \\nstarted to cry: \"What have they done to you?!\" He was speaking Armenian. \"What\\nhave they done to you?!\" Karina didn\\'t say anything. Mamma came in then, and \\nshe started to cry, too. The man tried to calm her. \"I\\'ll give you a shot.\" \\nMamma tells him, \"I don\\'t need any shot. Where is the government? Just what \\nare they doing? Look what they\\'ve done to my children! They\\'re killing people,\\nand you\\'re just sitting here!\" Some teacups were standing on the table in \\nthere. \"You\\'re sitting here drinking tea! Look what they\\'ve done to my \\ndaughters! Look what they\\'ve turned them into!\" They gave her something to \\ndrink, some heart medicine, I think. They gave Karina an injection and the\\ndoctor said that she had to be taken to the Maternity Home immediately. Papa \\nand Urshan, I think, even though Papa was in bad shape, helped carry Karina \\nout. When they put her on the stretcher, none of the medics got near her. I \\ndon\\'t know, maybe there weren\\'t any orderlies. Then they came to me: \"What\\'s \\nthe matter with you?\" Their tone was so official that I wrapped myself tighter\\nin the half-length coat. I had a blanket on, too, an orange one, Aunt Tanya\\'s.\\nI said, \"I\\'m fine.\" Uncle Arkady came over and was soothing me, and then told \\nthe doctor, \"You leave, let a woman examine her.\" A woman came, an \\nAzerbaijani, I believe, and said, \"What\\'s wrong with you?\" I was wearing my \\nsister Lyuda\\'s nightshirt, the sister who at this time was in Yerevan. When \\nshe was nursing her infant she had cut out a big hole in it so that it would \\nbe easier to breast feed the baby. I tore the night shirt some more and showed\\nher. I took it off my shoulders and turned my back to her. There was a huge \\nwound, about the size of a hand, on my back, from the Indian vase. She said \\nsomething to them and they gave me two shots. She said that it should be \\ndressed with something, but that they\\'d do that in the hospital.\\n\\nThey put me on a stretcher, too. They started looking for people to carry me. \\nI raised up my head a little and wanted to sit up, and this woman, I don\\'t \\nknow if she was a doctor or a nurse, said, \"Lie still, you mustn\\'t move.\" When\\nI was lying back down I saw two policemen leading a man. His profile seemed \\nvery familiar to me. I shouted, \"Stop!\" One of the policemen turned and says, \\n\"What do you want?\" I say, \"Bring him to me, I want to look at him.\" They \\nbrought him over and I said, \"That person was just in our apartment and he \\njust raped me and my sister. I recognize him, note it down.\" They said, \\n\"Fine,\" but didn\\'t write it down and led him on. I don\\'t know where they were \\ntaking him.\\n\\nThen they put my stretcher near where the injured and beaten soldiers were \\nsitting. They went to look for the ambulance driver so he would bring the car \\nup closer. One of the soldiers started talking to me, \"Sister . . . \" I don\\'t \\nremember the conversation exactly, but he asked me were we lived and what they\\ndid to us. I asked him, \"Where are you from?\" He said that he was from Ufa. \\nApparently they were the first that were brought in. The Ufa police. Later I \\nlearned that they suffered most of all. He says, \"OK, you\\'re Armenians, they \\ndidn\\'t get along with you, but I\\'m a Russian,\" he says, \"what are they trying \\nto kill me for?\" Oh, I remembered something else. When I went out onto the \\nbalcony with Kuliyev for a hammer and nails I looked out the window and saw \\ntwo Azerbaijanis beating a soldier near the kindergarten. He was pressed \\nagainst the fence and he covered his head with his arms, they were beating him\\nwith his own club. The way he cried \"Mamma\" made my skin crawl. I don\\'t know \\nwhat they did to him, if he\\'s still alive or not. And something else. Before \\nhe attack on our house we saw sheets, clothes, and some dishes flying from the\\nthird or fourth floor of the neighboring building, but I didn\\'t think it was \\nAzerbaijanis attacking Armenians. I thought that something was on fire or they\\nwere throwing something they didn\\'t need out, or someone was fighting with \\nsomeone. It was only later, when they were burning a passenger car in the \\nyard, when the neighbors said that they were doing that to the Armenians, that\\nI realized that this was serious, that it was anti-Armenian.\\n\\nThey took Karina and me to the Sumgait Maternity Home. Mamma went to them too \\nand said, \"I\\'ve been beaten too, help me.\" But they just ignored her. My \\nfather went to them and said in a guilty voice, as though it was his fault \\nthat he\\'d been beaten, and says, \"My ribs hurt so much, those creeps have \\nprobably broken my ribs. Please look at them.\" The doctor says, \"That\\'s not my\\njob.\" Urshan said, \"Fine, I\\'ll take you to my place and if we need a doctor, \\nI\\'ll find you one. I\\'ll bring one and have him look at you. And he drove them \\nto his apartment.\\n\\nMarina and I stayed there. They examined us. I was more struck by what the \\ndoctor said than by what those Azerbaijanis in our apartment did to us. I \\nwasn\\'t surprised when they beat us they wanted to beat us, but I was very\\nsurprised that in a Soviet medical facility a woman who had taken the\\nHippocratic Oath could talk to victims like that. By happy--or unhappy--\\ncoincidence we were seen by the doctor that had delivered our Karina. And she,\\nhaving examined Karina, said, \"No problem, you got off pretty good. Not like \\nthey did in Kafan, when you Armenians were killing and raping our women.\\n\"Karina was in such terrible condition that she couldn\\'t say anything--she\\nwould certainly have had something to say! Then they examined me. The same \\nstory. They put us in a separate ward. No shots, no medicinal powders, no \\ndrugs. Absolutely none! They didn\\'t even give us tea. All the women there soon\\nfound out that in ward such and such were Armenians who had been raped. And\\nthey started coming and peering through the keyhole, the way people look at \\nzoo animals. Karina didn\\'t see this, she was lying there, and I kept her from \\nseeing it.\\n\\nThey put Ira B. in our ward. She had also been raped. True, she didn\\'t have \\nany serious bodily injuries, but when she told me what had happened at their \\nplace, I felt worse for them than I did for us. Because when they raped Ira \\nher daughter was in the room, she was under the bed on which it happened. And\\nIra was holding her daughter\\'s hand, the one who was hiding under the bed.\\nWhen they were beating Ira or taking her earrings off, gold, when she \\ninvoluntarily let go of her daughter\\'s hand, her daughter took her hand again.\\nHer daughter is in the fourth grade, she\\'s 11 years old. I felt really awful \\nwhen I heard that. Ira asked them not to harm her daughter, she said, \"Do what\\nyou want with me, just leave my daughter alone.\" Well, they did what they \\nwanted. They threatened to kill her daughter if she got in their way. Now I \\nwould be surprised if the criminals had behaved any other way that night. It \\nwas simply Bartholomew\\'s Night, I say, they did what they would love to do \\nevery day: steal, kill, rape . . .\\n\\nMany are surprised that those animals didn\\'t harm the children. The beasts \\nexplained it like this: this would be repeated in 15 to 20 years, and those \\nchildren would be grown, and then, as they put it, \"we\\'ll come take the \\npleasure out of their lives, those children.\" This was about the girls that\\nwould be young women in 15 years. They were thinking about their tomorrow \\nbecause they were sure that there would be no trial and no investigation, just\\nas there was no trial or investigation in 1915, and that those girls could be \\nof some use in 15 years. This I heard from the investigators; one of the \\nvictims testified to it. That\\'s how they described their own natures, that\\nthey would still be bloodthirsty in 15 to 20 years, and in 100 years--they\\nthemselves said that.\\n\\nAnd this, too. Everyone is surprised that they didn\\'t harm our Marina. Many \\npeople say that they either were drunk or had smoked too much. I don\\'t know \\nwhy their eyes were red. Maybe because they hadn\\'t slept the night before, \\nmaybe for some other reason, I don\\'t know. But they hadn\\'t been smoking and \\nthey weren\\'t drunk, I\\'m positive, because someone who has smoked will stop at \\nnothing he has the urge to do. And they spoke in a cultured fashion with \\nMarina: \"Little sister, don\\'t be afraid, we won\\'t harm you, don\\'t look over \\nthere [where I was], you might be frightened. You\\'re a Muslim, a Muslim woman \\nshouldn\\'t see such things.\" So they were really quite sober . . .\\n\\nSo we came out of that story alive. Each every day we have lived since it all \\nhappened bears the mark of that day. It wasn\\'t even a day, of those several \\nhours. Father still can\\'t look us in the eyes. He still feels guilty for what\\nhappened to Karina, Mother, and me. Because of his nerves he\\'s started talk-\\ning to himself, I\\'ve heard him argue with himself several times when he\\nthought no one is listening: \"Listen,\" he\\'ll say, \"what could I do? What could\\nI do alone, how could I protect them?\" I don\\'t know where to find the words,\\nit\\'s not that I\\'m happy, but I am glad that he didn\\'t see it all happen. \\nThat\\'s the only thing they spared us . . . or maybe it happened by chance. Of \\ncourse he knows it all, but there\\'s no way you could imagine every last detail\\nof what happened. And there were so many conversations: Karina and I spoke\\ntogether in private, and we talked with Mamma, too. But Father was never\\npresent at those conversations. We spare him that, if you can say that. And\\nwhen the investigator comes to the house, we don\\'t speak with Father present.\\n\\nOn February 29, the next clay, Karina and I were discharged from the hospital.\\nFirst they released me, but since martial law had been declared in the city, \\nthe soldiers took me to the police precinct in an armored personnel carrier. \\nThere were many people there, Armenian victims. I met the Tovmasian family \\nthere. From them I learned that Rafik and their Uncle Grant had died. They \\nwere sure that both had died. They were talking to me and Raya, Rafik\\'s wife \\nand Grant\\'s daughter, and her mother, were both crying.\\n\\nThen they took us all out of the office on the first floor into the yard.\\nThere\\'s a little one-room house outside there, a recreation and reading area.\\nThey took us in there. The women were afraid to go because they thought\\nthat they were shooing us out of the police precinct because it had become\\nso dangerous that even the people working at the precinct wanted to hide.\\nThe women were shouting. They explained to them: \"We want to hide you\\nbetter because it\\'s possible there will be an attack on the police precinct.\"\\n\\nWe went into the little house. There were no chairs or tables in there. We\\nhad children with us and they were hungry; we even had infants who needed to \\nhave their diapers changed. No one had anything with them. It was just awful. \\nThey kept us there for 24 hours. From the window of the one room house you \\ncould see that there were Azerbaijanis standing on the fences around the \\npolice precinct, as though they were spying on us. The police precinct is \\nsurrounded by a wall, like a fence, and it\\'s electrified, but if they were \\nstanding on the wall, it means the electricity was shut off. This brought \\ngreat psychological pressure to bear on us, particularly on those who hadn\\'t \\njust walked out of their apartments, but who hadn\\'t slept for 24 hours, or 48,\\nor those who had suffered physically and spiritually, the ones who had lost \\nfamily members. For us it was another ordeal. We were especially frightened \\nwhen all the precinct employees suddenly disappeared. We couldn\\'t see a single\\nperson, not in the courtyard and not in the windows. We thought that they must\\nhave already been hiding under the building, that they must have some secret \\nroom down there. People were panicking: they started throwing themselves at\\none another . . . That\\'s the way it is on a sinking ship. We heard those \\npeople, mainly young people, whistling and whopping on the walls. We felt that\\nthe end was approaching. I was completely terrified: I had left Karina in the \\nhospital and didn\\'t know where my parents were. I was sort of calm about my \\nparents, I was thinking only about Karina, if, Heaven forbid, they should \\nattack the hospital, they would immediately tell them that there was an \\nArmenian in there, and something terrible would happen to Karina again, and \\nshe wouldn\\'t be able to take it.\\n\\nThen soldiers with dogs appeared. When they saw the dogs some of the people \\nclimbed down off the fence. Then they brought in about another 30 soldiers.\\nThey all had machine guns in readiness, their fingers on the triggers. We \\ncalmed down a little. They brought us chairs and brought the children some \\nlittle cots and showed us where we could wash our hands, and took the children\\nto the toilet. But we all sat there hungry, but to be honest, it would never \\nhave occurred to any of us that we hadn\\'t eaten for two days and that people \\ndo eat.\\n\\nThen, closer to nightfall, they brought a group of detained criminals. They \\nwere being watched by soldiers with guard dogs. One of the men came back from \\nthe courtyard and told us about it. Raya Tovmasian . . . it was like a \\ndifferent woman had been substituted. Earlier she had been crying, wailing, \\nand calling out: \"Oh, Rafik!,\" but when she heard about this such a rage came \\nover her! She jumped up, she had a coat on, and she started to roll up her \\nsleeves like she was getting ready to beat someone. And suddenly there were \\nsoldiers, and dogs, and lots of people. She ran over to them. The bandits were\\nstanding there with their hands above their heads facing the wall. She went up\\nto one of them and grabbed him by the collar and started to shake and thrash \\nhim! Then, on to a second, and a third. Everyone was rooted to the spot. Not \\none of the soldiers moved, no one went up to help or made her stop her from \\ndoing it. And the bandits fell down and covered their heads with their hands, \\nmuttering something. She came back and sat down, and something akin to a smile\\nappeared on her face. She became so quiet: no tears, no cries. Then that round\\nwas over and she went back to beat them again. She was walking and cursing \\nterribly: take that, and that, they killed my husband, the bastards, the \\ncreeps, and so on. Then she came back again and sat down. She probably did \\nthis the whole night through, well, it wasn\\'t really night, no one slept. She \\nwent five or six times and beat them and returned. And she told the women, \\n\"What are you sitting there for? They killed your husbands and children, they \\nraped, and you\\'re just sitting there. You\\'re sitting and talking as though \\nnothing had happened. Aren\\'t you Armenians?\" She appealed to everyone, but no \\none got up. I was just numb, I didn\\'t have the strength to beat anyone, I \\ncould barely hold myself up, all the more so since I had been standing for so \\nmany hours--I was released at eleven o\\'clock in the morning and it was already\\nafter ten at night because there weren\\'t enough chairs, really it was the \\nelderly and women with children who sat. I was on my feet the whole time. \\nThere was nothing to breathe, the door was closed, and the men were smoking. \\nThe situation was deplorable.\\n\\nAt eleven o\\'clock at night policemen came for us, local policemen, \\nAzerbaijanis. They said, \"Get up. They\\'ve brought mattresses, you can wash up\\nand put the children to bed.\" Now the women didn\\'t want to leave this place, \\neither. The place had become like home, it was safe, there were soldiers with \\ndogs. If anyone went outside, the soldiers would say, \"Oh, it\\'s our little \\nfamily,\" and things like that. The soldiers felt this love, and probably, for \\nthe first time in their lives perceived themselves as defenders. Everyone\\nspoke from the heart, cried, and hugged them and they, with their loaded\\nmachine guns in their hands, said, \"Grandmother, you mustn\\'t approach me,\\nI\\'m on guard.\" Our people would say, \"Oh, that\\'s all right.\" They hugged\\nthem, one woman even kissed one of the machine guns. This was all terribly\\nmoving for me. And the small children kept wanting to pet the dogs.\\n\\nThey took us up to the second floor and said, \"You can undress and sleep in \\nhere. Don\\'t be afraid, the precinct is on guard, and it\\'s quiet in the city.\"\\nThis was the 29th, when the killing was going on in block 41A and in other\\nplaces. Then we were told that all the Armenians were being gathered at the\\nSK club and at the City Party Committee. They took us there. On the way I \\nasked them to stop at the Maternity Home: I wanted to take Karina with me.\\nI didn\\'t know what was happening there. They told me, \"Don\\'t worry, the\\nMaternity Home is full of soldiers, more than mothers-to-be. So you can rest\\nassured. I say, \"Well, I won\\'t rest assured regardless, because the staff in\\nthere is capable of anything.\"\\n\\nWhen I arrived at the City Party Committee it turned out that Karina had\\nalready been brought there. They had seen fit to release her from the hospi-\\ntal, deciding that she felt fine and was no longer in need of any care. Once\\nwe were in the City Party Committee we gave free reign to our tears. We met \\nacquaintances, but everyone was somehow divided into two groups, those who \\nhadn\\'t been injured, who were clothed, who had brought a pot of food with \\nthem, and so on, and those, like me, like Raya, who were wearing whatever had \\ncome their way. There were even people who were all made up, dolled up like \\nthey had come from a wedding. There were people without shoes, naked people, \\nhungry people, those who were crying, and those who had lost someone. And of \\ncourse the stories and the talk were flying: \"Oh, I heard that they killed \\nhim!\" \"What do you mean they killed him!\" \"He stayed at work!\" \"Do you know \\nwhat\\'s happening at this and such a plant? Talk like that.\\n\\nAnd then I met Aleksandr Mikhailovich Gukasian, the teacher. I know him very \\nwell and respect him highly. I\\'ve known him for a long time. They had a small \\nroom, well really it was more like a study-room. We spent a whole night \\ntalking in that study once. On March 1 we heard that Bagirov [First Secretary \\nof the Communist Party of Azerbaijan SSR] had arrived. Everyone ran to see \\nBagirov, what news he had brought with him and how this was all being viewed \\nfrom outside. He arrived and everyone went up to him to talk to him and ask \\nhim things. Everyone was in a tremendous rage. But he was protected by \\nsoldiers, and he went up to the second floor and didn\\'t deign to speak with \\nthe people. Apparently he had more important things to do.\\n\\nSeveral hours passed. Gukasian called me and says, \"Lyudochka, find another \\ntwo or three. We\\'re going to make up lists, they asked for them upstairs, \\nlists of the dead, those whose whereabouts are unknown, and lists of people \\nwho had pogroms of their apartments and of those whose cars were burned.\" I \\nhad about 50 people in my list when they called me and said, \"Lyuda, your \\nMamma has arrived, she\\'s looking for you, she doesn\\'t believe that you are \\nalive and well and that you\\'re here.\" I gave the lists to someone and asked \\nthem to continue what I was doing and went off.\\n\\nThe list was imprecise, of course. It included Grant Adamian, Raya Tovmasian\\'s\\nfather, who was alive, but at the time they thought him dead. There was Engels\\nGrigorian\\'s father and aunt, Cherkez and Maria. The list also included the \\nname of my girlfriend and neighbor, Zhanna Agabekian. One of the guys said \\nthat he had been told that they chopped her head off in the courtyard in front\\nof the Kosmos movie theater. We put her on the list too, and cried, but later \\nit turned out that that was just a rumor, that in fact an hour earlier she had\\nsomehow left Sumgait for the marina and from there had set sail for \\nKrasnovodsk, where, thank God, she was alive and well. I should also say that \\nin addition to those who died that list contained people who were rumored \\nmissing or who were so badly wounded that they were given up for dead. 3\\n\\nAll the lists were taken to Bagirov. I don\\'t remember how many dead were \\ncontained in the list, but it\\'s a fact that when Gukasian came in a couple \\nof minutes later he was cursing and was terribly irate. I asked, \"What\\'s \\ngoing on?\" He said, \"Lyuda, can you imagine what animals, what scoundrels\\nthey are! They say that they lost the list of the dead. Piotr Demichev\\n[Member of the Politburo of the Central Committee of the Communist Party\\nof the USSR] has just arrived, and we were supposed to submit the list to\\nhim, so that he\\'d see the scope of the slaughter, of the tragedy, whether it\\nwas one or fifty.\" They told him that the list had disappeared and they\\nshould ask everyone who hadn\\'t left for the Khimik boarding house all over\\nagain. There were 26 people on our second list. I think that the number 26\\nwas the one that got into the press and onto television and the radio, because\\nthat\\'s the list that Demichev got. I remember exactly that there were 26 \\npeople on the list, I had even told Aleksandr Mikhailovich that that was only \\na half of those that were on the first list. He said, \"Lyuda, please, try to\\nremember at least one more.\" But I couldn\\'t remember anyone else. But there\\nwere more than 30 dead. Of that I am certain. The government and the Procuracy\\ndon\\'t count the people who died of fright, like sick people and old people \\nwhose lives are threatened by any shock. They weren\\'t registered as victims of\\nthe Sumgait tragedy. And then there may be people we didn\\'t know. So many \\npeople left Sumgait between March 1 and 8! Most of them left for smaller towns\\nin Russia, and especially to the Northern Caucasus, to Stavropol, and the \\nKrasnodarsk Territory. We don\\'t have any information on them. I know that \\nthere are people who set out for parts around Moscow. In the periodical \\nKrestyanka [Woman Farmer] there was a call for people who know how to milk \\ncows, and for mechanics, and drivers, and I know a whole group of people went \\nto help out. Also clearly not on our list are those people who died entering\\nthe city, who were burned in their cars. No one knows about them, except the \\nAzerbaijanis, who are hardly likely to say anything about it. And there\\'s\\nmore. A great many of the people who were raped were not included in the list \\ndrawn up at the Procuracy. I know of three instances for sure, and I of course\\ndon\\'t know them all. I\\'m thinking of three women whose parents chose not to \\npublicize what had happened, that is, they didn\\'t take the matter to court, \\nthey simply left. But in so doing they didn\\'t cease being victims. One of them\\nis the first cousin of my classmate Kocharian. She lived in Microdistrict No. \\n8, on the fifth floor. I can\\'t tell you the building number and I don\\'t know \\nher name. Then comes the neighbor of one of my relatives, she lived in \\nMicrodistrict 1 near the gift shop. I don\\'t know her name, she lives on the \\nsame landing as the Sumgait procurator. They beat her father, he was holding \\nthe door while his daughter hid, but he couldn\\'t hold the door forever, and \\nwhen she climbed over the balcony to the neighbors\\' they seized her by her \\nbraid. Like the Azerbaijanis were saying, it was a very cultured mob, because \\nthey didn\\'t kill anyone, they only raped them and left. And the third one \\n. . . I don\\'t remember who the third one was anymore.\\n\\nThey transferred us on March 1. Karina still wasn\\'t herself. Yes, we lived for\\ndays in the SK, in the cultural facility, and at the Khimik. They lived there \\nand I lived at the City Party Committee because I couldn\\'t stay with Karina; \\nit was too difficult for me, but I was at peace: she had survived. I could \\nalready walk, but really it was honest words that held me up. Thanks to the \\nsocial work I did there, I managed to persevere. Aleksandr Mikhailovich said, \\n\"If it weren\\'t for the work I would go insane.\" He and I put ourselves in gear\\nand took everything upon ourselves: someone had an infant and needed diapers \\nand free food, and we went to get them. The first days we bought everything, \\nalthough we should have received it for free. They were supposed to have been \\ndispensed free of charge, and they sold it to us. Then, when we found out it \\nwas free, we went to Krayev. At the time, fortunately, you could still drop by\\nto see him like a neighbor, all the more so since everything was still clearly\\nvisible on our faces. Krayev sent a captain down and he resolved the issue.\\n\\nOn March 2 they sent two investigators to see us: Andrei Shirokov and Vladimir\\nFedorovich Bibishev. The way it worked out, in our family they had considered \\nonly Karina and me victims, maybe because she and I wound up in the hospital.\\nMother and Father are considered witnesses, but not victims.\\n\\nShirokov was involved with Karina\\'s case, and Bibishev, with mine. After I \\ntold him everything, he and I planned to sit down with the identikit and\\nrecord everyone I could remember while everything was still fresh in my mind. \\nWe didn\\'t work with the identikit until the very last day because the\\nconditions weren\\'t there. The investigative group worked slowly and did poor \\nquality work solely because the situation wasn\\'t conducive to working: there \\nweren\\'t enough automobiles, especially during the time when there was a \\ncurfew, and there were no typewriters for typing transcripts, and no still or \\nvideo cameras. I think that this was done on purpose. We\\'re not so poor that \\nwe can\\'t supply our investigators with all that stuff. It was done especially \\nto draw out the investigation, all the more so since the local authorities saw\\nthat the Armenians were leaving at the speed of light, never to return to \\nSumgait. And the Armenians had a lot to say I came to an agreement with \\nBibishev, I told him myself, \"Don\\'t you worry, if it takes us a month or two \\nmonths, I\\'ll be here. I\\'m not afraid, I looked death in the eyes five times in\\nthose two days, I\\'ll help you conduct the investigation.\"\\n\\nHe and I worked together a great deal, and I used this to shelter Karina, I\\ngave them so much to do that for a while they didn\\'t have the time to get to\\nher, so that she would at least have a week or two to get back to being her-\\nself. She was having difficulty breathing so we looked for a doctor to take x-\\nrays. She couldn\\'t eat or drink for nine days, she was nauseous. I didn\\'t eat\\nand drank virtually nothing for five days. Then, on the fifth day, when we\\nwere in Baku already, the investigator told me, \"How long can you go on like \\nthis? Well fine, so you don\\'t want to eat, you don\\'t love yourself, you\\'re\\nnot taking care of yourself, but you gave your word that you would see this\\ninvestigation through. We need you.\" Then I started eating, because in fact I\\nwas exhausted. It wasn\\'t enough that I kept seeing those faces in our apart-\\nment in my mind, every day I went to the investigative solitary confinement\\ncells and prisons. I don\\'t know . . . we were just everywhere! Probably in\\nevery prison in the city of Baku and in all the solitary confinement cells of\\nSumgait. At that time they had even turned the drunk tank into solitary \\nconfinement.\\n\\nThus far I have identified 31 of the people who were in our apartment. Mamma \\nidentified three, and Karina, two. The total is 36. Marina didn\\'t identify \\nanyone, she remembers the faces of two or three, But they weren\\'t among the \\nphotographs of those detained. I told of the neighbor I recognized. The one \\nwho went after the axe. He still hasn\\'t been detained, he\\'s still on the \\nloose. He\\'s gone, and it\\'s not clear if he will be found or not. I don\\'t know \\nhis first or last name. I know which building he lived in and I know his \\nsisters\\' faces. But he\\'s not in the city. The investigators informed me that \\neven if the investigation is closed and even if the trial is over they will \\ncontinue looking for him.\\n\\nThe 31 people I identified are largely blue-collar workers from various \\nplants, without education, and of the very lowest level in every respect.\\nMostly their ages range from 20 to 30 years; there was one who was 48. Only\\none of them was a student. He was attending the Azerbaijan Petroleum and\\nChemical Institute in Sumgait, his mother kept trying to bribe the investiga-\\ntor. Once, thinking that I was an employee and not a victim, she said in front\\nof me \"I\\'ll set you up a restaurant worth 500 rubles and give you 600 in cash\\nsimply for keeping him out of Armenia,\" that is, to keep him from landing in\\na prison on Armenian soil. They\\'re all terribly afraid of that, because if the\\ninvestigator is talking with a criminal and the criminal doesn\\'t confess even\\nthough we identified him, they tell him--in order to apply psychological\\npressure--they say, \"Fine, don\\'t confess, just keep silent. When you\\'re in an\\nArmenian prison, when they find out who you are, they\\'ll take care of you\\nin short order.\" That somehow gets to them. Many give in and start to talk.\\n\\nThe investigators and I were in our apartment and videotaped the entire\\npogrom of our apartment, as an investigative experiment. It was only then\\nthat I saw the way they had left our apartment. Even without knowing who was \\nin our apartment, you could guess. They stole, for example, all the money and \\nall the valuables, but didn\\'t take a single book. They tore them up, burned \\nthem, poured water on them, and hacked them with axes. Only the Materials\\nfrom the 27th Congress of the Communist Party of the Soviet Union and James \\nFenimore Cooper\\'s Last of the Mohigans. Oh yes, lunch was ready, we were \\nboiling a chicken, and there were lemons for tea on the table. After they had \\nbeen in our apartment, both the chicken and the lemons were gone. That\\'s \\nenough to tell you what kind of people were in our apartment, people who don\\'t\\neven know anything about books. They didn\\'t take a single book, but they did \\ntake worn clothing, food, and even the cheapest of the cheap, worn-out \\nslippers.\\n\\nOf those whom I identified, four were Kafan Azerbaijanis living in Sumgait. \\nBasically, the group that went seeking \"revenge\"--let\\'s use their word for \\nit--was joined by people seeking easy gain and thrill-seekers. I talked with \\none of them. He had gray eyes, and somehow against the back-drop of all that \\nblack I remembered him specifically because of his of his eyes. Besides taking\\npart in the pogrom of our apartment, he was also involved in the murder of \\nTamara Mekhtiyeva from Building 16. She was an older Armenian who had recently\\narrived from Georgia, she lived alone and did not have anyone in Sumgait. I \\ndon\\'t know why she had a last name like that, maybe she was married to an \\nAzerbaijani. I had laid eyes on this woman only once or twice, and know \\nnothing about her. I do know that they murdered her in her apartment with an \\naxe. Murdering her wasn\\'t enough for them. They hacked her into pieces and \\nthrew them into the tub with water.\\n\\nI remember another guy really well too, he was also rather fair-skinned. You \\nknow, all the people who were in our apartment were darker than dark, both \\ntheir hair and their skin. And in contrast with them, in addition to the grey-\\neyed one, I remember this one fellow, the one l took to be a Lezgin. I \\nidentified him. As it turned out he was Eduard Robertovich Grigorian, born\\nin the city of Sumgait, and he had been convicted twice. One of our own. How \\ndid I remember him? The name Rita was tattooed on his left or right hand. I \\nkept thinking, is that Rita or \"puma,\" which it would be if you read the word \\nas Latin characters instead of Cyrillic, because the Cyrillic \"T\" was the one \\nthat looks like a Latin \"M.\" When they led him in he sat with his hands behind\\nhis back. This was at the confrontation. He swore on every holy book, tried to\\nput in an Armenian word here and there to try and spark my compassion, and \\ntold me that I was making a mistake, and called me \"dear sister.\" He said, \\n\"You\\'re wrong, how could I, an Armenian, raise my hand against my own, an \\nArmenian,\" and so on. He spoke so convincingly that even the investigator \\nasked me, \"Lyuda, are you sure it was he?\" I told him, \"I\\'ll tell you one more\\nidentifying mark. If I\\'m wrong I shall apologize and say I was mistaken. The \\nname Rita is tattooed on his left or right hand.\" He went rigid and became \\npale. They told him, \"Put your hands on the table.\" He put his hands on the\\ntable with the palms up. I said, \"Now turn your hands over,\" but he didn\\'t \\nturn his hands over. Now this infuriated me. If he had from the very start\\nacknowledged his guilt and said that he hadn\\'t wanted to do it, that they \\nforced him or something else, I would have treated him somewhat differently.\\nBut he insolently stuck to his story, \"No, I did not do anything, it wasn\\'t \\nme.\" When they turned his hands over the name Rita was in fact tattooed on his\\nhand. His face distorted and he whispered something wicked. I immediately flew\\ninto a rage. There was an ashtray on the table, a really heavy one, made out \\nof granite or something, very large, and it had ashes and butts in it. \\nCatching myself quite by surprise, I hurled that ashtray at him. But he ducked\\nand the ashtray hit the wall, and ashes and butts rained down on his head and \\nback. And he smiled. When he smiled it provoked me further. I don\\'t know how, \\nbut I jumped over the table between us and started either pounding him or \\nstrangling him; I no longer remember which. When I jumped I caught the \\nmicrophone cord. The investigator was there, Tolya . . .I no longer recall his\\nlast name, and he says, \"Lyudochka, it\\'s a Japanese microphone! Please . . .\\n\" And shut off all the equipment on the spot, it was all being video taped. \\nThey took him away. I stayed, and they talked to me a little to calm me down, \\nbecause we needed to go on working, I only remember Tolya telling me, \"You\\'re \\nsome actress! What a performance!\" I said, \"Tolya, honestly . . . \" Beforehand\\nthey would always tell me, \"Lyuda, more emotion. You speak as calmly as if \\nnothing had happened to you.\" I say, \"I don\\'t have any more strength or \\nemotion. All my emotions are behind me now, I no longer have the strength \\n. . . I don\\'t have the strength to do anything.\" And he says, \"Lyuda, how were\\nyou able to do that?\" And when I returned to normal, drinking tea and watching\\nthe tape, I said, \"Can I really have jumped over that table? I never jumped \\nthat high in gym class.\"\\n\\nSo you could say the gang that took over our apartment was international. Of \\nthe 36 we identified there was an Armenian, a Russian, Vadim Vorobyev, who \\nbeat Mamma, and 34 Azerbaijanis.\\n\\nAt the second meeting with Grigorian, when he had completely confessed his \\nguilt, he told of how on February 27 the Azerbaijanis had come knocking. Among\\nthem were guys--if you can call them guys--he knew from prison. They said, \\n\"Tomorrow we\\'re going after the Armenians. Meet us at the bus station at three\\no\\'clock.\" He said, \"No, I\\'m not coming.\" They told him, \"If you don\\'t come \\nwe\\'ll kill you.\" He said, \"Alright, I\\'ll come.\" And he went.\\n\\nThey also went to visit my classmate from our microdistrict, Kamo Pogosian. He\\nhad also been in prison; I think that together they had either stolen a \\nmotorcycle or dismantled one to get some parts they needed. They called him \\nout of his apartment and told him the same thing: \"Tomorrow we\\'re going to get\\nthe Armenians. Be there.\" He said, \"No.\" They pulled a knife on him. He said, \\n\"I\\'m not going all the same.\" And in the courtyard on the 27th they stabbed \\nhim several times, in the stomach. He was taken to the hospital. I know he was\\nin the hospital in Baku, in the Republic hospital. If we had known about that \\nwe would have had some idea of what was to come on the 28th.\\n\\nI\\'ll return to Grigorian, what he did in our apartment. I remember that he\\nbeat me along with all the rest. He spoke Azerbaijani extremely well. But he\\nwas very fair-skinned, maybe that led me to think that they had it out for\\nhim, too. But later it was proved that he took part in the beating and burning\\nof Shagen Sargisian. I don\\'t know if he participated in the rapes in our \\napartment; I didn\\'t see, I don\\'t remember. But the people who were in our \\napartment who didn\\'t yet know that he was an Armenian said that he did. I \\ndon\\'t know if he confessed or not, and I myself don\\'t recall because I blacked\\nout very often. But I think that he didn\\'t participate in the rape of Karina\\nbecause he was in the apartment the whole time. When they carried her into the\\ncourtyard, he remained in the apartment.\\n\\nAt one point I was talking with an acquaintance about Edik Grigorian. From her\\nI learned that his wife was a dressmaker, his mother is Russian, he doesn\\'t \\nhave a father, and that he\\'s been convicted twice. Well this will be his third\\nand, I hope, last sentence. He beat his wife, she was eternally coming to work\\nwith bruises. His wife was an Armenian by the name of Rita.\\n\\nThe others who were detained . . . well they\\'re little beasts. You really can\\'t\\ncall them beasts, they\\'re just little beasts. They were robots carrying out\\nsomeone else\\'s will, because at the investigation they all said, \"I don\\'t \\nunderstand how I could have done that, I was out of my head.\" But we know that\\nthey were won around to it and prepared for it, that\\'s why they did it. In the\\nname of Allah, in the name of the Koran, in the name of propagating Islam--\\nthat\\'s holy to them--that\\'s why they did everything they were commanded to do.\\nBecause I saw they didn\\'t have minds of their own, I\\'m not talking about their\\nlevel of cultural sophistication or any higher values. No education, they\\nwork, have a slew of children without the means to raise them properly, they \\ncrowd them in, like at the temporary housing, and apparently, they were \\npromised that if they slaughtered the Armenians they would receive apartments.\\nSo off they went. Many of them explained their participation saying, \"they \\npromised us apartments.\"\\n\\nAmong them was one who genuinely repented. I am sure that he repented from the\\nheart and that he just despised himself after the incident. He worked at a \\nchildren\\'s home, an Azerbaijani, he has two children, and his wife works at \\nthe children\\'s home too. Everything that they acquired, everything that they \\nhave they earned by their own labor, and wasn\\'t inherited from parents or \\ngrandparents. And he said, \"I didn\\'t need anything I just don\\'t know . . . how\\nI ended up in that; it was like some hand was guiding me. I had no will of my \\nown, I had no strength, no masculine dignity, nothing.\" And the whole time I\\nkept repeating, \"Now you imagine that someone did the same to your young wife \\nright before your own eyes.\" He sat there and just wailed.\\n\\nBut that leader in the Eskimo dogskin coat was not detained. He performed a \\nmarvelous disappearing act, but I think that they\\'ll get onto him, they just \\nhave to work a little, because that Vadim, that boy, according to his\\ngrandfather, is in touch with the young person who taught him what to do, how \\nto cover his tracks. He was constantly exchanging jackets with other boys he \\nknew and those he didn\\'t, either, and other things as well, and changed \\nhimself like a chameleon so they wouldn\\'t get onto him, but he was detained.\\n\\nThat one in the Eskimo dogskin coat was at the Gambarians\\' after Aleksandr \\nGambarian was murdered. He came in and said, \"Let\\'s go, enough, you\\'ve spilled\\nenough blood here.\"\\n\\nMaybe Karina doesn\\'t know this but the reason they didn\\'t finish her off was \\nthat they were hoping to take her home with them. I heard this from Aunt Tanya\\nand her sons, the Kasumovs, who were in the courtyard near the entryway. They \\nliked her very much, and they had decided to take her to home with them. When \\nKarina came to at one point--she doesn\\'t remember this yet, this the neighbors \\nold me--and she saw that there was no one around her, she started crawling to \\nthe entryway. They saw that she was still alive and came back, they were \\nalready at the third entryway, on their way to the Gambarians\\'. They came back\\nand started beating her to finish her. If she had not come to she would have \\nsustained lesser bodily injuries, they would have beat her less. An older \\nwoman from our building, Aunt Nazan, an Azerbaijani, all but lay on top of \\nKarina, crying and pleading that they leave her alone, but they flung her off.\\nThe woman\\'s grown sons were right nearby; they picked her up in their hands \\nand led her home. She howled and cried out loudly and swore: God is on Earth, \\nhe sees everything, and He won\\'t forgive this.\\n\\nThere was another woman, too, Aunt Fatima, a sick, aging woman from the first \\nfloor, she\\'s already retired. Mountain dwellers, and Azerbaijanis, too, have a\\ncustom: If men are fighting, they throw a scarf under their feet to stop them.\\nBut they trampled her scarf and sent her home. To trample a scarf is \\ntantamount to trampling a woman\\'s honor.\\n\\nNow that the investigation is going on, now that a lot is behind us and we \\nhave gotten back to being ourselves a little, I think about how could these \\nevents that are now called the Sumgait tragedy happen? How did they come \\nabout? How did it start? Could it have been avoided? Well, it\\'s clear that \\nwithout a signal, without permission from the top leadership, it would not \\nhave happened. All the same, I\\'m not afraid to say this, the Azerbaijanis,\\nlet other worthy people take no offense, the better representatives of their \\nnations, let them take no offense, but the Azerbaijanis in their majority are \\na people who are kept in line only by fear of the law, fear of retribution for\\nwhat they have done. And when the law said that they could do all that, like\\nunleashed dogs who were afraid they wouldn\\'t have time to do everything, they \\nthrew themselves from one thing to the next so as to be able to get more done,\\nto snatch a bit more. The smell of the danger was already in the air on\\nFebruary 27. You could tell that something was going to happen. And everyone \\nwho had figured it out took steps to avoid running into those gangs. Many left\\nfor their dachas, got plane tickets for the other end of the country, just got\\nas far away as their legs would carry them.\\n\\nFebruary 27 was a Saturday. I was teaching my third class. The director came \\ninto my classroom and said that I should let the children out, that there had \\nbeen a call from the City Party Committee asking that all teachers gather for \\na meeting at Lenin Square. Well, I excused the children, and there were few \\nteachers left at school, altogether three women, the director, and six or \\nseven men. The rest had already gone home. We got to Lenin Square and there \\nwere a great many people there. This was around five-thirty or six in the \\nevening, no later. They were saying all kinds of rubbish up on the podium and \\nthe crowd below was supporting them stormily, roaring. They spoke over the \\nmicrophone about what had happened in Kafan a few days earlier and that the \\ndriver of a bus going to some district had recently thrown a small Azerbaijani\\nchild off the bus. The speaker affirmed that he was an eyewitness, that he had\\nseen it himself..The crowd started to rage: \"Death to the Armenians! They must\\nbe killed!\" Then a woman went up on stage. I didn\\'t see the woman because \\npeople were clinging to the podium like flies. I could only hear her. The \\nwoman introduced herself as coming from Kafan, and said that the Armenians \\ncut her daughters\\' breasts off, and called, \"Sons, avenge my daughters!\" That \\nwas enough. A portion of the people on the square took off running in the \\ndirection of the factories, toward the beginning of Lenin Street.\\n\\nWe stood there about an hour. Then the director of School 25 spoke, he gave a \\nvery nationalist speech. He said, \"Brother Muslims, kill the Armenians!\" This \\nhe repeated every other sentence. When he said this the crowd supported him \\nstormily, whistling and shouting \"Karabagh!\" He said, \"Karabagh has been our \\nterritory my whole life long, Karabagh is my soul. How can you tear out my \\nheart?\" As though an Azerbaijani would die without Karabagh. \"It\\'s our \\nterritory, the Armenians will never see it. The Armenians must be eliminated. \\nFrom time immemorial Muslims have cleansed the land of infidel Armenians, from\\ntime immemorial, that\\'s the way nature created it, that every 20 to 30 years \\nthe Azerbaijanis should cleanse the land of filth.\" By filth he meant \\nArmenians.\\n\\nI heard this. Before that I hadn\\'t been listening to the speeches closely.\\nMany people spoke and I stood with my back to the podium, talking shop with \\nthe other teachers, and somehow it all went right by, it didn\\'t penetrate,\\nthat in fact something serious was taking place. Then, when one of our\\nteachers said, \"Listen to what he\\'s saying, listen to what idiocy he\\'s \\nspouting,\" we listened. That was the speech of that director. Before that we \\nlistened to the woman\\'s speech.\\n\\nRight then in our group--there were nine of us--the mood changed, and the \\nsubject of conversation and all school matters were forgotten. Our director of\\nstudies, for whom I had great respect, he\\'s an Azerbaijani . . . Before that I\\nhad considered him an upstanding and worthy person, if there was a need to \\nobtain leave we had asked him, he seemed like a good person. So he tells me,\\n\"Lyuda, you know that besides you there are no Armenians on the square? If \\nthey find out that you\\'re an Armenian they\\'ll tear you to pieces. Should I \\ntell them you\\'re an Armenian? Should I tell them you\\'re an Armenian?\" When he \\nsaid it the first time I pretended not to hear it, and then he asked me a \\nsecond time. I turned to the director, Khudurova, and said that it was already\\nafter eight, I was expected at home, and I should be leaving. She answered, \\n\"No, they said that women should stay here until ten o\\'clock,.and men, until \\ntwelve. Stay here.\" There was a young teacher with us, her children were in \\nkindergarten and her husband worked shifts. She asked to leave: \"I left my \\nchildren at the kindergarten.\" The director excused her. When she let her go I\\nturned around, said, \"Good-bye,\" and left with the young teacher, the \\nAzerbaijani. I didn\\'t see them after that.\\n\\nWhen we were walking the buses weren\\'t running, and a crowd from the rally ran\\nnearby us. They had apparently gotten all fired up. It must have become too \\nmuch for them, and they wanted to seek vengeance immediately, so they rushed \\noff. I wasn\\'t afraid this time because I was sure that the other teacher \\nwouldn\\'t say that I was an Armenian.\\n\\nTo make it short, we reached home. Then Karina told of how they had been at \\nthe movies and what had happened there. I started telling of my experience and\\nagain my parents didn\\'t understand that we were in danger. We watched \\ntelevision as usual, and didn\\'t even imagine that tomorrow would be our last \\nday. That\\'s how it all was.\\n\\nAt the City Party Committee I met an acquaintance, we went to school together,\\nZhanna, I don\\'t remember her last name, she lives above the housewares store \\non Narimanov Street. She was there with her father, for some reason she \\ndoesn\\'t have a mother. The two of them were at home alone. While her father \\nheld the door she jumped from the third floor, and she was lucky that the \\nground was wet and that there wasn\\'t anyone behind the building when she went \\nout on the balcony, there was no one there, they were all standing near the \\nentryway. That building was also a lucky one in that there were no murders \\nthere. She jumped. She jumped and didn\\'t feel any pain in the heat of the \\nmoment. A few days later I found out that she couldn\\'t stand up, she had been \\ninjured somehow. That\\'s how people in Sumgait saved their lives, their honor, \\nand their children: any way they could. \\n\\nWhere it was possible, the Armenians fought back. My father\\'s first cousin, \\nArmen M., lives in Block 30. They found out by phone from one of the victims \\nwhat was going on in town. The Armenians in that building all called one \\nanother immediately and all of them armed themselves with axes, knives, even \\nwith muskets and went up to the roof. They took their infants with them, and \\ntheir old women who had been in bed for God knows how many months, they got \\nthem right out of their beds and took everyone upstairs. They hooked \\nelectricity up to the trap door to the roof and waited, ready to fight. Then \\nthey took the daughter of the school board director hostage, she\\'s an \\nAzerbaijani who lived in their building. They called the school board director\\nand told her that if she didn\\'t help them, the 17 Armenians on the roof, to \\nescape alive and unharmed, she\\'d never see her daughter again. I\\'m sure, of \\ncourse, that Armenians would never lay a hand on a woman, it was just the only\\nthing that could have saved them at the time. She called the police. The \\nArmenians made a deal with the local police to go into town. Two armored \\npersonnel carriers and soldiers were summoned They surrounded the entryway and\\nled everyone down from the roof, and off to the side from the armored \\npersonnel carriers was a crowd that was on its way to the building at that \\nvery moment, into Block 30. That\\'s how they defended themselves.\\n\\nI heard that our neighbors, Roman and Sasha Gambarian, resisted. They\\'re big, \\nstrong guys. Their father was killed. And I heard that the brothers put up a \\nstrong defense and lost their father, but were able to save their mother.\\n\\nOne of the neighbors told me that after it happened, when they were looking \\nfor the criminals on March 1 to 2 and detaining everyone they suspected, \\npeople hid people in our entryway, maybe people who were injured or perhaps \\ndead. The neighbors themselves were afraid to go there, and when they went \\nwith the soldiers into our basement they are supposed to have found \\nAzerbaijani corpses. I don\\'t know how many. Even if they had been wounded and \\nput down there, after two days they would have died from loss of blood or \\ninfection--that basement was filled with water. I heard this from the \\nneighbors. And later when I was talking with the investigators the subject \\ncame up and they confirmed it. I know, too, that for several hours the \\nbasement was used to store objects stolen from our apartment. And our neighbor\\ncarried out our carpet, along with the rest: he stole it for himself, posing \\nas one of the criminals. Everyone was taking his own share, and the neighbor \\ntook his, too, and carried it home. And when we came back, when everything \\nseemed to have calmed down, he returned it, saying that it was the only thing \\nof ours he had managed to \"save.\"\\n\\nRaya\\'s husband and father defended themselves. The Trdatovs defended \\nthemselves, and so did other Armenian families. To be sure there were\\nAzerbaijani victims, although we\\'ll never hear anything about them. For some \\nreason our government doesn\\'t want to say that the Armenians were not just \\nvictims, but that they defended the honor of their sisters and mothers, too. \\nIn the TV show \"Pozitsiya\" [Viewpoint] a military man, an officer, said that \\nthe Armenians did virtually nothing to defend themselves. But that\\'s not \\nimportant, the truth will come out regardless.\\n\\nSo that\\'s the price we paid those three days. For three days our courage, our \\nbravery, and our humanity was tested. It was those three days, and not the \\nyears and dozens of years we had lived before them, that showed what we\\'ve \\nbecome, what we grew up to be. Those three days showed who was who.\\n\\nOn that I will conclude my narrative on the Sumgait tragedy. It should be said\\nthat it\\'s not over yet, the trials are still ahead of us, and the punishments\\nreceived by those who so violated us, who wanted to make us into nonhumans \\nwill depend on our position and on the work of the investigators, the \\nProcuracy, and literally of every person who lent his hand to the investiga-\\ntion. That\\'s the price we paid to live in Armenia, to not fear going out on \\nthe street at night, to not be afraid to say we\\'re Armenians, and to not fear\\nspeaking our native tongue.\\n\\n October 15,1988\\n Yerevan\\n\\n\\t\\t\\t- - - reference for #008 - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 118-145\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 A\\nSummary: Part A \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 501\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #008 Part A\\n Prelude to Current Events in Nagorno-Karabakh\\n\\t\\n\\t\\t\\t\\t(Part A of #008)\\n\\n +------------------------------------------------------------------+\\n | |\\n | \"Oh, yes, I just remembered. While they were raping me they |\\n | repeated quite frequently, \"Let the Armenian women have babies |\\n | for us, Muslim babies, let them bear Azerbaijanis for the |\\n | struggle against the Armenians.\" Then they said, \"Those |\\n | Muslims can carry on our holy cause. Heroes!\" They repeated |\\n | it very often.\" |\\n | |\\n +------------------------------------------------------------------+\\n\\nDEPOSITION OF LYUDMILA GRIGOREVNA M.\\n\\n Born 1959\\n Teacher\\n Sumgait Secondary School No. 10\\n Secretary of the Komsomol Organization at School No. 10\\n Member of the Sumgait City Komsomol Committee Office\\n\\n Resident at Building 17/33B, Apartment 15\\n Microdistrict No. 3\\n Sumgait [Azerbaijan]\\n\\n[Note: The events in Kafan, used as a pretext to attack Armenians in \\n Azerbaijan are false, as verified by independent International Human Rights\\n organizations - DD]\\n\\nI\\'m thinking about the price the Sumgait Armenians paid to be living in\\nArmenia now. We paid for it in human casualties and crippled fates--the\\nprice was too great! Now, after the Sumgait tragedy, we, the victims, divide\\nour lives into \"before\" and \\'\\'after.\" We talk like that: that was before the\\nwar. Like the people who went through World War II and considered it a whole\\nepoch, a fate. No matter how many years go by, no matter how long we live,\\nit will never be forgotten. On the contrary, some of the moments become even \\nsharper: in our rage, in our sorrow, we saw everything differently, but now\\n. . . They say that you can see more with distance, and we can see those\\ninhuman events with more clarity now . . . we more acutely perceive our\\nlosses and everything that happened.\\n\\nNineteen eighty-eight was a leap year. Everyone fears a leap year and wants it\\nto pass as quickly as possible. Yet we never thought that that leap year would\\nbe such a black one for every Sumgait Armenian: those who lost someone and \\nthose who didn\\'t.\\n\\nThat second to last day of winter was ordinary for our family, although you \\ncould already smell danger in the air. But we didn\\'t think that the danger was\\nnear and possible, so we didn\\'t take any steps to save ourselves. At least, as\\nmy parents say, at least we should have done something to save the children. \\nMy parents themselves are not that old, 52 and 53 years. But then they thought\\nthat they had already lived enough, and did everything they could to save us.\\n\\nIn our apartment the tragedy started on February 28, around five in the\\nafternoon. I call it a tragedy, and I repeat: it was a tragedy even though all\\nour family survived. When I recall how they broke down our door my skin\\ncrawls; even now, among Armenians, among people who wish me only well, I feel\\nlike it\\'s all starting over again. I remember how that mob broke into our \\napartment . . . My parents were standing in the hall. My father had an axe in \\nhis hands and had immediately locked both of the doors. Our door was rarely \\nlocked since friends and neighbors often dropped by. We\\'re known as a \\nhospitable family, and we just never really thought about whether the people \\nwho were coming to see us were Azerbaijanis, Jews, or Russians. We had friends\\nof many nationalities, even a Turkmen woman.\\n\\nMy parents were in the hall, my father with an axe. I remember him telling my \\nmother, \"Run to the kitchen for a knife.\" But Mother was detached, pale, as \\nthough she had decided to sell her life a bit dearer. To be honest I never \\nexpected it of her, she\\'s afraid of getting shot and afraid of the dark. A \\ngirlfriend was at the house that day, a Russian girl, Lyuda, and Mamma said, \\n\"No matter what happens, no matter what they do to us, you\\'re not to come out \\nof the bedroom. We\\'re going to tell them that we\\'re alone in the apartment.\"\\n\\nWe went into the bedroom. There were four of us. Marina and the Russian girl \\ncrawled under the bed, and we covered them up with a rug, boxes of dishes, and\\nKarina and I are standing there and looking at one another. The idea that \\nperhaps we were seeing each other for the last time flashed somewhere inside \\nme. I\\'m an emotional person and I express my emotions immediately. I wanted to\\nembrace her and kiss her, as though it were the last second. And maybe Karina \\nwas thinking the same thing, but she\\'s quite reserved. We didn\\'t have time to \\nsay anything to each other because we immediately heard Mamma raise a shout. \\nThere was so much noise from the tramping of feet, from the shouting, and from\\nexcited voices. I couldn\\'t figure what was going on out there because the door\\nto the bedroom was only open a crack. But when Mamma shouted the second time\\nKarina ran out of the bedroom. I ran after her, I had wanted to hold her back,\\nbut when she opened the door and ran out into the hall they saw us \\nimmediately. The only thing I managed to do was close the door behind me, at \\nleast so as to save Marina and her friend. The mob was shouting, all of their \\neyes were shining, all red, like from insomnia. At first about 40 people burst\\nin, but later I was standing with my back to the door and couldn\\'t see. They \\ncame into the hall, into the kitchen, and dragged my father into the other \\nroom. He didn\\'t utter a word, he just raised the axe to hit them, but Mamma \\nsnatched the axe from behind and said, \"Tell them not to touch the children. \\nTell them they can do as they want with us, but not to harm the children.\" She\\nsaid this to Father in Armenian.\\n\\nThere were Azerbaijanis from Armenia among the mob who broke in. They \\nunderstood Armenian perfectly. The local Azerbaijanis don\\'t know Armenian, \\nthey don\\'t need to speak it. And one of them responded in Armenian: \"You and \\nyour children both . . . we\\'re going to do the same thing to you and your \\nchildren that you Armenians did in Kafan. They killed our women, our girls, \\nour mothers, they cut their breasts off, and burned our houses . . . ,\" and \\nso on and so forth, \"and we came to do the same thing to you.\" This whole time\\nsome of them are destroying the house and the others are shouting at us. They \\nwere mostly young people, under 30. At first there weren\\'t any older people \\namong them. And all of their faces were unfamiliar. Sumgait is a small town, \\nall the same, and we know a lot of people by their faces, especially me, I\\'m \\na teacher.\\n\\nSo they dragged my father into the other room. They twisted his arms and took \\nhim in there, no they didn\\'t take him in there, they dragged him in there,\\nbecause he was already unable to walk. They closed the door to that room all \\nbut a crack. We couldn\\'t see what was happening to Father, what they were \\ndoing to him. Then a young man, about 26 years old, started to tear off \\nMamma\\'s sarafan, and Mamma shouted at him in Azerbaijani: \"I\\'m old enough to \\nbe your mother! What are you doing?!\" He struck her. Now he\\'s being held, \\nMamma identified him. I hope he\\'s convicted. Then they went after Karina, \\nwho\\'s been talking to them like a Komsomol leader, as though she were trying \\nto lead them down a different path, as they say, to influence their \\nconsciousness. She told them that what they were doing was wrong, that they \\nmustn\\'t do it. She said, \"Come on, let\\'s straighten this out, without \\nemotions. What do you want? Who are you? Why did you come here? What did we \\never do to you?\" Someone tried to explain who they were and why they had come \\ninto our home, but then the ones in the back--more of them kept coming and \\ncoming--said, \"What are you talking to, them for. You should kill them. We \\ncame here to kill them.\"\\n\\nThey pushed Karina, struck her, and she fell down. They beat her, but she \\ndidn\\'t cry out. Even when they tore her clothes off, she kept repeating, \"What\\ndid we do to you? What did we do to you?\" And even later, when she came to, \\nshe said, \"Mamma, what did we do to them? Why did they do that to us?\"\\n\\nThat group was prepared, I know this because I noticed that some of them only \\nbroke up furniture, and others only dealt with us. I remember that when they \\nwere beating me, when they were tearing my clothes off, I felt neither pain \\nnor shame because my entire attention was riveted to Karina. All I could do \\nwas watch how much they beat her and how painful it was for her, and what they\\ndid to her. That\\'s why I felt no pain. Later, when they carried Karina off, \\nthey beat her savagely . . . It\\'s really amazing that she not only lived, but \\ndidn\\'t lose her mind . She is very beautiful and they did everything they \\ncould to destroy her beauty. Mostly they beat her face, with their fists, \\nkicking her, using anything they could find.\\n\\nMamma, Karina, and I were all in one room. And again I didn\\'t feel any pain, \\njust didn\\'t feel any, no matter how much they beat me, no matter what they \\ndid. Then one of those creeps said that there wasn\\'t enough room in the\\napartment. They broke up the beds and the desk and moved everything into the \\ncorners so there would be more room. Then someone suggested, \"Let\\'s take her \\noutside.\"\\n\\nThose beasts were in Heaven. They did what they would do every day if they \\nweren\\'t afraid of the authorities. Those were their true colors. At the time \\nI thought that in fact they would always behave that way if they weren\\'t \\nafraid of what would happen to them.\\n\\nWhen they carried Karina out and beat Mamma-her face was completely covered \\nwith blood--that\\'s when I started to feel the pain. I blacked out several \\ntimes from the pain, but each moment that I had my eyes open it was as though \\nI were recording it all on film. I think I\\'m a kind person by nature, but I\\'m \\nvengeful, especially if someone is mean to me, and I don\\'t deserve it. I hold \\na grudge a long time if someone intentionally causes me pain. And every time \\nI would come to and see one of those animals on top of me, I\\'d remember them, \\nand I\\'ll remember them for the rest of my life, even though people tell me \\n\"forget,\" you have to forget, you have to go on living.\\n\\nAt some point I remember that they stood me up and told me something, and \\ndespite the fact that I hurt all over--I had been beaten terribly--I found\\nthe strength in myself to interfere with their tortures. I realized that I had\\nto do something: resist them or just let them kill me to bring my suffering \\nto an end. I pushed one of them away, he was a real horse. I remember now that\\nhe\\'s being held, too. As though they were all waiting for it, they seized me\\nand took me out onto the balcony. I had long hair, and it was stuck all over\\nme. One of the veranda shutters to the balcony was open, and I realized that\\nthey planned to throw me out the window, because they had already picked me up\\nwith their hands, I was up in the air. As though for the last time I took a \\nreally deep breath and closed my eyes, and somehow braced myself inside, I \\nsuddenly became cold, as though my heart had sunk into my feet. And suddenly \\nI felt myself flying. I couldn\\'t figure out if I was really flying or if I \\njust imagined it. When I came to I thought now I\\'m going to smash on the \\nground. And when it didn\\'t happen I opened my eyes and realized that I was \\nstill lying on the floor. And since I didn\\'t scream, didn\\'t beg them at all,\\nthey became all the more wild, like wolves. They started to trample me with\\ntheir feet. Shoes with heels on them, and iron horseshoes, like they had spe-\\ncially put them on. Then I lost consciousness.\\n\\nI came to a couple of times and waited for death, summoned it, beseeched it. \\nSome people ask for good health, life, happiness, but at that moment I didn\\'t \\nneed any of those things. I was sure that none of us would survive, and I had \\neven forgotten about Marina; and if none of us was alive, it wasn\\'t worth \\nliving.\\n\\nThere was a moment when the pain was especially great. I withstood inhuman \\npain, and realized that they were going to torment me for a long time to come \\nbecause I had showed myself to be so tenacious. I started to strangle myself, \\nand when I started to wheeze they realized that with my death I was going to\\nput an end to their pleasures, and they pulled my hands from my throat. The \\nperson who injured and insulted me most painfully I remember him very well, \\nbecause he was the oldest in the group. He looked around 48. I know that he \\nhas four children and that he considers himself an ideal father and person, \\none who would never do such a thing. Something came over him then, you see, \\neven during the investigation he almost called me \"daughter,\" he apologized, \\nalthough, of course, he knew that I\\'d never forgive him. Something like that \\nI can never forgive. I have never injured anyone with my behavior, with my \\nwords, or with my deeds, I have always put myself in the other person\\'s shoes,\\nbut then, in a matter of hours, they trampled me entirely. I shall never \\nforget it.\\n\\nI wanted to do myself in then, because I had nothing to lose, because no one \\ncould protect me. My father, who tried to do something against that hoard of \\nbeasts by himself, could do nothing and wouldn\\'t be able to do anything.\\nI knew that I was even sure that he was no longer alive.\\n\\nAnd Ira Melkumian, my acquaintance I knew her and had been to see her family a\\ncouple of times--her brother tried to save her and couldn\\'t, so he tried to \\nkill her, his very own sister. He threw an axe at her to kill her and put an \\nend to her suffering. When they stripped her clothes off and carried her into \\nthe other room, her brother knew what awaited her. I don\\'t know which one it \\nwas, Edik or Igor. Both of them were in the room from which the axe was \\nthrown. But the axe hit one of the people carrying her and so they killed her \\nand made her death even more excruciating, maybe the most excruciating of all \\nthe deaths of those days in Sumgait. I heard about it all from the neighbor \\nfrom the Melkumians\\' landing. His name is Makhaddin, he knows my family a \\nlittle. He came to see how we had gotten settled in the new apartment in Baku,\\nhow we were feeling, and if we needed anything. He\\'s a good person. He said, \\n\"You should praise God that you all survived. But what I saw with my own eyes,\\nI, a man, who has seen so many people die, who has lived a whole life, I,\" he\\nsays, \"nearly lost my mind that day. I had never seen the likes of it and \\nthink I never shall again.\" The door to his apartment was open and he saw \\neverything. One of the brothers threw the axe, because they had already taken \\nthe father and mother out of the apartment. Igor, Edik, and Ira remained. He \\nsaw Ira, naked, being carried into the other room in the hands of six or seven\\npeople. He told us about it and said he would never forget it. He heard the \\nbrothers shouting something, inarticulate from pain, rage, and the fact that \\nthey were powerless to do anything. But all the same they tried to \\ndo something. The guy who got hit with the axe lived. I I\\n\\nAfter I had been unsuccessful at killing myself I saw them taking Marina and \\nLyuda out of the bedroom. I was in such a state that I couldn\\'t even \\nremember my sister\\'s name. I wanted to cry \"Marina!\" out to her, but could\\nnot. I looked at her and knew that it was a familiar, dear face, but couldn\\'t\\nfor the life of me remember what her name was and who she was. And thus\\nI saved her, because when they were taking her out, she, as it turns out, had\\ntold them that she had just been visiting and that she and Lyuda were both\\nthere by chance, that they weren\\'t Armenians. Lyuda\\'s a Russian, you can tell \\nright away, and Marina speaks Azerbaijani wonderfully and she told them that\\nshe was an Azerbaijani. And I almost gave her away and doomed her. I\\'m glad \\nthat at least Marina came out of this all in good physical health . . . \\nalthough her spirit was murdered . . .\\n\\nAt some point I came to and saw Igor, Igor Agayev, my acquaintance, in that \\nmob. He lives in the neighboring building. For some reason I remembered his \\nname, maybe I sensed my defense in him. I called out to him in Russian, \"Igor,\\nhelp!\" But he turned away and went into the bedroom. Just then they were \\ntaking Marina and Lyuda out of the bedroom. Igor said he knew Marina and \\nLyuda, that Marina in fact was Azerbaijani, and he took both of them to the \\nneighbors.\\n\\nAnd the idea stole through me that maybe Igor had led them to our apartment, \\nsomething like that, but if he was my friend, he was supposed to save me.\\n \\nThen they were striking me very hard--we have an Indian vase, a metal one, \\nthey were hitting me on the back with it and I blacked out--they took me out \\nonto the balcony a second time to throw me out the window. They were already \\nsure that I was dead because I didn\\'t react at all to the new blows. Someone \\nsaid, \"She\\'s already dead, let\\'s throw her out.\" When they carried me out onto\\nthe balcony for the second time, when I was about to die the second time, I \\nheard someone say in Azerbaijani: \"Don\\'t kill her, I know her, she\\'s a \\nteacher.\" I can still hear that voice ringing in my ears, but I can\\'t remember\\nwhose voice it was. It wasn\\'t Igor, because he speaks Azerbaijani with an \\naccent: his mother is Russian and they speak Russian at home. He speaks\\nAzerbaijani worse than our Marina does. I remember when they carried me in and\\nthrew me on the bed he came up to me, that person, and \\tI having opened my \\neyes, saw and recognized that person, but immediately passed out cold. I had \\nbeen beaten so much that I didn\\'t have the strength to remember him. I only \\nremember that this person was older and he had a high position. Unfortunately \\nI can\\'t remember anything more.\\n\\nWhat should I say about Igor? He didn\\'t treat me badly. I had heard a lot \\nabout him, that he wasn\\'t that good a person, that he sometimes drank too\\nmuch. Once he boasted to me that he had served in Afghanistan. He knew that \\nwomen usually like bravery in a man. Especially if a man was in Afghanistan,\\nif he was wounded, then it\\'s about eighty percent sure that he will be treated\\nvery sympathetically, with respect. Later I found out that he had served in \\nUfa, and was injured, but that\\'s not in Afghanistan, of course. I found that \\nall out later.\\n\\nAmong the people who were in our apartment, my Karina also saw the Secretary \\nof the Party organization. I don\\'t know his last name, his first name is \\nNajaf, he is an Armenian-born Azerbaijani. But later Karina wasn\\'t so sure,\\nshe was no longer a hundred percent sure that it was he she saw, and she \\ndidn\\'t want to endanger him. She said, \"He was there,\" and a little while \\nlater, \"Maybe they beat me so much that I am confusing him with someone else. \\nNo, it seems like it was he.\" I am sure it was he because when he came to see \\nus the first time he said one thing, and the next time he said something \\nentirely different. The investigators haven\\'t summoned him yet. He came to see\\nus in the Khimik boarding house where we were living at the time. He brought \\ngroceries and flowers, this was right before March 8th; he almost started \\ncrying, he was so upset to see our condition. I don\\'t know if he was putting \\nus on or not, but later, after we had told the investigator and they summoned \\nhim to the Procuracy, he said that he had been in Baku, he wasn\\'t in Sumgait. \\nThe fact that he changed his testimony leads me to believe that Karina is \\nright, that in fact it was he who was in our apartment. I don\\'t know how the \\ninvestigators are now treating him. At one point I wondered and asked, and was\\ntold that he had an alibi and was not in our apartment. Couldn\\'t he have gone \\nto Baku and arranged an alibi? I\\'m not ruling out that possibility.\\n\\nIll now return to our apartment. Mamma had come to. You could say that she \\nbought them off with the gold Father gave her when they were married: her \\nwedding band and her watch were gold. She bought her own and her husband\\'s \\nlives with them. She gave the gold to a 14-year old boy. Vadim Vorobyev. A \\nRussian boy, he speaks Azerbaijani perfectly. He\\'s an orphan who was raised by\\nhis grandfather and who lives in Sumgait on Nizami Street. He goes to a \\nspecial school, one for mentally handicapped children. But I\\'ll say this--I\\'m \\na teacher all the same and in a matter of minutes I can form an opinion--that\\nboy is not at all mentally handicapped. He\\'s healthy, he can think just fine, \\nand analyze, too . . . policemen should be so lucky. And he\\'s cunning, too. \\nAfter that he went home and tore all of the pictures out of his photo album.\\n\\nHe beat Mamma and demanded gold, saying, \"Lady, if you give us all the gold \\nand money in your apartment we\\'ll let you live.\" And Mamma told them where \\nthe gold was. He brought in the bag and opened it, shook out the contents, and \\neveryone who was in the apartment jumped on it, started knocking each other \\nover and taking the gold from one another. I\\'m surprised they didn\\'t kill one \\nanother right then.\\n\\nMamma was still in control of herself. She had been beaten up, her face was\\nblack and blue from the blows, and her eyes were filled with blood, and she \\nran into the other room. Father was lying there, tied up, with a gag in his\\nmouth and a pillow over his face. There was a broken table on top of the pil-\\nlow. Mamma grabbed Father and he couldn\\'t walk; like me, he was half dead, \\nhalfway into the other world. He couldn\\'t comprehend anything, couldn\\'t see, \\nand was covered with black and blue. Mamma pulled the gag out of his mouth, \\nit was some sort of cloth, I think it was a slipcover from an armchair.\\n\\nThe bandits were still in our apartment, even in the room Mamma pulled Father \\nout of, led him out of, carried him out of. We had two armchairs in that room,\\na small magazine table, a couch, a television, and a screen. Three people \\nwere standing next to that screen, and into their shirts, their pants, \\neverywhere imaginable, they were shoving shot glasses and cups from the coffee\\nservice--Mamma saw them out of the corner of her eye. She said, \"I was afraid \\nto turn around, I just seized Father and started pulling him, but at the \\nthreshold I couldn\\'t hold him up, he fell down, and I picked him up again and \\ndragged him down the stairs to the neighbors\\'.\" Mamma remembered one of the \\ncriminals, the one who had watched her with his face half-turned toward her, \\nout of one eye. She says, \"I realized that my death would come from that \\nperson. I looked him in the eyes and he recoiled from fear and went stealing.\"\\nLater they caught that scoundrel. Meanwhile, Mamma grabbed Father and left.\\n\\nI was alone. Igor had taken Marina away, Mamma and Father were gone, Karina \\nwas already outside, I didn\\'t know what they were doing to her. I was left all\\nalone, and at that moment . . . I became someone else, do you understand? Even\\nthough I knew that neither Mother and Father in the other room, nor Marina and\\nLyuda under the bed could save me, all the same I somehow managed to hold out.\\nI went on fighting them, I bit someone, I remember, and I scratched another. \\nBut when I was left alone I realized what kind of people they were, the ones \\nI had observed, the ones who beat Karina, what kind of people they were, the \\nones who beat me, that it was all unnecessary, that I was about to die and \\nthat all of that would die with me.\\n\\nAt some point I took heart when I saw the young man from the next building. I \\ndidn\\'t know his name, but we would greet one another when we met, we knew that\\nwe were from the same microdistrict. When I saw him I said, \"Neighbor, is that\\nyou?\" In so doing I placed myself in great danger. He realized that if I lived\\nI would remember him. That\\'s when he grabbed the axe. The axe that had been \\ntaken from my father. I automatically fell to my knees and raised my hands to \\ntake the blow of the axe, although at the time it would have been better if he\\nhad struck me in the head with the axe and put me out of my misery. When he \\nstarted getting ready to wind back for the blow, someone came into the room. \\nThe newcomer had such an impact on everyone that my neighbor\\'s axe froze in \\nthe air. Everyone stood at attention for this guy, like soldiers in the \\npresence of a general. Everyone waited for his word: continue the atrocities \\nor not. He said, \"Enough, let\\'s go to the third entryway.\" In the third \\nentryway they killed Uncle Shurik, Aleksandr Gambarian. This confirms once \\nagain that they had prepared in advance. Almost all of them left with him, as \\nthey went picking up pillows, blankets, whatever they needed, whatever they \\nfound, all the way up to worn out slippers and one boot, someone else had \\nalready taken the other.\\n\\nFour people remained in the room, soldiers who didn\\'t obey their general. They\\nhad to have come recently, because other faces had flashed in front of me over\\nthose 2 to 3 hours, but I had never seen those three. One of them, Kuliyev (I \\nidentified him later), a native of the Sisian District of Armenia, an \\nAzerbaijani, had moved to Azerbaijan a year before. He told me in Armenian:\\n\"Sister, don\\'t be afraid, I\\'ll drive those three Azerbaijanis out of here.\"\\nThat\\'s just what he said, \"those Azerbaijanis,\" as though he himself were not \\nAzerbaijani, but some other nationality, he said with such hatred, \"I\\'ll drive\\nthem out of here now, and you put your clothes on, and find a hammer and nails\\nand nail the door shut, because they\\'ll be coming back from Apartment 41.\" \\nThat\\'s when I found out that they had gone to Apartment 41. Before that, the \\nperson in the Eskimo dogskin coat, the one who came in and whom they listened \\nto, the \"general,\" said that they were going to the third entryway.\\n\\nKuliyev helped me get some clothes on, because l couldn\\'t do it by myself. \\nMarina\\'s old fur coat was lying on the floor. He threw it over my shoulders, I\\nwas racked with shivers, and he asked where he could find nails and a hammer. \\nHe wanted to give them to me so that when he left I could nail the door shut. \\nBut the door was lying on the floor in the hall.\\n\\nI went out onto the balcony. There were broken windows, and flowers and dirt \\nfrom flowerpots were scattered on the floor. It was impossible to find \\nanything. He told me, \"Well, fine, I won\\'t leave you here. Would any of the \\nneighbors let you in? They\\'ll be back, they won\\'t calm down, they know you\\'re \\nalive.\" He told me all this in Armenian.\\n\\nThen he returned to the others and said, \"What are you waiting for? Leave!\" \\nThey said, \"Ah, you just want to chase us out of here and do it with her \\nyourself. No, we want to do it to.\" He urged them on, but gently, not \\ncoarsely, because he was alone against them, although they were still just\\nboys, not old enough to be drafted. He led them out of the room, and went\\ndown to the third floor with them himself, and said, \"Leave. What\\'s the mat-\\nter, aren\\'t you men? Go fight with the men. What do you want of her?\" And\\nhe came back upstairs. They wanted to come up after him and he realized that \\nhe couldn\\'t hold them off forever. Then he asked me where he could hide me. I \\ntold him at the neighbors\\' on the fourth floor, Apartment 10, we were on really\\ngood terms with them.\\n\\nWe knocked on the door, and he explained in Azerbaijani. The neighbor woman \\nopened the door and immediately said, \"I\\'m an Azerbaijani.\" He said, \"I know. \\nLet her sit at your place a while. Don\\'t open the door to anyone, no one knows\\nabout this, I won\\'t tell anyone. Let her stay at your place.\" She says, \"Fine,\\nhave her come in.\" I went in. She cried a bit and gave me some stockings, I \\nhad gone entirely numb and was racked with nervous shudders. I burst into \\ntears. Even though I was wearing Marina\\'s old fur coat, it\\'s a short one, a \\nhalf-length, I was cold all the same. I asked, \"Do you know where my family \\nis, what happened to them?\" She says, \"No, I don\\'t know anything. I\\'m afraid \\nto go out of the apartment, now they\\'re so wild that they don\\'t look to see \\nwho\\'s Azerbaijani and who\\'s Armenian.\" Kuliyev left. Ten minutes later my \\nneighbor says, \"You know, Lyuda, I don\\'t want to lose my life because of you, \\nor my son and his wife. Go stay with someone else.\" During the butchery in our\\napartment one of the scum, a sadist, took my earring in his mouth--I had pearl\\nearrings on--and ripped it out, tearing the earlobe. The other earring was \\nstill there. When I\\'m nervous I fix my hair constantly, and then, when I \\ntouched my ear, I noticed that I had one earring on. I took it out and gave it\\nto her. She took the earring, but she led me out of the apartment.\\n\\nI went out and didn\\'t know where to go. I heard someone going upstairs. I \\ndon\\'t know who it was but assumed it was them. With tremendous difficulty I \\nend up to our apartment, I wanted to die in my own home. I go into the \\napartment and hear that they are coming up to our place, to the fifth floor. \\nI had to do something. I went into the bedroom where Marina and Lyuda had \\nhidden and saw that the bed was overturned. Instead of hiding I squatted near \\nsome broken Christmas ornaments, found an unbroken one, and started sobbing. \\nThen they came in. Someone said that there were still some things to take. I \\nthink that someone pushed me under the bed. I lay on the floor, and there were\\nbroken ornaments on it, under my head and legs. I got all cut up, but I lay \\nthere without moving. My heart was beating so hard it seemed the whole town \\ncould hear it. There were no lights on. Maybe that\\'s what saved me. They were \\nburning matches, and toward the end they brought in a candle. They started\\npicking out the clothes that could still be worn. They took Father\\'s sport \\njacket and a bedspread, the end of which was under my head. They pulled on the\\none end, and it felt like they were pulling my hair out. I almost cried out. \\nAnd again I realized I wasn\\'t getting out of there alive, and I started to \\nstrangle myself again. I took my throat in one hand, and pressed the other on \\nmy mouth, so as not to wheeze, so that I would die and they would only find me\\nafterward. They were throwing the burned matches under the bed, and I got \\nburned, but I withstood it. Something inside of me held on, someone\\'s hand was\\nprotecting me to the end. I knew that I was going to die, but I didn\\'t know \\nhow. I knew that if I survived I would walk out of that apartment, but if \\nI found out that one of my family had died, I would die for sure, because I \\nhad never been so close to death and couldn\\'t imagine how you could go on \\nliving without your mother or father, or without your sister. Marina, I \\nthought, was still alive: she went to Lyuda\\'s place or someone is hiding her. \\nI tried to think that Igor wouldn\\'t let them be killed. He served in \\nAfghanistan, he should protect her.\\n\\nWhile I was strangling myself I said my good-byes to everyone. And then I\\nthought, how could Marina survive alone. If they killed all of us, how would \\nshe live all by herself? There were six people in the room. They talked among \\nthemselves and smoked. One talked about his daughter, saying that there was no\\nchildren\\'s footwear in our apartment that he could take for his daughter. \\nAnother said that he liked the apartment--recently we had done a really good \\njob fixing everything up--and that he would live there after everything was \\nall over. They started to argue. A third one says, \"How come you get it? I \\nhave four children, and there are three rooms here, that\\'s just what I need. \\nAll these years I\\'ve been living in God-awful places.\" Another one says, \\n\"Neither of you gets it. We\\'ll set fire to it and leave.\" Then someone said \\nthat Azerbaijanis live right next door, the fire could move over to their\\nplace. And they, to my good fortune, didn\\'t set fire to the apartment, and\\nleft.\\n\\nOh, yes, I just remembered. While they were raping me they repeated quite \\nfrequently, \"Let the Armenian women have babies for us, Muslim babies, let \\nthem bear Azerbaijanis for the struggle against the Armenians.\" Then they \\nsaid, \"Those Muslims can carry on our holy cause. Heroes!\" They repeated it \\nvery often.\\n\\n\\t\\t - - - reference for #008 - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 118-145\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: A1RODRIG@vma.cc.nd.edu\\nSubject: What a HATE filled newsgroup!!!!\\nOrganization: Bullwinkle Fan Club\\nLines: 5\\n\\nIs this group for real? I honestly can't believe that most of you expect you\\nor your concerns to be taken remotely seriously if you behave this way in a\\nforum for discussion. Doesn't it ever occur to those of you who write letters\\nlike the majority of those in this group that you're being mind-bogglingly\\nhypocritical?\\n\",\n", - " 'From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: Should liability insurance be required?\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 14\\nDistribution: usa\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nTommy Marcus McGuire (mcguire@cs.utexas.edu) wrote:\\n: You know, it sounds suspiciously like no fault doesn\\'t even do what it\\n: was advertised as doing---getting the lawyers out of the loop.\\n\\n: Sigh. Another naive illusion down the toilet....\\n\\nSince most legislators are lawyers it is very difficult to get any\\nlaw passed that would cut down on lawyers\\' business. That is why\\n\"No-fault\" insurance laws always backfire. \\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race, NASA resources, why?\\nOrganization: U of Toronto Zoology\\nLines: 33\\n\\nIn article <1993Apr21.210712.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>> So how much would it cost as a private venture, assuming you could talk the\\n>> U.S. government into leasing you a couple of pads in Florida? \\n>\\n>Why must it be a US Government Space Launch Pad? Directly I mean...\\n\\nIn fact, you probably want to avoid US Government anything for such a\\nproject. The pricetag is invariably too high, either in money or in\\nhassles.\\n\\nThe important thing to realize here is that the big cost of getting to\\nthe Moon is getting into low Earth orbit. Everything else is practically\\ndown in the noise. The only part of getting to the Moon that poses any\\nnew problems, beyond what you face in low orbit, is the last 10km --\\nthe actual landing -- and that is not immensely difficult. Of course,\\nyou *can* spend sagadollars (saga- is the metric prefix for beelyuns\\nand beelyuns) on things other than the launches, but you don't have to.\\n\\nThe major component of any realistic plan to go to the Moon cheaply (for\\nmore than a brief visit, at least) is low-cost transport to Earth orbit.\\nFor what it costs to launch one Shuttle or two Titan IVs, you can develop\\na new launch system that will be considerably cheaper. (Delta Clipper\\nmight be a bit more expensive than this, perhaps, but there are less\\nambitious ways of bringing costs down quite a bit.) Any plan for doing\\nsustained lunar exploration using existing launch systems is wasting\\nmoney in a big way.\\n\\nGiven this, questions like whose launch facilities you use are *not* a\\nminor detail; they are very important to the cost of the launches, which\\ndominates the cost of the project.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: ucer@ee.rochester.edu (Kamil B. Ucer)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: University of Rochester Department of Electrical Engineering\\n\\nIn article <1993Apr16.142935.535@cs.yale.edu> karage@scus1.ctstateu.edu (Angelos Karageorgiou Greek and Macedon the only combination) writes:\\n>\\n>\\tOk. My Aykut., what about the busload of Greek turists that was\\n>torched, and all the the people in the buis died. Happened oh, about 5\\n>years ago in Instanbul.\\n>\\tWhat about the Greeks in the islands of Imbros and tenedos, they\\n>are not allowed to have churches any more, instead momama turkey has\\n>turned the church into a warehouse, I got a picture too.\\n>\\tWhat about the pontian Greeks of Trapezounta and Sampsounta,\\n>what you now call Trabzon and Sampson, they spoke a 2 thousand year alod\\n>language, are there any left that still speek or were they Islamicised?\\n>\\tBefore we start another flamefest , and before you start quoting\\n>Argic all over again, or was it somebody else?, please think. I know it\\n>is a hard thing to do for somebody not equipped , but try nevertheless.\\n>\\tIf Turks in Greece were so badly mistreated how come they\\n>elected two,m not one but two, representatives in the Greek government?\\n>How come they have free(absolutely free) hospitalization and education?\\n>Do the Turks in Turkey have so much?If they do then you have every right\\n>to shout, untill then you can also move to Greece and enjoy those\\n>privileges. But I forget , for you do study in a foreign university,\\n>some poor shod is tiling the earth with his own sweat.\\n>\\tBTW is Aziz Nessin still writing poetry? I\\'d like to read some\\n>of his new stuff. Also who was the guy that wrote \"On the mountains of\\n>Tayros.\" ? please respond kindly to the last two questions, I am\\n>interested in finding more books from these two people.\\n>\\t\\n>\\n>-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n>Yeian kai Eytyxeian | The opinions expressed above are nobody else\\'s but\\n>Angelos Karageorgiou | mine,MINE,MIIINNE,MIIINNEEEE,aaaarrgghhhh..(*&#$$*((+_$%\\n>Live long & Prosper | NO CARRIER\\n>-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n>> Any and all mail sent to me , can and will be used in any manner <\\n>> whatsoever. I may repost or publicise parts of messages or whole <\\n>> messages. If you disagree, please exercise your freedom of speech <\\n>> and don\\'t send me anything. <\\n\\nDear Mr. Karageorgiou,\\nI would like to clarify several misunderstandings in your posting. First the bus incident which I believe was in Canakkale three years ago, was done by a mentally ill person who killed himself afterwards. The Pontus Greeks were ex- changedwith Turks in Greece in 1923. I have to logout now since my Greek friend\\nYiorgos here wants to use the computer. Well, I\\'ll be back.Asta la vista baby.\\n\\n',\n", - " \"From: bss2p@kelvin.seas.Virginia.EDU (Brent S. Stone)\\nSubject: Wanted: Advice for New Cylist (Ditto)\\nOrganization: University of Virginia\\nLines: 21\\n\\nIn article blaisec@sr.hp.com (Blaise Cirelli) writes:\\n>\\n\\n\\n\\tI'm thinking about becoming a bike owner this year\\nw/o any bike experience thus far. I figure that getting a \\ndecent used bike for under $1K the thing would pay for itself\\nwhile I'm at grad school (car permits are $$$ where I'm going\\nand who want's to ride a bus). I'm looking for advice\\non a first bike - best models/years. I'm NOT looking for\\nan old loud roaring thing that sounds like a monster. The\\nquit whirring of newer engines is more to my liking.\\n\\nApprec any advice.\\n\\nThanks,\\n\\nBS\\n\\n\\n\\n\",\n", - " 'From: pgf@srl02.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 8\\n\\nThe only ether I see here is the stuff you must\\nhave been breathing before you posted...\\n\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", - " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Keith IS a relativist!\\nOrganization: California Institute of Technology, Pasadena\\nLines: 10\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\n9051467f@levels.unisa.edu.au (The Desert Brat) writes:\\n\\n>Keith, if you start wafffling on about how it is different for a human\\n>to maul someone thrown into it's cage (so to speak), you'd better start\\n>posting tome decent evidence or retract your 'I think there is an absolute\\n>morality' blurb a few weeks ago.\\n\\nDid I claim that there was an absolute morality, or just an objective one?\\n\\nkeith\\n\",\n", - " 'From: dragon@access.digex.com (Covert C Beach)\\nSubject: Re: Mars Observer Update - 03/29/93\\nOrganization: Express Access Online Communications, Greenbelt, MD USA\\nLines: 33\\nDistribution: world\\nNNTP-Posting-Host: access.digex.net\\nKeywords: Mars Observer, JPL\\n\\nIn article <1pcgaa$do1@access.digex.com> prb@access.digex.com (Pat) writes:\\n>Now isn\\'t that always the kicker. It does seem stupid to drop\\n>a mission like Magellan, because there isn\\'t 70 million a year\\n>to keep up the mission. You\\'d think that ongoing science could\\n>justify the money. JPL gets accused of spending more then neccessary,\\n>probably some validity in that, but NASA does put money into some\\n>things that really are Porcine. Oh well.\\n\\nI attended a colloquium at Goddard last fall where the head of the \\noperations section of NASA was talking about what future missions\\nwere going to be funded. I don\\'t remember his name or title off hand\\nand I have discarded the colloquia announcement. In any case, he was \\nasked about that very matter: \"Why can\\'t we spend a few million more\\nto keep instruments that we already have in place going?\"\\n\\nHis responce was that there are only so many $ available to him and\\nthe lead time on an instrument like a COBE, Magellan, Hubble, etc\\nis 5-10 years minumum. If he spent all that could be spent on using\\ncurrent instruments in the current budget enviroment he would have\\nvery little to nothing for future projects. If he did that, sure\\nin the short run the science would be wonderful and he would be popular,\\nhowever starting a few years after he had retired he would become\\none of the greatest villans ever seen in the space community for not\\nfunding the early stages of the next generation of instruments. Just\\nas he had benefited from his predicessor\\'s funding choices, he owed it\\nto whoever his sucessor would eventually be to keep developing new\\nmissions, even at the expense of cutting off some instruments before\\nthe last drop of possible science has been wrung out of them.\\n\\n\\n-- \\nCovert C Beach\\ndragon@access.digex.com\\n',\n", - " 'From: maverick@wpi.WPI.EDU (T. Giaquinto)\\nSubject: General Information Request\\nOrganization: Worcester Polytechnic Institute, Worcester, MA 01609-2280\\nLines: 11\\nNNTP-Posting-Host: wpi.wpi.edu\\n\\n\\n\\tI am looking for any information about the space program.\\nThis includes NASA, the shuttles, history, anything! I would like to\\nknow if anyone could suggest books, periodicals, even ftp sites for a\\nnovice who is interested in the space program.\\n\\n\\n\\n\\t\\t\\t\\t\\tTodd Giaquinto\\n\\t\\t\\t\\t\\tmaverick@wpi.WPI.EDU\\n\\t\\t\\t\\t\\t\\n',\n", - " 'From: ferdinan@oeinck.waterland.wlink.nl (Ferdinand Oeinck)\\nSubject: Re: Distance between two Bezier curves\\nOrganization: My own node in Groningen, NL.\\nLines: 14\\n\\npes@hutcs.cs.hut.fi (Pekka Siltanen) writes:\\n\\n> Suppose two cubic Bezier curves (control points V1,..,V4 and W1,..,W4)\\n> which have equal first and last control points (V1 = W1, V4 = W4). How do I \\n> get upper bound for distance between these curves. \\n\\nWhich distance? The distance between one point (t = ti) on the first curve\\nand a point on the other curve with same parameter (u = ti)?\\n\\n> \\n> Any references appreciated. Thanks in anvance.\\n> \\n> Pekka Siltanen\\n\\n',\n", - " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Freedom In U.S.A.\\nOrganization: University of Virginia\\nLines: 11\\n\\n\\tI have just started reading the articles in this news\\ngroup. There seems to be an attempt by some members to quiet\\nother members with scare tactics. I believe one posting said\\nthat all postings by one person are being forwarded to his\\nserver who keeps a file on him in hope that \"Appropriate action\\nmight be taken\". \\n\\tI don\\'t know where you guys are from but in America\\nsuch attempts to curtail someones first amendment rights are\\nnot appreciated. Here, we let everyone speak their mind\\nregardless of how we feel about it. Take your fascistic\\nrepressive ideals back to where you came from.\\n',\n", - " 'From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: Twit Bicyclists (was RE: Oh JOY!)\\nOrganization: AT&T\\nDistribution: na\\nLines: 20\\n\\nIn article <1993Apr2.045903.6066@spectrum.xerox.com> cooley@xerox.com writes:\\n>Yo, ASSHOLES. I hope you are all just kidding\\n>because it\\'s exactly that kind of attidue that gets\\n>many a MOTORcyclist killed: \"Look at the leather\\n>clad poseurs! Watch how they swirve and\\n>swear as I pretend that they don\\'t exist while\\n>I change lanes.\"\\n>\\n>If you really find it necesary to wreck others\\n>enjoyment of the road to boost your ego, then\\n>it is truely you who are the poseur.\\n>\\n>--aaron\\n\\nDisgruntled Volvo drivers. What are they rebelling against?\\n \\n================================================================================\\n Steatopygias\\'s \\'R\\' Us. doh#0000000005 That ain\\'t no Hottentot.\\n Sesquipedalian\\'s \\'R\\' Us. ZX-10. AMA#669373 DoD#564. There ain\\'t no more.\\n================================================================================\\n',\n", - " 'From: kjenks@gothamcity.jsc.nasa.gov\\nSubject: Space Station Redesign, JSC Alternative #4\\nOrganization: NASA/JSC/GM2, Space Shuttle Program Office \\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 71\\n\\nI have 19 (2 MB worth!) uuencode\\'d GIF images contain charts outlining\\none of the many alternative Space Station designs being considered in\\nCrystal City. Mr. Mark Holderman works down the hall from me, and can\\nbe reached for comment at (713) 483-1317, or via e-mail at\\nmholderm@jscprofs.nasa.gov.\\n\\nMark proposed this design, which he calls \"Geode\" (\"rough on the\\noutside, but a gem on the inside\") or the \"ET Strongback with\\nintegrated hab modules and centrifuge.\" As you can see from file\\ngeodeA.gif, it uses a Space Shuttle External Tank (ET) in place of much\\nof the truss which is currently part of Space Station Freedom. The\\nwhite track on the outside of the ET is used by the Station Remonte\\nManipulator System (SRMS) and by the Reaction Control System (RCS)\\npod. This allows the RCS pod to move along the track so that thrusting\\ncan occur near the center of gravity (CG) of the Station as the mass\\nproperties of the Station change during assembly.\\n\\nThe inline module design allows the Shuttle to dock more easily because\\nit can approach closer to the Station\\'s CG and at a structurally strong\\npart of the Station. In the current SSF design, docking forces are\\nlimited to 400 pounds, which seriously constrains the design of the\\ndocking system.\\n\\nThe ET would have a hatch installed pre-flight, with little additional\\nlaunch mass. We\\'ve always had the ability to put an ET into orbit\\n(contrary to some rumors which have circulated here), but we\\'ve never\\nhad a reason to do it, while we have had some good reasons not to\\n(performance penalties, control, debris generation, and eventual\\nde-orbit and impact footprint). Once on-orbit, we would vent the\\nresidual H2. The ET insulation (SOFI) either a) erodes on-orbit from\\nimpact with atomic Oxygen, or b) stays where it is, and we deploy a\\nKevlar sheath around it to protect it and keep it from contaminating\\nthe local space environment. Option b) has the advantage of providing\\nfurther micrometeor protection. The ET is incredibly strong (remember,\\nit supports the whole stack during launch), and could serve as the\\nnucleus for a much more ambitious design as budget permits.\\n\\nThe white module at the end of ET contains a set of Control Moment\\nGyros to be used for attitude control, while the RCS will be used\\nfor gyro desaturation. The module also contains a de-orbit system\\nwhich can be used at the end of the Station\\'s life to perform a\\ncontrolled de-orbit (so we don\\'t kill any more kangaroos, like we\\ndid with Skylab).\\n\\nThe centrifuge, which has the same volume as a hab module, could be\\nused for long-term studies of the effects of lunar or martian gravity\\non humans. The centrifuge will be used as a momentum storage device\\nfor the whole attitude control system. The centrifuge is mounted on\\none of the modules, opposite the ET and the solar panels.\\n\\nThis design uses most of the existing SSF designs for electrical,\\ndata and communication systems, getting leverage from the SSF work\\ndone to date.\\n\\nMark proposed this design at Joe Shea\\'s committee in Crystal City,\\nand he reports that he was warmly received. However, the rumors\\nI hear say that a design based on a wingless Space Shuttle Orbiter\\nseems more likely.\\n\\nPlease note that this text is my interpretation of Mark\\'s design;\\nyou should see his notes in the GIF files. \\n\\nInstead of posting a 2 MB file to sci.space, I tried to post these for\\nanon-FTP in ames.arc.nasa.gov, but it was out of storage space. I\\'ll\\nlet you all know when I get that done.\\n\\n-- Ken Jenks, NASA/JSC/GM2, Space Shuttle Program Office\\n kjenks@gothamcity.jsc.nasa.gov (713) 483-4368\\n\\n \"...Development of the space station is as inevitable as \\n the rising of the sun.\" -- Wernher von Braun\\n',\n", - " 'Subject: Re: islamic authority over women\\nFrom: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nOrganization: Tektronix, Inc., Beaverton, OR.\\nLines: 46\\n\\nIn article <1993Apr5.023044.19580@ultb.isc.rit.edu) snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n)\\n)That\\'s your mistake. It would be better for the children if the mother\\n)raised the child.\\n)\\n)One thing that relates is among Navy men that get tatoos that say \"Mom\",\\n)because of the love of their mom. It makes for more virile men.\\n)Compare that with how homos are raised. Do a study and you will get my\\n)point.\\n)\\n)But in no way do you have a claim that it would be better if the men\\n)stayed home and raised the child. That is something false made up by\\n)feminists that seek a status above men. You do not recognize the fact\\n)that men and women have natural differences. Not just physically, but\\n)mentally also.\\n) [...]\\n)Your logic. I didn\\'t say americans were the cause of worlds problems, I\\n)said atheists.\\n) [...]\\n)Becuase they have no code of ethics to follow, which means that atheists\\n)can do whatever they want which they feel is right. Something totally\\n)based on their feelings and those feelings cloud their rational\\n)thinking.\\n) [...]\\n)Yeah. I didn\\'t say that all atheists are bad, but that they could be\\n)bad or good, with nothing to define bad or good.\\n)\\n\\n Awright! Bobby\\'s back, in all of his shit-for-brains glory. Just\\n when I thought he\\'d turned the corner of progress, his Thorazine\\n prescription runs out. \\n\\n I\\'d put him in my kill file, but man, this is good stuff. I wish\\n I had his staying power.\\n\\n Fortunately, I learned not to take him too seriously long,long,long\\n ago.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n',\n", - " 'From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: free moral agency and Jeff Clark\\nOrganization: Technical University Braunschweig, Germany\\nLines: 30\\n\\nIn article \\nhealta@saturn.wwc.edu (TAMMY R HEALY) writes:\\n \\n(Deletion)\\n>You also said,\"Why did millions suffer for what Adam and Ee did? Seems a\\n>pretty sick way of going about creating a universe...\"\\n>\\n>I\\'m gonna respond by giving a small theology lesson--forgive me, I used\\n>to be a theology major.\\n>First of all, I believe that this planet is involved in a cosmic struggle--\\n>\"the Great Controversy betweed Christ and Satan\" (i borrowed a book title).\\n>God has to consider the interests of the entire universe when making\\n>decisions.\\n(Deletion)\\n \\nAn universe it has created. By the way, can you tell me why it is less\\ntyrannic to let one of one\\'s own creatures do what it likes to others?\\nBy your definitions, your god has created Satan with full knowledge what\\nwould happen - including every choice of Satan.\\n \\nCan you explain us what Free Will is, and how it goes along with omniscience?\\nDidn\\'t your god know everything that would happen even before it created the\\nworld? Why is it concerned about being a tyrant when noone would care if\\neverything was fine for them? That the whole idea comes from the possibility\\nto abuse power, something your god introduced according to your description?\\n \\n \\nBy the way, are you sure that you have read the FAQ? Especially the part\\nabout preaching?\\n Benedikt\\n',\n", - " 'From: cptully@med.unc.edu (Christopher P. Tully,Pathology,62699)\\nSubject: Re: TIFF: philosophical significance of 42\\nNntp-Posting-Host: helix.med.unc.edu\\nReply-To: cptully@med.unc.edu\\nOrganization: UNC-CH School of Medicine\\nLines: 40\\n\\nIn article 8HC@mentor.cc.purdue.edu, ab@nova.cc.purdue.edu (Allen B) writes:\\n>In article <1993Apr10.160929.696@galki.toppoint.de> ulrich@galki.toppoint.de \\n>writes:\\n>> According to the TIFF 5.0 Specification, the TIFF \"version number\"\\n>> (bytes 2-3) 42 has been chosen for its \"deep philosophical \\n>> significance\".\\n>> Last week, I read the Hitchhikers Guide To The Galaxy,\\n>> Is this actually how they picked the number 42?\\n>\\n>I\\'m sure it is, and I am not amused. Every time I read that part of the\\n>TIFF spec, it infuriates me- and I\\'m none too happy about the\\n>complexity of the spec anyway- because I think their \"arbitrary but\\n>carefully chosen number\" is neither. Additionally, I find their\\n>choice of 4 bytes to begin a file with meaningless of themselves- why\\n>not just use the letters \"TIFF\"?\\n>\\n>(And no, I don\\'t think they should have bothered to support both word\\n>orders either- and I\\'ve found that many TIFF readers actually\\n>don\\'t.)\\n>\\n>ab\\n\\nWhy so up tight? FOr that matter, TIFF6 is out now, so why not gripe\\nabout its problems? Also, if its so important to you, volunteer to\\nhelp define or critique the spec.\\n\\nFinally, a little numerology: 42 is 24 backwards, and TIFF is a 24 bit\\nimage format...\\n\\nChris\\n---\\n*********************************************************************\\nChristopher P. Tully\\t\\t\\t\\tcptully@med.unc.edu\\nUniv. of North Carolina - Chapel Hill\\nCB# 7525\\t\\t\\t\\t\\t(919) 966-2699\\nChapel Hill, NC 27599\\n*********************************************************************\\nI get paid for my opinions, but that doesn\\'t mean that UNC or anybody\\n else agrees with them.\\n\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Re: Killer\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 95\\n\\nIn article <1993Apr21.032746.10820@doug.cae.wisc.edu> yamen@cae.wisc.edu\\n(Soner Yamen) responded to article <1r20kr$m9q@nic.umass.edu> BURAK@UCSVAX.\\nUCS.UMASS.EDU (AFS) who wrote:\\n\\n[AFS] Just a quick comment::\\n[AFS]\\n[AFS] Armenians killed Turks------Turks killed Armenians.\\n[AFS]\\n[AFS] Simple as that. Can anybody deny these facts?\\n\\nJews killed Germans in WWII -- Germans killed Jews in WWII, BUT there was \\nquite a difference in these two statements, regardless of what Nazi \\nrevisionists say!\\n\\n[SY] My grand parents were living partly in todays Armenia and partly in\\n[SY] todays Georgia. There were villages, Kurd/Turk (different Turkic groups)\\n[SY] Georgian (muslim/christian) Armenian and Farsi... Very near to eachother.\\n[SY] The people living there were aware of their differences. They were \\n[SY] different people. For example, my grandfather would not have been happy \\n[SY] if his doughter had willed to marry an Armenian guy. But that did not \\n[SY] mean that they were willing to kill eachother. No! They were neighbors.\\n\\nOK.\\n\\n[SY] Armenians killed Turks. Which Armenians? Their neoghbors? As far as my\\n[SY] grandparents are concerned, the Armenians attacked first but these \\n[SY] Armenians were not their neighbors. They came from other places. Maybe \\n[SY] first they had a training at some place. They were taught to kill people,\\n[SY] to hate Turks/Kurds? It seems so...\\n\\nThere is certainly a difference between the planned extermination of the\\nArmenians of eastern Turkey beginning in 1915, with that of the Armeno-\\nGeorgian conflicts of late 1918! The argument is not whether Armenians ever \\nkilled in their collective existence, but rather the wholesale destruction of\\nAnatolian Armenians under orders of the Turkish government. An Armenian-\\nGeorgian dispute over the disposition of Akhalkalak, Lori, and Pambak after\\nthe Turkish Third Army evacuated the region, cannot be equated with the\\nextermination of Anatolian Armenians. Many Armenians and Georgians died\\nin this area in the scramble to re-occupy these lands and the lack of\\npreparation for the winter months. This is not the same as the Turkish \\ngenocide of the Armenians nearly four years earlier, hundreds of kilometers\\naway!\\n\\n[SY] Anyway, but after they killed/raped/... Turks and other muslim people\\n[SY] around, people assumed that \\'Armenians killed us, raped our women\\',\\n[SY] not a particular group of people trained in some camps, maybe backed\\n[SY] by some powerful states... After that step, you cannot explain these \\n[SY] people not to hate all Armenians. \\n\\nI don\\'t follow, perhaps the next paragraph will shed some light.\\n\\n[SY] So what am I trying to point out? First, at least for that region,\\n[SY] you cannot blame Turks/Kurds etc since it was a self defense situation.\\n[SY] Most of the Armenians, I think, are not to blame either. But since some\\n[SY] people started that fire, it is not easy to undo it. There are facts.\\n[SY] People cannot trust eachother easily. It is very difficult to establish\\n[SY] a good relation based on mutual respect and trust between nations with\\n[SY] different ethnic/cultural/religious backgrounds but it is unfortunately\\n[SY] very easy to start a fire!\\n\\nAgain, the fighting between Armenians and Georgians in 1918/19 had little to\\ndo with the destruction of the Armenians in Turkey. It is interesting that\\nthe Georgian leaders of the Transcaucasian Federation (Armenia, Azerbaijan, \\nand Georgia) made special deals with Turkish generals not to pass through \\nTiflis on their way to Baku, in return for Georgians not helping the Armenians \\nmilitarily. Of course, as Turkish troops marched across what was left of\\nCaucasian Armenia, many Armenians went north and such population movement \\ncaused problems with the locals. This is in no comparison with events 4 years \\nearlier in eastern Anatolia. My father\\'s mother\\'s family escaped Cemiskezek -> \\nErzinka -> Erzerum -> Nakhitchevan -> Tiflis -> Constantinople -> \\nMassachusetts. \\n\\n[SY] My grandparents were *not* bloodthirsty people. We did not experience\\n[SY] what they had to endure... They had to leave their lands, there were\\n[SY] ladies, old ladies, all of her children killed while she forced to\\n[SY] witness! Young women put dirt at their face to make themselves\\n[SY] unattractive! I don\\'t want to go into any graphic detail.\\n\\nMy grandmother\\'s brother was forced to dress up as a Kurdish women, and paste\\npotato skins on his face to look ugly. The Turks would kill any Armenian\\nyoung man on sight in Dersim. Because their family was rather influential,\\nlocal Kurds helped them escape before it was too late. This is why I am alive \\ntoday.\\n\\n[SY] You may think that my sources are biased. They were biased in some sense.\\n[SY] They experienced their own pain, of course. That is the way it is. But\\n[SY] as I said they were living in peace with their neighbors before. Why \\n[SY] should they become enemies?\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Commercial mining activities on the moon\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 27\\n\\nIn article steinly@topaz.ucsc.edu (Steinn Sigurdsson) writes:\\n\\n>Seriously though. If you were to ask the British government\\n>whether their colonisation efforts in the Americas were cost\\n>effective, what answer do you think you\\'d get? What if you asked\\n>in 1765, 1815, 1865, 1915 and 1945 respectively? ;-)\\n\\nWhat do you mean? Are you saying they thought the effort was\\nprofitable or that the money was efficiently spent (providing max\\nvalue per money spent)?\\n\\nI think they would answer yes on ballance to both questions. Exceptions\\nwould be places like the US from the French Indian War to the end of\\nthe US Revolution. \\n\\nBut even after the colonies revolted or where given independance the\\nBritish engaged in very lucrative trading with the former colonies.\\nFive years after the American Revolution England was still the largest\\nUS trading partner.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------55 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " \"Subject: Re: was:Go Hezbollah!!\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 43\\n\\nstssdxb@st.unocal.com (Dorin Baru) writes:\\n> Even the most extemist, one sided (jewish/israeli) postings (with which I \\n> certainly disagree), did not openly back plain murder. You do.\\n> \\n> The 'Lebanese resistance' you are talking about is a bunch of lebanese \\n> farmers who detonate bombs after work, or is an organized entity of not-\\n> only-lebanese well trained mercenaries ? I do not know, just curious.\\n> \\n> I guess you also back the killings of hundreds of marines in Beirut, right?\\n> \\n> What kind of 'resistance' movement killed jewish attlets in Munich 1972 ?\\n> \\n> You liked it, didn't you ?\\n> \\n> \\n> You posted some other garbage before, so at least you seem to be consistent.\\n> \\n> Dorin\\n\\nDorin,\\nLet's not forget that the soldiers were killed not murdered. The\\ndistinction is not trivial. Murder happens to innocent people, not people\\nwhose line of work is to kill or be killed. It just so happened that these\\nsoldiers, in the line of duty, were killed by the opposition. And\\nresistance is different from terrorism. Certainly the athletes in Munich\\nwere victims of terrorists (though some might call them freedom fighters).\\nTheir deaths cannot be compared to those of soldiers who are killed by\\nresistance fighters. Don't forget that it was the French Resistance to the\\nNazi occupying forces which eventually succeeded in driving out the\\nhostile occupiers in WWII. Diplomacy has not worked with Israel and the\\nLebanese people are tired of being occupied! They are now turning to the\\nonly option they see as viable. (Don't forget that it worked in driving\\nout the US)\\n\\n-marc\\n\\n\\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", - " \"From: lau@auriga.rose.brandeis.edu (frankie t. k. lau)\\nSubject: PC fastest line/circle drawing routines: HELP!\\nOrganization: Brandeis University\\nLines: 41\\n\\nhi all,\\n\\nIN SHORT: looking for very fast assembly code for line/circle drawing\\n\\t on SVGA graphics.\\n\\nCOMPLETE:\\n\\tI am thinking of a simple but fast molecular\\ngraphics program to write on PC or clones. (ball-and-stick type)\\n\\nReasons: programs that I've seen are far too slow for this purpose.\\n\\nPlatform: 386/486 class machine.\\n\\t 800x600-16 or 1024x728-16 VGA graphics\\n\\t\\t(speed is important, 16-color for non-rendering\\n\\t\\t purpose is enough; may stay at 800x600 for\\n\\t\\t speed reason.)\\n (hope the code would be generic enough for different SVGA\\n cards. My own card is based on Trident 8900c, not VESA?)\\n\\nWhat I'm looking for?\\n1) fast, very fast routines to draw lines/circles/simple-shapes\\n on above-mentioned SVGA resolutions.\\n Presumably in assembly languagine.\\n\\tYes, VERY FAST please.\\n2) related codes to help rotating/zooming/animating the drawings on screen.\\n Drawings for beginning, would be lines, circles mainly, think of\\n text, else later.\\n (you know, the way molecular graphics rotates, zooms a molecule)\\n2) and any other codes (preferentially in C) that can help the \\n project.\\n\\nFinal remarks;-\\nnon-profit. expected to become share-, free-ware.\\n\\n\\tAny help is appreciated.\\n\\tthanks\\n\\n-Frankie\\nlau@tammy.harvard.edu\\n\\nPS pls also email, I may miss reply-post.\\n\",\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: U of Toronto Zoology\\nLines: 17\\n\\nIn article <1993Apr23.103038.27467@bnr.ca> agc@bmdhh286.bnr.ca (Alan Carter) writes:\\n>|> ... a NO-OP command was sent to reset the command loss timer ...\\n>\\n>This activity is regularly reported in Ron's interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n\\nIf I'm not mistaken, this is the usual sort of precaution against loss of\\ncommunications. That timer is counting down continuously; if it ever hits\\nzero, that means Galileo hasn't heard from Earth in a suspiciously long\\ntime and it may be Galileo's fault... so it's time to go into a fallback\\nmode that minimizes chances of spacecraft damage and maximizes chances\\nof restoring contact. I don't know exactly what-all Galileo does in such\\na situation, but a common example is to switch receivers, on the theory\\nthat maybe the one you're listening with has died.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Re: Ten questions about Israel\\nOrganization: Brown University Department of Computer Science\\nLines: 21\\n\\ncpr@igc.apc.org (Center for Policy Research) writes:\\n\\n# 3. Is it true that Israeli stocks nuclear weapons ? If so,\\n# could you provide any evidence ?\\n\\nYes, Israel has nuclear weapons. However:\\n\\n1) Their use so far has been restricted to killing deer, by LSD addicted\\n \"Cherrie\" soldiers.\\n\\n2) They are locked in the cellar of the \"Garinei Afula\" factory, and since\\n the Gingi lost the key, no one can use them anymore.\\n\\n3) Even if the Gingi finds the key, the chief Rabbis have a time lock\\n on the bombs that does not allow them to be activated on the Sabbath\\n and during weeks which follow victories of the Betar Jerusalem soccer\\n team. A quick glance at the National League score table will reveal\\n the strategic importance of this fact.\\n\\n-Danny Keren.\\n\\n',\n", - " 'From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: Studies on Book of Mormon\\nLines: 31\\nOrganization: Walla Walla College\\nLines: 31\\n\\nIn article <735023059snx@enkidu.mic.cl> agrino@enkidu.mic.cl (Andres Grino Brandt) writes:\\n>From: agrino@enkidu.mic.cl (Andres Grino Brandt)\\n>Subject: Studies on Book of Mormon\\n>Date: Sun, 18 Apr 1993 14:15:33 CST\\n>Hi!\\n>\\n>I don\\'t know much about Mormons, and I want to know about serious independent\\n>studies about the Book of Mormon.\\n>\\n>I don\\'t buy the \\'official\\' story about the gold original taken to heaven,\\n>but haven\\'t read the Book of Mormon by myself (I have to much work learning\\n>Biblical Hebrew), I will appreciate any comment about the results of study\\n>in style, vocabulary, place-names, internal consistency, and so on.\\n>\\n>For example: There is evidence for one-writer or multiple writers?\\n>There are some mention about events, places, or historical persons later\\n>discovered by archeologist?\\n>\\n>Yours in Collen\\n>\\n>Andres Grino Brandt Casilla 14801 - Santiago 21\\n>agrino@enkidu.mic.cl Chile\\n>\\n>No hay mas realidad que la realidad, y la razon es su profeta\\nI don\\'t think the Book of Mormon was supposedly translated from Biblical \\nHebrew. I\\'ve read that \"prophet Joseph Smith\" traslated the gold tablets \\nfrom some sort of Egyptian-ish language. \\nFormer Mormons, PLEASE post.\\n\\nTammy \"no trim\" Healy\\n\\n',\n", - " 'From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Freedom In U.S.A.\\nOrganization: NYSERNet, Inc.\\nLines: 23\\n\\nab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>\\tI have just started reading the articles in this news\\n>group. There seems to be an attempt by some members to quiet\\n>other members with scare tactics. I believe one posting said\\n>that all postings by one person are being forwarded to his\\n>server who keeps a file on him in hope that \"Appropriate action\\n>might be taken\". \\n>\\tI don\\'t know where you guys are from but in America\\n>such attempts to curtail someones first amendment rights are\\n>not appreciated. Here, we let everyone speak their mind\\n>regardless of how we feel about it. Take your fascistic\\n>repressive ideals back to where you came from.\\n\\nFreedom of speech does not mean that others are compelled to give one\\nthe means to speak publicly. Some systems have regulations\\nprohibiting the dissemination of racist and bigoted messages from\\naccounts they issue.\\n\\nApparently, that\\'s not the case with virginia.edu, since you are still\\nposting.\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n',\n", - " 'From: dab@vuse.vanderbilt.edu (David A. Braun)\\nSubject: Wrecked BMW\\nOriginator: dab@necs\\nNntp-Posting-Host: necs\\nOrganization: Vanderbilt University School of Engineering, Nashville, TN, USA\\nDistribution: na\\nLines: 13\\n\\n\\nDo you or does anyone you know have a wrecked 1981 or later R80(anything)\\nor R100(anything) that they are interested in getting rid of? I need\\na motor, but will buy a whole bike.\\n\\nemail replies to:\\tDavid.Braun@FtCollinsCO.NCR.com\\n\\tor:\\t\\tdab@vuse.vanderbilt.edu\\n\\nor phone:\\t303/223-5100 x9487 (voice mail)\\n\\t\\t303/229-0952\\t (home)\\n\\n\\n\\n',\n", - " \"From: jaskew@spam.maths.adelaide.edu.au (Joseph Askew)\\nSubject: Re: the call to space (was Re: Clueless Szaboisms )\\nKeywords: trumpet calls, infrastructure, public perception\\nOrganization: Statistics, Pure & Applied Mathematics, University of Adelaide\\nLines: 32\\n\\nIn article <1pfj8k$6ab@access.digex.com> prb@access.digex.com (Pat) writes:\\n>In article <1993Mar31.161814.11683@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n\\n>>It isn't feasible for Japan to try to stockpile the amount of oil they\\n>>would need to run their industries if they did no use nuclear power.\\n\\n>Of course, Given they export 50 % of the GNP, What do they do.\\n\\nWell they don't export anywhere near 50% of their GNP. Mexico's perhaps\\nbut not their own. They actually export around the 9-10% mark. Similar\\nto most developed countries actually. Australia exports a larger share\\nof GNP as does the United States (14% I think off hand. Always likely to\\nbe out by a factor of 12 or more though) This would be immediately obvious\\nif you thought about it.\\n\\n>Anything serious enough to disrupt the sea lanes for oil will\\n>also hose their export routes.\\n\\nIt is their import routes that count. They can do without exports but\\nthey couldn't live without imports for any longer than six months if that.\\n\\n>Given they import everything, oil is just one more critical commodity.\\n\\nToo true! But one that is unstable and hence a source of serious worry.\\n\\nJoseph Askew\\n\\n-- \\nJoseph Askew, Gauche and Proud In the autumn stillness, see the Pleiades,\\njaskew@spam.maths.adelaide.edu Remote in thorny deserts, fell the grief.\\nDisclaimer? Sue, see if I care North of our tents, the sky must end somwhere,\\nActually, I rather like Brenda Beyond the pale, the River murmurs on.\\n\",\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Moonbase race\\nOrganization: U of Toronto Zoology\\nLines: 23\\n\\nIn article <3HgF3B3w165w@shakala.com> dante@shakala.com (Charlie Prael) writes:\\n>Doug-- Actually, if memory serves, the Atlas is an outgrowth of the old \\n>Titan ICBM...\\n\\nNope, you're confusing separate programs. Atlas was the first-generation\\nUS ICBM; Titan I was the second-generation one; Titan II, which all the\\nTitan launchers are based on, was the third-generation heavy ICBM. There\\nwas essentially nothing in common between these three programs.\\n\\n(Yes, *three* programs. Despite the similarity of names, Titan I and\\nTitan II were completely different missiles. They didn't even use the\\nsame fuels, never mind the same launch facilities.)\\n\\n>If so, there's probably quite a few old pads, albeit in need \\n>of some serious reconditioning. Still, Being able to buy the turf and \\n>pad (and bunkers, including prep facility) at Midwest farmland prices \\n>strikes me as pretty damned cheap.\\n\\nSorry, the Titan silos (a) can't handle the Titan launchers with their\\nlarge SRBs, (b) can't handle *any* sort of launcher without massive\\nviolations of normal range-safety rules (nobody cares about such things\\nin the event of a nuclear war, but in peacetime they matter), and (c) were\\nscrapped years ago.\\n\",\n", - " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Ok, So I was a little hasty...\\nOrganization: Duke University; Durham, N.C.\\nLines: 16\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nApparently that last post was a little hasy, since I\\ncalled around to more places and got quotes for less\\nthan 600 and 425. Liability only, of course.\\n\\nPlus, one palced will give me C7C for my car + liab on the bike for\\nonly 1350 total, which ain't bad at all.\\n\\nSo I won't go with the first place I called, that's\\nfer sure.\\n\\n\\n-- \\nAndy Infante | You can listen to what everybody says, but the fact remains |\\n'71 BMW R60/5 | that you've got to get out there and do the thing yourself. | \\nDoD #2426 | -- Joan Sutherland | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", - " 'From: osinski@chtm.eece.unm.edu (Marek Osinski)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: University of New Mexico, Albuquerque\\nLines: 12\\nDistribution: world\\nNNTP-Posting-Host: chtm.eece.unm.edu\\n\\nIn article <1993Apr15.174657.6176@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>Compromise on what, the invasion of Cyprus, the involment of Turkey in\\n>Greek politics, the refusal of Turkey to accept 12 miles of territorial\\n>waters as stated by international law, the properties of the Greeks of \\n>Konstantinople, the ownership of the islands in the Greek lake,sorry, Aegean.\\n\\nWell, it did not take long to see how consequent some Greeks are in\\nrequesting that Thessaloniki are not called Solun by Bulgarian netters. \\nSo, Napoleon, why do you write about Konstantinople and not Istanbul?\\n\\nMarek Osinski\\n',\n", - " 'From: mbh2@engr.engr.uark.edu (M. Barton Hodges)\\nSubject: Stereoscopic imaging\\nSummary: Stereoscopic imaging\\nKeywords: stereoscopic\\nNntp-Posting-Host: engr.engr.uark.edu\\nOrganization: University of Arkansas\\nLines: 8\\n\\nI am interested in any information on stereoscopic imaging on a sun\\nworkstation. For the most part, I need to know if there is any hardware\\navailable to interface the system and whether the refresh rates are\\nsufficient to produce quality image representations. Any information\\nabout the subject would be greatly appreciated.\\n\\n Thanks!\\n\\n',\n", - " 'From: ktt3@unix.brighton.ac.uk (Koon Tang)\\nSubject: PostScript driver for GINO\\nOrganization: The Univerity of Brighton, U.K.\\nLines: 15\\n\\nDoes anybody know where I can get, via anonymous ftp or otherwise, a PostScript\\ndriver for the graphics libraries GINO verison 3.0A ?\\n\\nWe are runnining on a VAX/VMS and are looking for a way outputing our plots to a\\nPostScript file...\\n\\n\\nThanks in advance...\\n-- \\nKoon Tang, internet: ktt3@unix.bton.ac.uk\\nDepartment of Mathematical Sciences, uucp: uknet!itri!ktt3\\nUniversity of Brighton,\\nBrighton,\\nBN2 4GJ,\\nU.K.\\n',\n", - " 'From: ak296@yfn.ysu.edu (John R. Daker)\\nSubject: Re: Boom! Hubcap attack!\\nOrganization: St. Elizabeth Hospital, Youngstown, OH\\nLines: 21\\nReply-To: ak296@yfn.ysu.edu (John R. Daker)\\nNNTP-Posting-Host: yfn.ysu.edu\\n\\n\\nIn a previous article, speedy@engr.latech.edu (Speedy Mercer) says:\\n\\n>I was attacked by a rabid hubcap once. I was going to work on a Yamaha\\n>750 Twin (A.K.A. \"the vibrating tank\") when I heard a wierd noise off to my \\n>left. I caught a glimpse of something silver headed for my left foot and \\n>jerked it up about a nanosecond before my bike was hit HARD in the left \\n>side. When I went to put my foot back on the peg, I found that it was not \\n>there! I pulled into the nearest parking lot and discovered that I had been \\n>hit by a wire-wheel type hubcap from a large cage! This hubcap weighed \\n>about 4-5 pounds! The impact had bent the left peg flat against the frame \\n>and tweeked the shifter in the process. Had I not heard the approaching \\n>cap, I feel certian that I would be sans a portion of my left foot.\\n>\\nHmmmm.....I wondered where that hubcap went.\\n\\n-- \\nDoD #650<----------------------------------------------------------->DarkMan\\n The significant problems we face cannot be solved at the same level of\\n thinking we were at when we created them. - Albert Einstein\\n ___________________The Eternal Champion_________________\\n',\n", - " 'From: rbemben@timewarp.prime.com (Rich Bemben)\\nSubject: Re: Riceburner Respect\\nExpires: 15 May 93 05:00:00 GMT\\nOrganization: Computervision Corp., Bedford, Ma.\\nLines: 19\\n\\nIn article <1993Apr9.172953.12408@cbnewsm.cb.att.com> shz@mare.att.com (Keeper of the \\'Tude) writes:\\n>The rider (pilot?) of practically every riceburner I\\'ve passed recently\\n>has waved to me and I\\'m wondering if it will last. Could they simply be \\n>overexuberant that their \\'burners have been removed from winter moth-balls \\n>and the novelty will soon dissipate? Perhaps the gray beard that sprouted\\n>since the last rice season makes them think I\\'m a friendly old fart that\\n>deserves a wave...\\n\\nMaybe...then again did you get rid of that H/D of yorn and buy a rice rocket \\nof your own? That would certainly explain the friendliness...unless you \\nmaybe had a piece of toilet paper stuck on the bottom of your boot...8-).\\n\\nRich\\n\\n\\nRich Bemben - DoD #0044 rbemben@timewarp.prime.com\\n1977 750 Triumph Bonneville (617) 275-1800 x 4173\\n\"Fear not the evil men do in the name of evil, but heaven protect\\n us from the evil men do in the name of good\"\\n',\n", - " \"From: nelson@seahunt.imat.com (Michael Nelson)\\nSubject: Re: Why I won't be getting my Low Rider this year\\nKeywords: congratz\\nArticle-I.D.: myrddin.C52EIp.71x\\nOrganization: SeaHunt, San Francisco CA\\nLines: 29\\nNntp-Posting-Host: seahunt.imat.com\\n\\nIn article <1993Apr5.182851.23410@cbnewsj.cb.att.com> car377@cbnewsj.cb.att.com (charles.a.rogers) writes:\\n>\\n>Ouch. :-) This brings to mind one of the recommendations in the\\n>Hurt Study. Because the rear of the gas tank is in close proximity\\n>to highly prized and easily damaged anatomy, Hurt et al recommended\\n>that manufacturers build the tank so as to reduce the, er, step function\\n>provided when the rider's body slides off of the seat and onto the\\n>gas tank in the unfortunate event that the bike stops suddenly and the \\n>rider doesn't. I think it's really inspiring how the manufacturers\\n>have taken this advice to heart in their design of bikes like the \\n>CBR900RR and the GTS1000A.\\n\\n\\tWhen I'm riding my 900RR, my goodies are already up\\n\\tagainst the tank, because the design of the Corbin seat\\n\\ttends to move you forward.\\n\\n\\tWouldn't the major danger to one's cajones be due to\\n\\taccelerating into and then being stopped by the tank? If\\n\\tyou're already there, there wouldn't be an impact\\n\\tproblem, would there?\\n\\n\\t\\t\\t\\t- Michael -\\n\\n\\n-- \\n+-------------------------------------------------------------+\\n| Michael Nelson 1993 CBR900RR |\\n| Internet: nelson@seahunt.imat.com Dod #0735 |\\n+-------------------------------------------------------------+\\n\",\n", - " \"From: ranck@joesbar.cc.vt.edu (Wm. L. Ranck)\\nSubject: Re: Happy Easter!\\nOrganization: Virginia Tech, Blacksburg, Virginia\\nLines: 23\\nNNTP-Posting-Host: joesbar.cc.vt.edu\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nKaren Black (karen@angelo.amd.com) wrote:\\n: ranck@joesbar.cc.vt.edu (Wm. L. Ranck) writes:\\n: >Nick Pettefar (npet@bnr.ca) wrote:\\n: >: English cars:-\\n: >\\n: >: Rover, Reliant, Morgan, Bristol, Rolls Royce, etc.\\n: > ^^^^^^\\n: > Talk about Harleys using old technology, these\\n: >Morgan people *really* like to use old technology.\\n\\n: Well, if you want to pick on Morgan, why not attack its ash (wood)\\n: frame or its hand-bent metal skin (just try and get a replacement :-)). \\n: I thought the kingpost suspension was one of the Mog's better features.\\n\\nHey! I wasn't picking on Morgan. They use old technology. That's all\\nI said. There's nothing wrong with using old technology. People still\\nuse shovels to dig holes even though there are lots of new powered implements\\nto dig holes with. \\n--\\n*******************************************************************************\\n* Bill Ranck (703) 231-9503 Bill.Ranck@vt.edu *\\n* Computing Center, Virginia Polytchnic Inst. & State Univ., Blacksburg, Va. *\\n*******************************************************************************\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Political Atheists?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 57\\nNNTP-Posting-Host: lloyd.caltech.edu\\n\\nmmwang@adobe.com (Michael Wang) writes:\\n\\n>I was looking for a rigorous definition because otherwise we would be\\n>spending the rest of our lives arguing what a \"Christian\" really\\n>believes.\\n\\nI don\\'t think we need to argue about this.\\n\\n>KS>Do you think that the motto points out that this country is proud\\n>KS>of its freedom of religion, and that this is something that\\n>KS>distinguishes us from many other countries?\\n>MW>No.\\n>KS>Well, your opinion is not shared by most people, I gather.\\n>Perhaps not, but that is because those seeking to make government\\n>recognize Christianity as the dominant religion in this country do not\\n>think they are infringing on the rights of others who do not share\\n>their beliefs.\\n\\nYes, but also many people who are not trying to make government recognize\\nChristianity as the dominant religion in this country do no think\\nthe motto infringes upon the rights of others who do not share their\\nbeliefs.\\n\\nAnd actually, I think that the government already does recognize that\\nChristianity is the dominant religion in this country. I mean, it is.\\nDon\\'t you realize/recognize this?\\n\\nThis isn\\'t to say that we are supposed to believe the teachings of\\nChristianity, just that most people do.\\n\\n>Like I\\'ve said before I personally don\\'t think the motto is a major\\n>concern.\\n\\nIf you agree with me, then what are we discussing?\\n\\n>KS>Since most people don\\'t seem to associate Christmas with Jesus much\\n>KS>anymore, I don\\'t see what the problem is.\\n>Can you prove your assertion that most people in the U.S. don\\'t\\n>associate Christmas with Jesus anymore?\\n\\nNo, but I hear quite a bit about Christmas, and little if anything about\\nJesus. Wouldn\\'t this figure be more prominent if the holiday were really\\nassociated to a high degree with him? Or are you saying that the\\nassociation with Jesus is on a personal level, and that everyone thinks\\nabout it but just never talks about it?\\n\\nThat is, can *you* prove that most people *do* associate Christmas\\nmost importantly with Jesus?\\n\\n>Anyways, the point again is that there are people who do associate\\n>Christmas with Jesus. It doesn\\'t matter if these people are a majority\\n>or not.\\n\\nI think the numbers *do* matter. It takes a majority, or at least a\\nmajority of those in power, to discriminate. Doesn\\'t it?\\n\\nkeith\\n',\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Blow up space station, easy way to do it.\\nArticle-I.D.: aurora.1993Apr5.184527.1\\nOrganization: University of Alaska Fairbanks\\nLines: 28\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nThis might a real wierd idea or maybe not..\\n\\nI have seen where people have blown up ballons then sprayed material into them\\nthat then drys and makes hard walls...\\n\\nWhy not do the same thing for a space station..\\n\\nFly up the docking rings and baloon materials and such, blow up the baloons,\\nspin then around (I know a problem in micro gravity) let them dry/cure/harden?\\nand cut a hole for the docking/attaching ring and bingo a space station..\\n\\nOf course the ballons would have to be foil covered or someother radiation\\nprotective covering/heat shield(?) and the material used to make the wals would\\nhave to meet the out gasing and other specs or atleast the paint/covering of\\nthe inner wall would have to be human safe.. Maybe a special congrete or maybe\\nthe same material as makes caplets but with some changes (saw where someone\\ninstea dof water put beer in the caplet mixture, got a mix that was just as\\nstrong as congret but easier to carry around and such..)\\n\\nSorry for any spelling errors, I missed school today.. (grin)..\\n\\nWhy musta space station be so difficult?? why must we have girders? why be\\nconfined to earth based ideas, lets think new ideas, after all space is not\\nearth, why be limited by earth based ideas??\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\ngoing crazy in Nome Alaska, break up is here..\\n\",\n", - " \"From: mmanning@icomsim.com (Michael Manning)\\nSubject: Re: Bikes And Contacts\\nOrganization: Icom Simulations\\nLines: 30\\n\\nIn article <1993Apr13.163450.1@skcla.monsanto.com> \\nmpmena@skcla.monsanto.com writes:\\n\\n> Michael (Manning)...Must be that blockhead of yours....the gargoyles\\n> are the ONLY thing that work for me! ;*}\\n> \\n> \\n> Michael (Menard)\\n> \\n> P.S. When you showin' up at Highland House? We'll compare sunglasses...\\n\\nLet's see how the weather is Saturday or Sunday. It sucks\\ntoday. What time is good?\\nYou're welcome to give any of the ones I have a try. As\\nfor the gargoyles, if you want mine you can have 'em. I\\nthink the bridge of my nose holds them too far from my face.\\nSame deal for the two of my friends who tried them. For\\npeople who use them with a full face helmet, all bets are\\noff. Sorry if they fit you well and took my complaint\\npersonally. Yes the Oakleys are much more desirable squid\\nattire. Also the gargoyles aren't that ugly, even in my\\nopinion, or I wouldn't have tried them.\\n\\n--\\nMichael Manning\\nmmanning@icomsim.com (NeXTMail accepted.)\\n\\n`92 FLSTF FatBoy\\n`92 Ducati 900SS\\n\\n\",\n", - " 'From: karish@gondwana.Stanford.EDU (Chuck Karish)\\nSubject: Re: Recommended bike for a tall beginner.\\nOrganization: Mindcraft, Inc.\\nDistribution: usa\\nLines: 13\\n\\nIn article <47116@sdcc12.ucsd.edu> jtozer@sdcc3.ucsd.edu (John Tozer) writes:\\n>\\tI am looking for advice on what bikes I should check out. I\\n>am 6\\'4\" tall, and find my legs/hips uncomfortably bent on most of\\n>the bikes I have ridden (not many admittedly). Are there any bikes\\n>out there built for a taller rider?\\n\\nThere\\'s plenty of legroom on the Kawasaki KLR650. A bit\\nshort in the braking department for spirited street riding,\\nbut enough for dirt and for less-agressive street stuff.\\n--\\n\\n Chuck Karish karish@mindcraft.com\\n (415) 323-9000 x117 karish@pangea.stanford.edu\\n',\n", - " \"From: adams@bellini.berkeley.edu (Adam L. Schwartz)\\nSubject: Re: Israel's Expansion II\\nNntp-Posting-Host: bellini.berkeley.edu\\nOrganization: U.C. Berkeley -- ERL\\nLines: 9\\n\\nIn article <93111.225707PP3903A@auvm.american.edu> Paul H. Pimentel writes:\\n>What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n>s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n>k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n>ore they have a right to Jerusaleum as much as Isreal does.\\n\\n\\nWhat gives the United States the right to keep Washington D.C.? \\n\",\n", - " 'From: higgins@fnala.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: NASA Ames server (was Re: Space Station Redesign, JSC Alternative #4)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 14\\nNNTP-Posting-Host: fnala.fnal.gov\\n\\nIn article <1993Apr26.152722.19887@aio.jsc.nasa.gov>, kjenks@jsc.nasa.gov (Ken Jenks [NASA]) writes:\\n> I just posted the GIF files out for anonymous FTP on server ics.uci.edu.\\n[...]\\n> Sorry it took\\n> me so long to get these out, but I was trying for the Ames server,\\n> but it\\'s out of space.\\n\\nHow ironic.\\n\\nBill Higgins, Beam Jockey | \"Treat your password like\\nFermi National Accelerator Laboratory | your toothbrush. Don\\'t let\\nBitnet: HIGGINS@FNAL.BITNET | anybody else use it--\\nInternet: HIGGINS@FNAL.FNAL.GOV | and get a new one every\\nSPAN/Hepnet: 43011::HIGGINS | six months.\" --Cliff Stoll\\n',\n", - " 'From: hdsteven@solitude.Stanford.EDU (H. D. Stevens)\\nSubject: Re: Inflatable Mile-Long Space Billboards (was Re: Vandalizing the sky.)\\nOrganization: stanford\\nLines: 38\\n\\nIn article , yamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n|> >NASA would provide contractual launch services. However,\\n|> >since NASA bases its charge on seriously flawed cost estimates\\n|> >(WN 26 Mar 93) the taxpayers would bear most of the expense. This\\n|> >may look like environmental vandalism, but Mike Lawson, CEO of\\n|> >Space Marketing, told us yesterday that the real purpose of the\\n|> >project is to help the environment! The platform will carry ozone\\n|> >monitors he explained--advertising is just to help defray costs.\\n|> \\n|> This may be the purpose for the University of Colorado people. My\\n|> guess is that the purpose for the Livermore people is to learn how to\\n|> build large, inflatable space structures.\\n|> \\n\\nThe CU people have been, and continue to be big ozone scientists. So \\nthis is consistent. It is also consistent with the new \"Comercial \\napplications\" that NASA and Clinton are pushing so hard. \\n|> \\n|> >Is NASA really supporting this junk?\\n\\nDid anyone catch the rocket that was launched with a movie advert \\nall over it? I think the rocket people got alot of $$ for painting \\nup the sides with the movie stuff. What about the Coke/Pepsi thing \\na few years back? NASA has been trying to find ways to get other \\npeople into the space funding business for some time. Frankly, I\\'ve \\nthought about trying it too. When the funding gets tight, only the \\ninnovative get funded. One of the things NASA is big on is co-funding. \\nIf a PI can show co-funding for any proposal, that proposal has a SIGNIFICANTLY\\nhigher probability of being funded than a proposal with more merit but no \\nco-funding. Once again, money talks!\\n\\n\\n-- \\nH.D. Stevens\\nStanford University\\t\\t\\tEmail:hdsteven@sun-valley.stanford.edu\\nAerospace Robotics Laboratory\\t\\tPhone:\\t(415) 725-3293 (Lab)\\nDurand Building\\t\\t\\t\\t\\t(415) 722-3296 (Bullpen)\\nStanford, CA 94305\\t\\t\\tFax:\\t(415) 725-3377\\n',\n", - " 'Subject: Re: Bill Conner:\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 17\\n\\nIn article bil@okcforum.osrhe.edu (Bill Conner) writes:\\n\\n>Could you explain what any of this pertains to? Is this a position\\n>statement on something or typing practice? And why are you using my\\n>name, do you think this relates to anything I\\'ve said and if so, what.\\n>\\n>Bill\\n\\n Could you explain what any of the above pertains to? Is this a position \\nstatement on something or typing practice? \\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", - " \"From: edb9140@tamsun.tamu.edu (E.B.)\\nSubject: POV problems with tga outputs\\nOrganization: Texas A&M University, College Station, TX\\nLines: 9\\nDistribution: world\\nNNTP-Posting-Host: tamsun.tamu.edu\\n\\nI can't fiqure this out. I have properly compiled pov on a unix machine\\nrunning SunOS 4.1.3 The problem is that when I run the sample .pov files and\\nuse the EXACT same parameters when compiling different .tga outputs. Some\\nof the .tga's are okay, and other's are unrecognizable by any software.\\n\\nHelp!\\ned\\nedb9140@tamsun.tamu.edu\\n\\n\",\n", - " 'From: zowie@daedalus.stanford.edu (Craig \"Powderkeg\" DeForest)\\nSubject: Re: Cold Gas tanks for Sounding Rockets\\nOrganization: Stanford Center for Space Science and Astrophysics\\nLines: 29\\nNNTP-Posting-Host: daedalus.stanford.edu\\nIn-reply-to: rdl1@ukc.ac.uk\\'s message of 16 Apr 93 14:28:07 GMT\\n\\nIn article <3918@eagle.ukc.ac.uk> rdl1@ukc.ac.uk (R.D.Lorenz) writes:\\n >Does anyone know how to size cold gas roll control thruster tanks\\n >for sounding rockets?\\n\\n Well, first you work out how much cold gas you need, then make the\\n tanks big enough.\\n\\nOur sounding rocket payload, with telemetry, guidance, etc. etc. and a\\ntelescope cluster, weighs around 1100 pounds. It uses freon jets for\\nsteering and a pulse-width-modulated controller for alignment (ie\\nduring our eight minutes in space, the jets are pretty much\\ncontinuously firing on a ~10% duty cycle or so...). The jets also\\nneed to kill residual angular momentum from the spin stabilization, and\\nflip the payload around to look at the Sun.\\n\\nWe have two freon tanks, each holding ~5 liters of freon (I\\'m speaking\\nonly from memory of the last flight). The ground crew at WSMR choose how\\nmuch freon to use based on some black-magic algorithm. They have\\nextra tank modules that just bolt into the payload stack.\\n\\nThis should give you an idea of the order of magnitude for cold gas \\nquantity. If you really need to know, send me email and I\\'ll try to get you\\nin touch with our ground crew people.\\n\\nCheers,\\nCraig\\n\\n--\\nDON\\'T DRINK SOAP! DILUTE DILUTE! OK!\\n',\n", - " \"From: rgc3679@bcstec.ca.boeing.com (Robert G. Carpenter)\\nSubject: Re: Please Recommend 3D Graphics Library For Mac.\\nOrganization: Boeing\\nLines: 24\\n\\nIn article John_Shepardson.esh@qmail.slac.stanford.edu (John Shepardson) writes:\\n>> Can you please offer some recommendations? (3d graphics)\\n>\\n>\\n>There has been a fantastic 3d programmers package for some years that has\\n>been little advertised, and apparently nobody knows about, called 3d\\n>Graphic Tools written by Mark Owen of Micro System Options in Seattle WA. \\n>I reviewed it a year or so ago and was really awed by it's capabilities. \\n>It also includes tons of code for many aspects of Mac programming\\n>(including offscreen graphics). It does Zbuffering, 24 bit graphics, has a\\n>database for representing graphical objects, and more.\\n>It is very well written (MPW C, Think C, and HyperCard) and the code is\\n>highly reusable. Last time I checked the price was around $150 - WELL\\n>worth it.\\n>\\n>Their # is (206) 868-5418.\\n\\n I've talked with Mark and he faxed some literature, though it wasn't very helpful-\\n just a list of routine names: _BSplineSurface, _DrawString3D... 241 names.\\n There was a Product Info sheet that explained some of the package capabilities.\\n I also found a review in April/May '92 MacTutor.\\n\\n It does look like a good package. The current price is $295 US.\\n\\n\",\n", - " 'From: jscotti@lpl.arizona.edu (Jim Scotti)\\nSubject: Re: Comet in Temporary Orbit Around Jupiter?\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 33\\n\\nIn article <1993Apr21.170817.15845@sq.sq.com> msb@sq.sq.com (Mark Brader) writes:\\n>\\n>> > > Also, peri[jove]s of Gehrels3 were:\\n>> > > \\n>> > > April 1973 83 jupiter radii\\n>> > > August 1970 ~3 jupiter radii\\n>\\n>> > Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU. ...\\n>\\n>> Sorry, _perijoves_...I\\'m not used to talking this language.\\n>\\n>Thanks again. One final question. The name Gehrels wasn\\'t known to\\n>me before this thread came up, but the May issue of Scientific American\\n>has an article about the \"Inconstant Cosmos\", with a photo of Neil\\n>Gehrels, project scientist for NASA\\'s Compton Gamma Ray Observatory.\\n>Same person?\\n\\nNeil Gehrels is Prof. Tom Gehrels son. Tom Gehrels was the discoverer\\nof P/Gehrels 3 (as well as about 4 other comets - the latest of which\\ndoes not bear his name, but rather the name \"Spacewatch\" since he was\\nobserving with that system when he found the latest comet). \\n\\n>-- \\n>Mark Brader, SoftQuad Inc., Toronto\\t\"Information! ... We want information!\"\\n>utzoo!sq!msb, msb@sq.com\\t\\t\\t\\t-- The Prisoner\\n\\n---------------------------------------------\\nJim Scotti \\n{jscotti@lpl.arizona.edu}\\nLunar & Planetary Laboratory\\nUniversity of Arizona\\nTucson, AZ 85721 USA\\n---------------------------------------------\\n',\n", - " 'From: mcguire@cs.utexas.edu (Tommy Marcus McGuire)\\nSubject: Re: Countersteering_FAQ please post\\nArticle-I.D.: earth.ls1v14INNjml\\nOrganization: CS Dept, University of Texas at Austin\\nLines: 54\\nNNTP-Posting-Host: earth.cs.utexas.edu\\n\\nIn article <12739@news.duke.edu> infante@acpub.duke.edu (Andrew Infante) writes:\\n>In article <05APR93.02678944.0049@UNBVM1.CSD.UNB.CA> C70A@UNB.CA (C70A000) writes:\\n>>In article Eric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n>>>Would someone please post the countersteering FAQ...i am having this awful\\n[...]\\n>>\\n>> Ummm, if you push on the right handle of your bike while at speed and\\n>>your bike turns left, methinks your bike has a problem. When I do it\\n>\\n>Really!?\\n>\\n>Methinks somethings wrong with _your_ bike.\\n>\\n>Perhaps you meant _pull_?\\n>\\n>Pushing the right side of my handlebars _will_ send me left.\\n>\\n>It should. \\n>REally.\\n>\\n>>on MY bike, I turn right. No wonder you need that FAQ. If I had it\\n>>I\\'d send it.\\n>\\n>I\\'m sure others will take up the slack...\\n>\\n[...]\\n>-- \\n>Andy Infante | I sometimes wish that people would put a little more emphasis |\\n\\n\\nOh, lord. This is where I came in.\\n\\nObcountersteer: For some reason, I\\'ve discovered that pulling on the\\nwrong side of the handlebars (rather than pushing on the other wrong\\nside, if you get my meaning) provides a feeling of greater control. For\\nexample, rather than pushing on the right side to lean right to turn \\nright (Hi, Lonny!), pulling on the left side at least until I get leaned\\nover to the right feels more secure and less counter-intuitive. Maybe\\nI need psychological help.\\n\\nObcountersteer v2.0:Anyone else find it ironic that in the weekend-and-a-\\nnight MSF class, they don\\'t mention countersteering until after the\\nfirst day of riding?\\n\\n\\n\\n-----\\nTommy McGuire, who\\'s going to hit his head on door frames the rest of\\n the evening, leaning into those tight turns....\\nmcguire@cs.utexas.edu\\nmcguire@austin.ibm.com\\n\\n\"...I will append an appropriate disclaimer to outgoing public information,\\nidentifying it as personal and as independent of IBM....\"\\n',\n", - " \"From: ednobles@sacam.OREN.ORTN.EDU (Edward d Nobles)\\nSubject: windows imagine??!!\\nOrganization: Oak Ridge National Laboratory\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 10\\n\\n\\nHas ANYONE who has ordered the new PC version of Imagine ACTUALLY recieved\\nit yet? I'm just about ready to order but reading posts about people still\\nawaiting delivery are making me a little paranoid. Has anyone actually \\nheld this piece of software in their own hands?\\n\\nLater,\\n\\nJim Nobles\\n\\n\",\n", - " 'From: ma170saj@sdcc14.ucsd.edu (System Operator)\\nSubject: A Moment Of Silence\\nOrganization: University of California, San Diego\\nLines: 14\\nNntp-Posting-Host: sdcc14.ucsd.edu\\n\\n\\n April 24th is approaching, and Armenians around the world\\nare getting ready to remember the massacres of their family members\\nby the Turkish government between 1915 and 1920. \\n At least 1.5 Million Armenians perished during that period,\\nand it is important to note that those who deny that this event\\never took place, either supported the policy of 1915 to exterminate\\nthe Armenians, or, as we have painfully witnessed in Azerbaijan,\\nwould like to see it happen again...\\n Thank you for taking the time to read this post.\\n\\n -Helgge\\n\\n\\n',\n", - " 'From: cervi@oasys.dt.navy.mil (Mark Cervi)\\nSubject: Re: ++BIKE SOLD OVER NET 600 MILES AWAY!++\\nOrganization: NSWC, Carderock Division, Annapolis, MD, USA\\nLines: 15\\n\\nIn article <6130331@hplsla.hp.com> kens@hplsla.hp.com (Ken Snyder) writes:\\n>\\n>> Any other bikes sold long distances out there...I\\'d love to hear about\\n>it!\\n\\nI bought my Moto Guzzi from a Univ of Va grad student in Charlottesville\\nlast spring.\\n\\n\\t Mark Cervi, cervi@oasys.dt.navy.mil, (w) 410-267-2147\\n\\t\\t DoD #0603 MGNOC #12998 \\'87 Moto Guzzi SP-II\\n \"What kinda bikes that?\" A Moto Guzzi. \"What\\'s that?\" Its Italian.\\n-- \\n\\n\\tMark Cervi, CARDEROCKDIV, NSWC Code 852, Annapolis, MD 21402\\n\\t\\t cervi@oasys.dt.navy.mil, (w) 410-267-2147\\n',\n", - " \"From: nelson@seahunt.imat.com (Michael Nelson)\\nSubject: Re: Protective gear\\nNntp-Posting-Host: seahunt.imat.com\\nOrganization: SeaHunt, San Francisco CA\\nLines: 15\\n\\nIn article <1993Apr5.151323.7183@rd.hydro.on.ca> jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n>\\n>I'm still looking for good gloves, myself,\\n>as the ones I have now are too loose.\\n\\n\\tWhen you find some new ones, I suggest donating the ones\\n\\tyou have now to the Lautrec family in France... \\n\\n\\t\\t\\t\\tMichael\\n\\n-- \\n+-------------------------------------------------------------+\\n| Michael Nelson 1993 CBR900RR |\\n| Internet: nelson@seahunt.imat.com Dod #0735 |\\n+-------------------------------------------------------------+\\n\",\n", - " \"From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Science News article on Federal R&D\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 24\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , xrcjd@resolve.gsfc.nasa.gov (Charles J. Divine) writes:\\n> Just a pointer to the article in the current Science News article\\n> on Federal R&D funding.\\n> \\n> Very briefly, all R&D is being shifted to gaining current \\n> competitive advantage from things like military and other work that\\n> does not have as much commercial utility.\\n> -- \\n> Chuck Divine\\n\\nGulp.\\n\\n[Disclaimer: This opinion is mine and does not represent the views of\\nFermilab, Universities Research Association, the Department of Energy,\\nor the 49th Ward Regular Science Fiction Organization.]\\n \\n-- \\n O~~* /_) ' / / /_/ ' , , ' ,_ _ \\\\|/\\n - ~ -~~~~~~~~~~~/_) / / / / / / (_) (_) / / / _\\\\~~~~~~~~~~~zap!\\n / \\\\ (_) (_) / | \\\\\\n | | Bill Higgins Fermi National Accelerator Laboratory\\n \\\\ / Bitnet: HIGGINS@FNAL.BITNET\\n - - Internet: HIGGINS@FNAL.FNAL.GOV\\n ~ SPAN/Hepnet: 43011::HIGGINS \\n\",\n", - " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Sixty-two thousand (was Re: How many read sci.space?)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 67\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article <1993Apr15.072429.10206@sol.UVic.CA>, rborden@ugly.UVic.CA (Ross Borden) writes:\\n> In article <734850108.F00002@permanet.org> Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado) writes:\\n>>\\n>>One could go on and on and on here, but I wonder ... how\\n>>many people read sci.space and of what power/influence are\\n>>these individuals?\\n>>\\n> \\tQuick! Everyone who sees this, post a reply that says:\\n> \\n> \\t\\t\\t\"Hey, I read sci.space!\"\\n> \\n> Then we can count them, and find out how many there are! :-)\\n> (This will also help answer that nagging question: \"Just what is\\n> the maximum bandwidth of the Internet, anyways?\")\\n\\nA practical suggestion, to be sure, but one could *also* peek into\\nnews.lists, where Brian Reid has posted \"USENET Readership report for\\nMar 93.\" Another posting called \"USENET READERSHIP SUMMARY REPORT FOR\\nMAR 93\" gives the methodology and caveats of Reid\\'s survey. (These\\npostings failed to appear for a while-- I wonder why?-- but they are\\nnow back.)\\n\\nReid, alas, gives us no measure of the \"power/influence\" of readers...\\nSorry, Mark.\\n\\nI suspect Mark, dangling out there on Fidonet, may not get news.lists\\nso I\\'ve mailed him copies of these reports.\\n\\nThe bottom line?\\n\\n +-- Estimated total number of people who read the group, worldwide.\\n | +-- Actual number of readers in sampled population\\n | | +-- Propagation: how many sites receive this group at all\\n | | | +-- Recent traffic (messages per month)\\n | | | | +-- Recent traffic (kilobytes per month)\\n | | | | | +-- Crossposting percentage\\n | | | | | | +-- Cost ratio: $US/month/rdr\\n | | | | | | | +-- Share: % of newsrders\\n | | | | | | | | who read this group.\\n V V V V V V V V\\n 88 62000 1493 80% 1958 4283.9 19% 0.10 2.9% sci.space \\n\\nThe first figure indicates that sci.space ranks 88th among most-read\\nnewsgroups.\\n\\nI\\'ve been keeping track sporadically to watch the growth of traffic\\nand readership. You might be entertained to see this.\\n\\nOct 91 55 71000 1387 84% 718 1865.2 21% 0.04 4.2% sci.space\\nMar 92 43 85000 1741 82% 1207 2727.2 13% 0.06 4.1% sci.space\\nJul 92 48 94000 1550 80% 1044 2448.3 12% 0.04 3.8% sci.space\\nMay 92 45 94000 2023 82% 834 1744.8 13% 0.04 4.1% sci.space\\n(some kind of glitch in estimating number of readers happens here)\\nSep 92 45 51000 1690 80% 1420 3541.2 16% 0.11 3.6% sci.space \\nNov 92 78 47000 1372 81% 1220 2633.2 17% 0.08 2.8% sci.space \\n(revision in ranking groups happens here(?))\\nMar 93 88 62000 1493 80% 1958 4283.9 19% 0.10 2.9% sci.space \\n\\nPossibly old Usenet hands could give me some more background on how to\\ninterpret these figures, glitches, or the history of Reid\\'s reporting\\neffort. Take it to e-mail-- it doesn\\'t belong in sci.space.\\n\\nBill Higgins, Beam Jockey | In a churchyard in the valley\\nFermi National Accelerator Laboratory | Where the myrtle doth entwine\\nBitnet: HIGGINS@FNAL.BITNET | There grow roses and other posies\\nInternet: HIGGINS@FNAL.FNAL.GOV | Fertilized by Clementine.\\nSPAN/Hepnet: 43011::HIGGINS |\\n',\n", - " \"From: cywang@ux1.cso.uiuc.edu (Crying Freeman)\\nSubject: What's a good assembly VGA programming book?\\nOrganization: University of Illinois at Urbana\\nLines: 9\\n\\nCan someone give me the title of a good VGA graphics programming book?\\nPlease respond by email. Thanks!\\n\\n\\t\\t\\t--Yuan\\n\\n-- \\nChe-Yuan Wang\\ncw21219@uxa.cso.uiuc.edu\\ncywang@ux1.cso.uiuc.edu\\n\",\n", - " 'From: CBW790S@vma.smsu.edu.Ext (Corey Webb)\\nSubject: Re: HELP!!! GRASP\\nOrganization: SouthWest Mo State Univ\\nLines: 29\\nNNTP-Posting-Host: vma.smsu.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\nIn article <1993Apr19.160944.20236W@baron.edb.tih.no>\\nhavardn@edb.tih.no (Haavard Nesse,o92a) writes:\\n>\\n>Could anyone tell me if it\\'s possible to save each frame\\n>of a .gl (grasp) animation to .gif, .jpg, .iff or any other\\n>picture formats.\\n>\\n \\n If you have the GRASP animation system, then yes, it\\'s quite easy.\\nYou simply use GLIB to extract the image (each \"frame\" in a .GL is\\nactually a complete .PCX or .CLP file), then use one of MANY available\\nutilities to convert it. If you don\\'t have the GRASP package, I\\'m afraid\\nI can\\'t help you. Sorry.\\n By the way, before you ask, GRASP (GRaphics Animation System for\\nProfessionals) is a commercial product that sells for just over US$300\\nfrom most mail-order companies I\\'ve seen. And no, I don\\'t have it. :)\\n \\n \\n Corey Webb\\n \\n \\n ____________________________________________________________________\\n | Corey Webb | \"For in much wisdom is much grief, and |\\n | cbw790s@vma.smsu.edu | he that increaseth knowledge increaseth |\\n | Bitnet: CBW790S@SMSVMA | sorrow.\" -- Ecclesiastes 1:18 |\\n |-------------------------|------------------------------------------|\\n | The \"S\" means I am only | \"But first, are you experienced?\" |\\n | speaking for myself. | -- Jimi Hendrix |\\n \\n',\n", - " \"From: n4hy@harder.ccr-p.ida.org (Bob McGwier)\\nSubject: Re: NAVSTAR positions\\nOrganization: IDA Center for Communications Research\\nLines: 11\\nDistribution: world\\nNNTP-Posting-Host: harder.ccr-p.ida.org\\nIn-reply-to: Thomas.Enblom@eos.ericsson.se's message of 19 Apr 93 06:34:55 GMT\\n\\n\\nYou have missed something. There is a big difference between being in\\nthe SAME PLANE and in exactly the same state (positions and velocities\\nequal). IN addition to this, there has always been redundancies proposed.\\n\\nBob\\n--\\n------------------------------------------------------------------------------\\nRobert W. McGwier | n4hy@ccr-p.ida.org\\nCenter for Communications Research | Interests: amateur radio, astronomy,golf\\nPrinceton, N.J. 08520 | Asst Scoutmaster Troop 5700, Hightstown\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: \"Cruel\" (was Re: >This whole thread started because of a discussion about whether\\n>>or not the death penalty constituted cruel punishment, which is forbidden\\n>>by the US Constitution.\\n>Yes, but they didn\\'t say what they meant by \"cruel\", which is why\\n>a) you have the Supreme Court, and b) it makes no sense to refer\\n>to the Constitution, which is quite silent on the meaning of the\\n>word \"cruel\".\\n\\nThey spent quite a bit of time on the wording of the Constitution. They\\npicked words whose meanings implied the intent. We have already looked\\nin the dictionary to define the word. Isn\\'t this sufficient?\\n\\n>>Oh, but we were discussing the death penalty (and that discussion\\n>>resulted from the one about murder which resulted from an intial\\n>>discussion about objective morality--so this is already three times\\n>>removed from the morality discussion).\\n>Actually, we were discussing the mening of the word \"cruel\" and\\n>the US Constitution says nothing about that.\\n\\nBut we were discussing it in relation to the death penalty. And, the\\nConstitution need not define each of the words within. Anyone who doesn\\'t\\nknow what cruel is can look in the dictionary (and we did).\\n\\nkeith\\n',\n", - " \"From: dennisn@ecs.comm.mot.com (Dennis Newkirk)\\nSubject: Re: Proton/Centaur?\\nOrganization: Motorola\\nNntp-Posting-Host: 145.1.146.43\\nLines: 31\\n\\nIn article <1r54to$oh@access.digex.net> prb@access.digex.com (Pat) writes:\\n>The question i have about the proton, is could it be handled at\\n>one of KSC's spare pads, without major malfunction, or could it be\\n>handled at kourou or Vandenberg? \\n\\nSeems like a lot of trouble to go to. Its probably better to \\ninvest in newer launch systems. I don't think a big cost advantage\\nfor using Russian systems will last for very long (maybe a few years). \\nLockheed would be the place to ask, since you would probably have to buy \\nthe Proton from them (they market the Proton world wide except Russia). \\nThey should know a lot about the possibilities, I haven't heard them\\npropose US launches, so I assume they looked into it and found it \\nunprofitable. \\n\\n>Now if it uses storables, \\n\\nYes...\\n\\n>then how long would it take for the russians\\n>to equip something at cape york?\\n\\nComparable to the Zenit I suppose, but since it looks like\\nnothing will be built there, you might just as well pick any\\nspot.\\n\\nThe message is: to launch now while its cheap and while Russia and\\nKazakstan are still cooperating. Later, the story may be different.\\n\\nDennis Newkirk (dennisn@ecs.comm.mot.com)\\nMotorola, Land Mobile Products Sector\\nSchaumburg, IL\\n\",\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: was:Go Hezbollah!!\\nOrganization: The Department of Redundancy Department\\nLines: 39\\n\\nIn article <1993Apr14.210636.4253@ncsu.edu> hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n>Hezbollah and other Lebanese Resistance fighters are skilled at precision\\n>bombing of SLA and Israeli targets. \\n\\nIt\\'s hard to beat a car-bomb with a suicidal driver in getting \\nright up to the target before blowing up. Even booby-traps and\\nradio-controlled bombs under cars are pretty efficient killers. \\nYou have a point. \\n\\n>I find such methods to be far more\\n>restrained and responsible \\n\\nIs this part of your Islamic value-system?\\n\\n>than the Israeli method of shelling and bombing\\n>villages with the hope that a Hezbollah member will be killed along with\\n>the civilians murdered. \\n\\nHad Israeli methods been anything like this, then Iraq wouldn\\'ve been\\nnuked long ago, entire Arab towns deported and executions performed by\\nthe tens of thousands. The fact is, though, that Israeli methods\\naren\\'t even 1/10,000th as evil as those which are common and everyday\\nin Arab states.\\n\\n>Soldiers are trained to die for their country. Three IDF soldiers\\n>did their duty the other day. These men need not have died if their government\\n>had kept them on Israeli soil. \\n\\n\"Israeli soil\"???? Brad/Ali! Just wait until the Ayatollah\\'s\\nthought-police get wind of this. It\\'s all \"Holy Muslim Soil (tm)\".\\nHave you forgotten? May Allah have mercy on you now.\\n\\n>Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: Steve_Mullins@vos.stratus.com\\nSubject: Re: Bible Quiz\\nOrganization: Stratus Computer, Marlboro Ma.\\nLines: 20\\nNNTP-Posting-Host: m72.eng.stratus.com\\n\\n\\nIn article <1993Apr16.130430.1@ccsua.ctstateu.edu> kellyb@ccsua.ctstateu.edu wrote: \\n>In article , kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n>> Only when the Sun starts to orbit the Earth will I accept the Bible. \\n>> \\n> Since when does atheism mean trashing other religions?There must be a God\\n ^^^^^^^^^^^^^^^\\n> of inbreeding to which you are his only son.\\n\\n\\na) I think that he has a rather witty .sig file. It sums up a great\\n deal of atheistic thought (IMO) in one simple sentence.\\nb) Atheism isn\\'t an \"other religion\".\\n\\n\\nsm\\n=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=\\nSteve_Mullins@vos.stratus.com () \"If a man empties his purse into his\\nMy opinions <> Stratus\\' opinions () head, no one can take it from him\\n------------------------------ () ---------------Benjamin Franklin\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1993Apr20.101044.2291@iti.org> aws@iti.org (Allen W. Sherzer) writes:\\n\\n>Depends. If you assume the existance of a working SSTO like DC, on billion\\n>$$ would be enough to put about a quarter million pounds of stuff on the\\n>moon. If some of that mass went to send equipment to make LOX for the\\n>transfer vehicle, you could send a lot more. Either way, its a lot\\n>more than needed.\\n\\n>This prize isn\\'t big enough to warrent developing a SSTO, but it is\\n>enough to do it if the vehicle exists.\\n\\nBut Allen, if you can assume the existence of an SSTO there is no need\\nto have the contest in the first place. I would think that what we\\nwant to get out of the contest is the development of some of these\\n\\'cheaper\\' ways of doing things; if they already exist, why flush $1G\\njust to get someone to go to the Moon for a year?\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " \"From: oz@ursa.sis.yorku.ca (Ozan S. Yigit)\\nSubject: Re: Turkish Government Agents on UseNet Lie Through Their Teeth! \\nIn-Reply-To: dbd@urartu.sdpa.org's message of Thu, 15 Apr 1993 20: 45:12 GMT\\nOrganization: York U. Student Information Systems Project\\nLines: 15\\n\\nDavidian-babble:\\n\\n>The Turkish government feels it can funnel a heightened state of ultra-\\n>nationalism existing in Turkey today onto UseNet and convince people via its \\n>revisionist, myopic, and incidental view of themselves and their place in the \\n>world. \\n\\nTurkish government on usenet? How long are you going to keep repeating\\nthis utterly idiotic [and increasingly saddening] drivel?\\n\\noz\\n---\\n life of a people is a sea, and those that look at it from the shore \\n cannot know its depths.\\t\\t\\t -Armenian proverb \\n\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violatins in Azerbaijan #009\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 262\\n\\n Accounts of Anti-Armenian Human Right Violatins in Azerbaijan #009\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +-----------------------------------------------------------------+\\n | |\\n | There were about six burned people in there, and the small |\\n | corpse of a burned child. It was gruesome. I suffered a |\\n | tremendous shock. There were about ten people there, but the |\\n | doctor on duty said that because of the numbers they were being |\\n | taken to Baku. There was a woman\\'s corpse there too, she had |\\n | been . . . well, there was part of a body there . . . a |\\n | hacked-off part of a woman\\'s body. It was something terrible. |\\n | |\\n +-----------------------------------------------------------------+\\n\\nDEPOSITION OF ROMAN ALEKSANDROVICH GAMBARIAN\\n\\n Born 1954\\n Senior Engineer\\n Sumgait Automotive Transport Production Association\\n\\n Resident at Building 17/33B, Apartment 40\\n Microdistrict No. 3\\n Sumgait [Azerbaijan]\\n\\n\\nWhat happened in Sumgait was a great tragedy, an awful tragedy for us, the \\nArmenian people, and for all of mankind. A genocide of Armenians took place\\nduring peacetime.\\n\\nAnd it was a great tragedy for me personally, because I lost my father in\\nthose days. He was still young. Born in 1926.\\n\\nOn that day, February 28, we were at home. Of course we had heard that there \\nwas unrest in town, my younger brother Aleksandr had told us about it. But we \\ndidn\\'t think . . . we thought that everything would happen outdoors, that they\\nwouldn\\'t go into people\\'s apartments. About five o\\'clock we saw a large crowd \\nnear the Kosmos movie theater in our microdistrict. We were sitting at home \\nwatching television. We go out on the balcony and see the crowd pour into Mir \\nStreet. This is right near downtown, next to the airline ticket office, our \\nhouse is right nearby. That day there was a group of policeman with shields\\nthere. They threw rocks at those policemen. Then they moved off in the \\ndirection of our building. They burned a motorcycle in our courtyard and \\nstarted shouting for Armenians to come out of the building. We switched off \\nthe light. As it turns out, their signal was just the opposite: to turn on the\\nlight. That meant that it was an Azerbaijani home. We, of course, didn\\'t know \\nand thought that if they saw lights on they would come to our apartment.\\n\\nSuddenly there\\'s pounding on the door. We go to the door, all four of us:\\nthere were four of us in the apartment. Father, Mother, my younger brother\\nAleksandr, and I. He was born in 1959. My father was a veteran of World War \\nII and had fought in China and in the Soviet Far East; he was a pilot.\\n\\nWe went to the door and they started pounding on it harder, breaking it down \\nwith axes. We start to talk to them in Azerbaijani, \"What\\'s going on? What\\'s \\nhappened?\" They say, \"Armenians, get out of here!\" We don\\'t open the door, we \\nsay, \"If we have to leave, we\\'ll leave, we\\'ll leave tomorrow.\" They say, \"No, \\nleave now, get out of here, Armenian dogs, get out of here!\" By now they\\'ve \\nbroken the door both on the lock and the hinge sides. We hold them off as best\\nwe can, my father and I on one side, and my mother and brother on the other. \\nWe had prepared ourselves: we had several hammers and an axe in the apartment,\\nand grabbed what we could find to defend ourselves. They broke in the door and\\nwhen the door gave way, we held it for another half-hour. No neighbors, no\\npolice and no one from the city government came to our aid the whole time. We \\nheld the door. They started to smash the door on the lock side, first with an \\naxe, and then with a crowbar.\\n\\nWhen the door gave way--they tore it off its hinges--Sasha hit one of them \\nwith the axe. The axe flew out of his hands. They also had axes, crowbars, \\npipes, and special rods made from armature shafts. One of them hit my father \\nin the head. The pressure from the mob was immense. When we retreated into the\\nroom, one of them hit my mother, too, in the left part of her face. My brother\\nSasha and I fought back, of course. Sasha is quite strong and hot-tempered, he\\nwas the judo champion of Sumgait. We had hammers in our hands, and we injured \\nseveral of the bandits--in the heads and in the eyes, all that went on. But \\nthey, the injured ones, fell back, and others came to take their places, there\\nwere many of them.\\n\\nThe door fell down at an angle. The mob tried to remove the door, so as to go \\ninto the second room and to continue . . . to finish us off. Father brought \\nskewers and gave them to Sasha and me--we flew at them when we saw Father \\nbleeding: his face was covered with blood, he had been wounded in the head, \\nand his whole face was bloody. We just threw ourselves on them when we saw \\nthat. We threw ourselves at the mob and drove back the ones in the hall, drove\\nthem down to the third floor. We came out on the landing, but a group of the \\nbandits remained in one of the rooms they were smashing all the furniture in \\nthere, having closed the door behind them. We started tearing the door off to \\nchase away the remaining ones or finish them. Then a man, an imposing man of \\nabout 40, an Azerbaijani, came in. When he was coming in, Father fell down and\\nMother flew to him, and started to cry out. I jumped out onto the balcony and \\nstarted calling an ambulance, but then the mob started throwing stones through\\nthe windows of our veranda and kitchen. We live on the fourth floor. And no \\none came. I went into the room. It seemed to me that this man was the leader \\nof the group. He was respectably dressed in a hat and a trench coat with a \\nfur collar. And he addressed my mother in Azerbaijani: \"What\\'s with you, \\nwoman, why are you shouting? What happened? Why are you shouting like that?\"\\nShe says, \"What do you mean, what happened? You killed somebody!\" My father \\nwas a musician, he played the clarinet, he played at many weddings, Armenian \\nand Azerbaijani, he played for many years. Everyone knew him. Mother says, \\n\"The person who you killed played at thousands of Azerbaijani weddings, he \\nbrought so much joy to people, and you killed that person.\" He says, \"You \\ndon\\'t need to shout, stop shouting.\" And when they heard the voice of this \\nman, the 15 to 18 people who were in the other room opened the door and \\nstarted running out. We chased after them, but they ran away. That man left, \\ntoo. As we were later told, downstairs one of them told the others, I don\\'t \\nknow if it was from fright or what, told them that we had firearms, even\\nthough we only fought with hammers and an axe. We raced to Father and started \\nto massage his heart, but it was already too late. We asked the neighbors to \\ncall an ambulance. The ambulance never came, although we waited for it all \\nevening and all through the night.\\n\\nSomewhere around midnight about 15 policemen came. They informed us they were \\nfrom Khachmas. They said, \"We heard that a group was here at your place, you \\nhave our condolences.\" They told us not to touch anything and left. Father lay\\nin the room.\\n\\nSo we stayed home. Each of us took a hammer and a knife. We sat at home. Well,\\nwe say, if they descend on us again we\\'ll defend ourselves. Somewhere around \\none o\\'clock in the morning two people came from the Sumgait Procuracy, \\ninvestigators. They say, \"Leave everything just how it is, we\\'re coming back \\nhere soon and will bring an expert who will record and photograph everything.\"\\nThen people came from the Republic Procuracy too, but no one helped us take \\nFather away. The morning came and the neighbors arrived. We wanted to take \\nFather away somehow. We called the Procuracy and the police a couple of times,\\nbut no one came. We called an ambulance, and nobody came. Then one of the \\nneighbors said that the bandits were coming to our place again and we should \\nhide. We secured the door somehow or other. We left Father in the room and \\nwent up to the neighbor\\'s.\\n\\nThe excesses began again in the morning. The bandits came in several vehicles,\\nZIL panel trucks, and threw themselves out of the vehicles like . . . a \\nlanding force near the center of town. Our building was located right there. A\\ncrowd formed. Then they started fighting with the soldiers. Then, in Buildings\\n19 and 20, that\\'s next to the airline ticket office, they started breaking \\ninto Armenian apartments, destroying property, and stealing. The Armenians \\nweren\\'t at home, they had managed to flee and hide somewhere. And again they \\npoured in the direction of our building. They were shouting that there were \\nsome Armenians left on the fourth floor, meaning us. \"They\\'re up there, still,\\nup there. Let\\'s go kill them!\" They broke up all the furniture remaining in \\nthe two rooms, threw it outside, and burned it in large fires. We were hiding \\none floor up. Something heavy fell. Sasha threw himself toward the door \\nshouting that it was probably Father, they had thrown Father, were defiling \\nthe corpse, probably throwing it in the fire, going to burn it. I heard it, \\nand the sound was kind of hollow, and I said, \"No, that\\'s from some of the \\nfurniture.\" Mother and I pounced on Sasha and stopped him somehow, and calmed \\nhim down.\\n\\nThe mob left somewhere around eight o\\'clock. They smashed open the door and \\nwent into the apartment of the neighbors across from us. They were also\\nArmenians, they had left for another city.\\n\\nThe father of the neighbor who was concealing us came and said, \"Are you \\ncrazy? Why are you hiding Armenians? Don\\'t you now they\\'re checking all the \\napartments? They could kill you and them!\" And to us :\" . . . Come on, leave \\nthis apartment!\" We went down to the third floor, to some other neighbors\\'. At\\nfirst the man didn\\'t want to let us in, but then one of his sons asked him and\\nhe relented. We stayed there until eleven o\\'clock at night. We heard the sound\\nof motors. The neighbors said that it was armored personnel carriers. We went \\ndownstairs. There was a light on in the room where we left Father. In the \\nother rooms, as we found out later, all the chandeliers had been torn down. \\nThey left only one bulb. The bulb was burning, which probably was a signal \\nthey had agreed on because there was a light burning in every apartment in our\\nMicrodistrict 3 where there had been a pogrom.\\n\\nWith the help of the soldiers we made it to the City Party Committee and were \\nsaved. Our salvation--my mother\\'s, my brother\\'s, and mine,--was purely \\naccidental, because, as we later found out from the neighbors, someone in the \\ncrowd shouted that we had firearms up there. Well, we fought, but we were only\\nable to save Mother. We couldn\\'t save Father. We inflicted many injuries on \\nthe bandits, some of them serious. But others came to take their places. We \\nwere also wounded, there was blood, and we were scratched all over--we got our\\nshare. It was a miracle we survived. We were saved by a miracle and the \\ntroops. And if troops hadn\\'t come to Sumgait, the slaughter would have been \\neven greater: probably all the Armenians would have been victims of the \\ngenocide.\\n\\nThrough an acquaintance at the City Party Committee I was able to contact the \\nleadership of the military unit that was brought into the city, and at their \\norders we were assigned special people to accompany us, experts. We went to \\'\\npick up Father\\'s corpse. We took it to the morgue. This was about two o\\'clock \\nin the morning, it was already March 1, it was raining very hard and it was \\nquite cold, and we were wearing only our suits. When my brother and I carried \\nFather into the morgue we saw the burned and disfigured corpses. There were \\nabout six burned people in there, and the small corpse of a burned child. It \\nwas gruesome. I suffered a tremendous shock. There were about ten people \\nthere, but the doctor on duty said that because of the numbers they were being\\ntaken to Baku. There was a woman\\'s corpse there too, she had been . . . well, \\nthere was part of a body there . . . a hacked-off part of a woman\\'s body. It \\nwas something terrible. The morgue was guarded by the landing force . . . The \\nchild that had been killed was only ten or twelve years old. It was impossible\\nto tell if it was a boy or a girl because the corpse was burned. There was a \\nman there, too, several men. You couldn\\'t tell anything because their faces \\nwere disfigured, they were in such awful condition...\\n\\nNow two and a half months have passed. Every day I recall with horror what \\nhappened in the city of Sumgait. Every day: my father, and the death of my \\nfather, and how we fought, and the people\\'s sorrow, and especially the morgue.\\n\\nI still want to say that 70 years have passed since Soviet power was\\nestablished, and up to the very last minute we could not conceive of what \\nhappened in Sumgait. It will go down in history.\\n\\nI\\'m particularly surprised that the mob wasn\\'t even afraid of the troops. They\\neven fought the soldiers. Many soldiers were wounded. The mob threw fuel \\nmixtures onto the armored personnel carriers, setting them on fire. They \\nweren\\'t afraid. They were so sure of their impunity that they attacked our \\ntroops. I saw the clashes on February 29 near the airline ticket office, right\\nacross from our building. And that mob was fighting with the soldiers. The \\ninhabitants of some of the buildings, also Azerbaijanis, threw rocks at the \\nsoldiers from windows, balconies, even cinder blocks and glass tanks. They \\nweren\\'t afraid of them. I say they were sure of their impunity. When we were \\nat the neighbors\\' and when they were robbing homes near the airline ticket \\noffice I called the police at number 3-20-02 and said that they were robbing \\nArmenian apartments and burning homes. And they told me that they knew that \\nthey were being burned. During those days no one from the police department \\ncame to anyone\\'s aid. No one came to help us, either, to our home, even though\\nperhaps they could have come and saved us.\\n\\nAs we later found out the mob was given free vodka and drugs, near the bus \\nstation. Rocks were distributed in all parts of town to be thrown and used in \\nfighting. So I think all of it was arranged in advance. They even knew in \\nwhich buildings and apartments the Armenians lived, on which floors--they had\\nlists, the bandits. You can tell that the \"operation\" was planned in advance.\\n\\nThanks, of course, to our troops, to the country\\'s leadership, and to the\\nleadership of the Ministry of Defense for helping us, thanks to the Russian\\npeople, because the majority of the troops were Russians, and the troops \\nsuffered losses, too. I want to express this gratitude in the name of my \\nfamily and in the name of all Armenians, and in the name of all Sumgait\\nArmenians. For coming in time and averting terrible things: worse would\\nhave happened if that mob had not been stopped on time.\\n\\nAt present an investigation is being conducted on the part of the USSR\\nProcuracy. I want to say that those bandits should receive the severest\\npossible punishment, because if they don\\'t, the tragedy, the genocide, could \\nhappen again. Everyone should see that the most severe punishment is meted\\nout for such deeds.\\n\\nVery many bandits and hardened hooligans took part in the unrest, in the mass \\ndisturbances. The mobs were huge. At present not all of them have been caught,\\nvery few of them have been, I think, judging by the newspaper reports. There \\nwere around 80 people near our building alone, that\\'s how many people took \\npart in the pogrom of our building all in all.\\n\\nThey should all receive the most severe punishment so that others see that \\nretribution awaits those who perform such acts.\\n\\n May 18, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 153-157\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Bikes vs. Horses (was Re: insect impacts f\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 41\\n\\nJonathan E. Quist, on the Thu, 15 Apr 1993 14:26:42 GMT wibbled:\\n: In article txd@ESD.3Com.COM (Tom Dietrich) writes:\\n: >>In a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n\\n: [lots of things, none of which are quoted here]\\n\\n: >>>In article rgu@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturdevant) writes:\\n: >>> You think your *average* dirt biker can jump\\n: >>>a 3 foot log? \\n: >\\n: >How about an 18\" log that is suspended about 18\" off of the ground?\\n: >For that matter, how about a 4\" log that is suspended 2.5\\' off of the\\n: >ground?\\n\\n: Oh, ye of little imagination.\\n\\n:You don\\'t jump over those -that\\'s where you lay the bike down and slide under!\\n: -- \\n: Jonathan E. Quist\\n\\nThe nice thing about horses though, is that if they break down in the middle of\\nnowhere, you can eat them. Fuel\\'s a bit cheaper, too.\\n--\\n\\nNick (the 90 HP Biker) DoD 1069 Concise Oxford Giddy-Up!\\n\\nM\\'Lud.\\n\\n ___\\t___ ___ ___\\n {\"_\"} {\"_\"} {\"_\"} {\"_\"}\\t Nick Pettefar, Contractor@Large.\\n \\' `\\t` \\' \\' ` ` \\'\\t\\t Currently incarcerated at BNR,\\n ___\\t___ ___ ___\\t\\t Maidenhead, The United Kingdom.\\n |\"_\"| |\"_\"| |\"_\"| |\"_\"|\\t npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\n ` \\'\\t\\' ` ` \\' \\' `\\t\\t Pres. PBWASOH(UK), BS 0002\\n\\t .\\n _ _\\t\\t_ __ .\\n / ~ ~~\\\\ | / ~~ \\\\\\n |_______| [_______|\\n\\t _:_\\n\\t |___|\\n\\n',\n", - " 'From: nelson_p@apollo.hp.com (Peter Nelson)\\nSubject: Re: Remember those names come election time.\\nNntp-Posting-Host: c.ch.apollo.hp.com\\nOrganization: Hewlett-Packard Corporation, Chelmsford, MA\\nKeywords: usa federal, government, international, non-usa government\\nLines: 34\\n\\nIn article anwar+@cs.cmu.edu (Anwar Mohammed) writes:\\n>I said:\\n> In article nelson_p@apollo.hp.com (Peter Nelson) writes:\\n> >\\n> > Besides, there\\'s no case that can be made for US military involvement\\n> > there that doesn\\'t apply equally well to, say, Liberia, Angola, or\\n> > (it appears with the Khmer Rouge\\'s new campaign) Cambodia. Non-whites\\n> > don\\'t count?\\n>\\n> Hmm...some might say Kuwaitis are non-white. Ooops, I forgot, Kuwaitis are\\n> \"oil rich\", \"loaded with petro-dollars\", etc so they don\\'t count.\\n>\\n>...and let\\'s not forget Somalia, which is about as far from white as it\\n>gets.\\n\\n And why are we in Somalia? When right across the Gulf of Aden are\\n some of the wealthiest Arab nations on the planet? Why does the \\n US always become the point man for this stuff? I don\\'t mind us\\n helping out; but what invariably happens is that everybody expects\\n us to do most of the work and take most of the risks, even when these\\n events are occuring in other people\\'s back yards, and they have the\\n resources to deal with them quite well, thank you. I mean, it\\'s \\n not like either Serbia, or Somalia represent some overwhelming\\n military force that their neighbors can\\'t handle. Nor are the \\n logistics a big deal -- it\\'s a lot bigger logistical challenge \\n to get troops and supplies from New York to Somalia, than from \\n Saudi Arabia; harder to go from Texas to Serbia, than Turkey or \\n Austria to Serbia.\\n\\n\\n---peter\\n\\n\\n\\n',\n", - " \"From: halat@pooh.bears (Jim Halat)\\nSubject: Islam is caused by believing (was Re: Genocide is Caused by Theism)\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 40\\n\\n\\n\\nIn article <1993Apr13.173100.29861@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>>I'm only saying that anything can happen under atheism. Being a\\n>>beleiver, a knowledgeable one in religion, only good can happen.\\n\\nThis is becoming a tiresome statement. Coming from you it is \\na definition, not an assertion:\\n\\n Islam is good. Belief in Islam is good. Therefore, being a \\n believer in Islam can produce only good...because Islam is\\n good. Blah blah blah.\\n\\nThat's about as circular as it gets, and equally meaningless. To\\nsay that something produces only good because it is only good that \\nit produces is nothing more than an unapplied definition. And\\nall you're application is saying that it's true if you really \\nbelieve it's true. That's silly.\\n\\nConversely, you say off-handedly that _anything_ can happen under\\natheism. Again, just an offshoot of believe-it-and-it-becomes-true-\\ndon't-believe-it-and-it-doesn't. \\n\\nLike other religions I'm aquainted with, Islam teaches exclusion and\\ncaste, and suggests harsh penalties for _behaviors_ that have no\\nlogical call for punishment (certain limits on speech and sex, for\\nexample). To me this is not good. I see much pain and suffering\\nwithout any justification, except for the _waving of the hand_ of\\nsome inaccessible god.\\n\\nBy the by, you toss around the word knowledgable a bit carelessly.\\nFor what is a _knowledgeable believer_ except a contradiction of\\nterms. I infer that you mean believer in terms of having faith.\\nAnd If you need knowledge to believe then faith has nothing\\nto do with it, does it?\\n\\n-jim halat\\n \\n\\n\",\n", - " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Cultural Enquiries\\nOrganization: University College of Wales, Aberystwyth\\nLines: 35\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\nIn article <1pcl6i$e4i@bigboote.WPI.EDU> ravi@vanilla.WPI.EDU (Ravi Narayan) writes:\\n>In a previous article, groh@nu.cs.fsu.edu said:\\n>= azw@aber.ac.uk (Andy Woodward) writes:\\n>= \\n>= >2) Why do they ride Harleys?\\n>= \\n>= 'cause we can.\\n>= \\n>\\n> you sure are lucky! i am told that there are very few people out\\n> there who can actually get their harley to ride ;-) (the name tod\\n> johnson jumps to the indiscreet mind... laz whats it you used to\\n> ride???).\\n>\\n>\\n>-- \\n>----------_________----------_________----------_________----------_________\\n>sig (n): a piece of mail with a fool at one | Ravi Narayan, CS, WPI\\n> end and flames at the other. (C). | 89 SuzukiGS500E - Phaedra ;)\\n>__________---------__________---------__________---------__________---------\\n\\nHi, Ravi\\n\\nIf you need a Harley, we have lots to spare here. All the yuppies\\nbought 'the best' a couple of years ago to pose at the (s)wine\\nbar. They 'rode a mile and walked the rest'. Called a taxi home and \\nwent back to the porsche. So there's are loads going cheap with about\\n1 1/2 miles on the clock (takes a while to coast to a halt).\\n\\nCheers\\n\\nAndy\\n\\nP.S. You get a better class of people on GS500's anyway\\n\",\n", - " 'From: ivan@erich.triumf.ca (Ivan D. Reid)\\nSubject: Re: Accident report\\nNews-Software: VAX/VMS VNEWS 1.41 \\nNntp-Posting-Host: erich.triumf.ca\\nOrganization: TRIUMF: Tri-University Meson Facility\\nLines: 36\\n\\nIn article <1992Jun25.132424.20760@prl.philips.nl>, mcardle@prl.philips.nl (Owen McArdle) writes...\\n>In article ranck@vtvm1.cc.vt.edu (Wm. L. Ranck) writes:\\n>--In article <1992Jun23.214330.18592@bcrka451.bnr.ca> whitton@bnr.ca (Mark Whitton) writes:\\n>--\\n>-->It turns out that the trailer lights were not hooked up\\n>-->to the truck. \\n>--\\n>--Yep, basic rule: *Never* expect or believe turn signals completely.\\n>--Around here, and many other places, people just don\\'t signal at all.\\n>--And, sometimes the signals aren\\'t working. Sometimes they get left on.\\n> \\n>\\tThe scary bit about this is the is the non-availability of rear-\\n>lights at all. Now living in the Netherlands I\\'ve learned that the only\\n>reliable indicators are those red ones which go on at both sides at once -\\n>some people call them brake lights. Once they light up, expect ANYTHING\\n>to occur in front of you :-). (It\\'s not just the Dutch though)\\n> \\n>\\tHowever I never realised how much I relied on this until I got \\n>caught a few times behind someone whose lights didn\\'t work AT ALL. Once \\n>I\\'d sussed it out it wasn\\'t so bad (knowing it is half the battle), but \\n>it\\'s a great way to find out that you\\'ve been following someone too \\n>closely :-). Now I try to check for lights all the time, \\'cos that split \\n>second can make all the difference (though it shouldn\\'t be necessary, I \\n>know),\\n> \\n>Owen.\\n\\tWhat used to peeve me in Canada was the cars with bloody _red_ rear\\nindicators. You\\'d see a single red light come on and think, \"Now, is he\\nstopping but one brake-lamp is not working, or does he have those dumb bloody\\n_red_ rear indicators?\" This being Survival 101, you have to assume he\\'s\\nbraking and take the appropriate actions, until such time as the light goes\\nout and on again, after which you can be reasonably certain it\\'s a bloody _red_\\nrear indicator.\\n\\nIvan Reid, Paul Scherrer Institute, CH. \\t\\t\\tivan@cvax.psi.ch\\nGSX600F, RG250WD.\\tSI=2.66 \"You Porsche. Me pass!\"\\tDoD #484\\n',\n", - " 'From: tankut@IASTATE.EDU (Sabri T Atan)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: tankut@IASTATE.EDU (Sabri T Atan)\\nOrganization: Iowa State University\\nLines: 36\\n\\nIn article <1993Apr20.143453.3127@news.uiowa.edu>, mau@herky.cs.uiowa.edu (Mau\\nNapoleon) writes:\\n> From article <1qvgu5INN2np@lynx.unm.edu>, by osinski@chtm.eece.unm.edu (Marek\\nOsinski):\\n> \\n> > Well, it did not take long to see how consequent some Greeks are in\\n> > requesting that Thessaloniki are not called Solun by Bulgarian netters. \\n> > So, Napoleon, why do you write about Konstantinople and not Istanbul?\\n> > \\n> > Marek Osinski\\n> \\n> Thessaloniki is called Thessaloniki by its inhabitants for the last 2300\\nyears.\\n> The city was never called Solun by its inhabitants.\\n> Instabul was called Konstantinoupolis from 320 AD until about the 1920s.\\n> That\\'s about 1600 years. There many people alive today who were born in a\\ncity\\n> called Konstantinoupolis. How many people do you know that were born in a city\\n> called Solun.\\n> \\n> Napoleon\\n\\nAre you one of those people who were born when Istanbul was called \\nKonstantinopolis? I don\\'t think so! If those people use it because\\nthey are used to do so, then I understand. But open any map\\ntoday (except a few that try to be political) you will see that the name \\nof the city is printed as Istanbul. So, don\\'t try to give\\nany arguments to using Konstantinopolis except to cause some\\nflames, to make some political statement. \\n\\n\\n--\\nTankut Atan\\ntankut@iastate.edu\\n\\n\"Achtung, baby!\"\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Investment in Yehuda and Shomron\\nOrganization: Division of Applied Sciences, Harvard University\\nLines: 29\\n\\n\\nIn article <1483500346@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n\\n>Those who wish to learn something about the perversion of Judaism,\\n>should consult the masterly work by Yehoshua Harkabi, who was many\\n>years the head of Israeli Intelligence and an opponent of the PLO. His\\n>latest book was published in English and includes a very detailed analysis\\n>of Judeo-Nazism.\\n\\n\\tYou mean he talks about those Jews, who, because of their self\\nhatred, spend all their time attacking Judaism, Jews, and Israel,\\nusing the most despicable of anti-Semetic stereotypes?\\n\\n\\tI don\\'t think we need to coin a term like \"Jedeo-Nazism\" to\\nrefer to those Jews who, in their endless desire to be accepted by the\\nNazis, do their dirty work for them. We can just call them house\\nJews, fools, or anti-Semites from Jewish families.\\n\\n\\tI think \"house Jews,\" a reference to a person of Jewish\\nancestry who issues statements for a company or organization that\\ncondemn Judaism is perfectly sufficeint. I think a few years free of\\ntheir anti-Semetic role models would do wonders for most of them.\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: zeno@phylo.genetics.washington.edu (Sean Lamont)\\nSubject: Closed-curve intersection\\nArticle-I.D.: shelley.1ra2paINN68s\\nOrganization: Abstract Software\\nLines: 10\\nNNTP-Posting-Host: phylo.genetics.washington.edu\\n\\nI would like a reference to an algorithm that can detect whether \\none closed curve bounded by some number of bezier curves lies completely\\nwithin another closed curve bounded by bezier curves.\\n\\nThanks.\\n-- \\nSean T. Lamont | Ask me about the WSI-Fonts\\nzeno@genetics.washington.edu | Professional collection for NeXT \\nlamont@abstractsoft.com |____________________________________\\nAbstract Software \\n',\n", - " 'From: mz@moscom.com (Matthew Zenkar)\\nSubject: Re: CView answers\\nOrganization: Moscom Corp., E. Rochester, NY\\nLines: 15\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nCyberspace Buddha (cb@wixer.bga.com) wrote:\\n: renew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n: >over where it places its temp files: it just places them in its\\n: >\"current directory\".\\n\\n: I have to beg to differ on this point, as the batch file I use\\n: to launch cview cd\\'s to the dir where cview resides and then\\n: invokes it. every time I crash cview, the 0-byte temp file\\n: is found in the root dir of the drive cview is on.\\n\\nI posted this as well before the cview \"expert\". Apparently, he thought he\\nknew better.\\n\\nMatthew Zenkar\\nmz@moscom.com\\n',\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Eco-Freaks forcing Space Mining.\\nArticle-I.D.: aurora.1993Apr23.123433.1\\nOrganization: University of Alaska Fairbanks\\nLines: 43\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1r96hb$kbi@access.digex.net>, prb@access.digex.com (Pat) writes:\\n> In article <1993Apr23.001718.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>>In article <1r6b7v$ec5@access.digex.net>, prb@access.digex.com (Pat) writes:\\n>>> Besides this was the same line of horse puckey the mining companies claimed\\n>>> when they were told to pay for restoring land after strip mining.\\n>>===\\n>>I aint talking the large or even the \"mining companies\" I am talking the small\\n>>miners, the people who have themselves and a few employees (if at all).The\\n>>people who go out every year and set up thier sluice box, and such and do\\n>>mining the semi-old fashion way.. (okay they use modern methods toa point).\\n> \\n> \\n> Lot\\'s of these small miners are no longer miners. THey are people living\\n> rent free on Federal land, under the claim of being a miner. The facts are\\n> many of these people do not sustaint heir income from mining, do not\\n> often even live their full time, and do fotentimes do a fair bit\\n> of environmental damage.\\n> \\n> These minign statutes were created inthe 1830\\'s-1870\\'s when the west was\\n> uninhabited and were designed to bring people into the frontier. Times change\\n> people change. DEAL. you don\\'t have a constitutional right to live off\\n> the same industry forever. Anyone who claims the have a right to their\\n> job in particular, is spouting nonsense. THis has been a long term\\n> federal welfare program, that has outlived it\\'s usefulness.\\n> \\n> pat\\n> \\n\\nHum, do you enjoy putting words in my mouth? \\nCome to Nome and meet some of these miners.. I am not sure how things go down\\nsouth in the lower 48 (I used to visit, but), of course to believe the\\nmedia/news its going to heck (or just plain crazy). \\nWell it seems that alot of Unionist types seem to think that having a job is a\\nright, and not a priviledge. Right to the same job as your forbearers, SEE:\\nKennedy\\'s and tel me what you see (and the families they have married into).\\nThere is a reason why many historians and poli-sci types use unionist and\\nsocialist in the same breath.\\nThe miners that I know, are just your average hardworking people who pay there\\ntaxes and earn a living.. But taxes are not the answer. But maybe we could move\\nthis discussion to some more appropriate newsgroup..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", - " 'From: djf@cck.coventry.ac.uk (Marvin Batty)\\nSubject: Re: Moon Colony Prize Race! $6 billion total?\\nNntp-Posting-Host: cc_sysk\\nOrganization: Starfleet, Coventry, UK\\nLines: 49\\n\\nIn article <1993Apr20.020259.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>I think if there is to be a prize and such.. There should be \"classes\"\\n>such as the following:\\n>\\n>Large Corp.\\n>Small Corp/Company (based on reported earnings?)\\n>Large Government (GNP and such)\\n>Small Governemtn (or political clout or GNP?)\\n>Large Organization (Planetary Society? and such?)\\n>Small Organization (Alot of small orgs..)\\n\\nWhatabout, Schools, Universities, Rich Individuals (around 250 people \\nin the UK have more than 10 million dollars each). I reecieved mail\\nfrom people who claimed they might get a person into space for $500\\nper pound. Send a skinny person into space and split the rest of the money\\namong the ground crew!\\n>\\n>The organization things would probably have to be non-profit or liek ??\\n>\\n>Of course this means the prize might go up. Larger get more or ??\\n>Basically make the prize (total purse) $6 billion, divided amngst the class\\n>winners..\\n>More fair?\\n>\\n>There would have to be a seperate organization set up to monitor the events,\\n>umpire and such and watch for safety violations (or maybe not, if peopel want\\n>to risk thier own lives let them do it?).\\n>\\nAgreed. I volunteer for any UK attempts. But one clause: No launch methods\\nwhich are clearly dangerous to the environment (ours or someone else\\'s). No\\nusage of materials from areas of planetary importance.\\n\\n>Any other ideas??\\n\\nYes: We should *do* this rather than talk about it. Lobby people!\\nThe major problem with the space programmes is all talk/paperwork and\\nno action!\\n\\n>==\\n>Michael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n>\\n>\\n\\n\\n-- \\n**************************************************************************** \\n Marvin Batty - djf@uk.ac.cov.cck\\n\"And they shall not find those things, with a sort of rafia like base,\\nthat their fathers put there just the night before. At about 8 O\\'clock!\"\\n',\n", - " \"From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)\\nSubject: Re: ++BIKE SOLD OVER NET 600 MILES AWAY!++\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: relva.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 14\\n\\nIn article <6130331@hplsla.hp.com>, kens@hplsla.hp.com (Ken Snyder) writes:\\n|> \\n|> > Any other bikes sold long distances out there...I'd love to hear about\\n|> it!\\n|> \\n|> I bought my VFR750 from a guy in San Jose via the net. That's 825 miles\\n|> according to my odometer!\\n|> \\n\\nmark andy (living in pittsburgh) bought his RZ350 from a dude in\\nmassachusetts (or was it connecticut?).\\n\\naxel\\n\\n\",\n", - " 'From: cdw2t@dayhoff.med.Virginia.EDU (Dances With Federal Rangers)\\nSubject: Re: Misc./buying info. needed\\nOrganization: University of Virginia\\nLines: 28\\n\\nIn article <1993Apr18.160449.1@hamp.hampshire.edu> jyaruss@hamp.hampshire.edu writes:\\n\\n>Is there a buying guide for new/used motorcycles (that lists reliability, how\\n>to go about the buying process, what to look for, etc...)?\\n\\n_Cycle World_ puts one out, but I\\'m sure it\\'s not very objective. Try talking\\nwith dealers and the people that hang out there, as well as us. We love to\\ngive advice.\\n\\n>Is there a pricing guide for new/used motorcycles (Blue Book)?\\n\\nMost of the bigger banks have a blue book which includes motos -- ask for the\\none with RVs in it.\\n\\n>Are there any books/articles on riding cross country, motorcycle camping, etc?\\n\\nCouldn\\'t help you here.\\n\\n>Is there an idiots\\' guide to motorcycles?\\n\\nYou\\'re reading it.\\n\\n----------------------------------------------------------------------------\\n| Cliff Weston DoD# 0598 \\'92 Seca II (Tem) |\\n| |\\n| \"the female body is a beautiful work of art, while the male body |\\n| is lumpy and hairy and should not be seen by the light of day.\" |\\n----------------------------------------------------------------------------\\n',\n", - " 'From: Howard Frederick \\nSubject: Re: Turkish Government Agents on UseNet\\nNf-ID: #R:1993Apr15.204512.11971@urartu.sd:1238805668:cdp:1483500341:000:1042\\nNf-From: cdp.UUCP!hfrederick Apr 16 14:31:00 1993\\nLines: 20\\n\\n\\nI don\\'t know anything about this particular case, but *other*\\ngovernments have been known to follow events on the Usenet. For\\nexample after Tienanmien Square in Beijing the Chinese government\\nbegan monitoring cyberspace. As the former Director of PeaceNet,\\nI am aware of many incidents of local, state, national and\\ninternational authorities monitoring Usenet and other conferences\\nsuch as those on the Institute for Global Communications. But\\nwhat\\'s the big deal? You shouldn\\'t advocate illegal acts in this\\nmedium in any case. If you are concerned about being monitored,\\nyou should use encyrption software (available in IGC\\'s \"micro\"\\nconference). I know for a fact that human rights activists in the\\nBalkan-Mideast area use encryption software to send out their\\nreports to international organizations. Such message *can* be\\ndecoded however by large computers consuming much CPU time, which\\nprobably the Turkish government doesn\\'t have access to.\\n\\nHoward Frederick, University of California, Irvine Department of\\nPolitics and Society\\n\\n',\n", - " \"From: dls@aeg.dsto.gov.au (David Silver)\\nSubject: Re: Fractal Generation of Clouds\\nOrganization: Defence Science and Technology Organisation\\nLines: 14\\nNNTP-Posting-Host: kestrel.dsto.gov.au\\n\\nhaabn@nye.nscee.edu (Frederick J. Haab) writes:\\n\\n\\n>I need to implement an algorithm to fractally generate clouds\\n>as sort of a benchmark for some algorithms I'm working on.\\n\\nJust as a matter of interest, a self-promo computer graphics sequence \\nthat one of the local TV stations used to play quite a lot a couple of\\nyears ago showed a 3D flyover of Australia from the West coast to the\\nEast. The clouds were quite recognisable as fuzzy, flat, white\\nMandlebrot sets!!\\n\\nDavid Silver\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: This year the Turkish Nation is mourning and praying again for...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 207\\n\\nReferring to notes from the personal diary of Russian General L. \\nOdishe Liyetze on the Turkish front, he wrote,\\n\\n\"On the nights 11-12 March, 1918 alone Armenian butchers \\n bayoneted and axed to death 3000 Muslims in areas surrounding\\n Erzincan. These barbars threw their victims into pits, most\\n likely dug according to their sinister plans to extinguish \\n Muslims, in groups of 80. My adjutant counted and unearthed\\n 200 such pits. This is an act against our world of civilization.\"\\n\\nOn March 12, 1918 Lieut-colonel Griyaznof wrote (from an official\\nRussian account of the Turkish genocide),\\n\\n\"Roads leading to villages were littered with bayoneted torsos,\\n dismembered joints and carved out organs of Muslim peasants...\\n alas! mainly of women and children.\"\\n\\nSource: Doc. Dr. Azmi Suslu, \"Russian View on the Atrocities Committed\\n by the Armenians Against the Turks,\" Ankara Universitesi, Ankara,\\n 1987, pp. 45-53.\\n \"Document No: 77,\" Archive No: 1-2, Cabin No: 10, Drawer \\n No: 4, File No: 410, Section No: 1578, Contents No: 1-12, 1-18.\\n (Acting Commander of Erzurum and Deveboynu regions and Commander\\n of the Second Erzurum Artillery Regiment Prisoner of War,\\n Lieutenant Colonel Toverdodleyov)\\n\\n\"The things I have heard and seen during the two months, until the\\n liberation of Erzurum by the Turks, have surpassed all the\\n allegations concerning the vicious, degenerate characteristic of\\n the Armenians. During the Russian occupation of Erzurum, no Armenian\\n was permitted to approach the city and its environs.\\n\\n While the Commander of the First Army Corps, General Kaltiyin remained\\n in power, troops including Armenian enlisted men, were not sent to the\\n area. When the security measures were lifted, the Armenians began to \\n attack Erzurum and its surroundings. Following the attacks came the\\n plundering of the houses in the city and the villages and the murder\\n of the owners of these houses...Plundering was widely committed by\\n the soldiers. This plunder was mainly committed by Armenian soldiers\\n who had remained in the rear during the war.\\n\\n One day, while passing through the streets on horseback, a group of\\n soldiers including an Armenian soldier began to drag two old men of\\n seventy years in a certain direction. The roads were covered with mud,\\n and these people were dragging the two helpless Turks through the mud\\n and dirt...\\n\\n It was understood later that all these were nothing but tricks and\\n traps. The Turks who joined the gendarmarie soon changed their minds\\n and withdrew. The reason was that most of the Turks who were on night\\n patrol did not return, and no one knew what had happened to them. The \\n Turks who had been sent outside the city for labour began to disappear\\n also. Finally, the Court Martial which had been established for the\\n trials of murderers and plunderers, began to liquidate itself for\\n fear that they themselves would be punished. The incidents of murder\\n and rape, which had decreased, began to occur more frequently.\\n\\n Sometime in January and February, a leading Turkish citizen Haci Bekir\\n Efendi from Erzurum, was killed one night at his home. The Commander\\n in Chief (Odiselidge) gave orders to find murderers within three days.\\n The Commander in Chief has bitterly reminded the Armenian intellectuals\\n that disobedience among the Armenian enlisted men had reached its\\n highest point, that they had insulted and robbed the people and half\\n of the Turks sent outside the city had not returned.\\n\\n ...We learnt the details this incident from the Commander-in-Chief,\\n Odishelidge. They were as follows:\\n\\n The killings were organized by the doctors and the employers, and the\\n act of killing was committed solely by the Armenian renegades...\\n More than eight hundred unarmed and defenceless Turks have been\\n killed in Erzincan. Large holes were dug and the defenceless \\n Turks were slaughtered like animals next to the holes. Later, the\\n murdered Turks were thrown into the holes. The Armenian who stood \\n near the hole would say when the hole was filled with the corpses:\\n \\'Seventy dead bodies, well, this hole can take ten more.\\' Thus ten\\n more Turks would be cut into pieces, thrown into the hole, and when\\n the hole was full it would be covered over with soil.\\n\\n The Armenians responsible for the act of murdering would frequently\\n fill a house with eighty Turks, and cut their heads off one by one.\\n Following the Erzincan massacre, the Armenians began to withdraw\\n towards Erzurum... The Armenian renegades among those who withdrew\\n to Erzurum from Erzincan raided the Moslem villages on the road, and\\n destroyed the entire population, together with the villages.\\n\\n During the transportation of the cannons, ammunition and the carriages\\n that were outside the war area, certain people were hired among the \\n Kurdish population to conduct the horse carriages. While the travellers\\n were passing through Erzurum, the Armenians took advantage of the time\\n when the Russian soldiers were in their dwellings and began to kill\\n the Kurds they had hired. When the Russian soldiers heard the cries\\n of the dying Kurds, they attempted to help them. However, the \\n Armenians threatened the Russian soldiers by vowing that they would\\n have the same fate if they intervened, and thus prevented them from\\n acting. All these terrifying acts of slaughter were committed with\\n hatred and loathing.\\n\\n Lieutenant Medivani from the Russian Army described an incident that\\n he witnessed in Erzurum as follows: An Armenian had shot a Kurd. The\\n Kurd fell down but did not die. The Armenian attempted to force the\\n stick in his hand into the mouth of the dying Kurd. However, since\\n the Kurd had firmly closed his jaws in his agony, the Armenian failed\\n in his attempt. Having seen this, the Armenian ripped open the abdomen\\n of the Kurd, disembowelled him, and finally killed him by stamping\\n him with the iron heel of his boot.\\n\\n Odishelidge himself told us that all the Turks who could not escape\\n from the village of Ilica were killed. Their heads had been cut off\\n by axes. He also told us that he had seen thousands of murdered\\n children. Lieutenant Colonel Gryaznov, who passed through the village\\n of Ilica, three weeks after the massacre told us the following:\\n\\n There were thousands of dead bodies hacked to pieces, on the roads.\\n Every Armenian who happened to pass through these roads, cursed and\\n spat on the corpses. In the courtyard of a mosque which was about\\n 25x30 meter square, dead bodies were piled to a height of 140 \\n centimeters. Among these corpses were men and women of every age,\\n children and old people. The women\\'s bodies had obvious marks of\\n rape. The genitals of many girls were filled with gun-powder.\\n\\n A few educated Armenian girls, who worked as telephone operators\\n for the Armenian troops were called by Lieutenant Colonel Gryaznov\\n to the courtyard of the mosque and he bitterly told them to be \\n proud of what the Armenians had done. To the lieutenant colonel\\'s\\n disgusted amazement, the Armenian girls started to laugh and giggle,\\n instead of being horrified. The lieutenant colonel had severely\\n reprimanded those girls for their indecent behaviour. When he told\\n the girls that the Armenians, including women, were generally more\\n licentious than even the wildest animals, and that their indecent\\n and shameful laughter was the most obvious evidence of their inhumanity\\n and barbarity, before a scene that appalled even veteran soldiers,\\n the Armenian girls finally remembered their sense of shame and\\n claimed they had laughed because they were nervous.\\n\\n An Armenian contractor at the Alaca Communication zone command\\n narrated the following incident which took place on February 20:\\n\\n The Armenians had nailed a Turkish women to the wall. They had cut\\n out the women\\'s heart and placed the heart on top of her head.\\n The great massacre in Erzurum began on February 7... The enlisted men \\n of the artillery division caught and stripped 270 people. Then they\\n took these people into the bath to satisfy their lusts. 100 people\\n among this group were able to save their lives as the result of\\n my decisive attempts. The others, the Armenians claimed, were \\n released when they learnt that I understood what was going on. \\n Among those who organized this treacherous act was the envoy to the\\n Armenian officers, Karagodaviev. Today, some Turks were murdered\\n on the streets.\\n\\n On February 12, some Armenians have shot more than ten innocent\\n Moslems. The Russian soldiers who attempted to save these people were\\n threatened with death. Meanwhile I imprisoned an Armenian for\\n murdering an innocent Turk. \\n\\n When an Armenian officer told an Armenian murderer that he would \\n be hanged for his crime, the killer shouted furiously: \\'How dare\\n you hang an Armenian for killing a Turk?\\' In Erzurum, the \\n Armenians burned down the Turkish market. On February 17, I heard\\n that the entire population of Tepekoy village, situated within\\n the artillery area, had been totally annihilated. On the same \\n day when Antranik entered Erzurum, I reported the massacre to\\n him, and asked him to track down the perpetrators of this horrible\\n act. However no result was achieved.\\n\\n In the villages whose inhabitants had been massacred, there was a\\n natural silence. On the night of 26/27 February, the Armenians deceived\\n the Russians, perpetrated a massacre and escaped for fear of the \\n Turkish soldiers. Later, it was understood that this massacre had\\n been based upon a method organized and planned in a circular. \\n The population had been herded in a certain place and then killed\\n one by one. The number of murders committed on that night reached\\n three thousand. It was the Armenians who bragged to about the details\\n of the massacre. The Armenians fighting against the Turkish soldiers\\n were so few in number and so cowardly that they could not even\\n withstand the Turkish soldiers who consisted of only five hundred\\n people and two cannons, for one night, and ran away. The leading\\n Armenians of the community could have prevented this massacre.\\n However, the Armenian intellectuals had shared the same ideas with\\n the renegades in this massacre, just as in all the others. The lower\\n classes within the Armenian community have always obeyed the orders\\n of the leading Armenian figures and commanders. \\n\\n I do not like to give the impression that all Armenian intellectuals\\n were accessories to these murders. No, for there were people who\\n opposed the Armenians for such actions, since they understood that\\n it would yield no result. However, such people were only a minority.\\n Furthermore, such people were considered as traitors to the Armenian\\n cause. Some have seemingly opposed the Armenian murders but have\\n supported the massacres secretly. Some, on the other hand, preferred\\n to remain silent. There were certain others, who, when accused by\\n the Russians of infamy, would say the following: \\'You are Russians.\\n You can never understand the Armenian cause.\\' The Armenians had a\\n conscience. They would commit massacres and then would flee in fear\\n of the Turkish soldiers.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: ldaddari@polaris.cv.nrao.edu (Larry D\\'Addario)\\nSubject: Re: Russian Email Contacts.\\nIn-Reply-To: nsmca@aurora.alaska.edu\\'s message of Sat, 17 Apr 1993 12: 52:09 GMT\\nOrganization: National Radio Astronomy Observatory\\nLines: 32\\n\\nIt is usually possible to reach people at IKI (Institute for Space\\nResearch) in Moscow by writing to\\n\\n\\tIKIMAIL@esoc1.bitnet\\n\\nThis is a machine at ESA in Darmstadt, Germany; IKI has a dedicated\\nphone line to this machine and someone there logs in regularly to\\nretrieve mail.\\n\\nIn addition, there are several user accounts belonging to Russian\\nscientific institutions on\\n\\n\\t@sovam.com\\n\\nwhich is a commercial enterprise based in San Francisco that provides\\nemail services to the former USSR. For example, fian@sovam.com is the\\n\"PHysics Institute of the Academy of Sciences\" (initials transliterated\\nfrom Russian, of course). These connections cost the Russians real\\ndollars, even for *received* messages, so please don\\'t send anything\\nvoluminous or frivilous.\\n\\n=====================================================================\\nLarry R. D\\'Addario\\nNational Radio Astronomy Observatory\\n\\nAddresses (INTERNET) LDADDARI@NRAO.EDU\\n\\t (FAX) +1/804/296-0324 Charlottesville\\n\\t\\t +1/304/456-2200 Green Bank\\n\\t (MAIL) 2015 Ivy Road, Charlottesville, VA 22903, USA\\n\\t (PHONE) +1/804/296-0245 office, 804/973-4983 home CHO\\n\\t\\t +1/304/456-2226 off., -2106 lab, -2256 apt. GB\\n=====================================================================\\n',\n", - " 'From: txd@ESD.3Com.COM (Tom Dietrich)\\nSubject: Re: Ducati 400 opinions wanted\\nLines: 51\\nNntp-Posting-Host: able.mkt.3com.com\\n\\nfrankb@sad.hp.com (Frank Ball) writes:\\n\\n>Godfrey DiGiorgi (ramarren@apple.com) wrote:\\n>& \\n>& The Ducati 400 model is essentially a reduced displacement 750, which\\n>& means it weighs the same and is the same size as the 750 with far less\\n>& power. It is produced specifically to meet a vehicle tax restriction\\n>& in certain markets which makes it commercially viable. It\\'s not sold\\n>& in the US where it is unneeded and unwanted.\\n>& \\n>& As such, it\\'s somewhat large and overweight for its motor. It will \\n>& still handle magnificently, it just won\\'t be very fast. There are\\n>& very few other flaws to mention; the limited steering lock is the \\n>& annoyance noted by most testers. And the mirrors aren\\'t perfect.\\n\\n>The Ducati 750 model is essentially a reduced displacement 900, which\\n>means it weighs the same and is the same size as the 900 with far less\\n\\nNope, it\\'s 24 lbs. lightrer than the 900.\\n\\n>power. And less brakes.\\n\\nA single disk that is quite impressive. WIth two fingers on the lever,\\nmuch to Beth\\'s horror I lifted the rear wheel about 8\" in a fine Randy\\nMamola impression. ;{>\\n\\n>As such, it\\'s somewhat large and overweight for its motor. It will \\n>still handle magnificently, it just won\\'t be very fast. There are\\n\\nI have a feeling that it\\'s going to be fast enough that Beth will give\\na few liter bike riders fits in the future.\\n\\n>very few other flaws to mention; the limited steering lock is the \\n\\nThe steering locks are adjustable.\\n\\n>annoyance noted by most testers. And the mirrors aren\\'t perfect.\\n\\nBeth sees fine out of them... I see 2/3 of them filled with black\\nleather.\\n\\n*********************************************************************\\n\\'86 Concours.....Sophisticated Lady Tom Dietrich \\n\\'72 1000cc Sportster.....\\'Ol Sport-For sale DoD # 055\\n\\'79 SR500.....Spike, the Garage Rat AMA #524245\\nQueued for an M900!! FSSNOC #1843\\nTwo Jousts and a Gather, *BIG fun!* 1KSPT=17.28% \\nMa Bell (408) 764-5874 Cool as a rule, but sometimes...\\ne-mail txd@Able.MKT.3Com.COM (H. Lewis) \\nDisclaimer: 3Com takes no responsibility for opinions preceding this.\\n*********************************************************************\\n',\n", - " 'From: (Rashid)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: 47.252.4.179\\nOrganization: NH\\nLines: 76\\n\\nIn article <1993Apr14.131032.15644@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n> \\n> It is my understanding that it is generally agreed upon by the ulema\\n> [Islamic scholars] that Islamic law applies only in an Islamic country,\\n> of which the UK is not. Furthermore, to take the law into one\\'s own\\n> hands is a criminal act, as these are matters for the state, not for\\n> individuals. Nevertheless, Khomeini offered a cash prize for people to\\n> take the law into their own hands -- something which, to my\\n> understanding, is against Islamic law.\\n\\nYes, this is also my understanding of the majority of Islamic laws.\\nHowever, I believe there are also certain legal rulings which, in all\\nfive schools of law (4 sunni and 1 jaffari), can be levelled against\\nmuslim or non-muslims, both within and outside dar-al-islam. I do\\nnot know if apostasy (when accompanied by active, persistent, and\\nopen hostility to Islam) falls into this category of the law. I do know\\nthat\\nhistorically, apostasy has very rarely been punished at all, let alone\\nby the death penalty.\\n\\nMy understanding is that Khomeini\\'s ruling was not based on the\\nlaw of apostasy (alone). It was well known that Rushdie was an apostate\\nlong before he wrote the offending novel and certainly there is no\\nprecedent in the Qur\\'an, hadith, or in Islamic history for indiscriminantly\\nlevelling death penalties for apostasy.\\n\\nI believe the charge levelled against Rushdie was that of \"fasad\". This\\nruling applies both within and outside the domain of an\\nIslamic state and it can be carried out by individuals. The reward was\\nnot offered by Khomeini but by individuals within Iran.\\n\\n\\n> Stuff deleted\\n> Also, I think you are muddying the issue as you seem to assume that\\n> Khomeini\\'s fatwa was issued due to the _distribution_ of the book. My\\n> understanding is that Khomeini\\'s fatwa was issued in response to the\\n> _writing_ and _publishing_ of the book. If my view is correct, then\\n> your viewpoint that Rushdie was sentenced for a \"crime in progress\" is\\n> incorrect.\\n> \\nI would concur that the thrust of the fatwa (from what I remember) was\\nlevelled at the author and all those who assisted in the publication\\nof the book. However, the charge of \"fasad\" can encompass a\\nnumber of lesser charges. I remember that when diplomatic relations\\nbroke off between Britain and Iran over the fatwa - Iran stressed that\\nthe condemnation of the author, and the removal of the book from\\ncirculation were two preliminary conditions for resolving the\\n\"crisis\". But you are correct to point out that banning the book was not\\nthe main thrust behind the fatwa. Islamic charges such as fasad are\\nlevelled at people, not books.\\n\\nThe Rushdie situation was followed in Iran for several months before the\\nissuance of the fatwa. Rushdie went on a media blitz,\\npresenting himself as a lone knight guarding the sacred values of\\nsecular democracy and mocking the foolish concerns of people\\ncrazy enough to actually hold their religious beliefs as sacred. \\nFanning the flames and milking the controversy to boost\\nhis image and push the book, he was everywhere in the media. Then\\nMuslim demonstrators in several countries were killed while\\nprotesting against the book. Rushdie appeared momentarily\\nconcerned, then climbed back on his media horse to once again\\nattack the Muslims and defend his sacred rights. It was at this\\npoint that the fatwa on \"fasad\" was issued.\\n\\nThe fatwa was levelled at the person of Rushdie - any actions of\\nRushdie that feed the situation contribute to the legitimization of\\nthe ruling. The book remains in circulation not by some independant\\nwill of its own but by the will of the author and the publishers. The fatwa\\nagainst the person of Rushdie encompasses his actions as well. The\\ncrime was certainly a crime in progress (at many levels) and was being\\nplayed out (and played up) in the the full view of the media.\\n\\nP.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\napplies to Rushdie and may be encompassed under the umbrella\\nof the \"fasad\" ruling.\\n',\n", - " 'From: dean@fringe.rain.com (Dean Woodward)\\nSubject: Re: Comments on a 1984 Honda Interceptor 1000?\\nOrganization: Organization for Mass Confusion.\\nLines: 30\\n\\njearls@tekig6.PEN.TEK.COM (Jeffrey David Earls) writes:\\n\\n> In article <19APR93.15421177@skyfox> howp@skyfox writes:\\n> >Hi.\\n> > I am considering the purchase of a 1984 Honda 1000cc Interceptor for\\n> >$2095 CDN (about $1676 US). I don\\'t know the mileage on this bike, but from\\n> >the picture in the \\'RV Trader\\' magazine, it looks to be in good shape.\\n> >Can anybody enlighten me as to whether this is a good purchase? \\n> \\n> Oog. I hate to jump in on this type of thread but ....\\n> \\n> pass on the VF1000. It\\'s big, top heavy, and carries lots of\\n> expensive parts. \\n\\nWhat he said. Most of my friends refer to them as \"ground magnets.\" One\\n\\n\\n> =============================================================================\\n> |Jeff Earls jearls@tekig6.pen.tek.com | DoD #0530 KotTG KotSPT WMTC AMA\\n> |\\'89 FJ1200 - Millennium Falcon | Squid Factor: 16.99 \\n> |\\'93 KLR650 - Thumpy | \"Hit the button Chewie!\"... Han Solo\\n> \\n> \"There ain\\'t nothin\\' like a 115 mph sweeper in the Idaho rockies.\" - me\\n\\n\\n--\\nDean Woodward | \"You want to step into my world?\\ndean@fringe.rain.com | It\\'s a socio-psychotic state of Bliss...\"\\n\\'82 Virago 920 | -Guns\\'n\\'Roses, \\'My World\\'\\nDoD # 0866\\n',\n", - " 'From: MUNIZB%RWTMS2.decnet@rockwell.com (\"RWTMS2::MUNIZB\")\\nSubject: Space Activities in Tucson, AZ ?\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 7\\n\\nI would like to find out about space engineering employment and educational\\nopportunities in the Tucson, Arizona area. E-mail responses appreciated.\\nMy mail feed is intermittent, so please try one or all of these addresses.\\n\\nBen Muniz w(818)586-3578 MUNIZB%RWTMS2.decnet@beach.rockwell.com \\nor: bmuniz@a1tms1.remnet.ab.com MUNIZB%RWTMS2.decnet@consrt.rockwell.com\\n\\n',\n", - " \"Subject: Re: Enough Freeman Bashing! Was: no-Free man propaganda machine: Freemanwith blood greetings from Israel\\nFrom: mafifi@eis.calstate.edu (Marc A Afifi)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 16\\n\\npgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman) writes:\\n\\n\\nPeter,\\n\\nI believe this is your most succinct post to date. Since you have nothing\\nto say, you say nothing! It's brilliant. Did you think of this all by\\nyourself?\\n\\n-marc \\n--\\n______________________________________________________________________________\\nSome people are so narrow minded they can see through a crack in a door with\\nboth eyes. \\nMy opinions should be yours. My employer has no opinions.\\n______________________________________________________________________________\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Turkey Admits to Sending Arms to Azerbaijan/Turkish Pilot Caught\\nSummary: Oh, yes...neutral Turkey \\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 57\\n\\n4/15/93 1242 Turkey sends light weapons as aid to Azerbaijan\\n\\nBy SEVA ULMAN\\n \\nANKARA, Turkey (UPI) -- Turkey is arming Azerbaijan with light weapons to help\\nit fight Armenian forces in the struggle for the Nagorno- Karabakh enclave, \\nthe newspaper Hurriyet said Thursday.\\n\\nDeputy Prime Minister Erdal Inonu told reporters in Ankara that Turkey was\\nresponding positively to a request from Azerbaijan for assistance.\\n\\n\"We are giving a positive response to all requests\" from Azerbaijan, \"within\\nthe limits of our capabilities,\" he said.\\n\\nForeign Ministry spokesman Vural Valkan declined to elaborate on the nature\\nof the aid being sent to Azerbaijan, but said they were within the framework \\nof the Council for Security and Cooperation in Europe.\\n\\nHurriyet, published in Istanbul, said Turkey was sending light weapons to\\nAzerbaijan, including rockets, rocket launchers and ammunition.\\n\\nAnkara began sending the hardware after a visit to Turkey last week by a\\nhigh-ranking Azerbaijani official. Turkey has however ruled out, for the second\\ntime in one week, that it would intervene militarily in Azerbaijan.\\n\\nWednesday, Inonu told reporters Ankara would not allow Azerbaijan to suffer\\ndefeat at the hands of the Armenians. \"We feel ourselves bound to help\\nAzerbaijan, but I am not in a position right now to tell you what form (that)\\nhelp may take in the future,\" he said.\\n\\nHe said Turkish aid to Azerbaijan was continuing, \"and the whole world knows\\nabout it.\"\\n\\nPrime Minister Suleyman Demirel reiterated that Turkey would not get\\nmilitarily involved in the conflict. Foreign policy decisions could not be \\nbased on street-level excitement, he said.\\n\\nThere was no immediate reaction in Ankara to regional reports, based on\\nArmenian sources in Yerevan, saying Turkish pilots and other officers were\\ncaptured when they were shot down flying Azerbaijani warplanes and \\nhelicopters.\\n\\nThe newspaper Cumhuriyet said Turkish troops were digging in along the border\\nwith Armenia, but military sources denied reports based on claims by local\\npeople that gunfire was heard along the border. No military action has \\noccurred, the sources said.\\n\\nThe latest upsurge in fighting between the Armenians and Azerbaijanis flared\\nearly this month when Armenian forces seized the town of Kelbajar and later\\npositioned themselves outside Fizuli, near the Iranian border.\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: dietz@cs.rochester.edu (Paul Dietz)\\nSubject: Re: Terraforming Venus: can it be done \"cheaply\"?\\nOrganization: University of Rochester\\nLines: 9\\n\\nWould someone please send me James Oberg\\'s email address, if he has\\none and if someone reading this list knows it? I wanted to send\\nhim a comment on something in his terraforming book.\\n\\n\\tPaul F. Dietz\\n\\tdietz@cs.rochester.edu\\n\\n\\tPotential explosive yield of the annual global\\n\\tproduction of borax: 5 million megatons\\n',\n", - " 'From: 9051467f@levels.unisa.edu.au (The Desert Brat)\\nSubject: Victims of various \\'Good Fight\\'s\\nOrganization: Cured, discharged\\nLines: 30\\n\\nIn article <9454@tekig7.PEN.TEK.COM>, naren@tekig1.PEN.TEK.COM (Naren Bala) writes:\\n\\n> LIST OF KILLINGS IN THE NAME OF RELIGION \\n> 1. Iran-Iraq War: 1,000,000\\n> 2. Civil War in Sudan: 1,000,000\\n> 3, Riots in India-Pakistan in 1947: 1,000,000\\n> 4. Massacares in Bangladesh in 1971: 1,000,000\\n> 5. Inquistions in America in 1500s: x million (x=??)\\n> 6. Crusades: ??\\n\\n7. Massacre of Jews in WWII: 6.3 million\\n8. Massacre of other \\'inferior races\\' in WWII: 10 million\\n9. Communist purges: 20-30 million? [Socialism is more or less a religion]\\n10. Catholics V Protestants : quite a few I\\'d imagine\\n11. Recent goings on in Bombay/Iodia (sp?) area: ??\\n12. Disease introduced to Brazilian * oher S.Am. tribes: x million\\n\\n> -- Naren\\n\\nThe Desert Brat\\n-- \\nJohn J McVey, Elc&Eltnc Eng, Whyalla, Uni S Australia, ________\\n9051467f@levels.unisa.edu.au T.S.A.K.C. \\\\/Darwin o\\\\\\nFor replies, mail to whjjm@wh.whyalla.unisa.edu.au /\\\\________/\\nDisclaimer: Unisa hates my opinions. bb bb\\n+------------------------------------------------------+-----------------------+\\n|\"It doesn\\'t make a rainbow any less beautiful that we | \"God\\'s name is smack |\\n|understand the refractive mechanisms that chance to | for some.\" |\\n|produce it.\" - Jim Perry, perry@dsinc.com | - Alice In Chains |\\n+------------------------------------------------------+-----------------------+\\n',\n", - " 'From: frank@D012S658.uucp (Frank O\\'Dwyer)\\nSubject: Re: Societally acceptable behavior\\nOrganization: Siemens-Nixdorf AG\\nLines: 87\\nNNTP-Posting-Host: d012s658.ap.mchp.sni.de\\n\\nIn article cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n#In <1qvabj$g1j@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) \\n#writes:\\n#\\n#>In article cobb@alexia.lis.uiuc.edu (Mike \\n#Cobb) writes:\\n#\\n#Am I making a wrong assumption for the basis of morals? Where do they come \\n#from? The question came from the idea that I heard that morals come from\\n#whatever is societally mandated.\\n\\nIt\\'s only one aspect of morality. Societal morality is necessarily\\nvery crude and broad-brush stuff which attempts to deal with what\\nis necessary to keep that society going - and often it\\'s a little\\nover-enthusiastic about doing so. Individual morality is a different\\nthing, it often includes societal mores (or society is in trouble),\\nbut is stronger. For example, some people are vegetarian, though eating\\nmeat may be perfectly legal.\\n\\n#\\n#>#Merely a question for the basis of morality\\n#>#\\n#>#Moral/Ethical behavior = _Societally_ _acceptable_ _behavior_.\\n#>#\\n#>#1)Who is society\\n#\\n#>Depends on the society.\\n#\\n#Doesn\\'t help. Is the point irrelevant?\\n\\nNo. Often the answer is \"we are\". But if society is those who make\\nthe rules, that\\'s a different question. If society is who should\\nmake the rules, that\\'s yet another. I don\\'t claim to have the answers, either,\\nbut I don\\'t think we do it very well in Ireland, and I like some things\\nabout the US system, at least in principle.\\n\\n#\\n#>#2)How do \"they\" define what is acceptable?\\n#\\n#>Depends.\\n#On.... Again, this comes from a certain question (see above).\\n\\nWell, ideally they don\\'t, but if they must they should do it by consensus, IMO.\\n#\\n#>#3)How do we keep from a \"whatever is legal is what is \"moral\" \"position?\\n#\\n#>By adopting a default position that people\\'s moral decisions\\n#>are none of society\\'s business,\\n#\\n#So how can we put people in jail? How can we condemn other societies?\\n\\nBecause sometimes that\\'s necessary. The hard trick is to recognise when\\nit is, and equally importantly, when it isn\\'t.\\n\\n# and only interfering when it\\'s truly\\n#>necessary.\\n#\\n#Why would it be necessary? What right do we have to interfere?\\n\\nIMO, it isn\\'t often that interference (i.e. jail, and force of various\\nkinds and degrees) is both necessary and effective. Where you derive \\nthe right to interfere is a difficult question - it\\'s a sort of\\nliar\\'s paradox: \"force is necessary for freedom\". One possible justification\\nis that people who wish to take away freedom shouldn\\'t object if\\ntheir own freedom is taken away - the paradox doesn\\'t arise if\\nwe don\\'t actively wish to take way anyone\\'s freedom.\\n#\\n# The introduction of permissible interference causes the problem\\n#>that it can be either too much or too little - but most people seem\\n#>to agree that some level of interference is necessary.\\n#\\n#They see the need for a \"justice\" system. How can we even define that term?\\n\\nOnly by consensus, I guess.\\n\\n# Thus you\\n#>get a situation where \"The law often allows what honour forbids\", which I\\'ve\\n#>come to believe is as it should be. \\n#\\n#I admit I don\\'t understand that statement.\\n\\nWhat I mean is that, while thus-and-such may be legal, thus-and-such may\\nalso be seen as immoral. The law lets you do it, but you don\\'t let yourself\\ndo it. Eating meat, for example.\\n-- \\nFrank O\\'Dwyer \\'I\\'m not hatching That\\'\\nodwyer@sse.ie from \"Hens\", by Evelyn Conlon\\n',\n", - " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: writes:\\n\\n>>>As for rape, surely there the burden of guilt is solely on the rapist?\\n>>Unless you force someone to live with the rapist against his will, in which\\n>>case part of the responsibility is yours.\\n>I'm sorry, but I can't accept that. Unless the rapist was hypnotized or\\n>something, I view him as solely responsible for his actions.\\n\\nNot necessarily, especially if the rapist is known as such. For instance,\\nif you intentionally stick your finger into a loaded mousetrap and get\\nsnapped, whose fault is it?\\n\\nkeith\\n\",\n", - " \"From: bio1@navi.up.ac.za (Fourie Joubert)\\nSubject: Image Analysis for PC\\nOrganization: University of Pretoria\\nLines: 18\\nNNTP-Posting-Host: zeno.up.ac.za\\n\\nHi\\n\\nI am looking for Image Analysis software running in DOS or Windows. I'd like \\nto be able to analyze TIFF or similar files to generate histograms of \\npatterns, etc. \\n\\nAny help would be appreciated!\\n\\n__________________________________________________________________________\\n\\n _/_/_/_/ _/_/_/_/_/ Fourie Joubert \\n _/ _/ Department of Biochemistry\\n _/ _/ University of Pretoria\\n _/_/_/_/ _/ bio1@navi.up.ac.za\\n _/ _/\\n_/ _/_/_/_/\\n__________________________________________________________________________\\n\\n\",\n", - " \"From: wdm@world.std.com (Wayne Michael)\\nSubject: Re: XV under MS-DOS ?!?\\nOrganization: n/a\\nLines: 12\\n\\nNO E-MAIL ADDRESS@eicn.etna.ch writes:\\n\\n>Hi ... Recently I found XV for MS-DOS in a subdirectory of GNU-CC (GNUISH). I \\n\\nplease tell me where you where you FTP'd this from? I would like to have\\na copy of it. (I would have mailed you, but your post indicates you have no mail\\naddress...)\\n\\n> \\n-- \\nWayne Michael\\nwdm@world.std.com\\n\",\n", - " \"From: infante@acpub.duke.edu (Andrew Infante)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Duke University; Durham, N.C.\\nLines: 37\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\nIn article <05APR93.02678944.0049@UNBVM1.CSD.UNB.CA> C70A@UNB.CA (C70A000) writes:\\n>In article Eric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n>>Would someone please post the countersteering FAQ...i am having this awful\\n>>time debating with someone on why i push the right handle of my motorcycle\\n>>foward when i am turning left...and i can't explain (well at least) why this\\n>>happens...please help...post the faq...i need to convert him.\\n>\\n> Ummm, if you push on the right handle of your bike while at speed and\\n>your bike turns left, methinks your bike has a problem. When I do it\\n\\nReally!?\\n\\nMethinks somethings wrong with _your_ bike.\\n\\nPerhaps you meant _pull_?\\n\\nPushing the right side of my handlebars _will_ send me left.\\n\\nIt should. \\nREally.\\n\\n>on MY bike, I turn right. No wonder you need that FAQ. If I had it\\n>I'd send it.\\n>\\n\\nI'm sure others will take up the slack...\\n\\n\\n>\\n>\\n>\\n\\n-- \\nAndy Infante | I sometimes wish that people would put a little more emphasis |\\n'71 BMW R60/5 | upon the observance of the law than they do upon it's | \\nDoD #2426 | enforcement. -Calvin Coolidge | \\n==============| My opinions, dammit, have nothing to do with anyone else!!! | \\n\",\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Alaska Pipeline and Space Station!\\nOrganization: Texas Instruments Inc\\nLines: 45\\n\\nIn <1pq7rj$q2u@access.digex.net> prb@access.digex.com (Pat) writes:\\n\\n>In article <1993Apr5.160550.7592@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n>|\\n>|I think this would be a great way to build it, but unfortunately\\n>|current spending rules don\\'t permit it to be workable. For this to\\n>|work it would be necessary for the government to guarantee a certain\\n>|minimum amount of business in order to sufficiently reduce the risk\\n>|enough to make this attractive to a private firm. Since they\\n>|generally can\\'t allocate money except one year at a time, the\\n>|government can\\'t provide such a tenant guarantee.\\n\\n\\n>Fred.\\n\\n>\\tTry reading a bit. THe government does lots of multi year\\n>contracts with Penalty for cancellation clauses. They just like to be\\n>damn sure they know what they are doing before they sign a multi year\\n>contract. THe reason they aren\\'t cutting defense spending as much\\n>as they would like is the Reagan administration signed enough\\n>Multi year contracts, that it\\'s now cheaper to just finish them out.\\n\\nI don\\'t have to \"try reading a bit\", Pat. I *work* as a government\\ncontractor and know what the rules are like. Yes, they sign some\\n(damned few -- which is why everyone is always having to go to\\nWashington to see about next week\\'s funding) multi-year contracts;\\nthey also aren\\'t willing to include sufficient cancellation penalties\\nwhen they *do* decide to cut the multi-year contract and not pay on it\\n(which can happen arbitrarily at any time, no matter what previous\\nplans were) to make the risk acceptable of something like putting up a\\nprivate space station with the government as the expected prime\\noccupant.\\n\\nI\\'d like a source for that statement about \"the reason they aren\\'t\\ncutting defense spending as much as they would like\"; I just don\\'t buy\\nit. The other thing I find a bit \\'funny\\' about your posting, Pat, is\\nthat several other people answered the question pretty much the same\\nway I did; mine is the one you comment (and incorrectly, I think) on.\\nI think that says a lot. You and Tommy should move in together.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " \"From: games@max.u.washington.edu\\nSubject: SSTO Senatorial (aide) breifing recollections.\\nArticle-I.D.: max.1993Apr6.125512.1\\nDistribution: world\\nLines: 78\\nNNTP-Posting-Host: max.u.washington.edu\\n\\nThe following are my thoughts on a meeting that I, Hugh Kelso, and Bob Lilly\\nhad with an aide of Sen. Patty Murrays. We were there to discuss SSTO, and\\ncommercial space. This is how it went...\\n\\n\\n\\nAfter receiving a packet containing a presentation on the benifits of SSTO,\\nI called and tried to schedule a meeting with our local Senator (D) Patty\\nMurray, Washington State. I started asking for an hour, and when I heard\\nthe gasp on the end of the phone, I quickly backed off to 1/2 an hour.\\nLater in that conversation, I learned that a standard appointment is 15 minutes.\\n\\nWe got the standard bozo treatment. That is, we were called back by an aide,\\nwho scheduled a meeting with us, in order to determine that we were not\\nbozos, and to familiarize himself with the material, and to screen it, to \\nmake sure that it was appropriate to take the senators time with that material.\\n\\nWell, I got allocated 1/2 hour with Sen. Murrays aide, and we ended up talking\\nto him for 45 minutes, with us ending the meeting, and him still listening.\\nWe covered a lot of ground, and only a little tiny bit was DCX specific. \\nMost of it was a single stage reusable vehicle primer. There was another\\nwoman there who took copius quantities of notes on EVERY topic that\\nwe brought up.\\n\\nBut, with Murray being new, we wanted to entrench ourselves as non-corporate\\naligned (I.E. not speaking for boeing) local citizens interentested in space.\\nSo, we spent a lot of time covering the benifits of lower cost access to\\nLEO. Solar power satellites are a big focus here, so we hit them as becoming \\nfeasible with lower cost access, and we hit the environmental stand on that.\\nWe hit the tourism angle, and I left a copy of the patric Collins Tourism\\npaper, with side notes being that everyone who goes into space, and sees the\\natmosphere becomes more of an environmentalist, esp. after SEEING the smog\\nover L.A. We hit on the benifits of studying bone decalcification (which is \\nmore pronounced in space, and said that that had POTENTIAL to lead to \\nunderstanding of, and MAYBE a cure for osteoporosis. We hit the education \\nwhereby kids get enthused by space, but as they get older and find out that\\nthey havent a hop in hell of actually getting there, they go on to other\\nfields, with low cost to orbit, the chances they might get there someday \\nwould provide greater incentive to hit the harder classes needed.\\n\\nWe hit a little of the get nasa out of the operational launch vehicle business\\nangle. We hit the lower cost of satellite launches, gps navigation, personal\\ncommunicators, tellecommunications, new services, etc... Jobs provided\\nin those sectors.\\n\\nJobs provided building the thing, balance of trade improvement, etc..\\nWe mentioned that skypix would benifit from lower launch costs.\\n\\nWe left the paper on what technologies needed to be invested in in order\\nto make this even easier to do. And he asked questions on this point.\\n\\nWe ended by telling her that we wanted her to be aware that efforts are\\nproceeding in this area, and that we want to make sure that the\\nresults from these efforts are not lost (much like condor, or majellan),\\nand most importantly, we asked that she help fund further efforts along\\nthe lines of lowering the cost to LEO.\\n\\nIn the middle we also gave a little speal about the Lunar Resource Data \\nPurchase act, and the guy filed it separately, he was VERY interested in it.\\nHe asked some questions about it, and seemed like he wanted to jump on it,\\nand contact some of the people involved with it, so something may actually\\nhappen immediatly there.\\n\\nThe last two things we did were to make sure that they knew that we\\nknew a lot of people in the space arena here in town, and that they\\ncould feel free to call us any time with questions, and if we didn't know\\nthe answers, that we would see to it that they questions got to people who\\nreally did know the answers.\\n\\nThen finally, we asked for an appointment with the senator herself. He\\nsaid that we would get on the list, and he also said that knowing her, this\\nwould be something that she would be very interested in, although they\\ndo have a time problem getting her scheduled, since she is only in the\\nstate 1 week out of 6 these days.\\n\\nAll in all we felt like we did a pretty good job.\\n\\n\\t\\t\\tJohn.\\n\",\n", - " 'From: na4@vax5.cit.cornell.edu\\nSubject: Aerostitch: 1- or 2-piece?\\nDistribution: rec\\nOrganization: Cornell University\\nLines: 11\\n\\nRequest for opinions:\\t\\n\\nWhich is better - a one-piece Aerostitch or a two-piece Aerostitch?\\n\\n\\nWe\\'re looking for more than \"Well, the 2-pc is more versatile, but the \\n1-pc is better protection,...\"\\t\\n\\nThanks in advance,\\nNadine\\n\\n',\n", - " \"From: cds7k@Virginia.EDU (Christopher Douglas Saady)\\nSubject: Re: Looking for MOVIES w/ BIKES\\nOrganization: University of Virginia\\nLines: 4\\n\\nThere's also Billy Jack, The Wild One, Smokey and the Bandit\\n(Where Jerry Reed runs his truck over Motorcycle Gangs Bikes),\\nand a video tape documentary on the Hell's Angels I\\nfound in a rental store once\\n\",\n", - " \"From: bclarke@galaxy.gov.bc.ca\\nSubject: Fortune-guzzler barred from bars!\\nOrganization: BC Systems Corporation\\nLines: 20\\n\\nSaw this in today's newspaper:\\n------------------------------------------------------------------------\\nFORTUNE-GUZZLER BARRED FROM BARS\\n--------------------------------\\nBarnstaple, England/Reuter\\n\\n\\tA motorcyclist said to have drunk away a $290,000 insurance payment in\\nless than 10 years was banned Wednesday from every pub in England and Wales.\\n\\n\\tDavid Roberts, 29, had been awarded the cash in compensation for\\nlosing a leg in a motorcycle accident. He spent virtually all of it on cider, a\\ncourt in Barnstaple in southwest England was told.\\n\\n\\tJudge Malcolm Coterill banned Roberts from all bars in England and\\nWales for 12 months and put on two years' probation after he started a brawl in\\na pub.\\n\\n-- \\nBruce Clarke B.C. Environment\\n e-mail: bclarke@galaxy.gov.bc.ca\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: The Orders for the Turkish Extermination of the Armenians #17\\nSummary: To the children of genocide: \"Send them away into the Desert\"\\nArticle-I.D.: urartu.1993Apr6.115347.10660\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 145\\n\\n\\n The Orders for the Turkish Extermination of the Armenians #17\\n To the children of genocide: \"Send them away into the Desert\"\\n\\nThis is part of a continuing series of articles containing official Turkish \\nwartime (WW1) governmental telegrams, in translation, entailing the orders \\nfor the extermination of the Armenian people in Turkey. Generally, these\\ntelegrams were issued by the Turkish Minister of the Interior, Talaat Pasha,\\nfor example, we have the following set regarding children:\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t November 5, 1915. We are informed that the little ones belonging to\\n\\t the Armenians from Sivas, Mamuret-ul-Aziz, Diarbekir and Erzeroum\\n\\t [hundreds of km distance from Aleppo] are adopted by certain Moslem\\n\\t families and received as servants when they are left alone through\\n\\t the death of their parents. We inform you that you are to collect\\n\\t all such children in your province and send them to the places of\\n\\t deportation, and also to give the necessary orders regarding this to\\n\\t the people.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [1]\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t September 21, 1915. There is no need for an orphanage. It is not the\\n\\t time to give way to sentiment and feed the orphans, prolonging their\\n\\t lives. Send them away to the desert and inform us.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\t\\t\\t\\t\\t\\tTalaat\" [2]\\n\\n\\t\"To the General Committee for settling and deportees.\\n\\n\\t November 26, 1915. There were more than four hundred children in the\\n\\t orphanage. They will be added to the caravans and sent to their\\n\\t places of exile.\\n\\n\\t \\t\\t\\t\\tAbdullahad Nuri. [3]\\n\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\t January 15, 1916. We hear that certain orphanages which have been\\n\\t opened receive also the children of the Armenians. Whether this is\\n\\t done through the ignorance of our real purpose, or through contempt\\n\\t of it, the Government will regard the feeding of such children or\\n\\t any attempt to prolong their lives as an act entirely opposed to it\\n\\t purpose, since it considers the survival of these children as\\n\\t detrimental. I recommend that such children shall not be received\\n\\t into the orphanages, and no attempts are to be made to establish\\n\\t special orphanages for them.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat.\" [4]\\n\\n\\t\"To the Government of Aleppo.\\n\\n\\n\\t Collect and keep only those orphans who cannot remember the tortures\\n\\t to which their parents have been subjected. Send the rest away with\\n\\t the caravans.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [5]\\n\\n\\t\"From the Ministry of the Interior to the Government of Aleppo.\\n\\n\\t At a time when there are thousands of Moslem refugees and the widows\\n\\t of Shekid [fallen soldiers] are in need of food and protection, it is\\n\\t not expedient to incur extra expenses by feeding the children left by\\n\\t Armenians, who will serve no purpose except that of giving trouble\\n\\t in the future. It is necessary that these children should be turned\\n\\t out of your vilayet and sent with the caravans to the place of\\n\\t deportation. Those that have been kept till now are also to be sent\\n\\t away, in compliance with our previous orders, to Sivas.\\n\\n\\t\\t\\t\\tMinister of the Interior,\\n\\n\\t\\t\\t\\t\\t\\tTalaat\" [6]\\n\\nIn 1926, Halide Edip (a pioneer Turkish nationalist) wrote in her memoirs\\nabout a conversation with Talaat Pasha, verifying and \"rationalizing\" this\\nultra-national fascist anti-Armenian mentality, the following:\\n\\n\\t\"I have the conviction that as long as a nation does the best for\\n\\t its own interest, and succeeds, the world admires it and thinks\\n\\t it moral. I am ready to die for what I have done, and I know I\\n\\t shall die for it.\" [7]\\n\\n\\nThese telegrams were entered as unquestioned evidence during the 1923 trial of\\nTalaat Pasha\\'s, assassin, Soghomon Tehlerian. The Turkish government never\\nquestioned these \"death march orders\" until 1986, during a time when the world\\nwas again reminded of the genocide of the Armenians.\\n\\nFor reasons known to those who study the psychology of genocide denial, the\\nTurkish government and their supporters in crime deny that such orders were\\never issued, and further claim that these telegrams were forgeries based on a\\nstudy by S. Orel and S. Yuca of the Turkish Historical Society.\\n\\nIf one were to examine the sample \"authentic text\" provided in the Turkish \\nHistorical Society study and use their same forgery test on that sample, it \\ntoo would be a forgery!. In fact, if any of the tests delineated by the \\nTurkish Historical Society are performed an any piece of Ottoman Turkish or \\nPersian/Arabic script, one finds that anything handwritten in such language is\\na forgery. \\n\\nToday, the body of Talaat Pasha lies in a tomb on Liberty Hill, Istanbul,\\nTurkey, just next to the Yildiz University campus. The body of this genocide \\narchitect was returned to Turkey from Germany during WW2 when Turkey was in a \\nheightened state of proto-fascism. Recently, this monument has served as a\\nfocal point for anti-Armenianism in Turkey.\\n\\nThis monument represents the epitome of the Turkish government\\'s pathological\\ndenial of a clear historical event and is an insult to a people whose only\\ncrime was to be born Armenian.\\n\\n\\t\\t\\t- - - references - - -\\n\\n[1] _The Memoirs of Naim Bey_, Aram Andonian, 1919, pages 59-60\\n\\n[2] ibid, page 60\\n\\n[3] ibid, page 60\\n\\n[4] ibid, page 61\\n\\n[5] ibid, page 61\\n\\n[6] ibid, page 62\\n\\n[7] _Memoirs of Halide Edip_, Halide Edip, The Century Press, New York (and\\n London), 1926, page 387\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: drunen@nucleus.ps.uci.edu (Eric Van Drunen)\\nSubject: Re: Big amateur rockets\\nNntp-Posting-Host: nucleus.ps.uci.edu\\nOrganization: University of California, Irvine\\nLines: 30\\n\\nActually, they are legal! I not familiar with the ad you are speaking of\\nbut knowing Popular Science it is probably on the fringe. However, you\\nmay be speaking of \"Public Missle, Inc.\", which is a legitimate company\\nthat has been around for a while.\\n\\nDue to advances in composite fuels, engines are now available for model\\nrockets using similar composites to SRB fuel, roughly 3 times more \\npowerful than black powder motors. They are even available in a reloadable\\nform, i.e. aluminum casing, end casings, o-rings (!). The engines range\\nfrom D all the way to M in common manufacture, N and O I\\'ve heard of\\nused at special occasions.\\n\\nTo be a model rocket, however, the rocket can\\'t contain any metal \\nstructural parts, amongst other requirements. I\\'ve never heard of a\\nmodel rocket doing 50,000. I have heard of > 20,000 foot flights.\\nThese require FAA waivers (of course!). There are a few large national\\nlaunches (LDRS, FireBALLS), at which you can see many > K sized engine\\nflights. Actually, using a > G engine constitutes the area of \"High\\nPower Rocketry\", which is seperate from normal model rocketry. Purchase\\nof engines like I have been describing require membership in the National\\nAssociation of Rocketry, the Tripoli Rocketry Assoc., or you have to\\nbe part of an educational institute or company involved in rocketry.\\n\\nAmatuer rocketry is another area. I\\'m not really familiar with this,\\nbut it is an area where metal parts are allowed, along with liquid fuels\\nand what not. I don\\'t know what kind of regulations are involved, but\\nI\\'m sure they are numerous.\\n\\nHigh power rocketry is very exciting! If you are interested or have \\nmore questions, there is a newsgroup rec.model.rockets.\\n',\n", - " \"From: avi@duteinh.et.tudelft.nl (Avi Cohen Stuart)\\nSubject: Re: Israel's Expansion II\\nOriginator: avi@duteinh.et.tudelft.nl\\nNntp-Posting-Host: duteinh.et.tudelft.nl\\nOrganization: Delft University of Technology, Dept. of Electrical Engineering\\nLines: 14\\n\\nFrom article <93111.225707PP3903A@auvm.american.edu>, by Paul H. Pimentel :\\n> What gives Isreal the right to keep Jeruseleum? It is the home of the muslim a\\n> s well as jewish religion, among others. Heck, nobody ever mentions what Yitza\\n> k Shamir did forty or fifty years ago which is terrorize westerners much in the\\n> way Abdul Nidal does today. Seems Isrealis are nowhere above Arabs, so theref\\n> ore they have a right to Jerusaleum as much as Isreal does.\\n\\n\\nThere is one big difference between Israel and the Arabs, Christians in this\\nrespect.\\n\\nIsrael allows freedom of religion.\\n\\nAvi.\\n\",\n", - " \"From: denis@apldbio.com (Denis Concordel)\\nSubject: *** For sale: 1988 Husqvarna 510TE ***\\nDistribution: ba,ca\\nOrganization: Applied Biosystems, Inc\\nLines: 42\\n\\nFor sale:\\n\\n Model : Husqvarna 510 TE (enduro model)\\n Year : 1988\\n Engine : 500 cc Four Stroke\\n\\n Extras : - 1992 ignition (for easy starting)\\n - Suspension by Aftershock\\n - Custom carbon fiber/Kevlar skid plate\\n - Quick steering geometry\\n - Stock (EPA legal and quiet) exhaust system\\n - Bark busters and hand guards\\n - Motion Pro clutch cable\\n\\n Price : $2200\\n\\n Contact: Denis Concordel E-Mail: denis@apldbio.com\\n MaBell: (415) 570 6667 (work)\\n (415) 494 7109 (home)\\n\\n I am selling my trusty Husky... hopefully to buy a Husaberg... This is\\n a very good dirt bike and has been maintained perfectly. I never had\\n any problems with it.\\n\\n It's a four stroke, 4 valves, liquid cooled engine. It is heavier than \\n a 250 2 stroke but still lighter than a Honda XR600 and has a lot better \\n suspension (Ohlins shock, Husky fork) than the XR. For the casual or non\\n competitive rider, the engine is much better than any two stroke.\\n You can easily lug up hills and blast through trails with minimum gear\\n changes.\\n \\n The 1992 ignition and the carefully tuned carburation makes this bike\\n very easy to start (starts of first kick when cold or hot). There is a\\n custom made carbon/kevlar (light 1 pound) wrap around skid plate to protect\\n the engine cases and the water pump. The steering angle has been reduced \\n by 2 degree to increase steering quickness. This with the suspension tune-up\\n by Phil Douglas of Aftershock (Multiple time ISDE rider) gives it a better\\n ride than most bike: plush suspension, responsive steering with no head shake.\\n\\n So if it is such a good bike why sell it???? Gee, I want to buy a Husaberg,\\n which just a husky but 25 pounds lighter... and a tad more $$$.\\n\\n\",\n", - " \"From: g.coulter@daresbury.ac.uk (G. Coulter)\\nSubject: SHADOW Optical Raytracing Package?\\nReply-To: g.coulter@daresbury.ac.uk\\nOrganization: SERC Daresbury Laboratory, UK\\nLines: 17\\nNNTP-Posting-Host: dlsg.dl.ac.uk\\n\\nHi Everyone ::\\n\\nI am looking for some software called SHADOW as \\nfar as I know its a simple raytracer used in\\nthe visualization of synchrotron beam lines.\\nNow we have an old version of the program here\\n,but unfortunately we don't have any documentation\\nif anyone knows where I can get some docs, or\\nmaybe a newer version of the program or even \\nanother program that does the same sort of thing\\nI would love to hear from you.\\n\\nPS I think SHADOW was written by a F Cerrina?\\n\\nAnyone any ideas?\\n\\nThanks -Gary- SERC Daresbury Lab.\\n\",\n", - " 'From: rwf2@ns1.cc.lehigh.edu (ROBERT WILLIAM FUSI)\\nSubject: Re: Recommendation for a front tire.\\nOrganization: Lehigh University\\nLines: 37\\n\\nIn article , nrmendel@unix.amherst.edu (Nathaniel M\\nendell) writes:\\n>Ken Orr (orr@epcot.spdc.ti.com) wrote:\\n>: In article nrmendel@unix.amherst.edu (Nathaniel\\nMendell) writes:\\n>: >Steve Mansfield (smm@rodan.UU.NET) wrote:\\n>: >: Yes, my front tire is all but dead. It has minimal tread left, so it\\'s\\n>: >: time for a new one. Any recommendations on a good tire in front? I\\'m\\n>: >: riding on an almost brand new ME55A in back.\\n>: >:\\n>: >: Steve Mansfield | The system we\\'ve learned says we\\'re equal under la\\nw\\n>: >: smm@uunet.uu.net | But the streets are reality, the weak and poor will\\nfall\\n>: >: 1983 Suzuki GS550E | Let\\'s tip the power balance and tear down the crown\\n>: >: DoD# 1718 | Educate the masses, we\\'ll burn the White House down.\\n>: >: Queensryche - Speak the Word.\\n>: >\\n>: >The best thing is to match front and back, no? Given that the 99A (\"Perfect\"\\n?)\\n>: >is such a good tire, just go with that one\\n>: >\\n>: The Me99a perfect is a rear. The match for the front is the Me33 laser.\\n>:\\n>: DOD #306 K.O.\\n>: AMA #615088 Orr@epcot.spdc.ti.com\\n>\\n>Yeah, what *he* said....<:)\\n>\\n>Nathaniel\\n>ZX-10\\n>DoD 0812\\n>AM\\n\\n>Yes, you definitely need a front tire on a motorcycle....\\n\\n-- \\n',\n", - " \"From: zellner@stsci.edu\\nSubject: Re: HST Servicing Mission\\nLines: 19\\nOrganization: Space Telescope Science Institute\\nDistribution: world,na\\n\\nIn article <1rd1g0$ckb@access.digex.net>, prb@access.digex.com (Pat) writes: \\n > \\n > \\n > SOmebody mentioned a re-boost of HST during this mission, meaning\\n > that Weight is a very tight margin on this mission.\\n > \\n\\nI haven't heard any hint of a re-boost, or that any is needed.\\n\\n > \\n > why not grapple, do all said fixes, bolt a small liquid fueled\\n > thruster module to HST, then let it make the re-boost. it has to be\\n > cheaper on mass then usingthe shuttle as a tug. \\n\\nNasty, dirty combustion products! People have gone to monumental efforts to\\nkeep HST clean. We certainly aren't going to bolt any thrusters to it.\\n\\nBen\\n\\n\",\n", - " \"From: jyaruss@hamp.hampshire.edu\\nSubject: Misc./buying info. needed\\nOrganization: Hampshire College\\nLines: 15\\nNNTP-Posting-Host: hamp.hampshire.edu\\n\\nHi. I have been thinking about buying a Motorcycle or a while now and I have\\nsome questions:\\n\\n-Is there a buying guide for new/used motorcycles (that lists reliability, how\\nto go about the buying process, what to look for, etc...)?\\n-Is there a pricing guide for new/used motorcycles (Blue Book)?\\n\\nAlso\\n-Are there any books/articles on riding cross country, motorcycle camping, etc?\\n-Is there an idiots' guide to motorcycles?\\n\\nANY related information is helpful. Please respond directly to me.\\n\\nThanks a lot.\\n-Jordan\\n\",\n", - " 'From: sigma@rahul.net (Kevin Martin)\\nSubject: Re: Stay Away from MAG Innovision!!!\\nNntp-Posting-Host: bolero\\nOrganization: a2i network\\nLines: 10\\n\\nIn <16BB58B33.D1SAR@VM1.CC.UAKRON.EDU> D1SAR@VM1.CC.UAKRON.EDU (Steve Rimar) writes:\\n>My Mag MX15F works fine....................\\n\\nMine was beautiful for a year and a half. Then it went . I bought\\na ViewSonic 6FS instead. Another great monitor, IMHO.\\n\\n-- \\nKevin Martin\\nsigma@rahul.net\\n\"I gotta get me another hat.\"\\n',\n", - " 'From: lusky@ccwf.cc.utexas.edu (Jonathan R. Lusky)\\nSubject: Kawasaki ZX-6 engine needed\\nReply-To: lusky@ccwf.cc.utexas.edu (Jonathan R. Lusky)\\nDistribution: usa\\nOrganization: UT SAE / Longhorn Racing Team\\nLines: 14\\nOriginator: lusky@sylvester.cc.utexas.edu\\n\\nI\\'m looking for a 1990-91 Kawasaki ZX-6 engine. Just the engine,\\nno intake, exhaust, ignition, etc. Preferably in the central texas\\narea, but we haven\\'t had much luck around here so we\\'ll take whatever we\\ncan get. Please reply via mail or call (512) 471-5399 if you have one\\n(or more... really need a spare).\\n\\nThanx\\n\\n-- \\n--=< Jonathan Lusky ----- lusky@ccwf.cc.utexas.edu >=-- \\n \\\\ \"Turbos are nice, but I\\'d rather be blown!\" /\\n \\\\ 89 Jeep Wrangler - 258/for sale! / \\n \\\\ 79 Rx-7 - 12A/Holley 4bbl / \\n \\\\________67 Camaro RS - 350/4spd________/ \\n',\n", - " 'From: ed@cwis.unomaha.edu (Ed Stastny)\\nSubject: The OTIS Project (FTP sites for original art and images)\\nKeywords: Mr.Owl, how many licks...\\nOrganization: University of Nebraska at Omaha\\nLines: 227\\n\\n\\n\\t-------------------------------------\\n\\t+ ............The OTIS Project \\'93 + \\n\\t+ \"The Operative Term Is STIMULATE\" + \\n\\t-------------------------------------\\n\\t---this file last updated..4-21-93---\\n\\n\\nWHAT IS OTIS?\\n\\nOTIS is here for the purpose of distributing original artwork\\nand photographs over the network for public perusal, scrutiny, \\nand distribution. Digital immortality.\\n\\nThe basic idea behind \"digital immortality\" is that computer networks \\nare here to stay and that anything interesting you deposit on them\\nwill be around near-forever. The GIFs and JPGs of today will be the\\nartifacts of a digital future. Perhaps they\\'ll be put in different\\nformats, perhaps only surviving on backup tapes....but they\\'ll be\\nthere...and someone will dig them up. \\n \\nIf that doesn\\'t interest you... OTIS also offers a forum for critique\\nand exhibition of your works....a virtual art gallery that never closes\\nand exists in an information dimension where your submissions will hang\\nas wallpaper on thousands of glowing monitors. Suddenly, life is \\nbreathed into your work...and by merit of it\\'s stimulus, it will \\ntravel the globe on pulses of light and electrons.\\n \\nSpectators are welcome also, feel free to browse the gallery and \\nlet the artists know what you think of their efforts. Keep your own\\ncopies of the images to look at when you\\'ve got the gumption...\\nthat\\'s what they\\'re here for.\\n\\n---------------------------------------------------------------\\n\\nWHERE? \\n\\nOTIS currently (as of 4/21/93) has two FTP sites. \\n \\n \\t141.214.4.135 (projects/otis), the UWI site\\n\\t\\t\\n\\tsunsite.unc.edu (/pub/multimedia/pictures/OTIS), the SUNsite \\n\\t(you can also GOPHER to this site for OTIS as well)\\n\\nMerely \"anonymous FTP\" to either site on Internet and change to the\\nappropriate directory. Don\\'t forget to get busy and use the \"bin\"\\ncommand to make sure you\\'re in binary.\\n\\nOTIS has also been spreading to some dial-up BBS systems around North\\nAmerica....the following systems have a substancial supply of\\nOTIStuff...\\n\\tUnderground Cafe (Omaha) (402.339.0179) 2 lines\\n\\tCyberDen (SanFran?) (415.472.5527) Usenet Waffle-iron\\n\\n--------------------------------------------------------------\\n \\nHOW DO YOU CONTRIBUTE?\\n \\nWhat happens is...you draw a pretty picture or take a lovely \\nphoto, get it scanned into an image file, then either FTP-put\\nit in the CONTRIB/Incoming directory or use UUENCODE to send it to me\\n(email addresses at eof) in email. After the image is received,\\nit will be put into the correct directory. Computer originated works\\nare also welcome.\\n\\nOTIS\\' directories house two types of image files, GIF and JPG. \\nGIF and JPG files require, oddly enough, a GIF or JPG viewer to \\nsee. These viewers are available for all types of computers at \\nmost large FTP sites around Internet. JPG viewers are a bit\\ntougher to find. If you can\\'t find one, but do have a GIF viewer, \\nyou can obtain a JPG-to-GIF conversion program which will change \\nJPG files to a standard GIF format. \\n\\nOTIS also accepts animation files. \\n\\nWhen you submit image files, please send me email at the same time\\nstating information about what you uploaded and whether it is to be\\nused (in publications or other projects) or if it is merely for people\\nto view. Also, include some biographical information on yourself, we\\'ll\\nbe having info-files on each contributing artist and their works. You \\ncan also just upload a text-file of info about yourself (instead of \\nemailing).\\n\\nIf you have pictures, but no scanner, there is hope. Merely send\\ncopies to:\\n\\nThe OTIS Project\\nc/o Ed Stastny\\nPO BX 241113\\nOmaha, NE 68124-1113\\n\\nI will either scan them myself or get them to someone who will \\nscan them. Include an ample SASE if you want your stuff back. \\nAlso include information on each image, preferably a 1-3 line \\ndescription of the image that we can include in the infofile in the\\ndirectory where it\\'s finally put. If you have preferences as to what\\nthe images are to be named, include those as well. \\n \\nConversely, if you have a scanner and would like to help out, please\\ncontact me and we\\'ll arrange things.\\n\\nIf you want to submit your works by disk, peachy. Merely send a 3.5\"\\ndisk to the above address (Omaha) and a SASE if you want your disk back.\\nThis is good for people who don\\'t have direct access to encoders or FTP,\\nbut do have access to a scanner. We accept disks in either Mac or IBM\\ncompatible format. If possible, please submit image files as GIF or\\nJPG. If you can\\'t...we can convert from most formats...we\\'d just rather\\nnot have to.\\n\\nAt senders request, we can also fill disks with as much OTIS as they\\ncan stand. Even if you don\\'t have stuff to contribute, you can send\\na blank disk and an SASE (or $2.50 for disk, postage and packing) to \\nget a slab-o-OTIS.\\n\\nAs of 04/21/93, we\\'re at about 18 megabytes of files, and growing. \\nEmail me for current archive size and directory.\\n\\n--------------------------------------------------------------------\\n\\nDISTRIBUTION?\\n\\nThe images distributed by the OTIS project may be distributed freely \\non the condition that the original filename is kept and that it is\\nnot altered in any way (save to convert from one image format to\\nanother). In fact, we encourage files to be distributed to local \\nbulletin boards and such. If you could, please transport the\\nappropriate text files along with the images. \\n \\nIt would also be nice if you\\'d send me a note when you did post images\\nfrom OTIS to your local bbs. I just want to keep track of them so\\nparticipants can have some idea how widespread their stuff is.\\n\\nIt\\'s the purpose of OTIS to get these images spread out as much as\\npossible. If you have the time, please upload a few to your favorite\\nBBS system....or even just post this \"info-file\" there. It would be\\nkeen of you.\\n\\n--------------------------------------------------------------------\\n\\nUSE?\\n\\nIf you want to use any of the works you find on the OTIS directory,\\nyou\\'ll have to check to see if permission has been granted and the \\nstipulations of the permission (such as free copy of publication, or\\nfull address credit). You will either find this in the \".rm\" file for \\nthe image or series of images...or in the \"Artists\" directory under the \\nArtists name. If permission isn\\'t explicitly given, then you\\'ll have \\nto contact the artist to ask for it. If no info is available, email\\nme (ed@cwis.unomaha.edu), and I\\'ll get in contact with the artist for \\nyou, or give you their contact information.\\n \\nWhen you DO use permitted work, it\\'s always courteous to let the artist\\nknow about it, perhaps even send them a free copy or some such\\ncompensation for their files.\\n\\n---------------------------------------------------------------------\\n\\nNAMING IMAGES?\\n\\nPlease keep the names of your files in \"dos\" format. That means, keep\\nthe filename (before .jpg or .gif) to eight characters or less. The way\\nI usually do it is to use the initials of the artist, plus a three or\\nfour digit \"code\" for the series of images, plus the series number.\\nThus, Leonardo DeVinci\\'s fifth mechanical drawing would be something\\nlike:\\n \\n\\tldmek5.gif OR ldmek5.jpg OR ldmech5.gif ETC\\n\\nKeeping the names under 8 characters assures that the filename will\\nremain intact on all systems. \\n\\n\\n---------------------------------------------------------------------- \\n\\nCREATING IMAGE FILES?\\n\\nWhen creating image files, be sure to at least include your name\\nsomewhere on or below the picture. This gives people a reference in\\ncase they\\'d like to contact you. You may also want to include a title,\\naddress or other information you\\'d like people to know.\\n\\n-----------------------------------------------------------------------\\n\\nHMMM?!\\n\\nThat\\'s about it for now. More \"guidelines\" will be added as needed.\\nYour input is expected.\\n\\n-----------------------------------------------------------------------\\n\\nDISCLAIMER: The OTIS Project has no connection to the Church of OTIS \\n \\t (a sumerian deity) or it\\'s followers, be they pope, priest,\\n\\t or ezine administrator. We do take sacrifices and donations\\n\\t however.\\n\\n-----------------------------------------------------------------------\\n\\nDISCLAIMER: The OTIS Project is here for the distribution of original \\n \\t image files. The files will go to the public at large. \\n\\t It\\'s possible, as with any form of mass-media, that someone\\n\\t could unscrupulously use your images for financial gain. \\n \\t Unless you\\'ve given permission for that, it\\'s illegal. OTIS\\n\\t takes no responsibility for this. In simple terms, all rights\\n\\t revert to the author/artist. To leave an image on OTIS is to \\n\\t give permission for it to be viewed, copied and distributed \\n\\t electronically. If you don\\'t want your images distributed \\n\\t all-over, don\\'t upload them. To leave an image on OTIS is\\n\\t NOT giving permission to have it used in any publication or\\n\\t broadcast that incurs profit (this includes, but is not \\n\\t limited to, magazines, newsletters, clip-art software, \\n\\t screen-printed clothing, etc). You must give specific\\n\\t permission for this sort of usage. \\n\\n-----------------------------------------------------------------------\\n\\nRemember, the operative term is \"stimulate\". If you know of people\\nthat\\'d be interested in this sort of thing...get them involved...kick\\'m\\nin the booty....offer them free food...whatever...\\n\\n....e (ed@cwis.unomaha.edu)\\n (ed@sunsite.unc.edu)\\n\\n--\\nEd Stastny | OTIS Project, END PROCESS, SOUND News and Arts \\nPO BX 241113\\t | FTP: sunsite.unc.edu (/pub/multimedia/pictures/OTIS)\\nOmaha, NE 68124-1113 | 141.214.4.135 (projects/otis)\\n---------------------- EMail: ed@cwis.unomaha.edu, ed@sunsite.unc.edu\\n',\n", - " 'From: amjad@eng.umd.edu (Amjad A Soomro)\\nSubject: Gamma-Law Correction\\nOrganization: Project GLUE, University of Maryland, College Park\\nLines: 22\\nDistribution: USA\\nExpires: 05/15/93\\nNNTP-Posting-Host: filter.eng.umd.edu\\n\\nHi:\\n\\nI am digitizing a NTSC signal and displaying on a PC video monitor.\\nIt is known that the display response of tubes is non-linear and is\\nsometimes said to follow Gamma-Law. I am not certain if these\\nnon-linearities are \"Gamma-corrected\" before encoding NTSC signals\\nor if the TV display is supposed to correct this.\\n \\nAlso, if 256 grey levels, for example, are coded in a C program do\\nthese intensity levels appear with linear brightness on a PC\\nmonitor? In other words does PC monitor display circuitry\\ncorrect for \"gamma errrors\"?\\n \\nYour response is much appreciated.\\n \\nAmjad.\\n\\nAmjad Soomro\\nCCS, Computer Science Center\\nU. of Maryland at College Park\\nemail: amjad@wam.umd.edu\\n\\n',\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: How many Mutlus can dance on the head of a pin?\\nArticle-I.D.: news.2BC0D53B.20378\\nOrganization: University of California, Irvine\\nLines: 28\\nNntp-Posting-Host: orion.oac.uci.edu\\n\\nIn article <1993Apr5.211146.3662@mnemosyne.cs.du.edu> jfurr@nyx.cs.du.edu (Joel Furr) writes:\\n>In article <3456@israel.nysernet.org> warren@nysernet.org writes:\\n>>In jfurr@polaris.async.vt.edu (Joel Furr) writes:\\n>>>How many Mutlus can dance on the head of a pin?\\n>>\\n>>That reminds me of the Armenian massacre of the Turks.\\n>>\\n>>Joel, I took out SCT, are we sure we want to invoke the name of he who\\n>>greps for Mason Kibo\\'s last name lest he include AFU in his daily\\n>>rounds?\\n>\\n>I dunno, Warren. Just the other day I heard a rumor that \"Serdar Argic\"\\n>(aka Hasan Mutlu and Ahmed Cosar and ZUMABOT) is not really a Turk at all,\\n>but in fact is an Armenian who is attempting to make any discussion of the\\n>massacres in Armenia of Turks so noise-laden as to make serious discussion\\n>impossible, thereby cloaking the historical record with a tremendous cloud\\n>of confusion. \\n\\n\\nDIs it possible to track down \"zuma\" and determine who/what/where \"seradr\" is?\\nIf not, why not? I assu\\\\me his/her/its identity is not shielded by policies\\nsimilar to those in place at \"anonymous\" services.\\n\\nTim\\nD\\nD\\nD\\nVery simpl\\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Boom! Whoosh......\\nOrganization: U of Toronto Zoology\\nLines: 21\\n\\nIn article <1r46ofINNdku@gap.caltech.edu> palmer@cco.caltech.edu (David M. Palmer) writes:\\n>>orbiting billboard...\\n>\\n>I would just like to point out that it is much easier to place an\\n>object at orbital altitude than it is to place it with orbital\\n>velocity. For a target 300 km above the surface of Earth,\\n>you need a delta-v of 2.5 km/s. Assuming that rockets with specific\\n>impulses of 300 seconds are easy to produce, a rocket with a dry\\n>weight of 50 kg would require only about 65 kg of fuel+oxidizer...\\n\\nUnfortunately, if you launch this from the US (or are a US citizen),\\nyou will need a launch permit from the Office of Commercial Space\\nTransportation, and I think it may be difficult to get a permit for\\nan antisatellite weapon... :-)\\n\\nThe threshold at which OCST licensing kicks in is roughly 100km.\\n(The rules are actually phrased in more complex ways, but that is\\nthe result.)\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: jgreen@trumpet.calpoly.edu (James Thomas Green)\\nSubject: Re: Vulcan? (No, not the guy with the ears!)\\nOrganization: California Polytechnic State University, San Luis Obispo\\nLines: 31\\n\\n>In article victor@inqmind.bison.mb.ca (Victor Laking) writes:\\n>>From: victor@inqmind.bison.mb.ca (Victor Laking)\\n>>Subject: Vulcan? (No, not the guy with the ears!)\\n>>Date: Sun, 04 Apr 93 19:31:54 CDT\\n>>Does anyone have any info on the apparent sightings of Vulcan?\\n>> \\n>>All that I know is that there were apparently two sightings at \\n>>drastically different times of a small planet that was inside Mercury\\'s \\n>>orbit. Beyond that, I have no other info.\\n>>\\n>>Does anyone know anything more specific?\\n>>\\n\\nAs I heard the story, before Albert came up the the theory\\no\\'relativity and warped space, nobody could account for\\nMercury\\'s orbit. It ran a little fast (I think) for simple\\nNewtonian physics. With the success in finding Neptune to\\nexplain the odd movments of Uranus, it was postulated that there\\nmight be another inner planet to explain Mercury\\'s orbit. \\n\\nIt\\'s unlikely anything bigger than an asteroid is closer to the\\nsun than Mercury. I\\'m sure we would have spotted it by now.\\nPerhaps some professionals can confirm that.\\n\\n\\n/~~~(-: James T. Green :-)~~~~(-: jgreen@oboe.calpoly.edu :-)~~~\\\\ \\n| Heaven, n.: |\\n| A place where the wicked cease from troubling you with talk | \\n| of their own personal affairs, and the good listen with |\\n| attention while you expound your own. |\\n| Ambrose Bierce, \"The Devil\\'s Dictionary\" |\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The museum of \\'BARBARISM\\'.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 215\\n\\nIn article v999saum@ubvmsb.cc.buffalo.edu (Varnavas A. Lambrou) writes:\\n\\n>What about Cyprus?? The majority of the population is christian, but \\n>your fellow Turkish friends DID and STILL DOING a \\'good\\' job for you \\n>by cleaning the area from christians.\\n\\nAll your article reflects is your abundant ignorance. The people of \\nTurkiye know quite well that Greece and the Greek Cypriots will never \\nabandon the idea of hellenizing Cyprus and will remain eternally \\nhopeful of uniting it with Greece, someday, whatever the cost to the\\nparties involved. The history speaks for itself. Greece was the sole \\nperpetrator of invasion on that island when it sent its troops on July \\n15, 1974 in an attempt to topple the legitimate government of Archibishop \\nMakarios.\\n\\nFollowing the Greek Cypriot attempt to annex the island to Greece with \\nthe aid of the Greek army, Turkiye intervened by using her legal right \\ngiven by two international agreements. Turkiye did it for the frequently \\nand conveniently forgotten people of the island, Turkish Cypriots. For \\nthose Turkish Cypriots whose grandparents have been living on the island \\nsince 1571. \\n\\nThe release of Nikos Sampson, a member of EOKA [National Organization\\nof Cypriot Fighters] and a convicted terrorist, shows that the\\n\\'enosis\\' mentality continues to survive in Greece. One should not\\nforget that Sampson dedicated his life to annihilating the Turks\\nin Cyprus, committed murder to achieve this goal, and tried to\\ndestroy the island\\'s independence by annexing it to Greece. Of\\ncourse, the Greek governments will have to bear the consequences \\nfor this irresponsible conduct.\\n\\n\\n THE MUSEUM OF BARBARISM\\n\\n2 Irfan Bey Street, Kumsal Area, Nicosia, Cyprus\\n\\nIt is the house of Dr. Nihat Ilhan, a major who was serving at\\nthe Cyprus Turkish Army Contingent. During the attacks launched\\nagainst the Turks by the Greeks, on 20th December 1963, Dr. Nihat\\nIlhan\\'s wife and three children were ruthlessly and brutally\\nkilled in the bathroom, where they had tried to hide, by savage\\nGreeks. Dr. Nihat Ilhan happened to be on duty that night, the\\n24th December 1963. Pictures reflecting Greek atrocities\\ncommitted during and after 1963 are exhibited in this house which\\nhas been converted into a museum.\\n\\nAN EYE-WITNESS ACCOUNT OF HOW A TURKISH FAMILY WAS BUTCHERED BY\\nGREEK TERRORISTS\\n\\nThe date is the 24th of December, 1963... The onslaught of the\\nGreeks against the Turks, which started three days ago, has been\\ngoing on with all its ferocity; and defenseless women, old men\\nand children are being brutally killed by Greeks. And now Kumsal\\nArea of Nicosia witnesses the worst example of the Greeks savage\\nbloodshed...\\n\\nThe wife and the three infant children of Dr. Nihat Ilhan, a\\nmajor on duty at the camp of the Cyprus Turkish Army Contingent,\\nare mercilessly and dastardly shot dead while hiding in the\\nbathroom of their house, by maddened Greeks who broke into their\\nhome. A glaring example of Greek barbarism.\\n\\nLet us now listen to the relating of the said incident told by\\nMr. Hasan Yusuf Gudum, an eye witness, who himself was wounded\\nduring the same terrible event.\\n\\n\"On the night of the 24th of December, 1963 my wife Feride Hasan\\nand I were paying a visit to the family of Major Dr. Nihat Ilhan.\\nOur neighbours Mrs. Ayshe of Mora, her daughter Ishin and Mrs.\\nAyshe\\'s sister Novber were also with us. We were all sitting\\nhaving supper. All of a sudden bullets from the Pedieos River\\ndirection started to riddle the house, sounding like heavy rain.\\nThinking that the dining-room where we were sitting was\\ndangerous, we ran to the bathroom and toilet which we thought\\nwould be safer. Altogether we were nine persons. We all hid in\\nthe bathroom except my wife who took refuge in the toilet. We\\nwaited in fear. Mrs. Ilhan the wife of Major Doctor, was standing\\nin the bath with her three children Murat, Kutsi and Hakan in her\\narms. Suddenly with a great noise we heard the front door open.\\nGreeks had come in and were combing, every corner of the house\\nwith their machine gun bullets. During these moments I heard\\nvoices saying, in Greek, \"You want Taksim eh!\" and then bullets\\nstarted flying in the bathroom. Mrs. Ilhan and her three children\\nfell into the bath. They were shot. At this moment the Greeks,\\nwho broke into the bathroom, emptied their guns on us again. I\\nheard one of the Major\\'s children moan, then I fainted.\\n\\nWhen I came to myself 2 or 3 hours later, I saw Mrs. Ilhan and\\nher three children lying dead in the bath. I and the rest of the\\nneighbours in the bathroom were all seriously wounded. But what\\nhad happened to my wife? Then I remembered and immediately ran to\\nthe toilet, where, in the doorway, I saw her body. She was\\nbrutally murdered.\\n\\nIn the street admist the sound of shots I heard voices crying\\n\"Help, help. Is there no one to save us?\" I became terrified. I\\nthought that if the Greeks came again and found that I was not\\ndead they would kill me. So I ran to the bedroom and hid myself\\nunder the double-bed.\\n\\nAn our passed by. In the distance I could still hear shots. My\\nmouth was dry, so I came out from under the bed and drank some\\nwater. Then I put some sweets in my pocket and went back to the\\nbathroom, which was exactly as I had left in an hour ago. There I\\noffered sweets to Mrs. Ayshe, her daughter and Mrs. Novber who\\nwere all wounded.\\n\\nWe waited in the bathroom until 5 o\\'clock in the morning. I\\nthought morning would never come. We were all wounded and needed\\nto be taken to hospital. Finally, as we could walk, Mrs. Novber\\nand I, went out into the street hoping to find help, and walked\\nas far as Koshklu Chiftlik.\\n\\nThere, we met some people who took us to hospital where we were\\noperated on. When I regained my consciousness I said that there\\nwere more wounded in the house and they went and brought Mrs.\\nAyshe and her daughter.\\n\\nAfter staying three days in the hospital I was sent by plane to\\nAnkara for further treatment. There I have had four months\\ntreatment but still I cannot use my arm. On my return to Cyprus,\\nGreeks arrested me at the Airport.\\n\\nAll I have related to you above I told the Greeks during my\\ndetention. They then released me.\"\\n\\nON FOOT INTO CYPRUS\\'S DEVASTATED TURKISH QUARTER\\n\\nWe went tonight into the sealed-off Turkish quarter of Nicosia in\\nwhich 200 to 300 people have been slaughtered in the last five\\ndays.\\n\\nWe were the first Western reporters there, and we saw some\\nterrible sights.\\n\\nIn the Kumsal quarter at No. 2, Irfan Bey Sokagi, we made our way\\ninto a house whose floors were covered with broken glass. A\\nchild\\'s bicycle lay in a corner.\\n\\nIn the bathroom, looking like a group of waxworks, were three\\nchildren piled on top of their murdered mother.\\n\\nIn a room next to it we glimpsed the body of a woman shot in the\\nhead.\\n\\nThis, we were told, was the home of a Turkish Army major whose\\nfamily had been killed by the mob in the first violence.\\n\\nToday was five days later, and still they lay there.\\n\\nRene MacCOLL and Daniel McGEACHIE, (From the \"DAILY EXPRESS\")\\n\\n\"...I saw in a bathroom the bodies of a mother and three infant\\nchildren murdered because their father was a Turkish Officer...\"\\n\\nMax CLOS, LE FIGARO 25-26 January, 1964\\n\\n\\n Peter Moorhead reporting from the village of Skyloura, Cyprus. \\n Date : 1 January, 1964. \\n\\n IL GIARNO (Italy)\\n \\n THEY ARE TURK-HUNTING, THEY WANT TO EXTERMINATE THEM.\\n\\n Discussions start in London; in Cyprus terror continues. Right now we\\n are witnessing the exodus of Turks from the villages. Thousands of people\\n abandoning homes, land, herds; Greek Cypriot terrorism is relentless. This \\n time, the rhetoric of the Hellenes and the bust of Plato do not suffice to \\n cover up barbaric and ferocious behaviors.\\n\\n Article by Giorgo Bocca, Correspondent of Il Giorno\\n Date: 14 January 1964\\n\\n DAILY HERALD (London)\\n\\n AN APPALLING SIGHT\\n\\nAnd when I came across the Turkish homes they were an appalling sight.\\nApart from the walls, they just did not exist. I doubt if a napalm bomb\\nattack could have created more devastation. I counted 40 blackened brick\\nand concrete shells that had once been homes. Each house had been deliberately\\nfired by petrol. Under red tile roofs which had caved in, I found a twisted\\nmass of bed springs, children\\'s conts and cribs, and ankle deep grey\\nashes of what had once been chairs, tables and wardrobes.\\n\\nIn the neighbouring village of Ayios Vassilios, a mile away, I counted 16 \\nwrecked and burned out homes. They were all Turkish Cypriot homes. From\\nthis village more than 100 Turkish Cypriots had also vanished.In neither village\\ndid I find a scrap of damage to any Greek Cypriot house.\\n\\n\\n DAILY TELEGRAPH (London)\\n \\n GRAVES OF 12 SHOT TURKISH CYPRIOTS FOUND IN CYPRUS VILLAGE\\n\\n Silent crowds gathered tonight outside the Red Crescent hospital in the\\n Turkish Sector of Nicosia, as the bodies of 9 Turkish Cypriots found\\n crudely buried outside the village of Ayios Vassilios, 13 miles away, were\\n brought to the hospital under the escort of the Parachute Regiment. Three \\n more bodies, including one of a woman, were discovered nearby but could\\n not be removed. Turkish Cypriots guarded by paratroops are still trying to \\n locate the bodies of 20 more believed to have been buried on the same site.\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: Wayne.Orwig@AtlantaGA.NCR.COM (Wayne Orwig)\\nSubject: Re: Shaft-drives and Wheelies\\nLines: 21\\nNntp-Posting-Host: worwig.atlantaga.ncr.com\\nOrganization: NCR Corporation\\nX-Newsreader: FTPNuz (DOS) v1.0\\n\\nIn Article <1r16ja$dpa@news.ysu.edu> \"ak296@yfn.ysu.edu (John R. Daker)\" says:\\n> \\n> In a previous article, xlyx@vax5.cit.cornell.edu () says:\\n> \\n> Mike Terry asks:\\n> \\n> >Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n> >\\n> No Mike. It is imposible due to the shaft effect. The centripital effects\\n> of the rotating shaft counteract any tendency for the front wheel to lift\\n> off the ground.\\n> -- \\n> DoD #650<----------------------------------------------------------->DarkMan\\nWell my last two motorcycles have been shaft driven and they will wheelie.\\nThe rear gear does climb the ring gear and lift the rear which gives an\\nodd feel, but it still wheelies.\\n',\n", - " 'Subject: Re: Traffic morons\\nFrom: Stafford@Vax2.Winona.MSUS.Edu (John Stafford)\\nDistribution: world\\nOrganization: Winona State University\\nNntp-Posting-Host: stafford.winona.msus.edu\\nLines: 16\\n\\nIn article , ahatcher@athena.cs.uga.edu\\n(Allan Hatcher) wrote:\\n> \\n\\n> You can\\'t make a Citizens arrest on anything but a felony.\\n\\n\\tI\\'m not sure that\\'s true. Let me rephrase; \"You can file a complaint\\n which will bring the person into court.\" As I understand it, a\\n \"citizens arrest\" does not have to be the physical detention of\\n the person.\\n\\n Better now?\\n\\n====================================================\\nJohn Stafford Minnesota State University @ Winona\\n All standard disclaimers apply.\\n',\n", - " 'From: orourke@sophia.smith.edu (Joseph O\\'Rourke)\\nSubject: Re: Delaunay Triangulation\\nOrganization: Smith College, Northampton, MA, US\\nLines: 22\\n\\nIn article zyeh@caspian.usc.edu (zhenghao yeh) writes:\\n>\\n>Does anybody know what Delaunay Triangulation is?\\n>Is there any reference to it? \\n>Is it useful for creating 3-D objects? If yes, what\\'s the advantage?\\n\\nThere is a vast literature on Delaunay triangulations, literally\\nhundreds of papers. A program is even provided with every copy of \\nMathematica nowadays. You might look at this if you are interested in \\nusing it for creating 3D objects:\\n\\n@article{Boissonnat5,\\n author = \"J.D. Boissonnat\",\\n title = \"Geometric Structures for Three-Dimensional Shape Representation\",\\n journal = \"ACM Transactions on Graphics\",\\n month = \"October\",\\n year = {1984},\\n volume = {3},\\n number = {4},\\n pages = {266-286}\\n}\\n\\n',\n", - " \"From: johnsw@wsuvm1.csc.wsu.edu (William E. Johns)\\nSubject: Need a wheel\\nOriginator: bill@wsuaix.csc.wsu.edu\\nKeywords: '92\\nOrganization: Washington State University\\nDistribution: na\\nLines: 18\\n\\n\\nDoes anyone have a rear wheel for a PD they'd like to part with?\\n\\nDoes anyone know where I might find one salvage?\\n\\nAs long as I'm getting the GIVI luggage for Brunnhilde and have\\nthe room, I thought I'd carry a spare.\\n\\nRide Free,\\n\\nBill\\n___________________________________________________________________ \\njohnsw@wsuvm1.csc.wsu.edu prez=BIMC KotV KotRR \\nDoD #00314 AMA #580924 SPI = 7.18 WMTC #0002 KotD #0001 \\nYamabeemer fj100gs1200pdr650 Special and a Volvo. What more could anyone ask? \\n \\nPain is inevitable, suffering is optional.\\n \\n\",\n", - " \"From: Clarke@bdrc.bd.com (Richard Clarke)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Becton Dickinson Research Center R.T.P. NC USA\\nLines: 27\\nNntp-Posting-Host: polymr4.bdrc.bd.com\\n\\n>I eagerly await comment.\\n\\nThe ice princess next door makes a habit of flooring her cage out of the \\ndriveway when she sees me coming. Probably only hits 25mph, or so. (I made \\nthe mistake of waving to a neighbor. She has some sort of grudge, now.)\\n\\nI was riding downhill at ~60mph on a local backroad when a brown dobie came \\nflashing through the brush at well over 30mph, on an intercept course with \\nmy front wheel. The dog had started out at the top of the hill when it heard \\nme and still had a lead when it hit the road. The dog was approaching from \\nmy left, and was running full tilt to get to my bike on the other side of \\nthe road before I went by. Rover was looking back at me to calculate the \\nfinal trajectory. Too bad it didn't notice the car approaching at 50+mph \\nfrom the other direction.\\n\\nI got a closeup view of the our poor canine friend's noggin careening off \\nthe front bumper, smacking the asphalt, and getting runover by the front \\ntire. It managed a pretty good yelp, just before impact. (peripheral \\nimminent doom?) I guess the driver didn't see me or they probably would have \\nswerved into my lane. The squeegeed pup actually got up and headed back \\nhome, but I haven't seen it since. \\n\\nSniff. \\n\\nSometimes Fate sees you and smiles.\\n\\n-Rick\\n\",\n", - " \"From: bgardner@pebbles.es.com (Blaine Gardner)\\nSubject: Re: Ducati 400 opinions wanted\\nNntp-Posting-Host: 130.187.85.70\\nOrganization: Evans & Sutherland Computer Corporation\\nLines: 29\\n\\nIn article <1qmnga$s9q@news.ysu.edu> ak954@yfn.ysu.edu (Albion H. Bowers) writes:\\n>In a previous article, bgardner@pebbles.es.com (Blaine Gardner) says:\\n\\n>>I guess I'm out of touch, but what exactly is the Ducati 400? A v-twin\\n>>desmo, or is it that half-a-v-twin with the balance weight where the 2nd\\n>>cylinder would go? A 12 second 1/4 for a 400 isn't bad at all.\\n>\\n>Sorry, I should have been more specific. The 750 SS ran the quater in\\n>12.10 @ 108.17. The last small V-twin Duc we got in the US (and the 400 is\\n>a Pantah based V-twin) was the 500SL Pantah, and it ran a creditable 13.0 @\\n>103. Modern carbs and what not should put the 400 in the high 12s at 105.\\n>\\n>BTW, FZR 400s ran mid 12s, and the latest crop of Japanese 400s will out\\n>run that. It's hard to remember, but but a new GOOF2 will clobber an old\\n>KZ1000 handily, both in top end and roll-on. Technology stands still for\\n>no-one...\\n\\nNot too hard to remember, I bought a GS1000 new in '78. :-) It was\\n3rd place in the '78 speed wars (behind the CBX & XS Eleven) with a\\n11.8 @ 113 1/4 mile, and 75 horses. That wouldn't even make a good 600\\nthese days. Then again, I paid $2800 for it, so technology isn't the\\nonly thing that's changed. Of course I'd still rather ride the old GS\\nacross three states than any of the 600's.\\n\\nI guess it's an indication of how much things have changed that a 12\\nsecond 400 didn't seem too far out of line.\\n-- \\nBlaine Gardner @ Evans & Sutherland\\nbgardner@dsd.es.com\\n\",\n", - " \"From: bryanw@rahul.net (Bryan Woodworth)\\nSubject: Re: CView answers\\nOrganization: a2i network\\nLines: 13\\nNntp-Posting-Host: bolero\\n\\nIn <1993Apr17.113223.12092@imag.fr> schaefer@imag.imag.fr (Arno Schaefer) writes:\\n\\n>Sorry, Bryan, this is not quite correct. Remember the VGALIB package that comes\\n>with Linux/SLS? It will switch to VGA 320x200x256 mode *without* Xwindows.\\n>So at least it is *possible* to write a GIF viewer under Linux. However I don't\\n>think that there exists a similar SVGA package, and viewing GIFs in 320x200 is\\n>not very nice.\\n\\nNo, VGALIB? Amazing.. I guess it was lost in all those subdirs :-)\\nThanks for correcting me. It doesn't sound very appealing though, only\\n320x200? I'm glad it wasn't something major I missed.\\n\\nThanks,\\n\",\n", - " 'From: howland@noc2.arc.nasa.gov (Curt Howland)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: NASA Science Internet Project Office\\nLines: 12\\n\\nIn article , \\nEric@ux1.cso.uiuc.edu (93CBR900RR) writes:\\n|> Would someone please post the countersteering FAQ...\\n|> \\t\\t\\t\\teric\\n\\nLike, there\\'s a FAQ for this?\\n\\n---\\nCurt Howland \"Ace\" DoD#0663 EFF#569\\nhowland@nsipo.nasa.gov \\'82 V45 Sabre\\n Meddle not in the afairs of Wizards,\\n for it makes them soggy and hard to re-light.\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Final Solution for Gaza ?\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 13\\n\\nIn article <2BDC2931.17498@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>Certainly, the Israeli had a legitimate worry behind the action they took,\\n>but isn\\'t that action a little draconian?\\n\\n\\tWhat alternative would you suggest be taken to safeguard the\\nlives of Israeli citizens?\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Serdar\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nYou are quite the loser\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", - " 'Subject: A word of advice\\nFrom: jcopelan@nyx.cs.du.edu (The One and Only)\\nOrganization: Nyx, Public Access Unix at U. of Denver Math/CS dept.\\nSummary: was Re: Yeah, Right\\nLines: 14\\n\\nIn article <65882@mimsy.umd.edu> mangoe@cs.umd.edu (Charley Wingate) writes:\\n>\\n>I\\'ve said enough times that there is no \"alternative\" that should think you\\n>might have caught on by now. And there is no \"alternative\", but the point\\n>is, \"rationality\" isn\\'t an alternative either. The problems of metaphysical\\n>and religious knowledge are unsolvable-- or I should say, humans cannot\\n>solve them.\\n\\nHow does that saying go: Those who say it can\\'t be done shouldn\\'t interrupt\\nthose who are doing it.\\n\\nJim\\n--\\nHave you washed your brain today?\\n',\n", - " 'From: kempmp@phoenix.oulu.fi (Petri Pihko)\\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: University of Oulu, Finland\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 215\\n\\nThis kind of argument cries for a comment...\\n\\njbrown@batman.bmd.trw.com wrote:\\n: In article <1993Apr3.095220.24632@leland.Stanford.EDU>, galahad@leland.Stanford.EDU (Scott Compton) writes:\\n\\nJim, you originally wrote:\\n \\n: >>...God did not create\\n: >>disease nor is He responsible for the maladies of newborns.\\n: > \\n: >>What God did create was life according to a protein code which is\\n: >>mutable and can evolve. Without delving into a deep discussion of\\n: >>creationism vs evolutionism, God created the original genetic code\\n: >>perfect and without flaw. \\n: > ~~~~~~~ ~~~~~~~ ~~~~\\n\\nDo you have any evidence for this? If the code was once perfect, and\\nhas degraded ever since, we _should_ have some evidence in favour\\nof this statement, shouldn\\'t we?\\n\\nPerhaps the biggest \"imperfection\" of the code is that it is full\\nof non-coding regions, introns, which are so called because they\\nintervene with the coding regions (exons). An impressive amount of\\nevidence suggests that introns are of very ancient origin; it is\\nlikely that early exons represented early protein domains.\\n\\nIs the number of introns decreasing or increasing? It appears that\\nintron loss can occur, and species with common ancestry usually\\nhave quite similar exon-intron structure in their genes. \\n\\nOn the other hand, the possibility that introns have been inserted\\nlater, presents several logical difficulties. Introns are removed\\nby a splicing mechanism - this would have to be present, but unused,\\nif introns are inserted. Moreover, intron insertion would have\\nrequired _precise_ targeting - random insertion would not be tolerated,\\nsince sequences for intron removal (self-splicing of mRNA) are\\nconserved. Besides, transposition of a sequence usually leaves a\\ntrace - long terminal repeats and target - site duplications, and\\nthese are not found in or near intron sequences. \\n\\nI seriously recommend reading textbooks on molecular biology and\\ngenetics before posting \"theological arguments\" like this. \\nTry Watson\\'s Molecular Biology of the Gene or Darnell, Lodish\\n& Baltimore\\'s Molecular Biology of the Cell for starters.\\n\\n: Remember, the question was posed in a theological context (Why does\\n: God cause disease in newborns?), and my answer is likewise from a\\n: theological perspective -- my own. It is no less valid than a purely\\n: scientific perspective, just different.\\n\\nScientific perspective is supported by the evidence, whereas \\ntheological perspectives often fail to fulfil this criterion.\\n \\n: I think you misread my meaning. I said God made the genetic code perfect,\\n: but that doesn\\'t mean it\\'s perfect now. It has certainly evolved since.\\n\\nFor the worse? Would you please cite a few references that support\\nyour assertion? Your assertion is less valid than the scientific\\nperspective, unless you support it by some evidence.\\n\\nIn fact, it has been claimed that parasites and diseases are perhaps\\nmore important than we\\'ve thought - for instance, sex might\\nhave evolved as defence against parasites. (This view is supported by\\ncomputer simulations of evolution, eg Tierra.) \\n \\n: Perhaps. I thought it was higher energy rays like X-rays, gamma\\n: rays, and cosmic rays that caused most of the damage.\\n\\nIn fact, it is thermal energy that does most of the damage, although\\nit is usually mild and easily fixed by enzymatic action. \\n\\n: Actually, neither of us \"knows\" what the atmosphere was like at the\\n: time when God created life. According to my recollection, most\\n: biologists do not claim that life began 4 billion years ago -- after\\n: all, that would only be a half billion years or so after the earth\\n: was created. It would still be too primitive to support life. I\\n: seem to remember a figure more like 2.5 to 3 billion years ago for\\n: the origination of life on earth. Anyone with a better estimate?\\n\\nI\\'d replace \"created\" with \"formed\", since there is no need to \\ninvoke any creator if the Earth can be formed without one.\\nMost recent estimates of the age of the Earth range between 4.6 - 4.8\\nbillion years, and earliest signs of life (not true fossils, but\\norganic, stromatolite-like layers) date back to 3.5 billion years.\\nThis would leave more than billion years for the first cells to\\nevolve.\\n\\nI\\'m sorry I can\\'t give any references, this is based on the course\\non evolutionary biochemistry I attended here. \\n\\n: >>dominion, it was no great feat for Satan to genetically engineer\\n: >>diseases, both bacterial/viral and genetic. Although the forces of\\n: >>natural selection tend to improve the survivability of species, the\\n: >>degeneration of the genetic code tends to more than offset this. \\n\\nAgain, do you _want_ this be true, or do you have any evidence for\\nthis supposed \"degeneration\"? \\n\\nI can understand Scott\\'s reaction:\\n\\n: > Excuse me, but this is so far-fetched that I know you must be\\n: > jesting. Do you know what pathogens are? Do you know what \\n: > Point Mutations are? Do you know that EVERYTHING CAN COME\\n: > ABOUT SPONTANEOUSLY?!!!!! \\n: \\n: In response to your last statement, no, and neither do you.\\n: You may very well believe that and accept it as fact, but you\\n: cannot *know* that.\\n\\nI hope you don\\'t forget this: We have _evidence_ that suggests \\neverything can come about spontaneously. Do you have evidence against\\nthis conclusion? In science, one does not have to _believe_ in \\nanything. It is a healthy sign to doubt and disbelieve. But the \\nright path to walk is to take a look at the evidence if you do so,\\nand not to present one\\'s own conclusions prior to this. \\n\\nTheology does not use this method. Therefore, I seriously doubt\\nit could ever come to right conclusions.\\n\\n: >>Human DNA, being more \"complex\", tends to accumulate errors adversely\\n: >>affecting our well-being and ability to fight off disease, while the \\n: >>simpler DNA of bacteria and viruses tend to become more efficient in \\n: >>causing infection and disease. It is a bad combination. Hence\\n: >>we have newborns that suffer from genetic, viral, and bacterial\\n: >>diseases/disorders.\\n\\nYou are supposing a purpose, not a valid move. Bacteria and viruses\\ndo not exist to cause disease. They are just another manifests of\\na general principle of evolution - only replication saves replicators\\nfrom degradiation. We are just an efficient method for our DNA to \\nsurvive and replicate. The less efficient methods didn\\'t make it \\nto the present. \\n\\nAnd for the last time. Please present some evidence for your claim that\\nhuman DNA is degrading through evolutionary processes. Some people have\\nclaimed that the opposite is true - we have suppressed our selection,\\nand thus are bound to degrade. I haven\\'t seen much evidence for either\\nclaim.\\n \\n: But then I ask, So? Where is this relevant to my discussion in\\n: answering John\\'s question of why? Why are there genetic diseases,\\n: and why are there so many bacterial and viral diseases which require\\n: babies to develop antibodies. Is it God\\'s fault? (the original\\n: question) -- I say no, it is not.\\n\\nOf course, nothing \"evil\" is god\\'s fault. But your explanation does\\nnot work, it fails miserably.\\n \\n: You may be right. But the fact is that you don\\'t know that\\n: Satan is not responsible, and neither do I.\\n: \\n: Suppose that a powerful, evil being like Satan exists. Would it\\n: be inconceivable that he might be responsible for many of the ills\\n: that affect mankind? I don\\'t think so.\\n\\nHe could have done a much better Job. (Pun intended.) The problem is,\\nit seems no Satan is necessary to explain any diseases, they are\\njust as inevitable as any product of evolution.\\n\\n: Did I say that? Where? Seems to me like another bad inference.\\n: Actually what you\\'ve done is to oversimplify what I said to the\\n: point that your summary of my words takes on a new context. I\\n: never said that people are \"meant\" (presumably by God) \"to be\\n: punished by getting diseases\". Why I did say is that free moral\\n: choices have attendent consequences. If mankind chooses to reject\\n: God, as people have done since the beginning, then they should not\\n: expect God to protect them from adverse events in an entropic\\n: universe.\\n\\nI am not expecting this. If god exists, I expect him to leave us alone.\\nI would also like to hear why do you believe your choices are indeed\\nfree. This is an interesting philosophical question, and the answer\\nis not as clear-cut as it seems to be.\\n\\nWhat consequences would you expect from rejecting Allah?\\n \\n: Oh, I admit it\\'s not perfect (yet). But I\\'m working on it. :)\\n\\nA good library or a bookstore is a good starting point.\\n\\n: What does this have to do with the price of tea in China, or the\\n: question to which I provided an answer? Biology and Genetics are\\n: fine subjects and important scientific endeavors. But they explain\\n: *how* God created and set up life processes. They don\\'t explain\\n: the why behind creation, life, or its subsequent evolution.\\n\\nWhy is there a \"why behind\"? And your proposition was something\\nthat is not supported by the evidence. This is why we recommend\\nthese books.\\n\\nIs there any need to invoke any why behind, a prime mover? Evidence\\nfor this? If the whole universe can come into existence without\\nany intervention, as recent cosmological theories (Hawking et al)\\nsuggest, why do people still insist on this?\\n \\n: Thanks Scotty, for your fine and sagely advice. But I am\\n: not highly motivated to learn all the nitty-gritty details\\n: of biology and genetics, although I\\'m sure I\\'d find it a\\n: fascinating subject. For I realize that the details do\\n: not change the Big Picture, that God created life in the\\n: beginning with the ability to change and adapt to its\\n: environment.\\n\\nI\\'m sorry, but they do. There is no evidence for your big picture,\\nand no need to create anything that is capable of adaptation.\\nIt can come into existence without a Supreme Being.\\n\\nTry reading P.W. Atkins\\' Creation Revisited (Freeman, 1992).\\n\\nPetri\\n--\\n ___. .\\'*\\'\\'.* Petri Pihko kem-pmp@ Mathematics is the Truth.\\n!___.\\'* \\'.\\'*\\' \\' . Pihatie 15 C finou.oulu.fi Physics is the Rule of\\n \\' *\\' .* \\'* SF-90650 OULU kempmp@ the Game.\\n *\\' * .* FINLAND phoenix.oulu.fi -> Chemistry is The Game.\\n',\n", - " 'From: gary@ke4zv.uucp (Gary Coffman)\\nSubject: Re: What if the USSR had reached the Moon first?\\nReply-To: gary@ke4zv.UUCP (Gary Coffman)\\nOrganization: Destructive Testing Systems\\nLines: 30\\n\\nIn article <93107.144339SAUNDRSG@QUCDN.QueensU.CA> Graydon writes:\\n>This is turning into \\'what\\'s a moonbase good for\\', and I ought\\n>not to post when I\\'ve a hundred some odd posts to go, but I would\\n>think that the real reason to have a moon base is economic.\\n>\\n>Since someone with space industry will presumeably have a much\\n>larger GNP than they would _without_ space industry, eventually,\\n>they will simply be able to afford more stuff.\\n\\nIf I read you right, you\\'re saying in essence that, with a larger\\neconomy, nations will have more discretionary funds to *waste*\\non a lunar facility. That was certainly partially the case with Apollo, \\nbut real Lunar colonies will probably require a continuing military,\\nscientific, or commercial reason for being rather than just a \"we have \\nthe money, why not?\" approach.\\n\\nIt\\'s conceivable that Luna will have a military purpose, it\\'s possible\\nthat Luna will have a commercial purpose, but it\\'s most likely that\\nLuna will only have a scientific purpose for the next several hundred\\nyears at least. Therefore, Lunar bases should be predicated on funding\\nlevels little different from those found for Antarctic bases. Can you\\nput a 200 person base on the Moon for $30 million a year? Even if you\\nuse grad students?\\n\\nGary\\n-- \\nGary Coffman KE4ZV | You make it, | gatech!wa4mei!ke4zv!gary\\nDestructive Testing Systems | we break it. | uunet!rsiatl!ke4zv!gary\\n534 Shannon Way | Guaranteed! | emory!kd4nc!ke4zv!gary \\nLawrenceville, GA 30244 | | \\n',\n", - " 'From: se92psh@brunel.ac.uk (Peter Hauke)\\nSubject: Re: Grayscale Printer\\nOrganization: Brunel University, Uxbridge, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nDistribution: na\\nLines: 13\\n\\nJian Lu (jian@coos.dartmouth.edu) wrote:\\n: We are interested in purchasing a grayscale printer that offers a good\\n: resoltuion for grayscale medical images. Can anybody give me some\\n: recommendations on these products in the market, in particular, those\\n: under $5000?\\n\\n: Thank for the advice.\\n-- \\n***********************************\\n* Peter Hauke @ Brunel University *\\n*---------------------------------*\\n* se92psh@brunel.ac.uk *\\n***********************************\\n',\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Moonbase race, NASA resources, why?\\nLines: 32\\nNntp-Posting-Host: acad3.alaska.edu\\nOrganization: University of Alaska Fairbanks\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu>, sysmgr@king.eng.umd.edu (Doug Mohney) writes:\\n> In article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n> \\n>>Apollo was done the hard way, in a big hurry, from a very limited\\n>>technology base... and on government contracts. Just doing it privately,\\n>>rather than as a government project, cuts costs by a factor of several.\\n> \\n> So how much would it cost as a private venture, assuming you could talk the\\n> U.S. government into leasing you a couple of pads in Florida? \\n> \\n> \\n> \\n> Software engineering? That\\'s like military intelligence, isn\\'t it?\\n> -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n\\n\\nWhy must it be a US Government Space Launch Pad? Directly I mean..\\nI know of a few that could launch a small package into space.\\nNot including Ariadne, and the Russian Sites.. I know \"Poker Flats\" here in\\nAlaska, thou used to be only sounding rockets for Auroral Borealous(sp and\\nother northern atmospheric items, is at last I heard being upgraded to be able\\nto put sattelites into orbit. \\n\\nWhy must people in the US be fixed on using NASAs direct resources (Poker Flats\\nis runin part by NASA, but also by the Univesity of Alaska, and the Geophysical\\nInstitute). Sounds like typical US cultural centralism and protectionism..\\nAnd people wonder why we have the multi-trillion dollar deficite(sp).\\nYes, I am working on a spell checker..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n\\n',\n", - " 'From: pgf@srl02.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 16\\n\\nJeff.Cook@FtCollinsCO.NCR.COM (Jeff Cook) writes:\\n...\\n>people in primitive tribes out in the middle of nowhere as they look up\\n>and see a can of Budweiser flying across the sky... :-D\\n\\nSeen that movie already. Or one just like it.\\nCome to think of it, they might send someone on\\na quest to get rid of the dang thing...\\n\\n>Jeff Cook Jeff.Cook@FtCollinsCO.NCR.com\\n\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 15/15 - Orbital and Planetary Launch Services\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 195\\nDistribution: world\\nExpires: 6 May 1993 20:02:47 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/launchers\\nLast-modified: $Date: 93/04/01 14:39:11 $\\n\\nORBITAL AND PLANETARY LAUNCH SERVICES\\n\\nThe following data comes from _International Reference Guide to Space Launch\\nSystems_ by Steven J. Isakowitz, 1991 edition.\\n\\nNotes:\\n * Unless otherwise specified, LEO and polar paylaods are for a 100 nm\\n\\torbit.\\n * Reliablity data includes launches through Dec, 1990. Reliabity for a\\n\\tfamiliy of vehicles includes launches by types no longer built when\\n\\tapplicable\\n * Prices are in millions of 1990 $US and are subject to change.\\n * Only operational vehicle families are included. Individual vehicles\\n\\twhich have not yet flown are marked by an asterisk (*) If a vehicle\\n\\thad first launch after publication of my data, it may still be\\n\\tmarked with an asterisk.\\n\\n\\nVehicle | Payload kg (lbs) | Reliability | Price | Launch Site\\n(nation) | LEO\\t Polar GTO |\\t\\t|\\t| (Lat. & Long.)\\n--------------------------------------------------------------------------------\\n\\nAriane\\t\\t\\t\\t\\t 35/40 87.5%\\t Kourou\\n(ESA)\\t\\t\\t\\t\\t\\t\\t\\t (5.2 N, 52.8 W)\\n AR40\\t\\t4,900\\t 3,900 1,900 1/1\\t\\t $65m\\n\\t (10,800) (8,580) (4,190)\\n AR42P\\t\\t6,100\\t 4,800 2,600 1/1\\t\\t $67m\\n\\t (13,400) (10,600) (5,730)\\n AR44P\\t\\t6,900\\t 5,500 3,000 0/0 ?\\t $70m\\n\\t (15,200) (12,100) (6,610)\\n AR42L\\t\\t7,400\\t 5,900 3,200 0/0 ?\\t $90m\\n\\t (16,300) (13,000) (7,050)\\n AR44LP\\t8,300\\t 6,600 3,700 6/6\\t\\t $95m\\n\\t (18,300) (14,500) (8,160)\\n AR44L\\t\\t9,600\\t 7,700 4,200 3/4\\t\\t $115m\\n\\t (21,100) (16,900) (9,260)\\n\\n* AR5\\t 18,000\\t ???\\t 6,800 0/0\\t\\t $105m\\n\\t (39,600)\\t\\t (15,000)\\n\\t [300nm]\\n\\n\\nAtlas\\t\\t\\t\\t\\t 213/245 86.9%\\t Cape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\t (28.5 N, 81.0W)\\n Atlas E\\t --\\t 820\\t -- 15/17\\t $45m\\t Vandeberg AFB\\n\\t\\t\\t (1,800)\\t\\t\\t\\t(34.7 N, 120.6W)\\n\\n Atlas I\\t5,580\\t 4,670 2,250 1/1\\t\\t $70m\\n\\t (12,300) (10,300) (4,950)\\n\\n Atlas II\\t6,395\\t 5,400 2,680 0/0\\t\\t $75m\\n\\t (14,100) (11,900) (5,900)\\n\\n Atlas IIA\\t6,760\\t 5,715 2,810 0/0\\t\\t $85m\\n\\t (14,900) (12,600) (6,200)\\n\\n* Atlas IIAS\\t8,390\\t 6,805 3,490 0/0\\t\\t $115m\\n\\t (18,500) (15,000) (7,700)\\n\\n\\nDelta\\t\\t\\t\\t\\t 189/201 94.0%\\t Cape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\t Vandenberg AFB\\n Delta 6925\\t3,900\\t 2,950 1,450 14/14\\t $45m\\n\\t (8,780)\\t (6,490) (3,190)\\n\\n Delta 7925\\t5,045\\t 3,830 1,820 1/1\\t\\t $50m\\n\\t (11,100) (8,420) (2,000)\\n\\n\\nEnergia\\t\\t\\t\\t\\t 2/2 100%\\t\\t Baikonur\\n(Russia)\\t\\t\\t\\t\\t\\t\\t (45.6 N 63.4 E)\\n Energia 88,000\\t 80,000 ??? 2/2\\t\\t $110m\\n\\t (194,000) (176,000)\\n\\n\\nH series\\t\\t\\t\\t 22/22 100%\\t\\t Tangeshima\\n(Japan)\\t\\t\\t\\t\\t\\t\\t\\t(30.2 N 130.6 E)\\n* H-2\\t 10,500\\t 6,600\\t 4,000 0/0\\t\\t $110m\\n\\t (23,000)\\t(14,500) (8,800)\\n\\n\\nKosmos\\t\\t\\t\\t\\t 371/377 98.4%\\t Plestek\\n(Russia)\\t\\t\\t\\t\\t\\t\\t (62.8 N 40.1 E)\\n Kosmos 1100 - 1350 (2300 - 3000)\\t\\t $???\\t Kapustin Yar\\n\\t [400 km orbit ??? inclination]\\t\\t\\t (48.4 N 45.8 E)\\n\\n\\nLong March\\t\\t\\t\\t 23/25 92.0%\\t\\t Jiquan SLC\\n(China)\\t\\t\\t\\t\\t\\t\\t\\t (41 N\\t100 E)\\n* CZ-1D\\t\\t 720\\t ???\\t 200 0/0\\t\\t $10m\\t Xichang SLC\\n\\t\\t(1,590)\\t\\t (440)\\t\\t\\t (28 N\\t102 E)\\n\\t\\t\\t\\t\\t\\t\\t\\t Taiyuan SLC\\n CZ-2C\\t\\t3,200\\t 1,750 1,000 12/12\\t $20m\\t (41 N\\t100 E)\\n\\t (7,040)\\t (3,860) (2,200)\\n\\n CZ-2E\\t\\t9,200\\t ???\\t 3,370 1/1\\t\\t $40m\\n\\t (20,300)\\t\\t (7,430)\\n\\n* CZ-2E/HO 13,600\\t ???\\t 4,500 0/0\\t\\t $???\\n\\t (29,900)\\t\\t (9,900)\\n\\n CZ-3\\t\\t???\\t ???\\t 1,400 6/7\\t\\t $33m\\n\\t\\t\\t\\t (3,100)\\n\\n* CZ-3A\\t\\t???\\t ???\\t 2,500 0/0\\t\\t $???m\\n\\t\\t\\t\\t (5,500)\\n\\n CZ-4\\t\\t4,000\\t ???\\t 1,100 2/2\\t\\t $???m\\n\\t (8,800)\\t\\t (2,430)\\n\\n\\nPegasus/Taurus\\t\\t\\t\\t 2/2 100%\\t\\tPeg: B-52/L1011\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tTaur: Canaveral\\n Pegasus\\t 455\\t 365\\t 125 2/2\\t\\t $10m\\t or Vandenberg\\n\\t\\t(1,000) (800) (275)\\n\\n* Taurus\\t1,450\\t 1,180 375 0/0\\t\\t $15m\\n\\t (3,200)\\t (2,600) (830)\\n\\n\\nProton\\t\\t\\t\\t\\t 164/187 87.7%\\t Baikonour\\n(Russia)\\n Proton 20,000\\t ???\\t 5,500 164/187\\t $35-70m\\n\\t (44,100)\\t\\t (12,200)\\n\\n\\nSCOUT\\t\\t\\t\\t\\t 99/113 87.6%\\tVandenberg AFB\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tWallops FF\\n SCOUT G-1\\t 270\\t 210\\t 54\\t 13/13\\t $12m\\t(37.9 N 75.4 W)\\n\\t\\t(600)\\t (460) (120)\\t\\t\\tSan Marco\\n\\t\\t\\t\\t\\t\\t\\t\\t(2.9 S\\t40.3 E)\\n* Enhanced SCOUT 525\\t 372\\t 110\\t 0/0\\t\\t $15m\\n\\t\\t(1,160) (820) (240)\\n\\n\\nShavit\\t\\t\\t\\t\\t 2/2 100%\\t\\tPalmachim AFB\\n(Israel)\\t\\t\\t\\t\\t\\t\\t( ~31 N)\\n Shavit\\t ???\\t 160\\t ???\\t 2/2\\t\\t $22m\\n\\t\\t\\t (350)\\n\\nSpace Shuttle\\t\\t\\t\\t 37/38 97.4%\\tKennedy Space\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tCenter\\n Shuttle/SRB 23,500\\t ???\\t 5,900 37/38\\t $248m (28.5 N 81.0 W)\\n\\t (51,800)\\t\\t (13,000)\\t\\t [FY88]\\n\\n* Shuttle/ASRM 27,100\\t ???\\t ???\\t 0/0\\n\\t (59,800)\\n\\n\\nSLV\\t\\t\\t\\t\\t 2/6 33.3%\\tSHAR Center\\n(India) (400km) (900km polar)\\t\\t\\t\\t(13.9 N 80.4 E)\\n ASLV\\t\\t150\\t ???\\t ??? 0/2\\t\\t $???m\\n\\t (330)\\n\\n* PSLV\\t\\t3,000\\t 1,000 450 0/0\\t\\t $???m\\n\\t (6,600)\\t (2,200) (990)\\n\\n* GSLV\\t\\t8,000\\t ???\\t 2,500 0/0\\t\\t $???m\\n\\t (17,600)\\t\\t (5,500)\\n\\n\\nTitan\\t\\t\\t\\t\\t 160/172 93.0%\\tCape Canaveral\\n(USA)\\t\\t\\t\\t\\t\\t\\t\\tVandenberg\\n Titan II\\t ???\\t 1,905 ??? 2/2\\t\\t $43m\\n\\t\\t\\t (4,200)\\n\\n Titan III 14,515\\t ???\\t 5,000 2/3\\t\\t $140m\\n\\t (32,000)\\t\\t (11,000)\\n\\n Titan IV/SRM 17,700\\t 14,100 6,350 3/3\\t\\t $154m-$227m\\n\\t (39,000)\\t(31,100) (14,000)\\n\\n Titan IV/SRMU 21,640\\t 18,600 8,620 0/0\\t\\t $???m\\n\\t (47,700)\\t(41,000) (19,000)\\n\\n\\nVostok\\t\\t\\t\\t\\t 1358/1401 96.9%\\tBaikonur\\n(Russia)\\t\\t [650km]\\t\\t\\t\\tPlesetsk\\n Vostok\\t4,730\\t 1,840 ??? ?/149\\t $14m\\n\\t (10,400)\\t(4,060)\\n\\n Soyuz\\t\\t7,000\\t ???\\t ??? ?/944\\t $15m\\n\\t (15,400)\\n\\n Molniya\\t1500kg (3300 lbs) in\\t ?/258\\t $???M\\n\\t\\tHighly eliptical orbit\\n\\n\\nZenit\\t\\t\\t\\t\\t 12/13 92.3%\\tBaikonur\\n(Russia)\\n Zenit 13,740\\t 11,380 4,300 12/13\\t $65m\\n\\t (30,300)\\t(25,090) (9,480)\\n',\n", - " \"From: jhwitten@cs.ruu.nl (Jurriaan Wittenberg)\\nSubject: Re: images of earth\\nOrganization: Utrecht University, Dept. of Computer Science\\nLines: 27\\n\\nIn <1993Apr18.230732.27804@kakwa.ucs.ualberta.ca> ken@cs.UAlberta.CA (Huisman Kenneth M) writes:\\n\\n>I am looking for some graphic images of earth shot from space. \\n>( Preferably 24-bit color, but 256 color .gif's will do ).\\n>\\n>Anyways, if anyone knows an FTP site where I can find these, I'd greatly\\n>appreciate it if you could pass the information on. Thanks.\\n>\\n>\\nTry FTP-ing at\\n pub-info.jpl.nasa.gov (128.149.6.2) (simple dir-structure)\\n\\nand ames.arc.nasa.gov\\nat /pub/SPACE/GIF and /pub/SPACE/JPEG\\nsorry only 8 bits gifs and jpegs :-( great piccy's though (try the *x.gif\\nfiles they're semi-huge gif89a files)\\n ^^-watch out gif89a dead ahead!!!\\nGood-luck (good software to be found out-there too)\\n\\nJurriaan\\n\\nJHWITTEN@CS.RUU.NL \\n-- \\n-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-\\n|----=|=-<- - - - - - JHWITTEN@CS.RUU.NL- - - - - - - - - - - - ->-=|=----|\\n|----=|=-<-Jurriaan Wittenberg- - -Department of ComputerScience->-=|=----|\\n|____/|\\\\_________Utrecht_________________The Netherlands___________/|\\\\____|\\n\",\n", - " 'From: a137490@lehtori.cc.tut.fi (Aario Sami)\\nSubject: Re: note to Bobby M.\\nOrganization: Tampere University of Technology, Computing Centre\\nLines: 14\\nDistribution: sfnet\\nNNTP-Posting-Host: cc.tut.fi\\n\\nIn <1993Apr10.191100.16094@ultb.isc.rit.edu> snm6394@ultb.isc.rit.edu (S.N. Mozumder ) writes:\\n\\n>Insults about the atheistic genocide was totally unintentional. Under\\n>atheism, anything can happen, good or bad, including genocide.\\n\\nAnd you know why this is? Because you\\'ve conveniently _defined_ a theist as\\nsomeone who can do no wrong, and you\\'ve _defined_ people who do wrong as\\natheists. The above statement is circular (not to mention bigoting), and,\\nas such, has no value.\\n-- \\nSami Aario | \"Can you see or measure an atom? Yet you can explode\\na137490@cc.tut.fi | one. Sunlight is comprised of many atoms.\"\\n-------------------\\' \"Your stupid minds! Stupid, stupid!\"\\nEros in \"Plan 9 From Outer Space\" DISCLAIMER: I don\\'t agree with Eros.\\n',\n", - " 'Organization: Penn State University\\nFrom: \\nSubject: Re: Tools Tools Tools\\n <1993Apr1.162709.16643@osf.org> <1993Apr2.235809.3241@kronos.arc.nasa.gov>\\n <1993Apr5.165548.21479@research.nj.nec.com>\\nLines: 1\\n\\nWHAT IS THE FLANK DRIVE EVERYONES TALKING ABOUT?\\n',\n", - " \"From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: CorelDraw Bitmap to SCODAL\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM T.J. Watson Research\\nLines: 4\\n\\nMy CorelDRAW 3.0.whatever write SCODL files directly. Look under File|Export\\non the main menu. \\n\\nRick\\n\",\n", - " 'From: cb@wixer.bga.com (Cyberspace Buddha)\\nSubject: Re: CView answers\\nKeywords: Stupid Programming\\nOrganization: Real/Time Communications\\nLines: 15\\n\\nrenew@blade.stack.urc.tue.nl (Rene Walter) writes:\\n>over where it places its temp files: it just places them in its\\n>\"current directory\".\\n\\nI have to beg to differ on this point, as the batch file I use\\nto launch cview cd\\'s to the dir where cview resides and then\\ninvokes it. every time I crash cview, the 0-byte temp file\\nis found in the root dir of the drive cview is on.\\n\\njust my $0.13,\\ncb\\n-- \\n Cyberspace Buddha { Why are you looking for more knowledge when you } /(o\\\\\\n cb@wixer.bga.com \\\\ do not pay attention to what you already know? / \\\\o)/\\n cb@wixer.cactus.org } \"get out of my chair!\" -- Hillary to god { peace...\\n',\n", - " \"From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: Jet Propulsion Laboratory\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Galileo, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr23.103038.27467@bnr.ca>, agc@bmdhh286.bnr.ca (Alan Carter) writes...\\n>In article <22APR199323003578@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes:\\n>|> 3. On April 19, a NO-OP command was sent to reset the command loss timer to\\n>|> 264 hours, its planned value during this mission phase.\\n> \\n>This activity is regularly reported in Ron's interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n> \\n\\nThe Command Loss Timer is part of the fault protection scheme of the\\nspacecraft. If the Command Loss Timer ever countdowns to zero, then the\\nspacecraft assumes it has lost communications with Earth and will go \\nthrough a set of predetermined steps to try to regain contact. The\\nCommand Loss Timer is set to 264 hours and reset about once a week during \\nthe cruise phase, and is set to a lower value during an encounter phase. \\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian-Nazi Collaboration During World War II.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 51\\n\\nIn article <2BC0D53B.20378@news.service.uci.edu> tclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>Is it possible to track down \"zuma\" and determine who/what/where \"seradr\" \\n>is? \\n\\nDone. But did it change the fact that during the period of 1914 to 1920, \\nthe Armenian Government ordered, incited, assisted and participated \\nin the genocide of 2.5 million Muslim people because of race, religion\\nand national origin? By the way, you still haven\\'t corrected yourself.\\nDuring World War II Armenians were carried away with the German might and\\ncringing and fawning over the Nazis. In that zeal, the Armenian publication\\nin Germany, Hairenik, carried statements as follows:[1]\\n\\n\"Sometimes it is difficult to eradicate these poisonous elements (the Jews)\\n when they have struck deep root like a chronic disease, and when it \\n becomes necessary for a people (the Nazis) to eradicate them in an uncommon\\n method, these attempts are regarded as revolutionary. During the surgical\\n operation, the flow of blood is a natural thing.\" \\n\\nNow for a brief view of the Armenian genocide of the Muslims and Jews -\\nextracts from a letter dated December 11, 1983, published in the San\\nFrancisco Chronicle, as an answer to a letter that had been published\\nin the same journal under the signature of one B. Amarian.\\n\\n \"...We have first hand information and evidence of Armenian atrocities\\n against our people (Jews)...Members of our family witnessed the \\n murder of 148 members of our family near Erzurum, Turkey, by Armenian \\n neighbors, bent on destroying anything and anybody remotely Jewish \\n and/or Muslim. Armenians should look to their own history and see \\n the havoc they and their ancestors perpetrated upon their neighbors...\\n Armenians were in league with Hitler in the last war, on his premise \\n to grant them self government if, in return, the Armenians would \\n help exterminate Jews...Armenians were also hearty proponents of\\n the anti-Semitic acts in league with the Russian Communists. Mr. Amarian!\\n I don\\'t need your bias.\" \\n\\n Signed Elihu Ben Levi, Vacaville, California.\\n\\n[1] James G. Mandalian, \\'Dro, Drastamat Kanayan,\\' in the \\'Armenian\\n Review,\\' a Quarterly by the Hairenik Association, Inc., Summer:\\n June 1957, Vol. X, No. 2-38.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: A moment of silence for the perpetrators of the Turkish Genocide?\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 115\\n\\nIn article <48299@sdcc12.ucsd.edu> ma170saj@sdcc14.ucsd.edu (System Operator) writes:\\n\\n> April 24th is approaching, and Armenians around the world\\n>are getting ready to remember the massacres of their family members\\n\\nCelebrating in joy the cold-blooded genocide of 2.5 million Muslim \\npeople by your criminal grandparents between 1914 and 1920? Did you \\nthink that you could cover up the genocide perpetrated by your fascist\\ngrandparents against my grandparents in 1914? You\\'ve never heard of \\n\\'April 23rd\\'? \\n\\n\\n \"In Soviet Armenia today there no longer exists a single Turkish soul.\\n It is in our power to tear away the veil of illusion that some of us\\n create for ourselves. It certainly is possible to severe the artificial\\n life-support system of an imagined \\'ethnic purity\\' that some of us\\n falsely trust as the only structure that can support their heart beats \\n in this alien land.\"\\n (Sahak Melkonian - 1920 - \"Preserving the Armenian purity\") \\n\\n\\nDuring the First World War and the ensuing years - 1914-1920, \\nthe Armenian Dictatorship through a premeditated and systematic \\ngenocide, tried to complete its centuries-old policy of \\nannihilation against the Turks and Kurds by savagely murdering \\n2.5 million Muslims and deporting the rest from their 1,000 year \\nhomeland.\\n\\nThe attempt at genocide is justly regarded as the first instance\\nof Genocide in the 20th Century acted upon an entire people.\\nThis event is incontrovertibly proven by historians, government\\nand international political leaders, such as U.S. Ambassador Mark \\nBristol, William Langer, Ambassador Layard, James Barton, Stanford \\nShaw, Arthur Chester, John Dewey, Robert Dunn, Papazian, Nalbandian, \\nOhanus Appressian, Jorge Blanco Villalta, General Nikolayef, General \\nBolkovitinof, General Prjevalski, General Odiselidze, Meguerditche, \\nKazimir, Motayef, Twerdokhlebof, General Hamelin, Rawlinson, Avetis\\nAharonian, Dr. Stephan Eshnanie, Varandian, General Bronsart, Arfa,\\nDr. Hamlin, Boghos Nubar, Sarkis Atamian, Katchaznouni, Rachel \\nBortnick, Halide Edip, McCarthy, W. B. Allen, Paul Muratoff and many \\nothers.\\n\\nJ. C. Hurewitz, Professor of Government Emeritus, Former Director of\\nthe Middle East Institute (1971-1984), Columbia University.\\n\\nBernard Lewis, Cleveland E. Dodge Professor of Near Eastern History,\\nPrinceton University.\\n\\nHalil Inalcik, University Professor of Ottoman History & Member of\\nthe American Academy of Arts & Sciences, University of Chicago.\\n\\nPeter Golden, Professor of History, Rutgers University, Newark.\\n\\nStanford Shaw, Professor of History, University of California at\\nLos Angeles.\\n\\nThomas Naff, Professor of History & Director, Middle East Research\\nInstitute, University of Pennsylvania.\\n\\nRonald Jennings, Associate Professor of History & Asian Studies,\\nUniversity of Illinois.\\n\\nHoward Reed, Professor of History, University of Connecticut.\\n\\nDankwart Rustow, Distinguished University Professor of Political\\nScience, City University Graduate School, New York.\\n\\nJohn Woods, Associate Professor of Middle Eastern History, \\nUniversity of Chicago.\\n\\nJohn Masson Smith, Jr., Professor of History, University of\\nCalifornia at Berkeley.\\n\\nAlan Fisher, Professor of History, Michigan State University.\\n\\nAvigdor Levy, Professor of History, Brandeis University.\\n\\nAndreas G. E. Bodrogligetti, Professor of History, University of California\\nat Los Angeles.\\n\\nKathleen Burrill, Associate Professor of Turkish Studies, Columbia University.\\n\\nRoderic Davison, Professor of History, George Washington University.\\n\\nWalter Denny, Professor of History, University of Massachusetts.\\n\\nCaesar Farah, Professor of History, University of Minnesota.\\n\\nTom Goodrich, Professor of History, Indiana University of Pennsylvania.\\n\\nTibor Halasi-Kun, Professor Emeritus of Turkish Studies, Columbia University.\\n\\nJustin McCarthy, Professor of History, University of Louisville.\\n\\nJon Mandaville, Professor of History, Portland State University (Oregon).\\n\\nRobert Olson, Professor of History, University of Kentucky.\\n\\nMadeline Zilfi, Professor of History, University of Maryland.\\n\\nJames Stewart-Robinson, Professor of Turkish Studies, University of Michigan.\\n\\n.......so the list goes on and on and on.....\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: john@goshawk.mcc.ac.uk (John Heaton)\\nSubject: POV reboots PC after memory upgrade\\nReply-To: john@nessie.mcc.ac.uk\\nOrganization: MCC Network Unit\\nLines: 13\\n\\nUp until last week, I have been running POVray v1.0 on my 486/33 under DOS5\\nwithout any major problems. Over Easter I increased the memory from 4Meg to\\n8Meg, and found that POVray reboots the system every time under DOS5. I had\\na go at running POVray in a DOS window when running Win3.1 on the same system\\nand it now works fine, even if a lot slower. I would like to go back to \\nusing POVray directly under DOS, anyone any ideas???\\n\\nJohn\\n-- \\n John Heaton - NRS Central Administrator\\n MCC Network Unit, The University, Oxford Road, Manchester, M13-9PL\\n Phone: (+44) 61 275 6011 - FAX: (+44) 61 275 6040\\n Packet: G1YYH @ G1YYH.GB7PWY.#16.GBR.EU\\n',\n", - " 'Subject: Re: Gospel Dating\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 64\\n\\nIn article bil@okcforum.osrhe.edu (Bill Conner) writes:\\n\\n>Keith M. Ryan (kmr4@po.CWRU.edu) wrote:\\n>: \\n>: \\tWild and fanciful claims require greater evidence. If you state that \\n>: one of the books in your room is blue, I certainly do not need as much \\n>: evidence to believe than if you were to claim that there is a two headed \\n>: leapard in your bed. [ and I don\\'t mean a male lover in a leotard! ]\\n>\\n>Keith, \\n>\\n>If the issue is, \"What is Truth\" then the consequences of whatever\\n>proposition argued is irrelevent. If the issue is, \"What are the consequences\\n>if such and such -is- True\", then Truth is irrelevent. Which is it to\\n>be?\\n\\n\\tI disagree: every proposition needs a certain amount of evidence \\nand support, before one can believe it. There are a miriad of factors for \\neach individual. As we are all different, we quite obviously require \\ndifferent levels of evidence.\\n\\n\\tAs one pointed out, one\\'s history is important. While in FUSSR, one \\nmay not believe a comrade who states that he owns five pairs of blue jeans. \\nOne would need more evidence, than if one lived in the United States. The \\nonly time such a statement here would raise an eyebrow in the US, is if the \\nindividual always wear business suits, etc.\\n\\n\\tThe degree of the effect upon the world, and the strength of the \\nclaim also determine the amount of evidence necessary. When determining the \\nlevel of evidence one needs, it is most certainly relevent what the \\nconsequences of the proposition are.\\n\\n\\n\\n\\tIf the consequences of a proposition is irrelvent, please explain \\nwhy one would not accept: The electro-magnetic force of attraction between \\ntwo charged particles is inversely proportional to the cube of their \\ndistance apart. \\n\\n\\tRemember, if the consequences of the law are not relevent, then\\nwe can not use experimental evidence as a disproof. If one of the \\nconsequences of the law is an incongruency between the law and the state of \\naffairs, or an incongruency between this law and any other natural law, \\nthey are irrelevent when theorizing about the \"Truth\" of the law.\\n\\n\\tGiven that any consequences of a proposition is irrelvent, including \\nthe consequence of self-contradiction or contradiction with the state of \\naffiars, how are we ever able to judge what is true or not; let alone find\\n\"The Truth\"?\\n\\n\\n\\n\\tBy the way, what is \"Truth\"? Please define before inserting it in \\nthe conversation. Please explain what \"Truth\" or \"TRUTH\" is. I do think that \\nanything is ever known for certain. Even if there IS a \"Truth\", we could \\nnever possibly know if it were. I find the concept to be meaningless.\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", - " \"From: asper@calvin.uucp (Alan E. Asper)\\nSubject: Re: V-max handling request\\nOrganization: /usr/lib/news/organization\\nLines: 12\\nNNTP-Posting-Host: calvin.sbc.com\\n\\nIn article <1993Apr15.222224.1@ntuvax.ntu.ac.sg> ba7116326@ntuvax.ntu.ac.sg writes:\\n>hello there\\n>ican anyone who has handson experience on riding the Yamaha v-max, pls kindly\\n>comment on its handling .\\n\\nI've ridden one twice. It was designed to be a monster in a straight line,\\nwhich it is. It has nothing on an FZR400 in the corners. In fact, it just\\ndidn't handle that well at all in curves. But hey, that's not what it\\nwas designed to do.\\nMy two cents,\\nAlan\\n\\n\",\n", - " \"From: sichase@csa2.lbl.gov (SCOTT I CHASE)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Lawrence Berkeley Laboratory - Berkeley, CA, USA\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: 128.3.254.197\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article , pgf@srl02.cacs.usl.edu (Phil G. Fraering) writes...\\n>Jeff.Cook@FtCollinsCO.NCR.COM (Jeff Cook) writes:\\n>....\\n>>people in primitive tribes out in the middle of nowhere as they look up\\n>>and see a can of Budweiser flying across the sky... :-D\\n> \\n>Seen that movie already. Or one just like it.\\n>Come to think of it, they might send someone on\\n>a quest to get rid of the dang thing...\\n\\nActually, the idea, like most good ideas, comes from Jules Verne, not\\n_The Gods Must Be Crazy._ In one of his lesser known books (I can't\\nremember which one right now), the protagonists are in a balloon gondola,\\ntravelling over Africa on their way around the world in the balloon, when\\none of them drops a fob watch. They then speculate about the reaction\\nof the natives to finding such a thing, dropped straight down from heaven.\\nBut the notion is not pursued further than that.\\n\\n-Scott\\n-------------------- New .sig under construction\\nScott I. Chase Please be patient\\nSICHASE@CSA2.LBL.GOV Thank you \\n\",\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nDistribution: na\\nOrganization: University of Illinois at Urbana\\nLines: 33\\n\\nhiggins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey) writes:\\n\\n>(Josh Hopkins) writes:\\n>> I remeber reading the comment that General Dynamics was tied into this, in \\n>> connection with their proposal for an early manned landing. \\n\\n>The General Chairman is Paul Bialla, who is some official of General\\n>Dynamics.\\n\\n>The emphasis seems to be on a scaled-down, fast plan to put *people*\\n>on the Moon in an impoverished spaceflight-funding climate. You\\'d\\n>think it would be a golden opportunity to do lots of precusor work for\\n>modest money using an agressive series of robot spacecraft, but\\n>there\\'s not a hint of this in the brochure.\\n\\nIt may be that they just didn\\'t mention it, or that they actually haven\\'t \\nthought about it. I got the vague impression from their mission proposal\\nthat they weren\\'t taking a very holistic aproach to the whole thing. They\\nseemed to want to land people on the Moon by the end of the decade without \\nexplaining why, or what they would do once they got there. The only application\\nI remember from the Av Week article was placing a telescope on the Moon. That\\'s\\ngreat, but they don\\'t explain why it can\\'t be done robotically. \\n\\n>> Hrumph. They didn\\'t send _me_ anything :(\\n\\n>You\\'re not hanging out with the Right People, apparently.\\n\\nBut I\\'m a _member_. Besides Bill, I hang out with you :) \\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Freeman\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nWatch your language ASSHOLE!!!!\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", - " 'From: joe@rider.cactus.org (Joe Senner)\\nSubject: Re: Shaft-drives and Wheelies\\nReply-To: joe@rider.cactus.org\\nDistribution: rec\\nOrganization: NOT\\nLines: 9\\n\\nxlyx@vax5.cit.cornell.edu (From: xlyx@vax5.cit.cornell.edu) writes:\\n]Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\nyes.\\n\\n-- \\nJoe Senner joe@rider.cactus.org\\nAustin Area Ride Mailing List ride@rider.cactus.org\\nTexas SplatterFest Mailing List fest@rider.cactus.org\\n',\n", - " \"From: tdawson@engin.umich.edu (Chris Herringshaw)\\nSubject: WingCommanderII Graphics\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 8\\nDistribution: world\\nNNTP-Posting-Host: antithesis.engin.umich.edu\\n\\n I was wondering if anyone knows where I can get more information about\\nthe graphics in the WingCommander series, and the RealSpace system they use.\\nI think it's really awesome, and wouldn't mind being able to use similar\\nfeatures in programs. Thanks in advance.\\n\\n\\nDaemon\\n\\n\",\n", - " 'From: astein@nysernet.org (Alan Stein)\\nSubject: Re: Zionism is Racism\\nOrganization: NYSERNet, Inc.\\nLines: 10\\n\\n\"D. C. Sessions\" writes:\\n\\n># So Steve: Lets here, what IS zionism?\\n\\n> Assuming that you mean \\'hear\\', you weren\\'t \\'listening\\': he just\\n> told you, \"Zionism is Racism.\" This is a tautological statement.\\n\\nI think you are confusing \"tautological\" with \"false and misleading.\"\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n',\n", - " 'From: adam@sw.stratus.com (Mark Adam)\\nSubject: Re: space food sticks\\nOrganization: Stratus Computer, Inc.\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: paix.sw.stratus.com\\nKeywords: food\\n\\nIn article <1pr5u2$t0b@agate.berkeley.edu>, ghelf@violet.berkeley.edu (;;;;RD48) writes:\\n> The taste is hard to describe, although I remember it fondly. It was\\n> most certainly more \"candy\" than say a modern \"Power Bar.\" Sort of\\n> a toffee injected with vitamins. The chocolate Power Bar is a rough\\n> approximation of the taste. Strawberry sucked.\\n> \\n\\nPeanut butter was definitely my favorite. I don\\'t think I ever took a second bite\\nof the strawberry.\\n\\nI recently joined Nutri-System and their \"Chewy Fudge Bar\" is very reminicent of\\nthe chocolate Space Food. This is the only thing I can find that even comes close\\nthe taste. It takes you back... your taste-buds are happy and your\\nintestines are in knots... joy!\\n\\n-- \\n\\nmark ----------------------------\\n(adam@paix.sw.stratus.com)\\t|\\tMy opinions are not those of Stratus.\\n\\t\\t\\t\\t|\\tHell! I don`t even agree with myself!\\n\\n\\t\"Logic is a wreath of pretty flowers that smell bad.\"\\n',\n", - " 'From: jrwaters@eos.ncsu.edu (JACK ROGERS WATERS)\\nSubject: Re: The quest for horndom\\nOrganization: North Carolina State University, Project Eos\\nLines: 30\\n\\nIn article <1993Apr5.171807.22861@research.nj.nec.com> behanna@phoenix.syl.nj.nec.com (Chris BeHanna) writes:\\n>In article <1993Apr4.010533.26294@ncsu.edu> jrwaters@eos.ncsu.edu (JACK ROGERS WATERS) writes:\\n>>No laughing, please. I have a few questions. First of all, do I\\n>>need a relay? Are there different kinds, and if so, what kind should\\n>>I get? Both horns are 12 Volt.\\n>\\n>\\tI did some back-of-the-eyelids calculations last night, and I figure\\n>these puppies suck up about 10 amps to work at maximum efficiency (i.e., the\\n>cager might need a shovel to clean out his seat). Assumptions: 125dBA at one\\n>meter. Neglecting solid angle considerations and end effects and other\\n>acoustic niceties from the shape of the horn itself, this is a power output\\n>of 125 Watts. 125Watts/12Volts is approx. 10 Amps.\\n>\\n>\\tYes, get a relay.\\n>\\n>\\tYes, tell me how you did it (I want to do it on the ZX).\\n>\\n>Later,\\n\\nI\\'ll post a summary after I get enough information. I\\'ll include\\ntips like \"how to know when the monkey is pulling your leg\". Shouldn\\'t\\nmonkey\\'s have to be bonded and insured before they work on bikes?\\n\\nJack Waters II\\nDoD#1919\\n\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n~ I don\\'t fear the thief in the night. Its the one that comes in the ~\\n~ afternoon, when I\\'m still asleep, that I worry about. ~\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n',\n", - " 'From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Boom! Whoosh......\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 24\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n>In article <1r46ofINNdku@gap.caltech.edu> palmer@cco.caltech.edu (David M. Palmer) writes:\\n>>>orbiting billboard...\\n>>\\n>>I would just like to point out that it is much easier to place an\\n>>object at orbital altitude than it is to place it with orbital\\n>>velocity. For a target 300 km above the surface of Earth,\\n>>you need a delta-v of 2.5 km/s. \\n>Unfortunately, if you launch this from the US (or are a US citizen),\\n>you will need a launch permit from the Office of Commercial Space\\n>Transportation, and I think it may be difficult to get a permit for\\n>an antisatellite weapon... :-)\\n\\nWell Henry, we are often reminded how CANADA is not a part of the United States\\n(yet). You could have quite a commercial A-SAT, er sky-cleaning service going\\nin a few years. \\n\\n\"Toronto SkySweepers: Clear skies in 48 hours, or your money back.\"\\n\\t Discount rates available for astro-researchers. \\n\\n\\n\\n Software engineering? That\\'s like military intelligence, isn\\'t it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n',\n", - " \"From: dgempey@ucscb.UCSC.EDU (David Gordon Empey)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: University of California, Santa Cruz\\nLines: 22\\nDistribution: world\\nNNTP-Posting-Host: ucscb.ucsc.edu\\n\\n\\nIn <1993Apr23.165459.3323@coe.montana.edu> uphrrmk@gemini.oscs.montana.edu (Jack Coyote) writes:\\n\\n>In sci.astro, dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n>[ a nearly perfect parody -- needed more random CAPS]\\n\\n\\n>Thanks for the chuckle. (I loved the bit about relevance to people starving\\n>in Somalia!)\\n\\n>To those who've taken this seriously, READ THE NAME! (aloud)\\n\\nWell, I thought it must have been a joke, but I don't get the \\njoke in the name. Read it aloud? David MACaloon. David MacALLoon.\\nDavid macalOON. I don't geddit.\\n\\n-Dave Empey (speaking for himself)\\n>-- \\n>Thank you, thank you, I'll be here all week. Enjoy the buffet! \\n\\n\\n\",\n", - " 'From: anwar+@cs.cmu.edu (Anwar Mohammed)\\nSubject: Lawsuit against ADL\\nNntp-Posting-Host: gs135.sp.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon\\nLines: 142\\n\\n[It looks like Yigal has been busy...]\\n\\nRTw 04/14 2155 JEWISH GROUP SUED FOR PASSING OFFICIAL INFORMATION\\n\\n By Adrian Croft\\n SAN FRANCISCO, April 14, Reuter - Nineteen people, including the son of\\nformer Israeli Defence Minister Moshe Arens, sued the Anti-Defamation League\\n(ADL) on Wednesday, accusing the Jewish group of disclosing confidential\\nofficial information about them.\\n Richard Hirschhaut, director of the San Francisco branch of the ADL, art\\ndealer Roy Bullock and former policeman Tom Gerard were also named as defendants\\nin the suit, filed in San Francisco County Superior Court.\\n The 19 accuse the ADL of B\\'nai B\\'rith, a group dedicated to fighting\\nanti-Semitism, and the other defendants of secretly gathering information on\\nthem, including data from state and federal agencies.\\n The suit alleges they disclosed the information to others, including the\\ngovernments of Israel and South Africa, in what it alleges was a \"a massive\\nspying operation.\"\\n The action is a class-action suit. It was filed on behalf of about 12,000\\nanti-apartheid activists or opponents of Israeli policies about whom the\\nplaintiffs believe the ADL, Bullock and Gerard gathered information.\\n Representatives of the ADL in San Francisco were not immediately available\\nfor comment on Wednesday.\\n The civil suit is the first legal action arising out of allegations that\\nGerard, a former inspector in the San Francisco police intelligence unit, passed\\nconfidential police files on California political activists to a spy ring.\\n The FBI and San Francisco police are investigating the ADL, Bullock and\\nGerard over the affair and last week searched the ADL\\'s offices in San Francisco\\nand Los Angeles.\\n The suit alleges invasion of privacy under the Civil Code of California,\\nwhich prohibits the publication of information obtained from official sources.\\nIt seeks exemplary damages of at least $2,500 per person as well as other\\nunspecified damages.\\n Lawyer Pete McCloskey, a former Congresmen who is representing the\\nplaintiffs, said the 19 plaintiffs included Arab-Americans and Jews -- and his\\nwife Helen, who also had information gathered about her.\\n One of the plaintiffs is Yigal Arens, a research scientist at the\\nUniversity of Southern California who is a son of the former Israeli Defence\\nMinister.\\n Arens told the San Francisco Examiner he had seen a file the ADL kept on\\nhim in the 1980s, presumably because of his criticism of the treatment of\\nPalestinians and his position on the Israeli-occupied territories.\\n According to court documents released last week, Bullock and Gerard both\\nkept information on thousands of California political activists.\\n In the documents, a police investigator said he believed the ADL paid\\nBullock for many years to provide information and that both the league and\\nBullock received confidential information from the authorities.\\n No criminal charges have yet been filed in the case. The ADL, Bullock and\\nGerard have all denied any wrongdoing.\\n REUTER AC KG CM\\n\\n\\n\\nAPn 04/14 2202 ADL Lawsuit\\n\\nCopyright, 1993. The Associated Press. All rights reserved.\\n\\nBy CATALINA ORTIZ\\n Associated Press Writer\\n SAN FRANCISCO (AP) -- Arab-Americans and critics of Israel sued the\\nAnti-Defamation League on Wednesday, saying it invaded their privacy by\\nillegally gathering information about them through a nationwide spy network.\\n The ADL, a national group dedicated to fighting anti-Semitism, intended to\\nuse the data to discredit them because of their political views, according to\\nthe class-action lawsuit filed in San Francisco Superior Court.\\n \"None of us has been guilty of racism or Nazism or anti-Semitism or hate\\ncrimes, or any of the other `isms\\' that the ADL claims to protect against. None\\nof us is violent or criminal in any way,\" said Carol El-Shaieb, an education\\nconsultant who develops programs on Arab culture.\\n The 19 plaintiffs include Yigal Arens, son of former Israel Defense Minister\\nMoshe Arens. The younger Arens, a research scientist at the University of\\nSouthern California, said the ADL kept a file on him in the 1980s presumably\\nbecause he has criticized Israel\\'s treatment of Palestinians.\\n \"The ADL believes that anyone who is an Arab American ... or speaks\\npolitically against Israel is at least a closet anti-Semite,\" Arens said.\\n The ADL has denied any wrongdoing, but couldn\\'t comment on the lawsuit\\nbecause it hasn\\'t reviewed it, said a spokesman at the ADL\\'s New York\\nheadquarters.\\n The FBI and local police and prosecutors are investigating allegations that\\nthe ADL spied on thousands of individuals and hundreds of groups, including\\nwhite supremacist and anti-Semitic organizations, Arab-Americans, Greenpeace,\\nthe National Association for the Advancement of Colored People and San Francisco\\npublic television station KQED.\\n Some information allegedly came from confidential police and government\\nrecords, according to court documents filed in the probe and the civil lawsuit.\\nNo charges have been filed in the criminal investigation.\\n The lawsuit accuses the ADL of violating California\\'s privacy law, which\\nforbids the intentional disclosure of personal information \"not otherwise\\npublic\" from state or federal records.\\n The lawsuit claims the ADL disclosed the information to \"persons and\\nentities\" who had no compelling need to receive it. It didn\\'t elaborate.\\n Defendants include Richard Hirschhaut, director of the ADL\\'s office in San\\nFrancisco. He did not immediately return a phone call seeking comment.\\n Other defendants are San Francisco art dealer Roy Bullock, an alleged ADL\\ninformant over the past four decades, and former police officer Tom Gerard.\\nGerard allegedly tapped into law enforcement and government computers and passed\\ninformation on to Bullock.\\n Gerard, who has retired from the police force, has moved to the Philippines.\\nBullock\\'s lawyer, Richard Breakstone, said he could not comment on the lawsuit\\nbecause he had not yet studied it.\\n\\n\\n\\n\\n\\nUPwe 04/14 1956 ADL sued for allegedly spying on U.S. residents\\n\\n SAN FRANCISCO (UPI) -- A group of California residents filed suit Wednesday\\ncharging the Anti-Defamation League of B\\'nai Brith with violating their privacy\\nby spying on them for the Israeli and South African governments.\\n The class-action suit, filed in San Francisco Superior Court, charges the ADL\\nand its leadership conspired with a local police official to obtain information\\non outspoken opponents of Israeli policies towards the Occupied Territories and\\nSouth Africa\\'s apartheid policy.\\n The ADL refused to comment on the suit.\\n The suit also took aim at two top local ADL officials and retired San\\nFrancicso police officer Tom Gerard, claiming they violated privacy guarantees\\nin the state constitution and violated state confidentiality laws.\\n According to the suit, Gerard helped the ADL obtain access to confidential\\nfiles in law enforcement and government computers. Information from these files\\nwere passed to the foreign governments, the suit charges.\\n \"The whole concept of an organized collection of information based on\\npolitical viewpoints and using government agencies as a source of information is\\nabsolutely repugnant,\" said former Rep. Pete McCloskey, who is representing the\\nplaintiffs.\\n The ADL\\'s information-gathering network was revealed publicly last week when\\nthe San Francisco District Attorney\\'s Office released documents indicating the\\ngroup had spied on 12,000 people and 500 political and ethnic groups for more\\nthan 30 years.\\n \"My understanding is that they (the ADL) consider all activity that is in\\nsome sense opposed to Israel or Israeli action to be part of their responsbility\\nto investigate,\" said Arens, a research scientist at the University of Southern\\nCalifornia.\\n \"The ADL believes that anyone who is Arab American...or speaks politically\\nagainst Israel is at least a closet anti-Semite.\"\\n The FBI and the District Attorney\\'s Office have been investigating the\\noperation for four months.\\n The 19 plaintiffs in the case include Arens, the son of former Israeli\\nDefense Minister Moshe Arens.\\n In a press release, the plaintiffs said the alleged spying had damaged them\\npsychologically and economically and accused the ADL of trying to interfere with\\ntheir freedom of speech.\\n',\n", - " 'From: bds@uts.ipp-garching.mpg.de (Bruce d. Scott)\\nSubject: Re: News briefs from KH # 1026\\nOrganization: Rechenzentrum der Max-Planck-Gesellschaft in Garching\\nLines: 21\\nDistribution: world\\nNNTP-Posting-Host: uts.ipp-garching.mpg.de\\n\\nMack posted:\\n\\n\"I know nothing about statistics, but what significance does the\\nrelatively small population growth rate have where the sampling period\\nis so small (at the end of 1371)?\"\\n\\nThis is not small. A 2.7 per cent annual population growth rate implies\\na doubling in 69/2.7 \\\\approx 25 years. Can you imagine that? Most people\\nseem not able to, and that is why so many deny that this problem exists,\\nfor me most especially in the industrialised countries (low growth rates,\\nbut large environmental impact). Iran\\'s high growth rate threatens things\\nlike accelerated desertification due to intensive agriculture, deforestation,\\nand water table drop. Similar to what is going on in California (this year\\'s\\nrain won\\'t save you in Stanford!). This is probably more to blame than \\nthe current government\\'s incompetence for dropping living standards\\nin Iran.\\n-- \\nGruss,\\nDr Bruce Scott The deadliest bullshit is\\nMax-Planck-Institut fuer Plasmaphysik odorless and transparent\\nbds at spl6n1.aug.ipp-garching.mpg.de -- W Gibson\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: DC-X: Vehicle Nears Flight Test\\nArticle-I.D.: news.C51rzx.AC3\\nOrganization: University of Illinois at Urbana\\nLines: 34\\n\\nnsmca@aurora.alaska.edu writes:\\n\\n[Excellent discussion of DC-X landing techniques by Henry deleted]\\n\\n>Since the DC-X is to take off horizontal, why not land that way??\\n\\nThe DC-X will not take of horizontally. It takes of vertically. \\n\\n>Why do the Martian Landing thing.. \\n\\nFor several reasons. Vertical landings don\\'t require miles of runway and limit\\nnoise pollution. They don\\'t require wheels or wings. Just turn on the engines\\nand touch down. Of course, as Henry pointed out, vetical landings aren\\'t quite\\nthat simple.\\n\\n>Or am I missing something.. Don\\'t know to\\n>much about DC-X and such.. (overly obvious?).\\n\\nWell, to be blunt, yes. But at least you\\'re learning.\\n\\n>Why not just fall to earth like the russian crafts?? Parachute in then...\\n\\nThe Soyuz vehicles use parachutes for the descent and then fire small rockets\\njust before they hit the ground. Parachutes are, however, not especially\\npractical if you want to reuse something without much effort. The landings\\nare also not very comfortable. However, in the words of Georgy Grechko,\\n\"I prefer to have bruises, not to sink.\"\\n\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n \"Tout ce qu\\'un homme est capable d\\'imaginer, d\\'autres hommes\\n \\t seront capable de la realiser\"\\n\\t\\t\\t -Jules Verne\\n',\n", - " 'From: landis@stsci.edu (Robert Landis,S202,,)\\nSubject: Re: Space Debris\\nReply-To: landis@stsci.edu\\nOrganization: Space Telescope Science Institute, Baltimore MD\\nLines: 14\\n\\nAnother fish to check out is Richard Rast -- he works\\nfor Lockheed Missiles, but is on-site at NASA Johnson.\\n\\nNick Johnson at Kaman Sciences in Colo. Spgs and his\\nfriend, Darren McKnight at Kaman in Alexandria, VA.\\n\\nGood luck.\\n\\nR. Landis\\n\\n\"Behind every general is his wife.... and...\\n behind every Hillary is a Bill . .\"\\n\\n\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Legality of the Jewish Purchase\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 104\\n\\nIn article <1993Apr16.225910.16670@bnr.ca> zbib@bnr.ca writes:\\n>Adam Shostack writes: \\n>> Sam Zbib writes\\n> >>I\\'m surprised that you don\\'t consider the acquisition of land by\\n> >>the Jews from arabs, for the purpose of establishing an exclusive\\n> >>state, as a hostile action leading to war.\\n\\n>>\\tIt was for the purpose of establishing a state, not an\\n>> exclusive state. If the state was to be exclusive, it would not have\\n>> 400 000 arab citizens.\\n\\n>Could you please tell me what was the ethnic composition of \\n>Israel right after it was formed. \\n\\n\\t100% Israeli citizens. The ethnic composition depends on what\\nyou mean by formed. What the UN deeded to Israel? What it won in war?\\n\\n>> \\tAnd no, I do not consider the purchase of land a hostile\\n>> action. When someone wants to buy land, and someone else is willing\\n>> to sell it, at a mutually agreeable price, then that is commerce. It\\n>> is not a hostile action leading to war.\\n\\n>No one in his right mind would sell his freedom and dignity.\\n>Palestinians are no exception. Perhaps you heard about\\n>anti-trust in the business world.\\n\\n\\tWere there anti-trust laws in place in mandatory Palestine?\\nSince the answer is no, you\\'re argument, while interestingly\\nconstructed, is irrelevant. I will however, respond to a few points\\nyou assert in the course of talking about anti-trust laws.\\n\\n\\n>They were establishing a bridgehead for the European Jews.\\n\\n\\tAnd those fleeing Arab lands, where Jews were second class\\ncitizens. \\n\\n>Plus they paid fair market value, etc...\\n\\n\\tJews often paid far more than fair market value for the land\\nthey bought.\\n\\n>They did not know they were victims of an international conspiracy.\\n\\n\\tYou know, Sam, when people start talking about an\\nInternational Jewish conspiracy, its really begins to sound like\\nanti-Semitic bull.\\n\\n\\tThe reason there is no conspiracy here is quite simple.\\nZionists made no bones about what was going on. There were\\nconferences, publications, etc, all talking about creating a National\\nhome for the Jews.\\n\\n>>>Israel gave citizenship to the remaining arabs because it\\n>>>had to maintain a democratic facade (to keep the western aid\\n>>>flowing).\\n\\n>>\\tIsrael got no western aid in 1948, nor in 1949 or 50...It\\n>>still granted citizenship to those arabs who remained. And how\\n>>is granting citizenship a facade?\\n\\n>Don\\'t get me wrong. I beleive that Israel is democratic\\n>within the constraints of one dominant ethnic group (Jews).\\n[...]\\n>\\'bad\\' arabs. Personaly, I\\'ve never heard anything about the\\n>arab community in Isreal. Except that they\\'re there. So\\n>yes, they\\'re there. But as a community with history and\\n>roots, its dead.\\n\\n\\tBecause you\\'ve never heard of it, its dead? The fact is, you\\nclaimed Israel had to give arabs rights because of (non-existant)\\nInternational aid. Then you see that that argument has a hole you\\ncould drive a truck through, and again assert that Israel is only\\ndemocratic within the (unexplained) constraints of one ethnic group.\\nThe problem with that argument is that Arabs are allowed to vote for\\nwhoever they please. So, please tell me, Sam, what constraints are\\nthere on Israeli democracy that don\\'t exist in other democratic\\nstates?\\n\\n\\tI\\'ve never heard anything about the Khazakistani arab\\npopulation. Does that mean that they have no history or roots? When\\nI was at Ben Gurion university in Israel, one of my neighbors was an\\nIsraeli arab. He wasn\\'t really all that different from my other\\nneighbors. Does that make him dead or oppressed?\\n\\n\\n>I stand corrected. I meant that the jewish culture was not\\n>predominant in Palestine in recent history. I have no\\n>problem with Jerusalem having a jewish character if it were\\n>predominantly Jewish. So there. what to make of the rest\\n>Palestine?\\n\\n\\tHow recent is recent? I can probably build a case for a\\nJewish Gaza city. It would be pretty silly, but I could do it. I\\'m\\narguing not that Jerusalem is Jewish, but that land has no ethnicity.\\n\\nAdam\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: hm@cs.brown.edu (Harry Mamaysky)\\nSubject: Re: Final Solution for Gaza ?\\nIn-Reply-To: Center for Policy Research\\'s message of 23 Apr 93 15:10 PDT\\nOrganization: Dept. of Computer Science, Brown University\\nLines: 30\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n\\n Final Solution for the Gaza ghetto ?\\n ------------------------------------\\n\\n While Israeli Jews fete the uprising of the Warsaw ghetto, they\\n repress by violent means the uprising of the Gaza ghetto and\\n attempt to starve the Gazans.\\n\\n [...]\\n\\nElias should the families of the children who were stabbed in their\\nhigh school by a Palestinian \"freedom fighter\" be the ones who offer\\ntheir help to the Gazans. Perhaps it should be the families of the 18\\nIsraelis who were murdered last month by Palestinian \"freedom\\nfighters\".\\n\\nThe Jews in the Warsaw ghetto were fighting to keep themselves and\\ntheir families from being sent to Nazi gas chambers. Groups like Hamas\\nand the Islamic Jihad fight with the expressed purpose of driving all\\nJews into the sea. Perhaps, we should persuade Jewish people to help\\nthese wnderful \"freedom fighters\" attain this ultimate goal.\\n\\nMaybe the \"freedom fighters\" will choose to spare the co-operative Jews.\\nIs that what you are counting on, Elias - the pity of murderers.\\n\\nYou say your mother was Jewish. How ashamed she must be of her son. I\\nam sorry, Mrs. Davidsson.\\n\\nHarry.\\n',\n", - " 'From: DKELO@msmail.pepperdine.edu (Dan Kelo)\\nSubject: M-81 Supernova\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 7\\n\\n\\nHow \\'bout some more info on that alleged supernova in M-81?\\nI might just break out the scope for this one.\\n____________________________________________________\\n\"No sir, I don\\'t like it! \"-- Mr. Horse\\nDan Kelo dkelo@pepvax.pepperdine.edu\\n____________________________________________________\\n',\n", - " 'From: jjd1@cbnewsg.cb.att.com (james.j.dutton)\\nSubject: Re: Question: Arai Quantum-S\\nOrganization: AT&T\\nDistribution: na\\nLines: 30\\n\\nIn article amir@ms.uky.edu (Amir Sadr) writes:\\n>they way I want it to. However, I have the following problem: My chin hangs\\n>out from the bottom of the helmet. I am curious to know whether I would still\\n>have this problem if I were to switch to the extra large size? In particular,\\n>can anyone tell me \"for certain\", if the outer shell of the \"Arai Quantum-S\" in\\n>size X-large is any different (larger-rounder-etc.) than the same helmet in size\\n>large? Or if the inner padding/foam on the X-large is such that one\\'s head\\n>fits a little deeper in the helmet, and thus one\\'s chin would not stick out?\\n>This is true for the very old Arthur-Fulmer helmets that I have. Namely, my\\n>chin hangs out a little from the bottom of the Large helmet, and not at all\\n>from the X-large (but the X-large is not as snug as the large). The dealer\\n>is willing to replace the helmet at no additional cost (i.e. shipping), but\\n>I want to make sure that 1) the X-large is in fact a little bigger or linered\\n>such that my chin will not hang out and 2) how much looser will my head fit in\\n>the X-large? If anyone has recent experience with this helmet, please let me\\n>hear (E-mail) from you ASAP. Thank you so much. Amir-\\n\\nI\\'m not sure about the helmet but for chin questions you might\\nwant to write to a:\\n\\n Jay Leno\\n c/o Tonight Show \\n Burbank Calif.\\n \\nGood luck.\\n \\n================================================================================\\n Steatopygias\\'s \\'R\\' Us. doh#0000000005 That ain\\'t no Hottentot.\\n Sesquipedalian\\'s \\'R\\' Us. ZX-10. AMA#669373 DoD#564. There ain\\'t no more.\\n================================================================================\\n',\n", - " 'From: sprattli@azores.crd.ge.com (Rod Sprattling)\\nSubject: Re: Kawi Zephyr? (was Re: Vision vs GpZ 550)\\nArticle-I.D.: crdnns.C52M30.5yI\\nReply-To: sprattli@azores.crd.ge.com (Rod Sprattling)\\nOrganization: GE Corp R&D Center, Schenectady NY\\nLines: 31\\nNntp-Posting-Host: azores.crd.ge.com\\n\\nIn article <1993Apr4.135829.28141@pro-haven.cts.com>,\\nshadow@pro-haven.cts.com writes:\\n|>In <1993Apr3.094509.11448@organpipe.uug.arizona.edu>\\n|>asphaug@lpl.arizona.edu (Erik Asphaug x2773) writes:\\n|>\\n|>% By the way, the short-lived Zephyr is essentially a GpZ 550,\\n|>\\n|>Why was the \"Zephyr\" discontinued? I heard something about a problem with\\n|>the name, but I never did hear anything certain... \\n\\nFord had an anemic mid-sized car by that name back in the last decade.\\nI rented one once. That car would ruin the name \"Zephyr\" for any other\\nuse.\\n\\nRod\\n--- \\nRoderick Sprattling\\t\\t| No job too great, no time too small\\nsprattli@azores.crd.ge.com\\t| With feet to fire and back to wall.\\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n\\n \\n',\n", - " 'From: bill@xpresso.UUCP (Bill Vance)\\nSubject: TRUE \"GLOBE\", Who makes it?\\nOrganization: (N.) To be organized. But that\\'s not important right now.....\\nLines: 11\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nIt has been known for quite a while that the earth is actually more pear\\nshaped than globular/spherical. Does anyone make a \"globe\" that is accurate\\nas to actual shape, landmass configuration/Long/Lat lines etc.?\\nThanks in advance.\\n\\n--\\n\\nbill@xpresso.UUCP (Bill Vance), Bothell, WA\\nrwing!xpresso!bill\\n\\nYou listen when I xpresso, I listen When uuxpresso.......:-)\\n',\n", - " 'From: ghasting@vdoe386.vak12ed.edu (George Hastings)\\nSubject: Re: Space on other nets\\nOrganization: Virginia\\'s Public Education Network (Richmond)\\nLines: 17\\n\\n We run \"SpaceNews & Views\" on our STAREACH BBS, a local\\noperation running WWIV software with the capability to link to\\nover 1500 other BBS\\'s in the U.S.A. and Canada through WWIVNet.\\n Having just started this a couple of months ago, our sub us\\ncurrently subscribed by only about ten other boards, but more\\nare being added.\\n We get our news articles re on Internet, via ftp from NASA\\nsites, and from a variety of aerospace related periodicals. We\\nget a fair amount of questions on space topics from students\\nwho access the system.\\n ____________________________________________________________\\n| George Hastings\\t\\tghasting@vdoe386.vak12ed.edu | \\n| Space Science Teacher\\t\\t72407.22@compuserve.com | If it\\'s not\\n| Mathematics & Science Center \\tSTAREACH BBS: 804-343-6533 | FUN, it\\'s\\n| 2304 Hartman Street\\t\\tOFFICE: 804-343-6525 | probably not\\n| Richmond, VA 23223\\t\\tFAX: 804-343-6529 | SCIENCE!\\n ------------------------------------------------------------\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Lezgians Astir in Azerbaijan and Daghestan\\nSummary: asking not to fight against Armenians in Karabakh & for unification\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 106\\n\\n\\n04/19/1993 0000 Lezghis Astir\\n\\nBy NEJLA SAMMAKIA\\n Associated Press Writer\\n \\nGUSSAR, Azerbaijan (AP) -- The 600,000 Lezghis of Azerbaijan and Russia have\\nbegun clamoring for their own state, threatening turmoil in a tranquil corner \\nof the Caucasus.\\n\\nThe region has escaped the ethnic warfare of neighboring Nagorno-Karabakh,\\nAbkhazia and Ossetia, but Lezhgis could become the next minority in the former\\nSoviet Union to fight for independence.\\n\\nLezghis, who are Muslim descendents of nomadic shepherds, are angry about the\\nconscription of their young men to fight in Azerbaijan\\'s 5-year-old undeclared\\nwar with Armenia.\\n\\nThey also want to unite the Lezghi regions of Azerbaijan and Russia, which\\nwere effectively one until the breakup of the Soviet Union created national\\nborders that had been only lines on a map.\\n\\nA rally of more than 3,000 Lezghis in March to protest conscription and\\ndemand a separate \"Lezghistan\" alarmed the Azerbaijani government.\\n\\nOfficials in Baku, the capital, deny rumors that police shot six\\ndemonstrators to death. But the government announced strict security measures\\nand began cooperating with Russian authorities to control the movement of\\nLezhgis living across the border in the Dagestan region of Russia.\\n\\nVisitors to Gussar, the center of Lezhgi life, found the town quiet soon\\nafter the protest. Children played outdoors in the crisp mountain air.\\n\\nAt the Sunday bazaar, men in heavy coats and dark fur hats gathered to\\ndiscuss grievances ranging from high customs duties at the Russian border to a\\nwar they say is not theirs.\\n\\n\"I have been drafted, but I won\\'t go,\" said Shamil Kadimov, gold teeth\\nglinting in the sun. \"Why must I fight a war for the Azerbaijanis? I have\\nnothing to do with Armenia.\"\\n\\nMore than 3,000 people have died in the war, which centers on the disputed\\nterritory of Nagorno-Karabakh, about 150 miles to the southeast.\\n\\nMalik Kerimov, an official in the mayor\\'s office, said only 11 of 300 locals\\ndrafted in 1992 had served.\\n\\n\"The police don\\'t force people to go,\" he said. \"They are afraid of an\\nuprising that could be backed by Lezghis in Dagestan.\"\\n\\nAll the men agreed that police had not fired at the demonstrators, but\\ndisagreed on how the protest came about.\\n\\nSome said it occurred spontaneously when rumors spread that Azerbaijan was\\nabout to draft 1,500 men from the Gussar region, where 75,000 Lezghis live.\\n\\nOthers said the rally was ordered by Gen. Muhieddin Kahramanov, leader of the\\nLezhgi underground separatist movement, Sadval, based in Dagestan.\\n\\n\"We organized the demonstration when families came to us distraught about\\ndraft orders,\" said Kerim Babayev, a mathematics teacher who belongs to Sadval.\\n\\n\"We hope to reunite peacefully, by approaching everyone -- the Azerbaijanis, \\nthe Russians.\"\\n\\nIn the early 18th century, the Lezhgis formed two khanates, or sovereignties,\\nin what are now Azerbaijan and Dagestan. They roamed freely with their sheep\\nover the green hills and mountains between the two khanates.\\n\\nBy 1812, the Lezghi areas were joined to czarist Russia. After 1917, they\\ncame under Soviet rule. With the disintegration of the Soviet Union, the \\n600,000 Lezghis were faced for the first time with strict borders.\\n\\nAbout half remained in Dagestan and half in newly independent Azerbaijan.\\n\\n\"We have to pay customs on all this, on cars, on wine,\" complained Mais\\nTalibov, a small trader. His goods, laid out on the ground at the bazaar,\\nincluded brandy, stomach medication and plastic shoes from Dagestan.\\n\\n\"We want our own country,\" he said. \"We want to be able to move about easily.\\nBut Baku won\\'t listen to us.\"\\n\\nPhysically, it is hard for outsiders to distinguish Lezhgis from other\\nAzerbaijanis. In many villages, they live side by side, working at the same \\njobs and intermarrying to some degree.\\n\\nBut the Lezhgis have a distinctive language, a mixture of Arabic, Turkish and\\nPersian with strong guttural vowels.\\n\\nAzerbaijan officially supports the cultural preservation of its 10 largest\\nethnic minorities. The Lezghis have weekly newspapers and some elementary \\nschool classes in their language.\\n\\nAutonomy is a different question. If the Lezghis succeeded in separating from\\nAzerbaijan, they would set a precedent for other minorities, such as the \\nTalish in the south, the Tats in the nearby mountains and the Avars of eastern\\nAzerbaijan.\\n\\n\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: shz@mare.att.com (Keeper of the 'Tude)\\nSubject: Re: Riceburner Respect\\nOrganization: Office of 'Tude Licensing\\nNntp-Posting-Host: binky\\nLines: 14\\n\\nIn article <1993Apr14.190210.8996@megatek.com>, randy@megatek.com (Randy Davis) writes:\\n> |The rider (pilot?)\\n> \\n> I'm happy I've had such an effect on your choice of words, Seth.. :-)\\n\\n:-)\\n\\nT'was a time when I could get a respectable response with a posting like that.\\nRandy's post doesn't count 'cause he saw the dearth of responses and didn't \\nwant me to feel ignored (thanks Randy!).\\n\\nI was curious about this DoD thing. How do I get a number? (:-{)}\\n\\n- Roid\\n\",\n", - " \"From: jar2e@faraday.clas.Virginia.EDU (Virginia's Gentleman)\\nSubject: Re: was:Go Hezbollah!!\\nOrganization: University of Virginia\\nLines: 4\\n\\nWe really should try to be as understanding as we can for Brad, because it\\nappears killing is all he knows.\\n\\nJesse\\n\",\n", - " \"From: tmc@spartan.ac.BrockU.CA (Tim Ciceran)\\nSubject: Re: Hijaak\\nOrganization: Brock University, St. Catharines Ontario\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 15\\n\\nHaston, Donald Wayne (haston@utkvx.utk.edu) wrote:\\n: Currently, I use a shareware program called Graphics Workshop.\\n: What kinds of things will Hijaak do that these shareware programs\\n: will not do?\\n\\nI also use Graphic Workshop and the only differences that I know of are that\\nHijaak has screen capture capabilities and acn convert to/from a couple of\\nmore file formats (don't know specifically which one). In the April 13\\nissue of PC Magazine they test the twelve best selling image capture/convert\\nutilities, including Hijaak.\\n\\nTMC.\\n(tmc@spartan.ac.brocku.ca)\\n\\n\\n\",\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Abyss: breathing fluids\\nArticle-I.D.: access.1psghn$s7r\\nOrganization: Express Access Online Communications USA\\nLines: 19\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article enf021@cck.coventry.ac.uk (Achurist) writes:\\n|\\n|I believe the reason is that the lung diaphram gets too tired to pump\\n|the liquid in and out and simply stops breathing after 2-3 minutes.\\n|So if your in the vehicle ready to go they better not put you on \\n|hold, or else!! That's about it. Remember a liquid is several more times\\n|as dense as a gas by its very nature. ~10 I think, depending on the gas\\n|and liquid comparision of course!\\n\\n\\nCould you use some sort of mechanical chest compression as an aid.\\nSorta like the portable Iron Lung? Put some sort of flex tubing\\naround the 'aquanauts' chest. Cyclically compress it and it will\\npush enough on the chest wall to support breathing?????\\n\\nYou'd have to trust your breather, but in space, you have to trust\\nyour suit anyway.\\n\\npat\\n\",\n", - " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: Observation re: helmets\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 12\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 734919391@u.washington.edu, moseley@u.washington.edu (Steve L. Moseley) writes:\\n>\\n>So what should I carry if I want to comply with intelligent helmet laws?\\n\\nTake up residence in a fantasy world. \\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", - " \"From: bdunn@cco.caltech.edu (Brendan Dunn)\\nSubject: Re: Amusing atheists and agnostics\\nOrganization: California Institute of Technology, Pasadena\\nLines: 8\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\nThanks to whoever posted this wonderful parody of people who post without \\nreading the FAQ! I was laughing for a good 5 minutes. Were there any \\nparts of the FAQ that weren't mentioned? I think there might have been one\\nor two...\\n\\nPlease don't tell me this wasn't a joke. I'm not ready to hear that yet...\\n\\nBrendan\\n\",\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Syria\\'s Expansion\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 95\\n\\nIn article hallam@zeus02.desy.de writes:\\n>\\n>In article <1993Apr18.212610.5933@das.harvard.edu>, adam@endor.uucp (Adam Shostack) writes:\\n\\n>|>In article <18APR93.15729846.0076@VM1.MCGILL.CA> B8HA000 writes:\\n\\n>|>>1) Is Israel\\'s occupation of Southern Lebanon temporary?\\n\\n>|>\\tIsrael has repeatedly stated that it will leave Lebanon when\\n>|>the Lebanese government can provide guarantees that Israel will not be\\n>|>attacked from Lebanese soil, and when the Syrians leave.\\n\\n>Not acceptable. Syria and Lebanon have a right to determine if\\n>they wish to return to the situation prior to the French invasion\\n>where they were both part of the same \"mandate territory\" - read\\n>colony.\\n\\n\\tAnd Lebanon has a right to make this decision without Syrian\\ntroops controlling the country. Until Syria leaves, and free\\nelections take place, its is rediculous to claim that the Lebanese\\nwould even be involved in determining what happens to their country.\\n\\n>Israel has no right to determine what happens in Lebanon. Invading another\\n>country because you consider them a threat is precisely the way that almost\\n>all wars of aggression have started.\\n\\n\\tI expect you will agree that the same holds true for Syria\\nhaving no right to be in Lebanon?\\n\\n>|>\\tIsrael has already annexed areas taken over in the 1967 war.\\n>|>These areas are not occupied, but disputed, since there is no\\n>|>legitamate governing body. Citizenship was given to those residents\\n>|>in annexed areas who wanted citizenship.\\n\\n>The UN defines them as occupied. They are recognised as such by every\\n>nation on earth (excluding one small caribean island).\\n\\n\\tThe UN also thought Zionism is racism. That fails to make it true.\\n\\n>|>\\tThe first reason was security. A large Jewish presense makes\\n>|>it difficult for terrorists to infiltrate. A Jewish settlements also\\n>|>act as fortresses in times of war.\\n>\\n>Theyu also are a liability. We are talking about civilian encampments that\\n>would last no more than hours against tanks,\\n\\n\\tThey lasted weeks against tanks in \\'48, and stopped those\\ntanks from advancing. They also lasted days in \\'73. There is little\\nevidence for the claim that they are military liabilities.\\n\\n\\tThey evidence is there to show that when infiltrations take\\nplace over the Jordan river, the existance of large, patrolled\\nkibutzim forces terrorists into a very small area, where they are\\nusually picked up in the morning.\\n\\n>|>\\tA second reason was political. Creating \"settlements\" brought\\n>|>the arabs to the negotiation table. Had the creation of new towns and\\n>|>cities gone on another several years, there would be no place left in\\n>|>Israel where there was an arab majority. There would have been no\\n>|>land left that could be called arab.\\n\\n>Don\\'t fool yourself. It was the gulf war that brought the Israelis to the\\n>negotiating table. Once their US backers had a secure base in the gulf\\n>they insrtructed Shamir to negotiate or else.\\n\\n\\tNonsense. Israel has been trying to get its neighbors to the\\nnegotiating table for 40 years. It was the gulf war that brought the\\narabs to the table, not the Israelis.\\n\\n>|>\\tThe point is, there are many reasons people moved over the\\n>|>green line, and many reasons the government wanted them to. Whatever\\n>|>status is negotiated for disputed territories, it will not be an \"all\\n>|>or nothing\" deal. New boundaries will be drawn up by negotiation, not\\n>|>be the results of a war.\\n\\n>Unless the new boundaries drawn up are those of 48 there will be no peace.\\n>Araffat has precious little authority to agree to anything else.\\n\\n\\tNonsense. According to Arafat, Israel must be destroyed. He\\nhas never come clean and denied that this is his plan. He always\\nwaffles on what he means.\\n\\n\\t``When the Arabs set off their volcano, there will only be Arabs in\\n\\tthis part of the world. Our people will continue to fuel the torch\\n\\tof the revolution with rivers of blood until the whole of the\\n\\toccupied homeland is liberated...\\'\\'\\n\\t--- Yasser Arafat, AP, 3/12/79\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 57\\n\\nIn article bh437292@lance.colostate.edu writes:\\n\\n[most of Brads post deleted.]\\n\\n>we have come to accept and deal with, the Lebanese Resistance\\n>on the other hand is not going to stop its attacks on OCCUPYING \\n>ISRAELI SOLDIERS until they withdraw, this is the only real \\n>leverage that they have to force Israel to withdraw.\\n\\n\\tTell me, do these young men also attack Syrian troops?\\n\\n\\n>with the blood of its soldiers. If Israel is interested in peace,\\n>than it should withdraw from OUR land.\\n\\n\\tThere must be a guarantee of peace before this happens. It\\nseems that many of these Lebanese youth are unable to restrain\\nthemselves from violence, and unable to to realize that their actions\\nprolong Israels stay in South Lebanon.\\n\\n\\tIf the Lebanese army was able to maintain the peace, then\\nIsrael would not have to be there. Until it is, Israel prefers that\\nits soldiers die rather than its children.\\n\\n\\n>If Israel really wants to save some Israeli lives it would withdraw \\n>unilaterally from the so-called \"Security Zone\" before the conclusion\\n>of the peace talks. Such a move would save Israeli lives,\\n>advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n>public image abroad and give it an edge in the peace negociations \\n>since Israel can rightly claim that it is genuinely interested in \\n>peace and has already offered some important concessions.\\n\\n\\tIsrael should withdraw from Lebanon when a peace treaty is\\nsigned. Not a day before. Withdraw because of casualties would tell\\nthe Lebanese people that all they need to do to push Israel around is\\nkill a few soldiers. Its not gonna happen.\\n\\n>Along with such a withdrawal Israel could demand that Hizbollah\\n>be disarmed by the Lebanese government and warn that it will not \\n>accept any attacks against its northern cities and that if such a\\n>shelling occurs than it will consider re-taking the buffer zone\\n>and will hold the Lebanese and Syrian government responsible for it.\\n\\n\\n\\tWhy should Israel not demand this while holding the buffer\\nzone? It seems to me that the better bargaining position is while\\nholding your neighbors land. If Lebanon were willing to agree to\\nthose conditions, Israel would quite probably have left already.\\nUnfortunately, it doesn\\'t seem that the Lebanese can disarm the\\nHizbolah, and maintain the peace.\\n\\nAdam\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: eylerken@stein.u.washington.edu (Ken Eyler)\\nSubject: stand alone editing suite.\\nArticle-I.D.: shelley.1qvkaeINNgat\\nDistribution: world\\nOrganization: University of Washington, Seattle\\nLines: 12\\nNNTP-Posting-Host: stein.u.washington.edu\\n\\nI need some help. We are upgrading our animation/video editing stand. We\\nare looking into the different type of setups for A/B roll and a cuts only\\nstation. We would like this to be controlled by a computer ( brand doesnt matter but maybe MAC, or AMIGA). Low end to high end system setups would be very\\nhelpful. If you have a system or use a system that might be of use, could you\\nmail me your system requirements, what it is used for, and all the hardware and\\nsoftware that will be necessary to set the system up. If you need more \\ninfo, you can mail me at eylerken@u.washington.edu\\n\\nthanks in advance.\\n\\n:ken\\n:eylerken@u.washington.edu\\n',\n", - " 'From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: RE: was:Go Hezbollah!\\nOrganization: Unocal Corporation\\nLines: 68\\n\\n\\nhernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n\\n>I just thought that I would make it clear, in case you are not familiar with\\n>my past postings on this subject; I do not condone attacks on civilians. \\n>Hezbollah and other Lebanese Resistance fighters are skilled at precision\\n>bombing of SLA and Israeli targets. I find such methods to be far more\\n>restrained and responsible than the Israeli method of shelling and bombing\\n>villages with the hope that a Hezbollah member will be killed along with\\n>the civilians murdered. I do not consider the killing of combatants to be\\n>murder. Soldiers are trained to die for their country. Three IDF soldiers\\n>did their duty the other day. These men need not have died if their government\\n>had kept them on Israeli soil. \\n\\nIs there any Israeli a civilian, in your opinion ?\\n\\nNow, I do not condone myself bombing villages, any kind of villages.\\nBut you claim these are villages with civilians, and Iraelis claim they are \\ncamps filled with terrorists. You claim that israelis shell the villages with the\\n\\'hope\\' of finding a terrorist or so. If they kill one, fine, if not, too bad, \\ncivilians die, right ? I am not so sure. \\n\\nAs somebody wrote, Saddam Hussein had no problems using civilians in disgusting\\nmanner. And he also claimed \\'civilians murdered\\'. Let me ask you, isn\\'t there \\nat least a slight chance that you (not only, and the question is very general, \\nno insult) are doing a similar type of propaganda in respect to civilians in\\nsouthern Lebanon ?\\n\\nNow, a lot people who post here consider \\'Israeli soil\\' kind of Mediteranean sea.\\nHow do you define Israeli soil ? From what you say, if you do not clearly \\nrecognize the state of Israel, you condone killing israelis anywhere.\\n\\n>Dorin, are you aware that the IDF sent helicopters and gun-boats up the\\n>coast of Lebanon the other day and rocketted a Palestinian refugee north of\\n>Beirut. Perhaps I should ask YOU \"what qualifies a person for murder?\":\\n\\nI do not know what was the pupose of the action you describe. If it was \\nto kill civilians (I doubt), I certainly DO NOT CONDONE IT. If civilians were \\nkilled, i do not condone it. \\n\\n>That they are Palestinian?\\n\\n>That they are children and may grow up to be \"terrorists\"?\\n\\n>That they are female and may give birth to little terrorists?\\n\\n>Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nMr. Hernlem, it was YOU, not ME, who was showing a huge satisfaction for 3 \\nisraelis (human beings by most standards, Don\\'t know about your standards) killed.\\n\\nIf you ask me those questions, I will have no problem answering (not with a \\nquestion, as you did) : No, NOBODY is qualified candidate for murder, nothing\\njustifies murder. I have the feeling that you may be able yourself to make\\nsimilar statements, maybe after eliminating all Israelis, jews, ? Am I wrong ?\\n\\n\\nNow tell me, did you also condone Saddam\\'s scuds on israeli \\'soldiers\\' in, let\\'s\\nsay, Tel Aviv ? From what I understand, a lot of palestineans cheered. What does\\nit show? It does not qualify for freedom fighting to me ? But again, I may be \\nwrong, and the jewish controlled media distorted the information, and I am just\\nan ignorant victim of the media, like most of us.\\n\\n\\nDorin\\n\\n\\n',\n", - " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Dreams and Degrees (was Re: Crazy? or just Imaginitive?)\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 47\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , mt90dac@brunel.ac.uk (Del Cotter) writes:\\n> <1993Apr21.205403.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n>> Sorry if I do not have the big degrees\\n>>and such, but I think (I might be wrong, to error is human) I have something\\n>>that is in many ways just as important, I have imagination, dreams. And without\\n>>dreams all the knowledge is worthless.. \\n> \\n> Oh, and us with the big degrees don\\'t got imagination, huh?\\n> \\n> The alleged dichotomy between imagination and knowledge is one of the most\\n> pernicious fallacys of the New Age. Michael, thanks for the generous\\n> offer, but we have quite enough dreams of our own, thank you.\\n\\nWell said.\\n \\n> You, on the other hand, are letting your own dreams go to waste by\\n> failing to get the maths/thermodynamics/chemistry/(your choices here)\\n> which would give your imagination wings.\\n> \\n> Just to show this isn\\'t a flame, I leave you with a quote from _Invasion of \\n> the Body Snatchers_:\\n> \\n> \"Become one of us; it\\'s not so bad, you know\"\\n\\nOkay, Del, so Michael was being unfair, but you are being unfair back. \\nHe is taking college courses now, I presume he is studying hard, and\\nhis postings reveal that he is *somewhat* hip to the technical issues\\nof astronautics. Plus, he is attentively following the erudite\\ndiscourse of the Big Brains who post to sci.space; is it not\\ninevitable that he will get a splendid technical education from\\nreading the likes of you and me? [1]\\n\\nLike others involved in sci.space, Mr. Adams shows symptoms of being a\\nfledgling member of the technoculture, and I think he\\'s soaking it up\\nfast. I was a young guy with dreams once, and they led me to get a\\ntechnical education to follow them up. Too bad I wound up in an\\nassembly-line job stamping out identical neutrinos day after day...\\n(-:\\n\\n[1] Though rumors persist that Del and I are both pseudonyms of Fred\\nMcCall.\\n\\nBill Higgins, Beam Jockey | \"We\\'ll see you\\nFermi National Accelerator Laboratory | at White Sands in June. \\nBitnet: HIGGINS@FNAL.BITNET | You bring your view-graphs, \\nInternet: HIGGINS@FNAL.FNAL.GOV | and I\\'ll bring my rocketship.\" \\nSPAN/Hepnet: 43011::HIGGINS | --Col. Pete Worden on the DC-X\\n',\n", - " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Bill Conner:\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 6\\n\\n\\nCould you explain what any of this pertains to? Is this a position\\nstatement on something or typing practice? And why are you using my\\nname, do you think this relates to anything I've said and if so, what.\\n\\nBill\\n\",\n", - " 'From: bsaffo01@cad.gmeds.com (Brian H. Safford)\\nSubject: IGES Viewer for DOS/Windows\\nOrganization: EDS/Cadillac\\nLines: 10\\nNNTP-Posting-Host: ccadmn1.cad.gmeds.com\\n\\nAnybody know of an IGES Viewer for DOS/Windows? I need to be able to display \\nComputerVision IGES files on a PC running Windows 3.1. Thanks in advance.\\n\\n+-----------------------------------------------------------+\\n| Brian H. Safford EMAIL: bsaffo01@cad.gmeds.com |\\n| Electronic Data Systems PHONE: (313) 696-6302 |\\n+-----------------------------------------------------------+\\n| NOTE: The views and opinions expressed herein are mine, |\\n| and DO NOT reflect those of Electronic Data Systems Corp. |\\n+-----------------------------------------------------------+\\n',\n", - " \"From: geoffrey@cosc.canterbury.ac.nz (Geoff Thomas)\\nSubject: Re: Help! 256 colors display in C.\\nKeywords: graphics\\nArticle-I.D.: cantua.C533EM.Cv7\\nOrganization: University of Canterbury, Christchurch, New Zealand\\nLines: 21\\nNntp-Posting-Host: huia.canterbury.ac.nz\\n\\n\\nYou'll probably have to set the palette up before you try drawing\\nin the new colours.\\n\\nUse the bios interrupt calls to set the r g & b values (in the range\\nfrom 0-63 for most cards) for a particular palette colour (in the\\nrange from 0-255 for 256 colour modes).\\n\\nThen you should be able to draw pixels in those palette values and\\nthe result should be ok.\\n\\nYou might have to do a bit of colourmap compressing if you have\\nmore than 256 unique rgb triplets, for a 256 colour mode.\\n\\n\\nGeoff Thomas\\t\\t\\tgeoffrey@cosc.canterbury.ac.nz\\nComputer Science Dept.\\nUniversity of Canterbury\\nPrivate Bag\\t\\t\\t\\t+-------+\\nChristchurch\\t\\t\\t\\t| Oook! |\\nNew Zealand\\t\\t\\t\\t+-------+\\n\",\n", - " 'From: joachim@kih.no (joachim lous)\\nSubject: Re: XV for MS-DOS !!!\\nOrganization: Kongsberg Ingeniorhogskole\\nLines: 20\\nNNTP-Posting-Host: samson.kih.no\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\nNOE-MAILADDRESS@eicn.etna.ch wrote:\\n> I\\'m sorry for...\\n\\n> 1) The late of the answer but I couldn\\'t find xv221 for msdos \\'cause \\n> \\tI forgot the address...but I\\'ve retrieve it..\\n\\n> 2) Posting this answer here in comp.graphics \\'cause I can\\'t use e-mail,\\n> ^^^ not yet....\\n\\n> 2) My bad english \\'cause I\\'m a Swiss and my language is french....\\n ^^^\\nIf french is your language, try counting in french in stead, maybe\\nit will work better.... :-)\\n\\n _______________________________\\n / _ L* / _ / . / _ /_ \"One thing is for sure: The sheep\\n / _) /()(/(/)//)) /_ ()(/_) / / Is NOT a creature of the earth.\"\\n / \\\\_)~ (/ Joachim@kih.no / / \\n/_______________________________/ / -The back-masking on \\'Haaden II\\'\\n /_______________________________/ from \\'Exposure\\' by Robert Fripp.\\n',\n", - " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: Genocide is Caused by Atheism\\nOrganization: Cookamunga Tourist Bureau\\nLines: 26\\n\\nIn article <1993Apr19.113255.27550@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n> >Fred, the problem with such reasoning is that for us non-believers\\n> >we need a better measurement tool to state that person A is a\\n> >real Muslim/Christian, while person B is not. As I know there are\\n> >no such tools, and anyone could believe in a religion, misuse its\\n> >power and otherwise make bad PR. It clearly shows the sore points\\n> >with religion -- in other words show me a movement that can\\'t spin\\n> >off Khomeinis, Stalins, Davidians, Husseins... *).\\n> \\n> I don\\'t think such a system exists. I think the reason for that is an\\n> condition known as \"free will\". We humans have got it. Anybody, using\\n> their free-will, can tell lies and half-truths about *any* system and\\n> thus abuse it for their own ends.\\n\\nI don\\'t think such tools exist either. In addition, there\\'s no such\\nthing as objective information. All together, it looks like religion\\nand any doctrines could be freely misused to whatever purpose.\\n\\nThis all reminds me of Descartes\\' whispering deamon. You can\\'t trust\\nanything. So why bother.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", - " 'From: pbenson@ecst.csuchico.edu (Paul A. Benson)\\nSubject: CD-ROM Indexes available\\nOrganization: California State University, Chico\\nLines: 6\\nNNTP-Posting-Host: cscihp.ecst.csuchico.edu\\n\\nThe file and contents listings for:\\n\\nKnowledge Media Resource Library: Graphics 1\\nKnowledge Media Resource Library: Audio 1\\n\\nare now available for anonymous FTP from cdrom.com\\n',\n", - " 'From: terziogl@ee.rochester.edu (Esin Terzioglu)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: Univ of Rochester, College of Engineering and Applied Science\\nLines: 33\\n\\nIn article <1993Apr19.155856.8260@kpc.com> henrik@quayle.kpc.com writes:\\n>In article <1993Apr17.185118.10792@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n>|> In article <1993Apr16.195452.21375@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>|> >04/16/93 1045 ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\n>|> >\\n>|> \\n>|> Ermenistan kasiniyor...\\n>|> \\n>|> Let me translate for everyone else before the public traslation service gets\\n>|> into it\\t: Armenia is getting itchy. \\n>|> \\n>|> Esin.\\n>\\n>\\n>Let me clearify Mr. Turkish;\\n>\\n>ARMENIA is NOT getting \"itchy\". SHE is simply LETTING the WORLD KNOW that SHE\\n>WILL NO LONGER sit there QUIET and LET TURKS get away with their FAMOUS \\n>tricks. Armenians DO REMEMBER of the TURKISH invasion of the Greek island of\\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n>CYPRESS WHILE the world simply WATCHED. \\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\nYour ignorance is obvious from your posting. \\n\\n1) Cyprus was an INDEPENDENT country with Turkish/Greek inhabitants (NOT a \\n Greek island like your ignorant posting claims)\\n\\n2) The name should be Cyprus (in English)\\n\\nnext time read and learn before you post. \\n\\nEsin.\\n',\n", - " \"From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: islamic authority over women\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 30\\n\\nSCOTT D. SAUYET (SSAUYET@eagle.wesleyan.edu) wrote:\\n\\n: Regardless of people's hidden motivations, the stated reasons for many\\n: wars include religion. Of course you can always claim that the REAL\\n: reason was economics, politics, ethnic strife, or whatever. But the\\n: fact remains that the justification for many wars has been to conquer\\n: the heathens.\\n\\n: If you want to say, for instance, that economics was the chief cause\\n: of the Crusades, you could certainly make that point. But someone\\n: could come along and demonstrate that it was REALLY something else, in\\n: the same manner you show that it was REALLY not religion. You could\\n: in this manner eliminate all possible causes for the Crusades.\\n: \\n\\nScott,\\n\\nI don't have to make outrageous claims about religion's affecting and\\neffecting history, for the purpsoe of a.a, all I have to do point out\\nthat many claims made here are wrong and do nothing to validate\\natheism. At no time have I made any statement that religion was the\\nsole cause of anything, what I have done is point out that those who\\ndo make that kind of claim are mistaken, usually deliberately. \\n\\nTo credit religion with the awesome power to dominate history is to\\nmisunderstand human nature, the function of religion and of course,\\nhistory. I believe that those who distort history in this way know\\nexaclty what they're doing, and do it only for affect.\\n\\nBill\\n\",\n", - " 'From: declrckd@rtsg.mot.com (Dan J. Declerck)\\nSubject: Re: edu breaths\\nNntp-Posting-Host: corolla17\\nOrganization: Motorola Inc., Cellular Infrastructure Group\\nLines: 53\\n\\nIn article <1993Apr15.221024.5926@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>In article <1993Apr15.214910.5676@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n>|In article <1993Apr15.003749.15710@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>|>In article <1993Apr14.220252.14731@rtsg.mot.com> declrckd@rtsg.mot.com (Dan J. Declerck) writes:\\n>|>|\\n>|>|The difference of opinion, and difference in motorcycling between the sport-bike\\n>|>|riders and the cruiser-bike riders. \\n>|>\\n>|>That difference is only in the minds of certain closed-minded individuals. I\\n>|>have had the very best motorcycling times with riders of \"cruiser\" \\n>|>bikes (hi Don, Eddie!), yet I ride anything but.\\n>|\\n>|Continuously, on this forum, and on the street, you find quite a difference\\n>|between the opinions of what motorcycling is to different individuals.\\n>\\n>Yes, yes, yes. Motorcycling is slightly different to each and every one of us. This\\n>is the nature of people, and one of the beauties of the sport. \\n>\\n>|Cruiser-bike riders have a different view of motorcycling than those of sport bike riders\\n>|(what they like and dislike about motorcycling). This is not closed-minded. \\n>\\n>And what view exactly is it that every single rider of cruiser bikes holds, a veiw\\n>that, of course, no sport-bike rider could possibly hold? Please quantify your\\n>generalization for us. Careful, now, you\\'re trying to pigeonhole a WHOLE bunch\\n>of people.\\n>\\nThat plastic bodywork is useless. That torque, and an upright riding position is\\nbetter than a slightly or radically forward riding position combined with a high-rpm\\nlow torque motor.\\n\\nTo a cruiser-motorcyclist, chrome has some importance. To sport-bike motorcyclists\\nchrome has very little impact on buying choice.\\n\\nUnless motivated solely by price, these are the criteria each rider uses to select\\nthe vehicle of choice. \\n\\nTo ignore these, as well as other criteria, would be insensitive. In other words,\\nno one motorcycle can fufill the requirements that a sport-bike rider and a cruiser\\nrider may have.(sometimes it\\'s hard for *any* motorcycle to fufill a person\\'s requirements)\\n \\nYou\\'re fishing for flames, Dave.\\n\\nThis difference of opinion is analogous to the difference\\nbetween Sports-car owners, and luxury-car owners. \\n\\nThis is a moot conversation.\\n\\n\\n-- \\n=> Dan DeClerck | EMAIL: declrckd@rtsg.mot.com <=\\n=> Motorola Cellular APD | <=\\n=>\"Friends don\\'t let friends wear neon\"| Phone: (708) 632-4596 <=\\n----------------------------------------------------------------------------\\n',\n", - " 'From: rj3s@Virginia.EDU (\"Get thee to a nunnery.....\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 32\\n\\neshneken@ux4.cso.uiuc.edu writes:\\n> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n> \\n> >I think the Israeli press might be a tad bit biased in\\n> >reporting the events. I doubt the Propaganda machine of Goering\\n> >reported accurately on what was happening in Germany. It is\\n> >interesting that you are basing the truth on Israeli propaganda.\\n> \\n> If you consider Israeli reporting of events in Israel to be propoganda, then \\n> consider the Washington Post\\'s handling of American events to be propoganda\\n> too. What makes the Israeli press inherently biased in your opinion? I\\n> wouldn\\'t compare it to Nazi propoganda either. Unless you want to provide\\n> some evidence of Israeli inaccuracies or parallels to Nazism, I suggest you \\n> keep your mouth shut. I\\'m sick and tired of all you anti-semites comparing\\n> Israel to the Nazis (and yes, in my opinion, if you compare Israel to the Nazis\\n> you are an anti-semite because you know damn well it isn\\'t true and you are\\n> just trying to discredit Israel).\\n> \\n> Ed.\\n> \\nYou know ed,... You\\'re right! Andi shouldn\\'t be comparing\\nIsrael to the Nazis. The Israelis are much worse than the\\nNazis ever were anyway. The Nazis did a lot of good for\\nGermany, and they would have succeeded if it weren\\'t for the\\ndamn Jews. The Holocaust never happened anyway. Ample\\nevidence given by George Schafer at Harvard, Dept. of History,\\nand even by Randolph Higgins at NYU, have shown that the\\nHolocaust was just a semitic conspiracy created to obtain\\nsympathy to piush for the creation of Israel.\\n\\n\\n\\t\\t\\t\\t\\t\\n',\n", - " 'From: aa429@freenet.carleton.ca (Terry Ford)\\nSubject: A flawed propulsion system: Space Shuttle\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 13\\n\\n\\n\\nFor an essay, I am writing about the space shuttle and a need for a better\\npropulsion system. Through research, I have found that it is rather clumsy \\n(i.e. all the checks/tests before launch), the safety hazards (\"sitting\\non a hydrogen bomb\"), etc.. If you have any beefs about the current\\nspace shuttle program Re: propulsion, please send me your ideas.\\n\\nThanks a lot.\\n\\n--\\nTerry Ford [aa429@freenet.carleton.ca]\\nNepean, Ontario, Canada.\\n',\n", - " 'From: IMAGING.CLUB@OFFICE.WANG.COM (\"Imaging Club\")\\nSubject: Re: WANTED: Info on Image Databases\\nOrganization: Mail to News Gateway at Wang Labs\\nLines: 14\\n\\nPadmini Srivathsa in Wisconsin writes:\\n\\n>I would like references to any introductory material on image\\n>databases.\\n\\nI\\'d be happy to US (international) Snail mail technical information on\\nimaging databases to anyone who needs it, if you can provide me with your\\naddress for hard copy (not Email). We\\'re focusing mostly on Open PACE,\\nOracle, Ingres, Adabas, Sybase, and Gupta, regarding our imaging\\ndatabases installed. (We have over 1,000 installed and in production now;\\nmost of the new ones going in are on Novell LANs, the RS/6000, and now HP\\nUnix workstations.) We work with Visual Basic too.\\n\\nMichael.Willett@OFFICE.Wang.com\\n',\n", - " 'From: inu530n@lindblat.cc.monash.edu.au (I Rachmat)\\nSubject: Fractal compression\\nSummary: looking for good reference\\nKeywords: fractal\\nOrganization: Monash University, Melb., Australia.\\nLines: 6\\n\\nHi... can anybody give me book or reference title to give me a start at \\nfractal image compression technique. Helps will be appreciated... thanx\\n\\ninu530n@lindblat.cc.monash.edu.au\\ninu530n@aurora.cc.monash.edu.au\\n\\n',\n", - " 'From: isaackuo@skippy.berkeley.edu (Isaac Kuo)\\nSubject: Re: Abyss--breathing fluids\\nOrganization: U.C. Berkeley Math. Department.\\nLines: 19\\nNNTP-Posting-Host: skippy.berkeley.edu\\n\\nAre breathable liquids possible?\\n\\nI remember seeing an old Nova or The Nature of Things where this idea was\\ntouched upon (it might have been some other TV show). If nothing else, I know\\nsuch liquids ARE possible because...\\n\\nThey showed a large glass full of this liquid, and put a white mouse (rat?) in\\nit. Since the liquid was not dense, the mouse would float, so it was held down\\nby tongs clutching its tail. The thing struggled quite a bit, but it was\\ncertainly held down long enough so that it was breathing the liquid. It never\\ndid slow down in its frantic attempts to swim to the top.\\n\\nNow, this may not have been the most humane of demonstrations, but it certainly\\nshows breathable liquids can be made.\\n-- \\n*Isaac Kuo (isaackuo@math.berkeley.edu)\\t* ___\\n*\\t\\t\\t\\t\\t* _____/_o_\\\\_____\\n*\\tTwinkle, twinkle, little .sig,\\t*(==(/_______\\\\)==)\\n*\\tKeep it less than 5 lines big.\\t* \\\\==\\\\/ \\\\/==/\\n',\n", - " 'From: dkennett@fraser.sfu.ca (Daniel Kennett)\\nSubject: [POV] Having trouble bump mapping a gif to a sphere\\nSummary: Having trouble bump mapping a gif to a spher in POVray\\nKeywords: bump map\\nOrganization: Simon Fraser University, Burnaby, B.C., Canada\\nLines: 44\\n\\n\\nHello,\\n I\\'ve been trying to bump map a gif onto a sphere for a while and I\\ncan\\'t seem to get it to work. Image mapping works, but not bump\\nmapping. Here\\'s a simple file I was working with, could some kind\\nsoul tell me whats wrong with this.....\\n\\n#include \"colors.inc\"\\n#include \"shapes.inc\"\\n#include \"textures.inc\"\\n \\ncamera {\\n location <0 1 -3>\\n direction <0 0 1.5>\\n up <0 1 0>\\n right <1.33 0 0>\\n look_at <0 1 2>\\n}\\n \\nobject { light_source { <2 4 -3> color White }\\n }\\n \\nobject {\\n sphere { <0 1 2> 1 }\\n texture {\\n bump_map { 1 <0 1 2> gif \"surf.gif\"}\\n }\\n}\\n\\nNOTE: surf.gif is a plasma fractal from Fractint that is using the\\nlandscape palette map.\\n\\n \\n\\tThanks in advance\\n\\t -Daniel-\\n\\n*======================================================================* \\n| Daniel Kennett\\t \\t\\t |\\n| dkennett@sfu.ca \\t\\t \\t\\t\\t |\\n| \"Our minds are finite, and yet even in those circumstances of |\\n| finitude, we are surrounded by possibilities that are infinite, and |\\n| the purpose of human life is to grasp as much as we can out of that |\\n| infinitude.\" - Alfred North Whitehead | \\n*======================================================================*\\n',\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: The Department of Redundancy Department\\nLines: 39\\n\\nIn article bh437292@lance.colostate.edu writes:\\n\\n>Most of the \\n>people in my village are regular inhabitants that go about their daily\\n>business, some work in the fields, some own small shops, others are\\n>older men that go to the coffe shop and drink coffee. Is that so hard to\\n>imagine ????\\n\\n...quickly followed by...\\n\\n>SOME young men, usually aged between 17 to 30 years are members of\\n>the Lebanese resistance. Even the inhabitants of the village do not \\n>know who these are, they are secretive about it, but most people often\\n>suspect who they are and what they are up to. \\n\\nThis is the standard method for claiming non-combatant status, even\\nfor the commanders of combat.\\n\\n>These young men are\\n>supported financially by Iran most of the time. They sneak arms and\\n>ammunitions into the occupied zone where they set up booby traps\\n>for Israeli patrols. Every time an Israeli soldier is killed or injured\\n>by these traps, Israel retalliates by indiscriminately bombing villages\\n>of their own choosing often killing only innocent civilians. \\n\\n\"Innocent civilians\"??? Like the ones who set up the booby traps or\\nengaged in shoot-outs with soldiers or attack them with grenades or\\naxes? \\n\\n>We are now accustomed to Israeli tactics, and we figure that this is \\n\\nAnd the rest of the world is getting used to Arab tactics of claiming\\ninnocence for even the most guilty of the vile murderers among them.\\nKeep it up long enough and it will backfire but good.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: ddeciacco@cix.compulink.co.uk (David Deciacco)\\nSubject: Re: Another CVIEW question (wa\\nReply-To: ddeciacco@cix.compulink.co.uk\\nLines: 5\\n\\n\\nIn-Reply-To: <20APR199312262902@rigel.tamu.edu> lmp8913@rigel.tamu.edu (PRESTON, LISA M)\\n\\nI have a trident card and fullview works real gif jpg try it#\\ndave\\n',\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Morality? (was Re: I don\\'t expect the lion to know, or not know anything of the kind.\\n>In fact, I don\\'t have any evidence that lions ever consider such \\n>issues.\\n>And that, of course, is why I don\\'t think you can assign moral\\n>significance to the instinctive behaviour of lions.\\n\\nWhat I\\'ve been saying is that moral behavior is likely the null behavior.\\nThat is, it doesn\\'t take much work to be moral, but it certainly does to\\nbe immoral (in some cases). Also, I\\'ve said that morality is a remnant\\nof evolution. Our moral system is based on concepts well practiced in\\nthe animal kingdom.\\n\\n>>So you are basically saying that you think a \"moral\" is an undefinable\\n>>term, and that \"moral systems\" don\\'t exist? If we can\\'t agree on a\\n>>definition of these terms, then how can we hope to discuss them?\\n>No, it\\'s perfectly clear that I am saying that I know what a moral\\n>is in *my* system, but that I can\\'t speak for other people.\\n\\nBut, this doesn\\'t get us anywhere. Your particular beliefs are irrelevant\\nunless you can share them or discuss them...\\n\\nkeith\\n',\n", - " 'From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: SSAUYET@eagle.wesleyan.edu (SCOTT D. SAUYET) writes:\\n>In <1qabe7INNaff@gap.caltech.edu> keith@cco.caltech.edu writes:\\n>\\n>>> Chimpanzees fight wars over land.\\n>> \\n>> But chimps are almost human...\\n>> \\n>> keith\\n>\\n>Could it be? This is the last message from Mr. Schneider, and it\\'s\\n>more than three days old!\\n>\\n>Are these his final words? (And how many here would find that\\n>appropriate?) Or is it just that finals got in the way?\\n>\\n\\n No. The christians were leary of having an atheist spokesman\\n (seems so clandestine, and all that), so they had him removed. Of\\n course, Keith is busy explaining to his fellow captives how he\\n isn\\'t really being persecuted, since (after all) they *are*\\n feeding him, and any resistance on his part would only be viewed\\n as trouble making. \\n\\n I understand he did make a bit of a fuss when they tatooed \"In God\\n We Trust\" on his forehead, though.\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n',\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Orbital RepairStation\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 20\\n\\nIn article henry@zoo.toronto.edu (Henry Spencer) writes:\\n\\n>The biggest problem with this is that all orbits are not alike. It can\\n>actually be more expensive to reach a satellite from another orbit than\\n>from the ground. \\n\\nBut with cheaper fuel from space based sources it will be cheaper to \\nreach more orbits than from the ground.\\n\\nAlso remember, that the presence of a repair/supply facility adds value\\nto the space around it. If you can put your satellite in an orbit where it\\ncan be reached by a ready source of supply you can make it cheaper and gain\\nbenefit from economies of scale.\\n\\n Allen\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------58 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " \"From: joth@ersys.edmonton.ab.ca (Joe Tham)\\nSubject: Where can I find SIPP?\\nOrganization: Edmonton Remote Systems #2, Edmonton, AB, Canada\\nLines: 11\\n\\n I recently got a file describing a library of rendering routines \\ncalled SIPP (SImple Polygon Processor). Could anyone tell me where I can \\nFTP the source code and which is the newest version around?\\n Also, I've never used Renderman so I was wondering if Renderman \\nis like SIPP? ie. a library of rendering routines which one uses to make \\na program that creates the image...\\n\\n Thanks, Joe Tham\\n\\n--\\nJoe Tham joth@ersys.edmonton.ab.ca \\n\",\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Russian Email Contacts.\\nLines: 15\\nNntp-Posting-Host: acad3.alaska.edu\\nOrganization: University of Alaska Fairbanks\\n\\nDoes anyone have any Russian Contacts (Space or other) or contacts in the old\\nUSSR/SU or Eastern Europe?\\n\\nPost them here so we all can talk to them and ask questions..\\nI think the cost of email is high, so we would have to keep the content to\\nspecific topics and such..\\n\\nBasically if we want to save Russia and such, then we need to make contacts,\\ncontacts are a form of info, so lets get informing.\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\\nAlive in Nome, Alaska (once called Russian America).\\n\\n\",\n", - " 'From: warren@nysernet.org (Warren Burstein)\\nSubject: Re: To be exact, 2.5 million Muslims were exterminated by the Armenians.\\nOrganization: NYSERNet, Inc.\\nLines: 34\\n\\nac = In <9304202017@zuma.UUCP> sera@zuma.UUCP (Serdar Argic)\\npl = linden@positive.Eng.Sun.COM (Peter van der Linden)\\n\\npl: 1. So, did the Turks kill the Armenians?\\n\\nac: So, did the Jews kill the Germans? \\nac: You even make Armenians laugh.\\n\\nac: \"An appropriate analogy with the Jewish Holocaust might be the\\nac: systematic extermination of the entire Muslim population of \\nac: the independent republic of Armenia which consisted of at \\nac: least 30-40 percent of the population of that republic. The \\nac: memoirs of an Armenian army officer who participated in and \\nac: eye-witnessed these atrocities was published in the U.S. in\\nac: 1926 with the title \\'Men Are Like That.\\' Other references abound.\"\\n\\nTypical Mutlu. PvdL asks if X happened, the response is that Y\\nhappened. Even if we grant that the Armenians *did* do what Cosar\\naccuses them of doing, this has no bearing on whether the Turks did\\nwhat they are accused of.\\n\\nWhile I can understand how an AI could be this stupid, I\\ncan\\'t understand how a human could be such a moron as to either let\\nsuch an AI run amok or to compose such pointless messages himself.\\n\\nI do not expect any followup to this article from Argic to do anything\\nto alleviate my puzzlement. But maybe I\\'ll see a new line from his\\nlist of insults.\\n\\n-- \\n/|/-\\\\/-\\\\ This article is supplied without longbox\\n |__/__/_/ and uses recycled 100% words, characters and ideas.\\n |warren@ \\n/ nysernet.org \\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 11/15 - Upcoming Planetary Probes\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 243\\nDistribution: world\\nExpires: 6 May 1993 20:00:01 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/new_probes\\nLast-modified: $Date: 93/04/01 14:39:17 $\\n\\nUPCOMING PLANETARY PROBES - MISSIONS AND SCHEDULES\\n\\n Information on upcoming or currently active missions not mentioned below\\n would be welcome. Sources: NASA fact sheets, Cassini Mission Design\\n team, ISAS/NASDA launch schedules, press kits.\\n\\n\\n ASUKA (ASTRO-D) - ISAS (Japan) X-ray astronomy satellite, launched into\\n Earth orbit on 2/20/93. Equipped with large-area wide-wavelength (1-20\\n Angstrom) X-ray telescope, X-ray CCD cameras, and imaging gas\\n scintillation proportional counters.\\n\\n\\n CASSINI - Saturn orbiter and Titan atmosphere probe. Cassini is a joint\\n NASA/ESA project designed to accomplish an exploration of the Saturnian\\n system with its Cassini Saturn Orbiter and Huygens Titan Probe. Cassini\\n is scheduled for launch aboard a Titan IV/Centaur in October of 1997.\\n After gravity assists of Venus, Earth and Jupiter in a VVEJGA\\n trajectory, the spacecraft will arrive at Saturn in June of 2004. Upon\\n arrival, the Cassini spacecraft performs several maneuvers to achieve an\\n orbit around Saturn. Near the end of this initial orbit, the Huygens\\n Probe separates from the Orbiter and descends through the atmosphere of\\n Titan. The Orbiter relays the Probe data to Earth for about 3 hours\\n while the Probe enters and traverses the cloudy atmosphere to the\\n surface. After the completion of the Probe mission, the Orbiter\\n continues touring the Saturnian system for three and a half years. Titan\\n synchronous orbit trajectories will allow about 35 flybys of Titan and\\n targeted flybys of Iapetus, Dione and Enceladus. The objectives of the\\n mission are threefold: conduct detailed studies of Saturn\\'s atmosphere,\\n rings and magnetosphere; conduct close-up studies of Saturn\\'s\\n satellites, and characterize Titan\\'s atmosphere and surface.\\n\\n One of the most intriguing aspects of Titan is the possibility that its\\n surface may be covered in part with lakes of liquid hydrocarbons that\\n result from photochemical processes in its upper atmosphere. These\\n hydrocarbons condense to form a global smog layer and eventually rain\\n down onto the surface. The Cassini orbiter will use onboard radar to\\n peer through Titan\\'s clouds and determine if there is liquid on the\\n surface. Experiments aboard both the orbiter and the entry probe will\\n investigate the chemical processes that produce this unique atmosphere.\\n\\n The Cassini mission is named for Jean Dominique Cassini (1625-1712), the\\n first director of the Paris Observatory, who discovered several of\\n Saturn\\'s satellites and the major division in its rings. The Titan\\n atmospheric entry probe is named for the Dutch physicist Christiaan\\n Huygens (1629-1695), who discovered Titan and first described the true\\n nature of Saturn\\'s rings.\\n\\n\\t Key Scheduled Dates for the Cassini Mission (VVEJGA Trajectory)\\n\\t -------------------------------------------------------------\\n\\t 10/06/97 - Titan IV/Centaur Launch\\n\\t 04/21/98 - Venus 1 Gravity Assist\\n\\t 06/20/99 - Venus 2 Gravity Assist\\n\\t 08/16/99 - Earth Gravity Assist\\n\\t 12/30/00 - Jupiter Gravity Assist\\n\\t 06/25/04 - Saturn Arrival\\n\\t 01/09/05 - Titan Probe Release\\n\\t 01/30/05 - Titan Probe Entry\\n\\t 06/25/08 - End of Primary Mission\\n\\t (Schedule last updated 7/22/92)\\n\\n\\n GALILEO - Jupiter orbiter and atmosphere probe, in transit. Has returned\\n the first resolved images of an asteroid, Gaspra, while in transit to\\n Jupiter. Efforts to unfurl the stuck High-Gain Antenna (HGA) have\\n essentially been abandoned. JPL has developed a backup plan using data\\n compression (JPEG-like for images, lossless compression for data from\\n the other instruments) which should allow the mission to achieve\\n approximately 70% of its original objectives.\\n\\n\\t Galileo Schedule\\n\\t ----------------\\n\\t 10/18/89 - Launch from Space Shuttle\\n\\t 02/09/90 - Venus Flyby\\n\\t 10/**/90 - Venus Data Playback\\n\\t 12/08/90 - 1st Earth Flyby\\n\\t 05/01/91 - High Gain Antenna Unfurled\\n\\t 07/91 - 06/92 - 1st Asteroid Belt Passage\\n\\t 10/29/91 - Asteroid Gaspra Flyby\\n\\t 12/08/92 - 2nd Earth Flyby\\n\\t 05/93 - 11/93 - 2nd Asteroid Belt Passage\\n\\t 08/28/93 - Asteroid Ida Flyby\\n\\t 07/02/95 - Probe Separation\\n\\t 07/09/95 - Orbiter Deflection Maneuver\\n\\t 12/95 - 10/97 - Orbital Tour of Jovian Moons\\n\\t 12/07/95 - Jupiter/Io Encounter\\n\\t 07/18/96 - Ganymede\\n\\t 09/28/96 - Ganymede\\n\\t 12/12/96 - Callisto\\n\\t 01/23/97 - Europa\\n\\t 02/28/97 - Ganymede\\n\\t 04/22/97 - Europa\\n\\t 05/31/97 - Europa\\n\\t 10/05/97 - Jupiter Magnetotail Exploration\\n\\n\\n HITEN - Japanese (ISAS) lunar probe launched 1/24/90. Has made\\n multiple lunar flybys. Released Hagoromo, a smaller satellite,\\n into lunar orbit. This mission made Japan the third nation to\\n orbit a satellite around the Moon.\\n\\n\\n MAGELLAN - Venus radar mapping mission. Has mapped almost the entire\\n surface at high resolution. Currently (4/93) collecting a global gravity\\n map.\\n\\n\\n MARS OBSERVER - Mars orbiter including 1.5 m/pixel resolution camera.\\n Launched 9/25/92 on a Titan III/TOS booster. MO is currently (4/93) in\\n transit to Mars, arriving on 8/24/93. Operations will start 11/93 for\\n one martian year (687 days).\\n\\n\\n TOPEX/Poseidon - Joint US/French Earth observing satellite, launched\\n 8/10/92 on an Ariane 4 booster. The primary objective of the\\n TOPEX/POSEIDON project is to make precise and accurate global\\n observations of the sea level for several years, substantially\\n increasing understanding of global ocean dynamics. The satellite also\\n will increase understanding of how heat is transported in the ocean.\\n\\n\\n ULYSSES- European Space Agency probe to study the Sun from an orbit over\\n its poles. Launched in late 1990, it carries particles-and-fields\\n experiments (such as magnetometer, ion and electron collectors for\\n various energy ranges, plasma wave radio receivers, etc.) but no camera.\\n\\n Since no human-built rocket is hefty enough to send Ulysses far out of\\n the ecliptic plane, it went to Jupiter instead, and stole energy from\\n that planet by sliding over Jupiter\\'s north pole in a gravity-assist\\n manuver in February 1992. This bent its path into a solar orbit tilted\\n about 85 degrees to the ecliptic. It will pass over the Sun\\'s south pole\\n in the summer of 1993. Its aphelion is 5.2 AU, and, surprisingly, its\\n perihelion is about 1.5 AU-- that\\'s right, a solar-studies spacecraft\\n that\\'s always further from the Sun than the Earth is!\\n\\n While in Jupiter\\'s neigborhood, Ulysses studied the magnetic and\\n radiation environment. For a short summary of these results, see\\n *Science*, V. 257, p. 1487-1489 (11 September 1992). For gory technical\\n detail, see the many articles in the same issue.\\n\\n\\n OTHER SPACE SCIENCE MISSIONS (note: this is based on a posting by Ron\\n Baalke in 11/89, with ISAS/NASDA information contributed by Yoshiro\\n Yamada (yamada@yscvax.ysc.go.jp). I\\'m attempting to track changes based\\n on updated shuttle manifests; corrections and updates are welcome.\\n\\n 1993 Missions\\n\\to ALEXIS [spring, Pegasus]\\n\\t ALEXIS (Array of Low-Energy X-ray Imaging Sensors) is to perform\\n\\t a wide-field sky survey in the \"soft\" (low-energy) X-ray\\n\\t spectrum. It will scan the entire sky every six months to search\\n\\t for variations in soft-X-ray emission from sources such as white\\n\\t dwarfs, cataclysmic variable stars and flare stars. It will also\\n\\t search nearby space for such exotic objects as isolated neutron\\n\\t stars and gamma-ray bursters. ALEXIS is a project of Los Alamos\\n\\t National Laboratory and is primarily a technology development\\n\\t mission that uses astrophysical sources to demonstrate the\\n\\t technology. Contact project investigator Jeffrey J Bloch\\n\\t (jjb@beta.lanl.gov) for more information.\\n\\n\\to Wind [Aug, Delta II rocket]\\n\\t Satellite to measure solar wind input to magnetosphere.\\n\\n\\to Space Radar Lab [Sep, STS-60 SRL-01]\\n\\t Gather radar images of Earth\\'s surface.\\n\\n\\to Total Ozone Mapping Spectrometer [Dec, Pegasus rocket]\\n\\t Study of Stratospheric ozone.\\n\\n\\to SFU (Space Flyer Unit) [ISAS]\\n\\t Conducting space experiments and observations and this can be\\n\\t recovered after it conducts the various scientific and\\n\\t engineering experiments. SFU is to be launched by ISAS and\\n\\t retrieved by the U.S. Space Shuttle on STS-68 in 1994.\\n\\n 1994\\n\\to Polar Auroral Plasma Physics [May, Delta II rocket]\\n\\t June, measure solar wind and ions and gases surrounding the\\n\\t Earth.\\n\\n\\to IML-2 (STS) [NASDA, Jul 1994 IML-02]\\n\\t International Microgravity Laboratory.\\n\\n\\to ADEOS [NASDA]\\n\\t Advanced Earth Observing Satellite.\\n\\n\\to MUSES-B (Mu Space Engineering Satellite-B) [ISAS]\\n\\t Conducting research on the precise mechanism of space structure\\n\\t and in-space astronomical observations of electromagnetic waves.\\n\\n 1995\\n\\tLUNAR-A [ISAS]\\n\\t Elucidating the crust structure and thermal construction of the\\n\\t moon\\'s interior.\\n\\n\\n Proposed Missions:\\n\\to Advanced X-ray Astronomy Facility (AXAF)\\n\\t Possible launch from shuttle in 1995, AXAF is a space\\n\\t observatory with a high resolution telescope. It would orbit for\\n\\t 15 years and study the mysteries and fate of the universe.\\n\\n\\to Earth Observing System (EOS)\\n\\t Possible launch in 1997, 1 of 6 US orbiting space platforms to\\n\\t provide long-term data (15 years) of Earth systems science\\n\\t including planetary evolution.\\n\\n\\to Mercury Observer\\n\\t Possible 1997 launch.\\n\\n\\to Lunar Observer\\n\\t Possible 1997 launch, would be sent into a long-term lunar\\n\\t orbit. The Observer, from 60 miles above the moon\\'s poles, would\\n\\t survey characteristics to provide a global context for the\\n\\t results from the Apollo program.\\n\\n\\to Space Infrared Telescope Facility\\n\\t Possible launch by shuttle in 1999, this is the 4th element of\\n\\t the Great Observatories program. A free-flying observatory with\\n\\t a lifetime of 5 to 10 years, it would observe new comets and\\n\\t other primitive bodies in the outer solar system, study cosmic\\n\\t birth formation of galaxies, stars and planets and distant\\n\\t infrared-emitting galaxies\\n\\n\\to Mars Rover Sample Return (MRSR)\\n\\t Robotics rover would return samples of Mars\\' atmosphere and\\n\\t surface to Earch for analysis. Possible launch dates: 1996 for\\n\\t imaging orbiter, 2001 for rover.\\n\\n\\to Fire and Ice\\n\\t Possible launch in 2001, will use a gravity assist flyby of\\n\\t Earth in 2003, and use a final gravity assist from Jupiter in\\n\\t 2005, where the probe will split into its Fire and Ice\\n\\t components: The Fire probe will journey into the Sun, taking\\n\\t measurements of our star\\'s upper atmosphere until it is\\n\\t vaporized by the intense heat. The Ice probe will head out\\n\\t towards Pluto, reaching the tiny world for study by 2016.\\n\\n\\nNEXT: FAQ #12/15 - Controversial questions\\n',\n", - " 'From: bprofane@netcom.com (Gert Niewahr)\\nSubject: Re: Rumours about 3DO ???\\nArticle-I.D.: netcom.bprofaneC51wHz.HIo\\nOrganization: Netcom Online Communications Services (408-241-9760 login: guest)\\nLines: 39\\n\\nIn article lex@optimla.aimla.com (Lex van Sonderen) writes:\\n>In article erik@westworld.esd.sgi.com (Erik Fortune) writes:\\n>>> better than CDI\\n>>*Much* better than CDI.\\n>Of course, I do not agree. It does have more horsepower. Horsepower is not\\n>the only measurement for \\'better\\'. It does not have full motion, full screen\\n>video yet. Does it have CD-ROM XA?\\n>\\n>>> starting in the 4 quarter of 1993\\n>>The first 3DO \"multiplayer\" will be manufactured by panasonic and will be \\n>>available late this year. A number of other manufacturers are reported to \\n>>have 3DO compatible boxes in the works.\\n>Which other manufacturers?\\n>We shall see about the date.\\n\\nA 3DO marketing rep. recently offered a Phillips marketing rep. a $100\\nbet that 3DO would have boxes on the market on schedule. The Phillips\\nrep. declined the bet, probably because he knew that 3DO players are\\nalready in pre-production manufacturing runs, 6 months before the\\ncommercial release date.\\n\\nBy the time of commercial release, there will be other manufacturers of\\n3DO players announced and possibly already tooling up production. Chip\\nsets will be in full production. The number of software companies\\ndesigning titles for the box will be over 300.\\n\\nHow do I know this? I was at a bar down the road from 3DO headquarters\\nlast week. Some folks were bullshitting a little too loudly about\\ncompany business.\\n\\n>>All this information is third hand or so and worth what you paid for it:-).\\n>This is second hand, but it still hard to look to the future ;-).\\n>\\n>Lex van Sonderen\\n>lex@aimla.com\\n>Philips Interactive Media\\n ^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n What an impartial source!\\n',\n", - " 'From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Tektronix Inc., Beaverton, Or.\\nLines: 33\\n\\nIn article cobb@alexia.lis.uiuc.edu (Mike Cobb) writes:\\n>In <11825@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>\\n>\\n>> Actually, my atheism is based on ignorance. Ignorance of the\\n>> existence of any god. Don\\'t fall into the \"atheists don\\'t believe\\n>> because of their pride\" mistake.\\n>\\n>How do you know it\\'s based on ignorance, couldn\\'t that be wrong? Why would it\\n>be wrong \\n>to fall into the trap that you mentioned? \\n>\\n\\n If I\\'m wrong, god is free at any time to correct my mistake. That\\n he continues not to do so, while supposedly proclaiming his\\n undying love for my eternal soul, speaks volumes.\\n\\n As for the trap, you are not in a position to tell me that I don\\'t\\n believe in god because I do not wish to. Unless you can know my\\n motivations better than I do myself, you should believe me when I\\n say that I earnestly searched for god for years and never found\\n him.\\n\\n\\n/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n\\nBob Beauchaine bobbe@vice.ICO.TEK.COM \\n\\nThey said that Queens could stay, they blew the Bronx away,\\nand sank Manhattan out at sea.\\n\\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n',\n", - " 'From: ba7116326@ntuvax.ntu.ac.sg\\nSubject: V-max handling request\\nLines: 5\\nNntp-Posting-Host: v9001.ntu.ac.sg\\nOrganization: Nanyang Technological University - Singapore\\n\\nhello there\\nican anyone who has handson experience on riding the Yamaha v-max, pls kindly\\ncomment on its handling .\\n\\n\\n',\n", - " 'From: lioness@maple.circa.ufl.edu\\nSubject: Re: comp.graphics.programmer\\nOrganization: Center for Instructional and Research Computing Activities\\nLines: 68\\nReply-To: LIONESS@ufcc.ufl.edu\\nNNTP-Posting-Host: maple.circa.ufl.edu\\n\\nIn article , andreasa@dhhalden.no (ANDREAS ARFF) writes:\\n|>Hello netters\\n|>\\n|>Sorry, I don\\'t know if this is the right way of doing this kind of thing,\\n|>probably should be a CFV, but since I don\\'t have tha ability to create a \\n|>news group myself, I just want to start the discussion. \\n|>\\n|>I enjoy reading c.g very much, but I often find it difficult to sort out what\\n|>I\\'m interested in. Everything from screen-drivers, graphics cards, graphics\\n|>programming and graphics programs are discused here. What I\\'d like is a \\n|>comp.graphics.programmer news group.\\n|>What do you other think.\\n\\nThis sounds wonderful, but it seems no one either wants to spend time doing\\nthis, or they don\\'t have the power to do so. For example, I would like\\nto see a comp.graphics architecture like this:\\n\\ncomp.graphics.algorithms.2d\\ncomp.graphics.algorithms.3d\\ncomp.graphics.algorithms.misc\\ncomp.graphics.hardware\\ncomp.graphics.misc\\ncomp.graphics.software/apps\\n\\nHowever, that is almost overkill. Something more like this would probably\\nmake EVERYONE a lot happier:\\n\\ncomp.graphics.programmer\\ncomp.graphics.hardware\\ncomp.graphics.apps\\ncomp.graphics.misc\\n\\nIt would be nice to see specialized groups devote to 2d, 3d, morphing,\\nraytracing, image processing, interactive graphics, toolkits, languages,\\nobject systems, etc. but these could be posted to a relevant group or\\nhave a mailing list organized.\\n\\nThat way when someone reads news they don\\'t have to see these subject\\nheadings, which are rather disparate:\\n\\nSystem specific stuff ( should be under comp.sys or comp.os.???.programmer ):\\n\\n\\t\"Need help programming GL\"\\n\\t\"ModeX programming information?\"\\n\\t\"Fast sprites on PC\"\\n\\nHardware technical stuff:\\n\\n\\t\"Speed of Weitek P9000\"\\n\\t\"Drivers for SpeedStar 24X\"\\n\\nApplications oriented stuff:\\n\\n\\t\"VistaPro 3.0 help\"\\n\\t\"How good is 3dStudio?\"\\n\\t\"Best image processing program for Amiga\"\\n\\nProgramming oriented stuff:\\n\\n\\t\"Fast polygon routine needed\"\\n\\t\"Good morphing alogirhtm wanted\"\\n\\t\"Best depth sort for triangles?\"\\n\\t\"Which C++ library to get?\"\\n\\nI wish someone with the power would get a CFD and then a CFV going on\\nthis stuff....this newsgroup needs it.\\n\\nBrian\\n',\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: 30826\\nArticle-I.D.: aurora.1993Apr25.151108.1\\nOrganization: University of Alaska Fairbanks\\nLines: 14\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nI like option C of the new space station design.. \\nIt needs some work, but it is simple and elegant..\\n\\nIts about time someone got into simple construction versus overly complex...\\n\\nBasically just strap some rockets and a nose cone on the habitat and go for\\nit..\\n\\nMight be an idea for a Moon/Mars base to.. \\n\\nWhere is Captain Eugenia(sp) when you need it (reference to russian heavy\\nlifter, I think).\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", - " 'From: ramarren@apple.com (Godfrey DiGiorgi)\\nSubject: Re: uh, der, whassa deltabox?\\nOrganization: Apple Computer\\nLines: 15\\n\\n>Can someone tell me what a deltabox frame is, and what relation that has,\\n>if any, to the frame on my Hawk GT? That way, next time some guy comes up\\n>to me in some parking lot and sez \"hey, dude, nice bike, is that a deltabox\\n>frame on there?\" I can say something besides \"duh, er, huh?\"\\n\\nThe Yammie Deltabox and the Hawk frame are conceptually similar\\nbut Yammie has a TM on the name. The Hawk is a purer \\'twin spar\\' \\nframe design: investment castings at steering head and swing arm\\ntied together with aluminum extruded beams. The Yammie solution is\\na bit more complex.\\n------------------------------------------------------------------\\nGodfrey DiGiorgi - ramarren@apple.com | DoD #0493 AMA#489408\\n Rule #1: Never sell a Ducati. | \"The street finds its own\\n Rule #2: Always obey Rule #1. | uses for things.\" -WG\\n------ Ducati Cinelli Toyota Krups Nikon Sony Apple Telebit ------\\n',\n", - " 'Subject: Re: A visit from the Jehovah\\'s Witnesses\\nFrom: lippard@skyblu.ccit.arizona.edu (James J. Lippard)\\nDistribution: world,local\\nOrganization: University of Arizona\\nNntp-Posting-Host: skyblu.ccit.arizona.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\nLines: 27\\n\\nIn article , chrisb@tafe.sa.edu.au (Chris BELL) writes...\\n>jbrown@batman.bmd.trw.com writes:\\n> \\n>>My syllogism is of the form:\\n>>A is B.\\n>>C is A.\\n>>Therefore C is B.\\n> \\n>>This is a logically valid construction.\\n> \\n>>Your syllogism, however, is of the form:\\n>>A is B.\\n>>C is B.\\n>>Therefore C is A.\\n> \\n>>Therefore yours is a logically invalid construction, \\n>>and your comments don\\'t apply.\\n\\nIf all of those are \"is\"\\'s of identity, both syllogisms are valid.\\nIf, however, B is a predicate, then the second syllogism is invalid.\\n(The first syllogism, as you have pointed out, is valid--whether B\\nis a predicate or designates an individual.)\\n\\nJim Lippard Lippard@CCIT.ARIZONA.EDU\\nDept. of Philosophy Lippard@ARIZVMS.BITNET\\nUniversity of Arizona\\nTucson, AZ 85721\\n',\n", - " 'From: hahm@fossi.hab-weimar.de (peter hahm)\\nSubject: Radiosity\\nKeywords: radiosity, raytracing, rendering\\nNntp-Posting-Host: fossi.hab-weimar.de\\nOrganization: Hochschule fuer Architektur und Bauwesen Weimar, Germany\\nLines: 17\\n\\n\\n\\nRADIOSITY SOURCES WANTED !!!\\n============================\\n\\nWhen I read the comp.graphics group, I never found something about \\nradiosity. Is there anybody interested in out there? I would be glad \\nto hear from somebody.\\nI am looking for source-code for the radiosity-method. I have already\\nread common literature, e. g.Foley ... . I think little examples could \\nhelp me to understand how radiosity works. Common languages ( C, C++, \\nPascal) prefered.\\nI hope you will help me!\\n\\nYours\\nPeter \\n\\n',\n", - " 'From: hilmi-er@dsv.su.se (Hilmi Eren)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik)\\nLines: 95\\nNntp-Posting-Host: viktoria.dsv.su.se\\nReply-To: hilmi-er@dsv.su.se (Hilmi Eren)\\nOrganization: Dept. of Computer and Systems Sciences, Stockholm University\\n\\n\\n\\n\\n|>The student of \"regional killings\" alias Davidian (not the Davidian religios sect) writes:\\n\\n\\n|>Greater Armenia would stretch from Karabakh, to the Black Sea, to the\\n|>Mediterranean, so if you use the term \"Greater Armenia\" use it with care.\\n\\n\\n\\tFinally you said what you dream about. Mediterranean???? That was new....\\n\\tThe area will be \"greater\" after some years, like your \"holocaust\" numbers......\\n\\n\\n\\n\\n|>It has always been up to the Azeris to end their announced winning of Karabakh \\n|>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to \\n|>power last year, he announced he would be be \"swimming in Lake Sevan [in \\n|>Armeniaxn] by July\".\\n\\t\\t*****\\n\\tIs\\'t July in USA now????? Here in Sweden it\\'s April and still cold.\\n\\tOr have you changed your calendar???\\n\\n\\n|>Well, he was wrong! If Elchibey is going to shell the \\n|>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey \\n\\t\\t\\t\\t\\t\\t ****************\\n|>is going to shell Karabakh from Fizuli his people will pay the price! If \\n\\t\\t\\t\\t\\t\\t ******************\\n|>Elchibey thinks he can get away with bombing Armenia from the hills of \\n|>Kelbajar, his people will pay the price. \\n\\t\\t\\t ***************\\n\\n\\n\\tNOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT\\'s TRUE.\\n\\t\\n\\tSHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH\\n\\t\\t\\t\\t\\t\\t **************\\n\\tBEING RAPED, KILLED AND TORTURED BY THE ARMENIANS??????????\\n\\t\\n\\tHAVE YOU HEARDED SOMETHING CALLED: \"GENEVA CONVENTION\"???????\\n\\tYOU FACIST!!!!!\\n\\n\\n\\n\\tOhhh i forgot, this is how Armenians fight, nobody has forgot\\n\\tyou killings, rapings and torture against the Kurds and Turks once\\n\\tupon a time!\\n \\n \\n\\n|>And anyway, this \"60 \\n|>Kurd refugee\" story, as have other stories, are simple fabrications sourced in \\n|>Baku, modified in Ankara. Other examples of this are Armenia has no border \\n|>with Iran, and the ridiculous story of the \"intercepting\" of Armenian military \\n|>conversations as appeared in the New York Times supposedly translated by \\n|>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed \\n|>\"special correspondent\" to the NY Times from Baku. Real accurate!\\n\\nOhhhh so swedish RedCross workers do lie they too? What ever you say\\n\"regional killer\", if you don\\'t like the person then shoot him that\\'s your policy.....l\\n\\n\\n|>[HE]\\tSearch Turkish planes? You don\\'t know what you are talking about.<-------\\n|>[HE]\\tsince it\\'s content is announced to be weapons? \\t\\t\\t\\ti\\t \\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n|>Well, big mouth Ozal said military weapons are being provided to Azerbaijan\\ti\\n|>from Turkey, yet Demirel and others say no. No wonder you are so confused!\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\tConfused?????\\t\\t\\t\\t\\t\\t\\t\\ti\\n\\tYou facist when you delete text don\\'t change it, i wrote:\\t\\ti\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ti\\n Search Turkish planes? You don\\'t know what you are talking about.\\ti\\n Turkey\\'s government has announced that it\\'s giving weapons <-----------i\\n to Azerbadjan since Armenia started to attack Azerbadjan\\t\\t\\n it self, not the Karabag province. So why search a plane for weapons\\t\\n since it\\'s content is announced to be weapons? \\n\\n\\tIf there is one that\\'s confused then that\\'s you! We have the right (and we do)\\n\\tto give weapons to the Azeris, since Armenians started the fight in Azerbadjan!\\n \\n\\n|>You are correct, all Turkish planes should be simply shot down! Nice, slow\\n|>moving air transports!\\n\\n\\tShoot down with what? Armenian bread and butter? Or the arms and personel \\n\\tof the Russian army?\\n\\n\\n\\n\\nHilmi Eren\\nStockholm University\\n',\n", - " 'From: borst@cs.utwente.nl (Pim Borst)\\nSubject: PBM-PLUS sources, where?\\nNntp-Posting-Host: utis116.cs.utwente.nl\\nOrganization: University of Twente, Dept. of Computer Science\\nLines: 7\\n\\nHi everybody,\\n\\nCan anyone name an anonymous ftp-site where I can find the sources\\nof the PBM-PLUS package (portable bit/gray/pixel map).\\nI would like to compile and run it on a Sun Sparcstation.\\n\\nThanks!\\n',\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: About this \\'Center for Policy Resea\\nOrganization: The Department of Redundancy Department\\nLines: 85\\n\\nIn article <1483500350@igc.apc.org> Center for Policy Research writes:\\n\\n>It seems to me that many readers of this conference are interested\\n>who is behind the Center for Polict Research. I will oblige.\\n\\nTrumpets, please.\\n\\n>My name is Elias Davidsson, Icelandic citizen, born in Palestine. My\\n>mother was thrown from Germany because she belonged to the \\'undesirables\\'\\n>(at that times this group was defined as \\'Jews\\'). She was forced to go\\n>to Palestine due to many cynical factors. \\n\\n\"Forced to go to Palestine.\" How dreadful. Unlike other\\nundesirables/Jews, she wasn\\'t forced to go into a gas chamber, forced\\nunder a bulldozer, thrown into a river, forced into a \"Medical\\nexperiment\" like a rat, forced to march until she dropped dead, burned\\nto nothingness in a crematorium. Your mother was \"forced to go to\\nPalestine.\" You have our deepest sympathies.\\n\\n>I have meanwhile settled in Iceland (30 years ago) \\n\\nWe are pleased to hear of your escape. At least you won\\'t have to\\nsuffer the same fate that your mother did.\\n\\n>and met many people who were thrown out from\\n>my homeland, Palestine, \\n\\nYour homeland, Palestine? \\n\\n>because of the same reason (they belonged to\\n>the \\'indesirables\\'). \\n\\nShould we assume that you are refering here to Jews who were kicked\\nout of their homes in Jerusalem during the Jordanian Occupation of\\nEast Jerusalem? These are the same people who are now being called\\nthieves for re-claiming houses that they once owned and lived in and\\nnever sold to anyone?\\n\\n>These people include my neighbors in Jerusalem\\n>with the children of whom I played as child. Their crime: Theyare\\n>not Jews. \\n\\nI have never heard of NOT being a Jew as a crime. Certainly in\\nIsrael, there is no such crime. In some times and places BEING a Jew\\nis a crime, but NOT being a Jew??!!\\n\\n>My conscience does not accept such injustice, period. \\n\\nOur brains do not accept your logic, yet, either.\\n\\n>My\\n>work for justice is done in the name of my principled opposition to racism\\n>and racial discrimination. Those who protest against such practices\\n>in Arab countries have my support - as long as their protest is based\\n>on a principled position, but not as a tactic to deflect criticism\\n>from Israel. \\n\\nThe way you\\'ve written this, you seem to accept criticism in the Arab\\nworld UNLESS it deflects criticism from Israel, in which case, we have\\nto presume, you no longer support criticism of the Arab world.\\n\\n>The struggle against discrimination and racism is universal.\\n\\nLook who\\'s taling about discrimination now!\\n\\n>The Center for Policy Research is a name I gave to those activities\\n>undertaken under my guidance in different domains, and which command\\n>the support of many volunteers in Iceland. It is however not a formal\\n>institution and works with minimal funds.\\n\\nBe careful. You are starting to sound like Barfling.\\n\\n>Professionally I am music teacher and composer. I have published \\n>several pieces and my piano music is taught widely in Europe.\\n>\\n>I would hope that discussion about Israel/Palestine be conducted in\\n>a more civilized manner. Calling names is not helpful.\\n\\nGood. Don\\'t call yourself \"ARF\" or \"the Center for Policy Research\",\\neither. \\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: kshin@stein.u.washington.edu (Kevin Shin)\\nSubject: thinning algorithm\\nOrganization: University of Washington, Seattle\\nLines: 10\\nNNTP-Posting-Host: stein.u.washington.edu\\n\\nHi, netters\\n\\nI am looking for source code that can reads the ascii file\\nor bitmap file and produced the thinned image.\\nFor example, to preprocess the character image I want to\\napply thinning algorithm.\\n\\nthanks\\nkevin\\n.\\n',\n", - " \"From: wrs@wslack.UUCP (Bill Slack)\\nSubject: Re: Shaft-drives and Wheelies\\nDistribution: world\\nOrganization: W. R. Slack\\nLines: 20\\n\\n\\nVarious posts about shafties can't do wheelies:\\n\\n>: > No Mike. It is imposible due to the shaft effect. The centripital effects\\n>: > of the rotating shaft counteract any tendency for the front wheel to lift\\n>: > off the ground\\n>\\n>Good point John...a buddy of mine told me that same thing when I had my\\n>BMW R80GS; I dumped the clutch at 5,000rpm (hey, ito nly revved to 7 or so) and\\n>you know what? He was right!\\n\\nUh, folks, the shaft doesn't have diddleysquatpoop to do with it. I can get\\nthe front wheel off the ground on my /5, ferchrissake!\\n\\nBill \\n__\\nwrs@gozer.mv.com (Bill Slack) DoD #430\\nBut her tears were shed in vain and her every word was lost\\nIn the rumble of his engine and the smoke from his exhaust! Oo..o&o\\n \\n\",\n", - " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Re: Who Says the Apostles Were Tortured?\\nLines: 9\\n\\nThe traditions of the church hold that all the \"apostles\" (meaning the 11\\nsurviving disciples, Matthias, Barnabas and Paul) were martyred, except for\\nJohn. \"Tradition\" should be understood to read \"early church writings other\\nthan the bible and heteroorthodox scriptures\".\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", - " \"From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Insurance and lotsa points...\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 39\\n\\nIn article <1993Apr18.230531.11329@bcars6a8.bnr.ca> keithh@bnr.ca (Keith Hanlan) writes:\\n>In article <13386@news.duke.edu> infante@acpub.duke.edu (Andrew Infante) writes:\\n>>Well, it looks like I'm F*cked for insurance.\\n>>\\n>>I had a DWI in 91 and for the beemer, as a rec.\\n>>vehicle, it'll cost me almost $1200 bucks to insure/year.\\n>>\\n>>Now what do I do?\\n>\\n>Sell the bike and the car and start taking the bus. That way you can\\n>keep drinking which seems to be where your priorities lay.\\n>\\n>I expect that enough of us on this list have lost friends because of\\n>driving drunks that our collective sympathy will be somewhat muted.\\n\\nLook, guy, I doubt anyone here approves of Drunk Driving, but if\\nhe's been caught and convicted and punished maybe you ought to\\nlighten up? I mean, it isn't like most of us haven't had a few\\nand then ridden or driven home. *We* just didn't get caught.\\nAnd I can speak for myself and say it will *never* happen again,\\nbut that is beside the point.\\n\\nIn answer to the original poster: I'd insure whatever vehicle\\nis cheapest, and can get you to and from work, and suffer\\nthrough it for a few years, til your rates drop.\\n\\nAnd *don't* drink and drive. I had one friend killed by a \\ndrunk, and I was rear ended by one, totaling my bike (bent\\nframe), and only failing to kill me because I had an eye\\non my mirror while I waited at the stoplight.\\n\\nRegards, Charles\\nDoD0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n\",\n", - " 'From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Ed must be a Daemon Child!!\\nArticle-I.D.: usenet.1pqhvu$go8\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 22\\nNNTP-Posting-Host: slc10.ins.cwru.edu\\n\\n\\nIn a previous article, svoboda@rtsg.mot.com (David Svoboda) says:\\n\\n>In article <1993Apr2.163021.17074@linus.mitre.org> cookson@mbunix.mitre.org (Cookson) writes:\\n>|\\n>|Wait a minute here, Ed is Noemi AND Satan? Wow, and he seemed like such\\n>|a nice boy at RCR I too.\\n>\\n>And Noemi makes me think of \"cuddle\", not \"KotL\".\\n>\\n\\n\\tYou talking bout the same Noemi I know? She makes me think of big bore\\nhand guns and extreme weirdness. This babe rode a CSR300 across the desert! And\\na borrowed XL100 on the Death Ride. Don\\'t fuck with her man, your making a big\\nmistake.\\n\\n\\n\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n',\n", - " \"From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: ISLAM BORDERS vs Israeli borders\\nOrganization: University of Illinois at Urbana\\nLines: 46\\n\\nhasan@McRCIM.McGill.EDU writes:\\n\\n\\n>In article <1993Apr5.202800.27705@wam.umd.edu>, spinoza@next06wor.wam.umd.edu (Yon Bonnie Laird of Cairn Robbing) writes:\\n>|> In article ilyess@ECE.Concordia.CA \\n>|> (Ilyess Bdira) writes:\\n>|> > > 1)why do jews who don't even believe in God (as is the case with many\\n>|> > of the founders of secular zionism) have a right in Palestine more\\n>|> > than the inhabitants of Palestine, just because God gave you the land?\\n>|> G-d has nothing to do with it. Some of the land was in fact given to the \\n>|> Jews by the United Nations, quite a bit of it was purchased from Arab \\n>|> absentee landlords. Present claims are based on prior ownership (purchase \\n>|> from aforementioned absentee landlords) award by the United Nations in the \\n>|> partition of the Palestine mandate territory, and as the result of \\n>|> defensive wars fought against the Egyptians, Syrians, Jordanians, et al.\\n>|> \\n>|> ***\\n>|> > 2)Why do most of them speak of the west bank as theirs while most of\\n>|> > the inhabitants are not Jews and do not want to be part of Israel?\\n>|> First, I should point out that many Jews do not in fact agree with the \\n>|> idea that the West Bank is theirs. Since, however, I agree with those who \\n>|> claim the West Bank, I think I can answer your question thusly: the West \\n>|> bank was what is called the spoils of war. Hussein ordered the Arab Legion \\n\\n>\\t\\t\\t^^^^^^^^^^^^^^^^^^^^\\n>This is very funny.\\n>Anyway, suppose that in fact israel didnot ATTACK jordan till jordan attacked\\n>israel. Now, how do you explain the attack on Syria in 1967, Syria didnot\\n>enter the war with israel till the 4th day .\\n\\nSyria had been bombing Israeli settlements from the Golan and sending\\nterrorist squads into Israel for years. Do you need me to provide specifics?\\nI can.\\n\\nWhy don't you give it up, Hasan? I'm really starting to get tired of your \\nempty lies. You can defend your position and ideology with documented facts\\nand arguments rather than the crap you regularly post. Take an example from\\nsomeone like Brendan McKay, with whom I don't agree, but who uses logic and\\ndocumentation to argue his position. Why must you insist on constantly spouting\\nbaseless lies? You may piss some people off, but that's about it. You won't\\nprove anything or add anything worthy to a discussion. Your arguments just \\nprove what a poor debater you are and how weak your case really is.\\n\\nAll my love,\\nEd.\\n\\n\",\n", - " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: Route Suggestions?\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nDistribution: usa\\nLines: 27\\n\\nIn article <1993Apr20.173413.29301@porthos.cc.bellcore.com> mdc2@pyuxe.cc.bellcore.com (corrado,mitchell) writes:\\n>In article <1qmm5dINNnlg@cronkite.Central.Sun.COM>, doc@webrider.central.sun.com (Steve Bunis - Chicago) writes:\\n>> 55E -> I-81/I-66E. After this point the route is presently undetermined\\n>> into Pennsylvania, New York?, and back to Chicago (by 6/6). Suggestions \\n>\\n>If you do make it into New York state, the Palisades Interstate Parkway is a\\n>pleasant ride (beautiful scenery, good road surface, minimal traffic). You\\n\\t\\t\\t\\t ^^^^^^^^^^^^^^^^^\\n\\n\\tBeen a while since you hit the PIP? The pavement (at least until around\\n\\texit 9) is for sh*t these days. I think it must have taken a beating\\n\\tthis winter, because I don\\'t remember it being this bad. It\\'s all\\n\\tbreaking apart, and there are some serious potholes now. Of course\\n\\tthere are also the storm drains that are *in* your lane as opposed\\n\\tto on the side of the road (talk about annoying cost saving measures).\\n\\t\\t\\n\\tAs for traffic, don\\'t try it around 5:15 - 6:30 on weekdays (outbound,\\n\\trush hour happens inbound too) as there are many BDC\\'s...\\n\\n\\t<...> <...>\\n> \\'\\\\ Mitch Corrado\\n> / DEC \\\\======== mdc2@panther.tnds.bellcore.com\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", - " 'From: joe@rider.cactus.org (Joe Senner)\\nSubject: Re: BMW MOA members read this!\\nReply-To: joe@rider.cactus.org\\nDistribution: world\\nOrganization: NOT\\nLines: 25\\n\\nvech@Ra.MsState.Edu (Craig A. Vechorik) writes:\\n]I wrote the slash two blues for a bit of humor which seems to be lacking\\n]in the MOA Owners News, when most of the stuff is \"I rode the the first\\n]day, I saw that, I rode there the second day, I saw this\" \\n\\nI admit it was a surprise to find something interesting to read in \\nthe most boring and worthless mag of all the ones I get.\\n\\n]any body out there know were the sense if humor went in people?\\n]I though I still had mine, but I dunno... \\n\\nI think most people see your intended humor, I do, I liked the article.\\nyou seem to forget that you\\'ve stepped into the political arena. as well\\nintentioned as you may intend something you\\'re walking through a china\\nstore carrying that /2 on your head. everything you say or do says something\\nabout how you would represent the membership on any given day. you don\\'t\\nhave to look far in american politics to see what a few light hearted\\njokes about one segment of the population can do to someone in the limelight.\\n\\nOBMoto: I did manage to squeak in a reference to a /2 ;-)\\n\\n-- \\nJoe Senner joe@rider.cactus.org\\nAustin Area Ride Mailing List ride@rider.cactus.org\\nTexas SplatterFest Mailing List fest@rider.cactus.org\\n',\n", - " \"From: Center for Policy Research \\nSubject: Final Solution for Gaza ?\\nNf-ID: #N:cdp:1483500354:000:5791\\nNf-From: cdp.UUCP!cpr Apr 23 15:10:00 1993\\nLines: 126\\n\\n\\nFrom: Center for Policy Research \\nSubject: Final Solution for Gaza ?\\n\\n\\nFinal Solution for the Gaza ghetto ?\\n------------------------------------\\n\\nWhile Israeli Jews fete the uprising of the Warsaw ghetto, they\\nrepress by violent means the uprising of the Gaza ghetto and\\nattempt to starve the Gazans.\\n\\nThe Gaza strip, this tiny area of land with the highest population\\ndensity in the world, has been cut off from the world for weeks.\\nThe Israeli occupier has decided to punish the whole population of\\nGaza, some 700.000 people, by denying them the right to leave the\\nstrip and seek work in Israel.\\n\\nWhile Polish non-Jews risked their lives to save Jews from the\\nGhetto, no Israeli Jew is known to have risked his life to help\\nthe Gazan resistance. The only help given to Gazans by Israeli\\nJews, only dozens of people, is humanitarian assistance.\\n\\nThe right of the Gazan population to resist occupation is\\nrecognized in international law and by any person with a sense of\\njustice. A population denied basic human rights is entitled to\\nrise up against its tormentors.\\n\\nAs is known, the Israeli regime is considering Gazans unworthy of\\nIsraeli citizenship and equal rights in Israel, although they are\\nconsidered worthy to do the dirty work in Israeli hotels, shops\\nand fields. Many Gazans are born in towns and villages located in\\nIsrael. They may not live there, for these areas are reserved for\\nthe Master Race.\\n\\nThe Nazi regime accorded to the residents of the Warsaw ghetto the\\nright to self- administration. They selected Jews to pacify the\\noccupied population and preventing any form of resistance. Some\\nJewish collaborators were killed. Israel also wishes to rule over\\nGaza through Arab collaborators.\\n\\nAs Israel denies Gazans the only two options which are compatible\\nwith basic human rights and international law, that of becoming\\nIsraeli citizens with full rights or respecting their right for\\nself-determination, it must be concluded that the Israeli Jewish\\nsociety does not consider Gazans full human beings. This attitude\\nis consistent with the attitude of the Nazis towards Jews. The\\ncurrent policies by the Israeli government of cutting off Gaza are\\nconsistent with the wish publicly expressed by Prime Mininister\\nYitzhak Rabin that 'Gaza sink into the sea'. One is led to ask\\noneself whether Israeli leaders entertain still more sinister\\ngoals towards the Gazans ? Whether they have some Final Solution\\nup their sleeve ?\\n\\nI urge all those who have slight human compassion to do whatever\\nthey can to help the Gazans regain their full human, civil and\\npolitical rights, to which they are entitled as human beings.\\n\\nElias Davidsson Iceland\\n\\nFrom elias@ismennt.is Fri Apr 23 02:30:21 1993 Received: from\\nisgate.is by igc.apc.org (4.1/Revision: 1.77 )\\n\\tid AA00761; Fri, 23 Apr 93 02:30:13 PDT Received: from\\nrvik.ismennt.is by isgate.is (5.65c8/ISnet/14-10-91); Fri, 23 Apr\\n1993 09:29:41 GMT Received: by rvik.ismennt.is\\n(16.8/ISnet/11-02-92); Fri, 23 Apr 93 09:30:23 GMT From:\\nelias@ismennt.is (Elias Davidsson) Message-Id:\\n<9304230930.AA11852@rvik.ismennt.is> Subject: no subject (file\\ntransmission) To: cpr@igc.org Date: Fri, 23 Apr 93 9:30:22 GMT\\nX-Charset: ASCII X-Char-Esc: 29 Status: RO\\n\\nFinal Solution for the Gaza ghetto ?\\n------------------------------------\\n\\nWhile Israeli Jews fete the uprising of the Warsaw ghetto, they\\nrepress by violent means the uprising of the Gaza ghetto and\\nattempt to starve the Gazans.\\n\\nThe Gaza strip, this tiny area of land with the highest population\\ndensity in the world, has been cut off from the world for weeks.\\nThe Israeli occupier has decided to punish the whole population of\\nGaza, some 700.000 people, by denying them the right to leave the\\nstrip and seek work in Israel.\\n\\nWhile Polish non-Jews risked their lives to save Jews from the\\nGhetto, no Israeli Jew is known to have risked his life to help\\nthe Gazan resistance. The only help given to Gazans by Israeli\\nJews, only dozens of people, is humanitarian assistance.\\n\\nThe right of the Gazan population to resist occupation is\\nrecognized in international law and by any person with a sense of\\njustice. A population denied basic human rights is entitled to\\nrise up against its tormentors.\\n\\nAs is known, the Israeli regime is considering Gazans unworthy of\\nIsraeli citizenship and equal rights in Israel, although they are\\nconsidered worthy to do the dirty work in Israeli hotels, shops\\nand fields. Many Gazans are born in towns and villages located in\\nIsrael. They may not live there, for these areas are reserved for\\nthe Master Race.\\n\\nThe Nazi regime accorded to the residents of the Warsaw ghetto the\\nright to self- administration. They selected Jews to pacify the\\noccupied population and preventing any form of resistance. Some\\nJewish collaborators were killed. Israel also wishes to rule over\\nGaza through Arab collaborators.\\n\\nAs Israel denies Gazans the only two options which are compatible\\nwith basic human rights and international law, that of becoming\\nIsraeli citizens with full rights or respecting their right for\\nself-determination, it must be concluded that the Israeli Jewish\\nsociety does not consider Gazans full human beings. This attitude\\nis consistent with the attitude of the Nazis towards Jews. The\\ncurrent policies by the Israeli government of cutting off Gaza are\\nconsistent with the wish publicly expressed by Prime Mininister\\nYitzhak Rabin that 'Gaza sink into the sea'. One is led to ask\\noneself whether Israeli leaders entertain still more sinister\\ngoals towards the Gazans ? Whether they have some Final Solution\\nup their sleeve ?\\n\\nI urge all those who have slight human compassion to do whatever\\nthey can to help the Gazans regain their full human, civil and\\npolitical rights, to which they are entitled as human beings.\\n\\nElias Davidsson Iceland\\n\\n\",\n", - " 'From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: Ontario Hydro - Research Division\\nLines: 18\\n\\nIn article mcguire@cs.utexas.edu (Tommy Marcus McGuire) writes:\\n>\\n>Obcountersteer: For some reason, I\\'ve discovered that pulling on the\\n>wrong side of the handlebars (rather than pushing on the other wrong\\n>side, if you get my meaning) provides a feeling of greater control. For\\n>example, rather than pushing on the right side to lean right to turn \\n>right (Hi, Lonny!), pulling on the left side at least until I get leaned\\n>over to the right feels more secure and less counter-intuitive. Maybe\\n>I need psychological help.\\n\\nI told a newbie friend of mine, who was having trouble from the complicated\\nexplanations of his rider course, to think of using the handlebars to lean,\\nnot to turn. Push the right handlebar \"down\" (or pull left up or whatever)\\nto lean right. It worked for him, he stopped steering with his tuchus.\\n\\nI\\'ve bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n',\n", - " 'From: darice@yoyo.cc.monash.edu.au (Fred Rice)\\nSubject: Re: Islam & Dress Code for women\\nOrganization: Monash University, Melb., Australia.\\nLines: 120\\n\\nIn <16BA7103C3.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n\\n>In article <1993Apr5.091258.11830@monu6.cc.monash.edu.au>\\n>darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n> \\n>(Deletion)\\n>>>>Of course people say what they think to be the religion, and that this\\n>>>>is not exactly the same coming from different people within the\\n>>>>religion. There is nothing with there existing different perspectives\\n>>>>within the religion -- perhaps one can say that they tend to converge on\\n>>>>the truth.\\n>>\\n>>>My point is that they are doing a lot of harm on the way in the meantime.\\n>>>\\n>>>And that they converge is counterfactual, religions appear to split and\\n>>>diverge. Even when there might be a \\'True Religion\\' at the core, the layers\\n>>>above determine what happens in practise, and they are quite inhumane\\n>>>usually.\\n>>>\\n> \\n>What you post then is supposed to be an answer, but I don\\'t see what is has\\n>got to do with what I say.\\n> \\n>I will repeat it. Religions as are harm people. And religions don\\'t\\n>converge, they split. Giving more to disagree upon. And there is a lot\\n>of disagreement to whom one should be tolerant or if one should be\\n>tolerant at all.\\n\\nIdeologies also split, giving more to disagree upon, and may also lead\\nto intolerance. So do you also oppose all ideologies?\\n\\nI don\\'t think your argument is an argument against religion at all, but\\njust points out the weaknesses of human nature.\\n\\n>(Big deletion)\\n>>(2) Do women have souls in Islam?\\n>>\\n>>People have said here that some Muslims say that women do not have\\n>>souls. I must admit I have never heard of such a view being held by\\n>>Muslims of any era. I have heard of some Christians of some eras\\n>>holding this viewpoint, but not Muslims. Are you sure you might not be\\n>>confusing Christian history with Islamic history?\\n> \\n>Yes, it is supposed to have been a predominant view in the Turkish\\n>Caliphate.\\n\\nI would like a reference if you have got one, for this is news to me.\\n\\n>>Anyhow, that women are the spiritual equals of men can be clearly shown\\n>>from many verses of the Qur\\'an. For example, the Qur\\'an says:\\n>>\\n>>\"For Muslim men and women, --\\n>>for believing men and women,\\n>>for devout men and women,\\n>>for true men and women,\\n>>for men and women who are patient and constant,\\n>>for men and women who humble themselves,\\n>>for men and women who give in charity,\\n>>for men and women who fast (and deny themselves),\\n>>for men and women who guard their chastity,\\n>>and for men and women who engage much in God\\'s praise --\\n>>For them has God prepared forgiveness and a great reward.\"\\n>>\\n>>[Qur\\'an 33:35, Abdullah Yusuf Ali\\'s translation]\\n>>\\n>>There are other quotes too, but I think the above quote shows that men\\n>>and women are spiritual equals (and thus, that women have souls just as\\n>>men do) very clearly.\\n>>\\n> \\n>No, it does not. It implies that they have souls, but it does not say they\\n>have souls. And it is not given that the quote above is given a high\\n>priority in all interpretations.\\n\\nOne must approach the Qur\\'an with intelligence. Any thinking approach\\nto the Qur\\'an cannot but interpret the above verse and others like it\\nthat women and men are spiritual equals.\\n\\nI think that the above verse does clearly imply that women have\\nsouls. Does it make any sense for something without a soul to be\\nforgiven? Or to have a great reward (understood to be in the\\nafter-life)? I think the usual answer would be no -- in which case, the\\npart saying \"For them has God prepared forgiveness and a great reward\"\\nsays they have souls. \\n\\n(If it makes sense to say that things without souls can be forgiven, then \\nI have no idea _what_ a soul is.)\\n\\nAs for your saying that the quote above may not be given a high priority\\nin all interpretations, any thinking approach to the Qur\\'an has to give\\nall verses of the Qur\\'an equal priority. That is because, according to\\nMuslim belief, the _whole_ Qur\\'an is the revelation of God -- in fact,\\ndenying the truth of any part of the Qur\\'an is sufficient to be\\nconsidered a disbeliever in Islam.\\n\\n>Quite similar to you other post, even when the Quran does not encourage\\n>slavery, it is not justified to say that iit forbids or puts an end to\\n>slavery. It is a non sequitur.\\n\\nLook, any approach to the Qur\\'an must be done with intelligence and\\nthought. It is in this fashion that one can try to understand the\\nQuran\\'s message. In a book of finite length, it cannot explicitly\\nanswer every question you want to put to it, but through its teachings\\nit can guide you. I think, however, that women are the spiritual equals\\nof men is clearly and unambiguously implied in the above verse, and that\\nsince women can clearly be \"forgiven\" and \"rewarded\" they _must_ have\\nsouls (from the above verse).\\n\\nLet\\'s try to understand what the Qur\\'an is trying to teach, rather than\\ntry to see how many ways it can be misinterpreted by ignoring this\\npassage or that passage. The misinterpretations of the Qur\\'an based on\\nignoring this verse or that verse are infinite, but the interpretations \\nfully consistent are more limited. Let\\'s try to discuss these\\ninterpretations consistent with the text rather than how people can\\nignore this bit or that bit, for that is just showing how people can try\\nto twist Islam for their own ends -- something I do not deny -- but\\nprovides no reflection on the true teachings of Islam whatsoever.\\n\\n Fred Rice\\n darice@yoyo.cc.monash.edu.au \\n',\n", - " 'From: nstramer@supergas.dazixco.ingr.com (Naftaly Stramer)\\nSubject: THE HAMAS WAY of DEATH\\nNntp-Posting-Host: supergas\\nReply-To: nstramer@dazixco.ingr.com\\nOrganization: Intergraph Electronics\\nLines: 104\\n\\n\\n THE HAMAS WAY of DEATH\\n \\n (Following is a transcript of a recruitment and training\\nvideotape made last summer by the Qassam Battalions, the military\\narm of Hamas, an Islamic Palestinian group. Hamas figures\\nsignificantly in the Middle East equation. In December, Israel\\ndeported more than 400 Palestinians to Lebanon in response to\\nHamas\\'s kidnapping and execution of an Israeli soldier. A longer\\nversion appears in the May issue of Harper\\'s Magazine, which\\nobtained and translated the tape.)\\n \\n My name is Yasir Hammad al-Hassan Ali. I live in Nuseirat [a\\nrefugee camp in the Gaza Strip]. I was born in 1964. I finished\\nhigh school, then attended Gaza Polytechnic. Later, I went to work\\nfor Islamic University in Gaza as a clerk. I\\'m married and I have\\ntwo daughters.\\n The Qassam Battalions are the only group in Palestine\\nexplicitly dedicated to jihad [holy war]. Our primary concern is\\nPalestinians who collaborate with the enemy. Many young men and\\nwomen have fallen prey to the cunning traps laid by the [Israeli]\\nSecurity Services.\\n Since our enemies are trying to obliterate our nation,\\ncooperation with them is clearly a terrible crime. Our most\\nimportant objective must be to put an end to the plague of\\ncollaboration. To do so, we abduct collaborators, intimidate and\\ninterrogate them in order to uncover other collaborators and expose\\nthe methods that the enemy uses to lure Palestinians into\\ncollaboration in the first place. In addition to that, naturally,\\nwe confront the problem of collaborators by executing them.\\n We don\\'t execute every collaborator. After all, about 70\\npercent of them are innocent victims, tricked or black-mailed into\\ntheir misdeeds. The decision whether to execute a collaborator is\\nbased on the seriousness of his crimes. If, like many\\ncollaborators, he has been recruited as an agent of the Israeli\\nBorder Guard then it is imperative that he be executed at once.\\nHe\\'s as dangerous as an Israeli soldier, so we treat him like an\\nIsraeli soldier.\\n There\\'s another group of collaborators who perform an even\\nmore loathsome role -- the ones who help the enemy trap young men\\nand women in blackmail schemes that force them to become\\ncollaborators. I regard the \"isqat\" [the process by which a\\nPalestinians is blackmailed into collaboration] of single person as\\ngreater crime than the killing of a demonstrator. If someone is\\nguilty of causing repeated cases of isqat, than it is our religious\\nduty to execute him.\\n A third group of collaborators is responsible for the\\ndistribution of narcotics. They work on direct orders from the\\nSecurity Services to distribute drugs as widely as possible. Their\\nvictims become addicted and soon find it unbearable to quit and\\nimpossible to afford more. They collaborate in order to get the\\ndrugs they crave. The dealers must also be executed.\\n In the battalions, we have developed a very careful method of\\nuncovering collaborators, We can\\'t afford to abduct an innocent\\nperson, because once we seize a person his reputation is tarnished\\nforever. We will abduct and interrogate a collaborator only after\\nevidence of his guilt has been established -- never before. If\\nafter interrogation the collaborator is found guilty beyond any\\ndoubt, then he is executed.\\n In many cases, we don\\'t have to make our evidence against\\ncollaborators public, because everyone knows that they\\'re guilty.\\nBut when the public isn\\'t aware that a certain individual is a\\ncollaborator, and we accuse him, people are bound to ask for\\nevidence. Many people will proclaim his innocence, so there must be\\nirrefutable proof before he is executed. This proof is usually\\nobtained in the form of a confession.\\n At first, every collaborator denies his crimes. So we start\\noff by showing the collaborator the testimony against him. We tell\\nhim that he still has a chance to serve his people, even in the\\nlast moment of his life, by confessing and giving us the\\ninformation we need.\\n We say that we know his repentance in sincere and that he has\\nbeen a victim. That kind of talk is convincing. Most of them\\nconfess after that. Others hold out; in those cases, we apply\\npressure, both psychological and physical. Then the holdouts\\nconfess as well.\\n Only one collaborator has ever been executed without an\\ninterrogation. In that case, the collaborator had been seen working\\nfor the Border Guard since before the intifada, and he himself\\nconfessed his involvement to a friend, who disclosed the\\ninformation to us. In addition, three members of his network of\\ncollaborators told us that he had caused their isqat. With this\\nmuch evidence, there was no need to interrogate him. But we are\\nvery careful to avoid wrongful executions. In every case, our\\nprincipal is the same: the accused should be interrogated until he\\nhimself confesses his crimes. \\n A few weeks ago, we sat down and complied a list of\\ncollaborators to decide whether there were any who could be\\nexecuted without interrogation. An although we had hundreds of\\nnames, still, because of our fear of God and of hell, we could not\\nmark any of these men, except for the one I just mentioned, for\\nexecution.\\n When we execute a collaborator in public, we use a gun. But\\nafter we abduct and interrogate a collaborator, we can\\'t shoot him\\n-- to do so might give away our locations. That\\'s why collaborators\\nare strangled. Sometimes we ask the collaborator, \"What do you\\nthink? How should we execute you?\" One collaborator told us,\\n\"Strangle me.\" He hated the sight of blood.\\n\\n-----\\nNaftaly Stramer \\t\\t\\t | Intergraph Electronics\\nInternet: nstramer@dazixco.ingr.com | 6101 Lookout Road, Suite A \\nVoice: (303)581-2370 FAX: (303)581-9972 | Boulder, CO 80301\\n\"Quality is everybody\\'s job, and it\\'s everybody\\'s job to watch all that they can.\"\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n\\n>mathew writes:\\n>>As for rape, surely there the burden of guilt is solely on the rapist?\\n>\\n>Not so. If you are thrown into a cage with a tiger and get mauled, do you\\n>blame the tiger?\\n\\n\\tA human has greater control over his/her actions, than a \\npredominately instictive tiger.\\n\\n\\tA proper analogy would be:\\n\\n\\tIf you are thrown into a cage with a person and get mauled, do you \\nblame that person?\\n\\n\\tYes. [ providing that that person was in a responsible frame of \\nmind, eg not clinicaly insane, on PCB\\'s, etc. ]\\n\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n',\n", - " \"Subject: Re: univesa driver\\nFrom: djlewis@ualr.edu\\nOrganization: University of Arkansas at Little Rock\\nNntp-Posting-Host: athena.ualr.edu\\nLines: 13\\n\\nIn article <13622@news.duke.edu>, seth@north13.acpub.duke.edu (Seth Wandersman) writes:\\n> \\n> \\tI got the univesa driver available over the net. I thought that finally\\n> my 1-meg oak board would be able to show 680x1024 256 colors. Unfortunately a\\n> program still says that I can't do this. Is it the fault of the program (fractint)\\n> or is there something wrong with my card.\\n> \\tunivesa- a free driver available over the net that makes many boards\\n> vesa compatible. \\nWHATS THIS 680x1024 256 color mode? Asking a lot of your hardware ?\\n\\nDon Lewis\\n\\n\\n\",\n", - " \"From: mathew \\nSubject: Re: KORESH IS GOD!\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 5\\n\\nThe latest news seems to be that Koresh will give himself up once he's\\nfinished writing a sequel to the Bible.\\n\\n\\nmathew\\n\",\n", - " 'From: arp@cooper!osd (Andrew Pinkowitz)\\nSubject: SIGGRAPH -- Conference on Understanding Images\\nKeywords: graphics animation nyc acm siggraph\\nOrganization: Online Systems Development ( NY, NY)\\nLines: 140\\n\\n======================================================================\\n NYC ACM/SIGGRAPH: UNDERSTANDING IMAGES\\n======================================================================\\n\\n SUBJECT:\\n\\n Pace University/SIGGRAPH Conference on UNDERSTANDING IMAGES\\n ===========================================================\\n\\n The purpose of this conference is to bring together a breadth of\\n disciplines, including the physical, biological and computational\\n sciences, technology, art, psychology, philosophy, and education,\\n in order to define and discuss the issues essential to image\\n understanding within the computer graphics context.\\n\\n FEATURED TOPICS INCLUDE:\\n\\n Psychology/Perception\\n Image Analysis\\n Design\\n Text\\n Sound\\n Philosophy\\n\\n DATE: Friday & Saturday, 21-22 May 1993\\n\\n TIME: 9:00 am - 6:00 pm\\n\\n PLACE: The Pace Downtown Theater\\n One Pace Plaza\\n (on Spruce Street between Park Row & Gold Street)\\n NY, NY 10038\\n\\n FEES:\\n\\n PRE-REGISTRATION (Prior to 1 May 1993):\\n Members $55.00\\n Non-Members $75.00\\n Students $40.00 (Proof of F/T Status Required)\\n\\n REGISTRATION (After 1 May 1993 or On-Site):\\n All Attendees $95.00\\n\\n (Registration Fee Includes Brakfast, Breaks & Lunch)\\n\\n\\n SEND REGISTRATION INFORMATION & FEES TO:\\n\\n Dr. Francis T. Marchese\\n Computer Science Department\\n NYC/ACM SIGGRAPH Conference\\n Pace University\\n 1 Pace Plaza (Room T-1704)\\n New York NY 10036\\n\\n voice: (212) 346-1803 fax: (212) 346-1933\\n email: MARCHESF@PACEVM.bitnet\\n\\n======================================================================\\nREGISTRATION INFORMATION:\\n\\nName _________________________________________________________________\\n\\nTitle ________________________________________________________________\\n\\nCompany ______________________________________________________________\\n\\nStreet Address _______________________________________________________\\n\\nCity ________________________________State____________Zip_____________\\n\\nDay Phone (___) ___-____ Evening Phone (___) ___-____\\n\\nFAX Phone (___) ___-____ Email_____________________________________\\n======================================================================\\n\\nDETAILED DESCRIPTION:\\n=====================\\n\\n Artists, designers, scientists, engineers and educators share the\\n problem of moving information from one mind to another.\\n Traditionally, they have used pictures, words, demonstrations,\\n music and dance to communicate imagery. However, expressing\\n complex notions such as God and infinity or a seemingly well\\n defined concept such as a flower can present challenges which far\\n exceed their technical skills.\\n\\n The explosive use of computers as visualization and expression\\n tools has compounded this problem. In hypermedia, multimedia and\\n virtual reality systems vast amounts of information confront the\\n observer or participant. Wading through a multitude of\\n simultaneous images and sounds in possibly unfamiliar\\n representions, a confounded user asks: \"What does it all mean?\"\\n\\n Since image construction, transmission, reception, decipherment and\\n ultimate understanding are complex tasks, strongly influenced by\\n physiology, education and culture; and, since electronic media\\n radically amplify each processing step, then we, as electronic\\n communicators, must determine the fundamental paradigms for\\n composing imagery for understanding.\\n\\n Therefore, the purpose of this conference is to bring together a\\n breadth of disciplines, including, but not limited to, the\\n physical, biological and computational sciences, technology, art,\\n psychology, philosophy, and education, in order to define and\\n discuss the issues essential to image understanding within the\\n computer graphics context.\\n\\n\\n FEATURED SPEAKERS INCLUDE:\\n\\n Psychology/Perception:\\n Marc De May, University of Ghent\\n Beverly J. Jones, University of Oregon\\n Barbara Tversky, Standfor University\\n Michael J. Shiffer, MIT\\n Tom Hubbard, Ohio State University\\n Image Analysis:\\n A. Ravishankar Rao, IBM Watson Research Center\\n Nalini Bhusan, Smith College\\n Xiaopin Hu, University of Illinois\\n Narenda Ahuja, University of Illinois\\n Les M. Sztander, University of Toledo\\n Design:\\n Mark Bajuk, University of Illinois\\n Alyce Kaprow, MIT\\n Text:\\n Xia Lin, Pace University\\n John Loustau, Hunter College\\n Jong-Ding Wang, Hunter College\\n Judson Rosebush, Judson Rosebush Co.\\n Sound:\\n Matthew Witten, University of Texas\\n Robert Wyatt, Center for High Performance Computing\\n Robert S. Williams, Pace University\\n Rory Stuart, NYNEX\\n Philosophy\\n Michael Heim, Education Foundation of DPMA\\n\\n======================================================================\\n',\n", - " \"From: mbeaving@bnr.ca (Michael Beavington)\\nSubject: Re: Ok, So I was a little hasty...\\nNntp-Posting-Host: bmerh824\\nReply-To: MBEAVING@BNR.CA\\nOrganization: BNR Ottawa, DMS Software Design\\nLines: 18\\n\\nIn article <13394@news.duke.edu>, infante@acpub.duke.edu (Andrew Infante) writes:\\n|> Apparently that last post was a little hasy, since I\\n|> called around to more places and got quotes for less\\n|> than 600 and 425. Liability only, of course.\\n|> \\n|> Plus, one palced will give me C7C for my car + liab on the bike for\\n|> only 1350 total, which ain't bad at all.\\n|> \\n|> So I won't go with the first place I called, that's\\n|> fer sure.\\n|> \\n\\nNevertheless, DWI is F*ckin serious. Hope you've got some \\nbrains now.\\n\\nMike Beavington\\nmbeaving@bnr.ca\\n* these opinions are my own and not my companies'.\\n\",\n", - " 'From: mangoe@cs.umd.edu (Charley Wingate)\\nSubject: Benediktine Metaphysics\\nLines: 24\\n\\nBenedikt Rosenau writes, with great authority:\\n\\n> IF IT IS CONTRADICTORY IT CANNOT EXIST.\\n\\n\"Contradictory\" is a property of language. If I correct this to\\n\\n\\n THINGS DEFINED BY CONTRADICTORY LANGUAGE DO NOT EXIST\\n\\nI will object to definitions as reality. If you then amend it to\\n\\n THINGS DESCRIBED BY CONTRADICTORY LANGUAGE DO NOT EXIST\\n\\nthen we\\'ve come to something which is plainly false. Failures in\\ndescription are merely failures in description.\\n\\n(I\\'m not an objectivist, remember.)\\n\\n\\n-- \\nC. Wingate + \"The peace of God, it is no peace,\\n + but strife closed in the sod.\\nmangoe@cs.umd.edu + Yet, brothers, pray for but one thing:\\ntove!mangoe + the marv\\'lous peace of God.\"\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Space Research Spin Off\\nOrganization: Express Access Online Communications USA\\nLines: 29\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article shafer@rigel.dfrf.nasa.gov (Mary Shafer) writes:\\n>Dryden flew the first digital fly by wire aircraft in the 70s. No\\n>mechnaical or analog backup, to show you how confident we were.\\n\\nConfident, or merely crazed? That desert sun :-)\\n\\n\\n>successful we were. (Mind you, the Avro Arrow and the X-15 were both\\n>fly-by-wire aircraft much earlier, but analog.)\\n>\\n\\nGee, I thought the X-15 was Cable controlled. Didn't one of them have a\\ntotal electrical failure in flight? Was there machanical backup systems?\\n\\n|\\n|The NASA habit of acquiring second-hand military aircraft and using\\n|them for testbeds can make things kind of confusing. On the other\\n|hand, all those second-hand Navy planes give our test pilots a chance\\n|to fold the wings--something most pilots at Edwards Air Force Base\\n|can't do.\\n|\\n\\nWhat do you mean? Overstress the wings, and they fail at teh joints?\\n\\nYou'll have to enlighten us in the hinterlands.\\n\\n\\npat\\n\\n\",\n", - " \"From: uphrrmk@gemini.oscs.montana.edu (Jack Coyote)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nReply-To: uphrrmk@gemini.oscs.montana.edu (Jack Coyote)\\nOrganization: Never Had It, Never Will\\nLines: 14\\n\\nIn sci.astro, dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n[ a nearly perfect parody -- needed more random CAPS]\\n\\n\\nThanks for the chuckle. (I loved the bit about relevance to people starving\\nin Somalia!)\\n\\nTo those who've taken this seriously, READ THE NAME! (aloud)\\n\\n-- \\nThank you, thank you, I'll be here all week. Enjoy the buffet! \\n\\n\\n\",\n", - " \"Organization: Queen's University at Kingston\\nFrom: Graydon \\nSubject: Re: What if the USSR had reached the Moon first?\\n <1993Apr7.124724.22534@yang.earlham.edu>\\n <1993Apr12.161742.22647@yang.earlham.edu>\\nLines: 9\\n\\nThis is turning into 'what's a moonbase good for', and I ought\\nnot to post when I've a hundred some odd posts to go, but I would\\nthink that the real reason to have a moon base is economic.\\n\\nSince someone with space industry will presumeably have a much\\nlarger GNP than they would _without_ space industry, eventually,\\nthey will simply be able to afford more stuff.\\n\\nGraydon\\n\",\n", - " 'From: fischer@iesd.auc.dk (Lars Peter Fischer)\\nSubject: Re: Rumours about 3DO ???\\nIn-Reply-To: archer@elysium.esd.sgi.com\\'s message of 6 Apr 93 18:18:30 GMT\\nOrganization: Mathematics and Computer Science, Aalborg University\\n\\t <1993Apr6.144520.2190@unocal.com>\\n\\t\\nLines: 11\\n\\n\\n>>>>> \"Archer\" == Archer (Bad Cop) Surly (archer@elysium.esd.sgi.com)\\n\\nArcher> How about \"Interactive Sex with Madonna\"?\\n\\nor \"Sexium\" for short.\\n\\n/Lars\\n--\\nLars Fischer, fischer@iesd.auc.dk | It takes an uncommon mind to think of\\nCS Dept., Aalborg Univ., DENMARK. | these things. -- Calvin\\n',\n", - " \"From: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nSubject: Re: Bikes vs. Horses (was Re: insect impacts f\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 34\\nReply-To: ai598@cleveland.Freenet.Edu (Mike Sturdevant)\\nNNTP-Posting-Host: slc4.ins.cwru.edu\\n\\n\\nIn a previous article, npet@bnr.ca (Nick Pettefar) says:\\n\\n>Jonathan E. Quist, on the Thu, 15 Apr 1993 14:26:42 GMT wibbled:\\n>: In article txd@ESD.3Com.COM (Tom Dietrich) writes:\\n>: >>In a previous article, egreen@east.sun.com (Ed Green - Pixel Cruncher) says:\\n>\\n>: [lots of things, none of which are quoted here]\\n>\\n>The nice thing about horses though, is that if they break down in the middle of\\n>nowhere, you can eat them.\\n\\n\\tAnd they're rather tasty.\\n\\n\\n> Fuel's a bit cheaper, too.\\n>\\n\\n\\tPer gallon (bushel) perhaps. Unfortunately they eat the same amount\\nevery day no matter how much you ride them. And if you don't fuel them they\\ndie. On an annual basis, I spend much less on bike stuff than Amy the Wonder\\nWife does on horse stuff. She has two horses, I've got umm, lesseee, 11 bikes.\\nI ride constantly, she rides four or five times a week. Even if you count \\ninsurance and the cost of the garage I built, I'm getting off cheaper than \\nshe is. And having more fun (IMHO).\\n\\n\\n\\n>\\n>\\n-- \\nGo fast. Take chances.\\n\\n\\tMike S.\\n\",\n", - " 'From: chrisb@seachg.com (Chris Blask)\\nSubject: Re: A silly question on x-tianity\\nReply-To: chrisb@seachg.com (Chris Blask)\\nOrganization: Sea Change Corporation, Mississauga, Ontario, Canada\\nLines: 44\\n\\nwerdna@cco.caltech.edu (Andrew Tong) writes:\\n>mccullou@snake2.cs.wisc.edu (Mark McCullough) writes:\\n>\\n>>Question 2: This attitude god character seems awfully egotistical\\n>>and proud. But Christianity tells people to be humble. What\\'s the deal?\\n>\\n>Well, God pretty much has a right to be \"egotistical and proud.\" I\\n>mean, he created _you_, doesn\\'t he have the right to be proud of such\\n>a job?\\n>\\n>Of course, people don\\'t have much of a right to be proud. What have\\n>they accomplished that can match God\\'s accomplishments, anyways? How\\n>do their abilities compare with those of God\\'s. We\\'re an \"imbecile\\n>worm of the earth,\" to quote Pascal.\\n\\nGrumblegrumble... \\n\\n>If you were God, and you created a universe, wouldn\\'t you be just a\\n>little irked if some self-organizing cell globules on a tiny planet\\n>started thinking they were as great and awesome as you?\\n\\nunfortunately the logic falls apart quick: all-perfect > insulted or\\nthreatened by the actions of a lesser creature > actually by offspring >\\n???????????????????\\n\\nHow/why shuold any all-powerful all-perfect feel either proud or offended?\\nAnything capable of being aware of the relationship of every aspect of every \\nparticle in the universe during every moment of time simultaneously should\\nbe able to understand the cause of every action of every \\'cell globule\\' on\\neach tniy planet...\\n\\n>Well, actually, now that I think of it, it seems kinda odd that God\\n>would care at all about the Earth. OK, so it was a bad example. But\\n>the amazing fact is that He does care, apparently, and that he was\\n>willing to make some grand sacrifices to ensure our happiness.\\n\\n\"All-powerful, Owner Of Everything in the Universe Makes Great Sacrifices\"\\nmakes a great headline but it doesn\\'t make any sense. What did he\\nsacrifice? Where did it go that he couldn\\'t get it back? If he gave\\nsomething up, who\\'d he give it up to?\\n\\n-chris\\n\\n[you guys have fun, I\\'m agoin\\' to Key West!!]\\n',\n", - " 'From: deniz@mandolin.ctr.columbia.edu (Deniz Akkus)\\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: Columbia University Center for Telecommunications Research\\nX-Posted-From: mandolin.ctr.columbia.edu\\nNNTP-Posting-Host: sol.ctr.columbia.edu\\nLines: 43\\n\\nIn article <1993Apr20.164517.20876@kpc.com> henrik@quayle.kpc.com writes:\\n>In article <1993Apr20.000413.25123@ee.rochester.edu>, terziogl@ee.rochester.edu (Esin Terzioglu) writes:\\n>My response to the \"shooting down\" of a Turkish airplane over the Armenian\\n>air space was because of the IGNORANT posting of the person from your \\n>Country. Turks and Azeris consistantly WANT to drag ARMENIA into the\\n>KARABAKH conflict with Azerbaijan. The KARABAKHI-ARMENIANS who have lived\\n>in their HOMELAND for 3000 years (CUT OFF FROM ARMENIA and GIVEN TO AZERIS \\n>BY STALIN) are the ones DIRECTLY involved in the CONFLICT. They are defending \\n>themselves against AZERI AGGRESSION. Agression that has NO MERCY for INOCENT \\n>people that are costantly SHELLED with MIG-23\\'s and othe Russian aircraft. \\n>\\n>At last, I hope that the U.S. insists that Turkey stay out of the KARABAKH \\n>crisis so that the repeat of the CYPRUS invasion WILL NEVER OCCUR again.\\n>\\n\\nArmenia is involved in fighting with Azarbaijan. It is Armenian\\nsoldiers from mainland Armenia that are shelling towns in Azarbaijan.\\nYou might wish to read more about whether or not it is Azeri aggression\\nonly in that region. It seems to me that the Armenians are better\\norganized, have more success militarily and shell Azeri towns\\nrepeatedly. \\n\\nI don\\'t wish to get into the Cyprus discussion. Turkey had the right to\\nintervene, and it did. Perhaps the intervention was not supposed to\\nlast for so long, but the constant refusal of the Greek governments both\\non the island and in Greece to deal with reality is also to be blamed\\nfor the ongoing standoff in the region. \\n\\nLastly, why is there not a soc.culture.armenia? I vote yes for it.\\nAfter all, it is now free. \\n\\nregards,\\nDeniz\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n',\n", - " 'From: chrisb@tafe.sa.edu.au (Chris BELL)\\nSubject: Re: Don\\'t more innocents die without the death penalty?\\nOrganization: South Australian Regional Academic and Research Network\\nLines: 19\\nDistribution: world\\nNNTP-Posting-Host: baarnie.tafe.sa.edu.au\\n\\n\"James F. Tims\" writes:\\n\\n>By maintaining classes D and E, even in prison, it seems as if we \\n>place more innocent people at a higher risk of an unjust death than \\n>we would if the state executed classes D and E with an occasional error.\\n\\nI would rather be at a higher risk of being killed than actually killed by\\n ^^^^ ^^^^^^^^\\nmistake. Though I do agree with the concept that the type D and E murderers\\nare a massive waste of space and resources I don\\'t agree with the concept:\\n\\n\\tkilling is wrong\\n\\tif you kill we will punish you\\n\\tour punishment will be to kill you.\\n\\nSeems to be lacking in consistency.\\n\\n--\\n\"I know\" is nothing more than \"I believe\" with pretentions.\\n',\n", - " \"From: Leigh Palmer \\nSubject: Re: Orion drive in vacuum -- how?\\nX-Xxmessage-Id: \\nX-Xxdate: Fri, 16 Apr 93 06:33:17 GMT\\nOrganization: Simon Fraser University\\nX-Useragent: Nuntius v1.1.1d17\\nLines: 15\\n\\nIn article <1qn4bgINN4s7@mimi.UU.NET> James P. Goltz, goltz@mimi.UU.NET\\nwrites:\\n> Background: The Orion spacedrive was a theoretical concept.\\n\\nIt was more than a theoretical concept; it was seriously pursued by\\nFreeman Dyson et al many years ago. I don't know how well-known this is,\\nbut a high explosive Orion prototype flew (in the atmosphere) in San\\nDiego back in 1957 or 1958. I was working at General Atomic at the time,\\nbut I didn't learn about the experiment until almost thirty years later,\\nwhen \\nTed Taylor visited us and revealed that it had been done. I feel sure\\nthat someone must have film of that experiment, and I'd really like to\\nsee it. Has anyone out there seen it?\\n\\nLeigh\\n\",\n", - " 'From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Israel does not kill reporters.\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 12\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n Anas Omran has claimed that, \"the Israelis used to arrest, and\\nsometime to kill some of these neutral reporters.\" The assertion\\nby Anas Omran is, of course, a total fabrication. If there is an\\nonce of truth iin it, I\\'m sure Anas Omran can document such a sad\\nand despicable event. Otherwise we may assume that it is another\\npiece of anti-Israel bullshit posted by someone whose family does\\nnot know how to teach their children to tell the truth. If Omran\\nwould care to retract this \\'error\\' I would be glad to retract the\\naccusation that he is a liar. If he can document such a claim, I\\nwould again be glad to apologize for calling him a liar. Failing\\nto do either of these would certainly show what a liar he is.\\n',\n", - " \"From: coburnn@spot.Colorado.EDU (Nicholas S. Coburn)\\nSubject: Re: Shipping a bike\\nNntp-Posting-Host: spot.colorado.edu\\nOrganization: University of Colorado, Boulder\\nLines: 31\\n\\nIn article <1qkhrm$7go@agate.berkeley.edu> manish@uclink.berkeley.edu (Manish Vij) writes:\\n>\\n>Can someone recommend how to ship a motorcycle from San Francisco\\n>to Seattle? And how much might it cost?\\n>\\n>I remember a thread on shipping. If someone saved the instructions\\n>on bike prep, please post 'em again, or email.\\n>\\n>Thanks,\\n>\\n>Manish\\n\\nStep 1) Join the AMA (American Motorcycling Association). Call 1-800-AMA-JOIN.\\n\\nStep 2) After you become a member, they will ship your bike, UNCRATED to \\njust about anywhere across the fruited plain for a few hundred bucks.\\n\\nI have used this service and have been continually pleased. They usually\\nonly take a few days for the whole thing, and you do not have to prepare\\nthe bike in any way (other than draining the gas). Not to mention that\\nit is about 25% of the normal shipping costs (by the time you crate a bike\\nand ship it with another company, you can pay around $1000)\\n\\n\\n________________________________________________________________________\\nNick Coburn DoD#6425 AMA#679817\\n '88CBR1000 '89CBR600\\n coburnn@spot.colorado.edu\\n________________________________________________________________________\\n\\n\\n\",\n", - " 'From: brody@eos.arc.nasa.gov (Adam R. Brody )\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: NASA Ames Research Center\\nDistribution: na\\nLines: 14\\n\\nprb@access.digex.com (Pat) writes:\\n\\n\\n>AW&ST had a brief blurb on a Manned Lunar Exploration confernce\\n>May 7th at Crystal City Virginia, under the auspices of AIAA.\\n\\n>Does anyone know more about this? How much, to attend????\\n\\n>Anyone want to go?\\n\\n>pat\\n\\nI got something in the mail from AIAA about it. Cost is $75.\\nSpeakers include John Pike, Hohn Young, and Ian Pryke.\\n',\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: $1bil space race ideas/moon base on the cheap.\\nArticle-I.D.: aurora.1993Apr25.150437.1\\nOrganization: University of Alaska Fairbanks\\nLines: 28\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nThat is an idea.. The most efficient moon habitat.. \\n\\nalso the idea of how to get the people off the moon once the prize was won..\\n\\nAlso the idea of how to rescue someone who is \"dying\" on the moon.\\n\\nMaybe have a area where they can all \"see\" each other, and can help each other\\nif something happens.. \\n\\nI liek the idea of one prize for the first moon landing and return, by a\\nnon-governmental body..\\n\\nAlso the idea of then having a moon habitat race.. \\n\\nI know we need to do somthing to get people involved..\\n\\nEccentric millionaire/billionaire would be nice.. We see how old Ross feels\\nabout it.. After all it would be a great promotional thing and a way to show he\\ndoes care about commericalization and the people.. Will try to broach the\\nsubject to him.. \\n\\nMoonbase on the cheap is a good idea.. NASA and friends seem to take to much\\ntime and give us to expensive stuff that of late does not work (hubble and\\nsuch). Basically what is the difference between a $1mil peice of junk and a\\nmulti $1mil piece of junk.. I know junk..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", - " 'From: jcm@head-cfa.harvard.edu (Jonathan McDowell)\\nSubject: Re: Shuttle Launch Question\\nOrganization: Smithsonian Astrophysical Observatory, Cambridge, MA, USA\\nDistribution: sci\\nLines: 23\\n\\nFrom article , by tombaker@world.std.com (Tom A Baker):\\n>>In article , ETRAT@ttacs1.ttu.edu (Pack Rat) writes...\\n>>>\"Clear caution & warning memory. Verify no unexpected\\n>>>errors. ...\". I am wondering what an \"expected error\" might\\n>>>be. Sorry if this is a really dumb question, but\\n> \\n> Parity errors in memory or previously known conditions that were waivered.\\n> \"Yes that is an error, but we already knew about it\"\\n> I\\'d be curious as to what the real meaning of the quote is.\\n> \\n> tom\\n\\n\\nMy understanding is that the \\'expected errors\\' are basically\\nknown bugs in the warning system software - things are checked\\nthat don\\'t have the right values in yet because they aren\\'t\\nset till after launch, and suchlike. Rather than fix the code\\nand possibly introduce new bugs, they just tell the crew\\n\\'ok, if you see a warning no. 213 before liftoff, ignore it\\'.\\n\\n - Jonathan\\n\\n\\n',\n", - " 'Subject: Re: There must be a creator! (Maybe)\\nFrom: halat@pooh.bears (Jim Halat)\\nReply-To: halat@pooh.bears (Jim Halat)\\nLines: 24\\n\\nIn article <16BA1E927.DRPORTER@SUVM.SYR.EDU>, DRPORTER@SUVM.SYR.EDU (Brad Porter) writes:\\n>\\n> Science is wonderful at answering most of our questions. I\\'m not the type\\n>to question scientific findings very often, but... Personally, I find the\\n>theory of evolution to be unfathomable. Could humans, a highly evolved,\\n>complex organism that thinks, learns, and develops truly be an organism\\n>that resulted from random genetic mutations and natural selection?\\n\\n[...stuff deleted...]\\n\\nComputers are an excellent example...of evolution without \"a\" creator.\\nWe did not \"create\" computers. We did not create the sand that goes\\ninto the silicon that goes into the integrated circuits that go into\\nprocessor board. We took these things and put them together in an\\ninteresting way. Just like plants \"create\" oxygen using light through \\nphotosynthesis. It\\'s a much bigger leap to talk about something that\\ncreated \"everything\" from nothing. I find it unfathomable to resort\\nto believing in a creator when a much simpler alternative exists: we\\nsimply are incapable of understanding our beginnings -- if there even\\nwere beginnings at all. And that\\'s ok with me. The present keeps me\\nperfectly busy.\\n\\n-jim halat\\n\\n',\n", - " 'From: loss@fs7.ECE.CMU.EDU (Doug Loss)\\nSubject: Re: Death and Taxes (was Why not give $1 billion to...\\nOrganization: Electrical and Computer Engineering, Carnegie Mellon\\nLines: 7\\n\\nIn my last post I referred to Michael Adams as \"Nick.\" Completely my\\nerror; Nick Adams was a film and TV actor from the \\'50\\'s and early \\'60\\'s\\n(remember Johnny Yuma, The Rebel?). He was from my part of the country,\\nand Michael\\'s email address of \"nmsca[...]\" probably helped confuse things\\nin my mind. Purely user headspace error on my part. Sorry.\\n\\nDoug Loss\\n',\n", - " 'From: sysmgr@king.eng.umd.edu (Doug Mohney)\\nSubject: Re: Shuttle oxygen (was Budget Astronaut)\\nOrganization: Computer Aided Design Lab, U. of Maryland College Park\\nLines: 19\\nReply-To: sysmgr@king.eng.umd.edu\\nNNTP-Posting-Host: queen.eng.umd.edu\\n\\nIn article <1993Apr16.151729.8610@aio.jsc.nasa.gov>, kjenks@gothamcity.jsc.nasa.gov writes:\\n\\n>Josh Hopkins (jbh55289@uxa.cso.uiuc.edu) replied:\\n>: Double wow. Can you land a shuttle with a 5cm hole in the wall?\\n>Personnally, I don\\'t know, but I\\'d like to try it sometime.\\n\\nAre you volunteering? :)\\n\\n> But a\\n>hole in the pressure vessel would cause us to immediately de-orbit\\n>to the next available landing site.\\n\\nWill NASA have \"available landing sites\" in the Russian Republic, now that they\\nare Our Friends and Comrades?\\n\\n\\n\\n Software engineering? That\\'s like military intelligence, isn\\'t it?\\n -- > SYSMGR@CADLAB.ENG.UMD.EDU < --\\n',\n", - " \"From: tony@morgan.demon.co.uk (Tony Kidson)\\nSubject: Re: Insurance and lotsa points... \\nDistribution: world\\nOrganization: The Modem Palace\\nReply-To: tony@morgan.demon.co.uk\\nX-Newsreader: Simple NEWS 1.90 (ka9q DIS 1.21)\\nLines: 16\\n\\nIn article <1993Apr19.211340.12407@adobe.com> cjackson@adobe.com writes:\\n\\n>I am very glad to know that none of you judgemental little shits has\\n\\nHey Pal! Who're you calling litte?\\n\\n\\nTony\\n\\n+---------------+------------------------------+-------------------------+\\n|Tony Kidson | ** PGP 2.2 Key by request ** |Voice +44 81 466 5127 |\\n|Morgan Towers, | The Cat has had to move now |E-Mail(in order) |\\n|Morgan Road, | as I've had to take the top |tony@morgan.demon.co.uk |\\n|Bromley, | off of the machine. |tny@cix.compulink.co.uk |\\n|England BR1 3QE|Honda ST1100 -=<*>=- DoD# 0801|100024.301@compuserve.com|\\n+---------------+------------------------------+-------------------------+\\n\",\n", - " 'From: dmatejka@netcom.com (Daniel Matejka)\\nSubject: Re: Speeding ticket from CHP\\nOrganization: Netcom - Online Communication Services\\nLines: 47\\n\\nIn article <1pq4t7$k5i@agate.berkeley.edu> downey@homer.CS.Berkeley.EDU (Allen B. Downey) writes:\\n> Fight your ticket : California edition by David Brown 1st ed.\\n> Berkeley, CA : Nolo Press, 1982\\n>\\n>The second edition is out (but not in UCB\\'s library). Good luck; let\\n>us know how it goes.\\n>\\n Daniel Matejka writes:\\n The fourth edition is out, too. But it\\'s probably also not\\nvery high on UCB\\'s \"gotta have that\" list.\\n\\nIn article <65930405053856/0005111312NA1EM@mcimail.com> 0005111312@mcimail.com (Peter Nesbitt) writes:\\n>Riding to work last week via Hwy 12 from Suisun, to I-80, I was pulled over by\\n>a CHP black and white by the 76 Gas station by Jameson Canyon Road. The\\n>officer stated \"...it like you were going kinda fast coming down\\n>highway 12. You been going at least 70 or 75.\" I just said okay,\\n>and did not agree or disagree to anything he said. \\n\\n Can you beat this ticket? Personally, I think it\\'s your Duty As a Citizen\\nto make it as much trouble as possible for them, so maybe they\\'ll Give Up\\nand Leave Us Alone Someday Soon.\\n The cop was certainly within his legal rights to nail you by guessing\\nyour speed. Mr. Brown (the author of Fight Your Ticket) mentions an\\nOakland judge who convicted a speeder \"on the officer\\'s testimony that\\nthe driver\\'s car sounded like it was being driven at an excessive speed.\"\\n You can pay off the State and your insurance company, or you can\\ntake it to court and be creative. Personally, I\\'ve never won that way\\nor seen anyone win, but the judge always listens politely. And I haven\\'t\\nseen _that_ many attempts.\\n You could try the argument that since bikes are shorter than the\\ncars whose speed the nice officer is accustomed to guessing, they therefore\\nappear to be further away, and so their speed appears to be greater than\\nit actually is. I left out a step or two, but you get the idea. If you\\ncan make it convincing, theoretically you\\'re supposed to win.\\n I\\'ve never tried proving the cop was mistaken. I did get to see\\nsome other poor biker try it. He was mixing up various facts like\\nthe maximum acceleration of a (cop) car, and the distance at which\\nthe cop had been pacing him, and end up demonstrating that he couldn\\'t\\npossibly have been going as fast as the cop had suggested. He\\'d\\nbrought diagrams and a calculator. He was Prepared. He lost. Keep\\nin mind cops do this all the time, and their word is better than yours.\\nMaybe, though, they don\\'t guess how fast bikes are going all the time.\\nBesides, this guy didn\\'t speak English very well, and ended up absolutely\\nconfounding the judge, the cop, and everyone else in the room who\\'d been\\nrecently criminalized by some twit with a gun and a quota.\\n Ahem. OK, I\\'m better now. Maybe he\\'d have won had his presentation\\nbeen more polished. Maybe not. He did get applause.\\n',\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Space Station Redesign (30826) Option C\\nArticle-I.D.: aurora.1993Apr25.214653.1\\nOrganization: University of Alaska Fairbanks\\nLines: 22\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1993Apr25.151108.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\\n> I like option C of the new space station design.. \\n> It needs some work, but it is simple and elegant..\\n> \\n> Its about time someone got into simple construction versus overly complex...\\n> \\n> Basically just strap some rockets and a nose cone on the habitat and go for\\n> it..\\n> \\n> Might be an idea for a Moon/Mars base to.. \\n> \\n> Where is Captain Eugenia(sp) when you need it (reference to russian heavy\\n> lifter, I think).\\n> ==\\n> Michael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n> \\n> \\n> \\n> \\n\\n\\nThis is a report, I got the subject messed up..\\n\",\n", - " 'From: oberto@genes.icgeb.trieste.it (Jacques Oberto)\\nSubject: Re: HELP!!! GRASP\\nOrganization: ICGEB\\nLines: 33\\n\\nCBW790S@vma.smsu.edu.Ext (Corey Webb) writes:\\n\\n>In article <1993Apr19.160944.20236W@baron.edb.tih.no>\\n>havardn@edb.tih.no (Haavard Nesse,o92a) writes:\\n>>\\n>>Could anyone tell me if it\\'s possible to save each frame\\n>>of a .gl (grasp) animation to .gif, .jpg, .iff or any other\\n>>picture formats.\\n>>\\n> \\n> If you have the GRASP animation system, then yes, it\\'s quite easy.\\n>You simply use GLIB to extract the image (each \"frame\" in a .GL is\\n>actually a complete .PCX or .CLP file), then use one of MANY available\\n>utilities to convert it. If you don\\'t have the GRASP package, I\\'m afraid\\n>I can\\'t help you. Sorry.\\n> By the way, before you ask, GRASP (GRaphics Animation System for\\n>Professionals) is a commercial product that sells for just over US$300\\n>from most mail-order companies I\\'ve seen. And no, I don\\'t have it. :)\\n> \\n> \\n> Corey Webb\\n> \\n\\nThere are several public domain utilities available at your usual\\narchive site that allow \\'extraction\\' of single frames from a .gl\\nfile, check in the \\'graphics\\' directories under *grasp. The problem \\nis that the .clp files you generate cannot be decoded by any of \\nthe many pd format converters I have used. Any hint welcome!\\nLet me know if you have problems locating the utilities.\\nHope it helps.\\n\\n-- \\nJacques Oberto \\n',\n", - " 'From: clump@acaps.cs.mcgill.ca (Clark VERBRUGGE)\\nSubject: Re: BGI Drivers for SVGA\\nOrganization: SOCS, McGill University, Montreal, Canada\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 29\\n\\nDominic Lai (cs_cylai@cs.ust.hk) wrote:\\n: Simon Crowe (scrowe@hemel.bull.co.uk) wrote:\\n: 8~> I require BGI drivers for Super VGA Displays and Super XVGA Displays. Does \\n: 8~> anyone know where I could obtain the relevant drivers ? (FTP sites ??)\\n\\n: \\tI would like to know too!\\n\\n: Regards,\\n: Dominic\\n\\ngarbo.uwasa.fi (or one of its many mirrors) has a file\\ncalled \"svgabg40\" in the programming subdirectory.\\nThese are svga bgi drivers for a variety of cards.\\n\\n[from the README]:\\n\"Card types supported: (SuperVGA drivers)\\n Ahead, ATI, Chips & Tech, Everex, Genoa, Paradise, Oak, Trident (both 8800 \\n and 8900, 9000), Tseng (both 3000 and 4000 chipsets) and Video7.\\n These drivers will also work on video cards with VESA capability.\\n The tweaked drivers will work on any register-compatible VGA card.\"\\n\\nenjoy,\\nClark Verbrugge\\nclump@cs.mcgill.ca\\n\\n--\\n\\n HONK HONK BLAT WAK WAK WAK WAK WAK UNGOW!\\n\\n',\n", - " 'From: pooder@rchland.vnet.ibm.com (Don Fearn)\\nSubject: Re: Antifreeze/coolant\\nReply-To: pooder@msus1.msus.edu\\t\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM\\nNntp-Posting-Host: garnet.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 34\\n\\nIn article <1993Apr15.193938.8569@research.nj.nec.com>, behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n|> \\tFor those of you with motorcycles of the liquid-cooled persuasion,\\n|> what brand of coolant do you use and why? I am looking for aluminum-safe\\n|> coolant, preferably phosphate-free, and preferably cheaper than $13/gallon.\\n|> (Can you believe it: the Kaw dealer wants $4.95 a QUART for the Official\\n|> Blessed Holy Kawasaki Coolant!!! No way I\\'m paying that usury...)\\n|> \\n\\nPrestone. I buy it at ShopKo for less \\nthan that a _gallon_. BMW has even more\\nexpensive stuff than Kawasaki (must be \\nfrom grapes only grown in certain parts of\\nthe fatherland), but BMW Dave* said \"Don\\'t \\nworry about it -- just change it yearly and\\nkeep it topped off\". It\\'s been keeping \\nGretchen happy since \\'87, so I guess it\\'s OK.\\n\\nKept my Rabbit\\'s aluminum radiator hoppy for\\n12 years and 130,000 miles, too, so I guess\\nit\\'s aluminum safe. \\n\\n*Former owner of the late lamented Rochester \\nBMW Motorcycles and all around good guy.\\n\\n-- \\n\\n\\n Pooder - Rochester, MN - DoD #591 \\n -------------------------------------------------------------------------\\n \"What Do *You* Care What Other People Think?\" -- Richard Feynman \\n -------------------------------------------------------------------------\\n I share garage space with: Gretchen - \\'86 K75 Harvey - \\'72 CB500 \\n -------------------------------------------------------------------------\\n << Note the different \"Reply-To:\" address if you want to send me e-mail>>\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Vandalizing the sky\\nOrganization: University of Illinois at Urbana\\nLines: 50\\n\\nyamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n\\n>enzo@research.canon.oz.au (Enzo Liguori) writes:\\n>>WHAT\\'S NEW (in my opinion), Friday, 16 April 1993 Washington, DC\\n\\n>>1. SPACE BILLBOARDS! IS THIS ONE THE \"SPINOFFS\" WE WERE PROMISED?\\n>>In 1950, science fiction writer Robert Heinlein published \"The\\n>>Man Who Sold the Moon,\" which involved a dispute over the sale of\\n>>rights to the Moon for use as billboard. NASA has taken the firsteps toward this\\n>>hideous vision of the future. Observers were\\n>>startled this spring when a NASA launch vehicle arrived at the\\n>>pad with \"SCHWARZENEGGER\" painted in huge block letters on the\\n>>side of the booster rockets. Space Marketing Inc. had arranged\\n>>for the ad to promote Arnold\\'s latest movie.\\n\\n>Well, if you\\'re going to get upset with this, you might as well direct\\n>some of this moral outrage towards Glavcosmos as well. They pioneered\\n>this capitalist application of booster adverts long before NASA.\\n\\nIn fact, you can all direct your ire at the proper target by ingoring NASA \\naltogether. The rocket is a commercial launch vechicle - a Conestoga flying \\na COMET payload. NASA is simply the primary customer. I believe SDIO has a\\nsmall payload as well. The advertising space was sold by the owners of the\\nrocket, who can do whatever they darn well please with it. In addition, these\\nanonymous \"observers\" had no reason to be startled. The deal made Space News\\nat least twice. \\n\\n>>Now, Space Marketing\\n>>is working with University of Colorado and Livermore engineers on\\n>>a plan to place a mile-long inflatable billboard in low-earth\\n>>orbit.\\n>>NASA would provide contractual launch services. However,\\n>>since NASA bases its charge on seriously flawed cost estimates\\n>>(WN 26 Mar 93) the taxpayers would bear most of the expense. \\n\\n>>Is NASA really supporting this junk?\\n\\n>And does anyone have any more details other than what was in the WN\\n>news blip? How serious is this project? Is this just in the \"wild\\n>idea\" stage or does it have real funding?\\n\\nI think its only fair to find that out before everyone starts having a hissy\\nfit. The fact that they bothered to use the conditional tense suggests that\\nit has not yet been approved.\\n\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " 'From: dewey@risc.sps.mot.com (Dewey Henize)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nOrganization: Motorola, Inc. -- Austin,TX\\nLines: 48\\nNNTP-Posting-Host: rtfm.sps.mot.com\\n\\nIn article <1993Apr15.212943.15118@bnr.ca> (Rashid) writes:\\n[deletions]\\n>\\n>The fatwa was levelled at the person of Rushdie - any actions of\\n>Rushdie that feed the situation contribute to the legitimization of\\n>the ruling. The book remains in circulation not by some independant\\n>will of its own but by the will of the author and the publishers. The fatwa\\n>against the person of Rushdie encompasses his actions as well. The\\n>crime was certainly a crime in progress (at many levels) and was being\\n>played out (and played up) in the the full view of the media.\\n>\\n>P.S. I\\'m not sure about this but I think the charge of \"shatim\" also\\n>applies to Rushdie and may be encompassed under the umbrella\\n>of the \"fasad\" ruling.\\n\\nIf this is grounded firmly in Islam, as you claim, then you have just\\nexposed Islam as the grounds for terrorism, plain and simple.\\n\\nWhether you like it or not, whether Rushdie acted like a total jerk or\\nnot, there is no acceptable civilized basis for putting someone in fear\\nof their life for words.\\n\\nIt simply does not matter whether his underlying motive was to find the\\nworst possible way he could to insult Muslims and their beliefs, got that?\\nYou do not threaten the life of someone for words - when you do, you\\nquite simply admit the backruptcy of your position. If you support\\nthreatening the life of someone for words, you are not yet civilized.\\n\\nThis is exactly where I, and many of the people I know, have to depart\\nfrom respecting the religions of others. When those beliefs allow and\\nencourage (by interpretation) the killing of non-physical opposition.\\n\\nYou, or I or anyone, are more than privledged to believe that someone,\\nwhether it be Rushdie or Bush or Hussien or whover, is beyond the pale\\nof civilized society and you can condemn his/her soul, refuse to allow\\nany members of your association to interact with him/her, _peacably_\\ndemonstrate to try to convince others to disassociate themselves from\\nthe \"miscreants\", or whatever, short of physical force.\\n\\nBut once you physically threaten, or support physical threats, you get\\nmuch closer to your earlier comparison of rape - with YOU as the rapist\\nwho whines \"She asked for it, look how she was dressed\".\\n\\nBlaming the victim when you are unable to be civilized doesn\\'t fly.\\n\\nDew\\n-- \\nDewey Henize Sys/Net admin RISC hardware (512) 891-8637 pager 928-7447 x 9637\\n',\n", - " \"Subject: Re: Bikes vs. Horses (was Re: insect impac\\nFrom: emd@ham.almanac.bc.ca\\nDistribution: world\\nOrganization: Robert Smits\\nLines: 21\\n\\ncooper@mprgate.mpr.ca (Greg Cooper) writes:\\n\\n> In article <1qeftj$d0i@sixgun.East.Sun.COM>, egreen@east.sun.com (Ed Green - \\n> >In article sda@usenet.INS.CWRU.Edu, ai598@cleveland.Freenet.Edu (Mike Sturde\\n> >>\\n> >>\\tOnly exceptional ones like me. Average ones like you can barely fart\\n> >>by themselves.\\n> >\\n> >Fuck you very much, Mike.\\n> >\\n> \\n> Gentlemen _please_. \\n> -- \\n\\n\\nGreg's obviously confused. There aren't many (any) gentlemen on this \\nnewsgroup. Well, maybe. One or two.\\n\\n\\nRobert Smits Ladysmith BC | If Lucas built weapons, wars\\nemd@ham.almanac.bc.ca | would never start, either.\\n\",\n", - " \"From: collins@well.sf.ca.us (Steve Collins)\\nSubject: Re: Orbital RepairStation\\nNntp-Posting-Host: well.sf.ca.us\\nOrganization: Whole Earth 'Lectronic Link\\nLines: 29\\n\\n\\nThe difficulties of a high Isp OTV include:\\nLong transfer times (radiation damage from VanAllen belts for both\\n the spacecraft and OTV\\nArcjets or Xenon thrusters require huge amounts of power so you have\\nto have either nuclear power source (messy, dangerous and source of\\nradiation damage) or BIG solar arrays (sensitive to radiation, or heavy)\\nthat make attitude control and docking a big pain.\\n\\nIf you go solar, you have to replace the arrays every trip, with\\ncurrent technology. Nuclear power sources are strongly restricted\\nby international treaty.\\n\\nRefueling (even for very high Isp like xenon) is still required and]\\nturn out to be a pain.\\n\\nYou either have to develop autonomous rendezvous or long range teleoperation\\nto do docking or ( and refueling) .\\n\\nYou still can't do much plane change because the deltaV required is so high!\\n\\nThe Air Force continues to look at doing things this way though. I suppose\\nthey are biding their time till the technology becomes available and\\nthe problems get solved. Not impossible in principle, but hard to\\ndo and marginally cheaper than one shot rockets, at least today.\\n\\nJust a few random thoughts on high Isp OTV's. I designed one once...\\n\\n Steve Collins\\n\",\n", - " \"From: lm001@rrz.Uni-Koeln.DE (Erwin H. Keeve)\\nSubject: Marchin Cubes\\nOrganization: Regional Computing Center, University of Cologne\\nLines: 27\\nDistribution: world\\nNNTP-Posting-Host: rs1.rrz.uni-koeln.de\\nKeywords: Polygon Reduction\\n\\n\\n\\nHi there,\\n\\nis there anybody who know a polygon_reduction algorithm for\\nmarching cube surfaces. e.g. the algirithm of Schroeder,\\nSiggraph'92.\\n\\nFor any hints, hugs and kisses.\\n\\n- Erwin\\n\\n ,,,\\n (o o)\\n ___________________________________________oOO__(-)__OOo_____________\\n|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|_|\\n|_|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|\\n| | |\\n| Erwin Keeve | adress: Peter-Welter-Platz 2 |\\n| | W-5000 Cologne 1, Germany |\\n| | |\\n| Dept. of Computergraphics & | phone: +49-221-20189-132 (-192) |\\n| Computeranimation | FAX: +49-221-20189-17 |\\n| | |\\n| Academy of Media Arts Cologne | Email: keeve@khm.uni-koeln.de |\\n|_______________________________|_____________________________________|\\n\\n\",\n", - " \"From: shaig@Think.COM (Shai Guday)\\nSubject: Basil, opinions? (Re: Water on the brain)\\nOrganization: Thinking Machines Corporation, Cambridge MA, USA\\nLines: 40\\nDistribution: world\\nNNTP-Posting-Host: composer.think.com\\n\\nIn article <1993Apr15.204930.9517@thunder.mcrcim.mcgill.edu>, hasan@McRCIM.McGill.EDU writes:\\n|> \\n|> In article <1993Apr15.055341.6075@nysernet.org>, astein@nysernet.org (Alan Stein) writes:\\n|> |> I guess Hasan finally revealed the source of his claim that Israel\\n|> |> diverted water from Lebanon--his imagination.\\n|> |> -- \\n|> |> Alan H. Stein astein@israel.nysernet.org\\n|> Mr. water-head,\\n|> i never said that israel diverted lebanese rivers, in fact i said that\\n|> israel went into southern lebanon to make sure that no \\n|> water is being used on the lebanese\\n|> side, so that all water would run into Jordan river where there\\n|> israel will use it !#$%^%&&*-head.\\n\\nOf course posting some hard evidence or facts is much more\\ndifficult. You have not bothered to substantiate this in\\nany way. Basil, do you know of any evidence that would support\\nthis?\\n\\nI can just imagine a news report from ancient times, if Hasan\\nhad been writing it.\\n\\nNewsflash:\\nCairo AP (Ancient Press). Israel today denied Egypt acces to the Red\\nSea. In a typical display of Israelite agressiveness, the leader of\\nthe Israelite slave revolt, former prince Moses, parted the Red Sea.\\nThe action is estimated to have caused irreparable damage to the environment.\\nEgyptian authorities have said that thousands of fisherman have been\\ndenied their livelihood by the parted waters. Pharaoh's brave charioteers\\nwere successful in their glorious attempt to cause the waters of the\\nRed Sea to return to their normal state. Unfortunately they suffered\\nheavy casualties while doing so.\\n\\n|> Hasan \\n\\n-- \\nShai Guday | Stealth bombers,\\nOS Software Engineer |\\nThinking Machines Corp. |\\tthe winged ninjas of the skies.\\nCambridge, MA |\\n\",\n", - " 'From: ricky@watson.ibm.com (Rick Turner)\\nSubject: Re: images of earth\\nDisclaimer: This posting represents the poster\\'s views, not necessarily those of IBM.\\nNntp-Posting-Host: danebury.hursley.ibm.com\\nOrganization: IBM UK Labs\\nLines: 6\\n\\nLook in the /pub/SPACE directory on ames.arc.nasa.gov - there are a number\\nof earth images there. You may have to hunt around the subdirectories as\\nthings tend to be filed under the mission (ie, \"APOLLO\") rather than under\\t\\nthe image subject.\\t\\n\\nRick\\n',\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: DC-X update???\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 25\\n\\nIn article schumach@convex.com (Richard A. Schumacher) writes:\\n\\n>Would the sub-orbital version be suitable as-is (or \"as-will-be\") for use\\n>as a reuseable sounding rocket?\\n\\nDC-X as is today isn\\'t suitable for this. However, the followon SDIO\\nfunds will. A reusable sounding rocket was always SDIO\\'s goal.\\n\\n>Thank Ghod! I had thought that Spacelifter would definitely be the\\n>bastard Son of NLS.\\n\\nSo did I. There is a lot going on now and some reports are due soon \\nwhich should be very favorable. The insiders have been very bush briefing\\nthe right people and it is now paying off.\\n\\nHowever, public support is STILL critical. In politics you need to keep\\nconstant pressure on elected officials.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " 'From: moseley@u.washington.edu (Steve L. Moseley)\\nSubject: Re: Observation re: helmets\\nOrganization: Microbial Pathogenesis and Motorcycle Maintenance\\nLines: 20\\nDistribution: world\\nNNTP-Posting-Host: microb0.biostat.washington.edu\\n\\nIn article <1qk5oi$d0i@sixgun.East.Sun.COM>\\n egreen@east.sun.com (Ed Green - Pixel Cruncher) writes:\\n\\n>If your primary concern is protecting the passenger in the event of a\\n>crash, have him or her fitted for a helmet that is their size. If your\\n>primary concern is complying with stupid helmet laws, carry a real big\\n>spare (you can put a big or small head in a big helmet, but not in a\\n>small one).\\n\\nSo what should I carry if I want to comply with intelligent helmet laws?\\n\\n(The above comment in no way implies support for any helmet law, nor should \\nsuch support be inferred. A promise is a promise.)\\n\\nSteve\\n__________________________________________________________________________\\nSteve L. Moseley moseley@u.washington.edu\\nMicrobiology SC-42 Phone: (206) 543-2820\\nUniversity of Washington FAX: (206) 543-8297\\nSeattle, WA 98195\\n',\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Objective morality (was Re: Humans have \"gone somewhat beyond\" what, exactly? In one thread\\n>you\\'re telling us that natural morality is what animals do to\\n>survive, and in this thread you are claiming that an omniscient\\n>being can \"definitely\" say what is right and what is wrong. So\\n>what does this omniscient being use for a criterion? The long-\\n>term survival of the human species, or what?\\n\\nWell, that\\'s the question, isn\\'t it? The goals are probably not all that\\nobvious. We can set up a few goals, like happiness and liberty and\\nthe golden rule, etc. But these goals aren\\'t inherent. They have to\\nbe defined before an objective system is possible.\\n\\n>How does omniscient map into \"definitely\" being able to assign\\n>\"right\" and \"wrong\" to actions?\\n\\nIt is not too difficult, one you have goals in mind, and absolute\\nknoweldge of everyone\\'s intent, etc.\\n\\n>>Now you are letting an omniscient being give information to me. This\\n>>was not part of the original premise.\\n>Well, your \"original premises\" have a habit of changing over time,\\n>so perhaps you\\'d like to review it for us, and tell us what the\\n>difference is between an omniscient being be able to assign \"right\"\\n>and \"wrong\" to actions, and telling us the result, is. \\n\\nOmniscience is fine, as long as information is not given away. Isn\\'t\\nthis the resolution of the free will problem? An interactive omniscient\\nbeing changes the situation.\\n\\n>>Which type of morality are you talking about? In a natural sense, it\\n>>is not at all immoral to harm another species (as long as it doesn\\'t\\n>>adversely affect your own, I guess).\\n>I\\'m talking about the morality introduced by you, which was going to\\n>be implemented by this omniscient being that can \"definitely\" assign\\n>\"right\" and \"wrong\" to actions.\\n>You tell us what type of morality that is.\\n\\nWell, I was speaking about an objective system in general. I didn\\'t\\nmention a specific goal, which would be necessary to determine the\\nmorality of an action.\\n\\nkeith\\n',\n", - " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Serdar\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 5\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nWhat are you, retarded?\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", - " 'From: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nSubject: Re: rejoinder. Questions to Israelis\\nReply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\\nOrganization: The National Capital Freenet\\nLines: 34\\n\\n\\nIn a previous article, cpr@igc.apc.org (Center for Policy Research) says:\\n\\n>today ? Finally, if Israel wants peace, why can\\'t it declare what\\n>it considers its legitimate and secure borders, which might be a\\n>base for negotiations? Having all the above facts in mind, one\\n>cannot blame Arab countries to fear Israeli expansionism, as a\\n>number of wars have proved (1948, 1956, 1967, 1982).\\n\\nOh yeah, Israel was really ready to \"expand its borders\" on the holiest day\\nof the year (Yom Kippur) when the Arabs attacked in 1973. Oh wait, you\\nchose to omit that war...perhaps because it 100% supports the exact \\nOPPOSITE to the point you are trying to make? I don\\'t think that it\\'s\\nbecause it was the war that hit Israel the hardest. Also, in 1967 it was\\nEgypt, not Israel who kicked out the UN force. In 1948 it was the Arabs\\nwho refused to accept the existance of Israel BASED ON THE BORDERS SET\\nBY THE UNITED NATIONS. In 1956, Egypt closed off the Red Sea to Israeli\\nshipping, a clear antagonistic act. And in 1982 the attack was a response\\nto years of constant shelling by terrorist organizations from the Golan\\nHeights. Children were being murdered all the time by terrorists and Israel\\nfinally retaliated. Nowhere do I see a war that Israel started so that \\nthe borders could be expanded.\\n \\n Steve\\n-- \\n------------------------------------------------------------------------------\\n| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\\n| Mossad@qube.ocunix.on.ca |\\n| <> |\\n',\n", - " 'From: yamauchi@ces.cwru.edu (Brian Yamauchi)\\nSubject: Griffin / Office of Exploration: RIP\\nOrganization: Case Western Reserve University\\nLines: 19\\nDistribution: world\\nNNTP-Posting-Host: yuggoth.ces.cwru.edu\\n\\nAny comments on the absorbtion of the Office of Exploration into the\\nOffice of Space Sciences and the reassignment of Griffin to the \"Chief\\nEngineer\" position? Is this just a meaningless administrative\\nshuffle, or does this bode ill for SEI?\\n\\nIn my opinion, this seems like a Bad Thing, at least on the surface.\\nGriffin seemed to be someone who was actually interested in getting\\nthings done, and who was willing to look an innovative approaches to\\ngetting things done faster, better, and cheaper. It\\'s unclear to me\\nwhether he will be able to do this at his new position.\\n\\nDoes anyone know what his new duties will be?\\n--\\n_______________________________________________________________________________\\n\\nBrian Yamauchi\\t\\t\\tCase Western Reserve University\\nyamauchi@alpha.ces.cwru.edu\\tDepartment of Computer Engineering and Science\\n_______________________________________________________________________________\\n\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: sgi\\nLines: 24\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <115468@bu.edu>, jaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n|> In article <1qg79g$kl5@fido.asd.sgi.com> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >You are amazed that I find it difficult to grasp it when\\n|> >people justify death-threats against Rushdie with the \\n|> >claim \"he was born Muslim?\"\\n|> \\n|> This is empty rhetoric. I am amazed at your inability to understand what\\n|> I am saying not that you find it difficult to \"grasp it when people\\n|> justify death-threats...\". I find it amazing that your ability to\\n|> consider abstract questions in isolation. You seem to believe in the\\n|> falsity of principles by the consequence of their abuse. You must *hate*\\n|> physics!\\n\\nYou\\'re closer than you might imagine. I certainly despised living\\nunder the Soviet regime when it purported to organize society according\\nto what they fondly imagined to be the \"objective\" conclusions of\\nMarxist dialectic.\\n\\nBut I don\\'t hate Physics so long as some clown doesn\\'t start trying\\nto control my life on the assumption that we are all interchangeable\\natoms, rather than individual human beings.\\n\\njon. \\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Metric vs English\\nArticle-I.D.: mksol.1993Apr6.131900.8407\\nOrganization: Texas Instruments Inc\\nLines: 31\\n\\nIn <1993Apr5.195215.16833@pixel.kodak.com> dj@ekcolor.ssd.kodak.com (Dave Jones) writes:\\n\\n>Keith Mancus (mancus@sweetpea.jsc.nasa.gov) wrote:\\n>> Bruce_Dunn@mindlink.bc.ca (Bruce Dunn) writes:\\n>> > SI neatly separates the concepts of \"mass\", \"force\" and \"weight\"\\n>> > which have gotten horribly tangled up in the US system.\\n>> \\n>> This is not a problem with English units. A pound is defined to\\n>> be a unit of force, period. There is a perfectly good unit called\\n>> the slug, which is the mass of an object weighing 32.2 lbs at sea level.\\n>> (g = 32.2 ft/sec^2, of course.)\\n>> \\n\\n>American Military English units, perhaps. Us real English types were once \\n>taught that a pound is mass and a poundal is force (being that force that\\n>causes 1 pound to accelerate at 1 ft.s-2). We had a rare olde tyme doing \\n>our exams in those units and metric as well.\\n\\nAmerican, perhaps, but nothing military about it. I learned (mostly)\\nslugs when we talked English units in high school physics and while\\nthe teacher was an ex-Navy fighter jock the book certainly wasn\\'t\\nproduced by the military.\\n\\n[Poundals were just too flinking small and made the math come out\\nfunny; sort of the same reason proponents of SI give for using that.] \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: arf@genesis.MCS.COM (Jack Schmidling)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: MCSNet Contributor, Chicago, IL\\nLines: 26\\nNNTP-Posting-Host: localhost.mcs.com\\n\\nIn article jim@specialix.com (Jim Maurer) writes:\\n>arf@genesis.MCS.COM (Jack Schmidling) writes:\\n>>>\\n>\\n>\\n>>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>\\n>The donations are tax deductible like any donations to a non-profit\\n>organization. I\\'ve donated money to a group restoring streetcars\\n>and it was tax deductible. Why don\\'t you contribute to a group\\n>helping the homeless if you so concerned?\\n\\nI do (did) contribute to the ARF mortgage fund but when interest\\nrates plumetted, I just paid it off.\\n\\nThe problem is, I couldn\\'t convince Congress to move my home to \\na nicer location on Federal land.\\n\\nBTW, even though the building is alleged to be funded by tax exempt\\nprivate funds, the maintainence and operating costs will be borne by \\ntaxpayers forever.\\n\\nWould anyone like to guess how much that will come to and tell us why\\nthis point is never mentioned?\\n\\njs\\n',\n", - " \"From: camter28@astro.ocis.temple.edu (Carter Ames)\\nSubject: Re: alt.raytrace (potential group)\\nOrganization: Temple University\\nLines: 7\\nNntp-Posting-Host: astro.ocis.temple.edu\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\n\\n\\n\\n Yes, please create the group alt.raytrace soon!!\\nI'm hooked on pov.\\ngeez. like I don't have anything better to do....\\nOH!! dave letterman is on...\\n\",\n", - " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Magellan Update - 04/23/93\\nOrganization: Jet Propulsion Laboratory\\nLines: 34\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: Magellan, JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from Doug Griffith, Magellan Project Manager\\n\\n MAGELLAN STATUS REPORT\\n April 23, 1993\\n\\n1. The Magellan spacecraft continues to operate normally, gathering\\ngravity data to plot the density variations of Venus in the\\nmid-latitudes. The solar panel offpoint was returned to zero degrees\\nand spacecraft temperatures dropped 2-3 degrees C.\\n\\n2. An end-to-end test of the Delayed Aerobraking Data readout\\nprocess was conducted this week in preparation for the Transition\\nExperiment. There was some difficulty locking up to the data frames,\\nand engineers are presently checking whether the problem was in\\nequipment at the tracking station.\\n\\n3. Magellan has completed 7277 orbits of Venus and is now 32 days\\nfrom the end of Cycle 4 and the start of the Transition Experiment.\\n\\n4. Magellan scientists were participating in the Brown-Vernadsky\\nMicrosymposium at Brown University in Providence, RI, this week. This\\njoint meeting of U.S. and Russian Venus researchers has been\\ncontinuing for many years.\\n\\n5. A three-day simulation of Transition Experiment aerobraking\\nactivities is planned for next week, including Orbit Trim Maneuvers\\nand Starcal (Star calibration) Orbits.\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | The aweto from New Zealand\\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | is part caterpillar and\\n|_____|/ |_|/ |_____|/ | part vegetable.\\n\\n',\n", - " 'From: hasan@McRCIM.McGill.EDU\\nSubject: Re: ISLAM BORDERS. ( was :Israel: misisipi to ganges)\\nOriginator: hasan@lightning.mcrcim.mcgill.edu\\nNntp-Posting-Host: lightning.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 26\\n\\n\\nIn article <4805@bimacs.BITNET>, ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n|> \\n|> Hassan and some other seemed not to be a ware that Jews celebrating on\\n|> these days Thje Passover holliday the holidy of going a way from the\\n|> Nile.\\n|> So if one let his imagination freely work it seemed beter to write\\n|> that the Zionist drean is \"from the misisipi to the Nile \".\\n\\nthe question is by going East or West from the misisipi. on either choice\\nyou would loose Palestine or Broklyn, N.Y.\\n\\nI thought you\\'re gonna say fromn misisipi back to the misisipi !\\n\\n|> By the way :\\n|> \\n|> What are the borders the Islamic world dreams about ??\\n|> \\n|> Islamic readers, I am waiting to your honest answer.\\n\\nLet\\'s say : \" let\\'s establish the islamic state first\" or \"let\\'s free our\\noccupied lands first\". And then we can dream about expansion, Mr. Gideon\\n\\n\\nhasan\\n',\n", - " 'From: qpliu@phoenix.Princeton.EDU (q.p.liu)\\nSubject: Re: free moral agency\\nOriginator: news@nimaster\\nNntp-Posting-Host: phoenix.princeton.edu\\nReply-To: qpliu@princeton.edu\\nOrganization: Princeton University\\nLines: 26\\n\\nIn article kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n>In article <1993Apr15.000406.10984@Princeton.EDU> qpliu@phoenix.Princeton.EDU (q.p.liu) writes:\\n>\\n>>>So while Faith itself is a Gift, obedience is what makes Faith possible.\\n>>What makes obeying different from believing?\\n\\n>\\tI am still wondering how it is that I am to be obedient, when I have \\n>no idea to whom I am to be obedient!\\n\\nIt is all written in _The_Wholly_Babble:_the_Users_Guide_to_Invisible_\\n_Pink_Unicorns_.\\n\\nTo be granted faith in invisible pink unicorns, you must read the Babble,\\nand obey what is written in it.\\n\\nTo obey what is written in the Babble, you must believe that doing so is\\nthe way to be granted faith in invisible pink unicorns.\\n\\nTo believe that obeying what is written in the Babble leads to believing\\nin invisible pink unicorns, you must, essentially, believe in invisible\\npink unicorns.\\n\\nThis bit of circular reasoning begs the question:\\nWhat makes obeying different from believing?\\n-- \\nqpliu@princeton.edu Standard opinion: Opinions are delta-correlated.\\n',\n", - " \"From: hugo@hydra.unm.edu (patrice cummings)\\nSubject: polygon orientation in DXF?\\nOrganization: University of New Mexico, Albuquerque\\nLines: 21\\nNNTP-Posting-Host: hydra.unm.edu\\n\\n\\nHi. I'm writing a program to convert .dxf files to a database\\nformat used by a 3D graphics program I've written. My program stores\\nthe points of a polygon in CCW order. I've used 3D Concepts a \\nlittle and it seems that the points are stored in the order\\nthey are drawn.\\n\\nDoes the DXF format have a way of indicating which order the \\npoints are stored in, CW or CCW? Its easy enough to convert,\\nbut if I don't know which way they are stored, I dont know \\nwhich direction the polygon should be visible from.\\n\\nIf DXF doesn't handle this, can anyone recommend a workaround?\\nThe best I can think of is to create two polygons for each one\\nin the DXF file, one stored CW and the other CCW. But that\\ndoubles the number of polygons and decreases speed...\\n\\nThanks in advance for any help,\\n\\nPatrice\\nhugo@hydra.unm.edu \\n\",\n", - " \"From: ricardo@rchland.vnet.ibm.com (Ricardo Hernandez Muchado)\\nSubject: Re: Rumours about 3DO ???\\nDisclaimer: This posting represents the poster's views, not necessarily those of IBM\\nNntp-Posting-Host: rs43873.rchland.ibm.com\\nOrganization: IBM Rochester\\nLines: 74\\n\\nIn article <1993Apr15.164940.11632@mercury.unt.edu>, Sean McMains writes:\\n|> In article <1993Apr15.144843.19549@rchland.ibm.com> Ricardo Hernandez\\n|> Muchado, ricardo@rchland.vnet.ibm.com writes:\\n|> > And CD-I's CPU doesn't help much either. I understand it is\\n|> >a 68070 (supposedly a variation of a 68000/68010) running at something\\n|> >like 7Mhz. With this speed, you *truly* need sprites.\\n|> \\n|> Wow! A 68070! I'd be very interested to get my hands on one of these,\\n|> especially considering the fact that Motorola has not yet released the\\n|> 68060, which is supposedly the next in the 680x0 lineup. 8-D\\n\\n Sean, the 68070 exists! :-)\\n\\n|> \\n|> Ricardo, the animation playback to which Lawrence was referring in an\\n|> earlier post is plain old Quicktime 1.5 with the Compact Video codec.\\n|> I've seen digitized video (some of Apple's early commercials, to be\\n|> precise) running on a Centris 650 at about 30fps very nicely (16-bit\\n|> color depth). I would expect that using the same algorithm, a RISC\\n|> processor should be able to approach full-screen full-motion animation,\\n|> though as you've implied, the processor will be taxed more with highly\\n|> dynamic material.\\n|> ========================================================================\\n|> Sean McMains | Check out the Gopher | Phone:817.565.2039\\n|> University of North Texas | New Bands Info server | Fax :817.565.4060\\n|> P.O. Box 13495 | at seanmac.acs.unt.edu | E-Mail:\\n|> Denton TX 76203 | | McMains@unt.edu\\n\\n\\n Sean, I don't want to get into a 'mini-war' by what I am going to say,\\nbut I have to be a little bit skeptic about the performance you are\\nclaiming on the Centris, you'll see why (please, no-flames, I reserve\\nthose for c.s.m.a :-) )\\n\\n I was in Chicago in the last consumer electronics show, and Apple had a\\nbooth there. I walked by, and they were showing real-time video capture\\nusing a (Radious or SuperMac?) card to digitize and make right on the spot\\nquicktime movies. I think the quicktime they were using was the old one\\n(1.5).\\n\\n They digitized a guy talking there in 160x2xx something. It played back quite\\nnicely and in real time. The guy then expanded the window (resized) to 25x by\\n3xx (320 in y I think) and the frame rate decreased enough to notice that it\\nwasn't 30fps (or about 30fps) anymore. It dropped to like 15 fps. Then he\\nincreased it just a bit more, and it dropped to 10<->12 fps. \\n\\n Then I asked him what Mac he was using... He was using a Quadra (don't know\\nwhat model, 900?) to do it, and he was telling the guys there that the Quicktime\\ncould play back at the same speed even on an LCII.\\n\\n Well, I spoiled his claim so to say, since a 68040 Quadra Mac was having\\na little bit of trouble. And this wasn't even from the hardisk! This was\\nfrom memory!\\n\\n Could it be that you saw either a newer version of quicktime, or some\\nhardware assisted Centris, or another software product running the \\nanimation (like supposedly MacroMind's Accelerator?)?\\n\\n Don't misunderstand me, I just want to clarify this.\\n\\n But for the sake of the posting about a computer doing it or not, I can\\nclaim 320x200 (a tad more with overscan) being done in 256,000+ colors in \\nmy computer (not from the hardisk) at 30fps with Scala MM210.\\n\\n But I agree, if we consider MPEG stuff, I think a multimedia consumer\\nlow-priced box has a lot of market... I just think 3DO would make it, \\nno longer CD-I.\\n\\n--------------------------------------\\nRaist New A1200 owner 320<->1280 in x, 200<->600 in y\\nin 256,000+ colors from a 24-bit palette. **I LOVE IT!**<- New Low Fat .sig\\n*don't e-mail me* -> I don't have a valid address nor can I send e-mail\\n\\n \\n\",\n", - " 'Reply-To: dcs@witsend.tnet.com\\nFrom: \"D. C. Sessions\" \\nOrganization: Nobody but me -- really\\nX-Newsposter: TMail version 1.20R\\nSubject: Re: Zionism is Racism\\nDistribution: world\\nLines: 23\\n\\nIn <1993Apr21.104330.16704@ifi.uio.no>, michaelp@ifi.uio.no (Michael Schalom Preminger) wrote:\\n# \\n# In article <20APR93.23565659.0109@VM1.MCGILL.CA>, B8HA000 writes:\\n# > In Re:Syria\\'s Expansion, the author writes that the UN thought\\n# > Zionism was Racism and that they were wrong. They were correct\\n# > the first time, Zionism is Racism and thankfully, the McGill Daily\\n# > (the student newspaper at McGill) was proud enough to print an article\\n# > saying so. If you want a copy, send me mail.\\n# > \\n# Was the article about zionism? or about something else. The majority\\n# of people I heard emitting this ignorant statement, do not really\\n# know what zionism is. They have just associated it with what they think\\n# they know about the political situation in the middle east. \\n# \\n# So Steve: Lets here, what IS zionism?\\n\\n Assuming that you mean \\'hear\\', you weren\\'t \\'listening\\': he just\\n told you, \"Zionism is Racism.\" This is a tautological statement.\\n\\n--- D. C. Sessions Speaking for myself ---\\n--- Note new network address: dcs@witsend.tnet.com ---\\n--- Author (and everything else!) of TMail (DOS mail/news shell) ---\\n',\n", - " \"From: aron@tikal.ced.berkeley.edu (Aron Bonar)\\nSubject: Re: 3d-Studio V2.01 : Any differences with previous version\\nOrganization: University of California, Berkeley\\nLines: 18\\nDistribution: world\\nNNTP-Posting-Host: tikal.ced.berkeley.edu\\n\\nIn article <1993Apr22.021708.13381@hparc0.aus.hp.com>, doug@hparc0.aus.hp.com (Doug Parsons) writes:\\n|> FOMBARON marc (fombaron@ufrima.imag.fr) wrote:\\n|> : Are there significant differences between V2.01 and V2.00 ?\\n|> : Thank you for helping\\n|> \\n|> \\n|> No. As I recall, the only differences are in the 3ds.set parameters - some\\n|> of the defaults have changed slightly. I'll look when I get home and let\\n|> you know, but there isn't enough to actually warrant upgrading.\\n|> \\n|> douginoz\\n\\nWrong...the major improvements for 2.01 and 2.01a are in the use of IPAS routines\\nfor 3d studio. They have increased in speed anywhere from 30-200% depending\\non which ones you use.\\n\\nAll the Yost group IPAS routines that you can buy separate from the 3d studio\\npackage require the use of 2.01 or 2.01a. They are too slow with 2.00.\\n\",\n", - " 'From: cbrooks@ms.uky.edu (Clayton Brooks)\\nSubject: Re: Changing sprocket ratios (79 Honda CB750)\\nOrganization: University Of Kentucky, Dept. of Math Sciences\\nLines: 15\\n\\nkarish@gondwana.Stanford.EDU (Chuck Karish) writes:\\n\\n>That\\'s a twin-cam, right? \\n\\nYep...I think it\\'s the only CB750 with a 630 chain.\\nAfter 14 years, it\\'s finally stretching into the \"replace\" zone.\\n\\n>Honda 750s don\\'t have the widest of power bands.\\n\\n I know .... I know.\\n-- \\n Clayton T. Brooks _,,-^`--. From the heart cbrooks@ms.uky.edu\\n 722 POT U o\\'Ky .__,-\\' * \\\\ of the blue cbrooks@ukma.bitnet\\n Lex. KY 40506 _/ ,/ grass and {rutgers,uunet}!ukma!cbrooks\\n 606-257-6807 (__,-----------\\'\\' bourbon country AMA NMA MAA AMS ACBL DoD\\n',\n", - " 'From: Dave Dal Farra \\nSubject: Re: CB750 C with flames out the exhaust!!!!---->>>\\nX-Xxdate: Tue, 20 Apr 93 14:15:17 GMT\\nNntp-Posting-Host: bcarm41a\\nOrganization: BNR Ltd.\\nX-Useragent: Nuntius v1.1.1d9\\nLines: 49\\n\\n\\nIn article <1993Apr20.045032.9199@research.nj.nec.com> Chris BeHanna,\\nbehanna@syl.nj.nec.com writes:\\n>In article <1993Apr19.204159.17534@bnr.ca> Dave Dal Farra \\nwrites:\\n>>Reminds me of a great editorial by Bruce Reeve a couple months ago\\n>>in Cycle Canada.\\n>>\\n>>He was so pissed off with cops pulling over speeders in dangerous\\n>>spots (and often blind corners) that one day he decided to get\\n>>revenge.\\n>>\\n>>Cruising on a factory loaner ZZR1100 test bike, he noticed a cop \\n>>had pulled over a motorist on an on or off ramp with almost no\\n>>shoulder. Being a bright lad, he hit his bike\\'s kill switch\\n>>just before passing the cop, who happened to be bending towards\\n>>the offending motorist there-by exposing his glutes to the\\n>>passing world.\\n>>\\n>>With his ignition system now dead, he pumped his throtle two\\n>>or three times to fill his exhaust canister\\'s with volatile raw fuel.\\n>>\\n>>All it took was a stab at the kill switch to re-light the ignition\\n>>and send a 10\\' flame in Sargeant Swell\\'s direction.\\n>>\\n>>I wonder if any cycle cops read Cycle Canada?\\n>\\n>\\tAlthough I agree with the spirit of the action, I do hope that\\n>the rider ponied up the $800 or so it takes to replace the exhaust system\\n>he just destroyed. The owner\\'s manual explicitly warns against such\\n>behavior for exactly that reason: you can destroy your muflers that way.\\n>\\n>Later,\\n>-- \\n>Chris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee\\'s Red Lady\\n>behanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\n>Disclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\n>agree with any of this anyway? I was raised by a pack of wild corn dogs.\\n\\nYa, Fat Chance. The \"offending\" rider was a moto journalist. Those\\nguys can sell hundreds of bikes with one stroke of the pen and\\nas such get away with murder when it comes to test bikes.\\n\\nOne way or the other, it was probably worth the early expiration of \\none mufler to see a bone head get his butt baked.\\n\\nDave D.F.\\n\"It\\'s true they say that money talks. When mine spoke it said\\n\\'Buy me a Drink!\\'.\"\\n',\n", - " \"From: eder@hsvaic.boeing.com (Dani Eder)\\nSubject: Re: Elevator to the top floor\\nOrganization: Boeing AI Center, Huntsville, AL\\nLines: 56\\n\\n\\nReading from a Amoco Performance Products data sheet, their\\nERL-1906 resin with T40 carbon fiber reinforcement has a compressive\\nstrength of 280,000 psi. It has a density of 0.058 lb/cu in,\\ntherefore the theoretical height for a constant section column\\nthat can just support itself is 4.8 million inches, or 400,000 ft,\\nor 75 Statute miles.\\n\\nNow, a real structure will have horizontal bracing (either a truss\\ntype, or guy wires, or both) and will be used below the crush strength.\\nLet us assume that we will operate at 40% of the theoretical \\nstrength. This gives a working height of 30 miles for a constant\\nsection column. \\n\\nA constant section column is not the limit on how high you can\\nbuild something if you allow a tapering of the cross section\\nas you go up. For example, let us say you have a 280,000 pound\\nload to support at the top of the tower (for simplicity in\\ncalculation). This requires 2.5 square inches of column cross\\nsectional area to support the weight. The mile of structure\\nbelow the payload will itself weigh 9,200 lb, so at 1 mile \\nbelow the payload, the total load is now 289,200 lb, a 3.3% increase.\\n\\nThe next mile of structure must be 3.3% thicker in cross section\\nto support the top mile of tower plus the payload. Each mile\\nof structure must increase in area by the same ratio all the way\\nto the bottom. We can see from this that there is no theoretical\\nlimit on area, although there will be practical limits based\\non how much composites we can afford to by at $40/lb, and how\\nmuch load you need to support on the ground (for which you need\\na foundation that the bedrock can support.\\n\\nLet us arbitrarily choose $1 billion as the limit in costruction\\ncost. With this we can afford perhaps 10,000,000 lb of composites,\\nassuming our finished structure costs $100/lb. The $40/lb figure\\nis just for materials cost. Then we have a tower/payload mass\\nratio of 35.7:1. At a 3.3% mass ratio per mile, the tower\\nheight becomes 111 miles. This is clearly above the significant\\natmosphere. A rocket launched from the top of the tower will still\\nhave to provide orbital velocity, but atmospheric drag and g-losses\\nwill be almost eliminated. G-losses are the component of\\nrocket thrust in the vertical direction to counter gravity,\\nbut which do not contribute to horizontal orbital velocity. Thus\\nthey represent wasted thrust. Together with drag, rockets starting\\nfrom the ground have a 15% velocity penalty to contend with.\\n\\nThis analysis is simplified, in that it does not consider wind\\nloads. These will require more structural support over the first\\n15 miles of height. Above that, the air pressure drops to a low\\nenough value for it not to be a big factor.\\n\\nDani Eder\\n\\n-- \\nDani Eder/Meridian Investment Company/(205)464-2697(w)/232-7467(h)/\\nRt.1, Box 188-2, Athens AL 35611/Location: 34deg 37' N 86deg 43' W +100m alt.\\n\",\n", - " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 15\\n\\nWell i\\'m not sure about the story nad it did seem biased. What\\nI disagree with is your statement that the U.S. Media is out to\\nruin Israels reputation. That is rediculous. The U.S. media is\\nthe most pro-israeli media in the world. Having lived in Europe\\nI realize that incidences such as the one described in the\\nletter have occured. The U.S. media as a whole seem to try to\\nignore them. The U.S. is subsidizing Israels existance and the\\nEuropeans are not (at least not to the same degree). So I think\\nthat might be a reason they report more clearly on the\\natrocities.\\n\\tWhat is a shame is that in Austria, daily reports of\\nthe inhuman acts commited by Israeli soldiers and the blessing\\nreceived from the Government makes some of the Holocaust guilt\\ngo away. After all, look how the Jews are treating other races\\nwhen they got power. It is unfortunate.\\n',\n", - " 'From: cpr@igc.apc.org (Center for Policy Research)\\nSubject: Re: From Israeli press. Madness.\\nLines: 8\\nNf-ID: #R:cdp:1483500342:cdp:1483500347:000:151\\nNf-From: cdp.UUCP!cpr Apr 17 15:37:00 1993\\n\\n\\nBefore getting excited and implying that I am posting\\nfabrications, I would suggest the readers to consult the\\nnewspaper in question. \\n\\nTahnks,\\n\\nElias\\n',\n", - " \"Subject: Re: Vandalizing the sky.\\nFrom: thacker@rhea.arc.ab.ca\\nOrganization: Alberta Research Council\\nNntp-Posting-Host: rhea.arc.ab.ca\\nLines: 13\\n\\nIn article , enzo@research.canon.oz.au (Enzo Liguori) writes:\\n\\n<<>>\\n\\n> What about light pollution in observations? (I read somewhere else that\\n> it might even be visible during the day, leave alone at night).\\n\\n> Really, really depressed.\\n> \\n> Enzo\\n\\nNo need to be depressed about this one. Lights aren't on during the day\\nso there shouldn't be any daytime light pollution.\\n\",\n", - " 'From: fist@iscp.bellcore.com (Richard Pierson)\\nSubject: Re: Motorcycle Security\\nKeywords: nothing will stop a really determined thief\\nNntp-Posting-Host: foxtrot.iscp.bellcore.com\\nOrganization: Bellcore\\nDistribution: usa\\nLines: 24\\n\\nIn article <2500@tekgen.bv.tek.com>, davet@interceptor.cds.tek.com (Dave\\nTharp CDS) writes:\\n|> I saw his bike parked in front of a bar a few weeks later without\\n|> the\\n|> dog, and I wandered in to find out what had happened.\\n|> \\n|> He said, \"Somebody stole m\\' damn dog!\". They left the Harley\\n|> behind.\\n|> \\n\\nAnimal Rights people have been know to do that to other\\n\"Bike riding dogs.cats and Racoons. \\n\\n-- \\n##########################################################\\nThere are only two types of ships in the NAVY; SUBMARINES \\n and TARGETS !!!\\n#1/XS1100LH\\tDoD #956 #2 Next raise\\nRichard Pierson E06584 vnet: [908] 699-6063\\nInternet: fist@iscp.bellcore.com,|| UUNET:uunet!bcr!fist \\n#include My opinions are my own!!!\\nI Don\\'t shop in malls, I BUY my jeans, jackets and ammo\\nin the same store.\\n\\n',\n", - " 'From: Patrick C Leger \\nSubject: Re: thoughts on christians\\nOrganization: Sophomore, Electrical and Computer Engineering, Carnegie Mellon, Pittsburgh, PA\\nLines: 51\\nNNTP-Posting-Host: po3.andrew.cmu.edu\\nIn-Reply-To: \\n\\nExcerpts from netnews.alt.atheism: 15-Apr-93 Re: thoughts on christians\\nby Dave Fuller@portal.hq.vi \\n> I\\'m sick of religious types being pampered, looked out for, and WORST\\n> OF ALL . . . . respected more than atheists. There must be an end\\n> in sight.\\n> \\nI think it\\'d help if we got a couple good atheists (or even some good,\\nsteadfast agnostics) in some high political offices. When was the last\\ntime we had an (openly) atheist president? Have we ever? (I don\\'t\\nactually know; these aren\\'t rhetorical questions.) How \\'bout some\\nSupreme court justices? \\n\\nOne thing that really ticked me off a while ago was an ad for a news\\nprogram on a local station...The promo said something like \"Who are\\nthese cults, and why do they prey on the young?\" Ahem. EVER HEAR OF\\nBAPTISM AT BIRTH? If that isn\\'t preying on the young, I don\\'t know what\\nis...\\n\\nI used to be (ack, barf) a Catholic, and was even confirmed...Shortly\\nthereafter I decided it was a load of BS. My mom, who really insisted\\nthat I continue to go to church, felt it was her duty (!) to bring me up\\nas a believer! That was one of the more presumptuous things I\\'ve heard\\nin my life. I suggested we go talk to the priest, and she agreed. The\\npriest was amazingly cool about it...He basically said that if I didn\\'t\\nbelieve it, there was no good in forcing it on me. Actually, I guess he\\nwasn\\'t amazingly cool about it--His response is what you\\'d hope for\\n(indeed, expect) from a human being. I s\\'pose I just _didn\\'t_ expect\\nit... \\n\\nI find it absurd that religion exists; Yet, I can also see its\\nusefulness to people. Facing up to the fact that you\\'re just going to\\nbe worm food in a few decades, and that there isn\\'t some cosmic purpose\\nto humanity and the universe, can be pretty difficult for some people. \\nHaving a readily-available, pre-digested solution to this is pretty\\nattractive, if you\\'re either a) gullible enough, b) willing to suspend\\nyour reasoning abilities for the piece of mind, or c) have had the stuff\\nrammed down your throat for as long as you can remember. Religion in\\ngeneral provides a nice patch for some human weaknesses; Organized\\nreligion provides a nice way to keep a population under control. \\n\\nBlech.\\n\\nChris\\n\\n\\n----------------------\\nChris Leger\\nSophomore, Carnegie Mellon Computer Engineering\\nRemember...if you don\\'t like what somebody is saying, you can always\\nignore them!\\n\\n',\n", - " \"From: maler@vercors.imag.fr (Oded Maler)\\nSubject: Re: Unconventional peace proposal\\nNntp-Posting-Host: pelvoux\\nOrganization: IMAG, University of Grenoble, France\\nLines: 43\\n\\nIn article <1483500348@igc.apc.org>, cpr@igc.apc.org (Center for Policy Research) writes:\\n|> \\n|> From: Center for Policy Research \\n|> Subject: Unconventional peace proposal\\n|> \\n|> \\n|> A unconventional proposal for peace in the Middle-East.\\n|> ---------------------------------------------------------- by\\n|> \\t\\t\\t Elias Davidsson\\n\\n|> \\n|> 1. A Fund should be established which would disburse grants\\n|> for each child born to a couple where one partner is Israeli-Jew\\n|> and the other Palestinian-Arab.\\n|> \\n|> 2. To be entitled for a grant, a couple will have to prove\\n|> that one of the partners possesses or is entitled to Israeli\\n|> citizenship under the Law of Return and the other partner,\\n|> although born in areas under current Isreali control, is not\\n|> entitled to such citizenship under the Law of Return.\\n|> \\n|> 3. For the first child, the grant will amount to $18.000. For\\n|> the second the third child, $12.000 for each child. For each\\n|> subsequent child, the grant will amount to $6.000 for each child.\\n...\\n\\n|> I would be thankful for critical comments to the above proposal as\\n|> well for any dissemination of this proposal for meaningful\\n|> discussion and enrichment.\\n|> \\n|> Elias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n\\nMaybe I'm a bit old-fashioned, but have you heard about something\\ncalled Love? It used to play some role in people's considerations\\nfor getting married. Of course I know some people who married \\nfictitiously in order to get a green card, but making a common\\nchild for 18,000$? The power of AA is limited. Your proposal is\\nindeed unconventional. \\n\\n===============================================================\\nOded Maler, LGI-IMAG, Bat D, B.P. 53x, 38041 Grenoble, France\\nPhone: 76635846 Fax: 76446675 e-mail: maler@imag.fr\\n===============================================================\\n\",\n", - " 'From: \"Robert Knowles\" \\nSubject: Re: Suggestion for \"resources\" FAQ\\nIn-Reply-To: \\nNntp-Posting-Host: 127.0.0.1\\nOrganization: Kupajava, East of Krakatoa\\nX-Mailer: PSILink-DOS (3.3)\\nLines: 34\\n\\n>DATE: Mon, 19 Apr 1993 15:01:10 GMT\\n>FROM: Bruce Stephens \\n>\\n>I think a good book summarizing and comparing religions would be good.\\n>\\n>I confess I don\\'t know of any---indeed that\\'s why I checked the FAQ to see\\n>if it had one---but I\\'m sure some alert reader does.\\n>\\n>I think the list of books suffers far too much from being Christian based;\\n>I agree that most of the traffic is of this nature (although a few Islamic\\n>references might be good) but I still think an overview would be nice.\\n\\nOne book I have which presents a fairly unbiased account of many religions\\nis called _Man\\'s Religions_ by John B. Noss. It was a textbook in a class\\nI had on comparative religion or some such thing. It has some decent\\nbibliographies on each chapter as a jumping off point for further reading.\\n\\nIt doesn\\'t \"compare\" religions directly but describes each one individually\\nand notes a few similarities. But nothing I have read in it could be even\\nremotely described as preachy or Christian based. In fact, Christianity\\nmercifully consumes only 90 or so of its nearly 600 pages. The book is\\ndivided according to major regions of the world where the biggies began \\n(India, East Asia, Near East). There is nothing about New World religions\\nfrom the Aztecs, Mayas, Incas, etc. Just the stuff people kill each\\nother over nowadays. And a few of the older religions snuffed out along\\nthe way. \\n\\nIf you like the old stuff, then a couple of books called \"The Ancient Near\\nEast\" by James B. Pritchard are pretty cool. Got the Epic of Gilgamesh,\\nCode of Hammurabi, all the stuff from way back when men were gods and gods\\nwere men. Essential reading for anyone who wishes to make up their own\\nreligion and make it sound real good.\\n\\n\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: \"Cruel\" (was Re: keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n\\n>>>This whole thread started because of a discussion about whether\\n>>>or not the death penalty constituted cruel punishment, which is forbidden\\n>>>by the US Constitution.\\n>>Yes, but they didn\\'t say what they meant by \"cruel\", which is why\\n>>a) you have the Supreme Court, and b) it makes no sense to refer\\n>>to the Constitution, which is quite silent on the meaning of the\\n>>word \"cruel\".\\n>\\n>They spent quite a bit of time on the wording of the Constitution. They\\n>picked words whose meanings implied the intent. We have already looked\\n>in the dictionary to define the word. Isn\\'t this sufficient?\\n\\n\\tWe only need to ask the question: what did the founding fathers \\nconsider cruel and unusual punishment?\\n\\n\\tHanging? Hanging there slowing being strangled would be very \\npainful, both physically and psychologicall, I imagine.\\n\\n\\tFiring squad ? [ note: not a clean way to die back in those \\ndays ], etc. \\n\\n\\tAll would be considered cruel under your definition.\\n\\tAll were allowed under the constitution by the founding fathers.\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", - " 'From: (Rashid)\\nSubject: Re: Yet more Rushdie [Re: ISLAMIC LAW]\\nNntp-Posting-Host: 47.252.4.179\\nOrganization: NH\\nLines: 34\\n\\n> What about the Twelve Imams, who he considered incapable of error\\n> or sin? Khomeini supports this view of the Twelve Imans. This is\\n> heresy for the very reasons I gave above. \\n\\nI would be happy to discuss the issue of the 12 Imams with you, although\\nmy preference would be to move the discussion to another\\nnewsgroup. I feel a philosophy\\nor religion group would be more appropriate. The topic is deeply\\nembedded in the world view of Islam and the\\nesoteric teachings of the Prophet (S.A.). Heresy does not enter\\ninto it at all except for those who see Islam only as an exoteric\\nreligion that is only nominally (if at all) concerned with the metaphysical\\nsubstance of man\\'s being and nature.\\n\\nA good introductory book (in fact one of the best introductory\\nbooks to Islam in general) is Murtaza Mutahhari\\'s \"Fundamental\\'s\\nof Islamic Thought - God, Man, and the Universe\" - Mizan Press,\\ntranslated by R. Campbell. Truly a beautiful book. A follow-up book\\n(if you can find a decent translation) is \"Wilaya - The Station\\nof the Master\" by the same author. I think it also goes under the\\ntitle of \"Master and Mastership\" - It\\'s a very small book - really\\njust a transcription of a lecture by the author.\\nThe introduction to the beautiful \"Psalms of Islam\" - translated\\nby William C. Chittick (available through Muhammadi Trust of\\nGreat Britain) is also an excellent introduction to the subject. We\\nhave these books in our University library - I imagine any well\\nstocked University library will have them.\\n\\nFrom your posts, you seem fairly well versed in Sunni thought. You\\nshould seek to know Shi\\'ite thought through knowledgeable \\nShi\\'ite authors as well - at least that much respect is due before the\\ncharge of heresy is levelled.\\n\\nAs salaam a-laikum\\n',\n", - " 'From: speedy@engr.latech.edu (Speedy Mercer)\\nSubject: Re: Ok, So I was a little hasty...\\nOrganization: Louisiana Tech University\\nLines: 30\\nNNTP-Posting-Host: bhm116e-spc.engr.latech.edu\\n\\nIn article <1993Apr20.010734.18225@megatek.com> randy@megatek.com (Randy Davis) writes:\\n\\n>In article speedy@engr.latech.edu (Speedy Mercer) writes:\\n>|In article jnmoyne@lbl.gov (Jean-Noel Moyne) writes:\\n>|> What does \"DWI\" stand for ? I thought it was \"DUI\" for Driving Under\\n>|>Influence, so here what does W stand for ?\\n>|\\n>|Driving While Intoxicated.\\n\\n> Actually, I beleive \"DWI\" normally means \"Driving While Impaired\" rather\\n>than \"Intoxicated\", at least it does in the states I\\'ve lived in...\\n\\n>|This was changed here in Louisiana when a girl went to court and won her \\n>|case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\n> One can be imparied without necessarily being impaired by liquor - drugs,\\n>not enough sleep, being a total moron :-), all can impair someone etc... I\\'m\\n>surprised this got her off the hook... Perhaps DWI in Lousiana *is* confined\\n>to liquor?\\n\\nLets just say it is DUI here now!\\n\\n ----===== DoD #8177 = Technician(Dr. Speed) .NOT. Student =====----\\n\\n Stolen Taglines...\\n * God is real, unless declared integer. *\\n * I came, I saw, I deleted all your files. *\\n * Black holes are where God is dividing by zero. *\\n * The world will end in 5 minutes. Please log out. *\\n * Earth is 98% full.... please delete anyone you can. *\\n',\n", - " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Concerning God\\'s Morality (was: Americans and Evolution)\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 110\\nDistribution: world\\nNNTP-Posting-Host: syndicoot.engin.umich.edu\\n\\nIn article <1993Apr2.155057.808@batman.bmd.trw.com> jbrown@batman.bmd.trw.com writes:\\n[why do babies get diseases, etc.]\\n>What God did create was life according to a protein code which is\\n>mutable and can evolve. Without delving into a deep discussion of\\n>creationism vs evolutionism,\\n\\n Here\\'s the (main) problem. The scenario you outline is reasonably \\nconsistent, but all the evidence that I am familiar with not only does\\nnot support it, but indicates something far different. The Earth, by\\nlatest estimates, is about 4.6 billion years old, and has had life for\\nabout 3.5 billion of those years. Humans have only been around for (at\\nmost) about 200,000 years. But, the fossil evidence inidcates that life\\nhas been changing and evolving, and, in fact, disease-ridden, long before\\nthere were people. (Yes, there are fossils that show signs of disease...\\nmostly bone disorders, of course, but there are some.) Heck, not just\\nfossil evidence, but what we\\'ve been able to glean from genetic study shows\\nthat disease has been around for a long, long time. If human sin was what\\nbrought about disease (at least, indirectly, though necessarily) then\\nhow could it exist before humans?\\n\\n> God created the original genetic code\\n>perfect and without flaw. And without getting sidetracked into\\n>the theological ramifications of the original sin, the main effect\\n>of the so-called original sin for this discussion was to remove\\n>humanity from God\\'s protection since by their choice A&E cut\\n>themselves off from intimate fellowship with God. In addition, their\\n>sin caused them to come under the dominion of Satan, who then assumed\\n>dominion over the earth...\\n[deletions]\\n>Since humanity was no longer under God\\'s protection but under Satan\\'s\\n>dominion, it was no great feat for Satan to genetically engineer\\n>diseases, both bacterial/viral and genetic. Although the forces of\\n>natural selection tend to improve the survivability of species, the\\n>degeneration of the genetic code tends to more than offset this. \\n\\n Uh... I know of many evolutionary biologists, who know more about\\nbiology than you claim to, who will strongly disagree with this. There\\nis no evidence that the human genetic code (or any other) \\'started off\\'\\nin perfect condition. It seems to adapt to its envionment, in a\\ncollective sense. I\\'m really curious as to what you mean by \\'the\\ndegeneration of the genetic code\\'.\\n\\n>Human DNA, being more \"complex\", tends to accumulate errors adversely\\n>affecting our well-being and ability to fight off disease, while the \\n>simpler DNA of bacteria and viruses tend to become more efficient in \\n>causing infection and disease. It is a bad combination.\\n\\n Umm. Nah, we seem to do a pretty good job of adapting to viruses and\\nbacteria, and they to us. Only a very small percentage of microlife is\\nharmful to humans... and that small percentage seems to be reasonalby\\nconstant in size, but the ranks keep changing. For example, bubonic\\nplague used to be a really nasty disease, I\\'m sure you\\'ll agree. But\\nit still pops up from time to time, even today... and doesn\\'t do as\\nmuch damage. Part of that is because of better sanitation, but even\\nwhen people get the disease, the symptoms tend to be less severe than in\\nthe past. This seems to be partly because people who were very susceptible\\ndied off long ago, and because the really nasty variants \\'overgrazed\\',\\n(forgive the poor terminology, I\\'m an engineer, not a doctor! :-> ) and\\ndied off for lack of nearby hosts.\\n I could be wrong on this, but from what I gather acne is only a few\\nhundred years old, and used to be nastier, though no killer. It seems to\\nbe getting less nasty w/age...\\n\\n> Hence\\n>we have newborns that suffer from genetic, viral, and bacterial\\n>diseases/disorders.\\n\\n Now, wait a minute. I have a question. Humans were created perfect, right?\\nAnd, you admit that we have an inbuilt abiliy to fight off disease. It\\nseems unlikely that Satan, who\\'s making the diseases, would also gift\\nhumans with the means to fight them off. Simpler to make the diseases less\\nlethal, if he wants survivors. As far as I can see, our immune systems,\\nimperfect though they may (presently?) be, must have been built into us\\nby God. I want to be clear on this: are you saying that God was planning\\nahead for the time when Satan would be in charge by building an immune\\nsystem that was not, at the time of design, necessary? That is, God made\\nour immune systems ahead of time, knowing that Adam and Eve would sin and\\ntheir descendents would need to fight off diseases?\\n\\n>This may be more of a mystical/supernatural explanation than you\\n>are prepared to accept, but God is not responsible for disease.\\n>Even if Satan had nothing to do with the original inception of\\n>disease, evolution by random chance would have produced them since\\n>humanity forsook God\\'s protection.\\n\\n Here\\'s another puzzle. What, exactly, do you mean by \\'perfect\\' in the\\nphrase, \\'created... perfect and without flaw\\'? To my mind, a \\'perfect\\'\\nsystem would be incapable of degrading over time. A \\'perfect\\' system\\nthat will, without constant intervention, become imperfect is *not* a\\nperfect system. At least, IMHO.\\n Or is it that God did something like writing a masterpiece novel on a\\nbunch of gum wrappers held together with Elmer\\'s glue? That is, the\\noriginal genetic \\'instructions\\' were perfect, but were \\'written\\' in\\ninferior materials that had to be carefully tended or would fall apart?\\nIf so, why could God not have used better materials?\\n Was God *incapable* of creating a system that could maintain itself,\\nof did It just choose not to?\\n\\n[deletions]\\n>In summary, newborns are innocent, but God does not cause their suffering.\\n\\n My main point, as I said, was that there really isn\\'t any evidence for\\nthe explanation you give. (At least, that I\\'m aware of.) But, I couldn\\'t\\nhelp making a few nitpicks here and there. :->\\n\\nSincerely,\\n\\nRay Ingles || The above opinions are probably\\n || not those of the University of\\ningles@engin.umich.edu || Michigan. Yet.\\n',\n", - " 'From: backon@vms.huji.ac.il\\nSubject: Re: Go Hezbollah!!\\nDistribution: world\\nOrganization: The Hebrew University of Jerusalem\\nLines: 23\\n\\nIn article <1993Apr14.125813.21737@ncsu.edu>, hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n>\\n> Lebanese resistance forces detonated a bomb under an Israeli occupation\\n> patrol in Lebanese territory two days ago. Three soldiers were killed and\\n> two wounded. In \"retaliation\", Israeli and Israeli-backed forces wounded\\n> 8 civilians by bombarding several Lebanese villages. Ironically, the Israeli\\n> government justifies its occupation in Lebanon by claiming that it is\\n> necessary to prevent such bombardments of Israeli villages!!\\n>\\n> Congratulations to the brave men of the Lebanese resistance! With every\\n> Israeli son that you place in the grave you are underlining the moral\\n> bankruptcy of Israel\\'s occupation and drawing attention to the Israeli\\n> government\\'s policy of reckless disregard for civilian life.\\n>\\n> Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\n\\nI\\'m sure the Federal Bureau of Investigation (fbi.gov on the Internet) is going\\nto *love* reading your incitement to murder.\\n\\n\\nJosh\\nbackon@VMS.HUJI.AC.IL\\n',\n", - " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: islamic authority over women\\nOrganization: Cookamunga Tourist Bureau\\nLines: 21\\n\\nIn article <1993Apr19.120352.1574@monu6.cc.monash.edu.au>,\\ndarice@yoyo.cc.monash.edu.au (Fred Rice) wrote:\\n>> The problem with your argument is that you do not _know_ who is a _real_\\n> believer and who may be \"faking it\". This is something known only by\\n> the person him/herself (and God). Your assumption that anyone who\\n> _claims_ to be a \"believer\" _is_ a \"believer\" is not necessarily true.\\n\\nSo that still leaves the door totally open for Khomeini, Hussein\\net rest. They could still be considered true Muslims, and you can\\'t\\njudge them, because this is something between God and the person.\\n\\nYou have to apply your rule as well with atheists/agnostics, you\\ndon\\'t know their belief, this is something between them and God.\\n\\nSo why the hoopla about Khomeini not being a real Muslim, and the\\nhoopla about atheists being not real human beings?\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", - " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Gibbons Outlines SSF Redesign Guidance\\nNews-Software: VAX/VMS VNEWS 1.41 \\nNntp-Posting-Host: tm0006.lerc.nasa.gov\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 76\\n\\nNASA Headquarters distributed the following press\\nrelease today (4/6). I\\'ve typed it in verbatim, for you\\nfolks to chew over. Many of the topics recently\\ndiscussed on sci.space are covered in this.\\n\\nGibbons Outlines Space Station Redesign Guidance\\n\\nDr. John H. Gibbons, Director, Office of Science and\\nTechnology Policy, outlined to the members-designate of\\nthe Advisory Committee on the Redesign of the Space\\nStation on April 3, three budget options as guidance to\\nthe committee in their deliberations on the redesign of\\nthe space station.\\n\\nA low option of $5 billion, a mid-range option of $7\\nbillion and a high option of $9 billion will be\\nconsidered by the committee. Each option would cover\\nthe total expenditures for space station from fiscal\\nyear 1994 through 1998 and would include funds for\\ndevelopment, operations, utilization, Shuttle\\nintegration, facilities, research operations support,\\ntransition cost and also must include adequate program\\nreserves to insure program implementation within the\\navailable funds.\\n\\nOver the next 5 years, $4 billion is reserved within\\nthe NASA budget for the President\\'s new technology\\ninvestment. As a result, station options above $7\\nbillion must be accompanied by offsetting reductions in\\nthe rest of the NASA budget. For example, a space\\nstation option of $9 billion would require $2 billion\\nin offsets from the NASA budget over the next 5 years.\\n\\nGibbons presented the information at an organizational\\nsession of the advisory committee. Generally, the\\nmembers-designate focused upon administrative topics\\nand used the session to get acquainted. They also\\nreceived a legal and ethics briefing and an orientation\\non the process the Station Redesign Team is following\\nto develop options for the advisory committee to\\nconsider.\\n\\nGibbons also announced that the United States and its\\ninternational partners -- the Europeans, Japanese, and\\nCanadians -- have decided, after consultation, to give\\n\"full consideration\" to use of Russian assets in the\\ncourse of the space station redesign process.\\n\\nTo that end, the Russians will be asked to participate\\nin the redesign effort on an as-needed consulting\\nbasis, so that the redesign team can make use of their\\nexpertise in assessing the capabilities of MIR and the\\npossible use of MIR and other Russian capabilities and\\nsystems. The U.S. and international partners hope to\\nbenefit from the expertise of the Russian participants\\nin assessing Russian systems and technology. The\\noverall goal of the redesign effort is to develop\\noptions for reducing station costs while preserving key\\nresearch and exploration capabilities. Careful\\nintegration of Russian assets could be a key factor in\\nachieving that goal.\\n\\nGibbons reiterated that, \"President Clinton is\\ncommitted to the redesigned space station and to making\\nevery effort to preserve the science, the technology\\nand the jobs that the space station program represents.\\nHowever, he also is committed to a space station that\\nis well managed and one that does not consume the\\nnational resources which should be used to invest in\\nthe future of this industry and this nation.\"\\n\\nNASA Administrator Daniel S. Goldin said the Russian\\nparticipation will be accomplished through the East-\\nWest Space Science Center at the University of Maryland\\nunder the leadership of Roald Sagdeev.\\n\\n',\n", - " 'From: looper@cco.caltech.edu (Mark D. Looper)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: California Institute of Technology, Pasadena\\nLines: 23\\nNNTP-Posting-Host: sandman.caltech.edu\\nKeywords: Galileo, JPL\\n\\nprb@access.digex.com (Pat) writes:\\n\\n>Galileo\\'s HGA is stuck. \\n\\n>The HGA was left closed, because galileo had a venus flyby.\\n\\n>If the HGA were pointed att he sun, near venus, it would\\n>cook the foci elements.\\n\\n>question: WHy couldn\\'t Galileo\\'s course manuevers have been\\n>designed such that the HGA did not ever do a sun point.?\\n\\nThe HGA isn\\'t all that reflective in the wavelengths that might \"cook the\\nfocal elements\", nor is its figure good on those scales--the problem is\\nthat the antenna _itself_ could not be exposed to Venus-level sunlight,\\nlest like Icarus\\' wings it melt. (I think it was glues and such, as well\\nas electronics, that they were worried about.) Thus it had to remain\\nfurled and the axis _always_ pointed near the sun, so that the small\\nsunshade at the tip of the antenna mast would shadow the folded HGA.\\n(A larger sunshade beneath the antenna shielded the spacecraft bus.)\\n\\n--Mark Looper\\n\"Hot Rodders--America\\'s first recyclers!\"\\n',\n", - " 'From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Ellipse from Its Offset\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\nKeywords: ellipse\\n\\n\\nHi! Everyone,\\n\\nSince some people quickly solved the problem of determining a sphere from\\n4 points, I suddenly recalled a problem which is how to find the ellipse\\nfrom its offset. For example, given 5 points on the offset, can you find\\nthe original ellipse analytically?\\n\\nI spent two months solving this problem by using analytical method last year,\\nbut I failed. Under the pressure, I had to use other method - nonlinear\\nprogramming technique to deal with this problem approximately.\\n\\nAny ideas will be greatly appreciated. Please post here, let the others\\nshare our interests.\\n\\nYeh\\nUSC\\n',\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Unconventional peace proposal\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 22\\n\\nIn article <1483500348@igc.apc.org> Center for Policy Research writes:\\n\\n>1. The idea of providing financial incentives to selected\\n>forms of partnership and marriage, is not conventional. However,\\n>it is based on the concept of affirmative action, which is\\n>recognized as a legitimate form of public policy to reverse the\\n>perverse effects of segregation and discrimination.\\n\\n\\tOther people have already shown this to be a rediculous\\nproposal. however, I wanted to point out that there are many people\\nwho do not think that affirmative action is a either intelligent or\\nproductive. It is demeaning to those who it supposedly helps and it\\nis discriminatory.\\n\\n\\tAny proposal based on it is likely bunk as well.\\n\\nAdam\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " \"From: arens@ISI.EDU (Yigal Arens)\\nSubject: Re: Why does US consider YIGAL ARENS to be a dangerous to humanity\\nOrganization: USC/Information Sciences Institute\\nLines: 43\\nNNTP-Posting-Host: grl.isi.edu\\nIn-reply-to: ehrlich@bimacs.BITNET's message of 19 Apr 93 14:58:49 GMT\\n\\nIn article <4815@bimacs.BITNET> ehrlich@bimacs.BITNET (Gideon Ehrlich) writes:\\n>\\n> In article arens@ISI.EDU (Yigal\\n> Arens) writes:\\n>\\n> >Los Angeles Times, Tuesday, April 13, 1993. P. A1.\\n> > ........\\n>\\n> The problem if transffering US government files about Yigal Arens\\n> and some other similar persons does or does not violate a federal\\n> or a local American law seemed to belong to some local american law\\n> forum not to this forum.\\n> The readers of this forum seemed to be more interested in the contents\\n> of those files.\\n> So It will be nice if Yigal will tell us:\\n> 1. Why do American authorities consider Yigal Arens to be dangerous?\\n\\nI'm not aware that the US government considers me dangerous. In any\\ncase, that has nothing to do with the current case. The claim against\\nthe ADL is that it illegally obtained and disseminated information that\\nwas gathered by state and/or federal agencies in the course of their\\nstandard interaction with citizens such as myself. By that I refer to\\nthings such as: address and phone number, vehicle registration and\\nlicense information, photographs, etc.\\n\\n> 2. Why does the ADL have an interest in that person ?\\n\\nYou should ask the ADL, if you want an authoritative answer. My guess\\nis that they collected information on anyone who did or might engage in\\npolitical criticism of Israel. I further believe that they did this as\\nagents of the Israeli government, or at least in agreement with them.\\nAt least some of the information collected by the ADL was passed on to\\nIsraeli officials. In some cases it was used to influence, or attempt\\nto influence, people's access to jobs or public forums. These matters\\nwill be brought out as the court case unfolds, since California law\\nentitles people to compensation if such actions can be proven. As my\\nprevious posting shows, California law entitles people to compensation\\neven in the absence of any specific consequences -- just for the further\\ndissemination of certain types of private information about them.\\n--\\nYigal Arens\\nUSC/ISI TV made me do it!\\narens@isi.edu\\n\",\n", - " 'From: Center for Policy Research \\nSubject: Assistance to Palest.people\\nNf-ID: #N:cdp:1483500359:000:3036\\nNf-From: cdp.UUCP!cpr Apr 24 15:00:00 1993\\nLines: 78\\n\\n\\nFrom: Center for Policy Research \\nSubject: Assistance to Palest.people\\n\\n\\nU.N. General Assembly Resolution 46/201 of 20 December 1991\\n\\nASSISTANCE TO THE PALESTINIAN PEOPLE\\n---------------------------------------------\\nThe General Assembly\\n\\nRecalling its resolution 45/183 of 21 December 1990\\n\\nTaking into account the intifadah of the Palestinian people in the\\noccupied Palestinian territory against the Israeli occupation,\\nincluding Israeli economic and social policies and practices,\\n\\nRejecting Israeli restrictions on external economic and social\\nassistance to the Palestinian people in the occupied Palestinian\\nterritory,\\n\\nConcerned about the economic losses of the Palestinian people as a\\nresult of the Gulf crisis,\\n\\nAware of the increasing need to provide economic and social\\nassistance to the Palestinian people,\\n\\nAffirming that the Palestinian people cannot develop their\\nnational economy as long as the Israeli occupation persists,\\n\\n1. Takes note of the report of the Secretary-General on assistance\\nto the Palestinian people;\\n\\n2. Expresses its appreciation to the States, United Nations bodies\\nand intergovernmental and non-governmental organizations that have\\nprovided assistance to the Palestinian people,\\n\\n3. Requests the international community, the United Nations system\\nand intergovernmental and non-governmental organizations to\\nsustain and increase their assistance to the Palestinian people,\\nin close cooperation with the Palestine Liberation Organization\\n(PLO), taking in account the economic losses of the Palestinian\\npeople as a result of the Gulf crisis;\\n\\n4. Calls for treatment on a transit basis of Palestinian exports\\nand imports passing through neighbouring ports and points of exit\\nand entry;\\n\\n5. Also calls for the granting of trade concessions and concrete\\npreferential measures for Palestinian exports on the basis of\\nPalestinian certificates of origin;\\n\\n6. Further calls for the immediate lifting of Israeli restrictions\\nand obstacles hindering the implementation of assistance projects\\nby the United Nations Development Programme, other United Nations\\nbodies and others providing economic and social assistance to the\\nPalestinian people in the occupied Palestinian territory;\\n\\n7. Reiterates its call for the implementation of development\\nprojects in the occupied Palestinian territory, including the\\nprojects mentioned in its resolution 39/223 of 18 December 1984;\\n\\n8. Calls for facilitation of the establishment of Palestinian\\ndevelopment banks in the occupied Palestinian territory, with a\\nview to promoting investment, production, employment and income\\ntherein;\\n\\n9. Requests the Secretary-General to report to the General\\nThe General Assembly at its 47th session, through the Economic and Social\\nCouncil, on the progress made in the implementation of the present\\nresolution.\\n-----------------------------------------------\\n\\nIn favour 137 countries (Europe, Canada, Australia, New Zealand,\\nJapan, Africa, South America, Central America and Asia) Against:\\nUnited States and Israel Abstaining: None\\n\\n\\n',\n", - " \"From: daviss@sweetpea.jsc.nasa.gov (S.F. Davis)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: NSPC\\nDistribution: na\\nLines: 107\\n\\nIn article <1quule$5re@access.digex.net>, prb@access.digex.com (Pat) writes:\\n|> \\n|> AW&ST had a brief blurb on a Manned Lunar Exploration confernce\\n|> May 7th at Crystal City Virginia, under the auspices of AIAA.\\n|> \\n|> Does anyone know more about this? How much, to attend????\\n|> \\n|> Anyone want to go?\\n|> \\n|> pat\\n\\nHere are some selected excerpts of the invitation/registration form they\\nsent me. Retyped without permission, all typo's are mine.\\n\\n---------------------------------------------------------------------\\nLow-Cost Lunar Access: A one-day conference to explore the means and \\nbenefits of a rejuvenated human lunar program.\\n\\nFriday, May 7, 1993\\nHyatt Regency - Crystal City Hotel\\nArlington, VA\\n\\nABOUT THE CONFERENCE\\nThe Low-Cost Lunar Access conference will be a forum for the exchange of\\nideas on how to initiate and structure an affordable human lunar program.\\nInherent in such low-cost programs is the principle that they be \\nimplemented rapidly and meet their objectives within a short time\\nframe.\\n\\n[more deleted]\\n\\nCONFERENCE PROGRAM (Preliminary)\\n\\nIn the Washington Room:\\n\\n 9:00 - 9:10 a.m. Opening Remarks\\n Dr. Alan M. Lovelace\\n\\n 9:10 - 9:30 a.m. Keynote Address\\n Mr. Brian Dailey\\n\\n 9:30 - 10:00 a.m. U.S. Policy Outlook\\n John Pike, American Federation of Scientists\\n\\n A discussion of the prospects for the introduction of a new low-cost\\n lunar initiative in view of the uncertain direction the space\\n program is taking.\\n\\n 10:00 - 12:00 noon Morning Plenary Sessions\\n\\n Presentations on architectures, systems, and operational concepts.\\n Emphasis will be on mission approaches that produce significant\\n advancements beyond Apollo yet are judged to be affordable in the\\n present era of severely constrained budgets\\n\\n\\nIn the Potomac Room\\n\\n 12:00 - 1:30 p.m. Lunch\\n Guest Speaker: Mr. John W. Young,\\n NASA Special Assistant and former astronaut\\n\\nIn the Washington Room\\n\\n 1:30 - 2:00 p.m. International Policy Outlook\\n Ian Pryke (invited)\\n ESA, Washington Office\\n\\n The prevailing situation with respect to international space \\n commitments, with insights into preconditions for European \\n entry into new agreements, as would be required for a cooperative\\n lunar program.\\n\\n 2:00 - 3:30 p.m. Afternoon Plenary Sessions\\n\\n Presentations on scientific objectives, benefits, and applications.\\n Emphasis will be placed on the scientific and technological value\\n of a lunar program and its timeliness.\\n\\n\\n---------------------------------------------------------------------\\n\\nThere is a registration form and the fee is US$75.00. The mail address\\nis \\n\\n American Institute of Aeronautics and Astronautics\\n Dept. No. 0018\\n Washington, DC 20073-0018\\n\\nand the FAX No. is: \\n\\n (202) 646-7508\\n\\nor it says you can register on-site during the AIAA annual meeting \\nand on Friday morning, May 7, from 7:30-10:30\\n\\n\\nSounds interesting. Too bad I can't go.\\n\\n|--------------------------------- ******** -------------------------|\\n| * _!!!!_ * |\\n| Steven Davis * / \\\\ \\\\ * |\\n| daviss@sweetpea.jsc.nasa.gov * () * | \\n| * \\\\>_db_ Dale.James@cs.cmu.edu writes:\\n>GS1100E. It\\'s a great bike, but you\\'d better be damn careful! \\n>I got a 1983 as my third motorcycle, \\n[...deleta...]\\n>The bike is light for it\\'s size (I think it\\'s 415 pounds); but heavy for a\\n>beginner bike.\\n\\nHeavy for a beginner bike it is; 415 pounds it isn\\'t, except maybe in\\nsome adman\\'s dream. With a full tank, it\\'s in the area of 550 lbs,\\ndepending on year etc.\\n\\n>You\\'re 6\\'4\" -- you should have no problem physically managing\\n>it. The seat is roughly akin to a plastic-coated 2by6. Very firm to very\\n>painful, depending upon time in the saddle.\\n\\nThe 1980 and \\'81 versions had a much better seat, IMO.\\n\\n>The bike suffers from the infamous Suzuki regulator problem. I have so far\\n>avoided forking out the roughly $150 for the Suzuki part by kludging in\\n>different Honda regulator/rectifier units from junkyards. The charging system\\n>consistently overcharges the battery. I have to refill it nearly weekly.\\n>This in itself is not so bad, but battery access is gained only after removing\\n>the seat, the tank, and the airbox.\\n\\nMy regulator lasted over 100,000 miles, and didn\\'t overcharge the battery.\\nThe wiring connectors in the charging path did get toasty though,\\ntending to melt their insulation. I suspect they were underspecified;\\nit didn\\'t help that they were well removed from cool air.\\n\\nBattery access on the earlier bikes doesn\\'t require tank removal.\\nAfter you learn the drill, it\\'s pretty straightforward.\\n\\n[...]\\n>replacement parts, like all Suzuki parts, are outrageously expensive.\\n\\nHaving bought replacement parts for several brands of motorcycles,\\nI\\'ll offer a grain of salt to be taken with Dale\\'s assessment.\\n\\n[...]\\n>Good luck, and be careful!\\n>--Dale\\n\\nSentiments I can\\'t argue with...or won\\'t...\\n-- Dean Deeds\\n\\tdeeds@vulcan1.edsg.hac.com\\n',\n", - " \"From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Surface normal orientations\\nArticle-I.D.: cis.1993Apr6.181509.1973\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 16\\n\\nIn article <1993Apr6.175117.1848@cis.uab.edu> sloan@cis.uab.edu (Kenneth Sloan) writes:\\n\\nA brilliant algorithm. *NOT*\\n\\nSeriously - it's correct, up to a sign change. The flaw is obvious, and\\nwill therefore not be shown.\\n\\nsorry about that.\\n\\n\\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n\",\n", - " 'From: IMAGING.CLUB@OFFICE.WANG.COM (\"Imaging Club\")\\nSubject: Re: Signature Image Database\\nOrganization: Mail to News Gateway at Wang Labs\\nLines: 21\\n\\nContact Signaware Corp\\n800-4583820\\n800 6376564\\n\\n-------------------------------- Original Memo --------------------------------\\nBCC: Vincent Wall From: Imaging Club\\nSubject: Signature verification ? Date Sent: 05/04/93\\n\\nsci.image.processing\\nFrom: yyqi@ece.arizona.edu (Yingyong Qi)\\nSubject: Signature Image Database\\nOrganization: U of Arizona Electrical and Computer Engineering\\n\\nHi, All:\\n\\nCould someone tell me if there is a database of handwriting signature\\nimages available for evaluating signature verification systems.\\n\\nThanks.\\n\\nYY\\n',\n", - " \"From: David.Anderman@ofa123.fidonet.org\\nSubject: LRDPA news\\nX-Sender: newtout 0.08 Feb 23 1993\\nLines: 28\\n\\n Many of you at this point have seen a copy of the \\nLunar Resources Data Purchase Act by now. This bill, also known as the Back to \\nthe Moon bill, would authorize the U.S. \\ngovernment to purchase lunar science data from private \\nand non-profit vendors, selected on the basis of competitive bidding, with an \\naggregate cap on bid awards of $65 million. \\n If you have a copy of the bill, and can't or don't want to go through \\nall of the legalese contained in all Federal legislation,don't both - you have \\na free resource to evaluate the bill for you. Your local congressional office, \\nlisted in the phone book,is staffed by people who can forward a copy of the\\nbill to legal experts. Simply ask them to do so, and to consider supporting\\nthe Lunar Resources Data Purchase Act. \\n If you do get feedback, negative or positive, from your congressional \\noffice, please forward it to: David Anderman\\n3136 E. Yorba Linda Blvd., Apt G-14, Fullerton, CA 92631,\\nor via E-Mail to: David.Anderman@ofa123.fidonet.org. \\n Another resource is your local chapter of the National Space Society. \\nMembers of the chapter will be happy to work with you to evaluate and support \\nthe Back to the Moon bill. For the address and telephone number of the nearest \\nchapter to you, please send E-mail, or check the latest issue of Ad Astra, in \\na library near you.\\n Finally, if you have requested, and not received, information about\\nthe Back to the Moon bill, please re-send your request. The database for the\\nbill was recently corrupted, and some information was lost. The authors of the \\nbill thank you for your patience.\\n\\n\\n--- Maximus 2.01wb\\n\",\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: HST Servicing Mission Scheduled for 11 Days\\nOrganization: U of Toronto Zoology\\nLines: 35\\n\\nIn article <1rd1g0$ckb@access.digex.net> prb@access.digex.com (Pat) writes:\\n>How will said re-boost be done?\\n>Grapple, HST, stow it in Cargo bay, do OMS burn to high altitude, \\n>unstow HST, repair gyros, costar install, fix solar arrays,\\n>then return to earth?\\n\\nActually, the reboost will probably be done last, so that there is a fuel\\nreserve during the EVAs (in case they have to chase down an adrift\\nastronaut or something like that). But yes, you've got the idea -- the\\nreboost is done by taking the whole shuttle up.\\n\\n>My guess is why bother with usingthe shuttle to reboost?\\n>why not grapple, do all said fixes, bolt a small liquid fueled\\n>thruster module to HST, then let it make the re-boost...\\n\\nSomebody has to build that thruster module; it's not an off-the-shelf\\nitem. Nor is it a trivial piece of hardware, since it has to include\\nattitude control (HST's own is not strong enough to compensate for things\\nlike thruster imbalance), guidance (there is no provision to feed gyro\\ndata from HST's own gyros to an external device), and separation (you\\ndon't want it left attached afterward, if only to avoid possible\\ncontamination after the telescope lid is opened again). You also get\\nto worry about whether the lid is going to open after the reboost is\\ndone and HST is inaccessible to the shuttle (the lid stays closed for\\nthe duration of all of this to prevent mirror contamination from\\nthrusters and the like).\\n\\nThe original plan was to use the Orbital Maneuvering Vehicle to do the\\nreboost. The OMV was planned to be a sort of small space tug, well\\nsuited to precisely this sort of job. Unfortunately, it was costing\\na lot to develop and the list of definitely-known applications was\\nrelatively short, so it got cancelled.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " \"From: rm03@ic.ac.uk (Mr R. Mellish)\\nSubject: Re: university violating separation of church/state?\\nOrganization: Imperial College\\nLines: 33\\nNntp-Posting-Host: 129.31.80.14\\n\\nIn article <199304041750.AA17104@kepler.unh.edu> dmn@kepler.unh.edu (...until kings become philosophers or philosophers become kings) writes:\\n>\\n>\\n>\\n> Recently, RAs have been ordered (and none have resisted or cared about\\n>it apparently) to post a religious flyer entitled _The Soul Scroll: Thoughts\\n>on religion, spirituality, and matters of the soul_ on the inside of bathroom\\n>stall doors. (at my school, the University of New Hampshire) It is some sort\\n>of newsletter assembled by a Hall Director somewhere on campus.\\n[most of post deleted]\\n>\\n> Please respond as soon as possible. I'd like these religious postings to\\n>stop, NOW! \\n>\\n> \\n>Thanks,\\n>\\n> Dana\\n>\\n> \\n> \\nThere is an easy way out....\\nPost the flyers on the stall doors, but add at the bottom, in nice large\\ncapitals,\\n\\n EMERGENCY TOILET PAPER\\n\\n:)\\n\\n-- \\n------ Robert Mellish, FOG, IC, UK ------\\n Email: r.mellish@ic.ac.uk Net: rm03@sg1.cc.ic.ac.uk IRC: HobNob\\n------ and also the mrs joyful prize for rafia work. ------\\n\",\n", - " \"From: SRUHL@MECHANICAL.watstar.uwaterloo.ca (Stefan Ruhl)\\nSubject: crappy Honda CX650\\nLines: 24\\nOrganization: University of Waterloo\\n\\nHi, I just have a small question about my bike. \\nBeing a fairly experienced BMW and MZ-Mechanic, I just don't know what to \\nthink about my Honda. \\nShe was using too much oil for the last 5000 km (on my trip to Daytona bike \\nweek this spring), and all of a sudden, she trailed smoke like hell and \\nwas running only on one cylinder. \\nI towed the bike home and took it apart, but everything looks in perfect \\nworking order. No cracks in the heads or pistons, the cylinder walls look \\nvery clean, and the wear of pistons and cylinders is not measurable. All \\nstill within factory specs. The only thing I could find, however, was a \\nslightly bigger ring gap on the right cylinder (the one with the problem), \\nbut it is still way below the wear-limit given in the Clymer-manual for \\nthis bike. \\nAny syggestions??? What else could cause my problem??? Do I have to hone \\nthe cylinder walls (make them a little rougher in a criss-cross-pattern) in \\norder to get better breaking in of my new rings??? Won't that increase the \\nwear of my pistons??\\nPlease send comments to \\n\\tsruhl@mechanical.watstar.uwaterloo.ca\\nThanks in advance. Stef. \\n------------------------------------------------------------------------------ \\nStefan Ruhl \\ngerman exchange student. \\nDon't poke into my privacy ! \\n\",\n", - " \"From: george@ccmail.larc.nasa.gov (George M. Brown)\\nSubject: QC/MSC code to view/save images\\nOrganization: Client Specific Systems, Inc.\\nLines: 12\\nNNTP-Posting-Host: thrasher.larc.nasa.gov\\n\\nDear Binary Newsers,\\n\\nI am looking for Quick C or Microsoft C code for image decoding from file for\\nVGA viewing and saving images from/to GIF, TIFF, PCX, or JPEG format. I have\\nscoured the Internet, but its like trying to find a Dr. Seuss spell checker \\nTSR. It must be out there, and there's no need to reinvent the wheel.\\n\\nThanx in advance.\\n\\n//////////////\\n\\n The Internet is like a Black Hole....\\n\",\n", - " \"From: mtrost@convex.com (Matthew Trost)\\nSubject: Re: The best of times, the worst of times\\nNntp-Posting-Host: eugene.convex.com\\nOrganization: CONVEX Computer Corporation, Richardson, Tx., USA\\nX-Disclaimer: This message was written by a user at CONVEX Computer\\n Corp. The opinions expressed are those of the user and\\n not necessarily those of CONVEX.\\nLines: 17\\n\\nIn <1993Apr20.161357.20354@ttinews.tti.com> paulb@harley.tti.com (Paul Blumstein) writes:\\n\\n>(note: this is not about the L.A. or NY Times)\\n\\n\\n>Turned out to be a screw unscrewed inside my Mikuni HS40 \\n>carb. I keep hearing that one should keep all of the screws\\n>tight on a bike, but I never thought that I had to do that\\n>on the screws inside of a carb. At least it was roadside\\n>fixable and I was on my way in hardly any time.\\n\\nYou better check all the screws in that carb before you suck\\none into a jug and munge a piston, or valve. I've seen it\\nhappen before.\\n\\nMatthew\\n\\n\",\n", - " \"From: ken@cs.UAlberta.CA (Huisman Kenneth M)\\nSubject: images of earth\\nNntp-Posting-Host: cab101.cs.ualberta.ca\\nOrganization: University of Alberta\\nLines: 14\\n\\nI am looking for some graphic images of earth shot from space. \\n( Preferably 24-bit color, but 256 color .gif's will do ).\\n\\nAnyways, if anyone knows an FTP site where I can find these, I'd greatly\\nappreciate it if you could pass the information on. Thanks.\\n\\n\\n( please send email ).\\n\\n\\nKen Huisman\\n\\nken@cs.ualberta.ca\\n\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: An Iranian Azeri Who Would Drop an Atomic Bomb on Armenia\\nSummary: fool\\nArticle-I.D.: urartu.1993Apr15.231047.13120\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 70\\n\\nIn article <93104.101314FHM100F@ODUVM.BITNET> FARID \\nwrites:\\n\\n[FARID] In support of the preservation of the territorial integrity of \\n[FARID] Azerbaijan and its independence from Russian rule, the Iranians which \\n[FARID] includes millions of Azerbaijanis will have Armenia retreat from the \\n[FARID] territory of Azerbaijan. \\n\\nOh, they will? This should prove quite interesting!\\n\\n[FARID] To count on Iranian help to supposedly counter Turkish influence will \\n[FARID] be a fatal error on the part of Armenia as long as Armenia in \\n[FARID] violation of international law has Azerbaijani lands in occupation. \\n\\nArmenia is not counting on Iranian help. As far as violations of international\\nlaws, which international law gives Azerbaijan the right to attack and \\ndepopulate the Armenians in Karabakh?\\n\\n[FARID] If Armenian aggression continues in the territory of Azerbaijan, not \\n[FARID] only there won\\'t be any aid from Iran to Armenia but also steps will \\n[FARID] be taken to have Armenian army back in Armenia. \\n\\nAnd who do you speak for? Rafsanjani?\\n\\n[FARID] The Azerbaijanis of Iran will be the guarantors of this policy. As for \\n[FARID] scaring Iranians or Turks from the Russian power, experts on present \\n[FARID] and future military potentials of these people would not put much \\n[FARID] stock on the Russain power as the sole power in the region for long!!! \\n\\nWell, Farid, your supposed experts are not expert! The Russians have had\\nnon-stop influence in the Caucasus since the Treaty of Turkmanchay in 1828.\\nHmm... that makes it 1993-1828 = 165 years! \\n\\nOh, I see the Azeris from Iran are going to force out the Armenians from \\nKarabakh! That will be a real good trick! \\n\\n[FARID] Iran is not alian to developing the capability to produce the A bomb \\n[FARID] and a reliable delivery system (refer to recent news releases \\n[FARID] regarding the potential of Iran). \\n\\nSo the Azeris from Iran are going to force the Armenians from Karabakh by\\nforcing the Iranian government to drop an atomic bomb on these Armenians.\\n\\n[FARID] The moral of the story is that, you don\\'t go invading your neighbor\\'s \\n[FARID] home (Azerbaijan) and flash Russia\\'s guns when questioned about it. \\n\\nOh, but it\\'s just fine if you drop an atomic bomb on your neighbor! You are\\na damn fool, Farid!\\n\\n[FARID] (Marshal Shapashnikov may have to eat his words regarding Turkey in a \\n[FARID] few short years!). \\n\\nSo you are going to drop an atomic bomb on Russia as well. \\n\\n[FARID] Peaceful resolution of the Armenian-Azerbaijani conflict is the only \\n[FARID] way to go. Armenia may soon find the fruits of Aggression very bitter \\n[FARID] indeed.\\n\\nAnd the Armenians will take your \"peaceful\" dropping of an atomic bomb as\\nan example of Iranian Azeri benevolence! You sir are a poor example of an \\nIranian Azeri! \\n\\nHa! And to think I had a nice two day stay in Tabriz back in 1978! \\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Orion drive in vacuum -- how?\\nOrganization: U of Toronto Zoology\\nLines: 15\\n\\nIn article <1qn4bgINN4s7@mimi.UU.NET> goltz@mimi.UU.NET (James P. Goltz) writes:\\n> Would this work? I can't see the EM radiation impelling very much\\n>momentum (especially given the mass of the pusher plate), and it seems\\n>to me you're going to get more momentum transfer throwing the bombs\\n>out the back of the ship than you get from detonating them once\\n>they're there.\\n\\nThe Orion concept as actually proposed (as opposed to the way it has been\\nsomewhat misrepresented in some fiction) included wrapping a thick layer\\nof reaction mass -- probably plastic of some sort -- around each bomb.\\nThe bomb vaporizes the reaction mass, and it's that which transfers\\nmomentum to the pusher plate.\\n-- \\nAll work is one man's work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\",\n", - " 'From: parr@acs.ucalgary.ca (Charles Parr)\\nSubject: Re: Hell-mets.\\nNntp-Posting-Host: acs3.acs.ucalgary.ca\\nOrganization: The University of Calgary, Alberta\\nLines: 56\\n\\nIn article <217766@mavenry.altcit.eskimo.com> maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n>\\n> \\n> Having talked to a couple people about helmets & dropping, I\\'m getting \\n>about 20% \"Don\\'t sweat it\", 78% \"You might think about replacing it\" and the \\n>other 2% \"DON\\'T RIDE WITH IT! GO WITHOUT A HELMET FIRST!\"\\n> \\n> Is there any way to tell if a helmet is damaged structurally? I dropped it \\n>about 2 1/2 feet to cement off my seat, chipped the paint. Didn\\'t seem to \\n>screw up the actual shell. \\n\\nI\\'d bet the price of the helmet that it\\'s okay...From 6 feet\\nor higher, maybe not.\\n\\n> If I don\\'t end up replacing it in the real near future, would I do better \\n>to wear my (totally nondamaged) 3/4 face DOT-RATED cheapie which doesn\\'t fit \\n>as well or keep out the wind as well, or wearing the Shoei RF-200 which is a \\n>LOT more comfortable, keeps the wind out better, is quieter... but might \\n>have some minor damage?\\n\\nI\\'d wear the full facer, but then, I\\'d be *way* more worried\\nabout wind blast in the face, and inability to hear police\\nsirens, than the helmet being a little damaged.\\n\\n\\n> Also, what would you all reccomend as far as good helmets? I\\'m slightly \\n>disappointed by how badly the shoei has scratched & etc from not being \\n>bloody careful about it, and how little impact it took to chip the paint \\n>(and arguably mess it up, period)... Looking at a really good full-face with \\n>good venting & wind protection... I like the Shoei style, kinda like the \\n>Norton one I saw awhile back too... But suspect I\\'m going to have to get a \\n>much more expensive helmet if I want to not replace it every time I\\'m not \\n>being careful where I set it down.\\n\\nWell, my next helmet will be, subject to it fitting well, an AGV\\nsukhoi. That\\'s just because I like the looks. My current one is\\na Shoei task5, and it\\'s getting a little old, and I crashed in\\nit once a couple of years ago (no hard impact to head...My hip\\ntook care of that.). If price was a consideration I\\'d get\\na Kiwi k21, I hear they are both good and cheap.\\n\\n> Christ, I don\\'t treat my HEAD as carefully as I treated the shoei as far as \\n>tossing it down, and I don\\'t have any bruises on it. \\n\\nBe *mildly* mildly paranoid about the helmet, but don\\'t get\\ncarried away. There are people on the net (like those 2% you\\nmentioned) that do not consistently live on our planet...\\n\\nRegards, Charles\\nDoD0.001\\nRZ350\\n-- \\nWithin the span of the last few weeks I have heard elements of\\nseparate threads which, in that they have been conjoined in time,\\nstruck together to form a new chord within my hollow and echoing\\ngourd. --Unknown net.person\\n',\n", - " \"From: asphaug@lpl.arizona.edu (Erik Asphaug x2773)\\nSubject: Insurance discount\\nSummary: Two or more vehicles... discount?\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 26\\n\\nHola amigos,\\n\\nQuiero... I need an answer to a pressing question. I now own two\\nbikes and would love to keep them both. One is a capable and\\nsmooth street bike, low and lightweight with wide power and great\\nbrakes; the other is a Beemer G/S, kind of rough for the city but\\ngreat on the long road and backroad. A good start at a stable, but\\nI don't think it's going to work. Unfortunately, insurance is going\\nto pluck me by the short hairs. \\n\\nUnless... some insurance agent offers a multi-vehicle discount. They\\ndo this all the time for cars, assuming that you're only capable of \\ndriving one of the things at a time. I don't think I'll ever manage\\nto straddle both bikes and ride them tandem down the street. (Turn left...\\naccelerate the Zephyr; turn right... accelerate the Beemer.) Does\\nanybody know of an agency that makes use of this simple fact to\\ndiscount your rates? State Farm doesn't.\\n\\nBy the way, I'm moving to the Bay area so I'll be insuring the bikes\\nthere, and registering them. To ease me of the shock, can somebody\\nguesstimate the cost of insuring a ZR550 and a R800GS? Here in Tucson\\nthey only cost me $320 (full) and $200 (liability only) for the two,\\nper annum.\\n\\nMuchas gracias,\\n\\t\\t\\tEnrique\\n\",\n", - " 'From: jburnside@ll.mit.edu (jamie w burnside)\\nSubject: Re: GOT MY BIKE! (was Wanted: Advice on CB900C Purchase)\\nKeywords: CB900C, purchase, advice\\nReply-To: jburnside@ll.mit.edu (jamie w burnside)\\nOrganization: MIT Lincoln Laboratory\\nLines: 29\\n\\n--\\nIn article <1993Apr16.005131.29830@ncsu.edu>, jrwaters@eos.ncsu.edu \\n(JACK ROGERS WATERS) writes:\\n|>>\\n|>>>Being a reletively new reader, I am quite impressed with all the usefull\\n|>>>info available on this newsgroup. I would ask how to get my own DoD number,\\n|>>>but I\\'ll probably be too busy riding ;-).\\n|>>\\n|>>\\tDoes this count?\\n|>\\n|>Yes. He thought about it.\\n|>>\\n|>>$ cat dod.faq | mailx -s \"HAHAHHA\" jburnside@ll.mit.edu (waiting to press\\n|>>\\t\\t\\t\\t\\t\\t\\t return...)\\n\\nHey, c\\'mon guys (and gals), I chose my words very carefully and even \\ntried to get my FAQ\\'s straight. Don\\'t holler BOHICA at me!\\n \\n----------------------------------------------------------------------\\n| |\\\\/\\\\/\\\\/| ___________________ |\\n| | | / \\\\ |\\n| | | / Jamie W. Burnside \\\\ 1980 CB900 Custom |\\n| | (o)(o) ( jburnside@ll.mit.edu ) 1985 KDX200 (SOLD!) |\\n| C _) / \\\\_____________________/ 1978 CB400 (for sale) |\\n| | ,___| / |\\n| | / |\\n| / __\\\\ |\\n| / \\\\ |\\n----------------------------------------------------------------------\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Traditional and Historical Armenian Barbarism (Was Re: watch OUT!!).\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 106\\n\\nIn article <21APR199314025948@elroy.uh.edu> st156@elroy.uh.edu (Fazia Begum Rizvi) writes:\\n\\n>Seems to me that a lot of good muslims would care about those terms.\\n>Especially those affected by the ideology and actions that such terms\\n>decscribe. The Bosnians suffering from such bigotry comes to mind. They\\n>get it from people who call them \\'dirty descendants of Turks\\', from\\n>people who hate their religion, and from those who don\\'t think they are\\n>really muslims at all since they are white. The suffering that they are\\n\\nLet us not forget about the genocide of the Azeri people in \\'Karabag\\' \\nand x-Soviet Armenia by the Armenians. Between 1914 and 1920, Armenians \\ncommitted unheard-of crimes, resorted to all conceivable methods of \\ndespotism, organized massacres, poured petrol over babies and burned \\nthem, raped women and girls in front of their parents who were bound \\nhand and foot, took girls from their mothers and fathers and appropriated \\npersonal property and real estate. And today, they put Azeris in the most \\nunbearable conditions any other nation had ever known in history.\\n \\n\\nAREF SADIKOV sat quietly in the shade of a cafe-bar on the\\nCaspian Sea esplanade of Baku and showed a line of stitches in\\nhis trousers, torn by an Armenian bullet as he fled the town of\\nHojali just over three months ago, writes Hugh Pope.\\n\\n\"I\\'m still wearing the same clothes, I don\\'t have any others,\"\\nthe 51-year-old carpenter said, beginning his account of the\\nHojali disaster. \"I was wounded in five places, but I am lucky to\\nbe alive.\"\\n\\nMr Sadikov and his wife were short of food, without electricity\\nfor more than a month, and cut off from helicopter flights for 12\\ndays. They sensed the Armenian noose was tightening around the\\n2,000 to 3,000 people left in the straggling Azeri town on the\\nedge of Karabakh.\\n\\n\"At about 11pm a bombardment started such as we had never heard\\nbefore, eight or nine kinds of weapons, artillery, heavy\\nmachine-guns, the lot,\" Mr Sadikov said.\\n\\nSoon neighbours were pouring down the street from the direction\\nof the attack. Some huddled in shelters but others started\\nfleeing the town, down a hill, through a stream and through the\\nsnow into a forest on the other side.\\n\\nTo escape, the townspeople had to reach the Azeri town of Agdam\\nabout 15 miles away. They thought they were going to make it,\\nuntil at about dawn they reached a bottleneck between the two\\nArmenian villages of Nakhchivanik and Saderak.\\n\\n\"None of my group was hurt up to then ... Then we were spotted by\\na car on the road, and the Armenian outposts started opening\\nfire,\" Mr Sadikov said.\\n\\nAzeri militiamen fighting their way out of Hojali rushed forward\\nto force open a corridor for the civilians, but their efforts\\nwere mostly in vain. Mr Sadikov said only 10 people from his\\ngroup of 80 made it through, including his wife and militiaman\\nson. Seven of his immediate relations died, including his\\n67-year-old elder brother.\\n\\n\"I only had time to reach down and cover his face with his hat,\"\\nhe said, pulling his own big flat Turkish cap over his eyes. \"We\\nhave never got any of the bodies back.\"\\n\\nThe first groups were lucky to have the benefit of covering fire.\\nOne hero of the evacuation, Alif Hajief, was shot dead as he\\nstruggled to change a magazine while covering the third group\\'s\\ncrossing, Mr Sadikov said.\\n\\nAnother hero, Elman Memmedov, the mayor of Hojali, said he and\\nseveral others spent the whole day of 26 February in the bushy\\nhillside, surrounded by dead bodies as they tried to keep three\\nArmenian armoured personnel carriers at bay.\\n\\nAs the survivors staggered the last mile into Agdam, there was\\nlittle comfort in a town from which most of the population was\\nsoon to flee.\\n\\n\"The night after we reached the town there was a big Armenian\\nrocket attack. Some people just kept going,\" Mr Sadikov said. \"I\\nhad to get to the hospital for treatment. I was in a bad way.\\nThey even found a bullet in my sock.\"\\n\\nVictims of war: An Azeri woman mourns her son, killed in the\\nHojali massacre in February (left). Nurses struggle in primitive\\nconditions (centre) to save a wounded man in a makeshift\\noperating theatre set up in a train carriage. Grief-stricken\\nrelatives in the town of Agdam (right) weep over the coffin of\\nanother of the massacre victims. Calculating the final death toll\\nhas been complicated because Muslims bury their dead within 24\\nhours.\\n\\nPhotographs: Liu Heung / AP\\n Frederique Lengaigne / Reuter\\n\\nTHE INDEPENDENT, London, 12/6/\\'92\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " 'From: rdl1@ukc.ac.uk (R.D.Lorenz)\\nSubject: Cold Gas tanks for Sounding Rockets\\nOrganization: Computing Lab, University of Kent at Canterbury, UK.\\nLines: 14\\nNntp-Posting-Host: eagle.ukc.ac.uk\\n\\n>Does anyone know how to size cold gas roll control thruster tanks\\n>for sounding rockets?\\n\\nWell, first you work out how much cold gas you need, then make the\\ntanks big enough.\\n\\nWorking out how much cold gas is another problem, depending on\\nvehicle configuration, flight duration, thruster Isp (which couples\\ninto storage pressure, which may be a factor in selecting tank\\nwall thickness etc.)\\n\\nRalph Lorenz\\nUnit for Space Sciences\\nUniversity of Kent, UK\\n',\n", - " \"From: osprey@ux4.cso.uiuc.edu (Lucas Adamski)\\nSubject: Fast polygon routine needed\\nKeywords: polygon, needed\\nOrganization: University of Illinois at Urbana-Champaign\\nLines: 6\\n\\nThis may be a fairly routine request on here, but I'm looking for a fast\\npolygon routine to be used in a 3D game. I have one that works right now, but\\nits very slow. Could anyone point me to one, pref in ASM that is fairly well\\ndocumented and flexible?\\n\\tThanx,\\n //Lucas.\\n\",\n", - " 'From: jbatka@desire.wright.edu\\nSubject: Re: Gamma Ray Bursters. WHere are they.\\nOrganization: Wright State University \\nLines: 16\\n\\nI assume that can only be guessed at by the assumed energy of the\\nevent and the 1/r^2 law. So, if the 1/r^2 law is incorrect (assume\\nsome unknown material [dark matter??] inhibits Gamma Ray propagation),\\ncould it be possible that we are actually seeing much less energetic\\nevents happening much closer to us? The even distribution could\\nbe caused by the characteristic propagation distance of gamma rays \\nbeing shorter then 1/2 the thickness of the disk of the galaxy.\\n\\nJust some idle babbling,\\n-- \\n\\n Jim Batka | Work Email: BATKAJ@CCMAIL.DAYTON.SAIC.COM | Elvis is\\n | Home Email: JBATKA@DESIRE.WRIGHT.EDU | DEAD!\\n\\n 64 years is 33,661,440 minutes ...\\n and a minute is a LONG time! - Beatles: _ Yellow Submarine_\\n',\n", - " 'From: west@next02cville.wam.umd.edu (Stilgar)\\nSubject: Re: Gospel Dating\\nNntp-Posting-Host: next15csc.wam.umd.edu\\nReply-To: west@next02.wam.umd.edu\\nOrganization: Workstations at Maryland, University of Maryland, College Park\\nLines: 35\\n\\nIn article kmr4@po.CWRU.edu (Keith M. \\nRyan) writes:\\n> In article <1993Apr5.163050.13308@wam.umd.edu> \\nwest@next02cville.wam.umd.edu (Stilgar) writes:\\n> >In article kmr4@po.CWRU.edu (Keith M. \\n> >Ryan) writes:\\n> >> In article <1993Apr5.025924.11361@wam.umd.edu> \\n> >west@next02cville.wam.umd.edu (Stilgar) writes:\\n> >> \\n> >> >THE ILLIAD IS THE UNDISPUTED WORD OF GOD(tm) *prove me wrong*\\n> >> \\n> >> \\tI dispute it.\\n> >> \\n> >> \\tErgo: by counter-example: you are proven wrong.\\n> >\\n> >\\tI dispute your counter-example\\n> >\\n> >\\tErgo: by counter-counter-example: you are wrong and\\n> >\\tI am right so nanny-nanny-boo-boo TBBBBBBBTTTTTTHHHHH\\n> \\n> \\tNo. The premis stated that it was undisputed. \\n> \\n\\nFine... THE ILLIAD IS THE WORD OF GOD(tm) (disputed or not, it is)\\n\\nDispute that. It won\\'t matter. Prove me wrong.\\n\\nBrian West\\n--\\nTHIS IS NOT A SIG FILE * -\"To the Earth, we have been\\nTHIS IS NOT A SIG FILE * here but for the blink of an\\nOK, SO IT\\'S A SIG FILE * eye, if we were gone tomorrow, \\nposted by west@wam.umd.edu * we would not be missed.\"- \\nwho doesn\\'t care who knows it. * (Jurassic Park) \\n** DICLAIMER: I said this, I meant this, nobody made me do it.**\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: How many read sci.space?\\nOrganization: Texas Instruments Inc\\nLines: 16\\n\\nIn <1993Apr15.204210.26022@mksol.dseg.ti.com> pyron@skndiv.dseg.ti.com (Dillon Pyron) writes:\\n\\n\\n>There are actually only two of us. I do Henry, Fred, Tommy and Mary. Oh yeah,\\n>this isn\\'t my real name, I\\'m a bald headed space baby.\\n\\nYes, and I do everyone else. Why, you may wonder, don\\'t I do \\'Fred\\'?\\nWell, that would just be too *obvious*, wouldn\\'t it? Oh yeah, this\\nisn\\'t my real name, either. I\\'m actually Elvis. Or maybe a lemur; I\\nsometimes have difficulty telling which is which.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: dbm0000@tm0006.lerc.nasa.gov (David B. Mckissock)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: NASA Lewis Research Center / Cleveland, Ohio\\nLines: 102\\nDistribution: world\\nNNTP-Posting-Host: tm0006.lerc.nasa.gov\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr23.184732.1105@aio.jsc.nasa.gov>, kjenks@gothamcity.jsc.nasa.gov writes...\\n\\n {Description of \"External Tank\" option for SSF redesign deleted}\\n\\n>Mark proposed this design at Joe Shea\\'s committee in Crystal City,\\n>and he reports that he was warmly received. However, the rumors\\n>I hear say that a design based on a wingless Space Shuttle Orbiter\\n>seems more likely.\\n\\nYo Ken, let\\'s keep on-top of things! Both the \"External Tank\" and\\n\"Wingless Orbiter\" options have been deleted from the SSF redesign\\noptions list. Today\\'s (4/23) edition of the New York Times reports\\nthat O\\'Connor told the panel that some redesign proposals have\\nbeen dropped, such as using the \"giant external fuel tanks used\\nin launching space shuttles,\" and building a \"station around\\nan existing space shuttle with its wings and tail removed.\"\\n\\nCurrently, there are three options being considered, as presented\\nto the advisory panel meeting yesterday (and as reported in\\ntoday\\'s Times).\\n\\nOption \"A\" - Low Cost Modular Approach\\nThis option is being studied by a team from MSFC. {As an aside,\\nthere are SSF redesign teams at MSFC, JSC, and LaRC supporting\\nthe SRT (Station Redesign Team) in Crystal City. Both LeRC and\\nReston folks are also on-site at these locations, helping the respective\\nteams with their redesign activities.} Key features of this\\noption are:\\n - Uses \"Bus-1\", a modular bus developed by Lockheed that\\'s\\n qualified for STS and ELV\\'s. The bus provides propulsion, GN&C\\n Communications, & Data Management. Lockheed developed this\\n for the Air Force.\\n - A \"Power Station Capability\" is obtained in 3 Shuttle Flights.\\n SSF Solar arrays are used to provide 20 kW of power. The vehicle\\n flies in an \"arrow mode\" to optimize the microgravity environment.\\n Shuttle/Spacelab missions would utilize the vehilce as a power\\n source for 30 day missions.\\n - Human tended capability (as opposed to the old SSF sexist term\\n of man-tended capability) is achieved by the addition of the\\n US Common module. This is a modified version of the existing\\n SSF Lab module (docking ports are added for the International\\n Partners\\' labs, taking the place of the nodes on SSF). The\\n Shuttle can be docked to the station for 60 day missions.\\n The Orbiter would provide crew habitability & EVA capability.\\n - International Human Tended. Add the NASDA & ESA modules, and\\n add another 20 kW of power\\n - Permanent Human Presence Capability. Add a 3rd power module,\\n the U.S. habitation module, and an ACRV (Assured Crew Return\\n Vehicle).\\n\\nOption \"B\" - Space Station Freedom Derived\\nThe Option \"B\" team is based at LaRC, and is lead by Mike Griffin.\\nThis option looks alot like the existing SSF design, which we\\nhave all come to know and love :)\\n\\nThis option assumes a lightweight external tank is available for\\nuse on all SSF assembly flights (so does option \"A\"). Also, the \\nnumber of flights is computed for a 51.6 inclination orbit,\\nfor both options \"A\" and \"B\".\\n\\nThe build-up occurs in six phases:\\n - Initial Research Capability reached after 3 flights. Power\\n is transferred from the vehicle to the Orbiter/Spacelab, when\\n it visits.\\n - Man-Tended Capability (Griffin has not yet adopted non-sexist\\n language) is achieved after 8 flights. The U.S. Lab is\\n deployed, and 1 solar power module provides 20 kW of power.\\n - Permanent Human Presence Capability occurs after 10 flights, by\\n keeping one Orbiter on-orbit to use as an ACRV (so sometimes\\n there would be two Orbiters on-orbit - the ACRV, and the\\n second one that comes up for Logistics & Re-supply).\\n - A \"Two Fault Tolerance Capability\" is achieved after 14 flights,\\n with the addition of a 2nd power module, another thermal\\n control system radiator, and more propulsion modules.\\n - After 20 flights, the Internationals are on-board. More power,\\n the Habitation module, and an ACRV are added to finish the\\n assembly in 24 flights.\\n\\nMost of the systems currently on SSF are used as-is in this option, \\nwith the exception of the data management system, which has major\\nchanges.\\n\\nOption C - Single Core Launch Station.\\nThis is the JSC lead option. Basically, you take a 23 ft diameter\\ncylinder that\\'s 92 ft long, slap 3 Space Shuttle Main Engines on\\nthe backside, put a nose cone on the top, attached it to a \\nregular shuttle external tank and a regular set of solid rocket\\nmotors, and launch the can. Some key features are:\\n - Complete end-to-end ground integration and checkout\\n - 4 tangentially mounted fixed solar panels\\n - body mounted radiators (which adds protection against\\n micrometeroid & orbital debris)\\n - 2 centerline docking ports (one on each end)\\n - 7 berthing ports\\n - a single pressurized volume, approximately 26,000 cubic feet\\n (twice the volume of skylab).\\n - 7 floors, center passageway between floors\\n - 10 kW of housekeeping power\\n - graceful degradation with failures (8 power channels, 4 thermal\\n loops, dual environmental control & life support system)\\n - increased crew time for utilization\\n - 1 micro-g thru out the core module\\n',\n", - " \"Organization: Queen's University at Kingston\\nFrom: Graydon \\nSubject: Re: Gamma Ray Bursters. Where are they?\\n <1993Apr24.221344.1@vax1.mankato.msus.edu>\\nLines: 8\\n\\nIf all of these things have been detected in space, has anyone\\nlooked into possible problems with the detectors?\\n\\nThat is, is there some mechanism (cosmic rays, whatever) that\\ncould cause the dector to _think_ it was seeing one of these\\nthings?\\n\\nGraydon\\n\",\n", - " 'From: loss@fs7.ECE.CMU.EDU (Doug Loss)\\nSubject: Jemison on Star Trek\\nOrganization: Electrical and Computer Engineering, Carnegie Mellon\\nLines: 7\\n\\n I saw in the newspaper last night that Dr. Mae Jemison, the first\\nblack woman in space (she\\'s a physician and chemical engineer who flew\\non Endeavour last year) will appear as a transporter operator on the\\n\"Star Trek: The Next Generation\" episode that airs the week of May 31.\\nIt\\'s hardly space science, I know, but it\\'s interesting.\\n\\nDoug Loss\\n',\n", - " 'From: dgf1@quads.uchicago.edu (David Farley)\\nSubject: Re: Photoshop for Windows\\nReply-To: dgf1@midway.uchicago.edu\\nOrganization: University of Chicago\\nLines: 25\\n\\nIn article beaver@rot.qc.ca (Andre Boivert) writes:\\n>\\n>\\n>I am looking for comments from people who have used/heard about PhotoShop\\n>for Windows. Is it good? How does it compare to the Mac version? Is there\\n>a lot of bugs (I heard the Windows version needs \"fine-tuning)?\\n>\\n>Any comments would be greatly appreciated..\\n>\\n>Thank you.\\n>\\n>Andre Boisvert\\n>beaver@rot.qc.ca\\n>\\nAn review of both the Mac and Windows versions in either PC Week or Info\\nWorld this week, said that the Windows version was considerably slower\\nthan the Mac. A more useful comparison would have been between PhotoStyler\\nand PhotoShop for Windows. David\\n\\n\\n-- \\nDavid Farley The University of Chicago Library\\n312 702-3426 1100 East 57th Street, JRL-210\\ndgf1@midway.uchicago.edu Chicago, Illinois 60637\\n\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: nuclear waste\\nOrganization: Texas Instruments Inc\\nLines: 78\\n\\nIn <1993Apr2.150038.2521@cs.rochester.edu> dietz@cs.rochester.edu (Paul Dietz) writes:\\n\\n>In article <1993Apr1.204657.29451@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n\\n>>>This system would produce enough energy to drive the accelerator,\\n>>>perhaps with some left over. A very high power (100\\'s of MW CW or\\n>>>quasi CW), very sharp proton beam would be required, but this appears\\n>>>achievable using a linear accelerator. The biggest question mark\\n>>>would be the lead target chemistry and the on-line processing of all\\n>>>the elements being incinerated.\\n>>\\n>>Paul, quite frankly I\\'ll believe that this is really going to work on\\n>>the typical trash one needs to process when I see them put a couple\\n>>tons in one end and get (relatively) clean material out the other end,\\n>>plus be able to run it off its own residual power. Sounds almost like\\n>>perpetual motion, doesn\\'t it?\\n\\n>Fred, the honest thing to do would be to admit your criticism on\\n>scientific grounds was invalid, rather than pretend you were actually\\n>talking about engineering feasibility. Given you postings, I can\\'t\\n>say I am surprised, though.\\n\\nWell, pardon me for trying to continue the discussion rather than just\\ntugging my forelock in dismay at having not considered actually trying\\nto recover the energy from this process (which is at least trying to\\ngo the \\'right\\' way on the energy curve). Now, where *did* I put those\\nsackcloth and ashes?\\n\\n[I was not and am not \\'pretending\\' anything; I am *so* pleased you are\\nnot surprised, though.]\\n\\n>No, it is nothing like perpetual motion. \\n\\nNote that I didn\\'t say it was perpetual motion, or even that it\\nsounded like perpetual motion; the phrase was \"sounds almost like\\nperpetual motion\", which I, at least, consider a somewhat different\\npropposition than the one you elect to criticize. Perhaps I should\\nbeg your pardon for being *too* precise in my use of language?\\n\\n>The physics is well\\n>understood; the energy comes from fission of actinides in subcritical\\n>assemblies. Folks have talked about spallation reactors since the\\n>1950s. Pulsed spallation neutron sources are in use today as research\\n>tools. Accelerator design has been improving, particularly with\\n>superconducting accelerating cavities, which helps feasibility. Los\\n>Alamos has expertise in high current accelerators (LAMPF), so I\\n>believe they know what they are talking about.\\n\\nI will believe that this process comes even close to approaching\\ntechnological and economic feasibility (given the mixed nature of the\\ntrash that will have to be run through it as opposed to the costs of\\nseparating things first and having a different \\'run\\' for each\\nactinide) when I see them dump a few tons in one end and pull\\n(relatively) clean material out the other. Once the costs,\\ntechnological risks, etc., are taken into account I still class this\\none with the idea of throwing waste into the sun. Sure, it\\'s possible\\nand the physics are well understood, but is it really a reasonable\\napproach? \\n\\nAnd I still wonder at what sort of \\'burning\\' rate you could get with\\nsomething like this, as opposed to what kind of energy you would\\nreally recover as opposed to what it would cost to build and power\\nwith and without the energy recovery. Are we talking ounces, pounds,\\nor tons (grams, kilograms, or metric tons, for you SI fans) of\\nmaterial and are we talking days, weeks, months, or years (days,\\nweeks, months or years, for you SI fans -- hmmm, still using a\\nnon-decimated time scale, I see ;-))?\\n\\n>The real reason why accelerator breeders or incinerators are not being\\n>built is that there isn\\'t any reason to do so. Natural uranium is\\n>still too cheap, and geological disposal of actinides looks\\n>technically reasonable.\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'Subject: Vonnegut/atheism\\nFrom: dmn@kepler.unh.edu (...until kings become philosophers or philosophers become kings)\\nOrganization: UTexas Mail-to-News Gateway\\nNNTP-Posting-Host: cs.utexas.edu\\nLines: 21\\n\\n\\n\\n Yesterday, I got the chance to hear Kurt Vonnegut speak at the\\nUniversity of New Hampshire. Vonnegut succeeded Isaac Asimov as the \\n(honorary?) head of the American Humanist Association. (Vonnegut is\\nan atheist, and so was Asimov) Before Asimov\\'s funeral, Vonnegut stood up\\nand said about Asimov, \"He\\'s in heaven now,\" which ignited uproarious \\nlaughter in the room. (from the people he was speaking to around the time\\nof the funeral)\\n\\n\\t \"It\\'s the funniest thing I could have possibly said\\nto a room full of humanists,\" Vonnegut said at yesterday\\'s lecture. \\n\\n If Vonnegut comes to speak at your university, I highly recommend\\ngoing to see him even if you\\'ve never read any of his novels. In my opinion,\\nhe\\'s the greatest living humorist. (greatest living humanist humorist as well)\\n\\n\\n Peace,\\n\\n Dana\\n',\n", - " 'From: ajackson@cch.coventry.ac.uk (Alan Jackson)\\nSubject: MPEG Location\\nNntp-Posting-Host: cc_sysh\\nOrganization: Coventry University\\nLines: 11\\n\\n\\nCan anyone tell me where to find a MPEG viewer (either DOS or\\nWindows).\\n\\nThanks in advance.\\n\\n-- \\nAlan M. Jackson Mail : ajackson@cch.cov.ac.uk\\n\\n Liverpool Football Club - Simply The Best\\n \"You\\'ll Never Walk Alone\"\\n',\n", - " \"From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Delaunay Triangulation\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 9\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\n\\n\\nDoes anybody know what Delaunay Triangulation is?\\nIs there any reference to it? \\nIs it useful for creating 3-D objects? If yes, what's the advantage?\\n\\nThanks in advance.\\n\\nYeh\\nUSC\\n\",\n", - " \"From: pnakada@oracle.com (Paul Nakada)\\nSubject: Eating and Riding was Re: Drinking and Riding\\nArticle-I.D.: pnakada.PNAKADA.93Apr5140811\\nOrganization: Oracle Corporation, Redwood Shores, CA\\nLines: 14\\nNntp-Posting-Host: pnakada.us.oracle.com\\nX-Disclaimer: This message was written by an unauthenticated user\\n at Oracle Corporation. The opinions expressed are those\\n of the user and not necessarily those of Oracle.\\n\\n\\nWhat's the feeling about eating and riding? I went out riding this\\nweekend, and got a little carried away with some pecan pie. The whole\\nride back I felt sluggish. I was certainly much more alert on the\\nride in. I'm sure others have the same feeling, but the strangest\\nthing is that eating is usually the turnaround point of weekend rides.\\n\\nFrom now on, a little snack will do. I'd much rather have a get that\\nfull/sluggish feeling closer to home.\\n\\n-Paul\\n--\\nPaul Nakada | Oracle Corporation | pnakada@oracle.com\\nDoD #7773 | '91 R100C | '90 K75S\\n\",\n", - " \"From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: Georgia Institute of Technology\\nLines: 19\\n\\nI see that our retarded translator, David, is still writing things that\\ndon't make sense. Hey David I can see where you are.. May be one day,\\nWe will have the chance to talk deeply about that freedom of speach of\\nyours.. And you now, killing or torture, these things are only easy\\nways out.. I have different plans for you and all empty headeds like \\nyou...\\n\\nLets get serious, DAVE, don't ever write bad things about Turkish people\\nor especially Cyprus.. If I hear a word from you again that I consider\\nto be a curse to my people I will retalliate...\\n\\nMuccccukkk..\\nTIMUCIN.\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n\",\n", - " 'From: srlnjal@grace.cri.nz\\nSubject: CorelDraw BITMAP to SCODAL (2)\\nOrganization: Industrial Research Ltd., New Zealand.\\nLines: 22\\nNNTP-Posting-Host: grv.grace.cri.nz\\n\\n\\nYes I am aware CorelDraw exports in SCODAL.\\nVersion 2 did it quite well, apart from a\\nfew hassles with radial fills. Version 3 RevB\\nis better but if you try to export in SCODAL\\nwith a bitmap image included in the drawing\\nit will say something like \"cannot export\\nSCODAL with bitmap\"- at least it does on my\\nversion.\\n If anyone out there knows a way around this\\nI am all ears.\\n Temporal images make a product called Filmpak\\nwhich converts Autocad plots to SCODAL, postscript\\nto SCODAL and now GIF to SCODAL but it costs $650\\nand I was just wondering if there was anything out\\nthere that just did the bitmap to SCODAL part a tad\\ncheaper.\\n\\nJeff Lyall\\nInst.Geo.&.Nuc.Sci.Ltd\\nLower Hutt New Zealand\\n\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: 2.5 million Muslims perished of butchery at the hands of Armenians.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 92\\n\\nIn article <1993Apr25.015551.23259@husc3.harvard.edu> verbit@brauer.harvard.edu (Mikhail S. Verbitsky) writes:\\n\\n>\\tActually, Jarmo is a permanent resident of my killfile\\n\\nAnyone care to speculate on this? I\\'ll let the rest of the net judge\\nthis on its own merits. Between 1914 and 1920, 2.5 million Turks perished \\nof butchery at the hands of Armenians. The genocide involved not only \\nthe killing of innocents but their forcible deportation from the Russian \\nArmenia. They were persecuted, banished, and slaughtered while much of \\nOttoman Army was engaged in World War I. The Genocide Treaty defines \\ngenocide as acting with a \\n\\n \\'specific intent to destroy, in whole or in substantial part, a \\n national, ethnic, racial or religious group.\\' \\n\\nHistory shows that the x-Soviet Armenian Government intended to eradicate \\nthe Muslim population. 2.5 million Turks and Kurds were exterminated by the \\nArmenians. International diplomats in Ottoman Empire at the time - including \\nU.S. Ambassador Bristol - denounced the x-Soviet Armenian Government\\'s policy \\nas a massacre of the Kurds, Turks, and Tartars. The blood-thirsty leaders of \\nthe x-Soviet Armenian Government at the time personally involved in the \\nextermination of the Muslims. The Turkish genocide museums in Turkiye honor \\nthose who died during the Turkish massacres perpetrated by the Armenians. \\n\\nThe eyewitness accounts and the historical documents established,\\nbeyond any doubt, that the massacres against the Muslim people\\nduring the war were planned and premeditated. The aim of the policy\\nwas clearly the extermination of all Turks in x-Soviet Armenian \\nterritories.\\n\\nThe Muslims of Van, Bitlis, Mus, Erzurum and Erzincan districts and\\ntheir wives and children have been taken to the mountains and killed.\\nThe massacres in Trabzon, Tercan, Yozgat and Adana were organized and\\nperpetrated by the blood-thirsty leaders of the x-Soviet Armenian \\nGovernment.\\n\\nThe principal organizers of the slaughter of innocent Muslims were\\nDro, Antranik, Armen Garo, Hamarosp, Daro Pastirmadjian, Keri,\\nKarakin, Haig Pajise-liantz and Silikian.\\n\\nSource: \"Bristol Papers\", General Correspondence: Container #32 - Bristol\\n to Bradley Letter of September 14, 1920.\\n\\n\"I have it from absolute first-hand information that the Armenians in \\n the Caucasus attacked Tartar (Turkish) villages that are utterly \\n defenseless and bombarded these villages with artillery and they murder\\n the inhabitants, pillage the village and often burn the village.\"\\n\\n\\nSources: (The Ottoman State, the Ministry of War), \"Islam Ahalinin \\nDucar Olduklari Mezalim Hakkinda Vesaike Mustenid Malumat,\" (Istanbul, 1918). \\nThe French version: \"Documents Relatifs aux Atrocites Commises par les Armeniens\\nsur la Population Musulmane,\" (Istanbul, 1919). In the Latin script: H. K.\\nTurkozu, ed., \"Osmanli ve Sovyet Belgeleriyle Ermeni Mezalimi,\" (Ankara,\\n1982). In addition: Z. Basar, ed., \"Ermenilerden Gorduklerimiz,\" (Ankara,\\n1974) and, edited by the same author, \"Ermeniler Hakkinda Makaleler -\\nDerlemeler,\" (Ankara, 1978). \"Askeri Tarih Belgeleri ...,\" Vol. 32, 83\\n(December 1983), document numbered 1881.\\n\"Askeri Tarih Belgeleri ....,\" Vol. 31, 81 (December 1982), document\\n numbered 1869.\\n\\n\"Those who were capable of fighting were taken away at the very beginning\\n with the excuse of forced labor in road construction, they were taken\\n in the direction of Sarikamis and annihilated. When the Russian army\\n withdrew, a part of the remaining people was destroyed in Armenian\\n massacres and cruelties: they were thrown into wells, they were locked\\n in houses and burned down, they were killed with bayonets and swords, in places\\n selected as butchering spots, their bellies were torn open, their lungs\\n were pulled out, and girls and women were hanged by their hair after\\n being subjected to every conceivable abominable act. A very small part \\n of the people who were spared these abominations far worse than the\\n cruelty of the inquisition resembled living dead and were suffering\\n from temporary insanity because of the dire poverty they had lived\\n in and because of the frightful experiences they had been subjected to.\\n Including women and children, such persons discovered so far do not\\n exceed one thousand five hundred in Erzincan and thirty thousand in\\n Erzurum. All the fields in Erzincan and Erzurum are untilled, everything\\n that the people had has been taken away from them, and we found them\\n in a destitute situation. At the present time, the people are subsisting\\n on some food they obtained, impelled by starvation, from Russian storages\\n left behind after their occupation of this area.\"\\n \\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'Subject: Re: islamic authority over women\\nFrom: kmr4@po.CWRU.edu (Keith M. Ryan)\\nOrganization: Case Western Reserve University\\nNNTP-Posting-Host: b64635.student.cwru.edu\\nLines: 29\\n\\nIn article <1993Apr6.124112.12959@dcs.warwick.ac.uk> simon@dcs.warwick.ac.uk (Simon Clippingdale) writes:\\n\\n>For the guy who said he\\'s just arrived, and asked whether Bobby\\'s for real,\\n>you betcha. Welcome to alt.atheism, and rest assured that it gets worse.\\n>I have a few pearls of wisdom from Bobby which I reproduce below. Is anyone\\n>(Keith?) keeping a big file of such stuff?\\n\\n\\tSorry, I was, but I somehow have misplaced my diskette from the last \\ncouple of months or so. However, thanks to the efforts of Bobby, it is being \\nreplenished rather quickly! \\n\\n\\tHere is a recent favorite:\\n\\n\\t--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n\\n\\n--\\n\\n\\n \"Satan and the Angels do not have freewill. \\n They do what god tells them to do. \"\\n\\n S.N. Mozumder (snm6394@ultb.isc.rit.edu) \\n',\n", - " 'From: cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: University of Illinois at Urbana\\nLines: 36\\n\\nIn kmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n\\n>In article <1qj9gq$mg7@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank \\nO\\'Dwyer) writes:\\n\\n>>Is good logic *better* than bad? Is good science better than bad? \\n\\n> By definition.\\n\\n\\n> great - good - okay - bad - horrible\\n\\n> << better\\n> worse >>\\n\\n\\n> Good is defined as being better than bad.\\n\\n>---\\nHow do we come up with this setup? Is this subjective, if enough people agreed\\nwe could switch the order? Isn\\'t this defining one unknown thing by another? \\nThat is, good is that which is better than bad, and bad is that which is worse\\nthan good? Circular?\\n\\nMAC\\n> Only when the Sun starts to orbit the Earth will I accept the Bible. \\n> \\n\\n--\\n****************************************************************\\n Michael A. Cobb\\n \"...and I won\\'t raise taxes on the middle University of Illinois\\n class to pay for my programs.\" Champaign-Urbana\\n -Bill Clinton 3rd Debate cobb@alexia.lis.uiuc.edu\\n \\nWith new taxes and spending cuts we\\'ll still have 310 billion dollar deficits.\\n',\n", - " 'From: jfw@ksr.com (John F. Woods)\\nSubject: Re: A WRENCH in the works?\\nOrganization: Kendall Square Research Corp.\\nLines: 15\\n\\nnanderso@Endor.sim.es.com (Norman Anderson) writes:\\n>jmcocker@eos.ncsu.edu (Mitch) writes:\\n>>effect that one of the SSRBs that was recovered after the\\n>>recent space shuttle launch was found to have a wrench of\\n>>some sort rattling around apparently inside the case.\\n>I heard a similar statement in our local news (UTAH) tonight. They referred\\n>to the tool as \"...the PLIERS that took a ride into space...\". They also\\n>said that a Thiokol (sp?) employee had reported missing a tool of some kind\\n>during assembly of one SRB.\\n\\nI assume, then, that someone at Thiokol put on their \"manager\\'s hat\" and said\\nthat pissing off the customer by delaying shipment of the SRB to look inside\\nit was a bad idea, regardless of where that tool might have ended up.\\n\\nWhy do I get the feeling that Thiokol \"manager\\'s hats\" are shaped like cones?\\n',\n", - " \"From: rbarris@orion.oac.uci.edu (Robert C. Barris)\\nSubject: Re: Rumours about 3DO ???\\nNntp-Posting-Host: orion.oac.uci.edu\\nSummary: 3DO demonstration\\nOrganization: University of California, Irvine\\nKeywords: 3DO ARM QT Compact Video\\nLines: 73\\n\\nIn article <1993Apr16.212441.34125@rchland.ibm.com> ricardo@rchland.vnet.ibm.com (Ricardo Hernandez Muchado) writes:\\n>In article <1993Apr15.164940.11632@mercury.unt.edu>, Sean McMains writes:\\n>|> In article <1993Apr15.144843.19549@rchland.ibm.com> Ricardo Hernandez\\n>|> Muchado, ricardo@rchland.vnet.ibm.com writes:\\n>|> > And CD-I's CPU doesn't help much either. I understand it is\\n>|> >a 68070 (supposedly a variation of a 68000/68010) running at something\\n>|> >like 7Mhz. With this speed, you *truly* need sprites.\\n[snip]\\n(the 3DO is not a 68000!!!)\\n>|> \\n>|> Ricardo, the animation playback to which Lawrence was referring in an\\n>|> earlier post is plain old Quicktime 1.5 with the Compact Video codec.\\n>|> I've seen digitized video (some of Apple's early commercials, to be\\n>|> precise) running on a Centris 650 at about 30fps very nicely (16-bit\\n>|> color depth). I would expect that using the same algorithm, a RISC\\n>|> processor should be able to approach full-screen full-motion animation,\\n>|> though as you've implied, the processor will be taxed more with highly\\n>|> dynamic material.\\n[snip]\\n>booth there. I walked by, and they were showing real-time video capture\\n>using a (Radious or SuperMac?) card to digitize and make right on the spot\\n>quicktime movies. I think the quicktime they were using was the old one\\n>(1.5).\\n>\\n> They digitized a guy talking there in 160x2xx something. It played back quite\\n>nicely and in real time. The guy then expanded the window (resized) to 25x by\\n>3xx (320 in y I think) and the frame rate decreased enough to notice that it\\n>wasn't 30fps (or about 30fps) anymore. It dropped to like 15 fps. Then he\\n>increased it just a bit more, and it dropped to 10<->12 fps. \\n>\\n> Then I asked him what Mac he was using... He was using a Quadra (don't know\\n>what model, 900?) to do it, and he was telling the guys there that the Quicktime\\n>could play back at the same speed even on an LCII.\\n>\\n> Well, I spoiled his claim so to say, since a 68040 Quadra Mac was having\\n>a little bit of trouble. And this wasn't even from the hardisk! This was\\n>from memory!\\n>\\n> Could it be that you saw either a newer version of quicktime, or some\\n>hardware assisted Centris, or another software product running the \\n>animation (like supposedly MacroMind's Accelerator?)?\\n>\\n> Don't misunderstand me, I just want to clarify this.\\n>\\n\\n\\nThe 3DO box is based on an ARM RISC processor, one or two custom graphics\\nchips, a DSP, a double-speed CDROM, and 2MB of RAM/VRAM. (I'm a little\\nfuzzy on the breakdown of the graphics chips and RAM/VRAM capacity).\\n\\nIt was demonstrated at a recent gathering at the Electronic Cafe in\\nSanta Monica, CA. From 3DO, RJ Mical (of Amiga/Lynx fame) and Hal\\nJosephson (sp?) were there to talk about the machine and their plan. We\\ngot to see the unit displaying full-screen movies using the CompactVideo codec\\n(which was nice, very little blockiness showing clips from Jaws and Backdraft)\\n... and a very high frame rate to boot (like 30fps).\\n\\nNote however that the 3DO's screen resolution is 320x240.\\n\\nCompactVideo is pretty amazing... I also wanted to point out that QuickTime\\ndoes indeed slow down when one dynamically resizes material as was stated\\nabove... I'm sure if the material had been compressed at the large size\\nthen it would play back fine (I have a Q950 and do this quite a bit). The\\nprice of generality... personally I don't use the dynamic sizing of movies\\noften, if ever. But playing back stuff at its original size is plenty quick\\non the latest 040 machines.\\n\\nI'm not sure how a Centris/20MHz 040 stacks up against the 25 MHz ARM in\\nthe 3DO box. Obviously the ARM is faster, but how much?\\n\\nRob Barris\\nQuicksilver Software Inc.\\nrbarris@orion.oac.uci.edu\\n\",\n", - " \"From: charlie@elektro.cmhnet.org (Charlie Smith)\\nSubject: Re: Internet Discussion List\\nOrganization: Why do you suspect that?\\nLines: 17\\n\\nIn article <1qc5f0$3ad@moe.ksu.ksu.edu> bparker@uafhp..uark.edu (Brian Parker) writes:\\n> Hello world of Motorcyles lovers/soon-to-be-lovers!\\n>I have started a discussion list on the internet for people interested in\\n>talking Bikes! We discuss anything and everything. If you are interested in\\n>joining, drop me a line. Since it really isn't a 'list', what we do is if you \\n>have a post, you send it to me and I distribute it to everyone. C'mon...join\\n>and enjoy!\\n\\nHuh? Did this guy just invent wreck.motorcycles?\\n\\n\\tCurious minds want to know.\\n\\n\\nCharlie Smith charlie@elektro.cmhnet.org KotdohL KotWitDoDL 1KSPI=22.85\\n DoD #0709 doh #0000000004 & AMA, MOA, RA, Buckey Beemers, BK Ohio V\\n BMW K1100-LT, R80-GS/PD, R27, Triumph TR6 \\n Columbus, Ohio USA\\n\",\n", - " \"From: ktj@beach.cis.ufl.edu (kerry todd johnson)\\nSubject: army in space\\nOrganization: Univ. of Florida CIS Dept.\\nLines: 17\\nDistribution: world\\nNNTP-Posting-Host: beach.cis.ufl.edu\\n\\n\\nIs anybody out there willing to discuss with me careers in the Army that deal\\nwith space? After I graduate, I will have a commitment to serve in the Army, \\nand I would like to spend it in a space-related field. I saw a post a long\\ntime ago about the Air Force Space Command which made a fleeting reference to\\nits Army counter-part. Any more info on that would be appreciated. I'm \\nlooking for things like: do I branch Intelligence, or Signal, or other? To\\nwhom do I voice my interest in space? What qualifications are necessary?\\nEtc, etc. BTW, my major is computer science engineering.\\n\\nPlease reply to ktj@reef.cis.ufl.edu\\n\\nThanks for ANY info.\\n=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=\\n= Whether they ever find life there or not, I think Jupiter should be =\\n= considered an enemy planet. -- Jack Handy =\\n---ktj@reef.cis.ufl.edu---cirop59@elm.circa.ufl.edu---endeavour@circa.ufl.edu--\\n\",\n", - " 'From: Chris W. Johnson \\nSubject: Re: New DC-x gif\\nOrganization: University of Texas at Austin Computation Center\\nLines: 20\\nDistribution: world\\nNNTP-Posting-Host: gargravarr.cc.utexas.edu\\nX-UserAgent: Nuntius v1.1.1d20\\nX-XXMessage-ID: \\nX-XXDate: Thu, 15 Apr 93 19:42:41 GMT\\n\\nIn article Andy Cohen,\\nCohen@ssdgwy.mdc.com writes:\\n> I just uploaded \"DCXart2.GIF\" to bongo.cc.utexas.edu...after Chris Johnson\\n> moves it, it\\'ll probably be in pub/delta-clipper.\\n\\nThanks again Andy.\\n\\nThe image is in pub/delta-clipper now. The name has been changed to \\n\"dcx-artists-concept.gif\" in the spirit of verboseness. :-)\\n\\n----Chris\\n\\nChris W. Johnson\\n\\nInternet: chrisj@emx.cc.utexas.edu\\nUUCP: {husc6|uunet}!cs.utexas.edu!ut-emx!chrisj\\nCompuServe: >INTERNET:chrisj@emx.cc.utexas.edu\\nAppleLink: chrisj@emx.cc.utexas.edu@internet#\\n\\n...wishing the Delta Clipper team success in the upcoming DC-X flight tests.\\n',\n", - " 'From: pmoloney@maths.tcd.ie (Paul Moloney)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nOrganization: Somewhere in the Twentieth Century\\nLines: 14\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy.\\n\\nFind an encyclopedia. Volume H. Now look up Hitler, Adolf. He had\\nmany more people than just Germans enamoured with him.\\n\\nP.\\n-- \\n moorcockpratchettdenislearydelasoulu2iainmbanksneworderheathersbatmanpjorourke\\nclive p a u l m o l o n e y Come, let us retract the foreskin of misconception\\njames trinity college dublin and apply the wire brush of enlightenment - GeoffM\\n brownbladerunnersugarcubeselectronicblaylockpowersspikeleekatebushhamcornpizza \\n',\n", - " \"From: wlm@wisdom.attmail.com (Bill Myers)\\nSubject: Re: graphics libraries\\nIn-Reply-To: ch41@prism.gatech.EDU's message of 21 Apr 93 12:56:08 GMT\\nOrganization: /usr1/lib/news/organization\\nLines: 28\\n\\n\\n> Does anyone out there have any experience with Figaro+ form TGS or\\n> HOOPS from Ithaca Software? I would appreciate any comments.\\n\\nYes, I do. A couple of years ago, I did a comparison of the two\\nproducts. Some of this may have changed, but here goes.\\n\\nAs far as a PHIGS+ implementation, Figaro+ is fine. But, its PHIGS!\\nPersonally, I hate PHIGS because I find it is too low level. I also\\ndislike structure editing, which I find impossible, but enough about\\nPHIGS.\\n\\nI have found HOOPS to be a system that is full-featured and easy to\\nuse. They support all of their rendering methods in software when\\nthere is no hardware support, their documentation is good, and they\\nare easily portable to other systems.\\n\\nI would be happy to elaborate further if you have more specific\\nquestions. \\n--\\n|------------------------------------------------------|\\n ~~~ Here's lookin' at ya.\\n ~~_ _~~\\n |`O-@'| Bill | wlm@wisdom.attmail.com\\n @| > |@ Phone: (216) 831-2880 x2002\\n |\\\\___/|\\n |_____|\\n|______________________________________________________|\\n\",\n", - " 'From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: >Natural morality may specifically be thought of as a code of ethics that\\n>>a certain species has developed in order to survive.\\n>Wait. Are we talking about ethics or morals here?\\n\\nIs the distinction important?\\n\\n>>We see this countless\\n>>times in the animal kingdom, and such a \"natural\" system is the basis for\\n>>our own system as well.\\n>Huh?\\n\\nWell, our moral system seems to mimic the natural one, in a number of ways.\\n\\n>>In order for humans to thrive, we seem to need\\n>>to live in groups,\\n>Here\\'s your problem. \"we *SEEM* to need\". What\\'s wrong with the highlighted\\n>word?\\n\\nI don\\'t know. What is wrong? Is it possible for humans to survive for\\na long time in the wild? Yes, it\\'s possible, but it is difficult. Humans\\nare a social animal, and that is a cause of our success.\\n\\n>>and in order for a group to function effectively, it\\n>>needs some sort of ethical code.\\n>This statement is not correct.\\n\\nIsn\\'t it? Why don\\'t you think so?\\n\\n>>And, by pointing out that a species\\' conduct serves to propogate itself,\\n>>I am not trying to give you your tautology, but I am trying to show that\\n>>such are examples of moral systems with a goal. Propogation of the species\\n>>is a goal of a natural system of morality.\\n>So anybody who lives in a monagamous relationship is not moral? After all,\\n>in order to ensure propogation of the species, every man should impregnate\\n>as many women as possible.\\n\\nNo. As noted earlier, lack of mating (such as abstinence or homosexuality)\\nisn\\'t really destructive to the system. It is a worst neutral.\\n\\n>For that matter, in herds of horses, only the dominate stallion mates. When\\n>he dies/is killed/whatever, the new dominate stallion is the only one who\\n>mates. These seems to be a case of your \"natural system of morality\" trying\\n>to shoot itself in the figurative foot.\\n\\nAgain, the mating practices are something to be reexamined...\\n\\nkeith\\n',\n", - " 'From: globus@nas.nasa.gov (Al Globus)\\nSubject: Space Colony Size Preferences Summary\\nOrganization: Applied Research Office, NASA Ames Research Center\\nReply-To: globus@nas.nasa.gov\\nDistribution: sci.space\\nLines: 92\\n\\n\\nSome time ago I sent the following message:\\n Every once in a while I design an orbital space colony. I\\'m gearing up to\\n do another one. I\\'d some info from you. If you were to move\\n onto a space colony to live permanently, how big would the colony have\\n to be for you to view a permanent move as desirable? Specifically,\\n\\n How many people do you want to share the colony with?\\n \\n\\n What physical dimensions does the living are need to have? \\n\\n\\n Assume 1g living (the colony will rotate). Assume that you can leave\\n from time to time for vacations and business trips. If you\\'re young\\n enough, assume that you\\'ll raise your children there.\\n\\nI didn\\'t get a lot of responses, and they were all over the block.\\nThanx muchly to all those who responded, it is good food for thought.\\n\\n\\n\\n\\nHere\\'s the (edited) responses I got:\\n\\n\\n How many people do you want to share the colony with?\\n \\n100\\n\\n What physical dimensions does the living are need to have? \\n\\nCylinder 200m diameter x 1 km long\\n\\nRui Sousa\\nruca@saber-si.pt\\n\\n=============================================================================\\n\\n> How many people do you want to share the colony with?\\n\\n100,000 - 250,000\\n\\n> What physical dimensions does the living are need to have? \\n\\n100 square kms surface, divided into city, towns, villages and\\ncountryside. Must have lakes, rivers amd mountains.\\n\\n=============================================================================\\n\\n> How many\\n1000. 1000 people really isn\\'t that large a number;\\neveryone will know everyone else within the space of a year, and will probably\\nbe sick of everyone else within another year.\\n\\n>What physical dimensions does the living are need to have? \\n\\nHm. I am not all that great at figuring it out. But I would maximize the\\npercentage of colony-space that is accessible to humans. Esecially if there\\nwere to be children, since they will figure out how to go everywhere anyways.\\nAnd everyone, especially me, likes to \"go exploring\"...I would want to be able\\nto go for a walk and see something different each time...\\n\\n=============================================================================\\n\\nFor population, I think I would want a substantial town -- big enough\\nto have strangers in it. This helps get away from the small-town\\n\"everybody knows everything\" syndrome, which some people like but\\nI don\\'t. Call it several thousand people.\\n\\nFor physical dimensions, a somewhat similar criterion: big enough\\nto contain surprises, at least until you spent considerable time\\ngetting to know it. As a more specific rule of thumb, big enough\\nfor there to be places at least an hour away on foot. Call that\\n5km, which means a 10km circumference if we\\'re talking a sphere.\\n\\n Henry Spencer at U of Toronto Zoology\\n henry@zoo.toronto.edu utzoo!henry\\n\\n=============================================================================\\nMy desires, for permanent move to a space colony, assuming easy communication\\nand travel:\\n\\nSize: About a small-town size, say 9 sq. km. \\'Course, bigger is better :-)\\nPopulation: about 100/sq km or less. So, ~1000 for 9sqkm. Less is\\nbetter for elbow room, more for interest and sanity, so say max 3000, min 300.\\n\\n-Tommy Mac\\n-------------------------------------------------------------------------\\nTom McWilliams | 517-355-2178 (work) \\\\\\\\ Inhale to the Chief!\\n18084tm@ibm.cl.msu.edu | 336-9591 (hm)\\\\\\\\ Zonker Harris in 1996!\\n-------------------------------------------------------------------------\\n',\n", - " 'From: wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov\\nSubject: Re: NASA \"Wraps\"\\nOrganization: University of Houston\\nLines: 160\\nDistribution: world\\nNNTP-Posting-Host: judy.uh.edu\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nIn article <1993Apr18.034101.21934@iti.org>, aws@iti.org (Allen W. Sherzer) writes...\\n>In article <17APR199316423628@judy.uh.edu> wingo%cspara.decnet@Fedex.Msfc.Nasa.Gov writes:\\n> \\n>>I don\\'t care who told you this it is not generally true. I see EVERY single\\n>>line item on a contract and I have to sign it. There is no such thing as\\n>>wrap at this university. \\n> \\n>Dennis, I have worked on or written proposals worth tens of millions\\n>of $$. Customers included government (including NASA), for profit and\\n>non-profit companies. All expected a wrap (usually called a fee). Much\\n>of the work involved allocating and costing the work of subcontractors.\\n>The subcontractors where universities, for-profits, non-profits, and\\n>even some of the NASA Centers for the Commercialization of Space. ALL\\n>charged fees as part of the work. Down the street is one of the NASA\\n>commercialization centers; they charge a fee.\\n> \\n\\nYou totally forgot the original post that you posted Allen. In that post\\nyou stated that the \"wrap\" was on top of and in addition to any overhead.\\nGeez in this post you finally admit that this is not true.\\n\\n>Now, I\\'m sure your a competent engineer Dennis, but you clearly lack\\n>experience in several areas. Your posts show that you don\\'t understand\\n>the importance of integration in large projects. You also show a lack\\n>of understanding of costing efforts as shown by your belief that it\\n>is reasonable to charge incremental costs for everything. This isn\\'t\\n>a flame, jsut a statement.\\n\\nCome your little ol buns down here and you will find out who is doing\\nwhat and who is working on integration. This is simply an ad hominum\\nattack and you know it.\\n\\n> \\n>Your employer DOES charge a fee. You may not see it but you do.\\n>\\n\\nOf course there is a fee. It is for administration. Geez Allen any\\norganization has costs but there is a heck of a difference in legitimate\\ncosts, such as libraries and other things that must be there to support\\na program and \"wrap\" as you originally stated it.You stated that wrap\\nwas on top of all of the overhead which a couple of sentences down you\\nsay is not true. Which is it Allen?\\n\\n>>>Sounds like they are adding it to their overhead rate. Go ask your\\n>>>costing people how much fee they add to a project.\\n> \\n>>I did they never heard of it but suggest that, like our president did, that\\n>>any percentage number like this is included in the overhead.\\n> \\n>Well there you are Dennis. As I said, they simply include the fee in\\n>their overhead. Many seoparate the fee since the fee structure can\\n>change depending on the customer.\\n>\\n\\nAs you have posted on this subject Allen, you state that wrap is over and\\nabove overhead and is a seperate charge. You admit here that this is wrong.\\nNasa has a line item budget every year. I have seen it Allen. Get some\\nnumbers from that detailed NASA budget and dig out the wrap numbers and then\\nhowl to high heaven about it. Until you do that you are barking in the wind.\\n\\n>>No Allen you did not. You merely repeated allegations made by an Employee\\n>>of the Overhead capital of NASA. \\n> \\n>Integration, Dennis, isn\\'t overhead.\\n> \\n>>Nothing that Reston does could not be dont\\n>>better or cheaper at the Other NASA centers where the work is going on.\\n>\\n\\nIntegration could be done better at the centers. Apollo integration was \\ndone here at Msfc and that did not turn out so bad. The philosophy of\\nReston is totally wrong Allen. There you have a bunch of people who are\\ncompletely removed from the work that they are trying to oversee. There\\nis no way that will ever work. It has never worked in any large scale project\\nthat it was ever tried on. Could you imagine a Reston like set up for \\nApollo?\\n\\n>Dennis, Reston has been the only NASA agency working to reduce costs. When\\n>WP 02 was hemoraging out a billion $$, the centers you love so much where\\n>doing their best to cover it up and ignore the problem. Reston was the\\n>only place you would find people actually interested in solving the\\n>problems and building a station.\\n>\\n\\nOh you are full of it Allen on this one. I agree that JSC screwed up big.\\nThey should be responsible for that screw up and the people that caused it\\nreplaced. To make a stupid statement like that just shows how deep your\\nbias goes. Come to MSFC for a couple of weeks and you will find out just\\nhow wrong you really are. Maybe not, people like you believe exactly what\\nthey want to believe no matter what the facts are contrary to it. \\n\\n>>Kinda funny isn\\'t it that someone who talks about a problem like this is\\n>>at a place where everything is overhead.\\n> \\n>When you have a bit more experience Dennis, you will realize that\\n>integration isn\\'t overhead. It is the single most important part\\n>of a successful large scale effort.\\n>\\n\\nI agree that integration is the single most important part of a successful\\nlarge scale effort. What I completly disagree with is seperating that\\nintegration function from the people that are doing the work. It is called\\nleadership Allen. That is what made Apollo work. Final responsibility for\\nthe success of Apollo was held by less than 50 people. That is leadership\\nand responsibility. There is neither when you have any organization set up\\nas Reston is. You could take the same people and move them to JSC or MSFC\\nand they could do a much better job. Why did it take a year for Reston to\\nfinally say something about the problem? If they were on site and part of the\\nprocess then the problem would have never gotten out of hand in the first place.\\n\\nThere is one heck of a lot I do not know Allen, but one thing I do know is that\\nfor a project to be successful you must have leadership. I remember all of the\\nturn over at Reston that kept SSF program in shambles for years do you? It is\\nlack of responsibility and leadership that is the programs problem. Lack of\\nleadership from the White House, Congress and at Reston. Nasa is only a\\nsymptom of a greater national problem. You are so narrowly focused in your\\nefforts that you do not see this.\\n\\n>>Why did the Space News artice point out that it was the congressionally\\n>>demanded change that caused the problems? Methinks that you are being \\n>>selective with the facts again.\\n> \\n>The story you refer to said that some NASA people blamed it on\\n>Congress. Suprise suprise. The fact remains that it is the centers\\n>you support so much who covered up the overheads and wouldn\\'t address\\n>the problems until the press published the story.\\n> \\n>Are you saying the Reston managers where wrong to get NASA to address\\n>the overruns? You approve of what the centers did to cover up the overruns?\\n>\\n\\nNo, I am saying that if they were located at JSC it never would have \\nhappened in the first place.\\n\\n>>If it takes four flights a year to resupply the station and you have a cost\\n>>of 500 million a flight then you pay 2 billion a year. You stated that your\\n>>\"friend\" at Reston said that with the current station they could resupply it\\n>>for a billion a year \"if the wrap were gone\". This merely points out a \\n>>blatent contridiction in your numbers that understandably you fail to see.\\n> \\n>You should know Dennis that NASA doesn\\'t include transport costs for\\n>resuply. That comes from the Shuttle budget. What they where saying\\n>is that operational costs could be cut in half plus transport.\\n> \\n>>Sorry gang but I have a deadline for a satellite so someone else is going\\n>>to have to do Allen\\'s math for him for a while. I will have little chance to\\n>>do so.\\n> \\n>I do hope you can find the time to tell us just why it was wrong of\\n>Reston to ask that the problems with WP 02 be addressed.\\n> \\nI have the time to reitereate one more timet that if the leadership that is\\nat reston was on site at JSC the problem never would have happened, totally\\nignoring the lack of leadership of congress. This many headed hydra that\\nhas grown up at NASA is the true problem of the Agency and to try to \\nchange the question to suit you and your bias is only indicative of\\nyour position.\\n\\nDennis, University of Alabama in Huntsville\\n\\n',\n", - " \"From: raible@nas.nasa.gov (Eric Raible)\\nSubject: Re: Need advice for riding with someone on pillion\\nIn-Reply-To: rwert@well.sf.ca.us's message of 21 Apr 93 01:07:56 GMT\\nOrganization: Applied Research Office, NASA Ames Research Center\\nReply-To: raible@nas.nasa.gov\\nDistribution: na\\nLines: 22\\n\\n\\nIn article rwert@well.sf.ca.us (Bob Wert) writes:\\n\\n I need some advice on having someone ride pillion with me on my 750 Ninja.\\n This will be the the first time I've taken anyone for an extended ride\\n (read: farther than around the block :-). We'll be riding some twisty, \\n fairly bumpy roads (the Mines Road-Mt.Hamilton Loop for you SF Bay Areans).\\n\\nI'd say this is a very bad idea - you should start out with something\\nmuch mellower so that neither one of you get in over your head.\\nThat particular road requires full concentration - not the sort of\\nthing you want to take a passenger on for the first time.\\n\\nOnce you both decide that you like riding together, and want to do\\nsomething longer and more challenging, *then* go for a hard core road\\nlike Mines-Mt. Hamilton.\\n\\nIn any case, it's *your* (moral) responsibility to make sure that she\\nhas proper gear that fits - especially if you're going sport\\nriding.\\n\\n- Eric\\n\",\n", - " 'From: klf@druwa.ATT.COM (FranklinKL)\\nSubject: Re: Hell-mets.\\nSummary: Visual damage is NOT an indicator.\\nLines: 50\\n\\nIn article <1993Apr18.035125.29930@freenet.carleton.ca>, aa963@Freenet.carleton.ca (Lloyd Carr) writes:\\n> \\n> In a previous article, maven@mavenry.altcit.eskimo.com (Norman Hamer) says:\\n> \\n> >\\n> > \\n> > If I don\\'t end up replacing it in the real near future, would I do better \\n> >to wear my (totally nondamaged) 3/4 face DOT-RATED cheapie which doesn\\'t fit \\n> >as well or keep out the wind as well, or wearing the Shoei RF-200 which is a \\n> >LOT more comfortable, keeps the wind out better, is quieter... but might \\n> >have some minor damage?\\n> \\n> == Wear the RF200. Even after a few drops & paint chips, it is FAR better\\n> than no helmet or a poorly fitting one. I\\'ve had many scratches & bangs\\n> which have been repaired plus I\\'m still confident of the protection the\\n> helmet will continue to give me. Only when you actually see depressions\\n \\n> or actual cracks (using a magnifying glass) should you consider replacement.\\n\\n> -- \\n\\nThis is not good advice. A couple of years I was involved in a low-speed\\ngetoff in which I landed on my back on the pavement. My head (helmeted)\\nhit the pavement with a \"clunk\", leaving a couple of dings and chips in the\\npaint at the point of impact, but no other visible damage. I called the\\nhelmet manufacturer and inquired about damage. They said that the way a\\nfiberglass shell works is to first give, then delaminate, then crack.\\nThis is the way fiberglass serves to spread the force of the impact over a\\nwider area. After the fiberglass has done its thing, the crushable foam\\nliner takes care of absorbing (hopefully) the remaining impact force.\\nThey told me that the second stage of fiberglass functionality (delamination\\nof the glass/resin layers) can occur with NO visible signs, either inside or\\noutside of the helmet. They suggested that I send them the helmet and they\\nwould inspect it (including X-raying). I did so. They sent back the helmet\\nwith a letter stating that that they could find no damage that would\\ncompromise the ability of the helmet to provide maximum protection.\\n(I suspect that this letter would eliminate their being able to claim\\nprior damage to the helmet in the event I were to sue them.)\\n\\nThe bottom line, though, is that it appears that a helmets integrity\\ncan be compromised with no visible signs. The only way to know for sure\\nis to send it back and have it inspected. Note that some helmet\\nmanufacturers provide inspections services and some do not. Another point\\nto consider when purchasing a lid.\\n\\n--\\nKen Franklin \\tThey say there\\'s a heaven for people who wait\\nAMA \\tAnd some say it\\'s better but I say it ain\\'t\\nGWRRA I\\'d rather laugh with the sinners than cry with the saints\\nDoD #0126 The sinners are lots more fun, Y\\'know only the good die young\\n',\n", - " 'From: spl@ivem.ucsd.edu (Steve Lamont)\\nSubject: SGI sales practices (Was: Crimson (Was: Kubota Announcement?))\\nOrganization: University of Calif., San Diego/Microscopy and Imaging Resource\\nLines: 49\\nNNTP-Posting-Host: ivem.ucsd.edu\\n\\nIn article <30523@hacgate.SCG.HAC.COM> lee@luke.rsg.hac.com (C. Lee) writes:\\n>The original posting complained (1) about SGI coming out with newer (and\\n>better) architectures and not having an upgrade path from the older ones,\\n>and (2) that DEC did.\\n\\nNo. That\\'s *not* what I was complaining about, nor did I intend to\\nsuggest that DEC was any better than SGI (let me tell you about the\\nLynx some day, but be prepared with a large sedative if you do...). My\\ncomment regarding DEC was to indicate that I might be open to other vendors\\nthat supported OpenGL, rather than deal further with SGI.\\n\\nWhat I *am* annoyed about is the fact that we were led to believe that\\nwe *would* be able to upgrade to a multiprocessor version of the\\nCrimson without the assistance of a fork lift truck.\\n\\nI\\'m also annoyed about being sold *several* Personal IRISes at a\\nprevious site on the understanding *that* architecture would be around\\nfor a while, rather than being flushed.\\n\\nNow I understand that SGI is responsible to its investors and has to\\nkeep showing a positive quarterly bottom line (odd that I found myself\\npressured on at least two occasions to get the business on the books\\njust before the end of the quarter), but I\\'m just a little tired of\\ngetting boned in the process.\\n\\nMaybe it\\'s because my lab buys SGIs in onesies and twosies, so we\\naren\\'t entitled to a \"peek under the covers\" as the Big Kids (NASA,\\nfor instance) are. This lab, and I suspect that a lot of other labs\\nand organizations, doesn\\'t have a load of money to spend on computers\\nevery year, so we can\\'t be out buying new systems on a regular basis.\\nThe boxes that we buy now will have to last us pretty much through the\\nentire grant period of five years and, in some case, beyond. That\\nmeans that I need to buy the best piece of equipment that I can when I\\nhave the money, not some product that was built, to paraphrase one\\nprevious poster\\'s words, \\'to fill a niche\\' to compete with some other\\nvendor. I\\'m going to be looking at this box for the next five years.\\nAnd every time I look at it, I\\'m going to think about SGI and how I\\ncould have better spent my money (actually *your* money, since we\\'re\\nsupported almost entirely by Federal tax dollars).\\n\\nNow you\\'ll have to pardon me while I go off and hiss and fume in a\\ncorner somewhere and think dark, libelous thoughts.\\n\\n\\t\\t\\t\\t\\t\\t\\tspl\\n-- \\nSteve Lamont, SciViGuy -- (619) 534-7968 -- spl@szechuan.ucsd.edu\\nSan Diego Microscopy and Imaging Resource/UC San Diego/La Jolla, CA 92093-0608\\n\"My other car is a car, too.\"\\n - Bumper strip seen on I-805\\n',\n", - " \"From: santac@aix.rpi.edu (Christopher James Santarcangelo)\\nSubject: FORSALE: 1982 Yamaha Seca 650 Turbo\\nKeywords: forsale seca turbo\\nNntp-Posting-Host: aix.rpi.edu\\nDistribution: usa\\nLines: 17\\n\\nI don't want to do this, but I need money for school. This is\\na very snappy bike. It needs a little work and I don't have the\\nmoney for it. Some details:\\n\\n\\t~19000 miles\\n\\tMitsubishi turbo\\n\\tnot asthetically beautiful, but very fast!\\n\\tOne of the few factory turboed bikes... not a kit!\\n\\tMust see and ride to appreciate how fun this bike is!\\n\\nI am asking $700 or best offer. The bike can be seen in\\nBennington, Vermont. E-mail for more info!\\n\\nThanks,\\nChris\\nsantac@rpi.edu\\n\\n\",\n", - " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Conference on Manned Lunar Exploration. May 7 Crystal City\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 25\\nDistribution: na\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article , jbh55289@uxa.cso.uiuc.edu (Josh Hopkins) writes:\\n> I remeber reading the comment that General Dynamics was tied into this, in \\n> connection with their proposal for an early manned landing. Sorry I don\\'t \\n> rember where I heard this, but I\\'m fairly sure it was somewhere reputable. \\n> Anyone else know anything on this angle?\\n\\nThe General Chairman is Paul Bialla, who is some official of General\\nDynamics.\\n\\nThe emphasis seems to be on a scaled-down, fast plan to put *people*\\non the Moon in an impoverished spaceflight-funding climate. You\\'d\\nthink it would be a golden opportunity to do lots of precusor work for\\nmodest money using an agressive series of robot spacecraft, but\\nthere\\'s not a hint of this in the brochure.\\n\\n> Hrumph. They didn\\'t send _me_ anything :(\\n\\nYou\\'re not hanging out with the Right People, apparently.\\n\\nBill Higgins, Beam Jockey | \"I\\'m gonna keep on writing songs\\nFermilab | until I write the song\\nBitnet: HIGGINS@FNAL.BITNET | that makes the guys in Detroit\\nInternet: HIGGINS@FNAL.FNAL.GOV | who draw the cars\\nSPAN/Hepnet: 43011::HIGGINS | put tailfins on \\'em again.\"\\n --John Prine\\n',\n", - " 'From: arf@genesis.MCS.COM (Jack Schmidling)\\nSubject: NEWS YOU MAY HAVE MISSED, Apr 20\\nOrganization: MCSNet Contributor, Chicago, IL\\nLines: 111\\nDistribution: world\\nNNTP-Posting-Host: localhost.mcs.com\\n\\n \\n NEWS YOU MAY HAVE MISSED, APR 19, 1993\\n \\n Not because you were too busy but because\\n Israelists in the US media spiked it.\\n \\n ................\\n \\n \\n THOSE INTREPID ISRAELI SOLDIERS\\n \\n \\n Israeli soldiers have sexually taunted Arab women in the occupied Gaza Strip \\n during the three-week-long closure that has sealed Palestinians off from the \\n Jewish state, Palestinian sources said on Sunday.\\n \\n The incidents occurred in the town of Khan Younis and involved soldiers of\\n the Golani Brigade who have been at the centre of house-to-house raids for\\n Palestinian activists during the closure, which was imposed on the strip and\\n occupied West Bank.\\n \\n Five days ago girls at the Al-Khansaa secondary said a group of naked\\n soldiers taunted them, yelling: ``Come and kiss me.\\'\\' When the girls fled, \\n the soldiers threw empty bottles at them.\\n \\n On Saturday, a group of soldiers opened their shirts and pulled down their\\n pants when they saw girls from Al-Khansaa walking home from school. Parents \\n are considering keeping their daughters home from the all-girls school.\\n \\n The same day, soldiers harassed two passing schoolgirls after a youth\\n escaped from them at a boys\\' secondary school. Deputy Principal Srur \\n Abu-Jamea said they shouted abusive language at the girls, backed them \\n against a wall, and put their arms around them.\\n \\n When teacher Hamdan Abu-Hajras intervened the soldiers kicked him and beat\\n him with the butts of their rifles.\\n \\n On Tuesday, troops stopped a car driven by Abdel Azzim Qdieh, a practising\\n Moslem, and demanded he kiss his female passenger. Qdieh refused, the \\n soldiers hit him and the 18-year-old passenger kissed him to stop the \\n beating.\\n \\n On Friday, soldiers entered the home of Zamno Abu-Ealyan, 60, blindfolded\\n him and his wife, put a music tape on a recorder and demanded they dance. As\\n the elderly couple danced, the soldiers slipped away. The coupled continued\\n dancing until their grandson came in and asked what was happening.\\n \\n The army said it was checking the reports.\\n \\n ....................\\n \\n \\n ISRAELI TROOPS BAR CHRISTIANS FROM JERUSALEM\\n \\n Israeli troops prevented Christian Arabs from entering Jerusalem on Thursday \\n to celebrate the traditional mass of the Last Supper.\\n \\n Two Arab priests from the Greek Orthodox church led some 30 worshippers in\\n prayer at a checkpoint separating the occupied West Bank from Jerusalem after\\n soldiers told them only people with army-issued permits could enter.\\n \\n ``Right now, our brothers are celebrating mass in the Church of the Holy\\n Sepulchre and we were hoping to be able to join them in prayer,\\'\\' said Father\\n George Makhlouf of the Ramallah Parish.\\n \\n Israel sealed off the occupied lands two weeks ago after a spate of\\n Palestinian attacks against Jews. The closure cut off Arabs in the West Bank\\n and Gaza Strip from Jerusalem, their economic, spiritual and cultural centre.\\n \\n Father Nicola Akel said Christians did not want to suffer the humiliation\\n of requesting permits to reach holy sites.\\n \\n Makhlouf said the closure was discriminatory, allowing Jews free movement\\n to take part in recent Passover celebrations while restricting Christian\\n celebrations.\\n \\n ``Yesterday, we saw the Jews celebrate Passover without any interruption.\\n But we cannot reach our holiest sites,\\'\\' he said.\\n \\n An Israeli officer interrupted Makhlouf\\'s speech, demanding to see his\\n identity card before ordering the crowd to leave.\\n \\n ...................\\n \\n \\n \\n If you are as revolted at this as I am, drop Israel\\'s best friend email and \\n let him know what you think.\\n \\n \\n 75300.3115@compuserve.com (via CompuServe)\\n clintonpz@aol.com (via America Online)\\n clinton-hq@campaign92.org (via MCI Mail)\\n \\n \\n Tell \\'em ARF sent ya.\\n \\n ..................................\\n \\n If you are tired of \"learning\" about American foreign policy from what is \\n effectively, Israeli controlled media, I highly recommend checking out the \\n Washington Report. A free sample copy is available by calling the American \\n Education Trust at:\\n (800) 368 5788\\n \\n Tell \\'em arf sent you.\\n \\n js\\n \\n \\n\\n',\n", - " 'From: watson@madvax.uwa.oz.au (David Watson)\\nSubject: Re: Sphere from 4 points?\\nOrganization: Maths Dept UWA\\nLines: 23\\nDistribution: world\\nNNTP-Posting-Host: xanthorrhoea.maths.uwa.edu.au\\n\\nIn article <1qkgbuINNs9n@shelley.u.washington.edu>, \\nbolson@carson.u.washington.edu (Edward Bolson) writes:\\n \\n|> Given 4 points (non coplanar), how does one find the sphere, that is,\\n|> center and radius, exactly fitting those points? \\n\\nFinding the circumcenter of a tetrahedron is discussed on page 33 in\\n\\nCONTOURING: A guide to the analysis and display of spatial data,\\nby Dave Watson, Pergamon Press, 1992, ISBN 0 08 040286 0, 321p.\\n\\nEach pair of tetrahedral vertices define a plane which is a \\nperpendicular bisector of the line between that pair. Express each\\nplane in the form Ax + By + Cz = D\\nand solve the set of simultaneous equations from any three of those\\nplanes that have a vertex in common (all vertices are used). \\nThe solution is the circumcenter.\\n\\n-- \\nDave Watson Internet: watson@maths.uwa.edu.au\\nDepartment of Mathematics \\nThe University of Western Australia Tel: (61 9) 380 3359\\nNedlands, WA 6009 Australia. FAX: (61 9) 380 1028\\n',\n", - " 'From: keithley@apple.com (Craig Keithley)\\nSubject: Re: Moonbase race, NASA resources, why?\\nOrganization: Apple Computer, Inc.\\nLines: 44\\n\\nIn article , henry@zoo.toronto.edu (Henry\\nSpencer) wrote:\\n> \\n> The major component of any realistic plan to go to the Moon cheaply (for\\n> more than a brief visit, at least) is low-cost transport to Earth orbit.\\n> For what it costs to launch one Shuttle or two Titan IVs, you can develop\\n> a new launch system that will be considerably cheaper. (Delta Clipper\\n> might be a bit more expensive than this, perhaps, but there are less\\n> ambitious ways of bringing costs down quite a bit.) \\n\\nAh, there\\'s the rub. And a catch-22 to boot. For the purposes of a\\ncontest, you\\'ll probably not compete if\\'n you can\\'t afford the ride to get\\nthere. And although lower priced delivery systems might be doable, without\\ndemand its doubtful that anyone will develop a new system. Course, if a\\nlow priced system existed, there might be demand... \\n\\nI wonder if there might be some way of structuring a contest to encourage\\nlow cost payload delivery systems. The accounting methods would probably\\nbe the hardest to work out. For example, would you allow Rockwell to\\n\\'loan\\' you the engines? And so forth...\\n\\n> Any plan for doing\\n> sustained lunar exploration using existing launch systems is wasting\\n> money in a big way.\\n> \\n\\nThis depends on the how soon the new launch system comes on line. In other\\nwords, perhaps a great deal of worthwhile technology (life support,\\nnavigation, etc.) could be developed prior to a low cost launch system. \\nYou wouldn\\'t want to use the expensive stuff forever, but I\\'d hate to see\\nfolks waiting to do anything until a low cost Mac, oops, I mean launch\\nsystem comes on line.\\n\\nI guess I\\'d simplify this to say that \\'waste\\' is a slippery concept. If\\nyour goal is manned lunar exploration in the next 5 years, then perhaps its\\nnot \\'wasted\\' money. If your goal is to explore the moon for under $500\\nmillion, then you should put of this exploration for a decade or so.\\n\\nCraig\\n\\n\\nCraig Keithley |\"I don\\'t remember, I don\\'t recall, \\nApple Computer, Inc. |I got no memory of anything at all\"\\nkeithley@apple.com |Peter Gabriel, Third Album (1980)\\n',\n", - " 'From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Griffin / Office of Exploration: RIP\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 43\\n\\nyamauchi@ces.cwru.edu (Brian Yamauchi) writes:\\n\\n>Any comments on the absorbtion of the Office of Exploration into the\\n>Office of Space Sciences and the reassignment of Griffin to the \"Chief\\n>Engineer\" position? Is this just a meaningless administrative\\n>shuffle, or does this bode ill for SEI?\\n\\n>In my opinion, this seems like a Bad Thing, at least on the surface.\\n>Griffin seemed to be someone who was actually interested in getting\\n>things done, and who was willing to look an innovative approaches to\\n>getting things done faster, better, and cheaper. It\\'s unclear to me\\n>whether he will be able to do this at his new position.\\n\\n>Does anyone know what his new duties will be?\\n\\nFirst I\\'ve heard of it. Offhand:\\n\\nGriffin is no longer an \"office\" head, so that\\'s bad.\\n\\nOn the other hand:\\n\\nRegress seemed to think: we can\\'t fund anything by Griffin, because\\nthat would mean (and we have the lies by the old hardliners about the\\n$ 400 billion mars mission to prove it) that we would be buying into a\\nmission to Mars that would cost 400 billion. Therefore there will be\\nno Artemis or 20 million dollar lunar orbiter et cetera...\\n\\nThey were killing Griffin\\'s main program simply because some sycophants\\nsomewhere had Congress beleivin that to do so would simply be to buy into\\nthe same old stuff. Sorta like not giving aid to Yeltsin because he\\'s\\na communist hardliner.\\n\\nAt least now the sort of reforms Griffin was trying to bring forward\\nwon\\'t be trapped in their own little easily contained and defunded\\nghetto. That Griffin is staying in some capacity is very very very\\ngood. And if he brings something up, noone can say \"why don\\'t you go\\nback to the OSE where you belong\" (and where he couldn\\'t even get money\\nfor design studies).\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", - " 'Subject: Re: Gamma Ray Bursters. Where are they? \\nFrom: belgarath@vax1.mankato.msus.edu\\nOrganization: Mankato State University\\nNntp-Posting-Host: vax1.mankato.msus.edu\\nLines: 67\\n\\nIn article <1radsr$att@access.digex.net>, prb@access.digex.com (Pat) writes:\\n> What evidence indicates that Gamma Ray bursters are very far away?\\n> \\n> Given the enormous power, i was just wondering, what if they are\\n> quantum black holes or something like that fairly close by?\\n> \\n> Why would they have to be at galactic ranges? \\n> \\n> my own pet theory is that it\\'s Flying saucers entering\\n> hyperspace :-)\\n> \\n> but the reason i am asking is that most everyone assumes that they\\n> are colliding nuetron stars or spinning black holes, i just wondered\\n> if any mechanism could exist and place them closer in.\\n> \\n> pat \\n Well, lets see....I took a class on this last fall, and I have no\\nnotes so I\\'ll try to wing it... \\n Here\\'s how I understand it. Remember from stellar evolution that \\nblack holes and neutron stars(pulsars) are formed from high mass stars,\\nM(star)=1.4M(sun). High mass stars live fast and burn hard, taking\\nappoximately 10^5-10^7 years before going nova, or supernova. In this time,\\nthey don\\'t live long enough to get perturbed out of the galactic plane, so any\\nof these (if assumed to be the sources of GRB\\'s) will be in the plane of the\\ngalaxy. \\n Then we take the catalog of bursts that have been recieved from the\\nvarious satellites around the solar system, (Pioneer Venus has one, either\\nPion. 10 or 11, GINGA, and of course BATSE) and we do distribution tests on our\\ncatalog. These tests all show, that the bursts have an isotropic\\ndistribution(evenly spread out in a radial direction), and they show signs of\\nhomogeneity, i.e. they do not clump in any one direction. So, unless we are\\nsampling the area inside the disk of the galaxy, we are sampling the UNIVERSE.\\nNot cool, if you want to figure out what the hell caused these things. Now, I\\nsuppose you are saying, \"Well, we stil only may be sampling from inside the\\ndisk.\" Well, not necessarily. Remember, we have what is more or less an\\ninterplanetary network of burst detectors with a baseline that goes waaaay out\\nto beyond Pluto(pioneer 11), so we should be able, with all of our detectors de\\ntect some sort of difference in angle from satellite to satellite. Here\\'s an \\nanalogy: You see a plane overhead. You measure the angle of the plane from\\nthe origin of your arbitrary coordinate system. One of your friends a mile\\naway sees the same plane, and measures the angle from the zero point of his\\narbitrary system, which is the same as yours. The two angles are different,\\nand you should be able to triangulate the position of your burst, and maybe\\nfind a source. To my knowledge, no one has been able to do this. \\n I should throw in why halo, and corona models don\\'t work, also. As I\\nsaid before, looking at the possible astrophysics of the bursts, (short\\ntimescales, high energy) black holes, and pulsars exhibit much of this type of\\nbehavior. If this is the case, as I said before, these stars seem to be bound\\nto the disk of the galaxy, especially the most energetic of the these sources.\\nWhen you look at a simulated model, where the bursts are confined to the disk,\\nbut you sample out to large distances, say 750 mpc, you should definitely see\\nnot only an anisotropy towards you in all direction, but a clumping of sources \\nin the direction of the galactic center. As I said before, there is none of\\nthese characteristics. \\n \\n I think that\\'s all of it...if someone needs clarification, or knows\\nsomething that I don\\'t know, by all means correct me. I had the honor of\\ntaking the Bursts class with the person who has done the modeling of these\\ndifferent distributions, so we pretty much kicked around every possible\\ndistribution there was, and some VERY outrageous sources. Colliding pulsars,\\nblack holes, pulsars that are slowing down...stuff like that. It\\'s a fun\\nfield. \\n Complaints and corrections to: belgarath@vax1.mankato.msus.edu or \\npost here. \\n -jeremy\\n\\n \\n',\n", - " 'From: prange@nickel.ucs.indiana.edu (Henry Prange)\\nSubject: Re: (tangentially) Re: Live Free, but Quietly, or Die\\nNntp-Posting-Host: nickel.ucs.indiana.edu\\nOrganization: Indiana University\\nLines: 20\\n\\nIn article <1993Apr15.035406.29988@rd.hydro.on.ca> jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n\\nimpertinent stuff deleted\\n>\\n>Am I showing my Canadian University-ness here, of does anyone else know\\n>what I\\'m talking about?\\n>\\n>I\\'ve bike like | Jody Levine DoD #275 kV\\n> got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n> ride it | Toronto, Ontario, Canada\\n\\nThere you go again, you edu-breath poser! \"University-ness\" indeed!\\nLeave that stuff to us professionals.\\n\\nHenry Prange biker/professional edu-breath\\nPhysiology/IU Sch. Med., Blgtn., 47405\\nDoD #0821; BMWMOA #11522; GSI #215\\nride = \\'92 R100GS; \\'91 RX-7 conv = cage/2; \\'91 Explorer = cage*2\\nThe unifying trait of our species is the relentless pursuit of folly.\\nHypocrisy is the only national religion of this country.\\n',\n", - " \"From: af774@cleveland.Freenet.Edu (Chad Cipiti)\\nSubject: Good shareware paint and/or animation software for SGI?\\nOrganization: Case Western Reserve University, Cleveland, OH (USA)\\nLines: 15\\nReply-To: af774@cleveland.Freenet.Edu (Chad Cipiti)\\nNNTP-Posting-Host: hela.ins.cwru.edu\\n\\n\\nDoes anyone know of any good shareware animation or paint software for an SGI\\n machine? I've exhausted everyplace on the net I can find and still don't hava\\n a nice piece of software.\\n\\nThanks alot!\\n\\nChad\\n\\n\\n-- \\nKnock, knock. Chad Cipiti\\nWho's there? af774@cleveland.freenet.edu\\n cipiti@bobcat.ent.ohiou.edu\\nIt might be Heisenberg. chad@voxel.zool.ohiou.edu\\n\",\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: Moonbase race\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 16\\n\\nIn article <1r46o9INN14j@mojo.eng.umd.edu> sysmgr@king.eng.umd.edu writes:\\n\\n>So how much would it cost as a private venture, assuming you could talk the\\n>U.S. government into leasing you a couple of pads in Florida? \\n\\nWhy would you want to do that? The goal is to do it cheaper (remember,\\nthis isn\\'t government). Instead of leasing an expensive launch pad,\\njust use a SSTO and launch from a much cheaper facility.\\n\\n Allen\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------56 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " \"Subject: So what is Maddi?\\nFrom: madhaus@netcom.com (Maddi Hausmann)\\nOrganization: Society for Putting Things on Top of Other Things\\nLines: 12\\n\\nAs I was created in the image of Gaea, therefore I must\\nbe the pinnacle of creation, She which Creates, She which\\nBirths, She which Continues.\\n\\nOr, to cut all the religious crap, I'm a woman, thanks.\\nAnd it's sexism that started me on the road to atheism.\\n\\n-- \\nMaddi Hausmann madhaus@netcom.com\\nCentigram Communications Corp San Jose California 408/428-3553\\n\\nKids, please don't try this at home. Remember, I post professionally.\\n\",\n", - " 'From: ridout@bink.plk.af.mil (Brian S. Ridout)\\nSubject: Re: Virtual Reality for X on the CHEAP!\\nOrganization: Air Force Phillips Lab.\\nLines: 23\\nDistribution: world\\nNNTP-Posting-Host: bink.plk.af.mil\\n\\nIn article <1993Apr15.134802.21995@mfltd.co.uk>, sts@mfltd.co.uk (Steve Sherwood (x5543)) writes:\\n|> Has anyone got multiverse to work ?\\n|> \\n|> I have built it on 486 svr4, mips svr4s and Sun SparcStation.\\n|> \\n|> There seems to be many bugs in it. The \\'dogfight\\' and \\'dactyl\\' simply do nothing\\n|> (After fixing a bug where a variable is defined twice in two different modules - One needed\\n|> setting to static - else the client core-dumped)\\n|> \\n|> Steve\\n|> -- \\n|> \\n|> Extn 5543, sts@mfltd.co.uk, !uunet!mfocus!sts\\n|> +-----------------------------------+------------------------+ Micro Focus\\n|> | Just like Pariah, I have no name, | rm -rf * | 26 West Street\\n|> | Living in a blaze of obscurity, | \"rum ruff splat\" | Newbury\\n|> | Need courage to survive the day. | | Berkshire\\n|> +-----------------------------------+------------------------+ England\\n|> (A)bort (R)etry (I)nfluence with large hammer\\nI built it on a rs6000 (my only Motif machine) works fine. I added some objects\\ninto dogfight so I could get used to flying. This was very easy. \\nAll in all Cool!. \\nBrian\\n',\n", - " 'Subject: Re: Shaft-drives and Wheelies\\nFrom: lotto@laura.harvard.edu (Jerry Lotto)\\nDistribution: rec\\nOrganization: Chemistry Dept., Harvard University\\nNNTP-Posting-Host: laura.harvard.edu\\nIn-reply-to: xlyx@vax5.cit.cornell.edu\\'s message of 19 Apr 93 21:48:42 GMT\\nLines: 10\\n\\n>>>>> On 19 Apr 93 21:48:42 GMT, xlyx@vax5.cit.cornell.edu said:\\nMike> Is it possible to do a \"wheelie\" on a motorcycle with shaft-drive?\\n\\nSure. In fact, you can do a wheelie on a shaft-drive motorcycle\\nwithout even moving. Just don\\'t try countersteering.\\n\\n:-)\\n--\\nJerry Lotto MSFCI, HOGSSC, BCSO, AMA, DoD #18\\nChemistry Dept., Harvard Univ. \"It\\'s my Harley, and I\\'ll ride if I want to...\"\\n',\n", - " \"From: bh437292@longs.LANCE.ColoState.Edu (Basil Hamdan)\\nSubject: Re: Go Hizbollah II!\\nReply-To: bh437292@lance.colostate.edu\\nNntp-Posting-Host: traver.lance.colostate.edu\\nOrganization: Engineering College, Colorado State University\\nLines: 15\\n\\nIn article <1993Apr24.202201.1@utxvms.cc.utexas.edu>, ifaz706@utxvms.cc.utexas.edu (Noam Tractinsky) writes:\\n|> Paraphrasing a bit, with every rocket that \\n|> \\tthe Hizbollah fires on the Galilee, they justify Israel's \\n|> \\tholding to the security zone. \\n|> \\n|> Noam\\n\\n\\n\\nI only want to say that I agree with Noam on this point\\nand I hope that all sides stop targeting civilians.\\n\\nBasil \\n\\n\\n\",\n", - " 'From: hl7204@eehp22 (H L)\\nSubject: Re: Graphics Library Package\\nOrganization: University of Illinois at Urbana\\nLines: 2\\n\\n \\n\\n',\n", - " \"From: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nSubject: Re: Motorcycle Courier (S\\nReply-To: ryan_cousineau@compdyn.questor.org (Ryan Cousineau) \\nDistribution: world\\nOrganization: Computer Dynamics-Vancouver B.C.-(604)986-9937 (604)255-9937\\nLines: 19\\n\\nJL-NS>Subject: Re: Motorcycle Courier (Summer Job)\\n\\nI'd like to thank everyone who replied. I will probably start looking in\\nearnest after May, when I return from my trip down the Pacific Coast\\n(the geographical feature, not the bike).\\n\\nRyan Cousinetc.|1982 Yamaha Vision XZ550 -Black Pig of Inverness|Live to Ride\\nKotRB |1958 AJS 500 C/S -King Rat |to Work to\\nDoD# 0863 |I'd be a squid if I could afford the bike... |Flame to\\nryan.cousineau@compdyn.questor.org | Vancouver, BC, Canada |Live . . .\\n\\n\\n * SLMR 2.1a * Have bike, will travel. Quickly. Very quickly.\\n \\n----\\n+===============================================================+\\n|COMPUTER DYNAMICS BBS 604-255-9937(HST) 604-986-9937(V32)|\\n|Vancouver, BC, Canada - Easy Access, Low Rates, Friendly Sysop|\\n+===============================================================+\\n\",\n", - " 'From: sugarman@ra.cs.umb.edu (Steven R. Garman)\\nSubject: WANTED - Optical Shaft Encoders for Telescope\\nNntp-Posting-Host: ra.cs.umb.edu\\nOrganization: University of Massachusetts at Boston\\nLines: 23\\n\\n\\n[Also posted in misc.forsale.wanted,misc.wanted,ne.wanted,ny.wanted,nj.wanted]\\n\\nWANTED: Optical Shaft Encoders\\n\\nQuantity 2\\nSingle-ended\\nIncremental\\n\\nNeeded to encode the movements of a 16\" Cassegrain telescope. The telescope\\nis in the observatory of the Univ. of Mass. at Boston. The project is being\\nmanaged by Mr. George Tucker, a graduate student at UMB. Please call him, or\\nemail/call me, if you have one or two of the specified type of encoder. Of\\ncourse, due to our low funding level we are looking for a price that is\\nsufficiently lower than that given for new encoders. :)\\n\\nGeorge Tucker\\n617-965-3408\\n\\nME:\\n-- \\nsugarman@cs.umb.edu | 6172876077 univ | 6177313637 home | Standard Disclaimer\\nBoston Massachusetts USA\\n',\n", - " 'From: schultz@schultz.kgn.ibm.com (Karl Schultz)\\nSubject: Re: VESA standard VGA/SVGA programming???\\nReply-To: schultz@vnet.ibm.com\\nOrganization: IBM AWS Graphics Systems\\nKeywords: vga\\nLines: 45\\n\\n|> 1. How VESA standard works? Any documentation for VESA standard?\\n\\n\\tThe VESA standard can be requested from VESA:\\n\\tVESA\\n\\t2150 North First Street, Suite 440\\n\\tSan Jose, CA 95131-2029\\n\\n\\tAsk for the VESA VBE and Super VGA Programming starndards. VESA\\n\\talso defines local bus and other standards.\\n\\n\\tThe VESA standard only addresses ways in which an application\\n\\tcan find out info and capabilities of a specific super VGA\\n\\timplementation and to control the video mode selection\\n\\tand video memory access.\\n\\n\\tYou still have to set your own pixels.\\n\\n|> 2. At a higher resolution than 320x200x256 or 640x480x16 VGA mode,\\n|> where the video memory A0000-AFFFF is no longer sufficient to hold\\n|> all info, what is the trick to do fast image manipulation? I\\n|> heard about memory mapping or video memory bank switching but know\\n|> nothing on how it is implemented. Any advice, anyone? \\n\\n\\tVESA defines a \"window\" that is used to access video memory.\\n\\tThis window is anchored at the spot where you want to write,\\n\\tand then you can write as far as the window takes you (usually\\n\\t64K). Windows have granularities, so you can\\'t just anchor \\n\\tthem anywhere. Also, some implementations allow two windows.\\n\\n|> 3. My interest is in 640x480x256 mode. Should this mode be called\\n|> SVGA mode? What is the technique for fast image scrolling for the\\n|> above mode? How to deal with different SVGA cards?\\n\\n\\tThis is VESA mode 101h. There is a Set Display Start function\\n\\tthat might be useful for scrolling.\\n\\n|> Your guidance to books or any other sources to the above questions\\n|> would be greatly appreciated. Please send me mail.\\n\\n\\tYour best bet is to write VESA for the info. There have also\\n\\tbeen announcements on this group of VESA software.\\n\\n-- \\nKarl Schultz schultz@vnet.ibm.com\\nThese statements or opinions are not necessarily those of IBM\\n',\n", - " \"From: csundh30@ursa.calvin.edu (Charles Sundheim)\\nSubject: Looking for MOVIES w/ BIKES\\nSummary: Bike movies\\nKeywords: movies\\nNntp-Posting-Host: ursa\\nOrganization: Calvin College\\nLines: 21\\n\\nFolks,\\n\\nI am assembling info for a Film Criticism class final project.\\n\\nEssentially I need any/all movies that use motos in any substantial\\ncapacity (IE; Fallen Angles, T2, H-D & the Marlboro Man,\\nRaising Arizona, etc). \\nAny help you fellow r.m'ers could give me would be much `preciated.\\n(BTW, a summary of bike(s) or plot is helpful but not necessary)\\n\\nThanx\\n\\n-Erc.\\n\\n\\n_______________________________________________________________________________\\nC Eric Sundheim csundh30@ursa.Calvin.edu\\nGrandRapids, MI, USA\\n`90 Hondo VFR750f\\nDoD# 1138\\n-------------------------------------------------------------------------------\\n\",\n", - " 'From: eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf)\\nSubject: Re: ISLAM BORDERS vs Israeli borders\\nOrganization: University of Illinois at Urbana\\nLines: 15\\n\\ntclock@orion.oac.uci.edu (Tim Clock) writes:\\n\\n>I too strongly object to those that justify Israeli \"rule\" \\n>of those who DO NOT WANT THAT. The \"occupied territories\" are not\\n>Israel\\'s to control, to keep, or to dominate.\\n\\nThey certainly are until the Arabs make peace. Only the most leftist/Arabist\\nlunatics call upon Israel to withdraw now. Most moderates realize that an \\nIsraeli withdrawl will be based on the Camp David/242/338/Madrid formulas\\nwhich make full peace a prerequisite to territorial concessions.\\n\\n>Tim\\n\\nEd\\n\\n',\n", - " \"From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 153\\n\\nIn article <1993Apr20.143453.3127@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>Instabul was called Konstantinoupolis from 320 AD until about the 1920s.\\n>That's about 1600 years. There many people alive today who were born in \\n>a city called Konstantinoupolis. \\n\\nI know it doesn't make sense, but since when is 'Napoleon' about\\nsense, anyway? Further striking bigoted and racist attitude of \\ncertain Greeks still exists in our day. Most Greeks insist even \\ntoday, that the 537 year-old capital of the Ottoman Empire should \\nbe called not by its rightful name of Istanbul, but by its half \\na millennium-old moniker 'Cons*(whatever).'\\n\\nEveryone knows that New York City was once called 'New Amsterdam'\\nbut Dutch people do not persist on calling it that today. The name \\nof Stalingrad too is long gone, replaced by Volgagrad. China's\\nPeking traded its name for Beiging long ago. Ciudad Trujillo\\nof the Dominican Republic is now Santa Domingo. Zimbabve's\\nold colonial capital Salisburry became Harrare. These changes\\nhave all been accepted officially by everyone in the world.\\n\\nBut, Greeks are still determined on calling the Turkish Istanbul \\nby the name of 'Cons*.'\\n\\nHow can one explain this total intransigence? What makes Greeks\\nso different from other mortals? 18-year-old questionable\\ndemocracy? Why don't they seem to reconcile with the fact,\\nfor instance, that Istanbul changed hands 537 years ago in\\n1453 AD, and that this predates the discovery of the New \\nWorld, by 39 years. The declaration of U.S. independence\\nin 1776 will come 284 years later.\\n\\nShouldn't then, half a millennium be considered enough time for \\n'Cons*' to be called a Turkish city? Where is the logic in the \\nGreek reasoning, if there is any? How long can one sit on the \\nlaurels of an ancient civilization? Ancient Greece does not exist, \\nany more than any other 16 civilizations that existed on the soil \\nof Anatolia.\\n\\nThese undereducated 'wieneramus' live with an illusion. It \\nis the same mentality which allows them to rationalize\\nthat Cyprus is a Greek Island. No history book shows\\nthat it ever was. It belonged to the Ottoman Turks 'lock,\\nstock and barrel' for a period of well over 300 years.\\n\\nIn fact, prior to the Turks' acquisition of it, following\\nbloody naval battles with the Venetians in 1570 AD, the\\nisland of Cyprus belonged, invariably, to several nations:\\n\\nThe Assyrians, the Sumerians, the Phoenicians, the Egyptians,\\nthe Ottoman Turks, of course in that order, owned it as \\ntheir territory. But, it has never been the possession\\nof the government of Greece - not even for one day -\\nin the history of the world. Moreover, Cyprus is\\nlocated 1500 miles from the Greek mainland, but only \\n40 miles from Turkiye's southern coastline.\\n\\nSaddam Hussein claims that Kuwait was once Iraqi\\nterritory and the Greek Cypriot government and \\nthe terrorist Greek governments think that Cyprus\\nalso was once part of the Greek hegemony.\\n\\nThose 'Arromdians' involved in this grandiose hallucination\\nshould wake up from their sweet daydreams and confront \\nreality. Again, wishful thinking is unproductive, only \\nfacts count.\\n\\nAs for Selanik,\\n\\n <>\\n\\n <>\\n\\n[47] Robert Mantran, 'La structure sociale de la communaute juive de\\n Salonqiue a la fin du dix-neuvieme siecle', RH no.534 (1980), 391-92;\\n Nehama VII, 762; Joseph Nehama (Salonica) to AIU (Paris) no.2868/2,\\n 12 May 1903 (AIU Archives I-C-43); and no.2775, 10 January 1900 (AIU\\n Archives I-C-41), describing daily battles between Jewish and Greek\\n children in the streets of Salonica. Benghiat, Director of Ecole Moise\\n Allatini, Salonica, to AIU (Paris), no.7784, 1 December 1909 (AIU\\n Archives I-C-48), describing Greek attacks on Jews, boycotts of Jewish\\n shops and manufacturers, and Greek press campaigns leading to blood libel\\n attacks. Cohen, Ecole Secondaire Moise Allatini, Salonica, to AIU (Paris),\\n no.7745/4, 4 December 1912 (AIU Archives I-C-49) describes a week of terror\\n that followed the Greek army occupation of Salonica in 1912, with the\\n soldiers pillaging the Jewish quarters and destroying Jewish synagogues,\\n accompanied by what he described as an 'explosion of hatred' by local\\n Greek population against local Jews and Muslims. Mizrahi, President of the\\n AIU at Salonica, reported to the AIU (Paris), no.2704/3, 25 July 1913\\n (AIU Archives I-C-51) that 'It was not only the irregulars (Comitadjis)\\n that massacred, pillaged and burned. The Army soldiers, the Chief of\\n Police, and the high civil officials also took an active part in the\\n horrors...', Moise Tovi (Salonica) to AIU (Paris) no.3027 (20 August 1913)\\n (AIU Archives I-C-51) describes the Greek pillage of the Jewish quarter\\n during the night of 18-19 August 1913.\\n\\n(AIU = Alliance Israelite Universelle, Paris.)\\n\\nSerdar Argic\\n\\n 'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.'\\n (Ohanus Appressian - 1919)\\n 'In Soviet Armenia today there no longer exists \\n a single Turkish soul.' (Sahak Melkonian - 1920)\\n\\n\",\n", - " 'From: gharriso@hpcc01.corp.hp.com (Graeme Harrison)\\nSubject: Re: r.m split (was: Re: insect impacts)\\nOrganization: the HP Corporate notes server\\nLines: 30\\n\\n/ hpcc01:rec.motorcycles / cookson@mbunix.mitre.org (Cookson) / 2:02 pm Apr 2, 1993 /\\n\\nAll right people, this inane bug wibbling is just getting to much. I\\npropose we split off a new group.\\nrec.motorcycles.nutrition \\nto deal with the what to do with squashed bugs thread.\\n\\n-- \\n| Dean Cookson / dcookson@mitre.org / 617 271-2714 | DoD #207 AMA #573534 |\\n| The MITRE Corp. Burlington Rd., Bedford, Ma. 01730 | KotNML / KotB |\\n| \"If I was worried about who saw me, I\\'d never get | \\'92 VFR750F |\\n| nekkid at all.\" -Ed Green, DoD #0111 | \\'88 Bianchi Limited |\\n----------\\nWhat?!?!? Haven\\'t you heard about cross-posting??!?!? Leave it intact and\\nsimply ignore the basenotes and/or responses which have zero interest for\\na being of your stature and discriminating taste. ;-)\\n\\nYesterday, while on Lonoak Rd, a wasp hit my faceshield with just\\nenough force to glue it between my eyes, but not enough to kill it as\\nthe legs were frantically wiggling away and I found that rather, shall\\nwe say, distracting. I flicked it off and wiped off the residue at the\\nnext gas stop in Greenfield. :-) BTW, Lonoak Rd leads from #25 into\\nKing City although we took Metz from KC into Greenfield. \\n \\n--------------------------------------------------------------------------\\nGraeme Harrison, Hewlett-Packard Co., Communications Components Division,\\n350 W Trimble Rd, San Jose, CA 95131 (gharriso@hpcc01.corp.hp.com) DoD#649 \\n--------------------------------------------------------------------------\\n\\n\\n',\n", - " \"From: rob@rjck.UUCP (Robert J.C. Kyanko)\\nSubject: Re: VGA 640x400 graphics mode\\nDistribution: world\\nOrganization: Neptune Software Inc\\nLines: 15\\n\\ngchen@essex.ecn.uoknor.edu writes in article :\\n> \\n> Greetings!\\n> \\n> Does anybody know if it is possible to set VGA graphics mode to 640x400\\n> instead of 640x480? Any info is appreciated!\\n\\nSome VESA bios's support this mode (0x100). And *any* VGA should be able to\\nsupport this (640x480 by 256 colors) since it only requires 256,000 bytes.\\nMy 8514/a VESA TSR supports this; it's the only VESA mode by card can support\\ndue to 8514/a restrictions. (A WD/Paradise)\\n\\n--\\nI am not responsible for anything I do or say -- I'm just an opinion.\\n Robert J.C. Kyanko (rob@rjck.UUCP)\\n\",\n", - " 'From: jack@shograf.com (Jack Ritter)\\nSubject: Help!!\\nArticle-I.D.: shograf.C531E6.7uo\\nDistribution: usa\\nOrganization: SHOgraphics, Sunnyvale\\nLines: 9\\n\\nI need a complete list of all the polygons\\nthat there are, in order.\\n\\nI\\'ll summarize to the net.\\n\\n\\n--------------------------------------------------------\\n \"If only I had been compiled with the \\'-g\\' option.\"\\n---------------------------------------------------------\\n',\n", - " 'From: doc@webrider.central.sun.com (Steve Bunis - Chicago)\\nSubject: Route Suggestions?\\nOrganization: Sun Microsystems, Inc.\\nLines: 33\\nDistribution: usa\\nReply-To: doc@webrider.central.sun.com\\nNNTP-Posting-Host: webrider.central.sun.com\\n\\nAs I won\\'t be able to make the Joust this summer (Job related time \\nconflict :\\'^{ ), I plan instead on going to the Rider Rally in \\nKnoxville.\\n\\nI\\'ll be leaving from Chicago. and generally plan on going down along\\nthe Indiana/Illinois border into Kentucky and then Tennessee. I would \\nbe very interested in hearing suggestions of roads/routes/areas that \\nyou would consider \"must ride\" while on the way to Knoxville.\\n\\nI can leave as early as 5/22 and need to arrive in Knoxville by 6PM\\non 5/25. That leaves me a pretty good stretch of time to explore on \\nthe way.\\n\\nBy the way if anyone else is going, and would like to partner for the \\nride down, let me know. I\\'ll be heading east afterward to visit family, \\nbut sure don\\'t mind company on the ride down to the Rally. Depending on \\nweather et al. my plan is motelling/tenting thru the trip.\\n\\nFrom the Rally I\\'ll be heading up the Blue Ridge Parkway, then jogging\\ninto West Va (I-77) to run up 219 -> Marlington, 28 -> Petersburg, \\n55E -> I-81/I-66E. After this point the route is presently undetermined\\ninto Pennsylvania, New York?, and back to Chicago (by 6/6). Suggestions \\nfor these areas would be of great interest also.\\n\\nMany thanks for your ideas,\\n\\nEnjoy,\\n\\n---\\nSteve Bunis, Sun Microsystems ***DoD #0795***\\t93-ST1100\\n Itasca, IL\\t ***AMA #682049***\\t78-KZ650\\n\\t(ARE YOU SURE THIS IS APRIL?????? B^| )\\n\\n',\n", - " 'From: KINDER@nervm.nerdc.ufl.edu (JIM COBB)\\nSubject: ET 4000 /W32 VL-Bus Cards\\nOrganization: University of Florida, NERDC\\nLines: 3\\nNNTP-Posting-Host: nervm.nerdc.ufl.edu\\nX-Newsreader: NNR/VM S_1.3.2\\n\\nDoes anyone know of a VL-Bus video card based on the ET4000 /W32 card?\\nIf so: how much will it cost, where can I get one, does it come with more\\nthan 1MB of ram, and what is the windows performance like?\\n',\n", - " 'From: npet@bnr.ca (Nick Pettefar)\\nSubject: Re: Fortune-guzzler barred from bars!\\nNntp-Posting-Host: bmdhh299\\nOrganization: BNR Europe Ltd, Maidenhead, UK\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 44\\n\\nCharles Parr, on the Tue, 20 Apr 93 21:25:10 GMT wibbled:\\n: In article <1993Apr19.141959.4057@bnr.ca> npet@bnr.ca (Nick Pettefar) writes:\\n\\n: >If Satan rode a bike (CB1000?) would you stop to help him?\\n\\n: Of course! We riders have to stick together, you know...Besides,\\n: he\\'d stop for me.\\n\\n: Satan, by the way, rides a Vincent. So does God.\\n\\n: Jesus rides an RZ350, the Angels get Ariels, and the demons\\n: all ride Matchless 500s.\\n\\n: I know, because they talk to me through the fillings in my teeth.\\n\\n: Regards, Charles\\n: DoD0.001\\n: RZ350\\n: -- \\n: Within the span of the last few weeks I have heard elements of\\n: separate threads which, in that they have been conjoined in time,\\n: struck together to form a new chord within my hollow and echoing\\n: gourd. --Unknown net.person\\n\\n\\nI think that the Vincent is the wrong sort of bike for Satan to ride.\\nHonda have just brought out the CB1000 (look in BIKE Magazine) which\\nlooks so evil that Satan would not hesitate to ride it. 17-hole DMs,\\nLevi 501s and a black bomber jacket. I\\'m not sure about the helmet,\\noh, I know, one of those Darth Vader ones. There you go. Satan.\\nAnybody seen him lately? Just a cruisin\\'?\\n\\nGod would ride a Vincent White Lightning with rightous injection.\\nHe\\'d wear a one-piece leather suit with matching boots, helmet and gloves.\\n--\\n\\nNick (the Righteous Biker) DoD 1069 Concise Oxford New (non-leaky) gearbox\\n\\nM\\'Lud.\\n \\nNick Pettefar, Contractor@Large. /~~~\\\\ \"Teneo tuus intervallum\"\\nCuurrently incarcerated at BNR, {-O^O-} npet@bnr.ca \\'86 BMW K100RS \"Kay\"\\nMaidenhead, The United Kingdom. \\\\ o / Pres. PBWASOH(UK), BS 0002\\n (-\\n',\n", - " \"From: kv07@IASTATE.EDU (Warren Vonroeschlaub)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nReply-To: kv07@IASTATE.EDU (Warren Vonroeschlaub)\\nOrganization: Ministry of Silly Walks\\nLines: 28\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nwrites:\\n>In <1qlapk$d7v@morrow.stanford.edu> salem@pangea.Stanford.EDU (Bruce Salem) \\n>writes:\\n>>In article cobb@alexia.lis.uiuc.edu (Mike \\n>Cobb) writes:\\n>>>Theory of Creationism: MY theistic view of the theory of creationism, (there\\n>>>are many others) is stated in Genesis 1. In the beginning God created\\n>>>the heavens and the earth.\\n>\\n>> Wonderful, now try alittle imaginative thinking!\\n>\\n>Huh? Imaginative thinking? What did that have to do with what I said? Would it\\n>have been better if I said the world has existed forever and never was created\\n>and has an endless supply of energy and there was spontaneous generation of \\n>life from non-life? WOuld that make me all-wise, and knowing, and\\nimaginative?\\n\\n No, but at least it would be a theory.\\n\\n | __L__\\n-|- ___ Warren Kurt vonRoeschlaub\\n | | o | kv07@iastate.edu\\n |/ `---' Iowa State University\\n/| ___ Math Department\\n | |___| 400 Carver Hall\\n | |___| Ames, IA 50011\\n J _____\\n\",\n", - " 'From: jim@specialix.com (Jim Maurer)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nOrganization: Specialix Inc.\\nLines: 25\\n\\narf@genesis.MCS.COM (Jack Schmidling) writes:\\n\\n>In article jake@bony1.bony.com (Jake Livni) writes:\\n>>through private contributions on Federal land\". Your hate-mongering\\n>>article is devoid of current and historical fact, intellectual content\\n>>and social value. Down the toilet it goes.....\\n>>\\n\\n>And we all know what an unbiased source the NYT is when it comes to things\\n>concerning Israel.\\n\\n>Neither the Times nor the trained seals who have responded thus far seem to\\n>recognize the statement that these \"private funds\" were all tax exmpt. In\\n>otherwords, American taxpayers put up at least 30% of the money. And\\n>finalyy, how does \"Federal land\" mitigate the offensiveness of this alien\\n>monument dedicated to perpetuating pitty and the continual flow of tax money\\n>to a foreign entity?\\n\\n>That \"Federal land\" and tax money could have been used to commerate\\n>Americans or better yet, to house homeless Americans.\\n\\nThe donations are tax deductible like any donations to a non-profit\\norganization. I\\'ve donated money to a group restoring streetcars\\nand it was tax deductible. Why don\\'t you contribute to a group\\nhelping the homeless if you so concerned?\\n',\n", - " \"Organization: Penn State University\\nFrom: Andrew Newell \\nSubject: Re: Christian Morality is\\n \\nLines: 32\\n\\nIn article , cobb@alexia.lis.uiuc.edu (Mike Cobb)\\nsays:\\n>\\n>In <11836@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>\\n>>In article cobb@alexia.lis.uiuc.edu (Mike\\n>Cobb) writes:\\n>\\n>> If I'm wrong, god is free at any time to correct my mistake. That\\n>> he continues not to do so, while supposedly proclaiming his\\n>> undying love for my eternal soul, speaks volumes.\\n>\\n>What are the volumes that it speaks besides the fact that he leaves your\\n>choices up to you?\\n\\nLeaves the choices up to us but gives us no better reason\\nto believe than an odd story of his alleged son getting\\nkilled for us? And little new in the past few thousand\\nyears, leaving us with only the texts passed down through\\ncenturies of meddling with the meaning and even wording.\\n...most of this passing down and interpretation of course\\ncoming from those who have a vested interest in not allowing\\nthe possibility that it might not be the ultimate truth.\\nWhat about maybe talking to us directly, eh?\\nHe's a big god, right? He ought to be able to make time\\nfor the creations he loves so much...at least enough to\\ngive us each a few words of direct conversation.\\nWhat, he's too busy to get around to all of us?\\nOr maybe a few unquestionably-miraculous works here and\\nthere?\\n...speaks volumes upon volumes to me that I've never\\ngotten a chance to meet the guy and chat with him.\\n\",\n", - " 'From: bowmanj@csn.org (Jerry Bowman)\\nSubject: Re: Women\\'s Jackets? (was Ed must be a Daemon Child!!)\\nNntp-Posting-Host: fred.colorado.edu\\nOrganization: University of Colorado Boulder, OCS\\nDistribution: usa\\nLines: 48\\n\\nIn article bethd@netcom.com (Beth Dixon) writes:\\n>In article <1993Apr14.141637.20071@mnemosyne.cs.du.edu> jhensley@nyx.cs.du.edu (John Hensley) writes:\\n>>Beth Dixon (bethd@netcom.com) wrote:\\n>>: new Duc 750SS doesn\\'t, so I\\'ll have to go back to carrying my lipstick\\n>>: in my jacket pocket. Life is _so_ hard. :-)\\n>>\\n>>My wife is looking for a jacket, and most of the men\\'s styles she\\'s tried\\n>>don\\'t fit too well. If they fit the shoulders and arms, they\\'re too\\n>>tight across the chest, or something like that. Anyone have any \\n>>suggestions? I\\'m assuming that the V-Pilot, in addition to its handy\\n>>storage facilities, is a pretty decent fit. Is there any company that\\n>>makes a reasonable line of women\\'s motorcycling stuff? More importantly,\\n>>does anyone in Boulder or Denver know of a shop that bothers carrying any?\\n>\\n>I was very lucky I found a jacket I liked that actually _fits_.\\n>HG makes the v-pilot jackets, mine is a very similar style made\\n>by Just Leather in San Jose. I bought one of the last two they\\n>ever made.\\n>\\n>Finding decent womens motorcycling gear is not easy. There is a lot\\n>of stuff out there that\\'s fringed everywhere, made of fashion leather,\\n>made to fit men, etc. I don\\'t know of a shop in your area. There\\n>are some women rider friendly places in the San Francisco/San Jose\\n>area, but I don\\'t recommend buying clothing mail order. Too hard\\n>to tell if it\\'ll fit. Bates custom makes leathers. You might want\\n>to call them (they\\'re in L.A.) and get a cost estimate for the type\\n>of jacket your wife is interested in. Large manufacturers like\\n>BMW and H.G. sell women\\'s lines of clothing of decent quality, but\\n>fit is iffy.\\n>\\n>A while ago, Noemi and Lisa Sieverts were talking about starting\\n>a business doing just this sort of thing. Don\\'t know what they\\n>finally decided.\\n>\\n>Beth\\n Seems to me that Johns H.D. in Ft Collins used to carry some\\n honest to god womens garb.>\\n>=================================================================\\n>Beth [The One True Beth] Dixon bethd@netcom.com\\n>1981 Yamaha SR250 \"Excitable Girl\" DoD #0384\\n>1979 Yamaha SR500 \"Spike the Garage Rat\" FSSNOC #1843\\n>1992 Ducati 750SS AMA #631903\\n>1963 Ducati 250 Monza -- restoration project 1KQSPT = 1.8\\n>\"I can keep a handle on anything just this side of deranged.\"\\n> -- ZZ Top\\n>=================================================================\\n\\n\\n',\n", - " 'From: howard@sharps.astro.wisc.edu (Greg Howard)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nOrganization: University of Wisconsin - Astronomy Department\\nLines: 10\\nNNTP-Posting-Host: uwast.astro.wisc.edu\\n\\n\\nActually, the \"ether\" stuff sounded a fair bit like a bizzare,\\nqualitative corruption of general relativity. nothing to do with\\nthe old-fashioned, ether, though. maybe somebody could loan him\\na GR text at a low level.\\n\\ndidn\\'t get much further than that, tho.... whew.\\n\\n\\ngreg\\n',\n", - " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: bikes with big dogs\\nOrganization: Ontario Hydro - Research Division\\nLines: 17\\n\\nIn article <1993Apr14.212827.2277@galaxy.gov.bc.ca> bclarke@galaxy.gov.bc.ca writes:\\n>In article <1993Apr14.234835.1@cua.edu>, 84wendel@cua.edu writes:\\n>> Has anyone ever heard of a rider giving a big dog such as a great dane a ride \\n>> on the back of his bike. My dog would love it if I could ever make it work.\\n>\\n>!!! Post of the month !!!\\n>Actually, I've seen riders carting around a pet dog in a sidecar....\\n>A great Dane on the back though; sounds a bit hairy to me.\\n\\nYeah, I'm sure that our lab would love a ride (he's the type that sticks his\\nhead out car windows) but I didn't think that he would enjoy being bungee-\\ncorded to the gas tank, and 65 lbs or squirming beast is a bit much for a\\nbackpack (ok who's done it....).\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", - " \"From: hap@scubed.com (Hap Freiberg)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nNntp-Posting-Host: s3saturn\\nOrganization: S-CUBED, A Division of Maxwell Labs; San Diego CA\\nLines: 26\\n\\nIn article smith@minerva.harvard.edu (Steven Smith) writes:\\n>dgannon@techbook.techbook.com (Dan Gannon) writes:\\n>> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>>\\n>> by Theodore J. O'Keefe\\n>> [Holocaust revisionism]\\n>> \\n>> Theodore J. O'Keefe is an editor with the Institute for Historical\\n>> Review. Educated at Harvard University . . .\\n>\\n>According to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\n>graduate. You may decide for yourselves if he was indeed educated\\n>anywhere.\\n>\\n>Steven Smith\\n\\nIs any education a prerequisite for employment at IHR ?\\nIs it true that IHR really stands for Institution of Hysterical Reviews?\\nCurious minds would like to know...\\n\\nHap\\n\\n--\\n****************************************************************************************************\\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Omnia Extares >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\\n****************************************************************************************************\\n\",\n", - " 'From: edm@twisto.compaq.com (Ed McCreary)\\nSubject: Re: Where are they now?\\nIn-Reply-To: acooper@mac.cc.macalstr.edu\\'s message of 15 Apr 93 11: 17:13 -0600\\nOrganization: Compaq Computer Corp\\n\\t<1993Apr15.111713.4726@mac.cc.macalstr.edu>\\nLines: 18\\n\\na> In article <1qi156INNf9n@senator-bedfellow.MIT.EDU>, tcbruno@athena.mit.edu (Tom Bruno) writes:\\n> \\n..stuff deleted...\\n> \\n> Which brings me to the point of my posting. How many people out there have \\n> been around alt.atheism since 1990? I\\'ve done my damnedest to stay on top of\\n...more stuff deleted...\\n\\nHmm, USENET got it\\'s collective hooks into me around 1987 or so right after I\\nswitched to engineering. I\\'d say I started reading alt.atheism around 1988-89.\\nI\\'ve probably not posted more than 50 messages in the time since then though.\\nI\\'ll never understand how people can find the time to write so much. I\\ncan barely keep up as it is.\\n\\n--\\nEd McCreary ,__o\\nedm@twisto.compaq.com _-\\\\_<, \\n\"If it were not for laughter, there would be no Tao.\" (*)/\\'(*)\\n',\n", - " 'From: jonas-y@isy.liu.se (Jonas Yngvesson)\\nSubject: Re: Point within a polygon\\nKeywords: point, polygon\\nOrganization: Dept of EE, University of Linkoping\\nLines: 129\\n\\nscrowe@hemel.bull.co.uk (Simon Crowe) writes:\\n\\n>I am looking for an algorithm to determine if a given point is bound by a \\n>polygon. Does anyone have any such code or a reference to book containing\\n>information on the subject ?\\n\\nWell, it\\'s been a while since this was discussed so i take the liberty of\\nreprinting (without permission, so sue me) Eric Haines reprint of the very\\ninteresting discussion of this topic...\\n\\n /Jonas\\n\\n O / \\\\ O\\n------------------------- X snip snip X ------------------------------\\n O \\\\ / O\\n\\n\"Give a man a fish, and he\\'ll eat one day.\\nGive a man a fishing rod, and he\\'ll laze around fishing and never do anything.\"\\n\\nWith that in mind, I reprint (without permission, so sue me) relevant\\ninformation posted some years ago on this very problem. Note the early use of\\nPostScript technology, predating many of this year\\'s papers listed in the\\nApril 1st SIGGRAPH Program Announcement posted here a few days ago.\\n\\n-- Eric\\n\\n\\nIntersection Between a Line and a Polygon (UNDECIDABLE??),\\n\\tby Dave Baraff, Tom Duff\\n\\n\\tFrom: deb@charisma.graphics.cornell.edu\\n\\tNewsgroups: comp.graphics\\n\\tKeywords: P, NP, Jordan curve separation, Ursyhon Metrization Theorem\\n\\tOrganization: Program of Computer Graphics\\n\\nIn article [...] ncsmith@ndsuvax.UUCP (Timothy Lyle Smith) writes:\\n>\\n> I need to find a formula/algorithm to determine if a line intersects\\n> a polygon. I would prefer a method that would do this in as little\\n> time as possible. I need this for use in a forward raytracing\\n> program.\\n\\nI think that this is a very difficult problem. To start with, lines and\\npolygons are semi-algebraic sets which both contain uncountable number of\\npoints. Here are a few off-the-cuff ideas.\\n\\nFirst, we need to check if the line and the polygon are separated. Now, the\\nJordan curve separation theorem says that the polygon divides the plane into\\nexactly two open (and thus non-compact) regions. Thus, the line lies\\ncompletely inside the polygon, the line lies completely outside the polygon,\\nor possibly (but this will rarely happen) the line intersects the polyon.\\n\\nNow, the phrasing of this question says \"if a line intersects a polygon\", so\\nthis is a decision problem. One possibility (the decision model approach) is\\nto reduce the question to some other (well known) problem Q, and then try to\\nsolve Q. An answer to Q gives an answer to the original decision problem.\\n\\nIn recent years, many geometric problems have been successfully modeled in a\\nnew language called PostScript. (See \"PostScript Language\", by Adobe Systems\\nIncorporated, ISBN # 0-201-10179-3, co. 1985).\\n\\nSo, given a line L and a polygon P, we can write a PostScript program that\\ndraws the line L and the polygon P, and then \"outputs\" the answer. By\\n\"output\", we mean the program executes a command called \"showpage\", which\\nactually prints a page of paper containing the line and the polygon. A quick\\nexamination of the paper provides an answer to the reduced problem Q, and thus\\nthe original problem.\\n\\nThere are two small problems with this approach. \\n\\n\\t(1) There is an infinite number of ways to encode L and P into the\\n\\treduced problem Q. So, we will be forced to invoke the Axiom of\\n\\tChoice (or equivalently, Zorn\\'s Lemma). But the use of the Axiom of\\n\\tChoice is not regarded in a very serious light these days.\\n\\n\\t(2) More importantly, the question arises as to whether or not the\\n\\tPostScript program Q will actually output a piece of paper; or in\\n\\tother words, will it halt?\\n\\n\\tNow, PostScript is expressive enough to encode everything that a\\n\\tTuring Machine might do; thus the halting problem (for PostScript) is\\n\\tundecidable. It is quite possible that the original problem will turn\\n\\tout to be undecidable.\\n\\n\\nI won\\'t even begin to go into other difficulties, such as aliasing, finite\\nprecision and running out of ink, paper or both.\\n\\nA couple of references might be:\\n\\n1. Principia Mathematica. Newton, I. Cambridge University Press, Cambridge,\\n England. (Sorry, I don\\'t have an ISBN# for this).\\n\\n2. An Introduction to Automata Theory, Languages, and Computation. Hopcroft, J\\n and Ulman, J.\\n\\n3. The C Programming Language. Kernighan, B and Ritchie, D.\\n\\n4. A Tale of Two Cities. Dickens, C.\\n\\n--------\\n\\nFrom: td@alice.UUCP (Tom Duff)\\nSummary: Overkill.\\nOrganization: AT&T Bell Laboratories, Murray Hill NJ\\n\\nThe situation is not nearly as bleak as Baraff suggests (he should know\\nbetter, he\\'s hung around The Labs for long enough). By the well known\\nDobbin-Dullman reduction (see J. Dullman & D. Dobbin, J. Comp. Obfusc.\\n37,ii: pp. 33-947, lemma 17(a)) line-polygon intersection can be reduced to\\nHamiltonian Circuit, without(!) the use of Grobner bases, so LPI (to coin an\\nacronym) is probably only NP-complete. Besides, Turing-completeness will no\\nlonger be a problem once our Cray-3 is delivered, since it will be able to\\ncomplete an infinite loop in 4 milliseconds (with scatter-gather.)\\n\\n--------\\n\\nFrom: deb@svax.cs.cornell.edu (David Baraff)\\n\\nWell, sure its no worse than NP-complete, but that\\'s ONLY if you restrict\\nyourself to the case where the line satisfies a Lipschitz condition on its\\nsecond derivative. (I think there\\'s an \\'89 SIGGRAPH paper from Caltech that\\ndeals with this).\\n\\n--\\n------------------------------------------------------------------------------\\n J o n a s Y n g v e s s o n email: jonas-y@isy.liu.se\\nDept. of Electrical Engineering\\t voice: +46-(0)13-282162 \\nUniversity of Linkoping, Sweden fax : +46-(0)13-139282\\n',\n", - " \"From: ednclark@kraken.itc.gu.edu.au (Jeffrey Clark)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nNntp-Posting-Host: kraken.itc.gu.edu.au\\nOrganization: ITC, Griffith University, Brisbane, Australia\\nLines: 70\\n\\nbissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n\\n>\\tThe book says that Jesus was either a liar, or he was crazy ( a \\n>modern day Koresh) or he was actually who he said he was.\\n\\nOr he was just convinced by religious fantasies of the time that he was the\\nMessiah, or he was just some rebel leader that an organisation of Jews built\\ninto Godhood for the purpose off throwing of the yoke of Roman oppression,\\nor.......\\n\\n>\\tSome reasons why he wouldn't be a liar are as follows. Who would \\n>die for a lie? \\n\\nAre the Moslem fanatics who strap bombs to their backs and driving into\\nJewish embassies dying for the truth (hint: they think they are)? Were the\\nNAZI soldiers in WWII dying for the truth? \\n\\nPeople die for lies all the time.\\n\\n\\n>Wouldn't people be able to tell if he was a liar? People \\n\\nWas Hitler a liar? How about Napoleon, Mussolini, Ronald Reagan? We spend\\nmillions of dollars a year trying to find techniques to detect lying? So the\\nanswer is no, they wouldn't be able to tell if he was a liar if he only lied\\nabout some things.\\n\\n>gathered around him and kept doing it, many gathered from hearing or seeing \\n>someone who was or had been healed. Call me a fool, but I believe he did \\n>heal people. \\n\\nWhy do you think he healed people, because the Bible says so? But if God\\ndoesn't exist (the other possibility) then the Bible is not divinely\\ninspired and one can't use it as a piece of evidence, as it was written by\\nunbiased observers.\\n\\n>\\tNiether was he a lunatic. Would more than an entire nation be drawn \\n>to someone who was crazy. Very doubtful, in fact rediculous. For example \\n\\nWere Hitler or Mussolini lunatics? How about Genghis Khan, Jim Jones...\\nthere are thousands of examples through history of people being drawn to\\nlunatics.\\n\\n>anyone who is drawn to David Koresh is obviously a fool, logical people see \\n>this right away.\\n>\\tTherefore since he wasn't a liar or a lunatic, he must have been the \\n>real thing. \\n\\nSo we obviously cannot rule out liar or lunatic not to mention all the other\\npossibilities not given in this triad.\\n\\n>\\tSome other things to note. He fulfilled loads of prophecies in \\n>the psalms, Isaiah and elsewhere in 24 hrs alone. This in his betrayal \\n\\nPossibly self-fulfilling prophecy (ie he was aware what he should do in\\norder to fulfil these prophecies), possibly selective diting on behalf of\\nthose keepers of the holy bible for a thousand years or so before the\\ngeneral; public had access. possibly also that the text is written in such\\nriddles (like Nostradamus) that anything that happens can be twisted to fit\\nthe words of raving fictional 'prophecy'.\\n\\n>and Crucifixion. I don't have my Bible with me at this moment, next time I \\n>write I will use it.\\n [stuff about how hard it is to be a christian deleted]\\n\\nI severely recommend you reconsider the reasons you are a christian, they\\nare very unconvincing to an unbiased observer.\\n\\nJeff.\\n\\n\",\n", - " 'From: s127@ii.uib.no (Torgeir Veimo)\\nSubject: Re: sources for shading wanted\\nOrganization: Institutt for Informatikk UIB Norway\\nLines: 24\\n\\nIn article <1r3ih5INNldi@irau40.ira.uka.de>, S_BRAUN@IRAV19.ira.uka.de \\n(Thomas Braun) writes:\\n|> I\\'m looking for shading methods and algorithms.\\n|> Please let me know if you know where to get source codes for that.\\n\\n\\'Illumination and Color in Computer Generated Imagery\\' by Roy Hall contains c\\nsource for several famous illumination models, including Bouknight, Phong,\\nBlinn, Whitted, and Hall illumination models. If you want an introduction to\\nshading you might look through the book \\'Writing a Raytracer\\' edited by\\nGlassner. Also, the book \\'Procedural elements for Computer Graphics\\' by Rogers\\nis a good reference. Source for code in these book are available on the net i \\nbelieve, you might check out nic.funet.fi or some site closer to you carrying \\ngraphics related stuff. \\n\\nHope this is what you were asking for.\\n-- \\nTorgeir Veimo\\n\\nStudying at the University of Bergen\\n\\n\"...I\\'m gona wave my freak flag high!\" (Jimi Hendrix)\\n\\n\"...and it would be okay on any other day!\" (The Police)\\n\\n',\n", - " 'From: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nSubject: Re: bike for sale in MA, USA\\nKeywords: wicked-sexist\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: scs8@cunixb.cc.columbia.edu (Sebastian C Sears)\\nOrganization: Columbia University\\nLines: 18\\n\\nIn article <1993Apr19.194630.102@zorro.tyngsboro.ma.us> jd@zorro.tyngsboro.ma.us (Jeff deRienzo) writes:\\n>I\\'ve recently become father of twins! I don\\'t think I can afford\\n> to keep 2 bikes and 2 babies. Both babies are staying, so 1 of\\n> the Harleys is going.\\n>\\n>\\t1988 883 XLHD\\n>\\t~4000 mi. (hey, it was my wife\\'s bike :-)\\n\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n\\tWell that was pretty uncalled for. (No smile)\\n\\tIs our Harley manhood feeling challenged?\\n\\n> Jeff deRienzo\\n\\n-------\\n\"This is where I wanna sit and buy you a drink someday.\" - Temple of the Dog\\nSea-Bass Sears --> scs8@cunixb.cc.columbia.edu --> DoD#516 <-- |Stanley, ID.|\\n \\'79 Yamaha XS750F -- \\'77 BMW R100S -- \\'85 Toyota 4Runner -- | NYC, NY. |\\n',\n", - " \"From: ahatcher@athena.cs.uga.edu (Allan Hatcher)\\nSubject: Re: Traffic morons\\nOrganization: University of Georgia, Athens\\nLines: 37\\n\\nIn article Stafford@Vax2.Winona.MSUS.Edu (John Stafford) writes:\\n>In article <10326.97.uupcb@compdyn.questor.org>,\\n>ryan_cousineau@compdyn.questor.org (Ryan Cousineau) wrote:\\n>> \\n>> NMM>From: nielsmm@imv.aau.dk (Niels Mikkel Michelsen)\\n>> NMM>Subject: How to act in front of traffic jerks\\n>> \\n>> NMM>The other day, it was raining cats and dogs, therefor I was going only to\\n>> NMM>the speed limit, on nothing more, on my bike. This guy in his BMW was\\n>> NMM>driving 1-2 meters behind me for 7-800 meters and at the next red light I\\n>> NMM>calmly put the bike on its leg, walked back to this car, he rolled down the\\n>> NMM>window, and I told him he was a total idiot (and the reason why).\\n>> \\n>> NMM>Did I do the right thing?\\n>\\n>\\timho, you did the wrong thing. You could have been shot\\n> or he could have run over your bike or just beat the shit\\n> out of you. Consider that the person is foolish enough\\n> to drive like a fool and may very well _act_ like one, too.\\n>\\n> Just get the heck away from the idiot.\\n>\\n> IF the driver does something clearly illegal, you _can_\\n> file a citizens arrest and drag that person into court.\\n> It's a hassle for you but a major hassle for the perp.\\n>\\n>====================================================\\n>John Stafford Minnesota State University @ Winona\\nYou can't make a Citizens arrest on anything but a felony.\\n.\\n \\n\\n\\n>\\n> All standard disclaimers apply.\\n\\n\\n\",\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: The Area Rule\\nOrganization: Express Access Online Communications USA\\nLines: 20\\nDistribution: sci\\nNNTP-Posting-Host: access.digex.net\\n\\n\\n\\nI am sure Mary or Henry can describe this more aptly then me.\\nBut here is how i understand it.\\n\\nAt Speed, Near supersonic. The wind behaves like a fluid pipe.\\nIt becomes incompressible. So wind has to bend away from the\\nwing edges. AS the wing thickens, the more the pipes bend.\\n\\nIf they have no place to go, they begin to stall, and force\\ncompression, stealing power from the vehicle (High Drag).\\n\\nIf you squeeze the fuselage, so that these pipes have aplace to bend\\ninto, then drag is reduced. \\n\\nEssentially, teh cross sectional area of the aircraft shoulf\\nremain constant for all areas of the fuselage. That is where the wings are\\nsubtract, teh cross sectional area of the wings from the fuselage.\\n\\npat\\n',\n", - " 'From: william.vaughan@uuserv.cc.utah.edu (WILLIAM DANIEL VAUGHAN)\\nSubject: Re: A silly question on x-tianity\\nLines: 9\\nOrganization: University of Utah Computer Center\\n\\nIn article pww@spacsun.rice.edu (Peter Walker) writes:\\n>From: pww@spacsun.rice.edu (Peter Walker)\\n>Subject: Re: A silly question on x-tianity\\n>Date: Mon, 12 Apr 1993 07:06:33 GMT\\n>In article <1qaqi1INNgje@gap.caltech.edu>, werdna@cco.caltech.edu (Andrew\\n>Tong) wrote:\\n>> \\n\\nso what\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Big amateur rockets\\nOrganization: U of Toronto Zoology\\nLines: 30\\n\\nIn article pbd@runyon.cim.cdc.com (Paul Dokas) writes:\\n>Anyhow, the ad stated that they\\'d sell rockets that were up to 20\\' in length\\n>and engines of sizes \"F\" to \"M\". They also said that some rockets will\\n>reach 50,000 feet.\\n>\\n>Now, aside from the obvious dangers to any amateur rocketeer using one\\n>of these beasts, isn\\'t this illegal? I can\\'t imagine the FAA allowing\\n>people to shoot rockets up through the flight levels of passenger planes.\\n\\nThe situation in this regard has changed considerably in recent years.\\nSee the discussion of \"high-power rocketry\" in the rec.models.rockets\\nfrequently-asked-questions list.\\n\\nThis is not hardware you can walk in off the street and buy; you need\\nproper certification. That can be had, mostly through Tripoli (the high-\\npower analog of the NAR), although the NAR is cautiously moving to extend\\nthe upper boundaries of what it considers proper too.\\n\\nYou need special FAA authorization, but provided you aren\\'t doing it under\\none of the LAX runway approaches or something stupid like that, it\\'s not\\nespecially hard to arrange.\\n\\nAs with model rocketry, this sort of hardware is reasonably safe if handled\\nproperly. Proper handling takes more care, and you need a lot more empty\\nair to fly in, but it\\'s basically just model rocketry scaled up. As with\\nmodel rocketry, the high-power people use factory-built engines, which\\neliminates the major safety hazard of do-it-yourself rocketry.\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: University of Illinois at Urbana\\nLines: 42\\n\\nmancus@sweetpea.jsc.nasa.gov (Keith Mancus) writes:\\n\\n>cook@varmit.mdc.com (Layne Cook) writes:\\n>> All of this talk about a COMMERCIAL space race (i.e. $1G to the first 1-year \\n>> moon base) is intriguing. Similar prizes have influenced aerospace \\n>>development before. The $25k Orteig prize helped Lindbergh sell his Spirit of \\n>> Saint Louis venture to his financial backers.\\n>> But I strongly suspect that his Saint Louis backers had the foresight to \\n>> realize that much more was at stake than $25,000.\\n>> Could it work with the moon? Who are the far-sighted financial backers of \\n>> today?\\n\\n> The commercial uses of a transportation system between already-settled-\\n>and-civilized areas are obvious. Spaceflight is NOT in this position.\\n>The correct analogy is not with aviation of the \\'30\\'s, but the long\\n>transocean voyages of the Age of Discovery.\\n\\nLindbergh\\'s flight took place in \\'27, not the thirties.\\n\\n>It didn\\'t require gov\\'t to\\n>fund these as long as something was known about the potential for profit\\n>at the destination. In practice, some were gov\\'t funded, some were private.\\n\\nCould you give examples of privately funded ones?\\n\\n>But there was no way that any wise investor would spend a large amount\\n>of money on a very risky investment with no idea of the possible payoff.\\n\\nYour logic certainly applies to standard investment strategies. However, the\\nconcept of a prize for a difficult goal is done for different reasons, I \\nsuspect. I\\'m not aware that Mr Orteig received any significant economic \\nbenefit from Lindbergh\\'s flight. Modern analogies, such as the prize for a\\nhuman powered helicopter face similar arguments. There is little economic\\nbenefit in such a thing. The advantage comes in the new approaches developed\\nand the fact that a prize will frequently generate far more work than the \\nequivalent amount of direct investment would. A person who puts up $ X billion\\nfor a moon base is much more likely to do it because they want to see it done\\nthan because they expect to make money off the deal.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 133\\n\\nIn article bh437292@lance.colostate.edu writes:\\n>\\n>It is NOT a \"terrorist camp\" as you and the Israelis like \\n>to view the villages they are small communities with kids playing soccer\\n>in the streets, women preparing lunch, men playing cards, etc.....\\n>SOME young men, usually aged between 17 to 30 years are members of\\n>the Lebanese resistance. Even the inhabitants of the village do not \\n>know who these are, they are secretive about it, but most people often\\n>suspect who they are and what they are up to. These young men are\\n>supported financially by Iran most of the time. They sneak arms and\\n>ammunitions into the occupied zone where they set up booby traps\\n>for Israeli patrols. Every time an Israeli soldier is killed or injured\\n>by these traps, Israel retalliates by indiscriminately bombing villages\\n>of their own choosing often killing only innocent civilians. \\n\\nThis a \"tried and true\" method utilized by guerilla and terrorists groups:\\nto conduct operations in the midst of the local populace, thus forcing the\\nopposing \"state\" to possible harm innocent civilians in their search or,\\nin order to avoid the deaths of civilians, abandon the search. Certainly the\\npeople who use the population for cover are *also* to blaim for dragging the\\ninnocent civilians into harm\\'s way.\\n\\nAre you suggesting that, when guerillas use the population for cover, Israel\\nshould totally back down? So...the easiest way to get away with attacking\\nanother is to use an innocent as a shield and hope that the other respects\\ninnocent lives?\\n\\n>If Israel insists that\\n>the so called \"Security Zone\" is necessary for the protection of \\n>Northern Israel, than it will have to pay the price of its occupation\\n>with the blood of its soldiers. \\n\\nYour damn right Israel insists on some sort of \"demilitarized\" or \"buffer\"\\nzone. Its had to put up with too many years of attacks from the territory\\nof Arab states and watched as the states did nothing. It is not exactly\\nsurprizing that Israel decided that the only way to stop such actions is to \\ndo it themselves.\\n\\n>If Israel is interested in peace, than it should withdraw from OUR land. \\n\\nWhat? So the whole bit about attacks on Israel from neighboring Arab states \\ncan start all over again? While I also hope for this to happen, it will\\nonly occur WHEN Arab states show that they are *prepared* to take on the \\nresponsibility and the duty to stop guerilla attacks on Israel from their \\nsoil. They have to Prove it (or provide some \"guaratees\"), there is no way\\nIsrael is going to accept their \"word\"- not with their past attitude of \\ntolerance towards \"anti-Israel guerillas in-residence\".\\n>\\n>I have written before on this very newsgroup, that the only\\n>real solution will come as a result of a comprehensive peace\\n>settlement whereby Israel withdraws to its own borders and\\n>peace keeping troops are stationed along the border to insure\\n>no one on either side of the border is shelled.\\n\\nGood lord, Brad. What in the world goves you the idea that UN troops stop\\nanything? They are ONLY stationed in a country because that country allows\\nthem in. It can ask them to leave *at any time*; as Nasser did in \\'56 and\\n\\'67. Somehow, with that \"limitation\" on the troops \"powers\" I don\\'t\\nthink that Israel is going to be any more comfortable. Without a *genuine* commitment to peace from the Arab states, and concrete (not intellectual or political exercises in jargon) \"guarantees\" by other parties, the UN is worthless\\nto Israel (but, perhaps useful as a \"ruse\"?).\\n\\n>This is the only realistic solution, it is time for Israel to\\n>realize that the concept of a \"buffer zone\" aimed at protecting\\n>its northern cities has failed. In fact it has caused much more\\n>Israeli deaths than the occasional shelling of Northern Israel\\n>would have resulted in. \\n\\nPerhaps you are aware that, to most communities of people, there is\\nthe feeling that it is better that \"many of us die fighting\\nagainst those who attack us than for few to die while we silently \\naccept our fate.\" If,however, you call on Israel to see the sense of \\nsuffering fewer casualties, I suggest you apply the same to Palestinian,\\nArab and Islamic groups.\\n\\n>If Israel really wants to save some Israeli lives it would withdraw \\n>unilaterally from the so-called \"Security Zone\" before the conclusion\\n>of the peace talks. Such a move would save Israeli lives,\\n>advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n>public image abroad and give it an edge in the peace negociations \\n>since Israel can rightly claim that it is genuinely interested in \\n>peace and has already offered some important concessions.\\n>Along with such a withdrawal Israel could demand that Hizbollah\\n>be disarmed by the Lebanese government and warn that it will not \\n>accept any attacks against its northern cities and that if such a\\n>shelling occurs than it will consider re-taking the buffer zone\\n>and will hold the Lebanese and Syrian government responsible for it.\\n\\nFrom Israel\\'s perspective, \"concessions\" gets it NOTHING...except the \\nrealization that it has given \"something\" up and now *can only \\nhope* that the other side decides to do likewise. Words *can be taken\\nback* by merely doing so; to \"take back\" tangible items (land,\\ncontrol of land) requires the sort of action you say Israel should\\nstay away from.\\n \\nIsrael put up with attacks from Arab state territories for decades \\nbefore essentially putting a stop to it through its invasion of Lebanon.\\nThe entire basis of that reality was exactly as you state above: 1) Israel \\nwould express outrage at these attacks and protest to the Arab state \\ninvolved, 2) that state promptly ignored the entire matter, secure \\nin the knowledge that IT could not be held responsible for the acts \\ncommitted by \"private groups\", 3) Israel would prepare for the next \\nround of attacks. What would Israel want to return to those days (and\\ndon\\'t be so idiotic as to suggest \"trust\" for the motivations of\\npresent-day Arab states)?\\n\\n>There seems to be very little incentive for the Syrian and Lebanese\\n>goovernment to allow Hizbollah to bomb Israel proper under such \\n>circumstances, \\n>\\nAh, ok...what is \"different\" about the present situation that tells\\nus that the Arab states will *not* pursue their past antagonistic \\npolicies towards Israel? Now, don\\'t talk about vague \"political factors\"\\nbut about those \"tangible\" (just like that which Israel gave up)\\nfactors that \"guarantee\" the responsibility of those states. Your\\nassessment of \"difference\" here is based on a whole lot of assumptions,\\nand most states don\\'t feel confortable basing their existence on that\\nsort of thing.\\n\\n>and now the Lebanese government has proven that it is\\n>capable of controlling and disarming all militias as they did\\n>in all other parts of Lebanon.\\n>\\n>Basil\\n\\nIt has not. Without the support, and active involvement, of Syria,\\nLebanon would not have been able to accomplish all that has occurred.\\nOnce Syria leaves who is to say that Lebanon will be able to retain \\ncontrol? If Syria stays thay may be even more dangerous for Israel.\\n> \\nTim\\n\\nYour view of this entire matter is far too serenely one-sided and\\nselectively naive.\\n',\n", - " 'From: waldo@cybernet.cse.fau.edu (Todd J. Dicker)\\nSubject: Re: Hamza Salah, the Humanist\\nOrganization: Cybernet BBS, Boca Raton, Florida\\nLines: 19\\n\\ndzk@cs.brown.edu (Danny Keren) writes:\\n\\n> He-he. The great humanist speaks. One has to read Mr. Salah\\'s posters,\\n> in which he decribes Jews as \"sons of pigs and monkeys\", keeps\\n> promising the \"final battle\" between Muslims and Jews (in which the\\n> stons and the trees will \"cry for the Muslims to come and kill the\\n> Jews hiding behind them\"), makes jokes about Jews dying from heart\\n> attacks etc, to realize his objective stance on the matters involved.\\n> \\n> -Danny Keren.\\n----------\\nDon\\'t worry, Danny, every blatantly violent and abusive posting made by \\nHamzah is immediately forwarded to the operator of the system in which he \\nhas an account. I\\'d imagine they have quite a file started on this \\nfruitcake--and have already indicated that they have rules governing \\nracist and threatening use of their resources. I\\'d imagine he\\'ll be out \\nof our hair in a short while.\\n\\nTodd\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: , mathew@mantis.co.uk (mathew) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> > And we, meaning people who drive,\\n|> > accept the risks of doing so, and contribute tax money to design systems\\n|> > to minimize those risks.\\n|> \\n|> Eh? We already have systems to minimize those risks. It\\'s just that you car\\n|> drivers don\\'t want to use them.\\n|> \\n|> They\\'re called bicycles, trains and buses.\\n\\nPoor Matthew. A million posters to call \"you car drivers\" and he\\nchooses me, a non car owner.\\n\\njon.\\n',\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nKeywords: Galileo, JPL\\nOrganization: Texas Instruments Inc\\nLines: 25\\n\\nIn <1993Apr23.103038.27467@bnr.ca> agc@bmdhh286.bnr.ca (Alan Carter) writes:\\n\\n>In article <22APR199323003578@kelvin.jpl.nasa.gov>, baalke@kelvin.jpl.nasa.gov (Ron Baalke) writes:\\n>|> 3. On April 19, a NO-OP command was sent to reset the command loss timer to\\n>|> 264 hours, its planned value during this mission phase.\\n\\n>This activity is regularly reported in Ron\\'s interesting posts. Could\\n>someone explain what the Command Loss Timer is?\\n\\nThe Command Loss Timer is a timer that does just what its name says;\\nit indicates to the probe that it has lost its data link for receiving\\ncommands. Upon expiration of the Command Loss Timer, I believe the\\nprobe starts a \\'search for Earth\\' sequence (involving antenna pointing\\nand attitude changes which consume fuel) to try to reestablish\\ncommunications. No-ops are sent periodically through those periods\\nwhen there are no real commands to be sent, just so the probe knows\\nthat we haven\\'t forgotten about it.\\n\\nHope that\\'s clear enough to be comprehensible. \\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 66\\n\\n\\nJames Hogan writes:\\n\\ntimmbake@mcl.ucsb.edu (Bake Timmons) writes:\\n>>Jim Hogan quips:\\n\\n>>... (summary of Jim\\'s stuff)\\n\\n>>Jim, I\\'m afraid _you\\'ve_ missed the point.\\n\\n>>>Thus, I think you\\'ll have to admit that atheists have a lot\\n>>more up their sleeve than you might have suspected.\\n\\n>>Nah. I will encourage people to learn about atheism to see how little atheists\\n>>have up their sleeves. Whatever I might have suspected is actually quite\\n>>meager. If you want I\\'ll send them your address to learn less about your\\n>>faith.\\n\\n>Faith?\\n\\nYeah, do you expect people to read the FAQ, etc. and actually accept hard\\natheism? No, you need a little leap of faith, Jimmy. Your logic runs out\\nof steam!\\n\\n>>>Fine, but why do these people shoot themselves in the foot and mock\\n>>>the idea of a God? ....\\n\\n>>>I hope you understand now.\\n\\n>>Yes, Jim. I do understand now. Thank you for providing some healthy sarcasm\\n>>that would have dispelled any sympathies I would have had for your faith.\\n\\n>Bake,\\n\\n>Real glad you detected the sarcasm angle, but am really bummin\\' that\\n>I won\\'t be getting any of your sympathy. Still, if your inclined\\n>to have sympathy for somebody\\'s *faith*, you might try one of the\\n>religion newsgroups.\\n\\n>Just be careful over there, though. (make believe I\\'m\\n>whispering in your ear here) They\\'re all delusional!\\n\\nJim,\\n\\nSorry I can\\'t pity you, Jim. And I\\'m sorry that you have these feelings of\\ndenial about the faith you need to get by. Oh well, just pretend that it will\\nall end happily ever after anyway. Maybe if you start a new newsgroup,\\nalt.atheist.hard, you won\\'t be bummin\\' so much?\\n\\n>Good job, Jim.\\n>.\\n\\n>Bye, Bake.\\n\\n\\n>>[more slim-Jim (tm) deleted]\\n\\n>Bye, Bake!\\n>Bye, Bye!\\n\\nBye-Bye, Big Jim. Don\\'t forget your Flintstone\\'s Chewables! :) \\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", - " \"From: karr@cs.cornell.edu (David Karr)\\nSubject: Re: Fortune-guzzler barred from bars!\\nOrganization: Cornell Univ. CS Dept, Ithaca NY 14853\\nLines: 23\\n\\nIn article Russell.P.Hughes@dartmouth.edu (Knicker Twister) writes:\\n>In article <1993Apr19.141959.4057@bnr.ca>\\n>npet@bnr.ca (Nick Pettefar) writes:\\n>\\n>> With regards to the pub brawl, he might have a history of such things.\\n>> Just because he was a biker doesn't make him out to be a reasonable\\n>> person. Even the DoD might object to him joining, who knows?\\n\\nIf he had a history of such things, why was it not mentioned in the\\narticle, and why did they present the irrelevant detail of where he\\ngot his drinking money from?\\n\\nI can't say exactly who is at fault here, but from where I sit is\\nlooks like we're seeing the results either of the law going way out\\nof hand or of shoddy journalism.\\n\\nIf the law wants to attach strings to how you spend a settlement, they\\nshould put the money in trust. They don't, so I would assume it's\\nperfectly legitimate to drink it away, though I wouldn't spend it that\\nway myself.\\n\\n-- David Karr (karr@cs.cornell.edu)\\n\\n\",\n", - " 'From: S901924@mailserv.cuhk.hk\\nSubject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\nSummary: Dong .... Dong .... Do I hear the death-knell of relativity?\\nKeywords: space, curvature, nothing, tesla\\nNntp-Posting-Host: wksb14.csc.cuhk.hk\\nOrganization: Computer Services Centre, C.U.H.K.\\nDistribution: World\\nLines: 36\\n\\nIn article et@teal.csn.org (Eric H. Taylor) writes:\\n>From: et@teal.csn.org (Eric H. Taylor)\\n>Subject: Re: Gravity waves, was: Predicting gravity wave quantization & Cosmic Noise\\n>Summary: Dong .... Dong .... Do I hear the death-knell of relativity?\\n>Keywords: space, curvature, nothing, tesla\\n>Date: Sun, 28 Mar 1993 20:18:04 GMT\\n>In article metares@well.sf.ca.us (Tom Van Flandern) writes:\\n>>crb7q@kelvin.seas.Virginia.EDU (Cameron Randale Bass) writes:\\n>>> Bruce.Scott@launchpad.unc.edu (Bruce Scott) writes:\\n>>>> \"Existence\" is undefined unless it is synonymous with \"observable\" in\\n>>>> physics.\\n>>> [crb] Dong .... Dong .... Dong .... Do I hear the death-knell of\\n>>> string theory?\\n>>\\n>> I agree. You can add \"dark matter\" and quarks and a lot of other\\n>>unobservable, purely theoretical constructs in physics to that list,\\n>>including the omni-present \"black holes.\"\\n>>\\n>> Will Bruce argue that their existence can be inferred from theory\\n>>alone? Then what about my original criticism, when I said \"Curvature\\n>>can only exist relative to something non-curved\"? Bruce replied:\\n>>\"\\'Existence\\' is undefined unless it is synonymous with \\'observable\\' in\\n>>physics. We cannot observe more than the four dimensions we know about.\"\\n>>At the moment I don\\'t see a way to defend that statement and the\\n>>existence of these unobservable phenomena simultaneously. -|Tom|-\\n>\\n>\"I hold that space cannot be curved, for the simple reason that it can have\\n>no properties.\"\\n>\"Of properties we can only speak when dealing with matter filling the\\n>space. To say that in the presence of large bodies space becomes curved,\\n>is equivalent to stating that something can act upon nothing. I,\\n>for one, refuse to subscribe to such a view.\" - Nikola Tesla\\n>\\n>----\\n> ET \"Tesla was 100 years ahead of his time. Perhaps now his time comes.\"\\n>----\\n',\n", - " 'From: charlie@elektro.cmhnet.org (Charlie Smith)\\nSubject: Re: Where\\'s The Oil on my K75 Going?\\nOrganization: Why do you suspect that?\\nLines: 35\\n\\nIn article tim@intrepid.gsfc.nasa.gov (Tim Seiss) writes:\\n>\\n> After both oil changes, the oil level was at the top mark in the\\n>window on the lower right side of the motor, but I\\'ve been noticing\\n>that the oil level seen in the window gradually decreases over the\\n>miles. I\\'m always checking the window with the bike on level ground\\n>and after it has sat idle for awhile, so the oil has a chance to drain\\n>back into the pan. The bike isn\\'t leaking oil any place, and I don\\'t\\n>see any smoke coming out of the exhaust.\\n>\\n> My owner\\'s manual says the amount of oil corresponding to the\\n>high and low marks in the oil level window is approx. .5 quart. It\\n>looks like my bike has been using about .25 quarts/1000 miles. The\\n>owner\\'s manual also gives a figure for max. oil consumption of about\\n>.08oz/mile or .15L/100km.\\n>\\n> My question is whether the degree of \"oil consumption\" I\\'m seeing on\\n>my bike is normal? Have any other K75 owners seen their oil level\\n>gradually and consistently go down? Should I take the bike in for\\n>work? I\\'m asking local guys also, to get as many data points as I\\n>can. \\n\\n\\nIt\\'s normal for the BMW K bikes to use a little oil in the first few thousand \\nmiles. I don\\'t know why. I\\'ve had three new K bikes, and all three used a\\nbit of oil when new - max maybe .4 quart in first 1000 miles; this soon quits\\nand by the time I had 10,000 miles on them the oil consumption was about zero.\\nI\\'ve been told that the harder you run the bike (within reason) the sooner\\nit stops using any oil.\\n\\n\\nCharlie Smith charlie@elektro.cmhnet.org KotdohL KotWitDoDL 1KSPI=22.85\\n DoD #0709 doh #0000000004 & AMA, MOA, RA, Buckey Beemers, BK Ohio V\\n BMW K1100-LT, R80-GS/PD, R27, Triumph TR6 \\n Columbus, Ohio USA\\n',\n", - " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Re: Himmler\\'s speech on the extirpation of the Jewish race\\nOrganization: Brown University Department of Computer Science\\nLines: 56\\n\\nIt is appropriate to add what Himmler said other \"inferior races\" \\nand \"human animals\" in his speech at Posen and elsewhere:\\n\\n\\nFrom the speech of Reichsfuehrer-SS Himmler, before SS\\nMajor-Generals, Posen, October 4 1943\\n[\"Nazi Conspiracy and Aggression\", Vol. IV, p. 559]\\n-------------------------------------------------------------------\\nOne basic principal must be the absolute rule for the SS man: we\\nmust be honest, decent, loyal, and comradely to members of our own\\nblood and to nobody else. What happens to a Russian, to a Czech,\\ndoes not interest me in the slightest. What the nations can offer\\nin good blood of our type, we will take, if necessary by kidnapping\\ntheir children and raising them with us. Whether nations live in\\nprosperity or starve to death interests me only in so far as we\\nneed them as slaves for our culture; otherwise, it is of no interest\\nto me. Whether 10,000 Russian females fall down from exhaustion\\nwhile digging an anti-tank ditch interest me only in so far as\\nthe anti-tank ditch for Germany is finished. We shall never be rough\\nand heartless when it is not necessary, that is clear. We Germans,\\nwho are the only people in the world who have a decent attitude\\ntowards animals, will also assume a decent attitude towards these\\nhuman animals. But it is a crime against our own blood to worry\\nabout them and give them ideals, thus causing our sons and\\ngrandsons to have a more difficult time with them. When someone\\ncomes to me and says, \"I cannot dig the anti-tank ditch with women\\nand children, it is inhuman, for it will kill them\", then I\\nwould have to say, \"you are a murderer of your own blood because\\nif the anti-tank ditch is not dug, German soldiers will die, and\\nthey are the sons of German mothers. They are our own blood\".\\n\\n\\n\\nExtract from Himmler\\'s address to party comrades, September 7 1940\\n[\"Trials of Wa Criminals\", Vol. IV, p. 1140]\\n------------------------------------------------------------------\\nIf any Pole has any sexual dealing with a German woman, and by this\\nI mean sexual intercourse, then the man will be hanged right in\\nfront of his camp. Then the others will not do it. Besides,\\nprovisions will be made that a sufficient number of Polish women\\nand girls will come along as well so that a necessity of this\\nkind is out of the question.\\n\\nThe women will be brought before the courts without mercy, and\\nwhere the facts are not sufficiently proved - such borderline\\ncases always happen - they will be sent to a concentration camp.\\nThis we must do, unless these one million Poles and those\\nhundreds of thousands of workers of alien blood are to inflict\\nuntold damage on the German blood. Philosophizing is of no avail\\nin this case. It would be better if we did not have them at all -\\nwe all know that - but we need them.\\n\\n\\n\\n-Danny Keren.\\n\\n',\n", - " \"From: prestonm@cs.man.ac.uk (Martin Preston)\\nSubject: Problems grabbing a block of a Starbase screen.\\nKeywords: Starbase, HP\\nLines: 26\\n\\nAt the moment i'm trying to grab a portion of a Starbase screen, and store it\\nin an area of memory. The data needs to be in a 24-bit format (which\\nshouldn't be a problem as the app is running on a 24 bit screen), though\\ni'm not too fussy about the exact format.\\n\\n(I actually intend to write the data out as a TIFF but that bits not the\\nproblem)\\n\\nDoes anyone out there know how to grab a portion of the screen? The\\nblock_read call seems to grab the screen, but not in 24 bit colour,\\nwhatever the screen/window type i get 1 byte per pixel. \\n\\nthanks in advance,\\n\\nMartin\\n\\n\\n\\n\\n--\\n---------------------------------------------------------------------------\\n|Martin Preston, (m.preston@manchester.ac.uk) | Computer Graphics |\\n|Computer Graphics Unit, Manchester Computing Centre, | is just |\\n|University of Manchester, | a load of balls. |\\n|Manchester, U.K., M13 9PL Phone : 061 275 6095 | |\\n---------------------------------------------------------------------------\\n\",\n", - " \"From: B8HA000 \\nSubject: Zionism is Racism\\nLines: 8\\nNntp-Posting-Host: vm1.mcgill.ca\\nOrganization: McGill University\\n\\nIn Re:Syria's Expansion, the author writes that the UN thought\\nZionism was Racism and that they were wrong. They were correct\\nthe first time, Zionism is Racism and thankfully, the McGill Daily\\n(the student newspaper at McGill) was proud enough to print an article\\nsaying so. If you want a copy, send me mail.\\n\\nSteve\\n\\n\",\n", - " 'From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: was:Go Hezbollah!\\nOrganization: Bellcore, Livingston, NJ\\nSummary: An Untried Approach\\nLines: 59\\n\\nIn article <1993Apr20.114746.3364@ncsu.edu>, hernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n> \\n> In article <1993Apr19.214300.17989@unocal.com>, stssdxb@st.unocal.com (Dorin Baru) writes:\\n> \\n> |> (Brad Hernlem writes:\\n> |> \\n> |> \\n> |> >Well, you should have noted that I was cheering an attack on an Israeli \\n> |> >patrol INSIDE Lebanese territory while I was condemning the \"retaliatory\"\\n> |> >shelling of Lebanese villages by Israeli and Israeli-backed forces. My \"team\",\\n> |> >you see, was \"playing fair\" while the opposing team was rearranging the\\n> |> >faces of the spectators in my team\\'s viewing stands, so to speak. \\n> |> \\n> |> >I think that you should try to find more sources of news about what goes on\\n> |> >in Lebanon and try to see through the propaganda. There are no a priori\\n> |> >black and white hats but one sure wonders how the IDF can bombard villages in \\n> |> >retaliation to pin-point attacks on its soldiers in Lebanon and then call the\\n> |> >Lebanese terrorists.\\n> |> \\n> |> If the attack was justified or not is at least debatable. But this is not the\\n> |> issue. The issue is that you were cheering DEATH. [...]\\n> |> \\n> |> Dorin\\n> \\n> Dorin, of all the criticism of my post expressed on t.p.m., this one I accept.\\n> I regret that aspect of my post. It is my hope that the occupation will end (and\\n> the accompanying loss of life) but I believe that stiff resistance can help to \\n> achieve that end. Despite what some have said on t.p.m., I think that there is \\n> a point when losses are unacceptable. The strategy drove U.S. troops out of \\n> Lebanon, at least.\\n> \\n> Brad Hernlem (hernlem@chess.ncsu.EDU)\\n\\nHi Brad,\\n\\nI have two comments: Regarding your hope that the \"occupation will end... \\nbelive that stiff resistance..etc. - how about an untried approach, i.e.,\\npeace and cooperation. I can\\'t help but wonder what would happen if all\\nviolence against Israelis stopped. Hopefully, violence against Arabs\\nwould stop at the same time. If a state of non-violence could be \\nmaintained, perhaps a state of cooperation could be achieved, i.e.,\\ngreater economic opportunities for both peoples living in the\\n\"territories\". \\n\\nOf course, given the current leadership of Israel, your way may work\\nalso - but if that leadership changes, e.g., to someone with Ariel\\nSharon\\'s mentality, then I would predict a considerable loss of life,\\ni.e., no winners.\\n\\nSecondly, regarding your comment about the U.S. troops responding\\nto \"stiff resistance\" - the analogy is not quite valid. The U.S.\\ntroops could get out of the neighborhood altogether. The Israelis\\ncould not.\\n\\nJust my $.02 worth, no offense intended.\\n\\nRespectfully, \\n\\nBen.\\n',\n", - " 'From: arromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee)\\nSubject: Re: American Jewish Congress Open Letter to Clinton\\nOrganization: Johns Hopkins University CS Dept.\\nLines: 30\\n\\nIn article <22APR199300513566@vxcrna.cern.ch> casper@vxcrna.cern.ch (CASPER,DAVI./PPE) writes:\\n>>Are you aware that there is an arms embargo on all of what is/was\\n>>Yugoslavia, including Bosnia, which guarantees massive military\\n>>superiority of Serbian forces and does not allow the Bosnians to\\n>>try to defend themselves? \\n>Should we sell weapons to all sides, or just the losing one, then?\\n\\nEnding an embargo does not _we_ must sell anything at all.\\n\\n>If the Europeans want to sell weapons to one or both sides, they are welcome\\n>as far as I\\'m concerned.\\n\\nYou seem to oppose ending the embargo. You know, it is difficult for Europeans\\nto sell weapons when there is an embargo in place.\\n\\n>I do not automatically accept the argument that Bosnia is any worse than\\n>other recent civil wars, say Vietnam for instance. The difference is it is\\n>happening to white people inside Europe, with lots of TV coverage.\\n\\nBut if this was the reason, and if furthermore both sides are equal, wouldn\\'t\\nall us racist Americans be favoring the good Christians (Serbs) instead\\nof the non-Christians we really seem to favor?\\n--\\n\"On the first day after Christmas my truelove served to me... Leftover Turkey!\\nOn the second day after Christmas my truelove served to me... Turkey Casserole\\n that she made from Leftover Turkey.\\n[days 3-4 deleted] ... Flaming Turkey Wings! ...\\n -- Pizza Hut commercial (and M*tlu/A*gic bait)\\n\\nKen Arromdee (arromdee@jyusenkyou.cs.jhu.edu)\\n',\n", - " 'Subject: Re: Surviving Large Accelerations?\\nFrom: lpham@eis.calstate.edu (Lan Pham)\\nOrganization: Calif State Univ/Electronic Information Services\\nLines: 25\\n\\nAmruth Laxman writes:\\n> Hi,\\n> I was reading through \"The Spaceflight Handbook\" and somewhere in\\n> there the author discusses solar sails and the forces acting on them\\n> when and if they try to gain an initial acceleration by passing close to\\n> the sun in a hyperbolic orbit. The magnitude of such accelerations he\\n> estimated to be on the order of 700g. He also says that this is may not\\n> be a big problem for manned craft because humans (and this was published\\n> in 1986) have already withstood accelerations of 45g. All this is very\\n> long-winded but here\\'s my question finally - Are 45g accelerations in\\n> fact humanly tolerable? - with the aid of any mechanical devices of\\n> course. If these are possible, what is used to absorb the acceleration?\\n> Can this be extended to larger accelerations?\\n\\nare you sure 45g is the right number? as far as i know, pilots are\\nblackout in dives that exceed 8g - 9g. 45g seems to be out of human\\ntolerance. would anybody clarify this please.\\n\\nlan\\n\\n\\n> \\n> Thanks is advance...\\n> -Amruth Laxman\\n> \\n',\n", - " 'From: stefan@prague (Stefan Fielding-Isaacs)\\nSubject: Racelist: WHO WHAT WHERE\\nDistribution: rec\\nOrganization: Gain Technology, Palo Alto, CA.\\nLines: 111\\nNntp-Posting-Host: prague.gain.com\\n\\n\\n Greetings fellow motorcycle roadracing enthusiasts!\\n\\n BACKGROUND\\n ----------\\n\\n The racing listserver (boogie.EBay.sun.com) contains discussions \\n devoted to racing and racing-related topics. This is a pretty broad \\n interest group. Individuals have a variety of backgrounds: motojournalism, \\n roadracing from the perspective of pit crew and racers, engineering,\\n motosports enthusiasts.\\n\\n The size of the list grows weekly. We are currently at a little\\n over one hundred and eighty-five members, with contributors from\\n New Zealand, Australia, Germany, France, England, Canada\\n Finland, Switzerland, and the United States.\\n\\n The list was formed (October 1991) in response to a perceived need \\n to both provide technical discussion of riding at the edge of \\n performance (roadracing) and to improve on the very low signal-to-noise \\n ratio found in rec.motorcycles. Anyone is free to join.\\n\\n Discussion is necessarily limited by the rules of the list to \\n issues related to racing motorcycles and is to be \"flame-free\". \\n\\n HOW TO GET THE DAILY DISTRIBUTION\\n ---------------------------------\\n\\n You are welcome to subscribe. To subscribe send your request to:\\n\\n\\n race-request@boogie.EBay.Sun.COM\\n\\n\\n Traffic currently runs between five and twenty-five messages per day\\n (depending on the topic). \\n\\n NB: Please do _not_ send your subscription request to the\\n list directly.\\n \\n After you have contacted the list administrator, you will receive\\n an RSVP request. Please respond to this request in a timely manner\\n so that you can be added to the list. The request is generated in\\n order to insure that there is a valid mail pathway to your site.\\n \\n Upon receipt of your RSVP, you will be added to either the daily\\n or digest distribution (as per your initial request).\\n\\n HOW TO GET THE DIGEST DISTRIBUTION\\n ----------------------------------\\n\\n It is possible to receive the list in \\'digest\\'ed form (ie. a\\n single email message). The RoadRacing Digest is mailed out \\n whenever it contains enough interesting content. Given the\\n frequency of postings this appears to be about every other\\n day.\\n\\n Should you wish to receive the list via digest (once every \\n 30-40K or so), please send a subscription request to:\\n\\n\\n digest-request@boogie.EBay.Sun.COM\\n\\n\\n HOW TO POST TO THE LIST\\n -----------------------\\n\\n This is an open forum. To post an article to the list, send to:\\n\\n\\n race@boogie.EBay.Sun.COM\\n\\n\\n Depending on how mail is set up at your site you may or may\\n not see the mail that you have posted. If you want to see it\\n (though this isn\\'t necessarily a guarantee that it went out)\\n you can include a \"metoo\" line in your .mailrc file (on UNIX\\n based mail systems). \\n\\n BOUNCES\\n -------\\n\\n Because I haven\\'t had the time (or the inclination to replace\\n the list distribution mechanism) we still have a problem with\\n bounces returning to the poster of a message. Occasionally,\\n sites or users go off-line (either leaving their place of\\n employment prematurely or hardware problems) and you will receive\\n bounces from the race list. Check the headers carefully, and\\n if you find that the bounce originated at Sun (from whence I\\n administer this list) contact me through my administration\\n hat (race-request@boogie.EBay.sun.com). If not, ignore the bounce. \\n\\n OTHER LISTS \\n -----------\\n\\n Two-strokes: 2strokes@microunity.com\\n Harleys: harley-request@thinkage.on.ca\\n or uunet!watmath!thinkage!harley-request\\n European bikes: majordomo@onion.rain.com\\n (in body of message write: subscribe euro-moto)\\n\\n\\n thanks, be seeing you, \\n Rich (race list administrator)\\n\\n rich@boogie.EBay.Sun.COM\\n-- \\nStefan Fielding-Isaacs 415.822.5654 office/fax\\ndba Art & Science \"Books By Design\" 415.599.4876 voice/pager\\nAMA/CCS #14\\n* currently providing consulting writing services to: Gain Technology, Verity *\\n',\n", - " \"From: behanna@syl.nj.nec.com (Chris BeHanna)\\nSubject: Re: Riceburner Respect\\nOrganization: NEC Systems Laboratory, Inc.\\nLines: 14\\n\\nIn article <1993Apr15.141927.23722@cbnewsm.cb.att.com> shz@mare.att.com (Keeper of the 'Tude) writes:\\n>Huh?\\n>\\n>- Roid\\n\\n\\tOn a completely different tack, what was the eventual outcome of\\nBabe vs. the Bad-Mouthed Biker?\\n\\nLater,\\n-- \\nChris BeHanna\\tDoD# 114 1983 H-D FXWG Wide Glide - Jubilee's Red Lady\\nbehanna@syl.nj.nec.com\\t 1975 CB360T - Baby Bike\\nDisclaimer: Now why would NEC\\t 1991 ZX-11 - needs a name\\nagree with any of this anyway? I was raised by a pack of wild corn dogs.\\n\",\n", - " 'From: bil@okcforum.osrhe.edu (Bill Conner)\\nSubject: Re: Americans and Evolution\\nNntp-Posting-Host: okcforum.osrhe.edu\\nOrganization: Okcforum Unix Users Group\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 30\\n\\nRobert Singleton (bobs@thnext.mit.edu) wrote:\\n\\n: > Sure it isn\\'t mutually exclusive, but it lends weight to (i.e. increases\\n: > notional running estimates of the posterior probability of) the \\n: > atheist\\'s pitch in the partition, and thus necessarily reduces the same \\n: > quantity in the theist\\'s pitch. This is because the `divine component\\' \\n: > falls prey to Ockham\\'s Razor, the phenomenon being satisfactorily \\n: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n: > explained without it, and there being no independent evidence of any \\n: ^^^^^^^^^^^^^^^^^^^^\\n: > such component. More detail in the next post.\\n: > \\n\\nOccam\\'s Razor is not a law of nature, it is way of analyzing an\\nargument, even so, it interesting how often it\\'s cited here and to\\nwhat end. \\nIt seems odd that religion is simultaneously condemned as being\\nprimitive, simple-minded and unscientific, anti-intellectual and\\nchildish, and yet again condemned as being too complex (Occam\\'s\\nrazor), the scientific explanation of things being much more\\nstraightforeward and, apparently, simpler. Which is it to be - which\\nis the \"non-essential\", and how do you know?\\nConsidering that even scientists don\\'t fully comprehend science due to\\nits complexity and diversity. Maybe William of Occam has performed a\\nlobotomy, kept the frontal lobe and thrown everything else away ...\\n\\nThis is all very confusing, I\\'m sure one of you will straighten me out\\ntough.\\n\\nBill\\n',\n", - " \"From: u895027@franklin.cc.utas.edu.au (Mark Mackey)\\nSubject: Raytracers: which is best?\\nOrganization: University of Tasmania, Australia.\\nLines: 15\\n\\nHi all!\\n\\tI've just recently become seriously hooked on POV, but there are a few\\nthing that I want to do that POV won't do (penumbral shadows, dispersion\\netc.). I was just wondering: what other shareware/freeware raytracers are\\nout there, and what can they do? I've heard of Vivid and Polyray and \\nRayshade and so on, but I'd rather no wade through several hundred pages of \\nmanual for each trying to work out what their capabilities are. Can anyone\\nhelp? A comparison of tracing speed between each program would also be \\nmucho useful.\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tMark.\\n\\n-------------------------------------------------------------------------------\\nMark Mackey | Life is a terminal disease and oxygen is \\nmmackey@aqueous.ml.csiro.au | addictive. Are _you_ hooked? \\n-------------------------------------------------------------------------------\\n\",\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Moraltiy? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>>>What if I act morally for no particular reason? Then am I moral? What\\n|> >>>>if morality is instinctive, as in most animals?\\n|> >>>\\n|> >>>Saying that morality is instinctive in animals is an attempt to \\n|> >>>assume your conclusion.\\n|> >>\\n|> >>Which conclusion?\\n|> >\\n|> >You conclusion - correct me if I err - that the behaviour which is\\n|> >instinctive in animals is a \"natural\" moral system.\\n|> \\n|> See, we are disagreeing on the definition of moral here. Earlier, you said\\n|> that it must be a conscious act. By your definition, no instinctive\\n|> behavior pattern could be an act of morality. You are trying to apply\\n|> human terms to non-humans.\\n\\nPardon me? *I* am trying to apply human terms to non-humans?\\n\\nI think there must be some confusion here. I\\'m the guy who is\\nsaying that if animal behaviour is instinctive then it does *not*\\nhave any moral sugnificance. How does refusing to apply human\\nterms to animals get turned into applying human terms?\\n\\n|> I think that even if someone is not conscious of an alternative, \\n|> this does not prevent his behavior from being moral.\\n\\nI\\'m sure you do think this, if you say so. How about trying to\\nconvince me?\\n\\n|> \\n|> >>You don\\'t think that morality is a behavior pattern? What is human\\n|> >>morality? A moral action is one that is consistent with a given\\n|> >>pattern. That is, we enforce a certain behavior as moral.\\n|> >\\n|> >You keep getting this backwards. *You* are trying to show that\\n|> >the behaviour pattern is a morality. Whether morality is a behavior \\n|> >pattern is irrelevant, since there can be behavior pattern, for\\n|> >example the motions of the planets, that most (all?) people would\\n|> >not call a morality.\\n|> \\n|> I try to show it, but by your definition, it can\\'t be shown.\\n\\nI\\'ve offered, four times, I think, to accept your definition if\\nyou allow me to ascribe moral significence to the orbital motion\\nof the planets.\\n\\n|> \\n|> And, morality can be thought of a large class of princples. It could be\\n|> defined in terms of many things--the laws of physics if you wish. However,\\n|> it seems silly to talk of a \"moral\" planet because it obeys the laws of\\n|> phyics. It is less silly to talk about animals, as they have at least\\n|> some free will.\\n\\nAh, the law of \"silly\" and \"less silly\". what Mr Livesey finds \\nintuitive is \"silly\" but what Mr Schneider finds intuitive is \"less \\nsilly\".\\n\\nNow that\\'s a devastating argument, isn\\'t it.\\n\\njon.\\n',\n", - " \"From: seth@north1.acpub.duke.edu (Seth Wandersman)\\nSubject: Oak Driver NEEDED (30d studio)\\nReply-To: seth@north1.acpub.duke.edu (Seth Wandersman)\\nLines: 8\\nNntp-Posting-Host: north1.acpub.duke.edu\\n\\n\\n\\tHi, I'm looking for the 3-D studio driver for the\\n\\tOak card with 1 M of RAM.\\n\\tThis would be GREATLY (and I mean that) appreciated\\n\\n\\tMaybe I should have just gotten a more well know card.\\nthanks\\nseth@acpub.duke.edu\\n\",\n", - " 'From: raymaker@bcm.tmc.edu (Mark Raymaker)\\nSubject: graphics driver standards\\nOrganization: Baylor College of Medicine, Houston, Tx\\nLines: 21\\nNNTP-Posting-Host: bcm.tmc.edu\\nKeywords: graphics,standards\\n\\nI have a researcher who collecting electical impulses from\\nthe human heart through a complex Analog to Digital system\\nhe has designed and inputting this information into his EISA\\nbus HP Vectra Computer running DOS and the Phar Lap DOS extender. \\n\\nHe want to purchase a very high-performance video card for\\n3-D modeling. He is aware of a company called Matrox but\\nhe is concerned about getting married to a company and their\\nvideo routine library. He would hope some more flexibility:\\nto choose between several card manufacturers with a standard\\nvideo driver. He would like to write more generic code- \\ncode that could be easily moved to other cards or computer operating\\nsystems in the future. Is there any hope?\\nAny information would be greatly appreciated-\\nPlease, if possible, respond directly to internet mail \\nto raymaker@bcm.tmc.edu\\n\\nThanks\\n\\n\\n\\n',\n", - " 'From: thomsonal@cpva.saic.com\\nSubject: Cosmos 2238: an EORSAT\\nArticle-I.D.: cpva.15337.2bc16ada\\nOrganization: Science Applications Int\\'l Corp./San Diego\\nLines: 48\\n\\n>Date: Tue, 6 Apr 1993 15:40:47 GMT\\n\\n>I need as much information about Cosmos 2238 and its rocket fragment (1993-\\n>018B) as possible. Both its purpose, launch date, location, in short,\\n>EVERYTHING! Can you help?\\n\\n>-Tony Ryan, \"Astronomy & Space\", new International magazine, available from:\\n\\n------------------------------------------------------------------------------\\n\\nOcean Reconnaissance Launch Surprises West\\nSpace News, April 5-11, 1993, p.2\\n[Excerpts]\\n Russia launched its first ocean reconnaissance satellite in 26 months \\nMarch 30, confounding Western analysts who had proclaimed the program dead. \\n The Itar-TASS news agency announced the launch of Cosmos 2238 from \\nPlesetsk Cosmodrome, but provided little description of the payload\\'s mission. \\n However, based on the satellite\\'s trajectory, Western observers \\nidentified it as a military spacecraft designed to monitor electronic \\nemissions from foreign naval ships in order to track their movement. \\n Geoff Perry of the Kettering Group in England... [said] Western \\nobservers had concluded that no more would be launched. But days after the \\nlast [such] satellite re-entered the Earth\\'s atmosphere, Cosmos 2238 was \\nlaunched. \\n\\n\"Cosmos-2238\" Satellite Launched for Defense Ministry\\nMoscow ITAR-TASS World Service in Russian 1238 GMT 30 March 1993\\nTranslated in FBIS-SOV-93-060, p.27\\nby ITAR-TASS correspondent Veronika Romanenkova\\n Moscow, 30 March -- The Cosmos-2238 satellite was launched at 1600 Moscow \\ntime today from the Baykonur by a \"Tsiklon-M\" carrier rocket. An ITAR-TASS \\ncorrespondent was told at the press center of Russia\\'s space-military forces \\nthat the satellite was launched in the interests of the Russian Defense \\nMinistry. \\n\\nParameters Given\\nMoscow ITAR-TASS World Service in Russian 0930 GMT 31 March 1993\\nTranslated in FBIS-SOV-93-060, p.27\\n Moscow, 31 March -- Another artificial Earth satellite, Cosmos-2238, was \\nlaunched on 30 March from the Baykonur cosmodrome. \\n The satellite carries scientific apparatus for continuing space research. \\nThe satellite has been placed in an orbit with the following parameters: \\ninitial period of revolution--92.8 minutes; apogee--443 km; perigee--413 km; \\norbital inclination--65 degrees. \\n Besides scientific apparatus the satellite carries a radio system for the \\nprecise measurement of orbital elements and a radiotelemetry system for \\ntransmitting to Earth data about the work of the instruments and scientific \\napparatus. The apparatus aboard the satellite is working normally. \\n',\n", - " 'From: holler@holli.augs1.adsp.sub.org (Jan Holler)\\nSubject: Re: Newsgroup Split\\nReply-To: holli!holler@augs1.adsp.sub.org\\nOrganization: private\\nLines: 24\\nX-NewsSoftware: GRn 1.16f (10.17.92) by Mike Schwartz & Michael B. Smith\\n\\nIn article nerone@ccwf.cc.utexas.edu (Michael Nerone) writes:\\n> In article <1quvdoINN3e7@srvr1.engin.umich.edu>, tdawson@engin.umich.edu (Chris Herringshaw) writes:\\n> \\n> CH> Concerning the proposed newsgroup split, I personally am not in\\n\\n> Also, it is readily observable that the current spectrum of amiga\\n> groups is already plagued with mega-crossposting; thus the group-split\\n> would not, in all likelihood, bring about a more structured\\n> environment.\\n\\nAm I glad you write that. I got flamed all along because I begged NOT to\\ncrosspost some nonsense articles.\\n\\nThe problem with crossposting is on the first poster. I am aware that this\\nposting is a crossposting too, but what else should one do. You never know\\nwhere the interested people stay in.\\n\\nTo split up newsgroups brings even more crossposting.\\n\\n-- \\n\\nJan Holler, Bern, Switzerland Good is not good enough, make it better!\\nholli!holler@augs1.adsp.sub.org ((Second chance: holler@iamexwi.unibe.ch))\\n-------------------------------------------------------------------------------\\n (( fast mail: cbmehq!cbmswi!augs1!holli!holler@cbmvax.commodore.com )) \\n',\n", - " 'From: sean@whiting.mcs.com (Sean Gum)\\nSubject: Re: CView answers\\nOrganization: -*- Whiting Corporation, Harvey, Illinois -*-\\nX-Newsreader: Tin 1.1 PL4\\nLines: 23\\n\\nbryanw@rahul.net (Bryan Woodworth) writes:\\n: In <1993Apr16.114158.2246@whiting.mcs.com> sean@whiting.mcs.com (Sean Gum) writes:\\n: \\n: >A stupid question, but what will CView run on and where can I get it? I\\n: >am still in need of a GIF viewer for Linux. (Without X-Windows.)\\n: >Thanks!\\n: > \\n: \\n: Ho boy. There is no way in HELL you are going to be able to view GIFs or do\\n: any other graphics in Linux without X windows! I love Linux because it is\\n: so easy to learn.. You want text? Okay. Use Linux. You want text AND\\n: graphics? Use Linux with X windows. Simple. Painless. REQUIRED to have\\n: X Windows if you want graphics! This includes fancy word processors like\\n: doc, image viewers like xv, etc.\\n:\\nUmmm, I beg to differ. A kind soul sent me a program called DPG-VIEW that\\nwill do exactly what I want, view GIF images under Linux without X-Windows.\\nAnd, it does support all the way up to 1024x768. The biggest complaint I\\nhave is it is painfully SLOW. It takes about 1 minute to display an image.\\nI am use to CSHOW under DOS which takes a split second. Any idea why it\\nis so slow under Linux? Anybody have anything better? Plus, anybody have\\nthe docs to DPG-View? Thanks!\\n \\n',\n", - " \"From: Nanci Ann Miller \\nSubject: Re: Bible Quiz\\nOrganization: Sponsored account, School of Computer Science, Carnegie Mellon, Pittsburgh, PA\\nLines: 14\\n\\t\\nNNTP-Posting-Host: andrew.cmu.edu\\nIn-Reply-To: \\n\\nkmr4@po.CWRU.edu (Keith M. Ryan) writes:\\n> Would you mind e-mailing me the questions, with the pairs of answers?\\n> I would love to have them for the next time a Theist comes to my door!\\n\\nI'd like this too... maybe you should post an answer key after a while?\\n\\nNanci\\n\\n.........................................................................\\nIf you know (and are SURE of) the author of this quote, please send me\\nemail (nm0w+@andrew.cmu.edu):\\nIt is better to be a coward for a minute than dead for the rest of your\\nlife.\\n\\n\",\n", - " 'From: hm@cs.brown.edu (Harry Mamaysky)\\nSubject: Dir Yassin (was Re: no-Free man propaganda machine: Freeman, with blood greetings from Israel)\\nIn-Reply-To: hasan@McRCIM.McGill.EDU \\'s message of Tue, 13 Apr 93 14:15:18 GMT\\nOrganization: Dept. of Computer Science, Brown University\\nLines: 85\\n\\nIn article <1993Apr13.141518.13900@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n CHECK MENAHEM BEGIN DAIRIES (published book) you\\'ll find accounts of the\\n massacres there including Deir Yassen,\\n though with the numbers of massacred men, children and women are \\n greatly minimized.\\n\\nAs per request of Hasan:\\n\\nFrom _The Revolt_, by Menachem Begin, Dell Publishing, NY, 1977:\\n\\n[pp. 225-227]\\n\\n \"Apart from the military aspect, there is a moral aspect to the\\nstory of Dir Yassin. At that village, whose name was publicized\\nthroughout the world, both sides suffered heavy casualties. We had\\nfour killed and nearly forty wounded. The number of casualties was\\nnearly forty percent of the total number of the attackers. The Arab\\ntroops suffered casualties neraly three times as heavy. The fighting\\nwas thus very severe. Yet the hostile propaganda, disseminated\\nthroughout the world, deliberately ignored the fact that the civilian\\npopulation of Dir Yassin was actually given a warning by us before the\\nbattle began. One of our tenders carrying a loud speaker was stationed\\nat the entrance to the village and it exhorted in Arabic all women,\\nchildren and aged to leave their houses and to take shelter on the\\nslopes of the hill. By giving this humane warning our fighters threw\\naway the element of complete surprise, and thus increased their own\\nrisk in the ensuing battle. A substantial number of the inhabitants\\nobeyed the warning and they were unhurt. A few did not leave their\\nstone houses - perhaps because of the confusion. The fire of the enemy\\nwas murderous - to which the number of our casualties bears eloquent\\ntestimony. Our men were compelled to fight for every house; to\\novercome the enemy they used large numbers of hand grenades. And the\\ncivilians who had disregarded our warnings suffered inevitable\\ncasualties.\\n\\n \"The education which we gave our soldiers throughout the years of\\nrevolt was based on the observance of the traditional laws of war. We\\nnever broke them unless the enemy first did so and thus forced us, in\\naccordance with the accepted custom of war, to apply reprisals. I am\\nconvinced, too, that our officers and men wished to avoid a single\\nunnecessary casualty in the Dir Yassin battle. But those who throw\\nstones of denunciation at the conquerors of Dir Yassin [1] would do\\nwell not to don the cloak of hypocrisy [2].\\n\\n \"In connection with the capture of Dir Yassin the Jewish Agency\\nfound it necessary to send a letter of apology to Abdullah, whom Mr.\\nBen Gurion, at a moment of great political emotion, called \\'the wise\\nruler who seeks the good of his people and this country.\\' The \\'wise\\nruler,\\' whose mercenary forces demolished Gush Etzion and flung the\\nbodies of its heroic defenders to birds of prey, replied with feudal\\nsuperciliousness. He rejected the apology and replied that the Jews\\nwere all to blame and that he did not believe in the existence of\\n\\'dissidents.\\' Throughout the Arab world and the world at large a wave\\nof lying propaganda was let loose about \\'Jewish attrocities.\\'\\n\\n \"The enemy propaganda was designed to besmirch our name. In the\\nresult it helped us. Panic overwhelmed the Arabs of Eretz Israel.\\nKolonia village, which had previously repulsed every attack of the\\nHaganah, was evacuated overnight and fell without further fighting.\\nBeit-Iksa was also evacuated. These two places overlooked the main\\nroad; and their fall, together with the capture of Kastel by the\\nHaganah, made it possible to keep open the road to Jerusalem. In the\\nrest of the country, too, the Arabs began to flee in terror, even\\nbefore they clashed with Jewish forces. Not what happened at Dir\\nYassin, but what was invented about Dir Yassin, helped to carve the\\nway to our decisive victories on the battlefield. The legend of Dir\\nYassin helped us in particular in the saving of Tiberias and the\\nconquest of Haifa.\"\\n\\n\\n[1] (A footnote from _The Revolt_, pp.226-7.) \"To counteract the loss\\nof Dir yassin, a village of strategic importance, Arab headquarters at\\nRamallah broadcast a crude atrocity story, alleging a massacre by\\nIrgun troops of women and children in the village. Certain Jewish\\nofficials, fearing the Irgun men as political rivals, seized upon this\\nArab gruel propaganda to smear the Irgun. An eminent Rabbi was induced\\nto reprimand the Irgun before he had time to sift the truth. Out of\\nevil, however, good came. This Arab propaganda spread a legend of\\nterror amongst Arabs and Arab troops, who were seized with panic at\\nthe mention of Irgun soldiers. The legend was worth half a dozen\\nbattalions to the forces of Israel. The `Dir Yassin Massacre\\' lie\\nis still propagated by Jew-haters all over the world.\"\\n\\n[2] In reference to denunciation of Dir Yassin by fellow Jews.\\n',\n", - " 'From: mathew \\nSubject: Alt.Atheism FAQ: Introduction to Atheism\\nSummary: Please read this file before posting to alt.atheism\\nKeywords: FAQ, atheism\\nExpires: Thu, 6 May 1993 12:22:45 GMT\\nDistribution: world\\nOrganization: Mantis Consultants, Cambridge. UK.\\nSupersedes: <19930308134439@mantis.co.uk>\\nLines: 646\\n\\nArchive-name: atheism/introduction\\nAlt-atheism-archive-name: introduction\\nLast-modified: 5 April 1993\\nVersion: 1.2\\n\\n-----BEGIN PGP SIGNED MESSAGE-----\\n\\n An Introduction to Atheism\\n by mathew \\n\\nThis article attempts to provide a general introduction to atheism. Whilst I\\nhave tried to be as neutral as possible regarding contentious issues, you\\nshould always remember that this document represents only one viewpoint. I\\nwould encourage you to read widely and draw your own conclusions; some\\nrelevant books are listed in a companion article.\\n\\nTo provide a sense of cohesion and progression, I have presented this article\\nas an imaginary conversation between an atheist and a theist. All the\\nquestions asked by the imaginary theist are questions which have been cropped\\nup repeatedly on alt.atheism since the newsgroup was created. Some other\\nfrequently asked questions are answered in a companion article.\\n\\nPlease note that this article is arguably slanted towards answering questions\\nposed from a Christian viewpoint. This is because the FAQ files reflect\\nquestions which have actually been asked, and it is predominantly Christians\\nwho proselytize on alt.atheism.\\n\\nSo when I talk of religion, I am talking primarily about religions such as\\nChristianity, Judaism and Islam, which involve some sort of superhuman divine\\nbeing. Much of the discussion will apply to other religions, but some of it\\nmay not.\\n\\n\"What is atheism?\"\\n\\nAtheism is characterized by an absence of belief in the existence of God.\\nSome atheists go further, and believe that God does not exist. The former is\\noften referred to as the \"weak atheist\" position, and the latter as \"strong\\natheism\".\\n\\nIt is important to note the difference between these two positions. \"Weak\\natheism\" is simple scepticism; disbelief in the existence of God. \"Strong\\natheism\" is a positive belief that God does not exist. Please do not\\nfall into the trap of assuming that all atheists are \"strong atheists\".\\n\\nSome atheists believe in the non-existence of all Gods; others limit their\\natheism to specific Gods, such as the Christian God, rather than making\\nflat-out denials.\\n\\n\"But isn\\'t disbelieving in God the same thing as believing he doesn\\'t exist?\"\\n\\nDefinitely not. Disbelief in a proposition means that one does not believe\\nit to be true. Not believing that something is true is not equivalent to\\nbelieving that it is false; one may simply have no idea whether it is true or\\nnot. Which brings us to agnosticism.\\n\\n\"What is agnosticism then?\"\\n\\nThe term \\'agnosticism\\' was coined by Professor Huxley at a meeting of the\\nMetaphysical Society in 1876. He defined an agnostic as someone who\\ndisclaimed (\"strong\") atheism and believed that the ultimate origin of things\\nmust be some cause unknown and unknowable.\\n\\nThus an agnostic is someone who believes that we do not and cannot know for\\nsure whether God exists.\\n\\nWords are slippery things, and language is inexact. Beware of assuming that\\nyou can work out someone\\'s philosophical point of view simply from the fact\\nthat she calls herself an atheist or an agnostic. For example, many people\\nuse agnosticism to mean \"weak atheism\", and use the word \"atheism\" only when\\nreferring to \"strong atheism\".\\n\\nBeware also that because the word \"atheist\" has so many shades of meaning, it\\nis very difficult to generalize about atheists. About all you can say for\\nsure is that atheists don\\'t believe in God. For example, it certainly isn\\'t\\nthe case that all atheists believe that science is the best way to find out\\nabout the universe.\\n\\n\"So what is the philosophical justification or basis for atheism?\"\\n\\nThere are many philosophical justifications for atheism. To find out why a\\nparticular person chooses to be an atheist, it\\'s best to ask her.\\n\\nMany atheists feel that the idea of God as presented by the major religions\\nis essentially self-contradictory, and that it is logically impossible that\\nsuch a God could exist. Others are atheists through scepticism, because they\\nsee no evidence that God exists.\\n\\n\"But isn\\'t it impossible to prove the non-existence of something?\"\\n\\nThere are many counter-examples to such a statement. For example, it is\\nquite simple to prove that there does not exist a prime number larger than\\nall other prime numbers. Of course, this deals with well-defined objects\\nobeying well-defined rules. Whether Gods or universes are similarly\\nwell-defined is a matter for debate.\\n\\nHowever, assuming for the moment that the existence of a God is not provably\\nimpossible, there are still subtle reasons for assuming the non-existence of\\nGod. If we assume that something does not exist, it is always possible to\\nshow that this assumption is invalid by finding a single counter-example.\\n\\nIf on the other hand we assume that something does exist, and if the thing in\\nquestion is not provably impossible, showing that the assumption is invalid\\nmay require an exhaustive search of all possible places where such a thing\\nmight be found, to show that it isn\\'t there. Such an exhaustive search is\\noften impractical or impossible. There is no such problem with largest\\nprimes, because we can prove that they don\\'t exist.\\n\\nTherefore it is generally accepted that we must assume things do not exist\\nunless we have evidence that they do. Even theists follow this rule most of\\nthe time; they don\\'t believe in unicorns, even though they can\\'t conclusively\\nprove that no unicorns exist anywhere.\\n\\nTo assume that God exists is to make an assumption which probably cannot be\\ntested. We cannot make an exhaustive search of everywhere God might be to\\nprove that he doesn\\'t exist anywhere. So the sceptical atheist assumes by\\ndefault that God does not exist, since that is an assumption we can test.\\n\\nThose who profess strong atheism usually do not claim that no sort of God\\nexists; instead, they generally restrict their claims so as to cover\\nvarieties of God described by followers of various religions. So whilst it\\nmay be impossible to prove conclusively that no God exists, it may be\\npossible to prove that (say) a God as described by a particular religious\\nbook does not exist. It may even be possible to prove that no God described\\nby any present-day religion exists.\\n\\nIn practice, believing that no God described by any religion exists is very\\nclose to believing that no God exists. However, it is sufficiently different\\nthat counter-arguments based on the impossibility of disproving every kind of\\nGod are not really applicable.\\n\\n\"But what if God is essentially non-detectable?\"\\n\\nIf God interacts with our universe in any way, the effects of his interaction\\nmust be measurable. Hence his interaction with our universe must be\\ndetectable.\\n\\nIf God is essentially non-detectable, it must therefore be the case that he\\ndoes not interact with our universe in any way. Many atheists would argue\\nthat if God does not interact with our universe at all, it is of no\\nimportance whether he exists or not.\\n\\nIf the Bible is to be believed, God was easily detectable by the Israelites.\\nSurely he should still be detectable today?\\n\\nNote that I am not demanding that God interact in a scientifically\\nverifiable, physical way. It must surely be possible to perceive some\\neffect caused by his presence, though; otherwise, how can I distinguish him\\nfrom all the other things that don\\'t exist?\\n\\n\"OK, you may think there\\'s a philosophical justification for atheism, but\\n isn\\'t it still a religious belief?\"\\n\\nOne of the most common pastimes in philosophical discussion is \"the\\nredefinition game\". The cynical view of this game is as follows:\\n\\nPerson A begins by making a contentious statement. When person B points out\\nthat it can\\'t be true, person A gradually re-defines the words he used in the\\nstatement until he arrives at something person B is prepared to accept. He\\nthen records the statement, along with the fact that person B has agreed to\\nit, and continues. Eventually A uses the statement as an \"agreed fact\", but\\nuses his original definitions of all the words in it rather than the obscure\\nredefinitions originally needed to get B to agree to it. Rather than be seen\\nto be apparently inconsistent, B will tend to play along.\\n\\nThe point of this digression is that the answer to the question \"Isn\\'t\\natheism a religious belief?\" depends crucially upon what is meant by\\n\"religious\". \"Religion\" is generally characterized by belief in a superhuman\\ncontrolling power -- especially in some sort of God -- and by faith and\\nworship.\\n\\n[ It\\'s worth pointing out in passing that some varieties of Buddhism are not\\n \"religion\" according to such a definition. ]\\n\\nAtheism is certainly not a belief in any sort of superhuman power, nor is it\\ncategorized by worship in any meaningful sense. Widening the definition of\\n\"religious\" to encompass atheism tends to result in many other aspects of\\nhuman behaviour suddenly becoming classed as \"religious\" as well -- such as\\nscience, politics, and watching TV.\\n\\n\"OK, so it\\'s not a religion. But surely belief in atheism (or science) is\\n still just an act of faith, like religion is?\"\\n\\nFirstly, it\\'s not entirely clear that sceptical atheism is something one\\nactually believes in.\\n\\nSecondly, it is necessary to adopt a number of core beliefs or assumptions to\\nmake some sort of sense out of the sensory data we experience. Most atheists\\ntry to adopt as few core beliefs as possible; and even those are subject to\\nquestioning if experience throws them into doubt.\\n\\nScience has a number of core assumptions. For example, it is generally\\nassumed that the laws of physics are the same for all observers. These are\\nthe sort of core assumptions atheists make. If such basic ideas are called\\n\"acts of faith\", then almost everything we know must be said to be based on\\nacts of faith, and the term loses its meaning.\\n\\nFaith is more often used to refer to complete, certain belief in something.\\nAccording to such a definition, atheism and science are certainly not acts of\\nfaith. Of course, individual atheists or scientists can be as dogmatic as\\nreligious followers when claiming that something is \"certain\". This is not a\\ngeneral tendency, however; there are many atheists who would be reluctant to\\nstate with certainty that the universe exists.\\n\\nFaith is also used to refer to belief without supporting evidence or proof.\\nSceptical atheism certainly doesn\\'t fit that definition, as sceptical atheism\\nhas no beliefs. Strong atheism is closer, but still doesn\\'t really match, as\\neven the most dogmatic atheist will tend to refer to experimental data (or\\nthe lack of it) when asserting that God does not exist.\\n\\n\"If atheism is not religious, surely it\\'s anti-religious?\"\\n\\nIt is an unfortunate human tendency to label everyone as either \"for\" or\\n\"against\", \"friend\" or \"enemy\". The truth is not so clear-cut.\\n\\nAtheism is the position that runs logically counter to theism; in that sense,\\nit can be said to be \"anti-religion\". However, when religious believers\\nspeak of atheists being \"anti-religious\" they usually mean that the atheists\\nhave some sort of antipathy or hatred towards theists.\\n\\nThis categorization of atheists as hostile towards religion is quite unfair.\\nAtheist attitudes towards theists in fact cover a broad spectrum.\\n\\nMost atheists take a \"live and let live\" attitude. Unless questioned, they\\nwill not usually mention their atheism, except perhaps to close friends. Of\\ncourse, this may be in part because atheism is not \"socially acceptable\" in\\nmany countries.\\n\\nA few atheists are quite anti-religious, and may even try to \"convert\" others\\nwhen possible. Historically, such anti-religious atheists have made little\\nimpact on society outside the Eastern Bloc countries.\\n\\n(To digress slightly: the Soviet Union was originally dedicated to separation\\nof church and state, just like the USA. Soviet citizens were legally free to\\nworship as they wished. The institution of \"state atheism\" came about when\\nStalin took control of the Soviet Union and tried to destroy the churches in\\norder to gain complete power over the population.)\\n\\nSome atheists are quite vocal about their beliefs, but only where they see\\nreligion encroaching on matters which are not its business -- for example,\\nthe government of the USA. Such individuals are usually concerned that\\nchurch and state should remain separate.\\n\\n\"But if you don\\'t allow religion to have a say in the running of the state,\\n surely that\\'s the same as state atheism?\"\\n\\nThe principle of the separation of church and state is that the state shall\\nnot legislate concerning matters of religious belief. In particular, it\\nmeans not only that the state cannot promote one religion at the expense of\\nanother, but also that it cannot promote any belief which is religious in\\nnature.\\n\\nReligions can still have a say in discussion of purely secular matters. For\\nexample, religious believers have historically been responsible for\\nencouraging many political reforms. Even today, many organizations\\ncampaigning for an increase in spending on foreign aid are founded as\\nreligious campaigns. So long as they campaign concerning secular matters,\\nand so long as they do not discriminate on religious grounds, most atheists\\nare quite happy to see them have their say.\\n\\n\"What about prayer in schools? If there\\'s no God, why do you care if people\\n pray?\"\\n\\nBecause people who do pray are voters and lawmakers, and tend to do things\\nthat those who don\\'t pray can\\'t just ignore. Also, Christian prayer in\\nschools is intimidating to non-Christians, even if they are told that they\\nneed not join in. The diversity of religious and non-religious belief means\\nthat it is impossible to formulate a meaningful prayer that will be\\nacceptable to all those present at any public event.\\n\\nAlso, non-prayers tend to have friends and family who pray. It is reasonable\\nto care about friends and family wasting their time, even without other\\nmotives.\\n\\n\"You mentioned Christians who campaign for increased foreign aid. What about\\n atheists? Why aren\\'t there any atheist charities or hospitals? Don\\'t\\n atheists object to the religious charities?\"\\n\\nThere are many charities without religious purpose that atheists can\\ncontribute to. Some atheists contribute to religious charities as well, for\\nthe sake of the practical good they do. Some atheists even do voluntary work\\nfor charities founded on a theistic basis.\\n\\nMost atheists seem to feel that atheism isn\\'t worth shouting about in\\nconnection with charity. To them, atheism is just a simple, obvious everyday\\nmatter, and so is charity. Many feel that it\\'s somewhat cheap, not to say\\nself-righteous, to use simple charity as an excuse to plug a particular set\\nof religious beliefs.\\n\\nTo \"weak\" atheists, building a hospital to say \"I do not believe in God\" is a\\nrather strange idea; it\\'s rather like holding a party to say \"Today is not my\\nbirthday\". Why the fuss? Atheism is rarely evangelical.\\n\\n\"You said atheism isn\\'t anti-religious. But is it perhaps a backlash against\\n one\\'s upbringing, a way of rebelling?\"\\n\\nPerhaps it is, for some. But many people have parents who do not attempt to\\nforce any religious (or atheist) ideas upon them, and many of those people\\nchoose to call themselves atheists.\\n\\nIt\\'s also doubtless the case that some religious people chose religion as a\\nbacklash against an atheist upbringing, as a way of being different. On the\\nother hand, many people choose religion as a way of conforming to the\\nexpectations of others.\\n\\nOn the whole, we can\\'t conclude much about whether atheism or religion are\\nbacklash or conformism; although in general, people have a tendency to go\\nalong with a group rather than act or think independently.\\n\\n\"How do atheists differ from religious people?\"\\n\\nThey don\\'t believe in God. That\\'s all there is to it.\\n\\nAtheists may listen to heavy metal -- backwards, even -- or they may prefer a\\nVerdi Requiem, even if they know the words. They may wear Hawaiian shirts,\\nthey may dress all in black, they may even wear orange robes. (Many\\nBuddhists lack a belief in any sort of God.) Some atheists even carry a copy\\nof the Bible around -- for arguing against, of course!\\n\\nWhoever you are, the chances are you have met several atheists without\\nrealising it. Atheists are usually unexceptional in behaviour and\\nappearance.\\n\\n\"Unexceptional? But aren\\'t atheists less moral than religious people?\"\\n\\nThat depends. If you define morality as obedience to God, then of course\\natheists are less moral as they don\\'t obey any God. But usually when one\\ntalks of morality, one talks of what is acceptable (\"right\") and unacceptable\\n(\"wrong\") behaviour within society.\\n\\nHumans are social animals, and to be maximally successful they must\\nco-operate with each other. This is a good enough reason to discourage most\\natheists from \"anti-social\" or \"immoral\" behaviour, purely for the purposes\\nof self-preservation.\\n\\nMany atheists behave in a \"moral\" or \"compassionate\" way simply because they\\nfeel a natural tendency to empathize with other humans. So why do they care\\nwhat happens to others? They don\\'t know, they simply are that way.\\n\\nNaturally, there are some people who behave \"immorally\" and try to use\\natheism to justify their actions. However, there are equally many people who\\nbehave \"immorally\" and then try to use religious beliefs to justify their\\nactions. For example:\\n\\n \"Here is a trustworthy saying that deserves full acceptance: Jesus Christ\\n came into the world to save sinners... But for that very reason, I was\\n shown mercy so that in me... Jesus Christ might display His unlimited\\n patience as an example for those who would believe in him and receive\\n eternal life. Now to the king eternal, immortal, invisible, the only God,\\n be honor and glory forever and ever.\"\\n\\nThe above quote is from a statement made to the court on February 17th 1992\\nby Jeffrey Dahmer, the notorious cannibal serial killer of Milwaukee,\\nWisconsin. It seems that for every atheist mass-murderer, there is a\\nreligious mass-murderer. But what of more trivial morality?\\n\\n A survey conducted by the Roper Organization found that behavior\\n deteriorated after \"born again\" experiences. While only 4% of respondents\\n said they had driven intoxicated before being \"born again,\" 12% had done\\n so after conversion. Similarly, 5% had used illegal drugs before\\n conversion, 9% after. Two percent admitted to engaging in illicit sex\\n before salvation; 5% after.\\n [\"Freethought Today\", September 1991, p. 12.]\\n\\nSo it seems that at best, religion does not have a monopoly on moral\\nbehaviour.\\n\\n\"Is there such a thing as atheist morality?\"\\n\\nIf you mean \"Is there such a thing as morality for atheists?\", then the\\nanswer is yes, as explained above. Many atheists have ideas about morality\\nwhich are at least as strong as those held by religious people.\\n\\nIf you mean \"Does atheism have a characteristic moral code?\", then the answer\\nis no. Atheism by itself does not imply anything much about how a person\\nwill behave. Most atheists follow many of the same \"moral rules\" as theists,\\nbut for different reasons. Atheists view morality as something created by\\nhumans, according to the way humans feel the world \\'ought\\' to work, rather\\nthan seeing it as a set of rules decreed by a supernatural being.\\n\\n\"Then aren\\'t atheists just theists who are denying God?\"\\n\\nA study by the Freedom From Religion Foundation found that over 90% of the\\natheists who responded became atheists because religion did not work for\\nthem. They had found that religious beliefs were fundamentally incompatible\\nwith what they observed around them.\\n\\nAtheists are not unbelievers through ignorance or denial; they are\\nunbelievers through choice. The vast majority of them have spent time\\nstudying one or more religions, sometimes in very great depth. They have\\nmade a careful and considered decision to reject religious beliefs.\\n\\nThis decision may, of course, be an inevitable consequence of that\\nindividual\\'s personality. For a naturally sceptical person, the choice\\nof atheism is often the only one that makes sense, and hence the only\\nchoice that person can honestly make.\\n\\n\"But don\\'t atheists want to believe in God?\"\\n\\nAtheists live their lives as though there is nobody watching over them. Many\\nof them have no desire to be watched over, no matter how good-natured the\\n\"Big Brother\" figure might be.\\n\\nSome atheists would like to be able to believe in God -- but so what? Should\\none believe things merely because one wants them to be true? The risks of\\nsuch an approach should be obvious. Atheists often decide that wanting to\\nbelieve something is not enough; there must be evidence for the belief.\\n\\n\"But of course atheists see no evidence for the existence of God -- they are\\n unwilling in their souls to see!\"\\n\\nMany, if not most atheists were previously religious. As has been explained\\nabove, the vast majority have seriously considered the possibility that God\\nexists. Many atheists have spent time in prayer trying to reach God.\\n\\nOf course, it is true that some atheists lack an open mind; but assuming that\\nall atheists are biased and insincere is offensive and closed-minded.\\nComments such as \"Of course God is there, you just aren\\'t looking properly\"\\nare likely to be viewed as patronizing.\\n\\nCertainly, if you wish to engage in philosophical debate with atheists it is\\nvital that you give them the benefit of the doubt and assume that they are\\nbeing sincere if they say that they have searched for God. If you are not\\nwilling to believe that they are basically telling the truth, debate is\\nfutile.\\n\\n\"Isn\\'t the whole of life completely pointless to an atheist?\"\\n\\nMany atheists live a purposeful life. They decide what they think gives\\nmeaning to life, and they pursue those goals. They try to make their lives\\ncount, not by wishing for eternal life, but by having an influence on other\\npeople who will live on. For example, an atheist may dedicate his life to\\npolitical reform, in the hope of leaving his mark on history.\\n\\nIt is a natural human tendency to look for \"meaning\" or \"purpose\" in random\\nevents. However, it is by no means obvious that \"life\" is the sort of thing\\nthat has a \"meaning\".\\n\\nTo put it another way, not everything which looks like a question is actually\\na sensible thing to ask. Some atheists believe that asking \"What is the\\nmeaning of life?\" is as silly as asking \"What is the meaning of a cup of\\ncoffee?\". They believe that life has no purpose or meaning, it just is.\\n\\n\"So how do atheists find comfort in time of danger?\"\\n\\nThere are many ways of obtaining comfort; from family, friends, or even pets.\\nOr on a less spiritual level, from food or drink or TV.\\n\\nThat may sound rather an empty and vulnerable way to face danger, but so\\nwhat? Should individuals believe in things because they are comforting, or\\nshould they face reality no matter how harsh it might be?\\n\\nIn the end, it\\'s a decision for the individual concerned. Most atheists are\\nunable to believe something they would not otherwise believe merely because\\nit makes them feel comfortable. They put truth before comfort, and consider\\nthat if searching for truth sometimes makes them feel unhappy, that\\'s just\\nhard luck.\\n\\n\"Don\\'t atheists worry that they might suddenly be shown to be wrong?\"\\n\\nThe short answer is \"No, do you?\"\\n\\nMany atheists have been atheists for years. They have encountered many\\narguments and much supposed evidence for the existence of God, but they have\\nfound all of it to be invalid or inconclusive.\\n\\nThousands of years of religious belief haven\\'t resulted in any good proof of\\nthe existence of God. Atheists therefore tend to feel that they are unlikely\\nto be proved wrong in the immediate future, and they stop worrying about it.\\n\\n\"So why should theists question their beliefs? Don\\'t the same arguments\\n apply?\"\\n\\nNo, because the beliefs being questioned are not similar. Weak atheism is\\nthe sceptical \"default position\" to take; it asserts nothing. Strong atheism\\nis a negative belief. Theism is a very strong positive belief.\\n\\nAtheists sometimes also argue that theists should question their beliefs\\nbecause of the very real harm they can cause -- not just to the believers,\\nbut to everyone else.\\n\\n\"What sort of harm?\"\\n\\nReligion represents a huge financial and work burden on mankind. It\\'s not\\njust a matter of religious believers wasting their money on church buildings;\\nthink of all the time and effort spent building churches, praying, and so on.\\nImagine how that effort could be better spent.\\n\\nMany theists believe in miracle healing. There have been plenty of instances\\nof ill people being \"healed\" by a priest, ceasing to take the medicines\\nprescribed to them by doctors, and dying as a result. Some theists have died\\nbecause they have refused blood transfusions on religious grounds.\\n\\nIt is arguable that the Catholic Church\\'s opposition to birth control -- and\\ncondoms in particular -- is increasing the problem of overpopulation in many\\nthird-world countries and contributing to the spread of AIDS world-wide.\\n\\nReligious believers have been known to murder their children rather than\\nallow their children to become atheists or marry someone of a different\\nreligion.\\n\\n\"Those weren\\'t REAL believers. They just claimed to be believers as some\\n sort of excuse.\"\\n\\nWhat makes a real believer? There are so many One True Religions it\\'s hard\\nto tell. Look at Christianity: there are many competing groups, all\\nconvinced that they are the only true Christians. Sometimes they even fight\\nand kill each other. How is an atheist supposed to decide who\\'s a REAL\\nChristian and who isn\\'t, when even the major Christian churches like the\\nCatholic Church and the Church of England can\\'t decide amongst themselves?\\n\\nIn the end, most atheists take a pragmatic view, and decide that anyone who\\ncalls himself a Christian, and uses Christian belief or dogma to justify his\\nactions, should be considered a Christian. Maybe some of those Christians\\nare just perverting Christian teaching for their own ends -- but surely if\\nthe Bible can be so readily used to support un-Christian acts it can\\'t be\\nmuch of a moral code? If the Bible is the word of God, why couldn\\'t he have\\nmade it less easy to misinterpret? And how do you know that your beliefs\\naren\\'t a perversion of what your God intended?\\n\\nIf there is no single unambiguous interpretation of the Bible, then why\\nshould an atheist take one interpretation over another just on your say-so?\\nSorry, but if someone claims that he believes in Jesus and that he murdered\\nothers because Jesus and the Bible told him to do so, we must call him a\\nChristian.\\n\\n\"Obviously those extreme sorts of beliefs should be questioned. But since\\n nobody has ever proved that God does not exist, it must be very unlikely\\n that more basic religious beliefs, shared by all faiths, are nonsense.\"\\n\\nThat does not hold, because as was pointed out at the start of this dialogue,\\npositive assertions concerning the existence of entities are inherently much\\nharder to disprove than negative ones. Nobody has ever proved that unicorns\\ndon\\'t exist, but that doesn\\'t make it unlikely that they are myths.\\n\\nIt is therefore much more valid to hold a negative assertion by default than\\nit is to hold a positive assertion by default. Of course, \"weak\" atheists\\nwould argue that asserting nothing is better still.\\n\\n\"Well, if atheism\\'s so great, why are there so many theists?\"\\n\\nUnfortunately, the popularity of a belief has little to do with how \"correct\"\\nit is, or whether it \"works\"; consider how many people believe in astrology,\\ngraphology, and other pseudo-sciences.\\n\\nMany atheists feel that it is simply a human weakness to want to believe in\\ngods. Certainly in many primitive human societies, religion allows the\\npeople to deal with phenomena that they do not adequately understand.\\n\\nOf course, there\\'s more to religion than that. In the industrialized world,\\nwe find people believing in religious explanations of phenomena even when\\nthere are perfectly adequate natural explanations. Religion may have started\\nas a means of attempting to explain the world, but nowadays it serves other\\npurposes as well.\\n\\n\"But so many cultures have developed religions. Surely that must say\\n something?\"\\n\\nNot really. Most religions are only superficially similar; for example, it\\'s\\nworth remembering that religions such as Buddhism and Taoism lack any sort of\\nconcept of God in the Christian sense.\\n\\nOf course, most religions are quick to denounce competing religions, so it\\'s\\nrather odd to use one religion to try and justify another.\\n\\n\"What about all the famous scientists and philosophers who have concluded\\n that God exists?\"\\n\\nFor every scientist or philosopher who believes in a god, there is one who\\ndoes not. Besides, as has already been pointed out, the truth of a belief is\\nnot determined by how many people believe it. Also, it is important to\\nrealize that atheists do not view famous scientists or philosophers in the\\nsame way that theists view their religious leaders.\\n\\nA famous scientist is only human; she may be an expert in some fields, but\\nwhen she talks about other matters her words carry no special weight. Many\\nrespected scientists have made themselves look foolish by speaking on\\nsubjects which lie outside their fields of expertise.\\n\\n\"So are you really saying that widespread belief in religion indicates\\n nothing?\"\\n\\nNot entirely. It certainly indicates that the religion in question has\\nproperties which have helped it so spread so far.\\n\\nThe theory of memetics talks of \"memes\" -- sets of ideas which can propagate\\nthemselves between human minds, by analogy with genes. Some atheists view\\nreligions as sets of particularly successful parasitic memes, which spread by\\nencouraging their hosts to convert others. Some memes avoid destruction by\\ndiscouraging believers from questioning doctrine, or by using peer pressure\\nto keep one-time believers from admitting that they were mistaken. Some\\nreligious memes even encourage their hosts to destroy hosts controlled by\\nother memes.\\n\\nOf course, in the memetic view there is no particular virtue associated with\\nsuccessful propagation of a meme. Religion is not a good thing because of\\nthe number of people who believe it, any more than a disease is a good thing\\nbecause of the number of people who have caught it.\\n\\n\"Even if religion is not entirely true, at least it puts across important\\n messages. What are the fundamental messages of atheism?\"\\n\\nThere are many important ideas atheists promote. The following are just a\\nfew of them; don\\'t be surprised to see ideas which are also present in some\\nreligions.\\n\\n There is more to moral behaviour than mindlessly following rules.\\n\\n Be especially sceptical of positive claims.\\n\\n If you want your life to have some sort of meaning, it\\'s up to you to\\n find it.\\n\\n Search for what is true, even if it makes you uncomfortable.\\n\\n Make the most of your life, as it\\'s probably the only one you\\'ll have.\\n\\n It\\'s no good relying on some external power to change you; you must change\\n yourself.\\n\\n Just because something\\'s popular doesn\\'t mean it\\'s good.\\n\\n If you must assume something, assume something it\\'s easy to test.\\n\\n Don\\'t believe things just because you want them to be true.\\n\\nand finally (and most importantly):\\n\\n All beliefs should be open to question.\\n\\nThanks for taking the time to read this article.\\n\\n\\nmathew\\n\\n-----BEGIN PGP SIGNATURE-----\\nVersion: 2.2\\n\\niQCVAgUBK8AjRXzXN+VrOblFAQFSbwP+MHePY4g7ge8Mo5wpsivX+kHYYxMErFAO\\n7ltVtMVTu66Nz6sBbPw9QkbjArbY/S2sZ9NF5htdii0R6SsEyPl0R6/9bV9okE/q\\nnihqnzXE8pGvLt7tlez4EoeHZjXLEFrdEyPVayT54yQqGb4HARbOEHDcrTe2atmP\\nq0Z4hSSPpAU=\\n=q2V5\\n-----END PGP SIGNATURE-----\\n\\nFor information about PGP 2.2, send mail to pgpinfo@mantis.co.uk.\\nÿ\\n',\n", - " \"From: markus@octavia.anu.edu.au (Markus Buchhorn)\\nSubject: HDF readers/viewers\\nOrganization: Australian National University, Canberra\\nLines: 33\\nDistribution: world\\nNNTP-Posting-Host: 150.203.5.35\\nOriginator: markus@octavia\\n\\n\\n\\nG'day all,\\n\\nCan anybody point me at a utility which will read/convert/crop/whatnot/\\ndisplay HDF image files ? I've had a look at the HDF stuff under NCSA \\nand it must take an award for odd directory structure, strange storage\\napproaches and minimalist documentation :-)\\n\\nPart of the problem is that I want to look at large (5MB+) HDF files and\\ncrop out a section. Ideally I would like a hdftoppm type of utility, from\\nwhich I can then use the PBMplus stuff quite merrily. I can convert the cropped\\npart into another format for viewing/animation.\\n\\nOtherwise, can someone please explain how to set up the NCSA Visualisation S/W\\nfor HDF (3.2.r5 or 3.3beta) and do the above cropping/etc. This is for\\nSuns with SunOS 4.1.2.\\n\\nAny help GREATLY appreciated. Ta muchly !\\n\\nCheers,\\n\\tMarkus\\n\\n-- \\nMarkus Buchhorn, Parallel Computing Research Facility\\nemail = markus@octavia.anu.edu.au\\nAustralian National University, Canberra, 0200 , Australia.\\n[International = +61 6, Australia = 06] [Phone = 2492930, Fax = 2490747]\\n-- \\nMarkus Buchhorn, Parallel Computing Research Facility\\nemail = markus@octavia.anu.edu.au\\nAustralian National University, Canberra, 0200 , Australia.\\n[International = +61 6, Australia = 06] [Phone = 2492930, Fax = 2490747]\\n\",\n", - " 'From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: New Member\\nOrganization: Cookamunga Tourist Bureau\\nLines: 20\\n\\nIn article ,\\ndfuller@portal.hq.videocart.com (Dave Fuller) wrote:\\n> He is right. Just because an event was explained by a human to have been\\n> done \"in the name of religion\", does not mean that it actually followed\\n> the religion. He will always point to the \"ideal\" and say that it wasn\\'t\\n> followed so it can\\'t be the reason for the event. There really is no way\\n> to argue with him, so why bother. Sure, you may get upset because his \\n> answer is blind and not supported factually - but he will win every time\\n> with his little argument. I don\\'t think there will be any postings from\\n> me in direct response to one of his.\\n\\nHey! Glad to have some serious and constructive contributors in this\\nnewsgroup. I agree 100% on the statement above, you might argue with\\nBobby for eons, and he still does not get it, so the best thing is\\nto spare your mental resources to discuss more interesting issues.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", - " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 76\\n\\n\\nChris Faehl writes:\\n\\n> >Many atheists do not mock the concept of a god, they are shocked that\\n> >so many theists have fallen to such a low level that they actually\\n> >believe in a god. You accuse all atheists of being part of a conspiracy,\\n> >again without evidence.\\n>\\n>> Rule *2: Condescending to the population at large (i.e., theists) will >not\\n>> win many people to your faith anytime soon. It only ruins your credibility.\\n\\n>Fallacy #1: Atheism is a faith. Lo! I hear the FAQ beckoning once again...\\n>[wonderful Rule #3 deleted - you\\'re correct, you didn\\'t say anything >about\\n>a conspiracy]\\n\\nCorrection: _hard_ atheism is a faith.\\n\\n>> Rule #4: Don\\'t mix apples with oranges. How can you say that the\\n>> extermination by the Mongols was worse than Stalin? Khan conquered people\\n>> unsympathetic to his cause. That was atrocious. But Stalin killed millions of\\n>> his own people who loved and worshipped _him_ and his atheist state!! How can\\n>> anyone be worse than that?\\n\\n>I will not explain this to you again: Stalin did nothing in the name of\\n>atheism. Whethe he was or was not an atheist is irrelevant.\\n\\nGet a grip, man. The Stalin example was brought up not as an\\nindictment of atheism, but merely as another example of how people will\\nkill others under any name that\\'s fit for the occasion.\\n\\n>> Rule #6: If you rely on evidence, state it. We\\'re waiting.\\n\\n>As opposed to relying on a bunch of black ink on some crumbling old paper...\\n>Atheism has to prove nothing to you or anyone else. It is the burden of\\n>dogmatic religious bullshit to provide their \\'evidence\\'. Which \\'we\\'\\n>might you be referring to, and how long are you going to wait?\\n\\nSo hard atheism has nothing to prove? Then how does it justify that\\nGod does not exist? I know, there\\'s the FAQ, etc. But guess what -- if\\nthose justifications were so compelling why aren\\'t people flocking to\\n_hard_ atheism? They\\'re not, and they won\\'t. I for one will discourage\\npeople from hard atheism by pointing out those very sources as reliable\\nstatements on hard atheism.\\n\\nSecond, what makes you think I\\'m defending any given religion? I\\'m merely\\nrecognizing hard atheism for what it is, a faith.\\n\\nAnd yes, by \"we\" I am referring to every reader of the post. Where is the\\nevidence that the poster stated that he relied upon?\\n>\\n>> Oh yes, though I\\'m not a theist, I can say safely that *by definition* many\\n>> theists are not arrogant, since they boast about something _outside_\\n>> themselves, namely, a god or gods. So in principle it\\'s hard to see how\\n>> theists are necessarily arrogant.\\n\\n>Because they say, \"Such-and-such is absolutely unalterably True, because\\n ^^^^\\n>my dogma says it is True.\" I am not prepared to issue blanket statements\\n>indicting all theists of arrogance as you are wont to do with atheists.\\n\\nBzzt! By virtue of your innocent little pronoun, \"they\", you\\'ve just issued\\na blanket statement. At least I will apologize by qualifying my original\\nstatement with \"hard atheist\" in place of atheist. Would you call John the\\nBaptist arrogant, who boasted of one greater than he? That\\'s what many\\nChristians do today. How is that _in itself_ arrogant?\\n>\\n>> I\\'m not worthy!\\n>Only seriously misinformed.\\nWith your sophisticated put-down of \"they\", the theists, _your_ serious\\nmisinformation shines through.\\n\\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", - " \"From: alan@saturn.cs.swin.OZ.AU (Alan Christiansen)\\nSubject: Re: Sphere from 4 points?\\nOrganization: Swinburne University of Technology\\nLines: 71\\nNNTP-Posting-Host: saturn.cs.swin.oz.au\\n\\nspworley@netcom.com (Steve Worley) writes:\\n\\n>bolson@carson.u.washington.edu (Edward Bolson) writes:\\n\\n>>Boy, this will be embarassing if it is trivial or an FAQ:\\n\\n>>Given 4 points (non coplanar), how does one find the sphere, that is,\\n>>center and radius, exactly fitting those points? I know how to do it\\n>>for a circle (from 3 points), but do not immediately see a \\n>>straightforward way to do it in 3-D. I have checked some\\n>>geometry books, Graphics Gems, and Farin, but am still at a loss?\\n>>Please have mercy on me and provide the solution? \\n\\n>It's not a bad question: I don't have any refs that list this algorithm\\n>either. But thinking about it a bit, it shouldn't be too hard.\\n\\n>1) Take three of the points and find the plane they define as well as\\n>the circle that they lie on (you say you have this algorithm already)\\n\\n>2) Find the center of this circle. The line passing through this center\\n>perpendicular to the plane of the three points passes through the center of\\n>the sphere.\\n\\n>3) Repeat with the unused point and two of the original points. This\\n>gives you two different lines that both pass through the sphere's\\n>origin. Their interection is the center of the sphere.\\n\\n>4) the radius is easy to compute, it's just the distance from the center to\\n>any of the original points.\\n\\n>I'll leave the math to you, but this is a workable algorithm. :-)\\n\\nGood I had a bad feeling about this problem because of a special case\\nwith no solution that worried me.\\n\\nFour coplanar points in the shape of a square have no unique sphere \\nthat they are on the surface of.\\nSimilarly 4 colinear point have no finite sized sphere that they are on the\\nsurface of.\\n\\nThese algorithms being geometrical designed rather than algebraically design\\nmeet these problems neatly.\\n\\nWhen determining which plane the 3 points are on if they are colinear\\nthe algorithm should afil or return infinite R.\\nWhen intersecting the two lines there are 2 possibilities\\nthey are the same line (the 4 points were on a planar circle)\\nthey are different lines but parallel. There is a sphere of in radius.\\n\\nThis last case can be achieved with 3 colinier points and any 4th point\\nby taking the 4th point and pairs of the first 3 parallel lines will be produced\\n\\nit can also be achieved by\\n\\nIf all 4 points are coplanar but are not on one circle. \\n\\nIt seems to me that the algorithm only fails when the 4 points are coplanar.\\nThe algorithm always fails when the points are coplanar.\\n(4 points being colinear => coplanar)\\n\\nTesting if the 4th point is coplanar when the plane of the first 3 points\\nhas been found is trivial.\\n\\n\\n>An alternate method would be to take pairs of points: the plane formed\\n>by the perpendicular bisector of each line segment pair also contains the\\n>center of the sphere. Three pairs will form three planes, intersecting\\n>at a point. This might be easier to implement.\\n\\n>-Steve\\n>spworley@netcom.com\\n\",\n", - " \"From: nsmca@aurora.alaska.edu\\nSubject: Eco-Freaks forcing Space Mining.\\nArticle-I.D.: aurora.1993Apr21.212202.1\\nOrganization: University of Alaska Fairbanks\\nLines: 24\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nHere is a way to get the commericial companies into space and mineral\\nexploration.\\n\\nBasically get the eci-freaks to make it so hard to get the minerals on earth..\\nYou think this is crazy. Well in a way it is, but in a way it is reality.\\n\\nThere is a billin the congress to do just that.. Basically to make it so\\nexpensive to mine minerals in the US, unless you can by off the inspectors or\\ntax collectors.. ascially what I understand from talking to a few miner friends \\nof mine, that they (the congress) propose to have a tax on the gross income of\\nthe mine, versus the adjusted income, also the state governments have there\\nnormal taxes. So by the time you get done, paying for materials, workers, and\\nother expenses you can owe more than what you made.\\nBAsically if you make a 1000.00 and spend 500. ofor expenses, you can owe\\n600.00 in federal taxes.. Bascially it is driving the miners off the land.. And\\nthe only peopel who benefit are the eco-freaks.. \\n\\nBasically to get back to my beginning statement, is space is the way to go\\ncause it might just get to expensive to mine on earth because of either the\\neco-freaks or the protectionist.. \\nSuch fun we have in these interesting times..\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I'm not high, just jacked\\n\",\n", - " 'From: mancus@sweetpea.jsc.nasa.gov (Keith Mancus)\\nSubject: Re: Lindbergh and the moon (was:Why not give $1G)\\nOrganization: MDSSC\\nLines: 32\\n\\nIn article <1r3nuvINNjep@lynx.unm.edu>, cook@varmit.mdc.com (Layne Cook) writes:\\n> All of this talk about a COMMERCIAL space race (i.e. $1G to the first 1-year \\n> moon base) is intriguing. Similar prizes have influenced aerospace \\n> development before. The $25k Orteig prize helped Lindbergh sell his Spirit of \\n> Saint Louis venture to his financial backers.\\n> But I strongly suspect that his Saint Louis backers had the foresight to \\n> realize that much more was at stake than $25,000.\\n> Could it work with the moon? Who are the far-sighted financial backers of \\n> today?\\n\\n The commercial uses of a transportation system between already-settled-\\nand-civilized areas are obvious. Spaceflight is NOT in this position.\\nThe correct analogy is not with aviation of the \\'30\\'s, but the long\\ntransocean voyages of the Age of Discovery. It didn\\'t require gov\\'t to\\nfund these as long as something was known about the potential for profit\\nat the destination. In practice, some were gov\\'t funded, some were private.\\nBut there was no way that any wise investor would spend a large amount\\nof money on a very risky investment with no idea of the possible payoff.\\n I am sure that a thriving spaceflight industry will eventually develop,\\nand large numbers of people will live and work off-Earth. But if you ask\\nme for specific justifications other than the increased resource base, I\\ncan\\'t give them. We just don\\'t know enough. The launch rate demanded by\\nexisting space industries is just too low to bring costs down much, and\\nwe are very much in the dark about what the revolutionary new space industries\\nwill be, when they will practical, how much will have to be invested to\\nstart them, etc.\\n\\n-- \\n Keith Mancus |\\n N5WVR |\\n \"Black powder and alcohol, when your states and cities fall, |\\n when your back\\'s against the wall....\" -Leslie Fish |\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Lunar Colony Race! By 2005 or 2010?\\nOrganization: U of Toronto Zoology\\nLines: 18\\n\\nIn article <1993Apr21.140804.15028@draper.com> mrf4276@egbsun12.NoSubdomain.NoDomain (Matthew R. Feulner) writes:\\n>|> Need to find atleast $1billion for prize money.\\n>\\n>My first thought is Ross Perot. After further consideration, I think he\\'d\\n>be more likely to try to win it...but come in a disappointing third.\\n>Try Bill Gates. Try Sam Walton\\'s kids.\\n\\nWhen the Lunar Society\\'s $500M estimate of the cost of a lunar colony was\\nmentioned at Making Orbit, somebody asked Jerry Pournelle \"have you talked\\nto Bill Gates?\". The answer: \"Yes. He says that if he were going to\\nsink that much money into it, he\\'d want to run it -- and he doesn\\'t have\\nthe time.\"\\n\\n(Somebody then asked him about Perot. Answer: \"Having Ross Perot on your\\nboard may be a bigger problem than not having the money.\")\\n-- \\nAll work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n - Kipling | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " \"From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: FJ1100/1200 Owners: Tankbag Suggestions Wanted\\nOrganization: University of East Anglia\\nLines: 14\\n\\nmartenm@chess.ncsu.edu (Mark Marten) writes:\\n\\n\\n\\n>I am looking for a new tank bag now, and I wondered if you, as follow \\n>FJ1100/1200 owners, could make some suggestions as to what has, and has \\n>not worked for you. If there is already a file on this I apologize for \\n>asking and will gladly accept any flames that are blown my way!\\n\\nI've got a Belstaff tankbag on my FJ1100, and it ain't too good. It's\\ndifficult to fix it securely cos of the the tank/fairing/sidepanel layout,\\nand also with the bars on full lock the bag touches the handlebar switches,\\nso you get the horn on full left lock and the starter motor on full right!!\\nIf I was buying another I think I'd go for a magnetic one.\\n\",\n", - " \"From: smith@minerva.harvard.edu (Steven Smith)\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nIn-Reply-To: dgannon@techbook.techbook.com's message of 21 Apr 1993 07:55:09 -0700\\nOrganization: Applied Mathematics, Harvard University\\nLines: 15\\n\\ndgannon@techbook.techbook.com (Dan Gannon) writes:\\n> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>\\n> by Theodore J. O'Keefe\\n>\\n> [Holocaust revisionism]\\n> \\n> Theodore J. O'Keefe is an editor with the Institute for Historical\\n> Review. Educated at Harvard University . . .\\n\\nAccording to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\ngraduate. You may decide for yourselves if he was indeed educated\\nanywhere.\\n\\nSteven Smith\\n\",\n", - " 'From: MAILRP%ESA.BITNET@vm.gmd.de\\nSubject: message from Space Digest\\nX-Added: Forwarded by Space Digest\\nOrganization: [via International Space University]\\nOriginal-Sender: isu@VACATION.VENARI.CS.CMU.EDU\\nDistribution: sci\\nLines: 62\\n\\n\\n\\n\\n\\nPress Release No.19-93\\nParis, 22 April 1993\\n\\nUsers of ESA\\'s Olympus satellite report on the outcome of\\ntheir experiments\\n\\n\"Today Europe\\'s space telecommunications sector would not\\nbe blossoming as it now does, had OLYMPUS not provided\\na testbed for the technologies and services of the 1990s\". This\\nsummarises the general conclusions of 135 speakers and 300\\nparticipants at the Conference on Olympus Utilisation held in\\nSeville on 20-22-April 1993. The conference was organised by\\nthe European Space Agency (ESA) and the Spanish Centre for\\nthe Development of Industrial Technology (CDTI).\\n\\nOLYMPUS has been particularly useful :\\n- in bringing satellite telecommunications to thousands of\\n new users, thanks to satellite terminals with very small\\n antennas (VSATs). OLYMPUS experiments have tested\\n data transmission, videoconferencing, business television,\\n distance teaching and rural telephony, to give but a few\\n examples.\\n\\n- in opening the door to new telecommunications services\\n which could not be accommodated on the crowded lower-\\n frequency bands; OLYMPUS was the first satellite over\\n Europe to offer capacity in the 20/30 GHz band.\\n\\n- in establishing two-way data relay links OLYMPUS\\n received for the first time in Europe, over several months,\\n high-volume data from a low-Earth orbiting spacecraft and\\n then distributed it to various centres in Europe.\\n\\nWhen OLYMPUS was launched on 12 July 1989 it was the\\nworld\\'s largest telecommunications satellite; and no other\\nsatellite has yet equalled its versatility in combining four\\ndifferent payloads in a wide variety of frequency bands.\\n\\nOLYMPUS users range from individual experimenters to some\\nof the world\\'s largest businesses. Access to the satellite is\\ngiven in order to test new telecommunications techniques or\\nservices; over the past four years some 200 companies and\\norganisations made use of this opportunity, as well as over\\n100 members of the EUROSTEP distance-learning\\norganisation.\\n\\n\\n\\nAs the new technologies and services tested by these\\nOLYMPUS users enter the commercial market, they then\\nmake use of operational satellites such as those of\\nEUTELSAT.\\n\\nOLYMPUS utilisation will continue through 1993 and 1994,\\nwhen the spacecraft will run out of fuel as it approaches the\\nend of its design life.\\n\\n \\n',\n", - " \"From: sas58295@uxa.cso.uiuc.edu (Lord Soth )\\nSubject: MPEG for MS-DOS\\nOrganization: University of Illinois at Urbana\\nLines: 13\\n\\nDoes anyone know where I can FTP MPEG for DOS from? Thanks for any\\nhelp in advance. Email is preferred but posting is fine.\\n\\n\\t\\t\\t\\tScott\\n\\n\\n---------------------------------------------------------------------------\\n| Lord Soth, Knight |||| email to --> LordSoth@uiuc ||||||||\\n| of the Black Rose |||| NeXT to ---> sas58295@sumter.cso.uiuc.edu ||||||||\\n| @}--'-,--}-- |||||||||||||||||||||||||||||||||||||||||||||||||||||||\\n|-------------------------------------------------------------------------|\\n| I have no clue what I want to say in here so I won't say anything. |\\n---------------------------------------------------------------------------\\n\",\n", - " \"From: ezzie@lucs2.lancs.ac.uk (One of those daze...)\\nSubject: Borland turbo C libraries for S3 graphics card\\nOrganization: Lancaster University Computer Society\\nLines: 5\\n\\nI've recently got hold of a PC with an S3 card in it, and I'd like to do some\\nC programming with it, are there any libraries out there that will let me\\naccess the high resolution modes available via Borland Turbo C?\\n\\n\\tAndy\\n\",\n", - " \"From: renouar@amertume.ufr-info-p7.ibp.fr (Renouard Olivier)\\nSubject: Re: POV previewer\\nNntp-Posting-Host: amertume.ufr-info-p7.ibp.fr\\nOrganization: Universite PARIS 7 - UFR d'Informatique\\nLines: 10\\n\\nActually I am trying to write something like this but I encounter some\\nproblems, amongst them:\\n\\n- drawing a 3d wireframe view of a quadric/quartic requires that you have\\nthe explicit equation of the quadric/quartic (x, y, z functions of some\\nparameters). How to convert the implicit equation used by PoV to an\\nexplicit one? Is it mathematically always possible?\\n\\nI don't have enough math to find out by myself, has anybody heard about\\nuseful books on the subject?\\n\",\n", - " 'From: lucio@proxima.alt.za (Lucio de Re)\\nSubject: A fundamental contradiction (was: A visit from JWs)\\nReply-To: lucio@proxima.Alt.ZA\\nOrganization: MegaByte Digital Telecommunications\\nLines: 35\\n\\njbrown@batman.bmd.trw.com writes:\\n\\n>\"Will\" is \"self-determination\". In other words, God created conscious\\n>beings who have the ability to choose between moral choices independently\\n>of God. All \"will\", therefore, is \"free will\".\\n\\nThe above is probably not the most representative paragraph, but I\\nthought I\\'d hop on, anyway...\\n\\nWhat strikes me as self-contradicting in the fable of Lucifer\\'s\\nfall - which, by the way, I seem to recall to be more speculation\\nthan based on biblical text, but my ex RCism may be showing - is\\nthat, as Benedikt pointed out, Lucifer had perfect nature, yet he\\nhad the free will to \"choose\" evil. But where did that choice come\\nfrom?\\n\\nWe know from Genesis that Eve was offered an opportunity to sin by a\\ntempter which many assume was Satan, but how did Lucifer discover,\\ninvent, create, call the action what you will, something that God\\nhad not given origin to?\\n\\nAlso, where in the Bible is there mention of Lucifer\\'s free will?\\nWe make a big fuss about mankind having free will, but it strikes me\\nas being an after-the-fact rationalisation, and in fact, like\\nsalvation, not one that all Christians believe in identically.\\n\\nAt least in my mind, salvation and free will are very tightly\\ncoupled, but then my theology was Roman Catholic...\\n\\nStill, how do theologian explain Lucifer\\'s fall? If Lucifer had\\nperfect nature (did man?) how could he fall? How could he execute an\\nact that (a) contradicted his nature and (b) in effect cause evil to\\nexist for the first time?\\n-- \\nLucio de Re (lucio@proxima.Alt.ZA) - tab stops at four.\\n',\n", - " 'From: prange@nickel.ucs.indiana.edu (Henry Prange)\\nSubject: Re: BMW MOA members read this!\\nNntp-Posting-Host: nickel.ucs.indiana.edu\\nOrganization: Indiana University\\nLines: 21\\n\\nI first heard it about academic politics but the same thought seems to\\napply to the BMWMOA\\n\\n\"The politics is so dirty because the stakes are so small.\"\\n\\nWho cares? I get my dues-worth from the ads and occasional technical\\narticles in the \"News\". I skip the generally drab articles about someone\\'s\\ntrek across Iowa. If some folks get thrilled by the power of the BMWMOA,\\nthey deserve whatever thrills their sad lives provide.\\n\\nBTW, I voted for new blood just to keep things stirred up.\\n\\nHenry Prange\\nPhysiology/IU Sch. Med., Blgtn., 47405\\nDoD #0821; BMWMOA #11522; GSI #215\\nride = \\'92 R100GS; \\'91 RX-7 conv = cage/2; \\'91 Explorer = cage*2\\nThe four tenets of all major religions:\\n1. I am right.\\n2. You are wrong.\\n3. Hence, you deserve to be punished.\\n4. By me.\\n',\n", - " \"From: suopanki@stekt6.oulu.fi (Heikki T. Suopanki)\\nSubject: Re: A visit from the Jehovah's Witnesses\\nIn-Reply-To: jbrown@batman.bmd.trw.com's message of 5 Apr 93 11:24:30 MST\\nLines: 17\\nReply-To: suopanki@stekt.oulu.fi\\nOrganization: Unixverstas Olutensin, Finlandia\\n\\t<1993Apr3.183519.14721@proxima.alt.za>\\n\\t<1993Apr5.112430.825@batman.bmd.trw.com>\\n\\n>>>>> On 5 Apr 93 11:24:30 MST, jbrown@batman.bmd.trw.com said:\\n\\n:> God is eternal. [A = B]\\n:> Jesus is God. [C = A]\\n:> Therefore, Jesus is eternal. [C = B]\\n\\n:> This works both logically and mathematically. God is of the set of\\n:> things which are eternal. Jesus is a subset of God. Therefore\\n:> Jesus belongs to the set of things which are eternal.\\n\\nEverything isn't always so logical....\\n\\nMercedes is a car.\\nThat girl is Mercedes.\\nTherefore, that girl is a car?\\n\\n-Heikki\\n\",\n", - " \"From: stjohn@math1.kaist.ac.kr (Ryou Seong Joon)\\nSubject: WANTED: Multi-page GIF!!\\nOrganization: Korea Advanced Institute of Science and Technology\\nX-Newsreader: Tin 1.1 PL3\\nLines: 12\\n\\nHi!... \\n\\nI am searching for packages that could handle Multi-page GIF\\nfiles... \\n\\nAre there any on some ftp servers?\\n\\nI'll appreciate one which works on PC (either on DOS or Windows 3.0/3.1).\\nBut any package works on Unix will be OK..\\n\\nThanks in advance...\\n\",\n", - " 'From: bean@ra.cgd.ucar.edu (Gregory Bean)\\nSubject: Help! Which bikes are short?\\nOrganization: Climate and Global Dynamics Division/NCAR, Boulder, CO\\nLines: 18\\n\\nHelp! I\\'ve got a friend shopping for her first motorcycle. This is great!\\nUnfortunately, she needs at most a 28\" seat. This is not great. So far,\\nthe only thing we\\'ve found was an old and unhappy-looking KZ440.\\n\\nSo, it\\'s time to tap the collective memory of all the denizens out there.\\nAnybody know of models (old models and used bikes are not a problem)\\nwith a 28\" or lower seat? And, since she has to make this difficult ( 8-) ),\\nshe would prefer not to end up with a cruiser. So there\\'s bonus points\\nfor listing tiny standards.\\n\\nI seem to remember a thread with a point similar to this passing through\\nseveral months ago. Did anybody keep that list?\\n\\nThanks!\\n\\n--\\nGregory Bean DoD #580\\nbean@ncar.ucar.edu \"In fact, everything\\'s got that big reverb sound...\"\\n',\n", - " 'From: pinky@tamu.edu (The Man behind The Curtain)\\nSubject: Views on isomorphic perspectives?\\nOrganization: Texas A&M University\\nLines: 87\\nNNTP-Posting-Host: tamsun.tamu.edu\\nKeywords: isomorphic perspectives\\n\\n \\nI\\'m working upon a game using an isometric perspective, similar to\\nthat used in Populous. Basically, you look into a room that looks\\nsimilar to the following:\\n\\n xxxx\\n xxxxx xxxx\\n xxxx x xxxx\\n xxxx x xxxx\\n xxxx 2 xxxx 1 xxxx\\n x xxxx xxxx x\\n x xxxx xxxx x\\n x xxxx o xxxx x\\n xxxx 3 /|\\\\ xxxx\\n xxxx /~\\\\ xxxx\\n xxxx xxxx\\n xxxx xxxx\\n xxxx\\n\\nThe good thing about this perspective is that you can look and move\\naround in three dimensions and still maintain your peripheral vision. [*]\\n\\nSince your viewpoint is always the same, the routines can be hard-coded\\nfor a particular vantage. In my case, wall two\\'s rising edge has a slope\\nof 1/4. (I\\'m also using Mode X, 320x240).\\n\\nI\\'ve run into two problems; I\\'m sure that other readers have tried this\\nbefore, and have perhaps formulated their own opinions:\\n\\n1) The routines for drawing walls 1 & 2 were trivial, but when I ran a\\npacked->planar image through them, I was dismayed by the \"jaggies.\" I\\'m\\nnow considered some anti-aliasing routines (speed is not really necessary).\\nIs it worth the effort to have the artist draw the wall already skewed,\\nthus being assured of nice image, or is this too much of a burden?\\n\\n2) Wall 3 presents a problem; the algorithm I used tends to overly distort\\nthe original. I tried to decide on paper what pixels go where, and failed.\\nHas anyone come up with method for mapping a planar to crosswise sheared\\nshape?\\n\\nCurrently I take:\\n\\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16\\n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32\\n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48\\n 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64\\n\\nand produce:\\n \\n 1 2 3 4\\n33 34 35 36 17 18 19 20 5 6 7 8\\n49 50 51 52 37 38 39 40 21 22 23 24 9 10 11 12\\n 53 54 55 56 41 42 43 44 25 26 27 28 13 14 15 16\\n 57 58 59 60 45 46 47 48 29 30 31 32\\n 61 62 63 64\\n\\nLine 1 follows the slope. Line 2 is directly under line 1.\\nLine 3 moves up a line and left 4 pixels. Line 4 is under line 3.\\nThis fills the shape exactly without any unfilled pixels. But\\nit causes distortions. Has anyone come up with a better way?\\nPerhaps it is necessary to simply draw the original bitmap\\nalready skewed?\\n\\nAre there any other particularly sticky problems with this perspective?\\nI was planning on having hidden plane removal by using z-buffering.\\nLocations are stored in (x,y,z) form.\\n\\n[*] For those of you who noticed, the top lines of wall 2 (and wall 1)\\n*are* parallel with its bottom lines. This is why there appears to\\nbe an optical illusion (ie. it appears to be either the inside or outside\\nof a cube, depending on your mood). There are no vanishing points.\\nThis simplifies the drawing code for objects (which don\\'t have to\\nchange size as they move about in the room). I\\'ve decided that this\\napproximation is alright, since small displacements at a large enough\\ndistance cause very little change in the apparent size of an object in\\na real perspective drawing.\\n\\nHopefully the \"context\" of the picture (ie. chairs on the floor, torches\\nhanging on the walls) will dispell any visual ambiguity.\\n\\nThanks in advance for any help.\\n\\n-- \\nTill next time, \\\\o/ \\\\o/\\n V \\\\o/ V email:pinky@tamu.edu\\n<> Sam Inala <> V\\n\\n',\n", - " 'From: ingles@engin.umich.edu (Ray Ingles)\\nSubject: Re: Concerning God\\'s Morality (long)\\nOrganization: University of Michigan Engineering, Ann Arbor\\nLines: 32\\nDistribution: world\\nNNTP-Posting-Host: syndicoot.engin.umich.edu\\n\\nIn article <1993Apr5.084042.822@batman.bmd.trw.com> jbrown@batman.bmd.trw.com writes:\\n>In article <1993Apr3.095220.24632@leland.Stanford.EDU>, galahad@leland.Stanford.EDU (Scott Compton) writes:\\n[deletions]\\n>> Now, back to your post. You have done a fine job at using \\n>> your seventh grade \\'life science\\' course to explain why\\n>> bad diseases are caused by Satan and good things are a \\n>> result of God. But I want to let you in on a little secret.\\n>> \"We can create an amino acid sequence in lab! -- And guess\\n>> what, the sequence curls into a helix! Wow! That\\'s right,\\n>> it can happen without a supernatural force.\" \\n>\\n>Wow! All it takes is a few advanced science degrees and millions\\n>of dollars of state of the art equipment. And I thought it took\\n>*intelligence* to create the building blocks of life. Foolish me!\\n\\n People with advanced science degrees use state of the art equipment\\nand spend millions of dollars to simulate tornadoes. But tornadoes\\ndo not require intelligence to exist.\\n Not only that, the equipment needed is not really \\'state of the art.\\'\\nTo study the *products*, yes, but not to generate them.\\n\\n>If you want to be sure that I read your post and to provide a\\n>response, send a copy to Jim_Brown@oz.bmd.trw.com. I can\\'t read\\n>a.a. every day, and some posts slip by. Thanks.\\n \\n Oh, I will. :->\\n\\nSincerely,\\n\\nRay Ingles || The above opinions are probably\\n || not those of the University of\\ningles@engin.umich.edu || Michigan. Yet.\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: Space Station Redesign, JSC Alternative #4\\nOrganization: U of Toronto Zoology\\nLines: 14\\n\\nIn article <1ralibINNc0f@cbl.umd.edu> mike@starburst.umd.edu (Michael F. Santangelo) writes:\\n>... The only thing\\n>that scares me is the part about simply strapping 3 SSME\\'s and\\n>a nosecone on it and \"just launching it.\" I have this vision\\n>of something going terribly wrong with the launch resulting in the\\n>complete loss of the new modular space station (not just a peice of\\n>it as would be the case with staged in-orbit construction).\\n\\nIt doesn\\'t make a whole lot of difference, actually, since they weren\\'t\\nbuilding spares of the station hardware anyway. (Dumb.) At least this\\nis only one launch to fail.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " \"From: rick@trystro.uucp (Richard Nickle)\\nSubject: Re: How to read sci.space without netnews\\nOrganization: The Trystro System (617) 625-7155 v.32/v.42bis\\nLines: 27\\n\\nIn article mwm+@cs.cmu.edu (Mark Maimone) writes:\\n>In article <734975852.F00001@permanet.org> Mark.Prado@p2.f349.n109.z1.permanet.org (Mark Prado) writes:\\n>>If anyone knows anyone else who would like to get sci.space,\\n>>but doesn't have an Internet feed (or has a cryptic Internet\\n>>feed), I would be willing to feed it to them.\\t\\n>\\n>\\tKudos to Mark for his generous offer, but there already exists a\\n>large (email-based) forwarding system for sci.space posts: Space Digest.\\n>It mirrors sci.space exactly, and provides simple two-way communication.\\n>\\nI think Mark was talking about making it available to people who didn't\\nhave email in the first place.\\n\\nIf anybody in the Boston area wants a sci.space feed by honest-to-gosh UUCP\\n(no weird offline malreaders), let me know. I'll also hand out logins to\\nanyone who wants one, especially the Boston Chapter of NSS (which I keep forgetting\\nto re-attend).\\n\\n>Questions, comments to space-request@isu.isunet.edu\\n>-- \\n>Mark Maimone\\t\\t\\t\\tphone: +1 (412) 268 - 7698\\n>Carnegie Mellon Computer Science\\temail: mwm@cmu.edu\\n\\n\\n-- \\nrichard nickle\\t\\trick@trystro.uucp\\t617-625-7155 v.32/v.42bis\\n\\t\\t\\tthink!trystro!rick\\tsomerville massachusetts\\n\",\n", - " 'From: car377@cbnewsj.cb.att.com (charles.a.rogers)\\nSubject: Re: dogs\\nOrganization: AT&T\\nSummary: abnormal canine psychology\\nLines: 21\\n\\nIn article , mrc@Ikkoku-Kan.Panda.COM (Mark Crispin) writes:\\n> \\n> With a hostile dog, or one which you repeatedly encounter, stronger measures\\n> may be necessary. This is the face off. First -- and there is very important\\n> -- make sure you NEVER face off a dog on his territory. Face him off on the\\n> road, not on his driveway. If necessary, have a large stick, rolled up\\n> newspaper, etc. (something the beast will understand is something that will\\n> hurt him). Stand your ground, then slowly advance. Your mental attitude is\\n> that you are VERY ANGRY and are going to dispense TERRIBLE PUNISHMENT. The\\n> larger the dog, the greater your anger.\\n\\nThis tactic depends for its effectiveness on the dog\\'s conformance to\\na \"psychological norm\" that may not actually apply to a particular dog.\\nI\\'ve tried it with some success before, but it won\\'t work on a Charlie Manson\\ndog or one that\\'s really, *really* stupid. A large Irish Setter taught me\\nthis in *my* yard (apparently HIS territory) one day. I\\'m sure he was playing \\na game with me. The game was probably \"Kill the VERY ANGRY Neighbor\" Before \\nHe Can Dispense the TERRIBLE PUNISHMENT.\\n\\nChuck Rogers\\ncar377@torreys.att.com\\n',\n", - " 'From: horen@netcom.com (Jonathan B. Horen)\\nSubject: Investment in Yehuda and Shomron\\nLines: 40\\n\\nIn today\\'s Israeline posting, at the end (an afterthought?), I read:\\n\\n> More Money Allocated to Building Infrastructure in Territories to\\n> Create Jobs for Palestinians\\n> \\n> KOL YISRAEL reports that public works geared at building\\n> infrastructure costing 140 million New Israeli Shekels (about 50\\n> million dollars) will begin Sunday in the Territories. This was\\n> announced last night by Prime Minister Yitzhak Rabin and Finance\\n> Minister Avraham Shohat in an effort to create more jobs for\\n> Palestinian residents of the Territories. This infusion of money\\n> will bring allocations given to developing infrastructure in the\\n> Territories this year to 450 million NIS, up from last year\\'s\\n> figure of 120 million NIS.\\n\\nWhile I applaud investing of money in Yehuda, Shomron, v\\'Chevel-Azza,\\nin order to create jobs for their residents, I find it deplorable that\\nthis has never been an active policy of any Israeli administration\\nsince 1967, *with regard to their Jewish residents*. Past governments\\nfound funds to subsidize cheap (read: affordable) housing and the\\nrequisite infrastructure, but where was the investment for creating\\nindustry (which would have generated income *and* jobs)? \\n\\nAfter 26 years, Yehuda and Shomron remain barren, bereft of even \\nmiddle-sized industries, and the Jewish settlements are sterile\\n\"bedroom communities\", havens for (in the main) Israelis (both\\nsecular *and* religious) who work in Tel-Aviv or Jerusalem but\\ncannot afford to live in either city or their surrounding suburbs.\\n\\nThere\\'s an old saying: \"bli giboosh, ayn kivoosh\" -- just living there\\nwasn\\'t enough, we had to *really* settle it. But instead, we \"settled\"\\nfor Potemkin villages, and now we are paying the price (and doing\\nfor others what we should have done for ourselves).\\n\\n\\n-- \\nYonatan B. Horen | Jews who do not base their advocacy of Jewish positions and\\n(408) 736-3923 | interests on Judaism are essentially racists... the only \\nhoren@netcom.com | morally defensible grounds for the preservation of Jews as a\\n | separate people rest on their religious identity as Jews.\\n',\n", - " 'From: egreen@east.sun.com (Ed Green - Pixel Cruncher)\\nSubject: Re: Observation re: helmets\\nOrganization: Sun Microsystems, RTP, NC\\nLines: 21\\nDistribution: world\\nReply-To: egreen@east.sun.com\\nNNTP-Posting-Host: laser.east.sun.com\\n\\nIn article 211353@mavenry.altcit.eskimo.com, maven@mavenry.altcit.eskimo.com (Norman Hamer) writes:\\n> \\n> The question for the day is re: passenger helmets, if you don\\'t know for \\n>certain who\\'s gonna ride with you (like say you meet them at a .... church \\n>meeting, yeah, that\\'s the ticket)... What are some guidelines? Should I just \\n>pick up another shoei in my size to have a backup helmet (XL), or should I \\n>maybe get an inexpensive one of a smaller size to accomodate my likely \\n>passenger? \\n\\nIf your primary concern is protecting the passenger in the event of a\\ncrash, have him or her fitted for a helmet that is their size. If your\\nprimary concern is complying with stupid helmet laws, carry a real big\\nspare (you can put a big or small head in a big helmet, but not in a\\nsmall one).\\n\\n---\\nEd Green, former Ninjaite |I was drinking last night with a biker,\\n Ed.Green@East.Sun.COM |and I showed him a picture of you. I said,\\nDoD #0111 (919)460-8302 |\"Go on, get to know her, you\\'ll like her!\"\\n (The Grateful Dead) --> |It seemed like the least I could do...\\n\\n',\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Accounts of Anti-Armenian Human Right Violations in Azerbaijan #010\\nSummary: Prelude to Current Events in Nagorno-Karabakh\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 170\\n\\n Accounts of Anti-Armenian Human Right Violations in Azerbaijan #010\\n Prelude to Current Events in Nagorno-Karabakh\\n\\n +-------------------------------------------------------+\\n | |\\n | On the way the driver says, \"In fact there aren\\'t any |\\n | Armenians left. \\'They burned them all, beat them all, |\\n | and stabbed them.\" |\\n |\\t\\t\\t\\t\\t\\t\\t|\\n +-------------------------------------------------------+\\n\\nDEPOSITION OF VANYA BAGRATOVICH BAZIAN\\n\\n Born 1940\\n Foreman\\n Baku Spetsmontazh Administration (UMSMR-1)\\n\\n Resident at Building 36/7, Apartment 9\\n Block 14\\n Sumgait [Azerbaijan]\\n\\n\\nDuring the first days of the events, the 27th and the 28th [of February], I\\nwas away on a business trip. On the 10th I had got my crew, done the paper-\\nwork, and left for the Zhdanov District. That\\'s in Azerbaijan, near the\\nNagorno Karabagh region.\\n\\nAfter the 14th, rumors started to the effect that in Karabagh, specifically\\nin Stepanakert, an uprising had taken place. They said \"uprising\" in\\nAzerbaijani, but I don\\'t think it was really an uprising, just a \\ndemonstration. After that the unrest started. Several Armenians living in the \\nZhdanov District were injured. How were they injured? They were beaten, even \\nwomen; it was said that they were at the demonstrations, but they live here, \\nand went from here to Karabagh to demonstrate. After that I felt uneasy. There\\nwere some conversations about Armenians among the local population: the\\nArmenians had done this, the Armenians had done that. Right there at the site.\\nI was attacked a couple of times by kids. Well true, the guys from my crew \\nwouldn\\'t let them come at me with cables and knives. After that I felt really \\nbad. I didn\\'t know where to go. I up and called home. And my children tell me,\\n\"There\\'s unrest everywhere, be careful.\" Well I had a project going on. I told\\nthe Second Secretary of the District Party Committee what had been going on \\nand said I wanted to take my crew off the site. They wouldn\\'t allow it, they \\nsaid, \"Nothing\\'s going to happen to you, we\\'ve entrusted the matter to the \\npolice, we\\'ve warned everyone in the district, nothing will happen to you.\" \\nWell, in fact they did especially detail us a policeman to look after me, he \\nknows all the local people and would protect me if something happened. This\\nman didn\\'t leave me alone for five minutes: he was at work the whole time and \\nafterward he spent the night with us, too.\\n\\nI sense some disquiet and call home; my wife also tells me, \"The situation is\\nvery tense, be careful.\"\\n\\nWe finished the job at the site, and I left for Sumgait first thing on the\\nmorning of the 29th. When we left the guys warned me, they told me that I\\nshouldn\\'t tell anyone on the way that I was an Armenian. I took someone else\\'s\\nbusiness travel documents, in the name of Zardali, and hid my own. I hid it \\nand my passport in my socks. We set out for Baku. Our guys were on the bus, \\nthey sat behind, and I sat up front. In Baku they had come to me and said that\\nthey had to collect all of our travel documents just in case. As it turns out \\nthey knew what was happening in Sumgait.\\n\\nI arrive at the bus station and there they tell me that the city of Sumgait is\\nclosed, there is no way to get there. That the city is closed off and the \\nbuses aren\\'t running. Buses normally leave Baku for Sumgait almost every two\\nminutes. And suddenly--no buses. Well, we tried to get there via private\\ndrivers. One man, an Azerbaijani, said, \"Let\\'s go find some other way to get\\nthere.\" They found a light transport vehicle and arranged for the driver to\\ntake us to Sumgait.\\n\\nHe took us there. But the others had said, \"I wouldn\\'t go if you gave me a\\nthousand rubles.\" \"Why?\" \"Because they\\'re burning the city and killing the\\nArmenians. There isn\\'t an Armenian left.\" Well I got hold of myself so I could\\nstill stand up. So we squared it away, the four of us got in the car, and we \\nset off for Sumgait. On the way the driver says, \"In fact there aren\\'t any\\nArmenians left. \\'They burned them all, beat them all, and stabbed them.\" Well \\nI was silent. The whole way--20-odd miles--I was silent. The driver asks me, \\n\"How old are you, old man?\" He wants to know: if I\\'m being that quiet, not \\nsaying anything, maybe it means I\\'m an Armenian. \"How old are you?\" he asks \\nme. I say, \"I\\'m 47.\" \"I\\'m 47 too, but I call you \\'old man\\'.\" I say, \"It \\ndepends on God, each person\\'s life in this world is different.\" I look much\\nolder than my years, that\\'s why he called me old man. Well after that he was\\nsilent, too.\\n\\nWe\\'re approaching the city, I look and see tanks all around, and a cordon.\\nBefore we get to the Kavkaz store the driver starts to wave his hand. Well, he\\nwas waving his hand, we all start waving our hands. I\\'m sitting there with\\nthem, I start waving my hand, too. I realized that this was a sign that meant\\nthere were no Armenians with us.\\n\\nI look at the city--there is a crowd of people walking down the middle of the \\nstreet, you know, and there\\'s no traffic. Well probably I was scared. They\\nstopped our car. People were standing on the sidewalks. They have armature \\nshafts, and stones . . . And they stopped us . . .\\n\\nAlong the way the driver tells us how they know who\\'s an Armenian and who\\'s \\nnot. The Armenians usually . . . For example, I\\'m an Armenian, but I speak \\ntheir language very well. Well Armenians usually pronounce the Azeri word for \\n\"nut,\" or \"little nut,\" as \"pundukh,\" but \"fundukh\" is actually correct. The \\npronunciations are different. Anyone who says \"pundukh,\" even if they\\'re not \\nArmenian, they immediately take out and start to slash. Another one says, \\n\"There was a car there, with five people inside it,\" he says. \"They started \\nhitting the side of it with an axe and lit it on fire. And they didn\\'t let the\\npeople out,\" he says, \"they wouldn\\'t let them get out of the car.\" I only saw \\nthe car, but the driver says that he saw everything. Well he often drives from\\nBaku to Sumgait and back . . .\\n\\nWhen they stop us we all get out of the car. I look and there\\'s a short guy,\\nhis eyes are gleaming, he has an armature shaft in one hand and a stone in\\nthe other and asks the guys what nationality they are one by one. \"We\\'re\\nAzerbaijani,\\' they tell him, \\'no Armenians here.\" He did come up to me when \\nwe were pulling our things out and says, \"Maybe you\\'re an Armenian, old man?\" \\nBut in Azerbaijani I say, \"You should be ashamed of yourself!\" And . . . he \\nleft. Turned and left. That was all that happened. What was I to do? I had \\nto . . . the city was on fire, but I had to steal my children out of my own \\nhome.\\n\\nThey stopped us at the entrance to Mir Street, that\\'s where the Kavkaz store \\nand three large, 12-story buildings are. That\\'s the beginning of down-town. I \\nsaw that burned automobile there, completely burned, only metal remained. I \\ncouldn\\'t figure out if it was a Zhiguli or a Zaporozhets. Later I was told it \\nwas a Zhiguli. And the people in there were completely incinerated. Nothing \\nremained of them, not even any traces. That driver had told me about it, and I\\nsaw the car myself. The car was there. The skeleton, a metallic carcass. About\\n30 to 40 yards from the Kavkaz store.\\n\\nI see a military transport, an armored personnel carrier. The hatches are\\nclosed. And people are throwing armature shafts and pieces of iron at it, the\\ncrowd is. And I hear shots, not automatic fire, it\\'s true, but pistol shots.\\nSeveral shots. There were Azerbaijanis crowded around that personnel carrier. \\nSomeone in the crowd was shooting. Apparently they either wanted to kill the \\nsoldiers or get a machine gun or something. At that point there was only one \\narmored personnel carrier. And all the tanks were outside the city, cordoning \\noff Sumgait.\\n\\nI walked on. I see two Azerbaijanis going home from the plant. I can tell by \\ntheir gait that they\\'re not bandits, they\\'re just people, walking home. I\\njoined them so in case something happened, in case someone came up to us\\nand asked questions, either of us would be in a position to answer, you see.\\nBut I avoided the large groups because I\\'m a local and might be quickly \\nrecognized. I tried to keep at a distance, and walked where there were fewer\\npeople. Well so I walked into Microdistrict 2, which is across from our block.\\nI can\\'t get into our block, but I walked where there were fewer people, so as \\nto get around. Well there I see a tall guy and 25 to 30 people are walking \\nbehind him. And he\\'s shouting into a megaphone: \"Comrades, the Armenian-\\nAzerbaijani war has begun!\"\\n\\nThe police have megaphones like that. So they\\'re talking and walking around \\nthe second microdistrict. I see that they\\'re coming my way, and turn off \\nbehind a building. I noticed that they walked around the outside buildings, \\nand inside the microdistricts there were about 5 or 6 people standing on every\\ncorner, and at the middles of the buildings, and at the edges. What they were \\ndoing I can\\'t say, because I couldn\\'t get up close to them, I was afraid. But \\nthe most important thing was to get away from there, to get home, and at least\\nfind out if my children were alive or not . . .\\n\\n April 20, 1988\\n Yerevan\\n\\n\\t\\t - - - reference - - -\\n\\n[1] _The Sumgait Tragedy; Pogroms against Armenians in Soviet Azerbaijan,\\n Volume I, Eyewitness Accounts_, edited by Samuel Shahmuradian, forward by\\n Yelena Bonner, 1990, published by Aristide D. Caratzas, NY, pages 158-160\\n\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " 'From: cosmo@pro-angmar.alfalfa.com (Frank Benson)\\nSubject: Argic\\nOrganization: UTexas Mail-to-News Gateway\\nLines: 6\\nNNTP-Posting-Host: cs.utexas.edu\\n\\nHey Serdar:\\n Man without a brain, yare such a LOSER!!!\\n---\\nProLine: cosmo@pro-angmar\\nInternet: cosmo@pro-angmar.alfalfa.com\\nUUCP: uunet!bu.edu!alphalpha!pro-angmar!cosmo\\n',\n", - " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Observation re: helmets\\nOrganization: Ontario Hydro - Research Division\\nDistribution: usa\\nLines: 19\\n\\nIn article <1993Apr15.220511.11311@research.nj.nec.com> behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n>\\tDo I have to be the one to say it?\\n>\\n>\\tDON'T BE SO STUPID AS TO LEAVE YOUR HELMET ON THE SEAT WHERE IT CAN\\n>\\tFALL DOWN AND GO BOOM!\\n\\nTrue enough. I put it on the ground if it's free of spooge, or directly\\non my head otherwise.\\n\\n>\\tThat kind of fall is what the helmet is designed to protect against.\\n\\nNot exactly. The helmet has a lot less energy if your head isn't in it, and\\nthere's no lump inside to compress the liner against the shell. Is a drop\\noff the seat enough to crack the shell? I doubt it, but you can always\\nsend it to be inspected.\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", - " \"From: bc744@cleveland.Freenet.Edu (Mark Ira Kaufman)\\nSubject: Re: rejoinder. Questions to Israelis\\nOrganization: Case Western Reserve University, Cleveland, Ohio (USA)\\nLines: 38\\nNNTP-Posting-Host: thor.ins.cwru.edu\\n\\n\\n Although I realize that principle is not one of your strongest\\npoints, I would still like to know why do do not ask any question\\nof this sort about the Arab countries.\\n\\n If you want to continue this think tank charade of yours, your\\nfixation on Israel must stop. You might have to start asking the\\nsame sort of questions of Arab countries as well. You realize it\\nwould not work, as the Arab countries' treatment of Jews over the\\nlast several decades is so bad that your fixation on Israel would\\nbegin to look like the biased attack that it is.\\n\\n Everyone in this group recognizes that your stupid 'Center for\\nPolicy Research' is nothing more than a fancy name for some bigot\\nwho hates Israel.\\n\\n Why don't you try being honest about your hatred of Israel? I\\nhave heard that your family once lived in Israel, but the members\\nof your family could not cut the competition there. Is this true\\nabout your family? Is this true about you? Is this actually not\\nabout Israel, but is really a personal vendetta? Why are you not\\nthe least bit objective about Israel? Do you think that the name\\nof your phony-baloney center hides your bias in the least? Get a\\nclue, Mr. Davidsson. Haven't you realized yet that when you post\\nsuch stupidity in this group, you are going to incur answers from\\npeople who are armed with the truth? Haven't you realized that a\\npiece of selective data here and a piece there does not make up a\\ntruth? Haven't you realized that you are in over your head? The\\npeople who read this group are not as stupid as you would hope or\\nneed them to be. This is not the place for such pseudo-analysis.\\nYou will be continually ripped to shreds, until you start to show\\nsome regard for objectivity. Or you can continue to show what an\\nanti-Israel zealot you are, trying to disguise your bias behind a\\npompous name like the 'Center for Policy Research.' You ought to\\nknow that you are a laughing stock, your 'Center' is considered a\\njoke, and until you either go away, or make at least some attempt\\nto be objective, you will have a place of honor among the clowns,\\nbigots, and idiots of Usenet.\\n\",\n", - " 'From: \"james kewageshig\" \\nSubject: articles on flocking?\\nReply-To: \"james kewageshig\" \\nOrganization: Canada Remote Systems\\nDistribution: comp\\nLines: 17\\n\\nHI All,\\nCan someone point me towards some articles on \\'boids\\' or\\nflocking algorithms... ?\\n\\nAlso, articles on particle animation formulas would be nice...\\n ________________________________________________________________________\\n|0 ___ ___ ____ ____ ____ 0|\\\\\\n| \\\\ \\\\// || || || James Kewageshig |\\\\|\\n| _\\\\//_ _||_ _||_ _||_ UUCP: james.kewageshig@canrem.com |\\\\|\\n| N E T W O R K V I I I FIDONET: James Kewageshig - 1:229/15 |\\\\|\\n|0______________________________________________________________________0|\\\\|\\n \\\\________________________________________________________________________\\\\|\\n---\\n þ DeLuxeý 1.25 #8086 þ Head of Co*& XV$# Hi This is a signature virus. Co\\n--\\nCanada Remote Systems - Toronto, Ontario\\n416-629-7000/629-7044\\n',\n", - " \"From: Center for Policy Research \\nSubject: Unconventional peace proposal\\nNf-ID: #N:cdp:1483500348:000:5967\\nNf-From: cdp.UUCP!cpr Apr 18 07:24:00 1993\\nLines: 131\\n\\n\\nFrom: Center for Policy Research \\nSubject: Unconventional peace proposal\\n\\n\\nA unconventional proposal for peace in the Middle-East.\\n---------------------------------------------------------- by\\n\\t\\t\\t Elias Davidsson\\n\\nThe following proposal is based on the following assumptions:\\n\\n1. Fundamental human rights, such as the right to life, to\\neducation, to establish a family and have children, to human\\ndignity, the right to free movement, to free expression, etc. are\\nmore important to human existence that the rights of states.\\n\\n2. In the event of a conflict between basic human rights and\\nrights of collectivities, basic human rights should prevail.\\n\\n3. Between the collectivities defining themselves as\\nJewish-Israeli and Palestinian-Arab, however labelled, an\\nunresolved conflict exists.\\n\\n4. This conflict has caused great sufferings for millions of\\npeople. It moreover poisons relations between communities, peoples\\nand nations.\\n\\n5. Each year, the United States expends billions of dollars\\nin economic and military aid to the conflicting parties.\\n\\n6. Attempts to solve the Israeli-Arab conflict by traditional\\npolitical means have failed.\\n\\n7. As long as the conflict is perceived as that between two\\ndistinct ethnical/religious communities/peoples which claim the\\nland, there is no just nor peaceful solution possible.\\n\\n8. Love between human beings can be capitalized for the sake\\nof peace and justice. When people love, they share.\\n\\nHaving stated my assumptions, I will now state my proposal.\\n\\n1. A Fund should be established which would disburse grants\\nfor each child born to a couple where one partner is Israeli-Jew\\nand the other Palestinian-Arab.\\n\\n2. To be entitled for a grant, a couple will have to prove\\nthat one of the partners possesses or is entitled to Israeli\\ncitizenship under the Law of Return and the other partner,\\nalthough born in areas under current Isreali control, is not\\nentitled to such citizenship under the Law of Return.\\n\\n3. For the first child, the grant will amount to $18.000. For\\nthe second the third child, $12.000 for each child. For each\\nsubsequent child, the grant will amount to $6.000 for each child.\\n\\n\\n4. The Fund would be financed by a variety of sources which\\nhave shown interest in promoting a peaceful solution to the\\nIsraeli-Arab conflict, including the U.S. Government, Jewish and\\nChristian organizations in the U.S. and a great number of\\ngovernments and international organizations.\\n\\n5. The emergence of a considerable number of 'mixed'\\nmarriages in Israel/Palestine, all of whom would have relatives on\\n'both sides' of the divide, would make the conflict lose its\\nethnical and unsoluble core and strengthen the emergence of a\\ntruly civil society. The existence of a strong 'mixed' stock of\\npeople would also help the integration of Israeli society into the\\nMiddle-East in a graceful manner.\\n\\nObjections to this proposal will certainly be voiced. I will\\nattempt to identify some of these:\\n\\n1. The idea of providing financial incentives to selected\\nforms of partnership and marriage, is not conventional. However,\\nit is based on the concept of affirmative action, which is\\nrecognized as a legitimate form of public policy to reverse the\\nperverse effects of segregation and discrimination. International\\nlaw clearly permits affirmative action when it is aimed at\\nreducing racial discrimination and segregation.\\n\\n2. It may be objected that the Israeli-Palestinian conflict\\nis not primarily a religious or ethnical conflict, but that it is\\na conflict between a colonialist settler society and an indigenous\\ncolonized society that can only regain its freedom by armed\\nstruggle. This objection is based on the assumption that the\\n'enemy' is not Zionism as ideology and practice, but\\nIsraeli-Jewish society and its members which will have to be\\ndefeated. This objection has no merit because it does not fulfill\\nthe first two assumptions concerning the primacy of fundamental\\nhuman rights over collective rights (see above)\\n\\n3. Fundamentalist Jews would certainly object to the use of\\nfinancial incentives to encourage 'mixed marriages'. From their\\npoint of view, the continued existence of a specific Jewish People\\noverrides any other consideration, be it human love, peace of\\nhuman rights. The President of the World Jewish Congress, Edgar\\nBronfman, reflected this view a few years ago in an interview he\\ngave to Der Spiegel, a German magazine. He called the increasing\\nassimilation of Jews in the world a , comparable in its\\neffects only with the Holocaust. This objection has no merit\\neither because it does not fulfill the first two assumptions (see\\nabove)\\n\\n4. It may objected that only a few people in\\nIsrael/Palestine, would request such grants and that it would thus\\nnot serve its purpose. To this objection one might respond that\\nalthough it is not possible to determine with certainty the effect\\nof such a proposal, the existence of such a Fund would help mixed\\ncouples to resist the pressure of their respective societies and\\nencourage young couples to reject fundamentalist and racist\\nattitudes.\\n\\n5. It may objected that such a Fund would need great sums to\\nbring about substantial demographic changes. This objection has\\nmerits. However, it must be remembered that huge sums, more than\\n$3 billion, are expended each year by the United States government\\nand by U.S. organizations to maintain an elusive peace in the\\nMiddle-East through armaments. A mere fraction of these sums would\\nsuffice to launch the above proposal and create a more favorable\\nclimate towards the existence of 'mixed' marriages in\\nIsrael/Palestine, thus encouraging the emergence of a\\nnon-segregated society in that worn-torn land.\\n\\nI would be thankful for critical comments to the above proposal as\\nwell for any dissemination of this proposal for meaningful\\ndiscussion and enrichment.\\n\\nElias Davidsson Post Box 1760 121 Reykjavik, ICELAND\\n\\n\",\n", - " \"From: lipman@oasys.dt.navy.mil (Robert Lipman)\\nSubject: Call for presentations: Navy SciViz/VR seminar\\nReply-To: lipman@oasys.dt.navy.mil (Robert Lipman)\\nOrganization: Carderock Division, NSWC, Bethesda, MD\\nLines: 74\\n\\n**********************************************************************\\n\\n\\t\\t 2ND CALL FOR PRESENTATIONS\\n\\t\\n NAVY SCIENTIFIC VISUALIZATION AND VIRTUAL REALITY SEMINAR\\n\\n\\t\\t\\tTuesday, June 22, 1993\\n\\n\\t Carderock Division, Naval Surface Warfare Center\\n\\t (formerly the David Taylor Research Center)\\n\\n\\t\\t\\t Bethesda, Maryland\\n\\n**********************************************************************\\n\\nSPONSOR: NESS (Navy Engineering Software System) is sponsoring a \\none-day Navy Scientific Visualization and Virtual Reality Seminar. \\nThe purpose of the seminar is to present and exchange information for\\nNavy-related scientific visualization and virtual reality programs, \\nresearch, developments, and applications.\\n\\nPRESENTATIONS: Presentations are solicited on all aspects of \\nNavy-related scientific visualization and virtual reality. All \\ncurrent work, works-in-progress, and proposed work by Navy \\norganizations will be considered. Four types of presentations are \\navailable.\\n\\n 1. Regular presentation: 20-30 minutes in length\\n 2. Short presentation: 10 minutes in length\\n 3. Video presentation: a stand-alone videotape (author need not \\n\\tattend the seminar)\\n 4. Scientific visualization or virtual reality demonstration (BYOH)\\n\\nAccepted presentations will not be published in any proceedings, \\nhowever, viewgraphs and other materials will be reproduced for \\nseminar attendees.\\n\\nABSTRACTS: Authors should submit a one page abstract and/or videotape to:\\n\\n Robert Lipman\\n Naval Surface Warfare Center, Carderock Division\\n Code 2042\\n Bethesda, Maryland 20084-5000\\n\\n VOICE (301) 227-3618; FAX (301) 227-5753 \\n E-MAIL lipman@oasys.dt.navy.mil\\n\\nAuthors should include the type of presentation, their affiliations, \\naddresses, telephone and FAX numbers, and addresses. Multi-author \\npapers should designate one point of contact.\\n\\n**********************************************************************\\nDEADLINES: The abstact submission deadline is April 30, 1993. \\nNotification of acceptance will be sent by May 14, 1993. \\nMaterials for reproduction must be received by June 1, 1993.\\n**********************************************************************\\n\\nFor further information, contact Robert Lipman at the above address.\\n\\n**********************************************************************\\n\\n\\t PLEASE DISTRIBUTE AS WIDELY AS POSSIBLE, THANKS.\\n\\n**********************************************************************\\n\\n\\nRobert Lipman | Internet: lipman@oasys.dt.navy.mil\\nDavid Taylor Model Basin - CDNSWC | or: lip@ocean.dt.navy.mil\\nComputational Signatures and | Voicenet: (301) 227-3618\\n Structures Group, Code 2042 | Factsnet: (301) 227-5753\\nBethesda, Maryland 20084-5000 | Phishnet: stockings@long.legs\\n\\t\\t\\t\\t \\nThe sixth sick shiek's sixth sheep's sick.\\n\\n\",\n", - " 'From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)\\nSubject: Re: PLANETS STILL: IMAGES ORBIT BY ETHER TWIST\\nArticle-I.D.: mksol.1993Apr22.213815.12288\\nOrganization: Texas Instruments Inc\\nLines: 22\\n\\nIn <1993Apr22.130923.115397@zeus.calpoly.edu> dmcaloon@tuba.calpoly.edu (David McAloon) writes:\\n\\n> ETHER IMPLODES 2 EARTH CORE, IS GRAVITY!!!\\n\\nIf not for the lack of extraneously capitalized words, I\\'d swear that\\nMcElwaine had changed his name and moved to Cal Poly. I also find the\\nchoice of newsgroups \\'interesting\\'. Perhaps someone should tell this\\nguy that \\'sci.astro\\' doesn\\'t stand for \\'astrology\\'?\\n\\nIt\\'s truly frightening that posts like this are originating at what\\nare ostensibly centers of higher learning in this country. Small\\nwonder that the rest of the world thinks we\\'re all nuts and that we\\nhave the problems that we do.\\n\\n[In case you haven\\'t gotten it yet, David, I don\\'t think this was\\nquite appropriate for a posting to \\'sci\\' groups.]\\n\\n-- \\n\"Insisting on perfect safety is for people who don\\'t have the balls to live\\n in the real world.\" -- Mary Shafer, NASA Ames Dryden\\n------------------------------------------------------------------------------\\nFred.McCall@dseg.ti.com - I don\\'t speak for others and they don\\'t speak for me.\\n',\n", - " \"From: lynn@pacesetter.com (Lynn E. Hall)\\nSubject: Re: story \\nKeywords: PARTY!!!!\\nNntp-Posting-Host: camellia\\nOrganization: Siemens Pacesetter, Inc.\\nLines: 20\\n\\n>lynn@pacesetter.com (Lynn E. Hall) writes:\\n>\\n>>allowed (yes, there is a God). No open containers on the street was the\\n>>signs in the bars. Yeah, RIGHT! The 20 or so cops on hand for the couple of\\n>>thousand of bikers in a 1 block main street were not citing anyone. The\\n>>street was filled with empty cans at least 2 feet deep in the gutter. The\\n>>crowd was raisin' hell - tittie shows everywhere. Can you say PARTY?\\n>\\n>\\n>And still we wonder why they stereotype us...\\n>\\n>-Erc.\\n\\n Whacha mean 'we'...ifin they (whom ever 'they' are) want to stereotype me\\nas one that likes to drink beer and watch lovely ladies display their\\nbeautiful bodies - I like that stereotype.\\n If you were refering 'stereotype' to infer a negative - you noticed we\\ndidn't rape, pillage, or burn down the town. We also left mucho bucks as in\\nMONEY with the town. Me thinks the town LIKES us. Least they said so.\\n Lynn Hall - NOS Bros\\n\",\n", - " 'From: mikej@PROBLEM_WITH_INEWS_GATEWAY_FILE (Mike Johnson)\\nSubject: Re: Paris-Dakar BMW touring???\\nNntp-Posting-Host: mikej.mentorg.com\\nOrganization: Mentor Graphics\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 8\\n\\n\\n--\\n-----------------------------------------------------------------------------\\n mike_johnson@mentorg.com\\n-----------------------------------------------------------------------------\\n Mentor Graphics | 8005 SW Boeckman Rd | Software Support \\n Corporation | Wilsonville, OR 97070-7777 | Framework Products Division \\n_____________________________________________________________________________\\n',\n", - " \"From: erick@andr.UB.com (Eric A. Kilpatrick)\\nSubject: Re: Drinking and Riding\\nNntp-Posting-Host: pixel.andr.ub.com\\nReply-To: erick@andr.UB.com\\nOrganization: Ungermann-Bass Inc./Andover, MA\\nLines: 7\\n\\nPersonally, I follow the no alcohol rule when I'm on a bike. My view is that you have to be in such a high degree of control that any alcohol could be potentially hazardous to my bike! If I get hurt it's my own fault, but I don't want to wreck my Katana. I developed this philosophy from an impromptu *experiment*. I had one beer at 6:00 in the evening and had volleyball practice at 7:00. I wasn't even close to leagle intoxication, but I couldn't perform even the most basic things until 8:30! This made\\n\\n\\n\\n me think about how I viewed alcohol and intoxication. You may seem fine, but your reactions may be affected such that you'll be unable to recover from hitting a rock or even just a gust of wind. I greatly enjoy social drinking but, for me, it just doesn't mix with riding.\\n\\nMax enjoyment!\\nEric\\n\\n\",\n", - " 'From: yoo@engr.ucf.edu (Hoi Yoo)\\nSubject: Ribbon Information ?\\nOrganization: engineering, University of Central Florida, Orlando\\nDistribution: usa\\nLines: 20\\n\\n\\n\\nDoes anyone out there have or know of, any kind of utility program for\\n\\nRibbons?\\n\\n\\nRibbons are a popular representation for 2D shape. I am trying to\\nfind symmetry axis in a given any 2D shape using ribbons.\\n\\n\\nAny suggestions will be greatly appreciated how to start program. \\n\\n\\nThanks very much in advance,\\nHoi\\n\\n\\nyoo@engr.ucf.edu\\n\\n',\n", - " \"From: small@tornado.seas.ucla.edu (James F. Small)\\nSubject: Re: Here's to the assholes\\nOrganization: School of Engineering and Applied Sciences, UCLA\\nLines: 26\\n\\nIn article you rambled on about:\\n)In article <9953@lee.SEAS.UCLA.EDU> small@thunder.seas.ucla.edu (James F. Small) writes:\\n)> Here's to the 3 asshole scooter owners who TRIPLE PARKED behind my\\n)> bike today. \\n)\\n)Jim calling other prople assholes, what's next?\\n ^^^^^^\\n\\nIf you're going to flame, learn to spell.\\n\\n)Besides, assholeism is endemic to the two-wheeled motoring community.\\n\\nWhy I do believe that Jason, the wise, respected (hahahha), has just made a\\nstereotypical remark. How unsophisticated of you. I'm so sorry you had to\\ncome out of your ivory tower and stoop (as you would say), to my , obviously,\\nlower level.\\n\\nBesides, geekism is endemic to the albino-phoosball playing community (and\\nthose who drive volvos)\\n\\n\\nRemember ,send your flames to jrobbins@cs.ucla.edu\\n-- \\nI need what a formal education can not provide.\\n---\\nDoD# 2024\\n\",\n", - " \"From: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nSubject: Re: islamic genocide\\nOrganization: Technical University Braunschweig, Germany\\nLines: 23\\n\\nIn article <1qi83b$ec4@horus.ap.mchp.sni.de>\\nfrank@D012S658.uucp (Frank O'Dwyer) writes:\\n \\n(Deletion)\\n>#>Few people can imagine dying for capitalism, a few\\n>#>more can imagine dying for democracy, but a lot more will die for their\\n>#>Lord and Savior Jesus Christ who Died on the Cross for their Sins.\\n>#>Motivation, pure and simple.\\n>\\n>Got any cites for this nonsense? How many people will die for Mom?\\n>Patriotism? Freedom? Money? Their Kids? Fast cars and swimming pools?\\n>A night with Kim Basinger or Mel Gibson? And which of these things are evil?\\n>\\n \\nRead a history book, Fred. And tell me why so many religions command to\\ncommit genocide when it has got nothing to do with religion. Or why so many\\nreligions say that not living up to the standards of the religion is worse\\nthan dieing? Coincidence, I assume. Or ist part of the absolute morality\\nyou describe so often?\\n \\nTheism is strongly correlated with irrational belief in absolutes. Irrational\\nbelief in absolutes is strongly correlated with fanatism.\\n Benedikt\\n\",\n", - " 'From: flax@frej.teknikum.uu.se (Jonas Flygare)\\nSubject: Re: 18 Israelis murdered in March\\nOrganization: Dept. Of Control, Teknikum, Uppsala\\nLines: 184\\n\\t\\n\\t<1993Apr5.125419.8157@thunder.mcrcim.mcgill.edu>\\nNNTP-Posting-Host: frej.teknikum.uu.se\\nIn-reply-to: hasan@McRCIM.McGill.EDU\\'s message of Mon, 5 Apr 93 12:54:19 GMT\\n\\nIn article <1993Apr5.125419.8157@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n\\n[After a small refresh Hasan got on the track again.]\\n\\n In article , flax@frej.teknikum.uu.se (Jonas Flygare) writes:\\n\\n |> In article <1993Apr3.182738.17587@thunder.mcrcim.mcgill.edu> hasan@McRCIM.McGill.EDU writes:\\n\\n |> In article , flax@frej.teknikum.uu.se (Jonas Flygare) writes:\\n\\n |> |> I get the impression Hasan realized he goofed and is now\\n |> |> trying to drop the thread. Let him. It might save some\\n |> |> miniscule portion of his sorry face.\\n\\n |> Not really. since i am a logical person who likes furthering himself\\n |> from any \"name calling\", i started trashing any article that contains\\n |> such abuses without responding to, and sometimes not even reading articles \\n |> written by those who acquired such bad habits from bad company!\\n |> \\n |> Ah, but in my followup on the subject (which you, by the way, never bothered\\n |> responding to..) there was no name-calling. Hence the assumption.\\n |> Do you feel more up to it now, so that we might have an answer?\\n |> Or, to refresh your memory, does the human right issue in the area\\n |> apply to Palestinians only? Also, do you claim there is such a thing as \\n |> forfeiting a human right? If that\\'s possible, then explain to the rest of \\n |> us how there can exist any such thing?\\n |> \\n |> Use your logic, and convince us! This is your golden chance!\\n\\n |> Jonas Flygare,\\n\\n\\n well , ok. let\\'s see what Master of Wisdom, Mr. Jonas Flygare,\\n wrote that can be wisdomely responded to :\\n\\nAre you calling names, or giving me a title? If the first, read your \\nparagraph above, if not I accept the title, in order to let you get into the\\num, well, debate again.\\n\\n\\n Master of Wisdom writes in <1993Mar31.101957@frej.teknikum.uu.se>:\\n\\n |> [hasan]\\n\\n |> |> [flax]\\n\\n |> |> |> [hasan]\\n\\n |> |> |> In case you didNOT know, Palestineans were there for 18 months. \\n |> |> |> and they are coming back\\n |> |> |> when you agree to give Palestineans their HUMAN-RIGHTS.\\n\\n |> |> |> Afterall, human rights areNOT negotiable.\\n\\n |> |> |> Correct me if I\\'m wrong, but isn\\'t the right to one\\'s life _also_\\n |> |> |> a \\'human right\\'?? Or does it only apply to palestinians?\\n\\n |> |> No. it is EVERYBODY\\'s right. However, when a killer kills, then he is giving\\n |> |> up -willingly or unwillingly - his life\\'s right to the society. \\n |> |> the society represented by the goverment would exercise its duty by \\n |> |> depriving the killer off his life\\'s right.\\n\\n |> So then it\\'s all right for Israel to kill the people who kill Israelis?\\n |> The old \\'eye for an eye\\' thinking? Funny, I thought modern legal systems\\n |> were made to counter exactly that.\\n\\n So what do you expect me to tell you to tell you, Master of Wsidom, \\n\\t\\t\\t\\t\\t\\t\\t ^^^\\n------------------------------------------------------------------\\nIf you insist on giving me names/titles I did not ask for you could at\\nleast spell them correctly. /sigh.\\n\\n when you are intentionally neglecting the MOST important fact that \\n the whole israeli presence in the occupied territories is ILLEGITIMATE, \\n and hence ALL their actions, their courts, their laws are illegitimate on \\n the ground of occupied territories.\\n\\nNo, I am _not_ neglecting that, I\\'m merely asking you whether the existance\\nof Israeli citicens in the WB or in Gaza invalidates those individuals right\\nto live, a (as you so eloquently put it) human right. We can get back to the \\nquestion of which law should be used in the territories later. Also, you have \\nnot adressed my question if the israelis also have human rights.\\n\\n What do you expect me to tell you, Master of Wisdom, when I did explain my\\n point in the post, that you \"responded to\". The point is that since Israel \\n is occupying then it is automatically depriving itself from some of its rights \\n to the Occupied Palestineans, which is exactly similar the automatic \\n deprivation of a killer from his right of life to the society.\\n\\nIf a state can deprive all it\\'s citizens of human rights by its actions, then \\ntell me why _any_ human living today should have any rights at all?\\n\\n |> |> In conjugtion with the above, when a group of people occupies others \\n |> |> territories and rule them by force, then this group would be -willingly or \\n |> |> unwillingly- deprived from some of its rights. \\n\\n |> Such as the right to live? That\\'s nice. The swedish government is a group\\n |> of people that rule me by force. Does that give me the right to kill\\n |> them?\\n\\n Do you consider yourself that you have posed a worthy question here ?\\n\\nWorthy or not, I was just applying your logic to a related problem.\\nAm I to assume you admit it wouldn\\'t hold?\\n\\n |> |> What kind of rights and how much would be deprived is another issue?\\n |> |> The answer is to be found in a certain system such as International law,\\n |> |> US law, Israeli law ,...\\n\\n |> And now it\\'s very convenient to start using the legal system to prove a \\n |> point.. Excuse me while I throw up.\\n\\n ok, Master of Wisdom is throwing up. \\n You people stay away from the screen while he is doing it !\\n\\nOh did you too watch that comedy where they pipe water through the telephone?\\nI\\'ll let you in on a secret... It\\'s not for real.. Take my word for it.\\n\\n |> |> It seems that the US law -represented by US State dept in this case-\\n |> |> is looking to the other way around when violence occurs in occupied territories.\\n |> |> Anyway, as for Hamas, then obviously they turned to the islamic system.\\n\\n |> And which system do you propose we use to solve the ME problem?\\n\\n The question is NOT which system would solve the ME problem. Why ? because\\n any system can solve it. \\n The laws of minister Sharon says kick Palestineans out of here (all palestine). \\n\\nI asked for which system should be used, that will preserve human rights for \\nall people involved. I assumed that was obvious, but I won\\'t repeat that \\nmistake. Now that I have straightened that out, I\\'m eagerly awaiting your \\nreply.\\n\\n Joseph Weitz (administrator responsible for Jewish colonization) \\n said it best when writing in his diary in 1940:\\n\\t \"Between ourselves it must be clear that there is no room for both\\n\\t peoples together in this country.... We shall not achieve our goal\\n\\t\\t\\t\\t\\t\\t^^^ ^^^\\n\\t of being an independent people with the Arabs in this small country.\\n\\t The only solution is a Palestine, at least Western Palestine (west of\\n\\t the Jordan river) without Arabs.... And there is no other way than\\n\\t to transfer the Arabs from here to the neighbouring countries, to\\n\\t transfer all of them; not one village, not one tribe, should be \\n\\t left.... Only after this transfer will the country be able to\\n\\t absorb the millions of our own brethren. There is no other way out.\"\\n\\t\\t\\t\\t DAVAR, 29 September, 1967\\n\\t\\t\\t\\t (\"Courtesy\" of Marc Afifi)\\n\\nJust a question: If we are to disregard the rather obvious references to \\ngetting Israel out of ME one way or the other in both PLO covenant and HAMAS\\ncharter (that\\'s the english translations, if you have other information I\\'d\\nbe interested to have you translate it) why should we give any credence to \\na _private_ paper even older? I\\'m not going to get into the question if he\\nwrote the above, but it\\'s fairly obvious all parties in the conflict have\\ntheir share of fanatics. Guess what..? Those are not the people that will\\nmake any lasting peace in the region. Ever. It\\'s those who are willing to \\nmake a tabula rasa and start over, and willing to give in order to get \\nsomething back.\\n\\n\\n \"We\" and \"our\" either refers to Zionists or Jews (i donot know which). \\n\\n Well, i can give you an answer, you Master of Wisdom, I will NOT suggest the \\n imperialist israeli system for solving the ME problem !\\n\\n I think that is fair enough .\\n\\nNo, that is _not_ an answer, since I asked for a system that could solve \\nthe problem. You said any could be used, then you provided a contradiction.\\nGuess where that takes your logic? To never-never land. \\n\\n\\n \"The greatest problem of Zionism is Arab children\".\\n\\t\\t\\t -Rabbi Shoham.\\n\\nOh, and by the way, let me add that these cute quotes you put at the end are\\na real bummer, when I try giving your posts any credit.\\n--\\n\\n--------------------------------------------------------\\nJonas Flygare, \\t\\t+ Wherever you go, there you are\\nV{ktargatan 32 F:621\\t+\\n754 22 Uppsala, Sweden\\t+\\n',\n", - " 'From: cjackson@adobe.com (Curtis Jackson)\\nSubject: Re: New to Motorcycles...\\nOrganization: Adobe Systems Incorporated, Mountain View\\nLines: 26\\n\\nIn article <1993Apr20.131800.16136@alw.nih.gov> gregh@niagara.dcrt.nih.gov (Gregory Humphreys) writes:\\n}1) I only have about $1200-1300 to work with, so that would have \\n}to cover everything (bike, helmet, anything else that I\\'m too \\n}ignorant to know I need to buy)\\n\\nThe following numbers are approximate, and will no doubt get me flamed:\\n\\nHelmet (new, but cheap)\\t\\t\\t\\t\\t$100\\nJacket (used or very cheap)\\t\\t\\t\\t$100\\nGloves (nothing special)\\t\\t\\t\\t$ 20\\nMotorcycle Safety Foundation riding course (a must!)\\t$140\\n\\nThat leaves you between $900 and $1000 (depending on the accuracy\\nof my numbers) to buy a used bike, get it registered, get it\\ninsured, and get it running properly. I\\'d say you\\'re cutting\\nit close. Perhaps if your parents are reasonable, and you indicated\\nyour wish to learn to ride safely, you could get them to pick up\\nthe cost of the MSF course and some of the safety gear. Early\\nholiday presents or whatever. Those are one-time (well, long-term\\nanyway) investments, and you could spend your money on the actual\\nbike, insurance, registration, and maintenance.\\n-- \\nCurtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\nDoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\"\\n\"There is no justification for taking away individuals\\' freedom\\n in the guise of public safety.\" -- Thomas Jefferson\\n',\n", - " 'From: wallacen@CS.ColoState.EDU (nathan wallace)\\nSubject: ORION test film\\nReply-To: wallacen@CS.ColoState.EDU\\nNntp-Posting-Host: sor.cs.colostate.edu\\nOrganization: Colorado State University -=- Computer Science Dept.\\nLines: 11\\n\\nIs the film from the \"putt-putt\" test vehicle which used conventional\\nexplosives as a proof-of-concept test, or another one?\\n\\n---\\nC/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/\\nC/ Nathan F. Wallace C/C/ \"Reality Is\" C/\\nC/ e-mail: wallacen@cs.colostate.edu C/C/ ancient Alphaean proverb C/\\nC/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/C/\\n \\n\\n\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Case Western Reserve University\\nLines: 26\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1qkq9t$66n@horus.ap.mchp.sni.de> frank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n\\n>I\\'ll take a wild guess and say Freedom is objectively valuable. I base\\n>this on the assumption that if everyone in the world were deprived utterly\\n>of their freedom (so that their every act was contrary to their volition),\\n>almost all would want to complain. Therefore I take it that to assert or\\n>believe that \"Freedom is not very valuable\", when almost everyone can see\\n>that it is, is every bit as absurd as to assert \"it is not raining\" on\\n>a rainy day. I take this to be a candidate for an objective value, and it\\n>it is a necessary condition for objective morality that objective values\\n>such as this exist.\\n\\n\\tYou have only shown that a vast majority ( if not all ) would\\nagree to this. However, there is nothing against a subjective majority.\\n\\n\\tIn any event, I must challenge your assertion. I know many \\nsocieties- heck, many US citizens- willing to trade freedom for \"security\".\\n\\n\\n--- \\n\\n \" Whatever promises that have been made can than be broken. \"\\n\\n John Laws, a man without the honor to keep his given word.\\n\\n\\n',\n", - " 'From: mini@csd4.csd.uwm.edu (Padmini Srivathsa)\\nSubject: WANTED : Info on Image Databases\\nOrganization: Computing Services Division, University of Wisconsin - Milwaukee\\nLines: 15\\nDistribution: world\\nNNTP-Posting-Host: 129.89.7.4\\nOriginator: mini@csd4.csd.uwm.edu\\n\\n Guess the subject says it all.\\n I would like references to any introductory material on Image\\n Databases.\\n Please send any pointers to mini@point.cs.uwm.edu\\n\\n Thanx in advance!\\n \\n\\n\\n\\n-- \\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n-< MINI >- mini@point.cs.uwm.edu | mini@csd4.csd.uwm.edu \\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n\\n',\n", - " 'From: Center for Policy Research \\nSubject: From Israeli press. Madness.\\nNf-ID: #N:cdp:1483500342:000:6673\\nNf-From: cdp.UUCP!cpr Apr 16 16:49:00 1993\\nLines: 130\\n\\n\\nFrom: Center for Policy Research \\nSubject: From Israeli press. Madness.\\n\\n/* Written 4:34 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n/* ---------- \"From Israeli press. Madness.\" ---------- */\\nFROM THE ISRAELI PRESS.\\n\\nPaper: Zman Tel Aviv (Tel Aviv\\'s time). Friday local Tel Aviv\\'s\\npaper, affiliated with Maariv.\\n\\nDate: 19 February 1993\\n\\nJournalist: Guy Ehrlich\\n\\nSubject: Interview with soldiers who served in the Duvdevan\\n(Cherry) units, which disguise themselves as Arabs and operate\\nwithin the occupied territories.\\n\\nExcerpts from the article:\\n\\n\"A lot has been written about the units who disguise themselves as\\nArabs, things good and bad, some of the falsehoods. But the most\\nimportant problem of those units has been hardly dealt with. It is\\nthat everyone who serves in the Cherry, after a time goes in one\\nway or another insane\".\\n\\nA man who said this, who will here be called Danny (his full name\\nis known to the editors) served in the Cherry. After his discharge\\nfrom the army he works as delivery boy. His pal, who will here be\\ncalled Dudu was also serving in the Cherry, and is now about to\\ndepart for a round-the-world tour. They both look no different\\nfrom average Israeli youngsters freshly discharged from conscript\\nservice. But in their souls, one can notice something completely\\ndifferent....It was not easy for them to come out with disclosures\\nabout what happened to them. And they think that to most of their\\nfellows from the Cherry it woundn\\'t be easy either. Yet after they\\nbegan to talk, it was nearly impossible to make them stop talking.\\nThe following article will contain all the horror stories\\nrecounted with an appalling openness.\\n\\n(...) A short time ago I was in command of a veteran team, in\\nwhich some of the fellows applied for release from the Cherry. We\\ncalled such soldiers H.I. \\'Hit by the Intifada\\'. Under my command\\nwas a soldier who talked to himself non-stop, which is a common\\nphenomenon in the Cherry. I sent him to a psychiatrist. But why I\\nshould talk about others when I myself feel quite insane ? On\\nFridays, when I come home, my parents know I cannot be talked to\\nuntil I go to the beach, surf a little, calm down and return. The\\nkeys of my father\\'s car must be ready for in advance, so that I\\ncan go there. I they dare talk to me before, or whenever I don\\'t\\nwant them to talk to me, I just grab a chair and smash it\\ninstantly. I know it is my nerve: Smashing chairs all the time\\nand then running away from home, to the car and to the beach. Only\\nthere I become normal.(...)\\n\\n(...) Another friday I was eating a lunch prepared by my mother.\\nIt was an omelette of sorts. She took the risk of sitting next to\\nme and talking to me. I then told my mother about an event which\\nwas still fresh in my mind. I told her how I shot an Arab, and how\\nexactly his wound looked like when I went to inspect it. She began\\nto laugh hysterically. I wanted her to cry, and she dared laugh\\nstraight in my face instead ! So I told her how my pal had made a\\nmincemeat of the two Arabs who were preparing the Molotov\\ncocktails. He shot them down, hitting them beautifully, exactly as\\nthey deserved. One bullet had set a Molotov cocktail on fire, with\\nthe effect that the Arab was burning all over, just beautifully. I\\nwas delighted to see it. My pal fired three bullets, two at the\\nArab with the Molotov cocktail, and the third at his chum. It hit\\nhim straight in his ass. We both felt that we\\'d pulled off\\nsomething.\\n\\nNext I told my mother how another pal of mine split open the guts\\nin the belly of another Arab and how all of us ran toward that\\nspot to take a look. I reached the spot first. And then that Arab,\\nblood gushing forth from his body, spits at me. I yelled: \\'Shut\\nup\\' and he dared talk back to me in Hebrew! So I just laughed\\nstraight in his face. I am usually laughing when I stare at\\nsomething convulsing right before my eyes. Then I told him: \\'All\\nright, wait a moment\\'. I left him in order to take a look at\\nanother wounded Arab. I asked a soldier if that Arab could be\\nsaved, if the bleeding from his artery could be stopped with the\\nhelp of a stone of something else like that. I keep telling all\\nthis to my mother, with details, and she keeps laughing straight\\ninto my face. This infuriated me. I got very angry, because I felt\\nI was becoming mad. So I stopped eating, seized the plate with he\\nomelette and some trimmings still on, and at once threw it over\\nher head. Only then she stopped laughing. At first she didn\\'t know\\nwhat to say.\\n\\n(...) But I must tell you of a still other madness which falls\\nupon us frequently. I went with a friend to practice shooting on a\\nfield. A gull appeared right in the middle of the field. My friend\\nshot it at once. Then we noticed four deer standing high up on the\\nhill above us. My friend at once aimed at one of them and shot it.\\nWe enjoyed the sight of it falling down the rock. We shot down two\\ndeer more and went to take a look. When we climbed the rocks we\\nsaw a young deer, badly wounded by our bullet, but still trying to\\nsuch some milk from its already dead mother. We carefully\\ninspected two paths, covered by blood and chunks of torn flesh of\\nthe two deer we had hit. We were just delighted by that sight. We\\nhad hit\\'em so good ! Then we decided to kill the young deer too,\\nso as spare it further suffering. I approached, took out my\\nrevolver and shot him in the head several times from a very short\\ndistance. When you shoot straight at the head you actually see the\\nbullets sinking in. But my fifth bullet made its brains fall\\noutside onto the ground, with the effect of splattering lots of\\nblood straight on us. This made us feel cured of the spurt of our\\nmadness. Standing there soaked with blood, we felt we were like\\nbeasts of prey. We couldn\\'t explain what had happened to us. We\\nwere almost in tears while walking down from that hill, and we\\nfelt the whole day very badly.\\n\\n(...) We always go back to places we carried out assignments in.\\nThis is why we can see them. When you see a guy you disabled, may\\nbe for the rest of his life, you feel you got power. You feel\\nGodlike of sorts.\"\\n\\n(...) Both Danny and Dudu contemplate at least at this moment\\nstudying the acting. Dudu is not willing to work in any\\nsecurity-linked occupation. Danny feels the exact opposite. \\'Why\\nshouldn\\'t I take advantage of the skills I have mastered so well ?\\nWhy shouldn\\'t I earn $3.000 for each chopped head I would deliver\\nwhile being a mercenary in South Africa ? This kind of job suits\\nme perfectly. I have no human emotions any more. If I get a\\nreasonable salary I will have no problem to board a plane to\\nBosnia in order to fight there.\"\\n\\nTransl. by Israel Shahak.\\n\\n',\n", - " \"Subject: Re: Americans and Evolution\\nFrom: rfox@charlie.usd.edu (Rich Fox, Univ of South Dakota)\\nReply-To: rfox@charlie.usd.edu\\nOrganization: The University of South Dakota Computer Science Dept.\\nNntp-Posting-Host: charlie\\nLines: 26\\n\\nIn article <1pik3i$1l4@fido.asd.sgi.com>, livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n>In article , bil@okcforum.osrhe.edu (Bill Conner) writes:\\n>|>\\n>|> \\n>|> Why do you spend so much time posting here if your atheism is so\\n>|> incidental, if the question of God is trivial? Fess up, it matters to\\n>|> you a great deal.\\n>\\n>Ask yourself two questions.\\n>\\n>\\t1. How important is Mithras in your life today?\\n>\\n>\\t2. How important would Mithras become if there was a\\n>\\t well funded group of fanatics trying to get the\\n>\\t schools system to teach your children that Mithras\\n>\\t was the one true God?\\n>\\n>jon.\\n\\nRight on, Jon! Who cares who or whose, as long as it works for the individual.\\nBut don't try to impose those beliefs on us or our children. I would add the\\nwell-funded group tries also to purge science, to deny children access to great\\nwonders and skills. And how about the kids born to creationists? What a\\nburden with which to begin adult life. It must be a cruel awakening for those\\nwho finally see the light, provided it is possible to escape from the depths of\\nthis type of ignorance.\\n\",\n", - " 'From: kempmp@phoenix.oulu.fi (Petri Pihko)\\nSubject: Re: Idle questions for fellow atheists\\nOrganization: University of Oulu, Finland\\nX-Newsreader: TIN [version 1.1 PL6]\\nLines: 59\\n\\nacooper@mac.cc.macalstr.edu wrote:\\n \\n: I wonder how many atheists out there care to speculate on the face of\\n: the world if atheists were the majority rather than the minority group\\n: of the population. \\n\\nI\\'ve been thinking about this every now and then since I cut my ties\\nwith Christianity. It is surprising to note that a large majority of\\npeople, at least in Finland, seem to be apatheists - even though\\n90 % of the population are members of the Lutheran Church of Finland,\\nreligious people are actually a minority. \\n\\nCould it be possible that many people believe in god \"just in case\"?\\nIt seems people do not want to seek the truth; they fall prey to Pascal\\'s\\nWager or other poor arguments. A small minority of those who do believe\\nreads the Bible regularly. The majority doesn\\'t care - it believes,\\nbut doesn\\'t know what or how. \\n\\nPeople don\\'t usually allow their beliefs to change their lifestyle,\\nthey only want to keep the virtual gate open. A Christian would say\\nthat they are not \"born in the Spirit\", but this does not disturb them.\\nReligion is not something to think about. \\n\\nI\\'m afraid a society with a true atheist majority is an impossible\\ndream. Religions have a strong appeal to people, nevertheless - \\na promise of life after death is something humans eagerly listen to.\\nCoupled with threats of eternal torture and the idea that our\\nmorality is under constant scrutiny of some cosmic cop, too many\\npeople take the poison with a smile. Or just pretend to swallow\\n(and unconsciously hope god wouldn\\'t notice ;-) )\\n\\n: Also, how many atheists out there would actually take the stance and accor a\\n: higher value to their way of thinking over the theistic way of thinking. The\\n: typical selfish argument would be that both lines of thinking evolved from the\\n: same inherent motivation, so one is not, intrinsically, different from the\\n: other, qualitatively. But then again a measuring stick must be drawn\\n: somewhere, and if we cannot assign value to a system of beliefs at its core,\\n: than the only other alternative is to apply it to its periphery; ie, how it\\n: expresses its own selfishness.\\n\\nIf logic and reason are valued, then I would claim that atheistic thinking\\nis of higher value than the theistic exposition. Theists make unnecessary\\nassumptions they believe in - I\\'ve yet to see good reasons to believe\\nin gods, or to take a leap of faith at all. A revelation would do.\\n\\nHowever, why do we value logic and reasoning? This questions bears\\nsome resemblance to a long-disputed problem in science: why mathematics\\nworks? Strong deep structuralists, like Atkins, have proposed that\\nperhaps, after all, everything _is_ mathematics. \\n\\nIs usefulness any criterion?\\n\\nPetri\\n\\n--\\n ___. .\\'*\\'\\'.* Petri Pihko kem-pmp@ Mathematics is the Truth.\\n!___.\\'* \\'.\\'*\\' \\' . Pihatie 15 C finou.oulu.fi Physics is the Rule of\\n \\' *\\' .* \\'* SF-90650 OULU kempmp@ the Game.\\n *\\' * .* FINLAND phoenix.oulu.fi -> Chemistry is The Game.\\n',\n", - " 'From: perlman@qso.Colorado.EDU (Eric S. Perlman)\\nSubject: Re: Final Solution for Gaza ?\\nSummary: Davidsson can\\'t even get the most basic facts right.\\nNntp-Posting-Host: qso.colorado.edu\\nOrganization: University of Colorado, Boulder\\nLines: 27\\n\\nIn article <1483500354@igc.apc.org> Center for Policy Research writes:\\n>\\n>[...]\\n>The Gaza strip, this tiny area of land with the highest population\\n>density in the world, has been cut off from the world for weeks.\\n>The Israeli occupier has decided to punish the whole population of\\n>Gaza, some 700.000 people, by denying them the right to leave the\\n>strip and seek work in Israel.\\n\\nAnyone who can repeate this choice piece of tripe without checking\\nhis/her sources does not deserve to be believed. The Gaza strip does\\nnot possess the highest population density in the world. In fact, it\\nisn\\'t even close. Just one example will serve to illustrate the folly\\nof this statement: the city of Hong Kong has nearly ten times the\\npopulation of the Gaza strip in a roughly comparable land area. The\\ncenters of numerous cities also possess comparable, if not far higher,\\npopulation densities. Examples include Manhattan Island (NY City), Sao\\nPaolo, Ciudad de Mexico, Bombay,... \\n\\nNeed I go on? The rest of Mr. Davidsson\\'s message is no closer to the\\ntruth than this oft-repeated statement is.\\n\\n-- \\n\"How sad to see/A model of decorum and tranquillity/become like any other sport\\nA battleground for rival ideologies to slug it out with glee.\" -Tim Rice,\"Chess\"\\n Eric S. Perlman \\t\\t\\t\\t \\n Center for Astrophysics and Space Astronomy, University of Colorado, Boulder\\n',\n", - " 'From: ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed)\\nSubject: Re: Desertification of the Negev\\nOriginator: ahmeda@ice.mcrcim.mcgill.edu\\nNntp-Posting-Host: ice.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 23\\n\\n\\nIn article <1993Apr26.021105.25642@cs.brown.edu>, dzk@cs.brown.edu (Danny Keren) writes:\\n|> This is nonsense. I lived in the Negev for many years and I can say\\n|> for sure that no Beduins were \"moved\" or harmed in any way. On the\\n|> contrary, their standard of living has climbed sharply; many of them\\n|> now live in rather nice, permanent houses, and own cars. There are\\n|> quite a few Beduin students in the Ben-Gurion university. There are\\n|> good, friendly relations between them and the rest of the population.\\n|> \\n|> All the Beduins I met would be rather surprised to read Mr. Davidson\\'s\\n|> poster, I have to say.\\n|> \\n|> -Danny Keren.\\n|> \\n\\nIt is nonsense, Danny, if you can refute it with proof. If you are citing your\\nexperience then you should have been there in the 1940\\'s (the article is\\ncomparing the condition then with that now).\\n\\nOtherwise, it is you who is trying to change the facts.\\n\\n-Ahmed.\\n',\n", - " \"From: lm001@rrz.Uni-Koeln.DE (Erwin H. Keeve)\\nSubject: Polygon Reduction for Marching Cubes\\nOrganization: Regional Computing Center, University of Cologne\\nLines: 36\\nDistribution: world\\nNNTP-Posting-Host: rs1.rrz.uni-koeln.de\\nKeywords: Polygon Reduction, Marching Cubes, Surfaces, Midical Visualisation\\n\\n\\nDear Reader,\\n\\n\\nI'am searching for an implementation of a polygon reduction algorithm\\nfor marching cubes surfaces. I think the best one is the reduction algorithm\\nfrom Schroeder et al., SIGGRAPH '92. So, is there any implementation of this \\nalgorithm, it would be very nice if you could leave it to me.\\n\\nAlso I'am looking for a fast !!! connectivity\\ntest for marching cubes surfaces.\\n\\nAny help or hints will be very useful.\\nThanks a lot\\n\\n\\n ,,,\\n (o o)\\n ___________________________________________oOO__(-)__OOo_____________\\n|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|_|\\n|_|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|\\n| | |\\n| Erwin Keeve | adress: Peter-Welter-Platz 2 |\\n| | W-5000 Cologne 1, Germany |\\n| | |\\n| Dept. of Computergraphics & | phone: +49-221-20189-132 (-192) |\\n| Computeranimation | FAX: +49-221-20189-17 |\\n| | |\\n| Academy of Media Arts Cologne | Email: keeve@khm.uni-koeln.de |\\n|_______________________________|_____________________________________|\\n\\n\\n\\n\\n\\n\\n\",\n", - " 'From: dbd@urartu.sdpa.org (David Davidian)\\nSubject: Re: Public Service Translation No.2\\nKeywords: effective Greek & Armenian postings\\nOrganization: S.D.P.A. Center for Regional Studies\\nLines: 36\\n\\nIn article <93332@hydra.gatech.EDU> gt1091a@prism.gatech.EDU (gt1091a gt1091a\\nKAAN,TIMUCIN) wrote:\\n\\n[KAAN] Who the hell is this guy David Davidian. I think he talks too much..\\n\\nI am your alter-ego!\\n\\n[KAAN] Yo , DAVID you would better shut the f... up.. O.K ??\\n\\nNo, its\\' not OK! What are you going to do? Come and get me? \\n\\n[KAAN] I don\\'t like your attitute. You are full of lies and shit. \\n\\nIn the United States we refer to it as Freedom of Speech. If you don\\'t like \\nwhat I write either prove me wrong, shut up, or simply fade away! \\n\\n[KAAN] Didn\\'t you hear the saying \"DON\\'T MESS WITH A TURC!!\"...\\n\\nNo. Why do you ask? What are you going to do? Are you going to submit me to\\nbodily harm? Are you going to kill me? Are you going to torture me?\\n\\n[KAAN] See ya in hell..\\n\\nWrong again!\\n\\n[KAAN] Timucin.\\n\\nAll I did was to translate a few lines from Turkish into English. If it was\\nso embarrassing in Turkish, it shouldn\\'t have been written in the first place!\\nDon\\'t kill the messenger!\\n\\n-- \\nDavid Davidian dbd@urartu.sdpa.org | \"How do we explain Turkish troops on\\nS.D.P.A. Center for Regional Studies | the Armenian border, when we can\\'t \\nP.O. Box 382761 | even explain 1915?\" \\nCambridge, MA 02238 | Turkish MP, March 1992 \\n',\n", - " \"From: szabo@techbook.com (Nick Szabo)\\nSubject: SSF Redesign: Constellation\\nSummary: decentralize & automate functions\\nKeywords: space station, constellation\\nArticle-I.D.: techbook.C51z6E.CL1\\nOrganization: TECHbooks --- Public Access UNIX --- (503) 220-0636\\nLines: 89\\n\\nSSF is up for redesign again. Let's do it right this\\ntime! Let's step back and consider the functionality we want:\\n\\n[1] microgravity/vacuum process research\\n[2] life sciences research (adaptation to space)\\n[3] spacecraft maintenence \\n\\nThe old NASA approach, explified by Shuttle and SSF so far, was to\\ncentralize functionality. These projects failed to meet\\ntheir targets by a wide margin: the military and commercial users \\ntook most of their payloads off Shuttle after wasting much effort to \\ntie their payloads to it, and SSF has crumbled into disorganization\\nand miscommunication. Over $50 billion has been spent on these\\ntwo projects with no reduction in launch costs and littel improvement\\nin commercial space industrialization. Meanwhile, military and commercial \\nusers have come up with a superior strategy for space development: the \\nconstellation. \\n\\nFirstly, different functions are broken down into different \\nconstellations placed in the optimal orbit for each function:\\nthus we have the GPS/Navstar constellation in 12-hour orbits,\\ncomsats in Clarke and Molniya orbits, etc. Secondly, the task\\nis distributed amongst several spacecraft in a constellation,\\nproviding for redundancy and full coverage where needed.\\n\\nSSF's 3 main functions require quite different environments\\nand are also prime candidates for constellization.\\n\\n[1] We have the makings of a microgravity constellation now:\\nCOMET and Mir for long-duration flights, Shuttle/Spacelab for\\nshort-duration flights. The best strategy for this area is\\ninexpensive, incremental improvement: installation of U.S. facilities \\non Mir, Shuttle/Mir linkup, and transition from Shuttle/Spacelab\\nto a much less expensive SSTO/Spacehab/COMET or SSTO/SIF/COMET.\\nWe might also expand the research program to take advantage of \\ninteresting space environments, eg the high-radiation Van Allen belt \\nor gas/plasma gradients in comet tails. The COMET system can\\nbe much more easily retrofitted for these tasks, where a \\nstation is too large to affordably launch beyond LEO.\\n\\n[2] We need to study life sciences not just in microgravity,\\nbut also in lunar and Martian gravities, and in the radiation\\nenvironments of deep space instead of the protected shelter\\nof LEO. This is a very long-term, low-priority project, since\\nastronauts will have little practical use in the space program\\nuntil costs come down orders of magnitude. Furthermore, using\\nastronauts severely restricts the scope of the investigation,\\nand the sample size. So I propose LabRatSat, a constellation\\ntether-bolo satellites that test out various levels of gravity\\nin super-Van-Allen-Belt orbits that are representative of the\\nradiation environment encountered on Earth-Moon, Earth-Mars,\\nEarth-asteroid, etc. trips. The miniaturized life support\\nmachinery might be operated real-time from earth thru a VR\\ninterface. AFter several orbital missions have been flown,\\nfollow-ons can act as LDEFs on the lunar and Martian surface,\\ntesting out the actual environment at low cost before $billions\\nare spent on astronauts.\\n\\n[3] By far the largest market for spacecraft servicing is in \\nClarke orbit. I propose a fleet of small teleoperated\\nrobots and small test satellites on which ground engineers can\\npractice their skills. Once in place, robots can pry stuck\\nsolar arrays and antennas, attach solar battery power packs,\\ninject fuel, etc. Once the fleet is working, it can be\\nspun off to commercial company(s) who can work with the comsat\\ncompanies to develop comsat replaceable module standards.\\n\\nBy applying the successful constellation strategy, and getting\\nrid of the failed centralized strategy of STS and old SSF, we\\nhave radically improved the capability of the program while\\ngreatly cutting its cost. For a fraction of SSF's pricetag,\\nwe can fix satellites where the satellites are, we can study\\nlife's adaptation to a much large & more representative variety \\nof space environments, and we can do microgravity and vacuum\\nresearch inexpensively and, if needed, in special-purpose\\norbits.\\n\\nN.B., we can apply the constellation strategy to space exploration\\nas well, greatly cutting its cost and increasing its functionality. \\nMars Network and Artemis are two good examples of this; more ambitiously \\nwe can set up a network of native propellant plants on Mars that can be used\\nto fuel planet-wide rover/ballistic hopper prospecting and\\nsample return. The descendants of LabRatSat's technology can\\nbe used as a Mars surface LDEF and to test out closed-ecology\\ngreenhouses on Mars at low cost.\\n\\n\\n-- \\nNick Szabo\\t\\t\\t\\t\\t szabo@techboook.com\\n\",\n", - " 'From: jennise@opus.dgi.com (Milady Printcap the goddess of peripherals)\\nSubject: RE: Looking for a little research help\\nOrganization: Dynamic Graphics Inc.\\nLines: 6\\nDistribution: usa\\nNNTP-Posting-Host: opus.dgi.com\\n\\nFound it! Thanks. I got several offers for help. I appreciate it and\\nwill be contacting those people via e-mail.\\n\\nThanks again...\\n\\njennise\\n',\n", - " \"From: nraclaw@jade.tufts.edu (Nissan Raclaw)\\nSubject: Re: Go Hezbollah!!\\nOrganization: Tufts University - Medford, MA\\nLines: 13\\n\\nCongratulations also are due to the Hamas activists who blew up the \\nWorld Trade Center, no? After all, with every American that they put\\n\\nin the grave they are underlining the USA's bankrupt imperialist\\npolicies. Go HAmas!\\n\\nBlah blah blah blah blah\\n\\nBrad, you are only asking that that violence that you love so much\\ncome back to haunt you...............\\n\\nNissan\\n\\n\",\n", - " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Protective gear\\nOrganization: University College of Wales, Aberystwyth\\nLines: 19\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\nIn article <1993Apr3.200829.2207@galaxy.gov.bc.ca> bclarke@galaxy.gov.bc.ca writes:\\n>In article , maven@eskimo.com (Norman Hamer) writes:\\n>> What protective gear is the most important? I've got a good helmet (shoei\\n>> rf200) and a good, thick jacket (leather gold) and a pair of really cheap\\n>> leather gloves... What should my next purchase be? Better gloves, boots,\\n>> leather pants, what?\\n\\nIF you can remember to tuck properly, the bits that are going to take most \\npunishment with the gear you have will probably be your feet, then hips and \\nknees. Get boots then trousers. The gloves come last, as long as you've the \\nself control to pull your arms in when you tuck. If not, get good gloves \\nfirst - Hands are VERY easily wrecked if you put one down to steady your \\nfall at 70mph!! The other bits heal easier.\\n\\nOnce you are fully covered, you no longer tuck, just lie back and enjoy the \\nride.\\n\\nBest of all, take a mean of all the contradictory answers you get.\\n\",\n", - " 'From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: note to Bobby M.\\nLines: 52\\nOrganization: Walla Walla College\\nLines: 52\\n\\nIn article <1993Apr14.190904.21222@daffy.cs.wisc.edu> mccullou@snake2.cs.wisc.edu (Mark McCullough) writes:\\n>From: mccullou@snake2.cs.wisc.edu (Mark McCullough)\\n>Subject: Re: note to Bobby M.\\n>Date: Wed, 14 Apr 1993 19:09:04 GMT\\n>In article <1993Apr14.131548.15938@monu6.cc.monash.edu.au> darice@yoyo.cc.monash.edu.au (Fred Rice) writes:\\n>>In madhaus@netcom.com (Maddi Hausmann) writes:\\n>>\\n>>>Mark, how much do you *REALLY* know about vegetarian diets?\\n>>>The problem is not \"some\" B-vitamins, it\\'s balancing proteins. \\n>>>There is also one vitamin that cannot be obtained from non-animal\\n>>>products, and this is only of concern to VEGANS, who eat no\\n>>>meat, dairy, or eggs. I believe it is B12, and it is the only\\n>>>problem. Supplements are available for vegans; yes, the B12\\n>>>does come from animal by-products. If you are on an ovo-lacto\\n>>>vegetarian diet (eat dairy and eggs) this is not an issue.\\n>\\n>I didn\\'t see the original posting, but...\\n>Yes, I do know about vegetarian diets, considering that several of my\\n>close friends are devout vegetarians, and have to take vitamin supplements.\\n>B12 was one of the ones I was thinking of, it has been a long time since\\n>I read the article I once saw talking about the special dietary needs\\n>of vegetarians so I didn\\'t quote full numbers. (Considering how nice\\n>this place is. ;)\\n>\\n>>B12 can also come from whole-grain rice, I understand. Some brands here\\n>>in Australia (and other places too, I\\'m sure) get the B12 in the B12\\n>>tablets from whole-grain rice.\\n>\\n>Are you sure those aren\\'t an enriched type? I know it is basically\\n>rice and soybeans to get almost everything you need, but I hadn\\'t heard\\n>of any rice having B12. \\n>\\n>>Just thought I\\'d contribute on a different issue from the norm :)\\n>\\n>You should have contributed to the programming thread earlier. :)\\n>\\n>> Fred Rice\\n>> darice@yoyo.cc.monash.edu.au \\n>\\n>M^2\\n>\\nIf one is a vegan (a vegetarian taht eats no animal products at at i.e eggs, \\nmilk, cheese, etc., after about 3 years of a vegan diet, you need to start \\ntaking B12 supplements because b12 is found only in animals.) Acutally our \\nbodies make B12, I think, but our bodies use up our own B12 after 2 or 3 \\nyears. \\nLacto-oveo vegetarians, like myself, still get B12 through milk products \\nand eggs, so we don\\'t need supplements.\\nAnd If anyone knows more, PLEASE post it. I\\'m nearly contridicting myself \\nwith the mish-mash of knowledge I\\'ve gleaned.\\n\\nTammy\\n',\n", - " 'From: higgins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey)\\nSubject: Re: Solar Sail Data\\nOrganization: Fermi National Accelerator Laboratory\\nLines: 56\\nNNTP-Posting-Host: fnalf.fnal.gov\\n\\nIn article <1993Apr15.051746.29848@news.duc.auburn.edu>, snydefj@eng.auburn.edu (Frank J. Snyder) writes:\\n> I am looking for any information concerning projects involving Solar\\n> Sails. [...]\\n> Are there any groups out there currently involved in such a project ?\\n\\nSure. Contact the World Space Foundation. They\\'re listed in the sci.space\\nFrequently Asked Questions file, which I\\'ll excerpt.\\n\\n WORLD SPACE FOUNDATION - has been designing and building a solar-sail\\n spacecraft for longer than any similar group; many JPL employees lend\\n their talents to this project. WSF also provides partial funding for the\\n Palomar Sky Survey, an extremely successful search for near-Earth\\n asteroids. Publishes *Foundation News* and *Foundation Astronautics\\n Notebook*, each a quarterly 4-8 page newsletter. Contributing Associate,\\n minimum of $15/year (but more money always welcome to support projects).\\n\\n\\tWorld Space Foundation\\n\\tPost Office Box Y\\n\\tSouth Pasadena, California 91301\\n\\nWSF put together a little paperback anthology of fiction and\\nnonfiction about solar sails: *Project Solar Sail*. I think Robert\\nStaehle, David Brin, or Arthur Clarke may be listed as editor.\\n\\nAlso there is a nontechnical book on solar sailing by Louis Friedman,\\na technical one by a guy whose name escapes me (help me out, Josh),\\nand I would expect that Greg Matloff and Eugene Mallove have something\\nto say about the subject in *The Starflight Handbook*, as well as\\nquite a few references.\\n\\n\\nCheck the following articles in *Journal of the British Interplanetary\\nSociety*:\\n\\nV36 p. 201-209 (1983)\\nV36 p. 483-489 (1983)\\nV37 p. 135-141 (1984)\\nV37 p. 491-494 (1984)\\nV38 p. 113-119 (1984)\\nV38 p. 133-136 (1984)\\n\\n(Can you guess that Matloff visited Fermilab and gave me a bunch of\\nreprints? I just found the file.)\\n\\nAnd K. Eric Drexler\\'s paper \"High Performance Solar Sails and Related\\nReflecting Devices,\" AIAA paper 79-1418, probably in a book called\\n*Space Manufacturing*, maybe the proceedings of the Second (?)\\nConference on Space Manufacturing. The 1979 one, at any rate.\\n\\nSubmarines, flying boats, robots, talking Bill Higgins\\npictures, radio, television, bouncing radar Fermilab\\nvibrations off the moon, rocket ships, and HIGGINS@FNAL.BITNET\\natom-splitting-- all in our time. But nobody HIGGINS@FNAL.FNAL.GOV\\nhas yet been able to figure out a music SPAN: 43011::HIGGINS\\nholder for a marching piccolo player. \\n --Meredith Willson, 1948\\n',\n", - " 'Organization: Ryerson Polytechnical Institute\\nFrom: Mike Mychalkiw \\nSubject: Re: Cobra Locks\\nDistribution: usa\\nLines: 33\\n\\nGreetings netters,\\n\\nSteve writes ... \\n\\nWell I have the mother of all locks. On Friday the 16th of April I took\\npossesion of a 12\\' Cobra Links lock, 1\" diameter. This was a special order.\\n\\nI weighs a lot. I had to carry it home and it was digging into my shoulder\\nafter about two blocks.\\n\\nI have currently a Kryptonite Rock Lock through the front wheel, a HD\\npadlock for the steering lock, a Master padlock to lock the cover to two\\nfront spokes, and the Cobra Links through the rear swing arm and around a\\npost in an underground parking garage.\\n\\nNext Friday the 30th I have an appointment to have an alarm installed on\\nme bike.\\n\\nWhen I travel the Cobra Links and the cover and padlock stay at home.\\n\\nBy the way. I also removed the plastic mesh that is on the Cobra Links\\nand encased the lock from end to end using bicycle inner tubes (two of\\nthem) I got the from bicycle dealer that sold me the Cobra Links. The\\nguys were really great and didn\\'t mark up the price of the lock much\\nand the inner tubes were free.\\n\\nLater.\\n\\n-------------------------------------------------------------------------------\\n1992 FXSTC Rock \\'N Roll Mike Mychalkiw\\nHOG Ryerson Polytechnical Institute -\\nDoD #665 Just THIS side of HELL. Academic Computing Information Centre\\ndoh #0000000667 Just the OTHER side. EMAIL : ACAD8059@RYEVM.RYERSON.CA\\n',\n", - " 'From: Dave Dal Farra \\nSubject: Re: Eating and Riding was Re: Drinking and Riding\\nX-Xxdate: Tue, 6 Apr 93 15:22:03 GMT\\nNntp-Posting-Host: bcarm41a\\nOrganization: BNR Ltd.\\nX-Useragent: Nuntius v1.1.1d9\\nLines: 30\\n\\nIn article Paul Nakada,\\npnakada@oracle.com writes:\\n>\\n>What\\'s the feeling about eating and riding? I went out riding this\\n>weekend, and got a little carried away with some pecan pie. The whole\\n>ride back I felt sluggish. I was certainly much more alert on the\\n>ride in. I\\'m sure others have the same feeling, but the strangest\\n>thing is that eating is usually the turnaround point of weekend rides.\\n>\\n>From now on, a little snack will do. I\\'d much rather have a get that\\n>full/sluggish feeling closer to home.\\n>\\n>-Paul\\n>--\\n>Paul Nakada | Oracle Corporation | pnakada@oracle.com\\n>DoD #7773 | \\'91 R100C | \\'90 K75S\\n>\\n\\nTo maintain my senses at their sharpest, I never eat a full meal\\nwithin 24 hrs of a ride. I\\'ve tried Slim Fast Lite before a \\nride but found that my lap times around the Parliament Buildings suffered \\n0.1 secs. The resultant 70 pound weight loss over the summer\\njust sharpens my bike\\'s handling and I can always look\\nforward to a winter of carbo-loading.\\n\\nObligatory 8:)\\n\\nDave D.F.\\n\"It\\'s true they say that money talks. When mine spoke it said\\n\\'Buy me a Drink!\\'.\"\\n',\n", - " 'From: wcd82671@uxa.cso.uiuc.edu (daniel warren c)\\nSubject: Hard Copy --- Hot Pursuit!!!!\\nSummary: SHIT!!!!!!!\\nKeywords: Running from the Police.\\nArticle-I.D.: news.C5J34y.2t4\\nDistribution: rec.motorcycles\\nOrganization: University of Illinois at Urbana\\nLines: 44\\n\\n\\nYo, did anybody see this run of HARD COPY?\\n\\nI guy on a 600 Katana got pulled over by the Police (I guess for\\nspeeding or something). But just as the cop was about to step\\nout of the car, the dude punches it down an interstate in Georgia.\\nAng then, the cop gives chase.\\n\\nNow this was an interesting episode because it was all videotaped!!!\\nEverything from the dramatic takeoff and 135mph chase to the sidestreet\\nbattle at about 100mph. What happened at the end? The guy (who is\\nbeing relentless chased down box the cage with the disco lights)\\nslows a couple of times to taunt the cop. After blowing a few stop\\nsigns and making car jump to the side, he goes up a dead end street.\\n\\nThe Kat, although not the latest machine, is still a high performance\\nmachine and he slams on the brakes. Of couse, we all know that cages,\\nespecially the ones with the disco lights, can\\'t stop as fast as our\\nhigh performance machines. So what happens?... The cage plows into the\\nKat.\\n\\nLuckily for this dude, he was wearing a helmet and was not hurt. But\\ndude, how crazy can you get!?! Yeah, we\\'ve all went out and played\\ncat and mouse with our friends but, with a cop!!???!!! How crazy can\\nyou get!?!?! It took just one look at a ZX-7 who tried this crap\\nto convince me not to try any shit like that. (Although the dude\\ncollided with a car head on at 140 mph, the Kawasaki team colors\\nstill looked good!!! Just a few scratches, like no front end....\\n3 inch long engine and other \"minor\" scratches...)\\n\\nIf you guys are out there, please, slow it down. I not being\\nan advocate for the cages (especially the ones that make that \\nannoying ass noises...), but just think... The next time you\\npunched it (whether you have an all mighty ZX-11 or a \"I can\\ndo it\" 250 Ninja), just remember, a kid could step out at any \\ntime.\\n\\nPeace & ride (kinda) safe.\\n\\nWarren -- \"Have Suzuki, Will travel...\"\\nWCD82671@uxa.cso.uiuc.edu\\n\\n\"What\\'s the big deal about riding one of these. I\\'m only going...\\n95!?!?!\" - Annie (Robotech)\\n',\n", - " 'From: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nSubject: Re: Freedom In U.S.A.\\nNntp-Posting-Host: cunixb.cc.columbia.edu\\nReply-To: pgf5@cunixb.cc.columbia.edu (Peter Garfiel Freeman)\\nOrganization: Columbia University\\nLines: 30\\n\\nIn article <1993Apr25.182253.1449@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>\\tI don\\'t know where you guys are from but in America\\n>such attempts to curtail someones first amendment rights are\\n>not appreciated. Here, we let everyone speak their mind\\n>regardless of how we feel about it. Take your fascistic\\n>repressive ideals back to where you came from.\\n\\n\\nHey tough guy, freedom necessitates responsibility, and\\nno freedom is absolute. \\nBTW, to anyone who defends Arafat, read on:\\n\\n\"Open fire on the new Jewish immigrants, be they from the Soviet\\nUnion, Ethiopia or anywhere else....I give you my instructions to\\nuse violence against the immigrants. I willjail anyone who\\nrefuses to do this.\"\\n\\t\\t\\t\\tYassir Arafat, Al-Muharar, 4/10/90\\n\\nAt least he\\'s not racist!\\nJust anti-Jewish\\n\\n\\nPete\\n\\n\\n\\n\\n\\n\\n',\n", - " 'From: dchien@hougen.seas.ucla.edu (David H. Chien)\\nSubject: Orbit data - help needed\\nOrganization: SEASnet, University of California, Los Angeles\\nLines: 43\\n\\nI have the \"osculating elements at perigee\" of an orbit, which I need\\nto convert to something useful, preferably distance from the earth\\nin evenly spaced time intervals. A GSM coordinate system is preferable,\\nbut I convert from other systems. C, pascal, or fortran code, or\\nif you can point me to a book or something that\\'d be great.\\n\\nhere\\'s the first few lines of the file.\\n\\n0 ()\\n1 (2X, A3, 7X, A30)\\n2 (2X, I5, 2X, A3, 2X, E24.18)\\n3 (4X, A3, 7X, E24.18)\\n1 SMA SEMI-MAJOR AXIS\\n1 ECC ECCENTRICITY\\n1 INC INCLINATION\\n1 OMG RA OF ASCENDING NODE\\n1 POM ARGUMENT OF PERICENTRE\\n1 TRA TRUE ANOMALY\\n1 HAP APOCENTRE HEIGHT\\n1 HPE PERICENTRE HEIGHT\\n2 3 BEG 0.167290000000000000E+05\\n3 SMA 0.829159999999995925E+05\\n3 ECC 0.692307999999998591E+00\\n3 INC 0.899999999999999858E+02\\n3 OMG 0.184369999999999994E+03\\n3 POM 0.336549999999999955E+03\\n3 TRA 0.359999999999999943E+03\\n3 HAP 0.133941270127999174E+06\\n3 HPE 0.191344498719999910E+05\\n2 1 REF 0.167317532658774153E+05\\n3 SMA 0.829125167527418671E+05\\n3 ECC 0.691472268118590319E+00\\n3 INC 0.899596754214342091E+02\\n3 OMG 0.184377521828175002E+03\\n3 POM 0.336683788851850579E+03\\n3 TRA 0.153847166458030088E-05\\n3 HAP 0.133866082767180880E+06\\n3 HPE 0.192026707383028306E+05\\n\\nThanks in advance,\\n\\nlarry kepko\\nlkepko@igpp.ucla.edu\\n',\n", - " ' howland.reston.ans.net!europa.eng.gtefsd.com!uunet!mcsun!Germany.EU.net!news.dfn.de!tubsibr!dbstu1.rz.tu-bs.de!I3150101\\nSubject: Re: Gospel Dating\\nFrom: I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau)\\nOrganization: Technical University Braunschweig, Germany\\nLines: 35\\n\\nIn article <66015@mimsy.umd.edu>\\nmangoe@cs.umd.edu (Charley Wingate) writes:\\n \\n(Deletion)\\n>I cannot see any evidence for the V. B. which the cynics in this group would\\n>ever accept. As for the second, it is the foundation of the religion.\\n>Anyone who claims to have seen the risen Jesus (back in the 40 day period)\\n>is a believer, and therefore is discounted by those in this group; since\\n>these are all ancients anyway, one again to choose to dismiss the whole\\n>thing. The third is as much a metaphysical relationship as anything else--\\n>even those who agree to it have argued at length over what it *means*, so\\n>again I don\\'t see how evidence is possible.\\n>\\n \\nNo cookies, Charlie. The claims that Jesus have been seen are discredited\\nas extraordinary claims that don\\'t match their evidence. In this case, it\\nis for one that the gospels cannot even agree if it was Jesus who has been\\nseen. Further, there are zillions of other spook stories, and one would\\nhardly consider others even in a religious context to be some evidence of\\na resurrection.\\n \\nThere have been more elaborate arguments made, but it looks as if they have\\nnot passed your post filtering.\\n \\n \\n>I thus interpret the \"extraordinary claims\" claim as a statement that the\\n>speaker will not accept *any* evidence on the matter.\\n \\nIt is no evidence in the strict meaning. If there was actual evidence it would\\nprobably be part of it, but the says nothing about the claims.\\n \\n \\nCharlie, I have seen Invisible Pink Unicorns!\\nBy your standards we have evidence for IPUs now.\\n Benedikt\\n',\n", - " 'From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: Ok, So I was a little hasty...\\nOrganization: Ontario Hydro - Research Division\\nLines: 17\\n\\nIn article speedy@engr.latech.edu (Speedy Mercer) writes:\\n>In article jnmoyne@lbl.gov (Jean-Noel Moyne) writes:\\n>> Ok, hold on a second and clarify something for me:\\n>\\n>> What does \"DWI\" stand for ? I thought it was \"DUI\" for Driving Under\\n>>Influence, so here what does W stand for ?\\n>\\n>Driving While Intoxicated.\\n>\\n>This was changed here in Louisiana when a girl went to court and won her \\n>case by claiming to be stoned on pot, NOT intoxicated on liquor!\\n\\nHere it\\'s driving while impaired. That about covers everything.\\n\\nI\\'ve bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n',\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: FLAME and a Jewish home in Palestine\\nOrganization: The Department of Redundancy Department\\nLines: 41\\n\\nIn article maler@vercors.imag.fr (Oded Maler) writes:\\n>In article , jake@bony1.bony.com (Jake Livni) writes:\\n\\n>|> Typical Arabic thinking. If we are guilty of something, so is\\n>|> everyone else. Unfortunately for you, Nabil, Jewish tribes are not\\n>|> nearly as susceptible to the fratricidal murdering that is still so\\n>|> common among Arabs in the Middle East. There were no \" killings\\n>|> between the Jewish tribes on the way.\"\\n\\n>I don\\'t like this comment about \"Typical\" thinking. You could state\\n>your interpretation of Exodus without it. As I read Exodus I can see \\n>a lot of killing there, which is painted by the author of the bible\\n>in ideological/religious colors. The history in the desert can be seen\\n>as an ethos of any nomadic people occupying a land. That\\'s why I think\\n>it is a great book with which descendants Arabs, Turks and Mongols can \\n>unify as well.\\n\\nYou somehow missed Nabil\\'s comments, even though you included it in\\nyour followup: \\n\\n >The number which could have arrived to the Holy Lands must have been\\n >substantially less ude to the harsh desert and the killings between the\\n >Jewish tribes on the way..\\n\\nI am not aware of \"killings between Jewish tribes\" in the desert.\\n\\nThe point of \"typical thinking\" here is that while Arabs STILL TODAY\\nact in the manner you describe, like \"any nomadic people occupying a \\nland\", killing and plundering each other with regularity, others have\\nsomehow progressed over time. It is not surprising then that Arabs\\noften accuse others (infidels) of things that they are quite familiar\\nwith: civil rights violations, religious discrimination, ethnic\\ncleansing, land theft, torture and murder. It is precisely this \\nmechanism at work that leads people to say that Jewish tribes were\\nkilling each other in the desert, even without support for such a\\nludicrous suggestion.\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " \"From: roell@informatik.tu-muenchen.de (Thomas Roell)\\nSubject: Re: 24 bit Graphics cards\\nIn-Reply-To: rjs002c@parsec.paradyne.com's message of Wed, 14 Apr 1993 21:59:34 GMT\\nOrganization: Inst. fuer Informatik, Technische Univ. Muenchen, Germany\\nLines: 20\\n\\n>I am looking for EISA or VESA local bus graphic cards that support at least \\n>1024x786x24 resolution. I know Matrox has one, but it is very\\n>expensive. All the other cards I know of, that support that\\n>resoultion, are striaght ISA. \\n\\nWhat about the ELSA WINNER4000 (S3 928, Bt485, 4MB, EISA), or the\\nMetheus Premier-4VL (S3 928, Bt485, 4MB, ISA/VL) ?\\n\\n>Also are there any X servers for a unix PC that support 24 bits?\\n\\nAs it just happens, SGCS has a Xserver (X386 1.4) that does\\n1024x768x24 on those cards. Please email to info@sgcs.com for more\\ndetails.\\n\\n- Thomas\\n--\\n-------------------------------------------------------------------------------\\nDas Reh springt hoch, \\t\\t\\t\\te-mail: roell@sgcs.com\\ndas Reh springt weit,\\t\\t\\t\\t#include \\nwas soll es tun, es hat ja Zeit ...\\n\",\n", - " \"From: M. Burnham \\nSubject: Re: How to act in front of traffic jerks\\nX-Xxdate: Thu, 15 Apr 93 16:39:59 GMT\\nNntp-Posting-Host: 130.57.72.65\\nOrganization: Novell Inc.\\nX-Useragent: Nuntius v1.1.1d12\\nLines: 16\\n\\nIn article Robert Mugele,\\nrmugele@oracle.com writes:\\n>Absolutely, unless you are in the U.S. Then the cager will pull a gun\\n>and blow you away.\\n\\nWell, I would guess the probability of a BMW driver having a gun would\\nbe lower than some other vehicles. At least, I would be more likely \\nto say something to someone in a luxosedan, than a hopped-up pickup\\ntruck, for example.\\n\\n- Mark\\n\\n------------------------------------------------------------------------\\nMark S. Burnham (markb@wc.novell.com) AMA#668966 DoD#0747 \\nAlfa Romeo GTV-6 '90 Ninja 750\\n------------------------------------------------------------------------\\n\",\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 09/15 - Mission Schedules\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 177\\nDistribution: world\\nExpires: 6 May 1993 19:59:07 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/schedule\\nLast-modified: $Date: 93/04/01 14:39:23 $\\n\\nSPACE SHUTTLE ANSWERS, LAUNCH SCHEDULES, TV COVERAGE\\n\\n SHUTTLE LAUNCHINGS AND LANDINGS; SCHEDULES AND HOW TO SEE THEM\\n\\n Shuttle operations are discussed in the Usenet group sci.space.shuttle,\\n and Ken Hollis (gandalf@pro-electric.cts.com) posts a compressed version\\n of the shuttle manifest (launch dates and other information)\\n periodically there. The manifest is also available from the Ames SPACE\\n archive in SPACE/FAQ/manifest. The portion of his manifest formerly\\n included in this FAQ has been removed; please refer to his posting or\\n the archived copy. For the most up to date information on upcoming\\n missions, call (407) 867-INFO (867-4636) at Kennedy Space Center.\\n\\n Official NASA shuttle status reports are posted to sci.space.news\\n frequently.\\n\\n\\n WHY DOES THE SHUTTLE ROLL JUST AFTER LIFTOFF?\\n\\n The following answer and translation are provided by Ken Jenks\\n (kjenks@gothamcity.jsc.nasa.gov).\\n\\n The \"Ascent Guidance and Flight Control Training Manual,\" ASC G&C 2102,\\n says:\\n\\n\\t\"During the vertical rise phase, the launch pad attitude is\\n\\tcommanded until an I-loaded V(rel) sufficient to assure launch tower\\n\\tclearance is achieved. Then, the tilt maneuver (roll program)\\n\\torients the vehicle to a heads down attitude required to generate a\\n\\tnegative q-alpha, which in turn alleviates structural loading. Other\\n\\tadvantages with this attitude are performance gain, decreased abort\\n\\tmaneuver complexity, improved S-band look angles, and crew view of\\n\\tthe horizon. The tilt maneuver is also required to start gaining\\n\\tdownrange velocity to achieve the main engine cutoff (MECO) target\\n\\tin second stage.\"\\n\\n This really is a good answer, but it\\'s couched in NASA jargon. I\\'ll try\\n to interpret.\\n\\n 1)\\tWe wait until the Shuttle clears the tower before rolling.\\n\\n 2)\\tThen, we roll the Shuttle around so that the angle of attack\\n\\tbetween the wind caused by passage through the atmosphere (the\\n\\t\"relative wind\") and the chord of the wings (the imaginary line\\n\\tbetween the leading edge and the trailing edge) is a slightly\\n\\tnegative angle (\"a negative q-alpha\").\\tThis causes a little bit of\\n\\t\"downward\" force (toward the belly of the Orbiter, or the +Z\\n\\tdirection) and this force \"alleviates structural loading.\"\\n\\tWe have to be careful about those wings -- they\\'re about the\\n\\tmost \"delicate\" part of the vehicle.\\n\\n 3)\\tThe new attitude (after the roll) also allows us to carry more\\n\\tmass to orbit, or to achieve a higher orbit with the same mass, or\\n\\tto change the orbit to a higher or lower inclination than would be\\n\\tthe case if we didn\\'t roll (\"performance gain\").\\n\\n 4)\\tThe new attitude allows the crew to fly a less complicated\\n\\tflight path if they had to execute one of the more dangerous abort\\n\\tmaneuvers, the Return To Launch Site (\"decreased abort maneuver\\n\\tcomplexity\").\\n\\n 5)\\tThe new attitude improves the ability for ground-based radio\\n\\tantennae to have a good line-of-sight signal with the S-band radio\\n\\tantennae on the Orbiter (\"improved S-band look angles\").\\n\\n 6)\\tThe new attitude allows the crew to see the horizon, which is a\\n\\thelpful (but not mandatory) part of piloting any flying machine.\\n\\n 7)\\tThe new attitude orients the Shuttle so that the body is\\n\\tmore nearly parallel with the ground, and the nose to the east\\n\\t(usually). This allows the thrust from the engines to add velocity\\n\\tin the correct direction to eventually achieve orbit. Remember:\\n\\tvelocity is a vector quantity made of both speed and direction.\\n\\tThe Shuttle has to have a large horizontal component to its\\n\\tvelocity and a very small vertical component to attain orbit.\\n\\n This all begs the question, \"Why isn\\'t the launch pad oriented to give\\n this nice attitude to begin with? Why does the Shuttle need to roll to\\n achieve that attitude?\" The answer is that the pads were leftovers\\n from the Apollo days. The Shuttle straddles two flame trenches -- one\\n for the Solid Rocket Motor exhaust, one for the Space Shuttle Main\\n Engine exhaust. (You can see the effects of this on any daytime\\n launch. The SRM exhaust is dirty gray garbage, and the SSME exhaust is\\n fluffy white steam. Watch for the difference between the \"top\"\\n [Orbiter side] and the \"bottom\" [External Tank side] of the stack.) The\\n access tower and other support and service structure are all oriented\\n basically the same way they were for the Saturn V\\'s. (A side note: the\\n Saturn V\\'s also had a roll program. Don\\'t ask me why -- I\\'m a Shuttle\\n guy.)\\n\\n I checked with a buddy in Ascent Dynamics.\\tHe added that the \"roll\\n maneuver\" is really a maneuver in all three axes: roll, pitch and yaw.\\n The roll component of that maneuver is performed for the reasons\\n stated. The pitch component controls loading on the wings by keeping\\n the angle of attack (q-alpha) within a tight tolerance. The yaw\\n component is used to determine the orbital inclination. The total\\n maneuver is really expressed as a \"quaternion,\" a grad-level-math\\n concept for combining all three rotation matrices in one four-element\\n array.\\n\\n\\n HOW TO RECEIVE THE NASA TV CHANNEL, NASA SELECT\\n\\n NASA SELECT is broadcast by satellite. If you have access to a satellite\\n dish, you can find SELECT on Satcom F2R, Transponder 13, C-Band, 72\\n degrees West Longitude, Audio 6.8, Frequency 3960 MHz. F2R is stationed\\n over the Atlantic, and is increasingly difficult to receive from\\n California and points west. During events of special interest (e.g.\\n shuttle missions), SELECT is sometimes broadcast on a second satellite\\n for these viewers.\\n\\n If you can\\'t get a satellite feed, some cable operators carry SELECT.\\n It\\'s worth asking if yours doesn\\'t.\\n\\n The SELECT schedule is found in the NASA Headline News which is\\n frequently posted to sci.space.news. Generally it carries press\\n conferences, briefings by NASA officials, and live coverage of shuttle\\n missions and planetary encounters. SELECT has recently begun carrying\\n much more secondary material (associated with SPACELINK) when missions\\n are not being covered.\\n\\n\\n AMATEUR RADIO FREQUENCIES FOR SHUTTLE MISSIONS\\n\\n The following are believed to rebroadcast space shuttle mission audio:\\n\\n\\tW6FXN - Los Angeles\\n\\tK6MF - Ames Research Center, Mountain View, California\\n\\tWA3NAN - Goddard Space Flight Center (GSFC), Greenbelt, Maryland.\\n\\tW5RRR - Johnson Space Center (JSC), Houston, Texas\\n\\tW6VIO - Jet Propulsion Laboratory (JPL), Pasadena, California.\\n\\tW1AW Voice Bulletins\\n\\n\\tStation VHF\\t 10m\\t 15m\\t 20m\\t 40m\\t 80m\\n\\t------\\t ------ ------ ------ ------ -----\\t-----\\n\\tW6FXN\\t 145.46\\n\\tK6MF\\t 145.585\\t\\t\\t 7.165\\t3.840\\n\\tWA3NAN\\t 147.45 28.650 21.395 14.295 7.185\\t3.860\\n\\tW5RRR\\t 146.64 28.400 21.350 14.280 7.227\\t3.850\\n\\tW6VIO\\t 224.04\\t\\t 21.340 14.270\\n\\tW6VIO\\t 224.04\\t\\t 21.280 14.282 7.165\\t3.840\\n\\tW1AW\\t\\t 28.590 21.390 14.290 7.290\\t3.990\\n\\n W5RRR transmits mission audio on 146.64, a special event station on the\\n other frequencies supplying Keplerian Elements and mission information.\\n\\n W1AW also transmits on 147.555, 18.160. No mission audio but they\\n transmit voice bulletins at 0245 and 0545 UTC.\\n\\n Frequencies in the 10-20m bands require USB and frequencies in the 40\\n and 80m bands LSB. Use FM for the VHF frequencies.\\n\\n [This item was most recently updated courtesy of Gary Morris\\n (g@telesoft.com, KK6YB, N5QWC)]\\n\\n\\n SOLID ROCKET BOOSTER FUEL COMPOSITION\\n\\n Reference: \"Shuttle Flight Operations Manual\" Volume 8B - Solid Rocket\\n Booster Systems, NASA Document JSC-12770\\n\\n Propellant Composition (percent)\\n\\n Ammonium perchlorate (oxidizer)\\t\\t\\t69.6\\n Aluminum\\t\\t\\t\\t\\t\\t16\\n Iron Oxide (burn rate catalyst)\\t\\t\\t0.4\\n Polybutadiene-acrilic acid-acrylonitrile (a rubber) 12.04\\n Epoxy curing agent\\t\\t\\t\\t\\t1.96\\n\\n End reference\\n\\n Comment: The aluminum, rubber, and epoxy all burn with the oxidizer.\\n\\nNEXT: FAQ #10/15 - Historical planetary probes\\n',\n", - " 'From: mdennie@xerox.com (Matt Dennie)\\nSubject: Re: Flashing anyone?\\nKeywords: flashing\\nOrganization: Xerox\\n\\nIn <1993Apr15.123539.2228@news.columbia.edu> rdc8@cunixf.cc.columbia.edu (Robert D Castro) writes:\\n\\n>Hello all,\\n\\n>On my bike I have hazard lights (both front and back turn signals\\n>flash). Since I live in NJ and commute to NYC there are a number of\\n>tolls one must pay on route. Just before arriving at a toll booth I\\n>switch the hazards on. I do thisto warn other motorists that I will\\n>be taking longer than the 2 1/2 seconds to make the transaction.\\n>Taking gloves off, getting money out of coin changer/pocket, making\\n>transaction, putting gloves back on takes a little more time than the\\n>average cager takes to make the same transaction of paying the toll.\\n>I also notice that when I do this cagers tend to get the message and\\n>usually go to another booth.\\n\\n>My question, is this a good/bad thing to do?\\n\\n>Any others tend to do the same?\\n\\n>Just curious\\n\\n>o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o> o&o>\\n> Rob Castro | email - rdc8@cunixf.cc.columbia.edu | Live for today\\n> 1983 KZ550LTD | phone - (212) 854-7617 | For today you live!\\n> DoD# NYC-1 | New York, New York, USA | RC (tm)\\n\\nBeleive it or not: NY state once considered eliminating tolls for motor-\\ncycles based simply on the fact that motos clog up toll booths. But then\\nMario realized the foolishness of trading a few hundred K $`s a year for\\nsome relief in traffic congestion.\\n\\nToo bad he won`t take that Sumpreme Court Justice job - I thought we might\\nbe rid of him forever.\\n--\\n--Matt Dennie Internet: mmd.wbst207v@xerox.com\\nXerox Corporation, Rochester, NY (USA)\\n\"Reaching consensus in a group often\\n is confused with finding the right answer.\" -- Norman Maier\\n',\n", - " 'From: ray@unisql.UUCP (Ray Shea)\\nSubject: Re: What is it with Cats and Dogs ???!\\nOrganization: UniSQL, Inc., Austin, Texas, USA\\nLines: 17\\n\\nIn article <1993Apr14.200933.15362@cbnewsj.cb.att.com> jimbes@cbnewsj.cb.att.com (james.bessette) writes:\\n>In article <6130328@hplsla.hp.com> kens@hplsla.hp.com (Ken Snyder) writes:\\n>>ps. I also heard from a dog breeder that the chains of bicycles and\\n>>motorcycles produced high frequency squeaks that dogs loved to chase.\\n>\\n>Ask the breeder why they also chase BMWs also.\\n\\n\\nSqueaky BMW riders.\\n\\n\\n\\n-- \\nRay Shea \\t\\t \"they wound like a very effective method.\"\\nUniSQL, Inc.\\t\\t --Leah\\nunisql!ray@cs.utexas.edu some days i miss d. boon real bad. \\nDoD #0372 : Team Twinkie : \\'88 Hawk GT \\n',\n", - " \"From: leavitt@cs.umd.edu (Mr. Bill)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: The Cafe at the Edge of the Universe\\nLines: 43\\n\\nmjs@sys.uea.ac.uk (Mike Sixsmith) writes:\\nmjs>Secondly, it is the adhesion of the\\nmjs>tyre on the road, the suspension geometry and the ground clearance of the\\nmjs> motorcycle which dictate how quickly you can swerve to avoid obstacles, and\\nmjs>not the knowledge of physics between the rider's ears. Are you seriously\\n ^^^^^^^^^^^^^^^^^^^^\\nmjs>suggesting that countersteering knowledge enables you to corner faster\\nmjs>or more competentlY than you could manage otherwise??\\n\\negreen@east.sun.com writes:\\ned>If he's not, I will. \\n\\nHey Ed, you didn't give me the chance! Sheesh!\\n\\nThe answer is, absolutely!, as Ed so eloquently describes:\\n\\ned>Put two riders on identical machines. It's the\\ned>one who knows what he's doing, and why, that will be faster. It *may*\\ned>be possible to improve your technique if you have no idea what it is,\\ned>through trial and error, but it is not very effective methodology.\\ned>Only by understanding the technique of steering a motorcycle can one\\n ^^^^^^^^^^^^^^^^^^^^^\\ned>improve on that technique (I hold that this applies to any human\\ned>endeavor).\\n\\nHerein lies the key to this thread:\\n\\nKindly note the difference in the responses. Ed (and I) are talking\\nabout knowing riding technique, while Mike is arguing knowing the physics\\nbehind it. It *is* possible to be taught the technique of countersteering\\n(ie: push the bar on the inside of the turn to go that way) *without*\\nhaving to learn all the fizziks about gyroscopes and ice cream cones\\nand such as seen in the parallel thread. That stuff is mainly of interest\\nto techno-motorcycle geeks like the readers of rec.motorcycles ;^),\\nbut doesn't need to be taught to the average student learning c-steering.\\nMike doesn't seem to be able to make the distinction. I know people\\nwho can carve circles around me who couldn't tell you who Newton was.\\nOn the other hand, I know very intelligent, well-educated people who\\nthink that you steer a motorcycle by either: 1) leaning, 2) steering\\na la bicycles, or 3) a combination of 1 and 2. Knowledge of physics\\ndoesn't get you squat - knowledge of technique does!\\n\\nMr. Bill\\n\",\n", - " \"From: vwelch@ncsa.uiuc.edu (Von Welch)\\nSubject: Re: MOTORCYCLE DETAILING TIP #18\\nOrganization: Nat'l Ctr for Supercomp App (NCSA) @ University of Illinois\\nLines: 22\\n\\nIn article <1993Apr15.164644.7348@hemlock.cray.com>, ant@palm21.cray.com (Tony Jones) writes:\\n|> \\n|> How about someone letting me know MOTORCYCLE DETAILING TIP #19 ?\\n|> \\n|> The far side of my instrument panel was scuffed when the previous owner\\n|> dumped the bike. Same is true for one of the turn signals.\\n|> \\n|> Both of the scuffed areas are black plastic.\\n|> \\n|> I recall reading somewhere, that there was some plastic compound you could coat\\n|> the scuffed areas with, then rub it down, ending with a nice smooth shiny \\n|> finish ?\\n|> \\n\\nIn the May '93 Motorcyclist (pg 15-16), someone writes in and recomends using\\nrubberized undercoating for this. \\n\\n-- \\nVon Welch (vwelch@ncsa.uiuc.edu)\\tNCSA Networking Development Group\\n'93 CBR600F2\\t\\t\\t'78 KZ650\\t\\t'83 Subaru GL 4WD\\n\\n- I speak only for myself and those who think exactly like me -\\n\",\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: A Little Too Satanic\\nOrganization: sgi\\nLines: 16\\nNNTP-Posting-Host: solntze.wpd.sgi.com\\n\\nIn article <66486@mimsy.umd.edu>, mangoe@cs.umd.edu (Charley Wingate) writes:\\n|> Jeff West writes:\\n|> \\n|> >You claimed that people that took the time to translate the bible would\\n|> >also take the time to get it right. But here in less than a couple\\n|> >generations you\\'ve been given ample proof (agreed to by yourself above)\\n|> >that the \"new\" versions \"tends to be out of step with other modern\\n|> >translations.\"\\n|> \\n|> What I said was that people took time to *copy* *the* *text* correctly.\\n|> Translations present completely different issues.\\n\\nSo why do I read in the papers that the Qumram texts had \"different\\nversions\" of some OT texts. Did I misunderstand?\\n\\njon. \\n',\n", - " 'From: harley-request@thinkage.on.ca (Harley Mailing List Digest)\\nSubject: Harley-Davidson Mailing List -- an Email taste sensation!\\nSummary: a sort of bi-monthly not really automated announcement\\nOriginator: hogreq@hog.thinkage.on.ca\\nKeywords: digests, lists, harley-davidson, hogaholics\\nSupersedes: <93mar09-hog-announce@hog.thinkage.on.ca>\\nOrganization: Thinkage Ltd.\\nExpires: Fri, 30 Apr 1993 11:00:00 GMT\\nLines: 36\\n\\n Anyone interesting in a mailing list for Harley-Davidson bikes, lifestyle,\\npolitics, H.O.G. and whatever over 310 members from 14 countries make it,\\nmay subscribe by sending a request to:\\n\\n harley-request@thinkage.on.ca\\n or uunet.ca!thinkage!harley-request\\n\\n***\\n* Your request to join should have a signature or something giving your full\\n* Email address. Do not RELY on the header \"From:\" field being useful to me.\\n*\\n* This is not an automated \"listserv\" facility. Do not expect instant\\n* gratification.\\n***\\n\\nThe list is a digest format scheduled for twice a day.\\n\\nMembers of the harley list may obtain back-issues and subject-index\\n listings, pictures, etc. via an Email archive server. \\nServer access is restricted to list subscribers only.\\nFTP access \"real soon\".\\n\\nOther motorcycle related lists i\\'ve heard of (not run by me),\\n these addresses may or may not be current:\\n\\n 2-stroke: 2strokes-request@microunity.com\\n Dirt: dirt-request@zygot.ati.com\\n European: listserv@frigg.isc-br.com\\n Racing: race-request@formula1.corp.sun.com\\n digest-request@formula1.corp.sun.com\\n Short Riding: short-request@smarmy.sun.com\\n Wet Leather: listserv@frigg.isc-br.com\\n\\n---\\nIt climbs the hills like a Matchless \\'cause my Honda\\'s built really light...\\n -Brian Wilson (Honda Honda)\\n',\n", - " 'From: cjackson@adobe.com (Curtis Jackson)\\nSubject: Re: Cultural Enquiries\\nOrganization: Adobe Systems Incorporated, Mountain View\\nLines: 32\\n\\n}>More like those who use their backs instead of their minds to make\\n}>their living who are usually ignorant and intolerant of anything outside\\n}>of their group or level of understanding.\\n\\nThere seems to be some confusion between rednecks and white trash.\\nThe confusion is understandable, as there is substantial overlap\\nbetween the two sets. Let me see if I can clarify:\\n\\nRednecks: Primarily use their backs instead of their minds to make a\\n\\tliving. Usually somewhat ignorant (by somebody\\'s standards,\\n\\tanyway) because they have never held education above basic\\n\\treading/writing/math skills to be that important to their\\n\\teventual vocation. Note I did not say stupid, just ignorant.\\n\\t(They might be stupid, but then so are some high percentage\\n\\tof any group).\\n\\nWhite trash: \"White trash fit the stereotype referred to by the\\n\\tword \\'nigger\\' better than any black person I ever met, only\\n\\twith the added \\'bonus\\' that white trash are mean as hell.\"\\n\\t-- my father. Genuinely lazy (not just out of work or under-\\n\\tqualified), good-for-nothing, dishonest, white people who are\\n\\tmean as snakes. The \"squeal like a pig\" boys in _Deliverance_\\n\\tmay or may not have been rednecks, but they were sure as hell\\n\\twhite trash.\\n\\nWhite trash are assuredly intolerant of anything outside of their\\ngroup or level of understanding. Rednecks may or may not be.\\n-- \\nCurtis Jackson\\t cjackson@mv.us.adobe.com\\t\\'91 Hawk GT\\t\\'81 Maxim 650\\nDoD#0721 KotB \\'91 Black Lab mix \"Studley Doright\" \\'92 Collie/Golden \"George\"\\n\"There is no justification for taking away individuals\\' freedom\\n in the guise of public safety.\" -- Thomas Jefferson\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: How many read sci.space?\\nOrganization: Express Access Online Communications USA\\nLines: 9\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr22.184650.4833@mksol.dseg.ti.com> mccall@mksol.dseg.ti.com (fred j mccall 575-3539) writes:\\n>isn't my real name, either. I'm actually Elvis. Or maybe a lemur; I\\n>sometimes have difficulty telling which is which.\\n\\ndefinitely a lemur.\\n\\nElvis couldn't spell, just listen to any of his songs.\\n\\npat\\n\",\n", - " 'From: Center for Policy Research \\nSubject: From Israeli press. Short notes.\\nNf-ID: #N:cdp:1483500345:000:1466\\nNf-From: cdp.UUCP!cpr Apr 16 16:51:00 1993\\nLines: 39\\n\\n\\nFrom: Center for Policy Research \\nSubject: From Israeli press. Short notes.\\n\\n/* Written 4:43 pm Apr 16, 1993 by cpr@igc.apc.org in igc:mideast.forum */\\n/* ---------- \"From Israeli press. Short notes.\" ---------- */\\nFROM THE ISRAELI PRESS\\n\\nHadashot, 14 March 1993:\\n\\nThe Israeli Police Department announced on the evening of Friday,\\nMarch 12 that it is calling upon [Jewish] Israeli citizens with\\ngun permits to carry them at all times \"so as to contribute to\\ntheir security and that of their surroundings\".\\n\\nHa\\'aretz, 15 March 1993:\\n\\nYehoshua Matza (Likud), Chair of the Knesset Interior Committee,\\nstated that he intends to demand that the police department make\\nit clear to the public that anyone who wounds or kills\\n[non-Jewish] terrorists will not be put on trial.\\n\\nHa\\'aretz, 16 March1993:\\n\\nToday a private security firm and units from the IDF Southern\\nCommand will begin installation of four magnetic gates in the Gaza\\nstrip, as an additional stage in the upgrading of security\\nmeasures in the Strip.\\n\\nThe gates will aid in the searching of [non-Jewish] Gaza residents\\nas they leave for work in Israel. They can be used to reveal the\\npresence of knives, axes, weapons and other sharp objects.\\n\\nIn addition to the gates, which will be operated by a private\\ncivilian company, large quantities of magnetic-card reading\\ndevices are being brought to the inspection points, to facilitate\\nthe reading of the magnetic cards these [non-Jewish] workers must\\ncarry.\\n\\n',\n", - " 'From: mathew \\nSubject: Re: After 2000 years, can we say that Christian Morality is\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 13\\n\\nfrank@D012S658.uucp (Frank O\\'Dwyer) writes:\\n> In article <1993Apr15.125245.12872@abo.fi> MANDTBACKA@FINABO.ABO.FI (Mats\\n> Andtbacka) writes:\\n> | \"And these objective values are ... ?\"\\n> |Please be specific, and more importantly, motivate.\\n> \\n> I\\'ll take a wild guess and say Freedom is objectively valuable.\\n\\nYes, but whose freedom? The world in general doesn\\'t seem to value the\\nfreedom of Tibetans, for example.\\n\\n\\nmathew\\n',\n", - " \"From: cbrooks@ms.uky.edu (Clayton Brooks)\\nSubject: Re: V-max handling request\\nOrganization: University Of Kentucky, Dept. of Math Sciences\\nLines: 13\\n\\nbradw@Newbridge.COM (Brad Warkentin) writes:\\n\\n>............. Seriously, handling is probably as good as the big standards\\n>of the early 80's but not compareable to whats state of the art these days.\\n\\nI think you have to go a little further back.\\nThis opinion comes from riding CB750's GS1000's KZ1300's and a V-Max.\\nI find no enjoyment in riding a V-Max fast on a twisty road.\\n-- \\n Clayton T. Brooks _,,-^`--. From the heart cbrooks@ms.uky.edu\\n 722 POT U o'Ky .__,-' * \\\\ of the blue cbrooks@ukma.bitnet\\n Lex. KY 40506 _/ ,/ grass and {rutgers,uunet}!ukma!cbrooks\\n 606-257-6807 (__,-----------'' bourbon country AMA NMA MAA AMS ACBL DoD\\n\",\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 13/15 - Interest Groups & Publications\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.groups_733694492\\nExpires: 6 May 1993 20:01:32 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 354\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/groups\\nLast-modified: $Date: 93/04/01 14:39:08 $\\n\\nSPACE ACTIVIST/INTEREST/RESEARCH GROUPS AND SPACE PUBLICATIONS\\n\\n GROUPS\\n\\n AIA -- Aerospace Industry Association. Professional group, with primary\\n\\tmembership of major aerospace firms. Headquartered in the DC area.\\n\\tActs as the \"voice of the aerospace industry\" -- and it\\'s opinions\\n\\tare usually backed up by reams of analyses and the reputations of\\n\\tthe firms in AIA.\\n\\n\\t [address needed]\\n\\n AIAA -- American Institute of Aeronautics and Astronautics.\\n\\tProfessional association, with somewhere about 30,000-40,000\\n\\tmembers. 65 local chapters around the country -- largest chapters\\n\\tare DC area (3000 members), LA (2100 members), San Francisco (2000\\n\\tmembers), Seattle/NW (1500), Houston (1200) and Orange County\\n\\t(1200), plus student chapters. Not a union, but acts to represent\\n\\taviation and space professionals (engineers, managers, financial\\n\\ttypes) nationwide. Holds over 30 conferences a year on space and\\n\\taviation topics publishes technical Journals (Aerospace Journal,\\n\\tJournal of Spacecraft and Rockets, etc.), technical reference books\\n\\tand is _THE_ source on current aerospace state of the art through\\n\\ttheir published papers and proceedings. Also offers continuing\\n\\teducation classes on aerospace design. Has over 60 technical\\n\\tcommittees, and over 30 committees for industry standards. AIAA acts\\n\\tas a professional society -- offers a centralized resume/jobs\\n\\tfunction, provides classes on job search, offers low-cost health and\\n\\tlife insurance, and lobbies for appropriate legislation (AIAA was\\n\\tone of the major organizations pushing for IRAs - Individual\\n\\tRetirement Accounts). Very active public policy arm -- works\\n\\tdirectly with the media, congress and government agencies as a\\n\\tlegislative liaison and clearinghouse for inquiries about aerospace\\n\\ttechnology technical issues. Reasonably non-partisan, in that they\\n\\trepresent the industry as a whole, and not a single company,\\n\\torganization, or viewpoint.\\n\\n\\tMembership $70/yr (student memberships are less).\\n\\n\\tAmerican Institute of Aeronautics and Astronautics\\n\\tThe Aerospace Center\\n\\t370 L\\'Enfant Promenade, SW\\n\\tWashington, DC 20077-0820\\n\\t(202)-646-7400\\n\\n AMSAT - develops small satellites (since the 1960s) for a variety of\\n\\tuses by amateur radio enthusiasts. Has various publications,\\n\\tsupplies QuickTrak satellite tracking software for PC/Mac/Amiga etc.\\n\\n\\tAmateur Satellite Corporation (AMSAT)\\n\\tP.O. Box 27\\n\\tWashington, DC 20044\\n\\t(301)-589-6062\\n\\n ASERA - Australian Space Engineering and Research Association. An\\n\\tAustralian non-profit organisation to coordinate, promote, and\\n\\tconduct space R&D projects in Australia, involving both Australian\\n\\tand international (primarily university) collaborators. Activities\\n\\tinclude the development of sounding rockets, small satellites\\n\\t(especially microsatellites), high-altitude research balloons, and\\n\\tappropriate payloads. Provides student projects at all levels, and\\n\\tis open to any person or organisation interested in participating.\\n\\tPublishes a monthly newsletter and a quarterly technical journal.\\n\\n\\tMembership $A100 (dual subscription)\\n\\tSubscriptions $A25 (newsletter only) $A50 (journal only)\\n\\n\\tASERA Ltd\\n\\tPO Box 184\\n\\tRyde, NSW, Australia, 2112\\n\\temail: lindley@syd.dit.csiro.au\\n\\n BIS - British Interplanetary Society. Probably the oldest pro-space\\n\\tgroup, BIS publishes two excellent journals: _Spaceflight_, covering\\n\\tcurrent space activities, and the _Journal of the BIS_, containing\\n\\ttechnical papers on space activities from near-term space probes to\\n\\tinterstellar missions. BIS has published a design study for an\\n\\tinterstellar probe called _Daedalus_.\\n\\n\\tBritish Interplanetary Society\\n\\t27/29 South Lambeth Road\\n\\tLondon SW8 1SZ\\n\\tENGLAND\\n\\n\\tNo dues information available at present.\\n\\n ISU - International Space University. ISU is a non-profit international\\n\\tgraduate-level educational institution dedicated to promoting the\\n\\tpeaceful exploration and development of space through multi-cultural\\n\\tand multi-disciplinary space education and research. For further\\n\\tinformation on ISU\\'s summer session program or Permanent Campus\\n\\tactivities please send messages to \\'information@isu.isunet.edu\\' or\\n\\tcontact the ISU Executive Offices at:\\n\\n\\tInternational Space University\\n\\t955 Massachusetts Avenue 7th Floor\\n\\tCambridge, MA 02139\\n\\t(617)-354-1987 (phone)\\n\\t(617)-354-7666 (fax)\\n\\n L-5 Society (defunct). Founded by Keith and Carolyn Henson in 1975 to\\n\\tadvocate space colonization. Its major success was in preventing US\\n\\tparticipation in the UN \"Moon Treaty\" in the late 1970s. Merged with\\n\\tthe National Space Institute in 1987, forming the National Space\\n\\tSociety.\\n\\n NSC - National Space Club. Open for general membership, but not well\\n\\tknown at all. Primarily comprised of professionals in aerospace\\n\\tindustry. Acts as information conduit and social gathering group.\\n\\tActive in DC, with a chapter in LA. Monthly meetings with invited\\n\\tspeakers who are \"heavy hitters\" in the field. Annual \"Outlook on\\n\\tSpace\" conference is _the_ definitive source of data on government\\n\\tannual planning for space programs. Cheap membership (approx\\n\\t$20/yr).\\n\\n\\t [address needed]\\n\\n NSS - the National Space Society. NSS is a pro-space group distinguished\\n\\tby its network of local chapters. Supports a general agenda of space\\n\\tdevelopment and man-in-space, including the NASA space station.\\n\\tPublishes _Ad Astra_, a monthly glossy magazine, and runs Shuttle\\n\\tlaunch tours and Space Hotline telephone services. A major sponsor\\n\\tof the annual space development conference. Associated with\\n\\tSpacecause and Spacepac, political lobbying organizations.\\n\\n\\tMembership $18 (youth/senior) $35 (regular).\\n\\n\\tNational Space Society\\n\\tMembership Department\\n\\t922 Pennsylvania Avenue, S.E.\\n\\tWashington, DC 20003-2140\\n\\t(202)-543-1900\\n\\n Planetary Society - founded by Carl Sagan. The largest space advocacy\\n\\tgroup. Publishes _Planetary Report_, a monthly glossy, and has\\n\\tsupported SETI hardware development financially. Agenda is primarily\\n\\tsupport of space science, recently amended to include an\\n\\tinternational manned mission to Mars.\\n\\n\\tThe Planetary Society\\n\\t65 North Catalina Avenue\\n\\tPasadena, CA 91106\\n\\n\\tMembership $35/year.\\n\\n SSI - the Space Studies Institute, founded by Dr. Gerard O\\'Neill.\\n\\tPhysicist Freeman Dyson took over the Presidency of SSI after\\n\\tO\\'Neill\\'s death in 1992. Publishes _SSI Update_, a bimonthly\\n\\tnewsletter describing work-in-progress. Conducts a research program\\n\\tincluding mass-drivers, lunar mining processes and simulants,\\n\\tcomposites from lunar materials, solar power satellites. Runs the\\n\\tbiennial Princeton Conference on Space Manufacturing.\\n\\n\\tMembership $25/year. Senior Associates ($100/year and up) fund most\\n\\t SSI research.\\n\\n\\tSpace Studies Institute\\n\\t258 Rosedale Road\\n\\tPO Box 82\\n\\tPrinceton, NJ 08540\\n\\n SEDS - Students for the Exploration and Development of Space. Founded in\\n\\t1980 at MIT and Princeton. SEDS is a chapter-based pro-space\\n\\torganization at high schools and universities around the world.\\n\\tEntirely student run. Each chapter is independent and coordinates\\n\\tits own local activities. Nationally, SEDS runs a scholarship\\n\\tcompetition, design contests, and holds an annual international\\n\\tconference and meeting in late summer.\\n\\n\\tStudents for the Exploration and Development of Space\\n\\tMIT Room W20-445\\n\\t77 Massachusetts Avenue\\n\\tCambridge, MA 02139\\n\\t(617)-253-8897\\n\\temail: odyssey@athena.mit.edu\\n\\n\\tDues determined by local chapter.\\n\\n SPACECAUSE - A political lobbying organization and part of the NSS\\n\\tFamily of Organizations. Publishes a bi-monthly newsletter,\\n\\tSpacecause News. Annual dues is $25. Members also receive a discount\\n\\ton _The Space Activist\\'s Handbook_. Activities to support pro-space\\n\\tlegislation include meeting with political leaders and interacting\\n\\twith legislative staff. Spacecause primarily operates in the\\n\\tlegislative process.\\n\\n\\tNational Office\\t\\t\\tWest Coast Office\\n\\tSpacecause\\t\\t\\tSpacecause\\n\\t922 Pennsylvania Ave. SE\\t3435 Ocean Park Blvd.\\n\\tWashington, D.C. 20003\\t\\tSuite 201-S\\n\\t(202)-543-1900\\t\\t\\tSanta Monica, CA 90405\\n\\n SPACEPAC - A political action committee and part of the NSS Family of\\n\\tOrganizations. Spacepac researches issues, policies, and candidates.\\n\\tEach year, updates _The Space Activist\\'s Handbook_. Current Handbook\\n\\tprice is $25. While Spacepac does not have a membership, it does\\n\\thave regional contacts to coordinate local activity. Spacepac\\n\\tprimarily operates in the election process, contributing money and\\n\\tvolunteers to pro-space candidates.\\n\\n\\tSpacepac\\n\\t922 Pennsylvania Ave. SE\\n\\tWashington, DC 20003\\n\\t(202)-543-1900\\n\\n UNITED STATES SPACE FOUNDATION - a public, non-profit organization\\n\\tsupported by member donations and dedicated to promoting\\n\\tinternational education, understanding and support of space. The\\n\\tgroup hosts an annual conference for teachers and others interested\\n\\tin education. Other projects include developing lesson plans that\\n\\tuse space to teach other basic skills such as reading. Publishes\\n\\t\"Spacewatch,\" a monthly B&W glossy magazine of USSF events and\\n\\tgeneral space news. Annual dues:\\n\\n\\t\\tCharter\\t\\t$50 ($100 first year)\\n\\t\\tIndividual\\t$35\\n\\t\\tTeacher\\t\\t$29\\n\\t\\tCollege student $20\\n\\t\\tHS/Jr. High\\t$10\\n\\t\\tElementary\\t $5\\n\\t\\tFounder & $1000+\\n\\t\\t Life Member\\n\\n\\tUnited States Space Foundation\\n\\tPO Box 1838\\n\\tColorado Springs, CO 80901\\n\\t(719)-550-1000\\n\\n WORLD SPACE FOUNDATION - has been designing and building a solar-sail\\n spacecraft for longer than any similar group; many JPL employees lend\\n their talents to this project. WSF also provides partial funding for the\\n Palomar Sky Survey, an extremely successful search for near-Earth\\n asteroids. Publishes *Foundation News* and *Foundation Astronautics\\n Notebook*, each a quarterly 4-8 page newsletter. Contributing Associate,\\n minimum of $15/year (but more money always welcome to support projects).\\n\\n\\tWorld Space Foundation\\n\\tPost Office Box Y\\n\\tSouth Pasadena, California 91301\\n\\n\\n PUBLICATIONS\\n\\n Aerospace Daily (McGraw-Hill)\\n\\tVery good coverage of aerospace and space issues. Approx. $1400/yr.\\n\\n Air & Space / Smithsonian (bimonthly magazine)\\n\\tBox 53261\\n\\tBoulder, CO 80332-3261\\n\\t$18/year US, $24/year international\\n\\n ESA - The European Space Agency publishes a variety of periodicals,\\n\\tgenerally available free of charge. A document describing them in\\n\\tmore detail is in the Ames SPACE archive in\\n\\tpub/SPACE/FAQ/ESAPublications.\\n\\n Final Frontier (mass-market bimonthly magazine) - history, book reviews,\\n\\tgeneral-interest articles (e.g. \"The 7 Wonders of the Solar System\",\\n\\t\"Everything you always wanted to know about military space\\n\\tprograms\", etc.)\\n\\n\\tFinal Frontier Publishing Co.\\n\\tPO Box 534\\n\\tMt. Morris, IL 61054-7852\\n\\t$14.95/year US, $19.95 Canada, $23.95 elsewhere\\n\\n Space News (weekly magazine) - covers US civil and military space\\n\\tprograms. Said to have good political and business but spotty\\n\\ttechnical coverage.\\n\\n\\tSpace News\\n\\tSpringfield VA 22159-0500\\n\\t(703)-642-7330\\n\\t$75/year, may have discounts for NSS/SSI members\\n\\n Journal of the Astronautical Sciences and Space Times - publications of\\n\\tthe American Astronautical Society. No details.\\n\\n\\tAAS Business Office\\n\\t6352 Rolling Mill Place, Suite #102\\n\\tSpringfield, VA 22152\\n\\t(703)-866-0020\\n\\n GPS World (semi-monthly) - reports on current and new uses of GPS, news\\n\\tand analysis of the system and policies affecting it, and technical\\n\\tand product issues shaping GPS applications.\\n\\n\\tGPS World\\n\\t859 Willamette St.\\n\\tP.O. Box 10460\\n\\tEugene, OR 97440-2460\\n\\t(503)-343-1200\\n\\n\\tFree to qualified individuals; write for free sample copy.\\n\\n Innovation (Space Technology) -- Free. Published by the NASA Office of\\n\\tAdvanced Concepts and Technology. A revised version of the NASA\\n\\tOffice of Commercial Programs newsletter.\\n\\n Planetary Encounter - in-depth technical coverage of planetary missions,\\n\\twith diagrams, lists of experiments, interviews with people directly\\n\\tinvolved.\\n World Spaceflight News - in-depth technical coverage of near-Earth\\n\\tspaceflight. Mostly covers the shuttle: payload manifests, activity\\n\\tschedules, and post-mission assessment reports for every mission.\\n\\n\\tBox 98\\n\\tSewell, NJ 08080\\n\\t$30/year US/Canada\\n\\t$45/year elsewhere\\n\\n Space (bi-monthly magazine)\\n\\tBritish aerospace trade journal. Very good. $75/year.\\n\\n Space Calendar (weekly newsletter)\\n\\n Space Daily/Space Fax Daily (newsletter)\\n\\tShort (1 paragraph) news notes. Available online for a fee\\n\\t(unknown).\\n\\n Space Technology Investor/Commercial Space News -- irregular Internet\\n\\tcolumn on aspects of commercial space business. Free. Also limited\\n\\tfax and paper edition.\\n\\n\\t P.O. Box 2452\\n\\t Seal Beach, CA 90740-1452.\\n\\n All the following are published by:\\n\\n\\tPhillips Business Information, Inc.\\n\\t7811 Montrose Road\\n\\tPotomac, MC 20854\\n\\n\\tAerospace Financial News - $595/year.\\n\\tDefense Daily - Very good coverage of space and defense issues.\\n\\t $1395/year.\\n\\tSpace Business News (bi-weekly) - Very good overview of space\\n\\t business activities. $497/year.\\n\\tSpace Exploration Technology (bi-weekly) - $495/year.\\n\\tSpace Station News (bi-weekly) - $497/year.\\n\\n UNDOCUMENTED GROUPS\\n\\n\\tAnyone who would care to write up descriptions of the following\\n\\tgroups (or others not mentioned) for inclusion in the answer is\\n\\tencouraged to do so.\\n\\n\\tAAS - American Astronautical Society\\n\\tOther groups not mentioned above\\n\\nNEXT: FAQ #14/15 - How to become an astronaut\\n',\n", - " \"From: arnie@magnus.acs.ohio-state.edu (Arnie Skurow)\\nSubject: Re: Solar battery chargers -- any good?\\nNntp-Posting-Host: photon.magnus.acs.ohio-state.edu\\nOrganization: The Ohio State University\\nLines: 28\\n\\nIn article <1993Apr16.061736.8785@CSD-NewsHost.Stanford.EDU> robert@Xenon.Stanf\\nord.EDU (Robert Kennedy) writes:\\n>I've seen solar battery boosters, and they seem to come without any\\n>guarantee. On the other hand, I've heard that some people use them\\n>with success, although I have yet to communicate directly with such a\\n>person. Have you tried one? What was your experience? How did you use\\n>it (occasional charging, long-term leave-it-for-weeks, etc.)?\\n>\\n> -- Robert Kennedy\\n\\nI have a cheap solar charger that I keep in my car. I purchased it via\\nsome mail order catalog when the 4 year old battery in my Oldsmobile would\\nrun down during Summer when I was riding my bike more than driving my car.\\nKnowing I'd be selling the car in a year or so, I purchased the charger.\\nBelieve it or not, the thing worked. The battery held a charge and\\nenergetically started the car, many times after 4 or 5 weeks of just\\nsitting.\\n\\nEventually I had to purchase a new battery anyway because the Winter sun\\nwasn't strong enough due to its low angle.\\n\\nI think I paid $29 or $30 for the charger. There are more powerful, more\\nexpensive ones, but I purchased the cheapest one I could find.\\n\\nI've never used it on the bike because I have an E-Z Charger on it and\\nkeep it plugged in all the time the bike is garaged.\\n\\nArnie Skurow\\n\",\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenians serving in the Wehrmacht and the SS.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 63\\n\\nIn article <735426299@amazon.cs.duke.edu> wiener@duke.cs.duke.edu (Eduard Wiener) writes:\\n\\n>\\t I can see how little taste you actually have in the\\n>\\t cheap shot you took at me when I did nothing more\\n>\\t than translate Kozovski\\'s insulting reference\\n>\\t to Milan Pavlovic.\\n\\nC\\'mon, you still haven\\'t corrected yourself, \\'wieneramus\\'. In April \\n1942, Hitler was preparing for the invasion of the Caucasus. A \\nnumber of Nazi Armenian leaders began submitting plans to German\\nofficials in spring and summer 1942. One of them was Souren Begzadian\\nPaikhar, son of a former ambassador of the Armenian Republic in Baku.\\nPaikhar wrote a letter to Hitler, asking for German support to his\\nArmenian national socialist movement Hossank and suggesting the\\ncreation of an Armenian SS formation in order \\n\\n\"to educate the youth of liberated Armenia according to the \\n spirit of the Nazi ideas.\"\\n\\nHe wanted to unite the Armenians of the already occupied territories\\nof the USSR in his movement and with them conquer historic Turkish\\nhomeland. Paikhar was confined to serving the Nazis in Goebbels\\nPropaganda ministry as a speaker for Armenian- and French-language\\nradio broadcastings.[1] The Armenian-language broadcastings were\\nproduced by yet another Nazi Armenian Viguen Chanth.[2]\\n\\n[1] Patrick von zur Muhlen (Muehlen), p. 106.\\n[2] Enno Meyer, A. J. Berkian, \\'Zwischen Rhein und Arax, 900\\n Jahre Deutsch-Armenische beziehungen,\\' (Heinz Holzberg\\n Verlag-Oldenburg 1988), pp. 124 and 129.\\n\\n\\nThe establishment of Armenian units in the German army was favored\\nby General Dro (the Butcher). He played an important role in the\\nestablishment of the Armenian \\'legions\\' without assuming any \\nofficial position. His views were represented by his men in the\\nrespective organs. An interesting meeting took place between Dro\\nand Reichsfuehrer-SS Heinrich Himmler toward the end of 1942.\\nDro discussed matters of collaboration with Himmler and after\\na long conversation, asked if he could visit POW camp close to\\nBerlin. Himmler provided Dro with his private car.[1] \\n\\nA minor problem was that some of the Soviet nationals were not\\n\\'Aryans\\' but \\'subhumans\\' according to the official Nazi philosophy.\\nAs such, they were subject to German racism. However, Armenians\\nwere the least threatened and indeed most privileged. In August \\n1933, Armenians had been recognized as Aryans by the Bureau of\\nRacial Investigation in the Ministry for Domestic Affairs.\\n\\n[1] Meyer, Berkian, ibid., pp. 112-113.\\n\\nNeed I go on?\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: dzk@cs.brown.edu (Danny Keren)\\nSubject: Suicide Bomber Attack in the Territories \\nOrganization: Brown University Department of Computer Science\\nLines: 22\\n\\n Attention Israel Line Recipients\\n \\n Friday, April 16, 1993\\n \\n \\nTwo Arabs Killed and Eight IDF Soldiers Wounded in West Bank Car\\nBomb Explosion\\n \\nIsrael Defense Forces Radio, GALEI ZAHAL, reports today that a car\\nbomb explosion in the West Bank today killed two Palestinians and\\nwounded eight IDF soldiers. The blast is believed to be the work of\\na suicide bomber. Radio reports said a car packed with butane gas\\nexploded between two parked buses, one belonging to the IDF and the\\nother civilian. Both busses went up in flames. The blast killed an\\nArab man who worked at a nearby snack bar in the Mehola settlement.\\nAn Israel Radio report stated that the other man who was killed may\\nhave been the one who set off the bomb. According to officials at\\nthe Haemek Hospital in Afula, the eight IDF soldiers injured in the\\nblast suffered light to moderate injuries.\\n \\n\\n-Danny Keren\\n',\n", - " 'Subject: [ANNOUNCE] Ivan Sutherland to speak at Harvard\\nFrom: eekim@husc11.harvard.edu (Eugene Kim)\\nDistribution: harvard\\nOrganization: Harvard University Science Center\\nNntp-Posting-Host: husc11.harvard.edu\\nLines: 21\\n\\nThe Harvard Computer Society is pleased to announce its third lecture of\\nthe spring. Ivan Sutherland, the father of computer graphics and an\\ninnovator in microprocessing, will be speaking at Harvard University on\\nTuesday, April 20, 1993, at 4:00 pm in Aiken Computations building, room\\n101. The title of his talk is \"Logical Effort and the Conflict over the\\nControl of Information.\"\\n\\nCookies and tea will be served at 3:30 pm in the Aiken Lobby. Admissions\\nis free, and all are welcome.\\n\\nAiken is located north of the Science Center near the Law School.\\n\\nFor more information, send e-mail to eekim@husc.harvard.edu.\\n\\nThe lecture will be videotaped, and a tape will be made available.\\n\\nThanks.\\n\\n-- \\nEugene Kim \\'96 | \"Give me a place to stand, and I will\\nINTERNET: eekim@husc.harvard.edu | move the earth.\" --Archimedes\\n',\n", - " 'From: tom@igc.apc.org\\nSubject: computer cult\\nNf-ID: #N:cdp:1469100033:000:2451\\nNf-From: cdp.UUCP!tom Apr 24 09:26:00 1993\\nLines: 59\\n\\n\\nFrom: \\nSubject: computer cult\\n\\nFrom scott Fri Apr 23 16:31:21 1993\\nReceived: by igc.apc.org (4.1/Revision: 1.77 )\\n\\tid AA16121; Fri, 23 Apr 93 16:31:09 PDT\\nDate: Fri, 23 Apr 93 16:31:09 PDT\\nMessage-Id: <9304232331.AA16121@igc.apc.org>\\nFrom: Scott Weikart \\nSender: scott\\nTo: cdplist\\nSubject: Next stand-off?\\nStatus: R\\n\\nRedwood City, CA (API) -- A tense stand-off entered its third week\\ntoday as authorities reported no progress in negotiations with\\ncharismatic cult leader Steve Jobs.\\n\\nNegotiators are uncertain of the situation inside the compound, but\\nsome reports suggest that half of the hundreds of followers inside\\nhave been terminated. Others claim to be staying of their own free\\nwill, but Jobs\\' persuasive manner makes this hard to confirm.\\n\\nIn conversations with authorities, Jobs has given conflicting\\ninformation on how heavily prepared the group is for war with the\\nindustry. At times, he has claimed to \"have hardware which will blow\\nanything else away\", while more recently he claims they have stopped\\nmanufacturing their own.\\n\\nAgents from the ATF (Apple-Taligent Forces) believe that the group is\\nequipped with serious hardware, including 486-caliber pieces and\\npossibly Canon equipment.\\n\\nThe siege has attracted a variety of spectators, from the curious to\\nother cultists. Some have offered to intercede in negotiations,\\nincluding a young man who will identify himself only as \"Bill\" and\\nclaims to be the \"MS-iah\".\\n\\nFormer members of the cult, some only recently deprogrammed, speak\\nhesitantly of their former lives, including being forced to work\\n20-hour days, and subsisting on Jolt and Twinkies. There were\\nfrequent lectures in which they were indoctrinated into a theory of\\n\"interpersonal computing\" which rejects traditional roles.\\n\\nLate-night vigils on Chesapeake Drive are taking their toll on\\nfederal marshals. Loud rock and roll, mostly Talking Heads, blares\\nthroughout the night. Some fear that Jobs will fulfill his own\\napocalyptic prophecies, a worry reinforced when the loudspeakers\\ncarry Jobs\\' own speeches -- typically beginning with a chilling \"I\\nwant to welcome you to the \\'Next World\\' \".\\n\\n- - -- \\nRoland J. Schemers III | Networking Systems\\nSystems Programmer | G16 Redwood Hall (415) 723-6740\\nDistributed Computing Group | Stanford, CA 94305-4122\\nStanford University | schemers@Slapshot.Stanford.EDU\\n\\n\\n',\n", - " 'From: harmons@.WV.TEK.COM (Harmon Sommer)\\nSubject: Re: Countersteering_FAQ please post\\nLines: 15\\n\\nSender: \\nReply-To: harmons@gyro.WV.TEK.COM (Harmon Sommer)\\nDistribution: \\nOrganization: /usr/ens/etc/organization\\nKeywords: \\n\\n\\n>Hey Ed, how do you explain the fact that you pull on a horse\\'s reins\\n>left to go left? :-) Or am I confusing two threads here?\\n\\nUnless they have been taught to \"neck rein\". Then the left rein is brought\\nto bear on the left side of horse\\'s neck to go right.\\n\\nEquestrian counter steering?\\n',\n", - " \"From: viking@iastate.edu (Dan Sorenson)\\nSubject: Re: Boom! Dog attack!\\nOrganization: Iowa State University, Ames IA\\nLines: 36\\n\\nryan_cousineau@compdyn.questor.org (Ryan Cousineau) writes:\\n\\n>Riding up the hill leading to my\\n>house, I encountered a liver-and-white Springer Spaniel (no relation to\\n>the Springer Softail, or the Springer Spagthorpe, a close relation to\\n>the Spagthorpe Viking).\\n\\n\\tI must have missed the article on the Spagthorpe Viking. Was\\nthat the one with the little illuminated Dragon's Head on the front\\nfender, a style later copied by Indian, and the round side covers?\\n\\n[accident deleted]\\n\\n>What worries me about the accident is this: I don't think I could have\\n>prevented it except by traveling much slower than I was. This is not\\n>necessarily an unreasonable suggestion for a residential area, but I was\\n>riding around the speed limit.\\n\\n\\tYou can forget this line of reasoning. When an animal\\ndecides to take you, there's nothing you can do about it. It has\\nsomething to do with their genetics. I was putting along at a\\nmere 20mph or so, gravel road with few loose rocks on it (as in,\\njust like bad concrete), and 2200lbs of swinging beef jumped a\\nfence, came out of the ditch, and rammed me! When I saw her jump\\nthe fence I went for the gas, since she was about 20 feet ahead\\nof me but a good forty to the side. Damn cow literally chased me\\ndown and nailed me. No damage to cow, a bent case guard and a\\nseverely annoyed rider were the only casualties. If I had my\\nshotgun I'd still be eating steak. Nope, if 2200lbs of cow\\ncan hit me when I'm actively evading, forget a much more\\nmanueverable dog. Just run them over.\\n\\n< Dan Sorenson, DoD #1066 z1dan@exnet.iastate.edu viking@iastate.edu >\\n< ISU only censors what I read, not what I say. Don't blame them. >\\n< USENET: Post to exotic, distant machines. Meet exciting, >\\n< unusual people. And flame them. >\\n\",\n", - " 'From: adam@endor.uucp (Adam Shostack)\\nSubject: Re: Israeli Terrorism\\nOrganization: Aiken Computation Lab, Harvard University\\nLines: 46\\n\\nIn article <1rd7eo$1a4@usenet.INS.CWRU.Edu> cy779@cleveland.Freenet.Edu (Anas Omran) writes:\\n>\\n>In a previous article, tclock@orion.oac.uci.edu (Tim Clock) says:\\n\\n>>In article <1993Apr24.203620.6531@Virginia.EDU> ab4z@Virginia.EDU (\"Andi Beyer\") writes:\\n\\n>>Since one is also unlikely to get \"the truth\" from either Arab or \\n>>Palestinian news outlets, where do we go to \"understand\", to learn? \\n>>Is one form of propoganda more reliable than another?\\n\\n>There are many neutral human rights organizations which always report\\n>on the situation in the O.T.\\n\\n\\tA neutral organization would report on the situation in\\nIsrael, where the elderly and children are the victims of stabbings by\\nHamas \"activists.\" A neutral organization might also report that\\nIsraeli arabs have full civil rights.\\n\\n>The Israelis used to arrest and sometimes to kill some of these\\n>neutral reporters.\\n\\n\\tCare to name names, or is this yet another unsubstantiated\\nslander? \\n\\n>So, this is another kind of terrorism committed by the Jews in Palestine.\\n>They do not allow fair and neutral coverage of the situation in Palestine.\\n\\n\\tTerrorism, as you would know if you had a spine that allowed\\nyou to stand up, is random attacks on civilians. Terorism includes\\nsuch things as shooting a cripple and thowing him off the side of a\\nboat because he happens to be Jewish. Not allowing people to go where\\nthey are likely to be stabbed and killed, like a certain lawyer killed\\nlast week, is not terorism.\\n\\nAdam\\n\\n\\n\\n\\n\\n\\n\\nAdam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n\\n\"If we had a budget big enough for drugs and sexual favors, we sure\\nwouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: tclock@orion.oac.uci.edu (Tim Clock)\\nSubject: Re: was:Go Hezbollah!\\nNntp-Posting-Host: orion.oac.uci.edu\\nOrganization: University of California, Irvine\\nLines: 92\\n\\nIn article <1993Apr17.153728.12152@ncsu.edu> hernlem@chess.ncsu.edu \\n(Brad Hernlem) writes:\\n>\\n>In article <2BCF287A.25524@news.service.uci.edu>, tclock@orion.oac.uci.edu \\n(Tim Clock) writes:\\n>|\\n>|> \"Assuming\"? Also: come on, Brad. If we are going to get anywhere in \\n>|> this (or any) discussion, it doesn\\'t help to bring up elements I never \\n>|> addressed, *nor commented on in any way*. I made no comment on who is \\n>|> \"right\" or who is \"wrong\", only that civilians ARE being used as cover \\n>|> and that, having been placed \"in between\" the Israelis and the guerillas,\\n>|> they *will* be injured as both parties continue their fight.\\n>\\n>Pardon me Tim, but I do not see how it can be possible for the IDF to fail\\n>to detect the presence of those responsible for planting the bomb which\\n>killed the three IDF troops and then later know the exact number and \\n>whereabouts of all of them. Several villages were shelled. How could the IDF\\n>possibly have known that there were guerrillas in each of the targetted\\n>villages? You see, it was an arbitrary act of \"retaliation\".\\n>\\nI will again *repeat* my statement: 1) I *do not* condone these \\n*indiscriminate* Israeli acts (nor have I *ever*, 2) If the villagers do not know who these \"guerillas\" are (which you stated earlier), how do you expect the\\nIsraelis to know? It is **very** difficult to \"identify\" who they are (this\\n*is why* the \"guerillas\" prefer to lose themselves in the general population \\nby dressing the same, acting the same, etc.).\\n>\\n>|> The \"host\" Arab state did little/nothing to try and stop these attacks \\n>|> from its side of the border with Israel \\n>\\n>The problem, Tim, is that the original reason for the invasion was Palestinian\\n>attacks on Israel, NOT Lebanese attacks. \\n>\\nI agree; but, because Lebanon was either unwilling or unable to stop these\\nattacks from its territory should Israel simply sit quietly and accept its\\nsituation? Israel asked the Lebanese government over and over to control\\nthis \"third party state\" within Lebanese territory and the attacks kept\\noccuring. At **what point** does Israel (or ANY state) have the right to do\\nsomething ITSELF to stop such attacks? Never?\\n>|> >\\n>|> While the \"major armaments\" (those allowing people to wage \"civil wars\")\\n>|> have been removed, the weapons needed to cross-border attacks still\\n>|> remain to some extent. Rocket attacks still continue, and \"commando\"\\n>|> raids only require a few easily concealed weapons and a refined disregard\\n>|> for human life (yours of that of others). Such attacks also continue.\\n>\\n>Yes, I am afraid that what you say is true but that still does not justify\\n>occupying your neighbor\\'s land. Israel must resolve its disputes with the\\n>native Palestinians if it wants peace from such attacks.\\n>\\nIt is also the responsibility of *any* state to NOT ALLOW *any* outside\\nparty to use its territory for attacks on a neighboring state. If 1) Angola\\nhad the power, and 2) South Africa refused (or couldn\\'t) stop anti-Angolan\\nguerillas based on SA soil from attacking Angola, and 3) South Africa\\nrefused to have UN troops stationed on its territory between it and Angola,\\nwould Angola be justified in entering SA? If not, are you saying that\\nAngola HAD to accept the situation, do NOTHING and absorb the attacks?\\n>|> \\n>|> Bat guano. The situation you call for existed in the 1970s and attacks\\n>|> were commonplace.\\n>\\n>Not true. Lebanese were not attacking Israel in the 1970s. With a strong\\n>Lebanese government (free from Syrian and Israeli interference) I believe\\n>that the border could be adequately patrolled. The Palestinian heavy\\n>weapons have been siezed in past years and I do not see as significant a\\n>threat as once existed.\\n>\\nI refered above *at all times* to the Palestinian attacks on Israel from\\nLebanese soil, NOT to Lebanese attacks on Israel. \\n\\nOne hopes that a Lebanese government will be strong enough to patrol its \\nborder but there is NO reason to believe it will be any stronger. WHAT HAS \\nCHANGED is that the PLO was largely *driven out* of Lebanon (not by the \\nLebanese, not by Syria) and THAT is by far the most important making it \\nEASIER to control future Palestinian attacks from Lebanese soil. That\\n**change** was brought about by Israeli action; the PLO would *never*\\nhave been ejected by Lebanese, Arab state or UN actions. \\n>\\n>Please, Tim, don\\'t fall into the trap of treating Lebanese and Palestinians\\n>as all part of the same group. There are too many who think all Arabs or all\\n>Muslims are the same. Too many times I have seen people support the bombing\\n>of Palestinian camps in \"retaliation\" for an IDF death at the hands of the\\n>Lebanese Resistance or the shelling of Lebanese villages in \"retaliation\" for\\n>a Palestinian attack. \\n>|>\\nI fully recognize that the Lebanese do NOT WANT to be \"used\" by EITHER side,\\nand have been (and continue to be). But the most fundamental issue is that\\nif a state cannot control its borders and make REAL efforts to do so, it\\nshould expect others to do it for them. Hopefully that \"other\" will be\\nthe UN but it is (as we see in its cowardice regarding Bosnia) weak.\\n\\nTim \\n\\n',\n", - " ' zaphod.mps.ohio-state.edu!wupost!uunet!olivea!sgigate!odin!fido!solntze.wpd.sgi.com!livesey\\nSubject: Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> (reference line trimmed)\\n|> \\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> [...]\\n|> \\n|> >There is a good deal more confusion here. You started off with the \\n|> >assertion that there was some \"objective\" morality, and as you admit\\n|> >here, you finished up with a recursive definition. Murder is \\n|> >\"objectively\" immoral, but eactly what is murder and what is not itself\\n|> >requires an appeal to morality.\\n|> \\n|> Yes.\\n|> \\n|> >Now you have switch targets a little, but only a little. Now you are\\n|> >asking what is the \"goal\"? What do you mean by \"goal?\". Are you\\n|> >suggesting that there is some \"objective\" \"goal\" out there somewhere,\\n|> >and we form our morals to achieve it?\\n|> \\n|> Well, for example, the goal of \"natural\" morality is the survival and\\n|> propogation of the species. \\n\\n\\nI got just this far. What do you mean by \"goal\"? I hope you\\ndon\\'t mean to imply that evolution has a conscious \"goal\".\\n\\njon.\\n',\n", - " \"From: bf3833@pyuxe.cc.bellcore.com (feigenbaum,benjamin)\\nSubject: Re: Clintons views on Jerusalem\\nOrganization: Bellcore, Livingston, NJ\\nSummary: Verify statements\\nLines: 21\\n\\nIn article <16BB28ABD.DSHAL@vmd.cso.uiuc.edu>, DSHAL@vmd.cso.uiuc.edu writes:\\n> It seems that President Clinton can recognize Jerusalem as Israels capitol\\n> while still keeping his diplomatic rear door open by stating that the Parties\\n> concerned should decide the city's final status. Even as I endorse Clintons vie\\n> w (of course), it is definitely a matter to be decided upon by Israel (and\\n> other participating neighboring contries).\\n> I see no real conflict in stating both views, nor expect any better from\\n> politicians.\\n> -----\\n> David Shalhevet / dshal@vmd.cso.uiuc.edu / University of Illinois\\n> Dept Anim Sci / 220 PABL / 1201 W. Gregory Dr. / Urbana, IL 61801\\n\\nI was trying to avoid a discussion of the whether Clintons views\\nshould be endorsed or not. All I was trying to find out was \\nwhether the newspaper article was correct in making these\\nstatements about the President by obtaining some information\\nabout when and where he made these statements.\\n\\nThank you.\\n\\nBen.\\n\",\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: Why not give $1 billion to first year-long moon residents?\\nArticle-I.D.: aurora.1993Apr20.141137.1\\nOrganization: University of Alaska Fairbanks\\nLines: 33\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article <1993Apr20.101044.2291@iti.org>, aws@iti.org (Allen W. Sherzer) writes:\\n> In article <1qve4kINNpas@sal-sun121.usc.edu> schaefer@sal-sun121.usc.edu (Peter Schaefer) writes:\\n> \\n>>|> > Announce that a reward of $1 billion would go to the first corporation \\n>>|> > who successfully keeps at least 1 person alive on the moon for a year. \\n> \\n>>Oh gee, a billion dollars! That\\'d be just about enough to cover the cost of the\\n>>feasability study! Happy, Happy, JOY! JOY!\\n> \\n> Depends. If you assume the existance of a working SSTO like DC, on billion\\n> $$ would be enough to put about a quarter million pounds of stuff on the\\n> moon. If some of that mass went to send equipment to make LOX for the\\n> transfer vehicle, you could send a lot more. Either way, its a lot\\n> more than needed.\\n> \\n> This prize isn\\'t big enough to warrent developing a SSTO, but it is\\n> enough to do it if the vehicle exists.\\n> \\n> Allen\\n> \\n> -- \\n> +---------------------------------------------------------------------------+\\n> | Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n> | W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n> +----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n\\nOr have different classes of competetors.. and made the total purse $6billion\\nor $7billion (depending on how many different classes there are, as in auto\\nracing/motocycle racing and such)..\\n\\nWe shall see how things go..\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n',\n", - " 'From: sloan@cis.uab.edu (Kenneth Sloan)\\nSubject: Re: Removing Distortion From Bitmapped Drawings?\\nOrganization: CIS, University of Alabama at Birmingham\\nLines: 135\\n\\nIn article <1993Apr19.141034.24731@sctc.com> boebert@sctc.com (Earl Boebert) writes:\\n>Let\\'s say you have a scanned image of a line drawing; in this case a\\n>boat, but it could be anything. On the drawing you have a set of\\n>reference points whose true x,y positions are known. \\n>\\n>Now you digitize the drawing manually (in this case, using Yaron\\n>Danon\\'s excellent Digitize program). That is, you use a program which\\n>converts cursor positions to x,y and saves those values when you click\\n>the mouse.\\n>\\n>Upon digitizing you notice that the reference point values that come\\n>out of the digitizing process differ in small but significant ways\\n>from the known true values. This is understandable because the\\n>scanned drawing is a reproduction of the original and there are\\n>successive sources of distortion such as differential expansion and\\n>contraction of paper, errors introduced in the printing process,\\n>scanner errors and what have you.\\n>\\n>The errors are not uniform over the entire drawing, so \"global\"\\n>adjustments such as stretching/contracting uniformly over x or y, or\\n>rotating the whole drawing, are not satisfactory.\\n>\\n>So the question is: does any kind soul know of an algorithm for\\n>removing such distortion? In particular, if I have three sets of\\n>points \\n>\\n>Reference(x,y) (the known true values)\\n>\\n>DistortedReference(x,y) (the same points, with known errors)\\n>\\n>DistortedData(x,y) (other points, with unknown errors)\\n>\\n>what function of Reference and Distorted could I apply to\\n>DistortedData to remove the errors.\\n>\\n>I suspect the problem could be solved by treating the distorted\\n>reference points as resulting from the projection of a \"bumpy\" 3d\\n>surface, solving for the surface and then \"flattening\" it to remove\\n>the errors in the other data points.\\n\\nIt helps to have some idea of the source of the distortion - or at least\\na reasonable model of the class of distortion. Below is a very short\\ndescription of the process which we use; if you have further questions,\\nfeel free to poke me via e-mail.\\n\\n================================================================\\n*ASSUME: locally smooth distortion\\n\\n0) Compute the Delaunay Triangulation of your (x,y) points. This\\n defines the set of neighbors for each point. If your data are\\n not naturally convex, you may have very long edges on the convex hull.\\n Consider deleting these edges.\\n\\n1) Now, there are two goals:\\n\\n a) move the DistortedData(x,y) to the Reference(x,y)\\n b) keep the Length(e) (as measured from the current (x,y)\\'s)\\n as close as possible to the DigitizedLength(e) (as measured \\n using the digitized (x,y)\\'s).\\n\\n2) For every point, compute a displacement based on a) and b). For\\n example:\\n\\n a) For (x,y) points for which you know the Reference(x,y), you\\n can move alpha0*(Reference(x,y) - Current(x,y)). This will\\n slowly move the DistortedReference(x,y) towards the\\n Reference(x,y). \\n b) For all other points, examine the current length of each edge.\\n For each edge, compute a displacement which would make that edge\\n the correct length (where \"correct\" is the DigitizedLength). \\n Take the vector sum of these edge displacements, and move the\\n point alpha1*SumOfEdgeDisplacements. This will keep the\\n triangulated mesh consistent with your Digitized mesh.\\n\\n3) Iterate 2) until you are happy (for example, no point moves very much).\\n\\nalpha0 and alpha1 need to be determined by experimentation. Consider\\nhow much you believe the Reference(x,y) - i.e., do you absolutely insist\\non the final points exactly matching the References, or do you want to\\nbalance some error in matching the Reference against changes in length\\nof the edges.\\n\\nWARNING: there are a couple of geometric invariants which must be\\nobserved (essentially, you can\\'t allow the convex hull to change, and\\nyou can\\'t allow triangles to \"fold over\" neighboring triangles. Both of\\nthese can be handled either by special case checks on the motion of\\nindividual points, or by periodically re-triangulating the points (using \\nthe current positions - but still calculating DigitizedLength from the\\noriginal positions. When we first did this, the triangulation time was\\nprohibitive, so we only did it once. If I were motivated to try and\\nchange code that has been working in production mode for 5 years, I\\n*might* go back and re-triangulate on every iteration. If you have more\\ncompute power than you know what to do with, you might consider having\\nevery point interact with every other point....but first read up on\\nlinear solutions to the n-body problem.\\n\\nThere are lots of papers in the last 10 years of SIGGRAPH proceedings on\\nsprings, constraints, and energy calculations which are relevant. The\\nabove method is described, in more or less detail in:\\n\\n@inproceedings{Sloan86,\\nauthor=\"Sloan, Jr., Kenneth R. and David Meyers and Christine A.~Curcio\",\\ntitle=\"Reconstruction and Display of the Retina\",\\nbooktitle=\"Proceedings: Graphics Interface \\'86 Vision Interface \\'86\",\\naddress=\"Vancouver, Canada\",\\npages=\"385--389\",\\nmonth=\"May\",\\nyear=1986 }\\n\\n@techreport{Curcio87b,\\nauthor=\"Christine A.~Curcio and Kenneth R.~Sloan and David Meyers\",\\ntitle=\"Computer Methods for Sampling, Reconstruction, Display, and\\nAnalysis of Retinal Whole Mounts\",\\nnumber=\"TR 87-12-03\",\\ninstitution=\"Department of Computer Science, University of Washington\",\\naddress=\"Seattle, WA\",\\nmonth=\"December\",\\nyear=1987 }\\n\\n@article{Curcio89,\\nauthor=\"Christine A.~Curcio and Kenneth R.~Sloan and David Meyers\",\\ntitle=\"Computer Methods for Sampling, Reconstruction, Display, and\\nAnalysis of Retinal Whole Mounts\",\\njournal=\"Vision Research\",\\nvolume=29,\\nnumber=5,\\npages=\"529--540\",\\nyear=1989 }\\n \\n\\n-- \\nKenneth Sloan Computer and Information Sciences\\nsloan@cis.uab.edu University of Alabama at Birmingham\\n(205) 934-2213 115A Campbell Hall, UAB Station \\n(205) 934-5473 FAX Birmingham, AL 35294-1170\\n',\n", - " \"From: richter@fossi.hab-weimar.de (Axel Richter)\\nSubject: True Color Display in POV\\nKeywords: POV, Raytracing\\nNntp-Posting-Host: fossi.hab-weimar.de\\nOrganization: Hochschule fuer Architektur und Bauwesen Weimar, Germany\\nLines: 6\\n\\n\\nHallo POV-Renderers !\\nI've got a BocaX3 Card. Now I try to get POV displaying True Colors\\nwhile rendering. I've tried most of the options and UNIVESA-Driver\\nbut what happens isn't correct.\\nCan anybody help me ?\\n\",\n", - " \"From: add@sciences.sdsu.edu (James D. Murray)\\nSubject: Need specs/info on Apple QuickTime\\nOrganization: San Diego State University, College of Sciences\\nLines: 12\\nNNTP-Posting-Host: sciences.sdsu.edu\\nKeywords: quicktime\\nX-Newsreader: TIN [version 1.1 PL9]\\n\\nI need to get the specs, or at least a very verbose interpretation of the\\nspecs, for QuickTime. Technical articles from magazines and references to\\nbooks would be nice too.\\n\\nI also need the specs in a format usable on a Unix or MS-DOS system. I can't\\ndo much with the QuickTime stuff they have on ftp.apple.com in its present\\nformat.\\n\\nThanks in advance.\\n\\nJames D. Murray\\nadd@sciences.sdsu.edu\\n\",\n", - " 'From: morley@suncad.camosun.bc.ca (Mark Morley)\\nSubject: VGA Mode 13h Routines Available\\nNntp-Posting-Host: suncad.camosun.bc.ca\\nOrganization: Camosun College, Victoria B.C, Canada\\nX-Newsreader: Tin 1.1 PL4\\nLines: 31\\n\\nHi there,\\n\\nI\\'ve made a VGA mode 13h graphics library available via FTP. I originally\\nwrote the routines as a kind of exercise for myself, but perhaps someone\\nhere will find them useful. They are certainly useable as they are, but\\nare missing some higher-level functionality. They\\'re intended more as an\\nintro to mode 13h programming, a starting point.\\n\\n*** The library assumes a 386 processor, but it is trivial to modify it\\n*** for a 286. If enough people ask, I\\'ll make the mods and re-post it as a\\n*** different version.\\n\\nThe routines are written in assembly (TASM) and are callable from C. They\\nare fairly simple, but I\\'ve found them to be very fast (for my purposes,\\nanyway). Routines are included to enter and exit mode 13h, define a\\n\"virtual screen\", put and get pixels, put a pixmap (rectangular image with\\nno transparent spots), put a sprite (image with see-thru areas), copy\\nareas of the virtual screen into video memory, etc. I\\'ve also included a\\nsimple C routine to draw a line, as well as a C routine to load a 256\\ncolor GIF image into a buffer. I also wrote a quick\\'n\\'dirty(tm) demo program\\nthat bounces a bunch of sprites around behind three \"windows\".\\n\\nThe whole package is available on spang.camosun.bc.ca in /pub/dos/vgl.zip \\nIt is zipped with pkzip 2.04g\\n\\nIt is completely in the public domain, as far as I\\'m concerned. Do with\\nit whatever you like. However, it\\'d be nice to get credit where it\\'s due,\\nand maybe an e-mail telling me you like it (if you don\\'t like it don\\'t bother)\\n\\nMark\\nmorley@camosun.bc.ca\\n',\n", - " 'From: nickh@CS.CMU.EDU (Nick Haines)\\nSubject: Re: What if the USSR had reached the Moon first?\\nIn-Reply-To: gary@ke4zv.uucp\\'s message of Sun, 18 Apr 1993 09:10:51 GMT\\nOriginator: nickh@SNOW.FOX.CS.CMU.EDU\\nNntp-Posting-Host: snow.fox.cs.cmu.edu\\nOrganization: School of Computer Science, Carnegie Mellon University\\n\\t<1993Apr7.124724.22534@yang.earlham.edu> \\n\\t<1993Apr12.161742.22647@yang.earlham.edu>\\n\\t<93107.144339SAUNDRSG@QUCDN.QueensU.CA>\\n\\t<1993Apr18.091051.14496@ke4zv.uucp>\\nLines: 35\\n\\nIn article <1993Apr18.091051.14496@ke4zv.uucp> gary@ke4zv.uucp (Gary Coffman) writes:\\n\\n In article <93107.144339SAUNDRSG@QUCDN.QueensU.CA> Graydon writes:\\n\\n >This is turning into \\'what\\'s a moonbase good for\\', and I ought not\\n >to post when I\\'ve a hundred some odd posts to go, but I would\\n >think that the real reason to have a moon base is economic.\\n >\\n >Since someone with space industry will presumeably have a much\\n >larger GNP than they would _without_ space industry, eventually,\\n >they will simply be able to afford more stuff.\\n\\n If I read you right, you\\'re saying in essence that, with a larger\\n economy, nations will have more discretionary funds to *waste* on a\\n lunar facility. That was certainly partially the case with Apollo,\\n but real Lunar colonies will probably require a continuing\\n military, scientific, or commercial reason for being rather than\\n just a \"we have the money, why not?\" approach.\\n\\nAh, but the whole point is that money spent on a lunar base is not\\nwasted on the moon. It\\'s not like they\\'d be using $1000 (1000R?) bills\\nto fuel their moon-dozers. The money to fund a lunar base would be\\nspent in the country to which the base belonged. It\\'s a way of funding\\nhigh-tech research, just like DARPA was a good excuse to fund various\\nfields of research, under the pretense that it was crucial to the\\ndefense of the country, or like ESPRIT is a good excuse for the EC to\\nfund research, under the pretense that it\\'s good for pan-European\\ncooperation.\\n\\nNow maybe you think that government-funded research is a waste of\\nmoney (in fact, I\\'m pretty sure you do), but it does count as\\ninvestment spending, which does boost the economy (and just look at\\nthe size of that multiplier :->).\\n\\nNick Haines nickh@cmu.edu\\n',\n", - " \"From: srlnjal@grace.cri.nz\\nSubject: CorelDraw Bitmap to SCODAL\\nOrganization: Industrial Research Ltd., New Zealand.\\nLines: 10\\nNNTP-Posting-Host: grv.grace.cri.nz\\n\\n\\nDoes anyone know of software that will allow\\nyou to convert CorelDraw (.CDR) files\\ncontaining bitmaps to SCODAL, as this is the\\nonly format our bureau's filmrecorder recognises.\\n\\nJeff Lyall\\nInst.Geo.Nuc.Sci.Ltd\\nLower Hutt New Zealand\\n\\n\",\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Solar Sail Data\\nOrganization: University of Illinois at Urbana\\nLines: 24\\n\\nhiggins@fnalf.fnal.gov (Bill Higgins-- Beam Jockey) writes:\\n\\n>snydefj@eng.auburn.edu (Frank J. Snyder) writes:\\n\\n>> I am looking for any information concerning projects involving Solar\\n>> Sails. [...]\\n>> Are there any groups out there currently involved in such a project ?\\n\\nBill says ...\\n\\n>Also there is a nontechnical book on solar sailing by Louis Friedman,\\n>a technical one by a guy whose name escapes me (help me out, Josh),\\n\\nI presume the one you refer to is \"Space Sailing\" by Jerome L. Wright. He \\nworked on solar sails while at JPL and as CEO of General Astronautics. I\\'ll\\nfurnish ordering info upon request.\\n\\nThe Friedman book is called \"Starsailing: Solar Sails and Interstellar Travel.\"\\nIt was available from the Planetary Society a few years ago, I don\\'t know if\\nit still is.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " \"From: henrik@quayle.kpc.com \\nSubject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES\\nOrganization: NONE\\nLines: 100\\n\\nIn article , mucit@cs.rochester.edu (Bulent Murtezaoglu) writes:\\n|> In article <1993Apr20.164517.20876@kpc.com> henrik@quayle.kpc.com writes:\\n|> [stuff deleted]\\n|> \\nhenrik] Country. Turks and Azeris consistantly WANT to drag ARMENIA into the\\nhenrik] KARABAKH conflict with Azerbaijan. \\n\\nBM] Gimme a break. CAPITAL letters, or NOT, the above is pure nonsense. It\\nBM] seems to me that short sighted Armenians are escalating the hostilities\\n\\t\\t ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n Again, Armenians in KARABAKH are SIMPLY defending themselves. What do\\n want them to do. Lay down their ARMS and let Azeris walk all over them.\\n\\nBM] while hoping that Turkey will stay out. Stop and think for a moment,\\nBM] will you? Armenia doesn't need anyone to drag her into the conflict, it\\nBM] is a part of it. \\n\\nArmenians KNEW from the begining that TURKS were FULLY engaged \\ntraining AZERIS militarily to fight against KARABAKHI-Armenians.\\n\\t\\nhenrik] The KARABAKHI-ARMENIANS who have lived in their HOMELAND for 3000 \\nhenrik] years (CUT OFF FROM ARMENIA and GIVEN TO AZERIS BY STALIN) are the \\nhenrik] ones DIRECTLY involved in the CONFLICT. They are defending \\nhenrik] themselves against AZERI AGGRESSION. \\n\\nBM] Huh? You didn't expect Azeri's to be friendly to forces fighting with them\\nBM] within their borders? \\n\\n\\tWell, history is SAD. Remember, those are relocated Azeris into \\n the Armenian LAND of KARABAKH by the STALIN regime.\\n\\nhenrik] At last, I hope that the U.S. insists that Turkey stay out of the \\nhenrik] KARABAKH crisis so that the repeat of the CYPRUS invasion WILL NEVER \\nhenrik] OCCUR again.\\n\\nBM] You're not playing with a full deck, are you? Where would Turkey invade?\\n\\n It is not up to me to speculate but I am sure Turkey would have stepped\\n into Armenia if SHE could.\\n \\nBM] Are you throwing the Cyprus buzzword around with s.c.g. in the header\\nBM] in hopes that the Greek netters will jump the gun? \\n\\n\\tAbsolutely NOT ! I am merely trying to emphasize that in many\\n cases, HISTORY repeats itself. \\n\\nBM] Yes indeed Turkey has the military prowess to intervene, what she wishes \\nBM] she had, however, is the diplomatic power to stop the hostilities and bring\\nBM] the parties to the negotiating table. That's hard to do when Armenians \\nBM] are attacking Azeri towns.\\n\\n\\tSo, let me understand in plain WORDS what you are saying; Turkey\\n wants a PEACEFUL END to this CONFLICT. NOT !!\\n\\n\\tI will believe it when I see it.\\n\\n\\tNow, as far as attacking, what do you do when you see a GUN pointing\\n to your HEAD ? Do you sit there and WATCH or DEFEND yoursef(fat chance)?\\n\\tDo you remember what Azeris did to the Armenians in BAKU ? All the\\n\\tBARBERIAN ACTS especially against MOTHERS and their CHILDREN. I mean\\n\\tBURNING people ALIVE !\\n\\nBM] Armenian leaders are lacking the statesmanship to recognize the \\nBM] futility of armed conflict and convince their nation that a compromise that \\nBM] leads to stability is much better than a military faits accomplis that's \\nBM] going to cause incessant skirmishes. \\n\\n\\tArmenians in KARABAKH want PEACE and their own republic. They are \\n NOT asking much. They simply want to get back what was TAKEN AWAY \\n\\tfrom them and GIVEN to AZERIS by STALIN. \\n\\nBM] Think of 10 or 20 years down the line -- both of the newly independent \\nBM] countries need to develop economically and neither one is going to wipe \\nBM] the other out. These people will be neighbors, would it not be better \\nBM] to keep the bad blood between them minimal?\\n\\n\\tDon't get me WRONG. I also want PEACEFUL solution to the\\n\\tconflict. But until Azeris realize that, the Armenians in\\n\\tKARABAKH will defend themselves against aggresion.\\n\\nBM] If you belong to the Armenian diaspora, keep in mind that what strikes\\nBM] your fancy on the map is costing the local Armenians dearly in terms of \\nBM] their blood and future. \\n\\n\\tAgain, you are taking different TURNS. Armenia HAS no intension\\n to GRAB any LAND from Azerbaijan. The Armenians in KARABAKH\\n are simply defending themselves UNTIL a solution is SET.\\n\\nBM] It's easy to be comfortable abroad and propagandize \\nBM] craziness to have your feelings about Turks tickled. The Armenians\\nBM] in Armenia and N-K will be there, with the same people you seem to hate \\nBM] as their neighbors, for maybe 3000 years more. The sooner there's peace in\\nBM] the region the better it is for them and everyone else. I'd push for\\nBM] compromise if I were you instead of hitting the caps-lock and spreading\\nBM] inflammatory half-truths.\\n\\n\\tIt is NOT up to me to decide the PEACE initiative. I am absolutely\\n for it. But, in the meantime, if you do not take care of yourself,\\n you will be WIPED out. Such as the case in the era of 1915-20 of\\n\\tThe Armenian Massacres.\\n\",\n", - " 'From: pgf@srl03.cacs.usl.edu (Phil G. Fraering)\\nSubject: Re: Vandalizing the sky.\\nOrganization: Univ. of Southwestern Louisiana\\nLines: 49\\n\\nhoover@mathematik.uni-bielefeld.de (Uwe Schuerkamp) writes:\\n\\n>In article enzo@research.canon.oz.au \\n>(Enzo Liguori) writes:\\n\\n>> hideous vision of the future. Observers were\\n>>startled this spring when a NASA launch vehicle arrived at the\\n>>pad with \"SCHWARZENEGGER\" painted in huge block letters on the\\n\\n>This is ok in my opinion as long as the stuff *returns to earth*.\\n\\n>>What do you think of this revolting and hideous attempt to vandalize\\n>>the night sky? It is not even April 1 anymore.\\n\\n>If this turns out to be true, it\\'s time to get seriously active in\\n>terrorism. This is unbelievable! Who do those people think they are,\\n>selling every bit that promises to make money? I guess we really\\n>deserve being wiped out by uv radiation, folks. \"Stupidity wins\". I\\n>guess that\\'s true, and if only by pure numbers.\\n\\n>\\tAnother depressed planetary citizen,\\n>\\thoover\\n\\n\\nThis isn\\'t inherently bad.\\n\\nThis isn\\'t really light pollution since it will only\\nbe visible shortly before or after dusk (or during the\\nday).\\n\\n(Of course, if night only lasts 2 hours for you, you\\'re probably going\\nto be inconvienenced. But you\\'re inconvienenced anyway in that case).\\n\\nFinally: this isn\\'t the Bronze Age, and most of us aren\\'t Indo\\nEuropean; those people speaking Indo-Eurpoean languages often have\\nmuch non-indo-european ancestry and cultural background. So:\\nplease try to remember that there are more human activities than\\nthose practiced by the Warrior Caste, the Farming Caste, and the\\nPriesthood.\\n\\nAnd why act distressed that someone\\'s found a way to do research\\nthat doesn\\'t involve socialism?\\n\\nIt certianly doesn\\'t mean we deserve to die.\\n--\\nPhil Fraering |\"Seems like every day we find out all sorts of stuff.\\npgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n\\n\\n',\n", - " 'From: warren@itexjct.jct.ac.il (Warren Burstein)\\nSubject: Re: To be exact, 2.5 million Muslims were exterminated by the Armenians.\\nOrganization: ITEX, Jerusalem, Israel\\nLines: 33\\n\\nac = In <9304202017@zuma.UUCP> sera@zuma.UUCP (Serdar Argic)\\npl = linden@positive.Eng.Sun.COM (Peter van der Linden)\\n\\npl: 1. So, did the Turks kill the Armenians?\\n\\nac: So, did the Jews kill the Germans? \\nac: You even make Armenians laugh.\\n\\nac: \"An appropriate analogy with the Jewish Holocaust might be the\\nac: systematic extermination of the entire Muslim population of \\nac: the independent republic of Armenia which consisted of at \\nac: least 30-40 percent of the population of that republic. The \\nac: memoirs of an Armenian army officer who participated in and \\nac: eye-witnessed these atrocities was published in the U.S. in\\nac: 1926 with the title \\'Men Are Like That.\\' Other references abound.\"\\n\\nTypical Mutlu. PvdL asks if X happened, the response is that Y\\nhappened. Even if we grant that the Armenians *did* do what Cosar\\naccuses them of doing, this has no bearing on whether the Turks did\\nwhat they are accused of.\\n\\nWhile I can understand how an AI could be this stupid, I\\ncan\\'t understand how a human could be such a moron as to either let\\nsuch an AI run amok or to compose such pointless messages himself.\\n\\nI do not expect any followup to this article from Argic to do anything\\nto alleviate my puzzlement. But maybe I\\'ll see a new line from his\\nlist of insults.\\n-- \\n/|/-\\\\/-\\\\ \\n |__/__/_/ \\n |warren@ \\n/ nysernet.org\\n',\n", - " 'From: ab4z@Virginia.EDU (\"Andi Beyer\")\\nSubject: Re: Israeli Terrorism\\nOrganization: University of Virginia\\nLines: 22\\n\\ntclock@orion.oac.uci.edu writes:\\n> Since one is also unlikely to get \"the truth\" from either Arab or \\n> Palestinian news outlets, where do we go to \"understand\", to learn? \\n> Is one form of propoganda more reliable than another? The only way \\n> to determine that is to try and get beyond the writer\\'s \"political\\n> agenda\", whether it is \"on\" or \"against\" our *side*.\\n> \\n> Tim \\n\\tFirst let me correct myself in that it was Goerbels and\\nnot Goering (Airforce) who ran the Nazi propaganda machine. I\\nagree that Arab news sources are also inherently biased. But I\\nbelieve the statement I was reacting to was that since the\\namerican accounts of events are not fully like the Israeli\\naccounts, the Americans are biased. I just thought that the\\nIsraelis had more motivation for bias.\\n\\tThe UN has tried many times to condemn Israel for its\\ngross violation of human rights. However the US has vetoed most\\nsuch attempts. It is interesting to note that the U.S. is often\\nthe only country opposing such condemnation (well the U.S. and\\nIsrael). It is also interesting to note that that means\\nother western countries realize these human rights violations.\\nSo maybe there are human rights violations going on after all. \\n',\n", - " 'Subject: Re: Drinking and Riding\\nFrom: bclarke@galaxy.gov.bc.ca\\nOrganization: BC Systems Corporation\\nLines: 11\\n\\nIn article , manes@magpie.linknet.com (Steve Manes) writes:\\n{drinking & riding}\\n> It depends on how badly you want to live. The FAA says \"eight hours, bottle\\n> to throttle\" for pilots but recommends twenty-four hours. The FARs specify\\n> a blood/alcohol level of 0.4 as legally drunk, I think, which is more than\\n> twice as strict as DWI minimums.\\n\\n0.20 is DWI in New York? Here the limit is 0.08 !\\n-- \\nBruce Clarke B.C. Environment\\n e-mail: bclarke@galaxy.gov.bc.ca\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: After all, Armenians exterminated 2.5 million Muslim people there.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 297\\n\\nIn article hovig@uxa.cso.uiuc.edu (Hovig Heghinian) writes:\\n\\n>article. I have no partisan interests --- I would just like to know\\n>what conversations between TerPetrosyan and Demirel sound like. =)\\n\\nVery simple.\\n\\n\"X-Soviet Armenian government must pay for their crime of genocide \\n against 2.5 million Muslims by admitting to the crime and making \\n reparations to the Turks and Kurds.\"\\n\\nAfter all, your criminal grandparents exterminated 2.5 million Muslim\\npeople between 1914 and 1920.\\n\\n\\n\\nhovig@uxa.cso.uiuc.edu (Hovig Heghinian)\\n\\n>To which I say:\\n>Hear, hear. Motion seconded.\\n\\nYou must be a new Armenian clown. You are counting on ASALA/SDPA/ARF \\ncrooks and criminals to prove something for you? No wonder you are in \\nsuch a mess. That criminal idiot and \\'its\\' forged/non-existent junk has \\nalready been trashed out by Mutlu, Cosar, Akgun, Uludamar, Akman, Oflazer \\nand hundreds of people. Moreover, ASALA/SDPA/ARF criminals are responsible \\nfor the massacre of the Turkish people that also prevent them from entering \\nTurkiye and TRNC. SDPA has yet to renounce its charter which specifically \\ncalls for the second genocide of the Turkish people. This racist, barbarian \\nand criminal view has been touted by the fascist x-Soviet Armenian government \\nas merely a step on the road to said genocide. \\n\\nNow where shall I begin?\\n\\n#From: ahmet@eecg.toronto.edu (Parlakbilek Ahmet)\\n#Subject: YALANCI, LIAR : DAVIDIAN\\n#Keywords: Davidian, the biggest liar\\n#Message-ID: <1991Jan10.122057.11613@jarvis.csri.toronto.edu>\\n\\nFollowing is the article that Davidian claims that Hasan Mutlu is a liar:\\n\\n>From: dbd@urartu.SDPA.org (David Davidian)\\n>Message-ID: <1154@urartu.SDPA.org>\\n\\n>In article <1991Jan4.145955.4478@jarvis.csri.toronto.edu> ahmet@eecg.toronto.\\n>edu (Ahmet Parlakbilek) asked a simple question:\\n\\n>[AP] I am asking you to show me one example in which mutlu,coras or any other\\n>[AP] Turk was proven to lie.I can show tens of lies and fabrications of\\n>[AP] Davidian, like changing quote , even changing name of a book, Anna.\\n\\n>The obvious ridiculous \"Armenians murdered 3 million Moslems\" is the most\\n>outragious and unsubstantiated charge of all. You are obviously new on this \\n>net, so read the following sample -- not one, but three proven lies in one\\n>day!\\n\\n>\\t\\t\\t- - - start yalanci.txt - - -\\n\\n[some parts are deleted]\\n\\n>In article <1990Aug5.142159.5773@cbnewsd.att.com> the usenet scribe for the \\n>Turkish Historical Society, hbm@cbnewsd.att.com (hasan.b.mutlu), continues to\\n>revise the history of the Armenian people. Let\\'s witness the operational\\n>definition of a revisionist yalanci (or liar, in Turkish):\\n\\n>[Yalanci] According to Leo:[1]\\n>[Yalanci]\\n>[Yalanci] \"The situation is clear. On one side, we have peace-loving Turks\\n>[Yalanci] and on the other side, peace-loving Armenians, both sides minding\\n>[Yalanci] their own affairs. Then all was submerged in blood and fire. Indeed,\\n>[Yalanci] the war was actually being waged between the Committee of \\n>[Yalanci] Dashnaktsutiun and the Society of Ittihad and Terakki - a cruel and \\n>[Yalanci] savage war in defense of party political interests. The Dashnaks \\n>[Yalanci] incited revolts which relied on Russian bayonets for their success.\"\\n>[Yalanci] \\n>[Yalanci] [1] L. Kuper, \"Genocide: Its Political Use in the Twentieth Century,\"\\n>[Yalanci] New York 1981, p. 157.\\n\\n>This text is available not only in most bookstores but in many libraries. On\\n>page 157 we find a discussion of related atrocities (which is title of the\\n>chapter). The topic on this page concerns itself with submissions to the Sub-\\n>Commission on Prevention of Discrimination of Minorities of the Commission on\\n>Human Rights of the United Nations with respect to the massacres in Cambodia.\\n>There is no mention of Turks nor Armenians as claimed above.\\n\\n\\t\\t\\t\\t- - -\\n\\n>Vay sarsak, vay yobaz, vay yalanci! Vay Turk milletinin yuz karasi Mutlu vay!\\n\\n>The depth of foolishness the Turkish Historical Society engages in, while\\n>covering up the Turkish genocide of the Armenians, is only surpassed by the \\n>ridiculous \"historical\" material publicly displayed!\\n\\n>David Davidian | The life of a people is a sea, and \\n\\nReceiving this message, I checked the reference, L.Kuper,\"Genocide...\" and\\nwhat I have found was totally consistent with what Davidian said.The book\\nwas like \"voice of Armenian revolutionists\" and although I read the whole book,\\nI could not find the original quota.\\nBut there was one more thing to check:The original posting of Mutlu.I found \\nthe original article of Mutlu.It is as follows:\\n\\n> According to Leo:[1]\\n\\n>\"The situation is clear. On one side, we have peace-loving Turks and on\\n> the other side, peace-loving Armenians, both sides minding their own \\n> affairs. Then all was submerged in blood and fire. Indeed, the war was\\n> actually being waged between the Committee of Dashnaktsutiun and the\\n> Society of Ittihad and Terakki - a cruel and savage war in defense of party\\n> political interests. The Dashnaks incited revolts which relied on Russian\\n> bayonets for their success.\" \\n\\n>[1] B. A. Leo. \"The Ideology of the Armenian Revolution in Turkey,\" vol II,\\n ======================================================================\\n> p. 157.\\n ======\\n\\nQUATO IS THE SAME, REFERENCE IS DIFFERENT !\\n\\nDAVIDIAN LIED AGAIN, AND THIS TIME HE CHANGED THE ORIGINAL POSTING OF MUTLU\\nJUST TO ACCUSE HIM TO BE A LIAR.\\n\\nDavidian, thank you for writing the page number correctly...\\n\\nYou are the biggest liar I have ever seen.This example showed me that tomorrow\\nyou can lie again, and you may try to make me a liar this time.So I decided\\nnot to read your articles and not to write answers to you.I also advise\\nall the netters to do the same.We can not prevent your lies, but at least\\nwe may save time by not dealing with your lies.\\n\\nAnd for the following line:\\n>Vay sarsak, vay yobaz, vay yalanci! Vay Turk milletinin yuz karasi Mutlu vay!\\n\\nI also return all the insults you wrote about Mutlu to you.\\nI hope you will be drowned in your lies.\\n\\nAhmet PARLAKBILEK\\n\\n#From: vd8@cunixb.cc.columbia.edu (Vedat Dogan)\\n#Message-ID: <1993Apr8.233029.29094@news.columbia.edu>\\n\\nIn article <1993Apr7.225058.12073@urartu.sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>In article <1993Apr7.030636.7473@news.columbia.edu> vd8@cunixb.cc.columbia.edu\\n>(Vedat Dogan) wrote in response to article <1993Mar31.141308.28476@urartu.\\n>11sdpa.org> dbd@urartu.sdpa.org (David Davidian) writes:\\n>\\n \\n>[(*] Source: \"Adventures in the Near East, 1918-1922\" by A. Rawlinson,\\n>[(*] Jonathan Cape, 30 Bedford Square, London, 1934 (First published 1923) \\n>[(*] (287 pages).\\n>\\n>[DD] Such a pile of garbage! First off, the above reference was first published\\n>[DD] in 1924 NOT 1923, and has 353 pages NOT 287! Second, upon checking page \\n>[DD] 178, we are asked to believe:\\n> \\n>[VD] No, Mr.Davidian ... \\n> \\n>[VD] It was first published IN 1923 (I have the book on my desk,now!) \\n>[VD] ********\\n> \\n>[VD] and furthermore,the book I have does not have 353 pages either, as you\\n>[VD] claimed, Mr.Davidian..It has 377 pages..Any question?..\\n> \\n>Well, it seems YOUR book has its total page numbers closer to mine than the \\nn>crap posted by Mr. [(*]!\\n \\n o boy! \\n \\n Please, can you tell us why those quotes are \"crap\"?..because you do not \\n like them!!!...because they really exist...why?\\n \\n As I said in my previous posting, those quotes exactly exist in the source \\n given by Serdar Argic .. \\n \\n You couldn\\'t reject it...\\n \\n>\\n>In addition, the Author\\'s Preface was written on January 15, 1923, BUT THE BOOK\\n>was published in 1924.\\n \\n Here we go again..\\n In the book I have, both the front page and the Author\\'s preface give \\n the same year: 1923 and 15 January, 1923, respectively!\\n (Anyone can check it at her/his library,if not, I can send you the copies of\\n pages, please ask by sct) \\n \\n \\nI really don\\'t care what year it was first published(1923 or 1924)\\nWhat I care about is what the book writes about murders, tortures,et..in\\nthe given quotes by Serdar Argic, and your denial of these quotes..and your\\ngroundless accussations, etc. \\n \\n>\\n[...]\\n> \\n>[DD] I can provide .gif postings if required to verify my claim!\\n> \\n>[VD] what is new?\\n> \\n>I will post a .gif file, but I am not going go through the effort to show there \\n>is some Turkish modified re-publication of the book, like last time!\\n \\n \\n I claim I have a book in my hand published in 1923(first publication)\\n and it exactly has the same quoted info as the book published\\n in 1934(Serdar Argic\\'s Reference) has..You couldn\\'t reject it..but, now you\\n are avoiding the real issues by twisting around..\\n \\n Let\\'s see how you lie!..(from \\'non-existing\\' quotes to re-publication)\\n \\n First you said there was no such a quote in the given reference..You\\n called Serdar Argic a liar!..\\n I said to you, NO, MR.Davidian, there exactly existed such a quote...\\n (I even gave the call number, page numbers..you could\\'t reject it.)\\n \\n And now, you are lying again and talking about \"modified,re-published book\"\\n(without any proof :how, when, where, by whom, etc..)..\\n (by the way, how is it possible to re-publish the book in 1923 if it was\\n first published in 1924(your claim).I am sure that you have some \\'pretty \\n well suited theories\\', as usual)\\n \\n And I am ready to send the copies of the necessary pages to anybody who\\n wants to compare the fact and Mr.Davidian\\'s lies...I also give the call number\\n and page numbers again for the library use, which are: \\n 949.6 R 198\\n \\n and the page numbers to verify the quotes:218 and 215\\n \\n \\n \\n> \\n>It is not possible that [(*]\\'s text has 287 pages, mine has 353, and yours has\\n>377!\\n \\n Now, are you claiming that there can\\'t be such a reference by saying \"it is\\n not possible...\" ..If not, what is your point?\\n \\n Differences in the number of pages?\\n Mine was published in 1923..Serdar Argic\\'s was in 1934..\\n No need to use the same book size and the same letter \\n charachter in both publications,etc, etc.. does it give you an idea!!\\n \\n The issue was not the number of pages the book has..or the year\\n first published.. \\n And you tried to hide the whole point..\\n the point is that both books have the exactly the same quotes about\\n how moslems are killed, tortured,etc by Armenians..and those quotes given \\n by Serdar Argic exist!! \\n It was the issue, wasn\\'t-it? \\n \\n you were not able to object it...Does it bother you anyway? \\n \\n You name all these tortures and murders (by Armenians) as a \"crap\"..\\n People who think like you are among the main reasons why the World still\\n has so many \"craps\" in the 1993. \\n \\n Any question?\\n \\n\\n\\nhovig@uxa.cso.uiuc.edu (Hovig Heghinian)\\n\\n> Hmm ... Turks sure know how to keep track of deaths, but they seem to\\n>lose count around 1.5 million.\\n\\nWell, apparently we have another son of Dro \\'the Butcher\\' to contend with. \\nYou should indeed be happy to know that you rekindled a huge discussion on\\ndistortions propagated by several of your contemporaries. If you feel \\nthat you can simply act as an Armenian governmental crony in this forum \\nyou will be sadly mistaken and duly embarrassed. This is not a lecture to \\nanother historical revisionist and a genocide apologist, but a fact.\\n\\nI will dissect article-by-article, paragraph-by-paragraph, line-by-line, \\nlie-by-lie, revision-by-revision, written by those on this net, who plan \\nto \\'prove\\' that the Armenian genocide of 2.5 million Turks and Kurds is \\nnothing less than a classic un-redressed genocide. We are neither in \\nx-Soviet Union, nor in some similar ultra-nationalist fascist dictatorship, \\nthat employs the dictates of Hitler to quell domestic unrest. Also, feel \\nfree to distribute all responses to your nearest ASALA/SDPA/ARF terrorists,\\nthe Armenian pseudo-scholars, or to those affiliated with the Armenian\\ncriminal organizations.\\n\\nArmenian government got away with the genocide of 2.5 million Turkish men,\\nwomen and children and is enjoying the fruits of that genocide. You, and \\nthose like you, will not get away with the genocide\\'s cover-up.\\n\\nNot a chance.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n',\n", - " 'From: livesey@solntze.wpd.sgi.com (Jon Livesey)\\nSubject: Re: Morality? (was Re: , keith@cco.caltech.edu (Keith Allan Schneider) writes:\\n|> livesey@solntze.wpd.sgi.com (Jon Livesey) writes:\\n|> \\n|> >>>Explain to me\\n|> >>>how instinctive acts can be moral acts, and I am happy to listen.\\n|> >>For example, if it were instinctive not to murder...\\n|> >\\n|> >Then not murdering would have no moral significance, since there\\n|> >would be nothing voluntary about it.\\n|> \\n|> See, there you go again, saying that a moral act is only significant\\n|> if it is \"voluntary.\" Why do you think this?\\n\\nIf you force me to do something, am I morally responsible for it?\\n\\n|> \\n|> And anyway, humans have the ability to disregard some of their instincts.\\n\\nWell, make up your mind. Is it to be \"instinctive not to murder\"\\nor not?\\n\\n|> \\n|> >>So, only intelligent beings can be moral, even if the bahavior of other\\n|> >>beings mimics theirs?\\n|> >\\n|> >You are starting to get the point. Mimicry is not necessarily the \\n|> >same as the action being imitated. A Parrot saying \"Pretty Polly\" \\n|> >isn\\'t necessarily commenting on the pulchritude of Polly.\\n|> \\n|> You are attaching too many things to the term \"moral,\" I think.\\n|> Let\\'s try this: is it \"good\" that animals of the same species\\n|> don\\'t kill each other. Or, do you think this is right? \\n\\nIt\\'s not even correct. Animals of the same species do kill\\none another.\\n\\n|> \\n|> Or do you think that animals are machines, and that nothing they do\\n|> is either right nor wrong?\\n\\nSigh. I wonder how many times we have been round this loop.\\n\\nI think that instinctive bahaviour has no moral significance.\\nI am quite prepared to believe that higher animals, such as\\nprimates, have the beginnings of a moral sense, since they seem\\nto exhibit self-awareness.\\n\\n|> \\n|> \\n|> >>Animals of the same species could kill each other arbitarily, but \\n|> >>they don\\'t.\\n|> >\\n|> >They do. I and other posters have given you many examples of exactly\\n|> >this, but you seem to have a very short memory.\\n|> \\n|> Those weren\\'t arbitrary killings. They were slayings related to some \\n|> sort of mating ritual or whatnot.\\n\\nSo what? Are you trying to say that some killing in animals\\nhas a moral significance and some does not? Is this your\\nnatural morality>\\n\\n\\n|> \\n|> >>Are you trying to say that this isn\\'t an act of morality because\\n|> >>most animals aren\\'t intelligent enough to think like we do?\\n|> >\\n|> >I\\'m saying:\\n|> >\\t\"There must be the possibility that the organism - it\\'s not \\n|> >\\tjust people we are talking about - can consider alternatives.\"\\n|> >\\n|> >It\\'s right there in the posting you are replying to.\\n|> \\n|> Yes it was, but I still don\\'t understand your distinctions. What\\n|> do you mean by \"consider?\" Can a small child be moral? How about\\n|> a gorilla? A dolphin? A platypus? Where is the line drawn? Does\\n|> the being need to be self aware?\\n\\nAre you blind? What do you think that this sentence means?\\n\\n\\t\"There must be the possibility that the organism - it\\'s not \\n\\tjust people we are talking about - can consider alternatives.\"\\n\\nWhat would that imply?\\n\\n|> \\n|> What *do* you call the mechanism which seems to prevent animals of\\n|> the same species from (arbitrarily) killing each other? Don\\'t\\n|> you find the fact that they don\\'t at all significant?\\n\\nI find the fact that they do to be significant. \\n\\njon.\\n',\n", - " \"From: benali@alcor.concordia.ca ( ILYESS B. BDIRA )\\nSubject: Re: The Israeli Press\\nNntp-Posting-Host: alcor.concordia.ca\\nOrganization: Concordia University, Montreal, Canada\\nLines: 41\\n\\nbc744@cleveland.Freenet.Edu (Mark Ira Kaufman) writes:\\n\\n\\n...\\n>for your information on Israel. Since I read both American media\\n>and Israeli media, I can say with absolute certainty that anybody\\n>who reliesx exclusively on the American press for knowledge about\\n>Israel does not have a true picture of what is going on.\\n\\nOf course you never read Arab media,\\n\\nI read Arab, ISRAELI (Jer. Post, and this network is more than enough)\\nand Western (American, French, and British) reports and I can say\\nthat if we give Israel -10 and Arabs +10 on the bias scale (of course\\nyou can switch the polarities) Israeli newspapers will get either\\na -9 or -10, American leading newspapers and TV news range from -6\\nto -10 (yes there are some that are more Israelis than Israelis)\\nThe Montreal suburban (a local free newspaper) probably is closer\\nto Kahane's views than some Israeli right wing newspapers, British\\nrange from 0 (neutral) to -10, French (that Iknow of, of course) range\\nfrom +2 (Afro-french magazines) to -10, Arab official media range from\\n0 to -5 (Egyptian) to +9 in SA. Why no +10? Because they do not want to\\noverdo it and stir people against Israel and therefore against them since \\nthey are doing nothing.\\n\\n \\n> As to the claim that Israeli papers are biased, of course they\\n>are. Some may lean to the right or the left, just like the media\\n>here in America. But they still report events about which people\\n>here know nothing. I choose to form my opinions about Israel and\\n>the mideast based on more knowledge than does an average American\\n>who relies exclusively on an American media which does not report\\n>on events in the mideast with any consistency or accuracy.\\n\\nthe average bias of what you read would be probably around -9,\\nwhile that of the average American would be the same if they do\\nnot read or read the new-york times and similar News-makers, and\\n-8 if they read some other RELATIVELY less biased newspapers.\\n\\nso you are not better off.\\n\\n\",\n", - " 'From: nrmendel@unix.amherst.edu (Nathaniel Mendell)\\nSubject: Re: Maxima Chain wax\\nNntp-Posting-Host: amhux3.amherst.edu\\nOrganization: Amherst College\\nX-Newsreader: TIN [version 1.1 PL7]\\nLines: 31\\n\\nTom Dietrich (txd@ESD.3Com.COM) wrote:\\n: parr@acs.ucalgary.ca (Charles Parr) writes:\\n: \\n: >I bought it, I tried it:\\n: \\n: >It is, truly, the miracle spooge.\\n: \\n: >My chain is lubed, my wheel is clean, after 1000km.\\n: \\n: Good, glad to hear it, I\\'m still studying it.\\n: \\n: >I think life is now complete...The shaft drive weenies now\\n: >have no comeback when I discuss shaft effect.\\n: \\n: Sure I do, even though I don\\'t consider myself a weenie... \\n\\n---------------- rip! pithy \"I\\'m afraid to work on my bike\" stuff deleted ---\\n\\n: There is also damn little if any shaft effect\\n: with a Concours. So there! :{P PPPpppphhhhhttttttt!!!\\n: \\nHeh, heh...that\\'s pretty funny. So what do you call it instead of shaft\\neffect?\\n\\n\\nNathaniel\\nZX-10 <--- damn little if any shaft effect\\nDoD 0812\\nAMA\\n\\np.s. okay, so it\\'s flame bait, so what\\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 14/15 - How to Become an Astronaut\\nKeywords: Frequently Asked Questions\\nArticle-I.D.: cs.astronaut_733694515\\nExpires: 6 May 1993 20:01:55 GMT\\nDistribution: world\\nOrganization: University of North Carolina, Chapel Hill\\nLines: 313\\nSupersedes: \\nNNTP-Posting-Host: mahler.cs.unc.edu\\n\\nArchive-name: space/astronaut\\nLast-modified: $Date: 93/04/01 14:39:02 $\\n\\nHOW TO BECOME AN ASTRONAUT\\n\\n First the short form, authored by Henry Spencer, then an official NASA\\n announcement.\\n\\n Q. How do I become an astronaut?\\n\\n A. We will assume you mean a NASA astronaut, since it\\'s probably\\n impossible for a non-Russian to get into the cosmonaut corps (paying\\n passengers are not professional cosmonauts), and the other nations have\\n so few astronauts (and fly even fewer) that you\\'re better off hoping to\\n win a lottery. Becoming a shuttle pilot requires lots of fast-jet\\n experience, which means a military flying career; forget that unless you\\n want to do it anyway. So you want to become a shuttle \"mission\\n specialist\".\\n\\n If you aren\\'t a US citizen, become one; that is a must. After that,\\n the crucial thing to remember is that the demand for such jobs vastly\\n exceeds the supply. NASA\\'s problem is not finding qualified people,\\n but thinning the lineup down to manageable length.\\tIt is not enough\\n to be qualified; you must avoid being *dis*qualified for any reason,\\n many of them in principle quite irrelevant to the job.\\n\\n Get a Ph.D. Specialize in something that involves getting your hands\\n dirty with equipment, not just paper and pencil. Forget computer\\n programming entirely; it will be done from the ground for the fore-\\n seeable future. Degree(s) in one field plus work experience in\\n another seems to be a frequent winner.\\n\\n Be in good physical condition, with good eyesight.\\t(DO NOT get a\\n radial keratomy or similar hack to improve your vision; nobody knows\\n what sudden pressure changes would do to RKed eyes, and long-term\\n effects are poorly understood. For that matter, avoid any other\\n significant medical unknowns.) If you can pass a jet-pilot physical,\\n you should be okay; if you can\\'t, your chances are poor.\\n\\n Practise public speaking, and be conservative and conformist in\\n appearance and actions; you\\'ve got a tough selling job ahead, trying\\n to convince a cautious, conservative selection committee that you\\n are better than hundreds of other applicants. (And, also, that you\\n will be a credit to NASA after you are hired: public relations is\\n a significant part of the job, and NASA\\'s image is very prim and\\n proper.) The image you want is squeaky-clean workaholic yuppie.\\n Remember also that you will need a security clearance at some point,\\n and Security considers everybody guilty until proven innocent.\\n Keep your nose clean.\\n\\n Get a pilot\\'s license and make flying your number one hobby;\\n experienced pilots are known to be favored even for non-pilot jobs.\\n\\n Work for NASA; of 45 astronauts selected between 1984 and 1988,\\n 43 were military or NASA employees, and the remaining two were\\n a NASA consultant and Mae Jemison (the first black female astronaut).\\n If you apply from outside NASA and miss, but they offer you a job\\n at NASA, ***TAKE IT***; sometimes in the past this has meant \"you\\n do look interesting but we want to know you a bit better first\".\\n\\n Think space: they want highly motivated people, so lose no chance\\n to demonstrate motivation.\\n\\n Keep trying. Many astronauts didn\\'t make it the first time.\\n\\n\\n\\n\\n NASA\\n National Aeronautics and Space Administration\\n Lyndon B. Johnson Space Center\\n Houston, Texas\\n\\n Announcement for Mission Specialist and Pilot Astronaut Candidates\\n ==================================================================\\n\\n Astronaut Candidate Program\\n ---------------------------\\n\\n The National Aeronautics and Space Administration (NASA) has a need for\\n Pilot Astronaut Candidates and Mission Specialist Astronaut Candidates\\n to support the Space Shuttle Program. NASA is now accepting on a\\n continuous basis and plans to select astronaut candidates as needed.\\n\\n Persons from both the civilian sector and the military services will be\\n considered.\\n\\n All positions are located at the Lyndon B. Johnson Space Center in\\n Houston, Texas, and will involved a 1-year training and evaluation\\n program.\\n\\n Space Shuttle Program Description\\n ---------------------------------\\n\\n The numerous successful flights of the Space Shuttle have demonstrated\\n that operation and experimental investigations in space are becoming\\n routine. The Space Shuttle Orbiter is launched into, and maneuvers in\\n the Earth orbit performing missions lastling up to 30 days. It then\\n returns to earth and is ready for another flight with payloads and\\n flight crew.\\n\\n The Orbiter performs a variety of orbital missions including deployment\\n and retrieval of satellites, service of existing satellites, operation\\n of specialized laboratories (astronomy, earth sciences, materials\\n processing, manufacturing), and other operations. These missions will\\n eventually include the development and servicing of a permanent space\\n station. The Orbiter also provides a staging capability for using higher\\n orbits than can be achieved by the Orbiter itself. Users of the Space\\n Shuttle\\'s capabilities are both domestic and foreign and include\\n government agencies and private industries.\\n\\n The crew normally consists of five people - the commander, the pilot,\\n and three mission specialists. On occasion additional crew members are\\n assigned. The commander, pilot, and mission specialists are NASA\\n astronauts.\\n\\n Pilot Astronaut\\n\\n Pilot astronauts server as both Space Shuttle commanders and pilots.\\n During flight the commander has onboard responsibility for the vehicle,\\n crew, mission success and safety in flight. The pilot assists the\\n commander in controlling and operating the vehicle. In addition, the\\n pilot may assist in the deployment and retrieval of satellites utilizing\\n the remote manipulator system, in extra-vehicular activities, and other\\n payload operations.\\n\\n Mission Specialist Astronaut\\n\\n Mission specialist astronauts, working with the commander and pilot,\\n have overall responsibility for the coordination of Shuttle operations\\n in the areas of crew activity planning, consumables usage, and\\n experiment and payload operations. Mission specialists are required to\\n have a detailed knowledge of Shuttle systems, as well as detailed\\n knowledge of the operational characteristics, mission requirements and\\n objectives, and supporting systems and equipment for each of the\\n experiments to be conducted on their assigned missions. Mission\\n specialists will perform extra-vehicular activities, payload handling\\n using the remote manipulator system, and perform or assist in specific\\n experimental operations.\\n\\n Astronaut Candidate Program\\n ===========================\\n\\n Basic Qualification Requirements\\n --------------------------------\\n\\n Applicants MUST meet the following minimum requirements prior to\\n submitting an application.\\n\\n Mission Specialist Astronaut Candidate:\\n\\n 1. Bachelor\\'s degree from an accredited institution in engineering,\\n biological science, physical science or mathematics. Degree must be\\n followed by at least three years of related progressively responsible,\\n professional experience. An advanced degree is desirable and may be\\n substituted for part or all of the experience requirement (master\\'s\\n degree = 1 year, doctoral degree = 3 years). Quality of academic\\n preparation is important.\\n\\n 2. Ability to pass a NASA class II space physical, which is similar to a\\n civilian or military class II flight physical and includes the following\\n specific standards:\\n\\n\\t Distant visual acuity:\\n\\t 20/150 or better uncorrected,\\n\\t correctable to 20/20, each eye.\\n\\n\\t Blood pressure:\\n\\t 140/90 measured in sitting position.\\n\\n 3. Height between 58.5 and 76 inches.\\n\\n Pilot Astronaut Candidate:\\n\\n 1. Bachelor\\'s degree from an accredited institution in engineering,\\n biological science, physical science or mathematics. Degree must be\\n followed by at least three years of related progressively responsible,\\n professional experience. An advanced degree is desirable. Quality of\\n academic preparation is important.\\n\\n 2. At least 1000 hours pilot-in-command time in jet aircraft. Flight\\n test experience highly desirable.\\n\\n 3. Ability to pass a NASA Class I space physical which is similar to a\\n military or civilian Class I flight physical and includes the following\\n specific standards:\\n\\n\\t Distant visual acuity:\\n\\t 20/50 or better uncorrected\\n\\t correctable to 20/20, each eye.\\n\\n\\t Blood pressure:\\n\\t 140/90 measured in sitting position.\\n\\n 4. Height between 64 and 76 inches.\\n\\n Citizenship Requirements\\n\\n Applications for the Astronaut Candidate Program must be citizens of\\n the United States.\\n\\n Note on Academic Requirements\\n\\n Applicants for the Astronaut Candidate Program must meet the basic\\n education requirements for NASA engineering and scientific positions --\\n specifically: successful completion of standard professional curriculum\\n in an accredited college or university leading to at least a bachelor\\'s\\n degree with major study in an appropriate field of engineering,\\n biological science, physical science, or mathematics.\\n\\n The following degree fields, while related to engineering and the\\n sciences, are not considered qualifying:\\n - Degrees in technology (Engineering Technology, Aviation Technology,\\n\\tMedical Technology, etc.)\\n - Degrees in Psychology (except for Clinical Psychology, Physiological\\n\\tPsychology, or Experimental Psychology which are qualifying).\\n - Degrees in Nursing.\\n - Degrees in social sciences (Geography, Anthropology, Archaeology, etc.)\\n - Degrees in Aviation, Aviation Management or similar fields.\\n\\n Application Procedures\\n ----------------------\\n\\n Civilian\\n\\n The application package may be obtained by writing to:\\n\\n\\tNASA Johnson Space Center\\n\\tAstronaut Selection Office\\n\\tATTN: AHX\\n\\tHouston, TX 77058\\n\\n Civilian applications will be accepted on a continuous basis. When NASA\\n decides to select additional astronaut candidates, consideration will be\\n given only to those applications on hand on the date of decision is\\n made. Applications received after that date will be retained and\\n considered for the next selection. Applicants will be notified annually\\n of the opportunity to update their applications and to indicate\\n continued interest in being considered for the program. Those applicants\\n who do not update their applications annually will be dropped from\\n consideration, and their applications will not be retained. After the\\n preliminary screening of applications, additional information may be\\n requested for some applicants, and person listed on the application as\\n supervisors and references may be contacted.\\n\\n Active Duty Military\\n\\n Active duty military personnel must submit applications to their\\n respective military service and not directly to NASA. Application\\n procedures will be disseminated by each service.\\n\\n Selection\\n ---------\\n\\n Personal interviews and thorough medical evaluations will be required\\n for both civilian and military applicants under final consideration.\\n Once final selections have been made, all applicants who were considered\\n will be notified of the outcome of the process.\\n\\n Selection rosters established through this process may be used for the\\n selection of additional candidates during a one year period following\\n their establishment.\\n\\n General Program Requirements\\n\\n Selected applicants will be designated Astronaut Candidates and will be\\n assigned to the Astronaut Office at the Johnson Space Center, Houston,\\n Texas. The astronaut candidates will undergo a 1 year training and\\n evaluation period during which time they will be assigned technical or\\n scientific responsibilities allowing them to contribute substantially to\\n ongoing programs. They will also participate in the basic astronaut\\n training program which is designed to develop the knowledge and skills\\n required for formal mission training upon selection for a flight. Pilot\\n astronaut candidates will maintain proficiency in NASA aircraft during\\n their candidate period.\\n\\n Applicants should be aware that selection as an astronaut candidate does\\n not insure selection as an astronaut. Final selection as an astronaut\\n will depend on satisfactory completion of the 1 year training and\\n evaluation period. Civilian candidates who successfully complete the\\n training and evaluation and are selected as astronauts will become\\n permanent Federal employees and will be expected to remain with NASA for\\n a period of at least five years. Civilian candidates who are not\\n selected as astronauts may be placed in other positions within NASA\\n depending upon Agency requirements and manpower constraints at that\\n time. Successful military candidates will be detailed to NASA for a\\n specified tour of duty.\\n\\n NASA has an affirmative action program goal of having qualified\\n minorities and women among those qualified as astronaut candidates.\\n Therefore, qualified minorities and women are encouraged to apply.\\n\\n Pay and Benefits\\n ----------------\\n\\n Civilians\\n\\n Salaries for civilian astronaut candidates are based on the Federal\\n Governments General Schedule pay scales for grades GS-11 through GS-14,\\n and are set in accordance with each individuals academic achievements\\n and experience.\\n\\n Other benefits include vacation and sick leave, a retirement plan, and\\n participation in group health and life insurance plans.\\n\\n Military\\n\\n Selected military personnel will be detailed to the Johnson Space Center\\n but will remain in an active duty status for pay, benefits, leave, and\\n other similar military matters.\\n\\n\\nNEXT: FAQ #15/15 - Orbital and Planetary Launch Services\\n',\n", - " \"From: clldomps@cs.ruu.nl (Louis van Dompselaar)\\nSubject: Re: images of earth\\nOrganization: Utrecht University, Dept. of Computer Science\\nLines: 16\\n\\nIn <1993Apr19.193758.12091@unocal.com> stgprao@st.unocal.COM (Richard Ottolini) writes:\\n\\n>Beware. There is only one such *copyrighted* image and the company\\n>that generated is known to protect that copyright. That image took\\n>hundreds of man-hours to build from the source satellite images,\\n>so it is unlikely that competing images will appear soon.\\n\\nSo they should sue the newspaper I got it from for printing it.\\nThe article didn't say anything about copyrights.\\n\\nLouis\\n\\n-- \\nI'm hanging on your words, Living on your breath, Feeling with your skin,\\nWill I always be here? -- In Your Room [ DM ]\\n\\n\",\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: Symbiotics: Zionism-Antisemitism\\nOrganization: The Department of Redundancy Department\\nLines: 21\\n\\nIn article <1483500355@igc.apc.org> cpr@igc.apc.org (Center for Policy Research) writes:\\n\\n>The first point to note regarding the appropriation of the history\\n>of the Holocaust by Zionist propaganda is that Zionism without\\n>anti-semitism is impossible. Zionism agrees with the basic tenet\\n>of anti-Semitism, namely that Jews cannot live with non- Jews.\\n\\nThat\\'s why the Zionists decided that Zion must be Gentile-rein.\\nWhat?! They didn\\'t?! You mean to tell me that the early Zionists\\nactually granted CITIZENSHIP in the Jewish state to Christian and\\nMuslim people, too? \\n\\nIt seems, Elias, that your \"first point to note\" is wrong, so the rest\\nof your posting isn\\'t worth much, either.\\n\\nTa ta...\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: rws@cs.arizona.edu (Ronald W. Schmidt)\\nSubject: outlining of spline surface\\nKeywords: spline rasterization\\nLines: 38\\n\\n\\n\\tAbout a year ago I started work on a problem that appeared to\\nbe very simple and turned out to be quite difficult. I am wondering if\\nanyone on the net has seen this problem and (hopefully) some published \\nsolutions to it.\\n\\n\\tThe problem is to draw an outline of a surface defined by two\\nroughly parallel cubic splines. For inputs the problem essentially\\nstarts with two sets of points where each set of points is on the \\nedge of an object which we treat as two dimensional, i.e. only extant\\nbetween the edges, but which exists in three dimensional space. To draw \\nthe object we \\n\\n1) fit a cubic spline through the points. Each spline is effectively\\n\\tcomputed as a sequence of line segments approximating the\\n curve. Each spline has an equal number of segments. We assume\\n\\tthat the nth segment along each spline is roughly, but not\\n\\texactly, the same distance along each spline by any reasonable\\n\\tmeasure.\\n2) Take each segment (n) along each spline and match it to the nth segment\\n\\tof the opposing spline. Use the pair of segments to form two\\n\\ttriangles which will be filled in to color the surface.\\n3) Depth sort the triangles\\n4) Take each triangle in sorted order, project onto a 2D pixmap, draw\\n\\tand color the triangle. Take the edge of the triangle that is\\n\\talong the edge of the surface and draw a line along that edge\\n\\tcolored with a special \"edge color\"\\n\\n\\tIt is the edge coloring in step 4 that is at the heart of the\\nproblem. The idea is to effectively outline the edge of the surface.\\nThe net result however generally has lots of breaks and gaps in\\nthe edge of the surface. The reasons for this are fairly complicated.\\nThey involve both rasterization problems and problems resulting\\nfrom the projecting the splines. If anything about this problem\\nsounds familiar we would appreciate knowing about other work in this\\narea.\\n\\n-Thanks\\n',\n", - " 'From: daviss@sweetpea.jsc.nasa.gov (S.F. Davis)\\nSubject: Re: japanese moon landing/temporary orbit\\nOrganization: NSPC\\nLines: 46\\n\\nIn article , pgf@srl03.cacs.usl.edu (Phil G. Fraering) writes:\\n|> rls@uihepa.hep.uiuc.edu (Ray Swartz (Oh, that guy again)) writes:\\n|> \\n|> >The gravity maneuvering that was used was to exploit \\'fuzzy regions\\'. These\\n|> >are described by the inventor as exploiting the second-order perturbations in a\\n|> >three body system. The probe was launched into this region for the\\n|> >earth-moon-sun system, where the perturbations affected it in such a way as to\\n|> >allow it to go into lunar orbit without large expenditures of fuel to slow\\n|> >down. The idea is that \\'natural objects sometimes get captured without\\n|> >expending fuel, we\\'ll just find the trajectory that makes it possible\". The\\n|> >originator of the technique said that NASA wasn\\'t interested, but that Japan\\n|> >was because their probe was small and couldn\\'t hold a lot of fuel for\\n|> >deceleration.\\n|> \\n|> \\n|> I should probably re-post this with another title, so that\\n|> the guys on the other thread would see that this is a practical\\n|> use of \"temporary orbits...\"\\n|> \\n|> Another possible temporary orbit:\\n|> \\n|> --\\n|> Phil Fraering |\"Seems like every day we find out all sorts of stuff.\\n|> pgf@srl02.cacs.usl.edu|Like how the ancient Mayans had televison.\" Repo Man\\n|> \\n|> \\n\\nIf you are really interested in these orbits and how they are obtained\\nyou should try and find the following paper:\\n\\n Hiroshi Yamakawa, Jun\\'ichiro Kawaguchi, Nobuaki Ishii, \\n and Hiroki Matsuo, \"A Numerical Study of Gravitational Capture\\n Orbit in the Earth-Moon System,\" AAS-92-186, AAS/AIAA Spaceflight\\n Mechanics Meeting, Colorado Springs, Colorado, 1992.\\n\\nThe references included in this paper are quite interesting also and \\ninclude several that are specific to the HITEN mission itself. \\n\\n|--------------------------------- ******** -------------------------|\\n| * _!!!!_ * |\\n| Steven Davis * / \\\\ \\\\ * |\\n| daviss@sweetpea.jsc.nasa.gov * () * | \\n| * \\\\>_db_ jar2e@faraday.clas.Virginia.EDU (Virginia's Gentleman) writes:\\n\\n This post has all the earmarks of a form program, where the user types in\\n a nationality or ethnicity and it fills it in in certain places in the story. \\n If this is true, I condemn it. If it's a fabrication, then the posters have\\n horrible morals and should be despised by everyone on tpm who values truth.\\n\\n Jesse\\n\\nAgreed.\\n\\nHarry.\\n\",\n", - " \"From: amehdi@src.honeywell.com (Hossien Amehdi)\\nSubject: Re: was: Go Hezbollah!!\\nNntp-Posting-Host: tbilisi.src.honeywell.com\\nOrganization: Honeywell Systems & Research Center\\nLines: 25\\n\\nIn article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>amehdi@src.honeywell.com (Hossien Amehdi) writes:\\n>\\n>>You know when Israelis F16 (thanks to General Dynamics) fly high in the sky\\n>>and bomb the hell out of some village in Lebanon, where civilians including\\n>>babies and eldery getting killed, is that plain murder or what?\\n>\\n>If you Arabs wouldn't position guerilla bases in refugee camps, artillery \\n>batteries atop apartment buildings, and munitions dumps in hospitals, maybe\\n>civilians wouldn't get killed. Kinda like Saddam Hussein putting civilians\\n>in a military bunker. \\n>\\n>Ed.\\n\\nWho is the you Arabs here. Since you are replying to my article you\\nare assuming that I am an Arab. Well, I'm not an Arab, but I think you\\nare brain is full of shit if you really believe what you said. The\\nbombardment of civilian and none civilian areas in Lebanon by Israel is\\nvery consistent with its policy of intimidation. That is the only\\npolicy that has been practiced by the so called only democracy in\\nthe middle east!\\n\\nI was merley pointing out that the other side is also suffering.\\nLike I said, I'm not an Arab but if I was, say a Lebanese, you bet\\nI would defende my homeland against any invader by any means.\\n\",\n", - " \"From: healta@saturn.wwc.edu (Tammy R Healy)\\nSubject: Re: some thoughts.\\nKeywords: Dan Bissell\\nLines: 31\\nOrganization: Walla Walla College\\nLines: 31\\n\\nIn article <11820@vice.ICO.TEK.COM> bobbe@vice.ICO.TEK.COM (Robert Beauchaine) writes:\\n>From: bobbe@vice.ICO.TEK.COM (Robert Beauchaine)\\n>Subject: Re: some thoughts.\\n>Keywords: Dan Bissell\\n>Date: 15 Apr 93 18:21:21 GMT\\n>In article bissda@saturn.wwc.edu (DAN LAWRENCE BISSELL) writes:\\n>>\\n>>\\tFirst I want to start right out and say that I'm a Christian. It \\n>>makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n>>lunatic, or the real thing? (I might be a little off on the title, but he \\n>>writes the book. Anyway he was part of an effort to destroy Christianity, \\n>>in the process he became a Christian himself.\\n>\\n> This should be good fun. It's been a while since the group has\\n> had such a ripe opportunity to gut, gill, and fillet some poor\\n> bastard. \\n>\\n> Ah well. Off to get the popcorn...\\n>\\n>/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\/\\\\ \\n>\\n>Bob Beauchaine bobbe@vice.ICO.TEK.COM \\n>\\n>They said that Queens could stay, they blew the Bronx away,\\n>and sank Manhattan out at sea.\\n>\\n>^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\nI hope you're not going to flame him. Please give him the same coutesy you'\\nve given me.\\n\\nTammy\\n\",\n", - " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Freezing and Riding\\nOrganization: University College of Wales, Aberystwyth\\nLines: 14\\nNntp-Posting-Host: 144.124.112.30\\n\\n>every spec of alertness to keep from getting squished, otherwise it's not\\n>only dangerous, it's unpleasant. The same goes for cold and fatigue, as I\\n>once took a half hour nap at a gas station to insure that I would make it\\n\\nYeah, hypothermia is MUCH more detrimemtal to your judgement and reactions\\nthan people realise. I wish I had the patience to stop when I should. One\\nday I'll pay for it....\\n\\nIf you begin to shiver - STOP and warm up thoroughly. If you leave it\\ntill the shivering stops, this doesnt mean you're OK again, it means \\nyou're a danger to yourself and everyone else on the road - your brain\\nand body are working about as fast as a tree grows. You will not realise\\nthis yourself till you hit something. The next stage is passing out. \\nThis usually means falling off.\\n\",\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Sunrise/ sunset times\\nOrganization: Express Access Online Communications USA\\nLines: 18\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1r6f3a$2ai@news.umbc.edu> rouben@math9.math.umbc.edu (Rouben Rostamian) writes:\\n>how the length of the daylight varies with the time of the year.\\n>Experiment with various choices of latitudes and tilt angles.\\n>Compare the behavior of the function at locations above and below\\n>the arctic circle.\\n\\n\\n\\nIf you want to have some fun.\\n\\nPlug the basic formulas into Lotus.\\n\\nUse the spreadsheet auto re-calc, and graphing functions\\nto produce bar graphs based on latitude, tilt and hours of day light avg.\\n\\n\\npat\\n\\n',\n", - " 'From: mathew \\nSubject: Re: The Inimitable Rushdie (Re: An Anecdote about Islam\\nOrganization: Mantis Consultants, Cambridge. UK.\\nX-Newsreader: rusnews v1.01\\nLines: 32\\n\\njaeger@buphy.bu.edu (Gregg Jaeger) writes:\\n> Why would the Rushdie case be particularly legitimate? As I\\'ve said\\n> elsewhere on this issue, Rushdie\\'s actions had effects in Islamic\\n> countries so that it is not so simple to say that he didn\\'t commit\\n> a crime in an Islamic country.\\n\\nActually, it is simple.\\n\\nA person P has committed a crime C in country X if P was within the borders\\nof X at the time when C was committed. It doesn\\'t matter if the physical\\nmanifestation of C is outside X.\\n\\nFor instance, if I hack into NASA\\'s Ames Research Lab and delete all their\\nfiles, I have committed a crime in the United Kingdom. If the US authorities\\nwish to prosecute me under US law rather than UK law, they have no automatic\\nright to do so.\\n\\nThis is why the net authorities in the US tried to put pressure on some sites\\nin Holland. Holland had no anti-cracking legislation, and so it was viewed\\nas a \"hacker haven\" by some US system administrators.\\n\\nSimilarly, a company called Red Hot Television is broadcasting pornographic\\nmaterial which can be received in Britain. If they were broadcasting in\\nBritain, they would be committing a crime. But they are not, they are\\nbroadcasting from Denmark, so the British Government is powerless to do\\nanything about it, in spite of the apparent law-breaking.\\n\\nOf course, I\\'m not a lawyer, so I could be wrong. More confusingly, I could\\nbe right in some countries but not in others...\\n\\n\\nmathew\\n',\n", - " 'From: der10@cus.cam.ac.uk (David Rourke)\\nSubject: xs1100 timing\\nOrganization: U of Cambridge, England\\nLines: 4\\nNntp-Posting-Host: bootes.cus.cam.ac.uk\\n\\nCould some kind soul tell me the advance timing/revs for a 1981 xs1100 special\\n(bought in Canada).\\n\\nthanks.\\n',\n", - " 'From: u7711501@bicmos.ee.nctu.edu.tw (jih-shin ho)\\nSubject: disp135 [0/7]\\nOrganization: National Chiao Tung University\\nX-Newsreader: TIN [version 1.1 PL8]\\nLines: 285\\n\\n\\n\\nI have posted disp135.zip to alt.binaries.pictures.utilities\\n\\n\\n****** You may distribute this program freely for non-commercial use\\n if no fee is gained.\\n****** There is no warranty. The author is not responsible for any\\n damage caused by this program.\\n\\n\\nImportant changes since version 1.30:\\n Fix bugs in file management system (file displaying).\\n Improve file management system (more user-friendly).\\n Fix bug in XPM version 3 reading.\\n Fix bugs in TARGA reading/writng.\\n Fix bug in GEM/IMG reading.\\n Add support for PCX and GEM/IMG writing.\\n Auto-skip macbinary header.\\n\\n\\n(1) Introduction:\\n This program can let you READ, WRITE and DISPLAY images with different\\n formats. It also let you do some special effects(ROTATION, DITHERING ....)\\n on image. Its main purpose is to let you convert image among different\\n formts.\\n Include simple file management system.\\n Support \\'slide show\\'.\\n There is NO LIMIT on image size.\\n Currently this program supports 8, 15, 16, 24 bits display.\\n If you want to use HiColor or TrueColor, you must have VESA driver.\\n If you want to modify video driver, please read section (8).\\n\\n\\n(2) Hardware Requirement:\\n PC 386 or better. MSDOS 3.3 or higher.\\n min amount of ram is 4M bytes(Maybe less memory will also work).\\n (I recommend min 8M bytes for better performance).\\n Hard disk for swapping(virtual memory).\\n\\n The following description is borrowed from DJGPP.\\n\\n Supported Wares:\\n\\n * Up to 128M of extended memory (expanded under VCPI)\\n * Up to 128M of disk space used for swapping\\n * SuperVGA 256-color mode up to 1024x768\\n * 80387\\n * XMS & VDISK memory allocation strategies\\n * VCPI programs, such as QEMM, DESQview, and 386MAX\\n\\n Unsupported:\\n\\n * DPMI\\n * Microsoft Windows\\n\\n Features: 80387 emulator, 32-bit unix-ish environment, flat memory\\n model, SVGA graphics.\\n\\n\\n(3) Installation:\\n Video drivers, emu387 and go32.exe are borrowed from DJGPP.\\n (If you use Western Digital VGA chips, read readme.wd)\\n (This GO32.EXE is a modified version for vesa and is COMPLETELY compatible\\n with original version)\\n+ *** But some people report that this go32.exe is not compatible with\\n+ other DJGPP programs in their system. If you encounter this problem,\\n+ DON\\'T put go32.exe within search path.\\n\\n *** Please read runme.bat for how to run this program.\\n\\n If you choose xxxxx.grn as video driver, add \\'nc 256\\' to environment\\n GO32.\\n\\n For example, go32=driver x:/xxxxx/xxxxx.grn nc 256\\n\\n If you don\\'t have 80x87, add \\'emu x:/xxxxx/emu387\\' to environment GO32.\\n\\n For example, go32=driver x:/xxxxx/xxxxx.grd emu x:/xxxxx/emu387\\n\\n **** Notes: 1. I only test tr8900.grn, et4000.grn and vesa.grn.\\n Other drivers are not tested.\\n 2. I have modified et4000.grn to support 8, 15, 16, 24 bits\\n display. You don\\'t need to use vesa driver.\\n If et4000.grn doesn\\'t work, please try vesa.grn.\\n 3. For those who want to use HiColor or TrueColor display,\\n please use vesa.grn(except et4000 users).\\n You can find vesa BIOS driver from :\\n wuarchive.wustl.edu: /mirrors/msdos/graphics\\n godzilla.cgl.rmit.oz.au: /kjb/MGL\\n\\n\\n(4) Command Line Switch:\\n\\n+ Usage : display [-d|--display initial_display_type]\\n+ [-s|--sort sort_method]\\n+ [-h|-?]\\n\\n Display type: 8(SVGA,default), 15, 16(HiColor), 24(TrueColor)\\n+ Sort method: \\'name\\', \\'ext\\'\\n\\n\\n(5) Function Key:\\n\\n F2 : Change disk drive\\n\\n+ CTRL-A -- CTRL-Z : change disk drive.\\n\\n F3 : Change filename mask (See match.doc)\\n\\n F4 : Change parameters\\n\\n F5 : Some effects on picture, eg. flip, rotate ....\\n\\n F7 : Make Directory\\n\\n t : Tag file\\n\\n + : Tag group files (See match.doc)\\n\\n T : Tag all files\\n\\n u : Untag file\\n\\n - : Untag group files (See match.doc)\\n\\n U : Untag all files\\n\\n Ins : Change display type (8,15,16,24) in \\'read\\' & \\'screen\\' menu.\\n\\n F6,m,M : Move file(s)\\n\\n F8,d,D : Delete file(s)\\n\\n r,R : Rename file\\n\\n c,C : Copy File(s)\\n\\n z,Z : Display first 10 bytes in Ascii, Hex and Dec modes.\\n\\n+ f,F : Display disk free space.\\n\\n Page Up/Down : Move one page\\n\\n TAB : Change processing target.\\n\\n Arrow keys, Home, End, Page Up, Page Down: Scroll image.\\n Home: Left Most.\\n End: Right Most.\\n Page Up: Top Most.\\n Page Down: Bottom Most.\\n in \\'screen\\' & \\'effect\\' menu :\\n Left,Right arrow: Change display type(8, 15, 16, 24 bits)\\n\\n s,S : Slide Show. ESCAPE to terminate.\\n\\n ALT-X : Quit program without prompting.\\n\\n+ ALT-A : Reread directory.\\n\\n Escape : Abort function and return.\\n\\n\\n(6) Support Format:\\n\\n Read: GIF(.gif), Japan MAG(.mag), Japan PIC(.pic), Sun Raster(.ras),\\n Jpeg(.jpg), XBM(.xbm), Utah RLE(.rle), PBM(.pbm), PGM(.pgm),\\n PPM(.ppm), PM(.pm), PCX(.pcx), Japan MKI(.mki), Tiff(.tif),\\n Targa(.tga), XPM(.xpm), Mac Paint(.mac), GEM/IMG(.img),\\n IFF/ILBM(.lbm), Window BMP(.bmp), QRT ray tracing(.qrt),\\n Mac PICT(.pct), VIS(.vis), PDS(.pds), VIKING(.vik), VICAR(.vic),\\n FITS(.fit), Usenix FACE(.fac).\\n\\n the extensions in () are standard extensions.\\n\\n Write: GIF, Sun Raster, Jpeg, XBM, PBM, PGM, PPM, PM, Tiff, Targa,\\n XPM, Mac Paint, Ascii, Laser Jet, IFF/ILBM, Window BMP,\\n+ Mac PICT, VIS, FITS, FACE, PCX, GEM/IMG.\\n\\n All Read/Write support full color(8 bits), grey scale, b/w dither,\\n and 24 bits image, if allowed for that format.\\n\\n\\n(7) Detail:\\n\\n Initialization:\\n Set default display type to highest display type.\\n Find allowable screen resolution(for .grn video driver only).\\n\\n 1. When you run this program, you will enter \\'read\\' menu. Whthin this\\n menu you can press any function key except F5. If you move or copy\\n files, you will enter \\'write\\' menu. the \\'write\\' menu is much like\\n \\'read\\' menu, but only allow you to change directory.\\n+ The header line in \\'read\\' menu includes \"(d:xx,f:xx,t:xx)\".\\n+ d : display type. f: number of files. t: number of tagged files.\\n pressing SPACE in \\'read\\' menu will let you select which format to use\\n for reading current file.\\n pressing RETURN in \\'read\\' menu will let you reading current file. This\\n program will automatically determine which format this file is.\\n The procedure is: First, check magic number. If fail, check\\n standard extension. Still fail, report error.\\n pressing s or S in \\'read\\' menu will do \\'Slide Show\\'.\\n If delay time is 0, program will wait until you hit a key\\n (except ESCAPE).\\n If any error occurs, program will make a beep.\\n ESCAPE to terminate.\\n pressing Ins in \\'read\\' menu will change display type.\\n pressing ALT-X in \\'read\\' menu will quit program without prompting.\\n\\n 2. Once image file is successfully read, you will enter \\'screen\\' menu.\\n Within this menu F5 is turn on. You can do special effect on image.\\n pressing RETURN: show image.\\n in graphic mode, press RETURN, SPACE or ESCAPE to return to text\\n mode.\\n pressing TAB: change processing target. This program allows you to do\\n special effects on 8-bit or 24-bit image.\\n pressing Left,Right arrow: change display type. 8, 15, 16, 24 bits.\\n pressing SPACE: save current image to file.\\n B/W Dither: save as black/white image(1 bit).\\n Grey Scale: save as grey image(8 bits).\\n Full Color: save as color image(8 bits).\\n True Color: save as 24-bit image.\\n\\n This program will ask you some questions if you want to write image\\n to file. Some questions are format-dependent. Finally This program\\n will prompt you a filename. If you want to save file under another\\n directory other than current directory, please press SPACE. after\\n pressing SPACE, you will enter \\'write2\\' menu. You can change\\n directory to what you want. Then,\\n\\n pressing SPACE: this program will prompt you \\'original\\' filename.\\n pressing RETURN: this program will prompt you \\'selected\\' filename\\n (filename under bar).\\n\\n\\n 3. This program supports 8, 15, 16, 24 bits display.\\n\\n 4. This Program is MEMORY GREEDY. If you don\\'t have enough memory,\\n the performance is poor.\\n\\n 5. If you want to save 8 bits image :\\n try GIF then TIFF(LZW) then TARGA then Sun Raster then BMP then ...\\n\\n If you want to save 24 bits image (lossless):\\n try TIFF(LZW) or TARGA or ILBM or Sun Raster\\n (No one is better for true 24bits image)\\n\\n 6. I recommend Jpeg for storing 24 bits images, even 8 bits images.\\n\\n 7. Not all subroutines are fully tested\\n\\n 8. This document is not well written. If you have any PROBLEM, SUGGESTION,\\n COMMENT about this program,\\n Please send to u7711501@bicmos.ee.nctu.edu.tw (140.113.11.13).\\n I need your suggestion to improve this program.\\n (There is NO anonymous ftp on this site)\\n\\n\\n(8) Tech. information:\\n Program (user interface and some subroutines) written by Jih-Shin Ho.\\n Some subroutines are borrowed from XV(2.21) and PBMPLUS(dec 91).\\n Tiff(V3.2) and Jpeg(V4) reading/writing are through public domain\\n libraries.\\n Compiled with DJGPP.\\n You can get whole DJGPP package from SIMTEL20 or mirror sites.\\n For example, wuarchive.wustl.edu: /mirrors/msdos/djgpp\\n\\n\\n(9) For Thoese who want to modify video driver:\\n 1. get GRX source code from SIMTEL20 or mirror sites.\\n 2. For HiColor and TrueColor:\\n 15 bits : # of colors is set to 32768.\\n 16 bits : # of colors is set to 0xc010.\\n 24 bits : # of colors is set to 0xc018.\\n\\n\\nAcknowledgment:\\n I would like to thank the authors of XV and PBMPLUS for their permission\\n to let me use their subroutines.\\n Also I will thank the authors who write Tiff and Jpeg libraries.\\n Thank DJ. Without DJGPP I can\\'t do any thing on PC.\\n\\n\\n Jih-Shin Ho\\n u7711501@bicmos.ee.nctu.edu.tw\\n',\n", - " 'From: stssdxb@st.unocal.com (Dorin Baru)\\nSubject: Re: No land for peace - No negotiatians\\nOrganization: Unocal Corporation\\nLines: 52\\n\\n\\n\\nhasan@McRCIM.McGill.EDU writes:\\n\\n\\n>Ok. I donot know why there are israeli voices against negotiations. However,\\n>i would guess that is because they refuse giving back a land for those who\\n>have the right for it.\\n\\nSounds like wishful guessing.\\n\\n\\n>As for the Arabian and Palestinean voices that are against the\\n>current negotiations and the so-called peace process, they\\n>are not against peace per se, but rather for their well-founded predictions\\n>that Israel would NOT give an inch of the West bank (and most probably the same\\n>for Golan Heights) back to the Arabs. An 18 months of \"negotiations\" in Madrid,\\n>and Washington proved these predictions. Now many will jump on me saying why\\n>are you blaming israelis for no-result negotiations.\\n>I would say why would the Arabs stall the negotiations, what do they have to\\n>loose ?\\n\\n\\n\\'So-called\\' ? What do you mean ? How would you see the peace process?\\n\\nSo you say palestineans do not negociate because of \\'well-founded\\' predictions ?\\nHow do you know that they are \\'well founded\\' if you do not test them at the \\ntable ? 18 months did not prove anything, but it\\'s always the other side at \\nfault, right ?\\n\\nWhy ? I do not know why, but if, let\\'s say, the Palestineans (some of them) want\\nALL ISRAEL, and these are known not to be accepted terms by israelis.\\n\\nOr, maybe they (palestinenans) are not yet ready for statehood ?\\n\\nOr, maybe there is too much politics within the palestinean leadership, too many\\nfractions aso ?\\n\\nI am not saying that one of these reasons is indeed the real one, but any of\\nthese could make arabs stall the negotiations.\\n\\n>Arabs feel that the current \"negotiations\" is ONLY for legitimizing the current\\n>status-quo and for opening the doors of the Arab markets for israeli trade and\\n>\"oranges\". That is simply unacceptable and would be revoked.\\n \\nI like California oranges. And the feelings may get sharper at the table.\\n\\n\\n\\nRegards,\\n\\nDorin\\n',\n", - " 'From: robinson@cogsci.Berkeley.EDU (Michael Robinson)\\nSubject: Krypto cables (was Re: Cobra Locks)\\nOrganization: Institute of Cognitive Studies, U.C. Berkeley\\nLines: 51\\nDistribution: usa\\nNNTP-Posting-Host: cogsci.berkeley.edu\\n\\nIn article <1993Apr20.184432.21485@research.nj.nec.com> behanna@syl.nj.nec.com (Chris BeHanna) writes:\\n>\\tFor the same money, you can get a Kryptonite cable lock, which is\\n>anywhere from 1/2\" to 7/8\" thick steel cable (looks like steel rope), shielded\\n>in a flexible covering to protect your bike\\'s finish, and has a barrel-type\\n>locking mechanism. I don\\'t know if it\\'s adjustable, but my source says it\\'s\\n>more difficult to pick than most locks, and the cable tends to squish flat\\n>in bolt-cutter jaws rather than shear (5/8\" model).\\n>\\n>\\tFYI, I\\'ll be getting a Krypto cable next paycheck.\\n\\nA word of warning, though: Kryptonite also sells almost useless cable\\nlocks under the Kryptonite name.\\n\\nWhen I obtained my second motorcycle, I migrated one of my Kryptonite \\nU-locks from my bicycle to the new bike. I then went out shopping for\\na new lock for the bicycle.\\n\\nFor about the same money ($20) I had the choice of a Kryptonite cable lock\\n(advantages: lock front and back wheels on bicycle and keep them both,\\nKryptonite name) or a cheesy no-name U-lock (advantages: real steel).\\nI chose the Kryptonite cable. After less than a week, I took it back in\\ndisgust and exchanged it for the cheesy no-name U-lock.\\n\\nFirst, the Krypto cable I bought is not made by Kryptonite, is not covered by\\nthe Kryptonite guarantee, and doesn\\'t even approach Kryptonite standards of\\nquality and quality assurance. It is just some generic made-in-Taiwan cable\\nlock with the Kryptonite name on it.\\n\\nSecondly, the latch engagement mechanism is something of a joke. I\\ndon\\'t know if mine was a particularly poor example, but it was often\\nquite frustrating to get the latch to positively engage, and sometimes\\nit would seem to engage, only to fall open when I went to unlock it.\\n\\nThirdly, the lock has a little plastic door on the keyway which serves\\nthe sole purpose of frustrating any attempt to insert the key in the \\ndark. I didn\\'t try it (obviously), but I have my doubts that the \\nlock mechanism would stand up to an \"insert screwdriver and TORQUE\"\\nattack.\\n\\nFourthly, the cable was not, in my opinion, of sufficient thickness to \\ndeter theft (for my piece of crap bicycle, that is). All cables suffer the\\nweakness that they can be cut a few strands at a time. If you are patient\\nyou can cut cables with fingernail clippers. Aviation snips would go \\nthrough the cable in well under a minute.\\n\\n\\n\\n-- \\n ----------------------------------------------------------------------------\\n Michael Robinson UUCP: ucbvax!cogsci!robinson\\n INTERNET: robinson@cogsci.berkeley.edu\\n',\n", - " 'From: nsmca@aurora.alaska.edu\\nSubject: Re: DC-X: Vehicle Nears Flight Test\\nArticle-I.D.: aurora.1993Apr5.191011.1\\nOrganization: University of Alaska Fairbanks\\nLines: 53\\nNntp-Posting-Host: acad3.alaska.edu\\n\\nIn article , henry@zoo.toronto.edu (Henry Spencer) writes:\\n> In article <2736@snap> paj@uk.co.gec-mrc (Paul Johnson) writes:\\n>>This bit interests me. How much automatic control is there? Is it\\n>>purely autonomous or is there some degree of ground control?\\n> \\n> The \"stick-and-rudder man\" is always the onboard computer. The computer\\n> normally gets its orders from a stored program, but they can be overridden\\n> from the ground.\\n> \\n>>How is\\n>>the transition from aerodynamic flight (if thats what it is) to hover\\n>>accomplished? This is the really new part...\\n> \\n> It\\'s also one of the tricky parts. There are four different ideas, and\\n> DC-X will probably end up trying all of them. (This is from talking to\\n> Mitch Burnside Clapp, who\\'s one of the DC-X test pilots, at Making Orbit.)\\n> \\n> (1) Pop a drogue chute from the nose, light the engines once the thing\\n> \\tstabilizes base-first. Simple and reliable. Heavy shock loads\\n> \\ton an area of structure that doesn\\'t otherwise carry major loads.\\n> \\tNeeds a door in the \"hot\" part of the structure, a door whose\\n> \\toperation is mission-critical.\\n> \\n> (2) Switch off pitch stability -- the DC is aerodynamically unstable at\\n> \\tsubsonic speeds -- wait for it to flip, and catch it at 180\\n> \\tdegrees, then light engines. A bit scary.\\n> \\n> (3) Light the engines and use thrust vectoring to push the tail around.\\n> \\tProbably the preferred method in the long run. Tricky because\\n> \\tof the fuel-feed plumbing: the fuel will start off in the tops\\n> \\tof the tanks, then slop down to the bottoms during the flip.\\n> \\tKeeping the engines properly fed will be complicated.\\n> \\n> (4) Build up speed in a dive, then pull up hard (losing a lot of speed,\\n> \\tthis thing\\'s L/D is not that great) until it\\'s headed up and\\n> \\tthe vertical velocity drops to zero, at which point it starts\\n> \\tto fall tail-first. Light engines. Also a bit scary, and you\\n> \\tprobably don\\'t have enough altitude left to try again.\\n> -- \\n> All work is one man\\'s work. | Henry Spencer @ U of Toronto Zoology\\n> - Kipling | henry@zoo.toronto.edu utzoo!henry\\n\\nSince the DC-X is to take off horizontal, why not land that way??\\nWhy do the Martian Landing thing.. Or am I missing something.. Don\\'t know to\\nmuch about DC-X and such.. (overly obvious?).\\n\\nWhy not just fall to earth like the russian crafts?? Parachute in then...\\n\\n==\\nMichael Adams, nsmca@acad3.alaska.edu -- I\\'m not high, just jacked\\n\\nPlease enlighten me... Ignorance is easy to correct. make a mistake and\\neveryone will let you know you messed up..\\n',\n", - " \"From: alanf@eng.tridom.com (Alan Fleming)\\nSubject: Re: New to Motorcycles...\\nNntp-Posting-Host: tigger.eng.tridom.com\\nReply-To: alanf@eng.tridom.com (Alan Fleming)\\nOrganization: AT&T Tridom, Engineering\\nLines: 22\\n\\nIn article <1993Apr20.163315.8876@adobe.com>, cjackson@adobe.com (Curtis Jackson) writes:\\n|> In article <1993Apr20.131800.16136@alw.nih.gov> gregh@niagara.dcrt.nih.gov (Gregory Humphreys) writes:\\n> }1) I only have about $1200-1300 to work with, so that would have \\n> }to cover everything (bike, helmet, anything else that I'm too \\n> }ignorant to know I need to buy)\\n> \\n> The following numbers are approximate, and will no doubt get me flamed:\\n> \\n> Helmet (new, but cheap)\\t\\t\\t\\t\\t$100\\n> Jacket (used or very cheap)\\t\\t\\t\\t$100\\n> Gloves (nothing special)\\t\\t\\t\\t$ 20\\n> Motorcycle Safety Foundation riding course (a must!)\\t$140\\n ^^^\\nWow! Courses in Georgia are much cheaper. $85 for both.\\n>\\n\\nThe list looks good, but I'd also add:\\n Heavy Boots (work, hiking, combat, or similar) $45\\n\\nThink Peace.\\n-- Alan (alanf@eng.tridom.com)\\nKotBBBB (1988 GSXR1100J) AMA# 634578 DOD# 4210 PGP key available\\n\",\n", - " \"From: astein@nysernet.org (Alan Stein)\\nSubject: Re: was: Go Hezbollah!\\nOrganization: NYSERNet, Inc.\\nLines: 21\\n\\nhernlem@chess.ncsu.edu (Brad Hernlem) writes:\\n\\n>Tell me Tim, what are these guerillas doing wrong? Assuming that they are using\\n>civilians for cover, are they not killing SOLDIERS in THEIR country?\\n\\nSo, it's okay to use civilians for cover if you're attacking soldiers\\nin your country. (Of course, many of those attacking claim that they\\naren't Lebanese, so it's not their country.)\\n\\nGot it. I think. Hmm. This is confusing.\\n\\nCould you perhaps repeat your rules explaining exactly when it is\\npermissible to use civilians as shields? Also please explain under\\nwhat conditions it is permissible for soldiers to defend themselves.\\nAlso please explain the particular rules that make it okay for\\nterrorists to launch missiles from Lebanon against Israeli civilians,\\nbut not okay for the Israelis to try to defend themselves against\\nthose missiles.\\n\\n-- \\nAlan H. Stein astein@israel.nysernet.org\\n\",\n", - " 'From: zyeh@caspian.usc.edu (zhenghao yeh)\\nSubject: Ellipse Again\\nOrganization: University of Southern California, Los Angeles, CA\\nLines: 39\\nDistribution: world\\nNNTP-Posting-Host: caspian.usc.edu\\nKeywords: ellipse\\n\\n\\nHi! Everyone,\\n\\nBecause no one has touched the problem I posted last week, I guess\\nmy question was not so clear. Now I\\'d like to describe it in detail:\\n\\nThe offset of an ellipse is the locus of the center of a circle which\\nrolls on the ellipse. In other words, the distance between the ellipse\\nand its offset is same everywhere.\\n\\nThis problem comes from the geometric measurement when a probe is used.\\nThe tip of the probe is a ball and the computer just outputs the\\npositions of the ball\\'s center. Is the offset of an ellipse still\\nan ellipse? The answer is no! Ironically, DMIS - an American Indutrial\\nStandard says it is ellipse. So almost all the software which was\\nimplemented on the base of DMIS was wrong. The software was also sold\\ninternationaly. Imagine, how many people have or will suffer from this bug!!!\\nHow many qualified parts with ellipse were/will be discarded? And most\\nimportantly, how many defective parts with ellipse are/will be used?\\n\\nI was employed as a consultant by a company in Los Angeles last year\\nto specially solve this problem. I spent two months on analysis of this\\nproblem and six months on programming. Now my solution (nonlinear)\\nis not ideal because I can only reconstruct an ellipse from its entire\\nor half offset. It is very difficult to find the original ellipse from\\na quarter or a segment of its offset because the method I used is not\\nanalytical. I am now wondering if I didn\\'t touch the base and make things\\ncomplicated. Please give me a hint.\\n\\nI know you may argue this is not a CG problem. You are right, it is not.\\nHowever, so many people involved in the problem \"sphere from 4 poits\".\\nWhy not an ellipse? And why not its offset?\\n\\nPlease post here and let the others share our interests \\n(I got several emails from our netters, they said they need the\\nsummary of the answers).\\n\\nYeh\\nUSC\\n',\n", - " \"From: avi@duteinh.et.tudelft.nl (Avi Cohen Stuart)\\nSubject: Re: was: Go Hezbollah!!\\nOriginator: avi@duteinh.et.tudelft.nl\\nNntp-Posting-Host: duteinh.et.tudelft.nl\\nOrganization: Delft University of Technology, Dept. of Electrical Engineering\\nLines: 35\\n\\nFrom article <1993Apr15.031349.21824@src.honeywell.com>, by amehdi@src.honeywell.com (Hossien Amehdi):\\n> In article eshneken@ux4.cso.uiuc.edu (Edward A Shnekendorf) writes:\\n>>amehdi@src.honeywell.com (Hossien Amehdi) writes:\\n>>\\n>>>You know when Israelis F16 (thanks to General Dynamics) fly high in the sky\\n>>>and bomb the hell out of some village in Lebanon, where civilians including\\n>>>babies and eldery getting killed, is that plain murder or what?\\n>>\\n>>If you Arabs wouldn't position guerilla bases in refugee camps, artillery \\n>>batteries atop apartment buildings, and munitions dumps in hospitals, maybe\\n>>civilians wouldn't get killed. Kinda like Saddam Hussein putting civilians\\n>>in a military bunker. \\n>>\\n>>Ed.\\n> \\n> Who is the you Arabs here. Since you are replying to my article you\\n> are assuming that I am an Arab. Well, I'm not an Arab, but I think you\\n> are brain is full of shit if you really believe what you said. The\\n> bombardment of civilian and none civilian areas in Lebanon by Israel is\\n> very consistent with its policy of intimidation. That is the only\\n> policy that has been practiced by the so called only democracy in\\n> the middle east!\\n> \\n> I was merley pointing out that the other side is also suffering.\\n> Like I said, I'm not an Arab but if I was, say a Lebanese, you bet\\n> I would defende my homeland against any invader by any means.\\n\\nTell me then, would you also fight the Syrians in Lebanon?\\n\\nOh, no of course not. They would be your brothers and you would\\ntell that you invited them. \\n\\nAvi.\\n\\n\\n\",\n", - " \"From: ednclark@kraken.itc.gu.edu.au (Jeffrey Clark)\\nSubject: Re: mathew writes:\\n\\n>>>Perhaps we shouldn't imprision people if we could watch them closely\\n>>>instead. The cost would probably be similar, especially if we just\\n>>>implanted some sort of electronic device.\\n>>Why wait until they commit the crime? Why not implant such devices in\\n>>potential criminals like Communists and atheists?\\n\\n>Sorry, I don't follow your reasoning. You are proposing to punish people\\n>*before* they commit a crime? What justification do you have for this?\\n\\nNo, Mathew is proposing a public defence mechanism, not treating the\\nelectronic device as an impropriety on the wearer. What he is saying is that\\nthe next step beyond what you propose is the permanent bugging of potential\\ncriminals. This may not, on the surface, sound like a bad thing, but who\\ndefines what a potential criminal is? If the government of the day decides\\nthat being a member of an opposition party makes you a potential criminal\\nthen openly defying the government becomes a lethal practice, this is not\\nconducive to a free society.\\n\\nMathew is saying that implanting electronic surveillance devices upon people\\nis an impropriety upon that person, regardless of what type of crime or\\nwhat chance of recidivism there is. Basically you see the criminal justice\\nsystem as a punishment for the offender and possibly, therefore, a deterrant\\nto future offenders. Mathew sees it, most probably, as a means of\\nrehabilitation for the offender. So he was being cynical at you, okay?\\n\\nJeff.\\n\\n\",\n", - " 'From: full_gl@pts.mot.com (Glen Fullmer)\\nSubject: Needed: Plotting package that does...\\nNntp-Posting-Host: dolphin\\nReply-To: glen_fullmer@pts.mot.com\\nOrganization: Paging and Wireless Data Group, Motorola, Inc.\\nComments: Hyperbole mail buttons accepted, v3.07.\\nLines: 27\\n\\nLooking for a graphics/CAD/or-whatever package on a X-Unix box that will\\ntake a file with records like:\\n\\nn a b p\\n\\nwhere n = a count - integer \\n a = entity a - string\\n b = entity b - string\\n p = type - string\\n\\nand produce a networked graph with nodes represented with boxes or circles\\nand the vertices represented by lines and the width of the line determined by\\nn. There would be a different line type for each type of vertice. The boxes\\nneed to be identified with the entity\\'s name. The number of entities < 1000\\nand vertices < 100000. It would be nice if the tool minimized line\\ncross-overs and did a good job of layout. ;-)\\n\\n I have looked in the FAQ for comp.graphics and gnuplot without success. Any\\nideas would be appreciated?\\n\\nThanks,\\n--\\nGlen Fullmer, glen_fullmer@pts.mot.com, (407)364-3296\\n*******************************************************************************\\n* \"For a successful technology, reality must take precedence *\\n* over public relations, for Nature cannot be fooled.\" - Richard P. Feynman *\\n*******************************************************************************\\n',\n", - " 'From: ahmeda@McRCIM.McGill.EDU (Ahmed Abu-Abed)\\nSubject: Re: Final Solution in Palestine ?\\nOriginator: ahmeda@celeborn.mcrcim.mcgill.edu\\nNntp-Posting-Host: celeborn.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 59\\n\\n\\nIn article , hm@cs.brown.edu (Harry Mamaysky) writes:\\n|> In article <1483500354@igc.apc.org> Center for Policy Research writes:\\n|> \\n|> Final Solution for the Gaza ghetto ?\\n|> ------------------------------------\\n|> \\n|> While Israeli Jews fete the uprising of the Warsaw ghetto, they\\n|> repress by violent means the uprising of the Gaza ghetto and\\n|> attempt to starve the Gazans.\\n|> \\n|> [...]\\n|> \\n|> The Jews in the Warsaw ghetto were fighting to keep themselves and\\n|> their families from being sent to Nazi gas chambers. Groups like Hamas\\n|> and the Islamic Jihad fight with the expressed purpose of driving all\\n|> Jews into the sea. Perhaps, we should persuade Jewish people to help\\n ^^^^^^^^^^^^^^^^^^\\n|> these wnderful \"freedom fighters\" attain this ultimate goal.\\n|> \\n|> Maybe the \"freedom fighters\" will choose to spare the co-operative Jews.\\n|> Is that what you are counting on, Elias - the pity of murderers.\\n|> \\n|> You say your mother was Jewish. How ashamed she must be of her son. I\\n|> am sorry, Mrs. Davidsson.\\n|> \\n|> Harry.\\n\\nO.K., its my turn:\\n\\n DRIVING THE JEWS INTO THE SEA ?!\\n\\nI am sick and tired of this \\'DRIVING THE JEWS INTO THE SEA\\' sentance attributed\\nto Islamic movements and the PLO; it simply can\\'t be proven as part of their\\nplan !\\n\\n(Pro Israeli activists repeat it like parrots without checking its authenticity\\nsince it was coined by Bnai Brith)\\n\\nWhat Hamas and Islamic Jihad believe in, as far as I can get from the Arab media,\\nis an Islamic state that protects the rights of all its inhabitants under Koranic\\nLaw. This would be a reversal of the 1948 situation in which the Jews in\\nPalestine took control of the land and its (mostly Muslim) inhabitants.\\n\\nHowever, whoever committed crimes against humanity (torture, blowing up their\\nhomes, murders,...) must be treated and tried as a war criminal. The political\\nthought of these movements shows that a freedom of choice will be given to the\\nJews in living under the new law or leaving to the destintion of their choice.\\n\\nAs for the PLO, I am at a loss to explain what is going inside Arafat\\'s mind.\\n\\nAlthough their political thinking seems far fetched with Israel acting as a true\\nsuper-power in the region, the Islamic movements are using the same weapon the\\nJews used to establish their state : Religion.\\n\\n\\nAhmed.\\n\\n',\n", - " 'From: henry@zoo.toronto.edu (Henry Spencer)\\nSubject: Re: TRUE \"GLOBE\", Who makes it?\\nOrganization: U of Toronto Zoology\\nLines: 12\\n\\nIn article bill@xpresso.UUCP (Bill Vance) writes:\\n>It has been known for quite a while that the earth is actually more pear\\n>shaped than globular/spherical. Does anyone make a \"globe\" that is accurate\\n>as to actual shape, landmass configuration/Long/Lat lines etc.?\\n\\nI don\\'t think you\\'re going to be able to see the differences from a sphere\\nunless they are greatly exaggerated. Even the equatorial bulge is only\\nabout 1 part in 300 -- you\\'d never notice a 1mm error in a 30cm globe --\\nand the other deviations from spherical shape are much smaller.\\n-- \\nSVR4 resembles a high-speed collision | Henry Spencer @ U of Toronto Zoology\\nbetween SVR3 and SunOS. - Dick Dunn | henry@zoo.toronto.edu utzoo!henry\\n',\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Space Advertising (2 of 2)\\nOrganization: University of Illinois at Urbana\\nLines: 24\\n\\nWales.Larrison@ofa123.fidonet.org writes:\\n\\n>the \"Environmental\\n>Billboard\" is a large inflatable outer support structure of up to\\n>804x1609 meters. Advertising is carried by a mylar reflective area,\\n>deployed by the inflatable \\'frame\\'.\\n> To help sell the concept, the spacecraft responsible for\\n>maintaining the billboard on orbit will carry \"ozone reading\\n>sensors\" to \"continuously monitor the condition of the Earth\\'s\\n>delicate protective ozone layer,\" according to Mike Lawson, head of\\n>SMI. Furthermore, the inflatable billboard has reached its minimum\\n>exposure of 30 days it will be released to re-enter the Earth\\'s\\n>atmosphere. According to IMI, \"as the biodegradable material burns,\\n>it will release ozone-building components that will literally\\n>replenish the ozone layer.\"\\n ^^^^^^^^^ ^^^ ^^^^^ ^^^^^\\n\\n Can we assume that this guy studied advertising and not chemistry? Granted \\nit probably a great advertising gimic, but it doesn\\'t sound at all practical.\\n\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n\\t\\t \"Find a way or make one.\"\\n\\t -attributed to Hannibal\\n',\n", - " \"From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: Minority Abuses in Greece.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 201\\n\\nIn article mpoly@panix.com (Michael S. Polymenakos) writes:\\n\\n> Well, ZUMABOT claims just the opposite: That Greeks are not allowing\\n>Turks to exit the country. Now, explain this: The number of Turks in\\n>Thrace has steadily risen from 50,000 in 23 to 80,000, while the Greeks of\\n\\nDr. Goebels thought that a lie repeated enough times could finally \\nbe believed. I have been observing that 'Poly' has been practicing \\nGoebels' rule quite loyally. 'Poly's audience is mostly made of Greeks \\nwho are not allowed to listen to Turkish news. However, in today's \\ninformed world Greek propagandists can only fool themselves. For \\ninstance, those who lived in 1974 will remember the TV news they \\nwatched and the newspapers they read and the younger generation can \\nread the American newspapers of July and August 1974 to find out what \\nreally happened. \\n\\nThere are in Turkiye the Greek Hospital, The Greek Girls' Lycee \\nAlumni Association, the Principo Islands Greek Benevolent Society, \\nthe Greek Medical Foundation, the Principo Greek Orphanage Foundation, \\nthe Yovakimion Greek Girls' Lycee Foundation, and the Fener Greek \\nMen's Lycee Foundation. \\n\\nAs for Greece, the longstanding use of the adjective 'Turkish' \\nin titles and on signboards is prohibited. The Greek courts \\nhave ordered the closure of the Turkish Teachers' Association, \\nthe Komotini Turkish Youth Association and the Ksanti \\nTurkish Association on grounds that there are no Turks\\nin Western Thrace. Such community associations had been \\nactive until 1984. But they were first told to remove\\nthe word 'Turkish' on their buildings and on their official\\npapers and then eventually close down. This is also the \\nfinal verdict (November 4, 1987) of the Greek High Court.\\n\\nIn the city of Komotini, a former Greek Parliamentarian of Turkish\\nparentage, was sentenced recently to 18 months of imprisonment\\nwith no right to appeal, just for saying outloud that he was\\nof Turkish descent. This duly-elected ethnic Turkish official\\nwas also deprived of his political rights for a period of three \\nyears. Each one of these barbaric acts seems to be none other than \\na vehicle, used by the Greek governments, to cover-up their inferiority \\ncomplex they display, vis-a-vis, the people of Turkiye. \\n\\nThe Agreement on the Exchange of Minorities uses the term 'Turks,' \\nwhich demonstrates what is actually meant by the previous reference \\nto 'Muslims.' The fact that the Greek governments also mention the \\nexistence of a few thousand non-Turkish Muslims does not change the \\nessential reality that there lives in Western Thrace a much bigger \\nTurkish minority. The 'Pomaks' are also a Muslim people, whom all the \\nthree nations (Bulgarians, Turks, and Greeks) consider as part of \\nthemselves. Do you know how the Muslim Turkish minority was organized \\naccording to the agreements? Poor 'Poly.'\\n\\nIt also proves that the Turkish people are trapped in Greece \\nand the Greek people are free to settle anywhere in the world.\\nThe Greek authorities deny even the existence of a Turkish\\nminority. They pursue the same denial in connection with \\nthe Macedonians of Greece. Talk about oppression. In addition,\\nin 1980 the 'democratic' Greek Parliament passed Law No. 1091,\\nvirtually taking over the administration of the vakiflar and\\nother charitable trusts. They have ceased to be self-supporting\\nreligious and cultural entities. Talk about fascism. The Greek \\ngovernments are attempting to appoint the muftus, irrespective\\nof the will of the Turkish minority, as state official. Although\\nthe Orthodox Church has full authority in similar matters in\\nGreece, the Muslim Turkish minority will have no say in electing\\nits religious leaders. Talk about democracy.\\n\\nThe government of Greece has recently destroyed an Islamic \\nconvention in Komotini. Such destruction, which reflects an \\nattitude against the Muslim Turkish cultural heritage, is a \\nviolation of the Lausanne Convention as well as the 'so-called' \\nGreek Constitution, which is supposed to guarantee the protection \\nof historical monuments. \\n\\nThe government of Greece, on the other hand, is building new \\nchurches in remote villages as a complementary step toward \\nHellenizing the region.\\n\\nAnd you pondered. Sidiropoulos, the president of the Macedonian Human \\nRights Committee, became the latest victim of a tactic long used by \\nthe Greeks to silence critics of policies of forced assimilation \\nof the Macedonian minority. A forestry official by occupation, \\nSidiropoulos has been sent to 'internal exile' on the island of \\nKefalonia, hundreds of kilometers away from his native Florina. \\nHis employer, the Florina City Council, asked him to depart in \\n24 hours. The Greek authorities are trying to punish him for his \\ninvolvement in Copenhagen. He returned to Florina by his own choice \\nand remains without a job. \\n\\nHelsinki Watch, a well-known Human Rights group, had been investigating \\nthe plight of the Turkish Minority in Greece. In August 1990, their \\nfindings were published in a report titled \\n\\n 'Destroying Ethnic Identity: Turks of Greece.'\\n\\nThe report confirmed gross violations of the Human Rights of the \\nTurkish minority by the Greek authorities. It says for instance, \\nthe Greek government recently destroyed an Islamic convent in \\nKomotini. Such destruction, which reflects an attitude against \\nthe Muslim Turkish cultural heritage, is a violation of the \\nLausanne Convention. \\n\\nThe Turkish cemeteries in the village of Vafeika and in Pinarlik\\nwere attacked, and tombstones were broken. The cemetery in\\nKarotas was razed by bulldozers.\\n\\nShall I go on? Why not? The people of Turkiye are not going \\nto take human rights lessons from the Greek Government. The \\ndiscussion of human rights violations in Greece does not \\nstop at the Greek frontier. In several following articles \\nI shall dwell on and expose the Greek treatment of Turks\\nin Western Thrace and the Aegean Macedonians.\\n\\nIt has been reported that the Greek Cypriot administration \\nhas an intense desire for arms and that Greece has made \\nplans to supply it with the tanks and armored vehicles it \\nhas to destroy in accordance with the agreement reached on \\nconventional arms reductions in Europe. Meanwhile, Greek \\nand Greek Cypriot officials are reported to have planned \\nto take ostentatious measures aimed at camouflaging the \\ntransfer of these tanks and armored vehicles to southern \\nCyprus, a process that will conflict with the spirit of \\nthe agreement on conventional arms reduction in Europe.\\n\\nAn acceptable method may certainly be found when there\\nis a will. But we know of various kinds of violent\\nbehaviors ranging from physical attacks to the burning\\nof buildings. The rugs at the Amfia village mosque were \\ndragged out to the front of the building and burnt there. \\nShots were fired on the mosque in the village of Aryana.\\n\\nNow wait, there is more.\\n\\n 'Greek Atrocities in the Vilayet of Smyrna (May to July 1919), Inedited\\n Documents and Evidence of English and French Officers,' Published by\\n The Permanent Bureau of the Turkish Congress at Lausanne, Lausanne,\\n Imprimerie Petter, Giesser & Held, Caroline, 5 (1919).\\n\\n pages 82-83:\\n\\n<< 1. The train going from Denizli to Smyrna was stopped at Ephesus\\n and the 90 Turkish travellers, men and women who were in it ordered\\n to descend. And there in the open street, under the eyes of their\\n husbands, fathers and brothers, the women without distinction of age\\n were violated, and then all the travellers were massacred. Amongst\\n the latter the Lieutenant Salih Effendi, a native of Tripoli, and a\\n captain whose name is not known, and to whom the Hellenic authorities\\n had given safe conduct, were killed with specially atrocious tortures.\\n\\n 2. Before the battle, the wife of the lawyer Enver Bey coming from\\n her garden was maltreated by Greek soldiers, she was even stript\\n of her garments and her servant Assie was violated.\\n\\n 3. The two tax gatherers Mustapha and Ali Effendi were killed in the\\n following manner: Their arms were bound behind their backs with wire\\n and their heads were battered and burst open with blows from the butt\\n end of a gun.\\n\\n 4. During the firing of the town, eleven children, six little girls\\n and five boys, fleeing from the flames, were stopped by Greek soldiers\\n in the Ramazan Pacha quarter, and thrown into a burning Jewish house\\n near bridge, where they were burnt alive. This fact is confirmed on oath\\n by the retired commandant Hussein Hussni Effendi who saw it.\\n\\n 5. The clock-maker Ahmed Effendi and his son Sadi were arrested and\\n dragged out of their shop. The son had his eyes put out and was then\\n killed in the court of the Greek Church, but Ahmed Effendi has been\\n no more heard of.\\n\\n 6. At the market, during the fire, two unknown people were wounded\\n by bayonets, then bound together, thrown into the fire and burnt alive.\\n\\n The Greeks killed also many Jews. These are the names of some:\\n\\n Moussa Malki, shoemaker killed\\n Bohor Levy, tailor killed\\n Bohor Israel, cobbler killed\\n Isaac Calvo, shoemaker killed\\n David Aroguete killed\\n Moussa Lerosse killed\\n Gioia Katan killed\\n Meryem Malki killed\\n Soultan Gharib killed\\n Isaac Sabah wounded\\n Moche Fahmi wounded\\n David Sabah wounded\\n Moise Bensignor killed\\n Sarah Bendi killed\\n Jacob Jaffe wounded\\n Aslan Halegna wounded....>>\\n\\nSerdar Argic\\n\\n 'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.'\\n (Ohanus Appressian - 1919)\\n 'In Soviet Armenia today there no longer exists \\n a single Turkish soul.' (Sahak Melkonian - 1920)\\n\\n\\n\",\n", - " 'From: wats@scicom.AlphaCDC.COM (Bruce Watson)\\nSubject: Re: First Spacewalk\\nDistribution: sci\\nOrganization: Alpha Science Computer Network, Denver, Co.\\nLines: 13\\n\\nIn article , frank@D012S658.uucp (Frank\\nO\\'Dwyer) wrote:\\n> (1) Does the term \"hero-worship\" mean anything to you? \\n\\nYes, worshipping Jesus as the super-saver is indeed hero-worshipping\\nof the grand scale. Worshipping Lenin that will make life pleasant\\nfor the working people is, eh, somehow similar, or what.\\n \\n> (2) I understand that gods are defined to be supernatural, not merely\\n> superhuman.\\nThe notion of Lenin was on the borderline of supernatural insights\\ninto how to change the world, he wasn\\'t a communist God, but he was\\nthe man who gave presents to kids during Christmas.\\n \\n> #Actually, I agree. Things are always relative, and you can\\'t have \\n> #a direct mapping between a movement and a cause. However, the notion\\n> #that communist Russia was somewhat the typical atheist country is \\n> #only something that Robertson, Tilton et rest would believe in.\\n> \\n> Those atheists were not True Unbelievers, huh? :-)\\n\\nDon\\'t know what they were, but they were fanatics indeed.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Re: xSoviet Armenia denies the historical fact of the Turkish Genocide.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 52\\n\\nIn article <1993Apr17.172014.663@hellgate.utah.edu> tolman%asylum.cs.utah.edu@cs.utah.edu (Kenneth Tolman) writes:\\n\\n>>I sure hope so. Because, the unspeakable crimes of the Armenians must \\n>>be righted. Armenian invaders burned and sacked the fatherland of \\n\\n>No! NO! no no no no no. It is not justifiable to right wrongs of\\n>previous years. My ancestors tortured, enslaved, and killed blacks. I\\n>do not want to take responsibility for them. I may not have any direct\\n>relatives who did such things, but how am I to know?\\n>There is enough CURRENT torture, enslavement and genocide to go around.\\n>Lets correct that. Lets forget and forgive, each and every one of us has\\n>a historical reason to kill, torture or take back things from those around\\n>us. Pray let us not be infantile arbiters for past injustice.\\n\\nAre you suggesting that we should forget the cold-blooded genocide of\\n2.5 million Muslim people by the Armenians between 1914 and 1920? But \\nmost people aren\\'t aware that in 1939 Hitler said that he would pattern\\nhis elimination of the Jews based upon what the Armenians did to Turkish\\npeople in 1914.\\n\\n\\n \\'After all, who remembers today the extermination of the Tartars?\\'\\n (Adolf Hitler, August 22, 1939: Ruth W. Rosenbaum (Durusoy), \\n \"The Turkish Holocaust - Turk Soykirimi\", p. 213.)\\n\\n\\nI refer to the Turks and Kurds as history\\'s forgotten people. It does\\nnot serve our society well when most people are totally unaware of\\nwhat happened in 1914 where a vicious society, run by fascist Armenians,\\ndecided to simply use the phoniest of pretexts as an excuse, for wiping \\nout a peace-loving, industrious, and very intelligent and productive \\nethnic group. What we have is a demand from the fascist government of\\nx-Soviet Armenia to redress the wrongs that were done against our\\npeople. And the only way we can do that is if we can catch hold of and \\nnot lose sight of the historical precedence in this very century. We \\ncannot reverse the events of the past, but we can and we must strive to \\nkeep the memory of this tragedy alive on this side of the Atlantic, so as\\nto help prevent a recurrence of the extermination of a people because \\nof their religion or their race. Which means that I support the claims \\nof the Turks and Kurds to return to their lands in x-Soviet Armenia, \\nto determine their own future as a nation in their own homeland.\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " \"From: sprattli@azores.crd.ge.com (Rod Sprattling)\\nSubject: Self-Insured (was: Should liability insurance be required?)\\nNntp-Posting-Host: azores.crd.ge.com\\nReply-To: sprattli@azores.crd.ge.com (Rod Sprattling)\\nOrganization: GE Corp R&D Center, Schenectady NY\\nLines: 27\\n\\nIn article ,\\nviking@iastate.edu (Dan Sorenson) writes:\\n|>\\tI get annoyed at insurance. Hence, I'm self-insured above\\n|>liability. Mandating that I play their game is silly if I've a better\\n|>game to play and everybody is still financially secure.\\n\\nWhat's involved in getting bonded? Anyone know if that's an option\\nrecognized by NYS DMV?\\n\\nRod\\n---\\nRoderick Sprattling\\t\\t| No job too great, no time too small\\nsprattli@azores.crd.ge.com\\t| With feet to fire and back to wall.\\n\\n\\n\\n\\n\\n \\n\\n\\n\\n\\n\\n\\n \\n\\n\",\n", - " 'From: echen@burn.ee.washington.edu (Ed Chen)\\nSubject: Windows BMP to Sun raster or others?\\nArticle-I.D.: shelley.1r49iaINNc3k\\nDistribution: world\\nOrganization: University of Washington\\nLines: 11\\nNNTP-Posting-Host: burn.ee.washington.edu\\n\\nHi,\\n\\n\\nAnyone has a converter from BMP to any format that xview or xv can\\n\\nhandle? This converter must run Unix.. I looked at the FAQ and downloaded\\nseveral packages but had no luck... thanks in advance.\\n\\ned\\n\\nechen@burn.ee.washington.edu\\n',\n", - " 'From: sp1marse@kristin (Marco Seirio)\\nSubject: Flat globe\\nLines: 13\\nX-Newsreader: Tin 1.1 PL3\\n\\n\\nDoes anybody have an algorithm for \"flattening\" out a globe, or any other\\nparametric surface, that is definied parametrically. \\nThat is, I would like to take a sheet of paper and a knife and to be\\nable to calculate how I must cut in the paper so I can fold it to a\\nglobe (or any other object).\\n\\n\\n Marco Seirio - In real life sp1marse@caligula.his.se\\n\\n \\n\\n \\n',\n", - " \"From: Center for Policy Research \\nSubject: Re: Final Solution for Gaza ?\\nNf-ID: #R:cdp:1483500354:cdp:1483500364:000:1767\\nNf-From: cdp.UUCP!cpr Apr 26 17:36:00 1993\\nLines: 38\\n\\n\\nDear folks,\\n\\nI am still awaiting for some sensible answer and comment.\\n\\nIt is a fact that the inhabitants of Gaza are not entitled to a normal\\ncivlized life. They habe been kept under occupation by Israel since 1967\\nwithout civil and political rights. \\n\\nIt is a fact that Gazans live in their own country, Palestine. Gaza is\\nnot a foriegn country. Nor is TelAviv, Jaffa, Askalon, BeerSheba foreign\\ncountry for Gazans. All these places are occupied as far as Palestinians\\nare concerned and as far as common sense has it. \\n\\nIt is a fact that Zionists deny Gazans equal rights as Israeli citizens\\nand the right to determine by themsevles their government. When Zionists\\nwill begin to consider Gazans as human beings who deserve the same\\nrights as themselves, there will be hope for peace. Not before.\\n\\nSomebody mentioned that Gaza is 'foreign country' and therefore Israel\\nis entitled to close its borders to Gaza. In this case, Gaza should be\\nentitled to reciprocate, and deny Israeli civilians and military personnel\\nto enter the area. As the relation is not symmetrical, but that of a master\\nand slave, the label 'foreign country' is inaccurate and misleading.\\n\\nTo close off 700,000 people in the Strip, deny them means of subsistence\\nand means of defending themselves, is a collective punishment and a\\ncrime. It is neither justifiable nor legal. It just reflects the abyss \\nto which Israeli society has degraded. \\n\\nI would like to ask any of those who heap foul langauge on me to explain\\nwhy Israel denies Gazans who were born and brought up in Jaffa to return\\nand live there ? Would they be allowed to, if they converted to Judaism ?\\nIs their right to live in their former town depdendent upon their\\nreligion or ethnic origin ? Please give an honest answer.\\n\\nElias\\n\\n\",\n", - " \"From: SITUNAYA@IBM3090.BHAM.AC.UK\\nSubject: (None set)\\nOrganization: The University of Birmingham, United Kingdom\\nLines: 5\\nNNTP-Posting-Host: ibm3090.bham.ac.uk\\n\\n==============================================================================\\nBear with me i'm new at this game, but could anyone explain exactly what DMORF\\ndoes, does it simply fade one bitmap into another or does it re shape one bitma\\np into another. Please excuse my ignorance, i' not even sure if i've posted thi\\ns message correctly.\\n\",\n", - " 'From: mas@Cadence.COM (Masud Khan)\\nSubject: Re: The Inimitable Rushdie\\nOrganization: Cadence Design Systems, Inc.\\nLines: 48\\n\\nIn article <16BAFA9D9.I3150101@dbstu1.rz.tu-bs.de> I3150101@dbstu1.rz.tu-bs.de (Benedikt Rosenau) writes:\\n> \\n> \\n>Yes, but, fortunately, religions have been replaced by systems\\n>that value Human Rights higher.\\n\\nSecular laws seem to value criminal life more than the victims life,\\nIslam places the rights of society and every member in it above \\nthe rights of the individual, this is what I call true human rights.\\n\\n> \\n>By the way, do you actually support the claim of precedence of Islamic\\n>Law? In case you do, what about the laws of other religions?\\n\\nAs a Muslim living in a non-Muslim land I am bound by the laws of the land\\nI live in, but I do not disregard Islamic Law it still remains a part of my \\nlife. If the laws of a land conflict with my religion to such an extent\\nthat I am prevented from being allowed to practise my religion then I must \\nleave the land. So in a way Islamic law does take precendence over secular law\\nbut we are instructed to follow the laws of the land that we live in too.\\n\\nIn an Islamic state (one ruled by a Khaliphate) religions other than Islam\\nare allowed to rule by their own religious laws provided they don\\'t affect\\nthe genral population and don\\'t come into direct conflict with state \\nlaws, Dhimmis (non-Muslim population) are exempt from most Islamic laws\\non religion, such as fighting in a Jihad, giving Zakat (alms giving)\\netc but are given the benefit of these two acts such as Military\\nprotection and if they are poor they will receive Zakat.\\n\\n> \\n>If not, what has it got to do with Rushdie? And has anyone reliable\\n>information if he hadn\\'t left Islam according to Islamic law?\\n>Or is the burden of proof on him?\\n> Benedikt\\n\\nAfter the Fatwa didn\\'t Rushdie re-affirm his faith in Islam, didn\\'t\\nhe go thru\\' a very public \"conversion\" to Islam? If so he is binding\\nhimself to Islamic Laws. He has to publicly renounce in his belief in Islam\\nso the burden is on him.\\n\\nMas\\n\\n\\n-- \\nC I T I Z E N +-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+\\n_____ _____ | C A D E N C E D E S I G N S Y S T E M S Inc. |\\n \\\\_/ | Masud Ahmed Khan mas@cadence.com All My Opinions|\\n_____/ \\\\_____ +-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+\\n',\n", - " 'From: dingebre@imp.sim.es.com (David Ingebretsen)\\nSubject: Re: images of earth\\nOrganization: Evans & Sutherland Computer Corp., Salt Lake City, UT\\nLines: 20\\nDistribution: world\\nReply-To: dingebre@imp.sim.es.com (David Ingebretsen)\\nNNTP-Posting-Host: imp.sim.es.com\\n\\nI downloaded an image of the earth re-constructed from elevation data taken\\nat 1/2 degree increments. The author (not me) wrote some c-code (included)\\nthat read in the data file and generated b&w and pseudo color images. They\\nwork very well and are not incumbered by copyright. They are at an aminet\\nsite near you called earth.lha in the amiga/pix/misc area...\\n\\nI refer you to the included docs for the details on how the author (sorry, I\\nforget his name) created these images. The raw data is not included.\\n\\n-- \\n\\tDavid\\n\\n\\tDavid M. Ingebretsen\\n\\tEvans & Sutherland Computer Corp.\\n\\tdingebre@thunder.sim.es.com\\n\\n\\tDisclaimer: The content of this message in no way reflects the\\n\\t opinions of my employer, nor are my actions\\n\\t\\t encouraged, supported, or acknowledged by my\\n\\t\\t employer.\\n',\n", - " \"From: bates@spica.ucsb.edu (Andrew M. Bates)\\nSubject: Renderman Shaders/Discussion?\\nOrganization: University of California, Santa Barbara\\nLines: 12\\n\\n\\n Does anyone know of a site where I could ftp some RenderMan shaders?\\nOr of a newsgroup which has discussion or information about RenderMan? I'm\\nnew to the RenderMan (Mac) family, and I'd like to get as much info I can\\nlay my hands on. Thanks!\\n\\n Andy Bates.\\n\\n\\n---------------------------------------------------------------------------\\nAndy Bates.\\n---------------------------------------------------------------------------\\n\",\n", - " 'From: gt1091a@prism.gatech.EDU (gt1091a gt1091a KAAN,TIMUCIN)\\nSubject: Re: Lezgians Astir in Azerbaijan and Daghestan\\nOrganization: Georgia Institute of Technology\\nLines: 16\\n\\nHELLO, shit face david, I see that you are still around. I dont want to \\nsee your shitty writings posted here man. I told you. You are getting\\nitchy as your fucking country. Hey , and dont give me that freedom\\nof speach bullshit once more. Because your freedom has ended when you started\\nwriting things about my people. And try to translate this \"ebenin donu\\nbutti kafa David.\".\\n\\nBYE, ANACIM HADE.\\nTIMUCIN\\n\\n\\n-- \\nKAAN,TIMUCIN\\nGeorgia Institute of Technology, Atlanta Georgia, 30332\\nuucp:\\t ...!{decvax,hplabs,ncar,purdue,rutgers}!gatech!prism!gt1091a\\nInternet: gt1091a@prism.gatech.edu\\n',\n", - " \"From: mblock@reed.edu (Matt Block)\\nSubject: Re: Fortune-guzzler barred from bars!\\nArticle-I.D.: reed.1993Apr16.104158.27890\\nOrganization: Reed College, Portland, Oregon\\nLines: 37\\n\\nbclarke@galaxy.gov.bc.ca writes:\\n>Saw this in today's newspaper:\\n>------------------------------------------------------------------------\\n>FORTUNE-GUZZLER BARRED FROM BARS\\n>--------------------------------\\n>Barnstaple, England/Reuter\\n>\\n>\\tA motorcyclist said to have drunk away a $290,000 insurance payment in\\n>less than 10 years was banned Wednesday from every pub in England and Wales.\\n>\\n>\\tDavid Roberts, 29, had been awarded the cash in compensation for\\n>losing a leg in a motorcycle accident. He spent virtually all of it on cider, a\\n>court in Barnstaple in southwest England was told.\\n>\\n>\\tJudge Malcolm Coterill banned Roberts from all bars in England and\\n>Wales for 12 months and put on two years' probation after he started a brawl in\\n>a pub.\\n\\n\\tIs there no JUSTICE?!\\n\\n\\tIf I lost my leg when I was 19, and had to give up motorcycling\\n(assuming David didn't know that it can be done one-legged,) I too would want\\nto get swamped.... maybe even for ten years! I'll admit, I'd probably prefer\\nhomebrew to pubbrew, but still...\\n\\n\\tJudge Coterill is in some serious trouble, I can tell you that. Any\\nchance you can get to him and convince him his ruling was backward, Nick?\\n\\n\\tPerhaps the lad deserved something for starting a brawl (bad form...\\nhorribly bad form,) but for getting drunk? That, I thought, was ones natural\\nborn right! And for spending his own money? My goodness, who cares what one\\ndoes with one's own moolah, even if one spends it recklessly?\\n\\n\\tI'm ashamed of humanity.\\n\\n\\tMatt Block & Koch\\n\\tDoD# #007\\t\\t\\t1980 Honda CB650\\n\",\n", - " \"From: azw@aber.ac.uk (Andy Woodward)\\nSubject: Re: Drinking and Riding\\nOrganization: University College of Wales, Aberystwyth\\nLines: 10\\nNntp-Posting-Host: 144.124.112.30\\n\\n\\n>So, you can't ride the bike, but you will drive truck home? The\\n>judgement and motor skills needed to pilot a moto are not required in a\\n>cage? This scares the sh*t out of me.\\n> \\nThis is a piece of psychology its essential for any long term biker to\\nunderstand. People do NOT think 'if I do this will someone else suffer?'.\\nThey assess things purely on' if I do this will I suffer?.\\n\\nThis is a vital concept in bike-cage interaction.\\n\",\n", - " 'From: maven@eskimo.com (Norman Hamer)\\nSubject: Re: A Miracle in California\\nOrganization: -> ESKIMO NORTH (206) For-Ever <-\\nLines: 22\\n\\nRe: Waving...\\n\\nI must say, that the courtesy of a nod or a wave as I meet other bikers while\\nriding does a lot of good things to my mood... While riding is a lot of fun by\\nitself, there\\'s something really special about having someone say to you \"Hey,\\nit\\'s a great day for a ride... Isn\\'t it wonderful that we can spend some time\\non the road on days like this...\" with a gesture.\\n\\nWas sunny today for the first time in a week, took my bike out for a spin down\\nto the local salvage yard/bike shop... ran into about 20 other people who were\\ndown there for similar reasons (there\\'s this GREAT stretch of road on the way\\ndown there... no side streets, lotsa leaning bends... ;) ... Went on an\\nimpromptu coffee and bullshit run down to puyallup with a batch of people who \\nI didn\\'t know, but who were my kinda people nonetheless.\\n\\nAs a fellow commented to me while I was admiring his bike... \"Hey, it\\'s not\\nwhat you ride, it\\'s that you ride... As long as it has 2 wheels and an engine\\nit\\'s the same thing...\"\\n-- \\n----\\nmaven@eskimo.com (InterNet) maven@mavenry.altcit.eskimo.com (UseNet)\\nThe Maven@The Mavenry (AlterNet)\\n',\n", - " 'From: asphaug@lpl.arizona.edu (Erik Asphaug x2773)\\nSubject: Re: CAMPING was Help with backpack\\nOrganization: Lunar & Planetary Laboratory, Tucson AZ.\\nLines: 24\\n\\nIn article <1993Apr14.193739.13359@rtsg.mot.com> svoboda@rtsg.mot.com (David Svoboda) writes:\\n>In article <1993Apr13.152706.27518@bnr.ca> Dave Dal Farra writes:\\n>|My crafty girfriend makes campfire/bbq starters a la McGiver:\\n>Well, heck, if you\\'re going to make them yourself, you can buy\\n>candle-wax by the pound--much cheper than the candles themselves.\\n\\nHell, just save your candle stubs and bring them. Light them up, and\\ndribble the wax all over the kindling wood and light _that_. Although\\nI like the belly-button lint / eggshell case idea the best, if you\\'re\\nfeeling particularly industrious some eventful evening. Or you can\\ndo what I did one soggy summer: open the fuel line, drain some onto a \\npiece of rough or rotten wood, stick that into the middle of the soon-to-\\nbe inferno and CAREFULLY strike a match... As Kurt Vonnegut titled one\\nof the latter chapters in Cat\\'s Cradle, \"Ah-Whoom!\"\\n\\nWorks like a charm every time :-)\\n\\n\\n/-----b-o-d-y---i-s---t-h-e---b-i-k-e----------------------------\\\\\\n| |\\n| DoD# 88888 asphaug@hindmost.lpl.arizona.edu |\\n| \\'90 Kawi Zephyr (Erik Asphaug) |\\n| \\'86 BMW R80GS |\\n\\\\-----------------------s-o-u-l---i-s---t-h-e---r-i-d-e-r--------/\\n',\n", - " 'From: hasan@McRCIM.McGill.EDU \\nSubject: Re: No land for peace - No negotiatians\\nOriginator: hasan@haley.mcrcim.mcgill.edu\\nNntp-Posting-Host: haley.mcrcim.mcgill.edu\\nOrganization: McGill Research Centre for Intelligent Machines\\nLines: 45\\n\\n\\nIn article <1993Apr5.175047.17368@unocal.com>, stssdxb@st.unocal.com (Dorin Baru) writes:\\n\\n|> Alan Stein writes:\\n|> \\n|> >What are you talking about? The Rabin government has clearly\\n|> >indicated its interest in a territorial compromise that would leave\\n|> >the vast majority of the Arabs in Judea, Samaria and Gaza outside\\n|> >Israeli control.\\n\\n(just an interrupting comment here) Since EARLY 1980\\'s , israelis said they are \\nwilling to give up the Adminstration rule of the occupied terretories to\\nPalestineans. Palestineans refused and will refuse such settlement that denies\\nthem their right of SELF-DETERMINATION. period.\\n\\n|> I know. I was just pointing out that not compromising may be a bad idea. And\\n|> there are, in Israel, voices against negotiations. And I think there are many\\n|> among palestineans also against any negociations. \\n|> \\n|> Just an opinion\\n|>\\n|> Dorin\\n\\nOk. I donot know why there are israeli voices against negotiations. However,\\ni would guess that is because they refuse giving back a land for those who\\nhave the right for it.\\n\\nAs for the Arabian and Palestinean voices that are against the\\ncurrent negotiations and the so-called peace process, they\\nare not against peace per se, but rather for their well-founded predictions\\nthat Israel would NOT give an inch of the West bank (and most probably the same\\nfor Golan Heights) back to the Arabs. An 18 months of \"negotiations\" in Madrid,\\nand Washington proved these predictions. Now many will jump on me saying why\\nare you blaming israelis for no-result negotiations.\\nI would say why would the Arabs stall the negotiations, what do they have to\\nloose ?\\n\\nArabs feel that the current \"negotiations\" is ONLY for legitimizing the current\\nstatus-quo and for opening the doors of the Arab markets for israeli trade and\\n\"oranges\". That is simply unacceptable and would be revoked. \\n\\nJust an opinion.\\n\\nHasan\\n',\n", - " 'From: cdw2t@dayhoff.med.Virginia.EDU (Dances With Federal Rangers)\\nSubject: Re: BMW MOA members read this!\\nOrganization: University of Virginia\\nLines: 19\\n\\nIn article <1993Apr15.065731.23557@cs.cornell.edu> karr@cs.cornell.edu (David Karr) writes:\\n\\n [riveting BMWMOA election soap-opera details deleted]\\n\\n>Well, there doesn\\'t seem to be any shortage of alternative candidates.\\n>Obviously you\\'re not voting for Mr. Vechorik, but what about the\\n>others?\\n\\nI\\'m going to buy a BMW just to cast a vote for Groucho.\\n\\nRide safe,\\n----------------------------------------------------------------------------\\n| Cliff Weston DoD# 0598 \\'92 Seca II (Tem) |\\n| |\\n| This bike is in excellent condition. |\\n| I\\'ve done all the work on it myself. |\\n| |\\n| -- Glen \"CRASH\" Stone |\\n----------------------------------------------------------------------------\\n',\n", - " 'From: leech@cs.unc.edu (Jon Leech)\\nSubject: Space FAQ 10/15 - Planetary Probe History\\nSupersedes: \\nOrganization: University of North Carolina, Chapel Hill\\nLines: 527\\nDistribution: world\\nExpires: 6 May 1993 19:59:36 GMT\\nNNTP-Posting-Host: mahler.cs.unc.edu\\nKeywords: Frequently Asked Questions\\n\\nArchive-name: space/probe\\nLast-modified: $Date: 93/04/01 14:39:19 $\\n\\nPLANETARY PROBES - HISTORICAL MISSIONS\\n\\n This section was lightly adapted from an original posting by Larry Klaes\\n (klaes@verga.enet.dec.com), mostly minor formatting changes. Matthew\\n Wiener (weemba@libra.wistar.upenn.edu) contributed the section on\\n Voyager, and the section on Sakigake was obtained from ISAS material\\n posted by Yoshiro Yamada (yamada@yscvax.ysc.go.jp).\\n\\nUS PLANETARY MISSIONS\\n\\n\\n MARINER (VENUS, MARS, & MERCURY FLYBYS AND ORBITERS)\\n\\n MARINER 1, the first U.S. attempt to send a spacecraft to Venus, failed\\n minutes after launch in 1962. The guidance instructions from the ground\\n stopped reaching the rocket due to a problem with its antenna, so the\\n onboard computer took control. However, there turned out to be a bug in\\n the guidance software, and the rocket promptly went off course, so the\\n Range Safety Officer destroyed it. Although the bug is sometimes claimed\\n to have been an incorrect FORTRAN DO statement, it was actually a\\n transcription error in which the bar (indicating smoothing) was omitted\\n from the expression \"R-dot-bar sub n\" (nth smoothed value of derivative\\n of radius). This error led the software to treat normal minor variations\\n of velocity as if they were serious, leading to incorrect compensation.\\n\\n MARINER 2 became the first successful probe to flyby Venus in December\\n of 1962, and it returned information which confirmed that Venus is a\\n very hot (800 degrees Fahrenheit, now revised to 900 degrees F.) world\\n with a cloud-covered atmosphere composed primarily of carbon dioxide\\n (sulfuric acid was later confirmed in 1978).\\n\\n MARINER 3, launched on November 5, 1964, was lost when its protective\\n shroud failed to eject as the craft was placed into interplanetary\\n space. Unable to collect the Sun\\'s energy for power from its solar\\n panels, the probe soon died when its batteries ran out and is now in\\n solar orbit. It was intended for a Mars flyby with MARINER 4.\\n\\n MARINER 4, the sister probe to MARINER 3, did reach Mars in 1965 and\\n took the first close-up images of the Martian surface (22 in all) as it\\n flew by the planet. The probe found a cratered world with an atmosphere\\n much thinner than previously thought. Many scientists concluded from\\n this preliminary scan that Mars was a \"dead\" world in both the\\n geological and biological sense.\\n\\n MARINER 5 was sent to Venus in 1967. It reconfirmed the data on that\\n planet collected five years earlier by MARINER 2, plus the information\\n that Venus\\' atmospheric pressure at its surface is at least 90 times\\n that of Earth\\'s, or the equivalent of being 3,300 feet under the surface\\n of an ocean.\\n\\n MARINER 6 and 7 were sent to Mars in 1969 and expanded upon the work\\n done by MARINER 4 four years earlier. However, they failed to take away\\n the concept of Mars as a \"dead\" planet, first made from the basic\\n measurements of MARINER 4.\\n\\n MARINER 8 ended up in the Atlantic Ocean in 1971 when the rocket\\n launcher autopilot failed.\\n\\n MARINER 9, the sister probe to MARINER 8, became the first craft to\\n orbit Mars in 1971. It returned information on the Red Planet that no\\n other probe had done before, revealing huge volcanoes on the Martian\\n surface, as well as giant canyon systems, and evidence that water once\\n flowed across the planet. The probe also took the first detailed closeup\\n images of Mars\\' two small moons, Phobos and Deimos.\\n\\n MARINER 10 used Venus as a gravity assist to Mercury in 1974. The probe\\n did return the first close-up images of the Venusian atmosphere in\\n ultraviolet, revealing previously unseen details in the cloud cover,\\n plus the fact that the entire cloud system circles the planet in four\\n Earth days. MARINER 10 eventually made three flybys of Mercury from 1974\\n to 1975 before running out of attitude control gas. The probe revealed\\n Mercury as a heavily cratered world with a mass much greater than\\n thought. This would seem to indicate that Mercury has an iron core which\\n makes up 75 percent of the entire planet.\\n\\n\\n PIONEER (MOON, SUN, VENUS, JUPITER, and SATURN FLYBYS AND ORBITERS)\\n\\n PIONEER 1 through 3 failed to meet their main objective - to photograph\\n the Moon close-up - but they did reach far enough into space to provide\\n new information on the area between Earth and the Moon, including new\\n data on the Van Allen radiation belts circling Earth. All three craft\\n had failures with their rocket launchers. PIONEER 1 was launched on\\n October 11, 1958, PIONEER 2 on November 8, and PIONEER 3 on December 6.\\n\\n PIONEER 4 was a Moon probe which missed the Moon and became the first\\n U.S. spacecraft to orbit the Sun in 1959. PIONEER 5 was originally\\n designed to flyby Venus, but the mission was scaled down and it instead\\n studied the interplanetary environment between Venus and Earth out to\\n 36.2 million kilometers in 1960, a record until MARINER 2. PIONEER 6\\n through 9 were placed into solar orbit from 1965 to 1968: PIONEER 6, 7,\\n and 8 are still transmitting information at this time. PIONEER E (would\\n have been number 10) suffered a launch failure in 1969.\\n\\n PIONEER 10 became the first spacecraft to flyby Jupiter in 1973. PIONEER\\n 11 followed it in 1974, and then went on to become the first probe to\\n study Saturn in 1979. Both vehicles should continue to function through\\n 1995 and are heading off into interstellar space, the first craft ever\\n to do so.\\n\\n PIONEER Venus 1 (1978) (also known as PIONEER Venus Orbiter, or PIONEER\\n 12) burned up in the Venusian atmosphere on October 8, 1992. PVO made\\n the first radar studies of the planet\\'s surface via probe. PIONEER Venus\\n 2 (also known as PIONEER 13) sent four small probes into the atmosphere\\n in December of 1978. The main spacecraft bus burned up high in the\\n atmosphere, while the four probes descended by parachute towards the\\n surface. Though none were expected to survive to the surface, the Day\\n probe did make it and transmitted for 67.5 minutes on the ground before\\n its batteries failed.\\n\\n\\n RANGER (LUNAR LANDER AND IMPACT MISSIONS)\\n\\n RANGER 1 and 2 were test probes for the RANGER lunar impact series. They\\n were meant for high Earth orbit testing in 1961, but rocket problems\\n left them in useless low orbits which quickly decayed.\\n\\n RANGER 3, launched on January 26, 1962, was intended to land an\\n instrument capsule on the surface of the Moon, but problems during the\\n launch caused the probe to miss the Moon and head into solar orbit.\\n RANGER 3 did try to take some images of the Moon as it flew by, but the\\n camera was unfortunately aimed at deep space during the attempt.\\n\\n RANGER 4, launched April 23, 1962, had the same purpose as RANGER 3, but\\n suffered technical problems enroute and crashed on the lunar farside,\\n the first U.S. probe to reach the Moon, albeit without returning data.\\n\\n RANGER 5, launched October 18, 1962 and similar to RANGER 3 and 4, lost\\n all solar panel and battery power enroute and eventually missed the Moon\\n and drifted off into solar orbit.\\n\\n RANGER 6 through 9 had more modified lunar missions: They were to send\\n back live images of the lunar surface as they headed towards an impact\\n with the Moon. RANGER 6 failed this objective in 1964 when its cameras\\n did not operate. RANGER 7 through 9 performed well, becoming the first\\n U.S. lunar probes to return thousands of lunar images through 1965.\\n\\n\\n LUNAR ORBITER (LUNAR SURFACE PHOTOGRAPHY)\\n\\n LUNAR ORBITER 1 through 5 were designed to orbit the Moon and image\\n various sites being studied as landing areas for the manned APOLLO\\n missions of 1969-1972. The probes also contributed greatly to our\\n understanding of lunar surface features, particularly the lunar farside.\\n All five probes of the series, launched from 1966 to 1967, were\\n essentially successful in their missions. They were the first U.S.\\n probes to orbit the Moon. All LOs were eventually crashed into the lunar\\n surface to avoid interference with the manned APOLLO missions.\\n\\n\\n SURVEYOR (LUNAR SOFT LANDERS)\\n\\n The SURVEYOR series were designed primarily to see if an APOLLO lunar\\n module could land on the surface of the Moon without sinking into the\\n soil (before this time, it was feared by some that the Moon was covered\\n in great layers of dust, which would not support a heavy landing\\n vehicle). SURVEYOR was successful in proving that the lunar surface was\\n strong enough to hold up a spacecraft from 1966 to 1968.\\n\\n Only SURVEYOR 2 and 4 were unsuccessful missions. The rest became the\\n first U.S. probes to soft land on the Moon, taking thousands of images\\n and scooping the soil for analysis. APOLLO 12 landed 600 feet from\\n SURVEYOR 3 in 1969 and returned parts of the craft to Earth. SURVEYOR 7,\\n the last of the series, was a purely scientific mission which explored\\n the Tycho crater region in 1968.\\n\\n\\n VIKING (MARS ORBITERS AND LANDERS)\\n\\n VIKING 1 was launched from Cape Canaveral, Florida on August 20, 1975 on\\n a TITAN 3E-CENTAUR D1 rocket. The probe went into Martian orbit on June\\n 19, 1976, and the lander set down on the western slopes of Chryse\\n Planitia on July 20, 1976. It soon began its programmed search for\\n Martian micro-organisms (there is still debate as to whether the probes\\n found life there or not), and sent back incredible color panoramas of\\n its surroundings. One thing scientists learned was that Mars\\' sky was\\n pinkish in color, not dark blue as they originally thought (the sky is\\n pink due to sunlight reflecting off the reddish dust particles in the\\n thin atmosphere). The lander set down among a field of red sand and\\n boulders stretching out as far as its cameras could image.\\n\\n The VIKING 1 orbiter kept functioning until August 7, 1980, when it ran\\n out of attitude-control propellant. The lander was switched into a\\n weather-reporting mode, where it had been hoped it would keep\\n functioning through 1994; but after November 13, 1982, an errant command\\n had been sent to the lander accidentally telling it to shut down until\\n further orders. Communication was never regained again, despite the\\n engineers\\' efforts through May of 1983.\\n\\n An interesting side note: VIKING 1\\'s lander has been designated the\\n Thomas A. Mutch Memorial Station in honor of the late leader of the\\n lander imaging team. The National Air and Space Museum in Washington,\\n D.C. is entrusted with the safekeeping of the Mutch Station Plaque until\\n it can be attached to the lander by a manned expedition.\\n\\n VIKING 2 was launched on September 9, 1975, and arrived in Martian orbit\\n on August 7, 1976. The lander touched down on September 3, 1976 in\\n Utopia Planitia. It accomplished essentially the same tasks as its\\n sister lander, with the exception that its seisometer worked, recording\\n one marsquake. The orbiter had a series of attitude-control gas leaks in\\n 1978, which prompted it being shut down that July. The lander was shut\\n down on April 12, 1980.\\n\\n The orbits of both VIKING orbiters should decay around 2025.\\n\\n\\n VOYAGER (OUTER PLANET FLYBYS)\\n\\n VOYAGER 1 was launched September 5, 1977, and flew past Jupiter on March\\n 5, 1979 and by Saturn on November 13, 1980. VOYAGER 2 was launched\\n August 20, 1977 (before VOYAGER 1), and flew by Jupiter on August 7,\\n 1979, by Saturn on August 26, 1981, by Uranus on January 24, 1986, and\\n by Neptune on August 8, 1989. VOYAGER 2 took advantage of a rare\\n once-every-189-years alignment to slingshot its way from outer planet to\\n outer planet. VOYAGER 1 could, in principle, have headed towards Pluto,\\n but JPL opted for the sure thing of a Titan close up.\\n\\n Between the two probes, our knowledge of the 4 giant planets, their\\n satellites, and their rings has become immense. VOYAGER 1&2 discovered\\n that Jupiter has complicated atmospheric dynamics, lightning and\\n aurorae. Three new satellites were discovered. Two of the major\\n surprises were that Jupiter has rings and that Io has active sulfurous\\n volcanoes, with major effects on the Jovian magnetosphere.\\n\\n When the two probes reached Saturn, they discovered over 1000 ringlets\\n and 7 satellites, including the predicted shepherd satellites that keep\\n the rings stable. The weather was tame compared with Jupiter: massive\\n jet streams with minimal variance (a 33-year great white spot/band cycle\\n is known). Titan\\'s atmosphere was smoggy. Mimas\\' appearance was\\n startling: one massive impact crater gave it the Death Star appearance.\\n The big surprise here was the stranger aspects of the rings. Braids,\\n kinks, and spokes were both unexpected and difficult to explain.\\n\\n VOYAGER 2, thanks to heroic engineering and programming efforts,\\n continued the mission to Uranus and Neptune. Uranus itself was highly\\n monochromatic in appearance. One oddity was that its magnetic axis was\\n found to be highly skewed from the already completely skewed rotational\\n axis, giving Uranus a peculiar magnetosphere. Icy channels were found on\\n Ariel, and Miranda was a bizarre patchwork of different terrains. 10\\n satellites and one more ring were discovered.\\n\\n In contrast to Uranus, Neptune was found to have rather active weather,\\n including numerous cloud features. The ring arcs turned out to be bright\\n patches on one ring. Two other rings, and 6 other satellites, were\\n discovered. Neptune\\'s magnetic axis was also skewed. Triton had a\\n canteloupe appearance and geysers. (What\\'s liquid at 38K?)\\n\\n The two VOYAGERs are expected to last for about two more decades. Their\\n on-target journeying gives negative evidence about possible planets\\n beyond Pluto. Their next major scientific discovery should be the\\n location of the heliopause.\\n\\n\\nSOVIET PLANETARY MISSIONS\\n\\n Since there have been so many Soviet probes to the Moon, Venus, and\\n Mars, I will highlight only the primary missions:\\n\\n\\n SOVIET LUNAR PROBES\\n\\n LUNA 1 - Lunar impact attempt in 1959, missed Moon and became first\\n\\t craft in solar orbit.\\n LUNA 2 - First craft to impact on lunar surface in 1959.\\n LUNA 3 - Took first images of lunar farside in 1959.\\n ZOND 3 - Took first images of lunar farside in 1965 since LUNA 3. Was\\n\\t also a test for future Mars missions.\\n LUNA 9 - First probe to soft land on the Moon in 1966, returned images\\n\\t from surface.\\n LUNA 10 - First probe to orbit the Moon in 1966.\\n LUNA 13 - Second successful Soviet lunar soft landing mission in 1966.\\n ZOND 5 - First successful circumlunar craft. ZOND 6 through 8\\n\\t accomplished similar missions through 1970. The probes were\\n\\t unmanned tests of a manned orbiting SOYUZ-type lunar vehicle.\\n LUNA 16 - First probe to land on Moon and return samples of lunar soil\\n\\t to Earth in 1970. LUNA 20 accomplished similar mission in\\n\\t 1972.\\n LUNA 17 - Delivered the first unmanned lunar rover to the Moon\\'s\\n\\t surface, LUNOKHOD 1, in 1970. A similar feat was accomplished\\n\\t with LUNA 21/LUNOKHOD 2 in 1973.\\n LUNA 24 - Last Soviet lunar mission to date. Returned soil samples in\\n\\t 1976.\\n\\n\\n SOVIET VENUS PROBES\\n\\n VENERA 1 - First acknowledged attempt at Venus mission. Transmissions\\n\\t lost enroute in 1961.\\n VENERA 2 - Attempt to image Venus during flyby mission in tandem with\\n\\t VENERA 3. Probe ceased transmitting just before encounter in\\n\\t February of 1966. No images were returned.\\n VENERA 3 - Attempt to place a lander capsule on Venusian surface.\\n\\t Transmissions ceased just before encounter and entire probe\\n\\t became the first craft to impact on another planet in 1966.\\n VENERA 4 - First probe to successfully return data while descending\\n\\t through Venusian atmosphere. Crushed by air pressure before\\n\\t reaching surface in 1967. VENERA 5 and 6 mission profiles\\n\\t similar in 1969.\\n VENERA 7 - First probe to return data from the surface of another planet\\n\\t in 1970. VENERA 8 accomplished a more detailed mission in\\n\\t 1972.\\n VENERA 9 - Sent first image of Venusian surface in 1975. Was also the\\n\\t first probe to orbit Venus. VENERA 10 accomplished similar\\n\\t mission.\\n VENERA 13 - Returned first color images of Venusian surface in 1982.\\n\\t\\tVENERA 14 accomplished similar mission.\\n VENERA 15 - Accomplished radar mapping with VENERA 16 of sections of\\n\\t\\tplanet\\'s surface in 1983 more detailed than PVO.\\n VEGA 1 - Accomplished with VEGA 2 first balloon probes of Venusian\\n\\t atmosphere in 1985, including two landers. Flyby buses went on\\n\\t to become first spacecraft to study Comet Halley close-up in\\n\\t March of 1986.\\n\\n\\n SOVIET MARS PROBES\\n\\n MARS 1 - First acknowledged Mars probe in 1962. Transmissions ceased\\n\\t enroute the following year.\\n ZOND 2 - First possible attempt to place a lander capsule on Martian\\n\\t surface. Probe signals ceased enroute in 1965.\\n MARS 2 - First Soviet Mars probe to land - albeit crash - on Martian\\n\\t surface. Orbiter section first Soviet probe to circle the Red\\n\\t Planet in 1971.\\n MARS 3 - First successful soft landing on Martian surface, but lander\\n\\t signals ceased after 90 seconds in 1971.\\n MARS 4 - Attempt at orbiting Mars in 1974, braking rockets failed to\\n\\t fire, probe went on into solar orbit.\\n MARS 5 - First fully successful Soviet Mars mission, orbiting Mars in\\n\\t 1974. Returned images of Martian surface comparable to U.S.\\n\\t probe MARINER 9.\\n MARS 6 - Landing attempt in 1974. Lander crashed into the surface.\\n MARS 7 - Lander missed Mars completely in 1974, went into a solar orbit\\n\\t with its flyby bus.\\n PHOBOS 1 - First attempt to land probes on surface of Mars\\' largest\\n\\t moon, Phobos. Probe failed enroute in 1988 due to\\n\\t human/computer error.\\n PHOBOS 2 - Attempt to land probes on Martian moon Phobos. The probe did\\n\\t enter Mars orbit in early 1989, but signals ceased one week\\n\\t before scheduled Phobos landing.\\n\\n While there has been talk of Soviet Jupiter, Saturn, and even\\n interstellar probes within the next thirty years, no major steps have\\n yet been taken with these projects. More intensive studies of the Moon,\\n Mars, Venus, and various comets have been planned for the 1990s, and a\\n Mercury mission to orbit and land probes on the tiny world has been\\n planned for 2003. How the many changes in the former Soviet Union (now\\n the Commonwealth of Independent States) will affect the future of their\\n space program remains to be seen.\\n\\n\\nJAPANESE PLANETARY MISSIONS\\n\\n SAKIGAKE (MS-T5) was launched from the Kagoshima Space Center by ISAS on\\n January 8 1985, and approached Halley\\'s Comet within about 7 million km\\n on March 11, 1986. The spacecraft is carrying three instru- ments to\\n measure interplanetary magnetic field/plasma waves/solar wind, all of\\n which work normally now, so ISAS made an Earth swingby by Sakigake on\\n January 8, 1992 into an orbit similar to the earth\\'s. The closest\\n approach was at 23h08m47s (JST=UTC+9h) on January 8, 1992. The\\n geocentric distance was 88,997 km. This is the first planet-swingby for\\n a Japanese spacecraft.\\n\\n During the approach, Sakigake observed the geotail. Some geotail\\n passages will be scheduled in some years hence. The second Earth-swingby\\n will be on June 14, 1993 (at 40 Re (Earth\\'s radius)), and the third\\n October 28, 1994 (at 86 Re).\\n\\n\\n HITEN, a small lunar probe, was launched into Earth orbit on January 24,\\n 1990. The spacecraft was then known as MUSES-A, but was renamed to Hiten\\n once in orbit. The 430 lb probe looped out from Earth and made its first\\n lunary flyby on March 19, where it dropped off its 26 lb midget\\n satellite, HAGOROMO. Japan at this point became the third nation to\\n orbit a satellite around the Moon, joining the Unites States and USSR.\\n\\n The smaller spacecraft, Hagoromo, remained in orbit around the Moon. An\\n apparently broken transistor radio caused the Japanese space scientists\\n to lose track of it. Hagoromo\\'s rocket motor fired on schedule on March\\n 19, but the spacecraft\\'s tracking transmitter failed immediately. The\\n rocket firing of Hagoromo was optically confirmed using the Schmidt\\n camera (105-cm, F3.1) at the Kiso Observatory in Japan.\\n\\n Hiten made multiple lunar flybys at approximately monthly intervals and\\n performed aerobraking experiments using the Earth\\'s atmosphere. Hiten\\n made a close approach to the moon at 22:33 JST (UTC+9h) on February 15,\\n 1992 at the height of 423 km from the moon\\'s surface (35.3N, 9.7E) and\\n fired its propulsion system for about ten minutes to put the craft into\\n lunar orbit. The following is the orbital calculation results after the\\n approach:\\n\\n\\tApoapsis Altitude: about 49,400 km\\n\\tPeriapsis Altitude: about 9,600 km\\n\\tInclination\\t: 34.7 deg (to ecliptic plane)\\n\\tPeriod\\t\\t: 4.7 days\\n\\n\\nPLANETARY MISSION REFERENCES\\n\\n I also recommend reading the following works, categorized in three\\n groups: General overviews, specific books on particular space missions,\\n and periodical sources on space probes. This list is by no means\\n complete; it is primarily designed to give you places to start your\\n research through generally available works on the subject. If anyone can\\n add pertinent works to the list, it would be greatly appreciated.\\n\\n Though naturally I recommend all the books listed below, I think it\\n would be best if you started out with the general overview books, in\\n order to give you a clear idea of the history of space exploration in\\n this area. I also recommend that you pick up some good, up-to-date\\n general works on astronomy and the Sol system, to give you some extra\\n background. Most of these books and periodicals can be found in any good\\n public and university library. Some of the more recently published works\\n can also be purchased in and/or ordered through any good mass- market\\n bookstore.\\n\\n General Overviews (in alphabetical order by author):\\n\\n J. Kelly Beatty et al, THE NEW SOLAR SYSTEM, 1990.\\n\\n Merton E. Davies and Bruce C. Murray, THE VIEW FROM SPACE:\\n PHOTOGRAPHIC EXPLORATION OF THE PLANETS, 1971\\n\\n Kenneth Gatland, THE ILLUSTRATED ENCYCLOPEDIA OF SPACE\\n TECHNOLOGY, 1990\\n\\n Kenneth Gatland, ROBOT EXPLORERS, 1972\\n\\n R. Greeley, PLANETARY LANDSCAPES, 1987\\n\\n Douglas Hart, THE ENCYCLOPEDIA OF SOVIET SPACECRAFT, 1987\\n\\n Nicholas L. Johnson, HANDBOOK OF SOVIET LUNAR AND PLANETARY\\n EXPLORATION, 1979\\n\\n Clayton R. Koppes, JPL AND THE AMERICAN SPACE PROGRAM: A\\n HISTORY OF THE JET PROPULSION LABORATORY, 1982\\n\\n Richard S. Lewis, THE ILLUSTRATED ENCYCLOPEDIA OF THE\\n UNIVERSE, 1983\\n\\n Mark Littman, PLANETS BEYOND: DISCOVERING THE OUTER SOLAR\\n SYSTEM, 1988\\n\\n Eugene F. Mallove and Gregory L. Matloff, THE STARFLIGHT\\n HANDBOOK: A PIONEER\\'S GUIDE TO INTERSTELLAR TRAVEL, 1989\\n\\n Frank Miles and Nicholas Booth, RACE TO MARS: THE MARS\\n FLIGHT ATLAS, 1988\\n\\n Bruce Murray, JOURNEY INTO SPACE, 1989\\n\\n Oran W. Nicks, FAR TRAVELERS, 1985 (NASA SP-480)\\n\\n James E. Oberg, UNCOVERING SOVIET DISASTERS: EXPLORING THE\\n LIMITS OF GLASNOST, 1988\\n\\n Carl Sagan, COMET, 1986\\n\\n Carl Sagan, THE COSMIC CONNECTION, 1973\\n\\n Carl Sagan, PLANETS, 1969 (LIFE Science Library)\\n\\n Arthur Smith, PLANETARY EXPLORATION: THIRTY YEARS OF UNMANNED\\n SPACE PROBES, 1988\\n\\n Andrew Wilson, (JANE\\'S) SOLAR SYSTEM LOG, 1987\\n\\n Specific Mission References:\\n\\n Charles A. Cross and Patrick Moore, THE ATLAS OF MERCURY, 1977\\n (The MARINER 10 mission to Venus and Mercury, 1973-1975)\\n\\n Joel Davis, FLYBY: THE INTERPLANETARY ODYSSEY OF VOYAGER 2, 1987\\n\\n Irl Newlan, FIRST TO VENUS: THE STORY OF MARINER 2, 1963\\n\\n Margaret Poynter and Arthur L. Lane, VOYAGER: THE STORY OF A\\n SPACE MISSION, 1984\\n\\n Carl Sagan, MURMURS OF EARTH, 1978 (Deals with the Earth\\n information records placed on VOYAGER 1 and 2 in case the\\n probes are found by intelligences in interstellar space,\\n as well as the probes and planetary mission objectives\\n themselves.)\\n\\n Other works and periodicals:\\n\\n NASA has published very detailed and technical books on every space\\n probe mission it has launched. Good university libraries will carry\\n these books, and they are easily found simply by knowing which mission\\n you wish to read about. I recommend these works after you first study\\n some of the books listed above.\\n\\n Some periodicals I recommend for reading on space probes are NATIONAL\\n GEOGRAPHIC, which has written articles on the PIONEER probes to Earth\\'s\\n Moon Luna and the Jovian planets Jupiter and Saturn, the RANGER,\\n SURVEYOR, LUNAR ORBITER, and APOLLO missions to Luna, the MARINER\\n missions to Mercury, Venus, and Mars, the VIKING probes to Mars, and the\\n VOYAGER missions to Jupiter, Saturn, Uranus, and Neptune.\\n\\n More details on American, Soviet, European, and Japanese probe missions\\n can be found in SKY AND TELESCOPE, ASTRONOMY, SCIENCE, NATURE, and\\n SCIENTIFIC AMERICAN magazines. TIME, NEWSWEEK, and various major\\n newspapers can supply not only general information on certain missions,\\n but also show you what else was going on with Earth at the time events\\n were unfolding, if that is of interest to you. Space missions are\\n affected by numerous political, economic, and climatic factors, as you\\n probably know.\\n\\n Depending on just how far your interest in space probes will go, you\\n might also wish to join The Planetary Society, one of the largest space\\n groups in the world dedicated to planetary exploration. Their\\n periodical, THE PLANETARY REPORT, details the latest space probe\\n missions. Write to The Planetary Society, 65 North Catalina Avenue,\\n Pasadena, California 91106 USA.\\n\\n Good luck with your studies in this area of space exploration. I\\n personally find planetary missions to be one of the more exciting areas\\n in this field, and the benefits human society has and will receive from\\n it are incredible, with many yet to be realized.\\n\\n Larry Klaes klaes@verga.enet.dec.com\\n\\nNEXT: FAQ #11/15 - Upcoming planetary probes - missions and schedules\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: The religious persecution, cultural oppression and economical...\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 161\\n\\nIn article <1993Apr21.202728.29375@news.uiowa.edu> mau@herky.cs.uiowa.edu (Mau Napoleon) writes:\\n\\n>You may not be afraid of anything but you act as if you are.\\n\\nI always like your kind of odds. The Greek governments must be held \\nto account for the sub-human conditions of the Turkish minority living \\nin the Western Thrace under the brutal Greek domination. The religious \\npersecution, cultural oppression and economical ex-communication applied \\nto the Turkish population in that area are the dimensions of the human \\nrights abuse widespread in Greece.\\n\\n\"Greece\\'s Housing Policies Worry Western Thrace Turks\"\\n\\n...Newly built houses belonging to members of the minority\\ncommunity in Dedeagac province, had, he said, been destroyed\\nby Evros province public works department on Dec. 4.\\n\\nSungar added that they had received harsh treatment by the\\nsecurity forces during the demolition.\\n\\n\"This is not the first demolition in Dedeagac province; more\\nthan 40 houses were destroyed there between 1979-1984 and \\nmembers of that minority community were made homeless,\" he\\ncontinued. \\n\\n\"Greece Government Rail-Roads Two Turkish Ethnic Deputies\"\\n\\nWhile World Human Rights Organizations Scream, Greeks \\nPersistently Work on Removing the Parliamentary Immunity\\nof Dr. Sadik Ahmet and Mr. Ahmet Faikoglu.\\n\\nIn his 65-page confession, Salman Demirok, a former chief of PKK\\noperations in Hakkari confessed that high-level relations between\\nPKK, Greece and Greek Cypriot administration existed.\\n\\nAccording to Demirok, Greek Cypriot administration not only \\ngives shelter to PKK guerillas but also supplies them with \\nfood and weapons at the temporary camps set up in its territory. \\nDemirok disclosed that PKK has three safe houses in South Cyprus, \\nused by terrorists such as Ferhat. In the camps, he added, \\nterrorists were trained to use various weapons including RPG\\'s \\nand anti-aircraft guns which had been purchased directly from \\nthe Greek government. Greek Cypriot government has gone to the \\nextent of issuing special identification cards to PKK members so \\nthat they can travel from one region to another without being \\nconfronted by legal obstacles. Demirok\\'s account was confirmed \\nby another PKK defector, Fatih Tan, who gave himself over to \\npolice in Hakkari after spending four years with PKK. Tan explained\\nthat the terrorists went through a training in camps in South Cyprus, \\nsometimes for a period of 12 weeks or more.\\n\\n \"Torture in Greece: Hidden Reality\"\\n\\nCase 1: Kostas Andreadis and Dimitris Voglis.\\n\\n...Andreadis\\' head was covered with a hood and he was tortured\\nby falanga (beating on the soles of the feet), electric shocks,\\nand was threatened with being thrown out of the window. An \\nofficial medical report clearly documented this torture....\\n\\nCase 2: Horst Bosniatzki, a West German Citizen.\\n\\n...At midnight he was taken to the beach, chains were put to his \\nfeet and he was threatened to be thrown to the sea. He was dragged\\nalong the beach for about a 1.5 Km while being punched on the \\nhead and kidneys...Back on the police station, he was beaten\\non the finger tips with a thin stick until one of the fingertips\\nsplit open....\\n\\nCase 3: Torture of Dimitris Voglis.\\n\\nCase 4: Brothers Vangelis (16) and Christos Arabatzis (12),\\n Vasilis Papadopoulos (13), and Kostas Kiriazis (13).\\n\\nCase 5: Torture of Eight Students at Thessaloniki Police\\n Headquarters.\\n\\n SOURCE: The British Broadcasting Corporation, Summary of\\n World Broadcasting -July 6, 1987: Part 4-A: The\\n Middle East, ME/8612/A/1.\\n\\n \"Abu Nidal\\'s Advisers\" Reportedly Training\\n \"PKK & ASALA Militants\" in Cyprus\\n\\n Nicosia, Ankara, Tel Aviv. The Israeli secret service,\\n Mossad, is reported to have acquired significant\\n information in connection with the camps set up in the\\n Troodos mountains in Cyprus for the training of\\n militants of the PKK and ASALA {Armenian Secret Army for\\n the Liberation of Armenia}. According to sources close\\n to Mossad, about 700 Kurdish, Greek Cypriot and Armenian\\n militants are undergoing training in the Troodos\\n mountains in southern Cyprus. The same sources stated\\n that Abu Nidal\\'s special advisers are giving military\\n training to the PKK and ASALA militants in the camps.\\n They added that the militants leave southern Cyprus for\\n Libya, Lebanon, Syria, Greece and Iran after completing\\n their training. Mossad has established that due to the\\n clashes which were taking place among the terrorist\\n groups based in Syria, the PKK and ASALA organisations\\n moved to the Greek Cypriot part of Cyprus, where they\\n would be more comfortable. They also transferred a\\n number of their camps in northern Syria to the Troodos\\n mountains.\\n\\n Mossad revealed that the Armenian National Movement,\\n which is known as the MNA, has opened liaison offices in\\n Nicosia, Athens and Tripoli in order to meet the needs\\n of the camps. The offices are used to provide material\\n support for the Armenian camps. Meanwhile, the leader\\n of the Popular Front for the Liberation of Palestine,\\n George Habash, is reported to have ordered his men\\n not to participate in the operations carried out\\n by the PKK & ASALA, which he described as \"extreme\\n racist, extreme nationalist and fascist.\" Reliable\\n sources have said that Habash believed that the recent\\n operations carried out by the PKK militants show that\\n organisation to be a band of irregulars engaged in\\n extreme nationalist operations. They added that he\\n instructed his militants to sever their links with the\\n PKK and avoid clashing with it. It has been established\\n that George Habash expelled ASALA militants from his\\n camp after ASALA\\'s connections with drug trafficking\\n were exposed.\\n\\nSource: Alan Cowell, \\'U.S. & Greece in Dispute on Terror,\\' The New\\n York Times, June 27, 1987, p. 4.\\n\\n Special to The New York Times\\n\\nATHENS, June 26 - A dispute developed today between Athens and \\nWashington over United States intelligence reports saying that \\nAthens, for several months, conducted negotiations with the\\nterrorist known as Abu Nidal...\\n\\nThey said the contacts were verified in what were termed hard\\nintelligence reports.\\n\\nAbu Nidal leads the Palestinian splinter group Al Fatah \\nRevolutionary Council, implicated in the 1985 airport \\nbombings at Rome and Vienna that contributed to the Reagan \\nAdministration\\'s decision to bomb Tripoli, Libya, last year.\\n\\nIn Washington, State Department officials said that when\\nAdministration officials learned about the contacts, the\\nState Department drafted a strongly worded demarche. The\\nofficials also expressed unhappiness with Greece\\'s dealings\\nwith ASALA, the Armenian Liberation Army, which has carried\\nout terrorist acts against Turks....\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: aws@iti.org (Allen W. Sherzer)\\nSubject: Re: DC-X update???\\nOrganization: Evil Geniuses for a Better Tomorrow\\nLines: 122\\n\\nIn article dragon@angus.mi.org writes:\\n\\n>Exactly when will the hover test be done, \\n\\nEarly to mid June.\\n\\n>and will any of the TV\\n>networks carry it. I really want to see that...\\n\\nIf they think the public wants to see it they will carry it. Why not\\nwrite them and ask? You can reach them at:\\n\\n\\n F: NATIONAL NEWS MEDIA\\n\\n\\nABC \"World News Tonight\" \"Face the Nation\"\\n7 West 66th Street CBS News\\nNew York, NY 10023 2020 M Street, NW\\n212/887-4040 Washington, DC 20036\\n 202/457-4321\\n\\nAssociated Press \"Good Morning America\"\\n50 Rockefeller Plaza ABC News\\nNew York, NY 10020 1965 Broadway\\nNational Desk (212/621-1600) New York, NY 10023\\nForeign Desk (212/621-1663) 212/496-4800\\nWashington Bureau (202/828-6400)\\n Larry King Live TV\\n\"CBS Evening News\" CNN\\n524 W. 57th Street 111 Massachusetts Avenue, NW\\nNew York, NY 10019 Washington, DC 20001\\n212/975-3693 202/898-7900\\n\\n\"CBS This Morning\" Larry King Show--Radio\\n524 W. 57th Street Mutual Broadcasting\\nNew York, NY 10019 1755 So. Jefferson Davis Highway\\n212/975-2824 Arlington, VA 22202\\n 703/685-2175\\n\"Christian Science Monitor\"\\nCSM Publishing Society \"Los Angeles Times\"\\nOne Norway Street Times-Mirror Square\\nBoston, MA 02115 Los Angeles, CA 90053\\n800/225-7090 800/528-4637\\n\\nCNN \"MacNeil/Lehrer NewsHour\"\\nOne CNN Center P.O. Box 2626\\nBox 105366 Washington, DC 20013\\nAtlanta, GA 30348 703/998-2870\\n404/827-1500\\n \"MacNeil/Lehrer NewsHour\"\\nCNN WNET-TV\\nWashington Bureau 356 W. 58th Street\\n111 Massachusetts Avenue, NW New York, NY 10019\\nWashington, DC 20001 212/560-3113\\n202/898-7900\\n\\n\"Crossfire\" NBC News\\nCNN 4001 Nebraska Avenue, NW\\n111 Massachusetts Avenue, NW Washington, DC 20036\\nWashington, DC 20001 202/885-4200\\n202/898-7951 202/362-2009 (fax)\\n\\n\"Morning Edition/All Things Considered\" \\nNational Public Radio \\n2025 M Street, NW \\nWashington, DC 20036 \\n202/822-2000 \\n\\nUnited Press International\\n1400 Eye Street, NW\\nWashington, DC 20006\\n202/898-8000\\n\\n\"New York Times\" \"U.S. News & World Report\"\\n229 W. 43rd Street 2400 N Street, NW\\nNew York, NY 10036 Washington, DC 20037\\n212/556-1234 202/955-2000\\n212/556-7415\\n\\n\"New York Times\" \"USA Today\"\\nWashington Bureau 1000 Wilson Boulevard\\n1627 Eye Street, NW, 7th Floor Arlington, VA 22229\\nWashington, DC 20006 703/276-3400\\n202/862-0300\\n\\n\"Newsweek\" \"Wall Street Journal\"\\n444 Madison Avenue 200 Liberty Street\\nNew York, NY 10022 New York, NY 10281\\n212/350-4000 212/416-2000\\n\\n\"Nightline\" \"Washington Post\"\\nABC News 1150 15th Street, NW\\n47 W. 66th Street Washington, DC 20071\\nNew York, NY 10023 202/344-6000\\n212/887-4995\\n\\n\"Nightline\" \"Washington Week In Review\"\\nTed Koppel WETA-TV\\nABC News P.O. Box 2626\\n1717 DeSales, NW Washington, DC 20013\\nWashington, DC 20036 703/998-2626\\n202/887-7364\\n\\n\"This Week With David Brinkley\"\\nABC News\\n1717 DeSales, NW\\nWashington, DC 20036\\n202/887-7777\\n\\n\"Time\" magazine\\nTime Warner, Inc.\\nTime & Life Building\\nRockefeller Center\\nNew York, NY 10020\\n212/522-1212\\n\\n-- \\n+---------------------------------------------------------------------------+\\n| Lady Astor: \"Sir, if you were my husband I would poison your coffee!\" |\\n| W. Churchill: \"Madam, if you were my wife, I would drink it.\" |\\n+----------------------57 DAYS TO FIRST FLIGHT OF DCX-----------------------+\\n',\n", - " 'From: sera@zuma.UUCP (Serdar Argic)\\nSubject: Armenian admission to the crime of Turkish Genocide.\\nReply-To: sera@zuma.UUCP (Serdar Argic)\\nDistribution: world\\nLines: 34\\n\\nSource: \"Men Are Like That\" by Leonard Ramsden Hartill. The Bobbs-Merrill\\nCompany, Indianapolis (1926). (305 pages). \\n(Memoirs of an Armenian officer who participated in the genocide of 2.5 \\n million Muslim people)\\n\\n\\np. 19 (first paragraph)\\n\\n\"The Tartar section of the town no longer existed, except as a pile of\\n ruins. It had been destroyed and its inhabitants slaughtered. The same \\n fate befell the Tartar section of Khankandi.\"\\n\\np. 130 (third paragraph)\\n\\n\"The city was a scene of confusion and terror. During the early days of \\n the war, when the Russian troops invaded Turkey, large numbers of the \\n Turkish population abandoned their homes and fled before the Russian \\n advance.\"\\n\\np. 181 (first paragraph)\\n\\n\"The Tartar villages were in ruins.\"\\n\\n\\nSerdar Argic\\n\\n \\'We closed the roads and mountain passes that \\n might serve as ways of escape for the Turks \\n and then proceeded in the work of extermination.\\'\\n (Ohanus Appressian - 1919)\\n \\'In Soviet Armenia today there no longer exists \\n a single Turkish soul.\\' (Sahak Melkonian - 1920)\\n\\n\\n',\n", - " 'From: baalke@kelvin.jpl.nasa.gov (Ron Baalke)\\nSubject: Successful Balloon Flight Measures Ozone Layer\\nOrganization: Jet Propulsion Laboratory\\nLines: 96\\nDistribution: world\\nNNTP-Posting-Host: kelvin.jpl.nasa.gov\\nKeywords: JPL\\nNews-Software: VAX/VMS VNEWS 1.41 \\n\\nForwarded from:\\nPUBLIC INFORMATION OFFICE\\nJET PROPULSION LABORATORY\\nCALIFORNIA INSTITUTE OF TECHNOLOGY\\nNATIONAL AERONAUTICS AND SPACE ADMINISTRATION\\nPASADENA, CALIF. 91109. (818) 354-5011\\n\\nContact: Mary A. Hardin\\n\\nFOR IMMEDIATE RELEASE April 15, 1993\\n#1506\\n\\n Scientists at NASA\\'s Jet Propulsion Laboratory report the\\nsuccessful flight of a balloon carrying instruments designed to\\nmeasure and study chemicals in the Earth\\'s ozone layer.\\n\\n The April 3 flight from California\\'s Barstow/Daggett Airport\\nreached an altitude of 37 kilometers (121,000 feet) and took\\nmeasurements as part of a program established to correlate data\\nwith the Upper Atmosphere Research Satellite (UARS). \\n\\n The data from the balloon flight will also be compared to\\nreadings from the Atmospheric Trace Molecular Spectroscopy\\n(ATMOS) experiment which is currently flying onboard the shuttle\\nDiscovery.\\n\\n \"We launch these balloons several times a year as part of an\\nongoing ozone research program. In fact, JPL is actively\\ninvolved in the study of ozone and the atmosphere in three\\nimportant ways,\" said Dr. Jim Margitan, principal investigator on\\nthe balloon research campaign. \\n\\n \"There are two JPL instruments on the UARS satellite,\" he\\ncontinued. \"The ATMOS experiment is conducted by JPL scientists,\\nand the JPL balloon research provides collaborative ground truth\\nfor those activities, as well as data that is useful in its own\\nright.\"\\n\\n The measurements taken by the balloon payload will add more\\npieces to the complex puzzle of the atmosphere, specifically the\\nmid-latitude stratosphere during winter and spring. \\nUnderstanding the chemistry occurring in this region helps\\nscientists construct more accurate computer models which are\\ninstrumental in predicting future ozone conditions.\\n\\n The scientific balloon payload consisted of three JPL\\ninstruments: an ultraviolet ozone photometer which measures\\nozone as the balloon ascends and descends through the atmosphere;\\na submillimeterwave limb sounder which looks at microwave\\nradiation emitted by molecules in the atmosphere; and a Fourier\\ntransform infrared interferometer which monitors how the\\natmosphere absorbs sunlight. \\n\\n Launch occurred at about noontime, and following a three-\\nhour ascent, the balloon floated eastward at approximately 130\\nkilometers per hour (70 knots). Data was radioed to ground\\nstations and recorded onboard. The flight ended at 10 p.m.\\nPacific time in eastern New Mexico when the payload was commanded\\nto separate from the balloon.\\n\\n \"We needed to fly through sunset to make the infrared\\nmeasurements,\" Margitan explained, \"and we also needed to fly in\\ndarkness to watch how quickly some of the molecules disappear.\"\\n\\n It will be several weeks before scientists will have the\\ncompleted results of their experiments. They will then forward\\ntheir data to the UARS central data facility at the Goddard Space\\nFlight Center in Greenbelt, Maryland for use by the UARS\\nscientists. \\n\\n The balloon was launched by the National Scientific Balloon\\nFacility, normally based in Palestine, Tex., operating under a\\ncontract from NASA\\'s Wallops Flight Facility. The balloon was\\nlaunched in California because of the west-to-east wind direction\\nand the desire to keep the operation in the southwest.\\n\\n The balloons are made of 20-micron (0.8 mil, or less than\\none-thousandth of an inch) thick plastic, and are 790,000 cubic\\nmeters (28 million cubic feet) in volume when fully inflated with\\nhelium (120 meters (400 feet) in diameter). The balloons weigh\\nbetween 1,300 and 1,800 kilograms (3,000 and 4,000 pounds). The\\nscientific payload weighs about 1,300 kilograms (3,000) pounds\\nand is 1.8 meters (six feet) square by 4.6 meters (15 feet) high.\\n\\n The JPL balloon research is sponsored by NASA\\'s Upper\\nAtmosphere Research Program and the UARS Correlative Measurements\\nProgram. \\n\\n #####\\n ___ _____ ___\\n /_ /| /____/ \\\\ /_ /| Ron Baalke | baalke@kelvin.jpl.nasa.gov\\n | | | | __ \\\\ /| | | | Jet Propulsion Lab |\\n ___| | | | |__) |/ | | |__ M/S 525-3684 Telos | Being cynical never helps \\n/___| | | | ___/ | |/__ /| Pasadena, CA 91109 | to correct the situation \\n|_____|/ |_|/ |_____|/ | and causes more aggravation\\n | instead.\\n',\n", - " 'From: bh437292@longs.LANCE.ColoState.Edu (Basil Hamdan)\\nSubject: Re: was:Go Hezbollah!\\nReply-To: bh437292@lance.colostate.edu\\nNntp-Posting-Host: parry.lance.colostate.edu\\nOrganization: Engineering College, Colorado State University\\nLines: 95\\n\\nIn article <1993Apr15.224353.24945@das.harvard.edu>, adam@endor.uucp (Adam Shostack) writes:\\n\\n|> \\tTell me, do these young men also attack Syrian troops?\\n\\nIn the South Lebanon area, only Israeli (and SLA) and Lebanese troops \\nare present.\\nSyrian troops are deployed north of the Awali river. Between the \\nAwali river and the \"Security Zone\" only Lebanese troops are stationed.\\n\\n|> \\n|> >with the blood of its soldiers. If Israel is interested in peace,\\n|> >than it should withdraw from OUR land.\\n|> \\n|> \\tThere must be a guarantee of peace before this happens. It\\n|> seems that many of these Lebanese youth are unable to restrain\\n|> themselves from violence, and unable to to realize that their actions\\n|> prolong Israels stay in South Lebanon.\\n\\nThat is your opinion and the opinion of the Israeli government.\\nI agree peace guarantees would be better for all, but I am addressing\\nthe problem as it stands now. Hopefully a comprehensive peace settlement\\nwill be concluded soon, and will include security guarantees for\\nboth sides. My proposal was aimed at decreasing the casualties\\nin the interim period. In my opinion, if Israel withdraws\\nunilaterally it would still be better off than staying.\\nThe Israeli gov\\'t obviously agrees with you and is not willing\\nto do such a move. I hope to be be able to change your opinion\\nand theirs, that\\'s why I post to tpm.\\n\\n|> \\tIf the Lebanese army was able to maintain the peace, then\\n|> Israel would not have to be there. Until it is, Israel prefers that\\n|> its soldiers die rather than its children.\\n\\nAs I explained, I contend that if Israel does withdraw unilaterally\\nI believe no attacks would ensue against northern Israel. I also\\nexplained why I believe that to be the case. My suggestion\\nis aimed at reducing the level of tension and casualties on all sides.\\nIt is unfortunate that Israel does not agree with my opinion.\\n\\n\\n|> \\n|> >If Israel really wants to save some Israeli lives it would withdraw \\n|> >unilaterally from the so-called \"Security Zone\" before the conclusion\\n|> >of the peace talks. Such a move would save Israeli lives,\\n|> >advance peace efforts, give Israel a great moral lift, better Israel\\'s \\n|> >public image abroad and give it an edge in the peace negociations \\n|> >since Israel can rightly claim that it is genuinely interested in \\n|> >peace and has already offered some important concessions.\\n|> \\n|> \\tIsrael should withdraw from Lebanon when a peace treaty is\\n|> signed. Not a day before. Withdraw because of casualties would tell\\n|> the Lebanese people that all they need to do to push Israel around is\\n|> kill a few soldiers. Its not gonna happen.\\n\\n\\nThat is too bad.\\n \\n|> >Along with such a withdrawal Israel could demand that Hizbollah\\n|> >be disarmed by the Lebanese government and warn that it will not \\n|> >accept any attacks against its northern cities and that if such a\\n|> >shelling occurs than it will consider re-taking the buffer zone\\n|> >and will hold the Lebanese and Syrian government responsible for it.\\n|> \\n|> \\n|> \\tWhy should Israel not demand this while holding the buffer\\n|> zone? It seems to me that the better bargaining position is while\\n|> holding your neighbors land.\\n\\nBecause Israel is not occupying the \"Security Zone\" free of charge.\\nIt is paying the price for that. Once Israel withdraws it may have\\nlost a bargaining chip at the negociating table but it would save\\nsome soldiers\\' lives, that is my contention.\\n\\n If Lebanon were willing to agree to\\n|> those conditions, Israel would quite probably have left already.\\n|> Unfortunately, it doesn\\'t seem that the Lebanese can disarm the\\n|> Hizbolah, and maintain the peace.\\n\\nThat is completely untrue. Hizbollah is now a minor force in Lebanese\\npolitics. The real heavy weights are Syria\\'s allies. The gov\\'t is \\nsupported by Syria. The Lebanese Army is over 30,000 troops and\\nunified like never before. Hizbollah can have no moral justification\\nin attacking Israel proper, especially after Israeli withdrawal.\\nThat would draw the ire of the Lebanese the Syrian and the\\nIsraeli gov\\'ts. If Israel does withdraw and such an act \\n(Hizbolllah attacking Israel) would be akin to political and moral \\nsuicide.\\n\\nBasil\\n \\n|> Adam\\n|> Adam Shostack \\t\\t\\t\\t adam@das.harvard.edu\\n|> \\n|> \"If we had a budget big enough for drugs and sexual favors, we sure\\n|> wouldn\\'t waste them on members of Congress...\" -John Perry Barlow\\n',\n", - " 'From: gregh@niagara.dcrt.nih.gov (Gregory Humphreys)\\nSubject: New to Motorcycles...\\nOrganization: National Institutes of Health, Bethesda, MD\\nLines: 39\\n\\nHello everyone. I\\'m new to motorcycles so no flames please. I don\\'t\\nhave my bike yet so I need a few pieces of information:\\n\\n1) I only have about $1200-1300 to work with, so that would have \\nto cover everything (bike, helmet, anything else that I\\'m too \\nignorant to know I need to buy)\\n\\n2) What is buying a bike going to do to my insurance? I turn 18 in \\nabout a month so my parents have been taking care of my insurance up\\ntill now, and I need a comprehensive list of costs that buying a \\nmotorcycle is going to insure (I live in Washington DC if that makes\\na difference)\\n\\n3) Any recommendations on what I should buy/where I should look for it?\\n\\n4) In DC, as I imagine it is in every other state (OK, OK, we\\'re not a \\nstate - we\\'re not bitter ;)), you take the written test first and then\\nget a learners permit. However, I\\'m wondering how one goes about \\nlearning to ride the bike proficiently enough so as to a) get a liscence\\nand b) not kill oneself. I don\\'t know anyone with a bike who could \\nteach me, and the most advice I\\'ve heard is either \"do you live near a\\nfield\" or \"do you have a friend with a pickup truck\", the answers to both\\nof which are NO. Do I just ride around my neighborhood and hope for \\nthe best? I kind of live in a residential area but it\\'s not suburbs.\\nIt\\'s still the big city and I\\'m about a mile from downtown so that \\ndoesn\\'t seem too viable. Any stories on how you all learned?\\n\\nThanks for any replies in advance.\\n\\n\\t-Greg Humphreys\\n\\t:wq\\n\\t^^^\\n\\tMeant to do that. (Damn autoindent)\\n\\n--\\nGreg Humphreys | \"This must be Thursday. I never\\nNational Institutes of Health| could get the hang of Thursdays.\"\\ngregh@alw.nih.gov |\\n(301) 402-1817\\t | -Arthur Dent\\n',\n", - " 'From: joachim@kih.no (joachim lous)\\nSubject: Re: TIFF: philosophical significance of 42\\nOrganization: Kongsberg Ingeniorhogskole\\nLines: 30\\nNNTP-Posting-Host: samson.kih.no\\nX-Newsreader: TIN [version 1.1 PL8]\\n\\nulrich@galki.toppoint.de wrote:\\n\\n> According to the TIFF 5.0 Specification, the TIFF \"version number\"\\n> (bytes 2-3) 42 has been chosen for its \"deep philosophical \\n> significance\".\\n\\n> When I first read this, I rotfl. Finally some philosphy in a technical\\n> spec. But still I wondered what makes 42 so significant.\\n\\n> Last week, I read the Hitchhikers Guide To The Galaxy, and rotfl the\\n> second time. (After millions of years of calculation, the second-best\\n> computer of all time reveals that 42 is the answer to the question\\n> about life, the universe and everything)\\n\\n> Is this actually how they picked the number 42?\\n\\nYes.\\n\\n> Does anyone have any other suggestions where the 42 came from?\\n\\nI don\\'t know where Douglas Adams took it from, but I\\'m pretty sure he\\'s\\nthe one who launched it (in the Guide). Since then it\\'s been showing up \\nall over the place.\\n\\n _______________________________\\n / _ L* / _ / . / _ /_ \"One thing is for sure: The sheep\\n / _) /()(/(/)//)) /_ ()(/_) / / Is NOT a creature of the earth.\"\\n / \\\\_)~ (/ Joachim@kih.no / / \\n/_______________________________/ / -The back-masking on \\'Haaden II\\'\\n /_______________________________/ from \\'Exposure\\' by Robert Fripp.\\n',\n", - " 'From: steinly@topaz.ucsc.edu (Steinn Sigurdsson)\\nSubject: Re: DC-X Rollout Report\\nArticle-I.D.: topaz.STEINLY.93Apr6170313\\nDistribution: sci\\nOrganization: Lick Observatory/UCO\\nLines: 29\\nNNTP-Posting-Host: topaz.ucsc.edu\\nIn-reply-to: buenneke@monty.rand.org\\'s message of Tue, 6 Apr 1993 22:34:39 GMT\\n\\nIn article buenneke@monty.rand.org (Richard Buenneke) writes:\\n\\n McDonnell Douglas rolls out DC-X\\n\\n ...\\n\\n\\n SSTO research remains cloudy. The SDI Organization -- which paid $60\\n million for the DC-X -- can\\'t itself afford to fund full development of a\\n follow-on vehicle. To get the necessary hundreds of millions required for\\n\\nThis is a little peculiar way of putting it, SDIO\\'s budget this year\\nwas, what, $3-4 billion? They _could_ fund all of the DC development\\nout of one years budget - of course they do have other irons in the\\nfire ;-) and launcher development is not their primary purpose, but\\nthe DC development could as easily be paid for by diverting that money\\nas by diverting the comparable STS ops budget...\\n\\n- oh, and before the flames start. I applaud the SDIO for funding DC-X\\ndevlopment and I hope it works, and, no, launcher development is not\\nNASAs primary goal either, IMHO they are supposed to provide the\\nenabling technology research for others to do launcher development,\\nand secondarily operate such launchers as they require - but that\\'s\\njust me.\\n\\n| Steinn Sigurdsson\\t|I saw two shooting stars last night\\t\\t|\\n| Lick Observatory\\t|I wished on them but they were only satellites\\t|\\n| steinly@lick.ucsc.edu |Is it wrong to wish on space hardware?\\t\\t|\\n| \"standard disclaimer\"\\t|I wish, I wish, I wish you\\'d care - B.B. 1983\\t|\\n',\n", - " \"From: rogerc@discovery.uk.sun.com (Roger Collier)\\nSubject: Re: Camping question?\\nOrganization: Sun Microsystems (UK) Ltd\\nLines: 26\\nDistribution: world\\nReply-To: rogerc@discovery.uk.sun.com\\nNNTP-Posting-Host: discovery.uk.sun.com\\n\\nIn article 10823@bnr.ca, npet@bnr.ca (Nick Pettefar) writes:\\n\\n>\\n>Back in my youth (ahem) the wiffy and moi purchased a gadget which heated up\\n>water from a 12V source. It was for car use but we thought we'd try it on my\\n>RD350B. It worked OK apart from one slight problem: we had to keep the revs \\n>above 7000. Any lower and the motor would die from lack of electron movement.\\n\\nOn my LC (RZ to any ex-colonists) I replaced the bolt at the bottom of the barrel\\nwith a tap. When I wanted a coffee I could just rev the engine until boiling\\nand pour out a cup of hot water.\\nI used ethylene glycol as antifreeze rather than methanol as it tastes sweeter.\\n\\n(-:\\n\\n #################################\\n _ # Roger.Collier@Uk.Sun.COM #\\no_/_\\\\_o # #\\n (O_O) # Sun Microsystems, #\\n \\\\H/ # Coventry, England. #\\n U # (44) 203 692255 #\\n # DoD#226 GSXR1100L #\\n #################################\\n Keeper of the GSXR1100 list.\\n\\n\\n\",\n", - " 'From: jbh55289@uxa.cso.uiuc.edu (Josh Hopkins)\\nSubject: Re: Russian Operation of US Space Missions.\\nOrganization: University of Illinois at Urbana\\nLines: 10\\n\\nI know people hate it when someone says somethings like \"there was an article \\nabout that somewhere a while ago\" but I\\'m going to say it anyway. I read an\\narticle on this subject, almost certainly in Space News, and something like\\nsix months ago. If anyone is really interested in the subject I can probably\\nhunt it down given enough motivation.\\n-- \\nJosh Hopkins jbh55289@uxa.cso.uiuc.edu\\n \"Tout ce qu\\'un homme est capable d\\'imaginer, d\\'autres hommes\\n \\t seront capable de le realiser\"\\n\\t\\t\\t -Jules Verne\\n',\n", - " 'From: r0506048@cml3 (Chun-Hung Lin)\\nSubject: Re: JPEG file format?\\nNntp-Posting-Host: cml3.csie.ntu.edu.tw\\nReply-To: r0506048@csie.ntu.edu.tw\\nOrganization: Communication & Multimedia Lab, NTU, Taiwan\\nX-Newsreader: Tin 1.1 PL3\\nLines: 20\\n\\npeterbak@microsoft.com (Peter Bako) writes:\\n: \\n: Where could I find a description of the JPG file format? Specifically\\n: I need to know where in a JPG file I can find the height and width of \\n: the image, and perhaps even the number of colors being used.\\n: \\n: Any suggestions?\\n: \\n: Peter\\n\\nTry ftp.uu.net, in /graphics/jpeg.\\n--\\n--------------------------------\\n=================================================================\\nChun-Hung Lin ( ªL«T§» ) \\nr0506048@csie.ntu.edu.tw \\nCommunication & Multimedia Lab.\\nDept. of Comp. Sci. & Info. Eng.\\nNational Taiwan University, Taipei, Taiwan, R.O.C.\\n=================================================================\\n',\n", - " 'From: jake@bony1.bony.com (Jake Livni)\\nSubject: Re: H.R. violations by Israel/Arab st.\\nOrganization: The Department of Redundancy Department\\nLines: 37\\n\\nIn article <1483500360@igc.apc.org> Center for Policy Research writes:\\n\\n>I am born in Palestine (now Israel). I have family there. The lack of\\n>peace and utter injustice in my home country has affected me all my life.\\n\\nBullshit. You\\'ve been in Iceland for the past 30 years. You told us\\nso yourself. It had something to do with not wanting to suffer the\\nfate of your mother, who has lived with Jews for a long time or\\nsomesuch. Sounded awful.\\n\\n>I am concerned by Palestine (Israel) because I want peace to come to\\n>it. Peace AND justice. \\n\\nAre you as concerned about peace and justice in Palestine (Jordan)?\\n\\n>Israeli trights and Palestinian rights are not symmetrical. The first\\n>party has a state and the other has none. The first is an occupier and\\n>the second the occupied. \\n\\nLet\\'s say that Israel grants the PLO _EVERYTHING THEY EVER ASKED FOR_.\\nThat Israel goes back to the 1967 borders. What will the \"Palestinean\\nArabs\" in Tel-Aviv call themselves? The Palestineans in West\\nJerusalem? In Haifa? Will they still claim to be \"occupied\"?\\n\\nOr do you suggest that Israel expell or kill off any remaining Arabs,\\nmuch as the Arabs did to their Jews?\\n\\nIndeed, there is much which is not symmetrical about the conflict in\\nthe M.E. And most of this lack of symmetry does NOT favor Israel.\\n\\n>Elias Davidsson\\n>Iceland\\n\\n-- \\nJake Livni jake@bony1.bony.com Ten years from now, George Bush will\\nAmerican-Occupied New York have replaced Jimmy Carter as the\\nMy opinions only - employer has no opinions. standard of a failed President.\\n',\n", - " 'From: timmbake@mcl.ucsb.edu (Bake Timmons)\\nSubject: Re: Amusing atheists and agnostics\\nLines: 29\\n\\n\\nRobert Knowles writes:\\n\\n>>\\n>>My my, there _are_ a few atheists with time on their hands. :)\\n>>\\n>>OK, first I apologize. I didn\\'t bother reading the FAQ first and so fired an\\n>>imprecise flame. That was inexcusable.\\n>>\\n\\n>How about the nickname Bake \"Flamethrower\" Timmons?\\n\\nSure, but Robert \"Koresh-Fetesh\" (sic) Knowles seems good, too. :) \\n>\\n>You weren\\'t at the Koresh compound around noon today by any chance, were you?\\n>\\n>Remember, Koresh \"dried\" for your sins.\\n>\\n>And pass that beef jerky. Umm Umm.\\n\\nThough I wasn\\'t there, at least I can rely on you now to keep me posted on what\\nwhat he\\'s doing.\\n\\nHave you any other fetishes besides those for beef jerky and David Koresh? \\n--\\nBake Timmons, III\\n\\n-- \"...there\\'s nothing higher, stronger, more wholesome and more useful in life\\nthan some good memory...\" -- Alyosha in Brothers Karamazov (Dostoevsky)\\n',\n", - " 'From: kmr4@po.CWRU.edu (Keith M. Ryan)\\nSubject: Re: [soc.motss, et al.] \"Princeton axes matching funds for Boy Scouts\"\\nArticle-I.D.: po.kmr4.1447.734101641\\nOrganization: Case Western Reserve University\\nLines: 28\\nNNTP-Posting-Host: b64635.student.cwru.edu\\n\\nIn article <1993Apr6.041343.24997@cbnewsl.cb.att.com> stank@cbnewsl.cb.att.com (Stan Krieger) writes:\\n\\n>The point has been raised and has been answered. Roger and I have\\n>clearly stated our support of the BSA position on the issue;\\n>specifically, that homosexual behavior constitutes a violation of\\n>the Scout Oath (specifically, the promise to live \"morally straight\").\\n\\n\\tPlease define \"morally straight\". \\n\\n\\t\\n\\t\\n\\tAnd, don\\'t even try saying that \"straight\", as it is used here, \\nimplies only hetersexual behavior. [ eg: \"straight\" as in the slang word \\nopposite to \"gay\" ]\\n\\n\\n\\tThis is alot like \"family values\". Everyone is talking about them, \\nbut misteriously, no one knows what they are.\\n---\\n\\n \"One thing that relates is among Navy men that get tatoos that \\n say \"Mom\", because of the love of their mom. It makes for more \\n virile men.\"\\n\\n Bobby Mozumder ( snm6394@ultb.isc.rit.edu )\\n April 4, 1993\\n\\n The one TRUE Muslim left in the world. \\n',\n", - " \"From: keith@cco.caltech.edu (Keith Allan Schneider)\\nSubject: Re: Political Atheists?\\nOrganization: California Institute of Technology, Pasadena\\nLines: 11\\nNNTP-Posting-Host: punisher.caltech.edu\\n\\narromdee@jyusenkyou.cs.jhu.edu (Ken Arromdee) writes:\\n\\n>>The motto originated in the Star-Spangled Banner. Tell me that this has\\n>>something to do with atheists.\\n>The motto _on_coins_ originated as a McCarthyite smear which equated atheism\\n>with Communism and called both unamerican.\\n\\nNo it didn't. The motto has been on various coins since the Civil War.\\nIt was just required to be on *all* currency in the 50's.\\n\\nkeith\\n\",\n", - " 'From: manes@magpie.linknet.com (Steve Manes)\\nSubject: Re: Oops! Oh no!\\nOrganization: Manes and Associates, NYC\\nX-Newsreader: TIN [version 1.1 PL9]\\nLines: 53\\n\\nWm. L. Ranck (ranck@joesbar.cc.vt.edu) wrote:\\n: I hate to admit this, and I\\'m still mentally kicking myself for it.\\n: I rode the brand new K75RT home last Friday night. 100 miles in rain\\n: and darkness. No problems. Got it home and put it on the center stand.\\n: The next day I pushed it off the center stand in preparation for going\\n: over to a friend\\'s house to pose. You guessed it. It got away from me\\n: and landed on its right side. \\n: Scratched the lower fairing, cracked the right mirror, and cracked the\\n: upper fairing. \\n: *DAMN* am I stupid! It\\'s going to cost me ~$200 to get the local\\n: body shop to fix it. And that is after I take the fairing off for them.\\n: Still, that\\'s probably cheaper than the mirror alone if I bought a \\n: replacement from BMW.\\n\\nYou got off cheap. My sister\\'s ex-boyfriend was such an incessant pain\\nin the ass about wanting to ride my bikes (no way, Jose) that I\\nfinally took him to Lindner\\'s BMW in New Canaan, CT last fall where\\nI had seen a nice, used K100RS in perfect condition. After telling\\neveryone in the shop his Norton war stories from fifteen years ago,\\nsigning the liability waiver, and getting his pre-flight, off he went...\\n\\nWell, not quite. I walked out of a pizza shop up the street,\\nfeeling good about myself (made my sister\\'s boyfriend happy and got\\nthe persistent wanker off my ass for good), heard the horrendous\\nracket of an engine tortured to its red line and then a crash. I\\nsaw people running towards the obvious source of the disturbance...\\nJeff laying under the BMW with the rear wheel spinning wildly and\\nsomeone groping for the kill switch. I stared in disbelief with\\na slice hanging out of my mouth as Matty, the shop manager, slid\\nup beside me and asked, \"Friend of yours, Steve?\". \"Shit, Matty,\\nit could have been worse. That could been my FLHS!\"\\n\\nJeff hadn\\'t made it 10 inches. Witnesses said he lifted his feet\\nbefore letting out the clutch and gravity got the best of him.\\nJeff claimed that the clutch didn\\'t engage. Matty was quick.\\nWhile Jeff was still stuttering in embarrassed shock he managed\\nto snatch Jeff\\'s credit card for a quick imprint and signature. Twenty\\nminutes later, when Jeff\\'s color had paled to a flush, Matty\\npresented him with an estimate of $580 for a busted right mirror\\nand a hairline crack in the fairing. That was for fixing the crack\\nand masking the damaged area, not a new fairing. Or he could buy the\\nbike.\\n\\nI\\'m not sure what happened later as my sister split up with Jeff shortly\\nafterwards (to hook up with another piece of work) except that Matty\\ntold me he ran the charge through in December and that it went\\nuncontested.\\n\\n\\n-- \\nStephen Manes\\t\\t\\t\\t\\t manes@magpie.linknet.com\\nManes and Associates\\t\\t\\t\\t New York, NY, USA =o&>o\\n\\n',\n", - " \"From: pmm7@ellis.uchicago.edu (peggy boucher murphy (you had to ask?))\\nSubject: Re: The U.S. Holocaust Memorial Museum: A Costly and Dangerous Mistake\\nReply-To: pmm7@midway.uchicago.edu\\nOrganization: University of Chicago\\nLines: 21\\n\\nIn article Steven Smith writes:\\n>dgannon@techbook.techbook.com (Dan Gannon) writes:\\n>> THE U.S. HOLOCAUST MEMORIAL MUSEUM: A COSTLY AND DANGEROUS MISTAKE\\n>>\\n>> by Theodore J. O'Keefe\\n>>\\n>> [Holocaust revisionism]\\n>> \\n>> Theodore J. O'Keefe is an editor with the Institute for Historical\\n>> Review. Educated at Harvard University . . .\\n>\\n>According to the 1990 Harvard Alumni Directory, Mr. O'Keefe failed to\\n>graduate. You may decide for yourselves if he was indeed educated\\n>anywhere.\\n\\n(forgive any inaccuracies, i deleted the original post)\\nisn't this the same person who wrote the book, and was censured\\nin canada a few years back? \\n\\npeg\\n\\n\",\n", - " 'From: prb@access.digex.com (Pat)\\nSubject: Re: Jemison on Star Trek (Better Ideas)\\nOrganization: Express Access Online Communications USA\\nLines: 11\\nNNTP-Posting-Host: access.digex.net\\n\\nIn article <1993Apr25.154449.1@aurora.alaska.edu> nsmca@aurora.alaska.edu writes:\\n|\\n|Better idea for use of NASA Shuttle Astronauts and Crew is have them be found\\n|lost in space after a accident with a worm hole or other space/time glitch..\\n|\\n|Maybe age Jemison a few years (makeup and such) and have her as the only\\n>survivour of a failed shuttle mission that got lost.. \\n\\n\\nOf course that asumes the mission was able to launch :-)\\n\\n',\n", - " \"From: prb@access.digex.com (Pat)\\nSubject: Re: Command Loss Timer (Re: Galileo Update - 04/22/93)\\nOrganization: Express Access Online Communications USA\\nLines: 20\\nNNTP-Posting-Host: access.digex.net\\nKeywords: Galileo, JPL\\n\\n\\n\\nINteresting question about Galileo.\\n\\nGalileo's HGA is stuck. \\n\\nThe HGA was left closed, because galileo had a venus flyby.\\n\\nIf the HGA were pointed att he sun, near venus, it would\\ncook the foci elements.\\n\\nquestion: WHy couldn't Galileo's course manuevers have been\\ndesigned such that the HGA did not ever do a sun point.?\\n\\nAfter all, it would normally be aimed at earth anyway?\\n\\nor would it be that an emergency situation i.e. spacecraft safing\\nand seek might have caused an HGA sun point?\\n\\npat\\n\",\n", - " \"From: perrakis@embl-heidelberg.de\\nSubject: Re: Turkey-Cyprus-Bosnia-Serbia-Greece (Armenia-Azeris)\\nOrganization: EMBL, European Molecular Biology Laboratory\\nLines: 76\\n\\nIn article <93105.134708FINAID2@auvm.american.edu>, writes:\\n>> Look Mr. Atakan: I have repeated it in the past, and I shall repeat it once\\n>> more, that when it comes to how Greeks are treating the Turks in Greece,\\n>> you and your copatriots should simply shut up.\\n>>\\n>> Because what you are hearing is simply a form of propaganda from your ethnic\\n>> fellows who studied at the Greek universities without paying any money for\\n>> tuition, food, and helth insurance.\\n>>\\n>> And any high school graduate can put down some simple math and compare the\\n>> grouth of the Turkish community in Greece with the destruction of the Greek\\n>> minority in Turkey.\\n>>\\n>> >Aykut Atalay Atakan\\n>>\\n>> Panos Tamamidis\\n> \\n> Mr. Tamamidis:\\n> \\n> Before repling your claims, I suggest you be kind to individuals\\n> who are trying to make some points abouts human rights, discriminations,\\n> and unequal treatment of Turkish minority in GREECE.I want the World\\n> know how bad you treat these people. You will deny anything I say but\\n> It does not make any difrence because I will write things that I saw with\\n> my eyes.You prove yourself prejudice by saying free insurance, school\\n> etc. Do you Greeks only give these things to Turkish minority or\\n> everybody has rights to get them.Your words even discriminate\\n> these people. You think that you are giving big favor to these\\n> people by giving these thing that in reality they get nothing.\\n> If you do not know unhuman practices that are being conducted\\n> by the Government of the Greece, I suggest that you investigate\\n> to see the facts. Then, we can discuss about the most basic\\n> human rights like fredom of religion,\\nIf you did not see with your 'eyes' freedom of religion you\\nmust ne at least blind !\\n> fredom of press of Turkish\\n2 weeks ago I read the interview of a Turkish journalist in a GReek magazine,\\nhe said nothing about being forbiden to have Turkish press in Greece !\\n> minority, ethnic cleansing of all Turks in Greece,\\nGive as a brake. You call athnic cleansing of apopulation when it doubles?\\n> freedom of\\n> right to have property without government intervention,\\nWhat do you mean by that ? Anyway in Greece, as in every country if you want\\nsome property you 'inform' the goverment .\\n> fredom of right to vote to choose your community leaders,\\nWell well well. When Turkish in Area of Komotini elect 1 out of 3\\nrepresenatives of this area to GReek parliament, if not freedom what is it?\\n3 out of 3 ? Maybe there are only Turks living there ....\\n> how Greek Government encourages people to destroy\\n> religious places, houses, farms, schools for Turkish minority then\\n> forcing them to go to turkey without anything with them.\\nI cannot deny that actions of fanatics from both sides were reported.\\nA minority of Greek idiots indeed attack religious places, which\\nwere protected by the Greek police. Photographs of Greek policemen \\npreventing Turks from this non brain minority were all over Greek press.\\n> Before I conclude my writing, let me point out how Greeks are\\n> treated in Turkey. We do not consider them Greek minority, instead\\n> we consider a part of our society. There is no difference among people in\\n> Turkey. We do not state that Greek minority go to Turkish universities,\\n> get free insurance, food, and health insurance because these are basic\\n> human needs and they are a part of turkish community. All big businesses\\n> belong to Greeks in Turkey and we are proud to have them.unlike the\\n> Greece which tries to destroy Turkish minority, We encourage all\\n> minorities in Turkey to be a part of Turkish society.\\n\\n\\nOh NO. PLEASE DO GIVE AS A BRAKE !\\nMinorities in Turkish treated like that ? YOur own countrymen die\\nin the prisons every day bacause of their political beliefs, an this\\nis reported by Turks, and you want us to believe tha Turkey is the paradise\\nof Human rights ? Business of Greeks i Turkey? Yes 80 years ago !\\nYou seem to be intelligent, so before presenting Turkey as the paradise of\\nHuman rights just invastigate this matter a bit more.\\n> \\n> Aykut Atalay Atakan\\n> \\n\",\n", - " \"From: sandvik@newton.apple.com (Kent Sandvik)\\nSubject: Re: some thoughts.\\nOrganization: Cookamunga Tourist Bureau\\nLines: 24\\n\\nIn article , bissda@saturn.wwc.edu (DAN\\nLAWRENCE BISSELL) wrote:\\n> \\n> \\tFirst I want to start right out and say that I'm a Christian. It \\n> makes sense to be one. Have any of you read Tony Campollo's book- liar, \\n> lunatic, or the real thing? (I might be a little off on the title, but he \\n> writes the book. Anyway he was part of an effort to destroy Christianity, \\n> in the process he became a Christian himself.\\n\\nSeems he didn't understand anything about realities, liar, lunatic\\nor the real thing is a very narrow view of the possibilities of Jesus\\nmessage.\\n\\nSigh, it seems religion makes your mind/brain filter out anything\\nthat does not fit into your personal scheme. \\n\\nSo anyone that thinks the possibilities with Jesus is bound to the\\nclassical Lewis notion of 'liar, lunatic or saint' is indeed bound\\nto become a Christian.\\n\\nCheers,\\nKent\\n---\\nsandvik@newton.apple.com. ALink: KSAND -- Private activities on the net.\\n\",\n", - " \"From: farzin@apollo3.ntt.jp (Farzin Mokhtarian)\\nSubject: News briefs from KH # 1026\\nOriginator: sehari@vincent1.iastate.edu\\nOrganization: NTT Corp. Japan\\nLines: 31\\n\\n\\nFrom: Kayhan Havai # 1026\\n--------------------------\\n \\n \\no Dr. Namaki, deputy minister of health stated that infant\\n mortality (under one year old) in Iran went down from 120 \\n per thousand before the revolution to 33 per thousand at\\n the end of 1371 (last month).\\n \\no Dr Namaki also stated that before the revolution only\\n 254f children received vaccinations to protect them\\n from various deseases but this figure reached 93at\\n the end of 1371.\\n \\no Dr. Malekzadeh, the minister of health mentioned that\\n the population growth rate in Iran at the end of 1371\\n went below 2.7\\n \\no During the visit of Mahathir Mohammad, the prime minister\\n of Malaysia, to Iran, agreements for cooperation in the\\n areas of industry, trade, education and tourism were\\n signed. According to one agreement, Iran will be in\\n charge of building Malaysia's natural gas network.\\n \\n----------------------------------------------------------\\n \\n - Farzin Mokhtarian\\n \\n\\n-- \\n\",\n", - " \"From: jlevine@rd.hydro.on.ca (Jody Levine)\\nSubject: Re: insect impacts\\nOrganization: Ontario Hydro - Research Division\\nLines: 64\\n\\nI feel childish.\\n\\nIn article <1ppvds$92a@seven-up.East.Sun.COM> egreen@East.Sun.COM writes:\\n>In article 7290@rd.hydro.on.ca, jlevine@rd.hydro.on.ca (Jody Levine) writes:\\n>>>>\\n>>>>how _do_ the helmetless do it?\\n>>>\\n>>>Um, the same way people do it on \\n>>>horseback\\n>>\\n>>not as fast, and they would probably enjoy eating bugs, anyway\\n>\\n>Every bit as fast as a dirtbike, in the right terrain. And we eat\\n>flies, thank you.\\n\\nWho mentioned dirtbikes? We're talking highway speeds here. If you go 70mph\\non your dirtbike then feel free to contribute.\\n\\n>>>jeeps\\n>>\\n>>you're *supposed* to keep the windscreen up\\n>\\n>then why does it go down?\\n\\nBecause it wouldn't be a Jeep if it didn't. A friend of mine just bought one\\nand it has more warning stickers than those little 4-wheelers (I guess that's\\nbecuase it's a big 4 wheeler). Anyway, it's written in about ten places that\\nthe windshield should remain up at all times, and it looks like they've made\\nit a pain to put it down anyway, from what he says. To be fair, I do admit\\nthat it would be a similar matter to drive a windscreenless Jeep on the \\nhighway as for bikers. They may participate in this discussion, but they're\\nprobably few and far between, so I maintain that this topic is of interest\\nprimarily to bikers.\\n\\n>>>snow skis\\n>>\\n>>NO BUGS, and most poeple who go fast wear goggles\\n>\\n>So do most helmetless motorcyclists.\\n\\nNotice how Ed picked on the more insignificant (the lower case part) of the \\ntwo parts of the statement. Besides, around here it is quite rare to see \\nbikers wear goggles on the street. It's either full face with shield, or \\nopen face with either nothing or aviator sunglasses. My experience of \\nbicycling with contact lenses and sunglasses says that non-wraparound \\nsunglasses do almost nothing to keep the crap out of ones eyes.\\n\\n>>The question still stands. How do cruiser riders with no or negligible helmets\\n>>stand being on the highway at 75 mph on buggy, summer evenings?\\n>\\n>helmetless != goggleless\\n\\nOk, ok, fine, whatever you say, but lets make some attmept to stick to the\\npoint. I've been out on the road where I had to stop every half hour to clean\\nmy shield there were so many bugs (and my jacket would be a blood-splattered\\nmess) and I'd see guys with shorty helmets, NO GOGGLES, long beards and tight\\nt-shirts merrily cruising along on bikes with no windscreens. Lets be really\\nspecific this time, so that even Ed understands. Does anbody think that \\nsplattering bugs with one's face is fun, or are there other reasons to do it?\\nImage? Laziness? To make a point about freedom of bug splattering?\\n\\nI've bike like | Jody Levine DoD #275 kV\\n got a you can if you -PF | Jody.P.Levine@hydro.on.ca\\n ride it | Toronto, Ontario, Canada\\n\",\n", - " 'From: mjs@sys.uea.ac.uk (Mike Sixsmith)\\nSubject: Re: Countersteering_FAQ please post\\nOrganization: UEA School of Information Systems, Norwich, UK.\\nLines: 86\\nNntp-Posting-Host: zen.sys.uea.ac.uk\\n\\nleavitt@cs.umd.edu (Mr. Bill) writes:\\n\\n>mjs@sys.uea.ac.uk (Mike Sixsmith) writes:\\n>mjs>Also, IMHO, telling newbies about countersteering is, er, counter-productive\\n>mjs>cos it just confuses them. I rode around quite happily for 10 years \\n>mjs>knowing nothing about countersteering. I cannot say I ride any differently\\n>mjs>now that I know about it.\\n\\n>I interpret this to mean that you\\'re representative of every other\\n>motorcyclist in the world, eh Mike? Rather presumptive of you!\\n\\nIMHO = in my humble opinion!!\\n\\n>leavitt@cs.umd.edu (Mr. Bill) writes:\\n>leavitt>The time to learn countersteering techniques is when you are first\\n>leavitt>starting to learn, before you develop any bad habits. I rode for\\n>leavitt>five years before taking my first course (MSF ERC) and learning\\n>leavitt>about how to countersteer. It\\'s now eight years later, and I *still*\\n>leavitt>have to consciously tell myself \"Don\\'t steer, COUNTERsteer!\" Old\\n>leavitt>habits die hard, and bad habits even harder.\\n\\n>mjs>Sorry Bill, but this is complete bollocks. You learned how to countersteer \\n>mjs>the first time you rode the bike, it\\'s natural and intuitive. \\n\\n>Sorry Mike, I\\'m not going to kick over the \"can you _not_ countersteer\\n>over 5mph?\" stone. That one\\'s been kicked around enough. For the sake of\\n>argument, I\\'ll concede that it\\'s countersteering (sake of argument only).\\n\\n>mjs>MSF did not teach you *how* to countersteer, it only told you what\\n>mjs>you were already doing.\\n\\n>And there\\'s no value in that? \\n\\n\\nI didn\\'t say there was no value - all I said was that it is very confusing\\nto newbies. \\n\\n> There\\'s a BIG difference in: 1) knowing\\n>what\\'s happening and how to make it do it, especially in the extreme\\n>case of an emergency swerve, and: 2) just letting the bike do whatever\\n>it does to make itself turn. Once I knew precisely what was happening\\n>and how to make it do it abruptly and on command, my emergency avoidance\\n>abilities improved tenfold, not to mention a big improvement in my normal\\n>cornering ability. I am much more proficient \"knowing\" how to countersteer\\n>the motorcycle rather than letting the motorcycle steer itself. That is,\\n>when I *remember* to take cognitive command of the bike rather than letting\\n>it run itself through the corners. Whereupon I return to my original\\n>comment - better to learn what\\'s happening right from the start and how\\n>to take charge of it, rather than developing the bad habit of merely going\\n>along for the ride.\\n\\nBill, you are kidding yourself here. Firstly, motorcycles do not steer\\nthemselves - only the rider can do that. Secondly, it is the adhesion of the\\ntyre on the road, the suspension geometry and the ground clearance of the\\n motorcycle which dictate how quickly you can swerve to avoid obstacles, and\\nnot the knowledge of physics between the rider\\'s ears. Are you seriously\\nsuggesting that countersteering knowledge enables you to corner faster\\nor more competentlY than you could manage otherwise??\\n\\n\\n>Mike, I\\'m extremely gratified for you that you have such a natural\\n>affinity and prowess for motorcycling that formal training was a total\\n>waste of time for you (assuming your total \"training\" hasn\\'t come from\\n>simply from reading rec.motorcycles). However, 90%+ of the motorcyclists\\n>I\\'ve discussed formal rider education with have regarded the experience\\n>as overwhelmingly positive. This regardless of the amount of experience\\n>they brought into the course (ranging from 10 minutes to 10+ years).\\n\\nFormal training in this country (as far as I am aware) does not include\\ncountersteering theory. I found out about countersteering about six years ago,\\nfrom a physics lecturer who was also a motorcyclist. I didn\\'t believe him\\nat first when he said I steered my bike to the right to make it turn left,\\nbut I went out and analysed closely what I was doing, and realized he was \\nright! It\\'s an interesting bit of knowledge, and I\\'ve had a lot of fun since\\nthen telling others about it, who were at first as sceptical as I was. But\\nthat\\'s all it is - an interesting bit of knowledge, and to claim that\\nit is essential for all bikers to know it, or that you can corner faster\\nor better as a result, is absurd.\\n\\nFormal training is in my view absolutely essential if you\\'re going to\\nbe able to ride a bike properly and safely. But by including countersteering\\ntheory in newbie courses we are confusing people unnecessarily, right at\\nthe time when there are *far* more important matters for them to learn.\\nAnd that was my original point.\\n\\nMike\\n',\n", - " \"From: frahm@ucsu.colorado.edu (Joel A. Frahm)\\nSubject: Re: Identify this bike for me\\nArticle-I.D.: colorado.1993Apr6.153132.27965\\nReply-To: frahm@ucsu.colorado.edu\\nOrganization: Department of Rudeness and Pomposity\\nLines: 17\\nNntp-Posting-Host: sluggo.colorado.edu\\n\\n\\nIn article <1993Apr6.002937.9237@adobe.com> cjackson@adobe.com (Curtis Jackson) writes:\\n>In article <1993Apr5.193804.18482@ucsu.Colorado.EDU> coburnn@spot.Colorado.EDU (Nicholas S. Coburn) writes:\\n>}first I thought it was an 'RC31' (a Hawk modified by Two Brothers Racing),\\n>}but I did not think that they made this huge tank for it. Additionally,\\n>\\nI think I've seen this bike. Is it all white, with a sea-green stripe\\nand just 'HONDA' for decals, I've seen such a bike numerous times over\\nby Sewall hall at CU, and I thought it was a race-prepped CBR. \\nI didn't see it over at the EC parking lot (I buzzed over there on my \\nway home, all of 1/2 block off my route!) but it was gone.\\n\\nIs a single sided swingarm available for the CBR? I would imagine so, \\nkinda neccisary for quick tire changes. When I first saw it, I assumed it\\nwas a bike repainted to cover crash damage.\\n\\nJoel.\\n\",\n", - " 'From: nanderso@Endor.sim.es.com (Norman Anderson)\\nSubject: COMET...when did/will she launch?\\nOrganization: Evans & Sutherland Computer Corp.\\nLines: 12\\n\\nCOMET (Commercial Experiment Transport) is to launch from Wallops Island\\nVirginia and orbit Earth for about 30 days. It is scheduled to come down\\nin the Utah Test & Training Range, west of Salt Lake City, Utah. I saw\\na message in this group toward the end of March that it was to launch \\non March 27. Does anyone know if it launched on that day, or if not, \\nwhen it is scheduled to launch and/or when it will come down.\\n\\nI would also be interested in what kind(s) of payload(s) are onboard.\\n\\nThanks for your help.\\n\\nNorman Anderson nanderso@endor.sim.es.com\\n',\n", - " ...],\n", - " 'filenames': array(['/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/sci.space/60862',\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76238',\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/alt.atheism/53093',\n", - " ...,\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/sci.space/60155',\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76058',\n", - " '/home/anotherbugmaster/scikit_learn_data/20news_home/20news-bydate-train/talk.politics.mideast/76304'],\n", - " dtype='" ] @@ -3038,7 +714,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm8ZllZHvqsU1U9VHX1KDKZK4omRqOSK0S8KqBRNDhEI2FQQaKJcEkUZ1FypcFZf45BIo4E2ojGCWcmbQFnnOIEOHRzUbql6aaHquqp6uz8sfdb5z3P9z7vXt+pU3X2h+/z+53fd749rHmtbz3vtNowDCgUCoVCobB8bB10AQqFQqFQKPShfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAjqR7tQKBQKhQ3B7I92a+0ZrbWhtXZ7a+0qund4unfteSvhhqK19rjW2rWttS26/rCpzZ5xQEUr7AOmefH5B5T3MP2t5N9au661diNdu3F6/n+K9H59uv9GkQ//XddRxq3W2h+31r6Crn9Ga+31rbV3ttbubq29rbX2c621T3bP2JrzAR3tcO1cWQ4SU91evM9pqn7xfzfuU16XTOk9d5/S+4BpXfy/gns3t9a+fz/y2Q+01j6utfY70zh9R2vt21prF3e89ztJv/zcuZbr8BrPXgHgqwHsS+f9I8DjADwfwDcA2HbXbwLwUQD+5gDKVNg/PAPj/PmRAyzD81tr1w3DcF/Hs3cB+IzW2vFhGO6yi6219wXw2Ol+hJcCeAldu6Ujv88F8GAAZ3+wWmtfDOB7MLbZtwM4CeDhAD4FwMcD+NWOdDcNLwDwe6217x6G4a37lOZH0fefBfAnAK511+7dp7zunfL7//cpvQ/AuC6+NkjzCQDevU/5nBNaa4/EOB5fCeB5GMv97QAeCODzZl7/AgDH6dpjAXwLgJ8/17Kt86P9agBf1Fr7rmEY/uFcM/7HimEY7gXwOwddjsLG49UAHg/gmQD+W8fzrwHwiQA+C+MPseFpAG4E8HYAh4L3/n4Yhr2M168A8LJhGE7RtZ8bhuEL3LVfA/CDLJFaKlprF09zuAvDMPxRa+2PAHwJgGfvRxm4P1pr9wJ4V28/rVOHYYy+dUHWq2EY/vBC5NOJrwfw1wCeOgzDGQCva60NAF7SWvu2YRj+XL0Y3WutfRGAUwD+17kWbJ2J8g3T53+de7C19q9aa69trZ1orZ1srb2utfav6JmXttb+rrX2L1trb2itnWqt/VVr7Vk9hVnn/dba+7XWfqy1dktr7d5JbPeZwXNPba29ubV2T2vtT1trn95au761dr175pLW2ne11v5sqt/NrbVfaK19kHvmWoy7SQC430Qj071d4vHW2le21u5rrV0TlOcvWmuvdN+Ptta+tbV2w/TODa215/UseK21Y621b2mt/c3UBje31n66tfZA98w6/fbI1tpvTaKjt7TWPmW6/2VtFMfe2Vp7ZWvtAfT+0Fr7xqncfze9//rW2iPoudZa+9Ip7ftaaze11l7UWrs8SO8bWmtfPLXHXa2132itfUjQBv+ujaKrU21U9/yvRmK6qezXtdae0lr7y6kd3tRa+xj3zPUYd84f3XbEXtdP9x7UWvsfbRSn3TuV+xdba+8910dr4vcB/ByA57XWjnY8fzeAn8L4I+3xNAAvB7BvoRFbax8J4EMBsDj+agA3R+8Mw7AdXXdpPrK19g+ttZ9prV2SPPfhrbWfb629expbv9la+1h65lGttZ9y4+8trbVvaq1dSs9d31p7Y2vt01prf9TGH8dnT/e6xx2AVwD4HE7/QqC19orW2l+31h4zjf27Abxwuvf0qcy3TOX/g9baZ9P7K+LxaR053Vr7wNbaq6Y5ckNr7Wtaay0pyycD+JXp6xvc3Hn0dH+XeLy19qzp/qPauFbZevvl0/1Pa639yZT/77bWPjzI88mttd+b5vy7p/Z46EybHQXwCQBeMf1gG34cwBkAn569H6R3OYDPBPCzJOV6aBt/l26a1op3TGP3Kp0agGEY0j+MYsABo3jgWzGKS953und4unete/7DMC4QfwDgiRh39r8/Xftw99xLAdwJ4C8xsoVPxDjJBwAf11GurvcB/BMA7wTwZxhFdp+EUTy3DeDT3XOfOF37OYxims8D8LcA3gHgevfcFQB+CMBTMC7cn4mRxbwbwIOmZ95nemYA8NEAHg3g0dO9h03XnzF9fyjGgfBsqt9HTM99lmvrNwC4FeOu/V9jFNvcA+A7ZtrqIgC/hVEc+f9NdX0igB8E8EF77Le/APD5AD55Ktc9AL4DwC9gFHd+/vTcT1JZBoys7jcBfAaAJwN4y1Svq91z3zQ9+6Kpz74UwIkpry1K70YAr8I4mZ4I4AaMu+TD7rlnTc/+yNS/T8Y4dm4AcNw9dyOAt011fyKATwXwRwBuB3Dl9MwHA/hDjCLJR09/Hzzdew2AtwL4HACPAfDvAXw/gIfNjenev6ke3wDgQ6ax81x37zoAN9LzN07XHzc9/z7T9UdPaT0cwPUA3hjk840Yx97Zv47yPX/q+y26/msY2cZXAvinPWvO9P3xGMX33w/gEJXPrz3/N8Yx/sap756AURx5L4CPcM99Fkby8akY5/CzMW4mXkHluB7j2nEDxvH8OAAfts64m5595PT8x+/XGIj6V9x7xTR23zbV83EAHuX66f/FuB58IsY5dwbT2jQ9c8lUdj/GvmV67k8xrkWfgFENMmBkpqqcV0zPDwC+EDtz57Lp/s0Avj+Ys28B8DVTPj86XftmjPPvSVP7vxXjeu3Hx5dgXNNfAuDfAHgqgL+anj2alPMRUx6fGdz7WwAvX7N/vmBK7xPp+hswrqNPxbhWPAnjmvzgNL2ODJ+BnR/tq6cB8CPTvehH+6fgFrjp2uUAbgPwM+7aS7H6A3sxxsX7BzrK1fU+gB/GqIO7ht5/DYA/dt9/C+MPe3PX7Ifz+qQchwAcxbiofKm7fu30Lk/gh8H9aLuy/DY9990YNwIXT9+fNr33GHrueQDuA/DeSRk/f3r305Nn1u23x7hrH4adyeUnzXcCuB+rC+27AByjNrkfwNdP36/GuNC+lMr4uVyP6ftfATjirj1xuv7/TN8vA3AHpnHrnnu/qe2+xF27cWr3q9w1W3Q/2127HvQjN10/AeCL15nU6/5NZfmG6f+XT310xfQ9+9Fu0//Pna6/GMBvqvpM+UR/HzBTvl+xdOn6PwXwv10678LIXh5Pzz0DO2vO50x99ALRDn7teR3GjdhFND//EqNYPiprw7iOfS7GBf4ad+/66dojRN7puHPXj2D8kfva8zQebkT+oz0A+KSZNLamdng5gN9119WP9q4f6Kkd3wrg52fy+eTp3Y8J7qkf7a9y1y7COD/vwbT5nK4/aXr2I6fvV2LcwL04GIOnATwrKePHT2k9Lrj3JgC/tGb//AZGouLJRpvG9Reu299r6ZGGYbgNI5t6emvtn4nHHgPgF4dhuN29dyfGHe9j6dlTwzD8unvuXowdf1Zk2UYL9bN/676PcZD8MoA7KJ1XAfjw1trlrbVDGBfmnx6mFp3S+wOMu+ddaK09aRLH3I5xAJzE+MOg2mQOLwPw6DZZy07leypGlmq6p0/GuFv+LarHqzEuCo9O0n88gJuHYciMINbpt5PDMLzefX/z9PnaYbc46c0YF4IH0/u/PAzDSZfPjRj1ZmZg82iMk5OtlF+Bsb25PK8ZhuF+9/1Pp08bBx+FcQPyY9R2b5/K+BhK77eHYfAGMZxeht8H8JWttee01j40ExcaWmuHaJyvMy+fj3HsfeXcg9PYvg7A01prF2GUNrxs5rUfAfAo+nv7zDsPQWCsNoyGWP8SY/99I4A/xiipelVrLVK7fQnGTeJzhmF4fpbhJHp+LEad4bbr44bR6Okx7tnL26hm+huMm8P7Mf5YNQAfSEnfOAzDH4ts58ad1ft+jJvGh8zUIVvrzgWnhmF4VZDfB7XWfrK19g6M8+p+jJuX3nXsl+yfaWz9OfrmyLowkTqG0ejyBgB/PgzD37lnbA36J9Pnx2IkUzzn/3b64zl/XtBae7+pLC8fnApoaq8/APC1rbX/ItQqIfZi/PFdGHf2LxT3r8ZoIc24GQDL6iNLwXsx7u7QWnsYxoF09m+61vX+hPcG8HROB6MlIABcA+C9MP7wvTNIb5fRXWvt0wD8BMbd+2cD+EiMC9ktlO86+BmMP/ymb3z8VG6/oL43gPcN6vF7rh4K1wD4+5kyrNNvt/svw471MveHXed2iQwZ/wGjqsDKAi7PMAynMYnR6d3b6LttdCxf0ye/Fqvt96FYbbtd6bmNU0//PhnjRuerMLLKv2+tfd3MD/HrqExf15GPle1vMUqTntPIfkDgZRjF+88HcAzjWM5w0zAMb6K/OSOmSyCsl4dhODMMw+uHYfivwzB8AoD3x/hj9/xAl/cUjOP2p2fyA8YxcQij+of7+L8AuMr1wY9iZHHfi1Es/CgA/9mV3SOaE4a5cedxNwCp0+5Y684FK3YErbUrMc6HD8K44fsYjO3wY+gb52emTb0Hr737hWhdmVtrbM6/Eavj4QORr5eWdqRbvhqr/Z7haRg3g/8juPeZGC3Unwfgz9poY5HaBQDrWY8DAIZhONFa+2aMjPvbg0duA/Cg4PqDsL45/zswDiS+tg5uxag7+NYkD9tlRsZCD8Ru14SnAPjrYRieYRdaa0ew+kPSjWEYTrbWfhajKPD5GHe7fzsMw2+6x27FuMN8kkjmxiSLdwH4FzPF2M9+m8MDxTXbWNikeBDG3TuAsxKIa7DepAHGtgNGsWtk9ancndbGMAzvxPgD8J8nadTnYXT7uQXAfxevPRO7XUTWHeNfP+XztR3le2tr7Xcxum7+jJes7CNuRbzgReV5R2vthzC6gn0gdjahwKh7/gEA17fWPn4YhtCIbcLtGEXZ3wchPRiGYbuNRmz/FqNY/XvsXmvtQ1URe+rRgasxzkOF/VjrFKI6fCzGTfJnDMPwJrs4rWXvCbA5/9kY1RgM3nB4vAXjb8KHYHSnAwC01i7DKEn4wTXK8XSM6oa38I1pPD8LwLNaax8M4D9gtCu4GePGMsReRTAvBvBl2LEo9/gNAE9ozh+0tXYcwKdh1BF1Y2Jwb5p9MMevYhSP/vkwDHerh1prbwLwWa21a01E3lr7CIx6T/+jfRRjh3o8DavuMrbrvhR9PwovA/C5rbVPwmigxRuiX8W4iJ0YhuHN/PIMXg3gKa21TxuG4RfEM/vWbx14QmvtmInIJ0bxaIy6MmAUld+HcYP0OvfekzGO2XXL81sY++ADhmGIdrx7wb1Y9cXchWmifm0bPRrkpima0Otg+uH7PgBfhD73nG/DuJi86FzyTRCpHNBae/AwDBFzNc8L/lH+e4yGU78O4NenH+6Q+U4b3zcA+HAAfzhoa/SLMc7V++n6M8Tz54zW2oMwMkDZz/u01q0D8zg42w5t9HB4wnnO16+L5xOvxyjdeP9hGH58nReHYTjVWnsdxjXzm53K7ykYx45aQ3ehjR4nD8dIcOfy/AuMarVnY4Zg7elHexiGe1trL8S4C2Z8PUarzNe11r4V4y7vqzEOEiVSP5/4Ooy799e31l6EkZFehbFh3n8YBosq9XyMP24/21r7AYwi82sxLiR+AfhVjEEqvgvAL2LUhX8RSGSM0SoQAL68tfYrGMVJ2aR8Hcad9Q9jHNAvp/s/hnEn9rrW2ndgtJy8COOg+HSMO+ZTiHEdgP8E4McnKcnvYvzB+SQA3z1tAi5kv90N4NWttW/HuIi+AOPO97uA0XZiquPXtNZOYrRJ+OcYN4lvhNOl9WAYhjtba18J4PsmEfKvYNQxPhSjHvT6YRjCaGEJ/gLAs1trT8YYKOcujGPltRj76s0YF8R/i3G8vXrN9NfFt2C0yH0sRtsHiWEYfgajSuZ84fUA/kNr7ZphGG511/+stfZajP15A0Y7gydgZBs/OQzDSgCPYRhuaq09DqPluf1wKwb6ZVPer2qt/TBG0fZ7YbQqPzQMw3OHYbijtfY7GOflTRjZ7+djRzVzPvCR0+fr06cuLN6AUSX3kmktvxzjWvkPGL1fzhfejHE9/Y/T3L4PwF96G5f9wLSGPBfAd7TWHoLRhukujP38cQB+ZRiGn0qS+DqMa83/bK29BDvBVa4bhuHP7KHW2hdiJLEfPQzD71IaT8e4SXkFJ95GV9tXYvR4egtGQ8UnYlz7X5PV7VwCGvwoArHDMAz/G+Pu+E6McvyXY7SofewwDH9yDvntCdNC8EiMP3LfhLFB/jvGxe3X3HOvwSie/ucYRSJfDeDLMS7Ed7gkfxCjEc2TMe64noCRjfpngPEH/cUY3Sx+G6OBUlbObYwd+FCMhlB/Tffvx/gj+4MYF+dfxvjj8HkYmaSMijW9+/ip3vbuizEuaLdNz1zIfnsZxh/eF0153QLgX0+GjobnYVyE/w3Gtnzu9N6nJCxKYhiGl2Dc3PwzjHX7ZYybssMYDaLWxbdi3Gj9EMa+fQlGi9Y/xLhB+imM4+ijAHzOMAyvFOnsC6Yfx+88n3msgVdibItPpevPw7govRDjJuYnMLbPc7HqP34WkxjxcRg3Qdc34Wc7jME5HoVRNPq9Ux7fg9Fuwf9gPhWjEdD3YTR0uxnAc/qrtzY+FcAf8Jw+SEwbn8/C2B8/jXHT/t8wjtvzme9NGNv6IzH2ye9j7J/zkdf3Yvwh/BcY18pfwkjOBuwYDap3fw/j2vMwjGvFCzCuvf+JHt3CyL536aEnNcyTAPwCGbUaTkxleBbG9v9pjK5mTx6GIY0M2JyxdIHQWnsfjH6X3zgMw9cfdHneE9DGIDPfOAzDbJCewuaitfZSjC45n3DQZTlITIv3TQC+YhiGHz7o8hQ2H/vpVrDRmFxGvhOjePNdGK1avwpjMIgfOsCiFQqbiBcA+MvW2iNn1ELv6XgmRq+U/bKlKPwjR/1o7+AMRmvlF2G0UD6JUe/z75XxS6FQiDEMww1tDNW73+FbNw33YgykxMarhcKeUOLxQqFQKBQ2BBtxsk6hUCgUCoX60S4UCoVCYWNQP9qFQqFQKGwIFmWIdvTo0eHKK6/cl7R8+FYO5Tr3vTfdcynTuT4b3d/LO+fy7PluC37G7C/e+ta3vmsYhl1xtq+66qrhwQ9+MLa2ts65bN7Ow/7nz553e++t885ebFDWeacnv94yZW22Tlvsp93NTTfdtDJ2jh07tmvdsbFjYwkADh06tOvT7vH1aN3hz3PBUtI4X1hnvK8zVre3t3d9njlzZtdnzxi74YYbVsbOQWBRP9pXXnklnvnMZ55TGjaZLrroorPXDh8eq8mTce67h7rXMyHVJiGb4FEZ1Lu8kHB9evKb+/TlUe22TluoNrG+ivKxCfaYxzxmJeLXQx7yEPzET/zE2X63z6wvbaKePn16V/r23f9///3373rGPnkx8OCFgJ/hBcS/oxYb+8w2Fir/6Lm5/HxbGFTd+bq96+vN1zhf/u7f2Y8f72uvvXZl7Ni6Y+lffPHFAIBjx46dfeayyy4DAFx++eUAgOPHj599FwCOHh2jgl566U50ThvLR46M4bz5h53HYQQ1D3vmmqWbzU+1zsylGaXPZc7y4LmgNsf+uWi++Gej+XvffWPMKZu/J0+OgddOnRqDR95yyy27vvt8uNxPf/rT00iDFwolHi8UCoVCYUOwKKa9H4iYITNQJULNRKvr7HB7xfF7EaXtl2hrXdbid7zGGNROex1k7bpumx85cuQsu4nElVxu3rFHmBPjKvYcPbtOm88xLF/2ufbvEfFzfSx9Szuq11y/WHtn1zgfThvYqbtq83PFMAy72iSSZsxJonxaDGZu68xtnmOc/jpzLyubyo/zzcaO6kOfB6/Bdm9OAhc9w/0UlcPGm40zWx9YImsM3D9rjD0axweJYtqFQqFQKGwI3uOYNut3o2sRC5vD3A57HcO37Hqv0UqkY14H677jd9i2E1X6/UyPrK7zDtzfs0/TDap0jhw5Ig2GfDqKafcwYsXyoneZRShWsxf06CIVC/Tl2IsUYC/vqLKxvYLB14/ZOLOn/UaUbo+elp/rnWPr6JXPxbgt6jfFXvfTiC5bD5jF9uj37R2l4/Y67bl+Y3snn65K/6BRTLtQKBQKhQ1B/WgXCoVCobAheI8Rj7N41Ytd7BobIeyHWGodg7Se9OcQGbP0iu6zdwzK8MU/x2LWvbifqPpkhmiZQUhrDYcOHVrp66hMXG5135ebjV5YZBa5filDGU67x32L70dQ46BHjL2XfJWbWOa2o4yGsrFjfZm51+0n9mJ0F4HHrTIu5Of9/9xOmTHbnKGWIXPb6jWiVWWYK+ucuDozvOOxo8TWXo3Gz6j6RGuL5WPuYktBMe1CoVAoFDYE7zFMOzNAYjcgFcUo2m32MsTIAImxl2hZPZhzuViHaffuuIH+oC49ZY+MA9dh2vZ8Ng7mGG/ETDiYCgcHySIrqSAkmQuWYj49UiH1TMaiVfCWLMgKX+PgNMyEIumDQRmXZWz3fLuAqbL6MqxjkKqkgD1MW+Ubgd2oOP1IUqHWjjnXrww9UQnn3G8zCZmSlFnZskh2/E6UVhbIaAkopl0oFAqFwobgPYZpG5tmvTWwuuPlnS7v9rN3+XrkzjMXGtLQE4hD7QwzHQzvOKPd7Bxz20vQE6XDi8rIaWUuX4qZMMztC8hdOVRZstCJfE+xTK9DUyFP+XvmgqOYQo/LHzOvSBfI5VdlzOplOj8lscjqx2W161EoWca5uCGtC66TYp7r2BzMXY/uZbYaXDblmhlJdlS+GZilrhPiWUkhMijpUya5sjLaGFXrTZT/OnHJLySKaRcKhUKhsCHYeKZtYeiYYXkLwnV1rhGrVEynh2n3nCjTqwfPdEt8T7FaD6Unzna+cxbmkW5J7Yq57JHVf08wnNYaDh8+vPJOxCqUPYKSbgA64IIdSBAdVmC7e9aDcxoRE2UreKtPJEniunLAEqV/j8rNbcFM3Kc314eZ5wG3fcbaVH043wvBiDL7B18WQEv0mDUbeg7lyfTgc7pYlrxE9eJ0FXv393huqzQzZO0490zWRiypUlLPqN/2I4jQ+UAx7UKhUCgUNgQby7Q54DszkohhsVVlxqwUlH482o0pP8LIulNZ7faAGVu2G+drvTvsCIo1RYyOGb2yCYikHL36rq2trS4rVMXYovwy/3+ffuTLye1jz3BdM2t1tdv3R8/O5cvjP9Jp87tKHx+VxebenL43Autd12E159tf20NJe5REJHpW+RdHdY+YbZRW5lHBfZv1i9LZW9n4iFr/DrdBxmIjmwVfD8ufx1QEZTsUSYWsjCaBzex99mIxfyFRTLtQKBQKhQ3BxjFt1gcxA1rHAlwxg0zHyMww2oEra8Ys+hCz5Dkdd7QDt92r8s+M9MWKzarDNKLy9wTh72VUXs/Hz875afuIaFG5jSUoxhvVh/WOtlNnK/JIp816b/u85557dn33fc1W6UoC0yORUNb9Pf6z3ObeRkRZ76p0M2bHuvSoHVU8BW6j/YYfbxdffDGAnXYwSQdL+jyUnp5ZdObjryJ6RXOC10BOl/W6/v/ongfbOAA784jzYxuEyJrboDx6rF2jOa/Wt2gecH6W3iWXXAJgZy5G0jV7VnkvHBSKaRcKhUKhsCGoH+1CoVAoFDYEGyEez0SBLK6OjLxYXMNGQyxy9yIZFSqRRTQ9RmUq2IHPh0WJymgpEwn2iNrnQgH2GF9wQJvMVUIZuPD96CzcHrGu3ed0oyAdbHRj75gI1LcXG2Ip4xS7byLv6Nq9994LADh16hQA4O677155h4NAGNjYJ3JrUa5FLO7zom42HlIqnCw/Q4/hFRs0sVg5a0elxtrvIBhWPxsP/v+jR48CAI4dO7ar/NkZ3Ly+sIolctGy/zlwjSFzF2QxeQ/m1pdIbaFUhJaGiZ4zNzETg/MYtfY2MTaw6taryhq5b6k1mNP077Cb5VJQTLtQKBQKhQ3BsrYQApmjfc8BB7ZbzcJHAvHO1HZ87GJjzxojiFxwePfIu72oXnOGWufinhYZhjGUq48vD+9SPSPxz/o8eHfMLJ3L7J+1MniGqKDCjgKr/cBtnbnbKRabufzZuPNsAdDGZlE6cwElojIqlp4dGKH6m/sa0AfvGNjgLwvMosZ55DqlpGxzRlTrImJfNsYvvfTSXXnyfImCnbB0Qbkw+uuZyx2ws+74dU4ZbFo9rOw9B4ZwfpHLF9+z8ptE6eTJkyvPGqyNrR4sjeAx5O8pQzRD1AfM7K1sUVAnK9v5NnTcK4ppFwqFQqGwIdgIpu13Opku2T8b7UCVXoh3yX6npnbJvDP0bIIZNrPKKMCAYlCsL4r04j07d85PHafI7lARI+c626eVNXODYYYSsRp+NtoNRxiGQYYq9Xkws+ZQpL7OzECU+4elaSwDWGUlzDwjlqOCw/TotJXuX+nf/f/M3DKJj5Wf21O5v0UBOfheD5tRzDqSqihJkkr30KFDK+M30qdaGayfeT76cWx1ZFsJ5Srn+5Rd4ayd2H3Q19mYNNvwGKs0W4rLLrvs7DssKWJ7BR6r0djhcL3s6hjZCPH8tLZWLnUZLE22HfHXeA1mCVPkDhtJJpaAYtqFQqFQKGwINoJpe+ZgOzHWbzKr6TngQFmdRuxMWX6zHse/wzv2TH/L7EiFTYyYntJzs+7Ul5GZgtILKitzD2Ze9t3vklkfybq6iBnP6a48zHKcx4XfQXNdlH41YgY8RpgpWn2iXT4zAbOqjcYls0ked5HUYe7oUma3fgxZedlKObPE5jZWAY4ij4BM/6jyVUxehdH06GXcUUCdaOyYxb+yh4ks87mOLF2KpCc2d+bmn29be0c9a0zb18us4TmYiZIK+Pa0scNSAcufLcP9PV4jzRqf13dvL8PjeM6jB9iZc1Z3ZbmfBeNim52DRjHtQqFQKBQ2BBvBtP1Oh3fVavcdMdI5S9Uen1TlF+79SpV1OO88/U5xLkB+ZnmuwjvaZ6brYcts5Xsb6ZOZmbLe3efH6Vmfso4r2i1HbRzB6yUjXZXSuapQkT5vHhvKB9tYtL/H+kgfr1rAAAAgAElEQVR1WEKUD7O+zFKa68y6RWZE/n/lf97j4WB1Z7/diBGxHpSt06P8slCx/p29Mm3Tadv8jHSZmZW4r0dkp8LlVTYgke2O0mFH65xJAQz2jB+TPm3/v2LarFOP2pPnRCb54bWBP9lbx6/9rN+es7D35ed8s+NjbSxanXv06hcSxbQLhUKhUNgQLJppZzoRxZYyH2hmjcpX2DM6ZqC8m8usa61sXJaMVXNZFFuKpAHZEXVcDuVjyzpn3on7fNjSk/P39WPWzyyDGbf/v+eIvNYaWmsr+vVI4sKR8ZQeP8rT2My73/1uAMBdd921Ky3PaqLDCIDcKp51bsxAIyteYw/sA6902ZE+3KDsLrKDUJjFmJ40ahOrD+vOWX8Y6ZiVTYNdjw6biaQ9jNYaDh8+nFrMW125L1V9gJ12ufPOO3d9V7Yafr6yH7M9Y1KATLrA6fFc83p37ktl32HfIx0zM2zLJ5K02DWbR2xLYfWyMvo2sXHF67aysfDPqNgBVh8/D1hXvzQU0y4UCoVCYUOwSKbNbDqKxqSsUKMdqNoxRXpPID7OkZ+x3Rhbznoov+JIh8W7VbbE5h1wZHHM9Yz0bPyOgXfWbB3td9j8bBYVjMESEc4ninqmrKK5/MMwrFjsRlIaQxb72WDlMl/XW2+9FcCq9f0dd9yxqz7ADpu44oorAOx4EViakV+1ihxniDweOI43s3SWPmVHj6q43p6xsp7T0mPd6YkTJwDsbhMbR+YrbG2UxedXNidWdmaJe0Fkue3TU/NdxSwAdiyW7dPKaZbS3G5ZGVgqE3kCWFnYL5yZqV932EaH7S9YYhXZxRiUn7hfBzmGg+VrkisVvdLnd/z4cQDALbfcAmBnnHO0Ot8W9sk6bZYK+Daxe+v4/F8IFNMuFAqFQmFDUD/ahUKhUChsCBYpHjewwROgwzyyA7wXd8wFn2Axos9PHVLA4sPMVUUdBRrlw64XBhaXRWIxdZxeZLzEIk4WodlndLweH0DA4vnIRUKFaVUHvvgy9ojHLbiK5RMdbMBgUXSkTjDR5m233QZgR0xuRjH2rol57ToAXH755QBWA0bwYQXROFCGRpFBpHKb4zEVtSeLW+cO1fHvs+jWxoOVmdUBXFdAG/1ERpNs9MWi3Sj8cA9s7LDo26fHaiKeJ5EIlUXmlr61Cx8kE6VhfWcqFss/cn9j1QO3SzQ3VH24n6LgKgbLz8T+PX2pjru0eWTjwreRvXP11VcD2BGXm2rKymjl8HW1+rBYPAvqtM76cyGxrNIUCoVCoVCQWCTTZoadhZjjnVvkFqLcMpSDfeRoz+/y8W0ezLqV61W025wL6xgZR1id7Z4KpuDzYxcWliDYs8Yco50oH0tq7Wm748h4jY0MVbCaqCwZWms4cuTIiguJhwp3mfWX1cmMX6xOPFayY0M5yAUfkhAdAcmSFnb1iyQ7yniJ3V4iKRSPUW6jKEgNS6hsrFgd7Ls3WGJJERszRu6QSrrFxlh+nVjnkAczYlShhH1ded1hxha5fJkEwspp340RRmEyme3bO4ZI4sJhk9Wxq1noU54jPJa8IRrPd87f+j8KUsPlv+aaa3aVjY01fZnsGksf+KAPnz6v2zy+vXRQhTpdCoppFwqFQqGwIVgk02ZkwU6YeWTBQNQRnPzpd9i8u1OHTngwy+Pg99GuXLmHWf7scpIxO+WClYWk5HdV8BX/jpJ2RExbMeoojKCBQ3hmh5YY0+Z0o0Mf1DiI3M6MYVudTOdmum51sIK/x3YD6nAE/38k9Ynq4N9RwUFUCNYIKhRldBCGXePgLqwLjNwv7Z61b3aMrJKM8Wd0BGgvhmFY0e97+wSeb/adD9zw9WCGyy5yPF8iiaLSS0flUoflMHv1emJ1QIgKVuX7Utmj9KwhbG/DOucoyI7B6mNjx2xHInCAF+6T7CjnTGp3kCimXSgUCoXChmDRTDsKUj93wEVmKc6Mg3evmb5Q6Ql7wFajVkbPDPh4PnWUZaTn5V2yskSPwlcqKQPXMzoknhlDphtW/ZQdWJFZMEfY2tpKw3KyHpXbNGqn6NhE/w4HnfB1VvYIhuj4Qc5PHcIRQVnmZ3VRx6oaovnE84RZGQfdyA4omQsTDPQzHq9vzaQyDAtjmoXLZakSW4Bn644KQsReHZl0gPOP1j8e+5yutaMxVF8Gbn8V1MnPJxV0hKUDkX0CSxJ6jurlNNS648H1ioLScF3UurAUFNMuFAqFQmFDsGimHYXsVFanvNONQvWp3bDSF/m8s2f4utLpZUcWqiNAVf491tEcji8K3K9290pvHd1jRKE25yQJWTpW1l4rco/Impfbrke/ruwfDJE+mX1feRyyj6y/x3p2PtwkO86T65eNYdZZsn1Cj22DgaUNkaQka2OPyLdXHYjTY1cyl9ehQ4fSOW55sL0Gh/mMDlbhdYzziQ4WYjbJ4TizuaD0tfau132rELicVsQ6VQhnvh7NQQa3edSeypZBeSD4sqi+yNqe01gKllWaQqFQKBQKEotm2oZsp65YdMR8FVvKdlKKGfQwOmVpnkUO43fUDjHTMSqW7negyv+8R4+srJOVnjxLQ0k91i0TvxNJJObS69EpWhuytXDkP89lUdHOIlsDZkumJ448HJQuW0ll/LtKr8pW3pGenxmOtQEf2ZlJO+bmZlSv7ICfvWAYBmxvb6/EO8ikWdzm0VGwLPlQ4ytiiFYGZsecZja+OcodH1SSlUmtb5EOXUmwsmhjSjrENkseyvNErX9R+TlmQbS+r7MuHASKaRcKhUKhsCGoH+1CoVAoFDYEGyEe92DRnzKY8mIcJYpToi4vHpkTPUfuGhxEwZC5EigRmvoeiVT5mSytOZHSOu4ncy500TNKlBaJJHuNlyJRYeRCpuoWvWPgOrFBUBakgdMwREZeyvWGDca8+FCdLd9TDg5J23NgiCo/j4soDXUwSWQQpMBjaD+CX5w5c2ZlfPiysCqLx3NkdKWM+JRqL1NB8PyIzu82cNhcVuFYgCAPZeSljBp92dgAkUOVRoaWyhUrU1Wq9YyvRy5mPDbZ5Styg+wJRnQQKKZdKBQKhcKGYFFM21wvePcYMd/eEHr+/Tnmw3n4ZxTDjgJKcMAKdi+IwnIqpt3DIpTzf3Y0J+ej3Day/FQo2Yi9q7bmsvldOacz5/IV1S9j7iqkYXRoyZy7UWSMo4ziMjbJ6fERo9HYUVIKFQIzktJwPXlcRxILdmVTxppZcA3FVLN+m2OD62IYhl1M2xCtA7z+cN5R+GR1QE0m8ZsL5hMFnFFugmaAFo0plhSptozGLo87Y9xslBcdaqIkpFyOzNBOGW1G76gDntglLEJ27yBQTLtQKBQKhQ3B4pj24cOHz+6gOBwioFllpo/qcUFS95WbEAf+iI5zVO4ZWVi8OV1SVEZm9sxamK1l9WJ2lLnQcRpZUALl2qMOqIiwTjhB7qeonHOHCPQ8kzEDpWvO9PvMqHjM9LSBauvMfcvuMRPhcgA7bcFhcuekKf5/1W4RW+K2ZqlGFnCoF8OwejRnVB8VTCUKK5q5M0b3PZS+Vtk4+Gf5WEt2c4rSM6i+jOY4jydbr6OjRg32DB8QwlKbbD6tIyljWwnLX4Xtjeoc/Q4dJIppFwqFQqGwIVgU0wbG3Ruzr4wtMTOJmGHP0Y4eETPg/FWA+ygd9Yyvlwo20KMHZXakDv3wO+05/SfnH9VPBffnwDDR+1zGrI969E727jo7dYPaufv/mXHOpeX/Vwwu04NnB4MAuXeE0vX1hFo1vaSSSvD//t11wj3OMewoPyVN6x0fWVm2t7f3FK6S+ymS8GWeEf56ZKXMY1PNW18WDvur1ocoPSUNipg2s2TL58SJEwCAyy67bCU/g/JSWEeSxIjaWVmAs447Wic4dPBSUEy7UCgUCoUNweKYNrDq3xfpiViPa4h2rXO6pQy801Q65yg/ZY3KfoBReup6VD+2GuX8IsanGIKyko3KwPXJ2pXrrHTnUfk5jQyqv/z/ijVnOm1OQ0lCeqyeDdkuf873OvIr5WfnfOP9M+pQmwjKK0FZk2chIhkZ6zT02qisA2PbPu9ojnFdrZ3M99kstf2zc8wwq6uSAkUSGRV6lpl3ZHFuUGFm+b7Ph6VlzLh9HkePHg3rx8cwZ2NW2ZNE71idrX/UoU3RnI9sAJaAYtqFQqFQKGwIFsW0h2HAfffdFx6k4Z/xsN0QvxOxl94jOTNr1zlrTv+O8mNex7+0x29b6Z8MGTNRvrw9DHiOZWb1y3SmnA/bESj4+pnOKtLjz7HJ6PocA1nHxzvr/16fZ98Wql0UK4uet/RtHrE/cOSzzDo/bt9zPUpV1UO167nA5xsdC2l1tXHFdjeZp4s6SGed+aIYqe9L6zs+uMUQMXvF9ufWO18mXn947hnj9s8oC/OevpwbB1EaisFzuwKrsQn2U6KzHyimXSgUCoXChqB+tAuFQqFQ2BAsTjx+5syZFQf4LFCKCi/qMRfUIBNTKXFNFlxlziAnCluoghlkIV35XSXGWSekpwpyEL2jgqr0GNawWC4LGsMuTAre5SsKJMJqEvXpxbpsLLaOqxKPkTnjP583h3vMAsBwuiwOV58e3AaWP7u8AaviXhUIhsP2RnVXhlaRgRW353664mxvb6+4mPoyqPa38meqANXvmTic24zF4hxAxZfB1k9z31Nnf0dlUa6fUZk5/Wj++OeAHVG5tYmNsx41yZwYPBNnq/DXrAYC+gxrDxLFtAuFQqFQ2BAsimm31nYFV8lcLwzrBE6ZM1zJ0mDmy6zFp6mYtu32OIRfVLasDRjcBsrIKzo2ktO3XTrvmiM3EfWZhTxUxnlcLp9OL9M+c+bMyo46chdUhxRw/aJr3F7MfHxado3HCDMCb0TJoUE5/czVRwX+YTYbGU3NBY2JDN/mwpZm/abYZmRgpYwA1zHo7EFmKKja1sBzPIOaL5HbERtK8ecll1xy9h1za+JxxxIr/w4bHvKzPE89Iz116tSuMppxmbl1RdIHXmd4jmdr8FzbRhIdHtc8V+x7dODTUlFMu1AoFAqFDcGimDYw7paYtUQ7H96ZZbuwdV2TsoAc/Mk7U/9/r7tYlLdy/me3iugZzjcLz8ksjFkAB2YA+lgyf++VJGQ6+7mDVk6fPi3dazxU+VU9onvMgJnd+P/n2Jmvlz1rrOmee+7Z9Zkd4MFlUno8S8tf4zHLaUVSGu5TdjkyZLYbaqxGc6Pnmb3AbGn4EImI7fe47TFUmF9GND+5LKxD9/mfPHkSwA5rVLrtK6644uw7xrrtWcvH1hc+CMW7b1l+VtZLL71017OWtu9/lkIq98Aevf+c+6X/X9kE8PUonaXptotpFwqFQqGwIVgU0/bWv0DuJK9CzWX6SMUms2ANzJbUjjeyUs52cQzFwlj3EtVvTjfbc/wc71Y5JGKUH0swVECQKP3Igp6h3sme79H985jJLMCVLYPSG/awM2Ze/h1j2MZ8jM0YW1pHH63075aHLz+HDOZxF7Flu8b6dk47syvgOmRSofNlPW5Mm4MGRRbF/MkW8pGnC0uIVP9E0hO2zWBpgJeaWL8aG2a9sbFm/47laePL9NSmnza2bHWw+z59Xgst/cj7x6Qwyksl0/MriWkm4VNSKJYsRB4VmffDQaKYdqFQKBQKG4JFMW1g3NX06DMUa84ON58LWxqFiOR7nEa0w2aGzX6rGYtVOvqMifBOkC0/DRlTVaFWM+bDVtjKWj66Nse4ImS6JWbZWdtyXuuExZyzYO7xo+fjMD2M8RhbYqYdsdpemwalW/f3FCLvAQMzVGUv4aGshaN3mPWrYyrPFYqVATvMLPL88GWJxmBvHIOIVfIcY122bye2ZbB32Bc6Yuds78CSpEiHztIZbhNm+P5ZHjM9NgPrzFODlZ/nD+v7s7DA+z3OzhXFtAuFQqFQ2BAsimm31nDRRRet6GKinc7cbt6zGHUspKFn56YsQDNmpXRXGdOODnL372bsRR3kkUWWY39glV+kJ1L5R3VQLJx1WB5zkewY29vbK3n36Myz/lc6zLkIWR58cARb5vqxatdUPIDsgBrlF74OlCQpiimgfOIzbw0luWKs4yO9X+Bx4Jk2MzQ1/zNpD7eTfUb6VI6Ip+xIfL/Y2GH/f9Zbe6Yd2Uj4NJiJ+rFqem/Ll79zdL+ojEoqlI1hNeeiPlFW4vw98o7okfgeBIppFwqFQqGwIVgc0z58+HBXBCzFbCKrQ3X8nDrEPWOIvPuKdsms97JnmWl5KAtIZYGasWbWmUb5KT2kik8d6dvmdqBZRLR1WXTPM8MwdPmKqz41RPp75TevdvvAKktl5mF+rf6YwuPHjwPYiSp12WWXAQDuuusuAKv+28CO3juKyjYHK6+VQdkeRF4dc94DnId/R3k6RGNqHR3mfiBaW9hrQNXZS0AybwqfPkvEfDps98D6fM9iFVvt8dRg2Ji1cRH5U9v/bGnOYybyHlDzSHlpeLDXBftT+z5QceszP20eg+WnXSgUCoVCYU+oH+1CoVAoFDYEixOPb21tdYlx5lxtIrGoQQXDj55X4sIew7AojB+waozh31cBRXrCcrIBCAdkiN7l9lNGMpn4yKDayv8fGTap+imXsgjm8pUd57kXV6F1xhlDicdZTG6icH/t8ssvB7AjLmcXMB9Okg9o4HCWmZiWRZvZeDbMuZjNhbeNrmXteFCGQJGYlQ232JAycm+aCwbCoUJ93nOHpWQGnLzuRCJutd6o4CrZ2szi+MjIVbmUstg6C1bEZeA26hGPc36ZEWqJxwuFQqFQKOwJi2LawO5Qpuu4Ve2HmX7G9hRbiXZhvGubM/KJ0p0zvvH5MnNjJm/3I2MyZk3MyiO3FN7RqiMvI6MVZp89EoReAxrv8hXtyucC5URQzyrmE6U1Z9wVhXnkwBjGeMx4zT4B4NixYwB2xtmdd94JYMddh/vY56eMJpWhEBAbB0V1z+YtG0Jm8/VCGaBlLJYDl3A9ojLOuTVy//v7bDyqgqr4eRkdXuTfycabMgxlthnNRZM+WFnYbTEKyKIMejO3RRU6lvstY9rKhTNbG5eGYtqFQqFQKGwIFsm0M5eBObedjJXt5R2lp1PBNqJ37ZN3tX5HrNhX5lJkYNcLZrGRbkkFL+C2yCQJKpBJptNWfRv1RQ9z47JmwS7myhmVey4oTFbGORaZMQOWVni9N4P1jXxwQ08YUwYHGPGMTh2Aotigz2/ODcqQ2aSc76AXkT6VXf84NHE0P+eCqPAcjwLYGJTLYXT4h60zyi3W56P6gyUIfDiIf4a/c1v4dlTrAAc9YRcwny63gWLc/v05l7Js3lZwlUKhUCgUCnvC4pg20KfDnNshRsFH1OEUvIPLdvkG3rH559hyWbGnLB+2CGf4urC+WO0Q/U6fd+5zbDDTOfP36AABZX3a0289umcr6zq2DVymiGnPHXuaQY27LEAPh/DldzPmrRgIsxivk+axwuMiOjxDhQXm/DJ9r5q/kT4xC6l7PhD1C+tps/lvUGFMDdwGkTRjLlxu1Jecj7JX8f8rG5NM98vrjvI4iSSKap4qNh09y/U2+DZR7chW6lEgHRVS+qBRTLtQKBQKhQ3Boph2aw2HDh1a8TeOrFUzBphd9+8aIh3W3LPRTpDzVgeFRIeqq13k3G49uqd8bCOmPWd938NueKcdsWplCZ7ZF2TMnWEsO/MZVnkpy3Z/j9lrFL6W81PSBd7tZ7v8uQMW/DUlMVC+vv6efRrT5+/rhLHlflon7kL0/UJb8/J8jfLmcKZRGeesuFXaPm/uQzXufPpcNkvDrvvQpxzTQdkMZWXkT26LSIee2QJ4RPYlyrLdEPl2K3/tzB88W28OEsW0C4VCoVDYECyKaRtT6tEX7kXPwLvF6IAQfo51SJkOy6AsInlXGR2rx3oh5R8cWbaqMkcMvPf4xh6LauWHnOm0lRV2pKtnNqAQWal6qHIzw47KraLosd42ypd1vKxPi45HVLrGiOXa++wva37adt0sjT1bmzuyMJMo9fqqZ94fimEvwUc28tNmexSe25EFuPKBtzaIonLxGOVnovbrGc/8Dkvl1IEe0brDjJ4RjVVeG5UnSjTneT1QtiGZn7bNBfaKiCQYS9NlG4ppFwqFQqGwIagf7UKhUCgUNgSLEo8D+Xm0EfYiwlCuSpHRhRJxs5jPp8mGLGzYEBk6mHicxeQcPjFzjVJn00ZBLviaqk92FrdBvRu5eqjPKPQpi6Szvh6GAadPn06fVe9nrmVzYvHMSE71hzL28f8rlU1UBxaP2zMsCoxcvlikrly+ony5bexZDo0azWOuZyb+XwKsneYMtzzmXJMMkYhWGQiqgDb+f+tfcwvMAigpcTU/y+uRf4efZXF1JHpmNSO3a2TExmBVRaQG5LVYhUuNyhittUtAMe1CoVAoFDYEi2PaQB5Kk3eCPa5JczulnrCmc8zDv8PsVJXN7yKZSfkddJRPtANVO84sYAXvsK0NlKtThoyxKobKn77ePa4xHt7lK2pzZincHxkj5O/KUCwKu2ifbAgWGa+xNIaZAtfB32O2YGzi7rvv3pVWZEzErl494LHBgWh6QtNyuy3JEM2Dw3ny/MjC/c6F28zGqgq/aW5bWVAXnssGvz71rjPRnJnrS0Mm4eNnMunMnOQqGt8sKVWuXhHTZsO3paCYdqFQKBQKG4JFbSGGYZjVabPOg/XDGTNULkOKBUbvMquJjoBUu+8s8EcWvs9/79n18S4y2skrZq3cKjL99Bwbje4xs452tXMHLnjw2Ikw1y9cxrlr0f1sHKiAFb7cxoqzMIsqH64P67CjQx8id6Ne8NhRbny+T+d09dF8yvr9QoPd82xemHtddM+gJEd23Y5fBVb1wnYYEPdhxpqtb1nyl62rKkRtNqf3IpXjfOfcMQE9drJAKazDZjuPKHgQSxWWZl9RTLtQKBQKhQ3Boph2a+OxnMwq/e5WsST+jHZOKgAGW0r73R0fc8c6kMihXzG+SG87Vy/1XBQakIM5ZJa/hrlDM3pYswqmkeXLOrOo7VlXGoWz9dje3u7SMSqJS08gGX5GBeyJ8rHvxpqYBQA7jI29FXhMRWNMHdiggu1E5e8B14PDDjPDjqzxmT1n83dpTAfYWZOywCXWPsoim9lyxJrZOr03/Kd/hudaFKZ3LsRvtGYpSRu3iQ+bqg6ZMbC9RySNVJKqyLaDbTVsXpl9SRY0iL0hloJi2oVCoVAobAgWxbSBcSem9KyA1vUqvZ7/X+lemWlnFszMBKLdHbMG3un2+P2pHXyPP7Mh88/M/MwjRPpwA++asxCiimGzf7p/ptdf//Tp0ys2Dpm/tpIUZDq/HvsHLj+zFGUfAezoNe2TdXAR8+b6sC5TWaT79JXEILNwV77qmc3DnOV05o++RLDEw0tNmK0yw+Z2M2bu/1dpGCJrbrZpYD21H4+WD49reyc7TIfXJGUlHx2iwpIqji0QhVlWoXbtWX4XWGXUJsnK7F+WPvaKaRcKhUKhsCFYJNNmnbbXKajA+YYeiz9mD1lULtZnqAhikQ6O82H2nOkTey3dfRlVZLce/Renz+0XWWSqMkX6KpZicFtHrLpHN24wps0sMzpERFmLZ9Hm1DOZvYQ9w6yJyxGxCaWLi5gos3B7l/1mI/sLTpePO4zGd3YvaqPM/1jp25fOdhQiS3eeD1ZH0/VGVvYscbFn7TOyqZiLiBiNb5YC8ZjhMkYSt0hKFn334DHDNgJ82A2gjwJVkf98PaJ7Cr3Sx4PCMktVKBQKhUJhBYti2q01HDp0SO5MgZ2dEutNVCxjfy2KJsXPZmUDdnaVmbW3YguKnUVQ+txoF6jiY2esZc5nNIvWZLtz1h9zOaK4yNZ+toNn69WIqfawr2EYcN99963oyiM9PkNZzvs6qaNSGVmf8riOLHLtfWNYfMxm1Basp1O2DdGxsuwPzDpAJXnxYP1gZgmubFDWicS2ZPh2Yu8Anic90RxtjFx66aUA9Lzx+bFEhXXPHopVMtPOIjDyfOd6RDZJKjKakixF9WIdNvtez6U3h4o9XigUCoVC4ZxQP9qFQqFQKGwIFiUeB0aRROauw6LAHnGHCqrBor8orKQSAWVGZb2HmkQBYLiM3BaR2FyFAOwx5FKi5yxsJoPFvexC559RwVSi+rN7U9bX29vbuOeee86K87LwsnNGfr5vOR2liohgYjvOz+oelYdF5iyWj0SpqgxK7Bq9y+Mqc4Oz8vIhDCr8Y2akqQzSNtUQzYMNA9Vcjg5r6T3YIgvXrNQWfrxlAZ/8O5laSLn4ZXPanuGwsDznfX2V+J/F45Fh5zqhcLNgNEtAMe1CoVAoFDYEi2LaZoiWsTpjUmqHFhlWKKbBn5m7BrtCZME1FCNkxhi50ahgCmyUFTH7zKDK19P/r47m5HJFzF4FpYmC1KiDQeYYni/r3G759OnT8lCBCCpITMQqFcNWBn2+3KptI8kOv8usggNLRPcUm40CVjCDV2FafbtGBzP47xlbVgeEZOFnNx1WN3XYCAe/AVbZoxkIsvGnl2apoCrctpGhJRuR8ZoSSY3YGI5ddbP+V6FHlaujf4bLqIKt+P/PJVzv0ly/llWaQqFQKBQKEotj2keOHFnR+fkdqLnCZHozf93S9df4e+Zuog7jMKyzG+vR0arj/DKmraQM7DKXtclcaNKIfSo9f8S0VQAYdTCCR4+ecxiGVJLg81aSlh6pQsaOgLhP52wM1nFrse9Z0Ak1VrIDZJQ0Khurqh7Krcu/o8qUMW0lBdoLizoIWDnt+FUe+xGrZBc8llT50KcG7jOWwHiwKytDuXNG9/hgn2jt4Lpa/axNbFyb7VIk4WFmrXTb/t46yOxsloBllaZQKBQKhYLE4pj2RRddtMJIonCYyiowCgYxZ13LoRsz3elcyEZf3jlL3OyA9zmrzSiYC99bJ4ypCqIR7c4V61R66+ydTEe8DmpEEQ4AACAASURBVINqbTzWlZlqdPjLOoFDGHNHmUaYO8glgmKkEYtVR3AqKUCW/xwTBjTDnQuc0ZN+ZtvAOtRNC8iibADYCh/YYZxsgc7HoUaSJG4f7g//Dq95PJ7teuQ1o0LQZnYeXBZm2CdPngSww7R9m3A7qTnh69e7hkRH6qrw0weNYtqFQqFQKGwIFse0Dx8+vMKw/SHqBmZzPfo6xayYaUeY201mzEAdpBHpenrCls6VlS0/o93mXHoZA+49mtHvULnOPW3C/TKnW/JMmxkCoHXYjB6JxJxvKrDaD8yAo3Io/3jVP/7/OeYZ2QYo25DMRmTuYIqM0c/pvSNfYgOPKx4f0dxfGkvyMOZo5Td7HWD1yFTFfDO7Ee7bnngHKn6CIbKl4XZnSUzmf25M29rCGLZdz+w9+LPnMJAesERnaR4NxbQLhUKhUNgQLI5pHzp0KGVCyk+xx7ra58PPALkuW1loR/rpqF7RO5GVsvqeHXvHO2v1bsSw+LsqY6Tz4Xvq0z87x8qzyHLKwtWDfZIjf2ZmEwzfNoq1KJ12Jg1gH/9snPdKJvw9ZqDKDzySBvAzPEeiuaGOSuT7ERTbszaJ7CG4nbj/Ir07H4u6JBirZBYNrM4HPriGI//5/3vmiUH54/fYfWTSGF8e/xwfo2nW43zYRxbdTI3vHompQjSfVL0OGssbyYVCoVAoFELUj3ahUCgUChuCRYnHgfiwBi+e4FCZLBIxkVNk3MMin7lwo5yOTysTGylRaWa0NCf6Y3F1FOyEoQKnRFBlzsqqjFUy47UeAz4uf8+zwFhPDv/pg5Aod7Meoyu+p1QQkch9TozooQzd2CgzM9Rid0juj8hgTblv9YQxVa5mmaEdqxn42UxcqcJyZgaXSzZIszFqomJA143HXRTGdK5No3eUuqpH1KzUICbijoKd2DrNwVTYrSsSj88ZTa6DzGi2J/jWQaCYdqFQKBQKG4JFMW02RIsMC5hx8O4rYiBzoU6Vm030rmLLmUsMu375+nK9el2vIiO2uQAtPVC786isCll+6jCBqN+yOitwf9kOHthhGOxCyEY/WVCQOYO0KJgLM5F1wuYamM1GxnIq8I9i0VF6yiDJQzGdngNDlJTB6s3uNr4eBm7PjE0vNRSlB7s/eXBQE2V06KHCiPJ65NF72FBkxMjf2TDRSxDmmDYfCpJJhXjcnUuwpMho1lCGaIVCoVAoFPaERTFtQ8RaDLbrMdZkOzXeqXtkgVeAPiaiWFjGfNVOMNPBMVvgd3vcxbjsPbpt3qVm+ncuayZ14PTnWHN0IAGnoTAMQ8pIVfAP1mFlwU4UIrckbkulA45cldRuvydghZIKRHVi/bR6N3LFU8/O5Q/o8RUxPTV2evTgyu5iifD2F1Y3dlljqV0moVJtHEkxenXZWcAc1mFHroCsv1fvRDp8FZY30/sruxh2LcxsA5aGZZaqUCgUCoXCChbHtLe2ttbSXZp+kp3xe8J88jMq0IS/l7EHLpu6Hung1jncw6cRXVP5R/ViFqhYp99hqzB//E5UBxWkJtrBR7tghWEYwkATEZiZZuxC9QeXNwoOo4KCZIdxzOXHzDi6pnR+2dGFzHCywz9UGEmuQ4a54DHZ+FfPRBbA50unvRf96Trg4yejAzuAWDLF61s2dpXumq3Ko/lk6Rp75nCikfU467DVEbRRkB0V8GUd63EVNCrT1S/N86CYdqFQKBQKG4JFMW2zHvffo2eAVQtJ25GxnsP/73VGHipUpU9vTrcdMVGlh7Q6eCtmZrSKvfLz0bWeHbZKnxlPjyWwYtg9esmsnuxXmrHnYRh26c4yfTGzy0xPOMfQeLxlOkYuW8S01fhSbNrXQ1mpc30jlj53CEhURmUrkrFQttZVjDq6Hs1tn0+mq+1BdjiGgSVR59uy2Mpga1fmgRIdIuLTiOYRr5/MQHt0zPwMW4L7ddd02cys+YCUnvgNyhsoY8Ys2Yusxy9U3+4VxbQLhUKhUNgQLIppA+NOqOdABd4p2S4y293zu2z1GOlX5/xXM90LM5IsElfmF+3Rw7Cz3bhB+bZy2aOdb2+Er56y9vhrKwbBiCyco133nIV0Zv3Oaajv/h0ltYhsKNQBHcyS/f1ethzpoFXksywimhobPR4BNk+tL60emU6by9RjD5EdRMNorWFra6vrWf+OR6Qb3a+jIj2sbJFPNx/NyeuOSfb8PGKGzVbqKl6AT9/eNRbNY9gzbT6Ck3X3XC6fH/cPz5FornM9lE47isRpWJoV+bJKUygUCoVCQaJ+tAuFQqFQ2BAsSjy+tbWFiy66aMUIIjLHZ/GaiYayUJQmHlKiPz5gwd9Tbi1RYHsWybDbRiTW4zN15w7hyAw1lKtR5B6iRI0qfGt0TYmeMkMOVb/IIKTXqOjQoUOpekEZ2XG9MqM7JaJdxxWQP/3YYjcZfiYSj7MhmjJ04/tRnXuMb+Zc+1iM2SOOzdpRBfwx9KjP5saOicj9u1kAIy4vi6D9O8oAdj/gxeR8WBKLjy1QS+RCyaJltVZF6yobB7Prl3+HxeNKFB3NUR6bXObMAE2J37P1dGliccMyS1UoFAqFQmEFi2LarTVcdNFFqdGPctex67aLVMfF+WdVIBG/K2PWwrvwaAeqDjTw9eR85oJN8LsZC1AGaZE7He9Ae1y9FLLwlcrQiA1BPCtbxyCktbbLZVAd0uLL1cOS5w5S4LaPjLyU0VrEJjjYxJxRmf+fjdWUUWFkaDkXujFy3+NnuY+jwz+Ui1/WJgzlYhaFMVVlZfigTj3BNJiBWl090+YyWJ+eL1ciZsEnTpzY9d3YbXSojVoreI2Mxg6nxfWMQu6qNsgMYA1zblvR0cpZYCuVfibNPEgU0y4UCoVCYUOwKKYNjDugLEyd2jGxHi0KqjEXIlTpgvy7KtxjpCe0Z3m3Gu3kVJCOHqat7mWsnXflSi+5DtZhrJxvFuSgF14v2XPwhCq/h+oXZQMQ2UNEthIqP25D1ldnblusU1RBKDK2NBdsB1iVCil3xahNFPPhdoz6TY3ZHmaUjSWT0GRMmyV79qwx68zdiMvA9goXClFYUQWrHwdkycas6qe9IAqUotZGtluIAsCooD5zoZ+XiGLahUKhUChsCNqSdhittVsAvO2gy1FYPN53GIYH+As1dgqdqLFT2CtWxs5BYFE/2oVCoVAoFDRKPF4oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ7AoP+3jx48P11xzTRrVas6POYLyH+45XnHu3rm8s98Rd9bxP57LO7s/5zueRW2bi9kdxRrmqGBvfvOb38VWnEePHh2uvPLKtE57QU/dou9ZWuvku5d3Dxrr+Eur79k4UJG4sjjVhptuumll7Fx11VXDQx7yEFnmCOejP9aZc+cLezFM3kvUxP1MY514+XOfgI7B8fa3v31l7BwEFvWj/YAHPAAvfOELYYuvfR47duzsM0ePHgWwE/xeBQHxnWCBETi4AId7NGRhHtUBC1Ho0953M3BglizcJP8Q9pwPrQJUZIEreOPEmyzrG/sEdoJQXHLJJbu+W/AGPosX2Om3u+66a9fnIx7xiBX3nCuvvBLPfOYzV+p5rrDy8VnEvKGMwkHOLbQ9AWDUASjZAS4qgElPIAl1GEjPDyLXIUuf5w0HkYkORLHDMfiwCeubnoM5rr322pWx8+AHPxjXXXedbLeoTnzudNZOPXNK5bfOISm9m/ZsfeslOP4ahxtWaasy+GeiM+bVM+r8+OwH2NZ+GytRwJlTp07t+rTx95znPGcRboElHi8UCoVCYUOwKKbdWsORI0fOMjRmY8DOzlYxkEzcwcyad2Y9orksH18PVb+5dxkqcH70rgpf2ZOPYowRG5zblUfv8HGlButHY+DGonxZLr300pV7Fxpz0hOWiPQgOxRBjaHowAOWNs0dutGT317ElXPhRjPMhZjN7vWE5cwwDANOnz69MgeyYyjVASQ9KqE5qVZ0by/oYc29TJvL5Z/pXe88WOrD4Ubt3UiCqdperdX+nvqM6pAdR3qQKKZdKBQKhcKGYFFMGxgZGQd398fdMdNmNhkdqMB6C3Wwwjo6GEam85vT30Tg3T4frJCVQel6Ij2oQbGAiDVzgH51RKO/bn2oym/SlEjfZtf8OLhQUG1oei7ul8hoUtU5us9Meu5IU3/NMMcm/PjsPUQlY2d83RC1Cd9Tx4hm6a57vwdnzpxZaYtIr6oOvInaT0mr1ulTZaeQrVFz0sHomurLczGwzCQ6Sjqn7DP8PZZQ9dhQqANPsuNq+ZmloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8XibzkM20YiJTP25tGx0w+KPyITfzPvNkMm+K3+8zABFuXGs804kwlfvstgoMi6bE4v3nIVrn+q8WS+CYrcn6ydO37+jVBIGdqHx9YgMEi8UuI+UG1UkqmNjG+W2ExmV8TusForS4TL2iC3nxJ/RnLA2USJbficz8uHz6aOz7LN5sh8YhmFX/TK3o7kYBZF6hFUdPMf4fpSeEl9H6wD3D9cj638lUs9E3VzGbE4wVL2idY7dA9cZZ6os0fjei2vuhUQx7UKhUCgUNgSLYtqGLCKagXfDzKYtWAewE5TBnlFMO2OkCpkBCtdH1SGCcmuIGAkHDuAdaRRERu0m51gBsNMvxoD5k8vh0+NgJRy0JDOw8iz8QkNJR+ZcgPw9xc4jFmtuj2wAF+3+56RA67gn8rM8lnx51bM9rjJKChTNwR7DzXNBaw2ttS7XT4XMYJMlUz1ulXPMMGLAzCoVI/XoCdoSlTkrY2bE2sN0/XU/39hAmde3CHNjJ3NLK6ZdKBQKhULhnLBIph3p+gzMio3VGZu20HMnT548+45dMxbOYRB5xxaxCsWkot2ksUn7tHvGKqPdLOuDuO5cby9J4DCtVj+7bpKFKDSk2kUqlgDssEALiMKhSSO7AquzPctljqQq2Y59KYgYAYMDR2RSDGZJbC+QsSVmWsrVy48tZTOhpFD+fw45qmwrMr2r0mFG9Tyfuu3IHTJzjcskHwxuDx7ras77e3N968FrSc8YVdIZvu7zmwuxG83bOR09SxL9uyo4lvreU7913G+XguWtgoVCoVAoFEIsjmlnO0dglT0a4zxx4gSAHYZt34EdFs7B4pVV+TphEW236S2bjU1a+E0OBKOsrQGtt1X19v+r+uwFrHP0IURNcmGHt9g9+27t55k9SxvYIjwKnJJZo28i5oKR+GvMAJTXhP9/Th/JOkF/T5XNxpD1ub/GEh1mg5med66+qq7nC6bXVvmyHQKz1sjWhOvPdhs29jOJyzpjXkk6MtuW3kAime7XwJKwzLZhTrIT6atZusrjLpIKWXntWcW4I+xHKNnzgWLahUKhUChsCBbHtIdhkPpc/7/tnJhp26exa2BVx8pMO9LB9iIKEco7Wrtn11nXDWjGYZ+Zdbxdszqfb79WtQONfGz5HbYiZz2vSSf8O0uz3oywTlnnfHD9NWbRPB78PeVb3+NLzHrc7PhaZjTK3ziyh1CSpMw/Vx2ruJ/IfHyB1XayMmRxGjjtnoNCVHmU/jvztuB69MSHULpspb/2ZZqzbYjKoo5kjexweGzyWInWJe4XNScyT4Fi2oVCoVAoFPaExTHt1lrXwfK22zLGaTsye9f0q9E7rPNVuz1gdVfK7CKK2sa6K2VN6XfJzMp5t8r+6H4H2eOvuFccP34cwO72ZJ0c+21nukxr+7vuumtXGlFUKGPdSwjYrw5S6dmxs9Uwj28P1bbcppleUpUxGncsBeJxaH0a6XetjEqKEkkQlCeAPWvjI2LazNL3k3EPw5DaHCg9qpUh0xczw42kCQz23lDjwbcJe60wO+7xn5/zIY+kNPYOtxGvWf6ZOamn2VBETFuVP5PssGQii9qWMfcloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8XhrDYcOHVoR60SGBWz0ZG5WkXGHOpyAxSB83//P4jATu2QiGxY1WlCS6OALrs9c0JPo3Sh86BwsPQ6UcuzYMQA7YnH77t9RoiYO7uD/t08OimOicO9alqlJLhTYEEeNoSzULn+3NKKDUPgMeTZajETrLDpl1Q3XJRJ127s2RvngEhsXvh7qMBX+Hs2N6CAan6+fD6wSuuyyywDsqFj2YkDKGIZhpX98ukrky2JdX26ej+ozMuDkPrR+USGE/f+8zvCa4dt87mxv1U/+GrsHsug7ck/lIFg271l8vo4oPxKP8zyycazaJqqrCkN9UCimXSgUCoXChmBxTPvIkSMy3COw25ULWGXYUQhUtePnnRk74vt3bFfMblXRDtvXx6druztjr35HZztN5U6THWbALI93uhxCFNjZgZqhmX0aizHmyztUDxXcIGJibGClXGh8PhwQIXMp2w8wy/XXeLetDrzwfcrsjMd1xJaYAbAhkiELDakOcMiMbni8eckKsJt1KrbJ7o+Z8ZKSHLB7F7DDzph92Vi1OekZ3brwhmjWbz6gDJeB68yuSv6e+uxhkwZmzzw//f8ZGwd2j2VlPKoYeHS4jYHdcK39/Jpt/xvDPtc+8+XIDnqxstk6ywcVRcGdlopi2oVCoVAobAgWxbSBcYeXmdrbLtF2nuzYHzEj5fqgdvter2q7YdbX2U4xOkqQy227OGbY3o3K6sM7wp4A91xuS8N248ZefX5W56uuugoAcM011+x6xsrDoVh9+swYWKcV7aKZ0Vk5IobFDPV86bStzpH7nkEd+pIdlciMje0HokNSlEuUtY+9mx2zamVU49zD2tjS5Xyjg2W4jOwqyWF7fb7qsBSWxHjmY+/beGI3TxurHpFrpMIwDDh9+vTZZy19zxB5vmdSJQOvA/xO5kqkQqpm7yhbFp5z0RhVbqo853we3LbsrhWFUz6XQFYG1vfzmI1cTXm8sZTIl5FdFpcW3KmYdqFQKBQKG4LFMe0oqEIUSJ91f2wlGFloG1Toxii4iu26Wfea6VfnghgYe40CwNiO3naiSqcUBYBhNshsObI0Nd2l6Qd5x50xCEvf0jK2Zjtsr59mFs59y+zM532+drpskRsFLmEo9s9sxoPZI9thZEdAGvgI04ypWHpsER5ZzKqAH8ry2f9vc4OtuHl8RAFAlN1KxJ7sf5svbINi5fD5cFl6xhDPf9/GLHFTXgORZbbyIlD6Y5++CsyShXvlYCd8PbME53s8rqN1x9JXBy9FUsFsfZmDpaHC6EZ9wOOM+9qXg/tjCcGdPIppFwqFQqGwIVgc0/a7pExfzLptQ8QmWB9o4OM8+RPQuo/MJ5r1QVYmKwdbLgKrx2uyXpgZvte7K6t4pRf1ZTP907ve9a5dz7D1su8X1pEbS2fpRhQuk3e6KiSmrzPrzs8VLJGwvHsOx2CPA3WABLAqBbL2YqYdeSsonbnpWb0OjseTkmJEc8PawsYZ+75GTJvH9eWXXw5gZyyxztn3m5XbHwzj87NxHVk4W9lYkpRZINuzWcjTYRhw5syZFU8Q3y/Kup3ZdCQp4jnM99m+w99jXTan6fNjC2glBfDPscSA1w6WKPm1WK2NbFvjsZdYEgxe71jS2ON7rSQK/v0o9sISsMxSFQqFQqFQWMEimTb7YkcRo9jSV/lc+3dsl3f77bcDAG677TYAwK233gpgNToPsOorzDo/zgPYYRFcJmYIXkpgLMV2q9YGpi9kpu13m6w7MiZn6fMu3dfRrlk+toNnnZOXPphPtzEss0B/0IMeBGDVxxfYaTfuC2bynm1wm/t+UbBxEVk9G6wfTEKgrOD9Nfax5wNQrN28nQKXxfrF2i06UMH6nSUSKk4AsDre2F6Bddo+P2ZY6tCHSMds+Vx55ZUAVueTwUu4TLrFemo+UjeydFc+7GwR7MudHSnpMQyD9C7xeSk7mCi6Gc8xlmJYWpEdDre78tePIseptTCLC8BjhRHZbFhfsX+2Xc/sCGwN4Xpwvf06x5I3RiTt4LnHkoRIb93jdXGQKKZdKBQKhcKGYFlbCIy7HNvt264vs+yLGBqwm5XZDvCWW24BALz73e8GsLML5zi4tuv3eRubtLIZM7Vdq7Enny77SfPON/JJVlbqrDPN4pezVTdbd3oww2JG8s53vhNArN+x3fLb3vY2ADsM6+EPfziAHQbm0+WdLrPNKKb2Oug59tD6w9qHdaJ+121t+cAHPhAAcPXVVwPY6X9rc/b1Bnbax8ab1dnSMomPHwdsRc/eAqxbB+YtpJU/tX+XwWlFvtZsDe/nDbDTVnfcccdKOlb3hz70oQB25so73vGOlTKytEsdTxmN0Z7jO+3MA7aviGwoWCfLfsfRO9an7/Ve77WrHjZfbIxF0QDZj94YsY0L3+Y8h5WHgwd7lnCEtMyzRh3NybY7EZhpWz2i6I0Gtpmw9cWYvY9gZ2APA449HsVFYA+apaGYdqFQKBQKG4L60S4UCoVCYUOwKPH4MAy4//77z4oyTLziRXWRYYz/buIwL5K78847AewYyrBRlMHEIl6sy0Yd6lAEb8DBwVPs0+oTidJU0HsVJtPXn0VbLKpl4zKfDqfHB4RkoShNVGf1sHa++eabV97hvmSRpvVbdARoJPZS4H7ysDpxaFY27vMibiuPqUdYrGfjjF2nfJ3YbYqDj0SH27ARkwqgA+ggGsrILzLuYWPFLCywGpscBpSNKH2d2eXP1Es2huzTl8ne5fysLbJAQJm6pLWGw4cPr6jl/PzkUMEsNs7E4raeWKhgbh+DHztsVGpz2tKy9olcW9kdVqlafD24fdhAKxoHyo2KRdA+P+srawsWX1v7mqrSr3Os6rC2sLFz00037UrLQ62jUb1YrF9hTAuFQqFQKOwJi2PafjcVGSPYjlMF7I9YLB+gwQzLdlbsSuKvcXhRDhEZ7dSUu0kUIIXzY5bEafgdKAe7YNefyHjJoIKH8A4/CnpibWHPGguNXL64v9iIKNrxqnCzGZglReVWRzDysX3AjpELB59hthyFQ7Rr1h42/oxhRf3P45eNfay9fHCSKOCKrwczfj8OlKEWu15FbmIshWEpjRkX+TaxMWIsydrImGPkdjk3DtjQLro3F4ry0KFDK/PDjwOWRCnXQi+lMZdCqzP33RVXXAFghxlGIUltfBmbtLaNQrdyGVkyEc0JlrSpA0MyNzh7h+d99I7V3fJlqSS7vvp3LT0bO2yobPn7scr9zusOl8fXZ2nhSw3FtAuFQqFQ2BAsimkzooMn+J7tHu0762CAnZ0Z63RsV2+7LWMXEQNitxN7Jzq6Uun8OPSgZwbM/plNsI4xelcdsMEBTQAdSJ91qpH7A1+z/jFmwS5uvmwGdkOJ2BKXO9v5mtuOpafcuXyezJpZJ+v/t/awMWLMh/Xg2UEXBhUwJwKzIw656p9hhqBCYPp+YXbJ7CiyIeH24zFk881YU+QmZGUzN0xj5fbp+9rqzPOSpRC+na2fIv10hO3t7RXplk9PHRiS6T85qI3B5scDHvCAXWlHx14ys+c1xKdt7aFcTFmK5svPoXBZ5xsxX3b5M7DtRmRrwAFYjCXbd5aK+fSsXyxdGxfRfOM5zu0ZuaWx9CGbnweBYtqFQqFQKGwIFsW0W2u49NJLV8IVen0DBwrhgPeRdS0fRsE6WT4IPgrsYGBmHR3+oQKIsDQgCgahjv5jNh0dP2ew+mUBBPhd3nHy7tgzHw5OwmFTo0NGlD6aw016NsX9nwXw50MfovyYUXNbRiyWy28MgfWHPB78PbbEz0JfquAdzNp8GVWAFLYjiEI2cruzbUHW9ip9Y03WFhFTUWyd9bC+zirMqH2ajji6l0lphmHA9vb2Sp9GkiJmpux5EOlTebxxG2frHKfLa1e0DvB4ZlbumSjPVZbOGKIxxvY3LN2KJGQ85q0+LLWzskZ6fpZccrt63bryMmLGHbX9uRxqcj5RTLtQKBQKhQ3Bopj21tbWLqvYiLFFB2b475kehfV37M8YMVLlh5lZj3N6tiM0fR2HOfX5qN0d+5T7MiqmxXopX3/eyfMulneoka88Wzqzz292zCqXLWJCzCbmDn3w6fN4AFbDurKeznb5kS+q8mPndoo8D9hegA+F8exMHWvIh4JkoUhZWsN6aT+WeU6wX3gU00Ad9clSm0jawf1sZWHvjEgaoPqfGSawevTnHGs6c+ZMehwtW8hzP7BdAbBqs6BsM6J6KT9wrkc03tSBIdE6wPkpf+0oP5Yosu1BFj6Zy5xJHbgsSmoShbNVVvEsHYgOYIqkmktAMe1CoVAoFDYEi2LaZgGsLDX5WSDeZQO7d6TMOFifpqyt/T3eqbEuxKfBu2RjEWx5HO3guD68M4x0jMyO7Rnlh+7TU22TRWDjfJlpR2xd7eB515/pznp2vCyR8Dto3qmrSGheL630dtymkS6QpT7cTtEhDCxxYS8FPg7RP8v1UxHL/LvsCcBeCpGFO0tHWOqk9KQRuL8iiRNLWlQEuOg4XqWjZVhUNCBeU7hto+NAuQzc/uwvn8UfULYtzPR9JEaOiMj6/EhixUyU1zlDFmmQ241jO/g+ZhbLn1yujHErD5go1gNLH3heZ1E3i2kXCoVCoVDYE+pHu1AoFAqFDcGixOPAKIrIDA7Y9YnFOJG5vnL1YVFclh+LZDityDXBwG4NLEaM3mHRknJdyN5RoUO5vP4dFitGbcJiNjbsYheMqNycTyaK4nCcGbhsPj12n+JANlF5lRGcap9oHLBrIYsCIzGsCg0ZGSSxCFiJ8yIxLIfl5QAsLNr19WL1gr3LqqNIHKvEv5ExEddPGZ1GoumeELimlmNxq39HjU9VD/8/i2LXGQfcLqzC8eJxNorldS4yzuR6rWPsx2VTIYojIy9Wu2RrsIIyvMsMSdmIMjo7nfupxOOFQqFQKBT2hMUxbWA1KIAH75gMmbEN77bV7q5nl8esiQOz+DIqo6KITShGoJhjFOBeGZNkAUd4d6wMz7LgGtz2n3zBjAAAIABJREFUkWuJ6jdmZ5FrETOHHkTGScwIVbAWnw8HyOHQqqo+Pm9uJ2axEaNjoyJ2o4kM7PZiOGOMh9kKH1gRGRMp1sn3s6A+jGh8c1+y9CuSerCB5VxwFftTZVDlZoNE3/9stDhngNbDtC0tZor+HZ7vLNXKjtecQxRWlD/VeuSfsbZQga6iNmJJgXLn6pFCWjtGY5THVR3NWSgUCoVCYU9YHNPe2tpaCREYhcNURzBGO2uly2adZra7U3rwKAwe7x6Vm1hULy5LpIfiMjIbNDAjiXTCSieX6dQVK+d3ojIqxpPlo1h6BLYfiGBuU3xIgSFz/7D+VyFPo115xDh8WlEAGCsbs6fIRUa5Kqm+zcY3u35FjG6uLzMGzO8qG4dIksTuaNaPe9GHMnwI3GhOM9SYj9YdW6sUw+7Rh6tPn5bSXWdzuTdwUTSuFdPlcR0FnlJ6dx7nUXsq6WDmYqjaYGksugfFtAuFQqFQ2BAsjmlvb2+vBBCImIHSX0QWi8yslWN/ZHmunuFdXnSsnkHt3KN8VHhRfi5isfbJR9VFrDAK0gHoQCaZrlntXnt0mVz2jNH3MCnuL19upRPncme2FIopZpbSysMh0kGzVbCy0PZQTGMuNK1/hm0z+DhJb59g9+Ysf3uCq6g6ZAFAuOxZv0XlZ9iBIZmluQq3y9eVrl7lC8R6Va6rsuHJdL4qMFRmPc75cdv6MvL6zM9ktjQ2hszOR63J0bqqPDai/ldSDSXRjFDW44VCoVAoFPaExTFtb8UZWVmzlSHvdKNd65wvIrMNv7tjvbeBdY3ez499AZkp8uEjUb1YL658oT2YnXFZIxbALEkd0hGxAGbyxhKjgym4LGzFGYVaNZyL3ilrJwNLZyIrXi6LKlPmI8rf+ehU/z7r+jK9tNL9K9bnyzjnAZBJA+yT9ZBZf/WwYi4769ftAB51mI8Hh2PNysXhZjMrZMW4M33q3Pd14gRkXgR70d9m8z3KP4Lq/8hGhOMBsHQ1qp+SIEVH3Bo4HS5jj/SumHahUCgUCoU9YXFM+9ChQyv6tSgAvOltmYFEhzDYs3yQvNJ1+3cVw1aHuAPA8ePHd73Duzt7N2ITfGyjffK72SET3BaGqB05XXXAQiS5iA6q94gOcGApBEtTPDPOju3cDzA7Yl9YXy4VsSvzb2f7AGZAkSTp1KlTAFb71N7Noj7xM+z7njE6ZbOhLN+BVZ9hZfmbxQfgexGzZ7sR5SXhkbE9RmsNW1tbK37mXq/PFtE8fyIbinWjjEVW3ar8mQW/PcuSnEwKoCKvcZqZ9MHWKkNkX8TtxeM7izmgIuPx/I3y47Jm4Lqer/VnryimXSgUCoXChqB+tAuFQqFQ2BAsSjze2nimbRYMwKAOkchC57FRggp92hMOkQ3DLrnkkpV3DEoU5MtoInwTMZmY1D7ZSMob37CLh5WFjXAitxd7xox7+EzsqKxsaMaiNBa1eagQhHyf/wf6xFQ9Ii1ray8GB/JgJyzSVu5u0bhT79j1yEhKGfVkoTW5DGwYmInHDawusXf8+FYqA8svCynM88nA/ZWJfZWRlL9uz1pf90CpioBVVQOroqIwpsp9ci5/QBvWcrv4Oqt7KuwroA3BlMuXn9NcL1sPrM0j9QCvxUrtELWZ+l1g1Vp2WJSBDUp9mygV4VJQTLtQKBQKhQ3Bopi2gQ0oImMEu8chT5nN+mf5+EHFxrLgKipAR3Q4Bu/yuGyeLdvu9OTJk7s+12EKxsrZJSfaYds1a2t2g+LACNG7aicf9RuzzJ4Qi8w2eph2j/Ga9YNJNZhtZEFvFPPlAzd8WZjFMGvLXFWU1CaaE0oawP0fMRHlphexRTagUyFdo7kyx6ij8TZ3lG7GlqK2ZZibaWasNhcoh5/z5TTMGZdlz6p28v3Fa6P1E4cOjQxE7Rk2Ls36i+c/Sx+zIEVzQaTWCVLDiOaGkrL2sPOlhTotpl0oFAqFwoZgUUx7GAbcd999Z3d9rHO0Z/yngXeR0fGKc0EnVJk8mEVaWb3Oj9mJlcX0xtGunXep6zBsAzMQxWazMipEOm1ml9ZfkesUh+fkZyNGt04ghNba2joodr2LjuxkKQm79nCeXr/PUgylF/VQbIkZYxTe0Z61sajYWjQOmAFlAY74XQ4ixDrhSHLB9iMZ81LvKJ0mvx+1Bd/b2tpKmfvcAT4RK2MJB89D5cLkMWcfE0kSrD/s0JnLLrsMQNxOfCAMs+ZsXWB7Dw52Y5IsLw1Qx+Kq8Zb1mwq2Eh0ywn3Ka0skpVknAMuFRDHtQqFQKBQ2BIti2sC4q2G9mtcTKhbJYfE85kIA9hwUwDsz1glHh9ErqUBPmMdzAbdftltlXTPrwSNLWpZczFlU+/RUeMys3r1HL25tbXWlOxfkJLNcVZbTkXSIbQv4gIWIdShLfLYwj6yUVTjZuUN2ojKyZ0AUcIbHjLKO93OSgwgxc8xCiHKI3ay/eo5MZSgvkyi9nuA6nDffy1isYtgmgYsYv0lYjh49uuvTrkdl43HMbcBjNrJT4WBYbGfk1yOWDKi1mMdwVDbl2RMFnmLJgQpr6u8tFcW0C4VCoVDYECyOaQOr7M7v1FUIQ9Y/RL6BvDtW1o+RfkP5E0dsgnVH/Eyme2Fmow468OVhpsiW4JkuPwq/6BHpwZipKr/JyIKfGQS3eVTGyH9egfs6YjNsxc36PN+XzKSNtdiRgsywvW0DSy2YTUQH1LAESUmDfBmVzjwK6wjsZj7sJaD85yOmyuyMv0dhbpmVcVjeqN/sf2tP1s1H9gU8BlmCwXW7//77U8tpHr9q3GY6bZZ4ROXgOvNYMaZt9329bOxxP6hDgPyzXGYlLfQslg85UodzZOONQ99afZhxA9ruQjHuqEw83iLdvTpEaSkopl0oFAqFwoZgUUzbdrx85J/pZvYzH2CVGWZ+rKw3U9aP0T225uXdJbCzq7Nn+VATZuKeTfPBDeyXyZbuUbmVnjWyPGf9lpJgZIdnqPwj3dI6Om0uf8S0mYmyH3XEYq1fzCKXWbrdj5gBs5SMiRiTili4L090jSOSMctkxuXLYvmqaHbm+eDv8bMZ8+V3ORoc67IjCdPcYS090eIi2LqjbA6i91kSkUn45thrNPa5XVg/HOndLU6D1YP7NJI6qBgCKsaE7xdL3/K96667dn0/ceLErud8PZQERPlV+3ooRBb1yvMg83BgNj53rOuFRjHtQqFQKBQ2BItj2tvb22lEGtZrzO1mIyj9VASlh1I7UWBnN8xWvcxEonpxnHDW42UxrlV+7CPt02crXkbEXpQFeMZ4+F2lQ/flYHuCLGY2EO/KIz0np5e1k/1vn8paPLJ2Zbav9GqRzm9ufPt8LG/TsyvdLFuI+/85XjQz7cjXVrUfs6ce7w9DNG+j6F9AzrxUpK0ILOHjNAAdKz2zGjfwfFFs0jNEPkZYrWeeBd5xxx0AVo/I5LL6epqEiD957EbxI0z6YoyaozhmawuPrx49/5zvdhTdjKWaPcfHMvvuiap3IVFMu1AoFAqFDUH9aBcKhUKhsCFYnHj83nvvlcZRwKqIqSfcHUOFpsxC2ikxeeTqwWJPM6Rj8ZuvlwoJqoxVeoy8TFzKRib+fbvGxhYsNsqC8PcErlBGalzmSDyu3MU8Wms4dOiQNJIDVg3QWBTMom5/j13x+DsbY0V1Ui5AHuympUI0RvmosLX8TnSoiUEdiBGV1ca3cmnkds7qx6L2vQS4iAzsogNWFLJgJ1GQIZ9uNJ5VeFKey2xs5v9n0SyLlf19E1ffeuutMl1g9zpga4R9KvG4peXXCTM4M3E8h16O1lMeI3PGi77t5tRvkXicRdyRETCXcS/r24VEMe1CoVAoFDYEi2LawLirUeb5wOruXTHuiBkalPFLFr5QBZuIDn/gstkOlMP7eTcadvFRQV0iKOamDGB8fiqoBu/0I7bEBnX8mQW44bJnBkg9bTEMA86cOZMe68rlnnNdArRLjApRGgUCYrbH0gYfkIXDx3KABzb68mC3qbmjOqNnmP1xOEv+3z+jAh/5Plfulplr1pyrVMRo93LYwzoHhnDZovGtGCGXLWLEXBYV3Ck63MaY7+23374rfYPvPx7HZmCppEKRe6Jy22PDWH+P02dXzWhMzbnOZSFJ1foauepl42AJKKZdKBQKhcKGYHFMu7WWukJE7lL8vrqmdnes7/D5RWEjo3wi53wDhx60ekVM257lgwGYCXnwbpHTisJZMmOIdpw+v4ixMIPv0RsqnSnnF92bS397ezvV37KURqUX6cGZjTMzicJk2jvMQJgleaZt6fmxAazaHJgO0uetGDbbL0TMd07S49uKXcrmXCijwDwcttSQzd91GFAm9Yme3d7eXkkvkrjNrTs9c0BJ9qIQqMqtLtL9c9hkDuZk8N+NlWcSHF+2LNynIXNPZZsQ5Tqb2bGodTxz3+LxzflGktm9SGsuBIppFwqFQqGwIVgc0wZW9SeeZaiwd1mAD6X7UMHj/c5K6W15x+Z3ryoE4Z133rkrTV8vDlsaWYlH5fDPWFnYipPZoX9HSTV4h+u/q51tZjvQa90f7Wp7mZXptYGYVe4FrJfjTxVaE1hlx3MH1lg9gB2PA9ZlZsd5sl6d2zy6rvTQLGGIgvkwMstffkYxnR7bBnU/uzanl4yYNt/3n+cy5lVIZN/G6vhTtq2IAn/w+mZlNFYd1dPe4cAsXOZMEqLsPrxUiMP9KklL1L52T+mlsyAoyhI8GzvrBOi5kCimXSgUCoXChmCRTJt1zFEYRENP2FJ+t5cpRmVilsT6Y/+/MS3TT/KuMjowZC7/yF9cHS3Kh4xE/u6KQWS+61x+5dOdWdJyepF+LNNVKWRWt8o3k9ONrNTn/My5PQHdZ2xjkFlMc/psW+GfUSzZ7pu+PCqjsk/oOfxFWfn3sDMlSYoswTmddUIXZ8crmoSG7SEyD5SetUMxaiVp8ZIwlvAopu3bSUlc7NOsyf1axV4CCtH442tKCuXrxTYgSncdzXleq9R63uM5lNk8KGnqUlBMu1AoFAqFDcHimPYwDCu67Mj3Ve26o52v2g0rfZp/jnXNkV82fzdmzdF3sohLc8jyUzoe3jF6tpEdLeq/R/7Oyrqyx9p7znfVI/NjVVBRwVQePp/suTnfYOWrDKyyiix6GteD84use9UxqiryW2QPodo2Ytqsx1f66YhFKQkFI5u/yoc4Y4tzY8fbQ0TlnmPz6/jycj2iiIV8zC4/E81LvqeYsB3sAeysVcqDJjsMhn28+aCiKHaBsgHhNSs6DnMukmWPJThfj77P+cgfNIppFwqFQqGwIagf7UKhUCgUNgSLEo8PwxjC1MQTJnaJ3KlYzJIZhLD4RInYIyMYFh/xs5G4XIlXzkU83gN1FnNmWDMnso1cz9Yx/ut9J2p7FtWt0349Yt11DsdQRk/ZO2yQowwEo7Oqo3tR/r4eKmwpG+pkxkQGNT58utx+VtYe98u9qEn4GRWi0j/TY2Rq5VGGTsCqGFepL+bcEqPv0RxTYum5UL7+HQOPQx/Mx9Y3/uRyWP0iEb4K5RuJx1X5WRXGqj1/bc79LlKtGJRxYCQen1PhHBSWVZpCoVAoFAoSi2La29vbuOeee1aOizRjDGDHXUHt5jOXEbVjZ4MGz25UsBM2+vC7W3vWymrfbRcbufrshwO/Cq1q+fsdr9q18pF80Q5bufL0HP6gyhodSMBGgJFxCkOFVARWDbPU4QVRmM85l7XoYBWFzAiGJTpsEGT18W1hfcXHuaq+jcba3BGd0T1mKYqBRxISxZYyyQXP18wVcJ2woq01tNbkOuHT4Tr31HWuDBwMBViVkqi2jUIT85zlsePXAQumYmussXBlhJVJrpiVR6xazROb92y8G7nqKelGJu2Ym78ZOy+mXSgUCoVCYU9YJNPmwPdeB8OuCWrXn+m2DcptJzoiz3atFpKPw5t6aQDvUnl3GQWNsTobg1pHX6wOkleHgPj68C6SmXYEtZNeh2mr4CqRa461lwqxaGXa2tpKd8kscegJkMLvKruI6B0eTyy1icLO2jPGmhV7yAJkqOAqEftUUgY+0CFiIiqoD8+N6GhdDjzTw7SVK2M0vjMXvAieaUfpRi5Wc9+VzlpJmTj8sL/HEr3o4CQlSeI1LHJlY3aeBZoxKD2/IQuYxJ+syzZEhzdlYYD5HcWw1foT3SuXr0KhUCgUCnvCopj2MAy49957z+66oqD4zMiyIyt9uhl6wi0qpm2I9NMcNjI6FN7AbGkujKjPjy18VbCN6H3WnfXocDl93uFH+jd1MACz0MiewBhIxrQtTT5UIDr8RYX97LEWVUw7smC2/7n8mS6Wg0vwwQpmFxExSCsDh5PMdKqWLlt+c59Gh80oPa/Sv/pyK/10Fr6S2XiPZIR1wj2I3lFrCLPMLISmKmMUCvnUqVO7yqCCBkXHXnqpX1RWP8ciexdfpkxPzJIj7p/IApwDZ6lQv1Hfzs1bQzTu5mwoIukq57sUFNMuFAqFQmFDsCimbTptPrrS70BNv826MXVkJ//voXb9fmdlu1Zm2MyAIgtge4ZZUaRbYuZrdbey2HfW9/t32B9T6bj9tcxi1pcr0+/NMa/ongpJ6NvK+t1255HOT8He8ayDdbBcn6yuClwPv2M3Zn3ixIld35lxRxIJZrjZISNsFcxjlJlJpCdkxsPvRKEouWxK4hNZHCt7kkg/qvTc6+i/e2xEFJMHVtcK9U50j6VXyhMg81oxZHYjPGYUS4/WAS4zM+1IsjN3RGbEYjn2Auupo/HGdVdHz0bgdY7LqnTpvekfBIppFwqFQqGwIVgc0z5x4sRZdmQ7UNPvADtMOwucD+Q6sbnIRBEDVtbpEatUPpaGzG9VlUVZefv/eZeqInL5/HhXrOrt66CskrMdsLKYzQ4K4ChNPX7anH5UBsWAIr3knAV2xuBYV2n1sAMb2I/f56ekJ4YoqhmzYxXdKophoA7U4L71ZTJGx3OSpVBRfAAVJY6fA7R9R2ZxrnSXChGrjuapsm6O5qmKnqY8ETzT5uN9OX8+3MT/ryQdmQU4P6NYdGYJruxysrbnMcvP+rEzZ3OSSVx4PLA/eJTm0vyzDcssVaFQKBQKhRUsimkPw3g8njHryBrS2IPt7tlStcc3WFlIZ36fytfakOlgmGlHUX5YZ80MOLPMVjGAlW4LWN1BR/pOVQfFOrMdvYHZC+98vd7a2sT6fE6nvb29vdL/vj7s+zzHKvy1uYhKUd2VtwBLOTybYmZrZeMjGn292LeWpT8Z81kn2pyB4ydYemb3wbELokhfzIrUuOD/o/pE0qIe62eD+fjzuPDl5vgFc9bIHsrKvccjZM7LIpLw8XyM1iZ+h8vEn5H0QUnpzgWsd4/isas4FJnEhcvP61zkZcJr41JQTLtQKBQKhQ1B/WgXCoVCobAhWJR4nGGuMZFxkolKVRCIzAVjzqgoMrZQhjqcNrAqrjRY2TiwgMrbg8WmkWGQOl4zE9kZVEjKzKhMGZ5lRjkcftauR8ZmfIhApFbweZp6xdfHp3fs2LFd5eVyRiLAOTGugV2ygB3xsJXb6shBg/zYYWMeX78oP19X5XrHbR2JkecCSmRGTCqUaySSnhMnZ4Zxap5moXd73XZ8GNOoPlyuzHjVoMJ8shouUkGx+k+Jx6N2YmO/zEBUHXiynyLvCBy0issaGWAqd0FDFMyF1x2e45lKbx13wQuJYtqFQqFQKGwIFs20jU17ly9jq8bC2cgnCqQ/x16zMKZsyMCuKlH4SmVgwrtnzxyZGSrmw8ft8f+qHr4cPn2VD++4ozTZxSxj58wulAGaZw7MLtYxlvo/7Z27cuNKEkSbY46/9v7/Z629/hgzIXKtilt7mFkNkpKGiMjjiCLAxqtBIus5FYNwJVV5rftrBqVQpfP69M+U4maKVH22B1ryGKmiVflKl5bIc6DuA9e+sZhSvuo46rj4dypnSuUzBcvtggDVdXuE2+22rtfrnSWnb3dXslOVX3XBsS5YdkrjPBpQ1Ze5ssYqINWltPIe7OeY31W8p6djrDlPRc35qOa5s9JMwXKuMcl0Tqbfhb9JlHYIIYRwEt5aaRe9SEQpMhasOJLyVTzSUpJPWfS9KCVKv+SujGF/zZQePnGrAgNTAYS+rkprqGW1PddApON8ce5pvY9PGKOgfNqf5Wej0laNW7gdPr27kpBUNf015wyLj/RUNu4T91Xt+1TidHd8hVMvSi1TfTPlkMc3Fb2gT13NO+c/nvzKvPd25+Tj4+OudDCXd3i+pnRBZ61yjXfUOhxTxT7stqfUq7MgubS6fh447/gdUqhiRa7krovL6bhzPzXtcal6al5EaYcQQgjhUziF0u4+7fKFVCRwPR1T6agn0MKp8qlYPX0wVKTKX7xTiKodnPPfcXlfb+fDpsLn/vbx3ZO3KhriLBaqUYDy4691r7C70qY/7ZkoTnVdXMS0uk6upCWv+5F9Y3tXtsPs4/A6T0qb18plD6hCI061OCuKOh6qI+dj79vh+VQqyX2GVpsp2ptjKG632/r9+/ddLID6HnA+bbVdXktaa6j2VJwK72GX8bDWvXXOFSHp7DJNprgffpbfjdN3FSPBOZeORHO7wi/qnPCeP3Ktud13IUo7hBBCOAmnUNr9SYftDSuCtRSa8lPuVOwRRUqlc8RX5kpqulzc/hmnYo/kyx5Z7tblk69S2lPrxbW00nZKhzEKXYnT3/1MdHAfj0qn5kz50wq137tIbKqptbzP8ufPn/83Ro8ed1YA+o+na+mi41U8BI+L6yqlzXuiLAeTWimokp1inXLJqXxezae93W7rz58/4728i2BX++DyvqnuJhVL1TodI9Ujt7+rBTGNodh970xKm98dtNbQktn3m8fB+dHveb7nzomK+lfjvQNR2iGEEMJJOIXS7lCZ0c9VT0WqHSBxVZ/6E/eu4foUGeu2pxTDrpqUiwhf696/6iJx1XERF7U5NTPY5Xiuda/cS+VSYav2hJNl4hFcm8PaN1XJzkWP1/8uxqGPU+enFD3VTD/n9V7tq8s86Di/usvPVdG83I6LfO/7wKhxHrdSdryGzpc9XQPCLINHqTxt0t9jNcMj1RT7+GrZroVvH5/3tqpH4e4/vj/FULi88yk63s0v9X3qLDhHsn/cvDoSPc7PuEYpanu7apjfTZR2CCGEcBLyox1CCCGchNOZxxkcUH+nFKyCpnRnmpnMyK50njJTue2qAIdH05p6wB3NhzRpqmYWDnceVYCfcxlM5qT6TK0zBaKxx/irqRe1DaZGMbirX39nYpwCHwu6JdjMRvXGnnp7O5yplu+z3Gxf5lweqtgF5xXTj2hyV4F9zqSpSrDuUvVeDUTjdlSAFV0nrvHNVIyIAbFH0gYZiOaWq/13+za5Alxa1XR8PM6pEYpb5lLPlGvFuf+UG8WVY3aBhGo7r7rlPpso7RBCCOEknE5pF1RoDHRShT3cUyLVpAr/L1hG8EjZRVe0XqUjMeCJqOMrxcN94d+pyURx9El4La+aONZa94FVdewsqtJLerrmKa9S47JJiwq6YnEGF+ynLCUueGwKQKL6OpJuoiwEantKabvrS9XUg804d3YWF9WCtuDxqYJE/MwuaOoZrtfrmDpXY9NqNW2byncKJuXyo0GFCs6HKWXOKeldmmx/7awzan44i45rBqKUtit0dKS1rrtH+nrOYvUuRGmHEEIIJ+G0SpvKrAo8qCdE52OlEmJKzlq+3KJSEYXzvbhG9tym+p+op0nnlypUSc+CvnsqMKU6aBXgGOo80k/Nv705zFcXNaht1hyqIic9NaysL/Rh0mpSxX6m1DieU/rH17pPSaE6PlIYYzeX+nVS1oW+z8paQD+r882qFCzGNDh/pLJCcQxabV7hx48fo6p0avKZZjbOV6ru6UfabFK11jmeCons0sO4PxOu6NIjBaHcd2d/zTnjSpUqGE/Csfs+fVasxGcTpR1CCCGchNMq7Xq6LmXGp66uDFxktmvKoHx+LKowKR+nIqmwP+sJjorDRfMqn9nObzMVcaBqmnxBu6fi+l81DNm1VXyV2qbaHi0EnCuTf7qUO5vNOFW7lleeUwSw80vymqr2oSws44q5qDgP1ajD7SOX8XxOUfOuLOdnRfdeLpfRQqK27YqEHCnEQQuVKupT49D6N8WaOH80/fAqUlq1C1ZM0fGu2JK6f933KL+Xpjabz7Tu5famgkpFosdDCCGE8BSnVdoFo5DrCbXnz7qnORfJqKASmdblUyLV5Ff7SHaNFfo6rowl1+vvu3zWSfnUeywlyrxXlbNcfJXirn0ov7SKeqfCcTENysfImInJ908F4hpsqHiIXXYE/bF936ZWrDtoyeH86DCLwOUDK582x6dl5NkypjWG89H3/ds1vOjz21kc3DErtcc6FK78pxr3kdznqTVq346Kst6hLBY7ha38084K9UyZ0emecXPzXYjSDiGEEE7C6ZU2faGqYQiVDRXv5INhpCyffEs9TbmBxXc9sTnFOz1V0rdFP6JqwMLx6ePu55FNP7jupJK+y6dEVd1fuwhwFzm/1j/xFjVG+bbZbKR/lttx+eHKkuRUsot8VsfHzx6p+Mf5QIXdr62LUuYYU263iyZ/hcvlcqganTu3jPZfy7eDLKaYE0ZPu+8d1YyDTJYIWjF2kfiTVYjrqPPorICu6p3KQDkSFX+UI5HmydMOIYQQwlPkRzuEEEI4Cac3j7vSoFVspXOkNB+ZTItqrL5PzpT21WZyV3r1CM4cp1J+ilqHJvBu4nRBeDTZHTHhfzW9wAvTcqoQiyvzqcyVNR7XUQ0VWFKXgUfqXOzm2dTf2M0V3itTQJC7n6bAJ67Deafm266v9it8fHzYnul9P12/+aKfC+dq2pnJ+/b41wWmqfd4bVXjIKZ68X8XsKrYBZWpdZw5fJo7xStmcTfP+fodidIOIYQQTsKCBA6FAAAB30lEQVTplTafQI883U9lFvvyTj19VTDRFATB0oNMwfiuVAKXVtGhkqLimYpG7AJRVGEEt28cczqer0LNh0oDK+XrGq3UcajGGnUuf/36NY6x1n2Am9uusjq40pC8TpPS5n3EgLj+2gVuUUX18+rmvksJ7Ms4R6d5/Qi3221dr9e7AKepRa9L9VOBWq6QiGs+08dnudQaS52nyaIyvd+XubHUfblLE51KkbriQdNnd9t/ZB5M1rtXLJXfQZR2CCGEcBJOr7SLqUjAzm93hF0ZQeUncv6h4qsaYhzx/fB8uafl2kf1pM0SgNzu5I9y73dF8xW+y0dhIxMq30KdAyqbGkOlB7nPuLaePeWLn3XWClV0wymsqYCFi0tgydep2A6VKtdVc3Wnzl7her3eqdm+D/QHu8YnqgQucTEHqriK8+NPVhNeH3eN1bpuX49YwFycgrIguHWmkqSTv/tV1Hk4Gsfw3URphxBCCCfh8k72+svl8t+11n/+9n6Et+fft9vtX/2NzJ1wkMyd8Cx3c+dv8FY/2iGEEELwxDweQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEvKjHUIIIZyE/GiHEEIIJyE/2iGEEMJJyI92CCGEcBLyox1CCCGchP8BQ1/B0WsHM94AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZVlVJTrWjYgkM7LPFOmsJ3ZVWpaKCgWWCmgpWii2lNiBlO+VaelT7EWpJwmKinyKDVJig4io2Is9CJoiYodd2QE2mTyUTEgSsomI7CLurh97z7jzjjPH3OvceyPuPjjH993v3LObtVe311ljtm0YBhQKhUKhUFg+tg67AoVCoVAoFPpQP9qFQqFQKGwI6ke7UCgUCoUNQf1oFwqFQqGwIagf7UKhUCgUNgT1o10oFAqFwoZg9ke7tfbk1trQWru1tXYlnTs6nbv2nNVwQ9Fae3Rr7drW2hYdf/DUZ08+pKoVDgDTe/GFh/TsYfpbeX5r7SWttRvo2A3T9T8pyvud6fxrxHP47yUdddxqrf1Fa+1r6PintdZe3Vp7W2vtztbam1prv9Ra+0R3ja0579vRD9fO1eUwMbXt+QdcphoX/3fDAT3rwqm8px5Qee87rYv/V3DuptbaDxzEcw4CrbWPaa394TRP39Ja+47W2n06731Ua+2VrbWbW2u3t9Ze11p74kHU6+ga114O4OsBHMjg/SvAowE8HcC3ANh2x28E8BEA/vEQ6lQ4ODwZ4/vzwkOsw9Nbay8ZhuGejmvvAPBprbVLh2G4ww621t4TwKOm8xFeBOAFdOzmjud9PoAHADj7g9Va+3IA34Oxz54D4CSA9wHwSQA+FsBvdpS7aXgGgD9urX33MAxvPKAyP4K+/yKAvwRwrTt29wE96+7pef//AZX3vhjXxVcGZT4WwDsP6Dn7QmvtoRjn48sAPA1jvZ8D4H4AvqDj3lcA+F0AX4ixDz8bwItba0eHYfjR/dRtnR/tVwD4stbac4dheOt+HvqvGcMw3A3gDw+7HoWNxysAPAbANQC+r+P63wLw8QA+E+MPseGJAG4A8GYAR4L7/mUYhr3M168B8OJhGE7RsV8ahuH/dsd+G8APsURqqWit3Wd6h7swDMOft9b+HMBXAPiSg6gDj0dr7W4Ab+8dp3XaMIzRt87LejUMw5+dj+d04psB/AOAzxmG4QyAV7XWBgAvaK19xzAMf5Pc+7kATgP41GEY7pyOvaK19qEAngRgXz/a67wo3zJ9/s+5C1tr/3ESDZxorZ1srb2qtfYf6ZoXtdb+ubX2oa2132utnWqt/X1r7Yt7KrPO/a2192qt/cQkqrh7Ett9enDd57TWXt9au6u19lettU9prV3XWrvOXXNha+25rbW/ntp3U2vtV1pr7++uuRbjbhIA7jWR1XRul3i8tfa1rbV7WmtXB/X529bay9z34621Z7fWrp/uub619rSeBa+1dnFr7dtba/849cFNrbWfb63dz12zzrg9tLX22kl09IbW2idN57+qjeLY21trL2ut3ZfuH1prz5rq/c/T/a9urT2Ermutta+cyr6ntXZja+15rbXLgvK+pbX25VN/3NFa+93W2gcGffAZbRR3nWqjuudnG4npprq/pLX22a21v5v64XWttY9y11yHkZ1+ZNsRR143nbt/a+3H2ihOu3uq96+21t59bozWxJ8A+CUAT2utHe+4/k4AP4fxR9rjiQB+HMCBhUZsrT0cwAcBYHH8VQBuiu4ZhmE7Ou7KfGhr7a2ttV9orV2YXPchrbVfbq29c5pbv99a+2i65mGttZ9z8+8NrbVvba1dRNdd11p7TWvtca21P2/jj+OXTOe65x2AlwL4PC7/fKC19tLW2j+01h45zf07ATxzOvekqc43T/X/09ba59L9K+LxaR053Vp7v9bay6d35PrW2je01lpSl08E8BvT199z784jpvO7xOOttS+ezj+sjWuVrbdfPZ1/XGvtL6fn/1Fr7UOCZz6htfbH0zv/zqk/HjTTZ8cBfByAl04/2IafAnAGwKdk9wO4ACO7vouO3wb3m9tau7y19vzW2punteKtrbVXtBm1EIZhSP8wigEHjOKBZ0+Vec/p3NHp3LXu+g/GuED8KYDHY9zZ/8l07EPcdS8CcDuAv8PIFj4e40s+APiYjnp13Q/g3wB4G4C/xiiy+wSM4rltAJ/irvv46dgvYRTTfAGAfwLwFgDXuesuB/DDGMUdjwLw6RhZzDsB3H+65j2mawYAHwngEQAeMZ178HT8ydP3B2GcCF9C7fvw6brPdH39ewBuwbhr/88YxTZ3AfjOmb66AMBrMYoj/7+prY8H8EMA3n+P4/a3GEU/nzjV6y4A3wngVzCKO79wuu5nqC4DRlb3+wA+DcATALxhatdV7rpvna593jRmXwngxPSsLSrvBgAvx/gyPR7A9Rh3yUfddV88XfvCaXyfgHHuXA/gUnfdDQDeNLX98QA+GcCfA7gVwBXTNf8ewJ9hFEk+Yvr799O53wLwRgCfB+CRAP4rgB8A8OC5Od37N7XjWwB84DR3nurOvQTADXT9DdPxR0/Xv8d0/BFTWe8D4DoArwme8yyMc+/sX0f9nj6N/RYd/20ApwB8LYB/27PmTN8fg1F8/wMAjlD9/NrzYRjn+GumsXssgF/GuGZ9uLvuMzGSj0/G+A5/CcbNxEupHtdhXDuuxzifHw3gg9eZd9O1D52u/9iDmgPR+IpzL53m7pumdj4awMPcOP0PjOvBx2N8585gWpumay6c6u7n2LdP1/0VxrXo4zCqQQaMzFTV8/Lp+gHAF2Hn3blkOn8TgB8I3tk3APiG6Tk/Oh37Nozv32dN/f9GjOu1nx9fgXFNfwGA/wLgcwD8/XTt8aSeD5me8enBuX8C8OMz4/FhGNfN52JUEV0F4EsB3OvLxLhZ/hcA/w3jWvEZAL4bwIel5XdMiCdj50f7qmkCvHA6F/1o/xzcAjcduwzAOwD8gjv2Iqz+wN4H4+L9gx316rofwI9g1MFdTff/FoC/cN9fi/GHvblj9sN5XVKPIwCOY1xUvtIdv3a6l1/gB8P9aLu6/AFd990YNwL3mb4/cbrvkXTd0wDcA+Ddkzp+4XTvpyTXrDtuj3THPhg7L5d/ab5rmqi80L4dwMXUJ/cC+Obp+1UYF9oXUR0/n9sxff97AMfcscdPx//T9P0SjLvcF1J57zX13Ve4YzdM/X6lO2aL7ue6Y9eBfuSm4ycAfPnc/N3P31SXb5n+//FpjC6fvmc/2m36/6nT8ecD+H3Vnuk50d/7ztTvN6xcOv5vAfxvV87bMbKXx9B1T8bOmvN50xg9Q/SDX3tehXEjdgG9n3+HUSwf1bVhXMc+H+MCf7U7d9107CHi2em8c8ePYfyR+8ZzNB9uQP6jPQD4hJkytqZ++HEAf+SOqx/tXT/QUz++EcAvzzznE6d7Pyo4p360v84duwDj+3kXps3ndPyzpmsfPn2/AuMG7vnBHDwN4IuTOn7sVNajg3OvA/BrHWPynzDaL9lcvwvA59M1/wDgW9cd77X0SMMwvAMjm3pSa+3ficseCeBXh2G41d13O8Yd76Po2lPDMPyOu+5ujAN/VmTZRgv1s3/r3o9xkvw6gNuonJcD+JDW2mWttSMYF+afH6benMr7U4y7511orX3WJI65FeMEOInxh0H1yRxeDOARJhaZ6vc5GFmq6Z4+EeNu+bXUjldgXBQekZT/GAA3DcPwy8k164zbyWEYXu2+v376fOWwW5z0eowLwQPo/l8fhuGke84NGPVmZmDzCIwvJ1spvxRjf3N9fmsYhnvd97+aPm0efATGDchPUN+9earjI6m8PxiGwRvEcHkZ/gTA17bWntJa+6BMXGhorR2heb7Oe/l0jHPva+cunOb2SwA8sbV2AUZpw4tnbnshgIfR35tn7nkgAmO1YTTE+lCM4/csAH+BUVL18tZapHb7CoybxKcMw/D07IGT6PlRAH4WwLYb44bR6OmR7trL2qhm+keMm8N7Mf5YNQDvR0XfMAzDX4jHzs07a/e9GDeND5xpQ7bW7QenhmF4efC892+t/Uxr7S0Y36t7MW5eetexX7N/prn1N+h7R9aFidQxjEaX1wP4m2EY/tldY2vQv5k+PxojmeJ3/p+mP37nDwyttQ/AOA//FKM05+MxSghe2Fp7vLv0TwB8UWvt61trH9b73u/F+OO5GHf2zxTnr8K4w2DcBOBKOhZZCt6NcXeH1tqDMU6ks3/Tsa77J7w7RuX/vfT3nOn81QDeDeMP39uC8nYZ3bXWHgfgpzHu3j8XwMMxLmQ303PXwS9g/OE3feNjpnr7BfXdAbxn0I4/du1QuBqjGCbDOuN2q/8y7Fgv83jYce6XyJDxrRhVBVYXcH2GYTiNSYxO976DvttGx55r+uRXYrX/PgirfberPLdx6hnfJ2Dc6HwdRlb5L621b5p5IV9FdfqmjudY3f4JozTpKY3sBwRejFG8/3QAF2OcyxluHIbhdfQ3Z8R0IYT18jAMZ4ZhePUwDP9zGIaPA/DeGH/snt7IpRSjCupfAPz8zPOAcU4cwaj+4TH+fwFc6cbgRzGyuO/FuKA+DKP40uruEb0Thrl553EnAKnT7ljr9oMVO4LW2hUY34f3x7jh+yiM/fAT6JvnZ6ZNvQevvQeFaF2ZW2vsnX8NVufD+yFfL61sno/AOM943BnfgVE99KnDMPzaMAyvHIbhf2BUHX6vu+4ajJviazD+wL+1tfaclthsAOtZjwMAhmE40Vr7NoyM+znBJe8AcP/g+P2xvjn/WzBOJD62Dm7BqAd9dvIM22VGxkL3w27XhM8G8A/DMDzZDrTWjmH1h6QbwzCcbK39IkZR4NMx7nb/aRiG33eX3YJxh/lZopgbkke8HcB/mKnGQY7bHO4njtnGwl6K+2PcvQM4K4G4GvMvDeOW6fPJvjwH5e60NoZheBvGH4AvnaRRX4DR7edmAP9L3HYNgEvd93Xn+DdPz/nGjvq9sbX2RxhdN3/BS1YOELcgXvCi+ryltfbDGF3B3g87m1Bg1D3/IIDrWmsfOwxDaMQ24VaMouzvh5AeDMOwPS2In4pRrP49dq619kGqij3t6MBVGN9DhYNY6xSiNnw0xk3ypw3D8Do7OK1l7wqwd/5zMaoxGLzh8HgDxt+ED8ToTgcAaK1dglGS8EMzz/4gAK8lqSMwzu3PaK1dMQzDrdOm5+sAfF1r7b0wru3Pwmj3ISVLexXBPB/AV2HHotzjdwE8tjl/0NbapQAeh1FH1I2Jwb1u9sIcv4lRPPo3w475/Qpaa68D8JmttWtNRN5a+3CMek//o30c44B6PBGr7jK2674IfT8KLwbw+a21T8BooMUbot/EuIidGIbh9XzzDF4B4LNba48bhuFXxDUHNm4deGxr7WITkU+M4hEYdWXAKCq/B+MG6VXuvidgnLPr1ue1GMfgfYdh+LE913o37sbuH9oVDMPwBgDf2EaPBrlpmq7bM6Yfvu8H8GXoc8/5DozSp+ft57kJIpUDWmsPGIYhYq7mecE/yv+C0XDqdwD8zvTDHTLfaeP7ewA+BMCfDdoa/T4Y39V76fiTxfX7Rmvt/hgZoBznA1rr1oF5HJzthzZ6ODz2HD/Xr4vnEq/GKN1472EYfmqdG4dhONVaexXGNfPb3I/vZ2OcO2oNNdwE4EPb6JPtfysejnEdWvk9GIbhegDPbq19AWYI1p5+tIdhuLu19kyMu2DGN2OU47+qtfZsjLu8r8c4SZRI/VzimzDucF7dWnseRkZ6JcaOee9hGCyq1NMx/rj9YmvtBzGKzK/FOAB+AfhNjEEqngvgVzHqwr8MJDLGaF0NAF/dWvsNjOKk7KV8Fcad9Y9gnNA/Tud/AqOV4ataa9+J0XLyAoyWv5+Cccd8CjFeAuC/A/ipSUryRxh/cD4BwHdPm4DzOW53YvRbfA7GRfQZGHe+zwVG24mpjd/QWjuJ0SbhAzBuEl8Dp0vrwTAMt7fWvhbA908i5N/AqGN8EEY96HXDMITRwhL8LYAvaa09AWOgnDswzpVXYhyr12NcED8V43x7xZrlr4tvx2iR+yiMtg8SwzD8AkaVzLnCqwH8t9ba1cMw3OKO/3Vr7ZUYx/N6jHYGj8Uoqv6ZYRhWAngMw3Bja+3RGC3P7YdbMdCvmp798tbaj2AUbb8bRmveI8MwPHUYhttaa3+I8b28ESP7/ULsqGbOBR4+fb46ver84vcwquReMK3ll2FcK9+K0fvlXOH1GNfT/2d6t+8B8HfexuUgMK0hTwXwna21B2K0YboD4zh/DIDfGIbh55IivgnjWvOTrbUXYCe4ykuGYfhru6i19kUYSexHDsPwR9Ph78O45r5suvdujJbhnw7g7CZgIoo/g1H6dxKjdfz7Y5Q6SewnoMGPIhA7DMPwvzHujm8H8GMYf3xOAHjUMAx/uY/n7QnTQvBQjD9y34rRUvt/YVzcfttd91sYxdMfgFEk8vUAvhrjQnybK/KHMIownoBxx/VYjGzUXwOMP+jPx+hm8QcYjQ6yem5jdFl7EEZDqH+g8/di/JH9IYyL869j/HH4AoxMUkbFmu59zNRuu/f5GBe0d0zXnM9xezHGH97nTc+6GcB/ngwdDU/DuAj/F4x9+dTpvk9KWJTEMAwvwLi5+XcY2/brGDdlRzEaRK2LZ2PcaP0wxrF9AUYL0T/DuEH6OYzz6CMAfN4wDC8T5RwIph/H7zqXz1gDL8PYF59Mx5+GcUP6TIybmJ/G2D9Pxar/+FlMYvFHY9wEXdeEn+0wBud4GEbR6PdOz/gejOJK/4P5ORh1iN+P0dDtJgBP6W/e2vhkAH/K7/RhYtr4fCbG8fh5jJv278M4b8/lc2/E2NcPxzgmf4JxfM7Fs74Xo0X/f8C4Vv4aRnI2YMdoUN37xxjXngdjXCuegXHt/e906RZG9t3cvT+Bca25DKPO+mcxzstrsDvOyasxiu9/EuMa9zgAXzqtVRLNGUsXCK2198Bolv+sYRi++bDr866ANgaZedYwDLNBegqbi9baizC65HzcYdflMDHp0G8E8DXDMPzIYdensPk4SLeCjcbkMvJdGMWbb8do1fp1GI0CfvgQq1YobCKeAeDvWmsPnVELvavjGoxeKQdlS1H4V4760d7BGYzWys/DaKF8EqPe578q45dCoRBjGIbr2xiq96DDt24a7sYYSImNVwuFPaHE44VCoVAobAg2IrNOoVAoFAqF+tEuFAqFQmFjUD/ahUKhUChsCBZliHb8+PHhiiuuOJCyfJ4Gztkw97233P3Uab/XRuf3cs9+rj3XfcHXmP3FG9/4xrcPw7ArzvaVV145POABD8DW1ta+6+btPOx//uy5t/fcOvfsxQZlnXt6ntdbp6zP1umLg7S7ufHGG1fmzsUXX7xr3bG5Y3MJAI4cObLr087x8Wjd4c/9YCllnCusM9/Xmavb29u7Ps+cObPrs2eOXX/99Stz5zCwqB/tK664Atdcc82+yrCX6YILLjh77OjRsZn8Ms5991Dnel5ItUnIXvCoDupeXki4PT3Pm/v09VH9tk5fqD6xsYqeYy/YIx/5yJWIXw984APx0z/902fH3T6zsbQX9fTp07vKt+/+/3vvvXfXNfbJi4EHLwR8DS8g/h612NhntrFQz4+um3ue7wuDajsft3t9u/kYP5e/+3sO4sf72muvXZk7tu5Y+fe5z30AABdffPHZay655BIAwGWXXQYAuPTSS8/eCwDHj49RQS+6aCc6p83lY8fGcN78w87zMIJ6D3veNSs3ez/VOjNXZlQ+1zl7Br8LanPsr4veF39t9P7ec88Yc8re35Mnx8Brp06NwSNvvvnmXd/9c7jeT3rSk9JIg+cLJR4vFAqFQmFDsCimfRCImCEzUCVCzUSr6+xwe8XxexGlHZRoa13W4ne8xhjUTnsdZP26bp8fO3bsLLuJxJVcb96xR5gT4yr2HF27Tp/PMSxf97n+7xHxc3usfCs7atfcuFh/Z8f4OVw2sNN21ef7xTAMu/okkmbMSaJ8WQxmbuu82/yOcfnrvHtZ3dTz+LnZ3FFj6J/Ba7Cdm5PARdfwOEX1sPlm88zWB5bIGgP319rnutKIc41l1aZQKBQKhYLEuxzTZv1udCxiYXOY22GvY/iWHe81Wol0zOtg3Xv8DlvtQHtsAtRx3oH7c/ZpukFVzrFjx6TBkC9HMe0eRqxYXnQvswjFavaCnt2/YoG+HnuRAuzlHlU3tlcw+PYxG2f2dNCIyu3R0/J1ve/YOkxuP8Zt0bgp9nqQRnTZesCSlx79vt2jdNxepz03bmzv5Ms9aInOQaGYdqFQKBQKG4L60S4UCoVCYUPwLiMeZ/GqF7vYMTZCOAix1DoGaT3lzyEyZukV3Wf3GJThi7+Oxax7cT9R7ckM0SLDJt+eI0eOrIx1VCeutzrv681GLyySi0RqylCGy+5x3+LzEdQ86BFj7+W5yk0sc9tRRkPZ3LGxPF9iy70Y3UXgeauMC/l6/z/3U2bMNmeoZcjctnqNaFUd5uo6J67ODO947ij1iFej8Viq9kRriz3H3MWWgmLahUKhUChsCN5lmHZmgMRuQCqKUbTb7GWIkQESYy/Rsnow53KxDtPu3XED/UFdeuoeGQeuw7Tt+mwezDHeiJmw+wcHB8kiK6kgJJkLlmI+PVIhdU3GolXwlizICh/j4DTMhCLpg0EZl2Vs91y7gKm6+jqsY5CqpIA9TFs9NwK7UXH5kaRCrR1zrl8ZeqISzrnfZhIyJSmzukXuvsr4OCorC2S0BBTTLhQKhUJhQ/Auw7SNTbPeGljd8fJOl3f72b18PHLnmQsNaegJxKF2hpkOhnec0W52jrntJeiJ0uFFdeSyMpcvxUwY5vYF5K4cqi5Z6EQ+p1im17OpkKf8PXPBUVKhHpc/Zl6RLpDrr+qYtct0fkpikbWP62rHo1CyjP24Ia0LbpNinuvYHMwdj85lthpcN+WaGUl21HMzMEtdJ8SzkkJkUNKnTHJldbQ5qtab6PnrxCU/nyimXSgUCoXChmDjmbaFoWOG5S0I19W5RqxSMZ0ept2TUaZXD57plvicYrUeSk+c7XznLMwz3ZKqW6S3XicYTmsNR48eXbknYhXKHkFJNwCdHMMSEkTJCmx3z3pwLiNiomwFb+2JJEncVg5YovTvUb25L5iJ+/LmxjDrT4PyRIjmjtJ3r6Nv3S8y+wdfF0BL9Jg1G3qS8mR68DldLEteonZxuYq9+3P8bqsyM2T9OHdN1kcsqVJSz2jcDiKI0LlAMe1CoVAoFDYEG8u0OeA7M5KIYbFVZQ8TYCj9eLQbU36EkXWnstrtATO2bDfOx3p32BEUw44YHTN6ZRMQSTl69V1bW1tdVqiKsUXPy/z/ffmRLyf3j13Dbc2s1dVu36eenXsuz/9Ip833Kn18VBd79+b0vRFY77oOqzmfYSaVtEdJRKJrlX9x1PaI2UZlZR4VPLbZuCidvdWNU9T6e7gPMhYb2Sz4dtjzeU5FULZDkVTI6mgS2MzeZy8W8+cTxbQLhUKhUNgQbBzTZn0QM6B1LMAVM8h0jMwMox24smbMog8xS57TcUc7cNu9Kv/MSF+s2KxKphHVvycIfy+j8no+vnbOT9tHRIvqbSxBMd6oPax3tJ06W5FHOm3We9vnXXfdteu7H2u2SlcSmB6JhLLu7/Gf5T73NiLKeleVmzE71qVH/ajiKXAfHTT8fLvPfe4DYKcfTNLBkj4PpadnFp35+PN7yGuVryOvgVwu63X9/9E5D7ZxAHbeI34e2yBE1twG5dFj/Rq982p9i94Dfp6Vd+GFFwLYeRcz327lvXBYKKZdKBQKhcKGoH60C4VCoVDYEGyEeDwTBbK4OjLyYnENGw2xyN2LZFSoRBbR9BiVqWAH/jksSlRGS5lIsEfUPhcKsMf4ggPaZK4SysCFz0e5cHvEunaey42CdLDRjd1jIlDfX2yIpYxT7LyJvKNjd999NwDg1KlTAIA777xz5R4OAmFgY5/IrUW5FrG4z4u62XhIqXCy5xl6DK/YoInFylk/KjXWQQfBsPbZfPD/Hz9+HABw8cUX76p/loOb1xdWsUQuWvY/B64xZO6CLCbvwdz6EqktlIrQyjDRc+YmZmJwnqPW3ybGBlbdelVdI/cttQZzmf4edrNcCoppFwqFQqGwIVjWFkIgc7TvSXBgu9UsfCQQ70xtx8cuNnatMYLIBYd3j7zbi9o1Z6i1H/e0yDCMoVx9fH14l+oZib/WP4N3x8zSuc7+WquDZ4gKKuwosDoO3NeZu51isZnLn807zxYAbWwWlTMXUCKqo2LpWcIINd481oBOvGNgg78sMIua55HrlJKyzRlRrYuIfdkcv+iii3Y9k9+XKNgJSxeUC6M/nrncATvrjl/nlMGmtcPq3pMwhJ8XuXzxOau/SZROnjy5cq3B+tjawdIInkP+nDJEM0RjwMze6hYFdbK6nWtDx72imHahUCgUChuCjWDafqeT6ZL9tdEOVOmFeJfsd2pql8w7Q88mmGEzq4wCDCgGxfqiSC/es3Pn56l0iuwOFTFybrN9Wl0zNxhmKBGr4Wuj3XCEYRhkqFL/DGbWHIrUt5kZiHL/sDKNZQCrrISZZ8RyVHCYHp220v0r/bv/n5lbJvGx+nN/Kve3KCAHn+thM4pZR1IVJUlS5R45cmRl/kb6VKuDjTO/j34eWxvZVkK5yvkxZVc46yd2H/RtNibNNjzGKs2W4pJLLjl7D0uK2F6B52o0dzhcL7s6RjZC/H5aXyuXugxWJtuO+GO8BrOEKXKHjSQTS0Ax7UKhUCgUNgQbwbQ9c7CdGOs3mdX0JDhQVqcRO1OW36zH8ffwjj3T3zI7UmETI6an9NysO/V1ZKag9IKRlbnqR+4rv0tmfSTr6iJmPKe78jDLcZ4XfgfNbVH61YgZqDYzS492+cwEzKo2mpfMJnneRVKHudSlzG79HLL6spVyZonNfawCHEUeAYw5qUBUjpo7kbSml3FHAXWiuWMW/8oeJrLM5zaydCmSnti7o7w8DL5v7R51rTFt3y6zhudgJkoq4PvT5g5LBez5bBnuz/Eaadb4vL57exk2U3PVAAAgAElEQVSex3MePcDOO2dtV5b7WTAuttk5bBTTLhQKhUJhQ7ARTNvvdHhXrXbf0e5+zlK1xydV+YV7v1JlHc47T79TnAuQn1meq/CO9pnpetgyW/neRvpkZqasd/fP4/JsTFnHFe2Woz6O4PWSka5K6VxVqEj/bJ4brFu0thqL9udYH6mSJUTPYdaXWUpzm1kawIzI/6/8z3s8HKzt7LcbMSJlI8I6Y48sVKy/Z69M23Ta9n5GuszMSty3I7JT4foqG5DIdkfpsKN1zqQABrvGz0lftv9fMW3WqUf9yetZJvnhtYE/2VvHr/2s356zsPf15+dm6WNtLlqbe/Tq5xPFtAuFQqFQ2BAsmmlnOhHFljIfaGaNylfYMzpmoLyby6xrrW5cl4xVc10UW4qkAVmKOq6H8rFlnTPvxP1z2NKTn+/bx6yfWQYzbv9/T4q81hpaayv69UjiwpHxlB4/eqaxmXe+850AgDvuuGNXWZ7VRMkIgNwqnnVuzEAjK15jD+wDr3TZkT7coOwuskQozGJMTxr1ibWHdeesP4x0zMqmwY5HyWYiaQ+jtYajR4+mFvPWVh5L1R5gp19uv/32Xd+VrYZ/X9mP2a4xKUAmXeDy+F3zenceS2XfYd8jHTMzbHtOJmmx94htKaxdVkffJzaveN1WNhb+GhU7wNrj3wPW1S8NxbQLhUKhUNgQLJJpM5uOojGpKDjRDlTtmCK9JxCnc+RrbDfGlrMeyq840mHxbpUtsXkHHFkcczsjPRvfY+CdNese/Q6br82igjFYIsLPiaKeKatorv8wDCsWu5GUxpDFfjZYvczX9ZZbbgGwqse99dZbd7UH2GETl19+OYAdLwIrM/KrVpHjDJHHA8fxZpbO0qcs9aiK6+0ZK+s5rTzWnZ44cQLA7j6xeWS+wtZHWXx+ZXNidWeWuBdEltu+PPW+q5gFwI7Fsn1aPc1SmvstqwNLZSJPAKsL+4UzM/XrDtvosP0FS6wiuxiD8hP36yDHcLDnmuRKRa/0z7v00ksBADfffDOAnXnO0ep8X9gn67RZKuD7xM6t4/N/PlBMu1AoFAqFDUH9aBcKhUKhsCFYpHjcwAZPgA7zyA7wXtwxF3yCxYj+eSpJAYsPM1cVlQo0eg67XhhYXBaJxVQ6vch4iUWcLEKzzyi9HicgYPF85CKhwrSqhC/+/57UeBZcxZ4TJTZgsCg6UieYaPMd73gHgB0xuRnF2L3WZjsOAJdddhmA1YARnKwgmgfK0CgyiFRuczynImM/FrfOJdXx97Po1uaD1ZnVAdxWQBv9REaTbPTFot0o/HAPbO6w6NuXx2oifk8iESqLzK186xdOJBOVYWNnKhZ7fuT+xqoH7pfo3VDt4XGKgqsY7Hkm9u8ZS/VOm7rE5oXvI7vnqquuArAjLr/tttt21dHq4dtq7WGxeBbUKXpfloBl1aZQKBQKhYLEIpk2M+wsxBzv3CK3EOWWoRzsI0d7vpfTt3kw61auV9Fucy6sY2QcYW22cyqYgn8eu7CwBMGuNeYY7UQ5Lan1p+2OI+M1NjJUwWo8epn2sWPHVlxIPFS4y2y8rE1m/GJt4rmSpQ3lIBecJCFKAcmSFnb1iyQ7yniJ3V4iKRTPUe6jKEgNS6hsrlgb7Ls3WGJJERszRu6QSrrFxlh+nVgnyYMZMapQwr6tvO4wY4tcvkwCYfW078YIozCZzPbtHkMkceGwySrtahb6lN8RnkveEI3fd36+jX8UpIbrf/XVV++qGxtr+jrZMZY+cKIPXz6v2zy/vXRQhTpdCoppFwqFQqGwIVgk02ZkwU6YeWTBQFQKTv70O2ze3amkEx7M8jj4fbQrV+5h9nx2OcmYnXLBykJS8r0q+Iq/R0k7IqatGHUURtDAITxVIgQ7d+zYsZVyo6QPah5EbmfGsK1NpnMzXbdKrODPsd2ASo7g/4+kPlEb/D0qOAi/GxlzUKEoo0QYdoyDu7AuMHK/tHPWv1kaWSUZ488oBWgvhmFY0e97+wR+3+w7J9zw7WCGyy5y/L5EEkWll47qpZLlMHv1emKVIEQFq/JjqexRetYQtrdhnXMUZMdg7bG5Y7YjETjAC49Jlso5k9odJoppFwqFQqGwIVg0046C1M8luMgsxZlx8O41u0fpCXvAVqNWR88MOD2fSmUZBd3gXbKyRI/CVyopA7czShLPjCHTDatxyhJWZBbMEba2ttKwnKxH5T6N+ilKm+jv4aATvs3KHsEQpR/k56mgNxHmUplGbVFpVQ3R+8TvD7MyDrqRJSiZCxMM9DMer2/NpDIMC2OahctlqRJbgGfrjgpCxF4dmXSAnx+tfzz3uVzrR2Oovg7c/yqok3+fVNARlg5E9gksSehJ1ctlqHXHg9sVBaXhtqh1YSkopl0oFAqFwoZg0Uw7CtmprE55pxuF6lO7YaUv8s/OruHjSqeXpSxUKUDV83usozkcXxS4X+3uld46OseIQm3OSRKycqyuvVbkHpE1L/ddj35d2T8YIn0y+77yPGQfWX+O9eyc3CRL58nty+Yw6yzZPqHHtsHA0oZIUpL1sUfk26sS4vTYlcw968iRI+k7bs9gew0O8xklVuF1jJ8TJRZiNsnhOLN3Qelr7V6v+1YhcLmsiHWqEM58PHoHGdznUX8qWwblgeDrosYi63suYylYVm0KhUKhUChILJppG7KdumLREfNVbCnbSSlm0MPolKV5FjmM71E7xEzH2KOHV/7nPXpkZZ2s9ORZGUrqsW6d+J5IIjFXXqZT5F08WwtH/vNcFxXtLLI1YLZkeuLIw0HpspVUxt+r9Kps5R3p+ZnhWB9wys5M2jH3bkbtyhL87AXDMGB7e3sl3kEmzeI+j1LBsuRDza+IIVodmB1zmdn85ih3nKgkq5Na3yIdupJgZdHGlHSIbZY8lOeJWv/8/yytUylBo3aUn3ahUCgUCoU9oX60C4VCoVDYEGyEeNyDRX/KYMqLcZQoTom6vHhkTvQcuWtwEAVD5kqgRLdKVBOJVPkaZVSStSu6lqH6OlM7KAM7Ph+JJHuNlyJRYeRCptqm+jyqJxsEZUEaDCpMZiTqZmMrNhjz4kOVW76nHhyStidhiKo/z4uoDJWYJDIIUuA5dBDBL86cObMyP3xdWJXF8zkyulJGfEq1l6kg+P2I8ncbOGwuq3AsQJCHMvJSRo2+bmyAyKFKI0NL5YqVqSrVesbHe1z22OUrcoPsCUZ0GCimXSgUCoXChmBRTNtcL3j3GDHf3hB6/v455sPP8Ncohh0FlOCAFexeEIXlVMYqPSxCOf9nqTn5OcptI3ueCiWbGYQwuG5+V87lzLl8Re3LmLsKaRilvZxzN4qMcZRRXMYmuTxOMRrNHSWlUCEwIykNt5PndSSxYFc2ZayZBddQTDUbtzk2uC6GYdjFtA3ROsDrDz87Cp+sEtRkEr+5YD5RwBnlJmgGaNGcYkmR6sto7vK8M8bNRnlRUhMlIc0kjfwOKqPN6B6V4IldwiJk5w4DxbQLhUKhUNgQLI5pHz169OwOisMhAppVZvqoHhckdV7pmjnwR5TOUblnZGHx5nRJUR2Z2TNrYbaWtYvZUeZCx2VkQQmUa49KUBFhnXCCPE5RPeeSCPRckzEDpWvO9PvMqHjO9PSB6uvMfcvOMRPhegA7fcFhcuekKf5/1W8RW+K+ZqlGFnCoF8Owmpozao8KphKFFc3cGaPzHkpfq2wc/LWc1pLdnKLyDGoso3ec55Ot11GqUYNdwwlCWGqTvU/rSMrYVsKer8L2Rm2OfocOE8W0C4VCoVDYECyKaQPj7o3ZV8aWmJlEzLAntaNHxAz4+SrAfVSOusa3SwUb6NGDMjtSST/8TntO/8nPj9qngvtzYJjofq5jxiB79E5W1jo7dYPaufv/mXHOleX/Vwwu04NniUGA3DtC6fp6Qq2aXlJJJfh/f+864R7nGHb0PCVN650fWV22t7f3FK6SxymS8GWeEf54ZKXMc1O9t74uHEhErQ9ReUoaFDFtZsn2nBMnTgAALrnkkpXnGZSXwjqSJEbUz8oCnHXc0TrBoYOXgmLahUKhUChsCBbHtIFV/75IT8R6XEO0a53TLWXgnabSOUfPU9ao7AcYlaeOR+1jq1F+XsT4FENQVrJRHbg9Wb9ym3t055lkQkGNl/9fseZMp81lKElIj9WzIdvlz/leR36lfO2cb7y/RiW1iaC8EpQ1eRYikpGxTkOvjco6MLbtnx29Y9xW6yfzfTZLbX/tHDPM2qqkQJFERoWeZeYdWZwbVJhZPu+fw9IyZtz+GcePHw/bx2mYszmr7Emie6zNNj4qaVP0zkc2AEtAMe1CoVAoFDYEi2LawzDgnnvuCRNp+Gs8bDfE90TspTclZ2btOmfN6e9Rfszr+JeuE+0n0j/64xEzUb68mS5bMfhMvzv33IhtqOhgCr59prOK9PhzbDI6PsdA1vHxzsa/1+fZ94XqF8XKouutfHuP2B848llmnR/3735Tqap2qH7dD/xzo7SQ1labV2x3k3m6qEQ667wvipH6sbSx48QthojZK7Y/t975OvH6w++eMW5/jbIw7xnLuXkQlaEYPPcrsBqb4CAlOgeBYtqFQqFQKGwI6ke7UCgUCoUNweLE42fOnFlxgM8Cpajwoh5zQQ0yMZUS12TBVeYMcqKwhSqYQRbSle9VYpx1QnqqIAfRPSqoSo9hDYvlsqAx7MKk4F2+okAirCZRn16sy8Zi67gq8RyZM/7zz+Zwj1kAGC6XxeHq04P7wJ7PLm/AqrhXBYLhsL1R25WhVWRgxf15kK4429vbKy6mvg6q/63+mSpAjXsmDuc+Y7E4B1DxdbD109z3VO7vqC7K9TOqM5cfvT/+OmBHVG59YvOsR00yJwbPxNkq/DWrgYA+w9rDRDHtQqFQKBQ2BIti2q21XcFVMtcLwzqBU+YMV7IymPkya/FlKqZtuz0O4RfVLesDBveBMvKK0kZy+bZL511z5CaiPrOQh8o4j+vly+ll2mfOnFnZUUfugipJAbcvOsb9xczHl2XHeI4wI/BGlBwalMvPXH1U4B9ms5HR1FzQmMjwbS5saTZuim1GBlbKCHAdg84eZIaCqm8N/I5nUO9L5HbEhlL8eeGFF569x9yaeN6xxMrfw4aHfC2/p56Rnjp1alcdzbjM3Loi6QOvM/yOZ2vwXN9GEh2e1/yu2Pco4dNSUUy7UCgUCoUNwaKYNjDulpi1RDsf3pllu7B1XZOygBz8yTtT/3+vu1j0bOX8z24V0TX83Cw8J7MwZgEcmAHoY8n8vVeSkOns5xKtnD59WrrXeKj6q3ZE55gBM7vx/8+xM98uu9ZY01133bXrM0vgwXVSejwryx/jOctlRVIaHlN2OTJkthtqrkbvRs81e4HZ0nASiYjt97jtMVSYX0b0fnJdWIfun3/y5EkAO6xR6bYvv/zys/cY67Zr7Tm2vnAiFO++Zc+zul500UW7rrWy/fizFFK5B/bo/efcL/3/yiaAj0flLE23XUy7UCgUCoUNwaKYtrf+BXIneRVqLtNHKjaZBWtgtqR2vJGVcraLYygWxrqXqH1zutme9HO8W+WQiNHzWIKhAoJE5UcW9Ax1T3Z9j+6f50xmAa5sGZTesIedMfPy9xjDNuZjbMbY0jr6aKV/t2f4+nPIYJ53EVu2Y6xv57IzuwJuQyYVOlfW48a0OWhQZFHMn2whH3m6sIRIjU8kPWHbDJYGeKmJjauxYdYbG2v299gzbX6Zntr008aWrQ123pfPa6GVH3n/mBRGealken4lMc0kfEoKxZKFyKMi8344TBTTLhQKhUJhQ7Aopg2Mu5oefYZizVly87mwpVGISD7HZUQ7bGbY7LeasVilo8+YCO8E2fLTkDFVFWo1Yz5sha2s5aNjc4wrQqZbYpad9S0/a52wmHMWzD1+9JwO08MYj7ElZtoRq+21aVC6dX9OIfIeMDBDVfYSHspaOLqHWb9KU7lfKFYG7DCzyPPD1yWag71xDCJWye8Y67J9P7Etg93DvtARO2d7B5YkRTp0ls5wnzDD99fynOmxGVjnPTVY/fn9YX1/Fhb4oOfZflFMu1AoFAqFDcGimHZrDRdccMGKLiba6czt5j2LUWkhDT07N2UBmjErpbvKmHaUyN3fm7EXlcgjiyzH/sDqeZGeSD0/aoNi4azD8piLZMfY3t5eeXaPzjwbf6XDnIuQ5cGJI9gy189VO6biAWQJapRf+DpQkqQopoDyic+8NZTkirGOj/RBgeeBZ9rM0NT7n0l7uJ/sM9KnckQ8ZUfix8XmDvv/s97aM+3IRsKXwUzUz1XTe9tz+TtH94vqqKRC2RxW71w0JspKnL9H3hE9Et/DQDHtQqFQKBQ2BItj2kePHu2KgDWnF4p2vHyPSuKeMUTefUW7ZNZ72bXMtDyUBaSyQM1YM+tMo+cpPaSKTx3p2+Z2oFlEtHVZdM81wzB0+YqrMTVE+nvlN692+8AqS2XmYX6tPk3hpZdeCmAnqtQll1wCALjjjjsArPpvAzt67ygq2xysvlYHZXsQeXXMeQ/wM/w9ytMhmlPr6DAPApHUhL0GVJu9BCTzpvDls0TMl8N2D6zP9yxWsdUeTw2GzVmbF5E/tf3PluY8ZyLvAfUeKS8ND/a6YH9qPwYqbn3mp81zsPy0C4VCoVAo7An1o10oFAqFwoZgceLxra2tLjEOi8wy1yEWd6hg+NH1SlzYYxgWhfEDVo0x/P0qoEhPWE42AOGADNG9LOpWRjKZ+Mig+sr/Hxk2qfYpl7II5vKVpfPci6vQnEtXVpYSj7OY3ETh/thll10GYEdczi5gPpwkJ2jgcJaZmJZFm9l8Nsy5mM2Ft42OZf14WIZAkZiVDbfYkDJyb5oLBsKhQv2z55KlZAacvO5EIm613qjgKtnazOL4yMhVuZSy2DoLVsR14D7qEY/z8zIj1BKPFwqFQqFQ2BMWxbSB3aFM13GrOggz/YztKbYS7cJ41zZn5BOVO2d845/LzI2ZvJ2PjMmYNTErj9xSeEerUl5GRivMPnskCL0GNN7lK9qVzwXKiaCuVcwnKmvOuCsK88iBMYzxmPGafQLAxRdfDGBnnt1+++0Adtx1eIz985TRpDIUAmLjoKjt2XvLhpDZ+3q+DNAyFsuBS7gdUR3n3Bp5/P15Nh5VQVX8exklL/L3ZPNNGYYy24zeRZM+WF3YbTEKyKIMejO3RRU6lsctY9rKhTNbG5eGYtqFQqFQKGwIFsm0M5eBObedjJXt5R6lp1PBNqJ77ZN3tX5HrNhX5lJkYNcLZrGRbkkFL+C+yCQJKpBJptNWYxuNRQ9z47pmwS7m6hnVey4oTFbHORaZMQOWVni9N4P1jZy4oSeMKYMDjHhGpxKgKDbonzfnBmXIbFLOddCLSJ/Krn8cmjh6P+eCqPA7HgWwMSiXwyj5h60zKuCPf44aD5YgcHIQfw1/577w/agkbBz0hF3AfLncB4px+/vnXMqy97aCqxQKhUKhUNgTFse0gT4d5twOMQo+oizMeQeX7fINvGPz17HlsmJP2XPYIpzh28L6YrVD9Dt9tXOfCwCh6uC/RwkElPVpz7j16J6truvYNnCdIqY9l/Y0g5p3Sp8HrKZT5Hsz5q0YCLMYr5PmucLzIkqeocIC8/Myfa96fyN9YhZS91wgGhfW02bvv0GFMTVwH0TSjLlwudFY8nOUvYr/f44BR5I5XneUx0kkUVTvqWLT0bXcboPvE9WPbKUeBdJRIaUPG8W0C4VCoVDYECyKabfWcOTIkRV/48haNWOA2XF/ryHSYc1dG+0E+dkqUUiUVF3tIud269E55WMbMe056/sedtPDWJUleGZfkDF3hrHszGdYPUtZtvtzzF6j8LX8PCVd4N1+tsufS7Dgj6n+V76+/px9GtPn7+uEseVxWifuQvT9fFvz8vsaPZvDmUZ1nLPiVmX7Z/MYqnnny+e6WRl23Ic+5ZgOymYoqyN/cl9EOvTMFsAjsi9Rlu2GyLdb+Wtn/uDZenOYKKZdKBQKhcKGYFFM25hSj75wL3oG3i1GCUL4OtYhZTosg7KI5F1llFaP9ULKPziybFV1jhh4b/rGHotq3gFHjFWx8YxpcwSxOcbm25f5wPMn1zeqt4qix3rb6Lms42V9WpQeUekaI5Zr97O/rPlp23GzNPZsbS5lYSZR6vVVz7w/FMNego9s5KfN9ij8bkcW4MoH3vogisrFc5SvifqvZz7zPSyVUwk9onWHGT0jmqu8NipPlOid5/VA2YZkftr2LrBXRCTBWJou21BMu1AoFAqFDUH9aBcKhUKhsCFYlHgcyPPRRtiLCEO5KkVGF0rEzWI+XyYbsrBhQ2ToYOJxFpNz+MTMNUrlpo2CXPAx1Z4sF7dB3Ru5eqjPKPQpi6SzsR6GAadPn06vVfdnrmVzYvHMSE6NhzL28f8rlU3UBhaP2zUsCoxcvlikrly+oudy39i1HBo1eo+5nZn4fwmwfpoz3PKYc00yRCJaZSCoAtr4/218zS0wC6CkxNV8La9H/h6+lsXVkeiZ1Yzcr5ERG4NVFZEakNdiFS41qmO01i4BxbQLhUKhUNgQLI5pA3koTd4J9rgmze2UesKazjEPfw+zU1U3v4tkJuV30NFzoh2o2nFmASt4h219wK5OUXhGRsZYFUPlT9/uHtcYD+/yFfU5sxQej4wR8ndlKBaFXbRPNgSLjNdYGsNMgdvgzzFbMDZx55137iorMiZiV68eMBviQDQ9oWm535ZkiOZh9THjPnvHVVAif24u3GY2V1X4TXPbyoK68Lts8OtT7zoTvTNzY2nIJHx8TSadmZNcRfObJaXK1Sti2mz4thQU0y4UCoVCYUOwqC3EMAyzOm3WebB+ONOFzDFEFQDEH2NWE6WAnAsJGp3Pwvf57z27Pt5FRjt5xayVW4XfnWf6df89Y67MrKNd7VzCBQ+eOxHmxoXrOHcsOp/NAxWwwtfbWHEWZlE9h9vDOuwo6UPkbtQLnjvKjc+P6ZyuPnqfsnE/32A3J1tnjIF78BqkJEd23NKvAqt6YUsGxGOYsWarK0v+snVVhajN3mkVgKgHc8/Jkqgo26HI5YvfAf7u5z9LFZZmX1FMu1AoFAqFDcGimHZrY1pOZpU++IRiSfwZ7ZxUAAy2lPa7O05zxzqQyKFfMb5IbzvXLnVdFBqQgzlklr+GuRCkPaxZBdPInss6s6jv17EeB8Yx6tExKolLTyAZvkYF7ImeY9+NNTELAHYYG3sr8JyK5phK2KCC7UT17wG3g8MOM8OOrPGZPWfv79KYDrCzJmWBS6x/lEU2s+WINbN1em/4T39NFvSIx2hOEha1g+vAfeLDpvI9fC3be0TSSCWpimw72FbD3iuzL8mCBrE3xFJQTLtQKBQKhQ3Bopg2MO7ElJ4V0Lpepdfz/yvdKzPtzIKZmUC0u2PWwDvdHr8/tYPv8Wc2ZP6ZmZ95hEgfbuBdcxZCVDFs9k/31/T6658+fXrFxiHz11aSgkzn12P/wPVnlqLsI4AdvaZ9sg4uYt7cHtZlKot0X76SGGQW7spXPbN5mLOczvzRlwiWeHipCbNVZtjcb8bM/f+qDENkzc02Dayn9vPRnsPz2u7JkunwmqSs5KMkKiyp4tgCUZhlFWrXruV7gVVGbZKszP5l6XOvmHahUCgUChuCRTJt1ml7nYIKnG/osfhj9pBF5WJ9hoogFung+DnMnjN9Yq+lu6+jiuzWo//i8rn/IotMVadIX8VSDO7riFX36rLtmtOnT6+wzCiJiLIWz6LNqWsyewm7hlkT1yNiE0oXFzFRZuF2L/vNRvYXXC6nO4zmd3Yu6qPM/1jp25fOdhQiS3d+H6yNpuuNrOxZ4mLX2mdkUzEXETGa3ywF4jnDdYwkbpGULPruwXOGbQQ42Q2gU4GqyH++HdE5hV7p42FhmbUqFAqFQqGwgkUx7dYajhw5InemwM5OifUmKpaxPxZFk+Jrs7oBO7vKzNpbsQXFziIofW60C1TxsTPWMuczmkVrst0564+5HlFcZOs/28Gz9WrEVHvY1zAMuOeee1Z05ZEen6Es532bVKpURjamPK8ji1y73xgWp9mM+oL1dMq2IUory/7ArANUkhcP1g9mluDKBmWdSGxLhu8n9g7g96QnmqPNkYsuugiAfm/881iiwrpnD8UqmWlnERj5fed2RDZJKjKakixF7WIddg/TXsdbomKPFwqFQqFQ2BfqR7tQKBQKhQ3BosTjwCiSyNx1WBTYI+5QQTVY9BeFlVQioMyorDepSRQAhuvIfRGJzVUIwB5DLiV6zsJmMljcyy50/hoVTCVqP7s3ZWO9vb2Nu+6666w4LwsvO2fk58eWy1GqiAgmtuPncbIJf55F5iyWj0Spqg5K7Brdy/Mqc4Oz+nISBhX+MTPSVAZpm2qI5sGGgepdjpK19Ca2yMI1K7WFn29ZwCd/T6YWUi5+2Ttt13hDM38+aq8S/7N4PAp0tU4o3CwYzRJQTLtQKBQKhQ3Bopi2GaJlrM6YlNqhRYYVimnwZ+auwa4QWXANxQiZMUZuNCqYAhtlRcw+M6jy7fT/q9ScXK+I2augNFGQGpUYZI7h+brO7ZZPnz4tkwpEUEFiIlapGLYy6PP1Vn0bSXb4XmYVGZtg1y+eK1HACmbwKkyr79coMYP/nrFllSAkCz+76bC28ZrFTC5LdGEGgmz86aVZKqgK921kaMlGZLymRFIjNoZjV91s/FXoUeXq6K/hOqpgK/7//YTrXZrr17JqUygUCoVCQWJxTPvYsWMrOj+/AzVXmExv5o9buf4Yf8/cTVQyDsM6u7EeHa1K55cxbSVlYJe5rE/mQpNG7FPp+SOmrQLAqMQIHj16zmEYUkmCf7aStPRIFTJ2BMRjOmdjsI5bi33Pgk6ouZIlkFHSqGyuqnYoty5/j6pTxrSVFGgvLOowYPW09Ks899gqIngAACAASURBVCNWyS54LKnyoU8NPGYsgfFgV1aGcueMztknu7hF7rcsQbA+sXlttkuRhIeZtdJt+3PrILOzWQKWVZtCoVAoFAoSi2PaF1xwwQojicJhKqvAKBjEnHUth27MdKdzIRt9fecscbME73NWm1EwFz63ThhTFUQj2p0r1qn01tk9mY54HQbV2pjWlZlqlPxlncAhjLlUphHmErlEUIw0YrEqBaeSAmTPn2PCgGa4c4EzesrPbBtYh7ppAVmUDQBb4QM7jJMt0DkdaiRJ4v7h8fD38JrH89mOR14zKgRtZufBdWGGffLkSQA7TNv3CfeTeid8+3rXkCilrgo/fdgopl0oFAqFwoZgcUz76NGjKwzbJ1E3MJvr0dcpZsVMO8LcbjJjBiqRRqTr6QlbOldXtvyMdptz5WUMuDc1o9+hcpt7+oTHZU635Jk2MwRA67AZPRKJOd9UYHUcmAFH9VD+8Wp8/P9zzDOyDVC2IZmNyFxiiozRz+m9I19iA88rnh/Ru780luRhzNHqb/Y6wGrKVMV8M7sRHtueeAcqfoIhsqXhfmdJTOZ/bkzb+sIYth3P7D34sycZSA9YorM0j4Zi2oVCoVAobAgWx7SPHDmSMiHlp9hjXe2fw9cAuS5bWWhH+umoXdE9kZWy+p6lveOdtbo3Ylj8XdUx0vnwOfXpr51j5VlkOWXh6sE+yZE/M7MJhu8bxVqUTjuTBrCPfzbPeyUT/hwzUMVmI2kAs3R+R6J3Q6VK5PMRFNuzPonsIbifePwivTunRV0SjFUyiwZW3wdOXMOR//z/Pe+JQfnj99h9ZNIYXx9/HafRNOtx+87nI3240tH3SEwVovdJteuwsbyZXCgUCoVCIUT9aBcKhUKhsCFYlHgciJM1ePEEh8pkkYiJnCLjHhb5zIUb5XJ8WZnYSIlKM6OlOdEfi6ujYCcMFTglgqpzVldlrJIZr/UY8HH9e64FxnZy+E8fhES5m/UYXfE5pYKIRO5zYkQPZejGRpmZoRa7QypXo6yOKpGHv3/O1SwztGM1A1+biStVWM7M4HLJBmk2R01UDOi28byLwpjO9Wl0j1JX9bhFKjVIlt/a1mkOpsJuXZF4fM5och1kRrM9wbcOA8W0C4VCoVDYECyKabMhWmRYwIyDd18RA5kLdarcbKJ7FVvOXGLY9cu3l9vV63oVGbHNBWjpgdqdR3VVyJ6nkglE45a1WYHHy3bwwA7DYBdCNvrJgoLMGaRFwVyYiawTNtfAbDYyllMGZ4pFR+UpgyQPxXR6EoYoxmbtZncb3w4D92fGppcaitKD3Z88OKiJMjr0UGFEeT3y6DWojIwY+TsbJnoJwhzT5qQgmVSI591+giVFRrOGMkQrFAqFQqGwJyyKaRsi1mKwXY+xJtup8U7dIwu8AvQxEcXCMuardoKZDo7ZAt/b4y7Gde/RbfMuNdO/c10zqQOXP8eao4QEXIbCMAwpI1WuUKzDyoKdKERuSdyXSgccuSqp3X5PwAolFYjaxPppdW/kiqeunXs+oOdXxPTU3OnRgyu7iyXC219Y29hljaV2mYRK9XEkxVC6bEYWMId12JErIOvv1T2RDl+F5c30/souhl0LM9uApWGZtSoUCoVCobCCxTHtra2ttXSXpp9kZ/yeMJ98jQo04c9l7IHrpo5HOrh1knv4MqJj6vlRu5gFKtbpd9gqzB/fE7VBBamJdvDRLlhhGIaQfUaSF2amGbtQ48H1jYLDqKAgWTKOuecxM46OKZ1flrqQGU6W/EOFkeQ2ZJgLHpPNf3VNZAF8rnTae9GfrgNOPxkl7ABiyRSvb9ncVYFE2Ko8WjusXGPPHE40sh5nHbZKQRsF2VEBX9axHldBozJd/dI8D4ppFwqFQqGwIVgU0zbrcf89ugZYtZC0HRnrOfz/XmfkoUJV+vLmdNsRE1V6SGuDt2JmRqvYK18fHevZYavymfH0WAIrht2jl8zayX6lmdX1MAyhv2ikL2Z2mekJ5xgaz7dMx8h1ipi2ml+KTft2KCv1zG97jp1ndVS2IhkLZWtdxaij49G77Z+T6Wp7kCXHMLAk6lxbFlsdbO3KPFCiJCK+jOg9UrELOGxqpmPma9gS3K+7pstmZs0JUnriNyhvoIwZs2Qvsh4/X2O7VxTTLhQKhUJhQ7Aopg2MO6GehAq8U7JdZLa753vZ6jHSr875r2a6F2YkWSSuzC/ao4dhZ7txg/Jt5bpHO9/eCF89de3x11YMghFZOEe77jkL6cz6nctQ3/09SmoR2VCoBB3Mkv35XrYc6aBV5LMsIpqaGz0eAfae2lhaOzKdNtepxx4iS0TDaK1ha2ur61p/j0ekGz2oVJEeVrfIp5tTc/K6Y5I9/x6xfQpbqat4Ab58u9dYNM9hz7Q5BSfr7rle/nk8PvyORO86t0PptKNInIalWZEvqzaFQqFQKBQk6ke7UCgUCoUNwaLE41tbW7jgggtWjCAic3wWr5loKAtFaeIhJfqzsiLRnHJriQLbs0iG3TYisR7n1J1LwpEZaihXo8g9RIkaVfjW6JgSPWWGHKp9kUFIr1HRkSNHUvWCMrLjdmVGd0pEu44rIM8LP7fYTUZd60WDbIimDN34fNTmHuObOdc+FmP2iGOzflQBfww96rO5uWMicn9vFsCI68siaH+PMoA9CHgxOSdLYvGxBWqJXChZtKzWqmhdZeNgdv3y97B4XImio3eU5ybXOTNAU+L3bD1dmljcsMxaFQqFQqFQWMGimHZrDRdccEFq9KPcdey47SJVujh/rQok4ndlzFp4Fx7tQFVCA99Ofs5csAm+N2MByiAtcqfjHWiPq5dCFr5SGRqxIYhnZesYhLTWdrkMqiQtvl49LHkukQL3fWTkpYzWWKLk72cXmMyYTLl0KaPCyNByLnRj5L7H1/IYR8k/lIuf+h5BuZhFYUxVXRk+qFNPMA1moNZWz7S5Djam58qViFnwiRMndn03dhsltVFrBa+R0dzhsridUdAj1QeZAaxhzm0rSq2cBbZS5WfSzMNEMe1CoVAoFDYEi2LawLgDysLUqR0T69GioBpzIUKVLsjfq8I9RnpCu5Z3q9FOTgXp6GHa6lzG2nlXrvSS62AdxsrPzYIc9MLrJXsST6j6e6hxUTYAkT1EZCuhnsd9yPrqzG2LdYoqCEXGluaC7QCrUiHlrhj1iWI+3I/RuKk528OMsrlkEpqMabNkz641Zp25G3Ed2F7hfCEKK6pg7eOALNmcVeO0F0SBUtTayHYLUQAYFdRnLvTzElFMu1AoFAqFDUFb0g6jtXYzgDcddj0Ki8d7DsNwX3+g5k6hEzV3CnvFytw5DCzqR7tQKBQKhYJGiccLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAgW5ad96aWXDldffXUa1WrOjzmC8h/uSa84d24/9xx0xJ11/I/nnp2dn/Mdz6K2zcXsjmINc1Sw17/+9W9nK87jx48PV1xxRdqmvaCnbdH3rKx1nruXew8b6/hLq+/ZPFCRuLI41YYbb7xxZe5ceeWVwwMf+EBZ5wjnYjzWeefOFfZimLyXqIkHWcY68fLnPgEdg+PNb37zytw5DCzqR/u+970vnvnMZ8IWX/u8+OKLz15z/PhxADvB71UQED8IFhiBgwtwuEdDFuZRJViIQp/23puBA7Nk4Sb5h7AnP7QKUJEFruCNE2+ybGzsE9gJQnHhhRfu+m7BGzgXL7Azbnfccceuz4c85CEr7jlXXHEFrrnmmpV27hdWP85FzBvKKBzk3ELbEwBGJUDJErioACY9gSRUMpCeH0RuQ1Y+vzccRCZKiGLJMTjZhI1NT2KOa6+9dmXuPOABD8BLXvIS2W9RmzjvdNZPPe+Uet46SVJ6N+3Z+tZLcPwxDjesylZ18NdEOebVNSp/fPYDbGu/zZUo4MypU6d2fdr8e8pTnrIIt8ASjxcKhUKhsCFYFNNureHYsWNnGRqzMWBnZ6sYSCbuYGbNO7Me0Vz2HN8O1b65exkqcH50rwpf2fMcxRgjNji3K4/u4XSlBhtHY+DGonxdLrroopVz5xtz0hOWiPQgS4qg5lCU8IClTXNJN3qetxdx5Vy40QxzIWazcz1hOTMMw4DTp0+vvANZGkqVgKRHJTQn1YrO7QU9rLmXaXO9/DW9650HS3043KjdG0kwVd+rtdqfU59RG7J0pIeJYtqFQqFQKGwIFsW0gZGRcXB3n+6OmTazySihAustVGKFdXQwjEznN6e/icC7fU6skNVB6XoiPahBsYCINXOAfpWi0R+3MVT1N2lKpG+zY34enC+oPjQ9F49LZDSp2hydZyY9l9LUHzPMsQk/P3uTqGTsjI8boj7hcyqNaFbuuud7cObMmZW+iPSqKuFN1H9KWrXOmCo7hWyNmpMORsfUWO7HwDKT6CjpnLLP8OdYQtVjQ6HW+ixdLT93KSimXSgUCoXChqB+tAuFQqFQ2BAsSjzepnzIJhoxkanPS8tGNyz+iEz4zbzfDJnsu/LHywxQlBtHzz2GzK2B72WxUWRcNicW78mFa58q36wXQbHbk40Tl+/vUSoJA7vQ+HZEBonnCzxGyo0qEtWxsY1y24mMyvgeVgtF5XAde8SWc+LP6J3odfHJDO045zx/98jek4PAMAy72pe9n3MxCiL1CKs6+B3j81F5SnwdrQNWbyXmz8ZfidQzUTfXMXsnGKpd0TrH7oHrzDMVZyGa33txzT2fKKZdKBQKhcKGYFFM25BFRDPwbpjZtAXrAHaCMtg1imlnjFQhM0Dh9qg2RFBuDREj4cABvCONgsio3eQcKwB2xsUYMH9yPXx5HKyEg5ZkBlaehZ9vRAaOwLwLkD+n2HnEYs3tkQ3got3/nBRoHfdEvpbnkq+vurbHVUZJgaJ3sMdwcz9oraG11uX6qZAZbLJkqsetUrHUzFWJWaVipB49QVuiOmd1zIxYVXsUw/fvGxso8/oWYW7uZG5pxbQLhUKhUCjsC4tk2pGuz8Cs2FidsWkLPXfy5Mmz99gxY+EcBpF3bBGrUEwq2k0am7RPO2esMtrNsj6I287t9pIEDtNq7bPjJlmIQkOqXaRiCcAOC7SAKByaNLIrsDbbtVznSKqS7diXgogRMDhwRCbFYJbE9gIZW2KmpVy9/NxSNhNKCuX/55CjyrYi07sqHWbUznOp247cITPXuEzyweD+4Lmu3nl/bm5sPXgt6ZmjSjqjdMG+vlyHTIIwp6NnSaK/VwXHUt972neupTjnAstbBQuFQqFQKIRYHNPOdo7AKns0xnnixAkAOwzbvgM7LJyDxSur8nXCItpu01s2G5u08JscCEZZWwNab6va7f9X7dkLWOfoQ4ia5MKSt9g5+27955k9SxvYIjwKnJJZo28i5oKR+GPMAJTXhP9/Th/JOkF/TtXN5pCNuT/GEh1mg5med669qq3nCqbXVs9lOwRmrZGtCbef7TZs7mcSl3XmvJJ0ZLYtvYFEMt2vgSVhmW3DnGQn0lezdJXnXSQVsvratYpxR+ixVzkMLKs2hUKhUCgUJBbHtIdhkPpc/7/tnJhp26exa2BVx8pMO9LB9iIKEco7Wjtnx1nXDcyH18us4+2Ytflc+7UqFhD52DLYipz1vCad8OUvzXozwjp1nfPB9ceYRfN88OeUb32PLzHrcbP0tcxolL9xZA+hJEmZfy57R+xHgqSQ+fgCq/1kdcjiNHDZPYlCVH2U/jvztuB2KA8ID6XLVvprX6c524aoLiola2SHw3OT50q0LvG4zPlr8/+qzYeJYtqFQqFQKGwIFse0W2tdieVtt2WM03Zkdq/pV6N7WOerdnvA6q6U2UUUtY11V8qa0u+SmZXzbpX90f0Ossdfca+49NJLAezuT9bJsd92psu0vr/jjjt2lRFFhTLWvQTLTpVIpWfHzlbDPL89VN9yn2Z6SVXHaN6xFIjnoY1ppN+1OnL5mc2G8gSwa21+REybWfpBMu5hGFKbA6VHtTpk+mJmuJE0gaH03zwffJ+w1wqz4x7/+Tkf8khKY/dwH/Ga5a+Zk3qaDUXEtFX9M8kOSyayqG0Zc18CimkXCoVCobAhqB/tQqFQKBQ2BIsSj7fWcOTIkRWxTmRYwEZP5mYVGXeo5AQsBuHz/n8Wh5nYJRPZsKjRgpJEiS+4PXNBT6J7o/Chc7DyOFDKxRdfDGBHLG7f/T1K1MTBHaJrOCiOicK9a1mmJjlfYEMcNYeyULv83cqIEqFwDnk2WoxE6yw6ZdUNtyUSddu9Nkc5cYnNC98OlUyFv0fvRpSIxj/Xvw+sErrkkksA7KhY9mJAyhiGYWV8fLlK5MtiXV9vfh/VZ2TAyWNo46JCCPv/eZ3hNcP3+VxubzVO/hi7B7LoO3JP5SBY9t6z+HwdUX4kHuf3yOax6puorSoM9WGhmHahUCgUChuCxTHtY8eOyXCPwG5XLmCVYUchUNWOn3dm7Ijv77FdMbtVRTts3x5fru3ujL36HZ3tNJU7TZbMgFke73Q5hCiwswM1QzP7NBZjzJd3qB4quEHExNigRrnQ+OdwQIQel7L9gFmuP8a7bZXwwo8pszOe1xFbYgbA6U8NWWhIlcAhM7rh+eYlK8Bu1qnYJrs/ZsZLSnLA7l3ADjtj9mVz1d5Jz+jWhTdEs3HzAWW4DtxmdlXy59RnD5s0MHvm99P/n7FxYPdcVsajioFnKVrZDdf6z6/Z9r8x7P2Oma9HlujF6mbrLCcqioI7LRXFtAuFQqFQ2BAsimkD4w4vM7W3XaLtPNmxP2JGyvVB7fa9XtV2w6yvs51ilEqQ6227OGbY3o3K2sM7wp4A91xvK8N248Ze/fOszVdeeSUA4Oqrr951jdWHQ7H68pkxsE4r2kUzo7N6RAyLGeq50mlbmyP3PYNK+pKlSmTGxvYDUZIU5RJl/WP3ZmlWrY5qnntYH1u5/NwosQzXkV0lOWyvf65KlsKSGM987H6bT+zmaXPVI3KNVBiGAadPnz57rZXvGSK/75lUycDrAN+TuRKpkKrZPcqWhd+5aI4qN1V+5/wzuG/ZXSsKp7yfQFYG1vfznI1cTXm+sZTI15FdFpcW3KmYdqFQKBQKG4LFMe0oqEIUSJ91f2wlGFloG1Toxii4iu26Wfea6VfnghgYe40CwNiO3naiSqcUBYBhNshsObI0Nd2l6Qd5x50xCCvfyjK2Zjtsr59mFs5jy+zMP/tc7XTZIjcKXMJg9t/Dnpg9sh1GlgLSwClMozCmBiuPLcIji1kV8ENZPvv/7d1gK26eH1EAEGW3ErEn+9/eF7ZBsXr453BdeuYQv/+eDbLETXkNRJbZyotA6Y99+SowSxbulT00+HhmCc7nmKVH646VrxIvRVLBbH2Zg5WhwuhGY8DzjMfa14PHYwnBnTyKaRcKhUKhsCFYHNP2u6RMX8y6bUPEJlgfaOB0nvwJaN1H5hPN+iCrk9WDLReB1fSarBdmhu/17soqXulFfd1M//T2t7991zVsvezHhXXkxtJZuhGFy+SdrgqJ6dvMuvP9giUS9uye5BjscaASSACrUiDrL2bakbeC0pmbntUzbZ5PSooRvRvWFzbP2Pc1Yto8ry+77DIAO3OJdc5+3KzePjGMf57N68jC2erGkqTMAtmuzUKeDsOAM2fOrHiC+HFR1u3MpiNJEb/DfJ7tO/w51mVzmf55bAGtpAD+OpYY8NrB9iR+LVZrI9vWeOwllgSD1zuWNPb4XiuJgr9/aSk5DcusVaFQKBQKhRUskmmzL3YUMYotfZXPtb/Hdnm33norAOAd73gHAOCWW24BsBqdB1j1FWadHz8D2GERXCdmCF5KYCzFdqvWB6YvZKbtd5usOzImZ+XzLt230Y7Zc2wHzzonL30wn25jWGaBfv/73x/Aqo8vsNNvPBbM5D3b4D7346Jg8yKyejbYOJiEQFnB+2PsY88JUKzfvJ0C18XGxfotSqhg484SCRUnAFidb/ZcGwfWafvnMcNSSR8iHbP14xVXXAFg9X0yeAmXSbdYT80pdSNLd+XDzhbBvt5ZSkmPYRikd4l/lrKDiaKb8TvGUgwrK7LD4X5X/vpR5Di1FmZxAXiuMLgNwM5YsX+2Hc/sCGwN4XZwu/06x5I3RiTt4HePJQmR3rrH6+IwUUy7UCgUCoUNwbK2EBh3Obbbt11fZtkXMTRgNyuzHeDNN98MAHjnO98JYGcXznFwbdfvn21s0upmzNR2rcaefLnsJ80738gnWVmps840i1/OVt1s3enBDIsZydve9jYAsX7HdstvetObAOwwrPd5n/cBsMPAfLm802W2GcXUXgc9aQ9tPKx/WCfqd93Wl/e73/0AAFdddRWAnfG3Pmdfb2Cnf2y+WZutLJP4+HmgrNKZiWQSCR5D5U8dXWvg/ot8rdka3r83wE5f3XbbbSvlWNsf9KAHAdh5V97ylres1JGlXSo9ZTRHe9J3Ws4Dtq+IbChYJ8t+x9E9Nqbv9m7vtqsd9r7YHIuiAbIfvTFimxe+z/kdZn10xFDZs4QjpGWeNSqfANvuRGCmbe2Iojca2GbC1hdj9j6CnYE9DDj2eBQXgT1oloZi2oVCoVAobAjqR7tQKBQKhQ3BosTjwzDg3nvvPSvKMPGKF9VFhjH+u4nDvEju9ttvB7BjKMNGUQYTi3ixLht1qKQI3oCDg6fYp7UnEqWpoPcqTKZvP4u2WFTLxmW+HC6PE4RkoShNVGftsH6+6aabVu7hsWSRpo1blAI0Ensp8Dh5WJs4NCsb93kRt9XH1CMs1rN5xq5Tvk3sNsXBR6LkNuzSowLoADqIhjLyi4x72FgxCwus5iaHAWUjSt9mdvkz9ZLNIfv0dbJ7+XnWF1kgoExd0lrD0aNHV9Ry/v3kUMEsNs7E4raeWKhg7h+DnztsVGrvtJVl/RO5trI7rFK1+HZw/7CBVjQPlBsVi6D982ysrC94vlv/mqrSr3Os6rC+sLlz44037irLQ62jUbtYrF9hTAuFQqFQKOwJi2PafjcVGSPYjlMF7I9YLCfQYIZlOyt2JfHHOLwoh4iMdmrK3SQKkMLPY5akjIuA1WAX7GIWGS8ZVPAQ3uFHQU+sL+xaY6HGTqMQi8qdItrxqnCzGZglRfVWKRg5bR+wY+TCwWeYLUfhEO2Y9YfNP2NY0fizyxUb+1h/+eAkUcAV3w5m/H4eKEMtdr2K3MRYCsNSGjMu8n1ic8RYkrXTmGPkdjk3D9jQzsPqNpfW9ciRIyvvh58HLIlSroVeSmMuhdZmHrvLL78cwA4zjN4Xm1/GJq1vo9CtXEeWTETvBEvaVMKQzA3O7mFXz+gea7s9l6WS7Prq77XybO6wobI9389VDsTC6w7Xx7dnaeFLDcW0C4VCoVDYECyKaTOixBN8znaP9p11MMDOzox1Orart92WsYuIAbHbid0Tpa5UOj/WU/rdP7N/ZhOsY4zuVQk2OKAJoAPpcyCTyP2Bj9n4GLNgFzdfNwO7oURsieud7XzNbcfKU+5c/pnMmlkn6/+3/rA5YsyH9eBZoguDCpgTgdkRh1z11zBDUCEw/bgwu2R2FNmQcP/xHLL3zVhT5CZkdTM3TGPl9unH2trM7yVLIXw/2zj1ug1ub2+vSLd8eSphSKb/5KA2Bns/7nvf++4qO0p7ycye1xBftvWHcjFlKZqvP4fCZZ1vxHzZ5c/AthuRrQEHYGHpHEvFfHk2LlauzYvofeN3nPszcktj6cOclOZ8o5h2oVAoFAobgkUx7dYaLrroopVwhV7fwIFCOOB9ZF3LyShYJ8uJ4KPADgZm1lHyDxVAhKUBUTAIlfqP2XSUfs5g7csCCPC9vOPk3XEUcIR32pyKMUo1yOBwk55N8fhnAfw56UP0PGbU3JeRtStbHxtDYP0hzwd/ji3xs9CXKngHszY/PipAikob6seS+51tC7K+V+Uba7K+iJiKYuush/VtVmFG7dN0xNG5TEozDAO2t7dXxjSSFDEzZc+DSJ/K8437OFvnuFxeu6J1gOczs3LPRPldVQF6ojnG9jcs3YokZDznrT0stbO6Rnp+llxyv3rduvIyYsYd9f1+kpqcSxTTLhQKhUJhQ7Aopr21tbXLKjZibFHCDP8906Ow/o79GSNGqvwwM+txLs92hKav4zCn/jlqd8c+5b6OimmxXsq3n3fyvIvlHWq042VLffb5zdKsct0iJsRsYi7pgy+f5wOwGtaV9XS2y498UZUfO/dT5HnA9gKcFMazM5XWkJOCZKFIWVrDemk/l/mdYJ/yKKaBSvXJUptI2sHjbHVh74xIGqDGnxkmsJr6c441nTlzJk1HyxbyPA5sVwCs2iwo24yoXcoPnNsRzTeVMCRaB/h5yl87eh5LFNn2IAufzHXOpA5cFyU1icLZKqt4lg5ECZgiqeYSUEy7UCgUCoUNwaKYtlkAK0tNvhaId9nA7h0pMw7Wpylra3+Od2qsC/Fl8C7ZWARbHkc7OG4P7wwjHSOzY7tG+aH78lTfZBHY+LnMtCO2rnbwvOvPdGc9O16WSPgdNO/UVSQ0r5dWejvu00gXyFIf7qcoCQNLXNhLgdMh+mu5fSpimb+XPQHYSyGycGfpCEudlJ40Ao9XJHFiSYuKABel41U6WoZFRQPiNYX7lu1jsnWAJSxz6090r9K3+0iMHBGR9fmRxIqZKK9zhizSIPcbx3bwY8wslj+5XhnjVh4wUawHlj7we51F3SymXSgUCoVCYU+oH+1CoVAoFDYEixKPA6MoIjM4YNcnFuNE5vrK1YdFcdnzWCTDZUWGWgZ2a2AxYnQPi5aU60J2jwodyvX197BYMeoTFrOxYRe7YET15udkoigOx5mB6+bLY/cpDmQT1VcZwan+yQz2lLFhJIZVoSEjgyQWAStxXiSG5bC8HICFRbu+XaxesHtZdRSJY5X4NzIm4vYpo9NINN0TAtfUcixu9feo+akSUfh7lM4IzAAAIABJREFUWBS7zjzgfmEVjhePs1Esr3ORcSa3ax1jP66bClEcGXmx2iVbgxWU4V1mSMpGlFHudB6nEo8XCoVCoVDYExbHtIHVoAAevGMyZMY2vNtWu7ueXR6zJg7M4uuojIoiNqEYgWKOUYB7ZUySBRzh3bEyPMuCa3DfR64latyYnUWuRcwcehAZBqk0lwz/HA6Qw6FVVXv8s7mfmMVGjI6NitiNJjKw24vhjDEeZiucsCIyJlKsk89nQX0Y0fzmsWTpVyT1YAPLueAq9qfqoOrNBol+/Nlocc4ArYdpW1nMFP09/L6zVCtLrzmHKKwof6r1yF9jfaECXUV9xJIC5c7VI4W0fozmKM+rSs1ZKBQKhUJhT1gc097a2loJEeh3g7brUSkYo5210mWzTjPb3Sk9eBQGj3ePyk0sahfXJdJDcR2ZDRqYkUQ6YaVbzHTqipXzPVEdFePJnqNYegS2H4hgblNRClH+rhKaROFEo7J8XZR7UxQAxurG7ClykVGuSmpss/nNrl8Ro5sby4wBs15a2ThEkiR2R7Nx3Is+lOFD4EbvNEPN+WjdsbVKMezIRVK5MSnbE0DrrrN3uTdwUTSvFdPleR0FnlJ6d57nUX8q6WDmYqj6YGksugfFtAuFQqFQ2BAsjmlvb2+vBBCImIHSX0QWi8yslWN/ZHmuruFdXpRWz6B27tFzVHhRvi5isfbJqeoiVhgF6QB0IJNM16x2rz26TK57xuh7mBSPl6+30olzvTNbCmaZmfWtmqPqXmDVKlhZaHsopjEXmtZfw7YZnE7S2ydwYhXFdHuCq6g2ZFbYXPds3KL6MyxhSGZprsLt8nGlq++Bv5fbqmx4Mp2vCgyVWY/z87hvfR15feZrMlsam0Nm56PW5GhdVR4b0fgrqYaSaEYo6/FCoVAoFAp7wuKYtrfijKys2cqQd7qRNeCcLyKzDb+7Y723gXWN3s+PfQGZKXLykahdrBdXvtAezM64rhELYJakknRELICZvLHEKDEF14WtOKNQq4b96J2yfjKwdCay4uW6qDplPqL8nVOn+vtZ15fppZXuX7E+X8c5D4BMGmCfrIfMxquHFXPdWb9uCXhUMh8PDsea1YvDzWZWyIpxZ/rUue/rxAnIvAj2or/N3vfo+RHU+Ec2IhwPgKWrUfuUBClKcWvgcriOPdK7YtqFQqFQKBT2hMUx7SNHjqzo16IA8Ka3ZQYSJWGwazmRvNJ1+3sVw1ZJ3AHg0ksv3XUP7+7s3ohNcNpG+1RW7FH9uS8MUT9ynVSChUhyESWq94gSOLAUgqUpnhlnaTsPAsyO2BfW10tF7Mr829k+gBlQJEk6deoUgNUxtXuzqE98Dfu+Z4xO2Wwoy3dg1WdYWf5m8QH4XMTs2W5EeUl4ZGyP0VrD1tbWip+51+uzRTS/P5ENxbpRxiKrblX/zILfrmVJTiYFUJHXuMxM+mBrlSGyL+L+4vmdxRxQkfH4/Y2ex3XNwG09V+vPXlFMu1AoFAqFDUH9aBcKhUKhsCFYlHi8tTGnbRYMwKCSSGSh89goQYU+7QmHyIZhF1544co9BiUK8nU0Eb6JmExMap9sJOWNb9jFw+rCRjiR24tdY8Y9nBM7qisbmrEojUVtHioEIZ/n/4E+MVWPSMv62ovBgTzYCYu0lbtbNO/UPXY8MpJSRj1ZaE2uAxsGZuJxA6tL7B4/v5XKwJ6XhRTm98nA45WJfZWRlD9u19pY90CpioBVVQOroqIwpsp9cu75gDas5X7xbVbnVNhXQBuCKZcv/05zu2w9sD6P1AO8Fiu1Q9Rn6neBVWtZsigDG5T6PlEqwqWgmHahUCgUChuCRTFtAxtQRMYInFhBGe74azn9oGJjWXAVFaAjSo7Buzyum2fLtjs9efLkrs91mIKxcnbJiXbYdsz6mt2gODBCdK/ayUfjxiyzJ8Qis40ept1jvGbjYFINZhtZ0BvFfDnhhq8LsxhmbZmripLaRO+Ekgbw+EdMRLnpRWyRDehUSNfoXZlj1NF8m0ulm7GlqG8ZnDAkwlygHL7O19MwZ1yWXav6yY8Xr402Thw6NDIQtWvYuDQbL37/WfqYBSmaCyK1nyA10buhpKw97HxpoU6LaRcKhUKhsCFYFNMehgH33HPP2V0f6xztGv9p4F1klF5R7Zbn6uTBLNLq6nV+zE6sLqY3jurBu9R1GLaBGYhis1kdFSKdNrNLG6/IdYrDc/K1EaNbJxBCa21tHRS73kUpO1lKwq49/Eyv32cphtKLeii2xIwxCu9o19pcVGwtmgfMgLIAR3wvBxFinXAkuWD7kYx5qXuUTpPvj/qCz21tbaXMfS6BT8TKWMLB76FyYfKYs4+JJAk2HpZ05pJLLgEQ9xMnhGHWnK0LbO/BwW5MkuWlASotrppv2bipYCtRkhEeU15bIinNOgFYzieKaRcKhUKhsCFYFNMGxl0N69W8nlCxSA6L56F0SUrP4cGsiHfHWTJ6JRXoCfO4H3D/ZbtV1jWzHjyypGVd1pxFtS9PhcfM2t2benFra6ur3LkgJ5nlqrKcjqRDbFvACRYi1qEs8dnCPLJSVuFk55LsRHVkz4Ao4AzPGWUd799JDiLEzDELIcohdrPx6kmZylBeJlF5PcF1+Nl8LmOximGbBC5i/CZhOX78+K5POx7Vjecx9wHP2chOhYNhsZ2RX49YMqAkLDyHo7opz54o8BRLDtR3X+5SUUy7UCgUCoUNweKYNrDK7iLfV4PyJ4x8A5Vum/U4kX5D+RNHbIJ1R3xNpnthZqMSHfj6MFNkS/DM3z0Kv+gR6cGYqSq/yciCn3ex3OdRHSP/eQUe64jNsBU36/P8WDKTNtZiKQWZYXvbBpZaMJuIEtSwBElJg3wdlc48CusI7GY+7CWg/Ocj9sHsjL9HYW6ZlXEo4Wjc7H/rT9bNR/YFPAdZgsFtu/fee1PLaZ6/at5mOm2WeET14DbzXDGmbed9u2zu8TioJED+Wq6zkhZ6FstJjlRyjmy+cehbaw8zbkDbXSjGHdWJ51smVbFjWUKaw0Ax7UKhUCgUNgSLYtq24+WUf6abAQ7Gko93xyr4P6CD/ivrx+gcW/Py7hLYaZddy0lNmIl7Ns2JG9gvky3do3orPWtkec76LSXByJJnqOdHFrvr6LS5/hHTZibKftQRi7VxMYtcZul2PmIGzFIyJmJMKmLhvj7RMY5IxiyTGZeviz1XRbMzzwd/jq/NmC/fy9HgWJcdSZjmkrX0RIuLYOuOsjmI7mdJRCbhm2Ov0dznfmH9cMQQLU6DtYPHNJI6qBgCKsaEHxcr3557xx137Pp+4sSJXdf5digJiLI38u1QiCzqledB5uHAbHwurev5RjHtQqFQKBQ2BItj2tvb22lEGtZrzO1mIyj9VASlh1I7UWBnN8xWvcxEonZxnHDW42UxrtXz2Efal89WvIyIvSgL8Izx8L1Kh+7rwfYEWcxsIN6VR3pOLi/rJ/vfPpW1eGTtymxf6dUind/c/PbPsWebnl3pZtlC3P/P8aKZaUe+tqr/mD31eH8Yovc2iv4F5MxLRdqKwBI+LgPQsdIzq3EDvy+KTXqGyGmE1XrmWeBtt90GYDVFJtfVt9MkRPzJczeKH2HSF2PUHMUxW1t4fvXo+ed8t6PoZizV7Ekfy+y7J6re+UQx7UKhUCgUNgT1o10oFAqFwoZgceLxu+++WxpHAasipp5wdwwVmjILaafE5JGrB4s9zZCOxW++XSokqDJW6THyMnEpG5n4++0YG1uw2CgLwt8TjEAZqXGdI/G4chfzaK3hyJEj0kgOWDVAY1Ewi7r9OXbF4+9sjBW1SbkAebCblgrRGD1Hha3le6KkJgaVECOqq81v5dLI/Zy1j0XtezE4jQzsogQrClmwkyjIkC83ms8qPCm/y2xs5v9n0SyLlf15E1ffcsstslxg9zpga4R9KvG4leXXCTM4M3E8h16O1lOeI3PGi77v5tRvkXicRdyRETDXcS/r2/lEMe1CoVAoFDYEi2LawLirUeb5wOruXTHuiBkaesOaAjr4CO8UIzcxu8Z2oBzez7vRsIuPCuoSQTE3ZQDjn6eCavBOP2JLbFDHn1mAG657ZoDU0xfDMODMmTNpWleu95zrEqBdYlSIUs+EeOevXOR8QBYOH8sBHtjoy4PdpuZSdUbXMPvjcJb8v7+G2UsU1Ee5W2auWXOuUhGj3Uuyh3UShnDdovmtGCHXLWLEXBcV3ClKbmPM99Zbb91VvsGPH89jM7BUUqHIPVG57bFhrD/H5bOrZjSn5lzneO305aj1NXLVy+bBElBMu1AoFAqFDcHimHZrLXWFiNyl+H51TO3uWN/hnxeFjYyeEznnGzj0oLUrYtp2LScGYCbkwbtFLisKZ8mMIdpx+udFjIUZ/Drudqoe0S7ZMKeX3N7eTvW3LKVR5UV6cGbjzEyiMJl2DzMQZkmeaVt5fm4AqzYHpoP0z1YMm+0XIuY7J+nxfcUuZXMulFFgHg5basje33UYUCb1ia7d3t5eKS+SuM2tOz26cyXZ82WrUMGcnCWqowpjavDfjZVnEhxft0hfrNaSyD2VbUKU62xmx6LW8cx9i+c3PzeSzO5FWnM+UEy7UCgUCoUNweKYNrCqP/EsQ4W9ywJ8KN1HT/B4pbflHZvfvaoQhLfffvuuMn27OGxpZCUe1cNfY3VhK05mh/4eJdXgHa7/rna2aiz4/wzRrraXWZleG4hZ5V7Aejn+VKE1gVV2PJewxtoB7HgcsC4zS+fJenXu8+i40kOzhCFL2qOOR2PJc4OZTo9tgzqfHZvTS0ZMm8/7T1WnnjmvQiL7PlbpT9m2Igr8weub1dFYddROu4cDs3CdM0mIsvvwUiEO96skLVH/2jmll86CoChL8GzurBOg53yimHahUCgUChuCRTJt1jFHYRANPXpUvneOKWZ1YpbE+mP/vzEt00/yrjJKGDL3/MhfXKUW5SQjkb+7YhCZ7zrXX/l0Z5a0XF6kH8t0VQqZ1a3yzeRyIyv1OT9z7k9AjxnbGGQW01w+21b4axRLtvOmL4/qyPVfJ/mLsvLvYWdKkhRZgnM564QuztIrmoSG7SEyD5SetUMxaiVp8ZIwlvAopu37SUlc7NOsyf1axV4CCtH842NKCuXbxTYgSncdvfO8Vqn1vMdzKLN5UNLUpaCYdqFQKBQKG4LFMe1hGFZ02ZHvq9p1RztftRtW+jR/HeuaI79s/m7MmqPvZBGX5pA9T+l4eMfo2UaWWtR/j/ydlXVlj7X3nO+qR+bHqqCigqln+Odk1835BitfZWCVVWTR07gd/LzIulelUVWR3yJ7CNW3EdNmPb7ST0csSkkoGNn7q3yIM7Y4N3e8PURU7zk2v44vL7cjiljIaXb5mui95HOKCVtiD2BnrVIeNFkyGPbx5kRFUewCZQPCa1aUDnMukmWPJTgfj77P+cgfNoppFwqFQqGwIagf7UKhUCgUNgSLEo8PwxjC1MQTJnaJ3KlYzJIZhLD4RInYIyMYFh/xtZG4XIlX9iMe74HKxZwZ1syJbCPXs3WM/3rvifqeRXXr9F+PWHed5BjK6Cm7hw1ylIFglKs6Ohc937dDhS1lQ53MmMig5ocvl/vP6trjfrkXNQlfo0JU+mt6jEytPsrQCVgV4yr1xZxbYvQ9eseUWHoulK+/x8Dz0AfzsfWNP7ke1r5IhK9C+UbicVV/VoWxas8fm3O/i1QrBmUcGInH51Q4h4Vl1aZQKBQKhYLEopj29vY27rrrrpV0kWaMAey4K6jdfOYyonbsbNDg2Y0KdsJGH353a9daXe277WIjV5+DcOBXoVXt+X7Hq3atnJIv2mErV56e5A+qrlFCAjYCjIxTGCqkIrBqmKWSF0RhPudc1qLEKgqZEQxLdNggyNrj+8LGitO5qrGN5tpcis7oHLMUxcAjCYliS5nkgt/XzBVwnbCirTW01uQ64cvhNve0da4OHAwFWJWSqL6NQhPzO8tzx68DFkzF1lhj4coIK5NcMSuPWDW/J/YclTozctVT0o1M2jH3/mbsvJh2oVAoFAqFPWGRTJsD33sdDO/I1K4/020blNtOlCLPdq0Wko/Dm3ppAO9SeXcZBY2xNhuDWkdfrBLJqyQgvj28i2SmHUHtpNdh2iq4SuSaY/2lQixanba2ttJdMkscegKk8L3KLiK6h+cTS22isLN2jbFmxR6yABkquEoWXlZJkqLn8/xWNhzMooCdvufAMz1MW7kyRvM7c8GL4Jl2VG7kYjX3XemslZSJww/7cyzRixInKUkSr2GRKxuz8yzQjEHp+Q1ZwCT+ZF22IUrelIUB5nsUw1brT3SuXL4KhUKhUCjsCYti2sMw4O677z6764qC4jMjy1JW+nIz9IRbVEzbEOmnOWxklBTewGxpLoyofx5b+KpgG9H9rDvr0eFy+bzDj/RvKjEAs9DInsAYSMa0rUxOKhAlf1FhP3usRRXTjiyY7X+uf6aL5eASnFjB7CIiBml14HCSmU7VymXLbx7TKNmM0vMq/auvt9JPZ+ErmY33SEZYJ9yD6B61hjDLzEJoqjpGoZBPnTq1qw4qaFCU9tJL/aK6+ncssnfxdcr0xCw54vGJLMA5cJYK9RuN7dx7a4jm3ZwNRSRd5ecuBcW0C4VCoVDYECyKaZtOm1NX+h2o6bdZN6ZSdvL/HmrX73dWtmtlhs0MKLIAtmuYFUW6JWa+1nari31nfb+/h/0xlY7bH8ssZn29Mv3eHPOKzqmQhL6vbNxtdx7p/BTsHs86WAfL7cnaqsDt8Dt2Y9YnTpzY9Z0ZdySRYIabJRlhq2Ceo8xMIj0hMx6+JwpFyXVTEp/I4ljZk0T6UaXnXkf/3WMjopg8sLpWqHuicyy9Up4AmdeKIbMb4TmjWHq0DnCdmWlHkp25FJkRi+XYC6ynjuYbt12lno3A6xzXVenSe8s/DBTTLhQKhUJhQ7A4pn3ixImz7Mh2oKbfAXaYdhY4H8h1YnORiSIGrKzTI1apfCwNmd+qqouy8vb/8y5VReTyz+NdsWq3b4OySs52wMpiNksUwFGaevy0ufyoDooBRXrJOQvsjMGxrtLaYQkb2I/fP09JTwxRVDNmxyq6VRTDQCXU4LH1dTJGx+8kS6Gi+AAqShxfB2j7jsziXOkuFSJWHb2nyro5ek9V9DTlieCZNqf35edzchP/v5J0ZBbgfI1i0ZkluLLLyfqe5yxf6+fOnM1JJnHh+cD+4FGZS/PPNiyzVoVCoVAoFFawKKY9DGN6PGPWkTWksQfb3bOlao9vsLKQzvw+la+1IdPBMNOOovywzpoZcGaZrWIAK90WsLqDjvSdqg2KdWY7egOzF975er219YmN+ZxOe3t7e2X8fXvY93mOVfhjcxGVorYrbwGWcng2xczW6sYpGn272LeWpT8Z81kn2pyB4ydYeWb3wbELokhfzIrUvOD/o/ZE0qIe62eD+fjzvPD15vgFc9bIHsrKvccjZM7LIpLw8fsYrU18D9eJPyPpg5LS7Qesd4/isas4FJnEhevP61zkZcJr41JQTLtQKBQKhQ1B/WgXCoVCobAhWJR4nGGuMf+nvXPXchtJgmhRpmSPPf//WWuvL0M6Ta6VOzmXEVkg2d1qnBPXUYsECwWgQCLyqYKTylTqikBMKRi7oCIVbOECdTj2WvfmyqLmxsICbt8dmk1VYJBrrzmZ7ApXknIKKnOBZ1NQDsvP1usq2Ky25b+K2+32f/dKP54+3o8fP/41X85TmQB3ZtyCKVlr/WMernnXMbJoUF87DObpx6f214/Vpd7xXCsz8q6gxBTE5Eq5KpP0zpw8Bca5+3QqvXs0baeXMVXHw3lNwauFK/NJN5xyQdH958zj6jwx2G8KEHUNT97T5K1g0SrOVQVgunTBQhVz4fcO7/HJpfdIuuBnEqUdQgghnIQvrbRLTfeUr1KrpcIZ5KMK6e/U61TGlIEMTFVR5StdgAmfnrtypDJ0yoft9vi3O44+jz6+2w+fuNWYTDGb1DnVhQtA68qB6uKRYKmpGIQrqcpr3f9mUApVOq9P/0wpbqZI1Wd7oCWPkSpala90aYk8B+o+cO0biynlq46jjov/TuVMqXymYLldEKC6bo9wu93W9Xq9s+T0/e5Kdqryqy441gXLTmmcRwOq+nuurLEKSHUprbwH+znmdxXv6ekYa81TUXM9qnXurDRTsJxrTDKdk+l34U8SpR1CCCGchC+ttIteJKIUGQtWHEn5Kh5pKcmnLPpelBKlX3JXxrD/zZQePnGrAgNTAYS+rUprqPdqf66BSMf54tzTeh+fMEZB+bTfy89Gpa0at3A/fHp3JSGpavrfXDMsPtJT2TgnzlXNfSpxuju+wqkXpZapvplyyOObil7Qp67WnfMfT35l3nu7c/L29nZXOpjvd3i+pnRBZ61yjXfUNhxTxT7s9qfUq7MgubS6fh647vgdUqhiRa7krovL6bhzPzXtcal6al1EaYcQQgjhXTiF0u4+7fKFVCRwPR1T6agn0MKp8qlYPX0wVKTKX7xTiKodnPPf8f2+3c6HTYXP+fbx3ZO3KhriLBaqUYDy4691r7C70qY/7ZkoTnVdXMS0uk6upCWv+5G5sb0r22H2cXidJ6XNa+WyB1ShEadanBVFHQ/VkfOx9/3wfCqV5D5Dq80U7c0xFLfbbf369esuFkB9DzifttovryWtNVR7Kk6F97DLeFjr3jrnipB0dpkmU9wPP8vvxum7ipHgXEtHorld4Rd1TnjPH7nW3O9XIUo7hBBCOAmnUNr9SYftDSuCtRSa8lPuVOwRRUqlc8RX5kpqulzc/hmnYo/kyx55323LJ1+ltKfWi2tppe2UDmMUuhKnv/uZ6OA+HpVOrZnypxVq3rtIbKqptbzP8vv37/8ao0ePOysA/cfTtXTR8SoegsfFbZXS5j1RloNJrRRUyU6xTrnkVD6v5tPebrf1+/fv8V7eRbCrObi8b6q7ScVStU7HSPXI/e9qQUxjKHbfO5PS5ncHrTW0ZPZ58zi4Pvo9z9fcOVFR/2q8r0CUdgghhHASTqG0O1Rm9HPVU5FqB0hc1af+xL1ruD5Fxrr9KcWwqyblIsLXuvevukhcdVzERW1OzQx2OZ5r3Sv3UrlU2Ko94WSZeATX5rDmpirZuejx+r+Lcejj1PkpRU810895vVZzdZkHHedXd/m5KpqX+3GR730OjBrncStlx2vofNnTNSDMMniUytMm/bU6xp1ieyYy37Xw7ePz3lb1KNz9x9enGAqXdz5Fx7v1pb5PnQXnSPaPW1dHosf5GdcoRe1vVw3zs4nSDiGEEE5CfrRDCCGEk3A68ziDA+rfKQWroCndmWYmM7IrnafMVG6/KsDh0bSmHnBH8yFNmqqZhcOdRxXg51wGkzmpPlPbTIFo7DH+aupF7YOpUQzu6tffmRinwMeCbgk2s1G9safe3g6aI53ZkuVm+3vO5aGKXXBdMf2IJncV2OdMmqoE6y5V79VANO5HBVjRdcJtXZBcH4cBsUfSBhmI5t5Xc3Jzm1wBLq1qOj4e59QIxb3nUs+Ua8W5/5QbxZVjdoGEaj+vuuXemyjtEEII4SScTmkXVGgMdFKFPdxTItWkCv8vWEbwSNlFV7RepSMx4Imo4yvFw7nw36nJRHH0SXgtr5o41lr3gVV17Cyq0kt6uuYpr1LjskmLCrpicQYX7KcsJS54bApAovo6km6iLARqf0ppu+tL1dSDzbh2dhYX1YK24PGpgkT8zC5o6hmu1+uYOldj02o17dupcTU+3z8aVKjgephS5pyS3qXJ9r+ddUatD2fRcc1AlNJ2hY6OtNZ190jfzlmsvgpR2iGEEMJJOK3SpjKrAg/qCdH5WKmEmJKzli+3qFRE4XwvrpE996n+T9TTpPNLFaqkZ0HfPRWYUh20CnAMdR7pp+a/vTnMRxc1qH3WGqoiJz01rKwvNRf6b+v1KvYzpcbxnNI/vtZ9SgrV8ZHCGLu11K+Tsi70OStrAf2szjerUrAY0+D8kcoKxTFotXmFb9++jarSqclnmtk4X6m6px9ps0nVWud4KiSySw/jfCZc0aVHCkK5787+N9eMK1WqYDwJx+5zeq9YifcmSjuEEEI4CadV2vV0XcqMT11dGbjIbNeUQfn82LZvUj5ORVJhv9cTHBWHi+ZVPrOd32Yq4kDVNPmCdk/F9X/VMGTXVvFVap9qf7QQcK1M/ulS7mw241TtWl55ThHAzi/Ja6rah7KwjCvmouI8VKMON0e+x/M5Rc27spzvFd17uVxGC4natysScqQQBy1UqqhPjUPr3xRr4vzR9MOrSGnVLlgxRce7Ykvq/nXfo/xemtpsPtO6l/ubCioViR4PIYQQwlOcVmkXjEKuJ9SeP+ue5lwko4JKZNqWT4lUkx/tI9k1VujbuDKW3K6/7vJZJ+VTr7GUKHPWVc5y8VGKu+ZQfmkV9U6F42IalI+RMROT758KxDXYUPEQu+wI+mP73KZWrDtoyeH66DCLwOUDK582x6dl5NkypjWG89H3+e0aXvT17SwO7piV2mMdClf+U437SO7z1Bq170dFWe9QFotd1LryTzsr1DNlRt36m7b5KkRphxBCCCfh9EqbvlDVMITKhop38sEwUpZPvqWeptzA4rOe2JzinZ4m6duiH1E1YOH49HH388imH9x2Ukmf5VOiqu5/uwhwFzm/1j/xFjVG+bbZbKR/lvtx+eHKkuRUsot8VsfHzx6p+Mf1QIXdr62LUnZKS+3PRZO/wuVyOVSNzp1bRvuv5ZuLFFPMCaOn3feOasZBJksErRi7SPzJKsRt1Hl0VkAer9qOyvo9orynuAuXq/6nidIOIYQQTkJ+tEMIIYSTcHrzuCsNWsVWOkdK85HJtKjG6nNyprSPNpO70qtHcOY4lfJT1DY0gXcTpwvCo8nuiAn/o+kFXpiWU4VYXJlPZa63lVLbAAACS0lEQVSs8biNaqjAkroMPFLnYrfOpv7Gbq3wXpkCgtz9NAU+cRuuO7Xedn21X+Ht7c32TO/zdP3mi34unKtpZybv++O/LjBNvcZrqxoHMdWL/3cBqwqXtnWkYYxbF2rtFK+YxScT+Fczh5Mo7RBCCOEknF5p8wn0yNP9VGaxv9+pp68KJpqCIFh6kCkYn5VK4NIqOlRSVDxT0YhdIIoqjODmxjGn4/ko1HqoNLBSvq7RSh2HaqxR5/Lnz5/jGGvdB7i5/SqrgysNyes0KW3eRwyI63+7wC2qqH5e3dp3KYH9vSPBSs9wu93W9Xq9C3CaWvS6VD8VqOUKibjmM318lkutsdR5miwq0+v9PTeWui93aaJTKVJXPGj67G7/j6yDyXr3iqXyM4jSDiGEEE7C6ZV2MRUJ2PntjrArI6j8RM4/VHxUQ4wjvh+eL/e0XHNUT9osAcj9Tv4o93pXNB/hu3wUNjKh8i3UOaCyqTFUepD7jGvr2VO++FlnrVBFN5zCmgpYuLgElnydiu1QqXJbtVZ36uwVrtfrnZrtc6A/2DU+USVwiYs5UMVVnB9/sprw+rhrrLZ1cz1iAXNxCsqC4LaZSpJO/u5XUefhaBzDZxOlHUIIIZyEy1ey118ul/+utf7zp+cRvjx/3263v/oLWTvhIFk74Vnu1s6f4Ev9aIcQQgjBE/N4CCGEcBLyox1CCCGchPxohxBCCCchP9ohhBDCSciPdgghhHAS8qMdQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEv4HDwjHstY6aQMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3048,7 +724,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZedZ3vl895ZKUpVK1lSSbBnkgU4TCIGsOExJGNJgaAeS0BlMAg4OSQNtyEAbEwwBGwzEOEy9MIQhcYNj0oEEHCBhMHhhJgeCAQfCIIMt2bIGa7RkTaWqurv/2Oe5572/8377nDuU6hx4n7Vqnbr77P3tb9r7vM87tmEYVCgUCoVCYf2xdbE7UCgUCoVCYTXUj3ahUCgUChuC+tEuFAqFQmFDUD/ahUKhUChsCOpHu1AoFAqFDUH9aBcKhUKhsCFY+qPdWntxa21orb2/tXY1vjs2++6VF6yHG4rW2ie11l7ZWtvC8WfN5uzFF6lrhSPA7Ln4/It072H2b+H+rbU3tNZuw7HbZuf/+057Pz/7/pc79+G/N6zQx63W2ttba1+WfPdxrbX/0Fp7b2vtydbaw621X2+tvaq19vSlE3AB0Vp7S2vtLUfY3re31n7yqNqbtXnbxNrs/jvC+93dWvvuI2rrutl78c8m3/1qa+2nj+I+h0Vr7R+01t7aWruvtXamtXZra+17Wms3rXj9s1prb5zt7Ydaaz+86rXLcGwf5z5N0j+X9BVHceM/AfgkSa+Q9PWSdsLxuyR9nKR3XoQ+FY4OL9b4/LzuIvbhFa21NwzD8OQK535A0t9orZ0ahuEDPthau1nSJ86+z/D9kr4Hx+5d4X6fK+npkr4rHmytvVTSv5L085L+haR3SbpC0sdL+gJJz5P0v6/Q/oXCS464vW+S9K7W2icPw/DzR9TmZ0m6NPz9XZK2JX3hEbVPvEDSg0fU1nUa34t/JOm38d0/lHT+iO5zWFwr6U0a1+/9kj5M0ldLen5r7cOHYXisd2Fr7UqN+/shjc/BMUnfIOnNrbWPGobhicN0bD8/2m+S9I9ba982DMP7DnPTP8kYhuGMpF+92P0obDzeJOn5Gl/U37HC+T8r6VMl/U2NP8TGiyTdJul2jS9+4o5hGA6yX79M0uvjy6219skaf7D/n2EYvhTn/2Rr7V9K+tsHuNeRYRiG3zvi9u5qrf2EpJdpfJEfRZu/Ff9urT0s6diq69Rau3T2Hlr1fr+5zy4eCMMw/O5TcZ9VMAzDN+PQL7TW7pT0nyV9sqT/OnH5/yXpJkmfOAzDeySptfZ7kn5P0ucLguxBOjf5TyOjGCT9ZUmPSvqO8N2x2XevxDUfLennJD0yu+bNkj4a53y/pPdK+nOSfknSY5L+UNIXLevTfq+X9GxJP6iRIZyR9HZJn5Wc93cl/YGkJyT9jqS/Juktkt4SzrlM0rdJ+p+z8d0t6SckfWg455Wzednzb/bds2Z/v3j298skPSnp2qQ/vyfpx8LfJzRKfrfOrrlV0ldJ2lphvk5KerVGhn9m1u8fkXTDAdfteZLeKulxSbdI+quz7/9vjT8CD0v6MUmncf2gUer8qlk7j0v6RUkfhfOapC+dtf2kRg3FayVdmbT39ZL+yWw+PiDpFyR9eDIH/4dGgekxjdLzf5T0wTjnNklvkPTZkn5/Ng9vk/SXwjlvSdb3LbPvbpT0A5LunM3zXZL+i6TrV9nXK+59j/mNs3U8Eb57g6TbOmN6naQ347tbJH3tbEy/nN3nAP37mNm1fw7Hf1rSPZKO76OtpXteo1Zr0Pi8vlbSfbN/b5B0Fdr7p7N1fVwje3ybwrtAi8+72/4bGjUOD8z2zrdrFHL+gqRfnu2T35X0aZ19d17SBx3VHkD7C2sXvnu1pHOS/ozG5/kRST80++4FszW5e9b/39H4HG2hjbslfXf4+4tmc/LnJf2wxmfuDknfMrW2kj40eW4GSZ89+/5XJf10OP/TZ9+/QNK/na3XA5Jeo9G0+/GS/pvG5/l3JP2V5J6fMpufR2b//qukP33Aef5Ls/4srDHO+xXhOZsd/zVJPxP+vknj79JdGt8Vd0r6cUlXT7a/QkdfPOvoh2h8eM5Iunn23cKPtqQ/O3sgfkPS39Io2f/67NhHhvO+X+OL/fc1soVPlfTvZ+198gr9Wul6SR+k8UXxPzWqKj5N48trR9JfC+d96uzYf55tks/TqLq7U3sf4qdJ+jcaX+qfqFFV9bOzDXXj7Jxnzs4ZJP1FSR8r6WNn3z1Le3+0b9L4QL8E4/vzs/P+ZpjrX5J0v6R/Jul/0/jyekLStyyZq+Maf2Af1aji+dTZ2nyfZsLGAdbNUuOnz/r1hMaH9ick/dXZdw9L+mH0ZdDI6n5F44vwhRp/OO6XdE047xtn5752tmZfqvGh+yXtfWEPGn+UfkbjS/tvaXyx/5FG9sEXzetm6/tCjXvnVkmnwnm3SXr3bOx/S9JnSPotjS/qq2bnfJik35T0P7y2kj5s9t3PSnqHpM+R9AkameN3S3rWQV4UnfX0j/aHz/bOV4Tvpn60P2l2/jNnxz921tZz1f/R/gaNe2/33wr9e8Vs7eM6HZvtpR/cxzhX2vOa/7DeqlHr8HxJ/3h2vx8I532Oxh+wr9HIll6g0dz3D8M5b1H+o32bpG/V+Oy8anbsO2Z76PM17tFf0viMXYdxnJ6d//lHtQfQ/sLahe9ePVvzd2o0b36ypE+Yffcls3n9dEl/ZTYXj2mRhPV+tG+ZzeWnaBT8Bkkvn+jnZRqfu2G2R/zsXDv7vvejfavG355PnX0OGoWm39f4nv702bUPKQhpmgtL/0nju+GzJP13jeTt6SvO7fas3x+lUUB4u6RLllzzfo3aJB5/naTbw9+/pPE9+nc1viv+jsZ38mTfVun0izX/0b5m1qHXhYeKP9r/SeEFNzt2pUYJ6UfDse/X4g/spRof0O9doV8rXa9RQrtXYLIaX65vD3+/VeMPewvH/MP5lol+bGtkAx+Q9KXh+Ctn1x7D+c9S+NEOfflvOO/bNQoCl87+ftHsuk/AeV+lkYF0mZzGl8qgIKQk5+x33T4hHPuzmj/E2+H4t0o6i2ODRhZ0EnNyVtKrZn9fo1E4/H708XM5jtnff6jwIGn8sR0kffzs7ys0PtCvQ3vPns3dPwvHbpvN+9Xh2PNm7f29cOwtSl6UGgWLf7Js/x7mnwIDlvTvZmv0tNnfUz/abfb/r5gd/y5Jv9Ibj3JWNEj6kCX9+ym3G47dMLv2Xybnp0LBqnte8x/WH8B5r9X4A9/C37+5pO9vUf6jzb3zm7PjUQPj5+DzknZv1wrvtQPuh3Qvzr579axPX7ikjTab/1dJeh++6/1ovxzn/Zyk315yH7Ptz02+6/1ofxfO+73Z8eeFYx89O/bC2d9bszn/SVzr37BXrzi3j4R9/1Yt0ZjN7rvnNzF8982SHg3z/aSkL9jveu8r5GsYhgc0sqm/31r7XzunfYKk/zIMw/vDdQ9rpP2fiHMfG4JzxjDaWd4h6YN9bOahvvtvv9drXPiflPQQ2vkZSR/ZWruytbat8cX8I8NsRmft/YZGKW8PWmt/p7X2a62192uU3B/V+MPQm5NleL2kj22tfYjHrFH6+uFhbnv6dI0M8K0Yx5skXaJRYu3h+ZLuHobhxyfO2c+6PToMwy+Gv/9g9vlzwzCcx/FjGh2SIn5yGIZHw31u0/jAftzs0Mdq1A7QS/k/aJxv9udnh2E4G/7+ndmn98HHaRRAfhBzd/usj5+A9v7bMAzR8YbtTeHXJb2stfZPW2sf0Vpryy5orW1jn+/nuXyFxr33smUnzvb2GyS9qLV2XCPref2Sy16nUQUc/92+5JpnaDVnNbXWbtQosO3+C8/5fvc87Yy/o1GQv2H2969L+qjW2ne01j6ltXZilT7O8FP4+w80Pge/jGPSqN0j7tU4L13wXbfK3tkH3pjc75mttX/bWnuP5vP/LyRd31q7aoU2s/le5RnZL7K5f2AYhrfhmDSf+w/XqPF8A/bOwxr3AZ/5Hv6yRm3pF2h8j72ptXbFAcawB7Nn8TckfWVr7Utaax++6rUHidP+No2S/dd1vr9Go46euFvS1TiWeSSe0aiOUGvtWVp8oJ+16vUzXC/p77MdjQ4x0ugleJ3Gl8A9SXt7nO5aa58p6Yc0qmb+nkb73V/Q+FBetnD1avhRjT/8L5r9/fxZv+ML9XpJNyfj+O9hHD1cq9HmNIX9rNv74x/D3HuZ6+HjnJfMkfF9Gk0F7ovYn2EYzmmmRse1D+BvCzq+7/Wzz5/T4vx9hBbnbk97QXBaZX1fqFHQ+XKN3rF3tNa+ZskP8ZvRp69Z4T7u27s0apP+aWvt9AqXvF6jev8VGv0cfmjJ+XcNw/A2/FvmxHSZ5mtg3K+R9fKlfp/mwsD34bv97vll++D1Gp2EPkaj0P5Aa+1H8U7pIdvbvecg2yePS7p8yT04TgqnB8XOMAx73m2zH7D/qrlq+5M0roHfi6vs9Wy+D/oOnEI298veNX7mf1CL8/opmn5f7mIYht8ahuGtwzB8n0ZzykdK+kcT5+9oFAz4zpTG91acs8/S6FPwVZL+5ywE8uXLhLX9eI+7U4/MvDy/RfMFjnhAozMOcaP2HzZwp8aNxGP7wf0abQffNHGPcxoX8/rk+xskvSf8/dmS/mgYhhf7QGvtEi3+kKyMYRgeba29UaPN7RUa1cDvGobhV8Jp92tk/X+n08xtE7e4T6MjyhSOct2W4YbOMQsW3tg3anTukbT7orlWiy+LZbh/9vni2F5AL9xp35i9HL9Y0hfPtFGfp/GleK+kf9257AslnQp/73ePv2p2n69coX/vaK39mkb75Y9GzcoR4n7hpTUMw7nW2i9K+tTW2nH/wM0EsbdJUmvtM5J2DrrnFzBjN98j6XvamHPi+RrfYz+k8Yf8QuIaLYY4EXzX3XJE9x6SY39aozr/bw/D8J98sLV2Ub33jxB+5l+q0dGV2HfY1TAMv99ae1SjqXgKv6uR6RMfplG17/bu1mhq+KLW2odJ+gcafXnulvT/9hrf94/2DN+l0Uv465PvfkHSC2I8aGvtlKTP1Gh7WRmzB/ttS0+cxk9rVI/+7jAMj/dOaq29TdLfbK290iry1tqf12j3jD/aJzT+yEe8SIvhMpbyL9dqPwqvl/S5rbVP0+igRYHopzU6hz0yDMMf8OIleJOkz26tfeYwDD/ROefI1m0FvKC1dtIq8hnT+ViN9jdpVJU/qVFAenO47oUa9+x++/NWjWvwIcMw/MCBe70XZ7T3h3YBwzDcolH99UWaEJpm5x0YwzDc2Vr7To3OV6uE/bxGo/bptYe57wQyk4Pv+7MaBWiGfGU4zJ6fxMz88UOttY/RhYtvljSaPzRqGP7jkj4d9l23H9g0sGtWaq1dqtEsdyER34sXEr+jUfj908MwfOtRNDj7PTip5Tk2flzS17XWPmgYhttn1/4pjULZP8kuGMZQw5e11l6iJQTrQD/awzCcaa19naTvTb5+lUaP2ze31uzp9881bpKeSv1C4ms0qtN+sbX2Wo3S+dUaJ+Y5wzA4q9QrNP64vbG19r0aVeav1Cj1xOQoP60xScW3aQzleZ7GlyUZiyWql7bWfkrS+SUP5Zs1brJ/q3FD/zt8/4MaJbE3t9a+RaPn8nGNnr9/TdLfGPoB/2+Q9H9K+v9mWpJf0/iD82mSvn32Qnwq1+1xjbahf6XR5vi1GlVK3yaNvhOzMb58Jtn+pEZm8PUaw2umYiQXMAzDw621l0n6zpkK+ac0OqbdpFEF+ZZhGNJsYRP4PUkvaa29UOND/AGNe+XnNK7VH2h8If51jfvtTftsf794tUa72ydqtAN3MQzDj2o0yVwo/KKkf9Bau3YYBjMeDcPw5tbaV0h6dRszYr1eI5O+TNKf0iikPao5MzzMnl/A7Ln+gEYv4Htm93yRLvza/BmNz1HG+C4Wflvj++Y1wXTzUs3VzBcK79X4rH9Oa+0Wjd7q74QPyaExDMP51tqXSPqPM9+FH9HIvm/UaKN+xzAMXaF1po36D5qHnH6kxtwDtymw4NbaF2gksX9xGIZfmx3+1xrNMD/eWvsajYTuGzW+J143u+4GjSGx/352j/MaHWgv1yjYdnFQpq1Zx18m6X+JB4dh+O3W2idpDBX5AY1ecr+qMdD8fxzifgfCMAzvaa09T+MP8DdqDL+4X6On+A+E8362tWb19Bs1hgy9VOOP/kOhye/T6Ozw+Rol9F/XyEbp6PFfNC7mS2ZttNm/Xj932phm8ss0OkL9Eb4/O2PhX6Hx5fxsjS+4d2r8Ees+bLNrnz8b2xfMPu/XGHb1wOycp3LdXj/r+2s1Cke/rjFWM6q9v0qjSvmLNM7h/bPrXj6zG+0LwzB8T2vtdo179u9p3Pt3aDSdvP0AY/gmjY6H/0ajI9gvaBSCflOjgHSzRmHvFkmfMwzDjx3gHitjGIb7W2vfqnGfX2z8mEb142coPGOSNAzDa1prv6IxXtrP4xMa5+mHNHopn5+de+A938GvaBQCXqQxdPNOjQLtK/Y/xH3hMzQKdG+5wPdZGcMwPN5a++saw9Z+ULOom9nnd17A+55trf0jjSThzRqfw7+r8QfyqO/1xjYm9PlKzcnQXRqFtmWpeP+7Rtu1fTDeozFy5pthUtrS+KO8+24fhuGh2bv02zUPQ36TxigVa3sf0agN+KLZPc5r9JN64TAMk6lcHQpRSNBae6bGH+9vGIbhVRe7P38c0MacyN8wDMO/uNh9KVw4tNa+X2M8+Kdc7L5cbLQxG9aPDMPw1Re7L4XNx2GY9h8rtNYu1xhX/HMaHbeeo9ED+DGNbKpQKKyOr5X0+6215z3Fttq1wozN3qDR4a1QODTqR3uO8xrtHa/V6KH8qEbV6d8ehiELhSoUCh0Mw3BrGyvZZREZf5JwucZEIhfCS7/wJxClHi8UCoVCYUNwkOQqhUKhUCgULgLqR7tQKBQKhQ1B/WgXCoVCobAhWCtHtBMnTgxXXXWVtrfH5GJOwXrs2LybtsHv7OShuj5+/vy8boXb2dra2vPJFK9Zylcf69n+fTx+32uXbcVr2L7/5rUHwbIxTPU562sPPCdbI7Z3EJ+Ku+66675hGPbk2T558uRwzTXXLOwZr3X8f28fTM31sn5n4+iNbWotl+2zVdo4CuxnXbhXjannqXc8eza5F3vPb9xv586NSQvPnh0Tfvl9cOutty7snSuvvHK4/vq5v1y2xsveGew/r18FU++Q3v32M8cH6ctBntNV3jOHef6PEt4f2buY74l3vvOdC3vnYmCtfrSvvvpqffEXf7GuuGIsouLJuu6663bP8SQ//vjejKTeDHxYIy67bMwlf/z4cUl7hYEICw38vzRfULfvF8XUi97fXXLJJXuudV+zdvi3++E5yR5wX8MHIb5Ien3cz/fut+/rF6I/3Y/sJepjTz455sXI1mkZXvnKVy5k/Lr22mv10pe+VJdfPmZHPHFizNLotZakq64aCxddeeWVkqRLL71U0nxdKCxK87lzfz0OfhpxvjgffNF6/2XCDddySohzH9mOj7uP2Xn+v/vCPmfrz/XuCcWZ4OS5zn7kpPkz6nXMxuM19afbjON69NGxiNytt45F+h57bEyc9oIXvGBh75w+fVrf9E3ftDtPHnNcW/eH8+Exsk/x3GXCRrYuvfXmuyu+wzj/3M+9+8djfH+6T/w7okegMmHOxyKpypC9V3vkI3sn8n5+fvk+vffesRid94skPfLII5K0+zvk/fV5n/d5k5kGnyqUerxQKBQKhQ3BWjHt1pq2trZ2pSFLOpHtkuXFa6W55BmvsbTl78hMKe1nzJTSHFlSJiXzb/bdElzWl17fprBMPR3/pgTPcy0JZ2osSslkZ2Rg8f9kAZk54yAYZgXiOR5L2BG9PvD7CJ/TU7tm/adWpqctyRhC75yMJfWYL9eFY4ngPHE88RqyFsP7mcwye37j3pfmDNJtxv5wnXpM1ZqT2H+/Q5aZJM6cOTO5DzI1aryPEdtwv30NmW9Pq5Yd45waU+PiHsreKey/14d7J9OIURvDZzxj1b3xcLx+v2YaRb7HOb64Blw3/+395/vH8bHfF1uFTxTTLhQKhUJhQ7BWTFsapVFLzLZL0q6cgbaKKKn37MWUPDPbiKU62i6JKL2SUfcktcx23rtmFSbaY45G1g8ySM4Nv4996Um6GSsgy9yPBmEVDMOgs2fPLrDOzG/B9/Y5/DvC4z5zZqwo+MQTT+w5l9J4HNcyB0RL95l9Oo4ru1/cO+wDmXbv73hNz4aeaUJ6+4tr7Gsiq/Y5Zta0U2cMq+d8Sg1GvI9t0P5c9vzu7OwsjD2O2W3z2V7FebGnGehpn+KxZc/JlIanh/g9130V/xSC71Hav7Nngs+nx04WPTUnvT2b7dWeJil7v9G34bBawKNGMe1CoVAoFDYE9aNdKBQKhcKGYO3U4+fPn99Vi2eq4l4YDdUcUyqSnrotU3FR5cdzMlUUVTu9kKxM9bPM2SZTOfVUV725if/3PFn9u4rKmH3k3GTzSwc+juuwKqidnR099thju3Pqz5MnTy7ci+EtDI2KTik+xpCvnmpuyomxN09xrXsOelTZZeAcr2JiWWZKyUK/emalXujNlOOb1c6Z2t/geHrPb3bN1VdfLWlvSA/RWtOll166EIoZx0GVL53M+BzFsVH1S3U43zH8f4YsPJH7ius95VTqa+m41XvfZuC8ZWp//9+hff60SZRq8/i+4HPbM+nFPrrdnkNatr/dB5vCHCK6LiimXSgUCoXChmCtmPbW1pZOnjy5IGVGidH/7yXlyJi2pbue88FU9p8emyBrilK/v7OkHUNR4veR+ZKd9xIITIWYcVxkjpYcpXlymsNkJuol1TCihE0p+UKFUXiMp06d2nPfCDIqamKciCMe8zlmUj2mnWXv49pOZfxjOCDXdCq5So/hTjmVkY31tBCZVoihjHwms9DG3tjtMOZzzcCkuUMqE7Nw3eJz5j762im2ZCdGsrHs+ewlrPE8xuQqdJDzmMgiOa7Ybi9ca5WsfTw+pZnoOZ5xD2eOnWT4HrfXI17DY1mI7qrj5Hsu03b4mO/LZCt8D8Z7fuADH0j7drFRTLtQKBQKhQ3BWjHt1pq2t7e79mqpn2bPkllkk7HdeG0vNGlKEl2GLKzBErSlOqY8zKS7ZcgC/snGLGmaMWZzchTohYkYGXOgVH6QNKZTIIuOUrePWYL2vHl+fG4MD7EtlAyb+y6zT/dsvdwfGRPtMY9VcqpzHfisZOlzs3Cw2I/4bHi+ekx+ipW5LxyPGbH/dlIUaW6XNluOLDz2PQvrcl+cwjbDzs6OnnjiiZXst73ETEypKs21B2Z5PodrTNt3/P9UCJSU293JJnthnbH/DMXqPa9xfL10qR5vlhzL12c269hm9jyxjz2NWZb/vRfytcr75+GHH156zlOJYtqFQqFQKGwI1oppS6NURqk72hjJjjLpkVjGpA/DsKfaoBciJetog2PSCUqgPTtOvLelSSYAuVjIklMYq2oWDgoz4yh1k6EZnjcXCohzy3S1Dz300IH7lBW2YL/IpDlP2f7oFYroRVTEdaHmiqlIs3XyPLnf/runaYnFP+KzHPG0pz1tz7mxLT8nHo/PpSYrsikmrpl6xodh0JNPPrnwbGU2cmrnyLDjuiyzadNrPGPa9IdhUhqOI/afTDRbf7Jxt99Lo5wxbfbJ72++x+O5Ux7m8ftMG+k+U7OUpe31/6nNYOKfzOufzH5dUEy7UCgUCoUNwdoxbWkuSRvR7kB72SpS0FEw6aMAJcJoa/a4LJ2SFVri9DXRS9WS9FQs6sVAXBv27ajTmBK0nUpzj3KmpHz/+98vaT7nUbqnN/9hmHbPfrbKutHGGdmL+00WQbud7xPtu95PB/F7iOwkg+esx66lRV8Uz+/dd9+9e47LJ3rdbr75Zkl95irN19px+vfdd99kP8+dO5d6EhO+lxnw1Lr0/BJ6tuzIYulZ3msjs/myL1MpO1kuuFc8yeON2gzGWrstz3lmq+/luejlLsjeIV4naliy3wL3we9L7zNGK0S7NZ+f+K5dBxTTLhQKhUJhQ7BWTNu2JUpbUaJflvVnU8E4X0rwngMfN5OQ5jbFTcKF0n5YcqaHszRnBJbMafc2A41syRK5Pc7NBC3tHwUiuzFLYWy9+3HNNddIkh588MHda+hVTc/5Bx54QNL82YmarEzrE8F9GPt2FGt4+vRpSXMmx8iH2Dc/I+9+97slzceR+XB4TnzOsvfEzs7O7r1pR5bmY/Y6ULuRxUIztp77jXM7VdCH9tupcp5sx/c1U43svVcIh7km+B6K39HeT43SVLlSguw57ksyaj+T3I9Tc0KNZpad0s+2r+35wlwsFNMuFAqFQmFDUD/ahUKhUChsCNZKPS6N6gumo4tOJFbxMFj+jwt6oRAME8uc86wStNroQqUKJaxWdl+tXooqZKqhemr/w5o73G6WutUOZ6zT7uQddjjJEqS4n0x20avtOwWGc914442737lv3uc+x85Ynh/3WVpM3sNEHF4HXxPnxO15De2Q43G4P1mI4WHgvj3jGc/Y0+Y999yzZyyxLz3HKu/7973vfbvXXHfddZKk66+/XtK04+MwDDp//vxCopkYqsa+9ApqZMVmeklnGKoXr/V+4z7j+yG+B/ks8X6Zytnn9pJV+b1jc0WcR4/9/vvvlzRPpkKzQObIxSRR/mSCoyxhjr+jc2FWeIVFonxfPxPuW1SBuw8+J0sSdDFRTLtQKBQKhQ3BWokQrTUdP358gU1HCbTHsCkZmiFIiyn4LG3ZgStzeDsMGEbRQ3R+oMTOcAmP239HadlSovtv5xvfnyEZ0pyNG70kFEz6Ii1Krddee+2ec/y92WHWf4PJHA4btsb9EZ2uPGYzTjvzsTxghMfic8y+3vWud0la1IRElt4raGAJ3m0997nP3b3G+9jncA29Z80kpbmjGR1neF/30WxWmj8nTNVoh7csIUzPCc/j4bzGfedrPc6nP/3pkuZ712vj+ZXme4KskNqP+Mx7TjwHy8J2dnZ2FphvfB/4ejr5MU1mlozZev6uAAAgAElEQVSGWjPPrZFpZ5jUp5eEJDrskVkzqYv3d3Rc9TE6+7GQi+c8OsCSrTK0LysOxJTSvbCtzNmRWi06WFI7FNtjml7PQbYvqNVYN61uMe1CoVAoFDYEa8e0t7e3dyW2LJ0gw5ss+Vlism0uSlsOoyGrc/iOpVdLz5kdhXZ2StbRxkg2YabAwgbuVzyHzI6pAikBx2Meh21LvaIW0twORSbF8BCWtov3I9tg2cjYR4aHMPwlK4RBbcAUtre3dcUVVyxI+1FSt03b9/rgD/5gSfM9lZXztMTvOfW+YmpaH482eZ/DdJLuo/thu6u0yJI9Bx/0QR8kaa69iIzH82zmQZZmm7n7GstUer59X5/L/RfZhveOWbKfOWs13L77Fdmh193j8rz603MWE8D0imfQVpylg/XezOzThm3atHvHvcNiH9SEZBoiMnfalsnap+zuXCf3Iyb76aVN5bsjvt/INJnMxaGFPh5DDfkOZNhgxlDdJ68//W+oxcsSHZFxk2nHeWTaa4O/I3HvUJO0bmHFxbQLhUKhUNgQrBXTlkapqZe6z99Lc6Zhqd7HLbFnxTiYSN+MgXaieH9KcbTTZQH9TEjg+zEZQLQt9qRhpg9kso3YHkv+eS5oJ43HLOWTYUeJOvYjzoHv63bNNjObvsfFRAVkoZkNelVsbW0t2OQjk6CfgFmKpW7PyU033bR7DctoMq0j7eCRGdCm7L/J1t7znvfsXmPW7ft5PXxfr2n0lHYf/EzQv8NzfMcdd0jay7Q9Pmt9yM4ym5/XyL4M/nQb/mSqT2m+R9wH982fnqtos+cce1/Qwzrz3H7nO98paa4V6CGuG73xpcWoFd/L88PCG9Ji6VUybhYFyUpKkuXxeFwf2vrpY+I+Zp7SZKT0oM/s1iwFyqQk/ozrTz8Pet27P1MpUKlZyTSJBouoMG2vP63Jin1aVxTTLhQKhUJhQ7BWTHtra0vHjx9f8ByM0pal0l7BEDOQaC+2JMYCEZSoM29v349J8A2yJmkxXpKekVMpMOkha1Baj23EscZx0jcgeghTKjUDotSaFVFwu7SZ0wM1Axm323CbU7bHKWxvb+vUqVMLXtBRaqaHvtfFLMI24chEzAjpeW1p3/32PEXtAO1oLDZBj3BpvneokaBNNWp2WDhjiq1Ie/eBWbLngrZaj89zI839N2ij7RVTyZ5fs3X6AsSIA15PrYCRMS3v+bvuumvPfTMMw6CzZ88ueGhnvi2MQaafQFaMw58sUsFIl7j3maqT6V3JaqXFdyK1A95DcS68zrRPMy0rx5t9xz1Kj22p7+fBveq2Mt8dluh0P7wv4hr4Pr2St/RWz86tgiGFQqFQKBQOhLVj2qdOndq1p1q6jGyaNjdmosqkfp9je6A9U+ndTUYizSVdt2vvWkuGWXxmL1tSFsNp0B7NDGiWIt32e9/73t1ro6etNJfGyRjiPJrduV3PjSV42wBdnCHCUqn7ZpbhNj1ncbxmE73YdfZ5v7AH8BSorWAGNEvY0V7sNr3vyJ5tj848V81obWs2WyUjietHT1yWEzWcSUyaz619NLwnyei8TpFp+xnzPvDYp5g9wbh8/+19kGmhXCjEnzfccIOkuW3x9ttv373G/TXr6mVIi3HVnhOP49Zbb53s//nz5xfGHL2fGXPM55UahHi9NXt+r/lZ83r4++x5sWbHNn7OQVxLemuzz75vlveCnuscn9cyjo9e3O6b14Mx2LFPft7df7Jofx+fRT8nzLtBDarHKS36Zrgvfq5oW+f8sL11QDHtQqFQKBQ2BGvFtHd2dvT444/vSuZmDtHblXYhxmzSk1pazC/LWFSzVkt30Tbmdp3F6DnPec6e45bu/CnNpWKyftsP6U3M/8dr6VnqPsc4XbMk2otoN4r2VsZf0hPT51LiluZrYKn72c9+tqQ5K7CXcrwfveIZc+lP2qRXxdmzZ3X33XcvHM/sUbTFx5h+aZHVStptm8zA2gVL49E+7T1BG5/3lzU8kb3TM9v74JnPfKak+fz5e2m+lowZ5j7IxkV7sPcSbeuRifj/3oOMo6bGIu5Vt+s95Dm68847JUkf8REfIWnOvGP79Bb3fbzPoq2WNsvMPh3P3d7e3t0rXsu4F+lVTduv+5Zdw7h5vw/8PTPkSdLNN9+8pz33if4Ece963Tkf/pv28HhPj4uaLvc5Y6Tuv+fN7XLuowbM/faeoE2Z44raE4+H9/Fx76WopWE0Bj3QremZKv98lGV4jwLFtAuFQqFQ2BDUj3ahUCgUChuCtVKPnz9/Xg899NCC41SW4J4hCEwkEOHvrFqyyo9hTm47qpyYrIVhBmxLmquprI6ik4rHFxOY0MGF46B6akotRnUciydIi450dGLyNUzbKc2doOhow/SsWflQJlFgQYejVkVFFb3Xmf3zOnmM0XGG4W1eS//tPUVzgzRfbzpO+T4+N4YwcV9xv2VpRX1vqtsZasgwstie18Nry8Q5US3KOfAaMn2uz4uOdlb32kTlvt5yyy2SlJo4vHeWOTNmaUDd/2zs8bqTJ08uvFPiNSwYwsIXHkcWguV2bNLwuV4v76GoWrdTn+fOJjd/WgUcVc9WBfecOd23+IwxSYv3IsPfModEr4fH6X3IENtotqBjrfeb3yHum/+OJgP/33Pg+/hd5ecp7rdlDoS+xu+/eK7B1MgXG8W0C4VCoVDYEKwV07YjGouOR2nS/7f0w7SiluQi47HTg50OGG5A5hUZKROGmAmwsEOUXu1o4mN2qmEoWGSv7q+1CgzF8N+WzqODVUyDGeeAzjEZE6EjHx3gMuc8S8Hug+fEbXncmROJ26OzyoVy9shKZVoy5xwznCteQ1ZMZ5WsOAa1FCyRyaQU0mKiFJ9LbUbmVOi9Qw2C++j7xJSNbteOT14HO3+SNcf/06GKCTLifQw71NEpilqwyKaZ4pQsl59xftzelIPj1taWTpw4sTDWLEkHn3sWusj2EDUdLExDZ8zYB7Nns0umcc5KV0bHv4gsWZXH1UvP6zW1FiXOidfM+87nMq1x5hTs9t0uHROzZDh0gDV8P++p+HtBR14WN8ocFZmiugqGFAqFQqFQOBDWimkPw6Ann3xyITwjsiVLP0w1x2uipG5GwPSitOeZRcUye7T9Wtpjic4ojTGMioXkKe3F/9OWxHM9zmjrscRrdkH7sM+N17B4AVmMv/c1U+VKDc9FJvGyjCeT5FwoZGkXvb4xTC/2KTIVM04WeeC6ZAUeWLaTJRhZZjG2Y/ZiLY1tnGYm99133+41Ppe+INxvTC4T++A2vJe4DyKDZOEJ2lC5t7Lnl6yWxWailobJOgyfw/SwsT1q5HqIhYqYFCn+v5f8iPs7HnN71vD4b68lw5/cn3gfaloyO2uPITLxVFz/XigU7boed5wTanKoUTLi/fydNR/0w+kVEsnmwuNhIabsvcqwS9/P/cj8bxhiti4opl0oFAqFwoZgrZi2kxywQHlmo7F0RzZh6Sgr08eSdfG+0pyRR1ZJyZpelBnTJ8NiOj/ajaVFxkvmQdtMZDeen8hOpDlLdl8j0+6xI7KMLOl/lqQjtklPzaxdJlO4UIiMgeUFyQiYEldanH+W+mNK1NgmC7bwmswL2vNhux3t77TfRXBv0l8hs4f7HJewNLN3MqHM/yLzjYhguceI3rU9jVnsA/vMNK1x3cximQa0h52dnYVnPCuzSfsz+xLRK/7DJDhZCtxeOWFqUeK7jH4jTDPqa7MSoPSdoZd1dj/3jUl16JeTlYLleKj9nErmwiIn1GjE9xzf9Rwv1yD+f6rw0cVEMe1CoVAoFDYEa8W0pVHiov0hSk60eVF6JDOO3/UKd/TsuFm7lu7oPZoVK2Aie0rpUeKlHaWX+pJFLmI7ttuxnGZmE7T9nlIy08RmfWVaSTM3+htEKZksMCuJdxhYS0NWFv+mrZXM12OOfbLNy3NL9spUjZGR9rQVZOdRs2RWwphr9y3zgiZLItMmu43aDeYqsK3cfcs0OwY9j3vxwXE+e9oArk20QVM70/PmnfINcFx4D1tbW5OFfXqaIWpNYt96uRfYfmaLzZhmbD9ry3uF7xL2NdOA8b7UjLHcazyH+4A27jgGPv9Gz1cpY/Y9zQHjxuP96Nfh8TA1bjw30xStA4ppFwqFQqGwIVgrpr21taXLLrtsIc40graPXlL+LDaQ3qwZi5Ty+Exm8vLfmTTme9vj19fYzub7R3ZODQGlVsb4RnsLvXmZxSvTBnC+aB9ijGWcT/afHvT+PrKlnn3Nc7QKpsp2ttZ07NixruYl/p/skhmw4twy41W8X/yeXqoR9DxnmdUsBtoZmnoZ8iID6TFq9oX9iNea4fu+jv2/6aabFu7v/mde1ll/Ijvr+YgwLjgyH7IyXsMY6thfZlPr4dy5cwvzl2lpetEcU+hlNyRDjWPme85rx+x6sc/MTGeQycc+8/1CTQI9z+Nak1Ez25n9MTIvfGobyG6piYngnPCa7N3ItY1+Hfz+qLWAR41i2oVCoVAobAjqR7tQKBQKhQ3BWqnHpVHFYWcoOlZIfccMOuFEdQfVN3T7p+o2a5/3oeo5hqU5dIyhXVbnWH0dVVHL1ONUH2WOdlR1slBIpgKiGo5pYrMwEaqlWCObTlvx3Avl5OHkGAx7i31wvxkGwuNZ2lyuAxNZcB7j/2licJt2Not7x7XIjV5ilqk64Vxvznl0SPQ53jN22HJ9a9YEj/+n2pdhi0Y8j/uObTDkKPabfabKOM4jk8VMhakNw6CdnZ1JEwTfGVx/9ile35sPmlSyPvK+3KtxLWNolbSY8IXPeETPZEj1eZY8iIVI/PzzfZvdj+p+zmtUUWchmdl4smeQ6JkQIyrkq1AoFAqFwqGwdkxbmjtSZIk9GFhvkEVk4R90nOkl9shCLxjixVJ2MfWpmb3PoVTs+0dJnmw5S/AQ287GnpXtlOYFPSILpQTKRBUMBcsKE9AJh/2IkuqUE1lEFnqxShtbW1u64oorFtJWxjX2MRZH8Dpk7L8XAjOVXCf2SVp0aOGcvvvd714Yo5OBcA58TdwHvrf3F5NQEJGZuC8+1+Uj3ff3vve9e/oV78PkPdzDmTMRQ+ao5eLzFdErE8mENNI8NM5lGpcVfTh//vyC01XcO352mOQoS9XKsfbC3IyM0XGs1Ez4M7JrHzPj5fszS3rUK1nZS6scQXbsOWf4aHxXs8Qp98HUXDFcrKflytg1GXzv3bUJKKZdKBQKhcKGYK2Y9tbWli699NJdKcj2qCh191JQGkxrGv/fs19Q+s+uNShdMrEI+ystsvVMOmcITM8+mNmWmACBITFmILZTSnPpl2FHtN1nTJvzxXnL/ApoI+thimlPsSXbtK2lIWOM15MtM6lK1m+OkXbCzG+A4WBMguK9E8dsZtgLfcmSeDBExUybWgLagKXFYgieN3/63Ghrd7/9LHrOqbniXo4gK1olKQ7b5fGstKWfxal9t7OzoyeffHL3XIYDRfQKamTPCb/jM95jwvHcXr+ztWTBjp7NPAvbopak93cWLmhG7f3gfmR2fq5Lr4hTNie90qzGFNN2+97vflbI7HnPdUQx7UKhUCgUNgRrx7RPnDixm0oxs+taQmNC/dgGr+nZkii5kUFKiwkpfD/ajTKbTy/lqRGvYTKTXupV240y+7SPsXynvWqj/cs2+AcffFDSYllKSq1RWibrZF+zpBq0nfUk6inb0pQEfP78eT300EMLGoOYuMRrlnnexnOn7JO9vzNvaLIlzznvG9eFdnCzPvplZMlOuA96xSAifB97W/taa7my9J9m3e6LoyU8jikv5WVargw9ps2ER04ME+8z5TXeQ/ZuYZlGP6+9fZD1oZcEp3c8a7entYnwvmNSKTJ8aTGBFd9jZNPRX4Zli/3p+zp6Ja55rxCS+zGVVGWZb0BPCxKPRd8jKdd6MgJl3VBMu1AoFAqFDcFaMm1L7Ja+ohesJSMzQtrtWMg+/r8XzzflIclCEPQ8zqRy95dsnF7rkYn6O8Y4UxKkvTK27/kiY7TNMaZ5pL2VzI6FQ7JCCOzjlNaBDCEridfDVBx97NO5c+d2x26JPrZPaZ6sNis40CvFyb5laUw9H2Yc/s5z689Ma+K9k0ULZGOP7VHjscxzOsKaHF9rFh9TY3qOyUh8rfcMn9HYN7IkssGp1JcZu5T2skZGUiyL0z5z5szu85HZOVlkplckI95nVW/xqThmzz/9R+iTEuH1oa9Blp6TtuVeWcrsHcmiMv7b7TPfRq8daa6lobYwnkf/EWq3pjQ7fI75/VTK0oz1X0wU0y4UCoVCYUOwVkx7GAadPXt2N0bVxSSyuFIfo3RHBul24zHGgrpNS6/Ro5ax1mS+Wdwss4iRrZKtS8vL9/m+Zg6RbTBLGr11Lb1aao99cR88bz6XXpaRQZiRuD3a7LOCKJRwpzx0jSmvV8Le42QTcY7tmU2P/17pzNiHqBWR9s6lNM8cds899+we8717WbkyVrMqK87Wkva6w8SeUksQY6BZ+IbaAM89NQyx314LMivGSsf2qN1yW9QwSP2sd1PwOLLCMbb5M38B3ynxGjLtnh8OtUMRvQIl2T5h36h9zPIGMIKCn7SDZ1oT3oflVWNfGZXC957XLfOeZz4CxpZnxaIIFjfy/qs47UKhUCgUCkeO+tEuFAqFQmFDsFbq8fPnz+vhhx/edUpwgoeourAKiyoShq5k6e96dW2pvs6KIxCsqx3VeW7H6iGPh0lQYh/pNMQ0f+xbVP8xxIOhP+yPtFhzl6on3j+Ozw5HVHFTPRbH1wuzohkgqrNZYGUZzp8/v1BnOK450256HG7fJoEsVM37znNKlbCvjWpkqmTpTJSZVuhoec011+w5N1PDOuRqPw5nPVCF73FFdbxV2+6r18zjmCoy4Tn3p8G615npyN/5eWJK0ayoDVNfZmitaXt7eyFxTWYmYegizWdZqClrhfM9xBSb2Tl8L2TpXulsRVNXZrbiu8N9pTNrlq63l+KZzrRxfzONaM8RleZPaXFvMEw0exfzGeO7ZJnJbaqPFwvFtAuFQqFQ2BCsFdPe2dnRY489tsuWM1ZJlsLEElmyhiwhRTyXqTwj01qW7ITJXqTF4gJkk5l0R0bPEAw6e2TOPQxHmUqTSGcbS7GUnungF/tP9kd2E+eRITN0HsnYku+9ipNIa03Hjh1bSCcZx+y2GdplKZxajXiMIXAcY+ZExDn0mjK0KCsc43P8yb5Fp7NVnWhWDZ2TFkMcIzvzfvMnC0TQeWmVUqe+xhqGuL/Zfs+pLM6j540ao96Yh2FYcEjNUnYaDBFiqth4PR3PliV5yr6b6jvb5TPcS4YU++v54hwzrDOOj452LBuaacroLJY5uEXEee6lKaVzXvb82lF0Pw5nLKazLiimXSgUCoXChmDtmPaZM2cm7XcsCMJgfUuKEb6G9hnaP2nfidfQNkZJNEqTbI8SL1lUPJfMmkkUbJ+K46Ska1bE8qGRLXEeaTeknSheuyzlKG158RoWfKEWYEqqXVbec3t7e8H2GNtjAQt/MoQp7reeHZoaAs59PIchN9yjcb8xEY/XmxqfOLdeX7MJwtd6nLGPvZSnHMNUch3vmR4rzLQdy8orxjnhs90rNZmlH+6VYoxoram1tsCwM5s22+cYs3nq7RlqB9mn2EbPrhrHxftx301p+KgxzDR68bz4Hd+r7EdWRGeZLTvTpvQKE/X8f+J3DIdcBesaBlZMu1AoFAqFDcFaMW0nV2G6zyiJkgFmbcRr4zFK5pREeY/YDm2NU2ypZ4ekJBrHRSm/x9KzEoA91kcWE9lZz/5lTBXPMLLEK9nfcXyZvTAi86hnGb3edceOHVtgKFmq2F75wWysZIZM+0oNTJzHXjEJakuYqEVaTC9JbUoW4eC57TEtr2l8NrxXqR1i36NWiPusVzY0Y+9MiGFkaWA5F/QWZxKROI+9c3rY3t6eTIdJjV4vzXBWWIdz2ht79p7jc2pfA9qNpfm+8j7w/uK8xXcHfVao6eC7JHvvGIxAYeKc+H9q+sjOMzs/NRR8v/H9HvvSS307hXXzGjeKaRcKhUKhsCFYK6YtjZKYJTSmjpQWvUJ5PGNljIMk86T0nzEu2+0szTNNYmTejkFl3Col06kScCxdRxaTlQDktb6GnsDxHHq40m6U2bYoJRPZcRbrYAlNahLiPbPvMuzs7Cx4dWcewFm50XicbcZ2qMmh70HG0sguPBe2szkWW5p7T9O/omc/lOb7iMymxzIzZk8WSI2F+xW/W7ZXMptgr0xlphkxOAcZo4rjzfq/LB73+PHjCxqDzJeGfeilSI796Wl02Kd4rf/PNfVamlVHDYj76E9qUbhP4n2olWG6UX9maUVpN+Z7J6aFZvRIT+uVFZbhXPOc7L3Nd/AqyMrsrhOKaRcKhUKhsCFYK6bteEmylihB0dvRUh2ZSeaxOsUepZzJ9bzUmf0rk0BpD2UxhCz2mRneekw0y4hGKZxSc5xHSta0oZOdZZnKGGvJrElxTizdcy2mpFmyv1UkX7KXzHOV7MHXZHb8Xgw3fSsyhk07p9tiPOn73ve+3Ws8TzfddJOkOVvKyrkazFXw4IMP7ukb+zOV6cvn+L4s85iNnWwms++yD9w7PVuxtOg/QibPIhdxjFMx0LFPW1tbC2wv8wSnL8Mqe7Nnt433711jcMws+xv/b8bLZznTBvjd4Kx67BNt3FkMtO/jPlmTxKyRUt/rPvM0j8eza+jzkuVmOIjXeFZYZZ1QTLtQKBQKhQ3BWjFtewCTqWZZf8wAKIllZfWWxWdTyosMmMcsRbJvMb+uJTTn5qb06HOj1ElJluycY4iswu05k5wl3Kk83LRzm631PFujhO17mwExx3mWCapXcrSXHSpiVZt27IuZYWYnpNd7z56X9YGMm9J4XBfu48xmHtuS5rHWtiF7HPapyNafTK63/zJWyL55HziHepbxj3nXPV8+Tm1A5hHes/Nmmbd6tmHut4xp97KSEcMwTEYnZCwutpvFXPdYJNchy3XOcfB+GQMlk/b6+xo/r1N5LzhftEFH9Hx0zG69L+K6+L3tfUX7dC9uX1p8J/Y0CNFmfxCmbVTu8UKhUCgUCodC/WgXCoVCobAhWCv1uDSqJOjskalFGcZF9U6WfKKnpqRzUeb4ZvSSu0QVJ9XuVltbdZ8ltmeKzV74WaYCytqL988cK6iSozMPnfViP+j8Z5UXw1Pi/ZYVCmExjXjPnlo5YhiGPSrQLB1ilpjG18ZrppJr0JmQ32dqWO6VnhNW/D/Dwuj4GEFVplWPXMNsfD7X6nd/MrVrHAPV0z0VbrZ3eipoqpLjeb0QvanwPl67DNvb2wvrkTld9dLtZuafnhNrps5nX3uFNfx3ZgZkeVA7JMaQq3he7K9V6VRpc/5i6J+f+15q0iyZT3Ys9qMXAhav6Tl/em6ykLb9gPvqIIlZLiSKaRcKhUKhsCFYK6btxP10rMkkUEpDU+y8lzqxlzgjS/fZS+5vKTNew7SLZk1OupI5PNmJx0yHUjOZXpT0GZZD5sXC77FdOrawqEUWBkXGxjnKJN5eoZUeY4ntMVSrB4cMxj5EVr0snGQq1WUvrIT3yZLQGB4z1zZLCuK+mC2ZCWVpTMlS3YbnP2OOhvcd7zsV0kRmxeeUmqsI7iem6TTiWvUcuKidigyS7HIVxj3lOEgHRGoZpkL+6GxFjQ+1hvEaMsWptKL+zk6E1GJ5fFPFf/yu4Jqy7Gpsz/A5fg9N7QPOhe/j/ZilO+6FavIze98dBCzVui4opl0oFAqFwoZgrZi2NEqYdO2PktpU6bZ4bmZHI9PuJZ7PpLue5JvZsmz3sbTPhP3+O7ZFqdTMqpd0ICac6CU1oQSahcHRhu2++e+s7CIZJCVunxsl3t789Yp4xHayknvEMAx70piyaEJsuxdWl+03MlCmMfVeYeKUbEw9e26mDbAt25/c91khlN44aVueSi9qtnrllVfu+ZxKlDKVRjL2Q5rPE9kg7ZVRc9XrK/uc7Z39hO1MlfHs+WJM2cF7PhnLirNk5/bC3eK6sF0marKmLytqw6RU1GK4zehz4ncDS6e6H/blyd7fvg/TQRtMoxqv8TH60rht3/egoA/UspLATzWKaRcKhUKhsCFYO6YtTdsue/a5nsQW0UvsMWXvolRnqZF2jii9uo9mE5ZAKWXGa3qpSJ1ekKwz2uzITnqpUCN78f/96b46uUYvAU085nNoF89sZ8ayAg5ZecIp21jEzs7OQpKauE69PeL+UvsgzeeQY+2lr8yiCHoFXTINAj3vuc99PK4/2SRT/TKRTtSU9FgE/TCixsLsu6fBIvuM93MfzdKo0fH4I6PjniH7o49AhmWlOaM/RMZie0lUeoU14rmMtugh7s+ettF/e36ygjj0Tndb1gBmSY+4d2izz8r7sg/0U2EilTiOnn+R58/7LVtTJkfyNX4mlr0nloHajSmtz8VAMe1CoVAoFDYEa8W0W2u65JJLuh6aPkda9KKmV2rmhUxm3bMFZ+k+mbqT0l2E2zUj6dma47U9L2SycrKBOC5qKFjI3mxGmnt4mln7k0XjmbIy3o9996ftsFHipQRPyT6Lc56y9RFbW1s6derUri+A1ym212Nk3kOZbZTSPG3wtM1laVN7a0qPdGk5I1wFbqNXbnWVa820vQ+i1sTt0abJqIUpz2q3z/hwa3wiesVzyOwyDZ2/myqDOwyDzpw5M+ll34t+yJ5Ho5dGmP4QWUy0+835930zb+5ee/QEj/fhd6umfI7/53rTPyYrjMQ96mtZqCbLLcEUwu7j1BrvB2T9q6RPfipRTLtQKBQKhQ3BeokQmvYAlfqFJygJZ7Y62vp4T0tu0euZntK0c2RZn6ZiheP3U6XfzHAz1hrbiN9R0mSJ0zhuMxtKtKtk+qIGhBoKsgJpsYRpj7lkhUlok83QWtP29lxfigsAACAASURBVPZuO74mlpQk86SXbWaDJlv2Ncs0PbEPhL1bWawhomcvzspQMtaZTIuMN7PtM7bb59imHQsvuP/XXnvtQl9iW1Nla8me/Zll+lpWTIL7PF7vY8uY9rlz5xbmJfPj4D7IzjW4dr1iPMxyFr8jI+U7JWOiPc1O9u7kXqE/Ao9nMdCeW3qPT2W09Jr1GH3mB0C/Epb+9L7M3sX7QU8buC4opl0oFAqFwoagfrQLhUKhUNgQrJV63CpOqraypCB0FugV3IjHqC7sJS7I0tZZJcNa2HY2i6o1qjB74TtRpebrrYakAw3VPFEF5HOoonNt5uz+vsbOcJwDOtxF9NKYem78mYWjUB1GlVc2Rq5thmEYdP78+W64W3YPr7NNBVlKTYaXMOTP65U5XVG13CtwMOX41DueqfB76RapAo0qVX5nh8SrrrpK0ty8cP/99+9e4zDEe++9d7KNTB1LtW9PpRuxzCkqWzeq4adMK1aP85ypuuO91K2ZgyjHxLSimRmt967weOjAFb/rpfucMkHR3EjHVCP+7X7b+dOqc6aVzUJN6bjJ8LTMVEXnP5/j58zq8czEuh/Q0e2wIWRHjWLahUKhUChsCNaKaQ/DoLNnz+5KY5kjGtkrHcGy4gF0qmDpQkqTmaNOr4RhVkiE7fuTBTwyVkHnJCajyNL79UJgfI0l0Mypw1KypX86Z2XOe14XOoix2ECWKIUFVshQskIYq6QTdLEZ99PjypgPw+jYl4zF+tNjdvsPPPDAnu+nigsw3SOTn8T/Z4lJIvYT3sI24rVcXxZnycIFmWqX7XsOnMwjXtvTrDCNaeZoR8c2atuysLSeporY2tqaXLtegRBqCjKnO84t311ZCCi1Ikxrm6U3Zvhh790YnyM6S/LZmEoIw4RTbpeOgTGtqM+57rrr9vS1V3wmSynMd66Zdi/l835B579MC3gxUUy7UCgUCoUNwVoxbWMq7R+D8HvFPqI0yTR0TMnH0Ih4XybcoLRvST5K6WQrZEUeX2QovdJ4tGVlbMCMx+glLsmYtm2Xvsb3p9Sa2d9p32VIURaCQymYKUQjo6eNblkayK2trd1SlkaWVpTts/9Tdnz316xoFcbrMfHT94lhacsSwBw1uEcMaoPiPLqPZtJeW88J5yr2vVc8g/fNmH2vWEeWDpZpbKdYtH1peG2GZXbOyLR9T+5bMm0j7qUY/iUt2pinCtT4O7/fmBI03pchjGTavdDD2D6fYdqEM7u7NQb0qaFtO84dtRtM9ZwlxzoM1s2WbRTTLhQKhUJhQ7BWTHsYBj355JO7kts111yzezyeIy0y354tVlpkNsuSHESmRanR9hlLilMB+EzAQTtVlP57RTF6xRey0oy0XVGyztKC0s5LTUJmQydz8FzQDpbZ99i3XiGG2G9jynt8Z2dHjz/++AKLyRgW+0d7/lTRErMYS/m9dKaxv26X3s9Z8hGmBjUL9znef3Fc+/VyzfYqbdi9tJZSv1iPr13GauN4qK3Jkpf0CsdM2T9X0Z7EPm1vb+8yRzO3KaxS+pPPOeel59cR26OmbWqN2QdqOjJNovvP8sH0/8l8LHqaqqkUr14H+m5QK5mtKd9JjmiYiso5DI4ipfCFQDHtQqFQKBQ2BGvFtHd2dvTYY48t2FcdCy0tenZbquNnZAa029H20kvDKc2lbtuN7anYKzqS9Y1MJLOD9wq803M6k/6YipSsialC4zFKvL37ZeyMHrpksFlxAYNpDDOPT2oQprxCz507tyeWOPME76UNdf+zcptM30iP+Skva9olaWv0Z7wfY1u5V506NO5R983sv8fsstKjvp8ZPdfQbUwVfaAHOvdOZLlZSck4Bttf4/h6BX162qF4/VT6TcNRB5yfVfwIVrGfLvN78HxG3xvaiam1ydg54e+sCcv2t7/je5VlT+ndLy1q4ViCOPOlYTGRXiEh2tbjMb+D4/N+IbGfwkVPBYppFwqFQqGwIVgrph0L0UtzSer06dO7x+jVSPacSb5k4bS90js1y2rl7E/33XefpAvvzWvmY+ZGO15WUIHSuZEVo+/FtVta9jVk5LGPnhuy5ixeknNNe2QWG8/7HSReMq5lr/AE90XGtM1i/Z3nycepGYnt+j5eS1/rNc48l8kee6VapUV2zP1Or/6oASDj4VxzzuL19PD1pz2djUxD4vuYAfe0EnEuemVSs3wOtI1O2dmlce74TBzVM87+MdtXZoPlM0uPfWc7jIVcGHPdY4hxf3Of0Q5OLVRWRKVXIjXbD5xj+hn1/I2k+bPmd/BThaPyRj8qFNMuFAqFQmFDsFZM21mtpkplWiLvxTpmHov0UObfZKpZHGPPAzuzt/a81SnFRqmVffI5zDrl76OdjOybrCzz6vW4HKd99dVX7+lHz6YuzSVeS/ts3/eNNjqzALLBXvnAOOYsZ/KqiFmmmCPbcLtZeU3aDt0/sk3GrEqLNj/vC44ni0V1v90e53aqDCXthkYWC8/verm1I1tyX6iV6UV0ZPkI4rpI8/n0eK3FibDGjTZTxifH/7tdZ67L4Lz1F9p2ScY2VZaW5Tr5TuF58Zxejvss3wGZNnOb+/tMm0EfBr7nMi0HI096+TWy2gFm2FP+CX8SUEy7UCgUCoUNQf1oFwqFQqGwIVgr9XgPUR1iRwwmYaAzR5ZoYSosTJo7CmXJB+g8ZMe0DFZpUbVOxPtYXdgrN8jwmqx8ZK/MHYuOxHPo8EZ1dRZa4rHTRNErV5iNi3M/VQwkMwmsirgP6EzDPWOValQF0+TgMTO5Spays5fe1Xs4K5XJfnNts/vQuae3zzM1rO/jvjHFLvdfvMbwuvTSWGZFH6jCnXJ44lw77I3hQlS5S/M1WJYwJTrB+tnI2jtK9IqQSItOZXY4oxNefIfQ+Y6heHwvRSwrV+z+ZGGjLKxBVX4009DxlE5sTGIU1+2ee+5Z6PdTgal308VAMe1CoVAoFDYEa8m0KYFGpxSnNqVT2VSoAJ03mFaSif0zRw3D0iyZSGS+vjelYX7GMBczeaZzJFvL0n1OFWiI58Y58v/pLESG5+/jGvj/LKtH5hPZAp186KSXMXqu8UGYdnT+IQPtJXzxWsTrs9KL0vQ+4Dh8bQzTif2RFvcb+5qFnzDUj+GPdKLMUkNS+8A9FP/mXuT4vO6ex6jh4f5mMhV/H69x+2RfdqI04v7wPFKDlcGOaHwPxD4cpfNTLy1r5lzYK5WaaYsYBss9k13Tc87kNZmTHveIGXWWxtjopTGmo6rX7Y477lho46lGMe1CoVAoFAoHwtox7a2trW5KO2nRjtorBBClQEqTDCWitDeVUJ9pJo2sRJ7BZCNZ6lOyILMGMrcpqa9XvN1sJpsrhpJxzl2gwuFdsZ2e/cthalmhgF7iF483Y9NHlbif4Wa9lIlx7/QSK9C3wMwgm+Mes/LcxhCsXnrXXrGMCGqdyLRX0QbwO85Z/D+T1HA+s6IP3L/UsHhOsiQehjUVPsc+CFna3CnfkzjGM2fOLMztVJGRw4AslmFV0vw56BUkmiqVSa0C1yE+Y9xvDL3iuzgrHETfHd4/SwRl0GfDn163dUhssg59iCimXSgUCoXChmCtmHZrTceOHVuQ7qJt1JI4PWYpqUWJzpKlGY1ZY88DOEqilh7JAFfxfu7ZI6eSONCzs9dGlmqz16fMVs/iCCxL6bl58MEH99xfmnuc0842Va60x+SohYjfM9XlYeF2nva0p0la9IilPU2a7xl6WdPWlzFgrjMjAMxyMu0Cbf5c26yAB/dxz3afeXMzzSe1J1N2UM8JbcL0SI/j4njo6R6ToVx//fV7zvUce296HaPGwnPtc6bS5Mb7S4t25AsF7pn4vNA/gZrFrBgHi7wYZNqZPwy1j0ycwvdtbJdaIO7ZLNFVr2iTU1dbW3cxwSicdUEx7UKhUCgUNgRrxbQN2lOipG4JjLZleh9mBQ7MtOjB2rPnxnv702VCfX/fN7MT0ZbJFKFTZSN7dnFK4LF9pg/1PNqmHb3V2Q7nkTGfZtfxXMZp0gM9ModeMROyg2xOjgq0XffsdlGy7tmYGVdKlptdY3DeppjIMnthbK+XxnYK2VrF+2flNXvpK33cNuYpb38+cz3PZ2kxfp7+HmbTTsUr9Z/BVcDokti/o2RdXJ+4T7hnPAcs45ldw3cg7dWZpq+XrtdrSg9+aVEbRL+VqZS7BtPW3n333Qt9u1jIYuHXAcW0C4VCoVDYEKwd026tLXgUR0nN9mhLgJaCLFmbTUZmSK9m2t56HprxGG1IZq+240YJlF66/i7THBhkbmTnU4U1erG9tH9lhVA4TttzfX+zm8jSOW+MXc9sWdQgMB6YzCh+d9Qsh/3kGkf20vMw73lKxz5yLVnsJgPbZTa/TBPDwiS9KIWMpdNWb/RyG8TvyLC8V5iBL/NJ4Fr2ND9xfPGZjuPKynuafa+C1pqOHz8+aYv1/BxlljQ+A1lZV6O3hhnT7kV10Mclfue562n0uOZZ+72ojDgW2vH9brzrrru0LuDvzzJ/iKcaxbQLhUKhUNgQ1I92oVAoFAobgrVSjzvky+oUq9cy93+rlByEnzlbGU576BSoVqexfrKvnVKP0nHHKsHogER1MVWoUw4avcQEdEyZSl9ItW8WZtMLZ6GqMavNTMezLAVp7HvsL80ZBucs4qjV476X90yv4EY85j3I+sasQ5yFfNEByGNfZVyZOUTau5Y9h0diKpUnayC7b1QVSotj79WFzhIgMS1vLwVrVMN6bm2KYtid24rFJbi/pubY6nGmVM3SvV4Ih7Rs3fhM03SXhaX1nn+qxeP+Xpa8pReiF9vpJS3K9huTxjiEt7A6imkXCoVCobAhWCumLY0SHiXGLHG/HU3MdOl0Q0lbmkt1dibphZtkpeR6sHRJJ5kMdGaakuR7hVCM6BzBMnc9pp0VDKGDm9uaSn3KUCWOi/eI55CV98pkRhx16JdBp5up9JVZ2VZp0YEushhfw9Cb3hzsBxnTm0pxump7vZKZ8Rk0emGJdFDMNDx+Bn2ONRh+9rICJWbSTrbS6+t+YQ0fNSLZ/j1ICNmqiO8st8/wSiN7LzDZDc/NQtmYSpWfXONVUvzy/Rb3N7UKLJ6zDmCJ1qlkWBcDxbQLhUKhUNgQrB3TlvrhNBlYPMASfJQ2mTiEYTQMd8hSNpJhMcl/7KPTZLpd98lSqvuR2c4ZgkM2m6UvpG2e48pSUbr/TDxjhs2CKFOFPFiekow//r9XAnQVu+5RgyxyqkSi54XjoO030wpQUmfaz2zsWZKRZTjKeaLNNLOD0pZJuzht3NJ8zExaREaZ3Y9M3u36WTgs0zZYPlKaa/T2E0p2GHhs2ftMytkfz+Hz73HFZ7tXvpXahsz2Tc1az9clnsdxZRrRiw33KUuCtQ4opl0oFAqFwoZg7Zj2uXPnFqTIrCwgpR+zVyecj17ktBMbvbKUkSFaeqVdmIkyMs9PepabzZLxS4ssn+y45xEsLTJt+gJkNmePi0ybPgJkxvE+7j9TLGbpEjm+ng01Y1gXGp4XM7aYDIR+AZ5resFPpRk1mBKUhTfiOQexc18IZFoTMt1eSld/xsRD9LJnG2bL8dmg9sLtHVVhj9aatre3J9eQz1T0VL+QoH8A+zO1dzw/TEUa0SsqY0yV2eQ7gr4umeaDKWjXZZ9ncF8rjWmhUCgUCoUDYa2Y9s7Ojp544olueUopTzEYz3E8bZSE6Yntvy010y4dmYFtmZYmae9iQYfYjo/5WsaBZkybaTJp0860AfQEz2xy0l6bFz2a6UVK1hztYPbCd/9pl8pKBDJtIddvFaZ6oeB+WsuQ9YHrzzS6XtPI+lYpxcprWM7yKNNmrgJ6ILO4SXYuyzqy5Gh2LVkh90xkabRpe056BVn2i2EY9jBIPoOxv9RQMe74qYLvm2khmUaZ44nPJX0IemlMM40LGTXTNjMlcrzfxWLY+/EV6ZUTvtgopl0oFAqFwoZgrZi2NEpA9MyNTKRXmJylDGOmHXoDskQmPYMj0zZzZ+wemXaWoYolMhnTHSU42gV7sc/0mI0g46D0H7UBbof26F6R+iiZUkpln+lZH9tdJuFmkvxThSz7U68IAlkMz5f62gPGxGdsiXvGc5GVMD1K0NM4iz/3nuHeZ9GZTEvgc8lQabuN88r54xwddp9sbW3p8ssvX9ijsV0/nyyg4/FkRVEuJNzHeF9qe5i9j2Vm47k9cG2nIgHItBlFEP9/UE//w2I/DD8rg7wOKKZdKBQKhcKGoH60C4VCoVDYEKydery11i3SIS06vfSSjkTHqSzESprX5qbaOqqPmGbP31E9FvvIY71awbGPWSKKbLwsxhDvQzU1HVMi6ETi9liMgeE10uI80qxwkLClgyQTOWqwhrg0N7PYTGJ1IkPhMgdBOvcsM+1EUFVPtfFRmw7o1DVlpvE57iP3g+eMzozS8mQ6WV11g/NEk9VBE3UMw6AzZ84smIqyutP+ziY1nnuhUu6uAoZRui/um8eXFRkx+O7g93Ef0JRGZ82s2AmLv6wzVnUkfapRTLtQKBQKhQ3BWjJtJqHIpHIybUtwZsDxGkvFlgzNWuwow1R9MTEL2YQdPyh9RWmSzmp0nGGqUmkx1IYsmdJz5vhGtkdnouhg5/+zqAMZBR3W4ncMG+P3+8Fhil0cFax5OXXq1O4xhjz5HGtJmJgnCxMiI+H8xX1AJ0zO5VR40zL23UtMlPVpqjCG9zcdD6fKq/b6uEqhH96X2g4WxFjWB2IYBp09e3ZBC5A5e/I7vyuyfl9M1i3N19DrQq2alDuLRTCcNI6J+4n7IoMZ9rqlBs2wrn0spl0oFAqFwoZg7Zi2tFoxdTMdFqy3JGx2Lc0ZdS8BvBOxWNq/+uqrd79jMg3eJ0tjSgbCazM7IUvi0cZoSX4qRKNXSs5SchYeQjZIjUIWvuNzfWwVmw9LCTKhzTokMvD6RNZEPwT32/NDlpetaY9FMoGJNN8bDCFapYTpFJOeOp5hirX3CsT0+jbVFud8P3uJcz+V+nQKwzDo3LlzKxWt6ZWfJfuXFkOt1gVxnMu0MyxbnK0x9znT18bwrsP4Ylwsv5eyaRcKhUKhUDgQ2jrp7Vtr90p698XuR2HtcfMwDKfjgdo7hRVRe6dwUCzsnYuBtfrRLhQKhUKh0EepxwuFQqFQ2BDUj3ahUCgUChuC+tEuFAqFQmFDUD/ahUKhUChsCNYqTvvKK68cTp8+neZxJnp5iLNYPp7buzZDlulq2d+8Ztm1U33rfT91PyI7zry6vTk5SIxi1kdmhzuIA6TX9o477riPXpwnTpwYrrrqqn31j2M7SPwnxzM1X70yn6v0jefuZ1328xyt0m5vrKvsv4PEkPfu08vtP9XenXfeubB3Tp48OVx99dWT69Kbw2XPXgZmIZsqAbnsvlPtEvvZM72+ZWU2V/17P31Z5Z3F41PXsPTwVNY7X8MaCrfffvvC3rkYWKsf7dOnT+s1r3lNmmje8IKdOHFC0mKBAx+PCQ2YkISJ9adSNvJc98mL72QK8X5MwNArpBF/JLjh3OdegpnsB5EJKng8K2bRS9Yy9SPUezj5GeeB9XPdl/0kwXCCk5e//OUL4TlXXXWVvvALv3Dy+izdpbRYy/mo0EsocxhkhRyY3IJpbJnEJfbLx1jMhPW8M4GGAjLT2mYJSVgQhPubSYti/90nt8F63X72Yx94zld/9Vene+clL3nJ5F5kQhfuddYHz+D969SnXJ+4L7kuvYJC8fnt9Y1JT7L3Kp8N7hXuqex+vWsiOJ7eXsneyb0fZ5/LIj4Rfgc/8MADkub7wkWisvZcJOj++++XJH35l3/5WoQFlnq8UCgUCoUNwVox7a2tLZ04cWKBxUYJ1NI0CzZQuorlFckaWe6SJeUiM2C7vSIgUXqlhGtJmpJixrw4ZqZA9H3itT4WC53EczIp2d8tU4tzvBkocVN6juOhNLyf1ISxsMZhQC0GC8asknayp6mI4/CYqVXwvjiIiSDbOz1W5vnisxLB9Llcy4yVESzjSdYU9477xPS4vecq6wPbyMB2lmk5lu2/nsaNc5/tHX/nd1ePaU8VEGLxn1VUwYavnVJxu49k3FS5x/3O+/TeKVlxI/aZ32cphXtmR2pnsr3jfnsNqA2I13hf8XdoXVBMu1AoFAqFDcHaMe3LLrtsV9LJnAUsMVlapbSVObGx6AYZIctvxjKUtlWReVJ6zaS7/Uj7tFmx6AgZcLwfpVNKzz4er6FUzPuSCUfpmZqJnl08rhvb3U+BiKMGSwmS1URwrGQrLHgSpfKeFiErLrEMXIc4t/4/mbbXmzbh2B+yPZbFzbRPZEdkJGQ+GVt6+OGHVxp3HA/3mfucFZnp2YB72K8TIp8pj8tajdg/a/38Sa0Gy3xm37ktagnj+Ohk1dPkZEybGsNMgyjtfa/2bMw9zUu8H32RuGfoKxDb4Xe+xu/t+Bx7rr0u/uSzEZ9F+l081QVKlqGYdqFQKBQKG4L60S4UCoVCYUOwVurx1pqOHTu24EgTVTSuk201B9WsWUgM1XcM7WHIwFQMdOYgEe8b7011IVVqcVx02qHa1aBDV2zfbTBsY8qZrOfcQaepqILs1TtnX+P9eiFF+4lzPaxDCPvbU23GWuxUQ/acb6hWju33wqZovojt0LmQZpI41+43Vfi8D/dD/I6OSBx3fGb4PD366KOS5nXpDxOLn8G1xelQN2V22o9pahiGffeVJpXsmXY4kT9jSJo0Xw/vt8zMtExNHcdFcwRDAKfC93qOp1Ox1zS39PJRZPHzVKHTATdT8fOdRLW492h8N/veNk3QFJHNr9vpmf0uNoppFwqFQqGwIVgrUaK1puPHj8uZrSxhx/AthkdYerX0ZSkpOpNZ8nJ7DBUhU42SaI/dZQlLDErBZNGUgCMYokB2mDlHkA33sihFJ5netf7sJcGIYF8oeWdhcGSDnN8pp4+4pgcBHc2oIaA0np3r/lLqz7QZZCtsNwuRYQgRHWYybQnP7X16nFFrkjmnSYvPzIMPPrj73SOPPLLQh4gLVe6XGjIzVLOmODceD5nbUYHhdO5D3GOnTp2SNH9H+ZNsbyokj5qPqeyKXleGLJG1xrngvCzLpja1/4gsnIpOmOyb+8yEVPEcPmtT4XDUBvEdcM0110jau7c8Hr8PVs20+FShmHahUCgUChuCtWLaTq5CNh2lI///aU97mqS5lGV7mlPPRWbQC0VhKJgRGR3Dz/zp4xmrsORMCZR2oyhZM1zH6OXBjX2mLd7nMrzB0ma8hoyKIT5M0JKNx2vSSwQT/99Lfeg5XyWxyUGRJX2R5ozIn3HdljEB95f2cWlxrXohSxl7Ybtk4BG0d64anha/I+PyXrnrrrvS79cBniPbjDM/llX6vbW1pUsvvXSlNLaea7J8z3lMi+m14nPpdeczlb0PDO6djDVzfXt7Ne5RnsuEQ0R2be/c7P3q9yZ9kfh+NTKbPefCa5AlQ/HYqYm11oOhtXE8XoMs1enFRDHtQqFQKBQ2BGvFtLe3t3Xq1KldScdMMUpblnBtb7DkZqboz8yusSxtJe258d60F2We5galN0qzq9glyXB7xUBiu2TwZOeZTXhKso2YsjVPed8TZCrUBhw10452fLJ926quu+46SfM9Fcfq/viTbMzXeDyRLflc70na8TOPdNrMmZox8xrmmi0r+hDRK9gRtTIXAmQzTDwyZZf0WlDrFW2P+0lB6agV7mOeE/vH+2SaFq4/31XUJE4VcvE+5jrFvcP1pcYle7+xAFLPxyE7Tk0O58/jjPNJRk9t1FSKZ9/nyiuvTPuWJanhb4j7NKUFm4rUWAesV28KhUKhUCh0sVZMe2trS1dcccVuisNMurXt2udY+vbflmbjNTHuNoLehpaMo8RrycygvdptREZHpp2xB2lv3KaZBm2nTOWaeQB7zO4Dr+3FGK8C3je27/sx1Wtm6+qxI9uRs3KeXtvDpBGM/hDXX3+9pPlc04btz7jm1M5wjqdKtHpMtE97DnolJiN6DCHuJWtQuDc8djMPr1N8HtyO23efOPdZrO1BcO211+7pg713Gasc59H/f//737+nry6zyL0lLWpVpjQ4wzDo/Pnzuwwus4f3CltQyxX3jteFqTmZitnvgTjH3mc+xr+zflFrxfh977OocevlgTB67654n17cdJYXg1qmLA9A/DuyZu9n+y0xSoUpeeP11HqyVOeNN97YnYNi2oVCoVAoFA6EtWLatmlbGnM8aJR87BVOmwdt3fF7xhxT+mZ2oyj1+Vx6nJO9xj6ScbKwgdsy05PmkqwlQCbFpy3LGocI2k5XKXvZiwem9D9lYyI78n2nvHHdnjUkp0+fljRnXvEcajumwJjoKHU//elPl7TISLwu7ku8H8fAeWC8dtTw9LLaea29ZzONBO2E3te2v5shSIvxv8wGxvWJ3rA+ZkZCDZLHH8dN2zztlB6v2zS7luZ73ud43ckks2xUvp/X6Q//8A8lSe973/sk7WWQvs8qe2dnZ0dPPPHEwp6JGgnao1lS9EKBrNl94nMbz3H/qUGirVla1IpRO0hP9ywjGn2DyLSzqBX6CvkcPl9Rg+k+kAmzGEh85qlx4bNP7/I4xnVj2MZ69qpQKBQKhcIC6ke7UCgUCoUNwVqpx1truuSSSxZCVKKqzOoNqoKpLsocghhGtUq4Awta9FJTZmEiVtOw4EHmMEH1OI8b/j6rjW1wfFndYZoTemryLHSGCVjsIOS/ra6N6Wc9dqv16fDk+bS6NPZxP+pxj93Jd2J4iFWmnlOrOO+///49fcsKnTAxC5NEeF3i/RiKQvWe24rX9JwIjSxFrNfD886iIx4PE0pI83W2ytzj8jXZnHB8DNexWtxrcPXVV+9e43myGcRrwgQdWS127ye35/G8/e1vl7RXDcu696uEEtKRKvbpsCl0DwqaiPgsxHeIggsN4QAAIABJREFU15D7gXMbx+J5orMin/Es6QrfTQzx8rUx7S2Leixzalzl2adJJXs2/P7xnDg8kIlZYv99jR3f1gXFtAuFQqFQ2BCsFdOWRjZi6dIMLjoj+P9mBGYplrYsRcYwGkp3lvwsbVkysxQWHVDs+MaQJLdpqSzej84pZgh0cInSP8NN3C4Zg/sRQyHsiGOQaWfOMpbKzXQy9h8RJV6mHmVCBEumZlpxzO6TGRxDZqJU3itEMAXPo8O77LgVx+A5vO+++yTNnbqyYizUsLj/DNPyNTF9Lsv/0ZmHYU/SItN2nz2nZpPxGrfvtbSjFhNIZGklb7jhhj33Y8ihxxAZEVmrx8E2vMZxTekMRe0DHaHiOLw3PXb3/TnPeY4k6d3vfvfuNXToXAU9rdY6IhsXnVZ9jp91aoXi/70evUQlmSMatUBM+ZyVysxKbh4WvVTPWR/pCOe9G50zmZAlvmvXAcW0C4VCoVDYEKwV097Z2dEjjzzSTeEozSUj2z4tzdHWGKVJsgezIdoHab+JYJgOpdcYGsRwHTMgJlOIdhQfM1M0WyKjN6IEaY0B07G6jyyUIs3ZCot++H4M/Ynw3Po738csMGNLlMIZpjFV+nMV2B/Cc+F5jGEbnlMzbGpNssIALBFIO/uUrZRrxtSNRmSi9LtgOJoRx+V+m9naRs/EPF6DqE1h6JL/vueeeyTlJRl9DkN+euuVJWZhkp2p8pTur9fU11qD5ecq2s75jK+CVQqG7AdMpnMQ9EpiZsVmmEiEiVH8jonvRrJTt8trszKyLEhCpm/ENT2KwjP0EZkKF/TzSk0pQ9xcGEeSnvWsZ+25XxZ+eDFRTLtQKBQKhQ3BeokQGiUgJmfIElZEe6m0mFYwJh+hlEXPbzNE2w0zSZRSMxMYxJSklDhp//T9Y3IVpvyjXch98n0j8/I5vg8LX9g3IGos6BHJ4gVmb7QDx3Y9n5Rms8QmLFZAT+NMmnV/vdZZQhmjtabW2oK2IbNL0vObaSYzxs1Ut6t4I6/KKqIdnB6/3u/WjGTJINxf2++pJaHfQEx2Ynbq8d1xxx2SFgspZDbUVceXaVHot0Iv73iN95efUybG8F6O+4PlYnu+GgcFI1uyeZpKT7sqGL1iZIUuekWGPE+ex8zmSy1jL2omS1rFIk3cw3EejoJpU/vAtMoZmDTK7x1rb6x9i/3tzf3FRjHtQqFQKBQ2BGvFtFtr2t7eXmAZ0YuYTLpnR4mskgVI7HVqyZ0l9KItkiyM6SqZJk+aS7SW5mhzpo09HmNxCd/fbCxLfWnJkHZQ2zaNGDcd7ahxPPTCz1IR+lyWAmV5xchuepqEXkGUOEZLx7TrRgzDoHPnzi2U0szsW9Zw+N4ca8YGPMeHYU+99Ihxnhgn633xjGc8Y8/3cY+6Pc8TyzqyFGm03XpOmB7Y2g2v8SqlOsnGs3Kl3N8sS5kV6yDzsWaB5V0jI/IcUFN2VKBnfi+u/kKBKWv5/wimcY7vHaZapn8CNW3x2p53PZ/xo0712tNyZT4JfL8Y1CxkRaWy2PR1QDHtQqFQKBQ2BGvFtM+fP6+HHnpoV+ojk4v/J+Ng4vnIsGy3YPJ7etmSeUmLGXQcE21pjxnF4v/dHu21vn9WApKSOjUJvibaXWlXp50tYyKM5aad8D3vec+e8cU1oERLtsTsQ3FcXiePw/fzusWYSNq7M1tzHM/ll1++q0HISkr63p4v2npZkCIeWxVxHyzzHs/WnHuefhjZ3DKW2vZvep6ztKE0tynffffde871uuwnVpnPQsbs/R3t0czalmWhokbEDNzevpHRMdvdKj4Ih8GFYti0nbMkbKbNYr4BFq6J7yNqfzIv8fj9Kh72+31mpPke5n5zkR9p/o7wHvGz7k9GpkjzfcTYa+9Da2zju9H7NtMurAOKaRcKhUKhsCFYK6bdWtOll166K/WYjUUva8YV+xwzhCkbFlm5r3H7jAOVFj2MLaVaurPkGe3FtNcZlup8nyj9MzadMcRmDszvLS3a0CmFZ2UjKbF7Xi3N0vM8i5818zWbcWzvzTffvNBHrynt3b5v5rlv2AdhKjPR1taWTpw4sdtfS9IZM6B9neUWD8OaVpHKaSvLWCA1E2YKmaes/29Wwlh/g9oNaT7/zgpHX4oMvXz7nj/vIfc1suZe7DI93qONkXZw+n8Yz33uc3f/f/vtt0s6+vzR9Fw+iL3W3vv0OYk56N3fqX0s5T4W7pvnyW34eY3PMkuy0tZLH4OjKlfptWS+CO9N+p3E/1Oj50/v4bgv/R33EOc1vqvp3xPfY+uAYtqFQqFQKGwI6ke7UCgUCoUNwdqpx48dO7YQXhJVgUwrafWU1R1WMU05pfiTCVJ8nh0RsvbpuJUVtbBa0kUr6DSXFYrwmK3iofqQasXoOGG1F53J6LSWJe6n2o1ObJljiueEoR2GCzdkairPzbLUlxG+JqapJBzyxTCgCCaD8Fz3nAAPgv0kYvBezQpqMEzH59DMIM3NB3E/xWup0oxmBptsmBqUjjtxbmhScXvso/d/HJ/HHBPKxDZ8bbzGfbrxxhv3tOFrGGoY/5/N8VHA7479OOrx+SSyPh4ktSr3IB33ormRhUEYauh9eJiQxywszc8pHRI5hpgwx8fuvffePeNweKLH4u/j/fh74b/93nVIZbyPn5ssHOxioph2oVAoFAobgrVj2tvb27tSV8YGLSnZOcCSoNmkpe7oiMai5j7XjMEMxQw8SoZ0PHMbLFkXnUjo3OE+UpqNzNft+zs6pjH0Kya4t+OXz7HkyQQwkXHRYcpzbemVYWSREbs9r5Odv+isEtmU54fJQ1ZJXGDpPoZ/EA4XNBtzu1lBBTvMmblbmp9yvqLzSwzX2y+4Hpm2gcfMSLwecS5uuukmSfN97b3kc+ns9+xnP3v32ltuuUXSPAWqWQZL3sa17DnHsc8OG4wMuMew/QwydW3sk/em7+s9aiYUmSoZ1VElyMieh2XgersNahRXafMwRUi8h6IWimGwfn/6OWVI2LJUwrF9lu6N7fQKoRhTmhGvOzUsvq81T7EPdHxlXyObprZhP+VdnwoU0y4UCoVCYUOwVkxbGqUbluLLwqkMBs8zkYA0l7JcztOSlBkiy3tGyZBlKNmmpb5o22aSCbdPphDZGtN4+hpK1rTpx3MZikPmFedkqhRibIsMU1pMx+r70F4V14o27P0whanQqNj+zs7Ogg0+S7voPpitun2GKsV2zI7I6twnz1ecJybEYZKYLM2ntT2+luUn7W9hdh3bdZ+8rz1e2vWysp7UYLEYTNzfbMfPgm3Y9PuITMV7lWGJHp/vlyWc4XzR/h/76HZ9zlS44CqgH4rn2PNFrZq0GPrpeWDZWLPXrGgOWd5Uqt1lyIp+GLRts29Z2Uu+i/13L1FKBNOHMsQ1u4fn0UyaCWGy5DFM/OS/ybDjfXw999m6oJh2oVAoFAobgrVi2q01XXbZZQtsOUpBtLGYvfp4xsZox6BXIL2go62Jkp+lfhZejzYRsxe3Z8m6l8AgnsM+mz35WqdRjdeS8WapXGPfpUXvZBZGITvMShuyKIfPoaQa22XSkFW8Uc1uVklFyX5mXu899uq9FCVrzpPHxhSdHmtk2r6378d0ul7TLK2k27Hd3eeazUYPYJcVZHITJiMh+4z9NnyO++z7xL1DBu/7UIuSjc99Y+IPj3fK14H2V8NsN5uToyrNyb3NNcw0YGST9Dj385olPWGSG5aE9frEdxV9d+h3kTF539s+BExbbE0m93m81s8yNSxuKz63vp4RG0wdSu1EhMfH/ZYVYjJYfIgaxDiP7stUWdqLiWLahUKhUChsCNaKae/s7Ojxxx9fKEw+lRTf0pyl18ymzbhFSoRkF1GyYgq7Xgq9yJR79m/GT8dxmfVZKiWboF0vSpOMm2b8auZx6j74frQBM31qZD5klWRLmcTLsoC+7yppP93uFCvf3t7WyZMnFzQG0a5mydme0h4TbYxRu8LCGSxmw88I2nzJSDL7pNmiWQz9OhxPGlmUtTFmCx57L91oFglAduF+0L9Emu9BsiX6Org/mQ3V92U+AOYJiOPpadmy1KtMFXvY9JuM6mDsblZa1ufSl8Lnen6yvvU8mFnCNLPF9uzd9F6PffEzxvniuyu+s6h98jX0Us9yWfAdTF8U7qX4f+/9Xu6KOCeMguG+y7Q37O9htTRHjWLahUKhUChsCNaOaT/22GO7Nkx6/knLy0JmHuD0lKbdkHaimFmKmXQsodG7OsvA5vbcFx+nDZpzEEEJm8UA4jUeB+2DWfJ9xghT2ifDjv2iVOy5oB0q2rJYeMXS8pS9iOs15cW5tbWlkydPLkjdccwcC4vAZDYsMmlqIqjFiWNmu76W44rREdxfXjt7zLKkoLRYvIY2P3ruZ5EVnievOz1x4zPIZ43PBtlgtgbL/CAiu+EzTpsp/T/iMbK/g4KMl88PM8jFe1Kr1HsfxTnme4DaK2ali+f0nulMC8lIF74/p/IT9DSV9qzPxkUtQC8z4tSzTi0ExxX3DssVuy9890bNifvCvBrrgmLahUKhUChsCOpHu1AoFAqFDcFa8f5hGHT27NmFMKosrMEqDKrbMuebXqgQ1VRUm8b2CV4TnaSsnmHSfauW7NQTHUKoOjd6yeujmoohZG6r54QRr2EIFlXeWfIBJnqhExvbjH3Lkp7E8UU1mfvtgiFTqvTWmi655JJdtXFWQ5zJGLzOdDTJalUz9GtKDW9QPc619DVZQhar5rxXHPrlNKAxHeiyOuC+bzZe94Wqe65P1keDoYz+3n3PktUw9Gcq1KsXlkanwHgfq8q9f5el32ytLaTfjFjmeOj+RzUrk4wsq1Ed2+T8EH42ormQzy4LIRlxLWky4nPKpCvRSYvhdP6MKWilvc8g9yifRar/4/jpNMd3YhYmxjrtLHKTOfTRNHTYxDxHjWLahUKhUChsCNaSaTuVoyWcKCUzqQkdaCz9RQmUrIiS+VRKQIabsA2GnklzCc19sGMGQ4yy0ASmLyWbYLL8rI+WWlk4IktS03ME8dwwvCJ+R2cVsvUsFSU1JSzJGFmO23Ufpkpz+r6eH7PzKPV7Ll26z/ekM06UrMkAe5oCIzIDMk+OPdMKuY92QHMBFMPj8jMS+0RW1tsXmVNhr7BGdtzjYvKUzNEpthHvzb5NFcLoOSX5Pt4fkVH2CuL0cOzYsUmm7WPeG9QYkJnGMfEa9mkqXJBMmIw4Y4juK51JmTI2gu1RS5RpaRiW1dN+ZqUt+Q7m3sw0DCyHzGcycxjjXuSzkqU+5XytG4ppFwqFQqGwIVg7pn3u3Dk98MADkqRrr71W0l6bdBYmI82lS5aUkxaZjtujrZupFeMx2i4toTl0IEqGWeEJaTEZf5Tu3BdKqT6X9rEoLdNGangubP+MrJN2VoPJSabs05ktMX4fGRLP5RxkbMNjZThKDzs7O7tjNCON4XvWODB8hawmrgsZB89lUpBMU0CGwIQtcb9ZCxP7Lc21TU44FO/TS8TDNcxK3TLMrWerjeA+o02b6xVtqAT7mtkyyb44Xj87USNHO/Gy0MLLL798IWlQnCcmG7ImhAw184fp+cV4nsja4/+5hrSLx3eY+0hfExaqyVglfYK4HiwgE+eCzwSvieNiiFzP74PjjX0iA+aezd4l7gtDwHyfOC724ajKuh4VimkXCoVCobAhWCumvbW1pUsvvXShOHxklZQws+Qf8XtpUXLqeYBm6TfJPHslNCMoofkaS7pMRiItJhvplTdk0YnYF0vYTvLva8y0MzusJU8m2eC8ZteSvfS8YmM7ZEtTUqzn1qxzKuXp+fPn9eijj+7OsVlXTLjhfrnoxh133LHnOBlCHCOZD1n/KvPDvcTEItLeohdxHLfddpsk6e6775Y0X2NpMQ0rmbCfBWuwWEhCms+J548+AZGJkFF5jlmiNWOQPZsi911krH5efI7njQw7rgn9OrJERoaZtvdbpv1hwqBekpUsWoEezNQy0YM+a5eMO9McMIkL0/ayUI60+I4iA6aWJmpNmNyG19BeHe/dS4FKjU/cy705J/PO2Hlv7rP3D4tQxXfIOqCYdqFQKBQKG4K1YtqtNR0/fnyX/ZlxRynZ0qTZI9NjMt4vopc2kGwys4n4Gttx6E0ZY655vSVSj2MqnpDFF9jHzOOY6UrpVUtGFK/3HLN8qO/LQizSIjMgs8sYHxmD58RzYWY3halzHHngfcGyq9JisQd7o5PdZT4NHMdUP3g/rmXP1hj75jm85ZZbJEnveMc7JM3XI+7vnh8EfTnMSKMmy/313vjQD/1QSYulHzO7NGP43bepcq696Asyx4wBkcGRPcX7ud9+Xk+fPr3QXsTOzs7C+yH2ifZulh/NNEe9EsM9W3emkTB6kQHxPcB3np9p+wZlaaG9hszLwL2bMV+uB+37fvZiH7ln9rMPuHd6Wq8sXfOyAjJRy8Gyu9ZQrQuKaRcKhUKhsCFYK6YtjdKT7WiWkiO7sfRjqdF/9zLrSP1sXLT9Mjl+bN/Slv9m2cuMiVIaZ8xjZL5mKWR9LO+X2dDJ3JjtJ4td933MXhkLzQxIkX26L+5/L6F+ZD5ZEZFl46Ltclk8/dbW1i6bzGJu///2zr03kvJq4me8yy2AFClZSILQy/f/VLwICWlBIG7JAmtP/kDlKf+6Ts94bO/2KKekldeevjy37nnqXOrIEqFxoZVBP33n3imEMQaAa8rPpRVFY6917uyCfdW6U245i2VULUuzkuHpc/rLqw5zyDWp/ukZ9LVKS5HYk8acsQFrZV1ZeCX5ahkrQa0GrT+3xGi8UllI4vr6un766adbhqW+ertZwpGWhxTZ3mUcdIU8kupgZ9nRuCWLotqm/qR1JlCbgH52rvNUbIYWA2YNeB9Ylrjzg6/FunCtMF5m7V3SxfC4pVTPltr60GIzj41h2oPBYDAYXAjmS3swGAwGgwvBpszjEleRaYTmzKqDGY+iFkxZSAFINGGlQImquyINMpHomC5lIBUloeiEzLGp5jfNQzJL0kXAlBMHi47Q7ObmQ5qH6GagOdBTfvSZzG8sjMI0Ee+XjqFJnaIO/n+mACaonrbGQAFpKV2QMoUsgOJmZJ3P8aH5kkFufh8GwVDkwte3riuZUl1X7UgmVj4TXT1tmQD9XK4ZrlXBzcwMHlKfKddJMZmqg/uAEphcq26uZCoW3Vzqv9Lh/Jy1VC/vz2+//bYwNfszTVGOTobVTcFcb116WxK2YUpUVwPezfT6TH3WZ3Qn+DOmOaPLg3OoNidRJ44bC5Q4WDyFQWU0z6f0Lbod+EymGuPqHwMJk7uD70S6M942ttWawWAwGAwGLTbFtHe7XT179mxR6MJ3Tvobd1Xc7Tkz6IKgKHqgXaAzRAZMkFUKzuzVRgU0kEUzYKfqEPwiNiymw+ArBqj5sakcpR+bJA8FsiLu6JPYRReM01kwqpbsU0gyoMfSqwixbb+PX0PjRJZCNuYWCTHDTu6zs974/7tArSQkIoYt1sgyq0nsRvPalbDkmPu5bJOK21AIRlYVv57apn7qGKZO+TrhPDOlSOemtUrGSKuUrx2KhHRFRxy0pqX0Js5ZSt8UmPK2luLF3ykFy2I8ScZUfdYzwBKWlAytOqx9ndOJKekcBWtWHZ4nygGvWSzItLuCHkKyPnSpeUk2lUyb1xB8rvX8q91rMrxvA8O0B4PBYDC4EGyKaV9dXdVf/vKX2x1OSvkStLsj46bvsWop70efBYsBODoBewp9uC/z008/rarDLpa+N93Hd6Tyo4vpsC1kdp5aJOh68smq317GsQOZCEVe3HJBH1InSek77E5ululK92XXwn6/r99//31R8jOlndFfz3742pHVhJ+lQioEU66YqsJ0vqrD/ItpMyUuzYeuxzKnHEuuPz+GKZNiUWJgSdqVLF1rUuNL5urncr7Z5lQ8Q3ORJEO7Ngop5qRD8mGS6XYlRZ1Ns1QlU0DXwJgJlh/VWHufmeJFmVH1y591lgJmfwn3aTNdj/OvY1PJVBYb4c8kgUt0aYKp2AzngIVLvL8U7zllvt4khmkPBoPBYHAh2BzTfu+9907y31Gik2w2lYXkZyzRmXyDLDOpY8iAxJDS9difJJfJnXvnH16TWhVbp5zkY8DH8xT/YAfu6NcEU3jO2rE3Nzf166+/LsZ2TSCjK+iRoqsZbdpJt/qc0oeon2KM9Ov6dRlj0MU2+LFqa5IPTf3ldaqW/tBUPIMMpItTSIyfkedkS8nv3jHqNfEgfXYfgQwy+JS1wmIp9Lf7PHVMsJPqXJMIpd+emSjefrWVlsTkf2epUWa8MIbHi83I2qh4HGVsaCxoGfF7M+OhyxTx5ymVNPa2pdK9jEniutPna+x8oscHg8FgMBichU0x7f1+Xzc3Nwu/VmJLAtkzc251XT+Gv3O35ztD+jKZt52gz77++us77ZePJ0Uj0rei9uvnfXy93E2ewlTfFM7xWZ96zn6/X0QL+05dPjeNC4uvsLBH1XLnT98mdQKcxTDiXNC6FquV5Ka3RXKyZJNpDhnJTHZOxpskfsW0VAZV/eHv3h8ykq5sZcq15bO3VgRC8SJ69vRTx9Df69f3fO9jYLSwt6FjXYwJWCv60flrk3WBhZA6C4W/h2Rp4xhqfOTzdr80Yxa0DjgvWlMeyyOJXTFsWRs15qmMMCO8uXZpYfJnn+PFjJ70/tbaITvnePpzxe+U8WkPBoPBYDA4C5ti2lV/7ni4Y0oqWVQT4s4zsQn6g7lDS4pBZFaCdn3amXoeq3ayjKakD9MZHaN23Xd0X2h3Sf+o77BPURl7CiS/02Oe06kkVS0j1WlhSQVjyKCYC7+miMX28xo8t+rAUrQeyIR03zR/aqsYju7H3Htng7q+zmFxEUUiu9+dFivmT5O9pAIOVLxi9LXPOX32fI6T35rlatfW+263q91ut2px43oi+6LP26/DLAKOASPqvS8dI0yxLcc0HpRF4rnWKlmqtlDzQX9n1HrVIcOB99F8pCh/rRW9Exkb0BXZ8f8zE4AM3Nc3tT5ofUpgNlEqtPM2MUx7MBgMBoMLwaaY9s3NTb169epeuY8pIrbq7u6OClTcRTJHMLF0/aTilhi2crOrDrtE+SVZZpF56H5MYiWnQm2i4hf9iN6Gh0SCPwY6FvKQa1Vl9pKigv28xF7oh+zyzNcipbnumOngVhUy6i7DwZ8JHUvNaVlWqPiWsgrEfMS0qB7n55C1sA5AZ9HwzzpWmxiWLEfMC2Y50TTXp5R1VTs63QH/G/OaGW3dXduv17HnlM/MfGKxPh2bLHLH+up+aV2fedPdGl3TFSdSJk+n6cC4n2T1FNS2FEdSdddSprXDeA5auXyuef2JHh8MBoPBYHAW5kt7MBgMBoMLwabM49fX1/XLL7/cmkiSeVxgaUzCTSY0YdEc3pVbrFqmscjUqGumQDSaCynrp2AOlxdV23QshV6YPpHKhwo0eSeRh05E4U3jPvc9JtyfAhaT2T0FZPk5awIZXTnFZM6jGZQBLkzJ8c+0VrS+tGZSKUEF2yioiG6SNUlIBvHweVJAVDIf0rSo+1EIxAPEOrMnXTjeP5q46fpQqpGvJZ3zzTff3GlTwtXVVX3wwQeLICxPVdJnqciLt2lt7XTBa0leluI2lOXVe+ghAatVB9eCftI8/VB54arT0gU7IRpHZ7rvCuX4Z0zrpNvHg9t0jsa4+455WximPRgMBoPBhWBTTHu/39erV69udziJhbEspAINtEtlwn3Vkg1RVIMpYR7QwkAQimkk4RIWTNBnCkwTM/IULO2YFSSiMdCuj9YHvx+Ddxigo8/XikwcCzBJQTmPwc7XrtEV3Fi71pqQTBc0pnPW0rbYFjKrVMZPx5LNaKwpSuLH6Lq63t/+9rc791VAZNXymaB4DEsnelAZA6oYuJPK2lLcpCvGkFiT+qdzdT9aMHytdsVEGLzp88Znbw273a7efffdWzbNkqqOrjRvCu7rxGcYmJjSyMh4dX0K8zw22Hf9TJarFGjo0HvOx0bvxq6sb5di63+jVYYWjCTjy/fmWmlOphG/LStkh2Hag8FgMBhcCDbFtKvusqU1+Tj6ibudW9WyWAD9eNyVe/oGGQj9ePrdfUtsG3dsSVRD9xHDZilGChWspbR1fhzHMQZC9unjST/QqUz4vuD1jpVXlEiGt8l31GSAHfP2XT4ZNtkRf/d5IbOmb1bH+lx0Fg+tJf6sOqw3MjiulZTKpL7yvvSLO+iDpa+e90spdLIo6bmR7179Svdl+p2ea4p5pHOO+SWT/Gy6nv5G1syx9791MrJ8H/ic0vJAi4d+/+STT27Pefny5WofT4Heo7QkJotLJz2qcySB63OpPmpeOHd8xtO8UTRI12Dbq3qZa7VD13frKt+fj5GO+pgYpj0YDAaDwYVgU0xbBUMYvZmS87VDoo8kFUWgNJ6uR9+FdmHuy5JfhvfhTi2xTO7YWCrPGQ+jQLm7o/iBgz4zXV/97fxwqa2MOKZ/1O9HxkhhmCSKIzyFn2i/3y/mNjEfFkFgeT4fY/2fc0driX5+9913t+cq4ruT0EzWAEZP08JDK07VsiiG5pnnpuIIjIM4pVRmt57ZnhRfwmdR65plRX29dKxT47vGiDsBDsdut6vnz58v2PIphSJorUmxNHy/dJaQVIaSLJ3Po8+9JGcpl9zNaQL7ofumwhucD8Vd6FhlvPg5FAmiiAxjRfwdQn+32qh1sOZ3Z8Q5342pfGj6LtkChmkPBoPBYHAh2BzT/u233253itqxOUNkzql25iyS4bsj5nce8+e67KMYDxkCfTy+S1apRfk0O7F/30WKabOtOlZsTYzEd9hkvsxH53FVy903c8oZGZrOJQvltRz0DT92mdDdblfvvPPOSfKsbAPZhbef0eG8vtaH/p4kIo8hjUXHYoVUFIFRyIowXivAw7Z2UqEPE+l+AAAWpklEQVTejsROqg5jQT9kGk/9TexQbIl+cj+WvlPlZyfQInfKXMivrjk85Rw+/0kroHumuzx3h8ZBfVa/9Jz62pH1Re9C5jWndyMtU1wHtEKtWU2kVcGiII7O6qf7M3shMWBaG+jnTznXzM9mNk4qH8pztoJh2oPBYDAYXAg2tYXY7/f1+vXrW9YppuAsln4N7YLWmHaX5ynQf+Tl5wSWbWROd1J9UnH4zpecfC/0Ielc+kWdSYqdyEKQcrmPgWxAWMt7pyIRmV7yRx2LAH8o1DaW/vP2CV10vfeVOaGaB/p6H9tycAy+dmTR6ZTQaK0Ru606sFXNoa71ENBq5DEi9FnzOdY5/gxqXesYPVeuCngMx2Iodrvd7X103fsU70l9FdRXjb/6rLHQ7x7XwkhoncuIZn/GGF9D9TzGLaQ2MgefBVL8PSRmzeuxuEh6BnWO/N60/KXIbb6/dawsTeqnjyMzAfidkqyDa3EKW8Aw7cFgMBgMLgTzpT0YDAaDwYVgU+bxqj9NEzQVJzGIruAA67JWLc22TAdhaowLTdC8wmskYYdkmvU2UZTEj6W4BAMlkhmWpu1OZOUUyMzfBfz59Wg2YvqTm+7OMdnf1yx1fX29kHv0OejSztRnuj78HAYCCXQNPDVSqo/aqLUjEyBlRfV3f544LzSx38dEzCC2NREhuqiYtpaKZ2jdyXx9SqDYWl1mHtcVEloD3STeJhblUfu5RpMpWM8bC4QwXTQF+bEfNJev1W/vnrlk6uZ9FYCrNiZxFQX70YXT1fVO4PrS2pGp3U34ahtN6GuiO0wxHPP4YDAYDAaDs7Appi1xFSbeO1Mka2YKhHZZzrR5bhIMqVqmSvj1tANUOU0GIGkHyf74fcTWUjpPFzzUpSOlgC6mwJzD/jrBGb8WmTt3rWln+tRM9Obmpl69erWQjk0pIwJFaVh4paoPoKOVhsU5HgssCdsVXPC26FgWH0nFOMS+GeR1jnQjhV8SY6UcL4WUEhvUOWJyLmDTQX0ls+qOff78+YK5pYDUY0hiPgyc6litv7PIkj140K+dCl2Q9XfCJVWHcRZL7Z5hjqf/jUG6+ql16MVN9J7UfVm+lXKjqX+8rwoxrT2DGj++45MlppOf3QqGaQ8Gg8FgcCHYFNO+ubmpf//737c7XTFH96dSGIO7oiSDyNKUZH0sg+i7Lu229Rl9vrqm78rFysR0mIqQfFj0E3N3fB+/9EOg3TGlAdek/NhW+smq7ucbPQf7/b6ur69v5ycxK64ZzV1XnIX/r1rOO/2HqegDWQNTSny9iQkwNYXlan090OpDSxULeqTSs51PO6XveZEKP1ZWqa7IiveV8Srdz6qD2IkY9n3SBk9hSVdXV/XBBx/ctjP5RoUuDSj57+ljpmzpmtgNRXwY88JyrH6OwHgMvVd9/tQPrTf1nddQm9O66wSukjjWV199dadNXRpX8ifzva3ri0VTZMX7o2MoCJPEnro2bQXDtAeDwWAwuBBsimnv9/v6/fffb3c9yTehHZ92atwxrfmuBDJuFljwXReZh44ho5cvUP2oOuzydAzl/XzXSp/eOf60Y1iTMaWwjHb09ylPJwanMerKTD4luBv3djOKljvpZA1gdKnGhTEMuo/8a1XLiGjeL0Wwduu3E/fx/5O90HIktu7MQetOz4D6xQIR3hf6Pyk8o3aoXWuCLZSVTGxJcSQssbsGxq8cg0ePa5xcKIUxJrx+ikImQ6OsbFc2smo5DnpnaSy5htL9kiWn6q4FjNYmxvms9VNtZOyC3ttqq7/LOobNdZYkUPncqkCJxlVtdOuD1ipjQBgzkApMHSvn+rYwTHswGAwGgwvBppj21dVVffTRRwu/g++wKT9HXw93wn4Moyn5kz7HqsOum2UcmU+tXZ+3Tedox0nfqe+StVtk/rfYKtmg74jpd9LOlv5xHxPmwlOSlLmKSXK1w9tg2ESKguXaYB8TmB3AsoOMh/Advc7RGtJnHHs/p9MoSMVMBK5NXY++dJavrTqwY0Y0s/iHr9WOyVNaM60DRup7cR5vq7OzrrTpGtQmteEY45aVr+rQD7cucF74d7+OwHgAWucoHesWCcqHMm875YXrWBb7YUyPrzdG12sMWFCD7wdvC2VrGbPh66B7N7Bfun+K6taz9+LFi6o6rF31RfnhVUuLEZ+fZI2gVetNxROdimHag8FgMBhcCDbFtKv+3KUxotF33V1h+c5P6ccy55bRlvS3VB12XV25tlTUROyBu1fmJPqulTtARc5rZ6rrJ/8X2bLOoYqb7xgZ2UymlaJhu3PfFE6JVxA05mssdq2AgsDcXTJDKlZ5TiqVr5ibqvu775TrjQp/aV64dsTw6WtUv1PpQqrY0Srga0fnU51Lx6z5NNUGxnvomjr2odkGSRGvw263q2fPni2i3VMGSodUoldjqbXD4h9CV66y6jB3eqbPsWJRF2ItxoDFTBh/k+IvaH3gnJ7ynmD/dF9/nhQvIoatiHAyYY83oaWiK0iyFpOwNd/2MO3BYDAYDC4Em2Ta2olqd5R2ucxfFHtJPj+yCCqt0ceUInOZk7hWjF6fiUGxnGjy1bP0HiNwdX0xLve3KY9V16CfMuXadhH0nX70m2bVCans4UNwjra0GGj3d28j1Zfo+9PvSUWL0bo6JmnBMwKbzwaZo9+PLEXX5dpJpUA73QF9TmtB1YEdiUFpnStCXGvZGZbW+suXL+tUUHHt2Fw/f/58oeTmY6PnolNYY3zMWpt0Lp81f3e9LT8qlf4Yw+MWzK4/jKE5592h95HKf1ZV/fOf/6yqqn/961932korqz8bjBrvVOL8O4btnTztwWAwGAwGZ2G+tAeDwWAwuBBsyjx+fX1dv/7660JK0wMLaI6UKVh/l1nHg4uYEiATHNMZBP+d0o8s8aaAMTcBMhWGgWiUmfRjGTTCdC797oE67Af7k4ItaB6ncMWbLjl5Cs4JCElBhef0iSZgBqloTr2NWitavzr3yy+/vPO7m+Y07hQqofvHTalsSwoe82un9BaKCNH06dAzpjYx4Irz5O3Qs63niv1joKmfwwC3NagNKd0xHfvxxx8vUiTdRM/r0EyegsmYPqVj9DtT53ysuZ40HzL9pqJDNG13ZX4dTO3T73QzpmePwWl0m6g9HjzHwEAGq+m+emZkEq+q+uKLL6pqKenL4DJvO8dW3ylM+/SxZxneKRgyGAwGg8HgLGyKaV9dXdX7779/G9qv3ZCnSDB9icUK9LvvDBlIwN8ZjJUKeTCoRn+nsL+DEoHa5ZFd8J5PhSST2GFru8uq85h2SnMTupSVtetoDsXCaHlJKT8UGxFT0LkevKb7iFFxrWgOnbGwiIXWt65LC4PPvdjYscAjZy8sRMJiKSy/6IFBtCDoGrqmzk3FZpK0pcOf6/sGD+ndU7VM66xaWtyYrpdkU7muGNTHwDe3INB6whSsJGfLPjNolRZH/z8DDxmAmvrHYFmmCSYxHwoaMdWURUA+//zz23NZRpbrK8n00jKm9bUmiUsL2H0K1LwJDNMeDAaDweBCsCmm/fz583rx4sXtjko7nCQoQOlE7dS0y/PdFv2z3FF3pRr9OmRNOob+j6rDDlA7Qh2bCqD8ryIJvhxDSud7CHS9tZ004xLop9Tn+t1ZjNaK5v3777+/cw6lUauWYkFkWGKqvr7pD+z6mVL/yMb0k7K6bqVR28isKJ+paycZy07yUqIr/jzJukEpTVoY3MpxX3/kzc3NIkXT3wO00tA/zFRA/z/fFfSjpvgBxh/Q95wklwU+W0wXTOUuGQOQfL1+rarDs6AYIa4Dfe7347uWcRBa55999llV3S0jyvgRtV1jxO8N/4yxCIyTSNYAXU8lYbeCYdqDwWAwGFwINsW0d7tdFDlIu6AUZVqVZQspW6ndHH09SXaPOzRB16JPzv9P6dPBAZqTU8p40pf1WDjFR065XJZopHCOMxOtEfkqxZLV53QOizvo+hofsXNfb4z45rmUKk2lZ7uoYTGR5CekBanzU3pMCn3zFCnSmHnGiCwUZJWMDPY20me55uO+ubmp//znP7fjliLBGTHfiba41YQRy4zDIXNMRYDYNwrkuDWA5Yr188cff7xzP78Po9IF3Y+le/1+fK/xGVnLjmCZYrVDxT4koOLjuRbX4fC+0BLKc1ia1tumY7dmIR2mPRgMBoPBhWCTTFv44YcfquruDls7r67sHf1cVQeWQp8YReSTfCFzH3Vd7b5kFUj+L/raWNDjfxmcp7VIbsYgnAuyomPlGhOYLcA5TTmpYlqUqqUFqOpgVdBuX31noRIfJzJt/UxlVb1djk4nIOXxM/KbZSR1PzE8nzf6YikDnHy1tByQhcoP7mOfnuUO+/2+Xr9+vShS4e0mS+VcMvbAz2dJTPqJyWqrltYYzmWyNNICovGgdSihi8zvCjJ5mzr/t/qdrk1rgKLF//GPf1RVnoMup1v9pWyw/1/WLlqUKBfs0Bzfp1DRm8C2WjMYDAaDwaDFppj29fV1/fzzz/Xtt99W1WFH7yyDuzsWORcDdj8EmTT9QmTCXowjCcpXLRm2szgyGfquWNjDz6EPdYv50uegi3rV7ymanGP+WOpsZC/0p64xEs0Z87LVHynkVR2Yjnb5p0TXck0yKp3+aQdZWOez97+TSXPtaoySX1o/1U+1kT5oZyqM+FX/6D/0Z1DHsKQln01fH2L5p+Dq6qree++923WQxpiKi8w31/vHy5CqPSzrSmtdyoVnRDnfWczJr1oqren6p1iUjlmx0rNHa+cpUfF8F2ts5MNmzIZbeLpId1rr/B3CvmuOaeXyuWYsypTmHAwGg8FgcBbmS3swGAwGgwvBpszjr1+/ru++++7WLCFTSTIf6m8KWKDJMZlkhDXBgKp1MxVNcmvBazQFCjTt+7FMVdHfZe47J3hqC+iKdWjcGPBX1QcePRQaQ8os3ifQTWZQmTxTeohEJzqTM+Us/TO1jebXFNzDtB0GDdHcmwpT8PnRz1Skg2Zx/c41murGM5CUKTdMl/R283pMnTq37vFut6t33313MU9pvTGQSXPIIkRVh+AqfSahEAbWMZjN75OknP3cFHTF8dL1dY37uNxozvb7dcVluB79fapj1Da945XqxcBObytdR4KeH42VBwWz1jy/H1IBHrWB9eK3gmHag8FgMBhcCDbFtK+vr+v777+/3Q0laUAyMwZxpIIh3EEzzJ+fO9s7xmy5c/Q2qh+UwiSrcXRBSpfKsIlOvpQiH46nKpHHsqenFBBhEAwZkO/yKanbFV/w4CWxSK59poCl8oOUuuQY677O6MhsdX+xDP0utpiO0X2YipOYL9MsGcTEsapapgcJtFicy7SFtYAmMk6xaKWlJgufxofSxxSUSe8QQedo3rn+3LLDZ0hBXhpLFjfx//N9Q0tCSksTaAXSffW7r1VaGcW0O7lgfxa78qhCYuddf5jylVLnpjTnYDAYDAaDB2FTTFtygtwVOTOg/0dlPJVqQ5m8ql5UoysYkXwYOvaYjKVfr/MTJnlTCiNsGZ1/eg3cHXOMuQOuOsQriIk+duqF2KNYE8thJnD3rWOZJlK1TInRuTpHLCPt5NlXsRdK/Hq7KcjBtlJcyI/RuuM65E/vI0WCeN9OGKZqyc4YI+JQux/KpI+hEz2pWlpNKOjCZ7tqGXdDyxulPD3NjUxTbaOAyJo1g0yUrLZqWVSks84knzZlStkfIZWrVT/4PuA7058NplmqH+xDkmmlpZJznay5w7QHg8FgMBg8CJti2vv9/vZfVfb1dOxObClJhJINUw6PfrU1n49AKUpniGTWFKNI5TzfNo6x54eyHI4xkZgW2eVjiasQinpOPkWC46A5TsVMyM7IVmQdckEW+te1RjQWjHj361M4gmwsFU2gD5n+3CS9S2uQ5ofrOcWX0J+rcyla4nPdxXXQgvEQRrTb7Rb+4lQkRWOn9ivqWZ8ncRWOIaP4U9EKjh1jD8T0nU13xTD47KX3Kd9nQjfmfiyjxbtYEf+/xpaxFBQI8swKjgWPZZyE/59WAT4T3k++n4dpDwaDwWAwOAubYtqSE9RuSP5q94npM7Jl+o98d0R5P+0AtfPlriuxSu3uyAR0LfeDslxnlzf7VMzxPmDBFfo2uVN1nBJtzft0xyZJT41tymN9CqT5ULvJGliEZk12ltK0a/Pefab1tZarznVLBvJUjIEsRs/gmtSmLAfqD/29CV2GwSl5tGvjpvcO2Z8zNmovsFTqX//610Vb+Cwx953WJZ8fymtq7bMdKedeoMUy5STz+l2BElp+OD5+DmM5UtEPPjcsf5msa4zNYM4/LRcOvnP1u+6TCuKkXPgtYFutGQwGg8Fg0GJTTPv6+rp+/PHHevHiRVXlaET9X37ATnXMfSECix/Qx6ydnO/kmT+qHSGL0Kfdq7AW6fkm4fenehJ3yWQbKWr0WH+Sb+k+6kLc9T+1cH9iotyZa21w3h9aNvRUnMOW31TsBIub0A9fdWBH+kyR6FoXKTaALIkR9Orf2hwcG7fdbre6ntUHRs6rveqXv6vog6VVUGuI+fVVSz+4jlmLHqdPm9YfvucczK3v/LmpZGoXs6H7+byoz5p/RoBzrj1+gqxfFlgy4bV3sdrCUqoes9FltmwFw7QHg8FgMLgQzJf2YDAYDAYXgk2Zx3e7Xb3//vu3AWgyv7hgBesKv3z5sqqq/v73v1fVwazipiJdR+kZNFN1xTqqlgFZDLJJQhMMrmFAyFOjC6zzVA8GbXQiCqx3XbWUE+yQCgV0pto0b6ee+1hYS3tj8AsDd1hfvWpbKX1PgWP1umkurzqMn+ZZAjcUW/FnRc8W1wHNpfcJ0kttpgvH+6fz1X65yZjWp4A07xtTrZh6p+N8nChxykDENPZqG6/P90Ay99I8zTFO0rQ0/+t3jU0KMuNY8F2i+2tcPYWOIkJ8Xlmb3fvB+zPNLqX5vmnX16kYpj0YDAaDwYVgU0z72bNn9eGHH94GKaTSnAx60C5Iu9UU7s8dJq9L4QIPRODOloFvup/v7rqCIZR3ZLGJh0I79U44wHfnDNSjRYE7bd+dn5qqlsr4deeuBccIqZjIY+KUfjF4iOshydluIbXvMcGgPMpyCl2hj6pDICmfgcQgKY7EoDX9fU0CeM3qIWEVBmUmIRGxPN1LDDiV22VpTr3XUnqj/93vR2GUNflkjgell4UkY9tZLzgfSSiHxUsohevPtsaA6Vtkt0m6VvdmuiD751ZPWUb1vuvSIlOgbXpvbgHDtAeDwWAwuBBsimnLp00RipSqREEH7u78HO5o6Yck3IdOFk6GlXyw3L2RabG8qB9zanqBsxr6yjhGlI7kvf0YpnN1u/VT4DvUU4RF/H6OVCrxbYEsSVabJA6y5je7NPh66UpKslAFRT2qDuPGdCEyryQ0QgnXriDKsfYT+/2+/vjjj8Wz7aBlTe8O+m/9OSGrFBR/o3icJNfMPp6SLtqNLdM4k9WBliI+/xpb90+zjWyrfortVi1Flvh+5TvT1w5ZOduezmFamCwjFNLxa2odUGJ1KximPRgMBoPBhWC3pQjX3W73bVX9/9tux2Dz+L/9fv/C/zBrZ3AiZu0MzsVi7bwNbOpLezAYDAaDQY8xjw8Gg8FgcCGYL+3BYDAYDC4E86U9GAwGg8GFYL60B4PBYDC4EMyX9mAwGAwGF4L50h4MBoPB4EIwX9qDwWAwGFwI5kt7MBgMBoMLwXxpDwaDwWBwIfgvtzF+Jty7kuwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAE9CAYAAAB5gQopAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXv4ZdlVFTpWVXWnH0m/QicRw0u5XhFF/AgGuMpDecTwkqAGhGDkekluRFAxCIIkiGBAeXgJSEAhxARBhXxRwjP5CJHnTeR5iUQTiBBCMOlOp7urO93VVfv+sc+smjXOGHPv86tfddXpM8f31Xd+Z5+911577bV3rTnmmHOOaZrQaDQajUbjMHHiSneg0Wg0Go3GlUMvBBqNRqPROGD0QqDRaDQajQNGLwQajUaj0Thg9EKg0Wg0Go0DRi8EGo1Go9E4YCwuBMYYzxxjTGOMu8YYt9Jvpza/Pf+y9XBPMcb42DHG88cYJ2j7+2/G7JlXqGuNY8Dmufj8K3TuafNv6/xjjJeOMd5C296y2f/7THs/tfn9Z8x5+N9LV/TxxBjjV8YY/0D89pFjjO8fY7x1jPHgGOPuMcbrxhhfM8b4Q4sDcBkxxnjNGOM1x9jet4wxfuS42tu0+Zbi3pz/d4zne/sY4zuOqa332rwXP0T89gtjjB87jvNcKsYYHzrG+K4xxi9v5uh7in3fa4zx4jHGnWOMe8cYPz7G+CCx3weOMV4+xnj3Zr9XjTE+9Ah9+7jNPX5o12MdTu2w780A/iGALzuukz/C8bEAngfgnwI4l7b/PoCPBPDmK9CnxvHhmZifn+++gn143hjjpdM0Pbhi33sA/OUxxmOmabonNo4x3g/Ax2x+V3gxgBfRtnesON/nAvhDAL49bxxjfAmAfw7gpwB8JYDfAvBoAB8F4AsAPAnAX1rR/uXCc465va8H8FtjjI+bpumnjqnNzwDwqPT92wGcBPCsY2qf8VQA7zqmtt4L83vxTQB+jX77PwGcPabzXCqeDOATAfxXAA8C+NNqpzHGSQA/AuBxAP5vzM/RVwJ4zRjjQ6Zp+oPNfo8H8LOYn52/tWnzuZv9PmyaplX/H4wxHgXgOwC8HcDtR746wi4LgZ8A8HfGGN8cF9fYHdM0PQDgF650Pxp7j5/A/KJ6FoBvXbH/TwL4BACfifk/98AzALwFwO9i/s+E8XvTNB1lvv4DAC+Zpum+2DDG+DjMi4B/OU3T36P9f2SM8c8A/NUjnOvYME3TG465vd8fY/xnzC/9Y1kITNP0y/n7GONuAKfW3qcxxqM276G15/ulHbt4JEzT9BsPx3lW4rumaXoRAIwx/gXMQgDAXwHw4QA+apqmn9/s/4uYn6kvAfClm/3+DoBbAHz4NE2/s9nvpzb7PQ/A563s11cAOA3gPwHgZ+jomKap/IfZ8pkA/PlNB741/XZq89vz6Zg/C+BVAO7dHPNqAH+W9nkxgLcC+DMA/guA+wD8DwDPXurTrscD+AAAL8O8GnsAwK8A+Ayx32cD+E0A7wHw6wA+DcBrALwm7XMdgG8G8P9tru/tAP4zgD+e9nn+Zlwu+rf57f0335+5+f5czKvDx4r+vAHAK9L3GzBbGL+9Oea3MU+MEyvG60YAL8DMRDyw6fcPAnj8Ee/bkwD8HID7AbwRwCdvfv/7mCf33QBeAeB2On4C8LWbfr91c/xrAXwo7TcwT/Q3bq719wG8EMBNor1/CuCLNuNxD4CfBvDBYgyehnkRdh+AuwD8BwDvS/u8BcBLAXwWgP+2GYfXA/hzaZ/XiPv7ms1vTwDwvQDethnn3wfwwwAet2Zer5z7cc0v39zHG9JvLwXwFnNN3w3g1fTbGwF89eaafkad5wj9e/Lm2D9D238MwP8CcO0ObS3Oeczs24T5eX0hgHdu/r0UwC3U3hdv7uv9mK3c1yO9C7D9vEfbfxkzM3LnZu58C+aF04cD+JnNPPkNAJ9k5t1ZAO9zXHOA2t+6d+m3FwB4CMCfxPw83wvgBza/PXVzT96+6f+vY36OTlAbbwfwHen7szdj8mEA/j3mZ+73AHxjdW8B/HHx3EwAPmvz+y8A+LG0/1M2vz8VwL/Z3K87AXwDZrf2RwH4eczP868D+AvinB+/GZ97N/9eCeCDdhzffwHgPea3lwF4s9j+AwDemL6/CsAvi/1+GMC7AYwV/fjjm3n75LivYp9nAvjVzf189+bvz19qexexYLyIv2BDJ0psfD8/DeDWTac+D8BNAH56jMGrqpsAfB/mB/bTAbwOwL/aWA5rsHj8GON9APwi5hXd38P8svglAD84xvi0tN8nYL6pv4n5wf0XmB/2P0bnfBSAx2B+EX8yZjroOgA/P8Z4wmaff4154gLAn8PsCvhIcw3fh/mF8vS8cYzxYQA+CMBLNt9PAfhxzLTSv8RMn/5rAP8Ys5VlMca4FrNF+Hcw/0f+KQC+EPNDdetmn13v20s25/8MzC/3HxxjfCOAjwPwtwH83c3f3ya69HmYH+4v3Jzr8QBePca4Le3ztQC+adPvT8X88D8TwCtZd4GZhv5kzC/5vwngfQG8YjNmMQbPxrzweQPmVfyzML8cf3qM8Rhq789jXs3/Y8z35SSAHx5j3LL5/TkAfhkztRn3Nijlf7v5/lzMFvgXYV7w3CDG4VLxlZjpwS9auf9LAHzsGOOJADDG+AjM8/slxTFjowU6/2/FeZ6C+T+HX02NnMLsgvjJaZ0r4yhz/l9i/o/jr2Ne3HzmZlu09zmY/7P6d5jn3+cA+I8AbttqaRvfgvnl+nTMDMwXb7a9BPMC62mYn6cfGmO8Fx37XzD/x/UJK85zOTAwL8p/AvOzFM/kH8G8EHjmZvvLMP8H81Ur2/0+zAbRZ2C+L38f83Pj8BbMC2xgNpbi2fnJhfN8G+aF3V8D8F2Yn61vwvyO/Q7MY38awMvTM4oxxtMwz593Yp4Tz8D8vLz2GLUoH4x5DBi/AeADN+9eYF4Iqnn/AOb36ftWJxljDADfiZll+0Wzz18E8D2Yx/PTMI/XizEzETVWrEKeifnh+kDMD8xdAL5789sWI4D5wboLaSW+udA7AfxQ2vbizbEfl7Y9CsAdAL5zRb9WHY95srwDZHFvButX0vefw3xDR9r2YUjWnunHScwv+XsA/L20/fmbY0/R/u+PxAikvvw87fctmFfAj9p8f8bmuI+m/b4C8wSzFieAz98c+2nFPrvet49O2z5ks+2NAE6m7d8E4AxtmzA/mDfSmJwB8DWb77dhfkBeTH38XL6Ozff/AeCatO2vbLZ/1Ob7ozGvjr+b2vuAzdj93bTtLZtxvzVte9Kmvb+etr0GwgrDbHV80dL8vZR/SJY65oXHnQBu3nyvGIGx+fvLNtu/HcDPuuuBtt4mAB+40L8fjXbTtsdvjv1nYv9T+V/avmrO44LV/r203wsxs3sjff+lhb6/BpoR4LnzS5vtmSmK5+BviHZ/Fyvea0ecD3Iubn57waZPz1poY2zG/2sA/AH95hiBL6f9XgXg1xbOE6zA54rfHCPw7bTfGzbbn5S2/dnNtqdvvp/YjPmP0LHxf9gLdhjfihH4HdB7arP9Czf9uX3z/f/BzJLeTPP+f0KwZ6K9v4XZ4Lot3deHaJ+vBPC2o8yhncIHp2m6E/OK+vPGGP+72e2jAfzwNE13pePuxuzT+Bja974pCWim2W/135FWRwvWyOLxmCfTjwB4N7Xz4wD+9Bjjpo3g40kAfnDajOimvf+KmYq8CGOMvzbG+MUxxl2YabfTmP+zcWOyhJcA+IgxxgfGNWN2U/z76YIv7ymYJ83P0XX8BIBrAHxE0f4nAnj7NE3/qdhnl/t2epqm16bvv7n5fNU0TWdp+ynMorGMH5mm6XQ6z1swvwSCNfkIANdi/s8r4/sxjzf35yenaTqTvv/65jPmwUdiXtS8jMbudzd9/Ghq7+enacriKG6vwusAPHeM8cVjjD+1WcmXGGOcpHm+y3P5PMxz77lLO27m9ksBPGNjqTwdNRsAzNbuh9O/31045r2xTlCIDYt2Jv9Lz/muc/6V9P3XMRsHj998fx2ADx1jfOsY4+PHGLuwND9K338T83PwM7QNAN5HHP8OzONiwe+6NXNnB7xcnO+JY4x/M8b4HVwY/68E8LhsWRdQ473mGdkVauzvnKbp9bQNuDD2HwzgiQBeSnPnbszzgJ/5y41vx8wcv3iM8QFjjPfebPvDm9/PuQPHGI/DzIh+6eb/YIfXAfhDY45geOoY46a1nTtKHoFvxmyB/BPz+22Y3QiMt2NDQycoJeoDmAcMY4z3x/ZL4v3XHr/B4zBT0WfoX1CLj8WsZL0G84qLcZEwcozxqZj9P/8NM930ZMwvx3fQeXfBD2FeTDxj8/0TN/3OL+nHAXg/cR3/b7oOh8di9uFV2OW+3ZW/TBeoXr4fsZ3HRYlN/wAXHoqgai/qzzRND2FmfJjK5YcjFk9x3sdtPl+F7fH7U9geu4vaS4uxNff36ZgXT1+K2XXwe2OMr1r4z/3V1Ke11CymafotzKzXF48x1qiIXwLgT2BeQNyIeS5X+P1pml5P/5aEZtfhwj0I3IHZOuf/KN6JCwuM76Lfdp3zS/PgJZhdeU/GbAjcOcb4IXqnOKi57Z4DNU/uB3D9wjn4OnnBe1Scm6bponfb5j/FV2L2oX81Zubjw3HhvbhmrqvxPuo7sIIa+6V3TTzzL8P2uH486vflrn3j9yMwv6POYWYiMU3Tb2L+f+jPYY6U+T3M7uoQ+qp3byC0Xa8YY9yyWaQ9CgA232/YnOPHMRuQfxSzK+iOMYcyfvDSRewSNYDNye7dqHu/EdpPdydmwRTjCdg9BOVtmCcnb9sFd2D20X19cY6HME+Qx4nfH4+Z/gl8FoA3TdP0zNgwxrgG6/yMEtM0nR5jvByzz/J5mCnw35qm6WfTbndgZif+mmnmLcUp3onZH17hOO/bEh5vtsViJV4wT8DsawNw/uX1WGy/gJZwx+bzmbm9BBc6tzM2L9y/DeBvb1izv4H5RfsOAP/KHPYszLqTwK5z/Gs25/lHK/r33zeq5i/D7PK5a+mYI+AO0MtxmqaHxhivBfAJY4xr4z/NzeLu9QAwxvgU0c5R5/wWNozIiwC8aMw5UT4R83vsBzAvDi4nbsN2uByD33VvPKZzT2LbB2F2ZfzVaZr+Y2wcY1zRqI1jRDzzX4JZjMyweQF2xG9gdksw/gTm/yfO6wKmafr+McZ/xKzLec80Tb81xvgeAP+DF2qirSdBv/fehXn+flacA8D3b3RPfwEzk/BKzO5Xi50XAht8O2ZhyD8Vv/00gKeOFK+86dSnYvZlrcZmEF+/uGONH8NMDf/GNE33u53GGK8H8JljjOeHe2Aj2PsAXLwQuAHzwiHjGdgOvQpr5Hqs+4/mJQA+d4zxSZgVyrzI+jHM4qd7N6vLXfATAD5rjPGp0zT9Z7PPsd23FXjqGOPGcA9sLLKPwLzyBWY3wYOYJ/er03FPxzxnd+3Pz2G+Bx84TdP3HrnXF+MBXPyf9xamaXojgH+0ESrahdhmvyNjmqa3jTG+DbMYdE0I2Tdgtk5eeCnnLaDcLXHen8S8KF8T+nQpc77ExvXzA2OMJ+Pyxd8DOB9r/r6Yo1SqPl3qu24XhFvkvEttzDHqn32Zz5vfi5cTv455Qf1B0zR902U8z38C8NljjCdPGxHfZpH5VGzn34iF7xs2+70v5vn9vIVzPAezazPjCzC/D/8iBJO9eYe/YmOMfP0Y46aNq1fiSAuBaZoeGGP8E8wqRsbXYFalv3qM8fWYV6P/EPPEc+6Ey4mvwkwlvnaM8ULMVsStmF/Mf2SapsjO9jzM/2G+fIzxnZjdBc/HTI1n/82PYU7M8s2YQz+ehPkFzJZVxCN/yRjjRwGcXXjQX4154v4bzA/Jv6XfX4ZZEf/qMavzfxWzH/2PYlaI/uUpxWwTXgrg/wLw7zZszi9i/k/skwB8y+Yl+3Det/sB/MQY459jpri+GrPv7puBWYuyucYvH2Ocxqzx+CDMC8+fwbZvssQ0TXePMZ4L4Ns29PmPYqbs/jBm+vU10zTJrHsF3gDgOWOMp2Om7e7BPFdehQvRJ2cwR7PcinluXU68APPL4WMw+9Utpmn6IczuqMuF1wL4m2OMx07TFJYZpml69RjjywC8YMxRKi/BbPFfh9lK+izMLrKwYC9lzm9h81zfgznk7H9tzvkMXP578ycxP0fKMr1S+DXM75tvSG6rL4FWth8n3or5Wf+cMcYbMYf+vZk0OZeMaZrOjjG+EMB/2FDnP4iZJXgCgP8DwH+fpskuhDdG0Cdtvv4xACfGGH9l8/3N04VcDv8Bc86M7x9j/EPM8+srMDMO35jauxHze+61mAXFHwLgyzH79S/KAzLGeCuAX52m6ZM317KVx2GM8ZT5p+k1adsLsIn0wuxqeF/Mi4hfqBYBwNEZAWAOU3gugP8tb5ym6dfGGB+LOfzrezGrUX8BwMdM0/Sr3MjlxjRNvzPGeBLm/9S/DnP4yB2YIwS+N+33k2MOL3oeZmHNmzA/GF+FjZ9ng+/CLEj5fMyWxOswW80sxvlhzMzJczZtjM0/189zY04B+w8wi9XeRL+f2bAFX4b5hf8BmF+ab8b8H6N9gDfHfuLm2r5g83kH5kxXd272eTjv20s2fX8h5gXX6zDHEmfq6ysw0+nPxjyGd2yO+/JpmqywxmGapheNMX4X85z965jn/u9hdhv9yhGu4esxi0P/NWax3k9jfnH8EuZF1/thXkC+EcDnTNP0iiOcYzWmabpjjPFNmOf5lcYrML8IPwXpGQOAaZq+YYzxs5jD7+J5fA/mcfoBzOr0s5t9jzznDX4W88LiGZgzpb4N8yJ5ySK7VHwK5kXiay7zeVZjmqb7xxifjvk/oZdhE221+VQhv8d13jNjjL+F2fB4Nebn8LMxC4GP+1wvH3Mo+T/CBQPr9zEvBJfSZP9hbDM48f1FmN9LseD4S5j/038R5oXqzwL42Gma3p6OPYeZ4v88zOF8v4P5/4ev37AEGaegk3st4RcwuyWfhtn4+APMhus/XjowwmoaAmOOt34TgK+dpulrrnR/HgkYcw70r52m6SuvdF8alw9jjBcDeOI0TR9/pftypTHGeAPmiKTFF3KjcSVwKYzAIwpjjOsxx72/CrO47o9gVn7fh9nqazQa6/HVAP7bGONJD7Pv+6rCxup+PBJN3GhcbeiFwAWcxew/eiFmZfppzLTxX52mqQrtaDQahGmafnvMFTZVJM4h4XrMyXMuR3RGo3EsaNdAo9FoNBoHjKMkFGo0Go1Go/EIQS8EGo1Go9E4YPRCoNFoNBqNA8ZeigUf85jHTLfffjtOnpxDLaM2x4kTF9Y1sW3pcxdUx/Bvu7Tv9l2j3+B91pz3KNd+nG1En1Ub8Rtf17lz5y7aHt/z32fPnr3o+5vf/OZ3TtN0Uf792267bXqf93mfVWPr+ua+523HMca74Chz5VL2d7/l7W683D0+yrF5Hrh2d0Hct7e97W1bc+eGG26YbrllTS2e9efJf7t3E3+/XLqu43h3XO55/3C/V/n/ljXnf9Ob3rQ1d6527OVC4Pbbb8fXfd3X4aab5qyL1147l3yOhQEAXHfdXHvimmuuAQCcOjVf6qMe9SgAevEQNz9vy9/5Qc3n42N4O3+q9rgN/s8v/61ehKpN9Vucx11vdSxf15rzuT5Xx545c+aiY97znjk1+IMPzjlk7rvvQkK5+Pvd757zPt17770AgKc97WlbGfae+MQn4pWvfOVW+zE/8rVxf2Ohof7D4W187dULxL10qv84+b7Hd95ewbVf/YfKiy03RmpbfMbYP/TQQxd9j8+8b+zD3x944IGLPgHg/vvvl307Cp7//OdvzZ1bbrkFz3rWpWUj5vcRcOH9Ffc9fuNnjOcF/5335XlQjYVbiKh3WmxjI8y1lRHHuEX+pSC/i5eMPTVXA3F9sU+0e/31c0bkfN94DOLzKU95SpnZ82pEuwYajUaj0Thg7CUjMMa4aGXm9slwK+I11CJbztWK0612d2EE1liPzuqJVS6vbPO2vHrO++xCDTprRVGeS5Zm7iMf464zX8OuFkZlyee/3X1Wlhn3f2n+qWPd/VfWPt/ftefN+zhWSYGfAcfyKNaCrfm4d8EAKAvU/cYWb+47Mw3K4rvSUM8gX2P8tgtT594lFbuz5IrI2ytmU12fOpZRuTV3vXd5f+7jUdwVa45lBmefQ/GbEWg0Go1G44Cxl4xAYM2K2VnMserOK0nn53Ur9myNOP+XsybVtlhZVlqEJUusstDWsCJLYGuFxyZfHzMPrm/qvjl/fGXZOMujgrKKnRVQMULOCmHrm8+bz712vNRvS777DL4+Pq/CElumzhO/OW1AnDc+Q/+R+xjjyRai6g/rPq4mRqDyvy9Z2WssWvdsV3O12scd4xia6j3nnoG1vwOetax0LEcRiK/RSTCO8t652rD/V9BoNBqNRuPI6IVAo9FoNBoHjEeUa0BR6OwKiO1KUMR0tKPKlJAkwoJ436rPTgDFYSkVJexoUEUns4CoEl7x+Xj83PWp8Bpuq+oj94kpb75HCmvEgmvEe45aVGIuprl3oQtdf/leV7kTmEJXVKoTvfLvys3lXAN8neqYeNZibrhwwhw+GOGi7E6ozsfPtBLMXilU88GF1S69h9QxvE/lLt1FLMhw1PkaoTP3XbmXqrBU1Ua1bcnFq67DuWuq9/caF9vVimYEGo1Go9E4YOwlIzDGKFdmgGcEeLUdVgT/vbYfAbYEnWVYWZHcN7XCZGttF/FWwLEJytpea0UG1Jg4cRqHVlbXw31XIk/3nTFNUykkYvEmW11834DtpFZLbIi6Jv50AlBgWxC1xurl8XbWm7pv6l6pfdUxIQJ04X1qzJjhiGPjnqjny41jTjp0pcAsRWY/eGyXrPyMJQGeeofwb0sJrarfnMA6wzGO/P5RjFfMlfjc5Vl3zEZcd2Yvg9HdhengcVwKab+a0YxAo9FoNBoHjL1dwpw6dWrLWq18TLECZ0sqhyxx+FFgyWeXtzEjwJZLXjU6izOg/Iqub7skBXFjwxYb4HUTjpGoGAGnsVAsSZyXLcDKX742MdIYo7S23L3jz2AB8t/umqs+sUXEFjPPWdWus7Yqi2lpnqvfKp2EO5bv3S7hXHztVbIYZg+uRp8tv4eA7bDhpfS9ylJ3lrlqi5kA5+tW842xpG/Jf/NzyommMkvCTEC8p907WIUruue4Cql1bGWVKKk1Ao1Go9FoNPYae8kIhEXnVs7AhdUlrz55BR3q5Lwvr/TcKrQqWsGWbHzP0QW8iufVp7LqlpLxOMtJ9ZuZgFh15zHh39hK5fMqxoPHooq+4IIr0ZewuKuCMksRDQGlSVCaE7bUeEyjgFW+NrbqXV9UIhzHXqkIF8cAOOar6sNRkqYwU1RFnLjz8JjlMVmyzBTDFnMknrH4VMnDrjTyeGVWElg3Z9ZCKeTjby7MxudRxyxpkKp3Fms2+N2iik6thdqfmYDM4OXted+l66p0YfuM/b+CRqPRaDQaR8ZeMgIALmIE1IqfLdcl/1Ruh1d4rB1Qq162GmOVHavQNce4uFpVbGZtCsxKxcuWplrtx7XHKt7F8Sv/G5+HLTTVN9YG8HZ1zJoCK4GIOOGVvxrH2IdZClYYA9tWDavE8/kBHa3iNBtqHrjCOnwP2drjdlTfqpTGLpKhyu/A7XLfg/VRjAePJ7NZqtgMs3DB3OTS1VczjmL5O1SMELNWS6mOc9/WRvfk8zADEGWjL4WpUe9BZoScD19dpyt2VUXlMHO4j2hGoNFoNBqNA8beMgLTNG2t/FXUgFNgx7HZzxvWO8cwc/sqm59TxrMvs4qZdyp1xVq42FgXE5yh4oRVXwHPaHBcr1p1u3j1XaIjnG/6UsqOnjx5ckvzUDENbJGHZZnvC7fHfamsHraY45Oz6ym/K1t1rGtROgaXr4LLqSoriJ+FuO41OThYCc6K8Owr5+uL3zjyQOWTcJENVVTEPkBFW7jnxEUv5b/deFRRHY41qjIBOi3AUZgAfm/zOxvwuSbWXBfPq2BC1buRr1Wxb/uCZgQajUaj0Thg9EKg0Wg0Go0Dxt66BnJSGEV1M4XMRUuCUlJFclioxHR4lbbTCdcqUctS4ppMOblUxkxpKbEauzxYZBlt5PMx7aVElvn3HKIT+3JYF/cjU3VOBOeKRwHbxZqqVJ8xb1xRo9yfoAVD1MSiJxXuxHT7GuqUrz0QroHoh0oxHHCJjLJrIP5mqpTpfuWSiv7zPKhCHN0+QRFzGFlOBczhkOwCqZ5BV3TmanIJ7BK6xpRzvnYXTlslfuL7zu8b5U5YSm7kqHV1XfwOrtxyHHbNLgE1D9zzv0uSLxb1qrnDLq59DiPc3543Go1Go9G4ZOwlIzDGwDXXXLOTOINXlmylVsdwwg8V4sZWLkMloeHwFmWduj4urW5VKJArAlMVsGFLjy00th5yXzl8i4U9KqWxs/icSDEfowQ9jGmacO7cOZnWlNuLc7AgTlmw3E8Gi99U0Rm+h65YTz7GJaFSc9eFQzqrMh8b9z/uJYupOLw0/839j+8hulQMi2O4mFVSIji+X/z8XglE3yomMsDzma3finVZUwyI30X5nZR/V/3nd4VjCvJ7YOm5VAwEv6+vv/56ABeSIHFb6n3gBM3VMfz+jrHh50qdp4sONRqNRqPR2Evs5RImGIGq6AP/FqvqG2644aLvKhTHFaBwIUx5Gyct4TSeyu/G1iKHv6xZ7e6SIIctDrYqsgXlwhDZqlQplHkf9mPHvmqV7ZIr8X75N2UlMqZpwpkzZ7asRuXTZEaALVulK2BL2fnJ1bGcmIRDEtcUEOIkRHmcmMHgcEHWxOT9eW6wtc/PRr5WHuvQXLBWoLo+Dq1UjBczZ1eDzzbeN46RzNt2DYNV4DS+VcGqsHbjHbXL+Zm95JBqFWbnUnRXzyuHCzoGrHqPuxTuea4y4+FSqCvWgs+7j7jyT0qj0Wg0Go0rhr1kBIB5ZcY+z7xCi9VZrHbZMldJiJx6nlfsKiUqW1Ou9GW2slx5Vvc9t8cr8NiHfZB5TOI6OCqC+5hXvWw06kOHAAAgAElEQVSNRv/ZMuR7kdvhvlYphpXWILdbKejZD1uhsihc1ABbwcoCiGNijqzxTzsLhiM/lCaFrfoYA763wIUxZT9rfDLjkedqXA/7njlNsLouV1Qn+qMYCJd0JtpSVmtcF7NHSgdyueBSjPO8Vtod7rcr27wmIU51DL+bFFsJ6BTT3EZ8MrOmNAl8Pn7vVBoYfhZcka8MZtjYqlcMMr8XHIuq9r2ailrtimYEGo1Go9E4YOwlIzDGXHCIV9l5RR3bwkfH1r1SOfOKnPcJyzA+M9yKuUrXyn5+l3MgW7i8ymUrXqVO5utz8cIqaoF92jF+rPSO/e66666tMQhLjeP8qyInzOiw9ZitzDVplRkuJXS+ptB73HPPPQC2x0+NUxzDc8dZHPlvtgy5j3keMOvhrGyl2YhP9g2zVkD5bjn9MVtiSrvhrCtmhlR8vLOy+F7kPgWuhIXG88n53VWOhqWII9Z/5N9iPoS6nnVGKiW30/mosWcNDL9/XPSCAr9nlF/esR/8jChtSozFox/96IuuK8CsUv7bMbl8fmB77leFia52NCPQaDQajcYBY28ZgWuvvXarIE62KFgRG8wAryBVrDRblOwrjs9oMx8TbfB5VSy4y1TIegJVBGhtPK/yj3K8NceC59V87JuvNV9vlVXrXe9610XH3nrrrQC2i/bkY8Oi4etkNkHF8Ls8DIxpmras7GyN8P0ORoDVx6rokPP38r1WivyYM7FvjEXFnHDZVLZIVUlpfl5cZrtKX8LWvsqjwRYsMwMx9vGZz8/Ml7rfqs+74rizDrqcEOzLzv124x7jws+pYj55/Fljo1T1rnRwzIfMsCyxbpznQ2lu3HVW8feceySeyehbfFdzh6MSmD1Rzwb3mfuu5psr4rZPaEag0Wg0Go0Dxl4yAsC8+mJ1c14FhzXlsvfFCjCsvWgTAG666SYA21Zw+L9jRZm1AuGPCsRq9Pbbb7/oPHffffeqa8t9VZZgWAkutz3Hd6v2eQWrMhjGCpgzysX43nvvvQAujG8eE46yuOWWWwBcuF933nkngItzL7BFxT5v5U9mrUWlEQg2iS3pbN2fPn36om0uA2NlZbH/lZXxMX7AhTFzmgqOBAC2rWyXe13loGBLnPUGiiVhbY3rh/JFcwz4HXfccVEbcV1Z18LjxHPpuKyv42YEHNvCDEG2gpktynMD2GagKmvb1WTIz8SSP19Z/awRcpn4FJhxivnN/cngCBe+/3ysigCIdxO3GWOfx9nptDinh6rZcJR8D1cbmhFoNBqNRuOA0QuBRqPRaDQOGHvpGpimCQ8++OAW/ZopGhagcHpTLngCXKCOHvOYxwAAbrvttovayqFxfL6gvdglEdRW5b5gwQvTb5m6ZdEKp66tiioFVcbUOdPK2Z0Q/eZERXE+pvkyvcv04Y033njRpxInsjCOQ5qU8Ijp3aUyxNdcc80WZZr7wGMX11SFJ8aYhVsh2otjOWlPRoxh7MtuJkXhcgInl6Y2HxOuLi7gwlQ0i0dz3ziFNrtj8thH+zxu0Ra79lQZYu7bcUBR3sflImBBGt8fJVJml5ATqqlCUtxvTiSlhKacBpjnJCepUlh6D2WwCJaFjSoZGbui+Dr5WVfvfn5uOQlaPoaLC7HrULkd2X3Z4YONRqPRaDT2EnvJCADzCs2lxgS0iAS4sMKskqaE1RPWSKz0wlKLNioxTRzL4qFsQUcfOFyIxSe5j9x/Zy2EqCbYjdwuC8x45Z+vK6x3lzqVQ3HysXGt3EaMr7KwWdDDbI+y3GLfuOdVimFmBNQ1h+Uc/eZ7y2lV8/F8f1yIqyq568R7Skylkk1lKJFaXA+L9zgJVXwGuwFsW16csIpFnflvZituvvlmABfmqBpPtmz52VAJwdZCibtcApldwUwTJz1T7x1ndcYxLACs0twGmHmoCnu5+7AmDTKPvwqP5bBELszF1wJsM0/cd55/+fpd8amqkJljK1T73Be+T/uIZgQajUaj0Thg7C0jcOrUqTIBBluHawprxDGcQIaLtKgkJ1xKNvoW4YIqkQiHvXGfVGEkTlzDIYacjCj7WDlBSYwJ++ryapsLFLF1HNadKufL4xXhgnGf2P+njmH2IpCZDrZoqrKmY4zzrIDbl33YzNgElPXLFgXfY2VtuWQs3IYq6KRSSec28zHBCLhrZ01ExXjFfHCFufIxHNrKSWKUj5X91uy7jT7mcFU+xrEFFYtwqRoBtsQ5BFX5mpdYL2a88j1dKoVbsQi8D4fSVjoct109g5zkyCXmUmyMmle5fcWIcCIhZtqqBF3MGgQUY+R0TPuIZgQajUaj0Thg7C0jAGxbTkp9zpZEICzlqnzlUhGWrO5mXyAXx4k+ZsUvW4fsF2W1reoTJ8DgvivWgpMRVcV0nH8t2opxVNcX4JWyK0MKbPuC2XpQZYqrwk6MaZpw7ty5Lb98vrcxhpEAiQsfMUsCXLhuTjzCGgGVtIktVL4OVqDndtgiZJYnn4+ZAKcOj/NlPUuwLsEqOKu6Snbj5pDqB1unbHFyWubcTox93Is1TMFxWXP8HDhrX42TS4TFz4saJwdl/bqCQYw8JioxUW6L74ti2ly0krKo+XlhzYtjJnJ7bp6rhGoukRBHGFRagTXFzq5W7G/PG41Go9FoXDL2khEIP2+lrucVKVtIygrhFJi8Cl4TU8ptcax0tk44tSiXTlZqak6RHHCWu/LZs4XmCtfkv11ccqXQ577xNbBvPG9zZUHVfWPmpFLvRmpqvq5sWXNOCLY0lQXFGgm2tirWJcDWFfs4sx6ArURmolQ6Wi7ywveS9SaZTQhfPJcwDrBFlf9mHzBrH5QindPg8ngpS9dFgrB1p+7fcReMYX0EM1CK3WGGhLUVqjiUKza2Jv2t03BUUSrMSvDzqua3i7d36Zdzu1WqZHedlQZAXVM+3rGLSp/BzEozAo1Go9FoNPYSe8kIAPPqy1m4gF/lOp9dPp4tIl65qlKjvJIMa4fVw5UlyNqAyhfNSnJXFlTFq7sxYWagunb2v/F5c7vOClZWJCulXea6bPWzqnrJb3ru3DlrWeRzOSuEzwtcsNZV5rjcvpp3jvXgyIBshbs+co4G1V83ZxiKgeC8FayBUFEDfH+YrVBKbd7HRdaobWy9Vc/e5QI/H+4z/+2s34qJdAXEHEMJbOsY4h6y7igzQtwXp/vga8rtuAx8a7QP7nlVWWV5XzeO6hnhd7uLish/ryl2drVjf3veaDQajUbjktELgUaj0Wg0Dhh76xoAPOWT/2ba24WyAT6ZDYtnKgqIKbMqlS3vEyLBoOoixasSCwYcnagoQ07GwoWKlDCL6XYez11oNt63opP5+ti9UKWJ3UX4tabYjCtipKhMTiHMY6roaRcayWmpszCTXSch5qsoYicgq/rG5+Ma73zdik7mMWBRpwr/jfHj8MEq1JKFkjxXFI183CJBbpfPqdxNLj1wYEnIlvdxoYF53Fw4JbtUKjEdf1auL35+2BXBoYcKThRZgV2TfEzlimA3cTUmfG/3Ec0INBqNRqNxwNhLRmCMgZMnT26JNTJceF11TG5fHctQoYdKVJLbrJJmRIIittAqC52tBFfgI//NZW95ez6GRVu7WOhuFV+N/VJ4kLKKqpU+Y5omnD17diud8hohGYd35b6yII6t3yqZCc9NFpSpkDMWg3ICGyWcdCGgbrwqYZQr06qKv3CJ16VQS7UPswbqGO4Tp0FWzMPDDRVq5kLV3HtHiaIZVfhljC3P/UpI7d6JLnSuCq3mcMKKGVxiZVUyH/fOYKz5P2DN/wXNCDQajUaj0dhr7CUjAMwrM+cXi98Bn/KysgCdT2nNsS4Vplrlxz6cQCiSD63x3bJl5NJp5n3DIghLM9LHqrS1S6vqXXx1a45hy5qZDZXUh+/XUjnQc+fO2aJAqj0uF80WfAZb2S6Nr7K2OJEQMwL5mrm4FI+PsrLYP83pjpndUSFu8RmaBE5yo6w6LmLkmAHFXi0lH8phmjxn2AetrDxXXOa4wM/hmmdavc/ydqWF4u9sUee2OOx6zTPMfXDsAeusFPhdpdirJd2AY1EAz8pW7yE3FtXzxO24AmD7gGYEGo1Go9E4YOwlIxB+XpVG1YGtOWUJHoUBWIJb1QMXVpDxGRYMK86z1cMMg1MnqxUsW42sFajK3XKhojUqXre6rvxuzjquFOZVWl2FkydPWlU6sJ3yNcApoZV14JKMcFuKTeB2K59jMAHB5rjEJyoqhhO8uKiOfH3sV475kIta8fc4XzBezEAw01FpBLj8Nj8j+XxOr7PmPXFcSYeWEvDkfi/5tCsdBu+z1I98fPTFlfpV4PnNhdPY76/6H98dM5D7xudbc39cefeqcJGLeqieY6d12Ec0I9BoNBqNxgFjbxmBM2fOLPqCgW2rJywalaq2ionfFc6yzX4ktsTDumNmQPWRV71OCa6U5mzFcQpblb432mVmoBozp7x1fsV8bpeOVPkTHTuiMMZcrMrlQ1BYYmGqa3Rx5EeJ78/3LXJMBJg94BwEqk+uvK1KT8194PnHmoF8PP/Gz6RiQFwhpHhGlIUW7boICpcO93JiKT49w8Xku7ZyO3zvnM4l78OaIPfOyu25QkhHierhyAPFgLlcEG6/DKcrqhiBAOc+ULlEWDez5v+jqxXNCDQajUajccDYS0YgwCs8pYx1lrIqmlNltspQloXzMVVK7bCuwmJiv6/ynS75yipVsstPECvZm266CYAeEy6Eo3y0fF5nCVQK47VKdpWFbk1mwWmaME1T6ZddKoqzRpHPWOPnrZTewIV5kX9z81xZUC5Lmotwyfc2/Pnh7+f7ogr7MHuV+5/7oSxQ9zy5wkV5GzMAzLA9HGAtQJUF1elIHDO5JuqBz6/ejZzBkt+JihFwEQ0uOiIfw+2qCKC153OFi3bdl/u/xDjkMbma8lNcKpoRaDQajUbjgNELgUaj0Wg0Dhh76xo4d+7cFj2pUvEGWIhSheAwzcq/V6IdptmYjs2Cr6BKQ9zEIVlVUqC4vqBs+byKqmZXgEtGdPPNN29dV8DRemsKojjhnIJL8LFG1LdE0anENZVA1NHUqnCMCxd1dc7zb07UxvdNwSU7qhIXcd+r9MTxd8w3ThscczkXJYr+5vDX3FYlnOO+RVvskspjwvOaixs9HFgSGlfPdPV+yVgzXvyZ73ncQ37PuXdJbofHlsW2KjzS9Z+TBqmEcM7lUI0Bu0cYaju/19y7SokG17xDrnY0I9BoNBqNxgFjbxkBYHtVqIRKvIJdY40GlsJelJjGCXDi92wxucIxlXXN1q4rTKOsCxbi8ZioULpc+rbqhxJQun0YVbER/l6t9teEh03ThHPnzm0VqMlwY1iFSDlreg2jwXM02mDrN4eeuvAtx2blbSwKrJJeVf3Ox3Lip9x/vi4+VolGeYx5bqp74KzSNYzKccGJNdfMg6WwwSr1eZUMCrh47rjwXRfqCGzfuyrEOfcnH8vhdvwuzmJOJ7Z2wjw1d1zhNzX2igXhdhm7MjlXM5oRaDQajUbjgLG3jEDWCKgVLVs/vHpTiXCWGAAOf8kWdmxjP1tApb3kPnDKYeXjdGmCmYmItrNFz6k8+VP1XYUS5faZxVD7sJVchfk5TUKV7GaNTiGQkwnldlQ63aXUtLn/SwwTj4VKEhXakBhTtrJU+l6+h+y7VyGOLoyOx+++++7bOnccG8xWhL5GgqPcx+g/h8Xys+CeGdUnfiaURiD6GOdlzc3lhPORM1NThZ4uhRGqkFAOCa4S4rjQP04XrKx6N49dWt/cXswRLkal3t/MNDmLvWIilz5VO1XiL4ZLQ7yP2N+eNxqNRqPRuGTsJSMwTRcXHWLFNOBXdtXqmrfxSpVTcipGgNtj5XQ+hlN98uo+jsnpZHnF7wq6RFvZN8hjwQWFoo2clpZX4K7Ahkpk5BgBRlX22CVBUkmWdlGJs88xK9s5UQifZ01khLsetlpVv9215/7wveR7V2lhwgJ3OozoR2YEWMcSczIYgdg3z1VmvLhkcVwPs1oZbtw40ib3hRN0rU0UtoRgkyrGiZ8LfkdVfup8ngyeU4oRqPQDDGaROCVzlbSLmQa+l8qHz6xe3B9+/+W5ynPFpTJW7/U1zCDD6YF2+f9ije7sakUzAo1Go9FoHDD2khEIVLGyAV6t8YpWraDZH8WK/ColqouzVX5ZVuTz6lqVBebohLD4nW89g/3IfF2Vr479hhxXriwdZ3G6tKEZzq+nmAfethQ18NBDD231VymWXVx/lSaW++TGQJXcXYqyyN9VSl8AuOeeewDU958ZKGai2Meezxd+/rD8ed+cRpj7wLk04rysyQC25wg/E6qPcW7WBhwXxhi45pprdmqX73fle64iPtzvTk/Acyl/Z+0GMzaKQeFnzDF3FRvH0TA8NpmJ5Pe0SxXvIl8qrBl7p01QuRVUga99QzMCjUaj0WgcMPaSEZimCQ8++OB5y5bjVDOYCWCrtyrKwuVSl9S9wHJMuLI8WYHPVkNmDpwl7nzTqm8cn+6UuPlvNbb5WDUmrKZl636XokprLIA1/tfYjy2b7Gtm/QBb31WERMBZKEq5zH5V9qny3M194nnFlnqVwc5Zp0rH4NgCN6fy3/wMxjFhwVdZEJ31yM8V4DNzHhfGGLj22mvLSJm8r8ISWwV4v7h6xtiX7dixKieAa6NS17vPqqCPe/657YwlJX713uF2q7FnJsB9V/eVdTr7iGYEGo1Go9E4YOwtI3DmzJnSN7yU4UtZWa48K2sD2Iec++CU3mFFZB+qs8g5N3sGK2yDGXClNtUKluOFWbVeqV/ZenCRCAps6apSsmvz7StLl6MtHCK7YEb+zse7vAtVH/K58jWusVKZmQrmK49tnCesX7biQ8Wfr4XHlpkvN2cz4jpiHlc+4tjG7BX/rlgS/o2ZAZXRjnMdHDdCI1CVzw0wG1Yp/50yfelZy387TUB1X7hdFX3FYAbIXYOy0JnN5LwpSiOyFA1RWeiu7yoiwOWIWZOpc0nbsQ/Y3543Go1Go9G4ZPRCoNFoNBqNA8beugYeeuihMnWko21cSCDgi3GwYGRNqIoLe8twYWkshFLhg0zzxrEcvqOoepcchNMXA9vJdZwwRtFi7AoIMCWphHOucIy61xVd7ODaze0EWPipQvdc/3jOKFqyGo+MPMZ87yJJixOPZrA4Na6XCwcpESeHmHGK5irVK9/TqmiYmwcutW3uy+VETlFdidCWEtRUx7iSuMo1wGPshH+VayDAtHjuI+8b84/djNW7Md65HPqsRHZr6f01AkA3Rkoo7sa+EmpWKbL3Bc0INBqNRqNxwNhbRuDs2bNWmAV4sUmVcnhJYFiF6LkSwpxGMyPaYyEUW93qWC6jy+IWlfKYwyyddacElC4xSjWejulg60GJrliQV4UcOqGmwxhjS7CoGAHeh8+tEvy4FNNrhErOqlOWIFtTnGKYGYl8PAsNY+5Wgky+HmddqWeQ7x2PUSW+5PO5e8F/Xw4EG8Dpb9V8W8Pq8DYW67lS5uo8VQIhBr8H2PpWKcFdYh1+RyqWJPblRGbMECgGau13xSBw+G0laHTvfH6O1P8XLlndPqEZgUaj0Wg0Dhh7u4Q5e/bseUvm+uuv3/qdV39LiWrUMbxK5M/sd3M+K04JnK37WAGHf9dZGJWOga+DLTUVkuOOqfyWDBfep1bFPI67hI0xa6D6uEsZYndd+Rj2NbskUcoaXasjUdYdJ9zhvuZj2GcfzwAzNqpccyDmYsw/V/Qog+9zlYyKLSZn1bkEM/k3ZlbWsj+XAzy2laXu+ldpRJb800qHEViTBMslH+LxV+8OnouuYFq+7pgrLqW5mkuO3XFMQMUIuBBeVeRolzDFNYzNvmB/e95oNBqNRuOSsZeMQCSEYZV4traXir5UaWJdQo9A5Q936TvV9ziPSwqkfHVLmocqAQf3kccg+qFWtk71zEmBKp/0kkW4Zt+q6JBSuyucO3euvMfOmnMKdrcN8Pdjja+RLag8v1lXEP5XttirPrJfnxMIVWmcY1+V6pf3ZeuRWQT17Di2qroHDwdy1IAq0rM0xysLduk9syaBkduu5pvT/ShWi99FzgpWWhEX9eCipvjvDLc9g8fiKAwhb6+0PbuUgL5a0YxAo9FoNBoHjL1kBIB5lcexxJWK2zEDeRXHym4upMErvqwRCAuJrarKV8iqVl7JspWn+sArc76uNcVGqugIXvHz9TBDUKnG1yicl7Qc1XWtsRKDTaoU+a7/Li5ZwVl+zALlv50PNSxpFc3BpYWZMVGaDWbSnD9Zzbule6ju5ZLiPKDyPzhF+1HKzx4HTpw4cX5MVaElx7pV7x0+1kVbKN82b9tFk8DjzUxRvj9L+qXKP75kOVcFiyp9hGoj71O9MxhOP8Xvh8zKOYZjH9GMQKPRaDQaB4y9ZgRiRV5l+HK+ZeWXdNabiznP1n8UYXGZ1iqL2fkGFSPA1+Wys1V+Nz7GxdnmfR1rsKZAEfe1Uvm70qR8XSpT2lq/cdYIVJaMmw/q9+q3/DtnbwO246ndmKvIhl0sdLaiuc+cWVBZnkuRNEqnw/PAPa8q5wWf3/3+cOIo6vCla8+/BTjaQlnUjgng+5LHi99RLtOg8oczw+SK9CiNALfr5oXa10UcVZEU/I6v9BkMl9WxijSoGMKrHc0INBqNRqNxwOiFQKPRaDQaB4y9dA1M04Rpmmz61vy3E3op8Yuj/FxYn0pzG2AhTvQnh1nFPlyvPfrIArCqTwEWK6r0xNynKvSQKTJ2I1ThRExbukQmFa3H90sVmznuUDIn/nE0Zf5tqc1d0sRyKmCVWMoJ/VQBJnZtRbvsquEQQdU3djOo4jb8zPF1MPWt3D3V83o5sHQf197zo4gqdxUr521OLKxcd/G+ifHm9OgBda3sGnBhuEpw7AR56pgqJXeGEo0692L1DLrzcEivEgu6RGD7hGYEGo1Go9E4YOwlIwBcnGJYrQqd8MUl0cjHs8XH38PaitSswHaCFWfZZiuLw4+ceEuFJzlLoBIjMZaERnzu/J2ZgapMZ8CJklToz1Ja39wvZgmWwvpOnjxZJhRiS5XvqbIo+F45IZY6nyvCxJ9V+GAg2mBmKO/rwgarkDz+LeauK9kMbI8XixFdwqb89y4hYJcCZrwUpmmSrJNK/bwkUq7gxHPKymc2xc0zNb+ZxePkULmvPEfYCuZw7SodthuDfIwqhZy/VwJhVwCMsSbU1YXy5vY7fLDRaDQajcZeYy8ZgUgKE6vA8D0qi4KTWbj0msC2hexW5iqtqrNKecWez8eWkgvJWrPS5OREld/cXZ/yAy4lzWDLQIVjLhUQqfylfJ/UeWJs1TxQOHnypPVXKjhrTvlf3T3jY/MYu1S/zu+fty3pV/J1OmvKjXHuM2teeJ8qFJRZI7bY1Dgu+diPG8dVSpafE74fqv+OrQy4sML8mwtXrqxipwlQ/WCGie9tHKvG0aWYrp5BZlKcvki959ZqfKpwab4OFfZ7NYW0XiqaEWg0Go1G44Cxt4zAQw89dH4Fdt999wG4eNUayXhcusmAspjc90Dll2LrjZXZSvntfKnKYnLXwT5OpWTlvinrOl+LapfV6pz0KPc17odLWKSU4C46wFnLeVt8VkmOoh9V2lNnqaxRrrvfnLYi9yHuC/spFSPA+hJnIVURII4ZWlPymf3VnOo4/xZw1rZKQsPXfLmTtVSK8rzPyZMnt9i3/Lws6Usc0wFsW/ec+KeKVuFj+d2Rz8dzh/uiLGVmNCPygEsyx7HXXXfd+WNjTiwVZMv9cEl61mgultJhq/eqS/gVn3E9KmHWLvqPqxXNCDQajUajccDYW0bgwQcf3GIEsoo/VnAuZlmtOJcK7LhVvtqXY3SVNRm/xSqTffS8PR/P1ghfp7o+ZU2r61GpRcPyZ+U3R19kq0/1P+9b5Udgyzb6ruLjI73zmqiBQFUa17EufA93UQk7jUpuh5XLnHsi95H1FzzvFCvCbAQXM4rvStXP8433WaPUZpaqSs3qtDbHbXU5C3pp/7xvnvPMjLk5o5g6FyvP80NFZqiCTRmVle+uWV0XfzrlfGaveK5yX1RRraX7XVn9jgWu7jWzsMF4xHsvMxyuD/uMZgQajUaj0Thg7CUjAMyrS1aLBzMAADfccAMA7zNnyxqofVbqWLWidDoDlREv2gmLlvtRWSd8PvbVKmWu82Xxql4pY51vsCrMw1Y997HSWvBYc9x6tjhi/Nb46kIfUJXEXYoLVudZUmlXRWCYTXK6jKpMa6AqVOX6z/OM2azcBx4b94zkfV02yjXMwFHyY+wCfj8sFdE6ceLE1rjlktIqf4NCxQhUeT2Ai+cOR07x81PNGdY6rImHZwbI7atYC37nxvZgcqsoHKf4V8fwM83zUN3reOdxAbB4nlTejiUtwj6hGYFGo9FoNA4Ye8kITNMkLcLMCMQKOVZ07MN0SlbAr/Qqf3j4kFw+dxXj7lS7bF2uKXvK6l1edav+sz+M28jbuB5CjGvlW3WxwMyO5POxRoAtHWaB8vFLvtb47dSpU9ZPnq+pUs+rdlUf1hzLeSk4osFpLYDlKAW1bxVZkJHvKWsE+F5WcBkMK+ubx23NedZC5cFXZWbdsdG3eAYy+Pl3bIvyv7voAJc9FNiOTuK6AUqP4/Qq1XkCjtVxfc7b+Hnie5rvuWMc2bpniz2fm1kDjgTIzCczAtGu0hAF+F53HoFGo9FoNBp7iV4INBqNRqNxwNhb18BDDz20lXTk7rvvPr/PTTfdBGCb4nEhTNFu/uQCMiyuyeDSnlzKlUPBcvucjCOgXAJVqF++TvW7C59xqY3z3zGON954I4B1RYcCTDFyCKAaEx4bLuqUXQNLFDcjEsMA21Rgvpb4ZLpVjS1T2Rxm6fZT7TGlWY1t9N+VBVb3n0Wb1TF8PSy0YheUopP53nGq4eq+XQ6RoGovwNEAACAASURBVKKE1yQUiv2YJs7957nIdLEaJ5dymd8z6lhOpsXzTblUop2YO841oAoV8bPh5qwaEze/lNjOldd2Imkl+naJ2WLfLPLk/x/ifcBjVP1/wQW49gnNCDQajUajccDYW0bgzJkzW9bH6dOnz/8dwkFe2am0oAxe7brQMJXgJT7DYmUhXj6vE8+sKYnKaYLZSlErWF6R8+pdCefi7xBDsjjHpavNcKGAKgSJS+XyvnFfc8hl7BP9X0r0k606Fj8C2+KiuJdrVvzOumWWSSVc4e/unuZ2XDEgnh/5eJcEhtkYFeoa4DFS52OBJzMAlRjWpVC+FCiRmCs765DTUyuwBbkGrpAOn0eF27pQ4IqhcRZs1Wf3nlkq8KOOcUWVqgRtTsC9hmFzycNUcigOH1xTGMmxMfuEZgQajUaj0Thg7C0joFa6eYUb7MD1118PYNuiVdadC7nJFgSgE++w/5NX0Co8yaX6XVMQh602Z+VlsOXFK2YVihNg33D2r+XzVSE0bOXxd2B7dR2/RdKRYAJy4hbnh63Auox8zTxHXIlXVSSF++DSq6rU1nx/uI/5HGyBLxVryn/zXHTHqsQ1zNAwc6P0HqwRiH7E86MYAaUfOSrYysvPLVuL/KxnjDFKzU0+F18rP4/q+XRMwJpiUOwH53u4JlkTn1e9d5a0FFWhtKXzZ4t66XxrQqv52WbWJ99rfvfxsYq9ZCb3OFirK4VmBBqNRqPROGDsJSPgkK3E8OuGBcnq80BeUTofqlP1ZsTKMc7D2gCVdIJXws6HpfxtbDEtJQnJ7fAqm1W01Srb+QiV1RpwkQDKX87XxfeRv+d21iD0JWwVZ4aDx2GNX9Qprnks+V7ndrhdjjjJcGySSmXNx3DiIle4SFn33H6lWl9iZvgalP/1UqIFWMfAinBgWyPCTBf3L/7lPqooG7Ykq1LCfI2ccInHQo0Ja16YoVS6AldkTbGXPK+r4mbufAy+LlV0iN+JTs9UMTXMPPG8UO25qIhqjnaK4Uaj0Wg0GnuJRxQjoOJQw3KMTxc7C2yXYWVr3qX85L/zeVxKTmDbInbnUatdTonJq/k1hWrYd7bG78Z9Yt+3ih92n8qvzBZmRAkwo5OZHeXTrnD27Nkty0LNA/5UaZsDS0V4qggAvnfOr6vui5szqggW6wk4P0LFCCyV01XzjX9jq6qyqC5FgR3n4Ugh/gQuMAGcMtsh65MUM+gs5ooxc/qBNdoXF2HC/n51X/g9wO+D3GaVYyB/X5Pmm49hK7zqm2MEVIphZhOYCVDXx/O4ir7gObo2j8nViGYEGo1Go9E4YDyiGIEMLsIRqnP2AaqMVGy9s29RWfeu2AivZFUsOGdac1qFDF7dOv9/pYFYyhKWz8P9575WVh37l12uAODCfYv7xUWH+Htubw2macLZs2etxQZ4RoCjCdR5WQvi/OAq4oCPZQuwijRgBkCxVjzP2KrnY5XF6zQQaiyqvARLxx7F3+rKzlZRMbFtqdhQ7leVYdIVvKnupbvfjhnM+zkdAf+u/P0u01+Ve4DnqIvvr8bEfSoLndlKx+6oAln8Dq6OcX3ke6O0DypCZ9/QjECj0Wg0GgeMXgg0Go1Go3HAeMS6BlyKYQ7rq1K98j5VgRWmkFwIoKKEuUY5i5EUvev6rGgvhnMNKHcCt++KHqm0pU4c6ELQgAvUf3xyUhreflQo6jzAhYhY1OhStGY4KlgJwZbSNFciwYCbu0qUyGGDro+KTub7z59VumiXZEmF4R0FPPf5fCqRzFFEbpU7zFHagUoEuTRnlCCT3Tkcrqjadu4j55qs4J4jNXfcO0m55/hdxPfOhQjmfdktUglpub2lZGKAd4/uI5oRaDQajUbjgPGIZQRiFX3PPfcA2BZ8xScnGAK2V8IurEqlYA3wyrVaZYcFGn2pwtTYMuN9K2uFhYVryhDzed326HvFCOwiFozPypI+KsYYNgFT/A5cSE/N4Xbxma0QTgfM98mlns7HLKESGLJFq9p0c5DbqtiSan4tHcPf16TdXUK+FhYHLokHjwIVjpnBVjuL+VS/naXsioSpFOBLz6diarjPTqyo+u3uYTXvqrBo/s7jx/eOE4HlMVGlkNd8V9dTJWbi/weaEWg0Go1Go7GXeMQyAgEOHwwrL7ZXviz2ncV2LqKijnXb84qTV/qxuq0SrfCK2IXiKKuHf3PfVf9dEhj24auwPmYCmD1QCYW49O9xMAHAfI0nT54stRt8z1hnovySfKwLt+L91D58XxSLsKbUcv5U18pzJK6H530+35LlWVlFl8OXmsfEhZqtSbJ1FLC1CPgiYHxvM5w/n8OUVb/5XcXHcunnvM/SHFJpkN27qUqc5kKQq/ePYyv5XanSortn2zEf6pr5PqkU9cxodtGhRqPRaDQae4lHPCMQuPfeewFcYAQ4EgDYXjlyspFKQerSqFZ+KZf8x6VxzfvwedgyqKIGXAIRVRAlwBYB6ybYj56PcSVrVbrgNQVwLhVZI8B9zX+z9cGpSVViF05THaisOmdJVBEiS0xNlfKX92X9hUuGpM5bbXeW7S5wz5NKQsPbnH+50mQs6TXGGHbM8zk4GVkwXLE9Fz5y2hxnZav3QYATmDEjkfvr3jeKTXIRDNxXNcbuPVcl+HHpgDm1epUwyTEB6h4zY8fvfC6Clo/ZJeLkakUzAo1Go9FoHDAOhhHg2O/QDCj/Hls7vGJVfrdYqbI1VVlBbKlw+VGlVHX+TRcJUIF9z0r9ytbIUuEglXaZ92HtQF5lu8gCFd1xFDAboO6li0OP48IayfeFGRh335V17JTYjinK/Wbriq0hpStwFj/neVBRMdxH3lcxAktjUflsHUtVMQJLWpij9iX242dAsW9OE6DKUHM0TxW9A+gIABchUWmTnN5nTeSH267ui4vrrwoHcd4ALpXO706lZ3B6LaU3cnOGj1HHRh+Pk7V8uNGMQKPRaDQaB4yDYQTYGuKY/fy3s6p4dV/F23MegfiuLEHXvtq+5IeqcgKwFceMQ8Ve8LGsDVArZs4C6PIKqEgDV6jmuMDWj4pH50yCrohJ7qfzfzrNQD6GrY9KV+AiDaq4fm6Xx4DvabZw+Lc198X5k9dEDyjWJbe1xhftLGx1zFpGIF+XgvO7B1REhtMirfE5O992gDUD+W+n+1Fj4DQoTruh2FJXDGhNKXBXjrjSTbgInur+cSQQs5gq10FrBBqNRqPRaOw1eiHQaDQajcYB42BcA4Eq3M1RpkzncegKUCd/yb9nuBSrXHxI0VFMe65JG8qUnyuaocKhlgoG8e/5bxcSqERpTpxzXMk6pmmuJ+9CpvLfnJSlEp8xTcjJiOKeKtGjuzaXkEn1kduq0qfyM8BCWkX/L4lfq9DTtTSyCh+L36JvLDirxILcruqbc8s5jDG2+qRS/qqwvbw99yXmhBPCVa4iR9nzeXIfI4Sa26hcA85l4sZNudpiX35/sos0H8Phgy4UtUqHzEXd4r5lN4AT+1ahoru4k652NCPQaDQajcYB4+AYARZC5VVhiNtcOFccEytqlRQk2ou2eBWqwrmcWCyQV91OfLRLARdmOHhlm1e4HALoGAFVHtiFI3Hooeq3u87jwhohntuurNGAY2jYKlUsyFI41xoxJ4ualMXGjIALK6zSIDuhVJVch8e6Sv3Lx/I+aux5H76Pqh8sFq3m2Rhzempm/VTBG+43z4f8nZ+pJStYMYSOGeBrz8ewSI/br9idpXA7VVTJJXxSjJATUjuGMH93842LhVVJ19YwkGsSFe0LmhFoNBqNRuOAcXCMQFXMhkOi2HIOBkCFvTGUbw644B/L7btwHk70k7EUAlQlUXEWprLg+VpdmmAV7ue0B1WSDqfPOE5M07RllVTWb8AVQsnHsJXBlkzMocyGcJiiGye+hvy5JpzPWY/8Xc2PJa2Gmm/K0sv77OKfd2Gxa8o58zOQxyqex7VWXZ47ShsQ4HFirY2aO0vJeaq5uhRyWPn94xhXOr1qfyn5kdqnCnEOOJaSnwXFILo5yuOokhC5d2MVjh04rsJoVwLNCDQajUajccAY+6h4HGO8A8D/vNL9aFz1eL9pmm7PG3ruNFai507jqNiaO1c79nIh0Gg0Go1G43jQroFGo9FoNA4YvRBoNBqNRuOA0QuBRqPRaDQOGL0QaDQajUbjgLGXeQRuvPHG6dZbb92KXc5xvUsxqyrzWhV7r3CpQstd83fvsu8u+cKPch1rjlk6X9WGy3a3S+2Bt771re9k9e7NN988PeEJTzhSydcq7zj3e5c8CFXp4KXtx3lPLwW7nO9SMrBV5W65XVf+WIHv12//9m9vzZ1476y5t0cphczYZfvStV9q1rul98xxvLOO0saaebdLuy4bpbrnbt83v/nNW3PnasdeLgRuueUWPOc5zzmfAOOWW24BANx6663n97nhhhvkJ6cHVoUu4jd+eKukE1WqVfVd7esKFlUT2dVTV2lCXbGZ6j8213/3gKhkRG4fldSJExPdddddAID77rsPAHD33XcDAO69997zx0RSI37pfumXfulWqNd7v/d743u+53tw8803AwCuu+46AHXxmujT/ffff9H5cgGhuJb3vOc9F/3mFi7qheKKXqmkKW4uVveUj3Fzh8ehgkoKpa4xY5fFlysgxEWdgO2a9Vxbvkq6xNfxmZ/5mVtz55ZbbsGzn/3sVYlj4tz8/ontuW/RX5dymcdLpeJ1KZhVIhyXfvq4Fw8Bl0q4WhxVBpuCuj63SKmSrLmidPHs5znERbpi30//9E/fuxDTdg00Go1Go3HA2EtGYJomnDlzZqu8ZcYSdVxRPbHq45Sea1bMjhmoVrZLq97cR5d601l3x0URL1Fx1e9LqV8rui1SwMaKfE160Oqaxxi47rrrzjMBYZllt9LSGKvzuAJLqsiQu+ZdroP76gr85HHaZU46uBSsioFy17H0jKg+ue95XF0RGU4FrFLnrmUpdi2H7VwZqsASW8xrXJXuHlZzaMmddBxMQG5jiUFR74617IRKu3yUee3Gr7pvsS2YgOMqlX4l0IxAo9FoNBoHjL1kBAKVleXgivPk9tjqqUqf8rldsYo1fv41lie3w2Vh1Qp5qc/uO7BcmnSpWEe1bzUmrjCNso6qEq+q3Uc96lHnmYBgHLLV6LQMzpcP+KJMruSvspwDbgwvtaiJs7J4TNWzsaRjUFqIpZLSldXHvzl2Lvts2fLn64t7nseRn8+qkNA0TasZNmdJKp896x5cMSa13fnSdxU+KyjWakmAqaz7tX2ohNvcBv+ujl3SClTPEx+jyotze80INBqNRqPR2Ev0QqDRaDQajQPGXrsGAoqWZhqNw4OY7s3HMw3kaLZKLMj7VLXXHXW2hqp3qCjMo4SpORptjcCNaeNqX74uJwjNbppdY9ivueaa88eHayC350LieJxUKNEDDzxw0Se3pdwKS66BNULMJdHY0ra8XYUeujwOMQZqzFxIlnOB5evmkDoOCYxj8rPjBJtMHyva+igCszVwLoHsgmD3lHMRrKHBd3lXBZae7Xz8WiGrEkO6T77e6jd3nUd5r8YzC2yHlvJ1VmN/Ke6XqwX7fwWNRqPRaDSOjEcEI8BWft7GlgwzAUr84VbPa8RtDpxEI29zyVLWtBdgNkNdHwvZ2IpTVh1bfmtFQxlscfDqW1kPAR6bNUzHEk6cOLElFlT3li1ZTnaUEwpFIqEIc4zPNZkRl5iHNfOOLU01l9mqc3NF9dFZ/m4u8fG7gtk4Fvop1oLHgNkDJQQ87jDbpb5E2Gp85r9jH2ZBKhHhruGPwDbzt0bQusuzlfuat8X18Hcl2HVMEL8f1Ht3KQybBdb5GPcsPpKsf4VH5lU1Go1Go9FYhUcEI6D8/bGy42QPsa+y0FUSloxdwt/YklW+Qbfyz2lTXbsczsfhVNHHbLW60DZOmat8Z5xOk1GtlNlaYes4Ww/ss+cV+nH4cscYW+loM5x2gq3gYAGACwxAbONUwzzmmRVZk66ZwfOJrSvFLjmdBVuGqo/Rf/683FDzOCPPxxiTGAP3nCp9iQt1PCqYcWImIFIOq305yRVbwyotumMXlf6Cn2k3N1Xq76Vx4nea2sbXG++7/N7jMeC07wylZ3BMXnxXfXTXp9JT81jvM5oRaDQajUbjgLHXjACrkpUFw1YBr96qAh7sS+VoArVidlDWPvsN2ZJZk0Ak4JJlhHoduDAmYV2xwl0V1nB+RHd9eWXuKvzxPcjni36z734pbfCu4L5UqXEdE5CtVB5LHusomnRcFicXOuH7E+OnUvA6q4oZonxfuIjSlQIzEfneRx/j/oTVzcmCFHOoEsYcBWzt8ic/68CFdwLvy1axKqbkWAMuuKT0U6xnYaYgvzsCKloD2B5jVQmWrfsoABf3KY9J9N9FReyiUeJ9FOPG940ZkDVpnvdZP7C/PW80Go1Go3HJ2GtGwCmX8za2INgqyivnpVSrFSPgYvOZkVCMQKzE47vymQViVe1854FoM1b7wIUVPlt3vD1bumwV8/VUvnb2W7tyx0qdHP3n62JL5yiYpmmL5VGMAPfF+f3zvi5WPvqtrKzjhMtjsWbfSiNwpZkABxV9EWMcLAyXms7PFUcnXGoeAef3ZsV8laOB+1Tl3+Bt/BwqK5VzaDCb5NL65m0ulbrCklWvIpx2nW95TJTGIfdZnc/l7uDv+Tr5+dlnrUAzAo1Go9FoHDD2mhHg1XC2YJbi3lXcKK92nXJUZZYL6yO2sV9M9fHGG2/c2lZdJ6BVuep6os1sgbKynS1f9nMDXmsRlk70h9mM/JvLeaDyP6h+52MqBmItctQAt5/7wz7U2KeK7uDxCPYgrK/wi1ZRA2zRrMlg6fQYmUFxFhmf57hj6tcizxO+HtbLKF81R87EPL/33nsvakOp7h0DtQZ5jDkngLOu83yLfrJvnq9dRQ2wroD3UQwaP/cuskWxLUtFxpjFyNtcHo4475qxdxEPVV4OHvtKK7OkD1PXddzZKK8EmhFoNBqNRuOA0QuBRqPRaDQOGHvtGggo2p2pHaayFf3PoWtB4zK1rcLH+LelJDrABQow6Mk4X3zn3zNcwZY4hr/nvrGAkpMvKdqa+xhujfjk8Kj8N98fPo9Kuxz7MC0fyLR8nJuvXWGMcRGVp+aBE1Uy/RpjkY/hYkOcwEoJ8RicBKtK+cr7xnmib5kaZvErU+mKeubrCxcYuw84sU3exhRs3DtOAazuiwulVc88p1fmeR3XoFwQfN41iOvKc57TBEdfWIhbievYVRPXqFwbHHrISZU4FDHvw0nW2A2oXHY8h3jeBaqkRzEGp0+fvuh6q9TmnKiLBeKKnndjwyLmDJ6zKrw44Aqk7SOaEWg0Go1G44Cxv0sY6FAc/o0to2ol65J/cAiQEhrefffdAC4Ik1iwwslOMthyib7efPPNF/U1/80W5S7lbjkUhoWVVbKTGM9HP/rRF/VRWR4xXnHNbLGvKSEan2GJqnTSXJDGpaON46ZpOn/NKskMi/X4/isxFTNPbGVzgqS4ntxO/BYsCDMnKqTKiWJjTBQj4NpwxWGAbYuPE/Gwla/6wHMojlWCL8ecuJDH3J4LoVTiVEbF1DCbpEpkcyIpl/hGJTVy4Zs85/PzyamLY6xjjHnMAX8vmQlQIbXuma2E20tiQBW2zMLmYA9U0jO+pvg73lExNi4dN+DTPDNzo96nVbjlvmB/e95oNBqNRuOSsdeMAFtZeYW3tLJTPu3YN1Je8qpa+UED0U6sQjn0LJBXlNE+h6GF5RzsQljdwPaqnVfolbXDlkcgjn3MYx6z1Z+45riu6PNjH/tYAMBNN90EYNsPB2zrFDhFb4zNPffcc/4YDm1kfzZfd8bahB7nzp3bsmBUEiWeO+yvzlYdJ2epCt3w70cphcuhXtHX0GwwAwbUCVVU26r/fO1VKVlmGKJvzEipucspoNlKVuGRLvyXz6cs3TX6kmiLxy8/T3wtrDNRjJ5LfrYmqQ4nB4rPeIfxuwzQcwPYfrfkPnI4It87Zssy4je+dg7TrUKdnVZIgbUnTmOhGAFmVOJd6MoU5+u7UmG3x4FmBBqNRqPROGDsNSMQq8OwNLKVyKtOV/QjlwONbayEd1ZPPl+0w74sVrtmhiD6wpaaK1yT4YoM8e/ZymCrh1e/qiBKbON9gj0ItkKpa3klHn3kYip5HGOf7EMHtq3YfP3MGqzx1cW5VTEd5ytXyVK43y5ZEidPydfHLIhLqpThIgviPqmIF1ZgswXKKnKVTpX9oVWiHLYiOdU0q+Ira4t1IE6tnvdh9kD5t5nhWJPci+eiKuzE95v97sddxpmteU5wlrVJHNnA97IquevSEFdJdZgJiHnN2qHcR962xARkZpe1G26eq3cVX98uCcz2ObFQMwKNRqPRaBww9pIRCPUur+bDpw5cWCHGapCVyiqGlFf6bHWxZZ6/OwuNfZ1VWsvYh+Ods8WhfKO571wYqVrdM0vClnr+O9p797vfDeDCWN91110XnT/7yYI1iPZdn/L5glnhokm8Yld+3sBSYaJpmqxfFti2IJ3FpFgJ9k8GQ8SlnrP1E9vYNxvHsGYhb3PzIaAKubC1yhEtzOTkYzlaIMD5EoBtvzGXYo42lH+eWStVqpbB94fV8CpPwlLK3IzMBrj22HLmsT6KH5nzFajIHGagOM4+z3On9+C5VBU9c5oBxXi4saiKxsUzwSwR3//oY2Z2uQ/8XbGXHNnABeFUDgfWDl2thbnWoBmBRqPRaDQOGHvJCADzaixWb2F15RUsZ8TjVa7y+cQxd955J4Bt6yfU7WEN55U5r8RDZR9WcaVYZuV3rG5VlAL7SJml4FV86B2A7RwGcT7WKuQ+Ol9njAWr7rMG4pZbbgEA3HrrrQC8TiNb1qo8NFDHk7NVX2kEgg2IOcOK5ur4yh/OSuxo/x3veAcA4J3vfCeAC1axyvjIzBDf23zNPI+Z8VKWu4tXd5nlqlK5XNpXZaMLxLUGmxTXy4xBvl7WpsR543mK50uxCKziZnYuW5VcxKvKQcFQEUmse+A8D7sg2mJ9Tr7muBaXc0LdS6fdYQs3+925vLLzh7OWI/eXGQDWQuVj+P3MORR4HmZGgJkAvk6VYTKuPcYxfnM5CHL7rrDdPqEZgUaj0Wg0Dhh7ywicO3duy/+frZGwvGKlyNacUirHCi+suQDrDcLqVepjXpnzsdnS5cgFXk0r/z7vw6tqd535GD5vlSecIynimpkRiGMy6xDjyKxCnDesu7ya52yOcf7Yl9tW17ykMFbWmbqXTlGuyvXGtYVm4o477gCwXQo3MlDmqIG4L2HlhtUR80yVPeZIFrbmYszzMWwlBmJOcW2LbP04y5aZLqX85n3ZUs95JLivMTdivNh3HGOm+sb+c3X9XBNgKWpAHZPnH2fT3KV2ASPajbmudAwu2oHfR6of/N7kLJEZHJkTc4atbvVs8fg75klZ6Mzu8PtPxfDHvGNmlSOEMvvDc57fwUpbxoxA5xFoNBqNRqOxl+iFQKPRaDQaB4y9dA1EGA9TZSp5DlNMQfkExaiEPkwNBy0eNBF/z30I6oqL8gQUVR9peqPdoJE5VA+4QJ27YjMsvMrivegjpx2NNuOYnI409o2+xRgHVR9Ud1z3E57whPPHMp3GaZdVCF/8xiGHTGNWRVuqRDzRLxZzqQI7PL9YqJnHNu7Vu971rova5VClmIchpMznVoLSDBWmxt9dCmpgOzyQRVUubWxGzBGmQWPMFbUe7XMa3KCgufgQ4NPgxj4x75Rwjo/lxDJqfFUJbkaELLPAMFPpym20K+KZ4zmjxGgcEhfPJbsm8jPBrkBXpCnff04KFdfMfQyo0GrnzlJupegTp3lfI+6Mffg9xyXiq7TiPIfUs8mhoi0WbDQajUajsZfYS0YgwJZEtn5YzBKrQV6NZvEHh6jEqpdDpbLFzMfG+Ti8SVkPHL7HghUlBOJVZxzLDAinK87t8qqaw/nymDCTErj99tsBXGAKwjrO1gVfF6dbVlYkJ58JcPhnvtdryvUy4txVQh62lFigmRkBDgGMcYm+sSBUMVGqXUALojhBFVu56v6z9cgFfdjCyePoivKwBaySHjFLxfOMCzapvvC4xjNYWWFO4KjYJGZ71oDfE/l4vqaqXS6Cw4mKKqaI3yv8zHEyJbWNUw6z9Z33dX1jFiELgDlclFONB/K9dOwRC/SqktncNy4kpOYBX2fsywLR/Pc+MwGBZgQajUaj0Thg7CUjMMbAiRMnzq9+w4ee/a6cqjYsTA6dU+l0eTXNTIAKrwmwNcrWVT4fr7w5PJGT3sS1508+ljUD+Vjeh8OpVFgNJy7ipCzuO5877xN+zLhvStvB52frLu9XJbNROHHihC1Rm/92KX+Vnzws1ZgbbAXHXFVlj/la2YJh33feJ+BCsZhdyHBFmlQxnSWft2JUmG3hxDGuZLM6li1NtmLV9bhCOfladkkPO02T3E8VrOJ3Bd9bVfCGn0dm8FSBJZcynedBVTSH2TYeY9UHfr9UqYCZHeExUama3bPM84Hfgxn8HPOcygmT+BlwrEKVYnif0YxAo9FoNBoHjL1lBK677rqt9KPZUo+/eQXJPlq1wmOlt/O/KutgqVxrPh/rF2LFHMrzsOYiRW9un1kL7pPyj7Jugi1pdV0ufSZbL6qo0pI6Oe6fUidzJAiv6rM/WY2twxgDp06dskr5fG4ufOTKOOdzu0RPLvIgnyf6wIwTR77k87HV6JK35P6ydeMsdjW/Xfpl9m/na3RziDULKtW0858rFoHnJBeAit+zOl2dewlqbANx79i3XEU4BZjt4z6pZ4w1Gvwu4Xme9+U0ulV58KXxqZKS8TMd35kVU+9GfhZ536qYG88HnvdVYil+vhR7xvd0zfvnakUzAo1Go9FoHDD2lhE4deqUVb3mv12xoarsKFsQLjWqiinllWpYMioWq1UBzwAAIABJREFUmP3voWOIT16x59+4YEuAFcZVngQXR65iqZ0lxmOilN9sBfPqO0dhsGUT4LHKVrPzqSqMMXDttdduFRfJYIuP4+7VWDhLgr+rMrrMerCVo8pD87wKBqJKp8v9dv5PxVrwvVyyoDKYJXEMm7K2XJlgxVqwdezmXz6G9R67+HurY/j55/lbpbl2xZLUnHX95TFWFjPrGNaUSme4HAQZHPPPugI1jvwOdkynes/xvOZPVbCN9QNHYRwuJZ30lUYzAo1Go9FoHDD2khEA5tVYWBjKB8lWj/NhKZW7sz6czy7/7bJnKSuLC/WELzpWvbfddtvWdfP1MGvBeQuUL9IV6eESn/k3/uQ21vjpq2It3A5bwxz3ny1PPndl1Y0xcM0115SWIF8rzy/FfrA1wPdhTZw6jwf7avP8Y5U+W04qSoWtdZcTQMWt8zPAFpuynFjb4LQIFfg8LqNi/psZL6dsz9dYaQ+W+qbA7fAcVdEO7txV5jpu17WlxolZUpdNT/XFWeTqeXLzmn9Xc9XleXCMUd6H52R1j7ldznVQHaMiQfYNzQg0Go1Go3HA6IVAo9FoNBoHjL10DUzThIceemhLPJPpIUc/BThEMP/NSTqYflIUE9NPTGWp4ja8D9eDDzGPqpvNFCO7CpSY0F0HX0MW77FIJ+BosIq+dPuqtpxYZ41rQCXryecMsSlQF8lx1LkaE6bTWXBY1S53lGX13SWFYuFkFlXyHGEKmMPKqhSsHAan7gu7VDj5lBMN5vPw+Xh8K2Ebu2eUqKtKGKPaPXny5E5unopm531du5Wb09He1fkCnECtcq2tHf8qOZRzZ/Kn6suSiyDDpUF2bkdgW8zthKD53lTuiX1DMwKNRqPRaBww9poRiBVYpKxVq2Be6bliJsCyeKla/S4lTwnrUYVXcerauB4lSuPws7VFQHI7nNKUU3HmcMVYNTsLt1qZ85hXxV94m7MewsLNIkh3HQ6RkArQ5WyXUtU6lkT9xuOlitC4ELkqwYxjBFgIlu+lC3Ny58nznectFxRS5aFdON8a8ZYTCVZJXDj8lS1t3i+D2QqFYAQCuyRc4vbzeHLKXRf6VzGRS+F9VeEyZkcrYRwnv2LRqhpzFgPGe47ZSzV3XD+q9w634ZiBfC9ZmOtCxhVroeb+vqEZgUaj0Wg0Dhh7yQgA8wqNQ5dUgZ0oB+zCeTKc5Vr1YenYKrFHrK4jfJCTkKiQKWfdsE9dXUNYhzE2kZyIi41ki5otGBcmpKyZpbHga8jn5tV29D36rLQdLh0pI1t2yoJxxVCcvzr/7QrrMJugwp3Ub8CF+5PnASdWYetHFYEKOGunCp3jksVsOavUucyk7MIMsK/eaXBUyJkLh63SfKuiSQ5cWEr100H5w/n6XZIexQw5nzanD1epn3mOOO1QPoYZAWYeFevE7+kYPw7/XtJn5POsYcv4WDf/1DWzHqi6r1VK7n1BMwKNRqPRaBww9pIRmKbpolWf8r+7RC7xPftOc7sZuySIYGvKKWNzm1URm7xdKbGXEvoo64Kt+jj/u9/97ot+DxYl94GtZLYq1crcWejKKgqwlcL+tzVszVLxj2matiznXK6X+10VVsptAl7d7BKWqH3ddVR+XucPzXDJoZbS+eZtcZ5gsbjErNJuLD1Haj44n63Tb6j2mOlQxXSYQVtTypp1GCo17lKaclVAail6pJr7zB6qomMBPo9LG70mKoJZGHUMW8o8fir1tCub7OZBvqc8fu7dUTFg7r6pe610P/uGZgQajUaj0Thg7CUjwFAKUpd2lkvLZmagWtXmNhWWYoCVxcH+Vi4/qwoVMSPgUqRWlqFL3xkK+uz/DXbAxRFzv9SKmeFU8blvYXHydSnryFmADpFLALiQMyG3d/r0aQDb1qFSqqu2FZw1ns/t2J5QWSuLma13vrdKV+DSxPIcrbQWXEiImYHcb54HfH1qXB0L41Ir52OYVYpjuAR53mdN3D33V0UAcL92ST+7NNcrRsAVjHJRTMB2DgjWX+TzcUln9x5Q18lznpkZ1p/kdl2Z6KVnXO27yzGu70qvxams9xHNCDQajUajccDYyyVMWHRswSi/a3wu+Z6BbavAxb1X6l1ewYZVpFbKN95440XfeXWt4ms5B4BTnKuiQ+z34oxi8fs999xz/piwBDjLomMIlNXifIRKkcsrbxdBoRT7lfWTz33q1KktXYaKt3flh5Vf0pVHdX2qLFCnN1DjFKj0BAE3Z/j5WVMUKPrIym/FWgTDwn110Ri5vaVcFBkqKiB/r9ikav7mPp05c2brmHzNPGZu3lZjy+OyRs3P95bnWx5bnhtLBYuq39z5qlwE/DxxhBCwXXLZRcGsyRbJ26scBMy+uAyH6jpaI9BoNBqNRmMv0QuBRqPRaDQOGHvpGgBmOoapGCUcChosqKaggKvCKkvpK9kNkP+uRGHAhaQ9+e+gTqOvXLe9Ck9iQRt/z/SYK8bDCZnyON57770ALi5ElPvKdKtKzMPjya4JJRZkWo9DjNR5XM36jHANMPWnqFMujuOS9+RrUr+pa1cuG1egSCXPCfB85mtQ26K9mA8xti4dsmqfr6sK4Y0+hgDUuTxUIakl4Zx6Nli85drKv/G1u2sN90Buv0qi5UIy83iuEbeqttT53POYn30W4jHYZZj/dp+V68slsIp+KBEnu1TZVbjGTbsEldSLz8dpqzOOIgi9WtGMQKPRaDQaB4y9ZQSACyvJagXLAhtexalVMbMFTiij2ARe9fJqtyrxG8dGGl21cmerkK18XrlmyzmYhwidDLEih1nl8EEeP7aynPAot+esFiUA4nZdgh6V+GWXFTmHoam5w4xAJQBk4ZML0Yt+K2GUS2bDFhWwbW27pCZ5frAIMOZBMAJOiApsz2NmbqpQQx4bF3KmBHRVIqZ8/rwv95WfdfXMr7Hqxhg4ceLE1nOrLNmAS12s3h0Ml95W9ZHZkLin8ZkTZjmGhMcnvwdcCKZL8KSeDRaYsqBagQulxfXxu39NuuBAJRJcYqAq9mef0YxAo9FoNBoHjL1kBKZpwtmzZ6VvKeCK/cQKMla7+dglTUAVksPnYb+7Yi3C8mcrMVL+BnKYIVtI7Kvn/XLoVlgFnISI+5ZZhxin+OTUzGyxZ6t2bSidas9pLdhqze2uKfoRc8dZ/cCyP7RKMcx9ifFgq18llnLMSfQts0nxN5d2DT88z4/8N1uLXBZWgTUA3NcqUZK6ZwrV8+R0O3ku8fxdk5bYJcZyOHny5Ba7o8IRnSWpWB+XrtuFpamCPmwx8z2uwus4WZNKcKYKX8V45DZU4idmi3heKGvbhVvyODIzkPvkUjere7z0jlL/B6x5n+0LmhFoNBqNRuOAsZeMAKNKgBFwlkTlL+RjeQWYV73cXvzG7ccKPf8dVhxbaCqyIVa3bAEy81CVxmS/7poUnOwj5O3Rn9wGpzB1kRRVEiJWPSv/9VKkBmOapq3IAKV2d8rouObKVxvtO4spn28p2Uz0MY+98xvHOCnNgLNK1/g6XfIu1kRUSY/WniOD56b7zH+7xE9rUvUuoYpMAraTzDjLUrXDY+gSnKnzMSPAz0+V/IyfgV2YL6fDUPObowRccjJ1Hhchpn7naA5+B1fJjgIu4VfFWuwzmhFoNBqNRuOAsdeMwBrL0qlAq5Uyf7oVXz4fr4hdqc+w4IEL1ltW5+bvnC4Y8Gp6lwMh+/TZkmXlt/LDuvLGAafUzljyDSufrYt5r+Lj12CaJpw7d85GQwDb7Afnd+DxU9t438q37RB9DP9s9tnG8aH74LhrzpOQ+8bz+VJ8nGGBKmZtiaFZo+Z2OhZlte7iE2asKZkccyeg9uUCUa4PymfP3x3ro3QfuxQbWtKiVKybs5QrXQPH5ld5SxzcXOJnM+/D7VfRBG68KhaJ7/Eu76GrDc0INBqNRqNxwNhrRsAptYF6dQvspiB1vsZ8Pl4JO6WsWinHCjmiA2I7K8BdO7kNvj4ubZyP5ZwEYd3lY1xcv7N4VPywiwTga8p94IyQrDBWqvsqHj2f68EHH9yyjpX/3UV+KCuY9432XBa9ymfLOhOV34F986zdUBacY7yWohbyb7GN547SzfAzsZTZUlmvS7kAlLbD+darZ93lcNgVrlCVO2/ex71fKl+6KzZU5R6Iv7NeCdi+p+q5jHeDm29VNtSl7H35eeL564r/qGc++sDahyrXQWApZ4x6Jlx+jH1CMwKNRqPRaBww9poRCFTWNvucWSmv8rez9cEWjVrBch/Y71b56u6++24A25afyt7nVvwuz77KkxD95pwAqo+chS7g/LFVe3wvAvm+8X2KMec4fKW6rq6Dz1fpP9hC42uNOaNy8bsogaqEsfNdcrRAnm+sG4i6FZVfntkW5zuv9AXOilMWOp/XPSNqTNgyW5MTYCmPQEC9J44rJpwZKxcxk6+V9Q+uD0pv4vzv3B/VJj9jcWzMKcW2xG+RxyI+K5bP6ZnWRDbxfHIZNKuMfzyfq3eVY3ACVc6afc402IxAo9FoNBoHjF4INBqNRqNxwNhr1wBTMlXqTRZ0KGqYqV9XDKYKlXKhKormj3aj1G/sEzSvCktxiTUCnAJWhRpx/4Pe4xS0qv9LiZkqVwT3WQl9ODVv9IW3q2OckDIjkglVVOaSME2NI1O07rOitAMu1WsuYR37OEpYldUN8Sl/MnWv7lv0xYkiFb3P7TBtznOpcpe4hC9KsMnfq3Bgvm/HRe9y2Cu7BlQxIjeH+Hc1v3k+8PUo9xu3y+87VXyMxbtV0bGAcwnyu1KFgvLcqVyRfD18vjWJ09h1U80P3taugUaj0Wg0GnuJvWYEWAiTV70s1uHQL5Wshy3wJVFVtkp5JcwldtlCyH9Hv4MZCGFeHJstdCdCjPOxoFH1l8ct2mdxZP6bkx65tvJ4skXowqPy9fE4cfEUZek6AZFCMAJVSOOSEI4/8/FOAMfWg7o/XBArrDwVssX3w4kUFbvDx0T7qgBTgIu7qNTMuU1g+/kJcaoLK81wgk23H7BeWFiFtl2qWJDhQsoq8R73u7I0XUhcVazJhUdzn1WCHLZ+HSOg7pdLqlSNuWPW3HxQ52NRYiUadOnkqxLZa8KWr3Y0I9BoNBqNxgFjrxkBlzYY2F5dO6u0CiVh67MKQ2HLnI+Jz2yhcRni8Nnec889F/VVJTtxBZA4PXG12mY9AZcczufmdtgKVxqIGKew7vl8KnyImQAOH+TP3Ie1yKlilQ+VtSJsSShGgPdxVofyUzq/O1vd+RinceA+57nDbBgnLqrC7By74xK+qGt256t831XYpepz3sdZkUpzUzE1xwG+xtwHp5VgC7OyhjlJWGWtrtWvVCGoTlOhng0X0lyxMdwHZ6mrecHvJH7fVPfYvS+rZFScRGof0YxAo9FoNBoHjL1mBNjHmFfZYU25crbKCuKIgqUUn1UpWV6JRxu56BCvJJkZUP4pTkvsNAiVdRX9fvSjH31R35SPK37j9LBL6UKrseDvuW0eCzdGKmrAfWeMMazfENhmLtiS5XKqapsrQFIxAswAcGIclfLVJcSJ8+f55nQWbGmqaBV+BlySoOqanV+3KtbiIjiUdsBZc5VafCk173FjDXvl0qGrIj2uvTVKdmaa1hTN4Weax09Z3SrJVD6G+5zb4dTm7nryODgGwkWRVH3ivin91C4apasVzQg0Go1Go3HA2GtGIOD82MC2RevSTwK+kIbzMeVVLyukWVWrVotuRamiBQIulbDTBOTvS/7WSqXsVPbMUCg1P+sH+LozI8DbmBlgCyFvWxvPO03TFrOgfKgBzh+gLDNmApbU3Kp9Z6koFfdS+VmlSTl9+vRF2/hYl841w/mRVR6JgLsv1Zi4fVlHoRiBpXGsdAzHHTUQ4DGo0uoGXLRDpeZnP7W6HmaaHAtSxcy7yIbKcnZtVKp7xQDmY1TOC/fMOWZA9dFpFCq20TEf+4BmBBqNRqPROGDs7xImIVaNeUUW28JycKrTDF4NujjnqnCIi5FWbbHPPuK5OQY4w/mPOXqgWu27IjrK0nVqardSVpYA+9bZslHKdldsSFkIu/jmpmnC2bNnt5iAqmgJWxZqnDjboGNfqhhm1iuwLiP3i8eOGRqlSYn8FFxAitkDpU1x1jZrbTKrxvs6pkZli2Pmy7E0a8osO0s04+Hy71bn5rnhYtlV1MNSiedKxc+MlGJwXA4Ax7Ko98AS81BlhmVLnI/JBdRc1s2KtXLzjOfFGpZsH9GMQKPRaDQaB4xeCDQajUajccB4RLgGVBga1/hmKmlNbWonUFEiJ1fIgymzoP9zH4PKuummmwBcoHtD3KXozwCLZViwUqUL5nC16FslvHHjxqK+fD4eA6a1VSEmJxZ0BUXWYpomPPjgg1sCRhUK6ChUFSLlQpM49DBQ0aDONVGFLjnxYHa78Lg7Krique6oUi7qpdpz6YKVG8sluakSNjmBJvcnw4ktrwSWBIsVhe6gEkvxnOfPXVwnTjxYFTlyrlcVHsvvAb7HLOTN2xg8d1TIoXsmqtDqy5We+uFEMwKNRqPRaBwwHhGMQCAzAq5gDFtSqmwqrwrZGlKWDac05k9lbQeiDDCvlLlISz6eLUBmF5QlwGK3YAT4etT5AtFHtiqV8I+FRC6MUB3jwgYvtcDHNE144IEHttI357TKbDG5MCSVEnXJglVhXmwRsfWjrDFmCdiCqtI3s7XjzqssdL6nfB9U6Vq2wBzjodiyJUZK3YNdrDsep8udJnZN6u+lFMn5vqx9DvKYLwkLFTPg3o1rikMthY+qZ4LFwSFkjfPEu7FK976UYEq9+5f6rETFD1cyqsuJ/e15o9FoNBqNS8YjihHIcIUg2CrNK1jWD/B2toIr370rrJL9V+xXZd8zl34FtleoKkWuut68D5e5rRKMsA+O+8ppa/N4c1/d9Sp/IicWUsWGjoJz587h/vvv32JWlP/d6UmUZeZK3/K+zKAA25a4Sx+tLEF3XyqfN1surE1QVqbT2jCUr5YZAW5rTdKbJcZF/eag2Ji4Zg6tPG6oUDqXBIwZPIXY9yjPxdrEO2rfAB8T7xSlY1iao+o9EOdzpbnjU4VHOgZvTXikY4NVSO0+MwGB/b+CRqPRaDQaR8YjlhGIVT9bZGzJVMUxODkQswv5O1sw4cOKFWt8z+dnC9n5zvNq1fnIeQXNiWby+dg/Hn2LVXe+Li4LzBEazAjkvrLlx9ar8se6FbhKt3wUhEaAtRSKEXA+QLZ0828ueQlHHFQpWLnNKoERMyWs0FZqcR5b52euCjsxlBXutAjMDKgyy846rXQajhFgpkMVU4ptl5sRCKjEYjxO7LNXDAGXHWefunrGqnHPbeU+sp6ILWjWKFWJd/g83Ebel9/J3PcqSRA/i3zeir10Be3yc+D+v9hH7G/PG41Go9FoXDIesYxAICwltzpUK2YXo8oWVRVzfN999wG4sJKOyIAcT86WXnxyGWLFWjh/K7MYeQXLTADrJVRMLq+e2RfJ/uVsXTDjwf5xFTcflkz8dlxMQODcuXN48MEHz7erLKesXs9gVkn5UCuLFdCx+qzVcP7wDM79EKjyYwTYylE5ABy4b2ytqkI1HGngIlEUw8JMm3uO8z4upbF6JnieXaoG5ShwvnI31mp+sg6jKvUdYB0TW/2ZEeD7zM+yY8DUsa6AWaVNWbq3GU7rxeOb33M8f13xsyo64UrmoLhUNCPQaDQajcYB4xHPCMTqL6xsXlXnlXKsSHllzL5FpTR3ClJehVZKcy7+oqwfXjWzlRN9V5ngOJIixsCVBc2/OcUvW/UqSmGpz3ll7jQJx4Vz587h9OnT5/sZ8yIX5wnNxFLGvWwdOH+rmw+KOXGWsvI9MvPAzE0cG0yU2tdlh1SRKM5Xz31X94vniou+UHPHnWdNHgFXLCyzPzHPgsG7EoxAgHObOI1KZgRcVkAeA5Xxk/eJd4fKrOqYGXdP1fx2xccCa8pDc9+U756LZ7kIABU14KKi4nse+zWZK/cFzQg0Go1Go3HAeMQzAgFXxjJnQmNLiFeSbtWY4Xy0Ku7aZRBzWbzUb1Us7v/f3tkst43EQBiU4kt8znnf/7H2vKdUOVWpshPtCQnc7MYMbSqRzP4uSmSJHP6INegBGnUf7DuqhSlbX8ZjRec/tv6L+ReYK8DWL1Uuwl6kIpDjfHp6ioiIz58/r8YwapvL1B312tUwJyMFgq2/Yw+DGQVK5Zd0mdi5H4z8MYpk4G9i5A1Q/83yB9T7aq1WuS/W91IRemsPiz0YRa6svj/Vq3xFZYpFzKodeJfvoRQh/E1jDlP9rGqRzu53vIZK+cqIvSp6rJdAHWvXehwVFMynYmP6CHycIzHGGGPMZjwRMMYYYw7MYZYGEpTFmGlGmopkYoiS0hj4mS1SPcpvKMfWz+TfUMZGib4zylHtdtn+mJzGjqH+HWU11SKX2e1ei58/f8b3799/XeuUFGuZIpYM1eWjiH5pAOX1LrktUecWE7QquV00jlIJUvXfmBSYdMlOKjFKtU5m41bnokv8m7UNrmMYNVViJktMQkeWZYnz+bx7AiuS40O7XpVkFzE24Kljxus/c67VMqZqKNUlfuJY2fXH55haiugSW5UNNnsfkw+xeRf7Dc40kLoXrAgYY4wxB+ZwikDCIlicZeJMTyXGVFTCTWdCk6jkk27GiTN1FRmyMeEr20++l+oIqhcZUTPbTtweRl9o6hOxf7kgcrlc4vn5eRUBZPlYRMTj4+OrceWxqxKtiPW1U+VWXWKcStpj0b1KSkTLWWb5zMxR2HHVY8L7SiXmMZUEUb+rmviIY+hKDXGMytKYqXQzSkAd08PDw9Xv0URZjzOVR7VB79QkpZgwMNIfJUOzkufcBtoQs9JbvN6jVsZ1f8ySm32XjZ+plGx/lZECcQ9YETDGGGMOzGEVAQbOqnFmiWv3bAabERlGZmyGqYxVlF1t3R7OdlWr3DrGnO1iic9MuaKKBHANso4119mUMVPXGOWa1ONjzWZSHciSQjyOmbVUbMKiDHLqeHJ7WArGFKquDLFun7VNVQpTl1+gjlMpIRFaQVFWumwsW1QyPE9YHssacW2J7jNHYIsl83vAtXxmxYvqDlqqo0JZUdE2M9xBJVCpiOyeYblOEdpSm20Pc1E6a3N8Bqo8FmY1jSWGmKvA9vMRsCJgjDHGHBgrAgWczaKpDWbI1jVN1R4ToyBm9Zmg8tCtX+L+ZqI4lfHffU6NEaMTtn6Ja494Dv60EpAsy7JaE6yGJPlvbPGb17tba8SIH6Nh1sI4yb+lIqAUo4i1GZOqPKio3BZlOctyIPAVj5MpArgNpUR1hkJKtWL3Gx4XrvvW+27ruu75fJZr0Hujxs8suXEsOEb2rEI60yv1HMD7gWXxK9UAryHLL2LPlfpZFu3PKBx1rKPt1fGw47rn3IDEioAxxhhzYKwINORsW9ln1pmuqvlWmcwR69mnsg/uIiVcZ8MIgGV+K8vXbu1bzZi7jGycVV+rtfAWMvMbcwPqTD/fS2UgG/dgjgVjFDmz6B4z/lX71E5FSDrfCvSgSFRtttoOgzVOwu+o/zNFQEWtSZdzg1Ek5gbUc4T5HyNFpSoC+d1rN5tB/4N6zZUXQ+d9gs8qpdB0yuCImfVzFe3Xsaj9K0Wygn/Dc8OOb5QbwI7rI/gJWBEwxhhjDowVgQlwVs3WeVVmrIqg679VVM2iHtU4RnkSdK6EM+u8uD/1isfLxsSynv80y7LE6XRanduqUqDboGrO1EXJeC4xCsOovH5GXcsZRzlsQ11Rmd/IFofBka9A3d+o2RBTvlSDJNZUCSM+5RrYZd13ak/uLz+T/hL13rmGOoB5LF0FAP6WmVKnnh2jCqH6t1nfDPZZtY3OBXXkDcG2g6953bvqEVQCOv+PzkPj3rjfkRtjjDHm3XgiYIwxxhwYLw1soJP9UEpS5XysJAclTZSgKyirj2R2JtGlnIYliCxhCkvm0NCoM/boGjz9LS6XS7y8vKzGVkuXMDkLmycx+XPUQ15J+BFjq+mu2Yyy4sUS1Iq6DjNW00rW76x/8bvYTGfG0hjfZ+dCmc7gvcrKB1kSJzuOunTQNdq6xhJBLkGw66MalbHGWfhbxnuza6qlDMs6CX2UNMqeYUreV03dmMyP3+kSC/F64XnsDIW6pMd7wYqAMcYYc2CsCGwAE4tYdI8GPxgN1SgSZ7XXLj/BmSsmFOXYmdGPShpUSTxsv1375j/F5XKJHz9+rI6RtaZNZSbLCTHBj50ndY7zu5lgxpKOMPLH5LYaOeF5x+i3M9zpomq27Qid2NdZDI9aMXeR4ki1YJ/DY0eznbxeneI2iuRPp9NKSatjwGfDngpB7qfaYaO5GT53WPIoRv4qoZWZ54yaQLHnHG4jUfcw+wxG8zONmDBJcEahVInUTBHA629FwBhjjDF3iRWBN5ARRS0bykgvZ+A4M8YWsxHrtUssH2MR59bSuxpldbPbOka2Tjq737pNVb71N8kcAWwwxSJLvM4qT6J+H6MOLEdK++AaMaHShNEO259SDfBcd4pAZzqDjJoczTQOwvuqKz0cNUhK6jlReR/q3DBGpZMs0q3fUUZIrIzvrdT9ZUkhK4mL6PNZEPwsU3eUYZYyOqvjVYpUl++hniHqeOt7IwWC3W/4jMTXmmuBKuktPN/eihUBY4wx5sBYEXgH2a424vfaEmaFY6OiLjMa1YNUGVjkqaoRusZIah0RZ87M7AbHr6oXmCJwazPll5eX1hgpo42np6eIiHh8fIyIPut4lDuRzFjx4rVk68yjfALWoAarILqGURGvr6Vai55BNXBJWLXKqOkQq6RQtrNMUUG2WAx35kN4rKiyYUS7F7nd+kzKMdfXOhZ87QynZq9314hHNSzD+5K9h/dzZ+6lmicpK+X6b2UkxFQSrMJyjoAxxhhj7hIrAu+gzpJzJo5rhKkMdDWv53HdAAAD/klEQVTaqATg7LvOlNVnVP0zaz+KUcqWem7V/KNbN78lLpdLPD8/ryIA1ogGo5BuXTIZ2Ztihjb7LI6jWydX+5mpr1a5AgmrI9/TE0LVs0doK+OuSgVzO1BZ6XIgZo4nfQRUs576b/V7YSrCnupA7v/bt2+v/s/anysVi6k+6h5V/gGdUpN0ikBeQ9VCWrVBjvj9zMXvKgW2fh8VAVVFwI7VTYeMMcYYc5dYEdgJjCJRIWBZpwlmsGO0w2ahXRRft8GqBtR6KJvNY7SI+8Nt3Fo+gKI7jqwSwHX3jDDy712DGlXvzNZaVV16RiO47l/fUxEy8x5QeSVqXZuBUXb3XbV9Fd3XexX3M1MDjsfetZ1VxzWK6s7n86/fcNfOFuv4EaZ+dP4GbyWfQ6wxEroO5v7z/0xNxMqmrnFUoq5d5/io1Dh0+WTnF/0j1LOyPldHVRFd06GuSdO9YEXAGGOMOTCeCBhjjDEHxksDO4PmM2kHyuQ2TETJ15S2mIUpysZoRqQSAOtnMKGxK3lT5U8q4YglNt4a1RiGLYckatmDJZ3hMoE6p515T24j/zazNLDFzGSU3NT9f3b5gJVkjcyBmNw/KlNlpamshLV+Vm2zjqGTd5dliYeHh1WpcN0eXtcsAUY6Y6K9SwsjXo/x69evr8aGr3l89VmlGhONbKPrvlWpK7Mgx+cJXjO0Tmb3HY49YcmQqqQaS0Xr7xyXdL00YIwxxpi7xIrAzuQMNmf8mazDEqIwisSSFfYdjG5who5RZNcOFBOxZiKmZEsy3K2hrGIRPBaMZNh1UedJlffleCK4aUn9To2YsJW0svNlSWlYCjiy/lXbq7DrPvqOsoCNWJ8nZd7CkiFVUhoaNI3Gz8Z7Pp9b1U2pKmktzRQhPD/XtqzF5kWpQOYrPofqeyO7aHatVckx3tfMDhuvCzZ1w2tbx4K/cXxmMlUOm4TlZ5lKgtf/Hp59CisCxhhjzIGxIrAzGI1gQ5kKlr7M2AQnqhQsmVmvUs05uigLI1+1hnfLnE4naf2bf49YR+admQ2zZWV0uQi4TokKQY22VP4ARtCs2QyqRXi/dYqAWkNlEeFsjsCMMY+y5mXnE68THm/93WHJ3qjp0KdPn1YqD4uCsSQPr0dtJYztv3OtnhntXANlT1zvna5FcYVd4y0lrrhv3J9SeWbUq04tw8+ofCr2nOhaL98LVgSMMcaYA7Pc47rGsiz/RcS/f3sc5ub553K5fKlv+N4xk/jeMW9lde/cOnc5ETDGGGPMPnhpwBhjjDkwnggYY4wxB8YTAWOMMebAeCJgjDHGHBhPBIwxxpgD44mAMcYYc2A8ETDGGGMOjCcCxhhjzIHxRMAYY4w5MP8Dh807kZdPCrEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3058,7 +734,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu0bflV1/ld59x7695KvW5Sj5CCEBDEVtTWFhUxEGyIQCCgIKBGiO8HIGiro9ugJIiNDx7taLRRkJcQRBTRBgVCN1EQGkGDjR2QIKmkklSl3rmVVNV9nLP6j7W/58zz2XP+9t63bpIRz/yOccY+e+211u+xfmut+Z3PaZ5nNRqNRqPx3zr23t8daDQajUbjfYF+4TUajUbjVKBfeI1Go9E4FegXXqPRaDROBfqF12g0Go1TgX7hNRqNRuNU4LpeeNM0vXKapnmapo+4UR2Zpun10zS9/kad7/2FaZpespqbl7wX23jlNE1/5L11/sYY0zR92TRNv/f90O6LVmsr+/uqG9zW3jRNr87W8TRNXzVN01o80zRN56Zp+uJpmn5ymqZ3TdN0eZqmX5mm6R9O0/TfJ/tPq9/naZpedoP7/0mDuYp/33yD2vv01fl+yw0630unafryZPtHr9r5nBvRzo3ANE1fMk3Tm6ZpemaapjdO0/TKLY/7muKafOd7q69n3lsnbrxX8Uot1+5b3s/9OK34Mkk/Ien73k/tf7Wkf4ltb7vBbexJ+orV/6/ftPM0TbdK+iFJv0nSN0r6KknvkfSRkl4h6XWS7sJhL5b0Yav/v0DSDz7bTgf8e0kfG75/sKTvXfUrtvPQDWrvJ1bt/cINOt9LJX2xlv5G/NdVO790g9p5Vpim6c9J+hpJr5H0byW9TNK3TtN0MM/zP9riFFckfQK2PXxje3mMfuE1Gh94+JV5nv+f93cngP9d0v8g6ePnef73Yfu/kfTN0zT9nuSYL5R0VcsL9eXTNN0xz/MTN6Iz8zxfknQ0R0Eb9V+3mbtpmiZJZ+Z5vrple0/E9t5bmOf56fdFO9tgmqYLkl4t6Rvnef7K1ebXT9P0oZK+epqm75rn+XDDaeb36Vqe53nnPy0MY5b0EWHb67VIOZ8k6T9KekrSf5b0e5LjP1/SL0q6LOn/k/R7Vse/HvvdpUVafPtq31+U9CeKvny8pO+X9G5Jj0r6u5IuYN+bJf1NSW/WIlm8WdKrJO2FfV6yOt/LJX2DpEdWf98p6Y6kf6+VdEnSE5K+Q9JnrY5/Cfb9vVoW6lOrfb9X0guxz32rdj5fi6T4Hkk/K+l3Yp5n/L2ec5z08+9Jun81j/dL+keSbgr7fIqkn5L0tKR3rebyo3AeX+NPkfRzq33fIOm3aRGe/ldJD0h6TNK3SXpOOPZFq77+GUlfp0WyfkrSD0h6Edo5q0WyvW91ne5bfT+bnO9PSvrKVbtPSPo/JX1wMgd/QtJ/kvTM6nr+Q0nPxT7zqp0/u1obT2p5YP86XCPO/7etfvvVkv75amzPSHrr6jqfuZ77LBmDx/zHNuz3pau19thqTn5S0qdgnzOS/rqkXwlz8hOSfsfqN45xlvTlq2O/SsuDyuf6EEnXJP1vO4zlZi33zb9YradZ0p+8EfNUtPcRqzZeWfz+iJZnzRdJetNqPJ+8+u1vrdb7k6tr+yOSfjOO//TV+X9L2PazWljvy1Zr76nV56du6OvXJHP/7tVvH736/jlh/3+q5dn4cVqY7dOS3ijpf5Q0SfrLWu55P3cuor1zWtj8m7Q8H96mRYtwdkM/P3XVl4/F9s9Ybf+YLcb5zBbX7ndK+jFJj6/m8Jclfe11rYPrXDyvVP7Ce0DLC+wVq0X8utXCift9kqRDLQ+ml63O9dbVsa8P+90m6b+sfvvjq+P+tqQDSV+S9OWtqwl8qaQv1/Kg/Dbc4D+u5WX4ZavF8CotN/vXhv1esjrfm7VIrS+V9CWrRfTtmIcf13LTfrGk361FxXi/8MKT9KdW275F0qdJ+jwtL7Q3S7o17HefpLdI+hlJn6PlJnrDaqHesdrn12oRKP6TpN+++vu1g2t1cbWQH5X051bj/v2S/rHbXl2rg9X1ermkP7BaVA9LuhfX+EFJP6/lpfzpWm6sd0r6JknfupqHL9Miuf+tcOyLVnNwf7j2f3h13X9JJ19mr9Wybr5yNf+vXp3vtcn57lvt/6laGMMjWhec/sbq+K9dne8PaxGiflrSftjP5/vh1Tx8zuoa/bJWLy0tKrsHtDzIPP+/avXbm7Q8cD5bi5rmD2gRYM5dz32WXEuP+U9oWc9Hf9jv6yT9kdW1/hRJ/4eWe+6Twz5foeUB/iWrvr5c0l+T9LLV7x+3auubwzjvXf3GF94XrPb9XTuM5Q+ujvlsSfuS3iHp392IeSra2+aF93Yt99bnannefOjqt+9Y9fclq3n651qeBx8Zjq9eeG+T9P9quec+VYva7xklQlk47oWSvkvLy8dz/zGr36oX3mNanr1fsGrnZ1bX9+9oecl9qhbh8ClJ3xKOnbSox5+U9L+sxv3ntRCHb98wp39h1Zdbsf3DV9u/cMPxX7Nalw9qef68Wcs9fy7sc6eOBaOXSfrE1dr+hutaB9e5eF6p/IV3FYvg7tVA/nLY9u+0PCQjq/rtAlOR9FdWC+Mj0fY3rRbnGfTlG7Hfq1Zt/+rV9z+02u/jk/2uSLp79f0lq/34cvuGVX+m1fdPXu33+djvXyu88CTdooUxfQv2+7BVu18Wtt2nRYq5GLb9ltX5/gDm+ie2vFZfuZqH3zTY52e1PKzPoH9XJX1dco0/PGx7+ap/P4pzfp+kN4fvL1rtx2vvB+sfxQ39apzvy1fbfwPO93rs55vwBWG/A0l/Ffu53c8K2+bVPMSX7+estv8OXKfvxPnuXO338uu5p7a8lh5z9peySC22uDOS/m9J/yxs/yFJ/2TQllneq5Pf+MJ71WrfX7XDWH5Ey0P63Or7316d4yO3PceOc7fNC+9dAvtJ9tvXwojeJumvh+3VC+9pSR+SXMM/u6GdlP2ofuHNCqxTC1OftQjMU9j+DyQ9Gb6bpf1etPMnN10PLRqda8n2O1bH/rkNY/xjkv4nLS/Z363l5XxN0veHfV6yOteHj8617d+NDkt40zzPb/KXeZ4f0qICeKEkTdO0L+ljJP3TOeh250WHex/O9SlaJPA3T9N0xn9apO/naWE6Ef8E3/+xlpv9t4bzvUXST+J8P6JFhfbbcTwN6D8v6SZJ96y+f6yWB+k/S9qN+FgtbPW70O79WtQQH4/9f2qe58fRrrSaw+vASyX9zDzPb8h+nKbpOZJ+s6Tvmef5mrfP8/xmLcLJJ+CQX5rn+VfC919cff4w9vtFSR+8soVE8Nr/Oy0PDzsYeD7oqeXv7M+/wnfO1ydrWQec/5/WItVy/l83n7TbbDv/j2pRD/6NaZr++DRNH7lhf0nLPRH7lcxXhq/Sch8d/cVrN03Tx0zT9IPTNL1Tyxq9qkUy/qhwjp+R9Bkrj8uPm6bp3Db9vRGYpuleLezze+Z5vrLa/O2rzy/YcOyE+dq/gV37N7j33OanTdP049M0PablgXxZ0r06OZ8Vfn6e5/v9ZZ7n+7Swp+u9nys8NM/zfwzffV/+yLx6c4Ttt0zTdMfq+6doYVA/kDwXpcWx6L2CeZ6/eZ7nr53n+Ufnef7heZ6/VIvm4TOnafLz+I1aTDvfOk3T75+m6QXPps0b/cJ7LNl2WdL51f93anm5vDPZj9vu1vIwuoq/7139/rwNx/v7veF8H5qczwZ2no9jubz69Fg+SNLj87pROxuHJP1o0vav39TuPM9sd1c8T2MPvota1BoPJL89KOm52MYHwpXB9jNaJOKI6tr7Ork99udB/G5suk6e/1/W+vzfqt2ve4rVQ+WTtUj1Xy3pl1Yu9396dJwWr7vYpy/csL8kvWWe55+Nf/5h5TDwo1qErC/WIkh8jBZ1dRzDX9PC/j9Li+3ukVX4AOd3G/iB/qFb7v+HtDx7/sU0TXesHr5v02Lzf8WGl/4f1cn5+i/X0d8Ka/fANE2/U4vK751ars1v0zKfb9J29+SmZ+KNwi73pXTy/rht1ac4rxZqeX+wzf2Vh26E11A29k347tXnx0hHpOl3aTHrfJOkt0/T9HPXG8byvvbSfETLZN6T/HaPFgZmPKqFHX5pcS4u9Hu06LDjd2nRy/t8b9ain89wX7G9wgOSLk7TdBYvPY7t0dXnK9E/48kd290Vj+j4ZZLhcS0qg+cnvz1f17doR6iu/c+t/nd7z9fyMoh9ib9vC8//S7V+88ffnzVWzPcLVg/s36jlhfP3pmm6b57nf10c9hlaNAfGm59lNz5NywPs983zbCHBTD729YqWF/NXT9P0/FU/vk7Lg/AP7tjmj2mxxXyGFtXpJvilXs3JJ6gOhfh+Ha8VaTEz3CjMybbfp0XV+XnzPB944zRNoxfBBxIe1XJfvLT4fSQs+3n263TSc9Tatzc+i34dXYt58fr9zGmazmoROP6KpH8+TdOvgbZpI96nL7x5ng+mafoZSZ8zTdOrrdqapum3adFtxxfeD2kxqL919ZbfhM/VyZvt87XchD8dzvfZWrydflHPHj+lhb18tk6qMT8f+/2klpfaR8zz/O26MbishZ1sgx+R9OXTNP3GeZ7/E3+c5/k90zT9B0m/b3VNDqQjpvA7tDju3Ejw2n+clhipn1r9/m9Xn5+vxYvQ8EP49Tu29zot6+CF8zy/7rp6vI7Lki5UP67Y3s9N0/TntTCSj1bxcJ/n+eez7c8CN68+j4SwaZr+Oy0PivuKPjwo6ZumafoMLX3VPM/Xpmk61GCc4fj7p2n6R5L+9DRN3z2fDEtwHz5rnufvn6bpt0r6NVq8hr8Xu53Xwqa+UMV1nufZXtPvK9ysRY159ACepunlWtc03GhclnR2mqb9+KJ9L+CHtHim7s/z/NObdgZer+XZ9gd18oX3Ci1OSP/hOvrj+3xtDa2IxU9M0/QaLS/oj9IxE90K7484vK/Q8hD+/mma/r4Wl/nX6FhlZXy9Fm/GH5+m6eu1MLrnaLlZXjzP82di/0+bpulvr879W1ftfEewKX6XFu+8/2uapq/V4uV4TtKv0uJ48VnzPD+17SDmeX7dNE0/IenvT9N0pxYVx+dp9cAI+12apukvSvq70zTdpeXB9y4trOsTtDhdvHbbdld4o6Q/M03T52lhQU/O81ypdr5ei7fgj05LNo6f16Ja/kxJf2qe5ye1SEw/qEWP//e0ONq8ZtXPr92xb5twq05e+6/WMnffIUnzPP/naZq+W9KrV7aEn9Silvsrkr571xfEPM//dZqmvynpG6Zp+igtYQbPaHGl/2RJ3zzP84/tOIY3SnrxNE2frmXdPqKFVf0dSd+jRX26r4XVX9N2rOdG4XVa7HbfubpvXqDlWr417jRN0w9oeSD9Ry3qot+sZT6+Iez2Ri12vtet9nn7PM+Z6ltahNOPlPRj0zR9oxa16nu03F+vkPQbtLCzL9QigPzNeZ7fypNM0/QvJX32NE1ftMv9+F7ED2lxrvgHq3X567R4M/J5daPxRi1q378wTdOPSbpa2eGfJX5Qi5DxA9M0fZ0WlfyeFqe1l0n60/M8pyxvnuenpmn6Si1264d0HHj+eVqcg45s9dM0fY+k3z3P8x2r78/Rohn4Ti1e2ntatBN/Soud/9+v9vtcLcLvv9RCiG7T4kX6+Kqvu+F6PF00iMNL9r1PITxgte33a3mBbYrDu6jlgf1mLbrnh7SEAnxZ0peP1+K6+m4taq8sDu+8Fhd3xwA+psV4/2ode32+ZHW+TyrG/KKw7S4tOucndRyH95nK4/A+TcsFvqTFNfhNWsIUfi3m6juTOTzhLadFvfevVu2ueSomx9+txTvrgdU83q/FSWAUh/cvVMThYduLlMSGreb0yHtQ63F4D6/m4QclfRiOPafFMeMtWpjKW1TH4bFdXz/O/x/SIoW+Z7VGfkHLw/2Dwz6zpK8qxvfKsO3XaFmHT61++7bVHH+7lpv3KS1r699oucmftXfZaMzJfr6/ntFiF/tcLQ+WXw77/CUt2o/HVtf8v0j6qzrpqfvxWrz8LmsQh4fr9iWrdXRptdZ+RYvt5devfn9U0g8P+m6vwVfcqHlbnXerOLzit7+0WoMO+n6xloftD4R9yji8oq2hW70WX4dvXu17qC3i8HD8Lav9/mds/+LV9ueHbWck/cXVWnlGy7PsDVqE0eeM+rk6/ku1CN6Olf4jyT7/1GMIa+V7V+vj6VW7P7+a67gGf8Pq2Les9nmnlpdf6XU++rOL/QcspiVv27dqcZ/95fdzdxoFpml6kRbB5Y/P83xD8hc2Go3GLuhqCY1Go9E4FegXXqPRaDROBT7gVZqNRqPRaGyDZniNRqPROBXoF16j0Wg0TgX6hddoNBqNU4GdAs9vvfXW+c4779S1a0ueWn8eHh7X+Ds4WJIC0Da4t7e8W50mL6bL42/+fiOwjY1yu3y9u++7qQ+jvvG3TeMY9as6V3ZOb/N19HnPnj27tu/+/v6JzzNnzujhhx/WpUuX1jrznOc8Z7548eLa+sj6zTXi9cB1ku3L821z/XexY1/Pddh1zdzoPlfHPJtxx+9cT34e8HuchzNnzqx9Pvzww3ryySfXJmt/f3+O6y9bB1wj2zxT/NuzuT9vxL1d9etG73M9z7nqmNEYdmln01zwOSTl1/jSpUt6+umnNza80wvvzjvv1Fd8xVfo4YeXCuzvete7JElPPnmcDtLbLl++fKKjt912myTpppuWtIF+SErS+fPnT3x6Hy7SbIH6ZuIC54N1mwvkPmU3h4/3Dep9eHN7e9ZHvkz4GcHfeOz1vMh9rK+NBZbYR3++5z3vOdHOnXfeKen4GknH1/SOO5bE6xcvXtSrXvWqtC8XL17UF33RF+nxx0+ms4xz7f6eO7ck7vdD7jnPec6JtrOHn4/xNeTDluOM+1QPBh4bj+Hn6MGaPaBHiO2yD1X7sd3qxePrz2s9Wqu85yjsxv997FNPLQlSrlxZ8hR7LcXxX7x4UZJ0zz1LatXbb79dr3nNa9L5OHfunF70ohcd3Xt+PsR1cMstt0iSbr311hO/eT34++jedv/j2LLf4/+cUx4TUe3DZ1jsY0UUqu2xXe8Tn7WjYyOq9cxnZbZ22A77kQlLPtbX2PD7JJ775puX7Hm+5vv7+3rta7dLVtUqzUaj0WicCuzE8OZ51tWrV9ckxMhQLB15G9/Y1Xnj+a5evZoem0kxI0m3QiXRj9RjFaPahoWSdRpkcbE9znH1mTFY/0bG6nnNrhslVffFUrql9thH/8ZzZDg8PNTly5fX+h+ldF4Xzm0maVeMntdhNE881yZV1wgjNXGFqq/xN84bz53dE6N9svZvFHzfen14HT7zzHFhA69FaxtGa2eaJt10001r7MJMTzqW+s30M7ZEVM+xSpsS+1ipbY3rUdlnrIpjro7J+lGpd7dZ35Vpw+fy9thX95HPEmq9MvUkzSP+tHbHWoKIihWO0Ayv0Wg0GqcCOzO8a9euHUlnfmNHSd9vd+9DCZzbpWNWSGmW242MeVUMbxsnmepc2Xko+VQsJILj8XxVdrq4L1kvz5nZYdgHS0sju4Pbo8TlfZ5++mlJJ6UpS+zu27Vr14ZS48HBwdHYM2mWtgZiNNZNzjCZPa6yV1VraHRert2sj1xD29hSKLlXfY7sg9cgG/smVOt6kzODVF/H2C8zO39euXJlyEDPnj27tkajPdn/m+FV/R6tHX7yfskYHtfdNmuH8zN6vlkDwnnn/Zldl4oVjhyQKqZdHZvZG3leXzf6P0SQ2XmfCxeW6lTx+cfjz549u7WWohleo9FoNE4F+oXXaDQajVOB61JpUs2VqTRJ+enqG9UsNG5X4QGZKpIUu3J8yFRn3tdUuzKcxn3Zp23ckT0HHqfnIqoC42c8xvtUYRaZCmJTnzK136aYHaueoqMAHVpuvvnmYVzS1atXj44ZORVUjhqZGnlT3N3IQF/FiW3jcECwr3G/Sv2d7VudtwpHGanhq99GKs5t1fyZiWCT41hmxrBaPDo0ZcedOXPm6HerLa3uko5VmnSc2EbVRbMB1ca8T+M+VZ9H4Sn8XjmxZL9xn1EYTuXQUqnJ42+8B/j8zuaVfaqemdEsUo2Pz+D43MnOsy2a4TUajUbjVOC6whIYUPrud7/7aB+yGEpAfPtHMIiYkv7IxbgypmZs0YZgSwhuz9/5e/y/MsyOAsPprGKJka7ZGVPmMVUgdexXFbLgz9GcWFImA3Mfo3uwJWz/dnh4WDK8w8NDPfXUU2uhDBGVw0EVksH/I6rEANn5dwlt2cSER2EClcPLyPGJYT48Zpvg+G37HreNHBuqYyjRk/nFvnLNX716dagduHbt2pqzSmR4GQPI+j8ax7bhCXHfKrQl+53zTc1SpsHi9R49P4kq7InXI2OuRrV2M/bGNcn7OWvPz53KcYzvhHj89YTTNMNrNBqNxqnAdTE822ycUszfpXX24rew7X0jCcXb6Io7sqlssk9lLsw+P1kNt8egaNoIjEovHt1oydYs3dp+wc94DPcdBega1LcbnouMwVqC8vm9D0NQYh99Tb1tZBvy2uH54hz7N15/2sAySZssYxPLjefN+hoxkiTJmkeMcpN2gAkC4v/cd5R4oEJlU9nmGM7BKISksp9ltqKY5m7TGLxezewiq9sUmF35EsR9fX7a7jiu+H+lwRrZ2DmnFdOL5+F1r8IEYnu0/1fsM/MdIDifWW5db/OzhEkARuuvSkPmz8jm/dy5ngQRzfAajUajcSqwE8M7PDzUM888c2Szu3TpkqTjN6607n1VJUYdpcCpvG9GNpxK92wJwamHpGNpwdso0TFpcdynCmQls8uS61qa9Xz50wzZv0vrDM/7VHafXYKLPb+R9VJitfRMhhEl+4yxVv2g/dfni33gHFZ2qlESgZEdKI4zbuMnWcDIa459H3mdVtvZbmbL3eR9mnncVl6BVVLhbDxVe5sSDGwC77lNgef7+/tr921cO7Sx72Lj4jOrsrln93TF0rP0fUblX5A99zYlRRh5XNKPYptkDGynSsKdJXKvfhut1U0e5WSJ2b7N8BqNRqPRAHZmeO9+97vXbHeRmZi1sLwMS/5E6dKSDXXMsd34OfIqqiSsuB/tjIYlRx8T+5jZ9bLzM34u9rfaN/NiY2LUWAojbqekGfvo+aSHp7fTiyr2KbL2iHitLXFH+97IS/PKlStHUnSWEquSiiltxmtAlkIpklLtKAEwJf7MG6w6P+OHokRK21Bld87iMcl2N5U/iu2R0VFaZ7841tgX75vdTxWbIivI7KfRvj2S1M+cOXP0DGEZsfg/1wNtQVlfec9yXWQe57ynq++ZfazyKGeJq2xfMjC2E/evGD6/ZxoTeqyTvd1+++2Scjsqx8FYPj53Y78rb/RowxvFR25CM7xGo9FonArsxPAODg705JNPHjE8S/sxDo/2KSZ1tV3MhRqlYylhk+2OUo20rmentGZGkWVNoZ3M53d/YswZJdwq/s59jUzI/7tPPm/0eIzniOd1Xxl75O+ZRxzjCz1Ho3g2Sqj0CqUXoqS1dXBwcDCU0m3Hq85HadxjNLtlCZg41ipLzihjBDMFVeWTtvHSZH8yTzuycv5Ob17peG7JyozMdljZQSi1e35H9j8yFnpXSsfzSDsv119m/433a7V29vb2dOHChaO1n2Va8dqgFyG9q2MfNpWmoe0p3p++Pzx23uO+LvFa0kbIOR0Vqd0UQ8d7PI7D2zwXXEPRFkoPS8+r59qfz33uc0/sF/tdeUzThyFuoz8A2VtcoywZtI3N+KiPW+/ZaDQajcYHMPqF12g0Go1TgZ2dVi5durSWUiwLmDbVve222yRJd911l6Rj9VSk0aao/mSwuFWMmUNIpSakuioGx5sm0+W1Uk9Jm1VlxMg4TpWdx3fHHXeste1PqxY8n57HrO9U33HePCdRtZDVtpOkd73rXen2eB4fu417MNVFUcVEt3PPh9cFVXPS8Rz6GH5SrZOpmLiOPS/eHlX2MY1ahMfj849czCvVcpa0IHNGkMYOCQw78VrxPNLMEJ2AfGwVZpM5Hnj9MhTJ+3AtS7kz0SaVps0gvgdi2JD/91j4nKGqLu5LNSgdj7w9C+qmkx5NKVH1y/VF9SefLXEfo3J4Y7hP3Ifj833G7/F/O6V4rn0/+Vpn87kpWTWTaMS58PP5iSeeOLGPj8mc8tw2TUMjNMNrNBqNxqnATgzv2rVreuKJJ46cFbKUUpYI/BY2s7vzzjslrUsK0rE0cfHixRP7+Ls/LXGZdUjHjhPeRonBko+D5OM+mSE79j1z16WBlFLNKNmppU5K4GQp0rFTjyVXSlz+7vajlEPpk3OSMRfv43m0ZOW+MdlAbNPS7ajEi7TMEecpSv1kdmRpmVs/pVdKrT6H28mcLTxGpkrL0ieRmdD5gs5E0jqDqwLes7RkdFaho4n3zdiO15DXChleFniescw4niwcgn30GiUrjNe60qpk2N/f1y233LLmOOF2pOM143uM2hs67MTfmOLLyBiQ4flhELzXULa+6QhCrUoWJuTzjUKzpOPnaRaW4H2pWfJnXDvum9eM59VzQEeUrORTxTpHITQ+v7/zHZOFSUWNz7aJpJvhNRqNRuNUYGcb3lNPPXVCSpZOMhO7q/qN/YIXvEDSsbRJHbF0zP78aanCEpy/W4qJ7VsSMAMx26Bu/fHHHz86hkGvtOVY8uE4IzK9vpQH1lvCITvzXFFPnu3r75w/tx+ZlyVGj4fhI943HuPfLO09+uijko7n13MSJUj/72OfeuqpYWqxg4ODNbtIlJ7dNqVJMoQsBINByWQvVXkn6VhS9Foxy6UNVDpeix6n58e2Bx+TlauhraZy+c9CDMhGyNYi2/E2ry+yH6+zjC3QvsuwDx+TuZbTJsVj4/q2tmHbpNfnz58/WhceR7R5e6y87gwXiv1mP7m+3EeyLGmdvfgZ4vWQHUOmUyWAiPPk8VSB7VmoFsfHZMvUDmQluzgXFdOMDJb2Ns5RlliEQf0MDctC1hhqdvPNN2+dEL0ZXqPRaDROBXaqd7lEAAAgAElEQVSukX5wcLCWxidK6ZQ4aU/wp+1ykvS85z3vxCf18KOCf96H0itTZMVAd0sD9DJ84IEHThyTeVhRKmP6IfY5O4aeq2Zr0XPV0qt/o/ccWUK04cWSK/EY2lgy+wJtlZZYs2vgYyzZP/HEE8Mg0MPDw7Wg5CxwlYyhSokV/6cNr0omHI/12iSLcjuUMuP5vXa89j3HZsZZcnTaiCpbXlx3lOS53r0+MvsvNSW8FzNv3aqEzCg4nh7R9MajDSmOgzbQDNM06dy5c0Obt68LvRjpVZqxCwaykzVlpbnISGiPi8kYKjAhQaaFqOx9xqa0jNK4wGzsq7S+3qrEz75umd2RfaPnamT1vP4+f5XgP/7v8zXDazQajUYD2Jnh7e/vDxOkUhKgRG8WF/XvltisM/f5KD1bGsiS+dLjiDFGI1sBkyy/7W1vk3RS8rWdyufx+akfz+IMaV+qPMmilELJyfYlz5E/LeVEG6XH7HaZOsvHRCmdjIu2MHp+xm2+PqPk0R4fr0uWKJnsyXNLL97YTyaUrZIsZx6eXF9kxNGzj+u6ik/apqgmE6xn9xO1KP6kvTOyUN43jz32mKR1m26WjorrgPadrLSU9+WaZLxZnAd6aW6Kw7vpppuO2KwZahwzmQ0TY7OIcOy370cmQ+d9E+eCLJBjzOIwyXBoU3N/4lg8z26bzIuJ8OMcU1PhY6ihi+uNv5GxsjD0KK6R5+dY4ljpBcx7Jt7zme27vTQbjUaj0QjYmeHN83wkBVhijJKW397MeFB5G0rHb3lLiJQMLE3YxhY90qjz9bksBVqqiFJMzLoSjzWDsB0mk8wpFdPuk0mSlM4pRWe6+yoeylLiI488cqKvUWoyi7777rtPnH9TjFzsAyVUS+sPP/zw0TbaQG677baNRTwpmcbrwvXE+EUm0JaO590ep54HMq7MfsBEyd6H12eUNcdz6j56XNED1nZQSrO0W7D4rrSeCHyTliDOgZkdE1A/+OCDktZjVaVjr2qf1+Ogl2aU7C19UwtSZWmJv2XlhohpmnT27Nm1tZllFTGY0Sez8bBQqa+/x+zze+17PuMxVfJ6H+vrFNvjfFDDEG1qvkbWBvD5w/biWvV1cV+ZCHpUcNjPWjJWap6yOFqWMqNWIs6J9/HacXtMpJ0V467KvI3QDK/RaDQapwI7Mbx5nnX58uU1L6z4lufbnNlSMo9E6rApzVT5EqX1uBtLY2RPUaqg1E/vv1HuP0sXlrwoOZJZxLmgvYc69SjZ08ZBFkImFUsZ+Rq84Q1vkHQsLd1zzz0n2s0ybZDNUCqN0pSZS5TCRsUYDw8Pj453H6N06fg3rxXaVjJ7lSVdH/uOd7zjxDnMWCy1Z9k+mAvS15Y5XmMfqIVgCRTH5cV96DnMslRZ9hFmoGC+2VF5IK4d2gw9J5EdPfTQQyeO+YVf+AVJ0vOf/3xJ61mPpOP58/WyPZlMPa4dlhS6du1aqR2Y51mHh4drts7Yb2pWquKz2Zq3luQtb3nLifNbQ2JtSsbwaEP2uDJNj7VOtC8z41O8J5ijsyomnY2P9mtmLvI9k8XheW3QO5i2/Pi8oFbN8+l2/fzxp3QcP+l2svPGduN4otZhm3hOqRleo9FoNE4J+oXXaDQajVOB66p4zjQ6UU1kqs3gan/P3E5pEDeNNzWmY0BUE5jqMpg8qj3ZHoNCKxffGMxtis+E2XTfjgmZDVN9qiFovI6qM47HfWZYQmbsZyoxn8PtMDg/jpnJuNnHLPjW13aTU8y1a9fW3KsjfLydbpj0OAuu9VitRrP6iWpjnyOqfCq38FHyaCZrpot/VtWcwfwMjmeAcxwf1eGs7G3EcVFFxtRsTCKcJYI2rMbzevjwD/9wSScTOVCdy9CQLOibzhAjlabBxARxjulAxTmmO710rHa+//77JR0783j9GT6H1W+xHV4zz5PDrrL1xj7zemTPU+9DByQjK5HDxOqeP6ZMi/3y/Pi6e5z33nuvpOP1x6QN0nqCAz8zfU+yrI90PKd8JtEpJ46PjjwjMwrRDK/RaDQapwI7hyXs7e2tGd2zgFJKCgw5iAysSk/DIG+m4on/0y3ZfaNjhXQyUDqel+l7okTKVEt0WWcy6VjCyBKj++LvljDJNKV14zcZBCXMOJ9mN3YwsCTk9ixxxTmjM473ZbByDOlg8GkMOyDM8DjHUVI1g6cDAPuYFUi1VGmJkaEeTEAurSfGdd8qx4c4VjJUBsNmwcNkklV4Qpxjb6vKUmUOVpR4PV+eIxYRzkI1vEa8hshCY3s+P7UCTN2XrbdqfBno/JKlRCOLZfLheIwZCMtEMUzA8xavKUN97OzDhPNxnshgGeCeOSBlGoMIJmPPUnCRfdIBKnOS8fwxyTfvo6wQsJ/5LAbOPsdxMeSEBWDjOXjfbKMdOGp7q70ajUaj0fgAx04Mb29vT+fPn1+TgKOU7t/s6lsVP402ALqdM+iZYQNZgUwGmLpdS29ZuRa6Z1syYRCztG7PYaFPSzoZw4nlc2I7TEMVx8UUabSh0V04S+/GuWFC6GhvJJO0TYxpyKIunVL1KL2PA8+pAYjzyiKavg5mGZl2wOfzemJJIY8xS9+WJWuW1lOaZfZGplyyZMxAbWldC+HfyHyYCi7OhT/NvGk3jX1k+ina0ijFZ0Hrnj+X7CKyPpLZuR0WCo77ZOVziGmatLe3t2bPjmyNaa3oxs/SNdLxfNtWzOtilpslhmCYkGENA1l97BOvu/dhmEo8hqFg7IeR2Unp58DnQnzeut++7tWzi/eIdHx9fQxTwfkz9tnj4jOE2pws6XcsWdQMr9FoNBqNgJ1teNI6s4vsyW9aS6KWypjyaVQYkWXfaTeL0jM9kKhbzyQE2hzMRp02y9szJslPeibSI046lrQs+fgzpsiSTkrAPi9LltDDM5NsKKVT0qcUJa1Ln1nCXCkv5xM94kYs78yZM2nCWoMSKSX5KrEs24h9I/vIvOZ4DSs7XewbWahZs79H5sqUYVki67g9O7aakwxkbmR4Me1Z/F1at48woTH7Ef/nvcY1mhVfzZg3MU2Tzpw5sybZx7XmOSNbp50+zq3/Z0A4NSJZCSNeu6p0UXw2cs3THpp5QrOIKvflmskS63NuWXw5jsX9d9+saXJ79IzMEjkwlRl9MOJzLvPLkNa9n7P0YZEhd/LoRqPRaDQCdmJ4h4eHeuaZZ9bepvE7pXTGcTE1U/yfEik9rrIChpReKrtM5olkFmpmRwaWeROx0CQl1Yw9Mb7Q56eUlhVG9DgseTHOiPF6o75tE39Fe4I/mT4qIvapkrQshTH2LYupo72U3sBR2qO3bFV6JZOeuc48xiptlHTMLmzTMFuih2Jk70xhR4ZKthCl3YpZMYVd5lFMUEuQeTuS1dA2zWTF8bdNRWNHnqSbGN6FCxfWEjTHe7zqJ4sHx5SGvC+ocWFcbjavTOrNhNSZZolxhLwumTco7X1VarsIajXIcsnA4nlYHJjPA++X3e98NlXJxCOqIshMhxf7S5v4NmiG12g0Go1TgZ0Ynr2lWCQwA1kZpZcsdi/z+oy/ZzYcejxVpSOiR6KlFkvltr8wUWvsBxM808vMxzBhbuwbY9lo64geWJY23SfGW/EaZCybnmmMAxvZ0ay7d1/JemLbWR8IJwCmXSdLAEzQjpjZVrlG6GE5KrLLROMG4/OkdcnT3qz+zLzXGM9H26qRJfVm6SwW5s2YUVX81uAcZRlleE/ymMx2TLsfs2ZkXo6U7Cs4cf22YGHoLNaXMXr+PmKbBn0GOC9kytK6t2rleR3B2EPa9Pg8zWKUyQLppZv5RJAFMs40KzhL8Npm93yVdYoMMyJjwu2l2Wg0Go1GQL/wGo1Go3EqcF2pxeg4kdUqMmgYp0FTWjca0xA8cqdnu1QP0tga/7dKk67eWUopqjQrdW6mRuKcVCq6rCI0QzGqhLAZqDKh2iC2RyM0k+5miV/phHHhwoWhWvPg4KB0xY9tVurpLKSBatpKzZqpzqhepSt0VoGaISYOafF6s4t77GNVZ7FSBWcqW9bqI7IUT1yjm1SbcXzchw4Hsb2q2nhVoy6eZxuV5jzPunLlypqTR5ZEgI4MVCNnoQVM2kwX/5EqjiELo+B4OqtQ7c4wLGndNJONIyKr4el2/Z11EKO5x3NBdS+d8vhckNavIdWwo2vAZ5LXOdP9Sesq8m3VmVIzvEaj0WicElyX04rBIEVpnU3QPTdzM6XrPd3DKWVkb3RKCmR8UWpi2ZwYCBnbjxKpjbeUzsmMMocEpkSrUv3E9rLUS/EYut3H9io3cV6byDQrI7SvgeckMgy6n48Cz+d51sHBwZrUn6VEqxyPsqrODJSuEgRkIS1ViAQZXsYKvYYc2hJLO3FcTDPFPtG5IEvVx3AIsrfIuMiI6YxjjBxPNoUXZdoIfq9S3MXjt0lLZzCAPtOyZM4iUq4RIRurHFBGbvS8p/wsZAKHbBxMD8hk0lId4lElos62kcm7r3bWi88YBo9T67aNZqmam2wuOE7OX+bQM3Ly2YRmeI1Go9E4FdiZ4Z09e/bo7WvJNaYq4tuc6WvIvOJvLPa3ydYRUSVGzRie27G07H1oM4z2KjKdKrg7k4Dp9k1JJ0vTw+BwMq9tUoyN2BbPSSZJ+wIl/2zfW265ZWupKwvMpeRGCXx0/c2A2D6l9uwcVXq4zJ3efaEdhOsiY1W0N2YJANge2Z+ZpbdnzJwu6pUdJrOf8TpXZY+y9FeGr4XbzRI3k7lsYnjRd4DtxfMwOTm1BVm4iJ8Dm9ZuFmpEOxU1M1loE9MfGtm1zNKaxXGN7FnVM4OJ77NE4NzXfWeYxyjUhGslC47nc5Rl0bJ1waQCmW9AhWZ4jUaj0TgV2NlLM5Z4MWIwcpUuq/LgicdQ8qHEnwXmsi+UXslQpPVUVZZezEZtr4sljCjpUDJh3+N4M2/W2A8Wd41jZFA00xyRycZxcZ9R+jPasao0SBlzcbqxCxcuDKXkvb29NdtaZL+0T7gvVcqxuC89Ayv7S+bZVyWR9vYsLZ1ZAYOVszRVVfJuXie3E/vI9eZjbDuMpZI4LjI7XrsR02ffuJbiWq5sNvw9m/vocbkpLZ2RrbHKrsOSO5kNl6jsY5ndkmOuEjbH9qok0ln79GysbHlZSkWuZ97bvm8zD0iWu/J6pndmvCerJBAcf8b0eM/zXsk8iUfMsUIzvEaj0WicClyXlybf5JHhVV6MVfJTad3utympb1Zck1Izpdso+bg9S8eWdOxp5+KaMVEymRzj1UZSGtMz0cZhb6nIJCovsyrGKfNiqqTBkb2kshlktin36XnPe97G81ZSerST0puVXmtmVZHV0A7BPvB6jaTLKrYpevH6WrnfXiOeC6+hWBamSrSbxTZyP+/jdngtWepHWr/3GL9IyXvE8Kq1E1mKz5+V7YnItB4Za8/gEkHxPJm2gc8QrqFMO1SlwOJcZLGHVfo2xtHGPnAcmU0yjjvuW3k8jlKLbYpjzhL50yOWtmN+xmP4TOI5s2djZvOM58jSiEUv6rbhNRqNRqMRsBPD29vb0y233HIk5VbxPVLtZZN5eVHioYRAKSrzRCLjymJnDDM4M1NL5RcvXpR0XJo+jo9egIxXqQrCxvOwsK0ZS8Ys3H96plWZCTLPLkqBVSmjeN6K5WReWZ7HLDFvhhinlzH9Slr2vizm6nPGffiZ2cU2gZkhogRO+y6zZLBgr1Rfh0rSzjJReI69NplBJMZHek7c101ZTTJPWfaxKv0T/2d86QhVNpMM8zzr2rVrw+TOjJ3NvDLj9lHbvBdo+4q/GZyfbJ543/ma8d4eaUp8LVmmJ7Md0uuca5Oapgg+s2izHHk9E9tc40pDl8195nm/rR2vGV6j0Wg0TgX6hddoNBqNU4GdVZoXLlw4osam4lGlRfVGFTAZnTyYrqaiwJm7Kyk1VXzu23Of+9y18/jTqrm7775b0rEqIKqyqpQ+VKVmaiOqMlmHzcgMs1X9uE0OInF8VYqhrPo3a5kxSDVLqG3VyO233z50Ld/f31+71pnRuwpLyVQvlSMG+5GpcWkgr4KHo1PWHXfcceJ8VG1nquEqpRsdELJjvS8raVu16WOcCF1aT6iwqaZdphqiOo/XIktHxetTOTFkY92kBj08PEzV4AbvC9Z8zJ4pm9ZOVnct65e07niSObr4GjKhPoO94z1W1cOr1NRxfft54/s0JoiIiAmuObdcO1XoSew/55xOM1mwOp8LPH+8Jzj2bdSqR+1tvWej0Wg0Gh/A2Jnh3XzzzUfOHa7ynJWM4ZuahvtMWqcDCKWXTCKjcZpsytKMJfN4HksNlpbpIBJDGViWhZJu5docz8dwC3+6bwxtiOMiMx455VBK87F0AY/7UaqtgjpHAbWj5NF2K/ccZ9IeQ0kM9iFzLa8cQYzM0E2plSze544ScRVUS2k9C+bNSlXFc2Uu/3YQs5RuRxSvbzvPjBIrVGWBsrVaXT9K4CPWU6Uny+Z+m7SB8zzr8PCwDDmK5yO7qJ4p8fhsbcRjdgll4fMu3nNMhu6QErNzaqXitirR/ai6PdOB8fzZvczEFpXD4Cg8xahYe/bcqZxgMhbHdVA52mVohtdoNBqNU4HrSh7N0hERlhD89mVZiSwId9ugwUyHz7RgZHb8XVqXkhgQ7s+4H1146SJdFaCN+1D6Z0B9lOwooXpfSu9mnlEPzyBsMuPM1deoWEFWwqiyvVaY57lMBRfb5j6ZDYio7FTb2DyrQFleH+l4bsm0eV2i3Y/JsBmATMZizUk8r/tkRmebNAvfSuv3ZVaANfZ1VKKpcrMfhTLQfpVJ4Jl9bxSwfuXKlbUCrVmQ9aYQjCz5QVUotxpXto1rd7R2fK++4x3vkCQ9+OCDJ9rPEl54vTG4f5SYnj4KLKHltRSTJPAa8P4ZzWeVwnAbcF2N/DlGTH8TmuE1Go1G41RgZxve+fPn19hGxtAoefBtHN/KlKgpeZFVRQnIQeP0gGQ7USK1FGgGx3FQao/b3F6VLscSmJP7xr4xwWtMuhzHF/tdeXhWTDqOqyriuU3pjSrpcpYKLH5ukuqqRARSbXska4trZ5NHKveLrKAqJcSUTJkt95FHHpG0HgzvYzK7n6+Drw+1D577Rx999OhYplyypO/xeT3Gea20EERmH6ENrLKNZkypst2xvTiebdiAA89pa4trp/KWrgLCq7Fk+2RMkDZIP++YzDtqepyey4zOn2b0Pic1UNLxOqt8IRggHsfBtWLb4Uhr488q1SA9i+M+VYHj7NnPdVbdx5nPwvUUgm2G12g0Go1TgZ1teJHhWYqNUgWLHDLOItO/V+XkyV6YCiz+RiZHVhOlAEta/qRdcSQ5WNKi56O/mwFEVkAG6X38aV26de3SuvRP2wDjHeM1sJRJ9sE5ycqd8DfGpEXm7vmK3mAjSX1/f79kZBFVwtwRw+MxVWmp7NjKezazdfL60sbG8iqx/5xTS//+zNpjujHv67XrMUSbIT0TOQeUprO4qJEXMI+pStgYGZMkQ8pi6wx7+I7aqdLSVUwv+y0riJr9HvtLG7vvZW+Pmh573PraZV6Z7COZVJVEOrPlVhqzSnskHT87aHf2uqNdNotVrgoIjIoiV9+za83znD17dmt7YTO8RqPRaJwK7GzDu+mmm47esJYqR8lcK8+3+JbeVEaeDC+TFCgB+zOLqaPtzn2LUrJ0UtKilynPT+k8Slpuz8dUXmxRirGkaOnLx1KizxI3mwHT69TjZdaGbBsT2mbJaTNmVElaXjsex0iiN6p4scxbjsdQms1QMbsqFij+5rXK+WdR3/g/r3dVOiv2mZoRej1zv/h/5ek2in2ixqKy+8Y52ZQ4OTsms++MYjjPnj27ZsMbJeiuMnVkmVYqr2Uy1eyZZUbkT997tKPGPng9WKPDzDjR49r3i9eVf6syy8RnmJ8hd955pyTpBS94gaTjuN+77rpL0kl7s6+/z0/vdPc1s5WPPHm5b7WtWpuZzTgmbt/WjtcMr9FoNBqnAjvb8G666aa1fItZPkRKpPTyi5IImZ1ZDWNNKH1K69IZPy2RxFyDjKFiEU/3J/MCc9uU2jOvJYNzUMUMRRbqvlDCok00091XOvsqt13ch/GELEOTFd/dRkr3fqN4TKNiIpmHXRWzR0/BzFbE+eCxRhbjRgbhNeNjow3Pa5BaAd4rWR99fS2tm0lw/rIinkblLTmSuKuisaNcoVVWjuxaZ/akTXlYK+/PCK59tp2xdc4D11QWJ2sm5+tC5p3Zx/ycccFkrxFqoWJRX9sA/Wn7n68LmWZka47VdI5gt+t92PcIZn2i9zbLl8V9qvs3W9/VPcBnVrY2ooambXiNRqPRaAT0C6/RaDQapwLXpdJkoGzmMkqjLSlrZmSnsb0qHRFVDpUrsTFS21A9WaXV8tiz820y1ErrAfMMf8hUNOwbnVbo+ps5gfAaMDFsVEVn6mlpXQ2bqSN8/ptuumlj8uiRuo3hAAzqz0JM6GhC1fJInULV1SipsuG1GENjpGPVEp0I4v9WYdGxiaEnsV9UaWZV0XlM5YpPp4wsNIQhIEzQuylJd/xtpNLc5CiUYZRMgmuHxxhZuEUWNhGROSgxWQTNLVmiBjuL3HvvvSfaY4iLwxek4yQE/ozqTmk9mXgMfHdSfLfrNcR7Okt/xvuJqszsOcc1QrUkw83i/3yWjNIfsr2Dg4Ot01M2w2s0Go3GqcB1FYC1pDBiNZSoKdFlDI+GX0pPIweHKsDYknfWRzqv2LkgS71F5sN26YyRMZfKlTzrW+VazuDljLlQ2uE+Ixde9oXSeTYnvm6bGF5MPG5kbJ2sbMS4qpRElbE7Svh0hqlKrWSsgCEsLLKZlU2pipLS0SJL9VT11Yhzk4XGSDVLy0oZUQvANZM5rWwKTxgF/Y/g1GKjkkRMKUYmnIV8MDlBlcCYTnXS8bWk5oeamQizMIcJ2KmEYUqR4ZnR2WklOt/Fcbo/keFZC+FtVYB7ZFEsMEs2yHNkoSGcP/Yxc14i0+P6GDG90bogmuE1Go1G41RgZxve3t7ekcSQpbXaFLA8Sh5dSRPbSIGVG39me6r0+pWbevZblSIrYwW0W1aBzVnAseeajG/UniVS6uNHzK5yKc/6xnZiEHzVhl3LfU0z7QDZMaW/UbDrpiS0GevhNaULPm0s8TcmVmAITZS0fV6GLlTjHrnvc1xZUeTqWIYUjDQzld10G5s428lS9VWhMxWmaVqbpywZNcMR+BnnvkrbNUq9Vh1Lu3xWANb7xBSC0rFt3+1G+7CLbZsN0obH8Y80Z0xiziQd0nr6syr8pbKZxm20Y2bhDzyv9/E9lyXuJnvepQxRM7xGo9FonArsxPAM6rYzabZiILThRPAtTyk6S7ZaSWeUYmO7VaAxvYgyZlmVH6KOOdPh09uLdoYsqNtzW0n6ZH4RLG9DiTsrmcTfaAuL8+i+eVybmLg1BHHfbbz9qpI1cdsmZJ6ClP65dt3XyPDYLm1cTLuXtU2pmIHHkYVUtmKmforgvGWp+LL943lpm6qKu8Zt9OAbBYgbW6eESmxvUatR3Rdkg5lHOa8/2RvTFkaQ2fEcce69jc8dB4RTmyMd2/3o0cu+0X4W92GSDI8jS8phZmePYtqvR2WWsnRxUu6dSVQ+Epl3PBNm74JmeI1Go9E4FdiZ4e3v759I2inl5UzoAURWGFF5q5G9ZDFQfvPzNybqjdKmJRzvy7RZo4SllQ2P448Mj+wo81aK2+O+TJhdxQxldi1+Z4LoeN0oMZJZuP049+zbLt5SmeS2yX5Ee1ncVnlnjtKEEdvE/hhmY1WB1sjwaE+uPAezpMhcX5Wdc3T9OY9sd8TEuC6y0lLcVsVqZTbxKr51BCY4z46v7G9ZarHKe7Uq5xT3ZRww77HI1mx/8+djjz0m6Tj11z333CPp5D1WacR4zzGWL/bf22iz83YzPemY2bHgLNdMdi9WHvnUAI1iIfn8yTQKmcak4/AajUaj0QjY2UszlukwsvgU2hZGSUfLzhW6YMcBSuuMkYUKyfTiPiyXY4w83iiR0jtsZJtixgHageKcsPwPWQD189a9x21GxeyiNEhJqmJ48VpH263Pv0nSosSd2dT4fRuvucoWVGUmYdvS+jXL7D6cF7KBzCOxYh+VfS6yUNoVyZ4yhkTpvyrTMrKJcr2RycQ1VhUYruzBkta8dTdlyxh588Y2q0xBmWZkE2vx+bMMKGRLZIOZJ6nH7Ji6xx9/XJL00EMPSZIeeeQRSccZUqTj+40aH/oOuG8jtsbk5RlzrUqY0a+BCffjb/TF4HN8dJ35vOZayrDNc8dohtdoNBqNU4F+4TUajUbjVOC6As+pjsyCnklBqT7J1EQjRxMpr0zugEwGb/pcrDYe+8sqwqxmnjlUMB3YKKGtQVUVDfZ2/om1s2y4psqWalirMmL9tSrha1UzUMqNw7F9jyH2kXUR9/f3NyaPtnojc8E3KuN2VsdvlEQ5+x5RJZgeJavm9afKOTuG7VV9ztIoVY5Ao6Tl1ZqsHEXisUwizrng2sp+q+qiZUH/Ua1YrZ15ntN1kpkpMrVwROZkYXDemNg6qnF931kNSTXhqLahnze+Zx9++GFJx04sDlOQ1kN//J0hM1mYis0cdEBhWEI0bWTPvtg+n1Xx+UQVMZ1XjOzaVOs5W29ZOFGrNBuNRqPRCLiu5NF+q1uCiBIpkzVbehg5CNAwSQNwxRrdJ2k9ear3tSQSjbl2C66kCUskcVyUSKvg9MxRYFOarizEgel4qgDgjEmQBZIxZ448FZti5ebI8Ogyff78+VJKd0o6BsNnQc9GxW4yx4MswUA8f5bCisZ09j1La1T1ZRQAXwXcjpxweH5KsFwH2b1BZyj2NUtEnUnUcXsW9F0F7mcsrsK5c+eGcxhdz7MEzb6/q5RvRpbqi/flplSH2VhY1Z7lbrL2qudN1EZZ0wKEq0MAACAASURBVOP7jmWpGAwfr4uZHZPj+3qxXFXsm1E9B+iYEv+vEpuP0tJVqeAyp5Xsud0Mr9FoNBqNgJ0Y3v7+vm6//fY1m0CWkLVKM5RJy7RtMAE07WVZAlVvqwrORj21JRsyVIY0ROmJweNkDhxD5oJNPThtYFH/zrFSKnTfPIboMu19qKMfufZWqcrcRzP3yPAoyY/sMNO0FA9mMdTIvCnNVWnjsn7ThrYpmUHc5vNXSaqzxLVVgLGPyWzGPn8VmuPrFJmL54K23MyeabBUEW1RVWhDBCVslo2JqIKFKxtZ3HcbljvPsy5fvjxMIu7++R7i/Z8F9VfJw8kOPZ8upBrha+gkz74PyfSkWtPie4q2tdhvaqGqtIHx+lTFXPkcyLQ23ub73sySLM6+E/FY2o63KTxd+R1k4R1cm5cvX9466UUzvEaj0WicCuxsw3vOc56zJnFHaZaSoPfx9swuUrEkJjBl8Kt0HLxJT0tLIlF6YR+p//Y5MvsSpXIGVY7Kgvh/f1qC4/YsebT7xCBe95Eep7HfHCel6ujtyhRClPQs4cVxUdof6dFdHsggy439JEuuPH4j6OVF+1GW6IDBu1VC6DguJiXOPF7Z56rsTMW4R0HrZKNGHF+lGWHfMrbm8dEOPCqGu8kjO0suzms7Sio/z7OuXr26ZnOM46qYaOV5K9Up8aqSNTHhhb3D+Wyi53d8xlCrQY/OzBN6kwapWrPZsZXXZJx7PxPMZrOE1vGc2X3lOaHGjMfGfakJrHwK4hi3CUonmuE1Go1G41Rg5zi8c+fOrSVIjp5DlmwsKVQxR1FiqBLkjmJMDEtLjz766IljyMgim2H/q/RTMXUWJRp6YbGPmeTj9hi7xaTS8XyUlqpYocz7kPYsIytESzbgsVuqta4+Yx8V6yD29vbWyh5l66AqL5N5wFbshfa3UToqSs20PcV5qmxpTJKesfWKOVbxS9k+WZkmghIwWVqVaiyCczMqGpvZWbLxZN61xiiGs2J4Wfwv7Ua81zJbUJVajAnp4/PALKwqa+N7PdrjqHGh9qZKDB/7anA8Hv+ItXtfjyNb7/6NGpjKphtRpXMc+Tewv9uwNo/dfejk0Y1Go9FoADuXB5rnec17KUo+zARAySTzLiPjoDROe0KUmpx49R3veIek9YSplsAym5pBrzZLNdEDicmTKw+vjFVZ+nCfyAoz6ZMSPb2zPM9ZRhZv41zTyy2CzMTny2x3Bq/tmTNnNmZa4drJbE+0OdL2OIo5MyhNZnZb7kMGNmLCtL/yWsbrwZjNihmPsomMbJHxXNn5NyV3zjK7bPKWG8WZ8t6oYuLiPmfPnt2a4WUlxowqY5CvU1Y0tvLwo3botttuO/rNXpm2dfEaZ97hZHabPBNj32ibrOKBs0wyni8+CzPmTe0G1w7HELVulT1ulKyc93Rlu4vbq4xF26AZXqPRaDROBXZiePM868qVK2veRJFxmRX57WuGQPtBVsSTUhilG0sTsSS9bXfOaefSG9QxR1uPJR6W3mC8XCy5432jLVBatxFl7fk3zxNjtbLijTyP+8iYIH7GPlGyo50jSk1VSQ+ON5PsIzMaZcuY53nNtpYxb89LlRlkFLNF0LN3lB+V64FZJuLxnidmy8hYYVU6ivNHe1Pch2OP9guOi567/OScZHZNxhmyP/GY6pqPbKFc15sY3sHBwVHfeP/G/myK68s8Rfm9Yk0ZE/Q+fs4xbi1eF9//LM9Fr/DYThVDy/tolLuT46myREWw7Bhj+uhJH8fFtTqyb1f+BYw7zvLnbmLoGZrhNRqNRuNUoF94jUaj0TgV2EmleXh4qCtXrqwFdWeBi6bCpqLenqmWqLqisbtKKh3/r6plZ0HkVOVU6ruMelMtkCXgjeeW6krDniMGXMfz0lBPh5Qs7CIr3RHPlcHnoXqXKocsoDpT4xFWS9FVPUtrVIWJZOev0llVKZninFA9SeM610f8PyvlE48dpbDi+Kqk4tn5dgkToIPBNmWiqgDzUXq3SjVoZE4rVLOPkkd77YzShBnVfZgld6jUhOwvnUqk45R/3Mf35yignk5q2zi8VeEpdKLKArSr8jyZapNhFXzmMrA+PosZEsZ1Xz0rY/853qz4AFWZo5AWohleo9FoNE4FdnZauXr1apmgNf7PtzhdrzM3000ML0tgy1RiNB5nDJCBwEyMyhIcsS+bjOKZ5E0DvX8zu6GUKK3PScWqM6bhMbNUEsMSYh/J7ChF0Ygct7nfWRo3gtJ5dLOvXP3Zh8jW6aZflVHKQjF4XjqeZG7wFescBb4yEJeu1hVbjL9lzinV+Fimh676dISIoRqbkqJXwevxGH7PGF6W1HsU0uLSZLFPsQ/USGwKi4qo1jr7E+9Pz6GZHgtOMwWhtL52mMow037x2E0OT5FR+v6n843nMXuWeYxMsM+0aCyHFOfA4PkzTVA113yuZ4HuWRm3TWiG12g0Go1TgZ0Z3jPPPHMkbWR2noqtVfrxCLqbVtJ5VnrHbvlO6sog9Sid0e7lT4dUUAKKbZKZVOmhomRpKch9sGRnqYm2lnheSnBMZFulOIrtUbJiEHs8nlI5dfpZUdxRQHtEDEtgu3Fs7m9VziRrh9tYnoXjyH6rAtvjmFkChes4Y6FkxxWTyM6ZpWOSxgnVq0BmakjIBOO+VVKEjOFVgfWjAru0I21ieDfddNNagoiITYVfM5ta1V8yhixJPpNimAkxxCVjeFyLTIoQr2WVZo+sKUuwwfRgniP6NWSJFWir8/j8PGVatGx8VWmuuHaqsC7PX2bX5Po9PDxsG16j0Wg0GhE7e2k+/fTTa7r/TAdc2ToymwelL0tYVUqayArMyihFWEJxQcYYIFkFi/pcZk9ROqPun0lVR0VxaU+szhU9LasUVky+nDG8Kjk17WejZL5V4uEsOa37MPICtaedkQWhMjF3VUA0SsBMj0S2RDtjXKu0MfBaZtJ15dk5KsjKY40q8DfzYOY4mG4vJi2gBMwUVqOCwFU6t5EnqcF1RftzlkYuspBq7vb29tJUbSPvWWN0Pcjoq3JBmXaA9jaO1b9nSevJDqtEAfE39pl2/4w98RxcKxnDq+y9lVYqe46zj7zXM22U5433KRNdx77F8zbDazQajUYj4LoYnuG3fZZGy5/06KSNQDqWhujlV3lYRSmOyZNpY8vKEZEpUorN7DC0U1UxJpRus3Gw/EgWk8Yx05bH9GEZG63Gl3lnVQzPOvtReqXoeTuy48UyHlniWkruWfkSHkNPR7IySsJV8uW4D5lPbJ/SclWmKbNXMWVeVdpotHbI7LLYVP7GlFYcwyipcxV/F6X0il3zezzG69afIxuej+W9l6V8Y5+MbbQaBplYptWg5oPbs+ccn0n8zJ5vlVcsj828w9kXr52qHFv8n2uEHqVZqTZe58pLN96DvBeqmN54DfhciPG9m9AMr9FoNBqnAjszvHe/+91DWxCZnKVL67Iz9lRlSzFYUiZKTVXZeu/jY7I4JWbhMGPNMmy4/xWTo3Qe26OkVXkfZvGMUQKW1hme+xUlnIrhbQN6pFHyiudyXzyOuDaIeZ5TSTmCklvF8DLbFz0hq9IkWaFc2scqW0R2DGPosj6TMZDBjmI8KeFXnpZxbulRy8xCmXemkWkoYp84NxxrPC+ZWJTss1iwkQ3v3Llza+snrjU/Z6rSN9m4KuZdZY6J7WXesdnYMw923tN8hmVxn3y+ZOs5jinuw2fuKLaWGgN6kDI7z+jeqPqaMTz2n33PMtbEWORRIuyIZniNRqPROBXoF16j0Wg0TgV2Vmk+88wzR3STqWukdZpMdWUWmE2nispRI3Nlp8qNRtZMrUdKzzp0DrLMVIHcRho/SmFFtRDVX1maLYYsVAGn26R3q6oZxz5x/qhKiN+ZdmqT08rBwcHa+WKfqrqEdFXO1DabjPtZv6r58JodBfNT5VIliJbWU4pl48jOFcHrU6k4429UYVJ1Z2TqySq8w8jmhqATQ7z2VDkeHBwM1840TWuu6zEQvEpQPFIXb5M0IO6XOXdUaa0y1TZDB6qadlGlWaWUI0ZOOVTVjyqsVyESTHA/WqvsE7/HdcC5pQqTz4SISq07QjO8RqPRaJwK7JxaLEslE1EFu9LIGd/KDBY3m6G7fpZqjAzOgeZMzBwlMUorlOwrSTj21biewFz2PUuZRAmHyaKr7bGdSqLM+ui5YMqgUdqlzMA8kkT39/fXqjBHoz/dlr0OGCibBY9XY6sCqTNQKzEaSyXhZpI9pdYq4D0z0FeB/5TOs5RvXMe8pqPk79U8ZczO2+hUwrnIAsVHDDxif39/zekirh2vlSrYOXO6qpyGqJXKHNH4XDOqEKT4P9cM7/9sfRPVvGX70zmnckyJ/5Ph8R7M1kGVXKRyuMvO4+cP5yJjvbGdDjxvNBqNRiNgJ4Y3TUuZDkoMWekGBuaaVWVBt1VQelX6JUtRRFdrvvEzl2K7MtMOlzFJ2ogobdKWliVI3eSGPCri6mNZHiiT6Cp3+9GceF+mDKJtNJM+4/krSd3poTgHWTJnlkKiHSFef7ZHe9moiGyVtot26Mi4GMTL6565/LudkW1QylOZMaC4CrsYaVvYj5GrfgXamTKNAoP7ue6jlL6JSWZgSEQWoM0wId5bsb0q8D7TCsVzxv/JNkeB4Hy+MSXfyGegCjSvkotL62ujYm0Zw6uKBnPNZAkIeN2ZSHsbfwO37/HGpByZvb4ZXqPRaDQaATsxPOlkos6snAWT6tJOkQVdU8dLZkeblL1DpXVPPrKmzEOM57ME4vFYmogSXpVmiEwok9Yo8TBo3OnRohTDbSxlRPYTJaQsoXDsaybB0kZUebBFqYpt7+3tbbThVWncYptMzO1rmXnEVRLuNoGolacl+xbXapUs3Mik9IqFGkxanEmutOWNvPe4T5WEm+2z7YgRG6xslKOA6ur8Fa5du7aWGisLIud88NrGe6zS6JBBZrauKvCfjCjzHfCnx0PmE8dVMbwqiDwLdKedl74K8TnBZ0fl/TxKDUgNDddBpuHw2qF2xXMVn98sHTRKWkA0w2s0Go3GqcB12fBY1mIkkVSST4yhMWjfYYkI/i6tpyjy29/HWKp06R/pmD25DywSO5LoKkZRpZyKv9Fu4b65r9GGx99YHJXf43yyvBKlM5Z3iuMju/G5PM+R4VYlZDJ47VA6z7wZad9jajlfrwiel2wjk1TJxulNmLH1qnQM5zqLM61SLWX2t6q9KpYz62Mmhcft29iMqrUz8iRkuyN788gGZTAtHTUAsU0yHn5m8VxViR1668Y+UFPFZwcLEMc++pN2xUwrwWOqxM/Zdan8DSqv9Ph/5dk9Sm1GWy01WlksJJNFUyM3Oiben83wGo1Go9EI2NmGN8/zWqxWlJrosUk7X6Y3ZrHTKnuKmVnm5WMm5OKtbs/MLurSn3jiiRN94Xgy/Tu9ojZlGsgkkorhMaZOWs82QgnP53LcYWbf2lTQNF4DsrPK62wkQW7KtBI9fLNivlW/jSzrAouZVoVYR7YnHsN1l7FQsjK2n4GSdhWHlzE+96ny9Mxs4lUSbMaSxmu2KRvIKAmzQWl9VBw3s8cR8zzr8PBwTasR14d/Y/+qslHS8b3Fsly+7qNsMnweMH4tKx9EO+PIlmpU2WqqDCURlW2afghZYWYeS/+KLLaS9yfXjuc7Y70eh4+lfTOC59sUwxnRDK/RaDQapwL9wms0Go3GqcDOyaMvX768ZvSM1LyqLcZ0PZFGU4VAusyaY1m9KO9jtaepuFWakfbecccdJ/pUufFn6ZrozFEFhEZQVZEFYEonVU1VYK7bpxo2qpKtRq4CqTOHIYP7eD6zWnZUN1Qu7dIyf7Fu1ShFkduunDuicw9VzJW6iAmoI7iGqHrMVJpsZxRUzvPT2WsUrFzNV5X4IKJK3stzZ45IVRhClgC4cpUfVZcnRmtnb29P58+fX0sfFrFJpZk5hngf1rqkgwtDn+L5KgcQOsJJeRX0iFEyZKo2q+fOSG3Mdoy4dhgITvU3VauZGYZzXoWbZeNhnxmuIK07s2VjqtAMr9FoNBqnAjs7rRwcHKy5t2aODEwlxpIe0bXcEgGrFlMioNFaOpa+KgcHG6SjhHD77bdLWmedZBaZ1MnURTTIZ0yI0hgN6ZkLeBUUe+nSpRPtZK7FlC55rsxlmgHOVTmQLMlAnK+RAfnMmTNr85WVJvE2GuiNuN6YJJzzP3L5Nshq6KaeSZIMPK+uadb/ynklA9cZHWpGTj/VOKvyN7E9nmvkgLKJuWb3UxVInWGaltJAdOMf3Z9+LlQhJ3HfysGJ2qqo8eGzqVoX2X1JTdI2qJ4hWSpDHsMEDjxHdNqp0s5VzC/OA5kdnRAzpykWBmDfs0rnDJ3Yttq51Ayv0Wg0GqcEO5cHylzPM500AzD9NraUE+1IdNu3JOVCrD5X9ranxMvQApYako4lDYcwVMGqI1QpuDJsssf5HO95z3uOfqNdcVNwvG160noKI6NKkh3bIyukxBrH633jdavmbpqmo+DzCpwPMr3MBkIXZR5LLcSIFVSpxjLwfPy+TYHUSkuQscPK7pIxZUrUtO+M1jnHTjaQBZFXqdJGDI/tjbQDZnjU8GTrl3Yk2o+ygHnOJfuRFUr1fUlbFkNZ4rm2LcjLscfzVLa80TnIwBkONWKHTAvHa5CVfGLKxsonI+5bjTMLPK/W9zZohtdoNBqNU4Fpl6C9aZoelvSW9153Gv8N4EPneb6LG3vtNLZAr53G9SJdO8ROL7xGo9FoND5Q0SrNRqPRaJwK9Auv0Wg0GqcC/cJrNBqNxqlAv/AajUajcSqwUxzeuXPn5gsXLqzFVYxiJKo4ogxVHMxpwS5zdKPb2XTerAwJ86IeHh7q0qVLevrpp9dOdvHixfnee+8tcxxmYCxgFj+2qeAnzzWKPdvme7U2n82aHR27qb0bfa9UWUdG9zNjpTZlMMl+m+dZDzzwgJ544om1tXP77bfPd999d1k2iucZfd/mmPcVRhlvbgRu9Pmyc46eJdusnSorj5Ftz+JV77//fj366KMbB7zTC+/mm2/Wi1/84qPky07R5QTD0nGqGNY+Gt0M1SKtAmVHtc2qQOnRxd/lRbspSfEIVR+2WTTbVByuzrcpTVB2HraXJZ52MPy73vUuSUttvte+9rXpGO+991593/d939H6uHjxoqSTiaB5DRlUnwXUOwCYdch8LFOjxSDVqg4dv8f0UFWNweoznq9aO2w3oqpandVsrI7dtL6zlxfXCgOs43XzNXWidt/7TAaQpQQ0rl69qle84hVp/+6++259/dd//VEiCo85C+reVIE+e+4waXf1Isrmj/chX8YjAWub55pRPWdGz6Pq5bFNkHrVbvUsif8zLRirtsdgda8Dv0OYsszn9NqSjmufxnp4n/iJn1iO6cR4ttqr0Wg0Go0PcOycPHpvb69UYcRtFTJVTCWVVexsJAnz+6ii8vWoUKu+VvvFdnZhePyN4xnNc5XCbJf0WkSmvqZqe9M49vf311K9RQmR/eL1yVKLkekw5dpIHVoxq02JjCMqiT72sVoru7ABpqNiuqvsfmLF82qtZmuJSYlHCa99LZnei+eKoPTv1HMZ5nk+0fdRijKOaVTuiPfFplRVWf+qpM7ZNa+uN9d5Nj6mhxvNFf/neqjSeMV9KnCtZJoMpixju3E9UIuyiWFK+bNjW/VtM7xGo9FonArszPBiAmAmGPXv8TeDrC1KBtvq0DP4LV9JJttI6xVbGtkKNzkNZNsr5jVCpTPfhfFtA56vkoxHyWL39vY22iFG2oEqiTNterFEkW13tvOxqO82ziqbHF0yKbZijllB3kpyZ9LoTLIno2M5qGzdb+PcEdsdOQSwACdturEv27BBg9qBm266abiGr127tjbmbZyvRgVSq9JEWeJnHluxw1GC7so2XNlns7YrW/tofVeak9H15zkqVriNZoGsbRuGbmTtZInNm+E1Go1GoxHQL7xGo9FonArsrNKU1t1PM+NhRVEzx4MsnmtbbKuOHKltKvVdRqM3uRSPjL6ck23q8I3cgOMYMieCSr2THeO2WcdtFAbhfbNaYxUqFUn8n44aVls6HCHWDbSrulWa3pfrbKTy2bRmRypNrtUsXGDbtUIVV9zG83J7PIb3U1V3z8juDYYh+Bpn7v12D69CA0YOI9W6jrDTCtXVWb8rNfFI/Vm53m/T/03VtrO1w+9cB9m1rPo0cnyq2uO4R/ctq4pvs3aqUKrqHFlfjcz0wX3Pnj3bKs1Go9FoNCJ2Ynh2WKkqBUdQMqH0F4N5LbFRMq0YUQQlgG0yvZCZkrGOgrkrQ/DIXdfHUoIno82kwU3SWCYBUeqsxhfZHJ0TiCwzCh0bNhmPMxftjAl5XszozOKefPLJE5/xf7M+H0PHgG20B9uExVSVzrnOs2tZOS3xnohz4v/NXMl6/XumMeFvvF+zNcVAc1a8dpB57KOPd8iJmRgdymLg+TahMnHfzGklogoLGGkoqnupYnwZRmEIPFcVBM91n4XObHr+ZM57ldPN9Ti60Wktm08yuerZHJ873IfvAO4XMWKMFZrhNRqNRuNU4LpseNvoZKu0TZnbdsXw+JavwhZiHzaxt7iNAZJRAuUx27haV6BkR/aRSa6U9jYxu8y2Romq0qlLx9K5bTXbSE0jFk1YSve4Mtdrj9Vrg8zuiSeeOPEpSZcuXZJ0bMNjeIIZX2Zb4/oiO6M9SzqeH86Tv5NZRPg8lNa5DjyG2H/aMfmZsUIyPErpDA2I/zM9mNeHGV7so+GUT/70udz3iG1DJ6Rlni5fvryWLm6URqsKnM/u21GoTAXuu0uIEX0H+GzJ2DqZcGX3H2kWtgmdqMa3DRveFOaVtVNpFKgVG/lGNMNrNBqNRgPY2Ya3v78/DKAmO2NQamanqDzfqkDW0duekp33ZbqjuK9BJrSLt+g2Gf0pcTMdVrRrbgqyrZistO5h5/avZ3zbBN+yT9V5rl69epRwOmOZ7o/tcU5K/eijj574fPzxx4+OIcPz+f2dXpwx8bT/5xo1vGZiomQnub311ltP7ONPagmybbyWZKPus7QeWO+58T4eb6Yx4frinDPBexyrP5nc132M7Rnc13OSsfmMXVY4PDw8wfAyj+KKkYwSXlRekpXfwcjLlMdWwescV/wc7VvZl6mVGNk32e5IG0EWWmmLYp+p8fM+9PDNjnG/vXb4bI7j8jqwtmEXNMNrNBqNxqnAzja8/f39oXdmlWqJ7Ca+sakPrmJLMj38tixspKemZLKL/aqKdckYXmWjzOwZlUcXJVWW0cjGlSVbJapYSErnI4l8lFrs8PBQTz/99Nraiecz07LNzuzNjO6xxx47sT3ua+ZDWx6ZXrQnmR1V0rFZziiNlu1VPDaOKyszFM9h1kSWGrdxHzK8OK5NtrtqfcTfeJ2Z2mzknWemR5tl5rnsfff29kqGYxsevZxHzIRtMn4xjmWbBPAVKiY0ui83aawyrUflyVnZoeM+fL5RA5B53FbxvplGieDz3GvUcxJLQ/E+dZ9dPiwbl+8FlgnaBs3wGo1Go3EqcF1xeHy7b/LOi9im+CjtcEYW41Tp3y1NZOyGnmjsEyXTOI7KRmBkXpxVTBDbyfpoiZSSq3+3zjtKOZSwYnLn2Mdt7As+xv2Ic0K2tokZHxwclEmQ4/9mL2Zy0e4mnbTHujAk55BZYKzvzxJPex7IjNyfaMPzeckc2O42sZw+lqwtjpe2O3pncgyxD7TlMpbOdkhLynEcMbZytD22Z0n+oYceOtHe3XfffeLYOBcex9mzZzcyqsqOFc9dsZhsvdHDtWJNHKe0zmYNagAymy491emlHtcO+0aP3srvIe5DdsbnaOxjdZ0rT8/sOcdjPG9ed6NMQlwDLjKeaQd8/S5cuLAVG5ea4TUajUbjlKBfeI1Go9E4FdjZaeXMmTNpHTSiMpQb2yQsNUbJVekIQJVmZpjnb1T9ZHS9Up2yT5l6jwZ0qk4ylSbVnhyHPxkQnO27KS1R/K0KEdmmLtWmsIRr166tBZfHMVPFZ5UFU1dFFYy33XbbbWm73pcB6dK6I4bbq5xJpHV1kPvv+c9UfjyWc8lqz1FN5j7wmlqV7c84J7w/PUdWD3musrVTBUVXn7E9rnOHlbgdq58jYuLpkQNaptLK1IW+llUigswcUt3bHlcWGlQ5b3F75vBENR77EdthsD1V6VXoVjYu922UNN3rjAm6qdrOnpFUmVa1OyOi05J0fL1szvD2qHZnqNn58+e3dl5shtdoNBqNU4GdGN7e3p7Onz+/5hCSuWCT/dFtN0pn1du5ksDisVWAO9lalj6pYp0MJpZy54DYfuUCHEGpaZsE15xjsgBLz1ECqpxHKoYRf6PUTAadGYdj36q2HXjueaS0Ka272rufHmsWDsN9/N0OGWYVXhdZULfbY5A6A+Cl9YBrBvWbccU+bgpD4ZxHduj+04nJ/fCxkT157HfccYck6c477zzxaaaXsVGvUY+dgfx0tIhjrZyifGzGeuN5R+EB165dKx2ppOPQFTqn0HklY4qGf/Na4rMjCxvK7qX4PfaxSixNh404t1XgfBX+lYHPEDqgxWcjt1GrwmuYaXz4nVqdOA/UDpHpjZwOYxKEdlppNBqNRiNg57CEaMOjrcD7SMdSRBXsGt/Y1F1XSU4zJkS346qcBpkK+yCt68ejLcX/Vy7Eo1CNKnRhVEqkSvRLWxFTQGWgvYlp3qSaqY7schWbzzDPs65cubIWyB4Dpn0NWVDW+5DNScfMhsmcadvzeGLxWLMXj8NMjgHuMSyBdphqvmIfyTYYvM1zRWmV19XX7nnPe56kYxbn79Ixy/ygD/ogSdILX/hCScfMjmnRImu11MyAfs8FP6U6vRVDBLKSYD7PuXPnhgzv6tWra/deDNBnIgaWVTLifcl0g0znt01yfKbNanY1eAAAIABJREFUGrXHNULWRM1G/L8qWVSlxYt94zOYz4y4xrz23DevGT6PyNoiqvRn2TOYtkfeA0ytJx1rs2KITtvwGo1Go9EIuK7UYlngp8G3OBndKDVV5WFpZDY92kEoEWXB6pREKXmNSgpVXlEjT0W2U6Uyy+aT80VJMvPsqyRJMrvMzkRd+Oh6WYqOkmPF8pwAuLJnxf5wHViiy7z9GHhfJRGmxBj3oVRrFk2bbhyzpfHKdpvZfysplna5KDXTRug+3nXXXZKO7XIxFdNzn/tcSdK9994rSXrBC15woo9Mh5alluK8Mmm2maV0zNJoA62k9TieOPbKDuW0dEwuHp8PHhMZONdD1EZV5cC2uafpkViV2sm8tcmW6A2aab/YZ2oHMvsYU7z5vCwFlgXU+x6g97N/z54h9DY2uHbjHNHXgloe/x7XjvsWk603w2s0Go1GI+CG2PAyCZHpu8i4Mu8eShyV5DsqLTQqXWRQsiUjijYbgoyhYm1RIqENkqxp5GlFyYV2p8xWUZV4qfoT+09PTo4rzmeVpLjCwcHBkfRPhhr76fOZyVnKM3OJDI8SqeF5crFYs49ow2NfOJeZ7Yk2OrdL6TzOkxmQ7WJu17ZCprjK1oEZDEvvZF5sjD1829veduK8PhcZUzwv2QHv5wgyCNrCacuLffO2kQ3v8PBQTz311FH/fW2jZ7JRxa153jI2Y/CeZnxu5mVK9pp5gxpVkVOfIyvX5HVLzQjLNGVFdvk8y7xA435xn+jNLK2vi5G3tlH5UWRzQ3btcWUJ3Kkx2dvbG3qpnmhnq70ajUaj0fgAx84ML+q9Mw8d2j0oXWTSHt/ufoNbirFER4kxotL9ZtJE5XFEjEpgVMwyK4VSlTWh3joD9/XcUJI1e4htWwK2Ht7fswwVlb2C44pzxes2krIcS+V+ehzR1kU7Cz3FbDfKvMrMGJy42HFZLhob58cws6EU6U+3Hxme9/XaMdskK4jX1EzO28g2KbHG8VEj4t94LWMffX6yDc+Rx2Dm+cgjjxwd+/znP//E+T1ObzdTiuB683g855lWJ0uGPGJ4Tz/99Np9lJX68Tb3gdcragJ4/3FNMstIbI/2MMYt+rpk5Xr8SZaeJTinRocMj0wvi8dlAWAy1uz55319DX0Puq9ZMm4/Z6iZY4adrJSVwWtLjVP8LXqqdhxeo9FoNBoBOzE8S+l+c2cefGQEhN/YmY2rYhlV2RZpPZbG57LkZQkoYyZkcLRBZB6EVXkb6t+zLCYG5y3zAiNTpjcqbRRZjAvn2n22lJ6Vham8LEcMj+fI4LVDyTvOjaVZ2+ropenvWTHI++67T9KxvcrSMu1y8Zqa8VgyNTN6+OGHJeUekLRJU3pl6RePXVovf8R8j9ROSOtMgrY12hBjOz7W5/d2H/PAAw+c6F/sm8/31re+VZL04IMPSpI++qM/WtLJtUPtCr2szRKyGLjouVpJ6dYssVxTPF+VCanKVCQdrw1rA3wOX++RhyfXsb+//e1vl3QcFxm9HMlgq9Jp8VpWnuq89zKPS2pyKi/ozJ+CmhNqMrxOfK/GY9wHa1s8z/YsznIUUwvAvLpZ0e845k3+A0YzvEaj0WicCvQLr9FoNBqnAjsHnmeG5cxBg8ZjU1a6gkdY1WK1DdV0mbqN/WHAcRbsyFQ7VQXyTKVZqRKpJsgCMumWbGRBqwyGppNMFcwef2N4AkunZGV2ODejJAOGr+VoHzse0KU8Gq193R3cTPWKnSximiGnA7Mq09/pGs9gW2m9TM473/nOE+1lgbRM2m1jvvtkJxl/SrWTCu+RzBnD8+RP3yMMw8gSAFfpp3xt77nnnhP7xX2YDu0d73jHiXF/yId8yNExldrY8+btvq7S8dqL6cE2OR54jrNEDVUyB4ZRxLXDcCd/sqwR25CO5796Lvhax/apVuWxVs/HMJFK7clnCZMaZH3k8yALh6rMSkwj6PWYlTLinHs8DK2J/WeyAo/TcxJVw9ukPazQDK/RaDQapwLX5bQySjdFCZEJgLPAzCodGSVFH5u1TxdiGnez4EqjCizNXIoZjEypPAtep2RXMctM0mJfyVwzJyE6P7hdb6f0np2HzhFZSRay9pGE7uBhBl9Hllm5tfOaWuqT1kMLDCYV8GdkGe6vg9NZxobrLs6DQfdpMr24D4N3mSyYQbdxTqhB4H0VnUj4Gxm4x23njLjuzW7MSu2sQK2LHRLi+XwtqnRbo1SEh4eH5fqZ51mXL19ec36J1zxzguLY3A6P8TwwdIXJESKr9j3tMXuNmIlk4VdVomkm8Y6st7oP3e6o4Kz74H7zOcQE//EYw+0xRCwrxuw++dPjolYiS6zu81fhCJu0R9uiGV6j0Wg0TgV2tuFFjAJK6W5KRhRBXTYlX77dMxd8JmBlCZZ4jioMYmQXY1qzUWCklCeprdKfZdILU4dVAeEcUwTtfWSHI9sNbQRZyEFmN6gwTZP29/fX7Dq2gUnHEiHTgZl1ZKmXWOLEkqLPQTtWZF5cbx4P7ZkRlIrN6Oza7iDzaCuqkulWNojIYFkIs5LsI7MhK2SYjedmZAth0mjaZSILpV0+s89LJ5mLpf3Ioqp1dHh4eGJOsiBrFgVlCAjLSMX/mejA56CmKV5Tz23sV+xTplmqND0MH8qSKxMMu8oSbTCBgsHQqXgtqRXisZlmxmA4Cm2Gmd3Pc0L2S5thVh4orusOPG80Go1GI+C6UotV9qUIMhSywewtT++lykszky6qJM7sD8cT+8iAxiiZ0+5FzzeOK0pNZLCVfnoXr6NRkDfPR/tmJn3Su41eZ1l5p2wcla59b29PFy5cWGPR0Q5DidNsholks+TRZKS+hmYVWZJdFmQ16xjZfXyM++rz28PTDC87vmLptI9mAdVMB8Yk7aNCutS6eF6ze5HzyHtulOCAHtq85yPDYwLlbVB5DkrrHqLUWFSB6fG8fK5UhW3jeZm2a9Rn3lv+jd7T2XOA3pjuK5MxZAHa7DOZZTaPXm8VG8zmpCoBx2PjNeCar7xOI8NjQei24TUajUajAdwQhhff2JQIqsKiGUPhtqoUTwSlVErNmZ2psm2Q5WSS/ajERWwn/k4GW6UYyopFVqxvxK4p/VdFeLfxfKrsgPH4kfQf9z1//vxaouwsKWwlmWYszcdX6ec4j9kaYnkjFtXNpGbaCh2n5u3Roy9LaxZB+0vsIyVcS/RVzFvcRu/Mag6ydU5vXa7RUVJkg+sr2s8yL+pqPfK5k9lWabMnQ6G9NjsmG1v8HrfTV4BrnynN4vnZvlk7Y0YjeCzjdNluNh7OW3YvuA8ssstScNkzhMn43TfaxLO1Si0I282KFsR92obXaDQajUbAdXlpbpN9g2/uqjROhirLxyj+z6C0ST386Py0X2Q6+23Hk+m2K51zxij5G/s+suGR5bKPmTTE8fD6jfTkkbmOpPT9/f3hdSeT5/XOvOWqslOUvLPYQ7JCSpO0Q8c+eJtL69j703FYkRUyds4s0OzJ5xx5hbpPbtdMxV6U2fWpCm9yDcW+Vonb6Z0a2+NcV9qJLLHxKEbP8NrhuDKNSFXANrM5Ufs08iSP5+D/sZ3M/l+153VgT9JRAmgyrCqjVOZ3kCW/jueMxzBGj9oV7heP5XOHcb/Z3PC6V97hWRmxbYu+RjTDazQajcapQL/wGo1Go3EqcF3Jo6lmGbm3Uz1QGbjjtiqgeRt1GI/NVBms21Qlfo6qrEw1Km0XSkCVWRVQH8dbqU4rdegIvBYjlXR1/UaB7dE1fpMzDd3o43iYvoru+nQx5//SugqOYQTZOqgCjOnMEvdxuw44N5jGieOP4/QnVV2xj5UqmTUpo8qnUhNWISfZPgZVxCO1a5XQIXPgyJK6b3JaqeYrnq8KwcnuH6qsqbYbqVupSqTaOptjzrcdQxgOFa8lw6yojq6SZse+EXwOxOtSXbtMvR/Pxf/j+alazcxLHF+VHjH2Kc7BtuEtzfAajUajcSrwrFKLZc4kmVQcv2du+5vYIL9nEnflrEK2EP8ns6NBProaV+3QESAbn0GGVyW6jsdXQctVKEXVdrZvPIZzsoltx32joXuTezDTOGUhLZVzkqVLSpmxn2SDI4ZanYNjjims3LYdDVjuaMS4GHRflXjJnDEIpraK+2WVszNso50wkx2lmCOzo+aH7Cf2NzKzkZS+v7+/lnQ7WzubSsdkSeTJZiotTvYM4VrlustSGtLxiM4cmYPGJuex7J72fPF+YWKPbO1UznJVmEr8n+cYPRNHIWdSrh3gNb7pppua4TUajUajEbFzeaBM/5oVH60krFHC6U3hDtvYk6g7zxgSJZGK2Y3CEipJK2NE1INXAbmZzZDn3aZcxiZQsuX/EaNgfEpwV65c2cikPBe2dWVlohyoSnZBe5y0bluoyjdla6tidAaLrErHUrltdz6fGR5tOrGPZHaU6LM0VfytKr2TlZRh+xz3NiEBDOzPWDhtUCxAPEplF9nNaA3u7e2tubnHtcO55f2yDZsdpXjjd+7LkKMs/SKDur2vr1cWlkCbILd730yTVYUjMPQg2i7dF9rUdgkv43rnms1CGfh8qWyx2W/nzp3bOi1jM7xGo9FonArsbMPb5EFWSYujkjiUVrf9jH2oJPlRmQ5KPvTsGwUc0y5Dm1QW4FrpxX1slMwrWyQ9CjPGt6n80IglUoKnpJodkzGvDPM8rwUER2aySSpnoLa0nhSY80XGn60dtlsVWZXWC36yqKW/x7XFQqL8HAVHsy8cVxaEy9RLXDNMg5WxdqOyO48k6ooxZ8wlu6YZog0vKxnj8fN8ZBWZVqNK0DCygbK/1ZjjfkyGTm/dkYcv/SV4n2b3Z2WXJ0OK65vPs8q2NvLFqOZv9Hzg2hylouR9Os9zpxZrNBqNRiPiumx4lZ0sooqv2CYdWeUJmUlR3LdKa5QVfjQsrVvSyRgeE8iyMOvILkImSWmE3nrSuh3G3niU7EfeYGQujDvMpPRNUm8E52JTeqiYINjji2NmKZ8q2Xamz9+0ZkYMr/Ii85zHdcBSRbbdsdhlVjyYoG2XidfjWN3Ok08+eaJPmQRO2wy95mhTye5f9oVrJxY+9bV0ey7fRNtUJqVHe+3IIzWuHc9F5gnLeEHatjat0fjJORixUP7mfsR58v9cO2Z22TxVz7dsrUjjcj3bFJP2M5AstPISz1DNdZVaMfbba4feznFO6Om9C5rhNRqNRuNUYOfyQNM0rdkaMqnCqOxJmWenUXljZtsrW92mfkjrzM42gczWwQSzlJbIvGJ7nCcy5JHOnrbBqqBupsOu2GcG2mqqecySBkcmOZLSz58/f2THoPQfx+wYN44jY97uA7NlVPMUUWkFLIln9oRbb731RL8trdO7baSFqAqlGtkc0+5Mxp8lAPYceF/aYzPmwjlhHBTtaPG8ZiosB5Otb++TPQ+IeZ517dq1tXUc+0BtA/fJnlUc/6i8FVFpDnyOTDtALUClFchi2xg7VzG+LJMMGRGfVZkdjgnB+XzIUMXUVVqj2DY1PqN2rqd48FFfdj6i0Wg0Go0PQPQLr9FoNBqnAteVWoxqm8x9l0ZVUvNRqqpNQYRZwOkmVVwWAGrabjWb1RBZsDpVJpWjQWZMpsqkUs1kbtsM0OV8buM6XTmrZGqwrM5VbDe2l7k9V2rTvb09XbhwYS24OlNpep5iyIJ0PE+ZE0ilNqb6OJuvynnF313jTlp3MMhUs/Ec0vp6o0MDUz9lIQZcI3S/H6V48jxGN/643zbptjJVpkHnCCYXyFRZdKcfqcN9bBVqEM/nbZ63UaB0lWhimxADqoV9rM0j/ozOZ1SDUwU8clqpwiC4nrN1UKkUR6m+/Ok1s43piM+kKnh8ZMKpnlHZOyEe06nFGo1Go9EIuCGpxSI2JV7NgoqroPGK8WVu26NAc+mkFE3DMj9HCU0rZxFuzxJB032/MiJXbUvrCWGzFEbV/HH7SCqidLuNM86m4M9pmo6cPnhead0VmVKmpeYo1VYBuQxAz0oL0dHA3ymJ33777UfHuMI4GRel29gOK1tbo2DmVaWniv97Dsw2yZDi+qZ0TI0F5zG7n+jowCDpyGi5L9fbKAGwUYVu+DxnzpxZYyZxHdCph5qW0RqtnLuqdIVxn00p7bJQIzM7Mjx/xj5WiQbYtyyZRpZkOZubCLIytjdKncZrSgeULAE5SyJxHNmzis/PXZxXmuE1Go1G41RgZ4aXSZJZILBRJYQe6WS3YQpEVQgx01fTZkLJJHOVrsZljIK6qxRZTDQcpcFMny+thwKM9PHVeLIEwNzGfTO3brY5um5eOxxznNcqWTSTEmdhMOz/iDEQZGtuz0GwZnXxN3+SvTNsJYIss9KGZO7xZGWjMi2VzcbjM5PI2qF2o1qjkUlwTli8c1QyyTg8PCzXzzQtBWCrAPp4vqqMUbZ2Nmk8qnCSeB7a9FkcO9rwyJLJjJliLo6H9n/awbL7idgUNhD/r4LT+Zwb+QFUz5IsAUFlX8z6XBX33QbN8BqNRqNxKnBdDI+SYWZ7quxIo2THmxjDSJ+7idllemNKLZSwsnZYpoXjy+wV9Og0Y7Ck7e+ZXWQTc82ClzlvlWdVlOKqdirPxfh/tGOMWF70tCODiKC07GMYrCytz3dmW4jbo8RdjZUepNk8uU8MdM88fCsvxqrQbQQZ9qVLlyRJFy9ePPF7hPtAhsXkxLRvRlTsY2TDY/DwqCgrWdqm5NF7e3tbJawmk9smAUWVgKDyqub/Wf+rQqqxb7T/ZSmzWKqo8nzM2mOSAq9VllnKEt1X14NJ7EfaNmKXpPU8/zbPqm3QDK/RaDQapwLXFYdHyWdkj6viKOJbObNDZN+z7ZXUMNLPWxI1Y7CE5WSuZBixjz6Wdhgmw82Yi7cxQaol70y3zeK0lHiyMh5VEd6RVEaMUpYR23ppSuvsIzIFpmmrEudGbGKiLHaZeUDyGLdPe2lsj9fB62Lk+ViVXqI07TUUj2G8laX2rLxOJZ1X5YIyCZ92OLK4uL7pnUmWzbUqrbOLg4ODoQ0vFojN5q2ysY+eUVWi8SouLysIXaVFzJhSpbkg44uobMJcF5ltj3NCOzPTh8X/aTOubKKZlyafP6Nnf+VlP3oX8HmwSTsQ0Qyv0Wg0GqcCz8qGl0nNlQ1lpG+tysBk7ROVHWYbhlIxnswri/E1tPd53JSMpXUbIeNhKs+yeH5i5PW6qTzH9ei+jSyDzLbHPfPMM2ssOssqwfjEUVJf2gT9yWTOtGPEY7mOyfhckkdav85s1/FyowTn9HSjdJ5J6ZSSma3F8xqPqeJbK7tn3Leyb2d2Js5Fte6ye7FiShmo7cjOxzU50j7w+jM7S5XsW1q32fKcPlfMFsT73HPI7Czx+tMLuCpwnHm4kx3yOzNLxfMwVq/SsmTHMq6UmpvRs2pbT/14vm33l5rhNRqNRuOUYGcb3sHBwZokHLGJcY08dSjxVt+zYyt9/EiXTpbBPme5+ijFWFqiJDyS0ivPqpEXW+U9tQ3rrWJqdmF4o1Iyo77wd0r7mSdsFbeTlXHhXDLfJtlbPJZ22MrzLkrpLGfCYqeZ3YIlayidM8dmZsut4iIz0H5c5Vsc5bjctEYzOwwZTJZrlX3IbNCE4/DIiDJmShZBT+LM05LzU2VPyRheFdvm/sQCsHx2+Hp7PNmzg2uEfR3Z//jsrdjiKAMO2xmhyj7F+zezN1fZtLKsMFnWrm2fZc3wGo1Go3Eq0C+8RqPRaJwKXJfTSkWVpfVg2k3qtQyVu3ZGWysj9TYqTQZ8MiFvFlBfJdfl+DJnjEqVmrk9U53LcYwM99uEcxCbAmmza72La7nXDvuQqSep7qJqaYRN6qhRFfsqlCZeFyd+diJoq6McCJ452tBJgOWC6OgQUQWrO5RlFzU/HS3oJBTHXn0fJV/eFIKUHRtDGjappUaODVVYyv/f3rn0OHIkSThYbBUkSAKkw573//+sPc9J3YIe/SjOYWBV3h/NPJIU5tBLN6DRVax8REZGJt38Yc774cZAwW++H1xpQHo+kjBB3V9rSIlGWhfsfO7Gn57/JFe31nWyz5Gu4ilpheev9yyJcaT3Xf0sudDdmnAtssalORgMBoNBwc0M7/Pnz1fWUpe8cvR3h7SPs+ySBeICpSm42oGptino3lnaZBSpMLz+nCSTOvabWnik8gu3bbqGLvlnl7RyPp+vLEOXWszxJnHvI+A9dm2i0vy49iNkAzUpof69JrroM7FClTkweaArcKawAWXW6twnzwWTJSg1tdZ1YflOJorjrddBdIlqz8/PrWfi+fn5aq7dObkWXbKSkIrEU4G2Y+C7EqC63pjowrIArY8KeszIHBOTdcfQ/2KWHdMjw0vJgC55iWuWiVZOlCMxOpcUxCSpI+/v130PbzkYDAaDwTeMuxrAMhbQparz804mKm2b/u62TVZbJylFK9BZGykOQavFtcBI8QXOhSs45T4pFtH5ujn2WxhSN49HCsPr+KoAsJMFSkynExNIpRFM5xYj64SSK9tY680SdvE4fSYmx3FUa51jYCyP8mcuzsgx6hi8x/VnSn5pW1dwLPD+sNyjE1LuYvvch8/Jd9991zK88/n8el80j04EYVe+4zwKZE2MsXYSc6ktGO9p/ZleAsrtdQ2OnWekjtmJgLBkpvPIpPdKkg1z7CoJBBwRAeE7qnuvuXZKOwzDGwwGg8FD4B+JR8vycTJDjAkd+ZYX0j7OqkgZkC6DUKDlkeJhLsZFS46W5RGGx5iKaxNDRpcYn8sKTQX7u5heB2chO7mj7v6+e/fuUNx3x4QrksxduqddCyZm4CoTUnJhdRuK7Io1kYGt9ZaVR3bI83WMmQwveQ3Wul5PLhZZz9PFZRmrofVef74ldudaB3Xr8enp6SoW1cVudqLO9Wd6ePjucOsvZc+yKNo1ddba0HkU02WWeB1DEosn83JjTBnlXRzOZWG683XvVV6De8+RyaWs/hpn5HfM+XyeLM3BYDAYDCpuZng1hifrtjbVTNYe2YWzBlNGkEDfd92GGVDJaqvH4e+pnUU97q7FiqtFSgKztKYco9zVEXUxHP5+C7NLMVGXdVaZS2J4p9NpnU6nWAu21psFmtZBl1WbPAhkdpUJa91qn2S117VDq1nHo5hzZXhVfJrHq+PgmOvxdV5at671DrMzOQdk0k5Qu5OsWqv31KSazjrGLgZESFqMMn51jlNNGdeSYyQ7L4Fja65NUtpWYDyUsVwnf6bP6Flgey3tU9eS/kZB+1QvWa85ZZ12MbbkFehqO4+0A6pjr/vXWPUwvMFgMBgMCu6K4TF20/lxE3vqGN5ONaFapGJ7tES7Orzk3xe6+pQUp0hs1B3fKVxwH1pUyRJ2VtRRpYtqFTEmmCzjOs8UaK4qPMTlclmXy+XKmq3jTgyv8wpw/AQzFWtzVc6/s8q5naxlHUdjcpmDgrZRLDAp+jgWqnPrfLLglUHKllP152Q96zyOUTCDs3pT6thcrWAX8+J1UUi5U+nhGLt8gLRGXGZiylYk49dY3Ryn7EK33ug54H3Q+qjXoG0Yb0yi6TVGrRg0m1J3aiZHcy3c2krvDD7HnTcqNUuu10XG+O7du2F4g8FgMBhUzBfeYDAYDB4Cd7k0k9zVWm9uLroFu8SQ5FJICRPVrSaXC4tD6aJzLk3S5+SWqD8zeYVUmi6HI+jSunm+I8dNSSpH5N2SO5GJSvUzurgTai9F505zadI7pLIUwiUTpO7oPHb9/Mcff1xrvc2PXIsqPXAp8ypO/+2339Za19feuSDpqqKrR24rl7TCfXV83UONuZO0Y7JEV7TMuU99Deu2R2WhuiJzN55U0uTW1k6uz41/V3gu1N91n+n+pnhFvRaWgOl3jUXr0b0f+A7mHHVuyVQStJM4rH8TmAjTuTQ5drry67V2PRQThuENBoPB4CFwV3sgtsuojItp9Eyb7VLKyUy4j2vTwXR9HssVc7qgZ93GpfonayIVSrptksXrmEQK/KcCzW4bfu7AuU7s2jG8I4kHl8tlffny5Upyqc4rU7CFLuEppZZzrZDd1M8oqpuEc9d6S+qgODBT/N3a0fEoQkxWuCuyrdu65J9dYhVl1rqELoFsoFt3SaTBJbo4Sax0fiYZubUjJG9NJ6fF+52Sv9xxU5mCe29wm9Seqo6FrYsEiojXfXdrx70b+dzT08OieXdP6f3i8+sS7PQZSyj4fz0u2fsRDMMbDAaDwUPgZobnSgKqdSZLS9/U+ltnNdfjp/Ou1fv96a9O6a5122QFdlZsig04a0lIx+ffXSxlVzR+TxG54O5Bit1RWLduU+OnXTrzy8vLVYzIsTWBzKBLo05yZCzyrsXKKeVeTE/n0e91TFVurO4ri9tZzbS4U2G9Y4e0dFO7lrpNajQrYWsXe01zTUvcMZed/F4FmfnHjx+3ZSeMUzmhht1ad89LijExfs7xVKQmuDWdntsmtuYYS2KofHd0Mo/0SlCAoP6cpBk74QiKbwiMlbvcCIolMGbt9nEydzsMwxsMBoPBQ+CuGJ6+1ZXl9fPPP79uw2JKFv5238a7eFW3Dy0EWkKd35hszTExZ0nXbVNLDHe8bmzCzj99JB7H46ZMtvozrzO1tKk/O9bnxuSkx5wFnFq7uEzLNLeML7KdT91H61isTYxOFqlr26R50fEY23OsieuLbETHUOZdvY6UPSl0sVUKW3ftvVh8T0+D7lfNmhMz2bUScsLj+v+PP/7Yvht0HJ2vsmwy01usfiF5b4SOCTH7WPNY7wvXKOPllLqrP+9k93QsZe3W8TMLmdfVFfUnQQ/HpJOQQxKxrn9jDI/7OIHrKuu3K5R/3ffQVoPBYDAYfOO4i+HJmpDlWC0tWV+KG6RMofqNnOJUyR/v6mFSLVVXf5MEml2NXWJ4R+r+uliAO6YbI9HF41KLj042iJYj5Y5cvJa1QZfLpWV4Toi4y/Jfq75BAAAQXUlEQVRKjNRly6XYncYoFlcbswq6RrE1SjJV1kN5Oz0DOj4Fmuu2vE7Ka3VZyDpvstadOLruma45tbBxGXCs9yN7c/FmPuuJ0ax1LbLdWemn0+mr1lKUyqrHZvxyJyPo/sbnxmUk8nnXdVAI/Oi518q1vWtde65SrM3lKtALxvG4ONyuTtKxRX6W2JvLQk7/O4Z3xPOXMAxvMBgMBg+Bmxjey8vL+vvvv18tAsYx1nqzjvUtLuu2UyBI39jJInIxHFq+u2zB7nNn+XTZpWv17DDVobgmmMIuGzPVHXbbpDZFdRsyGLK4yiQYK+qyNL98+bI+fPhwJXrstk8ZvanB5Fo5LqHxa42+f//+qzHVfanuwNhUBeNjVFqpa5RZcTVTtP69sh1C++r54tqp94XNaZlRyga3XR0TWaBb30ct7hrP0v2oNYHdM/v09HSV7VrjvzoOnzUyIBeH2z0nXTYjM2FZf9w90zwPmT+vv4LxP1fjSW+He4brser1dM/aWn4daNskku1i8Cm+Rw/DEXWWIxiGNxgMBoOHwM0xvM+fP79++8tKqxYkfdlkeMw2q+jibXVf56emr9dpNRI7puesl38Cqr8wI+lIbROtNmeJHam34+c8LjVKu/hSjSd0DO/9+/dXjLRmlbmGq7vr2GkaMquyWsBatxxTasmz1jX71HyI4bmYB9WAOKe8x67hrP7XebpMO8akGX9lvVRtYZPqZllDdUTtRvPIeOda18o9uwxN/atzURleygPosja7rOUK9y5J3hKez8VHBbK0WzwYR5pWC4nBOtbbPb/1Gsjm6t/4O2PhTs+WzwCfZ+cxS++JDsPwBoPBYPAQmC+8wWAwGDwEbm4P9PLyciVVJDfLWmv99NNPa603GsuOva4FTHJHpESXui9pcgo4u+PQDZHSduu4U2CbY3OlEzuZpnq9KWhLGu8EgN346zU4N08Sie5cmrs5qXh5eflqnTj3BtumMLFF21a3JNcIXdt037j0/SQtJRdcdVNqfdONR4GFbp6OylK5z5L70M09XalHkjQ415oLumqdu59rhC7qrrVUV9LC82mua4G+Wi+57dfq3WC7QnNXlpCeZSaz1LlNIhy8D259872S1lKXLMfr4jPfjX+3ZuvPlFVL5Ql12+SKdmuCz+0trs1heIPBYDB4CNzF8GjJ1bIEplZTTFqfd0LJnfAz/05LtCuuJtguIzGxeh4yBY6VVlz9mdfJdPsjEmP3FF0mBlbniIXavH9kemtdW1pde6CXl5f1559/XhVQV4bH0og0L3UMvCZamV0iFJkdC85dMW+SsqOlWtmM5o4MNlm1FUmOjAkvzsolk6AHw4kp6LPkOXFzonOT0SkpyAmPszB8Jzx+Op2uxlaTifR+0Tl3ZT1r7e8Dn3VXeE4pts7bwblMHiXHnp1IgDu2S16hHB2v083N0Xew80akspeukS7XeSeoLtT7M9Jig8FgMBgU3FWWwLYq1boUw9M2tOS69NkkdpysgPo3Wr6db3vHAjv2lKyiTqh5Z3101yUkmbAOKe2aMaW1ru8XGV/X7HcnQ6Txf/jw4ZU9yfpzBdq1VGEtLzBN0OJObUeqhazz6LNff/11rfXGHMjI1sqxG56nPhOMh3btjogUn2Acvd4XxnlSrNUV9fL5JGNmfK5+RvaRrrv+fFTk+XK5tCyG95fvqE4KiyyKY3LPC4+XxOvr+XZMy70HeJzksXDxXyKVJdT7ksTwOXY3VsbomMfhGN7O69WVTtzizXu9vsNbDgaDwWDwDeOuBrAsXHVNNRNj2BWXu21oAXX+3CMxL7JBwmUm3cKs6vm766DF08UZUkaXa/GS2GEqWq8/p4avLtOOWV5dpt3Ly8v666+/Xi1HF2tJEkRkby6Gx/udCllrkbWYnDIvf/nll6/2dVmaXGcpVuSyCms7kw51DrsC84oaz+IcuPjrWj5TNon2cv3XayAjZmsc5x3YxaQqTqfTOp/PV3kATjA9iThQKL5eU3qvdBnfbGrKtdrF8shmungjx5i8XkcypRPjd++qdD36O9fJWm9zkdpFdc1wk1hG8tjVsXSs9up8h7ccDAaDweAbxl0xvJTFtNY1wyMzcNaUs77qNh0bpNVyhBWSoSb/sbOWkhRO54dnTV2yQjtGubPgnLXL4/J+1X1ohVNOyWXa8d6ez+c2Lno+n68apda1I2Fp1u90otfJSmYmnMvs0/yrgbFiep0QOK+dlqiuzzUc5u+uJnWtY16EJKXmjseYHT0LleFpftKzITj5M8qtKXvbxcCEIx6f0+m0fvjhh7beKokQc2zuPUCWkbwq9Z46drxW366HtbS8H05cOT3L6T3g3iFpXzcnO4+F1odjbYyJp0zmLmZ8hNnx+Tyfz4ez1ofhDQaDweAhcHMdXle7tdabhctYEH2+rv6KzNGplnAMKRsz1S+lz9y+DqmGhedzFn7HGNJ5hJ31WcG4FjOeXAyTsTpmcLmGmqzH/PTpU2Qniv+yCWyda60NraFbsjN3qjyuHVGKOdCCdIo0ZDNsitzd41sUaoQU63Jrlq2yGENMzV3rZ6kdkFs7vB4p6uj/LoNQ3oGucerp9B/haJ1HY6zZvMwI1dqhiH1975Ax8hqT2HY9TlLAEdy9TQo/jknyHbirL3Rsje/PIzVuvFeJ2dVnlJ4ZvuuP1JuyPZnLnaD36fn5eRjeYDAYDAYV84U3GAwGg4fAzUkrX758uUrqqC5NdlmWi4dJA10Ppp3brhNKTmnUR4RpO6mnlJ7LYxyR6dn9Xj9LhZhpztw+SUC5uhddcXDdly7PNJZdWYKOwx5ZdV+6p+i2dIF5rgm6XOiSqWNIEk/OZc9idP1OwYW6D8sQksQbXXYVTJJgTzjnQqdbkq5O1w8vuc70uSvG5zPOLvMUE3Zj6BKetD2vq7pB6XpnSKVzS9INqeMzccJJDTIMw/+7InkWxzMUweuvf0tF8q4/XSrZ4Xbub6lruebR9bNM3cu7sivCyRZyn/rOHWmxwWAwGAwK/hHDc0F3pmfLipEVSWu2/pyCq2Qd3bc5ZZU67AKdnUVySyp5SnQRUmp9/VtqMePkgXi8ZC25e8CAMIPxla0ckRQTLpfLV0ktTPpY65ohsCO5LPojDI9dy2srGYFWK0tpyBLqZ/pf61wJGhRPr8dNSQq8L85KJxurrGytr9kOz+M6hNdjdsXfTOQRnCzd77///tX5yWyrQIVKUHTuLuFprf/cIybZ1HnS8bRm9D+7rjuPQmqxlGTj1rp+ll2rHR4zlVC5bYkk+cY1VO8l31UpecmdJyU20VNX1xQ9E+ldXK87tWDiM+Lkz3iMIxiGNxgMBoOHwF1lCZ1lT+tYVp0sbMfa2GqHVntiHWv5MgBus0OS6XHbJOmytL3bt2N0wk5CrIvpJQbO++YKuHds0BWe19jDjlnrmilQsNa1RJXiA4yXudZLZEKyNmX5d9Zsan3TpZRznfP3el1kx2S5HevdWdouvsQyAFrjjIW5mFGSn3IxcW374cOHr/5Ga70yPsc6d6IFfF4qoxDj1bXqvrNMxDEgChykuXWNS1OhtIvHdaVE3edrXc8l35mdHCJ/5/vOFbpzvo7EjgWW83AbFzOkKDnXar0uxgS7tmTEMLzBYDAYPATuagBL37wr5qQFTwHbug+ZYpLvYtv5uk3KsLynyFtw1tLRAkd3HDK7xBrXyu1TaFF2WUypwNntw23J7Jwv3TXzPQrHTCnWLCtd1rvO5xgJx0ArU/JhXfEzY09O5DlJRyXZrrpPiql2Wbs8XmJ8NYbH4mBmozKW44p66V3hPXAeBRbhc127NmI67qdPn6JX5nQ6rXfv3sUMwnpsxm71v+KLToBCc6djMNbZZcKm+HXHOI6ykXr8JBJ9RJ6QjCh5RdbK8oeMZzrvQBIQcaIPBN9JyStWQXH0IxiGNxgMBoOHwF1ZmkT99k1tZZi9Wa2oZNnRT+781LQqGNPrBFJTDIXHdtjV0jkLmFYhLa2uvpAMi1ZNPR/jCYnhOTHeVE/UxQqFXUzy48ePV5ZjXU+q29I2XCuK6dUYFzM4U/2Yk0Kq0kRr5fVWMyJTTVMnR8c1mYRxXUNWjltzoDGptVGthyIzZs1jd5/4jOl/emhcPWaqN3QxUbLoXfz3fD5H0fV6bWRjYheaEzG9ug3nQ8foYoaJzTAO6NbFLi7q3lVCqtVztZuJnTEmWeOaZHD0BjCj13nbyNLS+67unzxoZIlr9VmfOwzDGwwGg8FD4K4YHuGYAq1YZvnVfVILDPqYO5aRGJazsFIWXmJE9fg7VRZaNd11ddmaKfuqY7tCUktJbNEdJ/nOXWZniicQT09PV/NXa7P0maxxxdbE/FzMaXcfEvNfK8cWmKFWx0g1CY2R8bLKCslm2MC0a1bM45GxKPu5MjxmZepvGntqAVXBeyuwvVOdA74H2PTZPROai64W8HQ6refn5yuG4t4hbFwrME5Xt9m1FiNrc9eYaoVdnJFrtovLpWeZ1+3A+G5qyFrHmJhdqvvrMnyZ/erqrdPcutZzAtfrNIAdDAaDwQCYL7zBYDAYPATuSlqhq6KC7sckHeNS4gUWI6ZUVbdtkgfqhKA7V2ZC54ZK50vB1c7tmvprpcLTbvzJTVXHmP7v3AbVRbpLuaZ71RVZ051BcWLXJ09uTyYtdEXkmjsej6ntrjieklWpaL6On2UPqdC9unw0BrpMUxJLHVvqys3nqiabpCJ8SgV2Ls2U0OGSjeq509p5enpa33///dV11O13wsVCLd/gGFwh9lq9+47rjHPrBKfp2usED1yRdf1dcAkhnAs+G5wz9zcel++diiSd14VSurmtf6/gd8stZR7D8AaDwWDwELiZ4X3+/PkqecSxGYFpzO5bmcHzFMB0KeC7lP8du0rXSSTrRWChs0st3hXJd4XnnDeybCdSe881p+ScjhUm8W+3fZewQytSkDBzl3qdWrkwlb2yDBYeKwGEVq6TlGLRq7bR75VxHWV47n6xu7fG2on4MrljV1Bf5yQxFK7Dug8L9xMLqXAtqrrC8+fn5/aZJtOiPJgrg6EAN9mL/t6VYlGgO3lmKrgmU1KZO08qBXKerFR+0LUHSuUUfOe7Z53vAW57ZG449iQduVbvsYrHPbzlYDAYDAbfMG4uS1jrWHwnlRp038r85qf14mKH9IuT6R2JQXGMTrA0FacnxnekHGIXB3Tn7USjOaYufrU7Dz93Vq4rik3+dMV/aQU61iaQtbFh5lpv1muSUaN16cYvy5fp+4KzLimCzaaeNYYnhkrZPa4Dx/SSaG8n8cRrpZeFMbVadsH2NkL3/Nb9HZieXo9XSzSOCj0cid1wfbl4peYuPUtM43d5B4nFHinuT6n+dV++E8kKyYAcw0seBLeu031OZVfdPThS2rTzQnWlSNUzeDSONwxvMBgMBg+B0y0ZLqfT6V9rrf/77w1n8P8A/3u5XP6HH87aGRzArJ3BvbBrh7jpC28wGAwGg28V49IcDAaDwUNgvvAGg8Fg8BCYL7zBYDAYPATmC28wGAwGD4H5whsMBoPBQ2C+8AaDwWDwEJgvvMFgMBg8BOYLbzAYDAYPgfnCGwwGg8FD4N95WEo6VJvZuQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu4belV1vnOvc+tqnLqkkolgQRIFMQG0dYW5SKQVojcQYmAihAV76Dooz7dghoQxBvQPo2KgtwvIipIgyKhmygIjSBiY0ckgYQk5FL3VFWqzqlzzp79x1zv3mP/1hjfXOvUCem4x/s8+1l7zTXnN7/vm9+cc7zjOs3zrEaj0Wg0/nvHwbu6A41Go9Fo/EqgX3iNRqPROBPoF16j0Wg0zgT6hddoNBqNM4F+4TUajUbjTKBfeI1Go9E4E7ipF940TS+fpmmepul9b1VHpml61TRNr7pV7b2rME3TSzZz85J34jlePk3TH3pntd8YY5qmL5im6Xe/C877os3ayv6+9Baf62Capldk63iapi+dpmkrnmmapgvTNH3eNE0/Nk3T26dpujpN0y9O0/SPp2n6H5P9p83v8zRNn3CL+//Rg7mKf193i873iZv2fvMtau+l0zR9UbL9123O87JbcZ5bgWmaPn+aptdM03RlmqZXT9P08pto47nTND28GduHvBO6KUk6985quPFOxcu1XLuvfxf346ziCyT9qKR/8S46/5dL+l5se9MtPseBpL+6+f9VaztP03RZ0g9I+o2SvkbSl0p6h6T3k/RZkl4p6T4c9hGSXrz5/7Mlff8z7XTAf5D0oeH7CyV916Zf8Tz336Lz/ejmfP/1FrX3Ukmfp6W/Eb+wOc/P36LzPCNM0/RnJf0dSV8s6d9J+gRJ3zBN0415nr9lj6a+StLVd0IXT6FfeI3Gux9+cZ7n//td3Qngf5f0P0n6yHme/0PY/m8lfd00Tb8rOeZzJF3T8kL95Gma7p7n+dFb0Zl5nh+TdDxHQRv1C7vM3TRNk6Rz8zxf2/F8j8bzvbMwz/NTvxLn2QXTNN0m6RWSvmae5y/ZbH7VNE3vI+nLp2n6tnmej3Zo56WSPknSX9AiLL3zMM/z3n9aGMYs6X3DtldpkXI+WtJPS3pS0n+R9LuS4z9T0s9peaP/v5J+1+b4V2G/+zYT8MubfX9O0h8t+vKRkr5H0hOSHpL09yTdhn1vl/Q3Jb1O0tObzy+UdBD2ecmmvU+W9NWSHtz8fauku5P+fbukxyQ9KumbJX3q5viXYN/frWWhPrnZ97skvTf2ef3mPJ+pRVJ8h6SfkvTbMM8z/l7FOU76+fclvXEzj2+U9C2SLoZ9PlbSj0t6StLbN3P5/mjH1/hjJf3MZt//JOm3ahGe/rqkt0h6WNI3SrojHPuiTV//pKSv1CJZPynp+yS9COc5r0Wyff3mOr1+8/180t4fk/Qlm/M+Kun/kPTCZA7+qKT/LOnK5nr+Y0nPxj7z5jx/erM2HtfywP5AXCPO/zdufvs1kr57M7Yrkt6wuc7nbuY+S8bgMX/uyn5/ZrPWHt7MyY9J+ljsc07Sl0n6xTAnPyrpwza/cYyzpC/aHPulkubQ1ntJui7pf9tjLLdruW/+5WY9zZL+2K2Yp+J877s5x8uL3x/U8qz5U5JesxnPx2x++1ub9f745tr+oKTfhOM/cdP+bw7bfkoL6/2Ezdp7cvP5cSt9/TvJ3D+x+e3Xbb6/LOz/z7Q8Gz9cC7N9StKrJf0OSZOkv6Tlnvdz5x6c74IWNv8aLc+HN2nRIpxf6efHbfryodj+SZvtH7zDdblNC2v9s2EOPwT7/DZJPyzpkc0cvlbSV9zUOrjJxfNy5S+8t2h5gX3WZhG/crNw4n4fLelIy4PpEzZtvWFz7KvCfndK+m+b3/7I5ri/LemGpM9P+vKGzUJ5qaQv0vKg/Ebc4D+i5WX4BZvF8IVabvavCPu9ZNPe67RIrS+V9PmbRfRNmIcf0XLTfp6k36lFxfhG4YUn6Y9vtn29pI+X9BlaXmivk3Q57Pd6Sb8k6SclvWyzAP7TZqHevdnnA7QIFP9Z0ods/j5gcK3u2SzkhzaL6ndI+r2S/onPvblWNzbX65Ml/b7NonpA0gtwjd8q6We1vJQ/UcuN9TZJXyvpGzbz8AVaJPe/FY590WYO3hiu/R/cXPef1+mX2bdrWTdfspn/V2za+/akvddv9v84LYzhQW0LTn9jc/xXbNr7g1qEqJ+QdBj2c3v/ZjMPL9tco9dq89LSorJ7i5YHmef/V29+e42WB86nSfqozTx+q6QLz+RhnYz5j2pZz8d/2O8rJf2hzbX+WEn/QMs99zFhn7+q5QH++Zu+frKkvybpEza/f/jmXF8XxvmCzW984X32Zt/fvsdYfv/mmE+TdCjpzZL+/a2Yp+J8u7zwflnLvfXpWp4377P57Zs3/X3JZp6+W8vz4P3C8dUL702S/h8t99zHaVH7XVEilIXj3lvSt2l5+XjuP3jzW/XCe1jLs/ezN+f5yc31/btaXnIfp0U4fFLS14djJy3q8ccl/a+bcf85LcThm1bm9M9v+nIZ23/VZvvn7HBdvlzLs+xQyQtP0nN0Ihh9gqT/ebO2v/qm1sFNLp6XK3/hXcMieK6WB+lfCtv+vZaHZGRVHyIwFUl/ebMw3g/n/trN4jyHvnwN9vvCzbl/zeb7H9js95HJfk9Leu7m+0s2+/Hl9tWb/kyb7x+z2e8zsd+/VnjhSXqWFsb09djvxZvzfkHY9notUsw9Ydtv3rT3+zDXP7rjtfqSzTz8xsE+P6XlYX0O/bsm6SuTa/yrwrZP3vTvh9Dmv5D0uvD9RZv9eO39YP3DuKFfgfa+aLP916O9V2E/34TvGfa7IemvYD+f91PDtnkzD/Hl+7LN9g/DdfpWtPeczX6ffDP31I7X0mPO/lIWqcUWd07S/yXpn4ftPyDpnw7OZZb3iuQ3vvC+cLPvr95jLD+o5SF9YfP9b2/aeL9d29hz7nZ54b1dYD/JfodaGNGbJH1Z2F698J6S9F7JNfzTK+f5O5KuJNurF96swDq1MPVZi8A8he3/SNLj4btZ2u/Gef7Y2vXQotG5nmy/e3Psn10Z4wdpeal/GOYwvvBestn2q0Zt7fp3q8MSXjPP82v8ZZ7n+7WoAN5bkqZpOpT0wZL+2Rx0u/OiU3892vpYLRL466ZpOuc/LdL3vVqYTsQ/xfd/ouVm/y2hvV+S9GNo7we1qNDoGUQD+s9KuijpeZvvH6rlQfrPk/NGfKgWtvptOO8btaghPhL7//g8z4/gvNJmDm8CL5X0k/M8/6fsx2ma7pD0myR95zzP1719nufXaRFOPgqH/Pw8z78Yvv/c5vPfYL+fk/TCjS0kgtf+32t5eNjBwPPxrTjO39mff4XvnK+P0bIOOP8/oUWq5fy/cj5tt9l1/h/Soh78G9M0/ZFpmt5vZX9Jyz0R+5XMV4Yv1XIfHf/FazdN0wdP0/T90zS9TcsavaZFMn7/0MZPSvqkjcflh0/TdGGX/t4KTNP0Ai3s8zvneX56s/mbNp+fvXLshPk6vIVd+7e493zOj5+m6UemaXpYi+bhqqQX6PR8VvjZeZ7f6C/zPL9eC3u62fu5wv3zPP90+O778gfnzZsjbH/WNE13b75/rBYG9X3Jc1FaHItuOTbr/B9K+pZ5nn9ssOurtZh2vmGapt87TdN7PpPz3uoX3sPJtquSLm3+f46Wl8vbkv247blaHkbX8Pddm9/vXTne318Q2nufpD0b2Nkex2IPIo/lPSQ9Mm8btbNxSNIPJef+oLXzzvPM8+6LezX24LtHi1rjLclvb5X0bGzjA+HpwfZzWiTiiOra+zr5fOzPW/G7sXadPP+v1fb8X9b+1z3F5qHyMVqk+i+X9PMbl/s/MTpOi/0i9ulzVvaXpF+a5/mn4p9/2DgM/JAWIevztAgSH6xFXR3H8Ne0sP9P1WK7e3ATPsD53QV+oL/Pjvv/AS3Pnn85TdPdm4fvm7TY/D9r5aX/h3V6vv7bTfS3wtY9ME3Tb9Oi8nublmvzW7XM52u02z259ky8VdjnvpRO3x93bvoU59VCLe8PnvNw46Eb4TWUjd34g5I+UItzi9fAHZvfnjVN053SMWn67VrMOl8r6ZenafqZmw1j+ZX20nxQy2Q+L/nteVoYmPGQFnb4Z4q2uNCfp0WHHb9Li17e7b1Oi34+w+uL7RXeIumeaZrO46XHsT20+Xw5+mc8vud598WDOnmZZHhEi8rg+clvz9d40d4Mqmv/M5v/fb7na3kZxL7E33eF5/+l2r754+/PGBvm+9mbB/Zv0PLC+fvTNL1+nud/XRz2SVo0B8brnmE3Pl7LA+z3zPNsIcFMPvb1aS0v5i+fpun5m358pZYH4e/f85w/rMVG+ElaVKdr8Eu9mpOPUh0K8T06WSvSYma4VZiTbb9Hi6rzM+Z5vuGN0zSNXgTvTnhIy33x0uL3kbDs59kH6rTnqLVvrx4c+wFa1ulrk99eqeW5/UJJmhev30+Zpum8FoHjL0v67mmafi20Tav4FX3hzfN8Y5qmn5T0smmaXmHV1jRNv1WLbju+8H5Ai0H9DZu3/Bo+Xadvts/UchP+RGjv07R4O/2cnjl+XAt7+TSdVmN+Jvb7MS0vtfed5/mbdGtwVQs72QU/KOmLpmn6DfM8/2f+OM/zO6Zp+o+Sfs/mmtyQjpnCh2lx3LmV4LX/cC0L+8c3v/+7zednavEiNPwQftWe53ullnXw3vM8v/KmeryNq1q8y1Js2N7PTNP057Qwkl+n4uE+z/PPZtufAW7ffB4LYdM0/Q9aHhSvL/rwVklfO03TJ2npq+Z5vj5N05EG4wzHv3Gapm+R9CemafqO+XRYgvvwqfM8f880Tb9F0q/V4jX8XdjtkhY29TkqrvM8z/aa/pXC7VrUmMcvw2maPlnbmoZbjauSzk/TdBhftO8E/IAWz9TDeZ5/Ym1n4FVanm2/X6dfeJ+lxQnpPw6O/QdaPLQjPlSLXfBPabE9nsKGWPzoNE1frOUF/f46YaI74V0Rh/dXtTyEv2eapn+oxWX+i3WisjK+Sos3449M0/RVWhjdHVpulo+Y5/lTsP/HT9P0tzdt/5bNeb452BS/TQuN/j+nafoKLZ5BFyT9ai2OF586z/OTuw5inudXTtP0o5L+4TRNz9Gi4vgMbR4YYb/Hpmn6C5L+3jRN92l58L1dC+v6KC1OF9++63k3eLWkPzlN02doYUGPz/NcqXa+Sou34A9NSzaOn9WiWv4USX98nufHtUhM369Fj//3tTjafPGmn1+xZ9/WcFmnr/2Xa5m7b5akeZ7/yzRN3yHpFRtbwo9puRH+sqTv2PcFMc/zL0zT9DclffU0Te+vJczgihZX+o+R9HXzPP/wnmN4taSPmKbpE7Ws2we1SKt/V9J3apFaD7Ww+uvajfXcKrxSi93uWzf3zXtquZZviDtN0/R9Wh5IP61FXfSbtMzHV4fdXq3FzvfKzT6/PM9zpvqWFuH0/ST98DRNX6NFrfoOLffXZ0n69VrY2edoEUD+5jzPb2Aj0zR9r6RPm6bpT+1zP74T8QOSPlfSP9qsyw/U4s3I59Wtxqu1qH3//DRNPyzpWmWHf4b4fi1CxvdN0/SVWlTyB1qc1j5B0p+Y5zllefM8PzlN05dosVvfr5PA88/Q4hx0bKufpuk7Jf3OeZ7v3hz7CzqtwdE0Tc/a/PvTG78OTdP06VqE3+/VQoju1OJF+simr/vhZjxdNIjDS/Z9vUJ4wGbb79XyAluLw7tHywP7dVp0z/drCQX4gqQvH6nFdfUJLWqvLA7vkhYXd8cAPqzFeP8KnXh9vmTT3kcXY35R2HafpO/QIuU4Du9TlMfhfbwW1c9jWlyDX6MlTOEDMFffmszhKW85Leq9f7U575anYnL8c7V4Z71lM49v1OIkMIrD+5cq4vCw7UVKYsM2c3rsPajtOLwHNvPw/ZJejGMvaHHM+CUtTOWXVMfh8by+fpz/P6BFCn3HZo38Vy0P9xeGfWZJX1qM7+Vh26/Vsg6f3Pz2jZs5/iYtIRZPallb/1bLTf6MvctGY0728/11RYtd7NO1OP28NuzzF7VoPx7eXPP/Jumv6LSn7kdqkbSvahCHh+v2+Zt19Nhmrf2iFtvLB21+f0jSvxn03V6Dn3Wr5m3T7k5xeMVvf3GzBh30/RFaHrbfF/Yp4/CKcw3d6rX4OnzdZt8j7RCHh+Oftdnvf8H2z9tsf37Ydk5L0Pd/2ayZRzfX/csVYmkHff0zWl5ejpX+Q8k+/8xjGLSTeWn++s2xv7Tp29u0vPxKr/PRn13s320xLXnbvkGL+2ymD278/wDTNL1Ii+DyR+Z5viX5CxuNRmMfdLWERqPRaJwJ9Auv0Wg0GmcC7/YqzUaj0Wg0dkEzvEaj0WicCfQLr9FoNBpnAv3CazQajcaZwF6B57fffvt811136fBwPV/r0dESc2gbob9ze4S3rdkVR6n2dsu9uz/2tXXe6n6wvbXv+7bp//15cHBw6tPb4zxcv3791OeNGzf0jne8Q1euXNnqzIULF+bbbrvtuD2vIX8f9YHbqzHsi5uxX+96zDtrHe6DZ7om9t1vbW6y3+Pz4NFHH9WTTz651fDBwcF8cHAwXA9cT9X9MRqf+7fLHOx6/z3TdZDdd7u2ezNzUO1THbPL/TDap/rN22/cuLG1H98lR0dHunr1qq5du7Y6KXu98O6++2597ud+ru6+++5TJ3Sn4rarV5ecu08/veQqffLJJWnClStL6js/JOPx165dO/W9evBlD0mjWhjZw91we6OXMSeZqNqM/1c3FM8f4RvZx/B7doNzH7fLY86fP791jD9vu23JKHXhwpJE//Lly6fGIEmPProUp37rW5ekE4899pi+93u/d2sMknT77bfrIz7iI3T77befau/SpZMcuj7XxYsXT/XPn+fOndsaK1/MxEiI4m/Vtd0FfDA9k4dK1lf+ts8DkOfL7qOqnTUhpGon67OfBdLJPe7nxNWrV/W1X/u1aTsHBwe6fPny8drxGvV6kaS77rpLko73iWtbOlk7UViv5qx6aWbH8jpQoMuOWXtZ7XKe0TVkXzh2z1smdLL/PA+3x35xbVZ9zoRmrw0+C/2Meeqpp46PefzxJf2w3ylPPfWUfvZnd0vA1CrNRqPRaJwJ7MXwpmnShQsXtthGJhlXUvOIcVkSqRhRJnmtUe2RJLKPGoJjZltsM7axNo6bUU8Ynt8opd2M+oPHWvKypGz2HRmZr5cZ2eHh4fBcBwcHW1JlJl2uXdPsWkaNQcRIA1Ax+tG1zMaUHTPCmuS7Cxu9GVZaqalHauWqj9k4q3U9up+8hry+KhweHm6t9dgunx3s0y6akGoc2Zg5tmoNjdg6sQt73med8XxknZ6zCO6zxvBGqm1q6qhxiu1yvrzdz5a4PtyOt+1jmmiG12g0Go0zgb0Z3uHh4fFb12/waMOLevqqjfgZMXKQiL9n2ygpxD7xfGsSwRrTiFjTW8d21qSjkW1yrS/Z7xW7Zt8zcP4oeUm5zW0XW1JsJzLmyhmK4xgZsLnPLv2p1spIG7HGeLJrSVZWrfcRa+M+I3szUbGdEevZx/7HNnjekf1smqahxuXw8HCr31532Tlo77WmIvZhl/mIiHNd3Uv73LfuC++tjHlxvndh9h6z71PaxEc2vIoxc16ze9p9s9aFfY1teh9v83efh32P/8dn/q4srxleo9FoNM4E+oXXaDQajTOBvVWa58+f36KUmcNA5QpPGp8dU30fqRorF+JdzkOVI9Wj0gnF3rWP2bbKpXdXNeAImSPHWlux7zyGBudMZUuVycWLF3d2ud7FQM91FeP92E9/jlR9xJrLN/sc+0jj/shde83hiN/X4tWk7bnIriXbp6oxU0/u6pYe1W6VU9bI+adyGKkQHZ4YthL7w8/RMV63uzjZxPGMMLq3va1y9huFMux63giPj5+co+z6U/1ZmZdG/aO5ITOBVc6FVEXHEBRvswPd008/vfs62mmvRqPRaDTezbE3w7t06dLx25aZNqRtKX3N5Tf+Xx27i3szP2/GaWUkkVZswFIS2UiU0ihtVtJM1seRS2/cL26vDOe7SGMVC8yumyWtXZ1W1gztleOPg5N9fHRRtpMUkxewzYw9rTlmZEZ9b6METEeAjBVW4JrNXPTpAOB9/BnXXxWiQaeC0fjWmGxkSpa0d3Eyq/o02tdOKz63z/esZz3reB8nSvC95n34GR1dGIBNZM4ja+MwsvuycgTjvZc9B6p9OH+xzwwbIlvyZ3b9fQznYBTuVWmD/MlkJPHcXsd8RvAZE/uYrd81NMNrNBqNxpnAXgzv4OBAFy9e3HrDxjc2A5X9dreksEvapOr3EfOKfbxZ7BJUW7EUji9zo72Z0IKqb6NUZ1UQrJHZKCt7wii0gamKzp07tzrGkR2ELIa6f/9uSVHaZjiVbSuzHxAVu8nsPpY4/d0MwvvGedslWDeOJbNRktE5RZ8/IytkO2vpr2J/1uw8mU2Fc0q2sYvta43hnT9//niO77zzTknSHXfccbyPr4c//ZuZn1OOxX67PbKYKt9rZm+ubJy+/vHZyGvItZlpp7yeyfor5p3ZurhGOVfxGIYDeJ/q+RevLZ8r1EZkDO+JJ55I54DPOV/HOA5/PvbYY9oVzfAajUajcSZwU16afuvTFiBtSzq7ePtR+q7Sd+0iadH+ktm+RkHi3He0LeubkSVmXmOJWbuUni3xraXUkraZBCXZLOjb0liV8idDtAmsMbws07lBNkPW5u1ZEmJKy9QwZPZm9oHXKWMzFeMlI8rWd2XD5We85pSO/elkuk6gG1mv52fNlpfZsHwM73EmY44gy/F3soSbte8eHBzo0qVLxwmimShaOpl32/WcnNzfyfikE4bA6+62Kjtt/J+B2PRcj0mPzWZi0mNpm4nHa+l9KpZORhZT/9H+5TngXGTPKm/z/PHZlWnDKq9jaiXinHBdZQUJ4vljn9zehQsXdtbsNcNrNBqNxpnA3gzv3Llzx1IE08J4H2k7Do7SeZRiqhgwbncbo/RAlM538QJjP7LYpirejpJOZvehXaeyl2WsgH2q2E82Dkrn3pfsO+5DhkL7WQTtO2sMb57nYQo4rhWvkVHM2ZqnFucx9o/zwTZH7a1hlzg8tpmNj/cNr3vGwCu7Nu089GyUtmOcspRcsc34f+ZFG/sTz7OWRpDnuvPOO49td/6Mnnsei9kfmZ5ZTWTrMel5/KzsWPGerlgrvQ4jozQjNcOz7YnsPaLykq60EHFO2G9/rzxYs7ngPVlpK+I+VZ8zD2af+5577jk1bpcF8vniuHwvvP3tbz9uo+PwGo1Go9EI2IvhGZWdTNpmINazWn/t71GaWfOooxQYJUVKKWR2me1hLcFrZvejZF953mXeUpZOyIhp/8ti6WiDIvvxfGY2EPeZTCxjodHjLR5racr7xnmghLzmpTnP89bvmaco55qsI4s18tiqjCujGD6ypSrLSNaXKotFRBWHOfJ4W0NV4FTaZrWVhG+mFFlIlbGEbWeehATXbhyf+7LLmA8PD3XHHXccszb3N8bhef1yTL4unutoP/I9RBsdj/E6Ga07zle2VuMzQTpZB2Z82RoiY6yeM1yX0rY3Ju2ZmY260sCwUGu2hnmPVW1lcabug4uLu32zuMgKfY0feeSR43E0w2s0Go1GI6BfeI1Go9E4E7gplWYVECydqAze8Y53SDqhnabtWSokq+W8D9126VyQGY9Nc03pqfaI6g/vUxnOs+DhKpVPlYYqqiWqMItRImrPk+fg8ccfl7Q9N1YxRFd9zxcTsFLtEueRFc2pEs6udebIM1ItxATAo1pcVL2N1IZUYRuV40lUxTEQNnPCkvIKzVyLmWMDQfV3puob9T2enyqsLFTH82VnieozU2nSaYHqvaiWqtTtozRUxi5p7w4ODnT58uXje9iOKVF9x6BqOmqN6nRSxcYEB5n7fuXYwn5koRMMg/H2LCyrSoLP506G7HkZx+fn7shZznPj54+f66NE52uJ1bPE42zPffbcx/vWc2rV7MWLFzssodFoNBqNiGfktJI5AlgCsLHRjKRKHSPVwcGWQNym24hGVksAluDI8EaB2QaZgyW7UbhFxfQySYPG2koCtmOPtO267Pn0XPj3LNSBkh0lrKzEC/vo85INZgxvFyndIS2jZLc+hyW4qupxlOzZP46NgcER1Cx4DY00GHE88XyZW7jBIHijSpaelaUyKK1nzlkMNKazgr9nbumVkxQ/s0B3OieQQWQhHbs4G5w7d0733HPPcYiB10eca2oxyN4zrYqvu+8p72utlF3jPcd2qJC2g7jJmt236G5PRx3OC/saf1tLGk2tQRwrtW7e1+fzPMR9+Bznp/uYpTKjcxE1CXG9UauThUzFPsd9YnKBZniNRqPRaATszfAODg62pD9LctKJZBC3SSeSwMgWRHuU96VrbtTH+21vaczShbeTJUon+mi3aynNEhylRGlbwmIQPCXxzP5Hm5clK/fR/ZJOpLKHHnro1PjMAv17phdnYDFZYOZyTlbFFEm+FtGtO9on1mCGRxfwaFtlscmqrEnG8CobDtl7lBxpM/Z1YHKEbL1VaduycibUWBiVHTiCmgtew1HAMZMskyFlgecVs+OcZCmlKttxFk7E4OQRbMNzv6ukz9K2rZt9i88B31s+xmPzd99zPjaG7nju6PLPlGaR4XEt8tpliTWqhPZVcu+4n68ZE42bpVmL43FKJ8+Xhx9+WJL0wAMPSNrWOBleY3E8DA3xdz9fs2N8bT1/ZHxZ2NWzn/3s4/6PbJkRzfAajUajcSZwUwzPUnImAVM6Z9B1lj6JtjuWiaHOO7JD6qW5b8YK3W/3zZKPpSVLDlFaqgKaq9JFmX3Bx1hasjRlqSnq0i1l2p7gfXyMf89YT1XMdWTDo/RML6lMt+45zQpJZohenLTLxf6xcOUu5UzcTwbVkl3H/rPYJe0JbiNj+muJmTObg1Gl4KIXXzzWY+b64vWRtu3YbJeMM85nZaselcpxu0yNNSq+y3t8lJbOZcl4z8X1xjR0TK7t54SZi3Ryb/lc7S/jAAAgAElEQVRe4j3Ozzg+2lL5THSb0S7PAraed3ud0tNTOrmGvLe47jNbrre5D56D+++//9RcmPHFbd6Htnx/Z6B43IdervTniJos958B57wHM+bqPtx77707F+tthtdoNBqNM4G9Gd7169e3JNQoXZJx0G5hfXFkM4yRqRJB83dp2z7AuKSqgKK07cVEG2I8T5VguJKwYp8rqZMxddE+5v99HrPOGHsSz5NJQEwLRtYbrw09xOhRlcW70Q4zisObpkkXLlzYKkkTrwvnrhprJsWSZTKOkdc49p8pxYzM7jcqWxK/x/3IFBjLVpXUir9VZWAyL1TGbtFLj+eL42aME5OJZzYlX58q6Tu1O3GfKhYxwvZf982MKNMSVXGDDz74oKTT9iqv/8oOT6/geK1pU6W/gRHXN8vj0E567733SjptG7ct0Nfd47MdbBRvWNkvya5HWpvnPOc5p/rExN333Xff8bH09K7SPMbzmX167n0exiRG1us+Rm/NtuE1Go1GoxGwF8Ob51lHR0db0fBZEmLa4+i9GdmMJQJLD5Ya6BnGgo3StpRuZkLpKYsBoocTpY3oQWjvoaqUCBM1Z0VKq+wpjMuTTubUzI4lmdwGJXFJestb3nKqD55XZhKJffTY3V6VpSVKsNw2suFZSmcMUAQ9HCndZsVVyehYINXjYkxVBL3wPNej0jvV2LP2q0KYVcHjzCOtivfL7LWVTc32FyYcj/cGJXtfA0veWbmgLD4yG0fGyNzvq1evlizPhafJ/OMaokci7UeMY5VOriFj6gx/t6dlPNZj9T3MDFI+f5aY2fNAb3Hat6Vtj8cqO1SmMaFHPD/5zIrjIpP388+fz33ucyWdtuHZ7ud7zmuUGo1MQ8NYRIMex9k43vGOd3Ty6Eaj0Wg0IvYuAHtwcHAsEfhNHt/YlobsAcX4LX9G+xG9I1/wghdIOvEYevOb3yzpRJrIbAFuzxKKJdPMM4gxOpWuOUoVzDFIb0D2J0r6HrP7zcwxLKMRz0N7TGSd0ok9I7OtWQL6wA/8QEnS2972Nkkn9ozoaWjJytfU15H68ih90rYxKg80z7OuX7++xWZjv90f2qvooZixZx/La0vvvThmZkVh0U7mPIz/j8YZj419dL9pS6GmJLZNqZ82VZaNkbZtdJzrUaYNMznGf3rdZbFULIZaZVwZlRSKmiPCDI8MMt57/o0sg3F5mXctNQq0sTGOLY6Vzx0zIMev+TkobWuF1uKO4zbD14f3Rpalxf3nevM+nptMo0BNBovX+nvsq/vyohe9SNLJM9LPHcY1SttaAfad8Y7xf8/Nk08+2Ta8RqPRaDQi+oXXaDQajTOBvcMSzp07t6VeieoUU2AGdZpWZy7gbsduuXZaofqLpSni/96Hrvimxhltt9qDLu2m4plzDB0+qIbzWKJrMROyRhVSROb+XjnDUIWXVZ33nFhVzNRp0UWb6lwGkWbu71TFjtQK8zzrypUrW+2MArQNqiOjMwaDhTlfMbC56j+P5TGZow77X6lQpe3kBwyV4bVmZex4XqrfK5f6CDq2UC0fywMxbMR99n2chSX4+CqxQebIw/ZHODg40B133HGsZne/s0B2t2cnFaocs6QFLCFG56gspIVhFe6TryGfPx5H1lfPm9vw/SqdmBaYFs6gijOqXd3vquJ45uhSOQHSaSYL3WIqMZpfrIqM96/HxcTmDDfKnA7plLULmuE1Go1G40xgb6eVc+fObTkrRPYUU+lItatyViDVx9pgzgBJs8YsuJLSKqWZzEGDrI8u15FxWFpiqjSmXGJ/pLp446ioJoPF/d1zxJRjmROFXcu9bxW8HH+zdMZ9sxRHdCnexWmFknGWvs2Sm9krA+az4sEGA4IZuB3XXRUiwfJQWdJjg0ySDkOx32TedHBhKZhsH34fuWPTGYKOV5nUzPuHydKZgDj+VoWlZNvp4JJpYNgGEzPHMAFqIsySqqQL8ZhKW8LnRGQUPqZy2GGpq9i+54MOSHSeifvS+Y9hSj5/dCbys4HJqVm6KKZbI0NlmAKTOUdtFVkm16g1ePG5WhXwZvLo6KC0Fuw/QjO8RqPRaJwJ7G3Du3HjxvEblpKDdCIFWVK0VOY3N4Ov3aZ0IjWSBVriGaUfYgJgsoOsXA+ZDlMXZW7UdPUm27VUGN1ofR6zPrfv8WZhCTwvgzZpM4jjo5u7XbXJErLk0bThMcVYlFgzW9Motdjh4eEWw8tSsJnF0qaXuZRTimTZJJ4vXtMquTa1A9mYGLLgdZ+xUPeJfSDDypKj087iTyY8yNhalQSZ54uoitX6+nNupO3rVQVHZ1hjdj7+2rVrW+kBI8PzfWfWYsbAYPv43KGdj8m0eb649pmYgcjsY9Ts+LlmNsok0nFcBBNoc+5j+74+tuF73jK7Nn0FaNPlvZCFULCgMgsSx2B12gipYeJzSNq+xw8PDzvwvNFoNBqNiL1Ti127dq1MiSRt2zT8dmegYuZVVunOWQJllHqJHkm0A8ZzM1jUn5YyMg8r2iv4SZtHPB/L3tC7LYKJeGmHsSSbJeyltxy9wbKErCzXU5WliZIWvc7WEgCfP38+Ta5sZHaBDJmnHddi5b2ZJWamnYCekJFxVevLDC+zw62VnSGiVO/5dvv0TMvuQUr/XF8Vs4x9qpJyZyWMOB56sGZJBmgnn6ZpKKXfuHFjy44eGZ7H5N+qRNARtNVy7PSIzGxF9GbO0oMZ9F71tX3+858v6YT5jIpjexzU1mSJmWlHZHpEjz9LLcbkGGR4WYo5XmfaikfaNjJUjjOza8fnzujZE9EMr9FoNBpnAnszvPgmzeKvLNnQ3sJyJlECot2gsmllUloVo8XPKCFUko916O5jliy2YreUauP4KbVYCo32BPaREir1/yxWmnm9krFk5XzYR0pyTDGU2cDYtwwuD0SWPrIj2aYy0gpwbivvv1Ei6EpqzWxqtKmajdJjLK5VxoJWtrTsd84PWYkR1yOlZjKnUWHWih3yfFnqtMxOGrdn6zsrPpvh8PBw6HlNzUHFYuM4Kvtb5UWbxeWSqVIrkHkF+5617c4Mz5ql2Hfed1yznossXs19sS2vup+ydIFM0E0b8ij+k/dR1efYfnUfZ2u4Soq9C5rhNRqNRuNMYO84PHvbSTlTqDI+UKedlTOpbACVPUbaTsBKaTpLPuq+WPKxPYxeTBGMr8psGdK2jUfatgkwG0dmu6qyY7BN6vilbRtUZVPJ7D/ethZnGNupWEAGMpbMflRlhBjZcOnZO2KFVZ8Yq5UVymVMFhkX46PiMRUD5vyNMglxTkbMhde/Km2VlVsidrWRsP/x2Mx2U91HWZuMK8y0TbT/U6sRWV01T2yTfc3aY59YtDj2hZml/Jk932gbps3OyBL5U9PDZ3Bmo87iB+N5qeEYXVMie07w2W6tF23zmUYhXuO24TUajUajEdAvvEaj0WicCdxU8mgaErOaZpUbK1PXRJi+Z+mZIjLjNw3CpPFRpclKx07B5X0crBr7SGM4aXWVPizua/WqVWQ8JqocshpiUq1+yfZhX6qQg7iNDihMzZSpMHbBPM86OjraKdDYoFo3c34wPJZKLV71KX5WDlBZ/T3OB9X7DFrO9uFcjwLciSz8wWBwOs9bOROM+sb+jMISDM5v5lpOFXoGh0P5nuD4pG0zBFXc2bOKKv7qu5GZAHgPc44jfM2YgIJpA+N6q54DVBvukr6tSoMXx+D7KHPyir+P1mzl4JQlvOD1yUw0Uu4EFp8LrdJsNBqNRiNgb6eVw8PDNGkwwcBVvpWjxMJyPBWLyiQSSiI8b1bixedhFedYFT3uF/tvkIWOJG7va0OwPyklRcbFSsZrzCiel84JVbmWLJyE3yl5ZVXZsyDyNeziTGLQYSNL+eZ5GpUfim3F/3ktyfBiGxVjpPScMZaqT9yeOXRVbY0C+JkkoXI2y8aXOdBIteQfjx0xO/YxrqE1KZ3JxbM1VGlcmDJPqqttsy1jLbFCdmxkKr6nfP/7+cM1HJMLMHSJ4Ui8t0drldefacSyMVb302gu1lLLxecONX2816lBifB6uHLlSjO8RqPRaDQi9rbhSds2j8ymZsmETCV7EzOEgFLrmlu3tO6CnSVXdsC5j7VkNWIuVaFZ2sfi+RjKQMkuS4/lbVVpmZGtqpLkeJ7sfD7G14KBrZkEuYvU55AW9imz/65JlfG6kFFV9ksju6Zr9tkohVbrjGPIwi3Yp8p2lM0jA9tpo8rWWyVZV+Eq8be1EJPsGIPsLbt/91k78zzrxo0bx/v62eL7VzqZBxaNHmleKuZb9Snrf5W6LntWmVE64NznZbLlyOo4HoNpCc34srAharmYEDreE9ZyVWFRfJaMngdk26Pnd6VtGaWgdL8ff/zxnbVMzfAajUajcSawN8Ob53lY5qRKqmyJJHtzU0riW30UrEwwIDcL1DTDsi6d7DPqholKAqHnY1ZwllKSbYejZMlMOF15s+2SJoxsJEtHVgUlZ1IvPRJ3kdJpK4x9opRGiTFLPJ2l/xr1JTu2Ys0jzzeu75E0y3VVJVrIGGwl+fIaZ/cTPfwqZjeS0qs1lCUNNjhvIy/Nkbcf26AdPdq6qjRqnPNszVdj3qX/FTJvdKcO8zYzObMqlyuKRbS5RsnamKQhns/PHSbfJyvMbMZ+JnmOyRIzv4PqnuA1juu78j7lczVL4G5v+qtXr7YNr9FoNBqNiJtieAa9puK2ShKwR2aMm8niwiKyEj9EFf/i88dUOe6DpSJLCixOm0mQlCR8TFWoMfbfY3ZbLDgbQekok1Aj4rgrbzwm5c7YlaXBXSSmKllwhSwFUBYXNbIx8RgyqyppcGYfq7wJR+fPCm1K217IWSok9pH2pcwjjZ6Wa3Y5aTtZOOPXjBGD5VxUycyz9tauXxzHLrGc1g7Qgy8+Q6prR01FpqEgmyATyexylTaC9ktrk6QTRmUGR2b38MMPSzptw2OBac7byA/AzySfz88ZagXiMb7/fT5qCTiPWTL5yv6XPaP5XFvz0I/jeuSRR47noBleo9FoNBoBe5cHGtkXIqr4J+qT4/Fr+upMSqP9g55IWQkM66ct+TBmhhlfYruUJCm9ZOyJti5LdpbObMuL0mCVTLXynhuxkEpqHxW09HUeJf2mN+BIWp+mpTzQiKVXmUEy2x1R2XlHHr6VBEpkMZwGS9Vk8WuM71tLcJzZishYeP4sgXuV2HhUVmXEyiIyZr5mCxsl/R55hR4dHemJJ57Y8m6OTIieh7QrZza+tTFyHKMYVI+D/Yg2NWuSzJr8/aGHHjr1PfNCzspzRWTno33P321LzJ4p9HmozpsVgM1iniMypkymyOToWeytGfEofrBCM7xGo9FonAn0C6/RaDQaZwJ7O60cHR1tOZFE1QgN8VRHZc4dlcPJKPCz2sbk0TS+SieqA6qUqJaKKg9SfNN3Bp4bcSw2PNN5gI4OVm1KJ441u9YLG4Ul7JJwOqvFFbdnKZuygOO1lEOV2jKiuu5ZaER1vkqNG1HVGBwd62NG6u94bNzHn7zuVMeP1MZ0YsiuC+fLa5OJ3bO6chxHVYMwU6HT+WwUUE+V1QhHR0d68sknTzmRSaedyuiWn9X6i9uzfatwqCx4PUtKENvwXFv9Jm3X7LSTyoMPPnhqPFmi5Co8aOTcYVTJ6o3RveH1Vq2DTJVeBe5nKnSqMv3J9HHxWM7Tk08+2SrNRqPRaDQi9nZauX79epnmStqWOCpD9igAuGIiZG3x/ypBMgMps7553yq5c9zHDJJBm5RqssrKlkzsTu0+2YklSphunwxvFDRsVPNIl9/MWG1U6clGSVzXWKi0Lf1nKaoovY4YauWOzjZ3CWmp3NSzUi+s/MzK1FloASvd7+K+bzCRNecxrreq5ErVVpY4onLOyu7BykGNv2cMaRfJfJ5nXb169dgN3c4rcVycfyZsyFLjZeeRtq93FdQet/lYO9L4Hn/ggQeO9yWb8XjsPOc5jUmtqVGiUwzPP3K0c994T1ibFNsx3Ff3ic4qcU6q0AXeK9kx1fMtS8JdhfnsgmZ4jUaj0TgT2NuGN03TUDqjlE7JY/Q2rgp8VsHk8X9KE7QZZmU6HCLh77SPRLdn99/7MNUXz3vPPfccH+t9/Zv1+nZHdt/i3LAsSGVLy1JLVSxnZJuqXPQziZ592lXCivtVts/Y7pp9Lva3CpEZuaVzjFWC3NimrwvH7u1ZEmtKqewr13c2n7RluI0s7IYhOZTwWRYmS9tEu+KokGoVyFylGMvGuJZY+Ojo6Li/WSo+lvrJkmJIeSqsrH9SbYuK7btPtpOR4cX72Mew/BT7ljE8aliytI4cn+fUGivuO/KrYHpFagXoKxH7yOfPyP5baQf4DIi23squuQua4TUajUbjTOCmGN5aslhp++07eutXUmVVrmPk2VUFW0bJxzrr++6779R3BlnGgrDeZsnGx7Ckh/t87733Hh9LqYz2P+vw47xaCswSWEdkKafooVYFgsZrQAa0lqotjsdYSx59dHS0ZePK7GNVKqJRYDa/V95kuyTMroLLsz5UwfyjoP7Khje6jyjpV97C8Td62HGcWcqxKmUW28hs1GsJDzJJfBf7r214LFkVwevLoPtsrJxv2sfomRiZED1vK7aRsRn30eWNzMAym7H7yDVDpu+58bMl9s3rwPtQexTPx5Rl1Fzx/PF+GtnnY18zWy7Pw/HF65YlTmgvzUaj0Wg0Am7KS5P2q5HEXSWfzaS0ylOwsgdGVPEctNNIJxIVPZ8YbxO9lxizwzmg/S8r10IPO7efsTnaiKp5zexdVVzXKC6qkuRH7MOI0tnI7nZwcFAmls3GVtmCRn3Jzhs/M4ZXaRSy0jVkOF4Ho1RIlForqTlLou5ze315zdCGEsdFllMlPs9Kr1SlnqqkzLGdit1m26sYxAz0Dmc8Yew3bcNVMeEM1Trg9Yv9NrgesjJhlSepv2fXiakSq3JN/F06ec65T04ebS/XEbum3Zfxpt6epRYjM+a4RpqMKg0e7Z1xn7bhNRqNRqMB7M3wrl27VrIOaV1vn0mIleRJCWQUA0ZmV3n7xGPMqOilZGk6StqW4OgBR0aXZTywdEJ7H/X/mY2ArLPyHMvsf5VtJbtuZHaUdjO2Qxa6i6fdKBaQfaliAEdeumvrL8sMkfU1jieT7OldSjttlEhpA6JXLpl/bJsSvKV2xkVlDK+am2rtxvNUnrLZvK4l3x7Fr0Wmssa+qFHK4n/Jxph4PtNGjexuWV9ju2R2LK+TJa3n84CZQ7IYZcblVs+jrNQPC17T8zra9NYy33gMmSajioXexb5decxmGocsm9euLK8ZXqPRaDTOBG6K4TEnWmYLqphIFg9VsRVKqhmTqLx8yAZin+0VSfuRJS6fN5brse2E9i/GsmT6fjNJe306RofsKR7DOa48+jLpk/NFiSvLKFHZBsgKMkkrsuw1T82RNE0JkKwzYxJrkl3l+Rv/5xrhNc08xHzNLEWz6GosOMzra4m6sjNHTztKzfbs83ZK/vw/G1d1T8b/K7t5Jp1Xa7KKiYz/VzkaiRs3bmzZ6TI7aWUL2oUBVCV+jMjW6BVZlSPzftJJrlwzOuf09XOBtrzYb7fD2GGytqgdqLKzsM/xmnJtGtRSZEW5uc4rDVMcH9cBNSVGVjIp2gjbS7PRaDQajYB+4TUajUbjTGDvwPMbN25sBUGOjJCkplm6Ju7Ddqu0YWxn1Ke4HyuPG3QiiY4HpvpWKTGUwcbcTD3p81mFkblV85hK9VclwY3fqX7k+XZx0Wa7mcNLld6owtHR0fC60PDOIOs154isXapRRsHPVcmViCrROZ0jssQKVJlR/Z6F0FCdy+TlI0ceqteroPLsWF7v0ZpZc1DLQKeYeZ5LtZQdnvjcifcP55Jtjap7G1x3Vbq9rF2acFipXDpxNHLFcT9LXB4oK59D1bk/GVrl7ZkjFsMDKnNJ3IcqeoP3fHbv05ltVPatSho9SgxNx7Bz5861SrPRaDQajYhbHpbA9ElVCqZ4LA3Xa+7NmdHTqNzdM8mHhREZ3BiPoQtxJdFnTitmeBzfyLBOllYFhtPxJW6jpD9K61W5/pN9ZC76u5QFspROI3UWZLvmrJIZ9bPzZeOIqBIYj6TFXYOsMwcN9tlSeTXerP0q7VU8RxWaw/U2ciLgOhhJ6WsJgLNj2O+Ra/k8z7py5crW9cqSLNNhhueJfaoc65g2a8S8qzFbIxSP8fnMzsz0qgD0uK0qQE0tSHSSYZ/oeDJyAqxCwpgWMfaVmgQemyWKr4LSeU0yjWB0oNnlGSQ1w2s0Go3GGcHeDO/GjRvHLCe6Txu7lmuJ2DXwc1SqxvA+lN6yvloKo+RoCTmWIfE5/VtlD8sK3FKy5pxkZTXWWGAVnB3bXwseH4WTrCVJju1V6agIs7yIm7EjZqEF8RyjNkaSYBW8nNnjeAzXxYgBcfsaa4zbsmS6FSopmaxnl0D+UQKCCqNCnbSFrqUWu3HjxlbAcVzzZjZrCQdGgedV+rRRAWA/Q8y4fF2sPYqhDIZDnHw+2/J8bDyG66li3GR8WV+rkKqo2TJrcuhUlfiCKRbjvmSs1CRk9wbXwUjbwpJMFy5caBteo9FoNBoRe3tpRm+qzOZWeXVRIhkFsFZSZiZpVWmS2EaUmijpUFrOkjkzDQ8Znpklk0jHfajjZtqoUXJdSucj5kVUDCnq1Kv0PxVjjtt2xTRNZSLlOLa1cWSMhP2rPjO2xuvCtEmxjxXjpnQbUTEHsrYsLV0l+VbFNuM2tlcxu8z+O5q3uD3rQ5VIImJN60FkXtYxFZ/vu8r2bYzuE/aB3s3Rq7sKmOazg4Vppe17alT+it6SXAc8b/aM9DPLn/RdiM857+Ox0heD7Wdrx9sYDJ8lDKjGU7FR6UTz5uu/i9f28fl23rPRaDQajXdj7M3wIjL9O9kS9bkZ9pXss/3J8ChpZ5Iwj/F4rGOPkg8ZSeUBN4r3YZ8y/X7Vx8orb2QTZfxNVQg020aml81fFZNWwV6+Um6vqOY0k1p5TMXwDLYpbUvjZHpM4B37XUmgjI+LoE1ojY3GdqvxZayX9t8qrnAXyXjXazsaRzb3WUrA6jlgrZLnLfMhYKHnzAOV39m/SuPj77ZrxT7w2cE5j31kEVozFe9jW16cJ847nyFM9RUTQbsdb3P/6aUZj3EfKxZFppelweOzhOnvMj+AyhbvPsa5dx/jdWsbXqPRaDQaATfF8EaMrMrQUGVNib9VLJBMJaKyFVISyqRZeuGxqGaEpTJK2lW2lLjd7ZHpjRJAV/FQVaaSbHxVsdVRGRrG+1T2Jml7TtZKvEzTNCxsS4mbts8sW8qaVxeZRLT7kG1WicCjxF/FoPoY2nRjH+m1lsWirc0J4TmJ46rKHnGNZHbZikGOPHyrOa9Yj7StMXn66aeHUvr169e31laW1JtjG2koKrgfTB7+8MMPH+9jG9ea13G8Fk5Gb0b16KOPSjrxMHVcXoyl8zOJ5aB8HvfNjDPOA70ZWQ6N5cri/2SOZMzuoxNiSyfxhd6XZdZGHuzsM7UtUdvmfeJc7Hp9m+E1Go1G40ygX3iNRqPROBPYO/D8+vXrZbJnadtNm1QzU09WqoxKxZkFHlcBp1m9LdYhqxJcZ+es1EVU48T9KucAqgvjnFCFtBaIPgrG5j6ZYw9VmlQfjtz6Y5/XjMeVq7y0rT6h6i87hmNk36hCzRxQGH4wctSoVGUjBx7OZXXsyFRQre/M0YUq4CpUZ5RQuwotyMZXOanQfJGFd0TV1S6JC6rvlTPULuYQuv5X/Y+JKB555BFJJ2pJ3q9W50WnDu9rdSir1997772nvsf/+enzMB1iXENUZdJJxXVBo0rTziF0DGHqMj7n4zY+X5gwJHtfGEzD6PFFlSad2a5fv95OK41Go9FoROzF8I6OjvTkk09ulTmJRtaKXVTGb2lbcsvKZMRjR6WFqmOyAGe6FI9cvdccanZNXiptSzpZCiO6kldVq7NQDUpYDL7PzlcF7o/GmUlnI0krM1ZnVd7pNERJe+TWTBZDdpGtg7UUX7E/Wbqxte+8VkxOzP2yOaxS2WWMq9Ic7BOGsPZ95FhTsevoWFOt66pP165dO5b+zZqyBO0MFyDi9uq6G1xvmdbG5yXTIyOTTpxSWKaHx8RxeTwcH9d35mhHZkcnMyN7nvLaebyjZwid/nYJbSJT5HOBjjbsr3/r5NGNRqPRaATcVHkgv33tZhvfrnTBp8t1JmVyXxaJtRTgt33UWzP1DaWmzE5X6ZjpWh6lM7rUul0GZloCyhLAUt9elaeRtgOcqdtm3zMJmTp1hhyMWEGVLDhjeKNEr8Y8z8OE2tK2tF+tpVEf4vlim/7MQgyyZMQRcbv/5/WgjSjTDlRsaRQ0X9moR/cV7bDs0y62UIYUjBglrwuTimesOAsBqdbP0dGRnnrqqTKMI7bjsfM+zLQDa0kqqCG55557tvbxM8Lu+baB8bkU22OqLQbLx/5U15JtZS7/9F8ge3MbtiXG/t51112n2nAfHRzv5BxmrXEu2KfR8yEr9RO/c3vs4652u4hmeI1Go9E4E7ip8kCGvZb8tpe2k7hSiszYBXXLVRHA2A+D9hCfj15GUbKj1EqJZBdPO7LRXViIUQVfx/0okZLBjZI6WypigHlWYNSo7Du0VcRxjYLeiXk+XQA2S9u1JonGtkbnGbWVscyKRWU2h6r8FfuU2WOrIF5jZIcg4+J6zIK6q6BoMrF4/arCppyLXVLNVd6vcZvX6sjDd57nU4HpmZ3O/fGaJ+MbaUB4L9PD07Ypsx5Jet7znnfqWCZd9vfITBi07b5ZU5YlvvDztPL0JUuLKbj8m5+F9EbNfCU8HveJyfDdRzK/CN6v1K5EexzXqt8p9M6MayNL3N+B541Go9FoBNxUeSBLS34bZ3aRykMn89ippEqym0zyruwfu3h/udqIV4MAACAASURBVN+WfCy90AYhnZZE42flFRjtddSv0y6XsTSym6oY5cimwmNGBS0zL6+IUSqwuM+alG5k0p77UJVRGqFiF/zM+letmSzZrZHFkcV9s2tZeXKONBpVEU3+ntkMK1s4xx3HVyU0H7H4qtQPbXjxXmTarnmuEwA7/pd2scgkfO+6XXpy0sbP4+M+tKm5rVHKrypmLz4HPC+819wu50vatoPxu/tqRhbtcYbH4b7wuRrXpcdlrZ3brRKrx2vmbW6Pz0x6nMbj/ZuZMZNXR1R2zV3QDK/RaDQaZwJ7M7woxY9im6rsDiOpvcrg4mPp1ZS1S+kikxBoy7Ce2NJFFjdEXTMZa+YFVo2DfcpsKRW7pXSYSbuVN9goEXWlA98lzjAy1pGUfuXKla3YtphBgVL5WrzaqN9kG5kdiVJzxVQyWwdtgqPsPZwTtkvNRbYOyPDYZsbwvc4qj2kjzu/aPZjZDDlvVcxolOxZKicbUxzbxYsXh7F7LOnjZ8QoITyZKBk9kzo/+9nPPj7W//uzSiIfGR77yOear1fM6MKMKrx2ZJoZO6Rdk9d0VCaM9kzbCG2rjDbDitkxGXumdeN8MYYwzi99EdZisSOa4TUajUbjTGBvhjdN0xariZILsyFQutzlrUypnbr0+LulI+qPjYyF+nh6MzIfX8YGyLgYjzdiRJT+q4wosX3GE5G1sbhitk/FCrN8ppx7XqfMhpfZHoijoyNdvXp1i7HEWEeuncrTcuQ9WcUNUhNQjWntfGsZHUbnIcjss5g6Mrvs2lXt7nreLB8i55OsIPPWJdvl91GZpZH99+DgQLfddlvqKWz4/mOcJNlbZuvkc4DMy0zP9izpJO/lfffdJ+nEdsZ1F7U5zBpSPROzeNzKI5pZYuIcMzaY2pWsTFhlq/W97Ywyns84vsqTlGwtIltPsV0+B+O5M23DGprhNRqNRuNMoF94jUaj0TgT2FuleXBwsKW2ieUlKpdyqit2cXOmk0XmJp7R8ng+nz86R1DNRbXAKBXOrkG9WV/oJFElao59oUs0VZw0zsdj2X7mFME+rvU9ji9LA1Sp0xiW4D7EtWNX6KrEyy7qwl2SFRAc26hMENeIMZrjNRXjzSR5pro1C9UZpSyTdjMrVM5TmUqT80e14iit2+j6HBwc6Pbbbz9u12Vtsj7QwYmqzqgao2mBpgzeR5nqj3NblcjJ9jFoCsgC6quK7nQEGTl3uP9OD8ZUYLFdmn38/KQJJZsT3q+jwgHVvVGlUovnqZywRmiG12g0Go0zgZsKPK+kAGnbgaEKmB1JwJUrdiYNZiVq4vkzVlgVpx0luKYESSNyFVQa+1JJIlkfq3Rg3s4UbhnD47xW5W9GfaX0nknVkemtBQ9T+osSN0NJ6PiUXbdqrPw9W4cjh5wKaxLpqKjqKMwhIhtf5TSyi3TLfUZB+Lw+1XhHDI+Mzg5l8TmROa1UcFiCnUbMNkap/8j0svuTYQJ0cNuFeXtMTJVHRxHpJNzA+zAZPh1s4v8M+ag0Ctmx7mN0EIttjVgay/S4rywyHP+vNGhMbRbHXJUholYsjtlop5VGo9FoNICbsuEZmXTGlEFVOqtRgLbbs0TCN3hkM5Q0KOFlAdsVe6FLdjbWilGMSv1QWjHICuK4KBVVYQgMKo+/sS+UBjPWyz5SAstseJFVrzE8S4q+tlkwsueL1z8rucJrVdlSs/RdVUB4lfic544YpW1jO1ybtOlmCQEqBjlKf5al8ZN2Y1VVKqtsTmi3r1KLZWW9ItOr1s7h4aGe9axnbSVDjn2hxqNivvEYzk9lc8pSDZqt2QZNu6LDFKIGg8zX43DwdvQziGOPfa1st5ntmEmqPUe24XkMMWValZrPffYxZKvx2Mq+yRAy9jeOg0mrIxgGsw+a4TUajUbjTGAvhjdN0ykJNgvqZsE+6rRZ3FNaL7lCXXp8s1eBmLSBxf3IQinFVmOPnwalwkzSWvP6yorGslgr97FUltmMKi89I/OWojRGjzXOmXRyjS3lXrlyZTW1GNdMlGotNXqMlpJpU4lzS1ttNebs+nHdVcx4lHCa1z9jkmvel1zfGUskcxnZDCtJu8KI9Vaendkx9Nolw8tS9e1iN7WXpve1N298DpDNZDYtKU+2QGZfpSuMa9X7eM0+9thjp9pwOrKsuCrtfmR6GXOp1g7XVnyueo757DV83pjKjNeSc8G+ZoH1vMd5T8ZrQE1glSQjwn1xerNpmro8UKPRaDQaEbcktViU0iqbDyXDeIzf7owlqZLcjoo5khlliWuZTDXbh6CXV5VOK2OLHAdjBzPpxvv4N0u1VdqwjJ2u6fuzxL2VV2bG5jMvsxHDy7x5o9Ts/9kubRtZTE6lJSAySbCKT8zWKrdVqewiqvXM65ExvMruSvvTiOFz+y6gVM71EOeEa4O2XabUivtEb9NR8ujDw8MtG1TcnwyHTGGXUk9VyrWslJXHZJZhlmQbe5a2jX2qPBKjjYspC0d+BkSVuJ9es1kKRZ6Pc2CtTpwTtss2RnFzTNjNkklxHnmfrMW5njrPzns2Go1Go/FujL1teNSJS2PPrYo9Ze2MYqYiMumSXmt8+2e6bUph3ieT7BknUrHNzJuN0rglOpbviHNCFmjpltJN5olX2Z4qL7RsHJV0mEm50aNrzUuTGSJivy3V2e5hKZKeqZkdprL/GqNky2vzlEnA+2R0qbzJaH8beZ2RyVcxpLHdCiN7Y2Wb5LgjkyWzox2f32N7sWTNKHn0HXfcMSzQzHvYa2lUmJcFhysWy7I60rYtizFtPiZeCz7XaMNnpqHYbuVxS9t1FstL21lVRDiej8n4/Z2fWYkmJryuvNNjf72NBWyzQrA+d/TT2DXbSjO8RqPRaJwJ9Auv0Wg0GmcCNxV4PqrRROOmqb/p+ii9UmVYproqc8Gm04o/s4BpBhZTdZUliK5SiFWpfuKxVYAxVZpZcDyT0GaB5nGc8dxrSYPjNeC+VYqhzPHEODw8LB0j5nnWtWvXtlQvsT2rMK3GsBqX4QpZQt4qGLUK3N0FmWPKmnNPNudVEDz7llV4r8JuRli7f4xMZVvtS9V2ptKkgwG3Z+nIYhsjp5VLly4dH+Mg75h4nIHyMcQn9ilzCOI8UG2XOWjQwYpOU1miaN73TN48SiLB+5LjydYF15VBdXJ2T9PBhSEHmSMPg9X5PB0l/+eccNzZ/RRVth2W0Gg0Go1GwN4M78aNG1tSQJQuKD2wrERV7kKqA2XJCkZSus/D8IFMiq3SUGWONpSWGKxKh5t4LPdhOIK3x+SuDIauSgpl0jNZLaXDkcRdpZIaSfZVMu6IeZ5148aNLWk6zpOlSTI8Bs5GFkenhNH54/jiNl7/kWNKlfS4mvOsfSZQqBIex21VoutsXGvlgUbB3mtOQKOwBKb8GrEBzt8816nFDg4OdOHCheP1kSUgqJI58B7PtAN0CPJ5sjJEBhM+O7F1VT4s9oWp8+yokZXrIXPkPbZLYn0+k+mQEsN+eM3Icvnsz64pnx2jEBo/r3m9snJOBh2U4nNlDc3wGo1Go3EmsBfDOzo60pUrV7aCrrOiinTl9Zvcn5EpkPXRxpZJvgRtXgzqjEyCjJHjGdlJ6ELOvtFel/WtSnuWSenV2NdSQGXbyEYypuQ+MHg0CxQfsZqqz1UignjOym7AQODY3yoQd9QnMoW1sj27tDsKfCer2ScQnG1Qss9S2bGPVYmhLGi9YiqjtcPrxO2ZvYfnzWD2x+dN1Ii4n/6NGhKHKcTzmLWQHXHtM/xG2k5LyPt1lEyCjJLsLSu542NGISUcXxa+EceRJXZgUmx/Z/hFdq+s2VGNTBtjhlzZ/eKcMMzl6OioGV6j0Wg0GhE3ZcOrgl+lbU8ng943UXKsJJ5KChylhzIoRWQel5WUTkkl7lula6qC1yOqoq5ZUCn3qcr3ZIHAaymyMkbGxLZkU9Tpj/pS4ejoaJi+jV5jVQHRyHq9T+XVmnkSG9zG1E8ZE6NNZdeA13gMsYt0umaHy2yGa2wgOz/tb1zfo8Bzri+yxKyMWJb0OMONGzfK4PJ4rko7k3lCe2xmMWQtTI4evUKp4eFYM1+FNQ9fr+XIXJk0fpRIn6C2jbZJszYnvs5+83ezQM8BfQmkOu0h79GM+TGpAO+9rOxRXKMdeN5oNBqNRsDeDE/allRGUjsZjyWFrOgg3+6WTBifkqVRquKhMumZEi/ZwSj2gxIcbV8ZC10rNJlhLd3UyENyzaaWJbatvDJ5jTPb1C7es/bSpFdlPIZMrkpYm9k117zXRv3OSuxUbVflh4iRl16lqchiqqqk0VUS6arf8TvXcOxrtLNFjFLMVbbhUVFkpsw6d+7c6pzSPh/355qgt6bheOD4G9kr1zy9h6XteWLsno+NqbL87DNrst3Kz0Izu9jHKrWgMYr/rLQz7oeZndlcHCOL0vKe9NzFotXVc5qarewYarvcvvsTx0223nF4jUaj0WgAezE8e0pV+v24jW95Sk2juKGKTY0kcUqTPk9mUyOzo2SdeSCRyZFZVeOOv63Z+bLYpqrsDeML45zQPuI2RkycY6atJvPO4rVdi++KyaWzjDuV1ywl1CghVgyHmXcyZLba7PsuSba5HkZzUTG9zFu3svfuo1HgeTmuOCauJzKHLB6zsr2vMbZ47Jp24Ojo6Pi6jwqk+pxmRIz/jXNb2ZisSai8T6UT5uFj/Z02sMgwXUqIJXDI8KINj3FqZKyjZwjZJm2S7nP00iRTZWwlGVhmE6V9jyw1y7RC9s5k3JkPRjO8RqPRaDQK9Auv0Wg0GmcCe6s0b9y4saVuy1SApq+VE0mk0bsGDWeqQKoqSL1HqZ54vixkwqCjh/elM0cWKEl1KFW1mQtz5UpeBQJn7thV+EjmeFD1icb5LFSDfa4Q106m+uOcUqWZqVVHalqfU8oT81Ktyms3StdUfc9U2pWTUrYvv7MvVShLPIZrh+MYhRhUqkWq9zITwSjontt5D45qKTq1GJ3LRvD1ZgXyuH7dzp133nnqWI4jc8F3e36OWT1otaUdQmJfH330UUknzipW59mxxftGRxemFIzqzohMtc2adVRx8lPaVt/ymrjafBZczrSO7ou32xknrrcq7IIJ42M/qufpLmiG12g0Go0zgb0Z3rVr17ZYTSY10VFiJAX6bc5krnRiGaVkIqNjQOiIFdIIniXsraRzSs2ZwwCZIx1qMiN8FSReJQaO81kFRzPxa+bCTCePqqRMdu5dkkdzHWTJfCsGwv5L2wy0csww4vmqsIBqruM+xOh6VBoFrsOMCZLRcX1loQyVwwmZcuY4VFXYzhxciOoe3yUZ95rTwcHBwVafMnZPpsCEF5E98flVpeliuAz/j/sYTFsmnTi02EnFfTLzyRIm83lalQcbOfLxumfM3uBa9fnNShlUHh3IPI61RNDxHmR5IH/PGLLBe+LcuXPttNJoNBqNRsTegecxAfBIsqfthC7lmY3L+1D6J+MapXoy9gnyptSeBWaz3SpYPWMF/I3tZ4moq/RQIybJPpIx0XaXsUKDLD5LpVW51VdwEuC1/lelmDKbA/tShXEwuXBExbRHtiJe/yohQewLv1fhCaPA81H4C9uvUlhR0s8SEBhV4H5mU+E+o+cE1/NaAdgLFy5srZWojeDzxs8ZsqhoA+Ma99qwTc9tZCXGfA/5mOiTEL/HY7zNIQvum217+zCgap1HVCne+HucE4YdsE8MMYgJRMyeaTflPR/XrI/hPcDnahZOEtlvM7xGo9FoNAKmXYJDj3eepgck/dI7rzuN/w7wPvM838eNvXYaO6DXTuNmka4dYq8XXqPRaDQa765olWaj0Wg0zgT6hddoNBqNM4F+4TUajUbjTKBfeI1Go9E4E9grDu/cuXPzxYsXt8ozZLn/RnFWRBVLMip9wW1rzjejY6vvu8Z2rKEq+LnLMTfTlyr2cJ82GUPDHJjVeZ944glduXJla6eLFy/Ot91222qs3r793XVub9W1fFfhVjiXVW3scl9Vn1KdUWWUB5b7TNOk69ev6+joaOtC3XbbbfPly5e3ipDuUrZpVOS3inGs1spa+as1rD1fRmt01/U9yvu6a79u1b7EKK9x9Q7I8iwzRvDChQt68MEH9fjjj68OeK8X3qVLl/RBH/RBuueeeyRJd999t6STtDOSjn9zklGDizQuUD9MvaD9yWTB2Y1U1emq0itl25jKKnthVIunSjUVz5elf4rfRzfaWsBxlmS6urFYcThLR+X2HFDq7w888ICk00Hf7MPTTz+t7/7u794ag9v7qI/6qOOA1X3qxrEqckRVVXmXKvOjNRJ/z17Suwbbj1ClHBut1bUUc7HdNUEyCzyvgv2re1TaTqDs70y3FStrex+3f+7cueMAbOLy5ct62ctepje+8Y2SpPvvv1+S9Pa3vz1tW9oOImdqLOkk6Nn7VomZs0QUVT3MKth/BNaCyxKBMwlH9WKIfaxqklbpCuNvVRX40f26a7L6uC4oxHgN+RjWDJSkF77whZKkF7/4xZKkF7zgBfqyL/uysl8RrdJsNBqNxpnAXgzv4OBAt91221a6mZhAlFLTKFGpQUmzSoGUSU2VJDICJZtd0vRUTK5KshtRJSkeMbuKUZIVjFJ+jdKC8RxUT7uPlnrvuusuSSdJXbPzjJK4TtOkg4ODreTe2Xzx+oxKIPGYfUqFrLU1UhNVJXhGKb/YfrVPHMOtUEtVia2zfjDpepWIfJQwnn3O7v0skXV17ZzOkM+HOOaqxBK3j9YQGQrnK2N4lelmVGKsSiWXaYLI8Nj/6tmS/VYxrwy896rE4BFr6R13UYcyjSQTx0sn2gFqAndBM7xGo9FonAnsxfCmadKlS5e29MnRhsekon4Lj9gMpYhKquBbP/5GKYx66wyU/iq9eLZvZcPJmB6l4l3sPlVBVra/i92PbY7smpX06WucFY2NBVTXDO8jdruPJMhjKjvVPk5TlZ0sY8/VOJj8NkOVxDebk+q+GdnhKvbJ30dJnavzjhhsdU9kJbqY0HyUPLpqJ7vHqsKlGaqk2hVD3cVJpvqMfVzbN2PcVbFqnj8bd8XksmN4XSpWnbW5lnh8VI6IybGZ4D4e6zJLZnqj4sFEM7xGo9FonAn0C6/RaDQaZwJ7qzQvXLhwTD/toBKrCFuVaScIGxsr47d0Qs9Z52wXV9/K/XcU01epuUbqnEp1SdXCSMVE7BNnSDXVSGVHNUilSs3UiQTDFKJ7sNUO8VqvxfZl9eiMXeosEiOHptj/kRMBXcw5F7s4AlSqv/j/2hxX37P2Rw4VVftV3bqsXYPzOlIZrvVx5Ohw7dq1VZd3q7UY7iDVdTF5njhPPsbruJrDbMw0r1SV6OOcRNV//CSy7VR37nJvrNU/ZOhJdow/18xOcd+1dZCZCLwPHXeyNettVm2urZ2IZniNRqPROBPYu+K5dCLR25EhOq1EBhD3jaELBF3Vq+rexsi1uGp7tC1zteZ5K0eGNbaYna+SRrJMFHQPrgLRYz+4r8fl+R05R1RSrq9jZPM0ZI/cg+2wQkn8mV5Lowol2MWJoaoun4ESfLU9zi3HvOaIkrXLfUYOVryGlUv5SGOyViU7cxwz6Eo/Wh/VeXjOK1eulIkp4jkJz0XGCqvwpEqzlLXLe6AKzYh99LOQldYzbQTv5ZHTSPxdOmFuVdIPf0aGxyBx/8bzMWwl22cXx0GDzyY/b9if2Cc7rezi8HTcp532ajQajUbj3Rx72/AODg6OQw+ctueOO+443qey0VB6fuqpp45/owRKSZB2QNr6RvD5smMo8Y506/u49sY247HUYY8CM6nvr1huxk59fXwtslRi8fyxHabq4pzEa03pL5Oi47kuXrx43IeR9MzfRjawKkh4Leg2HrMWNJ7NUxU8nrVBe0R1HeiinY2vssNkfVxznTdGOS65fRRWxGBysp5MY7JLyqp5nvX0008ft0+X9awdspgs9dYao6/CVeL5KhtnxvSivZK/xe+Z5iWmYMv6aMTxkeFV4V2RPfFakh2Ogte5RnhvZ8/V6vr7mjBMIfYpMv5meI1Go9FoBOzN8M6fP39sszPDi3a7innQjhRten5jmyF4H7/BmWg2MsAqGJX648wTiZIbpYp4nipZbCWpZh5dVYBxJj1zHj1fTJLs7ZFZ+396zO6SQq3yNstYIq/P4eHh0KZ54cKF475ltoG1JMcZq6psJlx3mRS/ZmPIpNoqfdJayqesDxwP2XVsp0oHlo2rYp9kkJ77eC9Wgce+N0cMjxqYKJXH3+MYd7HzmOGR2Y2kel73THvDfaqA/Ox+qe4h2jgzb3R+pz0sXn8+RyvGP0p/VgV+Z1qr6n6p/ABGvgo8T+bZzucAGSWvn7QdAdAMr9FoNBoNYO/k0ZcuXdqKv4sMj0zAUoVZQCZtkOG5PXpwMSYkbmOSUUo8I1ZI+17mWUr7FJlQdh6D0gqltcwOR+ZAm5r75qTOsa8+lqyQEmXm5VbZrzxXmQ3Pn2vejefPny+ZfzwH7SKcgygB215J6ZnjGTEuSvT+nsVnVXYxMrxsbqt9R/ZY9tGfngPPWZwT7st5pVSdpZgjw/M8816VTu5XemI/+OCDp77H9eF9d0kPZS9N7zuKV6W2xBoFP6tiCSD/ViVvrjx+4/+cY94T8dlSaYNGNmr2ac3TN6LSXHENx7VTMTlfL39m5+e6rjw9s9hEl3d6/PHHT23PYve45q9evbqTJ6jUDK/RaDQaZwR7M7zLly8fswpKT/F/v8WzbBzxM/7G4qD8pNQpnUgCljgplVsyyApWMq6HjCJKIplnmLQt/WWeimSQniOWyInzyBJM/u658vd777331PfY7yrWLZPSqywco0TEtuF6PkeY51nzPJc21tgvn4sMlZWOpW2P1KoAbBZnmGkM4rFR8jUo+ZJhZuMi26Q9aZfyMAbtZZkXcpUlo0qWPPKUpXQevavZR64zH+PCrhnb8TW+du1aGcc5z7OuXbu2tT4iI+L19jPq+c9//qnvXrPSybXzJ9ebwZI10sm9w6K3zv7h7SMPSIOsKqKyL1b7jeIjaUPzeOMaYzFcs3cX9PYzKmOlXL8s+Eqbv3SynnweMlYfm2kER57eFZrhNRqNRuNMoF94jUaj0TgT2EuleXh4qDvvvPNYPXD33XdLOp1ajEZNuqFnhlmqT6pEsAxalradRUyBfWyWhsjHVAZSIx5j6k1DP9UwVK3FdqkqiwZ0KXf+sZMIVXdsK3NaqZwAMgcbpvCxaoaONXGOfE6OYxdkKYPcX4+Rqet8nqiCoUMO26LLdxaYSxdyXtPMtbxSC2Xu2lRP0wln5GDDcVVpw+J+VUA1TQI+fxwvnb2oCh4lgPY+XrN+PjDZb+xbVK9aDZi1f+XKla17L95jXDMveMELTn0++9nPPtU36URNx3uMznjZuvDasbrWz5K3v/3tp74/9thjx8d4/FQ5U70b7yeGFq2ljYsqZz5H+azwXMXnjufCql/Pka9lNLuwP2uOO1Zlem6kk/mx04rP95a3vEWS9Mgjj5z6XcpTpHVYQqPRaDQaAXszvLvvvvtYCvDbPjI8Gu9poM0SQnMfpryh5B+lWbdDllEFMEZ4HNE1WsqdFaqUWFXfM3fdai7oYh5/o1Tr85rJWvKJ46d0zjkYhQ+4r5a0PDeZkdrt+tznz58v3aSdls7ImMk999xzqj1+khHFMXJs1XXJjq3a2seJZJcE51nqsOz82TFkWGR+WVD0mkMX989A1/bM0aFKs+XnQ6ZlIcu5ePFi6hDj9mLyaLcfmQmZ3Atf+EJJ0nOe8xxJJ/d61IRQU+V9vN0OYR6H2Zt0ct95zZq1mPGZufg7j5dO1qjHnTF8r/m1pPXZvc0wHs+X58j3uMeQzYnnwPsy1VdkXlxnZuze7nHGtcswNv/GPr/1rW89PsbnHGkNKzTDazQajcaZwN4M71nPetZW4HlkF2QzfrszaDS6ploSqILILTFkLIP6fOqLfWwW4MxjLW24z5G5WvpjnxhMXCWGlU4kkyqIPQs8t4TjOfY+ZF5R2mUgOG2jtAPG/2lfpO0wSuns4+XLl4fs5dy5c1uu0dEmQPdvJr/O5pSMmmnUjCyswudjWAVthSO7FdmL52KXNFRkuRnzppbDoNt7XFNux+Mys6jscCP7HxlllnqK0jnZtecz3k9mRPGeGyVxjiVgfIzZh3TC6MxM7rvvPkkn6yuzj/k32qnIBr0OzX6k7XJZ1HrRPihJz3ve8yRtB1ubBWaaIF4rn7cKXo/3p/vvvni+3A/b6eI96GvkufCYabP29ctCTdwH2h2zMDY+o6jZcp/j+n/b294mqb43RmiG12g0Go0zgb0LwJ47d670LpO2y1kwuDsLPrSkQzsLJWO2Efch87G+OGNclfenddmW0mOAsyU1S9Zsf1TItAqopSSc2ccqu4X3tWQfbRMMjqaHoscQJXvaoiyF0bMrHkPv1suXL5dS+jRNunTp0tY4oj3J146ekKNCs1UJIY45K1jJNF1Z8l73naBHGjUJ8doykYGvGefc6y1LeEBp1m1kCdU9Ll9n25M4j7SXxG2cV67zrOAw01BRyxLXqD0W4zp4+OGHNYIZiVmabVHSCTNh4gsi06Jw7XBu/XzKniGZhiVuz87t+fL8uF1fp2jLrLyMacvL0p8Zvr5+hnmu/D1j6zyf2+c4Y195vZn038jOR1setWDxvGad1lw89dRTnVqs0Wg0Go2IZ1QeyNJUZEIsCVJ5bUZJxG91S3Buz9IDJYVMZ0tPIMbNRWbifSnFMj4lHsPkuVWpFZ4jmwv/RiYRpXTaSmh/qWJspG2pz9epSs4snUjca16BUdJiQvALFy4MywPdfvvtx33wfGaxV2RcPjevadbPquzMqGgwbZv0RMzSn7Fdj5tSu3QiSZO5MqVVxvAMsml69mZrx+clcxmV+qE2oiopE++NKnaPRK8zDwAAIABJREFU6zsrUhy1RGv2X2peoj2O6dJop2dMp3SylslIyPjM8OJzhyn/WPia3pXSdhFXP+98DzAtWRwX7xv6RGT2MY+P9kWu7zjvXKu0b/sYag1i35giMkuzZlBjQA0Dn9XZvlVx7gzN8BqNRqNxJrA3wzt37tyWXjljXLSdVOU0pBOpwhKJJXnr9CmdZ7p+SyKWxtyGz2+vI2mbrTFeiZ/SdmyJP5lNICt/RImRCVgzycfjcaYBxrxZUrW0FqVCSm7ex3PgzyjZMeErWY+lqWg3IYt94oknhgzv0qVLW6wpsgAmyPZY6QkZz8t2fAwZGD384j5uz95sntvM9roWX+r1F+eWdiV6qDKbRhwfMxZxrWSxfbwffb1t8+CcRbZm7zsyZUv0WdFYenBy+6j8jTGKDfXvZIWxPd/vnlP3hUmQIwNiCTNfO47RXoERZHZknZ4/rylpW1NFJk5bnrT9POH9SG/hyDQ9Zq9nru8s3thjf+CBB06dl8z5oYceOjUGSXruc58r6cSzksyLzxTpZM6p/aC9O9oK6ddwdHTUmVYajUaj0YjYm+H5T8qj/uldmJV3iMfGfS01/PIv//Kp7ZbKzGLuv//+rb7RXkEGlnmi0Q5SZdGI7dGWQskii/ei5yolOrO4zDvL0h7tIt7XUnu0Z3ifF7/4xZKkN77xjZJOmPF7vdd7SZLe4z3e4/gYS3/0BuS1zmyvUaquGJ5jqWifjfvTE5TnzHKeeqyWLt0XxzYxTi+zOdDT1Vk7vB5jhoy1ArnRnmlU5Xi4drLSWbSL0RsvizPlNbOkb/bGGCePMx7r6+O14rlxjsO4ViOLiW0wW0am9YjsvZLS53nW008/vaXNiPYllpBi7Jk1EzGriPvgefF94rl83/d931N9jHNc2TrdN6+tODf09GYsb+YJzfufNi3akONzgPZ95gbNsgS5Tz6vj42sU8pjit0HP5+9rlyiyYjjs8el26OXuJlmvNbuS2S1u9rxmuE1Go1G40ygX3iNRqPROBO4qbAEqw1YfVnadh4hVaVKSzpRtTlBqNVRdtulgTY6TtCYb4pP1UJUaWYuw/E8Vi1EF3w6K1Alx4ruUXVGNRdTP2VqX28zfafxnaVXsvFZneLzuy3Pa3TRtqrHfWQ4Qlat2fvE1FVriYjpiBJBZxvOOdUd0nZJF/e/qsYez8sQGaro3WZcqwxK9hxQpRRTSsXxS9up86qEC9J22AZNBayiHvvEvjF0wushrjuvHSZUZ9ByTIrsPlVlorzdqvvY7pqzinSi0vS8WAUZ1ZN00LAazfv4MzrbeA7drze84Q2STtTjdGbKHIOYeMBrxeaCeL/QLMIwhCzxAVXaVbJ0On9IeRkd6eR+ZXX42F+rJek0xRSE8d5giaLXvva1kk5Um07/ljnL+byeE6amjKWlfP2jc1k7rTQajUajEbAXw5vnWdeuXduSVKPBkO6rDBa1xJBJ2lUCXr/ls8S8lmh8LBPlWqKLkh2PZULWDJSoquStlIDiWH0+S3TuE0uMxPFYOuZcM0lt5kJvxuzzs6hjZLAsJVIVus3SK8WyIJWk5dRilsrcfjR6m1V4zDx3VhrHx1hL4LGRcWUFMt0uQzwsTWYaDLImMmKmceL8xGPpjJOVTKITGJm2z58lj2YbdM3PAoLdb7Mcn4eFOuMxVQhLdc9ExFCNUWmpCxcuHF+XLGyIY3U/PWY/F+LckOlWScMztu4xM4TK32PZHIKFUMlq4rPDa5IJmJksg05usX0WpyVrj+ubyT78/T3f8z0lnTxDspSGvo+8rjwOM2g6uUkna4XhZCyvFJ+N7pufm7toCYxmeI1Go9E4E9g7ebS0XYInvmFpj6DU52PjW942OQZe0g6YsQeWG7JU5rc/QwBiHyylVMGckTVRR28phoG/dB+Pv3FfSmmZ3c/7MGm1JUqWTorHenyWyuyi7bmJNjzaz2gbzeaEyXVHAaAHBwenpEEmGI79ZkC0ryEl/NgH2ra8vshM47ozmAqJDC/TYNA+MkoAzXsis4dmbcU5oNs17X0xDIJ9JLP0dc/uX9ommWiBcyNt2/1YyipLPMxir2tB6ZcuXTplN4zjivA+b3rTmyRtl6qJfai0Jm73zW9+s6TtxNTS9vPMc0gNQwYWb/ZceG7jPUa2TIY3SsZuVuRrZ1tatq/hfjM5BYu3ZqE1PJ/vWxb0zpL/e5vb8DvAc5IF4+9TFshohtdoNBqNM4G9vTQvXry4ZX+Jb1qyP9pOKBFJ2yUnmPKGRWQz+x/TdlGiixIwy+ZUJT4i+6B3HiU42l+yAqBmNbS/MHmwdCIlUwpkaREj2n3I0rI5iG1G0KuVdpcYhO05oA2qwjzPWwHa0X5AdkQPRKaEY9vSdmJkJqKO647ByhwrWVw2RnrgZrZig3ZRBppTExC3GbQ7Z559tOuxz5XHXdYnJiDwsVkiZYOMNmPXTON1dHS0mrSg8m6N7dm7kHPNYqjVWKTtEjVMZhHHzGcJU41l9jHaqZi2MD7fPIe8LzONS9wv/kZmNUpWzvJATDloxpUl2OD9Q00CtWOxXQbu+xiOQdqe+4ODgyGjjmiG12g0Go0zgb0Y3sHBwSm7T1Z6xW9msjHaFTK7H6VIJoLNJFJ60lWsJkoAlDxZ8iTzKvNvmc0stjFKpE1bncdHiSXOSZUUu0oiHEGm7H0oPUnbBXR5bJZ82fvEBLMVyzs6OtLVq1ePx5z1lxI3tQQsyRL7w/NWZYIiG2HcJW1OWbJq2n18HttJafOIfaDNhCnnjGxu2EYl4cdx0UOVc5Axc27z2JmqL46FjLxKpRaPycptjRjetWvXttrNGB7ZC0t+ZfGqZFFMZJwVuqZ2gCV3WApM2rZP+Tvj8uJ56GVele/KwGeI1yTjJTPtUGXT5/XPbPp8VnL9ZWkXaS+vyrDF9quUkCM0w2s0Go3GmcDeXprzPB9LDJQUpe1MJAa9FzPdr3/z25xlU+z1k0k1tCNUxSTjeZjFYAR6AVYFRT03mc2QGTDcVlY2g0zVDIIZZbLMLpWNkjaizAuV9gvaJOO43ccsqXOGrI+RXTBGk7aazA7H2ClK7ZT+4rrgb/TezaRozq0lb3r4RTZDexhZGuc2S9BNux/ZYebZRzsf7UsZSySDYBvU2MR26HE3Kpll7CqdT9O05Zka1yKzFbGoaxavaHse54UxqVkZHWpleE8zflE68ay2t6RZKbViGePivbsL02MBVt4bXI/StlateobwPuD/0naprgy85xkHPGJ4u7Bcohleo9FoNM4E+oXXaDQajTOBvVOLPf3001vqgkg3aXQkNR4Z20mXaYDexU2cND0LHs4cZ+J3GlKlbddeqjSZ3DVTS/AYBq9HdQurSNP9nA4XERwf1SBZmjCjqtHmY+P56DA0qkllxwOui9gHOgRRFWhktd+ofqpUmvF8NLyz1lhW75F9sDME67vFa1nNC68LVZxxWxXO4fNmZgWaD3wM1f8jcD1njgJ0dKlUxXEeeF+uJQCe53mr3zE0h04w/s33GEMxpJP5sGqTicg5vuw6Uh1NNWVMeuyQHqfa8rE2/2ROeVQpV88uI273/3Q84rqPfWTaQc7bSAVdhdswnCR7ftPxqQr/iYhmmA5LaDQajUYj4KacViiBZw4ilXE1M5RWTh08NnOjrqTjynAubTNHSvKZUZzGejoP8DNzdKBbLtM3ZRWh6RxBhjdiaTTqVgmv4/+c6yp1VmwvSmWjqtU3btzYSj+VhWJUDkcZAzLINsnSs2Mz9i/VIRnxf8+/2QBDPXbRYGTtE1WYSBZmYVSMMlvXPH81x1yP8RiWxqo0JXFOOPejxONui6w2Jmi2QxvXF53nYh/IwnwMUw0a2bojw2Ni66xSNx37PO4Y8mUwZMbgNaYDnLSt4eEazZKVM7xj7bmThRjwGUmtR5yTat8RkyVTPH/+fDO8RqPRaDQiborhsSRF9hauCklm0l5sO4IMJbP/0WZIZpcVyKS0wvNnSU4rG17l9p4VSqX0zPRd8ZiYkFnalj75PZPseD5+jkI3yLZoG4vtR9fiNTsM7b5ZeArLKZFlZgyG66liwNmx7EtmwzU8Dwze5foYueBTk0B2mmkwKJX7GPcj2laZlIBzwPNn16wqjpxJ9pULeWVPj/vGa165lzvxuJkYny3SNrP2HIwSz/veodt+teZHttU1DVPsG8tFUduR3ctVgnvuF+9P+j4wRMP9ieWPaIvk82X0zKjWNddHlhqStleujwhqKO64446dw1ua4TUajUbjTGBvL815nrc8auIbl5IHAwuzYMGq0Cel5IwdUpJiMHkm+VBKqopsZsVJGZTMcbKvWR8Y1GvPqGincZ9YHoPB+FniaXrjUQrNpPSqr0yhFMHrdPXq1SHDOzo62mJAMWH3mudZJvVRAuSYyKriOUbzUB3j/jJ1FO0UsV9k3JSAaR/L+sB1zXsmziMTQvBYjisrcMu1wnnOEgZUmoNMM0NtysjTbpomnT9/viyrFdvhmH3fZuOgpzMDvyuba0TFZkee3l4jvMdoF5a2g+J5L4yuJdMFGmZvWbJyJnIYafF4LLdlqcSk0wwv2nDjJ5+vcVwsFDAqHkw0w2s0Go3GmcBNFYCtUlfF/zMbhjT20qze0pW3TzzPWnqZaK+rCmQy4XXGXGkjoDcR7THx/ypNTybZk1mxAKe3Z6nMKDGS8WXSWlWGhsfGeaa+fxRLZS9NFrSN0h49UpnUOyv4GduPx5BVjSTAav1lyao9t/TGo2S6Viop6/vIM63yQuXv0nYMVeapnLUR+7KWdi/OCcvOkG1lZYp2vW/dh/Pnz2+t66wkkkFNkj0iM69g2ox53TPtBu93Xnem9Yr/u317ZZpVWdPjNIKxHab8Mkbf+ZzxHDD+LmPrVUqzStMQ263SnmUaQbfD8nHVfErb6RbXYjgjmuE1Go1G40zgpjKt+A2bSX+M37D0P8piQkmg8ujMMh5UHohVUlfptNQV++hyHWRv0nY2Eca0jJJjs0QRi9TaPhclVurmmVR1zRsytlHFfWUxNFVmkqwQI5PeHh0dlf2iHSYrjeP55vryuTPJvsoiskumlYot0RMzK+JJZufPbM6r8ijsa3ZdWIKpyrQSx+k1UjG9yrMwgraiKnlx/L+ypxsZu6LNMIPXDm1co7hVzmW2fllyh+PhuDLmzWM59mg/83W4++67JZ1cf383Y4mMksx+rVxPnEcyVHtj0gM8S3TOZOG7MCg+n6tk6dmzf5QMXzrtFW0mHJ8hzfAajUaj0QjoF16j0Wg0zgT2Vmlev379mG6aKmcqRqqFRsGwdBqh6qBygImogpYZ0Bhh2s6krm4jS6PFvlaJmiOYHsj72GjNisRx3ywYNbYxCuBn33xNsgTXlWqJarAsaHQf1QJV26MQA6o2swDmNcccni8z6lfVnX3dMiepKtA8U+exD5VK08hUzVWqtEwVzfZoZhgFhFdp6aiuytSJBNdUXBtVkuAKh4eHW1XF4zwxUXHVp5EalDXZ+D1z7vA21uNz2zHEwPe717Wfjffcc4+k7TqFsT0+PxkmlYUAuN90ePH53bZNObEdPi+r5M5ZkgSqSkd1EZnmkIlCqtRq0onTTZaSrUIzvEaj0WicCezN8K5evZpW5jUo1dHVnMyL7We/uY1MeqNh3L/RoSKCQZxmdg8++OCpMWSld9weDb+j1DZVWiBKdFGKobG4cgfOmBJZGaWjzNmIqaOq0jhZKrBdGN48L+WBmK4pC3r2dbZzUcZIs/bjJ5lRlk6Ov1XhHNHJiQyfkrY/M+cYMmw6IoxScJFJVOnQ4v/VvcH9ItZKFmUMr0rrN3JMGWkoiIODA91+++1b916WLtCowioyjUKVio/7ZY5I7D8ZitmbtP0MpOOJNTzxunE9keFzjuOzk2FWZJZ2ksmS5PM+rpzzssTja6nmIqrrM6p4zsTpHXjeaDQajQawF8M7OjrSU089deze6rd+FgBKN9NRIGGVCqlKPholIAa3MvXXiD25b/fff78k6a1vfaukEyktBoAa1htHvXecg5Etj27HllQteWWMkjZIBoCTncQ+UPqvXPjj/7Qr8dgopblvuxYUnee5LDsTz1EFuRpZCrYq2ezIFkpJm8wus59UgeajpOieJybi5fiycJgKZG/xGAbfcx9+xj4zBIifmY2S+1T9z5hr1dcIhyXQzpMVoTWoQRjNabXGR+mt/D9DV5h6LtqXmKjBvgNkyFkJIz5faFfMirnSj8K2PIdBMFwqjoOlg5hyLEsCQgbH9ZX5U3CuqR3IwGdVF4BtNBqNRgO4qcBzv6GrdDdxG0tUZBJiZS+oSqLEtz+ZnRFLXsTzxv8fffRRSSdSEaWKKC0Zlsps16GOmZJQPB9TFHl7xtJo76nKzjAQWtpOzcU0ZSMPuaoUT1bag56bax53a7+v2Q+NUaA07aSjJOJVYumRVyiPpR2O1yv+VtnDqk9pW4vie47B0BlzXUvGzf7FPq6lBhytnYrpZTa8+L1aHwcHB7pw4cKWjTXz+qSGhWwgrqm15AS0HUcNDNk6yzRltnUnmHjTm94kaZzowmAJH5+XzwezRvsjxL6YZfoY2xW9PT4rmdyBWic+7+Izi89gIrPFUxOXlXPjd+8TS6Q1w2s0Go1GI+CmCsCSVUUJkeUeqvidjHGRrTChaFYinpKcJRKnn7EUENmaWRq9Me+6665TfY0SF+P7LNm4j96XhVmlE72+pXNKVozPiechyzWzJBvI4uPcHvXiWfwkJS1KXJn91Nc980wkbL8bpbMyquTkmf2XDIuflPAzz76qqGXmAVmV8uF8xd9pK6G2g22NUj2RrWeFeekZTZshxzKyo1Zp0TLvvOr7aHvsQ7V+7KXJwtORhVasltcjXn8WUyZLp+YlprfivGeJxqUT5iWdsK83v/nNkk4YHm25sY+eM2rVaMMze4zPOY/Hv7ldt3XvvfeeaiubEz9DaAuld3Kci+p5kF0Dvg9YQDtL/8c+Xr58uQvANhqNRqMRcVMFYOm9FpkJmRyZXlZ6xyzJv8VyM3HfzFbkt7w/zZbM8CwVxngYekv6O215MfOJmZU/KfVZAvH5ol7c577vvvskSc997nPTvmbehz4f2Q7jADNPu6x0UOxrlmmlikEaZVaIEvGaLp2SW5a9gt9HcYRk3PS4pAQ+spMS9FCTtr1lOZdZGSXaHNZKsGRer7Qvjjx7eQ9WrMfIkqQzWTltN5kNfg3ZPEcGVl2Hw8ND3X333cdxsh571Gpw7qgNyNg8WTJthCyunB1bZfbJ5oTMu0rqntlPWZS60sjEtWq4j7QD0qM0/uY+ZvGrcSzxfmIh3ar4bnZvVN8zLQszB91+++3N8BqNRqPRiNjbhpfF+4zyIXJ7JsXQplHldcwkbtrFLLXwM0rCZljPf/7zJW3rv1kuKO5j+5/3paclixNK2wzPcTCWuPwZJUi3S3sjWS9L50jb0l81nyObSmXXGmVLWIuHOTo6Sgvksp3qM7PTZLa5+L2S3rNjKFn7vJEhe52ROTJLRmyL2gCyQ9o21krlZG3E81VleTL2GccSf+P4qjI1cd/K4240nrg2R16ad9xxx/E9zHsunptMjsw4YyT0SCTD43WL22hLYzxZPMbPnf+vvXPpjePKkvAtUpCMbsALwwas1fz/nzXbHqANw4AlWSbZi0GYwS8jblYJmIWnTmyKzMrHvfmqE+cRh4xH7wyN1eNw9CzpPuO89I7xa6kx6v0iTxLn5x66lgUq7Opam54t57vTYWWbrV3LLL9uw/AGg8FgMDDMD95gMBgM7gI3J618/fp128FWOCse3rVAobtGx0luqRZkFVgYutarG/Tjx49rrVeqLRemXJruWvj3v//95lMuToHJM6ktCD9ZnO/zYiKPtmldpd0dxISQsyLptA7PI8sj1squ6GvccWff07VH96S7UehaYVkI75lUwEoXH+9nPxd0ncvVpHsmFRE3GSomOqQSA4YAXKjbx7oTZm5tkHaCEZTk45gdrS0MXel+/ZnE9u7du61L8x//+Mdfrjm2ZvJxNRc23yFr9aQVujIZHvF16a5jUom/d3Q8hTaY6KaxeimD3kF63+gdRQH6dH/rXmX7ISb/pXcxZfa4bgslpGX8nfDvUxOBtY6lJynZzN/5U3g+GAwGg4HhZvHoz58/H2SOUoCehdOtMHitHrynzFUq7jxLrlBqrK+ncavQXJ+yfGS1e9KKkkckR8ZkElo8XpZAFkqJr1TUTatZ63IfKUmIljXPGz/97ybFtDuOs4xd0fGff/65LQVogr+8/kkejPcdrfY05zOkMgGWATDFnKw6zYMs+hrmRUbE5AgHk0iYSLM7DssPdoLNbVveA+keInPd7ffh4WF99913fyVdJAmrdq9zHilpiYltlAljWx3fL70cfJf5/aYxUHCC97XPj+8kffK8pVIjnS8mWrFprB+PngPOs5XUONo1ZWnFWkf2x3IYMs219qILZxiGNxgMBoO7wE0M73K5rMvlcpAWc4ZHBiIkf7FA9kDxXloVqdlpEy7VPryIXPsT09MnrXe3KmjlyUojCyXj8P0wdrZr7UFGyRjaTjKL8R5avSneyXX0XUvV9++aOLZDDI+F54mt8ZMx3lSW0ArMd8XDbDjcxJ1T3IfxF7IqxkB9vyme5GPbSfWRdVK6z3HWHqg1CPb9tmuQ0EqSkpwcYzRnLaYeHx//ek71DO5aVZ019fVlfLZ5nF0pBtuTkSH5nDkWHVfvkp2IAMU3WrzUkcoO1nr1evk7UThjcjvGr/NGsQyy4HTdKGjQYsk+rxGPHgwGg8Gg4ObC84eHh4Pv1y0FFlHLIr6G4TVpHVrizua0vyZYmqxpFrgrK0o+7x1TkXVBa5ltYZIVw+ah/N9jhmw0y5Yru4ajjdmR4bl11oSUGZNyJqHrvmsZ43h6ejrElVoM1o+5a2fTLPpWgMzx+GfLNkwi2y3Dj/E6HyPv73YuUsYlx3hNZmd75rjPxFxocZPppTE2oYPEPtMzfpbhywL+JHhBps94acrwJsOj5FYaP5kXhSAY0/NtyMYoi0hG5uA9SoF9F9anF4IZvWmMvP78f9fCS39rPhrLNfHf9g5JWePJUzUMbzAYDAYDwze1B2KrGvc9N0trxwJSu4+1jlaUGJHXqaTx+WeKqUiE9l//+tdaa60ff/xxrfUq+aW6FZ9XE0CltFNqJks/P2vs9OlMWXPUOWbDT45r19iSlnFisM2CZ02XW5CaD+WVEl5eXt4wvJTN2ECrMtXSNVkjylul5sEthpekkJjhxphqYs/0crBxro6vbfwcNxbK+Se0bEkhxX1aa6Z2X/jfreEr413+nbONdv9cLpf17t27Q0zK6/DOYoApw7t5PhhbTTJa9ByR4aesSdZQpnrCtd5eU8qO8X7TO0Ofel/4uq2RcapRpseF13/Xyorz5POTalT5/mwZnj7GVBd5LYbhDQaDweAucLPSiltpjFv5303MN/2CNyUIgZmWylz0ZfQXM8MzjUUxOzE7+dDVGNFr6WjxyhqkP1wMz6301tiW/n7fRpZaE4nWeJLfn0yISg6pFq7VQDLDKrEPbfvnn3+exmF2GZeMOTUBWT9GYzjM9OU8/O+WJSykOKmgbckK0ria9Syk1lmt/i4p33D8Te2osV8fI5kEWcg1gvG7ps9kBrtzfLlc1uPj4+E+dqufz8mZR2atng3c4rG7rOZWf5cUd9jkVO8Dz9L2ufv+eM9oOZs7r/X6rPLcMM8gZZS3e4f3Vsr05LpkmonpN1WexEIlzK9x77wDxDC8wWAwGNwF5gdvMBgMBneBb3Jpkta6q0KuuCZRlUB32pl8jbvVlICiTwZo6QZZ65X2//LLL28+dRy5NOXq9O80ZxVZikrLXcn/13p1VTRXJr9f6/U8Mi2cKdTe9VdgSj6LsFOqPpfxPOqcu2uLyRY+f+JyuayHh4cqTuvHav3wznrxcSxr7YWhKe3Wki9SrzmOhQXHjtZvTcfRub2mv2QrG0jrtBIdnjNfj4km7RpcU5bQirJ93Ne6oi6Xy0ECzJ+xlrTSBMJ337X3jx9DY9H42e1bz7Lvu8n1MdHN56X90Y1H0Y9UssVSJiaGpLAPk3C4Dz63aax0i7dEQv+7ldJoXx6ySclFU5YwGAwGg4HhZob3+fPngxXtv/IqlKbAtHCNBBKTK5j+nqw5WSCU4hKbS+16mqhusrQorqyyAVrpyWpkGQJT29laZq1jQgULjCla7MFqWUMt0J0SRlqQn+fC2TVlgb58+VITGAQmFbiF3zol7wqpGyPhnHncNFcmjaRSBlr0HHvahuycHgveD/6MMMEgJV/w/1boy0LkXZsoWt67YvyWlND+T2PbMT21B9IzoFY5Xp5EVsHzlPbfpNaYjEUpsLWOSWtMkkoJUTyHTPBjq6m1XhPrtK7GwIRBljqk+VESMsl2sXUZ7zOWIDnLYhE8r38qS2jlakxM0rjWOr6LPRnuDMPwBoPBYHAXuInhPT09rd9+++1QSOvsgoWQZBn0Cft+GPcjo5NVpcJw348sAFlJ8ouTHfr+fF6+zk7slnFLWpDJsiO7SGnaa2UWyriFSiXYcFY+ft8PC8yZmp/iZ02sNqXMk818/vy5MjwVDxMp/tcY3q5VEffBlPJkSXL8rblusprpFWB6eirfafE4Mosd0xd4r+7KO2itNxHzNNY2Np9fixGRne4k03YSc4+Pj28sfDEgZ0LyPLR4orCLA2u8GksSKSb4fFDi0FmtcgUY02ziCb6N3nmMsWneOxFxxg7bc+VjEsimWs6Cr8N4P++ZnSScPumZ8xKxVgR/DYbhDQaDweAucHMD2N9///1gxbhVwOJqMpRdXERoklgpLvjTTz+9GQvFpMX4UlNFWiJkkl7s2Ip1W0ahnxMWslJ+KjUalYXzww8/vBlLanOzVi48F1r2YWup5OPnOUpswAV0z7LuuE0YAG8cAAASIUlEQVRqidLmwX1cgxancTRR5yQEzf0ydiTWkeJirSC8xRt9LLSomyWe9k/rnPEtHysL2umNSNmojRE3Sas0lg8fPtTrqhie5iW24wIUes7JSJuAtvab5qp7XssZN1vrWDzukl6+bnpeGMvStdWY/b3DzG56djym3tBaaCWpvuaN4LVNrX4aC2ytzfw7evfYpNvf+ddkKjcMwxsMBoPBXeBmhvfp06dDBo1bN1pGnzb9yMmfT98ss6PElNyalW9X2UyUzZIF5GPk2JhxyfV8vGQBtFQ1f1rgax1bC7GRpVuQbEbJbVsc0L9LDXp9myTiqk/GYnfbeDZWY3gvLy/r+fn5cF2cmVLWrAlBp5YkTbLsGpbWMu12MnhCO7cOeh1Y39Ukp3wbsibe527lst6PMTTGlBP7admGKdOO9yLPX5INa16dhMvlsj58+PDXc694tZ75tV6fYe2nZSIm4fHG9NjANHlElJXenpNUh9di6zpu8tbQo9M8DOk88j7mc5ViYdpfY84pjt6aFfP5SmMkw6PsY5I/cym4ydIcDAaDwcBwcx3eH3/8ccjCSi1j2L6Ccav0i9yy2NgWxDMSf/7557XWWh8/fnyzDo+XxJzJ/lpj1rWOvnpmadJKTzEcsVHWzu2yF8kgOQ59ukoL53cm7utjaNl4O8vOYxBnMbxdyxJmHtJqTWoqTRGE1mRi0Wzm2jL7dlmhtFaTtXzWAmkXU6Mqy46VcX+7GJqvd80+dnG51vz0muNcMx9l+PI58mxtPQctwzc1OOayFuumyPNar/c8xeKZAZ1ieMxE5Jid4ZGZpjiYjznVqDJeTu+Ue784FjJWfr+rx+Tzyzn4ORDk2VLsLtWu8tx+9913V7UZW2sY3mAwGAzuBN+kpalfcFkGbpHI0pEVxtqLpAJBq5F+d1oI7s8l+5PVp+NT826tV38/M0plraVMtPYdfemJhciKkfXClhcp81LjlWWtWIHOr/5nzMLHRIuS7NuPxzrJprziaLVa14DzW+v1fJy1tUk4YwqJRbOlT8ogXivXHrZ4c2L4Z2Pife9jbfWEQlrO+BvHuNMK5TypJMR4ky/j2FLdFXGNWobiv4I8PO7p0fNA1s54UqrHJcNjViEVStZ6fWfoXdJq6hIUl/cY1FpH9SQfY2tDRCT1JI211dim2CTZOmsT0/PEGtSmc5tYL9+JiuGl80nFoHfv3k0MbzAYDAYDx/zgDQaDweAucLNL8+np6ZBangLYAlOyU7Ejuym3NNaUECG6LkHZ1ibEg6NMUtDxd8dhyjhdaJRIcteCqDcTadjiJ9F2uiWEXZpwkxliqr67dxhg3nXF5hiFW6R+6Cpb69WN0YSRU+IJ12VJA91GqSVSu4aptZXulSbTJNBd6mhuyeQCpLufLvTk8kkp+H5cztfvE7on6cJP8me74m4fh2/D90B7brX/r1+/Hkp1lNiw1qtLU8fQ80IpwOTGb65etsZKMmFM29d11/J0PIVZeDy9l/xdxdIllifRJej3FstCdE6YpOfb6DzxfNLtmt5ZvIZMzkn3N4XuGYrauTQ9RDQuzcFgMBgMDDcxvMvlsh4fHw+ppM7qmM7cEhqSZcCgaksMSGxGDI8td2SJ+Jg5NhaPatuUCEBrj8xIx0nsiUkj3KefE85Dn5qnxqzPdA0EBuUTC+U2TBDaWZCpYDrh+fm5MmXfHxl4Y1GOnSyVjzExoeaFSKnsrYjb59jGkISl076SsPot7Lkx5IbEKJmKT4aX0tH5/1kz3rXeMrw2TiW08NnyZDl5B1gA3spUfBmfR5YAsezCj6NntzF+Zz1kzbzPdXz35uzeY77/9IzoOzaH5fF8Xpzr2XvczycTbOglosSiryvWrk8yW58Xn4UpPB8MBoPBALiZ4b1///6vX+Fk7bG4kFYTWcFavexA2zKO5LEA+aO1XzEeliu4ZcSUW1lRstZYtuDb0PKhlUhrxsfAGIRanpAd+lxZHK/yiF9//fXN/ykO06weHcctrSZRRAFvZ3EsXTjzpT88PBxEZ1MhOOWzCLf2uJ/W+PMaaTEyrJ3V3GS6yA7WOjJsjr15RXy/LcWb913a707ujeNqohLN8vf9tNh7KoNJIhO7e+fx8fHA0l14XM+SPCB65hj79mNQno0xbr6zfF+87k28IL0b6Tlo7cocOv+peNuXJ29Ei/OlODqPrbE2ubX0/NJTwzH7NorZMTao65nEM1I7pWF4g8FgMBgYbmJ4bNORisibtM/O2mRch0WjQoqBiI2J6QiyFFSc6u0lBLInsii36HaisGsdLSy3PluLFWaHpoJjtunRfMVkk/B1ixHRkkzWIK1ejdFblgjM9tu1eJFogfZ3TbE9i20Zg3Q09sR1k2g5i5O5Tbq/ebxdJinRmtIm6/2sQWoq0j9jjnyOUpY1hcebELkfhyx6V4yfxtqYqKTFyMD9GaMnh/GkJGR9JjTOmFuaO1lbkyVbq8sPcswptq5lfI+xtdguzs0C+iQIT68ar+ktcXS+S5KUImN4jNPqXKV2cn7Nh+ENBoPBYGC4meG9f//+YAV4rIUMiJZpypYi82BcjPFA/zUXK2uWVYqp0BrjmJJ10yz6VivoVjObeDI2kGJFtC7Z0JbsdNfqp8kdpUaMrHGhVZviC14P0+S/Xl5e1qdPn7b1abx3yPh3LVfOxJWT2C1jhrREhd393dhTiqlyLC379BpZMmEn19TOBS38lH3I766RmBPaNXEwTr9rLaV9tfpS3x9jaYxBpZgTPQlEGhefqbMsYd9PE2LeyRJyzq3+1MFmrRSap4Tabh58d7De1UF2xhwFZ+atvo91h8nD4WL8w/AGg8FgMDB8UwyPLen911XWAxv3Naa31tF3nayxtXIckPEw7p91Mmu9Wg20Llqb+bWONSyt1k24hsEyhuMsVOdA46fQtf5PNXzNciQL8XG1+iGdg5QhSwv5n//8Z401SaVH5zplvlENheyWrMDH1dgBrczE8JjJuYv7cVuuq//TGJuIcqtj821SBqePOW3PdWnxp2eHbaHI9M5Y2Fqv54Dtnnax/s+fP2+zSb9+/frXPZmYXsvoFjgW36Zll1KlJ2UKNnWWFNdsjH4nPM14K88xmV2qk+U7hPvaeSN4Llpsz8fEdXb1ky1+uRPj137c8zIMbzAYDAYDw/zgDQaDweAucJNLc63/pZhySzGBYq0j/SdVTZS4lTA0JCkcucboTqFbz7+jK4NU2ak+XTotkSYlCtBVy6LlJADNcgS6MlnAnYLWZ8kR7tJkghBdNhqHb8PC2WskfuhO8Xun9cHjPZRKMJh4oOV0kyaXTyvJ2Alnc2xCkmDjflqJDl25aZvm2nRwXZZf7AqPmytz1+uwuehZlpCEu6955uUO3xV1c7+6li3UkdCksJL7jvcxS1vSvdqky/h/ctW1Z6K9l/x4LC2hfNwuKYfzYLlPKjHge5S97jxppclUsldoEn/Q/s8kDd/M6+o1B4PBYDD4G+ObxKN3gqLs2stUb3a1dpBZpc7jvnytY0CWFncqFmUqMYOrO1aY9rdWl1dKx6FlxeQMnxc/W8KQn0+mDNPiTpYri98ppJzkz9q5aHh+fj5Y5yklnsxA61AMd63X+dM6JhvYFQ/zHLZO6A4mDTR2ukNr8bJLROEzsSsXaCLBWp46ebckjN286CFhuUcSVkjsdice7dJi9JD437yGYl6JDZK9MGmN96GPn22SKCKR5kKm1RJAUtIKS3M49t3xWBZFdpreA628aFdiwGU8j6nwnM8rkwOb/Jp/9/LyMkkrg8FgMBg4bo7hKUV4rX16u6B12dgvlTLQOmqxh8SEyJKaNeN/axuNiUWOzcrxMSa5M4LWuebTSg3WOhaJcl6MtTnzaoyF5Rh+3bSuW2w+Zn3vEmM7tkQoDsOYSmJ4GoOuLRtjOsNjfFSgPF0q/eA5bJ+pqJ/p4a3QPS1r8bdrZMKIXSxPoEeBAtHXFJNf830qJvd1/Xki8zprf/T4+HiI5aYYu9bRPUTxaEdrkEtGovE789exJUNIrwAZpy/T3MmA6NlycBk9SdcIHrQyDAfvQTLM9rnW8f2ia8rYXorlaqz0srEA3ddN5S5nGIY3GAwGg7vATQzv+fl5ffny5eCD9l9fWl+MG+gX3YsP6WPmvvQpa82tNsa4GEtjgbZvz7Y9FDTexeGawOxOJowCthoTW7GkedH60z7Yqmmto5VLn/rOL87sL87TLXEe+0xa7OnpqWaqrXW0UsmEkwA4vQCC/t8JJdND0cR9U8blWczgGnmwxvj8HJ9JSiWG27I0W/w0SUsxDtzEINLYmtDBbtuzBrB+TtLzwjiiy92ttY+L8v9WOJ+yJ/n8+5jWymLVPO4uTtqywelhSELQBK9DEpxOrXfWen036p2p7/2Z5LluHqWUb8BtmTGdGmprzmdtyRzD8AaDwWBwF7iJ4Sl+x1YV/uvaLA7GIjwWRNkqxmPI/NwiYZYUs9gUC3MLUceWxcG4YrIKafmQ+eykl+g7J7vhHPy7ZrnxuLtsKTLXlDXHGAQtOyG18/FMsZ2l5QLA6XyRxTIzVtfSrUreKynD1pc7Y2pi2jupL6Flye3idCmj1tdlVqPvX2gZyyljsdV5kq3tLO5Wl7ljEq1mK8V8z6ThhMvlcohFJvm+xpbIjHxZq4fcxWV1b+peZJxSn/Q87I6bwPuqSW4x0zTt/0wO0ffHjEq9M1lLl+qN2/smZZTyfLX8g7TNtffOm/ldveZgMBgMBn9j3Jyl+fT0dPi1T+1a6Cfmr7L/YstKYuaWPvUrr2anO1agxqi7tiZsQUFf/U4tg/EeYdfgtlnDOxFXzo8WHs+zMzS2SmnLfRvGanRtFe/cCeietVdZ69U7wBZJySJtTWdZ6+TbNAYsJAufzJvnNGXgNsZzjeB0A5+JFP9tXoKk0tNid63uL8U1m5B7ylxtQsas+3S2kzKyd+dMMWCH3986lmJoHHe6/pxzyxRNah8CmU5riePfkWnze58nvQGtRjSpArVrtqu1o0oK8wGUbS/4NWV2ZhPl3rUyE/ieS+L4Wvbly5eJ4Q0Gg8Fg4JgfvMFgMBjcBb6pH56SPJLIMoOdpPqJemo/ossMxOt/0Wqn0ZSbYqo/xZbXul6k2kF6TnehkIps6b5r7rZE25NrZK1jyq9/z6QcFoDq+iX3pL6jy0nbuhtG5/Yad8Lz8/P69OnTVoyYyRZctwkC+xhaYga7cPsceW3ppvTrpfuISRKtj1jbz+7/5J5kKQETOJKwQitpaALvu7Gx3CjdqzuBae6TbqkzeOF5khFsY2jJEGsdryWL11t/Nz+O9kvJxCR00Pr58bh+LenC5L6YHLMTLec7mcXevg3f40xi05hTEpvAZ4Lvcd8vt2nL03e3yPkNwxsMBoPBXeBm8ej3798f0t3d4qZFrXV2oqPahoFRBupTh2YGSltg2IvVld7OlP/WxsWXtWJaBoB3hcet0NnT7RksprQXv3crjdZZE3P1cTGRh4ycCQhrHVnGrgD05eVlffny5ZBA4ftrDI8JFG7hidG3NGa2NdrJGvF+S9Z1u0eaLF47F+n/xBZb4omQgv5MoDor1Ujp/TzXreP2bn4cR0rG8LG1e+fh4WG9f//+4OXw54WeHD43ZMr+XZsTx5/YE6F9fP/992/Gtdbrc0l5wJ28Gpkw780mSO/faRmTb3bSkHwnU2IwMXQ+P032z9/9TXBc2IljeFLZJK0MBoPBYGC4meF9+PBh2+pHVpGsL6bAk21ovw7tlxZ+KrJtjV91XH2fmquS6bXU77SMFg5TynfpwRReTaKqlO1qcmG7Nh1iymQqqbBe27dYVGIJLR094eXl5c05uUaguzE9v3coyMvxch+p2J5F6buCY173VmSdGN5ZzDA1d22Mrv2fxsh1kkwc97eLSab/d9i15kkWfMLlcjk8AzuWybhvYplNao+iDjvmxftN+2dJja+bYnVpPV+X16Xdu+m9c1bKlK5PK5Vp812rC7i3bX37VjJBr5Rvo/vAmwOfYRjeYDAYDO4Cl1sKZC+Xy/+stf77/244g/8H+K+Xl5efuHDuncEVmHtn8K2I9w5x0w/eYDAYDAZ/V4xLczAYDAZ3gfnBGwwGg8FdYH7wBoPBYHAXmB+8wWAwGNwF5gdvMBgMBneB+cEbDAaDwV1gfvAGg8FgcBeYH7zBYDAY3AXmB28wGAwGd4H/ACXruFmyF0k/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3068,7 +744,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuUZFdd77+/fs1M98xkZjJ5kbkJCQ8R8RV5KWBQeWR5VQQEWVeuRFSCz6vXK1fwQXDh67oAkSsaFYlRFESNqFweAsYYBRUBeUQIgbzIeyYzPdPdM9M93fv+sc+3avev9qmu6q6qrqr9/azV6/TZdR67Tu1zzv7+fr/92xZCgBBCCDHuTGx3BYQQQohBoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKIKOX3hm9p1mdqOZPWBmJ83sDjP7KzO7op8VFNuHmV1rZsHMvmRmLW3FzF5dfR7MbCopv93Mrt3E+R5eHevKpOzq5BzBzM5Ube8tZnbhJr/XT5jZ8za57w1mdlOH247lPWNmT3e/yUkzu9nMfsHMdrltzcy+x8w+aGZHzGylak9vN7Nvqjn+31XH/R89rvfDXb3r/m7o0fkeUx3vRT063uOr+2GvK99ZnednenGerWJmz6t+31urer13E8d4jpndZGYLZnbczP7VzJ621bpNbbwJYGY/DuCNAP4AwK8DWATwCAD/FcA3A+j6C4mRYQnABQC+CcAH3WffC+AEgD2u/LkAjm/iXPcC+HoAX8h89lQAqwCmATwWwGsAfJ2ZXRZCWOvyPD8B4CYAf7mJOnZEIffMjwP4NwCzAJ4N4NUAHonYLmBmkwDejtge/hDAmwA8BOC/AHgBgA+a2f4QwjwPaGaHEK8PquO8sYf1ZftK+TCAawFck5Rtpu3muL063+d7dLzHI17j38f6Op6uznNnj86zVZ4P4CsB/BNi2+iK6t55HYDfAHA14nvqss0cq4UQwoZ/iBfy+prPJjo5Rq/+AOwY5PlK/kN8EHwJwAcAXOs+eyqAtWqbAGCqT3W4Ond8AD9QlX/5Jo55O4A/3mR9bgBwUwfbje09A+Dp1bV/hit/a1V+oFr/uWr9+TXHeRaAWVf2ymqfd1fLx/X52gQAr92ua9llXV9e1ffQdtWhw3pOJP9/FMB7u9j3UQCWAby8H3Xr1KR5AMB9uQ9C0rs2sysrCfuNlelmoTJj/FbG1PEaM/tYJVcPm9mHzOzJbhuaTp5nZr9nZg8CuL/67NFmdn1lLjplZnea2Tudae0cM/sdM7vbzE6b2WfN7GWdfOFq3zeb2V3VvneZ2R+Z2Y5kmyvM7MOVSWe++s5f5o5zQyXNrzCzT1TbftzMnmRmU2b2y2Z2r5k9ZNGEOJfsSxPMD5vZ66vvumRmf2tmD+/ke/SI6wA838zSHtb3AvhHxJfHOsyZNJN28WQze1v1m99jZr9pZjuT7VpMmm1gD3c62f8JZvbnlcnspJl9rrq+u5JtbgdwMYDvSUxYaV2/umpXR5JjvDLzHZ9Rtd8lM/u0mT3XbVLcPYOo9gDgkWY2A+CnALw7hPAXNdfh/SGEJVf8EgCfQVThXN8WzOwjZvaB6lr+h5mdBvDS6rOfrD4/ambHzOyfzOxZbv8Wk6Y1TX1PMLN/rtrPLWb20g3q8nIAv12t3pW03fMtY9I0s1+1aP5/TPUdlqr78sXV5y+tzrtQfX6xO5+Z2Y+Y2aeqtvKAmV1jZmdtdN1C9xaXlB9EtCq9pd1GZnZh9Sy5t2qn95jZX5vZ/nb7dWTSBPCvAF5iZl8E8K4Qwi0bbP/HAP4MwJsBPBHALwCYA3Blss2FAN6AqCDmALwYwI1m9nUhhE+5470JwHsA/HcAfEC+G8BRAD8E4HB1vG9F5Ze0aOe+CcAuRJVwG6LZ5bfNbEcI4U11la8u2j8jPrReC+CTAM4F8BwAMwBOW/TDvBvAhwB8N4DdAH4RwE1m9jUhhLuTQz4S0az1SwAWAPwfAH9d/U1V1+XLq20eAPAKV6VXAvgEgO+r6vHLAN5vZl8RQlip+x495C8Qf8vvBPAn1UvqBQD+F6J5qlP+CMCfAngeognmasTf8NUd7DtpZkDTpPkqxAfjp5NtLkK8Ttcimlq/ArHtXQqAD53nAvh/AP6jOj8APAgAZvZERAV3K4CfRGybjwLwVa4uj0A0tf0KYtv7KQDvNLPHhBBurbYp6p6puKRaHkM0v+1DbOMdYWZPAvBlAH4mhPB5M/swYsfkZ0IIq50ep8c8DvG+/EVE1f5gVX4xohn0DsRnwnMBvNfMviWE8PcbHPNsxE7k66pjvgzAW8zsP0MIH67Z5y8Rr+8rAHxHUo8jACZr9jEA7wTwO4jPnB8HcJ2ZfQWAbwDw04i/9RsR781vTPZ9A4AfrpYfRLzPfwnAY83s8i2+1NrxVMT7+koze1V13i8C+PUQwu8l270d8Tr+TwB3AzgfwDPRbOt5OpSZj0Z86Ifq7zDig+tZbrsrq89/x5X/LKL/5dE1x59EfPB/DsAbk/KnV8e73m1/sCr/jjZ1/nkApwA8ypX/XlX/WhMcYuNeBfC1bbb5KKJtfiopuwTACoDXJ2U3VGWXJmXfUdX/A+6YfwngtmT94dV2N2O9meApVfn390P2J+e5FsCXqv+vQ2WaAPBCxF7YXmRMjoiq79pMu3iNO/7fArgl832vTMp4fP/3nwAe0abuVrWpFyOaXs929WsxaQK4EcBdcGY2tw1/z0clZedW7eVVJdwzyTmeVdVhL4DvQuzMfbza5rurbZ7dRXt7c/WdL6zWr6qOcUUf23itSRPAR6r6tDWbI3YYpqr2846k/DHV8V+UlL29Kvv6pGwWwDyA39zgPFmTJuJDPiB2FFj2q1XZC107DYiKfy4pf0VVfl7SdtcAvMKd51u6/T3QvUnzdkTrzf2IavpbEH2WAcBV1TaGaPZ8Wbe/d0cmzRB7p18L4HLEt/wnEHs07zOzn8vs8mdu/e2IjeKJLKhMQn9vZkcAnEF8iDwasYfnud6tH0F86/+qmf2gmT0qs88VAP4FwG0WTYdTlenmfYg9g8e2+crPAvBvIYSP5z60aHa8DLFxn2F5COE2REft5W6XW0IIX0zWP1st3+e2+yyAQ1ZJmYQ/D0mPKoTwT4i9fO+Ab0tlpphK/up6hjmuA/AMMzsf0Zz5rhBCt879d7v1TyGqsk54MoAnAHgS4gt3EVHlnscNzGyvmf2amX0B0ZG/gthzNUSlVotFc+1TALwttJrZPJ8PITQCEUIIDyAq84uSshLumfdVdZhHVBJ/j2gF6BqLroIXAfhQaFpH3oH4O7Y1a2badaeWq074XAjhPzPnfJKZvcfMHkB8Ka4AeBryv4XnaEiUXNXevojO74VueE9yngcQFf5NIYTFZBs+j2iteTbiPfM2d01vRPw9UiXYayYQg+C+L4TwByGED4YQfgCxo/mq6nsEAP8O4FVm9qOVYu344B0RQlgNIdwYQvi5EMIzEM1EnwLw6ozd9P6a9QsBwMwuQzQrLQD4fjQfZv+BvCS919UlIMrXjyKalW4xsy+a2Q8lm52L+MOsuL93Vp+f3ebrno34QqljP2KDuDfz2X2IptCUo259uU35FFpNFP56sqzbsPyXYP21yEVD1vEhxO/7k4g3xHVdnhuIEXoppwHsyG2Y4d9DCB8NIfxrCOGdiNGOlyCaNMhbEXvBv4nYPp4A4Eeqz9qbOuJvOoH2vzvx3wOI32XdOQq4Z36kqsPjAOwOIXx7COGO6rO7quXF6IxvR/wNrjezfWa2ryp/H4DnmAvFd1yeqXOvaLnHzexSxECuWUSz39cjXocPYeN2BnTYfnrAagjhhCtbRv3ziOc/t1p+Ceuv6TLi/dru2blVjiCqSx8R/n4AF5kZn63PRYx0/lkAn7bot39lRiysY9M9oRDCPWb2+4j230ch+izIeYh22HQdiLZWIIatngHwvJD4oKqHwLHc6TLn/yKA762+4FcD+FEAbzaz20MI70G8cA8AqBvL87k2X4/+jTqOVnU6P/PZ+cg36K1wXk3ZJ7o8zt8g3pjkdKc7hhDWzOxtiHb/BxAb4LYRQrjfzA6j8q9VfsXnALg6hNAIZTezr+zwkEcRb7RNje3rhDG8Z24JIXy0ZtuPVvX6dgC/W7NNClXcb1V/nhcimrZy/DvWt+te0nIdETtbuxGjTw+z0Mx296kOg+ZItXw6oiXF82CmrFd8Bq0+85Q1AAgh3IfYuX25mT0WMb7hlxEFx1vrdu5I4ZnZBTUfPaZa+mi0F7r1F1UV/ZdqfRbRDNBoTGb2zdiEpA+RT6DZ039ctXxvVb87K2Xg/3zPJ+X9AJ5oZl9dc85FxJvsBalZ0GKk0zcgyu9e8l2WDPw2s6cAOIQ4hqhjQghH3DXwgQ4b8QeIL83Xhu0LIgDQaJMH0bz5diAqY9+7vzKz+2lEZ32Dyqx0E4AXm4uO3EL9cozrPePPsYwYlPFtZvb83DZm9kwzmzWzcxHNqe9CHO/p/+5DG7NmCOGEr2un9dwkjFZuuDPM7HGIgTr9hB3ULbfPDXg/mr7CXDu4Y6MDbIHrEd9Lz3TlzwZwawihpXMXQrg5hPDTiHEFj/Ofp3Sq8D5tZh9ANKnchuik/lbEN+yfhRD8gMdvNbNfR/XiQIzCuy7xe7wXMez4WjN7K6If4ufR7M22xcy+CrGX/A7EiLpJxAfbGUSzAhCji74bwD+a2RsQe6dziDf000IIz2lzijcA+G8APmBmr0U0Qx1EVBAvr278n0f0Sf2tmb0Zscf3GkR/xus6+R5dsAfAX5nZNQDOQTRJfR6JWdHM3gLgJSGEXvov1lH5pTblo+kBTzKzVcSb4WJEpbmKGIGGEMK8mX0EwE+Z2b2IKv2lyCu2mwE8zcy+DfFhejiEcDti1Ok/APiwmb0O0aRzKYCvCSH8WJf1Le2eyfEriEryHRaHfvwNovXjEKJifR6iGfN7EJ9Fbwgh/EOm7n8I4BVmdqnzhW8X70dUE39sZm9E/D6vQf8Hft9cLX/MzP4E8bfr1sqzISGEm83sNwD8bvUi/0fEl+1FiPENbwoh/HPd/pXJ97JqdT9ihPV3VesfCSF8qdruZYiBSk8JIbBjdz1ihPxbLUZp3oH4LL68WqLy278LwJ8gttFVxKCpXQD+bqMv10nkzMsRw4vvQIziWgTwccTonplkuysRewbfWFVoAbGB/xaAXe6YP4b4IDiJOH7nGYjK6IZkm6cjP8D1XMTMDbcgvtUfQnxQPdtttx/xJr4N0f78AOKP9xMdfOdzEU0x91b73lWdc0eyzRWIKusk4ovuXQC+zB3nBriBymhGI/6AK78aScRjst0PA3g9oppZQnzRXuL2vRaVq6ZXf0iiNNtss67OoRlpdW2mXTwyt2/mulyZOT7/1gDcg/jwfGLmur4HcUjCAwD+L6L5KQB4erLdY6p2sFR9ltb1a6tjH6t+188C+N/tfs+a7zy290zdOWrahyFGyn4I0Wy8gtiR+FPElygQH9q3ArCaYzy6Ot/VvWzf1bE3itL8QM1nL66u5SnEDvHzEQONPuvaWS5K89aac20YzYgYAHUPmmr/fNRHaZ7J7H8fgN93ZVdU+z/Vlb+0amdLiPfUZxD94xdsUEdGk+b+XpTZ7slu/32IQz4eRHzRfhzAC5LP5xAjh29GvF/mq+v3gnb1CiHEBtYrLA4YfitiWPOtG2wuNsDi4PLbAPxgCKHOfyFGGN0zQgwOzZYghBCiCPTCE0IIUQQ9NWkKIYQQw4oUnhBCiCLQC08IIUQR6IUnhBCiCLoapDw7Oxv27du38YZtYKqzNOWZL/Pp0DbjZ+Q+PFYnx2i3jf9Mvs/8NZifn8fS0lJLPrtetB0x3hw7dkxtR2yKurbj6eqFt2/fPlx11VWbr1XC5GQzP/LUVKzGzMwMAGBiYmLdNqurMYvV2trGUzDVvYhy5Szjksf3y9w2pXL6dDP95qlTp9Z9NjU1heuuy+eU7mXbEePJNddcky1X2xEbUdd2PDJpCiGEKIK+5V3cCKo2oKnoVlZi3l+v7AjVVW4GCK+8OjFletVWp/Q2Ok5JpL+JrpMQYpSQwhNCCFEE26bwUryS8wEnG8zpl6Wd0vCKrk7ZSa20kqo5/n/mzJnGUtdssNAaQitJ+r+/b2TJEKUjhSeEEKII9MITQghRBENh0vTBKFz68tzQAJp0vCnGB7GkwyDqglX856JJ7loxyIifraysDP2wjdT0txHD9F1Y7+npaQDNITw7d+4EAOzYsaOxLYf5cB+uE/6GdCXkflOaqZeXlwE0h6MsLi725PsIsR1I4QkhhCiCoVB4hD1OH8TSyT692k7kyQ3+5//s/W9n0IpXOlQ1VERe9QAbZ/TJfWeWUQlRAXFJZbSV65CqNdafZVzu2rULALB7924AwOzsbGMfqj+/JHXfE2h+LyYV8EsqvGPHjjX2mZ+f7+br9Yz0vGeddda21EGMFlJ4QgghimCoFJ4YXnI+PJZR3YQQBqLwUjUzNzcHoKl4uKQSovKjUuISWO/XzUG1RtUDNJXOyZMn1y2XlpbWfc5r4vcHWq0NrIevc/pd+T253Lt377ollR7QvAZUdjwu1S3Pnw4nIVTr/vtR2fFznhcA7rnnHgDAkSNHMEgOHz7c+F8KT3SCFJ4QQogikMITHeEj+9L/BzVQnyom7c2zjKqIS+/jyqknKiAfxeiVa5owm0ru+PHj65ZUafQL5nyFXtn5yEvWOa0j609Fxe/O2QNYTuWXHq/Oh0dFRzWai0ati5Ame/bsafx/zjnnAGheG6rCfuF9x0J0ihSeEEKIIpDCEx1BFZT6e3Kqrx9Q8Xg1l9arrk5UAVRgfkqjdB8//pPfNY3m5HGoorjuo0Bz8z36VHaE+/hlenyfQsyrxtRn6Mv4fVjOa8Brk+7LMqo11pV+SB+dmtaF6rPfCo8RomkdhOgEKTwhhBBFIIUnOsKPawOaKoDqY3l5uS9+PB7zxIkT65ZAU12wfl6B+cmFU3+W9/txH6/IUrXGMiqhuqjNVEly27psQDw+65aqaD/OzyvUXOYTr8r8vvzduG+qyHz2lTofXrvJkTuZmmsrUOVecMEFfTm+GF+k8IQQQhSBXnhCCCGKQCZN0RWpSZP/0wS3tra2qbkLN4ImwX6HodO06ZMu5warcxuaCxcWFtatdwP3eeihh9adA2gd0M5hEDy/Hyiebst9/cD3UYdDMoToFik8IYQQRSCFJzrCJ00GmsEJVCRra2sjPbVSbsjCdpAO82CCZF53BrZwmzSARwjRHik8IYQQRSCFJzqCPqI0HL1uYPMw4Qd7dzMB7DBBfxyXW4G/16hei4997GMAgMsuu2ybayL6Rb+GtoxmixdCCCG6RApPdEROvfmkwzMzM32J0iS5geAe1tMnce5nvUaNUVV25JOf/CQAKTzRPaPd8oUQQogOkcITHUFVkNrUvYratWtXT9UDx/fRV5ibeodj5BjFyH0YzTjqakY04USzZ599NoD1VoeNJvMVo0Xf0tL15ahCCCHEkCGFJzqC6irnC+tX1B/HxbEnn+vFM9NImnAZWJ8dRYwHjFBle2B2G2D9pMBC1CGFJ4QQogik8ERHUDGl+SypuOg/W11d7YntnYqRvjsen3VIz8H//SSxYnxYW1vDiRMnGnlEOS1QOiZRCk90ghSeEEKIItALTwghRBHIpCk6glPlcAk0Q/9pepyamurJAG8egyZMmjhp2pybm2tsy2127Nix5fOK4WR1dRXz8/ON6ZNoth6WZN9ie5mZmek4YE4KTwghRBFI4aEZfDGMyY+HBV6jNNyfao9DAiYmJnoStEKF51VlbkJWMf6sra1hcXERhw8fBgAcPXoUAHDo0KHtrJYYErqxKknhCSGEKAIpPEjZbRYqu1Th9ZJdu3b19HhiNDlz5gyOHj3aUHb79+8H0PQdizLh82Z6erpjlSeFJ4QQogik8ERXpOm9/NQ7SuAr+sHy8jJuv/12LC4uAmj6cO+9997GNpdccgkATQNVIlJ4QgghhEMKT3RF6qdj1CTHwE1OTqqHLXrO6dOncdtttzXaG33uaRo5+vM0HrMc0qhtKTwhhBAiQQpPbBn2tPo1aaMQa2trLT7iPXv2bFNtxDCwmahwKTwhhBBFoBeeEEKIIpBJU2wamjC5XFlZkVlT9IWJiYmWwIQjR440/r/00ksHXSWxzfBZ0808nFJ4QgghiqAYhZc6vDndjNRI9/DaAa3X7+TJk+s+F6IXTExMYOfOnY17mEovVXiiXJaWljp+7kjhCSGEKIKxV3jsDaYhrEoWvXmYKDqFvSspPNEvpqamWhRe2hZ5Tyu9XTmcPn268b8UnhBCCJFQjMJbWVnZ5pqMB2mvmr0qlnWT4keITjGzde2K1pqTJ082ytjbn52dHWzlxEghhSeEEKIIxl7hyafUG6ji0shMqmaWSeGJfhBCwNraWkvbStvisWPHAEjhifZI4QkhhCgCvfBEV4QQGn9nzpzBmTNnMDExgYmJCSk80RfW1tawtLTUWF9dXcXq6ipmZmYaf8eOHWuoPCHq0AtPCCFEEeiFJ4QQogjGPmhF9AYO7E2DgGi+TAf7yqTZPdPT0wCa11aJEdYTQsCpU6cwMzMDoDn/4vHjxxvb8BpqAHp/4PUcxrSMfthKO6TwhBBCFIEUnugI9uhShcee9vLy8rbUaVRhb5kh9F6NpIP7FxYWBlexIcXMMD09jVOnTgEAdu7cCWC9Er7vvvsAAPv27QMAnHPOOQOu5XgzzFaHbmY+l8ITQghRBFJ4oiNyCs+XnTlzZqhs+8MC/UtUxPRF7dixY115LikyWVxcBDBcvpNBQYXH68KEB2nP/v777wcAHDx4EACwZ88eAE01KAQghSeEEKIQpPBER3Si8DQ9UBOqOqCp5KjgeN24ToVHxZLuyzIu08jEUpiamsLBgwcbKo5tLPUd09fJbajwHvawhwHozs8jRovV1dWOLR9qBUIIIYpACk+0xftN0p4UI7fY015eXi7Sx5QjVbre5+SjMtslRabao0rkeknTXU1PT+PQoUM4fPgwgOb1SX2dnB6ISu/OO+8E0LzmBw4cACCfXulI4QkhhCgCKTzRFvaic1lA+D+Xp06dkg+vInedCFUGry3Hl/Ha5a6h/x1KYmZmBhdccAE+85nPAMhHqnp/MpdHjx4F0PwN5ubmGvvwf6pnMf5I4QkhhCgCKTyRJR1bBzT9dKla8apDPrzOoKKj744Kg3651D/nVXSJTE9P42EPe1hj/CL9dWnkpc/1yOvF9ljy9RNNpPCEEEIUgV54QgghikAmTZGFZiNvUssFY9DcqdRi3XHy5Ml1S5FncnISBw4cwN69ewEA8/PzANYP56BJ0w/58NNape1z0G2V95SCZLYPKTwhhBBFIIUn1sFeb6ragHzIPLcpaRC02D6YGDoXQMWAFq/0GNji07qlZf0krSOVPOvGlHJicEjhCSGEKAJ1McQ6fO/ZD0/IDUsgStAr+smhQ4cAAA899BCA9W2Rg/m9ovPJtweh6lJS6wfPzWEpu3fvHmhdhBSeEEKIQpDCE+vw0WzsRXei8EpMeyUGxznnnAOgqebStljnD/NTMKVRnPT79QM/8B1oqkz57rYPKTwhhBBFoK6GAND0NVC1+SlYvNJLt9HYOzEI9u3bBwDYtWsXgKYvrB20Onill5b1A5439WtzUlqxfUjhCSGEKAIpPAGgddydV3S5xMb+M/nwRD9hhpLzzjsPAHD33Xc3PvPJoXPj7gYJJ+oVw4UUnhBCiCLQC08IIUQRyKQpADTNk96kSXMlTZ5MgJv+z3008FwMAg5PuP/++1s+823QmzYHPfBcDBd6QgkhhCgCKbyCyQ0xqFN0XE+nsvFDGKamptSDFn2HCi9NzcUpg4hXdrlhAqI89OsLIYQoAim8gqFqA5o9YCo8KjsqOq63G+yrlEliEDC12IEDBxplbKd1FoZxtzzkvp8SQrQihSeEEKII1CUvED/1T1rGJZXc0tLSumWqCj39TMYrhIcTwgLNKYNooaDi4QBwWh/GVfXkfJO8l5kwu2591JmYmOhYwUvhCSGEKAIpvAKhPy5NE0ZFR18IFR3XFxcXAaxXhT6VWDc9LSG2ClOMAcADDzwAoBmtSRXD9sj1dHqgcSKn1ujr5DXwVhyvflPSaOxhZ3p6WgpPCCGESJHCKxD64dKIyzpFx21y0ZlUePLdie3m3HPPBdBst1QtfllSUmdacPjdue4nd04tPUzQPTc3t25f7nP8+PF+V7trpPCEEEIIhxReQXi1trCw0PiM/7OHTMXHcqrCtCflJ9XspqclRC+hP+/ee+8F0JwkltYHtsuSMq14n10n0GrDLEr0efK6cRLbEydO9Kyem8X/tp1Qzq8vhBCiaPTCE0IIUQQyaRYEzZMclkCzZfo/TRV+W5o6UvMBTQo0ae7YsUMmTbGtXHTRRQCa7XgzZq+SYQCLN/3yOrZLPDFoGGAzOTmpoBUhhBAiRQqvABiIwiV7v6nC42dUdtzGDy5PB6nyMyk8MSzs27cPQFOJcPC1Ept3R13wSjoB9LDQTSCSFJ4QQogiULdnjGFvjGqNg8r9EIS0jEMW2EOmTZ8DdtPUTByMWlKotxhu2Bap7NhelRxha6TWoGEhHTDfaVJwPamEEEIUgRTeGMNeGZWej85MB4/6QelUeD5KM/WF8H9+Ni7TjYjRhwPP2UbHNWl0vxnmezp9NknhCSGEEAlSeGOIV3ZevfHzNCG0V3KMzuKS0Zep3Zy9aHLq1KmWqE4htgOO0RLjC1Xd8vJyx88dKTwhhBBFIIU3JqQ9nI0UHlVaTuHRd0dlx14U11P82Kbl5eWObelCCDFopPCEEEIUgV54QgghikAmzTEhHWJAs6Rf0uxJk2YackzzJssYpEITJfdNTZbepLm6uiqTphBiaJHCE0IIUQRSeCNObqofllHJMeCE67mB4izjvn6mYw0uF0KMOlJ4QgghikAKb0Sh4mIC6HTaDp8WzPvyctD35n14JDftDxWj/HZCiFFACk8IIUQRSOGNKD5NWJryyw8e92l36sqBps/OR2dyeqA0MtP7Bs1Mak8IMbR5vCMfAAAUgUlEQVRI4QkhhCgCKbwRw0dl5vxyVGVewbVb38hnR+WXTvZKfx/r4MflCSHEMCGFJ4QQogjUJR8RqMaopnw0ZbvpMTrxq/E4qYIDWifQTI/lE0sr04oQYpiRwhNCCFEEeuEJIYQoApk0RwQOQ/BDCrwJMi3jkuZIb7Zkee4zmiY7GYAuM6YQop+kz6qtpDeUwhNCCFEEUnhDjk8EnZumx+MVHdcZgEIVl6q1uuOxnMt0gPuOHTvWHUdBK0KIfpCqOj91WTdI4QkhhCgCKbwhpW6YQc5nV1fup/jx6cHSgeL+fNzXD2KnDzHH5ORk1scnhBC9QgpPCCGE2ADr5i1pZg8CuKN/1RFjwMUhhHN8odqO6AC1HbFZsm3H09ULTwghhBhVZNIUQghRBHrhCSGEKAK98IQQQhSBXnhCCCGKoKtxeLOzs2Hfvn0t5cwGAgDz8/PrPvNZPvx6WuZzQGpM1+hx7NgxLC0ttfxwk5OTYXp6upExgUtmawGAvXv3cttBVFUMGXVtp+65I9rjAxJ91qTcdnXbbHTsbsg9130u327fAXVtx9PVC2/fvn246qqrWspvuummxv833ngjAGBmZgYAsH//fgDAueee2zhGugSaDzoud+3aBQDYuXNnN9UTQ8A111yTLZ+amsKFF16II0eOAGgmw3784x/f2Obyyy8H0BwgL8qiru3UPXdEdzBpBNMDcm7NNJmET07PjilfcD4RRZqwwiev8Ov+ZQY0O7e85+fm5gA0O8J8F2xEXdvxyKQphBCiCHqSWuz48eON/9lroMLzU9H4xMa5Mpkyx48QApaXl1uSYLNHB0jZCdFP6Eaiasu5DurMnV6teeWXbrORWbRd0vrccXuJFJ4QQogi6InCW1paainzE4jWKb30M7+tGB9CCFhZWWnxEchPK8Rg4bO3bpJnoPUZXKe40ml7vN+v7rzpsX0dfGLodhNdbwa9WYQQQhSBXnhCCCGKYEsmTUrX3Bxp3oTZbhyeD1eVSXP8oEnTO7b1WwsxWHLzYXr4TPfPeN6/HHvNILR0G78tt+E+qTurrg79ei7oaSOEEKIItqTwOAQhB9/QXtnlgla8M1NTFo0fIQScOXOm0WPkEITdu3dvZ7WEEBm8CkwzIgHAnj17AKy37lHJ1Q1e5/sizczFffwzv1/WPik8IYQQRbAlhce3bxpazrBS9gzYk2+XIy2XpkaMH6urqy09OSk8IUaX1AfXzieYkg5jO3r0KIBWn2G/3gVSeEIIIYqgJwPPUzsrU4p5GzDLqfhyqcVyEZxivGBbYTvQwHMhymJ2draljEqv31Y+KTwhhBBFsCUpRdXGJdCM5mHP3W+Ti9Jkb99HAonxwswa6p2+O819J0S5eLW3uLgIoH8TCEjhCSGEKIItKTxG3HEyT6A5PoPTvnCdPXpO/MrJXoHOJ/kTo42ZNXpuVPVppgYhxPjByEs/NRjQOgbbT2HUa6TwhBBCFIFeeEIIIYpgSybNBx98EABw4sSJRhlNmTRZcslyPxO6KAMzw+TkZMNkwXahQCUhxhs/113OjUEzpx/W1m7Ovs2gt44QQogi2JLCW1hYALDewcggFS45PMGnFksdl2ky0dw2XPp0ZWJ0MDPMzMw0fsODBw8CyA9CFUKMD3ye05qTs+r46YZyKSh7UpeeHk0IIYQYUrak8Pwg8/R/9uT9RLB+AkGgaaflPhymwH00XdDoY2bYsWNH4/d/xCMesc01EkIMC179KXm0EEIIsQW2pPC8nw5o9bPRBsvB6bTR5gYW8u3Oz3wasn6lmxH9h1GaVOuHDh3a5hoJIYaVfkXxS+EJIYQogi0pPE7ZnkbaUdlxPAVVGd/YfqI/oKkKfbQmfXlUkIrOHF2YOPr8888HoKTRYuukFh/5+UUnSOEJIYQogi0pPCqwNBE0FZwfe0F8RCbQVG7s9TPBtLJwjA+M0uT4OyG2ilSd6BYpPCGEEEWwJYV35513Alg/vQ/9elRtXPpxFWlkJ/dnvk0xfkxOTmLPnj36jUVfoEWJzxVGg3cy/RQtST6GQIwfUnhCCCGKQC88IYQQRdCT1GKpmYpTBdFMSZMmhyEwWCUNSJGZa/yZmJjA3NxcIyBJiK2SDkvwQ5j4nPEmTQ6XApoBdjJlloMUnhBCiCLYksJjAuC77rqrUUYlx5Bh9rDYmyLpwGOfSkyMH5we6KyzztruqogxIR2WwNSFVH11QxYYVCdGA/6uaZCjJ5emsg4pPCGEEEWwJYVHlpaWWv7fvXs3gNYeF9fTt/Lx48cBNP19TFXWrwSiYvBMTExg586dmvBV9AU+T+iP66bXL4YX/o6pL3YrKSb1RhFCCFEEPVF4qX2VNtdU9QHNqCn66XK2dCo6vs2VWmx8mJqawtlnn73d1RBjTicDzcXoQMtgGknrFV43lkApPCGEEEXQE4W3uLjY+N+Pu2NKMSo7Kr10DI3/TNMAjR/T09O44IILtrsaQogRwCv1dJ3/+0nGO0EKTwghRBH0PEqT8K1LhUc7q58YNv2MSm9Q0Zk+clT0F42zFEJ0gp9sIF33n3WDFJ4QQogi0AtPCCFEEfTEpHngwIHG/1/4whdayoCm+ZBmrTQwhSbMdBb0fsKhEzzfoM4rhBCiHr4n+E5g8GOamnIrrhEpPCGEEEXQE2mTm/KFoaM+SMUHqACtg9L7QZpMlv9L2QkhxPDgk37nAlTqEoN3ghSeEEKIIuiJxEn9cVR0fpogvqn9MAVgMOHqaa9AKcvEuJEOrdlKD1iI7YTvBaYSy1nj+G7ZTIISKTwhhBBF0BOFx6mAgKZ68oPHfbRNGnWTSzfWazTVkBhn0vatqXFEr/GWOq6n1gQfp+Gf57lEH/64/l1Ai2H6vtjKe0JvASGEEEXQE4WXvnH3798PoPlG5tve21vTnoFPMC2E6I5U1fE+ktITvYLPeLatnJ/YR1TWKbycKvQR8zwPj5lLRbkZpPCEEEIUQU8U3sLCQuN/2lyZzcRHZ/qegv9fCLE1qOx8b3wrSXfF+EDrWyfjkOsS7Of8aBs9x7tRZjy+9wsCW5s+TgpPCCFEEeiFJ4QQogh6YtKcm5tr/H/33XcDaDVl0szClGM0eQJNiaqhA0L0Dt5zuq9ECk2ZuSQgHpoUBz13qA+82ooZM0V3ghBCiCLo+bCEs88+e91nPsVYDvVEN8b3tIToFAWriBzthgl4OhlEvhnqVKafTq5Xif71hhFCCFEEPZ8f56yzzgLQ9NUtLS0BaO0JSM11h5Sd6BQfys10fwxHX15e3p6K9Qh+LynXzcHrxnaQqqfc9G1Aa2rIXPqwboYw+PPVlff6PaG3jhBCiCLoucJjNA1TjPENnUZlAut7Z+qpjT+rq6uYn59vWABE//C9dO//YG99VFOPydqxOXzifiq8VEXVKSqfxIDH2MwA9Nxk3DxOJ5Gj7Y63EVJ4QgghiqDnCo/s3Llz3ZLpx3L+A/XYxp+1tTWcOHFCCm8A+HGtufRMo0zOh6dnyMZQldHathl1RmsBlzkrwVZSRW6mjXYTKToed4AQQgixAX1TeJ50kljRO0ZlfN7a2hpOnjw58IwNpZBmovBZKfy1Hpfpg1LfJL+L4gFa8fecn6Sb65th1BL/S+EJIYQogoEpPNFb6sbJDCtra2uNMZli83h/HFVOzvdRl72CvpxRYWJiAjMzMw3/P1VcqmT5Xfndhv1+GCRe2ZWMFJ4QQogi0AtPCCFEEcik2SO8qalfIdM0ZXJm+ZzphucepkCWEAJWVlYUtLJF6sK2c4N5fduguW/UAjvMrNHegdbEwik08dL8yRSHw4RP9Sbz6+CQwhNCCFEEUng9oq5XneJTPbGnzXKffi0HB/L7Y6a9dvZq/eS7242Z4fTp0wCAXbt2bXNtRhP/W3I9VUBe4XOd137UCCFgdXW1oYzYvlMrgR+K4ZXwMCk93rNc8ncZlvt0nJHCE0IIUQRSeANgoxByrs/OzraU0c7vQ8r9sXK+HR9+Pgy+vaNHjwKQwus1acq+UZ/+pw7vs0vXfTo1fz9w21TpbZei4vAcWmvGJRHAKCCFJ4QQogik8AZIXXRcrlfqt/VKzy9zkzhyyZ5jJ5GR/VR/ZoYTJ0707fhiPDEzTExMtLTrtD1TJbGMPk1vXclFe9KHNmhl3C6Js+gPUnhCCCGKQApvALD3Wee7I6kNv07JUfnRF5Gz+7PHyCV7t37SxtzYrX5hZpienm7UfzMTPW4XuQhYXtNRS547irDtUJ3lLCVe4Xk1yN8rVVN1lo9BK71hGi877gz/00YIIYToAVJ4PcKruJx/gT05buPH7qU9vY3G0NUpPqAZseazmvgsMGkd+519g34Yfp/5+XkAwP79+/t63q3g1TXQ9AHJ77J95Ca09fedj2LOtXkf+czlZhSeP78iLocTKTwhhBBFoBeeEEKIIpBJs0d4s2Sa6ijnMM/tkzO3kDqTY26OM26bDlVIj58zuw7CBJOaNBcXFwEMt0mT10eBKdtLCKGRXgxoDthO7wm2af5WPtVYLrUY9+G2HJ6QSwDv8S4Mpj1jHXk/DlNKMyGFJ4QQohCk8HpMTnH5Xmed0kpVFrelA52DVOtCmHMBLz61WC7R9KDgFC/8HgsLCwDWJzTWjMwiBwOe2J7rhvkAzfum3TbpcYFWC0zdfZILRPPnU9DKcCOFJ4QQogik8HpMbpog2vH9xJXez5BTaX6Atvf35RJC+zr4FGNkkL3QiYkJzMzMNBQde+snT55sbCOFJ3LQOsD7yPvrgNaptrw1hes5X7dXZ+l5gfzwFFpe6lSnfHfDiRSeEEKIIpDCGwB1U/1Q7bRLmeQjyfyA9NwA6DoVuJ1pvCYmJjA7O9v4zuwBp8mk9+7d29hWCDI5OYndu3c3/L5pOeE9xDJaC+oiMdP/fZq4bpIKeEuMGG70ZBFCCFEEUngDIO1VAq32/Xb2fk4K6yPH2Av1kZhAq8LrdExfP6Efht/n+PHjAJqTYQJNvwjHWQlBJicnG23Hj8cDWiOeqei88ktVoR8z6yMux3Ui3ZKRwhNCCFEEUnhDTqqAUnbt2gWg2RvNKT0yLImOJyYmWnraaY+bPhopvCY+OtcnBveRhkBrVPCoE0LA6dOnWyIhU1+v99lxnaowPRbhtePYUPryeI3TCGIxHkjhCSGEKAIpvBGFvU8qvXRMnfdn1PnyBomZYWpqqqXnnfovOWXQwYMHB1/BISCX45T4rCAlRQWurq5iYWEBe/bsAdA6xi4to3WA7Yv3R258LP+nFYVtk/cWFaWypowPUnhCCCGKQC88IYQQRSCT5ojip6xJ170JhmYwPzxikJgZpqenG3XjMjXN0URF0+ZZZ5014FpuLzmTszdd1gUnjbPZLYSA5eXllsCddNjA7t27AbSaMrnMpeDjNZubmwPQNG0yiIXr43JtfdKKuiTz6Wd8rvjgn1FFCk8IIUQRSOGNKD4MO8WnFGs3ZGGQMIE00OxFp/WnEi018W4uSbGnxMHQIQSsrKy0BGHl2jUVCdsS21sugTrbGdULlR6DVhgAs52WkV7C7+utLLmE2myDfM7kJqkeRaTwhBBCFIEU3ojBHitpl2g5F4q93fjpW1IfFXvlQqSEENa1YbbrtO37+8CnCaNSSdsblRv9fFR6TGK+uLgIoJkQYZjuo81Qd3+lqs2raF6bUVd2RApPCCFEEahLPSL4qEyfWirHMPZIfaRd2jP3vkf6HPxEuaIszAxm1vD70reWpqCrux98mjoqFgAtkxFT4bHcR3z66YlGDZ+aLTdt2LgouTqk8IQQQhSBFN6I4XtguYi+3Bi3YcFPyJl+H35GZSeFJ1KovLhM24WPSGbb8YmmUz8W1R8jXxmlSSXpx+eNusIjvOe81agEpPCEEEIUgRTeEJCzm1O5+XFFPhotNz6Gvdxhnh6m3bRG/GyY6y8GRwihMRYPaCquVK1RldHvRsVH9cby3JRCPhsL9/FRmtweGJ+xeaUhhSeEEKII9MITQghRBDJpDgCaUWiq8/PTtQsu8aHE3oTJZZpyatRNgSU600V71tbWGm3cm/mBZgAKTZu5tFnA+nvDz47ObX0ias7DR1MqABw9ehRAuWnwRhUpPCGEEEUghddjvJpL//fBKVR27QZ7+n39Pn6Q9ihTNzBWlA1Ti/m2n943VGO8D5gAmqqNy3ap+Nj+qBY5PVXuHuNxTpw4se58arPDjRSeEEKIIpDC6zE51eYHv9b54XKTobY7LjD608X4ZNhC1MH7hm0+lyaMSotDCbitH3IAtKo9+gTp02MS6Rx+mJBXfGI4kcITQghRBFJ4PSbnw/O9QG/n91GbKT6S009kOYwJoruhnf+ynb9FlItXekAzOnN+fh5AU6Wx3KcaA1qjgana/OSn9OWl2/t71rdjKb3hRE8UIYQQRSCF1yN8bzGnXKjSchNYdgp7qooGE6WTpvdiZKX35XHsHNOEMZozZSN/OZNIp/5mP7my98N7ZSmGAyk8IYQQRSCFt0V875CqrV1CaMLeoF/m9h8Xn50QvSK9X6ioOGUQ16nw6FNL92GUp/ete9VG315qxaFfz2/rM7w89NBDjX10724/UnhCCCGKQC88IYQQRSCT5hbZikmT67n56/yccDKHCLGe9H7h/cGhClwyiIWmzdz8i3XDhRikkruXGSRz4MCBdXXxrof0mMeOHVv3mRg8UnhCCCGKQApvi7D354clpD27jdSaH66Q/j/qU/0IMQio3PwwAAavMPAkvfd471LJeeuMV37pPe2nFmIaMr9tTs1J6W0fUnhCCCGKQAqvR/jeWqr46hRdTtkRKTshOscnZvfJorlM/XF+sLj32fGYfuLZdB/e2xwOwUHqVJztJmbmJLJKIjE4pPCEEEIUgXWjJMzsQQB39K86Ygy4OIRwji9U2xEdoLYjNku27Xi6euEJIYQQo4pMmkIIIYpALzwhhBBFoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKAK98IQQQhSBXnhCCCGK4P8DudM0CwfANWAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuYZVdZ5t+vbt1d1d3pWzoJaQlJuERE0chNUYOKwOOoCCjwjIxkQI3K6Og4w6iDAj54mUFEYESjKDGKclERheEiYIxRUBGQmxBCEnJPpzvd1d1V3V3VVWv+WPs9Z9V31j51TtU5p8456/09Tz279jr7ss4+a++93u/71rcshAAhhBBi3JnY6goIIYQQg0AvPCGEEEWgF54QQogi0AtPCCFEEeiFJ4QQogj0whNCCFEEHb/wzOx7zexGMztsZqfN7Mtm9pdm9ox+VlBsHWZ2nZkFM7vLzFraipm9vPo8mNlUUn67mV23gfM9rDrW1UnZK5JzBDM7V7W93zezizf4vX7KzJ69wX1vMLObOtx2LO8ZM3uK+01Om9nnzOwXzWyH29bM7AfM7ENmdtTMlqv29FYz+9aa4/9Nddz/2uN6P8zVu+7vhh6d74rqeM/v0fEeV90Pu1359uo8P9uL82wWM3t29fveUtXrfV3s+13VPXa/mZ01szvN7E/N7FG9qNvU+psAZvaTAF4H4A8AvBrAAoDLAfwHAN8GoOMvJEaORQAXAfhWAB9yn/0ggJMAdrnyZwE4sYFz3QvgGwB8KfPZNwFYATAN4NEAXgng683syhDCapfn+SkANwH4iw3UsSMKuWd+EsC/AJgF8HQALwfwcMR2ATObBPBWxPbwhwDeAOBBAF8B4PsBfMjM9oYQ5nlAMzuEeH1QHed1Pawv21fKRwBcB+DapGwjbTfH7dX5vtij4z0O8Rq/CWvreLY6zx09Os9meQ6ArwbwD4htoxv2A/gnAK8HcBTAwwD8PICPmtlXhRDu2VTNQgjr/iFeyHfWfDbRyTF69Qdg2yDPV/If4oPgLgAfBHCd++ybAKxW2wQAU32qwytyxwfwQ1X5V27gmLcD+OMN1ucGADd1sN3Y3jMAnlJd+6e68jdX5fuq9ZdV68+pOc7TAMy6sp+r9nlPtXxMn69NAPCqrbqWXdb1R6v6HtqqOnRYz4nk/48BeN8mj/fY6nu/ZLN169SkuQ/AfbkPQtK7NrOrKwn7LZXp5lRlxvitjKnjlWb2cTM7YWZHzOzDZvYktw1NJ882s98zswcA3F999kgze2dlLjpjZneY2Tucae18M/sdM7u7ksefN7Mf6eQLV/u+sZLUlNZ/ZGbbkm2eYWYfqUw689V3fpQ7zg1mdlO17SerbT9hZk80sykz+xUzu9fMHrRoQpxL9qUJ5sfN7Deq77poZu82s4d18j16xPUAnmNmaW/tBwH8PeLLYw3mTJpJu3iSmb2l+s3vMbPXm9n2ZLsWk2Yb2MOdTvZ/vJn9WWUyO21mX6iu745km9sBXALgBxITVlrXx1bt6mhyjJ/LfMenVu130cw+Y2bPcpsUd88gqj0AeLiZzQD4GQDvCSH8ec11+EAIYdEVvxDAZxFVONe3BDP7qJl9sLqW/2ZmZwG8qPrsp6vPj5nZcTP7BzN7mtu/xaRpTVPf483sH6v2c7OZvWiduvwogN+uVu9M2u6FljFpmtmvWTT/X1F9h8XqvnxB9fmLqvOeqj6/xJ3PzOwlZvbpqq0cNrNrzey89a5b6N7ish5Hq+W5pH6PNrO/MrMHkrb8tvUO1JFJE8A/A3ihmd0K4F0hhJvX2f6PAbwdwBsBPAHALwKYA3B1ss3FAF6LqCDmALwAwI1m9vUhhE+7470BwHsB/CcAfEC+B8AxAD8G4Eh1vO9E5Ze0aOe+CcAORJVwG6LZ5bfNbFsI4Q11lTezvQD+EfGh9SoAnwJwEMAzAcwAOGvRD/MeAB8G8DwAOwH8EoCbzOxrQwh3J4d8OKJZ65cBnALwfwD8VfU3VV2Xr6y2OQzgpa5KPwfgkwD+c1WPXwHwAYsSf7nue/SQP0f8Lb8XwJ9UL6nvB/DfEc1TnfJHAP4UwLMRTTCvQPwNX97BvpNmBjRNmj+P+GD8TLLNQxGv03WIptavQmx7lwHgQ+dZAP4fgH+rzg8ADwCAmT0BUcHdAuCnEdvmIwB8javL5Yimtl9FbHs/A+AdZnZFCOGWapui7pmKS6vlcUTz2x7ENt4RZvZEAI8C8LMhhC+a2UcQOyY/G0JY6fQ4PeYxiPflLyGq9geq8ksQzaBfRnwmPAvA+8zs20MIf7vOMfcjdiJfUx3zRwD8vpn9ewjhIzX7/AXi9X0pgO9J6nEUwGTNPgbgHQB+B/GZ85MArjezrwLwjQD+B+Jv/TrEe/Nbkn1fC+DHq+WHEO/zXwbwaDO7qg8vtbUVj+bwScTv/OuIbf4d1WeG2LbvAnAN4jU4hOguaE+HkvKRiA/9UP0dQXxwPc1td3X1+e+48v+F6H95ZM3xJxEf/F8A8Lqk/CnV8d7ptj9QlX9Pmzr/AoAzAB7hyn+vqn+tCQ6xca8A+Lo223wM0TY/lZRdCmAZwG8kZTdUZZclZd9T1f+D7ph/AeC2ZP1h1Xafw1ozwZOr8hdvVuKv87tfB+Cu6v/rUZkmADwX0be3GxmTI6Lquy7TLl7pjv9uADdnvu/VSRmP7//+HcDlbepuVZt6AaLpdb+rX4tJE8CNAO6EM7O5bfh7PiIpO1i1l58v4Z5JzvG0qg67AXwfYmfuE9U2z6u2eXoX7e2N1Xe+uFq/pjrGM/rYxmtNmgA+WtWnrdkcscMwVbWftyXlV1THf35S9taq7BuSslkA8wBev855siZNxA5NQOwosOzXqrLnunYaEBX/XFL+0qr8gqTtrgJ4qTvPt3f7e2CDJk3Ejmx6r6f32yG2v26P25FJM8Te6dcBuArxLf9JxB7N+83sZZld3u7W31o1iiewoDIJ/a2ZHUWUqsvVhc5F47zTrR8FcCuAXzOzHzazR2T2eQai8/M2i6bDqcp0837EHtaj23zlpwH4lxDCJ3IfWjQ7XonYuBsyO4RwG6Kj9iq3y80hhFuT9c9Xy/e77T4P4FDVg0n5s5D0qEII/4DYu/EO+LZUZoqp5K+uZ5jjegBPNbMLEc2Z7wohdOvcf49b/zSiKuuEJwF4PIAnIr5wFxBV7gXcwMx2m9n/NrMvITrylxF7roao1GqxaK59MoC3hFYzm+eLIYRGIEII4TCiMn9oUlbCPfP+qg7ziL3vv0W0AnSNRVfB8wF8ODStI29D/B3bmjUz7bpTy1UnfCGE8O+Zcz7RzN5rZocRX4rLAL4Z+d/CcywkSq5qb7ei83uhG96bnOcwosK/KYSwkGzD5xGtNU9HvGfe4q7pjYi/R6oE+8XzEJ9vLwCwBOBvLAY0AdFVcBeAXzezF5vZ5Z0etONhCSGElRDCjSGEl4UQnopoJvo0gJdXJsCU+2vWLwYAM7sS0ax0CsCL0XyY/Rua5peUe11dAoDvQOw9/CqAm83sVjP7sWSzg4g/zLL7e0f1+f42X3c/4gWtYy9ig7g389l9iKbQlGNufalN+RRaTRT+erKs27D8F2LttchFQ9bxYcTv+9OIN8T1XZ4biBF6KWcBbMttmOFfQwgfCyH8cwjhHYjmi0sB/Ldkmzcj9oJfj9g+Hg/gJdVnuXaVshfxfmj3uxP/PYD4Xdaco4B75iVVHR4DYGcI4btDCF+uPruzWl6CzvhuxN/gnWa2x8z2VOXvB/BMc6H4jqsyde4VLfe4mV2GGMg1i2j2+wbE6/BhrN/OgA7bTw9YCSGcdGVLqH8e8fwHq+VdWHtNlxDv13bPzp4QQvhsCOGjIYS3ICrLA4guFFQi49sQLSivBnCLRb/oi9c77oZ7QiGEe8zsTYj230cg+izIBYj+lXQdANhzew5iD/XZIfFBVQ+B47nTZc5/K4AfrNTQYwH8FwBvNLPbQwjvRezRHgZQN5bnC22+Hv0bdRyr6nRh5rMLkW/Qm+GCmrJPdnmcv0a8McnZTncMIaya2VsQ7f6HAXygy3P3lBDC/WZ2BJV/rfIrPhPAK0IIjVB2M/vqDg95DNGMs6GxfZ0whvfMzSGEj9Vs+7GqXt8N4Hdrtkmhivut6s/zXMRw/Bz/irXtupe0XEfEztZOxOjTIyw0s519qsOgYZDIUxAtKZ4HMmV9I4RwxGKw2cOTsi8CeIHF8cFfixjk9CYzuzW08aF2pPDM7KKaj66olj4a7blu/fmID5N/qtZnEc0AjcZkZt+GDUj6EPkkmj39x1TL91X1u6NSBv7P93xSPgDgCWb22JpzLiDeZN+fmgUtRjp9I6Kfp5d8nyUDv83syYh27DoHd5YQwlF3DXygw3r8AeJL81Vh64IIADTa5AE0b75tiMrY9+6vzux+FtFZ36AyK92EeBPtyOyzkfrlGNd7xp9jCTEo47vM7Dm5bczsO8xs1swOIppT34U43tP/3Yc2Zs0Qwklf107ruUEYrZxGDT4GMVCnn7CDuun2uQ4fQNNXmGsHX17vAL3EYoKJhyNjkQohrIYQPo5K/aHZlrN0qvA+Y2YfRDSp3IbopP5ORPPR20MIfsDjd5rZq1G9OBCj8K5P/B7vQ3wjX2dmb0b0Q/wCmr3ZtpjZ1yD2kt+GGFE3ifhgO4doVgBidNHzAPy9mb0WsXc6h3hDf3MI4ZltTvFaAP8RwAfN7FWIZqgDiAriR6sb/xcQfVLvNrM3Ivb4Xonoz3hNJ9+jC3YB+EszuxbA+YgmqS8iMSua2e8DeGEIoZf+izVUfqkN+Wh6wBPNbAWxk3YJotJcQYxAQwhh3sw+CuBnzOxeRJX+IuQV2+cAfLOZfRfiw/RICOF2xJvm7wB8xMxeg2jSuQzA14YQfqLL+pZ2z+T4VUQl+TaLQz/+GtH6cQhRsT4b0Yz5A4jPoteGEP4uU/c/BPBSM7vM+cK3ig8gRkr/sZm9DvH7vBL9H/j9uWr5E2b2J4i/XbdWnnUJIXzOzH4TwO9WL/K/R3zZPhQxvuENIYR/rNu/MvleWa3uRYyw/r5q/aMhhLuq7X4EMVDpySGEf6rK3o0YIf8ZxEjrKxA7ZgsAfrPa5gmI1//tiC/BacRxuUtYT2x0EtmCeJP+FWII7pnq5J9AjO6ZSba7GrFn8C2IvbVTiA38twDscMf8CcQHwWnE8TtPrSp7Q7LNU5Af4HoQMXPDzYjRgg8iPqie7rbbi3gT31ZdjMOIP95PdfCdDyKaYu6t9r2zOue2ZJtnIKqs04gvuncBeJQ7zg1wA5XRjEb8IVf+CiQRj8l2Pw7gNxDVzCLii/ZSt+91qFw1vfpDEqXZZps1da7Kbkc+SvPhuX0z1+XqzPH5twrgHsSH5xMy1/W9iDfKYQD/F9H8FAA8JdnuiqodLFafpXX9uurYx6vf9fMA/me737PmO4/tPVN3jpr2YYiBBx9GNBsvI3Yk/hTxJQrEh/YtAKzmGI+szveKXrbv6tjrRWl+sOazF1TX8gxih/g5iIFGn3ftLBeleUvNudaNZkQMgLoHTbV/IeqjNM9l9r8PwJtc2TOq/b/Jlb+oameLiPfUZxH94xetU0dGk+b+np/Z7klJ2csQ75Pj1Xk/j/hS/Ipkm4sRg9G+WG1zFDFg6tvXu35WHaAnWBww/GbEENJb1tlcrIPFweW3AfjhEEKd/0KMMLpnhBgcmi1BCCFEEeiFJ4QQogh6atIUQgghhhUpPCGEEEWgF54QQogi0AtPCCFEEXQ1SHl2djbs2bNn/Q3bwLzIaX5kX2Yud/JG/Izch8fq5BjttvGfyfeZvwbz8/NYXFz0ya970nbEeHP8+HG1HbEh6tqOp6sX3p49e3DNNddsvFYJk5PN/MhTU7EaMzMzAICJiYk126ysxCxWq6vrT8FU9yLKlbOMSx7fL3PblMrZs830m2fOnFnz2dTUFK6/Pp9TupdtR4wn1157bbZcbUesR13b8cikKYQQogj6lndxPajagKaiW16OeX+9siNUV97kmX5GOjFletVWp/TWO05JpL+JrpMQYpSQwhNCCFEEW6bwUryS8wEnOUW3Hu2Uhld0dcpOaqWVVM3x/3PnzjWWumaDhdYQWknS//19I0uGKB0pPCGEEEWgF54QQogiGAqTpg9G4dKX54YG0KTjTTE+iCUdBlEXrOI/F01y14pBRvxseXl56IdtpKa/9Rim78J6T09PA2gO4dm+fTsAYNu2bY1tOcyH+3Cd8DekKyH3m9JMvbS0BKA5HGVhYaEn30eIrUAKTwghRBEMhcIj7HH6IJZO9unVdiJPbvA//2fvfyuDVrzSoaqhIvKqB1g/o0/uO7OMSogKiEsqo81ch1Stsf4s43LHjh0AgJ07dwIAZmdnG/tQ/fklqfueQPN7MamAX1LhHT9+vLHP/Px8N1+vZ6TnPe+887akDmK0kMITQghRBEOl8MTwkvPhsYzqJoQwEIWXqpm5uTkATcXDJZUQlR+VEpfAWr9uDqo1qh6gqXROnz69Zrm4uLjmc14Tvz/Qam1gPXyd0+/K78nl7t271yyp9IDmNaCy43Gpbnn+dDgJoVr334/Kjp/zvABwzz33AACOHj2KQXLkyJHG/1J4ohOk8IQQQhSBFJ7oCB/Zl/4/qIH6VDFpb55lVEVceh9XTj1RAfkoRq9c04TZVHInTpxYs6RKo18w5yv0ys5HXrLOaR1ZfyoqfnfOHsByKr/0eHU+PCo6qtFcNGpdhDTZtWtX4//zzz8fQPPaUBX2C+87FqJTpPCEEEIUgRSe6AiqoNTfk1N9/YCKx6u5tF51daIKoALzUxql+/jxn/yuaTQnj0MVxXUfBZqb79GnsiPcxy/T4/sUYl41pj5DX8bvw3JeA16bdF+WUa2xrvRD+ujUtC5Un/1WeIwQTesgRCdI4QkhhCgCKTzREX5cG9BUAVQfS0tLffHj8ZgnT55cswSa6oL18wrMTy6c+rO834/7eEWWqjWWUQnVRW2mSpLb1mUD4vFZt1RF+3F+XqHmMp94Veb35e/GfVNF5rOv1Pnw2k2O3MnUXJuBKveiiy7qy/HF+CKFJ4QQogj0whNCCFEEMmmKrkhNmvyfJrjV1dUNzV24HjQJ9jsMnaZNn3Q5N1id29BceOrUqTXr3cB9HnzwwTXnAFoHtHMYBM/vB4qn23JfP/B91OGQDCG6RQpPCCFEEUjhiY7wSZOBZnACFcnq6upIT62UG7KwFaTDPJggmdedgS3cJg3gEUK0RwpPCCFEEUjhiY6gjygNR68b2DxM+MHe3UwAO0zQH8flZuDvNarX4uMf/zgA4Morr9zimoh+0a+hLaPZ4oUQQogukcITHZFTbz7p8MzMTF+iNEluILiH9fRJnPtZr1FjVJUd+dSnPgVACk90z2i3fCGEEKJDpPBER1AVpDZ1r6J27NjRU/XA8X30Feam3uEYOUYxch9GM466mhFNONHs/v37Aay1Oqw3ma8YLfqWlq4vRxVCCCGGDCk80RFUVzlfWL+i/jgujj35XC+emUbShMvA2uwoYjxghCrbA7PbAGsnBRaiDik8IYQQRSCFJzqCiinNZ0nFRf/ZyspKT2zvVIz03fH4rEN6Dv7vJ4kV48Pq6ipOnjzZyCPKaYHSMYlSeKITpPCEEEIUgV54QgghikAmTdERnCqHS6AZ+k/T49TUVE8GePMYNGHSxEnT5tzcXGNbbrNt27ZNn1cMJysrK5ifn29Mn0Sz9bAk+xZby8zMTMcBc1J4QgghikAKD83gi2FMfjws8Bql4f5UexwSMDEx0ZOgFSo8rypzE7KK8Wd1dRULCws4cuQIAODYsWMAgEOHDm1ltcSQ0I1VSQpPCCFEEUjhQcpuo1DZpQqvl+zYsaOnxxOjyblz53Ds2LGGstu7dy+Apu9YlAmfN9PT0x2rPCk8IYQQRSCFJ7oiTe/lp95RAl/RD5aWlnD77bdjYWEBQNOHe++99za2ufTSSwFoGqgSkcITQgghHFJ4oitSPx2jJjkGbnJyUj1s0XPOnj2L2267rdHe6HNP08jRn6fxmOWQRm1L4QkhhBAJUnhi07Cn1a9JG4VYXV1t8RHv2rVri2ojhoGNRIVL4QkhhCgCvfCEEEIUgUyaYsPQhMnl8vKyzJqiL0xMTLQEJhw9erTx/2WXXTboKokths+abubhlMITQghRBMUovNThzelmpEa6h9cOaL1+p0+fXvO5EL1gYmIC27dvb9zDVHqpwhPlsri42PFzRwpPCCFEEYy9wmNvMA1hVbLojcNE0SnsXUnhiX4xNTXVovDStsh7WuntyuHs2bON/6XwhBBCiIRiFN7y8vIW12Q8SHvV7FWxrJsUP0J0ipmtaVe01pw+fbpRxt7+7OzsYCsnRgopPCGEEEUw9gpPPqXeQBWXRmZSNbNMCk/0gxACVldXW9pW2haPHz8OQApPtEcKTwghRBHohSe6IoTQ+Dt37hzOnTuHiYkJTExMSOGJvrC6uorFxcXG+srKClZWVjAzM9P4O378eEPlCVGHXnhCCCGKQC88IYQQRTD2QSuiN3BgbxoERPNlOthXJs3umZ6eBtC8tkqMsJYQAs6cOYOZmRkAzfkXT5w40diG11AD0PsDr+cwpmX0w1baIYUnhBCiCKTwREewR5cqPPa0l5aWtqROowp7ywyh92okHdx/6tSpwVVsSDEzTE9P48yZMwCA7du3A1irhO+77z4AwJ49ewAA559//oBrOd4Ms9Whm5nPpfCEEEIUgRSe6IicwvNl586dGyrb/rBA/xIVMX1R27ZtW1OeS4pMFhYWAAyX72RQUOHxujDhQdqzv//++wEABw4cAADs2rULQFMNCgFI4QkhhCgEKTzREZ0oPE0P1ISqDmgqOSo4XjeuU+FRsaT7sozLNDKxFKampnDgwIGGimMbS33H9HVyGyq8hzzkIQC68/OI0WJlZaVjy4dagRBCiCKQwhNt8X6TtCfFyC32tJeWlor0MeVIla73OfmozHZJkan2qBK5XtJ0V9PT0zh06BCOHDkCoHl9Ul8npwei0rvjjjsANK/5vn37AMinVzpSeEIIIYpACk+0hb3oXBYQ/s/lmTNn5MOryF0nQpXBa8vxZbx2uWvof4eSmJmZwUUXXYTPfvazAPKRqt6fzOWxY8cANH+Dubm5xj78n+pZjD9SeEIIIYpACk9kScfWAU0/XapWvOqQD68zqOjou6PCoF8u9c95FV0i09PTeMhDHtIYv0h/XRp56XM98nqxPZZ8/UQTKTwhhBBFoBeeEEKIIpBJU2Sh2cib1HLBGDR3KrVYd5w+fXrNUuSZnJzEvn37sHv3bgDA/Pw8gLXDOWjS9EM+/LRWafscdFvlPaUgma1DCk8IIUQRSOGJNbDXm6o2IB8yz21KGgQttg4mhs4FUDGgxSs9Brb4tG5pWT9J60glz7oxpZwYHFJ4QgghikBdDLEG33v2wxNywxKIEvSKfnLo0CEAwIMPPghgbVvkYH6v6Hzy7UGoupTU+sFzc1jKzp07B1oXIYUnhBCiEKTwxBp8NBt70Z0ovBLTXonBcf755wNoqrm0Ldb5w/wUTGkUJ/1+/cAPfAeaKlO+u61DCk8IIUQRqKshADR9DVRtfgoWr/TSbTT2TgyCPXv2AAB27NgBoOkLawetDl7ppWX9gOdN/dqclFZsHVJ4QgghikAKTwBoHXfnFV0usbH/TD480U+YoeSCCy4AANx9992Nz3xy6Ny4u0HCiXrFcCGFJ4QQogj0whNCCFEEMmkKAE3zpDdp0lxJkycT4Kb/cx8NPBeDgMMT7r///pbPfBv0ps1BDzwXw4WeUEIIIYpACq9gckMM6hQd19OpbPwQhqmpKfWgRd+hwktTc3HKIOKVXW6YgCgP/fpCCCGKQAqvYKjagGYPmAqPyo6KjuvtBvsqZZIYBEwttm/fvkYZ22mdhWHcLQ+576eEEK1I4QkhhCgCdckLxE/9k5ZxSSW3uLi4ZpmqQk8/k/EK4eGEsEBzyiBaKKh4OACc1odxVT053yTvZSbMrlsfdSYmJjpW8FJ4QgghikAKr0Doj0vThFHR0RdCRcf1hYUFAGtVoU8l1k1PS4jNwhRjAHD48GEAzWhNqhi2R66n0wONEzm1Rl8nr4G34nj1m5JGYw8709PTUnhCCCFEihRegdAPl0Zc1ik6bpOLzqTCk+9ObDUHDx4E0Gy3VC1+WVJSZ1pw+N257id3Ti09TNA9Nze3Zl/uc+LEiX5Xu2uk8IQQQgiHFF5BeLV26tSpxmf8nz1kKj6WUxWmPSk/qWY3PS0hegn9effeey+A5iSxtD6wXZaUacX77DqBVhtmUaLPk9eNk9iePHmyZ/XcKP637YRyfn0hhBBFoxeeEEKIIpBJsyBonuSwBJot0/9pqvDb0tSRmg9oUqBJc9u2bTJpii3loQ99KIBmO96I2atkGMDiTb+8ju0STwwaBthMTk4qaEUIIYRIkcIrAAaicMneb6rw+BmVHbfxg8vTQar8TApPDAt79uwB0FQiHHytxObdURe8kk4APSx0E4gkhSeEEKII1O0ZY9gbo1rjoHI/BCEt45AF9pBp0+eA3TQ1EwejlhTqLYYbtkUqO7ZXJUfYHKk1aFhIB8x3mhRcTyohhBBFIIU3xrBXRqXnozPTwaN+UDoVno/STH0h/J+fjct0I2L04cBzttFxTRrdb4b5nk6fTVJ4QgghRIIU3hjilZ1Xb/w8TQjtlRyjs7hk9GVqN2cvmpw5c6YlqlOIrYBjtMT4QlW3tLTU8XNHCk8IIUQRSOGNCWkPZz2FR5WWU3j03VHZsRfF9RQ/tmlpaaljW7oQQgwaKTwhhBBFoBeeEEKIIpBJc0xIhxjQLOmXNHvSpJmGHNO8yTIGqdBEyX1Tk6U3aa6srMikKYQYWqTwhBBCFIEU3oiTm+qHZVRyDDjhem6gOMu4r5/pWIPLhRCjjhSeEEKIIpDCG1GouJgAOp22w6cF8768HPS9eR8eyU37Q8Uov50QYhSQwhNCCFEEUngjik8Tlqb88oPHfdqdunKg6bPz0ZmcHiiNzPS+QTOT2hNCDC1SeEIIIYpACm/E8FGZOb8cVZlXcO3W1/PZUfn1nj1uAAAUZklEQVSlk73S38c6+HF5QggxTEjhCSGEKAJ1yUcEqjGqKR9N2W56jE78ajxOquCA1gk002P5xNLKtCKEGGak8IQQQhSBXnhCCCGKQCbNEYHDEPyQAm+CTMu4pDnSmy1ZnvuMpslOBqDLjCmE6Cfps2oz6Q2l8IQQQhSBFN6Q4xNB56bp8XhFx3UGoFDFpWqt7ngs5zId4L5t27Y1x1HQihCiH6Sqzk9d1g1SeEIIIYpACm9IqRtmkPPZ1ZX7KX58erB0oLg/H/f1g9jpQ8wxOTmZ9fEJIUSvkMITQggh1sG6eUua2QMAvty/6ogx4JIQwvm+UG1HdIDajtgo2bbj6eqFJ4QQQowqMmkKIYQoAr3whBBCFIFeeEIIIYpALzwhhBBF0NU4vNnZ2bBnz56WcmYDAYD5+fk1n/ksH349LfM5IDWma/Q4fvw4FhcXW364ycnJMD093ciYwCWztQDA7t27ue0gqiqGjLq2U/fcEe3xAYk+a1Juu7pt1jt2N+Se6z6Xb7fvgLq24+nqhbdnzx5cc801LeU33XRT4/8bb7wRADAzMwMA2Lt3LwDg4MGDjWOkS6D5oONyx44dAIDt27d3Uz0xBFx77bXZ8qmpKVx88cU4evQogGYy7Mc97nGNba666ioAzQHyoizq2k7dc0d0B5NGMD0g59ZMk0n45PTsmPIF5xNRpAkrfPIKv+5fZkCzc8t7fm5uDkCzI8x3wXrUtR2PTJpCCCGKoCepxU6cONH4n70GKjw/FY1PbJwrkylz/AghYGlpqSUJNnt0gJSdEP2EbiSqtpzroM7c6dWaV37pNuuZRdslrc8dt5dI4QkhhCiCnii8xcXFljI/gWid0ks/89uK8SGEgOXl5RYfgfy0QgwWPnvrJnkGWp/BdYornbbH+/3qzpse29fBJ4ZuN9H1RtCbRQghRBHohSeEEKIINmXSpHTNzZHmTZjtxuH5cFWZNMcPmjS9Y1u/tRCDJTcfpofPdP+M5/3LsdcMQku38dtyG+6TurPq6tCv54KeNkIIIYpgUwqPQxBy8A3tlV0uaMU7MzVl0fgRQsC5c+caPUYOQdi5c+dWVksIkcGrwDQjEgDs2rULwFrrHpVc3eB1vi/SzFzcxz/z+2Xtk8ITQghRBJtSeHz7pqHlDCtlz4A9+XY50nJpasT4sbKy0tKTk8ITYnRJfXDtfIIp6TC2Y8eOAWj1GfbrXSCFJ4QQogh6MvA8tbMypZi3AbOcii+XWiwXwSnGC7YVtgMNPBeiLGZnZ1vKqPT6beWTwhNCCFEEm5JSVG1cAs1oHvbc/Ta5KE329n0kkBgvzKyh3um709x3QpSLV3sLCwsA+jeBgBSeEEKIItiUwmPEHSfzBJrjMzjtC9fZo+fEr5zsFeh8kj8x2phZo+dGVZ9mahBCjB+MvPRTgwGtY7D9FEa9RgpPCCFEEeiFJ4QQogg2ZdJ84IEHAAAnT55slNGUSZMllyz3M6GLMjAzTE5ONkwWbBcKVBJivPFz3eXcGDRz+mFt7ebs2wh66wghhCiCTSm8U6dOAVjrYGSQCpccnuBTi6WOyzSZaG4bLn26MjE6mBlmZmYav+GBAwcA5AehCiHGBz7Pac3JWXX8dEO5FJQ9qUtPjyaEEEIMKZtSeH6Qefo/e/J+Ilg/gSDQtNNyHw5T4D6aLmj0MTNs27at8ftffvnlW1wjIcSw4NWfkkcLIYQQm2BTCs/76YBWPxttsBycThttbmAh3+78zKch61e6GdF/GKVJtX7o0KEtrpEQYljpVxS/FJ4QQogi2JTC45TtaaQdlR3HU1CV8Y3tJ/oDmqrQR2vSl0cFqejM0YWJoy+88EIAShotNk9q8ZGfX3SCFJ4QQogi2JTCowJLE0FTwfmxF8RHZAJN5cZePxNMKwvH+MAoTY6/E2KzSNWJbpHCE0IIUQSbUnh33HEHgLXT+9CvR9XGpR9XkUZ2cn/m2xTjx+TkJHbt2qXfWPQFWpT4XGE0eCfTT9GS5GMIxPghhSeEEKII9MITQghRBD1JLZaaqThVEM2UNGlyGAKDVdKAFJm5xp+JiQnMzc01ApKE2CzpsAQ/hInPGW/S5HApoBlgJ1NmOUjhCSGEKIJNKTwmAL7zzjsbZVRyDBlmD4u9KZIOPPapxMT4wemBzjvvvK2uihgT0mEJTF1I1Vc3ZIFBdWI04O+aBjl6cmkq65DCE0IIUQSbUnhkcXGx5f+dO3cCaO1xcT19K584cQJA09/HVGX9SiAqBs/ExAS2b9+uCV9FX+DzhP64bnr9Ynjh75j6YjeTYlJvFCGEEEXQE4WX2ldpc01VH9CMmqKfLmdLp6Lj21ypxcaHqakp7N+/f6urIcacTgaai9GBlsE0ktYrvG4sgVJ4QgghiqAnCm9hYaHxvx93x5RiVHZUeukYGv+ZpgEaP6anp3HRRRdtdTWEECOAV+rpOv/3k4x3ghSeEEKIIuh5lCbhW5cKj3ZWPzFs+hmV3qCiM33kqOgvGmcphOgEP9lAuu4/6wYpPCGEEEWgF54QQogi6IlJc9++fY3/v/SlL7WUAU3zIc1aaWAKTZjpLOj9hEMneL5BnVcIIUQ9fE/wncDgxzQ15WZcI1J4QgghiqAn0iY35QtDR32Qig9QAVoHpfeDNJks/5eyE0KI4cEn/c4FqNQlBu8EKTwhhBBF0BOJk/rjqOj8NEF8U/thCsBgwtXTXoFSlolxIx1as5kesBBbCd8LTCWWs8bx3bKRBCVSeEIIIYqgJwqPUwEBTfXkB4/7aJs06iaXbqzXaKohMc6k7VtT44he4y11XE+tCT5Owz/Pc4k+/HH9u4AWw/R9sZn3hN4CQgghiqAnCi994+7duxdA843Mt723t6Y9A59gWgjRHamq430kpSd6BZ/xbFs5P7GPqKxTeDlV6CPmeR4eM5eKciNI4QkhhCiCnii8U6dONf6nzZXZTHx0pu8p+P+FEJuDys73xjeTdFeMD7S+dTIOuS7Bfs6Ptt5zvBtlxuN7vyCwuenjpPCEEEIUgV54QgghiqAnJs25ubnG/3fffTeAVlMmzSxMOUaTJ9CUqBo6IETv4D2n+0qk0JSZSwLioUlx0HOH+sCrzZgxU3QnCCGEKIKeD0vYv3//ms98irEc6omuj+9pCdEpClYROdoNE/B0Moh8I9SpTD+dXK8S/esNI4QQogh6Pj/OeeedB6Dpq1tcXATQ2hOQmusOKTvRKT6Um+n+GI6+tLS0NRXrEfxeUq4bg9eN7SBVT7np24DW1JC59GHdDGHw56sr7/V7Qm8dIYQQRdBzhcdoGqYY4xs6jcoE1vbO1FMbf1ZWVjA/P9+wAIj+4Xvp3v/B3vqoph6TtWNj+MT9VHipiqpTVD6JAY+xkQHoucm4eZxOIkfbHW89pPCEEEIUQc8VHtm+ffuaJdOP5fwH6rGNP6urqzh58qQU3gDw41pz6ZlGmZwPT8+Q9aEqo7VtI+qM1gIuc1aCzaSK3Egb7SZSdDzuACGEEGId+qbwPOkksaJ3jMr4vNXVVZw+fXrgGRtKIc1E4bNS+Gs9LtMHpb5JfhfFA7Ti7zk/STfXN8KoJf6XwhNCCFEEA1N4orfUjZMZVlZXVxtjMsXG8f44qpyc76MuewV9OaPCxMQEZmZmGv5/qrhUyfK78rsN+/0wSLyyKxkpPCGEEEWgF54QQogikEmzR3hTU79CpmnK5MzyOdMNzz1MgSwhBCwvLytoZZPUhW3nBvP6tkFz36gFdphZo70DrYmFU2jipfmTKQ6HCZ/qTebXwSGFJ4QQogik8HpEXa86xad6Yk+b5T79Wg4O5PfHTHvt7NX6yXe3GjPD2bNnAQA7duzY4tqMJv635HqqgLzC5zqv/agRQsDKykpDGbF9p1YCPxTDK+FhUnq8Z7nk7zIs9+k4I4UnhBCiCKTwBsB6IeRcn52dbSmjnd+HlPtj5Xw7Pvx8GHx7x44dAyCF12vSlH2jPv1PHd5nl677dGr+fuC2qdLbKkXF4Tm01oxLIoBRQApPCCFEEUjhDZC66Lhcr9Rv65WeX+YmceSSPcdOIiP7qf7MDCdPnuzb8cV4YmaYmJhoaddpe6ZKYhl9mt66kov2pA9t0Mq4XRJn0R+k8IQQQhSBFN4AYO+zzndHUht+nZKj8qMvImf3Z4+RS/Zu/aSNubFb/cLMMD093aj/RiZ63CpyEbC8pqOWPHcUYduhOstZSrzC82qQv1eqpuosH4NWesM0XnbcGf6njRBCCNEDpPB6hFdxOf8Ce3Lcxo/dS3t6642hq1N8QDNizWc18Vlg0jr2O/sG/TD8PvPz8wCAvXv39vW8m8Gra6DpA5LfZevITWjr7zsfxZxr8z7ymcuNKDx/fkVcDidSeEIIIYpALzwhhBBFIJNmj/BmyTTVUc5hntsnZ24hdSbH3Bxn3DYdqpAeP2d2HYQJJjVpLiwsABhukyavjwJTtpYQQiO9GNAcsJ3eE2zT/K18qrFcajHuw205PCGXAN7jXRhMe8Y68n4cppRmQgpPCCFEIUjh9Zic4vK9zjqllaosbksHOgep1oUw5wJefGqxXKLpQcEpXvg9Tp06BWBtQmPNyCxyMOCJ7blumA/QvG/abZMeF2i1wNTdJ7lANH8+Ba0MN1J4QgghikAKr8fkpgmiHd9PXOn9DDmV5gdoe39fLiG0r4NPMUYG2QudmJjAzMxMQ9Gxt3769OnGNlJ4IgetA7yPvL8OaJ1qy1tTuJ7zdXt1lp4XyA9PoeWlTnXKdzecSOEJIYQoAim8AVA31Q/VTruUST6SzA9Izw2ArlOBW5nGa2JiArOzs43vzB5wmkx69+7djW2FIJOTk9i5c2fD75uWE95DLKO1oC4SM/3fp4nrJqmAt8SI4UZPFiGEEEUghTcA0l4l0Grfb2fv56SwPnKMvVAfiQm0KrxOx/T1E/ph+H1OnDgBoDkZJtD0i3CclRBkcnKy0Xb8eDygNeKZis4rv1QV+jGzPuJyXCfSLRkpPCGEEEUghTfkpAooZceOHQCavdGc0iPDkuh4YmKipaed9rjpo5HCa+Kjc31icB9pCLRGBY86IQScPXu2JRIy9fV6nx3XqQrTYxFeO44NpS+P1ziNIBbjgRSeEEKIIpDCG1HY+6TSS8fUeX9GnS9vkJgZpqamWnreqf+SUwYdOHBg8BUcAnI5TonPClJSVODKygpOnTqFXbt2AWgdY5eW0TrA9sX7Izc+lv/TisK2yXuLilJZU8YHKTwhhBBFoBeeEEKIIpBJc0TxU9ak694EQzOYHx4xSMwM09PTjbpxmZrmaKKiafO8884bcC23lpzJ2Zsu64KTxtnsFkLA0tJSS+BOOmxg586dAFpNmVzmUvDxms3NzQFomjYZxML1cbm2PmlFXZL59DM+V3zwz6gihSeEEKIIpPBGFB+GneJTirUbsjBImEAaaPai0/pTiZaaeDeXpNhT4mDoEAKWl5dbgrBy7ZqKhG2J7S2XQJ3tjOqFSo9BKwyA2UrLSC/h9/VWllxCbbZBPmdyk1SPIlJ4QgghikAKb8Rgj5W0S7ScC8Xeavz0LamPir1yIVJCCGvaMNt12vb9feDThFGppO2Nyo1+Pio9JjFfWFgA0EyIMEz30Uaou79S1eZVNK/NqCs7IoUnhBCiCNSlHhF8VKZPLZVjGHukPtIu7Zl73yN9Dn6iXFEWZgYza/h96VtLU9DV3Q8+TR0VC4CWyYip8FjuIz799ESjhk/Nlps2bFyUXB1SeEIIIYpACm/E8D2wXERfbozbsOAn5Ey/Dz+jspPCEylUXlym7cJHJLPt+ETTqR+L6o+Rr4zSpJL04/NGXeER3nPealQCUnhCCCGKQApvCMjZzanc/LgiH42WGx/DXu4wTw/TblojfjbM9ReDI4TQGIsHNBVXqtaoyuh3o+KjemN5bkohn42F+/goTW4PjM/YvNKQwhNCCFEEeuEJIYQoApk0BwDNKDTV+fnp2gWX+FBib8LkMk05NeqmwBKd6aI9q6urjTbuzfxAMwCFps1c2ixg7b3hZ0fntj4RNefhoykVAI4dOwag3DR4o4oUnhBCiCKQwusxXs2l//vgFCq7doM9/b5+Hz9Ie5SpGxgryoapxXzbT+8bqjHeB0wATdXGZbtUfGx/VIucnip3j/E4J0+eXHM+tdnhRgpPCCFEEUjh9ZicavODX+v8cLnJUNsdFxj96WJ8Mmwh6uB9wzafSxNGpcWhBNzWDzkAWtUefYL06TGJdA4/TMgrPjGcSOEJIYQoAim8HpPz4fleoLfz+6jNFB/J6SeyHMYE0d3Qzn/Zzt8iysUrPaAZnTk/Pw+gqdJY7lONAa3RwFRtfvJT+vLS7f0969uxlN5woieKEEKIIpDC6xG+t5hTLlRpuQksO4U9VUWDidJJ03sxstL78jh2jmnCGM2Zsp6/nEmkU3+zn1zZ++G9shTDgRSeEEKIIpDC2yS+d0jV1i4hNGFv0C9z+4+Lz06IXpHeL1RUnDKI61R49Kml+zDK0/vWvWqjby+14tCv57f1GV4efPDBxj66d7ceKTwhhBBFoBeeEEKIIpBJc5NsxqTJ9dz8dX5OOJlDhFhLer/w/uBQBS4ZxELTZm7+xbrhQgxSyd3LDJLZt2/fmrp410N6zOPHj6/5TAweKTwhhBBFIIW3Sdj788MS0p7demrND1dI/x/1qX6EGARUbn4YAINXGHiS3nu8d6nkvHXGK7/0nvZTCzENmd82p+ak9LYOKTwhhBBFIIXXI3xvLVV8dYoup+yIlJ0QneMTs/tk0Vym/jg/WNz77HhMP/Fsug/vbQ6H4CB1Ks52EzNzElklkRgcUnhCCCGKwLpREmb2AIAv9686Ygy4JIRwvi9U2xEdoLYjNkq27Xi6euEJIYQQo4pMmkIIIYpALzwhhBBFoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKAK98IQQQhSBXnhCCCGK4P8DB809WRZ06AcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3078,7 +754,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZddd3/vdVT1Ud6vVGlC3WpIleQoYEzvwMDjwCDgLiPFjzMoiBBMw4AcEkpC8kIQ42BhjxhfMkIAhmNiBgLMc5pjJDDFDiAM8O9gGbGFJLUvqltSSuqWWukvdXXXeH+d+7/nV5/z2qXvbsiWl9netWrfuuefsee/zm3+l6zo1NDQ0NDT8746VJ7oBDQ0NDQ0NHwm0F15DQ0NDw45Ae+E1NDQ0NOwItBdeQ0NDQ8OOQHvhNTQ0NDTsCLQXXkNDQ0PDjsCT+oVXSnlZKaWb/f2V5PdPD79/Zrj+plLKsUus81gp5U3h+2eEOvx3TynlV0spn3SJdXxhKeX/ucRnXz1rw65t7rsZbX5s1u7fLqX8k1LKweSZLX1fsD0vK6V8VeV6V0q5eZnynoyYrae7nuh2LIMw/y97otuSYTam3FfZ32c8TvX951LK+x6PsmblfVMp5fOT699dSll/vOr5UFBKeWEp5TdKKcdn+/9EKeW/llJesOCzP1FKeX8p5Wwp5Y5Syn8spdz4kWj7hwuTh+aTCGck/X1Jr8T1r5j9xsP72yX94CXW9UWSHk6u/2NJfyypSLpB0r+U9FullOd3XXf7knV8oaTPlPS6S2zjMvguSb+sfq4PS/obkl4j6RtLKX+r67pbwr21vk/hZbOy/wOu/4qkvy7pxCW0ueFDxwn143/rE92QCr5d0o+G7y+X9NWS/k9JG+H6nz9O9X2LpAOPU1mS9E2S3qp+b0X8sKSffxzr+VBwpaT3q9+b90i6VtI/k/QHpZRP7rruf008+1JJz1Z/Rr1P0tMkfaukPymlPK/runs+rC3/MOGp8sL7eUlfVkp5VTfzlC+l7JP0dyT9nPpDd46u6y55k3dd967KT3/Rdd07/KWU8i5JfynpxZJef6n1fQRwW2y3pJ8vpfywpD+U9F9KKX/NYzrR96XRdd1JSScfr/IeT5RSViWVrusuPtFtWRSllN2SLnYLRorouu4xSe/Y9sYnCLM9Ot+npZQXz/79n4vMSyll76yPi9b3geVbuTy6rrtT0p0fibq2Q9d1vybp1+K1Uspvqt+XL5U09cJ7zWwPx2f/SP0L9Kskfefj29qPDJ7UIs2An5J0k3rqz/gi9e3/Od5MkWYQ73xtKeU1M9b+9Iy9vwHPLirWMye0Ozx7TSnlx0opt8zEAHeWUn6mlHJ9bJt6zvT6ILY5hjJ+ZPbsY7PPnyql7EX9Ty+l/Eop5ZGZuOFVpZSF5rPrur+U9FpJz5P0N6f6Xkp5+qz+e2btua2U8oOz394u6dMlfWroy9tnv41EmqWU3aWU187qOT/7fO3sMPc9y8zVl5RSfqeUcnI2Du8qpXwF+zsr7ztKKd9cSrld0nlJL5i14RuT+189m78rFxnP8NzXlFL+tJSyXkq5fyYSugr3/MNSyv8opTw469c7Sin/F+7xGHx9KeV7SynHJT0m6Yowri8spfx0KeXh0ousfqiUspaU8bJw7U2llLtKKR9fSvn9WR//spTydUlfPnM2nuullA+UUl7OffWRQinlxbO+fN6sDQ9IumP228fMxuFYKeVcKeXWUsq/LaVcjjK2iDRnz3WllK8spXzXbH2fKqX8Yinl6DbtuUfSEUlfHdb9j85+2yLSLKWszX5/5Wz93VlKebSU8kullKtKKUdLKT8/m8c7Sin/NKnvWbP23z+bj/+Pa2YJPKx+/U8SFXzZza7dMns+nme7Z+N3W1j3v19K+eRLbN+HFU8VDu8OSb+nXqz5+7NrXy7pFyQ9skQ5/0o9Z/NV6sV73yfpP0n6jAWeXSm93swize+UdFbSfw33XCVpfVbPSUnXqRch/PdSysd0XbeuXpRzjaQXSLIO4DFJmh2wfzgr57WS3j1r5xdI2uP7ZvgFSW+U9P2SPk/St6mnLN+4yEBI+lVJPyDpUyX9dnZDKeXpkv5o1s9Xqedob5T02bNbvl79+K1K+trZtSmR6H+U9MXqx+4PJH2KpH8t6RmSvhT3LjJXz5D0s5K+W9KmenHtG0op+7qu+1Ftxcsk3aZeFPXo7P9flPQ1CuLv0nN/Xy3pLV3XnZroyxaUUr5b/Vz/kKR/rv5QeK2kjyulfErXdRbT3SzpDZKOqd9/nyfpraWUz+m67tdR7L9WL0b/GvVjHHVDPyXpzZL+tnrR5aslnVIvdprC5ZJ+Rv3cv0bSV0p6fSnl/V3X/bdZXz5WvUj6jyR9ifq190pJh9SP8xOFH1W/3/6eJL/cr1c/l2+RdFrSs9SP21/VYvv6WyX9rvr1cb2kfyPpTZL+1sQzL5H0m+rX8HfNrt27TT0vl/Qu9fvkBvX79k3qxYw/L+lH1O+B15VS/rTrut+RpFLKMyT9T/V7+x9LekDSl0n65VLKS7qu+43tOlh6QnhV/Xn0SvXnCFUQ26KU8tfUr5+/CJdfJekb1O/X96pfI5+k/gx78qHruiftn/pF2KlfxF+lfkOvSTqqnkL5LPWLupP0meG5N0k6Fr7fPLvn7Sj/m2bXrwvXjkl6U/ju8vl3WtJLtmn/qnrZdyfpi9C+u5L7X6Nef/HxE2W+elbeV+L6eyS9Lenzyyvl7J39/vqJvv+keoLiuon2vF3SH0zM3c2z7x83+/5q3Pcts+vPW3au8PuK+hfIj0v6U/zWSTouaR+ue24/LVz7/Nm1F243XxjrDUmvwvVPnZX1hdu0+W2SfimZu3eqF71m4/ptuP5WSbckZbwM/egkvQjr4AFJ/z5c+xn1BNv+cO2o+hfusdo4fCh/YV3vSn578ey3Ny9Qzi71+vFO0nPC9f8s6X3h+8fM7vmNynq8apt67pH0huT6d0taD9/XZuW9R9JKuP4js+vfFK7tUX/GxT3507O1ewj1/J6kdyw4tm/VcG4dl/TJlzA/eyT9D0l3SzoYrv+WpJ/5cKyJD8ffU0WkKUn/Rf3m/Dz18ud7VOFMJvCr+P6e2ecilkffoJ4re4F6Cu/X1evAPj3eVEr5BzOx1iPqX8ofnP300QvU8dmS/rhbTJf2K/j+Xi3WD6PMPqd0Qp8t6a1d1x1fotwa/sbs8z/hur9/Oq5vO1ellGeXUt5cSrlb0oXZ38uVj/Wvd113Ll7ouu7t6o0ivjZc/lpJ7+626j23w2epf3n9dClll//UU+ZnNPRdpZT/o5Ty1lLKverXx4XZ81mbf7GbnSoJOP/v0WLzf7abcXLSXNd3C559oaRf7brubLjvhHqOexKllNU4BmVBMfuC+IWkvrWZuPD9M1HiBfXcl7TYnsvGUVpuLy2Ct3VdF7lji1fnHFrXdecl3a6eSDZerJ6rfRRr623qxfJr2h7/RNInq7d5+EtJv1pKef6iDS+lFEn/XtInSHpp13Vnws9/LOkLS69++JQS1BNPRjxlXnizQf5F9WLNL5f001hAi+BBfLeIcJFFc0vXdX8y+/s19WKV2yR9r28opfwj9ZTbb6kXNX2S+sNj0TqulrSo+XvWl0XqMLyppqwol2nPdrCIg/Xdg9+NybkqpVym/mB7vqRvlvRp6omR/6CeMCJq/Xy9pL9TSrm6lHKT+gOG4tDtcHj2+QENL17/HVQ/jiqlPE09kXaVpH+kXqT7AvXEUzZ3U3OTjU/WbyIT03LtHJV0X3LfdmI7qe9f7P+rFnhmUWTj8X3qubI3Sfoc9XvuS2a/LbIfPpQzYRlw3M9PXPcaX1W/Vr5G43X17erP7231zF3XfaDruj/quu7n1Itqz6hXgSyK16k/d//+jEiMeLWk71D/Mv3vku4vpfx4WVL//ZHCU0WHZ/ykeopsRf0L5wlD13VdKeUv1HOcxpdI+u2u6/6ZL8z0YIvifgWF8IcZVnr/wcQ9j2d7fLBcq62m8tfi90Xx19UbMn1a13XzPpS6f2KNU/pJ9XqYl6k/PM6qFyMtgwdmn5+t/IXi31+sXsfxxV3XzQmJUsr+SrlPVO6uExpe4hFHFnj2a7XVTejxkA4Y2Xj8XUk/3nWddWkqpXzU41jnE4au6zZKKQ+pP/O+v3Lb/UuWuV5Kea96NdG2KKV8u3oO8f/uuu4tSXmPqX/hfcfM2Ofz1RMhe9Qb5z2p8FR74f2mZsrpruv+7IlsyExU81xtNb3fr7HRxlcmjz8maV9y/W2SvqX0vn1/+rg0NEEp5dnqqeJ3qdfB1fA2SX+7lHJ0JtLK8JjGfpAZfm/2+SXqN4jx0tnnVDsy+CVxwRdmVOUXLFNI13UPl1J+Wv1BfZl6PdGyvoi/qd6Y48au635z4r6szX9Fva7vyeTY/g5JLyml7LdYc3aYfaq28avsuu79H4H2SZqL2vYpjOcM2Z57vFHbw483fl29FOM93RJuGDWUPuDEJ6gXRW537z9Xf058U9d1b9ju/tkZ8WOllC9Qr7N/0uEp9cLreku3J4qze85MLyf1VpZfLuljJf2LcM+vS/qXpZRXqLdw+5vqWX3izyVdVUr5B5L+RL2S+z3qqbgvVe/Q/lr1+oSPUn+Ifx1k54viGaWUF6o3oLlGva7sq9VThl88oSOSegu2l0j6w1LKd6oX2V0v6cVd131Z6MvXl1L+rnrO7Ux26HVd995SypslvXrGhf2hei7tlepfMu/hM9vgD9UTFz9cSvlW9U7F3zLr16Ely/oRDXq8mjhzXyklm8sPdF33v0op3yPp35VSPlq91d+6erHxZ6k3bvhv6kXdFyX9ZCnl+9SLDr9NvZ73yaReeK36dfsbpZR/o15U+kr1Is0n0kpzC2ZSlrdJennpXQ6Oqef4PuEjUP2fS3pRKeUl6sW/93Vd98FtnrkUvEK9LvjtpZQfUb9WrlTvUnRd13UjlxKjlPJG9UYm71QvQblZvaXnlQp+dLM1+2eSXtF13ffOrn2FenXNL6m3Mn9hKPp013Xvm933a7P2vUu9Id8nqj/3ahzpE4qn1AvvCcYPhf9PqXfA/NKu694crr9G0hWS/ql6OfzvqpeZ34ay3qBet/eds/vvUG/NeLqU8qnqD5xvVq/7uVfS72iQ+S+LfzX7uzBr95+p16v8xHYv0K7rjs0W+mvVi/0uU7+Bfinc9j3qjQPeMPv9d1U3B3+Z+rH4KvUvp+Oz55fRJ7htJ0spX6RefPKzs7J+UL3OYzvTfJb17lLKLZIe7rrunZXbrlJvOEX8sKR/2HXdK2Yi7m+Y/XXqTcl/W72hgLqu+7NSykvVr5NfVk8gfLN6UednLNPmDye6rvvzmZ/X/6teonK3+nl6sfpD88mEr5P079S3b1O9gceXq9cnfTjxL9QTRz+rntP7sVlbHld0XXdbKeUT1evKvkc9AXy/emJ4Oxekd6jndr9evXThLvWWli/tui66FhT1BHEkuj5n9vkFGktNfkP9WpB6yc0Xqn+Rrql/Ifu8eNKhTBP4DQ3/+2NG4f6Fej3FTzzR7XkyYmYk9AFJv9J13Vc/0e1paLgUtBdew45F6SO3PEs9h/ksSc+i68JORSnl36oXGx9X77D8jZI+XtILuq579xPZtoaGS0UTaTbsZLxcvXj3FvXi6fayG7CmXoR2RL04/Y/UB3doL7uGpywah9fQ0NDQsCPwZLIMa2hoaGho+LChvfAaGhoaGnYE2guvoaGhoWFHYCmjlbW1te7AgQOOkq09e/ZIklZWhvfmrl15kX1QhBxTv2W/Z3rHRe6pgff6e9YuX9uu/Pg7792uv1k5m5ubk22dqm+761mbamOQtX11dXX++eCDD+qRRx4Z3XTo0KHuyJEjunixT8N1/nzvVuh+Ze3zunL5vD7Vj2XGuFb/pdyTzUdtDHnv1Nrib49n/5bZK1m97IfndGOjz4jkOY/1+JzYvbuPNTy1dg4ePNhdffXV83l3ef6UpAsXLmypk22ampdLsWPY7tlF5ulS5rAGj00sk+VP7Rtiu7Zl/a71Oe7x7Z7l96xMnwe+trq6qocffljnzp3bdkCXeuHt27dPL3rRi+bfb7yxDyh+5ZVDnNDLL798S2P8UnSn2XlJ2r9//5ZnjNghaVjM8aXqhe6B8b3+7k0Ry+bG4b2uZ+pwrx1aLtvtiv+73PiCiJ9xQXLj+gWxvt6nROOh4s+sH+zfIocy5yl7+XgeXM7Ro0f1/d+fB1g4fPiwfuAHfkB33323JOnOO/uk0GfODL7vXivGZZddJkk6dKgPnOLD0Z/xGbavtmFjn/2M+8rvcUwNXuN3Pxvnny9hrhGOdRxjtsnt9xhkBx3rZT1c/7EPvGeRF62fOXu2T65w7lxv7PrQQw9Jkh54oA8l6rUrSQcOHJAkPe1pfQzzI0eO6Hu/dx6HfQuuuuoqveIVr5ifE4880gc8+uAHh8AmJ06c2FKH7yFhlb10fY/7zBc1xzqOA8eY4zR1ULMs1xPng3vMcNvcpr17926pI/7PfeMyXU/cd1xftbMwe2l5DNj3xx7rI6Jl+8rXPAdum9eQr8d+XXHFFVv6fvDgQf3cz43ygKdoIs2GhoaGhh2BpTi8rut0/vz5EYUQOa4aFWlMUaSkZkhdZuJSUsCkIjJKi/fWPjOuMKP6pTFnOSX6cRkuk9ezNpA78O+m7CL1PEUxxmdNPcX2k/vgfGUcunHmzJnq+HRdp/X19TkX8PDDfXxmU3+xDTVK2G2J68DXTKWSSzSydnP8+d2IfSJHTaqWXLw0ljJwflh/BMW5vNe/T+0Nt5FcgWFqOms/92TkXBdFNq5er48++uhCz3udR8S2eH7Jtfoe9yeuA7eBa5YSEJYVUZP4ZKhJrLjH4pxTTBylG1nZsX++t9a2bL3x3PR41s63WCbX+dR7wnC5PovIYfp8iPXEc0vqpQWLiqUbh9fQ0NDQsCOwNId38eLFSQ6ClNa+fX0GDVIT8W1PqpxUjMvKOK/YNmlMiUzJmkn11/QX2b2k6IlM3k+KkW2Nz5Az5hiQ8svGxONa01HEPnk+av309ThvmX6npjvb3NzU+vr6XK9jriLOD7klwutibW3Izen/vc7INdU45execiKZ3tkUp9tqLqFmsBFBLt1YhALmmvSnOZ+Ms63pJNnWyD15rfgax8QceuxfTRowZUDkeqzDPXfuXFV6UErR3r17R+MWpQPcW9SlZtyM1+B2nD33YizfqNkZxDklt17b/1NGS/yk9CvTy/O8IdcW+0J7gxrXlkkLqG/jGGXSD3JrrM/9iXPtte41uozxT+PwGhoaGhp2BNoLr6GhoaFhR2Dp4NFd142Uq5GtrSngyYpbBCWNRW8UIVDUGMUpbEvNXSCy+mTtjZq7Av/PyqiJLeP/bIv7SxExn8++U+ybiRppluzrVBDH8mkYMuX7xDHf2NioKo8t0ozGNfHZ2AaKKNwWrxm7K0i9SbI0mLlna7J23eJQilos1qGpuTSI9GhskZn410DRlsF5itf4m/eMTfXjfmLfKWqkmXg0xqCIyXC/PN7R0MViSc+tx6hmYBPrsfvAuXPnqmtnZWVF+/fvH+2XuBZrIn+K16KYreYq5fVWEwHGa/6sGffEPnm9+ZNuAtnZybOvNkaZoZfXSHaeRcRxpPjb9fJs5pmW9dn95JjYdS2C5+Yi/rRRRbCoWLNxeA0NDQ0NOwJLc3illBGlkEXLqCnMTYlm1J6pRlOgpGpp5hrvcb0u39SNqc3MlJ0UPamLWE9NOVwzBMhMmN1WK1tJlcYxoZGI+0OzYCqR4/905iTVO6WMp1m6PyOH5j66X+vr61XDg83NTZ09e3bSMIicj+fSFKEdTv0pDRyHOR2Xa+qSxheZq0lNce51GNcB58H98bj4mcxoqWbUwXWXGXS5f66P/Y5cr59neeTwXG+cUxor1Mz8Y30cg8wgKdYfxyIa/9TWjjk8uhFkEhiucY8P51QacyA0iafUJs5pze2K+zGOLfcjn8mwaGQdj0k0QCIHyb2XSRT8G9dxzYUqW6tcXzw7436qRX/hXolGWR5HS3WWiSDTOLyGhoaGhh2BS0oAW3Oclurm2uSqog6A+hDqQfgGz0xvyZGYesv0B2yDnzE3SKom3kMqpuYsn5kjU+9Wi48pDeG0yBG7XlJ8kaN0P0jVuu00aY//+96aw2nUFWVh22oopWhlZWXEbWTzYsrt6quvltSHloqfUQdgCp6cnOefur1Mh0OTcvYr49Y4p17v2TO1cFM1B/Sp8F10Q3A/43rzPf6N8+62es1ENw9ycjXONXI2HmOvO+oVT58+LWkrJ00OOXL/hDm8U6dObWlbFiaMYQrJfcb1S6dn7ospWwVymzV3oSmJCEG9Occg1kdpSGYH4H7Qad3PUocd20iplyUKNV1bLJ/zQy44rjevK3KFHKu4vj1ftXGcQuPwGhoaGhp2BC6Jw+MbPOMu/PY1dWGq3NRmfIayXuoaTJVl8lxTCzXrPP8eqUtTgaRS/Kwp0khVRKok9q/mgB6p1Zrex/0yBRQ5F3N4pqxchh23ORaxPlPC5mDdH1LpGTVo3Yyt52iFFuvJuNntrKpIxcY2kLPzePg6ubgIhhjzdzoXx/ZnOixpsDq05CHOLQMkM2yXf88CQHO9kUL1+ojtIUdFC79s/ZFa5p6kxV2cM+p/Kc0hx8//pWGeyF1n4aF8z/nz56tWhA5oQF1XlFBQp1RrU5wXznvGLUdkVs2c/ykrRgZE5nnHsywrp3Zm0RlbGs45Sr18neeSNKwd73/q37x/KOGKY+F9S+mHxya2kb9xbWZcnJ/PdJDboXF4DQ0NDQ07AktxeJalm/Ll2z7Cb11b1Jlz8HUHD5aGtzzDI7n8qdBjpkSMmoVnRl36N1Jp7EMEw5JllJy0lfLxb+6HuTZ/uj1Rv0BfI8q6/WluKNZnXRf1Pub0SPnHfnm+TA2ao6zpDmI921mbbWxsjMIPmdqM7WSYMOoeMo6La5EhibK1WgvT5PXtNRqlAy4nrt+svsz6lNzSdsHLpbGFpUFuPT7j+sjt+tNj5r0TKW5yKNSNey7ivNH62G3z+jbFH3X11DNPwWuHOrUodamFYKOfZub36bVPLpD6ubj2Pf/U3WXWoIbPQD9bC+a8SFBnt5W6yzgv3ke818gkZhxHnpU1C0xprP+jlMrzH+uj9M7jSb1v3PPUPS4aOFpqHF5DQ0NDww7BUhze6uqqDh48OKfoMuqMFILfxubiaCEmDQlkGeWj5vsWKSBzIP7NVCs5yowScdtIWWeRCahLIcVNyi5S3KQcfQ8p7cz6lDoaUlimFiNlR12hqSX6R0WK221w+aaITZ1nbSR1u2vXrkl5etd18z577KM/V8atSMN8ea4jnFy05g9J3UDkaj1m9Nmjni7C5VKXOhVpx30kp0BulH5gsd01v09TyHHMano498f9O378+Kh/Brlt6puiLyQ5CXJg1BnFPmbWuoSD1vvs8HlgziH23331mLudmQUsdZt+hvowlx3XA/Xvrtd7zYhcFfeu9x/XWWYVzCDYtSDv8VlaOtYsl7OEs7XoVrTMjwmca/7Z1CFG6QgT2Fo6xfMt24vc64ugcXgNDQ0NDTsC7YXX0NDQ0LAjsLRI88orr5yz7TZ/jyIYOgebrWaG68h6P/jgg31j4Nzte2jUEsUSLI8O25mjrEUJFMlSgRrNlt1Hl0dRksfCiKI6ilupsK/l54u/+VmaUnsuPO7SWCxBEW0mdjU8T+7PtddeK2kQR0QxKF0LpoK40qycJvLSWDFPVww/H8UbVG7TKIYhrKJI06KdaCwkTedfpNEQxZFZMAb3i64tFBvxemy3++7+eR1YpJSZlruvfsbXPZ7ed3E8fQ9DltGd5MSJE/NnGM7Pe5BixiygehYaj+i6TufPn5/3w/XEPcazyOcPDaCi6PSaa67ZUo/LrYXkuv/+++f30qiD4eky9xSjlkvPz0SDF/fDffW4WVR75MgRSWPxsTSsDfeHofq8DqJ6iS5ntWDcLiuuaQZ5d1u8z7Kz0mvPbfUzVnNl+QwXCdBeQ+PwGhoaGhp2BJZ2S4hvdBqVSAPlYSWkFeM0H8+ye/uaqZlFHAypVPe9NepdGihbOjmamsicuU2JsDxTG6TwIpVWCztF5+gshZHLp4m+x2gq9QrrpzFDRC1Tt41CTA1HapBuI/v27Zvk8Pbs2TPvq9uUBeSlsQW5s2i84vLI0ZECpWFKvMdjWuOiI/wbg4S7zVkW8VqIKhqgZAEIaKTAejIJBrOy06DKfWDWcWng8D02/u45Nocf18Hhw4e3lGepgD89R5GT9Fi7H2fOnKlS7qUUra6uzu91G+IeM1fpfe9PGqZlqcXInbudDLoQDVJ4D+dnKj1QLZu8jXDiGeNyfa56HswBWbLDEHvxmtvPM5HuZXF8mOLJa9drxf2MHKWfdRsZeD6TmJD7o1GUy/KZLY3Ps6nA40Tj8BoaGhoadgSW4vB27dqlw4cPj/Qm0UTZlACpMAYjzag5BnymwyQDG8dy6VrAhIiRCzWFQ/NghrHJwhAx8LQpVTpoZ86Q7h/rp+5SGqg9jy0peuoGYn0MbOvvppJMtUd9Fk2mGSSb4Y/ivTFUVo3Du3jxoh544IFUh2tQn2Odicc4a7fhteJxI0U/FTCbLhiUOERu5uTJk5LG3BG5+EiRMsBALcDCVJqTWmJR9yHuJwa2phuRqXKPZ6aHoR6V3HYcE7qLfPCDH9xSlu+NHBl10+YSM1y8eFH333//vL1ZQIDnPOc5W/rOdFbkxGMffa/H0s/4XCC3Kw3zTi6QOra4Tz2WH/VRH7XlXu7LqCf3b94L5uwYuMFrOJ5htUDWLstlR8615l7jfrpt2VqlPttjTqf/OI6U3ngtes9cd911W/oQ7437qSWAbWhoaGhoCFiKw9u9e7cOHz6sd7/73ZJyyyBTGH6L19LL+60f/zfVwtBIppao/5EGqpH1ZVZZhqmFO++8c8t1U15ZUGzXyRRC1nHZ8og6xdgPWknVki3GdrsN5iw8BrSIi3DdDGHEcY6Ox76X1HgM7ktQ57kIjh49KmkYryxBJhMC+96ME/dYWseZ30AJAAAgAElEQVTo77SIjBZ9BhPhUsfqvmfcuqlil2Fq2WMSqXSWSyvAqVRPlGDQKZptjeV5rZJKZ4qhSOHTktfwMx7faGlHbtr13nfffZLGwSeksT7z4MGDVefzCxcu6OTJkyNOxRaKEe4TOfBMokTOl5+05s4SAdOKlfdmiZnpqH/vvffO+ynl+irvVc8VrVD9GaUfvtdt9RphWrS4dmgb4HVgq1zumSzABnV2noMsiLj7St03UxrFdwzrXiQ8ndE4vIaGhoaGHYGl0wOtrKyMOJRIIRikqEzlmfrMKFJ/mpow5WNrr4yTIKdDH6NogWbccMMNkgZqyN/N4ZkCin43pr7M0fm7KV1S01Mpc+hTReuz+D85ZqZbcllue4TH3GPBRLvmtmJ/fC99kvw9Uunue7TGqlnaOSwdrbwy3aPheWC7o87YVD71IjXLt6jDo5+nqVla78YQVh5T+pmaemX4K2nMATGY8lRYLa8rpnKhNCTz3fNeYEB1U/F+No6n2+RnPQcuP7MG9J5gyphM12a4DdGKdkoPs7GxMQpRFbl22ghQN5QFnPb/7qPHhxafWfJYBlv3nPpe7w1LZuL/1B16fDxe8cyKa08aW5B7vujHltXjZzxutE6XBqtPP+t7n/nMZ0oa1oXnPJ7jtIGglXAWGtLPmxt1f90Pj411l9Iwb/fcc8+8X02H19DQ0NDQELC0H97evXtH1obx7VqzlqR1WeQEfK85O99rqsL3+i0frcJMVTJA75TPDnUq119/vaSBS8h0RdQJ0VdsKl0QffWYJsP3RurM/7sNpkJtzeb6zAXH9vkZc2umsEgdRkrS9WU+gdJAfWYBnD0vp0+fnoyC4DQvsY2Rq/O4UAdlmJqOETJ8zRSidR0eJ4+L++PxkgYLMK8N128qM7OIZdqZTIIg5RwedSkeA1o+ZjpxWksyMG8cd+41Rq8wMt9E9+8DH/jAlvp93VKPzOqZ0Wc419G/0GMdg8pPpXlZWVkZ+X5lUX/cJ1pP+pmo8zaX4r75N8+3x8vnUkxFRl03La3djihFob7Ka9b9cHuivyJT4Xi90wo0s4RlhBVGh2Jw6XjN69r73ZIUt9X9jf1z32+88UZJw1q59dZbJQ37Oa4DBsf2PLl/7k/cg+ae77jjDkl9irQpKUlE4/AaGhoaGnYEluLwNjY29PDDD8/f1NR5+R5pnCqe+oT4RjZ1ZoqKyQzvuusuSQM1ESn8Y8eOSRooBSY5pYxdGqhzl0d/m0wPR58WUvoGrYtinw3Gh3M/YzxMWjGa4jYV5cSvfibqG13fLbfcImmQdT/3uc+VNFCyGZdNvy73O0vYaa46Rk2ZirSye/fueV9dTuSQaLnn8Xd7vT6iLsV9te+XLQO9NmnRlSVXpQWn1wo5v6yNXl+uL0t/5fIZj5U6RCN+p9Wax4tjFPUi5sapL6cPKSO+SGO9DmOTmiu+++6758/QP5ZUOxOsSmMd4cbGRpXDu3Dhgu69996RZCmuHeqcXRYjkkSpge/xfDPZqdtma+54znnf+xp1+vSFlQZbBOrdrNvz2s10+bQKpQVx5hfH+aYO1PMR96zP2ne+851b2uxxc3vM8d1+++3zZz3WHEePPdedNEhi6C/LmLERjAJz+vTphS01G4fX0NDQ0LAj0F54DQ0NDQ07AkuJNDc3N/XYY4/N2WuzqFFkx2zRFn1YYWvxVBQFftzHfZykgSW2eM4svkVzN998s6St4kKmDDIbb3GlxXnRUdZsukV8FllYPOq2RbErHUndP/eL4qr4rMUQDKDNtCrRWMGiWY+JRUkeE7fHz0RRjZXfvpfpYSxmjg7Hbj9FmhSlRdcQixQ8thTvEqurq3NRjNsbn3Hd/mQA2UwEx1RHdJFhUFmLguNvDHDAerJgtx5br2eL2b12Yxs9TuyHy6KxRxbwgGGa2MYobvO9FhdRpOm5ZF9iG7xGauH94rxxXdfEUZlbkdfvhQsXqiLNjY0NPfDAA7rpppu29DUaasUxk4b5oCFKXA82rnD/LZ6ziJOZwjMjNvfVe+62226TNIxb7JPnzMYWHkvvH7cj1uPzxfvfY+ozpRbEItZtEbf7y3UWDdHe9773SRpUBDQ4cj0Ww8Zzzm10m30Pg2NEka3LtYjUz3o8vQ7jfvLz7tfp06dHaqMaGofX0NDQ0LAjsBSHV0rRysrKKDFn9vY1J2RKxJScXQDMZUkDNeZyaHDwiZ/4iZIGqilyQqYITLUw8asph2iAYtN0ps9gMOlYD90sjJoxS6Q4zDm4rW6TKXAqhOOYuNznPe95kgbKKzOOMDw/H/3RH71lLDx+ridSnwyZFgNCx/5EgyE6tl5++eWT5sFd143cRaY4IaMWBDm21y4sTLlC6jIaTrgeumu4D1lYNffVwQqYIiuuGcPcgJX3NDwyPKfR/J1O93TMdX+iIY/7TO7Mc0x3iCxpKA3ImLw4ckrkVF2u++MxiiGz4pqR+jGvGTytrq7q6quvntfjcycaP7g9HmtytzSkkIZzwJyI+0bjDo9XnAtzZZ5Lj5s5kyzQAQMbeJwsFXD90XjNIEfne3xWMsRi7J/3GLmyLBi7++MzquZ+4TmI+8v1eS58j6+73igdoMuMpU42nnEbs3RybvfDDz/c0gM1NDQ0NDREXFJoMVMtplSiLJ0myZGTk8ZhjaSBAiCXZpkzU35EroBBbclp0TTWfYjlMB0MzXljOXQEdn2mRDLzZ1OGdF6n2XhGsTJYsDkZjnOsz1wY9Y1MXppx5gyjRN1eFl7J7b/sssuqKW7slsBEvVn6FNdR42Ljd6b9qQVmzoJ6G0yB5HXtMY1UuuumgzP7EK+TK+N6tm6alLA0ppbZX5edtZGhnRjej2ssttHjSCdlcikRDAfFuYjrje5LU24J+/bt08d+7MfO14PHKbaB0hqOAUMOSoN+33uX+lDum7jHfC/18B7bzEyeDvnm7Nw2zo80Ttrq75x/9yFLPM3UO9z/0S3Hz/sc8z3m8Llv4170Pa7HZwqT5cY2MoExpQPmnOPaYGDwRx55ZDLgRUTj8BoaGhoadgSW4vC6rtPFixfn1AWdcKUxFWEZs79T5yVtTdUuDRSB3+CkoiKXYYqOIbEYZDdSZ26TqSJSdFkqeqYOsQyfiWDdh8yS1OXSOsv9iVQhw0LVnLLJycY2mOphskhyjfEZpv9wv3w9UtWc06nQUA5aYKov4/QZ3Nago37UATBMXM3J34i6XKbYYTuy9CPkhFlfFmSbFoIMLWXrNob+iu2vJTTlmo2/UVfEuXXbY1v5G5MI+/e4DuhIzySeDCocy41JaacS4K6srMw5O+ux4zqxhMfjT30lbQsiuMc4Ttm6psVtTR8cOQ/Pt/e9rcN9r8crrinqs90W94cByOM5x+TE/o2WzFGHS/2luc+atXY8Q5jWi9xbdva7TR4L2lG4vriPo8O56506eyIah9fQ0NDQsCOwtJXm7t2751S1qapINdGXitwLfY7ivYYpA8rhjfhszWqSwWOzpLHmXkiBmKrILKxImZKSy9JZmOJxea6XwaOjdZ7HmKGF3B+Pq/sfObyYrieWz5Q8kUqnzsagXiaOve+NoYtqlnabm5s6d+7ciMvJ/LmYtoby+cgJUGdC6pxJaiOHR2qfc5gluSRHSW4qC0tHTthlMGGq25j54THUGxObZtauNS6N/nKRo6C0hZaXGYdE61ZzB9Q3ZQGuY99ra2djY0OnTp0a+UXGPV0LhcffI7dJ619atVJKlCU79T3eA5HrYJ+tszOH57G0RSRTG8W2cb2577RYzSQ9PkPMGdfsAKRh7rwWqSOktWs2Z7UQjWx7rIfrzv3yPGb+hdk5vR0ah9fQ0NDQsCOwtA5vfX19/uam/DrClAKpI3Jg8TeDuidSEfE7qQlSekyyKo0jxJhCIPcZ66Fu0n1n4tdMx0EKhBQ2dQexDdRrUmfpNkbOi5RUbewjpeXf6HtkPQmDFmd93i4J4+bm5rz8LDUJuVZyDBk3Y1B3kkW8qT1LMBJKpsulLs3j49+jnplBjz2HvtdtyrhQr0nqTriG4vqmvpcBlRnAfSrQOTlaWivH9tMH0v21lCCLhpFxT8TFixd16tSpebm0IZCGeTAnUrPsje12u2rpzsjxxbVDS15LZxgZJFp6m7Pzs7ampv4tSj0Ymcr7kRwm2yyNLXzdd+vLqKeTBqmKy/E99hmlhW88x2m5mfkIx2cjKJGhvUM8q3huLqq/kxqH19DQ0NCwQ9BeeA0NDQ0NOwJLG63s2bNnJEaJIhgqfBnUOctLRmfkWJ40NoSJYgkaAFDM6rZmRgS+19/NNmfm6lTAUizEfHIxDBGfzUTAvG5RApXVmSFFrCPeQ7NgOljH/jE3Vi1nVhS3WEFfM3iJ2Nzc1Pr6+igwdyY2Zp9p9p6JMCjCZB+n2lYToXq+oniaIkYaX/iZKG7jNYoaafgU1yrN7L2uKHLOXIMo/qQ4ii4usT8Uu7KtcQ7oIkOH9szdgHVPiaU2Nze3GKFkzt0MN+V+MNRfbIvFjV6Tnmcak1G8FsunQz7dRKIhmu+hk7zPHV+Pa5Vi1yxgQ+xnJrKlqsbGKw4KEseRrmDe/x4T1hvr4280eMrmgOHnsszt0tbz1O21uPfMmTMttFhDQ0NDQ0PE0hzerl27RuazMWQWqSIaGlCBHq+ZimAILiOjLmtBnekEGTOeU7lqKoycRObs6GdJgZASjpyLyzc1Tk4vM7BgwGcaq7Bdsb6akQ+poEhpkVM11eu2Z5wLTZMvXry4bYoXGgbEcXRf6eTvOpnVOra3JlHgZ9bnWmonX48BeU1pmpNgChyWJdW5GEo7snXH9CwOjcUA4HHPuD7uKwa6zowLPB+kzrn+o0SBXDQ5WBo3RcRA1rW143PHRh902Yl9ojERDeAyDo/BFVzWVLCMWrowBk+I6yMaMkkDN8VwbnE+uObpusIxjd9drg1OGOzfga4j3A+31euKZzLXgzReBzQgJNcd4XI8p0z7Fc89z088I7czmJu3caG7GhoaGhoanuJY2i1hY2Nj0jyceheGnWJYm3hvTcfAALbxbU69h38z9URqVxonqKw5SEaY+yBlxZBLmSydeh6mkHHZmWk5KRfem+lEqTMhh5RxxTWK1W02lZiFlIp60inH8/Pnz8/1fjZ/jhQpKWtyeBn3TNcBrh1yfJnOofasqc2oh6GOiC4FmV6MOmFyfFP7yWPA1Fhuh6n0LAg3KWzq4bLwVxw36oGnQA6NezHj4LKwY8TKyorW1tZGiWsj90TXFbptZI7nbh9DYXG+eP5Iw/iT+zNnl9VneF3R9H+K86GtAvWK2Tz5GgM4eA9modO478l90v4gc6XiPjKyc4cBApiGiNx3rMdze8UVV8wDgW+HxuE1NDQ0NOwILMXh2VrKb30GApbGVKu/k+OLMmE6a5PS5ff4tqfzIYOOOlB0BMNk1Sw9I5XOcEZMnsg+RAdQJi512+iEnYUFqgXUrXHQsR72jwlbY3108MySNUpb9Sa0iI1h54jV1VUdOnRorofJwk0xjBrnKbPSpD6UOjR+j+NJipQ6Tus8Yp9rYcc41lFfw+DENU6L/YzlkZN0mdbpRX0Mgzcz3JqRjYnvpXM3JRkR1Kl4LTE9TFwblJhMJQ5eXV3V5ZdfPr83S7dFx3I6MmdhtHh2ZEEcpNzJmmuFDuF0jpbG3BkDLRjR3sD3Uh9q+LrLiu1iCENbNTKkYuY8bpADY9jCKZ2+QU45jq+59ZpVeGa5T73y1VdfPbl+trRlobsaGhoaGhqe4rik9EB+YzNgqjT2YSLVmnEz/p9JFLNQRLHMCHNcpspN3WbycVKt9PvL9D3ktExhm+KqJVeM97Jf9od52tOeJmkrZUfLJvoKMfVLpv9jYFb6VmXjS72CkaXpoC/YVBLPlZUV7dmzZ942cnqxz+QymVA0UnPkPGhpF+vns+ToqXPymoq6IoauotWixzzOpeefnEQtxVPUk1A3Q52exyTqGY8fPy5pkG7QmnpKJ7pd6LVMR03OqBasOuP+s4S5GXbt2qWnP/3pkqT3vOc9krbaA/h/z88i5dKfj1w710wmWWAwd9YX54U+lORKyO3EOhnMmam+psI7UofrMk6ePCkpD6zv4Pfe2xwThqnLQAvpzMra4+bPOF5S/r7wvUePHp23oaUHamhoaGhoCFiKw1tZWdG+ffvm+gK/jZ2YURrkxE5qST0P5djxf1rpGbXEldKY83D0AFLVUQ/j/2upY0xBxHqoh2FSWvo0RaqJnBD9/5w2JKuPEQ9odZhFQKDVH7lOlhH7TuuvqbQwDLo75YdnK03q1jLrWdbJMc4stjJ9VOwP75fGeh2vJSbOzNYOg/fWUsxE1CweeT1LHuzyyGGSa8v6Q06OPpeRq6MlXU1nE59hoGRasPp75OYzPXINXdfp3Llz83Xm9DZ33333/B5z1P601Km2P2P7srRMEdST8f/4LM8bSzJiPdTz2YqSZ5Y0cH3cL1wXlPxIw7pyW91Gn9FMbSUNOmH6PLqN1KllFr60jKc9R1z/Xs9MrMw9ErleSy48NidOnFgoKLzUOLyGhoaGhh2C9sJraGhoaNgRWNpo5cKFC3MnZCs2o0jTYhQbZDCPEwPLutx4jSGQGGA0CzjsNpHVzrIju40GM2ybZY7GOGaxGayXDq4W62Th0SiWsPglEzFSHGARA0MYZcGR6fxP0SYd0GP//CzryQx56D5AMU9EKUWrq6sjN47MQZ9m7hTRZgZPFJVSYZ6J77wmLFqmkUqWN9BtpLLda8frPXM4Zkb1LA+itHXt+H+LmC1yotg3iqUYuJhiSBpcxfGsubtMhSOzOIqiK4pDIyie3rdv32TG80cffXTen8yB2XvV54A/GRh+KjwYXUAo8sxC2jEf3lRgfRru0ak7E/nReZxzSVP/6Ebg9WwRqkWAFmm6LK+pWB4NeGwMSCf2KKbmeqZ6IwvRxjOJ56bfMZnI8o477pDUj3EzWmloaGhoaAhYisPb2NjQ6dOnR4YbNlCRxo6KNYoxcni10FdZBuh4fwSDmVLJHikRU390FvX1jEqnoYmfJdViU9/MeZiO5qbwTHFFKoapclyGQ+h4nDNnWRopROqfbSNIPTPobsaZR06hRqU7ALD7ZYo7rpdaxnm6c0TjHhqL0LWF4c+yMErMVs7AtbE+SiFcj6lnr4u4Rhmaigp5cp+mouO9XivuJ4NWx+C65LTcfksJaP4ex4RZxbn+MmdlSgPYdrrYRNRSZUXYaMVz7b5HbsBzeN9990kanxFZ+hj2sTYv5mDj2mYIrporQ6zX3ApdJtx2GwPG0IOeK4Yq8/nmPniOo7TNZ5Hb4nOaXFTmlkKDLbfN/c0kGL7GgNM8i+M6ICfMsGGZcZPb5s8Y+GQ7NA6voaGhoWFHYOnQYo888siWxHvS1vBTDBlkkKrIKDtycjUHTbYp1ku9j79HJ1W339f8rCkFUxORcqD+oJbix4hcgfvO0GnkSjOu1580JSanEceb9VDPl1GfdNDnOGZhr4xMB5nBXF68N0uuSh3AVLJbllNLjJm5VdCFhG4RridyoV4TpvBZv3Ud2dhS38s2kWOWhnXnT7qLZOGaDOqZyO1m+yubl3iv649t5LgZ1L1nsB777Nmz1SSeDlrPtRPbTekJ68x0eNQ98tkpp+pa2hxyG7GN5vBcvufU3FOWrJrO4VdddZWkQRrlc8B98f1ZPywd8nntsfDZEuupuZMRcYwYeJ4BFjJdLsthgu1MsuR7YqLjKalVROPwGhoaGhp2BJa20tzc3Bw5BGf6KlJrtLzLqMpaWCjqqSIlSVm2KRFznxnVRL2Uy7NVU2bZ6f8ZfspUhuXuTDES28A0QR4jU3iRWmRgWX8n1+ZnIrdAh1I/Q+o8UsGZxV6sP+MGmFZpipJ3ihePMcOIxXLIvZDai2BwaAbbnQo8XbOwpY4l1kt9H+c0m3+GuWNbSd1GK2L/5jViizpakkYKnNKHrB+x7KiPqQVUJ4cU1xstE42aI3dsG4M9Z7B1uDkRtyVaBdesshmgeyoFD0MOuvwsxZg5U+qYaAEbQQ6S6cn83YEopIErZEg5rylalEYOk+v7zjvvlDTW3TpEVyyfIRMZ/CNzPGd4P/aL7434Py28a2H4YnmU6i2CxuE1NDQ0NOwILB1abO/evXPKkBZqEVlQ4+x3lxtBKmwqvBV1gW6b/XJMeVv2LQ3ybpdnWbrl36ZqIkVHSs79MsVNzjXTx7k8t8WUvNuaBVJ2OUxHRH1X5ktFCy6Gw4ogFUbrPHJMHB+ppySngkcfPHhwFAourgO3j5TiIj42Nf0k5y2zLowWjtJW3UAsQxrm+8SJE1vaxrBRmaWdP02d0yLN7cj0Ilwr1PfFNrotpvYzX704JnGP0rK3Rj1nPpy0NuVaimXFte76amfF5uamHn30Ud10002S8rVjDoFcE7mKWAfb4LXDcF7kmGN97Fvms2f4fKHP3iKpbZhSiNbImd1Bbfy9hvyM9YGx3V6jro9tzfTr9K3lGHCfxfKm9LexrbEfmS/gdmgcXkNDQ0PDjsDSVprr6+ujIKeZ1Zzf7qQqGexUGvvV1IJFZz4ZtLRjmiBzcxmlSt8dP+v+MflprId6K1MopmJifYcPH5Y0TkZLziULik2dAPVyWaJYUkvUv2U6POpJsyS4fCaLEDHF4a2trc3H1JxqlkCSujzOXZbElVQs+0wuShr7/bltni9T0TG5KvUsptZdH5MjxzpptVgL1B3hcXJ57gf1MBmHRz8ol0EJTdy/tNJdJFoGfWx5T8bB0Mdt79691bXjtGSGdXlxv1DCUks6GvtKfRXPF5YVdezkAl0Gg73HOSVnx2cza2evJ0uFXK7roc9tbCOjPpmTs/7RZcVUVrRQZv3UJcb+MXoObTLcjjgH2yVhpo5SGvtNTkmWiMbhNTQ0NDTsCCwdaeWhhx4apbmZsrDK9Dwuy2AMOUZo4PcoSyfnw3tNZcS4mG6TqUtzg1l/2W7qD2j9Zaozjgl1Kq7P90QZOuujNRQ5y8wCr2ZxmVlWGbUkpKTAYj2MXrKdLL2UMrJmjXNJjoDJH6fS2dSsC2sSgHiP5+Waa66RJB05cmRLGzPLVHL6jIsYfffoS8e4rJyvOI7kVMltTEUQoZ4ps3hjWw1KWbgO4trib+wPLYvjvZZklFK25fDMaZsDj7YDjEjDGKSLpCXjWUUdXtTL1mL3kmuM1odO9Ox15vqZ8ilKB1wn9Yj0scvsKWhJfOONN26pn/6A0jjdGvcrrTTjOnC7uVaJyBUyNRPPM6/N7MwyB9tiaTY0NDQ0NADthdfQ0NDQsCOwtNHKuXPnRk7YWZZdihRrSuT4P8WBDAvGAMHSOOSRWW0bIGSsN9lyiyd8T5bmhk6jNKf1s1Qux3vdJpu0O5gvRZ7S2FmcLgU0Moki1Fp4sJr5eDYmdGjOxBMU6124cGEy43lcO5mxBftGpXcmOue6Yl89flloKZpg04jA9WeiLIa0i1nfPRaG22DxTM1VIgvfdu2110oaxHjHjx/f0p8sPRSNVQwaNtDIJLalJo7KjAhqYaeYXifbt1FEXDNNL6Vo9+7dc3Eb09tI4wAUHn/Wk5nR00CLrj7el1H1QGMyl0X3oVif2/2c5zxH0nBuWhRo47ko0qRxTM1Vh0ENIizCdFkUZcazimc7zzev86lwgjQg8/qnI39WDg23Mjcvq4SiGHcR1w6pcXgNDQ0NDTsES4cWO3/+/JxDMdUZwYCrDP2UOYDG8qWxa4Mpgsx0lRwj088YkQul8Ust0WikNsh9kCqkAUQ0D47pXqSBoqLzemYIQGqJbc3CoNH5leluapR07A+5A3KH8X+39dy5c5Nlb25uzql0GkXEa+R8ai4g8V72rebGEUFqmQlfMyMSBu2lct1lxvn3PDAsFw0RXE8M5muq3M/ahJycXTaORo3rzjjmWiguznUsk+4u3BuZWT8NgqaCR7s+GjjEOa2FAaOpfCYJ4bqjU7fnIHL6bIO/W2rjNRSNSDx3LsdryQZ1mSuXx8n9Y9hAStCiiwHHhimNsrCLnldzqpRY0PApc1PiWcX1mCUrZkhAOrFniZt91l511VWNw2toaGhoaIhYWof32GOPzd/2fsNGqoKO5aQiM52asV1qD1NLmSk7OS9SfNH1wNQL02OY+8hSF7k863ssZ/en2+6yYv9M9bGtLsvUSRZSqqaHoV5rivOq6R0zV4YsUWp8JnP2jZTplHlwKWXEfWZUPdeQn1nEpYXcRo2CjOWS0yPlHyl7/2/phufQc+wxifoerxGvY68Vl8H0VJGj9Fj4WQcvYMi5CPaHFDfXIYNDxHprXPbUPNdSSS0TAmqqXO/TqGtnOEByJFmyW44DOfqpxKV0U/Ics8x4ltCugImn6dQd+8hAyda/uW2WIjnYdPzNHN0dd9yxpY0Zl8ZwegwxV5NwZW00/AxTm8U+U+dJ6UAEHeYPHTrUOLyGhoaGhoaIpTg8J/Ck3DrTj/nNTU4uk8nW0sJQH0Jrulgf66VVY8YVUmdTC8kU20s9hdti+TjTEsX6/Ol6zC2QO4ntp/6ylkYjs3wip+c2TVH2tLLlWEWOjGG7pqw0XS+t6GL4Nloe1rjY2AZy4zUdZMatcb7dNupsou7JHLx/M0VNCj9a2pkaZyoh6u4yqYfLM/fHPcCAB1Jdh0Z941TAiO30p9me53dyAxm1HgNcZ/13OXv37p1LaWwJHfXWtOar6YJiHZSW0CqY6cNiWDpaUXtMySXG+ihZodW5rSmzhMOGn2VwZ0sL4rr3eNFylMGjM2tXr2+mzOKYZanhahal2dlPTplW6VnCYe/PyNVOJZeNaBxeQ0NDQ8OOwNIc3u7duyfD9ZBqZKBiU2WRSyOnSB2A3+imZiI1SyqFHImpmkiFMm1KzYoocg+m0knpMqwW09vHe2rWh5k83H0mlex6qAOL1C7b5meZniPTZ+mB3AEAACAASURBVGT6y/h7pLSm9HDZ84888kjVf1Gqpx4hV52leDEXxnBarC9ya6TCTdW6DJYpjRNW+h6vKQbslQbK3evKUgDfm3HpBrknWgNHC1k+Q/8+pm3xmsn0H9vpfbO1Q0vYWhBmaaw/ncLKyor27ds350ysu4mc0HZ1k5uO7aHuyZ/Uz8c95jOIyW85l3FOmaaJekbrZ7NxylLrxP5l1uluo5/1+vY9tN6O7ae0w+PL8GuZ5S11lC4/S+tEC1meWdTJxnL92YJHNzQ0NDQ0AEsngF1bW5tTWrQ6kwYqgrJ+6o0iZVejEF0Wy4xUhp+hlQ/1cxmFYMQgpLGtsR5THA5gS26NlqQZB1uzdCJ1E5+vRa4hlRO5Xgal5ZhkuhtSquQ2Mi7OXE4MbF2j2Luu0+bm5ogSyyxFSSXTuivWQf0by13EF4y+W7Vg5tIwTrbKJBWbJU4lVWy9X83/M/avJlGgvilLwuz5N6dC7n0qyC85OvYhk2DwWUajycDEwxlsO0B9fbZ2GMSZ90aLclp0G5TSZNFzfAYywazXF/0npeGM8j2eFwa6jn6YTK3DIM5u61133SVpq27V5Xut+hkmkY3wfDANlcuiLjSuAwddZwQmBhGP64VnPiOtZJbZblPkmBeRMkmNw2toaGho2CFoL7yGhoaGhh2BpY1W9uzZM8onFxWqZseZ3Zaiv0yZS5NeijKznE8WMdJ826yw64ssMRXONCLJwlDRwCHL5xbbluVQoyI7M6Qwaia+NbPgaN5vkQHFvC7D5spxDmgwxIzKmVMsc3OVUqpBh90OisYi3D6G9mKIuUzpTcMWirIy8R1FyswubkTTcP9Gxby/Z4YAFOV4vt0mui3ENjIsVM3xOzN4qbnd1HLGSWNXFQaAznIfUoRZczPKwnoxBGAGnztuL409Yp21ABSZWwJ/4z7hXsv2aS1cXxZWi+JpixppaOUzLd7rNvrezP1F2jqeHm+HLmQ4wiyYs9fG/fffv6Vchky0s3zMpec2Us1Cw5q4xnwPRfWeY4vl47xxjzejlYaGhoaGBmBpo5V9+/bNKQObV2cm8bVgx8ZUqhc6tpPzivWZarAy2t9NoTAslVR3iCW3EM2eGbyXoYOY7TeC1B8DbNNsXBqn5/GY01ghM/jJDHWksaGL5y/2gxQrTdsjlUuqupRSdR722qEz75SxAqm9LHg0KUSGYqLUIEoHaLZNjpgGV9I4tFdtncdxokk3OdeakU5sWxbQPLY57gn/b8MK94MhzGhgIY2zsnOe3NbowM+s27VUL3GuyV3v2bOnunZ8Hw3fsmASdJXi/MQ2ZOtJGjtfk8vO+lgzfMpcm+ieQkO0LISZne0p9fK5M2Vg5XXgcqM5v7R1fduZ2/2xxI5crtsRjYBosOV1GM9RaauREB32/emx5rqL5Vqqtb6+3ji8hoaGhoaGiKU4vN27d+v666+fUwHHjh2TtFXHwbBJlINnQaVrwYKpt8jCGpGCpzOtKaNIZZCj4ncG+5UGysftNnVBx0xSb9JA2ZkSNgVEaioLAG35u2XmpqyY4iOOiceNFBxNqDPXEIb/oel+5FzoKD4VWmz37t06evToiNuJnOm999675Zla4OxMH5vpE2N7OV/SmAt0WZ47fpeke+65R9JA2VL64LIi5evf3AavB4aNomuINKxFcjd0jo5BpN1e6qTIyXCMYn8YBo1Sg8i5UK/EscjS+VCvOaX77bpuC3eVcSaGy/HYsu9xzZNTIAdOri3uMc8vJSJ0ZreeThrm3XNFCYPXZpQA8TyjewD1znH/WVdfk/RQ/ycN8+K20M2KwR8ip89zrJbWLc41AwPw/ZDteerwNjY2GofX0NDQ0NAQsbSV5srKypzbMGUXqeYPfvCDkvLAxNLWt/K8EaCSTbVQR5TpfUyl0NLJ1xkwN5ZTowroECoNFI6pZ6YjYfqRSKXVHGZpHRot3zx+tUC/DBMVuSFTkFm5sf/xOsOsMTC0KdostYfn7dFHH606gNLSzpRhpNLNzdbWTiyLqEkUXI8p/qgn5bryOq4l95QGipvSB85DnH9Sx15flGgwgK40zD+tdQ3qdqXxWvSzHoto0UswKa3B9FBZklLqwEnhZ1aacS/W9uPKyor2798/0vNEzpuB2OlkzX7E9jFcHyU/kYsxuD8pvcmCV3h8vM5ZFscttpfj5XtoOxD3BiUKDHhu3V6sj9bfDMlG3XVcSwzjSJ24+5fpQnkm1gJuSGMn/EW5O6lxeA0NDQ0NOwSX5IdXS5QojXUppEgzq8KoA4rl0VLMZZ08eXL+LDm5WuibzGeHFnW+br1fFnrn5ptvljTo3+hPZOrF1nzSwDn4N3JBpkJjG6lDM7VE3YcprIwLoXycAYezIMxMB+M5mAqZFjmhGrW1urqqQ4cOjXzsYhvoo0cOmKlKpDE3SO59KkgxuXMmNvZ3rwdpHKKMZWSUtilrrjuPOaUTmZ8Sw3RxLWX6Ma4zBmFnMOPYZ3I/3GcR1OvUQo1lbYzrtrZ2fO7Qkjjq2GkF7nGjz2GWWopcLS2wMw6PVpLWl7kP5p6inszj7/XFNtKCOf5vqRrT59D3bWqMPV5OJZT5xdE3mJa99DPO/AzNUdK/MQsYTyt3lkWL0viMsX///kkdcETj8BoaGhoadgQuKXj0lF+ZqRVS3rT2y3xoeC/9OPzWv+++++b3MsEjLd9cH6/HcmkhlEVyMCdFfytGmzFll+nHPE7UoWTBXDmOLj9afUnjANGxjYw2QT1ABKldRl6hXoP/u4yaL9Xq6qquuOKKOSVMq9ZYN9tEXWFEljLI9Ulj7j1LHlyLMuPrmWWn/ZOo6yA3F69Rf02uOfP/ZHBl6ooY+SU+Q30mOcostRCtGiltyfzL/Dy5UVLdcf54z1TwX3N4brc5iKhjr6VRyhING54X+qdSL0qLzFgu587738iCVZNrpr9f5FwZrYaWxS7fEqcISrc8P37G6zta+DIKk++lDpkRtGI91EnSuj6zA6Cdg/WM3gtulzTWGV9xxRWNw2toaGhoaIhYisPb3NzU+vr6iFqKFImpFVJhTH2SUUvmwkhd2qrJlGSM32aKwNSSLbdMkbitmY8bIx+QworUGq2hKP+mXiFSJO4HfWmoV4jcjuu+4447JI0jEJhayzhm6q3o50OuOILWoPQNipQUZfNTsnQnD3afs4SWnv/jx49LGidZpX9Z7KMpQfpF+vesr/RDs96VbYzcE3WdTO2U6X0Zj5TXDSbKlIb1RL0r9dsZh8R1535RohG5I1o50tIu4wrp92nQQjJrW5auKcPKysp8vEz9T1mzMl2Pv2fW4bSepo2C12XkhAxKSxiZJOPWPLbU3bmtmS6/FjOW+z+OJ3XslPxQ/yyN9zQjnvg7OdxsTLjuMx0lOf0sUW8sI45FSwDb0NDQ0NBQQXvhNTQ0NDTsCCwl0pR6dptpH6Iog+Igs6p+hqaq0tiAgWbTZtsZTsvtifXUlNeZo2xNfMdQQ7FcsvQUi2QuBuzXtddeu6V83xtFqBbf0Q2BptM0h4+gmXuWbd6g6wcV3h6rqcDNKysrk6KFrutGYus4Lwy15r7TST1zMaH4ho65vF8ai3TcNhqexGdqWbAzk2uD4kaPkeeYhlDZGDJAM03no+jM7WVGerbV16MDN1MK0dHcn3FcGXaMDudZ+DCusymDp67rtL6+Pl8fFhvGPjPcGENjGTGbOPcszwMGkYjt8149ceLElmfc57vvvnvLs7E8Zmf3HLrMLJM7wxP6GX9maak43zSwyYzBeA5QJUB3omiUwz1BYyCGUovlUERLB/g4b/6f7h2LoHF4DQ0NDQ07Aks7nq+urs4pq8ykmOFjSE1kDsykTuiIa9AQRRooHIY7o+FGFnCYJvikDiNFR2qQbaIhQDReMOVmzuHIkSOSBkqIzqXSwHWYmqFxBKn2aCRjmCN2vb6XpvrSmLp1P+h0m7k0eD1MJXc1WF40BPD82yiBRiN+Nj5DVwa6GtAwKSro6URLJXvWLxorkePJxoecG79nAXINl8fgwJyvzIGb4cBs/OW16bUcn/W9/GQ7IldI45daP6NkgWG89u/fn0oeIswpMCWYNF4rdMVgEIZYDrkWBujO0qDdeeedkgajMnLpfia6mDAMGY3Xsn3pNvlZzwPDxGXSNl4jl5YFSfB+8W80HKNBT1w7lDrUQirGc53uYgwanbmVMRXchQsXJlNLRTQOr6GhoaFhR2BpHd7q6uqcYshM4ql7chiwmKwv/i6NTftJGZrKsNl4pCr829GjRyWNU3lkehE6llL2bNA0VqrLj5mcNlIcDuXD8D/k2mIbqUdy22g6nen/mFCUuhRSabF8Urt0t8iC70bXgO0ciBlkOa4d983zHAMMSMMailQsE+QyXQqp9Mih0z3D42FumeGipGFeqIcx15mZ6JPbqHF2UxITrzM66rJMaaxTY4ohctlZKDNKDEz5Z+mIjO1CjEUOjlz1wYMHJ11a1tbWRpypJSXxmhM/M3hzls7GbfB4eSw9xjzL4phYd0fH/5q0KLbFY0muhPMV28iQedRzZ2uHYbkYlD97hsGcmVaJNgsRfNbg+R7XAQN6+B4G8IhSPTrOt+DRDQ0NDQ0NwFIcnhMx1qyMpOHNbPnq7bffLmnMkUQqgBaApoBITWQybr/5TQmQM8k4PN9r6osBmhlAVRonlGUZdEyP/SMlRz2Mv2fBcKnXoVUTHTalsVN3FiIr1s/nY7nkLKNOgvqzKcfhUopKKfP2u76ohzF1bo6YnIqfjf2grpi6FEoUMj0ZAwCYe/E6jPPidptar+mMpyyJaX3MRLqR8yZnzfIz3QW5Qdbn8aQUJLaBUg+WlXGw7B/3QtSFklubClrgkIaGpSvW9cbyaEXte7y2oi6IUg1yCr7udRDD+nm/U09KLjrOj61M/em9VAulGNvo8v0bpQNZwHAGW6dkIbN6rqXZMmgNH6ViniPqwLnn4jy7HJ+rXiN+1tKeLLyfOfCmw2toaGhoaACWDi129uzZ+duUQXalcZBeUyYM+ZVZZFHWTIvOjOqgXoxpdNgOaewnYirD3AatOGPdtGxics3MKpSULwMBZz5u5IRInVFXFqlnWvTRx8XIwiyROqd+I3I7tip94IEHJPXU2BSXt7q6OgozlIU18jyY6osWgdJWao9WXdRb1PzXpDH1zPnJdA78zf1wm5koUxqv31pgbnKp0lh3Rs41swqltSx11rQO5rqIbePYZP5e5C64BhheMML75sCBA5M6vL179444xrgOyNGZG3ObsgTAtDSkLt3z5LGOIQ0ZCJpzl0l66PdJCZPHOOoKfZ4xKLVBXWgmlWIQdnK2cU8weTDPepaR6X95BjJUZByTWpgz20p4fcT95DGJabwah9fQ0NDQ0BBwScGj/WbNUkSQcmeaB1PrWYoIf9LCjjqQzLKPqX0YODlSl9SZ8Hvm60R/GFLtTBeUpQeijpDcTqRY6c/HwLy03otjQsqVulBStLENTIrrNnuMog7EYxs5le0oLfrqRH0FLbVM5dGvK1Kx1BOQi8nGx6BOi7ouctexbbU1w/5JYyqV/l5cS7E+Skw85qTO4zPUM5LSnrIOrnE3Hkf64GblkMshlxDh8rYLPL5r165RVJHIeTMVFnVrWXow+gLyDKnNj9sbQa6ZEqDYRtoicM9Ei0SvSftQ1iQ7UxIT2jNQipOlFqNEi1xoJmli4mnWk0UucntZPtNvZSmzYkq47Xw45/1b6K6GhoaGhoanONoLr6GhoaFhR+BDCh5tRHaSIh+L6WzqbUf0KL6jOIom/hYfUNQV7yH7blBcJeWiqlgWc55Jg2ikptQ16BCa3UvxA8VIsS0GnTdpFh3b6mdpfMMxigYPFD9RXJmJaKxcj+GOthNL0RQ/9tO/2TjAYigaikQjlkzcJA1j6zZm7WdAc44FRZCxrxR78plMMc91VzPgivuLYjeKpbJQdhwLrp3a79IgLqoZxWSBBbiuaADlvW4jJGns1M1QaUTXdSNRWXS/odFDlsuQYF46jwvF4S4jiho5phzbzFCMBk00OMnyxbmea665Zks93GeZ8zVdl+jekxk81YJW1MTiERQ1UsRNUbtUH3vm94vrg4ZCUwZPROPwGhoaGhp2BJYOHh0plszM2G/au+66S9JgTus3t03YTbFI9XA2fsbUGp0T47OkmknNRAqoZoZMLidLJUOFPB2ATbFEKp3GEEwxQ0fN2Cb3ncYyVKxnLhQGqfLMiMDl+Rq5bN4nDfNvk/ypsGJ2Hs6MRwxTbnSupcFM1u7MAEOqpw+ShrEzt8F16LmMZTKILin5LECuQYU/78kobwYJZxmZsp7Bo5l9m1KYuO54D43C3P8Y9o2SERo00DAhPhNDDtbWTylFKysrI24tmur7PLnnnnu23EOz94zzNuim5D5SAiUNHAgDM2RBK/hMLcA197b7Hn/jfmd4vMyJ3GCgcxqqxb5zX9HdKzv7DWazp8QsjjsNmfx+MDyedtaPcDCBgwcPNqOVhoaGhoaGiKV1eCsrK6NwXVEHYP2a39Q2p/V3v4kzPUyUyUrjJJ6+L3KHdKqkeWuW9JTUMs3eXX+ktBhYljobuglECigLvBzLcv+inJo6CHJ01B3EZ0lBkoM0VZ3pNxiWjG2NnKupM3NeU1S666PONVJ4DLjrexg2Lj5Dt5MaN2vEOSU37raZMs3M32spVmpuCvFehuKrBeKNfaBOhWbvnOP4G/cCuUWPXXSo9hphwmGPxRQHS46C6yueEw5a4LWzSABgBl2PQZZdHvWuPmd8LkV3IXLCNJ93WZQAxHI8luaAeB7EuWQoN+9D6gwz7rDGRVMPHNvIUHW1YBxZaimvDepLyeFl0o9a8ljqLqWx9MHrgUHYYwhCBlLY3NxcOIB04/AaGhoaGnYELkmHR0udLGGh3+qWs5KKiRZbtMTx29oUEC0HI0XKYKfUW2SUVtRZRLBf0dmxZlnlTzqVR6rJFCLDNU21x2Nh6owBtbO0MOwHKVZS+Jk+jXpMt91lxLQwN998s6StVmA1SmtlZUX79+8fWWNFToEh32iBSCpaGidtpY6D3E5mXUZndY819cKxblpj1pz7pbHzO9e5Qao69odWjKSw4+8Mc0XOwuPIpKKxrQYd6cnpSWOOhMmDM92NpTSxjbWgBSsrK7rssstGgYtjn7P1FOvmuRT7ZpDz4d6L6457i+nPstQ1TCVEaQcd3eNv3KvUSU6FJ3R/qMPLgnLUQjQyIbC5rNg/WtXTrsGfcd5cHrnRWqCF+JuDmtTO8wyNw2toaGho2BFYmsNbXV0d6byifwqDDZvKsC7Pslj740nS9ddfL2lMXZLTo6WnNA4pRN1KpuOo+aW4P36GSTCztlGXRm5BGqilWgJQ35uFIWKySHKYTDwZ/3d95EIyy05aJrpechjRf5LjFqlwYmVlRXv27BlR51mQbYP+l6bo4ryQKqdVHvsc208OyN+5DjOOshbUmxa/8ZrrYZg4poeKVDPD0jF4NOcg3ksrTIYHy8KEsc+msOlLFa3man54tM6LnCD1tF3XTXJ4a2trI24tjiMDCjt4NLmAyA2Yy3QfKbWhlCXzj/NvHg9LtGp6e2lYK5aWUP8bz6pacuqaf2bc01w7/M51Hu/hGNMaPUsey0TKXiueE1+P9fqc4RlvZFKxLIxa88NraGhoaGgIWIrDO3/+vO68886RviTqdSi/dQK/u+++u68wCZjKFC61AL2m1iIVYF8c6i18T2bxREskUge0hIt9NWjNSKupSEnWojDUEoLGvvM7rQQzfyxSQEzp4mdiG2mZWktOGaPc+Jqp2iuvvDKN3hDbRYvF2G76AJKiz/SWtIqlta7XY6ZToTUrOW6v67iGSMW6zR6LLIoPOSmuc1L2WdBy6oZIrcdxpw6Sc0ruOtPH1QKPZ2loqL92/6yn973R0s51R0lQjcPb3NzUY489NkpRlemPzClkPmaxbfF5rkVGCKGkJGuD++Zxy5K5kuOmBXlmAWtphseQfqA1XXWsp5YGy4hjRCt0rhHvJ1qtS8PYm6MjZ+8y4/uiNj/U40frWp8PWRD87dA4vIaGhoaGHYH2wmtoaGho2BFYSqS5srKiffv2zdlsizDuuOOOoUCY3D796U+XJL3vfe+TNLChz3zmM+fP3HbbbZIGsYA/bRJvcRuVy7E+/8Ys7HQQj8+bPadok7nt4vMUF1KZS1FX/I0KbBrcZEYkFLtQvJeJX+mGQIOKTNxDkRyV13QQlaQbbrhhSzlRZEk4PBTFKXEuaQJN0XaWD4+iNubHqxnsxL5yLuk8nJlRU5TuNnouo4iR4aa4Zgy3PYrLaVpOAxS6vEhjkSbFb5nS36AYme3IkBkwxLI8ntEVyXsvzumUwVPMeG5k+fVoROKxzDKe0w2G7jo+h3zexfpdHg1A/AxVINI4AAS/ZwHpKbJnzjm6ZcU2cs3QSC+ba65nikyZ2zGKGj0f0TBMGtYZ1268t5aHz2OUqRUyg63t0Di8hoaGhoYdgUvKeE7DBBumSAM1xDfz8573PEmD8Uo0fjBFWstOTC4ncl4M10Tzbd4njZXDDJTr+mI72B+2iSbMsb5amDB/N9WUKZxr1DOp3UgV1kKm0Yk4chI1wwOXYbeSzNzelN3p06ernEDXddrc3BwFP45cLbNGe12YWs9SyHjtnThxYsuzmQl0rQyOJanc+Iw5KjrM0iAhUr5co7VQXxlXQOMhjtFUeCgaqbCfTOMiDfNBYxxypZmRFJ2HDRplSMPeinthyrR8165d873nZ+NaoxGFDSgYrCByeHZv8lnEkG/uazYv5F5pJJcFO/a5RQdzGitlQardFqa0qmWbj2BQahqORe6JQQrIibP/MfM7jXsomckMCXkPU5tlBnaWFMQ92NwSGhoaGhoaApbi8DY2NvTggw/O37p07owwZUKz0mc/+9mStlLedgB9//vfL2mgzkwlmZIzxZ9RijZ1db2WDWehngxS8KSAo96PDuw0uaWeJgbHdj/IadF5NLaRVFItHBUpIrZbGihLhmrLuNBa8li7HsQxOnbsmKQhcO+NN95YTf/TdZ0uXrw40i/G/phaPH78eNp3U+uR4ja151QupM5rqZ+kcUokP0vz7dhG6tSon/VcZg76NbN6hkaK9dWCeZPDi2OSza80DupLPU3sM/U85HbiOqDulSbyTKUljV0+Lr/88m1TvNA0PkuUy9BXLtPrJHNpoSShliA1008zQPaUntTl0b2KwezjHiJ3yXMnC+DA9lKaMsWRkxunm43v9RxkEh9Ku8iVTknbqIPPEly7P9Hmg0mca2gcXkNDQ0PDjkBZxmmvlHJS0h3b3tiwk3FT13XX8GJbOw0LoK2dhktFunaIpV54DQ0NDQ0NT1U0kWZDQ0NDw45Ae+E1NDQ0NOwItBdeQ0NDQ8OOQHvhNTQ0NDTsCCzlh3fo0KHuyJEjo1Q1EfafoJ8VE6ZG0HBmu+9TqN37eJTxoeLxKLc2NouUPXUPf6MPTxbnj3WXUvTQQw/p7NmzI4elK6+8srvuuuvS5J2Gf6NvEaO/fCiIZbCP/JzCopEdYnm1uWKaoEUwtUdYT+1zkWdr9UVfKs5PzZ8uG3v7V+3evVunT5/Wo48+Ohr8tbW17rLLLhuVG9tE39bM7zLrx6K/Lfpstk9q9y6y3vjbMnugtqeXOTMuBZfSP0a7MrL3BWNoTp07xFIvvMOHD+t1r3vdPGiwwzrFUF92HHSIMTsd0pk3y/nFA4/Xpw5d3jO1yWu/MbxN3NScNG5yTljsHx0y/Z25xiLowMqxsLNqFgia4YGyNsXrsVyGUKsFsY6IGdvf+MY3jn6X+qz2b3nLW+Yhyu66665R372OTp48KWlwTmZ4sOgoy0znnIdaUFppcE7mYUln2zhODKfGQySbUwaupqOxv2fO+Jzf2jqPc8tM7qy39hnvZVkMpRbzvDnIgp+1Q7ADHdQCO0iDE/YznvEMvf71rx/9LvXBJT73cz93HmSCOeKkITzY4cOHt9TN4AXxAOXBybU+de7UchkuFcgYgc2ztcP8l1yTHNMsdB7Prqmwi7XQgLWs7NmYMPv6FIPEwCC1wBGxXT4nHJTh7NmzevOb35y2m2gizYaGhoaGHYGlODypf1szk3akECnSJGXK6/H5mjiU1FSkampcoMEM2PHeGqbYaPazRolkWYTJFTItUUZ9kuJhsOopsQHDoLGeLBwVs36TKsuCBsfypsQkKysr87Q65EJi32riQpcdOT5SiLW0Jlm7WF+NM45jwLkjFcu1LNWDeZObctmZdICBf7mu49phaC9yCeRksrEhh8z+RXgs2HeGRcs485ixfUodcf78+VF2dwapju3l/jQybsb11gJkZ+uSUpNlxIPklnh2xD1GCRI5PM5H/M59z7ZnZwZ/q0m2GFIttm0qfCDbUwvCz+DYWVs9X8uoFxqH19DQ0NCwI7AUh1dK0e7duyfl1tTR8ZNBb6VB78cgujXqfEqHV+O4Mqoi4xjj91gvKUbKwckBxmfJ4S0i96feY8p4pAZya1PKZFK3DPTK5Jjxf8/b5uZmldLd3NzU2bNnRwGTM/0RpQLkmjMdl6+Rm6FxRJZGibqTmk4nls/1Ru4prjfqW7mGSMVHDo9UOnU0mUFPLUg5OZepFE181twVqXhp0OGR66W+OUuKbH3cQw89VNV/dV2fWspBno1M2lDT3U5JUdh3rodMf80+1iQumWEN11fG2bGNnPcaVxj7xCDOxBRnxID2mT679gz3lVE7O6WxntlnS2Z8xHK2k9hFNA6voaGhoWFHoL3wGhoaGhp2BJYWaa6urk6K1WqiTIswoympYVEF84RRLFBTRMd7KCbIzNFpaEDlPkVpU+XXREyZONRsO40vpgwdan44U3NQM2GmQj8aY9RcJ2pGE9JYVJKZREdsbm6OMhjHcaqZ53vcMgOBmnk2TaMp2sraXXNpORQttgAAIABJREFUiM9Q1EexeGZaXjOcoAGKy4yioFpm+ykxPw0L2GePs3OaRVUCx7jm1hHXqnP/2Y2E/aURQ/zfbVlfX6+Kpi5evKgHHnhgLhLNRHTMDM6cf1OqDT9jYzzOTzbm27kWTbkn1PwUF3F/qBnPZWXXDI+m+sV7am4d2flUO5NqPpHScAbWyp1yaYmizUWNhhqH19DQ0NCwI7AUh9d1nTY2NkbcU6Ts6cxqjs7KaX+Pzup0XKWJas2sO4MpPVK1kSr0PcyKTERqipQuFfJThge815/mcrOs1exzjfrNTIw5PhwTUr/xN7aZhi8RdAXouq5KadngqWaQEssjF+hxybhnZmA2lW5uiX2ecjmpGWxkXEGMEFK7N/ZdGlOv5FQ8T9EwiFIIjh9/3668rL+Zawg/fU+Wdd7/m9Pzd/cvkw7UHOkzdF2n9fX1efnZ+uUarxnqxPlnObUs21MBL+jSQilH5kJTC5IwFVGoJqGYMkDymNB4hEElsvOPkgsajmUcHsePRl9ZkAzD40djtszYKDMyXDQCTePwGhoaGhp2BJZ2PN/c3BxxMZGqMQdnB+P7779f0kAZMlRR/J/hxzIXBtZXM7UnVWMOQBooUd9bCyWV6W5qTpzkHKachz0W5HYzqrlGjdf0kBl875SpL6m+qTBrBjm8KUqrlKK1tbVRObHP7qupPM975lJgOIzVFVdcIWng2t0fjs9U6CW3je4x2b0u11wMQ41lob5q8LyQW4z1GLV1HcNsMUSan3Ebvf7cxjgHXovU6XpM/Hvck67b68HSHLfd5Ue3ghrnmsGSA3LekUP2/w4/5tBidND2eonPeJyyIBVS7jbAs4JnFteyNA6DR1egbG0yOEFNT5ZJDfy/59/fOX6ZBMOg3jSTzPDZmo6aNgyS5qEGGW7PZ2O251n32tpa4/AaGhoaGhoiLkmHRyfBSO1ZH2eLLVOTlAFPcTPUh02Fh+KbnVynqZuMImX5U5G6Ke+n4yl1XVkos1qYtaw+g3J2Bpw1BRa5gloYN88Fg9Vm5dasv7LQReaYL168OKmL2djYmOTeyQGbeyFF6vqkIfgwdWqm8KfCZ5EDInVOzlyqB0eghWWk1t1Hj6GpV1L4noMojaD+jfPt/kfOpRaOzmVRdxz3kLkz7kmXYQ4v6uC5Zu69915Jw1kQLTENP++gz/v27ZuUDpRSqnpTaVgT5vDcV4+lx82/S1vHLLa/Fvor0+HRipC697h2KMnxp9cD94Y0HsMaF5oFZvZ4+bzzp8eAUqLYburhmIXCv2dh96hPpeQkWugb7N/U2HMP7tmzZ+HwYo3Da2hoaGjYEVhah7exsTHiFDIdAPVuUxSJqTDKh6mvyHy3mLaEyPxk/Ax1HdSXZFwaKY6axVWUpZtqcT/dJn83hRcpF1pFUs/pMkyt1cIHScOcuPws8KtBjoW+cVlormhNuZ0/jNeO9Tlx7VDH4XkxF3DNNddIGrgaaeg/9a4eD5efWelRL2FwHUaOy+12P8gVZJRvLcQW20Z9oDROc8NPcymRc3E51KG5re5PpsPzNQZq5pqN643B5Bk0OtPd+F7P8YEDB6rW0q6fnH4cJ7eBnJxTmHnN+Dufl8YWiNRRZ/B6cFmUqmScvseHAbSnOKDtrBczDoccFqVtGVdYs3ZlfbTJkMZnkNcuJQ6Rs466Z2ls7ZoF7iYXuHv37qbDa2hoaGhoiFiaw5PGVkuRojPF47cwdQ5+E0fqarsUOH67m6qwXDte8zPkLI1IpbEtpGoyLmU7f7ha4OFYHykuRtiIejNSszXZeuZLU4vG4n5maZ1IhdPaNes3x3zXrl1VSqvrOl28eHHkx5VZsbmdphCvv/56SQNlGDlUP8MoGV6TXivuV+TWDAY95hxO6Qdc79Rc1nRC7p+fcdsiF2JOxc+Qe7v66qtHbar50JF6ZtBnqS5dsZSAkgVp2Mtut+fE9dtiO64NWtNORctYWVnR3r175/e6nKjLtRTg6NGjaZvoExj7RF3alK7boMTH9U9FBnH76a9Iq2SPl1T3beMed//iGPtel+99xTNlKtA9I2URce3Q79P1MoJV5AS9B2gDQR1/3IO2D4ltbpFWGhoaGhoaAtoLr6GhoaFhR2Bpt4SY88wiAZsyS+MstBTBZIGLfY3KaNdDp97I8luEShNrGltE0RnFc25zLRRPvFYzTqByP4ps/YzbSlGJ+xmVuTVlMZHl9PM110fH5qm8VMxXZ2Qh25gra8oYxqCBUiZOs8jn8OHDkqSrrrqq2m6vBT/DdWCxncfCDurSIGKqBal2GVEMStE1+5MZAtC4h0Y5brs/s2C+FpmxfjvuZuubRhEMCuExOXXq1PxZl0PRHAN6x366Hoqn3J8sSLXhMX/00Ucnw+ft379/PneeN68LSbr22mslDcYpvieWL+XqEF9z/Q888MCW+rPgC3RH8t71vQxfKA3iZwa+oJFMZhhGNYTn0memf4/O/XQl8CfLiue359ft5x7hOohzyrB+XCsei0wU7XnyWrGBmucirrc4h9J0Hk6icXgNDQ0NDTsClxRajMrdSFWYejW1R0Vz9iY2pVELeUMFaqSafE90hI1lZN/dXlMKplpMQdJhM7afJuRU8tI5VhoHQSZHm5kWcwxoRMJnswDAWcDn2IfYRlP9pLRq6WLib7527ty5KpXujOccxyy4Ljnf48ePb2lj7JfXIhXjhst3iLss9BJRM7yShnExlUpjAbcxctw28DAl7fEydUvn8WgQ4nLdT3+SG4hUOtNt3XfffZIGh3DvFbc9ctl0P/Fc0KQ99s/XKJnxnNjIIHIDdKif4vB27dqlq6++ej4+rsfjJw3z4T0dx0Mac3rSsCY4L5Qaue9xHTCtDbmXTCJCFwmvJRpSZeH2DJrr+7u59Ng/1+22+bv3k/tlKYE0DnBR45yytnt+KClhgIooZXG7vebpwmNErtflRPeh5pbQ0NDQ0NAQcEmhxUy5ZSa4fstTns8QRVmCzCxkUPw90//5N5rVM2hspCgp3zdVyNA7WT10oaglLY0UCoNiMwxVZv5c033WdImZPo66Aj9DfVesj9Qt64/yd1JjU+b7Gxsbevjhh+dUvtdH1MeSOje1akqUVHtsJ8OSUS/nZ6Oe1DogcuWUXMR1QBcC6xk9xqZYo9TD9dQSi5KKj+uAukiPideSuaeod/K1e+65Z8vYmJKnY3ikjrkWzZVQlxP3PN0Q3DavKY+JOSppoPK9Lx966KFqAmGfO3TFiHPpOfN6ohm9xy+uN+o/qX9j0OuoO2JwaIbvyiRa5qysb7zuuuskDeeN64/1uB8eQ6YS8zr0M9FpnRyW++V5cP8jR1lLgut6GJYsrl23wfVSkpCNo8fnyJEjkob9xWAc2VnldX369Ommw2toaGhoaIhYisNbXV3VgQMHRhRD1IXwTUsHzUw2bKqCVn60SGJIngw1B/HIAZm7IAXCEDxR50AOy4jy79iXyFEyISY/s3Q91OGZMjX1zmczyq6WcoWUrDToQxhg2NRYluCUYd0yp26j6zqdP39+PvYnT57c0p9YJ7kYt8H1ZXqKmuUwuajMUtBt8jxlQZUNWt9xnZHTlAZuxtyx15C5Q85l3BsMRk3OniGgpDElzeAEDE+XJeFlP7w+GMotlmtwTjJndrfRY/DII49UdXgGLSLjXLqd5moZkIKWq1m5Lo/cVGaFHPXW0jiNj+c02gEw9RIlTJYERF0hbQR8DnDes/1JXRr3V3ZWUf/L+fd4UhomjceWKbrYh1iPf/PcMmhBbCMDhd9///2Nw2toaGhoaIhYisMrpWjfvn2j0EuRw6MVF638Mr0fA6PS+o+Ud6SeGR6HoZ2yJLWmItxu6yncJnMHkUNiCg9TL3ffffeWel1W5hcVrZNimZlFF4NC19IrZVQT54CBrmspRqSxxay5tswXyePkfp05c6ZKpV+8eFGnTp0aUW6Z3ibK5qVhLD1eUZfneaCs32VY3+OQU5ELdbu5Nj1eDNgdfzO1b32IuUS3LerwvF7tW+Q2WG/h+ffYROtDl2sLS/q5+veoM2YaJe5T99djE/V/1jPRcrGWiFQah8wiR+E1EcOgZSHSan6cKysrOnDgwHy+vDfiGFOHZS6GPmFx/il9qnHP1GtJw3ozN0au2uNnDjZro61nqf+LHJ4tOq33c70MRJ/p8nk2UKfnfsf17bYxhZrnn36vWfB3nj9em17v8dxxe+kLybCV8ez0PvK+OXPmzEI+wFLj8BoaGhoadgiW5vB27949SisS5au0RKSOyW/7zNfEb37LspmQkxygNFA8phjNvVF/ELlCU0emGp72tKdJGusKSdVKA+XDyBcG09LENpBzYDDpCPqhkPKhD2Hksimjpx4g02cwTQcpY98bdW5ug4M733rrrVVLO/vhkWOIOoC77rpL0lh/wPZGS1E/b6qP/nj+3RxeHFemL2GQXetnIwdEHaHbfMMNN0jK/fDoc8Z0OrT8jXNhicFtt90maRg3z4PLMAcoDePmvntPmNtwG809RI7i1ltvlSS9973vlTTos7iGsoDDrtd9596MQbFdt8fxwIEDVSvf3bt368iRIyPdXdRbct3RviDTW3O+XZ65XEYSinC5HkufKQzcHblQ+sd6bN0vj4/XsjSsCc/ls571LEnDGcXUX9aNxzFx+72uaKWb+Zl6LNx+P0PJU5QseV9ynrxm3Na4f6nX5tnoemzRKg1nr/floUOHJlM4RTQOr6GhoaFhR2ApDs9UOimjyM2QWqJOJbPSNNVgzs6U4rFjx7Y8S/2J2yQNFIgpFKYhijJgXzNVQJ1AltiWqTayJJQRkXOh3pIpbbIxMXfhcjwmLsvXzWVFnSGjJZDb9vUp3RSpbfoqxfabu5iSo+/fv1/Pf/7zdeLECUkDV52lB7JelHFQswgxTDPjT68D6iSjfoypVcwB+R5zVVm8T46BuUXr9LJYqubKyOHRAi5SzS7X+8prlJR9bKP743tcrrlRz7XrjTrRm266acs93gMeC3MQce14LdYsmd32LILMVPopY3V1VVdcccW8j5k+juuWUZv8exwn9vHOO+/c8qw5FUZkkbbq5mIfPXeMDiUN3IznxffGNSnl4+Tzi5bK/IySLK8Vc9OUftRSQcX+UH9paQ73W2yrx5xWwpllMyNHeT27PzHZs0Hr+lOnTm1r4Ws0Dq+hoaGhYUegvfAaGhoaGnYElhZpnjlzZhQgNRpdMEyTWXAqmqNYioYYDIRqNj1zbDab7LZY3EExZXRWtjiCaYcYniyCYk6a79JsP4q0aOJLUZ1Z/ixsl9l2i1NqwYOjMQZFaBTdTqWy8Tgy/BXDr0mDuMH9mMp4vnfvXj372c8ehVyKRjD8zWNuMZpFS1E8bUdjhk175jOfuaUMmpFLw9r0GFu05PmwKXg0dLDY6/bbb5c0rEkGgs7Cg7mNFLv7kyJ9adgLtTB0NnCI405jL9frvjMFkPsS+2qDAI/jc5/7XEnSu9/9bkm5SwDnntnRM6fvKBqrGa2srKxobW1tPhZZoArud6bVyYJJ+JrXl/el58Hi99gOgyH4aJjkdR1FbRQ106Uk7iODIfhcr59hOK/YDtdj9YE/Ldr2HMcxcd12IfGacT0MtBH3Io0PmZLJ9XhfSeOwkXx/8PyJ12I6ohY8uqGhoaGhIWBpt4S1tbU5NWUKIXJ4ppr8lqf5dJb+gQ7GNeUqgy7HcviGp2I+go7zrGeK0yMnyaSH7n9mMu22MpRVFg6NqVZcD40VsjQdHC+mEMmCcJMLcHkeIzqtS2POpZRSpbRWVla0d+/eUSDl2G6Phzk5G0qYqqS7RWwPOXn3w328+eabJW3lKL2OPR9cX25jVJzTsZnGUu5fFv6MHDW5Av/u9kRYKmEO0wYVNFuXxilraPLt/WbjoEjhe3z8TJY4lW13PV7ftRBm0ejD+zKGXatxeE5J5nFxffHc8di5L/9/e2e2ZEd1peFVpZIQGDscgRkEDjeO8KXf/0n8ALQtGXAzGQxCUg194fjq/PXl2ll1iOgL91n/TQ0nc+ce86zxX7YgmDawaksm4TPM2E18UbU9F9Y6GF++q+iLS0uZGDyf4/cNfXGwFu/i3AcOqHJpMwdP5We2OrGvTbidAVa0b3ow5tl7qOqgdTIuvz9sKcy56AhI7sNoeIPBYDA4CRyl4Z2fn9eTJ0829tWUXJHynLC4V5TUtn2kB+5x2HO24W92l/5xOZ1sh5/WILripEjNTtAGlt6zj6u+ODE0+2ip06HY1rhSMvJnlp48/oSL1Tp1IvvINYx1Ly3h7OysLi4uNtLlXsFKa50mmK3aFtNEi1hRJKXPwdKxNZQutNxFYdPvmnOQ/2ee7fO274b0jkw8BkjpfIb226XHmKbJZ4495X2ZfWM+8W+ZBKDrm33TTkXqyhDZktEBDQ+tqbPAMLfWmr1HU4vET+XUiNQcqraaUY7FZ3pFpJ3t02+nOLEf8zlohU7u5yfjxXqT97ooLnuHeTRpdj7HxZY5c3vpZaZBZG44ox2RB+3ZUmbrQIJ2+Pn48ePR8AaDwWAwSBxdAPbm5maXuBaJxIVX7SdLScgE0C4/tEfB5WTqVamV9N04CdWRpO5X1bbUhv/P89BsU0p0ZCpt8HyTO2d7LmhqSbIrBeRoUEcFMv5OU+ank3zBijrMfeg+++GHH2616b21RDI12Sz9TS0NydM+NJdkcsHR/Mx0Sk7mzmRlJ14jvVqL6ZKiTY2H5G0NIym46K/9v9xjeqqqg7Rsa4vL3YDcd8yJoxr3SkB5f9Fn1qLzM68KNne4vLysr7/++vZaR4lXHdbORY/dbvq4HPHKtfTTc5B7f0V36H1tjbNqW1qHtXPUeNWW3o6/TfnW+eN4Nv13VPBKK81xsHdM6NBZuqzt8hzm0VHRVYf5439eR0fhe4yMbxLPB4PBYDAIHK3h/fzzzxufREok9jlZ0ur8fiZcpn1LCp0911KFo5lcfqLqIKXYR0M/nL+W7QH7YyxFdeTRtOdoLLeRffH8WaPdm5tV0V1HMFZtJVX+dt/S57YqQ9Th6uqqvv/++9u8ua6QqCVfNAT74VLSZkzOT7IU2xV1dX+dL2T/ST6HPYSG50K5KXE6V9I+HKR22sxcJ/xM7Cc0VZ7DemRenLV//2RNPUdVh/VgP3WlcXIM2RfTePHTfc72eN5eaambm5t68+bN7Rwj/We/TWvlKMou0tLln6zxcMZ9JvIeW7KskaRmwrX0n3lhD9H3JALHl8b/bJWiTedYVm3pv9C0XB4o19JE94B95vOVa+rc4RV9XJczau3PEfT53vGYv/nmm/HhDQaDwWCQOFrDu7y8XGpkVVtp3wVLO3+cSwZZM7E2k5KdpX7b1jsfgaVjF8Z0FGrVtoyFIwetaWZJGefZreYkpTNryNbs9nwetsk7Sm9PG7Sd35Frqe2YXeatt95a9sulpdKOD9Ds6C8FMq0xpJRuf5uLuZpAOX0P7qvXx5pS1WHdIVnmefjWOt+GLSHO9zMZe+4D+46d6wTSz9gVPc7nW7tKKd1nwFqh/ezZjqOBmU+TY+e1jOOzzz5b+odvbm7q5cuXG19b7iHv6U6jM1yyLJ9XdZjTLiKRdWDdHa0Lcj9wjwvmeu/kPLj8F9da8+Ge9JMyLubf17Dfujmy9uez7ndY1TY63HEbe+8s7y/PUa4R/e4sIvdhNLzBYDAYnATmC28wGAwGJ4GjTJpV/1Y5nWSdKrhNeyay3QujBzaJOGEzr7cpzrRaDufOvtlMiVPczur8HyatFeWWzW/5GX21KYE2upB5m5887s7c4gADnu/w/s6sbLOXzSxdLcIk6l0FHjx69Kh+/etfb5J4sz1MSK7EbTNamm24h2tNGux56+jUbALmb56XKSZUXnbQkvdQZzq1acd9Yw3SQU87PA8zLwE9pqmr2p4FPnOQkQMEEjal0Sbz3c2j157z1VXatgny8vJyN/Dg4uJiEziWffCc2vTWBVTZdcG1JoTuAlCc/uTnO1Ujx+zUCQeR5bk0sYTNouxNp4S4nXw+rgMHr1Qd1sgJ+zY3+/2e9/id7Hu6PgG/h5jnjhyf+fr22293U6ISo+ENBoPB4CRwtIb36NGjjZM9JQRrHF3oa16XvzvgZaW9dRKp/2dpIiVuJzuutKiuirSlIgc2WBvNz1zCAykQySgd3yYw9lw4iKFLIrcGttKc8zmAdi21dcn47muHy8vL+uabb27HjBaTSeQrMmXWrksmpj1ra6vq23mvS5E4AMlWghw/17JmlJLZS53h3DiwyhpgapRdtfCqA4Xan//856qq+stf/nL7mcvPoLE8JNnbRBG22HQBXYDPODcut5QaGuuWKUD3EY9by8jzYuJ5p6G4snZe673t87I3T7RrDawLsOJ5Dhby35lC5aAla9Hs8y5QiT6yHtbWSXnJM+30A5Nj2DqU43MQ4yo1rYPngveC082qDhpxkqHvEWIkRsMbDAaDwUngaPLop0+f3tIrEZrd+W0c3r737W6tZZWs7nDxfLYl65XWVrX10Vni3SOn7fw6XRvZHyeaWxpEeu/C31capDXJTjruSHvz/522Y0kRCc/UaVXbcPu9NX79+nU9f/78NgydBPQsvWNKLNClPwAnu5p021J8+n0sndM+mgPXZgkUxo/24nSIvZQPk0bb/9PtWZ69SmVAG/jTn/50ew/E0iY8t/+804I7P1L2yc+v2qZbOOWE/d/NTZIvrHx4Nzc3dX19vTkD+R7w/nXivFNO8nfvA++/LmHaa+eQf1vB8jmOITDhfVqWgM+lrTWdr432vFfZM2h4z549u72Hc0m7Li1kDS+1dvdhZfXq/JrMk9Nuur3Du5FSWV999dVoeIPBYDAYJH6RhofdHbqbLE3i6DhL2CuS1aqtj+4hNmD7/5A40MA68lE/28/tkqNXJWMcAWlaoqqDBGdKKa5hjvIea1YrKrE97dp9B52G56islc+wK3dC/99+++02Eov2Xr58uSFsptgr9+ezDZ6dfgP72/w3Px3dVrX1NdA3NG7WoCvM64KiTtTu1sXjcmkUa4Ldc5B87avK5yGx23fnKEdTBOY1K0J3k6Xn7yZ0MG1Uzj2aMj9fv369u+5PnjzZWB1yPNYevabdO8SarjUR+1Y7K4rp+tDaXJ4qYR8+84ZftvMZr86nf+Y+8LvQPmneQxQXzjFjxfP/TdKRfV1R6O0RbNtH7ehX9k76a9lfe0T0K4yGNxgMBoOTwFEa3vX1df3888+3UgtSQNIcOUrJkXfW9PY+s0bXSWn8zwVnsT3zM7U1k8ZasjSFUT7HkZaOKOWelOxWNEBIXpSDSU3ZfQWOzvQzsg+2i1sS6vJ9rBkxr11kn8e658MD7BnG3FFirfIVO/+SpUlL+itC27zW5Wvok6mZso8uiGqfSu4pJOmV3+chGh5+F/YzUjl5eV2x4sw9zT7a75jPc66m/VvWmPMe+ug9280J++rFixeb9oyzs7M7UZq0jw+n6qDVWqPye6bzV1qL6qJzcxwJ5+dyxruCybwnnVvJPR3VmX10fmfZN92V3mFdrFF243FkLX2ydaDLy7UP2u8DPu/86M6jZY920a5owmh4T58+3SWuT4yGNxgMBoOTwNF5eOfn5xupicieqi2bgH0bnZZmH9rKpg66XDCALZifnXbjaDmzZiAJpaTlKDCzVTgqNTVblwzyXCCxpDTI/K38jV0kqeFoQI+l+19XgifbSEnK/iwKBHe4vLysb7/99rYdfHfdmFeRt91+sO/OhSTt00sNwP4C1oHxwGaSknCSgudnjtrttEL2twt9ujgtxT2rDtK5ybCJsKNI7t///vfbe6x9+iwwLreZY7dGb39XV1IGrc0RfV2OGHEAGXm7ktJvbm7q1atXt+1iHUhNgWhWF51dRfxW3Z/fu2dFYe/wP2u39gdnf+2XRVPpIkn9P2vlKwtTfuZ3MHPf7W/AnqT/LkfUnfNVBPkqajN/X7XLGmSkNDmvnJOnT58+yLpUNRreYDAYDE4E84U3GAwGg5PAUSbNs7OzevTo0a36iOMcFbnqoHpiskLVt7miq1qdz6naJjeazqvqYKIyabMJc7vQa9NRob53df66EO78e1UHMH93UqrJe3OOnDTMPTZldETQK6fxntrvEGyHOXdtrkLm90AqC/1PImjMgPz8wx/+cKd9B69UHcyDDpJy9XSuS6c+/ccUx2eYC2kjTfaY/1aBBownA0Zs3jeYN35mH20O71Izsq9d35iT3//+91W1DRfvqlb77Nk0mInnXfpG3tvdw++ffPJJVf37PbEyaRIsR3t//etfq6rq008/vb3GpAWMyUTNHeG03QQO4OrM/Ct6ONe2y+el6bjq8K5k/rp0KLuA3Fe7f3KdbIYGPI+zmGeac8I+5ix6fh3ok+Azk3B3JtsVeTTX0NecO7uV7iMeT4yGNxgMBoOTwC9KS0CKQUrLpMBViG864qv6MjPAWozD3lPDWyWnO/E9pUfTDVlL66Ra01p1GkOOK+9FA7ZWg/bL/KX26AR27rHGZ0qtxKpSvJ3Y2V+HfluzyHk0ce2qNBDPfPbs2W0YvTXWbAfNBAmUdpmDLgTf2rol4k4TdjK6SQqQwDsyX9bUAUicjQxWILAEaZlrmQP+32l4Lq+1Cl7o6Pa4NzXUqkNAQpci5PPrFB6vedX9pXloM+eROacvb9682Q1aef369SaMPytdQ1FnDciafpco7WALa0QdcbqDoTxP9K3TCllfB4LQ546OjP9xNtB8VmWwsj2/I9krrEdneWAfMxcmY+isbT5jq9JCXcCiSTm4l/F2lGlc2wXhrTAa3mAwGAxOAkenJVxdXW2IZFPyMfWVEwtB3mP/gCU9h/znvU4PWJX8SanC5NGWuJAc0j5tycZlaSwtppTohGbbtD1n+Rl9cuFZ2uxs96bwWRUCzfGtpNpujVfXXF9fL23pjx8/rg8//PDT7GvRAAAgAElEQVR27F7z7IO1crTCjibOGqh9rHt+zBVhtkujdPstx5V9QzJO36Q/s58ZLQRNP0Ow8SfaYkJfaTvXkj7SfxdtdWJ/7jvPoy0lTmauOpwX/6RPnebmclvn5+dLDe/q6qq+++67+uijj+70P32CPkvWNtEK8xkO5Xcpmr0SZ8yp/XBoJB0RApq8rSiAPZMls/zOY/5tYeiex75irRifUzbyLDrBnblh/vZI0le0ZyvKtnyO33d7tHgmVH+o/65qNLzBYDAYnAh+UQHYVaI4n1dtiYVNCH2nE6IvslZhya+TuK212R+UicAuHeJEWaS1lCBNnmotxL6PlEislSEt8fyuTIupzPhpu3WXyO/PwF4xSfu+VkV+c+4dNbnnw+Ne+y87GiUXMPWcJ0yBRZ/8915hXhewZewdIYB9ZybDtrZWtfX7sS723RLZnPvOCczuo3282QeuYQ6YV1s0unn12e7o9sAqediRxJ0/KzWX+yR1n+WuNI37YF9uR2HGPe6vLSG5LuxftA365ndYamu29PA368F+yLWkDxAeOBrY+zvfITzHlhH+NoVe1VaT9DWrkmr5u8sg+fPUbO3v857l7yR2cOzFDz/8cO+757YPD7pqMBgMBoP/cBydh5dawyrfq2rrYzDp6UPJPvOevagy54S5JEZKj5ZiXM6kKzeBRGVaKCS8lV2+ausPsaRnzatqm1/o6KWVr6VqKwHRVyTJPYmbPjlStqNosxawlw9zc3NTl5eXt5GIRO12vkf6gFbjPuRYV/lA3pvdPFlaJR+P/cDziBatOkjajnBjffA35v5m3l3Yc0UTl2OxJO3o1j2S4pU1wFaD3Af2YzmCcc+Hx7yZZss5VdnH9GeupHTIo9G4OT85x5x3W2JM1J3rvypqSr/t083ix2jrtgI4L7QrMYblgr44ijfPGNGejJlxcg00a13xYFvKmHNbGDo6Mmt43ufdOff5tKbX5QWuyh/579yj9tPvlZYyRsMbDAaDwUngKA0PKR10hRFdpoLPkHz2bK2OxrRU2d1rpgskEK7lualJcA/XIq0h8ZiAOsdF37gHaRZJDykw/SJIdPTFbTGnmauItGeS2r2IJ3CfD7STBlc5SKsSTVUHSSvnfK+I59tvv70hdU6pn2cxh9bK7IPqsPKtdgUyLcm77+wHmD2qqj777LOqOpQ5ev/996vqwBgCunmCmYi15XlI8dyT2pN94CsJPM+lS1jRR+fQ2b/VPYdrLXGnT8V+a2tG1rKqtvmje0U8IY9mn2FVSf+Yffb0ZeXPpt38uco15P+c8arD+WeM9IW1hZg5Ywcc4c17gUhcR5hnH1hLtDTOiHMdc45tbXLpNqwVuZY8Z5WH6ffrnkZpDc/vsIQtNCvi6art+X+o/65qNLzBYDAYnAiOjtK8t0EV1UQCsv+o86mBFZ+fS9ZX3Y2cqtqyibiAZt7vyC4XNE0tzbZzSxWWIJNf1Iwa1m6cN5XtuS8dc0z2vevbShvsbPdgNY97OTT3RdpdXFxsfCzpFzFvJHNoP2YXGWapjzVl/pyTVrWV4K11oHmlZI+PDi3DkilSe8cGwz1//OMfq2qbU4evMPfqKuLR2kKuOfPEZ2gFZufoCsA6uhqwH6wF5RzY/+J8w2yTZzO3r169Wkrq19fX9fLly43/MCNhzeZBP7scV99jbcLRwuzRPNOMycw6/HQEeNXhHcL/8N25MGuOxVqT8xddKDXPhqNPeQ59Zx6z5JU1ZVsBVkWzPdYcj//f3btiY+kiypnbjDKeArCDwWAwGATmC28wGAwGJ4Gjg1YyBHQvYMJqrKnFEqvEVZscuuRKzBoObHGZniyf4gAaj8M0Ol0f7YilH5gc0uzqVIkV/VqXAGqnvp37nbPfwT82C3TUYjZPrqo/55z42W+99dZuCSL2T7bf0am5+rqT37PfdrJjRnGycJfS4Irf/GRcmDRJCK9a0+Bh9uJnF8jFT6qTc60ppwiIqdoGYdi0hAktQ7WZJwInnLqwF9TkgJNV2auuarXN/g6AyefQLnP7m9/8pk0Kp59XV1ebRPmO3H1lFu3SEmwid1oMn7NOaQ434Tz3pok2+5UwocKq9Fg3Hu9rp7p0wUuAvrK/MM+7bFE+pyMLz7YSNmGuzm9XOs3fKTaLd6Qcdmc9BKPhDQaDweAk8IvSEpAqKMmRUoYlQn9z+xs9/2cp0iSxXQizNR9rMUgX6TB3wqVJgi1FJ5wIaWdpR5Zt573/b4qrbHdFz2TJKyUuaxRObN6TPp2wbSk9x+B273MeX19fb+Yix8w6O2DCEmIXgGCKNWvNXf9Zd6RyzzGSfWoS7PlV0WCk5S5Aw4VE0YiQuB0Yks92AJc1vwzacZCKgxaYzy4AwVK4Cb27FI6uRFH+3QU8cX8GZa2sAzc3N3cCorq1vC+dpktLcUCWtds9bWpljUJb7wKsHAyDBYF0laQUAy5o7LPrlIkMrHEhYBNudIQXTuNw0r3fVbnmfvfZ+tJZiazBmuavs8xwT9LrTdDKYDAYDAaBo9MSSAKt2hZSrbqfALpLVrfk63Dxzv4OVrQ1DldPjQvJDgloFQLb0RCtyFWtYXQ2bvqySqpMGz7t2DdpLYS/M0TbWq6lpo4s2GN2QdUuMd1a2p6khR8G/4XbT1jKdGHelBBXCdlOWu8SWJ3uYum584/Zz2ItyYVBs0+EgZuWjHPEGDJZGanfvkFrLDnvPmtOuwDWcLp27Tfd86k4lcWE8V0yfra7t3cuLy83pO+5livftn2uud98xuyzQ2vqiM69b+3TMzVg1WFO0ez4SbqKqb+qtuTktoIxB/QxtVDGQftOOdkr+QU8RzzHhWmzr6vC03v+/ft8r3meWBfWK+Mz7sNoeIPBYDA4Cfyi8kC2yea3vIuq2tfV+Sm65MKqgxSRFF9VfcHZFY1OJ8W4tAuwNtX5Ci01r4rT5lhW43PUXEoxq3JHLh7r/mU79HE1F51WYGlsj7bH/d/T8K6vr+uHH37YJOrm9daWLS0z9pRiV4TYbqPTMrymzJul9U5bQ+K2D68jVOczF1x1IVZLxtlHg3Fzb7dX7btbkRXkGpuMwZpeJ61bi/Le5d60stCn9NXs+WGurq5un91F55ngYhW92EXpuo0VBVbnJ0cbZx8wRtMIVh3OY5a1qTpYmtDE8pxa67MP32ewoyUD9n26iHX2zVYoxkNfXaA120+fftV2X3eEF9ZY/V7N9SSytyv5dR9GwxsMBoPBSeDo8kDn5+ebyLFO2rP0vFcWyLZ++wn2/GKryEd/3vkZV36qzsdlqdLP2Ytis3/MGp214vzdkZyrHKfOr7XKbwQpAbqQqqVbR3xWbUuhnJ+fL6X0s7OzevLkya221kWk4XNY5WMhRWfekDVfz7GLnXb9c2mXLvIVQBKMz9R5eF0ulZ/pnNS9yDf3gXkz1VTSkXWad17r4qEJ5185P7Mbn8+n9yRrTl5gd89ehC/UYoyxoyrrfJnZh1U+Wd5jn6bz5Lq979Jb1oy6EkYu8YRm10W7otlwr61F3AMBdWIVsW7LRb53PAfsIeeKst+7ItKryPIuutrvqlU+Hv7O/F9qvVMeaDAYDAaDwFEa3vX19R2pEEm7Y1GxHwF0JTCsAdkGbCmqYwixhO8Ixey32RFWhMwp+dgv4UKIe1LMymfj0j8psZro1flkHsteeRXn3XS+kJXPBjjyL9uh33vlgYi0s/8g19L+IWsK9vvks1dWANbdfqZsz3lpaCSOOqs67PmVBsl4Oj8j2qGjTu0X7qKDfcY87tSYbblw5LS1tJxPPjNjiM9tZ1FwuR1rTrl3KYWVxWHvKwBLjhnrk31gvm0ZoU3+n3vekdz299pf3rGY2KJllpbOH7uKKE2ScgONylawPdYRLCI+py4M3eVHOjqTv1dFmau2e8TWlj3LyUq79/s228fKMuTRg8FgMBgI84U3GAwGg5PA0WkJV1dXG2qXTHpeOSFXqnjV1iy3CnDpqHCscptYtgu2sPkRE4kDN/KeVVi2TaddcrTTH2iD/3d1ozBR2XRi01xX6dhz7nGDzpRhE43nM00Lbn8vtPz6+rp+/PHHTVJ3kmy7Or0DDboEU5tNHJ5tU09H6kwb9IXUiW4fOBWH9hgPbT1//vz2Hofl31d5vFtLm8o97lxL+r+qofcQ8ztzneuTn2cdQ7skMPvyfPqTa0G7mVayMmk+evSo3n333friiy/u/D/nifY4N11yetVd07D3ooNTnDye53MVNMS9vBM7E7+DRUx1mOuCmdNr5aApp8dk/21CtLmyS7ew+ZXncS1r2rXrfe0gwM4t0rkccjwOTsz270tpuXPPg64aDAaDweA/HEeTR19fX99+QyPlZbjxKul5FcRStXXe3xdKnNKAg1ZMzOtnZB8scVtSTeeyNUk7Yi3F5L04si3B7lVl9v8cwLGibMux+hqvRRf+7rB0S4c5r3bq71EHvXnzpr788stbSRQS5hyzk8iBgx7yHgdMAIdkd052NA5+WsPqpEpTOLGH0Cwc+l+11UwZn2nJ9six6aM1WFsnqg7n0oEuK2tIgnlCojeB9h4dlZOFHfCSc+99m+TQxvn5ef3qV7+6HY+tLVUHrZLAIGBtqgsicfI+f1vzSkuWx+Fq5tyT4fTvv/9+VR2SyekbZ6ELTCPJ2qkMaFgml+7OE3DAGGWq8kw7XYi+MnZbMjIY0O92n71Og3cgnc+ex53jykrxe++exGh4g8FgMDgJHJ14fnFxcSvd+lu4qk9MTViTqOpDnau2iYtIEyk12dfU+TSq7oaJu2ClfR30kYTQvXE4bNZFRPMzfpLESZ+tjVYdJFVLSQ+h/LJm7DmxVpz3WJJ3CaWulEgmw6769fr163r+/Hl98sknVdVLy6vk8dUaZ38dUu7E2c6viVTs5F5C5sGHH354+zvSOP3nJ2uLRJzzhDSOhoJfxnRR3dlAmqWv1hY7nxrh+6ZmMxFBR91nTcVad6f1rqwPTrfJ94Tvubq6Wmp4Z2dn9ejRo00KSO6hlf/ffvJuf9qKwj409dYeebTTIDoqM6e5sC7sKd4d6R9DK+RaLAxObXLMQs6JrV60xXNyHj0XtOeSP04MrzrsQWvTq/Jk2Y6tG/SVOekI3FMbHR/eYDAYDAaBozW8x48fb4pdpvZkv0BX1r3qrpRuupxVEjQaF6Xpq7YlXZCwTV7dUX05Esm+wpREkHAs4Tp6krlIadA+G5e16KTPr7/+uqq2EpD9IS4xk/dYs7P0tlf+yKSu9nPl77kGKw0P8mgkN7ScLmLLCfn2J2b5HLR9r6Wl8i4ykTnL9vK59IMCnfm7pUzax5+d9Gc805ReaGKWgDtNyGeCNpwsn+As2NphzS6fd98+cERrXus5d5JyPsf+pXfeeWfphzk/P69333339gxSMDfbWCVKm04r95u1ChMcrHx7Vdskbp81NLHUnrjWUcj2+6Xmwu8ff/xxVVX97W9/u3Otyzbl+4l3yEqDZa+mtsp+cgkhR4OC1EZ59zHm1Xu8I9b398RedGYmnNP/0fAGg8FgMAgcHaX55s2bW4mBb/CkxDG1D/A3d0oxSH6WfBzZ2ZXZsVSJ9mefQ1d80nlJtNuVUzHdEBIc/7dml1ovfbIGiYS1R6jtCEi0Edvhc07s97EE7py7/B+wxNjlyXR+nZUf5tGjR/Xb3/52SWibMB2YpffUuIhi4x7WxdFmHQ0e68FnrAd9QoJMH57Jc72/Or+YC8kyR167zu/jnDATPnNvrgGaHX1xdKPXIO9dRZDuUdcBzjH7jHGjhef+d3ThO++8syQNr/r3/DIu2kuNkbZdFshaVEcebU3OVpTOasHecA4f13ZllJwjiKZKn7rcVJ6DX5m96v3HXsrx2ZfmOe98avTRObGOwO20cef92YfXlWXz3sfqwTqaZrLqoOGllWVv7yRGwxsMBoPBSeBo8uiXL19u7OIpVaHtoYl00VhVdyUES5q2G1vzSwnBzBcZrVa1lcirDlIEErClCf7umEj4yThXOWOd1GxNDknO9vK81r47+uZCutlXlx1a2dCzPx4H7dPHruAj/6NPT58+3S1Y+umnn27y4bq8Iecw2TqQ/TahuKVy+s+a573O+UGKNqtEaqFI2N6raIed78aMGqsiq50fxmVhXCSXz7M8EO06j8znqctx8pqu/E0J+96tbTBHXTRgas8rKR3/L5+j6aHdVx32ClqGfVsgtSdrwibdXpGZJ1aE8N1aMj8uLQRoI6PDeW/ZV+/3Qse0Aug/621GnHx32IJgrdRrlNqv4zdcvBp0LFv0zWXQuDbzK9lfXR7pfRgNbzAYDAYngaN9eK9evdpEJHWMJPx0xJ39SAl/u1t6X/GtVfXsFFUHKSB9OmbLsD/OPsOqrQRi5gs/vyvX4fIsSLzOZ6vaMmnYbr1XAHYV+dT57oC1UOaGe5EGU8JzrsyrV6+WGt7FxUV98MEHGy0tpVkkN6Q555N160IOExFpjJF77T/NsTOnLt7JPfydeXmrKFCez/hSK6T9VQkr4M+rapPz2vk0qu5aMD7//POqOuydZ8+eVdXWl9dxN7Ieq7JK3R6yVmDLT8efy1pzLq+vr3cj7S4uLjbnJsdsS4S5Op1zm/1kbv0+c7Rux8O6KqPl6M2qw3vG0blYi7rYAWvj/GRu3Y/cU7YGcE5diDb3KvewPs4htTUuo5GBNTpblPJzW6McMet3QtVh/XOP7uUlJ0bDGwwGg8FJYL7wBoPBYHASONqkeXl5uaEmShXcxNKm3Gk7oarkTlR1+HsGydg5bNqeLtAFMxjPM7WTiairtuaAVYKrHcR5rYl5XSE4x0XfUOmdxLsqoZSgXQfysBYO4c72GKeT8juS6ocCarqqw7gyiID23nvvvaraUmN1wURQL2GKow3G7ATt7DNr6qRtTE9dYI3XnXUwfVdXpsXh55hzTEfXBQY5fJs2baas2ganYDJzAEwXOm+iAbsgHNSSfXO5JcD8pRnWQW17ycPsG1fdznQoB2TYPMmcZlrKqlI7MDF87hMHWDHXlDAycXbXvt08JtHIz1xJ3cEsJvnO/q+CVrqSX36n+x3l0nC5pm7Xpvy97wC/87mHtU6XFH30Hn0IRsMbDAaDwUng6LSEn376aUPmm0m2dq4jLVt6S+1pVVYCScGSaZfS4NBnNAiTIuf9fg7jsFTT9cXajQly83O0D5MfW0tLCRKp32HBHndHnWb6J4efu3xL3uNQYs/5XiDPfWHCNzc3G4qiHNdKE7ZWlZIi2joagxNXTYnG5zkfrJX3avc82jP9FOH1XSCI6blM0GzKORKS83/WsG1ZSAmY//FzRZLehXw7yMxgX6ZWYJotkwq4AG72f/V3AkpDgDaTwRarIDIH2HWJ505lcUCY3zFVW5J15piz3pUE8zlZtd9pz7Z2sQ4rwv1ufLZcdXPB3LrdTHtJkNpRdTjL1pxXlGr+veow3iQkqLqrKXfUdVMeaDAYDAaDwFEa3tXVVf3rX//aJLamNGCJGukZCbyTHGmPb3WkDPuPnBCaQBKw5rDnrwKrNIGEE1ktmaxSAaq2Ye/W7Jz4WnWXGDVh6XOPzNf+Fif9d+HvnnOPMzXXzq+3AiVekAg7SjE0AMaMlk5SsTWG/P2jjz66c+0qWT37ypyx31L7y7a7vfO73/2uqraag8sS5TNXVg5TfXXXWIOhLfrclW2iPfuMvYdSe7JUbgLvLl3B1FzAZOCp4XFPvh9WUvrZ2Vk9efJkE2af1oHVXjRJRmoKTiGxRu90nrSI2PJhfxxjzXucsgVsFUityWkoK9/6XqyEfateYxcKzvadSmCawtw7fjf6fWMyi7xmlW7lEk3ZF/DQlISq0fAGg8FgcCI42of3/fffb6iXUopxEjVSFFLLXnShpYaupAv98PPwQ1ii25NiTZALOhs3Eraj/RzVaLqoxKpIrX162a5hLdE0Qfm7fZROmu58biYPBl7P7EOXUNrh4uLiVirnniwvYr+I+9cR1zo6F4lwRQiw50daRaRBG5afmYjXhTgTXgdrB46WRHvM35kTxmu/T0rNJnf3eLw3O3+cLSSOIOwKcrqki898+vptufjpp592JfWMDrcPrOow/yZ8YD90lG+rZH7vfRdBrtoWHgZuKz83WYH98F2MgjUeW0E6uj33xXR+jj7uSkvRF/t9QWdtcQm1jrqs6i7ZBPPkiM4V4UFV7wtfkdYbo+ENBoPB4CRwlIZ3eXlZ33333aZURNrFkepsr3a05F7uhImSHZGWUpxJWy0t227NOLr2HFmVUrN9F7ZTWyJJzWJVJBLwd2cPB6YOshSaEp7zUyw5dxrsKmJsRWlUdZAMk1B5JaXjw/NYU5tx0VtrxN533f/QxlySxn7grn1HL7K2qRVyT+erqzpoEB2Fla0ObrOjo3Jf7BtnXTLS0pqDzwT7uvNV2zfkHK4u99a+u1UJo9zf9J9z++rVq6WUfnNzc6e4cEd6jfZobZp+EkXblfxaFWI1MXtaN0xWbssS6HzVzqV1P/JdYquGqRL9vPx7VXR7j/7Mz7MGuUcE7ef4/ep84IRzux8SuZp520MtNhgMBoNB4GimlSwP5PyoqoOEbZJZtIDOX2UJ2HZdS37pC3Duh8lUrYlVraUUs0ykRHIfgXX3HD/PfbRkn9KgtUBLPC6quCe5OpKw8/vYt+ZyNJ1UbV/Kzz///GBbuousVh3yzxy1utJ2sz9ciyQP4bPXK9fezB2eU56bfh/7hB352EUs2p9oLdFrnVL6KkfV/rJcS+eT+R7n7uWcWGPwunNPl6OKxM04HZ3ZRTk6UrkDTCvMmwmuqw5r6PPBewdLQqcBWRu0b7XzX/tMe890paUcyekoUGuwCb8jbC3ozidYWb32WJq8n1fa8J6m73ljj6bf3mvggsfMZ8Yo2DLz+vXr8eENBoPBYJCYL7zBYDAYnAR+EXk0Ib5WO6sOpiSCVyB4xSxEAnpH00N7Jk522HNX8XyVoN2lCdjEZye/E0+zna52XdXWTJVmiZVJweaJzpTlYBI7ZztTa0eFlM/lno4cm3G44nWXfL0iGO6AWcpm8KTEcqqFzWj0Ic0bNoFgPvv444+rakuJ1KVO2OTI/uO5aXa1KY7nEjTSJdY7fcdmfZt+0sRpk1VHGpDXVW1dDQ60os8+V9knB6swF5zjXAOnLDAH9Ikzn2vh87oXtAK1WLf+7rcJAJx6lO8O3i+4LpgHuxw6mjC7J5zY3pENODF7VX+vo040leGKiDrfxQ5acl+druAxVvXpB3ldviP93vE1nQnVCfXuK2uU7zcnv0/i+WAwGAwGwtGJ51nVugtaMfkoUh3f4JD9ppN9RT6MNIlDGmd1SiRIq3uhve6jJQJLWJZy85mWwhwIQH/y+fzPztYVFU8+b0U/ZQLonE+wouDppE9rci5Ls1ctPZO990q8PH78eKNx5xwjzWEVcHAFY+z2DvvOieBQjr148eLO+LJ9/21pvSOuXaWYgNyjDlZx0ICl29wH3otOlu60a6cEucwSz+2Sli310y5aW3e+rEnwHK8FaSc5Jx2tlUFaAucfrTODH6x5Aydop0WB+5nbr7766s61BOD5/VB1eDf53Dv4pgsms9Vmj1zZe8Lrb0quLh2qKwOVf3eJ7k7dcoCNUyuqDvvY6w79XVc6zWXc2A9+V+a6OaH98ePHuwE4d8b8oKsGg8FgMPgPx1EaXtW/v9FXEmTVQdJ2WROku2fPnt35f7ZjzcNErJ3d2FKzKcA6OqqVb8saZld00KG3tve7IGjea+nPkldni/aYrR10SeT2jyARWRrsfJRO/rZ/M0PBGXP6Vvco0V6/fr2hH0q/Dn4w9pBLhXSJsvTB/WftCEen3/k8J8j6eU49yGtNuWQfZ66H27FmZetE3muflLWALsQczcXljpiTPWo9/ufiuPz8xz/+cefzHDsakS0/LrScv6eWtsLl5WV99dVXtxoY6CwULim1suZUbdfFZOW+N9NTnCaw8o91ViKfpe4c5djzXveJ9k28kWP1mXTCe7bZWbeyLeAirNlX4HeUrUb5GXO/Koacc8I+yO+H0fAGg8FgMAgcreFdX19vfABph3dxRkeGkVzcRQZZIsEm/JAyFsDSuimA8vf7yvV0UVmrwq8rEtls15pVFyXl+21nt8S/F1Fq6d8J9qnROpk3KZ+yzS6h2pGSHbAM4I/tIgRZX7QytAmeSZ+y316zlQ+XhHT8g1Vbn4N9qZ3U6DHaR9RFzdJvF+R1gnPn11yVWvGa5pz4Wu9R+4VzDSzZe2464mZrcsDkBd1nSV23irZ78+ZNvXjx4vbd0o3ZfjHaJWocy1IH+m/N3oVzu/eP94gjsBOrMkreq3tn2cnre4Tt1uB9RkxE3fXNPkPvg73Cq6yXk8o7/7bHwfvI0dcJ9lU31yuMhjcYDAaDk8DRGl7V9ts4pQIiclZkrvhY8luZb+/Ot1S1jZbrijia6ievMVZ29lWOU45jVWjxoSXm81rnnKS06Kgza3TMZyfdmP5nJQHlOrq8kbX4Lg/Q++Dy8vJeih9r1QnmFl8Qtnqk9K6QKPut85lkfxkH+XlVVV988cWdcXS5TB7nSmtijpE6U2tyNJ7zvbzvuyg9azCr9XF/s31H8lryz99X/iXGkPR+HrtzUlmj9Pd4P/34449LDe/q6qq+//77zTymhkd/GCN7hLnAN5T99jX+f+fjAqs4gNU6ZX9XBYE7cnTHFVgbtHUoP3ce5qrkTz7PffN7Z2/feQ5sHeoim00XZ+uKfck55swEGPLowWAwGAwCR2l4SFp74NsbKck+FaTAbAeJ3kUnrakQyZMSibUX+7666CbnMNlP4bIg+ZnJaZ1D2JVC6fxf7lP2J8dlFosVG0nno7QkZOkwfS620dvP5Ovy/ozWvU/S2tNmaM+k0ewVGDtyHKt5sa+jy1PCr/f8+fOq2loJOsYaFyVeFfHN9bCmYKndlgcdm1YAAAQ6SURBVIVOW3PUmllZ7Fuu2kra9qFYE+vGvCJlJy+v6rA+RIXeV1i5G8eedYAIX/vH8j1gjcM+Lvr2wQcfbNpflfhxeZu9d4gjbvdyHGmPfUzfuvG7lJPbdeT1noXFEZ8uuJzX2N9ny5b3Y9X2/W0mpi5anXbQ5LjWkb9YeXLsWSaoI83uMBreYDAYDE4C84U3GAwGg5PA0eTR19fXG3NUhh2jWpOkaTMhppE0pxEqbroc00Z1AQ++xyp3F7xiM9iqNldHR+aABsZhs2jC43DfraLns1dhwTYnpplsVQ3dJoyOkNXjdUh2mqJdG+2+5M+zs7MNUXIXEu9EZdc2y3ts6rGJeZVIW7WlH/v888/vPP8hZL6rNJicW4ejr5L6vR/yHtdIcwXyfJ7X36YmJ9h3tHSsrUkmGEueK5NM0CfONabodD+YeGAv6AvSetDVzrOJ1y6VLgXDe4RreHfZTdGdbb9L7DbIc2VTpt+jDp7K+z3HTqx3XdD8bJX20AUJ+p5jUqnsBqHvnudM4P/yyy/bcWDC7AgvnJ4y5NGDwWAwGAhHB63885//3DgyuxBlS42rUiVVh29slxex9O5AlKqDBMA9drp3jlJLLQ7PtfO6aqvJdSHd+XdXYd00WE6gTUnM2pid4avk8rzWWqlDivcc3Jbsu3FZQ95LHr6+vq4ff/zx1hrQVcF+7733qmq7h1hb7k1N2UEVloQd6t1pBya79X7LMVnTstbUEUBbegUOSOlIfu8jqbY2l3BAjYMIukRga3CsgZOz83xby7FWaiLgqq3GtUcPxd5JzaCqJwJ3GgKa6h7JNtfQl3yf5ThSQ+1o4BIuCZX95bnMsVNq9qweKyuBA766vqzIKpJCcVWGbJWKlpYla4crQoU8G6zTKl2J1KSce6wCK8rGPYyGNxgMBoOTwNE+vC4ENL+V+TZHCkcqs9TcaQou1omkhRRBmylt0L79VF3osvto6dnh4imdrcpkrBJz817T51g76wqyWpPjp8lVPabsm0OlrSF3xSk9dofS51q7MOZeEU9KvHgOOgo2h4HbP9LNk/tn2z9aYq7xKqXAz81Ed/xSK0okt5XXOHTeUnvnHwMrfx//7+5ZlVjheZy3zh/n8TAH9DF9udYgXDS205Dsrzo/P19aB6Cl20vjMVExz3TZntznpkY0EbzfHTk3thhYW+/8cXvvzUTeY+2I55ngwBpuXrsqju2x5POsBfqdtecb9x7yOzNTDHyNrV+ct7SO+Ax0Wu0Ko+ENBoPB4CRwdh8V1J2Lz87+p6r++/+uO4P/B/ivm5ub9/3P2TuDB2D2zuCXot07xlFfeIPBYDAY/KdiTJqDwWAwOAnMF95gMBgMTgLzhTcYDAaDk8B84Q0Gg8HgJDBfeIPBYDA4CcwX3mAwGAxOAvOFNxgMBoOTwHzhDQaDweAkMF94g8FgMDgJ/C+w5E3PhBpKYgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Zddd3/nd79VcKpWkQlUqSZbkKXig7aYb0iSEgFkMxs2YlUUIkERgN2ZIQgY6IQ4QAw5ThzEBQzO5IcZZzHNjE8BMjgNpCDaDbSypSiVVSSqVqqQaVVXvnf7j3O89v/c5v33evWXZkvL2d6237rvnnrPnvc9v/pWu69TQ0NDQ0PA/Olae7gY0NDQ0NDR8KNBeeA0NDQ0NWwLthdfQ0NDQsCXQXngNDQ0NDVsC7YXX0NDQ0LAl0F54DQ0NDQ1bAs/oF14p5e5SSjf7+yvJ7x8ffv+kcP1NpZQj11jnkVLKm8L3Twh1+O+hUsqvllL+6jXW8dmllH92jc++ftaGbZvcdxfa/OSs3b9RSvknpZR9yTMb+r5ge+4upXxx5XpXSrlrmfKeiZitpwee7nYsgzD/dz/dbckwG1Puq+zvE56i+v5TKeU9T0VZs/K+qpTymcn1bymlXHqq6vlAUEp5ZSnlJ0op95ZSLpZS3l9K+fellANLlHFHKeXHSikPl1Iuzcr6+g9muz+YmDw0n0E4K+nvSfpaXP8Hs994eH+jpO++xro+R9ITyfV/LOkPJRVJt0v6l5L+cynl5V3X3bdkHZ8t6ZMkfcc1tnEZfLOkX1Q/1wcl/U1J3yDpK0spn9p13fvCvbW+T+HuWdk/guu/IumvSTpxDW1u+MBxQv343/N0N6SCb5T0/eH7ayS9WtLfkLQWrv/5U1Tf10ja+xSVJUlfJemX1e+tiO+V9LNPYT0fCL5cPVPz9ZKOSHrR7P9PKaX8z13XXZx6uJTyQkm/p34OvkLSSUnPlXTnB7HNH1Q8W154PyvpC0spX9fNPOVLKbsl/W1JP6P+0J2j67pr3uRd1/1x5ae/6Lrunf5SSvljSX8p6ZWS3nit9X0IcG9st6SfLaV8r6R3SPqp2cLvpMm+L42u606q3yDPOJRSViWVruuuPt1tWRSllO2SrnYLRorouu5JSe/c9ManCbM9Ot+npZRXzv79r4vMSyll56yPi9b3/uVbuTy6rjsm6diHoq4F8OrZPjR+u5Ryn6S3qiduf2KT539Q/Rn3yWFOfvupb+aHDs9okWbAj6unKv5GuPY56tv/M7yZIs0g3nltKeUbSiknSilnSim/VEq5Hc8uKtYzJ7Q9PHtzKeUHSinvK6VcKKUcm4kUbottU8+Z3hbENkdQxvfNnn1y9vnjpZSdqP+5pZRfKaWcK6UcLaV8XSllofnsuu4vJb1B0sskfeJU30spz53V/9CsPfeWUr579tvbJX28pI8NfXn77LeRSLOUsr2U8oZZPZdnn2+YHea+Z5m5+rxSym+WUk7OxuGPSyn/gP2dlfdvSylfPdvwlyV99KwNX5nc//rZ/N24yHiG576klPInM9HPo6WUHy6l3IR7/mEp5b+UUh6b9eudpZT/Hfd4DL68lPJtpZTjkp6UdEMY148ppby5lPJEKeV4KeV7Sim7kjLuDtfeVEp5oJTykaWU35318S9LKV+a9OWTZuN5qfSisNdwX32oUHrRXFdK+YxZG05JOjr77UWzcThSerHdPaUX212PMjaINGfPdaWULyqlfPNsfZ8upfx8KeXwJu15SNIhSa8O6/77Z79tEGmWUnbNfv/a2fo7Vko5X0r5hVLKTaWUw6WUn53N49FSyj9N6nvBrP2Pzubj/+OayYCXnfGHs8/bkt9inS9Rv7e/ezMCpPTi3ffMxv+xUsoflFI+fbP2PR14tnB4RyX9jnqx5u/Orv19ST8n6dwS5fwr9ZzNF6sX7327pP8o6RMWeHal9HozizS/SdIFSb8U7rlJ0qVZPScl3Srpn0v6/VLKi7quu6RelHOzpI+WZB3Ak5I0O2DfMSvnDZLeNWvnZ0na4ftm+DlJPyrpOyV9hnpRxbHZtUXwq5K+S9LHSvqN7IZSynMl/cGsn1+nntq7Q9KnzG75cvXjtyrptbNrUyLR/0fS56ofu9+T9Ncl/WtJz5P0+bh3kbl6nqSflvQtktbVi2t/qJSyu+u679dG3C3pXvWiqPOz/39e0pcoiL9Lz/29WtJPdl13eqIvG1BK+Rb1c/09kv5P9QfKGyR9RCnlr3ddZzHdXZJ+SL2IaZv6ufvlUsqndV33ayj2X6s/oL5E/RhH3dCPS3qLpL+lXnT5ekmnJf2bTZp6vXrK/rvUi7a/SNIbSynv7brut2Z9eYl6kfQfSPo89WvvayXtVz/OTxe+X/1++7uS/HK/Tf1c/qSkM5JeoH7c/icttq//jXqu5e5ZWf9O0pskferEM6+S9Ovq1/A3z649vEk9r5H0x+r3ye3q9+2bJN2iXoL1fer3wHeUUv6k67rflKRSyvMk/Vf1e/sfSzol6Qsl/WIp5VVd1711gT5GfPzs8y82uc/MxZVSym+pPyfOqd8z/6zrujOz9r1a/X5+vaT/ImmPpJerP8Oeeei67hn7p34RduoX8Rer39C7JB2WdFXSJ6tf1J2kTwrPvUnSkfD9rtk9b0f5XzW7fmu4dkTSm8J3l8+/M5JetUn7VyU9Z3b/56B9DyT3f4N6/cVHTpT5+ll5X4Tr75b0tqTPr6mUs3P2+xsn+v5j6hf5rRPtebuk35uYu7tm3z9i9v31uO9rZtdftuxc4fcV9S+QH5T0J/itk3Rc0m5c99x+XLj2mbNrH7PZfGGs1yR9Ha5/7Kysz96kzW+T9AvJ3P2RetFrNq5fj+u/LOl9SRl3ox+dpFdgHZyS9H+Haz+hnmDbE64dVv/CPVIbhw/kL6zrbclvr5z99pYFytmmXj/eSXpxuP6fJL0nfH/R7J63VtbjTZvU85CkH0quf4ukS+H7rll575a0Eq5/3+z6V4VrO9SfcXFPvnm2dvejnt+R9M4lx/gG9WLk/x7bssl8PK6eOHqFpC9Tf+79vteleuLtHR+MNfHB+Hu2iDQl6afUb87PkPQF6hdcyplM4Ffx/d2zzzsWePYr1HNlH62ewvs19Tqwj483lVK+bCbWOqf+pXz/7KcPX6COT5H0h91iurRfwfc/1WL9MMrsc0on9CmSfrnruuNLlFvD35x9/kdc9/ePx/VN56qU8sJSyltKKQ9KujL7e43ysf61Dkr6ruverl4h/9pw+bWS3tVt1Htuhk9W//J6cyllm//UU+ZnNfRdpZT/tZTyy6WUh9Wvjyuz57M2/3w3O1UScP7frcXm/0I34+Skua7vfXj2YyT9atd1F8J9J9Rz3JMopazGMSgLitkXxM8l9e2aiQvfOxMlXlHPfUmL7blsHKXl9tIieFvXdZE7tnh1zqF1XXdZ0n3qiWTjleq52vNYW29TL5bfpQVQStmhngs+IOnvoi0ZPG9v7brun3Rd91td171R0leql8x8wuz3P5T0v5VSvrOU8omlt614xuJZ88Lruu6senb676kXZ755gUkjHsN3iwgXWTTv67ruv83+/l/1YpV7JX2bbyil/CP1lNt/Vi9q+qvqD49F6zggaVHz96wvCy3+Gbyppqwol2nPZrCIg/U9hN+NybkqpVyn/mB7uaSvlvRx6omRH1FPGBG1fr5R0t8upRwopdyp/oChOHQzHJx9vl/Di9d/+9SPo0opz1FPpN0k6R+pPzg+Wj3xlM3d1Nxk45P1m8jEtFw7hyU9kty3mdhO6vsX+/91CzyzKLLx+Hb1XNmbJH2a+j33ebPfFtkPH8iZsAw47pcnrnuNr6pfK1+i8br6RvXn96Z65lk5P6FeTPkZXddtJs6Ueq5fGogH422zz4+cff6gelHrx6k/9x4rpfxUgb79mYJniw7P+DH1FNmK+hfO04au67pSyl+o5ziNz5P0G13X/XNfmOnBFsWj2kSZ/BTCSu/fm7jnqWyPD5ZbtNFU/hb8vij+mnpDpo/rum7eh1L3T6xxSj+mXg9zt/rD44J6MdIy8OHwKcpfKP79ler1YJ/bdd2ckCil7KmU+3Tl7jqh4SUecWiBZ1+rjW5CT4V0wMjG4+9I+sGu66xLUynlw57COp82dF23Vkp5XP2Z952V2x6dKqOUUtQTgZ8p6bO6rvvdqfsD/myT39dnbVxX74rxvaX373uleiLkzRpLbZ52PNteeL+umXK667rNJuSDipmo5qXaaHq/R2OjjS9KHn9SUsb6v03S15Tet+9PnpKGJii9f83XqFeiv33i1rdJ+lullMMzkVaGJzX2g8zwO7PPz5P0b8P1L5h9TrUjg18SV3xhZvTzWcsU0nXdE6WUN6s/qK9Tryda1hfx19UfAHd0XUeKOCJr819Rr+t7Jjm2v1PSq0opeyzWnFkufqw28avsuu69H4L2SZof5rsVxnOGbM891ajt4acav6ZeivHubgk3jID/oH6Pff5MMrUofkc9Efqp6rk4w+4jf8gHuq47pV6s/7HqCZFnHJ5VL7yut3R7uji7F8/0clJvZfn3Jb1E0r8I9/yapH9ZSnmdegu3T1TvK0j8uaSbSilfJum/qVdyv1s9Fff56h3a36Ben/Bh6g/xL52JdZfF80opH6PegOZm9VTXq9VThp87oSOSegu2V0l6Rynlm9SL7G6T9Mqu674w9OXLSyl/Rz3ndjY79Lqu+9NSylskvX7Ghb1DPZf2tepfMu/mM5vgHeqJi+8tpfwb9U7FXzPr1/4ly/o+DXq8mjhzdyklm8v3d13330sp3yrpP5RSPly91d8l9WLjT1Zv3PBb6kU+VyX9WCnl29WLDr9evZ73maReeIP6dfvWUsq/Uy8q/Vr1Is2n00pzA2ZSlrdJek3pXQ6OqD9o/5cPQfV/LukVpZRXqRf/PtJ13f2bPHMteJ16XfDbSynfp36t3KjepejWrutGLiXGbF98ufo1ff/sHDAe7mYBM0rv8nRe0g90XfcVUq9PnJ1j319K+ffqHexfpH5tvLXrut+fPfsm9UT/O2efL1JP1C5rPfohwbPqhfc043vC/6clvVc91fSWcP0b1FtC/VP1cvjfVk8h3Yuyfki9bu+bZvcfVW/NeGZGHb1BvV7qgPpD5jc1yPyXxb+a/V2ZtfvP1OtVfnizF2jXdUdmm+QN6sV+10l6UNIvhNu+Vb1xwA/Nfv9t1c3B71Y/Fl+s/uV0fPb80qGKuq47WUr5HPXik5+elfXd6nUem5nms6x3lVLeJ+mJruv+qHLbTeoNp4jvlfQPu6573UzE/RWzv069KflvqHfnUNd1f1ZK+QL16+QX1RMIX62eav6EZdr8wUTXdX8+8/P6v9RLVB5UP0+vVG/9+UzCl6rnYr5V/cv4l9QTo7//Qa73X6h/kfy0ek7vB2ZteUrRdd29pZSPUm81+a3qCeBH1RPDm7kgfdrs80uTtsX2FvUE8Srq/oFSylX17javndX7I+rdPozfUz/ed6uX9ByX9MO6hj39oUCZJvAbGv7Hx4wr+wtJ/0fXdT/8dLfnmYiZkdD7Jf1K13Wvfrrb09BwLWgvvIYti5kl2QvUU6MvkPQCui5sVczEWO9QT7Hfqt4c/SMlfXTXde96OtvW0HCtaCLNhq2M16gX775PvXi6vewG7FIvQjukXpz+B+qDO7SXXcOzFo3Da2hoaGjYEngmWYY1NDQ0NDR80NBeeA0NDQ0NWwLthdfQ0NDQsCWwlNHKrl27ur179zqatnbs2CFJWlkZ3pvbtuVF9kERckz9lv2e6R0XuacG3uvvWbt8bbPy4++8d7P+ZuWsr69PtnWqvs2uZ22qjUHW9tXV1fnnY489pnPnzo1u2r9/f3fo0CFdvdqn1rp8uXcrdL+y9nlduXxen+rHMmNcq/9a7snmozaGvHdqbfG3p7J/y+yVrF72w3O6ttZnRPKcx3p8Tmzf3qdCnFo7+/bt6w4cODCfd5fnT0m6cuXKhjrZpql5uRY7hs2eXWSermUOa/DYxDJZ/tS+ITZrW9bvWp/jHt/sWX7PyvR54Gurq6t64okndPHixU0HdKkX3u7du/WKV7xi/v2OO/qA4jfeOMQvvf766zc0xi9Fd5qdl6Q9e/ZseMaIHZKGxRxfql7oHhjf6+/eFLFsbhze63qmDvfaoeWy3a74v8uNL4j4GRckN65fEJcu9SnReKj4M+sH+7fIocx5yl4+ngeXc/jwYX3nd+Yh/w4ePKjv+q7v0oMPPihJOnasTwp99uzg++61Ylx33XWSpP37+8ApPhz9GZ9h+2obNvbZz7iv/B7H1OA1fvezcf75EuYa4VjHMWab3H6PQXbQsV7Ww/Uf+8B7FnnR+pkLF/rkChcv9saujz/+uCTp1Kk+lKjXriTt3btXkvSc5/QxzA8dOqRv+7Z5HPYNuOmmm/S6171ufk6cO9cHPLr//iGwyYkTJzbU4XtIWGUvXd/jPvNFzbGO48Ax5jhNHdQsy/XE+eAeM9w2t2nnzp0b6oj/c9+4TNcT9x3XV+0szF5aHgP2/ckn+4ho2b7yNc+B2+Y15OuxXzfccMOGvu/bt08/8zOjPOApmkizoaGhoWFLYCkOr+s6Xb58eUQhRI6rRkUaUxQpqRlSl5m4lBQwqYiM0uK9tc+MK8yofmnMWU6JflyGy+T1rA3kDvy7KbtIPU9RjPFZU0+x/eQ+OF8Zh26cPXu2Oj5d1+nSpUtzLuCJJ/r4zKb+YhtqlLDbEteBr5lKJZdoZO3m+PO7EftEjppULbl4aSxl4Pyw/giKc3mvf5/aG24juQLD1HTWfu7JyLkuimxcvV7Pnz+/0PNe5xGxLZ5fcq2+x/2J68Bt4JqlBIRlRdQkPhlqEivusTjnFBNH6UZWduyf7621LVtvPDc9nrXzLZbJdT71njBcrs8icpg+H2I98dySemnBomLpxuE1NDQ0NGwJLM3hXb16dZKDIKW1e3efQYPURHzbkyonFeOyMs4rtk0aUyJTsmZS/TX9RXYvKXoik/eTYmRb4zPkjDkGpPyyMfG41nQUsU+ej1o/fT3OW6bfqenO1tfXdenSpblex1xFnB9yS4TXxa5dQ25O/+91Rq6pxiln95ITyfTOpjjdVnMJNYONCHLpxiIUMNekP835ZJxtTSfJtkbuyWvF1zgm5tBj/2rSgCkDItdjHe7Fixer0oNSinbu3Dkatygd4N6iLjXjZrwGN+PsuRdj+UbNziDOKbn12v6fMlriJ6VfmV6e5w25ttgX2hvUuLZMWkB9G8cok36QW2N97k+ca691r9FljH8ah9fQ0NDQsCXQXngNDQ0NDVsCSweP7rpupFyNbG1NAU9W3CIoaSx6owiBosYoTmFbau4CkdUna2/U3BX4f1ZGTWwZ/2db3F+KiPl89p1i30zUSLNkX6eCOJZPw5Ap3yeO+draWlV5bJFmNK6Jz8Y2UEThtnjN2F1B6k2SpcHMPVuTtesWh1LUYrEOTc2lQaRHY4vMxL8GirYMzlO8xt+8Z2yqH/cT+05RI83EozEGRUyG++XxjoYuFkt6bj1GNQObWI/dBy5evFhdOysrK9qzZ89ov8S1WBP5U7wWxWw1Vymvt5oIMF7zZ824J/bJ682fdBPIzk6efbUxygy9vEay8ywijiPF366XZzPPtKzP7ifHxK5rETw3F/GnjSqCRcWajcNraGhoaNgSWJrDK6WMKIUsWkZNYW5KNKP2TDWaAiVVSzPXeI/rdfmmbkxtZqbspOhJXcR6asrhmiFAZsLstlrZSqo0jgmNRNwfmgVTiRz/pzMnqd4pZTzN0v0ZOTT30f26dOlS1fBgfX1dFy5cmDQMIufjuTRFaIdTf0oDx2FOx+WauqTxReZqUlOcex3GdcB5cH88Ln4mM1qqGXVw3WUGXe6f62O/I9fr51keOTzXG+eUxgo1M/9YH8cgM0iK9cexiMY/tbVjDo9uBJkEhmvc48M5lcYcCE3iKbWJc1pzu+J+jGPL/chnMiwaWcdjEg2QyEFy72USBf/GdVxzocrWKtcXz864n2rRX7hXolGWx9FSnWUiyDQOr6GhoaFhS+CaEsDWHKelurk2uaqoA6A+hHoQvsEz01tyJKbeMv0B2+BnzA2Sqon3kIqpOctn5sjUu9XiY0pDOC1yxK6XFF/kKN0PUrVuO03a4/++t+ZwGnVFWdi2GkopWllZGXEb2byYcjtw4ICkPrRU/Iw6AFPw5OQ8/9TtZTocmpSzXxm3xjn1es+eqYWbqjmgT4XvohuC+xnXm+/xb5x3t9VrJrp5kJOrca6Rs/EYe91Rr3jmzBlJGzlpcsiR+yfM4Z0+fXpD27IwYQxTSO4zrl86PXNfTNkqkNusuQtNSUQI6s05BrE+SkMyOwD3g07rfpY67NhGSr0sUajp2mL5nB9ywXG9eV2RK+RYxfXt+aqN4xQah9fQ0NDQsCVwTRwe3+AZd+G3r6kLU+WmNuMzlPVS12CqLJPnmlqoWef590hdmgokleJnTZFGqiJSJbF/NQf0SK3W9D7ulymgyLmYwzNl5TLsuM2xiPWZEjYH6/6QSs+oQetmbD1HK7RYT8bNbmZVRSo2toGcncfD18nFRTDEmL/TuTi2P9NhSYPVoSUPcW4ZIJlhu/x7FgCa640UqtdHbA85Klr4ZeuP1DL3JC3u4pxR/0tpDjl+/i8N80TuOgsP5XsuX75ctSJ0QAPquqKEgjqlWpvivHDeM245IrNq5vxPWTEyIDLPO55lWTm1M4vO2NJwzlHq5es8l6Rh7Xj/U//m/UMJVxwL71tKPzw2sY38jWsz4+L8fKaD3AyNw2toaGho2BJYisOzLN2UL9/2EX7r2qLOnIOvO3iwNLzlGR7J5U+FHjMlYtQsPDPq0r+RSmMfIhiWLKPkpI2Uj39zP8y1+dPtifoF+hpR1u1Pc0OxPuu6qPcxp0fKP/bL82Vq0BxlTXcQ69nM2mxtbW0UfsjUZmwnw4RR95BxXFyLDEmUrdVamCavb6/RKB1wOXH9ZvVl1qfkljYLXi6NLSwNcuvxGddHbtefHjPvnUhxk0OhbtxzEeeN1sdum9e3Kf6oq6eeeQpeO9SpRalLLQQb/TQzv0+vfXKB1M/Fte/5p+4uswY1fAb62Vow50WCOrut1F3GefE+4r1GJjHjOPKsrFlgSmP9H6VUnv9YH6V3Hk/qfeOep+5x0cDRUuPwGhoaGhq2CJbi8FZXV7Vv3745RZdRZ6QQ/DY2F0cLMWlIIMsoHzXft0gBmQPxb6ZayVFmlIjbRso6i0xAXQopblJ2keIm5eh7SGln1qfU0ZDCMrUYKTvqCk0t0T8qUtxug8s3RWzqPGsjqdtt27ZNytO7rpv32WMf/bkybkUa5stzHeHkojV/SOoGIlfrMaPPHvV0ES6XutSpSDvuIzkFcqP0A4vtrvl9mkKOY1bTw7k/7t/x48dH/TPIbVPfFH0hyUmQA6POKPYxs9YlHLTeZ4fPA3MOsf/uq8fc7cwsYKnb9DPUh7nsuB6of3e93mtG5Kq4d73/uM4yq2AGwa4FeY/P0tKxZrmcJZytRbeiZX5M4Fzzz6YOMUpHmMDW0imeb9le5F5fBI3Da2hoaGjYEmgvvIaGhoaGLYGlRZo33njjnG23+XsUwdA52Gw1M1xH1vuxxx7rGwPnbt9Do5YolmB5dNjOHGUtSqBIlgrUaLbsPro8ipI8FkYU1VHcSoV9LT9f/M3P0pTac+Fxl8ZiCYpoM7Gr4Xlyf2655RZJgzgiikHpWjAVxJVm5TSRl8aKebpi+Pko3qBym0YxDGEVRZoW7URjIWk6/yKNhiiOzIIxuF90baHYiNdju91398/rwCKlzLTcffUzvu7x9L6L4+l7GLKM7iQnTpyYP8Nwft6DFDNmAdWz0HhE13W6fPnyvB+uJ+4xnkU+f2gAFUWnN99884Z6XG4tJNejjz46v5dGHQxPl7mnGLVcen4mGry4H+6rx82i2kOHDkkai4+lYW24PwzV53UQ1Ut0OasF43ZZcU0zyLvb4n2WnZVee26rn7GaK8tnuEiA9hoah9fQ0NDQsCWwtFtCfKPTqEQaKA8rIa0Yp/l4lt3b10zNLOJgSKW6761R79JA2dLJ0dRE5sxtSoTlmdoghReptFrYKTpHZymMXD5N9D1GU6lXWD+NGSJqmbptFGJqOFKDdBvZvXv3JIe3Y8eOeV/dpiwgL40tyJ1F4xWXR46OFCgNU+I9HtMaFx3h3xgk3G3OsojXQlTRACULQEAjBdaTSTCYlZ0GVe4Ds45LA4fvsfF3z7E5/LgODh48uKE8SwX86TmKnKTH2v04e/ZslXIvpWh1dXV+r9sQ95i5Su97f9IwLUstRu7c7WTQhWiQwns4P1PpgWrZ5G2EE88Yl+tz1fNgDsiSHYbYi9fcfp6JdC+L48MUT167XivuZ+Qo/azbyMDzmcSE3B+NolyWz2xpfJ5NBR4nGofX0NDQ0LAlsBSHt23bNh08eHCkN4kmyqYESIUxGGlGzTHgMx0mGdg4lkvXAiZEjFyoKRyaBzOMTRaGiIGnTanSQTtzhnT/WD91l9JA7XlsSdFTNxDrY2BbfzeVZKo96rNoMs0g2Qx/FO+NobJqHN7Vq1d16tSpVIdrUJ9jnYnHOGu34bXicSNFPxUwmy4YlDhEbubkyZOSxtwRufhIkTLAQC3AwlSak1piUfch7icGtqYbkalyj2emh6Eeldx2HBO6i9x///0byvK9kSOjbtpcYoarV6/q0Ucfnbc3Cwjw4he/eEPfmc6KnHjso+/1WPoZnwvkdqVh3skFUscW96nH8sM+7MM23Mt9GfXk/s17wZwdAzd4DcczrBbI2mW57Mi51txr3E+3LVur1Gd7zOn0H8eR0huvRe+ZW2+9dUMf4r1xP7UEsA0NDQ0NDQFLcXjbt2/XwYMH9a53vUtSbhlkCsNv8Vp6eb/14/+mWhgaydQS9T/SQDWyvswqyzC1cOzYsQ3XTXllQbFdJ1MIWcdlyyPqFGM/aCVVS7YY2+02mLPwGNAiLsJ1M4QRxzk6HvteUuMxuC9BneciOHz4sKRhvLIEmUwI7HszTtxjaR2jv9MiMlqSsZK5AAAgAElEQVT0GUyESx2r+55x66aKXYapZY9JpNJZLq0Ap1I9UYJBp2i2NZbntUoqnSmGIoVPS17Dz3h8o6UduWnX+8gjj0gaB5+QxvrMffv2VZ3Pr1y5opMnT444FVsoRrhP5MAziRI5X37SmjtLBEwrVt6bJWamo/7DDz8876eU66u8Vz1XtEL1Z5R++F631WuEadHi2qFtgNeBrXK5Z7IAG9TZeQ6yIOLuK3XfTGkU3zGse5HwdEbj8BoaGhoatgSWTg+0srIy4lAihWCQojKVZ+ozo0j9aWrClI+tvTJOgpwOfYyiBZpx++23SxqoIX83h2cKKPrdmPoyR+fvpnRJTU+lzKFPFa3P4v/kmJluyWW57REec48FE+2a24r98b30SfL3SKW779Eaq2Zp57B0tPLKdI+G54HtjjpjU/nUi9Qs36IOj36epmZpvRtDWHlM6Wdq6pXhr6QxB8RgylNhtbyumMqF0pDMd897gQHVTcX72TiebpOf9Ry4/Mwa0HuCKWMyXZvhNkQr2ik9zNra2ihEVeTaaSNA3VAWcNr/u48eH1p8ZsljGWzdc+p7vTcsmYn/U3fo8fF4xTMrrj1pbEHu+aIfW1aPn/G40TpdGqw+/azvff7zny9pWBee83iO0waCVsJZaEg/b27U/XU/PDbWXUrDvD300EPzfjUdXkNDQ0NDQ8DSfng7d+4cWRvGt2vNWpLWZZET8L3m7HyvqQrf67d8tAozVckAvVM+O9Sp3HbbbZIGLiHTFVEnRF+xqXRB9NVjmgzfG6kz/+82mAq1NZvrMxcc2+dnzK2ZwiJ1GClJ15f5BEoD9ZkFcPa8nDlzZjIKgtO8xDZGrs7jQh2UYWo6RsjwNVOI1nV4nDwu7o/HSxoswLw2XL+pzMwilmlnMgmClHN41KV4DGj5mOnEaS3JwLxx3LnXGL3CyHwT3b/3v//9G+r3dUs9MqtnRp/hXEf/Qo91DCo/leZlZWVl5PuVRf1xn2g96Weizttcivvm3zzfHi+fSzEVGXXdtLR2O6IUhfoqr1n3w+2J/opMheP1TivQzBKWEVYYHYrBpeM1r2vvd0tS3Fb3N/bPfb/jjjskDWvlnnvukTTs57gOGBzb8+T+uT9xD5p7Pnr0qKQ+RdqUlCSicXgNDQ0NDVsCS3F4a2treuKJJ+Zvauq8fI80ThVPfUJ8I5s6M0XFZIYPPPCApIGaiBT+kSNHJA2UApOcUsYuDdS5y6O/TaaHo08LKX2D1kWxzwbjw7mfMR4mrRhNcZuKcuJXPxP1ja7vfe97n6RB1v3Sl75U0kDJZlw2/brc7yxhp7nqGDVlKtLK9u3b5311OZFDouWex9/t9fqIuhT31b5ftgz02qRFV5ZclRacXivk/LI2en25viz9lctnPFbqEI34nVZrHi+OUdSLmBunvpw+pIz4Io31OoxNaq74wQcfnD9D/1hS7UywKo11hGtra1UO78qVK3r44YdHkqW4dqhzdlmMSBKlBr7H881kp26brbnjOed972vU6dMXVhpsEah3s27PazfT5dMqlBbEmV8c55s6UM9H3LM+a//oj/5oQ5s9bm6POb777rtv/qzHmuPosee6kwZJDP1lGTM2glFgzpw5s7ClZuPwGhoaGhq2BNoLr6GhoaFhS2Apkeb6+rqefPLJOXttFjWK7Jgt2qIPK2wtnoqiwI/4iI+QNLDEFs+Zxbdo7q677pK0UVzIlEFm4y2utDgvOsqaTbeIzyILi0fdtih2pSOp++d+UVwVn7UYggG0mVYlGitYNOsxsSjJY+L2+JkoqrHy2/cyPYzFzNHh2O2nSJOitOgaYpGCx5biXWJ1dXUuinF74zOu258MIJuJ4JjqiC4yDCprUXD8jQEOWE8W7NZj6/VsMbvXbmyjx4n9cFk09sgCHjBME9sYxW2+1+IiijQ9l+xLbIPXSC28X5w3ruuaOCpzK/L6vXLlSlWkuba2plOnTunOO+/c0NdoqBXHTBrmg4YocT3YuML9t3jOIk5mCs+M2NxX77l7771X0jBusU+eMxtbeCy9f9yOWI/PF+9/j6nPlFoQi1i3RdzuL9dZNER7z3veI2lQEdDgyPVYDBvPObfRbfY9DI4RRbYu1yJSP+vx9DqM+8nPu19nzpwZqY1qaBxeQ0NDQ8OWwFIcXilFKysro8Sc2dvXnJApEVNydgEwlyUN1JjLocHBR33UR0kaqKbICZkiMNXCxK+mHKIBik3TmT6DwaRjPXSzMGrGLJHiMOfgtrpNpsCpEI5j4nJf9rKXSRoor8w4wvD8fPiHf/iGsfD4uZ5IfTJkWgwIHfsTDYbo2Hr99ddPmgd3XTdyF5nihIxaEOTYXruwMOUKqctoOOF66K7hPmRh1dxXBytgiqy4ZgxzA1be0/DI8JxG83c63dMx1/2JhjzuM7kzzzHdIbKkoTQgY/LiyCmRU3W57o/HKIbMimtG6se8ZvC0urqqAwcOzOvxuRONH9wejzW5WxpSSMM5YE7EfaNxh8crzoW5Ms+lx82cSRbogIENPE6WCrj+aLxmkKPzPT4rGWIx9s97jFxZFozd/fEZVXO/8BzE/eX6PBe+x9ddb5QO0GXGUicbz7iNWTo5t/uJJ55o6YEaGhoaGhoirim0mKkWUypRlk6T5MjJSeOwRtJAAZBLs8yZKT8iV8CgtuS0aBrrPsRymA6G5ryxHDoCuz5TIpn5sylDOq/TbDyjWBks2JwMxznWZy6M+kYmL804c4ZRom4vC6/k9l933XXVFDd2S2Ci3ix9iuuocbHxO9P+1AIzZ0G9DaZA8rr2mEYq3XXTwZl9iNfJlXE9WzdNSlgaU8vsr8vO2sjQTgzvxzUW2+hxpJMyuZQIhoPiXMT1RvelKbeE3bt36yUvecl8PXicYhsoreEYMOSgNOj3vXepD+W+iXvM91IP77HNzOTpkG/Ozm3j/EjjpK3+zvl3H7LE00y9w/0f3XL8vM8x32MOn/s27kXf43p8pjBZbmwjExhTOmDOOa4NBgY/d+7cZMCLiMbhNTQ0NDRsCSzF4XVdp6tXr86pCzrhSmMqwjJmf6fOS9qYql0aKAK/wUlFRS7DFB1DYjHIbqTO3CZTRaToslT0TB1iGT4TwboPmSWpy6V1lvsTqUKGhao5ZZOTjW0w1cNkkeQa4zNM/+F++XqkqjmnU6GhHLTAVF/G6TO4rUFH/agDYJi4mpO/EXW5TLHDdmTpR8gJs74syDYtBBlaytZtDP0V219LaMo1G3+jrohz67bHtvI3JhH273Ed0JGeSTwZVDiWG5PSTiXAXVlZmXN21mPHdWIJj8ef+kraFkRwj3GcsnVNi9uaPjhyHp5v73tbh/tej1dcU9Rnuy3uDwOQx3OOyYn9Gy2Zow6X+ktznzVr7XiGMK0Xubfs7HebPBa0o3B9cR9Hh3PXO3X2RDQOr6GhoaFhS2BpK83t27fPqWpTVZFqoi8VuRf6HMV7DVMGlMMb8dma1SSDx2ZJY829kAIxVZFZWJEyJSWXpbMwxePyXC+DR0frPI8xQwu5Px5X9z9yeDFdTyyfKXkilU6djUG9TBx73xtDF9Us7dbX13Xx4sURl5P5czFtDeXzkROgzoTUOZPURg6P1D7nMEtySY6S3FQWlo6csMtgwlS3MfPDY6g3JjbNrF1rXBr95SJHQWkLLS8zDonWreYOqG/KAlzHvtfWztramk6fPj3yi4x7uhYKj79HbpPWv7RqpZQoS3bqe7wHItfBPltnZw7PY2mLSKY2im3jenPfabGaSXp8hpgzrtkBSMPceS1SR0hr12zOaiEa2fZYD9ed++V5zPwLs3N6MzQOr6GhoaFhS2BpHd6lS5fmb27KryNMKZA6IgcWfzOoeyIVEb+TmiClxySr0jhCjCkEcp+xHuom3Xcmfs10HKRASGFTdxDbQL0mdZZuY+S8SEnVxj5SWv6NvkfWkzBocdbnzZIwrq+vz8vPUpOQayXHkHEzBnUnWcSb2rMEI6Fkulzq0jw+/j3qmRn02HPoe92mjAv1mqTuhGsorm/qexlQmQHcpwKdk6OltXJsP30g3V9LCbJoGBn3RFy9elWnT5+el0sbAmmYB3MiNcve2G63q5bujBxfXDu05LV0hpFBoqW3OTs/a2tq6t+i1IORqbwfyWGyzdLYwtd9t76MejppkKq4HN9jn1Fa+MZznJabmY9wfDaCEhnaO8Sziufmovo7qXF4DQ0NDQ1bBO2F19DQ0NCwJbC00cqOHTtGYpQogqHCl0Gds7xkdEaO5UljQ5golqABAMWsbmtmROB7/d1sc2auTgUsxULMJxfDEPHZTATM6xYlUFmdGVLEOuI9NAumg3XsH3Nj1XJmRXGLFfQ1g5eI9fV1Xbp0aRSYOxMbs880e89EGBRhso9TbauJUD1fUTxNESONL/xMFLfxGkWNNHyKa5Vm9l5XFDlnrkEUf1IcRReX2B+KXdnWOAd0kaFDe+ZuwLqnxFLr6+sbjFAy526Gm3I/GOovtsXiRq9JzzONyShei+XTIZ9uItEQzffQSd7njq/HtUqxaxawIfYzE9lSVWPjFQcFieNIVzDvf48J64318TcaPGVzwPBzWeZ2aeN56vZa3Hv27NkWWqyhoaGhoSFiaQ5v27ZtI/PZGDKLVBENDahAj9dMRTAEl5FRl7WgznSCjBnPqVw1FUZOInN29LOkQEgJR87F5ZsaJ6eXGVgw4DONVdiuWF/NyIdUUKS0yKma6nXbM86FpslXr17dNMULDQPiOLqvdPJ3ncxqHdtbkyjwM+tzLbWTr8eAvKY0zUkwBQ7LkupcDKUd2bpjehaHxmIA8LhnXB/3FQNdZ8YFng9S51z/UaJALpocLI2bImIg69ra8bljow+67MQ+0ZiIBnAZh8fgCi5rKlhGLV0YgyfE9RENmaSBm2I4tzgfXPN0XeGYxu8u1wYnDPbvQNcR7ofb6nXFM5nrQRqvAxoQkuuOcDmeU6b9iuee5yeekZsZzM3buNBdDQ0NDQ0Nz3Is7ZawtrY2aR5OvQvDTjGsTby3pmNgANv4Nqfew7+ZeiK1K40TVNYcJCPMfZCyYsilTJZOPQ9TyLjszLSclAvvzXSi1JmQQ8q44hrF6jabSsxCSkU96ZTj+eXLl+d6P5s/R4qUlDU5vIx7pusA1w45vkznUHvW1GbUw1BHRJeCTC9GnTA5vqn95DFgaiy3w1R6FoSbFDb1cFn4K44b9cBTIIfGvZhxcFnYMWJlZUW7du0aJa6N3BNdV+i2kTmeu30MhcX54vkjDeNP7s+cXVaf4XVF0/8pzoe2CtQrZvPkawzg4D2YhU7jvif3SfuDzJWK+8jIzh0GCGAaInLfsR7P7Q033DAPBL4ZGofX0NDQ0LAlsBSHZ2spv/UZCFgaU63+To4vyoTprE1Kl9/j257Ohww66kDREQyTVbP0jFQ6wxkxeSL7EB1AmbjUbaMTdhYWqBZQt8ZBx3rYPyZsjfXRwTNL1iht1JvQIjaGnSNWV1e1f//+uR4mCzfFMGqcp8xKk/pQ6tD4PY4nKVLqOK3ziH2uhR3jWEd9DYMT1zgt9jOWR07SZVqnF/UxDN7McGtGNia+l87dlGREUKfitcT0MHFtUGIylTh4dXVV119//fzeLN0WHcvpyJyF0eLZkQVxkHIna64VOoTTOVoac2cMtGBEewPfS32o4esuK7aLIQxt1ciQipnzuEEOjGELp3T6BjnlOL7m1mtW4ZnlPvXKBw4cmFw/G9qy0F0NDQ0NDQ3PclxTeiC/sRkwVRr7MJFqzbgZ/88kilkoolhmhDkuU+WmbjP5OKlW+v1l+h5yWqawTXHVkivGe9kv+8M85znPkbSRsqNlE32FmPol0/8xMCt9q7LxpV7ByNJ00BdsKonnysqKduzYMW8bOb3YZ3KZTCgaqTlyHrS0i/XzWXL01Dl5TUVdEUNX0WrRYx7n0vNPTqKW4inqSaiboU7PYxL1jMePH5c0SDdoTT2lE90s9FqmoyZnVAtWnXH/WcLcDNu2bdNzn/tcSdK73/1uSRvtAfy/52eRcunPR66dayaTLDCYO+uL80IfSnIl5HZinQzmzFRfU+EdqcN1GSdPnpSUB9Z38HvvbY4Jw9RloIV0ZmXtcfNnHC8pf1/43sOHD8/b0NIDNTQ0NDQ0BCzF4a2srGj37t1zfYHfxk7MKA1yYie1pJ6Hcuz4P630jFriSmnMeTh6AKnqqIfx/7XUMaYgYj3UwzApLX2aItVEToj+f04bktXHiAe0OswiINDqj1wny4h9p/XXVFoYBt2d8sOzlSZ1a5n1LOvkGGcWW5k+KvaH90tjvY7XEhNnZmuHwXtrKWYiahaPvJ4lD3Z55DDJtWX9ISdHn8vI1dGSrqazic8wUDItWP09cvOZHrmGrut08eLF+TpzepsHH3xwfo85an9a6lTbn7F9WVqmCOrJ+H98lueNJRmxHur5bEXJM0sauD7uF64LSn6kYV25rW6jz2imtpIGnTB9Ht1G6tQyC19axtOeI65/r2cmVuYeiVyvJRcemxMnTiwUFF5qHF5DQ0NDwxZBe+E1NDQ0NGwJLG20cuXKlbkTshWbUaRpMYoNMpjHiYFlXW68xhBIDDCaBRx2m8hqZ9mR3UaDGbbNMkdjHLPYDNZLB1eLdbLwaBRLWPySiRgpDrCIgSGMsuDIdP6naJMO6LF/fpb1ZIY8dB+gmCeilKLV1dWRG0fmoE8zd4poM4MnikqpMM/Ed14TFi3TSCXLG+g2UtnuteP1njkcM6N6lgdR2rh2/L9FzBY5UewbxVIMXEwxJA2u4njW3F2mwpFZHEXRFcWhERRP7969ezLj+fnz5+f9yRyYvVd9DviTgeGnwoPRBYQizyykHfPhTQXWp+EenbozkR+dxzmXNPWPbgRezxahWgRokabL8pqK5dGAx8aAdGKPYmquZ6o3shBtPJN4bvodk4ksjx49Kqkf42a00tDQ0NDQELAUh7e2tqYzZ86MDDdsoCKNHRVrFGPk8Gqhr7IM0PH+CAYzpZI9UiKm/ugs6usZlU5DEz9LqsWmvpnzMB3NTeGZ4opUDFPluAyH0PE4Z86yNFKI1D/bRpB6ZtDdjDOPnEKNSncAYPfLFHdcL7WM83TniMY9NBahawvDn2VhlJitnIFrY32UQrgeU89eF3GNMjQVFfLkPk1Fx3u9VtxPBq2OwXXJabn9lhLQ/D2OCbOKc/1lzsqUBrDtdLGJqKXKirDRiufafY/cgOfwkUcekTQ+I7L0MexjbV7Mwca1zRBcNVeGWK+5FbpMuO02BoyhBz1XDFXm88198BxHaZvPIrfF5zS5qMwthQZbbpv7m0kwfI0Bp3kWx3VATphhwzLjJrfNnzHwyWZoHF5DQ0NDw5bA0qHFzp07tyHxnrQx/BRDBhmkKjLKjpxczUGTbYr1Uu/j79FJ1e33NT9rSsHURKQcqD+opfgxIlfgvjN0GrnSjOv1J02JyWnE8WY91PNl1Ccd9DmOWdgrI9NBZjCXF+/NkqtSBzCV7Jbl1BJjZm4VdCGhW4TriVyo14QpfNZvXUc2ttT3sk3kmKVh3fmT7iJZuCaDeiZyu9n+yuYl3uv6Yxs5bgZ17xmsx75w4UI1iaeD1nPtxHZTesI6Mx0edY98dsqpupY2h9xGbKM5PJfvOTX3lCWrpnP4TTfdJGmQRvkccF98f9YPS4d8XnssfLbEemruZEQcIwaeZ4CFTJfLcphgO5Ms+Z6Y6HhKahXROLyGhoaGhi2Bpa0019fXRw7Bmb6K1Bot7zKqshYWinqqSElSlm1KxNxnRjVRL+XybNWUWXb6f4afMpVhuTtTjMQ2ME2Qx8gUXqQWGVjW38m1+ZnILdCh1M+QOo9UcGaxF+vPuAGmVZqi5J3ixWPMMGKxHHIvpPYiGByawXanAk/XLGypY4n1Ut/HOc3mn2Hu2FZSt9GK2L95jdiijpakkQKn9CHrRyw76mNqAdXJIcX1RstEo+bIHdvGYM8ZbB1uTsRtiVbBNatsBuieSsHDkIMuP0sxZs6UOiZawEaQg2R6Mn93IApp4AoZUs5rihalkcPk+j527Jikse7WIbpi+QyZyOAfmeM5w/uxX3xvxP9p4V0LwxfLo1RvETQOr6GhoaFhS2Dp0GI7d+6cU4a0UIvIghpnv7vcCFJhU+GtqAt02+yXY8rbsm9pkHe7PMvSLf82VRMpOlJy7pcpbnKumT7O5bktpuTd1iyQssthOiLquzJfKlpwMRxWBKkwWueRY+L4SD0lORU8et++faNQcHEduH2kFBfxsanpJzlvmXVhtHCUNuoGYhnSMN8nTpzY0DaGjcos7fxp6pwWaW5HphfhWqG+L7bRbTG1n/nqxTGJe5SWvTXqOfPhpLUp11IsK65111c7K9bX13X+/HndeeedkvK1Yw6BXBO5ilgH2+C1w3Be5Jhjfexb5rNn+Hyhz94iqW2YUojWyJndQW38vYb8jPWBsd1eo66Pbc306/St5Rhwn8XypvS3sa2xH5kv4GZoHF5DQ0NDw5bA0laaly5dGgU5zazm/HYnVclgp9LYr6YWLDrzyaClHdMEmZvLKFX67vhZ94/JT2M91FuZQjEVE+s7ePCgpHEyWnIuWVBs6gSol8sSxZJaov4t0+FRT5olweUzWYSIKQ5v165d8zE1p5olkKQuj3OXJXElFcs+k4uSxn5/bpvny1R0TK5KPYupddfH5MixTlot1gJ1R3icXJ77QT1MxuHRD8plUEIT9y+tdBeJlkEfW96TcTD0cdu5c2d17TgtmWFdXtwvlLDUko7GvlJfxfOFZUUdO7lAl8Fg73FOydnx2cza2evJUiGX63rocxvbyKhP5uSsf3RZMZUVLZRZP3WJsX+MnkObDLcjzsFmSZipo5TGfpNTkiWicXgNDQ0NDVsCS0daefzxx0dpbqYsrDI9j8syGEOOERr4PcrSyfnwXlMZMS6m22Tq0txg1l+2m/oDWn+Z6oxjQp2K6/M9UYbO+mgNRc4ys8CrWVxmllVGLQkpKbBYD6OXbCZLL6WMrFnjXJIjYPLHqXQ2NevCmgQg3uN5ufnmmyVJhw4d2tDGzDKVnD7jIkbfPfrSMS4r5yuOIzlVchtTEUSoZ8os3thWg1IWroO4tvgb+0PL4nivJRmllE05PHPa5sCj7QAj0jAG6SJpyXhWUYcX9bK12L3kGqP1oRM9e525fqZ8itIB10k9In3sMnsKWhLfcccdG+qnP6A0TrfG/UorzbgO3G6uVSJyhUzNxPPMazM7s8zBtliaDQ0NDQ0NQHvhNTQ0NDRsCSxttHLx4sWRE3aWZZcixZoSOf5PcSDDgjFAsDQOeWRW2wYIGetNttziCd+Tpbmh0yjNaf0slcvxXrfJJu0O5kuRpzR2FqdLAY1Mogi1Fh6sZj6ejQkdmjPxBMV6V65cmcx4HtdOZmzBvlHpnYnOua7YV49fFlqKJtg0InD9mSiLIe1i1nePheE2WDxTc5XIwrfdcsstkgYx3vHjxzf0J0sPRWMVg4YNNDKJbamJozIjglrYKabXyfZtFBHXTNNLKdq+fftc3Mb0NtI4AIXHn/VkZvQ00KKrj/dlVD3QmMxl0X0o1ud2v/jFL5Y0nJsWBdp4Loo0aRxTc9VhUIMIizBdFkWZ8azi2c7zzet8KpwgDci8/unIn5VDw63MzcsqoSjGXcS1Q2ocXkNDQ0PDFsHSocUuX74851BMdUYw4CpDP2UOoLF8aezaYIogM10lx8j0M0bkQmn8Uks0GqkNch+kCmkAEc2DY7oXaaCo6LyeGQKQWmJbszBodH5lupsaJR37Q+6A3GH83229ePHiZNnr6+tzKp1GEfEaOZ+aC0i8l32ruXFEkFpmwtfMiIRBe6lcd5lx/j0PDMtFQwTXE4P5mir3szYhJ2eXjaNR47ozjrkWiotzHcukuwv3RmbWT4OgqeDRro8GDnFOa2HAaCqfSUK47ujU7TmInD7b4O+W2ngNRSMSz53L8VqyQV3myuVxcv8YNpAStOhiwLFhSqMs7KLn1ZwqJRY0fMrclHhWcT1myYoZEpBO7FniZp+1N910U+PwGhoaGhoaIpbW4T355JPzt73fsJGqoGM5qchMp2ZsltrD1FJmyk7OixRfdD0w9cL0GOY+stRFLs/6HsvZ/em2u6zYP1N9bKvLMnWShZSq6WGo15rivGp6x8yVIUuUGp/JnH0jZTplHlxKGXGfGVXPNeRnFnFpIbdRoyBjueT0SPlHyt7/W7rhOfQce0yivsdrxOvYa8VlMD1V5Cg9Fn7WwQsYci6C/SHFzXXI4BCx3hqXPTXPtVRSy4SAmirX+zTq2hkOkBxJluyW40COfipxKd2UPMcsM54ltCtg4mk6dcc+MlCy9W9um6VIDjYdfzNHd/To0Q1tzLg0htNjiLmahCtro+FnmNos9pk6T0oHIugwv3///sbhNTQ0NDQ0RCzF4TmBJ+XWmX7Mb25ycplMtpYWhvoQWtPF+lgvrRozrpA6m1pIpthe6incFsvHmZYo1udP12NugdxJbD/1l7U0GpnlEzk9t2mKsqeVLccqcmQM2zVlpel6aUUXw7fR8rDGxcY2kBuv6SAzbo3z7bZRZxN1T+bg/ZspalL40dLO1DhTCVF3l0k9XJ65P+4BBjyQ6jo06hunAkZspj/N9jy/kxvIqPUY4Drrv8vZuXPnXEpjS+iot6Y1X00XFOugtIRWwUwfFsPS0YraY0ouMdZHyQqtzm1NmSUcNvwsgztbWhDXvceLlqMMHp1Zu3p9M2UWxyxLDVezKM3OfnLKtErPEg57f0audiq5bETj8BoaGhoatgSW5vC2b98+Ga6HVCMDFZsqi1waOUXqAPxGNzUTqVlSKeRITNVEKpRpU2pWRJF7MJVOSpdhtZjePt5Tsz7M5OHuM6lk10MdWKR22TY/y/QcmT4j01/G3yOlNfk44vUAACAASURBVKWHy54/d+5c1X9RqqceIVedpXgxF8ZwWqwvcmukwk3VugyWKY0TVvoerykG7JUGyt3rylIA35tx6Qa5J1oDRwtZPkP/PqZt8ZrJ9B+b6X2ztUNL2FoQZmmsP53CysqKdu/ePedMrLuJnNBmdZObju2h7smf1M/HPeYziMlvOZdxTpmmiXpG62ezccpS68T+ZdbpbqOf9fr2PbTeju2ntMPjy/BrmeUtdZQuP0vrRAtZnlnUycZy/dmCRzc0NDQ0NABLJ4DdtWvXnNKi1Zk0UBGU9VNvFCm7GoXoslhmpDL8DK18qJ/LKAQjBiGNbY31mOJwAFtya7QkzTjYmqUTqZv4fC1yDamcyPUyKC3HJNPdkFIlt5FxceZyYmDrGsXedZ3W19dHlFhmKUoqmdZdsQ7q31juIr5g9N2qBTOXhnGyVSap2CxxKqli6/1q/p+xfzWJAvVNWRJmz785FXLvU0F+ydGxD5kEg88yGk0GJh7OYNsB6uuztcMgzrw3WpTTotuglCaLnuMzkAlmvb7oPykNZ5Tv8bww0HX0w2RqHQZxdlsfeOABSRt1qy7fa9XPMIlshOeDaahcFnWhcR046DojMDGIeFwvPPMZaSWzzHabIse8iJRJahxeQ0NDQ8MWQXvhNTQ0NDRsCSxttLJjx45RPrmoUDU7zuy2FP1lylya9FKUmeV8soiR5ttmhV1fZImpcKYRSRaGigYOWT632LYshxoV2ZkhhVEz8a2ZBUfzfosMKOZ1GTZXjnNAgyFmVM6cYpmbq5RSDTrsdlA0FuH2MbQXQ8xlSm8atlCUlYnvKFJmdnEjmob7Nyrm/T0zBKAox/PtNtFtIbaRYaFqjt+ZwUvN7aaWM04au6owAHSW+5AizJqbURbWiyEAM/jccXtp7BHrrAWgyNwS+Bv3Cfdatk9r4fqysFoUT1vUSEMrn2nxXrfR92buL9LG8fR4O3QhwxFmwZy9Nh599NEN5TJkop3lYy49t5FqFhrWxDXmeyiq9xxbLB/njXu8Ga00NDQ0NDQASxut7N69e04Z2Lw6M4mvBTs2plK90LGdnFesz1SDldH+bgqFYamkukMsuYVo9szgvQwdxGy/EaT+GGCbZuPSOD2Px5zGCpnBT2aoI40NXTx/sR+kWGnaHqlcUtWllKrzsNcOnXmnjBVI7WXBo0khMhQTpQZROkCzbXLENLiSxqG9aus8jhNNusm51ox0YtuygOaxzXFP+H8bVrgfDGFGAwtpnJWd8+S2Rgd+Zt2upXqJc03ueseOHdW14/to+JYFk6CrFOcntiFbT9LY+ZpcdtbHmuFT5tpE9xQaomUhzOxsT6mXz50pAyuvA5cbzfmljevbztzujyV25HLdjmgERIMtr8N4jkobjYTosO9PjzXXXSzXUq1Lly41Dq+hoaGhoSFiKQ5v+/btuu222+ZUwJEjRyRt1HEwbBLl4FlQ6VqwYOotsrBGpODpTGvKKFIZ5Kj4ncF+pYHycbtNXdAxk9SbNFB2poRNAZGaygJAW/5umbkpK6b4iGPicSMFRxPqzDWE4X9ouh85FzqKT4UW2759uw4fPjzidiJn+vDDD294phY4O9PHZvrE2F7OlzTmAl2W547fJemhhx6SNFC2lD64rEj5+je3weuBYaPoGiINa5HcDZ2jYxBpt5c6KXIyHKPYH4ZBo9Qgci7UK3EssnQ+1GtO6X67rtvAXWWcieFyPLbse1zz5BTIgZNri3vM80uJCJ3ZraeThnn3XFHC4LUZJUA8z+geQL1z3H/W1dckPdT/ScO8uC10s2Lwh8jp8xyrpXWLc83AAHw/ZHueOry1tbXG4TU0NDQ0NEQsbaW5srIy5zZM2UWq+f7775eUByaWNr6V540AlWyqhTqiTO9jKoWWTr7OgLmxnBpVQIdQaaBwTD0zHQnTj0QqreYwS+vQaPnm8asF+mWYqMgNmYLMyo39j9cZZo2BoU3RZqk9PG/nz5+vOoDS0s6UYaTSzc3W1k4si6hJFFyPKf6oJ+W68jquJfeUBoqb0gfOQ5x/UsdeX5RoMICuNMw/rXUN6nal8Vr0sx6LaNFLMCmtwfRQWZJS6sBJ4WdWmnEv1vbjysqK9uzZM9LzRM6bgdjpZM1+xPYxXB8lP5GLMbg/Kb3Jgld4fLzOWRbHLbaX4+V7aDsQ9wYlCgx4bt1erI/W3wzJRt11XEsM40iduPuX6UJ5JtYCbkhjJ/xFuTupcXgNDQ0NDVsE1+SHV0uUKI11KaRIM6vCqAOK5dFSzGWdPHly/iw5uVrom8xnhxZ1vm69XxZ656677pI06N/oT2TqxdZ80sA5+DdyQaZCYxupQzO1RN2HKayMC6F8nAGHsyDMTAfjOZgKmRY5oRq1tbq6qv3794987GIb6KNHDpipSqQxN0jufSpIMblzJjb2d68HaRyijGVklLYpa647jzmlE5mfEsN0cS1l+jGuMwZhZzDj2GdyP9xnEdTr1EKNZW2M67a2dnzu0JI46thpBe5xo89hllqKXC0tsDMOj1aS1pe5D+aeop7M4+/1xTbSgjn+b6ka0+fQ921qjD1eTiWU+cXRN5iWvfQzzvwMzVHSvzELGE8rd5ZFi9L4jLFnz55JHXBE4/AaGhoaGrYEril49JRfmakVUt609st8aHgv/Tj81n/kkUfm9zLBIy3fXB+vx3JpIZRFcjAnRX8rRpsxZZfpxzxO1KFkwVw5ji4/Wn1J4wDRsY2MNkE9QASpXUZeoV6D/7uMmi/V6uqqbrjhhjklTKvWWDfbRF1hRJYyyPVJY+49Sx5cizLj65llp/2TqOsgNxevUX9Nrjnz/2RwZeqKGPklPkN9JjnKLLUQrRopbcn8y/w8uVFS3XH+eM9U8F9zeG63OYioY6+lUcoSDRueF/qnUi9Ki8xYLufO+9/IglWTa6a/X+RcGa2GlsUu3xKnCEq3PD9+xus7WvgyCpPvpQ6ZEbRiPdRJ0ro+swOgnYP1jN4Lbpc01hnfcMMNjcNraGhoaGiIWIrDW19f16VLl0bUUqRITK2QCmPqk4xaMhdG6tJWTaYkY/w2UwSmlmy5ZYrEbc183Bj5gBRWpNZoDUX5N/UKkSJxP+hLQ71C5HZc99GjRyWNIxCYWss4Zuqt6OdDrjiC1qD0DYqUFGXzU7J0Jw92n7OElp7/48ePSxonWaV/WeyjKUH6Rfr3rK/0Q7PelW2M3BN1nUztlOl9GY+U1w0mypSG9US9K/XbGYfEded+UaIRuSNaOdLSLuMK6fdp0EIya1uWrinDysrKfLxM/U9ZszJdj79n1uG0nqaNgtdl5IQMSksYmSTj1jy21N25rZkuvxYzlvs/jid17JT8UP8sjfc0I574OzncbEy47jMdJTn9LFFvLCOORUsA29DQ0NDQUEF74TU0NDQ0bAksJdKUenabaR+iKIPiILOqfoamqtLYgIFm02bbGU7L7Yn11JTXmaNsTXzHUEOxXLL0FItkLgbs1y233LKhfN8bRagW39ENgabTNIePoJl7lm3eoOsHFd4eq6nAzSsrK5Oiha7rRmLrOC8Mtea+00k9czGh+IaOubxfGot03DYansRnalmwM5Nrg+JGj5HnmIZQ2RgyQDNN56PozO1lRnq21dejAzdTCtHR3J9xXBl2jA7nWfgwrrMpg6eu63Tp0qX5+rDYMPaZ4cYYGsuI2cS5Z3keMIhEbJ/36okTJzY84z4/+OCDG56N5TE7u+fQZWaZ3Bme0M/4M0tLxfmmgU1mDMZzgCoBuhNFoxzuCRoDMZRaLIciWjrAx3nz/3TvWASNw2toaGho2BJY2vF8dXV1TlllJsUMH0NqInNgJnVCR1yDhijSQOEw3BkNN7KAwzTBJ3UYKTpSg2wTDQGi8YIpN3MOhw4dkjRQQnQulQauw9QMjSNItUcjGcMcsev1vTTVl8bUrftBp9vMpcHrYSq5q8HyoiGA599GCTQa8bPxGboy0NWAhklRQU8nWirZs37RWIkcTzY+5Nz4PQuQa7g8BgfmfGUO3AwHZuMvr02v5fis7+Un2xG5Qhq/1PoZJQsM47Vnz55U8hBhToEpwaTxWqErBoMwxHLItTBAd5YG7dixY5IGozJy6X4mupgwDBmN17J96Tb5Wc8Dw8Rl0jZeI5eWBUnwfvFvNByjQU9cO5Q61EIqxnOd7mIMGp25lTEV3JUrVyZTS0U0Dq+hoaGhYUtgaR3e6urqnGLITOKpe3IYsJisL/4ujU37SRmayrDZeKQq/Nvhw4cljVN5ZHoROpZS9mzQNFaqy4+ZnDZSHA7lw/A/5NpiG6lHcttoOp3p/5hQlLoUUmmxfFK7dLfIgu9G14DNHIgZZDmuHffN8xwDDEjDGopULBPkMl0KqfTIodM9w+NhbpnhoqRhXqiHMdeZmeiT26hxdlMSE68zOuqyTGmsU2OKIXLZWSgzSgxM+WfpiIzNQoxFDo5c9b59+yZdWnbt2jXiTC0pidec+JnBm7N0Nm6Dx8tj6THmWRbHxLo7Ov7XpEWxLR5LciWcr9hGhsyjnjtbOwzLxaD82TMM5sy0SrRZiOCzBs/3uA4Y0MP3MIBHlOrRcb4Fj25oaGhoaACW4vCciLFmZSQNb2bLV++77z5JY44kUgG0ADQFRGoik3H7zW9KgJxJxuH5XlNfDNDMAKrSOKEsy6BjeuwfKTnqYfw9C4ZLvQ6tmuiwKY2durMQWbF+Ph/LJWcZdRLUn005DpdSVEqZt9/1RT2MqXNzxORU/GzsB3XF1KVQopDpyRgAwNyL12GcF7fb1HpNZzxlSUzrYybSjZw3OWuWn+kuyA2yPo8npSCxDZR6sKyMg2X/uBeiLpTc2lTQAoc0NCxdsa43lkcrat/jtRV1QZRqkFPwda+DGNbP+516UnLRcX5sZepP76VaKMXYRpfv3ygdyAKGM9g6JQuZ1XMtzZZBa/goFfMcUQfOPRfn2eX4XPUa8bOW9mTh/cyBNx1eQ0NDQ0MDsHRosQsXLszfpgyyK42D9JoyYcivzCKLsmZadGZUB/ViTKPDdkhjPxFTGeY2aMUZ66ZlE5NrZlahpHwZCDjzcSMnROqMurJIPdOijz4uRhZmidQ59RuR27FV6alTpyT11NgUl7e6ujoKM5SFNfI8mOqLFoHSRmqPVl3UW9T816Qx9cz5yXQO/M39cJuZKFMar99aYG5yqdJYd0bONbMKpbUsdda0Dua6iG3j2GT+XuQuuAYYXjDC+2bv3r2TOrydO3eOOMa4DsjRmRtzm7IEwLQ0pC7d8+SxjiENGQiac5dJeuj3SQmTxzjqCn2eMSi1QV1oJpViEHZytnFPMHkwz3qWkel/eQYyVGQck1qYM9tKeH3E/eQxiWm8GofX0NDQ0NAQcE3Bo/1mzVJEkHJnmgdT61mKCH/Swo46kMyyj6l9GDg5UpfUmfB75utEfxhS7UwXlKUHoo6Q3E6kWOnPx8C8tN6LY0LKlbpQUrSxDUyK6zZ7jKIOxGMbOZXNKC366kR9BS21TOXRrytSsdQTkIvJxsegTou6LnLXsW21NcP+SWMqlf5eXEuxPkpMPOakzuMz1DOS0p6yDq5xNx5H+uBm5ZDLIZcQ4fI2Czy+bdu2UVSRyHkzFRZ1a1l6MPoC8gypzY/bG0GumRKg2EbaInDPRItEr0n7UNYkO1MSE9ozUIqTpRajRItcaCZpYuJp1pNFLnJ7WT7Tb2Ups2JKuM18OOf9W+iuhoaGhoaGZznaC6+hoaGhYUvgAwoebUR2kiIfi+ls6m1H9Ci+oziKJv4WH1DUFe8h+25QXCXloqpYFnOeSYNopKbUNegQmt1L8QPFSLEtBp03aRYd2+pnaXzDMYoGDxQ/UVyZiWisXI/hjjYTS9EUP/bTv9k4wGIoGopEI5ZM3CQNY+s2Zu1nQHOOBUWQsa8Ue/KZTDHPdVcz4Ir7i2I3iqWyUHYcC66d2u/SIC6qGcVkgQW4rmgA5b1uIyRp7NTNUGlE13UjUVl0v6HRQ5bLkGBeOo8LxeEuI4oaOaYc28xQjAZNNDjJ8sW5nptvvnlDPdxnmfM1XZfo3pMZPNWCVtTE4hEUNVLETVG7VB975veL64OGQlMGT0Tj8BoaGhoatgSWDh4dKZbMzNhv2gceeEDSYE7rN7dN2E2xSPVwNn7G1BqdE+OzpJpJzUQKqGaGTC4nSyVDhTwdgE2xRCqdxhBMMUNHzdgm953GMlSsZy4UBqnyzIjA5fkauWzeJw3zb5P8qbBidh7OjEcMU250rqXBTNbuzABDqqcPkoaxM7fBdei5jGUyiC4p+SxArkGFP+/JKG8GCWcZmbKewaOZfZtSmLjueA+Nwtz/GPaNkhEaNNAwIT4TQw7W1k8pRSsrKyNuLZrq+zx56KGHNtxDs/eM8zbopuQ+UgIlDRwIAzNkQSv4TC3ANfe2+x5/435neLzMidxgoHMaqsW+c1/R3Ss7+w1ms6fELI47DZn8fjA8nnbWj3AwgX379jWjlYaGhoaGhoildXgrKyujcF1RB2D9mt/UNqf1d7+JMz1MlMlK4ySevi9yh3SqpHlrlvSU1DLN3l1/pLQYWJY6G7oJRAooC7wcy3L/opyaOghydNQdxGdJQZKDNFWd6TcYloxtjZyrqTNzXlNUuuujzjVSeAy463sYNi4+Q7eTGjdrxDklN+62mTLNzN9rKVZqbgrxXobiqwXijX2gToVm75zj+Bv3ArlFj110qPYaYcJhj8UUB0uOgusrnhMOWuC1s0gAYAZdj0GWXR71rj5nfC5FdyFywjSfd1mUAMRyPJbmgHgexLlkKDfvQ+oMM+6wxkVTDxzbyFB1tWAcWWoprw3qS8nhZdKPWvJY6i6lsfTB64FB2GMIQgZSWF9fXziAdOPwGhoaGhq2BK5Jh0dLnSxhod/qlrOSiokWW7TE8dvaFBAtByNFymCn1FtklFbUWUSwX9HZsWZZ5U86lUeqyRQiwzVNtcdjYeqMAbWztDDsBylWUviZPo16TLfdZcS0MHfddZekjVZgNUprZWVFe/bsGVljRU6BId9ogUgqWhonbaWOg9xOZl1GZ3WPNfXCsW5aY9ac+6Wx8zvXuUGqOvaHVoyksOPvDHNFzsLjyKSisa0GHenJ6UljjoTJgzPdjaU0sY21oAUrKyu67rrrRoGLY5+z9RTr5rkU+2aQ8+Hei+uOe4vpz7LUNUwlRGkHHd3jb9yr1ElOhSd0f6jDy4Jy1EI0MiGwuazYP1rV067Bn3HeXB650Vqghfibg5rUzvMMjcNraGhoaNgSWJrDW11dHem8on8Kgw2byrAuz7JY++NJ0m233SZpTF2S06OlpzQOKUTdSqbjqPmluD9+hkkws7ZRl0ZuQRqopVoCUN+bhSFiskhymEw8Gf93feRCMstOWia6XnIY0X+S4xapcGJlZUU7duwYUedZkG2D/pem6OK8kCqnVR77HNtPDsjfuQ4zjrIW1JsWv/Ga62GYOKaHilQzw9IxeDTnIN5LK0yGB8vChLHPprDpSxWt5mp+eLTOi5wg9bRd101yeLt27Rpxa3EcGVDYwaPJBURuwFym+0ipDaUsmX+cf/N4WKJV09tLw1qxtIT633hW1ZJT1/wz457m2uF3rvN4D8eY1uhZ8lgmUvZa8Zz4eqzX5wzPeCOTimVh1JofXkNDQ0NDQ8BSHN7ly5d17Nixkb4k6nUov3UCvwcffLCvMAmYyhQutQC9ptYiFWBfHOotfE9m8URLJFIHtISLfTVozUirqUhJ1qIw1BKCxr7zO60EM38sUkBM6eJnYhtpmVpLThmj3Piaqdobb7wxjd4Q20WLxdhu+gCSos/0lrSKpbWu12OmU6E1Kzlur+u4hkjFus0eiyyKDzkprnNS9lnQcuqGSK3HcacOknNK7jrTx9UCj2dpaKi/dv+sp/e90dLOdUdJUI3DW19f15NPPjlKUZXpj8wpZD5msW3xea5FRgihpCRrg/vmccuSuZLjpgV5ZgFraYbHkH6gNV11rKeWBsuIY0QrdK4R7ydarUvD2JujI2fvMuP7ojY/1ONH61qfD1kQ/M3QOLyGhoaGhi2B9sJraGhoaNgSWEqkubKyot27d8/ZbIswjh49OhQIk9vnPve5kqT3vOc9kgY29PnPf/78mXvvvVfSIBbwp03iLW6jcjnW59+YhZ0O4vF5s+cUbTK3XXye4kIqcynqir9RgU2Dm8yIhGIXivcy8SvdEGhQkYl7KJKj8poOopJ0++23bygniiwJh4eiOCXOJU2gKdrO8uFR1Mb8eDWDndhXziWdhzMzaorS3UbPZRQxMtwU14zhtkdxOU3LaYBClxdpLNKk+C1T+hsUI7MdGTIDhliWxzO6InnvxTmdMniKGc+NLL8ejUg8llnGc7rB0F3H55DPu1i/y6MBiJ+hCkQaB4Dg9ywgPUX2zDlHt6zYRq4ZGullc831TJEpcztGUaPnIxqGScM649qN99by8HmMMrVCZrC1GRqH19DQ0NCwJXBNGc9pmGDDFGmghvhmftnLXiZpMF6Jxg+mSGvZicnlRM6L4Zpovs37pLFymIFyXV9sB/vDNtGEOdZXCxPm76aaMoVzjXomtRupwlrINDoRR06iZnjgMuxWkpnbm7I7c+ZMlRPouk7r6+uj4MeRq2XWaK8LU+tZChmvvRMnTmx4NjOBrpXBsSSVG58xR0WHWRokRMqXa7QW6ivjCmg8xDGaCg9FIxX2k2lcpGE+aIxDrjQzkqLzsEGjDGnYW3EvTJmWb9u2bb73/GxcazSisAEFgxVEDs/uTT6LGPLNfc3mhdwrjeSyYMc+t+hgTmOlLEi128KUVrVs8xEMSk3Dscg9MUgBOXH2P2Z+p3EPJTOZISHvYWqzzMDOkoK4B5tbQkNDQ0NDQ8BSHN7a2poee+yx+VuXzp0RpkxoVvrCF75Q0kbK2w6g733veyUN1JmpJFNypvgzStGmrq7XsuEs1JNBCp4UcNT70YGdJrfU08Tg2O4HOS06j8Y2kkqqhaMiRcR2SwNlyVBtGRdaSx5r14M4RkeOHJE0BO694447qul/uq7T1atXR/rF2B9Ti8ePH0/7bmo9Utym9pzKhdR5LfWTNE6J5Gdpvh3bSJ0a9bOey8xBv2ZWz9BIsb5aMG9yeHFMsvmVxkF9qaeJfaaeh9xOXAfUvdJEnqm0pLHLx/XXX79piheaxmeJchn6ymV6nWQuLZQk1BKkZvppBsie0pO6PLpXMZh93EPkLnnuZAEc2F5KU6Y4cnLjdLPxvZ6DTOJDaRe50ilpG3XwWYJr9yfafDCJcw2Nw2toaGho2BIoyzjtlVJOSjq66Y0NWxl3dl13My+2tdOwANraabhWpGuHWOqF19DQ0NDQ8GxFE2k2NDQ0NGwJtBdeQ0NDQ8OWQHvhNTQ0NDRsCbQXXkNDQ0PDlsBSfnj79+/vDh06NEpVE2H/CfpZMWFqBA1nNvs+hdq9T0UZHyieinJrY7NI2VP38Df68GRx/lh3KUWPP/64Lly4MHJYuvHGG7tbb701Td5p+Df6FjH6yweCWAb7yM8pLBrZIZZXmyumCVoEU3uE9dQ+F3m2Vl/0peL81PzpsrG3f9X27dt15swZnT9/fjT4u3bt6q677rpRubFN9G3N/C6zfiz626LPZvukdu8i642/LbMHant6mTPjWnAt/WO0KyN7XzCG5tS5Qyz1wjt48KC+4zu+Yx402GGdYqgvOw46xJidDunMm+X84oHH61OHLu+Z2uS13xjeJm5qTho3OScs9o8Omf7OXGMRdGDlWNhZNQsEzfBAWZvi9VguQ6jVglhHxIztP/qjPzr6Xeqz2v/kT/7kPETZAw88MOq719HJkyclDc7JDA8WHWWZ6ZzzUAtKKw3OyTws6Wwbx4nh1HiIZHPKwNV0NPb3zBmf81tb53Fumcmd9dY+470si6HUYp43B1nws3YIdqCDWmAHaXDCft7znqc3vvGNo9+lPrjEp3/6p8+DTDBHnDSEBzt48OCGuhm8IB6gPDi51qfOnVouw6UCGSOwebZ2mP+Sa5JjmoXO49k1FXaxFhqwlpU9GxNmX59ikBgYpBY4IrbL54SDMly4cEFvectb0nYTTaTZ0NDQ0LAlsBSHJ/Vva2bSjhQiRZqkTHk9Pl8Th5KailRNjQs0mAE73lvDFBvNftYokSyLMLlCpiXKqE9SPAxWPSU2YBg01pOFo2LWb1JlWdDgWN6UmGRlZWWeVodcSOxbTVzosiPHRwqxltYkaxfrq3HGcQw4d6RiuZalejBvclMuO5MOMPAv13VcOwztRS6BnEw2NuSQ2b8IjwX7zrBoGWceM7ZPqSMuX748yu7OINWxvdyfRsbNuN5agOxsXVJqsox4kNwSz464xyhBIofH+Yjfue/Z9uzM4G81yRZDqsW2TYUPZHtqQfgZHDtrq+drGfVC4/AaGhoaGrYEluLwSinavn37pNyaOjp+MuitNOj9GES3Rp1P6fBqHFdGVWQcY/we6yXFSDk4OcD4LDm8ReT+1HtMGY/UQG5tSplM6paBXpkcM/7veVtfX69Suuvr67pw4cIoYHKmP6JUgFxzpuPyNXIzNI7I0ihRd1LT6cTyud7IPcX1Rn0r1xCp+MjhkUqnjiYz6KkFKSfnMpWiic+auyIVLw06PHK91DdnSZGtj3v88cer+q+u61NLOcizkUkbarrbKSkK+871kOmv2ceaxCUzrOH6yjg7tpHzXuMKY58YxJmY4owY0D7TZ9ee4b4yamenNNYz+2zJjI9YzmYSu4jG4TU0NDQ0bAm0F15DQ0NDw5bA0iLN1dXVSbFaTZRpEWY0JTUsqmCeMIoFaoroeA/FBJk5Og0NqNynKG2q/JqIKROHmm2n8cWUoUPND2dqDmomzFToR2OMmutEzWhCGotKMpPoiPX19VEG4zhONfN8j1tmIFAzz6ZpNEVbWbtrLg3xGYr6KBbPdMb1AQAAIABJREFUTMtrhhM0QHGZURRUy2w/JeanYQH77HF2TrOoSuAY19w64lp17j+7kbC/NGKI/7stly5dqoqmrl69qlOnTs1FopmIjpnBmfNvSrXhZ2yMx/nJxnwz16Ip94San+Ii7g8147ms7Jrh0VS/eE/NrSM7n2pnUs0nUhrOwFq5Uy4tUbS5qNFQ4/AaGhoaGrYEluLwuq7T2traiHuKlD2dWc3RWTnt79FZnY6rNFGtmXVnMKVHqjZShb6HWZGJSE2R0qVCfsrwgPf601xulrWafa5Rv5mJMceHY0LqN/7GNtPwJYKuAF3XVSktGzzVDFJieeQCPS4Z98wMzKbSzS2xz1MuJzWDjYwriBFCavfGvktj6pWciucpGgZRCsHx4++blZf1N3MN4afvybLO+39zev7u/mXSgZojfYau63Tp0qV5+dn65RqvGerE+Wc5tSzbUwEv6NJCKUfmQlMLkjAVUagmoZgyQPKY0HiEQSWy84+SCxqOZRwex49GX1mQDMPjR2O2zNgoMzJcNAJN4/AaGhoaGrYElnY8X19fH3ExkaoxB2cH40cffVTSQBkyVFH8n+HHMhcG1lcztSdVYw5AGihR31sLJZXpbmpOnOQcppyHPRbkdjOquUaN1/SQGXzvlKkvqb6pMGsGObwpSquUol27do3KiX12X03led4zlwLDYaxuuOEGSQPX7v5wfKZCL7ltdI/J7nW55mIYaiwL9VWD54XcYqzHqK3rGGaLIdL8jNvo9ec2xjnwWqRO12Pi3+OedN1eD5bmuO0uP7oV1DjXDJYckPOOHLL/d/gxhxajg7bXS3zG45QFqZBytwGeFTyzuJalcRg8ugJla5PBCWp6skxq4P89//7O8cskGAb1pplkhs/WdNS0YZA0DzXIcHs+G7M9z7p37drVOLyGhoaGhoaIa9Lh0UkwUnvWx9liy9QkZcBT3Az1YVPhofhmJ9dp6iajSFn+VKRuyvvpeEpdVxbKrBZmLavPoJydAWdNgUWuoBbGzXPBYLVZuTXrryx0kTnmq1evTupi1tbWJrl3csDmXkiRuj5pCD5MnZop/KnwWeSASJ2TM5fqwRFoYRmpdffRY2jqlRS+5yBKI6h/43y7/5FzqYWjc1nUHcc9ZO6Me9JlmMOLOniumYcffljScBZES0zDzzvo8+7duyelA6WUqt5UGtaEOTz31WPpcfPv0sYxi+2vhf7KdHi0IqTuPa4dSnL86fXAvSGNx7DGhWaBmT1ePu/86TGglCi2m3o4ZqHw71nYPepTKTmJFvoG+zc19tyDO3bsWDi8WOPwGhoaGhq2BJbW4a2trY04hUwHQL3bFEViKozyYeorMt8tpi0hMj8ZP0NdB/UlGZdGiqNmcRVl6aZa3E+3yd9N4UXKhVaR1HO6DFNrtfBB0jAnLj8L/GqQY6FvXBaaK1pTbuYP47VjfU5cO9RxeF7MBdx8882SBq5GGvpPvavHw+VnVnrUSxhch5HjcrvdD3IFGeVbC7HFtlEfKI3T3PDTXErkXFwOdWhuq/uT6fB8jYGauWbjemMweQaNznQ3vtdzvHfv3qq1tOsnpx/HyW0gJ+cUZl4z/s7npbEFInXUGbweXBalKhmn7/FhAO0pDmgz68WMwyGHRWlbxhXWrF1ZH20ypPEZ5LVLiUPkrKPuWRpbu2aBu8kFbt++venwGhoaGhoaIpbm8KSx1VKk6Ezx+C1MnYPfxJG62iwFjt/upios147X/Aw5SyNSaWwLqZqMS9nMH64WeDjWR4qLETai3ozUbE22nvnS1KKxuJ9ZWidS4bR2zfrNMd+2bVuV0uq6TlevXh35cWVWbG6nKcTbbrtN0kAZRg7VzzBKhtek14r7Fbk1g0GPOYdT+gHXOzWXNZ2Q++dn3LbIhZhT8TPk3g4cODBqU82HjtQzgz5LdemKpQSULEjDXna7PSeu3xbbcW3QmnYqWsbKyop27tw5v9flRF2upQCHDx9O20SfwNgn6tKmdN0GJT6ufyoyiNtPf0VaJXu8pLpvG/e4+xfH2Pe6fO8rnilTge4ZKYuIa4d+n66XEawiJ+g9QBsI6vjjHrR9SGxzi7TS0NDQ0NAQ0F54DQ0NDQ1bAku7JcScZxYJ2JRZGmehpQgmC1zsa1RGux469UaW3yJUmljT2CKKziiec5troXjitZpxApX7UWTrZ9xWikrcz6jMrSmLiSynn6+5Pjo2T+WlYr46IwvZxlxZU8YwBg2UMnGaRT4HDx6UJN10003Vdnst+BmuA4vtPBZ2UJcGEVMtSLXLiGJQiq7Zn8wQgMY9NMpx2/2ZBfO1yIz123E3W980imBQCI/J6dOn58+6HIrmGNA79tP1UDzl/mRBqg2P+fnz5yfD5+3Zs2c+d543rwtJuuWWWyQNxim+J5Yv5eoQX3P9p06d2lB/FnyB7kjeu76X4QulQfzMwBc0kskMw6iG8Fz6zPTv0bmfrgT+ZFnx/Pb8uv3cI1wHcU4Z1o9rxWORiaI9T14rNlDzXMT1FudQms7DSTQOr6GhoaFhS+CaQotRuRupClOvpvaoaM7exKY0aiFvqECNVJPviY6wsYzsu9trSsFUiylIOmzG9tOEnEpeOsdK4yDI5Ggz02KOAY1I+GwWADgL+Bz7ENtoqp+UVi1dTPzN1y5evFil0p3xnOOYBdcl53v8+PENbYz98lqkYtxw+Q5xl4VeImqGV9IwLqZSaSzgNkaO2wYepqQ9XqZu6TweDUJcrvvpT3IDkUpnuq1HHnlE0uAQ7r3itkcum+4nnguatMf++RolM54TGxlEboAO9VMc3rZt23TgwIH5+Lgej580zIf3dBwPaczpScOa4LxQauS+x3XAtDbkXjKJCF0kvJZoSJWF2zNoru/v5tJj/1y32+bv3k/ul6UE0jjARY1zytru+aGkhAEqopTF7faapwuPEblelxPdh5pbQkNDQ0NDQ8A1hRYz5ZaZ4PotT3k+QxRlCTKzkEHx90z/599oVs+gsZGipHzfVCFD72T10IWilrQ0UigMis0wVJn5c033WdMlZvo46gr8DPVdsT5St6w/yt9JjU2Z76+tremJJ56YU/leH1EfS+rc1KopUVLtsZ0MS0a9nJ+NelLrgMiVU3IR1wFdCKxn9BibYo1SD9dTSyxKKj6uA+oiPSZeS+aeot7J1x566KENY2NKno7hkTrmWjRXQl1O3PN0Q3DbvKY8JuaopIHK9758/PHHqwmEfe7QFSPOpefM64lm9B6/uN6o/6T+jUGvo+6IwaEZviuTaJmzsr7x1ltvlTScN64/1uN+eAyZSszr0M9Ep3VyWO6X58H9jxxlLQmu62FYsrh23QbXS0lCNo4en0OHDkka9heDcWRnldf1mTNnmg6voaGhoaEhYikOb3V1VXv37h1RDFEXwjctHTQz2bCpClr50SKJIXky1BzEIwdk7oIUCEPwRJ0DOSwjyr9jXyJHyYSY/MzS9VCHZ8rU1DufzSi7WsoVUrLSoA9hgGFTY1mCU4Z1y5y6ja7rdPny5fnYnzx5ckN/Yp3kYtwG15fpKWqWw+SiMktBt8nzlAVVNmh9x3VGTlMauBlzx15D5g45l3FvMBg1OXuGgJLGlDSDEzA8XZaEl/3w+mAot1iuwTnJnNndRo/BuXPnqjo8gxaRcS7dTnO1DEhBy9WsXJdHbiqzQo56a2mcxsdzGu0AmHqJEiZLAqKukDYCPgc479n+pC6N+ys7q6j/5fx7PCkNk8ZjyxRd7EOsx795bhm0ILaRgcIfffTRxuE1NDQ0NDRELMXhlVK0e/fuUeilyOHRiotWfpnej4FRaf1HyjtSzwyPw9BOWZJaUxFut/UUbpO5g8ghMYWHqZcHH3xwQ70uK/OLitZJsczMootBoWvplTKqiXPAQNe1FCPS2GLWXFvmi+Rxcr/Onj1bpdKvXr2q06dPjyi3TG8TZfPSMJYer6jL8zxQ1u8yrO9xyKnIhbrdXJseLwbsjr+Z2rc+xFyi2xZ1eF6v9i1yG6y38Px7bKL1ocu1hSX9XP171BkzjRL3qfvrsYn6P+uZaLlYS0QqjUNmkaPwmohh0LIQaTU/zpWVFe3du3c+X94bcYypwzIXQ5+wOP+UPtW4Z+q1pGG9mRsjV+3xMwebtdHWs9T/RQ7PFp3W+7leBqLPdPk8G6jTc7/j+nbbmELN80+/1yz4O88fr02v93juuL30hWTYynh2eh9535w9e3YhH2CpcXgNDQ0NDVsES3N427dvH6UVifJVWiJSx+S3feZr4je/ZdlMyEkOUBooHlOM5t6oP4hcoakjUw3Pec5zJI11haRqpYHyYeQLg2lpYhvIOTCYdAT9UEj50IcwctmU0VMPkOkzmKaDlLHvjTo3t8HBne+5556qpZ398MgxRB3AAw88IGmsP2B7o6WonzfVR388/24OL44r05cwyK71s5EDoo7Qbb799tsl5X549DljOh1a/sa5sMTg3nvvlTSMm+fBZZgDlIZxc9+9J8xtuI3mHiJHcc8990iS/vRP/1TSoM/iGsoCDrte9517MwbFdt0ex71791atfLdv365Dhw6NdHdRb8l1R/uCTG/N+XZ55nIZSSjC5XosfaYwcHfkQukf67F1vzw+XsvSsCY8ly94wQskDWcUU39ZNx7HxO33uqKVbuZn6rFw+/0MJU9RsuR9yXnymnFb4/6lXptno+uxRas0nL3el/v3759M4RTROLyGhoaGhi2BpTg8U+mkjCI3Q2qJOpXMStNUgzk7U4pHjhzZ8Cz1J26TNFAgplCYhijKgH3NVAF1AlliW6bayJJQRkTOhXpLprTJxsTchcvxmLgsXzeXFXWGjJZAbtvXp3RTpLbpqxTbb+5iSo6+Z88evfzlL9eJEyckDVx1lh7IelHGQc0ixDDNjD+9DqiTjPoxplYxB+R7zFVl8T45BuYWrdPLYqmaKyOHRwu4SDW7XO8rr1FS9rGN7o/vcbnmRj3XrjfqRO+8884N93gPeCzMQcS147VYs2R227MIMlPpp4zV1VXdcMMN8z5m+jiuW0Zt8u9xnNjHY8eObXjWnAojskgbdXOxj547RoeSBm7G8+J745qU8nHy+UVLZX5GSZbXirlpSj9qqaBif6i/tDSH+y221WNOK+HMspmRo7ye3Z+Y7Nmgdf3p06c3tfA1GofX0NDQ0LAl0F54DQ0NDQ1bAkuLNM+ePTsKkBqNLhimySw4Fc1RLEVDDAZCNZueOTabTXZbLO6gmDI6K1scwbRDDE8WQTEnzXdpth9FWjTxpajOLH8Wtstsu8UpteDB0RiDIjSKbqdS2XgcGf6K4dekQdzgfkxlPN+5c6de+MIXjkIuRSMY/uYxtxjNoqUonrajMcOmPf/5z99QBs3IpWFteowtWvJ82BQ8GjpY7HXfffdJGtYkA0Fn4cHcRord/UmRvjTshVoYOhs4xHGnsZfrdd+ZAsh9iX21QYDH8aUvfakk6V3vepek3CWAc8/s6JnTdxSN1YxWVlZWtGvXrvlYZIEquN+ZVicLJuFrXl/el54Hi99jOwyG4KNhktd1FLVR1EyXkriPDIbgc71+huG8Yjtcj9UH/rRo23Mcx8R124XEa8b1MNBG3Is0PmRKJtfjfSWNw0by/cHzJ16L6Yha8OiGhoaGhoaApd0Sdu3aNaemTCFEDs9Uk9/yNJ/O0j/QwbimXGXQ5VgO3/BUzEfQcZ71THF65CSZ9ND9z0ym3VaGssrCoTHViuuhsUKWpoPjxRQiWRBucgEuz2NEp3VpzLmUUqqU1srKinbu3DkKpBzb7fEwJ2dDCVOVdLeI7SEn7364j3fddZekjRyl17Hng+vLbYyKczo201jK/cvCn5GjJlfg392eCEslzGHaoIJm69I4ZQ1Nvr3fbBwUKXyPj5/JEqey7a7H67sWwiwafXhfxrBrNQ7PKck8Lq4vnjseO/eFEgSGDZTGwSS4h913Br6QxvuCXIf7F88qt4WppRgYPNbD88ZtobGWz+K4DmhQxdRmNJ6Kv1Hq5HXNgNvRwMrlMzyYx5lrSBq4Tvfr/2/vzJbsqK40vKpUEgJjhyMwg8DhxhG+9Ps/iR+AtiUDbiaDQUiqoS8cX52/vlw7qw4RfeE+67+p4WTu3GOeNf7L7w9bCnMuOgKS+zAa3mAwGAxOAkdpeOfn5/XkyZONfTUlV6Q8JyzuFSW1bR/pgXsc9pxt+JvdpX9cTifb4ac1iK44KVKzE7SBpffs46ovTgzNPlrqdCi2Na6UjPyZpSePP+FitU6dyD5yDWPdS0s4Ozuri4uLjXS5V7DSWqcJZqu2xTTRIlYUSelzsHRsDaULLXdR2PS75hzk/5ln+7ztuyG9IxOPAVI6n6H9dukxpmnymWNPeV9m35hP/FsmAej6Zt+0U5G6MkS2ZHRAw0Nr6iwwzK21Zu/R1CLxUzk1IjWHqq1mlGPxmV4RaWf79NspTuzHfA5aoZP7+cl4sd7kvS6Ky95hHk2anc9xsWXO3F56mWkQmRvOaEfkQXu2lNk6kKAdfj5+/Hg0vMFgMBgMEkcXgL25udklrkUiceFV+8lSEjIBtMsP7VFwOZl6VWolfTdOQnUkqftVtS214f/zPDTblBIdmUobPN/kztmeC5pakuxKATka1FGBjL/TlPnpJF+wog5zH7rPfvjhh1ttem8tkUxNNkt/U0tD8rQPzSWZXHA0PzOdkpO5M1nZiddIr9ZiuqRoU+MheVvDSAou+mv/L/eYnqrqIC3b2uJyNyD3HXPiqMa9ElDeX/SZtej8zKuCzR0uLy/r66+/vr3WUeJVh7Vz0WO3mz4uR7xyLf30HOTeX9Edel9b46zaltZh7Rw1XrWlt+NvU751/jieTf8dFbzSSnMc7B0TOnSWLmu7PId5dFR01WH++J/X0VH4HiPjm8TzwWAwGAwCR2t4P//888YnkRKJfU6WtDq/nwmXad+SQmfPtVThaCaXn6g6SCn20dAP569le8D+GEtRHXk07Tkay21kXzx/1mj35mZVdNcRjFVbSZW/3bf0ua3KEHW4urqq77///jZvriskaskXDcF+uJS0GZPzkyzFdkVd3V/nC9l/ks9hD6HhuVBuSpzOlbQPB6mdNjPXCT8T+wlNleewHpkXZ+3fP1lTz1HVYT3YT11pnBxD9sU0Xvx0n7M9nrdXWurm5qbevHlzO8dI/9lv01o5irKLtHT5J2s8nHGfibzHlixrJKmZcC39Z17YQ/Q9icDxpfE/W6Vo0zmWVVv6LzQtlwfKtTTRPWCf+Xzlmjp3eEUf1+WMWvtzBH2+dzzmb775Znx4g8FgMBgkjtbwLi8vlxpZ1Vbad8HSzh/nkkHWTKzNpGRnqd+29c5HYOnYhTEdhVq1LWPhyEFrmllSxnl2qzlJ6cwasjW7PZ+HbfKO0tvTBm3nd+Raajtml3nrrbeW/XJpqbTjAzQ7+kuBTGsMKaXb3+ZiriZQTt+D++r1saZUdVh3SJZ5Hr61zrdhS4jz/UzGnvvAvmPnOoH0M3ZFj/P51q5SSvcZsFZoP3u242hg5tPk2Hkt4/jss8+W/uGbm5t6+fLlxteWe8h7utPoDJcsy+dVHea0i0hkHVh3R+uC3A/c44K53js5Dy7/xbXWfLgn/aSMi/n3Ney3bo6s/fms+x1WtY0Od9zG3jvL+8tzlGtEvzuLyH0YDW8wGAwGJ4H5whsMBoPBSeAok2bVv1VOJ1mnCm7Tnols98LogU0iTtjM622KM62Ww7mzbzZT4hS3szr/h0lrRbll81t+Rl9tSqCNLmTe5iePuzO3OMCA5zu8vzMr2+xlM0tXizCJeleBB48ePapf//rXmyTebA8Tkitx24yWZhvu4VqTBnveOjo1m4D5m+dligmVlx205D3UmU5t2nHfWIN00NMOz8PMS0CPaeqqtmeBzxxk5ACBhE1ptMl8d/Poted8dZW2bYK8vLzcDTy4uLjYBI5lHzynNr11AVV2XXCtCaG7ABSnP/n5TtXIMTt1wkFkeS5NLGGzKHvTKSFuJ5+P68DBK1WHNXLCvs3Nfr/nPX4n+56uT8DvIea5I8dnvr799tvdlKjEaHiDwWAwOAkcreE9evRo42RPCcEaRxf6mtfl7w54WWlvnUTq/1maSInbyY4rLaqrIm2pyIEN1kbzM5fwQApEMkrHtwmMPRcOYuiSyK2BrTTnfA6gXUttXTK++9rh8vKyvvnmm9sxo8VkEvmKTJm165KJac/a2qr6dt7rUiQOQLKVIMfPtawZpWT2Umc4Nw6ssgaYGmVXLbzqQKH25z//uaqq/vKXv9x+5vIzaCwPSfY2UYQtNl1AF+Azzo3LLaWGxrplCtB9xOPWMvK8mHjeaSiurJ3Xem/7vOzNE+1aA+sCrHieg4X8d6ZQOWjJWjT7vAtUoo+sh7V1Ul7yTDv9wOQYtg7l+BzEuEpN6+C54L3gdLOqg0acZOh7hBiJ0fAGg8FgcBI4mjz66dOnt/RKhGZ3fhuHt+99u1trWSWrO1w8n23JeqW1VW19dJZ498hpO79O10b2x4nmlgaR3rvw95UGaU2yk4470t78f6ftWFJEwjN1WtU23H5vjV+/fl3Pnz+/DUMnAT1L75gSC3TpD8DJribdthSffh9L57SP5sC1WQKF8aO9OB1iL+XDpNH2/3R7lmevUhnQBv70pz/d3gOxtAnP7T/vtODOj5R98vOrtukWTjlh/3dzk+QLKx/ezc1NXV9fb85Avge8f50475ST/N37wPuvS5j22jnk31awfI5jCEx4n5Yl4HNpa03na6M971X2DBres2fPbu/hXNKuSwtZw0ut3X1YWb06vybz5LSbbu/wbqRU1ldffTUa3mAwGAwGiV+k4WF3h+4mS5M4Os4S9opktWrro3uIDdj+PyQONLCOfNTP9nO75OhVyRhHQJqWqOogwZlSimuYo7zHmtWKSmxPu3bfQafhOSpr5TPsyp3Q/7fffruNxKK9ly9fbgibKfbK/flsg2en38D+Nv/NT0e3VW19DfQNjZs16ArzuqCoE7W7dfG4XBrFmmD3HCRf+6ryeUjs9t05ytEUgXnNitDdZOn5uwkdTBuVc4+mzM/Xr1/vrvuTJ082Voccj7VHr2n3DrGma03EvtXOimK6PrQ2l6dK2IfPvOGX7XzGq/Ppn7kP/C60T5r3EMWFc8xY8fx/k3RkX1cUensE2/ZRO/qVvZP+WvbXHhH9CqPhDQaDweAkcJSGd319XT///POt1IIUkDRHjlJy5J01vb3PrNF1Uhr/c8FZbM/8TG3NpLGWLE1hlM9xpKUjSrknJbsVDRCSF+VgUlN2X4GjM/2M7IPt4paEunwfa0bMaxfZ57Hu+fAAe4Yxd5RYq3zFzr9kadKS/orQNq91+Rr6ZGqm7KMLotqnknsKSXrl93mIhoffhf2MVE5eXlesOHNPs4/2O+bznKtp/5Y15ryHPnrPdnPCvnrx4sWmPePs7OxOlCbt48OpOmi11qj8nun8ldaiuujcHEfC+bmc8a5gMu9J51ZyT0d1Zh+d31n2TXeld1gXa5TdeBxZS59sHejycu2D9vuAzzs/uvNo2aNdtCuaMBre06dPd4nrE6PhDQaDweAkcHQe3vn5+UZqIrKnassmYN9Gp6XZh7ayqYMuFwxgC+Znp904Ws6sGUhCKWk5CsxsFY5KTc3WJYM8F0gsKQ0yfyt/YxdJajga0GPp/teV4Mk2UpKyP4sCwR0uLy/r22+/vW0H31035lXkbbcf7LtzIUn79FIDsL+AdWA8sJmkJJyk4PmZo3Y7rZD97UKfLk5Lcc+qg3RuMmwi7CiS+/e///32HmufPguMy23m2K3R29/VlZRBa3NEX5cjRhxARt6upPSbm5t69erVbbtYB1JTIJrVRWdXEb9V9+f37llR2Dv8z9qt/cHZX/tl0VS6SFL/z1r5ysKUn/kdzNx3+xuwJ+m/yxF153wVQb6K2szfV+2yBhkpTc4r5+Tp06cPsi5VjYY3GAwGgxPBfOENBoPB4CRwlEnz7OysHj16dKs+4jhHRa46qJ6YrFD1ba7oqlbnc6q2yY2m86o6mKhM2mzC3C702nRUqO9dnb8uhDv/XtUBzN+dlGry3pwjJw1zj00ZHRH0ymm8p/Y7BNthzl2bq5D5PZDKQv+TCBozID//8Ic/3GnfwStVB/Ogg6RcPZ3r0qlP/zHF8RnmQtpIkz3mv1WgAePJgBGb9w3mjZ/ZR5vDu9SM7GvXN+bk97//fVVtw8W7qtU+ezYNZuJ5l76R93b38Psnn3xSVf9+T6xMmgTL0d5f//rXqqr69NNPb68xaQFjMlFzRzhtN4EDuDoz/4oezrXt8nlpOq46vCuZvy4dyi4g99Xun1wnm6EBz+Ms5pnmnLCPOYueXwf6JPjMJNydyXZFHs019DXnzm6l+4jHE6PhDQaDweAk8IvSEpBikNIyKXAV4puO+Kq+zAywFuOw99TwVsnpTnxP6dF0Q9bSOqnWtFadxpDjynvRgK3VoP0yf6k9OoGde6zxmVIrsaoUbyd29teh39Ysch5NXLsqDcQznz17dhtGb40120EzQQKlXeagC8G3tm6JuNOEnYxukgIk8I7MlzV1ABJnI4MVCCxBWuZa5oD/dxqey2utghc6uj3uTQ216hCQ0KUI+fw6hcdrXnV/aR7azHlkzunLmzdvdoNWXr9+vQnjz0rXUNRZA7Km3yVKO9jCGlFHnO5gKM8Tfeu0QtbXgSD0uaMj43+cDTSfVRmsbM/vSPYK69FZHtjHzIXJGDprm8/YqrRQF7BoUg7uZbwdZRrXdkF4K4yGNxgMBoOTwNFpCVdXVxsi2ZR8TH3lxEKQ99g/YEnPIf95r9MDViV/UqowebQlLiSHtE9bsnFZGkuLKSU6odk2bc9ZfkafXHiWNjvbvSl8VoVAc3wrqbZb49U119fXS1v648eP68MPP7wdu9c8+2Bv9lFTAAAgAElEQVStHK2wo4mzBmof654fc0WY7dIo3X7LcWXfkIzTN+nP7GdGC0HTzxBs/Im2mNBX2s61pI/030Vbndif+87zaEuJk5mrDufFP+lTp7m53Nb5+flSw7u6uqrvvvuuPvroozv9T5+gz5K1TbTCfIZD+V2KZq/EGXNqPxwaSUeEgCZvKwpgz2TJLL/zmH9bGLrnsa9YK8bnlI08i05wZ26Yvz2S9BXt2YqyLZ/j990eLZ4J1R/qv6saDW8wGAwGJ4JfVAB2lSjO51VbYmETQt/phOiLrFVY8uskbmtt9gdlIrBLhzhRFmktJUiTp1oLse8jJRJrZUhLPL8r02IqM37abt0l8vszsFdM0r6vVZHfnHtHTe758LjX/suORskFTD3nCVNg0Sf/vVeY1wVsGXtHCGDfmcmwra1Vbf1+rIt9t0Q2575zArP7aB9v9oFrmAPm1RaNbl59tju6PbBKHnYkcefPSs3lPkndZ7krTeM+2JfbUZhxj/trS0iuC/sXbYO++R2W2potPfzNerAfci3pA4QHjgb2/s53CM+xZYS/TaFXtdUkfc2qpFr+7jJI/jw1W/v7vGf5O4kdHHvxww8/3Pvuue3Dg64aDAaDweA/HEfn4aXWsMr3qtr6GEx6+lCyz7xnL6rMOWEuiZHSo6UYlzPpyk0gUZkWCglvZZev2vpDLOlZ86ra5hc6emnla6naSkD0FUlyT+KmT46U7SjarAXs5cPc3NzU5eXlbSQiUbud75E+oNW4DznWVT6Q92Y3T5ZWycdjP/A8okWrDpK2I9xYH/yNub+Zdxf2XNHE5VgsSTu6dY+keGUNsNUg94H9WI5g3PPhMW+m2XJOVfYx/ZkrKR3yaDRuzk/OMefdlhgTdef6r4qa0m/7dLP4Mdq6rQDOC+1KjGG5oC+O4s0zRrQnY2acXAPNWlc82JYy5twWho6OzBqe93l3zn0+rel1eYGr8kf+O/eo/fR7paWM0fAGg8FgcBI4SsNDSgddYUSXqeAzJJ89W6ujMS1Vdvea6QIJhGt5bmoS3MO1SGtIPCagznHRN+5BmkXSQwpMvwgSHX1xW8xp5ioi7Zmkdi/iCdznA+2kwVUO0qpEU9VB0so53yvi+fbbb29InVPq51nMobUy+6A6rHyrXYFMS/LuO/sBZo+qqs8++6yqDmWO3n///ao6MIaAbp5gJmJteR5SPPek9mQf+EoCz3PpElb00Tl09m91z+FaS9zpU7Hf2pqRtayqbf7oXhFPyKPZZ1hV0j9mnz19WfmzaTd/rnIN+T9nvOpw/hkjfWFtIWbO2AFHePNeIBLXEebZB9YSLY0z4lzHnGNbm1y6DWtFriXPWeVh+v26p1Faw/M7LGELzYp4ump7/h/qv6saDW8wGAwGJ4KjozTvbVBFNZGA7D/qfGpgxefnkvVVdyOnqrZsIi6gmfc7sssFTVNLs+3cUoUlyOQXNaOGtRvnTWV77kvHHJN97/q20gY72z1YzeNeDs19kXYXFxcbH0v6RcwbyRzaj9lFhlnqY02ZP+ekVW0leGsdaF4p2eOjQ8uwZIrU3rHBcM8f//jHqtrm1OErzL26ini0tpBrzjzxGVqB2Tm6ArCOrgbsB2tBOQf2vzjfMNvk2cztq1evlpL69fV1vXz5cuM/zEhYs3nQzy7H1fdYm3C0MHs0zzRjMrMOPx0BXnV4h/A/fHcuzJpjsdbk/EUXSs2z4ehTnkPfmccseWVN2VaAVdFsjzXH4/93967YWLqIcuY2o4ynAOxgMBgMBoH5whsMBoPBSeDooJUMAd0LmLAaa2qxxCpx1SaHLrkSs4YDW1ymJ8unOIDG4zCNTtdHO2LpByaHNLs6VWJFv9YlgNqpb+d+5+x38I/NAh21mM2Tq+rPOSd+9ltvvbVbgoj9k+13dGquvu7k9+y3neyYUZws3KU0uOI3PxkXJk0SwqvWNHiYvfjZBXLxk+rkXGvKKQJiqrZBGDYtYULLUG3micAJpy7sBTU54GRV9qqrWm2zvwNg8jm0y9z+5je/aZPC6efV1dUmUb4jd1+ZRbu0BJvInRbD56xTmsNNOM+9aaLNfiVMqLAqPdaNx/vaqS5d8BKgr+wvzPMuW5TP6cjCs62ETZir89uVTvN3is3iHSmH3VkPwWh4g8FgMDgJ/KK0BKQKSnKklGGJ0N/c/kbP/1mKNElsF8JszcdaDNJFOsydcGmSYEvRCSdC2lnakWXbee//m+Iq213RM1nySonLGoUTm/ekTydsW0rPMbjd+5zH19fXm7nIMbPODpiwhNgFIJhizVpz13/WHancc4xkn5oEe35VNBhpuQvQcCFRNCIkbgeG5LMdwGXNL4N2HKTioAXmswtAsBRuQu8uhaMrUZR/dwFP3J9BWSvrwM3NzZ2AqG4t70un6dJSHJBl7XZPm1pZo9DWuwArB8NgQSBdJSnFgAsa++w6ZSIDa1wI2IQbHeGF0zicdO93Va653322vnRWImuwpvnrLDPck/R6E7QyGAwGg0Hg6LQEkkCrtoVUq+4ngO6S1S35Oly8s7+DFW2Nw9VT40KyQwJahcB2NEQrclVrGJ2Nm76skirThk879k1aC+HvDNG2lmupqSML9phdULVLTLeWtidp4YfBf+H2E5YyXZg3JcRVQraT1rsEVqe7WHru/GP2s1hLcmHQ7BNh4KYl4xwxhkxWRuq3b9AaS867z5rTLoA1nK5d+033fCpOZTFhfJeMn+3u7Z3Ly8sN6Xuu5cq3bZ9r7jefMfvs0Jo6onPvW/v0TA1YdZhTNDt+kq5i6q+qLTm5rWDMAX1MLZRx0L5TTvZKfgHPEc9xYdrs66rw9J5//z7fa54n1oX1yviM+zAa3mAwGAxOAr+oPJBtsvkt76Kq9nV1foouubDqIEUkxVdVX3B2RaPTSTEu7QKsTXW+QkvNq+K0OZbV+Bw1l1LMqtyRi8e6f9kOfVzNRacVWBrbo+1x//c0vOvr6/rhhx82ibp5vbVlS8uMPaXYFSG22+i0DK8p82ZpvdPWkLjtw+sI1fnMBVddiNWScfbRYNzc2+1V++5WZAW5xiZjsKbXSevWorx3uTetLPQpfTV7fpirq6vbZ3fReSa4WEUvdlG6bmNFgdX5ydHG2QeM0TSCVYfzmGVtqg6WJjSxPKfW+uzD9xnsaMmAfZ8uYp19sxWK8dBXF2jN9tOnX7Xd1x3hhTVWv1dzPYns7Up+3YfR8AaDwWBwEji6PND5+fkmcqyT9iw975UFsq3ffoI9v9gq8tGfd37GlZ+q83FZqvRz9qLY7B+zRmetOH93JOcqx6nza63yG0FKgC6kaunWEZ9V21Io5+fnSyn97Oysnjx5cqutdRFp+BxW+VhI0Zk3ZM3Xc+xip13/XNqli3wFkATjM3UeXpdL5Wc6J3Uv8s19YN5MNZV0ZJ3mnde6eGjC+VfOz+zG5/PpPcmakxfY3bMX4Qu1GGPsqMo6X2b2YZVPlvfYp+k8uW7vu/SWNaOuhJFLPKHZddGuaDbca2sR90BAnVhFrNtyke8dzwF7yLmi7PeuiPQqsryLrva7apWPh78z/5da75QHGgwGg8EgcJSGd319fUcqRNLuWFTsRwBdCQxrQLYBW4rqGEIs4TtCMfttdoQVIXNKPvZLuBDinhSz8tm49E9KrCZ6dT6Zx7JXXsV5N50vZOWzAY78y3bo9155ICLt7D/ItbR/yJqC/T757JUVgHW3nynbc14aGomjzqoOe36lQTKezs+IduioU/uFu+hgnzGPOzVmWy4cOW0tLeeTz8wY4nPbWRRcbseaU+5dSmFlcdj7CsCSY8b6ZB+Yb1tGaJP/5553JLf9vfaXdywmtmiZpaXzx64iSpOk3ECjshVsj3UEi4jPqQtDd/mRjs7k71VR5qrtHrG1Zc9ystLu/b7N9rGyDHn0YDAYDAbCfOENBoPB4CRwdFrC1dXVhtolk55XTsiVKl61NcutAlw6Khyr3CaW7YItbH7EROLAjbxnFZZt02mXHO30B9rg/13dKExUNp3YNNdVOvace9ygM2XYROP5TNOC298LLb++vq4ff/xxk9SdJNuuTu9Agy7B1GYTh2fb1NOROtMGfSF1otsHTsWhPcZDW8+fP7+9x2H591Ue79bSpnKPO9eS/q9q6D3E/M5c5/rk51nH0C4JzL48n/7kWtBuppWsTJqPHj2qd999t7744os7/895oj3OTZecXnXXNOy96OAUJ4/n+VwFDXEv78TOxO9gEVMd5rpg5vRaOWjK6THZf5sQba7s0i1sfuV5XMuadu16XzsIsHOLdC6HHI+DE7P9+1Ja7tzzoKsGg8FgMPgPx9Hk0dfX17ff0Eh5GW68SnpeBbFUbZ3394USpzTgoBUT8/oZ2QdL3JZU07lsTdKOWEsxeS+ObEuwe1WZ/T8HcKwo23KsvsZr0YW/Oyzd0mHOq536e9RBb968qS+//PJWEoWEOcfsJHLgoIe8xwETwCHZnZMdjYOf1rA6qdIUTuwhNAuH/ldtNVPGZ1qyPXJs+mgN1taJqsO5dKDLyhqSYJ6Q6E2gvUdH5WRhB7zk3HvfJjm0cX5+Xr/61a9ux2NrS9VBqyQwCFib6oJInLzP39a80pLlcbiaOfdkOP37779fVYdkcvrGWegC00iydioDGpbJpbvzBBwwRpmqPNNOF6KvjN2WjAwG9LvdZ6/T4B1I57Pncee4slL83rsnMRreYDAYDE4CRyeeX1xc3Eq3/hau6hNTE9YkqvpQ56pt4iLSREpN9jV1Po2qu2HiLlhpXwd9JCF0bxwOm3UR0fyMnyRx0mdro1UHSdVS0kMov6wZe06sFec9luRdQqkrJZLJsKt+vX79up4/f16ffPJJVfXS8ip5fLXG2V+HlDtxtvNrIhU7uZeQefDhhx/e/o40Tv/5ydoiEec8IY2joeCXMV1UdzaQZumrtcXOp0b4vqnZTETQUfdZU7HW3Wm9K+uD023yPeF7rq6ulhre2dlZPXr0aJMCknto5f+3n7zbn7aisA9NvbVHHu00iI7KzGkurAt7indH+sfQCrkWC4NTmxyzkHNiqxdt8ZycR88F7bnkjxPDqw570Nr0qjxZtmPrBn1lTjoC99RGx4c3GAwGg0HgaA3v8ePHm2KXqT3ZL9CVda+6K6WbLmeVBI3GRWn6qm1JFyRsk1d3VF+ORLKvMCURJBxLuI6eZC5SGrTPxmUtOunz66+/rqqtBGR/iEvM5D3W7Cy97ZU/Mqmr/Vz5e67BSsODPBrJDS2ni9hyQr79iVk+B23fa2mpvItMZM6yvXwu/aBAZ/5uKZP28Wcn/RnPNKUXmpgl4E4T8pmgDSfLJzgLtnZYs8vn3bcPHNGa13rOnaScz7F/6Z133ln6Yc7Pz+vdd9+9PYMUzM02VonSptPK/WatwgQHK99e1TaJ22cNTSy1J651FLL9fqm58PvHH39cVVV/+9vf7lzrsk35fuIdstJg2auprbKfXELI0aAgtVHefYx59R7viPX9PbEXnZkJ5/R/NLzBYDAYDAJHR2m+efPmVmLgGzwpcUztA/zNnVIMkp8lH0d2dmV2LFWi/dnn0BWfdF4S7XblVEw3hATH/63ZpdZLn6xBImHtEWo7AhJtxHb4nBP7fSyBO+cu/wcsMXZ5Mp1fZ+WHefToUf32t79dEtomTAdm6T01LqLYuId1cbRZR4PHevAZ60GfkCDTh2fyXO+vzi/mQrLMkdeu8/s4J8yEz9yba4BmR18c3eg1yHtXEaR71HWAc8w+Y9xo4bn/HV34zjvvLEnDq/49v4yL9lJjpG2XBbIW1ZFHW5OzFaWzWrA3nMPHtV0ZJecIoqnSpy43lefgV2avev+xl3J89qV5zjufGn10TqwjcDtt3Hl/9uF1Zdm897F6sI6mmaw6aHhpZdnbO4nR8AaDwWBwEjiaPPrly5cbu3hKVWh7aCJdNFbVXQnBkqbtxtb8UkIw80VGq1VtJfKqgxSBBGxpgr87JhJ+Ms5VzlgnNVuTQ5KzvTyvte+OvrmQbvbVZYdWNvTsj8dB+/SxK/jI/+jT06dPdwuWfvrpp5t8uC5vyDlMtg5kv00obqmc/rPmea9zfpCizSqRWigStvcq2mHnuzGjxqrIaueHcVkYF8nl8ywPRLvOI/N56nKcvKYrf1PCvndrG8xRFw2Y2vNKSsf/y+doemj3VYe9gpZh3xZI7cmasEm3V2TmiRUhfLeWzI9LCwHayOhw3lv21fu90DGtAPrPepsRJ98dtiBYK/Uapfbr+A0XrwYdyxZ9cxk0rs38SvZXl0d6H0bDGwwGg8FJ4Ggf3qtXrzYRSR0jCT8dcWc/UsLf7pbeV3xrVT07RdVBCkifjtky7I+zz7BqK4GY+cLP78p1uDwLEq/z2aq2TBq2W+8VgF1FPnW+O2AtlLnhXqTBlPCcK/Pq1aulhndxcVEffPDBRktLaRbJDWnO+WTdupDDREQaY+Re+09z7Mypi3dyD39nXt4qCpTnM77UCml/VcIK+POq2uS8dj6NqrsWjM8//7yqDnvn2bNnVbX15XXcjazHqqxSt4esFdjy0/Hnstacy+vr691Iu4uLi825yTHbEmGuTufcZj+ZW7/PHK3b8bCuymg5erPq8J5xdC7Woi52wNo4P5lb9yP3lK0BnFMXos29yj2sj3NIbY3LaGRgjc4Wpfzc1ihHzPqdUHVY/9yje3nJidHwBoPBYHASmC+8wWAwGJwEjjZpXl5ebqiJUgU3sbQpd9pOqCq5E1Ud/p5BMnYOm7anC3TBDMbzTO1kIuqqrTlgleBqB3Fea2JeVwjOcdE3VHon8a5KKCVo14E8rIVDuLM9xumk/I6k+qGAmq7qMK4MIqC99957r6q21FhdMBHUS5jiaIMxO0E7+8yaOmkb01MXWON1Zx1M39WVaXH4OeYc09F1gUEO36ZNmymrtsEpmMwcANOFzptowC4IB7Vk31xuCTB/aYZ1UNte8jD7xlW3Mx3KARk2TzKnmZayqtQOTAyf+8QBVsw1JYxMnN21bzePSTTyM1dSdzCLSb6z/6ugla7kl9/pfke5NFyuqdu1KX/vO8DvfO5hrdMlRR+9Rx+C0fAGg8FgcBI4Oi3hp59+2pD5ZpKtnetIy5beUntalZVAUrBk2qU0OPQZDcKkyHm/n8M4LNV0fbF2Y4Lc/Bztw+TH1tJSgkTqd1iwx91Rp5n+yeHnLt+S9ziU2HO+F8hzX5jwzc3NhqIox7XShK1VpaSIto7G4MRVU6Lxec4Ha+W92j2P9kw/RXh9Fwhiei4TNJtyjoTk/J81bFsWUgLmf/xckaR3Id8OMjPYl6kVmGbLpAIugJv9X/2dgNIQoM1ksMUqiMwBdl3iuVNZHBDmd0zVlmSdOeasdyXBfE5W7Xfas61drMOKcL8bny1X3Vwwt243014SpHZUHc6yNecVpZp/rzqMNwkJqu5qyh113ZQHGgwGg8EgcJSGd3V1Vf/61782ia0pDViiRnpGAu8kR9rjWx0pw/4jJ4QmkASsOez5q8AqTSDhRFZLJqtUgKpt2Ls1Oye+Vt0lRk1Y+twj87W/xUn/Xfi759zjTM218+utQIkXJMKOUgwNgDGjpZNUbI0hf//oo4/uXLtKVs++Mmfst9T+su1u7/zud7+rqq3m4LJE+cyVlcNUX9011mBoiz53ZZtozz5j76HUniyVm8C7S1cwNRcwGXhqeNyT74eVlH52dlZPnjzZhNmndWC1F02SkZqCU0is0TudJy0itnzYH8dY8x6nbAFbBVJrchrKyre+Fyth36rX2IWCs32nEpimMPeO341+35jMIq9ZpVu5RFP2BTw0JaFqNLzBYDAYnAiO9uF9//33G+qllGKcRI0UhdSyF11oqaEr6UI//Dz8EJbo9qRYE+SCzsaNhO1oP0c1mi4qsSpSa59etmtYSzRNUP5uH6WTpjufm8mDgdcz+9AllHa4uLi4lcq5J8uL2C/i/nXEtY7ORSJcEQLs+ZFWEWnQhuVnJuJ1Ic6E18HagaMl0R7zd+aE8drvk1Kzyd09Hu/Nzh9nC4kjCLuCnC7p4jOfvn5bLn766addST2jw+0DqzrMvwkf2A8d5dsqmd9730WQq7aFh4Hbys9NVmA/fBejYI3HVpCObs99MZ2fo4+70lL0xX5f0FlbXEKtoy6ruks2wTw5onNFeFDV+8JXpPXGaHiDwWAwOAkcpeFdXl7Wd999tykVkXZxpDrbqx0tuZc7YaJkR6SlFGfSVkvLtlszjq49R1al1Gzfhe3UlkhSs1gViQT83dnDgamDLIWmhOf8FEvOnQa7ihhbURpVHSTDJFReSen48DzW1GZc9NYasfdd9z+0MZeksR+4a9/Ri6xtaoXc0/nqqg4aREdhZauD2+zoqNwX+8ZZl4y0tObgM8G+7nzV9g05h6vLvbXvblXCKPc3/efcvnr1aiml39zc3Cku3JFeoz1am6afRNF2Jb9WhVhNzJ7WDZOV27IEOl+1c2ndj3yX2KphqkQ/L/9eFd3eoz/z86xB7hFB+zl+vzofOOHc7odErmbe9lCLDQaDwWAQOJppJcsDOT+q6iBhm2QWLaDzV1kCtl3Xkl/6Apz7YTJVa2JVaynFLBMpkdxHYN09x89zHy3ZpzRoLdASj4sq7kmujiTs/D72rbkcTSdV25fy888/P9iW7iKrVYf8M0etrrTd7A/XIslD+Oz1yrU3c4fnlOem38c+YUc+dhGL9idaS/Rap5S+ylG1vyzX0vlkvse5ezkn1hi87tzT5agicTNOR2d2UY6OVO4A0wrzZoLrqsMa+nzw3sGS0GlA1gbtW+381z7T3jNdaSlHcjoK1Bpswu8IWwu68wlWVq89libv55U2vKfpe97Yo+m39xq44DHzmTEKtsy8fv16fHiDwWAwGCTmC28wGAwGJ4FfRB5NiK/VzqqDKYngFQheMQuRgN7R9NCeiZMd9txVPF8laHdpAjbx2cnvxNNsp6tdV7U1U6VZYmVSsHmiM2U5mMTO2c7U2lEh5XO5pyPHZhyueN0lX68IhjtglrIZPCmxnGphMxp9SPOGTSCYzz7++OOq2lIidakTNjmy/3huml1tiuO5BI10ifVO37FZ36afNHHaZNWRBuR1VVtXgwOt6LPPVfbJwSrMBec418ApC8wBfeLM51r4vO4FrUAt1q2/+20CAKce5buD9wuuC+bBLoeOJszuCSe2d2QDTsxe1d/rqBNNZbgios53sYOW3FenK3iMVX36QV6X70i/d3xNZ0J1Qr37yhrl+83J75N4PhgMBoOBcHTieVa17oJWTD6KVMc3OGS/6WRfkQ8jTeKQxlmdEgnS6l5or/toicASlqXcfKalMAcC0J98Pv+zs3VFxZPPW9FPmQA65xOsKHg66dOanMvS7FVLz2TvvRIvjx8/3mjcOcdIc1gFHFzBGLu9w75zIjiUYy9evLgzvmzff1ta74hrVykmIPeog1UcNGDpNveB96KTpTvt2ilBLrPEc7ukZUv9tIvW1p0vaxI8x2tB2knOSUdrZZCWwPlH68zgB2vewAnaaVHgfub2q6++unMtAXh+P1Qd3k0+9w6+6YLJbLXZI1f2nvD6m5KrS4fqykDl312iu1O3HGDj1Iqqwz72ukN/15VOcxk39oPflbluTmh//PjxbgDOnTE/6KrBYDAYDP7DcZSGV/Xvb/SVBFl1kLRd1gTp7tmzZ3f+n+1Y8zARa2c3ttRsCrCOjmrl27KG2RUddOit7f0uCJr3Wvqz5NXZoj1mawddErn9I0hElgY7H6WTv+3fzFBwxpy+1T1KtNevX2/oh9Kvgx+MPeRSIV2iLH1w/1k7wtHpdz7PCbJ+nlMP8lpTLtnHmevhdqxZ2TqR99onZS2gCzFHc3G5I+Zkj1qP/7k4Lj//8Y9/3Pk8x45GZMuPCy3n76mlrXB5eVlfffXVrQYGOguFS0qtrDlV23UxWbnvzfQUpwms/GOdlchnqTtHOfa8132ifRNv5Fh9Jp3wnm121q1sC7gIa/YV+B1lq1F+xtyviiHnnLAP8vthNLzBYDAYDAJHa3jX19cbH0Da4V2c0ZFhJBd3kUGWSLAJP6SMBbC0bgqg/P2+cj1dVNaq8OuKRDbbtWbVRUn5ftvZLfHvRZRa+neCfWq0TuZNyqdss0uodqRkBywD+GO7CEHWF60MbYJn0qfst9ds5cMlIR3/YNXW52Bfaic1eoz2EXVRs/TbBXmd4Nz5NVelVrymOSe+1nvUfuFcA0v2npuOuNmaHDB5QfdZUtetou3evHlTL168uH23dGO2X4x2iRrHstSB/luzd+Hc7v3jPeII7MSqjJL36t5ZdvL6HmG7NXifERNRd32zz9D7YK/wKuvlpPLOv+1x8D5y9HWCfdXN9Qqj4Q0Gg8HgJHC0hle1/TZOqYCInBWZKz6W/Fbm27vzLVVto+W6Io6m+slrjJWdfZXjlONYFVp8aIn5vNY5JyktOurMGh3z2Uk3pv9ZSUC5ji5vZC2+ywP0Pri8vLyX4sdadYK5xReErR4pvSskyn7rfCbZX8ZBfl5V1RdffHFnHF0uk8e50pqYY6TO1Jocjed8L+/7LkrPGsxqfdzfbN+RvJb88/eVf4kxJL2fx+6cVNYo/T3eTz/++ONSw7u6uqrvv/9+M4+p4dEfxsgeYS7wDWW/fY3/3/m4wCoOYLVO2d9VQeCOHN1xBdYGbR3Kz52HuSr5k89z3/ze2dt3ngNbh7rIZtPF2bpiX3KOOTMBhjx6MBgMBoPAURoektYe+PZGSrJPBSkw20Gid9FJaypE8qREYu3Fvq8uusk5TPZTuCxIfmZyWucQdqVQOv+X+5T9yXGZxWLFRtL5KC0JWTpMn4tt9PYz+bq8P6N175O09rQZ2jNpNHsFxo4cx2pe7Ovo8pTw6z1//ryqtlaCjrHGRYlXRXxzPawpWGq3ZaHT1hy1Zt/WL1YAAAQ0SURBVFYW+5artpK2fSjWxLoxr0jZycurOqwPUaH3FVbuxrFnHSDC1/6xfA9Y47CPi7598MEHm/ZXJX5c3mbvHeKI270cR9pjH9O3bvwu5eR2HXm9Z2FxxKcLLuc19vfZsuX9WLV9f5uJqYtWpx00Oa515C9Wnhx7lgnqSLM7jIY3GAwGg5PAfOENBoPB4CRwNHn09fX1xhyVYceo1iRp2kyIaSTNaYSKmy7HtFFdwIPvscrdBa/YDLaqzdXRkTmggXHYLJrwONx3q+j57FVYsM2JaSZbVUO3CaMjZPV4HZKdpmjXRrsv+fPs7GxDlNyFxDtR2bXN8h6bemxiXiXSVm3pxz7//PM7z38Ime8qDSbn1uHoq6R+74e8xzXSXIE8n+f1t6nJCfYdLR1ra5IJxpLnyiQT9IlzjSk63Q8mHtgL+oK0HnS182zitUulS8HwHuEa3l12U3Rn2+8Suw3yXNmU6feog6fyfs+xE+tdFzQ/W6U9dEGCvueYVCq7Qei75zkT+L/88st2HJgwO8ILp6cMefRgMBgMBsLRQSv//Oc/N47MLkTZUuOqVEnV4Rvb5UUsvTsQpeogAXCPne6do9RSi8Nz7byu2mpyXUh3/t1VWDcNlhNoUxKzNmZn+Cq5PK+1VuqQ4j0HtyX7blzWkPeSh6+vr+vHH3+8tQZ0VbDfe++9qtruIdaWe1NTdlCFJWGHenfagcluvd9yTNa0rDV1BNCWXoEDUjqS3/tIqq3NJRxQ4yCCLhHYGhxr4OTsPN/WcqyVmgi4aqtx7dFDsXdSM6jqicCdhoCmukeyzTX0Jd9nOY7UUDsauIRLQmV/eS5z7JSaPavHykrggK+uLyuyiqRQXJUhW6WipWXJ2uGKUCHPBuu0SlciNSnnHqvAirJxD6PhDQaDweAkcLQPrwsBzW9lvs2RwpHKLDV3moKLdSJpIUXQZkobtG8/VRe67D5aena4eEpnqzIZq8TcvNf0OdbOuoKs1uT4aXJVjyn75lBpa8hdcUqP3aH0udYujLlXxJMSL56DjoLNYeD2j3Tz5P7Z9o+WmGu8SinwczPRHb/UihLJbeU1Dp231N75x8DK38f/u3tWJVZ4Huet88d5PMwBfUxfrjUIF43tNCT7q87Pz5fWAWjp9tJ4TFTMM122J/e5qRFNBO93R86NLQbW1jt/3N57M5H3WDvieSY4sIab166KY3ss+TxrgX5n7fnGvYf8zswUA19j6xfnLa0jPgOdVrvCaHiDwWAwOAmc3UcFdefis7P/qar//r/rzuD/Af7r5ubmff9z9s7gAZi9M/ilaPeOcdQX3mAwGAwG/6kYk+ZgMBgMTgLzhTcYDAaDk8B84Q0Gg8HgJDBfeIPBYDA4CcwX3mAwGAxOAvOFNxgMBoOTwHzhDQaDweAkMF94g8FgMDgJzBfeYDAYDE4C/wvdw0i28VBf9gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3088,7 +764,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bWlV3vt+e+/TVJ1zqupUCxStQG4Rc9U/RMUodggaFTsexQZFr9dwjV2u1ygBtWJQ1Cia5Go0qJeIDWLUqNgHAfUqEs21QwGlrw6qzqn2nKrT7Xn/mGvsNfZvjvHNtfapkqfY432e/ay9ZvP1c67Rvl8bhkGFQqFQKHywY+MD3YBCoVAoFP4hUD94hUKhUNgXqB+8QqFQKOwL1A9eoVAoFPYF6gevUCgUCvsC9YNXKBQKhX2BB+UHr7X2tNbaq1trt7TWzrbWTrTWfre19uWttc3FNc9vrQ2ttcc/GHWi/k9srd3YWvug/QFvrX1Oa+3//EC3Yy9YzM+w+HtmcP7xrbXtxfmvcsdvbK3tKW+mtfb61trrUceAvztaa29orT3rIvq1p3XnnocnrXDt0Fp7CY5d0lr77dbaA621z1gcu3Fx7f2ttcuDcr7c9X223oczgrmO/t71INV1eFHetz5I5T1pMZePDc7d1lr70QejngcDrbVPaq29cbHmbmmtfV9r7dAeynndYgxf/FC003DRPxCttW+U9P9KulLSt0h6hqSvlPQ2Sf9J0mdebB0r4BMlfYc+uDXWz5H0sPzBc7hX0vOC418m6b7g+I9Letoe6/qaxR/x0kWZT5P0v0k6K+k1rbWP3kMdn6gPwLprrR2V9BuSPk7SZw3D8Ou45Jyk5wS3frnGOdgPeBr+bpP02zj2uQ9SXWcW5f3Ug1TekzSuq8kPnqR/Jul7H6R6LgqttY+U9FuS3qPxPf9vJL1A0n9es5yvkHTDg97AAFsXc3Nr7emSXibp/x6G4etx+ldaay+TdORi6vhAobV2aBiGMx/odjyU+AD08ZckPae1dmQYhlPu+PMk/aKk5/uLh2G4SdJNe6loGIa/SU69YxiGN9qX1trvSrpL0udJ+pO91PUPidbaZZJ+U9KHSfr0YRh+P7jslzSO6U+4+x6j8Qf6vwjj/MEIP8eS1Fo7I+kOHs+wzrMxjOwdK5V7sRiG4X/+Q9SzIv6tpL+X9EXDMFyQ9NqFRebHWmvfNwzDm+cKaK1dLenfSfo6ST/7kLZWFy+Zfoukk5L+VXRyGIa3D8Pwl9nNCxX2Rhwz09Pz3bGnLkykJxaq8ztaaz+yOHejRmlIks6ZucLde2lr7Xtba+9cmFvf2Vp7kTdDOZPb57XWXt5au13S+3odb609obX2yoWJ4cyiTf8e13xCa+21rbV7W2unFiaof4JrXt9a+8PW2jNaa/+ztXa6tfbXrbXPdde8QqN0fn1kjmmtXdNa+9HW2s2LtryltfbVqMdMaE9vrf1Ca+0uLV7wvfF9kPFLkgaNPy7Wro+V9ERJr+TFLTBpLvrwktba1y/m8t42miU/FNftMml28IBGLe+Au/dwa+0HF/Nw32KOf621doO75kb1192R1tr3tNbevpiT21prv9hauw71X91a+5nW2j0Lk9B/aK0djhraWjsu6b9L+lBJz0x+7KRR03h6a+1x7tjzJL1bUnjPYu2/cbH+7lqskcfimue21n6vtXb7Ylz+v9balwdlrTpHz2qt/VFr7e5FeW9trX170qeHDK21V7XW/n7xbLyxtXa/pO9cnPuyRdtvX/Tjz1prX4z7JybNxdyfb609efHcn1qMxQtba63Tlk/TKNBI0h+45/1jFud3mTRbay9YnH/qYn3Zev2mxfnPaq39xaL+P2mtfXhQ5xe21t60mPs7F+Nx/cyYXarRmveqxY+d4eckXZD07N79Di/TKCz8clLP9Yvn49bFc3RLa+1XF8/C2tizhtdG39wnSfpvwzA8sNdyVqjnqEZTxJs0Sqb3Snq8pI9dXPLjkh6t0Tz1cRoH2+7dWtz7jzVKI38l6WMkfZtGE+w3obr/qHGxPU9S+NJZlPuERXtOS/p2SX+n0fzwTHfNZ0j6FUm/LulLF4e/ReMi/rBhGN7rinyipH+v0dx2x6Jdv9Bau2EYhr9ftP0aSU/VciGdWdRzmaQ/lHSJpBslvVPSsyT9pzZKqf8Rzf8ZjYvyOZK2VhjfBxOnNWpyz9PyB+7LNJrE37FGOV8q6a2SvkHSQY0S4q8sxuv8zL0bi3UhSddK+maNc/2L7ppDko5JeomkWzWula+R9MettacMw3Cb+uvuoKTflfThkr5H4wN9ucZ5Oa7dwtQrNc7H52k0i90o6U4tf0wNV0v6PY3r7FOGYfizTh//QNK7JH2JpO9eHHuepJ/WKHDsQmvtBRrdD/+Pxhf9sUU73rBYq2YG/RBJ/3XRp21JT5f04621S4ZhoF+pO0ettQ+R9KuL8r5To9Dx5EUdHwhcrXEuvlfS30gyC8QTJL1KoyYjje+8V7bWDg7D8IqZMptGIe8nNPb/8zTOx7s0znmEP5b0LyX9oKR/LskUhr+eqeunJb1C4zx+iaTvb6P29M8kfZdGwe77Jf1ya+3J9iPVRpfUyyS9XOOau0LjfLyutfYRwzCcTur7Rxp/P3a1axiGe1tr79H4zu2itfYpGt9D/6Rz2askXaXRnXOzpEdI+lR13s9dDMOwpz9J12l8eF664vXPX1z/eHdskHQjrnv84vjzF98/cvH9wzpl37i4ZgvHn7c4/nQcf5HGB+zaxfdPXFz3yyv25ac0+pwe1bnm7yW9Fscu0/iD9kPu2Os1+lye7I5dq/EF+q/dsVdIuimo59s0LuYn4/jLF3VtYfx/ENfNju/F/rnxfYakT1707VEaf1hOSvrf3bx/FecVZQ0aBYwD7thzFsc/FuP6+mBd8e8BSV850/5NSZdqFAb+5Qrr7isXx5+9wvPwb3D8NZLeFvTZ/j55ledA40vrbxfHP2px/Mmu3ictzh2VdLekn0RZT9D4jHxjUtfGop6XS/qLdefIfb/soVp3aNO7JP10cu5Vi7Y8a6YM6/MrJf2JO354cf+3umPfszj2Re5Y0xjb8Ksz9Xza4t6PC87dJulH3fcXLK79V+7YQY1C0wOSHu2Of8Hi2o9efL9C4w/7j6COfyTpvKQXdNr4yYuyPjE496eSfn2mj4cXa+TFGMMXY7zOSvrqB2sdPByCPP5Oo4/lx1prX9pGX8Sq+DSNZpw/aq1t2Z+k39FowvoYXB+q1QGeKek1wzDcEp1srT1Zo9b2M6j3tEYJ7um45e+GYfg7+zIMw/slvV+x05r4NI2myXeirt/WKBlR0mIf9zS+vq7FX2qmAV6nUVL7EkmfpVEzffWK9xp+dxiGc+77Xy0+Vxmvl2jUlJ+qUeN6uaT/3Fp7rr+otfYFCxPQXRof/lMafxz+lxXqeKak24Zh+NUVrmXAyV8p7sfrJN2vUXK/YoVyf0rSDa21p2rUot/o15jD0zQKYlyr75X0Frm1ujDP/Vxr7WaNQto5SV+leEzm5ujPF/e/qrX2nNbatSv0abLuVrlnRZwehuG3g/puaIsIdI3r4JxG7XWVdSC5+R3Gt/ibtdo6XRdmBtUwDGc1WnrePIx+cMNbFp/2jH+8RkGOc/+OxR/fUw8mXqzRSvB92QWL8fozSf+6tfa1DSbxveBifvBOaHwAHzd34cVgGIa7NZoRbpH0I5Le00bfyuevcPu1i/adw9+bFuevwvW3rtisq9QPprCH9yeCuj8zqPdkUMYZraa2X6txYbKeX3Bt9djVx4sYX9b3CSu01RbxT2vUvr9co7R79yr3OnC8LLhglfF69zAMf7r4+51hGL5Oo3DwQ/aj3Vr7LEk/L+lvJX2xpI/W+AN5+4p1XKXxR30VRH2Jwrr/SNJnaxRgfnthyk4xjKbwP9Zocn2u8ghCW6v/XdM5/V+1WD8L07eZab9V48vyqZJ+Mmlvd44W7XuWxnfQKyXd1kb/WbqO2pjStKuN7cFLc7otqO8KjeNyg0bT98dp7PPPaLV1cGEYhntwbNXnel3cie9nk2Ny9dvc/6Gmc/9kTd8dUX2RL+1Kxe80SWPahca4jxdJunQxzpZGc7i1dkVbxlh8rsZI0BdJ+uvW2k1zftAe9iwhDaMd/vWSPrXtPdrvjEb122MyyMMw/Lmkz19IHx8p6YWSXt1a+/BhGHq27RMaJZ0vSM6/i1Wt0miNpsKeU/fE4vOFGh8Y4mxwbK84oVEb/Ibk/FvxfdLHPY7vU2fq6eGnFnV8qFZ3bj+UeLNGX8e1Gv1rz5X098MwPN8uaK0d0Pggr4I71PdL7AnDMPxua+05Gv1Cv9Fae9awO9qV+ClJP6xRM3lVco2t1edrHAfC/HdP0yg8fvwwDH9oJy9GyxqG4XUafUWHJP1TjWbYX2+tPX4YhjuCW27RdN2FVpa9NCc49vEan/PPGYbhT+3gYi18MMDm/os1WnoI/lh7vFXjuvpQOavRQjB6rEbLSYYnabSw/UJw7kWLv6dIessw+stfIOkFrbV/LOkrNPpBb9Poc14LF2sS+B6NvpLvU/DCXQR3HBvySM13a/pi+IyssmEMSHhja+3bNL4on6LRaWo/tpdod57Rb0n6fEn3DcPwFj14+B1Jn9dae+QwDJFW+FaNP6YfOgzD9zxIdZ7R2D/itzSG9L5nYQrdMzrjG137p9HxFet5S2vthzUG4kzMSB8AfJhGIcQ0zUs1Pswez9Poy/PI1t3vSHpua+2zhmH4tQezocMwvGZhfv15Sb/WWvuMYRjuTy7/eY1a1F8Ow0Bp3/BHGtv+pGEY/kun6ksXnztmykWk3Gev1YEAC2H59xYvy1/R6D+c/OAtTHV7Xnd7QNTnazUKRw8l/Lp6KPH7Gq10HzIMQxZEE2IYhtOttddqXOcvHZaRms/V+Jz01v2bNFqVPA5qfBf8pEaN/z1BnX8j6Ztba1+jPQqUF/WDNwzD77eR/eNli1/fVywaelzSp2i073+xlpFGxKskvbi19iKNkWwfL+mL/AWttc+U9NWS/ptGbe2IpK/X+JD+8eIyy7n6ptbab2o0JfypRtPDV2jMD/kBSX+hcWCfqPGF/jlDHoXUw3doXPR/1Fr7bo0BKtdL+rRhGL50GIahtfYvNEalHdToo7pDY6DPx2r8cXrZmnX+jaQrW2v/h8aH/oFhGP5KYzTXF2qM/vxBjT+2RzSaYT5+GIbuC2nF8X3QMQzD1z5UZc/gQ9oixFvjOn22xh+FHxmW0ca/JelzFuP5Go1a79dp9HV6ZOvupzUG4vxca+2lGn2sxxb1/NDFCl/DMPxSa82iLn+5tfbZkYVl8SPXTa4ehuGe1to3S/rh1to1Gn1Bd2tcz5+gMfDnZzX+MN6zuO47NK6TF2tc1xNWlzm0MTL06RoT6N+rMUryhRo1trmIxH8o/IFG3+2Ptda+U6Ov89s1WgEe/RDW+xaN/q2vaq2d0iiM/e2MNr82hmE42cZUih9orT1K4w/OvRrn/pMk/eYwDP+1U8S3azSH/mxr7cc0am7/TmNw0M4ctjFF6kck/dNhGP5kGIaTGhUluWvMzPrOYRhevzh2nUYB6Gc1vtcuaAx2ukSjeX1tXLTTdxiGH2qtvUljKO33a1y492p8Kf9z9X/pX6oxUuhrNfoFfkOjJO0TgP9OoxTybZIeuSj7f0j6VOeQfY3GAf0ajZPQJLVhGM61kTbqWzW+1J+gcQG/XaMzeU+mxWEY3rV4ab5k0YejGn02v+Ku+Y02Jua/SGMI+yUa1fA3apS818WPawyy+W6NY/ZujRGvd7cxl+3bNaY9XK/xxfxW7Q61z7DK+H4w4YWLP2l8gb9d0r/QbnaIl2t07H+lxjX8PzQG2DDgp7funqlRMPrqxecJjekXqW9jHQzD8KqFMPUKjSksq/i0s7J+rLX2Xo1+qi/W+F64WeML/88X19zextzQH9CYSnCLxlSaKzVNoVgFfyHp0zU+P9dqHJc/lPQlHY31HxTDMNyyGNfv0/gs3aQxhP9xkr7xIaz31tbaN0j6vzRqYZsaTcoPenL7MAz/obX2bo1h/1+2qOtmSW/QMtAou/dNrbVP1/hO+g2Nfr2XaxSEPDYW5a7rd7tv0YYXaDSTXtDoV//CYRh+a82yJI0P517uKxQKhULhYYWHQ1pCoVAoFAoXjfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvUD94hUKhUNgXqB+8QqFQKOwLrJWHd/z48eH666+X0ZjZ58bG8nfTjlm6g31ub2/vKsunQzA1gvfuJXVinXsezGuj8xeT+rHq2PTqzT79nGT1nD9/ftdnBE9rd//99+vs2bOTfJtjx44NV1111aTuaB2s027eO0ex91Cti4u556HCqm3pjdmq4xpdw/eDP7+5uTn5PHHihO69995JRYcOHRouvfTSSX+i8uaei956i66ZQ69NRHZulXs4D6vU69/L0TXRPdk1WRujd3+vfB7nGrFPrg+PCxdGUpdz50YCnGEYdPLkSd13332zi3StH7zrr79er371q3cacemll+769B2wRj3wwEhecebMmV3H7VOSzp4d87/tpcoORS9HYu7lGC10a2v2Y+zvsTbZMWsbEdVn9/JHI3oRZP1iWSzTl23/WxvtO+fAvkvjD5U/Z/fefffItnXixIldx/21th4OHDigN74xzo29+uqrdeONN+rUqZEswubcl2ftsTG08u1aO+/7ymsNHDcb6+hHnuNv11g96/woWzv8i4Dry8aL19p1/l6+tNgO9ruH7Nnwddg5O7bKDx7PHTgwUk0ePHgw/C5Jl18+krMcPz5yDx85ckTf9V3fFZZ/5MgRPeMZz9hpi62Dw4eXHMz2DuJ7x78UCTtnn9lYRs9pT/jy98yV449z7D3m5mFra2tyr/1v42732vpjvf6YXcNyWabNrb/HjvHH0o77Nlr5Nn/Hjh2TtFwfl1122a76pOW76tZbR1bH06dP66UvfWk4LkSZNAuFQqGwL7CWhjcMg86fPx9KBgZqOJSEqEH4Y5Gq6hFJN6xvFW1tro1sl7+GbV3F7EpNgddGarshk7TteCTZsT/2afXwu/8/M51Ec87yo76xL5QU/Zxm2oxdY331sHng2lhF82EbWH9PK8zGOFqjlKgp8a7SRgPXaM9KwLngMxj1j/dmJq1Ig43MlFEffPk9rcbQWtPBgwd3NLtovux/swbw+TREzzTLWGWM7RqbQ75T+Dz5+7PnPepXpkES0TNtoCUmem55rb2DqellJlV/L9vCe/xzzDHPLFdewzPN/ujRozv39taPR2l4hUKhUNgXWFvDu3DhwkTq81JTJgFkErG/nxLHnMM0qo9+uag9PSnF3xv5iiiJZNJgD3PO5N45Ss09/6ZJUpEWyLKz4JSeJhvdk41pa02bm5uptrNqn6J+SFPplXMc+dYojWe+qEhbzHyH0ZrNtNp1/GSZBtlbb1yb9NlFEj7Hnm2NxsrWF3049snzUT1bW1vdIIetra2JdaU3XtZeW5vRMx35kXvw45XNXfYZwcalF5BCTZH9IqL3HMvNLFxRW2xsOKfUtqO2WVmmkUXPs92TWfkiP7qNm2l43uo4h9LwCoVCobAvUD94hUKhUNgXWHs/vGEYUme4lJulVskBo1pKM1Qv1yQzNZpK7O+dM4n0gnGy42xHFBBC0LwXmdsy00jPZMu0BDNDsD4L75WWZgcL586CjaL0B//ZM2lubW1NxsJ/t/bSzGHomUGzAKdVgm6ytRnN21yQUhSYwHXNoI7I3Jq1Mauvt2ajVCBpau6LrsnKj9Y311mUjsByVw3K2NjYmMxH714+//bdzJjScr3ZMT7LveC8LMirF9zBkH6u895cch1nqSyROZTPDd+JUV5c9p3PiB/PLOiLwSp+jVlbuGYuueSSXecjU+2hQ4ckje+uVfJEpdLwCoVCobBPsHbQinfw2q+ul/rtF5rnMknIH6P0HIX2EpReMkk00kIp/THAIZJ8Micynfle2snCs5mIGUn4mYbHNvo5yOrLtG3/v2l6dEpHWgITds+dO7dyWoLNv5+XbL7t2kjaM8xpJtE4cr6zwKRIe2YZRE+TzKTmKDgmSuPx6IWYU4PJyo7GpJc+4q/z5zi39mmSeKTteI2ht3YiRO3OtHWSF/B/KSZSYD2GzGpDLS4K6GO5HOModSLTvLJUEP9/FkgT9SGzwGQWk2gOeC2fGf/uJ7lERqzhx4Tv3I2NjdLwCoVCoVDwuCgfHn1Edl7KUwyiEOUs9H3VBPGoHn6PQqJpQ6e0HNWT2e5Zj28HQ3p5fJUEXUpe1E57/qYs5SAKLSdlUM9vQulrc3OzK6UPwzDRHKLk4UzCjkLLs3SXbA359mc+Lq6HnrZGRBaMSJvxx1dJBObcsR1RmHrWj0xa9+eydITeWp3TOlYhR4gwDIPOnj27owVEGvEc4YS9q6jV+WtIbGDlR4QHBr7P7Pk5cuSIpDi1yTReGw8meXttPps7+vCZIO7Lz9q8SmoQ0UuLYdv47oqo7Eh7NheL4cv1lp9VrQOl4RUKhUJhX2BtDU+aSpVeC8hs6b2IJ/pzMoqvnu8pk84jyZfSJTWVKKk4o5DKIqEiKcb6Sd9d5M/KNJNMEupFdln5pGyL6qPGyAi7yL9g5W5tbXUlre3t7Z3yrU29KK8e1ZuBtn/ON7XbOR+k71eWXO7bmiUgmxQvTbVkjlGPeo7tzpKIVyEv4BrtJclTq8mSy6NyaC2gX8u32/vTe/7QM2fOTMYnmpe5JOvIEkLfWjZOEfic2KfNv18H1gZaemgV8mOfrV9aP7LnNWp/Ro/or7X6uA4yv6Avh/PNtRNZlow8OqM/izRlTwxRGl6hUCgUCg5ra3gbGxsTCcFLARl5a0+qZCTVHM1MJKVH5/z3XkSXgdJUpAExh2UVDY8SL23o7IMHfQ/WZm5/EmmjWV5bjxKMfhdrq0Vv3nvvvTv3ZFpVhGEYdkXiRb5VajrsB79H/aeGyrGOor04p/weRSZnuZzMrfP1ZP62zD/HuqOyesTjGXUV7+n5mzmekYY3t61O5MNm7mGP7HsYhjDa0cM0KTt38uTJXeft2fPPPCPKMw0v8nVyvXGt9HydnJeeZcnWBrdQo4UhWnfZNkA9y1Jm5bBPe+/YWEXPvuXQGexae4dEcQC0FvZySO1//z6tKM1CoVAoFBzW0vBaa9rY2OiymGS2ZLJ/+Ggpanj0U9lxYwbxfh8rhxFcGROBL5+2ZWoLka+QfrGMkDnKM6QPr2entv9Pnz69q5/cUJfX+/bP+UQ904r1izlb1tbIJ3HPPffsunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN64orrpA0bngs7R4/q4fjFVku2C8+C3wPRdr7lVdeKUk7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3iEY+QtNwzjYEi0vKdcccdd+xqJ03B1r9o/THg5bGPfaykpWnTj8V99923qx5rv7XDxseeA48o4EOarn+rV5KOHTu2655rrrlmV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bftddd+1cS3O3mamtbdYvGztpOQ+XXXbZThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2tM2fO7JTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT33XdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbr0svvXTlQLbS8AqFQqGwL7C2hnf+/Pkw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+8847JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzpw5k4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+PLLLy8fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych+u4J89AAAgAElEQVQ5WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6SKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67/PLLd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aX22+/XdKUYcVgWqOfZ3s32rW0ekXWNr6vL1yoDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7hCU+QJF177bWSpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95www2Slu/6973vfZKWjC9Szt1p7aCFw7fFcO7cudLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg6uuukpSvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zdve9jZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy5cmES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV55syZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/LKKyXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi3LlzK6cmlIZXKBQKhX2BtTW88+fP70hEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75JHPvKRkqT3vve9u8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz5kzZypopVAoFAoFj7UTz8+fPz+xW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zpw5MyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3muvvVbSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHr/+98vKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPs111yzc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8Y999wjKWZayZgoDCaZRNrMHLltZAPONtE0KYKbr0blZAwhXtLKpH76DBiR5Ntm4+W31JCmvkMPSstzW7FE5XA7lV6eF3P4elv1WLu9P64XaXfgwIFJdF409vQR9yItOQ6ZZhf5WqgdUnvqbSVEX3HPR20g8wjXbkSoTX8vmTyoMUvLsSWbDUnToy2tsq2keljFz8fvnP8eAfAwDHrggQd09dVXS5qyKPm+Zc9JjymI80yWFLKP+PI4D7ZptD3jfr3xecmYcHoMSMwNpRbttzCiL5eWK+uPMbH4+sjCkj1X3jqXRVkz/iCKwchyrSONzyxk5r+c25bMozS8QqFQKOwL1A9eoVAoFPYF9rTjuamoFqzgTQI0m62SmGuml2x/uB4JLq+haZGku/5+M5llZMtReDBNJdyPjqSrknZMwAYzO2TJ3Rwf30a2JzvvkYXQR8mcmdO4lxRLE22EjY0NHTx4cGfNREErNBubCZhUT72+ZYFNUb8YAJAR8kZ7KZLQgCa1XiAIqazoBvB9ojmI10QuAo6tXcM0koiUnWujZ2Yk5qgBI4KKLPWI2NjYmLgGPJkzg3uy+eiZtNkmkjp7F4cFi9jYmXnNAtMMZn6TlvNg82JpFjQfRsTM2XvV3lEnTpzYVZa0fC65nx/b6PvJpHhrC9eq1ROtHb4L+U72zyZ3m88S0CMKQhvHSjwvFAqFQgFYO/H89OnTE2nDS3t0ckbbsvjj/v85qTIqK3Ke+msiaiFrIwmFqcV4yYF9ptTC5PIo8IDBKdnu8P5YFhqd0Td5ZJRFUYg+t/2ItnHy90rTgKC5wINhGCbURV6ii3Z89sejpP5Muotoz/z3qM++rb5s3x6ThjPpNUrCpuZobck0Sz/GDL5if62flsoRtZvabU+bz3YrN0QJyFmgTqZ9e0TWBoIBTxkdlS+HgToRGNTBgCC20a8TS5Gw9WAans0TU3Z8OZzvnoXB1hXXXZTCIu3Weq1NrCfSuA2mFdpYUJumNSxClkZmbfUaJZ+fjMLMk5tEW79V0EqhUCgUCg5r+/AuXLgw+cWObPOZZM1fcP9/lobQk+h4jtKmtceTFJv9ndKFlWFt9lqj9zX5crME1EjDo+TI7UCi5MqMssw+o/B+SmGZVuBBTTWTkHuS1FwyqtcAOdZR2etotVlod08ize7hGPt1kM0zQ/EjDY+WBfrjIpKE3jZQWb+4xQvL5fYtUf8y0uoodH6OqDtKio62+uqtrcja4tcb7+X2OazXn+M64Dq2e0yrk5ZailkseqH3vIfzHVGKGUyziUjwozZ6TYjWhiyFyq83vs+yNkbWNq5nriGmR/l2GxjrYf7GaO14P2JpeIVCoVAoOKy9Aey5c+cmElYUxUYNgZRcETIaqB4xcKaB2D1mQ/fRUoZMKovooeibM5+J2bZpV44orKz8jPrJI5O0SdPTk2zos6M/07eRWkdEc+Tr92009Oz6dn1Gwu1B3xIl4l493LYl2krGkPlBKGX6e+mHY0RvNB/0PRnmNrr1ddMaQKqxCBllGed0FTJfItLM+PxkScQevU2dCWsTowyl6RhHWmBWD68xbSojL/DXRMTY/nxk/aLVhhp4ZB3K/G6MXPVk1SSTYBut7T5Zndu6MbKX2wJFUc98Frg+oujwzCce+fW5vjY3N0vDKxQKhULBY+0ozfvvv3/n19gkhEib6UnWvMdAiWduK5YItDnTnyEtJRqzd1MCYX6eNPW/mOaYUZlFOXVekmL5vmxpKp0zl4q+sEjSyqI0mcPj/7e+W32raObWvx4BsJFH90jEmdtD30NUduZvyST7yOfAfjBCLaKHstxKRvZF0Y30I9IPQz+3bxd9UZlVIPLDUNth3tIqm6JmPpao7sxS0tOqvMWiR0u3ubk5aZOP9uN8r2IBMWQWg160LvPGMqL7XhwAn+GI3Dvzu1KjtXdLlBPL9UXNy/eLPsnsGemB77mMpF3S5LeE74Aod4/XRP7SDKXhFQqFQmFfYG0N79SpUxPJN9rqJ/N1RHlxc6S90fYcBiuP+WPUJLzd3/5nFBu1Qp93Q42HeWS0cUfSICV78wPaZyRpsj8cR2rD/hr2q+c/Y55NFuXW8y+dOnVqVsOj7ymyzfOzpxX2cgs9VmEGIRG0WQBWyVPrbZ+SEePOtUeaPhtWBiXxaOsdtpF+rYgVaNVtX/y8MWq7p9kRts6OHj2aXm8bwNKvFOUrZhHk0TuEa4eaD4mU/bxQA8n8c35sI9+jtNRu7NO/J1gPx8DKjO6lxSDy3fN7FgVq6Fl6WK8hi8nw9bH97HdkwfDrrXx4hUKhUCg4rB2lef78+R1thxuNSlNfSeYDivxHGZdmZnuWpr4tStyRVM1cQCvjrrvukiTdeeedkzaSBYF+OfYhkvBtvExKMz/Q7bffLoL2fNrbLZcwiiTM8l/su7XVszJwnqjhRSwg1EgOHTo0m0vV2zIm0xSYE+SlvYxFhGVGuY5ZBJzNqX1G/ljmP3L8/DNBjTpaI/54lHNm9dk9UYSdIdoyKPoeRdqxbZzPyIdITT+L1ow0ZS/RZ2tna2tLV1111c5zErWNPnRq1b3NdQ0sl76iyGpDqwPXg2dasQhKajVkafJzSjajTNM3Dswoh9Peb7QKcbNnD2rMnNPoeVqV0cevA2p2/B7FRDAytrg0C4VCoVAA6gevUCgUCvsCa1OLSUsV2JvEDNGuzf54FBLP4Aorl87VKGyXJtQsfNsHoFjd/GSSum9jlBQa1Rs5qy0oxfrOnahPnjw5KdtMFdGu8tLUnByFC2emNLunNybRVjVsB8e+t/OwhZbTBOTNbNxtPQtiiQIrsiT7njmcSa4Mge4FhNjO1hy3aGspBjwxXaQX6k1yYiaeM0lamgZQZKlBUdpP5k6geTIKLV/HpGn1eHNe1s6NjQ1dcsklO2MQmeAys3QPWbrLXACMP0bXjX2ay8FTGppJ9jGPeYyk5dzSHOtTGTJyDJr1rCx/LwP5+Gz2gsCyIDn2P3JxZIjm19pLE2Yv8Tx7xldBaXiFQqFQ2BfY0wawBtOIogCNLJmzl3CekflmCdTSVBOh1BIFHpj0YJqXbcTY2+KH5VJLojTlpVA7Z/UxwIVJzL69mdOdjudomx0DtQ6bN6+F0IHN+YuCVlj+XOL5gQMHJhpkjzIoc5z7ttExnmkJUZItpchMM+kltlLriCwcJuXbPGf0V9EzQ5IEBkdEWgrnci54ICKOIO0Zxy9abxk1X2/7K27rFeHChQu65557Vkow5tj2gpYMXLPZOoy0DI61PVvR+rZ1YJ/XXHPNrvrtHt9Pa7cFvERWLn9dtIaYRJ5pfNLUCsX3UDbX/pqMrCA6z/IYbBRti8W1WEErhUKhUCgAa2l4pPiJCHOzkOvMNuyPMVzeNKNsuwkp1wZ65K4kB2ayfCQxUCtjv+h/jGjJooR2aSkV+qRPUu3MkQZ7qZB9pobnNTL2L2q/vydKPLW6z54927Wnb25uTiQ4no/6yH54rYCSNLWJnr8s0+h6PrVMi2HagF+jvMd8xKSHisLts21Semk+vQRuqZ94zLZw26NojDIJPvLzsF+raHjnzp3TzTffPLknIpPwaQC+DdGccjzY7p7VgNYm+vB6KSbZxq8nTpyQtJse7LrrrpM03SYo2tCY4Ga0pFns9SuzuvXSijLNuOe351hTg+21dR3Nbqe9a99RKBQKhcLDEGsnnkc0RN5fRemR10TRf9ToaD/ONuaUphIckzfts7fpqUXcUfOKkjhp485Ilr0ETts5/TD0x/hrTXK3tmZbJs1pVr4e+tGiNrLfPQ3Pj0lG7WVJ5z3pP6PC6m0llEWPMVo2ktZ5rKcNGOYSsqPIMUq21i9q3BEYlce2c035tjCSN/N9RBuPciNg1hv5VDKJvrfdFiM8I2xvb+9aW+YLNY1IWvrDSMSQkTuzD732G/y9GdFERnjvrzUN36KzDfYM3nTTTTvHLNrTzl111VW77rG2RhtBWxssdsDGy/plfkH/zPco8nitL8v/nz1HfK6lXKPrRQWz773ocKI0vEKhUCjsC6wdpXnhwoWJ9BL51AymCVFjibQLag9zvgFpGo2VUQv1KIUoRZMIWpr6NLKoxl59zOuycWTOnbS02WfSUi/Sim3OtM8epRTrod82quf8+fOzOTHUxP06yAh/ud78GovIs/09meTo68k+mYPm/8/8ffS5+r7ynlU2tOX8ZmTiPe13jn7N94HXkNop0n4i+j5/3D69lkrfXWut63v0eXVRbu3NN98saakBkSCe1gKPrG9sT5RHmEV/RvNic2e+tNtuu03S1E/r3wPmk7T+WRmM2mWUuDT1y1M7z6w6vk2ZxS7qH8cg0956EeV8R/Z8/ZkW2kNpeIVCoVDYF1jbhxdtPx/ZjbNtMqIozezXnIwKEatIJtmzjEjjyrSaSGLIbNeZnd9LsDxmbTRJztphUpu0lPYoSTHPKNL0eC0JbSPy6GyDWY6Vl6opwc1t0zEMQ5on58ub2wA4qiPTAinVRv4D+ryYHxf5/ShdMlov8nVnEY8cE/88MSozIwSPfGrUVGlBiTSZTFqmVO3vidZB1D8/9mTN2d7e7uZwHj58eEKcHD3T9P+zr5GWNsdEE907lzNKn6u/x8bJfGu0nnjLkr0jrK3mh7PnkNtEmc9Pmm5kbeXaPdE4ZhaMLHrTIxuLHmPNqhGdfu1yHFexLO3Ut9JVhUKhUCg8zFE/eIVCoVDYF1g7aCVywnowwZcBGlE5NKPRBNfbT4lO3IygOaLtYjoATTJRG0klRhJcmgB93VlgTbT7d0RvFpUR7b9mYFBEltjvzxmyYInIdLCKSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNLbW9v7zLVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw2V199taTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQmFfYO2gFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201nba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdPXtWN910004gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5p06d6pI3eJSGVygUCoV9gbU1vPPnz09Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCw54Sz00iiX59o0gjjygybM5nR3ipyYhYmbydUY5JUxJfRtpFkq+VS8Jdu5Yan4+ANOmLW5dkEYa+nsyvQGk6iiCLaNyisjyodTDSqxcZN+fD297envggI8LsjNYqkhyprdu9XEMRTRjPMWo3IlagdE5J28a8F4XMfmRkDVEbs4jliBAiS+Zl5HJExp4hirTL/C22VqIkbParp6biXQYAACAASURBVEW11nTw4MGd54dJ174OG0sSwUe+/WwesijNqLyMpi1679AnzLVriLZ6IjkCzxv8WDM2gJ/Rs5KRfZiv2u4xTS+Kfu9F1Uu7n1+OLZ9Tkoz7fq0TnWkoDa9QKBQK+wJrbwC7sbExkbAiPwwlIPoPPOg3yiRTg5cYMrohSlORVsBIKqP6ibRU+vWy6Dn77iUSRsNRAiLBtm9vlqPI8fXSDvPuqI1mm7x62D2kHIv65fNs5nx4lJp9edR0KeX1NJ+MHDiLjPT3chz43a83aiv0X3HM/bksRyzb+sffOxctGUWxZWTsmQbo2zRHzRZpeJlUbscj4nGvXfWoxTY3NyfrIPKTsi5qHb7djMplXyNt1kD6uSznMBonfuf7IHqfZpSCPX8Z/bF8Z1hZXhvmO5BaKNdu5I9j7vUq/jU+pz0Njz7hVf13Uml4hUKhUNgnWFvDO3To0MSW7n9x6cPKJAQvfWaaBiXHSEpnjgylMUak+Tbwk9Fyvh76vTIC6oipwvxgjHSkNLhKBGGmKfvv9N3Zp81blCuYRXSuQhbrmWN6Gt7m5uakz94Pw7GM/GFSrJH0iH49IuaLbMudKB+Tfc58NhEDBecuk1R7DEZZzlYvRzHLEcwsKNE55tr5tlPryyJje9adOdi7x/ent9VT5g/1a8fKY75nRgDtx4kWHvpyuT6iNmTvjCjvM/Mv9nLq2CZGATPHNxoTe3ex/CjOgZaMLPIy0goNXF+Rhkc/ZpFHFwqFQqEArM2lKS1/5e3X30vpjEikL633S5yxstA+H+VhmURyzz33SJryVXrNj5I8/VU9mzAlK0qbUc4R+TcNzFX0kgtt2ZQG6ff0YF6P9c+O26fNn7QcH/KXGiLNtcdiQpgfhpqQl8DZpx63IkE/Ka+JImGp6XIblch3k0mtWa5br92ZRhdFsVm9EeuHb7u/3zNRRH2Inieuu4wHNlqrph3wWYgiSTluvRxOWzvUHKL1QY5Ze+Yuu+yynbJ8uVLOztR7Z9FHR78zI7D9/yyPliv/TM9FOnJsfX183xCMGvdtsX5Z/h3H1RDNGa0DfAdHFkH6Fcnl6X9jInal0vAKhUKhUHCoH7xCoVAo7AusbdK8cOHCxGzjVeMsTJaqrz9PZydptKgaR2Y1mqzoqPfmO5oQrG2WTBmZpRi8kW19ESV1Rw5eaRo0ETmc+Z1mIkOPqs1MWmbiiHY8p2mE5qMoHJ1BHYcOHVo5LYHmr6jdnPeIJo4BIEzb4Fx6c1EUvOPLp5lKmpJSk4Yq2vGc9zIdhmsq2nonSzTvbQ/VOydNTeq+PkNmaopM9wySsDGKTGscn42NjVnicZKKR/2imZaUb1GidBSc5BERnlvd1jea4SOTJlOouEaZNuSPkeSDwTm83te3CllBBqYy8B0cmcOZnkAzebTesi2EovXGZ/nMmTNl0iwUCoVCweOiglaiREluw5FtzOgRhdSuUr8HpQhKCJHUbGCwQpTEzAAXK8OTtfrzXuu1e73j1dcbke9GKR9R2w1e+qRkb+esTGtbNI7UlClxmRNbmkryq5BHZwEOvjxuwWSIEtCZmMuAhl76RkZjROk8SpuhNNvTJFlPRqcUabB8fkhEHgVCMBWIY9AL+mCbaFlgiLsvL0qvib77/kRE7Vl7sq2gpGlwHLUnauYsO2oL33N+rVrdNh9GccgUBz/GXKt8R0bpGww8s2eYa4lbjvmxMI0x22IsSoOgtS0LJuklnrON0frPkvyZ1hGR4/s0qyKPLhQKhULBYU/bA9F/EP36mtRgNvTepppzW6BQMohsz/RHsMxIqqAWwxD/SOpkeaQyo8TV6x/v8RKr1Z2FoTOZ3PtJMvLoHqUY/YzUuiN/D6X+ucTzjY2NULNjeRzjXroD10K2VU3Pb2H1kIA48hVl9VHTiiTObMsdzkeUajJHBN4j5M2+94iiM2k9SkHhPGU0aN5awXJ6bbH3Ti/kn35Yapv2HvJbCmUbC/M9QwuQr8/uNQ3PPlmHbzetYFnqka+b2hi/W/+iZPzoOWU9BhKD0OrFLY58fXYu0zqjeql19lIYDBxzvyn5HErDKxQKhcK+wNoaXkSKGyWCkxDZ7mOEmjSVCDMSV5bhz5Fupic18Rr2J5K8eX+mMUS0RBndWY80lvUxCszGl5GNHiQypnYQ2e4NjAaNbOkGLwVmGp5pd9RyIx9AJvVHEjnblW2f1Nu4lFImI3x7SeSrbHLJsWX5rKe3bVO27VEUuWrIno2eBk1Ju+eny85lWyj5cg3nzp1L18729rYeeOCBHe0sog0jaQTfHZHfmtpSpLX463qEB/TdR32mBpSRFfSsX4YseT0iEWd/snujYz36Od92j8y6FvnwqHXae7NHzWaa3R133LHThtLwCoVCoVBwWEvD297e1tmzZ9OIOA/696hdeNssJZ3MJxD5ZzIJJJMyfX3ZBpy9/mQkxaQH81I6xykjSfaSD9tGrdNy6yINjxF89EX18svYd+uPSad+3kg71ENrbZcGGOUm0m5PX2s013ME41xDkcRIbYNWiCh3K4tIjMYxI06ndhZFXGZaQJYP6o9lfh9qtJH0ntGPRVGOmWbOiMXI/2uf9913X9f/u729PaG9iwjTTcOy6GkbJ/qxpWXeLcvL1l8vEtCej+PHj0uKo1lNe6Efu6dxZe83jvUq6yDzk/Y0ymybt0jzZCQs57jn/83e8ZG/9sSJE5Kku+66a+feuSjfnb6udFWhUCgUCg9zrO3DO3PmTNefQ6mFGlEknfEeaoOZtO7vpdZCSTzariVD73zGisF+RZF9c59R3h+vIbNDFElIDY9jE+U9UoLLojMjn4S3t89FaXJM/PUZaTPXQ5QPRe0lqpNlZz6cVSMH/bXZ+EXlG1bx/82ReEfPRHYuy1X197I/WS5Vb54z/3lkOfE++DmmFdPOmM8qTTdxvvzyy3e1pUe+zb6SeYWR5/5aO2baYhYZ6f+n1kTNKPIzc2w4H9mWPL58RkFHGldGik3rhCGKvOU4ciyi+uizY399XvOdd965q23roDS8QqFQKOwL1A9eoVAoFPYF1jZpRiGgkSPbVFSaEMxhG6Ul0EGZJaJHjtJ1CFHphGZQRC/hnPXye2RizHac7u1ibf9n6R1MT4j6x7bTXBCFstPB3TN/8NpVyH95rW9rRkxMqjc/TnPh2Uw9iMyqmbmm16+54JXILMkxnks1iPqXpTJEAUg8l+1fGJl5M7q1Xpg6TZlZOg7/t2uz9WMBT2bOj2itSL1G0yapAaXls3P06NFuH5ny4s8xyZpmYp+eRFMszfrR2NIczPLtk/VHbbS29NJ/MrM7j0cm1Iy6zNBLaeG1dBGYGVNapiV4Iu0eOcWucle6qlAoFAqFhznWJo82LU+aJnd6zFETRdLenGYX7YRNh2gWtp31xddriHbNpjSehSxHSeuZJsGAlFVSC6jZRdRS2XYcJv1G2g41x2wbkl7i7hw2NvpbwBhIX8T1wDL9JwOcGCgQjTEJwYkoACVLR4jGaS51pmel4LlMw4vKzQKrqL1FWkGmKffWQW8bJ2m3hsN1u6qELi3Xsdee+AyfPHlS0jR1JtLwTAucGzffn0xrYt+joJVM847ep9mO6lkyd7QTPdvSS/PJiMazwMFewFNmLfD94zPNoBujTLv99tt3jpmGZ9d6Qos5lIZXKBQKhX2BtTS81pq2trYmYeK9jUTpQ4ns+/Rh9MKYpZiCy6SXTALuJZ5TaultB5OlJVAy8n2ya8wHkW3MGW2zxGvn6MI8rI3clDTaSLdHnyTF4c6r+D55Pe/xUjqp47h2DD0tk/3obVjJJPiMkKAX/kxNJfJNck1yfdGn69cFLRarWC7mJG2Ggkc+FUrlGQG6P8bUEPph/DO/CvWfR0Qj5tcOLSB33323pKWGd911103abffYurPUAq71qG0cn+xZWGWeetujsZxsg+YodoHvRt4bPfOcl+z5iqx6BlpV1kmON1j9pqlbsnnU/nVQGl6hUCgU9gX2tD1Qj+yWkrW/15/34DFqWpQMvDTDBGxKLT0fQbYpbSTZs9wswT66N5PO+Bm1gZoepVJDRGVlMA2c2kckpbM8+re8JEbN8dy5c10SV08BFEWI2f8mwdMPZz4gs+v7ujMfXs/nwDIMXHfRhpy892Kig7OoXX+O89MjY8ik8Yy6LZoD0554LbU2j8xfb4i2esm2v/IYhkHDMKTzJC3Hgxsn33bbbZKWmp7XCml5MQ0vi4j0/SHNWaZNR9o6+0EtNyKtyOaf89V7Z5Hu0c77d4k9Y+yPoUc8niXwcx1EW7Wxv/ZpGp5F3Ub12PpYBaXhFQqFQmFfYG0N74EHHtiRArxkb7BjpJFhBGYUxch8F2pthkhby3KoIo0zI+81RNoA/YpZtKbBf2ff7ZMaUtQvO9fbvJVtpa+I/oVsXP29Wc6gH0cS8s6RSLfWJhJrFLFFaZUbZkaS/Vy0ZiSlUyuf8+16sG29PNBsbWR5mJHUPNffSEtjXmOm6UX38loiGhPW0/MvWbttrj11VATv/2UEs6+DNGCmvd18882Sllqc70OmYfc20s38okREaZhZlnrjlZG70xrm22jzwefHxry3vlkftcLo+c0Ix3mP7x+faavPrDg+/459NsxtPO1RGl6hUCgU9gXW1vDOnTs3+VWOfA5mF2aeSiTFMh8qixikDdqXb7AyqGFGkUhZ9F2Uh8dzlNJ67BWUvvg9IrimJpyx20SSX5ZLk5Fy+/rou+NYRL5J7wPIxnRjY0OHDx+eENn6+bN77RwZahgF6PuU+fJ4T8TOkTGCRD5Wrl9q+qvMR5ZX2FurbGvGiOOvoYbH3Mpog9DM19kjKZ6L4IvWCbfKuXDhQldK397eTqNb/f/0cVv5tpWMbRoqSY95zGMk5ZaJHpsOtSe+3yItLrMosA89rTBb13Y+2ng6W8+RhkftNmNAiXIGmROd5RlGeX+cv3vuuUfSUkOP8hn57K+C0vAKhUKhsC9QP3iFQqFQ2BdY26Q5DEO4P5Qhc+LT1OlVVFN5LfSUajPNaVGABuu3emznY/Yj+t4LbaU5MCP87YX8Z0EkUcK7tZ8O+iwxNEpLoHmC5oEehRXNHlE6hJXrzUeZWaq1titgwPrh6aY479zNnakYvg1ZP6KgDraB4fJZ0Iy/NgstXyUtZS5JOQoUmUstiOioSH/lx1+KTVpZIMMqQQFZsEoUrBARXPeo3SJKuCi5n88/zWo+vN3oqh7/+MdLWq63jM4reqa5rnoUczSRZmuoR0uXmRSZwuPr4SfXY0QCkqWYZJR9Uk40ntXvx8Dm69SpU5KWJs3eM+GJEypopVAoFAoFh7XJo72kZdJ5RC0WJaVn5RiiREhpKs16STELjsmSLf39pCPKAh/8NavST0XJ8ZnWxO/SNCGXEiMDBPx4UmPJdmH2CdyZ9MmE3kiT8OugF7RyySWXpImsvl02DqadM/ndS8BRAmx0be9ezilp8KLgnmy7plW0mbk0hUjjYjI0AwH8nDNYJUsX6CWtZ22PruM48pmL0kk4L3M7nntQK/B9IXmBlXnZZZdN7rn11lslScePH5e03CaIz3oUxJYRQdtnZI3IUqcMvWA5Pu9ZyL9/Djjvc3RhUfm0PvSIHLI0LwY6RdYoe99lCf1+rGhFu/TSS4s8ulAoFAoFj7V9eNvb25PQ9WhjRPruKG36RFP6/ehLo4QfJR5Te6K26CXgjNKr54cj3RT9CD2fmiELo7XjJpX6+zPS3kzC9KDdmzZ2PybUVAz0P0ba/FyaR9SGKGGXGha/RyH42TiRxKCneUWSpxRbFLLEdloNIp9D5iPOyKs95iT8nu+GYeI9aTgbg54WOpecTuuLlKdzZNjc3OxajbgpLDeENQ3Pz6VtM2P+IhJM0wcekRZQK6PFwT/TfIb5zEbzQj8YNXxqVVEbqZWx/lX8cLQkRPdm1iH2xY9JlnbVS3WhBaHSEgqFQqFQANqqpJuS1Fq7XdK7H7rmFD4I8LhhGK7hwVo7hRVQa6ewV4Rrh1jrB69QKBQKhYcryqRZKBQKhX2B+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC+wVh7e5ubmcODAgUm+XC/wJeNi8/kiGVvAOhuzZtua8Lq5Yxnmru2dn+MlvJi2rXLd3NhEyJhlete21nT77bfrnnvumVR04MCBwW9dEuVCzuXiRHlkq3I/9tboxQRuZYwUEbJr1pkXQ8ZqsU5966yL3jpgLio5Q3vMRX4uT506pTNnzkwac+jQoeHo0aM7uVgRjyPz4pjj1mt31o+Mczc6lz0f0T2rlJ+VMzdXvTZmbV6l3oyxKLo3K2+V91zE/pLd68f89OnTOnv27OxCXusH78CBA3r0ox+9k8wZJVIzMdUSPq+66ipJ0rFjx3Z9StKRI0ckLcltbUFzYfeSHXmutz9dtscTy4x+WLMXXJawHd2b7Zbs78mSUjOqn6i+7IeiRwvEfliSJ6mapCm58+bmpl74whcqwsGDB/WUpzxlZx5OnjwpaZn0K02Tka29tj4uv/xySbsJwe1/klFnO4VHa9Xan1HARTtdG6w+ayNp3TyiPQBZvtR/Sa5CmZb9oGVJ/xEtGeu3sTI6Op88bONlx4wA2K61/nriZu7ftrm5qde+9rWKcOzYMT372c/e2b/usY997KStNv5XXnnlrnNGlGBt8cQJfI9lhO1c59KUgILJ8Pzxl6brLdvxPiLy4A9qRmLeo7Tj+o6IQ9gG7u/Hvng6xKw/XH/Rnn3sF2kQPZjAvr29rTe84Q2T6yKUSbNQKBQK+wJ72vHcftUjDS8yVUi5luPP9er1nx5zpoSIriej2sloo/w1PLeK+s5ySWUVmSuyeiIKMbZjHbMHj7HenvmLbfO0c1H5586dm8xXZJbKzGe9rX4Mc+uhZ/LhuEXbA2VbnrCsqF8slzROc32I+tFbO5kZjBI4pXffJtazypZgWRm+HpPOvaaSrZ2NjQ1deumlOxq+Sf1+ayk7Z1Yi9s0+oy24TOuzNpFUnpqRPxdpOlJMSzfnAopo4gyco+wd5svOtiVjG3vH2M9oHAlqenz/+b5ktHc9GjwrxzTFs2fP1vZAhUKhUCh4PCgaXk+7yEhPIz9cFoCQle3RI1H25305c47giOyW0soqUlN2D6Un3/ZVg3B6fZgL6Ig084wMO5K0uJ3PnPP7/Pnzky2R/DqgBBhpHqxnbqudbJ6ie+izieqL/Lu+jGi8KLVmmmxvrDOy5WiMso2GVwk247Y2JOiN/FkcN/Yn0gZI7ryxsZGun83NTR07dmzHX2vrzvx20lLbi7bL8n31/TPNznyL9sn5j9ZFT2uJ+unB9dB7r2WaNt8PPR81x5VE5725tPHitT0Nz2D1cj369W3nbE6zzWN76G0eTJSGVygUCoV9gfrBKxQKhcK+wNomzQsXLkzU3ch8Q9WU+0RFIfgMk85SDHo5fDQTRPuurZLjIa2WcxTtD5aVmQUnrGLSyNIhIrMI+5wFnkQmW7aNpkd/nR1bxXls5nCaK/28mMnK75Xor4mCWSzQIDN90OQTmVMyRPXNBbpEznauY857z8TFucr2D/OmumxnbTPh+dB83sswcY59FLTAcjPTcAS/12Vmdm6t6fDhwzvvBTNl2g7l0u70Bg8Gnvi+WqqC7Ytnn1l6AtelL3+VHbf5XFqbe6ksfO5YT5b76P9nAI/1w9JHIpMmA3qyFA1/79xeetYXvy6yvS9Zhq+Hz0lmTo5QGl6hUCgU9gXW0vCkZfCBNN151iPT7KLdkSnhklEhO++PUSukJNRL6s4CANZhEVgFmfYTaaHWD/Yr0yiidIF12sOdu7Mk2UhTtjb2JK3t7W3df//93QANajwMz2YSvD/GXbU5TlEwQ5b2YKHtveAOanLUMHzIPMvnnGVEBP4c+2NSci/xnP2k5hcFL/U08Kh+f20WFMPAB9YpjWuoF6C1ubm5My9GWuHH2P5nHxmYYlqNtNTw7JhdY+vL+kUtxx+j5tUjteC7yvrB3dI9aBWIUoF8O7wGa+esP3aO/fbPE6+1TyuLYxFpXlnyeBTEZOPFVJPMKhKNwarvO6k0vEKhUCjsE6ztwzt//nzqR/BYJT3AQL8ANceMa1NaSgaUKkzijn79s0RgajNR+Ds/KaVHXHBZ+3s0OtRm7ZpMglxFG2XyepQGwRSDVfj2rN3b29uz4cFWfsZ5KOVSOsuQptql3UsarUjzz7RBzk+0huiHsU+TUP1cZqHlBrbN+3Qyny011sgfm63VLFm+19aMpszXl2kjdm2kmfs12SNxOHDgwI6P1zQ9T1Fl7aIWY9R1dtxbIaiZcryYfuW1p0wDorXIrx0bB2s/5z16d9BqkqUhRAnw9D2aj9LG5u6779713f9PX15mJYj6x3N2j333dIKGjCeVlkJ/zKfqVFpCoVAoFAoOe4rSXIdd27BOsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktYqiZLUbjNfoq87I2LNomH9PXMRrFE0YObLi+qh/b3nh7EyMzJcX2fmN4x8e5T67TslRlsP/t5sjdA34CVXrhn6pumD8OUz6d7qsTbZ2EWaS0bqHdFGZYnmnEsmmftrss9o/qzPph1kPhbfL9M6vC8si9Lc2NjQkSNHJn5a//wwijAjuI98QVwrfP6jOZgjZub68MeojdraZbv8tTyXJZP741afjbH57EzDMg3PR5+aFp4lgGfE/tLUukafpJXpLTakc7PvjGDt0a2VD69QKBQKBWDtKE2pTwprv8QmaVuujEkxvYhOAylpTHKMopmoaVHijXw3bEPkB2G/6MvIotlIAeWPURuk9Nkbmzk/YM/uT4LWaBxJE5Zplr18vx7Fj/l/aZv3bWW+kJVrW0xdccUVknZvD2SRbiQPpg8v0ry4Njj+lGr9uNianKOn8+Xzu91Ly0W0fcoqpOEsP/PlGaJ1n1FmZZqtv5Z5bXfddZekmMLK5inSMqP+HD58uEtPaJpBRmMV5WHaOGf+eCvf+uXXAX1c3CIpI2yWcv8y4xH8NdxOycr1eYz+MzvmQV+iP8b3i9WbWVKiezJ6N3/c1gZjFDi+fuyZm7hKvudOG1e+slAoFAqFhzHW0vAsGqYXsWXSuEkAJllTmvE5NNz4NYui7G1HZOUy56fnU6Et3SSGjIBWyu3FGbmvtLRZU5Kk/dqDY0wtzdoYbczKfhqySE/f/oxpw0dy8Zy38/c0vLNnz+6MAf0W0nTbD9PerrnmGkl9De/48eOSpuuNUV6+f4zoJBhF6++3NlB7ilhGslwtSs/0Q/trOC+UcqNNQ7P8OPbfa9n0Z2Zkwt4PY/WR3NnKtfy2iJXDru2x3rTWdOjQoW4EdpYDmK1rX3cWadvbADbzN9u4mF8s0mCZh2fvTLOGRW3lWuU7w+qJ1rJda89cj0jd5t/mMouMpS/Pg9ouv/s22jz5zVx9OyIrIn3vpeEVCoVCoQDUD16hUCgU9gXWDlrZ2tqamIe8icnMAfyk+TBylJtaa2aBLPDAq8RZqDLVd29Ci+hqpGmwhzcJMjiBznDS+Hg1OwshNjD8OWoDTSM0i/kxycxgWSK6L5/hxnRAR+YDO3bo0KHZBFCSPXvznZEC29hee+21uz4tMMU+pdzkEu1/5vsh5SH3NPVFtF0Z7VmUBpNRR9GEFgURMGiF8xKZzGhm65EyZ/ca5nbnlqY7hts8mqkuojCza5kKlLXTU4sxcMPXQYotmuiiPe1oarN6aA6NAtForrZ6+S7z7WWwko2Tffr3TmRO9eXa8ejdyPVr30mO4Em47X/7tLmMglR8n3zfSV1mx62syIRuY273ZBSRHhndYg+l4RUKhUJhX2AtDW9jY0OHDh2aBGh4KZ1SA6XmSKKjc5OhqQx79vWZ5BHRZfmyImJmnuP2NF5yyHYAz6h+vOSdkStTE1sl8dzQc+pSC2Mbe2TPvIbBMz0tdG534tbaxNnvNW8GPVx55ZWSlmuJTn5/bUY2G9FCEUxo720fxeAEk5a5DY1f36RroxbK8YuCFqjZZYFX/n9aG5iGEG0pk5GWZ3Rovh6DSel8F/g1bM/YKmTsGxsbOnr06I6GYOMXaQoMDON4+fVmc5itW2oZ/r1j4LqysWbwir/WznF82L+oHM4lLQ0RdRoDBa0eCwKzgC9paT2hZkeCDxuTiJbM0lJs7K3t0fuGCfw2F1yrkcXEv5OKWqxQKBQKBYe1NbxLLrlkonFFBKJ2jHRKlJClpQTA7VmypOvIt5aF/PdswCbFUJKztnnpLUtONlCL8vUyBD/boNVL2tTCOI7UnCNJmTQ97J+XuDLKIlL8RD4807zOnz/fTUvwG8BG6SnULugHpr/Wt5c+FUrC1Fx9Odzwk35RXx9TTOiTjsLrI61Pyv3AURlMt6CfxJK8pekWL3PbXkXh/ZS0mRTvy6R/hxupRgn19MsPw5Cuna2tLV199dU7mr3dE22Fw02pOZerbDND8oLo2cqIpTM/nT/H9wstTNG2RxnxMt9Lfl64rmwe7Hk1Dc8+paX1hGlQGXmC7x+PcZutKEWE1g/77FkAIg1vVZSGVygUCoV9gT1FaVKK6dF2UQLq/RozSo2JppT8pWlkH9tE6V2aSmGk04nIoyntRRtY+v55KYaRqnObOEpTKZCSNqMcI2oxO2YSd5a87MuhRGnobXtk7T969OgskSvnpxcJa58cvwiUuE3LWcVHRC2AY9DbJorackQTx2vnqL+iMaEGy81JIzIGg11DP2O03RZprvhpY+Pr45YyVp6RE1tboy2TVom029ra0hVXXDGh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4CgE9n92M3D0iqzbY3JkmGY2N9cf7HqXleNLqEkXKMrHejtOS589lzyk1Z9+vTPvsoTS8QqFQKOwL7IlajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvt5ta3DgAAIABJREFUw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxtPnDghaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlLenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwr7AnrYHiiLesmuynB8vpZPE1SRuIw2mZud/7U0iJfNAL9LOpDNqadSmoq0vqKXRH2Jt9GXTTk1pnPlZ0lLCItOJtcn60IseZaSYlX/y5Mld7fJtop2dmnMkQdqx06dPp4wZ29vbOnXq1I62EbHBUIumBByR31rUmvXJrrHcIvMjvP3tb5ckPeIRj9i51+6xOXzMYx6za1xuvvnmSRuZe8qoUJuXyDqQ5d1ROvfWgYwdh5K/1zS4sexVV10lSbrpppt2nTcJ3Ef+3XHHHZKkJz7xiZKWc/H+979/V/+j3L2MVD7y3ZCtqce0YtHhPZYPq8veB/TD0u/j77HxME3uHe94hyTp1ltv3XXc55xZuaYNkjWFPnFpGhVu3xmBG1l6SIrP7z0Scfom+U70z7SVS+vXnXfeuautkeXM+/L9WNizaBaUKNKbFjk+E75ffAaLPLpQKBQKBWAtDc828TTQfizlXHa0yXq7uf1vWf4mCVCiM0klsifTHs1tgaKcM256ys1re7yR9L9RyvUaHvORrHxGa3lpkJqkSfImNXHso9w0k+SYk2jj7bUHaxt9XdaPaCPSyAfai5gahqHLJmLtzXy3VrZJm/5/0+SMd9Okyttuu21Xu/04mUb31re+VdJy7XzER3yEpOUYmyYoxVvq+OMRo4vnGvV9p/812iAz2zTY2moahh9PahI2Nqzvoz7qoyRJr3vd63butbVp5d5www272vG+971vV1t9fRnLURTNzfn3W0dF2NjYmFhV/PPJiEv/LPlrozw103zf/OY3S1rOt1mazGfk1x23qKGmb31mO/y9GcNKpHGRm5Mb8jICWJrm/3LMozw2jq29azk3kZXMxsIsBnavfbfn2/v6aeVgHjffP/4a/5tSTCuFQqFQKDjUD16hUCgU9gX2FLRCU6BXnaMESP+dSZ7S0uRiJk2aJ6+++updZXkzgTmSuW0LndVe9aZph2Su0W7cmcM3o7fx/eMWHqbSm1kgCmZhQBBNnGZusTGyMZSWJhhSPtm1NN36+mw8M4oub25h6P2cWcG2eZHiZHImDdPMamYdC6yQliafRz7ykZKWgU5m0nzb2962q8z3vOc9O/faGFq5Nm42ThHpsZn6zFyzColAtlaYYhBt58OUksyUHlG0WbvNpGT3Wri9jY3HddddJ2n6TNpYmUnTm/cMJIynuSpKh2GKTgRzpTCAKwrUIYl0byd6C0r5y7/8S0nLObO+23vB3hOeZJlmaJoUo/pobrVPG7eI3IHzbWuVu8gzqM2XnxEyR89rRoJgz7qNjbXDvytJNWnP0+233y5p+Vw97nGP27mHATV0X9CE6//vrZkMpeEVCoVCYV9g7aCV7e3tSdCHly4Z0k8HIxOPPUwCyBJzo6RX+5/SC8mOo2AKShUsy4P0UAzYIC2Q38KG/THtgGPRo9yx73Qi2zhHzmPWw4Ru30arm9onncgRjdwq1F+tNR08eHCSjtCjFrOxNa0q2lTT5sqCU0wCZZCUjYVJndIyOMGCpGxcTHuJto+xNWrjY9J5j6CZVgbrB9cbg5h83XYPSZIjjZKk4dYW01AsTeG9733vrrL8GNjauOWWWyQtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537brXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+v1118vafne4fuBGqA/FhEazKE0vEKhUCjsC6yt4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJS2l6Ec96lGSpr4V3wbzk5qfy8q0OfDbEbFNVg/Xe5Q87K0Pva2lzp49O/HpRuuAz6G129prWoZvp2m+1FpoHYqIGphqRKuXf8ZIQ0cNP9o8msQCTBsghV6U0mDjT2sA6el8m6gxZuk4UXoKtweir9zfY+uJ7xm7h+vcl+M3CFiVXqw0vEKhUCjsC6yt4T3wwAMTDSiyATOChhqKt/0ywpLJ4qbhUWKUplvd007taa8MJLm1e0zSZWRSVH7WX/bF30MphP5NLwFTkspIaSPfWiSRRsd79FCZpubHnpueHjhwIJXSLUKTFGVRlCZps/zcsW0shxtkmv+Fyb3+HMmP7ZMRwPxfWvoG6ffx19GfnFHLGSIfMrVB+n+9j4PWDtL62bWm2Zgf0l/D6LheVKhda5YaPj/UGqRpEv7Ro0fTzZXNhxf5Kw1sp42prQf6XKVpNLDB+sF6/Herx/pkvrqIMs/ASG9GYkcbT1Oz4juLa8rXy8hNvisi61EWwZnVH5G/k9DfwOfKl2vHGG1riEgyojGeQ2l4hUKhUNgX2BO1WEarZNdIU0mBvrtIaqZWkREoR9FSLCvLI5OmUXLZFhW+7Gj7Hd9GSu0RSS2jzFifL8PaxPHrRU0a5siqDT3SVc5J5HvN/JpZeVtbWxPN248rx8e0J0qqvVwjRtxyvXnNhPmeVh/Xjocd43ZAGVm6tJyzKM/O968XHcx8vFUorKwt3PLFjpvW69vDNUmfWGTVyTQhrgdfDwnjDx06NBttx/GLNubNttMh9Zj/nxGd3FKKVIDS6s+nb6NplxzDjBDa3891zOefWjzrjtoaEc9n88yNhq2fUZwD/fQce//+5nOUbSkV5bVmlrMeSsMrFAqFwr7AnphWeppJtNGiNI3K6m3iyBwtfo9IaOmX4lYrPhLNpBVK8JS4fB8yloI5f4xvIyMdvR/TX+eRaQOM3vPjSRs9pc6o7XNbbFAK9vd7KawnbW1tbaUMMr599FdRovPzkpEGR1o666N2lrGl+D4zV5TtiPpPnzGj8qjhRfmYzNmi39lH+LLvmVQekTrbOFJDidpmyCwJPTYiauQ9/y/vZb2+bhtraiQRo0sU7Rkh0mbof+caiqxRmb+fkca+jdnaJKJoZWqH1AK5/nwfMzJn1hO9D9gmwo8JLRPZxsaRhpfV20NpeIVCoVDYF6gfvEKhUCjsC6xt0oyclJEZJ3LaSnHgAU1WJJjumTSjkH5pum+YN2laqHK2k7apz1715v5+GSIzmIHtJwl3lODMfjJ4ITJLRSYY/z0as2i/uF79/v9oz0GitRaaL327s7B9tmmuHN+WnpksM+0wedybiRiQQTNlZNLnesrM8FFfOBY0CUfJygzyYT9ZxiqmewZCReQP0Vr090Yh835MenN14cKFSQCNR0bATZOgX79cI3z+e+4K0oBl5nePKCjJlxGB/eI7hGPm20hKQ14TkSSQAjIj946C9WiinSNJ96CJ2DBnbrZ7KvG8UCgUCgWHPQWtrBJ4QKmVAQe9pG5qQAz5jUDNisEqPiGZkg/pc7izctR3arCUeKJdqw1ZWK2vj8EKUXhuBkpSdDhHaSDUWCgRR0549r1H8dNa2xUSHkmoGT1URt8WnWNAQCTFGjLSZkrikURKCd4Sm6MEYAZjRSkevv5oTDhnTNKPwtGZXpFt2RWB4xilArCcbM1GWg8DquaCVnwbovZngQtWZvQsZ1R2c5p/dM5AS0lEIk5thsEqkdbE8uaIoX25rJfvhahfDLRaRaPMCBRYhn+H8Z7s98NjFetNhtLwCoVCobAvsJaGZ/RQ1G68tpb5nnwZvI4+J372yqRkzy1YLJnYS3jUIKnFRKTYPR+Gb4dpMVGSqp1bJXGSPjoDNYuelE5ps0cblkluPSmdvjtPLB615YorrphIy1HCdETe7evpaab0F1ETitbOXMh3lJhLIuhoA05DNu7sT+RbnUt74RqOymdbM+tL1P5Ms/PrhT5JtjWSxHlszofny4usHJn2mlkspOmayML4IyICXkvSBFoY/DXUrLLto6I2kGg8W/8e1NYya4E/l/nTo/SkDGxbdA8tCbQocJNuX272vYfS8AqFQqGwL7AnajEDbcIe/MXO6Ib8NdT0VpHSaAePNgmVdkuuc+SjUdQkNYbMjmz1eonTjhmNjt941ZcZaRKmodJ2T60g8qPOoecryBKeo8hOEulG2NjY0OHDh3d8qlnEmjQvtXpJ2+aFUuxc1F4P1Iz9vNj9NpfWFhIqRKS6/GREZxQRl42FXRNpeCR6zrYWMvj1wnnJ/DAeHKcsqtYf53vgkksuSdftMAy7tINo7WSR3Kw7okGklSiLtI62I6K/v0ewwfHJNEgfcUutj+85kudHieD0y5E4xCNbZ1k0fE+7yny7kQ+PmnIWaR7ds4q2udOmla8sFAqFQuFhjLU1vHPnzk2k2J5GkUWiRfkiGX1SFPFkoOZBwulI6+B2JT1SWqInhfp2eA2Tm1Fyk8jIh+S3TZGW0aakQ4qk6p6N3iOSuLPcyigKjOM1Ry22sbEx0QojaT2LDOtpF/bJtdST/jK/j31yCxtpuo0J/VeRNpNRelGzIJ2TlOd5cZ68L9RvjCnFkrwvK6JtovZBLS6KkMz6F8H6Zc/JnA9ve3u7q21Qs7K+Z4Ttvt1872TbEEWUX7QYkNYt0vRJz2XPtmltvsyMVDnLGY0sWYzktTE3UuwoJ5qWg8yXGD2T9MsZeuuBkfqMZI2sev63pPLwCoVCoVBw2JMPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+FfYSameRNpJt8cLtSaINYO2cbeVCCS/SSjP/RZZbFSGLIPVjH/kIepJWa20ytj2i3CzHKNJMM39vdp2/lvWQiDrydRqyjYE9bO4MmZ8i2sKG2kzGYOS1OG4OmxFd9yTuLD+qp21nz0+0znjt3AawFy5cmPii/PNCDZjxBZG/vkfa7cuK8jM5drZWOLe+Xvro7Fm+6667JC03nvXaOjclZs6etcnyQP36pAXJNDprR3QPrV+93Gciy8OjfzXya3J+GMnqy2bfizy6UCgUCgWgfvAKhUKhsC+wNrWYNy1Epkju2ku1045njnSPzHwSJcoyGKLXRt5joMPZmxYySrHMLNZLxudYRAE2HD9rM+nWIgc7y+dY0PwT9cNAU2CUuOtNV5lJc2NjQwcPHtxpJ9vPcnxbaE6LiIszkgKaZqO99JimYqafKPCF97C+iGSca8fm0Oqh6cmDlFhm7mQQhm8HzWq8h6a6yGTbMy8SXFeGHhUYTX49k7AFy/G5jFIVstSCXjoU11m21120djinfD6jZHUG7JhpM0rvMTOnffKZXoXonPNsbbOUJ29C57zw2WMbIyIHgsFBkUuC6zjrX3TPuXPnKmilUCgUCgWPtanFDhw4MAm68KCTnWH00S7pc/RFGfmuP8fE0izx2P/vQ6Kl3US2rKdHihwhouth6DwDbaJgHGprvS1SWDel5t42NDyWBR542iNqXD3n8cbGxo5G4/sTaetZ36LjlLQZ2JLt4OyvtTXJeY+kdAsh55ZSJi33Ag8uv/zyXfceO3ZsVxttbk+ePLlz7913372rLdzRPSI64LpiiLndE0npXIt8fqL1zvQXzkX0fNtY+yT57FkahkFnzpyZpJz455PvoiwALqIY5Heuw0gTZlBZdk9EE8d54DNuQSzSMg2GGh7bEVl6qAnZ+NpzaG3zQVVMxckS+qPUED7TGWl+BK6hzGrgy101HWpXPStdVSgUCoXCwxxr+/BaaxNtKtp6w6SGLIw/Ojan4UWayRyFVBSOTomKiMJns40xiV7qBP1Jpi1REvf/zyXxZmPn68229vCgr4MSXLRBY0SUPSdp0ZfmNa4eEbIU+1KyPtKXase9JsBrqOHTpytN/UemgZlWZm007U2aUn1dccUVu8q1/lKaZ1+lpbaYaaP+HmohVg9D9v14Z9RsvbSEjODArjVNxq+TzCceYXt7W6dPn97RkKP13HtHRG2LrqVWxjZG2lr2vonIJPi+oQ/PNLtoK7OMhoyaXRS+T+sA3yWeJIMUfYZsXUTIrCs9yxI15N5Gt+xr+fAKhUKhUAD2tAFstkGiNPVTcWucCJSKehFbvt6oDZR8ogRK0vAwYpQ2dmkq5TEqi9d5iTuLfKJtPUrIpJROiS7S2ubIgiPMRZ/2JHGTUHuRt8Mw7Iri7PljswTg7LyUS5NRO3gP10EvmdykZJPCSTXGpHVJuvrqqyUtrR7UHKnpRz418/tlRM2RdcDKpU+PmrLvZ7ZlkaFHFN/z87Eeg6fM6lkxtre3d55t+k99e/n8UWuL7sm02VWSnzlnWcSnNPW70vrEqFp/DeMN6NOPNDy7x+gJbdyy7Zx8OdRGaSVYhYyd2lo0/2wLn9uIyJtRxnOEF7vatNJVhUKhUCg8zLF2lKbPper58JhrYp/0k0jT3KUoT4ztMDC3hVv7RNFEBko+vW1aqJEweon3RtGH9BX1JOO5zU/XiYAiej69LKqxJw2uKl3N5Xsx6jOLgIu0NEMmgUZSLdciPyNyZYMdM03OtDf7tLXl/7drMyozf4/Bnhv6X6jJ+OeJ/tZMeuaz46/JInwNPXoojltET2XXmL+yt34tbsDGIvKtZu3r+R6j6Oio/aQg8/dGYygtx8LeLVIevWjXXHfddZJ2WwfMr8eIV7MsMB/Tz5utJ/MZ///tnd2O5NaRhLN7WoMZwDAsyQNY0MW+/2MtYBgQJEEeeSRZM11Ve7GI7uyPEYesWeyFXBk31V1VJA8PD1kZ+ROpV7FqZWv265M8Ry6rup//Coz/rTJ9nTA0tyHbXGWsb45z+JuDwWAwGPyB8Vl1ePQfu2r71MpjlRmW6mIIp/bB/et/CrX27WnNyrJycSCOkcyOcR+XicR9MYPQqcHsZUU5Cys14jxiYXGMghPYTQLNCXd3d5sYXrcuE6NbNVel5Zvq8Jh52d/jKy3Irl5Bb4SsZNbWdcueMVyOjZ6NzvQYdyGTEKN07YGStZ4yWPsYyIySwHr/e28NOUbW1VNW9/vj4+PGo9TnOMXDOTYXh+N40zPMfZf1qZpT5/XSeDUWNkOmyHPV8/VlBiczml0trNadslv7fque10x/P3nteL7XsCphlUvA/fO557x6/T466uEahjcYDAaDm8DVDO/h4WGTveSsPbLA1FQxHae/Mm7lsjT5P5sryufdP6PuJ5UwukWiOIte9R1ZSd3CrvJxJm3LbMYVK2S25l6NWlXO5NuLk7jxU8ljVe+3t/+Hh4dNPGcVU+P4XbZXYivMznXXyTV47efIRp1VLzN3+7a0XrXu+v5krbuaxj62Pkdat2wLc6QtEZkxa6xcCyjGW1b3Ho+Tsh7JQqqe56fvL61taWmy/revnb2YnTvXvXW72jY9zzhvjpno2fHtt99W1fOa4vOoH1vvad7ojeLzqG/75ZdfvvhMY3L3BJ+bTt+zyqsi8d5zSj59XP07K1Ub7sNl3h/FMLzBYDAY3ATmB28wGAwGN4GrXZqvXr16orNOhoYukL3O59y+70NY0dvUAoPpwt0VxYBskpTqlLkH1/sr3WIuMSQF0Fdd0gUmcqRCU1eszP9XSQUcN+dPc9JdOHtyTjzWF198EVuVVG3nVvtz10NI5SFMilldU8F1cOc5052m+ZHrkcIHVVtXNpNY0j1S9Zy2r/3THc5i5qqta5SSYikxpe9vT7TciU3wHuC17nMvsW199pe//CW6Z0+nU3348KHevXv3Yhs3hiRc7coteP+l59DK9UnJOv3PMpV+/pSfU7mAOpB3aTltr8SSP//5zy/2QVH+fjy2n6J73z13WHbV3fkdq9Kt5MoU3DymZBXB/V50N+/RrufD8AaDwWBwE7haWuz+/n4TNHS/rkl+bJVmzxKGPWZUtbUi2TjVSdOwPYqsGFmdDML3v1PTVjZqdeyJSIXAHTw/MhhXWJ/kjo4UgCbr/IhYrAqEEy6XyyY47RJQZIGmIngXKCfTI/N2sk0pUYclLc66TIyHbKp/VyzNyY9Vbdli3y8ln1iE7eSoOOZUVO7WefIKuLIESgJy/TlRcCZDffXVV5Hhnc/n+vDhw0bWr7MPro3kGTmS6JIKxN08UTKRTYSdAAXZmRPj4HG0P80hhQh471RlOTqWwawS3vSaxEFWpSZ83jhvFLfl/46F6jOVahwVvqgahjcYDAaDG8FnxfBoBbhfX1rLK8alz8i89iyFDlpNKgTlcft+yQopg9bjJdqmW9/8TpUvqE6xs1XZAGNoqQ3Iqn0GWSHnz1l2Ai0ux8i4zaoRo4qHV8W8qREv4zJOcDoJAaS4WT9HvrIcobPnvbZNjJtUPbOAVMzN69TXlIrQWaqR2tL0/e+lkrt2SwLXF8/ziAeDY5UHpWrbMunt27fLwvNPnz493dO99RLHkFgaPSL93OhBoDwhWU5/j3NKT0NfO6m0aCXKQY+F9sFSGnd/7gla6/9+XnxG8Bm1ErxPnjn3nBBS7kPyUlQ9P9u1nl6/fj2F54PBYDAYdHxWeyBXiCnQiiHDY3ykamslkZXR8nNt5VlMTuu8WwC0wngeYnHOZ3+khQzfp5XEuXExtSTQzYw+x7JTY9sjVlBiLqvs077Nyp9+d3e3Gf8q9sg4yYrhpWzN1JrJnRvP3RXB6py7rFX/jhhZZyHKnGMchCyEcmV9vGKMLOJ2RbhpXXOOVmybc7HyACTmQibZvSMuFp7Wp0QLVAytVzdPidW4uFxiS2mfHXviCEIXIEjyhyleVrVtJcSYNe/Tfu+TRafnTd8H1wTXV3q2dCRZsCMSbRyH0MeoddTnfhjeYDAYDAYNVzO8h4eHpYWYMgLJxLpVRX94ypJywqby58oS0v9kRI6ZiKXRwnNWR4qZpIw3x/Bo8dIS6lYMWYbOjxYdGU7fX5KQchbXKnOzw9VcHmkwKyt9dTzGXxnTcnE4ITG7IzWCvA6pEWjfPzPsNCYn1Ks6K2a2pVhrZ0LMWBVotbusSa4DtjRaCfNynTEW5lgB1xWZDGXZ+nn9/PPPuw1gVZ8mdt1jnTon3u+rlmMrTxW/y+PJ66DnGWseVVPXz1nXVeubzwHXQJk5A0l6i/kPVc/PQK5jzR9rB91+hWtkvPj8XLXz4TWnt8A1pKXXozcG2MMwvMFgMBjcBD6rPdDKn5v8tWR43WKQdULrXEhxwf4Z1TE4tj6elA1I9RSXaafXFdvo51KVlVR4Xt3fT6vFNbDt43DMLFlLLu63p3bjsrKOiEZ3XC6XTd2iGy/Ximtjk8aQ1F9W409qHK7RKMevbVNtXT8PZmtq7Wj9u9YrZJT0SqTYUVVm9FQH6Va9yy7sx3dMeU8Yntez719j+fXXX5ctsD59+rSZJ8fMyJ6TCHt/L9VQ8lr35xLvKc3ljz/+WFXP93K/j9Xah/e2xuGyT3Vs7Y/Zmqzd7OfHZyAZHp97/b0Uw+N95tRu+J0UV3XbUNnHxYfT8/QIhuENBoPB4CYwP3iDwWAwuAlc5dK8v7+vN2/ebFwULtlCYCKAS6+Xq4IuFrrgXME0959cjB10aSZB6B5E1jZ0c60SHISU2JL2UbWl+CyGXR2PbgKmlifZqBVcggrHsOp1eLlcXrg0ndxUmpfkzq3K0mLJjefmmC5TzstKRiuJ9zo3YSploJu/u5iY8MEO6IJLCKJoAe891w+Qa4Nr112LvQQR9nur8i6rlWjBx48fl2LPdGGm7x6RwqJbz91rPCe5Kb/77rsX+37//v1mmyQpJ7gSEyXsyO3JsiX2zevjlzs0hTaUYFP1LE5N1zld6EcF4/u2PKeOlMjnhEN43abwfDAYDAYD4LMYHrvi9l95FpZTYJpByaqtvMxKYJrb0uJkCvuq6JHMTtaTrOi+TSp+ZkH6KqBKaR9akt0S0mdMS2YA3RXH0qpNIrjOKkrFys6qvqYYVWUJmqeV5BvHzQQRx0j6cVbn6MpTyA5TF/P+mdYDC6hVeN5BAWCej9abXt39lESDtQ+X0k5JLybLuDnak3haiYjTk0DvhNt2Vdzdv/P27Vv77BB4X1Co2a1frhVuw/H2e1GMTq8SMman8F6WkMTitQ/XAioViXNuKcbd50Jzo4QazqOT7fr666+raitAzbXTxbN5T5P5r547q3ZnfcxuLB8+fDgsID0MbzAYDAY3gc8qS2A8q//68j3K9zhBXsbukrwN02r7d5MUlvs/yU7REnHp4bT6uI0TqSWOFGSy3UeSB1pZzcSKQSdBYY5xJR69wv39/QvL1bFPrY3exLJqazG6+FhqJ7Ji+AJZO9PTHXtmejhjXi5WRMaa5q+v5cRQNTZXLkCJqjQ2trRyYyVWwuNcQ0kswe1nT5Lu9evXG1ZzpGCa596fO1zbLOLnGupsLTE7CkWwfVA/Dlm7k79jvJVF65zzPg+UP9N3NVYxyn6/UcBD567v0OPjcia4ZukpcR4F/s/nultvLodkD8PwBoPBYHAT+CxpMWak9bYf/PWl5c3MtKqt1FHy47pml7JiKBpNhumEoMnKaBG5bKm9bCKN0YnUCmwsuor7kYWmgsxuRSUfOtlOn1/ujzFC10rGxfsSa7m/v68//elPT9lmjuXI4pQUl0BrzzU7ZSyImWjOE8C4F61Wfe6ykMkG2LLEsY+fUGtBAAAScklEQVS0vii55eIVOq6scxfvEyjUnmK6jvWQfaTYyoqRpViba4baM0pXWZqPj49P942T7VL8PUnkMT5blb01jqXzfPi8ITPSWu7F5Iy/6X89Rx0jZmyORetJrKFqG09MrYw69F3NMT1zlKfrcHHSjlXMmP8z56N/j2NZZfhuxnDoW4PBYDAY/MHxWQ1gmWnXLW5m71AOyEn8pBgHLTDGL/p7ZCL8vL+/J5ArC8JldDHrlELHzgImwxJ4nD6PKc4o0Irv4BgJlxmXao7IIFfyXns4n89Rdqj/LctUli8bsrq2MOncXGNMIV1/xmFcbZOgz7QOWJfX36PgdGr505lLknyTSDWFgPuYeM+RLXJ8/e9krTsGle4n3guuKfIq61M4n8/166+/Ph1T60Pxs6rnudQxyN5XzW6ZPa35SzJr/XiqW+P+HZvRNsqAZPasu8f4XpJMdN4I1+asf9cJj3P8Op7mPNW79s9SLaR7TjBGx7l2sUk9BzR/K+8AMQxvMBgMBjeB/5PSihPX1a9uqt9hdln/m0oEKQ7Y2U6yKmgprOrixCQoWt33wZhDskQEl81IUWJam91KZ1yRc03VDBdfcGy6j8dlaZKpOsbCbY7UUj0+PtaPP/64iam5th9iS7ou6Tz6NkkJIrVKcu+xLopxmT4GfVdWNGO7LmacsmQ1dir9VG2vu8as+8xlAzJWy9ihsPISCByrU9VZ1XX1ffQ5oULJV199FdfP4+Nj/fDDD081jmK1P/zww9N39J6YL+dtFesU0np28WbW3ypWx7Xq2BrHzHjZ6llFhSKy9n4MPmvTenNx+TQHzBbvSM1wuXZXMXHmXLisYIlw6/Xu7m4Y3mAwGAwGHVfH8N68ebOx9roCQfLbU9+vWxWy8pgRxLobewLwKdM/7Vp7MD7B7E9XS0emxSxG7quzUB5PzIXWlItxkNXyf6fokOoY+flKdeJIbcte/LTjdDrV+/fvn8Yta91Zl0mvz9XUpRrKVL/mLFOuM7Za6eu7Z8H1c2brn1WNYvqOa3ZJy5UZzYJjH0nnNbGD/h7HSA+Ay0LWd5iF7BiL5lSvj4+PkWmeTqf66aefNhmkHWK8YnhJH9M9S5I3gHPct2XMLjG8fk5idLpXFYvmvHVvCueOSjurOjyysSNeL4F6wnyuubgtVYcS0+/zyPg8t6GiTdWzrmivxxyGNxgMBoNBw/zgDQaDweAmcHXSyuvXr5/oo6i5ExQWXWeKtAsA0y1HlyaLPLu7kEkLLB51xZVJUHZV+J6EZhmIdok8TDvnq0vxZTkAj5Nam/DY/bOULOE+23PvuDHuJT9cLpena6x0bhfUp5tmFSjnNdwrU+jnwZICrkMna8TkACY6rdzTHDNdP07KzEnxVW1d6+76pBRzYuXaTufQXUx0c6ZwQheo4Pp9fHyMbqnz+Vy//PLLZq57ok6SMWMCRZ8DloEkN7R7hjDxgwkibl8aA0u12PLJJS2l8hc+s1b3dHqWOMFptxb7vlxLM7q9KV69Snji+mVSW187vBeukjg8/M3BYDAYDP7AuDpp5fXr108WirPIUqE0i3r7trQMtX8yPrYccuC+XFoy3yMLkFXhWNpK8sb93/eThIzdNpw/JhpwX32slCEjA3OsMBVoJ1GAfpz+2Sp4fLlcNuzdBeiPFpP38aaklST63b+jVyVQUL7JiRaQvdDCdok1aR9M1nJCubwuZDROrJrNaFPauCseJlM6IjFHa51rtq8droPL5RKTnk6nU/38889Pa4VlK1VbGa1VoTmR7il6MLqcVpIjZNKKe+4oYUtp9akUoI+JjM7tn/+TabGVlHt2cA54fIqC9Ps3CYEngf+q7XOU9wbLV9y5vnnz5rD4xTC8wWAwGNwErmZ4XSCYqflVz1YQ20vQoncpvvT9ax+y3rRv1yCRhYupyLKPm6xgZQ3ST5xiKq4UgDG7ZAGvhJmTDJaLudBaOpLCTBZI629VctCv24rhnU6nTdykX8sU4+Q5uzR6WqZs3+OuLQumuXac0DnXisaoOAxjIH2bFN9J8Qv3HmPgrlVOSt/XnKRmxn0/nOtVK6vE8JKUXtW2zc3q3lNJC+PnigNXbdk5x+1i+vQY8fpwflZrVeB67M8JXlfeny5HgfkSR55VHGMSi3axfCI99zSufk31Xd0LjBk77x69aWwtRWmz/t2jrK5jGN5gMBgMbgJXtwd69erVJruwW7P6haYw7srySbEMvZLhubbyKXvIWdVJwJgWcbei0v4ZM0pxuv4ZLS+XZURLnvG3VREux7qKEQjcr+ZN2bYpNlv10hpbMbxXr1497VeWeG/mq2PoPcZQVtmzydIm03NyanrVuTIOs7JI6ZWgQEAHr3eSwXPx7VUcpI+5/02pvpRR2o+3V6ROL0UfP70tGofYlwqG+3u6Pqt1cz6f67fffns65rt376rqOQZW9fys0Ht//etfq2orqrwSOkheDMfwVmLq/X0XJ6fMIkU6nPAA7+F0Xo6tu7Xft3FMiXOTvEYdqShd+3Axas6B1o7Wh8vSZJswZYAfwTC8wWAwGNwErmZ4VVtr2gnyMqOKlmHfB4WQWXskhsfao6rnX3layYwvUhKqj0X7WLWxSJZOymJ0NXV723ZwP0kmzLEQ7j/VGfbrRma31ybGbbOXodmvEQXDq7b1SGnOnXcgZWMyhtO3Zc1cqofrlr1bRw495kALl/vXPUJL350P9+mEyHmfUBaP7GSVpcdYkWthREk0rl0xu55pdyRu2cf08PCwaQDbnyFidjrW+/fvX3yHXoJ+3ql+dK9Fl4Nbo/zM1SD291f1pqsaur6PqnxfpvvLfXd17yUw9p2aZ3fwHmF2ZvcOCFpvb9++Xa6fjmF4g8FgMLgJXM3wzufzxtpYNVVMMQGX+Zay49g2xik2JOURFyfj/mnpuFY4ZEm0kmhBuphh8m07i4fWGS25xOLcGDhHjg1R/UFIMcuqrTV2Op0iy7u7u7MxvB6PFVgLxvly42Y8gmLOrvVKatfEjNu+vulRSLEVlwGrz7hmmLnsMny57niermUWY6KK5ZG1HxG6ThmMHYwVaV04hucEm1dr54svvniaL7HnPsf/+Mc/qupZPFoMT3Mgcec+7tR2ijE7jatnepOVpUxf5424xouSvDQp49MxvKQoRe9IP3fuLzX37fcTvTZ76k39bzI6vS/m3uOaro3bxPAGg8FgMGiYH7zBYDAY3AQ+K2lFoEumahuopAtG1HQl6szkFQbKV73mKDTsUm/ppktyZK6LdHLV0h3hKHYKCB9J+mAiQOoM7PaT3L498YASP0z6ce4Iuj/2yhLu7u42Ls2+dlJ6e7pO/Ry0P8k2pevVx6/rm9zhfdwcIwWHV8kRdCHTpdldZdw2lVswocIljukz7Z/u3VVJC8dC95hL72cBNYvBXUnIEVcUE56cCPHf//73qnq+/nJtUnjCudO4X746tzsL/3k+TrCBbtBUssVz72BqP8Miq+SNlctYYHIX97caK/tHpr54/VqysJ7PfrmmO1J5zxEMwxsMBoPBTeBqhne5XDbpzk7Ml0F8MhRnNQmJ4a0KJVOpxCrln+yTFomzBvda/Air0oYk+Ork1gSywFSU7c6TbNe15EjJKcniX51Pwul02rC4Xjz87bff2nNcMVOtL1mVEhTmWnFp1UdlmpxM2CrFumpdcMx9cRx9PplQQwaxaoPFNcux0lvQ3+N5cqyuxYtA0Xc3R9xmdQ1UeJ7utarnUgUlr/ztb3+rqueEHTeWJBpxhAkneauVQDvnlMkrTlghlQPwuvD9/pn2n8oqVs+qdBxXeJ68UKtyDpayCEpMctctJfIdwTC8wWAwGNwErmZ4Si+v8hYQGRyLyFfCn7SkyPQcUimBxsg4TTqnPiYnAJwYXWIS/VwY/+BcuG2SZJpAVuhilGneVjJbZC6poN999urVq5jirjgMLbbO1pJ1nNhuP0dZ+JRCW5WLCBS7TTHPvh8nA9XH5so3WPDN+XOCxIltkOF11rMXi+R6cyyE159ssZcYiF0TtN7793rct+p/7990j55Op/rXv/71dI9rDLrWHd9///2L16+//rqqnhmDa2+VRJa5/tw8Ea4shdskZr+K5Sd2ztKqfm/wvBJb6+A9mFjuSpSdzC6VNFRtY3csNHdCB6sY+x6G4Q0Gg8HgJvBZ7YH0C+2Ecmk1sZlralVR9fwrT7bGzMsu2yTQAlmJxiZwbH0byjNR2illfHXQd58kv6q2bIPMYeVjJ3vi/LkYZSo4X1lP3M8ew/v48eOGdfbjprgOLUTXcoVMjzFiF9NlMfc1TTzd+a0+r9qypJTh6dg610xiI/29lAmZskW5n74tPQn9HuzCA30bFtSv5LZWhedaOxxDHzfH8N1331VV1TfffFNVVT/99FNVPWdv9nGxkJmxfMeE+TzRcbUtn3cdXHepCWo/ryQ7lmJ7HG8H1+qKUe7FOR2j5PE5dpe5qvliobljibyXj0i+CcPwBoPBYHATuDqG9/DwEGMPVVvGkRolruTIuA+2O3GyZPxf33GWVrIk9zLvqvYzE1exSc4bxWOduHKKqR2pY+LxWJ/l6ss4ppU0FxnQit2cz+f697//vdlvt9woTUTLm3VeVdt6PsnOUVpM8R6XpZdqp1wLmBQfSwzMbUMPBmsenWXOOV6xwtROiefnJPTI/mily/LuMTzKBeoa87ycPJTmzY2l7//333/f5A70uA6FuP/5z39W1TNjEMNzItupxjB5VfrxeI70UvX1nZpU8x7v80TmKqQMzw4y4tS6yrGn1IYq1ef1/XL90Uvh6n8Vs9Mr2VsfDxn3/f394TjeMLzBYDAY3ASujuHd39/HbKP+d6rfYSueDloGFM51rJBxH1lcbEvUxyjVBfqW6VNfnRezsVL9kkOqM3NWDK1BZkA5pkdrPDGwVW1LsiD7NeD+V1aWrPQVI9W4de1SnVy/5r35bNVLYfE+Jmb4VWXGzfNxLJSMhFY62WkH44vMDu6gNcs4I1sN9f1xrtN9288vWdaMB7sM4JQV7MbIe2AlAHy5XOrTp0+bte9iuZonrSExPDH8vka//PLLF+fIsfEedx4M3u8U7nYx4z3FJXc90nMgXeOOlMfgmmPzuGmtuGcy45iKp3OO+nVj7J211ymjue+v55XsYRjeYDAYDG4C84M3GAwGg5vA1Ukr9/f3SxpNNx2D3nInOvHZVBjL4kpHo1PXdFFll8LMkoJUENpB90xKE+8UnC4DBqtdIXhye9L96gqPk6uO26zSxOnWOVKesIKSVlZBcY1H17IXJfdxO9cvEyY4T3IjrgTBkzuyzy3dUsl92PfBdUSx6PS9vt9UeEy3fx9Tup+OSDJxHtkvkaGEqq1Li9fRlT/0xKC0js7n84ukFa2HnjjDtc1xquh91RmeCW8UMXAhjj1XWt+G58c51fn0uU199pi2v5IlE5Kgwur+5XpPBejuvJi8pDH3khZ+N5WPuQQl5yrfwzC8wWAwGNwEPitpRXCFuQK73qZi26ptcJiWAVlityqYpOISTqpeJjMwlZsBbVrGfRuyDoGscCVDlALQqwA3mR7lz5xlt8dgnTg2k1O4jSts5dgcLpfLi47orrt3KrKnQHTHniSakhZ0PpKaqtoyOV7DI6K3KXnFMQnul/eEYw2ppYygbTtrTOn0qdTFrR2dH/eldP/OQhyD43eqXrJr3uMrK12F5/RMOOYtJDbV5ciUAp+eAxqTpOf6fZyK0+nZcglP/J9z7QrPOZf83xVh7zH5VVE8weeBK08gU+V60PuuVIPeJp3fqhTNJV3tYRjeYDAYDG4CVzG8y+VS5/M5xueqtv7uVTxMkOWXrMpUgKwxdSSLofuNk8+a/vJ+HJ6PLOokwdPPN4kGp0LUvl9ajoxRuHlN7CwVE3dw/Imd9u27NZssdcVoGNdZeQy0f62P3koonTPnlqLBfXxKS9f+abW7An1+loSY+3EYt2bqurAqMUnp6C7umOI7tISdx0SWNAuetX/NZ4+pMI7MbfV/Z6FkCHts5HQ6xbno50rWTKbgxB0o30Vmr8/F9Pp3BbINN+d7JQYc12qbJESxuqeTXOBKWoxzwevkchX4TGTp0MqTpfPkfbzy7nz8+HHpXXqxzaFvDQaDwWDwB8fdNRkud3d331fVf///DWfwH4D/ulwu7/jmrJ3BAczaGXwu7NohrvrBGwwGg8Hgj4pxaQ4Gg8HgJjA/eIPBYDC4CcwP3mAwGAxuAvODNxgMBoObwPzgDQaDweAmMD94g8FgMLgJzA/eYDAYDG4C84M3GAwGg5vA/OANBoPB4CbwPximwMjo/OuiAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZfdV3/n9vfdqkKpKUmm0LY/YDgLSQPfCgAkYA25MBzAEvIghNrhpmiENhDQrgJtJoQEzJIZ0wIEAaYIhGBMgTAEMxjbQYIghAWKwjQdhS5ZsqUpSSVVSTe/0H+fud/f7nL1/595XJXvJb3/Xeuu+e4bffM7d4/fXhmFQoVAoFAof7Nj4QDegUCgUCoX3B+oHr1AoFAr7AvWDVygUCoV9gfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvcFl+8Fprz2ytvaq19p7W2rnW2onW2m+31r6ktba5uObFrbWhtfbky1En6n92a+3W1toH7Q94a+1zW2v/5we6HXvBYn6Gxd+nB+ef3FrbXpz/Mnf81tbanvJmWmuva629DnUM+Luntfb61tpzL6Ffe1p37nl42grXDq2178SxK1prv9Vae7i19pmLY7curn2otXZ1UM6XuL7P1vtoRjDX0d9tl6muw4vyvukylfe0xVw+MTh3V2vtRy5HPZcDrbVPaa29YbHm3tNa+77W2qEV7ntya+2H3L1Da+0xj3R7L/kHorX2dZL+P0nXSvpGSc+R9KWS3irp30j6rEutYwU8W9K364NbY/1cSY/KHzyHByS9KDj+xZIeDI7/uKRn7rGuf7z4I166KPOZkv43Seck/Vpr7eP2UMez9QFYd621o5L+s6RPlPTZwzD8Oi45L+n5wa1fonEO9gOeib+7JP0Wjv2Dy1TX2UV5P3WZynuaxnU1+cGT9Pclfe9lqueS0Fr7GEm/KeldGt/z/1zSV0r6tyvcfoukz5d0j8bfj/cLti7l5tbasyS9TNIPDcPwtTj9y621l0k6cil1fKDQWjs0DMPZD3Q7Hkl8APr4i5Ke31o7MgzDaXf8RZJ+QdKL/cXDMNwu6fa9VDQMw18lp94xDMMb7Etr7bcl3Sfp8yT98V7qen+itXaVpN+Q9JGS/pdhGH4vuOwXNY7pT7j7nqDxB/rfC+P8wQg/x5LUWjsr6R4ez7DOszGM7B0rlXupGIbhz94f9ayI/1vS2yR94TAMFyW9ZmGR+dHW2vcNw/Cmzr2vHobhsZLUWvtqSZ/2yDf30iXTb5R0UtI3RCeHYXj7MAx/kd28UGNvxTEzPb3YHXvGwkR6YqH+vqO19vLFuVs1SkOSdN7MFe7eK1tr39tae+fC3PrO1to3ezOUM7l9Xmvtx1prd0t6b6/jrbWntNZesTAxnF206V/hmk9urb2mtfZAa+30wgT1d3HN61prf9Bae05r7c9aa2daa/+9tfYP3DU/qVE6vzkyx7TWbmit/Uhr7Y5FW97cWvty1GMmtGe11n6+tXafFi/43vheZvyipEHjj4u16xMkPVXSK3hxC0yaiz58Z2vtaxdz+UAbzZIfget2mTQ7eFijlnfA3Xu4tfYDi3l4cDHHv9pau8W3Tf11d6S19j2ttbcv5uSu1tovtNZuQv3Xt9Z+prV2amES+n9aa4ejhrbWjkv6HUkfIenTkx87adQ0ntVae5I79iJJfyspvGex9t+wWH/3LdbIE3HNC1prv9tau3sxLv+1tfYlQVmrztFzW2t/2Fq7f1HeW1pr35b06RFDa+2VrbW3LZ6NN7TWHpL0HYtzX7xo+92Lfvxpa+2LcP/EpLmY+wuttacvnvvTi7F4SWutddryGRoFGkn6ffe8f/zi/C6TZmvtKxfnn7FYX7Zev35x/rNba3++qP+PW2sfFdT5D1trf7KY+3sX43HzzJhdqdGa98rFj53hZyVdlPS83v3DMGz3zrt6rm6tvby19u7Fc/Te1tqr2x5N8nvW8Nrom/sUSf9pGIaH91rOCvUc1WiK+BONkukDkp4s6RMWl/y4pMdrNE99osbBtnu3Fvd+uEZp5C8lfbykb9Vogv16VPevNS62F0kKXzqLcp+yaM8ZSd8m6W80mh8+3V3zmZJ+WdKvS3rh4vA3alzEHzkMw7tdkU+V9K80mtvuWbTr51trtwzD8LZF22+Q9AwtF9LZRT1XSfoDSVdIulXSOyU9V9K/aaOU+q/R/J/RuCifL2lrhfG9nDijUZN7kZY/cF+s0aTxjjXKeaGkt0j6J5IOSvp+jRaFW4ZhuDBz78ZiXUjSjZL+mca5/gV3zSFJxyR9p6Q7Na6Vfyzpj1prHzYMw13qr7uDkn5b0kdJ+h6N0v/VGufluHYLU6/QOB+fp9Esdquke7X8MTVcL+l3Na6zTxuG4U87ffx9SbdJ+keSvntx7EWSflqjwLELrbWv1Oh++H81vuiPLdrx+sVaNTPoh0j6j4s+bUt6lqQfb61dMQwD/UrdOWqtfYikX1mU9x0ahY6nL+r4QOB6jXPxvZL+SpJZIJ4i6ZUaNRlpfOe9orV2cBiGn5wps2kU8n5CY/8/T+N83KZxziP8kaR/KukHJH2FJFMY/vtMXT8t6Sc1zuM/kvQvWmvXazSBfpdGwe5fSPql1trT7UeqjS6pl0n6MY1r7hqN8/Ha1tpHD8NwJqnv72j8/djVrmEYHmitvUvjO/dy4Ickfaqkb5H0do3z9CxJV+2ptGEY9vQn6SaND89LV7z+xYvrn+yODZJuxXVPXhx/8eL7xyy+f2Sn7FsX12zh+IsWx5+F49+s8QG7cfH92YvrfmnFvvyURp/T4zrXvE3Sa3DsKo0/aD/ojr1Oo8/l6e7YjRpfoP+XO/aTkm4P6vlWjYv56Tj+Y4u6tjD+P4DrZsf3Uv/c+D5H4+K9KOlxGn9YTkr63928fxnnFWUNGgWMA+7Y8xfHPwHj+rpgXfHvYUlfOtP+TUlXahQG/ukK6+5LF8eft8Lz8M9x/NckvTXos/196irPgcaX1l8vjn/s4vjTXb1PW5w7Kul+Sf8OZT1F4zPydUldG4t6fkzSn687R+77VY/UukObbpP008m5Vy7a8tyZMqzPr5D0x+744cX93+SOfc/i2Be6Y01jbMOvzNTzGYt7PzE4d5ekH3Hfv3Jx7Te4Ywc1Ck0PS3q8O/4Fi2s/bvH9Go0/7C9HHX9H0gVJX9lp46cuynp2cO6Nkn59jbn56kVZjwnOvU3Sd1+udfBoCPL4G40+lh9trb2wjb6IVfEZGs04f9ha27I/Sa/WaML6eFz/SyuW++mSfm0YhvdEJ1trT9eotf0M6j2jUYJ7Fm75m2EY/sa+DMPwPknvU+y0Jj5Do2nynajrtyRdp6mkxT7uaXx9XYu/1EwDvFbSHRql0M/WqJm+asV7Db89DMN59/0vF5+rjNd3atSUn6FR4/oxSf+2tfYCf1Fr7QsWJqD7ND78pzX+OHzoCnV8uqS7hmH4lRWuZcDJXyrux2slPaRRcr9mhXJ/StItrbVnaNSi3+DXmMMzNQpiXKvvlvRmubW6MM/9bGvtDo1C2nlJX6Z4TObm6L8t7n9la+35rbUbV+jTZN2tcs+KODMMw28F9d3SFhHoGtfBeY3a6yrrQHLzO4xv8DdptXW6LswMqmEYzmm09LxpGP3ghjcvPu0Z/ySNghzn/h2LP76nPhD4L5K+vLX2ja21/6ldYiT+pdx8QuMD+KS5Cy8FwzDcr9GM8B5JL5f0rjb6Vj5/hdtvXLTvPP7+ZHH+Olx/54rNuk79YAp7eH8iqPuzgnpPBmWcVcesirqeFdTz866tHrv6eAnjy/o+eYW22kP/0xq17y/RKO3ev8q9DhwvCy5YZbz+dhiGNy7+Xj0Mw9doFA5+0H60W2ufLennJP21pC+S9HEafyDvXrGO6zT+qK+CqC9RWPcfSvocjQLMby1M2SmG0RT+RxpNri9QHkFoa/V3NJ3T/0GL9bMwfZuZ9ps0viyfIenfJe3tztGifc/V+A56haS72ug/S9dRG1OadrWxXb40p7uC+q7ROC63aDR9f6LGPv+MVlsHF4dhOIVjqz7X6+JefD+XHJOr3+b+DzSd+6dr+u6I6jsenLtW8TttL/gKjWvsKyT9qaT3tta+vyV+7jnsWUIaRjv86yT9z23v0X5nNarfHpNBHobhv0n6/IX08TGSXiLpVa21jxqGoWfbPqFR0vmC5PxtrGqVRms0FfacuicWny/R+MAQ54Jje8UJjdrgP0nOvwXfJ33c4/g+Y6aeHn5qUcdHaMa5/X7CmzT6Om7U6F97gaS3DcPwYrugtXZA44O8Cu6R9Hdnr1oTwzD8dmvt+Rr9Qv+5tfbcYXe0K/FTkn5Yo2byyuQaW6sv1jgOhPnvnqlRePykYRj+wE5eipY1DMNrNfqKDkn6exrNsL/eWnvyMAz3BLe8R9N1F1pZ9tKc4NgnaXzOP3cYhjfawcVa+GCAzf0XabT0EPyx9niLxnX1EXJWo4Vg9ESNlpNLxkJg+AZJ37CInfgCjT7JM5r6uWdxqSaB79HoK/k+BS/cRQOPDXmk5t9q+mL4zKyyYQxIeENr7Vs1vig/TKPT1H5sr9DuPKPf1Jjr8eAwDG/W5cOrJX1ea+2xwzBEWuFbNP6YfsQwDN9zmeo8q7F/xG9K+hpJ71qYQveMzvhG174xOr5iPW9urf2wxkCciRnpA4CP1CiEmKZ5pcaH2eNFGn15Htm6e7WkF7TWPnsYhl+9nA0dhuHXFubXn5P0q621zxyG4aHk8p/TqEX9xTAMlPYNf6ix7U8bhuHfd6q+cvG5Y6ZsY9To56zVgQALYfl3Fy/LX9boP5z84C1MdXted3tA1OcbNQpHjyT8unok8XsarXQfMgxDFkQTYhiGM62112hc5y8dlpGaL9D4nFzWdb+o852SvreNkcF7Eigv6QdvGIbfayP7x8taax+uMbDiXRrV3E/TaN//Ii0jjYhXSvqW1to3a4xk+yRJX+gvaK19lqQvl/SfNGprRyR9rcaH9I8Wl1nO1de31n5DoynhjRpND/+rxvyQfynpzzVqlE/V+EL/3CGPQurh2zUu+j9srX23RsfqzZI+YxiGFw7DMLTW/g+NUWkHNfqo7tEY6PMJGn+cXrZmnX8l6drW2ldpfOgfHobhLzVGc/1DjdGfP6Dxx/aIRjPMJw3D0H0hrTi+lx3DMHz1I1X2DD6kLUK8Na7T52n8UXj5sIw2/k1Jn7sYz1/TqPV+jUZfp0e27n5aYyDOz7bWXqrRx3psUc8PXqrwNQzDL7bWLOryl1prnxNZWBY/ct3k6mEYTrXW/pmkH26t3aDRF3S/xvX8yRoDf/6Dxh/GU4vrvl3jOvkWjet6wuoyh0Vk6LM0JtC/W2P03Us0amxzEYnvL/y+Rt/tj7bWvkOjr/PbNFoBHv8I1vtmjVGwX9ZaO61RGPvrGW1+bQzDcLKNqRT/srX2OI3C5wMa5/5TJP3GMAz/sVPEt2k0h/6H1tqPakyY/36NwUE7c9jGFKmXS/p7wzBYKtSGlulJH734/KyFz/wusyK01t6o8f35Jo1z8RyN77ZdKWDrdPpyREB9gkaf0Z0apaGTGqXcF0raWFzzYk2jNA8vGn6nxoH+OS0jyl68uOZDF8ffqTHq6G6ND8nHuXI2NZpu3qdxoQyo41aNi+jsom3/ZXHMIhifvajzOWv0+akaQ4vvWbTr7ZJehmueqfGFaRFTt2n8kX+mu+Z1kv4gKP82ST/pvh9Z1Hfvoq23uXPHNf7wvVPjw/E+jQ/r17lrbPyfhnpmx/cyrI/Z8dV6UZrfmdz7Yozr64Jr/N/9kv5MY8rBlrt2Q2Nwy3s0mk5eL+l/DOakt+6Oanz4/3YxJ3dqDMG3yOBsPlbq8+L4Fy/q/RWNQVi3KogaxT1ZvX9fY2DMqUWf/0aj7+TD3TWfKum/atQK3q5RMNrTHGl8Nn5Z44/d2cX4/LykD71c6y54nnpRmm9Lzj1Xo6D80GJMvkqjZethd00WpXkhqevNK7T3qxdtvrAo++MXx7Mozcfj/jdI+h0cu2Vx7Qtx/HMWa/wBN/c/vspcaFRs/ljju+NOjakPh3GNtfHjgzGL/n7TXfcyjQFO92uMjP9zSV+113XQFoUWCoVCofBBjUdDWkKhUCgUCpeM+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC9QP3iFQqFQ2BeoH7xCoVAo7AuslXh+/Pjx4eabb5bxBNvnxsbyd9OOWbqDfW5v797+yKdDMDWC9+4ldWKdey7ntdH5S0n9WHVsevVmn35OsnouXLiw6zOC541+6KGHdO7cuQmR9LFjx4brrrtuUne0DtZpN++d47B+pNbFpdzzSGHVtvTGbNVxja7h+8Gf39zcnHyeOHFCDzzwwKSiQ4cODVdeeeWkP1F5c89Fb71F18yh1yYiO7fKPZyHVer17+Xomuie7JqsjdG7v1c+j3ON2CfXh8fFiyOpy/nzIwHOMAw6efKkHnzwwdlFutYP3s0336xXvepVO4248sord336DlijHn54JK84e/bsruP2KUnnzo3UkvZSZYeilyMx93KMFrq1Nfsx9vdYm+yYtY2I6rN7+aMRvQiyfrEslunLtv+tjfadc2DfpfGHyp+ze++/f2TbOnHixK7j/lpbDwcOHNAb3hBv/Hz99dfr1ltv1enTI1mEzbkvz9pjY2jl27V23veV1xo4bjbW0Y88x9+usXrW+VG2dvgXAdeXjRevtev8vXxpsR3sdw/Zs+HrsHN2bJUfPJ47cGCkmjx48GD4XZKuvnokZzl+fOQePnLkiL7ru74rLP/IkSN6znOes9MWWweHDy/5g+0dxPeOfykSds4+s7GMntOe8OXvmSvHH+fYe8zNw9bW1uRe+9/G3e619cd6/TG7huWyTJtbf48d44+lHfdttPJt/o4dOyZpuT6uuuqqXfVJy3fVnXeOrI5nzpzRS1/60nBciDJpFgqFQmFfYC0NbxgGXbhwIZQMDNRwKAlRg/DHIlXVI5JuWN8q2tpcG9kufw3buorZlZoCr43UdkMmadvxSLJjf+zT6uF3/39mOonmnOVHfWNfKCn6Oc20GbvG+uph88C1sYrmwzaw/p5WmI1xtEYpUVPiXaWNBq7RnpWAc8FnMOof781MWpEGG5kpoz748ntajaG1poMHD+5odtF82f9mDeDzaYieaZaxyhjbNTaHfKfwefL3Z8971K9MgySiZ9pAS0z03PJaewdT08tMqv5etoX3+OeYY55ZrryGZ5r90aNHd+7trR+P0vAKhUKhsC+wtoZ38eLFidTnpaZMAsgkYn8/JY45h2lUH/1yUXt6Uoq/N/IVURLJpMEe5pzJvXOUmnv+TZOkIi2QZWfBKT1NNronG9PWmjY3N1NtZ9U+Rf2QptIr5zjyrVEaz3xRkbaY+Q6jNZtptev4yTINsrfeuDbps4skfI492xqNla0v+nDsk+ejera2trpBDltbWxPrSm+8rL22NqNnOvIj9+DHK5u77DOCjUsvIIWaIvtFRO85lptZuKK22NhwTqltR22zskwji55nuyez8kV+dBs30/C81XEOpeEVCoVCYV+gfvAKhUKhsC+w9gawwzBMVNNI1c/U5l4OGNVSmqF6uSaZqdFUYn/vnEmkF4yTHWc7ooAQgua9yNyWmUZ6JlumJZgZgvVZeK+0NDtYOHcWbBSlP/jPnklza2trMhb+u7WXZg5DzwyaBTitEnSTrc1o3uaClKLABK5rBnVE5tasjVl9vTUbpQJJU3NfdE1WfrS+uc6idASWu2pQxsbGxmQ+evfy+bfvZsaUluvNjvFZ7gXnZUFeveAOhvRznffmkus4S2WJzKF8bvhOjPLisu98Rvx4ZkFfDFbxa8zawjVzxRVX7DofmWoPHTokaXx3rZInKpWGVygUCoV9grWDVryD1351vdRvv9A8l0lC/hil5yi0l6D0kkmikRZK6Y8BDpHkkzmR6cz30k4Wns1EzEjCzzQ8ttHPQVZfpm37/03To1M60hKYsHv+/PmV0xJs/v28ZPNt10bSnmFOM4nGkfOdBSZF2jPLIHqaZCY1R8ExURqPRy/EnBpMVnY0Jr30EX+dP8e5tU+TxCNtx2sMvbUTIWp3pq2TvID/SzGRAusxZFYbanFRQB/L5RhHqROZ5pWlgvj/s0CaqA+ZBSazmERzwGv5zPh3P8klMmINPyZ8525sbJSGVygUCoWCxyX58OgjsvNSnmIQhShnoe+rJohH9fB7FBJNGzql5aiezHbPenw7GNLL46sk6FLyonba8zdlKQdRaDkpg3p+E0pfm5ubXSl9GIaJ5hAlD2cSdhRanqW7ZGvItz/zcXE99LQ1IrJgRNqMP75KIjDnju2IwtSzfmTSuj+XpSP01uqc1rEKOUKEYRh07ty5HS0g0ojnCCfsXUWtzl9DYgMrPyI8MPB9Zs/PkSNHJMWpTabx2ngwydtr89nc0YfPBHFfftbmVVKDiF5aDNvGd1dEZUfas7lYDF+ut/ysah0oDa9QKBQK+wJra3jSVKr0WkBmS+9FPNGfk1F89XxPmXQeSb6ULqmpREnFGYVUFgkVSTHWT/ruIn9WpplkklAvssvKJ2VbVB81RkbYRf4FK3dra6sraW1vb++Ub23qRXn1qN4MtP1zvqndzvkgfb+y5HLf1iwB2aR4aaolc4x61HNsd5ZEvAp5AddoL0meWk2WXB6VQ2sB/Vq+3d6f3vOHnj17djI+0bzMJVlHlhD61rJxisDnxD5t/v06sDbQ0kOrkB/7bP3S+pE9r1H7M3pEf63Vx3WQ+QV9OZxvrp3IsmTk0Rn9WaQpe2KI0vAKhUKhUHBYW8Pb2NiYSAheCsjIW3tSJSOp5mhmIik9Oue/9yK6DJSmIg2IOSyraHiUeGlDZx886HuwNnP7k0gbzfLaepRg9LtYWy1684EHHti5J9OqIgzDsCsSL/KtUtNhP/g96j81VI51FO3FOeX3KDI5y+Vkbp2vJ/O3Zf451h2V1SMez6ireE/P38zxjDS8uW11Ih82cw97ZN/DMITRjh6mSdm5kydP7jpvz55/5hlRnml4ka+T641rpefr5Lz0LEu2NriFGi0M0brLtgHqWZYyK4d92nvHxip69i2HzmDX2jskigOgtbCXQ2r/+/dpRWkWCoVCoeCwlobXWtPGxkaXxSSzJZP9w0dLUcOjn8qOGzOI9/tYOYzgypgIfPm0LVNbiHyF9ItlhMxRniF9eD07tf1/5syZXf3khrq83rd/zifqmVasX8zZsrZGPolTp07tunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN65prrpE0bngs7R4/q4fjFVku2C8+C3wPRdr7tddeK0k7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3mMY+RtNwzjYEi0vKdcc899+xqJ03B1r9o/THg5YlPfKKkpWnTj8WDDz64qx5rv7XDxseeA48o4EOarn+rV5KOHTu2654bbrhhV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bft999+1cS3O3mamtbdYvGztpOQ9XXXXVThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2ts2fP7pTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT//fdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbryuvvHLlQLbS8AqFQqGwL7C2hnfhwoUw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+9957JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzp49m4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+Oqrry4fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych85WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6R+GSldAAAgAElEQVSKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67+uqrd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aXu+++W9KUYcVgWqOfZ3s32rW0ekXWNr6vL16sDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7lKU+RJN14442SpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95yyy2Slu/69773vZKWjC9Szt1p7aCFw7fFcP78+dLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg+uuu05SvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zVvf+lZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy9enES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV59uzZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/baayXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi/PnzK6cmlIZXKBQKhX2BtTW8Cxcu7EhEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75LHPvaxkqR3v/vdu8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz9mzZytopVAoFAoFj7UTzy9cuDCxW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zp49OyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3htvvFHSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHrf+94nKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPsNN9ywc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8apU6ckxUwrGROFwSSTSJuZI7eNbMDZJpomRXDz1aicjCHES1qZ1E+fASOSfNtsvPyWGtLUd+hBaXluK5aoHG6n0svzYg5fb6sea7f3x/Ui7Q4cODCJzovGnj7iXqQlxyHT7CJfC7VDak+9rYToK+75qA1kHuHajQi16e8lkwc1Zmk5tmSzIWl6tKVVtpVUD6v4+fid898jAB6GQQ8//LCuv/56SVMWJd+37DnpMQVxnsmSQvYRXx7nwTaNtmfcrzc+LxkTTo8Bibmh1KL9Fkb05dJyZf0xJhZfH1lYsufKW+eyKGvGH0QxGFmudaTxmYXM/Jdz25J5lIZXKBQKhX2B+sErFAqFwr7AnnY8NxXVghW8SYBms1USc830ku0P1yPB5TU0LZJ0199vJrOMbDkKD6aphPvRkXRV0o4J2GBmhyy5m+Pj28j2ZOc9shD6KJkzcxr3kmJpoo2wsbGhgwcP7qyZKGiFZmMzAZPqqde3LLAp6hcDADJC3mgvRRIa0KTWCwQhlRXdAL5PNAfxmshFwLG1a5hGEpGyc230zIzEHDVgRFCRpR4RGxsbE9eAJ3NmcE82Hz2TNttEUmfv4rBgERs7M69ZYJrBzG/Sch5sXizNgubDiJg5e6/aO+rEiRO7ypKWzyX382MbfT+ZFG9t4Vq1eqK1w3ch38n+2eRu81kCekRBaONYieeFQqFQKABrJ56fOXNmIm14aY9OzmhbFn/c/z8nVUZlRc5Tf01ELWRtJKEwtRgvObDPlFqYXB4FHjA4Jdsd3h/LQqMz+iaPjLIoCtHnth/RNk7+XmkaEDQXeDAMw4S6yEt00Y7P/niU1J9JdxHtmf8e9dm31Zft22PScCa9RknY1BytLZlm6ceYwVfsr/XTUjmidlO77Wnz2W7lhigBOQvUybRvj8jaQDDgKaOj8uUwUCcCgzoYEMQ2+nViKRK2HkzDs3liyo4vh/PdszDYuuK6i1JYpN1ar7WJ9UQat8G0QhsLatO0hkXI0sisrV6j5POTUZh5cpNo67cKWikUCoVCwWFtH97Fixcnv9iRbT6TrPkL7v/P0hB6Eh3PUdq09niSYrO/U7qwMqzNXmv0viZfbpaAGml4lBy5HUiUXJlRltlnFN5PKSzTCjyoqWYSck+SmktG9Rogxzoqex2tNgvt7kmk2T0cY78OsnlmKH6k4dGyQH9cRJLQ2wYq6xe3eGG53L4l6l9GWh2Fzs8RdUdJ0dFWX721FVlb/Hrjvdw+h/X6c1wHXMd2j2l10lJLMYtFL/Se93C+I0oxg2k2EQl+1EavCdHakKVQ+fXG91nWxsjaxvXMNcT0KN9uA2M9zN8YrR3vRywNr1AoFAoFh7U3gD1//vxEwoqi2KghkJIrQkYD1SMGzjQQu8ds6D5aypBJZRE9FH1z5jMx2zbtyhGFlZWfUT95ZJI2aXp6kg19dvRn+jZS64hojnz9vo2Gnl3frs9IuD3oW6JE3KuH27ZEW8kYMj8IpUx/L/1wjOiN5oO+J8PcRre+bloDSDUWIaMs45yuQuZLRJoZn58sidijt6kzYW1ilKE0HeNIC8zq4TWmTWXkBf6aiBjbn4+sX7TaUAOPrEOZ342Rq56smmQSbKO13Serc1s3RvZyW6Ao6pnPAtdHFB2e+cQjvz7X1+bmZml4hUKhUCh4rB2l+dBDD+38GpuEEGkzPcma9xgo8cxtxRKBNmf6M6SlRGP2bkogzM+Tpv4X0xwzKrMop85LUizfly1NpXPmUtEXFklaWZQmc3j8/9Z3q28Vzdz61yMANvLoHok4c3voe4jKzvwtmWQf+RzYD0aoRfRQllvJyL4oupF+RPph6Of27aIvKrMKRH4YajvMW1plU9TMxxLVnVlKelqVt1j0aOk2NzcnbfLRfpzvVSwghsxi0IvWZd5YRnTfiwPgMxyRe2d+V2q09m6JcmK5vqh5+X7RJ5k9Iz3wPZeRtEua/JbwHRDl7vGayF+aoTS8QqFQKOwLrK3hnT59eiL5Rlv9ZL6OKC9ujrQ32p7DYOUxf4yahLf72/+MYqNW6PNuqPEwj4w27kgapGRvfkD7jCRN9ofjSG3YX8N+9fxnzLPJotx6/qXTp0/Panj0PUW2eX72tMJebqHHKswgJII2C8AqeWq97VMyYty59kjTZ8PKoCQebb3DNtKvFbECrbrti583Rm33NDvC1tnRo0fT620DWPqVonzFLII8eodw7VDzIZGynxdqIJl/zo9t5HuUltqNffr3BOvhGFiZ0b20GES+e37PokANPUsP6zVkMRm+Praf/Y4sGH69lQ+vUCgUCgWHtaM0L1y4sKPtcKNRaeoryXxAkf8o49LMbM/S1LdFiTuSqpkLaGXcd999kqR777130kayINAvxz5EEr6Nl0lp5ge6++67RdCeT3u75RJGkYRZ/ot9t7Z6VgbOEzW8iAWEGsmhQ4dmc6l6W8ZkmgJzgry0l7GIsMwo1zGLgLM5tc/IH8v8R46ffyaoUUdrxB+Pcs6sPrsnirAzRFsGRd+jSDu2jfMZ+RCp6WfRmpGm7CX6bO1sbW3puuuu23lOorbRh06ture5roHl0lcUWW1odeB68EwrFkFJrYYsTX5OyWaUafrGgRnlcNr7jVYhbvbsQY2Zcxo9T6sy+vh1QM2O36OYCEbGFpdmoVAoFApA/eAVCoVCYV9gbWoxaakCe5OYIdq12R+PQuIZXGHl0rkahe3ShJqFb/sAFKubn0xS922MkkKjeiNntQWlWN+5E/XJkycnZZupItpVXpqak6Nw4cyUZvf0xiTaqobt4Nj3dh620HKagLyZjbutZ0EsUWBFlmTfM4czyZUh0L2AENvZmuMWbS3FgCemi/RCvUlOzMRzJklL0wCKLDUoSvvJ3Ak0T0ah5euYNK0eb87L2rmxsaErrrhiZwwiE1xmlu4hS3eZC4Dxx+i6sU9zOXhKQzPJPuEJT5C0nFuaY30qQ0aOQbOeleXvZSAfn81eEFgWJMf+Ry6ODNH8WntpwuwlnmfP+CooDa9QKBQK+wJ72gDWYBpRFKCRJXP2Es4zMt8sgVqaaiKUWqLAA5MeTPOyjRh7W/ywXGpJlKa8FGrnrD4GuDCJ2bc3c7rT8Rxts2Og1mHz5rUQOrA5f1HQCsufSzw/cODARIPsUQZljnPfNjrGMy0hSrKlFJlpJr3EVmodkYXDpHyb54z+KnpmSJLA4IhIS+FczgUPRMQRpD3j+EXrLaPm621/xW29Ily8eFGnTp1aKcGYY9sLWjJwzWbrMNIyONb2bEXr29aBfd5www276rd7fD+t3RbwElm5/HXRGmISeabxSVMrFN9D2Vz7azKygug8y2OwUbQtFtdiBa0UCoVCoQCspeGR4icizM1CrjPbsD/GcHnTjLLtJqRcG+iRu5IcmMnykcRArYz9ov8xoiWLEtqlpVTokz5JtTNHGuylQvaZGp7XyNi/qP3+nijx1Oo+d+5c156+ubk5keB4Puoj++G1AkrS1CZ6/rJMo+v51DIthmkDfo3yHvMRkx4qCrfPtknppfn0ErilfuIx28Jtj6IxyiT4yM/Dfq2i4Z0/f1533HHH5J6ITMKnAfg2RHPK8WC7e1YDWpvow+ulmGQbv544cULSbnqwm266SdJ0m6BoQ2OCm9GSZrHXr8zq1ksryjTjnt+eY00NttfWdTS7nfaufUehUCgUCo9CrJ14HtEQeX8VpUdeE0X/UaOj/TjbmFOaSnBM3rTP3qanFnFHzStK4qSNOyNZ9hI4bef0w9Af4681yd3amm2ZNKdZ+XroR4vayH73NDw/Jhm1lyWd96T/jAqrt5VQFj3GaNlIWuexnjZgmEvIjiLHKNlav6hxR2BUHtvONeXbwkjezPcRbTzKjYBZb+RTyST63nZbjPCMsL29vWttmS/UNCJp6Q8jEUNG7sw+9Npv8PdmRBMZ4b2/1jR8i8422DN4++237xyzaE87d9111+26x9oabQRtbbDYARsv65f5Bf0z36PI47W+LP9/9hzxuZZyja4XFcy+96LDidLwCoVCobAvsHaU5sWLFyfSS+RTM5gmRI0l0i6oPcz5BqRpNFZGLdSjFKIUTSJoaerTyKIae/Uxr8vGkTl30tJmn0lLvUgrtjnTPnuUUqyHftuongsXLszmxFAT9+sgI/zlevNrLCLP9vdkkqOvJ/tkDpr/P/P30efq+8p7VtnQlvObkYn3tN85+jXfB15DaqdI+4no+/xx+/RaKn13rbWu79Hn1UW5tXfccYekpQZEgnhaCzyyvrE9UR5hFv0ZzYvNnfnS7rrrLklTP61/D5hP0vpnZTBql1Hi0tQvT+08s+r4NmUWu6h/HINMe+tFlPMd2fP1Z1poD6XhFQqFQmFfYG0fXrT9fGQ3zrbJiKI0s19zMipErCKZZM8yIo0r02oiiSGzXWd2fi/B8pi10SQ5a4dJbdJS2qMkxTyjSNPjtSS0jcijsw1mOVZeqqYEN7dNxzAMaZ6cL29uA+CojkwLpFQb+Q/o82J+XOT3o3TJaL3I151FPHJM/PPEqMyMEDzyqVFTpQUl0mQyaZlStb8nWgdR//zYkzVne3u7m8N5+PDhCXFy9EzT/8++RlraHBNNdO9czih9rv4eGyfzrdF64i1L9o6wtpofzp5DbhNlPj9pupG1lWv3ROOYWTCy6E2PbCx6jDWrRnT6tctxXMWytFPfSlcVCoVCofAoR/3gFQqFQmFfYO2glcgJ68EEXwZoROXQjEYTXG8/JTpxM4LmiLaL6QA0yURtJJUYSXBpAvR1Z4E10e7fEb1ZVEa0/5qBQRFZYr8/Z8iCJSLTwSomTdtLMSvf9y0zhTD53l9DUznNx1Hwj80ZTW6sLzJ5kUKO4xfR0hloKstC26O2ZPvuRQFIGdl2zzyVBQLQlNlL76B5KqKhYrBPzyy1vb29y1QXmae51udoCtmH3j0RpR3n0NrCYBJfX5aaZWsnctlcf/31kqZ7aXI92D3eDWQmTZp7mf7lg2RIQk3zJ4P1IhMx3/3ZvpO+XK6HXqAVd2WPyMQzlIZXKBQKhX2BtYNWPH1Uj5C1lzAoxTtCU2rNwra9ZGcSFam4esgScQ3RLuJMxLU227XWDmqW0lSyM6nJ6rXvvp92bbZdBunRPKVSphX2duVmygK1D9Ig+fZ7rbMXtNJa22l/TyqjtEotJ+ob+2FrNKMP8/+Tai2jnJKmGrxpHgyWiDRuakJZMn8Utt0rN0P2HHH+fX3U5KIgFX6Pws39NXbcS+bRtlqZhnfu3DndfvvtO4FcRr0VzWWW4sQd1qWpFpul70TboNGiQOL5bDsxX28W0OdBqj+mFDCMP3qHsB5qiZEli8EwGdl3FPCUkT5E71sG2GXkCNEzYeWfPn26S97gURpeoVAoFPYF1tbwLly4MCGN7iVZZ5RLEfVWlkxLDcnbnE3qoyRAKSAK26bUxPQBf48ndJWm/h+TiCKSadO+7BgTkSm1+XPU7LKEcz8HlOCyMP8onYS+qd6mvFGqxBzFDzfo9JowtUtqQpEvKNtCiknj0VYiWapMjx6Kmq613/wlkaSd+bgocdt1UZI1nx/6NqJ5oQ8vS2mI/CMZiXRPU6a2zY11PSJ/WabhmWWJ2o5RAvo6aJGw5zbTVNkGX0ZGGB/1MUug9uubW5XZmNr7oZcAzvcMLTzcRsqf4ybFnEu/dujfs+9Mio/uzVJ1iOhdnNGQkZzd/+/bWhpeoVAoFAoOe0o8N4kk+vWNIo08osiwOZ8d4aUmI2Jl8nZGOSZNSXwZaRdJvlYuCXftWmp8PgLSpC9uXZJFGPp6Mr8CpekogiyicYvK8qDWwUivXmTcnA9ve3t74oOMCLMzWqtIcqS2bvdyDUU0YTzHqN2IWIHSOSVtG/NeFDL7kZE1RG3MIpYjQogsmZeRyxEZe4Yo0i7zt9haiZKw2a+eFtVa08GDB3eeHyZd+zpsLEkEH/n2s3nIojSj8jKatui9Q58w12Q2DaoAACAASURBVK4h2uqJ5Ag8b/BjzdgAfkbPSkb2Yb5qu8c0vSj6vRdVL+1+fjm2fE5JMu77tU50pqE0vEKhUCjsC6y9AezGxsZEwor8MJSA6D/woN8ok0wNXmLI6IYoTUVaASOpjOon0lLp18ui5+y7l0gYDUcJiATbvr1ZjiLH10s7zLujNppt8uph95ByLOqXz7OZ8+FRavblUdOllNfTfDJy4Cwy0t/LceB3v96ordB/xTH357IcsWzrH3/vXLRkFMWWkbFnGqBv0xw1W6ThZVK5HY+Ix7121aMW29zcnKyDyE/Kuqh1+HYzKpd9jbRZA+nnspzDaJz4ne+D6H2aUQr2/GX0x/KdYWV5bZjvQGqhXLuRP46516v41/ic9jQ8+oRX9d9JpeEVCoVCYZ9gbQ3v0KFDE1u6/8WlDyuTELz0mWkalBwjKZ05MpTGGJHm28BPRsv5euj3ygioI6YK84Mx0pHS4CoRhJmm7L/Td2efNm9RrmAW0bkKWaxnjulpeJubm5M+ez8MxzLyh0mxRtIj+vWImC+yLXeifEz2OfPZRAwUnLtMUu0xGGU5W70cxSxHMLOgROeYa+fbTq0vi4ztWXfmYO8e35/eVk+ZP9SvHSuP+Z4ZAbQfJ1p46Mvl+ojakL0zorzPzL/Yy6ljmxgFzBzfaEzs3cXyozgHWjKyyMtIKzRwfUUaHv2YRR5dKBQKhQKwNpemtPyVt19/L6UzIpG+tN4vccbKQvt8lIdlEsmpU6ckTfkqveZHSZ7+qp5NmJIVpc0o54j8mwbmKnrJhbZsSoP0e3owr8f6Z8ft0+ZPWo4P+UsNkebaYzEhzA9DTchL4OxTj1uRoJ+U10SRsNR0uY1K5LvJpNYs163X7kyji6LYrN6I9cO33d/vmSiiPkTPE9ddxgMbrVXTDvgsRJGkHLdeDqetHWoO0fogx6w9c1ddddVOWb5cKWdn6r2z6KOj35kR2P5/lkfLlX+m5yIdOba+Pr5vCEaN+7ZYvyz/juNqiOaM1gG+gyOLIP2K5PL0vzERu1JpeIVCoVAoONQPXqFQKBT2BdY2aV68eHFitvGqcRYmS9XXn6ezkzRaVI0jsxpNVnTUe/MdTQjWNkumjMxSDN7Itr6IkrojB680DZqIHM78TjORoUfVZiYtM3FEO57TNELzURSOzqCOQ4cOrZyWQPNX1G7Oe0QTxwAQpm1wLr25KAre8eXTTCVNSalJQxXteM57mQ7DNRVtvZMlmve2h+qdk6YmdV+fITM1RaZ7BknYGEWmNY7PxsbGLPE4ScWjftFMS8q3KFE6Ck7yiAjPrW7rG83wkUmTKVRco0wb8sdI8sHgHF7v61uFrCADUxn4Do7M4UxPoJk8Wm/ZFkLReuOzfPbs2TJpFgqFQqHgcUlBK1GiJLfhyDZm9IhCalep34NSBCWESGo2MFghSmJmgIuV4cla/Xmv9dq93vHq643Id6OUj6jtBi99UrK3c1amtS0aR2rKlLjMiS1NJflVyKOzAAdfHrdgMkQJ6EzMZUBDL30jozGidB6lzVCa7WmSrCejU4o0WD4/JCKPAiGYCsQx6AV9sE20LDDE3ZcXpddE331/IqL2rD3ZVlDSNDiO2hM1c5YdtYXvOb9WrW6bD6M4ZIqDH2OuVb4jo/QNBp7ZM8y1xC3H/FiYxphtMRalQdDalgWT9BLP2cZo/WdJ/kzriMjxfZpVkUcXCoVCoeCwp+2B6D+Ifn1NajAbem9TzbktUCgZRLZn+iNYZiRVUIthiH8kdbI8UplR4ur1j/d4idXqzsLQmUzu/SQZeXSPUox+Rmrdkb+HUv9c4vnGxkao2bE8jnEv3YFrIduqpue3sHpIQBz5irL6qGlFEme25Q7nI0o1mSMC7xHyZt97RNGZtB6loHCeMho0b61gOb222HunF/JPPyy1TXsP+S2Fso2F+Z6hBcjXZ/eahmefrMO3m1awLPXI101tjN+tf1EyfvScsh4DiUFo9eIWR74+O5dpnVG91Dp7KQwGjrnflHwOpeEVCoVCYV9gbQ0vIsWNEsFJiGz3MUJNmkqEGYkry/DnSDfTk5p4DfsTSd68P9MYIlqijO6sRxrL+hgFZuPLyEYPEhlTO4hs9wZGg0a2dIOXAjMNz7Q7armRDyCT+iOJnO3Ktk/qbVxKKZMRvr0k8lU2ueTYsnzW09u2Kdv2KIpcNWTPRk+DpqTd89Nl57ItlHy5hvPnz6drZ3t7Ww8//PCOdhbRhpE0gu+OyG9NbSnSWvx1PcID+u6jPlMDysgKetYvQ5a8HpGIsz/ZvdGxHv2cb7tHZl2LfHjUOu292aNmM83unnvu2WlDaXiFQqFQKDispeFtb2/r3LlzaUScB/171C68bZaSTuYTiPwzmQSSSZm+vmwDzl5/MpJi0oN5KZ3jlJEke8mHbaPWabl1kYbHCD76onr5Zey79cekUz9vpB3qobW2SwOMchNpt6evNZrrOYJxrqFIYqS2QStElLuVRSRG45gRp1M7iyIuMy0gywf1xzK/DzXaSHrP6MeiKMdMM2fEYuT/tc8HH3yw6//d3t6e0N5FhOmmYVn0tI0T/djSMu+W5WXrrxcJaM/H8ePHJcXRrKa90I/d07iy9xvHepV1kPlJexplts1bpHkyEpZz3PP/Zu/4yF974sQJSdJ99923c+9clO9OX1e6qlAoFAqFRznW9uGdPXu268+h1EKNKJLOeA+1wUxa9/dSa6EkHm3XkqF3PmPFYL+iyL65zyjvj9eQ2SGKJKSGx7GJ8h4pwWXRmZFPwtvb56I0OSb++oy0meshyoei9hLVybIzH86qkYP+2mz8ovINq/j/5ki8o2ciO5flqvp72Z8sl6o3z5n/PLKceB/8HNOKaWfMZ5WmmzhfffXVu9rSI99mX8m8wshzf60dM20xi4z0/1NromYU+Zk5NpyPbEseXz6joCONKyPFpnXCEEXechw5FlF99Nmxvz6v+d57793VtnVQGl6hUCgU9gXqB69QKBQK+wJrmzSjENDIkW0qKk0I5rCN0hLooMwS0SNH6TqEqHRCMyiil3DOevk9MjFmO073drG2/7P0DqYnRP1j22kuiELZ6eDumT947Srkv7zWtzUjJibVmx+nufBsph5EZtXMXNPr11zwSmSW5BjPpRpE/ctSGaIAJJ7L9i+MzLwZ3VovTJ2mzCwdh//btdn6sYAnM+dHtFakXqNpk9SA0vLZOXr0aLePTHnx55hkTTOxT0+iKZZm/WhsaQ5m+fbJ+qM2Wlt66T+Z2Z3HIxNqRl1m6KW08Fq6CMyMKS3TEjyRdo+cYle5K11VKBQKhcKjHGuTR5uWJ02TOz3mqIkiaW9Os4t2wqZDNAvbzvri6zVEu2ZTGs9ClqOk9UyTYEDKKqkF1OwiaqlsOw6TfiNth5pjtg1JL3F3Dhsb/S1gDKQv4npgmf6TAU4MFIjGmITgRBSAkqUjROM0lzrTs1LwXKbhReVmgVXU3iKtINOUe+ugt42TtFvD4bpdVUKXluvYa098hk+ePClpmjoTaXimBc6Nm+9PpjWx71HQSqZ5R+/TbEf1LJk72omebeml+WRE41ngYC/gKbMW+P7xmWbQjVGm3X333TvHTMOzaz2hxRxKwysUCoXCvsBaGl5rTVtbW5Mw8d5GovShRPZ9+jB6YcxSTMFl0ksmAfcSzym19LaDydISKBn5Ptk15oPINuaMtlnitXN0YR7WRm5KGm2k26NPkuJw51V8n7ye93gpndRxXDuGnpbJfvQ2rGQSfEZI0At/pqYS+Sa5Jrm+6NP164IWi1UsF3OSNkPBI58KpfKMAN0fY2oI/TD+mV+F+s8johHza4cWkPvvv1/SUsO76aabJu22e2zdWWoB13rUNo5P9iysMk+97dFYTrZBcxS7wHcj742eec5L9nxFVj0DrSrrJMcbrH7T1C3ZPGr/OigNr1AoFAr7AnvaHqhHdkvJ2t/rz3vwGDUtSgZemmECNqWWno8g25Q2kuxZbpZgH92bSWf8jNpATY9SqSGisjKYBk7tI5LSWR79W14So+Z4/vz5LomrpwCKIsTsf5Pg6YczH5DZ9X3dmQ+v53NgGQauu2hDTt57KdHBWdSuP8f56ZExZNJ4Rt0WzYFpT7yWWptH5q83RFu9ZNtfeQzDoGEY0nmSluPBjZPvuusuSUtNz2uFtLyYhpdFRPr+kOYs06YjbZ39oJYbkVZk88/56r2zSPdo5/27xJ4x9sfQIx7PEvi5DqKt2thf+zQNz6Juo3psfayC0vAKhUKhsC+wtob38MMP70gBXrI32DHSyDACM4piZL4LtTZDpK1lOVSRxpmR9xoibYB+xSxa0+C/s+/2SQ0p6ped623eyrbSV0T/Qjau/t4sZ9CPIwl550ikW2sTiTWK2KK0yg0zI8l+LlozktKplc/5dj3Ytl4eaLY2sjzMSGqe62+kpTGvMdP0ont5LRGNCevp+Zes3TbXnjoqgvf/MoLZ10EaMNPe7rjjDklLLc73IdOwexvpZn5RIqI0zCxLvfHKyN1pDfNttPng82Nj3lvfrI9aYfT8ZoTjvMf3j8+01WdWHJ9/xz4b5jae9igNr1AoFAr7AmtreOfPn5/8Kkc+B7MLM08lkmKZD5VFDNIG7cs3WBnUMKNIpCz6LsrD4zlKaT32Ckpf/B4RXFMTzthtIskvy6XJSLl9ffTdcSwi36T3AWRjurGxocOHD0+IbP382b12jgw1jAL0fcp8ebwnYufIGEEiHyvXLzX9VeYjyyvsrVW2NWPE8ddQw2NuZbRBaObr7JEUz0XwReuEW+VcvHixK6Vvb2+n0a3+f/q4rXzbSsY2DZWkJzzhCZJyy0SPTYfaE99vkRaXWRTYh55WmK1rOx9tPJ2t50jDo3abMaBEOYPMic7yDKO8P87fqVOnJC019Cifkc/+KigNr1AoFAr7AvWDVygUCoV9gbVNmsMwhPtDGTInPk2dXkU1lddCT6k205wWBWiwfqvHdj5mP6LvvdBWmgMzwt9eyH8WRBIlvFv76aDPEkOjtASaJ2ge6FFY0ewRpUNYud58lJmlWmu7AgasH55uivPO3dyZiuHbkPUjCupgGxgunwXN+Guz0PJV0lLmkpSjQJG51IKIjor0V378pdiklQUyrBIUkAWrRMEKEcF1j9otooSLkvv5/NOs5sPbja7qyU9+sqTlesvovKJnmuuqRzFHE2m2hnq0dJlJkSk8vh5+cj1GJCBZiklG2SflRONZ/X4MbL5Onz4taWnS7D0TnjihglYKhUKhUHBYmzzaS1omnUfUYlFSelaOIUqElKbSrJcUs+CYLNnS3086oizwwV+zKv1UlByfaU38Lk0TcikxMkDAjyc1lmwXZp/AnUmfTOiNNAm/DnpBK1dccUWayOrbZeNg2jmT370EHCXARtf27uWckgYvCu7JtmtaRZuZS1OINC4mQzMQwM85g1WydIFe0nrW9ug6jiOfuSidhPMyt+O5B7UC3xeSF1iZV1111eSeO++8U5J0/PhxScttgvisR0FsGRG0fUbWiCx1ytALluPznoX8++eA8z5HFxaVT+tDj8ghS/NioFNkjbL3XZbQ78eKVrQrr7yyyKMLhUKhUPBY24e3vb09CV2PNkak747Spk80pd+PvjRK+FHiMbUnaoteAs4ovXp+ONJN0Y/Q86kZsjBaO25Sqb8/I+3NJEwP2r1pY/djQk3FQP9jpM3PpXlEbYgSdqlh8XsUgp+NE0kMeppXJHlKsUUhS2yn1SDyOWQ+4oy82mNOwu/5bhgm3pOGszHoaaFzyem0vkh5OkeGzc3NrtWIm8JyQ1jT8Pxc2jYz5i8iwTR94BFpAbUyWhz8M81nmM9sNC/0g1HDp1YVtZFaGetfxQ9HS0J0b2YdYl/8mGRpV71UF1oQKi2hUCgUCgWgrUq6KUmttbsl/e0j15zCBwGeNAzDDTxYa6ewAmrtFPaKcO0Qa/3gFQqFQqHwaEWZNAuFQqGwL1A/eIVCoVDYF6gfvEKhUCjsC9QPXqFQKBT2BdbKw9vc3BwOHDgwyZfrBb5kXGw+XyRjC1hnY9ZsWxNeN3csw9y1vfNzvISX0rZVrpsbmwgZs0zv2taa7r77bp06dWpS0YEDBwa/dUmUCzmXixPlka3K/dhbo5cSuJUxUkTIrllnXgwZq8U69a2zLnrrgLmo5AztMRf5uTx9+rTOnj07acyhQ4eGo0eP7uRiRTyOzItjjluv3Vk/Ms7d6Fz2fET3rFJ+Vs7cXPXamLV5lXozxqLo3qy8Vd5zEftLdq8f8zNnzujcuXOzC3mtH7wDBw7o8Y9//E4yZ5RIzcRUS/i87rrrJEnHjh3b9SlJR44ckbQkt7UFzYXdS3bkud7+dNkeTywz+mHNXnBZwnZ0b7Zbsr8nS0rNqH6i+rIfih4tEPthSZ6kapKm5M6bm5t6yUteoggHDx7Uh33Yh+3Mw8mTJyUtk36laTKytdfWx9VXXy1pNyG4/U8y6myn8GitWvszCrhop2uD1WdtJK2bR7QHIMuX+i/JVSjTsh+0LOk/oiVj/TZWRkfnk4dtvOyYEQDbtdZfT9zM/ds2Nzf1mte8RhGOHTum5z3veTv71z3xiU+ctNXG/9prr911zogSrC2eOIHvsYywnetcmhJQMBmeP/7SdL1lO95HRB78Qc1IzHuUdlzfEXEI28D9/dgXT4eY9YfrL9qzj/0iDaIHE9i3t7f1+te/fnJdhDJpFgqFQmFfYE87ntuveqThRaYKKddy/Llevf7TY86UENH1ZFQ7GW2Uv4bnVlHfWS6prCJzRVZPRCHGdqxj9uAx1tszf7FtnnYuKv/8+fOT+YrMUpn5rLfVj2FuPfRMPhy3aHugbMsTlhX1i+WSxmmuD1E/emsnM4NRAqf07tvEelbZEiwrw9dj0rnXVLK1s7GxoSuvvHJHwzep328tZefMSsS+2We0BZdpfdYmkspTM/LnIk1Himnp5lxAEU2cgXOUvcN82dm2ZGxj7xj7GY0jQU2P7z/fl4z2rkeDZ+WYpnju3LnaHqhQKBQKBY/LouH1tIuM9DTyw2UBCFnZHj0SZX/elzPnCI7IbimtrCI1ZfdQevJtXzUIp9eHuYCOSDPPyLAjSYvb+cw5vy9cuDDZEsmvA0qAkebBeua22snmKbqHPpuovsi/68uIxotSa6bJ9sY6I1uOxijbaHiVYDNua0OC3sifxXFjfyJtgOTOGxsb6frZ3NzUsWPHdvy1tu7Mbycttb1ouyzfV98/0+zMt2ifnP9oXfS0lqifHlwPvfdapmnz/dDzUXNcSXTem0sbL17b0/AMVi/Xo1/fds7mNNs8tofe5sFEaXiFQqFQ2BeoH7xCoVAo7AusbdK8ePHiRN2NzDdUTblPVBSCzzDpLMWgl8NHM0G079oqOR7SajlH0f5gWZlZcMIqJo0sHSIyi7DPWeBJZLJl22h69NfZsVWcx2YOp7nSz4uZrPxeif6aKJjFAg0y0wdNPpE5JUNU31ygS+Rs5zrmvPdMXJyrbP8wb6rLdtY2E54Pzee9DBPn2EdBCyw3Mw1H8HtdZmbn1poOHz68814wU6btUC7tTm/wYOCJ76ulKti+ePaZpSdwXfryV9lxm8+ltbmXysLnjvVkuY/+fwbwWD8sfSQyaTKgJ0vR8PfO7aVnffHrItv7kmX4evicZObkCKXhFQqFQmFfYC0NT1oGH0jTnWc9Ms0u2h2ZEi4ZFbLz/hi1QkpCvaTuLABgHRaBVZBpP5EWav1gvzKNIkoXWKc93Lk7S5KNNGVrY0/S2t7e1kMPPdQN0KDGw/BsJsH7Y9xVm+MUBTNkaQ8W2t4L7qAmRw3Dh8yzfM5ZRkTgz7E/JiX3Es/ZT2p+UfBSTwOP6vfXZkExDHxgndK4hnoBWpubmzvzYqQVfoztf/aRgSmm1UhLDc+O2TW2vqxf1HL8MWpePVILvqusH9wt3YNWgSgVyLfDa7B2zvpj59hv/zzxWvu0sjgWkeaVJY9HQUw2Xkw1yawi0Ris+r6TSsMrFAqFwj7B2j68CxcupH4Ej1XSAwz0C1BzzLg2paVkQKnCJO7o1z9LBKY2E4W/85NSesQFl7W/R6NDbdauySTIVbRRJq9HaRBMMViFb8/avb29PRsebOVnnIdSLqWzDGmqXdq9pNGKNP9MG+T8RGuIfhj7NAnVz2UWWm5g27xPJ/PZUmON/LHZWs2S5XttzWjKfH2ZNmLXRpq5X5M9EocDBw7s+HhN0/MUVdYuajFGXWfHvRWCminHi+lXXnvKNCBai/zasXGw9nPeo3cHrSZZGkKUAE/fo/kobWzuv//+Xd/9//TlZVaCqH88Z/fYd08naMh4Umkp9Md8qk6lJRQKhUKh4LCnKM112LUN6yRbUkoyiYj+LGlq+6XE3ZNmqVFauZG0NCdprZIoSe028yX6ujMi1iwa1t8zF8EaRQNmvryoHtrfe34YKzMjw/V1Zn7DyLdHqd++U2K09eDvzdYIfQNecuWaoW+aPghfPpPurR5rk41dpLlkpN4RbVSWaM65ZJK5vyb7jObP+mzaQeZj8f0yrcP7wrIozY2NDR05cmTip/XPD6MIM4L7yBfEtcLnP5qDOWJmrg9/jNqorV22y1/Lc1kyuT9u9dkYm8/ONCzT8Hz0qWnhWQJ4RuwvTa1r9Elamd5iQzo3+84I1h7dWvnwCoVCoVAA1o7SlPqksPZLbJK25cqYFNOL6DSQksYkxyiaiZoWJd7Id8M2RH4Q9ou+jCyajRRQ/hi1QUqfvbGZ8wP27P4kaI3GkTRhmWbZy/frUfyY/5e2ed9W5gtZubbF1DXXXCNp9/ZAFulG8mD68CLNi2uD40+p1o+Lrck5ejpfPr/bvbRcRNunrEIazvIzX54hWvcZZVam2fprmdd23333SYoprGyeIi0z6s/hw4e79ISmGWQ0VlEepo1z5o+38q1ffh3Qx8UtkjLCZin3LzMewV/D7ZSsXJ/H6D+zYx70JfpjfL9YvZklJbono3fzx21tMEaB4+vHnrmJq+R77rRx5SsLhUKhUHgUYy0Nz6JhehFbJo2bBGCSNaUZn0PDjV+zKMredkRWLnN+ej4V2tJNYsgIaKXcXpyR+0pLmzUlSdqvPTjG1NKsjdHGrOynIYv09O3PmDZ8JBfPeTt/T8M7d+7czhjQbyFNt/0w7e2GG26Q1Nfwjh8/Lmm63hjl5fvHiE6CUbT+fmsDtaeIZSTL1aL0TD+0v4bzQik32jQ0y49j/72WTX9mRibs/TBWH8mdrVzLb4tYOezaHutNa02HDh3qRmBnOYDZuvZ1Z5G2vQ1gM3+zjYv5xSINlnl49s40a1jUVq5VvjOsnmgt27X2zPWI1G3+bS6zyFj68jyo7fK7b6PNk9/M1bcjsiLS914aXqFQKBQKQP3gFQqFQmFfYO2gla2trYl5yJuYzBzAT5oPI0e5qbVmFsgCD7xKnIUqU333JrSIrkaaBnt4kyCDE+gMJ42PV7OzEGIDw5+jNtA0QrOYH5PMDJYlovvyGW5MB3RkPrBjhw4dmk0AJdmzN98ZKbCN7Y033rjr0wJT7FPKTS7R/me+H1Ieck9TX0TbldGeRWkwGXUUTWhREAGDVjgvkcmMZrYeKXN2r2Fud25pumO4zaOZ6iIKM7uWqUBZOz21GAM3fB2k2KKJLtrTjqY2q4fm0CgQjeZqq5fvMt9eBivZONmnf+9E5lRfrh2P3o1cv/ad5AiehNv+t0+byyhIxffJ953UZXbcyopM6Dbmdk9GEemR0S32UBpeoVAoFPYF1tLwNjY2dOjQoUmAhpfSKTVQao4kOjo3GZrKsGdfn0keEV2WLysiZuY5bk/jJYdsB/CM6sdL3hm5MjWxVRLPDT2nLrUwtrFH9sxrGDzT00LndidurU2c/V7zZtDDtddeK2m5lujk99dmZLMRLRTBhPbe9lEMTjBpmdvQ+PVNujZqoRy/KGiBml0WeOX/p7WBaQjRljIZaXlGh+brMZiUzneBX8P2jK1Cxr6xsaGjR4/uaAg2fpGmwMAwjpdfbzaH2bqlluHfOwauKxtrBq/4a+0cx4f9i8rhXNLSEFGnMVDQ6rEgMAv4kpbWE2p2JPiwMYloySwtxcbe2h69b5jAb3PBtRpZTPw7qajFCoVCoVBwWFvDu+KKKyYaV0QgasdIp0QJWVpKANyeJUu6jnxrWch/zwZsUgwlOWubl96y5GQDtShfL0Pwsw1avaRNLYzjSM05kpRJ08P+eYkroywixU/kwzPN68KFC920BL8BbJSeQu2CfmD6a3176VOhJEzN1ZfDDT/pF/X1McWEPukovD7S+qTcDxyVwXQL+kksyVuabvEyt+1VFN5PSZtJ8b5M+ne4kWqUUE+//DAM6drZ2trS9ddfv6PZ2z3RVjjclJpzuco2MyQviJ6tjFg689P5c3y/0MIUbXuUES/zveTnhevK5sGeV9Pw7FNaWk+YBpWRJ/j+8Ri32YpSRGj9sM+eBSDS8FZFaXiFQqFQ2BfYU5QmpZgebRcloN6vMaPUmGhKyV+aRvaxTZTepakURjqdiDya0l60gaXvn5diGKk6t4mjNJUCKWkzyjGiFrNjJnFnycu+HEqUht62R9b+o0ePzhK5cn56kbD2yfGLQInbtJxVfETUAjgGvW2iqC1HNHG8do76KxoTarDcnDQiYzDYNfQzRtttkeaKnzY2vj5uKWPlGTmxtTXaMmmVSLutrS1dc801E+otr+GRjo4RnT3fM5OprXySLkcbpdJPSstCtP44h6sQ0PPZzcjdI7Jqg82daZLR2Fh/vO9RWo4nrS5RpCwT6+04LXn+XPacUnP2/cq0zx5KwysUCoXCvsCeqMUYtRQRlmbbi0SEtRmVj2lvlC56UZrc4sMkIS+x0D7M/BS7NyIstTZxU1LmfXlpkNpfpkl6iYySTWZDj/wjbDPb1vMRfxwFdQAAIABJREFUUUNlFFikSVq5Ph8zAymlIso35qVZ3yIfh/XFpHD7JLUcJXD/v/kwLCrUyqRlQZr6GkhwHpHdsq12Dde9IZJmbc3SOpFZHKQp+ba18cSJE5KmmqY0jRg00GoQbdFEKw61IP/Mc331aOksSrNHjWftsnZTa6cG6NvNvpo/1DRUGy9bW9KSLi3Lj40014wsmtHB0SaumUZJn2VkJaKPkBSO/t1oa4Rapu97BluD1CT5HPv1TgsJ2xbRPJrFKos76KE0vEKhUCjsC+xpe6Ao4i27Jsv58VI6SVxN4jbSYGp2/tfeJFIyD/Qi7Uw6o5ZGbSra+oJaGv0h1kZfNu3UlMaZnyUtJSwynVibrA+96FFGiln5J0+e3NUu3yba2ak5RxKkHTtz5kzKmLG9va3Tp0/vaBsRGwy1aErAEfmtRa1Zn+wayy0yP8Lb3/52SdJjHvOYnXvtHpvDJzzhCbvG5Y477pi0kbmnjAq1eYmsA1neHaVzbx3I2HEo+XtNgxvLXnfddZKk22+/fdd5k8B95N8999wjSXrqU58qaTkX73vf+3b1P8rdy0jlI98N2Zp6TCsWHd5j+bC67H1APyz9Pv4eGw/T5N7xjndIku68885dx33OmZVr2iBZU+gTl6ZR4fadEbiRpYek+PzeIxGnb5LvRP9MW7m0ft1777272hpZzrwv34+FPYtmQYkivWmR4zPh+8VnsMijC4VCoVAA1tLwbBNPA+3HUs5lR5ust5vb/5blb5IAJTqTVCJ7Mu3R3BYoyjnjpqfcvLbHG0n/G6Vcr+ExH8nKZ7SWlwapSZokb1ITxz7KTTNJjjmJNt5ee7C20ddl/Yg2Io18oL2IqWEYumwi1t7Md2tlm7Tp/zdNzng3Taq86667drXbj5NpdG95y1skLdfOR3/0R0tajrFpglK8pY4/HjG6eK5R33f6X6MNMrNNg62tpmH48aQmYWPD+j72Yz9WkvTa1752515bm1buLbfcsqsd733ve3e11deXsRxF0dycf791VISNjY2JVcU/n4y49M+SvzbKUzPN901vepOk5Xybpcl8Rn7dcYsaavrWZ7bD35sxrEQaF7k5uSEvI4Claf4vxzzKY+PY2ruWcxNZyWwszGJg99p3e769r59WDuZx8/3jr/G/KcW0UigUCoWCQ/3gFQqFQmFfYE9BKzQFetU5SoD035nkKS1NLmbSpHny+uuv31WWNxOYI5nbttBZ7VVvmnZI5hrtxp05fDN6G98/buFhKr2ZBaJgFgYE0cRp5hYbIxtDaWmCIeWTXUvTra/PxjOj6PLmFobez5kVbJsXKU4mZ9Iwzaxm1rHACmlp8nnsYx8raRnoZCbNt771rbvKfNe73rVzr42hlWvjZuMUkR6bqc/MNauQCGRrhSkG0XY+TCnJTOkRRZu120xKdq+F29vYeNx0002Sps+kjZWZNL15z0DCeJqronQYpuhEMFcKA7iiQB2SSPd2oreglL/4i7+QtJwz67u9F+w94UmWaYamSTGqj+ZW+7Rxi8gdON+2VrmLPIPafPkZIXP0vGYkCPas29hYO/y7klST9jzdfffdkpbP1ZOe9KSdexhQQ/cFTbj+/96ayVAaXqFQKBT2BdYOWtne3p4EfXjpkiH9dDAy8djDJIAsMTdKerX/Kb2Q7DgKpqBUwbI8SA/FgA3SAvktbNgf0w44Fj3KHftOJ7KNc+Q8Zj1M6PZttLqpfdKJHNHIrUL91VrTwYMHJ+kIPWoxG1vTqqJNNW2uLDjFJFAGSdlYmNQpLYMTLEjKxsW0l2j7GFujNj4mnfcImmllsH5wvTGIyddt95AkOdIoSRpubTENxdIU3v3ud+8qy4+BrY33vOc9kpZSuo2faYm+/dn8R5viMsCllzxsxOPUXH27OcYMJrHjlmoiSbfddtuue02bJek2U2mkqWZqa5TpRN7yYvNNOkRq+l4rZFqCzS0tMT3qP76boqR/A2nAbJ0z2JDkAr79TPey8TXrgH+/3nzzzZKW7x2+H6gB+mMRocEcSsMrFAqFwr7A2hqeDx82ySAK32foNSl3vERnUqNJLfSTmQ+C4da+nGxL+OjX3+4xKZVktD0SX36nNhJpoewPJe9IS2P7M+LnjOzZg1q3SfHe/s6tcpi6YGVEW5f4cOOsHabhZcnW/hi1W5PkSEbs/2c6gPnyuA69P9j6z3VlSdb0sfo22ic3t4xIg7lGmLBPjcVLwKTGIkVWNP/Rtl3SUop+3OMeJ2nqW/FtMD+p+bmsTJsDvx0R22T1cL1HycPe+tDbWurcuXMTn260DvgcWrutvaZl+Haa5kuthdahiKiBqUa0evlnjDR01PCjzaNJLMC0AVLoRSkNNv60BpCezreJGmOWjhOlp3B7IPrK/T22nviesXu4zn05foOAVenFSsMrFAqFwr7A2hreww8/PNGAIhswI2iooXjbLyMsmSxuGh4lRmm61T3t1J72ykCSW7vHJF1GJkXlZ/1lX/w9lELo3/QSMCWpjJQ28q1FEml0vEcPlWlqfuy56emBAwdSKd0iNElRFkVpkjbLzx3bxnK4Qab5X5jc68+R/Ng+GQHM/6Wlb5B+H38d/ckZtZwh8iFTG6T/1/s4aO0grZ9da5qN+SH9NYyO60WF2rVmqeHzQ61BmibhHz16NN1c2Xx4kb/SwHbamNp6oM9VmkYDG6wfrMd/t3qsT+ariyjzDIz0ZiR2tPE0NSu+s7imfL2M3OS7IrIeZRGcWf0R+TsJ/Q18rny5dozRtoaIJCMa4zmUhlcoFAqFfYE9UYtltEp2jTSVFOi7i6RmahUZgXIULcWysjwyaRoll21R4cuOtt/xbaTUHpHUMsqM9fkyrE0cv17UpGGOrNrQI13lnES+18yvmZW3tbU10bz9uHJ8THuipNrLNWLELdeb10yY72n1ce142DFuB5SRpUvLOYvy7Hz/etHBzMdbhcLK2sItX+y4ab2+PVyT9IlFVp1ME+J68PWQMP7QoUOz0XYcv2hj3mw7HVKP+f8Z0cktpUgFKK3+fPo2mnbJMcwIof39XMd8/qnFs+6orRHxfDbP3GjY+hnFOdBPz7H3728+R9mWUlFea2Y566E0vEKhUCjsC+yJaaWnmUQbLUrTqKzeJo7M0eL3iISWfiluteIj0UxaoQRPicv3IWMpmPPH+DYy0tH7Mf11Hpk2wOg9P5600VPqjNo+t8UGpWB/v5fCetLW1tZWyiDj20d/FSU6Py8ZaXCkpbM+amcZW4rvM3NF2Y6o//QZMyqPGl6Uj8mcLfqdfYQv+55J5RGps40jNZSobYbMktBjI6JG3vP/8l7W6+u2saZGEjG6RNGeESJthv53rqHIGpX5+xlp7NuYrU0iilamdkgtkOvP9zEjc2Y90fuAbSL8mNAykW1sHGl4Wb09lIZXKBQKhX2B+sErFAqFwr7A2ibNyEkZmXEip60UBx7QZEWC6Z5JMwrpl6b7hnmTpoUqZztpm/rsVW/u75chMoMZ2H6ScEcJzuwngxcis1RkgvHfozGL9ovr1e//j/YcJFprofnStzsL22eb5srxbemZyTLTDpPHvZmIARk0U0Ymfa6nzAwf9YVjQZNwlKzMIB/2k2WsYrpnIFRE/hCtRX9vFDLvx6Q3VxcvXpwE0HhkBNw0Cfr1yzXC57/nriANWGZ+94iCknwZEdgvvkM4Zr6NpDTkNRFJAikgM3LvKFiPJto5knQPmogNc+Zmu6cSzwuFQqFQcNhT0MoqgQeUWhlw0EvqpgbEkN8I1KwYrOITkin5kD6HOytHfacGS4kn2rXakIXV+voYrBCF52agJEWHc5QGQo2FEnHkhGffexQ/rbVdIeGRhJrRQ2X0bdE5BgREUqwhI22mJB5JpJTgLbE5SgBmMFaU4uHrj8aEc8Yk/SgcnekV2ZZdETiOUSoAy8nWbKT1MKBqLmjFtyFqfxa4YGVGz3JGZTen+UfnDLSURCTi1GYYrBJpTSxvjhjal8t6+V6I+sVAq1U0yoxAgWX4dxjvyX4/PFax3mQoDa9QKBQK+wJraXhGD0Xtxmtrme/Jl8Hr6HPiZ69MSvbcgsWSib2ERw2SWkxEit3zYfh2mBYTJanauVUSJ+mjM1Cz6EnplDZ7tGGZ5NaT0um788TiUVuuueaaibQcJUxH5N2+np5mSn8RNaFo7cyFfEeJuSSCjjbgNGTjzv5EvtW5tBeu4ah8tjWzvkTtzzQ7v17ok2RbI0mcx+Z8eL68yMqRaa+ZxUKaroksjD8iIuC1JE2ghcFfQ80q2z4qagOJxrP170FtLbMW+HOZPz1KT8rAtkX30JJAiwI36fblZt97KA2vUCgUCvsCe6IWM9Am7MFf7IxuyF9DTW8VKY128GiTUGm35DpHPhpFTVJjyOzIVq+XOO2Y0ej4jVd9mZEmYRoqbffUCiI/6hx6voIs4TmK7CSRboSNjQ0dPnx4x6eaRaxJ81Krl7RtXijFzkXt9UDN2M+L3W9zaW0hoUJEqstPRnRGEXHZWNg1kYZHoudsayGDXy+cl8wP48FxyqJq/XG+B6644op03Q7DsEs7iNZOFsnNuiMaRFqJskjraDsi+vt7BBscn0yD9BG31Pr4niN5fpQITr8ciUM8snWWRcP3tKvMtxv58KgpZ5Hm0T2raJs7bVr5ykKhUCgUHsVYW8M7f/78RIrtaRRZJFqUL5LRJ0URTwZqHiScjrQOblfSI6UlelKob4fXMLkZJTeJjHxIftsUaRltSjqkSKru2eg9Iok7y62MosA4XnPUYhsbGxOtMJLWs8iwnnZhn1xLPekv8/vYJ7ewkabbmNB/FWkzGaUXNQvSOUl5nhfnyftC/caYUizJ+7Ii2iZqH9TiogjJrH8RrF/2nMz58La3t7vaBjUr63tG2O7bzfdOtg1RRPlFiwFp3SJNn/Rc9myb1ubLzEiVs5zRyJLFSF4bcyPFjnKiaTnIfInRM0m/nKG3Hhipz0jWyKrnf0sqD69QKBQKBYc9+fAYieh9Kty23t/rP/2vfcbUkTE2RP4q5jb1IjszEmXa5VdhL6F2Fmkj2RYv3J4k2gDWztlWLpTwIq00819kuVURsghSP/aRj6AnabXWJmPbI8rNcowizTTz92bX+WtZD4moI1+nIdsY2MPmzpD5KaItbKjNZAxGXovj5rAZ0XVP4s7yo3radvb8ROuM185tAHvx4sWJL8o/L9SAGV8Q+et7pN2+rCg/k2Nna4Vz6+ulj86e5fvuu0/ScuNZr61zU2Lm7FmbLA/Ur09akEyjs3ZE99D61ct9JrI8PPpXI78m54eRrL5s9r3IowuFQqFQAOoHr1AoFAr7AmtTi3nTQmSK5K69VDvteOZI98jMJ1GiLIMhem3kPQY6nL1pIaMUy8xivWR8jkUUYMPxszaTbi1ysLN8jgXNP1E/DDQFRom73nSVmTQ3NjZ08ODBnXay/SzHt4XmtIi4OCMpoGk22kuPaSpm+okCX3gP64tIxrl2bA6tHpqePEiJZeZOBmH4dtCsxntoqotMtj3zIsF1ZehRgdHk1zMJW7Acn8soVSFLLeilQ3GdZXvdRWuHc8rnM0pWZ8COmTaj9B4zc9onn+lViM45z9Y2S3nyJnTOC589tjEiciAYHBS5JLiOs/5F95w/f76CVgqFQqFQ8FibWuzAgQOToAsPOtkZRh/tkj5HX5SR7/pzTCzNEo/9/z4kWtpNZMt6eqTIESK6HobOM9AmCsahttbbIoV1U2rubUPDY1nggac9osbVcx5vbGzsaDS+P5G2nvUtOk5Jm4Et2Q7O/lpbk5z3SEq3EHJuKWXSci/w4Oqrr95177Fjx3a10eb25MmTO/fef//9u9rCHd0jogOuK4aY2z2RlM61yOcnWu9Mf+FcRM+3jbVPks+epWEYdPbs2UnKiX8++S7KAuAiikF+5zqMNGEGlWX3RDRxnAc+4xbEIi3TYKjhsR2RpYeakI2vPYfWNh9UxVScLKE/Sg3hM52R5kfgGsqsBr7cVdOhdtWz0lWFQqFQKDzKsbYPr7U20aairTdMasjC+KNjcxpepJnMUUhF4eiUqIgofDbbGJPopU7Qn2TaEiVx//9cEm82dr7ebGsPD/o6KMFFGzRGRNlzkhZ9aV7j6hEhS7EvJesjfal23GsCvIYaPn260tR/ZBqYaWXWRtPepCnV1zXXXLOrXOsvpXn2VVpqi5k26u+hFmL1MGTfj3dGzdZLS8gIDuxa02T8Osl84hG2t7d15syZHQ05Ws+9d0TUtuhaamVsY6StZe+biEyC7xv68Eyzi7Yyy2jIqNlF4fu0DvBd4kkySNFnyNZFhMy60rMsUUPubXTLvpYPr1AoFAoFYE8bwGYbJEpTPxW3xolAqagXseXrjdpAySdKoCQNDyNGaWOXplIeo7J4nZe4s8gn2tajhExK6ZToIq1tjiw4wlz0aU8SNwm1F3k7DMOuKM6ePzZLAM7OS7k0GbWD93Ad9JLJTUo2KZxUY0xal6Trr79e0tLqQc2Rmn7kUzO/X0bUHFkHrFz69Kgp+35mWxYZekTxPT8f6zF4yqyeFWN7e3vn2ab/1LeXzx+1tuieTJtdJfmZc5ZFfEpTvyutT4yq9dcw3oA+/UjDs3uMntDGLdvOyZdDbZRWglXI2KmtRfPPtvC5jYi8GWU8R3ixq00rXVUoFAqFwqMca0dp+lyqng+PuSb2ST+JNM1divLE2A4Dc1u4tU8UTWSg5NPbpoUaCaOXeG8UfUhfUU8yntv8dJ0IKKLn08uiGnvS4KrS1Vy+F6M+swi4SEszZBJoJNVyLfIzIlc22DHT5Ex7s09bW/5/uzajMvP3GOy5of+Fmox/nuhvzaRnPjv+mizC19Cjh+K4RfRUdo35K3vr1+IGbCwi32rWvp7vMYqOjtpPCjJ/bzSG0nIs7N0i5dGLds1NN90kabd1wPx6jHg1ywLzMf282Xoyn7F9mlZt0Zp+fjLLURRV7fvfA/1/vUjfiBia91Db7EWsT+pZ+cpCoVAoFB7F2FMeHu3HUbZ9tpVHLzIsy4shIrYPlm/fSdTq76c0a5JV5AdiG6nZ0e8TRSKxLEYQRmwwc1FRkYSVbcS5ioTFNhoigt2MoDlD+//bO7sdya0jCWf3tAYzgGFYkgewoIt9/8dawDAgSII88kiyZrqq9mIR3dkfIw5Zs9gLuTJuqruqSB4eHrIy8ify7m4Tw+vWZWJ0q+aqtHxTHR4zL/t7fKUF2dUr6I2Qlczaum7ZM4bLsdGz0Zke4y5kEmKUrj1QstZTBmsfA5lREljvf++tIcfIunrK6n5/fHzceJT6HKd4OMfm4nAcb3qGue+yPlVz6rxeGq/GwmbIFHmuer6+zOBkRrOrhdW6U3Zr32/V85rp7yevHc/3GlYlrHIJuH8+95xXr99HRz1cw/AGg8FgcBO4muE9PDxsspectUcWmJoqpuP0V8atXJYm/2dzRfm8+2fU/aQSRrdIFGfRq74jK6lb2FU+zqRtmc24YoXM1tyrUavKmXx7cRI3fip5rOr99vb/8PCwieesYmocv8v2SmyF2bnuOrkGr/0c2aiz6mXmbt+W1qvWXd+frHVX09jH1udI65ZtYY60JSIzZo2VawHFeMvq3uNxUtYjWUjV8/z0/aW1LS1N1v/2tbMXs3PnurduV9um5xnnzTETPTu+/fbbqnpeU3we9WPrPc0bvVF8HvVtv/zyyxefaUzunuBz0+l7VnlVJN57Tsmnj6t/Z6Vqw324zPujGIY3GAwGg5vA/OANBoPB4CZwtUvz1atXT3TWydDQBbLX+Zzb930IK3qbWmAwXbi7ohiQTZJSnTL34Hp/pVvMJYakAPqqS7rARI5UaOqKlfn/KqmA4+b8aU66C2dPzonH+uKLL2Krkqrt3Gp/7noIqTyESTGrayq4Du48Z7rTND9yPVL4oGrrymYSS7pHqp7T9rV/usNZzFy1dY1SUiwlpvT97YmWO7EJ3gO81n3uJbatz/7yl79E9+zpdKoPHz7Uu3fvXmzjxpCEq125Be+/9BxauT4pWaf/WabSz5/ycyoXUAfyLi2n7ZVY8uc///nFPijK34/H9lN077vnDsuuuju/Y1W6lVyZgpvHlKwiuN+L7uY92vV8GN5gMBgMbgJXS4vd399vgobu1zXJj63S7FnCsMeMqrZWJBunOmkatkeRFSOrk0H4/ndq2spGrY49EakQuIPnRwbjCuuT3NGRAtBknR8Ri1WBcMLlctkEp10CiizQVATvAuVkemTeTrYpJeqwpMVZl4nxkE3174qlOfmxqi1b7Pul5BOLsJ0cFcecisrdOk9eAVeWQElArj8nCs5kqK+++ioyvPP5XB8+fNjI+nX2wbWRPCNHEl1SgbibJ0omsomwE6AgO3NiHDyO9qc5pBAB752qLEfHMphVwptekzjIqtSEzxvnjeK2/N+xUH2mUo2jwhdVw/AGg8FgcCP4rBgerQD360trecW49BmZ156l0EGrSYWgPG7fL1khZdB6vETbdOub36nyBdUpdrYqG2AMLbUBWbXPICvk/DnLTqDF5RgZt1k1YlTx8KqYNzXiZVzGCU4nIYAUN+vnyFeWI3T2vNe2iXGTqmcWkIq5eZ36mlIROks1Uluavv+9VHLXbkng+uJ5HvFgcKzyoFRtWya9fft2WXj+6dOnp3u6t17iGBJLo0eknxs9CJQnJMvp73FO6WnoayeVFq1EOeix0D5YSuPuzz1Ba/3fz4vPCD6jVoL3yTPnnhNCyn1IXoqq52e71tPr16+n8HwwGAwGg47Pag/kCjEFWjFkeIyPVG2tJLIyWn6urTyLyWmddwuAVhjPQyzO+eyPtJDh+7SSODcuppYEupnR51h2amx7xApKzGWVfdq3WfnT7+7uNuNfxR4ZJ1kxvJStmVozuXPjubsiWJ1zl7Xq3xEj6yxEmXOMg5CFUK6sj1eMkUXcrgg3rWvO0Yptcy5WHoDEXMgku3fExcLT+pRogYqh9ermKbEaF5dLbCnts2NPHEHoAgRJ/jDFy6q2rYQYs+Z92u99suj0vOn74Jrg+krPlo4kC3ZEoo3jEPoYtY763A/DGwwGg8Gg4WqG9/DwsLQQU0YgmVi3qugPT1lSTthU/lxZQvqfjMgxE7E0WnjO6kgxk5Tx5hgeLV5aQt2KIcvQ+dGiI8Pp+0sSUs7iWmVudriayyMNZmWlr47H+CtjWi4OJyRmd6RGkNchNQLt+2eGncbkhHpVZ8XMthRr7UyIGasCrXaXNcl1wJZGK2FerjPGwhwr4Loik6EsWz+vn3/+ebcBrOrTxK57rFPnxPt91XJs5anid3k8eR30PGPNo2rq+jnrump98zngGigzZyBJbzH/oer5Gch1rPlj7aDbr3CNjBefn6t2Przm9Ba4hrT0evTGAHsYhjcYDAaDm8BntQda+XOTv5YMr1sMsk5onQspLtg/ozoGx9bHk7IBqZ7iMu30umIb/VyqspIKz6v7+2m1uAa2fRyOmSVrycX99tRuXFbWEdHojsvlsqlbdOPlWnFtbNIYkvrLavxJjcM1GuX4tW2qrevnwWxNrR2tf9d6hYySXokUO6rKjJ7qIN2qd9mF/fiOKe8Jw/N69v1rLL/++uuyBdanT5828+SYGdlzEmHv76UaSl7r/lziPaW5/PHHH6vq+V7u97Fa+/De1jhc9qmOrf0xW5O1m/38+Awkw+Nzr7+XYni8z5zaDb+T4qpuGyr7uPhwep4ewTC8wWAwGNwE5gdvMBgMBjeBq1ya9/f39ebNm42LwiVbCEwEcOn1clXQxUIXnCuY5v6Ti7GDLs0kCN2DyNqGbq5VgoOQElvSPqq2FJ/FsKvj0U3A1PIkG7WCS1DhGFa9Di+XywuXppObSvOS3LlVWVosufHcHNNlynlZyWgl8V7nJkylDHTzdxcTEz7YAV1wCUEULeC95/oBcm1w7bprsZcgwn5vVd5ltRIt+Pjx41LsmS7M9N0jUlh067l7jeckN+V33333Yt/v37/fbJMk5QRXYqKEHbk9WbbEvnl9/HKHptCGEmyqnsWp6TqnC/2oYHzflufUkRL5nHAIr9sUng8Gg8FgAHwWw2NX3P4rz8JyCkwzKFm1lZdZCUxzW1qcTGFfFT2S2cl6khXdt0nFzyxIXwVUKe1DS7JbQvqMackMoLviWFq1SQTXWUWpWNlZ1dcUo6osQfO0knzjuJkg4hhJP87qHF15Ctlh6mLeP9N6YAG1Cs87KADM89F606u7n5JosPbhUtop6cVkGTdHexJPKxFxehLonXDbroq7+3fevn1rnx0C7wsKNbv1y7XCbTjefi+K0elVQsbsFN7LEpJYvPbhWkClInHOLcW4+1xobpRQw3l0sl1ff/11VW0FqLl2ung272ky/9VzZ9XurI/ZjeXDhw+HBaSH4Q0Gg8HgJvBZZQmMZ/VfX75H+R4nyMvYXZK3YVpt/26SwnL/J9kpWiIuPZxWH7dxIrXEkYJMtvtI8kArq5lYMegkKMwxrsSjV7i/v39huTr2qbXRm1hWbS1GFx9L7URWDF8ga2d6umPPTA9nzMvFishY0/z1tZwYqsbmygUoUZXGxpZWbqzESnicayiJJbj97EnSvX79esNqjhRM89z7c4drm0X8XEOdrSVmR6EItg/qxyFrd/J3jLeyaJ1z3ueB8mf6rsYqRtnvNwp46Nz1HXp8XM4E1yw9Jc6jwP/5XHfrzeWQ7GEY3mAwGAxuAp8lLcaMtN72g7++tLyZmVa1lTpKflzX7FJWDEWjyTCdEDRZGS0ily21l02kMTqRWoGNRVdxP7LQVJDZrajkQyfb6fPL/TFG6FrJuHhfYi339/f1pz/96SnbzLEcWZyS4hJo7blmp4wFMRPNeQIY96LVqs9dFjLZAFuWOPaR1hclt1y8QseVde7ifQKF2lNM17Eeso8UW1kxshRrc81Qe0YggBHEAAAST0lEQVTpKkvz8fHx6b5xsl2KvyeJPMZnq7K3xrF0ng+fN2RGWsu9mJzxN/2v56hjxIzNsWg9iTVUbeOJqZVRh76rOaZnjvJ0HS5O2rGKGfN/5nz073EsqwzfzRgOfWswGAwGgz84PqsBLDPtusXN7B3KATmJnxTjoAXG+EV/j0yEn/f39wRyZUG4jC5mnVLo2FnAZFgCj9PnMcUZBVrxHRwj4TLjUs0RGeRK3msP5/M5yg71v2WZyvJlQ1bXFiadm2uMKaTrzziMq20S9JnWAevy+nsUnE4tfzpzSZJvEqmmEHAfE+85skWOr/+drHXHoNL9xHvBNUVeZX0K5/O5fv3116djan0oflb1PJc6Btn7qtkts6c1f0lmrR9PdWvcv2Mz2kYZkMyedfcY30uSic4b4dqc9e864XGOX8fTnKd61/5ZqoV0zwnG6DjXLjap54Dmb+UdIIbhDQaDweAm8H9SWnHiuvrVTfU7zC7rf1OJIMUBO9tJVgUthVVdnJgERav7PhhzSJaI4LIZKUpMa7Nb6Ywrcq6pmuHiC45N9/G4LE0yVcdYuM2RWqrHx8f68ccfNzE11/ZDbEnXJZ1H3yYpQaRWSe491kUxLtPHoO/KimZs18WMU5asxk6ln6rtddeYdZ+5bEDGahk7FFZeAoFjdao6q7quvo8+J1Qo+eqrr+L6eXx8rB9++OGpxlGs9ocffnj6jt4T8+W8rWKdQlrPLt7M+lvF6rhWHVvjmBkvWz2rqFBE1t6PwWdtWm8uLp/mgNniHakZLtfuKibOnAuXFSwRbr3e3d0NwxsMBoPBoOPqGN6bN2821l5XIEh+e+r7datCVh4zglh3Y08APmX6p11rD8YnmP3paunItJjFyH11FsrjibnQmnIxDrJa/u8UHVIdIz9fqU4cqW3Zi592nE6nev/+/dO4Za076zLp9bmaulRDmerXnGXKdcZWK3199yy4fs5s/bOqUUzfcc0uabkyo1lw7CPpvCZ20N/jGOkBcFnI+g6zkB1j0Zzq9fHxMTLN0+lUP/300yaDtEOMVwwv6WO6Z0nyBnCO+7aM2SWG189JjE73qmLRnLfuTeHcUWlnVYdHNnbE6yVQT5jPNRe3pepQYvp9Hhmf5zZUtKl61hXt9ZjD8AaDwWAwaJgfvMFgMBjcBK5OWnn9+vUTfRQ1d4LCoutMkXYBYLrl6NJkkWd3FzJpgcWjrrgyCcquCt+T0CwD0S6Rh2nnfHUpviwH4HFSaxMeu3+WkiXcZ3vuHTfGveSHy+XydI2Vzu2C+nTTrALlvIZ7ZQr9PFhSwHXoZI2YHMBEp5V7mmOm68dJmTkpvqqta91dn5RiTqxc2+kcuouJbs4UTugCFVy/j4+P0S11Pp/rl19+2cx1T9RJMmZMoOhzwDKQ5IZ2zxAmfjBBxO1LY2CpFls+uaSlVP7CZ9bqnk7PEic47dZi35draUa3N8WrVwlPXL9Mautrh/fCVRKHh785GAwGg8EfGFcnrbx+/frJQnEWWSqUZlFv35aWofZPxseWQw7cl0tL5ntkAbIqHEtbSd64//t+kpCx24bzx0QD7quPlTJkZGCOFaYC7SQK0I/TP1sFjy+Xy4a9uwD90WLyPt6UtJJEv/t39KoECso3OdECshda2C6xJu2DyVpOKJfXhYzGiVWzGW1KG3fFw2RKRyTmaK1zzfa1w3VwuVxi0tPpdKqff/75aa2wbKVqK6O1KjQn0j1FD0aX00pyhExacc8dJWwprT6VAvQxkdG5/fN/Mi22knLPDs4Bj09RkH7/JiHwJPBftX2O8t5g+Yo71zdv3hwWvxiGNxgMBoObwNUMrwsEMzW/6tkKYnsJWvQuxZe+f+1D1pv27RoksnAxFVn2cZMVrKxB+olTTMWVAjBmlyzglTBzksFyMRdaS0dSmMkCaf2tSg76dVsxvNPptImb9GuZYpw8Z5dGT8uU7XvctWXBNNeOEzrnWtEYFYdhDKRvk+I7KX7h3mMM3LXKSen7mpPUzLjvh3O9amWVGF6S0qvatrlZ3XsqaWH8XHHgqi0757hdTJ8eI14fzs9qrQpcj/05wevK+9PlKDBf4sizimNMYtEulk+k557G1a+pvqt7gTFj592jN42tpSht1r97lNV1DMMbDAaDwU3g6vZAr1692mQXdmtWv9AUxl1ZPimWoVcyPNdWPmUPOas6CRjTIu5WVNo/Y0YpTtc/o+XlsoxoyTP+tirC5VhXMQKB+9W8Kds2xWarXlpjK4b36tWrp/3KEu/NfHUMvccYyip7NlnaZHpOTk2vOlfGYVYWKb0SFAjo4PVOMnguvr2Kg/Qx978p1ZcySvvx9orU6aXo46e3ReMQ+1LBcH9P12e1bs7nc/32229Px3z37l1VPcfAqp6fFXrvr3/9a1VtRZVXQgfJi+EY3kpMvb/v4uSUWaRIhxMe4D2czsuxdbf2+zaOKXFukteoIxWlax8uRs050NrR+nBZmmwTpgzwIxiGNxgMBoObwNUMr2prTTtBXmZU0TLs+6AQMmuPxPBYe1T1/CtPK5nxRUpC9bFoH6s2FsnSSVmMrqZub9sO7ifJhDkWwv2nOsN+3cjs9trEuG32MjT7NaJgeNW2HinNufMOpGxMxnD6tqyZS/Vw3bJ368ihxxxo4XL/ukdo6bvz4T6dEDnvE8rikZ2ssvQYK3ItjCiJxrUrZtcz7Y7ELfuYHh4eNg1g+zNEzE7Hev/+/Yvv0EvQzzvVj+616HJwa5SfuRrE/v6q3nRVQ9f3UZXvy3R/ue+u7r0Exr5T8+wO3iPMzuzeAUHr7e3bt8v10zEMbzAYDAY3gasZ3vl83lgbq6aKKSbgMt9SdhzbxjjFhqQ84uJk3D8tHdcKhyyJVhItSBczTL5tZ/HQOqMll1icGwPnyLEhqj8IKWZZtbXGTqdTZHl3d3c2htfjsQJrwThfbtyMR1DM2bVeSe2amHHb1zc9Cim24jJg9RnXDDOXXYYv1x3P07XMYkxUsTyy9iNC1ymDsYOxIq0Lx/CcYPNq7XzxxRdP8yX23Of4H//4R1U9i0eL4WkOJO7cx53aTjFmp3H1TG+yspTp67wR13hRkpcmZXw6hpcUpegd6efO/aXmvv1+otdmT72p/01Gp/fF3Htc07VxmxjeYDAYDAYN84M3GAwGg5vAZyWtCHTJVG0DlXTBiJquRJ2ZvMJA+arXHIWGXeot3XRJjsx1kU6uWrojHMVOAeEjSR9MBEidgd1+ktu3Jx5Q4odJP84dQffHXlnC3d3dxqXZ105Kb0/XqZ+D9ifZpnS9+vh1fZM7vI+bY6Tg8Co5gi5kujS7q4zbpnILJlS4xDF9pv3TvbsqaeFY6B5z6f0soGYxuCsJOeKKYsKTEyH++9//XlXP11+uTQpPOHca98tX53Zn4T/Pxwk20A2aSrZ47h1M7WdYZJW8sXIZC0zu4v5WY2X/yNQXr19LFtbz2S/XdEcq7zmCYXiDwWAwuAlczfAul8sm3dmJ+TKIT4birCYhMbxVoWQqlVil/JN90iJx1uBeix9hVdqQBF+d3JpAFpiKst15ku26lhwpOSVZ/KvzSTidThsW14uHv/32W3uOK2aq9SWrUoLCXCsurfqoTJOTCVulWFetC465L46jzycTasggVm2wuGY5VnoL+ns8T47VtXgRKPru5ojbrK6BCs/TvVb1XKqg5JW//e1vVfWcsOPGkkQjjjDhJG+1EmjnnDJ5xQkrpHIAXhe+3z/T/lNZxepZlY7jCs+TF2pVzsFSFkGJSe66pUS+IxiGNxgMBoObwNUMT+nlVd4CIoNjEflK+JOWFJmeQyol0BgZp0nn1MfkBIATo0tMop8L4x+cC7dNkkwTyApdjDLN20pmi8wlFfS7z169ehVT3BWHocXW2VqyjhPb7ecoC59SaKtyEYFitynm2ffjZKD62Fz5Bgu+OX9OkDixDTK8znr2YpFcb46F8PqTLfYSA7FrgtZ7/16P+1b97/2b7tHT6VT/+te/nu5xjUHXuuP7779/8fr1119X1TNjcO2tksgy15+bJ8KVpXCbxOxXsfzEzlla1e8Nnldiax28BxPLXYmyk9mlkoaqbeyOheZO6GAVY9/DMLzBYDAY3AQ+qz2QfqGdUC6tJjZzTa0qqp5/5cnWmHnZZZsEWiAr0dgEjq1vQ3kmSjuljK8O+u6T5FfVlm2QOax87GRPnD8Xo0wF5yvrifvZY3gfP37csM5+3BTXoYXoWq6Q6TFG7GK6LOa+pomnO7/V51VblpQyPB1b55pJbKS/lzIhU7Yo99O3pSeh34NdeKBvw4L6ldzWqvBca4dj6OPmGL777ruqqvrmm2+qquqnn36qqufszT4uFjIzlu+YMJ8nOq625fOug+suNUHt55Vkx1Jsj+Pt4FpdMcq9OKdjlDw+x+4yVzVfLDR3LJH38hHJN2EY3mAwGAxuAlfH8B4eHmLsoWrLOFKjxJUcGffBdidOloz/6zvO0kqW5F7mXdV+ZuIqNsl5o3isE1dOMbUjdUw8HuuzXH0Zx7SS5iIDWrGb8/lc//73vzf77ZYbpYloebPOq2pbzyfZOUqLKd7jsvRS7ZRrAZPiY4mBuW3owWDNo7PMOccrVpjaKfH8nIQe2R+tdFnePYZHuUBdY56Xk4fSvLmx9P3//vvvm9yBHtehEPc///nPqnpmDGJ4TmQ71Rgmr0o/Hs+RXqq+vlOTat7jfZ7IXIWU4dlBRpxaVzn2lNpQpfq8vl+uP3opXP2vYnZ6JXvr4yHjvr+/PxzHG4Y3GAwGg5vA1TG8+/v7mG3U/071O2zF00HLgMK5jhUy7iOLi22J+hilukDfMn3qq/NiNlaqX3JIdWbOiqE1yAwox/RojScGtqptSRZkvwbc/8rKkpW+YqQat65dqpPr17w3n616KSzex8QMv6rMuHk+joWSkdBKJzvtYHyR2cEdtGYZZ2Srob4/znW6b/v5Jcua8WCXAZyygt0YeQ+sBIAvl0t9+vRps/ZdLFfzpDUkhieG39fol19++eIcOTbe486Dwfudwt0uZrynuOSuR3oOpGvckfIYXHNsHjetFfdMZhxT8XTOUb9ujL2z9jplNPf99bySPQzDGwwGg8FNYH7wBoPBYHATuDpp5f7+fkmj6aZj0FvuRCc+mwpjWVzpaHTqmi6q7FKYWVKQCkI76J5JaeKdgtNlwGC1KwRPbk+6X13hcXLVcZtVmjjdOkfKE1ZQ0soqKK7x6Fr2ouQ+buf6ZcIE50luxJUgeHJH9rmlWyq5D/s+uI4oFp2+1/ebCo/p9u9jSvfTEUkmziP7JTKUULV1afE6uvKHnhiU1tH5fH6RtKL10BNnuLY5ThW9rzrDM+GNIgYuxLHnSuvb8Pw4pzqfPrepzx7T9leyZEISVFjdv1zvqQDdnReTlzTmXtLC76byMZeg5FzlexiGNxgMBoObwGclrQiuMFdg19tUbFu1DQ7TMiBL7FYFk1RcwknVy2QGpnIzoE3LuG9D1iGQFa5kiFIAehXgJtOj/Jmz7PYYrBPHZnIKt3GFrRybw+VyedER3XX3TkX2FIju2JNEU9KCzkdSU1VbJsdreET0NiWvOCbB/fKecKwhtZQRtG1njSmdPpW6uLWj8+O+lO7fWYhjcPxO1Ut2zXt8ZaWr8JyeCce8hcSmuhyZUuDTc0BjkvRcv49TcTo9Wy7hif9zrl3hOeeS/7si7D0mvyqKJ/g8cOUJZKpcD3rflWrQ26TzW5WiuaSrPQzDGwwGg8FN4CqGd7lc6nw+x/hc1dbfvYqHCbL8klWZCpA1po5kMXS/cfJZ01/ej8PzkUWdJHj6+SbR4FSI2vdLy5ExCjeviZ2lYuIOjj+x0759t2aTpa4YDeM6K4+B9q/10VsJpXPm3FI0uI9PaenaP612V6DPz5IQcz8O49ZMXRdWJSYpHd3FHVN8h5aw85jIkmbBs/av+ewxFcaRua3+7yyUDGGPjZxOpzgX/VzJmskUnLgD5bvI7PW5mF7/rkC24eZ8r8SA41ptk4QoVvd0kgtcSYtxLnidXK4Cn4ksHVp5snSevI9X3p2PHz8uvUsvtjn0rcFgMBgM/uC4uybD5e7u7vuq+u//v+EM/gPwX5fL5R3fnLUzOIBZO4PPhV07xFU/eIPBYDAY/FExLs3BYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE5gfvMFgMBjcBOYHbzAYDAY3gfnBGwwGg8FNYH7wBoPBYHATmB+8wWAwGNwE/gfxWT9oo+jPNwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3108,7 +784,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4delZ1nm/5zvfUPOcVBIIkUlkuFQUiBPaKGoLDkCjYUwIaWNrK06IGBAQEBW1RRBpEBCMoIhtiKAQBgMdiYJIYoAGxSBkqKSqUpX6aso3nLP6j7Xvc57z28/zrrW/+ioJnve+rnPts/de613vtNZ+7mds0zRpYGBgYGDgf3bsvac7MDAwMDAw8O7A+MEbGBgYGDgVGD94AwMDAwOnAuMHb2BgYGDgVGD84A0MDAwMnAqMH7yBgYGBgVOBp/0Hr7X2otbaVPz9nqfhei9urb3oere74rqttfbGzbg+4d10zZe31n7xaWj3JZtxvM/1bnvg2tFau7O19qWttd/wHrj2Szr38e9Kjv/czXevfRr68h86fYl/916n672utfaK69TWhc0a/tbku1e01l53Pa5zPdBa+4DW2r9urT3aWntna+07r2VOW2t/Y7Me3/t09HMX7L8br/Wpkt6Mz37uabjOiyVdlfSPn4a2e/gdkn7N5v/PlvR97+brX098j6SfkXT/e7ojAydwp6QvkfQ/JL2nHoyfLOk+fJbdxy/cvD6/tfbB0zT91+vYh8+VdEt4/+WSPkTzMybiHdfpep8l6dJ1auuC5jV8TNKP47u/JOn8dbrOU0Jr7Q5Jr5b0dkmfprnfXyXpB1trv2mapssr2/kISX9G128tnhLenT94r5um6bqzkXcHWmvnp2la2vAvlHRF8yb5Q62126dpeufT3rmnAdM0PSDpgfd0PwbeK/HT0zT9j94BrbX3l/TbJf0bSX9AswD4RderA9M0/Syu9w5Jl6Zp+g9rzl95P8frvWHHLl4TrrNQ8FTxZyTdI+mjp2m6T5Jaa/9V0uslfaakb1lqoLW2J+kbJX2tpN/39HV1B0zT9LT+SXqRpEnSB3aOuUHS10j6WUmPa5YgXynp1ybHfoCkf6pZ8rgk6Y2S/u7mu9dsrhX/fiic+3xJP7y5xmOSflDSb0b7L9csQf82Sa+V9KSkv7MwxhslXdTMjH7/5rovTY57jeYfxN8r6aclPaGZSf0hHPfBoR9PSvrvkv6BpNuTvv5imMOHJH11ct2XSDqU9EFhHn5oc/wTm/a/FsdPkt4nfPZZmlnF45IekfRfJL1kxfr/xs28PLQZy89L+oLwfZP0FyT91816vlXzDXJzOGZ/058vlfT5kn5l049/LeluSc+U9N2bNfgVSX8xGf+k+SH8ys3aP7i5zgUc+5zNvD4o6V2ab/BPL9r7KEnfubnuWyX9PUnncezNkr56s5aXNe/XvyyphWN+z6a9T5D0DzVLww9I+nZJt22O+UBt7+1J0mduvv9fNe/XRzbj+3lJL7uO97HH/LwVx37p5tiPkPSfJP1yHO/T8Iz5Z9rcB8l3f3bTl9+8WfuLkl69+e53bPbmWzb3wf8n6YslnUMbr5P0ivD+j2za/N2SvlnSw5qfR/8o7tukL7cXa/hnN9+/QjMx8PG/wWu82VsPbPr/jZLOSfpwST+i+V74BUmfklzzYyR9/2ZfPCHp30n6qBVz+lOSvi/5/PWSvmfluvzJzdrftJnD78X358O9cWkzvh+V9JFP1155dzK8M621eL1pmqaDzf83bP7+mqS3SbpL0p+S9NrW2odM03S/NOuUJf2E5kX/Is0P6udqfmBI0h/X/AA60DzZ0rzQaq39Rs0/Nm/QsbrlCyX9WGvto6dp+pnQtzslfYekv7U55omFsX2SZhXLt2v+Eb1Ps1T7fyfHfrCkv6tZPfAOzQ/wf7lR+/zS5pjnaN4o/0LzzfSBkv6KpF+v+aG9hWmanmyt/WNJL2qtvWw6qXJ4qaQfmabpv7XWbpP0bzU/HD9b88PxeZp/BFNsbDTfpvmm+wuSzkj6UEl3VOdszvstmm/IX5D0eZofLB+8Odf4m5s5+FpJ36v5Jv5ySR/RWvu4aZoOw7Gfo/mG+xOSni3p/9r06y7ND7NvkPQCSV/dWvsv0zS9Cl36Ds374+s24/1izfvuJZv+3qL5hrtV87q/eTNH/7S1dmGaJkq1/3TT5jdrFpC+RPOafvmmvbOSXrUZ85drFm5+q6Qv28zdF6C9r9X8I/5pkn7dZm6uaFbhvUmzyu5fSPoKHavMf7G19kGaH9z/bNP2FUkfJOn9dP3Ru4/VWmua5+x10zS9obX27ZqF2d+l+WH7nsJ3a74/v0azkCXNJogf1/wD8rjm++tLNN9/f2JFm98o6V9K+qOaf5y+ctPO5xXHPyrp4zU/I75W896R5gd+D1+pmS1/hqTftHkvzc+Cr5H0NzTfl9/ZWvvAaZp+RZJaax+7udaPab53rmz69uqNWvLnO9f8UM1CMfGzmgW9Llprz9b8jHvRNE2Pz9tiC1+h+d77Qs3Cxu2a78vuc+Up4en6JQ2/4i9SLtW8pnPOGc1SwROS/nT4/Ds0/9jd2zn3NdpIcPj8FZpZxq2QuN4p6bvCZy/f9O8TdhjjqzZtn9u8/+pNGx+U9O2ypPcPnz1rc+xf6rS/r/mBMUn6CPT1F8P7D9LM5D4tfPaRm/P+t83752/ef2jneicYnmZGcv81rP2Pa/7hvqH4/p7NfPyjYs/8gTD+SfNNcSYc9/c3n//l8NlZzezsm5LxfB2u8yWa7b0fsHlvNvDbcdyrNQsxe2jvi3Hc90v6ufD+czbH/dbkupck3bV5b4b3zTjuGyQ9Ht6b5b0Ix71g8/lN1+u+7ewJ/r0ax33s5vM/t3l/92aN//HT2Lc1DO9LFtpom332f27W5kL4rmJ4X4M2Xr50n+iY5f3F5LuK4f0/OO5HNp9/YvjsuZvPPi989lOSfhL3zAXNWpByPTRrrE7cV+G7r5P0jhVr8t0KjE45w3uNpG95uvZF9vfuDEv4JM2Sgf8+N37ZWntBa+0nWmuPaH4IPaZZ+v614bDfK+mV0zS97Rqu/7Gbcy/6g2m2sX2vpN+JYy9plqgW0Vp7jmbVxj+fjlnVt21ePzs55eenaXpj6MN9mh/Qzw1tnm+tfVFr7edba09qlswsHf9aFZim6b9plspeGj5+qWbW/D2b97+gWWj4ptbaZ6z0xPxJSfe01r69tfYJG5bYxYYtPV/SP5mm6cnisN+i+Qfq5fj8OzX/cHNdXjUFNqFZbSdJP+APpmm6ollt+L7J9b4L7/+ZZuHKEuvHSvrlaZpeg+NeLulebc89HZPeoLCOmtXb/13ST7TW9v2nWUA6p1ndtNTeja21u5OxRPy05nvmn7fWPqW1ds/C8ZKk2Cewth7+kE7exy/F9y/c9OU7JGmapgc130uf0lq7aaE/Z9CnlBZcI/5Vcr27Wmtf01r7Jc33/BXNzOucZq3HErL1uqe1dsNT7Cvxb/H+5zXfHz/oD6aZ1T2pzb7f7IGP1HwvtbDGVzVrMT72OvfxCK21T9Rsu/3TC4f+pKRPba19SWvt+TvswWvGu/MH72emafpP4e8X/EVr7ZM0L8zPaFbnfIzmm+khzRKJcae2PT0Xsblx7tC2d5k0/xjcic/ePm1EkBX4LM3z+D2ttdtba7dv+vgzkj4zuWkfStq4pJPj/FuS/qpmFcwnSPpoHXugXVAfXy/pd7bWPmTzo/PpmqWoK5I0TdPDkv4XzTaHb5D0ptbaG1prf6RqcJqmH5b0xzQ/BF4h6cHW2qtaax/e6cedmqXm3np53k+syzQ7FDys7XV5GO8vdz7P5untxfvnhP5UeyT21+Bach2fodnmfAV/9s67a0V70sKab+6l369j4eHtrbXXttZ+R3VOa+0D2a+Vws8bOvfxjZr36Y9KuhTuh3+l2Zb5yQttvwV9+mMr+rMW2bp+l+b746s1s+yP0qzNkJbvM6ler+vtaZnt7yenbcebuO+fsXn9O9ref5+p7b13hGmantA8lky1eKfyZ5ikIzX+P9CsfXk47IEzkvY3789tDv9CSX9b8zP/tZqfK/+wtXZr1f5TxbvThtfDCzQznxf7g9baBc30P+IdOn44rcY0TVNr7WHNUjpxr7YXcO2PnXRsD6QUZvxOzSqxXfACzT9Sf90fbDbNGvxrzfael2pmczdK+qZ4wDRN/1nSJ28kqo+S9DJJ391a+/Cp0OtP0/Rdkr6rtXazpI/TbF/6t6215xbCwUOa57G3Xp73ezd9lSRtbog71LmxrhHPjNfZvJfmB6378xuT8+4N3++Cd0j6Rc03dIZfKj7fGRuh5Ic3981v02wz/Dettfebpinr95u0bYuhQLArbMv+3dp+SEvzvfJPOuf/Ps0/2sZ/f4r9iTixRzes+eM0m0y+PnxeCgm/yuAwgL+uhN1q9nPo4eckfVjy+YeqH052k2Ytxxdo20b94Zr3xedoVqm+S7PN+cs2mrI/ovkHcE/bmoPrgveWH7wbNVPtiM/WNgN9laQ/3Fp7xrRxZElwSbM0SfyopE9srd00TdPjkrRRzX3Cpt2d0Vr7aM3xP1+v2Zkg4oJmR4oXavcfvBs0S2IRn7PmxGmaDlpr3yjpz2t+kP/AVLiRT9N0VbNj0F/VPA+/Tsdqwqr9xyS9csMQ/o6KH6Zpmh5tc9DxZ7XWvnKzuYnXah7nCzSvj/Fpmtf+1b2+XAP+qGYDvvECzTf+T2ze/6ikT2qtfcw0Tf8xHPfpmlle/LFcg++X9AclPbJRNz9VWKIvVWabef7hzd7+l5odV7L1uaTZg/J64oWancQ+WbPKLeJ/l/SC1tr7TtP0puzkaZpef53704PVq0f32caNPjNDXE8sruH1wDRNb2utvV6zzf9l19DEKyV9QWvtXpuQ2hxT9+s1q30rPKZZg0T8I81emF+o5BkzTdNbJP2D1tqnaP5hfFrw3vKD9/2Svq619rc1M6WP0mw8vojjvliz6ua1rbWv0iw9v6+kj5+myRv15yS9pLX2qZol6IvTHN/y1zQ/YH+otfbVmtVtf1mz+uHLr7HfL9R8Y//NjQ79BFprr9Rsu/hTGzXBWvyApBe31n5Os5T7qZrVmmvxTZpVoh+umb3FPv1hzcH5r9DsHXazZsP+RUn/UQlaa1+pWQXy7zSrhp6reX3+U8EejL+wOefHW2t/V/MP8Adovgk/b5qmB1prf0/SX9zYKr9fs1T55Zp/fH6gaPda8Qdba49rtnM+X7On77cGm+q3aLY7vKK19kWaQw0+U/MN/LnTSY/RNfh2zQ44/26zt9+g2T70gZptYZ+YqKV6eKtmJ6tPa639rGanrjdqFhB+i+b5e5NmZ6C/olmd/HQkd9hCsGV/4zRNP5J8/07NgsNnavbee0/jV7QJQ2itXdTsQfkndTKg/bpjmr2p/4dmDcu/1yaUpiPAPxX8GUmv2jyH/onmRBLP0PwsuThNU++59/c1CymvbK19mY4Dz39WgaW31n69ZueYPz9N09/fCNGvZmOttcc0O7u8Onz2Q5rv89drFpSer9nz9Ct5/vXCe0suzW/QPJmfrlkl9/s0M45H40GbB9PHaJZM/6bmG/xLdTIjyFdpnsRv0WwU/frNuT+t+cH1pOYF+zbNk/yx08mQhFXYqN1eoDnOb+vHboNv1nwDLdkuiD+p2SD+VZL+uebN9hlrT56m6e2S/l/NDzwa1h3v9lc1CxffrDne7HdP0/TWosn/KOn9NYcl/OCmXz+smb30+vEfNG/g+zTr9f+N5h/BKOF/geYME5+o2YHo8yV9q+Yfg11/YJbw6ZpVMv9K84/8NygY1qdpelSzCvqHNdtRX6FZaPiMaTskYREbJ6aP17wX/w/N43+55of+a7TN4pfaO9DsLXnPpo8/qdk54HWaQyn+hmZtxddK+m+a1/R6ZQhZgm3Z6TxN0/Q6Sf9ZxyaA9yg2avhP1szav2nz97OCgPg04Y9rtml9v+Y1/PSn4yLTNP2YZkHoqub4zldp1sq8v6R/v3DuQ5o9wx/Q/Az6Fs3r9/HTyZCnpnks1/Jb8mOaBb9v0/wseqFmUnOtBGQRbb1vxsCvFrTW7tIswf6taZq+7D3dn/c0Wmsv0fxA+zWVendgYOB/fry3qDQHrgM2rsgfIunPaTbS/8P3bI8GBgYG3nvw3qLSHLg++MOa1QQfKemznia7wMDAwMCvSgyV5sDAwMDAqcBgeAMDAwMDpwLjB29gYGBg4FRg/OANDAwMDJwK7OSlub+/P509e1aHh3N4lF+jHZCpI/f29rqv8X+fG7/L2sxyyi4d83Sds+b7tde53uf2+rQEr2mvfdp/p2nS/fffr4sXL24dfNNNN0133nnn1jlxrXmtpdel7zJcyxyvbWdXrLGfZ3O8tj/VuXztHVN97ns/wp8dHByk73vjba3p0Ucf1bve9a6tgdx4443T7bffftTe5ctzGNiVK8dhjFevXk37uebeWtpDu9xb1+vYJXB81+ucao12+bzaZ9nvRfVbwt+C7J73d/v7+3ryySd1+fLlxcnY6Qfv7Nmzet7znqfHH39cko5e48Y7c+bMUSck6cYbb5Qk3XrrrSfe+1WSbrhhzrJz4cKFo+vEV7eZDd7f+bPqvV9jO2zDn/N9/J/HGL0F4pywDX7e6wvH53P9Gv/v9amCN5wfUj733LlzW330MX7YXL16VZ//+Z+ftnv77bfrpS996dHDyu157WO/uf4+xufEsbo/3jucS79mN3u1pj3hzHA7ax6sRu/Gj5/HHxP+ePA6vb7xh8br5M/5Go/xq6/r916/S5eO49n9v18ffXTOF3Hx4pwo6Z3vfKck6V3vOs4u52vGe+D7vo85EmbcdtttevGLX6yHHpqT+rzpTXPegvvvP3ZC9rWefPJkYQ7voew+OX/+fHqM3/f2wdI6ZJ/zM76uWVOD9+cuP2J8NmY/QHwO8H22Vyl0+L3X3a9xjfy/f0u8h/ybcsstc+Ib3/txzDffPGeQvOuuu/RTP/VT5fgjhkpzYGBgYOBUYCeGN02Trl69evTrSykwIpNS4udrJO2MnfE923u6VE0VPaekn4ESd/V5r42K6mcqJv/PeVsDXqca7644PDzUE088cTRWSpnZNSiBZuo2zkPFuHoSd4XeelRrtkbSrs7tqXyq9c+u6//NVHh/8j7zfRzP9Wu1zzNWWO1NI55jpuhjzp07153vw8PDI4bg54/biH3gPUYtUaYJMXsg0zN66tDqHttFLZ6p6Ag+56pnSe8618IGK9aWaQe4n7hn2IZ0zOi4Z7zGTzzxxIm243f+7F3vetcq84A0GN7AwMDAwCnBzgzvypUrR7+w0XZnVIyH9pEoxayxoVWfV/rvNVIN7WG7OED0DP/sY8WS1hjUK6bcQ8XG2FbmbMRx+ZyMNXJu10rosZ3YR5/v72xjIXq2Ttpqerbcan52cS4gA+s5cxi0g/D6cR6XjPjZPFbj8Jywz1HiXrLdZQzDz4ElJ4XsnNg+WUvE4eHhlhNM1m/aBjn2zIZH34E1mhHeH7Gf0rXZ8GhDjKjGU423dz1+nu1Zrpnn19fNtHvU3lBL4HPjfe1nQraPpWOGF214HPOlS5fSMWQYDG9gYGBg4FRg/OANDAwMDJwK7KzSPDg4OKKzVktkKqbKeSBz8aU6qnLXz0ICllSZa+L+SKMzel2ptdbEtiypFtaoPyr1a69/lZotU5NSnVSpbLM+uv2e+nWaJl2+fPnomEwdnrlJZ9eO629Vh9VSfk8VZqZKX4r3rMYhbat61sScVSo/3jO9cJgqHCVTNVdhFdwPmVqqCkOwG3k8h04E3BeZC3tmFunFevkv9rGnQve8eF/4NarTHBrFvbOLc0fl1JOt5dKzMFNpLvWFe6j3bOR1eip0vqfKOFNpeq/4Ozqk8B6RjtfDqk32NQuDMazuvHLlynBaGRgYGBgYiNi5Ht7BwcGRVJYZmSk9ViEGmXuwJRsGGFcB6NlnVfBwBCWtJQeU7NiqrUzSqiTunpNOJcFXTgsZKyAq1/3e+HrvfR2vz8HBQZcJX716tes4Ew3TEXSzt0QubUvplhirfZftncp5JdsP3t9kKNR2RIcKjoOoEgXEz3gMx5k5gfE7Mi8jCzGwZF05FcS58djN/rhHs+fFLgyvtaa9vb1uiAzZi/cSHVNiwgsHLjPxxRrHoIy1RvT2zpJjX8bwqucOmWQWoE2tR+XY1RuHGRYZXramPpbsjP2I7TB5QS/RAZ2vrl69OhjewMDAwMBAxDUFnld56+L/lTSRMaDKzmKJgIwvY4c8l8yoJ3FluuXsfTy2chfPxse+VHPTk9KX0l5dC1uL57j9SnLN7IGUfHs2vNaaWmtH51O/L9W2Gc5XZHi00SztmV5YBec0299Ml8T18biy/UZbBtlbj4Uy3Rpfo2TP9vwdGZ4l8rimZmlV4gGPP9rCKrd+MofI5rzW/qy11pXSz5w5s6VNiWvJdGBmbWZxt912m6TjFIfScdoqj8XnVAHpmX2susey0AnmAHUbDPnI1p/PXIPPm5iqj/eCx+Hx+rWXlpDPRveV9jrp+J6wbc3vfU+4b7GPvo6Pfeyxx070w32Me7SX0GAJg+ENDAwMDJwKXJOXZs9zr2IklDYzO0XFfCpJJftsDcOrpLDK4y47tpqDXdha5Z0a54RScpWOKsMugfTUi1P670nfkRkteTr2mAKPWQq6lmrbpt9XCYLjZ1UAfcY4GXhNRtyb6ypYuZdSinZsSufZuMgK2S73edxDS96/GYunLZdB0Nl1eI/1gr1bazpz5szWvR6fA27npptuknTM7O68884Tr5Hh+VgyPNr9qD2I/1dMiOxGOmY+fvU5TJnW8ySm1oEM3+OO/fZ4bL/0uJlwPbbH9WAqMY8hPiPNzvydE0I7mTjnM8KM0W34vfsT70EGv++CwfAGBgYGBk4FdvbSnKbp6NefqWSkbUmUtpS1aahi+/SAi1JPZXNaY+OqUnBlqZ+W0vGsSWVWebBmtiIyCZYDoWTcS0+2xiu1skXQhpPp0temQWutbaWUilJaloIqQ+yrJWjWSvPnlp7p1ShtMzyDbcW55XrQey1LbFzZQ8nssnuCLLNKCxavwbRTPJflWmJf6XFJb7lsfL4O7S70lMySYrv96IVJtNa0v7+/5aEatQNkPGYxd999t6RjhhcZEJkOvTUrNh3/573l8ZDleIzZ2Dkn2bOKe4QajMwLlePzq+fAx0aGR09KarboTRnvVbJDt8XrxHnkM5Bemka0//a89pcwGN7AwMDAwKnAzgwvIvMQs1TBop08Np5DfTF/3StPMen4l9/SC+NDMsl+KcNGxkKX4m167KRn8+y1HVHZqtjn+H8Vh5XZipZKCtG2F4/dRdKqyrhEkLX6mpaWsyTUtFstZaaRlhOcu6+ZRzFtCxxXFl/GPrB8j++JzBOWfWKmmqz6N/tSxTZl3pN8JfvoeR+6r2YStstERuaCrfQOzjBNkw4PD7cSGGd71c+B22+/XdIxu8ji2egpzP3Luc4YHsFzog2vKunTixkmK6RWwHNKe2T2XVXoNoLrzr1i5uriu7bPZWOnBqGn1bFt9d577z1x7oMPPrh1Du17kf0vYTC8gYGBgYFTgfGDNzAwMDBwKnBNKk3S6hhISBdev6d6KkuFRSM7VRZ0iImfUWXqPpnOZyl3YkosqV/Nl6odqicylZ9BtVvl5JGpUKnCrOptZcGjDAimWizOia/dU3ewj5y3pbCETAUV2+M8+Tu6N2cOGnQs8KvVH1l4Bdfb89FLNcc9SHVxlkarCn+okjJk46Mrt4+xujCqeali9DjpiGJkKe3oNEW1bNxvDGFhgumsDprHE9vtpaXL6nBmldqz0KXYl8yJxGq6at3d79g/hld5jHEdpJN7nmpbqv4ytW4W5hSvT5PNmtAPz5vnIu5Vj51mBO8z34OPPPKIJOmhhx46Opcqcu6ZzOxDpyurwe+55560HxEx5eBQaQ4MDAwMDATsxPBaa6lLaZQ+6DBBKSNzwY4uzhGUCNxmllqKrrB0o4/uugyypmNDlhaIDKFKxNxLKcU5qNI3xWtX6c+qIH1p22XaIIPK5p3Gfa5XL4VZ5gwTj93b29tyd+5VCLdUWSUGiP2tgqzpPh1ZbRUEX7GDCM4L1yHuHUrhvSQFPJfsyHNuFvXOd75TUs7wPHZLxz7HyNjQ2qrf8Rw6PJFBZPuMDjtLDO/SpUtbjDyui9OEWaNj+NqZM1F1T2dps6ScCVOT5TYYmsHxeMyxT2ZP8Tp0nKKWqLdeHB9DNnyduC+8j7yvzOAefvjhE5/73rTzUUSldcucc7wu1D74HK9rZIW8bwfDGxgYGBgYAHZmeGfOnNnS6/dK8FTI7GNMQ7YmvRZZWpWcOLZh6YsSR+WSHa9Z2d8oYWX6/splPktXRrZJ2yCZX8Ysq2D4bG0ona8JpGfw65rUYmRAcR49RttUmIi5ShQQ263m1uiFJ3AdMpuabcOUji0B+9yeFiJL2hv7ltmBGUzOwObMNskSP1WB5cjW2CfOAduM/SXL9rG0kcX/PTdLpaUODg62El1kc8x+uv8sWRP7TQbPIOtMg0G7rJmI3euzUB3ur+pZFVmT55nB45WNP4KhWe6zmaTXxfa4OCdve9vbJElvectbJB0zPZ/rPsb5JLOrAt5j8D/P4dxnJcHI9GNi8SUMhjcwMDAwcCqwc/JoS1tSzhgqSZupmLKS7VUS2l6BTEqVTI1DDzWPI76yBEUV3BuvzfFVknFsn9JYlbYn9peeT2SSWTJuemNSP57Zu2hPWgqWl+r0ahX29va2EuTG6zDlFcuoZHZE2sNo57XtlgmC4zlk9FzbOE5K2PT+s40jrqXn3Syg8rh1f+JeJeMmG83s6Ibb8TkeO+cos8cxxRPv9Tg+eia6XXpVZmnp4v1U7R/7DngNe0mDyZLdN89F7CttgfToJYvKytqwLBTnItMSMWkBbZxmXll7vG8qO13sG9PFea+apcXgcV/77W9/uyTpgQceOHFMpXXJ5sDnuE9mv/F6/oyJrN3XzPbOhPNZQYMKg+ENDAwMDJwK7ByHd3BwsFU6vlewktLPc1rYAAAgAElEQVRsZnOiJOJjGNOXSelM9Fp5LWXpyCgN0is08wasYgPp+ZmBUlEv4bClJNq6qtIyPdZj9JgrWajnmB542ZzENe1JWtHLl7YV6XidK2aQxQbS45TzQ0+xjNUalRdtJqXTTkbWkaWyY9o9et6RXcXrce/Q/hbHUqXMYnxrtnfcHlNjkYVkXtb0uDOydHJZmqsqNZ09OBmTGMdsZuKx2IvQ8+XvMy9NH0smbFsTk0tL24ml+azqeU/6GPfJx9iWFhkebYKcA65x7CP3TFWYNYvd8151qi/GxWVJns3c/Eov6yzekLZ2ertm9zXLOJ07d251AunB8AYGBgYGTgWuqTxQVWxVWrbjGJkE7FfbXe666y5Jx1JOxrJuu+02Sdv69p59qfJ4pJ0itkFvoorJ0eNTqpNf03YU59FSDNmGpRom5I2eT7TVMaMM7QLSsSRl6Zw2ijWZHHpS1t7ens6fP38kwVEij/2mLaBnH2VmCB8b4y5jH7OyNmSUvVJWjHHjfPm68fq0ldFm57XObFOW+snOs2TIBteO3nLUAMQ1oGTNpMG2/2TMhdJ/r2wU7aVLsVR7e3tHNlAzpMiE3V8ybmYKyTIF+R4yi/F1XFIo02Qxvo4ZnjKPYu9nagncRydKjllF3Bfawe64444TffJrfLYxy5XbpddsXEvGjPr69Inwez9/pW1PTu/dX/qlX5J0vAaZZ7ZReZ1m2YeMG2+8cTC8gYGBgYGBiJ0ZXoy1yuLHDHph8Rc7s/tZKqZkxbibKJH4GHsc+bq0B0XpmZ5GvUwuRhXDVJUyyspZcOxklNH7iNdj3JLb9JxFiZPrw2MydkpWS0ZBG188NuYx7Enp8TuPI7LNqjApbaqZdoB7iBI4S/DEc8hQbb+gBB5BOzZjzzIvXc6xx9mz4VW2SWo04p41G/Bc0IZCTUpEtB9FuH33zd6o8XrUJDALSZb7MmZIWtIOmT2ZOcR9YA1H9ADkNWMbsV/v+77vK+lYo+Q2uJeyQql+7rhdP7uyGDfGMJrxMPdodi9Tk0OP316pJx9DG16mmaHGxOOihuS5z33uic/jsZ6/D/uwD5MkPetZz5Ikvf71r5d07PkZr0PmyH2daT9iX4eX5sDAwMDAQMD4wRsYGBgYOBW4pvJAVEdkqYmqUjgZ9TRttTqgZ8SX8mSnVAdQ3ZpVhKY6gC7GUWXCMdM5pZcI2sdQ9ZM5xxBUtzLNEd3j47F0VqgSX8fxMLi717csCXIveHh/f3/LXTuuCw3YDEPwXES1lNVOTNvlc60CYtLlOFb3344ArpbN4P/YDhMdeP6pJo19Yh+pHs9S2jFEp0o8kKnB7ODgeb3vvvtOjMeq2jjPrCrO+8nzHfvIIGGeSxd+6fi+jfuht3fiue5DL90UE11YBei1lY7nx88dmkN4j8X96blbSvkXVfZMuOxXmg2iqplhDpwj9zELNWKqPjuV+H3WJtXqXH+rK9/85jdLOnk/eW/6GM+R76vnPe95kk4+q6pnseE19tzFPkaHmbUYDG9gYGBg4FRgZ4Z3eHi4JcFlaY0qN9EsESvT8zBNDl2NMxfVKsVU5oJfpU9iyppsXO4LnSJY1iJKzTQ8Z4G4cdzxfzJkJu7OJLvM6Sae23POIQNnoHicezL8Na7BTM0V57xKFsAEspbMpWMHEzqNVAHnWWkSM0ZLon7vuY8SKfcmg3rp9BP7XbFDssK4txiewtCCXvIHMiuzGzucZKnaqgTnLLMUWQj3YpUMIq41naAODw9Lx4MzZ87o1ltvPWrfkn083kyDjjJkT3HP+9iqYC2dpaLzkq/tvrh9JpHoBejTac572c4z2bGVo2AWDsW9maVZjJ/Hc6pwJB/r1GPx+WNtiveG58vM0u/j/uZ9yjRoWbJy3oO90lLEYHgDAwMDA6cCOzG8w8NDXb58eav4YHRlpk2BoQVZ8DjTF1lCsMTTYxIs/GrQ/tdLZ2NUQevxMx5jaZDlLKI0Szsf05AxgDt+RpthVZgzS5lFCc/osQK6KjM4ObtOtE32SrxcvXp1K2g42uN4bb9ScsyKalIiZbC3r5PZfdhn2u6yxNx0wec6RVsR9y1tk2TGcXxMg0dk+8ISsO0eZHyezyzMg/ciQ2iykkKeWyZF5j7MGBzvgQwuHuxj3H8HasfzbatjAVYWEZaOmQefZ5wftxHXlPuMtjQG38f2+er5c/vZ+vM+ZJ+5D+NntBlzP2b3RJWiz31kgndpm4Xef//9ko5DM7J0ZCy3Rc1JpvWgRq6XTJwYDG9gYGBg4FRg5/JAMcgvKw9Er7Is4a900i5SSc1Mo5QlRaYEWv3aZ3rqqoBtZh/jOHgupdl4PPXrZCOZZ6dRMTzapKJkR/sL+5yNj/NYJavOxhXfL6WH4niyUk8s6WOp3cg8BBm4WqUcY3+k7dRLxBrtAPcD+xzPpV3G6Hk9U8PAoPgsGJ/7nGwq0yzQZlKVaooaDEvfWfq2eE5WumYNDg4O9Oijj249DyJoF6V9lB6L2djIHGg/jWNmekW21UvuwH1uL1FrtKKNjZ6U1dpmdnkmp2Yigp7WpmLlZLTxPqhKmmXs2qh8FWhfjZog2lzXBp1Lg+ENDAwMDJwSXFPyaHrsZNIaf7nJOrIYMDKfKolvlgC2ur6lzSwOL/MUjJ9HVAyvki7i5xXLrcr4SLU9i3NExhT/57z1vEKrBNpct4xJGEueUrFQY5ZyjpI0y7JkdoNKeqT9wvsgznWVBL3HPhjnRQnc9p+4p2xLY2q3KtaxN8cG1zQrKWRwXVh4OM4d05AxLipjoVUScTLJjEmsSTx+cHCgixcvbt0nWYkxgp9HBkT7e3XfZJ7Q1f3PpNs9D8i7775bkvSMZzzjxLFR00BGVRUCzryDq31Az8teYd5qvHz+RPB5R0YZn0N8rlEb4bYi66WWo+fhSwyGNzAwMDBwKrATw7O3VGUb4rERZDNrzqHkm8WgsGwF+5RlSaDUSk9SHxs9g+hpycwkZLSxj5WHVRWPF48haMvJ7EFVoc8qaXWv/5UtL0NPyjo8PNSlS5e2pPTYh4q9VvZS/i9ts5d4fYKMrhpjL1k1pXbbSXpSc69sDsGyL5XNOIJ2pJ4HJPtRZVHqrS09fM1uaRPNrmMs9THG/2a2m4qV8d7K7KOMF2QsYsZmquw4ZsYxoTrH6HYc9+m40re85S3d8cdX+jlkDI9MyKB9LCtlxn1W7fte2R4mnuacxXbJ/siqM41gFpe9hMHwBgYGBgZOBcYP3sDAwMDAqcBTqoeXGTiz1GEnLpikeDKqiuOkrFlNNoIUP7pKW6XJvlA9Gak31QJVFe6eq2wVLpCpQSsVEseVqSepkmEfM3XpksNJdm6WmqoHJy6Q+rUNK9Vrpl6j2rMKmWF6svhZFerRC/nwdViV3edkaah6am/Pj5SruKvE2pkTCQNyq9R8mSMSnQUqB5QMWQXtiCw4Ppoeeg5gWWhIhNVzdL036O6efcckFtUzLIL3O9O5ZU5ZPtYOTl6fLCymCimhijt77lQpzKiujHPFtavWO9s7XFPPo8MtGHaW9ZsB+1lCdcNrTqfDHgbDGxgYGBg4FdjZaSVzsY9STOVqTUN9llyZUkNlMM2uZ1Aiyhge3aTp+NJzn636bPScSCq3Zx4XQWmc18/6VzGk3jnVuUQ293HNe1L65cuXt8rMZPsgC2iX8jRylFqrcIqM9VahHmucSZhMmWWComNUlUqu0pRk4SKUdHmPZNW4DTpuMSA4SwhesYNM+8E1oJNCj7lGJ4Ul5wOmO8vCU/xZlVw5e35xLqtSPNk9TYc3ahJi0mMmnvdrTJFGVPt5Dejkx1AtJtiOoCbD6DH9JUcXz01WlZ1hQ73STCwMcPbs2RGWMDAwMDAwEHFNNjxKcpmemhJALxh2yYayxDpi+5WuO3OfpSRMSTWTtI2qb1mZDpZNqVxxM/ZEW0SV+muN5EcbUs+leE17vf5n1452mixxMdvlnGeSd7VXKjtcZG9V2jbOfdwHFTtiSAvHLm2zQbKpTDtAZmI7DxP/xvXL0n9l/cgCz+nOXxVWjRoT3mPuI0s2ZawgpqHq2Yv29va2yofFfnvMDvL32HuB7RVLrsKIIrguFTOJY2KB10z7VPWx0j4wTCnuA5ZGY6A9n0sZKhshSyfFPvK7LLF11b5faXeO9wQTXO/CegfDGxgYGBg4FdjZhrfGG1CqJZFe0OiSxJ39klM/nQVgSnnBWTI5MotMgqREUqVTiuNnUUhLeD3GVQWp8/vsPW1DZFPZPFbprdYkaF3rwRfHYOkzFhKt0rdV5ZWkbe87rhPfZ/uA89Wz3dCmwCBYH9uzUZN99lJYsUCmr0O2E7UVFbut9kWWPJpMjywtY8pVcLwZX+b1nI2ZaK1pf3//KBlyxhi5P8mWGRAubT+/OG+08WfeumSJZMSZ9yxtUJW9Mf6/VCYsexYzsTqL1Gbpz+xRSe1AZQ+Ma0AtADUItCFnYzd6Cc4z34S1LG8wvIGBgYGBU4GdbXhSP9VTpWte4/lG6bGKW9rFvpTFblGSy6RW6aRUUSWApiSSpfPxZ5aoLD1VpV/i/5RmlpJlx/+XbGvxeu4vJdVdyrgsJXGNLM/SbVYKhfNCVhP3G8fK/nI/rkmn1kvIS/sBvdmyWKMqPRv3eS+NV2YzkY7nJNprHN9VoUoMHPtAcF4zll2xXtpj4jiix2Dvvt7b29tiRtETlrZMxgRm8Vy9NFnxe+7L+F2lCcli+ciWPV+8ThabymKxfoZ4rv0+rqWPtV2TZYnWeNzS65RzFN9XjM7rlbHeKh0dy1PFvVN50a7BYHgDAwMDA6cCOzE8Z8qgPSHzuKx0vj0GsBRr1rPlVfEqlWTMccVzMom8KodRxdRl2WAo4ZF9ZBkIKjsmJcpdknH3vM7INtfE7hlrY2GkbQlOOh6rJVPvM2ZhiH1YkvY4j1kCYzKtKhF5bMegrShLjl7FQ1Z7KpOaec9F26d0ku1YSiYzod0ls8NU3tSV/U/a9lyttBHxvdd9rQf2wcHBlmYkZiaxpsA2KI7H8xcLiZq1sOArk0hn2aGqTCCMFY176aGHHkqPZaHZeB320eOjx7cR91Jli6YXarb+lfdnTzvAxM9Vwd7YLybdZhHZ7DfGiM/NEYc3MDAwMDAQMH7wBgYGBgZOBXZ2Wjk4ONhyaIiUuApQ5Gt0TV1K0lq5dcf/qbZx+5lbf6XaqVyN4/+Vu3v1efy/CvzN1AVUCTNYfo2qmE4Z7EdPDVqpIeJaZwH6FaZpSmsSRqeVKvCXasueg04VipEFul+L2pb9r5J4x3mi40GVwiobn+enct+3aitTabq9W2655UQ/eJ1egoVdao1V6t4swJrpx5ZU5VeuXOk6rdHV3mpCOsdkKdgql/8q9Zz7FI9hsu0sjVZVl87j8fuo+vU47IhklaY/p8NQVrPPcFiHj+3VVOT4qHY1slp6dDJz+3wf++L14asR9wfv8RF4PjAwMDAwAOwceH7u3Lkt1+zM6JmlSapAt2C6ejPgOAsAzfoS28gYXiVlZolmyfoq55VMGqzSjlUhDfE6lYNBT6qpnCSq/mT9JvvJ5nEpGJY4PDzcCpXIUrBRuqME3EuubFRhHRkqbUQm+ZpxWVquQlliIDhd1Jk8uOe8xOBkvvrcGCjsftMxhM4SvVCXKrF5pQGQtt3RKelHNs9x7O3tlWvk1GIeT3YPcIwMYcm0UQyRqVhmdk9XbJAaLO+T+B37xBSHsY9m8GbpZnh2WvIc+J7paW08J+4Tg+Qjqr3Csl4ZW/Or15sJ1aM2gufwmZiFBnm+4nNzBJ4PDAwMDAwEXFN5oJ4knBUVrNpaQpUiKWN4tJ2QcUXdM+0uLNqYJeSlVLYUoNtLyMo+ZwyJElTFDnuJp9e+j+2QOVRuyvzf75fWlRJp3CfV2GgLygqWktGtKflDey+vw3AISVvpregenq3HUnJ0fh4ZbqUx6dn9OPZqvxlZCE1lN8/ueUrptMMwWXFsN0rylTaotaYLFy5s2aB6miXfn1nyYYP3NMsP8fMsQL/SwJjdxNCJKu0hbXfxOrx2FcKShQDQJk5bmvvYK3TNNbUtLysfxPvHzNnr5utFpu/58TF+32OfRk/bUGEwvIGBgYGBU4GdvTRba92UPNTfV7rZzNOuCt6uXiNob+klDaYHUsXwskBTetpVqayiTaXyQqUEltnAqEunV1YV+N5DZteiVMs+9aSpNXZFBw+TKUQ2Q2++XiIAnkOPN6NK7s3/s/G4H9EOw8TFXJ9Mo8A1cnsVW8vS0rHdpUTdEdRo0PM3s2tRWq/ua6m20TClVDb3axKPO3k002fFvUOPYSZ3yFKLVc+kKhF1XBePsUr957Fn+5up18i0Ms9lBmQbTN+VaXo4LgZ5x3Mqxkh2Svtz7H+1HzIPzCr9XO955r7EZ/Gw4Q0MDAwMDARckw2PyXUzhlfZYbJzGI9WlaDIpMCeZ1dEpu+vmGPGgKp0Q1V8Xi/ei16nGYOpziEL4FjiMZXE2kvTU5VE6SVf3iWWismVY2oxS41V+qJMO+Br0zuu6n8mOVZ24CzBtY9xXBT3gZF5opFR0WZD9h6/o02KzKUXh0kJu7Ipxr4xzrBKDByPpY2Gkn6WhDvu5yUtBeMzI2jr4XMoY7PV84UeyT1P311SJ5LFUFuQ+SgwAbS9M9lnaw3i/cQ14zFel8yjnFq8qkxUppXifquKJvN/qX7uZcmjY3zrYHgDAwMDAwMBOzG8vb09nT9/fiuJby+LSeX5FiWhXnLRDJntyeB1qeOO31H6Y3xHluSULKRiemtsXbThZAmHK68sekmtSVbcy1RReYz2WFvmybe0duxv1OfTS44St9vOEk6zv1Vxz8x7krYVaiWyuD9K/5RmMybhvcPimr3sJpk3Y7x+xp58Dtnumv1AiZqshNeVjj3rzOzIILLsSrTDxEwqxN7enm644YYjhsK4tWxsxC7Zhbj+LMXTA/dfXGvaNsl8mDQ9fudzLl68eOJzg96O0nYBWLIz9zHzCqY3ehWPm3nj85nf0+5Vtlvem5nHfM/3ocJgeAMDAwMDpwI7e2nu7+9380bSW6nyeMpQxQdRSu/FgpHhZQUymVePfaVELm1LeVVexEzaoO56lwKGFZPj3GQ57bg+vdI/S5lJ1jC9HuilSeYibTO8al2yeEVKe2RgWaxjFQ/HPRrP8X56xzveceLYSqqN59vuxwKtlHx7noRkWH7N4vDohVzFVvY8JMlcmbNSOrYvmV34lbac7Dpx/npxePv7+6XtPba9tBd75XOoxalynUrbNkFqXrJzGKNrVsbnUebfQJZWZXqK16MmocpPmXmfVh7rvfklk6vsm1kb1Iz0PLTZ713yvQ6GNzAwMDBwKjB+8AYGBgYGTgV2DkvY398vjf0+RtpO9bMU3BmPYVs9NUFFkysVkHSs3szS40Rkn5viM9C5R6ur79aW1YnoOavwelWoRDaPlZPMLn3tqTtamxMAV2pKaVvlwrEybZRUlxSq1JXxXIaH0ACfuUR7H1mN51eOK0t2631H136qy7Pk0XQL9ysD3+MYGQLCdHic1/h/lSAgMxGwen0VlpA5VvWSHsdjz58/v6WqjY4MTFZAZCptHkvnNZopsmTyRnWPR7OInx133nmnJOmRRx458ZqpDdknXo/Pv5jSkCEsPqZyfOG1IzjnvYQXVRhUpp6skpRX1+X52fseBsMbGBgYGDgVuKbUYjTuL6WUkta5XveuKa1LBFwlc43XY+kQuufa6J5Jg5ZiOQdVeELsS8WwsvFwTipHFCaxjX2qzukZ4fldljSafVwb9Nla65beYfkXGvHJiOIxVQo0rktkkQzm5trxuvF8uosvlZiJ3z366KMn2soCjnk9Xof3XmQfdm8ng1uTjq4KH6LTRKYxqdzt6YwU/4/B8RVL8jOHpWki66HTCNvK5rZ6rnA9GOgsbd//XA+PPdurZOC8jyJL82dMf1g5B8Y5Zjktn8OUYnGuGJpFVNqDeG06lXCfZ5olg/Oa9WNNeasKg+ENDAwMDJwK7MzwpH4arYqZ9FLwLNmHqkDqeG4VjsDSL+xvPJcu5VGyt+STuWXHNjLX+aWgdKbo6rW7xNqyY4mMWS4Fmi/ZWNzXtWuZ2Y8Mhm+QaUWpr2JHVZHNKpF3D3EfxP+z9noJB7g3KZ1n6ZqY8Lcqm9ILS6DEXQWgxz7QvsOwiyxhAEvJ8Ng4Vwyn6aUWm6ZJV69e3WJgGcOr7ovMhkemwGBx2uvj9cguKrtSPMdpwRhK4+u5LTP07Fjuc9q9sznknq2K5EZUWg9qTLI1NYP0fPaScVRJR3r2Wu7bXRLnD4Y3MDAwMHAqcE0Mj7++azwUK2k2O5+/2JQ6o1RQpTxieY6MFVDyoFdglHLdDnXX7HvmNVd5kBpZMVkyoCpZ9Bq9+JLXVPysx6b5fsnLlX1YSv6dBV7H95kXI22PLM9E9hz7SrtLZffJ2JPPsTReJcGN51CS5t7N9g7hcbGEUTaPtDf3JG2C+5uepVHDwXGQkWf3bZV6sNcfsqZo66KdcM2epz2Kqd8YsB/XLyu4Gq9jRBue++tXM7477rhD0vEcxOdB5Q3OlInZs7hKBH7rrbeeOHfNuOix2vMDoE8EvaDX7L81zDz7bgmD4Q0MDAwMnArsHId35syZLYkxswFUXpIZM6KEW5UUMjKvOeqlyYgym1r1mtl7KimCNqTMFlal5aFHWWbXpARcMYmMJS6xttjHqszREuPbBdEOk42ZqNIoRYZHOwG9zDiPPVZbeRT3vAvJLG2/iHuHaeh6GotsvNl3PS/Eig1U8VCZdoDnVna67LuqlExkcZlWZ0lTYGZkVh3bi0mTM2SxdLSh+ZXFTXv3NFk7yzlFGx4ZpBketRBxLX0M7dfUOLk/cV2qkkkcQwRjQjk+aj3i3qliXv3qZ3NPI1jt/YyZR6/dtc+lwfAGBgYGBk4FrikOb40Nr/Ke5Ku0zfDIzigJR8nOUguP7SWarcpLkOFl+ndLl5T+yAoznXP1Pku0XZXUIHPJpDTaq9bE/1XMbk3S2F5cF8F+x7VkTCPHnF2H2VLI6Kpk0hHsi99n9gzaDL1HKkk4nu89QrZJ1hjPrZISM1YxszNSK8BzsxjLyoOY9qBMy8IE07x+ZB+Z7au3x/b29rZsd7EPnAfOaXZf8rPKLp4xPD4HOC4yPWn7GcH93ks8z3OYecXr0ptD2tZ8PbPIeL3Ka5t7qLfvKrtf1l71nMme3/Si3d/fHwxvYGBgYGAgYvzgDQwMDAycCuzstLK3t9c1ehtVHbws1Vem5pRqo35W+43nVkmFY3t01KBzQZaQN9LoeG4vQWqlUqwcfLJxVQHBPSq/VDMrC+asVBjZuHhszxjdWtO5c+e2gvp7jjrcK716YQxkrqqWZw4aVL1xTbPEtQxW5r7oOZ5QTeW2etXSKzNCFkLDY7hnsnMM9qkKH4jqRK4pVZprAoSXXMtba1uB4TE0wirGKol05sLO+533NB1d4rkMWagSKsR+cA7t4OS++/pxbt3+TTfddKI9hp5wriN693C8bhyrz2ESAe7vrHaj22DIxBpnrOr503P+GSrNgYGBgYEBYGenlSWGV0mgVVBxdizBNnqMsjI4cwzStuRWuSVnx1YBzz3Wy2PIOtZUuq6ccbKAU0qDPeOxUTmt9AJA10jwe3t7uvHGG7dck6M0WyUYr9I3SdsMj+nIuN8yFsr95z71JFK6XJvheQ9lYSIMnSFLzIK6yRS4dzKHJ4YDcI9wz0amR61KldYtKynEAHQ6o2VJit2HG264oQxI3tvb0/nz57eSK8cSRUyYzXFkweNV2i46ovWSR1cB+QyXiueYrTEBuZ1HshALt+u+xKTb8X3cB1VSDjpwZX2syvR4DjK2yL1Rsd4eC+X96f7EdGsM4B8Mb2BgYGBgALim1GLGGoZX2aCy4OFegunYdi942KB0m7mWUw/P972A48wmVF2vcvlfU0Sysi8SmS2smsc1YQQVi++lTFtijufOnduyV0VUweJkXnEOeu752fvMXsG2OI5sr2bSsZQzCc4dXeXpZh/3TlZaJ76vkknHc401icfJjCpbXo/h0e7DwPdqDnoM74Ybbthib5FxMeWaWVOl+Ylj5JryHK5ThK/jIq4sceUCwbHd22677US7LJwbGT4TDVQaDI8lrguLBVfMLp7D0kFLmqz4zOIzco02oudXIG0nBYh9iGEqa9KVSYPhDQwMDAycEuzspbm/v78lVWcBpZUtL0sWW6Uho3SepQcii8m8yGJ/snb4mpWcydKoeU6yPmapcHqpxAjad+ihWKXBytqomFjGCo2K2fW8NNfo0avE3dK2BEq7ZRZ0W0m81BoYvaTlld0v89JkSqfKbhGPNcj0uP+ye8NYSjEX+1vtjcxTujqG+4wemNlnVTqy3n174cKFcv+01k7Y+Mh2pO2g/jUJKCp7e5VOL16P90VlB44g64sB39Ixu4rrQq0TPWt9rMefpXxju2R2PY0Ji8gavA+kkzbV2H7Pj6PyILbNLivNRBteb+8Qg+ENDAwMDJwKXBeGF3/laQOo9LdZIllKAhXDy7znKNn3kh1X7IX66kyyrzwr3UaW8HgpVqeKj8nGulQ2KBsnsYuX5poEupn9IGt3f3+/jEHLxsa9krXPeCGWBeqB7VXeu73ik/SEM+J7pqGiZqTyEox9qcpQ9ZJikxG5XXr2xXmgjZWMJUstRu8/Hpsxc8bCnj17ttyXtuFxTuJnvBbvjx7D4/1ZJSSP5zL2kPa4LM6U7fI5k8Xu+XzvlYppZfY4Miq20UusT8/Uni2Ufa00dtn4qhRwtN3F3xiveyyzNGx4AwMDAwMDATszvAsXLpS/xlKd+aTnOVjpluk1R6kwflfpuDObSpXxhN/HtliI0ah00Bk7rLJwZIU/KbFQsqK9K8tcQ6m2Z3Or4u5oA+klxV7y+rxw4cKRJH+7OLcAACAASURBVJ7ZT+hhR0/EbF0439xLtJdloJcuWVXPM7XKtJPtb57DMWQMtup3xcCzdnw9xkBybaW6DI3XhHFm8RyyG8YbZkzCdqwewztz5oxuueWWrbi1W2655egYxr1VtrR4X1YJvyvP6KxQavVs6mlrqmT1mQc2nxlkiVzDLAsV4zyrOMmsfd5HfJ5mGXcqvw2OKZsLXzeW/onvJenmm2+WdJIFDoY3MDAwMDAQsBPDs5Tei5hn3BAZXa88UOWVR0RJkFIR89H1YoAqj6ee/Y9SGiW8TMddSTj08MoYVxWfUnnvZeeyb2vscWyrZwMxel5/zrRCiTSeQ5ZexdTFuajsfFUGlggyO7MNrksmPdI+QTaQzdNSCRsen12PjDXzlqMnJ8dD1tPLa2s25fvarC1mAyHrY9xXVkIpy2LSi8O78cYby7Jh0nH2Eo6tiq2L//P+4P2YefxW9n/G6tFzMbZX2Yzjc4DHcj8z9rGX+aQqzJt5dnIP2W7Wi/urbHV8zmaxsG6fzztmp5GO947v1xjfu4TB8AYGBgYGTgXGD97AwMDAwKnAzk4r58+f36K70WmF7rhUf2aB5z7HVNXvTXMr99aIpfIiUR3B5MCm53QTz9xn16i7+HkVJN4LR8gcCiJ6jjxUyVSlkjLHmgqZyoAqs4ODg66Txfnz549UPGvK6FSJn+M8up3MmSJ+n7nve795n3kfV6rGeG3Of5W8IPtuSbUYr1uFw/TCbypzAvvBNFjxf6q2qtCD7DOWrLGTQeYwEh2FeoHn586dO/GckaTHH3/86H8GufO54/73kgjwc77vmQAylbn7bnheqA5ln1nNPJ7DOeqFx1DNz2dKleJQ2t4HlUllTUrDXjqySp1LE0FUFdPJZ6g0BwYGBgYGgJ2dVs6dO7flWh6lG0thWXFJKZeaq2DR6rUXCMwSLLHv/L9Km2Rkrt40/FaG7p7ETYa5i5ReJf7NjNV08uil9arSLBkZS2XYwOXLlxdDE9hOlq6JpVeoUcjmiUzEn3uuyQ7Yr2yMPfbMvVIlXZbyFE7xmF7ITuWA1NMAUGKn1oXzHK/Hfc4QA7K3eAzv315aOrrkL6UWO3v27FYAf0zMTIcZ3v9kubE/S2Wzesw7S68Yr5OF3TBpBRM2x77TuYd9ZRu9dVlKhxaPqZ6raxJ7LIWlZI5DTGbCEKF4/5LhjbCEgYGBgYEBYOfyQGfOnOkmFrWulRLPmkKclOirQMmeG3VVCqPnjlwFi2bpmij5kA1kTIhSECXuXhB2ZcPp2f+qkIYqlKLX/14JI6ahunr1apfhHR4ebrlER3tFVZCzSpgsbQe7knnRTTyzV9HWQdfvLCEA936WVJkgo6rCLiIqNkabZI+lkZXxHonn8pgq5CC623NNuVd7ydjjHPdSi910001Ha+njbBuM/XZ/7bJOu29Pq8E9z30R+8c9mfkmxO+l7RRlVVLljHGRoTLlWFZkt9IGMbSlF0KVjaP6nHPN5xwTfEvbNnaPz2ubhRVVweprMBjewMDAwMCpwM5emnt7e1u/rPHXl56bVVHNjKVR4q6YXpbOhoHmlNYzSYR2nSpAO35XHbvGS4gSVcUSs/4bPelsaRw9hkcpl/a/npcmpcwM0zSltokIS/D0qOP7zEOQ3l2U0jMGRlbAfcG9lbVfJWrO0p/11ixrIzuXLJD7Pv7PVG20b9PzMv7PNa3s6fF6SyntspRSPU2Fsbd3Mnm023Eh1Xht2/XogVvd89LyvZsx4aoEEm25WWJuMi56M2bPncqG20vvV2mQeI+v8UY2qpSRUp3sg8w5rqXbYxkkB5ozOUQ8Z8kzP8NgeAMDAwMDpwI72/CkunRE/M6v9JbKdMFL6cfcBj2WpG07EiWQLHk0r1OlJ1vjxdjzLFs6purPmnOqJMbxu0rX3WNrZJuU0rJEw5EhVTa8w8NDXbp0aUtii33xZ15neuVmUmeVxijGBkrbdqvYf7bLsWZJjyvvSSP2kWywsj1kXpNV3ypvSmnbZuf3jEnLYhdpq+O89cpR8TOmFIvzyFRSPduvx80E7jHdFG13Znr0KcjuE6NKAWf0it5WNu+MrVUpzbJE51WaxcpLMtMS8Tsy8eyZXLHRyjs9fkc7Juck89blb4rXLUtLZ/QYaoXB8AYGBgYGTgV2ZnjRhudf5cx2w+wePU+kqhQ8vaTIKKS6LJDRK/GyJv7OoHRU6ad7qKSmjCVQ/75k6+hlgeB1egyPbVT2Rim3j/WkrYODgy3pNvPwtVTHLA9kbxFkL4bZTRYfWtmeyPzj/sjsLFI/5owsrfK4zVAVfuXejfcg7UuUvCsWF8+tMnhk92+VWYPPgGi3JcNfE8PZ01S4bcZvMXtJT4uy5M2YzTH7TOaTeRdW3qs9+2L1fKOXYzyu8vCm9iO7p7knqwLHPV8Makp6ca3uk70zzd4zHwLee5cuXRqZVgYGBgYGBiLGD97AwMDAwKnAzmEJWVLcjG7TfZsG0oyi8juqzPyaGT2JXuotUuzKaaanpmS7PTfrqtJxj4ZXaklePwuLqNSfVX20iMqVeY3LfC8swW1QxZ2puezQQNVcpgY1qtAWOj7FOm4Mq6F6iMdV15bWBVlXSQOoHo+gKaAK7s3UkksOKJlKk6ox9mlNOAwdEDJnMybSXko8fu7cuVWJCKpE3QzNiP/zvqRaL9vflWMGExNkzzkGkfcqnzPQvEqkn6n0mYS/SgAe55EmAc451fJMMBKP4R7Jxlep+WneiHPPeTw8PBwqzYGBgYGBgYidnVYiy6Nk5O+lbamO7Cxz26/SWFEizdzSK2eCjAFR0qYTTk9Kp4t19ZoF2S6lwuklca0koUyaqoL8q8DT+P8uaXqqdEMV9vb2tgLOYx9YCoSpsZhgNp7P+alc8rPx2ZWdzipZyZclpp2FMnB8VbKCrI90kiLb6FWtrtKCUWMSz2XYQZUuLK4bJW6vH5leVh6IY8/ghBc8NvuMyYbJ1uO6kCmyDxW7zo5xXzz2bP2rPUJHmywMxudwfbguUYNRJbpnUucsKQfb5zipQYlgWEf1jJRy9h/fZ/OZMdORPHpgYGBgYCDgmpJHU8LK7GiU6sjwsjCBSg/LFFAZK+DrmgDQtSm44v+V3aWSErNxLaWYisfwdU1YAtsgMqlsKaA+C/Lk2HvY29vThQsXthheTELMAsBu1zYIS6pZKruqxJT3TM++yLRklirdRkxAzfWvtANxnJVbNvd9LwCYtpIe+6hs3wzr6aVb43z1mFJlq6mCiLN2ehL6NE06ODjosmeyfz6TMrt1FTLF99lzJ/YttpWxNF6Pe6d6jce63SrUIAsbyjRi2ftotyM7o4akZ+Ot9rfR8zdwOAI1dj42piMjU82uVWEwvIGBgYGBU4GdvTT39/e3vP16bI3SudFjXFVANsuQSHkSYulYAsmC46tUN7S1ZV5llLQq216WwqjyMuylV6LkVtn0MlBa2iXpanWdzEvT6Enp9rSj5B3Xz+tLmxpTjjFRAPsV+0I7cOalSc8wIytNwnOrY+P3lW2Y+y4LZnbfmJDXyALBq+TrPdsdz82SYMfrZ9oPMhTatSLDq/ZzhWmato6J+4CFQ+klmSURWHp2+FwziXjfLCXFp5do1pfqedd7nrIAK9lovL/Iyul96rbiPqju96XPY7/ZV885yyNlc1E9R+M9mJUUGgxvYGBgYGAgYGeGd+7cuaNf7CzJKiVOsqUsCTGlfv7aU1qPUlolIVK6jd+zD1US0l7sXhV/l9ljqrRklZ0sosew4vWzWMjKrthjeEvsL2MfMX6pkrS8d5hUPEpulACZNNzagix9EvdQlQopfk5pkl5lmc2Q163Q85ql/YXSchYrxj3KlGKZHY73AOOwesVqac+qvIOl9dJ5xpCqMjcR9gzPWLphFun2aEfkXuUY4nvOSxaDWnlN92yrGVuJn2dzW6Ujo02frDTrU5WmLkNW9DYis4lW9tjKsz3+v2TfjGDqwStXrgyGNzAwMDAwEPGUCsD2yspb4qCklXkbVlIMGWQmaZHBkfFkyVApkVYekb0yHZTweucy6XFly4vvK/ZJiTKT0qpje3Y/Mla2n2VvqWytGWz/rZIuS7UWwJ/bthfX//HHH0/PoWTYs3XRk7Paj/F87kl6xPVsuJVXZmY3Y3aUJ5988kRfswKwZHZZRpXYj2wP9bwyicozkZ7a8fulrDwR9tKkV2lkStQK+D3Ly8Q5WLKLr2FABrNOZTYuznfFwNZ4FPe8wg3GpFZjyJ5znBPaCGlblvoxqNJ21pjYHp8dzEKTxTVXsZY9DIY3MDAwMHAqMH7wBgYGBgZOBa4p8NzI1EdMY9MzPho0NNO4SbVkVBOQttOInyWcptG4pxYgloI4szapFqhSGEX0qnwvXa9Se9KlOaJSofaScHOdllQL0zSVbu7ZZ1W4SAxC9TWt6qvGkzkvMWWdj3W17MzBimonOg1kDgJWs3FNq/RaUU1ENacDgemIEgP4/b9fqbJdEwpQJUPvpcfjXq0qh2fnL6nmDg4Otvqb1VVjf5lqLEu9RdXYUvJ1/i/VtRWzOaZakI4omdNKtjfi59m+473MtGRZ3yrHPab9Y63KeG0+D6pQrvhdpfbPnjtUH4+whIGBgYGBAeCaygNVQb7StuMBpb3MUE5Jh69VoHa8DlNLkR1mAZlL7KmXVLVCFj5QBQtn12E7lUNIldQ1omLVmeMQJatKwu8lDV7CNE1d1+iK+ValV6RjRxaDiaZ7a1wZ9XvlgegwUTmvZOnIuEaVs0TsD/e1JXwyvchc/D/DEDjubG+xj3RWYIhN/L9yKWcS43hsr1QV+1w5tUknGW5sz+wtY1xVyMWaRMRk9p7zKhly7C+1TlkyZKMKmaFz4BqHF6NiU/w/9plJBHpOOUalNcrCEpYc7bLwDs/14eHhSB49MDAwMDAQsbMNL3O3XnN8z4ZXSb6V3SBjGUtsJiveWCWLzfThVZJo2uV6dp+lIPIsmDf7Lo43s8stBTr31q3SofcCjtdKV1I9X9K2jcFg2q4s2LUqQ0WG0mMStP9m46P9zX2lnSILjs8KV2bjytgT+8ZQg2jDZAo+aj24H3rB2JUNPmOhld3e14vJfnuluCr0Ur1V9v5euEoV/F49S3q2bz5TsnuiCk9iXzM2U6VDXPPM4vOUfcwYV6XZoU0081WoCjZnrLBKis3r92yh586dGza8gYGBgYGBiLajh+IDkn756evOwP8EeL9pmu7hh2PvDKzA2DsD14p07xA7/eANDAwMDAz8asVQaQ4MDAwMnAqMH7yBgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBXaKw7vlllumu+66qxtLZVyLM8y765z3FNbGiqw5Z824n47rZVk5YuzOAw88oEcffXSrkVtvvXW65557ytJI8dqMj2KMUbbfljJ18Br8P3u/dH4Pa8q2PF1Yav9a9gXPzeaxylSSlaVi3NrBwYEuXryoJ554YqtzrbUptsvYLWm7BFGvFJbBeMTq2KpAdO/YNaiOvV77sDpmTTxudUwV4/tUUZVKy2Jzs+fB1atXdXh4uDgpO/3g3XXXXfqiL/oiPfroo5KOa5HFIFQ+eKraUlkwLzdW9RDLEiVX6P0YL23ka3k49hKzLgV199rfZaNV564JEK+qFjtoOCZuvvnmmyVJt99+u6Q57dDLXvaytN27775bX/EVX7FV0y4bO4OqnbaJ6bSk7SThTHNVVV+OYzV4bC/1Evtd7eH43dIPN1OpRVT3T5aqrwrWrVKZ9RIe8JgsOJtB3axBx2rkkvTOd75TkvTggw9KmhN2f+u3fuvWuI39/X3ddtttkua9JOnovTQ/m+K11qTt4j1UpfxzG9k9x31H9JJsV/djlqC9qr9XJSCP51YJwLMA+6XUgkx0sUbQ7NXJY+A8n/0PPPCApOPfGklbvz9PPPHE0XGLfVl11MDAwMDAwK9y7JxaTOozo0pCrMpOSLVKoZKEe6VwiKztKtVXRauz9irswux66cOu5ToVliR+qU4/5lcnas36SFbV63OvNNISA8rmjVJjxdqyNGFUf1Xzs0YttqZMSyXF9rDE7DKWsCYt3BIq1XOvDZYyYtotMz+pZigZWms6e/bs0fk+NyYR53fsU8ZIKpayy/OgSkBu9NanOjYzG3A9mJIt20sVK+f7LJXZGrU0jyMbrfZOr9gA9/utt94q6WRauqXndg+D4Q0MDAwMnArszPBcjFHq22EqiSArEbFkn6oSN8fPKmQlbChhWzpbSu6c9XUNeyIqKSorrktUUlOPwVa2qR5DJyvIJPEsOXFv3NM0dRPlcl9xjD1Ws5R8mOWp4mc8t2fjrfZiT9PQSxKeIVsXslHuoSwB8NL1ltYqQ4+F8H6y9J7Zt8jS9vf3u8znwoULR8f6NZaGov2weu5E+29P2yDVSZfjsdXzp/dcWkqWH5lrlWC6Srod+0hbXWy3wpLjzi4J73lvZKXa2A5th/YZiOW2Mm3TWgyGNzAwMDBwKjB+8AYGBgYGTgWuyWml56bbq5AdP89UMEuu/hmtXlMpWeqrIyqVTOwjVVZLxuQ1MS40Hu9Sa5Dqg8xJYpe4qKqKfe86vN4SWmtlFWTppLop60MWf8U1rFSyWbhFz106th37WNWnq2IIs7EyprGnJmINOK5pL0zgqTitrL2vMlQu+plzxJqaZq01nT9//kiF6XCYqOby/5UTTFanjmrOyglrbYwn25dy0w1Vjbz/4zlVLVDeE0ZWK7IKNcr2KteAjijVMzNiyRwTHXw4Pt6vVlHHcCirNP1dDFlYwmB4AwMDAwOnAjsxPDusVGwg/l+5h/sXPEomlFIqR5BMqqyCRckGs4rnlfs0j8uwFNTbC0+gVJ65aK8NHs5QMTx+3qsCXwUcr2EuGfb29nT+/PmyL9U50rYU2JMqybA515mRnXPdCyL3/JgVMEg+0w64Xe6nJTYa+012S+YX76GK1Vbr08tcs8Zln3PCe67nMGRpvefwtLe3p3Pnzh0xvFtuuUXSscu6dOzAUjk4ZfcyK7V7DQ3eJ1ml9SrwuxfUz7H7tdKqsJ3YZzpwxHWp1r1KBhK/W7o3sj5WGgzetxnLpqOTr2cWd9NNNx2d46QFmWZsCYPhDQwMDAycCuzM8KKk1AsEjpJbfOUvt1TnweN1eoGfBnXNTA8U/7dEt4Y1kQ1WWMNYOEdMxSRts741wepVXyoGFiU8zwnZ7xr36jUB2tI8bgbKxv5TuiPW9IX7jXurZzteE0Se2YKyc3v27eqYTPvBgGqOy3sonkNmV2lKMu0Hx1zlzd0lZV9me6cNqheA3lrThQsXjpjdHXfcIemY6cV2loKdYx88d/7MfaC2I2ubY8rYuXTyuVPd/7Y/+n3Gniv25P3Rew6QydFWHvvMsAeuSy9FJBkXn11Z2BHZZvb7IJ1MI2eG5xRjS+FQJ/q76qiBgYGBgYFf5djZSzP+wmdSgKUh/0JbeqkkU6mWlo2ezZCg/YV6+ux8SrO94Fr2cY2dkVJmpcOPXmdLtpvedZck7Ezi9nXI9CrGHPuwRrqyh2ZvHEu2uiplUQ+91Fhcl4qpZrYO97Xy1sz6ULGCyt4Y/69ee/bfynbDhNuZ1zMZPsfVS8oQg8mzcUdEW2S1j86cOaPbb79d99xzjyTpzjvvlHSSBVTs3+3zORT/55grZOdybPRqjGzKGiXuB3sgejzRluiE6dV1aMOLc1ixcqbzyp5zXrsY3B/PyeZkyTvY8+sxxc8MPoMzG7XZnplez8OXGAxvYGBgYOBU4Jri8IzMI9NSiiUDSy89b7nKXtSLoVoC9fIZK6BHXRX3FVFJ6WtQeU1mtpTqmDXejVXJjR4zquIlybbicUsScURrTfv7+10bHq/NfpN9Zn2opMw1MU7cB5VdKPY/jq/6fskDtrev2S7ZZhYrRu0GGZ0T8fo16yvvDdoXM1bQi5eM/cr63Usttr+/r7vuuuuoBJC9M7P4yYp5ZWnkKg9Lsijay+IYDc8t05DF/RmZTXzPmLPI8J588skT7XBfVx7ucTy8R2gPXmOHY/tZeq/KC5z7MSaCph+FwfHGdXN5qHe84x2SZvY+GN7AwMDAwEDAzgwvetodNRKkAEsp9B4jU4iSqn/lqVPuSXyxP/Ecg5VyM087SmFkRpl+mpI9+7yGRVECihIPUdnJKDVldpiK2WXekEsSUtaPjIn1ks8eHh524xXJXizdXrx4UdJxIVi/SsdScuVdSrtclIithfAr967tPtmYOce+rvdyFuNIFmCwTEuPrRn0NM7W3995jpyR4rHHHjvxGhlAlVGDtvlo2+H8xawYUu59SPQ87fb393X77bcfMTu3nz13mLC6ig2M51fxsdRGZbGOHpPjxNiPzDucsYHM0hSfB/ZEZIxgZQvPtAVk4O4j2dqa9v3eax6fkR4fCzZ7nB5XZMrcb+6Lz/EzIPPivf/++yXNRYTXav8GwxsYGBgYOBUYP3gDAwMDA6cCO6k0W2snVJqZcwfdpBn4TRofj6kcMyqDZkTVRqZiMrX2d1QPZQZnqsqoLqySoMZjqFbpOSS4j1XgKdWy8dwqvZHXLatLdS1B/0Zc46XjqHqMKh+rL7wODz/8sKRj92OrSnycdKzy8Wd+tfqOCQMylebtt98u6TgpMVWd/lzaVgdVDiJx73Dvc655bs/lny703LvSsSrJKkvP3yOPPCLpeM7ovBL7QrUe1ZVRben5Y2C43cc9f5mTSZVoOsJhCW7Hqs24f71WVBd6LvyaqSU9p1Zhe029h7LEEHSfZ6o3fx5Djdx/OoTwvozJkP0d1YN0xjGiepLhT1XoRBZuwbAXowoVimAYgvdX9tzmc9rj9HpmYTcOS7ET01vf+tah0hwYGBgYGIi4LmEJ8dfVv/g0sloSzVzLKSVXbtuZCzaDt8miMoZXBVfT0J25UdPteMmpJJ5TVSfOXP5ZsoTtVs4asT1Kf1XQsrTtoFFVVI5YUyok9vvw8HCL7Ua2ZiO0GQidVbyW8Rwf43Mqxwyfm0ncZgxmKH41Q8mSFFeJrX29iCo9E9lIlujY0rHXgaEF3geehzgXZsgPPPDAiWM8n1kgPyuRm8l53JmGxqDjDjUocS8x5KOnGdjf39czn/nMI4neDiJx/5LNmNVWJaek4zn0fvJc+r3nz/fEM5/5zKNzq+rrvKczRkkNi8eTJaBg4DmfP73Ac/eJLNfjy5ykqr3KNV1TloqMLks64mP8GR1fsme+x/WMZzxD0qxh6D2nIgbDGxgYGBg4Fbim8kCU0qMNgJIGpfKM4ZHh0JW4xxysX492lnjdXtBwFWxtZGnUquTNDHjtlemoElH3grotHXluKLX1dOlVsGqUPilp0RaRhV3QFrAU2jBN09G6mIk5eFSS3v72t0uq3Zopocb/K1bIeYrBvwwLybQBHLPtYB47bVo+N4ZO0H5YBUNnQbZ0jXcf3Q8zSo8/fvbggw9K2k62S+k57kPasaq0Z73SMv6OtsR4Hdth4jkVyzt79qye+cxnHtkKmVhYOl5Dz4vHToYc15+2YdqTHnrooRPv77vvvqNzmaqMwdx+jc8l3h9mdh6X8ZznPOfofz4jqH3ivZeFCVhz4vF6XJ6LLKSFmgP3w5/7ORGTOrsvfBbTFh5L/fh6DOfwa6bB8pqacd9xxx3d5OMRg+ENDAwMDJwKPKXk0ZZ8slI//o7BwrSbZW1nv+pSzrIopTPo1shS7lDnzGDRzIuRQZq0X2VSE3XaVfqjaG9g4DQlH0p+cbyU+tZ4rvpY94E2lmhXMBjke/Xq1dVempYco82La0hGnHl20m5kxue2GHCeScCV51m2Vxkgy6QBnqdsvqpk0dQK9DwJzYzJaCNz8TGVZx+LbWb2D84rGV5k2Qw0J8vhvSEdPw/WBqXfdtttR+vl62UpuDx22qn83gxQOt57TPlFBp7Zjqukx3y2MPlyHDMD6P0cjetB+x5tXb3yYdSm+b3H7b0T97f3lVmgj7Vd23NltpaVpfI5vgf47I/r5v76PjLb9bip9Yuf+Xrv8z7vkwbPZxgMb2BgYGDgVGAnhnd4eKjLly9veTXGX3lKc5S4Mo8+2omqGCD/ivfK9jDZqpFJsZUHZKYPJhusSgxl3pVka0wx1EsLRKnIUiFtCPF6bt9zUcXlZUmDaaur4ozid2u8NA8PD3Xp0qUtz7iIquSOXy05xjglSo9kxNxLURKklynHThYiHe9FX8/HUFqP81Ql/CYLzOKieB16n9I2Lh3fe76e7SyWmunlGPvF+8dzQu/QeI/4HLOZau9EcK/0GF5rTWfPnj2aL7MAsxDpeP7dbzMQ95d2uniM2Qvto54fxxVmKdg4L2TvWfo+ar/sbcg4PWm7zBpTvFFrYzuddLwu7ivvObcR7yczvErT09NwUDNjr1o+x+O9wdR41Mx5r8Z59P72mt92223DS3NgYGBgYCBiZy/NS5cuHUkM/oWN0hrjKCwtMS4lSs1LxRQt3fjXvhfrRI++jK0xCww9njLGwkwN9FC0pOPxR7smY2fI7NifeCw9EysWHMdpid6SG6XbLHuK+12V9DCyYr9xbStPTXto0vYQJTOvMzMzkNlFD0i3Z+mYHm+eL0vpsf9VInDafxjLJW3b48gGo6ca9zylUdoSo5RbMTxL8ln2Cl/Hc5F55Up5UVR79Nl71vuYfYxswXPKmD0y6GzvREZc7Z29vb0TbNjXMTOLn5HVMBNNz3u6ynzkeYxshgyb942PjX3084ve7d7X9jqM+83rzjhZ2ruz+Gd657IUT5bZh+ycc+G1tSdpvBe9Z/gs8fMos2/Tnkmmz+K48fy1npkRg+ENDAwMDJwK7JxL89y5c0eSAfMKSttxYsyywGKH0vGvOuOE/EtOfXyEj6X05CwJlhAYG9KDpc8sZst9YhkLSnhZfjoyCmbPyLLB0A7HEhvuY2Q2tGMwdozMLP5f5XXs2eey1oPeOwAAIABJREFUYpDE3t5eGj8VpT1f0/2lBMysKW43jvX93u/9Thzj2L4s/yLtL7TlUVsR+1DdA1lJIe6ZynbHNY+fef59ffeZ+zBem9ehxyAl7wjP17Of/WxJx8zP91WW2YUxsV43XzdqdbLyMr39c+bMmS37VdxPtI8z72oWw+ljuS7eO7T/xeePP3MbLHhNBhjP97Oqsn3H507Fkhk3m/kueF+5L/TSNQOMz2+vO89lRiHPUWZvNPtj9qG3ve1tkvKMOyxVxPs67lHO36233jpyaQ4MDAwMDESMH7yBgYGBgVOBnVWaZ8+e3VJ3ZYHgdGs2Dc2qFTPtEwMi77333hPXi6qRKhCcqtSoBmM7PLaXcqlSaTJ1UTS+MlCWRuNeAmi6mHPcmaMDXaMZWJuVO6kSeNMpJwYZV6EMGVprJ9QSTB2UXZMJoXsOGnfffbekYxdvq088P1aTZuEiVEdaPeWky1ngueebyQpY1imew/d00srUoVTj+pWqnzg3/sxrxUraDCuK6+I5dx9igl5JeuMb3ygpD0uoHB2yiuFZmrUlpxUm9c4Cz/3qkAUmL8hKIXku/YyyO72dMBjIH8EUYnRqy9T4TNjgczP13bOe9awTffR8+Rnpz32dOCdeSz5/GE4Wn6GeA88jx8Ewibjm3hPeK0xW4OvHNHj33HPPib74XK+x7+ssYYTX5eabbx5hCQMDAwMDAxE7+3U6NEHaTmsjbRtXLRH4F9vSc3S9pSGW5TMYaJhdj+VSmAQ5K/VjMFwgAxleVRiVQcsRZJtVwH02DrpXe46y1EW+NpkyDetRsiOTZFqqjLlkEvkSy2MqqSgBu98MR6FEHNfJUr/njiErlogt8WcskYVfGT6QFQLmXmEQdxbUzzRJLACbMSGmtKOTDAN1pe096vW2ZG3m0tt3ZnaWot0Pz3ecE0r/FcvJSskwKUOGaZp09erVI+nfISaRKXB+fGxW7Nig0wo1I0wxFu8XptzjPeVzY1iC+0LGxT2cOWgwRIeaBl83ljBieI9Zm+fGr3EPcU6owWIYQcaYWUTYLM7zmzkvuT33yfvPax2fE96TdrrpaQeIwfAGBgYGBk4Fdg48jwmCszI7WWHA+D6TlixhmAWyFAXTa2XSGlP7uK1eyRWDiVkZEC5tS9ZVAmC3kUlNBm06bFPathVS/067Vuwr7XB2NWYQZ5YSjn1i+aFox2ApmR5DtmYgS73FPljitf6ebvuxD5wfS/1eF7fh+cqCyOmWbyk6Y6ss2smkCN53awrnMhl6xnbIILyW7mMV8iIdj5k2SjPa7BzPvSVvS9G0zWcsxH3xe18nCw3i2C9fvtxNWnDp0qWtOc2eAywhxPJJ8blTJYLw2F3CyHsralO4htQoVamypOM96LX0a8YK/VxjUmeyT58Tx2dbJEtleV9QmxOP5VxzjrIkCpwDz5fH5/eZVsp7xozO4+H+j/3tpa6rMBjewMDAwMCpwM42vFjihYGMEZk9ojqWn5FN0Xsv2pEo/fO6LL4pbdseyegyOw2lCZ5LlhN1zvSGo3dglsaL16OEReaVJSvmuf7cuvwshVWV+NefZ2ndorRX2fCmadKVK1e22s1Si1nKIwOxtBv7wMB4BmSTKcf+VWWT6DUcz6GtyNKr2YvfZ3uH+5w2XPYrfkcthNc7CwDm/ek94j5bes6KFZNlRTuZlGtomOrJEryl9uwc3jeHh4eLJYIM2rPjWHnf90ovZYksIszwWGpK2n5GMDA7A/0A3D6ZT2yDKRqZJIFp0eK5TDHHYPUsDSJTtFWanyzZBOfY7ZLhxwKwho+lDTz7jeGzqpcUgxgMb2BgYGDgVGBnhhclCEqQUl2Wh/FcWcwZ0yjxlzwrGktJgIyOSWrj/1URVXrNxXNoN6gSz2Y2taW2IqoiuFVx0p60SinUzGWXkkkZG2Cx23PnznUZ3tWrV7eKXEaJ25Ig45NYgDPOJ1Mq0ROyWp94DksW0RM29pFeamZL7muW6ot9okdnL46RNk8W1eRYpO39xvnr3Ru8X6lZyKTqKjF8Zn/hOfHervaO4/CozYnjpDaDMXbuQ8a8+XzJCrHG46RtWxbH7jnPkl77M8fY2e5LH4Z4TTJKMqFsr/pcezzSz4BaotiO7wm+Vp6YsW9VYvvseVP9Pnj+Mnt6FiPc0w5EDIY3MDAwMHAqsHt9hYBM6qdEzV91MpT4GRlj1j5ReQ3RWzTTrVMaJMPMShgZVV/pPRXHShbKYzMWSibn92QwWd8ISonxODKgqmRTZsfIvFoztNa21iMrGUNpmVkkos2BUioLSlbrFPvP72iLykq82M5o+4g/z7QQBu2ju9jwGL+ajceo7C+UzjP7X+V1SDYY7wd6l9KWk8XrGpHlLsXisQRT5g/AfcrnQrZHM7YSP8+S5BuM86WnZ2R4zIBjG57tvr5O1NbYdmdbaqXJcsxt7CNZLZMus5ixtJ0Mm89mZvzJ9mp1H2fe6AaTf2fljgze80v234jB8AYGBgYGTgXGD97AwMDAwKnAzirN1tqWKjCraUU1Bw3Ea+oXVcdkVYuz8IOILCUWVZmsxp0ZgCtVGd9nge5un/OX1Zyj6qhS1WbqyyU33Z5KoRpflUotHttbUycep3NBVCNRNUpHDSbfjv1hijkGmDOMRNpOPO73VEfFgGk6q9D13qqlbO/01MNVH5nCiuE3ns8YzMtAY85FT+3K+5UqzqymH13UqxCBOK5ewDxhhycHTHvuo2qbiScqx7B4DlPWseYk93x233At+TyKzwEfQzU41Ycep3Ss0vRn7IvXIUsEzu98HZoVsjSPfDb5uqw7mqk0+ezqpVCsnP2oQo3neC782Vp1pjQY3sDAwMDAKcHO5YFaa1tJdXvVvckQKkN9PIbG6DVOK3SyYN96Ui1dvHt9pGSzxrGGJWToPJAZaCk1sy/sY8Z61/TN4DGU8JbShknzOCvHg6gZiO1niZIr93a3HatIW2K39Oo5pANSBkqgdGFnQHU8hmyQYSFxXBXDqkJqspAGpgfj55Hh2QmClbvdDzpRZfujWgu+xv+Z9LvnxOR2l4K/jWmatsJFYrgDU8ox/VTmvOZ5IvPm/GR7iGtoVEH/0vFeNUvy9Q2mEZOOn01LifXJTqXtivNkaXSAi+C89QLcjcoxqKfdq54rdCiL80wt2pUrV4bTysDAwMDAQMQ12fDIWOKvL12R16RTqtJzrSkdYlRu2pmEQCbJMISe+2xldzGyc8lCacvLUhdR6q9SmmV2H/a1YnrZ9ZbGmQXFGmfOnOkmAI7uw5m7MaX+Kmg49sFz6WMq6Tyzw1AirQJls+ToDE6m3SoLUqbUXxXQzQKBmZiZ+yNjU5xr2qp7Wg+jsiVnidVpT+yFKPn8bO9n44j708zFbv3Stg2fydWz9eee5lirYsjxGLIknhOvZ1uwQ1p8XTM6J+qODM/jiHY96XjOyc7icVUYFEsoxXGRRTOkpBeewmdUlUIxrnXlI8D1jMyVe+eRRx5ZtZelwfAGBgYGBk4Jdrbh7e/vb9kT4q8rmQLThq3x1FlCFuheSYhZQc4q4XSv3ESlw66kl54nYVX4M0vmzHIjFaPrlcig9NNLD1V52lF6i8dEibi3Dq21rXOihFolljZ7y2wAvSBkjpHncg7p4ZtpGMjwKm/kOC7uDdonuD7ZunB9LZ1boo8SsK9DVuj91UvVV+1V9idLkkD217uvd00eHdc3S35uVmkvWQYyc07i/1XgPO+T7DlX2cF8brStmpHS/uY+P/jgg5KOC/RKx+trW17l50D7bDzX8PPaDNIpx1xGKJ5v71Cmo6uYWPysekZlnt7V89T3V3aPuI9mxBcvXhwMb2BgYGBgIOKakkfTuy1LBM1fXMa4sc2IyrOul8psSSrLykvQZtNL4tvzTorfs1/ZMbQR0M4gbevS6QlXJfWN/1fSOZlGbI82o964OV+7lOkg88/OZ0yVpeXopUnGxXmvbMjZZ7R1MEVWvJ6/o+Yi2/+ZliG+p60jrhtjNrlXzfSi3cfz04vVi2PIwHWv+hrbqYokZ3NOZtSz/x4eHurSpUtbRYjNjCJY3LjncVnF7pJVZAnv2S7hdfL6SMcMy+vj/r/tbW+TJL31rW+VdMxcYvv0OnUbHENkvYz/NaPzsd4zsVyP2Z73jPtC+2+2d3oFtGNfM4/y6pzsWeV+v/nNbz7q0/DSHBgYGBgYCNiJ4TkWpheTRbZCT7SMcVX2girTQWbjqDKeZLptehpVCaYzadCosmb0PLoMxrZkiVgNfkeb2prCk+xzJp1W3oy0VWQ2EKNnw5umuQAsdfNZH6r4sCyLTmW7Y/LgXoafzNs0HhvPsWTtV2aGyEpLcX9X3qGZVyjnn4lzWTw0wscywXrPtlbdi2tiOitP4oxdsZBpj+EdHBzo4sWLW4VMIxPiOmfestJJjYL7QBsemV0WJ1vZblnkNe5Z2+H8alvdL//yL0uSHnjgAUknNRj0UvR4qr2TPbOYOca2RDPMaP/1PDqbjdtnmZ5erDK1RczeEsF7uvqd8F6WjpldVox6CYPhDQwMDAycCowfvIGBgYGBU4GdVZoHBwelAT1+Fs+RanVlPKZyfugl3a2cU+j0kbmyM31SpZLJQJVpNZZ47Sp0wP2JKc6qOnhVwHHPGahyVukFnnOcve+qhN0R3js0ekc1EeeJx2YOE0xQzGN7Sa+ppq0qM8c19hoxvRFVTXE+GZhdBbobmTrUai6rn6hiimm2rE5j3ypHpJ76tVLzZ8HDVb3F7L72mJfCSnze448/vnWvxfuFicWXxpwdWz2rMjV1ZVpwcLmPtXt/PMdred999514zZxw6DDDPcp7Oar+PFZ/Vpk/4v3rfcQ0aH7P/Z/tHYIq7V5Sfq+xQyo8zrjWnhOr8R9++OHVDnOD4Q0MDAwMnArsHHi+t7e3lfA1k5po+O8lW6ax2KhS+/SCyP1KyShKwEbF6LLAWUqDVfmMjFEweLgy/MfxM21blTyW7tfStpReSawZqlRSvXXrBb0bTg9FZ4XY7yoBQM9hYo0zRWwrk9KrEI+sXEsV0sJq0pmTFKuIV8452XzGNErSLNVK2xJ3bL/SUNDhoKfJ6LE0g44MlUNFFsDfY3axD4899pjuv/9+SScDpQ2mqmNC8GxdqrRjnJes4nmlFXA/zKqiA4rnzm71Ho/XNIZocBzUAvCZwkD7+JlhJx8mcohJrCvHNmsNYphFPD4ey3P9PttnlSaBx2YJrt3uk08+ORjewMDAwMBAxDUFnhu9X+4l6XFNoCCljSyNDxmdJSyymFgYkf1nGi9K8dK2RGrJjRJqVpTQfaOti3r3OC66QjOhcixkWaGyp5J1Rywl+86kzzWu5a21E+dm4SlVSqoqNVocwxpbcTw+nsM2WE4nSul027bEa9bBtFHStq2Y7uKUXm+77bat/rsP1FTYlpfdE5Xtk9qBuC+XbHjZ51XYRS9UJgtBWQpp4XrEufD/nFO3b3tPPKfSLPHzXrpA+gwwUXfcB+5bTIkVj2GoSXXt2D6Py8J8rH3wuvBZkrGnKoEHkwzEZ0zFRvncy/abwec3Q0Ok4zm3dmMEng8MDAwMDADXVB7I6OlNq4S4vaKTlPor+1zU1/OzqqxO7Cs9OCm10NYSx+1zaCOsUjFFsFijYUklSoP0WuL4yEpjXxlYT1teFsBPrzZKeNm6sb0lW14mIUdQilwK7q/6Fa/FFGCRUVYppMwguC+kY2n52c9+tqTjdE1mfL5uL5kzJW3aNWknkba9MhmIHINwPVbvqypY2YjrwgBuzmsWRG5Qu9Gz+/WeA9mxly9f3noeZBoYvmZB4wbv1YrNZtoIBq1zbql5iv9Tg2TtQJa2K0vBF+HvM80P049Zc0AP0/isZv/JWPl9LxEF28yuV2nxeG9kHrm2rQ+GNzAwMDAwAFyTl+Yar78q5ZeRJTumjY5MLIt9I0tjMtWMrVVskH3NSryQYWWpxKTc1kUJLotFq65nVHGHWYFEvpKJZV6o7DM9CjNpfW1as8uXL3dTi1X2Cl47O4fzXyVzzmxdtMNEm510ci1tA3K8lW3D7Lv3XTyf8+R18ZxkCXQZK8iiuFncHz0EGf9U2Xbj/2uSlBtVDCRZXE+yf9e73tWV0g8PD7eSYsd94rWjHYn3WhY/SLsR+5F9Ti9Qem3aDhf3gcdaFWD1a9x/XkvvM7/ns9H7IfoquA8uOHvPPfec6KvPieviz+g7wDR1RhaHx/1A1p1poyrvdzK9+F0WC7iEwfAGBgYGBk4FdmZ4Z8+ePfpVziQf/lJTN5tJWvSoosRVvcZ2WCaGtq0oafG6VWaNzGuS0l9lZ8rioir7WJappIqVq7ynIpjxoirQmXlYsc9rdONR4u6VeHnyySe39k4vDqsqTdNLem1QAiYzl46lVnr2seRP3Ac+xzYzzrX3WZS0qWWoCo/6fbTH+Xq2V9DDz5/HWEHbO2gbNHpZaDzWqs9LLCwbX7ZG1OZcunRpMZaqsitFUNOzJoF1ZdOv4nOlY4ZP2xm1JzFm0PZfr53b83rRHhj/Z2FUPjO93+JaO0n0vffeK+mY6bkNjyFqmDz2mJg7fu79yOd6HDO1A9ROZNqPan/xevH/uC5rWd5geAMDAwMDpwLXxPAyG5BRsTHaxSIzqbwzl7KZSNuSNSXTzHvJ/y+xzyz2g1lmqqwWmacVPeAqu1k8h96fVSHGbD573o18n3l7Zn3NsmUYWT7P2M7Vq1e3GF1WKJX2nZ7XX2Xj5CuleWm71A/ZgRGZhEu6UOqntsBem9KxZM9YMGbHyPpotmeJ2xlWmNEjMjx6EFY2xF7ZG+4hrm1c+yqejbacng2v52k3TVP33PgZ+8L7Jp5T+QowXpI2L2mb0XGfuQ2zqHg+7zH32f2IDIjxtvQ6pl0stk07s6/j95mdkf33/qps4b01YN+y9a3KnFUe+vGaaz0zIwbDGxgYGBg4FRg/eAMDAwMDpwI7B57H9FGZSrNKPkpq2lNR9FJJ8T3VDnzNKvP6O1N7qlB7iVhpBK8q/2alUOiwwTFE0CC/VIk6c9VfCuCOqILIe27Ia1JIRVy9enVLFRvboxqNr5mTxVKCA39v1UyW6oltMIwjqvysWowqxHiM58JqTOk4Oa9VTEwPZpUq01PF6/i6MQA3u75Uz1eVHKHnBORXqsXWqJOo8s6c29Yk/XVIC9XhmcNEdq34Pq41r23VHtVrmUqO6cB4HYaPxHa8D6yutBMLn5lSnRSbZhL2PR5Lhz4m0cgSQlDV6PbZn8wkwXlliEjmqObv+IzMVJoMH+olwycGwxsYGBgYOBV4SoHnlCSlWrKihJW5KFeSPaXBzGBevc+kCksLliYYPJylGvKxltzpGs0+Z0VxqxRc/j72sZK015RrqZgR2WiWALhizFnSYEqBPanfjgdV8H3sb1X0NrbF/6uwEDqEREmxkkQ5B1mAMxP/cq6js4LZGZ0IGCrBYF/pWIql67rRS+pdpXoim8+k9CqBMp3EsnOqdGSZU1blUMXzH3/88SO2m7GZHpuM14tYKp9VhTjE76r70esWNQp2EnGKLzs2eT9k+50OSJU2wuwthsMsOREx9VzsL9OgsY3smVWtYU8jWO2dyoFNyu/pkVpsYGBgYGAg4P9v73x647aSIP4kWYnjg5PA2CBADvv9P9Zes0GQAHFgx9LMnkpq/VjV5Gixh+x0XUaaGZLvkY+crv5T/aoYHi3f7tc1xYacbBdxpKg7xSNo3TjRYFr0ZGKd5JIYH1OanZVGtsSxC3UbxjOTbz1Jt9V5pFfHAFLRaMcKk++eOJ1Om0JtFz9iTJVWZictlhheJ4mmcynrODXBXWvbykn7JdOrLE1rRY0/ZY0nWTRnzfJ4XAc1HZ1NTzn3tB7qsSkpp3XuWC8Z/tG43Fovr3X3HHh4eHhiJLpOdc6pmXOacx1DVz5R51PjV6mlkMao71YWqnie9ieGx2vs4uTJy8H7yXm/+EzidXKlOhS6T/KLFalESHCx/uR96nI+kuj6EQzDGwwGg8FV4OIYnorP1/K+7cQe2Bqiy/Dci+V1mX20hN02srpk2dASIvOr+yEoveTYYfJ7s4jUtRLZ84t3QtCpmae7bntWUrdNxxiF8/lsGXP3HlmbKzjdY3hd7Emg4C+vaZ0X2RPPgeJMTgBYn6V7g8XMdb+pmFesoRYoUwyB99URz0xq7uzicRzrXgyxIkn2ObDtUWVPjOtxLC6Tj+eBWbJcMzVDNuUd6Lo79iFmKjEBxXQp6u28KPyfXg95D1yDWzbO1bnQ9XFrlR6L9Mx392LKXHfPibS/rpGuzl9l0RPDGwwGg8Gg4OIY3ps3bzYyNtUHnJoqHmEXyfffZWlyf0l2pm5DNljnVvfhpLKStcx9OzDOR4uyMjzXDLIer4uXJFaQahT5t0NnndU40tH9uKzPFGvi510Mj+93bIOCvLKOXUspQVY6X7kOHRvgq8bceUz0nsbG2jCN3WUsphhrF4cReP8mL0H9LMlEdWyg3tNJAFjZ4bonZOHXjER6axiHdTWolFYTAyc70zaSdavfYRyMsafKxDQWSswpa1OMT59XsB6Ozzutt7pm2diYNZzap8sK5rOJovz8v46NXpB0XesYuUb5TKxjTxnLRzAMbzAYDAZXgYsZ3vl8bsWjheTPd5Z9sh7paxbctvRpd+ostDiZtXkkJpXgmBnPk2uNUv9fa9siKe3LxSj53RTvczV1nDO/W5kEYw/39/ftmqjjpfXsxku2SKFmbu+OQ4vfzZmWKRlenTMVIVJbJcVU1sptiPZUgtbaNno90uqpY0r11cWZXEuk7vh1G2aMdq1fmJH49ddfx3GrhjPFedbaZpdy/64BMFlMbUZbIUb5888/b95jk11mFdYxaixs1qpsTbXzqQyPsUl6FFLT4rW2YuRUSdGYK3sic+U40pjrmBj75HXtvC06PmOhdYy6PkfqfzfHOfzNwWAwGAz+xpgfvMFgMBhcBS52aVbXQldakCSDXBJBkuXaK9R229KFodeatq39Uj6HFLnr70bKz+C4kwlj0gBdDdXdwvIKundT6q/DJS6F9OoKnOnm2nNn1nm4NZQ6gXM9dB3v94RknbiuXC8p2cPJ4HHMSjhw7jueJ11vrjOKmq+1TQ7Ycx9WcI0yWcYlXqVCZx63kzLjd1wq/SVuKI2HCWl1f3TP8l52Igap3yI/l3vt999/f/rsl19+efHKUIYrf9HYtD+5LvW/C8/I/cn1TYEDd++xRIbPRLndu4QQyi9KWlFzqX0fKYoudKEhhjb4TJT7so6Rrtk63j0MwxsMBoPBVeBihnd7e9umUR9leBW0XmglM+nC/ZrvtZapVgaZW5LgcWPlmFJrIbcNrUwGuB0rTOn2qVyhYq/Fj0t0SAkUtN7X6ktNiPP5vL58+RJT2Ov2ewXSlQnTkudrJ0KbupXrNYlX1zmntVTHyP1StosM0Hkj+B3HuAUmYTChgglRdY3Jkk8C545Rcl7J++DKSY54BU6n0/r8+fPTuHUcx/C0P7b+6kpaeL9zXbhtWaCtJBbtg6UHa23LDtguSuypCo+T4fO5w6QWJ8auz8j0UoJK/Y6Ox3IEd2+6JK+6f95X9T0m8DFZpTI8XrdPnz5N4flgMBgMBhUXM7zT6dS2T6EFQjAt3b2XYnmyIKp/nL/2yaJzqeVCklGqc0jitIxPOOuWY0htO1zMkHEQxstcCr/GkmKgbpsUu3OlB9zGsQyH0+n0ZGW6tUM2w9RyFt+utWUpZBn0HrhGqYLOG1lOXS/6jMW1ZFVuG8ZHND+e28rwWCbAmIeLGafiYcY+yBq6MXHezmOSYrqd6HtleontnU6n9eeff25aM9VYJ1vdcM04CbPkUUrlSZV5fffddy/OR5IyrNuowFwMT+PX+/x/rXyPUZZQ/9cico2BY9S8FX+rcTiysb3Sncpg+ZwWeE/U5xzvS11HliW4Zr/1GT8MbzAYDAaDgosZ3lpbP3n9xabw6h7Tc/tNosTMFOKx6zZddlZqQyO4LNGUaZQkrFxxfPKHO6mnlAXqrBsixZ6OiPrynKdMxvpetaL34nip3Uz9m77+TiYsxVtThmBlOYq/MKNO2W1OgEAWrazixLgrKPRMjwLn5SS4uF9KV9WYIRkeJc3Y8NgVhCfpMueFSAyf7LSOkee2s9BPp9P6448/NnGlyp4Ss9P/TsiBsWIX217reX388MMPT++p4NplrdZ9VwZEr4C24VqqheddVrObg2KJa21jtpyXyzvgmJxARBoPx8bfACfpSKaqTFjNg/eim/ubN28OxYLXGoY3GAwGgyvBq8Sj9cvtGjHKiiCLStmFHRi3omDvWlvpJcaBnFWRMjmJ+r6LOay1rW1yMbyUxZha2dRj87MkYeQkk+jf77IpU1YmffaO4V0iwUaGV68l4yCpFUpFsnzJHFyWZmLCSV5trW2DTAqpCzWWIqT4Mq+h8w4IbEPjmCuZXWL27tyR0XeSYkISC04tu+p+kpRZxePj4/r48eOGkdS6OEqKMfNWcLWASWha7JbPu7WevUwfPnx48d2uebDAPAeegzpG3sucJwWpu9ZSjM+6TEt9xno7xdbYALleN3rM0n3ssvrZQov3mVs7l9ZyrjUMbzAYDAZXgosbwN7f328soxoD0S9yYhNHarb4WWdlpnYVbKbZ1d+QtaUaOLftJSDr7Jhmsv5p0TurKWWspkzMtbbZmHuvdRtnVTrc3t5urL1qzXJt0AJl1mYFryEzft34E4tm7MOdJ64Nxkccw0sgc+mEx1lL5dgTx8ZYe6oLXGtffUbomAQZBZmMm9fDw0MrBP7p06dNJq7YwFovMw3rsTqmlQSyeRydi3qMH3/8ca211k8//fTiM3pEKnhd6IERi6rz0jZsHsxMbF1jZY+u5ZnpWlvmWtcu4+a6Tnquq0USY21rbZ+nyZPh6vBY16hX593hOrnkWTwMbzAYDAbLCsAfAAAPZklEQVRXgYsZ3t3d3abKv2Yi1V/8tbb+VtfyZ081JMW+1so6nKkZYd0+NYLtGNfemJ2VSka1F59zY0t1hS5LMWW5pszLtbaxKJ4/V4dHq3kv+7PGf50Fl+I6tIydlibPA+MHGnfN8NXcUvNOx57YQobM0cWiGLNJzNXNj/NycT5C51GWvOZJr4djI6n+srsnUyZ2qm9183l8fNyNyfC61DY+YkdkQN352tNd5f1T6yO1jlQzJ2ZFFl3nfjQeV9eoPvv+++9fzIN6rPRO1e+S4VPZpV5/xthT+yGdOzaVrcfR2LVtV6OcvAPc51pbFjp1eIPBYDAYAPODNxgMBoOrwKvEoxkQrgWgv/3221prmzBB94YrHqb7M0k/VborSs3AOAOzXZCd+2epgQNdZylpov59tDiy7o9zTu5Qdzy6GJlkUl0ZdMXQHea2cWnuaY5KeKIrphOCJjq3RRIqTgXUaz2ncuscs0O0XD9dOxK6gN3aoTuf1077cIkuPJ+pi7STwdP89Eq3tJPqS4Lgbl0LdDE5IQWC7W2+fPkSr6/c4TxPde3ovffv378Yi953rtnkPksJL13iC117roQqrQMWxTvprSQ4T5dtPR7noessV6ZeXdKSxqQQlc4jy2+69cBnvwulMClFnzE5zJXOuGSoPQzDGwwGg8FV4OKklWppuWJeyifJWkmCxmttE1mSZeiKrMmwNDZZXE7CihZBSkd3KbFJfqhLvNkLjnfNKck6yCAcG+YYUxp6nQNLTFLCgxMZuERUoGuuy2A+4Zh5aumUZLuc6DHT0HXOneA0QUZ0pJRlT7S6fs5jMwHG3TNsM8TkFCYxVIubrCe1+nFMnmUcSYi4ftaVANVjvX379mmc8iI5uUDes0lcfK3t9Wdhtpgxz1v9jpqoStBa11rPwZrQxzmzqJpegwq2z0mlOxVsqiro2ah9usatYnbaVmURFHfuxDL2SnfW2j7PNB+2IXIF7vSqHMEwvMFgMBhcBS5meF999dWT79f5r2UV0dcsS6GTtWKKKi3hTn7ItcdYKzcldGDas7Pskz+fMTyXjiwkIWAX90kp8118JDG8lKa8Vi5D0HdlcdXUbDK8vQLQ2lqqvifQC0CW5qzYVOyaRJ2PxKsEx0Zd+5963FSo3Y2Zx3etUFKLFVdQTybPGA5jeM77QSZJ1PlzbPSYuCJs19YreQju7u7Wt99++8SIxC6c3BRjXfRCObFyjY8sgyUadX2wQemvv/661tpKczn25DxV7v+K5GWgt62yQ15vPZs1ZidWLVC6TgxPhedigE6yMcWqWUq11rYBLOehOdQSFMbuLpKrPPzNwWAwGAz+xriI4d3e3q53795tLKJqwYkRyALSL3Mn4somncKe9Nda2xgd/dMuE41WOK1A5xPmWPbichWJDbLI07WFSZmjyRqt7yVL1RXjM57Dhp9idi6OITw8PLTMRjHgtbZxMs6/g7PS0/VIxfdrbdkMGQo9DvVvxriOxKIEd73rtm4dCEkk3cWmUlYmM1a7a5aK5V1xPC1vZmJW74CLm3dZmjXDV6zJSQymDGtma9btu/yCuu8KMSAxHsUVxZZcWyfe73tygRVpjFwH9RyT4fH86jq57GC9p1fNV8yOz1m3H2bmM6/DjYX/c35rPT+DxDoveRYPwxsMBoPBVeBVDI8ZT9Wq0N+ywtii3VnNdf/d/10GnCBGyaaH1UpjXK+LKxH8LLVvcePeE1PtxKP52rWwIXNlTIe1ivVvMj3G8lztnl7/+uuvttbw7u5u48/v4nKpFqceg5l2e5ZiRRI2Ty2u6nt7cTg3n8T0eXyXcZledbxufdPSJxvoPAt7Qt71M54bxgErc2Ecq6vD03FZg1ivdWoHlOqB6/x53lNmav1fjIfZ4PVeWOsl60nttLoWain+zzh353ni3JnpWWXDKGnILE3WQNb8DbLa5DHp5s7njmvcq2eRMmRHWmwwGAwGA+BVdXj8Na5ZPqzMZ9amyzJM1jEtRGfFJ9aU2svX91xtWQKtQFq1ncB1UqCg5VutmKSsckS1hVmvqb1SZWvM0iQbcJmdrkFvioNo7ZChOmbK/1M7JzfnlHlJtYe6P36XrLGC15KZdc5KTyLKiWHWMTL2mGorXU0lY7YuK5PjOGopuxq4vZrEeq4Yv+qs9Nvb2/XNN988HUfPmHpPi4GQRTFu5rIY9xQ7HNMXKyID61i8zjPb9VDxp55bxh6pRtWxUMbqj7BCHZv1dszJcDH4dD/xOeeeIcwg17aKjbrnCuO2RzAMbzAYDAZXgfnBGwwGg8FV4FUdzwVR4krRKS3GILjcEc4lklw8Kemjfof0PLkg6990VfD4jkYniaWu8Dy55Dif6vJxiSwVdB+4dOtUgOwkpVhYnlxmLqW4frcTj3Yuzbq/JK5Lebp6TujaSa5MJ1qeOnVzjp1ALteoK0xngk7qg+bOCfdBN1VXPM5rxmsrHOn7mK6N24buxM51Vu+9zk1/e3u7KVKuyRaas8SjCeeWZJjFdYCv29bjsTM33cYu9MBryG2OYK8Mx5Un8budyLfeY5E/58tzV/frEqnqvuu9kcprKDRdf2OcQMVRYf5heIPBYDC4CrwqaYXWc7UQFIAle6EIsgtQO+kZh7ptx/7Wyu1U1srJCh2SMG5X/EjLJhWRO+bC+ZBtMJjNv9faJqA4VuBYX/2OK2xlicFem47T6bSZj2uFwv2TxR0pG0nb1LXD8boWQjxeCshz/Tkxb36XzM4xITLTlIDSMW8Wngudhb/Xnd1tw3NDRubE0Y8kyciCF9twUnx67nBOZLt1DEmui0LNnOdaW08VhYy78iudF7YQYpnEWl6gv75Pb5XblmUJYmmuxGQvWaW7BukZqHk5lk15M3pkXNsjlSNc0m5NGIY3GAwGg6vAqxrA8u/KFGjN6f+uBICF7Kno1aWy03pJ8bgKWpWMrbiWKy42V7elde7S0lMReWdpJ0uO7MDNl+ecTM+lsu+lvVeGRyusY17n83k9PDxEBlbf24t1HhHOTqzDWaQplsdYW90f2QulxlxZyt74u3kxpsHCcxdvTqnsfHXxdI6dZRgu7kfBcx63MiZXcpLY3vl8Xufz+YlVCc5DwYJoNafWunVSWGn98vzUImsxHY2BnivX7DTF1l0cnkjlPnx2uHY9lC4TW2MxeX2PsTuKRbOVUj0e48vuPiIktk1Rbs2nNhnXZzrOu3fvDjeBHYY3GAwGg6vAxTG8KgCsX9X6y02xYX1GaSrXxDO1k3BCrAItG1oRLlaQWtCzaLXL0kwZUB3Do4XPQtNqadMKTyzEySwxHpeKll1mZxJtdXFO7b9awnvMmtfUNQUlq+A+6znfK1Z3Bec8HmMLZPouw5cgm3FI7JaZq85KT4zeFauT9e15IVzhborZORaamjzzvNZ7k+vq4eEhnrvT6bQ+fvz41GS1E4TXPsRQtH8nfi72wucP73sxIxVB17kw74DjqOeLeQw6vjLbxVycGENqWs015fIb6HXTcRmvq3+L6SU2qHNfr2mKTQpdrgTXNZ+RdV46X1oP79+/jwyYGIY3GAwGg6vAxTG8m5ubjQ+6WiT6VacFpO/q19nVqe297jWlrN91PmZB1hKZnSwvJ65c5++Q2FsdE63jLsM0xRmFLjMyMVWyNycETXbAa+yYpJuzQ93W1XPxPHEsnQTUEaHxuq96vNSCqZP6Yg1qyiit7zkR5bW2zNuNnZ6FjuGnxpg8512mZPJKuH27GHSdj4vddF4b4nQ6vYifucxkgfFDXR8xF8WK1nrODBR74fjZxqc2IeWzghJgZFH1eGoppP851npOUhZuenbUbVMT3CQfVufFBrAUk3bZk6mlGFu1ubZOrEWmd8BlLtfnz4hHDwaDwWBQcDHDu7u7e/ol77Im2fiVrYScqGqKV9FCqcfby8rsxKpp8ZBR1DqdlKXJeXdsjfOhVeaslCQ4TPbh2sOkuihnNab97alf1P2dTqf2+zc3NxsrulP5SFlrR1jBkXOcrgdZwhGLO2XR1ve4jjm2bh10cT6OMdUzMsPOsSy2Y+G8XL3XXvapq9dNAtMO5/N5ff78eZPN6BiejsF7wDVXraL3az0zPWbcMtbn9kdvETOi13r2bgmMcXHMdY700qQYnsuN4P8aO9e7e4/rjNffNf/mvFJWav2b8V/+X8fIZ9VRdrfWMLzBYDAYXAnmB28wGAwGV4FXdTxP6aZrPVNeUnsWzLoCZtJyJiLIteDcKXT5UPqmKyKn+yalAh+Bc+t0wtIV7v2UNNKJOic3SBJorftP5QhOZIDuuz1X4/l83gj1OhFiljsIdH/U/bi07LpP9z9FEJL0W+fSZJF6tw3XKI/Dfbr9JVdmJ8a+J2V3iXtScDJhXCtMinHPiSOQaEE69/VvJkEwiai6xpTAoudZ6lfZJUlRektuUXe9mGiW3JRObo+hhr3wT50HrwfXYb0H+R7LyHTOXJmHisM5n07eLV1TupVdMk4XAkgYhjcYDAaDq8DFDO/t27ebdH1XCMxApWN23CYlaPD/KoXD4krKkzlB3r2UXsfEjshnHUXqPHxJITjZWpeAwvl0hZ//TaJLFRYnzufzenx8jGnHbm5Km2aZRUVKrqB12bEM7pfrzEmw1XnVV77PY7rjdCBrEkMhe+tEC1LHdbeW90oa3LYaU2LmnddD6FpLieE5Zsfx8frwPnFtZvRZLVlYK8sk1uPx3tKacYLZKdGEhfqOcQv0aPD50LE1IUl/rbUVrdD41XaJ7Xrq+UzC80k0vW6TZPCYQFbfO3L/EMPwBoPBYHAVuFha7O7uLlrEa2WGx7IE58ellZ5ko1wciXJJR9q1CMl6rcfZsyaOWM/CXqyyfpZia0nk2e13T5bsyH6ddc3rtHeOHh8fN3GkaunvpSQ7NpuKxlN8pILjTw1nXcE8P2Nc4YgQdBqPO8dJcNwV+++JINOz0MVAaJ27Mp+9bRwYa++Ek/Xc6Upl0v1BhlfZDO8tQayFrc7cc0etaijm4MogUilDV9TP51lqaebELbjOKLPmmC3vG81H54KtjGppR/I6Kb4p9lvPI1sicY3q/+rV4/W/v78/zPaG4Q0Gg8HgKnBzSYbLzc3Nv9da//rfDWfwf4B/ns/nf/DNWTuDA5i1M3gt7NohLvrBGwwGg8Hg74pxaQ4Gg8HgKjA/eIPBYDC4CswP3mAwGAyuAvODNxgMBoOrwPzgDQaDweAqMD94g8FgMLgKzA/eYDAYDK4C84M3GAwGg6vA/OANBoPB4CrwH/7FpVj8bf0vAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0betZ1vl8++zT3P7cLrlJSKMBAcEhqHQ2iICxAUFAy6BAYsCRGmXZg1ICYglKIeIQpNQBKBambCibEAVpBWpEQBEhRWNASQhpbnLvzW3Obc+5Z+9Zf8z17P3u33rfb8517jkJsL9njD3WXnPN5uvmnG/7vG2aJg0MDAwMDPxqx977uwEDAwMDAwPvC4wX3sDAwMDAqcB44Q0MDAwMnAqMF97AwMDAwKnAeOENDAwMDJwKjBfewMDAwMCpwA1/4bXWXt1am4q/T74B13tNa+3V1/u8K67bWmtv2fTrU95H13xda+1/3IDzfsGmHx9wvc89cO1ord3VWvurrbWPeD9c+ws69/EnJPt//ua3H7kBbfnRTlvi333X6Xo/2Vp7/XU614XNHP7W5LfXt9Z+8npc53qgtfby1tq/ba093lp7tLX2z9aMaWvtQ1tr/6619vbW2jOttQdaa9/XWvtd74t297D/PrzWH5b0Dmz72RtwnddIuirpH9+Ac/fwOyT9ms3/nyfpO97H17+e+HZJPy3pgfd3QwZO4C5JXy7pFyW9vx6MnynpfmzL7uNXbT4/trX266Zp+vnr2IbPl3Rb+P4Vkj5E8zMm4r3X6XqfK+nydTrXBc1z+ISkH8Zvf1HS+et0neeE1tqdkn5Q0nskfbbmdn+VpO9trf3maZqudA6/XfOz/p9JeqfmdfsnJX1fa+0V0zR9/41sew/vyxfeT07TdN21kfcFWmvnp2laWvCvkvSs5kXyaa21i9M0PXrDG3cDME3Tg5IefH+3Y+CXJX5imqZf7O3QWvu1kn67pO+U9Ps1C4Bfer0aME3Tz+B675V0eZqmH11z/Mr7OV7vp3Zs4jXhOgsFzxV/WtK9kj56mqb7Jam19vOS3iTpcyT9o+rAaZr+k6T/FLe11r5Ts6D0aknvtxeepmm6oX+bDk6SPrCzz02Svk7Sz0h6UvPAvEHSByf7vlzS/61Z8rgs6S2S/vbmtzdurhX/vi8c+7GaB/tJzRLW90r6LTj/6zRL0L9N0o9IelrS1y708WZJlzRrRr93c93XJvu9UfML8RWSfkLSU5o1qU/Dfr8utONpSb8g6f+UdDFp6/8IY/iwpK9JrvsFkg4lfVAYh+/b7P/U5vx/F/tPkj4gbPtczVrFk5Iek/T/SfqCFfP/kZtxeXjTlzdL+kvh9ybpL0j6+c18vkvS35V0a9hnf9OevyrpiyT90qYd/1bSPZKeL+lfbubglyR9YdL/SfND+A2buX9oc50L2PdFm3F9SNIzmm/wP1qc76M0S7GXNu3+O5LOY99bJX3NZi6vaF6vXyyphX0+eXO+T5H09zVrJg9K+lZJd2z2+UBtr+1J0udsfv99mtfrY5v+vVnSl1zH+9h9ftmKff/qZt/fIOm/SHpb7O8NeMb8c23ug+S3P7tpy2/ZzP0lST+4+e13bNbmOzf3wX+T9GWSzuEcPynp9eH7H9yc85Mk/UNJj2h+Hn1zXLdJWy4Wc/hnN7+/XrNi4P0/wnO8WVsPbtr/jZLOSfpwSf9B873wc5I+K7nmx0j6rs26eErSD0j6qBVj+uOSviPZ/iZJ336N8/QOSd8Svt+16cs7NN/779609aU3bK3cqBOHTr16M2kfrPnB5b8zScf/iKTfqdls8v2aH5LPC/u9XPPD4K2S/oSkT9yc/3Wb33/9ZkL+q+aH+sdK+tDNbx+p+QH2Y5L+0ObvxzeL4MPDNV63WVRv06yGf4JmKafXxz+26eNnSTqj+eH3H5P93rj57ac3x/zeTT+flfRrwn6/S9Jfl/Tpkj5es5n2f0h6I8539MLbfP/bm5uCN+yPafPil3SH5hv0OyV96qZ/r5b0D8L+J154m30ON+f/JM0v7D8r6YsWxuXjNL/kflLzC/MTJf3Pkr4+7PM3N9f6+s15/7zmG/gHJe1t9vEL722aH1q/f9PGxzWbjn9U0l/W/OL45s2+r0j680uSvnpznb+yGfdvDvvdthnnBzSvr9+n+YU2SXpNcr6f1/xw/2TNZqpDSV8W9jur2Wz1kKQ/sxm7L9N8c3912M8vvLdoFvxesdn/GUn/cLPPec1rdtJswvP6vkfSB2l+mX6r5jX1SZtx/qrreB+7zy9XcR9v9mubfvzE5vuf3hz3u27gM2bNC+8XJf21zdh88ua3z5P0lzQLGp+wGfOHFe6FzX7VC+8XNuv3d2sWxK5I+rpOO8+Euf76MIf3bX6vXnhv0ywIvULS/7ZZZ9+o2ZT82s32795c/yXh+I/frLXv1fxM/QOaBd0nJX3Iwpg+Hddo2P5PJf33lfOyt1kjL9yM01MKz1JJ/4/me/JVm7Z+5mZcPnzN+a9prdyoE4dOvVq5VPPGzjFnJN2yGaA/hcG+5AVSHPtGbSQ4bH/9ZjHfHrZdlPSopG8L2163ad+n7NDH79mc+9zm+9dszvFBSduuSPq1YdsLNvv+xc759zc35CTpN6Ct8YX3QZub4bPDtt+0Oe4Pbb5/7Ob7r+9cjy+8L5b0wDXM/Q9vbtabit/v3YzHN2O718zvD/2fNEvgUVD6+s32Lw7bzmp+wXxT0p9vwHW+XLO/9+Wb7344/nbs94OarQ57ON+XYb/vkvSz4fsf3+z3W5PrXpZ09+a7H4L/EPv9A0lPhu/W8l6N/V652X7L9bpvO2uCfz+I/T5+s/3Pbb7fs5njf3wD27bmhfflC+dom3X2v27m5kL4rXrhfR3O8bql+0THWt4XJr9VL7x/jf3+w2b7p4ZtL9ls+zNh249rFnbjPXNB80umnA/NFqsT91X47RskvXflvFj4nDQ/H1+B398h6a/cqHWR/b0v0xI+Q7MJyH+fH39srb2ytfafW2uPaX4IPaHZTPfBYbdXSHrDNE3vvobrf/zm2EveMM0+tn+nWauMuKxZA1pEa+1FmqXGfzEdO3L/r83n5yWHvHmapreENtyv+QH9knDO8621L22tvbm19rRmTeQHNj9/sApM0/TfNUtwrw2bX6vZVPDtm+8/p1lo+KbW2h9bGYn5Y5Luba19a2vtU1prdywd0Fq7TfPL9Z9M0/R0sdvHaX5BvQ7b/5nmFzfn5XumaToI39+8+fxub5im6VnNGsaLk+t9G77/c83C1Udtvn+8pLdN0/RG7Pc6Sfdpe+wZmPRTCvOoWdv6BUn/ubW27z/NAtI5zeampfPd3Fq7J+lLxE9ovmf+RWvts1pr9y7sL0mKbdq0aw0+TSfv49fi91dt2vJPJWmapoc030uf1Vq7ZaE9Z9CmtrJNa/Bvkuvd3Vr7utbaWzXf889qNnOfk/SyFefM5uve1tpNz7GtxL/H9zdrvj++1xumafolzVrZiyVpswZ+k+Z7qYU5virphzSv9RuNr5D00ZotVT8s6d8govfHJP3J1toXttY+8jrPd4r35Qvvp6dp+i/h7+f8Q2vtMzRPzE9rjgj6GM0308OaJRLjLm1Hei5iM5B3aju6TJpfBndh23umjQiyAp+reRy/vbV2sbV2cdPGn5b0OckkPpyc47JO9vNvaja5fatmc8tH6zgC7YL6+HuSfmdr7UM2L50/KukfbV4EmqbpEc0m0/do1iDe3lr7qdbaH6xOOM1RVX9E80Pg9ZIeaq19T2vtwzvtuEuz1NybL4/7iXmZ5oCCR7Q9L4/g+5XO9myc3lN8f1FoT7VGYnsNziXn8XmaTYDP4s/ReXevOJ+0MOebe+n36lh4eE9r7Udaa7+jOqa19oFs10rh56c69/HNmtfpD0m6HO6Hf6PZl/mZC+d+J9r0R1a0Zy2yef02zffH12jWsj9KszVDWr7PpHq+rnekZba+n562A2/iun/e5vNrtb3+Pkfba+8I0zQ9pbkvdyY/36X8GZad523TNP3YNE1v0Cwo/Zyk/yPs8hrN8Rh/SrMb6j2tta9qrZ1bc/5rwfsySrOHV2rWfF7jDa21C5rV/4j36vjhtBrTNE2ttUc0S+nEfdqewLUvO+k4/JpSmPE7NZvEdsErNb+k/oY3bB4ca/BvJb1ds+T9c5rNE98Ud5im6b9K+syNxPdRkr5E0r9srX34NE1vVoJpmr5N0re11m7V7Iv7akn/vrX2kkI4eFjzOPbmy+N+36atkqTNgr9TK2+sHfD8eJ3Nd2l+0Lo9H5kcd1/4fRe8V7NP8LOL39+64/lKbISS79/cN79Ns3T9na21l07TlLX77TrWbA0KBLviMzT7QT9J2w9pab5X/knn+N+j+aVt/MJzbE/EiTW60Zo/UbPL5O+F7aWQ8CsMTsn4G0q0W0kHybaIn5X0Ycn2X69rSCebpumwtfZfNZuDve0RzT77P99ae7nm++SvabZAfdWu11iDXy4vvJs1q9oRn6dtDfR7JH16a+150zRVOWKXNUuTxA9J+tTW2i3TND0pSRvT3KdszrszWmsfrTn/5+9pdsBGXNAcYPEq7f7Cu0mzJBbxx9ccOE3TQWvtGzUvpHdK+u6pCCOfpumqpB9prf0VzePwoTo2E1bnf0LSGzYawteqeDFN0/R4m5OOP7e19tenaXomOd2PaO7nKzXPj/HZmuf+B3ttuQb8T5L+3/D9lZpv/P+8+f5Dkj6jtfYx0xxabfxRzVpefFmuwXdpDhR4bGNufq6wRF+azDbj/P2btf2vJL1U+fxc1hxBeT3xKs3RgJ+p2eQW8SckvbK19uJpmt6eHTxN05uuc3t6sHn16D5rre0pd0NcTyzO4fXANE3vbq29SbPP/0uu4RRvkPSXWmv32YXUWvsNkn6jZrPvTtgIsR+nQoiZpukXJH1la+01mqNPbwh+ubzwvkvSN7TW/pZmTemjNDuPL2G/L9NsuvmR1tpXaZaeXyzpd0/T5IX6s5K+oLX2hzVL0JemOb/lr2l+wH5fa+1rNJvbvliz+eErrrHdr9J8Y3/1xoZ+Aq21N2j2XfzJjZlgLb5b0mtaaz+reYH8Yc1mzbX4Js0m0Q/XrL3FNn26ZlPC6zVHrt2q2bF/ScidCcf8dc0mkB/QbBp6ieb5+S+F9mD8hc0xP9xa+9uaX8Av13wT/plpmh5srf0dSV+48VV+l2ap8is0v3y+uzjvteIPtNae1Ozn/FjNuWHfEnyq/0izeeX1rbUv1RxR+zmaTcCfP00TH+JL+FbNATg/sFnbP6XZP/SBmk08n5qYpXp4l+Ygq89urf2M5qCut2gWED5O8/i9XXMw0F/WbE6+EeQOWwi+7G+cpuk/JL8/qllw+BzdIOl9R/ySNmkIrbVLmiN+/xedTGi/7pim6enW2i9qtrD8R21SaToC/HPBn5b0PZvn0D/RHH38PM3PkkvTNPWee1+vWUh5Q2vtf9dx4vnPKGjprbXfqDk45s9P0/T1m21fu/n5RzfXfJHmqOEP1rzufeybNuf6Wc3+x9+jmbzjf39Ove7hRkfFaF0e3hnNqve7dJwr8hs137CM4PtASf9Cs8r+jOYXwt8Kv79Q843/uLbz8D5Ox3krT2h+8KV5eCv6dW7Thu/u7PP7dDJXqoogPdFPzQ+sb9P8cHtE86L4mHiu0NYqOu37NT/8GDb+oZtzv3Uzfg9odr7/lrAPozQ/TbMWfL9mCfXtml+qZbRsONdv3pz/Mc2L+r8pRKhpFjy+UHOI/xUt5OHh3GluGMc57PfbNJt8n9jMXS8P772bvvby8Hjdr5R0Fdtu0ixs/dzmfO/VLFh8uY6jPh2l+QnFdWI+5GdtxvBZr4dNv96g43ym+zXfI7/uOt7H3Tw8zcLjpE6Ol+YH45uvV5vCeddEad6T/PYhm/vkic2YfY1mv+Ek6SPCflWUJp8dvtbFhfb+bs15rFe0Lg/vD+H4vyPpieS8j2o7EvkjJf1rzYFxlzW/6P+VpE9cMa4fpPnefULz/fvPJb0A+3xE7MNm2ys1W1J8zbdqzpPleH3DZhwscPyEVuT2Ppe/trnwwK8itNbu1ryw/+Y0TTdOWvoVgtbaF2h+Qf+aaYElZGBg4FcvfrmYNAeuAzahyB8i6c9plrr+/vu3RQMDAwO/fDDKA/3qwqdrNiX8JkmfO90Yv8DAwMDAr0gMk+bAwMDAwKnA0PAGBgYGBk4FxgtvYGBgYOBUYLzwBgYGBgZOBXaK0tzf35/Onj2rw8M5/9af0Q9I6si9vb3uZ/zfx8bfsnNmHKNL+9yoY9b8vvY61/vYXpuW4DntnZ/+32ma9MADD+jSpUtbO99yyy3TXXfdtXVMnGtea+lz6bcM1zLGa8+zK9b4z7MxXtue6lh+9vaptvvej/C2g4OD9Huvv601Pf7443rmmWe2OnLzzTdPFy9ePDrflSszheqzzx6TEV29ejVt55p7a2kN7XJvXa99l8D+Xa9jqjnaZXu1zrL3RfUu4bsgu+f92/7+vp5++mlduXJlcTB2euGdPXtWL3vZy/Tkk09K0tFnXHhnzpw5aoQk3XzzzZKk22+//cR3f0rSTTfNLDsXLlw4uk789Dmzzvs3b6u++zOeh+fwdn6P/3MfozdBHBOeg9t7bWH/fKw/4/+9NlXwgvNDyseeO3duq43exw+bq1ev6ou+6IvS8168eFGvfe1rjx5WPp/nPrab8+99fEzsq9vjtcOx9Gd2s1dz2hPODJ9nzYPV6N34cXt8mfDlwev02sYXjefJ2/kZ9/Gnr+vvnr/Ll48JYvy/Px9//HFJ0qVLM1HSo48+Kkl65pljdjlfM94D3/EdLD4w44477tBrXvMaPfzwTOrz9rfPzGQPPHAchOxrPf30ycIcXkPZfXL+/Pl0H3/vrYOleci2cxs/18ypwftzl5cYn43ZC4jPAX7P1iqFDn/3vPszzpH/97vEa8jvlNtum4lvfO/HPt9668wgeffdd+vHf/zHy/5HDJPmwMDAwMCpwE4a3jRNunr16tHbl1JgRCalxO1rJO1MO+N3nu9GmZoq9ZySfgZK3NX23jkqVT8zMfl/jtsa8DpVf3fF4eGhnnrqqaO+UsrMrkEJNDO3cRwqjasncVfozUc1Z2sk7erYnsmnmv/suv7fmgrvT95nvo/jsf6s1nmmFVZr04jHWFP0PufOneuO9+Hh4ZGG4OePzxHbwHuMVqLMEmLtgZqe0TOHVvfYLmbxzERH8DlXPUt617kWbbDS2jLrANcT1wzPIR1rdFwznuOnnnrqxLnjb972zDPPrHIPSEPDGxgYGBg4JdhZw3v22WeP3rDRd2dUGg/9I1GKWeNDq7ZX9u81Ug39YbsEQPQc/2xjpSWtcahXmnIPlTbGc2XBRuyXj8m0Ro7tWgk9nie20cf7N/tYiJ6vk76ani+3Gp9dgguogfWCOQz6QXj9OI5LTvxsHKt+eEzY5ihxL/nuMg3Dz4GlIIXsmHh+ai0Rh4eHW0EwWbvpG2TfMx8eYwfWWEZ4f8R2Stfmw6MPMaLqT9Xf3vW4PVuznDOPr6+bWfdovaGVwMfG+9rPhGwdS8caXvThsc+XL19O+5BhaHgDAwMDA6cC44U3MDAwMHAqsLNJ8+Dg4EidtVkiMzFVwQNZiC/NUVW4fpYSsGTKXJP3RzU6U68rs9aa3JYl08Ia80dlfu21rzKzZWZSmpMqk23WRp+/Z36dpklXrlw52iczh2dh0tm14/zb1GGzlL/ThJmZ0pfyPat+SNumnjU5Z5XJj/dMLx2mSkfJTM1VWgXXQ2aWqtIQHEYej2EQAddFFsKeuUV6uV7+i23smdA9Ll4X/ozmNKdGce3sEtxRBfVkc7n0LMxMmktt4RrqPRt5nZ4Jnd9pMs5Mml4r/o0BKbxHpOP5sGmTbc3SYAybO5999tkRtDIwMDAwMBCxcz28g4ODI6ksczJTeqxSDLLwYEs2TDCuEtCzbVXycAQlraUAlGzf6lyZpFVJ3L0gnUqCr4IWMq2AqEL3e/3rffd1PD8HBwddTfjq1avdwJnomI5gmL0lcmlbSrfEWK27bO1UwSvZevD6poZCa0cMqGA/iIooIG7jPuxnFgTG36h5GVmKgSXrKqggjo37bu2PazR7Xuyi4bXWtLe3102RofbitcTAlEh44cRlEl+sCQzKtNaI3tpZCuzLNLzquUNNMkvQptWjCuzq9cMaFjW8bE69L7UztiOeh+QFPaIDBl9dvXp1aHgDAwMDAwMR15R4XvHWxf8raSLTgCo/iyUCanyZdshjqRn1JK7Mtpx9j/tW4eJZ/9iWamx6UvoS7dW1aGvxGJ+/klwzfyAl354Pr7Wm1trR8bTvS7VvhuMVNTz6aJbWTC+tgmOarW/SJXF+3K9svdGXQe2tp4WSbo2fUbLn+fwbNTxL5HFOraVVxAPuf/SFVWH91ByiNue59rbWWldKP3PmzJY1Jc4l6cCstVmLu+OOOyQdUxxKx7RV7ouPqRLSM/9YdY9lqRPkAPU5mPKRzT+fuQafN5Gqj/eC++H++rNHS8hno9tKf510fE/Yt+bvvifctthGX8f7PvHEEyfa4TbGNdojNFjC0PAGBgYGBk4FrilKsxe5V2kklDYzP0Wl+VSSSrZtjYZXSWFVxF22bzUGu2hrVXRqHBNKyRUdVYZdEulpF6f035O+o2a0FOnY0xS4z1LStVT7Nv29IgiO26oE+kzjZOI1NeLeWFfJyj1KKfqxKZ1n/aJWyPNyncc1tBT9m2nx9OUyCTq7Du+xXrJ3a01nzpzZutfjc8DnueWWWyQda3Z33XXXic+o4Xlfanj0+9F6EP+vNCFqN9Kx5uNPH0PKtF4kMa0O1PDd79hu98f+S/ebhOvxfJwPUom5D/EZae3Mv5kQ2mTiHM8Ia4w+h7+7PfEeZPL7Lhga3sDAwMDAqcDOUZrTNB29/UklI21LovSlrKWhiudnBFyUeiqf0xofV0XBlVE/LdHxrKEyqyJYM18RNQmWA6Fk3KMnWxOVWvki6MPJbOlradBaa1uUUlFKyyioMsS2WoJmrTRvt/TMqEZpW8MzeK44tpwPRq9lxMaVP5SaXXZPUMusaMHiNUg7xWNZriW2lRGXjJbL+ufr0O/CSMmMFNvnj1GYRGtN+/v7WxGq0TpAjcdazD333CPpWMOLGhA1HUZrVtp0/J/3lvtDLcd9zPrOMcmeVVwjtGBkUajsnz89Bt43aniMpKRli9GU8V6lduhz8TpxHPkMZJSmEf2/vaj9JQwNb2BgYGDgVGBnDS8iixCzVMGindw3HkN7Md/uVaSYdPzmt/TC/JBMsl9i2Mi00KV8m5520vN59s4dUfmq2Ob4f5WHlfmKlkoK0bcX991F0qrKuERQa/U1LS1nJNT0Wy0x00jLBOduaxZRTN8C+5Xll7ENLN/jeyKLhGWbyFSTVf9mW6rcpix6kp/UPnrRh26rNQn7ZaJG5oKtjA7OME2TDg8PtwiMs7Xq58DFixclHWsXWT4bI4W5fjnWmYZH8Jjow6tK+vRyhqkV0irgMaU/MvutKnQbwXnnWrHm6uK79s9lfacFoWfVsW/1vvvuO3HsQw89tHUM/XtR+1/C0PAGBgYGBk4FxgtvYGBgYOBU4JpMmlSrYyIhQ3j9neapjAqLTnaaLBgQE7fRZOo2WZ3PKHciJZbUr+ZL0w7NE5nJz6DZrQryyEyoNGFW9bay5FEmBNMsFsfE1+6ZO9hGjttSWkJmgorn4zj5N4Y3ZwEaDCzwp80fWXoF59vj0aOa4xqkuTij0arSHypShqx/DOX2PjYXRjMvTYzuJwNRjIzSjkFTNMvG9cYUFhJMZ3XQ3J943h4tXVaHM6vUnqUuxbZkQSQ201Xz7nbH9jG9yn2M8yCdXPM029L0l5l1szSneH26bNakfnjcPBZxrbrvdCN4nfkefOyxxyRJDz/88NGxNJFzzWRuHwZd2Qx+7733pu2IiJSDw6Q5MDAwMDAQsJOG11pLQ0qj9MGACUoZWQh2DHGOoETgc2bUUgyFZRh9DNdlkjUDGzJaIGoIFRFzj1KKY1DRN8VrV/RnVZK+tB0ybVCDysadzn3OV4/CLAuGifvu7e1thTv3KoRbqqyIAWJ7qyRrhk9HrbZKgq+0gwiOC+chrh1K4T2SAh5L7chjbi3q0UcflZRreO67pWMfY2Ta0Nqq3/EYBjxRg8jWGQN2ljS8y5cvb2nkcV5ME2aLjuFrZ8FE1T2d0WZJuSZMS5bPwdQM9sd9jm2y9hSvw8ApWol688X+MWXD14nrwuvI68oa3COPPHJiu+9NBx9FVFa3LDjH80Lrg4/xvEatkPft0PAGBgYGBgaAnTW8M2fObNn1eyV4KmT+MdKQraHXopZWkRPHc1j6osRRhWTHa1b+N0pYmb2/CpnP6MqobdI3SM0v0yyrZPhsbiidr0mkZ/LrGmoxakBxHN1H+1RIxFwRBcTzVmNr9NITOA+ZT82+YUrHloB9bM8KkZH2xrZlfmAmkzOxOfNNssRPVWA5amtsE8eA54ztpZbtfekji/97bJZKSx0cHGwRXWRjzHa6/SxZE9tNDZ5J1pkFg35ZayIOr89Sdbi+qmdV1Jo8zkwer3z8EUzNcputSXpe7I+LY/Lud79bkvTOd75T0rGm52Pdxjie1OyqhPeY/M9jOPZZSTBq+pFYfAlDwxsYGBgYOBXYmTza0paUawyVpE0qpqxke0VC2yuQSamS1DiMUHM/4idLUFTJvfHa7F8lGcfzUxqraHtiexn5RE0yI+NmNCbt45m/i/6kpWR5qaZXq7C3t7dFkBuvQ8orllHJ/Ij0h9HPa98tCYLjMdToObexn5SwGf1nH0ecS4+7tYAq4tbtiWuVGje10cyPbvg8PsZ95xhl/jhSPPFej/1jZKLPy6jKjJYu3k/V+nHsgOewRxpMLdlt81jEttIXyIhealFZWRuWheJYZFYikhbQx2nNKzsf75vKTxfbRro4r1VraTF53Nd+z3veI0l68MEHT+xTWV2yMfAxbpO133g9byORtdua+d5JOJ8VNKgwNLyBgYGBgVOBnfPwDg4OtkrH9wpWUprNfE6URLyVcSWFAAAgAElEQVQPc/oyKZ1Er1XUUkZHRmmQUaFZNGCVG8jIzwyUinqEw5aS6OuqSsv0tB6jp7lSC/UYMwIvG5M4pz1JK0b50rciHc9zpRlkuYGMOOX4MFIs02qNKoo2k9LpJ6PWkVHZkXaPkXfUruL1uHbof4t9qSizmN+arR2fj9RY1EKyKGtG3BkZnVxGc1VR0zmCkzmJsc/WTNwXRxF6vPx7FqXpfakJ29dEcmlpm1iaz6pe9KT3cZu8j31pUcOjT5BjwDmObeSaqQqzZrl7Xqum+mJeXEbybM3Nn4yyzvIN6WtntGt2X7OM07lz51YTSA8Nb2BgYGDgVOCaygNVxValZT+OkUnA/rTf5e6775Z0LOVkWtYdd9whadve3vMvVRGP9FPEczCaqNLkGPEp1eTX9B3FcbQUQ23DUg0JeWPkE311ZJShX0A6lqQsndNHsYbJoSdl7e3t6fz580cSHCXy2G76Anr+UTJDeN+YdxnbmJW1oUbZK2XFHDeOl68br09fGX12nuvMN2Wpn9p5RoZscO4YLUcLQJwDStYkDbb/J9NcKP33ykbRX7qUS7W3t3fkA7WGFDVht5caN5lCMqYg30PWYnwdlxTKLFnMryPDUxZR7PVMK4HbaKLkyCrittAPduedd55okz/js40sVz4vo2bjXDJn1NdnTIS/+/krbUdyeu2+9a1vlXQ8B1lktlFFnWbsQ8bNN988NLyBgYGBgYGInTW8mGuV5Y8ZjMLiGzvz+1kqpmTFvJsokXgfRxz5uvQHRemZkUY9JhejymGqShll5SzYd2qUMfqI12Peks/pMYsSJ+eH+2TaKbVaahT08cV9I49hT0qPv7kfUdusCpPSp5pZB7iGKIGzBE88hhqq/ReUwCPox2buWRalyzF2P3s+vMo3SYtGXLPWBjwW9KHQkhIR/UcRPr/b5mjUeD1aEshCknFfRoakJeuQtSdrDnEd2MIRIwB5zXiO2K4Xv/jFko4tSj4H11JWKNXPHZ/Xz64sx405jNZ4yD2a3cu05DDit1fqyfvQh5dZZmgxcb9oIXnJS15yYnvc1+P3YR/2YZKkF7zgBZKkN73pTZKOIz/jdag5cl1n1o/Y1hGlOTAwMDAwEDBeeAMDAwMDpwLXVB6I5oiMmqgqhZOpnlZbbQ7oOfGlnOyU5gCaW7OK0DQHMMQ4mkzYZwan9IigvQ9NP1lwDEFzK2mOGB4f92WwQkV8HfvD5O5e2zIS5F7y8P7+/la4dpwXOrCZhuCxiGYpm51I2+VjbQIi6XLsq9vvQABXy2byfzwPiQ48/jSTxjaxjTSPZ5R2TNGpiAcyM5gDHDyu999//4n+2FQbx5lVxXk/ebxjG5kkzGMZwi8d37dxPfTWTjzWbejRTZHowiZAz610PD5+7tAdwnssrk+P3RLlXzTZk3DZn3QbRFMz0xw4Rm5jlmpEqj4Hlfh7dk6a1Tn/Nle+4x3vkHTyfvLa9D4eI99XL3vZyySdfFZVz2LDc+yxi22MATNrMTS8gYGBgYFTgZ01vMPDwy0JLqM1qsJEMyJW0vOQJoehxlmIakUxlYXgV/RJpKzJ+uW2MCiCZS2i1EzHc5aIG/sd/6eGTOLuTLLLgm7isb3gHGrgTBSPY08Nf01oMKm54phXZAEkkLVkLh0HmDBopEo4z0qTWGO0JOrvHvsokXJtMqmXQT+x3ZV2SK0wri2mpzC1oEf+QM3K2o0DTjKqtorgnGWWohbCtViRQcS5ZhDU4eFhGXhw5swZ3X777Ufnt2Qf97emwUAZak9xzXvfqmAtg6Vi8JKv7bb4/CSR6CXoM2jOa9nBM9m+VaBglg7FtZnRLMbt8ZgqHcn7mnosPn9sTfHa8HhZs/T3uL55n5IGLSMr5z3YKy1FDA1vYGBgYOBUYCcN7/DwUFeuXNkqPhhDmelTYGpBljxO+iJLCJZ4epoEC78a9P/16GyMKmk9buM+lgZZziJKs/TzkYaMCdxxG32GVWHOjDKLEp7R0woYqszk5Ow60TfZK/Fy9erVraTh6I/jtf1JyTErqkmJlMnevk7m92Gb6bvLiLkZgs95ir4irlv6JqkZx/6RBo/I1oUlYPs9qPF5PLM0D96LTKHJSgp5bEmKzHWYaXC8BzK4eLD3cfudqB2Pt6+OBVhZRFg61jz4POP4+BxxTrnO6Etj8n08Pz89fj5/Nv+8D9lmrsO4jT5jrsfsnqgo+txGErxL21roAw88IOk4NSOjI2O5LVpOMqsHLXI9MnFiaHgDAwMDA6cCO5cHikl+WXkgRpVlhL/SSb9IJTWTRikjRaYEWr3tMzt1VcA284+xHzyW0mzcn/Z1aiNZZKdRaXj0SUXJjv4XtjnrH8exIqvO+hW/L9FDsT9ZqSeW9LHUbmQRgkxcrSjH2B5pm3qJWGMd4Hpgm+Ox9MsYvahnWhiYFJ8l43OdU5vKLAv0mVSlmqIFw9J3Rt8Wj8lK16zBwcGBHn/88a3nQQT9ovSPMmIx6xs1B/pPY59Jr8hz9cgduM4dJWqLVvSxMZKymtvML09yahIR9Kw2lVZOjTbeB1VJs0y7NqpYBfpXoyWIPte1SefS0PAGBgYGBk4Jrok8mhE7mbTGNze1jiwHjJpPReKbEcBW17e0meXhZZGCcXtEpeFV0kXcXmm5VRkfqfZncYyoMcX/OW69qNCKQJvzlmkSxlKkVCzUmFHOUZJmWZbMb1BJj/RfeB3Esa5I0HvaB/O8KIHb/xPXlH1ppHarch17Y2xwTrOSQgbnhYWH49iRhox5UZkWWpGIU5PMNIk1xOMHBwe6dOnS1n2SlRgjuD1qQPS/V/dNFgld3f8k3e5FQN5zzz2SpOc973kn9o2WBmpUVSHgLDq4WgeMvOwV5q36y+dPBJ931Cjjc4jPNVojfK6o9dLK0YvwJYaGNzAwMDBwKrCThudoqco3xH0jqM2sOYaSb5aDwrIVbFPGkkCplZGk3jdGBjHSkswk1GhjG6sIqyofL+5D0JeT+YOqQp8VaXWv/ZUvL0NPyjo8PNTly5e3pPTYhkp7rfyl/F/a1l7i9QlqdFUfe2TVlNrtJ+lJzb2yOQTLvlQ+4wj6kXoRkGxHxaLUm1tG+Fq7pU80u46x1MaY/5v5biqtjPdW5h9lviBzETNtpmLHsWYcCdXZR5/HeZ/OK33nO9/Z7X/8ZJxDpuFREzLoH8tKmXGdVeu+V7aHxNMcs3hean/UqjOLYJaXvYSh4Q0MDAwMnAqMF97AwMDAwKnAc6qHlzk4M+qwExdMKJ6MquI4VdasJhtBFT+GStukybbQPBlVb5oFqircvVDZKl0gM4NWJiT2KzNP0iTDNmbm0qWAk+zYjJqqBxMXSP3ahpXpNTOv0exZpcyQnixuq1I9eikfvg6rsvuYjIaqZ/b2+Ei5ibsi1s6CSJiQW1HzZYFIDBaoAlAyZBW0I7Lk+Oh66AWAZakhETbPMfTeYLh79htJLKpnWATvd9K5ZUFZ3tcBTp6fLC2mSimhiTt77lQUZjRXxrHi3FXzna0dzqnH0ekWTDvL2s2E/YxQ3fCcM+iwh6HhDQwMDAycCuwctJKF2Ecppgq1pqM+I1em1FA5TLPrGZSIMg2PYdIMfOmFz1ZtNnpBJFXYM/eLoDTO62ftqzSk3jHVsUQ29nHOe1L6lStXtsrMZOsgS2iXcho5Sq1VOkWm9VapHmuCSUimzDJBMTCqopKrLCVZugglXd4jWTVug4FbTAjOCMEr7SCzfnAOGKTQ01xjkMJS8AHpzrL0FG+ryJWz5xfHsirFk93TDHijJSGSHpN43p+RIo2o1vMaMMiPqVok2I6gJcPoafpLgS4em6wqO9OGeqWZWBjg7NmzIy1hYGBgYGAg4pp8eJTkMjs1JYBeMuySD2VJ64jnr2zdWfgsJWFKqpmkbVRty8p0sGxKFYqbaU/0RVTUX2skP/qQeiHFa87Xa3927einyYiLeV6OeSZ5V2ul8sNF7a2ibePYx3VQaUdMaWHfpW1tkNpUZh2gZmI/D4l/4/xl9F9ZO7LEc4bzV4VVo8WE95jbyJJNmVYQaah6/qK9vb2t8mGx3e6zk/zd915ie6UlV2lEEZyXSjOJfWKB18z6VLWxsj4wTSmuA5ZGY6I9n0sZKh8hSyfFNvK3jNi6Or8/6XeO9wQJrnfReoeGNzAwMDBwKrCzD29NNKBUSyK9pNEliTt7k9M+nSVgSnnBWWpy1CwyCZISSUWnFPvPopCW8HoaV5Wkzt+z7/QNUZvKxrGit1pD0Lo2gi/2wdJnLCRa0bdV5ZWk7eg7zhO/Z+uA49Xz3dCnwCRY79vzUVP77FFYsUCmr0NtJ1orKu22WhcZeTQ1PWppmaZcJcdb48uinrM+E6017e/vH5EhZxoj1ye1ZSaES9vPL44bffxZtC61RGrEWfQsfVCVvzH+v1QmLHsWk1idRWoz+jNHVNI6UPkD4xzQCkALAn3IWd+NHsF5FpuwVssbGt7AwMDAwKnAzj48qU/1VNma10S+UXqs8pZ28S9luVuU5DKpVTopVVQE0JREMjofb7NEZempKv0S/6c0s0SWHf9f8q3F67m9lFR3KeOyROIatTxLt1kpFI4LtZq43thXtpfrcQ2dWo+Ql/4DRrNluUYVPRvXeY/GK/OZSMdjEv01zu+qUBEDxzYQHNdMy660XvpjYj9ixGDvvt7b29vSjGIkLH2ZzAnM8rl6NFnxd67L+FtlCcly+agte7x4nSw3lcVi/QzxWPt7nEvva78myxKtibhl1CnHKH6vNDrPV6b1VnR0LE8V104VRbsGQ8MbGBgYGDgV2EnDM1MG/QlZxGVl8+1pAEu5Zj1fXpWvUknG7Fc8JpPIq3IYVU5dxgZDCY/aR8ZAUPkxKVHuQsbdizqjtrkmd89YmwsjbUtw0nFfLZl6nZGFIbZhSdrjOGYExtS0KiLyeB6DvqKMHL3Kh6zWVCY1856Lvk/ppLZjKZmaCf0umR+miqau/H/SduRqZY2I3z3vayOwDw4OtiwjkZnElgL7oNgfj18sJGqthQVfSSKdsUNVTCDMFY1r6eGHH073ZaHZeB220f1jxLcR11Lli2YUajb/VfRnzzpA4ueqYG9sF0m3WUQ2e8cY8bk58vAGBgYGBgYCxgtvYGBgYOBUYOeglYODg62AhqgSVwmK/IyhqUskrVVYd/yfZhufPwvrr0w7Vahx/L8Kd6+2x/+rxN/MXECTMJPl15iKGZTBdvTMoJUZIs51lqBfYZqmtCZhDFqpEn9ptuwF6FSpGFmi+7WYbdn+isQ7jhMDDyoKq6x/Hp8qfN+mrcyk6fPddtttJ9rB6/QIFnapNVaZe7MEa9KPLZnKn3322W7QGkPtbSZkcExGwVaF/FfUc25T3Idk2xmNVlWXzv3x92j6dT8ciGSTprczYCir2Wc4rcP79moqsn80uxpZLT0Gmfn8/B7b4vnhpxHXB+/xkXg+MDAwMDAA7Jx4fu7cua3Q7MzpmdEkVWBYMEO9mXCcJYBmbYnnyDS8SsrMiGap9VXBK5k0WNGOVSkN8TpVgEFPqqmCJKr2ZO2m9pON41IyLHF4eLiVKpFRsFG6owTcI1c2qrSODJU1IpN8rXFZWq5SWWIiOEPUSR7cC15icjI/fWxMFHa7GRjCYIleqktFbF5ZAKTtcHRK+lGbZz/29vbKOTK1mPuT3QPsI1NYMmsUU2QqLTO7pyttkBYsr5P4G9tEisPYRmvw1tKt4TloyWPge6ZntfGYuE1Mko+o1grLemXamj893yRUj9YIHsNnYpYa5PGKz82ReD4wMDAwMBBwTeWBepJwVlSwOtcSKoqkTMOj74QaV7Q90+/Coo0ZIS+lsqUE3R4hK9ucaUiUoCrtsEc8vfZ7PA81hypMmf/7+9K8UiKN66TqG31BWcFSanRrSv7Q38vrMB1C0ha9FcPDs/lYIkfn9qjhVhaTnt+Pfa/Wm5Gl0FR+8+yep5ROPwzJiuN5oyRfWYNaa7pw4cKWD6pnWfL9mZEPG7ynWX6I27ME/coCY+0mpk5UtIf03cXr8NpVCkuWAkCfOH1pbmOv0DXn1L68rHwQ7x9rzp43Xy9q+h4f7+PvPe3T6FkbKgwNb2BgYGDgVGDnKM3WWpeSh/b7yjabRdpVydvVZwT9LT3SYEYgVRpelmjKSLuKyir6VKooVEpgmQ+MtnRGZVWJ7z1kfi1KtWxTT5pa41d08jA1hajNMJqvRwTAYxjxZlTk3vw/64/bEf0wJC7m/GQWBc6Rz1dpaxktHc+7RNQdQYsGI38zvxal9eq+lmofDSmlsrFfQzxu8mjSZ8W1w4hhkjtk1GLVM6kioo7z4j5W1H/ue7a+Sb1GTSuLXGZCtkH6rszSw34xyTseU2mM1E7pf47tr9ZDFoFZ0c/1nmduS3wWDx/ewMDAwMBAwDX58Eium2l4lR8mO4b5aFUJikwK7EV2RWT2/kpzzDSgim6oys/r5Xsx6jTTYKpjqAWwL3GfSmLt0fRUJVF65Mu75FKRXDlSi1lqrOiLMuuAr83ouKr9meRY+YEzgmvv47worgMji0SjRkWfDbX3+Bt9UtRcenmYlLArn2JsG/MMK2LguC99NJT0MxLuuJ6XrBTMz4ygr4fPoUybrZ4vjEjuRfruQp1ILYbWgixGgQTQjs5km201iPcT54z7eF6yiHJa8aoyUZlViuutKprM/6X6uZeRR8f81qHhDQwMDAwMBOyk4e3t7en8+fNbJL49FpMq8i1KQj1y0QyZ78ngdWnjjr9R+mN+R0ZySi2k0vTW+Lrow8kIh6uoLEZJrSEr7jFVVBGjPa0ti+Rbmju2N9rzGSVHidvnzgin2d6quGcWPUnfCq0SWd4fpX9Ks5km4bXD4po9dpMsmjFeP9OefAy13TXrgRI1tRJeVzqOrLNmRw0iY1eiHyYyqRB7e3u66aabjjQU5q1lfSN2YRfi/LMUTw9cf3Gu6duk5kPS9Pibj7l06dKJ7QajHaXtArDUztzGLCqY0ehVPm4Wjc9nfs+6V/lueW9mEfO92IcKQ8MbGBgYGDgV2DlKc39/v8sbyWilKuIpQ5UfRCm9lwtGDS8rkElePbaVErm0LeVVvIiZtEHb9S4FDCtNjmOTcdpxfnqlf5aYSdZoej0wSpOai7St4VXzkuUrUtqjBpblOlb5cFyj8Rivp/e+970n9q2k2ni8/X4s0ErJtxdJSA3Ln1keHqOQq9zKXoQkNVdyVkrH/iVrF/6kLye7Thy/Xh7e/v5+6XuP515ai73yObTiVFyn0rZPkJaX7Bjm6For4/Moi2+gllYxPcXr0ZJQ8VNm0adVxHpvfKnJVf7N7By0jPQitNnuXfheh4Y3MDAwMHAqMF54AwMDAwOnAjunJezv75fOfu8jbVP9LCV3xn14rp6ZoFKTKxOQdGzezOhxIrLtVvGZ6NxTq6vf1pbViegFq/B6VapENo5VkMwube2ZO1qbCYArM6W0bXJhX0kbJdUlhSpzZTyW6SF0wGch0V5HNuP5k/3KyG697hjaT3N5Rh7NsHB/MvE99pEpIKTD47jG/yuCgMxFwOr1VVpCFljVIz2O+54/f37LVBsDGUhWQGQmbe7L4DW6KTIyeaO6x6NbxM+Ou+66S5L02GOPnfjMzIZsE6/H51+kNGQKi/epAl947QiOeY/wokqDysyTFUl5dV0en33vYWh4AwMDAwOnAtdELUbn/hKllLQu9Lp3TWkdEXBF5hqvx9IhDM+10z2TBi3Fcgyq9ITYlkrDyvrDMakCUUhiG9tUHdNzwvO3jDSabVyb9Nla65beYfkXOvGpEcV9Kgo0zkvUIpnMzbnjdePxDBdfKjETf3v88cdPnCtLOOb1eB3ee1H7cHg7Nbg1dHRV+hCDJjKLSRVuz2Ck+H9Mjq+0JD9zWJomaj0MGuG5srGtniucDyY6S9v3P+fDfc/WKjVw3kdRS/M20h9WwYFxjFlOy8eQUiyOFVOziMp6EK/NoBKu88yyZHBcs3asKW9VYWh4AwMDAwOnAjtreFKfRqvSTHoUPEv+oSqROh5bpSOw9AvbG49lSHmU7C35ZGHZ8RxZ6PxSUjopunrnXdLasn2JTLNcSjRf8rG4rWvnMvMfGUzfoKYVpb5KO6qKbFZE3j3EdRD/z87XIxzg2qR0ntE1kfC3KpvSS0ugxF0loMc20L/DtIuMMIClZLhvHCum0/SoxaZp0tWrV7c0sEzDq+6LzIdHTYHJ4vTXx+tRu6j8SvEY04IxlcbX87msoWf7cp3T752NIddsVSQ3orJ60GKSzak1SI9nj4yjIh3p+Wu5bnchzh8a3sDAwMDAqcA1aXh8+66JUKyk2ex4vrEpdUapoKI8YnmOTCug5MGowCjl+jy0XbPtWdRcFUFqZMVkqQFVZNFr7OJLUVNxW0+b5velKFe2YYn8O0u8jt+zKEb6HlmeidpzbCv9LpXfJ9OefIyl8YoENx5DSZprN1s7hPvFEkbZONLf3JO0Ca5vRpZGCwf7QY08u28r6sFee6g1RV8X/YRr1jz9UaR+Y8J+nL+s4Gq8jhF9eG6vP63x3XnnnZKOxyA+D6pocFImZs/iigj89ttvP3Hsmn4xYrUXB8CYCEZBr1l/azTz7LclDA1vYGBgYOBUYOc8vDNnzmxJjJkPoIqSzDQjSrhVSSEji5qjXZoaUeZTqz4zf08lRdCHlPnCKloeRpRlfk1KwJUmkWmJS1pbbGNV5mhJ49sF0Q+T9ZmoaJSihkc/AaPMOI49rbaKKO5FF1KztP8irh3S0PUsFll/s996UYiVNlDlQ2XWAR5b+emy36pSMlGLy6w6S5YCa0bWquP5ImlyhiyXjj40f7K4ae+eptbOck7Rh0cN0hoerRBxLr0P/de0OLk9cV6qkknsQwRzQtk/Wj3i2qlyXv3pZ3PPIlit/Uwzj1G7a59LQ8MbGBgYGDgVuKY8vDU+vCp6kp/StoZH7YyScJTsLLVw3x7RbFVeghpeZn+3dEnpj1phZnOuvmdE21VJDWoumZRGf9Wa/L9Ks1tDGtvL6yLY7jiXzGlkn7PrkC2FGl1FJh3Btvh75s+gz9BrpJKE4/FeI9Q2qTXGYytSYuYqZn5GWgV4bJZjWUUQ0x+UWVlIMM3rR+0j83311tje3t6W7y62gePAMc3uS26r/OKZhsfnAPtFTU/afkZwvfeI53kMmVc8L70xpG/N17MWGa9XRW1zDfXWXeX3y85XPWey5zejaPf394eGNzAwMDAwEDFeeAMDAwMDpwI7B63s7e11nd5GVQcvo/rKzJxS7dTPar/x2IpUOJ6PgRoMLsgIeaMaHY/tEaRWJsUqwCfrV5UQ3FPll2pmZcmclQkj6xf37TmjW2s6d+7cVlJ/L1CHa6VXL4yJzFXV8ixAg6Y3zmlGXMtkZa6LXuAJzVQ+V69aeuVGyFJouA/XTHaMwTZV6QPRnMg5pUlzTYLwUmh5a20rMTymRtjEWJFIZyHsvN95TzPQJR7LlIWKUCG2g2PoACe33dePY+vz33LLLSfOx9QTjnVE7x6O14199TEkEeD6zmo3+hxMmVgTjFU9f3rBP8OkOTAwMDAwAOwctLKk4VUSaJVUnO1L8Bw9jbJyOLMP0rbkVoUlZ/tWCc89rZf7UOtYU+m6CsbJEk4pDfacx0YVtNJLAF0jwe/t7enmm2/eCk2O0mxFMF7RN0nbGh7pyLjeMi2U689t6kmkDLm2huc1lKWJMHWGWmKW1E1NgWsnC3hiOgDXCNds1PRoValo3bKSQkxAZzBaRlLsNtx0001lQvLe3p7Onz+/Ra4cSxSRMJv9yJLHK9ouBqL1yKOrhHymS8VjrK2RgNzBI1mKhc/rtkTS7fg9roOKlIMBXFkbqzI9HoNMW+TaqLTenhbK+9PtiXRrTOAfGt7AwMDAwABwTdRixhoNr/JBZcnDPYLpeO5e8rBB6TYLLacdnt97CceZT6i6XhXyv6aIZOVfJDJfWDWOa9IIKi2+R5m2pDmeO3duy18VUSWLU/OKY9ALz8++Z/4Knov9yNZqJh1LuSbBsWOoPMPs49rJSuvE7xWZdDzWWEM8Ts2o8uX1NDz6fZj4Xo1BT8O76aabtrS3qHGRcs1aU2X5iX3knPIYzlOEr+Mirixx5QLB8bx33HHHifOycG7U8Ek0UFkw3Jc4LywWXGl28RiWDlqyZMVnFp+Ra6wRvbgCaZsUILYhpqmsoSuThoY3MDAwMHBKsHOU5v7+/pZUnSWUVr68jCy2oiGjdJ7RA1GLyaLIYnuy8/AzKzmT0ah5TLI2ZlQ4PSoxgv4dRihWNFjZOSpNLNMKjUqz60VprrGjV8Td0rYESr9llnRbSby0Ghg90vLK75dFaZLSqfJbxH0Nanpcf9m9YSxRzMX2Vmsji5Su9uE6YwRmtq2iI+vdtxcuXCjXT2vthI+P2o60ndS/hoCi8rdXdHrxerwvKj9wBLW+mPAtHWtXcV5odWJkrfd1/zPKN56Xml3PYsIisgbvA+mkTzWevxfHUUUQ22eXlWaiD6+3doih4Q0MDAwMnApcFw0vvuXpA6jstxmRLCWBSsPLouco2ffIjivthfbqTLKvIit9jozweClXp8qPyfq6VDYo6yexS5TmGgLdzH+QnXd/f7/MQcv6xrWSnZ/5QiwL1APPV0Xv9opPMhLOiN9JQ0XLSBUlGNtSlaHqkWJTI/J5GdkXx4E+VmosGbUYo/+4b6aZMxf27Nmz5bq0D49jErfxWrw/ehoe78+KkDwey9xD+uOyPFOel8+ZLHfPx3utVJpW5o+jRsVz9Ij1GZna84WyrZXFLutfRQFH3118x3jeY5ml4cMbGBgYGBgI2FnDu3DhQvk2lmrmk17kYGVbZtQcpcL4W2XjznwqFeMJf4/nYiFGo7JBZ9phxcKRFf6kxELJiv6ujLmGUm3P51bl3dEH0iPFXor6vHDhwpEknvlPGGHHSMQ7A6gAACAASURBVMRsXjjeXEv0l2VglC61ql5kasW0k61vHsM+ZBps1e5KA8/O4+sxB5JzK9VlaDwnzDOLx1C7Yb5hpknYj9XT8M6cOaPbbrttK2/ttttuO9qHeW+VLy3elxXhdxUZnRVKrZ5NPWtNRVafRWDzmUEtkXOYsVAxz7PKk8zOz/uIz9OMcaeK22CfsrHwdWPpn/hdkm699VZJJ7XAoeENDAwMDAwE7KThWUrvZcwzb4gaXa88UBWVR0RJkFIR+eh6OUBVxFPP/0cpjRJeZuOuJBxGeGUaV5WfUkXvZceybWv8cTxXzwdi9KL+zLRCiTQeQy29yqmLY1H5+SoGlghqdtY2OC+Z9Ej/BLWBbJyWSthw/+x61FizaDlGcrI/1Hp6vLbWpnxfW2uLbCDU+pj3lZVQylhMenl4N998c1k2TDpmL2Hfqty6+D/vD96PWcRv5f9nrh4jF+P5Kp9xfA5wX65n5j72mE+qwrxZZCfXkP1mvby/ylfH52yWC+vz83lHdhrpeO34fo35vUsYGt7AwMDAwKnAeOENDAwMDJwK7By0cv78+S11NwatMByX5s8s8dzHWFX1d6u5VXhrxFJ5kWiOIDmw1XOGiWfhs2vMXdxeJYn30hGygIKIXiAPTTJVqaQssKZCZjKgyezg4KAbZHH+/PkjE8+aMjoV8XMcR58nC6aIv2fh+15vXmdex5WpMV6b41+RF2S/LZkW43WrdJhe+k3lTmA7SIMV/6dpq0o9yLaxZI2DDLKAkRgo1Es8P3fu3InnjCQ9+eSTR/8zyZ3PHbe/RyLA7fzecwFkJnO33fC40BzKNrOaeTyGY9RLj6GZn8+UiuJQ2l4HlUtlDaVhj46sMufSRRBNxQzyGSbNgYGBgYEBYOeglXPnzm2FlkfpxlJYVlxSyqXmKlm0+uwlArMES2w7/69ok4ws1JuO38rR3ZO4qWHuIqVXxL+Zs5pBHj1ar4pmyci0VKYNXLlyZTE1gefJ6JpYeoUWhWycqIl4u8ea2gHblfWxpz1zrVSky1JO4RT36aXsVAFIPQsAJXZaXTjO8Xpc50wxoPYW9+H926OlY0j+ErXY2bNntxL4IzEzA2Z4/1PLje1ZKpvV07wzesV4nSzthqQVJGyObWdwD9vKc/TmZYkOLe5TPVfXEHsspaVkgUMkM2GKULx/qeGNtISBgYGBgQFg5/JAZ86c6RKL2tZKiWdNIU5K9FWiZC+MuiqF0QtHrpJFM7omSj7UBjJNiFIQJe5eEnblw+n5/6qUhiqVotf+Xgkj0lBdvXq1q+EdHh5uhURHf0VVkLMiTJa2k12peTFMPPNX0dfB0O+MEIBrPyNVJqhRVWkXEZU2Rp9kT0ujVsZ7JB7LfaqUgxhuzznlWu2Rsccx7lGL3XLLLUdz6f3sG4ztdnsdsk6/b8+qwTXPdRHbxzWZxSbE36VtirKKVDnTuKihknIsK7JbWYOY2tJLocr6UW3nWPM5R4JvadvH7v55brO0oipZfQ2GhjcwMDAwcCqwc5Tm3t7e1ps1vn0ZuVkV1cy0NErclaaX0dkw0ZzSeiaJ0K9TJWjH36p910QJUaKqtMSs/UZPOlvqR0/Do5RL/18vSpNSZoZpmlLfRIQleEbU8XsWIcjoLkrpmQZGrYDrgmsrO39F1JzRn/XmLDtHdiy1QK77+D+p2ujfZuRl/J9zWvnT4/WWKO0ySqmepcLY2ztJHu3zuJBqvLb9eozAre55afnezTThqgQSfbkZMTc1LkYzZs+dyofbo/erLEi8x9dEIxsVZaRUk31Qc45z6fOxDJITzUkOEY9ZiszPMDS8gYGBgYFTgZ19eFJdOiL+5k9GS2W24CX6MZ+DEUvSth+JEkhGHs3rVPRka6IYe5FlS/tU7VlzTEViHH+rbN09bY3aJqW0jGg4akiVD+/w8FCXL1/ekthiW7zN88yo3EzqrGiMYm6gtO23iu3nednXjPS4ip40YhupDVa+hyxqsmpbFU0pbfvs/J05aVnuIn11HLdeOSpuI6VYHEdSSfV8v+43Cdwj3RR9d9b0GFOQ3SdGRQFn9IreVj7vTFurKM0yovOKZrGKksysRPyNmnj2TK600So6Pf5GPybHJIvW5TvF85bR0hk9DbXC0PAGBgYGBk4Fdtbwog/Pb+XMd0N2j14kUlUKnlFS1CikuiyQ0Svxsib/zqB0VNmne6ikpkxLoP19ydfRY4HgdXoaHs9R+Rul3D/Wk7YODg62pNsswtdSHVkeqL1FUHsxrN1k+aGV74maf1wfmZ9F6uecUUurIm4zVIVfuXbjPUj/EiXvSouLx1YMHtn9WzFr8BkQ/bbU8NfkcPYsFT4387fIXtKzoixFM2ZjzDZT88miC6vo1Z5/sXq+Mcox7ldFeNP6kd3TXJNVgeNeLAYtJb28VrfJ0ZnW3rMYAt57ly9fHkwrAwMDAwMDEeOFNzAwMDBwKrBzWkJGipup2wzfpoM0U1H5G01m/sycnkSPeosqdhU00zNT8ry9MOuq0nFPDa/Mkrx+lhZRmT+r+mgRVSjzmpD5XlqCz0ETd2bmckADTXOZGdSoUlsY+BTruDGthuYh7lddW1qXZF2RBtA8HkFXQJXcm5kllwJQMpMmTWNs05p0GAYgZMFmJNJeIh4/d+7cKiKCiqibqRnxf96XNOtl67sKzCAxQfacYxJ5r/I5E80rIv3MpE8S/ooAPI4jXQIcc5rlSTAS9+EayfpXmfnp3ohjz3E8PDwcJs2BgYGBgYGInYNWopZHyci/S9tSHbWzLGy/orGiRJqFpVfBBJkGREmbQTg9KZ0h1tVnlmS7RIXTI3GtJKFMmqqS/KvE0/j/LjQ9Fd1Qhb29va2E89gGlgIhNRYJZuPxHJ8qJD/rn0PZGaySlXxZ0rSzVAb2ryIryNrIIClqG72q1RUtGC0m8VimHVR0YXHeKHF7/qjpZeWB2PcMJrzgvtk2kg1TW4/zQk2Rbai062wft8V9z+a/WiMMtMnSYHwM54fzEi0YFdE9SZ0zUg6en/2kBSWCaR3VM1LKtf/4PRvPTDMd5NEDAwMDAwMB10QeTQkr86NRqqOGl6UJVHZYUkBlWgE/1ySArqXgiv9XfpdKSsz6tUQxFffh55q0BJ6DyKSypYT6LMmTfe9hb29PFy5c2NLwIgkxCwD7vPZBWFLNqOyqElNeMz3/ImnJLFX6HJGAmvNfWQdiP6uwbK77XgIwfSU97aPyfTOtp0e3xvHqaUqVr6ZKIs7O05PQp2nSwcFBV3um9s9nUua3rlKm+D177sS2xXNlWhqvx7VTfcZ9fd4q1SBLG8osYtn36LejdkYLSc/HW61voxdv4HQEWuy8b6Qjo6aaXavC0PAGBgYGBk4Fdo7S3N/f34r262lrlM6NnsZVJWSzDImUkxBLxxJIlhxfUd3Q15ZFlVHSqnx7GYVRFWXYo1ei5Fb59DJQWtqFdLW6ThalafSkdEfaUfKO8+f5pU+NlGMkCmC7YlvoB86iNBkZZmSlSXhstW/8vfINc91lycxuGwl5jSwRvCJf7/nueGxGgh2vn1k/qKHQrxU1vGo9V5imaWufuA5YOJRRkhmJwNKzw8dak4j3zRIpPqNEs7ZUz7ve85QFWKmNxvuLWjmjT32uuA6q+31pe2w32+oxZ3mkbCyq52i8B7OSQkPDGxgYGBgYCNhZwzt37tzRGzsjWaXESW0pIyGm1M+3PaX1KKVVEiKl2/g721CRkPZy96r8u8wfU9GSVX6yiJ6GFa+f5UJWfsWehrek/WXaR8xfqiQtrx2SikfJjRIgScNtLcjok7iGKiqkuJ3SJKPKMp8hr1uhFzVL/wul5SxXjGuUlGKZH473APOwesVq6c+qooOl9dJ5piFVZW4iHBmeaemGtUifj35ErlX2IX7nuGQ5qFXUdM+3mmkrcXs2thUdGX361EqzNlU0dRmyorcRmU+08sdWke3x/yX/ZgSpB5999tmh4Q0MDAwMDEQ8pwKwvbLyljgoaWXRhpUUQw0yk7SowVHjychQKZFWEZG9Mh2U8HrHkvS48uXF75X2SYkyk9KqfXt+P2qsPH/G3lL5WjPY/1uRLku1FcDb7duL8//kk0+mx1Ay7Pm6GMlZrcd4PNckI+J6PtwqKjPzm5Ed5emnnz7R1qwALDW7jFEltiNbQ72oTKKKTGSkdvx9iZUnwlGajCqNmhKtAv7O8jJxDJb84ms0IIOsU5mPi+NdaWBrIop7UeEGc1KrPmTPOY4JfYT0LUv9HFRpmzUmno/PDrLQZHnNVa5lD0PDGxgYGBg4FRgvvIGBgYGBU4FrSjw3MvMRaWx6zkeDjmY6N2mWjGYCqu104meE03Qa98wCxFISZ3ZOmgUqCqOIXpXvpetVZk+GNEdUJtQeCTfnacm0ME1TGeaebavSRWISqq9pU1/Vnyx4iZR13tfVsrMAK5qdGDSQBQjYzMY5rei1opmIZk4nAjMQJSbw+39/0mS7JhWgIkPv0eNxrVaVw7Pjl0xzBwcHW+3N6qqxvaQay6i3aBpbIl/n/1JdWzEbY5oFGYiSBa1kayNuz9Yd72XSkmVtqwL3SPvHWpXx2nweVKlc8bfK7J89d2g+HmkJAwMDAwMDwDWVB6qSfKXtwANKe5mjnJIOP6tE7XgdUktRO8wSMpe0px6paoUsfaBKFs6uw/NUASEVqWtEpVVngUOUrCoJv0cavIRpmrqh0ZXmW5VekY4DWQwSTffmuHLq98oDMWCiCl7J6Mg4R1WwRGwP17UlfGp6UXPx/0xDYL+ztcU2MliBKTbx/yqknCTGcd9eqSq2uQpqk05quPF81t4yjatKuVhDREzN3mNekSHH9tLqlJEhG1XKDIMD1wS8GJU2xf9jm0ki0AvKMSqrUZaWsBRol6V3eKwPDw8HefTAwMDAwEDEzj68LNx6zf49H14l+VZ+g0zLWNJmsuKNFVlsZg+vSKLpl+v5fZaSyLNk3uy32N/ML7eU6Nybt8qG3ks4XitdSfV4Sds+BoO0XVmya1WGihpKT5Og/zfrH/1vbiv9FFlyfFa4MutXpj2xbUw1iD5MUvDR6sH10EvGrnzwmRZa+e19vUj22yvFVaFH9Vb5+3vpKlXye/Us6fm++UzJ7okqPYltzbSZig5xzTOLz1O2MdO4KssOfaJZrEJVsDnTCitSbF6/5ws9d+7c8OENDAwMDAxEtB0jFB+U9LYb15yBXwV46TRN93LjWDsDKzDWzsC1Il07xE4vvIGBgYGBgV+pGCbNgYGBgYFTgfHCGxgYGBg4FRgvvIGBgYGBU4HxwhsYGBgYOBXYKQ/vtttum+6+++5uLpVxLcEw76tj3l9Ymyuy5pg1/b4R18tYOWLuzoMPPqjHH3986yS33377dO+995alkeK1mR/FHKNsvS0xdfAa/D/7vnR8D2vKttwoLJ3/WtYFj83GsWIqycpSMW/t4OBAly5d0lNPPbXVuNbaFM/L3C1puwRRrxSWwXzEat+qQHRv3zWo9r1e67DaZ00+brVPleP7XFGVSstyc7PnwdWrV3V4eLg4KDu98O6++2596Zd+qR5//HFJx7XIYhIqHzxVbaksmZcLq3qIZUTJFXov46WFfC0Pxx4x61JSd+/8uyy06tg1CeJV1WInDUfi5ltvvVWSdPHiRUkz7dCXfMmXpOe955579JVf+ZVbNe2yvjOp2rRNpNOStknCSXNVVV+OfTW4b496ie2u1nD8benFTSq1iOr+yaj6qmTdisqsR3jAfbLkbCZ1swYdq5FL0qOPPipJeuihhyTNhN3f8i3fstVvY39/X3fccYekeS1JOvouzc+meK01tF28hyrKP58ju+e47ogeyXZ1P2YE7VX9vYqAPB5bEYBnCfZL1IIkulgjaPbq5DFxns/+Bx98UNLxu0bS1vvnqaeeOtpvsS2r9hoYGBgYGPgVjp2pxaS+ZlRJiFXZCak2KVSScK8UDpGdu6L6qtTq7HwVdtHsevRh13KdCksSv1TTj/nTRK1ZG6lV9drcK420pAFl40apsdLaMpowmr+q8VljFltTpqWSYntY0uwyLWENLdwSKtNz7xwsZUTaLWt+Uq2hZGit6ezZs0fH+9hIIs7f2KZMI6m0lF2eBxUBudGbn2rfzG3A+SAlW7aWKq2c3zMqszVmae5HbbRaO71iA1zvt99+u6STtHRLz+0ehoY3MDAwMHAqsLOG52KMUt8PU0kEWYmIJf9URdwct1XISthQwrZ0tkTunLV1jfZEVFJUVlyXqKSmngZb+aZ6Gjq1gkwSz8iJe/2epqlLlMt1xT72tJol8mGWp4rbeGzPx1utxZ6loUcSniGbF2qjXEMZAfDS9ZbmKkNPC+H9ZOk9829RS9vf3+9qPhcuXDja15+xNBT9h9VzJ/p/e9YGqSZdjvtWz5/ec2mJLD9qrhXBdEW6HdtIX108b4WlwJ1dCO95b2Sl2nge+g4dMxDLbWXWprUYGt7AwMDAwKnAeOENDAwMDJwKXFPQSi9Mt1chO27PTDBLof6ZWr2mUrLUN0dUJpnYRpqslpzJa3Jc6DzepdYgzQdZkMQueVFVFfvedXi9JbTWyirI0klzU9aGLP+Kc1iZZLN0i164dDx3bGNVn67KIcz6ypzGnpmINeA4p700gecStLL2vspQhehnwRFrapq11nT+/PkjE6bTYaKZy/9XQTBZnTqaOasgrLU5njy/lLtuaGrk/R+PqWqB8p4wslqRVapRtlY5BwxEqZ6ZEUvumBjgw/7xfrWJOqZD2aTp32LKwhKGhjcwMDAwcCqwk4bngJVKG4j/V+HhfoNHyYRSShUIkkmVVbIotcGs4nkVPs39Miwl9fbSEyiVZyHaa5OHM1QaHrf3qsBXCcdrNJcMe3t7On/+fNmW6hhpWwrsSZXUsDnWmZOdY91LIvf4WCtgknxmHfB5uZ6WtNHYbmq31PziPVRptdX89Jhr1oTsc0x4z/UChiyt9wKe9vb2dO7cuSMN77bbbpN0HLIuHQewVAFO2b3MSu2eQ4P3SVZpvUr87iX1s+/+rKwqPE9sMwM44rxU816RgcTflu6NrI2VBYP3baZlM9DJ17MWd8sttxwdY9KCzDK2hKHhDQwMDAycCuys4UVJqZcIHCW3+Mk3t1Tz4PE6vcRPg7Zm0gPF/y3RrdGaqA1WWKOxcIxIxSRta31rktWrtlQaWJTwPCbUfteEV69J0JbmfjNRNraf0h2xpi1cb1xbPd/xmiTyzBeUHdvzb1f7ZNYPJlSzX15D8RhqdpWlJLN+sM8Vb+4ulH2Z750+qF4CemtNFy5cONLs7rzzTknHml48z1Kyc2yDx87b3AZaO7Jzs0+Zdi6dfO5U97/9j/6eac+V9uT10XsOUJOjrzy2mWkPnJceRSQ1Lj67srQjapvZ+0E6SSNnDc8UY0vpUCfau2qvgYGBgYGBX+HYOUozvuEzKcDSkN/Qll4qyVSqpWWj5zMk6H+hnT47ntJsL7mWbVzjZ6SUWdnwY9TZku+md90lCTuTuH0danqVxhzbsEa6coRmrx9LvrqKsqiHHjUW56XSVDNfh9taRWtmbai0gsrfGP+vPnv+38p3Q8LtLOqZGj771SNliMnkWb8joi+yWkdnzpzRxYsXde+990qS7rrrLkkntYBK+/f5+RyK/7PPFbJj2TdGNUZtyhYlrgdHILo/0ZdowvTqOvThxTGstHLSeWXPOc9dTO6Px2RjshQd7PF1n+I2g8/gzEdtbc+aXi/Clxga3sDAwMDAqcA15eEZWUSmpRRLBpZeetFylb+ol0O1BNrlM62AEXVV3ldEJaWvQRU1mflSqn3WRDdWJTd6mlGVL0ltK+63JBFHtNa0v7/f9eHx2mw3tc+sDZWUuSbHieug8gvF9sf+Vb8vRcD21jXPS20zyxWjdYManYl4/Zm1lfcG/YuZVtDLl4ztytrdoxbb39/X3XfffVQCyNGZWf5kpXllNHJVhCW1KPrLYh8Njy1pyOL6jJpN/M6cs6jhPf300yfOw3VdRbjH/vAeoT94jR+O58/ovaoocK7HSATNOAqD/Y3z5vJQ733veyXN2vvQ8AYGBgYGBgJ21vBipN3RSYIUYCmF0WPUFKKk6rc8bco9iS+2Jx5jsFJuFmlHKYyaUWafpmTPNq/RoigBRYmHqPxklJoyP0yl2WXRkEsSUtaOTBPrkc8eHh528xWpvVi6vXTpkqTjQrD+lI6l5Cq6lH65KBHbCuFPrl37fbI+c4x9Xa/lLMeRWoDBMi09bc1gpHE2//7NY2RGiieeeOLEZ9QAKkYN+uajb4fjF1kxpDz6kOhF2u3v7+vixYtHmp3Pnz13SFhd5QbG46v8WFqjslxH98l5YmxHFh3O3ECyNMXngSMRmSNY+cIzawE1cLeR2tqa8/u75zw+I90/Fmx2P92vqClzvbktPsbPgCyK94EHHpA0FxFea/0bGt7AwMDAwKnAeOENDAwMDJwK7GTSbK2dMGlmwR0Mk2biN9X4uE8VmFE5NCOqc2QmJqvW/o3moczhTFMZzYUVCWrch2aVXkCC21glntIsG4+t6I08b1ldqmtJ+jfiHC/tR9NjNPnYfOF5eOSRRyQdhx/bVOL9pGOTj7f50+Y7EgZkJs2LFy9KOiYlpqnT26Vtc1AVIBLXDtc+x5rH9kL+GULPtSsdm5JssvT4PfbYY5KOx4zBK7EtNOvRXBnNlh4/JoY7fNzjlwWZVETTEU5L8Hls2ozr13NFc6HHwp+ZWdJjahO259RrKCOGYPg8qd68PaYauf0MCOF9GcmQ/RvNgwzGMaJ5kulPVepElm7BtBejShWKYBqC11f23OZz2v30fGZpN05LcRDTu971rmHSHBgYGBgYiLguaQnx7eo3Pp2slkSz0HJKyVXYdhaCzeRtalGZhlclV9PRnYVRM+x4KagkHlNVJ85C/lmyhOetgjXi+Sj9VUnL0naARlVROWJNqZDY7sPDwy1tN2prdkJbA2GwiucyHuN9fEwVmOFjM4nbGoM1FH9aQ8lIiitia18voqJnojaSER1bOvY8MLXA68DjEMfCGvKDDz54Yh+PZ5bIz0rk1uTc78xCYzBwhxaUuJaY8tGzDOzv7+v5z3/+kUTvAJG4fqnNWKutSk5Jx2Po9eSx9HePn++J5z//+UfHVtXXeU9nGiUtLO5PRkDBxHM+f3qJ524TtVz3LwuSqtYq53RNWSpqdBnpiPfxNga+ZM989+t5z3uepNnC0HtORQwNb2BgYGDgVOCaygNRSo8+AEoalMozDY8aDkOJe5qD7evRzxKv20sarpKtjYxGrSJvZsJrr0xHRUTdS+q2dOSxodTWs6VXyapR+qSkRV9ElnZBX8BSasM0TUfzYk3MyaOS9J73vEdSHdZMCTX+X2mFHKeY/Mu0kMwawD7bD+a+06flY2PqBP2HVTJ0lmTL0Hi30e2wRun+x20PPfSQpG2yXUrPcR3Sj1XRnvVKy/g3+hLjdeyHicdUWt7Zs2f1/Oc//8hXSGJh6XgOPS7uOzXkOP/0DdOf9PDDD5/4fv/99x8dS6oyJnP7Mz6XeH9Ys3O/jBe96EVH//MZQesT770sTcCWE/fX/fJYZCkttBy4Hd7u50QkdXZb+CymLzyW+vH1mM7hz8yC5Tm1xn3nnXd2yccjhoY3MDAwMHAq8JzIoy35ZKV+/BuThek3y86dvdWlXMuilM6kWyOj3KHNmcmiWRQjkzTpv8qkJtq0K/qj6G9g4jQlH0p+sb+U+tZErnpft4E+luhXMJjke/Xq1dVRmpYco8+Lc0iNOIvspN/IGp/PxYTzTAKuIs+ytcoEWZIGeJyy8arIomkV6EUSWjOmRhs1F+9TRfax2Gbm/+C4UsOLWjYTzanl8N6Qjp8Ha5PS77jjjqP58vUyCi73nX4qf7cGKB2vPVJ+UQPPfMcV6TGfLSRfjn1mAr2fo3E+6N+jr6tXPozWNH93v7124vr2urIW6H3t1/ZYWVvLylL5GN8DfPbHeXN7fR9Z23W/afWL23y9D/iAD0iT5zMMDW9gYGBg4FRgJw3v8PBQV65c2YpqjG95SnOUuLKIPvqJqhwgv8V7ZXtItmpkUmwVAZnZg6kNViWGsuhKamukGOrRAlEqslRIH0K8ns/vsajy8jLSYPrqqjyj+NuaKM3Dw0Ndvnx5KzIuoiq5409LjjFPidIjNWKupSgJMsqUfacWIh2vRV/P+1Baj+NUEX5TC8zyongdRp/SNy4d33u+nv0slpoZ5RjbxfvHY8Lo0HiP+BhrM9XaieBa6Wl4rTWdPXv2aLysBVgLkY7H3+22BuL20k8X97H2Qv+ox8d5hRkFG8eF2ntG30frl6MNmacnbZdZI8UbrTb200nH8+K28p7zOeL9ZA2vsvT0LBy0zDiqls/xeG+QGo+WOa/VOI5e357zO+64Y0RpDgwMDAwMROwcpXn58uUjicFv2CitMY/C0hLzUqLUvFRM0dKN3/a9XCdG9GXaGllgGPGUaSxkamCEoiUd9z/6NZk7Q82O7Yn7MjKx0oJjPy3RW3KjdJuxp7jdVUkPIyv2G+e2itR0hCZ9D1Ey8zyTmYGaXYyA9PksHTPizeNlKT22vyICp/+HuVzStj+O2mCMVOOapzRKX2KUcisNz5J8xl7h63gssqhcKS+K6og+R896HbONUVvwmDJnjxp0tnaiRlytnb29vRPasK9jzSxuo1ZDJppe9HTFfORxjNoMNWzeN943ttHPL0a3e1076jCuN88782Tp787ynxmdy1I8GbMPtXOOhefWkaTxXvSa4bPEz6PMv01/JjV9FseNx6+NzIwYGt7AwMDAwKnAzlya586dO5IMyCsobeeJkWWBxQ6l47c684T8Jqc9PsL7UnoyS4IlBOaG9GDpM8vZcptYxoISXsZPR42C7BkZGwz9cCyx4TZGzYZ+DOaOUTOL/1e8jj3/XFYMktjb20vzLfg7rQAAIABJREFUp6K052u6vZSAyZri88a+vvSlLz2xj3P7Mv5F+l/oy6O1IrahugeykkJcM5XvjnMet3n8fX23meswXpvXYcQgJe8Ij9cLX/hCScean++rjNmFObGeN183WnWy8jK99XPmzJkt/1VcT/SPk3c1y+H0vpwXrx36/+Lzx9t8Dha8pgYYj/ezqvJ9x+dOpSUzbzaLXfC6clsYpWsNMD6/Pe88loxCHqPM32jtj+xD7373uyXljDssVcT7Oq5Rjt/tt98+uDQHBgYGBgYixgtvYGBgYOBUYGeT5tmzZ7fMXVkiOMOarYZm1YpJ+8SEyPvuu+/E9aJppEoEpyk1msF4Hu7bo1yqTJqkLorOVybK0mncI4BmiDn7nQU6MDSaibVZuZOKwJtBOTHJuEplyNBaO2GWIHVQdk0SQvcCNO655x5JxyHeNp94fGwmzdJFaI60ecqky1niucebZAUs6xSP4XcGaWXmUJpx/UnTTxwbb/NcsZI204rivHjM3YZI0CtJb3nLWyTlaQlVoENWMTyjWVsKWiGpd5Z47k+nLJC8ICuF5LH0M8rh9A7CYCJ/BCnEGNSWmfFJ2OBjM/PdC17wghNt9Hj5Gentvk4cE88lnz9MJ4vPUI+Bx5H9YJpEnHOvCa8VkhX4+pEG79577z3RFh/rOfZ9nRFGeF5uvfXWkZYwMDAwMDAQsXNcp1MTpG1aG2nbuWqJwG9sS88x9JaOWJbPYKJhdj2WSyEJclbqx2C6QAZqeFVhVCYtR1DbrBLus34wvNpjlFEX+drUlOlYj5IdNUnSUmWaSyaRL2l5pJKKErDbzXQUSsRxniz1e+yYsmKJ2BJ/piWy8CvTB7JCwFwrTOLOkvpJk8QCsJkmREo7BskwUVfaXqOeb0vW1lx6686anaVot8PjHceE0n+l5WSlZEjKkGGaJl29evVI+neKSdQUOD7eNyt2bDBohZYRUozF+4WUe7ynfGxMS3BbqHFxDWcBGkzRoaXB140ljJjeY63NY+PPuIY4JrRgMY0g05hZRNhanMc3C17y+dwmrz/PdXxOeE066KZnHSCGhjcwMDAwcCqwc+J5JAjOyuxkhQHj90xasoRhLZClKEivlUlrpPbxuXolVwwSszIhXNqWrCsCYJ8jk5oM+nR4TmnbV0j7O/1asa30wznUmEmcGSUc28TyQ9GPwVIyPQ3ZloGMeottsMRr+z3D9mMbOD6W+j0vPofHK0siZ1i+pehMW2XRTpIieN2tKZxLMvRM26EG4bl0G6uUF+m4z/RRWqPNjvHYW/K2FE3ffKaFuC3+7utkqUHs+5UrV7qkBZcvX94a0+w5wBJCLJ8UnzsVEYT77hJGXlvRmsI5pEWposqSjteg59KfmVbo5xpJnal9+pjYP/siWSrL64LWnLgvx5pjlJEocAw8Xu6fv2dWKa8Za3TuD9d/bG+Puq7C0PAGBgYGBk4FdvbhxRIvTGSMyPwR1b7cRm2K0XvRj0Tpn9dl8U1p2/dIjS7z01Ca4LHUcqLNmdFwjA7MaLx4PUpY1LwysmIe6+225WcUVhXxr7dntG5R2qt8eNM06dlnn906b0YtZimPGoil3dgGJsYzIZuacmxfVTaJUcPxGPqKLL1ae/H3bO1wndOHy3bF32iF8HxnCcC8P71G3GZLz1mxYmpZ0U8m5RYaUj1ZgrfUnh3D++bw8HCxRJBBf3bsK+/7XumljMgiwhoeS01J288IJmZnYByAz0/NJ56DFI0kSSAtWjyWFHNMVs9oEEnRVll+MrIJjrHPSw0/FoA1vC994Nk7hs+qHikGMTS8gYGBgYFTgZ01vChBUIKU6rI8zOfKcs5Io8Q3eVY0lpIANTqS1Mb/qyKqjJqLx9BvUBHPZj61pXNFVEVwq+KkPWmVUqg1l11KJmXaAIvdnjt3rqvhXb16davIZZS4LQkyP4kFOON4klKJkZDV/MRjWLKIkbCxjYxSs7bktmZUX2wTIzp7eYz0ebKoJvsiba83jl/v3uD9SstCJlVXxPCZ/4XHxHu7WjvOw6M1J/aT1gzm2LkNmebN50tWiDXuJ237sth3j3lGeu1tzrGz35cxDPGa1CipCWVr1cc64pFxBrQSxfP4nuBnFYkZ21YR22fPm+r94PHL/OlZjnDPOhAxNLyBgYGBgVOB3esrBGRSPyVqvtWpocRt1Biz8xNV1BCjRTPbOqVBaphZCSOjaiujp2JfqYVy30wLpSbn79RgsrYRlBLjftSAqpJNmR8ji2rN0Frbmo+sZAylZbJIRJ8DpVQWlKzmKbafv9EXlZV4sZ/R/hFvz6wQBv2ju/jwmL+a9ceo/C+UzjP/XxV1SG0w3g+MLqUvJ8vXNaKWu5SLxxJMWTwA1ymfC9kazbSVuD0jyTeY58tIz6jhkQHHPjz7fX2daK2x786+1MqS5Zzb2EZqtSRdZjFjaZsMm89mMv5ka7W6j7NodIPk31m5I4P3/JL/N2JoeAMDAwMDpwLjhTcwMDAwcCqws0mztbZlCsxqWtHMQQfxmvpF1T5Z1eIs/SAio8SiKZPVuDMHcGUq4/cs0d3n5/hlNedoOqpMtZn5cilMt2dSqPpXUanFfXtzauJxBhdEMxJNowzUIPl2bA8p5phgzjQSaZt43N9pjooJ0wxWYei9TUvZ2umZh6s2ksKK6Tcez5jMy0RjjkXP7Mr7lSbOrKYfQ9SrFIHYr17CPOGAJydMe+yjaZvEE1VgWDyGlHWsOck1n903nEs+j+JzwPvQDE7zofspHZs0vY1t8TxkROD8zdehWyGjeeSzyddl3dHMpMlnV49CsQr2owk1HuOx8La15kxpaHgDAwMDA6cEO5cHaq1tker2qntTQ6gc9XEfOqPXBK0wyIJt60m1DPHutZGSzZrAGpaQYfBA5qCl1My2sI2Z1rumbQb3oYS3RBsmzf2sAg+iZSCePyNKrsLbfe5YRdoSu6VXjyEDkDJQAmUIOxOq4z7UBpkWEvtVaVhVSk2W0kB6MG6PGp6DIFi52+1gEFW2Pqq54Gf8n6TfvSAmn3cp+duYpmkrXSSmO5BSjvRTWfCax4maN8cnW0OcQ6NK+peO16q1JF/fII2YdPxsWiLWp3YqbVecp5bGALgIjlsvwd2oAoN61r3qucKAsjjOtKI9++yzI2hlYGBgYGAg4pp8eNRY4tuXochr6JQqeq41pUOMKkw7kxCoSTINoRc+W/ldjOxYaqH05WXURZT6K0qzzO/DtlaaXna9pX5mSbHGmTNnugTAMXw4Czem1F8lDcc2eCy9TyWdZ34YSqRVomxGjs7kZPqtsiRlSv1VAd0sEZjEzFwfmTbFsaavumf1MCpfckasTn9iL0XJx2drP+tHXJ/WXBzWL2378Emuns0/1zT7WhVDjvtQS+Ix8Xr2BTulxde1Rmei7qjhuR/Rrycdjzm1s7hflQbFEkqxX9SimVLSS0/hM6qiUIxzXcUIcD6j5sq189hjj61ay9LQ8AYGBgYGTgl29uHt7+9v+RPi25WaAmnD1kTqLCFLdK8kxKwgZ0U43Ss3UdmwK+mlF0lYFf7MyJxZbqTS6HolMij99Oihqkg7Sm9xnygR9+ahtbZ1TJRQK2Jpa2+ZD6CXhMw+8liOISN8MwsDNbwqGjn2i2uD/gnOTzYvnF9L55boowTs61Ar9PrqUfVVa5XtyUgSqP317utdyaPj/Gbk59YqHSXLRGaOSfy/SpznfZI95yo/mI+NvlVrpPS/uc0PPfSQpOMCvdLx/NqXV8U50D8bjzX8vLYGacoxlxGKxzs6lHR0lSYWt1XPqCzSu3qe+v7K7hG30RrxpUuXhoY3MDAwMDAQcU3k0Yxuy4ig+cZljhvPGVFF1vWozJaksqy8BH02PRLfXnRS/J3tyvahj4B+Bmnbls5IuIrUN/5fSefUNOL56DPq9ZvjtUuZDmr+2fHMqbK0HKM0qXFx3CsfcraNvg5SZMXr+TdaLrL1n1kZ4nf6OuK8MWeTa9WaXvT7eHx6uXqxDxk471Vb43mqIsnZmFMz6vl/Dw8Pdfny5a0ixNaMIljcuBdxWeXuUqvICO95XsLz5PmRjjUsz4/b/+53v1uS9K53vUvSseYSz8+oU5+DfYhaL/N/rdF5X6+ZWK7H2p7XjNtC/2+2dnoFtGNbs4jy6pjsWeV2v+Md7zhq04jSHBgYGBgYCNhJw3MuTC8ni9oKI9EyjavyF1RMB5mPo2I8yWzbjDSqCKYzadCoWDN6EV0Gc1syIlaDv9GntqbwJNucSadVNCN9FZkPxOj58KZpLgBL23zWhio/LGPRqXx3JA/uMfxk0aZx33iMJWt/khkiKy3F9V1Fh2ZRoRx/EueyeGiE9yXBes+3Vt2La3I6q0jiTLtiIdOehndwcKBLly5tFTKNmhDnOYuWlU5aFNwG+vCo2WV5spXvlkVe45q1H86f9tW97W1vkyQ9+OCDkk5aMBil6P5Uayd7ZpE5xr5Ea5jR/+txNJuNz88yPb1cZVqLyN4SwXu6ek94LUvHml1WjHoJQ8MbGBgYGDgVGC+8gYGBgYFTgZ1NmgcHB6UDPW6Lx0i1uTLuUwU/9Eh3q+AUBn1koeykT6pMMhloMq36Eq9dpQ64PZHirKqDVyUc94KBqmCVXuI5+9n7rSLsjvDaodM7mok4Ttw3C5ggQTH37ZFe00xbVWaOc+w5Ir0RTU1xPJmYXSW6G5k51GYum59oYoo0WzansW1VIFLP/FqZ+bPk4areYnZfu89LaSU+7sknn9y61+L9QmLxpT5n+1bPqsxMXbkWnFzufR3eH4/xXN5///0nPrMgHAbMcI3yXo6mP/fV2yr3R7x/vY5Ig+bvXP/Z2iFo0u6R8nuOnVLhfsa59pjYjP/II4+sDpgbGt7AwMDAwKnAzonne3t7W4SvmdREx3+PbJnOYqOi9uklkfuTklGUgI1Ko8sSZykNVuUzMo2CycOV4z/2n7RtFXksw6+lbSm9klgzVFRSvXnrJb0bpodisEJsd0UA0AuYWBNMEc+VSelVikdWrqVKaWE16SxIilXEq+CcbDwjjZI0S7XStsQdz19ZKBhw0LNk9LQ0g4EMVUBFlsDf0+xiG5544gk98MADkk4mShukqiMheDYvFe0YxyWreF5ZBdwOa1UxAMVj57B698dzGlM02A9aAfhMYaJ93GY4yIdEDpHEugpss9UgplnE/eO+PNbfs3VWWRK4b0Zw7fM+/fTTQ8MbGBgYGBiIuKbEc6P35l6SHtckClLayGh8qNFZwqIWEwsjsv2k8aIUL21LpJbcKKFmRQndNvq6aHeP/WIoNAmVYyHLCpU/lVp3xBLZdyZ9rgktb62dODZLT6koqSpqtNiHNb7iuH88hudgOZ0opTNs2xKvtQ7SRknbvmKGi1N6veOOO7ba7zbQUmFfXnZPVL5PWgfiulzy4WXbq7SLXqpMloKylNLC+Yhj4f85pj6//T3xmMqyxO09ukDGDJCoO64Dty1SYsV9mGpSXTuen/tlaT62Pnhe+CzJtKeKwIMkA/EZU2mjfO5l683g85upIdLxmNu6MRLPBwYGBgYGgGsqD2T07KYVIW6v6CSl/so/F+313FaV1YltZQQnpRb6WmK/fQx9hBUVUwSLNRqWVKI0yKgl9o9aaWwrE+vpy8sS+BnVRgkvmzeeb8mXl0nIEZQil5L7q3bFa5ECLGqUFYWUNQiuC+lYWn7hC18o6ZiuyRqfr9sjc6akTb8m/STSdlQmE5FjEq776nVVJSsbcV6YwM1xzZLIDVo3en6/3nMg2/fKlStbz4PMAsPPLGnc4L1aabOZNYJJ6xxbWp7i/7Qg2TqQ0XZlFHwR/j2z/JB+zJYDRpjGZzXbT42Vv/eIKHjO7HqVFY/3RhaRa9/60PAGBgYGBgaAa4rSXBP1V1F+GRnZMX101MSy3DdqaSRTzbS1ShtkW7MSL9SwMioxKfd1UYLLctGq6xlV3mFWIJGf1MSyKFS2mRGFmbS+ltbsypUrXWqxyl/Ba2fHcPwrMufM10U/TPTZSSfn0j4g51vZN8y2e93F4zlOnhePSUagy1xBFsXN8v4YIcj8p8q3G/9fQ1JuVDmQ1OJ6kv0zzzzTldIPDw+3SLHjOvHc0Y/Eey3LH6TfiO3ItjMKlFGb9sPFdeC+VgVY/RnXn+fS68zf+Wz0eoixCm6DC87ee++9J9rqY+K8eBtjB0hTZ2R5eFwP1Loza1QV/U5NL/6W5QIuYWh4AwMDAwOnAjtreGfPnj16K2eSD9/UtM1mkhYjqihxVZ/xPCwTQ99WlLR43YpZI4uapPRX+ZmyvKjKP5YxlVS5clX0VAQZL6oCnVmEFdu8xjYeJe5eiZenn356a+308rCq0jQ90muDEjA1c+lYamVkH0v+xHXgY+wz41h7nUVJm1aGqvCov0d/nK9nfwUj/Lw95gra30HfoNFjoXFfqzYvaWFZ/7I5ojXn8uXLi7lUlV8pgpaeNQTWlU+/ys+VjjV8+s5oPYk5g/b/eu58Ps8X/YHxfxZG5TPT6y3OtUmi77vvPknHmp7P4T5EC5P7Hom543avRz7XY59pHaB1IrN+VOuL14v/x3lZq+UNDW9gYGBg4FTgmjS8zAdkVNoY/WJRM6miM5fYTKRtyZqSaRa95P+XtM8s94MsMxWrRRZpxQi4ym8Wj2H0Z1WIMRvPXnQjv2fRnllbM7YMI+PzjOe5evXqlkaXFUqlf6cX9Vf5OPlJaV7aLvVD7cCImoRLulDqp7XAUZvSsWTPXDCyY2RttLZnidsMK2T0iBoeIwgrH2Kv7A3XEOc2zn2Vz0ZfTs+H14u0m6ape2zcxrbwvonHVLECzJekz0va1ui4znwOa1HxeN5jbrPbETUg5tsy6ph+sXhu+pl9HX/P/Ixsv9dX5QvvzQHbls1vVeasitCP11wbmRkxNLyBgYGBgVOB8cIbGBgYGDgV2DnxPNJHZSbNinyUqmnPRNGjkuJ3mh34mVXm9W9W7WlC7RGx0gleVf7NSqEwYIN9iKBDfqkSdRaqv5TAHVElkffCkNdQSEVcvXp1yxQbz0czGj+zIIslggP/btNMRvXEczCNI5r8bFqMJsS4j8fCZkzpmJzXJibSg9mkSnqqeB1fNybgZteX6vGqyBF6QUD+pFlsjTmJJu8suG0N6a9TWmgOzwImsmvF73GueW2b9mhey0xypAPjdZg+Es/jdWBzpYNY+MyUalJsuknY9rgvA/pIopERQtDU6POzPZlLguPKFJEsUM2/8RmZmTSZPtQjwyeGhjcwMDAwcCrwnBLPKUlKtWRFCSsLUa4ke0qDmcO8+p5JFZYWLE0weTijGvK+ltwZGs02Z0VxKwou/x7bWEnaa8q1VJoRtdGMALjSmDPSYEqBPanfgQdV8n1sb1X0Np6L/1dpIQwIiZJiJYlyDLIEZxL/cqxjsIK1MwYRMFWCyb7SsRTL0HWjR+pdUT1Rm8+k9IpAmUFi2TEVHVkWlFUFVPH4J5988kjbzbSZnjYZrxexVD6rSnGIv1X3o+ctWhQcJGKKLwc2eT1k650BSJU1wtpbTIdZCiIi9VxsL2nQeI7smVXNYc8iWK2dKoBNyu/pQS02MDAwMDAQcE0+PEq+vbdr5RvKaLuINUndlT+C0k1GGkyJnppYj3LJGh9DmjMpjdoS227EY+jPrGzrFXVb7Ef1mWkAVdJoTyusbPfE4eHhVqJ25j+iT5VSZo9arNLwepRoHktLx1URXGm7lJPPS00vamleKy78aWm8okXLpFlej+sghqOz6Cn7Xq2HeG1SynmdZ1ovNfy1fjnp5Fz3ngNXr1490kg8T7HPVTHnqs+xDb30idif6L+qSgq5jd43aqH25/l8/39759IbuZEE4ZI0ssdzGNsYrGHAh/3/P2uvXsOwAY8x45G69xRS6mNEkq3FHrydcZH6QbKKLLIz8hEphsdr7OLkycvB+8l5v/hM4nVypToUuk/yixWpREhwsf7kfepyPpLo+hEMwxsMBoPBVeDiGJ6Kz9fyvu3EHtgaosvw3IvldZl9tITdNrK6ZNnQEiLzq/shKL3k2GHye7OI1LUS2fOLd0LQqZmnu257VlK3TccYhfP5bBlz9x5Zmys43WN4XexJoOAvr2mdF9kTz4HiTE4AWJ+le4PFzHW/qZhXrKEWKFMMgffVEc9Mau7s4nEc614MsSJJ9jmw7VFlT4zrcSwuk4/ngVmyXDM1QzblHei6O/YhZioxAcV0KertvCh8Ta+HvAeuwS0b5+pc6Pq4tUqPRXrmu3sxZa6750TaX9dIV+evsuiJ4Q0Gg8FgUHBxDO/NmzcbGZvqA05NFY+wi+T777I0ub8kO1O3IRusc6v7cFJZyVrmvh0Y56NFWRmeawZZj9fFSxIrSDWK/N+hs85qHOnoflzWZ4o18fMuhsf3O7ZBQV5Zx66llCArnX+5Dh0b4F+NufOY6D2NjbVhGrvLWEwx1i4OI/D+TV6C+lmSierYQL2nkwCwssN1T8jCrxmJ9NYwDutqUCmtJgZOdqZtJOtWv8M4GGNPlYlpLJSYU9amGJ8+r2A9HJ93Wm91zbKxMWs4tU+XFcxnE0X5+bqOjV6QdF3rGLlG+UysY08Zy0cwDG8wGAwGV4GLGd75fG7Fo4Xkz3eWfbIe6WsW3Lb0aXfqLLQ4mbV5JCaV4JgZz5NrjVJfr7VtkZT25WKU/G6K97maOs6Z361MgrGH+/v7dk3U8dJ6duMlW6RQM7d3x6HF7+ZMy5QMr86ZihCprZJiKmvlNkR7KkFrbRu9Hmn11DGl+tfFmVxLpO74dRtmjHatX5iR+PXXX8dxq4YzxXnW2maXcv+uATBZTG1GWyFG+fPPP2/eY5NdZhXWMWosbNaqbE2186kMj7FJehRS0+K1tmLkVEnRmCt7InPlONKY65gY++R17bwtOj5joXWMuj5H6n83xzn8zcFgMBgM/saYH7zBYDAYXAUudmlW10JXWpAkg1wSQZLl2ivUdtvShaG/NW1b+6V8Dily19+NlJ/BcScTxqQBuhqqu4XlFXTvptRfh0tcCumvK3Cmm2vPnVnn4dZQ6gTO9dB1vN8TknXiunK9pGQPJ4PHMSvhwLnveJ50vbnOKGq+1jY5YM99WME1ymQZl3iVCp153E7KjN9xqfSXuKE0Hiak1f3RPct72YkYpH6L/Fzutd9///3ps19++eXFX4YyXPmLxqb9yXWp1y48I/cn1zcFDty9xxIZPhPldu8SQii/KGlFzaX2faQoutCFhhja4DNR7ss6Rrpm63j3MAxvMBgMBleBixne7e1tm0Z9lOFV0HqhlcykC/drvtdaploZZG5JgseNlWNKrYXcNrQyGeB2rDCl26dyhYq9Fj8u0SElUNB6X6svNSHO5/P68uVLTGGv2+8VSFcmTEuefzsR2tStXH+TeHWdc1pLdYzcL2W7yACdN4LfcYxbYBIGEyqYEFXXmCz5JHDuGCXnlbwPrpzkiFfgdDqtz58/P41bx3EMT/tj66+upIX3O9eF25YF2kpi0T5YerDWtuyA7aLEnqrwOBk+nztManFi7PqMTC8lqNTv6HgsR3D3pkvyqvvnfVXfYwIfk1Uqw+N1+/Tp0xSeDwaDwWBQcTHDO51ObfsUWiAE09LdeymWJwui+sf5a58sOpdaLiQZpTqHJE7L+ISzbjmG1LbDxQwZB2G8zKXwaywpBuq2SbE7V3rAbRzLcDidTk9Wpls7ZDNMLWfx7VpblkKWQe+Ba5Qq6LyR5dT1os9YXEtW5bZhfETz47mtDI9lAox5uJhxKh5m7IOsoRsT5+08Jimm24m+V6aX2N7pdFp//vnnpjVTjXWy1Q3XjJMwSx6lVJ5Umdd333334nwkKcO6jQrMxfA0fr3P12vle4yyhHpdi8g1Bo5R81b8rcbhyMb2Sncqg+VzWuA9UZ9zvC91HVmW4Jr91mf8MLzBYDAYDAouZnhrbf3k9Rebwqt7TM/tN4kSM1OIx67bdNlZqQ2N4LJEU6ZRkrByxfHJH+6knlIWqLNuiBR7OiLqy3OeMhnre9WK3ovjpXYz9X/6+juZsBRvTRmCleUo/sKMOmW3OQECWbSyihPjrqDQMz0KnJeT4OJ+KV1VY4ZkeJQ0Y8NjVxCepMucFyIxfLLTOkae285CP51O648//tjElSp7SsxOr52QA2PFLra91vP6+OGHH57eU8G1y1qt+64MiF4BbcO1VAvPu6xmNwfFEtfaxmw5L5d3wDE5gYg0Ho6NvwFO0pFMVZmwmgfvRTf3N2/eHIoFrzUMbzAYDAZXgleJR+uX2zVilBVBFpWyCzswbkXB3rW20kuMAzmrImVyEvV9F3NYa1vb5GJ4KYsxtbKpx+ZnScLISSbRv99lU6asTPrsHcO7RIKNDK9eS8ZBUiuUimT5kjm4LM3EhJO82lrbBpkUUhdqLEVI8WVeQ+cdENiGxjFXMrvE7N25I6PvJMWEJBacWnbV/SQps4rHx8f18ePHDSOpdXGUFGPmreBqAZPQtNgtn3drPXuZPnz48OK7XfNggXkOPAd1jLyXOU8KUnetpRifdZmW+oz1doqtsQFyvW70mKX72GX1s4UW7zO3di6t5VxrGN5gMBgMrgQXN4C9v7/fWEY1BqJf5MQmjtRs8bPOykztKthMs6u/IWtLNXBu20tA1tkxzWT906J3VlPKWE2ZmGttszH3/tZtnFXpcHt7u7H2qjXLtUELlFmbFbyGzPh1408smrEPd564NhgfcQwvgcylEx5nLZVjTxwbY+2pLnCtffUZoWMSZBRkMm5eDw8PrRD4p0+fNpm4YgNrvcw0rMfqmFYSyOZxdC7qMX788ce11lo//fTTi8/oEangdaEHRiyqzkvbsHkwM7F1jZU9upZnpmttmWtdu4yb6zrpua4WSYy1rbV9niZPhqvDY12j/jrvDtfJJc/iYXiDwWAwuApczPDu7u42Vf5fgNcVAAAPW0lEQVQ1E6n+4q+19be6lj97qiEp9rVW1uFMzQjr9qkRbMe49sbsrFQyqr34nBtbqit0WYopyzVlXq61jUXx/Lk6PFrNe9mfNf7rLLgU16Fl7LQ0eR4YP9C4a4av5paadzr2xBYyZI4uFsWYTWKubn6cl4vzETqPsuQ1T3o9HBtJ9ZfdPZkysVN9q5vP4+PjbkyG16W28RE7IgPqztee7irvn1ofqXWkmjkxK7LoOvej8bi6RvXZ999//2Ie1GOld6p+lwyfyi71+jPGntoP6dyxqWw9jsaubbsa5eQd4D7X2rLQqcMbDAaDwQCYH7zBYDAYXAVeJR7NgHAtAP3tt9/WWtuECbo3XPEw3Z9J+qnSXVFqBsYZmO2C7Nw/Sw0c6DpLSRP1/6PFkXV/nHNyh7rj0cXIJJPqyqArhu4wt41Lc09zVMITXTGdEDTRuS2SUHEqoF7rOZVb55gdouX66dqR0AXs1g7d+bx22odLdOH5TF2knQye5qe/dEs7qb4kCO7WtUAXkxNSINje5suXL/H6yh3O81TXjt57//79i7HofeeaTe6zlPDSJb7QtedKqNI6YFG8k95KgvN02dbjcR66znJl6q9LWtKYFKLSeWT5Tbce+Ox3oRQmpegzJoe50hmXDLWHYXiDwWAwuApcnLRSLS1XzEv5JFkrSdB4rW0iS7IMXZE1GZbGJovLSVjRIkjp6C4lNskPdYk3e8HxrjklWQcZhGPDHGNKQ69zYIlJSnhwIgOXiAp0zXUZzCccM08tnZJslxM9Zhq6zrkTnCbIiI6UsuyJVtfPeWwmwLh7hm2GmJzCJIZqcZP1pFY/jsmzjCMJEdfPuhKgeqy3b98+jVNeJCcXyHs2iYuvtb3+LMwWM+Z5q99RE1UJWuta6zlYE/o4ZxZV02tQwfY5qXSngk1VBT0btU/XuFXMTtuqLILizp1Yxl7pzlrb55nmwzZErsCdXpUjGIY3GAwGg6vAxQzvq6++evL9Ov+1rCL6mmUpdLJWTFGlJdzJD7n2GGvlpoQOTHt2ln3y5zOG59KRhSQE7OI+KWW+i48khpfSlNfKZQj6riyumppNhrdXAFpbS9X3BHoByNKcFZuKXZOo85F4leDYqGv/U4+bCrW7MfP4rhVKarHiCurJ5BnDYQzPeT/IJIk6f46NHhNXhO3aeiUPwd3d3fr222+fGJHYhZObYqyLXignVq7xkWWwRKOuDzYo/fXXX9daW2kux56cp8q9rkheBnrbKjvk9dazWWN2YtUCpevE8FR4LgboJBtTrJqlVGttG8ByHppDLUFh7O4iucrD3xwMBoPB4G+Mixje7e3tevfu3cYiqhacGIEsIP0ydyKubNIp7El/rbWN0dE/7TLRaIXTCnQ+YY5lLy5XkdggizxdW5iUOZqs0fpeslRdMT7jOWz4KWbn4hjCw8NDy2wUA15rGyfj/Ds4Kz1dj1R8v9aWzZCh0ONQ/2eM60gsSnDXu27r1oGQRNJdbCplZTJjtbtmqVjeFcfT8mYmZvUOuLh5l6VZM3zFmpzEYMqwZrZm3b7LL6j7rhADEuNRXFFsybV14v2+JxdYkcbIdVDPMRkez6+uk8sO1nv6q/mK2fE56/bDzHzmdbix8DXnt9bzM0is85Jn8TC8wWAwGFwFXsXwmPFUrQr9LyuMLdqd1Vz3373uMuAEMUo2PaxWGuN6XVyJ4GepfYsb956Yaicezb9dCxsyV8Z0WKtY/yfTYyzP1e7p719//dXWGt7d3W38+V1cLtXi1GMw027PUqxIwuapxVV9by8O5+aTmD6P7zIu018dr1vftPTJBjrPwp6Qd/2M54ZxwMpcGMfq6vB0XNYg1mud2gGleuA6f573lJlaX4vxMBu83gtrvWQ9qZ1W10Itxf8Z5+48T5w7Mz2rbBglDZmlyRrImr9BVps8Jt3c+dxxjXv1LFKG7EiLDQaDwWAAvKoOj7/GNcuHlfnM2nRZhsk6poXorPjEmlJ7+fqeqy1LoBVIq7YTuE4KFLR8qxWTlFWOqLYw6zW1V6psjVmaZAMus9M16E1xEK0dMlTHTPk6tXNyc06Zl1R7qPvjd8kaK3gtmVnnrPQkopwYZh0jY4+pttLVVDJm67IyOY6jlrKrgdurSaznivGrzkq/vb1d33zzzdNx9Iyp97QYCFkU42Yui3FPscMxfbEiMrCOxes8s10PFX/quWXskWpUHQtlrP4IK9SxWW/HnAwXg0/3E59z7hnCDHJtq9ioe64wbnsEw/AGg8FgcBWYH7zBYDAYXAVe1fFcECWuFJ3SYgyCyx3hXCLJxZOSPup3SM+TC7L+T1cFj+9odJJY6grPk0uO86kuH5fIUkH3gUu3TgXITlKKheXJZeZSiut3O/Fo59Ks+0viupSnq+eErp3kynSi5alTN+fYCeRyjbrCdCbopD5o7pxwH3RTdcXjvGa8tsKRvo/p2rht6E7sXGf13uvc9Le3t5si5ZpsoTlLPJpwbkmGWVwH+LptPR47c9Nt7EIPvIbc5gj2ynBceRK/24l86z0W+XO+PHd1vy6Rqu673hupvIZC0/U3xglUHBXmH4Y3GAwGg6vAq5JWaD1XC0EBWLIXiiC7ALWTnnGo23bsb63cTmWtnKzQIQnjdsWPtGxSEbljLpwP2QaD2fx/rW0CimMFjvXV77jCVpYY7LXpOJ1Om/m4VijcP1nckbKRtE1dOxyvayHE46WAPNefE/Pmd8nsHBMiM00JKB3zZuG50Fn4e93Z3TY8N2RkThz9SJKMLHixDSfFp+cO50S2W8eQ5Loo1Mx5rrX1VFHIuCu/0nlhCyGWSazlBfrr+/RWuW1ZliCW5kpM9pJVumuQnoGal2PZlDejR8a1PVI5wiXt1oRheIPBYDC4CryqASz/r0yB1pxedyUALGRPRa8ulZ3WS4rHVdCqZGzFtVxxsbm6La1zl5aeisg7SztZcmQHbr4852R6LpV9L+29MjxaYR3zOp/P6+HhITKw+t5erPOIcHZiHc4iTbE8xtrq/sheKDXmylL2xt/NizENFp67eHNKZedfF0/n2FmG4eJ+FDzncStjciUnie2dz+d1Pp+fWJXgPBQsiFZzaq1bJ4WV1i/PTy2yFtPRGOi5cs1OU2zdxeGJVO7DZ4dr10PpMrE1FpPX9xi7o1g0WynV4zG+7O4jQmLbFOXWfGqTcX2m47x79+5wE9hheIPBYDC4Clwcw6sCwPpVrb/cFBvWZ5Smck08UzsJJ8Qq0LKhFeFiBakFPYtWuyzNlAHVMTxa+Cw0rZY2rfDEQpzMEuNxqWjZZXYm0VYX59T+qyW8x6x5TV1TULIK7rOe871idVdwzuMxtkCm7zJ8CbIZh8RumbnqrPTE6F2xOlnfnhfCFe6mmJ1joanJM89rvTe5rh4eHuK5O51O6+PHj09NVjtBeO1DDEX7d+LnYi98/vC+FzNSEXSdC/MOOI56vpjHoOMrs13MxYkxpKbVXFMuv4FeNx2X8br6v5heYoM69/Waptik0OVKcF3zGVnnpfOl9fD+/fvIgIlheIPBYDC4Clwcw7u5udn4oKtFol91WkD6rn6dXZ3a3t+9ppT1u87HLMhaIrOT5eXElev8HRJ7q2OiddxlmKY4o9BlRiamSvbmhKDJDniNHZN0c3ao27p6Lp4njqWTgDoiNF73VY+XWjB1Ul+sQU0ZpfU9J6K81pZ5u7HTs9Ax/NQYk+e8y5RMXgm3bxeDrvNxsZvOa0OcTqcX8TOXmSwwfqjrI+aiWNFaz5mBYi8cP9v41CakfFZQAowsqh5PLYX0mmOt5yRl4aZnR902NcFN8mF1XmwASzFplz2ZWoqxVZtr68RaZHoHXOZyff6MePRgMBgMBgUXM7y7u7unX/Iua5KNX9lKyImqpngVLZR6vL2szE6smhYPGUWt00lZmpx3x9Y4H1plzkpJgsNkH649TKqLclZj2t+e+kXd3+l0ar9/c3OzsaI7lY+UtXaEFRw5x+l6kCUcsbhTFm19j+uYY+vWQRfn4xhTPSMz7BzLYjsWzsvVe+1ln7p63SQw7XA+n9fnz5832YyO4ekYvAdcc9Uqer/WM9Njxi1jfW5/9BYxI3qtZ++WwBgXx1znSC9NiuG53Ai+1ti53t17XGe8/q75N+eVslLr/4z/8nUdI59VR9ndWsPwBoPBYHAlmB+8wWAwGFwFXtXxPKWbrvVMeUntWTDrCphJy5mIINeCc6fQ5UPpm66InO6blAp8BM6t0wlLV7j3U9JIJ+qc3CBJoLXuP5UjOJEBuu/2XI3n83kj1OtEiFnuIND9Uffj0rLrPt1riiAk6bfOpcki9W4brlEeh/t0+0uuzE6MfU/K7hL3pOBkwrhWmBTjnhNHINGCdO7r/0yCYBJRdY0pgUXPs9SvskuSovSW3KLuejHRLLkpndweQw174Z86D14PrsN6D/I9lpHpnLkyDxWHcz6dvFu6pnQru2ScLgSQMAxvMBgMBleBixne27dvN+n6rhCYgUrH7LhNStDg6yqFw+JKypM5Qd69lF7HxI7IZx1F6jx8SSE42VqXgML5dIWf/02iSxUWJ87n83p8fIxpx25uSptmmUVFSq6gddmxDO6X68xJsNV51b98n8d0x+lA1iSGQvbWiRakjutuLe+VNLhtNabEzDuvh9C1lhLDc8yO4+P14X3i2szos1qysFaWSazH472lNeMEs1OiCQv1HeMW6NHg86Fja0KS/lprK1qh8avtEtv11POZhOeTaHrdJsngMYGsvnfk/iGG4Q0Gg8HgKnCxtNjd3V20iNfKDI9lCc6PSys9yUa5OBLlko60axGS9VqPs2dNHLGehb1YZf0sxdaSyLPb754s2ZH9Ouua12nvHD0+Pm7iSNXS30tJdmw2FY2n+EgFx58azrqCeX7GuMIRIeg0HneOk+C4K/bfE0GmZ6GLgdA6d2U+e9s4MNbeCSfrudOVyqT7gwyvshneW4JYC1udueeOWtVQzMGVQaRShq6on8+z1NLMiVtwnVFmzTFb3jeaj84FWxnV0o7kdVJ8U+y3nke2ROIa1evq1eP1v7+/P8z2huENBoPB4Cpwc0mGy83Nzb/XWv/63w1n8H+Af57P53/wzVk7gwOYtTN4LezaIS76wRsMBoPB4O+KcWkOBoPB4CowP3iDwWAwuArMD95gMBgMrgLzgzcYDAaDq8D84A0Gg8HgKjA/eIPBYDC4CswP3mAwGAyuAvODNxgMBoOrwPzgDQaDweAq8B9dD4WEGTPBuwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3196,7 +872,12 @@ " \n", " ('Non-negative components - NMF (Gensim)',\n", " NmfWrapper(\n", - " chunksize=10,\n", + " chunksize=1,\n", + " use_r=True,\n", + " lambda_=0.5,\n", + " eval_every=1000,\n", + " passes=10,\n", + " sparse_coef=0,\n", " id2word={idx:idx for idx in range(faces.shape[1])},\n", " num_topics=n_components,\n", " minimum_probability=0\n", @@ -3278,17 +959,17 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, - "execution_count": 17, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -3301,7 +982,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -3310,7 +991,7 @@ "(183, 256)" ] }, - "execution_count": 18, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -3329,15 +1010,15 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 374 ms, sys: 560 ms, total: 934 ms\n", - "Wall time: 262 ms\n" + "CPU times: user 527 ms, sys: 476 ms, total: 1 s\n", + "Wall time: 279 ms\n" ] } ], @@ -3352,17 +1033,17 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 20, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -3380,7 +1061,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -3391,7 +1072,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 47, "metadata": { "scrolled": true }, @@ -3400,272 +1081,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-08-20 22:15:22,726 : INFO : h_r_error: 17211892.5\n", - "2018-08-20 22:15:22,729 : INFO : h_r_error: 12284515.111163257\n", - "2018-08-20 22:15:22,731 : INFO : h_r_error: 11201387.638214733\n", - "2018-08-20 22:15:22,734 : INFO : h_r_error: 10815579.549704548\n", - "2018-08-20 22:15:22,738 : INFO : h_r_error: 10646539.06006998\n", - "2018-08-20 22:15:22,747 : INFO : h_r_error: 10558409.831047071\n", - "2018-08-20 22:15:22,755 : INFO : h_r_error: 10507775.272428757\n", - "2018-08-20 22:15:22,757 : INFO : h_r_error: 10475469.606854783\n", - "2018-08-20 22:15:22,759 : INFO : h_r_error: 10453925.335400445\n", - "2018-08-20 22:15:22,762 : INFO : h_r_error: 10439939.102116534\n", - "2018-08-20 22:15:22,784 : INFO : w_error: 10430366.610691467\n", - "2018-08-20 22:15:22,788 : INFO : w_error: 11466405.186009312\n", - "2018-08-20 22:15:22,791 : INFO : w_error: 10938537.274967317\n", - "2018-08-20 22:15:22,793 : INFO : w_error: 10835183.946454465\n", - "2018-08-20 22:15:22,799 : INFO : w_error: 10808896.588521175\n", - "2018-08-20 22:15:22,803 : INFO : w_error: 10800700.69189361\n", - "2018-08-20 22:15:22,813 : INFO : w_error: 10797625.389554728\n", - "2018-08-20 22:15:22,822 : INFO : w_error: 10796326.877290638\n", - "2018-08-20 22:15:22,887 : INFO : h_r_error: 10439939.102116534\n", - "2018-08-20 22:15:22,892 : INFO : h_r_error: 5219717.607766112\n", - "2018-08-20 22:15:22,903 : INFO : h_r_error: 4876433.68440713\n", - "2018-08-20 22:15:22,912 : INFO : h_r_error: 4716452.5126186535\n", - "2018-08-20 22:15:22,919 : INFO : h_r_error: 4646689.620867923\n", - "2018-08-20 22:15:22,924 : INFO : h_r_error: 4608559.674039051\n", - "2018-08-20 22:15:22,930 : INFO : h_r_error: 4584190.709493502\n", - "2018-08-20 22:15:22,938 : INFO : h_r_error: 4572961.429340482\n", - "2018-08-20 22:15:22,946 : INFO : h_r_error: 4565401.692201527\n", - "2018-08-20 22:15:22,950 : INFO : h_r_error: 4559558.680005681\n", - "2018-08-20 22:15:22,967 : INFO : w_error: 10796326.877290638\n", - "2018-08-20 22:15:22,975 : INFO : w_error: 3930758.885860101\n", - "2018-08-20 22:15:22,981 : INFO : w_error: 3677458.2627771287\n", - "2018-08-20 22:15:22,987 : INFO : w_error: 3533600.150892006\n", - "2018-08-20 22:15:22,997 : INFO : w_error: 3445283.399413136\n", - "2018-08-20 22:15:23,021 : INFO : w_error: 3387724.0695435745\n", - "2018-08-20 22:15:23,027 : INFO : w_error: 3348095.1397870793\n", - "2018-08-20 22:15:23,038 : INFO : w_error: 3319186.5294471537\n", - "2018-08-20 22:15:23,043 : INFO : w_error: 3297270.6048084307\n", - "2018-08-20 22:15:23,051 : INFO : w_error: 3280135.5493962015\n", - "2018-08-20 22:15:23,058 : INFO : w_error: 3266430.893683863\n", - "2018-08-20 22:15:23,063 : INFO : w_error: 3255269.075502726\n", - "2018-08-20 22:15:23,072 : INFO : w_error: 3246056.4386206362\n", - "2018-08-20 22:15:23,077 : INFO : w_error: 3238390.701615569\n", - "2018-08-20 22:15:23,082 : INFO : w_error: 3231955.0349307293\n", - "2018-08-20 22:15:23,102 : INFO : w_error: 3226518.9403491775\n", - "2018-08-20 22:15:23,111 : INFO : w_error: 3221892.863625709\n", - "2018-08-20 22:15:23,119 : INFO : w_error: 3217939.686304069\n", - "2018-08-20 22:15:23,140 : INFO : w_error: 3214547.861387841\n", - "2018-08-20 22:15:23,147 : INFO : w_error: 3211625.5540026743\n", - "2018-08-20 22:15:23,153 : INFO : w_error: 3209100.973817354\n", - "2018-08-20 22:15:23,162 : INFO : w_error: 3206909.4902177462\n", - "2018-08-20 22:15:23,170 : INFO : w_error: 3205002.806936681\n", - "2018-08-20 22:15:23,175 : INFO : w_error: 3203339.106714502\n", - "2018-08-20 22:15:23,191 : INFO : w_error: 3201884.296535962\n", - "2018-08-20 22:15:23,200 : INFO : w_error: 3200609.651616765\n", - "2018-08-20 22:15:23,204 : INFO : w_error: 3199490.8536888813\n", - "2018-08-20 22:15:23,210 : INFO : w_error: 3198507.2616635645\n", - "2018-08-20 22:15:23,217 : INFO : w_error: 3197641.816993364\n", - "2018-08-20 22:15:23,220 : INFO : w_error: 3196878.7555294256\n", - "2018-08-20 22:15:23,222 : INFO : w_error: 3196205.0327337375\n", - "2018-08-20 22:15:23,225 : INFO : w_error: 3195609.4184782924\n", - "2018-08-20 22:15:23,229 : INFO : w_error: 3195082.3236335893\n", - "2018-08-20 22:15:23,239 : INFO : w_error: 3194615.5831228425\n", - "2018-08-20 22:15:23,246 : INFO : w_error: 3194201.5683043436\n", - "2018-08-20 22:15:23,252 : INFO : w_error: 3193834.8146398743\n", - "2018-08-20 22:15:23,254 : INFO : w_error: 3193508.7771292524\n", - "2018-08-20 22:15:23,347 : INFO : h_r_error: 4559558.680005681\n", - "2018-08-20 22:15:23,364 : INFO : h_r_error: 4177748.0244537\n", - "2018-08-20 22:15:23,376 : INFO : h_r_error: 3628705.265115735\n", - "2018-08-20 22:15:23,379 : INFO : h_r_error: 3462026.1148307407\n", - "2018-08-20 22:15:23,380 : INFO : h_r_error: 3401243.761839247\n", - "2018-08-20 22:15:23,384 : INFO : h_r_error: 3374010.723758998\n", - "2018-08-20 22:15:23,387 : INFO : h_r_error: 3359732.557542593\n", - "2018-08-20 22:15:23,389 : INFO : h_r_error: 3352317.7179698027\n", - "2018-08-20 22:15:23,394 : INFO : h_r_error: 3348280.3675716706\n", - "2018-08-20 22:15:23,397 : INFO : w_error: 3193508.7771292524\n", - "2018-08-20 22:15:23,405 : INFO : w_error: 3035675.9706508047\n", - "2018-08-20 22:15:23,414 : INFO : w_error: 2869288.8789675366\n", - "2018-08-20 22:15:23,417 : INFO : w_error: 2764186.2959779585\n", - "2018-08-20 22:15:23,426 : INFO : w_error: 2693213.432438592\n", - "2018-08-20 22:15:23,429 : INFO : w_error: 2643268.1644628057\n", - "2018-08-20 22:15:23,435 : INFO : w_error: 2606976.7410476464\n", - "2018-08-20 22:15:23,438 : INFO : w_error: 2579925.699628573\n", - "2018-08-20 22:15:23,441 : INFO : w_error: 2559341.912315733\n", - "2018-08-20 22:15:23,445 : INFO : w_error: 2543405.243066019\n", - "2018-08-20 22:15:23,450 : INFO : w_error: 2530852.4896410117\n", - "2018-08-20 22:15:23,453 : INFO : w_error: 2520776.369602926\n", - "2018-08-20 22:15:23,458 : INFO : w_error: 2512659.270346705\n", - "2018-08-20 22:15:23,463 : INFO : w_error: 2505998.37537577\n", - "2018-08-20 22:15:23,468 : INFO : w_error: 2500465.83441612\n", - "2018-08-20 22:15:23,471 : INFO : w_error: 2495824.830527703\n", - "2018-08-20 22:15:23,476 : INFO : w_error: 2491898.009297832\n", - "2018-08-20 22:15:23,485 : INFO : w_error: 2488567.934214808\n", - "2018-08-20 22:15:23,487 : INFO : w_error: 2485706.556587448\n", - "2018-08-20 22:15:23,492 : INFO : w_error: 2483219.241524508\n", - "2018-08-20 22:15:23,498 : INFO : w_error: 2481038.43800671\n", - "2018-08-20 22:15:23,505 : INFO : w_error: 2479120.047007517\n", - "2018-08-20 22:15:23,507 : INFO : w_error: 2477421.760689254\n", - "2018-08-20 22:15:23,512 : INFO : w_error: 2475910.438868984\n", - "2018-08-20 22:15:23,517 : INFO : w_error: 2474556.023699714\n", - "2018-08-20 22:15:23,524 : INFO : w_error: 2473336.203138627\n", - "2018-08-20 22:15:23,534 : INFO : w_error: 2472234.09824528\n", - "2018-08-20 22:15:23,537 : INFO : w_error: 2471233.9127539126\n", - "2018-08-20 22:15:23,539 : INFO : w_error: 2470324.4109078967\n", - "2018-08-20 22:15:23,545 : INFO : w_error: 2469496.304810781\n", - "2018-08-20 22:15:23,548 : INFO : w_error: 2468738.397048462\n", - "2018-08-20 22:15:23,554 : INFO : w_error: 2468042.8434290714\n", - "2018-08-20 22:15:23,556 : INFO : w_error: 2467403.1448129206\n", - "2018-08-20 22:15:23,583 : INFO : w_error: 2466814.194397469\n", - "2018-08-20 22:15:23,586 : INFO : w_error: 2466270.9455591654\n", - "2018-08-20 22:15:23,593 : INFO : w_error: 2465770.2129656817\n", - "2018-08-20 22:15:23,596 : INFO : w_error: 2465305.808378511\n", - "2018-08-20 22:15:23,603 : INFO : w_error: 2464874.412077462\n", - "2018-08-20 22:15:23,607 : INFO : w_error: 2464473.0854899157\n", - "2018-08-20 22:15:23,610 : INFO : w_error: 2464099.220703231\n", - "2018-08-20 22:15:23,616 : INFO : w_error: 2463750.4974501343\n", - "2018-08-20 22:15:23,620 : INFO : w_error: 2463424.9738803557\n", - "2018-08-20 22:15:23,624 : INFO : w_error: 2463120.930349401\n", - "2018-08-20 22:15:23,627 : INFO : w_error: 2462836.387742595\n", - "2018-08-20 22:15:23,630 : INFO : w_error: 2462570.2390546994\n", - "2018-08-20 22:15:23,635 : INFO : w_error: 2462320.878029416\n", - "2018-08-20 22:15:23,703 : INFO : h_r_error: 3348280.3675716706\n", - "2018-08-20 22:15:23,705 : INFO : h_r_error: 4253706.044704209\n", - "2018-08-20 22:15:23,709 : INFO : h_r_error: 3619969.593220182\n", - "2018-08-20 22:15:23,714 : INFO : h_r_error: 3503684.15961777\n", - "2018-08-20 22:15:23,719 : INFO : h_r_error: 3470696.317669814\n", - "2018-08-20 22:15:23,723 : INFO : h_r_error: 3459238.1820447627\n", - "2018-08-20 22:15:23,727 : INFO : h_r_error: 3454845.2734097256\n", - "2018-08-20 22:15:23,731 : INFO : w_error: 2462320.878029416\n", - "2018-08-20 22:15:23,735 : INFO : w_error: 2866194.263650794\n", - "2018-08-20 22:15:23,740 : INFO : w_error: 2676748.594518999\n", - "2018-08-20 22:15:23,745 : INFO : w_error: 2574223.0662252144\n", - "2018-08-20 22:15:23,749 : INFO : w_error: 2506119.5762679265\n", - "2018-08-20 22:15:23,759 : INFO : w_error: 2456743.2571549844\n", - "2018-08-20 22:15:23,764 : INFO : w_error: 2419389.81180092\n", - "2018-08-20 22:15:23,768 : INFO : w_error: 2390167.633219041\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:23,774 : INFO : w_error: 2366899.5684030103\n", - "2018-08-20 22:15:23,780 : INFO : w_error: 2347964.180692087\n", - "2018-08-20 22:15:23,787 : INFO : w_error: 2332331.149509242\n", - "2018-08-20 22:15:23,791 : INFO : w_error: 2319290.024670701\n", - "2018-08-20 22:15:23,794 : INFO : w_error: 2308301.644607859\n", - "2018-08-20 22:15:23,811 : INFO : w_error: 2298998.176426708\n", - "2018-08-20 22:15:23,814 : INFO : w_error: 2291054.8383098356\n", - "2018-08-20 22:15:23,818 : INFO : w_error: 2284233.8267418565\n", - "2018-08-20 22:15:23,821 : INFO : w_error: 2278346.4815429775\n", - "2018-08-20 22:15:23,823 : INFO : w_error: 2273239.326070163\n", - "2018-08-20 22:15:23,824 : INFO : w_error: 2268800.1953844256\n", - "2018-08-20 22:15:23,826 : INFO : w_error: 2264918.837606525\n", - "2018-08-20 22:15:23,828 : INFO : w_error: 2261511.2618650706\n", - "2018-08-20 22:15:23,830 : INFO : w_error: 2258510.001427239\n", - "2018-08-20 22:15:23,831 : INFO : w_error: 2255858.510132532\n", - "2018-08-20 22:15:23,833 : INFO : w_error: 2253518.01968442\n", - "2018-08-20 22:15:23,834 : INFO : w_error: 2251442.662145877\n", - "2018-08-20 22:15:23,861 : INFO : w_error: 2249597.3768979134\n", - "2018-08-20 22:15:23,863 : INFO : w_error: 2247952.8598014205\n", - "2018-08-20 22:15:23,866 : INFO : w_error: 2246485.5245242286\n", - "2018-08-20 22:15:23,875 : INFO : w_error: 2245172.528538167\n", - "2018-08-20 22:15:23,878 : INFO : w_error: 2243996.834264229\n", - "2018-08-20 22:15:23,880 : INFO : w_error: 2242941.92831139\n", - "2018-08-20 22:15:23,890 : INFO : w_error: 2241993.1507367296\n", - "2018-08-20 22:15:23,892 : INFO : w_error: 2241138.981282724\n", - "2018-08-20 22:15:23,894 : INFO : w_error: 2240372.9035035283\n", - "2018-08-20 22:15:23,898 : INFO : w_error: 2239682.3493660195\n", - "2018-08-20 22:15:23,901 : INFO : w_error: 2239058.568720074\n", - "2018-08-20 22:15:23,903 : INFO : w_error: 2238494.4270380144\n", - "2018-08-20 22:15:23,905 : INFO : w_error: 2237984.220099477\n", - "2018-08-20 22:15:23,907 : INFO : w_error: 2237520.9884815286\n", - "2018-08-20 22:15:23,909 : INFO : w_error: 2237101.4608067865\n", - "2018-08-20 22:15:23,913 : INFO : w_error: 2236722.197668247\n", - "2018-08-20 22:15:23,917 : INFO : w_error: 2236378.2100734715\n", - "2018-08-20 22:15:23,919 : INFO : w_error: 2236065.4883022504\n", - "2018-08-20 22:15:23,921 : INFO : w_error: 2235780.7662224914\n", - "2018-08-20 22:15:23,928 : INFO : w_error: 2235521.2506842595\n", - "2018-08-20 22:15:23,934 : INFO : w_error: 2235284.50782033\n", - "2018-08-20 22:15:24,015 : INFO : h_r_error: 3454845.2734097256\n", - "2018-08-20 22:15:24,022 : INFO : h_r_error: 2904795.303667716\n", - "2018-08-20 22:15:24,027 : INFO : h_r_error: 1815403.6929314781\n", - "2018-08-20 22:15:24,032 : INFO : h_r_error: 1671979.8610838044\n", - "2018-08-20 22:15:24,036 : INFO : h_r_error: 1646880.9983210769\n", - "2018-08-20 22:15:24,040 : INFO : h_r_error: 1641779.1711565189\n", - "2018-08-20 22:15:24,044 : INFO : w_error: 2235284.50782033\n", - "2018-08-20 22:15:24,051 : INFO : w_error: 1409895.717238072\n", - "2018-08-20 22:15:24,054 : INFO : w_error: 1302982.9901564536\n", - "2018-08-20 22:15:24,056 : INFO : w_error: 1241643.1836578501\n", - "2018-08-20 22:15:24,058 : INFO : w_error: 1202010.8537802538\n", - "2018-08-20 22:15:24,060 : INFO : w_error: 1174256.300835889\n", - "2018-08-20 22:15:24,062 : INFO : w_error: 1153846.4792943266\n", - "2018-08-20 22:15:24,069 : INFO : w_error: 1138188.0072938434\n", - "2018-08-20 22:15:24,071 : INFO : w_error: 1125814.6795108886\n", - "2018-08-20 22:15:24,073 : INFO : w_error: 1115797.5567339717\n", - "2018-08-20 22:15:24,085 : INFO : w_error: 1107544.5916628074\n", - "2018-08-20 22:15:24,093 : INFO : w_error: 1100632.5763251274\n", - "2018-08-20 22:15:24,095 : INFO : w_error: 1094768.0463676567\n", - "2018-08-20 22:15:24,098 : INFO : w_error: 1089733.3497174797\n", - "2018-08-20 22:15:24,100 : INFO : w_error: 1085368.0977918073\n", - "2018-08-20 22:15:24,103 : INFO : w_error: 1081553.7274452301\n", - "2018-08-20 22:15:24,105 : INFO : w_error: 1078197.974529183\n", - "2018-08-20 22:15:24,107 : INFO : w_error: 1075221.1960310491\n", - "2018-08-20 22:15:24,110 : INFO : w_error: 1072567.0519346807\n", - "2018-08-20 22:15:24,112 : INFO : w_error: 1070184.5128907093\n", - "2018-08-20 22:15:24,115 : INFO : w_error: 1068036.0176788152\n", - "2018-08-20 22:15:24,119 : INFO : w_error: 1066090.4127692194\n", - "2018-08-20 22:15:24,127 : INFO : w_error: 1064327.6259531814\n", - "2018-08-20 22:15:24,131 : INFO : w_error: 1062721.1800760324\n", - "2018-08-20 22:15:24,134 : INFO : w_error: 1061253.957796574\n", - "2018-08-20 22:15:24,138 : INFO : w_error: 1059907.3810685019\n", - "2018-08-20 22:15:24,140 : INFO : w_error: 1058667.3010715283\n", - "2018-08-20 22:15:24,143 : INFO : w_error: 1057522.661485047\n", - "2018-08-20 22:15:24,146 : INFO : w_error: 1056463.766328158\n", - "2018-08-20 22:15:24,148 : INFO : w_error: 1055481.284770791\n", - "2018-08-20 22:15:24,156 : INFO : w_error: 1054567.852474613\n", - "2018-08-20 22:15:24,159 : INFO : w_error: 1053717.0477835708\n", - "2018-08-20 22:15:24,162 : INFO : w_error: 1052923.1639589816\n", - "2018-08-20 22:15:24,164 : INFO : w_error: 1052181.239545011\n", - "2018-08-20 22:15:24,168 : INFO : w_error: 1051486.7537766937\n", - "2018-08-20 22:15:24,171 : INFO : w_error: 1050835.5528771807\n", - "2018-08-20 22:15:24,179 : INFO : w_error: 1050224.2841197972\n", - "2018-08-20 22:15:24,183 : INFO : w_error: 1049649.9491698176\n", - "2018-08-20 22:15:24,186 : INFO : w_error: 1049109.5181107703\n", - "2018-08-20 22:15:24,189 : INFO : w_error: 1048600.1347902017\n", - "2018-08-20 22:15:24,192 : INFO : w_error: 1048119.4565463454\n", - "2018-08-20 22:15:24,196 : INFO : w_error: 1047665.3804627837\n", - "2018-08-20 22:15:24,204 : INFO : w_error: 1047235.9988371491\n", - "2018-08-20 22:15:24,207 : INFO : w_error: 1046832.1737272177\n", - "2018-08-20 22:15:24,211 : INFO : w_error: 1046452.970740819\n", - "2018-08-20 22:15:24,219 : INFO : w_error: 1046094.0422380052\n", - "2018-08-20 22:15:24,222 : INFO : w_error: 1045753.8434798977\n", - "2018-08-20 22:15:24,226 : INFO : w_error: 1045431.0670550654\n", - "2018-08-20 22:15:24,228 : INFO : w_error: 1045125.6449549346\n", - "2018-08-20 22:15:24,235 : INFO : w_error: 1044835.281707322\n", - "2018-08-20 22:15:24,238 : INFO : w_error: 1044559.003901511\n", - "2018-08-20 22:15:24,241 : INFO : w_error: 1044295.9426706597\n", - "2018-08-20 22:15:24,244 : INFO : w_error: 1044045.9285662061\n", - "2018-08-20 22:15:24,248 : INFO : w_error: 1043808.7970637546\n", - "2018-08-20 22:15:24,251 : INFO : w_error: 1043582.7109886903\n", - "2018-08-20 22:15:24,254 : INFO : w_error: 1043366.9643033193\n", - "2018-08-20 22:15:24,263 : INFO : w_error: 1043160.9585288618\n", - "2018-08-20 22:15:24,266 : INFO : w_error: 1042964.1438447876\n", - "2018-08-20 22:15:24,269 : INFO : w_error: 1042776.0120289348\n", - "2018-08-20 22:15:24,272 : INFO : w_error: 1042596.091452744\n", - "2018-08-20 22:15:24,276 : INFO : w_error: 1042423.9432487075\n", - "2018-08-20 22:15:24,279 : INFO : w_error: 1042259.1581987607\n", - "2018-08-20 22:15:24,285 : INFO : w_error: 1042101.5438366913\n", - "2018-08-20 22:15:24,288 : INFO : w_error: 1041950.5711721119\n", - "2018-08-20 22:15:24,290 : INFO : w_error: 1041805.8915701783\n", - "2018-08-20 22:15:24,293 : INFO : w_error: 1041667.1853462582\n", - "2018-08-20 22:15:24,298 : INFO : w_error: 1041534.1552983838\n", - "2018-08-20 22:15:24,303 : INFO : w_error: 1041406.5861844597\n", - "2018-08-20 22:15:24,306 : INFO : w_error: 1041284.254338951\n", - "2018-08-20 22:15:24,309 : INFO : w_error: 1041166.8169666711\n", - "2018-08-20 22:15:24,312 : INFO : w_error: 1041054.0409667041\n", - "2018-08-20 22:15:24,316 : INFO : w_error: 1040945.70739374\n", - "2018-08-20 22:15:24,322 : INFO : Loss (no outliers): 1442.803948351552\tLoss (with outliers): 1442.803948351552\n" + "2018-09-25 00:56:44,027 : INFO : Loss (no outliers): 2009.7411222788025\tLoss (with outliers): 2009.7411222788025\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.3 s, sys: 1.91 s, total: 3.22 s\n", - "Wall time: 1.63 s\n" + "CPU times: user 413 ms, sys: 0 ns, total: 413 ms\n", + "Wall time: 415 ms\n" ] } ], @@ -3688,988 +1112,27 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 49, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:24,333 : INFO : h_r_error: 1641779.1711565189\n", - "2018-08-20 22:15:24,335 : INFO : h_r_error: 118028.68383364937\n", - "2018-08-20 22:15:24,337 : INFO : h_r_error: 105616.73503369163\n", - "2018-08-20 22:15:24,339 : INFO : h_r_error: 105376.48023111676\n", - "2018-08-20 22:15:24,344 : INFO : h_r_error: 105376.48023111676\n", - "2018-08-20 22:15:24,345 : INFO : h_r_error: 88296.81129174746\n", - "2018-08-20 22:15:24,347 : INFO : h_r_error: 75598.49700209008\n", - "2018-08-20 22:15:24,350 : INFO : h_r_error: 75202.00810070324\n", - "2018-08-20 22:15:24,352 : INFO : h_r_error: 75202.00810070324\n", - "2018-08-20 22:15:24,353 : INFO : h_r_error: 40896.39022296863\n", - "2018-08-20 22:15:24,354 : INFO : h_r_error: 32494.67090191547\n", - "2018-08-20 22:15:24,356 : INFO : h_r_error: 32239.868252556797\n", - "2018-08-20 22:15:24,366 : INFO : h_r_error: 32239.868252556797\n", - "2018-08-20 22:15:24,368 : INFO : h_r_error: 44930.159607806534\n", - "2018-08-20 22:15:24,370 : INFO : h_r_error: 36557.7492240496\n", - "2018-08-20 22:15:24,371 : INFO : h_r_error: 35312.9484972738\n", - "2018-08-20 22:15:24,373 : INFO : h_r_error: 35184.5687269612\n", - "2018-08-20 22:15:24,380 : INFO : h_r_error: 35184.5687269612\n", - "2018-08-20 22:15:24,383 : INFO : h_r_error: 55889.096964695964\n", - "2018-08-20 22:15:24,386 : INFO : h_r_error: 45781.767631924326\n", - "2018-08-20 22:15:24,387 : INFO : h_r_error: 44138.99627893232\n", - "2018-08-20 22:15:24,388 : INFO : h_r_error: 43952.375976439565\n", - "2018-08-20 22:15:24,390 : INFO : h_r_error: 43952.375976439565\n", - "2018-08-20 22:15:24,391 : INFO : h_r_error: 78794.06131625794\n", - "2018-08-20 22:15:24,393 : INFO : h_r_error: 67664.25272873385\n", - "2018-08-20 22:15:24,394 : INFO : h_r_error: 65282.3178957933\n", - "2018-08-20 22:15:24,395 : INFO : h_r_error: 65014.955716781675\n", - "2018-08-20 22:15:24,397 : INFO : h_r_error: 65014.955716781675\n", - "2018-08-20 22:15:24,398 : INFO : h_r_error: 115824.20033686075\n", - "2018-08-20 22:15:24,399 : INFO : h_r_error: 97829.78400236492\n", - "2018-08-20 22:15:24,400 : INFO : h_r_error: 94585.44160249463\n", - "2018-08-20 22:15:24,402 : INFO : h_r_error: 94376.15747523532\n", - "2018-08-20 22:15:24,403 : INFO : h_r_error: 94376.15747523532\n", - "2018-08-20 22:15:24,405 : INFO : h_r_error: 114744.06992294117\n", - "2018-08-20 22:15:24,406 : INFO : h_r_error: 89437.25014346528\n", - "2018-08-20 22:15:24,408 : INFO : h_r_error: 85408.47209298614\n", - "2018-08-20 22:15:24,409 : INFO : h_r_error: 85172.43982700528\n", - "2018-08-20 22:15:24,411 : INFO : h_r_error: 85172.43982700528\n", - "2018-08-20 22:15:24,413 : INFO : h_r_error: 129231.1344055495\n", - "2018-08-20 22:15:24,414 : INFO : h_r_error: 95296.99614410217\n", - "2018-08-20 22:15:24,415 : INFO : h_r_error: 90493.41027642736\n", - "2018-08-20 22:15:24,417 : INFO : h_r_error: 90223.42598619989\n", - "2018-08-20 22:15:24,418 : INFO : h_r_error: 90223.42598619989\n", - "2018-08-20 22:15:24,420 : INFO : h_r_error: 181731.42136797323\n", - "2018-08-20 22:15:24,421 : INFO : h_r_error: 138104.21628540446\n", - "2018-08-20 22:15:24,422 : INFO : h_r_error: 132501.6357796059\n", - "2018-08-20 22:15:24,424 : INFO : h_r_error: 132152.80413014264\n", - "2018-08-20 22:15:24,426 : INFO : h_r_error: 132152.80413014264\n", - "2018-08-20 22:15:24,427 : INFO : h_r_error: 192166.82022383242\n", - "2018-08-20 22:15:24,428 : INFO : h_r_error: 148475.97120526063\n", - "2018-08-20 22:15:24,429 : INFO : h_r_error: 142884.97822597128\n", - "2018-08-20 22:15:24,430 : INFO : h_r_error: 142515.8680913862\n", - "2018-08-20 22:15:24,446 : INFO : h_r_error: 142515.8680913862\n", - "2018-08-20 22:15:24,448 : INFO : h_r_error: 160074.94464316766\n", - "2018-08-20 22:15:24,449 : INFO : h_r_error: 118917.36421921203\n", - "2018-08-20 22:15:24,451 : INFO : h_r_error: 113071.95801308611\n", - "2018-08-20 22:15:24,452 : INFO : h_r_error: 112649.3520833024\n", - "2018-08-20 22:15:24,455 : INFO : h_r_error: 112649.3520833024\n", - "2018-08-20 22:15:24,456 : INFO : h_r_error: 109774.25286602361\n", - "2018-08-20 22:15:24,458 : INFO : h_r_error: 70630.6630087\n", - "2018-08-20 22:15:24,459 : INFO : h_r_error: 65862.60865989806\n", - "2018-08-20 22:15:24,461 : INFO : h_r_error: 65236.19068167282\n", - "2018-08-20 22:15:24,463 : INFO : h_r_error: 65236.19068167282\n", - "2018-08-20 22:15:24,465 : INFO : h_r_error: 97716.73332566798\n", - "2018-08-20 22:15:24,466 : INFO : h_r_error: 45699.60910087229\n", - "2018-08-20 22:15:24,469 : INFO : h_r_error: 39362.1075187331\n", - "2018-08-20 22:15:24,473 : INFO : h_r_error: 38607.62156919656\n", - "2018-08-20 22:15:24,475 : INFO : h_r_error: 38542.879127641194\n", - "2018-08-20 22:15:24,480 : INFO : h_r_error: 38542.879127641194\n", - "2018-08-20 22:15:24,482 : INFO : h_r_error: 108334.77768707108\n", - "2018-08-20 22:15:24,483 : INFO : h_r_error: 45414.682916660764\n", - "2018-08-20 22:15:24,485 : INFO : h_r_error: 37024.4176799266\n", - "2018-08-20 22:15:24,487 : INFO : h_r_error: 36458.157875334204\n", - "2018-08-20 22:15:24,489 : INFO : h_r_error: 36421.29482582344\n", - "2018-08-20 22:15:24,491 : INFO : h_r_error: 36421.29482582344\n", - "2018-08-20 22:15:24,493 : INFO : h_r_error: 136592.18547993482\n", - "2018-08-20 22:15:24,495 : INFO : h_r_error: 77617.26173564204\n", - "2018-08-20 22:15:24,497 : INFO : h_r_error: 68748.33469269038\n", - "2018-08-20 22:15:24,499 : INFO : h_r_error: 68271.3071049404\n", - "2018-08-20 22:15:24,503 : INFO : h_r_error: 68271.3071049404\n", - "2018-08-20 22:15:24,507 : INFO : h_r_error: 164620.9918105678\n", - "2018-08-20 22:15:24,509 : INFO : h_r_error: 107083.22841187923\n", - "2018-08-20 22:15:24,510 : INFO : h_r_error: 100170.32759387848\n", - "2018-08-20 22:15:24,511 : INFO : h_r_error: 99456.89058438297\n", - "2018-08-20 22:15:24,514 : INFO : h_r_error: 99456.89058438297\n", - "2018-08-20 22:15:24,515 : INFO : h_r_error: 166146.2986450904\n", - "2018-08-20 22:15:24,517 : INFO : h_r_error: 111973.73165621341\n", - "2018-08-20 22:15:24,519 : INFO : h_r_error: 107003.97112908355\n", - "2018-08-20 22:15:24,520 : INFO : h_r_error: 106511.38556261087\n", - "2018-08-20 22:15:24,522 : INFO : h_r_error: 106511.38556261087\n", - "2018-08-20 22:15:24,524 : INFO : h_r_error: 133504.83113404203\n", - "2018-08-20 22:15:24,525 : INFO : h_r_error: 83253.38023127089\n", - "2018-08-20 22:15:24,527 : INFO : h_r_error: 80084.52684233678\n", - "2018-08-20 22:15:24,529 : INFO : h_r_error: 79823.1245934147\n", - "2018-08-20 22:15:24,532 : INFO : h_r_error: 79823.1245934147\n", - "2018-08-20 22:15:24,534 : INFO : h_r_error: 90889.69640460412\n", - "2018-08-20 22:15:24,536 : INFO : h_r_error: 46853.105489898364\n", - "2018-08-20 22:15:24,537 : INFO : h_r_error: 45133.70200421212\n", - "2018-08-20 22:15:24,540 : INFO : h_r_error: 45133.70200421212\n", - "2018-08-20 22:15:24,541 : INFO : h_r_error: 84327.47728746234\n", - "2018-08-20 22:15:24,543 : INFO : h_r_error: 48406.07253927901\n", - "2018-08-20 22:15:24,545 : INFO : h_r_error: 47435.009425067314\n", - "2018-08-20 22:15:24,547 : INFO : h_r_error: 47435.009425067314\n", - "2018-08-20 22:15:24,551 : INFO : h_r_error: 82409.89836879147\n", - "2018-08-20 22:15:24,554 : INFO : h_r_error: 52766.03488097161\n", - "2018-08-20 22:15:24,555 : INFO : h_r_error: 51394.05480640483\n", - "2018-08-20 22:15:24,556 : INFO : h_r_error: 51304.428858608226\n", - "2018-08-20 22:15:24,558 : INFO : h_r_error: 51304.428858608226\n", - "2018-08-20 22:15:24,560 : INFO : h_r_error: 106935.22488025115\n", - "2018-08-20 22:15:24,562 : INFO : h_r_error: 80237.15440778974\n", - "2018-08-20 22:15:24,576 : INFO : h_r_error: 79209.7234310819\n", - "2018-08-20 22:15:24,580 : INFO : h_r_error: 79209.7234310819\n", - "2018-08-20 22:15:24,582 : INFO : h_r_error: 136751.76043962757\n", - "2018-08-20 22:15:24,586 : INFO : h_r_error: 111108.69335643484\n", - "2018-08-20 22:15:24,589 : INFO : h_r_error: 110470.36624680427\n", - "2018-08-20 22:15:24,595 : INFO : h_r_error: 110470.36624680427\n", - "2018-08-20 22:15:24,599 : INFO : h_r_error: 132718.3075324984\n", - "2018-08-20 22:15:24,603 : INFO : h_r_error: 109060.80819403294\n", - "2018-08-20 22:15:24,607 : INFO : h_r_error: 108828.29185697387\n", - "2018-08-20 22:15:24,612 : INFO : h_r_error: 108828.29185697387\n", - "2018-08-20 22:15:24,613 : INFO : h_r_error: 130349.3102692345\n", - "2018-08-20 22:15:24,615 : INFO : h_r_error: 106333.5621825021\n", - "2018-08-20 22:15:24,616 : INFO : h_r_error: 106021.90676445854\n", - "2018-08-20 22:15:24,618 : INFO : h_r_error: 106021.90676445854\n", - "2018-08-20 22:15:24,619 : INFO : h_r_error: 153480.24107840055\n", - "2018-08-20 22:15:24,620 : INFO : h_r_error: 129031.03040291351\n", - "2018-08-20 22:15:24,621 : INFO : h_r_error: 128846.01926523249\n", - "2018-08-20 22:15:24,622 : INFO : h_r_error: 128846.01926523249\n", - "2018-08-20 22:15:24,638 : INFO : h_r_error: 141576.1910210185\n", - "2018-08-20 22:15:24,640 : INFO : h_r_error: 119978.94995744752\n", - "2018-08-20 22:15:24,645 : INFO : h_r_error: 119825.8687034397\n", - "2018-08-20 22:15:24,654 : INFO : h_r_error: 119825.8687034397\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:24,658 : INFO : h_r_error: 134685.80489629053\n", - "2018-08-20 22:15:24,661 : INFO : h_r_error: 113538.95669792594\n", - "2018-08-20 22:15:24,665 : INFO : h_r_error: 113353.41144229252\n", - "2018-08-20 22:15:24,669 : INFO : h_r_error: 113353.41144229252\n", - "2018-08-20 22:15:24,671 : INFO : h_r_error: 122345.42442740352\n", - "2018-08-20 22:15:24,672 : INFO : h_r_error: 101206.04117840753\n", - "2018-08-20 22:15:24,673 : INFO : h_r_error: 100993.62587045786\n", - "2018-08-20 22:15:24,674 : INFO : h_r_error: 100993.62587045786\n", - "2018-08-20 22:15:24,676 : INFO : h_r_error: 116266.06525752878\n", - "2018-08-20 22:15:24,677 : INFO : h_r_error: 96812.1429100881\n", - "2018-08-20 22:15:24,683 : INFO : h_r_error: 96671.85729303533\n", - "2018-08-20 22:15:24,686 : INFO : h_r_error: 96671.85729303533\n", - "2018-08-20 22:15:24,687 : INFO : h_r_error: 124976.11247413699\n", - "2018-08-20 22:15:24,689 : INFO : h_r_error: 105696.72347766797\n", - "2018-08-20 22:15:24,690 : INFO : h_r_error: 105516.7395837665\n", - "2018-08-20 22:15:24,691 : INFO : h_r_error: 105516.7395837665\n", - "2018-08-20 22:15:24,693 : INFO : h_r_error: 146470.2640249488\n", - "2018-08-20 22:15:24,694 : INFO : h_r_error: 127731.6923564533\n", - "2018-08-20 22:15:24,695 : INFO : h_r_error: 127533.0140907293\n", - "2018-08-20 22:15:24,696 : INFO : h_r_error: 127533.0140907293\n", - "2018-08-20 22:15:24,698 : INFO : h_r_error: 116516.53968187683\n", - "2018-08-20 22:15:24,729 : INFO : h_r_error: 98550.36989787972\n", - "2018-08-20 22:15:24,731 : INFO : h_r_error: 98348.73507292234\n", - "2018-08-20 22:15:24,734 : INFO : h_r_error: 98348.73507292234\n", - "2018-08-20 22:15:24,736 : INFO : h_r_error: 83893.40980768634\n", - "2018-08-20 22:15:24,738 : INFO : h_r_error: 70661.46051854167\n", - "2018-08-20 22:15:24,743 : INFO : h_r_error: 70518.89065328502\n", - "2018-08-20 22:15:24,746 : INFO : h_r_error: 70518.89065328502\n", - "2018-08-20 22:15:24,747 : INFO : h_r_error: 84886.38848637952\n", - "2018-08-20 22:15:24,749 : INFO : h_r_error: 75403.0417830475\n", - "2018-08-20 22:15:24,752 : INFO : h_r_error: 75308.00746994432\n", - "2018-08-20 22:15:24,754 : INFO : h_r_error: 75308.00746994432\n", - "2018-08-20 22:15:24,761 : INFO : h_r_error: 85316.80762722554\n", - "2018-08-20 22:15:24,765 : INFO : h_r_error: 77251.27417314934\n", - "2018-08-20 22:15:24,773 : INFO : h_r_error: 77143.82662566137\n", - "2018-08-20 22:15:24,779 : INFO : h_r_error: 77143.82662566137\n", - "2018-08-20 22:15:24,783 : INFO : h_r_error: 73553.39387109454\n", - "2018-08-20 22:15:24,788 : INFO : h_r_error: 66152.79219166574\n", - "2018-08-20 22:15:24,792 : INFO : h_r_error: 65835.47220932409\n", - "2018-08-20 22:15:24,795 : INFO : h_r_error: 65835.47220932409\n", - "2018-08-20 22:15:24,796 : INFO : h_r_error: 50775.99401955186\n", - "2018-08-20 22:15:24,803 : INFO : h_r_error: 43830.36067690958\n", - "2018-08-20 22:15:24,805 : INFO : h_r_error: 43195.603195800686\n", - "2018-08-20 22:15:24,807 : INFO : h_r_error: 43103.14299130767\n", - "2018-08-20 22:15:24,810 : INFO : h_r_error: 43103.14299130767\n", - "2018-08-20 22:15:24,818 : INFO : h_r_error: 63341.13752266902\n", - "2018-08-20 22:15:24,822 : INFO : h_r_error: 53924.846649871244\n", - "2018-08-20 22:15:24,824 : INFO : h_r_error: 52977.50569965488\n", - "2018-08-20 22:15:24,827 : INFO : h_r_error: 52861.032501429065\n", - "2018-08-20 22:15:24,829 : INFO : h_r_error: 52861.032501429065\n", - "2018-08-20 22:15:24,830 : INFO : h_r_error: 82441.4874200672\n", - "2018-08-20 22:15:24,832 : INFO : h_r_error: 70092.19085069446\n", - "2018-08-20 22:15:24,833 : INFO : h_r_error: 68857.66881113088\n", - "2018-08-20 22:15:24,835 : INFO : h_r_error: 68719.78360373998\n", - "2018-08-20 22:15:24,837 : INFO : h_r_error: 68719.78360373998\n", - "2018-08-20 22:15:24,839 : INFO : h_r_error: 116068.82475570982\n", - "2018-08-20 22:15:24,841 : INFO : h_r_error: 98936.2974353597\n", - "2018-08-20 22:15:24,844 : INFO : h_r_error: 97280.67673289865\n", - "2018-08-20 22:15:24,846 : INFO : h_r_error: 97074.42498967852\n", - "2018-08-20 22:15:24,849 : INFO : h_r_error: 97074.42498967852\n", - "2018-08-20 22:15:24,851 : INFO : h_r_error: 193771.07280092753\n", - "2018-08-20 22:15:24,853 : INFO : h_r_error: 167714.14690177588\n", - "2018-08-20 22:15:24,855 : INFO : h_r_error: 165261.32276745175\n", - "2018-08-20 22:15:24,857 : INFO : h_r_error: 165026.16476628813\n", - "2018-08-20 22:15:24,860 : INFO : h_r_error: 165026.16476628813\n", - "2018-08-20 22:15:24,862 : INFO : h_r_error: 216721.62053218845\n", - "2018-08-20 22:15:24,867 : INFO : h_r_error: 183723.35667939033\n", - "2018-08-20 22:15:24,868 : INFO : h_r_error: 180291.11958318867\n", - "2018-08-20 22:15:24,871 : INFO : h_r_error: 179885.7411508071\n", - "2018-08-20 22:15:24,875 : INFO : h_r_error: 179885.7411508071\n", - "2018-08-20 22:15:24,877 : INFO : h_r_error: 177050.13720251067\n", - "2018-08-20 22:15:24,880 : INFO : h_r_error: 143961.610710226\n", - "2018-08-20 22:15:24,882 : INFO : h_r_error: 139724.63504639387\n", - "2018-08-20 22:15:24,884 : INFO : h_r_error: 139082.44374033014\n", - "2018-08-20 22:15:24,886 : INFO : h_r_error: 139082.44374033014\n", - "2018-08-20 22:15:24,888 : INFO : h_r_error: 147607.24267108657\n", - "2018-08-20 22:15:24,890 : INFO : h_r_error: 120018.73888155147\n", - "2018-08-20 22:15:24,892 : INFO : h_r_error: 116287.06398890018\n", - "2018-08-20 22:15:24,894 : INFO : h_r_error: 115522.0139159181\n", - "2018-08-20 22:15:24,896 : INFO : h_r_error: 115334.43041489228\n", - "2018-08-20 22:15:24,899 : INFO : h_r_error: 115334.43041489228\n", - "2018-08-20 22:15:24,901 : INFO : h_r_error: 118365.81663670983\n", - "2018-08-20 22:15:24,902 : INFO : h_r_error: 93132.88915954153\n", - "2018-08-20 22:15:24,903 : INFO : h_r_error: 89122.17715497369\n", - "2018-08-20 22:15:24,905 : INFO : h_r_error: 88231.49030112062\n", - "2018-08-20 22:15:24,906 : INFO : h_r_error: 88057.2036447887\n", - "2018-08-20 22:15:24,908 : INFO : h_r_error: 88057.2036447887\n", - "2018-08-20 22:15:24,910 : INFO : h_r_error: 112031.45144655604\n", - "2018-08-20 22:15:24,913 : INFO : h_r_error: 85282.34307749954\n", - "2018-08-20 22:15:24,917 : INFO : h_r_error: 81608.4108547704\n", - "2018-08-20 22:15:24,920 : INFO : h_r_error: 81068.52518153662\n", - "2018-08-20 22:15:24,922 : INFO : h_r_error: 81068.52518153662\n", - "2018-08-20 22:15:24,924 : INFO : h_r_error: 113120.94754019415\n", - "2018-08-20 22:15:24,926 : INFO : h_r_error: 77189.01208482559\n", - "2018-08-20 22:15:24,927 : INFO : h_r_error: 73025.66214248759\n", - "2018-08-20 22:15:24,929 : INFO : h_r_error: 72376.99859107213\n", - "2018-08-20 22:15:24,931 : INFO : h_r_error: 72280.48483968731\n", - "2018-08-20 22:15:24,934 : INFO : h_r_error: 72280.48483968731\n", - "2018-08-20 22:15:24,936 : INFO : h_r_error: 110118.08448968553\n", - "2018-08-20 22:15:24,947 : INFO : h_r_error: 63147.328257194524\n", - "2018-08-20 22:15:24,956 : INFO : h_r_error: 57647.812476420404\n", - "2018-08-20 22:15:24,958 : INFO : h_r_error: 56870.72573548426\n", - "2018-08-20 22:15:24,960 : INFO : h_r_error: 56778.257092080545\n", - "2018-08-20 22:15:24,963 : INFO : h_r_error: 56778.257092080545\n", - "2018-08-20 22:15:24,965 : INFO : h_r_error: 105876.5962159224\n", - "2018-08-20 22:15:24,967 : INFO : h_r_error: 51779.48545739382\n", - "2018-08-20 22:15:24,969 : INFO : h_r_error: 45563.46975869903\n", - "2018-08-20 22:15:24,970 : INFO : h_r_error: 44990.10718859484\n", - "2018-08-20 22:15:24,973 : INFO : h_r_error: 44990.10718859484\n", - "2018-08-20 22:15:24,975 : INFO : h_r_error: 81356.83817164302\n", - "2018-08-20 22:15:24,977 : INFO : h_r_error: 30402.09748446639\n", - "2018-08-20 22:15:24,978 : INFO : h_r_error: 27546.96495755806\n", - "2018-08-20 22:15:24,980 : INFO : h_r_error: 27213.517074651434\n", - "2018-08-20 22:15:24,981 : INFO : h_r_error: 27181.21158620719\n", - "2018-08-20 22:15:24,983 : INFO : h_r_error: 27181.21158620719\n", - "2018-08-20 22:15:24,985 : INFO : h_r_error: 84928.95919387031\n", - "2018-08-20 22:15:24,987 : INFO : h_r_error: 32417.693628730725\n", - "2018-08-20 22:15:24,988 : INFO : h_r_error: 29007.221465319304\n", - "2018-08-20 22:15:24,990 : INFO : h_r_error: 28741.252041050557\n", - "2018-08-20 22:15:24,992 : INFO : h_r_error: 28741.252041050557\n", - "2018-08-20 22:15:24,994 : INFO : h_r_error: 93950.90077407988\n", - "2018-08-20 22:15:24,998 : INFO : h_r_error: 56249.61615828003\n", - "2018-08-20 22:15:25,000 : INFO : h_r_error: 52924.363341441735\n", - "2018-08-20 22:15:25,002 : INFO : h_r_error: 52751.541989180885\n", - "2018-08-20 22:15:25,004 : INFO : h_r_error: 52751.541989180885\n", - "2018-08-20 22:15:25,005 : INFO : h_r_error: 75506.66154775783\n", - "2018-08-20 22:15:25,006 : INFO : h_r_error: 57242.30005666704\n", - "2018-08-20 22:15:25,007 : INFO : h_r_error: 55345.64041769668\n", - "2018-08-20 22:15:25,008 : INFO : h_r_error: 55186.16186036283\n", - "2018-08-20 22:15:25,010 : INFO : h_r_error: 55186.16186036283\n", - "2018-08-20 22:15:25,012 : INFO : h_r_error: 55186.16186036283\n", - "2018-08-20 22:15:25,013 : INFO : h_r_error: 65626.41064582833\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:25,015 : INFO : h_r_error: 58344.200783367785\n", - "2018-08-20 22:15:25,020 : INFO : h_r_error: 56997.1979143896\n", - "2018-08-20 22:15:25,023 : INFO : h_r_error: 56864.86772938072\n", - "2018-08-20 22:15:25,025 : INFO : h_r_error: 56864.86772938072\n", - "2018-08-20 22:15:25,031 : INFO : h_r_error: 55804.84516396389\n", - "2018-08-20 22:15:25,032 : INFO : h_r_error: 49720.76312800324\n", - "2018-08-20 22:15:25,034 : INFO : h_r_error: 48669.3293093283\n", - "2018-08-20 22:15:25,036 : INFO : h_r_error: 48566.79973146436\n", - "2018-08-20 22:15:25,039 : INFO : h_r_error: 48566.79973146436\n", - "2018-08-20 22:15:25,042 : INFO : h_r_error: 50232.78247908833\n", - "2018-08-20 22:15:25,045 : INFO : h_r_error: 43460.18499959944\n", - "2018-08-20 22:15:25,047 : INFO : h_r_error: 42583.76639804095\n", - "2018-08-20 22:15:25,049 : INFO : h_r_error: 42583.76639804095\n", - "2018-08-20 22:15:25,051 : INFO : h_r_error: 70689.83802178742\n", - "2018-08-20 22:15:25,053 : INFO : h_r_error: 54799.329874802635\n", - "2018-08-20 22:15:25,057 : INFO : h_r_error: 53914.8316747843\n", - "2018-08-20 22:15:25,059 : INFO : h_r_error: 53848.05269206547\n", - "2018-08-20 22:15:25,062 : INFO : h_r_error: 53848.05269206547\n", - "2018-08-20 22:15:25,064 : INFO : h_r_error: 108449.9769402526\n", - "2018-08-20 22:15:25,065 : INFO : h_r_error: 75225.82220714819\n", - "2018-08-20 22:15:25,067 : INFO : h_r_error: 72609.7918222791\n", - "2018-08-20 22:15:25,069 : INFO : h_r_error: 72378.78725369519\n", - "2018-08-20 22:15:25,073 : INFO : h_r_error: 72378.78725369519\n", - "2018-08-20 22:15:25,075 : INFO : h_r_error: 127164.30656219537\n", - "2018-08-20 22:15:25,077 : INFO : h_r_error: 84579.9832644276\n", - "2018-08-20 22:15:25,079 : INFO : h_r_error: 80803.72888974627\n", - "2018-08-20 22:15:25,083 : INFO : h_r_error: 80503.5077458557\n", - "2018-08-20 22:15:25,086 : INFO : h_r_error: 80503.5077458557\n", - "2018-08-20 22:15:25,088 : INFO : h_r_error: 174296.9674397971\n", - "2018-08-20 22:15:25,091 : INFO : h_r_error: 115868.15218188912\n", - "2018-08-20 22:15:25,094 : INFO : h_r_error: 107516.90754969341\n", - "2018-08-20 22:15:25,096 : INFO : h_r_error: 106698.60961349803\n", - "2018-08-20 22:15:25,099 : INFO : h_r_error: 106698.60961349803\n", - "2018-08-20 22:15:25,101 : INFO : h_r_error: 188764.71900915547\n", - "2018-08-20 22:15:25,103 : INFO : h_r_error: 120666.83609976483\n", - "2018-08-20 22:15:25,105 : INFO : h_r_error: 109728.74724218929\n", - "2018-08-20 22:15:25,107 : INFO : h_r_error: 108173.7827542977\n", - "2018-08-20 22:15:25,110 : INFO : h_r_error: 108003.53821445782\n", - "2018-08-20 22:15:25,112 : INFO : h_r_error: 108003.53821445782\n", - "2018-08-20 22:15:25,115 : INFO : h_r_error: 182992.56219648672\n", - "2018-08-20 22:15:25,117 : INFO : h_r_error: 122929.88482513907\n", - "2018-08-20 22:15:25,118 : INFO : h_r_error: 110308.97418968279\n", - "2018-08-20 22:15:25,120 : INFO : h_r_error: 108628.82457256186\n", - "2018-08-20 22:15:25,122 : INFO : h_r_error: 108461.95196544233\n", - "2018-08-20 22:15:25,125 : INFO : h_r_error: 108461.95196544233\n", - "2018-08-20 22:15:25,128 : INFO : h_r_error: 205178.2828927736\n", - "2018-08-20 22:15:25,129 : INFO : h_r_error: 140432.38605897967\n", - "2018-08-20 22:15:25,131 : INFO : h_r_error: 125174.444634394\n", - "2018-08-20 22:15:25,132 : INFO : h_r_error: 122620.12145656205\n", - "2018-08-20 22:15:25,134 : INFO : h_r_error: 122338.49688463559\n", - "2018-08-20 22:15:25,175 : INFO : h_r_error: 122338.49688463559\n", - "2018-08-20 22:15:25,176 : INFO : h_r_error: 237457.227950885\n", - "2018-08-20 22:15:25,178 : INFO : h_r_error: 145906.50129498472\n", - "2018-08-20 22:15:25,184 : INFO : h_r_error: 131773.8442483685\n", - "2018-08-20 22:15:25,191 : INFO : h_r_error: 128797.05540441698\n", - "2018-08-20 22:15:25,196 : INFO : h_r_error: 128424.53309311552\n", - "2018-08-20 22:15:25,202 : INFO : h_r_error: 128424.53309311552\n", - "2018-08-20 22:15:25,206 : INFO : h_r_error: 275412.50869024196\n", - "2018-08-20 22:15:25,207 : INFO : h_r_error: 157717.62339863132\n", - "2018-08-20 22:15:25,208 : INFO : h_r_error: 141486.70261398956\n", - "2018-08-20 22:15:25,213 : INFO : h_r_error: 139232.8703803961\n", - "2018-08-20 22:15:25,215 : INFO : h_r_error: 138984.25764109177\n", - "2018-08-20 22:15:25,219 : INFO : h_r_error: 138984.25764109177\n", - "2018-08-20 22:15:25,222 : INFO : h_r_error: 300650.3506786036\n", - "2018-08-20 22:15:25,223 : INFO : h_r_error: 152930.16348874537\n", - "2018-08-20 22:15:25,224 : INFO : h_r_error: 133210.48458463038\n", - "2018-08-20 22:15:25,226 : INFO : h_r_error: 131243.98671354743\n", - "2018-08-20 22:15:25,228 : INFO : h_r_error: 131243.98671354743\n", - "2018-08-20 22:15:25,229 : INFO : h_r_error: 272716.1610946117\n", - "2018-08-20 22:15:25,230 : INFO : h_r_error: 107439.07817534365\n", - "2018-08-20 22:15:25,231 : INFO : h_r_error: 86009.70672732047\n", - "2018-08-20 22:15:25,232 : INFO : h_r_error: 83692.29377563702\n", - "2018-08-20 22:15:25,233 : INFO : h_r_error: 83581.00674929329\n", - "2018-08-20 22:15:25,234 : INFO : h_r_error: 83581.00674929329\n", - "2018-08-20 22:15:25,236 : INFO : h_r_error: 254441.12230500238\n", - "2018-08-20 22:15:25,237 : INFO : h_r_error: 72013.57418846728\n", - "2018-08-20 22:15:25,238 : INFO : h_r_error: 48278.794818697526\n", - "2018-08-20 22:15:25,239 : INFO : h_r_error: 45514.994923329155\n", - "2018-08-20 22:15:25,240 : INFO : h_r_error: 45241.60017170514\n", - "2018-08-20 22:15:25,241 : INFO : h_r_error: 45179.15646442517\n", - "2018-08-20 22:15:25,243 : INFO : h_r_error: 45179.15646442517\n", - "2018-08-20 22:15:25,244 : INFO : h_r_error: 209933.23754358318\n", - "2018-08-20 22:15:25,245 : INFO : h_r_error: 41462.79385360789\n", - "2018-08-20 22:15:25,246 : INFO : h_r_error: 17256.968824554147\n", - "2018-08-20 22:15:25,247 : INFO : h_r_error: 14469.27786394224\n", - "2018-08-20 22:15:25,249 : INFO : h_r_error: 14277.901689417691\n", - "2018-08-20 22:15:25,250 : INFO : h_r_error: 14223.800438013002\n", - "2018-08-20 22:15:25,252 : INFO : h_r_error: 14223.800438013002\n", - "2018-08-20 22:15:25,258 : INFO : h_r_error: 176449.76277944492\n", - "2018-08-20 22:15:25,260 : INFO : h_r_error: 40292.9864638591\n", - "2018-08-20 22:15:25,265 : INFO : h_r_error: 17918.368196309668\n", - "2018-08-20 22:15:25,267 : INFO : h_r_error: 15750.866831518895\n", - "2018-08-20 22:15:25,268 : INFO : h_r_error: 15653.663346471416\n", - "2018-08-20 22:15:25,270 : INFO : h_r_error: 15653.663346471416\n", - "2018-08-20 22:15:25,272 : INFO : h_r_error: 164832.90258332962\n", - "2018-08-20 22:15:25,273 : INFO : h_r_error: 48424.8934538084\n", - "2018-08-20 22:15:25,274 : INFO : h_r_error: 27926.21987864753\n", - "2018-08-20 22:15:25,277 : INFO : h_r_error: 25891.390224328195\n", - "2018-08-20 22:15:25,278 : INFO : h_r_error: 25771.69994539886\n", - "2018-08-20 22:15:25,287 : INFO : h_r_error: 25771.69994539886\n", - "2018-08-20 22:15:25,288 : INFO : h_r_error: 191912.09950543175\n", - "2018-08-20 22:15:25,290 : INFO : h_r_error: 83090.77071204718\n", - "2018-08-20 22:15:25,292 : INFO : h_r_error: 64829.64668925761\n", - "2018-08-20 22:15:25,293 : INFO : h_r_error: 62052.54176189226\n", - "2018-08-20 22:15:25,295 : INFO : h_r_error: 61519.16586221018\n", - "2018-08-20 22:15:25,296 : INFO : h_r_error: 61519.16586221018\n", - "2018-08-20 22:15:25,297 : INFO : h_r_error: 169908.2691991225\n", - "2018-08-20 22:15:25,298 : INFO : h_r_error: 82613.65835938942\n", - "2018-08-20 22:15:25,299 : INFO : h_r_error: 65795.5031022393\n", - "2018-08-20 22:15:25,300 : INFO : h_r_error: 63315.871900203485\n", - "2018-08-20 22:15:25,301 : INFO : h_r_error: 62680.183691267695\n", - "2018-08-20 22:15:25,302 : INFO : h_r_error: 62433.146777739734\n", - "2018-08-20 22:15:25,303 : INFO : h_r_error: 62361.1412724006\n", - "2018-08-20 22:15:25,305 : INFO : h_r_error: 62361.1412724006\n", - "2018-08-20 22:15:25,306 : INFO : h_r_error: 175890.65408062979\n", - "2018-08-20 22:15:25,307 : INFO : h_r_error: 100326.13910647832\n", - "2018-08-20 22:15:25,308 : INFO : h_r_error: 83816.92879282839\n", - "2018-08-20 22:15:25,309 : INFO : h_r_error: 80521.84957427568\n", - "2018-08-20 22:15:25,310 : INFO : h_r_error: 80348.23286437501\n", - "2018-08-20 22:15:25,312 : INFO : h_r_error: 80348.23286437501\n", - "2018-08-20 22:15:25,313 : INFO : h_r_error: 139159.32181461973\n", - "2018-08-20 22:15:25,314 : INFO : h_r_error: 81428.8231076188\n", - "2018-08-20 22:15:25,316 : INFO : h_r_error: 69224.97642667429\n", - "2018-08-20 22:15:25,317 : INFO : h_r_error: 67175.86485018545\n", - "2018-08-20 22:15:25,319 : INFO : h_r_error: 66967.7538071723\n", - "2018-08-20 22:15:25,321 : INFO : h_r_error: 66967.7538071723\n", - "2018-08-20 22:15:25,322 : INFO : h_r_error: 117301.19850489953\n", - "2018-08-20 22:15:25,323 : INFO : h_r_error: 75610.89667328351\n", - "2018-08-20 22:15:25,338 : INFO : h_r_error: 66713.5978221731\n", - "2018-08-20 22:15:25,340 : INFO : h_r_error: 65738.56677856592\n", - "2018-08-20 22:15:25,342 : INFO : h_r_error: 65631.24459072924\n", - "2018-08-20 22:15:25,354 : INFO : h_r_error: 65631.24459072924\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:25,356 : INFO : h_r_error: 123923.46378028487\n", - "2018-08-20 22:15:25,357 : INFO : h_r_error: 91401.7915719367\n", - "2018-08-20 22:15:25,359 : INFO : h_r_error: 85191.39582673303\n", - "2018-08-20 22:15:25,361 : INFO : h_r_error: 84532.90616743342\n", - "2018-08-20 22:15:25,364 : INFO : h_r_error: 84532.90616743342\n", - "2018-08-20 22:15:25,365 : INFO : h_r_error: 111957.92974291708\n", - "2018-08-20 22:15:25,367 : INFO : h_r_error: 90673.10717043538\n", - "2018-08-20 22:15:25,368 : INFO : h_r_error: 86795.48708018255\n", - "2018-08-20 22:15:25,370 : INFO : h_r_error: 86359.0193082306\n", - "2018-08-20 22:15:25,372 : INFO : h_r_error: 86359.0193082306\n", - "2018-08-20 22:15:25,374 : INFO : h_r_error: 78116.94232451699\n", - "2018-08-20 22:15:25,389 : INFO : h_r_error: 64864.185952766085\n", - "2018-08-20 22:15:25,403 : INFO : h_r_error: 62627.20138398043\n", - "2018-08-20 22:15:25,406 : INFO : h_r_error: 62387.88488623845\n", - "2018-08-20 22:15:25,417 : INFO : h_r_error: 62387.88488623845\n", - "2018-08-20 22:15:25,418 : INFO : h_r_error: 49500.7753928332\n", - "2018-08-20 22:15:25,419 : INFO : h_r_error: 42087.7938861251\n", - "2018-08-20 22:15:25,420 : INFO : h_r_error: 40919.547444569056\n", - "2018-08-20 22:15:25,422 : INFO : h_r_error: 40797.118344441675\n", - "2018-08-20 22:15:25,423 : INFO : h_r_error: 40797.118344441675\n", - "2018-08-20 22:15:25,425 : INFO : h_r_error: 33133.46717145053\n", - "2018-08-20 22:15:25,427 : INFO : h_r_error: 28187.64325842917\n", - "2018-08-20 22:15:25,428 : INFO : h_r_error: 27457.524480600925\n", - "2018-08-20 22:15:25,431 : INFO : h_r_error: 27363.275532166514\n", - "2018-08-20 22:15:25,435 : INFO : h_r_error: 27363.275532166514\n", - "2018-08-20 22:15:25,437 : INFO : h_r_error: 36510.654255069974\n", - "2018-08-20 22:15:25,439 : INFO : h_r_error: 31872.903080009222\n", - "2018-08-20 22:15:25,440 : INFO : h_r_error: 31217.98548164642\n", - "2018-08-20 22:15:25,441 : INFO : h_r_error: 31085.040361192147\n", - "2018-08-20 22:15:25,443 : INFO : h_r_error: 31085.040361192147\n", - "2018-08-20 22:15:25,451 : INFO : h_r_error: 32717.539038069233\n", - "2018-08-20 22:15:25,453 : INFO : h_r_error: 29045.52539605171\n", - "2018-08-20 22:15:25,455 : INFO : h_r_error: 28541.895937532478\n", - "2018-08-20 22:15:25,456 : INFO : h_r_error: 28461.38852698747\n", - "2018-08-20 22:15:25,458 : INFO : h_r_error: 28461.38852698747\n", - "2018-08-20 22:15:25,461 : INFO : h_r_error: 39530.97336392132\n", - "2018-08-20 22:15:25,463 : INFO : h_r_error: 34691.260614155886\n", - "2018-08-20 22:15:25,466 : INFO : h_r_error: 34552.31704531897\n", - "2018-08-20 22:15:25,471 : INFO : h_r_error: 34552.31704531897\n", - "2018-08-20 22:15:25,473 : INFO : h_r_error: 51147.598069400025\n", - "2018-08-20 22:15:25,474 : INFO : h_r_error: 45291.99255837201\n", - "2018-08-20 22:15:25,475 : INFO : h_r_error: 45214.75981765208\n", - "2018-08-20 22:15:25,477 : INFO : h_r_error: 45214.75981765208\n", - "2018-08-20 22:15:25,478 : INFO : h_r_error: 46016.409572444805\n", - "2018-08-20 22:15:25,479 : INFO : h_r_error: 42227.240327538966\n", - "2018-08-20 22:15:25,480 : INFO : h_r_error: 42073.032303607266\n", - "2018-08-20 22:15:25,482 : INFO : h_r_error: 42073.032303607266\n", - "2018-08-20 22:15:25,483 : INFO : h_r_error: 27327.849983908094\n", - "2018-08-20 22:15:25,484 : INFO : h_r_error: 24777.228358306573\n", - "2018-08-20 22:15:25,485 : INFO : h_r_error: 24678.74334174119\n", - "2018-08-20 22:15:25,487 : INFO : h_r_error: 24678.74334174119\n", - "2018-08-20 22:15:25,489 : INFO : h_r_error: 28624.20791140836\n", - "2018-08-20 22:15:25,490 : INFO : h_r_error: 27007.89226208855\n", - "2018-08-20 22:15:25,491 : INFO : h_r_error: 26876.018329480405\n", - "2018-08-20 22:15:25,493 : INFO : h_r_error: 26876.018329480405\n", - "2018-08-20 22:15:25,495 : INFO : h_r_error: 47763.61557444882\n", - "2018-08-20 22:15:25,496 : INFO : h_r_error: 46266.525376300975\n", - "2018-08-20 22:15:25,497 : INFO : h_r_error: 46150.63200927735\n", - "2018-08-20 22:15:25,502 : INFO : h_r_error: 46150.63200927735\n", - "2018-08-20 22:15:25,508 : INFO : h_r_error: 44637.420943173915\n", - "2018-08-20 22:15:25,511 : INFO : h_r_error: 43081.22221036457\n", - "2018-08-20 22:15:25,514 : INFO : h_r_error: 43027.272112547\n", - "2018-08-20 22:15:25,517 : INFO : h_r_error: 43027.272112547\n", - "2018-08-20 22:15:25,521 : INFO : h_r_error: 34197.1970988031\n", - "2018-08-20 22:15:25,523 : INFO : h_r_error: 32315.875508897345\n", - "2018-08-20 22:15:25,524 : INFO : h_r_error: 32232.402902709637\n", - "2018-08-20 22:15:25,526 : INFO : h_r_error: 32232.402902709637\n", - "2018-08-20 22:15:25,527 : INFO : h_r_error: 70710.40068384536\n", - "2018-08-20 22:15:25,528 : INFO : h_r_error: 66320.87213896835\n", - "2018-08-20 22:15:25,530 : INFO : h_r_error: 66030.65492802096\n", - "2018-08-20 22:15:25,531 : INFO : h_r_error: 66030.65492802096\n", - "2018-08-20 22:15:25,532 : INFO : h_r_error: 105979.34962699868\n", - "2018-08-20 22:15:25,533 : INFO : h_r_error: 98450.75207245885\n", - "2018-08-20 22:15:25,534 : INFO : h_r_error: 98016.97785205963\n", - "2018-08-20 22:15:25,536 : INFO : h_r_error: 98016.97785205963\n", - "2018-08-20 22:15:25,537 : INFO : h_r_error: 129788.72803970131\n", - "2018-08-20 22:15:25,538 : INFO : h_r_error: 115670.68870158785\n", - "2018-08-20 22:15:25,539 : INFO : h_r_error: 114852.65676091662\n", - "2018-08-20 22:15:25,543 : INFO : h_r_error: 114852.65676091662\n", - "2018-08-20 22:15:25,548 : INFO : h_r_error: 191581.60964479294\n", - "2018-08-20 22:15:25,551 : INFO : h_r_error: 166679.56805275375\n", - "2018-08-20 22:15:25,552 : INFO : h_r_error: 164422.30428484583\n", - "2018-08-20 22:15:25,553 : INFO : h_r_error: 164252.21597441917\n", - "2018-08-20 22:15:25,555 : INFO : h_r_error: 164252.21597441917\n", - "2018-08-20 22:15:25,556 : INFO : h_r_error: 169298.78806069307\n", - "2018-08-20 22:15:25,558 : INFO : h_r_error: 134116.76721492808\n", - "2018-08-20 22:15:25,559 : INFO : h_r_error: 130643.93672028101\n", - "2018-08-20 22:15:25,561 : INFO : h_r_error: 130325.27402663218\n", - "2018-08-20 22:15:25,567 : INFO : h_r_error: 130325.27402663218\n", - "2018-08-20 22:15:25,570 : INFO : h_r_error: 129358.04990250216\n", - "2018-08-20 22:15:25,571 : INFO : h_r_error: 85641.97969093166\n", - "2018-08-20 22:15:25,573 : INFO : h_r_error: 80836.42049500016\n", - "2018-08-20 22:15:25,574 : INFO : h_r_error: 80486.27356277718\n", - "2018-08-20 22:15:25,576 : INFO : h_r_error: 80486.27356277718\n", - "2018-08-20 22:15:25,578 : INFO : h_r_error: 132531.56364256528\n", - "2018-08-20 22:15:25,579 : INFO : h_r_error: 74126.80733985627\n", - "2018-08-20 22:15:25,580 : INFO : h_r_error: 67086.79041257549\n", - "2018-08-20 22:15:25,581 : INFO : h_r_error: 66678.55813885953\n", - "2018-08-20 22:15:25,583 : INFO : h_r_error: 66678.55813885953\n", - "2018-08-20 22:15:25,584 : INFO : h_r_error: 133703.17505022846\n", - "2018-08-20 22:15:25,590 : INFO : h_r_error: 59914.01632175076\n", - "2018-08-20 22:15:25,593 : INFO : h_r_error: 51397.657582639105\n", - "2018-08-20 22:15:25,595 : INFO : h_r_error: 50837.980834824186\n", - "2018-08-20 22:15:25,598 : INFO : h_r_error: 50774.91197243039\n", - "2018-08-20 22:15:25,607 : INFO : h_r_error: 50774.91197243039\n", - "2018-08-20 22:15:25,612 : INFO : h_r_error: 109490.15716808783\n", - "2018-08-20 22:15:25,614 : INFO : h_r_error: 30568.832146996563\n", - "2018-08-20 22:15:25,615 : INFO : h_r_error: 22869.001662211296\n", - "2018-08-20 22:15:25,617 : INFO : h_r_error: 22525.15024264768\n", - "2018-08-20 22:15:25,620 : INFO : h_r_error: 22433.24745937775\n", - "2018-08-20 22:15:25,623 : INFO : h_r_error: 22409.331483770882\n", - "2018-08-20 22:15:25,625 : INFO : h_r_error: 22409.331483770882\n", - "2018-08-20 22:15:25,626 : INFO : h_r_error: 108240.89575392664\n", - "2018-08-20 22:15:25,628 : INFO : h_r_error: 27445.072240102305\n", - "2018-08-20 22:15:25,629 : INFO : h_r_error: 19796.62179594789\n", - "2018-08-20 22:15:25,630 : INFO : h_r_error: 19498.064804576392\n", - "2018-08-20 22:15:25,630 : INFO : h_r_error: 19420.473673215376\n", - "2018-08-20 22:15:25,632 : INFO : h_r_error: 19420.473673215376\n", - "2018-08-20 22:15:25,633 : INFO : h_r_error: 123079.47395167682\n", - "2018-08-20 22:15:25,634 : INFO : h_r_error: 39846.8436024557\n", - "2018-08-20 22:15:25,635 : INFO : h_r_error: 32839.06177875537\n", - "2018-08-20 22:15:25,637 : INFO : h_r_error: 32558.16857171215\n", - "2018-08-20 22:15:25,638 : INFO : h_r_error: 32469.203239033526\n", - "2018-08-20 22:15:25,640 : INFO : h_r_error: 32469.203239033526\n", - "2018-08-20 22:15:25,641 : INFO : h_r_error: 117859.05084752497\n", - "2018-08-20 22:15:25,642 : INFO : h_r_error: 41915.78317479446\n", - "2018-08-20 22:15:25,644 : INFO : h_r_error: 36438.94043937608\n", - "2018-08-20 22:15:25,645 : INFO : h_r_error: 35911.77701625004\n", - "2018-08-20 22:15:25,647 : INFO : h_r_error: 35706.468029702366\n", - "2018-08-20 22:15:25,649 : INFO : h_r_error: 35706.468029702366\n", - "2018-08-20 22:15:25,650 : INFO : h_r_error: 123474.67107920357\n", - "2018-08-20 22:15:25,658 : INFO : h_r_error: 53669.768012712586\n", - "2018-08-20 22:15:25,661 : INFO : h_r_error: 48567.784931206465\n", - "2018-08-20 22:15:25,664 : INFO : h_r_error: 48154.9212966142\n", - "2018-08-20 22:15:25,666 : INFO : h_r_error: 47988.29822300928\n", - "2018-08-20 22:15:25,669 : INFO : h_r_error: 47936.77092657334\n", - "2018-08-20 22:15:25,673 : INFO : h_r_error: 47936.77092657334\n", - "2018-08-20 22:15:25,675 : INFO : h_r_error: 151207.18006761468\n", - "2018-08-20 22:15:25,676 : INFO : h_r_error: 88235.71146256049\n", - "2018-08-20 22:15:25,678 : INFO : h_r_error: 84277.38424942065\n", - "2018-08-20 22:15:25,679 : INFO : h_r_error: 83899.85690983165\n", - "2018-08-20 22:15:25,680 : INFO : h_r_error: 83751.41595126623\n", - "2018-08-20 22:15:25,682 : INFO : h_r_error: 83751.41595126623\n", - "2018-08-20 22:15:25,683 : INFO : h_r_error: 167269.31497447164\n", - "2018-08-20 22:15:25,684 : INFO : h_r_error: 113582.2386863772\n", - "2018-08-20 22:15:25,685 : INFO : h_r_error: 110085.49161310388\n", - "2018-08-20 22:15:25,686 : INFO : h_r_error: 109782.77676110268\n", - "2018-08-20 22:15:25,687 : INFO : h_r_error: 109663.78283456886\n", - "2018-08-20 22:15:25,689 : INFO : h_r_error: 109663.78283456886\n", - "2018-08-20 22:15:25,690 : INFO : h_r_error: 157753.94573886512\n", - "2018-08-20 22:15:25,691 : INFO : h_r_error: 109400.55521635251\n", - "2018-08-20 22:15:25,692 : INFO : h_r_error: 106008.96079804211\n", - "2018-08-20 22:15:25,693 : INFO : h_r_error: 105728.251929925\n", - "2018-08-20 22:15:25,695 : INFO : h_r_error: 105728.251929925\n", - "2018-08-20 22:15:25,696 : INFO : h_r_error: 112759.45896297898\n", - "2018-08-20 22:15:25,697 : INFO : h_r_error: 72052.2044476772\n", - "2018-08-20 22:15:25,698 : INFO : h_r_error: 68415.34243474793\n", - "2018-08-20 22:15:25,699 : INFO : h_r_error: 68209.29331201482\n", - "2018-08-20 22:15:25,701 : INFO : h_r_error: 68209.29331201482\n", - "2018-08-20 22:15:25,711 : INFO : h_r_error: 91114.10750748111\n", - "2018-08-20 22:15:25,713 : INFO : h_r_error: 55697.261271592106\n", - "2018-08-20 22:15:25,716 : INFO : h_r_error: 51122.896399245685\n", - "2018-08-20 22:15:25,717 : INFO : h_r_error: 50771.213410520046\n", - "2018-08-20 22:15:25,721 : INFO : h_r_error: 50685.706279457336\n", - "2018-08-20 22:15:25,724 : INFO : h_r_error: 50685.706279457336\n", - "2018-08-20 22:15:25,725 : INFO : h_r_error: 120533.10241786917\n", - "2018-08-20 22:15:25,727 : INFO : h_r_error: 85840.68793886981\n", - "2018-08-20 22:15:25,728 : INFO : h_r_error: 81085.6932420261\n", - "2018-08-20 22:15:25,729 : INFO : h_r_error: 80618.2449916983\n", - "2018-08-20 22:15:25,731 : INFO : h_r_error: 80618.2449916983\n", - "2018-08-20 22:15:25,733 : INFO : h_r_error: 144346.3875923771\n", - "2018-08-20 22:15:25,734 : INFO : h_r_error: 104051.51661938874\n", - "2018-08-20 22:15:25,735 : INFO : h_r_error: 98387.68309223754\n", - "2018-08-20 22:15:25,736 : INFO : h_r_error: 97738.32758740771\n", - "2018-08-20 22:15:25,738 : INFO : h_r_error: 97738.32758740771\n", - "2018-08-20 22:15:25,739 : INFO : h_r_error: 145594.31678220004\n", - "2018-08-20 22:15:25,740 : INFO : h_r_error: 98721.32836014092\n", - "2018-08-20 22:15:25,741 : INFO : h_r_error: 93324.51688015206\n", - "2018-08-20 22:15:25,742 : INFO : h_r_error: 92520.57319065594\n", - "2018-08-20 22:15:25,744 : INFO : h_r_error: 92520.57319065594\n", - "2018-08-20 22:15:25,746 : INFO : h_r_error: 102650.24369218039\n", - "2018-08-20 22:15:25,747 : INFO : h_r_error: 48669.42225203629\n", - "2018-08-20 22:15:25,750 : INFO : h_r_error: 45178.66059215797\n", - "2018-08-20 22:15:25,751 : INFO : h_r_error: 44778.850508414784\n", - "2018-08-20 22:15:25,762 : INFO : h_r_error: 44778.850508414784\n", - "2018-08-20 22:15:25,765 : INFO : h_r_error: 95042.43849410885\n", - "2018-08-20 22:15:25,766 : INFO : h_r_error: 32548.73505120907\n", - "2018-08-20 22:15:25,767 : INFO : h_r_error: 30347.04943881905\n", - "2018-08-20 22:15:25,769 : INFO : h_r_error: 29957.108359922466\n", - "2018-08-20 22:15:25,770 : INFO : h_r_error: 29913.8437520984\n", - "2018-08-20 22:15:25,772 : INFO : h_r_error: 29913.8437520984\n", - "2018-08-20 22:15:25,774 : INFO : h_r_error: 100337.72340120646\n", - "2018-08-20 22:15:25,775 : INFO : h_r_error: 38042.32645009931\n", - "2018-08-20 22:15:25,776 : INFO : h_r_error: 35150.77154243809\n", - "2018-08-20 22:15:25,779 : INFO : h_r_error: 34969.334772222064\n", - "2018-08-20 22:15:25,784 : INFO : h_r_error: 34969.334772222064\n", - "2018-08-20 22:15:25,788 : INFO : h_r_error: 83514.52007176694\n", - "2018-08-20 22:15:25,789 : INFO : h_r_error: 38908.94580453252\n", - "2018-08-20 22:15:25,791 : INFO : h_r_error: 36604.933153747384\n", - "2018-08-20 22:15:25,792 : INFO : h_r_error: 36143.1596455028\n", - "2018-08-20 22:15:25,794 : INFO : h_r_error: 36074.38352930394\n", - "2018-08-20 22:15:25,796 : INFO : h_r_error: 36074.38352930394\n", - "2018-08-20 22:15:25,797 : INFO : h_r_error: 86384.23941232702\n", - "2018-08-20 22:15:25,799 : INFO : h_r_error: 54522.63022871282\n", - "2018-08-20 22:15:25,800 : INFO : h_r_error: 52269.22838283751\n", - "2018-08-20 22:15:25,801 : INFO : h_r_error: 51784.41198322365\n", - "2018-08-20 22:15:25,802 : INFO : h_r_error: 51694.78405021233\n", - "2018-08-20 22:15:25,803 : INFO : h_r_error: 51694.78405021233\n", - "2018-08-20 22:15:25,805 : INFO : h_r_error: 59934.5201301244\n", - "2018-08-20 22:15:25,806 : INFO : h_r_error: 38003.956341161625\n", - "2018-08-20 22:15:25,807 : INFO : h_r_error: 35824.68084150275\n", - "2018-08-20 22:15:25,809 : INFO : h_r_error: 35416.27744903075\n", - "2018-08-20 22:15:25,811 : INFO : h_r_error: 35350.79590335559\n", - "2018-08-20 22:15:25,813 : INFO : h_r_error: 35350.79590335559\n", - "2018-08-20 22:15:25,814 : INFO : h_r_error: 52773.46998561132\n", - "2018-08-20 22:15:25,816 : INFO : h_r_error: 34438.140590869916\n", - "2018-08-20 22:15:25,818 : INFO : h_r_error: 32127.70173508694\n", - "2018-08-20 22:15:25,820 : INFO : h_r_error: 31801.275101390467\n", - "2018-08-20 22:15:25,821 : INFO : h_r_error: 31763.039930469866\n", - "2018-08-20 22:15:25,823 : INFO : h_r_error: 31763.039930469866\n", - "2018-08-20 22:15:25,825 : INFO : h_r_error: 89658.92124894459\n", - "2018-08-20 22:15:25,827 : INFO : h_r_error: 69134.68778135825\n", - "2018-08-20 22:15:25,829 : INFO : h_r_error: 66797.29744618708\n", - "2018-08-20 22:15:25,831 : INFO : h_r_error: 66608.52339570905\n", - "2018-08-20 22:15:25,832 : INFO : h_r_error: 66608.52339570905\n", - "2018-08-20 22:15:25,843 : INFO : h_r_error: 84060.26038757557\n", - "2018-08-20 22:15:25,848 : INFO : h_r_error: 62823.13539430651\n", - "2018-08-20 22:15:25,849 : INFO : h_r_error: 60924.35270401313\n", - "2018-08-20 22:15:25,852 : INFO : h_r_error: 60672.5727604889\n", - "2018-08-20 22:15:25,856 : INFO : h_r_error: 60672.5727604889\n", - "2018-08-20 22:15:25,857 : INFO : h_r_error: 82400.69532648215\n", - "2018-08-20 22:15:25,858 : INFO : h_r_error: 62296.81077464238\n", - "2018-08-20 22:15:25,860 : INFO : h_r_error: 60300.12575851453\n", - "2018-08-20 22:15:25,861 : INFO : h_r_error: 60033.39538330248\n", - "2018-08-20 22:15:25,863 : INFO : h_r_error: 60033.39538330248\n", - "2018-08-20 22:15:25,864 : INFO : h_r_error: 77801.37356392771\n", - "2018-08-20 22:15:25,865 : INFO : h_r_error: 58931.06891529856\n", - "2018-08-20 22:15:25,866 : INFO : h_r_error: 57270.16822998984\n", - "2018-08-20 22:15:25,867 : INFO : h_r_error: 57140.20891464639\n", - "2018-08-20 22:15:25,869 : INFO : h_r_error: 57140.20891464639\n", - "2018-08-20 22:15:25,870 : INFO : h_r_error: 75958.60475923998\n", - "2018-08-20 22:15:25,871 : INFO : h_r_error: 61089.03212278704\n", - "2018-08-20 22:15:25,872 : INFO : h_r_error: 59996.78681582652\n", - "2018-08-20 22:15:25,873 : INFO : h_r_error: 59932.34782600625\n", - "2018-08-20 22:15:25,875 : INFO : h_r_error: 59932.34782600625\n", - "2018-08-20 22:15:25,876 : INFO : h_r_error: 76836.89003462985\n", - "2018-08-20 22:15:25,877 : INFO : h_r_error: 65865.27153834907\n", - "2018-08-20 22:15:25,878 : INFO : h_r_error: 64995.8870329025\n", - "2018-08-20 22:15:25,879 : INFO : h_r_error: 64918.239951684365\n", - "2018-08-20 22:15:25,881 : INFO : h_r_error: 64918.239951684365\n", - "2018-08-20 22:15:25,882 : INFO : h_r_error: 48980.581814778896\n", - "2018-08-20 22:15:25,883 : INFO : h_r_error: 41808.449457535935\n", - "2018-08-20 22:15:25,885 : INFO : h_r_error: 41252.6125794878\n", - "2018-08-20 22:15:25,886 : INFO : h_r_error: 41189.66801287636\n", - "2018-08-20 22:15:25,887 : INFO : h_r_error: 41189.66801287636\n", - "2018-08-20 22:15:25,889 : INFO : h_r_error: 40785.75997818555\n", - "2018-08-20 22:15:25,890 : INFO : h_r_error: 34891.36854438516\n", - "2018-08-20 22:15:25,892 : INFO : h_r_error: 33600.54177970833\n", - "2018-08-20 22:15:25,901 : INFO : h_r_error: 33323.966042387816\n", - "2018-08-20 22:15:25,902 : INFO : h_r_error: 33280.73672451113\n", - "2018-08-20 22:15:25,904 : INFO : h_r_error: 33280.73672451113\n", - "2018-08-20 22:15:25,905 : INFO : h_r_error: 26454.37120000968\n", - "2018-08-20 22:15:25,907 : INFO : h_r_error: 21540.39479576784\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:25,908 : INFO : h_r_error: 20608.810430887163\n", - "2018-08-20 22:15:25,910 : INFO : h_r_error: 20433.54257729559\n", - "2018-08-20 22:15:25,911 : INFO : h_r_error: 20400.741509122505\n", - "2018-08-20 22:15:25,913 : INFO : h_r_error: 20400.741509122505\n", - "2018-08-20 22:15:25,916 : INFO : h_r_error: 28200.31679054761\n", - "2018-08-20 22:15:25,919 : INFO : h_r_error: 23300.098733814248\n", - "2018-08-20 22:15:25,929 : INFO : h_r_error: 22137.1510942318\n", - "2018-08-20 22:15:25,931 : INFO : h_r_error: 21810.085864093246\n", - "2018-08-20 22:15:25,932 : INFO : h_r_error: 21775.213278946343\n", - "2018-08-20 22:15:25,934 : INFO : h_r_error: 21775.213278946343\n", - "2018-08-20 22:15:25,935 : INFO : h_r_error: 15260.366709589653\n", - "2018-08-20 22:15:25,936 : INFO : h_r_error: 11872.08315938859\n", - "2018-08-20 22:15:25,937 : INFO : h_r_error: 10908.905597899073\n", - "2018-08-20 22:15:25,938 : INFO : h_r_error: 10684.630020773682\n", - "2018-08-20 22:15:25,939 : INFO : h_r_error: 10651.271246929588\n", - "2018-08-20 22:15:25,941 : INFO : h_r_error: 10651.271246929588\n", - "2018-08-20 22:15:25,942 : INFO : h_r_error: 21032.87159613912\n", - "2018-08-20 22:15:25,944 : INFO : h_r_error: 16982.111213920845\n", - "2018-08-20 22:15:25,945 : INFO : h_r_error: 15866.510855147071\n", - "2018-08-20 22:15:25,953 : INFO : h_r_error: 15662.38695739796\n", - "2018-08-20 22:15:25,968 : INFO : h_r_error: 15638.966745766626\n", - "2018-08-20 22:15:25,970 : INFO : h_r_error: 15638.966745766626\n", - "2018-08-20 22:15:25,972 : INFO : h_r_error: 35159.7164846516\n", - "2018-08-20 22:15:25,973 : INFO : h_r_error: 29103.083952578443\n", - "2018-08-20 22:15:25,974 : INFO : h_r_error: 27679.57023556275\n", - "2018-08-20 22:15:25,975 : INFO : h_r_error: 27554.425552082583\n", - "2018-08-20 22:15:25,978 : INFO : h_r_error: 27554.425552082583\n", - "2018-08-20 22:15:25,981 : INFO : h_r_error: 66821.6687468943\n", - "2018-08-20 22:15:25,983 : INFO : h_r_error: 57882.03046952179\n", - "2018-08-20 22:15:25,986 : INFO : h_r_error: 56709.66844688913\n", - "2018-08-20 22:15:25,988 : INFO : h_r_error: 56615.34344199158\n", - "2018-08-20 22:15:25,990 : INFO : h_r_error: 56615.34344199158\n", - "2018-08-20 22:15:25,991 : INFO : h_r_error: 102536.44589819173\n", - "2018-08-20 22:15:25,992 : INFO : h_r_error: 89790.53104875541\n", - "2018-08-20 22:15:25,993 : INFO : h_r_error: 88797.37168870388\n", - "2018-08-20 22:15:25,995 : INFO : h_r_error: 88797.37168870388\n", - "2018-08-20 22:15:25,996 : INFO : h_r_error: 94256.0865083771\n", - "2018-08-20 22:15:25,997 : INFO : h_r_error: 81796.94144023153\n", - "2018-08-20 22:15:26,012 : INFO : h_r_error: 79914.31899253973\n", - "2018-08-20 22:15:26,026 : INFO : h_r_error: 79801.96367959536\n", - "2018-08-20 22:15:26,028 : INFO : h_r_error: 79801.96367959536\n", - "2018-08-20 22:15:26,030 : INFO : h_r_error: 103681.66251015848\n", - "2018-08-20 22:15:26,032 : INFO : h_r_error: 91149.66390562967\n", - "2018-08-20 22:15:26,034 : INFO : h_r_error: 88039.71971343001\n", - "2018-08-20 22:15:26,037 : INFO : h_r_error: 87725.90055568086\n", - "2018-08-20 22:15:26,040 : INFO : h_r_error: 87725.90055568086\n", - "2018-08-20 22:15:26,046 : INFO : h_r_error: 56004.11426043542\n", - "2018-08-20 22:15:26,050 : INFO : h_r_error: 47197.703146981876\n", - "2018-08-20 22:15:26,052 : INFO : h_r_error: 44837.80243648732\n", - "2018-08-20 22:15:26,053 : INFO : h_r_error: 44443.57942939128\n", - "2018-08-20 22:15:26,055 : INFO : h_r_error: 44374.80930404322\n", - "2018-08-20 22:15:26,057 : INFO : h_r_error: 44374.80930404322\n", - "2018-08-20 22:15:26,058 : INFO : h_r_error: 43292.4267967832\n", - "2018-08-20 22:15:26,059 : INFO : h_r_error: 35378.8097280495\n", - "2018-08-20 22:15:26,061 : INFO : h_r_error: 34196.54479859938\n", - "2018-08-20 22:15:26,062 : INFO : h_r_error: 33921.22257936816\n", - "2018-08-20 22:15:26,069 : INFO : h_r_error: 33882.99653972745\n", - "2018-08-20 22:15:26,072 : INFO : h_r_error: 33882.99653972745\n", - "2018-08-20 22:15:26,073 : INFO : h_r_error: 83106.68092031234\n", - "2018-08-20 22:15:26,074 : INFO : h_r_error: 72006.9979466662\n", - "2018-08-20 22:15:26,075 : INFO : h_r_error: 70987.0810195443\n", - "2018-08-20 22:15:26,077 : INFO : h_r_error: 70703.88128074924\n", - "2018-08-20 22:15:26,079 : INFO : h_r_error: 70703.88128074924\n", - "2018-08-20 22:15:26,080 : INFO : h_r_error: 34056.68769062177\n", - "2018-08-20 22:15:26,082 : INFO : h_r_error: 22340.518976325024\n", - "2018-08-20 22:15:26,085 : INFO : h_r_error: 21202.2807999469\n", - "2018-08-20 22:15:26,092 : INFO : h_r_error: 21018.168130075122\n", - "2018-08-20 22:15:26,094 : INFO : h_r_error: 20985.179625872217\n", - "2018-08-20 22:15:26,104 : INFO : h_r_error: 20985.179625872217\n", - "2018-08-20 22:15:26,107 : INFO : h_r_error: 47079.4827339218\n", - "2018-08-20 22:15:26,108 : INFO : h_r_error: 28040.444823154972\n", - "2018-08-20 22:15:26,111 : INFO : h_r_error: 26012.050369414745\n", - "2018-08-20 22:15:26,112 : INFO : h_r_error: 25778.668392323463\n", - "2018-08-20 22:15:26,114 : INFO : h_r_error: 25752.543285183405\n", - "2018-08-20 22:15:26,118 : INFO : h_r_error: 25752.543285183405\n", - "2018-08-20 22:15:26,120 : INFO : h_r_error: 53830.62087925428\n", - "2018-08-20 22:15:26,122 : INFO : h_r_error: 28056.31895396446\n", - "2018-08-20 22:15:26,125 : INFO : h_r_error: 25538.969559838195\n", - "2018-08-20 22:15:26,130 : INFO : h_r_error: 25231.784702255714\n", - "2018-08-20 22:15:26,135 : INFO : h_r_error: 25231.784702255714\n", - "2018-08-20 22:15:26,137 : INFO : h_r_error: 98623.57824868678\n", - "2018-08-20 22:15:26,138 : INFO : h_r_error: 56869.718676174605\n", - "2018-08-20 22:15:26,139 : INFO : h_r_error: 52575.08611645739\n", - "2018-08-20 22:15:26,140 : INFO : h_r_error: 52194.0055934277\n", - "2018-08-20 22:15:26,142 : INFO : h_r_error: 52194.0055934277\n", - "2018-08-20 22:15:26,144 : INFO : h_r_error: 151046.2615779934\n", - "2018-08-20 22:15:26,146 : INFO : h_r_error: 85671.1807956229\n", - "2018-08-20 22:15:26,157 : INFO : h_r_error: 78721.59964559798\n", - "2018-08-20 22:15:26,158 : INFO : h_r_error: 78253.8217480222\n", - "2018-08-20 22:15:26,161 : INFO : h_r_error: 78253.8217480222\n", - "2018-08-20 22:15:26,163 : INFO : h_r_error: 170143.0368298679\n", - "2018-08-20 22:15:26,164 : INFO : h_r_error: 88169.30243474309\n", - "2018-08-20 22:15:26,165 : INFO : h_r_error: 81485.62257891156\n", - "2018-08-20 22:15:26,167 : INFO : h_r_error: 81043.05017860854\n", - "2018-08-20 22:15:26,168 : INFO : h_r_error: 81043.05017860854\n", - "2018-08-20 22:15:26,170 : INFO : h_r_error: 193290.35730186303\n", - "2018-08-20 22:15:26,171 : INFO : h_r_error: 92326.29391460496\n", - "2018-08-20 22:15:26,173 : INFO : h_r_error: 85478.74125628427\n", - "2018-08-20 22:15:26,174 : INFO : h_r_error: 84863.23013863043\n", - "2018-08-20 22:15:26,175 : INFO : h_r_error: 84863.23013863043\n", - "2018-08-20 22:15:26,177 : INFO : h_r_error: 143000.39477505267\n", - "2018-08-20 22:15:26,180 : INFO : h_r_error: 47690.38239901879\n", - "2018-08-20 22:15:26,181 : INFO : h_r_error: 42535.89066549057\n", - "2018-08-20 22:15:26,183 : INFO : h_r_error: 42191.861043280165\n", - "2018-08-20 22:15:26,185 : INFO : h_r_error: 42191.861043280165\n", - "2018-08-20 22:15:26,196 : INFO : h_r_error: 142675.06428208412\n", - "2018-08-20 22:15:26,199 : INFO : h_r_error: 48176.866217790404\n", - "2018-08-20 22:15:26,200 : INFO : h_r_error: 40416.058453941805\n", - "2018-08-20 22:15:26,201 : INFO : h_r_error: 40017.15421775054\n", - "2018-08-20 22:15:26,204 : INFO : h_r_error: 40017.15421775054\n", - "2018-08-20 22:15:26,206 : INFO : h_r_error: 167788.56160431716\n", - "2018-08-20 22:15:26,207 : INFO : h_r_error: 65451.04391470968\n", - "2018-08-20 22:15:26,208 : INFO : h_r_error: 58775.61705137578\n", - "2018-08-20 22:15:26,210 : INFO : h_r_error: 58166.916215643076\n", - "2018-08-20 22:15:26,213 : INFO : h_r_error: 58166.916215643076\n", - "2018-08-20 22:15:26,216 : INFO : h_r_error: 144878.72484764503\n", - "2018-08-20 22:15:26,218 : INFO : h_r_error: 47990.718678389516\n", - "2018-08-20 22:15:26,220 : INFO : h_r_error: 42459.08584400939\n", - "2018-08-20 22:15:26,221 : INFO : h_r_error: 42374.837127099265\n", - "2018-08-20 22:15:26,223 : INFO : h_r_error: 42374.837127099265\n", - "2018-08-20 22:15:26,225 : INFO : h_r_error: 147093.6388017975\n", - "2018-08-20 22:15:26,226 : INFO : h_r_error: 61741.05478800946\n", - "2018-08-20 22:15:26,227 : INFO : h_r_error: 56000.0869573749\n", - "2018-08-20 22:15:26,229 : INFO : h_r_error: 55724.81891032926\n", - "2018-08-20 22:15:26,230 : INFO : h_r_error: 55724.81891032926\n", - "2018-08-20 22:15:26,231 : INFO : h_r_error: 177070.46954423655\n", - "2018-08-20 22:15:26,232 : INFO : h_r_error: 86813.13608230506\n", - "2018-08-20 22:15:26,234 : INFO : h_r_error: 80750.06541413112\n", - "2018-08-20 22:15:26,235 : INFO : h_r_error: 80108.79492326386\n", - "2018-08-20 22:15:26,236 : INFO : h_r_error: 80018.0835706642\n", - "2018-08-20 22:15:26,238 : INFO : h_r_error: 80018.0835706642\n", - "2018-08-20 22:15:26,248 : INFO : h_r_error: 191498.891043512\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:26,250 : INFO : h_r_error: 89193.15992567304\n", - "2018-08-20 22:15:26,251 : INFO : h_r_error: 82326.7193949022\n", - "2018-08-20 22:15:26,253 : INFO : h_r_error: 81654.10188430984\n", - "2018-08-20 22:15:26,254 : INFO : h_r_error: 81550.8364588384\n", - "2018-08-20 22:15:26,256 : INFO : h_r_error: 81550.8364588384\n", - "2018-08-20 22:15:26,258 : INFO : h_r_error: 195202.30314943343\n", - "2018-08-20 22:15:26,259 : INFO : h_r_error: 87377.33791727532\n", - "2018-08-20 22:15:26,261 : INFO : h_r_error: 80672.67496760779\n", - "2018-08-20 22:15:26,262 : INFO : h_r_error: 80479.76631168138\n", - "2018-08-20 22:15:26,268 : INFO : h_r_error: 80479.76631168138\n", - "2018-08-20 22:15:26,271 : INFO : h_r_error: 144824.23872960033\n", - "2018-08-20 22:15:26,272 : INFO : h_r_error: 55900.50694270172\n", - "2018-08-20 22:15:26,273 : INFO : h_r_error: 50456.945266342926\n", - "2018-08-20 22:15:26,275 : INFO : h_r_error: 50209.455574301464\n", - "2018-08-20 22:15:26,277 : INFO : h_r_error: 50209.455574301464\n", - "2018-08-20 22:15:26,278 : INFO : h_r_error: 120497.96569875091\n", - "2018-08-20 22:15:26,279 : INFO : h_r_error: 54942.81832456545\n", - "2018-08-20 22:15:26,280 : INFO : h_r_error: 51139.536326477886\n", - "2018-08-20 22:15:26,282 : INFO : h_r_error: 50931.89498627135\n", - "2018-08-20 22:15:26,283 : INFO : h_r_error: 50931.89498627135\n", - "2018-08-20 22:15:26,284 : INFO : h_r_error: 118560.7658767246\n", - "2018-08-20 22:15:26,286 : INFO : h_r_error: 66209.35306663823\n", - "2018-08-20 22:15:26,287 : INFO : h_r_error: 63672.851013482956\n", - "2018-08-20 22:15:26,288 : INFO : h_r_error: 63532.512372798665\n", - "2018-08-20 22:15:26,290 : INFO : h_r_error: 63532.512372798665\n", - "2018-08-20 22:15:26,299 : INFO : h_r_error: 145281.10256636093\n", - "2018-08-20 22:15:26,301 : INFO : h_r_error: 99879.7345641714\n", - "2018-08-20 22:15:26,303 : INFO : h_r_error: 98089.94579477502\n", - "2018-08-20 22:15:26,305 : INFO : h_r_error: 98089.94579477502\n", - "2018-08-20 22:15:26,306 : INFO : h_r_error: 165137.3997750682\n", - "2018-08-20 22:15:26,308 : INFO : h_r_error: 121745.46955607059\n", - "2018-08-20 22:15:26,309 : INFO : h_r_error: 120148.35468973644\n", - "2018-08-20 22:15:26,312 : INFO : h_r_error: 120148.35468973644\n", - "2018-08-20 22:15:26,316 : INFO : h_r_error: 158538.77643486226\n", - "2018-08-20 22:15:26,320 : INFO : h_r_error: 117514.12100067486\n", - "2018-08-20 22:15:26,322 : INFO : h_r_error: 115814.83388310859\n", - "2018-08-20 22:15:26,324 : INFO : h_r_error: 115814.83388310859\n", - "2018-08-20 22:15:26,325 : INFO : h_r_error: 136038.15608420633\n", - "2018-08-20 22:15:26,326 : INFO : h_r_error: 96742.83001877212\n", - "2018-08-20 22:15:26,328 : INFO : h_r_error: 94559.96804935293\n", - "2018-08-20 22:15:26,329 : INFO : h_r_error: 94383.14616395722\n", - "2018-08-20 22:15:26,331 : INFO : h_r_error: 94383.14616395722\n", - "2018-08-20 22:15:26,332 : INFO : h_r_error: 101367.71763481224\n", - "2018-08-20 22:15:26,334 : INFO : h_r_error: 62548.2325397448\n", - "2018-08-20 22:15:26,335 : INFO : h_r_error: 59882.78131770487\n", - "2018-08-20 22:15:26,336 : INFO : h_r_error: 59454.59463196322\n", - "2018-08-20 22:15:26,337 : INFO : h_r_error: 59378.02619761801\n", - "2018-08-20 22:15:26,339 : INFO : h_r_error: 59378.02619761801\n", - "2018-08-20 22:15:26,341 : INFO : h_r_error: 95865.50790628867\n", - "2018-08-20 22:15:26,342 : INFO : h_r_error: 62378.63362038054\n", - "2018-08-20 22:15:26,343 : INFO : h_r_error: 59242.72783463293\n", - "2018-08-20 22:15:26,344 : INFO : h_r_error: 58609.456228255316\n", - "2018-08-20 22:15:26,345 : INFO : h_r_error: 58496.34350233016\n", - "2018-08-20 22:15:26,347 : INFO : h_r_error: 58496.34350233016\n", - "2018-08-20 22:15:26,348 : INFO : h_r_error: 90515.55027129139\n", - "2018-08-20 22:15:26,349 : INFO : h_r_error: 58018.099802026285\n", - "2018-08-20 22:15:26,360 : INFO : h_r_error: 55105.19055132983\n", - "2018-08-20 22:15:26,362 : INFO : h_r_error: 54665.30390811013\n", - "2018-08-20 22:15:26,365 : INFO : h_r_error: 54665.30390811013\n", - "2018-08-20 22:15:26,367 : INFO : h_r_error: 83134.14281795638\n", - "2018-08-20 22:15:26,369 : INFO : h_r_error: 55442.09864068202\n", - "2018-08-20 22:15:26,371 : INFO : h_r_error: 52963.28200871138\n", - "2018-08-20 22:15:26,373 : INFO : h_r_error: 52586.908681102745\n", - "2018-08-20 22:15:26,387 : INFO : h_r_error: 52586.908681102745\n", - "2018-08-20 22:15:26,389 : INFO : h_r_error: 73598.27979210831\n", - "2018-08-20 22:15:26,391 : INFO : h_r_error: 45715.61157809627\n", - "2018-08-20 22:15:26,392 : INFO : h_r_error: 41437.58248913924\n", - "2018-08-20 22:15:26,395 : INFO : h_r_error: 40707.77290896303\n", - "2018-08-20 22:15:26,398 : INFO : h_r_error: 40609.36114776876\n", - "2018-08-20 22:15:26,413 : INFO : h_r_error: 40609.36114776876\n", - "2018-08-20 22:15:26,417 : INFO : h_r_error: 59503.97001493072\n", - "2018-08-20 22:15:26,422 : INFO : h_r_error: 33432.097819146526\n", - "2018-08-20 22:15:26,425 : INFO : h_r_error: 29486.32651237871\n", - "2018-08-20 22:15:26,427 : INFO : h_r_error: 28926.026181920453\n", - "2018-08-20 22:15:26,430 : INFO : h_r_error: 28926.026181920453\n", - "2018-08-20 22:15:26,432 : INFO : h_r_error: 50217.117754469546\n", - "2018-08-20 22:15:26,434 : INFO : h_r_error: 27138.614025112507\n", - "2018-08-20 22:15:26,436 : INFO : h_r_error: 24091.11630445048\n", - "2018-08-20 22:15:26,441 : INFO : h_r_error: 23798.914970480397\n", - "2018-08-20 22:15:26,445 : INFO : h_r_error: 23798.914970480397\n", - "2018-08-20 22:15:26,450 : INFO : h_r_error: 46011.29451609649\n", - "2018-08-20 22:15:26,455 : INFO : h_r_error: 23339.291405321692\n", - "2018-08-20 22:15:26,458 : INFO : h_r_error: 21141.855440357434\n", - "2018-08-20 22:15:26,460 : INFO : h_r_error: 20948.160112459424\n", - "2018-08-20 22:15:26,463 : INFO : h_r_error: 20948.160112459424\n", - "2018-08-20 22:15:26,465 : INFO : h_r_error: 56099.969883942176\n", - "2018-08-20 22:15:26,467 : INFO : h_r_error: 31558.214159141873\n", - "2018-08-20 22:15:26,469 : INFO : h_r_error: 29543.03148778048\n", - "2018-08-20 22:15:26,471 : INFO : h_r_error: 29371.947464451052\n", - "2018-08-20 22:15:26,473 : INFO : h_r_error: 29371.947464451052\n", - "2018-08-20 22:15:26,475 : INFO : h_r_error: 72350.54561082687\n", - "2018-08-20 22:15:26,477 : INFO : h_r_error: 45607.577200019216\n", - "2018-08-20 22:15:26,480 : INFO : h_r_error: 42697.75965676168\n", - "2018-08-20 22:15:26,482 : INFO : h_r_error: 42435.09532013215\n", - "2018-08-20 22:15:26,485 : INFO : h_r_error: 42435.09532013215\n", - "2018-08-20 22:15:26,486 : INFO : h_r_error: 81673.58262360246\n", - "2018-08-20 22:15:26,487 : INFO : h_r_error: 55028.966308308285\n", - "2018-08-20 22:15:26,488 : INFO : h_r_error: 50879.5437727653\n", - "2018-08-20 22:15:26,492 : INFO : h_r_error: 50430.705456493\n", - "2018-08-20 22:15:26,496 : INFO : h_r_error: 50430.705456493\n", - "2018-08-20 22:15:26,503 : INFO : h_r_error: 85259.06957006888\n", - "2018-08-20 22:15:26,506 : INFO : h_r_error: 56417.15576227808\n", - "2018-08-20 22:15:26,507 : INFO : h_r_error: 51950.01266205731\n", - "2018-08-20 22:15:26,509 : INFO : h_r_error: 51427.891558767784\n", - "2018-08-20 22:15:26,512 : INFO : h_r_error: 51427.891558767784\n", - "2018-08-20 22:15:26,514 : INFO : h_r_error: 87542.85171726909\n", - "2018-08-20 22:15:26,516 : INFO : h_r_error: 54471.47858022249\n", - "2018-08-20 22:15:26,519 : INFO : h_r_error: 51692.16694423167\n", - "2018-08-20 22:15:26,520 : INFO : h_r_error: 51314.94085991872\n", - "2018-08-20 22:15:26,525 : INFO : h_r_error: 51314.94085991872\n", - "2018-08-20 22:15:26,527 : INFO : h_r_error: 74989.53473624078\n", - "2018-08-20 22:15:26,530 : INFO : h_r_error: 40437.67511528515\n", - "2018-08-20 22:15:26,532 : INFO : h_r_error: 38660.661040941544\n", - "2018-08-20 22:15:26,534 : INFO : h_r_error: 38179.70126096432\n", - "2018-08-20 22:15:26,539 : INFO : h_r_error: 38065.50275211432\n", - "2018-08-20 22:15:26,543 : INFO : h_r_error: 38065.50275211432\n", - "2018-08-20 22:15:26,545 : INFO : h_r_error: 108828.80093509772\n", - "2018-08-20 22:15:26,547 : INFO : h_r_error: 60212.67760110461\n", - "2018-08-20 22:15:26,549 : INFO : h_r_error: 57812.19815738934\n", - "2018-08-20 22:15:26,551 : INFO : h_r_error: 57190.44665422103\n", - "2018-08-20 22:15:26,555 : INFO : h_r_error: 57021.325789113616\n", - "2018-08-20 22:15:26,557 : INFO : h_r_error: 57021.325789113616\n", - "2018-08-20 22:15:26,559 : INFO : h_r_error: 78817.5512140593\n", - "2018-08-20 22:15:26,561 : INFO : h_r_error: 27383.623063646068\n", - "2018-08-20 22:15:26,563 : INFO : h_r_error: 24613.083436085217\n", - "2018-08-20 22:15:26,565 : INFO : h_r_error: 24366.273428677887\n", - "2018-08-20 22:15:26,566 : INFO : h_r_error: 24324.814654375365\n", - "2018-08-20 22:15:26,569 : INFO : h_r_error: 24324.814654375365\n", - "2018-08-20 22:15:26,571 : INFO : h_r_error: 72411.94794136818\n", - "2018-08-20 22:15:26,573 : INFO : h_r_error: 21870.11709181413\n", - "2018-08-20 22:15:26,577 : INFO : h_r_error: 19136.87592728228\n", - "2018-08-20 22:15:26,580 : INFO : h_r_error: 18959.722842143907\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-08-20 22:15:26,582 : INFO : h_r_error: 18959.722842143907\n", - "2018-08-20 22:15:26,583 : INFO : h_r_error: 83876.31226742358\n", - "2018-08-20 22:15:26,584 : INFO : h_r_error: 27066.441250717817\n", - "2018-08-20 22:15:26,586 : INFO : h_r_error: 23671.276967366928\n", - "2018-08-20 22:15:26,587 : INFO : h_r_error: 23588.035853516478\n", - "2018-08-20 22:15:26,590 : INFO : h_r_error: 23588.035853516478\n", - "2018-08-20 22:15:26,591 : INFO : h_r_error: 87851.09522030315\n", - "2018-08-20 22:15:26,593 : INFO : h_r_error: 36557.55519906569\n", - "2018-08-20 22:15:26,596 : INFO : h_r_error: 32920.158554937225\n", - "2018-08-20 22:15:26,605 : INFO : h_r_error: 32884.0633641823\n" + "ename": "ValueError", + "evalue": "setting an array element with a sequence.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmatutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDense2Corpus\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg_matrix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproba\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgensim_nmf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mH\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mValueError\u001b[0m: setting an array element with a sequence." ] } ], "source": [ "W = gensim_nmf.get_topics().T\n", - "H = np.hstack(gensim_nmf[bow] for bow in matutils.Dense2Corpus(img_matrix.T))" + "H = np.zeros((W.shape[1], len(matutils.Dense2Corpus(img_matrix.T))))\n", + "for bow_id, bow in enumerate(matutils.Dense2Corpus(img_matrix.T)):\n", + " for topic_id, proba in gensim_nmf[bow]:\n", + " H[topic_id, bow_id] = proba" ] }, { @@ -4681,21 +1144,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABUWElEQVR4nF39754cOZIkCIqoAmbuEfyTWVU9vbN7N/e7e/+3uBfYF9hPezvTMz1dlUwywt0MUJX7oLAga1lVrEwy3M0MBihURUQF/EumUqAEAP319gg1J0RDayT6fv+0NT4f//jxnHPGnEh1VwqA5NJ+H+8zCRj6PR7GyUbeR7g1UkrThE4BUuNnp+X5eASNr9u3vT0GKJG0dgpGUHLfGkV3WnOzBrgxAWRkJv39MRN2jxnc45kpMWR5TtGbzUhYmnmCNLackTLvoKcJOLkr3ZvnmA0AANbvUkwBIOt/AoDMFGgEIEmAKAkSQF2fpQEgjWZGI0mQ+OU/AkBBCoEZua7LTH38dd0JCYBIypIWCtoUHUwASmWyz4gEIjJMAEzr+wB+fA1+3h/dRCfqtkQASkCZ2WamJBASgYgxAhk1AuYgZhujOcbx/TlmRIZAM5eE+hhyhmBIGpAJ0Iypc6aFr1GcUAgUktOMuabPZJCZpJK0ZIpJAFCmTJKMEtcrqQHITOYICTkzUyMTdElRk1iJ1PVWaTRzb6RSlsgkCDFqtAxsEQmhlgDB4JggIRm5bXLmPJ9mzOMYGTMlkDSrAQiaRAJyAWIOc+tmmUMGMzOQ5jZjWgIQkATpZpR0zPxlvqFejZGgkwZ4d5Bwl3kKBGAUaz5Kde9upGGEmKxfRjOJpoCZmZs7EQmR4panpYGEkbSWmRAoCSBzYsy6EmmuNOZICbATQk4JoNG7IAZFisgEm9IaJXrb3MfAJJIpwglBKYGmVLARfU7G1IxaVEyIRK0+pwHNZUTbNgTVWrrXWIlKKUFDIgXCurubHgGRFIk085aiJdDM3Pu2OWbMJOCf9MNSNKSZgc0IKIWEBArKWFGAoMstNM8UfLRasEZv3Ha05CQpKM8RMEmqx0w3zUwHMhISxUgB9E4QbO5bDAQEATTQ65EgIT0JICm4+3bXpLYtrI8ZNa81R8BJIwhwu/funjxyJlJCik4H0Uhr7s23+8vG5zhPAf5pcw+1niE6vLmARMU0kN6MWrORbbfdJxQQWjjJSJDutu1AkkymRBJsCZoAk7dtixFyAIIgiVLWxAZa31rcx1NWy9AN9EmYUZYijQ60ltba/vqqk9hvw7dzDoAyYdjEzJBBgt1e9615xFvKau3XkibM5K233vbXTzc+zueRYvttz5zqew7R6c1JRqQkADJvvMKp2f5y3tswBMQ+uyGmYOsiViu15jcQCaWkBHJa0q2vXQvItZ9YI2p8Pp3vFcDpfRq8TXiTDHJ3GtlbeG/3z1/zyXx5fdp+zoOEHHzayTMsXQnjy+dbR84V+GqZGMBry5Jino+wsBZ03v7TCzS07fMZgNCaG+eMDAISee2IBNhuuDefJ13WWjOsPS2prA2LFZ0FZEKpRJrCptiwAwpmsIIzSWsMkTTt3WGmtaGghdBcYZC5wcjWYN76y6cQYr8nNjFIoNlbMzNXrFW6vbx4HDFD0Hr7JExUEpJSMQzTbDPrG1//9vr+HNr3QyOUaq05CdBSAGj+MQNo21337uMwwJo3z3pkAgQNoBu1Nroabai2ENFsAzSRgERLAuZOg7e+xX13GAnQm0vuCW9Rn3M4rTeyb7fXL1OIT19N9z6dBLo9OGGC5Aq43z692IhfMgCCJl6ZAAAopmx35X6zz397/fZ+ar/1tBnIlgnLrNEDbNuuESDZtrl3bftzqnYXubRien1AylRCQkiQpLSUEGm5tj3WXWjtymjb7R63RlTUt8aKnbWvVq5i5g5rfbu9RDK+/u56PeeDhLqdHU/AmE2TzfZ9NzDryakVdlbSpnUfSeOdtGZ9v3WzpNEcCLURZISQkgTrm31kVNb2uW/atq4EYQaZCUIykwmkUlFJDRJQ1hBQjDQQ8o908WNQ6X2/zW6qC9JcGYhAWGYmKhjRHN77drsrPT5/MX0+450mNXt4WCaVTYZu++3GdNJk5IqBWXkeAE8mFQm7wcwb+9ZMM9jmFAG1h8BEY+VRbN1+LoG+z9uW+9Md8NYaYFYvfBpDCBsZmbV7AqoZkUllQCe4WVakMKupCYDemhoz62W7STMyMBmZQioogZbm3m4vOX3eX6UvZzSzVLM/dSimIpvI3u6fXohGc3gLrzUQciAgGZGsRC0Is8a+dY7neeTxlhbjbKfSZM5KyeluHy/Lbp/x5dbHo6XhlneXeTKUmYMMKPqMrOoAufafhEKJRCQdRlpYooJD6zjSrHW9bOYMGnnbm800A5GpFWbNeof37f71bwE/P/9GfT2zOZWbf8v3yJEzN03b+2//+ll/vPXWHGFhQGMyISSVZjSjUmrayNfP9vv/cv//3Z6nkHN6zNmoekegQNAb+ZFHb/fz5ZZ7dyd77y6ZKStzXb/j5/SGCH1MHxDmzdOEBNNrvcvT+7bxZW/IoNP2vaWTkK3Exgxu3ru8b/unL/Ow/ulL5pcj0Sy0+8u4zTxiZhd9316//pb6dNu7NOkAXKAsVwQkjUnQ+k7eXuzTX16+3B/T92xwKhsr71ENhG+3GgFzc8PU8IHeR2pkyGCeNBitEVBN4opvVXJJIFCBQDBFplJJmCmkAH27vX45e++I7p32+rofDqMgGggjQVLw5sZ5wDd/ub3iy8juFtH4aX7Kc4uIjua37jmVaLd7MG0SaAASPwsDmM0Ec3icBx//eHx/jkCqtT6bN6+sqUoua7eXzQWyNbfNhIxs99dk0gFa48yk6I2CYGsvXyVNE6Rr+zGzZlfJSPNUImh2e/n05ejeEtLuur9sg2aWQTOR7qwytG2t2Txav+H1DvsaujtySp/jmW+7MjaT7W5xaGbbbxNpJ0CD0gDRTGZmcApCjJzng2//sf35OIKh1rc5rLXrFRIw8/3Wm2hwb+YaGpx2+5w+m7nI5siE0Z1ZIyCltQhIpKUsV05Nom82DTUmvo1MTaPvt5fXRnMDcGtxf9neDc5M0QRyZW/ZnIjn95uZN9t8F5opzxH77X4crXW2JtuIZ+Ixue2mRAdI01xJjYxGOiOg8dgGjf2/tf/4/pBG2HYfplZlrGAQrGbAmuXG+YjHOP2WQwaPcDkmDQZrTMlhtKQ1RBWTgGVICgNdsJypGqe+YzKHt3Z7+fR5e2ebNLv3+frpRod7DsFEKGmBOFsz5Pzunz+xN259d9ws8/l+3M7X8631ibaLG+KH4fFUvyFTlatlGlAIA8k0I6Djx55jYJr9tz+G94Z+u3dnU21glUHItp0KpuAyPt6Qdt7v+Xw7YotEymu6uFtAqro8MxMJIiIjghBJpDzPRyYg9wYSGWdrvt0///Y43A0yst1eNgDwhVUgky3lR9shzXe2L/3lZe/7l04w9G72Kc5n6xnwJtsi3sDjQN/mNDeCMpJZ/0eSQTdI5wPSiZj4x/fctPN2ex3ONqvKNGHBXDkDBBiKyDQfbu/fvz2im7smIkUzs5qvgKCcIQGJyLxAKDE1H3MU9BOpmOd0SkqRyHE+MzWc37fHcUpKmbdK5t2auxlpZt5a733r29YhCz16b80BGqFAzvEk7Pl49vfn2zGOU5CPmTLQuPYpKqdaSjXItYPVBhnNLaEMAKovnDFBEBY+T8EP6O3H98f0fWsIzVxVkEEJ8wxkFMSX0NrxAZpZg5QJIJgROTJMmXPOOWfEjJEn/cftPCeVEgEJtlLazGRERP0w7TgEBh7neZ7nMeaMmSJ4CODxdvj78/2I5ynKUomPfXqhdtlnKGky+oZtf8Ftc1M2ZfJnKZlzXHAloIykYtpMSZkZTKZIb70xJYJmMrgSriRhAMysvjEU1xdnYauSNM/z8XgeY84xjfb+fswq2+iOqJqjUEtTxpzj6I/e4t1TFnj8eLw/nueYMUMUcFBqYQ0xx4g5V+5N0LzJvZttO9vIbW8pKcIkRSYzU7S2cqCqWKE5de0JQEaaptcMj0rwUjT21jEFg5nLYAY2DZKSy1uzORN2AccUFFUnKDPmeTyPEXOOSfLxHAHLhHlrABw0Y5WUmZnzPPqzt9yZQvLx9niv4YtpQOpkqgs+c84RMyQCBsKseXprbn33LcK2Nglk8CN/EWltzoCwYA7mOGLtYoJiCDaouRDdRBUr5mZapY/qlbFpmiMr1fMjp2Ihgai9DVWg5Tge/f39mKnCoc/4gKOMpFUEpeYE5tmej02MvgMhBp9vjz9/vD2OY45JIXOY4NavrLTSuqREmlW0als35TRPhMYR56EzzHOnEq1W6Vq4zLGWgARkTIExOXNBv1DNe9Kzik+SZj7JljAHZPC+tRy4lpIWb7DKZcU4ns8zFmjNjFxZdGbRBQQIiwhgjPF8dFj2YZpi4nh/vL29P88xZ5BIZMrom7Gbm8wqG18BwGje0LfWPR8TYamYyJDmVMxJtvYzlQcAxRoAQoVp2jRGqhgJJCSytd7SRQPNITMjWpAmS0fbbj1OS3ygDICU1wyY43w+zxEZMZM4njMcCZi5m2gys9oPLTNinoc5p1pMIXk81hKICBIRg2lmvR+ZETFDWYuONPdsrXVu+37vac+YFLOwBwhSNvrHACxAaa4kCgCUociYleZAFQMgCVn8RIW1wh8KGOKa6j+/Fh8zEwBSMc9+jsgqG1DbIhe+ZteLQGYAc47zPGjoyRxC2vF8Pp7HeY6Yk0BwmmyYYUQUnABBhESpqnNGRFhGRERKVXZHYI6RGR8DUDeZMT9IpiIeGIbIhergl1e6Hhy/bjirTjR30sSLb/k5HFLGPNt5xvVdMfOafqictLDJjADnaOfTheyhHEJyPI73x/MYI+ckkIiQahUJIC3FVZz98ove0leNNi0ymcGYQ1L7px/E4gYLVVJGoZoXZnyNLn5egBetY/r4QzNjwUOA6pk+giCUMccoGFoAMmp3YGZERBXlIjODYTHHOGkMWNQAHM/jOMeMjGQiELGqMlaIqmH8mH4kzaxte3bPWtd1aaUyBf7TAJAa7dq7BcVUcmLVFlIiLU0XGrwGoBgKU710S/PW3dYY1lu9UCYoc55PPI95jUrO1Pqyol9BUWJGQDzNHphx9jHnKaSN43h/Pp/HyDkppCalSK4kMy9gGGtJGc3Nt9td7+8TkjAtUqoZsOr6jwUAxMn4eS8x0jjDRwiEriVPdzfxI9SaGayR5lK62rbfHl7wBi6Mp+aBoBzH+zweY9WMiJE0N4O5uxdwRiZyWqaAxNievd32cUriHOfjOB/PqZh0RgakKd+8Jhp14SA09zRzb95vnz7p7ccgEuEWmYjJeZo3/t+XwLQszJuEMlIMrRkAKWuNWrvI8itlWmEMNDPz5u7uH/HCVEj6KnTHqWOEAMKq+nNvRtu2HVFbawBcWRNPxGwtxnlKYozzOMcxJiIARIaJs3apSixqXgJcCRUBsDXUHEFOj0xE2Jxz0trPgL2m6IoBFYkTSKa0iNuPdZz5gWT/0+fXX9dMWX/yMwbU3pMTMz5w9YUES6hSkioGLhgQaRyQMqk1APM8x5gRyGAwMwORkbFo1l+jdLJw+lWuZm3kmZn1CDHDrP2k0wQIGSpQGgv3LpRzPXo9dMo05pyMSCpzZcpAAoQp5gh6FxKJIrQ/WDtlzqExQgLplNFba2jw/b5vSWQAtqiPzOCEYrYc44TEiHGMmCMQQTEyKB2PH/l+jMg06SOzB5ExDWGt9RPf3h7PcyLIGZIPyYTW28cLvNYoQFoTIFsw77XP4yLbYJjnDERkSSIEzCSy1kFMJnuJbhJXdnuRRpkTEanCndLo6r03tv3lPkXNETJT6UGQGRV95hxCWsSYM2bUAFhGUDifP+bbMWfKUCkmVGR5TIoy4qFvP47nOZHkCGmaxJS3BrJu7WPn5C/rmoS5YbO82GhAOY6wOQIzg1JSEKYUpDCTJ+OcURHCCm3ntcF/LKC1hjIzc0Jigook5kzNkAlKJziLEVWkVn1U7ymllYnFPJ/5LK3Btd8iOYdNAkk+yVM/nueIXFdnZnCSPpsJH4lDAaMmc9PHDofmzVMaKaZgUMaUzRn8CASEophhk3KapmBpoISLcF0luqBgPQxgVrnbGpeIJCJSUSvPmAFjujI9QhArn1sp3tqYcp4ex8/cglXYZihBCvaUDr0955gJcWbKcgpGTLYq/FDToKASmTuAtNrszGkp+QgyRSCHO2Jkpau18BTFRxqUI31OEWwo/kd0MjLXJCsdEUjb27m1AYMZldNTJn2IlqBMYMIyLVoRmBmxJlCmiaS5AI2YoiPqMaJqq2kTSoPiPBoeZ86ZKHwKDIEKsFnBgRRRohlv8tYMSHNPgq17ChnPUxmIVM4RiJlIpUwLAgTNaE2JCJPohCsTMiZgPmY9v1EAzQjzl+2xeZPRjaoNYc3DyqulZFDF860KRqt4V92vGkRNBp1mWWqNtTIslElq0htGKANiKlKWEIgAmpc+rPg4ADJn23oHYiEarXdQEUKGJSOkiMqZS5FlNAPY2matB6FIh/WMhkgk/UyZGVnTPSdW3ev7fq59ayVAMLNCD6xqExZlTnoxvxFZ23gmBFOQSCkA0T1SgYoMVKZSEokpOlKXCE1BYbIY1GYV+FfMg2SN2217oc4WIwBrbSOVY0YwM5SQMkpKJHlRvoBZv/m+nZYjYOa3yI4IJFsOuodVaaBQ1l7j/XZ/inSYmaW7k61hDDlAIZFESXAIL2FY5trUFQY4Br0EGzQaMzWJmbnygBREi0wYQeYigCoQSUGgOQWJlGBWxKRt99tvls9+vM+Et76RCrRGZRoSxsKCCkYxdxB02z/1l+29DRM26/fQjjERtp0Bc49cl0+DYETbX1/fplw09xZt24N7t3HgJBhSjsLBVrF85SISRJHmO07bap5Y0F1Tg3pe6DTq5z6gIl07OQEhCRpaYbG/JnK0tt2+tGk3n0hawarKSk9rd6uMjxeKAHM2u3/aX7vboRPUqkuSaLciDpdEM4GgOTz79vp6e6YD1nqztnXj/eajoYMaiQA0V0lpl0xSS4sGEp3mzU3MMLJ57UPDrsTroxalGygtBWEWBRMysCkzBUOuGmymGcDe6a0KjMyUEvMY0iykl8aKnbWqQ27WrO/7zc8t3STFSJjOYRCL8kfJESNJtFLHuTtJl7k39NaM+621NIKpAMykQGEbqfpDZcZV0tIAWpfNlbwIsIKrRZJUkbf07kLKjN44A0RxeLQm1QZbO2htr/B+2/y9M+YkRM8ZOWISkRnpvq/1jCXHoXvbsN3unxzuMdLSwfnkmG7tZTuBGesjkwZMQcnj6Y93DRhord1fb8Gvn/3Y7KGcTI2p9dzgBGpe1QAAGRiJg2CgSRhmDQdTOgNuQrspY8kzjJAilVIqg8hMMAG1zJiVOFAihmjwfv9tfzxeH4hpOcF5jjwpq6AGNB0FPyUoTnXvbcfLp8+/WbvZ4TEzhEOYsW1fX7sjswr9QBRj45YpMofS3ft+99cv9+C//O7Pf/jbjMOH/NSEhAwQqBwEknLCMCVBh5RJVyIaGx5G4whzCNseRyCRMNp0KdJY4LYiS7pJLrHSVUdColnbbq83u9+7AVqAcJZSNQmBrZgkLLyLNHdn326vDD67m+AJJkGa70agUCVVlgrWHCRzVvbpre8vL9M+f2nbMM2Jk5kWmZmMCUJrANa9UEoja2Y2AUkrdh650k//CPklBY0UYTmRhjUAYDPjB4pMCjBv/Xb/+rJ9//Jnb0kTXWEJlhCp9Fgl7KpF4Obe2sb99fNXox97C6QLMWmxb/fXzbVQdCxUrXgItm3VPAS9b5vx9rr50zUHh6daKSe0mDdAyRLrAyJR0sWkVEwIGq0XsSdYgRYlHbtquaWKxwrSRGsrQS2MXzTzvr98+uun25+//dHbpNy6hkEoAXuyCpkLSAbp3nvf7fW3v/zNrB03ZyYSMzgzuX3eu5h1TWopC81l/f7ygUgZaAb2+80fPWPYPEM9lLU8eSFLVXHLaDS/We0AAujuTcneaXKyWi+47hAoWRoEDQOphXuwXcN0lYI0877dPn/Cy+utNydk7s5fsFaal6CnxrAU+a3bfnv57Gfe9z6SFrCksbX9deulsjcVT8aFLcB8ldA07/v9bvby5ba9bxEnTo/oMRpK2L6KNSFNShppZLNaEHnJ3UUYBZpJ3rKg6iXDxprlWHL7WvLtgxgthSKNZm1/eX2d+21rbtCi2QnU64Dtn+05fwIkIV/FI91I5JwKb1JgBPH259//HYEFxFzEgVJst5etw/Z9f3398vKXf/1y2P/jf9u+Pfw8cRjoVsJhGfEL+oacdAK0VkzyUkdGmpsCc07IDPeVexf6rIw5CAthDRcAoP1Kqq2My2it9+7u9qEIozVdkgPz3q26VGpFSjAjvTVzo9WoM71pSBkxJ9FyXLORhHnvtr98/vr5e3K/ba+fv+yvr59v9tuXNm7cFM2q4cJWKoxFxWHB5kYzb9a4SbaJpp2b7Y6urqW4+3jNoPkC4TIhfsR8Y5uhK1RKooLzfPz487/ev//78ff354EMi3NMWS4JFNm20y0/ZmUi5xHub/+A2d/fvz8TbM2yMTwU5490wxYrdwFhTHe37sj9dXK77a+fX7Zt2zfb8nx/6v35+P72zOeIvLabRLLqg1IAQsl4GCBr5msL0OYj1aIWZquZnrI1GLUgVJvCWvDtjJA+JLYtAwd+/GP/P7Yf/9frv/3548RM+hxDkVLpWKzfRzNDApQphThg6a4/v/vb+OM9ab5beJiZ4v3vs7ZBgKsvRMog5vMfeibgbdv3ftv3u3nP4/vb/P7++PbHkeehrBFGhoK1nxkK3UfoDx6piCruJ4Z3e6YWGOVbuOXHHlJwb82m1EUBZzsUurYG+C6LM7nvk49/377/eJ8aImdkpbCQjNuX/7x/n2eGUmoYsDyDw+efn/5nS387Gvvtk8UzMZP5/Ie6IlVYu4FmOhXZ5/OPPDvs9fOnv/319tuX/+f/ttkX/P0fe1qM4zlmWueWyKcwRs7KpZNABGiJ+I4ZMxKrdcz7v7THO2YC9H7/bX6LUASYuaBCWinRRK/dXO3VpIgoJl8zaMw8H92OaSmQPhOwxTelCMb73/88ouS8MFJKmhKRc2TYeZ4hOzv2iNOBjAhFKpOkUoLDYaacx+N5YHu6f8v9+SN+NPtk3//rfz/+/PH88Tgjj4jzzByYY0bk2ogqlRpMnZjZmlAyYyifEaTgEjXe5hSgagQwmmTO3iwJZ0bEzFT7AH2vMlGZc54PPp85qrBec2flcb/8+ol1W3D6gDXPNuKDFicp5fj5b9d2u3QMUQTR+ppMKXKcY4wx5pgh0fyqhSv5AQt8Lw5tVgZxQdd1uz950Z+cK6rDxZzefRT8V8/c3E0zhFwKRSQzzgM8jhjxywBct02sFrDC36xGAIBG0hztnJkCaa1PoxAjr4FjyUZJl5HQGKGqtmOOcTyCwo+3x/P5PI5xVg9UXfMq5VcNfskpFze1MgtkZspW+F8Z88deUDOgbY2Am+Zpg4H29dZwPN9mzGp5AKGcp3GG5ap8L5yukgnnfEx4sxygeYSQhfhbTgGRoZRve+zv55yREZHJWj5GwbrtIpLImTIqMZ/hatm44+3b9+P9eYyIZIYiU+Zrpq0k4spAqxbjTzZc1dbHLRPMkfSSXiIFEtaabZ+2o7Vb03E8n8ep9vVT5/v3OExIVcUFKLB0QosmWHGysgCOx5A1T4Dup8OrH8Bbay4zR3V82elH0Pb7UUpp0ZAUrfsOYJCZmc4InZqYOBybH2+Pc2SKBikUmQuq+sl5X7XLxYGgUGYzTsEdfFEkWoY1BSnmTCNpfbPbp95u99c9Ho/Hj7eW7fayE6NFCcwlpGWMwzjOnFE55pqFLLmDIadozRVAM7dC4MRJY1OLFGneb2zP3iIh85TS0kwkk946hChBDglQGXM85TrteH+M8zxHRC4hVoXri/u7wC5AiBWHdAWy6n70Lovq0RF04UOEebN+2/jy8uUWvdmcma23Zq35Ii3qS2Ic4DxTkhmopTyvSoZEDCVgSaa5mW8/Y6Po2IB+39tu/XjJFrevt4hznDPhkUyaeUcyEtNUDDGAAU5Hs/OcKZi5ItnByUp1aiDMKJljouBdkM1Y4LEDgLdu/RM1ZtuPBoTYSE3vG7aXm336G/3+8rJHzLO5oXFJJQCsN3xFbDPRzTUDYFUJStIITUVRVEXgbvWavW+72T4TbLe9d/r9E3q8/n6LeDzsTDlHrWJLmmUVMqmYkAwuR7YEzMUZFpGNbJFm5lnlnZkJ1qVYdY5a85oWrVHN1TZuN+N5ep9G0Og0yXvHdrvZ/TUPN0rKSEHtx+F8vB9jpmCrVs2MwRms7uTKPQS6WxPcrHEqRiIyRXi7n2e2Aj+sNdrm2+d76/DPuY9x/3qL2SjMVYYo8BBbhJATQ8Q7mysNojRHIlOQZWYqMkMKQbTVlEK2+Fnpmhm43cfhm/Fu7+rZmzvQ9pOkYE2m4W7YOhHP5/f393ePt8fj/Ui090yM81EYEXPVVdMYgZwTYqREKABHgZNxzMyTnJnZaPunQ3Oj+u1l577PfWvcx0MTid5uv/1raPzx97+/j5FpkdLMB1tDZkbQBgO++bGdu9O3UHQza80tMjOUGTNYHByEBNr9GFWFQYizedvaAewMoHGft9f99ni0fj7CmW7cfbScebuTnj9+oPWM5xhngm28n4g5peouB5CWGdXcPafEERCgUHoMwIwRck0xI0nH/uV56s6xv77ueNnnp5s/7f3bM2hB3/72X9yPf7/Zn8/niFMSU4NutpDJAB8NPgMy6xa97eZIbceUBY1Iyf2MWNYNbC94ZiUySrFv/XZvMzxHOttmL5+/fPrx3vw84AFv++f76M8/x+s92ez5FHnmqUz31uL5kJRX6+GiOK2RaczqkLRcI6AJOES4W3GdMkN/QY+7ve+vn/f83Odvd/82z+8zrLFZe/1L68f88eepkF8x37SQGGWonWoIRoQ7reNmTmDnIWZWl2CDFTwpEW0/XZDgAJTNtk+f/Xm2qdN362r76xew+22bW9D3179+je0Pe7zuw2gZgXxmgPRtbzkOrRr7AhagjGBWIrZUxKpyg5XAPmnzTJuZENlu6VbQ+Jb7ft52390lWG/7/uVv/3nfn3r/PiieHoISSrhBQYMiT0sPBIZ5Nm0yV4vY61uNC8xbBJ7RfH9WMlzBaVEXbDCx9R33z7/9buYs4tMB5DSB/dbMXgyp+cy5yH9eifla35SQE2BOm1ViVFf46oaCNJ9B5JBFCpkpM+p05YzMZMbMbN2b+t5vt9fPv7/uz7f/eHnPGasvt1Awm4FOQhGeTFl4tzNvJZyjLRD14gJWvQbQuiEjJDBTmOf7t3EcpUUwb9pfXj/P00I5eeaI5PvbNr/PFzb2W63zGATzbL/K5YuEZlKKgcXGVBJkAGU1AxQ5AQUtxJmSzJGHYxwHNeaczuytdWz7fru9fPr0+/3xx+eX2zxHMVQ1BAZNuXPJkGPKtkzPPc6UhUqtT2WmMtYA1EzstlhSUyZiwM44mEqC5thfXj8dbzylnCMsAz/+2P1Q0LltBMjMSSDMGsxXKbjy6/pvFUAN6D2zm1Mx1NOXjcvqbgVVfHXO9Ha892Dnox2YiELxjJjHaKN0uotSTYNypiTUI2QMC4XFPJFNTdiO4eeYnrUZ5lyiko/EL5VCiDAyTx04W+R0RoRynMdx6jjO059h8zjz79td/hyNubLG0iIIjeY/nx8oCxxDJosKaBvtpXeL+WO0aBISa+2lQGRK9XTg+UR75mENmY844ac5H3/+e94f/3h7Hsd5jJSX/DFn0PYyqoEyNMMtw5gNFLcz8H5MO3iOMRWMaivIJHOteVp5CAiQqnJRZgTOHxv/+KbzcY6cKSZj2pnt+dYxxvfnFOdYEuXmfS7xF0DBGg1ujKAnzLC9ZP/ycvNx/McbxoyUSP1SJwFAVjQ8n8Q5RzOCJ1OREfN8+ztv79/eHs9zzCm26hDImWLvo3S2S4QetCOfMDFm2hmrmZwgYHBTNYJWj4axTxFN5S+zOrjnHHb8cHz7rnHOpW2fqQzFOFIRIwNuy7FJzVuv6FJ9C73D4A0z2ILN2F95/+vn1/Z8lw2bpcWiEbEqsrVJpIhxeDszGmk2uYjI8f6H3d7/fH+cY4wgt2AtAYHbnuZGu7SSGWk6i7zWDJEGbzLOFi5zsSXMemvuoN2PhG05EkZjqYVjzna+Mb//UJxRShhkKAMWA6kIJVk+FUo10YSSThQxBIM7JHNYN2vdttv93h17TzOT1VvQ1WOSiuOYmZgaRo8Bk1s8UnIo2uh87O/f/vjxdhznTJlYHKVgfT9tWU8VhUfMfDJlSeVzlKqmNM+CW6kuqRkg3VokbIcnWi0ECBlD+nMcbz+Qxwgt6q27gfNUpokoeXlhgqInSEQtiZQ3tE6S3dsd3V+x37/8to0/vh8Kq24Mt6LTyzoqzxGZJRjs8XTKW54e4WbM/FNHf//+jz/f5hmK2eYRdsswQuaaGcZqXa0OPk1kGi3mOVvr48yRbUxNPEk0s+TzfUZESTd861skZ0yOmOSJI858f3s+gOeYFqaYhiqjksD+tSm8NUSZqGQBH0vLaNVl1A1gi1bqnb7f7hu7+4IkYT+tdpRSzBk56VLazMMRvimaBmnyoTn97e3bn88cY6zEYkamEWM+YZNekrS2n4QHpdS0zJmrpY+rTl0UDj9CODIZes7AjMk+n86I1jX8OQ5aVBeJDeWwrTV4RpvPMRe5CUW0c0ylymkKpZ8D6JFAWgh5IP6w2ccf3x9HvWp6Q2QtAGbofH9GComMOD3ETCBtjoTcOM5hj/cfjzMXPFbsYBLI6lo1Nlpj3xthoao9JktPTFouXUuxelIcs/huQUqzMnHCDJEZQ5LlHNYykkJWT0ZxY4niE3VhvO2YJaiMXPmQBSLbDExYBPyIRzy/tfz+x9vzPIcyzXrh7IAyMs/3MxZcmrPuyyLPGME0Y2Ta8/39HJlS5ggBVlMpRuGE7mab9b2TNmNilvsI2BwusxYJwUq4OxXVb6GZguSbx5whFluQIdCj8FxBohIqjT8N7Y7ZIHouVPiIgGCo1kCq/lmRCVo/5WPE+/dbw/v78xwzkGC7zbig4gyN95/82ixFUCZFRADEnA+ej+dzJpiZvzQlMYME3X1rtrftDtLO45RPr8251iTcgTJJMTMgnkMQVB2t8NqSkPLNDk2ymlZVwoDUBf0rphJOIsVFkLaRNRS5vB+ghMyqr/Q5wjSnvW/OY8xZKKz1/SKsgZTiuLoMpIBDTnMzDRkSmUnN5zlmghEFZZeul0ubbq112/rtxQl4tb5kIDHOnDOUM/PSOKRSOCJU0n5pntV7aEbrN5uZBLPg3co7LzIOslTYeJzzEhqBrV7lB3KPqteLN5gYwzKD4zCOynYA2nbXk7aYlMpqP95qZatm3TWmVVuCMs4xZwKVzlGX44I5ad63fffb9vqpkfkAY01eacyMVM7M1XiYQCJHpFBIVQ4ilQlS9N0fmUSUo5pdpC+knODME+ecjyO02rqJdnX24IMkh0ATLZljVi2ayQpJDiXadp/VEbNMchbbvqRpoLftdmtA+DwzFTNjROZP2J2RVjZaTsL7tt/9vn/+2oHwM0dGEpA0pFlpTK4O64RQ5meLJ4ihBGmgW3/xH6tDE4TZJSwBoAApws84M5eOkWRbUACv11l3WBLozKjVYV5uDM2ROfvt9fDqBBBM5qzeR8vSqfC2ffr0esN9tPMxbJTb0kctI32kN82dsL7d7y/+ev/6l405+okTOY0gMlOBjMwIUVAuZXtc+yAAZdLM01q//cV/KFC9K2wyE5bNlJSkgGAEZFyILhoMLGqLq9DCos4ARaSSGXC4WlteH+328sO9QiZJYPVsr8gGmO+3Ty+GYY8QYzwOBLKaaiipektKHCa0vt3uL/768vX3nXHyx8QcRWsrJ7J0bXNlXUI1TxiEdIhKpRUv0vbXtj1C0AR9PYWWSGo1dpggA51IyQxtWXZizWFLiqSDSi8/NipLWmDed4tAv71sboIxqqck8tLykjSx314//fbF7PQ39uM854mkMhdTx6v2ttZC8Lbtt7u/fvr6+x3ziW9Dc4Rb2qK+Cqvnyj51KZy4NJCe8uaQtf3Tb+32HqmMdMgclNUwrIaVQAk7Sk4hGlo1VWjRTCazpLVuAbnShKKMilfZbozI7eXzvVkplUhDQ0C27L9sk728fvn9b18NR9/5eI5oLlhRg7C8DOjMWt9TaPvt5fVz+/3zv/znF8zH/h3NZOPMCW4DJBzIpBNTLM4saZDRWRSd9wZZv7/+3l6+FzcL8y08YKAbKuRgkV9EcJldonkR/IBUEhyR9G2aJqrAWn6AiJkEUzN5u2+NCVrSMucyITK5mfeU5nkeD3t7+J9/PN8HWFWMFvJKk8HprW17QNvt5fXLb+33z3/9Ty+Mh/+hxrTzSIJbddFBYSphjK63VUTxgsssIJvq37fHCIie7v02W1QgQUpr8ZGEo7mhuiCbObm6rnWJzS7wrzoOIms3mbKcFDRHsGop1oK0RR+XKivz0Df6wf/xzj//PL+P1dFOLuJhzd6awKK5mbfmRbC6ubuZLTyGC3SgqjkSVTMCSJmEEC3FNIA29D+3789py6dtedzEaqldhYQRDnchLSk0LJ2XBJXrBUF6lhTnn2ZAMgbljGBzy6UAxzITrZydZokcz/d98B9v+v5jPNmsiUYlr+fHgjTMDHBvrW9t2/Z9p/F+38e+nc2VlKcEGbIaQ/QRoS/xVLkWlhcWp75t76cgGsy9V5tJ5EdoX3qGS18BCW095qV7BWSkeV7eoeuDsEwgCLQm67d9Q5aRbelUUW3KZmYO4zzeRv7xI78/5ujLq7AiCXW9CtK8uWDeWt/6vt9ebtbsftvP3lrzdKopJTfALZbnxjUELLFPlouFRyCnfuzPAaZBoDW4AQg0mGHOMjuCqbqWlhns2gC09ufKIrJEyktlSCF5CatIywjRVvv0yp+XmGA1BOY4+tDjEe/PCLa45lg9upnKKEEZuXC8ifM8HrBWBimrI6AGSg6mpySVVsk+1tDavcyscu5njuAy/ChUthhLt0Ws02AyVZKYgDU3KySq5pQhJcWYlYwZildY/gT1EnW+LQVfDddqgkTEdMEigeZHR60gRWQ1OlTuZnDHTEIZ4xxm83zub71x7v1mfvz7P769vT2e54xc9kLekZDPkq9odWOrRBFLPrCa/mdZlUBSziMiE1kGQJiV+pmZnH6127P1ZpxTUdDikknNM3Im2YqOS4CWXH4Q1Hg/EiYJpR1FikpExhRPFdRBowdJlKceJFk5P7eG5WgzfDRhHMe7u07nRj/+/o9vj7dHdQLDGiZz82FWeGzV8klCpFn6ahLXpAmYWFIyoiBBwqzMmZoEGNvWhqM3RmZEqt125zjKGVcAGVDGiJxJIKD8EGgUPUJjnGnN1M4UfdjH0oECqwLJhG+ZRAYX9ZrLmZR9Qyx/pxHmmjMOd85unXb+8e3H4/F8nBEpnUmZwbzyHxBVaIv0UkwLmW7mVEiYheq4QGgmXaCyk8SIpW2GbW3fmJlzhNrrfePTJ6vSy+p2zRmKIJBaf4SVewt0aibdmEo4T1vhs0ppi0JNvd8+tWzOy0Lqg3mBwEZkkEqlXGBODXtsDTx/PJ7PY4wZEaZR61hzjjlrAFQ9w0wt+w1Qy9KwPLBJNk2aQjUA0UhDKimab1u+bK83xJzHOdQ+fbrx3Q6ELg1uSSRqyS6NfQFT1VRDoxJ1dELQ+XR5XF3ShSm50/vtlbf4cXrUlHSp+t+gaqPUQGtN7o2+kYgYTxePx3GOMhALabUN+nOec2Z+xACBKVpFStJ7wxTSAIM3btUyjopfbG4NQECkb7te719ecI7TzNhev96txfco3+ZqdVWMZXFb5GAJFa89wRgHYG6aZKdXZwakZIK5HtjajeOtt/KT/fCUqlyLDmgojpyNhhkRFiNPSuP9+9tzHMeIiBVezTHmGaOKftVzrRAbAZnYMjNDOm31wklglCAWcjcrr05j2+/5+vn3T3mcDxFs90+vjmMbnFG2cnWHqr6tvMShhguWNdN42JluoqFpgbQz9ZFwDLlt98/3+XgZS216la4rGa92T0X5U0SOyWjzYRnjeLwfMY5zRhAFeXWd84yIGgAiL0Yqyk4ePHOULztNLJmJ8ix3YcWYIs4hM9C2LV8+//Y5Hg8+T6LdP322+b6d8MsEbr3p8kVFRXsAZTJJ9MbxZs9qt7JiqyBFuecyjJFot9evf0XE0+zH4MLuFq0BWmumsNRMUJrnPJKnv5vFnGM8T8Q5Cv1JJNGQkVcL6IrxwFVZAMiphJn5jVPW+y1sTszM4i5HjkSijFJve9xfv36extyM0e6fv/h825q8rHiwsM2a1StvrHLUrDmwdWlwujkcbFmGqMpgFLgCZvr+6be/uc7vM0KhwNUwRIL01ims7RPM1JwIgyyOmXGepnMyAutYCKAwL9Plw3CpYWFWdisArXm7YQTNm4zIM+skEMx4Dpibi7Rty/unr78N99y7q7Xt1vbNPX4mVh+NZ8trFqwYZyQpo3K4KqeiC0BML/QdSmamcYykNTmQ43keE6XXWikgaQwoEaRlZuQ4MSyD8xjIcTqOsAwiCplSZl5hSFjyxaoHazosvrYI0ox5HmOI7FcLbUJpigxF0tp2u7dzPrfe0MyrNebXCXYVLBd8YaUFuIoDXJb5tatVKfEBP2aWJ1TWNpLKiAkzgGtRVYJb8QCZysgYMObEfE5qDnEmMg0pqMCLj4uXMhofIOZHKl9vTldyumyi9OHiVH9TEdo9vWw7G69DcT4uwKurr56+iLM6S6UYlrX3fFiEadEsJVxL5XLCNI0x5yzHlI9b/hA2A7+M8YdMBz//4SfORlzfvrIJFG7BC9GvCjkIRZQVg5T8qG0ukFkfQ/BRSbRxPP0453KmuN7MRwTAigC1Ic666bBuUKp8V385mqgANA6pvzRs+j//69//8eMZcYGtWmA4l9dQElJmjAgJMcq+rd43SYMBYGutAyxgTgKQvKxHF6CfVGIQVNIb45oygpBp1qr7bSW1czyfc1Rq2I735m+PMWc1XRijyiQCdJOvDbek8ylgLki/HqHqNujSGEZJm8bjz713/f3b97fn+OXNVeNtMys/oyC6IuIcozQTMePq6wbdzElYv23n3GtwWA3QXJ0H8iryyTmryR2OYHm+X2iiuZfDufVmrbfI8XzPc4Ro3s5nt+Oc5a8Ea/bRUwmUvZ9Yep5/WidmNafy8l4r2GbhnVSM4xE6i4gtGKvQerrtW/clBJexrFMD4GXyVKvFALMSxb30iFApSyIjNWpiKuUlIC776IUYqBq8roiW3hLArJ+DlON87jpn0h3t+SP9+2PMWNjrpbr5+bi8zt2QrcbPWnAToWQdPAU4wowyI90debx/33hVzQb3ddhG5W+cUf2AdGbmKAfqmZkBZRLBrAVrUkaF4Kv65zpOhhWfSW/dpo0IoY6tyUvKLRKOThqOIVA5nxZvbQ88j+OY9HY8YI9j1kyu6mTFIZS7iMAsj5yF66SRsIVHFgIL0JF0Jg30mmWPsHOuAwhAuywey3/lOszIkGXapiibr1gGXhYV1dPEI05kVjkcRZZ8zEWS3vutHSGyohgvCGoB9ey9bfhRazHHiOf+gzjP4whZO96mvT3GrEfJsI+sldcJZqw3cW13glX5WXMWdJnQOc1hcLVt3w6dj97t/SwOqyhKIS0VOQ6LnIq5KveT5xGqDpqMhcZ+xGElbJ7UnCkRmcp1asTCogzs992OkdV4oOBUrrzF3Ay3+8uN/c9nzMA8WzybJ8c8j6C3Jw4+3s+plGi/eCGvEeCVEJY0ToDoZh2xnJxohjltt8OaCT37/WXnMR7W7DETdJinLWiVCcbJzMRcphAcdhyp9FoDXFrKtdKUnLTpOUep1vPiF6t+l6Vs+/SCtzNw4Xflz9zMvLXm9vr1t09s8PMQNOd8FDEwT3hvZzqP5yyTlOo4p5Y/zNWORMF8ub+AsN76riOLCzJ3juRuP7yntM395fNd8Ty9cQrmIjyJsvUGkwowterGIGYbp5BgpfwiUQb3pEwElTBOfHC41yZuyjRn215++4IfQyq8DzUtvBva1nvvn//lX79SJ59ITGWOJ+RSRu8vbU7jWTO1Wmw+AkB5Daw2tSwjYdYhBG27K6d7psHReQTvbm1Labfb57+8KoYURm+YIHyZDpEljBUF/yAkZ+YUZE5JIo1BepqBslyG7AW4WllRrAFgdVG3/dPf/qpvJ8QpDwNhoPtObPt+2/ff/9f/118t3vmmqQQwje4mcLt/bscQYo7iRWwBYNcSEH/plPLKGA2+ed/L/lSgcffn4N297WK8nC+//fVrHG/HNENnCzjaiGAojUAwZjY4MyRYGHKeJyAzZpbBMASDUxSL+WHTeRQ4MoXGq7cBAmj95a//+vy3N6XNIqnNPb3fkH2/vbzc//Kf/z//at//Y9p4aipnzOdojeRrv7fnIwrxTS7TiZ/xdSWNCRFmjiYjOr2bdWJBRrROAj1BT9Lg2/31ZTMm4JvliJBm7fFlBKCcUFrEwts1z4OQs8VMaDTMYRb20wwomslsdW+tp7ZqF7DNbvdPv//Ln5/eqhXxQORAZmWO3rbb6+tv//Kf7a9fvh8NmrRxMEfbrDX0WxvnxOWoYIs2uQZgIf+Fp7vL5DW7aJ4r9VWxtTSrFZQpmJsiZJ1SxjnTowzzLX+eYlRuC5dxD0v+rUxMYE6zSUft+FJex5msKiqrfnGSvvX7y6evX7+83rKMF2WaiCSmZ1mibPfPv9v/97Y1SoEeQ+l1CFDfm34+8of09ypz1niwbOs8TZe2/qfcIRcvoFWDxYw5Zlx25Jkxz/DwduUmAJaZnpuTiqCZmS4VUBWTynXu58dkLDiMtKjdbhFsrW/7vpWNq9MlS2ZOyjHLR1S5xNx11/Tgz/fMlqsjFAAUvzw9l2FwebsZSTc4wIxTw+P9iHFMZNjIUL6fGs+cOfJ8+94ObObWfPZpQJnEFiCYQmS40ua0BJWJUU3CqwaCFtsowMASMk8uz/AqQ5VRImAxcjy+/Vv827fHGXDMSh6ozDOSVGrmp/u3//1//x//+P6MpFWT9gBtfHM1Oj/We7k+XjBg9W2DpOjWstHZmJZxJpDvI+IMITxT0vvI+VRo5nj/7qO90uktzuHA/NhXJUFRjHpEiVYSYVVqlD3eB5GYoLBwhbPOAtNVa+gylOA0cPuvj//+/ZjyXeeq4JGxUM4cD8//zv/jv/39x/uZMY8RQs6EjT8x2sILynVrLewlE7CqiGh1OqfRWkcKecYYesbUKSExI1LvM8cBccTxtjHt3p3e8jnqaJdFDEplUls6nmtFXMeewhCleYGWiq1SdCQ5V+ZXn5AqH2fGTPn+9sfbCXrTc1U8CnEtwIPj7RX/9j/eHs+nhmIOchKieTwbudKb9ei0XEJgJ2SiW8IaHc3YOiOYMY/QyMRUHYIq6AjFafRUnM+tN785fMt2jmP8KtyrAJICMkELEIoV37DsHVZEWsWJBHBc8VOo/q5cFIsUEfbH+facbr6pGUu2dumLghHx3PXt23mMmYGIoNWYu462QCVLgpZGlpRDolNpgrWkdxqb2X7jGEOGkZhJCwqig0QElGhGQrQ722tD2/PtwJwGi7prsE5uzXKRtSuoVkRzcOhjCS6dJ0rDKfxMkZcnVcGMbhlzjLS2bS8vej4LAynngxIBH4Z3vT1mebJLYS0iARuuBjoAGUrAS1r5hIk0yRJcuDi92+2V43lMw5iQnFnH6SmVI6XpplDMwL6//NbR7vHtcf5wVMfTxQ58rOUrEotLqM4s3UXpVa8mKQmI8tpMJmmxqHYB5t5maJxhtt+//KYfbxll9Vln5AJzvs8HdQ5FRIgL21Aimke7XBa0jEoXHbbQi9obhiU8O327macnNHKVsgClOVNDkuAp5oxs9y+/7+ov07Zvm6nwtvU8l3m3lm3FBb4tKqvy4SXQIbCqBJjTFKVqjA+VDM07pTgE77fPv+llO1llfS2yzGFvT4ZIKwHpOvyjjHXZsrDlK0r9kgj+RAUv4FVadHuh1JmJD+JEHypIZc6IOUwoRBTF11wJ9j8hnzXqqeudL+R2waP69QMLUKiKSCVTvLKPaUoWBv0RWiEpyYgIYOpKNTJSnJojxJhsV1zBJZLh0kqU+JRwR28bOZvmkxzPY+YpoMjZZM7xEd4ypeB4b39/vD9d/Z4/nn+8j1LGoTBcfmxmoNvAFdQVmtV9pQ94eG1EAKqbNaI2wMLtZFLMiTFkQ2k549Qf72do5gIzJHIwhVgYLCAwkQhJyMm26IRyybiQJuLKjwije9+qle4Q5jFmzrptKm2J/tcAZiphD+vPx2nyGx7Ht/dj5i8wLa5AwI8UHIvRiMsKtypyfWDmBfQBmYsU+5gVGRMzZFNJxRz6/hizsPG6SnIiVh/kh/kVsIJIoq3YtNKn0pxgPV9tNCwmZKYyBuI8M2cFbwFpq8t0vaZUxjxoj+1B+YZj/nhbvjofPKsDF9gkkKmPumrZ0dTErylTfSIAL5oZqMPmcQWoOasPjTmOAz+OWUvzmtY5i2KtQwjLqHdFOFJoa1H93KAraZWYNIejSHirFtapnDNZT5T1Uzl/7mQlExm0cZxEaxjxOCMBg2Ep0wTQM5f7RSXKH5l4cYaliyXYTKGkJa4eatZlf4Yq6y1LC51TKhspGNdSYjUekDSjHGlNY8jWWSNCw89wpJUBwEgDWUZFZsQIQJEg6zDtj/cHURnXyW5u5mVgY9NOsllGnpMSq0mmhGgGLrvDZlqzYdmWwyvAlQ6u8G9AAV7cUn78DhRPOTOrazCQgYkFCFViq9JFSIggQuJR3mmLbWbzD+oIhaiXgrNTsmpNyuKvFFH17yU85CqqlAAdpHVrzJASp9k0NkUqrmO8FvuVC9Ch6O4Z191W0WFWVjtYXdxLdHApv9cwVOMV5ajWoOWukcWTCTQgl93SElhWt/O6E/PVupGskxAVH5tS/THGFbEqReWSdizZDAorEUGmpq+epsQ6wdummZtnzMjS8PDi3sEiD0DRjc1rYK2CNDGxIgCvOUwue1ZdleoHL5msiqA2y1iNNVyV75rXybzyTRF1FKatmo9sRoLrlIgrROvqoyTq9NakEUgs8WRF52sdlseKoBr0wjTd0mTzKH/9cjniNXBmVufxePklFtMWS6a1csQPkrLA1J+b58fyu0K01UBJClVFcSH6XKH30nGSMJZD2Wq1s2ZmCNg6XKd6537yvmvYyDS/SrFfIOOaB7WnCD9PEql/87ZUdix1ycfNmznhYa3XQb0iTVMr0q0A/nED68sXWP1PqWP1CxgkGWWrnrcykV/DtyaNXTJlU5o3yyoYrZkbWScT/HpJ8oqJEGuRx4f/7KUVWh3oy13CzJXIK6bSWhtFHIjNrjdKkNbcYPS2uTLBNHq6IFsiiH8GplgMfQ12uSNq4UFmdG9Qojq9ArSLwbtSxnU3uiIX6d5NqWTSm1kpb3FBoLVgO5UWsRABiaVgJ68b4yVjX+FF8LYpMaVMIa9zQQXaLLD54w6MZnD4dmsxU0mjW53tThPjmu8LGllaz49qemUJVmfUe3MgqiHDALpY2ij9OoSrcfjjHtah6LZOnPyYMOISBToX2HnpRX7+BP7p189crQ5OLm6x4nxBl+Z52bEKH4/BS9B/3eZC+kvVfJWEa3X/DNAftMV6MP3f7uUnls1r8fz6A1wJrn0IYloWOPVrqop1hBcjL3lyvWpDBU/iQ6xAI8xyhSoK7qlerlPbnjlS3gOt9SOv/mRkpUEl7JRUSRqACpRWA7B6OVHnFV0zQFCVbpJyWVyJBoO8ZrNAqo2LgQVRuytgTpnPZAwolClnGwKLef1wzAGgINYBDUtFLykXd1rik0shnFd9kxkQys4cAfiYxyPE5b5zMasoIJSWiEDJiWAFbcEsZXnF/PphrunxT+B1bVYSklnQQQpLjMSPVtk1d5bWuerxErXgQqHbVWKurOaKAY1I5vzoz7k2MFKA/yRniaqcCuiGKmJWVMqoxsOc8L6PMVfjCsvatjwsi2HPWBY+lYrrl6m9kiRb9flqhK0dwF1Wp5cQMz/SzSnNCKwNjKS3zc9RQMnayEFQ1lrTEiLUurz6+aybwkIrIFdNv3olJRCGJY0CaUhag9oGqRQ0dWDM5YusX+q+uiMzmqxtbdYKqq9ewMGVM4I1SFzkLJlaoEDtOtY9vLdmbqYjiKyTCqvfE6uT1Yx9v/nzOeNSka1ai9a2JnJJYnnFGVZOllQdswcl4F5bzUdGf61IISXHBGNGaCZU6ZDRGTMQc5JoabiSYPfm7NHvL65x0qd8y4dSZpyrPXTlNlhxLYsSWvP4WiRp3tq+EYI1gtEAhlcrWcU7kGCk+jlnsj7JKxZXMUTyUt5ddTPqyC4jzBRK0babhSsA4NIoXbiFKkF2ZZyrh67Iy34qE0p6v722Mdd7Fezm3GN7/dx4PuwY2ff5Y2Y2IrKazNbkskylsaY3MyF+1GIg2Lf9850awXMSw0SG8xwRvCo2ApS1kMwgNo2oujVBWMu81jMvrGBV7qR5NkuFQGs9m6+fvRhKXcnNL7BNNbsVvnUd+EfztqWbag6RbI5u27Y39zyE2XdrHmhNdmV5EmHdcyjNQGcdWmdVW6q0Udb6/vqJeY6F6QKgu9nlpg3CRO+3vQjutA3vZQWVCbPWfq3szLC6ZirbNWfzlBJm/aaza1o1GS5IZmX3JiPlbUNU1LG0TLRbbHKa+fby9S8/jjmhSBq83xpe5+3Lb709fTptv7sjy2OXNKGJILy3VMIcbGTtDyaRloA3821/ef39K+J5qg3XMWoGeB1SoUoYiyOmIbuF32IGqleL8DUAyw7BKv581Fy+xd5CSVrb7zh7nl4isp9RAKvEAMy7xkp5TALbPXqGubf99fNX/njWvDa0fu/5Ol++/qVv73Y22v21dSe9Z2kD0DBBtts2FbQGdlpaknQlzULw5rbdX77+7S8c3x+y6eqnaLMlTEN1IB0EpOhdlto9+qcZMWZJacDWzCu/4S8JEtf+4Q53mJFm7TZLXXvRZ1fqJUTCmWsbnHZNC/b7QWXmDOzYuq1CwNX6reser1//svcbng3+6cvj9jyx73mg4gyyEtti+QNGpzG5PIfAst7Y7y9ff8cRQo5WPkujPw7MOecFcqbGWTb1tKxZDRnCAPPWWIfFmoy+atbKMqxOJZBvbr2/fonvfXiDMmQX3FDHXRickLdtOgOEili+fT77EM36/vLpt7xtWVm/+tZ2vs7Pv/+nu//Aw9E+/7a/PGa8vObJ+dEcCM1nRCpGMKoRCiktZwSz7n3bt9bU93Q7Nvkp2diPqcMrgK6gb61HBgIT3+f7GYs08r63e9JSM1sa3ZwoMwQlqTyYRm5ufXt5/U7Am9KcXevgZNIyretKH9xakIC7d7x+emvFsJv1W3ciQOsWlRxjv336BL29jPBPX/rrk/z6KU4va26ZtDq9hJlUb9ScmBDNyure3Ijxoyke0d2d3pWWW3cHYO0CrwhB59sDk4NzDLEx0Bt6783oVofXJqUyU5FZ7eU1B4H0Fq/vD8zZBHO/64gK9TQhJ90g79s8wlwkrPfmn758MwXMwLbdb93NIAN822/37dP49OXra+vjB/r4y396/2ve+Z8+h/14HJGRM5ACy/Vghfw6EUfVJklSbK1ZuyEyb+DGSAyz2+2O9y3UcwRWM4V3Xx5gyDBvlslU324tE0vhUXnDgq51BbpSNFiMi5Mh6bc59bMWK7GsvG+zs5lksN7N29aNoPXW9vvry+YeTKPBW9tu9/765fdPvT3/CD+//u3t67H7377k7P0Rc0YpF60OO4fV9MqraValgmx92/f7J0zEndZNwEHe9z26O/ayS4dIa1t3oyNtHZaHoCRr7W2agRqharCkSHjTR1f2z18LOE34Vuc1SQnPwPSV1y8AXjKC+v7n2+N5QrPp7f0Yc84ozH2O87Qzs8DMumDfbr59+aIfMWNoCWZXRZC/IJYAoMBlfFE8WmWICRiSc57vb2+PwzbEFDLEqP5ZCAPHOXRlwjrOlqmV3mCxl0XKXPmQrkuM+dErYTT3VamTVpugypnGCPeCUOdzCKCUOY/354jM2stjjIPPeP/xLf3bn2/vz/P9x+MYEeehMeM6kfWXoecyy7vq4dqDlTHH+XxQiRhn2GE4dfhxzqgUYEnOby8v90dvWWzBKmdqXTXjBcKS5CXRDSs9NEs/IRJThDkpk03tfiYzjUw5krwl2GdTT+tbG2cIMWXeReQ8nj/ejxlpgMSMOewcP779/bA///6P78cQHv/2bbTnq/79/XloDJXNWGJpt73ZSn5XlmbmZlbt6m3bm84DqUMz5+OcU6ICXg39/bf/5b98/r9aO/Pk7G5TctLMP3/5rbWFsRegkRfQ+EJMm4eKhjIYzuIXISAf3l1hETSRDcPaa577p27jOH1r/e39Pfj2/e2cQbZzHI8fb8eYASppOefg8Wzf/xz5x//8+/fzfDuO//rjxN/v9j00bZTEOEMrmTH3BfOYKMjMzc16y8hxcr/vpyE1/0xyzuc5U9KoQ523dvtP/+X//SmP+TgjWXI7p7m1l9dP10lTq7qoNglz31xsOFcpIUFlhZQAzOh71qlxprSGMNtz+obphnZr28mYOB/HDIGuHMfbY0QkTUrGnIPns/34c57f/vzxNsbw8X4MIdqBQhbq96ipKbr/quNfFRyMc8zjwZvvMyPyeFOzs47gJWhsve/b9vqXf/nX1/94/RFBKy9FOZt7u91uZaW1tCcqJkiclCktxjq9I4CYAcGsspzr18JRNTHieHw/3kYcW+/e++bs1raYyiOV4zjnx8JWzoHn+fjxj4d+PI4jRh7njEDMeIqymfQoa1ddQN8VhFcNKmXGARvn8bTt1o/ziBzKoUMzLne7AmCNzA947yfUTFJqNcUWBhFsnCkQJwlpJckTyDlh3n3LkFJTOsMzEil5TMN7zuf38zHnTEZEf4V9esn3NkYkIsbzmCmly7z1xtDz4NufB57neY7w54jS30dCFqLq/C7rNfH3jTTOmdX7V65yijBlnMD8cfw4BG455lDMMTMwTOVOMYzH/f/8jx+PY87rsDokYOf7H+3KKUBSaY0ZEHDSTGaEyUrUlmytsceZoRgTU6mpOvsxpPfM549xxMiQ1G73bn/9y03fj/fHk8p5XmeYmLk7Mp7Tn+/D5hxjhMZZbU4zFKX+WK/dvE7x2lozGyNnhM5IGghFEkQceTQ9p/nm+X2kpOo9p3LOMeNtPP/c//HH4ywX+UhSmgYe762tC9WEFnsdlFKXdhkIzwwhg33z1odNESMggQklQQXzkM1nhAJxtn6/7/f2298Ovz//wJwR4yiTXHLNgLDJx1unznGemW0k6qgAXLC6A6B5a2Zuftt25xhx5pCNCStfVDNjzvk0H2m+WRyHInNGxgXAwp7n4/v2POdQPfvK+KR5vDVd8lPSKDMvXKGZteZJEC2GKRW9923vJw4xy+u/NjVrY+UQKZeD5v319vq5f/lr9P2BcYxRS2A1JZDIORHwrYHncZ5Ii6Q1L2a/sKAGycy9mbvbtt/dTkum5cykica615hGtqT1+xZ/EpE5Q1JSaUoykNkilcrVumIlIFCO9lH8G23ZhYBkM7aO4OrzAjWbW791zpa+GMxCG1ofC2QDjQn2++vX25ff+qevdHs73t7eFefjGJHIZAzRMueMgLXUfHtMgyLMyjfXRFX2oUqJiv9Lup1HnjF1nEEXpuinj2PM1j1CsO1lNuRZxqUr1Hnr5qvtTRHJOsRcCjBjNlxAUmWWH3T2Io0TVt2cTBDm5m61Ka/eVaO3ZkSZtzkbbL+9vt5eXrf7zecT933rbohc+GEoZKlEwJ8tch4jkUyt47WNC5yWlGBkkHSLkW7nkSMDx6jDJkRDOzunmhVr70uPDSsE2+net9637ufMgrnLiyUTQEqNi2esZ87BYmJE7tLpCccY6cv4qbVsZnVcNUDRROut3ldMygS2++vn2+cv2/1z5/A/9r6P3szqfDpFIAxkZs4zFGNeCTdAZGiWiqSc+ykaAOfWh9txaKb4UJrTxEyMMWw6XRSt3aKRlahTlIxmrXnfNl8CibJLzcyohtCmn4lF4Q2+yOGC5QOwOUXEFNm2jtO9T0SNn1RdU6XlDjeXe9/vXz79/tdb/3x74e37P37MaM4SR6FUfTBHinTFmAkabd/8toEn64jkKC+vlCwTxrGZ2/FEJOxkWhXiYjsbzmGB02T9NTcjzJ0I2AxBqTwRT5uBUCYQRdaMhPk22wch8Gu19bMroqi7JMJE89bCzbyVKdVPQLXUv1Xskebb/fXzrb284Efs3a3WVgFNKLMRmDAt67Abkmib33adxJAoKj4YqatQ++UGV92WZTQ/bTgTYLulXwXi4nwlKcqpgoGLnhNKmFlCyfW9+qC6VjgyWYU5Y5NBipgYkYK3n7zj+lTda32mjtkck3gc50igxLs/HyCLPUwtHN3YwL2/bJpdmRlJwitWiYCWmGrd+8/MUBHzzFMbOf14PN71HHNGSIB5DWJmMW5LhKuPRxWU0ezD5ndpE7i4zku4ZOZdXc1Nyok5Yx7PY9YqrrdfR0+UoVoCyHk83vbdU49jJPt+IzDNPga/kPeMqYicCYUDpz+7fgSfQMLKBxRZ7GcCSpTlRsGVi6BSZmRYTE7N+fyhEQK9gZN5MWnXZK3TDAJaPB2lbDVPsBp7AZV5qUBfx2TSOjsbkPNofj7OU4/lBSalK4M+lKjDolI2j8d3RWx+v59/vL9PtBsySF+puOrVA5KHNCqdUnC43tImmfRcx9ReFFbGpM0or3HXcngCvSnGtIkwAMpvj3NKVjpiCso5rxYyrZPSV/FDaKqtKmDpES5gjBfassrjTkvlPIzjOabmJY0RgIw6H5pKSyegebxhZud+jx/Px0TrH92OWuxjVR9pIUSSQTI8rjzEltudLS6NoDTJmUxR9EwBWa6XI0bTwTDFnPr2dpzMaqsrDV1MJQIsD5sC1K6lOKNV8F9ZQNE6Atcub5Y0g/lGzOrmWagMfo2ctsikdSgNlqBcbFfDB65DQiouMUvaFT7AlDFAX5j3Bxy7mK3rWpI+ZLwXgSzBpsYIF8IP813HOSb1061kLe6oEx5XDKznFZBoVlQ5L7jRrKiZLNEO4U3ed2qSdTLFT03NVQ5fO8KCz2onaCY3lM/UR2BGdQNjcZF2sSjX19V0/0lPQr+M9Mc/kSzFSpIfB0L+Up8Dvw7ALwKgn8jHRZ6jxKpXQVRRbwkvOxMutIa+7dR5bZj/9DVFAnld2sxbptlHRK3A460h3Vbb4U9+lTCvJ1mA3NK6EKJRfsV+/vPzk/BZvYwrffn5eFVSFreBJYb9NdNdU+djBgBt9UxZrJrQTKADSaO5gXvDfr+bHiMmIucs9fF6R/Woxd0jU0JazvNwbZZn2vMc8WE7aC6WS6/XPLQFdF10+yLzliqOBkdMLRk7E2T5Jfs61VEQ3EOOUPgwuI4ZH043C+Ct3N/M2MzMLAabvLT3aq0K2yXNsNIwNmOyM2XArfnr64vH9vaIUIwxQ+UjpKUvze40gGitbZHU+XyLJxD94ed8zGvKXBO96H+R3PbnOiC95mCKday7ucmcKHqOLB+5JUhEaRtJZ3nRJAYV1jSm3k9kZiAvfFcZSSWSWfrJ6gctC7BU62aZJfQzCt6bs2/uSeM5Ter77S+fP/lzy3FmzjkiMn4aShCSNQ+R7G27j0md7KN7zO3ZZj7GslIEkOn18gMA6bf7j1mLsU7FlegGQVZljaL8WyTA5ppiZnUAGdgUZ8b4MW0604Z04DGtzlGOlaEyTKlUTGdwYg4P6zmq9lHz6mODEgYrtKLvLsHSukv7y6d/+evX/v5HjHPEmDNkrQoVGEhl0jIDpunq4621nLZtt/Noe1M8H0/EE3OunqC+8pIkbbs3IuGOtGbb7kpgYtYMmyj5m1b1eB38JfNat22khJyDKOJ4dDyj2ThPQtZKRh2IUClYw4cOMQSUG5eybRl1HEXNwrb1jbdb06DnkCM/v/7+v/7rX7bvr9/f32OWR1aKFz5PgNtwq6K17aRhqMd4eTy3c6cCZvTq/LC0bBVtJJjtL16Cp1X9j7LthGiNuZzh0xZcvZI60vfpAbMNOWDMaibCxINIOlVkuNkVHXU14y0T4AKHZUo1w4ewnFeohCJO08xq8m7b7b7Hy2amiMgMhV3urWscVBGFz2Mc8jOf09/fzpxpiDk3d/M+S15pRgOQdG+tdebKqqZmvhfkO8NF01h9HZlMpeVVTYjriBJKNNo6lhjKIdDhRhMSYVfRU3lX4dlrX7gAneZG46xKbeHuiz26lIVaUHad/7nyGZokwuwSIQvKXxvZmFBwOurUes25tNa6SsIInOc5kYLlNIMyV5F5XfPnvl8zhBdvt0i7jJjzPE+mTPJ8Ct66x8phP1KA8qWpt2yw5t22zYQMtQavXpLyH6mNoJnBmk066a31bdt6d7v4gAWg1PvM5VdDurN1lY7EvM/s3kzyNNTRXgtCqi2jJpcZIHOmG9xt3TO9NcukAZYlf19ZTiVtJcAwul89/vVoVDUmmKkknlyd/7xSD9LoaFtsnUKkWqUNUlkQlzlyJrsBPQPS+Xj7ts3+/X/++X6MMaMwy9V+UpvXOemisfvrjbcGQqkAmYNKceTJuY6gR6R+4tCXZLFgYDN5Myim984EisxcwqsVcATEmOu8CYdiwZhgCWqM+bOhgx9Ctpr1ApzObYu9QSna/x9gC2VgMTbu+QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Image.fromarray(np.uint8(W.dot(H).T), 'L')" ] @@ -4705,9 +1156,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "class TestClass:" - ] + "source": [] } ], "metadata": { @@ -4726,7 +1175,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.0" + "version": "3.6.6" } }, "nbformat": 4, From 4b49d26ed71ba3bb8910727722c2b82e55348ea9 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 27 Sep 2018 00:36:12 +0300 Subject: [PATCH 069/144] Fix corpus iteration issue --- gensim/models/nmf.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 9138a5491a..0de3bd19a3 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -230,8 +230,8 @@ def get_document_topics(self, bow, minimum_probability=None): def _setup(self, corpus): self._h, self._r = None, None - corpus, first_doc_it = itertools.tee(corpus) - first_doc = next(first_doc_it) + first_doc_it = itertools.tee(corpus, 1) + first_doc = next(first_doc_it[0]) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] self.n_features = first_doc.shape[0] self.w_avg = np.sqrt( @@ -252,7 +252,6 @@ def _setup(self, corpus): self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) - return corpus def update(self, corpus, chunks_as_numpy=False): """ @@ -265,7 +264,7 @@ def update(self, corpus, chunks_as_numpy=False): """ if self.n_features is None: - corpus = self._setup(corpus) + self._setup(corpus) chunk_idx = 1 From 9c6cbc6d256f0fb003a028995aabc170e687da9e Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sun, 7 Oct 2018 12:01:21 +0300 Subject: [PATCH 070/144] Switch to numpy algos --- docs/notebooks/nmf-wikipedia.ipynb | 10 +- docs/notebooks/nmf_benchmark.ipynb | 166 ++++++++++++----------------- gensim/models/nmf.py | 24 ++--- 3 files changed, 85 insertions(+), 115 deletions(-) diff --git a/docs/notebooks/nmf-wikipedia.ipynb b/docs/notebooks/nmf-wikipedia.ipynb index cab9c11210..895acde5ab 100644 --- a/docs/notebooks/nmf-wikipedia.ipynb +++ b/docs/notebooks/nmf-wikipedia.ipynb @@ -1103,13 +1103,7 @@ "2018-09-26 17:31:24,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", "2018-09-26 17:31:24,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", "2018-09-26 17:31:24,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ + "2018-09-26 17:31:24,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", "2018-09-26 17:31:24,858 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", "2018-09-26 17:31:24,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", "2018-09-26 17:31:24,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", @@ -3511,7 +3505,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.0" + "version": "3.6.6" } }, "nbformat": 4, diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index f1cd978167..e15144013a 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -78,11 +78,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-26 16:17:36,495 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-09-26 16:17:37,601 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", - "2018-09-26 16:17:37,670 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2018-09-26 16:17:37,671 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2018-09-26 16:17:37,684 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2018-09-27 00:37:26,177 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2018-09-27 00:37:27,584 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", + "2018-09-27 00:37:27,675 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2018-09-27 00:37:27,677 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2018-09-27 00:37:27,717 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], @@ -143,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 123, "metadata": { "scrolled": true }, @@ -152,16 +152,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-26 16:21:23,154 : INFO : Loss (no outliers): 605.4539794750594\tLoss (with outliers): 532.3720940408144\n", - "2018-09-26 16:21:24,937 : INFO : Loss (no outliers): 618.9506306166222\tLoss (with outliers): 505.24146249601546\n" + "2018-09-27 02:24:38,813 : INFO : Loss (no outliers): 619.2288809648065\tLoss (with outliers): 537.2376723428446\n", + "2018-09-27 02:24:41,141 : INFO : Loss (no outliers): 632.5888412170466\tLoss (with outliers): 510.0645342834237\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 8.69 s, sys: 954 ms, total: 9.65 s\n", - "Wall time: 9.7 s\n" + "CPU times: user 9.49 s, sys: 565 ms, total: 10.1 s\n", + "Wall time: 10.2 s\n" ] } ], @@ -174,13 +174,13 @@ " **training_params,\n", " use_r=True,\n", " lambda_=10,\n", - " sparse_coef=3\n", + " sparse_coef=5\n", ")" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 61, "metadata": { "scrolled": false }, @@ -189,8 +189,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-26 16:22:24,489 : INFO : Loss (no outliers): 616.4966110494801\tLoss (with outliers): 533.5107297438328\n", - "2018-09-26 16:22:26,366 : INFO : Loss (no outliers): 603.170374269566\tLoss (with outliers): 498.6201255460912\n" + "2018-09-27 01:05:24,445 : INFO : Loss (no outliers): 615.6931097741867\tLoss (with outliers): 533.033269838796\n", + "2018-09-27 01:05:33,514 : INFO : Loss (no outliers): 639.8889427819846\tLoss (with outliers): 508.648662962832\n" ] } ], @@ -282,24 +282,24 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 124, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-26 16:19:18,699 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-09-26 16:19:18,724 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + "2018-09-27 02:24:41,227 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2018-09-27 02:24:41,272 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { "data": { "text/plain": [ - "-1.4685017455113438" + "-1.471331868708171" ] }, - "execution_count": 9, + "execution_count": 124, "metadata": {}, "output_type": "execute_result" } @@ -357,7 +357,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -376,36 +376,18 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 19, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/anotherbugmaster/Documents/gensim/gensim/models/nmf.py:94: RuntimeWarning: invalid value encountered in true_divide\n", - " return self._W.T.toarray() / self._W.T.toarray().sum(axis=1).reshape(-1, 1)\n", - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/scipy/sparse/base.py:594: RuntimeWarning: invalid value encountered in true_divide\n", - " return np.true_divide(self.todense(), other)\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mperplexity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgensim_nmf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mperplexity\u001b[0;34m(model, corpus)\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mH\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mW\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproba\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, bow, eps)\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meps\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 99\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_document_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meps\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 100\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mshow_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_topics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_words\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformatted\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36mget_document_topics\u001b[0;34m(self, bow, minimum_probability)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_document_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mminimum_probability\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[0mv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmatutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcorpus2csc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mid2word\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtocsr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 212\u001b[0;31m \u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_solveproj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv_max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 213\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormalize\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m_solveproj\u001b[0;34m(self, v, W, h, r, v_max)\u001b[0m\n\u001b[1;32m 414\u001b[0m \u001b[0mh_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 415\u001b[0m \u001b[0merror_\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0msolve_h\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWt_v_minus_r\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWtW\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kappa\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 416\u001b[0;31m \u001b[0mh\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msparse\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcsr_matrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh_\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 417\u001b[0m \u001b[0;31m# h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 418\u001b[0m \u001b[0;31m# error_ += error_h\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.6/site-packages/scipy/sparse/compressed.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, arg1, shape, dtype, copy)\u001b[0m\n\u001b[1;32m 77\u001b[0m self.format)\n\u001b[1;32m 78\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mcoo\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcoo_matrix\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 79\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_self\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcoo_matrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 80\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;31m# Read matrix dimensions given, if any\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.6/site-packages/scipy/sparse/coo.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, arg1, shape, dtype, copy)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[0;31m#dense argument\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 178\u001b[0;31m \u001b[0mM\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_2d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mM\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.6/site-packages/numpy/core/shape_base.py\u001b[0m in \u001b[0;36matleast_2d\u001b[0;34m(*arys)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mary\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 109\u001b[0;31m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 110\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] + "data": { + "text/plain": [ + "52.18628198646492" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -414,9 +396,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'gensim_lda' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mperplexity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgensim_lda\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'gensim_lda' is not defined" + ] + } + ], "source": [ "perplexity(gensim_lda, corpus)" ] @@ -430,25 +424,25 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 125, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.025*\"said\" + 0.020*\"peopl\" + 0.020*\"know\" + 0.016*\"went\" + 0.015*\"apart\" + 0.014*\"azerbaijani\" + 0.013*\"came\" + 0.013*\"sai\" + 0.013*\"come\" + 0.012*\"start\"'),\n", + " '0.072*\"israel\" + 0.056*\"isra\" + 0.039*\"state\" + 0.038*\"arab\" + 0.036*\"jew\" + 0.035*\"right\" + 0.028*\"human\" + 0.023*\"question\" + 0.023*\"govern\" + 0.022*\"attack\"'),\n", " (1,\n", - " '0.037*\"imag\" + 0.037*\"jpeg\" + 0.020*\"file\" + 0.016*\"format\" + 0.014*\"program\" + 0.013*\"us\" + 0.012*\"displai\" + 0.011*\"softwar\" + 0.011*\"version\" + 0.011*\"avail\"'),\n", + " '0.024*\"said\" + 0.022*\"armenian\" + 0.022*\"peopl\" + 0.019*\"know\" + 0.014*\"went\" + 0.013*\"apart\" + 0.012*\"come\" + 0.012*\"azerbaijani\" + 0.012*\"start\" + 0.012*\"sai\"'),\n", " (2,\n", - " '0.016*\"peopl\" + 0.012*\"israel\" + 0.011*\"like\" + 0.009*\"isra\" + 0.009*\"right\" + 0.009*\"god\" + 0.009*\"think\" + 0.008*\"know\" + 0.008*\"time\" + 0.008*\"question\"'),\n", + " '0.033*\"god\" + 0.025*\"peopl\" + 0.021*\"believ\" + 0.021*\"exist\" + 0.019*\"christian\" + 0.019*\"thing\" + 0.018*\"mean\" + 0.017*\"like\" + 0.014*\"think\" + 0.014*\"religion\"'),\n", " (3,\n", - " '0.083*\"armenian\" + 0.033*\"turkish\" + 0.021*\"turk\" + 0.019*\"armenia\" + 0.017*\"peopl\" + 0.016*\"russian\" + 0.015*\"genocid\" + 0.014*\"muslim\" + 0.014*\"turkei\" + 0.014*\"argic\"'),\n", + " '0.036*\"jpeg\" + 0.035*\"imag\" + 0.019*\"file\" + 0.015*\"program\" + 0.015*\"format\" + 0.014*\"us\" + 0.012*\"softwar\" + 0.012*\"avail\" + 0.012*\"displai\" + 0.011*\"graphic\"'),\n", " (4,\n", - " '0.040*\"space\" + 0.016*\"nasa\" + 0.012*\"orbit\" + 0.011*\"satellit\" + 0.010*\"launch\" + 0.010*\"data\" + 0.009*\"new\" + 0.008*\"mission\" + 0.008*\"includ\" + 0.008*\"technolog\"')]" + " '0.057*\"space\" + 0.027*\"nasa\" + 0.020*\"orbit\" + 0.016*\"launch\" + 0.016*\"satellit\" + 0.014*\"mission\" + 0.013*\"new\" + 0.013*\"data\" + 0.013*\"year\" + 0.013*\"center\"')]" ] }, - "execution_count": 10, + "execution_count": 125, "metadata": {}, "output_type": "execute_result" } @@ -558,7 +552,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -608,7 +602,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 22, "metadata": { "scrolled": false }, @@ -630,9 +624,9 @@ "\n", "Dataset consists of 400 faces\n", "Extracting the top 6 Eigenfaces - PCA using randomized SVD...\n", - "done in 0.175s\n", + "done in 0.396s\n", "Extracting the top 6 Non-negative components - NMF (Sklearn)...\n", - "done in 0.757s\n", + "done in 1.822s\n", "Extracting the top 6 Non-negative components - NMF (Gensim)...\n" ] }, @@ -640,40 +634,22 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-25 19:37:46,019 : INFO : Loss (no outliers): 4.667153263442201\tLoss (with outliers): 4.667153263442201\n", - "2018-09-25 19:38:15,294 : INFO : Loss (no outliers): 5.627424232391022\tLoss (with outliers): 5.627424232391022\n", - "2018-09-25 19:38:42,054 : INFO : Loss (no outliers): 4.6702664790116435\tLoss (with outliers): 4.6702664790116435\n", - "2018-09-25 19:39:09,601 : INFO : Loss (no outliers): 5.475740164257109\tLoss (with outliers): 5.475740164257109\n", - "2018-09-25 19:39:09,605 : INFO : Loss (no outliers): 5.475740164257109\tLoss (with outliers): 5.475740164257109\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "done in 109.365s\n", - "Extracting the top 6 Independent components - FastICA...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/sklearn/decomposition/fastica_.py:118: UserWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n", - " warnings.warn('FastICA did not converge. Consider increasing '\n" + "2018-09-27 00:45:53,330 : INFO : Loss (no outliers): 5.7361953791549105\tLoss (with outliers): 5.7361953791549105\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "done in 0.426s\n", + "done in 32.397s\n", + "Extracting the top 6 Independent components - FastICA...\n", + "done in 0.766s\n", "Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...\n", - "done in 1.286s\n", + "done in 1.915s\n", "Extracting the top 6 MiniBatchDictionaryLearning...\n", - "done in 2.630s\n", + "done in 4.536s\n", "Extracting the top 6 Cluster centers - MiniBatchKMeans...\n", - "done in 0.148s\n", + "done in 0.404s\n", "Extracting the top 6 Factor Analysis components - FA...\n" ] }, @@ -689,7 +665,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "done in 0.306s\n" + "done in 0.730s\n" ] }, { @@ -704,7 +680,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYZXlVJbp+EZGRY2VNQA2AVIE44vD66Sdgg9jYymd3q/haoXEAbFtxeOrDVhxea7XayhMbBUekbUsFQduRhlYcq1ucwemhlIJSIkUVNWUNmZWVmRFx3h/nrIgd6+y9z4nKuDdf4l7fF9+Ne+85v/Obzrl77bF1XYdCoVAoFAqLwcqF7kChUCgUCh/IqB/aQqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIyR/a1toLWmtd8Hevc9x1i+zwXLTWvqi19s7W2lnbzw80yHpstNbe3Vr78dbaY5xjn9Ja+9nW2vuGebm7tfbrrbXnt9ZWneO/eWj3F5czmtH1b2qt3XQhrn2hMcz7DUu+5nXDdV+wxGve2Fq7ZcZxV7XWXtla+5vW2unW2l2ttbe11l7RWjvYWnvksKd/KGnj3w7je8bw/iZz72y21k601v6stfb9rbWP3L9Rju7T6O+WfbrWoaG9b9in9j64tXZDa+2DnO9ub639yH5cZz/QWvvk1tofDHvkfa21726tHZxx3nNba7/YWnvPcO7NrbVva60d3Y9+re3h2M8B8F75bMP8/yYATwFw2/l26nzRWrsWwI8CeC2AFwJ46ML2aOG4EcCr0K/nxwL4jwCe2lr72K7rTgNAa+1rALwcwG8BeAmAvwdwOYBPBfDDAO4F8MvS7hcOr5/eWruy67q7FzwOxZcv+Xr/2HEb+nv4by90Ryxaa8cB/CGALQAvA3AzgCvQ7/XPA/CtXdfd2Vr7FQDPaa19Tdd1Z52mvhD9vv+f5rO/APClw//HATwJwBcBeFFr7au7rgt/uPeIp8j7XwTw5wBuMJ+d2adrnRmu9559au+DAXwrgN9w2vx0ACf26TrnhdbaxwH4VfTPsW9G3++XAbgKwPMnTn8J+n31EvT3wf+Ofsyf1Fp7Rne+CSe6rkv/ALwAQAfgg6eO/f/LH4BPGvr8zy50X5Yw1g7Ad8hnzx8+/+zh/dPRP6ReGbTxBAAfLZ89ZWjjTcPrV17osV7geT54Adb1hgs97iWM80YAt0wc80XDfHyM810D0Ib/P3s47tnOcdcN98C3m89uAvAW59gDAH4OwCaAj1/QuG8B8Jo9HL/U/SfXftYwr//0Qu+XiX7+CoC/BLBqPvuSoe8fOXHuI53PeO5Tz7dv+2aj9VTHrbUjrbUfHlSUJwdq/lRPPdVa+6TW2m+21h5orZ1qrb25tfYkOeam1tpbWmuf0lr7k9bag621t7fWnm2OuRH9DQQAvzlc68bhu+e21n6rtXbn0J8/ba2NJJ3W2lpr7SWttb9qrT00HP+rrbUPM8c8srX2I621W1trZwZVw5dIO1e31n5iUGGcaa3d1lp7Y2vtUQ9vlmfjj4fXDx5eXwLgHgBf7x3cdd3fdl33F/Lx89E/aP4dgH/AtEQIIDYhDKqnTj776tbaOwZVzYnW2ltlLXepjltrzxja/ozW2g+0Xn14V2vtNa21y6TtR7bWXtdau39o+8eH87ZVh8kYbmytvbf1qvbfa62dBvDdw3dz91DXWvuO1tpXtV6d/0Br7X82UUm21laH424b9vNNeow59lmttd8f5uu+1tovtdY+VI7hPfKs1qtBTw99/IRhX3/ncK17hnEeNefuUh233Gx0g8x1ei8Mxz1zuG8faq39bWvtS/WYAFcMr7frF92A4e0b0e/zL3Da+AL0P8o/OXWxruvOodembAD4qpl93De01l7fWntXa+3pbVCDAvi24bsvHPbRncOeeltr7Xly/kh13Fp7aetNS09s/bP11LAvv7G11pK+PAv9DxgA/I5Z/ycP3+9SHbfWXjR8//GttZ8f7pHbW2tfO3z/r1prfz5c/w9bax/jXPM5rbU/Gu6HE8N8PHpizo4A+BQAr++6btN89Tr0z7HPyM7vuu5O52M+R7ev3Vp7dGvttcM9dKb1z/Y3tNYuz9rfi+p4tbWmx291XbeVnPOj6FXONwB4K4Bnolfn7kJr7V+gp/tvAvD5w8cvQb+wH9113T+Yw58A4BUAvgvAXQC+FsB/a619WNd17wLw7QDeBuCVAL4CwJ8A4CQ+Hr2k+lL00u3TAfyX1trhruusneH1AD4LwPehV5ccGo69BsDNrVdlvQXA4WFs7wbwaQB+uLV2sOu67x/a+SkAjwPwdeh/rK4a5uBIMmf7geuH13tbb3v9ZAC/1HXdLBV6620azwHw613Xva+19hoA39ha+/Cu696xHx1srX0egP+M/gHyO+jn8qOx81DN8Ar0D9XnAfhQ9D+Cm9gtDPwCgI8C8I0A3gXg/wDw/ZiPS9Hvg+8B8E0ATg+fz91DQL+X/xrAVwNYR6/G+uVhr9LscsPQ/ssB/BqAjwPwBu3M8MB7E3rV/3MAHEM/d29pvYngVnM4VWb/CcBJ9PPzhuFvDb2W6sOHY+5AIIBhxxxk8XkAvhLAO4Z+zboXWmsfDuB/oH8OPBfAweH4Y+jXLsMfDa+vb629FD0LPaUHdV13trX2OgD/rrV2Rdd195ivPx/A73Vd986Ja7GtO1prbwXwiXOOXwAegf758f8A+CsAHO/16Pflu4b3nwzgp1pr613X3TjRZkN/X/wY+rX/bADfiZ5dvy445/cB/F8Avhe9ip0C+dsnrvUa9NqKH0a/Z76ntfYI9Krm/4TenPc9AH6xtfZE/ji2HRPXq9Grbi9Dv89/e9jnDwbX+xD0e3tXv7que6C19h4AHzHRXw+fNLzaZ97rAVwJ4MUAbgVwNYB/jv43IsYMOv4C9PTZ+3ujc9x1w/sPRf8g+npp75XDcS8wn70LwG/KccfR/5B+n/nsJgDnADzRfPYo9DfqN5nPPmW4xjOSca2gX5hXA/hz8/k/G879quTc/4B+ozxRPn/10Oe14f3JrJ19Upd06Dfu2rDYTx42xikA16L/ce8AfNce2vzc4Zx/Y9ayA/DSPeyX6+TzG/rttv3+BwD8yURbNwG4ybx/xtD2T8hxPzCsB1WInzoc97ly3Bum9sVw3I3DcZ85cZy7h8y6vBPAAfPZv4ZRRaG3kZ8E8CNy7ksgqmP0P1Dv5N4aPrt+uB9e7twjjzeffcbQ3m/IdX4BwLvN++sg96Yc/4nDPNvrzb0XXju8P2qOeSyAs5hQHQ/HfstwbIeeab512FOXyXEfPxzzZeazJw+ffamzv0aqY/P96wCcPp/7M2n7FgSqY/QP8w7Ap83cfz8F4A/N54eG87/BfPZSmHt6+KwB+BsAb5i4Tqg6Rq9l+BHz/kXDsV9vPltHb8d9CMBjzOd8znzC8P4y9M+tH5JrfMiw5i9K+sjn9ujeHvbKm/a4Po9Drx357zJfZwF8yV7Xey+q42cPm9j+fU1y/CcMHftv8vnP2TettSeiZ6mvHVRbawNzfhC9NPV0Of+dnZFKu667A71UPvKIUwxqk9e11m5F/zA6B+CL0f+QEHxIvzpp6lnonTPeLX1+M3pph9LTHwP4utarSD8qU9GYPq7aNltrc9bom4axnEY/Z+cAfHrXde+bca6H5wO4H8AvAUDXdX+NfryfP7M/c/DHAD629R6enzKofubiTfL+/0XPkK4a3j8ZvfCl3tI/h/k4h54178LMPUT8eterIW0/gZ29+lEAjgL4WTnv9XLNowD+CYCf6XaYMLquezeA38WO5E38Tdd1f2fe3zy8vlmOuxnAY2buy+vQz+ebAfx789Xce+EpAP5HZ5ho12uqfnfq2sOx34Z+3r4Y/Q/LlegZz9tba1eZ4/4YvaBp1cdfiN5B6GfmXMugoX8WxAfsvlf3oiGcwoNd1+l6obX2YW2IHED/43MOPVv39p+H7Xun6389/hIznp0PA1Q3o+sd094N4C+7rrMOtdyXjx1en4Ze26e/BX83/OlvwULQWrsUvVB+Ev1+A7A9X28D8E2tta9se/BM38tD8+1d171V/t6VHH/N8HqHfP5+eU975Y9h58HFv3+J/oayuAdjnMEEdW+tHQPw6wA+BsA3oF/UjwfwX9E/pIkrAdzTDd66AR6FftG1vxQq2OfnoF+wr0evcrm1tfYtEz9Wvyltfks2rgH/dRjL/wbgEV3XfXTXdfSsvBv9D/DjZrSD1trV6FV/bwJwsLV2Wevtnz+P3lbxzDntzMBPAvgy9ALZmwHc01r7hTYvPEz3AL01uQeuAXBCfuSA8d7LcGe329azlz20l356/dL3l6N/6Hse/bdjrG5XL9CzyedrAEahXRaDeviN6KMOntftNhfNvReugT//s9ek67rbu677sa7rXth13fXoVdiPRm+asfgJAE9pfVjKOvr78Je7rttrmN9jkURRDHt117hn7t85GNmjh/vwNwB8GPox/1P0+++1mFJd9tjsuu5++Wzy2fkw4e21aF/y+vwteAvG++mJGP8WeNfzbKVXwP/dGGEQat+EXhv4qV3X6f58NnrP5m9GL+S9d8rODezNRrtXcIM+Cr00Q1wlxzFk5BvRbyKF56b/cPAU9D82T+u67i380JFC7wJwxWBzi35s70YvQHx18P1fA9ts+ysAfEXrnVaejz705k70tgsPXwrgEvN+Diu9reu6t3pfdF230XqHon8+2MymQgg+D/2D998Mf4rno/+xiUA78Lp8vusmGaTDVwF41eBI8KnobbY/g/7H93xwG4DLW2sH5MdW914Gj8nM3UNzwXvkKvTMAua9xYmhP1c7bVyNmQ+Rh4PBxv8z6NV6n9CNbaOz7gX0Y/Xmfy9rsgtd1/1ga+3bMba/vQa97fELAPwZ+gftpBOUResdFj8Ool0QvA/9D51+th/w9t/T0AsWn2Xv99bagX265oUGfwueh95MolAhweKv0TP8j4TRZA3C8Qch11Dy2IPofYU+CsAnd113sx7Tdd3t6NXjL2qtfQT68NHvRC8Y/XjU9iJ/aP8I/Wb5HAwemwM+R477a/T2io/suu6lC+wPVZPbD97hAf+ZctyvoWcrX4zYeeZXAfyfAN4z/JhOYlC/flNr7UXoY/Wy4/YbL0Vvj/puOA/E1tr1AC7pes/j56OPNXyB085LADy7tXZJ13UPBNf6++H1SejtP/wh+tSoc13XnQDwM621T8BOTOP54A/QCwvPxm61rO69vWLuHpqLv0Bvk/pc9E5OxHPtQV3XnWqtvQ3A57TWbuh2HEceB+Cp2JuT117xcvQP+Kd1ux2uiLn3wu+jj8c+yh/r1tpj0dt90x+nQTV8pzBptNauQe+0tot1dl13a2vtN9CrVD8aPWseqWGT6x0A8EPon4+vjI4bVKKugLsgePvvUegdjBYJCueHF3yd/4Ve+/b4rusi5ywXXdc92Fr7TQDPba19l9FGPRf9s+C/Z+cPz6ifRS9MP6vruj+Zcc2/Qm8a/HIkz3Rgbz+0Hzt4jSneau1GphM3t9Z+GsC3D6rSt6E3WP+r4ZCt4biutfYV6L0x19EP9i70ku5T0d/AL99DPyP8HnqJ6Adba9+K3jb2fw/XutT0+7dbaz8P4OXDg+C30MfVPR29Qf0m9B54z0HvFf296IWFo+hVOk/ruu4zBz3/b6BX69yM/ub4TPSqjV/bh/HMRtd1/6u19uJhTB+B3tnnPUNfnoleqHjewF4+Cr0Tzk3aTmvtEHqb3L9GLL39MfqEBy8b1v0M+lCJXarV1tqPAngA/QP4DvQOD1+AfZibrut+rbX2uwB+dNiz7xr6zFCCzFM+w6w9tId+3jvsn29urT2AfuwfD+DfOof/B/QqrTe2PvvRMfTakfvQawL2Ha2156IPb/ku9GaEJ5uv3zvY2ybvheH470Av6Pxaa+1l6DUeN2Ce6vgLAHxJa+216AX4B9Hvl69Fr/H6Qeecn0B/710P4Hu9Z9SAS8y4LkG//1+I3ub55V3XvW1G/5aF30EvmL2qtfZt6B1GvwX9HI4ywe0jbkZ/z3xxa+0U+jl/h6PdOC90XXdP60OS/nPrkw69Gf0z4tHovat/peu6zM/iW9CrnX+6tfYq7Hjfv6brum1v5NaHnv0QgE/suu4Ph49fjd5p8FvRmwDsXn9P10dfXIWe8f40+n2+if65chi5lu+8vY479DZBe9x15twj6FWk96A3LL8BwL+A49GJXpJ4I3a8025Br7Z5ijnmJvgB5rcAuNG8d72O0f/Q/yl6qelv0T9EboDxhh2OW0Ovg/8b9JvqTvShCR9qjrkc/UPm3cMxd6C/Eb5m+P4getXoXw5jvx/9j9DzpuZ8L39wElYkxz4Vve3sNvQ//Pegf7h/Pnp7/fcNm+dxwfkr6H+gb5q4zkcOa3VyOP7FOs/omfNNw7ydGebxewEcl/W+ybx/xjDeTwn2qN17jxz2zwPos179JHYSeYwSH0h7N6L/IfG+m7uHRusCx6sXvbT9HehVT6eHMX8EnIQV6IWc3x+Ouw/9Tf+hcsxNkHvEXPeL5fMbhs/XvP6Z772/G0w76b0g9+WfDuv9d+i1FzdiOmHFhw/t/yl69eI59Hv45wD8k+Ccw8Mches9zBXHszUc/2foNQRpgoN9uG9vQe51/K7gu09Dn1HqNHr16peh11g9ZI6JvI43gmvdPKO/Xzn0eWNo+8nD55HX8WPk/D/A2Ov9w4ZjP18+/0z02bseQC9UvRPAf9G9HvTzmeid8x4a9sj3ADgkx7CPTzaf3Z7s9W8YjjmK/gf5r9A/2+4bxvU5U/1iOMTS0Fr79+hVmNd1XbdfKcIKhUm01n4APVu5opu2VRcKhcK+YJE2WrTW/iV63fWfoZcYn4Y+NOBn60e2sEi0PrvRpeg1Cuvo2eCXAXhZ/cgWCoVlYqE/tOip/2ehdy46ij6TxivR68ELhUXiFPo47yegV+O/G3288csuZKcKhcI/PixddVwoFAqFwj8mVOH3QqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFohFO0PtXGhtrTtw4AC2tvpcAXz1bMQrK/3vP9NHrq6u7vqcr/YYPUdTT2apKKeOnXPu+bQ/dfxe+7jX8cy5XgYeq2uZzY0e23Ud7rjjDtx///2jg48ePdpddtll2+d47epn+mr3zNQ5EfZrjfcytxHm+Fbsh/+Ft05R29F3+rn9nv/zebC5ubnr/cbGRng9orWGkydP4syZM6OJPXbsWHfFFVdst8v22P5U/7Jr7uXz8z12P8+9UNjLfoz2kPdZtG7efc3ngP1Nue+++/Dggw8udEKX+UOLxz3ucTh58iQA4NSpPqkINz6PAYD19T5N7pEjfcax48eP73p/9Oh2rWocPtxnBTt4sE88dODAgV1t8dV74Opn0Q88X+13eq4KA3Zx9TvbXtamd070as+JBJPoc85ZdsycHw59aPJcrqcdtz5Iz507h6/7Os0N3+P48eN44QtfiLNnz+5qj2tux8D15nvuD57D723/Dh06tOs770dZP4/2TjTnFnv5UWY7KphGDyL+oNhz+FnUZ68vUz+AfG+vpz9megzX78yZnegq/v/QQ32K7Pvv79PZ8jlx77337noP9HsF2L1Xf/u3f3s0FgC4/PLL8eIXv3i7nRMn+tzzfP7YfrFdnVtvnqLniq5ldv+cDynIhE6F9oHrEe3zrL3snCkBKyNXVvCxx6hgxLUCxvtL9x/3h32+8ZnB35Rjx47hJ39yT2mwHxZKdVwoFAqFwgKxNEbbdR3OnTu3LTV6KhxVKxMRI7P/R8xP2amnbpzD2iLMOSeS7CLpNLvOXDWnd91I2rbzHbWvbWSqnOj6U+q/CFtbWzh16lS4L7y2ud4ZE5xi4myD33uMNpqnbMw6Dm88eqwy1jkq3YhBzFmHSKPBNjk3ViOlx+p7j3XzfD1H58i+J6vhZ9Yk5WFzc3P0vPGeO5Hq0dMARBql6J729p2ud3ZvzWW9mdZl6tw5rHsvz8joXlCtCDC+1/hKNsrfDctOtT0F27daLH5GDcqhQ4f2xcQyhWK0hUKhUCgsEBec0c5xlIlsp/a7KTtkZv+MruMx3bkseI4tIxqnx0r0O2XFnlSX9SHqRyQlRhJn1p6yEytZ6jxmUmXXdbvset7c6zWt/dbCs53zVe36kd1V27HvI62B7WP03ltDnVO1lep1MzYU3Sues4junUgz4Nlo1f5OBqo2QmCHqSiUedq54Tl8PXv2bMpo7fnaR/3f9lPnze5fMqtIg5attWoFzge6773nUcS2iTksNfNB0XambLPe+KP1Vmbr9Sm6F9RXwILtTe2b/UIx2kKhUCgUFoj6oS0UCoVCYYFYmuoY2O2UQLWPVcfMVRlbtYWq+VQNmIVbRCqizAliKl43Uzcr5jhBRdebExIUqQj34uAQqaotIvVLpqJSlXGmRuu6DmfPnt1eU8/sMKWG47F2v2mYUKQO9PaO9j9S4XrqbVVjZk4d0R6JVIaeuUCPiVTk3lh1XqecjoCxapeOJ2p+sMdETleZqpf7YGNjI+1X13WpKprQNeR+0FdgHLKm4T7Retn/pxwM9xIGo2PwEKmQveeqtheFPM5RO6vq1lsDjZeOzBDZ80fDliLHOmDsULdoFKMtFAqFQmGBWKoz1Obm5rYE6wVNK2uKHJy8BAuUMPmdSpweK4kcp+YE9EehIZlTylRbHhuemxDBGxel7MiRwTt3bqjTHGabhbooa9jc3EyZvw0j8foQObTo/mByCmAnmQU/0z2TZSSLGDQ/z/a3BtZr6IllAFNJDZSVepoUzjHfa/IOb+9oAhAdg+eEx3GQwZI16Dx6jDa6Xz1Gq/O2sbExeb9loW56n0fPFLt3+L/Ok66Tx/wyVm0/t2NS7YeXMEQxN6mF5+wVafV0vFnIm+cwZ8c3h9GqlsQmrND9FDlbedqEveyd/UAx2kKhUCgUFoilMtqNjQ2XmSg0dZ+m1cvCeyK7ipeOSyX6KNwjC39RGwLh5VJVSTVish5jj1iqNydTaRqz9Ipz7ckeo4uSKRBZCNLa2lrKoltrozRsHluM2vdYScRoNRXoHOavDNNj8V5YCoCR34LdS5o+UW2zug881h3dE8rYbP91DjQ0x9v3DMGasu96oTpMsajnZGFEUcrEOfC0VTpf3Bf6av/XOY00TXPC/XROvTAo3SN8P8WS7XWIyGZv+6vPXu4HL6XpVApT3TvePvC0FfbVMlq91/T5w2OnQgeXgWK0hUKhUCgsEEv3OiY8L8nIYzhjtCpRRhK5J73rZ5k3JjFlZ5uTbJ1QlpixU7UBRazV9juyt2Z25MjLNfNU1uuo5JoluZib2q21FnokWug1o2QUQLz+ZCssYuHZK5XBaP+9qjOUsGnDJKJkJN4YdU/q/rf94Gf0qtbXjJVENlplVhZcF2WGHLd3X/Ez9im69+z95LHcKWaS+TTomHX9+Z4aECD2Oo60ZJ6WSu3cfPXskVp8gcewDfXetojYbqQt8+aE66NFXDgP9tiIxWeMnWPVV46bx9p5jDzUFd7nc7yl9xPFaAuFQqFQWCCWymi7rhvZYKzUo56hlJqm0pt536n05EltkSdilqJOpSgrdUZ9VHYVsZQsFjLzpIsQMT9tK4ufU7bl2WGj+LzINm3/t9eJpMzWGlZXV7elW882F3l/Z8w/imsla+Dnug/tZ8rIeQ77atdSPe7VRquv9tgoveVeJPNof3nerYTGG3JulFnZ//md2tX46jEMZZGel7j2V9OTRvDirT0PW64pr8lynGRxmT0y0qxltnMdT2SPt2NVm2wW1z/lC5LdG8pkVfvjxRbrZ1F8uMdAo5J3hOcbwr5xz0S1i+0enZO7YBEoRlsoFAqFwgKxVEbbWht5utnk7ypBqk1JPd/YJrAjqSjbUfuEZxdg+zxXr+vZP/X6WXL8iH3O6eOU3TPL2BTFwmX2VpUcI9uwxVSSdI1ds+1OeSpaqMTqxeVqu8rEbB8iFjIngbpC/QlUk2L/V82GMllrw43WV22nWR95LFm2SvUeg448odmGahfsuTquqNSf1w7X4rLLLgMAPPjggwB23/PEnIIURBSjb/+P7MXKJu3/0VrOYYsKZav2emrXjMr+ZftAi3vouL2Y2MiDPIqR9fqkGhx6mJ8+fXp0TqTdyVi++lboXNk50QIXy2K2xWgLhUKhUFgg6oe2UCgUCoUFYqmqY2CcjIKGbCB3HQfG6iwLNaKrak3DfIDYsM9+UJVtz1GVqqpyPGP+VMJszomXzCMqjqBOWJmjUeRENscJIgrEt3OiamzPAUSvr/M2VRTA+962F4WAUT1FFaRdlyj8JVK12uup6m5O/Vu9nqom1TnKjiNKjBGp+O31qIrWfcA5sSo8VeWyLzxG7z3P0UiTuasKz66lOoixr+yj95x44IEHAOy+B7JEK1tbW7NCzHS/qkObdepRs4KdQ2+stm1VHev976ljVZWqjmee6nhu8hnCCyvT55k+f7yUiKr6VnOD3pN2XFNJfTLob4v3O7FsJyiiGG2hUCgUCgvE0hhtaw0HDhwYJWfwHAOikBJlkWwXGDtBqaSnBnMgTrmnxnwrTStzUgnJY7RRcv1IyvYM/jreLMnBlBNKFkwfBX2rtJpJ9xqCosd5x2YpGFtrWFlZGSVAyEKMTp06BWDMBOw5UbIBHkPJm+favaMSv4akeVqEyKFM18NjtKpRiPahXRd+R+bANnhv3Hvvvbve2//5SscVtsHxKCsHxkkcdA68FKO6J/me6+exEnV66bouZTxe6ldv7/AzLzRL+xLdu3r/eGw4SmOYFQGIHIyU2dpz2P5USkTvvtOQxCghi/fc0eQavI+4pvzcMloi0tR4mgEtPBGlJ7V9zIp+LBLFaAuFQqFQWCCWaqNdXV0NdfBALF1ktgR1154KF8mS/VPKoUTmSZaU5NVmmgVcq9QbBY57cxIVR9DQDC8dYZT6kcgSkOu8euEVU+foXFlou1OS5erq6mjslk1xrJSSlfVm4Q8qNfMYbcM7VxNUZIlFNPmCSvrKFoGxvZttsM9aVN3T9qgmiHNyauRLAAAgAElEQVREtuqF93A8tIcq687CvSJmpuzLXkdDrDj3HuthH+lLof4K2pfNzc004YqGn02xR++YKDWrp92ZSoXppQuNipZo+Iud26gEoYYMzgkJip5vdu7ZF+5nfdX9budTGWtU+MIr7BD12bsn9F7IEuXsJ4rRFgqFQqGwQCw9BWNkw7D/q5SsdhqPiUXlwlRS8hLDR4nU1ROSY7CgVBpJtBYRC1AbjSf96jjUQ9FKlpQc1YtVJVqVdLP+qy3Nm0ediyyRwJxjCNpo2SdN8QbsMJ8o6bpti1CJVz2qtaiATSqvHsOa9FxZA7AjgavfAN/ff//9AHYzWl7z2LFju8ahfgvsu5fkQNm2JqC349J7S5O4KLO2rELLk0X3emYT5nWiMnD2OtbWO6UR4Tx5Nl89l/3XAgqejTYrcQj4XvqRd3Zkf/fGofDSd+o+m0r276VvVN8X3VN2TlQLwWOUdXNcdn9EhRXYhiYVssfqPRelK7XH2vEso1ReMdpCoVAoFBaIpZfJo1Tl2e+UlSob8aRbtZHyOy3mrQnDvWO8MnW2bSCW6KJ0iraParfT62UsTyVKZbJW0lNJ8uGkEtS+ZjHMupaqEchiZK0Em0mWKysrI9sVxwnszKWOnfD6wM/Uy5QMj9+T2Xral8gr3Iv/03hZsjhN3O+VcGNMt3r78r2X5nJueTS7L9Q/IfKQztL2KRtRBm3XeSqO1vMWV03M+vr6ZGF1ZTdeHDivRUamffM88lVboNoPvtrrKcOcKjLifacs1PPViAofqAaN52SpbaMCGJ52Ua97ySWX7PpeS98BYw9le29beOdERVsyfwxiKn5/v1CMtlAoFAqFBWLpmaGiBO5AHHdHeDp3lUjIPi6//HIAO9KUJ71feumlAMYxVVkWGfVw1OxOntQexXXpdbxYSJUYldGqHQbwy3oBOxKrJmq39j+2r7HFnr2a4JxodhxlD570O8dW21rD+vr6tgaCfbD7IGL4OufeOZrQXm2pXrlBLc49h70rk6X3JeGVhlOPVGUnXGtvz6pnqu5dL4uaMnHV+hCerVD3iGYC4qt3PdUUEZ7tWe/XyG4J7PiFZCxSGTjvD2VtHmtW/wQ+f44fPw5gZ328WE7NsqRewN5ejYo+6Bjs+VGhkEjjYcelvgZqb818bPiezxddJ+uLwHbp5c7X++67b9f4Mg1RpAnNfi8OHjy4lFjaYrSFQqFQKCwQS2W0VnKIivR6n6nE4ZWto+TI8lrqrUvJ3MucQumJUpuyOGv3Uolb7WrWg1P7q68R67LSuzLlqNRdZgPSuEO2r7mlLThmHuN5+iqislje3CuLX19fTzNDtda2z1FmC4yz0ajknTFNtkfth7I3T2ugXqxsn/uP/WGsqu2LMv3IGxQYe54qy9Lv7f5U5h8xGC9uVz3Iyb45Bs6V3auaPUpZMfvGjFT2OnoPRBoVe6w9JovBX1tb274O++B52kexsdpXe75qHIhIA+G1rz4N6vFrv1MtzJx9zvb1fvfigxX6TIpi8m17vO/ZF9WkkPXbOdN7m/NK34S77roLgB9Xrb8l2X2l82TzYC8SxWgLhUKhUFgg6oe2UCgUCoUFYunOUErdrUolCh3wigkQVDVcccUVAMbqUYV12FGXdVVTqTOJ/UydDzSA3zPARynQCC8RvaqXsoQIisjJSwPGPQcKjsNz5lCoE9ecMCJND5gVFWC/tHSfXRddb1Wbc62pirL/c6xaFpGv7BdNDBbsP1XGfKXKWB3E7HU03aDnaKaqVQ3viUI1gJ354fV0z3iFPbj+dObhsbfeeuuucdFJxar/dK+yLe4v7iW7bhy7mkZUhW3nJko474GOdIQ6vvEYYEctqQ6bnpOaqopVPeql/yPmqo69/a33rC3KoX2M0hhGBV3s9bgOGm6j62Xhqby98dAMYfeqOsXpuHhfeftb3+tvjF0DLQKyLBSjLRQKhUJhgVgao6WbfeZE4CXx57n2cyvBqsFdnUQ0aN5LMB0V0/bKsUVu9lFRdQtPmrZtZXOiDgxRknH7vzrfRE4fFlEaRXX6yooMqDTqMdUs8UEEW64Q2C2VRkWnlZ0ypAvYCTvQuY0c2+w4eCz7dOWVV+7qE/thg/WjVI8q4du9FCUD0eICbNs67LBvUSIYLxxC2+d1qTHKQp6UQWnqT7JSL20j29FE+8ps7f9eOJyCjJb3smop7P+q0eLYvZKA7Jc6CUXJWrwEDOpgGN2n3hg1FMhLjaqaNB2vPvdsHyOtnl7XS6OoTkha0MFLAKLavCjZjg1F1Ge+PuOjNKz2syoqUCgUCoXCBwCWymjPnTs3koRs0L66dkehLVZCU8ZK6ZN2qYw5eenYbN+ILNGCSodZubooibgyZyu9R0xZbXNzJMvIluWl/CPUbuixbpXE9XpecLtXyCGTLLuu254XDRuybSszJquLEi945yhb9BKAKGPhOtCG6dlbdQ8qG9EAf3vOVElFL4xExxqlh7TjZ7u0R6udkgzdK5wdpQfVxBhecpUoWcOccLKM0WobXnEB9UvQufaS3eg1lSkrI5tjE1RNl2c7V38S1SJkKW11n+nzzzJafYZEe9ULk5rad4R3P0XFBby0lKqJ0hSgXhKZqWfholCMtlAoFAqFBWKpXse2JFFmm1NGkXn4qe0qKojspWuLiqgTnsQcpU1UVmclZpVUVVrUYH2vPFZUFs3r45T0GUm29tqRndzzLFRpPpIaPQ9zYspWwlJ53rnAzrwog+V7z5OTrFMlX11D73pqU9J0imrLtOeoxkTZoZbE846NbHSe/0JkL1Qbqm0vShOqDNOORdNS0mNVbWUeu/OStQC+1kn7OFVQ4OzZs2FyGPu/PpO0Xa+4iK5lpLXIEvPoXlHbqf1M7zFqBJTNeX3J7ntg97qoP4lXps5eV/+PjrHwUkzqvotSP9rzvSQU9pxMy2ivtUgUoy0UCoVCYYFYehytSiqetBOxRa80WSTRR2zYwouTtdf30o6plKReul6b2gcv5tH7HhgXsidU6rXzqPahyGaaFXZQSTzyQgbGjCxi1J59PCogYUGP9cyzWz1E1SbrlebKyp8B48TtHiPXmMvMVq92fT3XK6ZOphyx0ygW2/6veyfb30S03yKve/uZMuZIg2P7EvkxeKUDuaZkzlN75+zZs6EWwUP0vJmTLnbK1mjbjdry7gntk+4VL6oiKkhBRCUevT7MScGqcxo9O7zra190Lrz1mutV7eUlyLRVi0Ax2kKhUCgUFoilMlomh59znH1V+6onVWm7KlF6ElFkR9FzrDSqGWDUw069Ar1rqz1X4SWv97zuvPfeeFQqVHu2nc+IhUYMx7aj140KIET9jkBWEnkz2jFFMXxeDLZqGlTazRhGVAggK4jhxToC4wTqnrZANRtzbIBahk0ZtNdnZfHKKLPx6bHa50x7oRoiMnmP/UX+AxG6rptkvVG/outGTCjb83PhaZqUgU15Oev/QGwLzva33tuqSfES9kfPg8gOq//bdj2Pbz1GfyfmrLXVxJSNtlAoFAqFixz1Q1soFAqFwgKxVNXx6upqqq7gZ5FaJnNsmlID70WVoypEqzpmSEgUBuOpqiP1ovZ5TqiOjsNLAalzG6lwMvWP9jlTy0ypbLzvtY9T6pvNzc1tJxuG7Ng+asC+jt1z5phyhNDQkqzmb+S45yXpIDQtII+1NWyjfazfE17iEg2NiFIx2vN5jqa5i8wD9n91DFPVceZUFN3jngMVce7cucn9kyXAUJNKdm39TM1Zc1KJRmaYzMGR0PtG18sLDYycL7N1iZzfdP7s++g5oOdkzxBVK2frps/NqI923GzPOjg+HPX+XlGMtlAoFAqFBWJpjLa1hgMHDqQOJhnbtfBSk00xijmSJqFSnHWA0uB2dQ7wwjsit/epUBp7rpcM3fZjTjiJYo6T0pwg9Lnaguw6XdeFrGRrawtnz57dltqZ0MGT3nWd1WnJslJNeBBpD7L0nVEygGicQOxQR8Zu0zcqY4oc3CJnJTtOth8lLgHGCRDUOUqdpOy+UycyPcbT9uj9pO89tqXtnz17djINo17bS1gQhRx6JT2j59he2FH07OLYs7ArXpdrGmmi5mAvzqVZ4o+pcLJIw+EdQ+h1vFCdqeepdx1Pm7dIFKMtFAqFQmGBWCqjXVlZGenivRCNLEBcz4mk88jlO7N7RGE9XimwKK2i2jbsZ2p3iNhPxoYjO4hlaspCtP0oRMQ7NpI0M5tYlrRBx5GFX9lrWRbI8Xnl1gi9tmdTn0pNl2lFpjQm3niylHDAeL3ssdE+iEInLHhfsbC5Jj3w0pJGZRDVJuilYIzKoXlJLrSgBvuYJRrhGvLcU6dOTZbKi+5xO+ZMKwXszZdBj/M+i/aQp9nSe1XtkV4YTKSdip5HHluMwnm89J3ROPV9ZqOPtHtTIZEW2e+HPqeL0RYKhUKh8AGApXodr6zsJI7X0k16nEUmoahdbYppZNJUlO4rK6asEpfXxlQ6u4wtUmrnqxY/92y0kWfyXuytkbf2Xlj3HExpL+w1eG0mq7dzEWkY5iRq10LiEePPkl1EjNpLM6dMST3Hs2TyUeIAby9xTnQusqQrmro0kvy9VKP8P3r1EsBwHDxG7chZGtQ5KRhba1hbW9veM94aRM+IyIvV9m8qUX/GNKOoA28tleFF93R2nYg5e8/gKFGF7lW7lnO8piNMMdfMRqtzkvn46JiXkawCKEZbKBQKhcJCsVRG68VceWzx4aQxm5OGbaqtOYm0I7tmZiOKkl9Hyfg9NkxJX2M6vVJhkZTreTECvpQ4Nff28yg5eZa03LPFRGvYdR22tra254XshPY8ADh+/DiAnTVTmyXZjxcrqfaoiHF46QYzTUZ0HWUWau/KPLqjmEQvPalK7bq/OSe24DfTQEap7yKv9+yYOfeGplzUknseo2W/p2IhW2sjhpx5MSsyD9WI8UfPMvu/rmmWolDZdbTuXvpWvmpKTK9gA6HsWp+Fnr+BpoGMtJaZrVaPmfJrsIjyBGS27jnt7geK0RYKhUKhsEAsjdHSc5T2MM8DUW06c+13QGzL2kucW1QI3suYQkSs1POMjmyXe5EsKZFrbKedx4ih6feeNBd5EWbeelGM5xztQfQ+A+NMyWxtv2m3VQmczCjLJqVQBrqXmEHPk1PZn3rpenajaF9HHtNZQQLuEY2VtYyWc6ol1vRenGKBtv0sFlLtt1EMpNUUsL86Bx66rsPGxsYo7t177szxNo7GOGUP9eytGfOyx9k+RuVAvb4qo9VY/CxjU/TMUBuql2NA9/NUrLn9TPeVMmh7rs6f3k+eZ7QXHbAMO20x2kKhUCgUFoj6oS0UCoVCYYFYqup4Y2NjlM7MqksidZG6b3uqgChl2xyVrqrsVI2VJRLQOpqqrrHtz3Esio7TOeCrlx5QnZ40CUGkBrTX3ktaMz03SgTuOaDMAfeOqjqt6jhyvNBEFXOcYKIQgEwNPJW4wJ7Pfmuyhuw6+sr9FoVs2OvofuBcMGGFVR2rU9Ill1wCwHcMBB6eM4mnotR1031uVZSeajK6t7quw+bm5shJLXPmi5Ltz9mzkTNhljowQhZWxPXXZ4s9h2umz6YoKYT3bNRnoDpheXVd9VkVhft415uaa7uOU+Fk2flZsp5FoBhtoVAoFAoLxFJTMK6vr4+kHC+gPwoUz6SPyFlHJTCPDXuOJPa9ZbRqnI8C+20ChaikmsJz7oj6GCXUttfWeYzYR+YEEb23jG0qeF/nDBgzwinJcmtrK1wfwC9paNvNwnqU7Uyl8/Q+ixLn2z6SLfKV0PkhA7H/s09koZo+0XOKI1ONNBiaitEeS4eziEFp3y2itfQS0ROaNlQdXGyhBb32VGjPysrK9vnetedqmrKUflEIkM61/Uz3nTqBesxM7zUN2fG0ITwmKgPoMWy9h72wKB2DpqxVLUjEwu0xet+oY5Pn9BntA2+evVCjZbDaYrSFQqFQKCwQF6xMnhc6o2EIijkBziqJZe7wUVq5jJ2qrYJ2T0prDJ3w0vVloRj2OMswovCBaLwWKjlOhRNYRGElHqJxzLHn2rCBKclSWZvdJzomZQVZSsQoDCFKNGIxxWStHZlMVkNospR4ykqUnWjIhudPoNBxWolf9+pUEpmMIU5pjIDYvqbJNLxnwpxkJ3zuEMqYLSK73V7Sqnp9i6B7U9mbbZPrEhV69+411QpEdmOvj/oZ2+J6eMlOojVUNuyF+UTJOzQFp90HmtSEfdHxeto3ve6iUYy2UCgUCoUFYqkpGGkv4f+Ar+PPWG8E1dNPFRew50S2YI/Rqs1FGS3ZaOZZqRKdpk+zNrrIlqm2GSupKdvYS1FyHWd0bGav1HHOYcVTfdnc3BxJ9Za96WfKfr0E9FES8ki6zvahsjbaBK09lhK3Xk/X0ib5V29qthsl/7eIWK8G/3sl6HQPaaIUj+XrfRu92nVTG6wypjmF2jMvU45T7cPZOZkGg9AEDnP9MOy5kfexx7Yj1hsVJrF90+vN2d96jKY95auX+EO1KjrOKZux7VNUetF+93ASHGVFbRaBYrSFQqFQKCwQS7fRRrY0YH7haC/NXBSHlXkyz9XPezaMiDFnnsORvVj7kcXgKsvO7BAq7Xrp5/T6me3N66v9TFlWllhd+zqVRu/cuXMjLYi1D2lavijNnOeVGXmSZyxF51TZA/vjecuyAILaX717gsxBbXFkGJkdlO1rykXVDFjofGlJvYiF2/bUNqfsxDIeZbAcl37uMSd73Sn/Db3XMtty5Lnu7d8orjiLo83syYAfo6rzQC0F94enaYhKKep+80oREvyM+5j98Ly4o3tNtQj6zLZjJ/S5nWk2FFFbFva5U17HhUKhUChc5Fgao11ZWcH6+vooG45FlFBa2WgmvU7p6fdiy6CkZ5mTsmotOB7FyNljo2w/nj05YmbR9e05yhKjJPneXEXZnTzMSaQ+59wpu5buA8s8vKIBFpwLby014xjZgsZGegnb9RiV2j0mo+eQxWXn0G4fxbN6TE33jjJ3shKPyaitW9u080hEdnG10XqZqDgHypw8O6zu47Nnz4b7lM8d1QDMeYYovGxSqhXRvT/HBhhpfrIiI2qX9BhtVBCC+5vvVQNhz4mul8VER34y0T607elvQNQPb1wR7LrtxU9lP1GMtlAoFAqFBWLpNlplU55EEdlkMwlmytvY87yN4mjVBmjtbOpZF43DY5pqm9XYSE+C1TmIvKgzpq7j0zY89h3ZpbzPp7yKM7vuHKjXceax7pWas7D278gmq2vqxWBHWbCUHdo14H66++67d/U/yooD7OwN5hw+duzYrr7pOL3YYmWFamfL/BYiBu3Zk/VcjYH1NES0MSqzVRutF/88NwextcN59vbouRJpIOz/6sEd7SXPZyPy1leWDOysg66d9s2eE2VzUnhrSUQ2be/+jZ4v3ngUURY7j/1G11Vvfi8rV/Q8WzSK0RYKhUKhsEDUD22hUCgUCgvEUhNWrK2tjVzOPXVMpD6YY/yOEit4KtcoGbWqkK3qmKqbKXWITaOozjtRIvA5qdD02L0EXEcOB177RKQW9tYtSozhIUotmUHDlWyfNO2aqpo0WB4Yq/c09V1W0jFLhGKv5yX5P3nyJIAdNWmWNpHXjhyL1MnHqtO1TB7bUEejLF2ohoToPrDXU9WhhvV4phj+z1edE091TNgEIJnz4/r6errf1HQS3R+Zoxmh+8HbJ9H9kjlDcV2OHj0KYEflznnz+hOllI2c/DLHSr7q9Wwfo0QskdnBSx6jUPVvFk401Xfbjn1f4T2FQqFQKFzkWKoz1MrKyohFZM4UU04K3jmKLORkKrm2d31lA3SVp0RGSdPrl6bPi1zzs8QOc4z5UViHfu8xNXVKiJzM7HW94vPZdbO+euDe0TAc256mN9RjvP2mzkKR85OGe3ljjlKL2oQPmsBBQ1q8uY3Kr81Jxajtc2/qvrApH7UMX8T2MyfGKIzDS0SvjFaTJ2jCDNsnqynKGK1NwUjY95qKMysEQETXmxNWOMVks/N5Lp3idFx2n6jWK9L2ZA5buu+U/XtsUVloVJzeS/3pOWbac6Jr2+vo/vCS+dhj54Qwni+K0RYKhUKhsEAs1UYL5HaIiBFFtlr7mb6Pwl88t35NMhDZw/R8+53abi37IXNUW5WOx2OGas+NpN4syXvk/p61GUmuno1L29H25kijGYvous5lot75ni3WnuOlYNT+q22JoRVeEvQocN/bq2oTzQoC6Li4d9TuqtezfVTmHCXTsHMSlQzU8KnsfooKmnssVRlsxGg9pmbv172mYMx8Q4iIXXmYCif0bPlRaGAWlqIhM+p34V0n0rZkyfinNGdZoY3oOaN9nbPvs35o++ojoNot+90cTdp+ohhtoVAoFAoLxAVjtJ4XmSJKWJEFr0fJLTzpNJK0tWSXlXpUOiPUFuilB4xSoqmN0JNKlX1k0qDaxqJycJmX8NT6eLaZqeQWmT1nCltbW6lncpSqLUsGoSwnKtuV2XcVUdA8MPbupAep7l3PpqT2dO5N7Zs3BrXFRiUFbTvcs7pH5uxVnWstJmAZre7RKNG9Z1O1zCzbR13XjebR3p+ZRz3PV0T21ankLUDMvLJ+qBZEU3LqcV570XMh85eJWD6/t/MYzUWkXbSf677VvnoMdyoiIruf7PqV13GhUCgUChc5lspordexlx5sio16NqWo9NIcZqteoGQJ2jfPnqNpFFXizGzP6kkalcKz/0dSl2dfURuWSoXRWDxENrlMSoxswFNex5kn58bGRsrAtW2uJdcnS2+o2okojZ61i0Ye3cosPe9sBcdDW6rtjxai0LXNbHOEelpG9kT7md4/2r7nT6AMLbK3Wq9j9YdQtu2xrb0W+mYsLbDDAD2N05woBx3rHO1QdK6WPoxsml77upe8c6IIj0hL4THaKMVk5tE7FamQpXzVccxZ4+ge8Epwemlwi9EWCoVCoXCRY6lxtKurqyNJ30oTyhKUharU630WlVJT70l7bmTX82x3UWk7ZbhZbKKeq6zFkxKJyOvZYsq2HbEUe71Iysu8xefaaLxj9uL9552jGo1o/b12iKgAu9orbftTsZceo+Vn3CNZLCSPJRPj9bRPno02W+eoz1EMdqQZ8hgUEcXRZgXN1Y7rFfzOkuBH0HssY/FRDLbFlDYqism2/09lkfL2AaG26znML9JozfHi17nwvNyja0ce+RaRB/Gccny6ZzPNgD6fM23efqIYbaFQKBQKC0T90BYKhUKhsEAs1RmK6dCAXG2h6ipV6XoqQ20nSnDuhQbpuWpE98JSVA04R/2rtT0j9aznYKJtzQkY1zFHTmVePyI1lqcOjkIb5iS5IDI1IJ1ZItNCNuYs6bvWo9W9pM5ynppMr6uqL3uOzoPuBzU/2PZ5jvaZ8O6DKBUe4Tl56XWixBie+jYKbYrCfGx/o4QVuha2/ei9gmYrwHeQUQefKHWo9xyIzCW6pt7ejxwNs/tS50sTs3hJJ9Tpaur5av/XfRXVCvf6r+kzdc7mJLLJzE/arranIV32f+sIWc5QhUKhUChc5Fh6woo5SQyislWZ5DXHWUOvR3hJte17L0g6StPnhYxEIUCR0d7rYxSi4bnMq+NCFAriOXtoYHgUrpKF6kRp6Dw3+zlYWVnBoUOHRgzTC7dRpqX7IEtcoqFAKilniUQI9lFZMhCn0ePeUWc5r4+aZEITMFgWoWONQoQseL6OWdPZKfO17UXMxrvuVNpTj1nrXjx06FDqvHfgwIHta6vmyf6vbG0viQ+i8BvveroX1SnTKySh7egz0WN1+mzQ8UTPWW8uovSdnkZDtVPR89VzhFVkzoY65qg4iHVM9cIwi9EWCoVCoXCRY+kJK4g5qcoiG1pmz4tcyZUB2GtH6QY9N3tlsPxO3cWzQH6FSmBZekMvvMbruz13qgyf1y+VQrPUgjqOyL6bpYfL9kFrbVeqOe/aKs2qtJ4VV59KVOAlJ/dKDHrn2n5wj0QhDNq2HU90DFmwFoIHdlhiZCv3wuWILD2fhV03zrGupdoCLTuN0qAqQ/fYltUERDa81vqCAjzf0zjx/tD5UCabpf+bstFynTyoXdqzcTItrO4hDV+z8xQVHIiYc5YIKGO/0TlZEh9FlIZ0TmGH6Lmj9ljbB/u8LkZbKBQKhcJFjqUmrFhbWxuxVK8EXeT9p3YqYMwsIo9aTTQB7Eg1yj6U/XhJB9RmopJy5tUYedJ57CWSBrUt28copWBkz/Zs3hlDiM4hpuxW9rMsKF/B8ynd2+Mj71hNXGGZGRmR2qGi9crShUbaFs/rWEsfZmxB119ZikrtWZpITS2apdFTT+s5DDfSCESFAoCxbTYq7JFpiKYYrU2zd+TIEQDAqVOnRmPeSxrFKW9YvZctq1KtlyZ/UO0MMJ539aHItHyRXTUqbpCNR+H5E2hZyehZ5RXpmEpc492DhGoXqUWwz0N+Z5PFFKMtFAqFQuEix9IZrTJLKxFFHnSRF5s9JmJrRJSM2x67l5ityLvQS9s4VVIv86qO0tqpfcVjhhELzmLh5jJa7zOvL3YMmdfmVBzt6urqSPK3Niy1a2m7XvuallPTHGaI7HiZp7XOvzJNzqMd1+HDh3e1p0U5PA0KoWs15XVq29G54LkaG5mlAI1YqtUY8X8yVx7DV55rbZy637LE8IzBth7K2h6vHXnaZnGtytKi1KyeNkfnWm3ZnjaEUE2Hxwgjph4xQU9LpXZX1SDaezryaYji372Y7zkx0To+tQkra7XaBK57xdEWCoVCofABhKUy2vX19ZHtx8Y4ESrhK/PLsjtFDCbzfFVpSpm1jsO+6ufaL9tOlA1JvUO9cyNbree5GjGZaAxeXGPEUj3WP8VovbnXWMiM0TKO1rPNar+V6ankbRkY24vKiUW+AhaapDySsi3UzpatB/sb2beyTFhTfgtqM/bGyv6r98DA3TkAACAASURBVK8tdafXU18Ktbfac5XB6jkc39GjR7fP4XrR3pp5s66srODIkSMjT2We611Lmb5nM526/7PMUJHGScfnxcQSuu+89Y/uw4jBec9VXUsvhl0RZYCKch1YTLFLT0Ok2gT1zLb7W/MdlNdxoVAoFAofAFgao11ZWcHBgwfDcnbAmNkRKgF5RaCjdjPJU+2fUUHkrC/aVlbWKYovjVijdx21Bc/JFzrlsZwhsj16XqAqQc85h9jc3AyZI1nJnBg7zacb2YstNJZTz/VYiXr70vYTZeMBxntC7V5esXidwznxzERkz9d5tBJ/tK/VZqfZnux3fFUmy/c21lcZrZ6jHtq2T9YGF+1lfe4Qtg9kORyT5g/2EJXHI1RrkK1TpK3ysop59mn7udeHqM+RzwYQs09l995zLjpW2876OoeN65wqy+erjcHXe60YbaFQKBQKHwCoH9pCoVAoFBaIpTtDqarXGtXVMSpyUvJSuEWq4zkG+KkAdc85RdUwqury2o+cAzK1SeQan/U5Kh4QOcNkjlQanpCFL02p0SzUiStLtca9k4WyaLtZMnKFpv3TJANeKIMGxatTiqeiVtOHXkfTeNr/pwoCeM4wuh5R+UfPSU3bUNWxpzpU5z6+8t5QRyfbnqqb+V7Dm7w5seE7CiasUAeZY8eObR/D5BXq8KOJNrw1nXp2zEm+7zkLatuRc50m1/HmKVJfzwnzixwCvXtd96ZXXjJCZOLzUksSUZiUqo69ogL23FIdFwqFQqFwkWOpjPbgwYOjhAJW2ohKMWUSR1Q4Ogo+94LAle1GBYu9c7zi2cBuyVNZcJRUwZM81blKWZcXbhT1Ub/PygASUQC+l3xibuiT7ZOdv8xhxM6nxxo1mUVUeswLnVIHnyiRhTdPXiiGbdv2W6+njlOZA1UUCpSFIE1pFrKUg5Gzi4YEeeFEeh+po5O9V9R5Lbr3vBKLXJeDBw+mCVbW1tZG2gLLqsmaNXkG+6ls2I41cmSMHNEsouecdx9Fx2bpOzXESJlldm/osyO6judAFWkXszKgEaZCt+wxqmVShgvEJUsXjWK0hUKhUCgsEBcsBaNXZkxLfilLzNL1KUPSBOZZSTBNdqAJMzx75FTYSxbKErGQLMk/EaWF8yTmiDGr9O3ZaHXsymQ9pqZ9Vgk2Y5Pnzp2bDFXRpAlZyUMis9Gr5K3hZVHIjm1X99Uc5q+2et13Xv/1nKk9ZBGtj/de95dqiLSv3rmamEJttja0RtMf6r72WNBeigBQk0bWyj7YkA/aazXdY5aUgYi0BlHyC3tMVJhiTigLkT3XNAxO51jfe9eIEqJ4RTqihC/6vPZYajS+TIOiYVE8hmudhffYPVQ22kKhUCgULnIstfA7PQABv3wUJR8tX6detJl3XFRI2isjpl6SatfLkm2rh3Tk4Wk/i46ZSo3mjVP76JWcigq+RzYhr29Tr1677EsWTE9Ye1gk1XZdtyttn2dXURaidlYvBWPkZazlyjL2pqkD1fvYMo3Ia1oZjmW2yg7OR/qOtCN2TiKWz35o8glvPtXLWK/jnRP5OKiGwH5m75ssYcXhw4dHa+qlYHzwwQcB+N6qQJ7eMFqfLOlN5BHvPQ/0vszGq9fRxBHRsySz0UbRItmzWMcR2fuzc9VD3/OXIWONbLN2rT3NYzHaQqFQKBQuciyV0QLj9GlWytG0dlFKRgu1Iej7TJomou+8GK7IDpElEY9sSpFtyZPaIo/eOXGiiswrWCVnHY/X56lYOy8OVb1MM/vs1tYWzpw5s90nSq7WQ1W9SnVdMru+aj3Uc1ntlPa7yIalzNqOf45XNqEMJkrXl9m9ovhtL5adc8HvyE55rqZItGug8cjKcL20jZ7HKzAu0mD3jpbw29ramvRY5/k8l3Y8+39k2/NilCObcsR0M1tmVADFs0vrMXu5L6P0iV463GiPqMYjY+xT/fHYt0KfQ979xPtWmSzX09po91Kecz9RjLZQKBQKhQViqV7HKysrI69ja4/SWMio6LkneU3ZatUeZ/+PvAu9eE2VhKIyZvYclSSzzEyKiP2o1OvZOyLv4kwKjyTlOZKztpGxb0/TMMVqdT9YadrGVNp21TaXMVsyL832RQZt92q0ZloowO4t1Raol+lcL1rb52wfRN6fGaNV3wb1X4g8iu3/atvWtc7YndpkPV8OMha7TpnXqk0cz3Zt4XfdO7reXny92jvn7PlozBoV4GmAvHHZV28/RrG2URu2r3quPiu8Z7E+R6PnnqchiPqm2kC7D5TtKqPVknjeOV3XTWb32g8Uoy0UCoVCYYGoH9pCoVAoFBaIpSesINTxyUJDgAiqJrKUiHqsqrG8VH6RE0+W3jBylfecYKbUv3up9RrVyvQcaqJiBnOSXOwlyUHURqaaikIMIrTWRvvBS75PtZGqK71QrchJSPcO1aQM/7CIEvV7BSOiOVQThWfeUFXalEOdPScqtKFmFftZVBhAv/cKBKjKVa/rhcuxr7bGrPdq/7f3XKY6PnDgwMjkY/eOOkjxVcc6JwWjIqvXSkTPn8wpMlKxe85C2n6kuraqX12XaE1t21H4oLbpOUNFZi597xUIUIdNTcXozYkt0lHhPYVCoVAoXORYesKKOen/KFmpQ4l3TpT0YSoJPzAuIxWVe/MkS5WMVLL0zon6GiWJ8K4TSV+eZBkdmzlSRM4cWZgMMRVMbz/3JOOMlaysrGzvBy/5RBQ2RiaWOZhof9mux2AJtkf2EznwefuAiNJ5eqklo72jbdrraWk1Ta+o6fSAcYiOMlv93DLaKJwkSphg+8b5JAtRJuulQZ0DatJ0z3ilAZXRcu9kyXWm2FuUrMFrI0tKoc+iKOzFCyuM+hA5ogHT2giPLUd7UtvIHLeicEIvbJLrocxVnwWWBWfJjxaJYrSFQqFQKCwQS2W0NoGzSh3AuCwVj1FWmiW0V6idxQsN0rCXKL2ivd4UG83sukSWAk0R2aIz+0IUAqKY496uffXmZKpPnm0us/Xa9mwpNK+/EaOltMtE9l76xsjOrnvG2ta03zYo3l7HsqCIlahPgm0rkux1/3nrojZTHqsJ4b2wq4jJask7OycazqPz6rG/6N6LQjYs5pZds5o0tmP7rcxIWbVXCtFLl+nBG3PklzDHVjjlK+FdJ3r+REkwgDj0TO8R7/wo5HLKhgtMM1pPE2FDtewxmuDGwmpbykZbKBQKhcJFjqUnrNi+sKS5s5+p15i1A9njgNjrT6U4r6yTJsjQtH1zWFckeVkmM1VqLmPDDyeYOpIg54xH7TmaXCErlBx5a3sJ9r20c5lt1yYd0HWz/3PPaGEDj3lEKQkJTbDgSfGRpsF6NdoxWkTM1huX2p/Uduul0dPvdH69c6JkE8pwvXSKeo7XvvZDUyPqHGmieL0mEHvi81o2UY7XB56viQ7UxueliyV070SsTv+3x0aJJex3nn9ChLlewJk3+F6iDRQZc9XPI+aq+9x7rkbnepEa/I729+y5s58oRlsoFAqFwgKxVEZ78ODB1JNPJWBNFq22JmDMsCIvTS9mMIJKQllc6xy2GMXARfGsni1Irx9Jp/a7SHKOmI137FSKOQu1+WQSbWT7ydrmsdRweN7nfNVCAWRGp06dmux/FG/q2RZ1H0Te6BbKhjLbc7Tfon3v2Vuj8Xj3RMRko9J3HtSOp/suixrQPeTF1CsDzLQsPJfte+fQy5jfKZPl88feJ5EGTZlnlm4w8tLW7+13e7m3dU9EzywvNaam54yKaHjpNKN7OYrqAMbP2il/BiCOIdY94/1eaEGRRaMYbaFQKBQKC8QFK/zuxVRFUqcygDmZc6J4Rk9q08wv6lHoMRkiKpvn2TtU6oyyCHl2ZL2eMsyswLhK2TpOe65KzJEU7EnOKuVrHGcWjzxlo7Xnen3Q4gEq3XqsgZ7I2qcoltiuC/dMZN8nPJYa7QPvHGUQkfbD8wbVggBarF3L2dlzlMlquTyNebeY8li1axAVDlF7tedNO9fnwNurnje4akqU0XraMGViyvj1HrT9VW2VMksvJlZ9TaJ9Z8+fu69tH6NyeFFZyDnQ/eCNL9L2eZqNyMclast+Zp8XZaMtFAqFQuEiR/3QFgqFQqGwQFywogKe67WqatWhxHOmIFS1EKlNs8BxVaHMcb5SzHHnn4J3vKqZsgQSUTtz+hGlKNM599QxURiHp1rO1DtenzY3N1NVYZSwXFVFNnhd0zTqnOq4vGQQVDfqOd668DOqJNVRz1MpqvMgEalcrSpXTSPsK9vU5BPeZ1pMIHPk070ShbF5iVlUBc058tY62m8R1tbWRuGEnilCnWu0wIGd80j9r/PiqdajvUJ4fYzSJ6o63h4XpapUE5W376acn+YUiIjUv4QXdqNrGz3XvXM8lbS+j/bkolGMtlAoFAqFBWLpjDZL7q6SZZZQ2rYLxEm2M0TSoLJgL9FCJGFq2/a7KQnckyynwgS8+dRxRXOROVJEYQT6vb12lJYyC1uZg67rsLGxEUrxwHj+1aHOG4emTSTzm5PuUsMDoqQWnmNT5BDItizrjsJedM49hxZ1nFFmy+9tyBMLKfAYDX+Iws30f9uXyMlQ+2vHqfeePUe1FVbboeBzR+fPcwCMkiN4zxRdw6hvfLXzqN+pRiMqAuAdm52TJenw2vdCdaacPe052r5qJOcw2uje80LgIi1bFOLptdN13cNKCrRXFKMtFAqFQmGBWGp4DxC7mnvHqDTvSTtTbuFT5eXsMZFU7IUEeTYR+94L0ckYmf3es83o2PVzL7wnuo5KmJlEN8cOFiXiiF69Y+cgSxkXpRnUPeSFligbjDQCnsQfsTUyQyt1K8vWNJFazs7rv0L75tnZ9FWTT1gbrRZSmEqjZ1mTrrOye4+h6RyrZkoTZwBjG/eBAwcmnydq+8uYWJQAwfPPiDRZmuQk86HQsWY+CFmaRj1X1y7SgnhzEmnutM0srEifvdF7e45qefTZ74X0aR8y+6v6cJSNtlAoFAqFDwC0vXrEPuwLtXYngL9fysUKFyse13XdI/XD2juFGai9U3i4cPfOfmJpP7SFQqFQKPxjRKmOC4VCoVBYIOqHtlAoFAqFBaJ+aAuFQqFQWCDqh7ZQKBQKhQViaXG06+vr3ZEjR8Kya0Cc/SiLRZsTsxmdG7U1B1PtL8rJLJqb/b5eVIosWzddP43fy+KRW2vY2NjA5ubmaBEuu+yy7tprrx2N1RtzlJtVY2SzMWXl+qY+mxMfPoVsLc9nnfdzjzyc0mLevRnlxdX3tu+ah3dzcxMnTpzAqVOnRp1aXV3tDhw4MIqFnZN3O8v2lmVIOl88nNjy/cbUvj7fe+Hh9idrU/MBeHHJXiH7M2fOYGNjY6G18pb2Q3vkyBE8/elP3057p/Uu7WeaCo/neCm1eANFCcCzJOhT8NJ+aXt6nSzYnNAb2UsLpudGAevej1iUpjFC9qOpCQP0FdhJfHDy5EkA40T0l156KYDdiRHuu+8+AMD999+//dldd93l9u+aa67BjTfeuL0P9Gax12R7fM/0gkwgYc/RdqJav3PSv02lg/M+i5KQeAJJlqzDvvf2t+6ZLBXfnBq50fWm7i1NZADs3K/R6/Hjx0dtnzhxAgBw5513Auj33Ste8Qr3muvr67juuuvw6Ec/eld7x44d2z7miiuuAAAcPnx419g0DaWXDESTf0TCm1eLWdd7zrNK10X3h/dDFK1/VjRjqjCEl7wjSpmrr5pQB4ifUXOShrCdI0eO7LoO9wnvffsZnzX33HMP3v72t7vX3k+U6rhQKBQKhQViqSkYW2thonFgrE4kMmlGMaUOtFJUpO6do46JVOAe+4n6qMd4bEL7kpUaI/Q7bTdKEO4hYnWe5BypbqxESdgk8Xw/pTLN2D2Zhe6hTNLX8l1TZb68El0RO81U+pHaMSuWEKXLi/qcHUM8HFWu7t05Kf+yUo6aOlPni6zSMlBNITqlTjxy5EjKyKgNi+6tTFs1NVZv7iOtQaSlsP9HaU61bQtlkNF8zVlLTXtoz4n6FqXStfeTzl+UmtM7R+eN60mGa+8n3TMrKyv7quKOUIy2UCgUCoUFYumMVhNoe3YPsp1IwvR0+5FknNk9Iokokubs/5EDBV8pVXntRg46mYPBlMQ8xzasDMcrMK3HRs5FGevWPp0+fRrA7rJ0uqZnz54NWXrX9YXftZ+WFatdOCrMndkUI5bgJS+PkpJnTjK63hH7zWzmU446HqOdYrIeU9dx7oXR6rkZC4vKQGrpQK+g+RxG21rD+vr6yIeDbAfYWV8ew32lLM4rX6latqlk/La/kV3f2wdTDnsPxwclY9BsT23mc0pfRjbZ7Fwt7DLn3ozs1TyXNnf7nGAJSq71+vp6MdpCoVAoFC521A9toVAoFAoLxNJUx631NSGpPvRqrxJqCCc81aKqClVdpu3bNiOHBW3Dq7kZ1XLN3N6nnKzmOCVpXdXMgUbbUzWwV1OX51DdwlcNZ8hc86MQIU9Fo33x0Frb3j/22jZUhyrG6FpZbcop1ZbnQBOpjiPnJfsZ5zQye3hzEamM9T7y1H+6J1WVy71sv9M5iFR53vUy5ycdQxRqpHvHqv+0j1k9WqqOOcajR48C2K061vq2qpr2nlVcI/ZL76UsZEsxZXqx/0dhVplqdeq54+0tVafr8867n6ZCgDL1ttaqnXLc8tol2D5/a6zJiqrjSy65BEAfGlaq40KhUCgULnIsldEeOHBgVkV7lQY1FMST0JTpRd9niJw3bJvqGEOJO2tfHcCiBBUeE4j6EiWwsO1E7EAz63iSM+ecTJGfe4xW21VHEbZhE1ZoX6ccWqxU6o3dG4uFhhZYsJ9RoH2WTShiZJ5ErpoaTXLgsR7dO0SU/ML2MQqD0XF5jDYanzIOr88RUye8/TYVcpY5Iq2urqaM9uDBgyMmw8QVwA5r4zV1vT2tizJY7vEofDFzGoucoDxHumj+vfFHz4iptQXGIZWRM5TnIOjtq2y8Xp/0HvSec/zMJs8BduaE60otBrCTwIbPk7W1tWK0hUKhUChc7Fgao11ZWcGhQ4dS6TYKe8nsXtqeuuZH4Tj2XLXV8TpZui/2kZKywmOlXpIObwxWEmQfVKKbk4dVmabaXb0EIZGErqzYk+7VTprZDyM7sgcbFhb1OwqD0u89zUO0R1SKt+sSsYKMWUchR7rv7VgjX4YobZ/tI6V2ZbQ6Hm+/RWEi2le7BpG/BDFnrQm269loyVRUE+GBfiFMeMF0i2S2QByixXvb06zps4manmjMmY1W95Jqj4Bx3t4olMpeh/dj5HOQ+Zeo5k4ZbhbyFoUEZX45aifX+8pLu6r+GJHPBcN87P983Us41PmgGG2hUCgUCgvE0m20kRQPxEneKe14bEElLJUgVfq1klIUnD8HU0kHPKgXKMepKQBtsgu1Bet1Mg/VyP5FZPa1iHV50HVjykWVYD3pN0vpqGPSMXuMVscRsXttGxin4mP76n1qj4nYiLcfphJIeOxnKvVi5Clr/48KbCjjsMdMzZ8m0wfGmg21V2b2cWVDfK9FLSzs/RTtH6ZgvOyyywBg+9VqotQ2q59ndlZlu5H9NdNw6eecN+vTwPnWQgd6bsaCo+tz/e1zR+2t1I6oF7KnIeI5muRf939m342S09hxq38Mx659tuNnn8hoDx06tBRWW4y2UCgUCoUFYqkpGFdXV0PpERh7p0YszkrtlEwje1TGnLQPeu4ctkio1GYly6gvKr15kmUUX6bsy0K9WzXmj/PK1IiWQbHdyHM5s81peyyb5zECteOcOXNmFqu17dg+KKPge/aJLNsyMLXnR4UCvLhAlejV01JtTra9yN6tdkn7/5RXrrcPdL7UK9yz4UUe6rwn+cq19eZT71vVGHjxyLx/6SFqiwjodfRey+JoV1dXcemll+Lyyy8HsFOy0fZB7zudgzmx6pGmIWNvhJ6jfhK2L1r+UfeQbVvvhai0o66B953G1ep7C31+aty4xzR17+jzzVtf1dhojga2b72OOX/33HMPgGK0hUKhUCh8QGBpjLbrul0SGiUUK6lSSuZxEeO09hXq3CnNKHtUqXpOwvbIW85+ZpNS21dt20MkLXrlALUvyuo9tkXWoYnZ1Q7mSeqRFy3H48XCTtlXyCozqTRjJV3X4dy5cyOJ3zI/9otjYgF4Sq5aAB4Ye2GrbVFh15hSMr1XafPhMdyjns008iDmGLzyf5HtXDUetm1eL2IWPNZjpcqcHnjgAQA79yjn1bPRavvsI+fEslWdP/WI5zzbcan2gpnDPKysrODYsWPbTJZ9sM8QvYe0QIUXBx4VBNF18TxtI5s5+8H5sXPLPvA5x/5HfQV21l81N5EHvp0Tfb5wfXh9tmXvicj/Ru35Hkv1fg/sdbKIE30mq4bIzj1t9Hfeeef2ORVHWygUCoXCRY76oS0UCoVCYYFYqurYOghRnchXYEdtQCqvadOoRvICqwmtXxkVKLDfaVu8vpeUWtVg6vTi1cik2kVDkXhu5CxljyF4Xe27PU7VWZryL3KLt+1q8HeWiEGdRpjejmugIUr2M1s78r777hu1zXY3Nja2+0D1r907VG1S1XnHHXcAGKuO7Tn8jCpBtstXHZfdB1xTOtnoHuV7qyalmUP3jKrCvfAeVYPp/Kka3Ou/OtSoE5udk3vvvRfAzvydOHECwI7qmHNm946qSdXhjXNm54SqPM7X1VdfvastT82pDmGZMwudodg+VchegQAdB58lXk1czrM6JXE++Oo5gKk6Vs0NnFtb+EBV6zq3vD77Y8cVJXPRZ4u3v9XcoaGJVp2ue1XnyPYtgqrxIzOb/V/V9uy7mtvsd9yDmclqP1GMtlAoFAqFBWKpjNYLx7CgtKkSHz9XZgjEpZcohapzhT1OHQjUSE8J06bwiliohgZ44UvKrpV5eoxWWai6yBOe85WyHHVkUscNYJwIXDUBKq0COyyHzIh9JbPleKxEq44T6+vrITPpum5X37leZLEAcOuttwIYMzD2SQP+gTGDVaas47IMgBIxr8Ox8pWp/rh3gbFjj4akeRK/7jdleJrYwa4L+63hPBwn31tNAv+ns8hdd92163N1zrL7TlmW7mcvaYiOOSqPZ/eopj3tui5MFLO2toYrr7xyex0sSyQ0DC3SbNjnF+eDzJ/H6v7jepG5AzvPE7JsdXDimlNbYvsdOWFpchWOHYgLnkTPIWCcAEMdBflq10+1lJxX3qd0UCTsOrKvNpGEHbemTrT95zGarlbvLwvev4cPH67wnkKhUCgULnYsNWGFTaNH6cNKehpmwe8o2XkSWmSrjMrKWamNkiqlU55L6ddLOqDMUVkxJSUrtUfp2Qi1S9jjVFKllKZzZZkax8g+UJLUtG2e/UvnWNfLK6LAPlGq5/X4XgPJbf+jMnAWDO/hXLB92mEB4H3ve9+ua3I+okQC9tqaRk9t2Fk4giaZUDuVnXPVnKj0rozK9lFLuUXlyuxa6v7l+Mg0eB2PlfA7Dc2ISj3a66lvgzI1u4d4v/Aztqds3LKSRz7ykQB2h+xF4XSrq6s4fvz4yObohTRxXshGdeyWkb3//e/fdayyNjJdrrnVhqitXu2G/J5aETsPyuL4jFQWZz9TLYGXbB/wE0hwHMrgOV6rVeI+0jngvcj33rOfn5Hlc52oIeJvgC1vyLFq6UPOI/eHF/LEZ/zx48eL0RYKhUKhcLFj6WXyKF1QCrHSBO0bKqEoS7XSa2SriNLded6LKllSus5KqinUy9BL7ECo/Ym2O03fZ8ej0mmWZEEldM6rJkTwbN461xq4zrnxvP9UGtUUcPYc9puSedd1acKKjY2NbZZD6draFpWtK1v1EvZr4gDVOKit0UujpxoNted63q0Ri9fE7V7/9frK5Lw+8lz1vNYEMcA4qUVUhlIZqL0OXzXxjJeuTzUlalfzvGl5v1hP3EhbxDJ5qmmwc6/exZG37N133719Dm3Y/EzbILx0iuyrprNUzZrd3+opzLE/5jGPAbDDfu0ccy61b+qD4nnVE+rpz3GTnbLvwA6753eqlSDTZR8tO1X7Ktefc0TtlfVy5xzofUW2qkmMvGMf8YhHpGUW9wvFaAuFQqFQWCCWymgPHz488p60MXyql1cbj3oBAuMk/srElPlZCVy9P3ldMjMvBaPafNX+SunXSl6R91sUZ2ilUvZbvTOV0VhGq8m0r7rqKgA7EiXtKlkKPvZZS0/xvbWzqd1WPQat1Kv9t+dmxcZPnz69LTFzHHbMOrfsJ49R72NgXHJM406ViVmblsaMKlvjXrUMUxmDXtcrZB4V7/YYM7B7HjROVm3oXlEJrhXP5Rqqj4DGdQJjz+6oTJ7tM9vhXvXK/el12L5NMZmVp1xdXR3tSa9cZlSog6yV+8/2Qdk151S9m+0zS+87jWvmeng5BhTqwWz3Dm2VmuJT59pj4/rc5N7JCmBojK+mbdT3j3jEI7bP1XtPU9vyHLs2UREafa7b+059HI4dOxZ6Ze8nitEWCoVCobBALLXw+8GDB7clFLIqy2goEVHyoVea2o2s/VOlKEpJlFJ4LK9nPd20jSuvvHLXq0qcwJidaZ/IFqykd+211+4aK6VdetJFUrEF502ZmSYMt2OnreKaa64BANx2220Aduwsnu2MthD1BqVUz3m0a8A5nSqh5a2bLamW2WjPnDkzsjHZMWvGLC2e7WUyUmZE5q+2WV0n2/+ISasdDthZO9VcqH3fXkc9UTXzmNpoPYbJ69J2Zm2Nti3b/vXXX7+rT8rCPPuXZuPiPtB4bvbDtqsFxZVdWu2FapVWVlbCvdNaw9ra2vax3Cf2/uR6aClF9SS29z77rbHidmzAzr1hvXPZV7WRc528vap2RB7Le1m9c4GxPVJtssoAvULzqnWJCkfY62guAb2/HvWoRwHYzfpvv/32XXOivjWeT4DnO2Gvy3W13tuE9QavP64ZpgAAIABJREFUzFCFQqFQKFzkWHqZPEoblBKthKL5YtVOqNIUsCMVPeEJTwCwwx4pXfPVK7HH6zAmjtd7/OMfD2AnKw6lLWBs19BMSfzcy3qinpyav9Mrqq6So5ddx47Ptq/FtFUqJNO18ahcA0rmT3rSkwDsxC7efPPNu8Zpx659UbZiGa56drbWwljI1hoOHDgwkpA92wslffWW1LzGFtSCfMiHfMiuc//hH/4BwE7+XWujVYmf0KLWdkxqW1Y7nvooAHH2IJXCPW2PZnHi9Tn3vI61b2qcJs/lHmLf1bPT9p/zxPuI+4v3GRmv/V/t4Nw7unft/9ZrfIrRqje9F9fKWGyyT/WstZom9TFQu6d6eFumy3ni3lENh8a/23M43/oc8PIxR17GGnPtlSXlPtJsb4R3P6mmQfcO96MXl845+KAP+qBd5/DZq5oUrx0dj/fc4RzwmKNHj1YcbaFQKBQKFzvqh7ZQKBQKhQViqarjc+fOjdKPWUM21Qc8Rsu4URVhVXg0/lO9R8M3VR1UPVCdYdUxmppQU+R5yRk0jEfVvbbsG6EqE6oz1ZHGCxhnH3lddaDQECF7LKGOBVRj8XrWUYPtaLgUVfIMcWASf9uuDbew16UayKoM1Y1/a2srdUpYW1sbqTXtHHONqKbUZAOegxnVn1RXPfaxjwUAvPe97911nKYsBMaqLK47nZfopJKFdXAOVM1t1dGaaEXDIFQtaKEp6NTZUFNn2j5qqUN1FGKfrVpOU+7RNMF78x3veAeA3fcT97cm5tACHHat1TEsUx2vrKzg6NGj205JXqlN3SvcQ2resmNVRyJN+s9XL7SNUBMP59hLO6lpTPV5w/W3Zgf+r6YcLUyiKUCBnWeCPjv0unZ/a3gS51rvV6/knZYxVKdVro39veCx+qomJvs8ZN84vswJcz9RjLZQKBQKhQViqQkrjh49ui1ledK7BlTzOw2wt+EPlEzouKKSF6U1Hmeldx6r0q4mzvYcDFSijRyQgB1pTJ0ENJyHbME6yWiJO16XkjLHZxmbhtVQstOCAWRuViql6z0dWchs6RjG0BArqauErAn8lekC4xJ9Uw4trbVRYn07T9wjGh6iIQCW+VH7wXWwzN6eq+EwwLgUIJ3F1FnJS66iCfnVScXuN86/lwwfGDMMr8A454JsWxm0vR6Zhb6nJoNsj2tgWRfb41xwT2q4hSazt33UPcM+2z2tTjBra2uTrITt8NVz5uO1NRyEc2C1YbyneS7Hqols1EkSGCco0fBFTzuh5/D5EiV2sO1pqJsmn9HUhcDOOmvYHNeOmkR7T0eF5dXZimtln8Ua8kTw+lw3LyEH+6LlVL054fnsU1ZicT9RjLZQKBQKhQVi6QkrKD1QGrGhJVFCAk3Cbm19/E5LNKlUqhKybZ+shNelfU0DyG0flLHwPaWpjJWo3UNtd14xbQ190c+9gvb6Hc8h4/CST2gihFtuuQXAzpyT3dlzNKRB+8jvrd2F68T1OHfuXMhKtra2doWGeQXrCUr6vJYmidCyirYvajembdHTvvBYtss+qc3RgvOhCUrUZuoVBlDNiZbJU5umbY/MnxI/+6jSvW2HWh1N50n24KUEJPvg3HPPaEIGyzA08YWGCLHv9r7Vcnubm5tpspNz586N7i3LpriX2e8ohajttxYPUT8SLehg96rujSidp10XfWaQZSubs/OgSf3ZV2XMXok9PhM5B0ziw3nz7j0WQeB1NKRKi014ZSd5rk2RaPtsnyHsG+eCz3wtzmH3joZBZZq0/UQx2kKhUCgUFoilex2rPtwrnaW2TEpPlExsajJCi7gTmlja2vUoJSnbUSnVsje1laonJyV/K/Er69AUaGojsueqt6l61HnsTlkp2+PnKrnb8UWFy9V+5AWBa6lCZbQ2iThhpegpVqI2R3uuJlTQAHt+blm3SvpRsXtru7J9sq/K2tSGB4y9P5XJcn9b7USkBVF7u+4p244m6lcNhO2jJkJQtsO50O+9ueG9qPe89V9Qz3tl+aoFsGO3+zyzs7XWRrZSb8+rrdxe0x5nx8S9qM8OLX3ppZDURAlqo7faCX1W8R6mTwXfe9oJfe7o85Vr69lbVaPAuec+95JOUFOmWha9f710irpH1bveXk+1PIQmCLLr5qWSLBttoVAoFAoXOZbGaLe2tvDggw9uS3pqnwR2FwEHxl5xlKo8hqH2XE2JRlgJWqUnlXq9+EktAaZp8zQOFRgzvShmUNMIAmM7h7JgTRxu+6CxyjpHWkbLtq9J8ZX9WuakEqtKzp7kyWtbiX8uo1XJGBjvHY1V1Rhp+5mWWlS7u5cyTkvQca9wfrxi91ouUbUDmorT/q+pA7XclyeVK4NWe6iWELRgu/wu6rNXzEJtjspG7DkaB8z7Vr2EszjxrEyeFn73mLjOodpzPYapifr1fsygGiydF03VCowLTlA7REZrfR10XPocVQ2b50/AY2j/pPZDNSl2XdgHnsO9o+lq1R5vr8f59DRndiy2D5H3Pq+vWk4gTmW7KBSjLRQKhUJhgVgaoyW0NJhXgFntg2ozs7Y51e1TqlEPTmVXFmq3ibLg2HbYb0qYZNm0T3h2L2V6hEqU1s6iEqSWZ+OxXkkttU97ma70+pE3s8bGeZIgj9V181iXahNWV1cn42iVkVlpV23LaitXFmf/V3aq2gNt236nzFmT4VuPR35G70hK/sqKLNTr2Js3r8+2T7SdKbv3WCDvAS1SoPeG7kv7v2Yr0zhu7x7U9nTvetnZrMYh04awoIkdlx27atA4Vl1T2wdlo8q8olKRtg/6vNO19go2UHPDPURm6+1vXTPVqGg8q8cw9dmhffQKhXCfq8ZOS2Pa546ue7RXvJwGWnpVi9FYqAd02WgLhUKhUPgAQP3QFgqFQqGwQCxVdby1tTUK2bEqH1L9yMHAc6qJAvrVocCrD6q1HFVt5iXsV1UdA8bVAJ+l3lPnkEilbPukqmJNBG4dWvhZVDNXHawsdP48Zyt9r3OtqnBVxVlYh5NIhUO1cdYHVa1qUgPP+c62D+zsP3WG8ZIOaErHOYkW+FlUH5hOG1Ydp2ukatNoT9lj1VGMakdNCgCMizCo2SMKTbHH6H7QNbHjUzUmwXn0VNTqzDOVcGBjY2N7D2oxDtuOjkPDXux11OygzwydC09VHaXP1Fd7DJ0u+dzhPHHd7HOHKmFNtanPXnUqsn3U1LIKL+mE3v/ZM1iP0b7p/vbmJEp76YUgRWr7RaMYbaFQKBQKC8TSnaG8sIfoOw0X8CSmiIFF0pXnDKOsTQ3x3vU0JZgGaXvB3550btsk7PU0vELTUXrhD+popkzROlsponARLzSD0HnSJAQey1ecPXs2dUrwrmuvEzmAaWku63CkoQRaMMJLb6n9icLKtJSb/V9Lv9nwMdt324co2cAcCV3Zt7IVu9+0iIWGKynb99hklFiE77110znxwof0HI8ZKegMpeFqnpMSoWPSUoi2DxoupGEj3p7XtfS0EQrVlPC5o88bez0NryGiAg5eH1UrofvOJv7Q+9cLi7PX9dZPn7363LF9jfYIn3+eU5l37Jx9dL4oRlsoFAqFwgKxdEarruZWwqBkQXuDSuB6HDBmbZr2S8+176OUYBpKY1kCJUstRKCszfZRWU9ks1Cma6+tpaa02LqV2ijRRQkyVCr1UstF6eH0+vY7dbdnEocsSYDVRGSMdnNzc8TWrKSsCfK1ULamsrTHaimwKGWdx2g0Jaa+egxT2bCmOfRC3jR8R8N7vOQDmlRFy+R5zELL5Gmomyb18DBlc7TzqPeepj0kvDmx32VscHNzc5RuM0vpuBcfiiiBg66Htw8iOy9h54l7lPZ1LabCdfGS6+iaqR3ZS8HIY1UboeO2GiJNuanhfXpveCkYIy1cluwkKkbv+fRoEo+TJ08Woy0UCoVC4WLHUhlt13XbUpYWhQbG0rnaB7I0ZyrpK5PxJCKVRtWLzWOamvRcPXs96dRLgu6dk3lYaqIKSpiaGNz+r97GEVOz0uOUdOd54EbQ8WWM9sCBA5Peo2oz9dpTJq5Fxj0bT+R5mDGMqGSfrrGnsdHrRqnxbHtaNEDtlHNKfbF9ljwjA/ESpHAPkeFq6k2PQUce0fq958WvGhPVtniaqDlj7roOm5ubo8QiXplH1TQQ3hwrm9K+aB+9eYruNe8eowaN60LmSt8Qlj5keUNgh7VxfXV8XEstCA/sPDNoE9YEHJ62ke2xT3zGR/Zw+7lqE7NnFKFMNkqQ4t3ftkRoMdpCoVAoFC5yLLVM3ubm5si24EmqmjJOY7jsOVGcoUIlZ2As4akUqh6QwI60pF6ZXlq4qI9R+jwvnZsyZI2F86R7tX9nqc9s3+13U/ZdOz7OgZbJUruevU4Wj6noum5XnK2W/7OfRfF37JtNy+alkfPGmq2p951tw36urFRts1o83LY/FT+b2fe1r9zDjMXkegFjDY3ad3UM3v0W3ZPemvMzLZaQtakMZUq7Yo/XewGI4z61T15Ce/XY1QIVnhZO5y4qJmDt5XpvnThxYtfr3XffDWB3Av3IT4DXp51an3/2GLZHL2fuVWpFvMIeBJ/x+uzyIjP0ORZpqDwNEecmiuawa81nFedryjdkv1CMtlAoFAqFBWJpjJblqlTatfYhzRKjEpnGSNpjVcKMWKqVeqLi6RoTaSVmSnge+7B98xiGxjNSAszKvxHqOagxiV42IZ0vla6zMllZYW8Fr6exluoB7sFqFTKb29bWVsjubX81zlPtN55EnNmB7Pi8jGR6TJY4nxI+pWrV1HjJ63XudA+p9sLT9nAd1Bud51oP3KiggmYTUxu7/Y7QefWywenYs8IS2q6dp+i8zc1NnDp1apu9e17AymCt/dZ+vhdfBt13XkEN3cd8Hngxo2SuapO9/fbbAQD33HMPgN1aHs0IRkQZ9+x8qn8F9w6Lp6gd1P7PVzLy6Dqev4Q+k+c+O4CxRkCfBcDOvGkWwEWjGG2hUCgUCgtE/dAWCoVCobBALDW8p7UWJm0AdtTIdAtX1YdXR1NrrFIFoeECc+pnqus6jexWlUR1hDqNqKrDM/RrTUl1RiA81bEmztY0YzYxfFTbU518NBmGPUZDgTQ8wqudGhV/8NRAWrt2CltbWyOVl3VOUSehyInLA+drKoGIl5xc07xpP7yUeF6CdGBnX9i9owkDov3tqU55LENBqLpWR0Tud9sHXd/IocpCHcDmJJPnZ5lzlUJVvZl5Y2trC6dPn97eZzxX017a73Rsqmr3xhIlN/HWRU02uoc4F3TYAcZmmTvvvBMAcNtttwHYSQ7jJf/XPan3nuc0pMVKNKUk27Dhc+pcqM+16Flpj42eGZ4jnf4uEFxbddyzx3KeHnjggXKGKhQKhULhYsfSE1ZEAeqAz7CAsRHdc5VXKVHdw71UhWxPGSzfUzKzJegIlWg1xZ9XzolsgddRRusFv2tguEq2XmiDsvgpRmulRPZfpdzIScb2RUMasjR9hBZAyJAlUCemko/MkV51bT1HKmWWEYOx2pC5BQgsm9Q9quURNezHK19ICZ8M6Y477hj1Ta+nTjxzwon02DnaBIU6MXrX8dKARtja2sKpU6e2nYnooGP7NOXYSNjrRaUUo4QuVkulTjsaPsT1ev/73z8aD/c+nZ/IZAm7R6MwQu2HarGAcQEMLSV61113AdhJCanXtu+V4XpaGO1D9Lyx8xrtzahkqv3fJvMpRlsoFAqFwkWOpdtoVeLLEhaonZDwQjTUhqASmdorgR12QGah9jCPmakdShPSc1yWLfA7MheGGljbGDAuieeNQ6V4z56ryQaUAeicWQalNmidA49NRqFAaiv2EkzMlSbX1tZGdjzbh6m0fxm7UlZIZHszYpSqcbB2ZK43QySuvfZaAMDVV1+9PUZgN0tRVqDJLXgdXp+p+uy5bI92fH5OlmfXJSqxqPdtxjj1+nM+jzQEhKfx8MK8FF3X4ezZs9v7WUOcgJ051T3P1yw5/dx97KUq1JKEvP/11bueas68UC19Nuj9qexR05UCO3s1SvZvtY+qmVOtG/uu2hkgfl7rfe2FdEUhcB5T11KYy0Ix2kKhUCgUFoilMtrV1dUw7SEw9jiLdPqebp+ICnJ75Z74WcQaPdsspTBNYK2Juy1LUG9jvqqXoWeHICipso9MnKFMxx5D6PxlgePKaPTVS7A+lWzA88RW22/GSlprWFlZGa2Ptw/UMz1LSjG1d7LE9gpeVz0eLcMg27z++usBAI997GMB7Ni5eF3rEct2NKBfGRrngqnybHu052nyAbZtE9FraTXV4CgryVhe5AFu98GUnU3HYtubY9ff2trCQw89NEoSkiX5V18Q9bi330Ve8+pTYTVcfK5oEhq1bdtnlefTAuzWYNg27LG8jq4PX6npsHuH/eU68zrse1ZchOPh3OizUVk5ME6jGJVWzMrkRUzWrpEWUtjY2CgbbaFQKBQKFzsumNdxxmijotqetMvv1JOX3oXqSWwTX/MzjXlUyT8rx6aSqya69voQxfZyfFYC04LvUd89pqbxocoavFhISvxqa1bJ3WMTahPWVHOeXcTug4ih0M7mpbOzx3jv9fPMRqvzpLGkXlF1lZBpD9W2gJ01497key3xaG1XKtHrMaoN8RLDRxoMb5wac0tEKfK80nERG/U0A2pni4ooWKj3eVbqjHvHFvoGfO/syMPe89WInhHKFrX4iB2b7hHOMZ8XXipOfUZaHwDtI4/VvaL3IRmt3XdqR6XWRdvw5oTQvAi6pnZOeKza6nWv2jlRrWL0XPO0DnZNi9EWCoVCoXCRY6mMFhh7onmSpUoqmjjdSsxaiJ22BLVdkslaqU0lbS1urbYGYCzBarYiz3altlmFeuV5tkztm0p8loGorULnOip4730WZSDKkrzrud666WdTBQXOnDkzYrRefJy2P4chKRPzynjpe0rpZIAecwF2S9e0lTIRPM/V4g/WrqvMQqV19cC2Je+4Jxg/y7hMvmc/bAYi9kk1KcpGPc9h9byPIgvsWule1XF5LFhtb6dPn55ktGontM8BZa7KONWWaq+t5+rzwIs71wgIfUZxja3NVPvKdeLrHD+IKPOZ5g0AdvYgn6dRFjvrT6D+Cbp2WjbPsnH+r8Uy1Lvas61HhS6y4iNziqXsJ4rRFgqFQqGwQCyV0W5tbYXFqIGxjU9fPQ9b/k9GqzZbviortv9H+YvVaw4Y20TUw82LL2T/tS8Er+8Vk6aER2lRmaAya9sn9RiNCiR7sZBaGkzH6WWGiiRMD14x6MhW0nUdzp37/9o7l944jiAJ11CSDR0Mw5ANH/f//ypjzwsDsmQDEkiKe1gEJ/hNRM3Y8MyCuxmXITn9qOqubmbkI/L+pGZ0lznKz112M7MXOWdm+K51jPWJQbaab2/E/dtvv621jmyYdY6Mh611ZDViFvpknCvFVpVNLCYrfVydX3PwfRrza5m4u4bz9HQkFtGY6I4FC+5x2q0dj9GyRt7HRRbKNe/70NtF7XGBLSt9DPzku8xZN5m/1pVqoXX+FMOkV6plsqf3KrO0GT9OOTbMV+H14zvUt9F6blUPyQPKbPGdzjk9DtMmbzAYDAaD/wOYf7SDwWAwGFwR/2uCFUJKxGEylFwcShZwlxsFKSjc30pq1upCBHQlpXKi1qJJbhF3w9CVRncFyzAcdP80l3GSQtNY6KrcJQYx2Yau8J30XhMGT8lQl7gg/bgPDw/b+9JE3nfiBjt3o5+HiSdrHa8pBTLonvPkKP0sFy6hfT0J5sOHDy8+5TrW8eX+ZXLWWkf3opKd5OZuSYD+HcM4rSFFKiehm17rLt2LJnLBchZ/Zi4RqhDoOub7wOcmtGQ4HtfHlUrlGjjXVKK31stngu8+/a55pLZ/LZxFVzJd2Gms2pYlbz5GuqBZ7sP3oLuQm5gFx5TKGFvLwpRcSgGRr1+/3sR9PIx2MBgMBoMr4qaM9uHh4US4OiUNtSA+rey1emNsBvMTo2VCQ5OHTELdsohonZFh+3nYcJvF2Um4my3VZJHpWLRa+bNvQ9aX2KnOrWtNtv13hPZ3iUi7Vn0NTM1PJR/8JHtPYgm0aGlVJ9GONm4mbfj5xDqUpCSGyaQ1CbmvdSqPJ7ELCqVwXfjPOi+TyVJCS5LlTGgenbVOkwzJglLCTmsGwZIh/86ZYWO5j4+P6/Pnzyeypz4/sup/Ao6X687H38qe6AXx+0Imy3KblGBEGU2usyZTm+bDZ2UnS8n3QBJi8WPyOI5WKujjbl6QJPmZnukRrBgMBoPB4JXjZoxWJRq0KN0HT9bUWE6yDim/xWbuyXKmv54MWpYZy3HWOsbGKCAhOAsmQ+d8OXa39Jr4/k4Kj+NlXLkVrvt3ZLI7cX7GjS8R478khsrteW4/bmuX2OI3fk7G4nisFKtr7eKYX+DQ+bh2FF/VebxNnp4PMVtfV5zPWi/ZYypL8rEnJqPjk30IO8+Dzsf1Rkbr52vH43pI90349u3blpV8+/bt+ZqmEjvNWePmOk7lau0dRU9Hyj2gfKO2ba0p/Th8f7L8xq+N1k5rDcf3XWrcwHmRybpHg2VjfAYZ//d7kFh8Gusup4clUCkXhXkr/l65JobRDgaDwWBwRdyU0T48PJw0Zk9ZwOfgFor2p3QXY7bJIiIbTaIW/ncHLS/F1WThpfhKa2rNzL5kYdFilWWeLOuWGcwYhpBa3tGq57ESm2wyiOcac5/bht/vZCAZQxJSXLcxWp4zCYk0Gbu0rgUyPZ1fWcHKEvY4q+KriudqLTYPTmqMTa8PmxuILa91yvgY77okls5Y8CWMgRnquyx0NrzYQYyFsTlvgdlatAmUAVzrdM0nmUaHj5VeqdYYwNkiWRqFHdL61nwo0nCJCI2+o8Qo81l87Gys0VoIpvcF30lkvclTxGeN7y5659Y6PlvuTRhGOxgMBoPBK8dNGe23b99OmJlbiecs1BQr4d+acH4SpWY85VwbOz+fWGqz+P08jNc11qiMQrcEGSdujZBTNl7LwtuJvjfpMyHFR5v0YmMICX8n+2+XLS20BgGJOXNNtnaNaR1Q8pMC7c6WFQvUp5ik9tU+3hiA8TU2taAnJ+Uv0PJny0j32PB4Tah9l/nd4u7No+PftZaYieG6J2gX4394eHjeVozGG3y0Rh0tez/NobXaE5t0KU7WjtPjkGpzP3369OKTcWW2zfTj8T13LkPa5yHmr08y9tTqjo0p2jpI+TkCGS3Xo+9zLtvYcx40D92DVDt8DQyjHQwGg8HgirgZoz0cDrGRcVJQagozuxZnAq0z1uGlGlVZt2RFuxrBJlqfRMsvrRVMMVT9rTUzSKyxNfjmWBMbPsckdjWxAi3nVM/Gsdzf328Z7eFwOImLprg0GUVrgedgViT3Tc0smLHblMiSGhZbNup3qT5JKH6tIwNzJRsfs8ameKszNWYQM39hl/lPFk8my2beaRuB63rXLF5j2XldeI/fv39fY8dPT0/r8fHxpD2nP0/6jnHpJlKf5sJnjCL5apG41tFjQfWj5hFa63gP6QXRPdTa2bWi5HzYRCU1WmDz9lZj7j8za5rz0Rp1BTQ+N3zm9H3yKmkbelR2teW3xjDawWAwGAyuiPlHOxgMBoPBFXFT1/Hd3V0VtF7rNDhPF2FKxPHj+6fQpMTWOrow2j4pzZ5uJrlU6B5heYnPle5YJQ/ovO6iTO4935Yut3Qeza+l2++O277fJUO1Upt0Tf5O2UhrVrDWqcu+lSN5Mkc7dxPG8OQUnU8uO7qOk1B8Sw7ROpT710UpKKNI8Xi6gb1Uh65jliKlkqAWKqC4SyrL4nrj/UoJTQxRNAGQXXhjF3Kg6zgJ3rMRCJP30ruFzx3dpHSx+n1TOZe7k/2YTHTy49J1rLH+9NNPJ/twXet+UzY2PXt6rzH5TteRSVJrHdcq1/nO/SswYa9J6CYhGIYFec392rM8yfe7JobRDgaDwWBwRdy8vKcJ+K91tNKY7EDsygP8fA4mQ6R9yciShFxLCmCijicJUNybcz/XRs+3bYLwO0ZLQQz9PbU6Ey5tIejbts+EVDLTIPlOejrcum0i97xuPlcyLjJzMjM/tsbPRDaWp/jaIQsSg+Xa9PWtshBZ5Vx/LOh36UQyCJZIiEn7PaC4AZN62KDA10GTGG0JTr5Nk7RMz3oSXGnvCskv6hmkLKHPjddn9zySRZGJtVZ4ax2vmcake6w5MFlureNa4TomE0zlKkyoZDJUEuppTFZI8qSUP2UJXGvA4XNu6yC9L1qyJUuTPAGKHq/7+/tpkzcYDAaDwWvHzRjt3d3d+v7777dC3WRrLBNIbLQVjpNppHhrYyyMAXnBMy05lrvIEkziG03OsJUzpX0pkJDiC21s+ruOQct2rdMGz631XSqT4VhaOZF/580LdqIDT09Pz9c2lYaxHIDjY9s/RyuvIvP3dUDGp7GJeWg8fk0Yq1IsTiwxiapQxILno9SosyDGrRnfSvefEoX8nffUr/O5sqgkqtBENXaN31PrtLZ2Hh8f1x9//PG8j8biZVCaG8VGdpKofFe1dadrq1j+Wsf7oTGIcVEUwt93et4pkUmxE7//zQum+dDjkfIutM5YCpRaiDYBDo1R2+oZ8XaQTXilNTXxn1lOxFK49C52pj4x2sFgMBgMXjlu2vj9zZs3z1aPLKSUtdjEEpI4w86SXevUX++Mht+JsdDCSefQPhQkl0RayvAls2gyimlfsm2yE2d3ZBZkZiyQ34GxuMQIWxyXWaF+PjKjd+/ebcfjcbgkp9jkEtN5OE6h3Q9Kyq11vM+t0H7Xgk7shvcwXWNmCmsMjFcLfk3oldDvjNV5/E1zJcui8IvG7vtqLBRT2LUO1PXiM0927+dpz0DC4+PjC08ExUHWOl5bXRcyvZSXwDWt8eoek5H7WCXUwLZ8jMMnyUfGU5nt7iCDbVUdugfO/PTn6pJ2AAASWUlEQVQ3ZmQzszc9s2KsvI7MlNbvaSxswJFixXy/8PqxXZ9vewsW6xhGOxgMBoPBFXFTRrvW0UKV1eF+elpH9PWnzLMm7yZrh4zMrTbFvT5+/LjWOlpAsuaTuDfHwLjOJbWiZDuMPTtzIutuTRk825DHJ4NtcZA0vxajTXVozcrdxZGFc+z67u7uxKpN8p1kROl+tHPSA0A25cyI8eJWD5pqIVnfSmaWpPCaqL/ALFQfE7fVPBJbZP0k73eLRTrIehl/9etOhtayxNMa0vFaazrt9+XLl+d5aO7euEEMTIyoyWgmTxM9KdxH8/vw4cPzPnoe9e7jekut/Bi3pXwjmyY46Nmgd0Is32UpmU2tY7SGKD4WNs0gi0z3q9Uh89qnNoCsm9W95TpfKzcemBjtYDAYDAavHDdltG5ZpDosZiWSrabYLVtaNYWolLUmy1FWoCwgKbakbDVa6efa16Vxk+3QwkyMRtZaq291JtOyW5mZyHiI78usWTIYP/+OUfiY/ykOh8OLe87aZf+5xfebKpOjKVwlS7yJ/DPOmtSkGLti7e1OvarFLndWObMxW22kf9cyh8k4U5Yz1xUrA1JtbKstTw1FUp1zm7/q98l6Uus03Q/9ziYDKcfAs+bX6vXtnuX8888/r7XW+vXXX+N52BJxrdOcFrJr/e5MnSpOvEbM3k/5Moqjaiz0viTvItm8zqtxsJm8/601BkieHNaqUwlq917ySpNhtIPBYDAYvHLcPEa7099VrKTFCVOdIY/bNHNTfJfslMxFFpiPsVmqzKhLOrxkSE1HNmkr67tz7NHPpzHpennNm8Mt9XaNyZx2bfK4za5Nnp+vWZZqscj6ar8WrU1ZUwhLOJed6VmSZDRsJ5ZiZU3PtdWN+7lTbNznkzJjybbOKa75d2KqzUPEJvL+M5nsTv3r3BhTLSvzL3YeE2msaxuxHWeLYoF6lllRkDJ6W216a5/oLeF++eWXF5+KZXIN+1rV89+8EpqPNI99Hq3F5q5+n1nN2kbvENbv+j4CnxEpYOlTms+cq+9Lbe9Ui8910PJZfO7+DhlGOxgMBoPBK8f8ox0MBoPB4Iq4ueuY7lNPSvAUeMdOCk3YyReuld0/Klqnq5jNDdxdkcTU/bxMIlnr1F1OaH5sPrDWadJNc/skse3mRt+Je7OMhElrTbzfj0vXMZOLHEmCkzgcDuvdu3cnbvNUvN6SxXbgteT109rxe872hVrHTB7atSZsoYvkQm6NGnYiHgIFRIR0PiZotUQ6tvbzbVhOtluPdP9xPad9KEO5E4Y/HA7ru+++O0kw8tIZPWM8hv6exsJtdXyGA5iYuFZvlykwIdG35f3muvdj0r3NRDeuM9+XCW0ak0qS2ATAf6YoEcWC2MRhrVNRmHNyrmv1RKlWtufYladdA8NoB4PBYDC4Im7eJm/XiF3WJst5doy2ySUymULH8vR0WWWyomilU4aMP/vxaM2lVmAsXWglM6mgn8XZTCby8zEZioLdTFpJpRNNTLwxeh8T2W9KXiLrvaRdHltcJblBYpf4Q5bYxsB2b+k7CockgRSyM66d3RgFskPNW/cplSDx/Gz47efQmCijJ2arZ4TJPmudXp+WbJNKteit4HO7Y2o7YXh5QzRueR6SKExLyEnCNbx2bVu2MfS5aQx8ppK0JJ9DzUP3UowwCcloX5a4cS35s5JaQ/p5Nc9dMpSOwaRSPsdrnSZh0rORnk3O61wpnI/JS6kmGWowGAwGg1eOm8ZoJYe21mlR81pHC5wSbsny9mP6p6wlpcxT2sstMEr5sYVWKrh3Cz7NI7VwY/lGkgHz8+2aKVOSbtdAnXE1MlyKpq91yhYYv0olFYyLcn6M9/rxk1A78fT09EKUIMUrz0m4JSGRFvdkAb8+XXSAIiNktBqPx+a4VpsXJDXNaE3IyRKclbF9GEU06PXxnzVuMlr+3fclE2txttQEnWINrczHwfkl3N3drffv35+0Sdy1oqRHJm2bciPW6o0O/FqwBSFLwdioZK0jc9Wn9qFIg4+V7xcy2l0MneU7bMagses968drohNiwxSn8H1bvkpqYtHuF9/BPi/+/7kVhtEOBoPBYHBF3DRG+/Xr15NWVA6KMzB7kXFJ/1trTM74g8chmMlHgYcUS2it1ZillzIGKXxPppeyQGnht6YCyUJjBixjgswSTnNnA+hd0wTGhFoGc9rmXKzk6enpJJsxMeTGAJPV3grsL7nGTT5Tf9cYfa1yzsw2Zm7CWqdNuRkzYxwqNcZmq7Zd/KtJjLJ5d2ILvJ5c1/Q6OchKmM/gniSN3wVeWtaxGG1rgZfGzWOlrG3mTLQ4O2Ppax0FMtjOTcdQfNw9KJSQpDCK2jYmxpeeP5+D4GycWdT0wqS8i9YIgrHa1HaSmcnMQm8ZxWudxvH5bPozkbyGt8Aw2sFgMBgMroibMdrHx8f16dOnZ4uS0nVrHa0YWU2ycrRPikPR4m+gBbrWKYNgXELbumXJDEGyhsTUaXEx5rxrK6fztWbtiW2RZSuOkrJmCbLFZg27Rci4bZM99GNQLu3t27dnpfTYZu2Sumr+nmTmGNsh49zJALaG5Yw1+TZkdPS2JMk4nucSqUI+G20dpvrJFqvVM6JnIjGDNj96R/w8jOvt4sisx7wk61jfsym9n5PxwF1WbooZcpx+bF/7mj8zh1lfm9YbvRPMw3Do2eJ7jh6N5O1pnrLm6fLjnssjoDaAf9c8d/SKpPOwTV/yEKb357kWnf8GhtEOBoPBYHBF3DRGe39//2x5yZpxa0OWCJkGmYVbkfqONXrN8nMGzZivxtaygf3cGj+ZRco65HzIoHYxIrIssp5Ui8l4ITOld2L/tChb3axb6K0WUuC1cmgMHz9+PBs34XXzOacMasclMcx2P1J8iGPhZ2JBXAdkQ60Rgs+V21ySGcv1ILDF5FqnqkSsvSbjTVncvM8co8+bzw/j8Po9sR9ntLsY7Q8//HCyBlM8UuNk27rEplINevo9ZekzVql7qmubckPIdltWsL/fmGHLZ4DvlnQ+6g+0hi/+M98Zfp98/qkOvuV37LKEWflBLQC/J4ypq+nEtTGMdjAYDAaDK2L+0Q4Gg8FgcEXc1HX8+Ph4IoDg4t5yHdNlq8+Umk9JRKbTU3QiuQm4DV1d7qJkMgCTH1IiA9PoW/JFSpZpgux0HbsrjGnuPC5dSX4NmbZPNxDLp/xvTHqgC/Rc+c4uoeXNmzcn0oF0ia912reX9yONm27eJpCSREF4/3euRI2B7lJe25Sw1dzMRHJVt4QtlqT5dxRxYb/lhCZYwnmn8h66ohnC8LXRGl0k3N3dRZlAvjf8eALdpylphglAdHmnkIbeeZ4I6EhSrNwmiZv4OHZ/a2NM7yy6lXdhALrnNb8mnJJCCLzvfEZTiCw1cvExp0RRv36TDDUYDAaDwSvHTRntw8PDSbDboaJrWX9JuHytzEoZ+G4s0sHi5ZZ05Ra/xr+zjNd6aR3SYmqtrVKCBa2ylsDjko9kZiz+1/dkoGudJrKQfSQJO15bnY/3OpUEuRhAsyzlDWFCmM95V37kv6dkKFrpvH4pGYZo5Vd+/fhdY2apBK3JRXIt+bxbIT+bSuwYLYUryLBTuQXvBdle8ioITNhKwgj87hzu7u6q+P9anVEykTIJ9vNdQUERzn2tYxKU3h0SqOC7Jc2vlV0lTwOfQ459V1ZIRssEviRgw/LLtu3uvdPWd4LGqGtADyTXvR/v0rLQfwvDaAeDwWAwuCJuymhTE+ydIDhbQu2K8pnKzjT+ZIEzZsWYJqXDfJsmIn9JuUWTcUwlE7s2Ub5tkpQ7F5vlmH0btp4iA02WbGNsyfrV/dLnLk4ib8iOWdJCbZKciSU08Xuy1B2DohWd5BR5f3WN6Y1J7IRxXMbuk/gJvR5sl7iL73ObVma2ay5BNppK+ng8sT02dkgiF6ntIqG1w4YlqY2loHNJ6EUeNd9O4+T5GY/UeX17rnnGGpNwibbRWPgcpvdEE9HhO5Lb+3wYO9V5dY28FaPmyGdbfyfTTd4QlhNxnaX1rWtCxpxKLpM845T3DAaDwWDwynHTNnmPj48nEn9uVbFYncxClovvo7/JapLlJ2vqnJDBWj12lawojqll2rql34TuaUmlInDGgmi57+TaGOu5RORAIAu+JOu4bZNid7Rud/KQKiqngH5qIJ6yi30f96qQ3TAmy4YByavQJDGb+MVaR7YmTwnXW4ojp+vuaB4PH1OLt+5itETzWvjYyHp28VGKC7QqAWdO9DR8/fq1rmV50shynOVxjZN5pyx3nU/vHTIvNoGQV26t433neelFSuI6jHvqWqi5QLqXvJbM0UjvFnojGkP3Fn8U4mADBK53XzvNy8J3sM+P70Ze++TlIKN98+bNMNrBYDAYDF47bspo1zpaQKkBL+OfsiBleX38+HGt9bLZsI7HDDNKlqX4Jy1jxl13Frj+pnnQikoNzVu2364BM60yWYGNffmcKbUmsI7Ox8P5kCkka7ux+caK03HPweewY8jn6o79vK1tYWqLttZL1t1Ez4Ukb8hYL632JPXYmAXXEq16H3+TiUzSjC1eyGchVQ+Qme3i4gLvW5If9O/9eLuaXt/v4eGhsjv/mTkkvF/OaJn/0OLR3spP0DuL8WeK7ft9+fHHH9dap5UYLaa+1qnHhveS9yVdYz5rmgfZqo+bbfD4ycxp/1tbq0LKJxDooUmew8Smb4FhtIPBYDAYXBE3Y7Tfvn1bX758eY5VyBL0WBCzMMksZT2lGtUWh9DvEt1O/vgmCE+x6nRcWsqt3tFxrk2ej5EsQSADSBl8ZLRkcInlUbWIx0xZoGSyjRkkeHbjThnq7u7uRKDds5h5zlY7nNjipU3jHecUoRLbam0S+ZnG2Jgk13vKytS2zORMGevN68Lzp4x15iuw5paeFD8O7xc/E3O+RBlK+7IZQvIACWygkI4vRqkaWEFslZm9yfvSmrcnBTx9xzh7a8/o37XM8R2o3qRroOc+1cLyb3xedUyx89SApXkedlnVGlvzUPq7gcfd1e//mxhGOxgMBoPBFTH/aAeDwWAwuCJu6jr+888/n13HKRhN90frz+gp5QLdEM0tm9xkdDEwScRdua0PLN2zqdiciTpMRkiJNSx/oSst9ehtLlG6TZqbMB2DpQ9p3M3dl9LtKfSxw9PT//QyZlOBJOGm+9Ak3ZJEIcfAY6SkMZaCMeEklfckgYjdODR3HzfdcEysSqVodH1yPSSRf563NZtILl0+e20t+XGYyMLjJ/ftbv063r59+3x8rbskgMGyJ7plfa66/0rMpIAE105KUtP7xkuX/HyO33///cV5dQzKD6YyOUqWNtETX6vN7cs1mkRDWjKhwndJGlGueK5j9kVObmC6lXktdv2Pb1Has9Yw2sFgMBgMroqbMdrHx8f1119/PVtvsjI8xbsVR8tS4u++LVmCrBslEQiyqnwbjYVF3ylZhGn0rf2eW9mNwQg7MQKW0/AaMJnEt2XyU0s8SckRTZYwlWWda63Hkoe19gIVaSz39/cn5/Zxk0FS1jCVKzGhqDUXSBY6G1+QyWrOPk+WNZBRaJ1c0viAz0pKLCHjo0fgkkYLreVhYqc8XxNKcRake6prwmudxrhjucThcIitA7nNWqdrsgn4+7m1jd4rZHxJqpASjPS+qDwmvQ+YIOrvMz8mf/axci0l7wvfSa2scCf9qk8ljNFT6Ndb82geouSxYQIgn8WUzErvwZs3byYZajAYDAaD146bNhW4v78/sVB3DcQpp5hkuGRxf/78+cU+rYQlpfUzvZ+lAI4k/5fOm9pwNfZLizYxp9YYOwne0/ps12Anxdgab6fypXMSjIxX+dguidVKdCDFBQWKm5DF7UpneL3YFi2tkzbXXQMC3o/WAvGS9m8cU2oP2aQkW+lGmhefyZ0UJ8/HeCU9Hb4PmXrzMvhcGZ9OOBwO6927dyfXZ9dIgcwoMVo+f2S2lGj1OWtNNpnO1HKvPR8S8UlSs03sIXmECN5/Mlj93cWDdN00d4oGMd7qAiD6mQ0cmBPi10rb0mPC+SWRoiaMci0Mox0MBoPB4Io43Krx7eFw+K+11n/e5GSD14r/eHp6+oV/nLUzuACzdgb/FHHt/Ju42T/awWAwGAz+P2Jcx4PBYDAYXBHzj3YwGAwGgyti/tEOBoPBYHBFzD/awWAwGAyuiPlHOxgMBoPBFTH/aAeDwWAwuCLmH+1gMBgMBlfE/KMdDAaDweCKmH+0g8FgMBhcEf8NqWzogeYDFpYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZXlVJvr9IiIjx8qagBoAqQJBVBxeL10CNrS2trrsbhWfCuIA2Lbi8NSHrajQWk9t5YmNgiPaaqkgYDvyoBUnqlucwemhlIJWqRRV1JQ1ZWVlZkSc98c5X8SO7+y9z4nKuDdf4v7WinXj3nvO7/ymc+7+9ti6rkOhUCgUCoXFYOV8d6BQKBQKhQ9k1A9toVAoFAoLRP3QFgqFQqGwQNQPbaFQKBQKC0T90BYKhUKhsEDUD22hUCgUCgvE5A9ta+35rbUu+LvHOe6aRXZ4LlprX9Jae3dr7Yzt5wcaZD02Wms3tdZ+qrX2GOfYp7XWfr619r5hXu5qrf1ma+15rbVV5/iXDO3+8nJGM7r+Da21G87Htc83hnm/bsnXvGa47vOXeM3rW2s3zzjuitbaq1prf9taO9Vau7O19o7W2itbawdba48c9vQPJ238h2F8nzC8v8HcO5uttROttT9vrf1Aa+3D92+Uo/s0+rt5n651aGjvm/apvQ9urV3XWvsg57vbWms/uh/X2Q+01j6xtfaHwx55X2vte1prBx9GO28d5vCl+9GvtT0c+7kA3iufbZj/3wzgaQBuPddOnStaa1cD+DEArwXwAgAPnd8eLRzXA3g1+vX8aAD/F4Cnt9Y+uuu6UwDQWvs6AK8A8DsAXgzgHwBcCuBTAPwIgHsA/Kq0+8XD66e31i7vuu6uBY9D8ZVLvt4/d9yK/h7+u/PdEYvW2nEAfwRgC8DLAdwI4DL0e/0LAHxb13V3tNZ+DcCzW2tf13XdGaepL0a/7/+n+ewvAXz58P9xAE8B8CUAXtha+9qu68If7j3iafL+lwH8BYDrzGen9+lap4fr/eM+tffBAL4NwG85bX46gBP7dJ1zQmvtYwD8Ovrn2EvQ9/vlAK4A8Lw9tPMCAE/e1851XZf+AXg+gA7AB08d+/+XPwD/aujzvz7ffVnCWDsA3ymfPW/4/LOH989E/5B6VdDGEwB8pHz2tKGNNw+vX32+x3qe5/ngeVjX6873uJcwzusB3DxxzJcM8/FRzncNQBv+/+zhuGc5x10z3APfYT67AcDbnGMPAPgFAJsAPnZB474ZwGv2cPxS959c+9OGef2X53u/TPTz1wD8FYBV89mXDX3/8JltPALAnQA+fzjvpfvRt32z0Xqq49bakdbajwwqygdaa7/cWnu6p55qrf2r1tpvt9bub62dbK29pbX2FDnmhtba21prn9xa+9PW2oOttXe21p5ljrke/Q0EAL89XOv64bvntNZ+p7V2x9CfP2utjSSd1tpaa+3FrbW/bq09NBz/6621J5tjHtla+9HW2i2ttdOttRtba18m7VzZWvvpQYVxurV2a2vtTa21Rz28WZ6NPxleP3h4fTGAuwF8o3dw13V/13XdX8rHz0P/oPmPAP4JMyVCbx8Mn1/XWuvks69trb1rUPOcaK29XdZyl+q4tfYJQ9uf0Vr7wUF9eGdr7TWttUuk7Ue21l7XWrtvaPunhvO2VYfJGK5vrb239ar232+tnQLwPcN3c/dQ11r7ztba17RenX9/a+1/NlFJttZWh+NuHfbzDXqMOfbTWmt/MMzXva21X2mtfYgcw3vk01qvBj019PHjhn39XcO17h7GedScu0t13HKz0XUy1+m9MBz3ScN9+1Br7e9aa1+uxwS4bHi9Tb/oBgxv34R+n3+R08YXof9R/pmpi3Vddxa9NmUDwNfM7OO+obX2+tbae1prz2yDGhTAtw/fffGwj+4Y9tQ7WmvPlfNHquPW2stab1p6YuufrSeHffnNrbWW9OXT0P+AAcDvmvV/6vD9LtVxa+2Fw/cf21r7xeEeua219vXD9/++tfYXw/X/qLX2Uc41n91a++PhfjgxzMejJ+bsCIBPBvD6rus2zVevQ/8c+4zsfINXAPhD9BoH7zqPbq29driHTrf+2f7G1tqlWaN7UR2vttb0+K2u67aSc34Mvcr5OgBvB/BJ6NW52vl/i57uvxnAFw4fvxj9wn5k13X/ZA5/AoBXAvhu9JLH1wP47621J3dd9x4A3wHgHQBeBeCrAPwpgDuGcx+PXlJ9GXrp9pkA/ltr7XDXddbO8HoAnwXg+9GrSw4Nx14F4MbWq7LeBuDwMLabAHwqgB9prR3suu4HhnZ+FsDjAHwD+h+rK4Y5OJLM2X7g2uH1ntbbXj8RwK90XTdLhd56m8azAfxm13Xva629BsA3t9Y+tOu6d+1HB1trXwDgv6J/gPwu+rn8SOw8VDO8Ev1D9bkAPgT9j+AmdgsDvwTgIwB8M4D3APjfAfwA5uNi9PvgewF8C4BTw+dz9xDQ7+W/AfC1ANbRq7F+ddirNLtcN7T/CgC/AeBjALxROzM88N6MXvX/bADH0M/d21pvIrjFHE6V2X8B8AD6+Xnj8LeGXkv1ocMxtyMQwLBjDrL4AgBfDeBdQ79m3QuttQ8F8D/QPweeA+DgcPwx9GuX4Y+H19e31l6GnoWe1IO6rjvTWnsdgP/YWrus67q7zddfCOD3u65798S12NbtrbW3A/j4OccvAI9A//z4vwH8NQCO91r0+/I9w/tPBPCzrbX1ruuun2izob8vfgL92n82gO9Cz65fF5zzBwD+TwDfh17FToH8nRPXeg16bcWPoN8z39taewR6VfN/QW/O+14Av9xaeyJ/HNuOievH0aurL0G/z9867PMHg+s9Cf3e3tWvruvub639I4APm+gvWmufBOBz0JsPIrwewOUAXgTgFgBXAvg36H8jYsyg0s9HT6G9vzc5x10zvP8Q9A+ib5T2XjUc93zz2XsA/LYcdxz9D+n3m89uAHAWwBPNZ49Cf6N+i/nsk4drfEIyrhX0C/PjAP7CfP6vh3O/Jjn3P6PfKE+Uz3986PPa8P6BrJ19Upd06Dfu2rDYT0X/EDwJ4Gr0P+4dgO/eQ5ufN5zz+WYtOwAv28N+uUY+v67fbtvvfxDAn060dQOAG8z7Txja/mk57geH9aAK8VOG4z5Pjnvj1L4Yjrt+OO4zJ45z95BZl3cDOGA++5zh86cP7y8d9siPyrkvhqiO0f9AvZt7a/js2uF+eIVzjzzefPYZQ3u/Jdf5JQA3mffXQO5NOf7jh3m215t7L7x2eH/UHPNYAGcwoToejv3W4dgOPdN8+7CnLpHjPnY45ivMZ08dPvtyZ3+NVMfm+9cBOHUu92fS9s0IVMfoH+YdgE+duf9+FsAfmc8PDed/k/nsZTD39PBZA/C3AN44cZ1QdYxey/Cj5v0Lh2O/0Xy2jt6O+xCAx5jP+Zz5uOH9JeifWz8s13jSsOYvTPrI5/bo3h72ypsnxngI/f31UpnDl5pj2rAHv2yv670X1fGzhk1s/74uOf7jho79d/n8F+yb1toT0bPU1w6qrbWBOT+IXpp6ppz/7s5IpV3X3Y5eKh95xCkGtcnrWmu3oH8YnQXwpeh/SAg+pH88aerT0Dtn3CR9fgt6aYfS058A+IbWq0g/IlPRmD6u2jZba3PW6FuGsZxCP2dnAXx613Xvm3Guh+cBuA/ArwBA13V/g368XzizP3PwJwA+uvUenp88qH7m4s3y/v9Fz5CuGN4/Fb3wpeqfX8B8nEXPmndh5h4ifrPr1ZC2n8DOXv0IAEcB/Lyc93q55lEA/wLAG7odJoyu624C8HvofRIs/rbrur83728cXt8ix90I4DEz9+U16OfzLQD+k/lq7r3wNAD/ozNMtOs1Vb83de3h2G9HP29fiv6H5XL0jOedrbUrzHF/gl7QtOrjL0bvIPSGOdcyaOifBfEBu+/VvWgIp/Bg13W6XmitPbkNkQPof3zOomfr3v7zsH3vdP2vx19hxrPzYYDqZnS9Y9pNAP6q6zrrUMt9+djh9RnotX36W/D3w5/+FuwnXoqeGH5PdMAwX+8A8C2tta9ue/BM38tD851d171d/t6THH/V8Hq7fP5+eU975U9g58HFv3+H/oayuBtjnMYEdW+tHQPwmwA+CsA3oV/UjwXwk+gf0sTlAO7uBm/dAI9Cv+jaXwoV7POz0bOob0SvcrmltfatEz9Wvy1tfms2rgE/OYzlfwPwiK7rPrLrOnpW3oX+B/hxM9pBa+1K9Kq/NwM42Fq7pPX2z18E8Gj0qu/9wM8A+Ar0AtlbANzdWvulNi88TPcAvTW5B64CcEJ+5IDx3stwR7fb1rOXPbSXfnr90veXon/oex79t2Gsblcv0DPJ52sARqFdFoN6+E3oow6e2+02F829F66CP/+z16Trutu6rvuJrute0HXdtehV2I9Gb5qx+GkAT2t9WMo6+vvwV7uu22uY32ORRFEMe3XXuGfu3zkY2aOH+/C30HvEfgOAf4l+/70WU6rLHptd190nn00+Ox8mvL0W7Uten78Fb8N4Pz0R498C73qerfQy+L8bAPrwJfTP6JcAODLM88Xs2/AM5DP7Weg9m1+CXsh7b5uwcwN7s9HuFdygj0IvzRBXyHEMGflm9JtI4bnpPxw8Df2PzTO6rnsbP3Sk0DsBXDbY3KIf27vQCxBfG3z/N8A22/4qAF/VeqeV56EPvbkDve3Cw5cDuMi8n8NKb+267u3eF13XbbTeoejfDDazqRCCL0D/4P384U/xPPQ/NhFoB16Xz3fdJIN0+GoArx4cCT4Fvc32Deh/fM8FtwK4tLV2QH5sde9l8JjM3D00F7xHrkDPLGDeW5wY+nOl08aVSB4i54rBxv8G9Gq9j+vGttFZ9wL6sXrzv5c12YWu636otfYdGNvfXoPe9vhFAP4c/YN20gnKovUOix8D0S4I3of+h04/2w94++8Z6AWLz7L3e2vtwD5d83yDvwXPRa/GVaiQYPE36Bn+h8Nosgbh+IOQayg/GL2nuWpfgf4H9SXofRpu7LruNvTq8Re21j4Mffjod6EXjH4qusAif2j/GP1m+VzspuOfK8f9DXp7xYd3XfeyBfaHqsntB+/wgP9MOe430LOVL0XsPPPrAP4PAP84/JhOYlC/fktr7YVIjO3DcfuNl6G3R30PnAdia+1aABd1vefx89DHGj7faefFAJ7VWruo67r7g2v9w/D6FPT2H/4QfUrUua7rTgB4Q2vt47AT03gu+EP0wsKzsFstq3tvr5i7h+biL9HbpD4PvZMT8Rx7UNd1J1tr7wDwua2167odx5HHAXg69ubktVe8Av0D/hndbocrYu698Afo47GP8se6tfZY9Hbf9MdpUA3fIUwarbWr0DOPXayz67pbWmu/hV6l+pHoWfNIDZtc7wCAH0b/fHxVdNygEnUF3AXB23+PQu9gtEhQOD+84Ov8L/Tat8d3XRc5Z7nouu7B1tpvA3hOa+27jTbqOeifBf9Pcvofo3cqs1hHv2d+Er2pYhST3HXdX6M3DX4lcgeqPf3QfvTgNaZ4u7UbmU7c2Fr7OQDfMdDud6A3WP/74ZCt4biutfZV6L0x19E/GO9EL+k+Hf0N/Io99DPC76OXiH6otfZt6G1jLx2uRTUBuq57a2vtFwG8YngQ/A56aeeZ6A3qN6D3wHs2eq/o70MvLBxFr9J5Rtd1n9lauxg9Q38telvEWfQP5EvR/5gvDV3X/a/W2ouGMX0Yemeffxz68knohYrnDuzlI9A74dyg7bTWDqG3yX0OYuntT9AnPHj5sO6n0YdK7FKtttZ+DMD96B/At6N3ePgi7MPcdF33G6213wPwY8Oefc/QZ4YSZJ7yGWbtoT30855h/7yktXY/+rF/LID/4Bz+n9Gr89/U+uxHx9BrR+5FrwnYd7TWnoM+vOW70ZsRnmq+fu9gb5u8F4bjvxO9oPMbrbWXo3+QXYd5quMvAvBlrbXXon8oPoh+v3w9eo3XDznn/DT6e+9aAN/nPaMGXGTGdRH6/f8C9DbPr+y67h0z+rcs/C56wezVrbVvR+8w+q3o53CUCW4fcSP6e+ZLW2sn0c/5uxztxjmh67q7Wx+S9F9bn3ToLeifEY9G/0P4a13XZX4W34pe7fxzrbVXY8f7/jVd1217I7c+9OyHAXx813V/1PXe6TfYhoZnHdA7C94wfHYF+uiYn0O/zzfRP1cOI9fynbPXcYfeJmiPu8acewS9ivRu9N6VbwTwb+F4dKJXy70JO95pN6NX2zzNHHMD/ADzmwFcb967Xsfof+j/DL3U9HfoHyLXwXjDDsetoVcX/C36TXUH+tCEDzHHXIr+IXPTcMzt6G+Erxu+P4heNfpXw9jvQ/8j9NypOd/LH5yEFcmxT0evHrkV/Q//3egf7l+I3l7//cPmeVxw/gr6H+gbJq7z4cNaPTAc/yKdZ/TM+YZh3k4P8/h9AI7Let9g3n/CMN5PDvao3XuPHPbP/eizXv0MdhJ5jBIfSHvXo/8h8b6bu4dG6wLHqxe9tP2d6FVPp4YxfxichBXohZw/GI67F/1N/yFyzA2Qe8Rc90vl8+uGz9e8/pnvvb/rTDvpvSD35Z8N6/336LUX12M6YcWHDu3/GXr14ln0e/gXAPyL4JzDwxyF6z3MFcezNRz/5+g1BLMSHJzDfXszcq/j9wTffSr6jFKn0KtXvwK9xuohc0zkdbwRXOvGGf396qHPG0PbTx0+j7yOHyPn/yHGXu9PHo79Qvn8M9Fn77ofvVD1bgD/Tfd60M9PQu+c99CwR74XwCE5hn18atKO53V8FL0K+q/RP9vuHcb1uVP9YjjE0tBa+0/oVZjXdF23XynCCoVJtNZ+ED1buaybtlUXCoXCvmCRNlq01v4det31n6OXGJ+BPjTg5+tHtrBItD670cXoNQrr6NngVwB4ef3IFgqFZWKhP7Toqf9noXcuOoo+k8ar0Me/FQqLxEn0cd5PQK/Gvwl9vPHLz2enCoXCPz8sXXVcKBQKhcI/J1Th90KhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIRTtD7Vxoba07cOAAtrb6XAF89WzEKyv97z/TR66uru76nK/2GD1HU09mqSinjp1z7rm0P3X8Xvu41/HMuV4GHqtrmc2NHtt1HW6//Xbcd999o4OPHj3aXXLJJdvneO3qZ/pq98zUORH2a433MrcR5vhW7If/hbdOUdvRd/q5/Z7/83mwubm56/3GxkZ4PaK1hgceeACnT58eTeyxY8e6yy67bLtdtsf2p/qXXXMvn5/rsft57vnCXvZjtIe8z6J18+5rPgfsb8q9996LBx98cKETuswfWjzucY/DAw88AAA4ebJPKsKNz2MAYH29T5N75Eifcez48eO73h89ul2rGocP91nBDh7sEw8dOHBgV1t89R64+ln0A89X+52eq8KAXVz9zraXtemdE73acyLBJPqcc5YdM+eHQx+aPJfracetD9KzZ8/iG75Bc8P3OH78OF7wghfgzJkzu9rjmtsxcL35nvuD5/B7279Dhw7t+s77UdbPo70TzbnFXn6U2Y4KptGDiD8o9hx+FvXZ68vUDyDf2+vpj5kew/U7fXonuor/P/RQnyL7vvv6dLZ8Ttxzzz273gP9XgF279W3vvWto7EAwKWXXooXvehF2+2cONHnnufzx/aL7ercevMUPVd0LbP751xIQSZ0KrQPXI9on2ftZedMCVgZubKCjz1GBSOuFTDeX7r/uD/s843PDP6mHDt2DD/zM3tKg/2wUKrjQqFQKBQWiKUx2q7rcPbs2W2p0VPhqFqZiBiZ/T9ifspOPXXjHNYWYc45kWQXSafZdeaqOb3rRtK2ne+ofW0jU+VE159S/0XY2trCyZMnw33htc31zpjgFBNnG/zeY7TRPGVj1nF449FjlbHOUelGDGLOOkQaDbbJubEaKT1W33usm+frOTpH9j1ZDT+zJikPm5ubo+eN99yJVI+eBiDSKEX3tLfvdL2ze2su6820LlPnzmHde3lGRveCakWA8b3GV7JR/m5YdqrtKdi+1WLxM2pQDh06tC8mlikUoy0UCoVCYYE474x2jqNMZDu1303ZITP7Z3Qdj+nOZcFzbBnROD1Wot8pK/akuqwPUT8iKTGSOLP2lJ1YyVLnMZMqu67bZdfz5l6vae23Fp7tnK9q14/srtqOfR9pDWwfo/feGuqcqq1Ur5uxoehe8ZxFdO9EmgHPRqv2dzJQtRECO0xFoczTzg3P4euZM2dSRmvP1z7q/7afOm92/5JZRRq0bK1VK3Au0H3vPY8itk3MYamZD4q2M2Wb9cYfrbcyW69P0b2gvgIWbG9q3+wXitEWCoVCobBA1A9toVAoFAoLxNJUx8BupwSqfaw6Zq7K2KotVM2nasAs3CJSEWVOEFPxupm6WTHHCSq63pyQoEhFuBcHh0hVbRGpXzIVlaqMMzVa13U4c+bM9pp6ZocpNRyPtftNw4QidaC3d7T/kQrXU2+rGjNz6oj2SKQy9MwFekykIvfGqvM65XQEjFW7dDxR84M9JnK6ylS93AcbGxtpv7quS1XRhK4h94O+AuOQNQ33idbL/j/lYLiXMBgdg4dIhew9V7W9KORxjtpZVbfeGmi8dGSGyJ4/GrYUOdYBY4e6RaMYbaFQKBQKC8RSnaE2Nze3JVgvaFpZU+Tg5CVYoITJ71Ti9FhJ5Dg1J6A/Cg3JnFKm2vLY8NyECN64KGVHjgzeuXNDneYw2yzURVnD5uZmyvxtGInXh8ihRfcHk1MAO8ks+JnumSwjWcSg+Xm2vzWwXkNPLAOYSmqgrNTTpHCO+V6Td3h7RxOA6Bg8JzyOgwyWrEHn0WO00f3qMVqdt42Njcn7LQt10/s8eqbYvcP/dZ50nTzml7Fq+7kdk2o/vIQhirlJLTxnr0irp+PNQt48hzk7vjmMVrUkNmGF7qfI2crTJuxl7+wHitEWCoVCobBALJXRbmxsuMxEoan7NK1eFt4T2VW8dFwq0UfhHln4i9oQCC+XqkqqEZP1GHvEUr05mUrTmKVXnGtP9hhdlEyByEKQ1tbWUhbdWhulYfPYYtS+x0oiRqupQOcwf2WYHov3wlIAjPwW7F7S9Ilqm9V94LHu6J5Qxmb7r3OgoTnevmcI1pR91wvVYYpFPScLI4pSJs6Bp63S+eK+0Ff7v85ppGmaE+6nc+qFQeke4fsplmyvQ0Q2e9tfffZyP3gpTadSmOre8faBp62wr5bR6r2mzx8eOxU6uAwUoy0UCoVCYYFYutcx4XlJRh7DGaNViTKSyD3pXT/LvDGJKTvbnGTrhLLEjJ2qDShirbbfkb01syNHXq6Zp7JeRyXXLMnF3NRurbXQI9FCrxklowDi9SdbYRELz16pDEb771WdoYRNGyYRJSPxxqh7Uve/7Qc/o1e1vmasJLLRKrOy4LooM+S4vfuKn7FP0b1n7yeP5U4xk8ynQces68/31IAAsddxpCXztFRq5+arZ4/U4gs8hm2o97ZFxHYjbZk3J1wfLeLCebDHRiw+Y+wcq75y3DzWzmPkoa7wPp/jLb2fKEZbKBQKhcICsVRG23XdyAZjpR71DKXUNJXezPtOpSdPaos8EbMUdSpFWakz6qOyq4ilZLGQmSddhIj5aVtZ/JyyLc8OG8XnRbZp+7+9TiRlttawurq6Ld16trnI+ztj/lFcK1kDP9d9aD9TRs5z2Fe7lupxrzZafbXHRukt9yKZR/vL824lNN6Qc6PMyv7P79SuxlePYSiL9LzEtb+anjSCF2/tedhyTXlNluMki8vskZFmLbOd63gie7wdq9pks7j+KV+Q7N5QJqvaHy+2WD+L4sM9BhqVvCM83xD2jXsmql1s9+ic3AWLQDHaQqFQKBQWiKUy2tbayNPNJn9XCVJtSur5xjaBHUlF2Y7aJzy7ANvnuXpdz/6p18+S40fsc04fp+yeWcamKBYus7eq5BjZhi2mkqRr7Jptd8pT0UIlVi8uV9tVJmb7ELGQOQnUFepPoJoU+79qNpTJWhtutL5qO836yGPJslWq9xh05AnNNlS7YM/VcUWl/rx2uBaXXHIJAODBBx8EsPueJ+YUpCCiGH37f2QvVjZp/4/Wcg5bVChbtddTu2ZU9i/bB1rcQ8ftxcRGHuRRjKzXJ9Xg0MP81KlTo3Mi7U7G8tW3QufKzokWuFgWsy1GWygUCoXCAlE/tIVCoVAoLBBLVR0D42QUNGQDues4MFZnWagRXVVrGuYDxIZ99oOqbHuOqlRVleMZ86cSZnNOvGQeUXEEdcLKHI0iJ7I5ThBRIL6dE1Vjew4gen2dt6miAN73tr0oBIzqKaog7bpE4S+RqtVeT1V3c+rf6vVUNanOUXYcUWKMSMVvr0dVtO4DzolV4akql33hMXrveY5GmsxdVXh2LdVBjH1lH73nxP333w9g9z2QJVrZ2tqaFWKm+1Ud2qxTj5oV7Bx6Y7Vtq+pY739PHauqVHU881THc5PPEF5YmT7P9PnjpURU1beaG/SetOOaSuqTQX9bvN+JZTtBEcVoC4VCoVBYIJbGaFtrOHDgwCg5g+cYEIWUKItku8DYCUolPTWYA3HKPTXmW2lamZNKSB6jjZLrR1K2Z/DX8WZJDqacULJg+ijoW6XVTLrXEBQ9zjs2S8HYWsPKysooAUIWYnTy5EkAYyZgz4mSDfAYSt481+4dlfg1JM3TIkQOZboeHqNVjUK0D+268DsyB7bBe+Oee+7Z9d7+z1c6rrANjkdZOTBO4qBz4KUY1T3J91w/j5Wo00vXdSnj8VK/enuHn3mhWdqX6N7V+8djw1Eaw6wIQORgpMzWnsP2p1IievedhiRGCVm8544m1+B9xDXl55bREpGmxtMMaOGJKD2p7WNW9GORKEZbKBQKhcICsVQb7erqaqiDB2LpIrMlqLv2VLhIluyfUg4lMk+ypCSvNtMs4Fql3ihw3JuTqDiChmZ46Qij1I9EloBc59ULr5g6R+fKQtudkixXV1dHY7dsimOllKysNwt/UKmZx2gb3rmaoCJLLKLJF1TSV7YIjO3dbIN91qLqnrZHNUGcI7JVL7yH46E9VFktaoDpAAAgAElEQVR3Fu4VMTNlX/Y6GmLFufdYD/tIXwr1V9C+bG5upglXNPxsij16x0SpWT3tzlQqTC9daFS0RMNf7NxGJQg1ZHBOSFD0fLNzz75wP+ur7nc7n8pYo8IXXmGHqM/ePaH3QpYoZz9RjLZQKBQKhQVi6SkYIxuG/V+lZLXTeEwsKhemkpKXGD5KpK6ekByDBaXSSKK1iFiA2mg86VfHoR6KVrKk5KherCrRqqSb9V9tad486lxkiQTmHEPQRss+aYo3YIf5REnXbVuESrzqUa1FBWxSefUY1qTnyhqAHQlc/Qb4/r777gOwm9HymseOHds1DvVbYN+9JAfKtjUBvR2X3luaxEWZtWUVWp4sutczmzCvE5WBs9extt4pjQjnybP56rnsvxZQ8Gy0WYlDwPfSj7yzI/u7Nw6Fl75T99lUsn8vfaP6vuiesnOiWggeo6yb47L7IyqswDY0qZA9Vu+5KF2pPdaOZxml8orRFgqFQqGwQCy9TB6lKs9+p6xU2Ygn3aqNlN9pMW9NGO4d45Wps20DsUQXpVO0fVS7nV4vY3kqUSqTtZKeSpIPJ5Wg9jWLYda1VI1AFiNrJdhMslxZWRnZrjhOYGcudeyE1wd+pl6mZHj8nszW075EXuFe/J/Gy5LFaeJ+r4QbY7rV25fvvTSXc8uj2X2h/gmRh3SWtk/ZiDJou85TcbSet7hqYtbX1ycLqyu78eLAeS0yMu2b55Gv2gLVfvDVXk8Z5lSREe87ZaGer0ZU+EA1aDwnS20bFcDwtIt63YsuumjX91r6Dhh7KNt728I7JyrakvljEFPx+/uFYrSFQqFQKCwQS88MFSVwB+K4O8LTuatEQvZx6aWXAtiRpjzp/eKLLwYwjqnKssioh6Nmd/Kk9iiuS6/jxUKqxKiMVu0wgF/WC9iRWDVRu7X/sX2NLfbs1QTnRLPjKHvwpN85ttrWGtbX17c1EOyD3QcRw9c5987RhPZqS/XKDWpx7jnsXZksvS8JrzSceqQqO+Fae3tWPVN173pZ1JSJq9aH8GyFukc0ExBfveuppojwbM96v0Z2S2DHLyRjkcrAeX8oa/NYs/on8Plz/PhxADvr48VyapYl9QL29mpU9EHHYM+PCoVEGg87LvU1UHtr5mPD93y+6DpZXwS2Sy93vt577727xpdpiCJNaPZ7cfDgwaXE0hajLRQKhUJhgVgqo7WSQ1Sk1/tMJQ6vbB0lR5bXUm9dSuZe5hRKT5TalMVZu5dK3GpXsx6c2l99jViXld6VKUel7jIbkMYdsn3NLW3BMfMYz9NXEZXF8uZeWfz6+nqaGaq1tn2OMltgnI1GJe+MabI9aj+UvXlaA/ViZfvcf+wPY1VtX5TpR96gwNjzVFmWfm/3pzL/iMF4cbvqQU72zTFwruxe1exRyorZN2akstfReyDSqNhj7TFZDP7a2tr2ddgHz9M+io3VvtrzVeNARBoIr331aVCPX/udamHm7HO2r/e7Fx+s0GdSFJNv2+N9z76oJoWs386Z3tucV/om3HnnnQD8uGr9LcnuK50nmwd7kShGWygUCoXCAlE/tIVCoVAoLBBLd4ZS6m5VKlHogFdMgKCq4bLLLgMwVo8qrMOOuqyrmkqdSexn6nygAfyeAT5KgUZ4iehVvZQlRFBETl4aMO45UHAcnjOHQp245oQRaXrArKgA+6Wl++y66Hqr2pxrTVWU/Z9j1bKIfGW/aGKwYP+pMuYrVcbqIGavo+kGPUczVa1qeE8UqgHszA+vp3vGK+zB9aczD4+95ZZbdo2LTipW/ad7lW1xf3Ev2XXj2NU0oipsOzdRwnkPdKQj1PGNxwA7akl12PSc1FRVrOpRL/0fMVd17O1vvWdtUQ7tY5TGMCroYq/HddBwG10vC0/l7Y2HZgi7V9UpTsfF+8rb3/pef2PsGmgRkGWhGG2hUCgUCgvE0hgt3ewzJwIviT/PtZ9bCVYN7uokokHzXoLpqJi2V44tcrOPiqpbeNK0bSubE3VgiJKM2//V+SZy+rCI0iiq01dWZEClUY+pZokPIthyhcBuqTQqOq3slCFdwE7Ygc5t5Nhmx8Fj2afLL798V5/YDxusH6V6VAnf7qUoGYgWF2Db1mGHfYsSwXjhENo+r0uNURbypAxKU3+SlXppG9mOJtpXZmv/98LhFGS0vJdVS2H/V40Wx+6VBGS/1EkoStbiJWBQB8PoPvXGqKFAXmpU1aTpePW5Z/sYafX0ul4aRXVC0oIOXgIQ1eZFyXZsKKI+8/UZH6VhtZ9VUYFCoVAoFD4AsFRGe/bs2ZEkZIP21bU7Cm2xEpoyVkqftEtlzMlLx2b7RmSJFlQ6zMrVRUnElTlb6T1iymqbmyNZRrYsL+UfoXZDj3WrJK7X84LbvUIOmWTZdd32vGjYkG1bmTFZXZR4wTtH2aKXAEQZC9eBNkzP3qp7UNmIBvjbc6ZKKnphJDrWKD2kHT/bpT1a7ZRk6F7h7Cg9qCbG8JKrRMka5oSTZYxW2/CKC6hfgs61l+xGr6lMWRnZHJugaro827n6k6gWIUtpq/tMn3+W0eozJNqrXpjU1L4jvPspKi7gpaVUTZSmAPWSyEw9CxeFYrSFQqFQKCwQS/U6tiWJMtucMorMw09tV1FBZC9dW1REnfAk5ihtorI6KzGrpKrSogbre+WxorJoXh+npM9IsrXXjuzknmehSvOR1Oh5mBNTthKWyvPOBXbmRRks33uenGSdKvnqGnrXU5uSplNUW6Y9RzUmyg61JJ53bGSj8/wXInuh2lBte1GaUGWYdiyalpIeq2or89idl6wF8LVO2sepggJnzpwJk8PY//WZpO16xUV0LSOtRZaYR/eK2k7tZ3qPUSOgbM7rS3bfA7vXRf1JvDJ19rr6f3SMhZdiUvddlPrRnu8lobDnZFpGe61FohhtoVAoFAoLxNLjaFVS8aSdiC16pckiiT5iwxZenKy9vpd2TKUk9dL12tQ+eDGP3vfAuJA9oVKvnUe1D0U206ywg0rikRcyMGZkEaP27ONRAQkLeqxnnt3qIao2Wa80V1b+DBgnbvcYucZcZrZ6tevruV4xdTLliJ1Gsdj2f9072f4mov0Wed3bz5QxRxoc25fIj8ErHcg1JXOe2jtnzpwJtQgeoufNnHSxU7ZG227UlndPaJ90r3hRFVFBCiIq8ej1YU4KVp3T6NnhXV/7onPhrddcr2ovL0GmrVoEitEWCoVCobBALJXRMjn8nOPsq9pXPalK21WJ0pOIIjuKnmOlUc0Aox526hXoXVvtuQoveb3ndee998ajUqHas+18Riw0Yji2Hb1uVAAh6ncEspLIm9GOKYrh82KwVdOg0m7GMKJCAFlBDC/WERgnUPe0BarZmGMD1DJsyqC9PiuLV0aZjU+P1T5n2gvVEJHJe+wv8h+I0HXdJOuN+hVdN2JC2Z6fC0/TpAxsystZ/wdiW3C2v/XeVk2Kl7A/eh5Edlj937breXzrMfo7MWetrSambLSFQqFQKFzgqB/aQqFQKBQWiKWqjldXV1N1BT+L1DKZY9OUGngvqhxVIVrVMUNCojAYT1UdqRe1z3NCdXQcXgpIndtIhZOpf7TPmVpmSmXjfa99nFLfbG5ubjvZMGTH9lED9nXsnjPHlCOEhpZkNX8jxz0vSQehaQF5rK1hG+1j/Z7wEpdoaESUitGez3M0zV1kHrD/q2OYqo4zp6LoHvccqIizZ89O7p8sAYaaVLJr62dqzpqTSjQyw2QOjoTeN7peXmhg5HyZrUvk/KbzZ99HzwE9J3uGqFo5Wzd9bkZ9tONme9bB8eGo9/eKYrSFQqFQKCwQS2O0rTUcOHAgdTDJ2K6Fl5psilHMkTQJleKsA5QGt6tzgBfeEbm9T4XS2HO9ZOi2H3PCSRRznJTmBKHP1RZk1+m6LmQlW1tbOHPmzLbUzoQOnvSu66xOS5aVasKDSHuQpe+MkgFE4wRihzoydpu+URlT5OAWOSvZcbL9KHEJME6AoM5R6iRl9506kekxnrZH7yd977Etbf/MmTOTaRj12l7Cgijk0CvpGT3H9sKOomcXx56FXfG6XNNIEzUHe3EuzRJ/TIWTRRoO7xhCr+OF6kw9T73reNq8RaIYbaFQKBQKC8RSGe3KyspIF++FaGQB4npOJJ1HLt+Z3SMK6/FKgUVpFdW2YT9Tu0PEfjI2HNlBLFNTFqLtRyEi3rGRpJnZxLKkDTqOLPzKXsuyQI7PK7dG6LU9m/pUarpMKzKlMfHGk6WEA8brZY+N9kEUOmHB+4qFzTXpgZeWNCqDqDZBLwVjVA7NS3KhBTXYxyzRCNeQ5548eXKyVF50j9sxZ1opYG++DHqc91m0hzzNlt6rao/0wmAi7VT0PPLYYhTO46XvjMap7zMbfaTdmwqJtMh+P/Q5XYy2UCgUCoUPACzV63hlZSdxvJZu0uMsMglF7WpTTCOTpqJ0X1kxZZW4vDam0tllbJFSO1+1+Llno408k/dib428tffCuudgSnthr8FrM1m9nYtIwzAnUbsWEo8Yf5bsImLUXpo5ZUrqOZ4lk48SB3h7iXOic5ElXdHUpZHk76Ua5f/Rq5cAhuPgMWpHztKgzknB2FrD2tra9p7x1iB6RkRerLZ/U4n6M6YZRR14a6kML7qns+tEzNl7BkeJKnSv2rWc4zUdYYq5ZjZanZPMx0fHvIxkFUAx2kKhUCgUFoqlMlov5spjiw8njdmcNGxTbc1JpB3ZNTMbUZT8OkrG77FhSvoa0+mVCoukXM+LEfClxKm5t59HycmzpOWeLSZaw67rsLW1tT0vZCe05wHA8ePHAeysmdosyX68WEm1R0WMw0s3mGkyousos1B7V+bRHcUkeulJVWrX/c05sQW/mQYySn0Xeb1nx8y5NzTlopbc8xgt+z0VC9laGzHkzItZkXmoRow/epbZ/3VNsxSFyq6jdffSt/JVU2J6BRsIZdf6LPT8DTQNZKS1zGy1esyUX4NFlCcgs3XPaXc/UIy2UCgUCoUFYmmMlp6jtId5Hohq05lrvwNiW9Ze4tyiQvBexhQiYqWeZ3Rku9yLZEmJXGM77TxGDE2/96S5yIsw89aLYjznaA+i9xkYZ0pma/tNu61K4GRGWTYphTLQvcQMep6cyv7US9ezG0X7OvKYzgoScI9orKxltJxTLbGm9+IUC7TtZ7GQar+NYiCtpoD91Tnw0HUdNjY2RnHv3nNnjrdxNMYpe6hnb82Ylz3O9jEqB+r1VRmtxuJnGZuiZ4baUL0cA7qfp2LN7We6r5RB23N1/vR+8jyjveiAZdhpi9EWCoVCobBA1A9toVAoFAoLxFJVxxsbG6N0ZlZdEqmL1H3bUwVEKdvmqHRVZadqrCyRgNbRVHWNbX+OY1F0nM4BX730gOr0pEkIIjWgvfZe0prpuVEicM8BZQ64d1TVaVXHkeOFJqqY4wQThQBkauCpxAX2fPZbkzVk19FX7rcoZMNeR/cD54IJK6zqWJ2SLrroIgC+YyDw8JxJPBWlrpvuc6ui9FST0b3VdR02NzdHTmqZM1+UbH/Ono2cCbPUgRGysCKuvz5b7DlcM302RUkhvGejPgPVCcur66rPqijcx7ve1FzbdZwKJ8vOz5L1LALFaAuFQqFQWCCWmoJxfX19JOV4Af1RoHgmfUTOOiqBeWzYcySx7y2jVeN8FNhvEyhEJdUUnnNH1Mcooba9ts5jxD4yJ4jovWVsU8H7OmfAmBFOSZZbW1vh+gB+SUPbbhbWo2xnKp2n91mUON/2kWyRr4TODxmI/Z99IgvV9ImeUxyZaqTB0FSM9lg6nEUMSvtuEa2ll4ie0LSh6uBiCy3otadCe1ZWVrbP9649V9OUpfSLQoB0ru1nuu/UCdRjZnqvaciOpw3hMVEZQI9h6z3shUXpGDRlrWpBIhZuj9H7Rh2bPKfPaB948+yFGi2D1RajLRQKhUJhgThvZfK80BkNQ1DMCXBWSSxzh4/SymXsVG0VtHtSWmPohJeuLwvFsMdZhhGFD0TjtVDJcSqcwCIKK/EQjWOOPdeGDUxJlsra7D7RMSkryFIiRmEIUaIRiykma+3IZLIaQpOlxFNWouxEQzY8fwKFjtNK/LpXp5LIZAxxSmMExPY1TabhPRPmJDvhc4dQxmwR2e32klbV61sE3ZvK3mybXJeo0Lt3r6lWILIbe33Uz9gW18NLdhKtobJhL8wnSt6hKTjtPtCkJuyLjtfTvul1F41itIVCoVAoLBBLTcFIewn/B3wdf8Z6I6iefqq4gD0nsgV7jFZtLspoyUYzz0qV6DR9mrXRRbZMtc1YSU3Zxl6Kkus4o2Mze6WOcw4rnurL5ubmSKq37E0/U/brJaCPkpBH0nW2D5W10SZo7bGUuPV6upY2yb96U7PdKPm/RcR6NfjfK0Gne0gTpXgsX+/b6NWum9pglTHNKdSeeZlynGofzs7JNBiEJnCY64dhz428jz22HbHeqDCJ7Zteb87+1mM07SlfvcQfqlXRcU7ZjG2fotKL9ruHk+AoK2qzCBSjLRQKhUJhgVi6jTaypQHzC0d7aeaiOKzMk3muft6zYUSMOfMcjuzF2o8sBldZdmaHUGnXSz+n189sb15f7WfKsrLE6trXqTR6Z8+eHWlBrH1I0/JFaeY8r8zIkzxjKTqnyh7YH89blgUQ1P7q3RNkDmqLI8PI7KBsX1MuqmbAQudLS+pFLNy2p7Y5ZSeW8SiD5bj0c4852etO+W/ovZbZliPPdW//RnHFWRxtZk8G/BhVnQdqKbg/PE1DVEpR95tXipDgZ9zH7IfnxR3da6pF0Ge2HTuhz+1Ms6GI2rKwz53yOi4UCoVC4QLH0hjtysoK1tfXR9lwLKKE0spGM+l1Sk+/F1sGJT3LnJRVa8HxKEbOHhtl+/HsyREzi65vz1GWGCXJ9+Yqyu7kYU4i9TnnTtm1dB9Y5uEVDbDgXHhrqRnHyBY0NtJL2K7HqNTuMRk9hywuO4d2+yie1WNquneUuZOVeExGbd3app1HIrKLq43Wy0TFOVDm5NlhdR+fOXMm3Kd87qgGYM4zROFlk1KtiO79OTbASPOTFRlRu6THaKOCENzffK8aCHtOdL0sJjryk4n2oW1PfwOifnjjimDXbS9+KvuJYrSFQqFQKCwQS7fRKpvyJIrIJptJMFPexp7nbRRHqzZAa2dTz7poHB7TVNusxkZ6EqzOQeRFnTF1HZ+24bHvyC7lfT7lVZzZdedAvY4zj3Wv1JyFtX9HNlldUy8GO8qCpezQrgH301133bWr/1FWHGBnbzDn8LFjx3b1TcfpxRYrK1Q7W+a3EDFoz56s52oMrKchoo1Rma3aaL3457k5iK0dzrO3R8+VSANh/1cP7mgveT4bkbe+smRgZx107bRv9pwom5PCW0sisml792/0fPHGo4iy2HnsN7quevN7Wbmi59miUYy2UCgUCoUFon5oC4VCoVBYIJaasGJtbW3kcu6pYyL1wRzjd5RYwVO5RsmoVYVsVcdU3UypQ2waRXXeiRKBz0mFpsfuJeA6cjjw2icitbC3blFiDA9RaskMGq5k+6Rp11TVpMHywFi9p6nvspKOWSIUez0vyf8DDzwAYEdNmqVN5LUjxyJ18rHqdC2TxzbU0ShLF6ohIboP7PVUdahhPZ4phv/zVefEUx0TNgFI5vy4vr6e7jc1nUT3R+ZoRuh+8PZJdL9kzlBcl6NHjwLYUblz3rz+RCllIye/zLGSr3o928coEUtkdvCSxyhU/ZuFE0313bZj31d4T6FQKBQKFziW6gy1srIyYhGZM8WUk4J3jiILOZlKru1dX9kAXeUpkVHS9Pql6fMi1/wsscMcY34U1qHfe0xNnRIiJzN7Xa/4fHbdrK8euHc0DMe2p+kN9Rhvv6mzUOT8pOFe3pij1KI24YMmcNCQFm9uo/Jrc1Ixavvcm7ovbMpHLcMXsf3MiTEK4/AS0Suj1eQJmjDD9slqijJGa1MwEva9puLMCgEQ0fXmhBVOMdnsfJ5Lpzgdl90nqvWKtD2Zw5buO2X/HltUFhoVp/dSf3qOmfac6Nr2Oro/vGQ+9tg5IYznimK0hUKhUCgsEEu10QK5HSJiRJGt1n6m76PwF8+tX5MMRPYwPd9+p7Zby37IHNVWpePxmKHacyOpN0vyHrm/Z21Gkqtn49J2tL050mjGIrquc5mod75ni7XneCkYtf9qW2JohZcEPQrc9/aq2kSzggA6Lu4dtbvq9WwflTlHyTTsnEQlAzV8KrufooLmHktVBhsxWo+p2ft1rykYM98QImJXHqbCCT1bfhQamIWlaMiM+l1414m0LVky/inNWVZoI3rOaF/n7PusH9q++giodst+N0eTtp8oRlsoFAqFwgJx3hit50WmiBJWZMHrUXILTzqNJG0t2WWlHpXOCLUFeukBo5RoaiP0pFJlH5k0qLaxqBxc5iU8tT6ebWYquUVmz5nC1tZW6pkcpWrLkkEoy4nKdmX2XUUUNA+MvTvpQap717MpqT2de1P75o1BbbFRSUHbDves7pE5e1XnWosJWEarezRKdO/ZVC0zy/ZR13WjebT3Z+ZRz/MVkX11KnkLEDOvrB+qBdGUnHqc1170XMj8ZSKWz+/tPEZzEWkX7ee6b7WvHsOdiojI7ie7fuV1XCgUCoXCBY6lMlrrdeylB5tio55NKSq9NIfZqhcoWYL2zbPnaBpFlTgz27N6kkal8Oz/kdTl2VfUhqVSYTQWD5FNLpMSIxvwlNdx5sm5sbGRMnBtm2vJ9cnSG6p2IkqjZ+2ikUe3MkvPO1vB8dCWavujhSh0bTPbHKGelpE90X6m94+27/kTKEOL7K3W61j9IZRte2xrr4W+GUsL7DBAT+M0J8pBxzpHOxSdq6UPI5um177uJe+cKMIj0lJ4jDZKMZl59E5FKmQpX3Ucc9Y4uge8EpxeGtxitIVCoVAoXOBYahzt6urqSNK30oSyBGWhKvV6n0Wl1NR70p4b2fU8211U2k4ZbhabqOcqa/GkRCLyeraYsm1HLMVeL5LyMm/xuTYa75i9eP9556hGI1p/rx0iKsCu9krb/lTspcdo+Rn3SBYLyWPJxHg97ZNno83WOepzFIMdaYY8BkVEcbRZQXO143oFv7Mk+BH0HstYfBSDbTGljYpisu3/U1mkvH1AqO16DvOLNFpzvPh1Ljwv9+jakUe+ReRBPKccn+7ZTDOgz+dMm7efKEZbKBQKhcICUT+0hUKhUCgsEEt1hmI6NCBXW6i6SlW6nspQ24kSnHuhQXquGtG9sBRVA85R/2ptz0g96zmYaFtzAsZ1zJFTmdePSI3lqYOj0IY5SS6ITA1IZ5bItJCNOUv6rvVodS+ps5ynJtPrqurLnqPzoPtBzQ+2fZ6jfSa8+yBKhUd4Tl56nSgxhqe+jUKbojAf298oYYWuhW0/eq+g2QrwHWTUwSdKHeo9ByJzia6pt/cjR8PsvtT50sQsXtIJdbqaer7a/3VfRbXCvf5r+kydszmJbDLzk7ar7WlIl/3fOkKWM1ShUCgUChc4lp6wYk4Sg6hsVSZ5zXHW0OsRXlJt+94Lko7S9HkhI1EIUGS09/oYhWh4LvPquBCFgnjOHhoYHoWrZKE6URo6z81+DlZWVnDo0KERw/TCbZRp6T7IEpdoKJBKylkiEYJ9VJYMxGn0uHfUWc7royaZ0AQMlkXoWKMQIQuer2PWdHbKfG17EbPxrjuV9tRj1roXDx06lDrvHThwYPvaqnmy/ytb20vigyj8xrue7kV1yvQKSWg7+kz0WJ0+G3Q80XPWm4sofaen0VDtVPR89RxhFZmzoY45Kg5iHVO9MMxitIVCoVAoXOBYesIKYk6qssiGltnzIldyZQD22lG6Qc/NXhksv1N38SyQX6ESWJbe0Auv8fpuz50qw+f1S6XQLLWgjiOy72bp4bJ90FrblWrOu7ZKsyqtZ8XVpxIVeMnJvRKD3rm2H9wjUQiDtm3HEx1DFqyF4IEdlhjZyr1wOSJLz2dh141zrGuptkDLTqM0qMrQPbZlNQGRDa+1vqAAz/c0Trw/dD6UyWbp/6ZstFwnD2qX9mycTAure0jD1+w8RQUHIuacJQLK2G90TpbERxGlIZ1T2CF67qg91vbBPq+L0RYKhUKhcIFjqQkr1tbWRizVK0EXef+pnQoYM4vIo1YTTQA7Uo2yD2U/XtIBtZmopJx5NUaedB57iaRBbcv2MUopGNmzPZt3xhCic4gpu5X9LAvKV/B8Svf2+Mg7VhNXWGZGRqR2qGi9snShkbbF8zrW0ocZW9D1V5aiUnuWJlJTi2Zp9NTTeg7DjTQCUaEAYGybjQp7ZBqiKUZr0+wdOXIEAHDy5MnRmPeSRnHKG1bvZcuqVOulyR9UOwOM5119KDItX2RXjYobZONReP4EWlYyelZ5RTqmEtd49yCh2kVqEezzkN/ZZDHFaAuFQqFQuMCxdEarzNJKRJEHXeTFZo+J2BoRJeO2x+4lZivyLvTSNk6V1Mu8qqO0dmpf8ZhhxIKzWLi5jNb7zOuLHUPmtTkVR7u6ujqS/K0NS+1a2q7Xvqbl1DSHGSI7XuZprfOvTJPzaMd1+PDhXe1pUQ5Pg0LoWk15ndp2dC54rsZGZilAI5ZqNUb8n8yVx/CV51obp+63LDE8Y7Cth7K2x2tHnrZZXKuytCg1q6fN0blWW7anDSFU0+ExwoipR0zQ01Kp3VU1iPaejnwaovh3L+Z7Tky0jk9twsparTaB615xtIVCoVAofABhqYx2fX19ZPuxMU6ESvjK/LLsThGDyTxfVZpSZq3jsK/6ufbLthNlQ1LvUO/cyFbrea5GTCYagxfXGLFUj/VPMVpv7jUWMmO0jKP1bLPab2V6KnlbBsb2onJika+AhSYpj6RsC7WzZevB/kb2rSwT1pTfgtqMvbGy/+r9a0vd6fXUl0LtrbHuP3UAACAASURBVPZcZbB6Dsd39OjR7XO4XrS3Zt6sKysrOHLkyMhTmed611Km79lMp+7/LDNUpHHS8XkxsYTuO2/9o/swYnDec1XX0othV0QZoKJcBxZT7NLTEKk2QT2z7f7WfAfldVwoFAqFwgcAlsZoV1ZWcPDgwbCcHTBmdoRKQF4R6KjdTPJU+2dUEDnri7aVlXWK4ksj1uhdR23Bc/KFTnksZ4hsj54XqErQc84hNjc3Q+ZIVjInxk7z6Ub2YguN5dRzPVai3r60/UTZeIDxnlC7l1csXudwTjwzEdnzdR6txB/ta7XZabYn+x1flcnyvY31VUar56iHtu2TtcFFe1mfO4TtA1kOx6T5gz1E5fEI1Rpk6xRpq7ysYp592n7u9SHqc+SzAcTsU9m995yLjtW2s77OYeM6p8ry+Wpj8PVeK0ZbKBQKhcIHAOqHtlAoFAqFBWLpzlCq6rVGdXWMipyUvBRukep4jgF+KkDdc05RNYyqurz2I+eATG0SucZnfY6KB0TOMJkjlYYnZOFLU2o0C3XiylKtce9koSzabpaMXKFp/zTJgBfKoEHx6pTiqajV9KHX0TSe9v+pggCeM4yuR1T+0XNS0zZUdeypDtW5j6+8N9TRyban6ma+1/Amb05s+I6CCSvUQebYsWPbxzB5hTr8aKINb02nnh1zku97zoLaduRcp8l1vHmK1Ndzwvwih0DvXte96ZWXjBCZ+LzUkkQUJqWqY6+ogD23VMeFQqFQKFzgWCqjPXjw4CihgJU2olJMmcQRFY6Ogs+9IHBlu1HBYu8cr3g2sFvyVBYcJVXwJE91rlLW5YUbRX3U77MygEQUgO8ln5gb+mT7ZOcvcxix8+mxRk1mEZUe80Kn1MEnSmThzZMXimHbtv3W66njVOZAFYUCZSFIU5qFLOVg5OyiIUFeOJHeR+roZO8VdV6L7j2vxCLX5eDBg2mClbW1tZG2wLJqsmZNnsF+Khu2Y40cGSNHNIvoOefdR9GxWfpODTFSZpndG/rsiK7jOVBF2sWsDGiEqdAte4xqmZThAnHJ0kWjGG2hUCgUCgvEeUvB6JUZ05JfyhKzdH3KkDSBeVYSTJMdaMIMzx45FfaShbJELCRL8k9EaeE8iTlizCp9ezZaHbsyWY+paZ9Vgs3Y5NmzZydDVTRpQlbykMhs9Cp5a3hZFLJj29V9NYf5q61e953Xfz1nag9ZROvjvdf9pRoi7at3riamUJutDa3R9Ie6rz0WtJciANSkkbWyDzbkg/ZaTfeYJWUgIq1BlPzCHhMVppgTykJkzzUNg9M51vfeNaKEKF6Rjijhiz6vPZYajS/ToGhYFI/hWmfhPXYPlY22UCgUCoULHEst/E4PQMAvH0XJR8vXqRdt5h0XFZL2yoipl6Ta9bJk2+ohHXl42s+iY6ZSo3nj1D56Jaeigu+RTcjr29Sr1y77kgXTE9YeFkm1XdftStvn2VWUhaid1UvBGHkZa7myjL1p6kD1PrZMI/KaVoZjma2yg3ORviPtiJ2TiOWzH5p8wptP9TLW63jnRD4OqiGwn9n7JktYcfjw4dGaeikYH3zwQQC+tyqQpzeM1idLehN5xHvPA70vs/HqdTRxRPQsyWy0UbRI9izWcUT2/uxc9dD3/GXIWCPbrF1rT/NYjLZQKBQKhQscS2W0wDh9mpVyNK1dlJLRQm0I+j6TponoOy+GK7JDZEnEI5tSZFvypLbIo3dOnKgi8wpWyVnH4/V5KtbOi0NVL9PMPru1tYXTp09v94mSq/VQVa9SXZfMrq9aD/VcVjul/S6yYSmztuOf45VNKIOJ0vVldq8oftuLZedc8DuyU56rKRLtGmg8sjJcL22j5/EKjIs02L2jJfy2trYmPdZ5Ps+lHc/+H9n2vBjlyKYcMd3MlhkVQPHs0nrMXu7LKH2ilw432iOq8cgY+1R/PPat0OeQdz/xvlUmy/W0Ntq9lOfcTxSjLRQKhUJhgViq1/HKysrI69jaozQWMip67kleU7ZatcfZ/yPvQi9eUyWhqIyZPUclySwzkyJiPyr1evaOyLs4k8IjSXmO5KxtZOzb0zRMsVrdD1aatjGVtl21zWXMlsxLs32RQdu9Gq2ZFgqwe0u1BeplOteL1vY52weR92fGaNW3Qf0XIo9i+7/atnWtM3anNlnPl4OMxa5T5rVqE8ezXVv4XfeOrrcXX6/2zjl7PhqzRgV4GiBvXPbV249RrG3Uhu2rnqvPCu9ZrM/R6LnnaQiivqk20O4DZbvKaLUknndO13WT2b32A8VoC4VCoVBYIOqHtlAoFAqFBWLpCSsIdXyy0BAggqqJLCWiHqtqLC+VX+TEk6U3jFzlPSeYKfXvXmq9RrUyPYeaqJjBnCQXe0lyELWRqaaiEIMIrbXRfvCS71NtpOpKL1QrchLSvUM1KcM/LKJE/V7BiGgO1UThmTdUlTblUGfPiQptqFnFfhYVBtDvvQIBqnLV63rhcuyrrTHrvdr/7T2XqY4PHDgwMvnYvaMOUnzVsc5JwajI6rUS0fMnc4qMVOyes5C2H6murepX1yVaU9t2FD6obXrOUJGZS997BQLUYVNTMXpzYot0VHhPoVAoFAoXOJaesGJO+j9KVupQ4p0TJX2YSsIPjMtIReXePMlSJSOVLL1zor5GSSK860TSlydZRsdmjhSRM0cWJkNMBdPbzz3JOGMlKysr2/vBSz4RhY2RiWUOJtpftusxWILtkf1EDnzePiCidJ5easlo72ib9npaWk3TK2o6PWAcoqPMVj+3jDYKJ4kSJti+cT7JQpTJemlQ54CaNN0zXmlAZbTcO1lynSn2FiVr8NrIklLosygKe/HCCqM+RI5owLQ2wmPL0Z7UNjLHrSic0Aub5Hooc9VngWXBWfKjRaIYbaFQKBQKC8RSGa1N4KxSBzAuS8VjlJVmCe0VamfxQoM07CVKr2ivN8VGM7sukaVAU0S26My+EIWAKOa4t2tfvTmZ6pNnm8tsvbY9WwrN62/EaCntMpG9l74xsrPrnrG2Ne23DYq317EsKGIl6pNg24oke91/3rqozZTHakJ4L+wqYrJa8s7OiYbz6Lx67C+696KQDYu5ZdesJo3t2H4rM1JW7ZVC9NJlevDGHPklzLEVTvlKeNeJnj9REgwgDj3Te8Q7Pwq5nLLhAtOM1tNE2FAte4wmuLGw2pay0RYKhUKhcIFj6Qkrti8sae7sZ+o1Zu1A9jgg9vpTKc4r66QJMjRt3xzWFUlelslMlZrL2PDDCaaOJMg541F7jiZXyAolR97aXoJ9L+1cZtu1SQd03ez/3DNa2MBjHlFKQkITLHhSfKRpsF6NdowWEbP1xqX2J7Xdemn09DudX++cKNmEMlwvnaKe47Wv/dDUiDpHmiherwnEnvi8lk2U4/WB52uiA7XxeeliCd07EavT/+2xUWIJ+53nnxBhrhdw5g2+l2gDRcZc9fOIueo+956r0blepAa/o/09e+7sJ4rRFgqFQqGwQCyV0R48eDD15FMJWJNFq60JGDOsyEvTixmMoJJQFtc6hy1GMXBRPKtnC9LrR9Kp/S6SnCNm4x07lWLOQm0+mUQb2X6ytnksNRye9zlftVAAmdHJkycn+x/Fm3q2Rd0HkTe6hbKhzPYc7bdo33v21mg83j0RMdmo9J0HtePpvsuiBnQPeTH1ygAzLQvPZfveOfQy5nfKZPn8sfdJpEFT5pmlG4y8tPV7+91e7m3dE9Ezy0uNqek5oyIaXjrN6F6OojqA8bN2yp8BiGOIdc94vxdaUGTRKEZbKBQKhcICcd4Kv3sxVZHUqQxgTuacKJ7Rk9o084t6FHpMhojK5nn2DpU6oyxCnh1Zr6cMMyswrlK2jtOeqxJzJAV7krNK+RrHmcUjT9lo7bleH7R4gEq3HmugJ7L2KYoltuvCPRPZ9wmPpUb7wDtHGUSk/fC8QbUggBZr13J29hxlslouT2PeLaY8Vu0aRIVD1F7tedPO9Tnw9qrnDa6aEmW0njZMmZgyfr0HbX9VW6XM0ouJVV+TaN/Z8+fua9vHqBxeVBZyDnQ/eOOLtH2eZiPycYnasp/Z50XZaAuFQqFQuMBRP7SFQqFQKCwQ562ogOd6rapadSjxnCkIVS1EatMscFxVKHOcrxRz3Pmn4B2vaqYsgUTUzpx+RCnKdM49dUwUxuGpljP1jtenzc3NVFUYJSxXVZENXtc0jTqnOi4vGQTVjXqOty78jCpJddTzVIrqPEhEKlerylXTCPvKNjX5hPeZFhPIHPl0r0RhbF5iFlVBc468tY72W4S1tbVROKFnilDnGi1wYOc8Uv/rvHiq9WivEF4fo/SJqo63x0WpKtVE5e27KeenOQUiIvUv4YXd6NpGz3XvHE8lre+jPbloFKMtFAqFQmGBWDqjzZK7q2SZJZS27QJxku0MkTSoLNhLtBBJmNq2/W5KAvcky6kwAW8+dVzRXGSOFFEYgX5vrx2lpczCVuag6zpsbGyEUjwwnn91qPPGoWkTyfzmpLvU8IAoqYXn2BQ5BLIty7qjsBedc8+hRR1nlNnyexvyxEIKPEbDH6JwM/3f9iVyMtT+2nHqvWfPUW2F1XYo+NzR+fMcAKPkCN4zRdcw6htf7Tzqd6rRiIoAeMdm52RJOrz2vVCdKWdPe462rxrJOYw2uve8ELhIyxaFeHrtdF33sJIC7RXFaAuFQqFQWCCWGt4DxK7m3jEqzXvSzpRb+FR5OXtMJBV7IUGeTcS+90J0MkZmv/dsMzp2/dwL74muoxJmJtHNsYNFiTiiV+/YOchSxkVpBnUPeaElygYjjYAn8UdsjczQSt3KsjVNpJaz8/qv0L55djZ91eQT1karhRSm0uhZ1qTrrOzeY2g6x6qZ0sQZwNjGfeDAgcnnidr+MiYWJUDw/DMiTZYmOcl8KHSsmQ9ClqZRz9W1i7Qg3pxEmjttMwsr0mdv9N6eo1oeffZ7IX3ah8z+qj4cZaMtFAqFQuEDAG2vHrEP+0Kt3QHgH5ZyscKFisd1XfdI/bD2TmEGau8UHi7cvbOfWNoPbaFQKBQK/xxRquNCoVAoFBaI+qEtFAqFQmGBqB/aQqFQKBQWiPqhLRQKhUJhgVhaHO36+np35MiRsOwaEGc/ymLR5sRsRudGbc3BVPuLcjKL5ma/rxeVIsvWTddP4/eyeOTWGjY2NrC5uTlahEsuuaS7+uqrR2P1xhzlZtUY2WxMWbm+qc/mxIdPIVvLc1nn/dwjD6e0mHdvRnlx9b3tu+bh3dzcxIkTJ3Dy5MlRp1ZXV7sDBw6MYmHn5N3Osr1lGZLOFQ8ntny/MbWvz/VeeLj9ydrUfABeXLJXyP706dPY2NhYaK28pf3QHjlyBM985jO3095pvUv7mabC4zleSi3eQFEC8CwJ+hS8tF/anl4nCzYn9Eb20oLpuVHAuvcjFqVpjJD9aGrCAH0FdhIfPPDAAwDGiegvvvhiALsTI9x7770AgPvuu2/7szvvvNPt31VXXYXrr79+ex/ozWKvyfb4nukFmUDCnqPtRLV+56R/m0oH530WJSHxBJIsWYd97+1v3TNZKr45NXKj603dW5rIANi5X6PX48ePj9o+ceIEAOCOO+4A0O+7V77yle4119fXcc011+DRj370rvaOHTu2fcxll10GADh8+PCusWkaSi8ZiCb/iIQ3rxazrvecZ5Wui+4P74coWv+saMZUYQgveUdUyEM/14Q6QPyMmpM0hO0cOXJk13W4T3jv28/4rLn77rvxzne+0732fqJUx4VCoVAoLBBLTcHYWgsTjQNjdSKRSTOKKXWglaIide8cdUykAvfYT9RHPcZjE9qXrNQYod9pu1GCcA8Rq/Mk50h1YyVKwiaJ5/splWnG7sksdA9lkr6W75oq8+WV6IrYaabSj9SOWbGEKF1e1OfsGOLhqHJ1785J+ZeVctTUmTpfZJWWgWoK0Sl14pEjR1JGRm1YdG9l2qqpsXpzH2kNIi2F/T9Kc6ptWyiDjOZrzlpq2kN7TpQyN/rc3k86f1FqTu8cnTeuJxmuvZ90z6ysrOyrijtCMdpCoVAoFBaIpTNaTaDt2T3IdiIJ09PtR5JxZveIJKJImrP/Rw4UfKVU5bUbOehkDgZTEvMc27AyHK/AtB4bORdlrFv7dOrUKQC7y9Lpmp45cyZk6V3XF37XflpWrHbhqDB3ZlOMWIKXvDxKSp45yeh6R+w3s5lPOep4jHaKyXpMXcf5cBhtxIptf6IykFo60CtoPofRttawvr4+8uEg2wF21pfHcF8pi/PKV6qWbSoZv+1vZNefowWJ1nSv5Sen+qg28zmlLyObbHauFnaZc29G9mqeS5u7fU6wBCXXen19vRhtoVAoFAoXOuqHtlAoFAqFBWJpquPW+pqQVB96tVcJNYQTnmpRVYWqLtP2bZuRw4K24dXcjGq5Zm7vU05Wc5yStK5q5kCj7aka2Kupy3OobuGrhjNkrvlRiJCnotG+eGitbe8fe20bqkMVY3StrDbllGrLc6CJVMeR85L9jHMamT28uYhUxnofeeo/3ZOqyuVett/pHESqPA+Z85OOIQo10r1j1X/ax6weLVXHHOPRo0cB7FYda31bVU17zyquEful91IWsqWYMr3Y/6Mwq0y1OvXc8faWqtP1eefdT1MhQJl6W2vVTjluee0SbJ+/NdZkRdXxRRddBKAPDSvVcaFQKBQKFziWymgPHDgwq6K9SoMaCuJJaMr0ou8zRCEstk11jKHEnbWvDmBRggqPCUR9iRJY2HYidqCZdTzJmXNOpsjPPUar7aqjCNuwCSu0r1MOLVYq9cbujcVCQwss2M8owD7LJhQxMk8iV02NJjnwWI/uHSJKfmH7GIXB6Lg8RhuNTxmH1+eIqRPefpsKOcsckVZXV1NGe/DgwW0mw+QpTFwB7LA2XlPX29O6KIPlHo/CF70x2z56Y/cc6aL598YfPSOm1hYYh1RGzlCeg6C3r2x/PO1LFBLEV+/+1rnXz7mu1GIAOwls+DxZW1srRlsoFAqFwoWOpTHalZUVHDp0KJVuo7CXzO6l7alrfhSOY89VWx2vk6X7Yh8pKSs8Vuol6fDGYCVB9kGl0jl5WJVpqt3VSxASSejKij3pXu2kmf0wsiN7sGFhUb+jMCj93tM8RHtEpXi7LhEryJh1FHKk+96ONfJliNL22T5SaldGq+Px9lsUJqJ9tWsQ+UsQc9aaYLuejZZMRTURHugXwoQXl1xyCYAdGx0Qh2jx3vY0a/psoqYnGnNmo9W9pNojYJy3V+fS2/e8HyOfg8y/RDV3ynCzkLcoJCjzy1E7ud5XXtpV9ceIfC4Y5gPs2Ob52V7Coc4FxWgLhUKhUFgglm6jjaR4IE7yTmnHYwsqYakEqdKvlZSi4Pw5mEo64EG9QDlOTQFok12oLVivk3moRvYvIrOvRazLg64bUy6qBOtJv1lKRx2TjtljtDqOiN1r28A4FR/bV+9Te0zERrz9MJVAwmM/U6kXI09Z+39UYEMZhz1mav40mT4w1myovTKzjysb4nstamFh76do/zAFI5ksX60mSm2z+nlmZ1W2G9lfMw2Xfs55sz4NnG8tdKDnZiw4uj7X3z531N5K7Yh6IXsaIp6jSf51/2f23Sg5jR23+sdw7NpnO34yWb4eOnRoKay2GG2hUCgUCgvEUlMwrq6uhtIjMPZOjVicldopmUb2qIw5aR/03DlskVCpzUqWUV9UevMkyyi+TNmXhXq3aswf55WpES2DYruR53Jmm9P2WDbPYwRqxzl9+vQsVmvbsX1QRsH37BNZtmVgas+PCgV4cYEq0aunpdqcbHuRvVvtkvb/Ka9cbx/ofKlXuGfDizzUeU/ylWvrzafet6ox8OKRef/SQ9QWEdDr6L2WxdGurq7i4osvxqWXXgpgx+vY9kHvO52DObHqkaYhY2/altoyPfam5R91D9m29V6ISjvqGnjfaVytvrfQ56fGjXtMU/eOPt+89VWNjeZoYPvW65jzd/fddwMoRlsoFAqFwgcElsZou67bJaFRQrGSKqVkHhcxTmtfoR2A0sxUIvM5Cdsjbzn7mU1KbV+1bQ+RtOiVA9S+KKv32BZZhyZmVzuYJ6lHXrQcjxcLO2VfIavMpNKMlXRdh7Nnz46YjGV+7BfHxALwlFy1ADww9sJW26LCrjGlZHqv0ubDY7hHPZtpxGg4Bq/8X2Q7V42HbZvXi5gFj/VYqTKn+++/H8DOPcp59Wy02j77yDmxbFXnTz3iOc92XKq9YOYwDysrKzh27Ng2k2Uf7DNE7yEtUOHFgUcFQXRdPE/byGbOzzk/dm7ZBz7n2P+or8DO+qvmJvLAt3OizxeuD6/Ptuw9EfnfqD3fY6ne74G9ThZxos9k1RDZuaeN/o477tg+p+JoC4VCoVC4wFE/tIVCoVAoLBBLVR1bByGqE/kK7KgNSOU1ATTVSF5gNaH1K6MCBfY7bYvX95JSqxpMnV68GplUu2goEs+NnKXsMQSvq323x6k6S1P+RW7xtl0N/s4SMajTCNPbqZOHVfWq+vzw4cO49957R22z3Y2Nje0+UP1r9w5Vm1R13n777QDGqmN7Dj+jSpDt8lXHZfcB15RONrpH+d6qSWnm0D2jqnAvvEfVYDp/qgb3+q8ONerEZufknnvuAbAzfydOnACwozrmnNm9o2pSdXjjnNk50QQSV1555a62PDWnOoRlzix0hmL7VCF7BQJ0HHyWeDVxOc/qlMT54KvnAKbqWDU3cG5t4QNVrevc8vrsjx1XlMxFny3e/lZzh4Ymeup0DXlin2zfIqgaPzKz2f9Vbc++q7nNfsc9mJms9hPFaAuFQqFQWCCWymi9cAwLSpsq8fFzZYZAXHqJUqg6V9jj1IFAjfSUMG0Kr4iFamiAF76k7FqZp8dolYWqizzhOV8py1FHJnXCAMaJwFUToI41wA7LITNiX8lsOR4r0arjxPr6eshMuq7b1XeuF1ksANxyyy0AxgyMfdKAf2DMYJUp67gsA6BEzOtwrHy97LLLAOzsXWDs2KMhaZ7Er/tNGZ4mdrDrwn5rOA/HyfdWk8D/6Sxy55137vpcnbPsvlOWpfvZSxqiY47K49k9qmlPu64LE8Wsra3h8ssv314HyxIJDUOLNBv2+cX5IPPnsbr/uF5k7sDO84QsWx2cuObUlth+R05YmlyFYwfigifRcwgYJ8BQR0G+2vVTLSXnlfcpHRQJu47sq00kYcetiSZs/3mMpqvV+8uC9+/hw4crvKdQKBQKhQsdS01YYdPoUfqwkp6GWfA7SnaehBbZKqOyclZqo6RK6ZTnUvr1kg4oc1RWTEnJSu1RejZC7RL2OJVUKaXpXFmmxjGyD5QkNW2bZ//SOdb18ooosE+U6nk9vtdActv/qAycBcN7OBdsn3ZYAHjf+96365qcjyiRgL222pTUhp2FI2iSCbWp2jlXzYlK78qobB+1lFtUrsyupe5fjo9Mg9fxWAm/09CMqNSjvZ76NihTs3uI9ws/Y3vKxi0reeQjHwlgd8heFE63urqK48ePj2yOXkgT54VsVMduGdn73//+XccqayPT5ZpbbYja6tVuyO+pFbHzoCyOz0hlcfYz1RJ4yfYBP4EEx6EMnuO1WiXuI50D3ot87z37+RlZPteJGiL+Btjyhhwrz+F3nEfuDy/kidc+fvx4MdpCoVAoFC50LL1MHqULSiFWmqB9QyUUZalWeo1sFVG6O897USVLStdZSTWFehl6iR0ItT/Rdqfp++x4Io8+L8mCSuicV02I4Nm8da41cJ1z43n/qTSqKeDsOew3JfOu69KEFRsbG9ssh9K1tS0qW1e26iXs18QBqnFQW6OXRk81GmrP9bxbIxavidu9/uv1lcl5feS56nmtCWKAcVKLqAylMlB7Hb5q4hkvXZ9qStSu5nnT8n6xnriRtohl8lTTYOdevYsjb9m77rpr+xzasPmZtkF46RTZV01nqZo1u7/VU5hjf8xjHgNgh/3aOeZcat/UB8XzqifU05/jJjtl34Edds/vVCtBpss+Wnaq9lWuP+eI2ivr5c450PuKGklNYuQd+4hHPCIts7hfKEZbKBQKhcICsVRGe/jw4ZH3pI3hU7282njUCxAYJ/FXJqbMz0rg6v3J65KZeSkY1ear9ldKv1byirzfojhDK5Wy3+qdqYzGMlpNpn3FFVcA2JEoaVfJUvCxz1p6iu+tnU3ttuoxaKVe7b89Nys2furUqW2JmeOwY9a5ZT95jHofA+OSYxp3qkzM2rQ0ZlTZGveqZZjKGPS6XiHzqHi3x5iB3fOgcbJqQ/eKSnCteC7XUH0ENK4TGHt2R2XybJ/ZDveqV+5Pr8P2bYrJrDzl6urqaE965TKjQh1krdx/tg/sN9vlHKt3s31m6X2ncc2El2NAoR7Mdu/QVqkpPnWuPTauz02OKyuAoTG+mrZR3z/iEY/YPlfvPU1ty3Ps2kRFaPS5bu879XE4duxY6JW9nyhGWygUCoXCArHUwu8HDx7cllDIqiyjoUREyYeeYWo3svZPlaIoJVFK4bG8nvV00zYuv/zyXa8qcQJjdqZ9Iluwkt7VV1+9a6yUdulJpzYnK8kSnDdlZpow3I6dtoqrrroKAHDrrbcC2LGzeLYz2kLUG5RSPefRrgHndKqElrdutqRaZqM9ffr0yMZkx6wZs7R4tpfJSJkRmb/aZnWdbP8jJq12OGBn7VRzofZ9ex31RNXMY2qj9Rgmr0vbmbU12rZs+9dee+2uPikL8+xfmo2L+0DjudkP264WFFd2abUXqlVaWVkJ905rDWtra9vHcp/Y+5ProaUU1ZPY3vvst8aKKzvivWG9c9lXtZFznbhnvHKZBI/lvazeucDYHqk2WWWAXqF51bpEhSPsdTSXgN5fj3rUowDsZv233XbbrjlR3xrPJyCac43Jtd7bhPUGr8xQhUKhUChc1YwaiAAAIABJREFU4Fh6mTxKG5QSrYSi+WLVTqjSFLAjFT3hCU8AsMMeKV3z1Suxx+swJo7Xe/zjHw9gJysOpS1gbNfQTEn83Mt6op6cmr/TK6qukqOXXceOz7avxbRVKiTTtfGoXAOyjqc85SkAdmIXb7zxxl3jtGPXvihbsRK6ena21sJYyNYaDhw4MJKQPdsLJX31ltS8xhbUgjzpSU/ade4//dM/AdjJv2tttCrxE1rU2o5Jbctqx1MfBSDOHqRSuKft0SxOvD7nntex9k2N0+S53EPsu3p22v5znngfcX/xPiPjtf+rHZx7R/eu/d96jU8xWvWm9+JaGYtN9qmetVbTpD4GavdUD2/L4jlP3Duq4dD4d3sO51ufA14+5sjLWGOuvbKk3Eea7Y3w7ifVNOje4X704tI5Bx/0QR+06xw+e1WT4rWj4/GeO5wDHnP06NGKoy0UCoVC4UJH/dAWCoVCobBALFV1fPbs2VH6MWvIpvqAx2gZN6oirAqPxn+q92j4pqqDqgeqM6w6RlMTaoo8LzmDhvGouteWfSNUZUJ1pjrSeAHj7COvqw4UGiJkjyXUsYBqLF7POmqwHQ2XokqeIQ5M4m/bteEW9rpUA1mVobrxb21tpU4Ja2trI7WmnWOuEdWUmmzAczCj+pPqqsc+9rEAgPe+9727jtOUhcBYlcV1p/MSnVSysA7Ogaq5rTpaE61oGISqBS00BZ06G2rqTNtHLXWojkLss1XLaco9miZ4b77rXe8CsPt+4v7WxBxagMOutTqGZarjlZUVHD16dNspySu1qXuFe0jNW3as6kikSf/56oW2EWri4Rx7aSc1jak+b7j+1uzA/9WUo4VJNAUosPNM0GeHXtfub01DqqFPahawa6BlDNVplWtjfy94rL6qick+D9k3ji9zwtxPFKMtFAqFQmGBWGrCiqNHj25LWZ70rgHV/E4D7G34AyUTOq6o5EVpjcdZ6Z3HqrSribM9BwOVaCMHJGBHGlMnAQ3nIVuwTjJa4o7XpaTM8VnGpmE1lOy0YACZm5VK6XpPRxYyWzqGMTTESuoqIWsCf2W6wLhE35RDS2ttlFjfzhP3iIaHaAiAZX7UfnAdLLO352o4DDAuBUhnMXVW8pKraEJ+dVKx+43z7yXDB8YMwyswzrkg21YGba9HZqHvqckg2+MaWNbF9jgX3JMabqHJ7G0fdc+wz3ZPqxPM2traJCthO3z1nPl4bQ0H4RxYbRjvaZ7LsWoiG3WSBMYJSjR80dNO6Dl8vkSJHWx7GuqmyWc0dSGws84aNse1oybR3tNRYXl1tuJa2WexhjwRvD7XzUvIwb5oOVVvTng++5SVWNxPFKMtFAqFQmGBWHrCCkoPlEZsaEmUkECTsFtbH7/TEk0qlaqEbNsnK+F1aV/TAHLbB2UsfE9pKmMlavdQ251XTFtDX/Rzr6C9fsdzyDi85BOaCOHmm28GsDPnZHf2HA1p0D7ye2t34TpxPc6ePRuykq2trV2hYV7BeoKSPq+lSSK0rKLti9qNaVv0tC88lu2yT2pztOB8aIIStZl6hQFUc6Jl8tSmadsj86fEzz6qdG/boVZH03mSPXgpAck+OPfcM5qQwTIMTXyhIULsu71vtdze5uZmmuzk7Nmzo3vLsinuZfY7SiFq+63FQ9SPRAs62L2qeyNK52nXRZ8ZZNnK5uw8aFJ/9lUZs1dij+1zDpjEh/Pm3XssgqAJN2w5Qzsur+wkz7UpEm2f7TOEfWNf+czX4hx272gYVKZJ208Uoy0UCoVCYYFYutex6sO90llqy6T0RMnEptEjtIg7oYmlrV2PUpKyHZVSLXtTW6l6clLytxK/sg5NgaY2InuuepuqR53H7pSVsj1+rpK7HV9UuFztR14QuJYqVEZrk4gTVoqeYiVqc7TnakIFDbDn55Z1q6QfFbu3tivbJ/uqrE1teMDY+1OZLPe31U5EWhC1t+uesu1oon7VQNg+aiIEZTucC/3emxvei3rPW/8F9bxXlq9aADt2u88zO1trbZRO1dvzaiu317TH2TFxL+qzQ0tfeikkNVGC2uitdkKfVbyH6VPB9552Qp87+nzl2to+qoe/2ki5z72kE9SUqZZF718vnaLuUfWut9dTLQ+hCYLsunmpJMtGWygUCoXCBY6lMdqtrS08+OCD25Ke2ieB3UXAgbFXHKUqj2GoPVdTohFWglbpST0EvfhJLQGmafM0DhUYM70oZlDTCAJjO4eyYE0cbvugsco6R1pGy7avSfGV/VrmpBKrSs6e5MlrW4l/LqNVyRgY7x2NVdUYafuZllpUu7uXMo7HaNEKvveK3Wu5RNUOaCpO+7+mDtRyX55Urgxa7aFaQtCC7fK7qM9eMQu1OSobsedoHDDvW/USzuLEszJ5UeF3j73p3lFGZPeOJurX+zGDarB0XjRVKzAuOEHtEBmt9XXQcelzVDVsnj8Bj6H9k9oP1aTYdWEfeA73jqarVXu8vR7n09Oc2bHYPkTe+7y+ajmBOJXtolCMtlAoFAqFBWJpjJbQ0mBeAWa1D6rNzNrmVLdPqUY9OJVdWWgB4SgLjm2H/aaESZZNZuPZvZTpESpRWjuLSpBano3HWklP50kzwKjHYOblHMXGeZIgj9V181iXahNWV1cn42iVkVlpVxmL2sqVxdn/tUC6ag88+6dqFnR/KTOzn9E7kpK/siIL9Tr25s3rs+0TbWfK7j0WyHtAixTovaH70v6v2co0jtu7B7U93btedjarcci0ISxoYsdlx64aNI5V19T2QdmoahqiUpG2D/q807X2CjZQc8M9RGbr7W9dM9WoaDyrxzD12aF99AqFcJ+rxk5LY9rnjq57tFe8nAZaelWL0VioB3TZaAuFQqFQ+ABA/dAWCoVCobBALFV1vLW1NQrZsSofUv3IwcBzqokC+tWhwKsPqrUcVW3mJexXVR0DxtUAn6XeU+eQSKVs+6SqYk0Ebh1a+FlUM1cdrCx0/jxnK32vc62qcFXFWViHk0iFQ7Vx1gdVrWpSA8/5jv2lyon7T51hvKQDmtJxTqIFfhbVB6bThlXH6Rqp2jTaU/ZYdRSj2lGTAgDjIgyqPo9CU+wxuh90Tez4VI1JcB49FbU680wlHNjY2Njeg1qMw7aj661hL/Y6anbQZ4bOhaeqVscpdYrz9jedLvnc4Txx3exzhyphTbWpz151KrJ91NSyCi/phN7/2TNYj9G+6f725iRKe+mFIEVq+0WjGG2hUCgUCgvE0p2hvLCH6DsNF/AkpoiBRdKV5wyjrE0N8d71NCWYBml7ybY96dy2SdjraXiFpqP0wh/U0UyZonW2UkThIl5oBqHzpEkIPJavOHPmTOqU4F3XXidyANPSXNbhSB3ntGCEl95S+xOFlWkpN/u/ln6z4WO2P7YPUbKBORK6sm9lK3a/aRELDVdStu+xySixCN9766Zz4oUP6TkeM1LQGUrD1TwnpSgBgpZCtH3QBAgaNuLteV1LTxuhUE0Jnzv6vLHX0/AaIirg4PVRtRJR2Tx7DuGFxdnreusXOfl5fY32CJ9/nlOZd+ycfXSuKEZbKBQKhcICsXRGq67mVsKgZEF7g0rgehwwZm2a9kvPte+jlGAaSmOlNkqWWohAWZvto7KeyGahTNdeW0tNabF1K7VRootsT8qGvNRyUXo4vb79Tt3tmfDDk35VW5ElHeD3ytaspKwJ8rVQtqaytMdqKbAoZZ3HaDQlpr56DFPZsKY59ELeNHxHJX8v+YAmVdEyeR6z0DJ5GuqmST086H6PNEXA+N7TtIeENyf2u4wNbm5ujtJtZikd9+JDESVw0PXw9kFk5yXsPHGP0r6uxVS4Ll5yHV0ztSN7KRh5rGojdNz2HE25qeF9em94KRgjLVyW7CQqRu9pKDSJxwMPPFCMtlAoFAqFCx1LZbRd121LWVoUGhhL52ofyNKcqaSvTMaTiFQaVS82j2lq0nP17PWkUy8JundO5mGpiSooYWpicPu/ehtHTM1Kj1PSneeBG0HHlzHaAwcOTHqPqs3Ua0+ZuBYZ92w8kedhxjCikn26xp7GRq8bpcaz7WnSDLVTzin1xfZZ8owMxEuQwj1EhqupNz0GHXlE6/eeF79qTFTb4mmi5oy56zpsbm6OEot4ZR5V00B4c6xsSvuifbTz5GmStM/A7nuMGjSuC5krfUNY+pDlDYEd1sb11fFpGlF7Pc4XbcKagMPTNrI99onPeM8erp+rNjF7RhHKZKMEKd79bVOmFqMtFAqFQuECx1LL5G1ubo5sC56kqinjNIbLnhPFGSpUcgbGEp5KoeoBCexIS+qV6aWFi/oYedZ5qQWVIWssnCfdq/07S31m+26/m7Lv2vFxDrRMltr17HWyeExF13W74my1/J/9LIq/Y99sWjYvjZw31mxNve9sG/ZzZaVqm9Xi4bb9qfjZzL6vfeUeZiwm1wsYa2jUvqtj8O636J701pyfaQrDrE1lKFPaFXu83gtAHPepffIS2qvHrhao8LRwOndRMQFrL9d768SJE7te77rrLgC7E+hHfgK8Pu3U+vyzx7A9ejlzr1Ir4hX2IPiM12dXVtghi+3V92yPcxNFc9i15rpwvqZ8Q/YLxWgLhUKhUFgglsZoWa5KpV1rH9IsMSqRaYykPVYlzIilWqknKp6uMZFWYqaE57EP2zePYWg8IyXArPwboZ6DGpPoZRPS+VLpOiuTlRX2VvB6GmupHuAerFYhs7ltbW2F7N72V+M81X7jScSZHciOz8tIpsdkifMp4VMDoJoaL3m9zp3uIdVeeNoeroN6o/Nc64GrLEDtynofeeyb0Hn1ssHp2LPCEtqunafovM3NTZw8eXKbvXtewMpgrf3Wfr4XXwbdd15BDd3HfB54MaNkrmqTve222wAAd999N4DdWh7NCEZEGffsfKp/BfcOi6eoHdT+z1cy8ug6nr+EPpPnPjuAsUZAnwXAzrxpFsBFoxhtoVAoFAoLRP3QFgqFQqGwQCw1vKe1FiZtAHbUyHQLV9WHV0dTa6xSBaHhAnPqZ6rrOo3sVpVEdYQ6jaiqwzP0a01JdUYgPNWxJs7WNGM2MXxU21OdfDQZhj1GQ4E0PMKrnRoVf/DUQFq7dgpbW1sjlZd1TlEnociJywPnayqBiJecXNO8aT+8lHhegnRgZ1/YvaMJA6L97alOeSxDQai6VkdE7nfbB13fyKHKQh3A5iST15R+cxxTVNWbmTe2trZw6tSp7X3GczXtpf1Ox6aqdm8sUXITb13UZKN7iHNBhx1gbJa54447AAC33norgJ3kMF7yf92TmtzFcxrSYiWqSuY51gFKnQv1uRY9K+2x0TPDc6TT3wXCFlgBdu9lTWhz//33lzNUoVAoFAoXOpaesCIKUAd8hgWMJTHPVV6lRHUP91IVsj1lsHxPyUwlJHsdQlP8eeWcKP3xOspoveB3DQxXydYLbVAWP8VorZSoEmv03ktEryENWZo+QgsgZMgSqBNTyUfmSK+6tp42RJllxGCsNmRuAQIrgese1fKIGvbjlS8keyNDuv3220d90+upE8+ccCI9do42QaFOjN51vDSgEba2tnDy5MltZyI66Ng+TTk2EvZ6USnFKKGL1VKp046GD3G93v/+97vjAXacn8hkCXsvR2GEUTIQ+1zVAhjsG99zL9n7KQrFUYbraWG0D9Hzxs6r7rcokYmXLMQm8ylGWygUCoXCBY6l22hV4ssSFqidkPBCNLQslUpkaq8EdtgBmYXawzxmpnYoTUjPcVm2wO/IXBhqYG1jwLgknjcOleI9e64mG1AGoHNmGZTaoHUOPDYZhQIpE/QSTMyVJtfW1kZ2PNuHqbR/GbtSVkhkdraIUarGwdqRud4Mkbj66qsBAFdeeeX2GIHdLEVZgSa34HV4fabqs+eyPdrx+TlZnl2XqMSi3rcZ49Trz/k80hAQ2RpkjLnrOpw5c2Z7P2uIk722rh1fs1C9ufvYS9bCPmlaWn31rqeaMy9US58Nen8qe9R0pcDOXo2S/Vvto2rmVOvGvqt2Boif15F92X4XhcB5TF1LYS4LxWgLhUKhUFgglspoV1dXw7SHwNjjLNLpe7p9IirI7ZV74mcRa/Rss5TCNIG1Ju62LEG9jfmqXoaeHYKgpMo+MnGGMh17DKHzlwWOK6PRVy/B+lSyAc8TW22/GStprWFlZWW0Pt4+UM/0LCnF1N7JEtsreF3a13isZRhkm9deey0A4LGPfSyAndJnvK71iGU7GtCvDI1zwVR5tj3a8zT5ANu2iei1tJpqcJSVeCXI1Js2swVGNuA5qffm2PW3trbw0EMPjZKEeMUQ9P5T5pmxUoX6VFgNF58rmoRGbdv2WeX5tAC7NRi2DXus2ld1X1PTYfcO+8t15nXY96y4CMfDudFno7JyYJxGMSqtmJXJi5isXSMtpLCxsVE22kKhUCgULnScN6/jjNFGRbU9aZffqScvvQvVk9jGffEzjXlUyT8rx6aSqya69voQxfZyfFYC04LvUd89pqbxocoavFhISvxqa1bJ3WMTahPWVHOeXcTug4ih0M6WJZ7Xz6K0ipmNVudJY0m9ouoqIdMeqm0BO2vGvcn3WuLR2q5UotdjVBviJYaPNBjeODXmlohS5Hml4yI26mkG1M4WFVGwUO/zrNQZ9w7Xx2OGuj/V49Xz1YieEcoWtfiIHZvuEc4xnxdeKk59RlofAO0jj9W9ovchGa3dd2pHpdZF2/DmhNC8CLqmdk54rNrqda/aOVGtYvRc87QOdk2L0RYKhUKhcIFjqYwWGHuieZKlSiqaON1KzFqInbYEtV2SyVqpTSVtLW6ttgZgLMFqtiLPdqW2WYV65Xm2TO2bSnyWgaitQuc6KnjvfRZlIMqSvOu53rrpZ1MFBU6fPj2K7fTi47T9OQxJmZhXxkvfU0onA/SYC7BbuqatlIngea4Wf7B2XWUWKq2rB7Ytecc9wZhHxmXyPfthMxCxT6pJUTbqeQ6r530UWWDXSveqjstjwWp7O3Xq1CSjVVupfQ4oc1XGqbZUe209V58HXty5RkDoM4prbG2m2leuE1/n+EFEmc80bwAw1gyqxzph/QnUP0HXTsvmWTbO/7VYhnpXe7b1qNBFVnxkTrGU/UQx2kKhUCgUFoilMtqtra2wGDUwtvHpq+dhy//JaNVmy1dlxfb/KH+xes0BY5uIerh58YXsv/aF0Hg9y1oo4VFaVCaozNr2ST1GowLJXpyg2kN1nF5mqEjC9OAVg45sJV3X4ezZs6OY0cxzVF8z72b1XtQxq4cvsGOLJYOMYr5tIe6bbrrp/2vvXHrjuJIlnN2UbGhhGIZswLv5/z/rri8MyJINiCabnMUg2MGvIk+3DXVdcG7GhmR3Pc6pOlXMyEdkVZ3ZMOscGQ+rOrMaeWr0k3GuFFtVNrGYrPRxdX5t63W7zBBlXgHX26rhPD0diUV0THTFggX3OK3Wzl9//fVy71gz6+MiC+Wa933o7aL2uMCWlT4G/uS7zFk3mb/WlWqhdf4Uw6RXqstkT+9VZmkzfpxybJivwuvHd6hvo/XcVT0kDyizxVc65/Q4TJu8wWAwGAz+CzD/aAeDwWAwuCH+zwQrhJSIw2QouTiULOAuNwpSULi/K6mp6oUI6EpK5URdiya5RdwNQ1ca3RUsw3DQ/dO5jJMUmsZCV+UqMYjJNnSFr6T3OmHwlAx1jQvSj/v4+Li8L53I+0rcYOVu9PMw8aTqfE0pZkD3nCdH6Xe5cAnt60kwHz9+fPVTrmMdX25fJmdVnd2LSnaSm7tLAvTvGMbpGlKkchK66bXu0r3oRC46IXzufwl0Het94Ovt0vPfHdfHlUrlOnCuqUSPY+S7T3/r/qS2f901pSuZLux0DG3LkjcfI13QLPfhe9BdyJ2YBceUyhi7loXXJJfe39/v4j4eRjsYDAaDwQ2xK6N9fHzcCFenpKEuiE8ru6pvjM1gfmK0TGjo5CGTULcsIlpnZNh+HjbcZnF2Eu5mSzVZlDoWk7D4u29D1pfYqc6ta022vWoCcYlNrtpVrY4rMDU/lXzwJ9l7EkugRUurOol2dONm0oafT6xDSUpimExak5B71VYeT+UWFErhuvDfdV4mk6WEliTLmdB5dKq2SYZkQSlhp2sGwZIh/84ZW8dyT6dTffnyZSN76vMjq/4n4Hi57nz8XdkTvSCpLaPmwRabKcGIMppcZ51MbZoPnxUmQPq2fA8kIRY/Jo/j6EoFfdydFyRJfrLMa5VI9y0xjHYwGAwGgxtiN0arEg1alO6DJ2vqWE6yDim/xWbuyXKmdUMGLcuM5ThV59gYBSQEZ8Fk6Jwvx+6WXie+v5LC43gZV+4K1/07MtmVOD/jxteI8V8TQ+X2PLcft2uX2MVv/JyMxfFYKVbXtYtjfoFD5+PaUXxV5/FyGz0fYra+rjifqtfsMZUl+dgTk9HxyT6EledB5+N6I6P183XH43pI9014enpaspKnp6eXa5pK7DRnjZvrOJWrde8oejpS7gHlG7Vt15rSj8P3J8tv/Npo7XSt4fi+87mQDdIrljwaWsdc34wVp3KixOLTWFc5PSyBSrkozFvx98otMYx2MBgMBoMbYldG+/j4uGnMnrKAL8EtFO1P6S7GbJNFRDaaRC38cwctL8XVZOGl+ErX1JqZfcnCosUqyzxZ1l1mMGMYQmp5R6uex0psspNBvNSY+9I2/H4lA8kYkpDiuh2j5TmTkEgnY5fWtUCmp/MrK1hZwh5nVXxV8Vytxc6Dkxpj0+vD5gZiy1Vbxsd41zWxdMaCr2EMzFBfZaGz4cUKYiyMt3sLzK5Fm0AZwKrtmk8yjQ4fK71SXWMAZ4tkaRR2SOtb86FIwzUiNPqOEqPMZ/Gxs7FG10IwvS/4TiLrTZ4iPmt8d9E7V3V+ttybMIx2MBgMBoM3jl0Z7dPT04aZuZV4yUJNsRJ+1gnnJ1FqxlMutbHz84mldha/n4fxuo41KqPQLUHGibtGyCkbr8vCW4m+d9JnQoqPdtKLHUNI+DvZf6tsaaFrEJCYM9dk164xrQNKflKg3dmyYoH6KSapfbWPNwZgfI1NLejJSfkLtPzZMtI9NjxeJ9S+yvzu4u6dR8e/61piJobrnqBVjP/x8fFlWzEab/DRNerosvfTHLpWe2KTLsXZtS/s8jCqqj5//vzqJ+PKbJuZjtdl46ZYJvMH9JOMPbW6Y2OKbh2k/ByBjJbr0fe5lG3sOQ+ah+5Lqh2+BYbRDgaDwWBwQ+zGaA+HQ2xknBSUOoWZVYszgdYZ6/BSjaqsW7KiVY1gJ1qfRMuvrRVMMVR91jUzSKyxa/DNsSY2fIlJrGpiBSrdpHo2juXh4WHJaA+HwyYumuLSZBRdCzwHsyK5b2pmwYzdToksqWGxZaP+luqThOKrzgzMlWx8zBqb4q3O1JhBzPyFVeY/WTyZLJt5p20ErutVs3iNZeV14T3+8OFDGzt+fn6u0+m0ac/pz5O+Y1y6E6lPc+EzRpF8tUisOnssqH7UeYSqzveQXhDdQ62dVStKzqdr8efjZ/P2rsbcf2fWNOejNeoKaHxu+MwlRS82bKBHReNw1SzPf9gTw2gHg8FgMLgh5h/tYDAYDAY3xK6u4+Px2ApaV22D83QRpkQcP77/FDopsaqzC6PbJ6XZ080klwrdIywv8bnSHSvXhs7rLsrk3vNt6XJL59H8unT71XG771fJUF2pTbomf6dspGtWULV12XflSJ7M0Z27E8bw5BSdTy47uo6TUHyXHKJ1KPevi1JQRpHi8XQDe6kOXccsRUolQV2ogOIuqSyL6433KyU0dYL3TExahTdWIQe6jpPgPRuBMHkvvVv43NFNSher3zeVc7k72Y/JRCc/Ll3HGutPP/202YehEM2PsrHp2dN7jcl3uo5Mkqo6r1Wu85X7V2DCHvdZSYMyLMhr7u5ilif5frfEMNrBYDAYDG6I3ct7OgH/qrOVxmQHYlUe4OdzMBki7UtGliTkuqQAJup4kgDFvTn3S230fNtOEH7FaCmIoc9TqzPh2haCvm33MyGVzHSQfCc9HW7ddiL3vG4+VzIuMnMyMz+2xs9ENpan+NohCxKD5dr09a2yEFnnXH8s6HfpRDIIlkiISfs9oLgBk3rYoMDXQScx2iU4+TadpOU1no7D4dC+KyS/qGeQsoQ+N16f1fNIFkUm1rXCqzpfM41J91hzYLJc1XmtcB2TCaZyFb6TNDZdgyTU0zFZIcmTUv6UJXBdAw6fM9dBtz6q+mRLliY5o6XH6+HhYdrkDQaDwWDw1rEboz0ej/X9998vhbrJ1lgmkNhoVzhOppHirR1jYQzIC55pybHcRZZgEt/o5Ay7cqa0LwUSUnyhG5s+1zFo2VZtGzx3re9SmQzH0pUT+XdevL8SHXh+fn65tqk0jOUAHB/b/jm68ioyf18HZHwam5iHxuPXhHEnxeLEEpOoCkUseD5KjToLYtya8a10/ylRyL95T/06XyqLSqIKnajGqvF7Yr3d2jmdTvX777+/nFNj8TIozY1iI+l+cK5kslx3uraK5Ved74fGIMZFUQh/3+l5p0QmxU78/ndeMK1JejxS3oXWmebBZ8XzCZh/Q7lYbatnxNtBdsIrXVMT/53lRCyFS+9iZ+oTox0MBoPB4I1j18bvd3d3L1aPLKRkqXZiCUmcYWXJVm399c5o+J0YCy2cdA7tQ0FySaSlDF8yi05GMe1Ltk124uyOzILMjAXyKzAWlxhhF8dlVqifj8zo/fv3y/F4HC7JKXZyiek8HKfQ3Q9KylWd73NXaL9qQSd2w3uYrjEzhTUGxqsFvyb0Suhvil54/I2ZmmzhRwbq+2osFFNYtQ7U9eIzTzbp5+G9XDGS0+n0yhNBcZCq87XtYrXJi8M1rfHqHpOR+9wl1MC2fDq/rn2SfGQ8ldnuDjLYrqpD98CZnz5jRjYze9MzK8ZKxsy5RmXzAAASRklEQVRMaf2dxsJ7m2LFfL8wj4Ht+nzbPVisYxjtYDAYDAY3xK6MtupsHcrqcD89rSP6+lPmWSfvJmuHjMytNsW9Pn36VFVnC0gWZRL35hgY17mmVpRsh7FnZ05k3V1TBs825PHJYLs4SJpfF6NNdWidlbuKIwuX2PXxeNxYtUm+k4wo3Y/unPQAkE05M2K8uKsHTbWQrG8l00tSeJ2ov8AsVB8Tt9U8Eltk/STvdxeLdJD1Mv7q150MrcsST2tIx+ta02m/r1+/vsxDc/fGDWJg9FLR85Q8TfSk8JnS/D5+/Piyj55HvfsYI2V8vGrrDaMoPt+r/hk9G/ROiOW7LCWzqXWMriGKj4VNM8gi0/3q6pB57VMbQNbN6t5ynVflxgMTox0MBoPB4I1jV0brlkWqw2JWItlqit2ypVWnEJWy1hgTkQUkxZaUrUYr/VL7ujRush1amInRyFrr6ludyXTZrcxMZDzE92XWLBmMn3/FKHzM/xSHw+HVPWftsv/exfc7VSZHp3CVLPFO5J9x1qQmxdgVa29X6lVd7HJllTMbs6uN9O+6zGEyzpTlzHXFyoBUG9vVlqeGIqnOuZu/6vfJetw7oc90P8QK2WQg5Rh0Le8Yc/Qs559//rmqqn799ddX2/D+O8NkTgvZtf52pk4VJ14jeuVSTbTYvcZC70vyLnLuZOpsJu+fdY0BkieHtepUT1u9l7zSZBjtYDAYDAZvHLvHaFf6u4qVdHHCVV3bJSWZFN8lOyVzkQXmY+wsVWbUJR1eMqRORzZpK+u7S+zRz6cx6Xp5zZvDLfXuGpM5rdrkcZtVmzw/X2dZqsUi66v9WnRtyjqFsIRL2ZmeJUlGw3ZiqR1Xp+fa1Y37uVNs3OeTFLvIti4prvl3Yjmdh4hN5P13MtmV+telMab2lsy/WHlMpLGubcR2nC2K3epZZqw2ZfR2teld+0RvCffLL79U1ZnZKpbJNexrVc9/55XQfKR57PPoWmyu6vc1FmfiVed3COt3fR+Bz4gUsPRTms+cq+9Lbe9Ui8910OWz+Nz9HTKMdjAYDAaDN475RzsYDAaDwQ2xu+uY7lNPSvAUeEdyHxEr+cKq7P5R0TpdxWxu4O6KJKbu52USSdXWXU5ofmw+ULVNuuncPklsu3Ojr8S9WUbCpLVOvN+PS9cxk4scSYKTOBwO9f79+43bPBWvd8liK/Ba8vqlZBG2L9Q6ZvLQqjVhF7pILuSuUcNKxEOggIiQzscErS6Rjq39fBsm96zWI91/XM9pH8pQroThD4dDfffdd5sEIy+DYes/fp7GwvPp+AwHMDGxqm+XKWgfL1/rWhBy3fsx6d5mohvXme/bCa+oJIlNAPx3ihJRLIjCIFVbUZhLcq5VfaJUV7bnWJWn3QLDaAeDwWAwuCF2b5O3asQua5PlPCtG28klMplCx/L0dFllsqJopVOGjL/78WjNpVZgLF3oSmZSQT+Ls5lM5OdjMhQFu5m0kkonOjHxjtH7mMh+U/ISWe817fLY4irJDRKrxB+yxG4MbPeWvqNwSBJIITvj2lmNUSA71Lx1n1IJEs/Pht9+Do2JMnpitnpGmOxTtb0+XbJNKtWit4LP7YqprYTh5Q3RuOV5SKIwXUJOEq7hteu2ZRtDn5vGwGcqSVXyOdQ8dC/FCJOQjPZliRvXkj8rqTWkn1fzXCVD6RhMKuVzXLVNwqRnIz2bnNelUjgfk5dSTTLUYDAYDAZvHLvGaCWHVrWVKKs6W+CUcEuWtx/Tf8paUso8pb3cAqOUH1topYJ7t+DTPFILN5ZvJBkwP9+qmTIl6VYN1BlXI8Nls4GqLVtgs+hUUsG4KOfHeK8fPwm1E8/Pz69ECVK88pKEWxIS6eKebN6tn17qQJERMlqNx2NzXKudFyQ1zeiakJMlOCtj+zCKaNDr479r3GS0/Nz3JRPr4mypCTrFGroyHwfnl3A8HuvDhw+bNomrVpSdRyaBz11io36sqq3EIkvB2Kik6sxc9VP7UKTB58Xxk9GuYugs32EzBo1d71kHnxtKmFKcwsfS5aukJhbd/eI72Oela9/lr9wKw2gHg8FgMLghdo3R3t/fv1gqKQuY4gzMXmRc0j/rGpMz/uBxCGbyUeAhxRK61mqUnUtZxxS+J9NLFjQt/K6pQLLQmAHLmCCzhNPc2QB61TSBMaEugzltcylW8vz8vMlmTAy5Y4DJau8K7K+5xp18pj7XGH2tcs7MNmZuQtVWcJ4xM8ahUmNstmpbxb86iVE2705sgdeT65peJwdZCfMZ3JOk8bvAS5d1LEbL947PuVsH/Ds139Bcujg7Y+lVZ5lEtnPTMRQfdw8KJSQpjKK2jYnxpeevas3GtS3FdlaiMV0jCMZqU9tJZiYzC73LKK7axvH5bPozofm4VOUeGEY7GAwGg8ENsRujPZ1O9fnz5xeLktJ1VVvrUFaO9klxKFr8HZi1W7VlEIxLaFu3LJkhSNaQmDotLsacV23l2A6rk8JLzEL7KI6SsmYJssXOGnbWzbhtJ3vox6Bc2rt37y5K6bHN2jV11fw7ycwxtkPGuZIB7BqWM9bk25DR0duSJON4nmukCvlsdOtwVT/JmKyeET0TKX7ZzY/eET8P64BXcWTWY16Tdazv2QLPz8l44CorN8UMOU4/tq99zZ+Zw6yvTeuN3gnmYTj0bPE9R49G8vZ0nrLO0+XHvZRHQG0A/67z3NErks7DNn3JQ5jen5dadH4LDKMdDAaDweCG2DVG+/Dw8GJ5yZpxa0OWCJkGmYVbkfqONXqd5ecMmjFfja3LBvZza/xkFinrkPMhg1rFiMiyyHpSLSbjhcyUXon906Ls6mbdQu9qIQVeK4fG8OnTp4tqLbxuPueUQe24JobZ3Y8UH+JY+DOxIK4DsqGuEYLPldt02ch+bq4HgfFY/53xfbZWTIyn835wjD5vPj+Mw+vvxH6c0a5itD/88MNmDaZ4pMbJ9niJTaUa9PR3ytJnrFL3VNc25YaQ7XZZwf5+Y4UHnwG+W9L5qD/QNXzxefCd4ffJ55/q4Lv8jpSDQibO+0ZdhqrzvXbv2B4ZyMNoB4PBYDC4IeYf7WAwGAwGN8SuruPT6bQRQHBxb7mO6bLVz5SaT0lEptNTdCK5CbgNXV3uomQyAJMfUiID0+i75IuULNMJstN17K4wprnzuHQl+TVk2j7dQCyf8s+Y9EAX6KXynVVCy93d3UY6kC7xqm3fXt6PNG66eTuBlCQKwvu/ciVqDHSX8tqmhK3OzUwkV3WXsMWSNP+OIi7st5zQCZZw3qm8h65ohjB8bXSNLhKOx2OUCeR7w48n0H2akmaYAESXdwpp6J3niYCOJMXKbZK4iY9j9Vk3xvTOolt5FQage17z64RTUgiB953PaBJI6SRSUyiIx5lkqMFgMBgM/guwK6N9fHzcBLsdKrqW9ZeEy6syK2Xgu2ORDhY2d0lXbvFr/CvLuOq1dUiLqWttlRIsaJV1CTwu+UhmxuJ/fU8GWrVNZCH7SBJ2vLY6H+91KglyYZHOspQ3hAlhPudV+ZH/nZKhaKXz+qVkGKIrv/Lrx+86ZpZK0Dq5SK4ln3dXyM+mEitGS+EKMuxUbsF7QbaXvAoCE7aSMAK/u4Tj8diK/1f1jJKJYUmwn+8KCopw7lXnJCi9OyRQwXdLml9XdpU8DXwOOfZVWSEZLRP4koANyy+7bVfvnW59J2iMugb0QHLd+/GuLQv9VhhGOxgMBoPBDbEro01NsFeC4GwJtSrKZyo70/iTBc6YFWOalA7zbToR+WvKLToZx1QysWoT5dsmSblLsVmO2bdh6yky0GTJdowtWb+6X/q5ipPIG7JilrRQO0nOxBJo4bMFWHffHLSik5wi76+uMb0xiZ0wjsvYfRI/odeD7RJX8X1u05WZrZpLkI2mkj4eT2yPjR2SyEVqu0ho7bBhSWpjKehcEnqRR8230zh5fsYjdV7fnmueQixJuETbaCx8DtN7ohPR4TuS2/t8GDvVeXWNvBWj5shnW5+T6SZvCMuJuM7S+tY1IWNOJZdJnnHKewaDwWAweOPYtU3e6XTaSPy5VcVidTILWS6+jz6T1STLT9bUJSGDqj52lawojqnLtHVLvxO6pyWVisAZC6LlvpJrY6znGpEDgSz4mqzjbpsUu6N1u5KHVFE5BfRTA/GUXez7uFeF7KZrX7hqRdhJYnbiF1VntiZPCddbiiOn6+7oPB5+fMZfyR7SNkTntfCxkfWs4qMUF+iqBJw50dNwf3/frmV50shynOVxjZN5pyx3nY/MlvdQ55VXrmrbqo1t7FIDCWb5UrZRzQXSveS1ZI5GerfQG8FMYjY18M/Yuo/7sGVhVe9l4TvY58d3I6998nKQ0d7d3Q2jHQwGg8HgrWNXRlt1toAYU63aWt6yIGV5ffr0qapeNxvW8ZhhRsmyFP+kZcy468oC12eaB62o1NC8y/ZbNWCmVSYrkBmxfj6yXLId1tH5eDgfMoVkbXdsvmPF6biX4HNYMeRLdcdJMo6eBDIZwVl3J3ouMLbp2zLLnef1+9ExC64lWvU+/k4mMkkzdvFCPgupeoDMbBUXF3jfkvygf+/HW9X0+n6Pj48tu/PfmUPC++WMlvkPXTzaW/kJemcx/kyxfb8vP/74Y1VtKzG6mHpV77HpvCPpGvNZ0zzIVn3cbIPHn8yc9s+6tSqkfAKBHprkOUxseg8Mox0MBoPB4IbYjdE+PT3V169fX2IVsgQ9FsQsTDJLWU+pRrWLQ+hviW4nf3wnCE+x6nRcWspdvaPjUps8HyNZgkAGkDL4yGjJ4BLLo2oRj5myQMlkO2aQ4NmNK2Wo4/G4EWj3LGaes6sdTmzx2qbxjkuKUIltdW0S+TONsWOSXO8pK1PbMpMzZax3XheeP2WsM1+BNbf0pPhxeL/4MzHna5ShtC+bISQPkMAGCun4YpSqgaVniZm9yfvSNW9PCnj6jnXNXXtG/67LHF+B6k2an557slTflj/JisXOUwOWzvOwyqrW2DoPpY+Rx13V739LDKMdDAaDweCGmH+0g8FgMBjcELu6jv/4448X13EKRtP90fVn9JRygW6Izi2b3GR0MTBJxF25XR9YumdTsTkTdZiMkBJrWP5CV1rq0du5ROk26dyE6RgsfUjj7tx9Kd2eQh8rPD//p5cxmwokCTfdh07SLUkUcgw8RkoaYykYE05SeU8SiFiNQ3P3cdMNx8SqVIpG1yfXQxL553m7ZhPJpctnr1tLfhwmsvD4yX27Wr+Od+/ebYTnkwAGy57olvW56v4rMbNLWkvuWiZfeemSn8/x22+/vTqvjkH5wVQmR8nSTvTE12rn9uUaTaIhXTKhwndJGlGueK5j9kVObmC6lXktVv2P9yjtqRpGOxgMBoPBTbEboz2dTvXnn3++WG+yMjzFm1YTS034t29LliDrRkkEgqwq30ZjYdF3ShZhGn3Xfs+t7I7BCCsxApbT8BowmcS3ZfJTl3iSkiPIIFjOlBK2utZ6LHmoWgtUpLE8PDxszu3jJoOkrGEqV2JCUddcIFnobHxBJqs5+zxZ1kBGoXVyTeMDPispsYSMjx6BaxotdC0PEzvl+TqhFGdBuqe6JrzWaYwrlkscDofYOpDbVG3XZCfg7+fWNnqvkPElqUJKMNL7ovKY9D5ggqi/z/yY/N3HyrWUvC98J3VlhSvpV/1Uwhg9hX69NY/OQ5Q8NnzmumQ/T2al9+Du7m6SoQaDwWAweOvYtanAw8PDxkJdNRCnnGKS4ZLF/eXLl1f7dCUsKa2f6f0sBXAk+b903tSGq2O/tGgTc+oaYyfBe1qf3TVYSTF2jbdT+dIlCUbGq3xs18RqJTqQ4oICxU3I4lalM7xebIuW1kk311UDAt6PrgXiNe3fOKbUHrKTkuxKN9K8+EyupDh5Pgrs09Ph+5Cpd14Gnyvj0wmHw6Hev3/fsh//jM3uKdeYvG8sJREzo0Srz1lrspPpTC33uudDIj5JarYTe0geIYL3nwxWn7t4kK6b5k7RIMZbXQBEv7OBA3NC/FppW3pMOL8kUtQJo9wKw2gHg8FgMLghDns1vj0cDv9bVf+zy8kGbxX/en5+/oUfztoZXIFZO4N/irh2viV2+0c7GAwGg8H/R4zreDAYDAaDG2L+0Q4Gg8FgcEPMP9rBYDAYDG6I+Uc7GAwGg8ENMf9oB4PBYDC4IeYf7WAwGAwGN8T8ox0MBoPB4IaYf7SDwWAwGNwQ8492MBgMBoMb4t/+mOWWvwWKUAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -714,7 +690,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZVlVJTrWjYgkM7LPFOmsJ3ZVWpaKCgWWCmgpWii2lNiBlO+VaelT7EWpJwmKinyKDVJig4io2Is9CJoiYodd2QE2mTyUTEgSsomI7CLurh97z7jzjjPH3OvceyPuPjjH993v3LObtVe311ljtm0YBhQKhUKhUFg+tg67AoVCoVAoFPpQP9qFQqFQKGwI6ke7UCgUCoUNQf1oFwqFQqGwIagf7UKhUCgUNgT1o10oFAqFwoZg9ke7tfbk1trQWru1tXYlnTs6nbv2nNVwQ9Fae3Rr7drW2hYdf/DUZ08+pKoVDgDTe/GFh/TsYfpbeX5r7SWttRvo2A3T9T8pyvud6fxrxHP47yUdddxqrf1Fa+1r6PintdZe3Vp7W2vtztbam1prv9Ra+0R3ja0579vRD9fO1eUwMbXt+QdcphoX/3fDAT3rwqm8px5Qee87rYv/V3DuptbaDxzEcw4CrbWPaa394TRP39Ja+47W2n06731Ua+2VrbWbW2u3t9Ze11p74kHU6+ga114O4OsBHMjg/SvAowE8HcC3ANh2x28E8BEA/vEQ6lQ4ODwZ4/vzwkOsw9Nbay8ZhuGejmvvAPBprbVLh2G4ww621t4TwKOm8xFeBOAFdOzmjud9PoAHADj7g9Va+3IA34Oxz54D4CSA9wHwSQA+FsBvdpS7aXgGgD9urX33MAxvPKAyP4K+/yKAvwRwrTt29wE96+7pef//AZX3vhjXxVcGZT4WwDsP6Dn7QmvtoRjn48sAPA1jvZ8D4H4AvqDj3lcA+F0AX4ixDz8bwItba0eHYfjR/dRtnR/tVwD4stbac4dheOt+HvqvGcMw3A3gDw+7HoWNxysAPAbANQC+r+P63wLw8QA+E+MPseGJAG4A8GYAR4L7/mUYhr3M168B8OJhGE7RsV8ahuH/dsd+G8APsURqqWit3Wd6h7swDMOft9b+HMBXAPiSg6gDj0dr7W4Ab+8dp3XaMIzRt87LejUMw5+dj+d04psB/AOAzxmG4QyAV7XWBgAvaK19xzAMf5Pc+7kATgP41GEY7pyOvaK19qEAngRgXz/a67wo3zJ9/s+5C1tr/3ESDZxorZ1srb2qtfYf6ZoXtdb+ubX2oa2132utnWqt/X1r7Yt7KrPO/a2192qt/cQkqrh7Ett9enDd57TWXt9au6u19lettU9prV3XWrvOXXNha+25rbW/ntp3U2vtV1pr7++uuRbjbhIA7jWR1XRul3i8tfa1rbV7WmtXB/X529bay9z34621Z7fWrp/uub619rSeBa+1dnFr7dtba/849cFNrbWfb63dz12zzrg9tLX22kl09IbW2idN57+qjeLY21trL2ut3ZfuH1prz5rq/c/T/a9urT2Ermutta+cyr6ntXZja+15rbXLgvK+pbX25VN/3NFa+93W2gcGffAZbRR3nWqjuudnG4npprq/pLX22a21v5v64XWttY9y11yHkZ1+ZNsRR143nbt/a+3H2ihOu3uq96+21t59bozWxJ8A+CUAT2utHe+4/k4AP4fxR9rjiQB+HMCBhUZsrT0cwAcBYHH8VQBuiu4ZhmE7Ou7KfGhr7a2ttV9orV2YXPchrbVfbq29c5pbv99a+2i65mGttZ9z8+8NrbVvba1dRNdd11p7TWvtca21P2/jj+OXTOe65x2AlwL4PC7/fKC19tLW2j+01h45zf07ATxzOvekqc43T/X/09ba59L9K+LxaR053Vp7v9bay6d35PrW2je01lpSl08E8BvT199z784jpvO7xOOttS+ezj+sjWuVrbdfPZ1/XGvtL6fn/1Fr7UOCZz6htfbH0zv/zqk/HjTTZ8cBfByAl04/2IafAnAGwKdk9wO4ACO7vouO3wb3m9tau7y19vzW2punteKtrbVXtBm1EIZhSP8wigEHjOKBZ0+Vec/p3NHp3LXu+g/GuED8KYDHY9zZ/8l07EPcdS8CcDuAv8PIFj4e40s+APiYjnp13Q/g3wB4G4C/xiiy+wSM4rltAJ/irvv46dgvYRTTfAGAfwLwFgDXuesuB/DDGMUdjwLw6RhZzDsB3H+65j2mawYAHwngEQAeMZ178HT8ydP3B2GcCF9C7fvw6brPdH39ewBuwbhr/88YxTZ3AfjOmb66AMBrMYoj/7+prY8H8EMA3n+P4/a3GEU/nzjV6y4A3wngVzCKO79wuu5nqC4DRlb3+wA+DcATALxhatdV7rpvna593jRmXwngxPSsLSrvBgAvx/gyPR7A9Rh3yUfddV88XfvCaXyfgHHuXA/gUnfdDQDeNLX98QA+GcCfA7gVwBXTNf8ewJ9hFEk+Yvr799O53wLwRgCfB+CRAP4rgB8A8OC5Od37N7XjWwB84DR3nurOvQTADXT9DdPxR0/Xv8d0/BFTWe8D4DoArwme8yyMc+/sX0f9nj6N/RYd/20ApwB8LYB/27PmTN8fg1F8/wMAjlD9/NrzYRjn+GumsXssgF/GuGZ9uLvuMzGSj0/G+A5/CcbNxEupHtdhXDuuxzifHw3gg9eZd9O1D52u/9iDmgPR+IpzL53m7pumdj4awMPcOP0PjOvBx2N8585gWpumay6c6u7n2LdP1/0VxrXo4zCqQQaMzFTV8/Lp+gHAF2Hn3blkOn8TgB8I3tk3APiG6Tk/Oh37Nozv32dN/f9GjOu1nx9fgXFNfwGA/wLgcwD8/XTt8aSeD5me8enBuX8C8OMz4/FhGNfN52JUEV0F4EsB3OvLxLhZ/hcA/w3jWvEZAL4bwIel5XdMiCdj50f7qmkCvHA6F/1o/xzcAjcduwzAOwD8gjv2Iqz+wN4H4+L9gx316rofwI9g1MFdTff/FoC/cN9fi/GHvblj9sN5XVKPIwCOY1xUvtIdv3a6l1/gB8P9aLu6/AFd990YNwL3mb4/cbrvkXTd0wDcA+Ddkzp+4XTvpyTXrDtuj3THPhg7L5d/ab5rmqi80L4dwMXUJ/cC+Obp+1UYF9oXUR0/n9sxff97AMfcscdPx//T9P0SjLvcF1J57zX13Ve4YzdM/X6lO2aL7ue6Y9eBfuSm4ycAfPnc/N3P31SXb5n+//FpjC6fvmc/2m36/6nT8ecD+H3Vnuk50d/7ztTvN6xcOv5vAfxvV87bMbKXx9B1T8bOmvN50xg9Q/SDX3tehXEjdgG9n3+HUSwf1bVhXMc+H+MCf7U7d9107CHi2em8c8ePYfyR+8ZzNB9uQP6jPQD4hJkytqZ++HEAf+SOqx/tXT/QUz++EcAvzzznE6d7Pyo4p360v84duwDj+3kXps3ndPyzpmsfPn2/AuMG7vnBHDwN4IuTOn7sVNajg3OvA/BrHWPynzDaL9lcvwvA59M1/wDgW9cd77X0SMMwvAMjm3pSa+3ficseCeBXh2G41d13O8Yd76Po2lPDMPyOu+5ujAN/VmTZRgv1s3/r3o9xkvw6gNuonJcD+JDW2mWttSMYF+afH6benMr7U4y7511orX3WJI65FeMEOInxh0H1yRxeDOARJhaZ6vc5GFmq6Z4+EeNu+bXUjldgXBQekZT/GAA3DcPwy8k164zbyWEYXu2+v376fOWwW5z0eowLwQPo/l8fhuGke84NGPVmZmDzCIwvJ1spvxRjf3N9fmsYhnvd97+aPm0efATGDchPUN+9earjI6m8PxiGwRvEcHkZ/gTA17bWntJa+6BMXGhorR2heb7Oe/l0jHPva+cunOb2SwA8sbV2AUZpw4tnbnshgIfR35tn7nkgAmO1YTTE+lCM4/csAH+BUVL18tZapHb7CoybxKcMw/D07IGT6PlRAH4WwLYb44bR6OmR7trL2qhm+keMm8N7Mf5YNQDvR0XfMAzDX4jHzs07a/e9GDeND5xpQ7bW7QenhmF4efC892+t/Uxr7S0Y36t7MW5eetexX7N/prn1N+h7R9aFidQxjEaX1wP4m2EY/tldY2vQv5k+PxojmeJ3/p+mP37nDwyttQ/AOA//FKM05+MxSghe2Fp7vLv0TwB8UWvt61trH9b73u/F+OO5GHf2zxTnr8K4w2DcBOBKOhZZCt6NcXeH1tqDMU6ks3/Tsa77J7w7RuX/vfT3nOn81QDeDeMP39uC8nYZ3bXWHgfgpzHu3j8XwMMxLmQ303PXwS9g/OE3feNjpnr7BfXdAbxn0I4/du1QuBqjGCbDOuN2q/8y7Fgv83jYce6XyJDxrRhVBVYXcH2GYTiNSYxO976DvttGx55r+uRXYrX/PgirfberPLdx6hnfJ2Dc6HwdRlb5L621b5p5IV9FdfqmjudY3f4JozTpKY3sBwRejFG8/3QAF2OcyxluHIbhdfQ3Z8R0IYT18jAMZ4ZhePUwDP9zGIaPA/DeGH/snt7IpRSjCupfAPz8zPOAcU4cwaj+4TH+fwFc6cbgRzGyuO/FuKA+DKP40uruEb0Thrl553EnAKnT7ljr9oMVO4LW2hUY34f3x7jh+yiM/fAT6JvnZ6ZNvQevvQeFaF2ZW2vsnX8NVufD+yFfL61sno/AOM943BnfgVE99KnDMPzaMAyvHIbhf2BUHX6vu+4ajJviazD+wL+1tfaclthsAOtZjwMAhmE40Vr7NoyM+znBJe8AcP/g+P2xvjn/WzBOJD62Dm7BqAd9dvIM22VGxkL3w27XhM8G8A/DMDzZDrTWjmH1h6QbwzCcbK39IkZR4NMx7nb/aRiG33eX3YJxh/lZopgbkke8HcB/mKnGQY7bHO4njtnGwl6K+2PcvQM4K4G4GvMvDeOW6fPJvjwH5e60NoZheBvGH4AvnaRRX4DR7edmAP9L3HYNgEvd93Xn+DdPz/nGjvq9sbX2RxhdN3/BS1YOELcgXvCi+ryltfbDGF3B3g87m1Bg1D3/IIDrWmsfOwxDaMQ24VaMouzvh5AeDMOwPS2In4pRrP49dq619kGqij3t6MBVGN9DhYNY6xSiNnw0xk3ypw3D8Do7OK1l7wqwd/5zMaoxGLzh8HgDxt+ED8ToTgcAaK1dglGS8EMzz/4gAK8lqSMwzu3PaK1dMQzDrdOm5+sAfF1r7b0wru3Pwmj3ISVLexXBPB/AV2HHotzjdwE8tjl/0NbapQAeh1FH1I2Jwb1u9sIcv4lRPPo3w475/Qpaa68D8JmttWtNRN5a+3CMek//o30c44B6PBGr7jK2674IfT8KLwbw+a21T8BooMUbot/EuIidGIbh9XzzDF4B4LNba48bhuFXxDUHNm4deGxr7WITkU+M4hEYdWXAKCq/B+MG6VXuvidgnLPr1ue1GMfgfYdh+LE913o37sbuH9oVDMPwBgDf2EaPBrlpmq7bM6Yfvu8H8GXoc8/5DozSp+ft57kJIpUDWmsPGIYhYq7mecE/yv+C0XDqdwD8zvTDHTLfaeP7ewA+BMCfDdoa/T4Y39V76fiTxfX7Rmvt/hgZoBznA1rr1oF5HJzthzZ6ODz2HD/Xr4vnEq/GKN1472EYfmqdG4dhONVaexXGNfPb3I/vZ2OcO2oNNdwE4EPb6JPtfysejnEdWvk9GIbhegDPbq19AWYI1p5+tIdhuLu19kyMu2DGN2OU47+qtfZsjLu8r8c4SZRI/VzimzDucF7dWnseRkZ6JcaOee9hGCyq1NMx/rj9YmvtBzGKzK/FOAB+AfhNjEEqngvgVzHqwr8MJDLGaF0NAF/dWvsNjOKk7KV8Fcad9Y9gnNA/Tud/AqOV4ataa9+J0XLyAoyWv5+Cccd8CjFeAuC/A/ipSUryRxh/cD4BwHdPm4DzOW53YvRbfA7GRfQZGHe+zwVG24mpjd/QWjuJ0SbhAzBuEl8Dp0vrwTAMt7fWvhbA908i5N/AqGN8EEY96HXDMITRwhL8LYAvaa09AWOgnDswzpVXYhyr12NcED8V43x7xZrlr4tvx2iR+yiMtg8SwzD8AkaVzLnCqwH8t9ba1cMw3OKO/3Vr7ZUYx/N6jHYGj8Uoqv6ZYRhWAngMw3Bja+3RGC3P7YdbMdCvmp798tbaj2AUbb8bRmveI8MwPHUYhttaa3+I8b28ESP7/ULsqGbOBR4+fb46ver84vcwquReMK3ll2FcK9+K0fvlXOH1GNfT/2d6t+8B8HfexuUgMK0hTwXwna21B2K0YboD4zh/DIDfGIbh55IivgnjWvOTrbUXYCe4ykuGYfhru6i19kUYSexHDsPwR9Ph78O45r5suvdujJbhnw7g7CZgIoo/g1H6dxKjdfz7Y5Q6SewnoMGPIhA7DMPwvzHujm8H8GMYf3xOAHjUMAx/uY/n7QnTQvBQjD9y34rRUvt/YVzcfttd91sYxdMfgFEk8vUAvhrjQnybK/KHMIownoBxx/VYjGzUXwOMP+jPx+hm8QcYjQ6yem5jdFl7EEZDqH+g8/di/JH9IYyL869j/HH4AoxMUkbFmu59zNRuu/f5GBe0d0zXnM9xezHGH97nTc+6GcB/ngwdDU/DuAj/F4x9+dTpvk9KWJTEMAwvwLi5+XcY2/brGDdlRzEaRK2LZ2PcaP0wxrF9AUYL0T/DuEH6OYzz6CMAfN4wDC8T5RwIph/H7zqXz1gDL8PYF59Mx5+GcUP6TIybmJ/G2D9Pxar/+FlMYvFHY9wEXdeEn+0wBud4GEbR6PdOz/gejOJK/4P5ORh1iN+P0dDtJgBP6W/e2vhkAH/K7/RhYtr4fCbG8fh5jJv278M4b8/lc2/E2NcPxzgmf4JxfM7Fs74Xo0X/f8C4Vv4aRnI2YMdoUN37xxjXngdjXCuegXHt/e906RZG9t3cvT+Bca25DKPO+mcxzstrsDvOyasxiu9/EuMa9zgAXzqtVRLNGUsXCK2198Bolv+sYRi++bDr866ANgaZedYwDLNBegqbi9baizC65HzcYdflMDHp0G8E8DXDMPzIYdensPk4SLeCjcbkMvJdGMWbb8do1fp1GI0CfvgQq1YobCKeAeDvWmsPnVELvavjGoxeKQdlS1H4V4760d7BGYzWys/DaKF8EqPe578q45dCoRBjGIbr2xiq96DDt24a7sYYSImNVwuFPaHE44VCoVAobAg2IrNOoVAoFAqF+tEuFAqFQmFjUD/ahUKhUChsCBZliHb8+PHhiiuuOJCyfJ4Gztkw97233P3Uab/XRuf3cs9+rj3XfcHXmP3FG9/4xrcPw7ArzvaVV145POABD8DW1ta+6+btPOx//uy5t/fcOvfsxQZlnXt6ntdbp6zP1umLg7S7ufHGG1fmzsUXX7xr3bG5Y3MJAI4cObLr087x8Wjd4c/9YCllnCusM9/Xmavb29u7Ps+cObPrs2eOXX/99Stz5zCwqB/tK664Atdcc82+yrCX6YILLjh77OjRsZn8Ms5991Dnel5ItUnIXvCoDupeXki4PT3Pm/v09VH9tk5fqD6xsYqeYy/YIx/5yJWIXw984APx0z/902fH3T6zsbQX9fTp07vKt+/+/3vvvXfXNfbJi4EHLwR8DS8g/h612NhntrFQz4+um3ue7wuDajsft3t9u/kYP5e/+3sO4sf72muvXZk7tu5Y+fe5z30AABdffPHZay655BIAwGWXXQYAuPTSS8/eCwDHj49RQS+6aCc6p83lY8fGcN78w87zMIJ6D3veNSs3ez/VOjNXZlQ+1zl7Br8LanPsr4veF39t9P7ec88Yc8re35Mnx8Brp06NwSNvvvnmXd/9c7jeT3rSk9JIg+cLJR4vFAqFQmFDsCimfRCImCEzUCVCzUSr6+xwe8XxexGlHZRoa13W4ne8xhjUTnsdZP26bp8fO3bsLLuJxJVcb96xR5gT4yr2HF27Tp/PMSxf97n+7xHxc3usfCs7atfcuFh/Z8f4OVw2sNN21ef7xTAMu/okkmbMSaJ8WQxmbuu82/yOcfnrvHtZ3dTz+LnZ3FFj6J/Ba7Cdm5PARdfwOEX1sPlm88zWB5bIGgP319rnutKIc41l1aZQKBQKhYLEuxzTZv1udCxiYXOY22GvY/iWHe81Wol0zOtg3Xv8DlvtQHtsAtRx3oH7c/ZpukFVzrFjx6TBkC9HMe0eRqxYXnQvswjFavaCnt2/YoG+HnuRAuzlHlU3tlcw+PYxG2f2dNCIyu3R0/J1ve/YOkxuP8Zt0bgp9nqQRnTZesCSlx79vt2jdNxepz03bmzv5Ms9aInOQaGYdqFQKBQKG4L60S4UCoVCYUPwLiMeZ/GqF7vYMTZCOAix1DoGaT3lzyEyZukV3Wf3GJThi7+Oxax7cT9R7ckM0SLDJt+eI0eOrIx1VCeutzrv681GLyySi0RqylCGy+5x3+LzEdQ86BFj7+W5yk0sc9tRRkPZ3LGxPF9iy70Y3UXgeauMC/l6/z/3U2bMNmeoZcjctnqNaFUd5uo6J67ODO947ij1iFej8Viq9kRriz3H3MWWgmLahUKhUChsCN5lmHZmgMRuQCqKUbTb7GWIkQESYy/Rsnow53KxDtPu3XED/UFdeuoeGQeuw7Tt+mwezDHeiJmw+wcHB8kiK6kgJJkLlmI+PVIhdU3GolXwlizICh/j4DTMhCLpg0EZl2Vs91y7gKm6+jqsY5CqpIA9TFs9NwK7UXH5kaRCrR1zrl8ZeqISzrnfZhIyJSmzukXuvsr4OCorC2S0BBTTLhQKhUJhQ/Auw7SNTbPeGljd8fJOl3f72b18PHLnmQsNaegJxKF2hpkOhnec0W52jrntJeiJ0uFFdeSyMpcvxUwY5vYF5K4cqi5Z6EQ+p1im17OpkKf8PXPBUVKhHpc/Zl6RLpDrr+qYtct0fkpikbWP62rHo1CyjP24Ia0LbpNinuvYHMwdj85lthpcN+WaGUl21HMzMEtdJ8SzkkJkUNKnTHJldbQ5qtab6PnrxCU/nyimXSgUCoXChmDjmbaFoWOG5S0I19W5RqxSMZ0ept2TUaZXD57plvicYrUeSk+c7XznLMwz3ZKqW6S3XicYTmsNR48eXbknYhXKHkFJNwCdHMMSEkTJCmx3z3pwLiNiomwFb+2JJEncVg5YovTvUb25L5iJ+/LmxjDrT4PyRIjmjtJ3r6Nv3S8y+wdfF0BL9Jg1G3qS8mR68DldLEteonZxuYq9+3P8bqsyM2T9OHdN1kcsqVJSz2jcDiKI0LlAMe1CoVAoFDYEG8u0OeA7M5KIYbFVZQ8TYCj9eLQbU36EkXWnstrtATO2bDfOx3p32BEUw44YHTN6ZRMQSTl69V1bW1tdVqiKsUXPy/z/ffmRLyf3j13Dbc2s1dVu36eenXsuz/9Ip833Kn18VBd79+b0vRFY77oOqzmfYSaVtEdJRKJrlX9x1PaI2UZlZR4VPLbZuCidvdWNU9T6e7gPMhYb2Sz4dtjzeU5FULZDkVTI6mgS2MzeZy8W8+cTxbQLhUKhUNgQbBzTZn0QM6B1LMAVM8h0jMwMox24smbMog8xS57TcUc7cNu9Kv/MSF+s2KxKphHVvycIfy+j8no+vnbOT9tHRIvqbSxBMd6oPax3tJ06W5FHOm3We9vnXXfdteu7H2u2SlcSmB6JhLLu7/Gf5T73NiLKeleVmzE71qVH/ajiKXAfHTT8fLvPfe4DYKcfTNLBkj4PpadnFp35+PN7yGuVryOvgVwu63X9/9E5D7ZxAHbeI34e2yBE1twG5dFj/Rq982p9i94Dfp6Vd+GFFwLYeRcz327lvXBYKKZdKBQKhcKGoH60C4VCoVDYEGyEeDwTBbK4OjLyYnENGw2xyN2LZFSoRBbR9BiVqWAH/jksSlRGS5lIsEfUPhcKsMf4ggPaZK4SysCFz0e5cHvEunaey42CdLDRjd1jIlDfX2yIpYxT7LyJvKNjd999NwDg1KlTAIA777xz5R4OAmFgY5/IrUW5FrG4z4u62XhIqXCy5xl6DK/YoInFylk/KjXWQQfBsPbZfPD/Hz9+HABw8cUX76p/loOb1xdWsUQuWvY/B64xZO6CLCbvwdz6EqktlIrQyjDRc+YmZmJwnqPW3ybGBlbdelVdI/cttQZzmf4edrNcCoppFwqFQqGwIVjWFkIgc7TvSXBgu9UsfCQQ70xtx8cuNnatMYLIBYd3j7zbi9o1Z6i1H/e0yDCMoVx9fH14l+oZib/WP4N3x8zSuc7+WquDZ4gKKuwosDoO3NeZu51isZnLn807zxYAbWwWlTMXUCKqo2LpWcIINd481oBOvGNgg78sMIua55HrlJKyzRlRrYuIfdkcv+iii3Y9k9+XKNgJSxeUC6M/nrncATvrjl/nlMGmtcPq3pMwhJ8XuXzxOau/SZROnjy5cq3B+tjawdIInkP+nDJEM0RjwMze6hYFdbK6nWtDx72imHahUCgUChuCjWDafqeT6ZL9tdEOVOmFeJfsd2pql8w7Q88mmGEzq4wCDCgGxfqiSC/es3Pn56l0iuwOFTFybrN9Wl0zNxhmKBGr4Wuj3XCEYRhkqFL/DGbWHIrUt5kZiHL/sDKNZQCrrISZZ8RyVHCYHp220v0r/bv/n5lbJvGx+nN/Kve3KCAHn+thM4pZR1IVJUlS5R45cmRl/kb6VKuDjTO/j34eWxvZVkK5yvkxZVc46yd2H/RtNibNNjzGKs2W4pJLLjl7D0uK2F6B52o0dzhcL7s6RjZC/H5aXyuXugxWJtuO+GO8BrOEKXKHjSQTS0Ax7UKhUCgUNgQbwbQ9c7CdGOs3mdX0JDhQVqcRO1OW36zH8ffwjj3T3zI7UmETI6an9NysO/V1ZKag9IKRlbnqR+4rv0tmfSTr6iJmPKe78jDLcZ4XfgfNbVH61YgZqDYzS492+cwEzKo2mpfMJnneRVKHudSlzG79HLL6spVyZonNfawCHEUeAYw5qUBUjpo7kbSml3FHAXWiuWMW/8oeJrLM5zaydCmSnti7o7w8DL5v7R51rTFt3y6zhudgJkoq4PvT5g5LBez5bBnuz/Eaadb4vL57exk2U3PVAAAgAElEQVSex3MePcDOO2dtV5b7WTAuttk5bBTTLhQKhUJhQ7ARTNvvdHhXrXbf0e5+zlK1xydV+YV7v1JlHc47T79TnAuQn1meq/CO9pnpetgyW/neRvpkZqasd/fP4/JsTFnHFe2Woz6O4PWSka5K6VxVqEj/bJ4brFu0thqL9udYH6mSJUTPYdaXWUpzm1kawIzI/6/8z3s8HKzt7LcbMSJlI8I6Y48sVKy/Z69M23Ta9n5GuszMSty3I7JT4foqG5DIdkfpsKN1zqQABrvGz0lftv9fMW3WqUf9yetZJvnhtYE/2VvHr/2s356zsPf15+dm6WNtLlqbe/Tq5xPFtAuFQqFQ2BAsmmlnOhHFljIfaGaNylfYMzpmoLyby6xrrW5cl4xVc10UW4qkAVmKOq6H8rFlnTPvxP1z2NKTn+/bx6yfWQYzbv9/T4q81hpaayv69UjiwpHxlB4/eqaxmXe+850AgDvuuGNXWZ7VRMkIgNwqnnVuzEAjK15jD+wDr3TZkT7coOwuskQozGJMTxr1ibWHdeesP4x0zMqmwY5HyWYiaQ+jtYajR4+mFvPWVh5L1R5gp19uv/32Xd+VrYZ/X9mP2a4xKUAmXeDy+F3zenceS2XfYd8jHTMzbHtOJmmx94htKaxdVkffJzaveN1WNhb+GhU7wNrj3wPW1S8NxbQLhUKhUNgQLJJpM5uOojGpKDjRDlTtmCK9JxCnc+RrbDfGlrMeyq840mHxbpUtsXkHHFkcczsjPRvfY+CdNese/Q6br82igjFYIsLPiaKeKatorv8wDCsWu5GUxpDFfjZYvczX9ZZbbgGwqse99dZbd7UH2GETl19+OYAdLwIrM/KrVpHjDJHHA8fxZpbO0qcs9aiK6+0ZK+s5rTzWnZ44cQLA7j6xeWS+wtZHWXx+ZXNidWeWuBdEltu+PPW+q5gFwI7Fsn1aPc1SmvstqwNLZSJPAKsL+4UzM/XrDtvosP0FS6wiuxiD8hP36yDHcLDnmuRKRa/0z7v00ksBADfffDOAnXnO0ep8X9gn67RZKuD7xM6t4/N/PlBMu1AoFAqFDUH9aBcKhUKhsCFYpHjcwAZPgA7zyA7wXtwxF3yCxYj+eSpJAYsPM1cVlQo0eg67XhhYXBaJxVQ6vch4iUWcLEKzzyi9HicgYPF85CKhwrSqhC/+/57UeBZcxZ4TJTZgsCg6UieYaPMd73gHgB0xuRnF2L3WZjsOAJdddhmA1YARnKwgmgfK0CgyiFRuczynImM/FrfOJdXx97Po1uaD1ZnVAdxWQBv9REaTbPTFot0o/HAPbO6w6NuXx2oifk8iESqLzK186xdOJBOVYWNnKhZ7fuT+xqoH7pfo3VDt4XGKgqsY7Hkm9u8ZS/VOm7rE5oXvI7vnqquuArAjLr/tttt21dHq4dtq7WGxeBbUKXpfloBl1aZQKBQKhYLEIpk2M+wsxBzv3CK3EOWWoRzsI0d7vpfTt3kw61auV9Fucy6sY2QcYW22cyqYgn8eu7CwBMGuNeYY7UQ5Lan1p+2OI+M1NjJUwWo8epn2sWPHVlxIPFS4y2y8rE1m/GJt4rmSpQ3lIBecJCFKAcmSFnb1iyQ7yniJ3V4iKRTPUe6jKEgNS6hsrlgb7Ls3WGJJERszRu6QSrrFxlh+nVgnyYMZMapQwr6tvO4wY4tcvkwCYfW078YIozCZzPbtHkMkceGwySrtahb6lN8RnkveEI3fd36+jX8UpIbrf/XVV++qGxtr+jrZMZY+cKIPXz6v2zy/vXRQhTpdCoppFwqFQqGwIVgk02ZkwU6YeWTBQFQKTv70O2ze3amkEx7M8jj4fbQrV+5h9nx2OcmYnXLBykJS8r0q+Iq/R0k7IqatGHUURtDAITxVIgQ7d+zYsZVyo6QPah5EbmfGsK1NpnMzXbdKrODPsd2ASo7g/4+kPlEb/D0qOAi/GxlzUKEoo0QYdoyDu7AuMHK/tHPWv1kaWSUZ488oBWgvhmFY0e97+wR+3+w7J9zw7WCGyy5y/L5EEkWll47qpZLlMHv1emKVIEQFq/JjqexRetYQtrdhnXMUZMdg7bG5Y7YjETjAC49Jlso5k9odJoppFwqFQqGwIVg0046C1M8luMgsxZlx8O41u0fpCXvAVqNWR88MOD2fSmUZBd3gXbKyRI/CVyopA7czShLPjCHTDatxyhJWZBbMEba2ttKwnKxH5T6N+ilKm+jv4aATvs3KHsEQpR/k56mgNxHmUplGbVFpVQ3R+8TvD7MyDrqRJSiZCxMM9DMer2/NpDIMC2OahctlqRJbgGfrjgpCxF4dmXSAnx+tfzz3uVzrR2Oovg7c/yqok3+fVNARlg5E9gksSehJ1ctlqHXHg9sVBaXhtqh1YSkopl0oFAqFwoZg0Uw7CtmprE55pxuF6lO7YaUv8s/OruHjSqeXpSxUKUDV83usozkcXxS4X+3uld46OseIQm3OSRKycqyuvVbkHpE1L/ddj35d2T8YIn0y+77yPGQfWX+O9eyc3CRL58nty+Yw6yzZPqHHtsHA0oZIUpL1sUfk26sS4vTYlcw968iRI+k7bs9gew0O8xklVuF1jJ8TJRZiNsnhOLN3Qelr7V6v+1YhcLmsiHWqEM58PHoHGdznUX8qWwblgeDrosYi63suYylYVm0KhUKhUChILJppG7KdumLREfNVbCnbSSlm0MPolKV5FjmM71E7xEzH2KOHV/7nPXpkZZ2s9ORZGUrqsW6d+J5IIjFXXqZT5F08WwtH/vNcFxXtLLI1YLZkeuLIw0HpspVUxt+r9Kps5R3p+ZnhWB9wys5M2jH3bkbtyhL87AXDMGB7e3sl3kEmzeI+j1LBsuRDza+IIVodmB1zmdn85ih3nKgkq5Na3yIdupJgZdHGlHSIbZY8lOeJWv/8/yytUylBo3aUn3ahUCgUCoU9oX60C4VCoVDYEGyEeNyDRX/KYMqLcZQoTom6vHhkTvQcuWtwEAVD5kqgRLdKVBOJVPkaZVSStSu6lqH6OlM7KAM7Ph+JJHuNlyJRYeRCptqm+jyqJxsEZUEaDCpMZiTqZmMrNhjz4kOVW76nHhyStidhiKo/z4uoDJWYJDIIUuA5dBDBL86cObMyP3xdWJXF8zkyulJGfEq1l6kg+P2I8ncbOGwuq3AsQJCHMvJSRo2+bmyAyKFKI0NL5YqVqSrVesbHe1z22OUrcoPsCUZ0GCimXSgUCoXChmBRTNtcL3j3GDHf3hB6/v455sPP8Ncohh0FlOCAFexeEIXlVMYqPSxCOf9nqTn5OcptI3ueCiWbGYQwuG5+V87lzLl8Re3LmLsKaRilvZxzN4qMcZRRXMYmuTxOMRrNHSWlUCEwIykNt5PndSSxYFc2ZayZBddQTDUbtzk2uC6GYdjFtA3ROsDrDz87Cp+sEtRkEr+5YD5RwBnlJmgGaNGcYkmR6sto7vK8M8bNRnlRUhMlIc0kjfwOKqPN6B6V4IldwiJk5w4DxbQLhUKhUNgQLI5pHz169OwOisMhAppVZvqoHhckdV7pmjnwR5TOUblnZGHx5nRJUR2Z2TNrYbaWtYvZUeZCx2VkQQmUa49KUBFhnXCCPE5RPeeSCPRckzEDpWvO9PvMqHjO9PSB6uvMfcvOMRPhegA7fcFhcuekKf5/1W8RW+K+ZqlGFnCoF8Owmpozao8KphKFFc3cGaPzHkpfq2wc/LWc1pLdnKLyDGoso3ec55Ot11GqUYNdwwlCWGqTvU/rSMrYVsKer8L2Rm2OfocOE8W0C4VCoVDYECyKaQPj7o3ZV8aWmJlEzLAntaNHxAz4+SrAfVSOusa3SwUb6NGDMjtSST/8TntO/8nPj9qngvtzYJjofq5jxiB79E5W1jo7dYPaufv/mXHOleX/Vwwu04NniUGA3DtC6fp6Qq2aXlJJJfh/f+864R7nGHb0PCVN650fWV22t7f3FK6SxymS8GWeEf54ZKXMc1O9t74uHEhErQ9ReUoaFDFtZsn2nBMnTgAALrnkkpXnGZSXwjqSJEbUz8oCnHXc0TrBoYOXgmLahUKhUChsCBbHtIFV/75IT8R6XEO0a53TLWXgnabSOUfPU9ao7AcYlaeOR+1jq1F+XsT4FENQVrJRHbg9Wb9ym3t055lkQkGNl/9fseZMp81lKElIj9WzIdvlz/leR36lfO2cb7y/RiW1iaC8EpQ1eRYikpGxTkOvjco6MLbtnx29Y9xW6yfzfTZLbX/tHDPM2qqkQJFERoWeZeYdWZwbVJhZPu+fw9IyZtz+GcePHw/bx2mYszmr7Emie6zNNj4qaVP0zkc2AEtAMe1CoVAoFDYEi2LawzDgnnvuCRNp+Gs8bDfE90TspTclZ2btOmfN6e9Rfszr+JeuE+0n0j/64xEzUb68mS5bMfhMvzv33IhtqOhgCr59prOK9PhzbDI6PsdA1vHxzsa/1+fZ94XqF8XKouutfHuP2B848llmnR/3735Tqap2qH7dD/xzo7SQ1labV2x3k3m6qEQ667wvipH6sbSx48QthojZK7Y/t975OvH6w++eMW5/jbIw7xnLuXkQlaEYPPcrsBqb4CAlOgeBYtqFQqFQKGwI6ke7UCgUCoUNweLE42fOnFlxgM8Cpajwoh5zQQ0yMZUS12TBVeYMcqKwhSqYQRbSle9VYpx1QnqqIAfRPSqoSo9hDYvlsqAx7MKk4F2+okAirCZRn16sy8Zi67gq8RyZM/7zz+Zwj1kAGC6XxeHq04P7wJ7PLm/AqrhXBYLhsL1R25WhVWRgxf15kK4429vbKy6mvg6q/63+mSpAjXsmDuc+Y7E4B1DxdbD109z3VO7vqC7K9TOqM5cfvT/+OmBHVG59YvOsR00yJwbPxNkq/DWrgYA+w9rDRDHtQqFQKBQ2BIti2q21XcFVMtcLwzqBU+YMV7IymPkya/FlKqZtuz0O4RfVLesDBveBMvKK0kZy+bZL511z5CaiPrOQh8o4j+vly+ll2mfOnFnZUUfugipJAbcvOsb9xczHl2XHeI4wI/BGlBwalMvPXH1U4B9ms5HR1FzQmMjwbS5saTZuim1GBlbKCHAdg84eZIaCqm8N/I5nUO9L5HbEhlL8eeGFF569x9yaeN6xxMrfw4aHfC2/p56Rnjp1alcdzbjM3Loi6QOvM/yOZ2vwXN9GEh2e1/yu2Pco4dNSUUy7UCgUCoUNwaKYNjDulpi1RDsf3pllu7B1XZOygBz8yTtT/3+vu1j0bOX8z24V0TX83Cw8J7MwZgEcmAHoY8n8vVeSkOns5xKtnD59WrrXeKj6q3ZE55gBM7vx/8+xM98uu9ZY01133bXrM0vgwXVSejwryx/jOctlRVIaHlN2OTJkthtqrkbvRs81e4HZ0nASiYjt97jtMVSYX0b0fnJdWIfun3/y5EkAO6xR6bYvv/zys/cY67Zr7Tm2vnAiFO++Zc+zul500UW7rrWy/fizFFK5B/bo/efcL/3/yiaAj0flLE23XUy7UCgUCoUNwaKYtrf+BXIneRVqLtNHKjaZBWtgtqR2vJGVcraLYygWxrqXqH1zutme9HO8W+WQiNHzWIKhAoJE5UcW9Ax1T3Z9j+6f50xmAa5sGZTesIedMfPy9xjDNuZjbMbY0jr6aKV/t2f4+nPIYJ53EVu2Y6xv57IzuwJuQyYVOlfW48a0OWhQZFHMn2whH3m6sIRIjU8kPWHbDJYGeKmJjauxYdYbG2v299gzbX6Zntr008aWrQ123pfPa6GVH3n/mBRGealken4lMc0kfEoKxZKFyKMi8344TBTTLhQKhUJhQ7Aopg2Mu5oefYZizVly87mwpVGISD7HZUQ7bGbY7LeasVilo8+YCO8E2fLTkDFVFWo1Yz5sha2s5aNjc4wrQqZbYpad9S0/a52wmHMWzD1+9JwO08MYj7ElZtoRq+21aVC6dX9OIfIeMDBDVfYSHspaOLqHWb9KU7lfKFYG7DCzyPPD1yWag71xDCJWye8Y67J9P7Etg93DvtARO2d7B5YkRTp0ls5wnzDD99fynOmxGVjnPTVY/fn9YX1/Fhb4oOfZflFMu1AoFAqFDcGimHZrDRdccMGKLiba6czt5j2LUWkhDT07N2UBmjErpbvKmHaUyN3fm7EXlcgjiyzH/sDqeZGeSD0/aoNi4azD8piLZMfY3t5eeXaPzjwbf6XDnIuQ5cGJI9gy189VO6biAWQJapRf+DpQkqQopoDyic+8NZTkirGOj/RBgeeBZ9rM0NT7n0l7uJ/sM9KnckQ8ZUfix8XmDvv/s97aM+3IRsKXwUzUz1XTe9tz+TtH94vqqKRC2RxW71w0JspKnL9H3hE9Et/DQDHtQqFQKBQ2BItj2kePHu2KgDWnF4p2vHyPSuKeMUTefUW7ZNZ72bXMtDyUBaSyQM1YM+tMo+cpPaSKTx3p2+Z2oFlEtHVZdM81wzB0+YqrMTVE+nvlN692+8AqS2XmYX6tPk3hpZdeCmAnqtQll1wCALjjjjsArPpvAzt67ygq2xysvlYHZXsQeXXMeQ/wM/w9ytMhmlPr6DAPApHUhL0GVJu9BCTzpvDls0TMl8N2D6zP9yxWsdUeTw2GzVmbF5E/tf3PluY8ZyLvAfUeKS8ND/a6YH9qPwYqbn3mp81zsPy0C4VCoVAo7An1o10oFAqFwoZgceLxra2tLjEOi8wy1yEWd6hg+NH1SlzYYxgWhfEDVo0x/P0qoEhPWE42AOGADNG9LOpWRjKZ+Mig+sr/Hxk2qfYpl7II5vKVpfPci6vQnEtXVpYSj7OY3ETh/thll10GYEdczi5gPpwkJ2jgcJaZmJZFm9l8Nsy5mM2Ft42OZf14WIZAkZiVDbfYkDJyb5oLBsKhQv2z55KlZAacvO5EIm613qjgKtnazOL4yMhVuZSy2DoLVsR14D7qEY/z8zIj1BKPFwqFQqFQ2BMWxbSB3aFM13GrOggz/YztKbYS7cJ41zZn5BOVO2d845/LzI2ZvJ2PjMmYNTErj9xSeEerUl5GRivMPnskCL0GNN7lK9qVzwXKiaCuVcwnKmvOuCsK88iBMYzxmPGafQLAxRdfDGBnnt1+++0Adtx1eIz985TRpDIUAmLjoKjt2XvLhpDZ+3q+DNAyFsuBS7gdUR3n3Bp5/P15Nh5VQVX8exklL/L3ZPNNGYYy24zeRZM+WF3YbTEKyKIMejO3RRU6lsctY9rKhTNbG5eGYtqFQqFQKGwIFsm0M5eBObedjJXt5R6lp1PBNqJ77ZN3tX5HrNhX5lJkYNcLZrGRbkkFL+C+yCQJKpBJptNWYxuNRQ9z47pmwS7m6hnVey4oTFbHORaZMQOWVni9N4P1jZy4oSeMKYMDjHhGpxKgKDbonzfnBmXIbFLOddCLSJ/Krn8cmjh6P+eCqPA7HgWwMSiXwyj5h60zKuCPf44aD5YgcHIQfw1/577w/agkbBz0hF3AfLncB4px+/vnXMqy97aCqxQKhUKhUNgTFse0gT4d5twOMQo+oizMeQeX7fINvGPz17HlsmJP2XPYIpzh28L6YrVD9Dt9tXOfCwCh6uC/RwkElPVpz7j16J6truvYNnCdIqY9l/Y0g5p3Sp8HrKZT5Hsz5q0YCLMYr5PmucLzIkqeocIC8/Myfa96fyN9YhZS91wgGhfW02bvv0GFMTVwH0TSjLlwudFY8nOUvYr/f44BR5I5XneUx0kkUVTvqWLT0bXcboPvE9WPbKUeBdJRIaUPG8W0C4VCoVDYECyKabfWcOTIkRV/48haNWOA2XF/ryHSYc1dG+0E+dkqUUiUVF3tIud269E55WMbMe056/sedtPDWJUleGZfkDF3hrHszGdYPUtZtvtzzF6j8LX8PCVd4N1+tsufS7Dgj6n+V76+/px9GtPn7+uEseVxWifuQvT9fFvz8vsaPZvDmUZ1nLPiVmX7Z/MYqnnny+e6WRl23Ic+5ZgOymYoqyN/cl9EOvTMFsAjsi9Rlu2GyLdb+Wtn/uDZenOYKKZdKBQKhcKGYFFM25hSj75wL3oG3i1GCUL4OtYhZTosg7KI5F1llFaP9ULKPziybFV1jhh4b/rGHotq3gFHjFWx8YxpcwSxOcbm25f5wPMn1zeqt4qix3rb6Lms42V9WpQeUekaI5Zr97O/rPlp23GzNPZsbS5lYSZR6vVVz7w/FMNego9s5KfN9ij8bkcW4MoH3vogisrFc5SvifqvZz7zPSyVUwk9onWHGT0jmqu8NipPlOid5/VA2YZkftr2LrBXRCTBWJou21BMu1AoFAqFDUH9aBcKhUKhsCFYlHgcyPPRRtiLCEO5KkVGF0rEzWI+XyYbsrBhQ2ToYOJxFpNz+MTMNUrlpo2CXPAx1Z4sF7dB3Ru5eqjPKPQpi6SzsR6GAadPn06vVfdnrmVzYvHMSE6NhzL28f8rlU3UBhaP2zUsCoxcvlikrly+oudy39i1HBo1eo+5nZn4fwmwfpoz3PKYc00yRCJaZSCoAtr4/218zS0wC6CkxNV8La9H/h6+lsXVkeiZ1Yzcr5ERG4NVFZEakNdiFS41qmO01i4BxbQLhUKhUNgQLI5pA3koTd4J9rgmze2UesKazjEPfw+zU1U3v4tkJuV30NFzoh2o2nFmASt4h219wK5OUXhGRsZYFUPlT9/uHtcYD+/yFfU5sxQej4wR8ndlKBaFXbRPNgSLjNdYGsNMgdvgzzFbMDZx55137iorMiZiV68eMBviQDQ9oWm535ZkiOZh9THjPnvHVVAif24u3GY2V1X4TXPbyoK68Lts8OtT7zoTvTNzY2nIJHx8TSadmZNcRfObJaXK1Sti2mz4thQU0y4UCoVCYUOwqC3EMAyzOm3WebB+ONOFzDFEFQDEH2NWE6WAnAsJGp3Pwvf57z27Pt5FRjt5xayVW4XfnWf6df89Y67MrKNd7VzCBQ+eOxHmxoXrOHcsOp/NAxWwwtfbWHEWZlE9h9vDOuwo6UPkbtQLnjvKjc+P6ZyuPnqfsnE/32A3J1tnjIF78BqkJEd23NKvAqt6YUsGxGOYsWarK0v+snVVhajN3mkVgKgHc8/Jkqgo26HI5YvfAf7u5z9LFZZmX1FMu1AoFAqFDcGimHZrY1pOZpU++IRiSfwZ7ZxUAAy2lPa7O05zxzqQyKFfMb5IbzvXLnVdFBqQgzlklr+GuRCkPaxZBdPInss6s6jv17EeB8Yx6tExKolLTyAZvkYF7ImeY9+NNTELAHYYG3sr8JyK5phK2KCC7UT17wG3g8MOM8OOrPGZPWfv79KYDrCzJmWBS6x/lEU2s+WINbN1em/4T39NFvSIx2hOEha1g+vAfeLDpvI9fC3be0TSSCWpimw72FbD3iuzL8mCBrE3xFJQTLtQKBQKhQ3Bopg2MO7ElJ4V0Lpepdfz/yvdKzPtzIKZmUC0u2PWwDvdHr8/tYPv8Wc2ZP6ZmZ95hEgfbuBdcxZCVDFs9k/31/T6658+fXrFxiHz11aSgkzn12P/wPVnlqLsI4AdvaZ9sg4uYt7cHtZlKot0X76SGGQW7spXPbN5mLOczvzRlwiWeHipCbNVZtjcb8bM/f+qDENkzc02Dayn9vPRnsPz2u7JkunwmqSs5KMkKiyp4tgCUZhlFWrXruV7gVVGbZKszP5l6XOvmHahUCgUChuCRTJt1ml7nYIKnG/osfhj9pBF5WJ9hoogFung+DnMnjN9Yq+lu6+jiuzWo//i8rn/IotMVadIX8VSDO7riFX36rLtmtOnT6+wzCiJiLIWz6LNqWsyewm7hlkT1yNiE0oXFzFRZuF2L/vNRvYXXC6nO4zmd3Yu6qPM/1jp25fOdhQiS3d+H6yNpuuNrOxZ4mLX2mdkUzEXETGa3ywF4jnDdYwkbpGULPruwXOGbQQ42Q2gU4GqyH++HdE5hV7p42FhmbUqFAqFQqGwgkUx7dYajhw5InemwM5OifUmKpaxPxZFk+Jrs7oBO7vKzNpbsQXFziIofW60C1TxsTPWMuczmkVrst0564+5HlFcZOs/28Gz9WrEVHvY1zAMuOeee1Z05ZEen6Es532bVKpURjamPK8ji1y73xgWp9mM+oL1dMq2IUory/7ArANUkhcP1g9mluDKBmWdSGxLhu8n9g7g96QnmqPNkYsuugiAfm/881iiwrpnD8UqmWlnERj5fed2RDZJKjKakixF7WIddg/TXsdbomKPFwqFQqFQ2BfqR7tQKBQKhQ3BosTjwCiSyNx1WBTYI+5QQTVY9BeFlVQioMyorDepSRQAhuvIfRGJzVUIwB5DLiV6zsJmMljcyy50/hoVTCVqP7s3ZWO9vb2Nu+6666w4LwsvO2fk58eWy1GqiAgmtuPncbIJf55F5iyWj0Spqg5K7Brdy/Mqc4Oz+nISBhX+MTPSVAZpm2qI5sGGgepdjpK19Ca2yMI1K7WFn29ZwCd/T6YWUi5+2Ttt13hDM38+aq8S/7N4PAp0tU4o3CwYzRJQTLtQKBQKhQ3Bopi2GaJlrM6YlNqhRYYVimnwZ+auwa4QWXANxQiZMUZuNCqYAhtlRcw+M6jy7fT/q9ScXK+I2augNFGQGpUYZI7h+brO7ZZPnz4tkwpEUEFiIlapGLYy6PP1Vn0bSXb4XmYVGZtg1y+eK1HACmbwKkyr79coMYP/nrFllSAkCz+76bC28ZrFTC5LdGEGgmz86aVZKqgK921kaMlGZLymRFIjNoZjV91s/FXoUeXq6K/hOqpgK/7//YTrXZrr17JqUygUCoVCQWJxTPvYsWMrOj+/AzVXmExv5o9buf4Yf8/cTVQyDsM6u7EeHa1K55cxbSVlYJe5rE/mQpNG7FPp+SOmrQLAqMQIHj16zmEYUkmCf7aStPRIFTJ2BMRjOmdjsI5bi33Pgk6ouZIlkFHSqGyuqnYoty5/j6pTxrSVFGgvLOowYPW09Ks899gqIngAACAASURBVCNWyS54LKnyoU8NPGYsgfFgV1aGcueMztknu7hF7rcsQbA+sXlttkuRhIeZtdJt+3PrILOzWQKWVZtCoVAoFAoSi2PaF1xwwQojicJhKqvAKBjEnHUth27MdKdzIRt9fecscbME73NWm1EwFz63ThhTFUQj2p0r1qn01tk9mY54HQbV2pjWlZlqlPxlncAhjLlUphHmErlEUIw0YrEqBaeSAmTPn2PCgGa4c4EzesrPbBtYh7ppAVmUDQBb4QM7jJMt0DkdaiRJ4v7h8fD38JrH89mOR14zKgRtZufBdWGGffLkSQA7TNv3CfeTeid8+3rXkCilrgo/fdgopl0oFAqFwoZgcUz76NGjKwzbJ1E3MJvr0dcpZsVMO8LcbjJjBiqRRqTr6QlbOldXtvyMdptz5WUMuDc1o9+hcpt7+oTHZU635Jk2MwRA67AZPRKJOd9UYHUcmAFH9VD+8Wp8/P9zzDOyDVC2IZmNyFxiiozRz+m9I19iA88rnh/Ru780luRhzNHqb/Y6wGrKVMV8M7sRHtueeAcqfoIhsqXhfmdJTOZ/bkzb+sIYth3P7D34sycZSA9YorM0j4Zi2oVCoVAobAgWx7SPHDmSMiHlp9hjXe2fw9cAuS5bWWhH+umoXdE9kZWy+p6lveOdtbo3Ylj8XdUx0vnwOfXpr51j5VlkOWXh6sE+yZE/M7MJhu8bxVqUTjuTBrCPfzbPeyUT/hwzUMVmI2kAs3R+R6J3Q6VK5PMRFNuzPonsIbifePwivTunRV0SjFUyiwZW3wdOXMOR//z/Pe+JQfnj99h9ZNIYXx9/HafRNOtx+87nI3240tH3SEwVovdJteuwsbyZXCgUCoVCIUT9aBcKhUKhsCFYlHgciJM1ePEEh8pkkYiJnCLjHhb5zIUb5XJ8WZnYSIlKM6OlOdEfi6ujYCcMFTglgqpzVldlrJIZr/UY8HH9e64FxnZy+E8fhES5m/UYXfE5pYKIRO5zYkQPZejGRpmZoRa7QypXo6yOKpGHv3/O1SwztGM1A1+biStVWM7M4HLJBmk2R01UDOi28byLwpjO9Wl0j1JX9bhFKjVIlt/a1mkOpsJuXZF4fM5och1kRrM9wbcOA8W0C4VCoVDYECyKabMhWmRYwIyDd18RA5kLdarcbKJ7FVvOXGLY9cu3l9vV63oVGbHNBWjpgdqdR3VVyJ6nkglE45a1WYHHy3bwwA7DYBdCNvrJgoLMGaRFwVyYiawTNtfAbDYyllMGZ4pFR+UpgyQPxXR6EoYoxmbtZncb3w4D92fGppcaitKD3Z88OKiJMjr0UGFEeT3y6DWojIwY+TsbJnoJwhzT5qQgmVSI591+giVFRrOGMkQrFAqFQqGwJyyKaRsi1mKwXY+xJtup8U7dIwu8AvQxEcXCMuardoKZDo7ZAt/b4y7Gde/RbfMuNdO/c10zqQOXP8eao4QEXIbCMAwpI1WuUKzDyoKdKERuSdyXSgccuSqp3X5PwAolFYjaxPppdW/kiqeunXs+oOdXxPTU3OnRgyu7iyXC219Y29hljaV2mYRK9XEkxVC6bEYWMId12JErIOvv1T2RDl+F5c30/souhl0LM9uApWGZtSoUCoVCobCCxTHtra2ttXSXpp9kZ/yeMJ98jQo04c9l7IHrpo5HOrh1knv4MqJj6vlRu5gFKtbpd9gqzB/fE7VBBamJdvDRLlhhGIaQfUaSF2amGbtQ48H1jYLDqKAgWTKOuecxM46OKZ1flrqQGU6W/EOFkeQ2ZJgLHpPNf3VNZAF8rnTae9GfrgNOPxkl7ABiyRSvb9ncVYFE2Ko8WjusXGPPHE40sh5nHbZKQRsF2VEBX9axHldBozJd/dI8D4ppFwqFQqGwIVgU0zbrcf89ugZYtZC0HRnrOfz/XmfkoUJV+vLmdNsRE1V6SGuDt2JmRqvYK18fHevZYavymfH0WAIrht2jl8zayX6lmdX1MAyhv2ikL2Z2mekJ5xgaz7dMx8h1ipi2ml+KTft2KCv1zG97jp1ndVS2IhkLZWtdxaij49G77Z+T6Wp7kCXHMLAk6lxbFlsdbO3KPFCiJCK+jOg9UrELOGxqpmPma9gS3K+7pstmZs0JUnriNyhvoIwZs2Qvsh4/X2O7VxTTLhQKhUJhQ7Aopg2MO6GehAq8U7JdZLa753vZ6jHSr875r2a6F2YkWSSuzC/ao4dhZ7txg/Jt5bpHO9/eCF89de3x11YMghFZOEe77jkL6cz6nctQ3/09SmoR2VCoBB3Mkv35XrYc6aBV5LMsIpqaGz0eAfae2lhaOzKdNtepxx4iS0TDaK1ha2ur61p/j0ekGz2oVJEeVrfIp5tTc/K6Y5I9/x6xfQpbqat4Ab58u9dYNM9hz7Q5BSfr7rle/nk8PvyORO86t0PptKNInIalWZEvqzaFQqFQKBQk6ke7UCgUCoUNwaLE41tbW7jgggtWjCAic3wWr5loKAtFaeIhJfqzsiLRnHJriQLbs0iG3TYisR7n1J1LwpEZaihXo8g9RIkaVfjW6JgSPWWGHKp9kUFIr1HRkSNHUvWCMrLjdmVGd0pEu44rIM8LP7fYTUZd60WDbIimDN34fNTmHuObOdc+FmP2iGOzflQBfww96rO5uWMicn9vFsCI68siaH+PMoA9CHgxOSdLYvGxBWqJXChZtKzWqmhdZeNgdv3y97B4XImio3eU5ybXOTNAU+L3bD1dmljcsMxaFQqFQqFQWMGimHZrDRdccEFq9KPcdey47SJVujh/rQok4ndlzFp4Fx7tQFVCA99Ofs5csAm+N2MByiAtcqfjHWiPq5dCFr5SGRqxIYhnZesYhLTWdrkMqiQtvl49LHkukQL3fWTkpYzWWKLk72cXmMyYTLl0KaPCyNByLnRj5L7H1/IYR8k/lIuf+h5BuZhFYUxVXRk+qFNPMA1moNZWz7S5Djam58qViFnwiRMndn03dhsltVFrBa+R0dzhsridUdAj1QeZAaxhzm0rSq2cBbZS5WfSzMNEMe1CoVAoFDYEi2LawLgDysLUqR0T69GioBpzIUKVLsjfq8I9RnpCu5Z3q9FOTgXp6GHa6lzG2nlXrvSS62AdxsrPzYIc9MLrJXsST6j6e6hxUTYAkT1EZCuhnsd9yPrqzG2LdYoqCEXGluaC7QCrUiHlrhj1iWI+3I/RuKk528OMsrlkEpqMabNkz641Zp25G3Ed2F7hfCEKK6pg7eOALNmcVeO0F0SBUtTayHYLUQAYFdRnLvTzElFMu1AoFAqFDUFb0g6jtXYzgDcddj0Ki8d7DsNwX3+g5k6hEzV3CnvFytw5DCzqR7tQKBQKhYJGiccLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAgW5ad96aWXDldffXUa1WrOjzmC8h/uSa84d24/9xx0xJ11/I/nnp2dn/Mdz6K2zcXsjmINc1Sw17/+9W9nK87jx48PV1xxRdqmvaCnbdH3rKx1nruXew8b6/hLq+/ZPFCRuLI41YYbb7xxZe5ceeWVwwMf+EBZ5wjnYjzWeefOFfZimLyXqIkHWcY68fLnPgEdg+PNb37zytw5DCzqR/u+970vnvnMZ8IWX/u8+OKLz15z/PhxADvB71UQED8IFhiBgwtwuEdDFuZRJViIQp/23puBA7Nk4Sb5h7AnP7QKUJEFruCNE2+ybGzsE9gJQnHhhRfu+m7BGzgXL7Azbnfccceuz4c85CEr7jlXXHEFrrnmmpV27hdWP85FzBvKKBzk3ELbEwBGJUDJErioACY9gSRUMpCeH0RuQ1Y+vzccRCZKiGLJMTjZhI1NT2KOa6+9dmXuPOABD8BLXvIS2W9RmzjvdNZPPe+Uet46SVJ6N+3Z+tZLcPwxDjesylZ18NdEOebVNSp/fPYDbGu/zZUo4MypU6d2fdr8e8pTnrIIt8ASjxcKhUKhsCFYFNNureHYsWNnGRqzMWBnZ6sYSCbuYGbNO7Me0Vz2HN8O1b65exkqcH50rwpf2fMcxRgjNji3K4/u4XSlBhtHY+DGonxdLrroopVz5xtz0hOWiPQgS4qg5lCU8IClTXNJN3qetxdx5Vy40QxzIWazcz1hOTMMw4DTp0+vvANZGkqVgKRHJTQn1YrO7QU9rLmXaXO9/DW9650HS3043KjdG0kwVd+rtdqfU59RG7J0pIeJYtqFQqFQKGwIFsW0gZGRcXB3n+6OmTazySihAustVGKFdXQwjEznN6e/icC7fU6skNVB6XoiPahBsYCINXOAfpWi0R+3MVT1N2lKpG+zY34enC+oPjQ9F49LZDSp2hydZyY9l9LUHzPMsQk/P3uTqGTsjI8boj7hcyqNaFbuuud7cObMmZW+iPSqKuFN1H9KWrXOmCo7hWyNmpMORsfUWO7HwDKT6CjpnLLP8OdYQtVjQ6HW+ixdLT93KSimXSgUCoXChqB+tAuFQqFQ2BAsSjzepnzIJhoxkanPS8tGNyz+iEz4zbzfDJnsu/LHywxQlBtHzz2GzK2B72WxUWRcNicW78mFa58q36wXQbHbk40Tl+/vUSoJA7vQ+HZEBonnCzxGyo0qEtWxsY1y24mMyvgeVgtF5XAde8SWc+LP6J3odfHJDO045zx/98jek4PAMAy72pe9n3MxCiL1CKs6+B3j81F5SnwdrQNWbyXmz8ZfidQzUTfXMXsnGKpd0TrH7oHrzDMVZyGa33txzT2fKKZdKBQKhcKGYFFM25BFRDPwbpjZtAXrAHaCMtg1imlnjFQhM0Dh9qg2RFBuDREj4cABvCONgsio3eQcKwB2xsUYMH9yPXx5HKyEg5ZkBlaehZ9vRAaOwLwLkD+n2HnEYs3tkQ3got3/nBRoHfdEvpbnkq+vurbHVUZJgaJ3sMdwcz9oraG11uX6qZAZbLJkqsetUrHUzFWJWaVipB49QVuiOmd1zIxYVXsUw/fvGxso8/oWYW7uZG5pxbQLhUKhUCjsC4tk2pGuz8Cs2FidsWkLPXfy5Mmz99gxY+EcBpF3bBGrUEwq2k0am7RPO2esMtrNsj6I287t9pIEDtNq7bPjJlmIQkOqXaRiCcAOC7SAKByaNLIrsDbbtVznSKqS7diXgogRMDhwRCbFYJbE9gIZW2KmpVy9/NxSNhNKCuX/55CjyrYi07sqHWbUznOp247cITPXuEzyweD+4Lmu3nl/bm5sPXgt6ZmjSjqjdMG+vlyHTIIwp6NnSaK/VwXHUt972neupTjnAstbBQuFQqFQKIRYHNPOdo7AKns0xnnixAkAOwzbvgM7LJyDxSur8nXCItpu01s2G5u08JscCEZZWwNab6va7f9X7dkLWOfoQ4ia5MKSt9g5+27955k9SxvYIjwKnJJZo28i5oKR+GPMAJTXhP9/Th/JOkF/TtXN5pCNuT/GEh1mg5med669qq3nCqbXVs9lOwRmrZGtCbef7TZs7mcSl3XmvJJ0ZLYtvYFEMt2vgSVhmW3DnGQn0lezdJXnXSQVsvratYpxR+ixVzkMLKs2hUKhUCgUJBbHtIdhkPpc/7/tnJhp26exa2BVx8pMO9LB9iIKEco7Wjtnx1nXDcyH18us4+2Ytflc+7UqFhD52DLYipz1vCad8OUvzXozwjp1nfPB9ceYRfN88OeUb32PLzHrcbP0tcxolL9xZA+hJEmZfy57R+xHgqSQ+fgCq/1kdcjiNHDZPYlCVH2U/jvztuB2KA8ID6XLVvprX6c524aoLiola2SHw3OT50q0LvG4zPlr8/+qzYeJYtqFQqFQKGwIFse0W2tdieVtt2WM03Zkdq/pV6N7WOerdnvA6q6U2UUUtY11V8qa0u+SmZXzbpX90f0Ossdfca+49NJLAezuT9bJsd92psu0vr/jjjt2lRFFhTLWvQTLTpVIpWfHzlbDPL89VN9yn2Z6SVXHaN6xFIjnoY1ppN+1OnL5mc2G8gSwa21+REybWfpBMu5hGFKbA6VHtTpk+mJmuJE0gaH03zwffJ+w1wqz4x7/+Tkf8khKY/dwH/Ga5a+Zk3qaDUXEtFX9M8kOSyayqG0Zc18CimkXCoVCobAhqB/tQqFQKBQ2BIsSj7fWcOTIkRWxTmRYwEZP5mYVGXeo5AQsBuHz/n8Wh5nYJRPZsKjRgpJEiS+4PXNBT6J7o/Chc7DyOFDKxRdfDGBHLG7f/T1K1MTBHaJrOCiOicK9a1mmJjlfYEMcNYeyULv83cqIEqFwDnk2WoxE6yw6ZdUNtyUSddu9Nkc5cYnNC98OlUyFv0fvRpSIxj/Xvw+sErrkkksA7KhY9mJAyhiGYWV8fLlK5MtiXV9vfh/VZ2TAyWNo46JCCPv/eZ3hNcP3+VxubzVO/hi7B7LoO3JP5SBY9t6z+HwdUX4kHuf3yOax6puorSoM9WGhmHahUCgUChuCxTHtY8eOyXCPwG5XLmCVYUchUNWOn3dm7Ijv77FdMbtVRTts3x5fru3ujL36HZ3tNJU7TZbMgFke73Q5hCiwswM1QzP7NBZjzJd3qB4quEHExNigRrnQ+OdwQIQel7L9gFmuP8a7bZXwwo8pszOe1xFbYgbA6U8NWWhIlcAhM7rh+eYlK8Bu1qnYJrs/ZsZLSnLA7l3ADjtj9mVz1d5Jz+jWhTdEs3HzAWW4DtxmdlXy59RnD5s0MHvm99P/n7FxYPdcVsajioFnKVrZDdf6z6/Z9r8x7P2Oma9HlujF6mbrLCcqioI7LRXFtAuFQqFQ2BAsimkD4w4vM7W3XaLtPNmxP2JGyvVB7fa9XtV2w6yvs51ilEqQ6227OGbY3o3K2sM7wp4A91xvK8N248Ze/fOszVdeeSUA4Oqrr951jdWHQ7H68pkxsE4r2kUzo7N6RAyLGeq50mlbmyP3PYNK+pKlSmTGxvYDUZIU5RJl/WP3ZmlWrY5qnntYH1u5/NwosQzXkV0lOWyvf65KlsKSGM987H6bT+zmaXPVI3KNVBiGAadPnz57rZXvGSK/75lUycDrAN+TuRKpkKrZPcqWhd+5aI4qN1V+5/wzuG/ZXSsKp7yfQFYG1vfznI1cTXm+sZTI15FdFpcW3KmYdqFQKBQKG4LFMe0oqEIUSJ91f2wlGFloG1Toxii4iu26Wfea6VfnghgYe40CwNiO3naiSqcUBYBhNshsObI0Nd2l6Qd5x50xCCvfyjK2Zjtsr59mFs5jy+zMP/tc7XTZIjcKXMJg9t/Dnpg9sh1GlgLSwClMozCmBiuPLcIji1kV8ENZPvv/7d1gK26eH1EAEGW3ErEn+9/eF7ZBsXr453BdeuYQv/+eDbLETXkNRJbZyotA6Y99+SowSxbulT00+HhmCc7nmKVH646VrxIvRVLBbH2Zg5WhwuhGY8DzjMfa14PHYwnBnTyKaRcKhUKhsCFYHNP2u6RMX8y6bUPEJlgfaOB0nvwJaN1H5hPN+iCrk9WDLReB1fSarBdmhu/17soqXulFfd1M//T2t7991zVsvezHhXXkxtJZuhGFy+SdrgqJ6dvMuvP9giUS9uye5BjscaASSACrUiDrL2bakbeC0pmbntUzbZ5PSooRvRvWFzbP2Pc1Yto8ry+77DIAO3OJdc5+3KzePjGMf57N68jC2erGkqTMAtmuzUKeDsOAM2fOrHiC+HFR1u3MpiNJEb/DfJ7tO/w51mVzmf55bAGtpAD+OpYY8NrB9iR+LVZrI9vWeOwllgSD1zuWNPb4XiuJgr9/aSk5DcusVaFQKBQKhRUskmmzL3YUMYotfZXPtb/Hdnm33norAOAd73gHAOCWW24BsBqdB1j1FWadHz8D2GERXCdmCF5KYCzFdqvWB6YvZKbtd5usOzImZ+XzLt230Y7Zc2wHzzonL30wn25jWGaBfv/73x/Aqo8vsNNvPBbM5D3b4D7346Jg8yKyejbYOJiEQFnB+2PsY88JUKzfvJ0C18XGxfotSqhg484SCRUnAFidb/ZcGwfWafvnMcNSSR8iHbP14xVXXAFg9X0yeAmXSbdYT80pdSNLd+XDzhbBvt5ZSkmPYRikd4l/lrKDiaKb8TvGUgwrK7LD4X5X/vpR5Di1FmZxAXiuMLgNwM5YsX+2Hc/sCGwN4XZwu/06x5I3RiTt4HePJQmR3rrH6+IwUUy7UCgUCoUNwbK2EBh3Obbbt11fZtkXMTRgNyuzHeDNN98MAHjnO98JYGcXznFwbdfvn21s0upmzNR2rcaefLnsJ80738gnWVmps840i1/OVt1s3enBDIsZydve9jYAsX7HdstvetObAOwwrPd5n/cBsMPAfLm802W2GcXUXgc9aQ9tPKx/WCfqd93Wl/e73/0AAFdddRWAnfG3Pmdfb2Cnf2y+WZutLJP4+HmgrNKZiWQSCR5D5U8dXWvg/ot8rdka3r83wE5f3XbbbSvlWNsf9KAHAdh5V97ylres1JGlXSo9ZTRHe9J3Ws4Dtq+IbChYJ8t+x9E9Nqbv9m7vtqsd9r7YHIuiAbIfvTFimxe+z/kdZn10xFDZs4QjpGWeNSqfANvuRGCmbe2Iojca2GbC1hdj9j6CnYE9DDj2eBQXgT1oloZi2oVCoVAobAjqR7tQKBQKhQ3BosTjwzDg3nvvPSvKMPGKF9VFhjH+u4nDvEju9ttvB7BjKMNGUQYTi3ixLht1qKQI3oCDg6fYp7UnEqWpoPcqTKZvP4u2WFTLxmW+HC6PE4RkoShNVGftsH6+6aabVu7hsWSRpo1blAI0Ensp8Dh5WJs4NCsb93kRt9XH1CMs1rN5xq5Tvk3sNsXBR6LkNuzSowLoADqIhjLyi4x72FgxCwus5iaHAWUjSt9mdvkz9ZLNIfv0dbJ7+XnWF1kgoExd0lrD0aNHV9Ry/v3kUMEsNs7E4raeWKhg7h+DnztsVGrvtJVl/RO5trI7rFK1+HZw/7CBVjQPlBsVi6D982ysrC94vlv/mqrSr3Os6rC+sLlz44037irLQ62jUbtYrF9hTAuFQqFQKOwJi2PafjcVGSPYjlMF7I9YLCfQYIZlOyt2JfHHOLwoh4iMdmrK3SQKkMLPY5akjIuA1WAX7GIWGS8ZVPAQ3uFHQU+sL+xaY6HGTqMQi8qdItrxqnCzGZglRfVWKRg5bR+wY+TCwWeYLUfhEO2Y9YfNP2NY0fizyxUb+1h/+eAkUcAV3w5m/H4eKEMtdr2K3MRYCsNSGjMu8n1ic8RYkrXTmGPkdjk3D9jQzsPqNpfW9ciRIyvvh58HLIlSroVeSmMuhdZmHrvLL78cwA4zjN4Xm1/GJq1vo9CtXEeWTETvBEvaVMKQzA3O7mFXz+gea7s9l6WS7Prq77XybO6wobI9389VDsTC6w7Xx7dnaeFLDcW0C4VCoVDYECyKaTOixBN8znaP9p11MMDOzox1Orart92WsYuIAbHbid0Tpa5UOj/WU/rdP7N/ZhOsY4zuVQk2OKAJoAPpcyCTyP2Bj9n4GLNgFzdfNwO7oURsieud7XzNbcfKU+5c/pnMmlkn6/+3/rA5YsyH9eBZoguDCpgTgdkRh1z11zBDUCEw/bgwu2R2FNmQcP/xHLL3zVhT5CZkdTM3TGPl9unH2trM7yVLIXw/2zj1ug1ub2+vSLd8eSphSKb/5KA2Bns/7nvf++4qO0p7ycye1xBftvWHcjFlKZqvP4fCZZ1vxHzZ5c/AthuRrQEHYGHpHEvFfHk2LlauzYvofeN3nPszcktj6cOclOZ8o5h2oVAoFAobgkUx7dYaLrroopVwhV7fwIFCOOB9ZF3LyShYJ8uJ4KPADgZm1lHyDxVAhKUBUTAIlfqP2XSUfs5g7csCCPC9vOPk3XEUcIR32pyKMUo1yOBwk55N8fhnAfw56UP0PGbU3JeRtStbHxtDYP0hzwd/ji3xs9CXKngHszY/PipAikob6seS+51tC7K+V+Uba7K+iJiKYuush/VtVmFG7dN0xNG5TEozDAO2t7dXxjSSFDEzZc+DSJ/K8437OFvnuFxeu6J1gOczs3LPRPldVQF6ojnG9jcs3YokZDznrT0stbO6Rnp+llxyv3rduvIyYsYd9f1+kpqcSxTTLhQKhUJhQ7Aopr21tbXLKjZibFHCDP8906Ow/o79GSNGqvwwM+txLs92hKav4zCn/jlqd8c+5b6OimmxXsq3n3fyvIvlHWq042VLffb5zdKsct0iJsRsYi7pgy+f5wOwGtaV9XS2y498UZUfO/dT5HnA9gKcFMazM5XWkJOCZKFIWVrDemk/l/mdYJ/yKKaBSvXJUptI2sHjbHVh74xIGqDGnxkmsJr6c441nTlzJk1HyxbyPA5sVwCs2iwo24yoXcoPnNsRzTeVMCRaB/h5yl87eh5LFNn2IAufzHXOpA5cFyU1icLZKqt4lg5ECZgiqeYSUEy7UCgUCoUNwaKYtlkAK0tNvhaId9nA7h0pMw7Wpylra3+Od2qsC/Fl8C7ZWARbHkc7OG4P7wwjHSOzY7tG+aH78lTfZBHY+LnMtCO2rnbwvOvPdGc9O16WSPgdNO/UVSQ0r5dWejvu00gXyFIf7qcoCQNLXNhLgdMh+mu5fSpimb+XPQHYSyGycGfpCEudlJ40Ao9XJHFiSYuKABel41U6WoZFRQPiNYX7lu1jsnWAJSxz6090r9K3+0iMHBGR9fmRxIqZKK9zhizSIPcbx3bwY8wslj+5XhnjVh4wUawHlj7we51F3SymXSgUCoVCYU+oH+1CoVAoFDYEixKPA6MoIjM4YNcnFuNE5vrK1YdFcdnzWCTDZUWGWgZ2a2AxYnQPi5aU60J2jwodyvX197BYMeoTFrOxYRe7YET15udkoigOx5mB6+bLY/cpDmQT1VcZwan+yQz2lLFhJIZVoSEjgyQWAStxXiSG5bC8HICFRbu+XaxesHtZdRSJY5X4NzIm4vYpo9NINN0TAtfUcixu9feo+akSUfh7lM4IzAAAIABJREFUWBS7zjzgfmEVjhePs1Esr3ORcSa3ax1jP66bClEcGXmx2iVbgxWU4V1mSMpGlFHudB6nEo8XCoVCoVDYExbHtIHVoAAevGMyZMY2vNtWu7ueXR6zJg7M4uuojIoiNqEYgWKOUYB7ZUySBRzh3bEyPMuCa3DfR64latyYnUWuRcwcehAZBqk0lwz/HA6Qw6FVVXv8s7mfmMVGjI6NitiNJjKw24vhjDEeZiucsCIyJlKsk89nQX0Y0fzmsWTpVyT1YAPLueAq9qfqoOrNBol+/Nlocc4ArYdpW1nMFP09/L6zVCtLrzmHKKwof6r1yF9jfaECXUV9xJIC5c7VI4W0fozmKM+rSs1ZKBQKhUJhT1gc097a2loJEeh3g7brUSkYo5210mWzTjPb3Sk9eBQGj3ePyk0sahfXJdJDcR2ZDRqYkUQ6YaVbzHTqipXzPVEdFePJnqNYegS2H4hgblNRClH+rhKaROFEo7J8XZR7UxQAxurG7ClykVGuSmpss/nNrl8Ro5sby4wBs15a2ThEkiR2R7Nx3Is+lOFD4EbvNEPN+WjdsbVKMezIRVK5MSnbE0DrrrN3uTdwUTSvFdPleR0FnlJ6d57nUX8q6WDmYqj6YGksugfFtAuFQqFQ2BAsjmlvb2+vBBCImIHSX0QWi8yslWN/ZHmuruFdXpRWz6B27tFzVHhRvi5isfbJqeoiVhgF6QB0IJNM16x2rz26TK57xuh7mBSPl6+30olzvTNbCmaZmfWtmqPqXmDVKlhZaHsopjEXmtZfw7YZnE7S2ydwYhXFdHuCq6g2ZFbYXPds3KL6MyxhSGZprsLt8nGlq++Bv5fbqmx4Mp2vCgyVWY/z87hvfR15feZrMlsam0Nm56PW5GhdVR4b0fgrqYaSaEYo6/FCoVAoFAp7wuKYtrfijKys2cqQd7qRNeCcLyKzDb+7Y723gXWN3s+PfQGZKXLykahdrBdXvtAezM64rhELYJakknRELICZvLHEKDEF14WtOKNQq4b96J2yfjKwdCay4uW6qDplPqL8nVOn+vtZ15fppZXuX7E+X8c5D4BMGmCfrIfMxquHFXPdWb9uCXhUMh8PDsea1YvDzWZWyIpxZ/rUue/rxAnIvAj2or/N3vfo+RHU+Ec2IhwPgKWrUfuUBClKcWvgcriOPdK7YtqFQqFQKBT2hMUx7SNHjqzo16IA8Ka3ZQYSJWGwazmRvNJ1+3sVw1ZJ3AHg0ksv3XUP7+7s3ohNcNpG+1RW7FH9uS8MUT9ynVSChUhyESWq94gSOLAUgqUpnhlnaTsPAsyO2BfW10tF7Mr829k+gBlQJEk6deoUgNUxtXuzqE98Dfu+Z4xO2Wwoy3dg1WdYWf5m8QH4XMTs2W5EeUl4ZGyP0VrD1tbWip+51+uzRTS/P5ENxbpRxiKrblX/zILfrmVJTiYFUJHXuMxM+mBrlSGyL+L+4vmdxRxQkfH4/Y2ex3XNwG09V+vPXlFMu1AoFAqFDUH9aBcKhUKhsCFYlHi8tTGnbRYMwKCSSGSh89goQYU+7QmHyIZhF1544co9BiUK8nU0Eb6JmExMap9sJOWNb9jFw+rCRjiR24tdY8Y9nBM7qisbmrEojUVtHioEIZ/n/4E+MVWPSMv62ovBgTzYCYu0lbtbNO/UPXY8MpJSRj1ZaE2uAxsGZuJxA6tL7B4/v5XKwJ6XhRTm98nA45WJfZWRlD9u19pY90CpioBVVQOroqIwpsp9cu75gDas5X7xbVbnVNhXQBuCKZcv/05zu2w9sD6P1AO8Fiu1Q9Rn6neBVWtZsigDG5T6PlEqwqWgmHahUCgUChuCRTFtAxtQRMYInFhBGe74azn9oGJjWXAVFaAjSo7Buzyum2fLtjs9efLkrs91mIKxcnbJiXbYdsz6mt2gODBCdK/ayUfjxiyzJ8Qis40ept1jvGbjYFINZhtZ0BvFfDnhhq8LsxhmbZmripLaRO+Ekgbw+EdMRLnpRWyRDehUSNfoXZlj1NF8m0ulm7GlqG8ZnDAkwlygHL7O19MwZ1yWXav6yY8Xr402Thw6NDIQtWvYuDQbL37/WfqYBSmaCyK1nyA10buhpKw97HxpoU6LaRcKhUKhsCFYFNMehgH33HPP2V0f6xztGv9p4F1klF5R7Zbn6uTBLNLq6nV+zE6sLqY3jurBu9R1GLaBGYhis1kdFSKdNrNLG6/IdYrDc/K1EaNbJxBCa21tHRS73kUpO1lKwq49/Eyv32cphtKLeii2xIwxCu9o19pcVGwtmgfMgLIAR3wvBxFinXAkuWD7kYx5qXuUTpPvj/qCz21tbaXMfS6BT8TKWMLB76FyYfKYs4+JJAk2HpZ05pJLLgEQ9xMnhGHWnK0LbO/BwW5MkuWlASotrppv2bipYCtRkhEeU15bIinNOgFYzieKaRcKhUKhsCFYFNMGxl0N69W8nlCxSA6L56F0SUrP4cGsiHfHWTJ6JRXoCfO4H3D/ZbtV1jWzHjyypGVd1pxFtS9PhcfM2t2benFra6ur3LkgJ5nlqrKcjqRDbFvACRYi1qEs8dnCPLJSVuFk55LsRHVkz4Ao4AzPGWUd799JDiLEzDELIcohdrPx6kmZylBeJlF5PcF1+Nl8LmOximGbBC5i/CZhOX78+K5POx7Vjecx9wHP2chOhYNhsZ2RX49YMqAkLDyHo7opz54o8BRLDtR3X+5SUUy7UCgUCoUNweKYNrDK7iLfV4PyJ4x8A5Vum/U4kX5D+RNHbIJ1R3xNpnthZqMSHfj6MFNkS/DM3z0Kv+gR6cGYqSq/yciCn3ex3OdRHSP/eQUe64jNsBU36/P8WDKTNtZiKQWZYXvbBpZaMJuIEtSwBElJg3wdlc48CusI7GY+7CWg/Ocj9sHsjL9HYW6ZlXEo4Wjc7H/rT9bNR/YFPAdZgsFtu/fee1PLaZ6/at5mOm2WeET14DbzXDGmbed9u2zu8TioJED+Wq6zkhZ6FstJjlRyjmy+cehbaw8zbkDbXSjGHdWJ51smVbFjWUKaw0Ax7UKhUCgUNgSLYtq24+WUf6abAQ7Gko93xyr4P6CD/ivrx+gcW/Py7hLYaZddy0lNmIl7Ns2JG9gvky3do3orPWtkec76LSXByJJnqOdHFrvr6LS5/hHTZibKftQRi7VxMYtcZul2PmIGzFIyJmJMKmLhvj7RMY5IxiyTGZeviz1XRbMzzwd/jq/NmC/fy9HgWJcdSZjmkrX0RIuLYOuOsjmI7mdJRCbhm2Ov0dznfmH9cMQQLU6DtYPHNJI6qBgCKsaEHxcr3557xx137Pp+4sSJXdf5digJiLI38u1QiCzqledB5uHAbHwurev5RjHtQqFQKBQ2BItj2tvb22lEGtZrzO1mIyj9VASlh1I7UWBnN8xWvcxEonZxnHDW42UxrtXz2Efal89WvIyIvSgL8Izx8L1Kh+7rwfYEWcxsIN6VR3pOLi/rJ/vfPpW1eGTtymxf6dUind/c/PbPsWebnl3pZtlC3P/P8aKZaUe+tqr/mD31eH8Yovc2iv4F5MxLRdqKwBI+LgPQsdIzq3EDvy+KTXqGyGmE1XrmWeBtt90GYDVFJtfVt9MkRPzJczeKH2HSF2PUHMUxW1t4fvXo+ed8t6PoZizV7Ekfy+y7J6re+UQx7UKhUCgUNgT1o10oFAqFwoZgceLxu+++WxpHAasipp5wdwwVmjILaafE5JGrB4s9zZCOxW++XSokqDJW6THyMnEpG5n4++0YG1uw2CgLwt8TjEAZqXGdI/G4chfzaK3hyJEj0kgOWDVAY1Ewi7r9OXbF4+9sjBW1SbkAebCblgrRGD1Hha3le6KkJgaVECOqq81v5dLI/Zy1j0XtezE4jQzsogQrClmwkyjIkC83ms8qPCm/y2xs5v9n0SyLlf15E1ffcsstslxg9zpga4R9KvG4leXXCTM4M3E8h16O1lOeI3PGi77v5tRvkXicRdyRETDXcS/r2/lEMe1CoVAoFDYEi2LawLirUeb5wOruXTHuiBkaesOaAjr4CO8UIzcxu8Z2oBzez7vRsIuPCuoSQTE3ZQDjn6eCavBOP2JLbFDHn1mAG657ZoDU0xfDMODMmTNpWleu95zrEqBdYlSIUs+EeOevXOR8QBYOH8sBHtjoy4PdpuZSdUbXMPvjcJb8v7+G2UsU1Ee5W2auWXOuUhGj3Uuyh3UShnDdovmtGCHXLWLEXBcV3ClKbmPM99Zbb91VvsGPH89jM7BUUqHIPVG57bFhrD/H5bOrZjSn5lzneO305aj1NXLVy+bBElBMu1AoFAqFDcHimHZrLXWFiNyl+H51TO3uWN/hnxeFjYyeEznnGzj0oLUrYtp2LScGYCbkwbtFLisKZ8mMIdpx+udFjIUZ/Drudqoe0S7ZMKeX3N7eTvW3LKVR5UV6cGbjzEyiMJl2DzMQZkmeaVt5fm4AqzYHpoP0z1YMm+0XIuY7J+nxfcUuZXMulFFgHg5basje33UYUCb1ia7d3t5eKS+SuM2tOz26cyXZ82WrUMGcnCWqowpjavDfjZVnEhxft0hfrNaSyD2VbUKU62xmx6LW8cx9i+c3PzeSzO5FWnM+UEy7UCgUCoUNweKYNrCqP/EsQ4W9ywJ8KN1HT/B4pbflHZvfvaoQhLfffvuuMn27OGxpZCUe1cNfY3VhK05mh/4eJdXgHa7/rna2aiz4/wzRrraXWZleG4hZ5V7Aejn+VKE1gVV2PJewxtoB7HgcsC4zS+fJenXu8+i40kOzhCFL2qOOR2PJc4OZTo9tgzqfHZvTS0ZMm8/7T1WnnjmvQiL7PlbpT9m2Igr8weub1dFYddROu4cDs3CdM0mIsvvwUiEO96skLVH/2jmll86CoChL8GzurBOg53yimHahUCgUChuCRTJt1jFHYRANPXpUvneOKWZ1YpbE+mP/vzEt00/yrjJKGDL3/MhfXKUW5SQjkb+7YhCZ7zrXX/l0Z5a0XF6kH8t0VQqZ1a3yzeRyIyv1OT9z7k9AjxnbGGQW01w+21b4axRLtvOmL4/qyPVfJ/mLsvLvYWdKkhRZgnM564QuztIrmoSG7SEyD5SetUMxaiVp8ZIwlvAopu37SUlc7NOsyf1axV4CCtH842NKCuXbxTYgSncdvfO8Vqn1vMdzKLN5UNLUpaCYdqFQKBQKG4LFMe1hGFZ02ZHvq9p1RztftRtW+jR/HeuaI79s/m7MmqPvZBGX5pA9T+l4eMfo2UaWWtR/j/ydlXVlj7X3nO+qR+bHqqCigqln+Odk1835BitfZWCVVWTR07gd/LzIulelUVWR3yJ7CNW3EdNmPb7ST0csSkkoGNn7q3yIM7Y4N3e8PURU7zk2v44vL7cjiljIaXb5mui95HOKCVtiD2BnrVIeNFkyGPbx5kRFUewCZQPCa1aUDnMukmWPJTgfj77P+cgfNoppFwqFQqGwIagf7UKhUCgUNgSLEo8PwxjC1MQTJnaJ3KlYzJIZhLD4RInYIyMYFh/xtZG4XIlX9iMe74HKxZwZ1syJbCPXs3WM/3rvifqeRXXr9F+PWHed5BjK6Cm7hw1ylIFglKs6Ohc937dDhS1lQ53MmMig5ocvl/vP6trjfrkXNQlfo0JU+mt6jEytPsrQCVgV4yr1xZxbYvQ9eseUWHoulK+/x8Dz0AfzsfWNP7ke1r5IhK9C+UbicVV/VoWxas8fm3O/i1QrBmUcGInH51Q4h4Vl1aZQKBQKhYLEopj29vY27rrrrpV0kWaMAey4K6jdfOYyonbsbNDg2Y0KdsJGH353a9daXe277WIjV5+DcOBXoVXt+X7Hq3atnJIv2mErV56e5A+qrlFCAjYCjIxTGCqkIrBqmKWSF0RhPudc1qLEKgqZEQxLdNggyNrj+8LGitO5qrGN5tpcis7oHLMUxcAjCYliS5nkgt/XzBVwnbCirTW01uQ64cvhNve0da4OHAwFWJWSqL6NQhPzO8tzx68DFkzF1lhj4coIK5NcMSuPWDW/J/YclTozctVT0o1M2jH3/mbsvJh2oVAoFAqFPWGRTJsD33sdDO/I1K4/020blNtOlCLPdq0Wko/Dm3ppAO9SeXcZBY2xNhuDWkdfrBLJqyQgvj28i2SmHUHtpNdh2iq4SuSaY/2lQixanba2ttJdMkscegKk8L3KLiK6h+cTS22isLN2jbFmxR6yABkquEoWXlZJkqLn8/xWNhzMooCdvufAMz1MW7kyRvM7c8GL4Jl2VG7kYjX3XemslZSJww/7cyzRixInKUkSr2GRKxuz8yzQjEHp+Q1ZwCT+ZF22IUrelIUB5nsUw1brT3SuXL4KhUKhUCjsCYti2sMw4O677z6764qC4jMjy1JW+nIz9IRbVEzbEOmnOWxklBTewGxpLoyofx5b+KpgG9H9rDvr0eFy+bzDj/RvKjEAs9DInsAYSMa0rUxOKhAlf1FhP3usRRXTjiyY7X+uf6aL5eASnFjB7CIiBml14HCSmU7VymXLbx7TKNmM0vMq/auvt9JPZ+ErmY33SEZYJ9yD6B61hjDLzEJoqjpGoZBPnTq1qw4qaFCU9tJL/aK6+ncssnfxdcr0xCw54vGJLMA5cJYK9RuN7dx7a4jm3ZwNRSRd5ecuBcW0C4VCoVDYECyKaZtOm1NX+h2o6bdZN6ZSdvL/HmrX73dWtmtlhs0MKLIAtmuYFUW6JWa+1nari31nfb+/h/0xlY7bH8ssZn29Mv3eHPOKzqmQhL6vbNxtdx7p/BTsHs86WAfL7cnaqsDt8Dt2Y9YnTpzY9Z0ZdySRYIabJRlhq2Ceo8xMIj0hMx6+JwpFyXVTEp/I4ljZk0T6UaXnXkf/3WMjopg8sLpWqHuicyy9Up4AmdeKIbMb4TmjWHq0DnCdmWlHkp25FJkRi+XYC6ynjuYbt12lno3A6xzXVenSe8s/DBTTLhQKhUJhQ7A4pn3ixImz7Mh2oKbfAXaYdhY4H8h1YnORiSIGrKzTI1apfCwNmd+qqouy8vb/8y5VReTyz+NdsWq3b4OySs52wMpiNksUwFGaevy0ufyoDooBRXrJOQvsjMGxrtLaYQkb2I/fP09JTwxRVDNmxyq6VRTDQCXU4LH1dTJGx+8kS6Gi+AAqShxfB2j7jsziXOkuFSJWHb2nyro5ek9V9DTlieCZNqf35edzchP/v5J0ZBbgfI1i0ZkluLLLyfqe5yxf6+fOnM1JJnHh+cD+4FGZS/PPNiyzVoVCoVAoFFawKKY9DGN6PGPWkTWksQfb3bOlao9vsLKQzvw+la+1IdPBMNOOovywzpoZcGaZrWIAK90WsLqDjvSdqg2KdWY7egOzF975er219YmN+ZxOe3t7e2X8fXvY93mOVfhjcxGVorYrbwGWcng2xczW6sYpGn272LeWpT8Z81kn2pyB4ydYeWb3wbELokhfzIrUvOD/o/ZE0qIe62eD+fjzvPD15vgFc9bIHsrKvccjZM7LIpLw8fsYrU18D9eJPyPpg5LS7Qesd4/isas4FJnEhevP61zkZcJr41JQTLtQKBQKhQ1B/WgXCoVCobAhWJR4nGGuMf+nvXPXchtJgmhRpmSPPf//WWuvL0M6Ta6VOzmXEVkg2d1qnBPXUYsECwWgQCLyqYKTylTqikBMKRi7oCIVbOECdTj2WvfmyqLmxsICbt8dmk1VYJBrrzmZ7ApXknIKKnOBZ1NQDsvP1usq2Ky25b+K2+32f/dKP54+3o8fP/41X85TmQB3ZtyCKVlr/WMernnXMbJoUF87DObpx6f214/Vpd7xXCsz8q6gxBTE5Eq5KpP0zpw8Bca5+3QqvXs0baeXMVXHw3lNwauFK/NJN5xyQdH958zj6jwx2G8KEHUNT97T5K1g0SrOVQVgunTBQhVz4fcO7/HJpfdIuuBnEqUdQgghnIQvrbRLTfeUr1KrpcIZ5KMK6e/U61TGlIEMTFVR5StdgAmfnrtypDJ0yoft9vi3O44+jz6+2w+fuNWYTDGb1DnVhQtA68qB6uKRYKmpGIQrqcpr3f9mUApVOq9P/0wpbqZI1Wd7oCWPkSpala90aYk8B+o+cO0biynlq46jjov/TuVMqXymYLldEKC6bo9wu93W9Xq9s+T0/e5Kdqryqy441gXLTmmcRwOq+nuurLEKSHUprbwH+znmdxXv6ekYa81TUXM9qnXurDRTsJxrTDKdk+l34U8SpR1CCCGchC+ttIteJKIUGQtWHEn5Kh5pKcmnLPpelBKlX3JXxrD/zZQePnGrAgNTAYS+rUprqPdqf66BSMf54tzTeh+fMEZB+bTfy89Gpa0at3A/fHp3JSGpavrfXDMsPtJT2TgnzlXNfSpxuju+wqkXpZapvplyyOObil7Qp67WnfMfT35l3nu7c/L29nZXOpjvd3i+pnRBZ61yjXfUNhxTxT7s9qfUq7MgubS6fh647vgdUqhiRa7krovL6bhzPzXtcal6al1EaYcQQgjhXTiF0u4+7fKFVCRwPR1T6agn0MKp8qlYPX0wVKTKX7xTiKodnPPf8f2+3c6HTYXP+fbx3ZO3KhriLBaqUYDy4691r7C70qY/7ZkoTnVdXMS0uk6upCWv+5G5sb0r22H2cXidJ6XNa+WyB1ShEadanBVFHQ/VkfOx9/3wfCqV5D5Dq80U7c0xFLfbbf369esuFkB9DzifttovryWtNVR7Kk6F97DLeFjr3jrnipB0dpkmU9wPP8vvxum7ipHgXEtHorld4Rd1TnjPH7nW3O9XIUo7hBBCOAmnUNr9SYftDSuCtRSa8lPuVOwRRUqlc8RX5kpqulzc/hmnYo/kyx55323LJ1+ltKfWi2tppe2UDmMUuhKnv/uZ6OA+HpVOrZnypxVq3rtIbKqptbzP8vv37/8ao0ePOysA/cfTtXTR8SoegsfFbZXS5j1RloNJrRRUyU6xTrnkVD6v5tPebrf1+/fv8V7eRbCrObi8b6q7ScVStU7HSPXI/e9qQUxjKHbfO5PS5ncHrTW0ZPZ58zi4Pvo9z9fcOVFR/2q8r0CUdgghhHASTqG0O1Rm9HPVU5FqB0hc1af+xL1ruD5Fxrr9KcWwqyblIsLXuvevukhcdVzERW1OzQx2OZ5r3Sv3UrlU2Ko94WSZeATX5rDmpirZuejx+r+Lcejj1PkpRU810895vVZzdZkHHedXd/m5KpqX+3GR730OjBrncStlx2vofNnTNSDMMniUytMm/bU6xp1ieyYy37Xw7ePz3lb1KNz9x9enGAqXdz5Fx7v1pb5PnQXnSPaPW1dHosf5GdcoRe1vVw3zs4nSDiGEEE5CfrRDCCGEk3A68ziDA+rfKQWroCndmWYmM7IrnafMVG6/KsDh0bSmHnBH8yFNmqqZhcOdRxXg51wGkzmpPlPbTIFo7DH+aupF7YOpUQzu6tffmRinwMeCbgk2s1G9safe3g6aI53ZkuVm+3vO5aGKXXBdMf2IJncV2OdMmqoE6y5V79VANO5HBVjRdcJtXZBcH4cBsUfSBhmI5t5Xc3Jzm1wBLq1qOj4e59QIxb3nUs+Ua8W5/5QbxZVjdoGEaj+vuuXemyjtEEII4SScTmkXVGgMdFKFPdxTItWkCv8vWEbwSNlFV7RepSMx4Imo4yvFw7nw36nJRHH0SXgtr5o41lr3gVV17Cyq0kt6uuYpr1LjskmLCrpicQYX7KcsJS54bApAovo6km6iLARqf0ppu+tL1dSDzbh2dhYX1YK24PGpgkT8zC5o6hmu1+uYOldj02o17dupcTU+3z8aVKjgephS5pyS3qXJ9r+ddUatD2fRcc1AlNJ2hY6OtNZ190jfzlmsvgpR2iGEEMJJOK3SpjKrAg/qCdH5WKmEmJKzli+3qFRE4XwvrpE996n+T9TTpPNLFaqkZ0HfPRWYUh20CnAMdR7pp+a/vTnMRxc1qH3WGqoiJz01rKwvNRf6b+v1KvYzpcbxnNI/vtZ9SgrV8ZHCGLu11K+Tsi70OStrAf2szjerUrAY0+D8kcoKxTFotXmFb9++jarSqclnmtk4X6m6px9ps0nVWud4KiSySw/jfCZc0aVHCkK5787+N9eMK1WqYDwJx+5zeq9YifcmSjuEEEI4CadV2vV0XcqMT11dGbjIbNeUQfn82LZvUj5ORVJhv9cTHBWHi+ZVPrOd32Yq4kDVNPmCdk/F9X/VMGTXVvFVap9qf7QQcK1M/ulS7mw241TtWl55ThHAzi/Ja6rah7KwjCvmouI8VKMON0e+x/M5Rc27spzvFd17uVxGC4natysScqQQBy1UqqhPjUPr3xRr4vzR9MOrSGnVLlgxRce7Ykvq/nXfo/xemtpsPtO6l/ubCioViR4PIYQQwlOcVmkXjEKuJ9SeP+ue5lwko4JKZNqWT4lUkx/tI9k1VujbuDKW3K6/7vJZJ+VTr7GUKHPWVc5y8VGKu+ZQfmkV9U6F42IalI+RMROT758KxDXYUPEQu+wI+mP73KZWrDtoyeH66DCLwOUDK582x6dl5NkypjWG89H3+e0aXvT17SwO7piV2mMdClf+U437SO7z1Bq170dFWe9QFotd1LryTzsr1DNlRt36m7b5KkRphxBCCCfh9EqbvlDVMITKhop38sEwUpZPvqWeptzA4rOe2JzinZ4m6duiH1E1YOH49HH388imH9x2Ukmf5VOiqu5/uwhwFzm/1j/xFjVG+bbZbKR/lvtx+eHKkuRUsot8VsfHzx6p+Mf1QIXdr62LUnZKS+3PRZO/wuVyOVSNzp1bRvuv5ZuLFFPMCaOn3feOasZBJksErRi7SPzJKsRt1Hl0VkAer9qOyvo9orynuAuXq/6nidIOIYQQTkJ+tEMIIYSTcHrzuCsNWsVWOkdK85HJtKjG6nNyprSPNpO70qtHcOY4lfJT1DY0gXcTpwvCo8nuiAn/o+kFXpiWU4VYXJlPZa63lVLbAAACS0lEQVSs8biNaqjAkroMPFLnYrfOpv7Gbq3wXpkCgtz9NAU+cRuuO7Xedn21X+Ht7c32TO/zdP3mi34unKtpZybv++O/LjBNvcZrqxoHMdWL/3cBqwqXtnWkYYxbF2rtFK+YxScT+Fczh5Mo7RBCCOEknF5p8wn0yNP9VGaxv9+pp68KJpqCIFh6kCkYn5VK4NIqOlRSVDxT0YhdIIoqjODmxjGn4/ko1HqoNLBSvq7RSh2HaqxR5/Lnz5/jGGvdB7i5/SqrgysNyes0KW3eRwyI63+7wC2qqH5e3dp3KYH9vSPBSs9wu93W9Xq9C3CaWvS6VD8VqOUKibjmM318lkutsdR5miwq0+v9PTeWui93aaJTKVJXPGj67G7/j6yDyXr3iqXyM4jSDiGEEE7C6ZV2MRUJ2PntjrArI6j8RM4/VHxUQ4wjvh+eL/e0XHNUT9osAcj9Tv4o93pXNB/hu3wUNjKh8i3UOaCyqTFUepD7jGvr2VO++FlnrVBFN5zCmgpYuLgElnydiu1QqXJbtVZ36uwVrtfrnZrtc6A/2DU+USVwiYs5UMVVnB9/sprw+rhrrLZ1cz1iAXNxCsqC4LaZSpJO/u5XUefhaBzDZxOlHUIIIZyEy1ey118ul/+utf7zp+cRvjx/3263v/oLWTvhIFk74Vnu1s6f4Ev9aIcQQgjBE/N4CCGEcBLyox1CCCGchPxohxBCCCchP9ohhBDCSciPdgghhHAS8qMdQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEv4HDwjHstY6aQMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4JdlVHbjOe5lZVZmVNSI04QYzWbYbhJtJYBAyDRIWRkwyAgFCpgdh3CDADGJoVGgw0PqwsBtoZssgzGAhMNAWAskqJCEziMHNJImhSq2hCtWgqsqhpswX/hGx8+237l47zn35Ml9csdf3ve++G8OJc06ciHvW3mvv04ZhQKFQKBQKheVj67ArUCgUCoVCoQ/1o10oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAhmf7Rba89urQ2ttXtaa9fTviPTvpsuWQ03FK21J7XWbmqtbdH2D5r67NmHVLXCAWB6Lr78kK49TH8r12+tvby1dittu3U6/j+I8l437X+juA7/vbyjjluttT9srX09bf+c1trrW2vvaa3d31p7e2vtF1trn+GOsXfOh3b0w01zdTlMTG37gQMuU90X/3frAV3ryqm85x1QeR86vRf/h2Df7a21HzyI61wspvf3v2+t/Ulr7Xxr7S1rnv/41tp/aq3d1lo73Vr7o9bac/n3YD84ssax1wL4JgAHcvP+BuBJAJ4P4EUAdtz22wB8AoC/PIQ6FQ4Oz8b4/Pz4Idbh+a21lw/D8FDHsacAfE5r7eQwDKdsY2vtAwF8yrQ/wssA/BBtu6Pjel8C4NEALvxgtda+GsC/wdhnLwFwBsCHAPhMAJ8K4Fc7yt00fAeA32mtfe8wDG87oDI/gb7/AoD/BuAmt+3BA7rWg9P1/v8DKu9DMb4XXxOU+VQA7z2g61wsngzgEwG8GSO5bb0nTs/UzRjf8V+FsU1PAfC9AG7A2P59Y50f7V8D8FWttZcOw/DXF3PRv8kYhuFBAL912PUobDx+DeOL5TkA/u+O438dwKcD+HyMP8SGLwVwK4B3ANgOznvXMAz7Ga9fD+AnhmE4S9t+cRiG/8Vt+y8AfuQgGMjlQGvtiukZ7sIwDH/QWvsDAF8D4CsPog58P1prDwK4s/c+rdOGYcy+dVneV8Mw/P7luE4nvm0Yhm8BgNbaKwD8j2uc+9kArgPwecMw2MTkta21DwfwLFzkj/Y6D8qLps9vmzuwtfZxrbXXTGaBM62117bWPo6OeVlr7Z2ttX/QWntDa+1sa+3PW2tf0VOZdc5vrf3t1tpPtdbuaK09OJntPjc47otaa29prT0wmTOe1lq7ubV2szvmytbaS1trfzy17/bW2i+31h7njrkJuzfmYTNZTfv2mMdba9/QWnuotXZjUJ8/ba39J/f9eGvtu1trt0zn3NJa+9aeF15r7URr7btaa3859cHtrbWfb6090h2zzn37mNbam9po4nxra+0zp/1f10Zz7H2TeegRdP7QWnvxVO93Tue/vrX2UXRca6197VT2Q5OZ6ftaa9cE5b2otfbVU3+caq39Rmvt7wd98Hmttd+axso9rbX/2MhMN9X95a21L2yt/dnUD29urX2SO+ZmjOz0H7Zdc+TN075HtdGs9u6pn29rrf1Ka+395+7RmvhdAL8I4Ftba8c7jr8fwCsw/kh7fCmAnwRwYKkRW2sfD+AjALA5/gYAt0fnDMOwE213ZX5Ma+2vW2uvbK1dmRz3+NbaL7XW3juNrd9srX0yHfOxrbVXuPH31tbav2qtXUXH3dxae2Nr7bNaa3/Qxh/Hr5z2dY87AD8D4Iu5/MuB1trPtNb+orX2xGns3w/gBdO+Z011vmOq/++11p5J56+Yx6f3yLnW2oe11l49PSO3tNa+ubUmGWkbXSCvmr6+wT07T5j27zGPt9a+Ytr/sW18V9n79l9O+z+rtfbfpuv/dmvt8cE1n9Fa+53pmX/v1B+Pneu3ufE4g2PT5320/R6439zW2tHW2ne21v6qjb85d7bxt+zj5yqX/mE0Aw4YzRrfjdFc8oHTviPTvpvc8R+J8QXxewCejnFm/7vTtse74142NerPMLKFT8f4kA8A/lFHvbrOB/C3ALwHwB9jNNk9BaN5bgfA09xxnz5t+0WMZpovA/BXAN4N4GZ33LUAfhTAF2J8cX8uRhbzXgCPmo75gOmYAcA/BPAEAE+Y9n3QtP3Z0/fHAjgP4CupfR89Hff5rq/fAOAujLP2/xnAtwJ4AMD3zPTVMQBvwmiO/D+ntj4dwI8AeNw+79ufAvhyAJ8x1esBAN8D4Jcxmju/fDru56guA0ZW95sAPgfAMwC8dWrXDe64fzUd+33TPftaAKena21RebcCeDWAp011vwXAXwA44o77iunYH5/u7zMwjp1bAJx0x90K4O1T258O4J8A+AOMD9x10zF/D8DvYzRJPmH6+3vTvl8H8DYAXwzgiQD+KYAfBPBBc2O6929qx4sA/P1p7DzP7Xs5gFvp+Fun7U+ajv+AafsTprI+BKM5743BdV6Mcexd+Ouo3/One79F2/8LgLMAvgHAh/e8c6bvT8Zovv9BANtUP//u+Z8wjvE3TvfuqQB+CeM766PdcZ+PkXz8E4zP8FdinEz8DNXjZozvjlswjucnAfjIdcbddOzHTMd/6kGNgej+in0/M43dt0/tfBKAj3X36Z9jfB98OsZn7jymd9N0zJVT3f0Y+67puD/C+C76NIxukAHAFyX1vHY6fgDwv2P32bl62n87gB8Mntm3Avjm6Tr/btr2nRifvy+Y+v9tGN/Xfnx8DcZ3+g8B+McAvgjAn0/HHl+jf18B4C1rHP8BAO7G+Hv0gQCumep5P4DnuuNeiPE5+RfTOHwaxuf6H6fld1Tg2dj90b5hGgA/Pu2LfrRfAfeCm7ZdMzXilW7by7D6A3sFxpf3D3fUq+t8AD+G0Qd3I53/6wD+0H1/E8Yf9ua22Q/nzUk9tgEcx/hS+Vq3/abpXH6APwjuR9vV5b/Scd+LcSJwxfT9S6fznkjHfSuAhwC8f1LHL5/OfVpyzLr37Ylu20di9+HyD82/BvAwVl+0dwI4QX3yMIAXTt9vwPiifRnV8Uu4HdP3Pwdw1G17+rT9E6fvVwO4F9O4dcf97anvvsZtu3Xq9+vdNnvpPtNtuxn0IzdtPw3gq3sf8P38TXV50fT/T0736Nrpe/aj3ab/nzdt/wEAv6naM10n+vvQmfq9ysql7R8O4P9z5dwJ4KcBPJmOezZ23zlfPN2j7xD94N89r8U4ETtGz+efYTTLR3VtGN9jX4LxBX+j23fztO2jxLXTcee2H8X4I/ctl2g83Ir8R3sA8JSZMramfvhJAL/ttqsf7T0/0FM/vg3AL81c5zOmcz8p2Kd+tL/RbTuG8fl8ANPkc9r+BdOxHz99vw7jBO4HgjF4DsBXrNG/a/1oT+c8DuP70Mb6eQDfRMe8BsB/WPd+r+VHGobhboxs6lmttb8jDnsigF8ZhuEed959GGe8n0LHnh2G4XXuuAcx3vgLJss2KtQv/K17PsZB8p8B3EvlvBrA41tr17TWtjG+mH9+mHpzKu/3MM6e96C19gWTOeYejAPgDMYfBtUnc/gJAE9ok1p2qt8XYWSp5nv6DIyz5TdRO34N40vhCUn5TwZw+zAMv5Qcs859OzMMw+vdd1NWvmYYhvO0/QhGQZLHfx6G4Yy7zq0Y/WYmsHkCxoeTVco/g7G/uT6/PgzDw+77H02fNg4+AeME5Keo794x1fGJVN5/HYbBC2K4vAy/C+Ab2qgU/YjMXGhorW3TOF/nuXw+xrH3DXMHTmP75QC+tLV2DKO14SdmTvtxAB9Lf++YOecxCMRqwyjE+gcY79+LAfwhRkvVq1trkdvtazBOEp87DMPzswtOpudPAfAfAey4e9wwvhyf6I69po1upr/EODl8GOOPVQPwYVT0rcMw/KG47Ny4s3Y/jHHS+JiZNmTvuovB2WEYXh1c73GttZ9rrb0b43P1MMbJS+977P+1f6ax9Sfoe0bWhZnUMYyiy1sA/MkwDO90x9g76G9Nn5+MkUzxM/9X0x8/8weG1tqjALwSI4H8PIwiy+8G8KLW2te4Q38Xozj0Ba21T2ytHe0pfz/ij5dinNm/QOy/AaNCmnE7gOtpW6QUfBDj7A6ttQ/COJAu/E3bus6f8P4Ynf8P099Lpv03Ang/jD987wnK2yO6a619FoCfxTh7fyaAj8f4IruDrrsOXonxh9/8jU+e6u1fqO+P0dTC7fgd1w6FGwG8a6YO69y3e/yXYVe9zPfDtnO/RELGv8boKrC6gOszDMM5TGZ0Ovdu+m4THbuu+ZNfg9X++wis9t2e8tzEqef+PgPjROcbMbLKd7XWvn3mh/i1VKdv77iO1e2vMFqTnttIPyDwExjN+88HcALjWM5w2zAMb6a/ORHTlRDq5WEYzg/D8PphGL5tGIZPA/DBGH/snt8opBSjC+pdAH5+5nrAOCa2Mbp/+B7/HwCud/fg32Fkcf8Wo1n4YzGaKK3uHtEzYZgbdx73A5A+7Y533cVgRUfQWrsO4/PwOIwTvk/C2A8/hb5xfn6a1Hvwu/egEL1X5t419sy/Eavj4cOQvy8vFt8K4JEYrRu/MAzD64ZR1PZvAXxna+3a6bibME5en47RXXhna+1HgudgD9aezQ3DcLq19p0YGfdLgkPuBvCoYPujsL6c/90YBxJvWwd3YfSDfndyDZtlRmKhR2JvaMIXAviLYRiebRumGRL/kHRjGIYzrbVfwGgKfD7G2e5fDcPwm+6wuzDOML9AFHNrcok7Ma9+PMj7NodHim02sbCX4aMwzt4BXLBA3IjVl+Uc7po+n+3Lc1DhTmtjGIb3YPwB+BeTNerLMIb93AHg/xGnPQfASfd93TH+wuk639JRv7e11n4bY+jmK71l5QBxF1Yneqo+726t/SjGULAPw+4kFBh9zz8M4ObW2qcOwxCK2Cbcg9GU/f0Q1oNhGHbaKGL7bIxm9X9j+1prH6Gq2NOODtyA8TlUOIh3nULUhk/GOEn+nGEY3mwbe9neBsCe+WdidGMweMJxkPgIAG8dXGjlhN8B8HUY3XJ/OE1+Xwzgxa21R2P0aX8PRivjl6nC92uC+YHp4i8K9v0GgKc2Fw/aWjsJ4LMw+oi6MTG4N88emONXMZpH/2QYhvvVQa21NwP4/NbaTWYib619NMYO9j/axzH+yHt8KVbDZWzWfRX6fhR+AsCXtNaeglGgxROiX8X4Ejs9DMNagf4YTehf2Fr7rGEYflkcc2D3rQNPba2dMBP5xCiegNFXBoym8ocwTpBe6857BsYxu2593oTxHnzoMAz/ft+13osHsfeHdgXDMLwVwLe0MaJBTpqm4/aN6Yfv+zHGhPaE5/xfGK1P33cx100QuRzQWnv0MAwRc7XIC/5RfhdG4dTrALxu+uEOme808X0DgMcD+P1Bq3+vwPisPkzbny2Ov2hM5tIrMfo4QxzQu24dWMTBhX5oY4TDUy/xdf178VLi9RitGx88DMNPX+JrMW4H8OmttWvIGmGq8JXJ2DSuf6i19tmYIVj7+tEehuHB1toLMM6CGS/EqMp8bWvtuzHO8r4J4yBRJvVLiW/HOMN5fWvt+zAy0usxdswHD8NgWaWej/HH7Rdaaz+M0WR+E8Yb4F8Av4rRD/FSAL+C0Rf+VSCTMUZ1NQD8y9baqzCak7KH8rUYb+aPYRzQP0n7fwrAP8PYr9+DUTl5DKPy92kYZ8xnEePlAP43AD89WUl+G+MPzlMAfO80Cbic9+1+AL/WWnsJxpfod2Cc+b4UGLUTUxu/ubV2BqMm4e9inCS+Ec6X1oNhGO5rrX0DgO+fTMivwuhjfCxGP+jNwzCE2cIS/CmAr2ytPQNjEoVTGMfKazDeq7dgfCF+Nsbx9mtrlr8uvgujIvdTMGofJIZheCVGl8ylwusB/LPW2o3DMNzltv9xa+01GO/nLRh1Bk/FaKr+uWE3ptXX9bbW2pMwKs/th1sx0K+brv3q1tqPYTRtvx9GVfn2MAzPG4bh3tbab2F8Lm/DyH6/HLuumUsBe1m/Pj3q8uINGF1yPzS9y6/B+K78a4zq50uFt2B8n/6v07P9EIA/8xqXg8D0DnkegO9prT0Go4bpFMb7/I8AvGoYhleo89sYCmuhgo8FcLK19vTp+x/ZRLu19mSM4/mZwzD83LT/BzCavF89vcfuwRjt81UAfnqyxmH6Xfht7EanfAxG//dL5xo3p4J7NgLFKMYf/LeBFJzTvo/H+PI6jXFgvBbAx9ExLwPwzuB6NyNRa+/nfOyGYL0L4yC5DaNi+0vouGdinA0/iNGM+rlTh/6CO2YL44/HuzGGr/wGRnHNrXBqZ4yz+e/H6CffwQWtxqp63J3zkmnfm0Sbr8Q4kXjLVMe7MYoZbsJMKA5GsdJLML7QrQ9eAac6v8j7dkHRnI0d7IYRfQuAd2JUgb4BpNDFKAr62ul+WH2/H8A1HdcN+xjjD8TrME4QzmI0m/04pnCt6ZhbEShxsapUfhTGh/XUtO9mjBOQH5rGzunpOr8Lpzo/iL+ozdP250/7bqXtYZuC5yZSj69cp6N+12OcmH0Zbf8KjP7+t0/3/QzG5+sbsVfxHY2b98fo+34bgMdG92Ta9ncxChbfg/EZeed0zafS+HjVdO/eg9Hi8JlTeU/K+mSf4+5HALz5IMdA7/2d+uIvxL6nYJz83z89C/8c4+TvAXeMUo+fE9eaVVlj1BjcitFiOWA3HFapxz+Azv8tjKJXv+1x07H8Tv9sjO/oU9h95n8UwN+ZqaOp3KO/5wXHfSGd/0kYJwq3T+P8jzGSoCvcMd+M8Uf77qlub8EYirid1a1NJxcCtNY+AGPc5YuHYXjhYdfnfQFtTDLz4mEYZpP0FDYXrbWXYXzZftph1+UwMfnQbwPw9cMw/Nhh16ew+TjIsIKNxhQy8q8xMs07MapavxHjDOhHD7FqhcIm4jsA/Flr7WOG3C30vo7nYGTzB6WlKPwNR/1o7+I8RpPn92FUKJ/BaLb9p4MQvxQKhRjDMNzSxlS9B52+ddPwIEZzOYtXC4V9oczjhUKhUChsCDZiZZ1CoVAoFAr1o10oFAqFwsagfrQLhUKhUNgQLEqIdvz48eG66647kLL8Og28ZsPc995yL6ZOF3tstH8/51zMsZe6L/gY01+87W1vu3MYhj15tq+//vrh0Y9+NLa2ti66bl7nYf/zZ8+5vfvWOWc/GpR1zum5Xm+dsj5bpy8OUndz2223rYydEydO7Hnv2NixsQQA29vbez5tH2+P3jv8eTFYShmXCuuM93XG6s7Ozp7P8+fP7/nsGWO33HLLytg5DCzqR/u6667Dc57znIsqwx6mY8eOXdh25MjYTH4Y5757qH09D6SaJGQPeFQHdS6/SLg9Pdeb+/T1Uf22Tl+oPrF7FV3HHrAnPvGJKxm/HvOYx+Bnf/ZnL9x3+8zupT2o586d21O+fff/P/zww3uOsU9+GXjwi4CP4ReIP0e9bOwzm1io60fHzV3P94VBtZ2327m+3byNr8vf/TkH8eN90003rYwde+9Y+VdccQUA4MSJExeOufrqqwEA11xzDQDg5MmTF84FgOPHx6ygV121m53TxvLRo2M6b/5h53EYQT2HPc+alZs9n+o9M1dmVD7XObsGPwtqcuyPi54Xf2z0/D700LiOiD2/Z86MidfOnh2TR95xxx17vvvrcL2f9axnpZkGLxfKPF4oFAqFwoZgUUz7IBAxQ2agyoSamVbXmeH2muP3Y0o7KNPWuqzFz3iNMaiZ9jrI+nXdPj969OgFdhOZK7nePGOPMGfGVew5OnadPp9jWL7uc/3fY+Ln9lj5VnbUrrn7Yv2dbePrcNnAbttVn18sXFrJPeX7bXOWKF8Wg5nbOs82P2Nc/jrPXlY3dT2+bjZ21D301+B3sO2bs8BFx/B9iuph483Gmb0f2CJrDNwfa4w9GseHiWLahUKhUChsCN7nmDb7d6NtEQubw9wMex3hW7a9V7QS+ZjXwbrn+Bm2zUSVfz/zI6vtPAP3++zTfIOqnKNHj0rBkC9HMe0eRqxYXnQuswjFavaDHl+kYoG+HvuxAuznHFU31isYfPuYjTN7OmhE5fb4afm43mdsHb/yxYjbovum2OtBiuiy9wGz2B7/vp2jfNzepz1331jv5MtV5R82imkXCoVCobAhqB/tQqFQKBQ2BO8z5nE2r3qzi21jEcJBmKXWEaT1lD+HSMzSa7rPzjEo4Ys/js2s+wk/Ue3JhGiZIKS1hu3t7ZV7HdWJ6632+3qz6IVNZlHolxLKcNk94Vu8P4IaBz1m7P1cV4WJZWE7SjSUjR27l1l43UFiP6K7CDxulbiQj/f/cz9lYrY5oZYhC9vqFdGqOszVdc5cnQnveOwos7V3o/Exqj3Ru8WuY+FiS0Ex7UKhUCgUNgTvM0w7EyBxGJDKYhTNNnsZYiRAYuwnW1YP5kIu1mHavTNuoD+pS0/dI3HgOkzbjs/GwRzjjZgJJ1Ph5CBZZiWVhCQLwVLMp8cqpI7JWLRK3pIlWeFtnJyGmVBkfTAocVnGdi91CJiqq6/DOoJUZQXsYdrquhE4jIrLjywV6t0xF/qVoScr4Vz4bWYhU5Yyq1uWyY7PicrKEhktAcW0C4VCoVDYELzPMG1j0+y3BlZnvDzT5dl+di5vj8J55lJDGnoScaiZYeaD4RlnNJudY277SXqifHhRHbmsLORLMROGhX0BeSiHqkuWOpH3KZbpfWgq5Sl/z0JwFFPoCflj5hX5Arn+qo5Zu8znpywWWfu4rrY9SiXLuJgwpHXBbVLMcx3Nwdz2aF+m1eC6qdDMyLKjrpuBWeo6KZ6VFSKDsj5lliuro41R9b6Jrr9OXvLLiWLahUKhUChsCDaeaVsaOmZYXkG4rs81YpWK6fQw7Z4VZXr94JlvifcpVuuh/MTZzHdOYR75ltSsmOseqf57kuG01nDkyJGVcyJWofQIyroB6IQLtiBBtFiBze7ZD85lREyUVfDWnsiSxG3lhCXK/x7Vm/uCmbgvb+4eZpEH3PcZa1Pt4eteDkaU6R98XQBt0WPWbOhZlCfzg8/5YtnyErWLy1Xs3e/jZ1uVmSHrx7ljsj5iS5Wyekb37SCSCF0KFNMuFAqFQmFDsLFMmxO+MyOJGBarKjNmpaD849FsTMURRupOpdrtATO2bDbO23pn2BEUa4oYHTN6pQmIrBy9/q6tra0uFapibNH1svh/X34Uy8n9Y8dwWzO1uprt+6Vn567L4z/yafO5yh8f1cWevTl/bwT2u67Dai51vLaHsvYoi0h0rIovjtoeMduorCyigu9tdl+Uz97qxkvU+nO4DzIWG2kWfDvs+jymIijtUGQVsjqaBTbT++xHMX85UUy7UCgUCoUNwcYxbfYHMQNaRwGumEHmY2RmGM3AlZoxyz7ELHnOxx3NwG32quIzI3+xYrNqMY2o/j1J+HsZlffz8bFzcdo+I1pUb2MJivFG7WG/o83UWUUe+bTZ722fDzzwwJ7v/l6zKl1ZYHosEkrd3xM/y33uNSJKvavKzZgd+9KjflT5FLiPDhp+vF1xxRUAdvvBLB1s6fNQfnpm0VmMv8roFT0T/A7kctmv6/+P9nmwxgHYfY74eqxBiNTcBhXRY/0aPfPq/RY9B3w9K+/KK68EsPssRtY1O1ZFLxwWimkXCoVCobAhqB/tQqFQKBQ2BBthHs9MgWyujkRebK5h0RCb3L1JRqVKZBNNj6hMJTvw12FTohItZSbBHlP7XCrAHvEFJ7TJQiWUwIX3R2vh9ph1bT+XGyXpYNGNnWMmUN9fLMRS4hTbbybvaNuDDz4IADh79iwA4P777185h5NAGFjsE4W1qNAiNvd5UzeLh5QLJ7ueoUd4xYImNitn/ajcWAedBMPaZ+PB/3/8+HEAwIkTJ/bUP1uDm98v7GKJQrTsf05cY8jCBdlM3oO590vktlAuQivDTM9ZmJiZwXmMWn+bGRtYDetVdY3Ct9Q7mMv053CY5VJQTLtQKBQKhQ3BsqYQAlmgfc8CBzZbzdJHAvHM1GZ8HGJjxxojiEJwePbIs72oXXNCrYsJT4uEYQwV6uPrw7NUz0j8sf4aPDtmls519sdaHTxDVFBpR4HV+8B9nYXbKRabhfzZuPNsAdBis6icuYQSUR0VS88WjFD3m+81oBfeMbDgL0vMosZ5FDqlrGxzIqp1EbEvG+NXXXXVnmvy8xIlO2Hrggph9NuzkDtg973j33NKsGntsLr3LBjC14tCvnif1d8sSmfOnFk51mB9bO1gawSPIb9PCdEM0T1gZm91i5I6Wd0utdBxvyimXSgUCoXChmAjmLaf6WS+ZH9sNANVfiGeJfuZmpol88zQswlm2MwqowQDikGxvyjyi/fM3Pl6ajlFDoeKGDm32T6trlkYDDOUiNXwsdFsOMIwDDJVqb8GM2tORerbzAxEhX9YmcYygFVWwswzYjkqOUyPT1v5/pX/3f/PzC2z+Fj9uT9V+FuUkIP39bAZxawjq4qyJKlyt7e3V8Zv5E+1Oth95ufRj2NrI2slVKicv6ccCmf9xOGDvs3GpFnDY6zStBRXX331hXPYUsR6BR6r0djhdL0c6hhphPj5tL5WIXUZrEzWjvht/A5mC1MUDhtZJpaAYtqFQqFQKGwINoJpe+ZgMzH2bzKr6VngQKlOI3amlN/sx/Hn8Iw9898yO1JpEyOmp/zc7Dv1dWSmoPyCkcpc9SP3lZ8lsz+SfXURM57zXXmYcpzHhZ9Bc1uUfzViBqrNzNKjWT4zAVPVRuOS2SSPu8jqMLd0KbNbP4asvqxSzpTY3McqwVEUEcCYswpE5aixE1lrehl3lFAnGjum+Fd6mEiZz21k61JkPbFnR0V5GHzf2jnqWGPavl2mhudkJsoq4PvTxg5bBez6rAz3+/gdaWp8fr97vQyP47mIHmD3mbO2K+V+loyLNTuHjWLahUKhUChsCDaCafuZDs+q1ew7mt3PKVV7YlJVXLiPK1XqcJ55+pniXIL8THmu0jvaZ+brYWW2ir2N/MnMTNmkoFLIAAAgAElEQVTv7q/H5dk9ZR9XNFuO+jiC90tGvirlc1WpIv21eWywb9Haaiza72N/pFosIboOs75MKc1tZmsAMyL/v4o/74lwsLZz3G7EiJRGhH3GHlmqWH/Ofpm2+bTt+Yx8mZlK3Lcj0qlwfZUGJNLuKB929J4zK4DBjvFj0pft/1dMm33qUX/y+yyz/PC7gT85Wse/+9m/Paew9/Xn62bLx9pYtDb3+NUvJ4ppFwqFQqGwIVg00858IootZTHQzBpVrLBndMxAeTaXqWutblyXjFVzXRRbiqwB2RJ1XA8VY8s+Z56J++uw0pOv79vHrJ9ZBjNu/3/PEnmtNbTWVvzrkcWFM+MpP350TWMz733vewEAp06d2lOWZzXRYgRAropnnxsz0EjFa+yBY+CVLzvyhxuU7iJbCIVZjPlJoz6x9rDvnP2HkY9ZaRpse7TYTGTtYbTWcOTIkVQxb23le6naA+z2y3333bfnu9Jq+OeV45jtGLMCZNYFLo+fNe9353up9B32PfIxM8O262SWFnuOWEth7bI6+j6xccXvbaWx8Meo3AHWHv8csK9+aSimXSgUCoXChmCRTJvZdJSNSWXBiWagasYU+T2BeDlHPsZmY6yc9VBxxZEPi2errMTmGXCkOOZ2Rn42PsfAM2v2PfoZNh+bZQVjsEWErxNlPVOqaK7/MAwrit3ISmPIcj8brF4W63rXXXcBWFXf33vvvXvaA+yyiWuvvRbAbhSBlRnFVavMcYYo4oHzeDNLZ+tTtvSoyuvtGSv7Oa089p2ePn0awN4+sXFkscLWR1l+fqU5sbozS9wPIuW2L0897ypnAbCrWLZPq6cppbnfsjqwVSaKBLC6cFw4M1P/3mGNDusv2GIV6WIMKk7cvwc5h4Nd1yxXKnulv97JkycBAHfccQeA3XHO2ep8X9gn+7TZKuD7xPatE/N/OVBMu1AoFAqFDUH9aBcKhUKhsCFYpHncwIInQKd55AB4b+6YSz7BZkR/PbVIAZsPs1AVtRRodB0OvTCwuSwyi6nl9CLxEps42YRmn9HyerwAAZvnoxAJlaZVLfji69hjHrfkKnadaGEDBpuiI3eCmTbvvvtuALtmchPF2Llm5rXtAHDNNdcAWE0YwYsVRONACY0iQaQKm+MxFfUnm1vnFtXx57Pp1saD1ZndAdxWQIt+ItEki77YtBulH+6BjR02ffvy2E3Ez0lkQmWTuZVv/cILyURl2L0zF4tdPwp/Y9cD90v0bKj28H2KkqsY7Hpm9u+5l2q5S3uObFz4PrJzbrjhBgC75nJzTVkdrR6+rdYeNotnSZ3Wef9cTiyrNoVCoVAoFCQWybSZYWcp5njmFoWFqLAMFWAfBdrzubx8mwezbhV6Fc0259I6RuIIa7PtU8kU/PU4hIUtCHasMcdoJsrLklp/2uw4Eq+xyFAlq4nqkqG1hqNHj66EkHiodJfZ/bI2mfjF2sRjJVs2lJNc8CIJ0RKQbGnhUL/IsqPESxz2ElmheIxyH0VJathCZWPF2mDfvWCJLUUsZozCIZV1i8VY/j2xziIPJmJUqYR9W/m9w4wtCvkyC4TV074bI4zSZDLbt3MMkcWF0yarZVez1Kf8jPBY8kI0ft75+nb/oyQ1XP8bb7xxT91YrOnrZNvY+sALffjy+b3N49tbB1Wq06WgmHahUCgUChuCRTJtRpbshJlHlgxELcHJn36GzbM7teiEB7M8Tn4fzcpVeJhdn0NOMmanQrCylJR8rkq+4s9R1o6IaStGHaURNHAKT7UQgu07evToSrnRog9qHERhZ8awrU3mczNft1pYwe9j3YBaHMH/H1l9ojb4c1RyEH42MuagUlFGC2HYNk7uwr7AKPzS9ln/ZsvIKssYf0ZLgPZiGIYV/77XJ/DzZt95wQ3fDma4HCLHz0tkUVR+6ahearEcZq/eT6wWCFHJqvy9VHqUnncI623Y5xwl2TFYe2zsmHYkAid44XuSLeWcWe0OE8W0C4VCoVDYECyaaUdJ6ucWuMiU4sw4ePaa+QuVn7AHrBq1OnpmwMvzqaUsIz8vz5KVEj1KX6msDNzOaJF4ZgyZb1jdp2zBikzBHGFraytNy8l+VO7TqJ+iZRP9OZx0wrdZ6REM0fKDfD21CEcEpczP2qKWVTVEzxM/J8zKOOlGtkDJXJpgoJ/xeH9rZpVhWBrTLF0uW5VYAZ69d1QSIo7qyKwDfP3o/cdjn8u1fjSG6uvA/a+SOvnnSSUdYetApE9gS0LPUr1chnrveHC7oqQ03Bb1XlgKimkXCoVCobAhWDTTjlJ2KtUpz3SjVH1qNqz8Rf7a2TG8Xfn0siUL1RKg6vo96mhOxxcl7leze+W3jvYxolSbc5aErByra6+K3CNS83Lf9fjXlf7BEPmTOfaVxyHHyPp97GfnxU2y5Ty5fdkYZp8l6xN6tA0GtjZElpKsjz2i2F61IE6PrmTuWtvb2+kzbtdgvQan+YwWVuH3GF8nWliI2SSn48yeBeWvtXO971ulwOWyItapUjjz9ugZZHCfR/2ptAwqAsHXRd2LrO+5jKVgWbUpFAqFQqEgsWimbchm6opFR8xXsaVsJqWYQQ+jU0rzLHMYn6NmiJmPUbF0PwNV8ec9fmSlTlZ+8qwMZfVYt058TmSRmCsv8ynyLJ7VwlH8PNdFZTuLtAbMlsxPHEU4KF+2ssr4c5VflVXekZ+fGY71AS/ZmVk75p7NqF3ZAj/7wTAM2NnZWcl3kFmzuM+jpWDZ8qHGV8QQrQ7MjrnMbHxzljteqCSrk3q/RT50ZcHKso0p6xBrljxU5Il6/0X155wF0ft9nffCYaCYdqFQKBQKG4L60S4UCoVCYUOwEeZxDzb9KcGUN+MoU5wydXnzyJzpOQrX4CQKhiyUQJlulakmMqnyMUpUkrUrOpah+jpzOyiBHe+PTJK94qXIVBiFkKm2qT6P6smCoCxJg0GlyYxM3Sy2YsGYNx+qteV76sEpaXsWDFH153ERlaEWJokEQQo8hg4i+cX58+dXxoevC7uyeDxHoisl4lOuvcwFwc9HtH63gdPmsgvHEgR5KJGXEjX6urEAkVOVRkJLFYqVuSrV+4y3RyFmPDY55CsKg+xJRnQYKKZdKBQKhcKGYFFM20IvePYYMd/eFHr+/Dnmw9fwxyiGHSWU4IQVHF4QpeVUYpUeFqGC/7OlOfk6Kmwju55KJRuxd9XXXDc/K+dy5kK+ovZlzF2lNIwWLZkLN4rEOEoUl7FJLo+XGI3GjrJSqBSYkZWG28njOrJYcCibEmtmyTUUU83u2xwbXBfDMOxh2oboPcDvH752lD5ZLVCTWfzmkvlECWdUmKAJ0KIxxZYi1ZfR2OVxZ4ybRXnRoibKQppZGvkZVKLN6By1wBOHhEXI9h0GimkXCoVCobAhWBzTPnLkyIUZFKdDBDSrzPxRPSFIar/yNXPij2g5RxWekaXFm/MlRXVkZs+shdla1i5mR1kIHZeRJSVQoT1qgYoI66QT5PsU1XNuEYGeYzJmoHzNmX+fGRWPmZ4+UH2dhW/ZPmYiXA9gty84Te6cNcX/r/otYkvc12zVyBIO9WIYVpfmjNqjkqlEaUWzcMZov4fy1yqNgz+Wl7XkMKeoPIO6l9EzzuPJ3tfRUqMGO4YXCGGrTfY8rWMpY62EXV+l7Y3aHP0OHSaKaRcKhUKhsCFYFNMGxtkbs6+MLTEziZhhz9KOHhEz4OurBPdROeoY3y6VbKDHD8rsSC364Wfac/5Pvn7UPpXcnxPDROdzHbN71ON3snPXmakb1Mzd/8+Mc64s/79icJkfPFsYBMijI5SvryfVqvkllVWC//fnrpPucY5hR9dT1rTe8ZHVZWdnZ1/pKvk+RRa+LDLCb49Uyjw21XPr68Jpf9X7ISpPWYMips0s2a5z+vRpAMDVV1+9cj2DilJYx5LEiPpZKcDZxx29Jzh18FJQTLtQKBQKhQ3B4pg2sBrfF/mJ2I9riGatc76lDDzTVD7n6HpKjcpxgFF5anvUPlaN8vUixqcYglLJRnXg9mT9ym1WvvOo/lxGBnW//P+KNWc+bS5DWUJ6VM+GbJY/F3sdxZXysXOx8f4YtahNBBWVoNTkWYpIRsY6Db0alXVgbNtfO3rGuK3WTxb7bEptf+wcM8zaqqxAkUVGpZ5l5h0pzg0qzSzv99dhaxkzbn+N48ePh+3jZZizMav0JNE51ma7P2rRpuiZjzQAS0Ax7UKhUCgUNgSLYtrDMOChhx4KF9Lwx3jYbIjPidhL75Kcmdp1Ts3pz1FxzOvEl/bEbSv/kyFjJiqWt4cBz7HMrH2Zz5SvwzoCBd8+81lFfvw5Nhltn2Mg68R4Z/e/N+bZ94XqF8XKouOtfHuOOB44illmnx/378Uuparaofr1YuCvGy0LaW21ccW6myzSRS2ks87zohipv5d273jhFkPE7BXbn3vf+Trx+4efPWPc/hilMO+5l3PjICpDMXjuV2A1N8FBWnQOAsW0C4VCoVDYENSPdqFQKBQKG4LFmcfPnz+/EgCfJUpR6UU95pIaZGYqZa7JkqvMCXKitIUqmUGW0pXPVWacdVJ6qiQH0TkqqUqPsIbNclnSGA5hUvAhX1EiEXaTqE9v1mWx2DqhSjxG5sR//tqc7jFLAMPlsjlcfXpwH9j1OeQNWDX3qkQwnLY3arsSWkUCK+7PgwzF2dnZWQkx9XVQ/W/1z1wB6r5n5nDuMzaLcwIVXwd7f1r4nlr7O6qLCv2M6szlR8+PPw7YNZVbn9g463GTzJnBM3O2Sn/NbiCgT1h7mCimXSgUCoXChmBRTLu1tie5ShZ6YVgnccqccCUrg5kvsxZfpmLaNtvjFH5R3bI+YHAfKJFXtGwkl2+zdJ41R2Ei6jNLeajEeVwvX04v0z5//vzKjDoKF1SLFHD7om3cX8x8fFm2jccIMwIvouTUoFx+FuqjEv8wm41EU3NJYyLh21za0uy+KbYZCayUCHAdQWcPMqGg6lsDP+MZ1PMShR2xUIo/r7zyygvnWFgTjzu2WPlzWHjIx/Jz6hnp2bNn99TRxGUW1hVZH/g9w8949g6e69vIosPjmp8V+x4t+LRUFNMuFAqFQmFDsCimDYyzJWYt0cyHZ2bZLGzd0KQsIQd/8szU/98bLhZdWwX/c1hFdAxfN0vPySyMWQAnZgD6WDJ/77UkZD77uYVWzp07J8NrPFT9VTuifcyAmd34/+fYmW+XHWus6YEHHtjzmS3gwXVSfjwry2/jMctlRVYavqcccmTItBtqrEbPRs8x+4FpaXgRiYjt94TtMVSaX0b0fHJd2Ifur3/mzBkAu6xR+bavvfbaC+cY67Zj7Tr2fuGFUHz4ll3P6nrVVVftOdbK9vefrZAqPLDH7z8Xfun/V5oA3h6VszTfdjHtQqFQKBQ2BIti2l79C+RB8irVXOaPVGwyS9bAbEnNeCOVcjaLYygWxr6XqH1zvtme5ed4tsopEaPrsQVDJQSJyo8U9Ax1TnZ8j++fx0ymAFdaBuU37GFnzLz8OcawjfkYmzG2tI4/Wvnf7Rq+/pwymMddxJZtG/vbuexMV8BtyKxCl0o9bkybkwZFimL+ZIV8FOnCFiJ1fyLrCWsz2BrgrSZ2X40Ns9/YWLM/x65p48v81OafNrZsbbD9vnx+F1r5UfSPWWFUlErm51cW08zCp6xQbFmIIiqy6IfDRDHtQqFQKBQ2BIti2sA4q+nxZyjWnC1uPpe2NEoRyfu4jGiGzQyb41YzFqt89BkT4ZkgKz8NGVNVqVYz5sMqbKWWj7bNMa4ImW+JWXbWt3ytddJizimYe+LoeTlMD2M8xpaYaUestlfToHzrfp9CFD1gYIaq9BIeSi0cncOsXy1TebFQrAzYZWZR5IevSzQGe/MYRKySnzH2Zft+Yi2DncOx0BE7Z70DW5IiHzpbZ7hPmOH7Y3nM9GgG1nlODVZ/fn7Y35+lBT7ocXaxKKZdKBQKhcKGYFFMu7WGY8eOrfhiopnO3Gzesxi1LKShZ+amFKAZs1K+q4xpRwu5+3Mz9qIW8sgyy3E8sLpe5CdS14/aoFg4+7A85jLZMXZ2dlau3eMzz+6/8mHOZcjy4IUjWJnrx6ptU/kAsgVqVFz4OlCWpCingIqJz6I1lOWKsU6M9EGBx4Fn2szQ1POfWXu4n+wz8qdyRjylI/H3xcYOx/+z39oz7Ugj4ctgJurHqvm97br8nbP7RXVUVqFsDKtnLronSiXO36PoiB6L72GgmHahUCgUChuCxTHtI0eOdGXAmvMLRTNePkct4p4xRJ59RbNk9nvZscy0PJQCUilQM9bMPtPoesoPqfJTR/62uRlolhFtXRbdc8wwDF2x4uqeGiL/vYqbV7N9YJWlMvOwuFa/TOHJkycB7GaVuvrqqwEAp06dArAavw3s+r2jrGxzsPpaHZT2IIrqmIse4Gv4c1SkQzSm1vFhHgQiqwlHDag2ewtIFk3hy2eLmC+HdQ/sz/csVrHVnkgNho1ZGxdRPLX9z0pzHjNR9IB6jlSUhgdHXXA8tb8HKm99FqfNY7DitAuFQqFQKOwL9aNdKBQKhcKGYHHm8a2trS4zDpvMstAhNneoZPjR8cpc2CMMi9L4AatiDH++SijSk5aTBSCckCE6l03dSiSTmY8Mqq/8/5GwSbVPhZRFsJCvbDnP/YQKzYV0ZWUp8zibyc0U7rddc801AHbN5RwC5tNJ8gINnM4yM9OyaTMbz4a5ELO59LbRtqwfD0sIFJlZWbjFQsoovGkuGQinCvXXnlssJRNw8nsnMnGr941KrpK9m9kcH4lcVUgpm62zZEVcB+6jHvM4Xy8ToZZ5vFAoFAqFwr6wKKYN7E1luk5Y1UHI9DO2p9hKNAvjWducyCcqd05846/LzI2ZvO2PxGTMmpiVR2EpPKNVS15GohVmnz0WhF4BjQ/5imblc4lyIqhjFfOJypoTd0VpHjkxhjEeE6/ZJwCcOHECwO44u++++wDshuvwPfbXU6JJJRQCYnFQ1PbsuWUhZPa8Xi4BWsZiOXEJtyOq41xYI99/v5/Foyqpin8uo8WL/DnZeFPCUGab0bNo1gerC4ctRglZlKA3C1tUqWP5vmVMW4VwZu/GpaGYdqFQKBQKG4JFMu0sZGAubCdjZfs5R/npVLKN6Fz75FmtnxEr9pWFFBk49IJZbORbUskLuC8yS4JKZJL5tNW9je5FD3PjumbJLubqGdV7LilMVsc5FpkxA7ZWeL83g/2NvHBDTxpTBicY8YxOLYCi2KC/3lwYlCHTpFzqpBeRP5VD/zg1cfR8ziVR4Wc8SmBjUCGH0eIf9p5RCX/8ddT9YAsCLw7ij+Hv3Be+H9V7gJOecAiYL5f7QDFuf/5cSFn23FZylUKhUCgUCvvC4pg20OfDnJshRslHlMKcZ3DZLN/AMzZ/HCuXFXvKrsOKcIZvC/uL1QzRz/TVzH0uAYSqg/8eLSCg1Kc9963H92x1XUfbwHWKmPbcsqcZ1LjLEvRwCl8+N2PeioEwi/E+aR4rPC6ixTNUWmC+XubvVc9v5E/MUupeCkT3hf202fNvUGlMDdwHkTVjLl1udC/5Okqv4v9XGpPM98vvHRVxElkU1XOq2HR0LLfb4PtE9SOr1KNEOiql9GGjmHahUCgUChuCRTHt1hq2t7dX4o0jtWrGALPt/lxD5MOaOzaaCfK11UIh0aLqahY5N1uP9qkY24hpz6nve9gNz7QjVq2U4Jm+IGPuDGPZWcywupZStvt9zF6j9LV8PWVd4Nl+NsufW2DBb1MWAxXr6/fZpzF9/r5OGlu+T+vkXYi+X241Lz+v0bU5nWlUxzkVtyrbX5vvoRp3vnyum5Vh233qU87poDRDWR35k/si8qFnWgCPSF+ilO2GKLZbxWtn8eDZ++YwUUy7UCgUCoUNwaKYtjGlHn/hfvwMPFuMFgjh49iHlPmwDEoRybPKaFk99gup+OBI2arqHDHw3uUbexTVKg4582krFXbkq2c2oBCpVD1UvZlhR/VWWfTYbxtdl3287E+LlkdUvsaI5dr5HC9rcdq23ZTGnq3NLVmYWZR6Y9Wz6A/FsJcQIxvFabMehZ/tSAGuYuCtD6KsXDxG+Zio/3rGM5/DVjm1oEf03mFGz4jGKr8bVSRK9Mzz+0BpQ7I4bXsWOCoismAszZdtKKZdKBQKhcKGoH60C4VCoVDYECzKPA7k69FG2I8JQ4UqRaILZeJmM58vk4UsLGyIhA5mHmczOadPzEKj1Nq0UZIL3qbak63FbVDnRqEe6jNKfcom6exeD8OAc+fOpceq87PQsjmzeCaSU/dDiX38/8plE7WBzeN2DJsCo5AvNqmrkK/outw3diynRo2eY25nZv5fAqyf5oRbHnOhSYbIRKsEgiqhjf/f7q+FBWYJlJS5mo/l95E/h49lc3VkemY3I/drJGJjsKsicgPyu1ilS43qGL1rl4Bi2oVCoVAobAgWx7SBPJUmzwR7QpPmZko9aU3nmIc/h9mpqpufRTKT8jPo6DrRDFTNOLOEFTzDtj5QoU4ZMsaqGCp/+nb3hMZ4+JCvqM+ZpfD9yBghf1dCsSjton2yECwSr7E1hpkCt8HvY7ZgbOL+++/fU1YkJuJQrx7w2OBEND2pabnfliRE87D6mLjPnnGVlMjvm0u3mY1VlX7TwraypC78LBv8+6n3PRM9M3P30pBZ+PiYzDozZ7mKxjdbSlWoV8S0Wfi2FBTTLhQKhUJhQ7CoKcQwDLM+bfZ5sH84Y4YqZEixwOhcZjXREpBzKUGj/Vn6Pv+9Z9bHs8hoJq+YtQqryPzTc2w02sfMOprVzi244MFjJ8LcfeE6zm2L9mfjQCWs8PU2VpylWVTX4fawDzta9CEKN+oFjx0Vxufv6ZyvPnqesvt+ucFhTvZcGAP34HeQshzZdlt+FVj1C9tiQHwPM9ZsdWXLX/ZeVSlqs2d6P1Y5vu5cOCagx06WKIV92KzziJIHsVVhafqKYtqFQqFQKGwIFsW0WxuX5WRW6ZNPKJbEn9HMSSXAYKW0n93xMnfsA4kC+hXji/y2c+1Sx0WpATmZQ6b8NcwtmtHDmlUyjey67DOL+p59pVE6W4+dnZ0uH6OyuPQkkuFjVMKe6Dr23VgTswBgl7FxtAKPqWiMqQUbVLKdqP494HZw2mFm2JEan9lz9vwujekAu++kLHGJ9Y9SZDNbjlgzq9N703/6Y/hZi9L0zqX4jd5ZytLGfeLTpqpFZgys94iskcpSFWk7WKthz5XpS7KkQRwNsRQU0y4UCoVCYUOwKKYNjDMx5WcFtK9X+fX8/8r3ykw7UzAzE4hmd8waeKbbE/enZvA98cyGLD4zizOPEPnDDTxrzlKIKobN8en+mN54/XPnzq1oHLJ4bWUpyHx+PfoHrj+zFKWPAHb9mvbJPriIeXN72JepFOm+fGUxyBTuKlY90zzMKaezePQlgi0e3mrCbJUZNvebMXP/vyrDEKm5WdPAfmo/Hu06PK7tnGwxHX4nKZV8tIgKW6o4t0CUZlml2rVj+VxglVGbJSvTvyx97BXTLhQKhUJhQ7BIps0+be9TUInzDT2KP2YPWVYu9meoDGKRD46vw+w58yf2Kt19HVVmtx7/F5fP/RcpMlWdIn8VWzG4ryNW3eMbNxjTZpYZLSKi1OJZtjl1TKaXsGOYNXE9IjahfHERE2UWbudy3Gykv+ByebnDaHxn+6I+yuKPlb996WxHIVK68/NgbTRfb6SyZ4uLHWufkaZiLiNiNL7ZCsRjhusYWdwiK1n03YPHDGsEeLEbQC8FqjL/+XZE+xR6rY+HhWXWqlAoFAqFwgoWxbRba9je3pYzU2B3psR+E5XL2G+LsknxsVndgN1ZZab2VmxBsbMIyp8bzQJVfuyMtczFjGbZmmx2zv5jrkeUF9n6z2bwrF6NmGoP+xqGAQ899NCKrzzy4zOUct63SS2VysjuKY/rSJFr5xvD4mU2o75gP53SNkTLynI8MPsAleXFg/2DmRJcaVDWycS2ZPh+4ugAfk56sjnaGLnqqqsA6OfGX48tKux79lCskpl2loGRn3duR6RJUpnRlGUpahf7sHuY9jrREpV7vFAoFAqFwkWhfrQLhUKhUNgQLMo8DowmiSxch02BPeYOlVSDTX9RWkllAspEZb2LmkQJYLiO3BeR2VylAOwRcinTc5Y2k8HmXg6h88eoZCpR+zm8KbvXOzs7eOCBBy6Y87L0snMiP39vuRzliohgZju+Hi824fezyZzN8pEpVdVBmV2jc3lcZWFwVl9ehEGlf8xEmkqQtqlCNA8WBqpnOVqspXdhiyxds3Jb+PGWJXzy52RuIRXilz3TdowXmvn9UXuV+Z/N41Giq3VS4WbJaJaAYtqFQqFQKGwIFsW0TYiWsTpjUmqGFgkrFNPgzyxcg0MhsuQaihEyY4zCaFQyBRZlRcw+E1T5dvr/1dKcXK+I2aukNFGSGrUwyBzD83Wdmy2fO3dOLioQQSWJiVilYthK0Ofrrfo2suzwucwqMjbBoV88VqKEFczgVZpW36/Rwgz+e8aW1QIhWfrZTYe1jd9ZzOSyhS5MIMjiT2/NUklVuG8joSWLyPidElmNWAzHobrZ/VepR1Wooz+G66iSrfj/LyZd79JCv5ZVm0KhUCgUChKLY9pHjx5d8fn5GaiFwmR+M7/dyvXb+HsWbqIW4zCsMxvr8dGq5fwypq2sDBwyl/XJXGrSiH0qP3/EtFUCGLUwgkePn3MYhtSS4K+tLC09VoWMHQHxPZ3TGKwT1mLfs6QTaqxkC8goa1Q2VlU7VFiXP0fVKWPaygq0HxZ1GLB62vKrPPYjVskheGyp8qlPDXzP2ALjwaGsDBXOGe3jhX2idwe31dpnfWLj2rRLkYWHmbXybft96yDT2SwBy6pNoVAoFAoFicUx7WPHjq0wkigdplIFRskg5tS1nOq2UsgAACAASURBVLox853OpWz09Z1T4mYLvM+pNqNkLrxvnTSmKolGNDtXrFP5rbNzMh/xOgyqtXFZV2aq0eIv6yQOYcwtZRphbiGXCIqRRixWLcGprADZ9eeYMKAZ7lzijJ7yM20D+1A3LSGL0gCwCh/YZZysQOflUCNLEvcP3w9/Dr/zeDzb9ihqRqWgzXQeXBdm2GfOnAGwy7R9n3A/qWfCt6/3HRItqavSTx82imkXCoVCobAhWBzTPnLkyArD9ouoG5jN9fjrFLNiph1hbjaZMQO1kEbk6+lJWzpXV1Z+RrPNufIyBty7NKOfoXKbe/qE78ucb8kzbWYIgPZhM3osEnOxqcDqfWAGHNVDxcer++P/n2OekTZAaUMyjcjcwhQZo5/ze0exxAYeVzw+omd/aSzJw5ij1d/0OsDqkqmK+Wa6Eb63PfkOVP4EQ6Sl4X5nS0wWf25M2/rCGLZtz/Qe/NmzGEgP2KKztIiGYtqFQqFQKGwIFse0t7e3Uyak4hR71NX+OnwMkPuylUI78k9H7YrOiVTK6nu27B3PrNW5EcPi76qOkc+H96lPf+wcK88yyymFqwfHJEfxzMwmGL5vFGtRPu3MGsAx/tk477VM+H3MQFUceGQN4GP4GYmeDbVUIu+PoNie9Umkh+B+4vsX+d15WdQlwVgls2hg9XnghWs485//v+c5Mah4/B7dR2aN8fXxx/EymqYet++8P/KHq/HdYzFViJ4n1a7DxvJGcqFQKBQKhRD1o10oFAqFwoZgUeZxIF6swZsnOFUmm0TM5BSJe9jkM5dulMvxZWVmI2UqzURLc6Y/NldHyU4YKnFKBFXnrK5KrJKJ13oEfFz/nmOBsZ2c/tMnIVHhZj2iK96nXBCRyX3OjOihhG4sysyEWhwOyfcjEqyp8K2eNKYq1CwT2rGbgY/NzJUqLWcmuFyyIM3GqJmKAd02HndRGtO5Po3OUe6qHlOzcoNk61vbe5qTqXBYV2QenxNNroNMNNuTfOswUEy7UCgUCoUNwaKYNgvRImEBMw6efUUMZC7VqQqzic5VbDkLieHQL99ebldv6FUkYptL0NIDNTuP6qqQXU8tJhDdt6zNCny/bAYP7DIMDiFk0U+WFGROkBYlc2Emsk7aXAOz2UgspxL/KBYdlacESR6K6fQsGKKsDNZuDrfx7TBwf2ZseqmpKD04/MmDk5oo0aGHSiPK7yOP3sWGIhEjf2dhorcgzDFtXhQkswrxuLuYZEmRaNZQQrRCoVAoFAr7wqKYtiFiLQab9Rhrspkaz9Q9ssQrQB8TUSwsY75qJpj54Jgt8Lk94WJc9x7fNs9SM/871zWzOnD5c6w5WpCAy1AYhiFlpCr5B/uwsmQnClFYEvel8gFHoUpqtt+TsEJZBaI2sX9anRuF4qlj564P6PEVMT01dnr84Ep3sUR4/YW1jUPW2GqXWahUH0dWjF5fdpYwh33YUSgg++/VOZEPX6Xlzfz+ShfDoYWZNmBpWGatCoVCoVAorGBxTHtra2st36X5JzkYvyfNJx+jEk34fRl74Lqp7ZEPbp3FPXwZ0TZ1/ahdzAIV6/QzbJXmj8+J2qCS1EQz+GgWrDAMQ5hoIgIz04xdqPvB9Y2Sw6ikINliHHPXY2YcbVM+v2zpQmY42eIfKo0ktyHDXPKYbPyrYyIF8KXyae/Hf7oOePnJaMEOILZM8fstG7vKd82q8uh5snKNPXM60Ug9zj5stQRtlGRHJXxZRz2ukkZlvvqlRR4U0y4UCoVCYUOwKKZt6nH/PToGWFVI2oyM/Rz+f+8z8lCpKn15c77tiIkqP6S1wauYmdEq9srHR9t6ZtiqfGY8PUpgxbB7/JJZOzmuNGPPwzDs8Z1l/mJml5mfcI6h8XjLfIxct4hpq/Gl2LRvh1Kpc3sjlj63CEhUR6UVyVgoq3UVo462R8+2v07mq+1BtjiGgS1Rl1pZbHWwd1cWgRItIuLLiJ4jlbuA06ZmPmY+hpXg/r1rvmxm1rxASk/+BhUNlDFjtuxF6vHLdW/3i2LahUKhUChsCBbFtIFxJtSzoALPlGwWmc3u+VxWPUb+1bn41cz3wowky8SVxUV79DDsbDZuULGtXPdo5tub4aunrj3x2opBMCKFczTrnlNIZ+p3LkN99+coq0WkoVALdDBL9vt72XLkg1aZz7KMaGps9EQE2HNq99Lakfm0uU49eohsIRpGaw1bW1tdx/pzPCLf6EEtFelhdYtiunlpTn7vmGXPP0esT2GVusoX4Mu3c41F8xj2TJuX4GTfPdfLX4/vDz8j0bPO7VA+7SgTp2FpKvJl1aZQKBQKhYJE/WgXCoVCobAhWJR5fGtrC8eOHVsRQURyfDavmWkoS0Vp5iFl+uMFFvw+FdYSJbZnkwyHbURmPV5Td24RjkyooUKNovAQZWpU6Vujbcr0lAk5VPsiQUivqGh7ezt1LyiRHbcrE90pE+06oYD86ccWh8nwMZF5nIVoSujG+6M294hv5kL72IzZY47N+lEl/DH0uM/mxo6ZyP25WQIjri+boP05SgB7EPBmcl4sic3HlqglCqFk07J6V0XvVRYHc+iXP4fN48oUHT2jPDa5zpkATZnfs/fp0szihmXWqlAoFAqFwgoWxbRbazh27Fgq+lHhOrbdZpFquTh/rEok4mdlzFp4Fh7NQNWCBr6dfJ25ZBN8bsYClCAtCqfjGWhPqJdClr5SCY1YCOJZ2TqCkNbanpBBtUiLr1cPS55bSIH7PhJ5KdFaxCY42cScqMz/z2I1JSqMhJZzqRuj8D0+lu9xtPiHCvHL+oShQsyiNKaqrgyf1KknmQYzUGurZ9pcB7unlyqUiFnw6dOn93w3dhstaqPeFfyOjMYOl8XtjFLuqj7IBLCGubCtaGnlLLGVKj+zZh4mimkXCoVCobAhWBTTBsYZUJamTs2Y2I8WJdWYSxGqfEH+XJXuMfIT2rE8W41mcipJRw/TVvsy1s6zcuWXXAfrMFa+bpbkoBfeL9mz8ISqv4e6L0oDEOkhIq2Euh73Ifurs7At9imqJBQZW5pLtgOsWoVUuGLUJ4r5cD9G902N2R5mlI0ls9BkTJste3asMess3IjrwHqFy4UoraiCtY8TsmRjVt2n/SBKlKLejaxbiBLAqKQ+c6mfl4hi2oVCoVAobAjakmYYrbU7ALz9sOtRWDw+cBiGR/gNNXYKnaixU9gvVsbOYWBRP9qFQqFQKBQ0yjxeKBQKhcKGoH60C4VCoVDYENSPdqFQKBQKG4L60S4UCoVCYUOwqDjtkydPDjfeeGOa1WoujjmCih/uWV5xbt/FnHPQGXfWiT+eu3a2fy52PMvaNpezO8o1zFnB3vKWt9zJKs7jx48P1113Xdqm/aCnbdH3rKx1rrufcw8b68RLq+/ZOFCZuLI81YbbbrttZexcf/31w2Me8xhZ5wiX4n6s88xdKuxHmLyfrIkHWcY6+fLnPgGdg+Md73jHytg5DCzqR/sRj3gEXvCCF8BevvZ54sSJC8ccP34cwG7ye5UExN8ES4zAyQU43aMhS/OoFliIUp/2npuBE7Nk6Sb5h7BnfWiVoCJLXMETJ55k2b2xT2A3CcWVV16557slb+C1eIHd+3bq1Kk9nx/1UR+1Ep5z3XXX4TnPec5KOy8WVj9ei5gnlFE6yLkXbU8CGLUASraAi0pg0pNIQi0G0vODyG3IyufnhpPIRAui2OIYvNiE3ZuehTluuummlbHz6Ec/Gi9/+ctlv0Vt4nWns37qeabU9dZZJKV30p6933oJjt/G6YZV2aoO/phojXl1jFo/PvsBtne/jZUo4czZs2f3fNr4e+5zn7uIsMAyjxcKhUKhsCFYFNNureHo0aMXGBqzMWB3ZqsYSGbuYGbNM7Me01x2Hd8O1b65cxkqcX50rkpf2XMdxRgjNjg3K4/O4eVKDXYfjYEbi/J1ueqqq1b2XW7MWU/YItKDbFEENYaiBQ/Y2jS36EbP9fZjrpxLN5phLsVstq8nLWeGYRhw7ty5lWcgW4ZSLUDS4xKas2pF+/aDHtbcy7S5Xv6Y3vedB1t9ON2onRtZMFXfq3e136c+ozZky5EeJoppFwqFQqGwIVgU0wZGRsbJ3f1yd8y0mU1GCyqw30ItrLCOD4aR+fzm/DcReLbPCytkdVC+nsgPalAsIGLNnKBfLdHot9s9VPU3a0rkb7NtfhxcLqg+ND8X35dINKnaHO1nJj23pKnfZphjE3589i6ikrEz3m6I+oT3qWVEs3LX3d+D8+fPr/RF5FdVC95E/aesVevcU6VTyN5Rc9bBaJu6lxcjsMwsOso6p/QZfh9bqHo0FGrBk2y5Wj5mKSimXSgUCoXChqB+tAuFQqFQ2BAsyjzepvWQzTRiJlO/Li2Lbtj8EUn4Td5vQib7ruLxMgGKCuNY55zIhK/OZbNRJC6bM4v3rIVrn2q9WW+C4rAnu09cvj9HuSQMHELj2xEJEi8X+B6pMKrIVMdiGxW2E4nK+Bx2C0XlcB17zJZz5s/ombA+USZbPicT+fD69NFa9tlzchAYhmFP+7Kwo7kcBZF7hF0d/Izx/qg8Zb6O3gN8f7gd2f1XJvXM1M11zJ4JhmpX9J7j8MB1xpmqSzS+9xOaezlRTLtQKBQKhQ3Bopi2IcuIZuDZMLNpS9YB7CZlsGMU084YqUImQOH2qDZEUGENESPhxAE8I42SyKjZ5BwrAHbvizFg/uR6+PI4WQknLckEVp6FX24o68hcCJDfp9h5xGIt7JEFcNHsf84KtE54Ih/LY8nXVx3bEyqjrEDRM9gj3LwYtNbQWusK/VTIBJtsmeoJq5xjhhEDZlapGKlHT9KWqM5ZHTMRaw/T9dv988YCZX6/RZgbO1lYWjHtQqFQKBQKF4VFMu3I12dgVmyszti0pZ47c+bMhXNsm7FwToPIM7aIVSgmFc0mjU3ap+0zVhnNZtkfxG3ndntLAqdptfbZdrMsRKkh1SxSsQRglwVaQhROTRrpCqzNdizXObKqZDP2pSBiBAxOHJFZMZglsV4gY0vMtFSolx9bSjOhrFD+f045qrQVmd9V+TCjdl5K33YUDpmFxmWWDwb3B4919cz7fXP31oPfJT1jVFlneLu/3lyK3ei5nfPRsyXRn6uSY6nvPe1bJ/x2KVjeW7BQKBQKhUKIxTHtbOYIrLJHY5ynT58GsMuw7Tuwy8I5WbxSla+TFtFmm17ZbGzS0m9yIhiltga031a12/+v2rMfsM/RpxA1y4Ut3mL77Lv1n2f2bG1gRXiUOCVTo28i5pKR+G3MAFTUhP9/zh/JPkG/T9XNxpDdc7+NLTrMBjM/71x7VVsvFcyvra7LOgRmrZHWhNvPug0b+5nFZZ0xrywdmbalN5FI5vs1sCUs0zbMWXYifzVbV3ncRVYhq68dqxh3hINIJXspUEy7UCgUCoUNweKY9jAM0p/r/7eZEzNt+zR2Daz6WJlpRz7YXkQpQnlGa/tsO/u6Ac047DNTx9s2a/OljmtVM9AoxpbPYRU5+3nNOuHPWZp6M8I6dZ2LwfXbmEXzePD7VGx9Tywx+3Gz5WuZ0ah440gPoSxJWXyuWlbxIJHF+AKr/WR1yPI0cNk9C4Wo+ij/dxZtwe3oyQ+hfNnKf+3rNKdtiOqilmSNdDg8NnmsRO8lvi/qmcgiBYppFwqFQqFQ2BcWx7Rba10Ly9tsyxinzcjsXPOvRuewz1fN9oDVWSmziyhrG/uulJrSz5KZlfNslePR/QyyJ15xvzh58iSAvf3JPjmO2858mdb3p06d2lNGlBXKWPcSEvarhVR6ZuysGubx7aH6lvs080uqOkbjjq1APA7tnkb+XaujsqJEFgQVCWDH2viImDaz9INk3MMwpJoD5Ue1OmT+Yma4kTWBwdEbajz4PuGoFWbHPfHzczHkkZXGzuE+4neWP2bO6mkaiohpq/pnlh22TGRZ2zLmvgQU0y4UCoVCYUNQP9qFQqFQKGwIFmUeb61he3t7xawTCQtY9GRhVpG4Qy1OwGYQ3u//Z3OYmV0ykw2bGi0pSbTwBbdnLulJdG6UPnQOVh4nSjlx4gSAXbO4fffnKFMTJ3fw/9snJ8UxU7gPLcvcJJcLLMRRYyhLtcvfrYxoIRReQ55Fi5FpnU2n7LrhtkSmbjvXxigvXGLjwrdDLabC36NnI1qIxl/XPw/sErr66qsB7LpY9iMgZQzDsHJ/fLnK5MtmXV9vfh7VZyTg5Hto90WlEPb/83uG3xm+z+fW9lb3yW/j8EA2fUfhqZwEy557Np+vY8qPzOP8HNk4Vn0TtVWloT4sFNMuFAqFQmFDsDimffToUZnuEdgbygWsMuwoBaqa8fPMjAPx/Tk2K+awqmiG7dvjy7XZnbFXP6OzmaYKp8kWM2CWxzNdTiEK7M5ATWhmn8ZijPnyDNVDJTeImBgLrFQIjb8OJ0TIQsoOAsxy/TaebasFL/w9ZXbG4zpiS8wAWIhkyFJDqgUcMtENjzdvWQH2sk7FNjn8MRMvKcsBh3cBu+yM2ZeNVXsmPaNbF16IZvfNJ5ThOnCbOVTJ71OfPWzSwOyZn0//f8bGgb1jWYlHFQOPFrcxcBiu9Z9/Z9v/xrAv9p75emQLvVjd7D3LCxVFyZ2WimLahUKhUChsCBbFtIFxhpdJ7W2WaDNPDuyPmJEKfVCzfe9Xtdkw++tsphgtJcj1tlkcM2wfRmXt4RlhT4J7rreVYbNxY6/+etbm66+/HgBw44037jnG6sOpWH35zBjYpxXNopnRWT0ihsUM9VL5tK3NUfieQS36ki2VyIyN9QPRIikqJMr6x87Nllm1Oqpx7mF9bOXydaOFZbiOHCrJaXv9ddViKWyJ8czHzrfxxGGeNlY9otBIhWEYcO7cuQvHWvmeIfLznlmVDPwe4HOyUCKVUjU7R2lZ+JmLxqgKU+Vnzl+D+5bDtaJ0yheTyMrA/n4es1GoKY83thL5OnLI4tKSOxXTLhQKhUJhQ7A4ph0lVYgS6bPvj1WCkULboFI3RslVbNbNvtfMvzqXxMDYa5QAxmb0NhNVPqUoAQyzQWbLkdLUfJfmH+QZd8YgrHwry9iazbC9f5pZON9bZmf+2pdqpsuK3ChxCYPZfw97YvbIOoxsCUgDL2EapTE1WHmsCI8Usyrhh1I++//t2WAVN4+PKAGI0q1E7Mn+t+eFNShWD38drkvPGOLn37NBtripqIFIma2iCJT/2JevErNk6V452Qlvz5TgvI9ZevTesfLVwkuRVTB7v8zBylBpdKN7wOOM77WvB9+PJSR38iimXSgUCoXChmBxTNvPkjJ/Mfu2DRGbYH+ggZfz5E9A+z6ymGj2B1mdrB6sXARWl9dkvzAzfO93V6p45Rf1dTP/05133rnnGFYv+/vCPnJj6WzdiNJl8kxXpcT0bWbf+cWCLRJ27Z7FMTjiQC0gAaxagay/mGlH0QrKZ25+Vs+0eTwpK0b0bFhf2Djj2NeIafO4vuaaawDsjiX2Ofv7ZvX2C8P469m4jhTOVje2JGUKZDs2S3k6DAPOnz+/Egni74tStzObjixF/AzzftZ3+H3sy+Yy/fVYAa2sAP44thjwu4P1JP5drN6NrK3x2E8uCQa/79jS2BN7rSwK/vwo98ISsMxaFQqFQqFQWMEimTbHYkcZo1jpq2Ku/Tk2y7vnnnsAAHfffTcA4K677gKwmp0HWI0VZp8fXwPYZRFcJ2YI3kpgLMVmq9YH5i9kpu1nm+w7MiZn5fMs3bfRttl1bAbPPidvfbCYbmNYpkB/1KMeBWA1xhfY7Te+F8zkPdvgPvf3RcHGRaR6Nth9MAuBUsH7bRxjzwugWL95nQLXxe6L9Vu0oILdd7ZIqDwBwOp4Y70C+7T99ZhhqUUfIh+zXee6664DsPo8GbyFy6xb7KfmJXUjpbuKYWdFsK93tqSkxzAMMrrEX0vpYKLsZvyMsRXDyop0ONzvKl4/yhyn3oVZXgAeKwxuA7B7rzg+27ZnOgJ7h3A7uN3+PceWN0Zk7eBnjy0Jkd+6J+riMFFMu1AoFAqFDcGyphAYZzk227dZX6bsixgasJeV2QzwjjvuAAC8973vBbA7C+c8uDbr99c2Nml1M2Zqs1ZjT75cjpPmmW8Uk6xU6uwzzfKXs6qb1Z0ezLCYkbznPe8BEPt3bLb89re/HcAuw/qQD/kQALsMzJfLM11mm1FO7XXQs+yh3Q/rH/aJ+lm39eUjH/lIAMANN9wAYPf+W59zrDew2z823qzNVpZZfPw4UKp0ZiKZRYKh4qn9uQwuK4q1ZjW8f26A3b669957V8qxtj/2sY8FsPusvPvd716pI1u71PKU0RjtWb7T1jxgfUWkoWCfLMcdR+fYPX2/93u/Pe2w58XGWJQNkOPojRHbuPB9zs8w+6MjhsqRJZwhLYusUUtzsnYnAjNta0eUvdHAmgl7vxiz9xnsDBxhwLnHo7wIHEGzNBTTLhQKhUJhQ1A/2oVCoVAobAgWZR4fhgEPP/zwBVOGmVe8qS4SxvjvZg7zJrn77rsPwK5QhkVRBjOLeLMuizrUoghewMHJU+zT2hOZ0lTSe5Um07efTVtsqmVxmS+Hy+MFQrJUlGaqs3ZYP99+++0r5/C9ZJOm3bdoCdDI7KXA98nD2sSpWVnc503cVh9zj7BZz8YZh075NnHYFCcfiRa3YRGTSqAD6CQaSuQXiXtYrJilBVZjk9OAsojSt5lD/sy9ZGPIPn2d7Fy+nvVFlggoc5e01nDkyJEVt5x/PjlVMJuNM7O4vU8sVTD3j8GPHRaV2jNtZVn/RKGtHA6rXC2+Hdw/LNCKxoEKo2ITtL+e3SvrCzZfW/+aq9K/59jVYX1hY+e2227bU5aHeo9G7WKzfqUxLRQKhUKhsC8sjmn72VQkRrAZp0rYH7FYXkCDGZbNrDiUxG/j9KKcIjKaqalwkyhBCl+PWRKX4WegnOyCQ38i8ZJBJQ/hGX6U9MT6wo41FmrsNEqxqMIpohmvSjebgVlSVG+1BCMv2wfsilw4+Qyz5Sgdom2z/rDxZwwruv88flnsY/3lk5NECVd8O5jx+3GghFocehWFibEVhq00Ji7yfWJjxFiS9ZExxyjscm4csNAu2jeXinJ7e3vl+fDjgC1RKrTQW2kspNDazPfu2muvBbDLDKPnxcaXsUnr2yh1K9eRLRPRM8GWNrVgSBYGZ+dwqGd0jrXdrstWSQ599edaeTZ2WKhs1/djle87v3e4Pr49S0tfaiimXSgUCoXChmBRTJsRLTzB+2z2aN/ZBwPszszYp2OzepttGbuIGBCHndg50dKVyufHqQc9M2D2z2yCfYzRuWqBDU5oAuhE+uxTjcIfeJvdH2MWHOLm62bgMJSILXG9s5mvhe1YeSqcy1+TWTP7ZP3/1h82Roz5sB88W+jCoBLmRGB2xClX/THMEFQKTH9fmF0yO4o0JNx/PIbseTPWFIUJWd0sDNNYuX36e21t5ueSrRC+n+0+Rf7pCDs7OyvWLV+eWjAk839yUhuDPR+PeMQj9pQdLXvJzJ7fIb5s6w8VYspWNF9/ToXLPt+I+XLIn4G1G5HWgBOwsHWOrWK+PLsvVq6Ni+h542ec+zMKS2PrQ/Z8HgaKaRcKhUKhsCFYFNNureGqq65aSVfo/Q2cKIQT3kfqWl6Mgn2yvBB8lNjBwMw6WvxDJRBha0CUDEIt/cdsOlp+zmDtyxII8Lk84+TZsWc+nJyE06ZGi4wofzSnm/Rsiu9/lsCfF32IrseMmvsyYrFcf2MI7D/k8eD3sRI/S32pkncwa/N1VAlS1LKh/l5yv7O2IOt7Vb6xJuuLiKkots5+WN9mlWbUPs1HHO3LrDTDMGBnZ2flnkaWImamHHkQ+VN5vHEfZ+85LpffXdF7gMczs3LPRPlZZeuMIRpjrL9h61ZkIeMxb+1hq53VNfLzs+WS+9X71lWUETPuqO8vZlGTS4li2oVCoVAobAgWxbS3trb2qGIjxhYtmOG/Z34U9t9xPGPESFUcZqYe5/JsRmj+Ok5z6q+jZnccU+7rqJgW+6V8+3kmz7NYnqFGsfKsdOaY32yZVa5bxISYTcwt+uDL5/EArKZ1ZT+dzfKjWFQVx879FEUesF6AF4Xx7Ewta8iLgmSpSNlaw35pP5b5meC48CingVrqk602kbWD77PVhaMzImuAuv/MMIHVpT/nWNP58+fT5WhZIc/3gXUFwKpmQWkzonapOHBuRzTe1IIh0XuAr6fitaPrsUWRtQdZ+mSuc2Z14Looq0mUzlap4tk6EC3AFFk1l4Bi2oVCoVAobAgWxbRNAayUmnwsEM+ygb0zUmYc7E9Tamu/j2dq7AvxZfAs2VgEK4+jGRy3h2eGkY+R2bEdo+LQfXmqb7IMbHxdZtoRW1czeJ71Z76znhkvWyT8DJpn6ioTmvdLK78d92nkC2SrD/dTtAgDW1w4SoGXQ/THcvtUxjJ/LkcCcJRCpHBn6whbnZSfNALfr8jixJYWlQEuWo5X+WgZlhUNiN8p3LfRcqBcB+5/jpfP8g8obQszfZ+JkTMisj8/slgxE+X3nCHLNMj9xrkd/D1mFsufXK+McasImCjXA1sf+LnOsm4W0y4UCoVCobAv1I92oVAoFAobgkWZx4HRFJEJDjj0ic04kVxfhfqwKS67HptkuKwoNMHAYQ1sRozOYdOSCl3IzlGpQ7m+/hw2K0Z9wmY2FnZxCEZUb75OZoridJwZuG6+PA6f4kQ2UX2VCE71TzQOOLSQTYGRGValhowESWwCVua8yAzLaXk5AQubdn272L1g57LrKDLHKvNvJCbi9inRaWSa7kmBa245Nrf6c9T4VO3w/7Mpdp1xwP3CLhxvHmdRLL/nInEmt2sdsR/XTaUojkRe7HbJ3sEKSniXCUlZRBmtnc73qczjhUKhUCgU9oXFMW1gNSmAB8+YDJnYhmfbanbXM8tjt5EUUQAAIABJREFU1sSJWXwdlagoYhOKESjmGCW4V2KSLOEIz46V8CxLrsF9H4WWqPvG7CwKLWLm0INInMSMUCVr8dfhBDmcWlW1x1+b+4lZbMToWFTEYTSRwG4/whljPMxWeMGKSEykWCfvz5L6MKLxzfeSrV+R1YMFlnPJVexP1UHVmwWJ/v6zaHFOgNbDtK0sZor+HH7e2aqVLa85hyitKH+q95E/xvpCJbqK+ogtBSqcq8cKaf0YjVEeV7U0Z6FQKBQKhX1hcUx7a2trJUVglA5TLcEYzayVL5t9mtnsTvnBozR4PHtUYWJRu7gukR+K68hs0MCMJPIJK59c5lNXrJzPieqoGE92HcXSI7B+IIKFTUVLiPJ3taCJSnkazcojxuHLihLAWN2YPUUhMipUSd3bbHxz6FfE6ObuZcaA+VylcYgsSRyOZvdxP/5Qhk+BGz3TDDXmo/eOvasUw+7xh6tPX5byXWfPcm/iomhcK6bL4zpKPKX87jzOo/5U1sEsxFD1wdJYdA+KaRcKhUKhsCFYHNPe2dlZSSAQMQPlv4gUi8ysVWB/pDxXx/AsL1pWz6Bm7tF1VHpRPi5isfbJS9VFrDBK0gHoRCaZr1nNXnt8mVz3jNH3MCm+X77eyifO9c60FIopZkppFeEQ+aBZFawU2h6KacylpvXHsDaDl5P0+gTbN6f87UmuotqQJQDhumf3Lao/wxYMyZTmKt0ub1e+enVdIParcluVhifz+arEUJl6nK/HfevryO9nPibT0tgYMp2PeidH71UVsRHdf2XVUBbNCKUeLxQKhUKhsC8sjml7FWeksmaVIc90o1nrXCwisw0/u2O/t4F9jT7Oj2MBmSny4iNRu9gvrmKhPZidcV0jFsAsSS3SEbEAZvLGEqOFKbgurOKMUq0aLsbvlPWTga0zkYqX66LqlMWI8ndeOtWfz76+zC+tfP+K9fk6zkUAZNYA+2Q/ZHa/elgx153967YAj1rMx4PTsWb14nSzmQpZMe7Mnzr3fZ08AVkUwX78t9nzHl0/grr/kUaE8wGwdTVqn7IgRUvcGrgcrmOP9a6YdqFQKBQKhX1hcUx7e3t7xb8WJYA3vy0zkGgRBjuWF5JXvm5/rmLYahF3ADh58uSec3h2Z+dGbIKXbbRPPjdbZIL7whD1I5erFliILBfRQvUe0QIObIVga4pnxtmynQcBZkccC+vrpTJ2ZfHtrA9gBhRZks6ePQtg9Z7auVnWJz6GY98zRqc0G0r5DqzGDCvlb5YfgPdFzJ51IypKwiNje4zWGra2tlbizL1fnxXR/PxEGop1s4xFqm5V/0zBb8eyJSezAqjMa1xmZn2wd5Uh0hdxf/H4znIOqMx4/PxG1+O6ZuC2Xqr3z35RTLtQKBQKhQ1B/WgXCoVCobAhWJR5vLVxTdssGYBBLSKRpc5jUYJKfdqTDpGFYVdeeeXKOQZlCvJ1NBO+mZjMTGqfLJLy4hsO8bC6sAgnCnuxY0zcw2tiR3VloRmb0tjU5qFSEPJ+/h/oM1P1mLSsr70ZHMiTnbBJW4W7ReNOnWPbI5GUEvVkqTW5DiwMzMzjBnaX2Dl+fCuXgV0vSynMz5OB71dm9lUiKb/djrV73QPlKgJWXQ3siorSmKrwybnrA1pYy/3i26z2qbSvgBaCqZAv/0xzu+x9YH0euQf4XazcDlGfqd8Fdq1li0UZWFDq+0S5CJeCYtqFQqFQKGwIFsW0DSygiMQIto9TnjKb9cfy8oOKjWXJVVSCjmhxDJ7lcd08W7bZ6ZkzZ/Z8rsMUjJVzSE40w7Zt1tccBsWJEaJz1Uw+um/MMntSLDLb6GHaPeI1uw9m1WC2kSW9UcyXF9zwdWEWw6wtC1VRVpvomVDWAL7/ERNRYXoRW2QBnUrpGj0rc4w6Gm9zS+lmbCnqW4aFmWZitblEOXycr6dhTlyWHav6yd8vfjfafeLUoZFA1I5hcWl2v/j5Z+tjlqRoLonUOklqGNGzoaysPex8aalOi2kXCoVCobAhWBTTHoYBDz300IVZH/sc7Rj/aeBZZLS8opotz9XJg1mk1dX7/JidWF3MbxzVg2ep6zBsAzMQxWazOipEPm1ml3a/otApTs/Jx0aMbp1ECK21tX1QHHoXLdnJVhIO7eFrev8+WzGUX9RDsSVmjFF6RzvWxqJia9E4YAaUJTjiczmJEPuEI8sF60cy5qXOUT5NPj/qC963tbWVMve5BXwiVsYWDn4OVQiTx5w+JrIk2P2wRWeuvvpqAHE/8YIwzJqz9wLrPTjZjVmyvDVALYurxlt231SylWiREb6n/G6JrDTrJGC5nCimXSgUCoXChmBRTBsYZzXsV/N+QsUiOS2eh/IlKT+HB7Minh1ni9Erq0BPmseLAfdfNltlXzP7wSMlLfuy5hTVvjyVHjNrd+/Si1tbW13lziU5yZSrSjkdWYdYW8ALLESsQynxWWEeqZRVOtm5RXaiOnJkQJRwhseMUsf7Z5KTCDFzzFKIcord7H71LJnKUFEmUXk9yXX42rwvY7GKYZsFLmL8ZmE5fvz4nk/bHtWNxzH3AY/ZSKfCybBYZ+TfR2wZUBYWHsNR3VRkT5R4ii0HKq2p37dUFNMuFAqFQmFDsDimDayyuyj21aDiCaPYQOXbZj9O5N9Q8cQRm2DfER+T+V6Y2aiFDnx9mCmyEjyLd4/SL3pEfjBmqipuMlLwM4PgPo/qGMXPK/C9jtgMq7jZn+fvJTNpYy22pCAzbK9tYKsFs4logRq2IClrkK+j8plHaR2BvcyHowRU/HzEVJmd8fcozS2zMk7LG903+9/6k33zkb6AxyBbMLhtDz/8cKqc5vGrxm3m02aLR1QPbjOPFWPatt+3y8Ye3we1CJA/luusrIWexfIiR2pxjmy8cepbaw8zbkDrLhTjjurE4y3y3atFlJaCYtqFQqFQKGwIFsW0bcbLS/6ZbwY4GH8Dz45V8n9AJ/1X6sdoH6t5eXYJ7LbLjuVFTZiJezbNCzdwXCYr3aN6Kz9rpDxn/5ayYGSLZ6jrR76ldXzaXP+IaTMT5TjqiMXafTFFLrN02x8xA2YpGRMxJhWxcF+faBtnJGOWyYzL18Wuq7LZWeSD38fHZsyXz+VscOzLjixMc4u19GSLi2DvHaU5iM5nS0Rm4Ztjr9HY535h/3Dkd7c8DdYOvqeR1UHlEFA5Jvx9sfLtuqdOndrz/fTp03uO8+1QFhClN/LtUIgU9SryIItwYDY+t6zr5UYx7UKhUCgUNgSLY9o7OztpRhr2a8zNZiMo/1QE5YdSM1FgdzbMql5mIlG7OE84+/GyHNfqehwj7ctnFS8jYi9KAZ4xHj5X+dB9PVhPkOXMBuJZeeTn5PKyfrL/7VOpxSO1K7N95VeLfH5z49tfx65tfnblm2WFuP+f80Uz045ibVX/MXvqif4wRM9tlP0LyJmXyrQVgS18XAagc6VnqnEDPy+KTXqGyMsIq/eZZ4H33nsvgNUlMrmuvp1mIeJPHrtR/gizvhij5iyO2buFx1ePn38udjvKbsZWzZ7lY5l992TVu5wopl0oFAqFwoagfrQLhUKhUNgQLM48/uCDD0pxFLBqYupJd8dQqSmzlHbKTB6FerDZ04R0bH7z7VIpQZVYpUfkZeZSFpn4820biy3YbJQl4e9JXKFEalznyDyuwsU8WmvY3t6WIjlgVYDGpmA2dft9HIrH31mMFbVJhQB5cJiWStEYXUelreVzokVNDGpBjKiuNr5VSCP3c9Y+NrXvR3AaCeyiBVYUsmQnUZIhX240nlV6Un6WWWzm/2fTLJuV/X4zV991112yXGDve8DeEfapzONWln9PmODMzPGcejl6n/IYmRMv+r6bc79F5nE2cUciYK7jft5vlxPFtAuFQqFQ2BAsimkD46xGyfOB1dm7YtwRMzT0pjUFdPIRnilGYWJ2jM1AOb2fD6PhEB+V1CWCYm5KAOOvp5Jq8Ew/YkssqOPPLMEN1z0TIPX0xTAMOH/+fLqsK9d7LnQJ0CExKkWpZ0I881chcj4hC6eP5QQPLPry4LCpuaU6o2OY/XE6S/7fH8PsJUrqo8Its9CsuVCpiNHuZ7GHdRYM4bpF41sxQq5bxIi5Liq5U7S4jTHfe+65Z0/5Bn//eBybwFJZhaLwRBW2x8JYv4/L51DNaEzNhc5lKUnV+zUK1cvGwRJQTLtQKBQKhQ3B4ph2ay0NhYjCpfh8tU3N7tjf4a8XpY2MrhMF5xs49aC1K2LadiwvDMBMyINni1xWlM6SGUM04/TXixgLM/h1wu1UPaJZsmHOL7mzs5P6b9lKo8qL/ODMxpmZRGky7RxmIMySPNO28vzYAFY1B+aD9NdWDJv1CxHznbP0+L7ikLK5EMooMQ+nLTVkz+86DCiz+kTH7uzsrJQXWdzm3js9vnNl2fNlq1TBvDhLVEeVxtTgvxsrzyw4vm5Zuk9DFp7KmhAVOpvpWNR7PAvf4vHN140ss/ux1lwOFNMuFAqFQmFDsDimDaz6TzzLUGnvsgQfyvehksf7mZXy2/KMzc9eVQrC++67b0+Zvl2ctjRSiUf18MdYXVjFyezQn6OsGjzD9d/VzFbdC/4/QzSr7WVW5tcGYla5H7Bfjj9Vak1glR3PLVhj7QB2Iw7Yl5kt58l+de7zaLvyQ7OFIVu0R22P7iWPDWY6PdoGtT/bNueXjJg27/efqk49Y16lRPZ9rJY/ZW1FlPiD329WR2PVUTvtHE7MwnXOLCFK9+GtQpzuV1laov61fcovnSVBUUrwbOysk6DncqKYdqFQKBQKG4JFMm32MUdpEA09flQ+d44pZnVilsT+Y/+/MS3zT/KsMlowZO76Uby4WlqUFxmJ4t0Vg8hi17n+KqY7U9JyeZF/LPNVKWSqWxWbyeVGKvW5OHPuT0DfM9YYZIppLp+1Ff4YxZJtv/nLozoqfULP4i9K5d/DzpQlKVKCcznrpC7Ollc0Cw3rIbIIlJ53h2LUytLiLWFs4VFM2/eTsrjYp6nJ/buKowQUovHH25QVyreLNSDKdx098/yuUu/znsihTPOgrKlLQTHtQqFQKBQ2BItj2sMwrPiyo9hXNeuOZr5qNqz8af449jVHcdn83Zg1Z9/JMi7NIbue8vHwjNGzjWxpUf89indW6soetfdc7KpHFseqoLKCqWv462THzcUGq1hlYJVVZNnTuB18vUjdq5ZRVZnfIj2E6tuIabMfX/mnIxalLBSM7PlVMcQZW5wbO14PEdV7js2vE8vL7YgyFvIyu3xM9FzyPsWEbWEPYPddpSJossVgOMabFyqKchcoDQi/s6LlMOcyWfYowXl79H0uRv6wUUy7UCgUCoUNQf1oFwqFQqGwIViUeXwYxhSmZp4ws0sUTsVmlkwQwuYTZWKPRDBsPuJjI3O5Mq9cjHm8B2ot5kxYM2eyjULP1hH/9Z4T9T2b6tbpvx6z7jqLYyjRU3YOC3KUQDBaqzraF13ft0OlLWWhTiYmMqjx4cvl/rO69oRf7sdNwseoFJX+mB6RqdVHCZ2AVTOucl/MhSVG36NnTJml51L5+nMMPA59Mh97v/En18PaF5nwVSrfyDyu6s+uMHbt+W1z4XeRa8WgxIGReXzOhXNYWFZtCoVCoVAoSCyKae/s7OCBBx5YWS7SxBjAbriCms1nISNqxs6CBs9uVLITFn342a0da3W17zaLjUJ9DiKAX6VWtev7Ga+atfKSfNEMW4Xy9Cz+oOoaLUjAIsBInMJQKRWBVWGWWrwgSvM5F7IWLayikIlg2KLDgiBrj+8Lu1e8nKu6t9FYm1uiM9rHLEUx8MhCothSZrng5zULBVwnrWhrDa01+Z7w5XCbe9o6VwdOhgKsWklU30apifmZ5bHj3wOWTMXescbClQgrs1wxK49YtXpO7Lln8W4UqqesG5m1Y+75zdh5Me1CoVAoFAr7wiKZNie+9z4YDk1Qs/7Mt21QYTvREnk2a7WUfJze1FsDeJbKs8soaYy12RjUOv5itZC8WgTEt4dnkcy0I6iZ9DpMWyVXiUJzrL9UikWr09bWVjpLZotDT4IUPlfpIqJzeDyx1SZKO2vHGGtW7CFLkKGSq2TpZZUlKbo+j2+l4bDv0dK6nHimh2mrUMZofGcheBE8047KjUKs5r4rn7WyMnH6Yb+PLXrRwknKksTvsCiUjdl5lmjGoPz8hixhEn+yL9sQLd6UpQHmcxTDVu+faF+FfBUKhUKhUNgXFsW0h2HAgw8+eGHWFSXFZ0aWLVnpy83Qk25RMW1D5J/mtJHRovAGZktzaUT99Vjhq5JtROez76zHh8vl8ww/8r+phQGYhUZ6AmMgGdO2MnlRgWjxF5X2s0ctqph2pGC2/7n+mS+Wk0vwwgqmi4gYpNWB00lmPlUrl5XffE+jxWaUn1f5X329lX86S1/JbLzHMsI+4R5E56h3CLPMLIWmqmOUCvns2bN76qCSBkXLXnqrX1RX/4xFehdfp8xPzJYjvj+RApwTZ6lUv9G9nXtuDdG4m9NQRNZVvu5SUEy7UCgUCoUNwaKYtvm0eelKPwM1/zb7xtSSnfy/h5r1+5mVzVqZYTMDihTAdgyzosi3xMzX2m51se/s7/fncDym8nH7bZli1tcr8+/NMa9on0pJ6PvK7rvNziOfn4Kd41kH+2C5PVlbFbgdfsZuzPr06dN7vjPjjiwSzHCzRUZYFcxjlJlJ5CdkxsPnRKkouW7K4hMpjpWeJPKPKj/3Ov7vHo2IYvLA6rtCnRPtY+uVigTIolYMmW6Ex4xi6dF7gOvMTDuy7MwtkRmxWM69wH7qaLxx29XSsxH4Pcd1Vb703vIPA8W0C4VCoVDYECyOaZ8+ffoCO7IZqPl3gF2mnSXOB3Kf2FxmoogBK3V6xCpVjKUhi1tVdVEqb/8/z1JVRi5/PZ4Vq3b7NihVcjYDVorZbKEAztLUE6fN5Ud1UAwo8kvOKbAzBse+SmuHLdjAcfz+esp6YoiymjE7VtmtohwGakENvre+Tsbo+JlkK1SUH0BliePjAK3vyBTnynepELHq6DlV6uboOVXZ01QkgmfavLwvX58XN/H/K0tHpgDnYxSLzpTgSpeT9T2PWT7Wj505zUlmceHxwPHgUZlLi882LLNWhUKhUCgUVrAopj0M4/J4xqwjNaSxB5vds1K1JzZYKaSzuE8Va23IfDDMtKMsP+yzZgacKbNVDmDl2wJWZ9CRv1O1QbHObEZvYPbCM1/vt7Y+sXs+59Pe2dlZuf++PRz7PMcq/La5jEpR21W0AFs5PJtiZmt14yUafbs4tpatPxnzWSfbnIHzJ1h5pvvg3AVRpi9mRWpc8P9ReyJrUY/62WAx/jwufL05f8GcGtlDqdx7IkLmoiwiCx8/j9G7ic/hOvFnZH1QVrqLAfvdo3zsKg9FZnHh+vN7Looy4XfjUlBMu1AoFAqFDUH9aBcKhUKhsCFYlHmcYaExkTjJTKUqCUQWgjEnKorEFkqow2UDq+ZKg9WNEwuoa3uw2TQSBqnlNTOTnUGlpMxEZUp4lolyOP2sbY/EZryIQORW8Nc094pvjy/vxIkTe+rL9YxMgHNmXAOHZAG75mGrt7WRkwb5scNiHt++6Hq+rSr0jvs6MiPPJZTIREwqlWtkkp4zJ2fCOPWcZql3e8N2fBrTqD1cr0y8alBpPtkNF7mg2P2nzONRP7HYLxOIqgVPDtLkHYGTVnFdIwGmChc0RMlc+L3Dz3jm0lsnXPByoph2oVAoFAobgkUzbWPTPuTL2KqxcBb5RIn059hrlsaUhQwcqhKlr1QCE549e+bIzFAxH15uj/9X7fD18OWr6/CMOyqTQ8wyds7sQgnQPHNgdrGOWCpLBqFSqvK99v+zKIVZOt8ff44xbg6RsnO90JLbyCw6Sl+pwhK5D6LnQC3faMhCvqwd1i7+zNKZMvPJxHJzIsDovq2DYRjw39s7dyU3liOINmjSl63//yzZ8mmQsYCsils6yKweALtLTEQeh0tg0PPqATrreb1e7yw5fb+7kp2q/KoLjnXBslMa59GAqv6eK2usAlJdSiufwX6N+V3FZ3o6x5rzVNScj2qeOyvNFCznGpNM12T6XfibRGmHEEIIJ+GtlXbRi0SUImPBiiMpX8UjLSW5yqLvRSlR+iV3ZQz730zp4YpbFRiYCiD0bVVaQ71X+3MNRDrOF+dW6318whgF5dP+LD8blbZq3ML9cPXuSkJS1fS/OWdYfKSnsvGYeKzq2KcSp7vzK5x6UWqZ6psphzy/qegFfepq3jn/8eRX5rO3uyYfHx93pYP5fofXa0oXdNYq13hHbcMxVezDbn9KvToLkkur69eB847fIYUqVuRK7rq4nI679lPTHpeqp+ZFlHYIIYQQPoVTKO3u0y5fSEUC1+qYSketQAunyqdi9fTBUJEqf/FOIap2cM5/x/f7djsfNhU+j7eP71beqmiIs1ioRgHKj7/WvcLuSpv+tGeiONV9cRHT6j65kpa870eOje1d2Q6zj8P7PClt3iuXPaAKjTjV4qwo6nyojpyPve+H11OpJPcZWm2maG+Oobjdbuv37993sQDqe8D5tNV+eS9praHaU3EqfIZdxsNa99Y5V4Sks8s0meJ++Fl+N07fVYwE51w6Es3tCr+oa8Jn/si95n7fhSjtEEII4SScQmn3lQ7bG1YEayk05afcqdgjipRK54ivzJXUdLm4/TNOxR7Jlz3yvtuWK1+ltKfWi2tppe2UDmMUuhKnv/uZ6OA+HpVOzZnypxXquHeR2FRTa3mf5c+fP/9vjB497qwA9B9P99JFx6t4CJ4Xt1VKm89EWQ4mtVJQJTvFOuWSU/m8mk97u93Wnz9/xmd5F8GujsHlfVPdTSqWqnU6R6pH7n9XC2IaQ7H73pmUNr87aK2hJbMfN8+D86M/83zNXRMV9a/GeweitEMIIYSTcAql3aEyo5+rVkWqHSBxVZ/6invXcH2KjHX7U4phV03KRYSvde9fdZG46ryIi9qcmhnscjzXulfupXKpsFV7wsky8QiuzWEdm6pk56LH6/8uxqGPU9enFD3VTL/m9Vodq8s86Di/usvPVdG83I+LfO/HwKhxnrdSdryHzpc93QPCLINHqTxt0l+rc9wptmci810L3z4+n21Vj8I9f3x9iqFweedTdLybX+r71FlwjmT/uHl1JHqcn3GNUtT+dtUwv5so7RBCCOEk5Ec7hBBCOAmnM48zOKD+nVKwCprSnWlmMiO70nnKTOX2qwIcHk1r6gF3NB/SpKmaWTjcdVQBfs5lMJmT6jO1zRSIxh7jr6Ze1D6YGsXgrn7/nYlxCnws6JZgMxvVG3vq7e2gOdKZLVlutr/nXB6q2AXnFdOPaHJXgX3OpKlKsO5S9V4NRON+VIAVXSfc1gXJ9XEYEHskbZCBaO59dUzu2CZXgEurms6P5zk1QnHvudQz5Vpx7j/lRnHlmF0godrPq265zyZKO4QQQjgJp1PaBRUaA51UYQ+3SqSaVOH/BcsIHim76IrWq3QkBjwRdX6leHgs/HdqMlEcXQmv5VUTx1rrPrCqzp1FVXpJT9c85VVqXDZpUUFXLM7ggv2UpcQFj00BSFRfR9JNlIVA7U8pbXd/qZp6sBnnzs7iolrQFjw/VZCIn9kFTT3D9XodU+dqbFqtpn07Na7G5/tHgwoVnA9TypxT0rs02f63s86o+eEsOq4ZiFLartDRkda67hnp2zmL1bsQpR1CCCGchNMqbSqzKvCgVojOx0olxJSctXy5RaUiCud7cY3suU/1f6JWk84vVaiSngV991RgSnXQKsAx1HWkn5r/9uYwX13UoPZZc6iKnPTUsLK+1LHQf1uvV7GfKTWO15T+8bXuU1Kojo8UxtjNpX6flHWhH7OyFtDP6nyzKgWLMQ3OH6msUByDVptX+PHjx6gqnZp8ppmN85WqZ/qRNptUrXWNp0Iiu/QwHs+EK7r0SEEo993Z/+accaVKFYwn4dj9mD4rVuKzidIOIYQQTsJplXatrkuZcdXVlYGLzHZNGZTPj237JuXjVCQV9met4Kg4XDSv8pnt/DZTEQeqpskXtFsV1/9Vw5BdW8VXqX2q/dFCwLky+adLubPZjFO1a3nlOUUAO78k76lqH8rCMq6Yi4rzUI063DHyPV7PKWreleX8rOjey+UyWkjUvl2RkCOFOGihUkV9ahxa/6ZYE+ePph9eRUqrdsGKKTreFVtSz6/7HuX30tRm85nWvdzfVFCpSPR4CCGEEJ7itEq7YBRyrVB7/qxbzblIRgWVyLQtV4lUk1/tI9k1VujbuDKW3K6/7vJZJ+VTr7GUKHPWVc5y8VWKu46h/NIq6p0Kx8U0KB8jYyYm3z8ViGuwoeIhdtkR9Mf2Y5tase6gJYfzo8MsApcPrHzaHJ+WkWfLmNYYzkffj2/X8KLPb2dxcOes1B7rULjyn2rcR3Kfp9aofT8qynqHsljsFLbyTzsr1DNlRqdnxs3NdyFKO4QQQjgJp1fa9IWqhiFUNlS8kw+GkbJc+ZZ6mnIDi+9asTnFO60q6duiH1E1YOH49HH368imH9x2Uknf5VOiqu5/uwhwFzm/1j/xFjVG+bbZbKR/lvtx+eHKkuRUsot8VufHzx6p+Mf5QIXd762LUuYYU263iyZ/hcvlcqganbu2jPZfyzcXKaaYE0ZPu+8d1YyDTJYIWjF2kfiTVYjbqOvorICu6p3KQDkSFX+UI5HmydMOIYQQwlPkRzuEEEI4Cac3j7vSoFVspXOkNB+ZTItqrH5MzpT21WZyV3r1CM4cp1J+itqGJvBu4nRBeDTZHTHhfzW9wAvTcqoQiyvzqcyVNR63UQ0VWFKXgUfqWuzm2dTf2M0VPitTQJB7nqbAJ27Deafm266v9it8fHzYnun9OF2/+aJfC+dq2pnJ+/74rwtMU6/x3qrGQUz14v9dwKpiF1SmtnFc4FjhAAAB9ElEQVTm8GnuFK+Yxd0859/vSJR2CCGEcBJOr7S5Aj2yup/KLPb3O7X6qmCiKQiCpQeZgvFdqQQuraJDJUXFMxWN2AWiqMII7tg45nQ+X4WaD5UGVsrXNVqp81CNNepa/vr1axxjrfsAN7dfZXVwpSF5nyalzeeIAXH9bxe4RRXVr6ub+y4lsL/HOTrN60e43W7rer3eBThNLXpdqp8K1HKFRFzzmT4+y6XWWOo6TRaV6fX+nhtLPZe7NNGpFKkrHjR9drf/R+bBZL17xVL5HURphxBCCCfh9Eq7mIoE7Px2R9iVEVR+IucfKr6qIcYR3w+vl1st1zGqlTZLAHK/kz/Kvd4VzVf4Lh+FjUyofAt1DahsagyVHuQ+49p69pQvftZZK1TRDaewpgIWLi6BJV+nYjtUqtxWzdWdOnuF6/V6p2b7MdAf7BqfqBK4xMUcqOIqzo8/WU14f9w9Vtu6Yz1iAXNxCsqC4LaZSpJO/u5XUdfhaBzDdxOlHUIIIZyEyzvZ6y+Xy3/XWv/528cR3p5/3263f/UXMnfCQTJ3wrPczZ2/wVv9aIcQQgjBE/N4CCGEcBLyox1CCCGchPxohxBCCCchP9ohhBDCSciPdgghhHAS8qMdQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEv4HD52Ns73or84AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -724,7 +700,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAE9CAYAAAB5gQopAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXv4ZdlVFTpWVXWnH0m/QicRw0u5XhFF/AgGuMpDecTwkqAGhGDkekluRFAxCIIkiGBAeXgJSEAhxARBhXxRwjP5CJHnTeR5iUQTiBBCMOlOp7urO93VVfv+sc+smjXOGHPv86tfddXpM8f31Xd+Z5+911577bV3rTnmmHOOaZrQaDQajUbjMHHiSneg0Wg0Go3GlUMvBBqNRqPROGD0QqDRaDQajQNGLwQajUaj0Thg9EKg0Wg0Go0DRi8EGo1Go9E4YCwuBMYYzxxjTGOMu8YYt9Jvpza/Pf+y9XBPMcb42DHG88cYJ2j7+2/G7JlXqGuNY8Dmufj8K3TuafNv6/xjjJeOMd5C296y2f/7THs/tfn9Z8x5+N9LV/TxxBjjV8YY/0D89pFjjO8fY7x1jPHgGOPuMcbrxhhfM8b4Q4sDcBkxxnjNGOM1x9jet4wxfuS42tu0+Zbi3pz/d4zne/sY4zuOqa332rwXP0T89gtjjB87jvNcKsYYHzrG+K4xxi9v5uh7in3fa4zx4jHGnWOMe8cYPz7G+CCx3weOMV4+xnj3Zr9XjTE+9Ah9+7jNPX5o12MdTu2w780A/iGALzuukz/C8bEAngfgnwI4l7b/PoCPBPDmK9CnxvHhmZifn+++gn143hjjpdM0Pbhi33sA/OUxxmOmabonNo4x3g/Ax2x+V3gxgBfRtnesON/nAvhDAL49bxxjfAmAfw7gpwB8JYDfAvBoAB8F4AsAPAnAX1rR/uXCc465va8H8FtjjI+bpumnjqnNzwDwqPT92wGcBPCsY2qf8VQA7zqmtt4L83vxTQB+jX77PwGcPabzXCqeDOATAfxXAA8C+NNqpzHGSQA/AuBxAP5vzM/RVwJ4zRjjQ6Zp+oPNfo8H8LOYn52/tWnzuZv9PmyaplX/H4wxHgXgOwC8HcDtR746wi4LgZ8A8HfGGN8cF9fYHdM0PQDgF650Pxp7j5/A/KJ6FoBvXbH/TwL4BACfifk/98AzALwFwO9i/s+E8XvTNB1lvv4DAC+Zpum+2DDG+DjMi4B/OU3T36P9f2SM8c8A/NUjnOvYME3TG465vd8fY/xnzC/9Y1kITNP0y/n7GONuAKfW3qcxxqM276G15/ulHbt4JEzT9BsPx3lW4rumaXoRAIwx/gXMQgDAXwHw4QA+apqmn9/s/4uYn6kvAfClm/3+DoBbAHz4NE2/s9nvpzb7PQ/A563s11cAOA3gPwHgZ+jomKap/IfZ8pkA/PlNB741/XZq89vz6Zg/C+BVAO7dHPNqAH+W9nkxgLcC+DMA/guA+wD8DwDPXurTrscD+AAAL8O8GnsAwK8A+Ayx32cD+E0A7wHw6wA+DcBrALwm7XMdgG8G8P9tru/tAP4zgD+e9nn+Zlwu+rf57f0335+5+f5czKvDx4r+vAHAK9L3GzBbGL+9Oea3MU+MEyvG60YAL8DMRDyw6fcPAnj8Ee/bkwD8HID7AbwRwCdvfv/7mCf33QBeAeB2On4C8LWbfr91c/xrAXwo7TcwT/Q3bq719wG8EMBNor1/CuCLNuNxD4CfBvDBYgyehnkRdh+AuwD8BwDvS/u8BcBLAXwWgP+2GYfXA/hzaZ/XiPv7ms1vTwDwvQDethnn3wfwwwAet2Zer5z7cc0v39zHG9JvLwXwFnNN3w3g1fTbGwF89eaafkad5wj9e/Lm2D9D238MwP8CcO0ObS3Oeczs24T5eX0hgHdu/r0UwC3U3hdv7uv9mK3c1yO9C7D9vEfbfxkzM3LnZu58C+aF04cD+JnNPPkNAJ9k5t1ZAO9zXHOA2t+6d+m3FwB4CMCfxPw83wvgBza/PXVzT96+6f+vY36OTlAbbwfwHen7szdj8mEA/j3mZ+73AHxjdW8B/HHx3EwAPmvz+y8A+LG0/1M2vz8VwL/Z3K87AXwDZrf2RwH4eczP868D+AvinB+/GZ97N/9eCeCDdhzffwHgPea3lwF4s9j+AwDemL6/CsAvi/1+GMC7AYwV/fjjm3n75LivYp9nAvjVzf189+bvz19qexexYLyIv2BDJ0psfD8/DeDWTac+D8BNAH56jMGrqpsAfB/mB/bTAbwOwL/aWA5rsHj8GON9APwi5hXd38P8svglAD84xvi0tN8nYL6pv4n5wf0XmB/2P0bnfBSAx2B+EX8yZjroOgA/P8Z4wmaff4154gLAn8PsCvhIcw3fh/mF8vS8cYzxYQA+CMBLNt9PAfhxzLTSv8RMn/5rAP8Ys5VlMca4FrNF+Hcw/0f+KQC+EPNDdetmn13v20s25/8MzC/3HxxjfCOAjwPwtwH83c3f3ya69HmYH+4v3Jzr8QBePca4Le3ztQC+adPvT8X88D8TwCtZd4GZhv5kzC/5vwngfQG8YjNmMQbPxrzweQPmVfyzML8cf3qM8Rhq789jXs3/Y8z35SSAHx5j3LL5/TkAfhkztRn3Nijlf7v5/lzMFvgXYV7w3CDG4VLxlZjpwS9auf9LAHzsGOOJADDG+AjM8/slxTFjowU6/2/FeZ6C+T+HX02NnMLsgvjJaZ0r4yhz/l9i/o/jr2Ne3HzmZlu09zmY/7P6d5jn3+cA+I8AbttqaRvfgvnl+nTMDMwXb7a9BPMC62mYn6cfGmO8Fx37XzD/x/UJK85zOTAwL8p/AvOzFM/kH8G8EHjmZvvLMP8H81Ur2/0+zAbRZ2C+L38f83Pj8BbMC2xgNpbi2fnJhfN8G+aF3V8D8F2Yn61vwvyO/Q7MY38awMvTM4oxxtMwz593Yp4Tz8D8vLz2GLUoH4x5DBi/AeADN+9eYF4Iqnn/AOb36ftWJxljDADfiZll+0Wzz18E8D2Yx/PTMI/XizEzETVWrEKeifnh+kDMD8xdAL5789sWI4D5wboLaSW+udA7AfxQ2vbizbEfl7Y9CsAdAL5zRb9WHY95srwDZHFvButX0vefw3xDR9r2YUjWnunHScwv+XsA/L20/fmbY0/R/u+PxAikvvw87fctmFfAj9p8f8bmuI+m/b4C8wSzFieAz98c+2nFPrvet49O2z5ks+2NAE6m7d8E4AxtmzA/mDfSmJwB8DWb77dhfkBeTH38XL6Ozff/AeCatO2vbLZ/1Ob7ozGvjr+b2vuAzdj93bTtLZtxvzVte9Kmvb+etr0GwgrDbHV80dL8vZR/SJY65oXHnQBu3nyvGIGx+fvLNtu/HcDPuuuBtt4mAB+40L8fjXbTtsdvjv1nYv9T+V/avmrO44LV/r203wsxs3sjff+lhb6/BpoR4LnzS5vtmSmK5+BviHZ/Fyvea0ecD3Iubn57waZPz1poY2zG/2sA/AH95hiBL6f9XgXg1xbOE6zA54rfHCPw7bTfGzbbn5S2/dnNtqdvvp/YjPmP0LHxf9gLdhjfihH4HdB7arP9Czf9uX3z/f/BzJLeTPP+f0KwZ6K9v4XZ4Lot3deHaJ+vBPC2o8yhncIHp2m6E/OK+vPGGP+72e2jAfzwNE13pePuxuzT+Bja974pCWim2W/135FWRwvWyOLxmCfTjwB4N7Xz4wD+9Bjjpo3g40kAfnDajOimvf+KmYq8CGOMvzbG+MUxxl2YabfTmP+zcWOyhJcA+IgxxgfGNWN2U/z76YIv7ymYJ83P0XX8BIBrAHxE0f4nAnj7NE3/qdhnl/t2epqm16bvv7n5fNU0TWdp+ynMorGMH5mm6XQ6z1swvwSCNfkIANdi/s8r4/sxjzf35yenaTqTvv/65jPmwUdiXtS8jMbudzd9/Ghq7+enacriKG6vwusAPHeM8cVjjD+1WcmXGGOcpHm+y3P5PMxz77lLO27m9ksBPGNjqTwdNRsAzNbuh9O/31045r2xTlCIDYt2Jv9Lz/muc/6V9P3XMRsHj998fx2ADx1jfOsY4+PHGLuwND9K338T83PwM7QNAN5HHP8OzONiwe+6NXNnB7xcnO+JY4x/M8b4HVwY/68E8LhsWRdQ473mGdkVauzvnKbp9bQNuDD2HwzgiQBeSnPnbszzgJ/5y41vx8wcv3iM8QFjjPfebPvDm9/PuQPHGI/DzIh+6eb/YIfXAfhDY45geOoY46a1nTtKHoFvxmyB/BPz+22Y3QiMt2NDQycoJeoDmAcMY4z3x/ZL4v3XHr/B4zBT0WfoX1CLj8WsZL0G84qLcZEwcozxqZj9P/8NM930ZMwvx3fQeXfBD2FeTDxj8/0TN/3OL+nHAXg/cR3/b7oOh8di9uFV2OW+3ZW/TBeoXr4fsZ3HRYlN/wAXHoqgai/qzzRND2FmfJjK5YcjFk9x3sdtPl+F7fH7U9geu4vaS4uxNff36ZgXT1+K2XXwe2OMr1r4z/3V1Ke11CymafotzKzXF48x1qiIXwLgT2BeQNyIeS5X+P1pml5P/5aEZtfhwj0I3IHZOuf/KN6JCwuM76Lfdp3zS/PgJZhdeU/GbAjcOcb4IXqnOKi57Z4DNU/uB3D9wjn4OnnBe1Scm6bponfb5j/FV2L2oX81Zubjw3HhvbhmrqvxPuo7sIIa+6V3TTzzL8P2uH486vflrn3j9yMwv6POYWYiMU3Tb2L+f+jPYY6U+T3M7uoQ+qp3byC0Xa8YY9yyWaQ9CgA232/YnOPHMRuQfxSzK+iOMYcyfvDSRewSNYDNye7dqHu/EdpPdydmwRTjCdg9BOVtmCcnb9sFd2D20X19cY6HME+Qx4nfH4+Z/gl8FoA3TdP0zNgwxrgG6/yMEtM0nR5jvByzz/J5mCnw35qm6WfTbndgZif+mmnmLcUp3onZH17hOO/bEh5vtsViJV4wT8DsawNw/uX1WGy/gJZwx+bzmbm9BBc6tzM2L9y/DeBvb1izv4H5RfsOAP/KHPYszLqTwK5z/Gs25/lHK/r33zeq5i/D7PK5a+mYI+AO0MtxmqaHxhivBfAJY4xr4z/NzeLu9QAwxvgU0c5R5/wWNozIiwC8aMw5UT4R83vsBzAvDi4nbsN2uByD33VvPKZzT2LbB2F2ZfzVaZr+Y2wcY1zRqI1jRDzzX4JZjMyweQF2xG9gdksw/gTm/yfO6wKmafr+McZ/xKzLec80Tb81xvgeAP+DF2qirSdBv/fehXn+flacA8D3b3RPfwEzk/BKzO5Xi50XAht8O2ZhyD8Vv/00gKeOFK+86dSnYvZlrcZmEF+/uGONH8NMDf/GNE33u53GGK8H8JljjOeHe2Aj2PsAXLwQuAHzwiHjGdgOvQpr5Hqs+4/mJQA+d4zxSZgVyrzI+jHM4qd7N6vLXfATAD5rjPGp0zT9Z7PPsd23FXjqGOPGcA9sLLKPwLzyBWY3wYOYJ/er03FPxzxnd+3Pz2G+Bx84TdP3HrnXF+MBXPyf9xamaXojgH+0ESrahdhmvyNjmqa3jTG+DbMYdE0I2Tdgtk5eeCnnLaDcLXHen8S8KF8T+nQpc77ExvXzA2OMJ+Pyxd8DOB9r/r6Yo1SqPl3qu24XhFvkvEttzDHqn32Zz5vfi5cTv455Qf1B0zR902U8z38C8NljjCdPGxHfZpH5VGzn34iF7xs2+70v5vn9vIVzPAezazPjCzC/D/8iBJO9eYe/YmOMfP0Y46aNq1fiSAuBaZoeGGP8E8wqRsbXYFalv3qM8fWYV6P/EPPEc+6Ey4mvwkwlvnaM8ULMVsStmF/Mf2SapsjO9jzM/2G+fIzxnZjdBc/HTI1n/82PYU7M8s2YQz+ehPkFzJZVxCN/yRjjRwGcXXjQX4154v4bzA/Jv6XfX4ZZEf/qMavzfxWzH/2PYlaI/uUpxWwTXgrg/wLw7zZszi9i/k/skwB8y+Yl+3Det/sB/MQY459jpri+GrPv7puBWYuyucYvH2Ocxqzx+CDMC8+fwbZvssQ0TXePMZ4L4Ns29PmPYqbs/jBm+vU10zTJrHsF3gDgOWOMp2Om7e7BPFdehQvRJ2cwR7PcinluXU68APPL4WMw+9Utpmn6IczuqMuF1wL4m2OMx07TFJYZpml69RjjywC8YMxRKi/BbPFfh9lK+izMLrKwYC9lzm9h81zfgznk7H9tzvkMXP578ycxP0fKMr1S+DXM75tvSG6rL4FWth8n3or5Wf+cMcYbMYf+vZk0OZeMaZrOjjG+EMB/2FDnP4iZJXgCgP8DwH+fpskuhDdG0Cdtvv4xACfGGH9l8/3N04VcDv8Bc86M7x9j/EPM8+srMDMO35jauxHze+61mAXFHwLgyzH79S/KAzLGeCuAX52m6ZM317KVx2GM8ZT5p+k1adsLsIn0wuxqeF/Mi4hfqBYBwNEZAWAOU3gugP8tb5ym6dfGGB+LOfzrezGrUX8BwMdM0/Sr3MjlxjRNvzPGeBLm/9S/DnP4yB2YIwS+N+33k2MOL3oeZmHNmzA/GF+FjZ9ng+/CLEj5fMyWxOswW80sxvlhzMzJczZtjM0/189zY04B+w8wi9XeRL+f2bAFX4b5hf8BmF+ab8b8H6N9gDfHfuLm2r5g83kH5kxXd272eTjv20s2fX8h5gXX6zDHEmfq6ysw0+nPxjyGd2yO+/JpmqywxmGapheNMX4X85z965jn/u9hdhv9yhGu4esxi0P/NWax3k9jfnH8EuZF1/thXkC+EcDnTNP0iiOcYzWmabpjjPFNmOf5lcYrML8IPwXpGQOAaZq+YYzxs5jD7+J5fA/mcfoBzOr0s5t9jzznDX4W88LiGZgzpb4N8yJ5ySK7VHwK5kXiay7zeVZjmqb7xxifjvk/oZdhE221+VQhv8d13jNjjL+F2fB4Nebn8LMxC4GP+1wvH3Mo+T/CBQPr9zEvBJfSZP9hbDM48f1FmN9LseD4S5j/038R5oXqzwL42Gma3p6OPYeZ4v88zOF8v4P5/4ev37AEGaegk3st4RcwuyWfhtn4+APMhus/XjowwmoaAmOOt34TgK+dpulrrnR/HgkYcw70r52m6SuvdF8alw9jjBcDeOI0TR9/pftypTHGeAPmiKTFF3KjcSVwKYzAIwpjjOsxx72/CrO47o9gVn7fh9nqazQa6/HVAP7bGONJD7Pv+6rCxup+PBJN3GhcbeiFwAWcxew/eiFmZfppzLTxX52mqQrtaDQahGmafnvMFTZVJM4h4XrMyXMuR3RGo3EsaNdAo9FoNBoHjKMkFGo0Go1Go/EIQS8EGo1Go9E4YPRCoNFoNBqNA8ZeigUf85jHTLfffjtOnpxDLaM2x4kTF9Y1sW3pcxdUx/Bvu7Tv9l2j3+B91pz3KNd+nG1En1Ub8Rtf17lz5y7aHt/z32fPnr3o+5vf/OZ3TtN0Uf792267bXqf93mfVWPr+ua+523HMca74Chz5VL2d7/l7W683D0+yrF5Hrh2d0Hct7e97W1bc+eGG26YbrllTS2e9efJf7t3E3+/XLqu43h3XO55/3C/V/n/ljXnf9Ob3rQ1d6527OVC4Pbbb8fXfd3X4aab5qyL1147l3yOhQEAXHfdXHvimmuuAQCcOjVf6qMe9SgAevEQNz9vy9/5Qc3n42N4O3+q9rgN/s8v/61ehKpN9Vucx11vdSxf15rzuT5Xx545c+aiY97znjk1+IMPzjlk7rvvQkK5+Pvd757zPt17770AgKc97WlbGfae+MQn4pWvfOVW+zE/8rVxf2Ohof7D4W187dULxL10qv84+b7Hd95ewbVf/YfKiy03RmpbfMbYP/TQQxd9j8+8b+zD3x944IGLPgHg/vvvl307Cp7//OdvzZ1bbrkFz3rWpWUj5vcRcOH9Ffc9fuNnjOcF/5335XlQjYVbiKh3WmxjI8y1lRHHuEX+pSC/i5eMPTVXA3F9sU+0e/31c0bkfN94DOLzKU95SpnZ82pEuwYajUaj0Thg7CUjMMa4aGXm9slwK+I11CJbztWK0612d2EE1liPzuqJVS6vbPO2vHrO++xCDTprRVGeS5Zm7iMf464zX8OuFkZlyee/3X1Wlhn3f2n+qWPd/VfWPt/ftefN+zhWSYGfAcfyKNaCrfm4d8EAKAvU/cYWb+47Mw3K4rvSUM8gX2P8tgtT594lFbuz5IrI2ytmU12fOpZRuTV3vXd5f+7jUdwVa45lBmefQ/GbEWg0Go1G44Cxl4xAYM2K2VnMserOK0nn53Ur9myNOP+XsybVtlhZVlqEJUusstDWsCJLYGuFxyZfHzMPrm/qvjl/fGXZOMujgrKKnRVQMULOCmHrm8+bz712vNRvS777DL4+Pq/CElumzhO/OW1AnDc+Q/+R+xjjyRai6g/rPq4mRqDyvy9Z2WssWvdsV3O12scd4xia6j3nnoG1vwOetax0LEcRiK/RSTCO8t652rD/V9BoNBqNRuPI6IVAo9FoNBoHjEeUa0BR6OwKiO1KUMR0tKPKlJAkwoJ436rPTgDFYSkVJexoUEUns4CoEl7x+Xj83PWp8Bpuq+oj94kpb75HCmvEgmvEe45aVGIuprl3oQtdf/leV7kTmEJXVKoTvfLvys3lXAN8neqYeNZibrhwwhw+GOGi7E6ozsfPtBLMXilU88GF1S69h9QxvE/lLt1FLMhw1PkaoTP3XbmXqrBU1Ua1bcnFq67DuWuq9/caF9vVimYEGo1Go9E4YOwlIzDGKFdmgGcEeLUdVgT/vbYfAbYEnWVYWZHcN7XCZGttF/FWwLEJytpea0UG1Jg4cRqHVlbXw31XIk/3nTFNUykkYvEmW11834DtpFZLbIi6Jv50AlBgWxC1xurl8XbWm7pv6l6pfdUxIQJ04X1qzJjhiGPjnqjny41jTjp0pcAsRWY/eGyXrPyMJQGeeofwb0sJrarfnMA6wzGO/P5RjFfMlfjc5Vl3zEZcd2Yvg9HdhengcVwKab+a0YxAo9FoNBoHjL1dwpw6dWrLWq18TLECZ0sqhyxx+FFgyWeXtzEjwJZLXjU6izOg/Iqub7skBXFjwxYb4HUTjpGoGAGnsVAsSZyXLcDKX742MdIYo7S23L3jz2AB8t/umqs+sUXEFjPPWdWus7Yqi2lpnqvfKp2EO5bv3S7hXHztVbIYZg+uRp8tv4eA7bDhpfS9ylJ3lrlqi5kA5+tW842xpG/Jf/NzyommMkvCTEC8p907WIUruue4Cql1bGWVKKk1Ao1Go9FoNPYae8kIhEXnVs7AhdUlrz55BR3q5Lwvr/TcKrQqWsGWbHzP0QW8iufVp7LqlpLxOMtJ9ZuZgFh15zHh39hK5fMqxoPHooq+4IIr0ZewuKuCMksRDQGlSVCaE7bUeEyjgFW+NrbqXV9UIhzHXqkIF8cAOOar6sNRkqYwU1RFnLjz8JjlMVmyzBTDFnMknrH4VMnDrjTyeGVWElg3Z9ZCKeTjby7MxudRxyxpkKp3Fms2+N2iik6thdqfmYDM4OXted+l66p0YfuM/b+CRqPRaDQaR8ZeMgIALmIE1IqfLdcl/1Ruh1d4rB1Qq162GmOVHavQNce4uFpVbGZtCsxKxcuWplrtx7XHKt7F8Sv/G5+HLTTVN9YG8HZ1zJoCK4GIOOGVvxrH2IdZClYYA9tWDavE8/kBHa3iNBtqHrjCOnwP2drjdlTfqpTGLpKhyu/A7XLfg/VRjAePJ7NZqtgMs3DB3OTS1VczjmL5O1SMELNWS6mOc9/WRvfk8zADEGWjL4WpUe9BZoScD19dpyt2VUXlMHO4j2hGoNFoNBqNA8beMgLTNG2t/FXUgFNgx7HZzxvWO8cwc/sqm59TxrMvs4qZdyp1xVq42FgXE5yh4oRVXwHPaHBcr1p1u3j1XaIjnG/6UsqOnjx5ckvzUDENbJGHZZnvC7fHfamsHraY45Oz6ym/K1t1rGtROgaXr4LLqSoriJ+FuO41OThYCc6K8Owr5+uL3zjyQOWTcJENVVTEPkBFW7jnxEUv5b/deFRRHY41qjIBOi3AUZgAfm/zOxvwuSbWXBfPq2BC1buRr1Wxb/uCZgQajUaj0Thg9EKg0Wg0Go0Dxt66BnJSGEV1M4XMRUuCUlJFclioxHR4lbbTCdcqUctS4ppMOblUxkxpKbEauzxYZBlt5PMx7aVElvn3HKIT+3JYF/cjU3VOBOeKRwHbxZqqVJ8xb1xRo9yfoAVD1MSiJxXuxHT7GuqUrz0QroHoh0oxHHCJjLJrIP5mqpTpfuWSiv7zPKhCHN0+QRFzGFlOBczhkOwCqZ5BV3TmanIJ7BK6xpRzvnYXTlslfuL7zu8b5U5YSm7kqHV1XfwOrtxyHHbNLgE1D9zzv0uSLxb1qrnDLq59DiPc3543Go1Go9G4ZOwlIzDGwDXXXLOTOINXlmylVsdwwg8V4sZWLkMloeHwFmWduj4urW5VKJArAlMVsGFLjy00th5yXzl8i4U9KqWxs/icSDEfowQ9jGmacO7cOZnWlNuLc7AgTlmw3E8Gi99U0Rm+h65YTz7GJaFSc9eFQzqrMh8b9z/uJYupOLw0/839j+8hulQMi2O4mFVSIji+X/z8XglE3yomMsDzma3finVZUwyI30X5nZR/V/3nd4VjCvJ7YOm5VAwEv6+vv/56ABeSIHFb6n3gBM3VMfz+jrHh50qdp4sONRqNRqPR2Evs5RImGIGq6AP/FqvqG2644aLvKhTHFaBwIUx5Gyct4TSeyu/G1iKHv6xZ7e6SIIctDrYqsgXlwhDZqlQplHkf9mPHvmqV7ZIr8X75N2UlMqZpwpkzZ7asRuXTZEaALVulK2BL2fnJ1bGcmIRDEtcUEOIkRHmcmMHgcEHWxOT9eW6wtc/PRr5WHuvQXLBWoLo+Dq1UjBczZ1eDzzbeN46RzNt2DYNV4DS+VcGqsHbjHbXL+Zm95JBqFWbnUnRXzyuHCzoGrHqPuxTuea4y4+FSqCvWgs+7j7jyT0qj0Wg0Go0rhr1kBIB5ZcY+z7xCi9VZrHbZMldJiJx6nlfsKiUqW1Ou9GW2slx5Vvc9t8cr8NiHfZB5TOI6OCqC+5hXvWw06kOHAAAgAElEQVSNRv/ZMuR7kdvhvlYphpXWILdbKejZD1uhsihc1ABbwcoCiGNijqzxTzsLhiM/lCaFrfoYA763wIUxZT9rfDLjkedqXA/7njlNsLouV1Qn+qMYCJd0JtpSVmtcF7NHSgdyueBSjPO8Vtod7rcr27wmIU51DL+bFFsJ6BTT3EZ8MrOmNAl8Pn7vVBoYfhZcka8MZtjYqlcMMr8XHIuq9r2ailrtimYEGo1Go9E4YOwlIzDGXHCIV9l5RR3bwkfH1r1SOfOKnPcJyzA+M9yKuUrXyn5+l3MgW7i8ymUrXqVO5utz8cIqaoF92jF+rPSO/e66666tMQhLjeP8qyInzOiw9ZitzDVplRkuJXS+ptB73HPPPQC2x0+NUxzDc8dZHPlvtgy5j3keMOvhrGyl2YhP9g2zVkD5bjn9MVtiSrvhrCtmhlR8vLOy+F7kPgWuhIXG88n53VWOhqWII9Z/5N9iPoS6nnVGKiW30/mosWcNDL9/XPSCAr9nlF/esR/8jChtSozFox/96IuuK8CsUv7bMbl8fmB77leFia52NCPQaDQajcYBY28ZgWuvvXarIE62KFgRG8wAryBVrDRblOwrjs9oMx8TbfB5VSy4y1TIegJVBGhtPK/yj3K8NceC59V87JuvNV9vlVXrXe9610XH3nrrrQC2i/bkY8Oi4etkNkHF8Ls8DIxpmras7GyN8P0ORoDVx6rokPP38r1WivyYM7FvjEXFnHDZVLZIVUlpfl5cZrtKX8LWvsqjwRYsMwMx9vGZz8/Ml7rfqs+74rizDrqcEOzLzv124x7jws+pYj55/Fljo1T1rnRwzIfMsCyxbpznQ2lu3HVW8feceySeyehbfFdzh6MSmD1Rzwb3mfuu5psr4rZPaEag0Wg0Go0Dxl4yAsC8+mJ1c14FhzXlsvfFCjCsvWgTAG666SYA21Zw+L9jRZm1AuGPCsRq9Pbbb7/oPHffffeqa8t9VZZgWAkutz3Hd6v2eQWrMhjGCpgzysX43nvvvQAujG8eE46yuOWWWwBcuF933nkngItzL7BFxT5v5U9mrUWlEQg2iS3pbN2fPn36om0uA2NlZbH/lZXxMX7AhTFzmgqOBAC2rWyXe13loGBLnPUGiiVhbY3rh/JFcwz4HXfccVEbcV1Z18LjxHPpuKyv42YEHNvCDEG2gpktynMD2GagKmvb1WTIz8SSP19Z/awRcpn4FJhxivnN/cngCBe+/3ysigCIdxO3GWOfx9nptDinh6rZcJR8D1cbmhFoNBqNRuOA0QuBRqPRaDQOGHvpGpimCQ8++OAW/ZopGhagcHpTLngCXKCOHvOYxwAAbrvttovayqFxfL6gvdglEdRW5b5gwQvTb5m6ZdEKp66tiioFVcbUOdPK2Z0Q/eZERXE+pvkyvcv04Y033njRpxInsjCOQ5qU8Ijp3aUyxNdcc80WZZr7wGMX11SFJ8aYhVsh2otjOWlPRoxh7MtuJkXhcgInl6Y2HxOuLi7gwlQ0i0dz3ziFNrtj8thH+zxu0Ra79lQZYu7bcUBR3sflImBBGt8fJVJml5ATqqlCUtxvTiSlhKacBpjnJCepUlh6D2WwCJaFjSoZGbui+Dr5WVfvfn5uOQlaPoaLC7HrULkd2X3Z4YONRqPRaDT2EnvJCADzCs2lxgS0iAS4sMKskqaE1RPWSKz0wlKLNioxTRzL4qFsQUcfOFyIxSe5j9x/Zy2EqCbYjdwuC8x45Z+vK6x3lzqVQ3HysXGt3EaMr7KwWdDDbI+y3GLfuOdVimFmBNQ1h+Uc/eZ7y2lV8/F8f1yIqyq568R7Skylkk1lKJFaXA+L9zgJVXwGuwFsW16csIpFnflvZituvvlmABfmqBpPtmz52VAJwdZCibtcApldwUwTJz1T7x1ndcYxLACs0twGmHmoCnu5+7AmDTKPvwqP5bBELszF1wJsM0/cd55/+fpd8amqkJljK1T73Be+T/uIZgQajUaj0Thg7C0jcOrUqTIBBluHawprxDGcQIaLtKgkJ1xKNvoW4YIqkQiHvXGfVGEkTlzDIYacjCj7WDlBSYwJ++ryapsLFLF1HNadKufL4xXhgnGf2P+njmH2IpCZDrZoqrKmY4zzrIDbl33YzNgElPXLFgXfY2VtuWQs3IYq6KRSSec28zHBCLhrZ01ExXjFfHCFufIxHNrKSWKUj5X91uy7jT7mcFU+xrEFFYtwqRoBtsQ5BFX5mpdYL2a88j1dKoVbsQi8D4fSVjoct109g5zkyCXmUmyMmle5fcWIcCIhZtqqBF3MGgQUY+R0TPuIZgQajUaj0Thg7C0jAGxbTkp9zpZEICzlqnzlUhGWrO5mXyAXx4k+ZsUvW4fsF2W1reoTJ8DgvivWgpMRVcV0nH8t2opxVNcX4JWyK0MKbPuC2XpQZYqrwk6MaZpw7ty5Lb98vrcxhpEAiQsfMUsCXLhuTjzCGgGVtIktVL4OVqDndtgiZJYnn4+ZAKcOj/NlPUuwLsEqOKu6Snbj5pDqB1unbHFyWubcTox93Is1TMFxWXP8HDhrX42TS4TFz4saJwdl/bqCQYw8JioxUW6L74ti2ly0krKo+XlhzYtjJnJ7bp6rhGoukRBHGFRagTXFzq5W7G/PG41Go9FoXDL2khEIP2+lrucVKVtIygrhFJi8Cl4TU8ptcax0tk44tSiXTlZqak6RHHCWu/LZs4XmCtfkv11ccqXQ577xNbBvPG9zZUHVfWPmpFLvRmpqvq5sWXNOCLY0lQXFGgm2tirWJcDWFfs4sx6ArURmolQ6Wi7ywveS9SaZTQhfPJcwDrBFlf9mHzBrH5QindPg8ngpS9dFgrB1p+7fcReMYX0EM1CK3WGGhLUVqjiUKza2Jv2t03BUUSrMSvDzqua3i7d36Zdzu1WqZHedlQZAXVM+3rGLSp/BzEozAo1Go9FoNPYSe8kIAPPqy1m4gF/lOp9dPp4tIl65qlKjvJIMa4fVw5UlyNqAyhfNSnJXFlTFq7sxYWagunb2v/F5c7vOClZWJCulXea6bPWzqnrJb3ru3DlrWeRzOSuEzwtcsNZV5rjcvpp3jvXgyIBshbs+co4G1V83ZxiKgeC8FayBUFEDfH+YrVBKbd7HRdaobWy9Vc/e5QI/H+4z/+2s34qJdAXEHEMJbOsY4h6y7igzQtwXp/vga8rtuAx8a7QP7nlVWWV5XzeO6hnhd7uLish/ryl2drVjf3veaDQajUbjktELgUaj0Wg0Dhh76xoAPOWT/2ba24WyAT6ZDYtnKgqIKbMqlS3vEyLBoOoixasSCwYcnagoQ07GwoWKlDCL6XYez11oNt63opP5+ti9UKWJ3UX4tabYjCtipKhMTiHMY6roaRcayWmpszCTXSch5qsoYicgq/rG5+Ma73zdik7mMWBRpwr/jfHj8MEq1JKFkjxXFI183CJBbpfPqdxNLj1wYEnIlvdxoYF53Fw4JbtUKjEdf1auL35+2BXBoYcKThRZgV2TfEzlimA3cTUmfG/3Ec0INBqNRqNxwNhLRmCMgZMnT26JNTJceF11TG5fHctQoYdKVJLbrJJmRIIittAqC52tBFfgI//NZW95ez6GRVu7WOhuFV+N/VJ4kLKKqpU+Y5omnD17diud8hohGYd35b6yII6t3yqZCc9NFpSpkDMWg3ICGyWcdCGgbrwqYZQr06qKv3CJ16VQS7UPswbqGO4Tp0FWzMPDDRVq5kLV3HtHiaIZVfhljC3P/UpI7d6JLnSuCq3mcMKKGVxiZVUyH/fOYKz5P2DN/wXNCDQajUaj0dhr7CUjAMwrM+cXi98Bn/KysgCdT2nNsS4Vplrlxz6cQCiSD63x3bJl5NJp5n3DIghLM9LHqrS1S6vqXXx1a45hy5qZDZXUh+/XUjnQc+fO2aJAqj0uF80WfAZb2S6Nr7K2OJEQMwL5mrm4FI+PsrLYP83pjpndUSFu8RmaBE5yo6w6LmLkmAHFXi0lH8phmjxn2AetrDxXXOa4wM/hmmdavc/ydqWF4u9sUee2OOx6zTPMfXDsAeusFPhdpdirJd2AY1EAz8pW7yE3FtXzxO24AmD7gGYEGo1Go9E4YOwlIxB+XpVG1YGtOWUJHoUBWIJb1QMXVpDxGRYMK86z1cMMg1MnqxUsW42sFajK3XKhojUqXre6rvxuzjquFOZVWl2FkydPWlU6sJ3yNcApoZV14JKMcFuKTeB2K59jMAHB5rjEJyoqhhO8uKiOfH3sV475kIta8fc4XzBezEAw01FpBLj8Nj8j+XxOr7PmPXFcSYeWEvDkfi/5tCsdBu+z1I98fPTFlfpV4PnNhdPY76/6H98dM5D7xudbc39cefeqcJGLeqieY6d12Ec0I9BoNBqNxgFjbxmBM2fOLPqCgW2rJywalaq2ionfFc6yzX4ktsTDumNmQPWRV71OCa6U5mzFcQpblb432mVmoBozp7x1fsV8bpeOVPkTHTuiMMZcrMrlQ1BYYmGqa3Rx5EeJ78/3LXJMBJg94BwEqk+uvK1KT8194PnHmoF8PP/Gz6RiQFwhpHhGlIUW7boICpcO93JiKT49w8Xku7ZyO3zvnM4l78OaIPfOyu25QkhHierhyAPFgLlcEG6/DKcrqhiBAOc+ULlEWDez5v+jqxXNCDQajUajccDYS0YgwCs8pYx1lrIqmlNltspQloXzMVVK7bCuwmJiv6/ynS75yipVsstPECvZm266CYAeEy6Eo3y0fF5nCVQK47VKdpWFbk1mwWmaME1T6ZddKoqzRpHPWOPnrZTewIV5kX9z81xZUC5Lmotwyfc2/Pnh7+f7ogr7MHuV+5/7oSxQ9zy5wkV5GzMAzLA9HGAtQJUF1elIHDO5JuqBz6/ejZzBkt+JihFwEQ0uOiIfw+2qCKC153OFi3bdl/u/xDjkMbma8lNcKpoRaDQajUbjgNELgUaj0Wg0Dhh76xo4d+7cFj2pUvEGWIhSheAwzcq/V6IdptmYjs2Cr6BKQ9zEIVlVUqC4vqBs+byKqmZXgEtGdPPNN29dV8DRemsKojjhnIJL8LFG1LdE0anENZVA1NHUqnCMCxd1dc7zb07UxvdNwSU7qhIXcd+r9MTxd8w3ThscczkXJYr+5vDX3FYlnOO+RVvskspjwvOaixs9HFgSGlfPdPV+yVgzXvyZ73ncQ37PuXdJbofHlsW2KjzS9Z+TBqmEcM7lUI0Bu0cYaju/19y7SokG17xDrnY0I9BoNBqNxgFjbxkBYHtVqIRKvIJdY40GlsJelJjGCXDi92wxucIxlXXN1q4rTKOsCxbi8ZioULpc+rbqhxJQun0YVbER/l6t9teEh03ThHPnzm0VqMlwY1iFSDlreg2jwXM02mDrN4eeuvAtx2blbSwKrJJeVf3Ox3Lip9x/vi4+VolGeYx5bqp74KzSNYzKccGJNdfMg6WwwSr1eZUMCrh47rjwXRfqCGzfuyrEOfcnH8vhdvwuzmJOJ7Z2wjw1d1zhNzX2igXhdhm7MjlXM5oRaDQajUbjgLG3jEDWCKgVLVs/vHpTiXCWGAAOf8kWdmxjP1tApb3kPnDKYeXjdGmCmYmItrNFz6k8+VP1XYUS5faZxVD7sJVchfk5TUKV7GaNTiGQkwnldlQ63aXUtLn/SwwTj4VKEhXakBhTtrJU+l6+h+y7VyGOLoyOx+++++7bOnccG8xWhL5GgqPcx+g/h8Xys+CeGdUnfiaURiD6GOdlzc3lhPORM1NThZ4uhRGqkFAOCa4S4rjQP04XrKx6N49dWt/cXswRLkal3t/MNDmLvWIilz5VO1XiL4ZLQ7yP2N+eNxqNRqPRuGTsJSMwTRcXHWLFNOBXdtXqmrfxSpVTcipGgNtj5XQ+hlN98uo+jsnpZHnF7wq6RFvZN8hjwQWFoo2clpZX4K7Ahkpk5BgBRlX22CVBUkmWdlGJs88xK9s5UQifZ01khLsetlpVv9215/7wveR7V2lhwgJ3OozoR2YEWMcSczIYgdg3z1VmvLhkcVwPs1oZbtw40ib3hRN0rU0UtoRgkyrGiZ8LfkdVfup8ngyeU4oRqPQDDGaROCVzlbSLmQa+l8qHz6xe3B9+/+W5ynPFpTJW7/U1zCDD6YF2+f9ije7sakUzAo1Go9FoHDD2khEIVLGyAV6t8YpWraDZH8WK/ColqouzVX5ZVuTz6lqVBebohLD4nW89g/3IfF2Vr479hhxXriwdZ3G6tKEZzq+nmAfethQ18NBDD231VymWXVx/lSaW++TGQJXcXYqyyN9VSl8AuOeeewDU958ZKGai2Meezxd+/rD8ed+cRpj7wLk04rysyQC25wg/E6qPcW7WBhwXxhi45pprdmqX73fle64iPtzvTk/Acyl/Z+0GMzaKQeFnzDF3FRvH0TA8NpmJ5Pe0SxXvIl8qrBl7p01QuRVUga99QzMCjUaj0WgcMPaSEZimCQ8++OB5y5bjVDOYCWCrtyrKwuVSl9S9wHJMuLI8WYHPVkNmDpwl7nzTqm8cn+6UuPlvNbb5WDUmrKZl636XokprLIA1/tfYjy2b7Gtm/QBb31WERMBZKEq5zH5V9qny3M194nnFlnqVwc5Zp0rH4NgCN6fy3/wMxjFhwVdZEJ31yM8V4DNzHhfGGLj22mvLSJm8r8ISWwV4v7h6xtiX7dixKieAa6NS17vPqqCPe/657YwlJX713uF2q7FnJsB9V/eVdTr7iGYEGo1Go9E4YOwtI3DmzJnSN7yU4UtZWa48K2sD2Iec++CU3mFFZB+qs8g5N3sGK2yDGXClNtUKluOFWbVeqV/ZenCRCAps6apSsmvz7StLl6MtHCK7YEb+zse7vAtVH/K58jWusVKZmQrmK49tnCesX7biQ8Wfr4XHlpkvN2cz4jpiHlc+4tjG7BX/rlgS/o2ZAZXRjnMdHDdCI1CVzw0wG1Yp/50yfelZy387TUB1X7hdFX3FYAbIXYOy0JnN5LwpSiOyFA1RWeiu7yoiwOWIWZOpc0nbsQ/Y3543Go1Go9G4ZPRCoNFoNBqNA8beugYeeuihMnWko21cSCDgi3GwYGRNqIoLe8twYWkshFLhg0zzxrEcvqOoepcchNMXA9vJdZwwRtFi7AoIMCWphHOucIy61xVd7ODaze0EWPipQvdc/3jOKFqyGo+MPMZ87yJJixOPZrA4Na6XCwcpESeHmHGK5irVK9/TqmiYmwcutW3uy+VETlFdidCWEtRUx7iSuMo1wGPshH+VayDAtHjuI+8b84/djNW7Md65HPqsRHZr6f01AkA3Rkoo7sa+EmpWKbL3Bc0INBqNRqNxwNhbRuDs2bNWmAV4sUmVcnhJYFiF6LkSwpxGMyPaYyEUW93qWC6jy+IWlfKYwyyddacElC4xSjWejulg60GJrliQV4UcOqGmwxhjS7CoGAHeh8+tEvy4FNNrhErOqlOWIFtTnGKYGYl8PAsNY+5Wgky+HmddqWeQ7x2PUSW+5PO5e8F/Xw4EG8Dpb9V8W8Pq8DYW67lS5uo8VQIhBr8H2PpWKcFdYh1+RyqWJPblRGbMECgGau13xSBw+G0laHTvfH6O1P8XLlndPqEZgUaj0Wg0Dhh7u4Q5e/bseUvm+uuv3/qdV39LiWrUMbxK5M/sd3M+K04JnK37WAGHf9dZGJWOga+DLTUVkuOOqfyWDBfep1bFPI67hI0xa6D6uEsZYndd+Rj2NbskUcoaXasjUdYdJ9zhvuZj2GcfzwAzNqpccyDmYsw/V/Qog+9zlYyKLSZn1bkEM/k3ZlbWsj+XAzy2laXu+ldpRJb800qHEViTBMslH+LxV+8OnouuYFq+7pgrLqW5mkuO3XFMQMUIuBBeVeRolzDFNYzNvmB/e95oNBqNRuOSsZeMQCSEYZV4traXir5UaWJdQo9A5Q936TvV9ziPSwqkfHVLmocqAQf3kccg+qFWtk71zEmBKp/0kkW4Zt+q6JBSuyucO3euvMfOmnMKdrcN8Pdjja+RLag8v1lXEP5XttirPrJfnxMIVWmcY1+V6pf3ZeuRWQT17Di2qroHDwdy1IAq0rM0xysLduk9syaBkduu5pvT/ShWi99FzgpWWhEX9eCipvjvDLc9g8fiKAwhb6+0PbuUgL5a0YxAo9FoNBoHjL1kBIB5lcexxJWK2zEDeRXHym4upMErvqwRCAuJrarKV8iqVl7JspWn+sArc76uNcVGqugIXvHz9TBDUKnG1yicl7Qc1XWtsRKDTaoU+a7/Li5ZwVl+zALlv50PNSxpFc3BpYWZMVGaDWbSnD9Zzbule6ju5ZLiPKDyPzhF+1HKzx4HTpw4cX5MVaElx7pV7x0+1kVbKN82b9tFk8DjzUxRvj9L+qXKP75kOVcFiyp9hGoj71O9MxhOP8Xvh8zKOYZjH9GMQKPRaDQaB4y9ZgRiRV5l+HK+ZeWXdNabiznP1n8UYXGZ1iqL2fkGFSPA1+Wys1V+Nz7GxdnmfR1rsKZAEfe1Uvm70qR8XSpT2lq/cdYIVJaMmw/q9+q3/DtnbwO246ndmKvIhl0sdLaiuc+cWVBZnkuRNEqnw/PAPa8q5wWf3/3+cOIo6vCla8+/BTjaQlnUjgng+5LHi99RLtOg8oczw+SK9CiNALfr5oXa10UcVZEU/I6v9BkMl9WxijSoGMKrHc0INBqNRqNxwOiFQKPRaDQaB4y9dA1M04Rpmmz61vy3E3op8Yuj/FxYn0pzG2AhTvQnh1nFPlyvPfrIArCqTwEWK6r0xNynKvSQKTJ2I1ThRExbukQmFa3H90sVmznuUDIn/nE0Zf5tqc1d0sRyKmCVWMoJ/VQBJnZtRbvsquEQQdU3djOo4jb8zPF1MPWt3D3V83o5sHQf197zo4gqdxUr521OLKxcd/G+ifHm9OgBda3sGnBhuEpw7AR56pgqJXeGEo0692L1DLrzcEivEgu6RGD7hGYEGo1Go9E4YOwlIwBcnGJYrQqd8MUl0cjHs8XH38PaitSswHaCFWfZZiuLw4+ceEuFJzlLoBIjMZaERnzu/J2ZgapMZ8CJklToz1Ja39wvZgmWwvpOnjxZJhRiS5XvqbIo+F45IZY6nyvCxJ9V+GAg2mBmKO/rwgarkDz+LeauK9kMbI8XixFdwqb89y4hYJcCZrwUpmmSrJNK/bwkUq7gxHPKymc2xc0zNb+ZxePkULmvPEfYCuZw7SodthuDfIwqhZy/VwJhVwCMsSbU1YXy5vY7fLDRaDQajcZeYy8ZgUgKE6vA8D0qi4KTWbj0msC2hexW5iqtqrNKecWez8eWkgvJWrPS5OREld/cXZ/yAy4lzWDLQIVjLhUQqfylfJ/UeWJs1TxQOHnypPVXKjhrTvlf3T3jY/MYu1S/zu+fty3pV/J1OmvKjXHuM2teeJ8qFJRZI7bY1Dgu+diPG8dVSpafE74fqv+OrQy4sML8mwtXrqxipwlQ/WCGie9tHKvG0aWYrp5BZlKcvki959ZqfKpwab4OFfZ7NYW0XiqaEWg0Go1G44Cxt4zAQw89dH4Fdt999wG4eNUayXhcusmAspjc90Dll2LrjZXZSvntfKnKYnLXwT5OpWTlvinrOl+LapfV6pz0KPc17odLWKSU4C46wFnLeVt8VkmOoh9V2lNnqaxRrrvfnLYi9yHuC/spFSPA+hJnIVURII4ZWlPymf3VnOo4/xZw1rZKQsPXfLmTtVSK8rzPyZMnt9i3/Lws6Usc0wFsW/ec+KeKVuFj+d2Rz8dzh/uiLGVmNCPygEsyx7HXXXfd+WNjTiwVZMv9cEl61mgultJhq/eqS/gVn3E9KmHWLvqPqxXNCDQajUajccDYW0bgwQcf3GIEsoo/VnAuZlmtOJcK7LhVvtqXY3SVNRm/xSqTffS8PR/P1ghfp7o+ZU2r61GpRcPyZ+U3R19kq0/1P+9b5Udgyzb6ruLjI73zmqiBQFUa17EufA93UQk7jUpuh5XLnHsi95H1FzzvFCvCbAQXM4rvStXP8433WaPUZpaqSs3qtDbHbXU5C3pp/7xvnvPMjLk5o5g6FyvP80NFZqiCTRmVle+uWV0XfzrlfGaveK5yX1RRraX7XVn9jgWu7jWzsMF4xHsvMxyuD/uMZgQajUaj0Thg7CUjAMyrS1aLBzMAADfccAMA7zNnyxqofVbqWLWidDoDlREv2gmLlvtRWSd8PvbVKmWu82Xxql4pY51vsCrMw1Y997HSWvBYc9x6tjhi/Nb46kIfUJXEXYoLVudZUmlXRWCYTXK6jKpMa6AqVOX6z/OM2azcBx4b94zkfV02yjXMwFHyY+wCfj8sFdE6ceLE1rjlktIqf4NCxQhUeT2Ai+cOR07x81PNGdY6rImHZwbI7atYC37nxvZgcqsoHKf4V8fwM83zUN3reOdxAbB4nlTejiUtwj6hGYFGo9FoNA4Ye8kITNMkLcLMCMQKOVZ07MN0SlbAr/Qqf3j4kFw+dxXj7lS7bF2uKXvK6l1edav+sz+M28jbuB5CjGvlW3WxwMyO5POxRoAtHWaB8vFLvtb47dSpU9ZPnq+pUs+rdlUf1hzLeSk4osFpLYDlKAW1bxVZkJHvKWsE+F5WcBkMK+ubx23NedZC5cFXZWbdsdG3eAYy+Pl3bIvyv7voAJc9FNiOTuK6AUqP4/Qq1XkCjtVxfc7b+Hnie5rvuWMc2bpniz2fm1kDjgTIzCczAtGu0hAF+F53HoFGo9FoNBp7iV4INBqNRqNxwNhb18BDDz20lXTk7rvvPr/PTTfdBGCb4nEhTNFu/uQCMiyuyeDSnlzKlUPBcvucjCOgXAJVqF++TvW7C59xqY3z3zGON954I4B1RYcCTDFyCKAaEx4bLuqUXQNLFDcjEsMA21Rgvpb4ZLpVjS1T2Rxm6fZT7TGlWY1t9N+VBVb3n0Wb1TF8PSy0YheUopP53nGq4eq+XQ6RoGovwNEAACAASURBVKKE1yQUiv2YJs7957nIdLEaJ5dymd8z6lhOpsXzTblUop2YO841oAoV8bPh5qwaEze/lNjOldd2Imkl+naJ2WLfLPLk/x/ifcBjVP1/wQW49gnNCDQajUajccDYW0bgzJkzW9bH6dOnz/8dwkFe2am0oAxe7brQMJXgJT7DYmUhXj6vE8+sKYnKaYLZSlErWF6R8+pdCefi7xBDsjjHpavNcKGAKgSJS+XyvnFfc8hl7BP9X0r0k606Fj8C2+KiuJdrVvzOumWWSSVc4e/unuZ2XDEgnh/5eJcEhtkYFeoa4DFS52OBJzMAlRjWpVC+FCiRmCs765DTUyuwBbkGrpAOn0eF27pQ4IqhcRZs1Wf3nlkq8KOOcUWVqgRtTsC9hmFzycNUcigOH1xTGMmxMfuEZgQajUaj0Thg7C0joFa6eYUb7MD1118PYNuiVdadC7nJFgSgE++w/5NX0Co8yaX6XVMQh602Z+VlsOXFK2YVihNg33D2r+XzVSE0bOXxd2B7dR2/RdKRYAJy4hbnh63Auox8zTxHXIlXVSSF++DSq6rU1nx/uI/5HGyBLxVryn/zXHTHqsQ1zNAwc6P0HqwRiH7E86MYAaUfOSrYysvPLVuL/KxnjDFKzU0+F18rP4/q+XRMwJpiUOwH53u4JlkTn1e9d5a0FFWhtKXzZ4t66XxrQqv52WbWJ99rfvfxsYq9ZCb3OFirK4VmBBqNRqPROGDsJSPgkK3E8OuGBcnq80BeUTofqlP1ZsTKMc7D2gCVdIJXws6HpfxtbDEtJQnJ7fAqm1W01Srb+QiV1RpwkQDKX87XxfeRv+d21iD0JWwVZ4aDx2GNX9Qprnks+V7ndrhdjjjJcGySSmXNx3DiIle4SFn33H6lWl9iZvgalP/1UqIFWMfAinBgWyPCTBf3L/7lPqooG7Ykq1LCfI2ccInHQo0Ja16YoVS6AldkTbGXPK+r4mbufAy+LlV0iN+JTs9UMTXMPPG8UO25qIhqjnaK4Uaj0Wg0GnuJRxQjoOJQw3KMTxc7C2yXYWVr3qX85L/zeVxKTmDbInbnUatdTonJq/k1hWrYd7bG78Z9Yt+3ih92n8qvzBZmRAkwo5OZHeXTrnD27Nkty0LNA/5UaZsDS0V4qggAvnfOr6vui5szqggW6wk4P0LFCCyV01XzjX9jq6qyqC5FgR3n4Ugh/gQuMAGcMtsh65MUM+gs5ooxc/qBNdoXF2HC/n51X/g9wO+D3GaVYyB/X5Pmm49hK7zqm2MEVIphZhOYCVDXx/O4ir7gObo2j8nViGYEGo1Go9E4YDyiGIEMLsIRqnP2AaqMVGy9s29RWfeu2AivZFUsOGdac1qFDF7dOv9/pYFYyhKWz8P9575WVh37l12uAODCfYv7xUWH+Htubw2macLZs2etxQZ4RoCjCdR5WQvi/OAq4oCPZQuwijRgBkCxVjzP2KrnY5XF6zQQaiyqvARLxx7F3+rKzlZRMbFtqdhQ7leVYdIVvKnupbvfjhnM+zkdAf+u/P0u01+Ve4DnqIvvr8bEfSoLndlKx+6oAln8Dq6OcX3ke6O0DypCZ9/QjECj0Wg0GgeMXgg0Go1Go3HAeMS6BlyKYQ7rq1K98j5VgRWmkFwIoKKEuUY5i5EUvev6rGgvhnMNKHcCt++KHqm0pU4c6ELQgAvUf3xyUhreflQo6jzAhYhY1OhStGY4KlgJwZbSNFciwYCbu0qUyGGDro+KTub7z59VumiXZEmF4R0FPPf5fCqRzFFEbpU7zFHagUoEuTRnlCCT3Tkcrqjadu4j55qs4J4jNXfcO0m55/hdxPfOhQjmfdktUglpub2lZGKAd4/uI5oRaDQajUbjgPGIZQRiFX3PPfcA2BZ8xScnGAK2V8IurEqlYA3wyrVaZYcFGn2pwtTYMuN9K2uFhYVryhDzed326HvFCOwiFozPypI+KsYYNgFT/A5cSE/N4Xbxma0QTgfM98mlns7HLKESGLJFq9p0c5DbqtiSan4tHcPf16TdXUK+FhYHLokHjwIVjpnBVjuL+VS/naXsioSpFOBLz6diarjPTqyo+u3uYTXvqrBo/s7jx/eOE4HlMVGlkNd8V9dTJWbi/weaEWg0Go1Go7GXeMQyAgEOHwwrL7ZXviz2ncV2LqKijnXb84qTV/qxuq0SrfCK2IXiKKuHf3PfVf9dEhj24auwPmYCmD1QCYW49O9xMAHAfI0nT54stRt8z1hnovySfKwLt+L91D58XxSLsKbUcv5U18pzJK6H530+35LlWVlFl8OXmsfEhZqtSbJ1FLC1CPgiYHxvM5w/n8OUVb/5XcXHcunnvM/SHFJpkN27qUqc5kKQq/ePYyv5XanSortn2zEf6pr5PqkU9cxodtGhRqPRaDQae4lHPCMQuPfeewFcYAQ4EgDYXjlyspFKQerSqFZ+KZf8x6VxzfvwedgyqKIGXAIRVRAlwBYB6ybYj56PcSVrVbrgNQVwLhVZI8B9zX+z9cGpSVViF05THaisOmdJVBEiS0xNlfKX92X9hUuGpM5bbXeW7S5wz5NKQsPbnH+50mQs6TXGGHbM8zk4GVkwXLE9Fz5y2hxnZav3QYATmDEjkfvr3jeKTXIRDNxXNcbuPVcl+HHpgDm1epUwyTEB6h4zY8fvfC6Clo/ZJeLkakUzAo1Go9FoHDAOhhHg2O/QDCj/Hls7vGJVfrdYqbI1VVlBbKlw+VGlVHX+TRcJUIF9z0r9ytbIUuEglXaZ92HtQF5lu8gCFd1xFDAboO6li0OP48IayfeFGRh335V17JTYjinK/Wbriq0hpStwFj/neVBRMdxH3lcxAktjUflsHUtVMQJLWpij9iX242dAsW9OE6DKUHM0TxW9A+gIABchUWmTnN5nTeSH267ui4vrrwoHcd4ALpXO706lZ3B6LaU3cnOGj1HHRh+Pk7V8uNGMQKPRaDQaB4yDYQTYGuKY/fy3s6p4dV/F23MegfiuLEHXvtq+5IeqcgKwFceMQ8Ve8LGsDVArZs4C6PIKqEgDV6jmuMDWj4pH50yCrohJ7qfzfzrNQD6GrY9KV+AiDaq4fm6Xx4DvabZw+Lc198X5k9dEDyjWJbe1xhftLGx1zFpGIF+XgvO7B1REhtMirfE5O992gDUD+W+n+1Fj4DQoTruh2FJXDGhNKXBXjrjSTbgInur+cSQQs5gq10FrBBqNRqPRaOw1eiHQaDQajcYB42BcA4Eq3M1RpkzncegKUCd/yb9nuBSrXHxI0VFMe65JG8qUnyuaocKhlgoG8e/5bxcSqERpTpxzXMk6pmmuJ+9CpvLfnJSlEp8xTcjJiOKeKtGjuzaXkEn1kduq0qfyM8BCWkX/L4lfq9DTtTSyCh+L36JvLDirxILcruqbc8s5jDG2+qRS/qqwvbw99yXmhBPCVa4iR9nzeXIfI4Sa26hcA85l4sZNudpiX35/sos0H8Phgy4UtUqHzEXd4r5lN4AT+1ahoru4k652NCPQaDQajcYB4+AYARZC5VVhiNtcOFccEytqlRQk2ou2eBWqwrmcWCyQV91OfLRLARdmOHhlm1e4HALoGAFVHtiFI3Hooeq3u87jwhohntuurNGAY2jYKlUsyFI41xoxJ4ualMXGjIALK6zSIDuhVJVch8e6Sv3Lx/I+aux5H76Pqh8sFq3m2Rhzempm/VTBG+43z4f8nZ+pJStYMYSOGeBrz8ewSI/br9idpXA7VVTJJXxSjJATUjuGMH93842LhVVJ19YwkGsSFe0LmhFoNBqNRuOAcXCMQFXMhkOi2HIOBkCFvTGUbw644B/L7btwHk70k7EUAlQlUXEWprLg+VpdmmAV7ue0B1WSDqfPOE5M07RllVTWb8AVQsnHsJXBlkzMocyGcJiiGye+hvy5JpzPWY/8Xc2PJa2Gmm/K0sv77OKfd2Gxa8o58zOQxyqex7VWXZ47ShsQ4HFirY2aO0vJeaq5uhRyWPn94xhXOr1qfyn5kdqnCnEOOJaSnwXFILo5yuOokhC5d2MVjh04rsJoVwLNCDQajUajccAY+6h4HGO8A8D/vNL9aFz1eL9pmm7PG3ruNFai507jqNiaO1c79nIh0Gg0Go1G43jQroFGo9FoNA4YvRBoNBqNRuOA0QuBRqPRaDQOGL0QaDQajUbjgLGXeQRuvPHG6dZbb92KXc5xvUsxqyrzWhV7r3CpQstd83fvsu8u+cKPch1rjlk6X9WGy3a3S+2Bt771re9k9e7NN988PeEJTzhSydcq7zj3e5c8CFXp4KXtx3lPLwW7nO9SMrBV5W65XVf+WIHv12//9m9vzZ1476y5t0cphczYZfvStV9q1rul98xxvLOO0saaebdLuy4bpbrnbt83v/nNW3PnasdeLgRuueUWPOc5zzmfAOOWW24BANx6663n97nhhhvkJ6cHVoUu4jd+eKukE1WqVfVd7esKFlUT2dVTV2lCXbGZ6j8213/3gKhkRG4fldSJExPdddddAID77rsPAHD33XcDAO69997zx0RSI37pfumXfulWqNd7v/d743u+53tw8803AwCuu+46AHXxmujT/ffff9H5cgGhuJb3vOc9F/3mFi7qheKKXqmkKW4uVveUj3Fzh8ehgkoKpa4xY5fFlysgxEWdgO2a9Vxbvkq6xNfxmZ/5mVtz55ZbbsGzn/3sVYlj4tz8/ontuW/RX5dymcdLpeJ1KZhVIhyXfvq4Fw8Bl0q4WhxVBpuCuj63SKmSrLmidPHs5znERbpi30//9E/fuxDTdg00Go1Go3HA2EtGYJomnDlzZqu8ZcYSdVxRPbHq45Sea1bMjhmoVrZLq97cR5d601l3x0URL1Fx1e9LqV8rui1SwMaKfE160Oqaxxi47rrrzjMBYZllt9LSGKvzuAJLqsiQu+ZdroP76gr85HHaZU46uBSsioFy17H0jKg+ue95XF0RGU4FrFLnrmUpdi2H7VwZqsASW8xrXJXuHlZzaMmddBxMQG5jiUFR74617IRKu3yUee3Gr7pvsS2YgOMqlX4l0IxAo9FoNBoHjL1kBAKVleXgivPk9tjqqUqf8rldsYo1fv41lie3w2Vh1Qp5qc/uO7BcmnSpWEe1bzUmrjCNso6qEq+q3Uc96lHnmYBgHLLV6LQMzpcP+KJMruSvspwDbgwvtaiJs7J4TNWzsaRjUFqIpZLSldXHvzl2Lvts2fLn64t7nseRn8+qkNA0TasZNmdJKp896x5cMSa13fnSdxU+KyjWakmAqaz7tX2ohNvcBv+ujl3SClTPEx+jyotze80INBqNRqPR2Ev0QqDRaDQajQPGXrsGAoqWZhqNw4OY7s3HMw3kaLZKLMj7VLXXHXW2hqp3qCjMo4SpORptjcCNaeNqX74uJwjNbppdY9ivueaa88eHayC350LieJxUKNEDDzxw0Se3pdwKS66BNULMJdHY0ra8XYUeujwOMQZqzFxIlnOB5evmkDoOCYxj8rPjBJtMHyva+igCszVwLoHsgmD3lHMRrKHBd3lXBZae7Xz8WiGrEkO6T77e6jd3nUd5r8YzC2yHlvJ1VmN/Ke6XqwX7fwWNRqPRaDSOjEcEI8BWft7GlgwzAUr84VbPa8RtDpxEI29zyVLWtBdgNkNdHwvZ2IpTVh1bfmtFQxlscfDqW1kPAR6bNUzHEk6cOLElFlT3li1ZTnaUEwpFIqEIc4zPNZkRl5iHNfOOLU01l9mqc3NF9dFZ/m4u8fG7gtk4Fvop1oLHgNkDJQQ87jDbpb5E2Gp85r9jH2ZBKhHhruGPwDbzt0bQusuzlfuat8X18Hcl2HVMEL8f1Ht3KQybBdb5GPcsPpKsf4VH5lU1Go1Go9FYhUcEI6D8/bGy42QPsa+y0FUSloxdwt/YklW+Qbfyz2lTXbsczsfhVNHHbLW60DZOmat8Z5xOk1GtlNlaYes4Ww/ss+cV+nH4cscYW+loM5x2gq3gYAGACwxAbONUwzzmmRVZk66ZwfOJrSvFLjmdBVuGqo/Rf/683FDzOCPPxxiTGAP3nCp9iQt1PCqYcWImIFIOq305yRVbwyotumMXlf6Cn2k3N1Xq76Vx4nea2sbXG++7/N7jMeC07wylZ3BMXnxXfXTXp9JT81jvM5oRaDQajUbjgLHXjACrkpUFw1YBr96qAh7sS+VoArVidlDWPvsN2ZJZk0Ak4JJlhHoduDAmYV2xwl0V1nB+RHd9eWXuKvzxPcjni36z734pbfCu4L5UqXEdE5CtVB5LHusomnRcFicXOuH7E+OnUvA6q4oZonxfuIjSlQIzEfneRx/j/oTVzcmCFHOoEsYcBWzt8ic/68CFdwLvy1axKqbkWAMuuKT0U6xnYaYgvzsCKloD2B5jVQmWrfsoABf3KY9J9N9FReyiUeJ9FOPG940ZkDVpnvdZP7C/PW80Go1Go3HJ2GtGwCmX8za2INgqyivnpVSrFSPgYvOZkVCMQKzE47vymQViVe1854FoM1b7wIUVPlt3vD1bumwV8/VUvnb2W7tyx0qdHP3n62JL5yiYpmmL5VGMAPfF+f3zvi5WPvqtrKzjhMtjsWbfSiNwpZkABxV9EWMcLAyXms7PFUcnXGoeAef3ZsV8laOB+1Tl3+Bt/BwqK5VzaDCb5NL65m0ulbrCklWvIpx2nW95TJTGIfdZnc/l7uDv+Tr5+dlnrUAzAo1Go9FoHDD2mhHg1XC2YJbi3lXcKK92nXJUZZYL6yO2sV9M9fHGG2/c2lZdJ6BVuep6os1sgbKynS1f9nMDXmsRlk70h9mM/JvLeaDyP6h+52MqBmItctQAt5/7wz7U2KeK7uDxCPYgrK/wi1ZRA2zRrMlg6fQYmUFxFhmf57hj6tcizxO+HtbLKF81R87EPL/33nsvakOp7h0DtQZ5jDkngLOu83yLfrJvnq9dRQ2wroD3UQwaP/cuskWxLUtFxpjFyNtcHo4475qxdxEPVV4OHvtKK7OkD1PXddzZKK8EmhFoNBqNRuOA0QuBRqPRaDQOGHvtGggo2p2pHaayFf3PoWtB4zK1rcLH+LelJDrABQow6Mk4X3zn3zNcwZY4hr/nvrGAkpMvKdqa+xhujfjk8Kj8N98fPo9Kuxz7MC0fyLR8nJuvXWGMcRGVp+aBE1Uy/RpjkY/hYkOcwEoJ8RicBKtK+cr7xnmib5kaZvErU+mKeubrCxcYuw84sU3exhRs3DtOAazuiwulVc88p1fmeR3XoFwQfN41iOvKc57TBEdfWIhbievYVRPXqFwbHHrISZU4FDHvw0nW2A2oXHY8h3jeBaqkRzEGp0+fvuh6q9TmnKiLBeKKnndjwyLmDJ6zKrw44Aqk7SOaEWg0Go1G44Cxv0sY6FAc/o0to2ol65J/cAiQEhrefffdAC4Ik1iwwslOMthyib7efPPNF/U1/80W5S7lbjkUhoWVVbKTGM9HP/rRF/VRWR4xXnHNbLGvKSEan2GJqnTSXJDGpaON46ZpOn/NKskMi/X4/isxFTNPbGVzgqS4ntxO/BYsCDMnKqTKiWJjTBQj4NpwxWGAbYuPE/Gwla/6wHMojlWCL8ecuJDH3J4LoVTiVEbF1DCbpEpkcyIpl/hGJTVy4Zs85/PzyamLY6xjjHnMAX8vmQlQIbXuma2E20tiQBW2zMLmYA9U0jO+pvg73lExNi4dN+DTPDNzo96nVbjlvmB/e95oNBqNRuOSsdeMAFtZeYW3tLJTPu3YN1Je8qpa+UED0U6sQjn0LJBXlNE+h6GF5RzsQljdwPaqnVfolbXDlkcgjn3MYx6z1Z+45riu6PNjH/tYAMBNN90EYNsPB2zrFDhFb4zNPffcc/4YDm1kfzZfd8bahB7nzp3bsmBUEiWeO+yvzlYdJ2epCt3w70cphcuhXtHX0GwwAwbUCVVU26r/fO1VKVlmGKJvzEipucspoNlKVuGRLvyXz6cs3TX6kmiLxy8/T3wtrDNRjJ5LfrYmqQ4nB4rPeIfxuwzQcwPYfrfkPnI4It87Zssy4je+dg7TrUKdnVZIgbUnTmOhGAFmVOJd6MoU5+u7UmG3x4FmBBqNRqPROGDsNSMQq8OwNLKVyKtOV/QjlwONbayEd1ZPPl+0w74sVrtmhiD6wpaaK1yT4YoM8e/ZymCrh1e/qiBKbON9gj0ItkKpa3klHn3kYip5HGOf7EMHtq3YfP3MGqzx1cW5VTEd5ytXyVK43y5ZEidPydfHLIhLqpThIgviPqmIF1ZgswXKKnKVTpX9oVWiHLYiOdU0q+Ira4t1IE6tnvdh9kD5t5nhWJPci+eiKuzE95v97sddxpmteU5wlrVJHNnA97IquevSEFdJdZgJiHnN2qHcR962xARkZpe1G26eq3cVX98uCcz2ObFQMwKNRqPRaBww9pIRCPUur+bDpw5cWCHGapCVyiqGlFf6bHWxZZ6/OwuNfZ1VWsvYh+Ods8WhfKO571wYqVrdM0vClnr+O9p797vfDeDCWN91110XnT/7yYI1iPZdn/L5glnhokm8Yld+3sBSYaJpmqxfFti2IJ3FpFgJ9k8GQ8SlnrP1E9vYNxvHsGYhb3PzIaAKubC1yhEtzOTkYzlaIMD5EoBtvzGXYo42lH+eWStVqpbB94fV8CpPwlLK3IzMBrj22HLmsT6KH5nzFajIHGagOM4+z3On9+C5VBU9c5oBxXi4saiKxsUzwSwR3//oY2Z2uQ/8XbGXHNnABeFUDgfWDl2thbnWoBmBRqPRaDQOGHvJCADzaixWb2F15RUsZ8TjVa7y+cQxd955J4Bt6yfU7WEN55U5r8RDZR9WcaVYZuV3rG5VlAL7SJml4FV86B2A7RwGcT7WKuQ+Ol9njAWr7rMG4pZbbgEA3HrrrQC8TiNb1qo8NFDHk7NVX2kEgg2IOcOK5ur4yh/OSuxo/x3veAcA4J3vfCeAC1axyvjIzBDf23zNPI+Z8VKWu4tXd5nlqlK5XNpXZaMLxLUGmxTXy4xBvl7WpsR543mK50uxCKziZnYuW5VcxKvKQcFQEUmse+A8D7sg2mJ9Tr7muBaXc0LdS6fdYQs3+925vLLzh7OWI/eXGQDWQuVj+P3MORR4HmZGgJkAvk6VYTKuPcYxfnM5CHL7rrDdPqEZgUaj0Wg0Dhh7ywicO3duy/+frZGwvGKlyNacUirHCi+suQDrDcLqVepjXpnzsdnS5cgFXk0r/z7vw6tqd535GD5vlSecIynimpkRiGMy6xDjyKxCnDesu7ya52yOcf7Yl9tW17ykMFbWmbqXTlGuyvXGtYVm4o477gCwXQo3MlDmqIG4L2HlhtUR80yVPeZIFrbmYszzMWwlBmJOcW2LbP04y5aZLqX85n3ZUs95JLivMTdivNh3HGOm+sb+c3X9XBNgKWpAHZPnH2fT3KV2ASPajbmudAwu2oHfR6of/N7kLJEZHJkTc4atbvVs8fg75klZ6Mzu8PtPxfDHvGNmlSOEMvvDc57fwUpbxoxA5xFoNBqNRqOxl+iFQKPRaDQaB4y9dA1EGA9TZSp5DlNMQfkExaiEPkwNBy0eNBF/z30I6oqL8gQUVR9peqPdoJE5VA+4QJ27YjMsvMrivegjpx2NNuOYnI409o2+xRgHVR9Ud1z3E57whPPHMp3GaZdVCF/8xiGHTGNWRVuqRDzRLxZzqQI7PL9YqJnHNu7Vu971rova5VClmIchpMznVoLSDBWmxt9dCmpgOzyQRVUubWxGzBGmQWPMFbUe7XMa3KCgufgQ4NPgxj4x75Rwjo/lxDJqfFUJbkaELLPAMFPpym20K+KZ4zmjxGgcEhfPJbsm8jPBrkBXpCnff04KFdfMfQyo0GrnzlJupegTp3lfI+6Mffg9xyXiq7TiPIfUs8mhoi0WbDQajUajsZfYS0YgwJZEtn5YzBKrQV6NZvEHh6jEqpdDpbLFzMfG+Ti8SVkPHL7HghUlBOJVZxzLDAinK87t8qqaw/nymDCTErj99tsBXGAKwjrO1gVfF6dbVlYkJ58JcPhnvtdryvUy4txVQh62lFigmRkBDgGMcYm+sSBUMVGqXUALojhBFVu56v6z9cgFfdjCyePoivKwBaySHjFLxfOMCzapvvC4xjNYWWFO4KjYJGZ71oDfE/l4vqaqXS6Cw4mKKqaI3yv8zHEyJbWNUw6z9Z33dX1jFiELgDlclFONB/K9dOwRC/SqktncNy4kpOYBX2fsywLR/Pc+MwGBZgQajUaj0Thg7CUjMMbAiRMnzq9+w4ee/a6cqjYsTA6dU+l0eTXNTIAKrwmwNcrWVT4fr7w5PJGT3sS1508+ljUD+Vjeh8OpVFgNJy7ipCzuO5877xN+zLhvStvB52frLu9XJbNROHHihC1Rm/92KX+Vnzws1ZgbbAXHXFVlj/la2YJh33feJ+BCsZhdyHBFmlQxnSWft2JUmG3hxDGuZLM6li1NtmLV9bhCOfladkkPO02T3E8VrOJ3Bd9bVfCGn0dm8FSBJZcynedBVTSH2TYeY9UHfr9UqYCZHeExUama3bPM84Hfgxn8HPOcygmT+BlwrEKVYnif0YxAo9FoNBoHjL1lBK677rqt9KPZUo+/eQXJPlq1wmOlt/O/KutgqVxrPh/rF2LFHMrzsOYiRW9un1kL7pPyj7Jugi1pdV0ufSZbL6qo0pI6Oe6fUidzJAiv6rM/WY2twxgDp06dskr5fG4ufOTKOOdzu0RPLvIgnyf6wIwTR77k87HV6JK35P6ydeMsdjW/Xfpl9m/na3RziDULKtW0858rFoHnJBeAit+zOl2dewlqbANx79i3XEU4BZjt4z6pZ4w1Gvwu4Xme9+U0ulV58KXxqZKS8TMd35kVU+9GfhZ536qYG88HnvdVYil+vhR7xvd0zfvnakUzAo1Go9FoHDD2lhE4deqUVb3mv12xoarsKFsQLjWqiinllWpYMioWq1UBzwAAIABJREFUmP3voWOIT16x59+4YEuAFcZVngQXR65iqZ0lxmOilN9sBfPqO0dhsGUT4LHKVrPzqSqMMXDttdduFRfJYIuP4+7VWDhLgr+rMrrMerCVo8pD87wKBqJKp8v9dv5PxVrwvVyyoDKYJXEMm7K2XJlgxVqwdezmXz6G9R67+HurY/j55/lbpbl2xZLUnHX95TFWFjPrGNaUSme4HAQZHPPPugI1jvwOdkynes/xvOZPVbCN9QNHYRwuJZ30lUYzAo1Go9FoHDD2khEA5tVYWBjKB8lWj/NhKZW7sz6czy7/7bJnKSuLC/WELzpWvbfddtvWdfP1MGvBeQuUL9IV6eESn/k3/uQ21vjpq2It3A5bwxz3ny1PPndl1Y0xcM0115SWIF8rzy/FfrA1wPdhTZw6jwf7avP8Y5U+W04qSoWtdZcTQMWt8zPAFpuynFjb4LQIFfg8LqNi/psZL6dsz9dYaQ+W+qbA7fAcVdEO7txV5jpu17WlxolZUpdNT/XFWeTqeXLzmn9Xc9XleXCMUd6H52R1j7ldznVQHaMiQfYNzQg0Go1Go3HA6IVAo9FoNBoHjL10DUzThIceemhLPJPpIUc/BThEMP/NSTqYflIUE9NPTGWp4ja8D9eDDzGPqpvNFCO7CpSY0F0HX0MW77FIJ+BosIq+dPuqtpxYZ41rQCXryecMsSlQF8lx1LkaE6bTWXBY1S53lGX13SWFYuFkFlXyHGEKmMPKqhSsHAan7gu7VDj5lBMN5vPw+Xh8K2Ebu2eUqKtKGKPaPXny5E5unopm531du5Wb09He1fkCnECtcq2tHf8qOZRzZ/Kn6suSiyDDpUF2bkdgW8zthKD53lTuiX1DMwKNRqPRaBww9poRiBVYpKxVq2Be6bliJsCyeKla/S4lTwnrUYVXcerauB4lSuPws7VFQHI7nNKUU3HmcMVYNTsLt1qZ85hXxV94m7MewsLNIkh3HQ6RkArQ5WyXUtU6lkT9xuOlitC4ELkqwYxjBFgIlu+lC3Ny58nznectFxRS5aFdON8a8ZYTCVZJXDj8lS1t3i+D2QqFYAQCuyRc4vbzeHLKXRf6VzGRS+F9VeEyZkcrYRwnv2LRqhpzFgPGe47ZSzV3XD+q9w634ZiBfC9ZmOtCxhVroeb+vqEZgUaj0Wg0Dhh7yQgA8wqNQ5dUgZ0oB+zCeTKc5Vr1YenYKrFHrK4jfJCTkKiQKWfdsE9dXUNYhzE2kZyIi41ki5otGBcmpKyZpbHga8jn5tV29D36rLQdLh0pI1t2yoJxxVCcvzr/7QrrMJugwp3Ub8CF+5PnASdWYetHFYEKOGunCp3jksVsOavUucyk7MIMsK/eaXBUyJkLh63SfKuiSQ5cWEr100H5w/n6XZIexQw5nzanD1epn3mOOO1QPoYZAWYeFevE7+kYPw7/XtJn5POsYcv4WDf/1DWzHqi6r1VK7n1BMwKNRqPRaBww9pIRmKbpolWf8r+7RC7xPftOc7sZuySIYGvKKWNzm1URm7xdKbGXEvoo64Kt+jj/u9/97ot+DxYl94GtZLYq1crcWejKKgqwlcL+tzVszVLxj2matiznXK6X+10VVsptAl7d7BKWqH3ddVR+XucPzXDJoZbS+eZtcZ5gsbjErNJuLD1Haj44n63Tb6j2mOlQxXSYQVtTypp1GCo17lKaclVAail6pJr7zB6qomMBPo9LG70mKoJZGHUMW8o8fir1tCub7OZBvqc8fu7dUTFg7r6pe610P/uGZgQajUaj0Thg7CUjwFAKUpd2lkvLZmagWtXmNhWWYoCVxcH+Vi4/qwoVMSPgUqRWlqFL3xkK+uz/DXbAxRFzv9SKmeFU8blvYXHydSnryFmADpFLALiQMyG3d/r0aQDb1qFSqqu2FZw1ns/t2J5QWSuLma13vrdKV+DSxPIcrbQWXEiImYHcb54HfH1qXB0L41Ir52OYVYpjuAR53mdN3D33V0UAcL92ST+7NNcrRsAVjHJRTMB2DgjWX+TzcUln9x5Q18lznpkZ1p/kdl2Z6KVnXO27yzGu70qvxams9xHNCDQajUajccDYyyVMWHRswSi/a3wu+Z6BbavAxb1X6l1ewYZVpFbKN95440XfeXWt4ms5B4BTnKuiQ+z34oxi8fs999xz/piwBDjLomMIlNXifIRKkcsrbxdBoRT7lfWTz33q1KktXYaKt3flh5Vf0pVHdX2qLFCnN1DjFKj0BAE3Z/j5WVMUKPrIym/FWgTDwn110Ri5vaVcFBkqKiB/r9ikav7mPp05c2brmHzNPGZu3lZjy+OyRs3P95bnWx5bnhtLBYuq39z5qlwE/DxxhBCwXXLZRcGsyRbJ26scBMy+uAyH6jpaI9BoNBqNRmMv0QuBRqPRaDQOGHvpGgBmOoapGCUcChosqKaggKvCKkvpK9kNkP+uRGHAhaQ9+e+gTqOvXLe9Ck9iQRt/z/SYK8bDCZnyON57770ALi5ElPvKdKtKzMPjya4JJRZkWo9DjNR5XM36jHANMPWnqFMujuOS9+RrUr+pa1cuG1egSCXPCfB85mtQ26K9mA8xti4dsmqfr6sK4Y0+hgDUuTxUIakl4Zx6Nli85drKv/G1u2sN90Buv0qi5UIy83iuEbeqttT53POYn30W4jHYZZj/dp+V68slsIp+KBEnu1TZVbjGTbsEldSLz8dpqzOOIgi9WtGMQKPRaDQaB4y9ZQSACyvJagXLAhtexalVMbMFTiij2ARe9fJqtyrxG8dGGl21cmerkK18XrlmyzmYhwidDLEih1nl8EEeP7aynPAot+esFiUA4nZdgh6V+GWXFTmHoam5w4xAJQBk4ZML0Yt+K2GUS2bDFhWwbW27pCZ5frAIMOZBMAJOiApsz2NmbqpQQx4bF3KmBHRVIqZ8/rwv95WfdfXMr7Hqxhg4ceLE1nOrLNmAS12s3h0Ml95W9ZHZkLin8ZkTZjmGhMcnvwdcCKZL8KSeDRaYsqBagQulxfXxu39NuuBAJRJcYqAq9mef0YxAo9FoNBoHjL1kBKZpwtmzZ6VvKeCK/cQKMla7+dglTUAVksPnYb+7Yi3C8mcrMVL+BnKYIVtI7Kvn/XLoVlgFnISI+5ZZhxin+OTUzGyxZ6t2bSidas9pLdhqze2uKfoRc8dZ/cCyP7RKMcx9ifFgq18llnLMSfQts0nxN5d2DT88z4/8N1uLXBZWgTUA3NcqUZK6ZwrV8+R0O3ku8fxdk5bYJcZyOHny5Ba7o8IRnSWpWB+XrtuFpamCPmwx8z2uwus4WZNKcKYKX8V45DZU4idmi3heKGvbhVvyODIzkPvkUjere7z0jlL/B6x5n+0LmhFoNBqNRuOAsZeMAKNKgBFwlkTlL+RjeQWYV73cXvzG7ccKPf8dVhxbaCqyIVa3bAEy81CVxmS/7poUnOwj5O3Rn9wGpzB1kRRVEiJWPSv/9VKkBmOapq3IAKV2d8rouObKVxvtO4spn28p2Uz0MY+98xvHOCnNgLNK1/g6XfIu1kRUSY/WniOD56b7zH+7xE9rUvUuoYpMAraTzDjLUrXDY+gSnKnzMSPAz0+V/IyfgV2YL6fDUPObowRccjJ1Hhchpn7naA5+B1fJjgIu4VfFWuwzmhFoNBqNRuOAsdeMwBrL0qlAq5Uyf7oVXz4fr4hdqc+w4IEL1ltW5+bvnC4Y8Gp6lwMh+/TZkmXlt/LDuvLGAafUzljyDSufrYt5r+Lj12CaJpw7d85GQwDb7Afnd+DxU9t438q37RB9DP9s9tnG8aH74LhrzpOQ+8bz+VJ8nGGBKmZtiaFZo+Z2OhZlte7iE2asKZkccyeg9uUCUa4PymfP3x3ro3QfuxQbWtKiVKybs5QrXQPH5ld5SxzcXOJnM+/D7VfRBG68KhaJ7/Eu76GrDc0INBqNRqNxwNhrRsAptYF6dQvspiB1vsZ8Pl4JO6WsWinHCjmiA2I7K8BdO7kNvj4ubZyP5ZwEYd3lY1xcv7N4VPywiwTga8p94IyQrDBWqvsqHj2f68EHH9yyjpX/3UV+KCuY9432XBa9ymfLOhOV34F986zdUBacY7yWohbyb7GN547SzfAzsZTZUlmvS7kAlLbD+darZ93lcNgVrlCVO2/ex71fKl+6KzZU5R6Iv7NeCdi+p+q5jHeDm29VNtSl7H35eeL564r/qGc++sDahyrXQWApZ4x6Jlx+jH1CMwKNRqPRaBww9poRCFTWNvucWSmv8rez9cEWjVrBch/Y71b56u6++24A25afyt7nVvwuz77KkxD95pwAqo+chS7g/LFVe3wvAvm+8X2KMec4fKW6rq6Dz1fpP9hC42uNOaNy8bsogaqEsfNdcrRAnm+sG4i6FZVfntkW5zuv9AXOilMWOp/XPSNqTNgyW5MTYCmPQEC9J44rJpwZKxcxk6+V9Q+uD0pv4vzv3B/VJj9jcWzMKcW2xG+RxyI+K5bP6ZnWRDbxfHIZNKuMfzyfq3eVY3ACVc6afc402IxAo9FoNBoHjF4INBqNRqNxwNhr1wBTMlXqTRZ0KGqYqV9XDKYKlXKhKormj3aj1G/sEzSvCktxiTUCnAJWhRpx/4Pe4xS0qv9LiZkqVwT3WQl9ODVv9IW3q2OckDIjkglVVOaSME2NI1O07rOitAMu1WsuYR37OEpYldUN8Sl/MnWv7lv0xYkiFb3P7TBtznOpcpe4hC9KsMnfq3Bgvm/HRe9y2Cu7BlQxIjeH+Hc1v3k+8PUo9xu3y+87VXyMxbtV0bGAcwnyu1KFgvLcqVyRfD18vjWJ09h1U80P3taugUaj0Wg0GnuJvWYEWAiTV70s1uHQL5Wshy3wJVFVtkp5JcwldtlCyH9Hv4MZCGFeHJstdCdCjPOxoFH1l8ct2mdxZP6bkx65tvJ4skXowqPy9fE4cfEUZek6AZFCMAJVSOOSEI4/8/FOAMfWg7o/XBArrDwVssX3w4kUFbvDx0T7qgBTgIu7qNTMuU1g+/kJcaoLK81wgk23H7BeWFiFtl2qWJDhQsoq8R73u7I0XUhcVazJhUdzn1WCHLZ+HSOg7pdLqlSNuWPW3HxQ52NRYiUadOnkqxLZa8KWr3Y0I9BoNBqNxgFjrxkBlzYY2F5dO6u0CiVh67MKQ2HLnI+Jz2yhcRni8Nnec889F/VVJTtxBZA4PXG12mY9AZcczufmdtgKVxqIGKew7vl8KnyImQAOH+TP3Ie1yKlilQ+VtSJsSShGgPdxVofyUzq/O1vd+RinceA+57nDbBgnLqrC7By74xK+qGt256t831XYpepz3sdZkUpzUzE1xwG+xtwHp5VgC7OyhjlJWGWtrtWvVCGoTlOhng0X0lyxMdwHZ6mrecHvJH7fVPfYvS+rZFScRGof0YxAo9FoNBoHjL1mBNjHmFfZYU25crbKCuKIgqUUn1UpWV6JRxu56BCvJJkZUP4pTkvsNAiVdRX9fvSjH31R35SPK37j9LBL6UKrseDvuW0eCzdGKmrAfWeMMazfENhmLtiS5XKqapsrQFIxAswAcGIclfLVJcSJ8+f55nQWbGmqaBV+BlySoOqanV+3KtbiIjiUdsBZc5VafCk173FjDXvl0qGrIj2uvTVKdmaa1hTN4Weax09Z3SrJVD6G+5zb4dTm7nryODgGwkWRVH3ivin91C4apasVzQg0Go1Go3HA2GtGIOD82MC2RevSTwK+kIbzMeVVLyukWVWrVotuRamiBQIulbDTBOTvS/7WSqXsVPbMUCg1P+sH+LozI8DbmBlgCyFvWxvPO03TFrOgfKgBzh+gLDNmApbU3Kp9Z6koFfdS+VmlSTl9+vRF2/hYl841w/mRVR6JgLsv1Zi4fVlHoRiBpXGsdAzHHTUQ4DGo0uoGXLRDpeZnP7W6HmaaHAtSxcy7yIbKcnZtVKp7xQDmY1TOC/fMOWZA9dFpFCq20TEf+4BmBBqNRqPROGDs7xImIVaNeUUW28JycKrTDF4NujjnqnCIi5FWbbHPPuK5OQY4w/mPOXqgWu27IjrK0nVqardSVpYA+9bZslHKdldsSFkIu/jmpmnC2bNnt5iAqmgJWxZqnDjboGNfqhhm1iuwLiP3i8eOGRqlSYn8FFxAitkDpU1x1jZrbTKrxvs6pkZli2Pmy7E0a8osO0s04+Hy71bn5rnhYtlV1MNSiedKxc+MlGJwXA4Ax7Ko98AS81BlhmVLnI/JBdRc1s2KtXLzjOfFGpZsH9GMQKPRaDQaB4xeCDQajUajccB4RLgGVBga1/hmKmlNbWonUFEiJ1fIgymzoP9zH4PKuummmwBcoHtD3KXozwCLZViwUqUL5nC16FslvHHjxqK+fD4eA6a1VSEmJxZ0BUXWYpomPPjgg1sCRhUK6ChUFSLlQpM49DBQ0aDONVGFLjnxYHa78Lg7Krique6oUi7qpdpz6YKVG8sluakSNjmBJvcnw4ktrwSWBIsVhe6gEkvxnOfPXVwnTjxYFTlyrlcVHsvvAb7HLOTN2xg8d1TIoXsmqtDqy5We+uFEMwKNRqPRaBwwHhGMQCAzAq5gDFtSqmwqrwrZGlKWDac05k9lbQeiDDCvlLlISz6eLUBmF5QlwGK3YAT4etT5AtFHtiqV8I+FRC6MUB3jwgYvtcDHNE144IEHttI357TKbDG5MCSVEnXJglVhXmwRsfWjrDFmCdiCqtI3s7XjzqssdL6nfB9U6Vq2wBzjodiyJUZK3YNdrDsep8udJnZN6u+lFMn5vqx9DvKYLwkLFTPg3o1rikMthY+qZ4LFwSFkjfPEu7FK976UYEq9+5f6rETFD1cyqsuJ/e15o9FoNBqNS8YjihHIcIUg2CrNK1jWD/B2toIr370rrJL9V+xXZd8zl34FtleoKkWuut68D5e5rRKMsA+O+8ppa/N4c1/d9Sp/IicWUsWGjoJz587h/vvv32JWlP/d6UmUZeZK3/K+zKAA25a4Sx+tLEF3XyqfN1surE1QVqbT2jCUr5YZAW5rTdKbJcZF/eag2Ji4Zg6tPG6oUDqXBIwZPIXY9yjPxdrEO2rfAB8T7xSlY1iao+o9EOdzpbnjU4VHOgZvTXikY4NVSO0+MwGB/b+CRqPRaDQaR8YjlhGIVT9bZGzJVMUxODkQswv5O1sw4cOKFWt8z+dnC9n5zvNq1fnIeQXNiWby+dg/Hn2LVXe+Li4LzBEazAjkvrLlx9ar8se6FbhKt3wUhEaAtRSKEXA+QLZ0828ueQlHHFQpWLnNKoERMyWs0FZqcR5b52euCjsxlBXutAjMDKgyy846rXQajhFgpkMVU4ptl5sRCKjEYjxO7LNXDAGXHWefunrGqnHPbeU+sp6ILWjWKFWJd/g83Ebel9/J3PcqSRA/i3zeir10Be3yc+D+v9hH7G/PG41Go9FoXDIesYxAICwltzpUK2YXo8oWVRVzfN999wG4sJKOyIAcT86WXnxyGWLFWjh/K7MYeQXLTADrJVRMLq+e2RfJ/uVsXTDjwf5xFTcflkz8dlxMQODcuXN48MEHz7erLKesXs9gVkn5UCuLFdCx+qzVcP7wDM79EKjyYwTYylE5ABy4b2ytqkI1HGngIlEUw8JMm3uO8z4upbF6JnieXaoG5ShwvnI31mp+sg6jKvUdYB0TW/2ZEeD7zM+yY8DUsa6AWaVNWbq3GU7rxeOb33M8f13xsyo64UrmoLhUNCPQaDQajcYB4xHPCMTqL6xsXlXnlXKsSHllzL5FpTR3ClJehVZKcy7+oqwfXjWzlRN9V5ngOJIixsCVBc2/OcUvW/UqSmGpz3ll7jQJx4Vz587h9OnT5/sZ8yIX5wnNxFLGvWwdOH+rmw+KOXGWsvI9MvPAzE0cG0yU2tdlh1SRKM5Xz31X94vniou+UHPHnWdNHgFXLCyzPzHPgsG7EoxAgHObOI1KZgRcVkAeA5Xxk/eJd4fKrOqYGXdP1fx2xccCa8pDc9+U756LZ7kIABU14KKi4nse+zWZK/cFzQg0Go1Go3HAeMQzAgFXxjJnQmNLiFeSbtWY4Xy0Ku7aZRBzWbzUb1Us7v/f3tkst43EQBiU4kt8znnf/7H2vKdUOVWpshPtCQnc7MYMbSqRzP4uSmSJHP6INegBGnUf7DuqhSlbX8ZjRec/tv6L+ReYK8DWL1Uuwl6kIpDjfHp6ioiIz58/r8YwapvL1B312tUwJyMFgq2/Yw+DGQVK5Zd0mdi5H4z8MYpk4G9i5A1Q/83yB9T7aq1WuS/W91IRemsPiz0YRa6svj/Vq3xFZYpFzKodeJfvoRQh/E1jDlP9rGqRzu53vIZK+cqIvSp6rJdAHWvXehwVFMynYmP6CHycIzHGGGPMZjwRMMYYYw7MYZYGEpTFmGlGmopkYoiS0hj4mS1SPcpvKMfWz+TfUMZGib4zylHtdtn+mJzGjqH+HWU11SKX2e1ei58/f8b3799/XeuUFGuZIpYM1eWjiH5pAOX1LrktUecWE7QquV00jlIJUvXfmBSYdMlOKjFKtU5m41bnokv8m7UNrmMYNVViJktMQkeWZYnz+bx7AiuS40O7XpVkFzE24Kljxus/c67VMqZqKNUlfuJY2fXH55haiugSW5UNNnsfkw+xeRf7Dc40kLoXrAgYY4wxB+ZwikDCIlicZeJMTyXGVFTCTWdCk6jkk27GiTN1FRmyMeEr20++l+oIqhcZUTPbTtweRl9o6hOxf7kgcrlc4vn5eRUBZPlYRMTj4+OrceWxqxKtiPW1U+VWXWKcStpj0b1KSkTLWWb5zMxR2HHVY8L7SiXmMZUEUb+rmviIY+hKDXGMytKYqXQzSkAd08PDw9Xv0URZjzOVR7VB79QkpZgwMNIfJUOzkufcBtoQs9JbvN6jVsZ1f8ySm32XjZ+plGx/lZECcQ9YETDGGGMOzGEVAQbOqnFmiWv3bAabERlGZmyGqYxVlF1t3R7OdlWr3DrGnO1iic9MuaKKBHANso4119mUMVPXGOWa1ONjzWZSHciSQjyOmbVUbMKiDHLqeHJ7WArGFKquDLFun7VNVQpTl1+gjlMpIRFaQVFWumwsW1QyPE9YHssacW2J7jNHYIsl83vAtXxmxYvqDlqqo0JZUdE2M9xBJVCpiOyeYblOEdpSm20Pc1E6a3N8Bqo8FmY1jSWGmKvA9vMRsCJgjDHGHBgrAgWczaKpDWbI1jVN1R4ToyBm9Zmg8tCtX+L+ZqI4lfHffU6NEaMTtn6Ja494Dv60EpAsy7JaE6yGJPlvbPGb17tba8SIH6Nh1sI4yb+lIqAUo4i1GZOqPKio3BZlOctyIPAVj5MpArgNpUR1hkJKtWL3Gx4XrvvW+27ruu75fJZr0Hujxs8suXEsOEb2rEI60yv1HMD7gWXxK9UAryHLL2LPlfpZFu3PKBx1rKPt1fGw47rn3IDEioAxxhhzYKwINORsW9ln1pmuqvlWmcwR69mnsg/uIiVcZ8MIgGV+K8vXbu1bzZi7jGycVV+rtfAWMvMbcwPqTD/fS2UgG/dgjgVjFDmz6B4z/lX71E5FSDrfCvSgSFRtttoOgzVOwu+o/zNFQEWtSZdzg1Ek5gbUc4T5HyNFpSoC+d1rN5tB/4N6zZUXQ+d9gs8qpdB0yuCImfVzFe3Xsaj9K0Wygn/Dc8OOb5QbwI7rI/gJWBEwxhhjDowVgQlwVs3WeVVmrIqg679VVM2iHtU4RnkSdK6EM+u8uD/1isfLxsSynv80y7LE6XRanduqUqDboGrO1EXJeC4xCsOovH5GXcsZRzlsQ11Rmd/IFofBka9A3d+o2RBTvlSDJNZUCSM+5RrYZd13ak/uLz+T/hL13rmGOoB5LF0FAP6WmVKnnh2jCqH6t1nfDPZZtY3OBXXkDcG2g6953bvqEVQCOv+PzkPj3rjfkRtjjDHm3XgiYIwxxhwYLw1soJP9UEpS5XysJAclTZSgKyirj2R2JtGlnIYliCxhCkvm0NCoM/boGjz9LS6XS7y8vKzGVkuXMDkLmycx+XPUQ15J+BFjq+mu2Yyy4sUS1Iq6DjNW00rW76x/8bvYTGfG0hjfZ+dCmc7gvcrKB1kSJzuOunTQNdq6xhJBLkGw66MalbHGWfhbxnuza6qlDMs6CX2UNMqeYUreV03dmMyP3+kSC/F64XnsDIW6pMd7wYqAMcYYc2CsCGwAE4tYdI8GPxgN1SgSZ7XXLj/BmSsmFOXYmdGPShpUSTxsv1375j/F5XKJHz9+rI6RtaZNZSbLCTHBj50ndY7zu5lgxpKOMPLH5LYaOeF5x+i3M9zpomq27Qid2NdZDI9aMXeR4ki1YJ/DY0eznbxeneI2iuRPp9NKSatjwGfDngpB7qfaYaO5GT53WPIoRv4qoZWZ54yaQLHnHG4jUfcw+wxG8zONmDBJcEahVInUTBHA629FwBhjjDF3iRWBN5ARRS0bykgvZ+A4M8YWsxHrtUssH2MR59bSuxpldbPbOka2Tjq737pNVb71N8kcAWwwxSJLvM4qT6J+H6MOLEdK++AaMaHShNEO259SDfBcd4pAZzqDjJoczTQOwvuqKz0cNUhK6jlReR/q3DBGpZMs0q3fUUZIrIzvrdT9ZUkhK4mL6PNZEPwsU3eUYZYyOqvjVYpUl++hniHqeOt7IwWC3W/4jMTXmmuBKuktPN/eihUBY4wx5sBYEXgH2a424vfaEmaFY6OiLjMa1YNUGVjkqaoRusZIah0RZ87M7AbHr6oXmCJwazPll5eX1hgpo42np6eIiHh8fIyIPut4lDuRzFjx4rVk68yjfALWoAarILqGURGvr6Vai55BNXBJWLXKqOkQq6RQtrNMUUG2WAx35kN4rKiyYUS7F7nd+kzKMdfXOhZ87QynZq9314hHNSzD+5K9h/dzZ+6lmicpK+X6b2UkxFQSrMJyjoAxxhhj7hIrAu+gzpJzJo5rhKkMdDWv53HdAAAD/klEQVTaqATg7LvOlNVnVP0zaz+KUcqWem7V/KNbN78lLpdLPD8/ryIA1ogGo5BuXTIZ2Ztihjb7LI6jWydX+5mpr1a5AgmrI9/TE0LVs0doK+OuSgVzO1BZ6XIgZo4nfQRUs576b/V7YSrCnupA7v/bt2+v/s/anysVi6k+6h5V/gGdUpN0ikBeQ9VCWrVBjvj9zMXvKgW2fh8VAVVFwI7VTYeMMcYYc5dYEdgJjCJRIWBZpwlmsGO0w2ahXRRft8GqBtR6KJvNY7SI+8Nt3Fo+gKI7jqwSwHX3jDDy712DGlXvzNZaVV16RiO47l/fUxEy8x5QeSVqXZuBUXb3XbV9Fd3XexX3M1MDjsfetZ1VxzWK6s7n86/fcNfOFuv4EaZ+dP4GbyWfQ6wxEroO5v7z/0xNxMqmrnFUoq5d5/io1Dh0+WTnF/0j1LOyPldHVRFd06GuSdO9YEXAGGOMOTCeCBhjjDEHxksDO4PmM2kHyuQ2TETJ15S2mIUpysZoRqQSAOtnMKGxK3lT5U8q4YglNt4a1RiGLYckatmDJZ3hMoE6p515T24j/zazNLDFzGSU3NT9f3b5gJVkjcyBmNw/KlNlpamshLV+Vm2zjqGTd5dliYeHh1WpcN0eXtcsAUY6Y6K9SwsjXo/x69evr8aGr3l89VmlGhONbKPrvlWpK7Mgx+cJXjO0Tmb3HY49YcmQqqQaS0Xr7xyXdL00YIwxxpi7xIrAzuQMNmf8mazDEqIwisSSFfYdjG5who5RZNcOFBOxZiKmZEsy3K2hrGIRPBaMZNh1UedJlffleCK4aUn9To2YsJW0svNlSWlYCjiy/lXbq7DrPvqOsoCNWJ8nZd7CkiFVUhoaNI3Gz8Z7Pp9b1U2pKmktzRQhPD/XtqzF5kWpQOYrPofqeyO7aHatVckx3tfMDhuvCzZ1w2tbx4K/cXxmMlUOm4TlZ5lKgtf/Hp59CisCxhhjzIGxIrAzGI1gQ5kKlr7M2AQnqhQsmVmvUs05uigLI1+1hnfLnE4naf2bf49YR+admQ2zZWV0uQi4TokKQY22VP4ARtCs2QyqRXi/dYqAWkNlEeFsjsCMMY+y5mXnE68THm/93WHJ3qjp0KdPn1YqD4uCsSQPr0dtJYztv3OtnhntXANlT1zvna5FcYVd4y0lrrhv3J9SeWbUq04tw8+ofCr2nOhaL98LVgSMMcaYA7Pc47rGsiz/RcS/f3sc5ub553K5fKlv+N4xk/jeMW9lde/cOnc5ETDGGGPMPnhpwBhjjDkwnggYY4wxB8YTAWOMMebAeCJgjDHGHBhPBIwxxpgD44mAMcYYc2A8ETDGGGMOjCcCxhhjzIHxRMAYY4w5MP8Dh807kZdPCrEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAE9CAYAAAAWBiv1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu8ZllZ3/lbp6q7oaroru6mBdGMmHFmVLxNJAaNg5pRVKLGa8ALETEjjgaFKN4jGJAABjUjMt4HEDJ4gxgVkcvHFhUvEDUaQVS0A3JR6KYv1V3dXVVn54+9nzrP+b7Ps/Z+T52qOuft5/f5nM973n1Za+112e/6Pdc2DIMKhUKhUChsDrYudwMKhUKhUCjsL+rHvVAoFAqFDUP9uBcKhUKhsGGoH/dCoVAoFDYM9eNeKBQKhcKGoX7cC4VCoVDYMMz+uLfWHt9aG1prt7bWrsW5o9O5p1+0Fh5StNY+tbX29NbaFo4/dOqzx1+mphX2AdO6eMJlqnuY/lbqb629pLV2E47dNF3/H5Pyfn06/1tJPfx7yYI2brXW/qi19s3BuU9srb2stfY3rbV7W2u3t9be2Fp7RmvtA2c74CKitXZja+3GfSzvB1trr9yv8qYyb+qMzfm/fazvPa21H9mnsh44vRc/Jjj3u621V+1HPReK1tpXtdbe0Fp7X2vtntbaX7fWfrS19kG47utaa69qrb2rtXZna+1PWmtPbq1dsYc6XziN3U/sxzMcXePaayR9q6Rv24+K7wP4VElPk/RMSdvu+LslfaKkt12GNhX2D4/XuH5+6jK24WmttZcMw3DvgmvvkPT5rbUHDMNwhx1srX2IpE+Zzkd4oaQfxbH3LqjvKyR9oKQX+IOttW+S9H2Sfl3Sd0n6K0knJH2SpK+R9HBJn72g/IuFr9vn8p4j6a9aa582DMOv71OZXyDpKvf9BZKOSHriPpVPPFrS+/eprAdqfC/+paQ/xrmvlnRun+q5UFwv6dUax+9WSR8p6d9IelRr7WHDMNw1Xfc0Sf9Z0o9LukXje/+5kj5e0uOWVtZa+yeSvlDSnfvU/rV+3F8t6UmttR8YhuFv96sB9zUMw3CPpN+93O0oHHq8WtKjNL7Qf2jB9a+R9BmSvkjjD7bhcZJukvQOjT8QxDuHYdjLfP1mSS92L0G11j5N4w/7fxiG4Sm4/pWttX8n6Uv2UNe+YRiGN+9zee9urf2SpKdq3NDsR5l/6L+31m6XdHTpOLXWrpreQ0vr+4M1m7gnDMPwp5einiUYhuHf49BvtNbeJek/Sfo0Sb8yHf+oYRj8ZvfXJ9b+7a21bxuG4Z1zdbXWrpL0Ixo3Ct964a0fsY7O/ZnT53fNXdha+4TW2mtba6cmUcXrWmufgGteOInl/vfW2m+21u5qrf1Fa+1rlzRmnftbax/aWntpa+29k4jlj1prXxBc96WttT9rrd09iVc+j2K61tr9Wms/0Fr7b9Pzvae19kuttQ931zxd40BJ0hkvJmsQy7fWnjqJJq8P2vPm1tovuu/HWmvPmURE906f39kg+k/663hr7dmttbdNffCe1tovtNYe5K5ZZ9wePomtTrfW3tpa+6fT+X/dRrHh7a21X2yt3YD7h9ba907t/pvp/te31j4O17XW2lOmsu9trb27tfb81trVQXnPbK19w9Qfd7TWfqO19rCgD76wjaK/u9qoZvq51tr/hGtuaqNo+7GttbdM/fCm1tonu2tu1Mh2/3HbEYPeOJ17cGvtRW0U090ztfuXW2sfMDdGa+KNGl8039laO7bg+tOSfl6rbOJxkn5a0n6Kcf+RpI+WRDXAt0p6n5IX2DAMdw7D8EKUNTvn26gCG6b1+vw2ilLfN43jSZT3jdO4nm6tvX8a2y9w57nerezPb6NY9pZp7vxga+1Ia+0fttZ+a5onf9pa+8zg0V4m6TNba39vUQfuI6Y1f7a19lHTej4l6cXTuUe3UaT8nrYjUv4Gvk8axPKtta+d+uTjW2s/O625d7bWntdau7LTlg+X9Jbp60+7tfPY6fwusXxr7bOm849urf3kNF63tNae20a1zye11n5nWs9/0kb2yzo/fRrTU9Pfr7TWPmKP3Xnz9HnWDuCH3fDG6fMhC8v9To3r8/+JTrbWrmmtvaC19o7pnfK3rbVXt9Y+rFvqMAzdP43ix0HSh2kUUdwj6UOmc0enc09313/M1ND/IumLNTKFN07HPtZd90JJt2sc7CdqZBX/cSrv0xa0a9H9kv6epL+T9N80igo/U6ModVvS57nrPmM69p80iqG+UqPI8F2SbnTXXSPpJyQ9VuML/gs0sqL3S3rwdM0HT9cMkv6xpEdIesR07qHT8cdP3z9Ioyjq6/B8Hz9d90Wur39T4wR7sqT/U+OkuFvS82b66kpJb9Ao8vk307N+sUZR0ofvcdzeLOkJkj5ratfdkp4n6Zck/dPp3O2SfhZtGTSyxN+W9PmSHiPprdNzXeeue9Z07fOnMXuKpFNTXVso7yZJvybp86a2/7VGsd9Rd93XTtf+1DS+j9E4d/5a0gPcdTdJ+u/Ts3+xpM+R9IcaRXMnp2s+UtIfSPqvNraSPnI69xpJfy7pyyU9UiMT/RFJD52b00v/pud4pqSHTXPn29y5l0i6CdffNB3/1On6D56OP2Iq63+WdKOk3wrq+V6Nc+/834L2PW0aez9OR6e59NI1nnPRnJ+ea5jG8oc0SjSeNNX3Infdl2t8MX+3Rvb1aI1qxq9219yo3evdyr5J0vdrXDvPmI790DSHnqBxjv6mxjX2QDzHDdP1T9ivOYDyV8bOnXv2NOZv07ip+jRJj5zO/aupXz9L0j+Z+uIuuff5dN17JP1IsJbeOvXlp0v6nunYt3faeT+N626Y5oitneun878r6VXu+s9y4/qcqe+fMx37wanvv3K67ncl3aZpjU73f+H07D+v8d3wBZJ+X6Na6QMX9u2Rqd0fJ+l3JP2RpCtm7vlBSWckXbug/I+Y5vMnub7+CVzz05LeKemrNL5TvnCq4x90y15Q+eO18+N+ncaX3E+5xccf95+XexFOx67WqI94uTv2Qq3+EF+lcSH/2IJ2Lbpf0k9Og3k97n+NpD9y39+gcQPQ3DH7gb2x044jko5p1Fk+xR1/+nTvUVz/ULkfd9eW3wkmyPslXTV9f9x03yNx3XdKulfSB3Ta+ITp3s/rXLPuuD3SHfsY7Sz2I+7490+T3B8bNLK34+iTM5KeMX2/TuMm8oVo41fwOabvfyG34DT+KA/aWTAnNC78n0J5Hzr13ZPdsZumfr/WHXv4VN6XuWM3KnihatyAfMPc/L2Qv6ktz5z+/+lpjK6Zvvd+3Nv0/7dNx18g6bez55nqif4+bKZ9v2rlumMPmu79d8H14eZh6ZzXzg/wi3Dd8zW+OJv7/gczbb9R8Y87584fTMc/OVgHXxmU+w4teK/tcT6Ec3E69+ypTU+cKaNN/f8MSX+Lc9mP+7fjutdK+uOZej58uvcrgnPZj/sLcN2bp+MPd8c+YTr2mOn71tTnr8S99hv27IV9e8rN+zeo856drn+4xnfXDy0ou0l6vdyPueIf97+U9Kx158VarnDDMNyikZ39i9ba/5Zc9khJvzwMw63uvts1Gh18Cq69a3BGJsOoB/pzSedFpW20yD//t+79GifIKyXdhnJ+TdLHttaubq0d0TgovzBMvTmV91807hp3obX2z1trv9dau1UjE7hT4w9I1idzeLGkR5iYZWrfl2pkvaYb+yyNjPINeI5XS7pC4w44w6MkvWcYhv/cuWadcbtzGIbXu+9/Nn2+dhiGczh+VKNhlccrh2E4bzgyDMNNGhf2J06HHqFR2kCr7Jdp7G+25zXDMJxx3/9k+rR58IkaNyovRd+9Y2rjI1He7wzD4A2IWF4Pb5T01En8+9GttTZ3wyTe9fN8nXX5NI1z76lzF05z+yWSHjeJTx+jSUTbwU9J+of4e8fMPQ/RMqM7tdYerHFjd/7PrfN15/yv4PufaNzwm+rpjZI+rrX2Q5O4dok6w/Cr+P5nGtfBb+GYNEoLifdqRkzLd92SubMGXhHU98GTuPvt2un/75L0AVRnJIj6e8kaWRdR398yDMObcEza6fuHaZSgvgRz53aN84BrPsP/oVH6+jUa32Ovbq2diC6c1C6v0Lj5WKI7/2qNUsC5a98o6Wtaa9/aWvsHS98Pe/Fz/wGNTOHfJuev02gRTrxH0rU4Fllg3qNRDKLW2kO1uvAfuvT+CR8g6V+wHI2GPdJoFflAjS+LvwvK22U82Fr7XEk/o1Ek9GWS/pHGF957Ue86eLnGDYLpQx81tdu/eD9A0ocEz/H77jkyXK9RrNPDOuN2q/8y7FhrczzsOPslMsj8W40qCmuL2J5hGM5qEt/j3lvw3TZEVq/pu1+r1f77aK323a7y3AZryfg+RuOG6Fs0WgO/s7X23TML8nVo03cvqMfa9lcapVPf2GDfkODFGl8oT5N0XONc7uHdwzC8CX9zxlj3084YGG7WyKL58n+fdjYNP45z6875uXnwYkn/t8Y1+2uSbmmtvRzvlAzR3M7WQTRPTku6/0wdfE5uYveK7WEYdr3bph+6X9GOSP1TNY6BvReXzPWov/f6Duwh6vu5d42t+ZdqtV8/Xf335XkMw/CHwzC8YRiGH9eoxvlYSf+S17XRpuY1GvvgswdnSBph2jw9V6P68Vxr7eR0rEm6cvpum9wnatxkP1Gj2vRvW2vf11rr9vU61vKSpGEYTrXRqvV52pkIHrdIenBw/MFa353iXRonHI+tg5s16sKe06njrMZBj4yeHiTp7e77YyX95TAMj7cDbbSO5A/OYgzDcGdr7RUadYJP0yh+/qthGH7bXXazRinCP0+KualTxfskfdRMM/Zz3ObwoOSYbUDspfFgSectaKfJfr1WXypzMEOYx/vyHDI3sLUxvUS/XtLXT9Ktr9T48nyvpP83ue2Jkh7gvq87x58x1fMdC9r3562139OoX325l9TsI24WNoTDMJxtrb1e0me01q60H8Jpw/YmSWqtfU5Qzl7n/AomycWPSvrRNsbseJTG99jPaPzBv5i4TquuXwTfdW/dp7qH4NhHaFQjfMkwDD9vB1trl9VbYR9ha/6bNIq+ibvXLXAYhre01u7UqKI+j2kuvUajBO2Th2F4z4LiHqxxjTxv+vN43PT32RrVFLdrJAvf0lr7UI3r4Xs12kc8Latg7R/3CS+Q9K+1Y0Hv8RuSHt2cP21r7QGSPlejbmgxphfAm2Yv7ONVGsWyfzoMw+nsotbamyR9UWvt6Saab619vEa9rP9xPyZnLTnhcVp1IzLWcH8t+/F4saSvaKO17edrdeP0Ko1GbqeGYfgz3jyDV0t6bGvtc4dh+KXkmn0btwV4dGvtuInmJ+b0CI36QWkU0d+rcSP1OnffYzTO2XXb8waNY/BhwzC8aM+t3o17tPsHeQXDMLxV0ne00YMj3VxN1+0ZwzC8q7X2wxqNyJa4Qz1XozTr+RdSbweRqsPqfY3GjTZd4SJcyJzvYlK7/EwbLfsvln+4pFHtolFi8XMzbbrQd906MJXEeXVWG12yvvQi1+vfixcTf6Jxk/wRwzB8/34UOP0eHJeLUTKJ6F+lUWT/yEnFuARv12jcSLxco+He9ynYDA7D8NeSntNa+0rNELY9/bgPw3BPa+3fSvqx4PQzNFoYv661ZpaN36pxMmWi/IuJ79Yoxnt9a+35Gnf712rsmL8/DINF+Xqaxh/BV7TWfkyjqP7pGsXSPgjNqzQGA/kBSb+sUVf/JEFEp1HvIknf1Fr7VUnnZhbv6zROxp/UOPF/GudfqtFa8nWttedptNS+UqOl8+dJ+vyOKOglkv4vSf//JHX5PY0/TJ8p6QenF+elHLfTGnVX36dRJ/o9GnVhPyCNth3TM377tFN+pUam8UxJv6VVXV8XwzDc3lp7qqQfnkTXv6rRwO6DNIo+bxyGIYze1sGbJX1da+0xGhf7HRrnyms1jtWfaXxx/jON8+3Va5a/Lp6tUS/4KRr11CmGYXi5xpfIxcLrJX1Va+36YRiMQWkYhte11r5N0rPbGKHsxRqZ+f0k/a8aN3N3aodpXsicX8G0ru/Q+PL8u6nOx+nij81HaVxHEYO8XPhjje+b5zqV0TdpR7x9sfA3Gtf6l7fW3qqRfb4NNi4XjGEYzrXW/pWkn5tsK35BI5t/sEYd+p8Pw5Bubifp1ss0Sk/u1SiO/2aNvx//33RNk/SLGn8Dvl7SydaatwP5C5v/rbVHaXyPfdkwDD87zdsbg3rv1agKu9Ede5Okn9UodbxTo1rhwyX9h14f7JW5S+MDPlXS/+IPDsPwx621T9UoNniRRh3C70r6lGEY/usF1LcnDMPw9tbawzX+UD9Lo1vKzRot41/krntNa83E4q/QaKH4TRo3B7e5In9co9HGEzTu+N+okd3SYOWXNUo4vm4qo01/WTu32xge9Js1GnT9Jc6fmVj9t2l8iX+oxoF+m8Yfu3RRTvc+anq2r5k+b9bojnbLdM2lHLcXT21/vsZN1BslPXYy2DR8p0ZR9tdq7MObp/u+fRiGba2JYRh+tLX2Do1z9ss0zv13alTZ/NEenuE5Gg0of0KjOO43NG6W/kDjRupDNG4K3yrpy4dh+MWknH3BMAw3t9a+X+M8v9z4RY1iz8+RW2OSNAzDc1trvy3pG7WzHu/W2E8/o9Eq+9x07Z7nfILf1rhZeJxGl9Z3adz4pqLNfcLnaNz43XiR61mMYRhOt9b+mUZ3vpdq8jKaPn/4ItZ7prX2LzWSiddpXIdfqvGHdL/rekUbAyd9h3ZI07s1bu7mQij/vkbdutmIvF2jp9C/d6qsqzS6EEqxys0/15ZG6e5e7Nxer/Gd9aFTGW+T9PXDMDBy5C6Yi0ghQGvtgzX+yH/vMAzPuNzt2QS0MZjP9w7DMBsMqXB40Vp7oUZ/+k+/3G253GitvVmjJ86/udxtKdx3cCHMfaPQWru/Rr/s12o0QPv7Go0Y7tLIzgqFwnJ8j6S3tNYefol1yQcKEzt+kFaNpgqFi4r6cd/BOY36mOdrtMi+U6PI9kuGYYhcxAqFQoJhGP66jSGW9zvs7mHD/TUGbLkYXgmFQooSyxcKhUKhsGHYi3K/UCgUCoXCAUb9uBcKhUKhsGGoH/dCoVAoFDYMB96g7tixY8PJkzs5DLa2tnZ9+v+PHh0f58iRI7s+7bzPw2D/Z5+8ztsmZPkc1snzkNk67G+uiL2BbWBb7bs/nj0Pr43u2d4e3dbPnTu36/uZM2dW7sna9va3v/19wzDsiq1+9dVXDzfccMPKtUvA9i4Zl3XG7mJduy6W9MmF9Nt+tmmdtkbrlvPN8O53v3tl7hw/fnw4efLk+XdI9n6Ijs2tn70iW4dz1+2l7AvFXubMxbr+YiKaOwcFB/7H/eTJk3riE3eiQ9piO3FiJzHP1Vdfff5a//3aa8fw1sePH5ckXXnllefvsY3AVVddJUm64oorJMUbgei7v5ZlRufnfiCXlL/0BzRqd/Y80YaHsB9d1mPH/f+81l6k99wzRp28996duCP2/913j2Geb7/9dknSqVOnJEnvfe+YWOy223ZiCFmf2Dywcp/ylKesRGW74YYb9KxnPWtXOzNYO/lsdjzaTLIPl8wdjimv5fmont4PjSGbE/Y80Y8f7+VYEv5Hkj+Y2aaO10Xl8ZNj0Wvj2bNjZGhbi77tNs9s02h4+tOfvjJ3rrvuOj35yU8+/56x94Mvj6QiG49og7GXzSPnaNY/vr5ef2dt5ByJrvHne5t8rr1eG6P3SlTmElJxqRDNnYOCEssXCoVCobBhOPDMnYh2omRM2XfPirjr5G6V56OdNVndElZk2Is4dI5B+b6xNtk97JPoufjse+kTtslg7MaYlW8TGZB9N7YUMURj/WRhHsMw6MyZM932Zsy2B7Y7m3dLpDGGHtufm0899r1EpZK1dZ1xz6RMXF9cK/4ak8YsAdkdJUcGX+ZSFiuNz3jllVeel/ZF7abIPkOPpWZ92hvT7Hs0TzgukSSKsHKy8ViyZvjeWUdixO9zEqRCjGLuhUKhUChsGA4dc492b3M76Ghnme2UlzCauXuiti7d3fvr5vSlS8uO6ol27uuW32MImS45qpdtIpPzZRlTt9286VGz9nkmZ+VHOviMyURtoN5/TmK0xJBzL8ZiLHMdA8fenGH7M0SSMNZD5h6tGTIzK2tO99or1+bJ3DNkMOZuY2xSJd+mJetC2i2tsv/3wtx5bokdwxx66zKT2KzD3K2/ON+jfsxsCvbDSPO+iGLuhUKhUChsGOrHvVAoFAqFDcOhE8sbIpE3xUZLDNIy46eeeH5O/G+ivHUM6nhvVM9SMZkvLysrEullovTMKCpy9YsMj3zZS8TBfB7fJyaGX+LeZmJ5uz8yPCR4LUXw0bEsnkIk6szUF1kfe8yJX6OxnDOOXCqC790bXWOYE8/7YzamJrpeYvSViX2tjJ7BZQ+tNR05cuS8OJ6fvu7MDdS+m7umb9eckVj0Dlu6/ntqIK5pQ0/Fks3ZJeJ4HudYSzt9Yp8XomYo7KCYe6FQKBQKG4ZDy9x7ATTmDJykVdY1x9wjVsQdtJXVM9jKXIKyHa8vl7vfKFAH20smQ8bTk2Zk7nO8LqqX36NAJIZM0hL1BaPXzWEYhpU+9u3OjAgzdh6dM5e97HyPSWUsrMfcs0AokZvhnEQlamO2JnqupRnmAtP4Y3NGmf47g9VwfkXsci8GWb1ntbLJPCk18EafdoyGdfuJyPiT0Tt7AbfmXDo5hj3jSPbREhfWwv6gmHuhUCgUChuGjWLuc/o9zxbmgtdkuimPdVhXxpyzIBPRtaxvCRuac72KmE2PeWZtzfre2mQ79mgMsnsj/ey6TKcXAliad/uLdO6Zrj0LxtNjRRl6UhHOZ+qdo2vJ2DnvvPTB/s/WRMToMskA22rrwPdnNDc8IslbJk3qzd0ldhqsl2siWmPWfrLSSOe+bhv2gohJ26eNbU9yx3C67GuW6cec4xz1QeHSoJh7oVAoFAobhkPL3D2yHSV1YJ4tkO2QSdvutWe5mbGwyNp3jkHRStuXm+m+WabXY5G5z4UH9fcw7OSSBDYZEyCD9Hphay8ZUBboI2pLD621kAFH5e0l2Elmg9DTTfNY1rdRMKOMHUc660wqQkRW4Eu9AHoeK2R1PdsLnsuYYcSaMwlVhGiN9dCb59IqO7X5Sz3zpWDrS0Fdt7Xx/ve//8q17K9MsuafjzYFfr0XLi2KuRcKhUKhsGE4tMw9su6ds9T2u0iyRO4waU3qkenWaZkeMbasDOpp/XNlYU7JEPyunJIIsvGe9TpDd/LeKKFEzyLdH4907vzesyRelwnMMfc5iUrUFnsG9oP1G8fJzyWO85xleg+9kJ6cG+vEHciso6mLjfoksxy386dPn5YUS5moe6ediq8vmyPse1/POolpzMsik575NlACxb4/yIh04pyT2Xu1Z/+y5JrCxUUx90KhUCgUNgyHlrlHbChjutFO2s6RSdF3PGIAZBiZLsqD/qV2jVmv2qdn7nbtVVddtassMhlrW4+5k43ZTr3H3NlH9nns2LGVtmZM0O653/3ut6td0iqzsfLsWmN5S1hsD5mXgW9D5oGwpLwMEXO3eWCpRDl3IxsJmxuRz72006fR+JPhZhbQ0fMZMiZq68CfI5u1eWafd9xxx8q9c1bYUT9m3iy0pYnsbJYiSm7i+/jOO++UtOPHzrbYuPn1y/dN5gERremLgcj2w9rIeWfozXuWd5DsDe5rKOZeKBQKhcKGoX7cC4VCoVDYMBxasbwXDZn4yMS5x48fl7Qj+rTzXqxn5+weiqLo1hIZut11112SdkSOmVGRB0WM1o4o/7S1LSuDIR0jtYOBxmom8vb3UBVhfcFQn/bdBz7JRMYUO/p7zP3GyrXnsGusb3yZdm6pwc4wDN0wrRQF21hSvOzv2Y/EFiaqNRUH5589u7+Wc9XQayPFuhSXWp94MTlVBTRMtT7y91g9Nq/46a+9GGDgHUNkeLuOqJjieFMrSDvieHs2G6cTJ05I2hnbKHQx3eeoPrHrfOhajmkWMKYHvn9sDXpXOPvfnofGwDQg9PPO5oa1m3NziYsx1YFZ+G1ffhYUjOfvSyjmXigUCoXChuHQMXfb1XkjFWPqV199taRVg6+IsXEXyN0hDVo8k6LRy5LAN5QA2A7X6ouCSNiunrtRMvdIUkCWkrEvD7IGk0xYO7jb932S7bKj0KgG9omVe+rUqV1leaZKw7w5g6PW2orxkr/HGMaFpghdFzQ0s/6J+paGTdYHmZRJyg2assAkUWAfziFrq80LY+W+Df7YpUQ2br2EP0vYHJmfL88Y+gMe8ABJO2MXMXYD+93eY2TfkWEl16Ght8YoGaCEyO7x843Gnpm0jO8hfw0Nhu27vas9MpdYQ8/YNQvNzef377u5cMebgmLuhUKhUChsGA4Nc6cLke2apdWdrO3SuEOPXLfsnJWbMZ6IjZMRZulDJenaa6/ddc7YjzHH22+/XZJ08uTJlTZG+urouT3I5pckbojc8aQdiUhmLxC1hak4qZ+UdvogY/0RU7E2GDu67bbbus+0tbW1ojc1Fya253LCnplMXlqdv5l+cUnQFAai4ZySVt3yrD7rN2Pnlzohyl6wJLVshq2trfP3mLTkuuuuO3+ea8zmJG1FohDPWRAjfnqdu/U7Xe967o101+P7zt6jfo1RUpQlGYrec5nbJgMh+fdpFgyKYcMpBfCg5IOSA1+HSUts7dt7aNNQzL1QKBQKhQ3DoWHuthu1HXSUMtJ2adzRRvqyzAKTQSYi6+VMh0uG6PXoxn7JcGxHbVa4vo20Jme9ZGGeSZGxk+1ZP0ZeANz9cudsn8ZUpDwIhyHSz1FPa32cJZKJnsOPC2GJY9imgxwWlCxZWrU9oP50SSKXLPRqpK/NEhJRf3kQQosySFNPgrBOe1trOnLkyPm5brpiX77NW47PXHIgfy2ZbBQqmyDbz94P/hpbJzZ2XD9Rv2Uhqqlz761BvhciacachXtPxx+V5xH1iTF3rolNY/DF3AuFQqFQ2DAcGuZuLNZ20BGsIJUZAAAgAElEQVSbMxZM3UwUGpUW4WTq9PX0O9vMIpy644il0uI0S8Hoy6E9AHXf9gy+jQxZa+Xa8Ug/Z220T+tPYyjG9u3Tt5V9bm1iEh1/D/30aRcQJVUhS+VzRqBl+n74qV9KkMHYnGEcBN8XtNMgg8v06tLqeNg4UW97kMB5sWSMe2FUW2u64oor0vDU0qo3C98h1hZ/D71wKGGjPUMUppfSN0rWPOyczQ2z6clCZ3vQHoVSs8izg+OQpRz2cyiTQNHLiSGNfbszyVQvBDTfIZRU+T45CFKqdVHMvVAoFAqFDcOBZ+6m+yLDiNI/Zgk1DJFO0nZp3OHaDjrSm9m1trM13bO34Pd1SKusx+6lzsvXY89lLJg+9ybFYEIXX06WWjbanVLSQT9qs0y3nbOXOpA1UG8eWb5nkdYYy8CPI9lkz2PAQJ2enyeHKTUl2ZX1hfVT1LfGrsjgOT+8fzp17AeZse9l/LKUzR723mE/+T62viVzZrIpbz9hx2zMKHkiY/d9zneEvW+o8/Zrke8Xq8/eKbfeeuuu+vwzMo4H9dc2LyJ9tkkVsnS+UdplPlckveDzmq0Sx4cJoaL7rT5rMyUDh+Gd0EMx90KhUCgUNgyHgrkfPXr0/E4sijKW7ex4PNLdZtGPuOP0rNx27GTfN9xwg6Qdhut37NypM9qY7YIjJsqdMi3gI2t56lSpV6LezJ8z2L3vfve7d52P/IVtB01mSB28HzeL7EXmYd8j5s7odUvTrko7jCbyfb4Qf/de+lTfVta9ThkRel4A9LSwPqX1vD2/Z+7Uea7D2LMIeAYb017chb30xZJrueZ7zH0YBp07d25FwufnG6MKsi1R7HWbg+Y9Y/daW2x+23zseUCY5M587+394H3jaWNBK32W7dtrz8x7aNHv+5FSpCx2foQs/bW1w477+P7Wx3bsIQ95iKRVG4ZIIprlwzjsjN1QzL1QKBQKhQ1D/bgXCoVCobBhOPBieYOJjSJDKhMTMfUrgzB48RnF8SbKYlpNE+t4cTJdwx70oAdJ2hGBmZjMt9FEPSaKZuhKplf1xxhKkYkdTPQVqSquv/56SfOuIlF5ds6eh4E1fJnWF9bHJiajaC9yveNYMGRkdI8hcv/x8IljTIwZhXa9ELH8gx/8YEk7xklMnrJErG19bGWsIwqnykpaFT3PBW2K+nEvLoP2HHbvzTffvOv8kjDID3zgAyWtGnIuAdU0kcg4cssktre3dc8995xfrzamUdhUqogY/tobzdHQkUZyNOCLUtYy8A3dXCMjvMwVjYFwpFW3XRpU9sTWDJbDsNN8d/n/M0M2Bt7pjZu10fqX7ry+DZkL3KagmHuhUCgUChuGA8/ch2HQ2bNnVwJ2eKZh52isRmMiXwaNU8zAxdgdDX8iVzjbHZqxne0AzSUtki7YPXatsRKrLwoIYUY2NFbJXFZ8fTSco7FKZFxGVz9jUjQu8shCUVq93MlHYBCgKBEPQ+QuSfnaS3Rh7YnCVM6BxpCZdKQHmzvWT2aEuYS5Z0ah/N9/57jbcc8uGaQoSilLsI+N8e5FErE0sUvvXoYy9m2bC1lq1x45cmQliZG/x/qJ7rQMVBMFCLJymB7WvkcJn7g+GaqYRpS+PgOfx+DXLZkxjQmt/igoFI3uON+i9NuZETNd1aJ0wtZuJuayRFxRgC++MyKp6SagmHuhUCgUChuGA8/ciSjYCxOoMPVitKOlfpff7VpjIJ7ZkDEZyNyilKjc3XM37J+LjCBL8hC5eBkyXRfL9Ndy52y7bdOnRro37rpNEmJgeld/bRZYxe7x7IWBdebY8tmzZ1NdpX8WY2HrJI8wxs7QrmT0EagLN+nMEr0f64vSt3I+ZS6KUbAPK5cJgowhRozX+tFsLey7SSaW6M2tXmNdEVObQxZQxreplyzFl3PixIluwJssEJYdt/ZHIWQpybI22Xl7Z0Wud3Rv4/P541xT1tbec1k5lO4wEA7TrPpnpS6fa8+/Bzg3OSctZK7Nv57dBl3gemPMvqBE5LCjmHuhUCgUChuGA8/ct7a2dL/73W+FnUcpA8lGTQ8TWWpTT8qdPvWYfvdNVsTgC1EyE+6QucuOdrS2+6QtAXfWEQvPws/2UkqyHOsD66s56+Loee14xDaok+SOOUpXynHqhZ8dhkHDMKzYV/ixsHYZw7S6Il1dBlpSM7hJL9AOQ/kuqY/eBEx25M9Rx0mr7Ih9sb1zgYKk1WA4DDdM/XSEC/FcyNISe2kGJS1z8HOLa90js9uIUotmSVG4fiIWTs8GShmj5+IxSpMiWxO2je/cTPcvrdr/MIFRFkTHX2v30tYjeq+y/+ihEFnC8/29xAvgMKKYe6FQKBQKG4ZDwdyPHTsWhn8kst07z/tzZI1Z+kG2SVpNkhDp+QwMx0kWHDFRJkOg7yt9VSP9HBkay4rYOHW4tJ5nYhFfHvV0tF6ObAqMTVAHFiXroP685+c+DIPOnDmzwmyi8qgvtXYusfI32LXRePg2+c+9gDrxTAcrrc4RMhxKjqTVuch5t6TtmTQmQubbzXqi8NFkgvRhjjwteuPj69ra2lpZaxELzxKpMMR09Cy0IeI6ip6Zz0H7CT+WlNhQekHLd38uY+qsx48TpS8cw2ju0A6Ia5CeD5GkgO+zzKMoep4ofPMmoJh7oVAoFAobhgPP3A2M5NbTuXNHGSUIMH926hy5qycjkFajsWXsMdql2o6Wke+oI4ruz3yXI2QJURitzTPpOd9o6hD9c1s/Wj9xRx3VQZ2d1WNWsZHOnXrtJcyQOrZIsmLt5DhETHsuytp+sHMPxlUwD44lUibO48x6vpcak37ATLN5oVgaWyDykKEkh7pxXzbfHXO6d5/yNWojnz9jq/7dkSXwIVsma/b/k8FmEi9/rdmQMGkKUyhHdfOT70xfH+cKE8ZEEp0sYQzf21GfWH8y2U2mv/d1U+cexf44zCjmXigUCoXChqF+3AuFQqFQ2DAceLG8hZ+lmLSXm91EMz2XDRPjmXjaQLF8ZJwXGYf5tjEYjK/bDFpMTGb3mKjfgplE5fJ7TyyaGb1Q/Oef39rAJD2Z8V/PgM/6l+2IjFboJmMBT6LwsxSZzYUQ9WPUM1o0REY70m7VgP1PA6oLAVUf3q2NwXFo6Nhz8crc2paEeKUY24KJWP95I0NTM+2nOxHFs5EhJMeUqiP//JyDc30wDMNKPdFYZ2LrJQlWuC4z8XxUPj+jttm7kEGk7NoovHYUKMxjyXuH658qMf9uZEhuiuN7aieK+SNDxOh79DxLXSQPC4q5FwqFQqGwYTg0zN0QGUVlhh+9tIaZCxwNc6LdK9lnxtg9+7NrjJkb6zGmQbcwKTc4y1h4tPOcC/EaGezQkCoLczk3Lr4ePpOvL5O48Lro3Jzxy9bW1vk+YOIdfz/diuzaKKkEmXTPNSgDJUNZ8iP/P+coGWIvoA/BfuwZ4xmYMtXC0vq2WF8zOA/XTDRXycJ7hpCUHmUucJHh7RKXPkscQ4Mtb0yZpSDl+yByTaMrJ8cuMjzLWCrXv6+P699AluzBcciCS0Xfs/XOdebLNAPNLPFXz6AuCwaUhdD1YP9VEJtCoVAoFAoHGgeeuUvjjoo73WjHyR2Y7bLJdHw5ZIvUEUWhazP220tDynooMeil1cx0UNnO3Zdr15pONNrdG8haydQiPeYcWE+kP6e7TsYy/D29MLrZvWRN0ir7ygJnRAGQWAfnXzQuHMteABoD+4P6357uOGI7/p5I8sHyyeCi9MQEGXvPfYrPEblAEryGKWcjNpYlUcnKP3r06IprXWRHQ8mafUbuoJkOmuy0x1LnmGbP9iJb/76sKBFRVG9ke8N1yXlGNi6t2gXMuRZHbc2uoTTXt4mui5viAmco5l4oFAqFwobhwDP3YRh07ty5MLGKIbNwNubOdKfSatCVzNoysr7kbpE79Kg99j9DlGaW/b48A3fKWaAIXw7vMf1WFICHDJp2Ab3kPWRmUUIS/7y9a3oBarLwthHMXsP02VEIUTJpMoxIn91j5hF8GzkuZKcMMuLbZKCtQpTK1rAkOEr2DJT+ZH3kr2GQFo5xxKTmPDp63ggc/8zuxrd/iTX7MAzn3z3+nigRTcZol0gI5qRivo3sn8yjI3outolstSfh6LUpq4fvOYZ69fObcyV7zp7HApHNJV9eZlm/BIfBsr6Ye6FQKBQKG4YDz9ylcafGlJiRnzt3o0zfec0115y/h7tEMlzq6XtJQFhWlGaQ4RGN4dgON9IvZhbumXVsFNo1sw+4/fbbV+qlDtX60fovC5Xp/8+sVCmp8G3L2FZPr76ENQ/DEOrrvd6UOu9M79tjxVkberrjzHI7iqFAxpwlAepJMTIdb6//KC1jO3yfZMl56Cvf029m10TXZl4TvfKz9KAZzp07l7LK6H6uMd7rkUknOE6RrpjPxrCtPalIL6wy7+H87emxiSxtK6Un/hjtoLL53AuZnT1XZBeQvVd7WEd6cLlRzL1QKBQKhQ3DoWDurbXzOy/bCUaJDrJdu+2yfPQ36inJkpdEQuPum/pFXwb9cRndzHTgke4r88XuJTygLp/1m8TAGLwvxxKTGOgF0GOIZAY9f1N6NfC4ocd85jAMw4pNhO8n+vZnPtBev7wkZajUj+TH7z1GzTnPdMWRFIOsxO4x3/TsvEekj5VWk3X4a8g8M5141CeZ7cwSD49MUhQ9TxSpkGit6Yorrlixuegxziyio+/bjKmvEzmQ5fZicmTvtywinr/HkM33yO4liypIqVOUBpfPwXkQRarLpApLItJx7ixh7oeBsRuKuRcKhUKhsGGoH/dCoVAoFDYMB14sb2JVGq948YiJXbNQjiai8eLfLJhElvfag22xcmlo4u81dzITx9ONJnL1ozFXZmwTudzQAIjiRWuP7xMT0Vs5JjqjuK8X0jFzb4uMVrLn4vN5MSfLnxONe3emnhiR12TGUlE7iSzoTHQN51vk1pYFoDFEInWKbBnmlqJWP150ZzK1gM2LKJwz783UDJFqxI5lbok9lQ5dq3ohRZcYSfJZ2E/+me+8805JO/2TBX3xmKuTcyfqY6op2MZI5cFPGgr78aDhIY0iewGJDJzPbLO/h0l0DHy+dQz5emGqMzXukrDEhwnF3AuFQqFQ2DAceOZu6BlM0PWMbCEKWZsFcciMd/x37vAYatPK9Gk7GRjGWBFTv3pjNu6Y+Tw0MPEuXhZulgFHrr766l19ceLEifP32HNkboc9lpwZFxoi9kpDPSYdIWP05S51Z/LucJGhDiU4GcOMkmNwnvEZo0A1PJa5YHqJCvvfxr8XupaBm6JATh6erVDKZHPUJDtRQJcsyUvmkhklECJj6jGopfdEEpdeUBmPc+fOnU+JHIWHJlO3MeslyZkzmIsCLRnIXCmpzBK9eNiYMhFOJB1jvQYaePaCQhl6BoPZeuL5XjKd7HtkpJm5Lm8KYzcUcy8UCoVCYcNw4Jm76UzJTnvJROiyFaVm5LlMNxWx1SzUqiEK1GA7ZHPHs89bb711Vz0+5SvTwVofmESAiV0stKwvn8k+rB5j7J7JeUmDv5bBUjK9ugd1X5HelClyyeB7qXN7DIft6CUTyQJYrBPkg89KyUrE3HiOEqTI/c/G8OTJk5J2pDw9FyEmeckCB3lYW0z6Y8/D8MS+jZm9CVnZkiQ3XHtLgvNkUqVI5x6di+47e/ZsmjzHl5cFEYrWR+aSxufpuTdScmNjHDFQO2ZjaWNn7yOzG4jcGunqxyBQPV07GTxdcT0oXWQ/LmHUfL/wPXGYXNj2C8XcC4VCoVDYMBx45m6g5bTXSXLnSrYYhZDNrOOzIAgR2zPYbpTBLDyTtv/f9773SdrRX9pOOtIHWrncbRvrNn2g1esD0ti1fC5rhx23vvPHzKI605tFrDbT0/VSS1LSYmWQsUcMcWngiWEYVtodhaJkgBPCH8/qzKywo7lDhsFAPr6NNg+MqV933XWSduwnehbvTBDE+RDpn8mkeK212dhgdA0ZL700IovuLLwp7Sx613BuRrY52fcI1heRRXf23slCr0aYkxxGqYbJ4Blgx99jkkBj6DZmlOxFYLuX2CqwL+hhYZ/Re4fJh+gBEQXRyoJCcY32bH44V3rvFLbpIKOYe6FQKBQKG4ZDw9wNEXO3HXLmfxztxHrpS+fKyKzwjfFa2/zuzli1nbMdNJmO17lnO0hj8sbKqBP3baKPPy3R/Q7awEQhEXPKQCbc8zumjp3JdaytnjGQYc/pcH2MhJ7+PAu5STYZ3Zvt/CPr3yzBCedMZAthoWM57lE4VTJmzllDZB9CVpJZ3EfPRXbHBDJkwr79cwk8IqlPpmONxi1j+xFaazp69Gho3U9wrnP9RHMn87TIwhH7cjnfslgd0o6kzt4r9KJZgqXeBT1wbHvvU372bH2ydwiltb13V8b+e+0/DCjmXigUCoXChuHQMfdo101djF3DCGt+B5oxMiY8iHR3tEAmo7GdpWdJ3JkzvSHbtQS2G6cOLmoT9ViRNwAtmsl46f8e6cK5c+5ZgZOZZzp3779v5dizziWIOHPmzEpSmIi1ZEl4lvj2swy21V/H/iHzYCRBaWe+mY2FsTHrv4hJZ3OT8519Lq3qaU0/axIj6m99W7gWWW/kd8w5OWc7449lMSZ6EREzKQMRRTKM5oOND+tewtw5dr0EQgY+Wy96Jz1rbJxoH3SxGSmlm1EkzkwSQUv7SPrHdcR3VZQsinOmJ9Hhu2OdBD+XCwe/hYVCoVAoFNbCoWPuhshfes7iPdK/0R8zi3bnddN2jOyIO+lrrrnm/D1kH54pSTusaB1dmO2Co+hjtmOnZT3bHEVPM2S7+WiHmzF0Wlh7tsRddsZmI+azlGlsb293rWHJ5rLYCJGFLnXFnHe0p5BWbR7ILOxePz/YHzaW1GdH428W9nYPdexWtmfhxtRvu+02SauSAmP2URvtWSktIRuKIsdlsSUi9pVJQHqeCpl0KYLp3FlOz++c7xDaGfh75nTsEevPoidy3fo2WkwEfu9FgbQ67ZxJapbY3NA33t6b9q6KmPucjQXjbUSeFrQxIaOPIvDRoyPz1ui17SCjmHuhUCgUChuG+nEvFAqFQmHDcGjF8pGYpWdgJMUha2lYwuARFPdI86lX7V5zXYpgYlMTeZlY3kSi0qronkFmKGq349KOOMzE8nQriVxtDFmihp7Ik/2XpW2Nxi37jMJcUuQ9Z1DnE8f0QglnIU97LlC9gCm+jdEz0+CHZfq+tjnx/ve/f1c9dBny4YNNHG9iWJsrNC61PvZieXPbNLG8nWPbvCg3c03MUij3xPIGGtj15k62ViJV3NIASEeOHFnU7jlXvki8O5dgJ+oTqjgy8bE3rLV3gqkIOd50yfXlmfrFQmSbeobvOa+ytHnHELm9JC1cP1l45ygcsT1f9j6IVD2sh6rEKFQyg0yVWL5QKBQKhcIlx6Fl7pFxDXdp2XEpT1KRuahEyFLMRm5ftgs0Jk2DPtvhevbFHSwNdWgc59O3Zu5fZFa9ZDo06smCm0irQSQyBux3wHRF6QUgMXDHTMYWXd9j7jT0y9yYfL/xHOdQT1pBw8q5xDVSHMxnDsZoLEStzY1sjvpxMWmSfS5hKZyTZNS9JCuZKxznrp8PWXpiQzRuS4LXeJw9e3YlOZNvQyZx6I2lIQuElb2HpNU1TLYaBbGhwZnNC0r2IqmmSRPtGgZaoluqtGrsaYgkBAZKIOYM7HoBcHht792fuQXTKO+woph7oVAoFAobhgPP3Ftraq119VhZooueawNZwtwu3DMDumhlLjyRHotMneFfI5cr222T9VC64HXuTPVoICOInov9SQYVhXTMAsT0ks1kaRmX6kSXYHt7e2WMfbuzsKU9/VuWUMfX6cuKJBDZnInauBcmYfpS+7SERVlglQtNhJFJvKwfuTZ9H3J8loSSzYIlRelvWc8SMHSxSdSi4CVLkg1l5+jG2EuNy2cmA+0Fs+K1dNOL1oSxcAb9WZIMimu5Fyqb0hcy6Lm0ztE9nA+Rzp3v08x25rCimHuhUCgUChuGA8/c10Gmo452pxFD8tcy2IdnNlE6xl57fH1MwWls275H92RpBrNEKx7cqffsAqgfjaxTs7ayPlr0RiE/s13+fuq6vM490unxXMbyozC9hkzqw4Akvm4y3Mxuw4PjvQ6WBOZYF15SxHmcsdYliXj4vTduGduKpD/rJP+weZNJoqK6M91txAQZgCgLXhNZ57OMueRJvlym3u3puekV4ZNaeXi7F9reGCih8Pdk0pZecJ4M7PsovG42DzIpmj93GKzkDcXcC4VCoVDYMBxa5t6zWmXI0EgfnOlZyNii0ItziVV4nS/frqFvcuSnSf08pQi0GI6sZOf8ziM/4Ow5qNOL9NDskyxMqD9GG4al1sxzGIZB586dW2GEvo/JXJZYOmd+ueyDqJ9YHuMoRFIash7zQ6c9xcWGPS9Divr/lyT0ITKpQo9pUz+b1RfZ5uwldHGUDCpjflxz0T1k0nMeAx5k+73no+SB9/akcNRJZ+MUvVfnEhX5tmdW65n90xLpU+bB4v/PwkZHEsvDaEFfzL1QKBQKhQ3DoWXuUXQ06qvoc+0ZIXUzmWW9saOITdLftLejpHUq2Q991v3zMAkDmbsxX78bJhumXn6JD3bkK+zb4evjc5DB95J/MLXrfu+Oqdvv6Sh7jCm7JtO1R37HGbvv6Wcp7bE+Nj9kiyB2oRbvbCPHmVIGP1d5baZHjcY2s8/oWb5n0QF5PLKwXwecv15aQcxFqvPXZHEgaPMT2fpkPt2RbRHnk61/u4YJhXx5tOHJbJmitmSW/dE9c8l0DNbGyAsp+76EuWefUTmHCcXcC4VCoVDYMNSPe6FQKBQKG4ZDK5b3MHEuk6PQICQKRZmJwSja924gWW52in0jsWUWLMXafu21156/h+4ymcFRlDwjSroirRrh+eei0RsNE6nCiFwBqe4w9NyZLsTFawkilYCBrntZ4onIlSYDRcK+n2wsTRwa5WL390o74lHOK0vSYZ+W6EXaGVeKYQ0UgUaBT2h8ZXM4ajPVMZnLZeSaxGt742XIjNnmxLTRvVn5586d67pnZe60PbepuQBIPaMyqroMDBTkxel8n9l7wdpu10YGblliFYah9eNk8y5LbtNz8eMcMnAeRgaD67jRzYW33U930cuJYu6FQqFQKGwYDgVzn9t1kUkbeoZPmdtD5sIRMTeyeu6KPXM3Vmrsx8owAx0ry9+TGa5Y+TRAi4zjuIOlVCMKP8tdN9sahcjMQoYypG1k2HKxmHtrTUeOHOm6u2XhWDMXwugagn3hxyUzrGRAkoi12twgC7LEHj7pEJO/cG1QUhBJF2jsRddMfw8lAXQ/pdFpNNaZ6xXP98C+6RnRzRlNnj59emW9Ru5R2XunhzkDwF4YWj5bZmAr7bBsq4/JgKI+oMsjy7L3XTRHKcWcCxIm5WmBaThoiI5nUp5ekJ5MwhK9E/bLWPVSoph7oVAoFAobhkPB3IdhWBT+z3aWdCuynWakL7NP6pe5gza9pj9nbnJW3x133LGrHX4HbTs/a4sFIrFyaS/gy59j+1F9dszuJTuOXL7ojsd+5PGIuWV2AFFqzouta7e2UkfonzlLb8vz/p5MkmKg62UUtpNs69ixY5JWE334tpHh9PTYNp/sk9IYLyEi2IYsUVE0lpQ20fUyCnuc9Tn71c+TTELA+nu2EnPuTWfPnl1pv0dmXzAXGMnfMxdyN3JRy8JO2+epU6fO30OmTlscG2uvp8/cNGmnQ1sQXz7BueSlAtSl91ztWB+DJnHc13Fr66WnLuZeKBQKhULhsuPAM/dhGM7/zYG7K1pCez0jdZ+0liZb9cEruPu0Ha3pPCMLZe5GrT5j51aGZ1SZLQGlDJGOkkyKZUQ7aDJyO2d9wV25131RV2x9QOt8z76oj99vWLrgTDrj66aFbhaakv97UHphz+eZu/1PFk6m7eeBzT2mzeyFKrVyTB9Puwx6PkTWy2SgVgafz5ebSWqo4+0xYXt2jlvU75mFfRRemVgSmMSeJ5qrXH9LE5JE7c+e0ddn/9s7w4IYUQoUSVRs3pFBG7PveZJwrtDGyIN2AFmCpMjiPfPwoY49ksAasmBk2f3+HkqsDlOSmAjF3AuFQqFQ2DAceOa+F3AXGrFX2+XSv51+2mSx0iq7svJNfx6FoyXDIGNnKkZffqbzzNJF+nP0vefO2TNE+tXPsfGIzVIPTLsAz9yjFLX7CUp8IgmOv1Za1d1FXgdZHAXWE6W/7FkpS6v6Tv8/k7NkiUN8+ZlP9FwyEH9vpseOdJLUrbNvIilTFhuhx5w439Zh7EswDIPOnj17vo8jtmrt41pj30cJpDJkZfg2GNs23TqlCr4+W98cO4ZyjeY3r6HNTWSJTumOXUPdeE+qaeBcitZO5l3SSwLDdtMzYUk48cOAYu6FQqFQKGwYNpK5G6hP9QyKO/zMetXgWQUTZ5BB2Q47iuCWSRWYlMPfn+n2IgbKcsmKljBSsnx6G9DPXsot9zPLXt/GiwXzc6de048BJSo9v3YDpSHZHIp8ui/EvoASFbJiXzYtuclwyGx6bdxLm+eSf0Tsi+hZPrNvl0S1WwfG3HtW5Va3SVQyWwj/Hsii8WUJi/w7y+o2qR9tOiJmS2kcpQyUPvo2cVzI2KP3W5YalUze9yOjdGbxFViWr4/9yL6IJCZzXiCZ5f9hQTH3QqFQKBQ2DBvN3A3RTpQsjgw6K0Pa0Yvbrte+W/nms9zzUTVk6TT9uYyhWf2R1IG6L+6oo/jwZEr08eYz+B00mTqtjC9WOteeDrO1piuuuGLF2t+3gTv/LH73Ev1vZr3ux7QXMWsOFzMewMUGmWrkaTHn+x1Zjkepi/ervWfOnFmxL/BjQN2srfslcyWz8aCUIrITor95b15ksdcN9NqI2ppFkIvsNXCB1jwAACAASURBVDJbm540iF4SNjfMOySLJ+DrnntH9WJbsKzI6+Awoph7oVAoFAobhvpxLxQKhUJhw3CfEMsbIvERQyhSFBUFVrBrGFwkS54h5QYfBhq8SKsie4rwKJKOApHQ9YluVFFSnszYhyFavcEJRYRZUpj9NqLLjLGk8dmOHj26InKPwgJHiXSyerKkH1T/MPiHtKPCYYKNTQON/mhgF81zint7SY4y17v9wvb2tu65556V94C5oUnSyZMnd7WB6rKe2yPbS4PHSCVHN8kskVBPPUfDw8wN0Z+j6JvqAa86yNRwPfUADYUN9px014vc6DJVQdQnFMdTlXCY1V8exdwLhUKhUNgw3KeYe8TKaADGNI4R+6LBGdlJ5sIh5SkpI/cLGppECTuiNkfPnDHEiPmSRbCNURCTzPWtlx5yPxD1scfW1lbXTWouCUwU+IZMjMyjF0CDAYiykJvrIKqHz5GlT71YkgNKe2iU1Us6lAUzicKqXqwQocMw6N57711Jc2xuaNKq2ycNbSPpGMG1RnezKMWsSQr57L3ws/65PPj+i+omO+YaX1JfZqQr5RIJ1h9J/7J5TYlFL/AN35H7bZx5uVDMvVAoFAqFDcN9irl7ZIlcTKdGlyjPUm2HTj0zd55MeCCt7uIzBi/1dbf+PFMz9p53iR7TQD2jJaqI2CZ1bHQdulgMsadzl8Y2zkkveL3/jKQlWXIPjlOkX87cDS9EskFpgJSzRjL2yJVsP9kwmXpkj5Lp2ntr41K4KW1vb68EqvH6WAv/akzaPg09xs73C11Vo6A2XN/sL9pzRNew36KETllIYs7ZKPUzU1fTLiDTr/trKS3pJdNh2/hej8Yg08fvV+jig4Ji7oVCoVAobBjus8ydaSu5o6QuyjN3Y7Bkd9x5Rsk/Mr15LyBEFjK0Z50/F4QlSidLK1F7Tvs0Bm8SC5/KlKEws2QQlxIWiGTde6LvkScC2cJcshT/f8ZGIl3yHJOIwtz2PCl6bb9QUIpAqVIvHKiBc2e/Q8saeuVZ+Flb9xagxvcx14cx5+PHj0uKJSpZWmp+j+YSz/k01P64Z/gc58y63LeL15L1c45GOnCyYHqSROPPsN6GJcydErGepCCTTBz2oDVEMfdCoVAoFDYM91nmbiDroS8nWbm0qnu2nbnt8u0zYu6ZdXcvjCYt+bOdbLT7zizpe77qVo49J/XopmuMWP9+p96cQ69807fTZ/hCd+hZkg9aiPcswwne02NDS1i2jWsv6YZHT+qTzdkoIUoWTpn+1NHzZZ+Xg1HZ3LE+Nyv5KL2pSbSMuds6mQtpLeXxNSIJXyRFknZ0/Uyv6u/PpE1RyN/MijyzKo/86mk7QOljJM3KbIwye6GoDVk42t58i6SYm4Bi7oVCoVAobBju88zdQKZO/+aeH6ixerKSyP+TFqbcYUb+1FkKxkz37pHtbKMUrMZOjMHT4t2+23m/081sCC4WmB4yw/b29gqrjNq2F51z5g+cMSwpjwiWJUuJzmUMvmdFPPcMURuzlJjRM/BaHu/N0YxJHQQdKJm77y/TrdtcNB24X1NSHLuCHhZ23Nh/xIqz/un5xtN6nYiSsWTR7DLm7t8DfK8xulzPzz2ThBmiKHdzuvaIlbMfNyVRDFHMvVAoFAqFDUP9uBcKhUKhsGEosTyQuXD4sJNR7nVp1X0lEoWZCCoTV0VuLFmylzl3J99+utVRBO/bRLc2BuuJxHFZkomLFR50KXpBQKR5EXDvOTJRYOZK5MFwrFS9+PZwrlAMGxkNZcltMkRBZRhGmQaCPaMoztGegdOc+PdywtpgonY/500sb89sInVbW5FBJcXv2RwyEX/kwmVtoKFjz81wHWOxOVVXzzWNIbMNWWjmqL6esR+RqSx7RpnZO/EgzLf9RDH3QqFQKBQ2DMXcAdu9MRhLZOhmu2vb+dluPNpxZukfyY4i96LIfSQqs5e+lSlumdjFPwdDybIvot0w23ipjFN6wVCk8fnJRJeEPvX3z4F9zc9oHmQsPEpeQVacuYhF9UTnIvRYeJb8JWJ4mZEn52HktknjqMst9fFtiCQ85hJK5m7rhQlQ/P+UfnAeRwFdMreyXjrpTLrDd0fU11kQm57hY1a+gWvRH8uMSnvriWUQURszxn4Q5tt+oph7oVAoFAobhmLuCchwPXOnPikLGdljlbbLz/T2vtwshWxvJ8tz1KdH7h/2zKYztO9Z+EkPO9dzN9tPLNHHSbtZUy+kZyYVWfIc7B+6O0X6xSzZDwPh+P+ZXCRyDWKbsqAlPbsQzl+6HfaSv/D7HOvz//ee5yDijjvukLSzlo3JW1Abk+z17Bkyd0Pa20TnrAxb0z3dMec3r+0FecnGMpKwZCy49y6cc9PrucjNJZfp2XhkyXQ2BcXcC4VCoVDYMNxnmfucNXdP10adje26uQP0ZdsOnNadDITTYy0Zm+ztvhkG0tpOy3dpNUkOmTrLiiz7L5XlKVlyhNZaqBf2bWP/c7yXWP2TwfSYQGaJzJCbvm85vygZ6OlL2UYynJ7enAyROv/evRkzjKQ/vXVzkGHtNh27jRNTwXpQ+kKpDCVfUTpVkxRQCsSwt76NtIVhsK6IWc8lG4rWeqbHXiIx4pzltZFEdM5zKJIURe/LTUQx90KhUCgUNgz3CeY+Z1G9Lrhjpw7edG5+d2rXkKFn+i1/La2UMx2YB/Vw9p3s3IfKZOIYJoHo+WIbyO73A569rBuadGtrqxsWlqwgYkxL68us2CM7CoYj5vnIPz8LN2rw92QWzZkHRk9vz/m2hLHP6do3iTVZgiVj6rambrvtNknxms4kKKanj1gqmTp17r0kKZSYsP4oPCvnBMMeR2uC8yqTMvr1RQnRXNrW3vxjPdH74lInt7pcKOZeKBQKhcKG4dAwd+7qPMjIMotTv+Pz/t0e60RWy3ziuZOWVv3MTW9mTDeynuYun5a13ElH9dkxYxdsc+TnzkQxlCpE6SiJ/dSb+nHLrL577aB1f2Tdm1nd7sVvP7Mq9sdot7FEr0i9PJ8hinOQeTiwnl7SmezTI2PkWV9EUobDCtqk2Pq3NefnKNOzZlblPR04feV7a4HsNItyGY3/nOdLr15KmTh35tatv4ZrZR3m3vP9XyeF8mFEMfdCoVAoFDYM9eNeKBQKhcKG4cCL5VtrOnLkyIqBhhdfZ2IbuzYSeWc5fC9EROPzNhN0fbE2m+jODGm8cV5m9MSAF1FIT4quKJanu5svh4Z17PNIlLdEzLYfWMc4chgG3XPPPSuGOVHCmywIy4WgF0CDwZEoao2C2GRt7InUszC3hii5ydKwn/YM0T2ZyPMghZbdL2Qhnk0E75NOZYaGmXGkH1smrKIbXTRnaUDL8g1+/VLtx7ZkSYEiZCGyIxfWLLkQ51JP/cTvkYFv5ha6aSjmXigUCoXChuFQMPdeCMYIdj2ZtN8tWrpGc1u7GCEIvbEajezsu+2Y7Vpj8NLqLpc7TtthRxKDLOyo1WPnPfuiQRDBVJMRW88C+lwIIqadsVmP7e1t3X333amLjbQqFWGgmF752VzsGQ/RwI19zaRE0iq7Zz29QD3Z3OkZJmahPDO3Jv9/FryEfeX7bB0j1oMMStJoPCvtvG8yAzeOqZfk+Tnhy6DLbC+ITWYcG6VDpjsZ2fZcAClfBqULUQAsQ+aiFrnXMVjXOkagh32+zaGYe6FQKBQKG4ZDwdyPHDmSBhuRdnaWDCaTuQ5JO+ze7vF6sYsB7kJNB07m5Jl0xtwNZMm9kI5WFne4vr6lbDtictyZ99jyuoiCzlg9HHMimiceZFu8by+7+4zJ+//JiozBR0ya0oUeYzJk4Tgz96XI3TBjPdH4Zy5wPB/Vf9hd4QzUvduY+jnKecagVuw3H8LWzjH8LO0qIvBa2u9E6ZuzudJbE5mki++HXsClbG5GdgjUqXN99fTrmzLvMhRzLxQKhUJhw9AOut6htfZeSf/9crejcODxIcMw3OAP1NwpLETNncJesTJ3DgoO/I97oVAoFAqF9VBi+UKhUCgUNgz1414oFAqFwoahftwLhUKhUNgw1I97oVAoFAobhgPv537s2LHh5MmTa92TxT6O0mjuZ3zhCylrSSS0dc7vJVb63D29PruQe7NroshljIRmn295y1veR6vVa6+9dnjIQx6y4q/bi8Zm6EW4mouPvsRIdT/v3Q+j2Atp8zrX7leksLmogEt8mO3ad77znStzZy/vnf3AfuQ4uJwx0y+k7guZB3PRIi+0niwy5tvf/vaVuXNQcOB/3E+ePKknPvGJa91jA2DhGi1gjQ9jmyVbWJJIZG4CRzm5iSWLmOVEST6y+ngtA0NEz8kfPyYxsePWj1Fyk6ze3hjwO6/1bbSQnqdOnZK0EwzoYQ972Irb0kMe8hC97GUvOx9q2D59ONAs8IcFIGEoUWkncAYT9jBs5pIfmiz4S5ToIkuS0duAZME8ehuULIAPg41E7Z77jBKlZM/TQxYK18YmCittc5Lj9S3f8i0rc2cv7529IFvbvcQqeyEme9lsG6LAYf74knJ7iaWyNbBkw8bgSAYbYyaQycqZg5XPd8iTnvSkA+suWWL5QqFQKBQ2DAeeue8FZLK9Xeo6CTUMWXrGJQkw1hG7ZTvMLLSobyt3vXvZUZOhM5xvlPyBYWcz6YP/f06q4Nts4TotLGcvZK6FLs7Sqkbty8R6S9JaLklWMccaLiTRRcTc1y0jwjqhePeiMphbN0zZy/89KP3xZTL06uUUXzNkbPbO8ui9kzIsVZf1VFVk7qzfz2mKrZdICOakO705lYXm7oVs3gtzt3JMorckBPTlRjH3QqFQKBQ2DBvJ3JfsGpckFvDno/KJLDlD7x7W09uxk6VmaSL9ubldfmRLwJ06k0tQdynt6C/tWrL9Xn1eD+/rpxFL1JZesgw730uwwbqY2KPHPDO9dnZddGzOMCyqJzseJf9YKmVaoq/vJZTJ2ph9j5LOzNkoRMczqZJJeLyuletkLmVpa21fjBU9aIMyl87Xr5dMCsc29uyDMlbee3dkksIldkJZ/T0DVZvHS4zk5lh49HyZDcES8P1wkFHMvVAoFAqFDUP9uBcKhUKhsGHYKLH8EhGQIRIPLkUmesqM2Pz/c+I3355MlJ8ZkfnjcyK16LnnXO0ydzdp1ZDJvtunuSX2+mSuXn+MOa0jmEEd27hkXHg+wlJf617e8znR95J6ovzqc0Zqvfoo5s/qi8rL7mGZkatf1vZIxDt3TeQCmqkoMlwMsTzdPNnOdYzl9gNRP7Evs3dWz13PkOVm772TqfZjfX4cTUyezaHICHAdA+isjZfTGHMpirkXCoVCobBh2Cjmbsh2mt4YImNXSwzruMtmfZGRV3bPfgSiWMd9qmcUlRkizgW3kXLGboZNPcbG+myc7F7/3FYn64vQWtPRo0dTlsRn4L0eSwyAyE4Z5MZf0zOGm6uPbewZ9PWMLrP6syiAPbbPZyaj6kkzDHOukR49Q01fhr/OjOuWuvbtF2uP1gnnb8bgl7i3GiLp31yAmF49mWEd2XC0hjIX2EgyMSflMUQsfW6O2qe5sPlrbD703Gkz7LdE52KgmHuhUCgUChuGjWTuZCvRjo9sa87dJ2LuVg/dWSL3FuqkqV/aC4PvuRBlO1iGZey5JLG+npub6cDt+Yx1k71G/UiWz7b6eqhTnQsmsbW1tdJuf0/GfrI5JO3s+I0NnD59etd3hqf17lgMUcvxiBhB9qwM1NJzTSI4P3ptzNrq+4TPmoXijdrI58vcw6KQtXO2F73gLD17m2EYLpidMQy2tLpOMolXTxeefY9sIjJpRc/djK5ic3YbUd9nUr6e3Ythzn0yemfNhYC2d0vU3nWCNBmKuRcKhUKhULjk2EjmbqBOJdIr7gW8l7tg2yVG+uBsB8vgLNL8jrmnx8wSJ5B1rhMQwmDP53fAxk7sM9tB96QZc9IUf81S62ILRpLdk+mzrf1MICNJd999t6Qdxm7fedzu9fo+S0ATsd8MlIZQ0tGzWiYLzuwDfBszmwEm0YmCGJG5E5GkigFoaB3dC3ySjW3Poptl7DdsXGwt+ERFXDtZMJuep0g29yMpk91v45utrb30U7T2Mo+aXtCeLAQ0j9vc8u3hfMvmbM82J0ouM4eyli8UCoVCoXDJsVHMnWFMuVu9VOj5gc8ltYn8cslGllhck6mToe3FQpTPErGKLMVsxBAzJtLT7ZO5z4UQ3dra6u6yab/AXXzEsHkN2T0ZlGcEWbm9EKKUwtADwRhipJ+lF0ima4907mT5Jpkw5t7T0xO9BEJzsQZ6cSOoQ87sYfz/kb3JfsDqtKRGxtijcMfURWef/pmzsMxLvCbYt1lMiQiZvUQkQeD6z9rWi+NAZKGUozZlbfT32rhkaz3ynMqkSQcZxdwLhUKhUNgwbARzt52Y7aaoA1+Sni/TDfd8x1mutcN27l6SELFdX0+0I+SOOfOvjvTnZI09X/g5WNuMMT7gAQ+QtFuXSN2ascnMCtjD2mi66kz/KEnHjh3bdWxuB721tbWSFtLfY+NOHbu1yViqlziQQVCfR4mDzYdeuZl/uK+PbJ+6SEqu7Pn9tUsixmX2AOw/bwWeWcVzDUZrw5CxsMhmhm3KmLsv0+q051oS3XAdCRdtImgRL+XxNDLPHr9euHZ4T0+Cl+ncI2T1sE97lu8ZY+9FG+S653OdOnVq1zP5c/xO75NIAmLjZe8x2pSsE53yIKKYe6FQKBQKG4b6cS8UCoVCYcNw6MTykUiQYqTMpSEybKH4ZklIWRp+2b3WJhM9RsY8FBHzuSKjkTnRU+QKl4n0KUqL1ACZm46Jsez5vLg5C8bB/vQiSorjrH4Ti5m4LDLCYxkRTLTau4Yi6DkjOQ+6PLHPIzc61sPPyFgtE8dnhpbR8xE9F8UskA/nd88Fj+PNayNjzCwUtNXv5wGfw/qN5Ufi3yjX+37Ays2Sw/hjfFa2JepbBnnKwrR6ZEGF7NPaE40/E7VwTCO1Ru89JvWDglFFxr656667JEl33HHH+XupOsqMDqNr7NO/x3zbem6qJZYvFAqFQqFwyXHomHsUuKMXnlCKDVu4s8sYbbQDpLuK7eJoJBS5iBgbzQJ2+LbTsGQuBWdkNJKhF96STJ2GJ/z05cwZuvkdL/uen5F0Yd2AE8MwrDACz/KsnMzNKzLmyiQOWdIczzjtf0olyEojiUpmLGRl+Tm6lFlEbmgcw15oXAONyGiE2TPoZHIPrt9ImpYFPGG41ci1dGm40a2trUUGdXxmShoit6+e1M0/n68/C6PMZ40MRjMjYJv3vn4vFfXl9owV+XycV1wbHpRm2Ro0A1v7NOZ+5513rpRhayALIBaFrLV6aQwcGXtynOberwcBB7+FhUKhUCgU1sKhY+69FJUGMj8ma5BW9TzZbjQKfZm5sVBHFCWqod6Pbhh+Z81QrmR3kSsK25i51kQ7aIaitPrJ4HshJFl+pj/1/88lrOklmeixL2PtZF9R2FTrW2Myma7St4H63iyRRhQAx67Ngg35e/jM1Nv2XOGyPiWTjhLjMIxuj32R2dA9lUw0YlJZQo9ozXPuZEGTovLs+S40EEk21+nW6Ps2syvIAiB5ZJIhe/YoiU4W8IoBd2ze+/vtXCbN7L0bs4BUUZ/Y/7fffrukHZe3yPUtA1k+XXK9NII2F5yTdJn0z2FrYYl79eVGMfdCoVAoFDYMh465224qYuGZhS5ZhDRvHU/dWC9pRRYgxLMT6s1PnDixq60RC2c5WfjMSF9Pdp3p5XoMyuphwBUyB98G2+1n9UWsj8yHu/3IC2BJwpVhGHT27NmVcJO9YD8GzqUoqAxZEHXHBv+d8yALMtLTZ5Kp27V+TcyFKs70nNIO+6H+mvBt5JwwpkQmFyWWoRSBazJi55S4ZGuylzJ1DtFz+/LY/5TCZJbwc3VkyNYjWbFfl2SjXGt8z/nyuQbI5A2RpIBBhbI0ydKqFbyXIuwVmReKtBOEi3ZHXHu+H3vSioOKYu6FQqFQKGwYDh1zjxIB0DKXiTQilsqdV+ZLvkTfY/X3rIppSWs7V2vj8ePHd7XVX5v5s7KeSM/IXTZZf/R8me44S1wi5X7uPVZL5kM9VmQxnPnvR2htd+KYqA1k0EviD1BiQnZv5Uc+63aM7Iu6ds/CPYOQVtcAWbIvz2DjYfMu8+v35zguWSpOf86eK7NE7iVzsmPUJUe2FxwDK5dtjtL7Rqw+QmRnYazPPyPX9MUC+yPzN4/ec/T7t09jyX786ffNtUapWeQ1QymDfWd6ZH9NZtG/1LuhB/98Zm1PGyLWE8UpOQxW8obD09JCoVAoFAqLcOiYO3U50qq+j7v2XsKJjKWS0UR+7pmevmfRn0XjMizxN86SQHhmkzGZrD3+GjJR26nbbptSB1/PddddJ2lVbx7teK1c7oozX2B/DRlbhGEYdO7cuZX+8vdwzMg0DD29v1n1ms7QrH4jS3vTL1Law2dnxDUpj/oXsYosAhqfK9LXU4+d2YVEfU+bAvs0yZQ9l/dVNjZMuwxLEkTJhb8mi84XeYWQkc1FIBuG4Xw5ZiPjy4v0uXtFFMHR1yGt+p9TYhmlQab+n9IGG0Obl74ce1bGUaDUx793bJzJ1HuppunVREmU1WP1Wx2+3Xw39t4LmXcL16Af67mYJgcRxdwLhUKhUNgwHDrmHoHsNPNBjHx5uWtkVDjqpqTVnTIZZmQZnvl7k91FMeypN8/inUesnxa0mfWyL49W+bQ2N6bqGZXtthnxze6J/E3ZJ2SztNr1/y/ZOZu1PFmcnx+M/55FgfPM0J7ttttukyTdcsstu9qW+cr7+oytUmJg/ROlC85iCRgiuwADWWpmN+DbTekP56NnrJQukd1Z+T4uuMHqOXnypKSdfrXyr7nmml11+P8ptcs8GKJjPXbXWtMVV1yxwpY99sPXmUyXMQyiqJO0tbBPO+7fVVauSduo147emXYPUxbzHRlFHeS7iuspkmZlz0WJWxR9ju/ABz7wgbue9/3vf78ISsesfqapjrwOMonrQUQx90KhUCgUNgz1414oFAqFwobh0IrlvVgkc+8y8QoNwaQdUYyJRxlyMAuk4f+nmC8zjvJtoWFGJrby57JEMVE9BhqyUaQWuWllCWoYqpLf/fNdffXVklZFawYvYqeYjS52DMDh/1+SwMFc4VieN+qhK9wSl0ibR7feeuuu79dee62k1fEwwzBfHhPHUGzuRYJ0eYpSCrNezk0azvX6mGoYisAjQzS6WtHwyMo0w7RI1WLg3GSAJF8P66fLXRR8igZVEVprOnr06Mr67yVLMnXVEvB9wxDP1sbI3dDAVMORyJhqMoM9R5S+2cB3SBZuNxKx811i4xG53to9Zoiaue2ZEaZd569lGG97HlubvcA41jaOZ/RuPAyGdIZi7oVCoVAobBgOLXPvJSChoVvPfY4uImQ6dq83OGH5WRKOKMUsd64MserPZ8YbrIfGcv6aKEWuv9YzEbJYGlJZGcZEI0ZNFkajn4jtc8dMwy3f9iwhTQRLHNNjNlngjCwVsLRjBGVufwxAZH1u/RQZVtKQjgzX10emTilM5P5DQyk+R5SO1pAlqrExtDZHa4LryO6xvrC+ikIAcz6bIZ3dG6ULzqRokUSCkpteOtetrS1dddVVK4Zu0Ttkzr3V18P1YWUw8Bbnh7/W+oN9EK2JzP2PbfTSJRrUZevRxskbSdIIjmFgWYe/h1Il/27yx/29nN+UgPaMHuliSSlDFDwrC8F7EFHMvVAoFAqFDcOhZe5+58l0ndTLksX6a7KAKT2XMQN34WSefudHXaTtKKlXjMrjbtSOMyBK5LqRJdKg25lvG9vMzyj1J6UHWdrYKBhQFF5UitlSL2lFhO3t7fN12/NF0gqyYD6rd4myc6ZjZxCbKPiOgYFPMj2671tKWahXjpBJOPi80TzgXCEzjAITZWGOMyYVJZ2xYzfccIOkHZbfk2plgaQMUYKaLKBPBIZcjtKAUqJliPTMDIrF9lsfRJIuu9baMmcn5MtjvVZuFLqYUg/OFTJeL11gW/g8hh77Nlj9ts7s/e7HgAF3KIm1+v3YcG1T8hq5v3JdHoYwtAe/hYVCoVAoFNbCoWXuHgzUkAXfiHR2DEhDhh4Fl+EOL0uSEln0Z+FOo51glqqUO/SojIiR+eftJV7JAlwwDGmU3MSO8dpoDDJrZfZRJNXIwurymquuumrFKj9KJsLAQFmI1+gaHmdyGD+nyOopVYjSTWbtnwuhHD0HLeCpK/fHjN1ltiU9a3MyKVokR/r6LAhVxHIz6QgTAEV2CIZe+7e3t3X69OkVq3W/nrI5Tybqx9+OZQl0WEY0pvS44XH/nJxPNs7m1WLw1uSZ7UsWntWzYuuvzD4kAuck205JQuTtQgks3+NRcDD2YxbKOLrmMKCYe6FQKBQKG4aNYO4G+t9GOihDlkZwLomJ/38uFGEULtNAhhGFVZ0rnxaikV99ttOkf6ivh22ibjFiFVlf00K5l7aTTKG3S+6NrcFCiGZ6Td8uAy2QI70s2QF91SkFiEKgUn9KSZIfF1pHZ4mDqLP05c1JG3oW/WQ6UeyHLBbDEr025xdTAUfPRYkL2xTFjVgHFrrYEHncUELIdlN6Ja16KWTpW6O0tDy3JAQq41zQa8EYuy+L841zJuvzqE30C4/sazLJUCa5i0LlZhK4KLkN37XZvdFz7XU+XQ4Ucy8UCoVCYcOwUczdwF1vlICFOu/McjticBmr67HIzFe9twvvWV1nz2Ug68miTfk2kwlmyRIiFk7r1IxJeTbOa8gyIvaSRSbrIZPoeGReEtEYMCEMra8zCYgvn+PCCGVe5279QZ0+Lbl79Vgb+eyR/pYR3GitHkUzowSA9WbJjvwxsv4eS8psWHoSl8yDJIOPbsi2Rm3IEjlFEjWy/MzeoCf9i9rL69g2WsczzoJv45wegYxO8QAAIABJREFUO5L6ZO8sSsSiuZq9E6N3B5FZ+LOf/f+sJ5LSZvUcBgZfzL1QKBQKhQ1D/bgXCoVCobBh2CixPMVS2acHjSmy89GxzFArEt3Y/3QN6YnWWXfmphWFUKXBXOZmssSdifcYIlc/ukBRxBUZtrD9Wf5w///SXNoWgjZDJhLMQhhH90buclLfIDLLMd9zFYuCuUirRnP+nqWi3MiNkqoWhgn1gUnYXwynm+WT9+3O1mtkzJahJ1pdRyxvSYeyRE9RXZz7UcAezpU5sfyS9w/7LwrcQ9F2ptrx7ee97C/WK+2Mu7klc/1E40P3P0PmgtcLPd5zR87AYFCRqjRzJT3IKOZeKBQKhcKGYaOYuyFjLUuMeQwZ043OMVCH7YqjnZ+BTC1iJXMGO0t2j1nAhsiwJTOYy9xzInaZMYUokQPDBJOpRSFryXR6O3O6M7EMjyzUai/ZDJkLmUcvuU02h6KgSTR+MuZOQ7ooSFNmHJSxZX9vxph86mQDDbV6kgi2NTPkNPQYO9dEFpZWWpUARC52HkeOHFkJS+zbRglHlkgmGstsbWXSOo9M2hQF2uFcsbaaC1xvbmZzNJMYeLDfGNzGI1vvmXGuRyZFzQLU+P+zULnRmmeQM4bTPYgo5l4oFAqFwoZho5g79Vg9Zju3Q+7pojOXnSwwjf9/ia6d4E5yLmyrbxt31wx8EyUf4fMtCRjDtmbpIj3IvrMdey+Qx1z/bW9vd9udpYbsubqQYWbjscQ1kuw+CtdJ9mOg208UVjfry54+lYlpOD42zy1xkS+Prkf8jNhe5hKZBdPx7Wb9ZOWRC+tcgCdr39GjR1d01FEyEa5/IrJnyAK2ZP3FtvlP6oOj5DbUx3McevYacwzePx+lGCzD5pTX8VMC0pMqZW3tPQ+/Z32fpf2WVtcJ09EeRBRzLxQKhUJhw7BRzD3b8fXYYxZcJguO4f/PgpZEO85MF8m29ax8WV9PF5Wl2mRCh+ieLHgEd7ie7dLqmywp0pFTMpCx8IjlGXrsy+5lX3tmk9kZZHMoqjNj8JG+L7uWUgsvUen1u/8eMSgD+yCb9748Y1dkpFE/GovPEgbNhQn2bcjsKKLjc94OPbuX3tzZ2trSVVdddd6+IJq/rJNrN2ovkwDxOTIJS3Qtn506ZP9/ltJ6HcmAgcFr/HmbK1YP51AkMbSgSEwlm9kY+flPT5tsDCKpih1j26K+jzySDjqKuRcKhUKhsGE4dMw92jlloUOp9/E7sWz3S/YwFwLWI9vp+nZn+kTq6/213O1mVqtRW7Kwunav3y1noUIzX/Wen3um8/dlZTo1hujs9edcGEjP3DkfpB3Lb1rzruMnSyyR+vDZ7bi1JxrTJUlY2AaOISUH0RhnUqbMH1haZT/0XV7ifTKnY43aSEbVs+RmXy+JAZDZgfD/qJ3RnOd8zaSLPekfnzGymzHwvTK35qTVBD72jsi8GCKbAqb4tTIiuwBa7mfrfkl4XUPvvZ29exmi2d9LW5IKP1soFAqFQuGS49Axd9uRRT7WtNQ0RMw9YzCGnk85LXNpARvpvjK9HHVUEeweRpXq7fIzH9RM1+vbO8egIuaT9R/7KPJZpx4yi9rm/1+STMIsnsl4Ip0dmSfH0uvsGHVrLnFMz1KXfRoleIksv/1zRElZqGM0JsX5FukkOVe5fnpRupj2lr7LPfbVk3zxnmxMs0hlEebOnT59esWGwHssRH7sUdsim5FMx57FBfAg++1Ff7NxzVLKGvwz8JkpzeqtuSipkL8nSsGazf3MbmNJ3ANavkd9wlTNlIT4PuEY03PlIKKYe6FQKBQKG4b6cS8UCoVCYcNw6MTykSgwS9hBMf2S8LNLQrxmoq2eIRqTcFBsGYnRKa4yUdCcm5O/NxOxRwZ1FKVnoTGj+jKDKYrQeiLKSAxP0NhlTiwfiTd9G2xuWDjJzLgnChCUhQfu5YemmDBzP4zUF5lxYqSiyMTy9kkRf5RshM/Lvvd1ZEGA+DxR6NcsGEsvtzn7PAu0EmHO5c6XQcMw3yZ7/sy9NFJf2f+ZyDkba2m1TznPKIr256z8zNAxUn1l4XR7hrxcT5w70Tssc+mbUyVE4DqK1GpUHfH9Ghn02Tm6iR5kFHMvFAqFQmHDcGiZe2SkREOszA3Hg9csCQPJaxmes+dGRQZP1hUFIskMZwxRWlIrnwZUvdCp3JXO9UnEwhksh8eXMISeAQ37tDe2wzCme83cpDzsGmMc1ue2Y/f1cH5lQYWWsIaMwfvEFHQvy1wjI0lRdq2Bhk5ReZkkxfcjpVZ0UcsC8PjyeU/Gyufa4uHr67moEa01XXHFFStM07eF7l3Wh5nbq/+/lwLX3xtJ8nhtZiAWlUMpGfua//fqjcaFRoZsU+RKxnHhPM8SykT1UlpG917+78Hx8i6G7Le54FkHAcXcC4VCoVDYMBxa5t4LY5qlm4x0dnO6aV7v/18SOMMw58YRtZEuKL00htJunR/dWbLv9hk9Ry8kKtvKa8kMyOh93QyaEbnNsY1LA5H4xDFsm39WulNSN+rnWzZXMj2f7zcyan7vhb40RIlbCLpPUgLBtnvXHjKbHsvL6mWCkLm5K+UsM1ozc+6avfW8ROdubpQRGzbQVSxzGYwY4JzNgCGya8kkeTaGvm/pwseUpbRzkFaZK22W2ObIPsRgc5Q2H15SlAVAsvdZb0w5N7j2ojWYnWM9vVS9S6RJlxvF3AuFQqFQ2DAcOube05vO6ZeiXXAWKrTHTub015FlLQO20DKUFv/+nN3DXTZ1fF5PS2ZuZViQCbvWM/fMKp79GQUxyXTulBj4PmEbeW1vl7xknIZh0NmzZ1NrX9+e7Bl7oX3nwo9GLHUurHHEpDjeDJkb6YOpS2fKUo51xNypA+UYLgkKlXmQREmHIvsWPhefj2PQ81TgNXOIJAb+XoZ2pcTL4NtA+6BewKYMcyGx/XGbKwweQ4lKVJbda++M7F0ZvVft07xPKEHyyNYNz/feqwZKxCjliM5l75Ao6VBPqnjQUMy9UCgUCoUNw6Fj7r3Qp3P+0j09CVlqL4TonN9nxCoyi/BemkNajfKTOmqvc89SvPaSsiyxHfDPHXkQkIlkoSyjNmYsxt8zF5fAw5h7z4sh09nSqjli0jxHy1zq9qRcv9fzKjAYC6IeOEpnyTZlDD6y6GZf0OOil2I2S7nJ54zS7hq8NGkOEXv0xyPbhaVJoK688squhTYZp5XLdbkkXGpmid6TWrFvo8RIp06dkjQfLjUKQ23vDEoIGecgkkwYOHciyQ2Tssyx8V58Da7bnudSJCXziN5vfK8dZBRzLxQKhUJhw3DomHuk15rb9UY7woyxZVHAImSJO5bsFg1k9D2rfPoK95g7dWvU20ftyayhe5bj2TUZK+9Zyy+RuKzjXzoMg+69997z9fR8rbPIcdTPRedoAUwf+ciHnEyW/eOZAcclSz4SRSbLmAzbE4FtI0P1Uqe59cTj0TFKFawPepHe2FaWGUlcluDIkSM6fvz4eeZLKVoPS66Zs7qOWHgWIZLzwa8xs62ZY+5RP/E9Rqv5aG1kEiHa1UTSM3t/8d3Bd3Iv3SrbHNkncA5m0qvIpijq44OKYu6FQqFQKGwYDv72A4jSLGa64p6/bBaBLrPq7e38WEakizLL0xMnTkjasUDN/MI9Mt0nd/Keuc/t6qP6GEc9Y5kR28j05IxpHTFSMnie78XK7rEkY+7W1z2de2ZrEUUUo39spteO4rhnaULtu7HhyH7CYM9jfdDzHe75aWfgmC0B28iYCOzXKPIa1zH7Klq/lCpk4+ixxEfZItQtiWuexYXoSRw4bzMpVsQeyTB71vnXXnutpJ1+Mr9z6q9932bSq8xOxEtwshj5HMNoPtKzh/0Y9Wdm8b7ENifzVOl5YvF5DjKKuRcKhUKhsGGoH/dCoVAoFDYMB1+2APSM4yg66xnUZckplqQ1pMgvKysyNLntttvCa9nm6BjFVb1gHyyHRneRKJxicH7vhczMRPdLUktSpM/xikR4S0SrJpZn2s5ILJ8FP6FoUspd3qweBpeJVAeZKLdnUDcnHo2eqxeMJ8OciqqXttVg57KEMr16s+NR4BsaSWbjtxccPXo0VW9F7eW6WQKqQGhY2XP7mitT2lnv119/vaQdsbwZCkZl09WNxng0eIveITS+tbKiucoxzAxre0FnsjTYhp6oPUumFM23KIz2QUUx90KhUCgUNgwHf/sB9Fj4XMrQHtvP3CMixpEZYWVhST3s2jvuuGPXPbazjdzZstCuvfrorrROQA0D6812uD30JBNZasyee1YvuUN2vfUt2Z5vQ2ZItySdahbEJgoyQyPCTOIRBU1iEpAs1K+0M49s/M2gcwno6sR29Fgs2xr1X4bMTa/H+jN3qWguLQntamitnTeq8+VGhmcZlrx3MqlV1OY5NtqTjtl8OH78uCTp2LFju+71RnGcvzbfLIgS4Rmu1ePfY/5ea4+XBnDdZIbQkTFeJmXiu6tn1Mi5GkkKKVVYx0D1cqGYe6FQKBQKG4ZDx9wNvQADS9K4ki1mLDQqI9PHr5N8xnaNpoO3na7fHVMvngU66bnNsD6mcYyYSCYR6NkwZG6IPVeijAn2+m2JjUJ2PtKfz+l5o7GcC3hD17iIhfeYhS9TWk3lSZZCXb8/1tPLz4HX9vSm2TjY862j+85sPjyycLM9W5m92B/0pGSsM0s17ZEx954LHOvLyoqei8Gr7HlOnjy5656eBIzpg8m0PSKXV/89ChecSSTY5iV2G0veIb0w4R69YFfF3AuFQqFQKFxyHDrmHunwuNvNdFGRRahhnXCZLCMLQ7qEIVgZphP1ulEydgslaSyfCWT8DpQhV+dsC/w1hiypRS+xDFkXd8dRgoqennEOc4ywtbYSgtLf0wt16+/xYL+QwfeCbkRBQ3yZmb7bl2fnmEgmSlDDwEcXgszGQMr1ozy/DmvOksL4clhelrgmOrcEPctwlpdJoiI7E5aXsfBoHmQ2RdG6zCRqmVSQ9/vntHsYpCuS4DDAEte/D3LEe7J3cE96Qpa9RGqajdOSFOFLPRcuJ4q5FwqFQqGwYTh0zN0QhfQkMgtoKd+dcmcWJaDI/ECjRAoXgjlGmKWAjZDtqHvWxJlNQU9XlVm8c1fs789YXi9tZzQuGXo+6+yzOQYaHWObegkoqEdeMleyJDa0ZvZsaC9hZy8E++lfzjIjBp/54PP4hTD3I0eOnNdZUxImrabazbx2IslNpp9fEkuC1/aSAXHu2PP01jBZcGa71LOn4DFKIqJENZnEjmMa2bBkHkxL7DWIKDR3Zud0kFHMvVAoFAqFDcNGMPeMOfWs1jM9cnbcsyJaRZNJraNXXAesl9akvk8ynRB3tp6JLPHT75XtkTEQX3YWva63+16im/bY3t7u6jHpIWDoWftnXgNkQ0sSXZC1RH2fSYRoLR8ljrlYc/GgYc5H3h9ban+wvb29EjkukjwZMv15LyojPzm/fX2ZTUwvSQrZvtn08Hl6bDhLVBP1ox0zexB6jkSSHZ5bYjNlyOIc0Cc+Wr+ZBwmjBkpakeCUzr1QKBQKhcIlR/24FwqFQqGwYTi0YnkPE71k+cgjg5zMZYYimsgIi8Ec9sN4KAJFPww80zOA4/MwOcOScJpzRj5ebDXn6hTVl7nA2WckpqMx4Vyo2mEYVsbQ18ugPlm75475dtPQKDJw6rl5+TI8aDzGhDWbjp56jaLiyO1xnXU6DIO2t7e7rnA2/zlPucZ6CUiy9Ri5hTFUdWYwHM0dhn1lyFU//00EbS63XP89VzjOSfs0dUD0zqTaiWua7Ylc/bjm1gmixXkRhXOmeuYwqLuKuRcKhUKhsGHYKObOZCK9pBU0fspcaKLkH5EbmUcUBGFpAg2/w/TJHHx5WbKJnsuYYR0DLu6CM0MX3yZem7kHReVlIUV9P9MNcc6gzti7v9bXY0yG86AXBjQzqMuMpTyzzgLgEP6ZGbrTwHHqBSLZBPSCJjEZSBRoZ12cO3duZd76Ps7CovLdEhmRZq5wvbSnnPN8VqZmlXbeIWTHlDpERn8nTpzY9Zx2rbHwaDxsrptBHd00aWDXw5KwvuzjJcmGeC2laPa8PvlNL6TwQUUx90KhUCgUNgwbwdwz1k2WFO00swAx1P/4neZcAgfb3Xnmne0sWW+kn8uYQLazjY5lrNizyuyajKH03OgyVt7TubPenitclCyFGIZB9957b6ob9WB/raNT4zhkqSt9G3qBTqQ49S/bz3ujucN6DzN6YVUpCbkQxm7lnz17diVoiZ+/ZLRzyXP8/Zk0jO8Or/flmPK9Z2X65FN33XXXrvI4V5hgKKrH7iUrj8DAXtS9R+9ivvsszLY9u62FnjTN0LPXycA0zFZfZIdDu66DjGLuhUKhUChsGDaCuRvIupekCsz0Zb0wpLQWp46/Vx/DP/YCNGSBTiLLXX/c18PdJ5lDlPzD7qE+m88ZIWOkvcA4WSjgnrX5EhYxDIPOnDnTrZsWwEueMWNbc+EzpVXmZCwl0x36+21MjRVloVejti1JQ3wYQQlYT5KzLra2ts73n7E5X34UPMru858ec54WtNS+//3vf/4aMli7h8za33PnnXfuOse5wqA20mogGnqb0DvDz9XIRsm31eDbaG3JmHqWZMe3zeqbkwbyf982q9fWZCQJW/J+OCgo5l4oFAqFwoZho5h7Zokc7fio8+olbJB27zypD+NuuGfVS4vtnoRgiW+6Lztie5lkoNfWuXt7YTWzRA49FpOFh42ei7q8OZ372bNnVyyQvUSCYSoNvVClF5IumOzEWALZiWdHDDdMnX6UwCPr/8Ose4/6M5JA7Qdaazp69Oj58m3NezuazNZnSejibP1T/0uPGV8PpTKmX/fz0yzebT5RoheFzOa84ndKA3s2MbzGyvI2JayXyZyiRC4GJu1a4tnDdxFTakcJuHq2FwcVB7+FhUKhUCgU1sJGMXcDde4RW8mSBmSWyH63yh1tpnPrsb5MJxXp9tkmWsdGCR6ylJg9K/qlluKRz29Wbm+nm1nfM+mJ71/6z84x97vvvnslEYQvj0yZz97ztc+eI0tC5OujvUZmRyGtzjOWYYiiDfIeosfks5gFUT/20ivvF3yZZK37LZForenIkSMr89Yzzmz+ruPFkrFjzg9fD8fdnt2YJ59D2ukna7999votSxiTpXP1YCS6LKqe/5/vlUyqEcW2mIvr0IssSL/2yPuEEo/DYLtSzL1QKBQKhQ3DRjL3LJ56dA1BNhxFcMriQjOucmTlnen6eywv00X1rNvJwm1Xn+nPfX1ZzHrupHvMnfq5SP+YxYm3/rN7vJQj85+NsL29rdOnT3ftGgwcQ/uexbuWVseOY9qLjd/TCUr9VJ8G6uCj+bbUG6SXTpM63kj3yueycdkPRt1bIxfTavnIkSMra8yPW6bHZh9HrDGzReH6iRgu+5r1LEnjTFuCqA2sN4spEEkMsyh6Pfsgg10b6b79+ehevveidxUjPtK+IaqfErbDYLtSzL1QKBQKhQ1D/bgXCoVCobBh2EixvCELRyvlrgxZ4JueQVWWSMQjExdlAVyi8ubC0HrRU+Zak4n2/T0UHWapYL24sZfwIquPxoU0vrEyfKAaE4VmwTI8LPwsnytyZzJkboaReJTgtb2ERRRtWtuifmPgIxq4RWmJqbZgEJPMZShqS2bA6cfS7skCnVwIojYuSfl7IWitnXeHk/qJXDgnOf5RQh/2cZZeOVIDcL1QheTnAQ0qqbI09FQHmeFupHZiYhiqZ6L1NBd8rDdnM7ddzsdILE/1EkXu0T1LgnIdFBz8FhYKhUKhUFgLG83cucPsuWNlbmC9naZhzuApujYLFNFDFnwhYuVZqNrMVS1qC69hIIroXraJZfaMomyXzTSsnrnbOTKDCMP/aO9clts2oiAKUGWXy/I26/z/Z2WdH/BCZWaRuvbkoPvO0CVFFNhnY5MUBq8hOH2f13/bvdJC0BXfcfdWpX1Rma9YcFyzDwZ9dqk2vNYqoI6WlAqo5DVYKSV8SyMm7v81y97+3yU/930/lEIdFW9dU6pHvlaBp/xeOFU84pqwdGqf43FctZ9Zul4X4MiAOlccanyf43EbZ0kYt+E1d+pcjcdGMSp91LVdvmei3EMIIYSTcWrl3vk++TeFU/ldcZmia+BBZmUoR2q16HzsKsVrtUyiamHJMYpObbJVpUsPUrELXLFTmSifO/2cjuv1evBJdsp9lqK28je8PuM5uzatvNbjNrweVOpKsdEvu1Kch+fnWpl2ZWD5uvPtr/IeBUP2fd8+f/68ff369efrbftv0aT6jM8X3hc135yVh42RxutKf7azhqn55ua5mgcunmFFtXJ8N++6wmI8Lz7/VuYDm8GM8L1S5bTEjDAt9DVjSt6KKPcQQgjhZJxauRdqdUq/C/2Is0Yy43uuAIkq1OAKnahtZnQR/c5/zshx5aef+Y7V+7WyLcVOy0EXu1BKhMq9XldDjPG9WxqFdD49FyG74pvmnOG/ndKg1cUpnfE9njtL5o5qomubq8YemRU+UdvwOn30FrOXy2V7fn4+WFSUEuR85TNlHKMrGrRtvbWR1piCypbnMR4DrXMs9arGp2p15Ze37WhJo0WCEfDqb511YQVe365IDzOJWL53fDYyI+UjzOso9xBCCOFkPJRyH3ERri5ausutJCoC3ikZ7lf59rnKnSnF8f/OT6/U96wkKdX4Sh6oK5m5bUf/IlfH5d8cfe5sQDFrfHK5XA6Kajxulih2jSE69TCz8qh5wnvalbnluTISWZV6nfnlOz+6K6Pa4awwH0HhKMrnzrmucshLzdc8VYq9cNeDal/FkriGLbw/6jlwS70Lzh3nA1dWoZkFciVLwz2TV56RzlKprgkze/h6VP11rvVMWvlOvDdR7iGEEMLJeAjlrla4zk/FFWXnN3U58p1acb53lTvMKG8Xhd1F5TKC38UWjO+51W9Bf3G3TefvXlWk4zZdcx5See6Mkh+Pe6ZwV/LAXS6vmncrFfC4X/oreR7qXlLtuMjnblvnc+dxzd77iFR1Os51pVJL4ZWCZyyEsvp1vudt06rY1RvoalewzgWVu8rWcNY2vla57HxWscqheg64GAJ3POM85PVzdUNUExrGHzFuSFUW7Ma7N6LcQwghhJORH/cQQgjhZDyEWb5Q5tFZmkUXxFGslKx147oAu3E/NMdzG+U6mJljmRIz7seZfVfKq9LUTtfCmMLGICya+5RZfjXFq8Z7eXk5mLOVqVNtO9IVs3Fm7M5d0gVOcf8zM7lyN7h71JUqLVypUo79UYPlViizfJlfu/S/MsezwU/X75xBd/ze0Jw9buvunQp0ZaCoa/CkCmAVrmTtSgMplouuf8dtVl05XeCwm+8873Eb17yHwcHb9utaMy3wnolyDyGEEE7GQyn3leIbbhulpJyCUfuZqfkuXc8F7HUlJFcU2ngO4/+70ruzbanG2XBjXKUzbYoFL1RzmFuLSVyv18O1VU0rnArqAg8dXYoiz2MlgM8FRXbWBTevX0Ntn1mxF/u+b58+fbJBk9vmmyWxwNJ4/2dBcSu4OdsV2nLFbFbUsLJAqeNR5zNT1mo/atzxmFWgmzsvFbDIAMjCWTm27Rh4+xECR6PcQwghhJPxUMp9ZFV9rKQK/Y7/xaXYdQqRq336tTvlvlrMZPxslgqlYNoZfcvKf84mDFwlj0qI48yO6cePH4dzHserVTwtAVzxj9fCtXrlNVXpMvTH8lxVARTe59k9Hf+WPIK//LW4Xq8HZatKklKl8jtwy3ea80P5fV0pV8aujNs7JasaTLmS2NwvLWzj/3/HUumujYsTGHEtplV6YL1X333XiGssYsMy1WMDoXslyj2EEEI4GQ+r3J36copnXGnSN0y/klqxz1qKdivdWeMWVbhhtelLV2Bj5q9Xq2+Wcy2oVMftXYELtc0tZU0rWp4R+6r8LI+lVu1KQXHuuHK9qpStK+HJ4+gaa7ixRgV1S1ZB0FwuF5sBsW3He1RzZsWP7ixofB50likq6ELFB/D7UtYy5ccuVuebKntcMK6mm4+8FlTdnXLnZ7ye4/nR0lK+d/rr1TX5SGWVo9xDCCGEk/FQyl2ttlxEZtGt1OhX7lbqM99w559zKpwrW6Xc+ZorXKXcuULnNVGqn/44jskVvPobKncVmcp4gJmyeXl5OeStquN2JX1VnrOLBOYxqvvCSGqeY1d2VJ3f+Pk49kdQFvdMRcvXPVTR0aXUy/9arxk1Pyp8V1Ja7X/b9PeTf9OVb3VliGvbOsYxloAK2sX6qLnK7zctU13uv7OAujLY2/brmrsMFZYIVp/V80218y34DLyl5fR7EeUeQgghnIyHUu4jrq0l1biKKp81l1H+MudbI0ohzhR7FxHK/dXKWfmDXRyCq6KmGrC481Erdhe53UWB81hX8oO5H6XCeH1WqnC5CnucD12ji1J9XRtNl1sbP/rbsu/7T8VX93hUcMy0oA+3tlEWNSpBFyXfxcQwOl/NN85Fjl+fjxkrPB9+N5yS5/Gqv1E1OdyzqrNMum15DRgRr/bD77jKmOF47nl3T0S5hxBCCCcjP+4hhBDCyXgos7wyrbv0CpqvumISRWeOdaVIVwrDMEVjlioyfuZM+zS9jftxx0YzsLom3H9XpMelhbkANTVeZ5re912mlKmgRddoR5ljK/iIrgHuSx2bK+3buQ5WGhGF1+Xp6Wl7fn4+BFSqpixsQPLly5dt236ZuldKCvP72pU5dSboriSqex6o54NzL3L+dcFxs/Ksyp3mUntvec7xPqnz42ds0qPKz/JYVJrcvRHlHkIIIZyM+19+vBFclbpSsp2ydsp2pUlC0TUocX/jUkVGGHwza9s4jsvzcGk0XYDLrPxtNx6vwXiMLJwxs3w8PT217S15jgyWUxYIruydclf3kudcYzGqND7HAAABZ0lEQVT4qrNWhLfncrls3759OxQ1UpYgKkGmVn3//v2wDZU7x1ApuEzLW3mGMb2UirNT0LMyy87apY7NPffU8fPfWwKHOWbRFR/iWEyRG8+HQZP3TJR7CCGEcDIeSrkrlTdrpEJlpz7jSlatoF3JWlcoRo0/S59TaW3Ol6vGYvEYwvMbj5npIyvK2qW8dU1UeB6db2/fd6kQlLWCSqpQ77uiGyvKvd5jzIMrnxnehypiw2JGXRli+oS7tKlZuVQFnxVOWavnDsfoYlXcd2GlaA5xvv2uvDK3UYWkiHtGqm0YK1HQ4tJZXp36vyei3EMIIYSTsd+7P2/f97+3bfvrvY8j3D1/Xq/XP8Y3MnfCIpk74Xc5zJ174e5/3EMIIYRwGzHLhxBCCCcjP+4hhBDCyciPewghhHAy8uMeQgghnIz8uIcQQggnIz/uIYQQwsnIj3sIIYRwMvLjHkIIIZyM/LiHEEIIJ+MfwSA71ScNgTAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -734,7 +710,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu4belV1vnOvc+tqnLqkkolgQRIFMQG0dYW5SKQVojcQYmAihAV76Dooz7dghoQxBvQPo2KgtwvIipIgyKhmygIjSBiY0ckgYQk5FL3VFWqzqlzzp79x1zv3mP/1hjfXOvUCem4x/s8+1l7zTXnN7/vm9+cc7zjOs3zrEaj0Wg0/nvHwbu6A41Go9Fo/EqgX3iNRqPROBPoF16j0Wg0zgT6hddoNBqNM4F+4TUajUbjTKBfeI1Go9E4E7ipF940TS+fpmmepul9b1VHpml61TRNr7pV7b2rME3TSzZz85J34jlePk3TH3pntd8YY5qmL5im6Xe/C877os3ayv6+9Baf62Capldk63iapi+dpmkrnmmapgvTNH3eNE0/Nk3T26dpujpN0y9O0/SPp2n6H5P9p83v8zRNn3CL+//Rg7mKf193i873iZv2fvMtau+l0zR9UbL9123O87JbcZ5bgWmaPn+aptdM03RlmqZXT9P08pto47nTND28GduHvBO6KUk6985quPFOxcu1XLuvfxf346ziCyT9qKR/8S46/5dL+l5se9MtPseBpL+6+f9VaztP03RZ0g9I+o2SvkbSl0p6h6T3k/RZkl4p6T4c9hGSXrz5/7Mlff8z7XTAf5D0oeH7CyV916Zf8Tz336Lz/ejmfP/1FrX3Ukmfp6W/Eb+wOc/P36LzPCNM0/RnJf0dSV8s6d9J+gRJ3zBN0415nr9lj6a+StLVd0IXT6FfeI3Gux9+cZ7n//td3Qngf5f0P0n6yHme/0PY/m8lfd00Tb8rOeZzJF3T8kL95Gma7p7n+dFb0Zl5nh+TdDxHQRv1C7vM3TRNk6Rz8zxf2/F8j8bzvbMwz/NTvxLn2QXTNN0m6RWSvmae5y/ZbH7VNE3vI+nLp2n6tnmej3Zo56WSPknSX9AiLL3zMM/z3n9aGMYs6X3DtldpkXI+WtJPS3pS0n+R9LuS4z9T0s9peaP/v5J+1+b4V2G/+zYT8MubfX9O0h8t+vKRkr5H0hOSHpL09yTdhn1vl/Q3Jb1O0tObzy+UdBD2ecmmvU+W9NWSHtz8fauku5P+fbukxyQ9KumbJX3q5viXYN/frWWhPrnZ97skvTf2ef3mPJ+pRVJ8h6SfkvTbMM8z/l7FOU76+fclvXEzj2+U9C2SLoZ9PlbSj0t6StLbN3P5/mjH1/hjJf3MZt//JOm3ahGe/rqkt0h6WNI3SrojHPuiTV//pKSv1CJZPynp+yS9COc5r0Wyff3mOr1+8/180t4fk/Qlm/M+Kun/kPTCZA7+qKT/LOnK5nr+Y0nPxj7z5jx/erM2HtfywP5AXCPO/zdufvs1kr57M7Yrkt6wuc7nbuY+S8bgMX/uyn5/ZrPWHt7MyY9J+ljsc07Sl0n6xTAnPyrpwza/cYyzpC/aHPulkubQ1ntJui7pf9tjLLdruW/+5WY9zZL+2K2Yp+J877s5x8uL3x/U8qz5U5JesxnPx2x++1ub9f745tr+oKTfhOM/cdP+bw7bfkoL6/2Ezdp7cvP5cSt9/TvJ3D+x+e3Xbb6/LOz/z7Q8Gz9cC7N9StKrJf0OSZOkv6Tlnvdz5x6c74IWNv8aLc+HN2nRIpxf6efHbfryodj+SZvtH7zDdblNC2v9s2EOPwT7/DZJPyzpkc0cvlbSV9zUOrjJxfNy5S+8t2h5gX3WZhG/crNw4n4fLelIy4PpEzZtvWFz7KvCfndK+m+b3/7I5ri/LemGpM9P+vKGzUJ5qaQv0vKg/Ebc4D+i5WX4BZvF8IVabvavCPu9ZNPe67RIrS+V9PmbRfRNmIcf0XLTfp6k36lFxfhG4YUn6Y9vtn29pI+X9BlaXmivk3Q57Pd6Sb8k6SclvWyzAP7TZqHevdnnA7QIFP9Z0ods/j5gcK3u2SzkhzaL6ndI+r2S/onPvblWNzbX65Ml/b7NonpA0gtwjd8q6We1vJQ/UcuN9TZJXyvpGzbz8AVaJPe/FY590WYO3hiu/R/cXPef1+mX2bdrWTdfspn/V2za+/akvddv9v84LYzhQW0LTn9jc/xXbNr7g1qEqJ+QdBj2c3v/ZjMPL9tco9dq89LSorJ7i5YHmef/V29+e42WB86nSfqozTx+q6QLz+RhnYz5j2pZz8d/2O8rJf2hzbX+WEn/QMs99zFhn7+q5QH++Zu+frKkvybpEza/f/jmXF8XxvmCzW984X32Zt/fvsdYfv/mmE+TdCjpzZL+/a2Yp+J8u7zwflnLvfXpWp4377P57Zs3/X3JZp6+W8vz4P3C8dUL702S/h8t99zHaVH7XVEilIXj3lvSt2l5+XjuP3jzW/XCe1jLs/ezN+f5yc31/btaXnIfp0U4fFLS14djJy3q8ccl/a+bcf85LcThm1bm9M9v+nIZ23/VZvvn7HBdvlzLs+xQyQtP0nN0Ihh9gqT/ebO2v/qm1sFNLp6XK3/hXcMieK6WB+lfCtv+vZaHZGRVHyIwFUl/ebMw3g/n/trN4jyHvnwN9vvCzbl/zeb7H9js95HJfk9Leu7m+0s2+/Hl9tWb/kyb7x+z2e8zsd+/VnjhSXqWFsb09djvxZvzfkHY9notUsw9Ydtv3rT3+zDXP7rjtfqSzTz8xsE+P6XlYX0O/bsm6SuTa/yrwrZP3vTvh9Dmv5D0uvD9RZv9eO39YP3DuKFfgfa+aLP916O9V2E/34TvGfa7IemvYD+f91PDtnkzD/Hl+7LN9g/DdfpWtPeczX6ffDP31I7X0mPO/lIWqcUWd07S/yXpn4ftPyDpnw7OZZb3iuQ3vvC+cLPvr95jLD+o5SF9YfP9b2/aeL9d29hz7nZ54b1dYD/JfodaGNGbJH1Z2F698J6S9F7JNfzTK+f5O5KuJNurF96swDq1MPVZi8A8he3/SNLj4btZ2u/Gef7Y2vXQotG5nmy/e3Psn10Z4wdpeal/GOYwvvBestn2q0Zt7fp3q8MSXjPP82v8ZZ7n+7WoAN5bkqZpOpT0wZL+2Rx0u/OiU3892vpYLRL466ZpOuc/LdL3vVqYTsQ/xfd/ouVm/y2hvV+S9GNo7we1qNDoGUQD+s9KuijpeZvvH6rlQfrPk/NGfKgWtvptOO8btaghPhL7//g8z4/gvNJmDm8CL5X0k/M8/6fsx2ma7pD0myR95zzP1719nufXaRFOPgqH/Pw8z78Yvv/c5vPfYL+fk/TCjS0kgtf+32t5eNjBwPPxrTjO39mff4XvnK+P0bIOOP8/oUWq5fy/cj5tt9l1/h/Soh78G9M0/ZFpmt5vZX9Jyz0R+5XMV4Yv1XIfHf/FazdN0wdP0/T90zS9TcsavaZFMn7/0MZPSvqkjcflh0/TdGGX/t4KTNP0Ai3s8zvneX56s/mbNp+fvXLshPk6vIVd+7e493zOj5+m6UemaXpYi+bhqqQX6PR8VvjZeZ7f6C/zPL9eC3u62fu5wv3zPP90+O778gfnzZsjbH/WNE13b75/rBYG9X3Jc1FaHItuOTbr/B9K+pZ5nn9ssOurtZh2vmGapt87TdN7PpPz3uoX3sPJtquSLm3+f46Wl8vbkv247blaHkbX8Pddm9/vXTne318Q2nufpD0b2Nkex2IPIo/lPSQ9Mm8btbNxSNIPJef+oLXzzvPM8+6LezX24LtHi1rjLclvb5X0bGzjA+HpwfZzWiTiiOra+zr5fOzPW/G7sXadPP+v1fb8X9b+1z3F5qHyMVqk+i+X9PMbl/s/MTpOi/0i9ulzVvaXpF+a5/mn4p9/2DgM/JAWIevztAgSH6xFXR3H8Ne0sP9P1WK7e3ATPsD53QV+oL/Pjvv/AS3Pnn85TdPdm4fvm7TY/D9r5aX/h3V6vv7bTfS3wtY9ME3Tb9Oi8nublmvzW7XM52u02z259ky8VdjnvpRO3x93bvoU59VCLe8PnvNw46Eb4TWUjd34g5I+UItzi9fAHZvfnjVN053SMWn67VrMOl8r6ZenafqZmw1j+ZX20nxQy2Q+L/nteVoYmPGQFnb4Z4q2uNCfp0WHHb9Li17e7b1Oi34+w+uL7RXeIumeaZrO46XHsT20+Xw5+mc8vud598WDOnmZZHhEi8rg+clvz9d40d4Mqmv/M5v/fb7na3kZxL7E33eF5/+l2r754+/PGBvm+9mbB/Zv0PLC+fvTNL1+nud/XRz2SVo0B8brnmE3Pl7LA+z3zPNsIcFMPvb1aS0v5i+fpun5m358pZYH4e/f85w/rMVG+ElaVKdr8Eu9mpOPUh0K8T06WSvSYma4VZiTbb9Hi6rzM+Z5vuGN0zSNXgTvTnhIy33x0uL3kbDs59kH6rTnqLVvrx4c+wFa1ulrk99eqeW5/UJJmhev30+Zpum8FoHjL0v67mmafi20Tav4FX3hzfN8Y5qmn5T0smmaXmHV1jRNv1WLbju+8H5Ai0H9DZu3/Bo+Xadvts/UchP+RGjv07R4O/2cnjl+XAt7+TSdVmN+Jvb7MS0vtfed5/mbdGtwVQs72QU/KOmLpmn6DfM8/2f+OM/zO6Zp+o+Sfs/mmtyQjpnCh2lx3LmV4LX/cC0L+8c3v/+7zednavEiNPwQftWe53ullnXw3vM8v/KmeryNq1q8y1Js2N7PTNP057Qwkl+n4uE+z/PPZtufAW7ffB4LYdM0/Q9aHhSvL/rwVklfO03TJ2npq+Z5vj5N05EG4wzHv3Gapm+R9CemafqO+XRYgvvwqfM8f880Tb9F0q/V4jX8XdjtkhY29TkqrvM8z/aa/pXC7VrUmMcvw2maPlnbmoZbjauSzk/TdBhftO8E/IAWz9TDeZ5/Ym1n4FVanm2/X6dfeJ+lxQnpPw6O/QdaPLQjPlSLXfBPabE9nsKGWPzoNE1frOUF/f46YaI74V0Rh/dXtTyEv2eapn+oxWX+i3WisjK+Sos3449M0/RVWhjdHVpulo+Y5/lTsP/HT9P0tzdt/5bNeb452BS/TQuN/j+nafoKLZ5BFyT9ai2OF586z/OTuw5inudXTtP0o5L+4TRNz9Gi4vgMbR4YYb/Hpmn6C5L+3jRN92l58L1dC+v6KC1OF9++63k3eLWkPzlN02doYUGPz/NcqXa+Sou34A9NSzaOn9WiWv4USX98nufHtUhM369Fj//3tTjafPGmn1+xZ9/WcFmnr/2Xa5m7b5akeZ7/yzRN3yHpFRtbwo9puRH+sqTv2PcFMc/zL0zT9DclffU0Te+vJczgihZX+o+R9HXzPP/wnmN4taSPmKbpE7Ws2we1SKt/V9J3apFaD7Ww+uvajfXcKrxSi93uWzf3zXtquZZviDtN0/R9Wh5IP61FXfSbtMzHV4fdXq3FzvfKzT6/PM9zpvqWFuH0/ST98DRNX6NFrfoOLffXZ0n69VrY2edoEUD+5jzPb2Aj0zR9r6RPm6bpT+1zP74T8QOSPlfSP9qsyw/U4s3I59Wtxqu1qH3//DRNPyzpWmWHf4b4fi1CxvdN0/SVWlTyB1qc1j5B0p+Y5zllefM8PzlN05dosVvfr5PA88/Q4hx0bKufpuk7Jf3OeZ7v3hz7CzqtwdE0Tc/a/PvTG78OTdP06VqE3+/VQoju1OJF+simr/vhZjxdNIjDS/Z9vUJ4wGbb79XyAluLw7tHywP7dVp0z/drCQX4gqQvH6nFdfUJLWqvLA7vkhYXd8cAPqzFeP8KnXh9vmTT3kcXY35R2HafpO/QIuU4Du9TlMfhfbwW1c9jWlyDX6MlTOEDMFffmszhKW85Leq9f7U575anYnL8c7V4Z71lM49v1OIkMIrD+5cq4vCw7UVKYsM2c3rsPajtOLwHNvPw/ZJejGMvaHHM+CUtTOWXVMfh8by+fpz/P6BFCn3HZo38Vy0P9xeGfWZJX1qM7+Vh26/Vsg6f3Pz2jZs5/iYtIRZPallb/1bLTf6MvctGY0728/11RYtd7NO1OP28NuzzF7VoPx7eXPP/Jumv6LSn7kdqkbSvahCHh+v2+Zt19Nhmrf2iFtvLB21+f0jSvxn03V6Dn3Wr5m3T7k5xeMVvf3GzBh30/RFaHrbfF/Yp4/CKcw3d6rX4OnzdZt8j7RCHh+Oftdnvf8H2z9tsf37Ydk5L0Pd/2ayZRzfX/csVYmkHff0zWl5ejpX+Q8k+/8xjGLSTeWn++s2xv7Tp29u0vPxKr/PRn13s320xLXnbvkGL+2ymD278/wDTNL1Ii+DyR+Z5viX5CxuNRmMfdLWERqPRaJwJ9Auv0Wg0GmcC7/YqzUaj0Wg0dkEzvEaj0WicCfQLr9FoNBpnAv3CazQajcaZwF6B57fffvt811136fBwPV/r0dESc2gbob9ze4S3rdkVR6n2dsu9uz/2tXXe6n6wvbXv+7bp//15cHBw6tPb4zxcv3791OeNGzf0jne8Q1euXNnqzIULF+bbbrvtuD2vIX8f9YHbqzHsi5uxX+96zDtrHe6DZ7om9t1vbW6y3+Pz4NFHH9WTTz651fDBwcF8cHAwXA9cT9X9MRqf+7fLHOx6/z3TdZDdd7u2ezNzUO1THbPL/TDap/rN22/cuLG1H98lR0dHunr1qq5du7Y6KXu98O6++2597ud+ru6+++5TJ3Sn4rarV5ecu08/veQqffLJJWnClStL6js/JOPx165dO/W9evBlD0mjWhjZw91we6OXMSeZqNqM/1c3FM8f4RvZx/B7doNzH7fLY86fP791jD9vu23JKHXhwpJE//Lly6fGIEmPProUp37rW5ekE4899pi+93u/d2sMknT77bfrIz7iI3T77befau/SpZMcuj7XxYsXT/XPn+fOndsaK1/MxEiI4m/Vtd0FfDA9k4dK1lf+ts8DkOfL7qOqnTUhpGon67OfBdLJPe7nxNWrV/W1X/u1aTsHBwe6fPny8drxGvV6kaS77rpLko73iWtbOlk7UViv5qx6aWbH8jpQoMuOWXtZ7XKe0TVkXzh2z1smdLL/PA+3x35xbVZ9zoRmrw0+C/2Meeqpp46PefzxJf2w3ylPPfWUfvZnd0vA1CrNRqPRaJwJ7MXwpmnShQsXtthGJhlXUvOIcVkSqRhRJnmtUe2RJLKPGoJjZltsM7axNo6bUU8Ynt8opd2M+oPHWvKypGz2HRmZr5cZ2eHh4fBcBwcHW1JlJl2uXdPsWkaNQcRIA1Ax+tG1zMaUHTPCmuS7Cxu9GVZaqalHauWqj9k4q3U9up+8hry+KhweHm6t9dgunx3s0y6akGoc2Zg5tmoNjdg6sQt73med8XxknZ6zCO6zxvBGqm1q6qhxiu1yvrzdz5a4PtyOt+1jmmiG12g0Go0zgb0Z3uHh4fFb12/waMOLevqqjfgZMXKQiL9n2ygpxD7xfGsSwRrTiFjTW8d21qSjkW1yrS/Z7xW7Zt8zcP4oeUm5zW0XW1JsJzLmyhmK4xgZsLnPLv2p1spIG7HGeLJrSVZWrfcRa+M+I3szUbGdEevZx/7HNnjekf1smqahxuXw8HCr31532Tlo77WmIvZhl/mIiHNd3Uv73LfuC++tjHlxvndh9h6z71PaxEc2vIoxc16ze9p9s9aFfY1teh9v83efh32P/8dn/q4srxleo9FoNM4E+oXXaDQajTOBvVWa58+f36KUmcNA5QpPGp8dU30fqRorF+JdzkOVI9Wj0gnF3rWP2bbKpXdXNeAImSPHWlux7zyGBudMZUuVycWLF3d2ud7FQM91FeP92E9/jlR9xJrLN/sc+0jj/shde83hiN/X4tWk7bnIriXbp6oxU0/u6pYe1W6VU9bI+adyGKkQHZ4YthL7w8/RMV63uzjZxPGMMLq3va1y9huFMux63giPj5+co+z6U/1ZmZdG/aO5ITOBVc6FVEXHEBRvswPd008/vfs62mmvRqPRaDTezbE3w7t06dLx25aZNqRtKX3N5Tf+Xx27i3szP2/GaWUkkVZswFIS2UiU0ihtVtJM1seRS2/cL26vDOe7SGMVC8yumyWtXZ1W1gztleOPg5N9fHRRtpMUkxewzYw9rTlmZEZ9b6METEeAjBVW4JrNXPTpAOB9/BnXXxWiQaeC0fjWmGxkSpa0d3Eyq/o02tdOKz63z/esZz3reB8nSvC95n34GR1dGIBNZM4ja+MwsvuycgTjvZc9B6p9OH+xzwwbIlvyZ3b9fQznYBTuVWmD/MlkJPHcXsd8RvAZE/uYrd81NMNrNBqNxpnAXgzv4OBAFy9e3HrDxjc2A5X9dreksEvapOr3EfOKfbxZ7BJUW7EUji9zo72Z0IKqb6NUZ1UQrJHZKCt7wii0gamKzp07tzrGkR2ELIa6f/9uSVHaZjiVbSuzHxAVu8nsPpY4/d0MwvvGedslWDeOJbNRktE5RZ8/IytkO2vpr2J/1uw8mU2Fc0q2sYvta43hnT9//niO77zzTknSHXfccbyPr4c//ZuZn1OOxX67PbKYKt9rZm+ubJy+/vHZyGvItZlpp7yeyfor5p3ZurhGOVfxGIYDeJ/q+RevLZ8r1EZkDO+JJ55I54DPOV/HOA5/PvbYY9oVzfAajUajcSZwU16afuvTFiBtSzq7ePtR+q7Sd+0iadH+ktm+RkHi3He0LeubkSVmXmOJWbuUni3xraXUkraZBCXZLOjb0liV8idDtAmsMbws07lBNkPW5u1ZEmJKy9QwZPZm9oHXKWMzFeMlI8rWd2XD5We85pSO/elkuk6gG1mv52fNlpfZsHwM73EmY44gy/F3soSbte8eHBzo0qVLxwmimShaOpl32/WcnNzfyfikE4bA6+62Kjtt/J+B2PRcj0mPzWZi0mNpm4nHa+l9KpZORhZT/9H+5TngXGTPKm/z/PHZlWnDKq9jaiXinHBdZQUJ4vljn9zehQsXdtbsNcNrNBqNxpnA3gzv3Llzx1IE08J4H2k7Do7SeZRiqhgwbncbo/RAlM538QJjP7LYpirejpJOZvehXaeyl2WsgH2q2E82Dkrn3pfsO+5DhkL7WQTtO2sMb57nYQo4rhWvkVHM2ZqnFucx9o/zwTZH7a1hlzg8tpmNj/cNr3vGwCu7Nu089GyUtmOcspRcsc34f+ZFG/sTz7OWRpDnuvPOO49td/6Mnnsei9kfmZ5ZTWTrMel5/KzsWPGerlgrvQ4jozQjNcOz7YnsPaLykq60EHFO2G9/rzxYs7ngPVlpK+I+VZ8zD2af+5577jk1bpcF8vniuHwvvP3tbz9uo+PwGo1Go9EI2IvhGZWdTNpmINazWn/t71GaWfOooxQYJUVKKWR2me1hLcFrZvejZF953mXeUpZOyIhp/8ti6WiDIvvxfGY2EPeZTCxjodHjLR5racr7xnmghLzmpTnP89bvmaco55qsI4s18tiqjCujGD6ypSrLSNaXKotFRBWHOfJ4W0NV4FTaZrWVhG+mFFlIlbGEbWeehATXbhyf+7LLmA8PD3XHHXccszb3N8bhef1yTL4unutoP/I9RBsdj/E6Ga07zle2VuMzQTpZB2Z82RoiY6yeM1yX0rY3Ju2ZmY260sCwUGu2hnmPVW1lcabug4uLu32zuMgKfY0feeSR43E0w2s0Go1GI6BfeI1Go9E4E7gplWYVECydqAze8Y53SDqhnabtWSokq+W8D9126VyQGY9Nc03pqfaI6g/vUxnOs+DhKpVPlYYqqiWqMItRImrPk+fg8ccfl7Q9N1YxRFd9zxcTsFLtEueRFc2pEs6udebIM1ItxATAo1pcVL2N1IZUYRuV40lUxTEQNnPCkvIKzVyLmWMDQfV3puob9T2enyqsLFTH82VnieozU2nSaYHqvaiWqtTtozRUxi5p7w4ODnT58uXje9iOKVF9x6BqOmqN6nRSxcYEB5n7fuXYwn5koRMMg/H2LCyrSoLP506G7HkZx+fn7shZznPj54+f66NE52uJ1bPE42zPffbcx/vWc2rV7MWLFzssodFoNBqNiGfktJI5AlgCsLHRjKRKHSPVwcGWQNym24hGVksAluDI8EaB2QaZgyW7UbhFxfQySYPG2koCtmOPtO267Pn0XPj3LNSBkh0lrKzEC/vo85INZgxvFyndIS2jZLc+hyW4qupxlOzZP46NgcER1Cx4DY00GHE88XyZW7jBIHijSpaelaUyKK1nzlkMNKazgr9nbumVkxQ/s0B3OieQQWQhHbs4G5w7d0733HPPcYiB10eca2oxyN4zrYqvu+8p72utlF3jPcd2qJC2g7jJmt236G5PRx3OC/saf1tLGk2tQRwrtW7e1+fzPMR9+Bznp/uYpTKjcxE1CXG9UauThUzFPsd9YnKBZniNRqPRaATszfAODg62pD9LctKJZBC3SSeSwMgWRHuU96VrbtTH+21vaczShbeTJUon+mi3aynNEhylRGlbwmIQPCXxzP5Hm5clK/fR/ZJOpLKHHnro1PjMAv17phdnYDFZYOZyTlbFFEm+FtGtO9on1mCGRxfwaFtlscmqrEnG8CobDtl7lBxpM/Z1YHKEbL1VaduycibUWBiVHTiCmgtew1HAMZMskyFlgecVs+OcZCmlKttxFk7E4OQRbMNzv6ukz9K2rZt9i88B31s+xmPzd99zPjaG7nju6PLPlGaR4XEt8tpliTWqhPZVcu+4n68ZE42bpVmL43FKJ8+Xhx9+WJL0wAMPSNrWOBleY3E8DA3xdz9fs2N8bT1/ZHxZ2NWzn/3s4/6PbJkRzfAajUajcSZwUwzPUnImAVM6Z9B1lj6JtjuWiaHOO7JD6qW5b8YK3W/3zZKPpSVLDlFaqgKaq9JFmX3Bx1hasjRlqSnq0i1l2p7gfXyMf89YT1XMdWTDo/RML6lMt+45zQpJZohenLTLxf6xcOUu5UzcTwbVkl3H/rPYJe0JbiNj+muJmTObg1Gl4KIXXzzWY+b64vWRtu3YbJeMM85nZaselcpxu0yNNSq+y3t8lJbOZcl4z8X1xjR0TK7t54SZi3Ryb/lc7S/jAAAgAElEQVRe4j3Ozzg+2lL5THSb0S7PAraed3ud0tNTOrmGvLe47jNbrre5D56D+++//9RcmPHFbd6Htnx/Z6B43IdervTniJos958B57wHM+bqPtx77707F+tthtdoNBqNM4G9Gd7169e3JNQoXZJx0G5hfXFkM4yRqRJB83dp2z7AuKSqgKK07cVEG2I8T5VguJKwYp8rqZMxddE+5v99HrPOGHsSz5NJQEwLRtYbrw09xOhRlcW70Q4zisObpkkXLlzYKkkTrwvnrhprJsWSZTKOkdc49p8pxYzM7jcqWxK/x/3IFBjLVpXUir9VZWAyL1TGbtFLj+eL42aME5OJZzYlX58q6Tu1O3GfKhYxwvZf982MKNMSVXGDDz74oKTT9iqv/8oOT6/geK1pU6W/gRHXN8vj0E567733SjptG7ct0Nfd47MdbBRvWNkvya5HWpvnPOc5p/rExN333Xff8bH09K7SPMbzmX167n0exiRG1us+Rm/NtuE1Go1GoxGwF8Ob51lHR0db0fBZEmLa4+i9GdmMJQJLD5Ya6BnGgo3StpRuZkLpKYsBoocTpY3oQWjvoaqUCBM1Z0VKq+wpjMuTTubUzI4lmdwGJXFJestb3nKqD55XZhKJffTY3V6VpSVKsNw2suFZSmcMUAQ9HCndZsVVyehYINXjYkxVBL3wPNej0jvV2LP2q0KYVcHjzCOtivfL7LWVTc32FyYcj/cGJXtfA0veWbmgLD4yG0fGyNzvq1evlizPhafJ/OMaokci7UeMY5VOriFj6gx/t6dlPNZj9T3MDFI+f5aY2fNAb3Hat6Vtj8cqO1SmMaFHPD/5zIrjIpP388+fz33ucyWdtuHZ7ud7zmuUGo1MQ8NYRIMex9k43vGOd3Ty6Eaj0Wg0IvYuAHtwcHAsEfhNHt/YlobsAcX4LX9G+xG9I1/wghdIOvEYevOb3yzpRJrIbAFuzxKKJdPMM4gxOpWuOUoVzDFIb0D2J0r6HrP7zcwxLKMRz0N7TGSd0ok9I7OtWQL6wA/8QEnS2972Nkkn9ozoaWjJytfU15H68ih90rYxKg80z7OuX7++xWZjv90f2qvooZixZx/La0vvvThmZkVh0U7mPIz/j8YZj419dL9pS6GmJLZNqZ82VZaNkbZtdJzrUaYNMznGf3rdZbFULIZaZVwZlRSKmiPCDI8MMt57/o0sg3F5mXctNQq0sTGOLY6Vzx0zIMev+TkobWuF1uKO4zbD14f3Rpalxf3nevM+nptMo0BNBovX+nvsq/vyohe9SNLJM9LPHcY1SttaAfad8Y7xf8/Nk08+2Ta8RqPRaDQi+oXXaDQajTOBvcMSzp07t6VeieoUU2AGdZpWZy7gbsduuXZaofqLpSni/96Hrvimxhltt9qDLu2m4plzDB0+qIbzWKJrMROyRhVSROb+XjnDUIWXVZ33nFhVzNRp0UWb6lwGkWbu71TFjtQK8zzrypUrW+2MArQNqiOjMwaDhTlfMbC56j+P5TGZow77X6lQpe3kBwyV4bVmZex4XqrfK5f6CDq2UC0fywMxbMR99n2chSX4+CqxQebIw/ZHODg40B133HGsZne/s0B2t2cnFaocs6QFLCFG56gspIVhFe6TryGfPx5H1lfPm9vw/SqdmBaYFs6gijOqXd3vquJ45uhSOQHSaSYL3WIqMZpfrIqM96/HxcTmDDfKnA7plLULmuE1Go1G40xgb6eVc+fObTkrRPYUU+lItatyViDVx9pgzgBJs8YsuJLSKqWZzEGDrI8u15FxWFpiqjSmXGJ/pLp446ioJoPF/d1zxJRjmROFXcu9bxW8HH+zdMZ9sxRHdCnexWmFknGWvs2Sm9krA+az4sEGA4IZuB3XXRUiwfJQWdJjg0ySDkOx32TedHBhKZhsH34fuWPTGYKOV5nUzPuHydKZgDj+VoWlZNvp4JJpYNgGEzPHMAFqIsySqqQL8ZhKW8LnRGQUPqZy2GGpq9i+54MOSHSeifvS+Y9hSj5/dCbys4HJqVm6KKZbI0NlmAKTOUdtFVkm16g1ePG5WhXwZvLo6KC0Fuw/QjO8RqPRaJwJ7G3Du3HjxvEblpKDdCIFWVK0VOY3N4Ov3aZ0IjWSBVriGaUfYgJgsoOsXA+ZDlMXZW7UdPUm27VUGN1ofR6zPrfv8WZhCTwvgzZpM4jjo5u7XbXJErLk0bThMcVYlFgzW9Motdjh4eEWw8tSsJnF0qaXuZRTimTZJJ4vXtMquTa1A9mYGLLgdZ+xUPeJfSDDypKj087iTyY8yNhalQSZ54uoitX6+nNupO3rVQVHZ1hjdj7+2rVrW+kBI8PzfWfWYsbAYPv43KGdj8m0eb649pmYgcjsY9Ts+LlmNsok0nFcBBNoc+5j+74+tuF73jK7Nn0FaNPlvZCFULCgMgsSx2B12gipYeJzSNq+xw8PDzvwvNFoNBqNiL1Ti127dq1MiSRt2zT8dmegYuZVVunOWQJllHqJHkm0A8ZzM1jUn5YyMg8r2iv4SZtHPB/L3tC7LYKJeGmHsSSbJeyltxy9wbKErCzXU5WliZIWvc7WEgCfP38+Ta5sZHaBDJmnHddi5b2ZJWamnYCekJFxVevLDC+zw62VnSGiVO/5dvv0TMvuQUr/XF8Vs4x9qpJyZyWMOB56sGZJBmgnn6ZpKKXfuHFjy44eGZ7H5N+qRNARtNVy7PSIzGxF9GbO0oMZ9F71tX3+858v6YT5jIpjexzU1mSJmWlHZHpEjz9LLcbkGGR4WYo5XmfaikfaNjJUjjOza8fnzujZE9EMr9FoNBpnAnszvPgmzeKvLNnQ3sJyJlECot2gsmllUloVo8XPKCFUko916O5jliy2YreUauP4KbVYCo32BPaREir1/yxWmnm9krFk5XzYR0pyTDGU2cDYtwwuD0SWPrIj2aYy0gpwbivvv1Ei6EpqzWxqtKmajdJjLK5VxoJWtrTsd84PWYkR1yOlZjKnUWHWih3yfFnqtMxOGrdn6zsrPpvh8PBw6HlNzUHFYuM4Kvtb5UWbxeWSqVIrkHkF+5617c4Mz5ql2Hfed1yznossXs19sS2vup+ydIFM0E0b8ij+k/dR1efYfnUfZ2u4Soq9C5rhNRqNRuNMYO84PHvbSTlTqDI+UKedlTOpbACVPUbaTsBKaTpLPuq+WPKxPYxeTBGMr8psGdK2jUfatgkwG0dmu6qyY7BN6vilbRtUZVPJ7D/ethZnGNupWEAGMpbMflRlhBjZcOnZO2KFVZ8Yq5UVymVMFhkX46PiMRUD5vyNMglxTkbMhde/Km2VlVsidrWRsP/x2Mx2U91HWZuMK8y0TbT/U6sRWV01T2yTfc3aY59YtDj2hZml/Jk932gbps3OyBL5U9PDZ3Bmo87iB+N5qeEYXVMie07w2W6tF23zmUYhXuO24TUajUajEdAvvEaj0WicCdxU8mgaErOaZpUbK1PXRJi+Z+mZIjLjNw3CpPFRpclKx07B5X0crBr7SGM4aXWVPizua/WqVWQ8JqocshpiUq1+yfZhX6qQg7iNDihMzZSpMHbBPM86OjraKdDYoFo3c34wPJZKLV71KX5WDlBZ/T3OB9X7DFrO9uFcjwLciSz8wWBwOs9bOROM+sb+jMISDM5v5lpOFXoGh0P5nuD4pG0zBFXc2bOKKv7qu5GZAHgPc44jfM2YgIJpA+N6q54DVBvukr6tSoMXx+D7KHPyir+P1mzl4JQlvOD1yUw0Uu4EFp8LrdJsNBqNRiNgb6eVw8PDNGkwwcBVvpWjxMJyPBWLyiQSSiI8b1bixedhFedYFT3uF/tvkIWOJG7va0OwPyklRcbFSsZrzCiel84JVbmWLJyE3yl5ZVXZsyDyNeziTGLQYSNL+eZ5GpUfim3F/3ktyfBiGxVjpPScMZaqT9yeOXRVbY0C+JkkoXI2y8aXOdBIteQfjx0xO/YxrqE1KZ3JxbM1VGlcmDJPqqttsy1jLbFCdmxkKr6nfP/7+cM1HJMLMHSJ4Ui8t0drldefacSyMVb302gu1lLLxecONX2816lBifB6uHLlSjO8RqPRaDQi9rbhSds2j8ymZsmETCV7EzOEgFLrmlu3tO6CnSVXdsC5j7VkNWIuVaFZ2sfi+RjKQMkuS4/lbVVpmZGtqpLkeJ7sfD7G14KBrZkEuYvU55AW9imz/65JlfG6kFFV9ksju6Zr9tkohVbrjGPIwi3Yp8p2lM0jA9tpo8rWWyVZV+Eq8be1EJPsGIPsLbt/91k78zzrxo0bx/v62eL7VzqZBxaNHmleKuZb9Snrf5W6LntWmVE64NznZbLlyOo4HoNpCc34srAharmYEDreE9ZyVWFRfJaMngdk26Pnd6VtGaWgdL8ff/zxnbVMzfAajUajcSawN8Ob53lY5qRKqmyJJHtzU0riW30UrEwwIDcL1DTDsi6d7DPqholKAqHnY1ZwllKSbYejZMlMOF15s+2SJoxsJEtHVgUlZ1IvPRJ3kdJpK4x9opRGiTFLPJ2l/xr1JTu2Ys0jzzeu75E0y3VVJVrIGGwl+fIaZ/cTPfwqZjeS0qs1lCUNNjhvIy/Nkbcf26AdPdq6qjRqnPNszVdj3qX/FTJvdKcO8zYzObMqlyuKRbS5RsnamKQhns/PHSbfJyvMbMZ+JnmOyRIzv4PqnuA1juu78j7lczVL4G5v+qtXr7YNr9FoNBqNiJtieAa9puK2ShKwR2aMm8niwiKyEj9EFf/i88dUOe6DpSJLCixOm0mQlCR8TFWoMfbfY3ZbLDgbQekok1Aj4rgrbzwm5c7YlaXBXSSmKllwhSwFUBYXNbIx8RgyqyppcGYfq7wJR+fPCm1K217IWSok9pH2pcwjjZ6Wa3Y5aTtZOOPXjBGD5VxUycyz9tauXxzHLrGc1g7Qgy8+Q6prR01FpqEgmyATyexylTaC9ktrk6QTRmUGR2b38MMPSzptw2OBac7byA/AzySfz88ZagXiMb7/fT5qCTiPWTL5yv6XPaP5XFvz0I/jeuSRR47noBleo9FoNBoBe5cHGtkXIqr4J+qT4/Fr+upMSqP9g55IWQkM66ct+TBmhhlfYruUJCm9ZOyJti5LdpbObMuL0mCVTLXynhuxkEpqHxW09HUeJf2mN+BIWp+mpTzQiKVXmUEy2x1R2XlHHr6VBEpkMZwGS9Vk8WuM71tLcJzZishYeP4sgXuV2HhUVmXEyiIyZr5mCxsl/R55hR4dHemJJ57Y8m6OTIieh7QrZza+tTFyHKMYVI+D/Yg2NWuSzJr8/aGHHjr1PfNCzspzRWTno33P321LzJ4p9HmozpsVgM1iniMypkymyOToWeytGfEofrBCM7xGo9FonAn0C6/RaDQaZwJ7O60cHR1tOZFE1QgN8VRHZc4dlcPJKPCz2sbk0TS+SieqA6qUqJaKKg9SfNN3Bp4bcSw2PNN5gI4OVm1KJ441u9YLG4Ul7JJwOqvFFbdnKZuygOO1lEOV2jKiuu5ZaER1vkqNG1HVGBwd62NG6u94bNzHn7zuVMeP1MZ0YsiuC+fLa5OJ3bO6chxHVYMwU6HT+WwUUE+V1QhHR0d68sknTzmRSaedyuiWn9X6i9uzfatwqCx4PUtKENvwXFv9Jm3X7LSTyoMPPnhqPFmi5Co8aOTcYVTJ6o3RveH1Vq2DTJVeBe5nKnSqMv3J9HHxWM7Tk08+2SrNRqPRaDQi9nZauX79epnmStqWOCpD9igAuGIiZG3x/ypBMgMps7553yq5c9zHDJJBm5RqssrKlkzsTu0+2YklSphunwxvFDRsVPNIl9/MWG1U6clGSVzXWKi0Lf1nKaoovY4YauWOzjZ3CWmp3NSzUi+s/MzK1FloASvd7+K+bzCRNecxrreq5ErVVpY4onLOyu7BykGNv2cMaRfJfJ5nXb169dgN3c4rcVycfyZsyFLjZeeRtq93FdQet/lYO9L4Hn/ggQeO9yWb8XjsPOc5jUmtqVGiUwzPP3K0c994T1ibFNsx3Ff3ic4qcU6q0AXeK9kx1fMtS8JdhfnsgmZ4jUaj0TgT2NuGN03TUDqjlE7JY/Q2rgp8VsHk8X9KE7QZZmU6HCLh77SPRLdn99/7MNUXz3vPPfccH+t9/Zv1+nZHdt/i3LAsSGVLy1JLVSxnZJuqXPQziZ592lXCivtVts/Y7pp9Lva3CpEZuaVzjFWC3NimrwvH7u1ZEmtKqewr13c2n7RluI0s7IYhOZTwWRYmS9tEu+KokGoVyFylGMvGuJZY+Ojo6Li/WSo+lvrJkmJIeSqsrH9SbYuK7btPtpOR4cX72Mew/BT7ljE8aliytI4cn+fUGivuO/KrYHpFagXoKxH7yOfPyP5baQf4DIi23squuQua4TUajUbjTOCmGN5aslhp++07eutXUmVVrmPk2VUFW0bJxzrr++6779R3BlnGgrDeZsnGx7Ckh/t87733Hh9LqYz2P+vw47xaCswSWEdkKafooVYFgsZrQAa0lqotjsdYSx59dHS0ZePK7GNVKqJRYDa/V95kuyTMroLLsz5UwfyjoP7Khje6jyjpV97C8Td62HGcWcqxKmUW28hs1GsJDzJJfBf7r214LFkVwevLoPtsrJxv2sfomRiZED1vK7aRsRn30eWNzMAym7H7yDVDpu+58bMl9s3rwPtQexTPx5Rl1Fzx/PF+GtnnY18zWy7Pw/HF65YlTmgvzUaj0Wg0Am7KS5P2q5HEXSWfzaS0ylOwsgdGVPEctNNIJxIVPZ8YbxO9lxizwzmg/S8r10IPO7efsTnaiKp5zexdVVzXKC6qkuRH7MOI0tnI7nZwcFAmls3GVtmCRn3Jzhs/M4ZXaRSy0jVkOF4Ho1RIlForqTlLou5ze315zdCGEsdFllMlPs9Kr1SlnqqkzLGdit1m26sYxAz0Dmc8Yew3bcNVMeEM1Trg9Yv9NrgesjJhlSepv2fXiakSq3JN/F06ec65T04ebS/XEbum3Zfxpt6epRYjM+a4RpqMKg0e7Z1xn7bhNRqNRqMB7M3wrl27VrIOaV1vn0mIleRJCWQUA0ZmV3n7xGPMqOilZGk6StqW4OgBR0aXZTywdEJ7H/X/mY2ArLPyHMvsf5VtJbtuZHaUdjO2Qxa6i6fdKBaQfaliAEdeumvrL8sMkfU1jieT7OldSjttlEhpA6JXLpl/bJsSvKV2xkVlDK+am2rtxvNUnrLZvK4l3x7Fr0Wmssa+qFHK4n/Jxph4PtNGjexuWV9ju2R2LK+TJa3n84CZQ7IYZcblVs+jrNQPC17T8zra9NYy33gMmSajioXexb5decxmGocsm9euLK8ZXqPRaDTOBG6K4TEnWmYLqphIFg9VsRVKqhmTqLx8yAZin+0VSfuRJS6fN5brse2E9i/GsmT6fjNJe306RofsKR7DOa48+jLpk/NFiSvLKFHZBsgKMkkrsuw1T82RNE0JkKwzYxJrkl3l+Rv/5xrhNc08xHzNLEWz6GosOMzra4m6sjNHTztKzfbs83ZK/vw/G1d1T8b/K7t5Jp1Xa7KKiYz/VzkaiRs3bmzZ6TI7aWUL2oUBVCV+jMjW6BVZlSPzftJJrlwzOuf09XOBtrzYb7fD2GGytqgdqLKzsM/xmnJtGtRSZEW5uc4rDVMcH9cBNSVGVjIp2gjbS7PRaDQajYB+4TUajUbjTGDvwPMbN25sBUGOjJCkplm6Ju7Ddqu0YWxn1Ke4HyuPG3QiiY4HpvpWKTGUwcbcTD3p81mFkblV85hK9VclwY3fqX7k+XZx0Wa7mcNLld6owtHR0fC60PDOIOs154isXapRRsHPVcmViCrROZ0jssQKVJlR/Z6F0FCdy+TlI0ceqteroPLsWF7v0ZpZc1DLQKeYeZ5LtZQdnvjcifcP55Jtjap7G1x3Vbq9rF2acFipXDpxNHLFcT9LXB4oK59D1bk/GVrl7ZkjFsMDKnNJ3IcqeoP3fHbv05ltVPatSho9SgxNx7Bz5861SrPRaDQajYhbHpbA9ElVCqZ4LA3Xa+7NmdHTqNzdM8mHhREZ3BiPoQtxJdFnTitmeBzfyLBOllYFhtPxJW6jpD9K61W5/pN9ZC76u5QFspROI3UWZLvmrJIZ9bPzZeOIqBIYj6TFXYOsMwcN9tlSeTXerP0q7VU8RxWaw/U2ciLgOhhJ6WsJgLNj2O+Ra/k8z7py5crW9cqSLNNhhueJfaoc65g2a8S8qzFbIxSP8fnMzsz0qgD0uK0qQE0tSHSSYZ/oeDJyAqxCwpgWMfaVmgQemyWKr4LSeU0yjWB0oNnlGSQ1w2s0Go3GGcHeDO/GjRvHLCe6Txu7lmuJ2DXwc1SqxvA+lN6yvloKo+RoCTmWIfE5/VtlD8sK3FKy5pxkZTXWWGAVnB3bXwseH4WTrCVJju1V6agIs7yIm7EjZqEF8RyjNkaSYBW8nNnjeAzXxYgBcfsaa4zbsmS6FSopmaxnl0D+UQKCCqNCnbSFrqUWu3HjxlbAcVzzZjZrCQdGgedV+rRRAWA/Q8y4fF2sPYqhDIZDnHw+2/J8bDyG66li3GR8WV+rkKqo2TJrcuhUlfiCKRbjvmSs1CRk9wbXwUjbwpJMFy5caBteo9FoNBoRe3tpRm+qzOZWeXVRIhkFsFZSZiZpVWmS2EaUmijpUFrOkjkzDQ8Znpklk0jHfajjZtqoUXJdSucj5kVUDCnq1Kv0PxVjjtt2xTRNZSLlOLa1cWSMhP2rPjO2xuvCtEmxjxXjpnQbUTEHsrYsLV0l+VbFNuM2tlcxu8z+O5q3uD3rQ5VIImJN60FkXtYxFZ/vu8r2bYzuE/aB3s3Rq7sKmOazg4Vppe17alT+it6SXAc8b/aM9DPLn/RdiM857+Ox0heD7Wdrx9sYDJ8lDKjGU7FR6UTz5uu/i9f28fl23rPRaDQajXdj7M3wIjL9O9kS9bkZ9pXss/3J8ChpZ5Iwj/F4rGOPkg8ZSeUBN4r3YZ8y/X7Vx8orb2QTZfxNVQg020aml81fFZNWwV6+Um6vqOY0k1p5TMXwDLYpbUvjZHpM4B37XUmgjI+LoE1ojY3GdqvxZayX9t8qrnAXyXjXazsaRzb3WUrA6jlgrZLnLfMhYKHnzAOV39m/SuPj77ZrxT7w2cE5j31kEVozFe9jW16cJ847nyFM9RUTQbsdb3P/6aUZj3EfKxZFppelweOzhOnvMj+AyhbvPsa5dx/jdWsbXqPRaDQaATfF8EaMrMrQUGVNib9VLJBMJaKyFVISyqRZeuGxqGaEpTJK2lW2lLjd7ZHpjRJAV/FQVaaSbHxVsdVRGRrG+1T2Jml7TtZKvEzTNCxsS4mbts8sW8qaVxeZRLT7kG1WicCjxF/FoPoY2nRjH+m1lsWirc0J4TmJ46rKHnGNZHbZikGOPHyrOa9Yj7StMXn66aeHUvr169e31laW1JtjG2koKrgfTB7+8MMPH+9jG9ea13G8Fk5Gb0b16KOPSjrxMHVcXoyl8zOJ5aB8HvfNjDPOA70ZWQ6N5cri/2SOZMzuoxNiSyfxhd6XZdZGHuzsM7UtUdvmfeJc7Hp9m+E1Go1G40ygX3iNRqPROBPYO/D8+vXrZbJnadtNm1QzU09WqoxKxZkFHlcBp1m9LdYhqxJcZ+es1EVU48T9KucAqgvjnFCFtBaIPgrG5j6ZYw9VmlQfjtz6Y5/XjMeVq7y0rT6h6i87hmNk36hCzRxQGH4wctSoVGUjBx7OZXXsyFRQre/M0YUq4CpUZ5RQuwotyMZXOanQfJGFd0TV1S6JC6rvlTPULuYQuv5X/Y+JKB555BFJJ2pJ3q9W50WnDu9rdSir1997772nvsf/+enzMB1iXENUZdJJxXVBo0rTziF0DGHqMj7n4zY+X5gwJHtfGEzD6PFFlSad2a5fv95OK41Go9FoROzF8I6OjvTkk09ulTmJRtaKXVTGb2lbcsvKZMRjR6WFqmOyAGe6FI9cvdccanZNXiptSzpZCiO6kldVq7NQDUpYDL7PzlcF7o/GmUlnI0krM1ZnVd7pNERJe+TWTBZDdpGtg7UUX7E/Wbqxte+8VkxOzP2yOaxS2WWMq9Ic7BOGsPZ95FhTsevoWFOt66pP165dO5b+zZqyBO0MFyDi9uq6G1xvmdbG5yXTIyOTTpxSWKaHx8RxeTwcH9d35mhHZkcnMyN7nvLaebyjZwid/nYJbSJT5HOBjjbsr3/r5NGNRqPRaATcVHkgv33tZhvfrnTBp8t1JmVyXxaJtRTgt33UWzP1DaWmzE5X6ZjpWh6lM7rUul0GZloCyhLAUt9elaeRtgOcqdtm3zMJmTp1hhyMWEGVLDhjeKNEr8Y8z8OE2tK2tF+tpVEf4vlim/7MQgyyZMQRcbv/5/WgjSjTDlRsaRQ0X9moR/cV7bDs0y62UIYUjBglrwuTimesOAsBqdbP0dGRnnrqqTKMI7bjsfM+zLQDa0kqqCG55557tvbxM8Lu+baB8bkU22OqLQbLx/5U15JtZS7/9F8ge3MbtiXG/t51112n2nAfHRzv5BxmrXEu2KfR8yEr9RO/c3vs4652u4hmeI1Go9E4E7ip8kCGvZb8tpe2k7hSiszYBXXLVRHA2A+D9hCfj15GUbKj1EqJZBdPO7LRXViIUQVfx/0okZLBjZI6WypigHlWYNSo7Du0VcRxjYLeiXk+XQA2S9u1JonGtkbnGbWVscyKRWU2h6r8FfuU2WOrIF5jZIcg4+J6zIK6q6BoMrF4/arCppyLXVLNVd6vcZvX6sjDd57nU4HpmZ3O/fGaJ+MbaUB4L9PD07Ypsx5Jet7znnfqWCZd9vfITBi07b5ZU5YlvvDztPL0JUuLKbj8m5+F9EbNfCU8HveJyfDdRzK/CN6v1K5EexzXqt8p9M6MayNL3N+B541Go9FoBNxUeSBLS34bZ3aRykMn89ippEqym0zyruwfu3h/udqIV4MAACAASURBVN+WfCy90AYhnZZE42flFRjtddSv0y6XsTSym6oY5cimwmNGBS0zL6+IUSqwuM+alG5k0p77UJVRGqFiF/zM+letmSzZrZHFkcV9s2tZeXKONBpVEU3+ntkMK1s4xx3HVyU0H7H4qtQPbXjxXmTarnmuEwA7/pd2scgkfO+6XXpy0sbP4+M+tKm5rVHKrypmLz4HPC+819wu50vatoPxu/tqRhbtcYbH4b7wuRrXpcdlrZ3brRKrx2vmbW6Pz0x6nMbj/ZuZMZNXR1R2zV3QDK/RaDQaZwJ7M7woxY9im6rsDiOpvcrg4mPp1ZS1S+kikxBoy7Ce2NJFFjdEXTMZa+YFVo2DfcpsKRW7pXSYSbuVN9goEXWlA98lzjAy1pGUfuXKla3YtphBgVL5WrzaqN9kG5kdiVJzxVQyWwdtgqPsPZwTtkvNRbYOyPDYZsbwvc4qj2kjzu/aPZjZDDlvVcxolOxZKicbUxzbxYsXh7F7LOnjZ8QoITyZKBk9kzo/+9nPPj7W//uzSiIfGR77yOear1fM6MKMKrx2ZJoZO6Rdk9d0VCaM9kzbCG2rjDbDitkxGXumdeN8MYYwzi99EdZisSOa4TUajUbjTGBvhjdN0xariZILsyFQutzlrUypnbr0+LulI+qPjYyF+nh6MzIfX8YGyLgYjzdiRJT+q4wosX3GE5G1sbhitk/FCrN8ppx7XqfMhpfZHoijoyNdvXp1i7HEWEeuncrTcuQ9WcUNUhNQjWntfGsZHUbnIcjss5g6Mrvs2lXt7nreLB8i55OsIPPWJdvl91GZpZH99+DgQLfddlvqKWz4/mOcJNlbZuvkc4DMy0zP9izpJO/lfffdJ+nEdsZ1F7U5zBpSPROzeNzKI5pZYuIcMzaY2pWsTFhlq/W97Ywyns84vsqTlGwtIltPsV0+B+O5M23DGprhNRqNRuNMoF94jUaj0TgT2FuleXBwsKW2ieUlKpdyqit2cXOmk0XmJp7R8ng+nz86R1DNRbXAKBXOrkG9WV/oJFElao59oUs0VZw0zsdj2X7mFME+rvU9ji9LA1Sp0xiW4D7EtWNX6KrEyy7qwl2SFRAc26hMENeIMZrjNRXjzSR5pro1C9UZpSyTdjMrVM5TmUqT80e14iit2+j6HBwc6Pbbbz9u12Vtsj7QwYmqzqgao2mBpgzeR5nqj3NblcjJ9jFoCsgC6quK7nQEGTl3uP9OD8ZUYLFdmn38/KQJJZsT3q+jwgHVvVGlUovnqZywRmiG12g0Go0zgZsKPK+kAGnbgaEKmB1JwJUrdiYNZiVq4vkzVlgVpx0luKYESSNyFVQa+1JJIlkfq3Rg3s4UbhnD47xW5W9GfaX0nknVkemtBQ9T+osSN0NJ6PiUXbdqrPw9W4cjh5wKaxLpqKjqKMwhIhtf5TSyi3TLfUZB+Lw+1XhHDI+Mzg5l8TmROa1UcFiCnUbMNkap/8j0svuTYQJ0cNuFeXtMTJVHRxHpJNzA+zAZPh1s4v8M+ag0Ctmx7mN0EIttjVgay/S4rywyHP+vNGhMbRbHXJUholYsjtlop5VGo9FoNICbsuEZmXTGlEFVOqtRgLbbs0TCN3hkM5Q0KOFlAdsVe6FLdjbWilGMSv1QWjHICuK4KBVVYQgMKo+/sS+UBjPWyz5SAstseJFVrzE8S4q+tlkwsueL1z8rucJrVdlSs/RdVUB4lfic544YpW1jO1ybtOlmCQEqBjlKf5al8ZN2Y1VVKqtsTmi3r1KLZWW9ItOr1s7h4aGe9axnbSVDjn2hxqNivvEYzk9lc8pSDZqt2QZNu6LDFKIGg8zX43DwdvQziGOPfa1st5ntmEmqPUe24XkMMWValZrPffYxZKvx2Mq+yRAy9jeOg0mrIxgGsw+a4TUajUbjTGAvhjdN0ykJNgvqZsE+6rRZ3FNaL7lCXXp8s1eBmLSBxf3IQinFVmOPnwalwkzSWvP6yorGslgr97FUltmMKi89I/OWojRGjzXOmXRyjS3lXrlyZTW1GNdMlGotNXqMlpJpU4lzS1ttNebs+nHdVcx4lHCa1z9jkmvel1zfGUskcxnZDCtJu8KI9Vaendkx9Nolw8tS9e1iN7WXpve1N298DpDNZDYtKU+2QGZfpSuMa9X7eM0+9thjp9pwOrKsuCrtfmR6GXOp1g7XVnyueo757DV83pjKjNeSc8G+ZoH1vMd5T8ZrQE1glSQjwn1xerNpmro8UKPRaDQaEbcktViU0iqbDyXDeIzf7owlqZLcjoo5khlliWuZTDXbh6CXV5VOK2OLHAdjBzPpxvv4N0u1VdqwjJ2u6fuzxL2VV2bG5jMvsxHDy7x5o9Ts/9kubRtZTE6lJSAySbCKT8zWKrdVqewiqvXM65ExvMruSvvTiOFz+y6gVM71EOeEa4O2XabUivtEb9NR8ujDw8MtG1TcnwyHTGGXUk9VyrWslJXHZJZhlmQbe5a2jX2qPBKjjYspC0d+BkSVuJ9es1kKRZ6Pc2CtTpwTtss2RnFzTNjNkklxHnmfrMW5njrPzns2Go1Go/FujL1teNSJS2PPrYo9Ze2MYqYiMumSXmt8+2e6bUph3ieT7BknUrHNzJuN0rglOpbviHNCFmjpltJN5olX2Z4qL7RsHJV0mEm50aNrzUuTGSJivy3V2e5hKZKeqZkdprL/GqNky2vzlEnA+2R0qbzJaH8beZ2RyVcxpLHdCiN7Y2Wb5LgjkyWzox2f32N7sWTNKHn0HXfcMSzQzHvYa2lUmJcFhysWy7I60rYtizFtPiZeCz7XaMNnpqHYbuVxS9t1FstL21lVRDiej8n4/Z2fWYkmJryuvNNjf72NBWyzQrA+d/TT2DXbSjO8RqPRaJwJ9Auv0Wg0GmcCNxV4PqrRROOmqb/p+ii9UmVYproqc8Gm04o/s4BpBhZTdZUliK5SiFWpfuKxVYAxVZpZcDyT0GaB5nGc8dxrSYPjNeC+VYqhzPHEODw8LB0j5nnWtWvXtlQvsT2rMK3GsBqX4QpZQt4qGLUK3N0FmWPKmnNPNudVEDz7llV4r8JuRli7f4xMZVvtS9V2ptKkgwG3Z+nIYhsjp5VLly4dH+Mg75h4nIHyMcQn9ilzCOI8UG2XOWjQwYpOU1miaN73TN48SiLB+5LjydYF15VBdXJ2T9PBhSEHmSMPg9X5PB0l/+eccNzZ/RRVth2W0Gg0Go1GwN4M78aNG1tSQJQuKD2wrERV7kKqA2XJCkZSus/D8IFMiq3SUGWONpSWGKxKh5t4LPdhOIK3x+SuDIauSgpl0jNZLaXDkcRdpZIaSfZVMu6IeZ5148aNLWk6zpOlSTI8Bs5GFkenhNH54/jiNl7/kWNKlfS4mvOsfSZQqBIex21VoutsXGvlgUbB3mtOQKOwBKb8GrEBzt8816nFDg4OdOHCheP1kSUgqJI58B7PtAN0CPJ5sjJEBhM+O7F1VT4s9oWp8+yokZXrIXPkPbZLYn0+k+mQEsN+eM3Icvnsz64pnx2jEBo/r3m9snJOBh2U4nNlDc3wGo1Go3EmsBfDOzo60pUrV7aCrrOiinTl9Zvcn5EpkPXRxpZJvgRtXgzqjEyCjJHjGdlJ6ELOvtFel/WtSnuWSenV2NdSQGXbyEYypuQ+MHg0CxQfsZqqz1UignjOym7AQODY3yoQd9QnMoW1sj27tDsKfCer2ScQnG1Qss9S2bGPVYmhLGi9YiqjtcPrxO2ZvYfnzWD2x+dN1Ii4n/6NGhKHKcTzmLWQHXHtM/xG2k5LyPt1lEyCjJLsLSu542NGISUcXxa+EceRJXZgUmx/Z/hFdq+s2VGNTBtjhlzZ/eKcMMzl6OioGV6j0Wg0GhE3ZcOrgl+lbU8ng943UXKsJJ5KChylhzIoRWQel5WUTkkl7lula6qC1yOqoq5ZUCn3qcr3ZIHAaymyMkbGxLZkU9Tpj/pS4ejoaJi+jV5jVQHRyHq9T+XVmnkSG9zG1E8ZE6NNZdeA13gMsYt0umaHy2yGa2wgOz/tb1zfo8Bzri+yxKyMWJb0OMONGzfK4PJ4rko7k3lCe2xmMWQtTI4evUKp4eFYM1+FNQ9fr+XIXJk0fpRIn6C2jbZJszYnvs5+83ezQM8BfQmkOu0h79GM+TGpAO+9rOxRXKMdeN5oNBqNRsDeDE/allRGUjsZjyWFrOgg3+6WTBifkqVRquKhMumZEi/ZwSj2gxIcbV8ZC10rNJlhLd3UyENyzaaWJbatvDJ5jTPb1C7es/bSpFdlPIZMrkpYm9k117zXRv3OSuxUbVflh4iRl16lqchiqqqk0VUS6arf8TvXcOxrtLNFjFLMVbbhUVFkpsw6d+7c6pzSPh/355qgt6bheOD4G9kr1zy9h6XteWLsno+NqbL87DNrst3Kz0Izu9jHKrWgMYr/rLQz7oeZndlcHCOL0vKe9NzFotXVc5qarewYarvcvvsTx0223nF4jUaj0WgAezE8e0pV+v24jW95Sk2juKGKTY0kcUqTPk9mUyOzo2SdeSCRyZFZVeOOv63Z+bLYpqrsDeML45zQPuI2RkycY6atJvPO4rVdi++KyaWzjDuV1ywl1CghVgyHmXcyZLba7PsuSba5HkZzUTG9zFu3svfuo1HgeTmuOCauJzKHLB6zsr2vMbZ47Jp24Ojo6Pi6jwqk+pxmRIz/jXNb2ZisSai8T6UT5uFj/Z02sMgwXUqIJXDI8KINj3FqZKyjZwjZJm2S7nP00iRTZWwlGVhmE6V9jyw1y7RC9s5k3JkPRjO8RqPRaDQK9Auv0Wg0GmcCe6s0b9y4saVuy1SApq+VE0mk0bsGDWeqQKoqSL1HqZ54vixkwqCjh/elM0cWKEl1KFW1mQtz5UpeBQJn7thV+EjmeFD1icb5LFSDfa4Q106m+uOcUqWZqVVHalqfU8oT81Ktyms3StdUfc9U2pWTUrYvv7MvVShLPIZrh+MYhRhUqkWq9zITwSjontt5D45qKTq1GJ3LRvD1ZgXyuH7dzp133nnqWI4jc8F3e36OWT1otaUdQmJfH330UUknzipW59mxxftGRxemFIzqzohMtc2adVRx8lPaVt/ymrjafBZczrSO7ou32xknrrcq7IIJ42M/qufpLmiG12g0Go0zgb0Z3rVr17ZYTSY10VFiJAX6bc5krnRiGaVkIqNjQOiIFdIIniXsraRzSs2ZwwCZIx1qMiN8FSReJQaO81kFRzPxa+bCTCePqqRMdu5dkkdzHWTJfCsGwv5L2wy0csww4vmqsIBqruM+xOh6VBoFrsOMCZLRcX1loQyVwwmZcuY4VFXYzhxciOoe3yUZ95rTwcHBwVafMnZPpsCEF5E98flVpeliuAz/j/sYTFsmnTi02EnFfTLzyRIm83lalQcbOfLxumfM3uBa9fnNShlUHh3IPI61RNDxHmR5IH/PGLLBe+LcuXPttNJoNBqNRsTegecxAfBIsqfthC7lmY3L+1D6J+MapXoy9gnyptSeBWaz3SpYPWMF/I3tZ4moq/RQIybJPpIx0XaXsUKDLD5LpVW51VdwEuC1/lelmDKbA/tShXEwuXBExbRHtiJe/yohQewLv1fhCaPA81H4C9uvUlhR0s8SEBhV4H5mU+E+o+cE1/NaAdgLFy5srZWojeDzxs8ZsqhoA+Ma99qwTc9tZCXGfA/5mOiTEL/HY7zNIQvum217+zCgap1HVCne+HucE4YdsE8MMYgJRMyeaTflPR/XrI/hPcDnahZOEtlvM7xGo9FoNAKmXYJDj3eepgck/dI7rzuN/w7wPvM838eNvXYaO6DXTuNmka4dYq8XXqPRaDQa765olWaj0Wg0zgT6hddoNBqNM4F+4TUajUbjTKBfeI1Go9E4E9grDu/cuXPzxYsXt8ozZLn/RnFWRBVLMip9wW1rzjejY6vvu8Z2rKEq+LnLMTfTlyr2cJ82GUPDHJjVeZ944glduXJla6eLFy/Ot91222qs3r793XVub9W1fFfhVjiXVW3scl9Vn1KdUWWUB5b7TNOk69ev6+joaOtC3XbbbfPly5e3ipDuUrZpVOS3inGs1spa+as1rD1fRmt01/U9yvu6a79u1b7EKK9x9Q7I8iwzRvDChQt68MEH9fjjj68OeK8X3qVLl/RBH/RBuueeeyRJd999t6STtDOSjn9zklGDizQuUD9MvaD9yWTB2Y1U1emq0itl25jKKnthVIunSjUVz5elf4rfRzfaWsBxlmS6urFYcThLR+X2HFDq7w888ICk00Hf7MPTTz+t7/7u794ag9v7qI/6qOOA1X3qxrEqckRVVXmXKvOjNRJ/z17Suwbbj1ClHBut1bUUc7HdNUEyCzyvgv2re1TaTqDs70y3FStrex+3f+7cueMAbOLy5ct62ctepje+8Y2SpPvvv1+S9Pa3vz1tW9oOImdqLOkk6Nn7VomZs0QUVT3MKth/BNaCyxKBMwlH9WKIfaxqklbpCuNvVRX40f26a7L6uC4oxHgN+RjWDJSkF77whZKkF7/4xZKkF7zgBfqyL/uysl8RrdJsNBqNxpnAXgzv4OBAt91221a6mZhAlFLTKFGpQUmzSoGUSU2VJDICJZtd0vRUTK5KshtRJSkeMbuKUZIVjFJ+jdKC8RxUT7uPlnrvuusuSSdJXbPzjJK4TtOkg4ODreTe2Xzx+oxKIPGYfUqFrLU1UhNVJXhGKb/YfrVPHMOtUEtVia2zfjDpepWIfJQwnn3O7v0skXV17ZzOkM+HOOaqxBK3j9YQGQrnK2N4lelmVGKsSiWXaYLI8Nj/6tmS/VYxrwy896rE4BFr6R13UYcyjSQTx0sn2gFqAndBM7xGo9FonAnsxfCmadKlS5e29MnRhsekon4Lj9gMpYhKquBbP/5GKYx66wyU/iq9eLZvZcPJmB6l4l3sPlVBVra/i92PbY7smpX06WucFY2NBVTXDO8jdruPJMhjKjvVPk5TlZ0sY8/VOJj8NkOVxDebk+q+GdnhKvbJ30dJnavzjhhsdU9kJbqY0HyUPLpqJ7vHqsKlGaqk2hVD3cVJpvqMfVzbN2PcVbFqnj8bd8XksmN4XSpWnbW5lnh8VI6IybGZ4D4e6zJLZnqj4sFEM7xGo9FonAn0C6/RaDQaZwJ7qzQvXLhwTD/toBKrCFuVaScIGxsr47d0Qs9Z52wXV9/K/XcU01epuUbqnEp1SdXCSMVE7BNnSDXVSGVHNUilSs3UiQTDFKJ7sNUO8VqvxfZl9eiMXeosEiOHptj/kRMBXcw5F7s4AlSqv/j/2hxX37P2Rw4VVftV3bqsXYPzOlIZrvVx5Ohw7dq1VZd3q7UY7iDVdTF5njhPPsbruJrDbMw0r1SV6OOcRNV//CSy7VR37nJvrNU/ZOhJdow/18xOcd+1dZCZCLwPHXeyNettVm2urZ2IZniNRqPROBPYu+K5dCLR25EhOq1EBhD3jaELBF3Vq+rexsi1uGp7tC1zteZ5K0eGNbaYna+SRrJMFHQPrgLRYz+4r8fl+R05R1RSrq9jZPM0ZI/cg+2wQkn8mV5Lowol2MWJoaoun4ESfLU9zi3HvOaIkrXLfUYOVryGlUv5SGOyViU7cxwz6Eo/Wh/VeXjOK1eulIkp4jkJz0XGCqvwpEqzlLXLe6AKzYh99LOQldYzbQTv5ZHTSPxdOmFuVdIPf0aGxyBx/8bzMWwl22cXx0GDzyY/b9if2Cc7rezi8HTcp532ajQajUbj3Rx72/AODg6OQw+ctueOO+443qey0VB6fuqpp45/owRKSZB2QNr6RvD5smMo8Y506/u49sY247HUYY8CM6nvr1huxk59fXwtslRi8fyxHabq4pzEa03pL5Oi47kuXrx43IeR9MzfRjawKkh4Leg2HrMWNJ7NUxU8nrVBe0R1HeiinY2vssNkfVxznTdGOS65fRRWxGBysp5MY7JLyqp5nvX0008ft0+X9awdspgs9dYao6/CVeL5KhtnxvSivZK/xe+Z5iWmYMv6aMTxkeFV4V2RPfFakh2Ogte5RnhvZ8/V6vr7mjBMIfYpMv5meI1Go9FoBOzN8M6fP39sszPDi3a7innQjhRten5jmyF4H7/BmWg2MsAqGJX648wTiZIbpYp4nipZbCWpZh5dVYBxJj1zHj1fTJLs7ZFZ+396zO6SQq3yNstYIq/P4eHh0KZ54cKF475ltoG1JMcZq6psJlx3mRS/ZmPIpNoqfdJayqesDxwP2XVsp0oHlo2rYp9kkJ77eC9Wgce+N0cMjxqYKJXH3+MYd7HzmOGR2Y2kel73THvDfaqA/Ox+qe4h2jgzb3R+pz0sXn8+RyvGP0p/VgV+Z1qr6n6p/ABGvgo8T+bZzucAGSWvn7QdAdAMr9FoNBoNYO/k0ZcuXdqKv4sMj0zAUoVZQCZtkOG5PXpwMSYkbmOSUUo8I1ZI+17mWUr7FJlQdh6D0gqltcwOR+ZAm5r75qTOsa8+lqyQEmXm5VbZrzxXmQ3Pn2vejefPny+ZfzwH7SKcgygB215J6ZnjGTEuSvT+nsVnVXYxMrxsbqt9R/ZY9tGfngPPWZwT7st5pVSdpZgjw/M8816VTu5XemI/+OCDp77H9eF9d0kPZS9N7zuKV6W2xBoFP6tiCSD/ViVvrjx+4/+cY94T8dlSaYNGNmr2ac3TN6LSXHENx7VTMTlfL39m5+e6rjw9s9hEl3d6/PHHT23PYve45q9evbqTJ6jUDK/RaDQaZwR7M7zLly8fswpKT/F/v8WzbBzxM/7G4qD8pNQpnUgCljgplVsyyApWMq6HjCJKIplnmLQt/WWeimSQniOWyInzyBJM/u658vd777331PfY7yrWLZPSqywco0TEtuF6PkeY51nzPJc21tgvn4sMlZWOpW2P1KoAbBZnmGkM4rFR8jUo+ZJhZuMi26Q9aZfyMAbtZZkXcpUlo0qWPPKUpXQevavZR64zH+PCrhnb8TW+du1aGcc5z7OuXbu2tT4iI+L19jPq+c9//qnvXrPSybXzJ9ebwZI10sm9w6K3zv7h7SMPSIOsKqKyL1b7jeIjaUPzeOMaYzFcs3cX9PYzKmOlXL8s+Eqbv3SynnweMlYfm2kER57eFZrhNRqNRuNMoF94jUaj0TgT2EuleXh4qDvvvPNYPXD33XdLOp1ajEZNuqFnhlmqT6pEsAxalradRUyBfWyWhsjHVAZSIx5j6k1DP9UwVK3FdqkqiwZ0KXf+sZMIVXdsK3NaqZwAMgcbpvCxaoaONXGOfE6OYxdkKYPcX4+Rqet8nqiCoUMO26LLdxaYSxdyXtPMtbxSC2Xu2lRP0wln5GDDcVVpw+J+VUA1TQI+fxwvnb2oCh4lgPY+XrN+PjDZb+xbVK9aDZi1f+XKla17L95jXDMveMELTn0++9nPPtU36URNx3uMznjZuvDasbrWz5K3v/3tp74/9thjx8d4/FQ5U70b7yeGFq2ljYsqZz5H+azwXMXnjufCql/Pka9lNLuwP2uOO1Zlem6kk/mx04rP95a3vEWS9Mgjj5z6XcpTpHVYQqPRaDQaAXszvLvvvvtYCvDbPjI8Gu9poM0SQnMfpryh5B+lWbdDllEFMEZ4HNE1WsqdFaqUWFXfM3fdai7oYh5/o1Tr85rJWvKJ46d0zjkYhQ+4r5a0PDeZkdrt+tznz58v3aSdls7ImMk999xzqj1+khHFMXJs1XXJjq3a2seJZJcE51nqsOz82TFkWGR+WVD0mkMX989A1/bM0aFKs+XnQ6ZlIcu5ePFi6hDj9mLyaLcfmQmZ3Atf+EJJ0nOe8xxJJ/d61IRQU+V9vN0OYR6H2Zt0ct95zZq1mPGZufg7j5dO1qjHnTF8r/m1pPXZvc0wHs+X58j3uMeQzYnnwPsy1VdkXlxnZuze7nHGtcswNv/GPr/1rW89PsbnHGkNKzTDazQajcaZwN4M71nPetZW4HlkF2QzfrszaDS6ploSqILILTFkLIP6fOqLfWwW4MxjLW24z5G5WvpjnxhMXCWGlU4kkyqIPQs8t4TjOfY+ZF5R2mUgOG2jtAPG/2lfpO0wSuns4+XLl4fs5dy5c1uu0dEmQPdvJr/O5pSMmmnUjCyswudjWAVthSO7FdmL52KXNFRkuRnzppbDoNt7XFNux+Mys6jscCP7HxlllnqK0jnZtecz3k9mRPGeGyVxjiVgfIzZh3TC6MxM7rvvPkkn6yuzj/k32qnIBr0OzX6k7XJZ1HrRPihJz3ve8yRtB1ubBWaaIF4rn7cKXo/3p/vvvni+3A/b6eI96GvkufCYabP29ctCTdwH2h2zMDY+o6jZcp/j+n/b294mqb43RmiG12g0Go0zgb0LwJ47d670LpO2y1kwuDsLPrSkQzsLJWO2Efch87G+OGNclfenddmW0mOAsyU1S9Zsf1TItAqopSSc2ccqu4X3tWQfbRMMjqaHoscQJXvaoiyF0bMrHkPv1suXL5dS+jRNunTp0tY4oj3J146ekKNCs1UJIY45K1jJNF1Z8l73naBHGjUJ8doykYGvGefc6y1LeEBp1m1kCdU9Ll9n25M4j7SXxG2cV67zrOAw01BRyxLXqD0W4zp4+OGHNYIZiVmabVHSCTNh4gsi06Jw7XBu/XzKniGZhiVuz87t+fL8uF1fp2jLrLyMacvL0p8Zvr5+hnmu/D1j6zyf2+c4Y195vZn038jOR1setWDxvGad1lw89dRTnVqs0Wg0Go2IZ1QeyNJUZEIsCVJ5bUZJxG91S3Buz9IDJYVMZ0tPIMbNRWbifSnFMj4lHsPkuVWpFZ4jmwv/RiYRpXTaSmh/qWJspG2pz9epSs4snUjca16BUdJiQvALFy4MywPdfvvtx33wfGaxV2RcPjevadbPquzMqGgwbZv0RMzSn7Fdj5tSu3QiSZO5MqVVxvAMsml69mZrx+clcxmV+qE2oiopE++NKnaPRK8zDwAAIABJREFU6zsrUhy1RGv2X2peoj2O6dJop2dMp3SylslIyPjM8OJzhyn/WPia3pXSdhFXP+98DzAtWRwX7xv6RGT2MY+P9kWu7zjvXKu0b/sYag1i35giMkuzZlBjQA0Dn9XZvlVx7gzN8BqNRqNxJrA3wzt37tyWXjljXLSdVOU0pBOpwhKJJXnr9CmdZ7p+SyKWxtyGz2+vI2mbrTFeiZ/SdmyJP5lNICt/RImRCVgzycfjcaYBxrxZUrW0FqVCSm7ex3PgzyjZMeErWY+lqWg3IYt94oknhgzv0qVLW6wpsgAmyPZY6QkZz8t2fAwZGD384j5uz95sntvM9roWX+r1F+eWdiV6qDKbRhwfMxZxrWSxfbwffb1t8+CcRbZm7zsyZUv0WdFYenBy+6j8jTGKDfXvZIWxPd/vnlP3hUmQIwNiCTNfO47RXoERZHZknZ4/rylpW1NFJk5bnrT9POH9SG/hyDQ9Zq9nru8s3thjf+CBB06dl8z5oYceOjUGSXruc58r6cSzksyLzxTpZM6p/aC9O9oK6ddwdHTUmVYajUaj0YjYm+H5T8qj/uldmJV3iMfGfS01/PIv//Kp7ZbKzGLuv//+rb7RXkEGlnmi0Q5SZdGI7dGWQskii/ei5yolOrO4zDvL0h7tIt7XUnu0Z3ifF7/4xZKkN77xjZJOmPF7vdd7SZLe4z3e4/gYS3/0BuS1zmyvUaquGJ5jqWifjfvTE5TnzHKeeqyWLt0XxzYxTi+zOdDT1Vk7vB5jhoy1ArnRnmlU5Xi4drLSWbSL0RsvizPlNbOkb/bGGCePMx7r6+O14rlxjsO4ViOLiW0wW0am9YjsvZLS53nW008/vaXNiPYllpBi7Jk1EzGriPvgefF94rl83/d931N9jHNc2TrdN6+tODf09GYsb+YJzfufNi3akONzgPZ95gbNsgS5Tz6vj42sU8pjit0HP5+9rlyiyYjjs8el26OXuJlmvNbuS2S1u9rxmuE1Go1G40ygX3iNRqPROBO4qbAEqw1YfVnadh4hVaVKSzpRtTlBqNVRdtulgTY6TtCYb4pP1UJUaWYuw/E8Vi1EF3w6K1Alx4ruUXVGNRdTP2VqX28zfafxnaVXsvFZneLzuy3Pa3TRtqrHfWQ4Qlat2fvE1FVriYjpiBJBZxvOOdUd0nZJF/e/qsYez8sQGaro3WZcqwxK9hxQpRRTSsXxS9up86qEC9J22AZNBayiHvvEvjF0wushrjuvHSZUZ9ByTIrsPlVlorzdqvvY7pqzinSi0vS8WAUZ1ZN00LAazfv4MzrbeA7drze84Q2STtTjdGbKHIOYeMBrxeaCeL/QLMIwhCzxAVXaVbJ0On9IeRkd6eR+ZXX42F+rJek0xRSE8d5giaLXvva1kk5Um07/ljnL+byeE6amjKWlfP2jc1k7rTQajUajEbAXw5vnWdeuXduSVKPBkO6rDBa1xJBJ2lUCXr/ls8S8lmh8LBPlWqKLkh2PZULWDJSoquStlIDiWH0+S3TuE0uMxPFYOuZcM0lt5kJvxuzzs6hjZLAsJVIVus3SK8WyIJWk5dRilsrcfjR6m1V4zDx3VhrHx1hL4LGRcWUFMt0uQzwsTWYaDLImMmKmceL8xGPpjJOVTKITGJm2z58lj2YbdM3PAoLdb7Mcn4eFOuMxVQhLdc9ExFCNUWmpCxcuHF+XLGyIY3U/PWY/F+LckOlWScMztu4xM4TK32PZHIKFUMlq4rPDa5IJmJksg05usX0WpyVrj+ubyT78/T3f8z0lnTxDspSGvo+8rjwOM2g6uUkna4XhZCyvFJ+N7pufm7toCYxmeI1Go9E4E9g7ebS0XYInvmFpj6DU52PjW942OQZe0g6YsQeWG7JU5rc/QwBiHyylVMGckTVRR28phoG/dB+Pv3FfSmmZ3c/7MGm1JUqWTorHenyWyuyi7bmJNjzaz2gbzeaEyXVHAaAHBwenpEEmGI79ZkC0ryEl/NgH2ra8vshM47ozmAqJDC/TYNA+MkoAzXsis4dmbcU5oNs17X0xDIJ9JLP0dc/uX9ommWiBcyNt2/1YyipLPMxir2tB6ZcuXTplN4zjivA+b3rTmyRtl6qJfai0Jm73zW9+s6TtxNTS9vPMc0gNQwYWb/ZceG7jPUa2TIY3SsZuVuRrZ1tatq/hfjM5BYu3ZqE1PJ/vWxb0zpL/e5vb8DvAc5IF4+9TFshohtdoNBqNM4G9vTQvXry4ZX+Jb1qyP9pOKBFJ2yUnmPKGRWQz+x/TdlGiixIwy+ZUJT4i+6B3HiU42l+yAqBmNbS/MHmwdCIlUwpkaREj2n3I0rI5iG1G0KuVdpcYhO05oA2qwjzPWwHa0X5AdkQPRKaEY9vSdmJkJqKO647ByhwrWVw2RnrgZrZig3ZRBppTExC3GbQ7Z559tOuxz5XHXdYnJiDwsVkiZYOMNmPXTON1dHS0mrSg8m6N7dm7kHPNYqjVWKTtEjVMZhHHzGcJU41l9jHaqZi2MD7fPIe8LzONS9wv/kZmNUpWzvJATDloxpUl2OD9Q00CtWOxXQbu+xiOQdqe+4ODgyGjjmiG12g0Go0zgb0Y3sHBwSm7T1Z6xW9msjHaFTK7H6VIJoLNJFJ60lWsJkoAlDxZ8iTzKvNvmc0stjFKpE1bncdHiSXOSZUUu0oiHEGm7H0oPUnbBXR5bJZ82fvEBLMVyzs6OtLVq1ePx5z1lxI3tQQsyRL7w/NWZYIiG2HcJW1OWbJq2n18HttJafOIfaDNhCnnjGxu2EYl4cdx0UOVc5Axc27z2JmqL46FjLxKpRaPycptjRjetWvXttrNGB7ZC0t+ZfGqZFFMZJwVuqZ2gCV3WApM2rZP+Tvj8uJ56GVele/KwGeI1yTjJTPtUGXT5/XPbPp8VnL9ZWkXaS+vyrDF9quUkCM0w2s0Go3GmcDeXprzPB9LDJQUpe1MJAa9FzPdr3/z25xlU+z1k0k1tCNUxSTjeZjFYAR6AVYFRT03mc2QGTDcVlY2g0zVDIIZZbLMLpWNkjaizAuV9gvaJOO43ccsqXOGrI+RXTBGk7aazA7H2ClK7ZT+4rrgb/TezaRozq0lb3r4RTZDexhZGuc2S9BNux/ZYebZRzsf7UsZSySDYBvU2MR26HE3Kpll7CqdT9O05Zka1yKzFbGoaxavaHse54UxqVkZHWpleE8zflE68ay2t6RZKbViGePivbsL02MBVt4bXI/StlateobwPuD/0naprgy85xkHPGJ4u7Bcohleo9FoNM4E+oXXaDQajTOBvVOLPf3001vqgkg3aXQkNR4Z20mXaYDexU2cND0LHs4cZ+J3GlKlbddeqjSZ3DVTS/AYBq9HdQurSNP9nA4XERwf1SBZmjCjqtHmY+P56DA0qkllxwOui9gHOgRRFWhktd+ofqpUmvF8NLyz1lhW75F9sDME67vFa1nNC68LVZxxWxXO4fNmZgWaD3wM1f8jcD1njgJ0dKlUxXEeeF+uJQCe53mr3zE0h04w/s33GEMxpJP5sGqTicg5vuw6Uh1NNWVMeuyQHqfa8rE2/2ROeVQpV88uI273/3Q84rqPfWTaQc7bSAVdhdswnCR7ftPxqQr/iYhmmA5LaDQajUYj4KacViiBZw4ilXE1M5RWTh08NnOjrqTjynAubTNHSvKZUZzGejoP8DNzdKBbLtM3ZRWh6RxBhjdiaTTqVgmv4/+c6yp1VmwvSmWjqtU3btzYSj+VhWJUDkcZAzLINsnSs2Mz9i/VIRnxf8+/2QBDPXbRYGTtE1WYSBZmYVSMMlvXPH81x1yP8RiWxqo0JXFOOPejxONui6w2Jmi2QxvXF53nYh/IwnwMUw0a2bojw2Ni66xSNx37PO4Y8mUwZMbgNaYDnLSt4eEazZKVM7xj7bmThRjwGUmtR5yTat8RkyVTPH/+fDO8RqPRaDQiborhsSRF9hauCklm0l5sO4IMJbP/0WZIZpcVyKS0wvNnSU4rG17l9p4VSqX0zPRd8ZiYkFnalj75PZPseD5+jkI3yLZoG4vtR9fiNTsM7b5ZeArLKZFlZgyG66liwNmx7EtmwzU8Dwze5foYueBTk0B2mmkwKJX7GPcj2laZlIBzwPNn16wqjpxJ9pULeWVPj/vGa165lzvxuJkYny3SNrP2HIwSz/veodt+teZHttU1DVPsG8tFUduR3ctVgnvuF+9P+j4wRMP9ieWPaIvk82X0zKjWNddHlhqStleujwhqKO64446dw1ua4TUajUbjTGBvL815nrc8auIbl5IHAwuzYMGq0Cel5IwdUpJiMHkm+VBKqopsZsVJGZTMcbKvWR8Y1GvPqGincZ9YHoPB+FniaXrjUQrNpPSqr0yhFMHrdPXq1SHDOzo62mJAMWH3mudZJvVRAuSYyKriOUbzUB3j/jJ1FO0UsV9k3JSAaR/L+sB1zXsmziMTQvBYjisrcMu1wnnOEgZUmoNMM0NtysjTbpomnT9/viyrFdvhmH3fZuOgpzMDvyuba0TFZkee3l4jvMdoF5a2g+J5L4yuJdMFGmZvWbJyJnIYafF4LLdlqcSk0wwv2nDjJ5+vcVwsFDAqHkw0w2s0Go3GmcBNFYCtUlfF/zMbhjT20qze0pW3TzzPWnqZaK+rCmQy4XXGXGkjoDcR7THx/ypNTybZk1mxAKe3Z6nMKDGS8WXSWlWGhsfGeaa+fxRLZS9NFrSN0h49UpnUOyv4GduPx5BVjSTAav1lyao9t/TGo2S6Viop6/vIM63yQuXv0nYMVeapnLUR+7KWdi/OCcvOkG1lZYp2vW/dh/Pnz2+t66wkkkFNkj0iM69g2ox53TPtBu93Xnem9Yr/u317ZZpVWdPjNIKxHab8Mkbf+ZzxHDD+LmPrVUqzStMQ263SnmUaQbfD8nHVfErb6RbXYjgjmuE1Go1G40zgpjKt+A2bSX+M37D0P8piQkmg8ujMMh5UHohVUlfptNQV++hyHWRv0nY2Eca0jJJjs0QRi9TaPhclVurmmVR1zRsytlHFfWUxNFVmkqwQI5PeHh0dlf2iHSYrjeP55vryuTPJvsoiskumlYot0RMzK+JJZufPbM6r8ijsa3ZdWIKpyrQSx+k1UjG9yrMwgraiKnlx/L+ypxsZu6LNMIPXDm1co7hVzmW2fllyh+PhuDLmzWM59mg/83W4++67JZ1cf383Y4mMksx+rVxPnEcyVHtj0gM8S3TOZOG7MCg+n6tk6dmzf5QMXzrtFW0mHJ8hzfAajUaj0QjoF16j0Wg0zgT2Vmlev379mG6aKmcqRqqFRsGwdBqh6qBygImogpYZ0Bhh2s6krm4jS6PFvlaJmiOYHsj72GjNisRx3ywYNbYxCuBn33xNsgTXlWqJarAsaHQf1QJV26MQA6o2swDmNcccni8z6lfVnX3dMiepKtA8U+exD5VK08hUzVWqtEwVzfZoZhgFhFdp6aiuytSJBNdUXBtVkuAKh4eHW1XF4zwxUXHVp5EalDXZ+D1z7vA21uNz2zHEwPe717Wfjffcc4+k7TqFsT0+PxkmlYUAuN90ePH53bZNObEdPi+r5M5ZkgSqSkd1EZnmkIlCqtRq0onTTZaSrUIzvEaj0WicCezN8K5evZpW5jUo1dHVnMyL7We/uY1MeqNh3L/RoSKCQZxmdg8++OCpMWSld9weDb+j1DZVWiBKdFGKobG4cgfOmBJZGaWjzNmIqaOq0jhZKrBdGN48L+WBmK4pC3r2dbZzUcZIs/bjJ5lRlk6Ov1XhHNHJiQyfkrY/M+cYMmw6IoxScJFJVOnQ4v/VvcH9ItZKFmUMr0rrN3JMGWkoiIODA91+++1b916WLtCowioyjUKVio/7ZY5I7D8ZitmbtP0MpOOJNTzxunE9keFzjuOzk2FWZJZ2ksmS5PM+rpzzssTja6nmIqrrM6p4zsTpHXjeaDQajQawF8M7OjrSU089deze6rd+FgBKN9NRIGGVCqlKPholIAa3MvXXiD25b/fff78k6a1vfaukEyktBoAa1htHvXecg5Etj27HllQteWWMkjZIBoCTncQ+UPqvXPjj/7Qr8dgopblvuxYUnee5LDsTz1EFuRpZCrYq2ezIFkpJm8wus59UgeajpOieJybi5fiycJgKZG/xGAbfcx9+xj4zBIifmY2S+1T9z5hr1dcIhyXQzpMVoTWoQRjNabXGR+mt/D9DV5h6LtqXmKjBvgNkyFkJIz5faFfMirnSj8K2PIdBMFwqjoOlg5hyLEsCQgbH9ZX5U3CuqR3IwGdVF4BtNBqNRgO4qcBzv6GrdDdxG0tUZBJiZS+oSqLEtz+ZnRFLXsTzxv8fffRRSSdSEaWKKC0Zlsps16GOmZJQPB9TFHl7xtJo76nKzjAQWtpOzcU0ZSMPuaoUT1bag56bax53a7+v2Q+NUaA07aSjJOJVYumRVyiPpR2O1yv+VtnDqk9pW4vie47B0BlzXUvGzf7FPq6lBhytnYrpZTa8+L1aHwcHB7pw4cKWjTXz+qSGhWwgrqm15AS0HUcNDNk6yzRltnUnmHjTm94kaZzowmAJH5+XzwezRvsjxL6YZfoY2xW9PT4rmdyBWic+7+Izi89gIrPFUxOXlXPjd+8TS6Q1w2s0Go1GI+CmCsCSVUUJkeUeqvidjHGRrTChaFYinpKcJRKnn7EUENmaWRq9Me+6665TfY0SF+P7LNm4j96XhVmlE72+pXNKVozPiechyzWzJBvI4uPcHvXiWfwkJS1KXJn91Nc980wkbL8bpbMyquTkmf2XDIuflPAzz76qqGXmAVmV8uF8xd9pK6G2g22NUj2RrWeFeekZTZshxzKyo1Zp0TLvvOr7aHvsQ7V+7KXJwtORhVasltcjXn8WUyZLp+YlprfivGeJxqUT5iWdsK83v/nNkk4YHm25sY+eM2rVaMMze4zPOY/Hv7ldt3XvvfeeaiubEz9DaAuld3Kci+p5kF0Dvg9YQDtL/8c+Xr58uQvANhqNRqMRcVMFYOm9FpkJmRyZXlZ6xyzJv8VyM3HfzFbkt7w/zZbM8CwVxngYekv6O215MfOJmZU/KfVZAvH5ol7c577vvvskSc997nPTvmbehz4f2Q7jADNPu6x0UOxrlmmlikEaZVaIEvGaLp2SW5a9gt9HcYRk3PS4pAQ+spMS9FCTtr1lOZdZGSXaHNZKsGRer7Qvjjx7eQ9WrMfIkqQzWTltN5kNfg3ZPEcGVl2Hw8ND3X333cdxsh571Gpw7qgNyNg8WTJthCyunB1bZfbJ5oTMu0rqntlPWZS60sjEtWq4j7QD0qM0/uY+ZvGrcSzxfmIh3ar4bnZvVN8zLQszB91+++3N8BqNRqPRiNjbhpfF+4zyIXJ7JsXQplHldcwkbtrFLLXwM0rCZljPf/7zJW3rv1kuKO5j+5/3paclixNK2wzPcTCWuPwZJUi3S3sjWS9L50jb0l81nyObSmXXGmVLWIuHOTo6Sgvksp3qM7PTZLa5+L2S3rNjKFn7vJEhe52ROTJLRmyL2gCyQ9o21krlZG3E81VleTL2GccSf+P4qjI1cd/K4240nrg2R16ad9xxx/E9zHsunptMjsw4YyT0SCTD43WL22hLYzxZPMbPnf+vvXPpjePKkvAtUpCMbsALwwas1fz/nzXbHqANw4AlWSbZi0GYwS8jblYJmIWnTmyKzMrHvfmqE+cRh4xH7wyN1eNw9CzpPuO89I7xa6kx6v0iTxLn5x66lgUq7Opam54t57vTYWWbrV3LLL9uw/AGg8FgMDDMD95gMBgM7gI3J618/fp128FWOCse3rVAobtGx0luqRZkFVgYutarG/Tjx49rrVeqLRemXJruWvj3v//95lMuToHJM6ktCD9ZnO/zYiKPtmldpd0dxISQsyLptA7PI8sj1squ6GvccWff07VH96S7UehaYVkI75lUwEoXH+9nPxd0ncvVpHsmFRE3GSomOqQSA4YAXKjbx7oTZm5tkHaCEZTk45gdrS0MXel+/ZnE9u7du61L8x//+Mdfrjm2ZvJxNRc23yFr9aQVujIZHvF16a5jUom/d3Q8hTaY6KaxeimD3kF63+gdRQH6dH/rXmX7ISb/pXcxZfa4bgslpGX8nfDvUxOBtY6lJynZzN/5U3g+GAwGg4HhZvHoz58/H2SOUoCehdOtMHitHrynzFUq7jxLrlBqrK+ncavQXJ+yfGS1e9KKkkckR8ZkElo8XpZAFkqJr1TUTatZ63IfKUmIljXPGz/97ybFtDuOs4xd0fGff/65LQVogr+8/kkejPcdrfY05zOkMgGWATDFnKw6zYMs+hrmRUbE5AgHk0iYSLM7DssPdoLNbVveA+keInPd7ffh4WF99913fyVdJAmrdq9zHilpiYltlAljWx3fL70cfJf5/aYxUHCC97XPj+8kffK8pVIjnS8mWrFprB+PngPOs5XUONo1ZWnFWkf2x3IYMs219qILZxiGNxgMBoO7wE0M73K5rMvlcpAWc4ZHBiIkf7FA9kDxXloVqdlpEy7VPryIXPsT09MnrXe3KmjlyUojCyXj8P0wdrZr7UFGyRjaTjKL8R5avSneyXX0XUvV9++aOLZDDI+F54mt8ZMx3lSW0ArMd8XDbDjcxJ1T3IfxF7IqxkB9vyme5GPbSfWRdVK6z3HWHqg1CPb9tmuQ0EqSkpwcYzRnLaYeHx//ek71DO5aVZ019fVlfLZ5nF0pBtuTkSH5nDkWHVfvkp2IAMU3WrzUkcoO1nr1evk7UThjcjvGr/NGsQyy4HTdKGjQYsk+rxGPHgwGg8Gg4ObC84eHh4Pv1y0FFlHLIr6G4TVpHVrizua0vyZYmqxpFrgrK0o+7x1TkXVBa5ltYZIVw+ah/N9jhmw0y5Yru4ajjdmR4bl11oSUGZNyJqHrvmsZ43h6ejrElVoM1o+5a2fTLPpWgMzx+GfLNkwi2y3Dj/E6HyPv73YuUsYlx3hNZmd75rjPxFxocZPppTE2oYPEPtMzfpbhywL+JHhBps94acrwJsOj5FYaP5kXhSAY0/NtyMYoi0hG5uA9SoF9F9anF4IZvWmMvP78f9fCS39rPhrLNfHf9g5JWePJUzUMbzAYDAYDwze1B2KrGvc9N0trxwJSu4+1jlaUGJHXqaTx+WeKqUiE9l//+tdaa60ff/xxrfUq+aW6FZ9XE0CltFNqJks/P2vs9OlMWXPUOWbDT45r19iSlnFisM2CZ02XW5CaD+WVEl5eXt4wvJTN2ECrMtXSNVkjylul5sEthpekkJjhxphqYs/0crBxro6vbfwcNxbK+Se0bEkhxX1aa6Z2X/jfreEr413+nbONdv9cLpf17t27Q0zK6/DOYoApw7t5PhhbTTJa9ByR4aesSdZQpnrCtd5eU8qO8X7TO0Ofel/4uq2RcapRpseF13/Xyorz5POTalT5/mwZnj7GVBd5LYbhDQaDweAucLPSiltpjFv5303MN/2CNyUIgZmWylz0ZfQXM8MzjUUxOzE7+dDVGNFr6WjxyhqkP1wMz6301tiW/n7fRpZaE4nWeJLfn0yISg6pFq7VQDLDKrEPbfvnn3+exmF2GZeMOTUBWT9GYzjM9OU8/O+WJSykOKmgbckK0ria9Syk1lmt/i4p33D8Te2osV8fI5kEWcg1gvG7ps9kBrtzfLlc1uPj4+E+dqufz8mZR2atng3c4rG7rOZWf5cUd9jkVO8Dz9L2ufv+eM9oOZs7r/X6rPLcMM8gZZS3e4f3Vsr05LpkmonpN1WexEIlzK9x77wDxDC8wWAwGNwF5gdvMBgMBneBb3Jpkta6q0KuuCZRlUB32pl8jbvVlICiTwZo6QZZ65X2//LLL28+dRy5NOXq9O80ZxVZikrLXcn/13p1VTRXJr9f6/U8Mi2cKdTe9VdgSj6LsFOqPpfxPOqcu2uLyRY+f+JyuayHh4cqTuvHav3wznrxcSxr7YWhKe3Wki9SrzmOhQXHjtZvTcfRub2mv2QrG0jrtBIdnjNfj4km7RpcU5bQirJ93Ne6oi6Xy0ECzJ+xlrTSBMJ337X3jx9DY9H42e1bz7Lvu8n1MdHN56X90Y1H0Y9UssVSJiaGpLAPk3C4Dz63aax0i7dEQv+7ldJoXx6ySclFU5YwGAwGg4HhZob3+fPngxXtv/IqlKbAtHCNBBKTK5j+nqw5WSCU4hKbS+16mqhusrQorqyyAVrpyWpkGQJT29laZq1jQgULjCla7MFqWUMt0J0SRlqQn+fC2TVlgb58+VITGAQmFbiF3zol7wqpGyPhnHncNFcmjaRSBlr0HHvahuycHgveD/6MMMEgJV/w/1boy0LkXZsoWt67YvyWlND+T2PbMT21B9IzoFY5Xp5EVsHzlPbfpNaYjEUpsLWOSWtMkkoJUTyHTPBjq6m1XhPrtK7GwIRBljqk+VESMsl2sXUZ7zOWIDnLYhE8r38qS2jlakxM0rjWOr6LPRnuDMPwBoPBYHAXuInhPT09rd9+++1QSOvsgoWQZBn0Cft+GPcjo5NVpcJw348sAFlJ8ouTHfr+fF6+zk7slnFLWpDJsiO7SGnaa2UWyriFSiXYcFY+ft8PC8yZmp/iZ02sNqXMk818/vy5MjwVDxMp/tcY3q5VEffBlPJkSXL8rblusprpFWB6eirfafE4Mosd0xd4r+7KO2itNxHzNNY2Np9fixGRne4k03YSc4+Pj28sfDEgZ0LyPLR4orCLA2u8GksSKSb4fFDi0FmtcgUY02ziCb6N3nmMsWneOxFxxg7bc+VjEsimWs6Cr8N4P++ZnSScPumZ8xKxVgR/DYbhDQaDweAucHMD2N9///1gxbhVwOJqMpRdXERoklgpLvjTTz+9GQvFpMX4UlNFWiJkkl7s2Ip1W0ahnxMWslJ+KjUalYXzww8/vBlLanOzVi48F1r2YWup5OPnOUpswAV0z7LuuE0YAG8cAAASIUlEQVRqidLmwX1cgxancTRR5yQEzf0ydiTWkeJirSC8xRt9LLSomyWe9k/rnPEtHysL2umNSNmojRE3Sas0lg8fPtTrqhie5iW24wIUes7JSJuAtvab5qp7XssZN1vrWDzukl6+bnpeGMvStdWY/b3DzG56djym3tBaaCWpvuaN4LVNrX4aC2ytzfw7evfYpNvf+ddkKjcMwxsMBoPBXeBmhvfp06dDBo1bN1pGnzb9yMmfT98ss6PElNyalW9X2UyUzZIF5GPk2JhxyfV8vGQBtFQ1f1rgax1bC7GRpVuQbEbJbVsc0L9LDXp9myTiqk/GYnfbeDZWY3gvLy/r+fn5cF2cmVLWrAlBp5YkTbLsGpbWMu12MnhCO7cOeh1Y39Ukp3wbsibe527lst6PMTTGlBP7admGKdOO9yLPX5INa16dhMvlsj58+PDXc694tZ75tV6fYe2nZSIm4fHG9NjANHlElJXenpNUh9di6zpu8tbQo9M8DOk88j7mc5ViYdpfY84pjt6aFfP5SmMkw6PsY5I/cym4ydIcDAaDwcBwcx3eH3/8ccjCSi1j2L6Ccav0i9yy2NgWxDMSf/7557XWWh8/fnyzDo+XxJzJ/lpj1rWOvnpmadJKTzEcsVHWzu2yF8kgOQ59ukoL53cm7utjaNl4O8vOYxBnMbxdyxJmHtJqTWoqTRGE1mRi0Wzm2jL7dlmhtFaTtXzWAmkXU6Mqy46VcX+7GJqvd80+dnG51vz0muNcMx9l+PI58mxtPQctwzc1OOayFuumyPNar/c8xeKZAZ1ieMxE5Jid4ZGZpjiYjznVqDJeTu+Ue784FjJWfr+rx+Tzyzn4ORDk2VLsLtWu8tx+9913V7UZW2sY3mAwGAzuBN+kpalfcFkGbpHI0pEVxtqLpAJBq5F+d1oI7s8l+5PVp+NT826tV38/M0plraVMtPYdfemJhciKkfXClhcp81LjlWWtWIHOr/5nzMLHRIuS7NuPxzrJprziaLVa14DzW+v1fJy1tUk4YwqJRbOlT8ogXivXHrZ4c2L4Z2Pife9jbfWEQlrO+BvHuNMK5TypJMR4ky/j2FLdFXGNWobiv4I8PO7p0fNA1s54UqrHJcNjViEVStZ6fWfoXdJq6hIUl/cY1FpH9SQfY2tDRCT1JI211dim2CTZOmsT0/PEGtSmc5tYL9+JiuGl80nFoHfv3k0MbzAYDAYDx/zgDQaDweAucLNL8+np6ZBangLYAlOyU7Ejuym3NNaUECG6LkHZ1ibEg6NMUtDxd8dhyjhdaJRIcteCqDcTadjiJ9F2uiWEXZpwkxliqr67dxhg3nXF5hiFW6R+6Cpb69WN0YSRU+IJ12VJA91GqSVSu4aptZXulSbTJNBd6mhuyeQCpLufLvTk8kkp+H5cztfvE7on6cJP8me74m4fh2/D90B7brX/r1+/Hkp1lNiw1qtLU8fQ80IpwOTGb65etsZKMmFM29d11/J0PIVZeDy9l/xdxdIllifRJej3FstCdE6YpOfb6DzxfNLtmt5ZvIZMzkn3N4XuGYrauTQ9RDQuzcFgMBgMDDcxvMvlsh4fHw+ppM7qmM7cEhqSZcCgaksMSGxGDI8td2SJ+Jg5NhaPatuUCEBrj8xIx0nsiUkj3KefE85Dn5qnxqzPdA0EBuUTC+U2TBDaWZCpYDrh+fm5MmXfHxl4Y1GOnSyVjzExoeaFSKnsrYjb59jGkISl076SsPot7Lkx5IbEKJmKT4aX0tH5/1kz3rXeMrw2TiW08NnyZDl5B1gA3spUfBmfR5YAsezCj6NntzF+Zz1kzbzPdXz35uzeY77/9IzoOzaH5fF8Xpzr2XvczycTbOglosSiryvWrk8yW58Xn4UpPB8MBoPBALiZ4b1///6vX+Fk7bG4kFYTWcFavexA2zKO5LEA+aO1XzEeliu4ZcSUW1lRstZYtuDb0PKhlUhrxsfAGIRanpAd+lxZHK/yiF9//fXN/ykO06weHcctrSZRRAFvZ3EsXTjzpT88PBxEZ1MhOOWzCLf2uJ/W+PMaaTEyrJ3V3GS6yA7WOjJsjr15RXy/LcWb913a707ujeNqohLN8vf9tNh7KoNJIhO7e+fx8fHA0l14XM+SPCB65hj79mNQno0xbr6zfF+87k28IL0b6Tlo7cocOv+peNuXJ29Ei/OlODqPrbE2ubX0/NJTwzH7NorZMTao65nEM1I7pWF4g8FgMBgYbmJ4bNORisibtM/O2mRch0WjQoqBiI2J6QiyFFSc6u0lBLInsii36HaisGsdLSy3PluLFWaHpoJjtunRfMVkk/B1ixHRkkzWIK1ejdFblgjM9tu1eJFogfZ3TbE9i20Zg3Q09sR1k2g5i5O5Tbq/ebxdJinRmtIm6/2sQWoq0j9jjnyOUpY1hcebELkfhyx6V4yfxtqYqKTFyMD9GaMnh/GkJGR9JjTOmFuaO1lbkyVbq8sPcswptq5lfI+xtdguzs0C+iQIT68ar+ktcXS+S5KUImN4jNPqXKV2cn7Nh+ENBoPBYGC4meG9f//+YAV4rIUMiJZpypYi82BcjPFA/zUXK2uWVYqp0BrjmJJ10yz6VivoVjObeDI2kGJFtC7Z0JbsdNfqp8kdpUaMrHGhVZviC14P0+S/Xl5e1qdPn7b1abx3yPh3LVfOxJWT2C1jhrREhd393dhTiqlyLC379BpZMmEn19TOBS38lH3I766RmBPaNXEwTr9rLaV9tfpS3x9jaYxBpZgTPQlEGhefqbMsYd9PE2LeyRJyzq3+1MFmrRSap4Tabh58d7De1UF2xhwFZ+atvo91h8nD4WL8w/AGg8FgMDB8UwyPLen911XWAxv3Naa31tF3nayxtXIckPEw7p91Mmu9Wg20Llqb+bWONSyt1k24hsEyhuMsVOdA46fQtf5PNXzNciQL8XG1+iGdg5QhSwv5n//8Z401SaVH5zplvlENheyWrMDH1dgBrczE8JjJuYv7cVuuq//TGJuIcqtj821SBqePOW3PdWnxp2eHbaHI9M5Y2Fqv54Dtnnax/s+fP2+zSb9+/frXPZmYXsvoFjgW36Zll1KlJ2UKNnWWFNdsjH4nPM14K88xmV2qk+U7hPvaeSN4Llpsz8fEdXb1ky1+uRPj137c8zIMbzAYDAYDw/zgDQaDweAucJNLc63/pZhySzGBYq0j/SdVTZS4lTA0JCkcucboTqFbz7+jK4NU2ak+XTotkSYlCtBVy6LlJADNcgS6MlnAnYLWZ8kR7tJkghBdNhqHb8PC2WskfuhO8Xun9cHjPZRKMJh4oOV0kyaXTyvJ2Alnc2xCkmDjflqJDl25aZvm2nRwXZZf7AqPmytz1+uwuehZlpCEu6955uUO3xV1c7+6li3UkdCksJL7jvcxS1vSvdqky/h/ctW1Z6K9l/x4LC2hfNwuKYfzYLlPKjHge5S97jxppclUsldoEn/Q/s8kDd/M6+o1B4PBYDD4G+ObxKN3gqLs2stUb3a1dpBZpc7jvnytY0CWFncqFmUqMYOrO1aY9rdWl1dKx6FlxeQMnxc/W8KQn0+mDNPiTpYri98ppJzkz9q5aHh+fj5Y5yklnsxA61AMd63X+dM6JhvYFQ/zHLZO6A4mDTR2ukNr8bJLROEzsSsXaCLBWp46ebckjN286CFhuUcSVkjsdice7dJi9JD437yGYl6JDZK9MGmN96GPn22SKCKR5kKm1RJAUtIKS3M49t3xWBZFdpreA628aFdiwGU8j6nwnM8rkwOb/Jp/9/LyMkkrg8FgMBg4bo7hKUV4rX16u6B12dgvlTLQOmqxh8SEyJKaNeN/axuNiUWOzcrxMSa5M4LWuebTSg3WOhaJcl6MtTnzaoyF5Rh+3bSuW2w+Zn3vEmM7tkQoDsOYSmJ4GoOuLRtjOsNjfFSgPF0q/eA5bJ+pqJ/p4a3QPS1r8bdrZMKIXSxPoEeBAtHXFJNf830qJvd1/Xki8zprf/T4+HiI5aYYu9bRPUTxaEdrkEtGovE789exJUNIrwAZpy/T3MmA6NlycBk9SdcIHrQyDAfvQTLM9rnW8f2ia8rYXorlaqz0srEA3ddN5S5nGIY3GAwGg7vATQzv+fl5ffny5eCD9l9fWl+MG+gX3YsP6WPmvvQpa82tNsa4GEtjgbZvz7Y9FDTexeGawOxOJowCthoTW7GkedH60z7Yqmmto5VLn/rOL87sL87TLXEe+0xa7OnpqWaqrXW0UsmEkwA4vQCC/t8JJdND0cR9U8blWczgGnmwxvj8HJ9JSiWG27I0W/w0SUsxDtzEINLYmtDBbtuzBrB+TtLzwjiiy92ttY+L8v9WOJ+yJ/n8+5jWymLVPO4uTtqywelhSELQBK9DEpxOrXfWen036p2p7/2Z5LluHqWUb8BtmTGdGmprzmdtyRzD8AaDwWBwF7iJ4Sl+x1YV/uvaLA7GIjwWRNkqxmPI/NwiYZYUs9gUC3MLUceWxcG4YrIKafmQ+eykl+g7J7vhHPy7ZrnxuLtsKTLXlDXHGAQtOyG18/FMsZ2l5QLA6XyRxTIzVtfSrUreKynD1pc7Y2pi2jupL6Flye3idCmj1tdlVqPvX2gZyyljsdV5kq3tLO5Wl7ljEq1mK8V8z6ThhMvlcohFJvm+xpbIjHxZq4fcxWV1b+peZJxSn/Q87I6bwPuqSW4x0zTt/0wO0ffHjEq9M1lLl+qN2/smZZTyfLX8g7TNtffOm/ldveZgMBgMBn9j3Jyl+fT0dPi1T+1a6Cfmr7L/YstKYuaWPvUrr2anO1agxqi7tiZsQUFf/U4tg/EeYdfgtlnDOxFXzo8WHs+zMzS2SmnLfRvGanRtFe/cCeietVdZ69U7wBZJySJtTWdZ6+TbNAYsJAufzJvnNGXgNsZzjeB0A5+JFP9tXoKk0tNid63uL8U1m5B7ylxtQsas+3S2kzKyd+dMMWCH3986lmJoHHe6/pxzyxRNah8CmU5riePfkWnze58nvQGtRjSpArVrtqu1o0oK8wGUbS/4NWV2ZhPl3rUyE/ieS+L4Wvbly5eJ4Q0Gg8Fg4JgfvMFgMBjcBb6pH56SPJLIMoOdpPqJemo/ossMxOt/0Wqn0ZSbYqo/xZbXul6k2kF6TnehkIps6b5r7rZE25NrZK1jyq9/z6QcFoDq+iX3pL6jy0nbuhtG5/Yad8Lz8/P69OnTVoyYyRZctwkC+xhaYga7cPsceW3ppvTrpfuISRKtj1jbz+7/5J5kKQETOJKwQitpaALvu7Gx3CjdqzuBae6TbqkzeOF5khFsY2jJEGsdryWL11t/Nz+O9kvJxCR00Pr58bh+LenC5L6YHLMTLec7mcXevg3f40xi05hTEpvAZ4Lvcd8vt2nL03e3yPkNwxsMBoPBXeBm8ej3798f0t3d4qZFrXV2oqPahoFRBupTh2YGSltg2IvVld7OlP/WxsWXtWJaBoB3hcet0NnT7RksprQXv3crjdZZE3P1cTGRh4ycCQhrHVnGrgD05eVlffny5ZBA4ftrDI8JFG7hidG3NGa2NdrJGvF+S9Z1u0eaLF47F+n/xBZb4omQgv5MoDor1Ujp/TzXreP2bn4cR0rG8LG1e+fh4WG9f//+4OXw54WeHD43ZMr+XZsTx5/YE6F9fP/992/Gtdbrc0l5wJ28Gpkw780mSO/faRmTb3bSkHwnU2IwMXQ+P032z9/9TXBc2IljeFLZJK0MBoPBYGC4meF9+PBh2+pHVpGsL6bAk21ovw7tlxZ+KrJtjV91XH2fmquS6bXU77SMFg5TynfpwRReTaKqlO1qcmG7Nh1iymQqqbBe27dYVGIJLR094eXl5c05uUaguzE9v3coyMvxch+p2J5F6buCY173VmSdGN5ZzDA1d22Mrv2fxsh1kkwc97eLSab/d9i15kkWfMLlcjk8AzuWybhvYplNao+iDjvmxftN+2dJja+bYnVpPV+X16Xdu+m9c1bKlK5PK5Vp812rC7i3bX37VjJBr5Rvo/vAmwOfYRjeYDAYDO4Cl1sKZC+Xy/+stf77/244g/8H+K+Xl5efuHDuncEVmHtn8K2I9w5x0w/eYDAYDAZ/V4xLczAYDAZ3gfnBGwwGg8FdYH7wBoPBYHAXmB+8wWAwGNwF5gdvMBgMBneB+cEbDAaDwV1gfvAGg8FgcBeYH7zBYDAY3AXmB28wGAwGd4H/ACXruFmyF0k/AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0delV1vu855yvqb4q1QXSEBBsUa8ooHADQSWGxogCgoAQG7ABFGwY9xo0AdHYQXRcxKhcQTpFUEGDBIISDIIKAl4giQRIpdIV1fdVX7vuH2s/58zz23O+a+2vvpARz/uMccY+e+213n6tNZ/ZvW2aJg0MDAwMDPzvjr33dQMGBgYGBgZ+NTBeeAMDAwMDJwLjhTcwMDAwcCIwXngDAwMDAycC44U3MDAwMHAiMF54AwMDAwMnAlf0wmutvay1NrXWPvRqNaS19obW2huuVnnvK7TWXrQZmxe9F+t4WWvtj7+3yh/oo7X2Za21P/Q+qPcFm7WV/X3NVa5rr7X2ymwdt9a+prW2Fc/UWjvdWvuS1tqPtdYeaa2da639cmvt/22t/R/J+W3z+9Ra+5Sr3P7f2xmr+PeNV6m+T92U9zuuUnkvbq19ZXL8wzf1fMbVqOdqoLX2pa21t7bWnm6tvam19rIdrv2i1trPtNYea639Smvt+1trH/3eauvBe6vggfcqXqZ57v7Z+7gdJxVfJulHJf2b91H9r5L073DsnVe5jj1Jr9j8/4alk1trN0h6naTfJuk1kr5G0hOSPkzS50l6vaTbcdkLJX3w5v/Pl/R9z7TRAf9d0u8K358r6bs27Yr13HuV6vvRTX1vvkrlvVjSl2hub8Qvber5hatUzzNCa+3LJf09SV8l6T9L+hRJ39RauzRN07cuXPsXJH2tpL8v6S9JulHSX5b0n1prv32aprdc7faOF97AwPsffnmapv/6vm4E8P9I+u2SPm6apv8ejv+IpG9srf3B5JovkHRB8wv1pa21m6dpevhqNGaapkclHY5R0Eb90pqxa601SQfTNF1YWd/Dsb73FqZpeupXo541aK1dI+mVkl4zTdNXbw6/obX2QZJe1Vr79mmaLneKeJmk10/T9OWhzDdK+hVJny7pb1ztNl81G95GJfmjG1XCT7XWnmyt/Vy20Ftrn91ae8tG5fHzxc2g1trtrbXXtNbetTn3La21L8I5Vq9+XGvte1prj7fWHmit/cPNhMRzr22t/e3W2ttaa+c3ny9vre2Fc6ySfGlr7etba/dv/r6ttXZz0r7vaK092lp7uLX2LZKOnRPO/UOttf+6GZeHW2vf1Vp7Ps65a1PPZ7fW3txae6K19pOttf8zjrOkj5f0sUEt84ZiWmI7v6G19o7NOL6jtfatrbUz4ZyXtNZ+vLX2VJvVUd/TWvt1KMdz/JKNGuKp1tpPt9Y+urV20Fr7m62197TWHmytfXNr7bpwrdVxf7a19nWttXs3Y/Ha1toLUM+pNqvN7trM012b76eS8v5Ua+2rN/U+3Fr796215yZj8EWttf/ZZrXL/W1Wsz0L50ybev7cZm081lr7kdbab4pzJOmDJH1uGP9v3vz2a1tr/3bTt6dba3dv5vlXVbBsrf35zVp7cDMmP9ZaewnOOWit/Y02qxQ9Jj/aWvuYTXv9oH9F6OeWim1T1vM0s7jX4GV3iGma/i2uuVbSZ0r6fklfJ+mspM96Rh1/Btj0/zWttS9urb1Vc/9ftPnt77Qjtdu9rbUfbK19BK7fUmlu7t3XtdY+ZbP2ntx8ftJCW/6epL8o6UwY+8c3v22pNFtr393mZ+PHttb+++a+fFNr7fe0GX9lc8/7uXML6jvdWntFm9WS51pr72ytvSrebwVepJmVfRuOf6uk52gWgHo4LelRHHtM0mWFd9Omz69trd23Watvb619x0LZOaZp2vlP85t5kvSh4dgbJL1H0s9rXvwv0azGuIjzfu+mQ/9eM/19maS7N9e+IZx3o6T/tfntCzfX/V1JlyR9adKWuzVT6xdL+kpJ5yV9czjvQNIbJT2gWSX1eyS9XNLTkr42nPeiTXlv0yy1vljSl0p6StI/xzi8UfOEfYmk36dZxfiOzfUvCuf96c2xfybpkzXf2G/e1HFDOO8uSW+X9BOSPkPSp0r6aUkPS7p5c85vlPRTkv6npN+5+fuNnbm6RdJbN/3+8k2//4ikf+m6N3N1aTNfL5X0OZJ+UdJ9kp6DOb5H0s9K+uxN+96kWSL7p5K+aTMOX6b5gfF3wrUv2IzBO8Lc/7HNvP+CpFPh3O/QvG6+ejP+r9yU9x1JeXdtzv8kzYzhfoV1tDn3b22u/9pNeX9M0rsk/TdJ++E8l/cDm3H4jM0c/aJmaV+aVXbv0ay+8/j/ms1vb9WsSvt0zULJ52h+GJy+kvssmUv3+Ys0r+fDP5z3dZL++GauXyLpH2m+5z4xnPMKzQ+XL9209aWS/rqkT9n8/rGbur4x9PM5m9++RtIUyvr8zbm/e4e+fO7mmk+XtC/p3ZL+y9UYp6K+D93U97Li9/s3a+KnJP1hzc+bD9r89i2b9r5oM07/VvPz4MPC9Z+6Kf93hGM/qVnV/P9pvuc+SbPa72lJz+209fmSvl3SuTD2H7n57cM39XxGOP+7JT2o+dn7+Zt6fmIzv/9Asyr3kyT9KUlPSvpn4dqmWT3+mKT/e9PvvyDpceF5l7TzL23acgOOf8jm+BcsXP/nND+nP1czUXiepG/ezMXzN+fsbcbwjZL+4Gatfp6kb7uidXCFi+dlyl94F7AI7tD8IP0r4dh/0fyQ3AvHfuemvDeEY391szA+DHX/082AHKAtr8F5L9/U/Ws33//o5ryPS847L+mOzfcXbc7jy+3rN+1pm++fuDnvs3He9yu88CRdL+mRuMg2xz94U++XhWN3SXpI0i3h2O/YlPc5GOsfXTlXX70Zh9/WOecnNT+sD9C+C5K+LpnjDwnHXrpp3w+hzH8j6W3h+ws253Hu/WD9E7ihX4nyvnJz/LegvDfgPN+EHxjOuyTpr+E81/tp4di0GYf48v2MzfGPwTx9G8q7bXPeS6/knlo5l+5z9ndQXLOn+aX4nyT963D8dZL+Vaeug2weNr/xhffyzbm/Zoe+/KDmh/Tpzfe/uynjw9aWsePYrXnhPaJw7xXn7WtmJu+U9DfC8eqF95Sk5yVz+OcW6vl7kp5OjlcvvEnSR4RjH7M59tPaPLM2x/+JpMfC90/anPeHUM+fWpoPSX9T0sXk+M2ba798xbx8sebnoNfx3drc4xiv1cJU7+9qhyW8dZqmt/rLNE33ajYKP1+SWmv7kj5S0ndPQbc7zTr1u1DWSzRL4G/bqF8ONqqWH5B0q2amE/Gv8P1far7ZPyqU93ZJP4byflDSKc0v3Qga0H9W0hlJd26+/y7ND9J/ndQb8bs0s9VvR73vkPQWSR+H8398mqaHUK+0GcMrwIsl/cQ0TT+d/dhmteNHSPrOaZou+vg0TW/TLJx8PC75hWmafjl8t2H5B3DeWyQ9t7XWcJxz/180PzzsYODxoJrE39me/4DvHK9P1LwOOP7/TbNUy/F//XTcbrN2/B+Q9MuS/lZr7Qtbax+2cL6k+Z6I7UrGK8PXaL6PDv/i3LXWPrK19n2ttV/RvEYvSPoESVFF/ROSfv9GhfuxrbXTa9p7NdBae45m9vmd0zSd3xz+55vPz1+4tmG89q9i034E957r/OTW2htbaw9q1jyc06yy+3U8N8HPTtP0Dn+ZpukuzezpSu/nCvdO0/RT4bvvyx+cNm+OcPz6dmSeeYlmLdVrk+eiNDsWvVfQWvsjml/sf1/S75b0aZo1Kq8L98+7NLP/V7fW/lhr7UOeSZ1X+4X3YHLsnGb9vDRLwac0q8AIHrtD88PoAv6+a/P7rQvX+/tzQnkflJRnmwPLY1/ObT7dlw+Q9NC0bdTO+iFJP5TU/ZuX6p2mifXuilvV9+C7RbNa4z3Jb/dIehaO8YFwvnP8QLNEHFHNvefJ9bE99+B3Y2mePP6/qO3xv0G7z3uKzUPlEzVL9a+S9Asb+9if6V2n2esutukLFs6XpLdP0/ST8c8/tNlh4Ic0C1lfolmQ+EjN6urYh7+umf1/mmYPw9SuuRJ+oH/QyvP/qOZnz/e21m7ePHzfKennJH3ewkv/T+j4eP2vK2hvha17oM3283+neY1+gaSP1jyeb9W6e3LpmXi1sMt9KR2/P27ctCmOq4Va3h+sc7/NHroRXkNZ3yVJbfYf+EeazU5fMU3TD0/T9L2aGack/TVJ2jxfP0GzuvZrJf1Sa+0X2g6hDxG/2l6a92sezDuT3+7UzMCMBzSzwz9flMWFfqfmQYnfpVlCcHlv06yfz3BXcbzCeyTd0lo7hZce+/bA5vNlaJ/x2I717or7dfQyyfCQZpXBs5Pfnq3Oor1CVHP/M5v/Xd+zNb8MYlvi72vh8X+xtm/++Pszxob5fv7mgf1bNb9wvqG1dtc0Td9fXPb7NWsOjLc9w2Z8suYH2GdO02QhwUw+tvW85hfzq1prz960w84jn7tjnT+s2Ub4+zWrTpfgl3o1Jh+vOhTie3S0VqTZzHC1MCXHPlOzqvOzpmm65IOttd6L4P0JD2i+L15c/N4Tlv08+0067jlq7dubOtc+T9JNmjUNh5im6cnW2s9L+g3h2C9I+pw2Oxf+Ns2+CN/UWvulaZre2KljC7+qmVY2C+YnJH1GO+4Z+dGadbURr5P06yXdTWl288cXBV9kn635JvxvobznSXq8KO/+Hbvz45rZy6cn9Ub8mOaX2ocW9V6JhHpO0jWLZ834QUkf1Vr7rdmP0zQ9Iel/SPrMqB7aMIWP0YoYrB3Buf9YzTFSP7459J83nxxHP4R3bc/rNa+D5xfjfyUvmO74TzN+RrPxX5rtLtW5P4v2PNMX8LWbz0MhrLX2GzQzk6oN90zT9E81v7g+fHPsouZxW1xnG5Xdt0r6M621j8rOaa192ubzozTf19+gWXKPf5+kBZY7TdP9GK+fW2rfM8S1mtWYhy/D1tpLta1puNo4J+nUVVbZZnidZi3PfnF/3NO59g2an20UkD5Psxryf3SuvU+zuv3Yemmz9+6H64ioHGKapsvTNP0PSV+xOVTeVxXeF3F4r9D8EP6e1to/1hyM+lU6UlkZr9bszfjG1tqrNTO66zTfLC+cpukP4PxPbq393U3ZH7Wp51uCTfHbNXvn/cfW2tdq9nI8LenXaHa8+LRpmp5c24lpml7fWvtRSf+4tXabZhXHZwmTME3To621vyzpH7bWbtcs1T6imXV9vGani11dbN8k6c+21j5LMwt6rPPifLVmb8EfanM2jp/VrFr+A5L+9EZw+KuabZavba19g2ZHm6/atPNrd2zbEm7Q8bl/leax+xZJmqbp51pr/0LSKze2hB/TrJb7q5L+xTRNP5sXm2Oapl9qrf1tSV/f5jCLH9HMCp6nWQX5jdM0/fCOfXiTpBe21j5V87q9XzOr+geSvlOz+nRfM6u/qHWs52rh9ZofJN+2uW8+UPNc3h1Paq29VvMD6ac0ewF/hObx+Ppw2ps02/levznnXdM0Zapvafb2/DBJP9xae41mteoTmu+vz5P0WzSzsy/Q/CL929M03c1CWmv/TtKnt9a+eJf78b2I10n6k5L+yWZd/ibN3oy9F8HVwJs0E5K/1Fr7YUkXKjv8M8T3aVbZvra19nWaVfJ7mp3WPkXSn5mmKWV5Gzb21Zrt1vfqKPD8szQ7Bx3a6ltr3ynp903TdPPm2kdaa98q6QvbHHLxA5qfDV+mWc369ZvrPkazl/Z3aVazntbspXxO8728G3b1ctnYP1+m3Etzy3NQs6rwm3Hsj2h+gZ3TTIv/4Ob6N+C8WzQ/sN+mWfd8r2b31C9L2vJxkr5Xs0H4QUn/UNI1KO/sZvDesqn7Qc2M85U68vp80aa831v0+QXh2O2S/oVmKedhzQ/tPyCEJWzO/WTNEvSjml2D36o5TOE3Yqy23G0FbznN6r3/sKl3y1Mxuf4Ozd5Z79mM4zs0OwmcCee8RDPLekrzi+57Jf06lLM1xzryovqTOP5KBe/BcN6f1aw6u28zDt8n6YNx7WnNjhlv1yzxv33z/dSKej1/HP8/qlnt8sRmjbxZ80313HDOJOlriv69LBz79ZrX4ZOb3755M8b/XHOIxZOa19aPaL7Jn7F3Wa/PyXm+v57WbBf7w5qdfn4xnPMVmrUfD27m/H9ptptET92P0+zld25T71dujh/z0sS8felmHT26WWu/rNmz+jdvfn9A0g902m6vwc+7WuO2KXeNl+Zrit++YrMGHfT9Qs0vhteGcyovzdcVdX39QntPaQ4JuV+zgPD45njlpfkWXH/95rz/C8e/ZHP82eHYgeYMJz+3WTMPb+b9VZKuWzG2f16z4H1O87P1jyfnfLf7gPXyFzUL4Y9rfr7/kI6HdD3Pa3cz/g9I+o+SPuFK1oFd7N9vsTFefpNm99lffB83Z6BAm4PL3ybpC6dpuir5CwcGBgZ2wdgtYWBgYGDgRGC88AYGBgYGTgTe71WaAwMDAwMDazAY3sDAwMDAicB44Q0MDAwMnAiMF97AwMDAwInAToHnN91003THHXfo8uU5ntCfGWgbXGMrfF/ZE1nvuvy963G1y8vKzOrwsaXP+P/e3l5aXnac10jSO97xDj3wwANbjdnf359OnTraXisrz8f4mdWzFr015d+qc9ZcW2HNnF/JObuspWyeI3p92KWepbG4dOnSVpnZHD/66KN66qmntio+ffr0dM0112h/f046cnBwcOzaqry18Lkn1Z/haq3VKyljqVy/Y+Lc+JjX1eXLl8u1Q+z0wrvjjjv06le/Wo8//rgk6cKFC8cakDXQn26cv8eO8gWadTJeky3MpYHLrmEbs7ZV9fAclhFvxurl0RMYfHNX9fIznu//XY9fNH5Q8FOSzpyZ0zled911x645ffr0sTKvv/76w2uuvfbaY9dO06RP+IRPSPtz+vRpveAFLzis09fEl6DLvuGGG4795rr9PXvpetw9phcvHm4ekP4e/483TnZNRHWOj/PBG//vzVnWl3gt55TX9B4m1TUuM3uYsP6sXwbHwOW6nkceeWSrbK8dz/n+/r6+4zvyhEPXXnutXvjCF+rmm+cE/zfddJOko7UqSddcM2dA87rieGXjVAnlnIfec6ESmpaEjayeHnrPlyVUbVgjJFfjt0awqNZ7XPfsB8v1O+bpp49Spj755JyAx+vqscceK9cOMVSaAwMDAwMnAjsxvGmaDqVhKWcolFb8xibTW6NOi3VFZFJFpdLoUeKqzWxrVucu6qKK7VLCi9IO+05pnJJR7JPPMSMik8kYhn8zMyL7yCRKs7V4bk+aPHPmzFbdZpDSkZTuYz1WYVArQE1C9T1ek7G/JSxJvLHNZDzVNVk7lpjKGrUr591l+XjWVrLeiiXG3yjB+9NM7IknnijbuKSh2dvb67LNJcaTMTEec1+XtDgR1bOkx4CuRIVatXUNdmF4/K2nuSD4G8eC4xv/r9qSqa+p2t5F3ToY3sDAwMDAicDOuyVcunTpkAVkbK0Cpcrst4odEpkefkkCziQishpKxLQDxXIr3XPPVsg29KQbMqzKvpBJi+wHJXBjDUM3sv5xLPb397vS5KlTpw7H1NeY1UnS2bPznpSR9VXtZHvdV36S+dkmEEEW2GMzS/a3bE4rhlfNx5JzR2yrEb9XmpE191klpZP5x7b7HDJ+znEce7bl1KlTi4yDY5FpFqr2Gz0b7i7Oa2TCxBqHoDXPN5Z3JY5WS2PSawPX6i6Mbw04Fnyu+TP6G/h/a7D29vZWs7zB8AYGBgYGTgTGC29gYGBg4ETgipxWzp8/L+lIRdFT+VQG4Ygll/uK5sbfqB4iMqcOfqdqM3N0qdrUc4RZcl3exTmjUo/1DMFUh7GMqt0RmRGe5/bUUq01HRwcHPbDakurMeP/VllQJdtrr8tlqIx/9/Gopq7CYHoqpyU36uy8aq4qR5e4lri+KlV9tr7ZH6roe85fXCNr1LxsI9WfDhmIiKqqCq01tda2VKWZSrO6t6m+zI7t4giyVh3Zc86rnmuZ2WAphKpSrbI8qQ4dy9pdqd+zZ1blRLImtGXJRBB/dz1+hgynlYGBgYGBAeCKGJ6lZX9mRu+lN3bPUL7kGJBhyYgc66BUzHKzUIYqlIBSYdaOJWa3i4RCI242nhy/iklE6boK5+B49qSzXj+madLFixcPrzebi04rZgBLoR49o/va8ITqWET2O9tGt+lsTmnoXzNebMPS+suY65JzQi+EwmXExABVfR6DpXUenZF8fXwurHVa6bmj857m+o3ttqaqWjM99lQxnjXOS1UygezeqphrFS6SaQeoueox20rLsUazUT1vuN7jc8d1V0w/u1eyhBrDaWVgYGBgYCBgZ4Z37ty5Q2a3RgKmxNgLNL2SfHhr7CBL17IfPX1/FV7Rc39eCp2oysiuqSStjOFVdoasHqbvohTNUJQMa+bL5ZrZRRsepTy2n2xH2h5b2ke8VnuB51U6rZ6EX7lNZ/NRBQ1XYQKxPtoeKfFnY8Jzq35lTMnzz9RyvXuz0lgwTCGy+aeeeurYuZcvX17NSHsMmc8Zjo9ZnbRt783GMiszq7sKvs9sXGTEvXVfrZk14QBVUgavj+yerkJ0luzQsR9k4j0bHkOR1jxDeix6CYPhDQwMDAycCOzE8C5fvqxz584dSkmZhFJJAJWXWfytkkx77HApNVGWILc6d43tY8lLqrJ9SbW+vefBShZQSU+xzZWHnaWorJ+0PTq5L6XP2C+vgyi597C3t3co0bn8yPDWptGK40Sp1XZAS+/0KI42nIrZc81m2oLKDpOxpiXvz55mwe2t1kiPfTIFEz+zQH/+FoN7Y1uz9lffyRKzc5cCtff397usprr/yGIiw2PdLKOXzqtiXLwms1fxecc1tIu3aNWXWA7HgvdETAjA9VaNeZbyi9oB2ud20dz1kgCsTVCSYTC8gYGBgYETgSuy4dHrp8dM6PWXSdr0luqlzcraFOtj/dzeJv7Wk6x5TWUbyGxD/M5YQffLY+HjcUwqm0llK8jAMrythsckxkXZpuJPt/mWW24p++UtO7hNUIbW5tRiPscMIl7Duep5lRKUYjlfmb2CNhyeQ1tHVi7nltvTxHPiWMR+sZ4126e4zJ5na2WP89h7m53I8NgPrqHs/mU/eY6PRzbfi4/MsL+/v8Wes+cC59LPlsw+t8Q4Kk/seO1SfGTPLl/F1PawSz0cC94bmQ9G5cFZae4yT29qFnrPqCqelCkAe/f+SC02MDAwMDAA7Jw8epqmbvYUxu1QT2yJK0p0ZgqUuCtddnzbV1kcKM2wXdK2Xp/1R+ma3n6V1JS1nQmTqy1YYhvpNblk38o8uyr7km1uUbJzG9lPw2wgi/Px/J09e7abqeWaa645ZIPuV5T6vY0Mvfzc3ozV0l5VbR3CeZOkc+fOSTpitf7OdeDj2TlkJrR5ZSA7JBvJxtjweFFqjuPoe8HMzePnT8/Bs571rGPnxXZzfXEsPGbxmNvP79k2RG6DtQ5L3r97e3s72YKq+Nhso2TeL7w20wD5f95j1FJkGUKoBaBtdY39t5fZyajmsmeX57OJ13p9Z1odagMq+28vaT0zSmV+HRyn4aU5MDAwMDAAjBfewMDAwMCJwBWpNA3S3HjMKh86Q1jdkaV4olqDFDzbf69SXZG2Z663VONVaZykbfXMUrLiSNvZLwaeZkZ4U3om6KaqpJceimqXnqsxnRQ8X48++uix41ZlxPKjM0SlhrZK84YbbpB0pCK9/vrrD8+xStPryb/RfT6uN6pNKhWwj2dOK1ar+ZNrN1Np+lyqtLMwGBrgK8eATJ3sMeC9ZvWk11KcF//mMfaYe3w91/7M7t/KKcL9txpbOhonj8nDDz987JzsnvdcevxieRkODg62VIC9VFzVOT1VM9duL7lElYibKs1srfI3f/Ie79WTtUnKE1BUz6be+LGtVUhLDElaMif0VJmVA2GWtm4p7VkPg+ENDAwMDJwI7ByWcPHixS0jdJRCHnroIUnbzin83jPM+ze6XPttnwWAVu65mbNClUqKEnaUzOmgU7mn94zvlJLozJIF8FeBwNWO6PFafvc5TBwQ28BPS++Zi7GPWTo/f/586bSyv7+v66+//rAf/rzxxhsPz7n55pslbTMRjk+Umqt0Vka2DZHh+TU7euKJJ471mewwtsnX0OGKu7XH8qrA4yrUJbaBIQscR49ZbJsZnsc1ssBYT1wvbBPXSial07nI360dICuOiIyocj5wwgKypzjXHrvKUSKby0obQU2Py4jX8hw6nmXrcYl1un9x/jN2HOurNFoR2TZuWf3xf97vdLjh+ovnEnxfZNo9OhWS2WbPldjGEZYwMDAwMDAQsDPDu3DhwhZLi5IbpSEyPCO+kSkVMwB4zXYqTJsV7S68trLv+Lj7k0k+lM6YXDmTGt02SngMvo4uvhxHS+uUHCmJR1SslFJ8/L9irpk7OlnO008/XUrNrTWdPXv2kAXYNmX2IR25yVNSpBQd20DJmvYD2pAzG5776HPM9DKX+Sq1HNdwZFNuE23FZPhZ8DX7XKUny+afY+F5ItOM7ICMgt+z5OlkO1zfWSiF2+Jj1113XWmLaW3ePJhzHMecYSK0dWdhAtXWV1Vge8aEadvvhcEYXN+04cbnAFPl8Z7ubaFWhVdUGq54PRkeQ10yGx7vCdq1s6Bysugs6TZRsfk1GAxvYGBgYOBEYOfk0U899dThG9YScJQyLNlSiqVkmnkvGQyu7HnjUJqobHnZdiaUZugN2pMGKV30gofpDUc7DBlgPMcSlG1dVVqqTPpkElcj0/fT9uB+0DMyMme3zdL6448/3mV4p06d2gqCjhIi28s1RCk3nkPvRTKRjOGRtbhvDJyOEmkl/fc8CN0mejAbZGLZ1lKV5JsxfDKtymbkfmZJGdg2eq5GuByyHNoXMztMTE+3xPAqFiVtM6nKBlWVL21rCartdWLdlV2ul3C6ClrP5pjPwsrTMhs71lOlMss0Z5U9zuvMv2eJxzmevc0BKp+HNTbJqElYy/JQ7dsxAAAgAElEQVQGwxsYGBgYOBHYmeE9+eSTh29l2zqih5hRxa353IzNGJRqGa+SSR/UmWdswKjsPUzIG+t5/PHHj/XHn9FDUdq2HUrbNo3MCzSeF89xvQYTP/e8lwzGhvXsjYzhc7/c9thm9zVKm5XEtre3pzNnzmzFhkUvr8rzjF6MWcyh15U/2f7MlsxYR7LzLNVU5TVn0JYcj1XSONPvZame6LHMNRqv4W+Uyj2uPh4ZHu8JMjyz1YxRVtstGZHNk71P09S10R8cHGxpYuJaJEvyuiLTz7yZ6f3pc5lGLtZXpVfM4jDZZyaN5/MhghodPhvJ2uLzhzY1Phd6nuVsP+3ZvGekbQ9OrtnMK5hatSqxdhbXmj0PljAY3sDAwMDAicAV2fCoL4+SDyVqSxx+6zNmR9q2G/kabvuebaNDiY4edlmGDXraWRJh26K0RAmHDI9ML3rpsX9VNoNMKvS5jz32mKQjb01K6XFMbO8jq4lZTdg/ss1qW50oTVEnf/HixZL5uM2cyyzJdmVjyJIG0z7qefJ40cvRcaJuj1QnD/dnHDevDUr9tKXFzCFut9dmpf3IJGAm2/Z3f/Y28XRfacthovXMBu8+857g7/F6jzntqu5PTxPE9RdhGx6vifAYk2VwPWZbcNG25rlj5h22KZ7LONlMe1J5WBtkbxkqG15m/622cePzKAPPpX3bY+U5j8c8z34OcQ1HLNmZM4bHeVvaWupYuavPHBgYGBgYeD/GTgzPnnaWeDKdc2XjoP49SjEuzxKpy/Dmo3zbR0mBDNLf3/Wud0mSbr31VknHM3pU8SnUH8fzqtgwSiaZxyUlGzKWLMMC7RlmKJas3R6zhrhRK21g9957r6Sjcb799tu32l7ZYeidF6/x+MQ+r814kNkRq3ng+GUS8IMPPihJuuuuu46Vf8cdd0iS7r///mPnxXK5jsnmY5+9jmirq7Z+ko4yjjBWjAwvi4ujRE9p2XkrM/uS66Xdj3Ma58z985jcfffdx+r1eD772c8+vIb3qcePLCFK4lme15524PLly4fXZx581ZZBHL8sZ+eSbZV2K2k7C5Dr8bgx5jG2jQyPGp7smiruryojO4fjltm++ExinCvXbMauKv8Gr6HI9HnfED2GZ/QYMTEY3sDAwMDAicB44Q0MDAwMnAjsvD2QdERVMzUC3XSpTjFiAKspLz8feeQRSdsqp0hhGdRLym31SqyfalUafN0/qwulOtC4ClaN57ONTLmUuQdXapYq0DrbyohqF/cnUy24/Z4Xqko8JlE1vCYNEEGDeVSJ+H+rUxj07s+oWrIa/J3vfKck6Z577pF0pMpm/5y+TDoaH/fNY2tVIB2EIhj4zyTfWWJjj5fV7hy3TN1GNT7nMlM1e2wfeOCBY/2kE4HV41GF5nO8NnwP3nfffcf6FQOOPaZei1RXU4Ub2x0dQyqVppPWV6aIWAed5bj9UBxjj63b7XFa2pKHfYnnMLFG7BNDPnhu5nhSPdfYRoa+xHP4jDLovBf/Z/uroPksOQefb3TkimuH9wsdUnomEs/xWjOKNBjewMDAwMAJwc7Jo8+dO3fMFVU6HmLgNzYlILKp+DtZCsv3m5zptqQjycASr6V/puKKrKBKNM1NKWNSbLq/U9LubThLSZIMMzPGU2pxfZaSLCHTHTq2iW1jOq/IeikJV+EIPWmqSitmWFKXjqS+OMbcmoQGdB+P13it+BhZM0My4rqjC7lZDCXHKMVSKmaSZbOnKGlzO6glbUEEHVrMuFymmVhcb5x3f3cZTtjt+Y/u6R4/M2c6JmXJq6ttrrgBbLa9DplZBq+bXgq0Kn0Vwx6yAGaDzmr83qufzkqZhqZy5Ku0OPEajhOPZ8HrfM5Uzn+ZZokMq2Kjse3UyDD9GJOCZG2qnrOZwxO1UWswGN7AwMDAwInAzoHnUQfuN3W0BdHm4zezU2RZ0o56XErwfrtzC5FsexgGgBqUtDOJm5IPUwpFyaGS7uiGnAWeepwq9/osATClJF7LwPoIpkqiTr3HQsh+aTPMtgeKLKQnbbXWtpILxPLIIujGn6Vt8zW0t7lchyNk4TDVtjl2s2d6qtimKmFyZp9jn9kPakOyUA0mzK1SgMV2247JZAy27WX2XwbuW1PiVHC+f2P/3J8qVR9d6WN/PPbTNC1K6tUWVvEYbUwVq47tZDL8SpuRsVCmxnJfe/4NtH9Vx2N5tHlXYVFZUn6GzrD/EbQVLl3T22KMbSQ7jOdW9sYs5KDaIGANBsMbGBgYGDgRuCIvzZ7OuUqbRCk9eztnWwdlZcX6aBOqbEzZJoeUQFxGFpBr0BvTbTXTyCQv2raod2fQd2wLEwFTas7GpNoShddm26uQMVCaioyMbKZnw9vb29Pp06cP68nGOEtmLB1nAfzd/5uB0FZcBeyy/9K2bdMMNrN1unz3g3a63kaztPcw4DyOCbcwMmiXjWNPJm9W5naY8WW2Y9pNXQaTI2QezFxv3GapF6TcWivvXSe84D2wJkEzxzhLXFytGaN6LsVrq02qs8TMZO20k0ZWQ7sXPWCZNixqificq+zx2bOq8rzubdtDbRpt4Jm2jd78nK/sWZb1Y62n5mB4AwMDAwMnAleUWqzabkLa3oqEtijqy+M1lAwoHWVMqNoGxmBKs1g+62cKqOjx1IsRYvlVfW5rtX1PBCU6SqP+PWMFVVsY8xLrpTcgU/7Qvirl285U49Ra09mzZ7cYUJbAmsy32jg3a2f04I1l9raLsmTtcl1G5sVGG17V5lhPtQWKQTtTxrzJbphMOtrEXTfjn5jqifbHiMqDkOsygjYc12M2mNnE45j01k587mRJtpnii2m1MjZj8P6rtuLJ+spyqw1b47lkeGQ5mf2/t6VXrCdbd1mqxKwPVV/jOT27Ge3LZL/Zs4qoNt3NbO9eQyN59MDAwMDAALAzw9vf39+SROIb2/9X2TIymxOlsZ5nVSyD/8d6Mn14VZ8lX3uSZgmgeYy2HOrws8TMWfLrWGZsK73MKk/FzLOL0ibjYLKxodRVeUtFJlEx8QqO44xYI+2ZccW6DW7txOwyPVQej2QJ0S7CLDxkrJTWpW2WSftr5akW/6eE7/qz+WdmGrNAxr5lG84SVdxhvO+qmDraxDOvyqXYzQhqH7LnA5lVtTVOdX1ET5NV1cvnW+wf283nATUB0jKz69kMaTtjGb3MLlUccG/bnirej+f2PGY5jr31EZnrsOENDAwMDAwEjBfewMDAwMCJwBU5rVhtRNWgtB1cSON3RqPpSsydeDPjqkGXYSZRzVQLpMlMvUR1rFSrLCu35MygTlA9lLmHU+2W7c0Vy+L/sXyqYTN1C/tXpQuKbYpjUKkWpmnShQsXttqQuURTdcU0Q1loAR1yuA6zBN0GnTh6wfGVswpTO2WJjav98KqUU7H9THdmByuXYXV8bAPVvVVqqczdnvshVoHP8VyqNO2YxmTz8ZqeejIi7oeXBTBX6jPWl9XD5wvP6anLKpVv9tyhgxvvsSwNIstZsys6r63mn+3K6smeFVkZvXP4nMuu3UX9yefluXPnVgehD4Y3MDAwMHAisHPg+f7+/qHkaAmuZ7is2E1P2mPQM6+J1/Iag44vmbHakpT7QWeOzEFjyZiaMTzuNM1zyXpiGyrjscvM+lc50mQOB8aS5JiFd3Cuz5w5s2g8Zp8zl+IqmYDHL0u9tJTequdGT6eLyo0/lsu+06EmXkOpmcyucrDo/ea2OgVYxta5hRTZenZvcp1Xji4ZuNM10wv2god3QbZLdhVi0Vv7a9hEdbxy4qE2JXtWVc4q2dY/lRNO5cCT3dtkeFWi66wfnJ9q+7eq7uzcTPtVzUXPwSU69g2GNzAwMDAwELCzDc8poqTcZZYB55QUdpHoKp1vJiFQouq5MDPFks81a8rCEjL7UTzOcIUsfU6VPJqMJraFtq5Kx54xKwZtkllkoQxVyEkvLVBkxEvzy2TbEWT6ZOkZ6/UxJv6tkG0zQjsVwwbiONG+S8mSG4/G8rh2KttGZt9m+xlqENeObY4uhzY9f882Da0YQ2aTMsgKXH9vqxwmFbh06VKXYWXMLGN41fxn4VBLzG7NedX4rGEmFbPrhSVULCqrl3Z/PiM8/5nNkOVW9r9dkKXJW7pfe6ETMVXiYHgDAwMDAwMBz8iGl20ZYwmh8uTMpPRqC4oslRhBiaeSsOJ5ZnZM0OxPbtSatY0eiv7eS3tUpUZyGTEou0qrRfRsE1VgeE8aorRZtTX2K7KdpdRDGWsyKkmUGwCzzIglO0xkXgy8Zp8z6bNi+mSsWXow3gtV+qvI1qp1bNtdtl0Pg9Pt0cmUaZmXJm2Tlcdizw7MdGg9j754j/fWThzvrO6KefQYRMXcKjtSz5uxsm3F+rkFl0H7aGRcTEPGtjDlXMZgKz8Az3tMjl7ZtZmeLGN8S1sJ9Vgin6NVkH5EtqnvEgbDGxgYGBg4EbgiG57ftlni2qhXlWrbVi+mrmIVPU8kg5IXPe+kI8bAZMG0bURGUXnLsW1Gb7sexnCx/7GNZKGV11SGaqx72/m43WYOlEp7Kax6aG3ewoOSYsaiM29MaTtZtbQsjZNJrIlx4rjE9c11zfWeofIYpcdjlly82sKG/cy8Z5lo3LF69Ljted5W8aaZZ3bF3nvxk9FeumTD66WdWlrra1LYLcXUxfZVzwPen9lG11wHtB1na5Trl74DGRPiOHF86SUqHWd70tFzk9qXnkcxWSA9pzMbXvXZ801g8u01GAxvYGBgYOBEYCeGN02TLl68uCUxRAmfb1+ek9nlKBnsst1DFdNEZhelJjM5Mjx/ZrYH6uaXbFyZpx0ZEaWmzA7HDBfVti0RVUxdT3qip+qaetZs9xHbdOnSpS3PwHgtf6skuF4sWKxP2l5vmZemUTGIHpOwd2iP4ZFRMxE476c45l6j3P7I53h9Z0yZDI42y56HL1FlIcnOIVPtset4rCrb2oHeRtC95O3xeObZyfrX2PBYT5U4Obt/uMUUvWrjGq20AmTNWX1c+9WGwxH0KGfMcvW8jaCmbsmuL9WaBXpsS9te1FHruITB8AYGBgYGTgTGC29gYGBg4ERg57CE1lpXBUNVWOU6mqnT6L69JsSgMjBbXeDPaIytdrhe47RShUFQPZKpQyuVYs/F259We1RlZXvbUd1BtUG2/17lVs1rs75a9VQh7luVqVOYYs1zxuM9l3+2qRcIHNslbaslM7Wb14qPeV6olopqfqqjqKauHCBifUxEYKciI4YGUZVdua5npoMq0XhVplQn+Wb5WUB1z+2cqNKeZe3qPW+qcnlf8pp4n1aOGL2kzpx/h41YLZ0l2mBYQrYDeKw/C51g8DrNTFmCDbeBjjZVqFNEFbrQe+5U49fbVzD2eQSeDwwMDAwMBOwclnBwcNCVtBiMTLfZnsRdpc/qpTeiUZVbsGRu2wwwJ8PzZ49JVGPA7Wliv5j4uZJGY/lkXlVy18xN3CDrznZYZ8qsapudjLlm27UQdi2nhBrbUEnubG+23iw1cywzJ6LYpqw+MrI4l1xnDup+5JFHjpUV3dGZ/suSPduYaRGYDozl98I6qvuI0npkYhVz6KGX+i/WlzlUZLt8E147PUcQzi/r7CURqFIYknXEtVWxF9aTOeowubY/s2dVFRqxJsif7JBpH7NED9Uu6UyAn91XlXaoF4xPVMw8C3/gM34NBsMbGBgYGDgRuKINYCvWIR1JABmLkPKwBL7FKwkxSw9FOwvtE1n6HKYSq1ItZTp7Mj1K2NzMMcNS2ED8vwpOpw0h04sz4J3HMztMZV/M2ly5Yld9Pn/+fDeQfUmaZb0RVdhLz5U9S28V+8P1IR2xNNvM3v3ud0uS7rnnnmPtiTY212NJnvZYBu5HVuC23Hjjjcfa6DG44YYbjrU1XsP7pQot6NmbdwnqNaqtZWK91eakGaZp3jy4x9rIOJZYW8SakAuWVWlg+Hv2bGSbeU2WoN0gk10T1G1we6hMS5Ddl9J2KEBWH8evSlqQPUMYQsOwi15qucHwBgYGBgYGgJ29NJd0+tQLU2ru6XGrND2VlxH/j+cYvQS21fYwWcosepxV3otZfS6HG4pym6UoxfS2Y4nX9PpXeYztksS1F9BbeXZmcNIC2pcypk+775qtV4zqnMwLjKzV82GbrhGTejtpsxmdPx966KFjZdJOJx0xO0r6HOveBqDXXXedpCPbYSY1M3lA5Q2ceVCTQVKjkLErlk+G2UsosWYjWDM8Xt+zJxu9ZAtVgPQaO1KlleJYZHZyjimDvLP7iFtM8X7MksyTRTsVpO3BXkvR3sxyqv5lz6zqnut5elfPr57PR+a3Mbw0BwYGBgYGAq4oeTSlvd7mfFVC0QiesxSXl8XzVGmCMqZEOx/ry1JX0fvToOdglranSo3F5LGxbKafquJvssS2bFNlD8yk3SUbTuYt1YsnjNcdHBxs6eSztHRVOZkXY5UglzF1maRIrzVLvra/+fjDDz98eI2ZlRMxZ16ZbGPlNcn1ltlPmDS8Yl6RlVqSpwer1xLbE8eK40nbWJYofMlLMxt72r5PnTq1aC/k/dpjhVXcaLZ++Rs/M+a15v7gd3rceh64mW+WWoxekmR6LjObHx9jQvhsGzRqWSqbXY9Rcsx7MbzEmnRkrG/Y8AYGBgYGBoAryrTC2JnsDctjvXPJsOgRRIk428SzyoDispzkV9q2RzDjAD1NY3mVNyi3P8pi+Mjs/J2ZFqRtL7BeNo7qWraJnk+ZR1cl3fbQ0+PHNp06dWpLSu9J9YyzydYQyyM773l4MtOOJW3bNjz/0QOSMXX2nvT6cnti5pMq7opSOjMASUdemLfddpsk6QM+4AMkSbfccosk6fbbb5d03CuUHqtui/vjtmbJsav7yMhi6tYypYwh+fOaa64pGQBteJzzWM4a+5vRi9FcQnWfrLlfKvtYZuukRonPRmopIsOjjZDxv5UnfSyf6Hm9Vqx3KYPNGvT8NnbBYHgDAwMDAycCVxSHxzi1+JannY0SUOYZlkmaUs2MMoZXxbYxBiq2ieXbxpHlmKNkT5thlnfRqOyZZIvZRpxELyNFVR/tfz3Jvoqd6mWbiJ+V9NbavPkrbXjZ+bRXVXa6eH3lIWYw9kg6YkX+ZJxSZh/zubfeequkI29M2sls65OObIA+5k+vPzM6M8zI1p71rGdJku64445j9focM0DaEKWjNV8xiGw8q625erZdsowqPnPJK7gn+V+6dKl8TmR18B7oeSZzfKrv2bWV/0HPd4D3O9sa73162pK9U0uV2fAqb8le3F8Vx8p+RyxlVLmS2M6e3b7XlgqD4Q0MDAwMnAiMF97AwMDAwInAzk4rUt+xoQpD6Kn8DG7tw2uysIHKuEp1WHS99vVWR1mVZBUQd5mObaE6iGoh7mIdQVffNWmVKqeVXhB2FZxaqTbjsUrtkakh6NQRE/xWoHola8OSejJTu/WCdmMbowMKk4ZTxcRE6JJ00003SZKe85znHCufKk0HqEvSAw88cOwzqjulo/VH55lY38033yzpSIVZBS/HtngsmPCajl4954/KHT2q3+n8ENdDrC9DVJ1VqimmFsvUXAxzWFKvZcjWZCwjgudUoVOZSpNJyflcyAKzK9Ul+5c5E1E9yfs/S/5Q9aP33OmZMyosJQ7J5pqhaL21QwyGNzAwMDBwIrCz08rp06ePOYAQlAz4hs6cLqog8SpAm0HFUi3B+XiUMunowrAABxVHUIIkc2QfMhbCBKmW5HtMr9o6hg4Imcs3wxIYkJ4ZuJdS/WQJp9du8XLx4sWuCzhTLK0JoOdvVfiGWVxkeOw/r83WmVmYwwTsVELpPTI8Mzo7r3grIYOpzSLDc4iEj1UB7nF907GK7CCOQfxd2paeyTCYHiueQ7bJ9Hc9ptdbF147DFPpOa+s/c56etdkmqzqvszYc+VMRmRshg4fVQqwrD8M6+K9km0AW7HDHvutUstVz5Ls3KoPPeef4bQyMDAwMDAA7Mzw9vf3D6U82yuyEIMld9YsWJmsiUmdGXTpNkn1NhlZQl5KsbS70fW3Vw+ltCwQntvN0Ka2JnCfgeiU3rO20iaxJji2SqfUs+Fl2ylVZVcagNi3Khwh0xKQrVc25Iw9kzFwTrMNYH2OA859rcMEXK+ZmXQUJG42SBse+x/rYzgFNRYMZpeO2KU/OS9k5tn9xPsnC+vgNWR6XKNRO8B5W2Jely9f7toelxjCmnqWrukxvEpL1UuDV2lpYhursBuGNmRB5JW9v2Ji2TGywzWhGpU9dRf0xrGnRVvCYHgDAwMDAycCV7Q9EKWK7E1bSfsZw+PbnAHmZANRYmBbqm1Msk0OLRW7HnttZpIPbRrVpqpZQDWZED2ssmvIziglsb5sg0Symt6mm0vpoDKmRNaxv7/fleYy21tcO6yLDCRjqPSspCcv11uWgICJCFhGXDs+RmbtgHDb2iJLY5Jef2fbMu0A7Ylkdk4TFlmjmZ3XMxkE77ds3VW2O3/2vJDZ9oylcIusNaAtP44x12LFwHqorulppXj/ZR6ERsW0jGycqqTu1HbQXsq6pe1nFucr/rbkjZ6x9ipg/5kgG/ssvePw0hwYGBgYGAi4otRimeQbz8nQ89asmB2li4yt2S5WbfyYpeiiXcI2PErRWcolSv+0bfia6Ann/6vUVZl9aYnZ9WxsZIy0sRiZZL/k1RbHmR5ip0+fXi3V9TxuWT7bnUnA1Sax3GYpMjyew22a/D2uN6YHe/DBByUdpf668847JR234WXesPG42+w2xg1nq/bze0yO7v/9SVa6Jk0YNSZMPJwxc0rjFYONfY6soCelRxue+x7vsSrtGBlfxkyrZxMZcZwXeseyjCwNYpWOsLo/Y7mVfbvyps36WsXh9e4n2rkN+jLw//h9jT8A+9tbO1lc6WB4AwMDAwMDATvb8HqeStKy3jbzzqu8FRkn4rIz9lQxn4zpUXo187LE4O1UerEfFetkmdJRDBg3aexlM6lsD1X/smsrj9nMFsp547hl/aJEupQAOPNYi1KvpUlqDnpxPZWtk/aELAMKPRzJ7LJ16f47pu6hhx6SJN17772SpPvvv1/SUYYU6WjefS3XrNedWWPG1rwm/Um2E5krNRWU7P1pFpptKUNm19tKxvA4sd7MnsV1cv78+UUpvSpX2l7bVexmj+FVnr5MHC9tb6bLdvS8C1kvv2f3ZeUTUbG4XvlE7APt5lW9WQabSoNUeZzH3yomnjE8amKGDW9gYGBgYAAYL7yBgYGBgROBZ6TSzNRSFY0mdc1UX0vpazInBgaEL+26Kx2paRg4z5RbmdMK6bTbYnf0zHjMtnGMemrJKgh2KeVP/I1l9gJcCbc9S81VOZVkmKYpTaUUj1kt5/Gv0sVlKs1qzy+ObVSNWL1pxxM6jWRORVZLWrVo1//77rvvWFkOU5CO1obHzt9dLhMfxN3SneaOO6rTWSU6VDBVXnQqivVnc1qFhlRq5ojK7Z73TPwtOnksqaX4vIlrhw5GdL5YsxfbksNEXDt0dKvc9jOVJtco78ssfR+dV6gurEKResieGUyVyPuol1psyUmlF/xfBclTdR+PZYlIljAY3sDAwMDAicAVBZ7TzTpLGWQsve2zc5fSQ2VSBdN39dpo8BwG6MZr6PxAtmJpeW2AduxnL3VR5XBCR4vM+aNyiskceSjRM4Qi21GZ7V6SLqPrOQOqpSO2whRslOAyN3+2gZ9Z+9le7l7ONRWP0XnE5TIwXDpyDvGnA889fpHRSceZkMthuZ5vM8B4TaVB8JwyED46Ivn/Koi8d98upc7qpRPsuZZP07w9EEOC4rOGbvQME6LjTvyN65jXZNuS0V2fZTEhAuvOzsm0Q9WWWb2EEDyHmpjq+VMdy/qVsbQq7KAXjrA2lCVjeGN7oIGBgYGBgQJXZMOjJJIFLq51q4+oXMvX6H5Zf5UaKTt3ia1l11T9yRIAk+ExAXDmelxJx1UaqizMgxIlN+iMfVkKr8jsdb0kxMQ0TTp37tyWVBvbbWZFWx4DZbOUaAyI5hpyP7yRaoR/cyiBbXtuR2Q7VUonw5JoDC3gHNFG6O9ZsDLZJu1h7p9Zm3Q0btzg1gyT69GJr+O1TF3H9RbHhOdUabYy+38MrO+lI8xCAuL5rpupz6rttVh+VW9sf2aD3sV3gGu/Ci3qPeeoyciYpNELXYrf4z1d2Qh31eZkbTayOahsdwyxiefE8KHB8AYGBgYGBgJ2ZnittcO3qSXHaINgupxdPGiMSpoxekyIKX8oRce2VfpjM6DMpkYPzmrrmihx0xaUBW1W9VHiYb8zKYrJqcnaMnsWA4tpy8nsZmTTveBh22EoeWebj1aesC47MqCKXVJ69djfcMMNh+d4u55quyiv62iPs53PDM5tJbOPm7hWCX85/73NVfmdtpTIuFy3GWuW0Dq2J2o/6M1aeQNnHsy9tFrsC7UrS5sHRxuf5yDOJZNH0NO39xzaxebEc8iIiazPXM89H4XMEz6eWyVYz8rjvZnZB5cYXI/ZuQ3VxsrZ9yrQnAkVeqnFsjoqDIY3MDAwMHAisHPy6IODgy2GF9/ojGWjpNjz9jL41uf2LZm3lyUPSwTRs64qvwL12BHUmVe2tkx3T6mQ7cnscPxco4c3KAWSvWWepNUnWWO8fk3CaEvpRpaE2OuJNqFq6xdp21bDcWLsWUzqbBZeJacm05O27Yz+rbeFFdtqsD9es9l2W9QsMJYvMjz3y59MUk0mHUGPxMqGHPvH9mb3KUGbZC959OXLl3X+/PnD9nPspaO1w62DKlYV+8A5y9hSLCOeS60N+5etgypBc/bcIfPh864X90fvTyKbn0r7xDLZvqwNlfdrVh41c57bzF5LDdA0TYPhDQwMDAwMRFxRHJ7fpmQB0tEbmXppSn2ZHa6KwzN63oz06mE8TubZxzIMesCx/xEVc43SM4k6zOcAACAASURBVG1PlY0ji6Xr2eqkXCr0OZXHZcYKqni7yma0K2iH6cXSZQlj4zVx3Cgt0/7CTDHR7nPLLbdIOrJ1VRtkRhseWV+V9SHb4Jhrs2LgcYxpg6RNNZsXSvRkbWRIkSlVjK4XM0rJvopnzWIFeywwnhvtw5knrNksvbI5FtlzYO2ajvdLZZfvMY2lBNDZPV49C9ewwyr7ED97z0Z+r+IOe+ew7RkL5T2SJYg2qH1Y2loqYjC8gYGBgYETgZ1teP6T8kwNS/nU1sTBVG/rbGNWllfp47MMIQal2EyHX0mDjA3bJVdftX1P1i/aMTnOUfqs4m/McrL8iJWnGBlEJkFmNqes75cuXTo815JxtLVWW7oQmS2lOoftz9afz2EmFNvJ4jqotudhXtZYD3NbViw9i3WsGDc/M4ZvKZkZZLiW/HvsF9c1113GCqhVYVai2EbO9VIM58WLFw/P4ZZJ0rbtnvGLmf13KU7N6OXHpW07e0YRS0wvm8tngup53dvyqfLwrDRPWVvXbGnEcpmjtJflZpc8rIf9WnXWwMDAwMDA+znGC29gYGBg4ETgigLPDdP56Or9yCOPlOdLfTXYUqB55u5cJUilM0uk0VVQKtVR0fGkUvWRtq8xHrNfmZMG219t9ZMlgq7SqlXhCfHcShWdGampiu2pNq3SZPhAL00Y66GjRlZntYYy47d3GK/OoYoulk8VKecpcy2vHD+ods8Cz7muqLLN1FIM0GVIhT+ztF10rOG90kvGzn65zOyeiKnKeuYAhybEa6Iq1unRuLs81V8R1drm2slUnjQL9LbNYTlUF/cCtStzS9W2bF7Yr54KnY5UlSkle65m7Y996PWPJgI6r2SJwqsx6WEwvIGBgYGBE4ErYnhMIBsdD7hB5pKbq7QtEZBdVMlo47V0P++9/SmVVRJWZjyupDKWnTlcVA4uPffopfHLpFKmuaLLdm8j3Uqi7xmF4/xU57XWtLe3dyzlWixfqpNss8zMeYAp3tgvIzI8S5NOFm0p0lvuZGE3LJ/px7Jg7qzu2K9qSyZpe2NhOiBlqcVcj/thJsS0aP6MYRcMBeG6yBIQVC7qTF2WjY3bzXqJy5cvbwXMewxiH8gIWHemCalSvfF7xvDWBFcTVZKE7F52PXwGcqwz7QDvd2olemydz7tdwpGWnFeytHQVo8s0M9QsjeTRAwMDAwMDwBVtD9RjMXTXjUmbpb5bMxlQFWzZcy2mnSez6SwxrczmxjQ9FSvLXJiJKiwhMtdq+4/KdT9jeGbetGtkdp9qW5Be6ASl2p6U1VrTmTNnylRMsb2VSzRtedm57hvZlNudJTr3GjUjcvlZ6jwyXkqmGdNbSgDMNRvrMyP23HmMyJQzmyGD5N0/uvVnQfKVjdjtiNdUm5QyVVyWjizWV7EIhyXwWZJtlOtzaFPt3Y/UJFQ2veyZRbf6XkB27E+G3jVLz5us7CXW0+uXUaUJWwOOZ/b85nyR8fU2+12TeJwYDG9gYGBg4ERg58Dz/f39Lb14lkC08h5jKiiXG39bSv21JvXSUnqbWE4W8MnvS16LlQdmrz+VNB2vYX/IxDK7D4O6adPrbfVT6d8pwUZUY8Dyo603C36vNAc9yZfrqfKac7uzbUY4l1zf0VZE+4uZBdliZCNkm1zn/p1JniMo+brebO1Unm9mdLblsYx4beX9l3kFV16AvaBySu57e3tdhnf+/PmttmUp3yrGsIstqtL4ZNfyHubzLrN1rk0xFq9fYlZZ/VU/ekkLqrbye2Yzr55zVdB6/L/a8JUB6dL2+p6mkTx6YGBgYGDgGHZmeNdcc0033qraZLTa3l7aliordpZJMRlTkPrb9VCyJhvNkiuTdSxJa5mUVl2bjUnFNv1ptuTxjZ6E3BaGc5BJrFVS7N5cM3Ht/v5+V4I+ODjYYtNxjCtvXbaxN04GmVhmP6hiiWj/iWPAsaT9KvOArTxIaUPJ7KRVfF9Po0BWXm25Eu2ZbFN1T3D9xbb1PDlje+JvMW620hDYhkeNTM+GR2bQWzu0AfW8pmOb4rVrWKHPXfKazJ4p1TxUDDwe4zOystdnx9ayUtYdr+V9lK1vftJGnqUW89zu7+8PhjcwMDAwMBBxRcmjaS+JHmOMlKd3mY/3smUseQpmDK/aosTIJBRK1Kw304dXeu819j/q93sMz6DUVDG7yPDojVltJZO1kWyD8VFZDI2PnT59upSKW2s6derUljQd58Xeg0yU3ItXJJOr7LFZ+7klCc/pSfqVh2UWm1ptnlqxtWzdLWk9Mgm48iClNB37x2wpFcuOduAlO7OPZ7bjONfVRqWxjKx/Up2hg9sEURMUwfnZxQOy8uiM51V28jU28OoeYH1Z1pTqmbVGs7S07iIqL3tqV3pb/fBe8TxmW6fFdTwY3sDAwMDAQMB44Q0MDAwMnAhcUWoxqjUy9U2VuLanlqQakjtcZy7YVNNVQYm9IHkmt+1dU6kSqDJdsz9dz/2ev1W7lnsco1q5SlW1xg2ZoKE5S+sW298Lqm2tbSX1ja7lTPxNdfWaAOBK5ZIZ6OkSnbU5tkvaDh1gW7PE3GuT2/bWW5VeL0u3R6O+PxlC0UuhV7UpU2nS+YIqzMyxitcuJWq4dOnS1phnKk0mxqaKOUucwO90ZjN6iZKrsKUeqhCnbD4qFXNP3b+L2YXHONaZ0xe/V843XKvxfstUlvHcXmqxXYLsjcHwBgYGBgZOBHZmeHt7e1uMIUpCTnZrl2d/+prMaaUXmBjrybaHoWRTOVtkkl2W8iirP6vHqJIXRwmY0lm1e3UEf6MDiiViS65ReqZkWqV+ylymyRgohWbpz4wlJnNwcLDFxKKUzoTIZFhZgtzMvV2q3fljGzOJM+tHJjVX0nLmjs7x57l0tMnYDueOmpM4jv6fDI+7smcOHBVToTYn09AYTBzPtZr1eSm1WGR4mas8NQbuK5PJZ2nUKmeZ3rY2RHWPZeiFO1S/Z9qtDFmIQbVmeykBK2bHcYxjxDnNkjzzmiyIPCJzULqSlGLGYHgDAwMDAycCV5RarGI50pFEZWnOjM+SF1mOtC1x0i5C6SbbuLRKgUVX2XisksZ2kdK4XUcvPRC/UwLuMVeyG9rpeiyx2gYksxla0qpshrFfDHZds00H7aNZgDbHstfXarsU/t6T8P0bg5SzQHBKl7adVim5IqqwEKa/imC7q81bM7uImRaZLO+ZLMECNQpMpB2vqTQVrt9lRjvzmtRUEWZ5Ui7Zs48eH29Ondmgl9YOExNk9/QaO18F3v+9tH1rbYU9G95SyE4sr7LH9Wx6FQPnvGVJEioNU6axoyZwb29v2PAGBgYGBgYidmZ4BwcHpQehtJ0I15KhP71FSRaQaVboMujVlUn4WTLqiN6bf61UkJ1LKaYXpFoFrVcJeqU6HVCVCDrbyoi6dAYVZ6DEVQU+R5CpVIhbvPTSm1VjnXmkcosbagN8DQOT4zXVZpPZ1iRkWC6Xa7PH8NjPXgICMjwmhGbS6ngOPeCqBA6ZvZGbB1frMYLry/Vnged+HritS2npLl++vJUgIHvu0F7pazLPSz4zKg1I5ltQeVj3khUQa5Ij7FJeVU7PJs3vGQuL39d4bfNerNhhdm5VRny2eE6X7JkZBsMbGBgYGDgR2NlLc39/vyvlMe6FXpq26ZnpxXIoeVT2o8zDs/IM6m1WSzbQi3kh66BtsEpHFI9V3oZZerClWDqmacoYM1laz85E/T4/MztGz35ATNN0jCllbNN9rqS+mMKMdVZb7NADM0qXtNFUKbmc8iyW73kwU8lskgY9basUc1n8J6VjSrxkMPH/SrLvbfVDb0z2N4uFZLLoyqM4uybeR0temuxH7F+1rQy9N9fER9LG2Vv71NZUHrnx/2pds+yIamwqz8vYbv7WsxnyXDKuKg2ftG0vrxhepgmq4qd7dj9jF6Y3GN7AwMDAwInAzja806dPb0lu8Y1NL6+KtcVNNclAyC640WwWP5RlnJByVkhJpMrWESXfXtLj2O8M3KSWLI3JnuNvZAX0XO15u1WbombxRxxbMidLzjGWaikrR8Q0zZs0ks3GdvtY5cWa9dXtiXa92N5eQmKuGTI72qBiW6q4qIy5Vp6PFXvuMe/MphHPy86lJoFML2N4PneXODy3wdfSvhmReVz3kMXRZkyh8sol84ttYLlGpXGI7akYVnYvVFmZKkYUy1+K+8y8kFk+19uaTCvVcyZjh9UzsmKL7GtWXwa2pXePE4PhDQwMDAycCIwX3sDAwMDAicBOKs29vT2dPXt2S6WYOR7QbZ6OKZlqjO6mVVBnpi6gUZ2ppbKE01Tt8dxIq9n+Sv2aqSCqJLpV2rDsN/a5FzRbGcF7qoUlg3ZP3bYUyO9yz5w5s+XkEUFVX+UIlKUWc7lsi8c6CzFwudWuy3a4itcsJdPtBZ4z8TLP7amalgzz2dqh2pDq/SypM9cm12GmgqzCLdjfLIC/UvNF2GmlF6Bf7YtYBTLz/1gunX6yIG8+Z7juMpNOdR+uUeOx3soBpheeVJWVHatU5lWijV77M1MEseTI07tmTcILYzC8gYGBgYETgStyWqEklwWukqUxeDhKV9GBRdqWIvx7zyB72CFIm71gaDqEVEbW+Fsm2cTjWYgFJe0sWJzXVMyOzCIz2JK5UursjQ3DHZa2NJLWSXCtNZ05c+bQuaQax1hH5eSTbU1TpWCig0MWGkFUoS7SUYgCHanY9h7owk6NQ688rp2ewZ7XLiUkj7/x/uU6iNcwvZqRnWtk4UO9sISLFy/utK0RwxIyLQQTFlOjRBaahYuwzby3dgkYz1hKj2XG45lmoXJsqZzCpO15qcJhMma+xCgzVG1aEzKxlPw7w2B4AwMDAwMnAjszvF2SMEu1FBsDGC0BVnYRSviZHn5tYGYE3VqpS4/Xkg1VAaY9hlfZdzIJpUo7xX5VY5aV1QutWBq/HpOM5VXtsHaAIRhZIPgSs4trcCkMxsjCVrwGactikuUsuJYB373xr9gnNQw9htdLUsD6KS0zGQQ1DZHZVEmje8HztL1S+5DdT7wX1mz10rNXsVxe09NC8N7mms9sh9RcGVWKux54bsaaqvufmpI14RAc+54fAOel97ypwoh6WAq+z9YF29t77hCD4Q0MDAwMnAi0tW9GSWqt3Sfp7e+95gz8b4APmqbpdh4ca2dgBcbaGbhSpGuH2OmFNzAwMDAw8P6KodIcGBgYGDgRGC+8gYGBgYETgfHCGxgYGBg4ERgvvIGBgYGBE4Gd4vBuuOGG6bbbbiuzGEjrcwz2YnKuZOv2JayJk+L3XTZivJK618TOrTl3bbvW5KurYhGzOLcsY8h9992nRx99dKsxBwcH06lTp7bia3qZGqqMEL1sEjzeizWq5r06vubaq4FeWVdS79I5a9Zhb+1UWTnWrLPYxnPnzunChQtbjb3uuuumW265pZtpJZYTP3sxsEtrZJd8jmtwJffwruvqare5uuaZ9Dt+r/KJ9mKi/SyKn/fdd58ee+yxxcHa6YV322236RWveIXuv/9+SdIjjzwiSXrssccOz/Ex74XlhXbDDTdIOgp+jcGuDoR1iiLudF4FWUrbi5+7fa+56fjg7i0ypl7ixDAgPf7Gh321h1+8hi+GSqBYc2Mw6D8G3LIep9ByPbfddpuk40m/b7zxRknSzTffLEm65ZZb9PKXvzyt++DgQM9//vMPEzI/9NBDko52oo59YJC114WDoGMqOu6vWKVvy/Z+40uSD0cGW2fnMEg5S0NVpZ/imukljeY9wH5m6KUAjMcj+PKq9pPzPEpHc/j4449LOrr3/ZntdO1rYuKAt7zlLWk/brnlFn3xF3/x4Zph/2LfOC7XXXedpKP1EefS486E2VUy5zVptHop8ypBoCfo95KRZ+glc67qzxJOV8+sXsL4al9HpiWL64Ckian7nnjiiWNlSfN6kKQ777xTknTTTTfpq77qq9LxIIZKc2BgYGDgRGAnhjdNky5cuFC+/aXlncd7WLv1Si+p8xp1Sk/NtfR7JdFRSs+uZb+4ZUmWxJWSFa/tMdeK9WZbpVS7wFtKzyQtS2Fr00NdunTpULLP1gklXM5txp6YqqxieD1Vei+JN1GtSV4bmWQlwa+pl+UxHVjGDqsUT9X4ZuC9yLHKzBhuk9dMrx5K+2fPnu1uL3Pu3LktdpElETeqFGOZOm0pPV9PjUuWtCb5McvtXVOxQaN67sXfqrRqvTHpnZPVf7XgNeRni9d31ARZ2+B1tiYtnTEY3sDAwMDAicDODO/ixYtbeteYCJo6f0oZ2bYZccuWWEalv47f10rcEUyEvMa2QUmqkpozSYw6bI8XmVZmU6uYXi8ZbsWM2I4oGfEa2jMsYUUbiO150b7Tk5IvXbq0ygZQMTrXF+2ItPP5t2oz2Yglpt+zx1WONLQ/ZuWxvz0nDCbO5obK3NKmaneGnoTvtvE+9u+RXZFtrkkMTYb39NNPd1nRpUuXtjQKsX9LW8Rk661ieFly4qXyMnsYy1piQ702cvx3SQBd3XPZ/HAO1iSAJpaeiWt8JIjYLtqIL1y4MJJHDwwMDAwMRIwX3sDAwMDAicDOKs1Lly4dUmC7JmcqzcqtmWo1aXtPs8pNO1PVVCoFfs/UHy7f6hm3Kdvzq6LjlSE4ogoHoKt3T6VJtS/Hd9c2sS9LsUhWaUZVndtkh5ZrrrlmdaxRpj6imob7uNm13K7mknT99dcf1h3PzcIQqj73VIqxXfGcSm1I55nsnMoRIIt15P50dFqh6jb+z93KKzVcBNed12yl2pS2Q5DYDvY7nhvVbj11+IULFw7b0lPZVo4amWPYkiljjTNJ5TS3S0wd2xrPy9pdnVuVWznlrAnZ2kXFWY1nL4SK66BSacZrohrcn2tVr4PhDQwMDAycCOzM8M6fP78VFOiAU2lbIuSbtxdky+BRSqa7uMDS+SLboZlSMl3c4zU8VoU/ZIzLY8FPjxXHTNp2cPFvVbhHHJtewKyUS8geAzMljh/DEyTp2muvPdbGpR3Ps6DvzLXcv5HR+dMB7/F/t4UBxnTu6K2hNa7ldFaiFJ3tyl4FI5NVcz3G/xluwZ3PMw0GM1JkmgT2k8yO689anTiXviZK3PF45hzBYz2nk8uXL+vJJ588pkkiqh3ge05elRNHz9WfWHJaieg531X1LTnSVNoDads5rWJBPYa3tu3xWMUkM1SapSqxh3TcWcWfw2llYGBgYGAg4IrCEizlOaVYTDNU6fwpGfYk7cwu0WtTD64vc2WvPjM7jJlDxbAoQUa2RqnZEgol4ijBMrjSn5basgBgowpZoOSfMQlfwwBQ9zMGFXtO/bmkRz84ONgKoM4CZT1XZnROS+eUQpHhOa2ZGR7T0zFMIfaZrIJu9UacS0qXbn+PfbAcSu1kYu5DbL8/aav092wuq9AFMr0s1RPXndeo5zq20fU4LRRt4r53sjRyvra3dmzD4/jFPvs3plqjDSwLg8nSAcbvGfOqgp2XmFF2LtuWPdOW7MCuJ85lpWXbhcHyml3yHFfsrcfmqRUwsvURk1gMhjcwMDAwMBCwM8N7+umnD5mdE0VnaV98jBJIJU1J296aWf1SHihZMa9Mavb/ZBD00oxShiVq9qdidrE9ZGtkRv6M7ImSts+pbB49exPh/sUkzEwt5v6S4cV6yVhj+ieitaZTp04djn02bx5Te17edNNNkqRbb71V0lECa7M6aduG5/L9SS/O2Gcfq9Yb17J0ZMP0PUB7bCZVL6XZYwJst1naZnJesz7H/c4YHu19HHMmd5a216L77n67jVFjYvBcj0mW4Drz1q7YEL00fW2cS95/lQak5xW85JmYJY/mJ+2jvaQFLL/ndVodp4Yp85hf8j5dk5yjSqweseSVuYZRrkkT5uvjvTcY3sDAwMDAQMBODO/SpUt6/PHHt2x3UQLmViFkDJmEQM+2ysswiz2jRLAm5ohxcAbtP1kbKxtBFXcY/1/a6idjR2YflujJgsnMYhstWZF1ZB6S7I/tMYbLiizU7MJ1P/XUU6Wktbe3p7Nnz25JwHGc2Fezt2c961mSchseGR69NXk8MhMfq2L23NcsjZbH0OPEa7m24rUGvVHJTrN2+zcf91hFezNtgmQf/J55LvJc2rXjNWbcZI60uWWsILLMXpza+fPnD58tmddnFZfKtd6z4Vbemu57Vl+l4clSKBosn9qvzON2Ke4vs8eS7S5tfxT7SkZHu3A2l+wrNWaZt2g15z1bv8v1WhwMb2BgYGBgANiJ4V2+fFmPPfbYIcOzvjiyAf9v9seNOWk3k/JNYSNot4pSTBWnRvtLJkkwfqgX+0EppYq/y7wZXT4zk0RmzH5R2qw2Q828muiFSYaX2SQYs0Ov0MybzusgbtPRi8M7ODjYSq4c55wMzzY899V9jHYKahKYiNt997qMTIjxmIzd82esj16yZDwZa6psJox95Gal8TcyV95XWRwmt2KiV/Cjjz56bGzitbyfep6dPsdtvOOOOyQdjdu999577Hu8xv24cOHCokej25StRc4Z7aFuW8aEeS2ZUOYBySxTvMeY6LrqUwTZVXZOFUNJT3Dp6L6svHWz+GY+1/hs9prlPRn/53Zk1BZknt7UAkT2Fo/HY/FZPxjewMDAwMBAwHjhDQwMDAycCOzstPLII49spRSLqjnuRmzV5e233y7pSMUQ1TZWN1ilw2Bxn5upU0yPrZbhd6q04vVMy0RanBm4K3WHscbllmEB7md0t6eazWPk8fRnT2VSqaPoch7/p9HdoSdZuAWDk9ckAaARPJZXqW29prJk5a7b7aTTkvtBhyRpW03jc+hMEtcqHQuYSJ3jJ22reqpQncy1vFKZuj6v68xZgedahelPBpPH/lT7rfVMAwzktkra5ce0dHSoimujApNWRDUXVb++l/xMyZxWKscmOjNl80LnPI6lj8e0iwzVMqiqz0w7S6nSsoQXmUObtB3+kKVQZFgP1e1MdRevrRx4MmdBP/s8NryWz0Fpew32TCnEYHgDAwMDAycCOzO8Rx999NBZwdJlfLtaIvCb38zOwcOWFKJ7uF3L7XZuCcvf/WnJxNK8dCRBPfzww5K2JV9LCpZq4zlkbXRDzoJU6fZcJUyNTMKSjceGDI+SZjzX42Vp2WPl764/C/5nYLvHhMHT8RyPk5mT2+Zr4tgziXjPPXhvb0+nT5/eYutxjMn0Le3R4aSX7NjXUMJmUHvsm6VZs2YmrfZYS9shH14X7o/HIraRrJDfORZxjVXbp3gsfG1kEp5X3xP33XefJOmBBx6QdDTHGWun4xDZNlO1SXUqO/fH85oFFcfUaD2GN03TViquKPWT2ZGlxXLYPrI/zr/ryZwtfC5DtLKQHzITOl9k6Qur3cr5me2WznGio4nPjdttedz4nCHDy8ISMpYZ+5M5A9KhxvWSFca5rjRyazAY3sDAwMDAicDODO+JJ57YSpQbJQQHCVty+8AP/EBJR9Kzj8fgYbJAS2lkfpaaYv2WZhkMT7vBQw89dHgNXcd5rqWYKNERmQ1KygPrLYl4DNw/j5WPx3H0MTI7j5+Puy+RrfEYt/axhJ8xZY+T2YDLcJkxnIRj/8QTT5SpgVprOn369JZ9IjJ9jjslX9ppY7u5Jul677IyadZz5nnxevMYR/ac2RSkbUk8tpGszJ+06Rq9zYr924MPPijpiMV5vqSjeb7nnnskSXfffbeko/lmWFGWJJ1r0t+9DuP9S42I28wtkyLrodbj4sWLJcObpnnjadp/Y4C+28ntrXrpAqsNhjkfWbiA4bGjBoRhPtLR+vIaIRP3NVnaNtpHK5f/LKSB9liytTiXPuZnk9vM8A7alKWj9eTnKcM++LyVtpMUMHm9r43ar0yzuBaD4Q0MDAwMnAjsxPCk+Y1uCYtSlbQtNVBC5FYv0nZyYHpWcauhCEtYLteSCFNkRWYS+yIdSfDvec97JB1Ja1nwOAPBmdrHx6Mem9veuC1MhhwlOx8zy6AHFIPwIwshQ+I1npvIQplOzdeS4cU54Pw8/PDDXYZ35syZLZ19L8iWtkj3MbM9MhFylYopjjGlSXr0Zlv/0M5DO5yReVpWbI1MI/MOpr3Ndrn7779f0nENhtnfu971rmOftIlm20S5fHof0jM7agd8z1GLY/CekY7my/d6j+G57RVTlo7Gkoyht1US+89EBGRG8Vq3myyKHuZxvVFD5XHyvJilRxtXlVC/suVlCeiZJIGp+zLNErVsfI6TzUl1Qv1ecDw9r+lBzsQXsR+0ga7BYHgDAwMDAycCOzO8/f39bsLSKsbIb2XqhqVtGw03jlyTrseSFD0hmUA3guUwHVmUXpjCyv3xOfQCjLFb3P6FnqpM1Bp/Myxhe4xoz7JUH+tzGe4X+5fFw7CtZBhxTKh3f/rpp7upxfb397c2MI3SrNvlOj3mrscScBZTyTRt9Nqj16G0rUnguGVJxCmlMi0dpWppW/vgNvheYGxT5gHn+jwmTP2WxeG5nuc+97mSju4Fj5/bGMeE2x0xdVYWS0YPWTI6H4+MjPfphQsXuhuD2stX2t5gNms3bXn0AJeOxp3bzVRJljMPz8pLOGPPfCYyMTg9b2P5BL2Bs3XgepiU3Os+S6hO1unnCtcd+xvbTwZmZNuSuW6vSaa/yzyJOT8jDm9gYGBgYADYmeFJR29we8BFCYGbPjIRMLdzkbYzgNCm4t9tY4teRbTNWOKgV2OW+NWwxGEp0Ewik64o2VB3z0wVsXyyG9oX4jVMgs14O7fRNpzI1swcnMSXWwllYAwVbQYeM9uOYnnuz4033riYPNpsh+xT2pa0/Wl7EWMEIzy29vg1s7OdNMtM4zXIbYBom4zMg7YFS77MIhHZjOeDWgh/kulnXqHcnolxppFJkLn6Wo+Ry/c96fZJR4meqW3xvcdto2K7/RsTDtN2GRE1MZUNz9oBZmeJr6LBmwAAIABJREFU69nz4LrpBcp7MLbL68r3ts/1+GWslnZYn0OWsyYzjduYxQzbXs3tj5g03r/HZzG3dGJCbWaaimNgZscE1Pb89VxHFmePfL4f6KUZ7w3Ph/tJu3nGXGm7qzadzjAY3sDAwMDAicBODG+aJp07d25Lz5q9sS1lMlsKt3yRtqVX66ct8VSbX0rb+ly3iVJmzLDh9tJmRLtflr/N9XDjT26nESUterP6N7LTzOuM35lzzoh5Cj22P/MzP3OsH89+9rOPlRXryOIHY1lZHjxLZb722muv7bLI/f39cuylbQZCr8lsqxCP3Qd/8AdLOrJX+RpL6T4vq8/98DyZGZs9R/toldHF6G2u67rJOryeaS+TtrewoheimXecS8aIunyvA1/j9RBZCPPZPu95z5Mk3XnnnZKkn//5n5d0fL15bOlp5/E1244MicyhlxNWmsebtsnILqwF8HOG9lLeey4zXvvud7/7WBlmLGYqWbYP5oL0uvM4Rg9It4Ee1ozddFxePIc5W30u7+U4xq7P7XZbmG8285Sm9ylthoxvlY60A77mzW9+s6SjdcaMWdK21sPexmTq8Z7glkIXL14cNryBgYGBgYGI8cIbGBgYGDgR2Dm12GOPPbYVABypPgMW7UTAwO8sYa2PmT7TEcVlREpsqkvqHdWerI9qKTqI0AVb2naY8DV0Jc6M+gyGrwzQmUqTAZ4MS8gMtr7G80PXXqs6sjGpUiRlqZLoINQzHu/t7emaa645nBeqHKWjsbWakCoXOiJJRypyqzJ9Dl3j6U4d++jfrMo06IgUz/XacBlWTzKJgrQdkM0UVlRxx/uJ887UeUZs49JO2h7XX/mVX9k6n6ptz4/Ve+73O97xjsNrGIxPJwUfj84YTNQQ+09M06SLFy8ezl3m3OK6PP5MekznDuloLq1Gswqb80E1b/yN66yXPJrJmrkmM+cyJq1ncDzDcmL/GH7gT45z7BcT6jM1G3eUzxJBGzYF+B75kA/5EEnH3wVU5zLQnKFPcSziGAyV5sDAwMDAQMBODM/uwVU6p4gqWNgSSzTmRikvA6WlKAFTmjTcNkuVmWGW7sZMcxPLJCuj2zHZQJRm3XczLkv/Nk5n4Q9MMMxwD0qUkdFaQrW7uVkbt4uJ/aMzjs9lcuYs6Ds6CFVS+t7enq699tpV4SI0ZFPKjA5PXkecS0rA7mucFyaN5jY2mRt1TGsW66HkG139qcFwWzkGWfozGui5Nt22OC/8zeXRld3MJq4DMiMGHLsvkQ2TCWVOUayHbHZvb2+R4dGZKTIKrxXe27GMeK10NO5ut+eMjDhL/ee2Mu1dxZClPAxA2k4EHceJW/rwucA5jesg224qHs+c8+h05vHyGPn+5XjHcs2U7aRCFhrrY+gREwj4mkyDUfWvh8HwBgYGBgZOBHZmeGfPnk2lM8P/m9n5jW29bRYmYMmabrQGwwYyvTF16gzYzmwF3KbDEi+3T5G2WSY3a+wluLaUbGnQum0mmo7SEoOHaUNjyrbMtsaxYbB0tqVQTAQtbbvDx6BvstslXL58eYsVZhvKmmUwaUHGvNkubp/kMfU4RttaDKeI/cnsfQbng2zan5FxcwPMTJLP6pC2w0JcLiXxOAdMfs17wIylF7jLAHcypiwUKQuviYj3vMuN/asYnjVLnq8s2J4bsXpdua/ZNjMuj0kJeJ9kjDVL1ixtpzTL7I1uf7VtV5xLagf8G5kPQ0PiWPjT9zRt7tnzm/e22+y2ZskyGCwe77WIrI2+hr4ETF4ez8k0VEsYDG9gYGBg4ERg59Rily9f3rJbRN2237SWsBhMmyUN5vYR3OCRNokoVfAYA8EzacDHLFGZjdq2FVmHQe8l2g7pVdnbcsWfDDyOQcy0L9DDjqwwS+ZLFpBtgsk2MrCZLCfbuiZ6jlVS+uXLl4/ZF5jWK7aL6Zlor8yYKRkqg5SZXim2m4nAq0193cdYrj8dXBttd7yeTIpzl3n2Me0ZmWvG0nyP+VpK69F+TjBtFz8zxlIlbqCGIUtSvTYt1MHBwZbnYAQ1Le47baA9ew81VmQfmZcm21/Z6WLbXK6fP17P/h7XAVOGZYms4/Hs2mpMMpC5keFFG3j8Xaq9zqt2xP+5HrixbWwzn7m9baWIwfAGBgYGBk4EdmJ4ly9f3tLlS8cZQ+VVyC1/MqmZ7KmSFGN9fLtXXlrRO6vyWiQDi/VQCucmh2xb5uHJTTQp1WQslNudMMGxxyYysWrjVzLyaFOhHY52rOwaIzKxHsN7+umnt+LiYp8532wb470iKIXTDkwGIG2nT6pYdLY1icu3jcgMz/MU2SyTQ1fbUmWbyfqY+8wEx9k4VgnVaUPM7iePMbfB4tj0YtIqxDVKDUnPBtNaO/yL9WS2XLJkxs3G+aenNW2etOn11gETwnPrIWk7ptJsiTGvkQkzBR8ZahVzKdXMirbW7FlFVPdGZF589tOvgbbs+NvSprE9T9LB8AYGBgYGBoArisPLEvFuFVxkd+Cmii43lsdyq7gVaXu7FoNSRvTyoSeXdehMWh2lCiaFpm2QXnuxPcwmwCwptJ9J25vikuVws9AoXXPD3Gpjzsye4WO28zAjSubllnlsZbh8+fKW3SrL8pFtCRLryRiewU1CyYQjA+Bv9BSjF2c8Rq9Pf3pNZeyDmUdoY8skYMYT0obINRTL433FBMO0k7CcWB8ZRrxHOY5GxSzj/5FdVSxvmqZjHr6ZPa6yzdEGHeuoxoUelpmtiPblajutqGmiV6a9wv1JD8/YRmrKyKYzj2mPPz1ie/drtfmtwTHK7M6VPwWZdATtftRSZZ6k2TNkCYPhDQwMDAycCIwX3sDAwMDAicDOYQmttS21UeYIQLWDKX7mtkvHC6oLuHNzRmErA20WMM20Y1Y7uI2ZmtDqgEqVyNRWvaDISs0Sx5HBtQwpoMo4c7BhyiIa3zO1K8vnfnKxjUxsG3elJpweiqrfuA48L1anVkH2MQyG6k2qMjlOsT6qEv0bEyBk6kK3wU4rBtNfcQxiP+mQkLn+Z/ucSdtJy+Oaqhy5+HsvwTHryVT1BtV5XH+ZSpP3wJLDy6VLl0pX/NgG1sk0ZLENVPHTpMLnTayf6lU6eXFvwNg2O605HMrrwAHwsY3VHp3VPoKZypbOMkRcq5W5akm1GfvHcxjqku33yDbznozt4dgPlebAwMDAwABwRU4rlfFd2g4+pLupDbaZUd/l0cWXUnqP4bHezDDPhMhuE9lNtjs2f2NbMqMy20039CyA321jctgqZVHGXJbGJErZrM+oWHbsTwzZWJLUGRieOdtUadrI3iLcf0rCHK/M7drlcT6yhLweD4dnMMlyFrDPtlVB3dncZpJ07Efm/k7puGIBayRjOidkziFcbwy3ydYWE0PE84lpmnTp0qWtfkUmxD5xnfl4L1C6Si6RjWMVIkGGl7FCrxWHRTERQOwXk0ezTVxTsX8MoKcDnJFpliq2a/QcTxgCUq131h2/c75i/XTgWnrmRAyGNzAwMDBwIrAzwzs4ODjUOfc2dvSbmhJoZj/ib9xGopIyIirpPEvUy41m/Z1uuzEJLm1ZVeB5JsWQkVCqcRnRFsINFmk76TFYo2dPk/pbbvAzS2HFvl977bWLoQluL+2l8X/PP7e1yRgA54q2R7KmLOi1stlkSRYcouCtT5j6KLNT0H5ESdgaDvchttHlsH9cDzF0ggmNOSdVfzOQ0WX3LxO2k4H15i/eL2ttMUz+EOtgij+GfmTw3FXjVDFltsH9iMczG7Wfl0z8nD0HDNobsw1YWR/Xipmlj2eJFRjoXfkKZFoCrmuuFR6Xtm25ngvX6zGL9TDcZTC8gYGBgYEBYGcvzf39/S2JNabC4du8ktoyTx2mG6psEZmeurLR0JNQ2k43ZKnJUrKlp7gVPe2LZHjcuij2O/Nmje1goHPsI+2ZVTB5lLgpUZPlZJI9y6ENJPMgdBs9Ttdcc02X4e3t7R32OVs7nMNqU9/edibUCvS8WavxqDZZlY5sd9x41ddYQs0837iuaXfpbblSpYljerTYZzL5SguS2Qx5LcvoeSFzDWQbdTIZw97eXpfh7e3tbfU9S9BOL+kq5Vg8l56B2ZjyO9kF16qPRwZjhuU1Q09ltyPeE5wj2lJpO4xtrNadbYdRK8B+8b6ptALZnFb+G9QEZOVQc1HNRTzW2zx465pVZw0MDAwMDLyfY2cb3t7e3pZkHCVgStZVwtrI0sgmqmTHjJeJ9VDyoLTc23qHn9zGXtpmcmQUtPdk8TC09/jabMPZalueKk4lSkBVAtY1oF6fZUX7gtvkLXGWpKwoBVvKjRLd0gbAWYxjJVlz/nuedlX6u2xDU24lxBRS3JiT18d6K5tHBNNDmU1T0o/rjUmR2a8qOXc8hzYozm3mUex66QWdbVdFO2ksj4iJo2Ob4rjyeUO27vHLNub1Oewj7/XMBrl0j8WUhr7P6enrufTzJ44F2ZFReSxnicBdD9cKt/qRtrVs1OaRhfcYHuvLtFGMFVzyO5C27fS7YDC8gYGBgYETgZ0Y3t7enm644YZDCY6Sq7T9Fucbu5cgN9YTP3ltxmZYVpbpwjCDs13OkpU977zJZmwXPbmoUycLyfrHxL+WOjPm4vHzGDOup8qeEs+tvEF72VmqWCh6qUpH40RGkcHbA1naZHab2AbGJdHWGiU7sjCe09sksmJAZJqxX2Tj7ge9yTImaVTxXvw99oexk9xmK/NY9Dn0aqw8cbMxoW0lW1s+l6yXmpsIj1usp2fDi5sLZ1qiav36XHrRusx4Dj8zu9gSyGajpsbs0iydmX38Geur7mGus2z7IJ/jNeT7lYmoY5ypx8RtXcpqkq27aqOAzL+hik0mMua6xsuYGAxvYGBgYOBEYLzwBgYGBgZOBHZWaZ49e/ZQVcIExxGV67URnTwqt+zKLTijsFWwq+n8rbfeengunRVM9W+//XZJ2upfLK8K0KbRPILuxtzTzshcvZdcfDNQzVGpebKwBKoCGeAa1bx04Ljpppu6Rue44zmT7sZjbjfdpnvOHZWacGlNxXOq79G4774ysJlORtl+cVS/MiF5dq1/ozMR1W2ZmoihH9xvLVMD0qGGqrnMeYFJEJhAItuzjyqsSpXuNu3v72+tzbgWl0KasmDuyhGDazgzAXCN0EGHqd+ko0TjlVkkc4BZmgeuu8y0wdAmP+9cn/dwlLadyZb2tMscyPjM6oW0VPPTC/qvwm3WYDC8gYGBgYETgZ0Z3rXXXnvo3GHJIJO0lnavznYTp2RFaSJLE1aVa2nWBmJLNfEaSwh2YqE0HVkot9ZY2oIlM+YyZMOflvyyVFYcEzOMXqhBxVgoIffc4Kvg71g2WW4vefQ0zTtamy1lUpnnxeNAo362pRATFjPwnGMe2VQlXXL+I8OzwxbXNdlptoURE077k0kLssB6pvGjU1jUslSSNcMtuE7iNUxAQOecyCyYnIBrJ0u3xnMyBzjDKQ3pHJUF23Nd9dZvFY5CZM+dKjCfgdIxtKnSUPWSOzOAnmnjei7/drDyfFtjwmdjLylHtS1Q5sRS3ft87vTYfBWqk439mpSTxGB4AwMDAwMnAjsHnp86dSp1UTfIGiiBZm93MqAlxPPcBtopLFlZMo669BgMGkG36niej7HvlNqYHFk6kj4Z2kDdepRyOW4+lxKYpcJYH+073HKj0v/Hcqt0UVnQ/xoduteO2+L2xvXARONV2qRMAl4KdjUyKZ4MxWPssY3snm75DILO0l4ZHq+Mqca+ZPYmj43bwqTIWRLfKk0Yk7NH0IZH2xTHKraF7K9KUxfrMZbW0DRNZcqy2N7K7t8rv7JTcWuuDCy/SgkobYeycL0xnCSWy3mokjs/9NBDh9e6XKYAdKKILJFHTGuW9cvobQKwFI7QC2Xg1kJr7PUjtdjAwMDAwADwjLw0e5scLtmRsm1hLHHQtuLfGSge/7d+mnr+zFOR2wNVQd1RX850ZFUSX0vg0fMpSmzSkYRnFkobVTYGPod2xsw2xW2PKJVnkmtlk2B7snROceuanqQ1TdOW9EybRGwXGUjGZipbWrVBZ+YVmrVTylNi0c5WBbrHa9hGzl1vmxMyF9ubLclnEjBZARk+vaszzUrFzsg04rmsr5LeI3aR0vl7vKfZB7KNzO5XbR1VeW3G9UjGSMbl9sT15mfD/fffL2k7GN7XZHY/j6nvbWq2PLYPPPDA4bVMD+bnDhM8xHFd0kIY2ZqlXbmyjWZp4qiV4FrJUjVmiROWMBjewMDAwMCJwM42vLNnz24lP822e6ANgxtYZkmIzdL8nQzC0kxkeJUHEL3LoqRi7yVLS4xt68W6MR0YY2iYTJj/xzJ8rsfR0ru0LcHR7kdpPTIKj6PrpZRO5pcd42eWsDXblHJJ2rJ01ks7Rfa8RoKrtkCifTjTLPDaKm2cVNspaBfrsWcy7Sq5eCyf69vrIEt/VSV8Zr1M1h6vrdaBGUucN8aeVVvnZGm9qvRqxP7+fsnIIirP7h7Dq7a84Thm11ae13wOSUfPG9o8qYWKie6rODwmK8/qY7oxn+vy3YeogeKa5xhwPWbrjp7zRLymtzmslDNJemmu9f2QBsMbGBgYGDgh2NmGd+bMmS32lul5qQMmQ4kMj/Ypbrbq49m1BqUYfzIjhrQtabk8eglGCbJici6fklhsoyUqbh1TxShKRyzWbfK1lMqy+CUzPHqdUjrPYqkqdpBtTprFulVszGvH7DaLBeQGkZk2ICtXqrN8GB6vLI6wysri3+NGwCyfkukahld5kmZSbpXwm8myM9tkxYjogZnFUlGDUH3Gcirv0F7cVWR6S2vHY75Goq/ixbKx5TXZWicqZtfzCuYzkPduFuO4q100tplbCGXJ1/mdGjOuh17icT4jK5+BLEtP5dGZrYlsc+fhpTkwMDAwMBCwsw0vMjy/uTO7Dr196KUZ9cZkdrRb0X6USQiVF1nmNck4GNvQ2OYsx2Al+WYxbQbHoNpUMcsv6mOUvCi1ZXaYKo9kZhujjYhMNfO+zWKBlmKWmIkigoyADDjzlqNkWHkgZtcueaJxq5R4rueF2oIsQ02VA5L3hNuTxTb1NAix/jgG2TY6WZlZPsQqlmrNFi8V04trg/O1ZnugapujrG+Vl25EFbNHpp3Ziji2VfaiLMaNGh3PO73HpaPnFzVWldd7lofVGgqvY9ooM7u2UdnU/v/2zqW5jWtJwgcAJcoh25IVnvX8/581K4fjOmSHvLBEmeQsbiRZ/Dqz0PCNWWhQuQFB9OP06dNAZT2y3L0iQ06thZxWKNdb5x1wsfZheIPBYDAYFMwP3mAwGAyuAv/Ipclix0pv6X5kcN1JL3HblB7uUmEZgE+pxhWk2Ay6OxrN46UCSefyYVkF3YeuIJdjYxLGnrRuumjlPnLnTbJWXescyijd3t5G14IEgHk/6vG4nhj0dnJdBN2DdLvW60utnbgO6nqTW4jSdR8/foznoRuf692JBwgsAE9FxJ07kIkudMNVdzzdyclFWJESKTifbl+uyTT+m5ub1t3GcgCWeuh6nOA0k6V4ze4ZS+Lx3f3Qfa9lVWs9rwvep/q33JxcB/xOqeOiS9N1Rec+yZXN8iFXGpJCD6kTukNKeHLF8V0yW8IwvMFgMBhcBS4uS/juu++eLIY9gcWUvussYL5SgLULUqciUR2jyvUIlPZRgNgxLpcwU8+T3q+1Zb2JLTpWmAqpGbzek0LdFXKne0nr3FlatWzknLQY2a1jXKkQmGPt9qGV7grneT+YTOCK4mmF//zzzy8+d81rKRml13SP65xwjtmmxyWE6LpSEkn3LHaNZSvqOkleAT6LnXD83d1dPNfhcFivX79uy6G4TlOijrsGXmtis3V9MBmGjNIV2wuUGmR7tLoPZRdTIb1joVzfHKtQ58aJEayVWZpr1cVnm99NLmnlXHJUV/Q/0mKDwWAwGAAXx/COx+OT9eoaO9IqTlaTK2Bm2rZLuU+QNSPW1lmxtDhohXUtRWi1pKJeV1BNYevO8qLcGs/bnY8C05dYQLSsujICyp+dawB7f3+/sfLr9imGy2N2DJUehRpfrP+vYAE2S1rqPpS/07VzTDVOwzHIwmfcqYtNMKamYzDuVP9mfEzH6BrA8r5T9srdk3R/Oq+DawfTMbzj8fi0Ppw3gsdLng9X0pRksziPXVlCink6QQCWw2hbPvP1uCxdSNdd70UqS2Jc08079+1KWbhPipvuyadI32tOwmwY3mAwGAwGAZenuaxta5RqkXz69GmtlX3ZXaZdKsRlUWfNYkpZPbRE6nlTsShjiE40OLEQsinX9oaSQrSeXVG35jZZa85PTgubDMZZaUm6iMeqc8+WTJ202OPj4/r77783x6tshmxyjwXnZIbqq8BmsvWaU/NJeQtqU0zeK4olkIGt9cz2yOASg3BzoueHLMTN0Z5Y5Fp9k9okbO2yHTuPSB1zBS34h4eHs5mmvOY92X4dy+j2d+N3hfMpq1Xn29P+is9CXTuJhQqUTqwMkGOhYEgVKec+SeAgbV+Py3h6er7q/7i+u6xdofMgxH0u3mMwGAwGg28QFzO80+n09MsqC7/+YtNCpChxbXIqJKs/yWnV+IisCH5GWapq+SjTTdtSrJjjqmNIGWiCPq9Mgj56skShWtyUW2O8JzGYtbZxhCS/5to6MaOPrKOy+TS2Dsw2rHNMJpLivi6WksRunYSVwDGkNVPHlbZh/KWuc2Vl0rLXe9ZYumbFjJeTIVVWl9g62/hou8raGZsiC+xEfVN2I1tC1bH9Eyvd1dgyHpmYnXumU55BJxNGpHo1B8rQsbayMjx6BciimAHrmDfHmNh73UbgPPK8LqNdSLJ4XXNk933Na0mi6HswDG8wGAwGV4GLszSriKt+jV0DQf5C8xfcqUoQZFM6T23XQsbIpqfOqmAtE1VaugwkWpesf3FWEy1HZms6pQ22/6ElR4tSTW3r//iezK7GF8hmktpEvdeV7el456wtMkYXR2RMKGVr7gHZjovhnav3c1nImjvNu+bFWZ2MzST24Zr5spGxzqsMUncvWaOXMi9dSxvGzfmcOmZ2rlmo4GrSqhfn3P0lY3ExtcTwuzhjYplJmYTnrufjexczTNmSbm731v26vAPGFRknc0yZz2Xa1t3jxDr57NVnkN87nAsXP9WarBnle1neMLzBYDAYXAXmB28wGAwGV4GLXZqn02nj5qiBbfaSSxTYUX1RXbl+GNR1brUPHz6stZ4TA+jqk+hqTQwQbZbrR+m52lfbOvmk1JOrk09Kvdm0j1Laa/q7EmrosmXXcrnUag+t5M5lDz8XPE5uRRZar/XsWqjdvjvx6Jrw5FzflyS/1OOu1YtoV9Rr1rmZRCA4V5e61wtyLTJZqo5D6+vHH39ca20ln9L519q6o5kGTxd+/Zuv2lf3jWNeKwscUKy8k3oSXOmBsPd+6fg3NzdPY3Ap+DxuSjip67MrtXDvK5LLvzsmvzsYrkjjqMdNyRwuMSg9R13POT736ZlwLlsm/3Eu9nzvMGnOrS2XHLU33DEMbzAYDAZXgX8kHk2GV3+xxQCYCt0FeVmUzkC8GF2XAssieG2r8dQiy9r9vI6VFkq1lmhVJEFml/5O7JFiYlulPaK0AlkgLe3O0hJYIuJYKAW137x5c7ZInEIAjkXTqmTw26Vek4Ekma7KmHnfKSburEutRSaAMCGpXgPnlklLXXF0YnYsG3CCw0nuim2KXMsnjq3reE6k++eEFdwYCMkZkuG5ouc0BqFLdEklGI7Vkglz3bsSmjSW7plJhd/niv3rcXmv+Dy57yom0qUSBycenYQPXAnN3nZU3XW+fv16GN5gMBgMBhUXMbzT6bTevXu3+XWvFgJT32kZdoK1Oo7iEmQQOp/ky+pniq2wpZDOV9O2Fe/SK+V5XNNV17qlHj/52OuYKLbMGFhloYkRM01d113LEjR+Ha+LeQiMrTEtnRJadUzVyu1ieMfjcbMOuljQnnYm3CcJ8gquhEZIDUwVp6uf6TgsNWAReR0LY3Wp7MKVJTAeSwu4rkvtk4QOFO927Co1UtWacoXBZAqpJMDNSWWq3dq5vb19ug6t+XpfUsFyJ1XF+T/XesfJEzLGmUpA1tp+N+o9v+dcvoGOn8q6+N1V54J5AJ1kH1sVsXQllTZUpHIE55VKzYL5zLtSjT0slxiGNxgMBoOrwMUxvLdv324suGqR8NeczMT5thNLEgNjJk9lax8/fnwxBmZAyQKvlohjcGttGVEXZ2S7GVrg1RrU8fQ/Waa6bteuRcfVtuespjonjJ/qOml1VrbD+8PYnTL66nXRYjsn/ntzc9Nms57zw7sYQYoppfZQVZZO+4rx6Fo1585q5j3TPswsdoXZqfUSY2uu1dM5EeFqxZORMK6eGs+utY0nJgmzut40P0lOUKjvKaT+9u3baKkrw1egh2St5zVO6S0yvo6RpPiRE8lIovEpy3WtbWYys2gFJwDdedXcuHju+p5eqnp95yQMXRxO0PXxuenyDtL90T7uu7ETCDmHYXiDwWAwuApcXIf36tWrjV+/Ws20tFLdSGUKyYogqxED+/3335+21f9+++23F2Oir7tawLJitG2q3anSWWwPpH1ogWs8zirU+WhhM9ZSx8LYUMoSdfU+jEnw+l3GGoXBJeMmFuSysly8gjgcDuv169eRSdbjpHokl3WWWCVbPWn8eq0Qs9I16x5qzl0GJD0IegbYiqluy2OkGrc6J/wsyYY5j4nWvMaWnqt6fbwHjNm4LGR+xnXhvDqMgXYxPB2DAubuO4TXxjG6mjMhCae7YzJmmGoRnWybwNo5N0/0UCTB6+55ImPtWrQxnplyMXiOCs5N1zQ2MbwUQ6x/1/s0WZqDwWAwGBT8Rw1gZbFUJiTrOPlZXYYQlSdoUdHSrtlZv/7661prrV9++WWt9ZzBpX0Op6G7AAAQ60lEQVRchhUtbmYmadsqUq3jKH6Q2mS4+AXZn6xaNv50SLVasto1967hKOeamWQVtC7JDphJ5o7TKa2cTqf1ww8/bDJja9anwHgVr8OdI1mKXKNSO6nHJUMRi3IMj3OZWFSNy7CWMq03xrUqNEZm3LpGnfQY6NpTpm9V6UnnZZyuwqluVPBerPV832tWdZelWdeWmyddP+PVQhf7YkyLrM3F/LkNGRi/09Z6nkt6H1hf6rxR9ArQO+Cui2NMgv3umT6nkuLWOWN13NYpu6R4dsq6rtiT4UsMwxsMBoPBVeAihvf4+Lju7u422V+VcVGfT+9Tu4m1tlYR4wZ6L4ZUlVIUu9PrH3/8sdbaZmBWFiULii14mJlYLV9tSz88s5pco0n9jzHI1KaoIsX53r9//+L1p59+2lwrM0mpc9rFpnS+yhzrtdS/qxWaLK3j8fiCXbmaI6cAs1avtpDqH1lH5lgBW/qQ6fH+1G0EHU+xQdceinEItuDhsas3gjEzjtWxXrICKruQ7XRNQ6kg1GXXMt7EekCn0lPnorPSawsY57XR366xcB33JTVbzIh2DWf5nLC20cXUdD+o7ORYYWo7xmfPKaKkDE9mT7psdK15vnJOXFyTdYYcT92n8whVdL8Xw/AGg8FgMADmB28wGAwGV4GLXJoPDw/ry5cvGxdFdS2I2it5hEW1zj2QhJlTimx1MdH9yWC1KyKne4ZtiYR6XakYNclfVbdccg+wdVEnOMzkCLopq7souV+7Qk26Mp17ZS1fFJu2rTidTi9EC1zZCl2MFB53Lji6MtnFvJ5/rZcuJrqL6HZ3rkfdM6aBs8Sluk6TkDCvy6VvJ2k+lse4xKfUjoqvrqg3lRM5cC4YmqDbrW6zxx3++Pi47u/voyhCPV4qMXLHTnJWnHOtqfo80T3JUEZtmSXQ1cyCc+e6T2VITATp5NuSiEBXJqDvJAqqp9ZT9Xice5eswjHyPcfuXPY1TDEuzcFgMBgMCi5OWvn69evTrz6FhtfKFifTZ12xK4+RUv5d0SuTB2T9OTHfJDfFxpgVtC6TxeusJwoxp1Rcx56YEEBW7axFshxam87iSkLDZM71PExddiUGwuFwWG/evHk6LlsYVaRkDqGuLVqASci4K8VgUpHWTJcko2uWJ4Pss3oHKIWVrFGX0MV7RYvfpaV3SSkVrliaZTCpKNo17nWyevW9SzKpz9NeaTk+T+4cicU42TaBc8015MbC5BG2vaqssBNvT0hJS2Sl7jlKknYcj0ta4XcHvWtkgnWfJBXpitdTQlryRtS/pyxhMBgMBoOAixne58+fn36xXSpsssZdKxmCVmyyiOq+TNP/8OHDWuvZIlHJRGWUlBuTBU526HzpzoJPYxNYwCwmoXiQa1Kb0o71qqJ47esaRdLiZoq5k6Ni3IclDK4prkvFJ06n0/r+++83Rd2uQFvzwsJfd/wuxljH7cYv6H8qaaHYdyenlgqz69xSbq5rd0SQlTOGzNT2OiYhFfHSmndjoXXuGs7qf5qDtGa7BqrnUMsSeIx6DjaRTvGk7n8UrRCciDi/11JMuY6NrIVeCHc/+MwmabH6PLDwXGBBeL2uVDROyUa3drhWKAHmPEupsJ7rw62dyqqH4Q0Gg8FgUHBxluZff/319EsuS9i1F6GVyeyb+rmOR+uRVoz2qZYdC37ZokKNUWsRubZVrE7ZgTqW2JPLtBNS81Baz2s9M8kkJUYh4no8xiYYy3MMj7EixhWcNZiEdGkpuxYfbI3joBgeG6iKma+1LYhNc+pieNwntbWpMQetEcXhxPB0DGaN1nO79i/u/VrbrOAUO3JF5Ok52rNP12Jlrec5qRY+m5SmeHO9Bs0jm+GyGbNjoS5uTShLU3DZpeeyVpn5W8eTMgM7MXMyD855d32M5XcNWbmvkOQIXfY7r4Pxc5f1niTFumbSZHD0OnUCEvxOYpzWZVfX2PgwvMFgMBgMCi5meJ8/f376NWWsRdvUV2Z0OgaY6uBSLKJaN2JprJlKLXjqcVPLDZfVRPFk+pw51k7ih8zL1RXxmhkX6SSzyHZ5fY7hJT+/YqBd49Ya5+viUQ8PDxs2WO8LhaVTI9GueTCZCC3Was3KSv306dNa63mtMvPNxUdpibLRsMsk5vsUy9sT1yLTdrV7vKe8h5ybtZ7nh14WjqnOCdtQ6Z5KtLpjMFpfj4+PrZX+8PCwie+42ix+1klU0WNAVsY1lMSX6zZkPvX8KfOV30NOWozfm8kj03kHyOwcw+dnuj/8PxvfumtOsn917SR2Lbi2R/rO2yM8TgzDGwwGg8FV4CKGd39/v/788882FkQmx0xEoTKBLguvHl+/6K4GKLX40D6u1oRKCorluHoiWfCsh6FFT795PX5XT7hW38STdXL6vIsz0dql9eTmm812eax6DI2tWoopjnc4/LsBLO9T3V7zQlUeWaZdjDDF0pjlVtcqM0aT4kYF54Hrj+o2Doz/7LFOXex0LW9F83lK686tw3OtXVgXutaWwbF1VWoeutbzfFXm7a4xXb/AcfE9PTM8/lrb+UiZkO64nK9OIYRj4dp03wOspT2nnrPWdt5TpmWdW3pXmH3ssjMFF0+uY3J1oVw79Cg4lR5m0e+p4Xway66tBoPBYDD4xjE/eIPBYDC4ClxceP7ly5cn+uhS4lOhMgP1Ls2YVJ901lF+JqXofEyWqYHZRPV1fgoEV3CsTGbp3IQMQDO92kklsWSBc8PCzfo33QWdwDULsuXmowvSJf9U13ByOx6Px/XmzZtNZ2qX3syC5eQ2rqCLhz0GnZSZ1kgSSnaSWBwTA+h85d91X7pvXPFycpmltPG1ts9g6uvm5KGSJFsnNsFyBEr0ue7Y7ro6t9T9/f2mFKiuZ94rutudeLiQymBceMKdu56Hxfdum1Ra4pLy+N2RhMh5rArOf3Jx1s+4zlK5WeeeTKU7bm4Ezj0l2+r/6vdClyz3Yry7thoMBoPB4BvHxQyvswbW2gY7UxprtQxYLM5O3RTfrb/mTCJQoTnFo6uFwHY8tM5c53GOVUgBWoeU2q3rdck/fGXJAf9fz8OCcyd7JWgbSn6lItJ6nM4SFg6Hw4v0YZduzEQd3UPt0yU2pGJhXU8VHhCYpMB15xJRUkd4JWi41kyOFdXrooXvShrIxtjZu84958JJSK3l5dZ4D3n/XWKCrlXCDU7cme8p3/bw8NAyvNPptClCrtfDgnjdB7YH65JWzokJdC14+N3hGFcqneGx6hjpSUoF79xure0znBKSnFwgGR2Zv/veIQslnBwjhcc5DsfMUznZHgzDGwwGg8FV4CKGdzgc1vF4fPqFJZtba2thC7Q2Kt69e7fW2oqPJgmm+n9aCMl6clJmKqpkurCT0UrNDWkBu5R2srLEIGrhvdgNGYPed+K7KWWacPEzMQdaTamUop7P7Ufoc1cwzyaqirExXuaKrNO90zGcmAAtd967Loab7iljr/WzFMtLJS7172Sts1C87qNtGc9MseuKJCLuGJ7GL0k+HkPHr+tb/3MsjTgej+v29nYz107MWfOu54elJ91apQekayKbxNVZ4lBZDSUZ+Z3hUv7JIFP8y30/cR2ksgv3TCfGda5Q3IGxSccKGf/l81WfnXNMssMwvMFgMBhcBS5ieGv928LQr3vX4oUyQNy2WhW09pO4KiWL6r4sFmc8plpajHHJ8tQYmXVWx5sKL5NAsxs/i8aVzVaL8/k/vTK+JWuxWk0UhU2st943WqqUiRKcYEC1/vf6052VRpFjMXDdF60L10CSFinFoxXbddYsY6hch27cbLzK9dFJsKUYhMv0PcdgXRyOnhc+e3wGXXE0nxHGwp2Qsovr1LFXdsJn7tWrV63Ffjqd4nzVa+AaoXB7Rcr63RObTpmWKbu1jumc9FtFYqGc0665Kr0DqSGs+yxJfQn1XneiE/XVnY/r6hJBh71F52sNwxsMBoPBleDiGN7hcNhYjK5RKi1vWpe12alAH32qh6qWImVmZDkyBqYMsrWe2ZMYkDL4umxNZjbRqugkjOir11hltTDDr36msXIOmC1Ya6nY2iU1Ra37kLkyzuNYb5I3clCWJhlRnSfNg85BiTHWVtYxCMkidnV4AueL11OZXhKCpmXfSTyda8zphNU1fr2yibDYcP2b8atzrbvW2rIbMn3H4pz8U50Dx2jIolOzZ3e8LpuR8T3Gf+s8pRiqrpExMBc7ZkyXjMutA46Zz1zdjmPjmDu5vVRfyvXnxpgEv7vcgZRByvE47wCPz3vhztfV5SYMwxsMBoPBVeDiOrzHx8eNQkW17JJiB0VIXWZn8uPqmGI7Lj4mdqBMMR1fzK6OS40+mcnH+EgdI5lJp2zAMdIqJsNzTQ7TZ7Qo1drGzee5ppS1ro3WGNl7Z7HWbNAuhqf1U1FZreZSVjgZsGMBqbVTN0bhnCCzawtDZRONkfGyOrdk44wZcux1jng8nUdzpNfqMeG2ZHhJwaiC1rr2cc1+GS8XuloqQWP4+vVrfJYOh8O6ubnZZNHuUU0RXPYsRckTq3HjoieHjMQ1e04el64+lvvyOUwx3gqqTSWh/bptEsHuYvrMY0hz5DwKAs/TtZa6RHz9aZ/dWw4Gg8Fg8A1jfvAGg8FgcBW42KV5d3e36ZnkaHtKm3YFkqkQk6mpOkZNUaU7QG5P0Vy5OKuL4/379y+Ox8QAwUnu8PpSENlRfRbOk85Xd0EqrtQxWFBdx5q6VtPF5WSPdBxto/l0yR5MUugC6AJdZfWak9AvE2ac9JvcnnSddy5WlmKoHyLnybk0WVhMWbzqYqTwN12JdI/XeWSyCl2clBqrY+MzyPXnknJ4f1g07or/WU7CfZ07jGUE9X/E4XBYp9NpU8juXJpc20zUqC70JJTNZ45i7xX8/qHr0X038jxdUXkSnk/X5wQvOF8cYycbmOaE46nbnuuL50rEOCYnQ5aw53vn6Xy7txwMBoPB4BvGxYXnTrqm/pJThJiMSJZvtYD1K68AvAsw1/f1199ZnHUblSdUS19SZizAJcNzlgPlnxhUdYkQtJqThFU9H4PQ+kxJKmQ7lYFpHpmGznvjLDsyPFrBlV2RqTw8PJwVkO6Eep2g9Fq+JEJgIkaSfHJd7Fl6wXlzSSv0UOgzblvXt9YgGV5K33YyeGR2lBar9yUVlmseaT3X90wWSO1p6j3i9TA138EJQnTJBzVpxUmwsWxIx+2KuylOzvWVWvFUkNVwnXVyZEzqcYlhqeymk7/jtgITahyLSuUhrtif49sru+iSVhJzdV6P5IXYg2F4g8FgMLgKXBzD+/r1ayufIzAOol9oFcrWmANTu/XKmIqzSGi10FKg2PJa2XpIVkwF5Xr2pMSmeByttNrChvJgYh8s62AsZ61ndkHGSr98vW9s55SKpOv1MuZ2d3fXzl29ftcWJBW5uniPoGtMBbpMla5Iccsk2OyQGF6NMzMWSEbUlSUk4Qa+OlaYUrwZG69xrcT+OK+V9bj2VvX6nCeI8cPj8RjZigQv9rAZsj+m2dc1z3ZU3Jexu87jk+KxDqnUp4upEcnD1ImACGRc1TuUhMzJ+PewqiS03hXjJzbYPb/nPEsvxrRrq8FgMBgMvnEcLvF/Hg6Hf621/uf/bjiD/wf478fHx//iP2ftDHZg1s7gn8KuHeKiH7zBYDAYDL5VjEtzMBgMBleB+cEbDAaDwVVgfvAGg8FgcBWYH7zBYDAYXAXmB28wGAwGV4H5wRsMBoPBVWB+8AaDwWBwFZgfvMFgMBhcBeYHbzAYDAZXgf8FCau8sOkNX54AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -744,7 +720,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuYZVdZ5t+vbt1d1d3pWzoJaQlJuERE0chNUYOKwOOoCCjwjIxkQI3K6Og4w6iDAj54mUFEYESjKDGKclERheEiYIxRUBGQmxBCEnJPpzvd1d1V3V3VVWv+WPs9Z9V31j51TtU5p8456/09Tz279jr7ss4+a++93u/71rcshAAhhBBi3JnY6goIIYQQg0AvPCGEEEWgF54QQogi0AtPCCFEEeiFJ4QQogj0whNCCFEEHb/wzOx7zexGMztsZqfN7Mtm9pdm9ox+VlBsHWZ2nZkFM7vLzFraipm9vPo8mNlUUn67mV23gfM9rDrW1UnZK5JzBDM7V7W93zezizf4vX7KzJ69wX1vMLObOtx2LO8ZM3uK+01Om9nnzOwXzWyH29bM7AfM7ENmdtTMlqv29FYz+9aa4/9Nddz/2uN6P8zVu+7vhh6d74rqeM/v0fEeV90Pu1359uo8P9uL82wWM3t29fveUtXrfV3s+13VPXa/mZ01szvN7E/N7FG9qNvU+psAZvaTAF4H4A8AvBrAAoDLAfwHAN8GoOMvJEaORQAXAfhWAB9yn/0ggJMAdrnyZwE4sYFz3QvgGwB8KfPZNwFYATAN4NEAXgng683syhDCapfn+SkANwH4iw3UsSMKuWd+EsC/AJgF8HQALwfwcMR2ATObBPBWxPbwhwDeAOBBAF8B4PsBfMjM9oYQ5nlAMzuEeH1QHed1Pawv21fKRwBcB+DapGwjbTfH7dX5vtij4z0O8Rq/CWvreLY6zx09Os9meQ6ArwbwD4htoxv2A/gnAK8HcBTAwwD8PICPmtlXhRDu2VTNQgjr/iFeyHfWfDbRyTF69Qdg2yDPV/If4oPgLgAfBHCd++ybAKxW2wQAU32qwytyxwfwQ1X5V27gmLcD+OMN1ucGADd1sN3Y3jMAnlJd+6e68jdX5fuq9ZdV68+pOc7TAMy6sp+r9nlPtXxMn69NAPCqrbqWXdb1R6v6HtqqOnRYz4nk/48BeN8mj/fY6nu/ZLN169SkuQ/AfbkPQtK7NrOrKwn7LZXp5lRlxvitjKnjlWb2cTM7YWZHzOzDZvYktw1NJ882s98zswcA3F999kgze2dlLjpjZneY2Tucae18M/sdM7u7ksefN7Mf6eQLV/u+sZLUlNZ/ZGbbkm2eYWYfqUw689V3fpQ7zg1mdlO17SerbT9hZk80sykz+xUzu9fMHrRoQpxL9qUJ5sfN7Deq77poZu82s4d18j16xPUAnmNmaW/tBwH8PeLLYw3mTJpJu3iSmb2l+s3vMbPXm9n2ZLsWk2Yb2MOdTvZ/vJn9WWUyO21mX6iu745km9sBXALgBxITVlrXx1bt6mhyjJ/LfMenVu130cw+Y2bPcpsUd88gqj0AeLiZzQD4GQDvCSH8ec11+EAIYdEVvxDAZxFVONe3BDP7qJl9sLqW/2ZmZwG8qPrsp6vPj5nZcTP7BzN7mtu/xaRpTVPf483sH6v2c7OZvWiduvwogN+uVu9M2u6FljFpmtmvWTT/X1F9h8XqvnxB9fmLqvOeqj6/xJ3PzOwlZvbpqq0cNrNrzey89a5b6N7ish5Hq+W5pH6PNrO/MrMHkrb8tvUO1JFJE8A/A3ihmd0K4F0hhJvX2f6PAbwdwBsBPAHALwKYA3B1ss3FAF6LqCDmALwAwI1m9vUhhE+7470BwHsB/CcAfEC+B8AxAD8G4Eh1vO9E5Ze0aOe+CcAORJVwG6LZ5bfNbFsI4Q11lTezvQD+EfGh9SoAnwJwEMAzAcwAOGvRD/MeAB8G8DwAOwH8EoCbzOxrQwh3J4d8OKJZ65cBnALwfwD8VfU3VV2Xr6y2OQzgpa5KPwfgkwD+c1WPXwHwAYsSf7nue/SQP0f8Lb8XwJ9UL6nvB/DfEc1TnfJHAP4UwLMRTTCvQPwNX97BvpNmBjRNmj+P+GD8TLLNQxGv03WIptavQmx7lwHgQ+dZAP4fgH+rzg8ADwCAmT0BUcHdAuCnEdvmIwB8javL5Yimtl9FbHs/A+AdZnZFCOGWapui7pmKS6vlcUTz2x7ENt4RZvZEAI8C8LMhhC+a2UcQOyY/G0JY6fQ4PeYxiPflLyGq9geq8ksQzaBfRnwmPAvA+8zs20MIf7vOMfcjdiJfUx3zRwD8vpn9ewjhIzX7/AXi9X0pgO9J6nEUwGTNPgbgHQB+B/GZ85MArjezrwLwjQD+B+Jv/TrEe/Nbkn1fC+DHq+WHEO/zXwbwaDO7qg8vtbUVj+bwScTv/OuIbf4d1WeG2LbvAnAN4jU4hOguaE+HkvKRiA/9UP0dQXxwPc1td3X1+e+48v+F6H95ZM3xJxEf/F8A8Lqk/CnV8d7ptj9QlX9Pmzr/AoAzAB7hyn+vqn+tCQ6xca8A+Lo223wM0TY/lZRdCmAZwG8kZTdUZZclZd9T1f+D7ph/AeC2ZP1h1Xafw1ozwZOr8hdvVuKv87tfB+Cu6v/rUZkmADwX0be3GxmTI6Lquy7TLl7pjv9uADdnvu/VSRmP7//+HcDlbepuVZt6AaLpdb+rX4tJE8CNAO6EM7O5bfh7PiIpO1i1l58v4Z5JzvG0qg67AXwfYmfuE9U2z6u2eXoX7e2N1Xe+uFq/pjrGM/rYxmtNmgA+WtWnrdkcscMwVbWftyXlV1THf35S9taq7BuSslkA8wBev855siZNxA5NQOwosOzXqrLnunYaEBX/XFL+0qr8gqTtrgJ4qTvPt3f7e2CDJk3Ejmx6r6f32yG2v26P25FJM8Te6dcBuArxLf9JxB7N+83sZZld3u7W31o1iiewoDIJ/a2ZHUWUqsvVhc5F47zTrR8FcCuAXzOzHzazR2T2eQai8/M2i6bDqcp0837EHtaj23zlpwH4lxDCJ3IfWjQ7XonYuBsyO4RwG6Kj9iq3y80hhFuT9c9Xy/e77T4P4FDVg0n5s5D0qEII/4DYu/EO+LZUZoqp5K+uZ5jjegBPNbMLEc2Z7wohdOvcf49b/zSiKuuEJwF4PIAnIr5wFxBV7gXcwMx2m9n/NrMvITrylxF7roao1GqxaK59MoC3hFYzm+eLIYRGIEII4TCiMn9oUlbCPfP+qg7ziL3vv0W0AnSNRVfB8wF8ODStI29D/B3bmjUz7bpTy1UnfCGE8O+Zcz7RzN5rZocRX4rLAL4Z+d/CcywkSq5qb7ei83uhG96bnOcwosK/KYSwkGzD5xGtNU9HvGfe4q7pjYi/R6oE+8XzEJ9vLwCwBOBvLAY0AdFVcBeAXzezF5vZ5Z0etONhCSGElRDCjSGEl4UQnopoJvo0gJdXJsCU+2vWLwYAM7sS0ax0CsCL0XyY/Rua5peUe11dAoDvQOw9/CqAm83sVjP7sWSzg4g/zLL7e0f1+f42X3c/4gWtYy9ig7g389l9iKbQlGNufalN+RRaTRT+erKs27D8F2LttchFQ9bxYcTv+9OIN8T1XZ4biBF6KWcBbMttmOFfQwgfCyH8cwjhHYjmi0sB/Ldkmzcj9oJfj9g+Hg/gJdVnuXaVshfxfmj3uxP/PYD4Xdaco4B75iVVHR4DYGcI4btDCF+uPruzWl6CzvhuxN/gnWa2x8z2VOXvB/BMc6H4jqsyde4VLfe4mV2GGMg1i2j2+wbE6/BhrN/OgA7bTw9YCSGcdGVLqH8e8fwHq+VdWHtNlxDv13bPzp4QQvhsCOGjIYS3ICrLA4guFFQi49sQLSivBnCLRb/oi9c77oZ7QiGEe8zsTYj230cg+izIBYj+lXQdANhzew5iD/XZIfFBVQ+B47nTZc5/K4AfrNTQYwH8FwBvNLPbQwjvRezRHgZQN5bnC22+Hv0bdRyr6nRh5rMLkW/Qm+GCmrJPdnmcv0a8McnZTncMIaya2VsQ7f6HAXygy3P3lBDC/WZ2BJV/rfIrPhPAK0IIjVB2M/vqDg95DNGMs6GxfZ0whvfMzSGEj9Vs+7GqXt8N4Hdrtkmhivut6s/zXMRw/Bz/irXtupe0XEfEztZOxOjTIyw0s519qsOgYZDIUxAtKZ4HMmV9I4RwxGKw2cOTsi8CeIHF8cFfixjk9CYzuzW08aF2pPDM7KKaj66olj4a7blu/fmID5N/qtZnEc0AjcZkZt+GDUj6EPkkmj39x1TL91X1u6NSBv7P93xSPgDgCWb22JpzLiDeZN+fmgUtRjp9I6Kfp5d8nyUDv83syYh27DoHd5YQwlF3DXygw3r8AeJL81Vh64IIADTa5AE0b75tiMrY9+6vzux+FtFZ36AyK92EeBPtyOyzkfrlGNd7xp9jCTEo47vM7Dm5bczsO8xs1swOIppT34U43tP/3Yc2Zs0Qwklf107ruUEYrZxGDT4GMVCnn7CDuun2uQ4fQNNXmGsHX17vAL3EYoKJhyNjkQohrIYQPo5K/aHZlrN0qvA+Y2YfRDSp3IbopP5ORPPR20MIfsDjd5rZq1G9OBCj8K5P/B7vQ3wjX2dmb0b0Q/wCmr3ZtpjZ1yD2kt+GGFE3ifhgO4doVgBidNHzAPy9mb0WsXc6h3hDf3MI4ZltTvFaAP8RwAfN7FWIZqgDiAriR6sb/xcQfVLvNrM3Ivb4Xonoz3hNJ9+jC3YB+EszuxbA+YgmqS8iMSua2e8DeGEIoZf+izVUfqkN+Wh6wBPNbAWxk3YJotJcQYxAQwhh3sw+CuBnzOxeRJX+IuQV2+cAfLOZfRfiw/RICOF2xJvm7wB8xMxeg2jSuQzA14YQfqLL+pZ2z+T4VUQl+TaLQz/+GtH6cQhRsT4b0Yz5A4jPoteGEP4uU/c/BPBSM7vM+cK3ig8gRkr/sZm9DvH7vBL9H/j9uWr5E2b2J4i/XbdWnnUJIXzOzH4TwO9WL/K/R3zZPhQxvuENIYR/rNu/MvleWa3uRYyw/r5q/aMhhLuq7X4EMVDpySGEf6rK3o0YIf8ZxEjrKxA7ZgsAfrPa5gmI1//tiC/BacRxuUtYT2x0EtmCeJP+FWII7pnq5J9AjO6ZSba7GrFn8C2IvbVTiA38twDscMf8CcQHwWnE8TtPrSp7Q7LNU5Af4HoQMXPDzYjRgg8iPqie7rbbi3gT31ZdjMOIP95PdfCdDyKaYu6t9r2zOue2ZJtnIKqs04gvuncBeJQ7zg1wA5XRjEb8IVf+CiQRj8l2Pw7gNxDVzCLii/ZSt+91qFw1vfpDEqXZZps1da7Kbkc+SvPhuX0z1+XqzPH5twrgHsSH5xMy1/W9iDfKYQD/F9H8FAA8JdnuiqodLFafpXX9uurYx6vf9fMA/me737PmO4/tPVN3jpr2YYiBBx9GNBsvI3Yk/hTxJQrEh/YtAKzmGI+szveKXrbv6tjrRWl+sOazF1TX8gxih/g5iIFGn3ftLBeleUvNudaNZkQMgLoHTbV/IeqjNM9l9r8PwJtc2TOq/b/Jlb+oameLiPfUZxH94xetU0dGk+b+np/Z7klJ2csQ75Pj1Xk/j/hS/Ipkm4sRg9G+WG1zFDFg6tvXu35WHaAnWBww/GbEENJb1tlcrIPFweW3AfjhEEKd/0KMMLpnhBgcmi1BCCFEEeiFJ4QQogh6atIUQgghhhUpPCGEEEWgF54QQogi0AtPCCFEEXQ1SHl2djbs2bNn/Q3bwLzIaX5kX2Yud/JG/Izch8fq5BjttvGfyfeZvwbz8/NYXFz0ya970nbEeHP8+HG1HbEh6tqOp6sX3p49e3DNNddsvFYJk5PN/MhTU7EaMzMzAICJiYk126ysxCxWq6vrT8FU9yLKlbOMSx7fL3PblMrZs830m2fOnFnz2dTUFK6/Pp9TupdtR4wn1157bbZcbUesR13b8cikKYQQogj6lndxPajagKaiW16OeX+9siNUV97kmX5GOjFletVWp/TWO05JpL+JrpMQYpSQwhNCCFEEW6bwUryS8wEnOUW3Hu2Uhld0dcpOaqWVVM3x/3PnzjWWumaDhdYQWknS//19I0uGKB0pPCGEEEWgF54QQogiGAqTpg9G4dKX54YG0KTjTTE+iCUdBlEXrOI/F01y14pBRvxseXl56IdtpKa/9Rim78J6T09PA2gO4dm+fTsAYNu2bY1tOcyH+3Cd8DekKyH3m9JMvbS0BKA5HGVhYaEn30eIrUAKTwghRBEMhcIj7HH6IJZO9unVdiJPbvA//2fvfyuDVrzSoaqhIvKqB1g/o0/uO7OMSogKiEsqo81ch1Stsf4s43LHjh0AgJ07dwIAZmdnG/tQ/fklqfueQPN7MamAX1LhHT9+vLHP/Px8N1+vZ6TnPe+887akDmK0kMITQghRBEOl8MTwkvPhsYzqJoQwEIWXqpm5uTkATcXDJZUQlR+VEpfAWr9uDqo1qh6gqXROnz69Zrm4uLjmc14Tvz/Qam1gPXyd0+/K78nl7t271yyp9IDmNaCy43Gpbnn+dDgJoVr334/Kjp/zvABwzz33AACOHj2KQXLkyJHG/1J4ohOk8IQQQhSBFJ7oCB/Zl/4/qIH6VDFpb55lVEVceh9XTj1RAfkoRq9c04TZVHInTpxYs6RKo18w5yv0ys5HXrLOaR1ZfyoqfnfOHsByKr/0eHU+PCo6qtFcNGpdhDTZtWtX4//zzz8fQPPaUBX2C+87FqJTpPCEEEIUgRSe6AiqoNTfk1N9/YCKx6u5tF51daIKoALzUxql+/jxn/yuaTQnj0MVxXUfBZqb79GnsiPcxy/T4/sUYl41pj5DX8bvw3JeA16bdF+WUa2xrvRD+ujUtC5Un/1WeIwQTesgRCdI4QkhhCgCKTzREX5cG9BUAVQfS0tLffHj8ZgnT55cswSa6oL18wrMTy6c+rO834/7eEWWqjWWUQnVRW2mSpLb1mUD4vFZt1RF+3F+XqHmMp94Veb35e/GfVNF5rOv1Pnw2k2O3MnUXJuBKveiiy7qy/HF+CKFJ4QQogj0whNCCFEEMmmKrkhNmvyfJrjV1dUNzV24HjQJ9jsMnaZNn3Q5N1id29BceOrUqTXr3cB9HnzwwTXnAFoHtHMYBM/vB4qn23JfP/B91OGQDCG6RQpPCCFEEUjhiY7wSZOBZnACFcnq6upIT62UG7KwFaTDPJggmdedgS3cJg3gEUK0RwpPCCFEEUjhiY6gjygNR68b2DxM+MHe3UwAO0zQH8flZuDvNarX4uMf/zgA4Morr9zimoh+0a+hLaPZ4oUQQogukcITHZFTbz7p8MzMTF+iNEluILiH9fRJnPtZr1FjVJUd+dSnPgVACk90z2i3fCGEEKJDpPBER1AVpDZ1r6J27NjRU/XA8X30Feam3uEYOUYxch9GM466mhFNONHs/v37Aay1Oqw3ma8YLfqWlq4vRxVCCCGGDCk80RFUVzlfWL+i/jgujj35XC+emUbShMvA2uwoYjxghCrbA7PbAGsnBRaiDik8IYQQRSCFJzqCiinNZ0nFRf/ZyspKT2zvVIz03fH4rEN6Dv7vJ4kV48Pq6ipOnjzZyCPKaYHSMYlSeKITpPCEEEIUgV54QgghikAmTdERnCqHS6AZ+k/T49TUVE8GePMYNGHSxEnT5tzcXGNbbrNt27ZNn1cMJysrK5ifn29Mn0Sz9bAk+xZby8zMTMcBc1J4QgghikAKD83gi2FMfjws8Bql4f5UexwSMDEx0ZOgFSo8rypzE7KK8Wd1dRULCws4cuQIAODYsWMAgEOHDm1ltcSQ0I1VSQpPCCFEEUjhQcpuo1DZpQqvl+zYsaOnxxOjyblz53Ds2LGGstu7dy+Apu9YlAmfN9PT0x2rPCk8IYQQRSCFJ7oiTe/lp95RAl/RD5aWlnD77bdjYWEBQNOHe++99za2ufTSSwFoGqgSkcITQgghHFJ4oitSPx2jJjkGbnJyUj1s0XPOnj2L2267rdHe6HNP08jRn6fxmOWQRm1L4QkhhBAJUnhi07Cn1a9JG4VYXV1t8RHv2rVri2ojhoGNRIVL4QkhhCgCvfCEEEIUgUyaYsPQhMnl8vKyzJqiL0xMTLQEJhw9erTx/2WXXTboKokths+abubhlMITQghRBMUovNThzelmpEa6h9cOaL1+p0+fXvO5EL1gYmIC27dvb9zDVHqpwhPlsri42PFzRwpPCCFEEYy9wmNvMA1hVbLojcNE0SnsXUnhiX4xNTXVovDStsh7WuntyuHs2bON/6XwhBBCiIRiFN7y8vIW12Q8SHvV7FWxrJsUP0J0ipmtaVe01pw+fbpRxt7+7OzsYCsnRgopPCGEEEUw9gpPPqXeQBWXRmZSNbNMCk/0gxACVldXW9pW2haPHz8OQApPtEcKTwghRBHohSe6IoTQ+Dt37hzOnTuHiYkJTExMSOGJvrC6uorFxcXG+srKClZWVjAzM9P4O378eEPlCVGHXnhCCCGKQC88IYQQRTD2QSuiN3BgbxoERPNlOthXJs3umZ6eBtC8tkqMsJYQAs6cOYOZmRkAzfkXT5w40diG11AD0PsDr+cwpmX0w1baIYUnhBCiCKTwREewR5cqPPa0l5aWtqROowp7ywyh92okHdx/6tSpwVVsSDEzTE9P48yZMwCA7du3A1irhO+77z4AwJ49ewAA559//oBrOd4Ms9Whm5nPpfCEEEIUgRSe6IicwvNl586dGyrb/rBA/xIVMX1R27ZtW1OeS4pMFhYWAAyX72RQUOHxujDhQdqzv//++wEABw4cAADs2rULQFMNCgFI4QkhhCgEKTzREZ0oPE0P1ISqDmgqOSo4XjeuU+FRsaT7sozLNDKxFKampnDgwIGGimMbS33H9HVyGyq8hzzkIQC68/OI0WJlZaVjy4dagRBCiCKQwhNt8X6TtCfFyC32tJeWlor0MeVIla73OfmozHZJkan2qBK5XtJ0V9PT0zh06BCOHDkCoHl9Ul8npwei0rvjjjsANK/5vn37AMinVzpSeEIIIYpACk+0hb3oXBYQ/s/lmTNn5MOryF0nQpXBa8vxZbx2uWvof4eSmJmZwUUXXYTPfvazAPKRqt6fzOWxY8cANH+Dubm5xj78n+pZjD9SeEIIIYpACk9kScfWAU0/XapWvOqQD68zqOjou6PCoF8u9c95FV0i09PTeMhDHtIYv0h/XRp56XM98nqxPZZ8/UQTKTwhhBBFoBeeEEKIIpBJU2Sh2cib1HLBGDR3KrVYd5w+fXrNUuSZnJzEvn37sHv3bgDA/Pw8gLXDOWjS9EM+/LRWafscdFvlPaUgma1DCk8IIUQRSOGJNbDXm6o2IB8yz21KGgQttg4mhs4FUDGgxSs9Brb4tG5pWT9J60glz7oxpZwYHFJ4QgghikBdDLEG33v2wxNywxKIEvSKfnLo0CEAwIMPPghgbVvkYH6v6Hzy7UGoupTU+sFzc1jKzp07B1oXIYUnhBCiEKTwxBp8NBt70Z0ovBLTXonBcf755wNoqrm0Ldb5w/wUTGkUJ/1+/cAPfAeaKlO+u61DCk8IIUQRqKshADR9DVRtfgoWr/TSbTT2TgyCPXv2AAB27NgBoOkLawetDl7ppWX9gOdN/dqclFZsHVJ4QgghikAKTwBoHXfnFV0usbH/TD480U+YoeSCCy4AANx9992Nz3xy6Ny4u0HCiXrFcCGFJ4QQogj0whNCCFEEMmkKAE3zpDdp0lxJkycT4Kb/cx8NPBeDgMMT7r///pbPfBv0ps1BDzwXw4WeUEIIIYpACq9gckMM6hQd19OpbPwQhqmpKfWgRd+hwktTc3HKIOKVXW6YgCgP/fpCCCGKQAqvYKjagGYPmAqPyo6KjuvtBvsqZZIYBEwttm/fvkYZ22mdhWHcLQ+576eEEK1I4QkhhCgCdckLxE/9k5ZxSSW3uLi4ZpmqQk8/k/EK4eGEsEBzyiBaKKh4OACc1odxVT053yTvZSbMrlsfdSYmJjpW8FJ4QgghikAKr0Doj0vThFHR0RdCRcf1hYUFAGtVoU8l1k1PS4jNwhRjAHD48GEAzWhNqhi2R66n0wONEzm1Rl8nr4G34nj1m5JGYw8709PTUnhCCCFEihRegdAPl0Zc1ik6bpOLzqTCk+9ObDUHDx4E0Gy3VC1+WVJSZ1pw+N257id3Ti09TNA9Nze3Zl/uc+LEiX5Xu2uk8IQQQgiHFF5BeLV26tSpxmf8nz1kKj6WUxWmPSk/qWY3PS0hegn9effeey+A5iSxtD6wXZaUacX77DqBVhtmUaLPk9eNk9iePHmyZ/XcKP637YRyfn0hhBBFoxeeEEKIIpBJsyBonuSwBJot0/9pqvDb0tSRmg9oUqBJc9u2bTJpii3loQ99KIBmO96I2atkGMDiTb+8ju0STwwaBthMTk4qaEUIIYRIkcIrAAaicMneb6rw+BmVHbfxg8vTQar8TApPDAt79uwB0FQiHHytxObdURe8kk4APSx0E4gkhSeEEKII1O0ZY9gbo1rjoHI/BCEt45AF9pBp0+eA3TQ1EwejlhTqLYYbtkUqO7ZXJUfYHKk1aFhIB8x3mhRcTyohhBBFIIU3xrBXRqXnozPTwaN+UDoVno/STH0h/J+fjct0I2L04cBzttFxTRrdb4b5nk6fTVJ4QgghRIIU3hjilZ1Xb/w8TQjtlRyjs7hk9GVqN2cvmpw5c6YlqlOIrYBjtMT4QlW3tLTU8XNHCk8IIUQRSOGNCWkPZz2FR5WWU3j03VHZsRfF9RQ/tmlpaaljW7oQQgwaKTwhhBBFoBeeEEKIIpBJc0xIhxjQLOmXNHvSpJmGHNO8yTIGqdBEyX1Tk6U3aa6srMikKYQYWqTwhBBCFIEU3oiTm+qHZVRyDDjhem6gOMu4r5/pWIPLhRCjjhSeEEKIIpDCG1GouJgAOp22w6cF8768HPS9eR8eyU37Q8Uov50QYhSQwhNCCFEEUngjik8Tlqb88oPHfdqdunKg6bPz0ZmcHiiNzPS+QTOT2hNCDC1SeEIIIYpACm/E8FGZOb8cVZlXcO3W1/PZUfn1nj1uAAAUZklEQVSlk73S38c6+HF5QggxTEjhCSGEKAJ1yUcEqjGqKR9N2W56jE78ajxOquCA1gk002P5xNLKtCKEGGak8IQQQhSBXnhCCCGKQCbNEYHDEPyQAm+CTMu4pDnSmy1ZnvuMpslOBqDLjCmE6Cfps2oz6Q2l8IQQQhSBFN6Q4xNB56bp8XhFx3UGoFDFpWqt7ngs5zId4L5t27Y1x1HQihCiH6Sqzk9d1g1SeEIIIYpACm9IqRtmkPPZ1ZX7KX58erB0oLg/H/f1g9jpQ8wxOTmZ9fEJIUSvkMITQggh1sG6eUua2QMAvty/6ogx4JIQwvm+UG1HdIDajtgo2bbj6eqFJ4QQQowqMmkKIYQoAr3whBBCFIFeeEIIIYpALzwhhBBF0NU4vNnZ2bBnz56WcmYDAYD5+fk1n/ksH349LfM5IDWma/Q4fvw4FhcXW364ycnJMD093ciYwCWztQDA7t27ue0gqiqGjLq2U/fcEe3xAYk+a1Juu7pt1jt2N+Se6z6Xb7fvgLq24+nqhbdnzx5cc801LeU33XRT4/8bb7wRADAzMwMA2Lt3LwDg4MGDjWOkS6D5oONyx44dAIDt27d3Uz0xBFx77bXZ8qmpKVx88cU4evQogGYy7Mc97nGNba666ioAzQHyoizq2k7dc0d0B5NGMD0g59ZMk0n45PTsmPIF5xNRpAkrfPIKv+5fZkCzc8t7fm5uDkCzI8x3wXrUtR2PTJpCCCGKoCepxU6cONH4n70GKjw/FY1PbJwrkylz/AghYGlpqSUJNnt0gJSdEP2EbiSqtpzroM7c6dWaV37pNuuZRdslrc8dt5dI4QkhhCiCnii8xcXFljI/gWid0ks/89uK8SGEgOXl5RYfgfy0QgwWPnvrJnkGWp/BdYornbbH+/3qzpse29fBJ4ZuN9H1RtCbRQghRBHohSeEEKIINmXSpHTNzZHmTZjtxuH5cFWZNMcPmjS9Y1u/tRCDJTcfpofPdP+M5/3LsdcMQku38dtyG+6TurPq6tCv54KeNkIIIYpgUwqPQxBy8A3tlV0uaMU7MzVl0fgRQsC5c+caPUYOQdi5c+dWVksIkcGrwDQjEgDs2rULwFrrHpVc3eB1vi/SzFzcxz/z+2Xtk8ITQghRBJtSeHz7pqHlDCtlz4A9+XY50nJpasT4sbKy0tKTk8ITYnRJfXDtfIIp6TC2Y8eOAWj1GfbrXSCFJ4QQogh6MvA8tbMypZi3AbOcii+XWiwXwSnGC7YVtgMNPBeiLGZnZ1vKqPT6beWTwhNCCFEEm5JSVG1cAs1oHvbc/Ta5KE329n0kkBgvzKyh3um709x3QpSLV3sLCwsA+jeBgBSeEEKIItiUwmPEHSfzBJrjMzjtC9fZo+fEr5zsFeh8kj8x2phZo+dGVZ9mahBCjB+MvPRTgwGtY7D9FEa9RgpPCCFEEeiFJ4QQogg2ZdJ84IEHAAAnT55slNGUSZMllyz3M6GLMjAzTE5ONkwWbBcKVBJivPFz3eXcGDRz+mFt7ebs2wh66wghhCiCTSm8U6dOAVjrYGSQCpccnuBTi6WOyzSZaG4bLn26MjE6mBlmZmYav+GBAwcA5AehCiHGBz7Pac3JWXX8dEO5FJQ9qUtPjyaEEEIMKZtSeH6Qefo/e/J+Ilg/gSDQtNNyHw5T4D6aLmj0MTNs27at8ftffvnlW1wjIcSw4NWfkkcLIYQQm2BTCs/76YBWPxttsBycThttbmAh3+78zKch61e6GdF/GKVJtX7o0KEtrpEQYljpVxS/FJ4QQogi2JTC45TtaaQdlR3HU1CV8Y3tJ/oDmqrQR2vSl0cFqejM0YWJoy+88EIAShotNk9q8ZGfX3SCFJ4QQogi2JTCowJLE0FTwfmxF8RHZAJN5cZePxNMKwvH+MAoTY6/E2KzSNWJbpHCE0IIUQSbUnh33HEHgLXT+9CvR9XGpR9XkUZ2cn/m2xTjx+TkJHbt2qXfWPQFWpT4XGE0eCfTT9GS5GMIxPghhSeEEKII9MITQghRBD1JLZaaqThVEM2UNGlyGAKDVdKAFJm5xp+JiQnMzc01ApKE2CzpsAQ/hInPGW/S5HApoBlgJ1NmOUjhCSGEKIJNKTwmAL7zzjsbZVRyDBlmD4u9KZIOPPapxMT4wemBzjvvvK2uihgT0mEJTF1I1Vc3ZIFBdWI04O+aBjl6cmkq65DCE0IIUQSbUnhkcXGx5f+dO3cCaO1xcT19K584cQJA09/HVGX9SiAqBs/ExAS2b9+uCV9FX+DzhP64bnr9Ynjh75j6YjeTYlJvFCGEEEXQE4WX2ldpc01VH9CMmqKfLmdLp6Lj21ypxcaHqakp7N+/f6urIcacTgaai9GBlsE0ktYrvG4sgVJ4QgghiqAnCm9hYaHxvx93x5RiVHZUeukYGv+ZpgEaP6anp3HRRRdtdTWEECOAV+rpOv/3k4x3ghSeEEKIIuh5lCbhW5cKj3ZWPzFs+hmV3qCiM33kqOgvGmcphOgEP9lAuu4/6wYpPCGEEEWgF54QQogi6IlJc9++fY3/v/SlL7WUAU3zIc1aaWAKTZjpLOj9hEMneL5BnVcIIUQ9fE/wncDgxzQ15WZcI1J4QgghiqAn0iY35QtDR32Qig9QAVoHpfeDNJks/5eyE0KI4cEn/c4FqNQlBu8EKTwhhBBF0BOJk/rjqOj8NEF8U/thCsBgwtXTXoFSlolxIx1as5kesBBbCd8LTCWWs8bx3bKRBCVSeEIIIYqgJwqPUwEBTfXkB4/7aJs06iaXbqzXaKohMc6k7VtT44he4y11XE+tCT5Owz/Pc4k+/HH9u4AWw/R9sZn3hN4CQgghiqAnCi994+7duxdA843Mt723t6Y9A59gWgjRHamq430kpSd6BZ/xbFs5P7GPqKxTeDlV6CPmeR4eM5eKciNI4QkhhCiCnii8U6dONf6nzZXZTHx0pu8p+P+FEJuDys73xjeTdFeMD7S+dTIOuS7Bfs6Ptt5zvBtlxuN7vyCwuenjpPCEEEIUgV54QgghiqAnJs25ubnG/3fffTeAVlMmzSxMOUaTJ9CUqBo6IETv4D2n+0qk0JSZSwLioUlx0HOH+sCrzZgxU3QnCCGEKIKeD0vYv3//ms98irEc6omuj+9pCdEpClYROdoNE/B0Moh8I9SpTD+dXK8S/esNI4QQogh6Pj/OeeedB6Dpq1tcXATQ2hOQmusOKTvRKT6Um+n+GI6+tLS0NRXrEfxeUq4bg9eN7SBVT7np24DW1JC59GHdDGHw56sr7/V7Qm8dIYQQRdBzhcdoGqYY4xs6jcoE1vbO1FMbf1ZWVjA/P9+wAIj+4Xvp3v/B3vqoph6TtWNj+MT9VHipiqpTVD6JAY+xkQHoucm4eZxOIkfbHW89pPCEEEIUQc8VHtm+ffuaJdOP5fwH6rGNP6urqzh58qQU3gDw41pz6ZlGmZwPT8+Q9aEqo7VtI+qM1gIuc1aCzaSK3Egb7SZSdDzuACGEEGId+qbwPOkksaJ3jMr4vNXVVZw+fXrgGRtKIc1E4bNS+Gs9LtMHpb5JfhfFA7Ti7zk/STfXN8KoJf6XwhNCCFEEA1N4orfUjZMZVlZXVxtjMsXG8f44qpyc76MuewV9OaPCxMQEZmZmGv5/qrhUyfK78rsN+/0wSLyyKxkpPCGEEEWgF54QQogikEmzR3hTU79CpmnK5MzyOdMNzz1MgSwhBCwvLytoZZPUhW3nBvP6tkFz36gFdphZo70DrYmFU2jipfmTKQ6HCZ/qTebXwSGFJ4QQogik8HpEXa86xad6Yk+b5T79Wg4O5PfHTHvt7NX6yXe3GjPD2bNnAQA7duzY4tqMJv635HqqgLzC5zqv/agRQsDKykpDGbF9p1YCPxTDK+FhUnq8Z7nk7zIs9+k4I4UnhBCiCKTwBsB6IeRcn52dbSmjnd+HlPtj5Xw7Pvx8GHx7x44dAyCF12vSlH2jPv1PHd5nl677dGr+fuC2qdLbKkXF4Tm01oxLIoBRQApPCCFEEUjhDZC66Lhcr9Rv65WeX+YmceSSPcdOIiP7qf7MDCdPnuzb8cV4YmaYmJhoaddpe6ZKYhl9mt66kov2pA9t0Mq4XRJn0R+k8IQQQhSBFN4AYO+zzndHUht+nZKj8qMvImf3Z4+RS/Zu/aSNubFb/cLMMD093aj/RiZ63CpyEbC8pqOWPHcUYduhOstZSrzC82qQv1eqpuosH4NWesM0XnbcGf6njRBCCNEDpPB6hFdxOf8Ce3Lcxo/dS3t6642hq1N8QDNizWc18Vlg0jr2O/sG/TD8PvPz8wCAvXv39vW8m8Gra6DpA5LfZevITWjr7zsfxZxr8z7ymcuNKDx/fkVcDidSeEIIIYpALzwhhBBFIJNmj/BmyTTVUc5hntsnZ24hdSbH3Bxn3DYdqpAeP2d2HYQJJjVpLiwsABhukyavjwJTtpYQQiO9GNAcsJ3eE2zT/K18qrFcajHuw205PCGXAN7jXRhMe8Y68n4cppRmQgpPCCFEIUjh9Zic4vK9zjqllaosbksHOgep1oUw5wJefGqxXKLpQcEpXvg9Tp06BWBtQmPNyCxyMOCJ7blumA/QvG/abZMeF2i1wNTdJ7lANH8+Ba0MN1J4QgghikAKr8fkpgmiHd9PXOn9DDmV5gdoe39fLiG0r4NPMUYG2QudmJjAzMxMQ9Gxt3769OnGNlJ4IgetA7yPvL8OaJ1qy1tTuJ7zdXt1lp4XyA9PoeWlTnXKdzecSOEJIYQoAim8AVA31Q/VTruUST6SzA9Izw2ArlOBW5nGa2JiArOzs43vzB5wmkx69+7djW2FIJOTk9i5c2fD75uWE95DLKO1oC4SM/3fp4nrJqmAt8SI4UZPFiGEEEUghTcA0l4l0Grfb2fv56SwPnKMvVAfiQm0KrxOx/T1E/ph+H1OnDgBoDkZJtD0i3CclRBkcnKy0Xb8eDygNeKZis4rv1QV+jGzPuJyXCfSLRkpPCGEEEUghTfkpAooZceOHQCavdGc0iPDkuh4YmKipaed9rjpo5HCa+Kjc31icB9pCLRGBY86IQScPXu2JRIy9fV6nx3XqQrTYxFeO44NpS+P1ziNIBbjgRSeEEKIIpDCG1HY+6TSS8fUeX9GnS9vkJgZpqamWnreqf+SUwYdOHBg8BUcAnI5TonPClJSVODKygpOnTqFXbt2AWgdY5eW0TrA9sX7Izc+lv/TisK2yXuLilJZU8YHKTwhhBBFoBeeEEKIIpBJc0TxU9ak694EQzOYHx4xSMwM09PTjbpxmZrmaKKiafO8884bcC23lpzJ2Zsu64KTxtnsFkLA0tJSS+BOOmxg586dAFpNmVzmUvDxms3NzQFomjYZxML1cbm2PmlFXZL59DM+V3zwz6gihSeEEKIIpPBGFB+GneJTirUbsjBImEAaaPai0/pTiZaaeDeXpNhT4mDoEAKWl5dbgrBy7ZqKhG2J7S2XQJ3tjOqFSo9BKwyA2UrLSC/h9/VWllxCbbZBPmdyk1SPIlJ4QgghikAKb8Rgj5W0S7ScC8Xeavz0LamPir1yIVJCCGvaMNt12vb9feDThFGppO2Nyo1+Pio9JjFfWFgA0EyIMEz30Uaou79S1eZVNK/NqCs7IoUnhBCiCNSlHhF8VKZPLZVjGHukPtIu7Zl73yN9Dn6iXFEWZgYza/h96VtLU9DV3Q8+TR0VC4CWyYip8FjuIz799ESjhk/Nlps2bFyUXB1SeEIIIYpACm/E8D2wXERfbozbsOAn5Ey/Dz+jspPCEylUXlym7cJHJLPt+ETTqR+L6o+Rr4zSpJL04/NGXeER3nPealQCUnhCCCGKQApvCMjZzanc/LgiH42WGx/DXu4wTw/TblojfjbM9ReDI4TQGIsHNBVXqtaoyuh3o+KjemN5bkohn42F+/goTW4PjM/YvNKQwhNCCFEEeuEJIYQoApk0BwDNKDTV+fnp2gWX+FBib8LkMk05NeqmwBKd6aI9q6urjTbuzfxAMwCFps1c2ixg7b3hZ0fntj4RNefhoykVAI4dOwag3DR4o4oUnhBCiCKQwusxXs2l//vgFCq7doM9/b5+Hz9Ie5SpGxgryoapxXzbT+8bqjHeB0wATdXGZbtUfGx/VIucnip3j/E4J0+eXHM+tdnhRgpPCCFEEUjh9ZicavODX+v8cLnJUNsdFxj96WJ8Mmwh6uB9wzafSxNGpcWhBNzWDzkAWtUefYL06TGJdA4/TMgrPjGcSOEJIYQoAim8HpPz4fleoLfz+6jNFB/J6SeyHMYE0d3Qzn/Zzt8iysUrPaAZnTk/Pw+gqdJY7lONAa3RwFRtfvJT+vLS7f0969uxlN5woieKEEKIIpDC6xG+t5hTLlRpuQksO4U9VUWDidJJ03sxstL78jh2jmnCGM2Zsp6/nEmkU3+zn1zZ++G9shTDgRSeEEKIIpDC2yS+d0jV1i4hNGFv0C9z+4+Lz06IXpHeL1RUnDKI61R49Kml+zDK0/vWvWqjby+14tCv57f1GV4efPDBxj66d7ceKTwhhBBFoBeeEEKIIpBJc5NsxqTJ9dz8dX5OOJlDhFhLer/w/uBQBS4ZxELTZm7+xbrhQgxSyd3LDJLZt2/fmrp410N6zOPHj6/5TAweKTwhhBBFIIW3Sdj788MS0p7demrND1dI/x/1qX6EGARUbn4YAINXGHiS3nu8d6nkvHXGK7/0nvZTCzENmd82p+ak9LYOKTwhhBBFIIXXI3xvLVV8dYoup+yIlJ0QneMTs/tk0Vym/jg/WNz77HhMP/Fsug/vbQ6H4CB1Ks52EzNzElklkRgcUnhCCCGKwLpREmb2AIAv9686Ygy4JIRwvi9U2xEdoLYjNkq27Xi6euEJIYQQo4pMmkIIIYpALzwhhBBFoBeeEEKIItALTwghRBHohSeEEKII9MITQghRBHrhCSGEKAK98IQQQhSBXnhCCCGK4P8DB809WRZ06AcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmUZFld57+/3Koqs6q6qrp6o2toullEwK2FBgVpVASOoyIgyBkZ6UGlcR0cRwZUBDzgMh5lkBFtN9pWFERFVAZoAdu2FdRmkaWFZumN3qqruiqrMrOqMivzzh/3fSNu/uK+yIjMiMiIuN/POXlevhtvufHivvfu9/f73d+1EAKEEEKIcWdiuysghBBCDAK98IQQQhSBXnhCCCGKQC88IYQQRaAXnhBCiCLQC08IIUQRdPzCM7PvNrMbzeywmZ0yszvM7K/M7Fn9rKDYPszsWjMLZvZlM2tpK2b2murzYGZTSfntZnbtJs73sOpYVyVlr03OEczsbNX2ft/MLt7k93q5mT13k/veYGY3dbjtWN4zZvY095ucMrNbzOznzWyX29bM7PvM7INmdtTMVqr29HYz++aa4/9dddz/3uN6P8zVu+7vhh6d79HV8V7Yo+M9vrof9rryndV5XtmL82wVM3tu9ft+oarX+7rc/xlm9uGqXR0xs7ea2cFe1G1q400AM/sJAG8C8AcAfhXAIoCHA/jPAL4FQFdfSIwUSwAuAvDNAD7oPvt+ACcB7HHlzwFwYhPnuhfANwD4YuazpwBYBTAN4DEAXgfg683s8hDCWpfneTmAmwD85Sbq2BGF3DM/AeDfAMwCeCaA1wB4BGK7gJlNAng7Ynv4QwBvBvAggP8E4PkAPmhm+0MI8zygmR1CvD6ojvOmHtaX7SvlwwCuBXBNUraZtpvj9up8n+/R8R6PeI1/D+vreKY6z509Os9WeR6ArwLwT4hto2PM7FsBvBfAX1fHOQ/AGwD8nZldEUJY2VLNQggb/iFeyHfVfDbRyTF69QdgxyDPV/If4oPgywA+AOBa99lTAKxV2wQAU32qw2tzxwfwg1X5V27imLcD+ONN1ucGADd1sN3Y3jMAnlZd+6e78rdW5Qeq9Z+r1p9Xc5xnAJh1Za+q9nlPtXxcn69NAPD67bqWXdb1ZVV9D21XHTqs50Ty/80A3tfFvjcB+Iw7xlOq7/2SrdatU5PmAQD35T4ISe/azK6qJOxTK9PNQmXG+M2MqeN1ZvYxMztRydYPmdmT3DY0nTzXzH7XzB4AcH/12aPM7F2Vuei0md1pZu90prXzzOy3zexuMztjZp81s5d28oWrfd9iZndV+95lZn9kZjuSbZ6VSO/56jt/hTvODWZ2U7XtJ6ptP25mTzSzKTP7RTO718wetGhCnEv2pQnmR8zs16vvumRmf2tmD+vke/SI6wA8z8zS3tr3A/hHxJfHOsyZNJN28SQze1v1m99jZr9hZjuT7VpMmm1gD3c62f8JZvbnlcnslJl9rrq+u5JtbgdwCYDvS0xYaV2/pmpXR5NjvCrzHZ9etd8lM/u0mT3HbVLcPYOo9gDgEWY2A+CnALwnhPAXNdfh+hDCkit+MeID7+XJ+rZgZh8xsw9U1/LfzewMgJdUn/1k9fkxMztuZv9kZs9w+7eYNK1p6nuCmf1z1X5uNbOXbFCXlwH4rWr1rqTtXmgZk6aZ/bJF8/+jq++wVN2XL6o+f0l13oXq80vc+czMftTMPlW1lcNmdo2ZnbPRdQvdW1wa5wRwBYDr02OEEG5CtJA8J9n24upZcm/VTu8xs782s/3tztGRSRPAvwJ4sZl9CcC7Qwi3brD9HwP4MwBvqb7AzwOYA3BVss3FAN6IqCDmALwIwI1m9vUhhE+5470ZUeb+VwB8QL4HwDEAPwzgSHW8b0fll7Ro574JwC5ElXAbotnlt8xsRwjhzXWVry7aPyM+tF4P4JMAzgfwbAAzAM5Y9MO8B8CHAHwvgN0AfgHATWb2tSGEu5NDPgLRrPUGAAsA/jeiZP9rxN/gKgBfWW1zGMArXJVeBeATAP5bVY9fBHC9mT02bFXid8ZfIP6W3w3gT6qX1PMB/E9E81Sn/BGAPwXwXEQTzGsRf8PXdLDvZLwfGibNn0F8MH462eahiNfpWkRT62MR295lAPjQeQ6A/wfg36vzA8ADAGBmVyAquC8A+EnEtvlIAF/t6vJwRFPbLyG2vZ8C8E4ze3QI4QvVNkXdMxWXVsvjiOa3fYhtvCPM7IkAvgLAK0MInzezDyN2TF4ZQljt9Dg95nGI9+UvIKr2B6rySxDNoHcgPhOeA+B9ZvatIYS/3+CY5yJ2In+tOuZLAfy+mf1HCOHDNfv8JeL1fQWA70rqcRTAZM0+BuCdAH4b8ZnzEwCuM7PHAvhGAD+N+Fu/CfHefGqy7xsB/Ei1/CDiff4GAI8xsys3+1LrgFUAy5nyM4i/BXk74nX8HwDuBnAhgG9Ds63n6VBmPgrxoR+qvyOID65nuO2uqj7/bVf+s9UXeVTN8ScRH/yfA/CmpPxp1fHe5bY/WJV/V5s6vxrAaQCPdOW/W9W/1gSH2LhXAXxdm21uRrTNTyVllwJYAfDrSdkNVdllSdl3VfX/gDvmXwK4LVl/WLXdLVgv8Z9clf/AViX+Br/7tQC+XP1/HSrTBIAXIPr29iJjckRUfddm2sXr3PH/FsCtme97VVLG4/u//wDw8DZ1t6pNvQjR9Hquq1+LSRPAjQDugjOzuW34ez4yKTu/ai8/U8I9k5zjGVUd9gL4HsTO3Merbb632uaZXbS3t1Tf+eJq/erqGM/qYxuvNWkC+EhVn7Zmc8QOw1TVft6RlD+6Ov4Lk7K3V2XfkJTNApgH8BsbnCdr0kR8yAfEjgLLfrkqe4FrpwFR8c8l5a+oyi9I2u4agFe483xrt78HujdpfhLAP7iyR1Xnna/WDfGl+NJuf++OTJoh9k6/DsCViG/5TyD2aN5vZj+X2eXP3PrbERvFFSyoTEJ/b2ZHAZxFfIg8CrGH53mXWz8K4EsAftnMfsjMHpnZ51kA/gXAbRZNh1OV6eb9iD2Dx7T5ys8A8G8hhI/nPrRodrwcsXGfZXkI4TZER+2VbpdbQwhfStY/Wy3f77b7LIBDlbRP+fOwXuL/E2Iv3zvg21KZKaaSv7qeYY7rADzdzC5ENGe+O4TQrXP/PW79U4iqrBOeBOAJAJ6I+MJdRFS5F3ADM9trZr9iZl9E7BGuIPZcDVGp1WLRXPtkAG8LrWY2z+dDCI1AhBDCYURl/tCkrIR75v1VHeYRlcTfI1oBusaiq+CFAD4UmtaRdyD+jm3Nmpl23anlqhM+F0L4j8w5n2hm7zWzw4gvxRUA34T8b+E5FhIlV7W3L6Hze6Eb3puc5zCiwr8phLCYbMPnEa01z0S8Z97mrumNiL9HqgR7zZsAPNXMXm3RvP5YxICnVcSXMEJ8630UwM+Y2Y9V23REx8MSQgirIYQbQwg/F0J4OqKZ6FMAXpOxm95fs34xAJjZ5YhmpQUAP4Dmw+zfkZek97q6BET5ejOiWelWM/uSmf1wstn5iD/Mivt7Z/X5uW2+7rmIL5Q69iM2iHszn92HaApNOebWl9uUT6HVROGvJ8u6Dct/MdZfi1w0ZB0fQvy+P4l4Q1zX5bmBGKGXcgbAjtyGGT4aQrg5hPCvIYR3IkY7Xopo0iBvRewF/wZi+3gCgB+tPmtv6oi/6QTa/+7Efw8gfpd15yjgnvnRqg6PA7A7hPCdIYQ7qs/uqpaXoDO+E/E3eJeZ7TOzfVX5+wE821wovuPKTJ17Rcs9bmaXIQZyzSKa/b4B8Tp8CBu3M6DD9tMDVkMIJ13ZMuqfRzz/+dXyy1h/TZcR79d2z86t8gcAfgUx4Okw4v3yecTrnf4Wz0GMdP5ZAJ+26Ld/VUYsrGPTPaEQwj1m9nuIb+RHIvosyAWI/pV0HYi2ViCGm54F8NyQ+KCqh8Dx3Oky5/8SgO+vvuDXAPgxAG8xs9tDCO9F7NEeBlA3ludzbb4e/Rt1HKvqdGHmswuRb9Bb4YKask90eZy/QbwxyZlOdwwhrJnZ2xDt/ocBXN/luXtKCOF+MzuCyr9W+RWfDeC1IYRGKLuZfVWHhzyG2IPc1Ni+ThjDe+bWEMLNNdveXNXrOwH8Ts02KVRxv1n9eV6AGI6f46NY3657Sct1ROxs7UaMPj3CQjPb3ac6DJqj1fJpiJYUzwOZsp5QdcxeaWavR+zQ3h9COGxmtwH4u2S7+xA7ty8zs8cgxjf8IqLgeGvd8TtSeGZ2Uc1Hj66WPhrtBW79hYgPk3+p1mcRJWqjMZnZt2ATkj5EPoFmT5+OzfdV9buzUgb+z/d8Uq4HcIWZfU3NORcRb7Lnp2ZBi5FO34jo5+kl32PJwG8zezKAQ4hjiDomhHDUXQMf6LARf4D40nx92L4gAgCNNnkQzZtvB6Iy9r37qzK7n0F01jeozEo3AXiRuejILdQvx7jeM/4cy4hBGd9hZs/LbWNm32Zms2Z2PqI59d2I4z39331oY9YMIZz0de20npuE0coNd4aZPQ4xUKefsIO65fa5Adej6SvMtYM7NjrAVgkhLIQQPlW97L4bsZ1fU7PtLSGEn0aMK3hcbhvSqcL7tJl9ANGkchuik/rbEd+wfxZC8AMev93MfhXViwMxCu+6xO/xPsSw42vN7K2IfohXo9mbbYuZfTViL/kdiBF1k4gPtrOIZgUgRhd9L4B/NLM3IvZO5xBv6G8KITy7zSneCOC/APhA1dP4FOLD9dkAXlbd+K9G9En9rZm9BbHH9zpEf8avdfI9umAPgL8ys2sQB2L+EqLMb5gVzez3Abw4hNBL/8U6Kr/Upnw0PeCJZraK2Em7BFFpriJGoCGEMG9mHwHwU2Z2L6JKfwnyiu0WAN9kZt+B+DA9EkK4HTHq9B8AfNjMfg3RpHMZgK8NIfx4l/Ut7Z7J8UuISvIdFod+/A2i9eMQomJ9LqIZ8/sQn0VvDCH8Q6bufwjgFWZ2mfOFbxfXI6qJPzazNyF+n9eh/wO/b6mWP25mf4L423Vr5dmQEMItZvZ/APxO9SL/R8SX7UMR4xveHEL457r9K5Pv5dXqfsQI6++p1j8SQvhytd1LEQOVnhxC+Jeq7ArExAMfR7zXr0TsmL0+hPDRapsLEDtHf4LYRlcRg6Z2IVGBdV+uk8iZlyGGF9+BGMW1WFXoFQBmku2uQuwZPLWq0AJiA/9NALvcMX8c8UFwCnH8ztMRldENyTZPQ36A6/mIjsxbEd/qDyI+qJ7pttuPeBPfhmh/Poz44728g+98PqIp5t5q37uqc+5ItnkWoso6hfiiezeAr3DHuQFuoDKa0Yg/6MpfiyTiMdnuRwD8OqKaWUJ80V7q9r0WlUWgV39IojTbbLOuzlXZ7chHaT4it2/mulyVOT7/1gDcg/jwvCJzXd+LOCThMID/i2h+CgCelmz36KodLFWfpXX9uurYx6vf9bMA/le737PmO4/tPVN3jpr2YYiRsh9CNBuvIHYk/hTxJQrEh/YXAFjNMRil99petu/q2BtFaX6g5rMXVdfyNGKH+HmIgUafde0sF6X5hZpzbRjNiBgAdQ+aav9C1Edpns3sfx+A33Nlz6r2f4orf0nVzpYQ76nPIPrHL9qgjowmzf29MLPdk5Kyr0UcEjZfnfdmAC9yx59DjBy+BfF+ma+u3/M3un5WHaAnWBww/FbEsOYvbLC52ACLg8tvA/BDIYQ6/4UYYXTPCDE4NFuCEEKIItALTwghRBH01KQphBBCDCtSeEIIIYpALzwhhBBFoBeeEEKIIuhqkPLs7GzYt2/fxhu2ganO0pRnvsynQ9uMn5H78FidHKPdNv4z+T7z12B+fh5LS0st+ex60XbEeHP8+HG1HbEp6tqOp6sX3r59+3D11VdvvlYJk5PN/MhTU7EaMzMzAICJiYl126yuxixWa2sbT8FU9yLKlbOMSx7fL3PblMqZM830m6dPn1732dTUFK67Lp9TupdtR4wn11yTzRyltiM2pK7teGTSFEIIUQR9y7u4EVRtQFPRrazEvL9e2RGqq9wMEF55dWLK9KqtTultdJySSH8TXSchxCghhSeEEKIItk3hpXgl5wNONpjTL0s7peEVXZ2yk1ppJVVz/P/s2bONpa7ZYKE1hFaS9H9/38iSIUpHCk8IIUQR6IUnhBCiCIbCpOmDUbj05bmhATTpeFOMD2JJh0HUBav4z0WT3LVikBE/W1lZGfphG6npbyOG6buw3tPT0wCaQ3h27twJANixY0djWw7z4T5cJ/wN6UrI/aY0Uy8vLwNoDkdZXFzsyfcRYjuQwhNCCFEEQ6HwCHucPoilk316tZ3Ikxv8z//Z+9/OoBWvdKhqqIi86gE2zuiT+84soxKiAuKSymgr1yFVa6w/y7jctWsXAGD37t0AgNnZ2cY+VH9+Seq+J9D8Xkwq4JdUeMePH2/sMz8/383X6xnpec8555xtqYMYLaTwhBBCFMFQKTwxvOR8eCyjugkhDEThpWpmbm4OQFPxcEklROVHpcQlsN6vm4NqjaoHaCqdU6dOrVsuLS2t+5zXxO8PtFobWA9f5/S78ntyuXfv3nVLKj2geQ2o7HhcqluePx1OQqjW/fejsuPnPC8A3HPPPQCAo0ePYpAcOXKk8b8UnugEKTwhhBBFIIUnOsJH9qX/D2qgPlVM2ptnGVURl97HlVNPVEA+itEr1zRhNpXciRMn1i2p0ugXzPkKvbLzkZesc1pH1p+Kit+dswewnMovPV6dD4+Kjmo0F41aFyFN9uzZ0/j/vPPOA9C8NlSF/cL7joXoFCk8IYQQRSCFJzqCKij19+RUXz+g4vFqLq1XXZ2oAqjA/JRG6T5+/Ce/axrNyeNQRXHdR4Hm5nv0qewI9/HL9Pg+hZhXjanP0Jfx+7Cc14DXJt2XZVRrrCv9kD46Na0L1We/FR4jRNM6CNEJUnhCCCGKQApPdIQf1wY0VQDVx/Lycl/8eDzmyZMn1y2Bprpg/bwC85MLp/4s7/fjPl6RpWqNZVRCdVGbqZLktnXZgHh81i1V0X6cn1eoucwnXpX5ffm7cd9UkfnsK3U+vHaTI3cyNddWoMq96KKL+nJ8Mb5I4QkhhCgCvfCEEEIUgUyaoitSkyb/pwlubW1tU3MXbgRNgv0OQ6dp0yddzg1W5zY0Fy4sLKxb7wbu8+CDD647B9A6oJ3DIHh+P1A83Zb7+oHvow6HZAjRLVJ4QgghikAKT3SET5oMNIMTqEjW1tZGemql3JCF7SAd5sEEybzuDGzhNmkAjxCiPVJ4QgghikAKT3QEfURpOHrdwOZhwg/27mYC2GGC/jgutwJ/r1G9Fh/72McAAJdffvk210T0i34NbRnNFi+EEEJ0iRSe6IicevNJh2dmZvoSpUlyA8E9rKdP4tzPeo0ao6rsyCc/+UkAUniie0a75QshhBAdIoUnOoKqILWpexW1a9eunqoHju+jrzA39Q7HyDGKkfswmnHU1Yxowolmzz33XADrrQ4bTeYrRou+paXry1GFEEKIIUMKT3QE1VXOF9avqD+Oi2NPPteLZ6aRNOEysD47ihgPGKHK9sDsNsD6SYGFqEMKTwghRBFI4YmOoGJK81lScdF/trq62hPbOxUjfXc8PuuQnoP/+0lixfiwtraGkydPNvKIclqgdEyiFJ7oBCk8IYQQRaAXnhBCiCKQSVN0BKfK4RJohv7T9Dg1NdWTAd48Bk2YNHHStDk3N9fYltvs2LFjy+cVw8nq6irm5+cb0yfRbD0syb7F9jIzM9NxwJwUnhBCiCKQwkMz+GIYkx8PC7xGabg/1R6HBExMTPQkaIUKz6vK3ISsYvxZW1vD4uIijhw5AgA4duwYAODQoUPbWS0xJHRjVZLCE0IIUQRSeJCy2yxUdqnC6yW7du3q6fHEaHL27FkcO3asoez2798PoOk7FmXC58309HTHKk8KTwghRBFI4YmuSNN7+al3lMBX9IPl5WXcfvvtWFxcBND04d57772NbS699FIAmgaqRKTwhBBCCIcUnuiK1E/HqEmOgZucnFQPW/ScM2fO4Lbbbmu0N/rc0zRy9OdpPGY5pFHbUnhCCCFEghSe2DLsafVr0kYh1tbWWnzEe/bs2abaiGFgM1HhUnhCCCGKQC88IYQQRSCTptg0NGFyubKyIrOm6AsTExMtgQlHjx5t/H/ZZZcNukpim+Gzppt5OKXwhBBCFEExCi91eHO6GamR7uG1A1qv36lTp9Z9LkQvmJiYwM6dOxv3MJVeqvBEuSwtLXX83JHCE0IIUQRjr/DYG0xDWJUsevMwUXQKe1dSeKJfTE1NtSi8tC3ynlZ6u3I4c+ZM438pPCGEECKhGIW3srKyzTUZD9JeNXtVLOsmxY8QnWJm69oVrTWnTp1qlLG3Pzs7O9jKiZFCCk8IIUQRjL3Ck0+pN1DFpZGZVM0sk8IT/SCEgLW1tZa2lbbF48ePA5DCE+2RwhNCCFEEeuGJrgghNP7Onj2Ls2fPYmJiAhMTE1J4oi+sra1haWmpsb66uorV1VXMzMw0/o4fP95QeULUoReeEEKIItALTwghRBGMfdCK6A0c2JsGAdF8mQ72lUmze6anpwE0r60SI6wnhIDTp09jZmYGQHP+xRMnTjS24TXUAPT+wOs5jGkZ/bCVdkjhCSGEKAIpPNER7NGlCo897eXl5W2p06jC3jJD6L0aSQf3LywsDK5iQ4qZYXp6GqdPnwYA7Ny5E8B6JXzfffcBAPbt2wcAOO+88wZcy/FmmK0O3cx8LoUnhBCiCKTwREfkFJ4vO3v27FDZ9ocF+peoiOmL2rFjx7ryXFJksri4CGC4fCeDggqP14UJD9Ke/f333w8AOHjwIABgz549AJpqUAhACk8IIUQhSOGJjuhE4Wl6oCZUdUBTyVHB8bpxnQqPiiXdl2VcppGJpTA1NYWDBw82VBzbWOo7pq+T21DhPeQhDwHQnZ9HjBarq6sdWz7UCoQQQhSBFJ5oi/ebpD0pRm6xp728vFykjylHqnS9z8lHZbZLiky1R5XI9ZKmu5qensahQ4dw5MgRAM3rk/o6OT0Qld6dd94JoHnNDxw4AEA+vdKRwhNCCFEEUniiLexF57KA8H8uT58+LR9eRe46EaoMXluOL+O1y11D/zuUxMzMDC666CJ85jOfAZCPVPX+ZC6PHTsGoPkbzM3NNfbh/1TPYvyRwhNCCFEEUngiSzq2Dmj66VK14lWHfHidQUVH3x0VBv1yqX/Oq+gSmZ6exkMe8pDG+EX669LIS5/rkdeL7bHk6yeaSOEJIYQoAr3whBBCFIFMmiILzUbepJYLxqC5U6nFuuPUqVPrliLP5OQkDhw4gL179wIA5ufnAawfzkGTph/y4ae1StvnoNsq7ykFyWwfUnhCCCGKQApPrIO93lS1AfmQeW5T0iBosX0wMXQugIoBLV7pMbDFp3VLy/pJWkcqedaNKeXE4JDCE0IIUQTqYoh1+N6zH56QG5ZAlKBX9JNDhw4BAB588EEA69siB/N7ReeTbw9C1aWk1g+em8NSdu/ePdC6CCk8IYQQhSCFJ9bho9nYi+5E4ZWY9koMjvPOOw9AU82lbbHOH+anYEqjOOn36wd+4DvQVJny3W0fUnhCCCGKQF0NAaDpa6Bq81OweKWXbqOxd2IQ7Nu3DwCwa9cuAE1fWDtodfBKLy3rBzxv6tfmpLRi+5DCE0IIUQRSeAJA67g7r+hyiY39Z/LhiX7CDCUXXHABAODuu+9ufOaTQ+fG3Q0STtQrhgspPCGEEEWgF54QQogikElTAGiaJ71Jk+ZKmjyZADf9n/to4LkYBByecP/997d85tugN20OeuC5GC70hBJCCFEEUngFkxtiUKfouJ5OZeOHMExNTakHLfoOFV6amotTBhGv7HLDBER56NcXQghRBFJ4BUPVBjR7wFR4VHZUdFxvN9hXKZPEIGBqsQMHDjTK2E7rLAzjbnnIfT8lhGhFCk8IIUQRqEteIH7qn7SMSyq5paWldctUFXr6mYxXCA8nhAWaUwbRQkHFwwHgtD6Mq+rJ+SZ5LzNhdt36qDMxMdGxgpfCE0IIUQRSeAVCf1yaJoyKjr4QKjquLy4uAlivCn0qsW56WkJsFaYYA4DDhw8DaEZrUsWwPXI9nR5onMipNfo6eQ28Fcer35Q0GnvYmZ6elsITQgghUqTwCoR+uDTisk7RcZtcdCYVnnx3Yrs5//zzATTbLVWLX5aU1JkWHH53rvvJnVNLDxN0z83NrduX+5w4caLf1e4aKTwhhBDCIYVXEF6tLSwsND7j/+whU/GxnKow7Un5STW76WkJ0Uvoz7v33nsBNCeJpfWB7bKkTCveZ9cJtNowixJ9nrxunMT25MmTPavnZvG/bSeU8+sLIYQoGr3whBBCFIFMmgVB8ySHJdBsmf5PU4XflqaO1HxAkwJNmjt27JBJU2wrD33oQwE02/FmzF4lwwAWb/rldWyXeGLQMMBmcnJSQStCCCFEihReATAQhUv2flOFx8+o7LiNH1yeDlLlZ1J4YljYt28fgKYS4eBrJTbvjrrglXQC6GGhm0AkKTwhhBBFoG7PGMPeGNUaB5X7IQhpGYcssIdMmz4H7KapmTgYtaRQbzHcsC1S2bG9KjnC1kitQcNCOmC+06TgelIJIYQoAim8MYa9Mio9H52ZDh71g9Kp8HyUZuoL4f/8bFymGxGjDwees42Oa9LofjPM93T6bJLCE0IIIRKk8MYQr+y8euPnaUJor+QYncUloy9Tuzl70eT06dMtUZ1CbAccoyXGF6q65eXljp87UnhCCCGKQApvTEh7OBspPKq0nMKj747Kjr0orqf4sU3Ly8sd29KFEGLQSOEJIYQoAr3whBBCFIFMmmNCOsSAZkm/pNmTJs005JjmTZYxSIUmSu6bmiy9SXN1dVUmTSHE0CKFJ4QQogik8Eac3FQ/LKOSY8AJ13MDxVnGff1MxxpcLoQYdaTwhBBCFIEU3ohCxcUE0Om0HT4tmPfl5aDvzfvwSG7aHypG+e2EEKOAFJ4QQogikMIbUXyasDTllx887tPu1JUDTZ+dj87k9EBpZKawICPxAAAUiklEQVT3DZqZ1J4QYmiRwhNCCFEEUngjho/KzPnlqMq8gmu3vpHPjsovneyV/j7WwY/LE0KIYUIKTwghRBGoSz4iUI1RTfloynbTY3TiV+NxUgUHtE6gmR7LJ5ZWphUhxDAjhSeEEKII9MITQghRBDJpjggchuCHFHgTZFrGJc2R3mzJ8txnNE12MgBdZkwhRD9Jn1VbSW8ohSeEEKIIpPCGHJ8IOjdNj8crOq4zAIUqLlVrdcdjOZfpAPcdO3asO46CVoQQ/SBVdX7qsm6QwhNCCFEEUnhDSt0wg5zPrq7cT/Hj04OlA8X9+bivH8ROH2KOycnJrI9PCCF6hRSeEEIIsQHWzVvSzB4AcEf/qiPGgEtCCOf5QrUd0QFqO2KzZNuOp6sXnhBCCDGqyKQphBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUQVfj8GZnZ8O+fftaypkNBADm5+fXfeazfPj1tMzngNSYrtHj+PHjWFpaavnhJicnw/T0dCNjApfM1gIAe/fu5baDqKoYMuraTt1zR7THByT6rEm57eq22ejY3ZB7rvtcvt2+A+rajqerF96+fftw9dVXt5TfdNNNjf9vvPFGAMDMzAwAYP/+/QCA888/v3GMdAk0H3Rc7tq1CwCwc+fObqonhoBrrrkmWz41NYWLL74YR48eBdBMhv34xz++sc2VV14JoDlAXpRFXdupe+6I7mDSCKYH5NyaaTIJn5yeHVO+4HwiijRhhU9e4df9ywxodm55z8/NzQFodoT5LtiIurbjkUlTCCFEEfQktdiJEyca/7PXQIXnp6LxiY1zZTJljh8hBCwvL7ckwWaPDpCyE6Kf0I1E1ZZzHdSZO71a88ov3WYjs2i7pPW54/YSKTwhhBBF0BOFt7S01FLmJxCtU3rpZ35bMT6EELCystLiI5CfVojBwmdv3STPQOszuE5xpdP2eL9f3XnTY/s6+MTQ7Sa63gx6swghhCgCvfCEEEIUwZZMmpSuuTnSvAmz3Tg8H64qk+b4QZOmd2zrtxZisOTmw/Twme6f8bx/OfaaQWjpNn5bbsN9UndWXR369VzQ00YIIUQRbEnhcQhCDr6hvbLLBa14Z6amLBo/Qgg4e/Zso8fIIQi7d+/ezmoJITJ4FZhmRAKAPXv2AFhv3aOSqxu8zvdFmpmL+/hnfr+sfVJ4QgghimBLCo9v3zS0nGGl7BmwJ98uR1ouTY0YP1ZXV1t6clJ4QowuqQ+unU8wJR3GduzYMQCtPsN+vQuk8IQQQhRBTwaep3ZWphTzNmCWU/HlUovlIjjFeMG2wnaggedClMXs7GxLGZVev618UnhCCCGKYEtSiqqNS6AZzcOeu98mF6XJ3r6PBBLjhZk11Dt9d5r7Tohy8WpvcXERQP8mEJDCE0IIUQRbUniMuONknkBzfAanfeE6e/Sc+JWTvQKdT/InRhsza/TcqOrTTA1CiPGDkZd+ajCgdQy2n8Ko10jhCSGEKAK98IQQQhTBlkyaDzzwAADg5MmTjTKaMmmy5JLlfiZ0UQZmhsnJyYbJgu1CgUpCjDd+rrucG4NmTj+srd2cfZtBbx0hhBBFsCWFt7CwAGC9g5FBKlxyeIJPLZY6LtNkorltuPTpysToYGaYmZlp/IYHDx4EkB+EKoQYH/g8pzUnZ9Xx0w3lUlD2pC49PZoQQggxpGxJ4flB5un/7Mn7iWD9BIJA007LfThMgftouqDRx8ywY8eOxu//8Ic/fJtrJIQYFrz6U/JoIYQQYgtsSeF5Px3Q6mejDZaD02mjzQ0s5Nudn/k0ZP1KNyP6D6M0qdYPHTq0zTUSQgwr/Yril8ITQghRBFtSeJyyPY20o7LjeAqqMr6x/UR/QFMV+mhN+vKoIBWdObowcfSFF14IQEmjxdZJLT7y84tOkMITQghRBFtSeFRgaSJoKjg/9oL4iEygqdzY62eCaWXhGB8Ypcnxd0JsFak60S1SeEIIIYpgSwrvzjvvBLB+eh/69ajauPTjKtLITu7PfJti/JicnMSePXv0G4u+QIsSnyuMBu9k+ilaknwMgRg/pPCEEEIUgV54QgghiqAnqcVSMxWnCqKZkiZNDkNgsEoakCIz1/gzMTGBubm5RkCSEFslHZbghzDxOeNNmhwuBTQD7GTKLAcpPCGEEEWwJYXHBMB33XVXo4xKjiHD7GGxN0XSgcc+lZgYPzg90DnnnLPdVRFjQjosgakLqfrqhiwwqE6MBvxd0yBHTy5NZR1SeEIIIYpgSwqPLC0ttfy/e/duAK09Lq6nb+UTJ04AaPr7mKqsXwlExeCZmJjAzp07NeGr6At8ntAf102vXwwv/B1TX+xWUkzqjSKEEKIIeqLwUvsqba6p6gOaUVP00+Vs6VR0fJsrtdj4MDU1hXPPPXe7qyHGnE4GmovRgZbBNJLWK7xuLIFSeEIIIYqgJwpvcXGx8b8fd8eUYlR2VHrpGBr/maYBGj+mp6dx0UUXbXc1hBAjgFfq6Tr/95OMd4IUnhBCiCLoeZQm4VuXCo92Vj8xbPoZld6gojN95KjoLxpnKYToBD/ZQLruP+sGKTwhhBBFoBeeEEKIIuiJSfPAgQON/7/4xS+2lAFN8yHNWmlgCk2Y6Szo/YRDJ3i+QZ1XCCFEPXxP8J3A4Mc0NeVWXCNSeEIIIYqgJ9ImN+ULQ0d9kIoPUAFaB6X3gzSZLP+XshNCiOHBJ/3OBajUJQbvBCk8IYQQRdATiZP646jo/DRBfFP7YQrAYMLV016BUpaJcSMdWrOVHrAQ2wnfC0wllrPG8d2ymQQlUnhCCCGKoCcKj1MBAU315AeP+2ibNOoml26s12iqITHOpO1bU+OIXuMtdVxPrQk+TsM/z3OJPvxx/buAFsP0fbGV94TeAkIIIYqgJwovfePu378fQPONzLe9t7emPQOfYFoI0R2pquN9JKUnegWf8WxbOT+xj6isU3g5Vegj5nkeHjOXinIzSOEJIYQogp4ovIWFhcb/tLkym4mPzvQ9Bf+/EGJrUNn53vhWku6K8YHWt07GIdcl2M/50TZ6jnejzHh87xcEtjZ9nBSeEEKIItALTwghRBH0xKQ5NzfX+P/uu+8G0GrKpJmFKcdo8gSaElVDB4ToHbzndF+JFJoyc0lAPDQpDnruUB94tRUzZoruBCGEEEXQ82EJ55577rrPfIqxHOqJbozvaQnRKQpWETnaDRPwdDKIfDPUqUw/nVyvEv3rDSOEEKIIej4/zjnnnAOg6atbWloC0NoTkJrrDik70Sk+lJvp/hiOvry8vD0V6xH8XlKum4PXje0gVU+56duA1tSQufRh3Qxh8OerK+/1e0JvHSGEEEXQc4XHaBqmGOMbOo3KBNb3ztRTG39WV1cxPz/fsACI/uF76d7/wd76qKYek7Vjc/jE/VR4qYqqU1Q+iQGPsZkB6LnJuHmcTiJH2x1vI6TwhBBCFEHPFR7ZuXPnuiXTj+X8B+qxjT9ra2s4efKkFN4A8ONac+mZRpmcD0/PkI2hKqO1bTPqjNYCLnNWgq2kitxMG+0mUnQ87gAhhBBiA/qm8DzpJLGid4zK+Ly1tTWcOnVq4BkbSiHNROGzUvhrPS7TB6W+SX4XxQO04u85P0k31zfDqCX+l8ITQghRBANTeKK31I2TGVbW1tYaYzLF5vH+OKqcnO+jLnsFfTmjwsTEBGZmZhr+f6q4VMnyu/K7Dfv9MEi8sisZKTwhhBBFoBeeEEKIIpBJs0d4U1O/QqZpyuTM8jnTDc89TIEsIQSsrKwoaGWL1IVt5wbz+rZBc9+oBXaYWaO9A62JhVNo4qX5kykOhwmf6k3m18EhhSeEEKIIpPB6RF2vOsWnemJPm+U+/VoODuT3x0x77ezV+sl3txszw5kzZwAAu3bt2ubajCb+t+R6qoC8wuc6r/2oEULA6upqQxmxfadWAj8UwyvhYVJ6vGe55O8yLPfpOCOFJ4QQogik8AbARiHkXJ+dnW0po53fh5T7Y+V8Oz78fBh8e8eOHQMghddr0pR9oz79Tx3eZ5eu+3Rq/n7gtqnS2y5FxeE5tNaMSyKAUUAKTwghRBFI4Q2Quui4XK/Ub+uVnl/mJnHkkj3HTiIj+6n+zAwnT57s2/HFeGJmmJiYaGnXaXumSmIZfZreupKL9qQPbdDKuF0SZ9EfpPCEEEIUgRTeAGDvs853R1Ibfp2So/KjLyJn92ePkUv2bv2kjbmxW/3CzDA9Pd2o/2YmetwuchGwvKajljx3FGHboTrLWUq8wvNqkL9XqqbqLB+DVnrDNF523Bn+p40QQgjRA6TweoRXcTn/Anty3MaP3Ut7ehuNoatTfEAzYs1nNfFZYNI69jv7Bv0w/D7z8/MAgP379/f1vFvBq2ug6QOS32X7yE1o6+87H8Wca/M+8pnLzSg8f35FXA4nUnhCCCGKQC88IYQQRSCTZo/wZsk01VHOYZ7bJ2duIXUmx9wcZ9w2HaqQHj9ndh2ECSY1aS4uLgIYbpMmr48CU7aXEEIjvRjQHLCd3hNs0/ytfKqxXGox7sNtOTwhlwDe410YTHvGOvJ+HKaUZkIKTwghRCFI4fWYnOLyvc46pZWqLG5LBzoHqdaFMOcCXnxqsVyi6UHBKV74PRYWFgCsT2isGZlFDgY8sT3XDfMBmvdNu23S4wKtFpi6+yQXiObPp6CV4UYKTwghRBFI4fWY3DRBtOP7iSu9nyGn0vwAbe/vyyWE9nXwKcbIIHuhExMTmJmZaSg69tZPnTrV2EYKT+SgdYD3kffXAa1TbXlrCtdzvm6vztLzAvnhKbS81KlO+e6GEyk8IYQQRSCFNwDqpvqh2mmXMslHkvkB6bkB0HUqcDvTeE1MTGB2drbxndkDTpNJ7927t7GtEGRychK7d+9u+H3TcsJ7iGW0FtRFYqb/+zRx3SQV8JYYMdzoySKEEKIIpPAGQNqrBFrt++3s/ZwU1keOsRfqIzGBVoXX6Zi+fkI/DL/PiRMnADQnwwSafhGOsxKCTE5ONtqOH48HtEY8U9F55ZeqQj9m1kdcjutEuiUjhSeEEKIIpPCGnFQBpezatQtAszeaU3pkWBIdT0xMtPS00x43fTRSeE18dK5PDO4jDYHWqOBRJ4SAM2fOtERCpr5e77PjOlVheizCa8exofTl8RqnEcRiPJDCE0IIUQRSeCMKe59UeumYOu/PqPPlDRIzw9TUVEvPO/VfcsqggwcPDr6CQ0AuxynxWUFKigpcXV3FwsIC9uzZA6B1jF1aRusA2xfvj9z4WP5PKwrbJu8tKkplTRkfpPCEEEIUgV54QgghikAmzRHFT1mTrnsTDM1gfnjEIDEzTE9PN+rGZWqao4mKps1zzjlnwLXcXnImZ2+6rAtOGmezWwgBy8vLLYE76bCB3bt3A2g1ZXKZS8HHazY3NwegadpkEAvXx+Xa+qQVdUnm08/4XPHBP6OKFJ4QQogikMIbUXwYdopPKdZuyMIgYQJpoNmLTutPJVpq4t1ckmJPiYOhQwhYWVlpCcLKtWsqErYltrdcAnW2M6oXKj0GrTAAZjstI72E39dbWXIJtdkG+ZzJTVI9ikjhCSGEKAIpvBGDPVbSLtFyLhR7u/HTt6Q+KvbKhUgJIaxrw2zXadv394FPE0alkrY3Kjf6+aj0mMR8cXERQDMhwjDdR5uh7v5KVZtX0bw2o67siBSeEEKIIlCXekTwUZk+tVSOYeyR+ki7tGfufY/0OfiJckVZmBnMrOH3pW8tTUFXdz/4NHVULABaJiOmwmO5j/j00xONGj41W27asHFRcnVI4QkhhCgCKbwRw/fAchF9uTFuw4KfkDP9PvyMyk4KT6RQeXGZtgsfkcy24xNNp34sqj9GvjJKk0rSj88bdYVHeM95q1EJSOEJIYQoAim8ISBnN6dy8+OKfDRabnwMe7nDPD1Mu2mN+Nkw118MjhBCYywe0FRcqVqjKqPfjYqP6o3luSmFfDYW7uOjNLk9MD5j80pDCk8IIUQR6IUnhBCiCGTSHAA0o9BU5+enaxdc4kOJvQmTyzTl1KibAkt0pov2rK2tNdq4N/MDzQAUmjZzabOA9feGnx2d2/pE1JyHj6ZUADh27BiActPgjSpSeEIIIYpACq/HeDWX/u+DU6js2g329Pv6ffwg7VGmbmCsKBumFvNtP71vqMZ4HzABNFUbl+1S8bH9US1yeqrcPcbjnDx5ct351GaHGyk8IYQQRSCF12Nyqs0Pfq3zw+UmQ213XGD0p4vxybCFqIP3Ddt8Lk0YlRaHEnBbP+QAaFV79AnSp8ck0jn8MCGv+MRwIoUnhBCiCKTwekzOh+d7gd7O76M2U3wkp5/IchgTRHdDO/9lO3+LKBev9IBmdOb8/DyApkpjuU81BrRGA1O1+clP6ctLt/f3rG/HUnrDiZ4oQgghikAKr0f43mJOuVCl5Saw7BT2VBUNJkonTe/FyErvy+PYOaYJYzRnykb+ciaRTv3NfnJl74f3ylIMB1J4QgghikAKb4v43iFVW7uE0IS9Qb/M7T8uPjshekV6v1BRccogrlPh0aeW7sMoT+9b96qNvr3UikO/nt/WZ3h58MEHG/vo3t1+pPCEEEIUgV54QgghikAmzS2yFZMm13Pz1/k54WQOEWI96f3C+4NDFbhkEAtNm7n5F+uGCzFIJXcvM0jmwIED6+riXQ/pMY8fP77uMzF4pPCEEEIUgRTeFmHvzw9LSHt2G6k1P1wh/X/Up/oRYhBQuflhAAxeYeBJeu/x3qWS89YZr/zSe9pPLcQ0ZH7bnJqT0ts+pPCEEEIUgRRej/C9tVTx1Sm6nLIjUnZCdI5PzO6TRXOZ+uP8YHHvs+Mx/cSz6T68tzkcgoPUqTjbTczMSWSVRGJwSOEJIYQoAutGSZjZAwDu6F91xBhwSQjhPF+otiM6QG1HbJZs2/F09cITQgghRhWZNIUQQhSBXnhCCCGKQC88IYQQRaAXnhBCiCLQC08IIUQR6IUnhBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUwf8HSZ5JdtCqKCEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -754,7 +730,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Zddd3/nd79VcKpWkQlUqSZbkKXig7aYb0iSEgFkMxs2YlUUIkERgN2ZIQgY6IQ4QAw5ThzEBQzO5IcZZzHNjE8BMjgNpCDaDbSypSiVVSSqVqqQaVVXvnf7j3O89v/c5v33evWXZkvL2d6237rvnnrPnvc9v/pWu69TQ0NDQ0PA/Olae7gY0NDQ0NDR8KNBeeA0NDQ0NWwLthdfQ0NDQsCXQXngNDQ0NDVsC7YXX0NDQ0LAl0F54DQ0NDQ1bAs/oF14p5e5SSjf7+yvJ7x8ffv+kcP1NpZQj11jnkVLKm8L3Twh1+O+hUsqvllL+6jXW8dmllH92jc++ftaGbZvcdxfa/OSs3b9RSvknpZR9yTMb+r5ge+4upXxx5XpXSrlrmfKeiZitpwee7nYsgzD/dz/dbckwG1Puq+zvE56i+v5TKeU9T0VZs/K+qpTymcn1bymlXHqq6vlAUEp5ZSnlJ0op95ZSLpZS3l9K+fellANLlHFHKeXHSikPl1Iuzcr6+g9muz+YmDw0n0E4K+nvSfpaXP8Hs994eH+jpO++xro+R9ITyfV/LOkPJRVJt0v6l5L+cynl5V3X3bdkHZ8t6ZMkfcc1tnEZfLOkX1Q/1wcl/U1J3yDpK0spn9p13fvCvbW+T+HuWdk/guu/IumvSTpxDW1u+MBxQv343/N0N6SCb5T0/eH7ayS9WtLfkLQWrv/5U1Tf10ja+xSVJUlfJemX1e+tiO+V9LNPYT0fCL5cPVPz9ZKOSHrR7P9PKaX8z13XXZx6uJTyQkm/p34OvkLSSUnPlXTnB7HNH1Q8W154PyvpC0spX9fNPOVLKbsl/W1JP6P+0J2j67pr3uRd1/1x5ae/6Lrunf5SSvljSX8p6ZWS3nit9X0IcG9st6SfLaV8r6R3SPqp2cLvpMm+L42u606q3yDPOJRSViWVruuuPt1tWRSllO2SrnYLRorouu5JSe/c9ManCbM9Ot+npZRXzv79r4vMSyll56yPi9b3/uVbuTy6rjsm6diHoq4F8OrZPjR+u5Ryn6S3qiduf2KT539Q/Rn3yWFOfvupb+aHDs9okWbAj6unKv5GuPY56tv/M7yZIs0g3nltKeUbSiknSilnSim/VEq5Hc8uKtYzJ7Q9PHtzKeUHSinvK6VcKKUcm4kUbottU8+Z3hbENkdQxvfNnn1y9vnjpZSdqP+5pZRfKaWcK6UcLaV8XSllofnsuu4vJb1B0sskfeJU30spz53V/9CsPfeWUr579tvbJX28pI8NfXn77LeRSLOUsr2U8oZZPZdnn2+YHea+Z5m5+rxSym+WUk7OxuGPSyn/gP2dlfdvSylfPdvwlyV99KwNX5nc//rZ/N24yHiG576klPInM9HPo6WUHy6l3IR7/mEp5b+UUh6b9eudpZT/Hfd4DL68lPJtpZTjkp6UdEMY148ppby5lPJEKeV4KeV7Sim7kjLuDtfeVEp5oJTykaWU35318S9LKV+a9OWTZuN5qfSisNdwX32oUHrRXFdK+YxZG05JOjr77UWzcThSerHdPaUX212PMjaINGfPdaWULyqlfPNsfZ8upfx8KeXwJu15SNIhSa8O6/77Z79tEGmWUnbNfv/a2fo7Vko5X0r5hVLKTaWUw6WUn53N49FSyj9N6nvBrP2Pzubj/+OayYCXnfGHs8/bkt9inS9Rv7e/ezMCpPTi3ffMxv+xUsoflFI+fbP2PR14tnB4RyX9jnqx5u/Orv19ST8n6dwS5fwr9ZzNF6sX7327pP8o6RMWeHal9HozizS/SdIFSb8U7rlJ0qVZPScl3Srpn0v6/VLKi7quu6RelHOzpI+WZB3Ak5I0O2DfMSvnDZLeNWvnZ0na4ftm+DlJPyrpOyV9hnpRxbHZtUXwq5K+S9LHSvqN7IZSynMl/cGsn1+nntq7Q9KnzG75cvXjtyrptbNrUyLR/0fS56ofu9+T9Ncl/WtJz5P0+bh3kbl6nqSflvQtktbVi2t/qJSyu+u679dG3C3pXvWiqPOz/39e0pcoiL9Lz/29WtJPdl13eqIvG1BK+Rb1c/09kv5P9QfKGyR9RCnlr3ddZzHdXZJ+SL2IaZv6ufvlUsqndV33ayj2X6s/oL5E/RhH3dCPS3qLpL+lXnT5ekmnJf2bTZp6vXrK/rvUi7a/SNIbSynv7brut2Z9eYl6kfQfSPo89WvvayXtVz/OTxe+X/1++7uS/HK/Tf1c/qSkM5JeoH7c/icttq//jXqu5e5ZWf9O0pskferEM6+S9Ovq1/A3z649vEk9r5H0x+r3ye3q9+2bJN2iXoL1fer3wHeUUv6k67rflKRSyvMk/Vf1e/sfSzol6Qsl/WIp5VVd1711gT5GfPzs8y82uc/MxZVSym+pPyfOqd8z/6zrujOz9r1a/X5+vaT/ImmPpJerP8Oeeei67hn7p34RduoX8Rer39C7JB2WdFXSJ6tf1J2kTwrPvUnSkfD9rtk9b0f5XzW7fmu4dkTSm8J3l8+/M5JetUn7VyU9Z3b/56B9DyT3f4N6/cVHTpT5+ll5X4Tr75b0tqTPr6mUs3P2+xsn+v5j6hf5rRPtebuk35uYu7tm3z9i9v31uO9rZtdftuxc4fcV9S+QH5T0J/itk3Rc0m5c99x+XLj2mbNrH7PZfGGs1yR9Ha5/7Kysz96kzW+T9AvJ3P2RetFrNq5fj+u/LOl9SRl3ox+dpFdgHZyS9H+Haz+hnmDbE64dVv/CPVIbhw/kL6zrbclvr5z99pYFytmmXj/eSXpxuP6fJL0nfH/R7J63VtbjTZvU85CkH0quf4ukS+H7rll575a0Eq5/3+z6V4VrO9SfcXFPvnm2dvejnt+R9M4lx/gG9WLk/x7bssl8PK6eOHqFpC9Tf+79vteleuLtHR+MNfHB+Hu2iDQl6afUb87PkPQF6hdcyplM4Ffx/d2zzzsWePYr1HNlH62ewvs19Tqwj483lVK+bCbWOqf+pXz/7KcPX6COT5H0h91iurRfwfc/1WL9MMrsc0on9CmSfrnruuNLlFvD35x9/kdc9/ePx/VN56qU8sJSyltKKQ9KujL7e43ysf61Dkr6ruverl4h/9pw+bWS3tVt1Htuhk9W//J6cyllm//UU+ZnNfRdpZT/tZTyy6WUh9Wvjyuz57M2/3w3O1UScP7frcXm/0I34+Skua7vfXj2YyT9atd1F8J9J9Rz3JMopazGMSgLitkXxM8l9e2aiQvfOxMlXlHPfUmL7blsHKXl9tIieFvXdZE7tnh1zqF1XXdZ0n3qiWTjleq52vNYW29TL5bfpQVQStmhngs+IOnvoi0ZPG9v7brun3Rd91td171R0leql8x8wuz3P5T0v5VSvrOU8omlt614xuJZ88Lruu6senb676kXZ755gUkjHsN3iwgXWTTv67ruv83+/l/1YpV7JX2bbyil/CP1lNt/Vi9q+qvqD49F6zggaVHz96wvCy3+Gbyppqwol2nPZrCIg/U9hN+NybkqpVyn/mB7uaSvlvRx6omRH1FPGBG1fr5R0t8upRwopdyp/oChOHQzHJx9vl/Di9d/+9SPo0opz1FPpN0k6R+pPzg+Wj3xlM3d1Nxk45P1m8jEtFw7hyU9kty3mdhO6vsX+/91CzyzKLLx+Hb1XNmbJH2a+j33ebPfFtkPH8iZsAw47pcnrnuNr6pfK1+i8br6RvXn96Z65lk5P6FeTPkZXddtJs6Ueq5fGogH422zz4+cff6gelHrx6k/9x4rpfxUgb79mYJniw7P+DH1FNmK+hfO04au67pSyl+o5ziNz5P0G13X/XNfmOnBFsWj2kSZ/BTCSu/fm7jnqWyPD5ZbtNFU/hb8vij+mnpDpo/rum7eh1L3T6xxSj+mXg9zt/rD44J6MdIy8OHwKcpfKP79ler1YJ/bdd2ckCil7KmU+3Tl7jqh4SUecWiBZ1+rjW5CT4V0wMjG4+9I+sGu66xLUynlw57COp82dF23Vkp5XP2Z952V2x6dKqOUUtQTgZ8p6bO6rvvdqfsD/myT39dnbVxX74rxvaX373uleiLkzRpLbZ52PNteeL+umXK667rNJuSDipmo5qXaaHq/R2OjjS9KHn9SUsb6v03S15Tet+9PnpKGJii9f83XqFeiv33i1rdJ+lullMMzkVaGJzX2g8zwO7PPz5P0b8P1L5h9TrUjg18SV3xhZvTzWcsU0nXdE6WUN6s/qK9Tryda1hfx19UfAHd0XUeKOCJr819Rr+t7Jjm2v1PSq0opeyzWnFkufqw28avsuu69H4L2SZof5rsVxnOGbM891ajt4acav6ZeivHubgk3jID/oH6Pff5MMrUofkc9Efqp6rk4w+4jf8gHuq47pV6s/7HqCZFnHJ5VL7yut3R7uji7F8/0clJvZfn3Jb1E0r8I9/yapH9ZSnmdegu3T1TvK0j8uaSbSilfJum/qVdyv1s9Fff56h3a36Ben/Bh6g/xL52JdZfF80opH6PegOZm9VTXq9VThp87oSOSegu2V0l6Rynlm9SL7G6T9Mqu674w9OXLSyl/Rz3ndjY79Lqu+9NSylskvX7Ghb1DPZf2tepfMu/mM5vgHeqJi+8tpfwb9U7FXzPr1/4ly/o+DXq8mjhzdyklm8v3d13330sp3yrpP5RSPly91d8l9WLjT1Zv3PBb6kU+VyX9WCnl29WLDr9evZ73maReeIP6dfvWUsq/Uy8q/Vr1Is2n00pzA2ZSlrdJek3pXQ6OqD9o/5cPQfV/LukVpZRXqRf/PtJ13f2bPHMteJ16XfDbSynfp36t3KjepejWrutGLiXGbF98ufo1ff/sHDAe7mYBM0rv8nRe0g90XfcVUq9PnJ1j319K+ffqHexfpH5tvLXrut+fPfsm9UT/O2efL1JP1C5rPfohwbPqhfc043vC/6clvVc91fSWcP0b1FtC/VP1cvjfVk8h3Yuyfki9bu+bZvcfVW/NeGZGHb1BvV7qgPpD5jc1yPyXxb+a/V2ZtfvP1OtVfnizF2jXdUdmm+QN6sV+10l6UNIvhNu+Vb1xwA/Nfv9t1c3B71Y/Fl+s/uV0fPb80qGKuq47WUr5HPXik5+elfXd6nUem5nms6x3lVLeJ+mJruv+qHLbTeoNp4jvlfQPu6573UzE/RWzv069KflvqHfnUNd1f1ZK+QL16+QX1RMIX62eav6EZdr8wUTXdX8+8/P6v9RLVB5UP0+vVG/9+UzCl6rnYr5V/cv4l9QTo7//Qa73X6h/kfy0ek7vB2ZteUrRdd29pZSPUm81+a3qCeBH1RPDm7kgfdrs80uTtsX2FvUE8Srq/oFSylX17javndX7I+rdPozfUz/ed6uX9ByX9MO6hj39oUCZJvAbGv7Hx4wr+wtJ/0fXdT/8dLfnmYiZkdD7Jf1K13Wvfrrb09BwLWgvvIYti5kl2QvUU6MvkPQCui5sVczEWO9QT7Hfqt4c/SMlfXTXde96OtvW0HCtaCLNhq2M16gX775PvXi6vewG7FIvQjukXpz+B+qDO7SXXcOzFo3Da2hoaGjYEngmWYY1NDQ0NDR80NBeeA0NDQ0NWwLthdfQ0NDQsCWwlNHKrl27ur179zqatnbs2CFJWlkZ3pvbtuVF9kERckz9lv2e6R0XuacG3uvvWbt8bbPy4++8d7P+ZuWsr69PtnWqvs2uZ22qjUHW9tXV1fnnY489pnPnzo1u2r9/f3fo0CFdvdqn1rp8uXcrdL+y9nlduXxen+rHMmNcq/9a7snmozaGvHdqbfG3p7J/y+yVrF72w3O6ttZnRPKcx3p8Tmzf3qdCnFo7+/bt6w4cODCfd5fnT0m6cuXKhjrZpql5uRY7hs2eXWSermUOa/DYxDJZ/tS+ITZrW9bvWp/jHt/sWX7PyvR54Gurq6t64okndPHixU0HdKkX3u7du/WKV7xi/v2OO/qA4jfeOMQvvf766zc0xi9Fd5qdl6Q9e/ZseMaIHZKGxRxfql7oHhjf6+/eFLFsbhze63qmDvfaoeWy3a74v8uNL4j4GRckN65fEJcu9SnReKj4M+sH+7fIocx5yl4+ngeXc/jwYX3nd+Yh/w4ePKjv+q7v0oMPPihJOnasTwp99uzg++61Ylx33XWSpP37+8ApPhz9GZ9h+2obNvbZz7iv/B7H1OA1fvezcf75EuYa4VjHMWab3H6PQXbQsV7Ww/Uf+8B7FnnR+pkLF/rkChcv9saujz/+uCTp1Kk+lKjXriTt3btXkvSc5/QxzA8dOqRv+7Z5HPYNuOmmm/S6171ufk6cO9cHPLr//iGwyYkTJzbU4XtIWGUvXd/jPvNFzbGO48Ax5jhNHdQsy/XE+eAeM9w2t2nnzp0b6oj/c9+4TNcT9x3XV+0szF5aHgP2/ckn+4ho2b7yNc+B2+Y15OuxXzfccMOGvu/bt08/8zOjPOApmkizoaGhoWFLYCkOr+s6Xb58eUQhRI6rRkUaUxQpqRlSl5m4lBQwqYiM0uK9tc+MK8yofmnMWU6JflyGy+T1rA3kDvy7KbtIPU9RjPFZU0+x/eQ+OF8Zh26cPXu2Oj5d1+nSpUtzLuCJJ/r4zKb+YhtqlLDbEteBr5lKJZdoZO3m+PO7EftEjppULbl4aSxl4Pyw/giKc3mvf5/aG24juQLD1HTWfu7JyLkuimxcvV7Pnz+/0PNe5xGxLZ5fcq2+x/2J68Bt4JqlBIRlRdQkPhlqEivusTjnFBNH6UZWduyf7621LVtvPDc9nrXzLZbJdT71njBcrs8icpg+H2I98dySemnBomLpxuE1NDQ0NGwJLM3hXb16dZKDIKW1e3efQYPURHzbkyonFeOyMs4rtk0aUyJTsmZS/TX9RXYvKXoik/eTYmRb4zPkjDkGpPyyMfG41nQUsU+ej1o/fT3OW6bfqenO1tfXdenSpblex1xFnB9yS4TXxa5dQ25O/+91Rq6pxiln95ITyfTOpjjdVnMJNYONCHLpxiIUMNekP835ZJxtTSfJtkbuyWvF1zgm5tBj/2rSgCkDItdjHe7Fixer0oNSinbu3Dkatygd4N6iLjXjZrwGN+PsuRdj+UbNziDOKbn12v6fMlriJ6VfmV6e5w25ttgX2hvUuLZMWkB9G8cok36QW2N97k+ca691r9FljH8ah9fQ0NDQsCXQXngNDQ0NDVsCSweP7rpupFyNbG1NAU9W3CIoaSx6owiBosYoTmFbau4CkdUna2/U3BX4f1ZGTWwZ/2db3F+KiPl89p1i30zUSLNkX6eCOJZPw5Ap3yeO+draWlV5bJFmNK6Jz8Y2UEThtnjN2F1B6k2SpcHMPVuTtesWh1LUYrEOTc2lQaRHY4vMxL8GirYMzlO8xt+8Z2yqH/cT+05RI83EozEGRUyG++XxjoYuFkt6bj1GNQObWI/dBy5evFhdOysrK9qzZ89ov8S1WBP5U7wWxWw1Vymvt5oIMF7zZ824J/bJ682fdBPIzk6efbUxygy9vEay8ywijiPF366XZzPPtKzP7ifHxK5rETw3F/GnjSqCRcWajcNraGhoaNgSWJrDK6WMKIUsWkZNYW5KNKP2TDWaAiVVSzPXeI/rdfmmbkxtZqbspOhJXcR6asrhmiFAZsLstlrZSqo0jgmNRNwfmgVTiRz/pzMnqd4pZTzN0v0ZOTT30f26dOlS1fBgfX1dFy5cmDQMIufjuTRFaIdTf0oDx2FOx+WauqTxReZqUlOcex3GdcB5cH88Ln4mM1qqGXVw3WUGXe6f62O/I9fr51keOTzXG+eUxgo1M/9YH8cgM0iK9cexiMY/tbVjDo9uBJkEhmvc48M5lcYcCE3iKbWJc1pzu+J+jGPL/chnMiwaWcdjEg2QyEFy72USBf/GdVxzocrWKtcXz864n2rRX7hXolGWx9FSnWUiyDQOr6GhoaFhS+CaEsDWHKelurk2uaqoA6A+hHoQvsEz01tyJKbeMv0B2+BnzA2Sqon3kIqpOctn5sjUu9XiY0pDOC1yxK6XFF/kKN0PUrVuO03a4/++t+ZwGnVFWdi2GkopWllZGXEb2byYcjtw4ICkPrRU/Iw6AFPw5OQ8/9TtZTocmpSzXxm3xjn1es+eqYWbqjmgT4XvohuC+xnXm+/xb5x3t9VrJrp5kJOrca6Rs/EYe91Rr3jmzBlJGzlpcsiR+yfM4Z0+fXpD27IwYQxTSO4zrl86PXNfTNkqkNusuQtNSUQI6s05BrE+SkMyOwD3g07rfpY67NhGSr0sUajp2mL5nB9ywXG9eV2RK+RYxfXt+aqN4xQah9fQ0NDQsCVwTRwe3+AZd+G3r6kLU+WmNuMzlPVS12CqLJPnmlqoWef590hdmgokleJnTZFGqiJSJbF/NQf0SK3W9D7ulymgyLmYwzNl5TLsuM2xiPWZEjYH6/6QSs+oQetmbD1HK7RYT8bNbmZVRSo2toGcncfD18nFRTDEmL/TuTi2P9NhSYPVoSUPcW4ZIJlhu/x7FgCa640UqtdHbA85Klr4ZeuP1DL3JC3u4pxR/0tpDjl+/i8N80TuOgsP5XsuX75ctSJ0QAPquqKEgjqlWpvivHDeM245IrNq5vxPWTEyIDLPO55lWTm1M4vO2NJwzlHq5es8l6Rh7Xj/U//m/UMJVxwL71tKPzw2sY38jWsz4+L8fKaD3AyNw2toaGho2BJYisOzLN2UL9/2EX7r2qLOnIOvO3iwNLzlGR7J5U+FHjMlYtQsPDPq0r+RSmMfIhiWLKPkpI2Uj39zP8y1+dPtifoF+hpR1u1Pc0OxPuu6qPcxp0fKP/bL82Vq0BxlTXcQ69nM2mxtbW0UfsjUZmwnw4RR95BxXFyLDEmUrdVamCavb6/RKB1wOXH9ZvVl1qfkljYLXi6NLSwNcuvxGddHbtefHjPvnUhxk0OhbtxzEeeN1sdum9e3Kf6oq6eeeQpeO9SpRalLLQQb/TQzv0+vfXKB1M/Fte/5p+4uswY1fAb62Vow50WCOrut1F3GefE+4r1GJjHjOPKsrFlgSmP9H6VUnv9YH6V3Hk/qfeOep+5x0cDRUuPwGhoaGhq2CJbi8FZXV7Vv3745RZdRZ6QQ/DY2F0cLMWlIIMsoHzXft0gBmQPxb6ZayVFmlIjbRso6i0xAXQopblJ2keIm5eh7SGln1qfU0ZDCMrUYKTvqCk0t0T8qUtxug8s3RWzqPGsjqdtt27ZNytO7rpv32WMf/bkybkUa5stzHeHkojV/SOoGIlfrMaPPHvV0ES6XutSpSDvuIzkFcqP0A4vtrvl9mkKOY1bTw7k/7t/x48dH/TPIbVPfFH0hyUmQA6POKPYxs9YlHLTeZ4fPA3MOsf/uq8fc7cwsYKnb9DPUh7nsuB6of3e93mtG5Kq4d73/uM4yq2AGwa4FeY/P0tKxZrmcJZytRbeiZX5M4Fzzz6YOMUpHmMDW0imeb9le5F5fBI3Da2hoaGjYEmgvvIaGhoaGLYGlRZo33njjnG23+XsUwdA52Gw1M1xH1vuxxx7rGwPnbt9Do5YolmB5dNjOHGUtSqBIlgrUaLbsPro8ipI8FkYU1VHcSoV9LT9f/M3P0pTac+Fxl8ZiCYpoM7Gr4Xlyf2655RZJgzgiikHpWjAVxJVm5TSRl8aKebpi+Pko3qBym0YxDGEVRZoW7URjIWk6/yKNhiiOzIIxuF90baHYiNdju91398/rwCKlzLTcffUzvu7x9L6L4+l7GLKM7iQnTpyYP8Nwft6DFDNmAdWz0HhE13W6fPnyvB+uJ+4xnkU+f2gAFUWnN99884Z6XG4tJNejjz46v5dGHQxPl7mnGLVcen4mGry4H+6rx82i2kOHDkkai4+lYW24PwzV53UQ1Ut0OasF43ZZcU0zyLvb4n2WnZVee26rn7GaK8tnuEiA9hoah9fQ0NDQsCWwtFtCfKPTqEQaKA8rIa0Yp/l4lt3b10zNLOJgSKW6761R79JA2dLJ0dRE5sxtSoTlmdoghReptFrYKTpHZymMXD5N9D1GU6lXWD+NGSJqmbptFGJqOFKDdBvZvXv3JIe3Y8eOeV/dpiwgL40tyJ1F4xWXR46OFCgNU+I9HtMaFx3h3xgk3G3OsojXQlTRACULQEAjBdaTSTCYlZ0GVe4Ds45LA4fvsfF3z7E5/LgODh48uKE8SwX86TmKnKTH2v04e/ZslXIvpWh1dXV+r9sQ95i5Su97f9IwLUstRu7c7WTQhWiQwns4P1PpgWrZ5G2EE88Yl+tz1fNgDsiSHYbYi9fcfp6JdC+L48MUT167XivuZ+Qo/azbyMDzmcSE3B+NolyWz2xpfJ5NBR4nGofX0NDQ0LAlsBSHt23bNh08eHCkN4kmyqYESIUxGGlGzTHgMx0mGdg4lkvXAiZEjFyoKRyaBzOMTRaGiIGnTanSQTtzhnT/WD91l9JA7XlsSdFTNxDrY2BbfzeVZKo96rNoMs0g2Qx/FO+NobJqHN7Vq1d16tSpVIdrUJ9jnYnHOGu34bXicSNFPxUwmy4YlDhEbubkyZOSxtwRufhIkTLAQC3AwlSak1piUfch7icGtqYbkalyj2emh6Eeldx2HBO6i9x///0byvK9kSOjbtpcYoarV6/q0Ucfnbc3Cwjw4he/eEPfmc6KnHjso+/1WPoZnwvkdqVh3skFUscW96nH8sM+7MM23Mt9GfXk/s17wZwdAzd4DcczrBbI2mW57Mi51txr3E+3LVur1Gd7zOn0H8eR0huvRe+ZW2+9dUMf4r1xP7UEsA0NDQ0NDQFLcXjbt2/XwYMH9a53vUtSbhlkCsNv8Vp6eb/14/+mWhgaydQS9T/SQDWyvswqyzC1cOzYsQ3XTXllQbFdJ1MIWcdlyyPqFGM/aCVVS7YY2+02mLPwGNAiLsJ1M4QRxzk6HvteUuMxuC9BneciOHz4sKRhvLIEmUwI7HszTtxjaR2jv9MiMlqSsZK5AAAgAElEQVT0GUyESx2r+55x66aKXYapZY9JpNJZLq0Ap1I9UYJBp2i2NZbntUoqnSmGIoVPS17Dz3h8o6UduWnX+8gjj0gaB5+QxvrMffv2VZ3Pr1y5opMnT444FVsoRrhP5MAziRI5X37SmjtLBEwrVt6bJWamo/7DDz8876eU66u8Vz1XtEL1Z5R++F631WuEadHi2qFtgNeBrXK5Z7IAG9TZeQ6yIOLuK3XfTGkU3zGse5HwdEbj8BoaGhoatgSWTg+0srIy4lAihWCQojKVZ+ozo0j9aWrClI+tvTJOgpwOfYyiBZpx++23SxqoIX83h2cKKPrdmPoyR+fvpnRJTU+lzKFPFa3P4v/kmJluyWW57REec48FE+2a24r98b30SfL3SKW779Eaq2Zp57B0tPLKdI+G54HtjjpjU/nUi9Qs36IOj36epmZpvRtDWHlM6Wdq6pXhr6QxB8RgylNhtbyumMqF0pDMd897gQHVTcX72TiebpOf9Ry4/Mwa0HuCKWMyXZvhNkQr2ik9zNra2ihEVeTaaSNA3VAWcNr/u48eH1p8ZsljGWzdc+p7vTcsmYn/U3fo8fF4xTMrrj1pbEHu+aIfW1aPn/G40TpdGqw+/azvff7zny9pWBee83iO0waCVsJZaEg/b27U/XU/PDbWXUrDvD300EPzfjUdXkNDQ0NDQ8DSfng7d+4cWRvGt2vNWpLWZZET8L3m7HyvqQrf67d8tAozVckAvVM+O9Sp3HbbbZIGLiHTFVEnRF+xqXRB9NVjmgzfG6kz/+82mAq1NZvrMxcc2+dnzK2ZwiJ1GClJ15f5BEoD9ZkFcPa8nDlzZjIKgtO8xDZGrs7jQh2UYWo6RsjwNVOI1nV4nDwu7o/HSxoswLw2XL+pzMwilmlnMgmClHN41KV4DGj5mOnEaS3JwLxx3LnXGL3CyHwT3b/3v//9G+r3dUs9MqtnRp/hXEf/Qo91DCo/leZlZWVl5PuVRf1xn2g96Weizttcivvm3zzfHi+fSzEVGXXdtLR2O6IUhfoqr1n3w+2J/opMheP1TivQzBKWEVYYHYrBpeM1r2vvd0tS3Fb3N/bPfb/jjjskDWvlnnvukTTs57gOGBzb8+T+uT9xD5p7Pnr0qKQ+RdqUlCSicXgNDQ0NDVsCS3F4a2treuKJJ+Zvauq8fI80ThVPfUJ8I5s6M0XFZIYPPPCApIGaiBT+kSNHJA2UApOcUsYuDdS5y6O/TaaHo08LKX2D1kWxzwbjw7mfMR4mrRhNcZuKcuJXPxP1ja7vfe97n6RB1v3Sl75U0kDJZlw2/brc7yxhp7nqGDVlKtLK9u3b5311OZFDouWex9/t9fqIuhT31b5ftgz02qRFV5ZclRacXivk/LI2en25viz9lctnPFbqEI34nVZrHi+OUdSLmBunvpw+pIz4Io31OoxNaq74wQcfnD9D/1hS7UywKo11hGtra1UO78qVK3r44YdHkqW4dqhzdlmMSBKlBr7H881kp26brbnjOed972vU6dMXVhpsEah3s27PazfT5dMqlBbEmV8c55s6UM9H3LM+a//oj/5oQ5s9bm6POb777rtv/qzHmuPosee6kwZJDP1lGTM2glFgzpw5s7ClZuPwGhoaGhq2BNoLr6GhoaFhS2Apkeb6+rqefPLJOXttFjWK7Jgt2qIPK2wtnoqiwI/4iI+QNLDEFs+Zxbdo7q677pK0UVzIlEFm4y2utDgvOsqaTbeIzyILi0fdtih2pSOp++d+UVwVn7UYggG0mVYlGitYNOsxsSjJY+L2+JkoqrHy2/cyPYzFzNHh2O2nSJOitOgaYpGCx5biXWJ1dXUuinF74zOu258MIJuJ4JjqiC4yDCprUXD8jQEOWE8W7NZj6/VsMbvXbmyjx4n9cFk09sgCHjBME9sYxW2+1+IiijQ9l+xLbIPXSC28X5w3ruuaOCpzK/L6vXLlSlWkuba2plOnTunOO+/c0NdoqBXHTBrmg4YocT3YuML9t3jOIk5mCs+M2NxX77l7771X0jBusU+eMxtbeCy9f9yOWI/PF+9/j6nPlFoQi1i3RdzuL9dZNER7z3veI2lQEdDgyPVYDBvPObfRbfY9DI4RRbYu1yJSP+vx9DqM+8nPu19nzpwZqY1qaBxeQ0NDQ8OWwFIcXilFKysro8Sc2dvXnJApEVNydgEwlyUN1JjLocHBR33UR0kaqKbICZkiMNXCxK+mHKIBik3TmT6DwaRjPXSzMGrGLJHiMOfgtrpNpsCpEI5j4nJf9rKXSRoor8w4wvD8fPiHf/iGsfD4uZ5IfTJkWgwIHfsTDYbo2Hr99ddPmgd3XTdyF5nihIxaEOTYXruwMOUKqctoOOF66K7hPmRh1dxXBytgiqy4ZgxzA1be0/DI8JxG83c63dMx1/2JhjzuM7kzzzHdIbKkoTQgY/LiyCmRU3W57o/HKIbMimtG6se8ZvC0urqqAwcOzOvxuRONH9wejzW5WxpSSMM5YE7EfaNxh8crzoW5Ms+lx82cSRbogIENPE6WCrj+aLxmkKPzPT4rGWIx9s97jFxZFozd/fEZVXO/8BzE/eX6PBe+x9ddb5QO0GXGUicbz7iNWTo5t/uJJ55o6YEaGhoaGhoirim0mKkWUypRlk6T5MjJSeOwRtJAAZBLs8yZKT8iV8CgtuS0aBrrPsRymA6G5ryxHDoCuz5TIpn5sylDOq/TbDyjWBks2JwMxznWZy6M+kYmL804c4ZRom4vC6/k9l933XXVFDd2S2Ci3ix9iuuocbHxO9P+1AIzZ0G9DaZA8rr2mEYq3XXTwZl9iNfJlXE9WzdNSlgaU8vsr8vO2sjQTgzvxzUW2+hxpJMyuZQIhoPiXMT1RvelKbeE3bt36yUvecl8PXicYhsoreEYMOSgNOj3vXepD+W+iXvM91IP77HNzOTpkG/Ozm3j/EjjpK3+zvl3H7LE00y9w/0f3XL8vM8x32MOn/s27kXf43p8pjBZbmwjExhTOmDOOa4NBgY/d+7cZMCLiMbhNTQ0NDRsCSzF4XVdp6tXr86pCzrhSmMqwjJmf6fOS9qYql0aKAK/wUlFRS7DFB1DYjHIbqTO3CZTRaToslT0TB1iGT4TwboPmSWpy6V1lvsTqUKGhao5ZZOTjW0w1cNkkeQa4zNM/+F++XqkqjmnU6GhHLTAVF/G6TO4rUFH/agDYJi4mpO/EXW5TLHDdmTpR8gJs74syDYtBBlaytZtDP0V219LaMo1G3+jrohz67bHtvI3JhH273Ed0JGeSTwZVDiWG5PSTiXAXVlZmXN21mPHdWIJj8ef+kraFkRwj3GcsnVNi9uaPjhyHp5v73tbh/tej1dcU9Rnuy3uDwOQx3OOyYn9Gy2Zow6X+ktznzVr7XiGMK0Xubfs7HebPBa0o3B9cR9Hh3PXO3X2RDQOr6GhoaFhS2BpK83t27fPqWpTVZFqoi8VuRf6HMV7DVMGlMMb8dma1SSDx2ZJY829kAIxVZFZWJEyJSWXpbMwxePyXC+DR0frPI8xQwu5Px5X9z9yeDFdTyyfKXkilU6djUG9TBx73xtDF9Us7dbX13Xx4sURl5P5czFtDeXzkROgzoTUOZPURg6P1D7nMEtySY6S3FQWlo6csMtgwlS3MfPDY6g3JjbNrF1rXBr95SJHQWkLLS8zDonWreYOqG/KAlzHvtfWztramk6fPj3yi4x7uhYKj79HbpPWv7RqpZQoS3bqe7wHItfBPltnZw7PY2mLSKY2im3jenPfabGaSXp8hpgzrtkBSMPceS1SR0hr12zOaiEa2fZYD9ed++V5zPwLs3N6MzQOr6GhoaFhS2BpHd6lS5fmb27KryNMKZA6IgcWfzOoeyIVEb+TmiClxySr0jhCjCkEcp+xHuom3Xcmfs10HKRASGFTdxDbQL0mdZZuY+S8SEnVxj5SWv6NvkfWkzBocdbnzZIwrq+vz8vPUpOQayXHkHEzBnUnWcSb2rMEI6Fkulzq0jw+/j3qmRn02HPoe92mjAv1mqTuhGsorm/qexlQmQHcpwKdk6OltXJsP30g3V9LCbJoGBn3RFy9elWnT5+el0sbAmmYB3MiNcve2G63q5bujBxfXDu05LV0hpFBoqW3OTs/a2tq6t+i1IORqbwfyWGyzdLYwtd9t76MejppkKq4HN9jn1Fa+MZznJabmY9wfDaCEhnaO8Sziufmovo7qXF4DQ0NDQ1bBO2F19DQ0NCwJbC00cqOHTtGYpQogqHCl0Gds7xkdEaO5UljQ5golqABAMWsbmtmROB7/d1sc2auTgUsxULMJxfDEPHZTATM6xYlUFmdGVLEOuI9NAumg3XsH3Nj1XJmRXGLFfQ1g5eI9fV1Xbp0aRSYOxMbs880e89EGBRhso9TbauJUD1fUTxNESONL/xMFLfxGkWNNHyKa5Vm9l5XFDlnrkEUf1IcRReX2B+KXdnWOAd0kaFDe+ZuwLqnxFLr6+sbjFAy526Gm3I/GOovtsXiRq9JzzONyShei+XTIZ9uItEQzffQSd7njq/HtUqxaxawIfYzE9lSVWPjFQcFieNIVzDvf48J64318TcaPGVzwPBzWeZ2aeN56vZa3Hv27NkWWqyhoaGhoSFiaQ5v27ZtI/PZGDKLVBENDahAj9dMRTAEl5FRl7WgznSCjBnPqVw1FUZOInN29LOkQEgJR87F5ZsaJ6eXGVgw4DONVdiuWF/NyIdUUKS0yKma6nXbM86FpslXr17dNMULDQPiOLqvdPJ3ncxqHdtbkyjwM+tzLbWTr8eAvKY0zUkwBQ7LkupcDKUd2bpjehaHxmIA8LhnXB/3FQNdZ8YFng9S51z/UaJALpocLI2bImIg69ra8bljow+67MQ+0ZiIBnAZh8fgCi5rKlhGLV0YgyfE9RENmaSBm2I4tzgfXPN0XeGYxu8u1wYnDPbvQNcR7ofb6nXFM5nrQRqvAxoQkuuOcDmeU6b9iuee5yeekZsZzM3buNBdDQ0NDQ0Nz3Is7ZawtrY2aR5OvQvDTjGsTby3pmNgANv4Nqfew7+ZeiK1K40TVNYcJCPMfZCyYsilTJZOPQ9TyLjszLSclAvvzXSi1JmQQ8q44hrF6jabSsxCSkU96ZTj+eXLl+d6P5s/R4qUlDU5vIx7pusA1w45vkznUHvW1GbUw1BHRJeCTC9GnTA5vqn95DFgaiy3w1R6FoSbFDb1cFn4K44b9cBTIIfGvZhxcFnYMWJlZUW7du0aJa6N3BNdV+i2kTmeu30MhcX54vkjDeNP7s+cXVaf4XVF0/8pzoe2CtQrZvPkawzg4D2YhU7jvif3SfuDzJWK+8jIzh0GCGAaInLfsR7P7Q033DAPBL4ZGofX0NDQ0LAlsBSHZ2spv/UZCFgaU63+To4vyoTprE1Kl9/j257Ohww66kDREQyTVbP0jFQ6wxkxeSL7EB1AmbjUbaMTdhYWqBZQt8ZBx3rYPyZsjfXRwTNL1iht1JvQIjaGnSNWV1e1f//+uR4mCzfFMGqcp8xKk/pQ6tD4PY4nKVLqOK3ziH2uhR3jWEd9DYMT1zgt9jOWR07SZVqnF/UxDN7McGtGNia+l87dlGREUKfitcT0MHFtUGIylTh4dXVV119//fzeLN0WHcvpyJyF0eLZkQVxkHIna64VOoTTOVoac2cMtGBEewPfS32o4esuK7aLIQxt1ciQipnzuEEOjGELp3T6BjnlOL7m1mtW4ZnlPvXKBw4cmFw/G9qy0F0NDQ0NDQ3PclxTeiC/sRkwVRr7MJFqzbgZ/88kilkoolhmhDkuU+WmbjP5OKlW+v1l+h5yWqawTXHVkivGe9kv+8M85znPkbSRsqNlE32FmPol0/8xMCt9q7LxpV7ByNJ00BdsKonnysqKduzYMW8bOb3YZ3KZTCgaqTlyHrS0i/XzWXL01Dl5TUVdEUNX0WrRYx7n0vNPTqKW4inqSaiboU7PYxL1jMePH5c0SDdoTT2lE90s9FqmoyZnVAtWnXH/WcLcDNu2bdNzn/tcSdK73/1uSRvtAfy/52eRcunPR66dayaTLDCYO+uL80IfSnIl5HZinQzmzFRfU+EdqcN1GSdPnpSUB9Z38HvvbY4Jw9RloIV0ZmXtcfNnHC8pf1/43sOHD8/b0NIDNTQ0NDQ0BCzF4a2srGj37t1zfYHfxk7MKA1yYie1pJ6Hcuz4P630jFriSmnMeTh6AKnqqIfx/7XUMaYgYj3UwzApLX2aItVEToj+f04bktXHiAe0OswiINDqj1wny4h9p/XXVFoYBt2d8sOzlSZ1a5n1LOvkGGcWW5k+KvaH90tjvY7XEhNnZmuHwXtrKWYiahaPvJ4lD3Z55DDJtWX9ISdHn8vI1dGSrqazic8wUDItWP09cvOZHrmGrut08eLF+TpzepsHH3xwfo85an9a6lTbn7F9WVqmCOrJ+H98lueNJRmxHur5bEXJM0sauD7uF64LSn6kYV25rW6jz2imtpIGnTB9Ht1G6tQyC19axtOeI65/r2cmVuYeiVyvJRcemxMnTiwUFF5qHF5DQ0NDwxZBe+E1NDQ0NGwJLG20cuXKlbkTshWbUaRpMYoNMpjHiYFlXW68xhBIDDCaBRx2m8hqZ9mR3UaDGbbNMkdjHLPYDNZLB1eLdbLwaBRLWPySiRgpDrCIgSGMsuDIdP6naJMO6LF/fpb1ZIY8dB+gmCeilKLV1dWRG0fmoE8zd4poM4MnikqpMM/Ed14TFi3TSCXLG+g2UtnuteP1njkcM6N6lgdR2rh2/L9FzBY5UewbxVIMXEwxJA2u4njW3F2mwpFZHEXRFcWhERRP7969ezLj+fnz5+f9yRyYvVd9DviTgeGnwoPRBYQizyykHfPhTQXWp+EenbozkR+dxzmXNPWPbgRezxahWgRokabL8pqK5dGAx8aAdGKPYmquZ6o3shBtPJN4bvodk4ksjx49Kqkf42a00tDQ0NDQELAUh7e2tqYzZ86MDDdsoCKNHRVrFGPk8Gqhr7IM0PH+CAYzpZI9UiKm/ugs6usZlU5DEz9LqsWmvpnzMB3NTeGZ4opUDFPluAyH0PE4Z86yNFKI1D/bRpB6ZtDdjDOPnEKNSncAYPfLFHdcL7WM83TniMY9NBahawvDn2VhlJitnIFrY32UQrgeU89eF3GNMjQVFfLkPk1Fx3u9VtxPBq2OwXXJabn9lhLQ/D2OCbOKc/1lzsqUBrDtdLGJqKXKirDRiufafY/cgOfwkUcekTQ+I7L0MexjbV7Mwca1zRBcNVeGWK+5FbpMuO02BoyhBz1XDFXm88198BxHaZvPIrfF5zS5qMwthQZbbpv7m0kwfI0Bp3kWx3VATphhwzLjJrfNnzHwyWZoHF5DQ0NDw5bA0qHFzp07tyHxnrQx/BRDBhmkKjLKjpxczUGTbYr1Uu/j79FJ1e33NT9rSsHURKQcqD+opfgxIlfgvjN0GrnSjOv1J02JyWnE8WY91PNl1Ccd9DmOWdgrI9NBZjCXF+/NkqtSBzCV7Jbl1BJjZm4VdCGhW4TriVyo14QpfNZvXUc2ttT3sk3kmKVh3fmT7iJZuCaDeiZyu9n+yuYl3uv6Yxs5bgZ17xmsx75w4UI1iaeD1nPtxHZTesI6Mx0edY98dsqpupY2h9xGbKM5PJfvOTX3lCWrpnP4TTfdJGmQRvkccF98f9YPS4d8XnssfLbEemruZEQcIwaeZ4CFTJfLcphgO5Ms+Z6Y6HhKahXROLyGhoaGhi2Bpa0019fXRw7Bmb6K1Bot7zKqshYWinqqSElSlm1KxNxnRjVRL+XybNWUWXb6f4afMpVhuTtTjMQ2ME2Qx8gUXqQWGVjW38m1+ZnILdCh1M+QOo9UcGaxF+vPuAGmVZqi5J3ixWPMMGKxHHIvpPYiGByawXanAk/XLGypY4n1Ut/HOc3mn2Hu2FZSt9GK2L95jdiijpakkQKn9CHrRyw76mNqAdXJIcX1RstEo+bIHdvGYM8ZbB1uTsRtiVbBNatsBuieSsHDkIMuP0sxZs6UOiZawEaQg2R6Mn93IApp4AoZUs5rihalkcPk+j527Jikse7WIbpi+QyZyOAfmeM5w/uxX3xvxP9p4V0LwxfLo1RvETQOr6GhoaFhS2Dp0GI7d+6cU4a0UIvIghpnv7vcCFJhU+GtqAt02+yXY8rbsm9pkHe7PMvSLf82VRMpOlJy7pcpbnKumT7O5bktpuTd1iyQssthOiLquzJfKlpwMRxWBKkwWueRY+L4SD0lORU8et++faNQcHEduH2kFBfxsanpJzlvmXVhtHCUNuoGYhnSMN8nTpzY0DaGjcos7fxp6pwWaW5HphfhWqG+L7bRbTG1n/nqxTGJe5SWvTXqOfPhpLUp11IsK65111c7K9bX13X+/HndeeedkvK1Yw6BXBO5ilgH2+C1w3Be5Jhjfexb5rNn+Hyhz94iqW2YUojWyJndQW38vYb8jPWBsd1eo66Pbc306/St5Rhwn8XypvS3sa2xH5kv4GZoHF5DQ0NDw5bA0laaly5dGgU5zazm/HYnVclgp9LYr6YWLDrzyaClHdMEmZvLKFX67vhZ94/JT2M91FuZQjEVE+s7ePCgpHEyWnIuWVBs6gSol8sSxZJaov4t0+FRT5olweUzWYSIKQ5v165d8zE1p5olkKQuj3OXJXElFcs+k4uSxn5/bpvny1R0TK5KPYupddfH5MixTlot1gJ1R3icXJ77QT1MxuHRD8plUEIT9y+tdBeJlkEfW96TcTD0cdu5c2d17TgtmWFdXtwvlLDUko7GvlJfxfOFZUUdO7lAl8Fg73FOydnx2cza2evJUiGX63rocxvbyKhP5uSsf3RZMZUVLZRZP3WJsX+MnkObDLcjzsFmSZipo5TGfpNTkiWicXgNDQ0NDVsCS0daefzxx0dpbqYsrDI9j8syGEOOERr4PcrSyfnwXlMZMS6m22Tq0txg1l+2m/oDWn+Z6oxjQp2K6/M9UYbO+mgNRc4ys8CrWVxmllVGLQkpKbBYD6OXbCZLL6WMrFnjXJIjYPLHqXQ2NevCmgQg3uN5ufnmmyVJhw4d2tDGzDKVnD7jIkbfPfrSMS4r5yuOIzlVchtTEUSoZ8os3thWg1IWroO4tvgb+0PL4nivJRmllE05PHPa5sCj7QAj0jAG6SJpyXhWUYcX9bK12L3kGqP1oRM9e525fqZ8itIB10k9In3sMnsKWhLfcccdG+qnP6A0TrfG/UorzbgO3G6uVSJyhUzNxPPMazM7s8zBtliaDQ0NDQ0NQHvhNTQ0NDRsCSxttHLx4sWRE3aWZZcixZoSOf5PcSDDgjFAsDQOeWRW2wYIGetNttziCd+Tpbmh0yjNaf0slcvxXrfJJu0O5kuRpzR2FqdLAY1Mogi1Fh6sZj6ejQkdmjPxBMV6V65cmcx4HtdOZmzBvlHpnYnOua7YV49fFlqKJtg0InD9mSiLIe1i1nePheE2WDxTc5XIwrfdcsstkgYx3vHjxzf0J0sPRWMVg4YNNDKJbamJozIjglrYKabXyfZtFBHXTNNLKdq+fftc3Mb0NtI4AIXHn/VkZvQ00KKrj/dlVD3QmMxl0X0o1ud2v/jFL5Y0nJsWBdp4Loo0aRxTc9VhUIMIizBdFkWZ8azi2c7zzet8KpwgDci8/unIn5VDw63MzcsqoSjGXcS1Q2ocXkNDQ0PDFsHSocUuX74851BMdUYw4CpDP2UOoLF8aezaYIogM10lx8j0M0bkQmn8Uks0GqkNch+kCmkAEc2DY7oXaaCo6LyeGQKQWmJbszBodH5lupsaJR37Q+6A3GH83229ePHiZNnr6+tzKp1GEfEaOZ+aC0i8l32ruXFEkFpmwtfMiIRBe6lcd5lx/j0PDMtFQwTXE4P5mir3szYhJ2eXjaNR47ozjrkWiotzHcukuwv3RmbWT4OgqeDRro8GDnFOa2HAaCqfSUK47ujU7TmInD7b4O+W2ngNRSMSz53L8VqyQV3myuVxcv8YNpAStOhiwLFhSqMs7KLn1ZwqJRY0fMrclHhWcT1myYoZEpBO7FniZp+1N910U+PwGhoaGhoaIpbW4T355JPzt73fsJGqoGM5qchMp2ZsltrD1FJmyk7OixRfdD0w9cL0GOY+stRFLs/6HsvZ/em2u6zYP1N9bKvLMnWShZSq6WGo15rivGp6x8yVIUuUGp/JnH0jZTplHlxKGXGfGVXPNeRnFnFpIbdRoyBjueT0SPlHyt7/W7rhOfQce0yivsdrxOvYa8VlMD1V5Cg9Fn7WwQsYci6C/SHFzXXI4BCx3hqXPTXPtVRSy4SAmirX+zTq2hkOkBxJluyW40COfipxKd2UPMcsM54ltCtg4mk6dcc+MlCy9W9um6VIDjYdfzNHd/To0Q1tzLg0htNjiLmahCtro+FnmNos9pk6T0oHIugwv3///sbhNTQ0NDQ0RCzF4TmBJ+XWmX7Mb25ycplMtpYWhvoQWtPF+lgvrRozrpA6m1pIpthe6incFsvHmZYo1udP12NugdxJbD/1l7U0GpnlEzk9t2mKsqeVLccqcmQM2zVlpel6aUUXw7fR8rDGxcY2kBuv6SAzbo3z7bZRZxN1T+bg/ZspalL40dLO1DhTCVF3l0k9XJ65P+4BBjyQ6jo06hunAkZspj/N9jy/kxvIqPUY4Drrv8vZuXPnXEpjS+iot6Y1X00XFOugtIRWwUwfFsPS0YraY0ouMdZHyQqtzm1NmSUcNvwsgztbWhDXvceLlqMMHp1Zu3p9M2UWxyxLDVezKM3OfnLKtErPEg57f0audiq5bETj8BoaGhoatgSW5vC2b98+Ga6HVCMDFZsqi1waOUXqAPxGNzUTqVlSKeRITNVEKpRpU2pWRJF7MJVOSpdhtZjePt5Tsz7M5OHuM6lk10MdWKR22TY/y/QcmT4j01/G3yOlNfk44vUAACAASURBVKWHy54/d+5c1X9RqqceIVedpXgxF8ZwWqwvcmukwk3VugyWKY0TVvoerykG7JUGyt3rylIA35tx6Qa5J1oDRwtZPkP/PqZt8ZrJ9B+b6X2ztUNL2FoQZmmsP53CysqKdu/ePedMrLuJnNBmdZObju2h7smf1M/HPeYziMlvOZdxTpmmiXpG62ezccpS68T+ZdbpbqOf9fr2PbTeju2ntMPjy/BrmeUtdZQuP0vrRAtZnlnUycZy/dmCRzc0NDQ0NABLJ4DdtWvXnNKi1Zk0UBGU9VNvFCm7GoXoslhmpDL8DK18qJ/LKAQjBiGNbY31mOJwAFtya7QkzTjYmqUTqZv4fC1yDamcyPUyKC3HJNPdkFIlt5FxceZyYmDrGsXedZ3W19dHlFhmKUoqmdZdsQ7q31juIr5g9N2qBTOXhnGyVSap2CxxKqli6/1q/p+xfzWJAvVNWRJmz785FXLvU0F+ydGxD5kEg88yGk0GJh7OYNsB6uuztcMgzrw3WpTTotuglCaLnuMzkAlmvb7oPykNZ5Tv8bww0HX0w2RqHQZxdlsfeOABSRt1qy7fa9XPMIlshOeDaahcFnWhcR046DojMDGIeFwvPPMZaSWzzHabIse8iJRJahxeQ0NDQ8MWQXvhNTQ0NDRsCSxttLJjx45RPrmoUDU7zuy2FP1lylya9FKUmeV8soiR5ttmhV1fZImpcKYRSRaGigYOWT632LYshxoV2ZkhhVEz8a2ZBUfzfosMKOZ1GTZXjnNAgyFmVM6cYpmbq5RSDTrsdlA0FuH2MbQXQ8xlSm8atlCUlYnvKFJmdnEjmob7Nyrm/T0zBKAox/PtNtFtIbaRYaFqjt+ZwUvN7aaWM04au6owAHSW+5AizJqbURbWiyEAM/jccXtp7BHrrAWgyNwS+Bv3Cfdatk9r4fqysFoUT1vUSEMrn2nxXrfR92buL9LG8fR4O3QhwxFmwZy9Nh599NEN5TJkop3lYy49t5FqFhrWxDXmeyiq9xxbLB/njXu8Ga00NDQ0NDQASxut7N69e04Z2Lw6M4mvBTs2plK90LGdnFesz1SDldH+bgqFYamkukMsuYVo9szgvQwdxGy/EaT+GGCbZuPSOD2Px5zGCpnBT2aoI40NXTx/sR+kWGnaHqlcUtWllKrzsNcOnXmnjBVI7WXBo0khMhQTpQZROkCzbXLENLiSxqG9aus8jhNNusm51ox0YtuygOaxzXFP+H8bVrgfDGFGAwtpnJWd8+S2Rgd+Zt2upXqJc03ueseOHdW14/to+JYFk6CrFOcntiFbT9LY+ZpcdtbHmuFT5tpE9xQaomUhzOxsT6mXz50pAyuvA5cbzfmljevbztzujyV25HLdjmgERIMtr8N4jkobjYTosO9PjzXXXSzXUq1Lly41Dq+hoaGhoSFiKQ5v+/btuu222+ZUwJEjRyRt1HEwbBLl4FlQ6VqwYOotsrBGpODpTGvKKFIZ5Kj4ncF+pYHycbtNXdAxk9SbNFB2poRNAZGaygJAW/5umbkpK6b4iGPicSMFRxPqzDWE4X9ouh85FzqKT4UW2759uw4fPjzidiJn+vDDD294phY4O9PHZvrE2F7OlzTmAl2W547fJemhhx6SNFC2lD64rEj5+je3weuBYaPoGiINa5HcDZ2jYxBpt5c6KXIyHKPYH4ZBo9Qgci7UK3EssnQ+1GtO6X67rtvAXWWcieFyPLbse1zz5BTIgZNri3vM80uJCJ3ZraeThnn3XFHC4LUZJUA8z+geQL1z3H/W1dckPdT/ScO8uC10s2Lwh8jp8xyrpXWLc83AAHw/ZHueOry1tbXG4TU0NDQ0NEQsbaW5srIy5zZM2UWq+f7775eUByaWNr6V540AlWyqhTqiTO9jKoWWTr7OgLmxnBpVQIdQaaBwTD0zHQnTj0QqreYwS+vQaPnm8asF+mWYqMgNmYLMyo39j9cZZo2BoU3RZqk9PG/nz5+vOoDS0s6UYaTSzc3W1k4si6hJFFyPKf6oJ+W68jquJfeUBoqb0gfOQ5x/UsdeX5RoMICuNMw/rXUN6nal8Vr0sx6LaNFLMCmtwfRQWZJS6sBJ4WdWmnEv1vbjysqK9uzZM9LzRM6bgdjpZM1+xPYxXB8lP5GLMbg/Kb3Jgld4fLzOWRbHLbaX4+V7aDsQ9wYlCgx4bt1erI/W3wzJRt11XEsM40iduPuX6UJ5JtYCbkhjJ/xFuTupcXgNDQ0NDVsE1+SHV0uUKI11KaRIM6vCqAOK5dFSzGWdPHly/iw5uVrom8xnhxZ1vm69XxZ656677pI06N/oT2TqxdZ80sA5+DdyQaZCYxupQzO1RN2HKayMC6F8nAGHsyDMTAfjOZgKmRY5oRq1tbq6qv3794987GIb6KNHDpipSqQxN0jufSpIMblzJjb2d68HaRyijGVklLYpa647jzmlE5mfEsN0cS1l+jGuMwZhZzDj2GdyP9xnEdTr1EKNZW2M67a2dnzu0JI46thpBe5xo89hllqKXC0tsDMOj1aS1pe5D+aeop7M4+/1xTbSgjn+b6ka0+fQ921qjD1eTiWU+cXRN5iWvfQzzvwMzVHSvzELGE8rd5ZFi9L4jLFnz55JHXBE4/AaGhoaGrYEril49JRfmakVUt609st8aHgv/Tj81n/kkUfm9zLBIy3fXB+vx3JpIZRFcjAnRX8rRpsxZZfpxzxO1KFkwVw5ji4/Wn1J4wDRsY2MNkE9QASpXUZeoV6D/7uMmi/V6uqqbrjhhjklTKvWWDfbRF1hRJYyyPVJY+49Sx5cizLj65llp/2TqOsgNxevUX9Nrjnz/2RwZeqKGPklPkN9JjnKLLUQrRopbcn8y/w8uVFS3XH+eM9U8F9zeG63OYioY6+lUcoSDRueF/qnUi9Ki8xYLufO+9/IglWTa6a/X+RcGa2GlsUu3xKnCEq3PD9+xus7WvgyCpPvpQ6ZEbRiPdRJ0ro+swOgnYP1jN4Lbpc01hnfcMMNjcNraGhoaGiIWIrDW19f16VLl0bUUqRITK2QCmPqk4xaMhdG6tJWTaYkY/w2UwSmlmy5ZYrEbc183Bj5gBRWpNZoDUX5N/UKkSJxP+hLQ71C5HZc99GjRyWNIxCYWss4Zuqt6OdDrjiC1qD0DYqUFGXzU7J0Jw92n7OElp7/48ePSxonWaV/WeyjKUH6Rfr3rK/0Q7PelW2M3BN1nUztlOl9GY+U1w0mypSG9US9K/XbGYfEded+UaIRuSNaOdLSLuMK6fdp0EIya1uWrinDysrKfLxM/U9ZszJdj79n1uG0nqaNgtdl5IQMSksYmSTj1jy21N25rZkuvxYzlvs/jid17JT8UP8sjfc0I574OzncbEy47jMdJTn9LFFvLCOORUsA29DQ0NDQUEF74TU0NDQ0bAksJdKUenabaR+iKIPiILOqfoamqtLYgIFm02bbGU7L7Yn11JTXmaNsTXzHUEOxXLL0FItkLgbs1y233LKhfN8bRagW39ENgabTNIePoJl7lm3eoOsHFd4eq6nAzSsrK5Oiha7rRmLrOC8Mtea+00k9czGh+IaOubxfGot03DYansRnalmwM5Nrg+JGj5HnmIZQ2RgyQDNN56PozO1lRnq21dejAzdTCtHR3J9xXBl2jA7nWfgwrrMpg6eu63Tp0qX5+rDYMPaZ4cYYGsuI2cS5Z3keMIhEbJ/36okTJzY84z4/+OCDG56N5TE7u+fQZWaZ3Bme0M/4M0tLxfmmgU1mDMZzgCoBuhNFoxzuCRoDMZRaLIciWjrAx3nz/3TvWASNw2toaGho2BJY2vF8dXV1TlllJsUMH0NqInNgJnVCR1yDhijSQOEw3BkNN7KAwzTBJ3UYKTpSg2wTDQGi8YIpN3MOhw4dkjRQQnQulQauw9QMjSNItUcjGcMcsev1vTTVl8bUrftBp9vMpcHrYSq5q8HyoiGA599GCTQa8bPxGboy0NWAhklRQU8nWirZs37RWIkcTzY+5Nz4PQuQa7g8BgfmfGUO3AwHZuMvr02v5fis7+Un2xG5Qhq/1PoZJQsM47Vnz55U8hBhToEpwaTxWqErBoMwxHLItTBAd5YG7dixY5IGozJy6X4mupgwDBmN17J96Tb5Wc8Dw8Rl0jZeI5eWBUnwfvFvNByjQU9cO5Q61EIqxnOd7mIMGp25lTEV3JUrVyZTS0U0Dq+hoaGhYUtgaR3e6urqnGLITOKpe3IYsJisL/4ujU37SRmayrDZeKQq/Nvhw4cljVN5ZHoROpZS9mzQNFaqy4+ZnDZSHA7lw/A/5NpiG6lHcttoOp3p/5hQlLoUUmmxfFK7dLfIgu9G14DNHIgZZDmuHffN8xwDDEjDGopULBPkMl0KqfTIodM9w+NhbpnhoqRhXqiHMdeZmeiT26hxdlMSE68zOuqyTGmsU2OKIXLZWSgzSgxM+WfpiIzNQoxFDo5c9b59+yZdWnbt2jXiTC0pidec+JnBm7N0Nm6Dx8tj6THmWRbHxLo7Ov7XpEWxLR5LciWcr9hGhsyjnjtbOwzLxaD82TMM5sy0SrRZiOCzBs/3uA4Y0MP3MIBHlOrRcb4Fj25oaGhoaACW4vCciLFmZSQNb2bLV++77z5JY44kUgG0ADQFRGoik3H7zW9KgJxJxuH5XlNfDNDMAKrSOKEsy6BjeuwfKTnqYfw9C4ZLvQ6tmuiwKY2durMQWbF+Ph/LJWcZdRLUn005DpdSVEqZt9/1RT2MqXNzxORU/GzsB3XF1KVQopDpyRgAwNyL12GcF7fb1HpNZzxlSUzrYybSjZw3OWuWn+kuyA2yPo8npSCxDZR6sKyMg2X/uBeiLpTc2lTQAoc0NCxdsa43lkcrat/jtRV1QZRqkFPwda+DGNbP+516UnLRcX5sZepP76VaKMXYRpfv3ygdyAKGM9g6JQuZ1XMtzZZBa/goFfMcUQfOPRfn2eX4XPUa8bOW9mTh/cyBNx1eQ0NDQ0MDsHRosQsXLszfpgyyK42D9JoyYcivzCKLsmZadGZUB/ViTKPDdkhjPxFTGeY2aMUZ66ZlE5NrZlahpHwZCDjzcSMnROqMurJIPdOijz4uRhZmidQ59RuR27FV6alTpyT11NgUl7e6ujoKM5SFNfI8mOqLFoHSRmqPVl3UW9T816Qx9cz5yXQO/M39cJuZKFMar99aYG5yqdJYd0bONbMKpbUsdda0Dua6iG3j2GT+XuQuuAYYXjDC+2bv3r2TOrydO3eOOMa4DsjRmRtzm7IEwLQ0pC7d8+SxjiENGQiac5dJeuj3SQmTxzjqCn2eMSi1QV1oJpViEHZytnFPMHkwz3qWkel/eQYyVGQck1qYM9tKeH3E/eQxiWm8GofX0NDQ0NAQcE3Bo/1mzVJEkHJnmgdT61mKCH/Swo46kMyyj6l9GDg5UpfUmfB75utEfxhS7UwXlKUHoo6Q3E6kWOnPx8C8tN6LY0LKlbpQUrSxDUyK6zZ7jKIOxGMbOZXNKC366kR9BS21TOXRrytSsdQTkIvJxsegTou6LnLXsW21NcP+SWMqlf5eXEuxPkpMPOakzuMz1DOS0p6yDq5xNx5H+uBm5ZDLIZcQ4fI2Czy+bdu2UVSRyHkzFRZ1a1l6MPoC8gypzY/bG0GumRKg2EbaInDPRItEr0n7UNYkO1MSE9ozUIqTpRajRItcaCZpYuJp1pNFLnJ7WT7Tb2Ups2JKuM18OOf9W+iuhoaGhoaGZznaC6+hoaGhYUvgAwoebUR2kiIfi+ls6m1H9Ci+oziKJv4WH1DUFe8h+25QXCXloqpYFnOeSYNopKbUNegQmt1L8QPFSLEtBp03aRYd2+pnaXzDMYoGDxQ/UVyZiWisXI/hjjYTS9EUP/bTv9k4wGIoGopEI5ZM3CQNY+s2Zu1nQHOOBUWQsa8Ue/KZTDHPdVcz4Ir7i2I3iqWyUHYcC66d2u/SIC6qGcVkgQW4rmgA5b1uIyRp7NTNUGlE13UjUVl0v6HRQ5bLkGBeOo8LxeEuI4oaOaYc28xQjAZNNDjJ8sW5nptvvnlDPdxnmfM1XZfo3pMZPNWCVtTE4hEUNVLETVG7VB975veL64OGQlMGT0Tj8BoaGhoatgSWDh4dKZbMzNhv2gceeEDSYE7rN7dN2E2xSPVwNn7G1BqdE+OzpJpJzUQKqGaGTC4nSyVDhTwdgE2xRCqdxhBMMUNHzdgm953GMlSsZy4UBqnyzIjA5fkauWzeJw3zb5P8qbBidh7OjEcMU250rqXBTNbuzABDqqcPkoaxM7fBdei5jGUyiC4p+SxArkGFP+/JKG8GCWcZmbKewaOZfZtSmLjueA+Nwtz/GPaNkhEaNNAwIT4TQw7W1k8pRSsrKyNuLZrq+zx56KGHNtxDs/eM8zbopuQ+UgIlDRwIAzNkQSv4TC3ANfe2+x5/435neLzMidxgoHMaqsW+c1/R3Ss7+w1ms6fELI47DZn8fjA8nnbWj3AwgX379jWjlYaGhoaGhoildXgrKyujcF1RB2D9mt/UNqf1d7+JMz1MlMlK4ySevi9yh3SqpHlrlvSU1DLN3l1/pLQYWJY6G7oJRAooC7wcy3L/opyaOghydNQdxGdJQZKDNFWd6TcYloxtjZyrqTNzXlNUuuujzjVSeAy463sYNi4+Q7eTGjdrxDklN+62mTLNzN9rKVZqbgrxXobiqwXijX2gToVm75zj+Bv3ArlFj110qPYaYcJhj8UUB0uOgusrnhMOWuC1s0gAYAZdj0GWXR71rj5nfC5FdyFywjSfd1mUAMRyPJbmgHgexLlkKDfvQ+oMM+6wxkVTDxzbyFB1tWAcWWoprw3qS8nhZdKPWvJY6i6lsfTB64FB2GMIQgZSWF9fXziAdOPwGhoaGhq2BK5Jh0dLnSxhod/qlrOSiokWW7TE8dvaFBAtByNFymCn1FtklFbUWUSwX9HZsWZZ5U86lUeqyRQiwzVNtcdjYeqMAbWztDDsBylWUviZPo16TLfdZcS0MHfddZekjVZgNUprZWVFe/bsGVljRU6BId9ogUgqWhonbaWOg9xOZl1GZ3WPNfXCsW5aY9ac+6Wx8zvXuUGqOvaHVoyksOPvDHNFzsLjyKSisa0GHenJ6UljjoTJgzPdjaU0sY21oAUrKyu67rrrRoGLY5+z9RTr5rkU+2aQ8+Hei+uOe4vpz7LUNUwlRGkHHd3jb9yr1ElOhSd0f6jDy4Jy1EI0MiGwuazYP1rV067Bn3HeXB650Vqghfibg5rUzvMMjcNraGhoaNgSWJrDW11dHem8on8Kgw2byrAuz7JY++NJ0m233SZpTF2S06OlpzQOKUTdSqbjqPmluD9+hkkws7ZRl0ZuQRqopVoCUN+bhSFiskhymEw8Gf93feRCMstOWia6XnIY0X+S4xapcGJlZUU7duwYUedZkG2D/pem6OK8kCqnVR77HNtPDsjfuQ4zjrIW1JsWv/Ga62GYOKaHilQzw9IxeDTnIN5LK0yGB8vChLHPprDpSxWt5mp+eLTOi5wg9bRd101yeLt27Rpxa3EcGVDYwaPJBURuwFym+0ipDaUsmX+cf/N4WKJV09tLw1qxtIT633hW1ZJT1/wz457m2uF3rvN4D8eY1uhZ8lgmUvZa8Zz4eqzX5wzPeCOTimVh1JofXkNDQ0NDQ8BSHN7ly5d17Nixkb4k6nUov3UCvwcffLCvMAmYyhQutQC9ptYiFWBfHOotfE9m8URLJFIHtISLfTVozUirqUhJ1qIw1BKCxr7zO60EM38sUkBM6eJnYhtpmVpLThmj3Piaqdobb7wxjd4Q20WLxdhu+gCSos/0lrSKpbWu12OmU6E1Kzlur+u4hkjFus0eiyyKDzkprnNS9lnQcuqGSK3HcacOknNK7jrTx9UCj2dpaKi/dv+sp/e90dLOdUdJUI3DW19f15NPPjlKUZXpj8wpZD5msW3xea5FRgihpCRrg/vmccuSuZLjpgV5ZgFraYbHkH6gNV11rKeWBsuIY0QrdK4R7ydarUvD2JujI2fvMuP7ojY/1ONH61qfD1kQ/M3QOLyGhoaGhi2B9sJraGhoaNgSWEqkubKyot27d8/ZbIswjh49OhQIk9vnPve5kqT3vOc9kgY29PnPf/78mXvvvVfSIBbwp03iLW6jcjnW59+YhZ0O4vF5s+cUbTK3XXye4kIqcynqir9RgU2Dm8yIhGIXivcy8SvdEGhQkYl7KJKj8poOopJ0++23bygniiwJh4eiOCXOJU2gKdrO8uFR1Mb8eDWDndhXziWdhzMzaorS3UbPZRQxMtwU14zhtkdxOU3LaYBClxdpLNKk+C1T+hsUI7MdGTIDhliWxzO6InnvxTmdMniKGc+NLL8ejUg8llnGc7rB0F3H55DPu1i/y6MBiJ+hCkQaB4Dg9ywgPUX2zDlHt6zYRq4ZGullc831TJEpcztGUaPnIxqGScM649qN99by8HmMMrVCZrC1GRqH19DQ0NCwJXBNGc9pmGDDFGmghvhmftnLXiZpMF6Jxg+mSGvZicnlRM6L4Zpovs37pLFymIFyXV9sB/vDNtGEOdZXCxPm76aaMoVzjXomtRupwlrINDoRR06iZnjgMuxWkpnbm7I7c+ZMlRPouk7r6+uj4MeRq2XWaK8LU+tZChmvvRMnTmx4NjOBrpXBsSSVG58xR0WHWRokRMqXa7QW6ivjCmg8xDGaCg9FIxX2k2lcpGE+aIxDrjQzkqLzsEGjDGnYW3EvTJmWb9u2bb73/GxcazSisAEFgxVEDs/uTT6LGPLNfc3mhdwrjeSyYMc+t+hgTmOlLEi128KUVrVs8xEMSk3Dscg9MUgBOXH2P2Z+p3EPJTOZISHvYWqzzMDOkoK4B5tbQkNDQ0NDQ8BSHN7a2poee+yx+VuXzp0RpkxoVvrCF75Q0kbK2w6g733veyUN1JmpJFNypvgzStGmrq7XsuEs1JNBCp4UcNT70YGdJrfU08Tg2O4HOS06j8Y2kkqqhaMiRcR2SwNlyVBtGRdaSx5r14M4RkeOHJE0BO694447qul/uq7T1atXR/rF2B9Ti8ePH0/7bmo9Utym9pzKhdR5LfWTNE6J5Gdpvh3bSJ0a9bOey8xBv2ZWz9BIsb5aMG9yeHFMsvmVxkF9qaeJfaaeh9xOXAfUvdJEnqm0pLHLx/XXX79piheaxmeJchn6ymV6nWQuLZQk1BKkZvppBsie0pO6PLpXMZh93EPkLnnuZAEc2F5KU6Y4cnLjdLPxvZ6DTOJDaRe50ilpG3XwWYJr9yfafDCJcw2Nw2toaGho2BIoyzjtlVJOSjq66Y0NWxl3dl13My+2tdOwANraabhWpGuHWOqF19DQ0NDQ8GxFE2k2NDQ0NGwJtBdeQ0NDQ8OWQHvhNTQ0NDRsCbQXXkNDQ0PDlsBSfnj79+/vDh06NEpVE2H/CfpZMWFqBA1nNvs+hdq9T0UZHyieinJrY7NI2VP38Df68GRx/lh3KUWPP/64Lly4MHJYuvHGG7tbb701Td5p+Df6FjH6yweCWAb7yM8pLBrZIZZXmyumCVoEU3uE9dQ+F3m2Vl/0peL81PzpsrG3f9X27dt15swZnT9/fjT4u3bt6q677rpRubFN9G3N/C6zfiz626LPZvukdu8i642/LbMHant6mTPjWnAt/WO0KyN7XzCG5tS5Qyz1wjt48KC+4zu+Yx402GGdYqgvOw46xJidDunMm+X84oHH61OHLu+Z2uS13xjeJm5qTho3OScs9o8Omf7OXGMRdGDlWNhZNQsEzfBAWZvi9VguQ6jVglhHxIztP/qjPzr6Xeqz2v/kT/7kPETZAw88MOq719HJkyclDc7JDA8WHWWZ6ZzzUAtKKw3OyTws6Wwbx4nh1HiIZHPKwNV0NPb3zBmf81tb53Fumcmd9dY+470si6HUYp43B1nws3YIdqCDWmAHaXDCft7znqc3vvGNo9+lPrjEp3/6p8+DTDBHnDSEBzt48OCGuhm8IB6gPDi51qfOnVouw6UCGSOwebZ2mP+Sa5JjmoXO49k1FXaxFhqwlpU9GxNmX59ikBgYpBY4IrbL54SDMly4cEFvectb0nYTTaTZ0NDQ0LAlsBSHJ/Vva2bSjhQiRZqkTHk9Pl8Th5KailRNjQs0mAE73lvDFBvNftYokSyLMLlCpiXKqE9SPAxWPSU2YBg01pOFo2LWb1JlWdDgWN6UmGRlZWWeVodcSOxbTVzosiPHRwqxltYkaxfrq3HGcQw4d6RiuZalejBvclMuO5MOMPAv13VcOwztRS6BnEw2NuSQ2b8IjwX7zrBoGWceM7ZPqSMuX748yu7OINWxvdyfRsbNuN5agOxsXVJqsox4kNwSz464xyhBIofH+Yjfue/Z9uzM4G81yRZDqsW2TYUPZHtqQfgZHDtrq+drGfVC4/AaGhoaGrYEluLwSinavn37pNyaOjp+MuitNOj9GES3Rp1P6fBqHFdGVWQcY/we6yXFSDk4OcD4LDm8ReT+1HtMGY/UQG5tSplM6paBXpkcM/7veVtfX69Suuvr67pw4cIoYHKmP6JUgFxzpuPyNXIzNI7I0ihRd1LT6cTyud7IPcX1Rn0r1xCp+MjhkUqnjiYz6KkFKSfnMpWiic+auyIVLw06PHK91DdnSZGtj3v88cer+q+u61NLOcizkUkbarrbKSkK+871kOmv2ceaxCUzrOH6yjg7tpHzXuMKY58YxJmY4owY0D7TZ9ee4b4yamenNNYz+2zJjI9YzmYSu4jG4TU0NDQ0bAm0F15DQ0NDw5bA0iLN1dXVSbFaTZRpEWY0JTUsqmCeMIoFaoroeA/FBJk5Og0NqNynKG2q/JqIKROHmm2n8cWUoUPND2dqDmomzFToR2OMmutEzWhCGotKMpPoiPX19VEG4zhONfN8j1tmIFAzz6ZpNEVbWbtrLg3xGYr6KBbPdMb1AQAAIABJREFUTMtrhhM0QHGZURRUy2w/JeanYQH77HF2TrOoSuAY19w64lp17j+7kbC/NGKI/7stly5dqoqmrl69qlOnTs1FopmIjpnBmfNvSrXhZ2yMx/nJxnwz16Ip94San+Ii7g8147ms7Jrh0VS/eE/NrSM7n2pnUs0nUhrOwFq5Uy4tUbS5qNFQ4/AaGhoaGrYEluLwuq7T2traiHuKlD2dWc3RWTnt79FZnY6rNFGtmXVnMKVHqjZShb6HWZGJSE2R0qVCfsrwgPf601xulrWafa5Rv5mJMceHY0LqN/7GNtPwJYKuAF3XVSktGzzVDFJieeQCPS4Z98wMzKbSzS2xz1MuJzWDjYwriBFCavfGvktj6pWciucpGgZRCsHx4++blZf1N3MN4afvybLO+39zev7u/mXSgZojfYau63Tp0qV5+dn65RqvGerE+Wc5tSzbUwEv6NJCKUfmQlMLkjAVUagmoZgyQPKY0HiEQSWy84+SCxqOZRwex49GX1mQDMPjR2O2zNgoMzJcNAJN4/AaGhoaGrYElnY8X19fH3ExkaoxB2cH40cffVTSQBkyVFH8n+HHMhcG1lcztSdVYw5AGihR31sLJZXpbmpOnOQcppyHPRbkdjOquUaN1/SQGXzvlKkvqb6pMGsGObwpSquUol27do3KiX12X03led4zlwLDYaxuuOEGSQPX7v5wfKZCL7ltdI/J7nW55mIYaiwL9VWD54XcYqzHqK3rGGaLIdL8jNvo9ec2xjnwWqRO12Pi3+OedN1eD5bmuO0uP7oV1DjXDJYckPOOHLL/d/gxhxajg7bXS3zG45QFqZBytwGeFTyzuJalcRg8ugJla5PBCWp6skxq4P89//7O8cskGAb1pplkhs/WdNS0YZA0DzXIcHs+G7M9z7p37drVOLyGhoaGhoaIa9Lh0UkwUnvWx9liy9QkZcBT3Az1YVPhofhmJ9dp6iajSFn+VKRuyvvpeEpdVxbKrBZmLavPoJydAWdNgUWuoBbGzXPBYLVZuTXrryx0kTnmq1evTupi1tbWJrl3csDmXkiRuj5pCD5MnZop/KnwWeSASJ2TM5fqwRFoYRmpdffRY2jqlRS+5yBKI6h/43y7/5FzqYWjc1nUHcc9ZO6Me9JlmMOLOniumYcffljScBZES0zDzzvo8+7duyelA6WUqt5UGtaEOTz31WPpcfPv0sYxi+2vhf7KdHi0IqTuPa4dSnL86fXAvSGNx7DGhWaBmT1ePu/86TGglCi2m3o4ZqHw71nYPepTKTmJFvoG+zc19tyDO3bsWDi8WOPwGhoaGhq2BJbW4a2trY04hUwHQL3bFEViKozyYeorMt8tpi0hMj8ZP0NdB/UlGZdGiqNmcRVl6aZa3E+3yd9N4UXKhVaR1HO6DFNrtfBB0jAnLj8L/GqQY6FvXBaaK1pTbuYP47VjfU5cO9RxeF7MBdx8882SBq5GGvpPvavHw+VnVnrUSxhch5HjcrvdD3IFGeVbC7HFtlEfKI3T3PDTXErkXFwOdWhuq/uT6fB8jYGauWbjemMweQaNznQ3vtdzvHfv3qq1tOsnpx/HyW0gJ+cUZl4z/s7npbEFInXUGbweXBalKhmn7/FhAO0pDmgz68WMwyGHRWlbxhXWrF1ZH20ypPEZ5LVLiUPkrKPuWRpbu2aBu8kFbt++venwGhoaGhoaIpbm8KSx1VKk6Ezx+C1MnYPfxJG62iwFjt/upios147X/Aw5SyNSaWwLqZqMS9nMH64WeDjWR4qLETai3ozUbE22nvnS1KKxuJ9ZWidS4bR2zfrNMd+2bVuV0uq6TlevXh35cWVWbG6nKcTbbrtN0kAZRg7VzzBKhtek14r7Fbk1g0GPOYdT+gHXOzWXNZ2Q++dn3LbIhZhT8TPk3g4cODBqU82HjtQzgz5LdemKpQSULEjDXna7PSeu3xbbcW3QmnYqWsbKyop27tw5v9flRF2upQCHDx9O20SfwNgn6tKmdN0GJT6ufyoyiNtPf0VaJXu8pLpvG/e4+xfH2Pe6fO8rnilTge4ZKYuIa4d+n66XEawiJ+g9QBsI6vjjHrR9SGxzi7TS0NDQ0NAQ0F54DQ0NDQ1bAku7JcScZxYJ2JRZGmehpQgmC1zsa1RGux469UaW3yJUmljT2CKKziiec5troXjitZpxApX7UWTrZ9xWikrcz6jMrSmLiSynn6+5Pjo2T+WlYr46IwvZxlxZU8YwBg2UMnGaRT4HDx6UJN10003Vdnst+BmuA4vtPBZ2UJcGEVMtSLXLiGJQiq7Zn8wQgMY9NMpx2/2ZBfO1yIz123E3W980imBQCI/J6dOn58+6HIrmGNA79tP1UDzl/mRBqg2P+fnz5yfD5+3Zs2c+d543rwtJuuWWWyQNxim+J5Yv5eoQX3P9p06d2lB/FnyB7kjeu76X4QulQfzMwBc0kskMw6iG8Fz6zPTv0bmfrgT+ZFnx/Pb8uv3cI1wHcU4Z1o9rxWORiaI9T14rNlDzXMT1FudQms7DSTQOr6GhoaFhS+CaQotRuRupClOvpvaoaM7exKY0aiFvqECNVJPviY6wsYzsu9trSsFUiylIOmzG9tOEnEpeOsdK4yDI5Ggz02KOAY1I+GwWADgL+Bz7ENtoqp+UVi1dTPzN1y5evFil0p3xnOOYBdcl53v8+PENbYz98lqkYtxw+Q5xl4VeImqGV9IwLqZSaSzgNkaO2wYepqQ9XqZu6TweDUJcrvvpT3IDkUpnuq1HHnlE0uAQ7r3itkcum+4nnguatMf++RolM54TGxlEboAO9VMc3rZt23TgwIH5+Lgej580zIf3dBwPaczpScOa4LxQauS+x3XAtDbkXjKJCF0kvJZoSJWF2zNoru/v5tJj/1y32+bv3k/ul6UE0jjARY1zytru+aGkhAEqopTF7faapwuPEblelxPdh5pbQkNDQ0NDQ8A1hRYz5ZaZ4PotT3k+QxRlCTKzkEHx90z/599oVs+gsZGipHzfVCFD72T10IWilrQ0UigMis0wVJn5c033WdMlZvo46gr8DPVdsT5St6w/yt9JjU2Z76+tremJJ56YU/leH1EfS+rc1KopUVLtsZ0MS0a9nJ+NelLrgMiVU3IR1wFdCKxn9BibYo1SD9dTSyxKKj6uA+oiPSZeS+aeot7J1x566KENY2NKno7hkTrmWjRXQl1O3PN0Q3DbvKY8JuaopIHK9758/PHHqwmEfe7QFSPOpefM64lm9B6/uN6o/6T+jUGvo+6IwaEZviuTaJmzsr7x1ltvlTScN64/1uN+eAyZSszr0M9Ep3VyWO6X58H9jxxlLQmu62FYsrh23QbXS0lCNo4en0OHDkka9heDcWRnldf1mTNnmg6voaGhoaEhYikOb3V1VXv37h1RDFEXwjctHTQz2bCpClr50SKJIXky1BzEIwdk7oIUCEPwRJ0DOSwjyr9jXyJHyYSY/MzS9VCHZ8rU1DufzSi7WsoVUrLSoA9hgGFTY1mCU4Z1y5y6ja7rdPny5fnYnzx5ckN/Yp3kYtwG15fpKWqWw+SiMktBt8nzlAVVNmh9x3VGTlMauBlzx15D5g45l3FvMBg1OXuGgJLGlDSDEzA8XZaEl/3w+mAot1iuwTnJnNndRo/BuXPnqjo8gxaRcS7dTnO1DEhBy9WsXJdHbiqzQo56a2mcxsdzGu0AmHqJEiZLAqKukDYCPgc479n+pC6N+ys7q6j/5fx7PCkNk8ZjyxRd7EOsx795bhm0ILaRgcIfffTRxuE1NDQ0NDRELMXhlVK0e/fuUeilyOHRiotWfpnej4FRaf1HyjtSzwyPw9BOWZJaUxFut/UUbpO5g8ghMYWHqZcHH3xwQ70uK/OLitZJsczMootBoWvplTKqiXPAQNe1FCPS2GLWXFvmi+Rxcr/Onj1bpdKvXr2q06dPjyi3TG8TZfPSMJYer6jL8zxQ1u8yrO9xyKnIhbrdXJseLwbsjr+Z2rc+xFyi2xZ1eF6v9i1yG6y38Px7bKL1ocu1hSX9XP171BkzjRL3qfvrsYn6P+uZaLlYS0QqjUNmkaPwmohh0LIQaTU/zpWVFe3du3c+X94bcYypwzIXQ5+wOP+UPtW4Z+q1pGG9mRsjV+3xMwebtdHWs9T/RQ7PFp3W+7leBqLPdPk8G6jTc7/j+nbbmELN80+/1yz4O88fr02v93juuL30hWTYynh2eh9535w9e3YhH2CpcXgNDQ0NDVsES3N427dvH6UVifJVWiJSx+S3feZr4je/ZdlMyEkOUBooHlOM5t6oP4hcoakjUw3Pec5zJI11haRqpYHyYeQLg2lpYhvIOTCYdAT9UEj50IcwctmU0VMPkOkzmKaDlLHvjTo3t8HBne+5556qpZ398MgxRB3AAw88IGmsP2B7o6WonzfVR388/24OL44r05cwyK71s5EDoo7Qbb799tsl5X549DljOh1a/sa5sMTg3nvvlTSMm+fBZZgDlIZxc9+9J8xtuI3mHiJHcc8990iS/vRP/1TSoM/iGsoCDrte9517MwbFdt0ex71791atfLdv365Dhw6NdHdRb8l1R/uCTG/N+XZ55nIZSSjC5XosfaYwcHfkQukf67F1vzw+XsvSsCY8ly94wQskDWcUU39ZNx7HxO33uqKVbuZn6rFw+/0MJU9RsuR9yXnymnFb4/6lXptno+uxRas0nL3el/v3759M4RTROLyGhoaGhi2BpTg8U+mkjCI3Q2qJOpXMStNUgzk7U4pHjhzZ8Cz1J26TNFAgplCYhijKgH3NVAF1AlliW6bayJJQRkTOhXpLprTJxsTchcvxmLgsXzeXFXWGjJZAbtvXp3RTpLbpqxTbb+5iSo6+Z88evfzlL9eJEyckDVx1lh7IelHGQc0ixDDNjD+9DqiTjPoxplYxB+R7zFVl8T45BuYWrdPLYqmaKyOHRwu4SDW7XO8rr1FS9rGN7o/vcbnmRj3XrjfqRO+8884N93gPeCzMQcS147VYs2R227MIMlPpp4zV1VXdcMMN8z5m+jiuW0Zt8u9xnNjHY8eObXjWnAojskgbdXOxj547RoeSBm7G8+J745qU8nHy+UVLZX5GSZbXirlpSj9qqaBif6i/tDSH+y221WNOK+HMspmRo7ye3Z+Y7Nmgdf3p06c3tfA1GofX0NDQ0LAl0F54DQ0NDQ1bAkuLNM+ePTsKkBqNLhimySw4Fc1RLEVDDAZCNZueOTabTXZbLO6gmDI6K1scwbRDDE8WQTEnzXdpth9FWjTxpajOLH8Wtstsu8UpteDB0RiDIjSKbqdS2XgcGf6K4dekQdzgfkxlPN+5c6de+MIXjkIuRSMY/uYxtxjNoqUonrajMcOmPf/5z99QBs3IpWFteowtWvJ82BQ8GjpY7HXfffdJGtYkA0Fn4cHcRord/UmRvjTshVoYOhs4xHGnsZfrdd+ZAsh9iX21QYDH8aUvfakk6V3vepek3CWAc8/s6JnTdxSN1YxWVlZWtGvXrvlYZIEquN+ZVicLJuFrXl/el54Hi99jOwyG4KNhktd1FLVR1EyXkriPDIbgc71+huG8Yjtcj9UH/rRo23Mcx8R124XEa8b1MNBG3Is0PmRKJtfjfSWNw0by/cHzJ16L6Yha8OiGhoaGhoaApd0Sdu3aNaemTCFEDs9Uk9/yNJ/O0j/QwbimXGXQ5VgO3/BUzEfQcZ71THF65CSZ9ND9z0ym3VaGssrCoTHViuuhsUKWpoPjxRQiWRBucgEuz2NEp3VpzLmUUqqU1srKinbu3DkKpBzb7fEwJ2dDCVOVdLeI7SEn7364j3fddZekjRyl17Hng+vLbYyKczo201jK/cvCn5GjJlfg392eCEslzGHaoIJm69I4ZQ1Nvr3fbBwUKXyPj5/JEqey7a7H67sWwiwafXhfxrBrNQ7PKck8Lq4vnjseO/eFEgSGDZTGwSS4h913Br6QxvuCXIf7F88qt4WppRgYPNbD88ZtobGWz+K4DmhQxdRmNJ6Kv1Hq5HXNgNvRwMrlMzyYx5lrSBq4Tvfr/2/vzJbsqK40vKpUEgJjhyMwg8DhxhG+9Ps/iR+AtiUDbiaDQUiqoS8cX52/vlw7qw4RfeE+67+p4WTu3GOeNf7L7w9bCnMuOgKS+zAa3mAwGAxOAkdpeOfn5/XkyZONfTUlV6Q8JyzuFSW1bR/pgXsc9pxt+JvdpX9cTifb4ac1iK44KVKzE7SBpffs46ovTgzNPlrqdCi2Na6UjPyZpSePP+FitU6dyD5yDWPdS0s4Ozuri4uLjXS5V7DSWqcJZqu2xTTRIlYUSelzsHRsDaULLXdR2PS75hzk/5ln+7ztuyG9IxOPAVI6n6H9dukxpmnymWNPeV9m35hP/FsmAej6Zt+0U5G6MkS2ZHRAw0Nr6iwwzK21Zu/R1CLxUzk1IjWHqq1mlGPxmV4RaWf79NspTuzHfA5aoZP7+cl4sd7kvS6Ky95hHk2anc9xsWXO3F56mWkQmRvOaEfkQXu2lNk6kKAdfj5+/Hg0vMFgMBgMEkcXgL25udklrkUiceFV+8lSEjIBtMsP7VFwOZl6VWolfTdOQnUkqftVtS214f/zPDTblBIdmUobPN/kztmeC5pakuxKATka1FGBjL/TlPnpJF+wog5zH7rPfvjhh1ttem8tkUxNNkt/U0tD8rQPzSWZXHA0PzOdkpO5M1nZiddIr9ZiuqRoU+MheVvDSAou+mv/L/eYnqrqIC3b2uJyNyD3HXPiqMa9ElDeX/SZtej8zKuCzR0uLy/r66+/vr3WUeJVh7Vz0WO3mz4uR7xyLf30HOTeX9Edel9b46zaltZh7Rw1XrWlt+NvU751/jieTf8dFbzSSnMc7B0TOnSWLmu7PId5dFR01WH++J/X0VH4HiPjm8TzwWAwGAwCR2t4P//888YnkRKJfU6WtDq/nwmXad+SQmfPtVThaCaXn6g6SCn20dAP569le8D+GEtRHXk07Tkay21kXzx/1mj35mZVdNcRjFVbSZW/3bf0ua3KEHW4urqq77///jZvriskaskXDcF+uJS0GZPzkyzFdkVd3V/nC9l/ks9hD6HhuVBuSpzOlbQPB6mdNjPXCT8T+wlNleewHpkXZ+3fP1lTz1HVYT3YT11pnBxD9sU0Xvx0n7M9nrdXWurm5qbevHlzO8dI/9lv01o5irKLtHT5J2s8nHGfibzHlixrJKmZcC39Z17YQ/Q9icDxpfE/W6Vo0zmWVVv6LzQtlwfKtTTRPWCf+Xzlmjp3eEUf1+WMWvtzBH2+dzzmb775Znx4g8FgMBgkjtbwLi8vlxpZ1Vbad8HSzh/nkkHWTKzNpGRnqd+29c5HYOnYhTEdhVq1LWPhyEFrmllSxnl2qzlJ6cwasjW7PZ+HbfKO0tvTBm3nd+Raajtml3nrrbeW/XJpqbTjAzQ7+kuBTGsMKaXb3+ZiriZQTt+D++r1saZUdVh3SJZ5Hr61zrdhS4jz/UzGnvvAvmPnOoH0M3ZFj/P51q5SSvcZsFZoP3u242hg5tPk2Hkt4/jss8+W/uGbm5t6+fLlxteWe8h7utPoDJcsy+dVHea0i0hkHVh3R+uC3A/c44K53js5Dy7/xbXWfLgn/aSMi/n3Ney3bo6s/fms+x1WtY0Od9zG3jvL+8tzlGtEvzuLyH0YDW8wGAwGJ4H5whsMBoPBSeAok2bVv1VOJ1mnCm7Tnols98LogU0iTtjM622KM62Ww7mzbzZT4hS3szr/h0lrRbll81t+Rl9tSqCNLmTe5iePuzO3OMCA5zu8vzMr2+xlM0tXizCJeleBB48ePapf//rXmyTebA8Tkitx24yWZhvu4VqTBnveOjo1m4D5m+dligmVlx205D3UmU5t2nHfWIN00NMOz8PMS0CPaeqqtmeBzxxk5ACBhE1ptMl8d/Poted8dZW2bYK8vLzcDTy4uLjYBI5lHzynNr11AVV2XXCtCaG7ABSnP/n5TtXIMTt1wkFkeS5NLGGzKHvTKSFuJ5+P68DBK1WHNXLCvs3Nfr/nPX4n+56uT8DvIea5I8dnvr799tvdlKjEaHiDwWAwOAkcreE9evRo42RPCcEaRxf6mtfl7w54WWlvnUTq/1maSInbyY4rLaqrIm2pyIEN1kbzM5fwQApEMkrHtwmMPRcOYuiSyK2BrTTnfA6gXUttXTK++9rh8vKyvvnmm9sxo8VkEvmKTJm165KJac/a2qr6dt7rUiQOQLKVIMfPtawZpWT2Umc4Nw6ssgaYGmVXLbzqQKH25z//uaqq/vKXv9x+5vIzaCwPSfY2UYQtNl1AF+Azzo3LLaWGxrplCtB9xOPWMvK8mHjeaSiurJ3Xem/7vOzNE+1aA+sCrHieg4X8d6ZQOWjJWjT7vAtUoo+sh7V1Ul7yTDv9wOQYtg7l+BzEuEpN6+C54L3gdLOqg0acZOh7hBiJ0fAGg8FgcBI4mjz66dOnt/RKhGZ3fhuHt+99u1trWSWrO1w8n23JeqW1VW19dJZ498hpO79O10b2x4nmlgaR3rvw95UGaU2yk4470t78f6ftWFJEwjN1WtU23H5vjV+/fl3Pnz+/DUMnAT1L75gSC3TpD8DJribdthSffh9L57SP5sC1WQKF8aO9OB1iL+XDpNH2/3R7lmevUhnQBv70pz/d3gOxtAnP7T/vtODOj5R98vOrtukWTjlh/3dzk+QLKx/ezc1NXV9fb85Avge8f50475ST/N37wPuvS5j22jnk31awfI5jCEx4n5Yl4HNpa03na6M971X2DBres2fPbu/hXNKuSwtZw0ut3X1YWb06vybz5LSbbu/wbqRU1ldffTUa3mAwGAwGiV+k4WF3h+4mS5M4Os4S9opktWrro3uIDdj+PyQONLCOfNTP9nO75OhVyRhHQJqWqOogwZlSimuYo7zHmtWKSmxPu3bfQafhOSpr5TPsyp3Q/7fffruNxKK9ly9fbgibKfbK/flsg2en38D+Nv/NT0e3VW19DfQNjZs16ArzuqCoE7W7dfG4XBrFmmD3HCRf+6ryeUjs9t05ytEUgXnNitDdZOn5uwkdTBuVc4+mzM/Xr1/vrvuTJ082Voccj7VHr2n3DrGma03EvtXOimK6PrQ2l6dK2IfPvOGX7XzGq/Ppn7kP/C60T5r3EMWFc8xY8fx/k3RkX1cUensE2/ZRO/qVvZP+WvbXHhH9CqPhDQaDweAkcJSGd319XT///POt1IIUkDRHjlJy5J01vb3PrNF1Uhr/c8FZbM/8TG3NpLGWLE1hlM9xpKUjSrknJbsVDRCSF+VgUlN2X4GjM/2M7IPt4paEunwfa0bMaxfZ57Hu+fAAe4Yxd5RYq3zFzr9kadKS/orQNq91+Rr6ZGqm7KMLotqnknsKSXrl93mIhoffhf2MVE5eXlesOHNPs4/2O+bznKtp/5Y15ryHPnrPdnPCvnrx4sWmPePs7OxOlCbt48OpOmi11qj8nun8ldaiuujcHEfC+bmc8a5gMu9J51ZyT0d1Zh+d31n2TXeld1gXa5TdeBxZS59sHejycu2D9vuAzzs/uvNo2aNdtCuaMBre06dPd4nrE6PhDQaDweAkcHQe3vn5+UZqIrKnassmYN9Gp6XZh7ayqYMuFwxgC+Znp904Ws6sGUhCKWk5CsxsFY5KTc3WJYM8F0gsKQ0yfyt/YxdJajga0GPp/teV4Mk2UpKyP4sCwR0uLy/r22+/vW0H31035lXkbbcf7LtzIUn79FIDsL+AdWA8sJmkJJyk4PmZo3Y7rZD97UKfLk5Lcc+qg3RuMmwi7CiS+/e///32HmufPguMy23m2K3R29/VlZRBa3NEX5cjRhxARt6upPSbm5t69erVbbtYB1JTIJrVRWdXEb9V9+f37llR2Dv8z9qt/cHZX/tl0VS6SFL/z1r5ysKUn/kdzNx3+xuwJ+m/yxF153wVQb6K2szfV+2yBhkpTc4r5+Tp06cPsi5VjYY3GAwGgxPBfOENBoPB4CRwlEnz7OysHj16dKs+4jhHRa46qJ6YrFD1ba7oqlbnc6q2yY2m86o6mKhM2mzC3C702nRUqO9dnb8uhDv/XtUBzN+dlGry3pwjJw1zj00ZHRH0ymm8p/Y7BNthzl2bq5D5PZDKQv+TCBozID//8Ic/3GnfwStVB/Ogg6RcPZ3r0qlP/zHF8RnmQtpIkz3mv1WgAePJgBGb9w3mjZ/ZR5vDu9SM7GvXN+bk97//fVVtw8W7qtU+ezYNZuJ5l76R93b38Psnn3xSVf9+T6xMmgTL0d5f//rXqqr69NNPb68xaQFjMlFzRzhtN4EDuDoz/4oezrXt8nlpOq46vCuZvy4dyi4g99Xun1wnm6EBz+Ms5pnmnLCPOYueXwf6JPjMJNydyXZFHs019DXnzm6l+4jHE6PhDQaDweAk8IvSEpBikNIyKXAV4puO+Kq+zAywFuOw99TwVsnpTnxP6dF0Q9bSOqnWtFadxpDjynvRgK3VoP0yf6k9OoGde6zxmVIrsaoUbyd29teh39Ysch5NXLsqDcQznz17dhtGb40120EzQQKlXeagC8G3tm6JuNOEnYxukgIk8I7MlzV1ABJnI4MVCCxBWuZa5oD/dxqey2utghc6uj3uTQ216hCQ0KUI+fw6hcdrXnV/aR7azHlkzunLmzdvdoNWXr9+vQnjz0rXUNRZA7Km3yVKO9jCGlFHnO5gKM8Tfeu0QtbXgSD0uaMj43+cDTSfVRmsbM/vSPYK69FZHtjHzIXJGDprm8/YqrRQF7BoUg7uZbwdZRrXdkF4K4yGNxgMBoOTwNFpCVdXVxsi2ZR8TH3lxEKQ99g/YEnPIf95r9MDViV/UqowebQlLiSHtE9bsnFZGkuLKSU6odk2bc9ZfkafXHiWNjvbvSl8VoVAc3wrqbZb49U119fXS1v648eP68MPP7wdu9c8+2Bv9lFTAAAgAElEQVStHK2wo4mzBmof654fc0WY7dIo3X7LcWXfkIzTN+nP7GdGC0HTzxBs/Im2mNBX2s61pI/030Vbndif+87zaEuJk5mrDufFP+lTp7m53Nb5+flSw7u6uqrvvvuuPvroozv9T5+gz5K1TbTCfIZD+V2KZq/EGXNqPxwaSUeEgCZvKwpgz2TJLL/zmH9bGLrnsa9YK8bnlI08i05wZ26Yvz2S9BXt2YqyLZ/j990eLZ4J1R/qv6saDW8wGAwGJ4JfVAB2lSjO51VbYmETQt/phOiLrFVY8uskbmtt9gdlIrBLhzhRFmktJUiTp1oLse8jJRJrZUhLPL8r02IqM37abt0l8vszsFdM0r6vVZHfnHtHTe758LjX/suORskFTD3nCVNg0Sf/vVeY1wVsGXtHCGDfmcmwra1Vbf1+rIt9t0Q2575zArP7aB9v9oFrmAPm1RaNbl59tju6PbBKHnYkcefPSs3lPkndZ7krTeM+2JfbUZhxj/trS0iuC/sXbYO++R2W2potPfzNerAfci3pA4QHjgb2/s53CM+xZYS/TaFXtdUkfc2qpFr+7jJI/jw1W/v7vGf5O4kdHHvxww8/3Pvuue3Dg64aDAaDweA/HEfn4aXWsMr3qtr6GEx6+lCyz7xnL6rMOWEuiZHSo6UYlzPpyk0gUZkWCglvZZev2vpDLOlZ86ra5hc6emnla6naSkD0FUlyT+KmT46U7SjarAXs5cPc3NzU5eXlbSQiUbud75E+oNW4DznWVT6Q92Y3T5ZWycdjP/A8okWrDpK2I9xYH/yNub+Zdxf2XNHE5VgsSTu6dY+keGUNsNUg94H9WI5g3PPhMW+m2XJOVfYx/ZkrKR3yaDRuzk/OMefdlhgTdef6r4qa0m/7dLP4Mdq6rQDOC+1KjGG5oC+O4s0zRrQnY2acXAPNWlc82JYy5twWho6OzBqe93l3zn0+rel1eYGr8kf+O/eo/fR7paWM0fAGg8FgcBI4SsNDSgddYUSXqeAzJJ89W6ujMS1Vdvea6QIJhGt5bmoS3MO1SGtIPCagznHRN+5BmkXSQwpMvwgSHX1xW8xp5ioi7Zmkdi/iCdznA+2kwVUO0qpEU9VB0so53yvi+fbbb29InVPq51nMobUy+6A6rHyrXYFMS/LuO/sBZo+qqs8++6yqDmWO3n///ao6MIaAbp5gJmJteR5SPPek9mQf+EoCz3PpElb00Tl09m91z+FaS9zpU7Hf2pqRtayqbf7oXhFPyKPZZ1hV0j9mnz19WfmzaTd/rnIN+T9nvOpw/hkjfWFtIWbO2AFHePNeIBLXEebZB9YSLY0z4lzHnGNbm1y6DWtFriXPWeVh+v26p1Faw/M7LGELzYp4ump7/h/qv6saDW8wGAwGJ4KjozTvbVBFNZGA7D/qfGpgxefnkvVVdyOnqrZsIi6gmfc7sssFTVNLs+3cUoUlyOQXNaOGtRvnTWV77kvHHJN97/q20gY72z1YzeNeDs19kXYXFxcbH0v6RcwbyRzaj9lFhlnqY02ZP+ekVW0leGsdaF4p2eOjQ8uwZIrU3rHBcM8f//jHqtrm1OErzL26ini0tpBrzjzxGVqB2Tm6ArCOrgbsB2tBOQf2vzjfMNvk2cztq1evlpL69fV1vXz5cuM/zEhYs3nQzy7H1fdYm3C0MHs0zzRjMrMOPx0BXnV4h/A/fHcuzJpjsdbk/EUXSs2z4ehTnkPfmccseWVN2VaAVdFsjzXH4/93967YWLqIcuY2o4ynAOxgMBgMBoH5whsMBoPBSeDooJUMAd0LmLAaa2qxxCpx1SaHLrkSs4YDW1ymJ8unOIDG4zCNTtdHO2LpByaHNLs6VWJFv9YlgNqpb+d+5+x38I/NAh21mM2Tq+rPOSd+9ltvvbVbgoj9k+13dGquvu7k9+y3neyYUZws3KU0uOI3PxkXJk0SwqvWNHiYvfjZBXLxk+rkXGvKKQJiqrZBGDYtYULLUG3micAJpy7sBTU54GRV9qqrWm2zvwNg8jm0y9z+5je/aZPC6efV1dUmUb4jd1+ZRbu0BJvInRbD56xTmsNNOM+9aaLNfiVMqLAqPdaNx/vaqS5d8BKgr+wvzPMuW5TP6cjCs62ETZir89uVTvN3is3iHSmH3VkPwWh4g8FgMDgJ/KK0BKQKSnKklGGJ0N/c/kbP/1mKNElsF8JszcdaDNJFOsydcGmSYEvRCSdC2lnakWXbee//m+Iq213RM1nySonLGoUTm/ekTydsW0rPMbjd+5zH19fXm7nIMbPODpiwhNgFIJhizVpz13/WHancc4xkn5oEe35VNBhpuQvQcCFRNCIkbgeG5LMdwGXNL4N2HKTioAXmswtAsBRuQu8uhaMrUZR/dwFP3J9BWSvrwM3NzZ2AqG4t70un6dJSHJBl7XZPm1pZo9DWuwArB8NgQSBdJSnFgAsa++w6ZSIDa1wI2IQbHeGF0zicdO93Va653322vnRWImuwpvnrLDPck/R6E7QyGAwGg0Hg6LQEkkCrtoVUq+4ngO6S1S35Oly8s7+DFW2Nw9VT40KyQwJahcB2NEQrclVrGJ2Nm76skirThk879k1aC+HvDNG2lmupqSML9phdULVLTLeWtidp4YfBf+H2E5YyXZg3JcRVQraT1rsEVqe7WHru/GP2s1hLcmHQ7BNh4KYl4xwxhkxWRuq3b9AaS867z5rTLoA1nK5d+033fCpOZTFhfJeMn+3u7Z3Ly8sN6Xuu5cq3bZ9r7jefMfvs0Jo6onPvW/v0TA1YdZhTNDt+kq5i6q+qLTm5rWDMAX1MLZRx0L5TTvZKfgHPEc9xYdrs66rw9J5//z7fa54n1oX1yviM+zAa3mAwGAxOAr+oPJBtsvkt76Kq9nV1foouubDqIEUkxVdVX3B2RaPTSTEu7QKsTXW+QkvNq+K0OZbV+Bw1l1LMqtyRi8e6f9kOfVzNRacVWBrbo+1x//c0vOvr6/rhhx82ibp5vbVlS8uMPaXYFSG22+i0DK8p82ZpvdPWkLjtw+sI1fnMBVddiNWScfbRYNzc2+1V++5WZAW5xiZjsKbXSevWorx3uTetLPQpfTV7fpirq6vbZ3fReSa4WEUvdlG6bmNFgdX5ydHG2QeM0TSCVYfzmGVtqg6WJjSxPKfW+uzD9xnsaMmAfZ8uYp19sxWK8dBXF2jN9tOnX7Xd1x3hhTVWv1dzPYns7Up+3YfR8AaDwWBwEji6PND5+fkmcqyT9iw975UFsq3ffoI9v9gq8tGfd37GlZ+q83FZqvRz9qLY7B+zRmetOH93JOcqx6nza63yG0FKgC6kaunWEZ9V21Io5+fnSyn97Oysnjx5cqutdRFp+BxW+VhI0Zk3ZM3Xc+xip13/XNqli3wFkATjM3UeXpdL5Wc6J3Uv8s19YN5MNZV0ZJ3mnde6eGjC+VfOz+zG5/PpPcmakxfY3bMX4Qu1GGPsqMo6X2b2YZVPlvfYp+k8uW7vu/SWNaOuhJFLPKHZddGuaDbca2sR90BAnVhFrNtyke8dzwF7yLmi7PeuiPQqsryLrva7apWPh78z/5da75QHGgwGg8EgcJSGd319fUcqRNLuWFTsRwBdCQxrQLYBW4rqGEIs4TtCMfttdoQVIXNKPvZLuBDinhSz8tm49E9KrCZ6dT6Zx7JXXsV5N50vZOWzAY78y3bo9155ICLt7D/ItbR/yJqC/T757JUVgHW3nynbc14aGomjzqoOe36lQTKezs+IduioU/uFu+hgnzGPOzVmWy4cOW0tLeeTz8wY4nPbWRRcbseaU+5dSmFlcdj7CsCSY8b6ZB+Yb1tGaJP/5553JLf9vfaXdywmtmiZpaXzx64iSpOk3ECjshVsj3UEi4jPqQtDd/mRjs7k71VR5qrtHrG1Zc9ystLu/b7N9rGyDHn0YDAYDAbCfOENBoPB4CRwdFrC1dXVhtolk55XTsiVKl61NcutAlw6Khyr3CaW7YItbH7EROLAjbxnFZZt02mXHO30B9rg/13dKExUNp3YNNdVOvace9ygM2XYROP5TNOC298LLb++vq4ff/xxk9SdJNuuTu9Agy7B1GYTh2fb1NOROtMGfSF1otsHTsWhPcZDW8+fP7+9x2H591Ue79bSpnKPO9eS/q9q6D3E/M5c5/rk51nH0C4JzL48n/7kWtBuppWsTJqPHj2qd999t7744os7/895oj3OTZecXnXXNOy96OAUJ4/n+VwFDXEv78TOxO9gEVMd5rpg5vRaOWjK6THZf5sQba7s0i1sfuV5XMuadu16XzsIsHOLdC6HHI+DE7P9+1Ja7tzzoKsGg8FgMPgPx9Hk0dfX17ff0Eh5GW68SnpeBbFUbZ3394USpzTgoBUT8/oZ2QdL3JZU07lsTdKOWEsxeS+ObEuwe1WZ/T8HcKwo23KsvsZr0YW/Oyzd0mHOq536e9RBb968qS+//PJWEoWEOcfsJHLgoIe8xwETwCHZnZMdjYOf1rA6qdIUTuwhNAuH/ldtNVPGZ1qyPXJs+mgN1taJqsO5dKDLyhqSYJ6Q6E2gvUdH5WRhB7zk3HvfJjm0cX5+Xr/61a9ux2NrS9VBqyQwCFib6oJInLzP39a80pLlcbiaOfdkOP37779fVYdkcvrGWegC00iydioDGpbJpbvzBBwwRpmqPNNOF6KvjN2WjAwG9LvdZ6/T4B1I57Pncee4slL83rsnMRreYDAYDE4CRyeeX1xc3Eq3/hau6hNTE9YkqvpQ56pt4iLSREpN9jV1Po2qu2HiLlhpXwd9JCF0bxwOm3UR0fyMnyRx0mdro1UHSdVS0kMov6wZe06sFec9luRdQqkrJZLJsKt+vX79up4/f16ffPJJVfXS8ip5fLXG2V+HlDtxtvNrIhU7uZeQefDhhx/e/o40Tv/5ydoiEec8IY2joeCXMV1UdzaQZumrtcXOp0b4vqnZTETQUfdZU7HW3Wm9K+uD023yPeF7rq6ulhre2dlZPXr0aJMCknto5f+3n7zbn7aisA9NvbVHHu00iI7KzGkurAt7indH+sfQCrkWC4NTmxyzkHNiqxdt8ZycR88F7bnkjxPDqw570Nr0qjxZtmPrBn1lTjoC99RGx4c3GAwGg0HgaA3v8ePHm2KXqT3ZL9CVda+6K6WbLmeVBI3GRWn6qm1JFyRsk1d3VF+ORLKvMCURJBxLuI6eZC5SGrTPxmUtOunz66+/rqqtBGR/iEvM5D3W7Cy97ZU/Mqmr/Vz5e67BSsODPBrJDS2ni9hyQr79iVk+B23fa2mpvItMZM6yvXwu/aBAZ/5uKZP28Wcn/RnPNKUXmpgl4E4T8pmgDSfLJzgLtnZYs8vn3bcPHNGa13rOnaScz7F/6Z133ln6Yc7Pz+vdd9+9PYMUzM02VonSptPK/WatwgQHK99e1TaJ22cNTSy1J651FLL9fqm58PvHH39cVVV/+9vf7lzrsk35fuIdstJg2auprbKfXELI0aAgtVHefYx59R7viPX9PbEXnZkJ5/R/NLzBYDAYDAJHR2m+efPmVmLgGzwpcUztA/zNnVIMkp8lH0d2dmV2LFWi/dnn0BWfdF4S7XblVEw3hATH/63ZpdZLn6xBImHtEWo7AhJtxHb4nBP7fSyBO+cu/wcsMXZ5Mp1fZ+WHefToUf32t79dEtomTAdm6T01LqLYuId1cbRZR4PHevAZ60GfkCDTh2fyXO+vzi/mQrLMkdeu8/s4J8yEz9yba4BmR18c3eg1yHtXEaR71HWAc8w+Y9xo4bn/HV34zjvvLEnDq/49v4yL9lJjpG2XBbIW1ZFHW5OzFaWzWrA3nMPHtV0ZJecIoqnSpy43lefgV2avev+xl3J89qV5zjufGn10TqwjcDtt3Hl/9uF1Zdm897F6sI6mmaw6aHhpZdnbO4nR8AaDwWBwEjiaPPrly5cbu3hKVWh7aCJdNFbVXQnBkqbtxtb8UkIw80VGq1VtJfKqgxSBBGxpgr87JhJ+Ms5VzlgnNVuTQ5KzvTyvte+OvrmQbvbVZYdWNvTsj8dB+/SxK/jI/+jT06dPdwuWfvrpp5t8uC5vyDlMtg5kv00obqmc/rPmea9zfpCizSqRWigStvcq2mHnuzGjxqrIaueHcVkYF8nl8ywPRLvOI/N56nKcvKYrf1PCvndrG8xRFw2Y2vNKSsf/y+doemj3VYe9gpZh3xZI7cmasEm3V2TmiRUhfLeWzI9LCwHayOhw3lv21fu90DGtAPrPepsRJ98dtiBYK/Uapfbr+A0XrwYdyxZ9cxk0rs38SvZXl0d6H0bDGwwGg8FJ4Ggf3qtXrzYRSR0jCT8dcWc/UsLf7pbeV3xrVT07RdVBCkifjtky7I+zz7BqK4GY+cLP78p1uDwLEq/z2aq2TBq2W+8VgF1FPnW+O2AtlLnhXqTBlPCcK/Pq1aulhndxcVEffPDBRktLaRbJDWnO+WTdupDDREQaY+Re+09z7Mypi3dyD39nXt4qCpTnM77UCml/VcIK+POq2uS8dj6NqrsWjM8//7yqDnvn2bNnVbX15XXcjazHqqxSt4esFdjy0/Hnstacy+vr691Iu4uLi825yTHbEmGuTufcZj+ZW7/PHK3b8bCuymg5erPq8J5xdC7Woi52wNo4P5lb9yP3lK0BnFMXos29yj2sj3NIbY3LaGRgjc4Wpfzc1ihHzPqdUHVY/9yje3nJidHwBoPBYHASmC+8wWAwGJwEjjZpXl5ebqiJUgU3sbQpd9pOqCq5E1Ud/p5BMnYOm7anC3TBDMbzTO1kIuqqrTlgleBqB3Fea2JeVwjOcdE3VHon8a5KKCVo14E8rIVDuLM9xumk/I6k+qGAmq7qMK4MIqC99957r6q21FhdMBHUS5jiaIMxO0E7+8yaOmkb01MXWON1Zx1M39WVaXH4OeYc09F1gUEO36ZNmymrtsEpmMwcANOFzptowC4IB7Vk31xuCTB/aYZ1UNte8jD7xlW3Mx3KARk2TzKnmZayqtQOTAyf+8QBVsw1JYxMnN21bzePSTTyM1dSdzCLSb6z/6ugla7kl9/pfke5NFyuqdu1KX/vO8DvfO5hrdMlRR+9Rx+C0fAGg8FgcBI4Oi3hp59+2pD5ZpKtnetIy5beUntalZVAUrBk2qU0OPQZDcKkyHm/n8M4LNV0fbF2Y4Lc/Bztw+TH1tJSgkTqd1iwx91Rp5n+yeHnLt+S9ziU2HO+F8hzX5jwzc3NhqIox7XShK1VpaSIto7G4MRVU6Lxec4Ha+W92j2P9kw/RXh9Fwhiei4TNJtyjoTk/J81bFsWUgLmf/xckaR3Id8OMjPYl6kVmGbLpAIugJv9X/2dgNIQoM1ksMUqiMwBdl3iuVNZHBDmd0zVlmSdOeasdyXBfE5W7Xfas61drMOKcL8bny1X3Vwwt243014SpHZUHc6yNecVpZp/rzqMNwkJqu5qyh113ZQHGgwGg8EgcJSGd3V1Vf/61782ia0pDViiRnpGAu8kR9rjWx0pw/4jJ4QmkASsOez5q8AqTSDhRFZLJqtUgKpt2Ls1Oye+Vt0lRk1Y+twj87W/xUn/Xfi759zjTM218+utQIkXJMKOUgwNgDGjpZNUbI0hf//oo4/uXLtKVs++Mmfst9T+su1u7/zud7+rqq3m4LJE+cyVlcNUX9011mBoiz53ZZtozz5j76HUniyVm8C7S1cwNRcwGXhqeNyT74eVlH52dlZPnjzZhNmndWC1F02SkZqCU0is0TudJy0itnzYH8dY8x6nbAFbBVJrchrKyre+Fyth36rX2IWCs32nEpimMPeO341+35jMIq9ZpVu5RFP2BTw0JaFqNLzBYDAYnAiO9uF9//33G+qllGKcRI0UhdSyF11oqaEr6UI//Dz8EJbo9qRYE+SCzsaNhO1oP0c1mi4qsSpSa59etmtYSzRNUP5uH6WTpjufm8mDgdcz+9AllHa4uLi4lcq5J8uL2C/i/nXEtY7ORSJcEQLs+ZFWEWnQhuVnJuJ1Ic6E18HagaMl0R7zd+aE8drvk1Kzyd09Hu/Nzh9nC4kjCLuCnC7p4jOfvn5bLn766addST2jw+0DqzrMvwkf2A8d5dsqmd9730WQq7aFh4Hbys9NVmA/fBejYI3HVpCObs99MZ2fo4+70lL0xX5f0FlbXEKtoy6ruks2wTw5onNFeFDV+8JXpPXGaHiDwWAwOAkcpeFdXl7Wd999tykVkXZxpDrbqx0tuZc7YaJkR6SlFGfSVkvLtlszjq49R1al1Gzfhe3UlkhSs1gViQT83dnDgamDLIWmhOf8FEvOnQa7ihhbURpVHSTDJFReSen48DzW1GZc9NYasfdd9z+0MZeksR+4a9/Ri6xtaoXc0/nqqg4aREdhZauD2+zoqNwX+8ZZl4y0tObgM8G+7nzV9g05h6vLvbXvblXCKPc3/efcvnr1aiml39zc3Cku3JFeoz1am6afRNF2Jb9WhVhNzJ7WDZOV27IEOl+1c2ndj3yX2KphqkQ/L/9eFd3eoz/z86xB7hFB+zl+vzofOOHc7odErmbe9lCLDQaDwWAQOJppJcsDOT+q6iBhm2QWLaDzV1kCtl3Xkl/6Apz7YTJVa2JVaynFLBMpkdxHYN09x89zHy3ZpzRoLdASj4sq7kmujiTs/D72rbkcTSdV25fy888/P9iW7iKrVYf8M0etrrTd7A/XIslD+Oz1yrU3c4fnlOem38c+YUc+dhGL9idaS/Rap5S+ylG1vyzX0vlkvse5ezkn1hi87tzT5agicTNOR2d2UY6OVO4A0wrzZoLrqsMa+nzw3sGS0GlA1gbtW+381z7T3jNdaSlHcjoK1Bpswu8IWwu68wlWVq89libv55U2vKfpe97Yo+m39xq44DHzmTEKtsy8fv16fHiDwWAwGCTmC28wGAwGJ4FfRB5NiK/VzqqDKYngFQheMQuRgN7R9NCeiZMd9txVPF8laHdpAjbx2cnvxNNsp6tdV7U1U6VZYmVSsHmiM2U5mMTO2c7U2lEh5XO5pyPHZhyueN0lX68IhjtglrIZPCmxnGphMxp9SPOGTSCYzz7++OOq2lIidakTNjmy/3huml1tiuO5BI10ifVO37FZ36afNHHaZNWRBuR1VVtXgwOt6LPPVfbJwSrMBec418ApC8wBfeLM51r4vO4FrUAt1q2/+20CAKce5buD9wuuC+bBLoeOJszuCSe2d2QDTsxe1d/rqBNNZbgios53sYOW3FenK3iMVX36QV6X70i/d3xNZ0J1Qr37yhrl+83J75N4PhgMBoOBcHTieVa17oJWTD6KVMc3OGS/6WRfkQ8jTeKQxlmdEgnS6l5or/toicASlqXcfKalMAcC0J98Pv+zs3VFxZPPW9FPmQA65xOsKHg66dOanMvS7FVLz2TvvRIvjx8/3mjcOcdIc1gFHFzBGLu9w75zIjiUYy9evLgzvmzff1ta74hrVykmIPeog1UcNGDpNveB96KTpTvt2ilBLrPEc7ukZUv9tIvW1p0vaxI8x2tB2knOSUdrZZCWwPlH68zgB2vewAnaaVHgfub2q6++unMtAXh+P1Qd3k0+9w6+6YLJbLXZI1f2nvD6m5KrS4fqykDl312iu1O3HGDj1Iqqwz72ukN/15VOcxk39oPflbluTmh//PjxbgDOnTE/6KrBYDAYDP7DcZSGV/Xvb/SVBFl1kLRd1gTp7tmzZ3f+n+1Y8zARa2c3ttRsCrCOjmrl27KG2RUddOit7f0uCJr3Wvqz5NXZoj1mawddErn9I0hElgY7H6WTv+3fzFBwxpy+1T1KtNevX2/oh9Kvgx+MPeRSIV2iLH1w/1k7wtHpdz7PCbJ+nlMP8lpTLtnHmevhdqxZ2TqR99onZS2gCzFHc3G5I+Zkj1qP/7k4Lj//8Y9/3Pk8x45GZMuPCy3n76mlrXB5eVlfffXVrQYGOguFS0qtrDlV23UxWbnvzfQUpwms/GOdlchnqTtHOfa8132ifRNv5Fh9Jp3wnm121q1sC7gIa/YV+B1lq1F+xtyviiHnnLAP8vthNLzBYDAYDAJHa3jX19cbH0Da4V2c0ZFhJBd3kUGWSLAJP6SMBbC0bgqg/P2+cj1dVNaq8OuKRDbbtWbVRUn5ftvZLfHvRZRa+neCfWq0TuZNyqdss0uodqRkBywD+GO7CEHWF60MbYJn0qfst9ds5cMlIR3/YNXW52Bfaic1eoz2EXVRs/TbBXmd4Nz5NVelVrymOSe+1nvUfuFcA0v2npuOuNmaHDB5QfdZUtetou3evHlTL168uH23dGO2X4x2iRrHstSB/luzd+Hc7v3jPeII7MSqjJL36t5ZdvL6HmG7NXifERNRd32zz9D7YK/wKuvlpPLOv+1x8D5y9HWCfdXN9Qqj4Q0Gg8HgJHC0hle1/TZOqYCInBWZKz6W/Fbm27vzLVVto+W6Io6m+slrjJWdfZXjlONYFVp8aIn5vNY5JyktOurMGh3z2Uk3pv9ZSUC5ji5vZC2+ywP0Pri8vLyX4sdadYK5xReErR4pvSskyn7rfCbZX8ZBfl5V1RdffHFnHF0uk8e50pqYY6TO1Jocjed8L+/7LkrPGsxqfdzfbN+RvJb88/eVf4kxJL2fx+6cVNYo/T3eTz/++ONSw7u6uqrvv/9+M4+p4dEfxsgeYS7wDWW/fY3/3/m4wCoOYLVO2d9VQeCOHN1xBdYGbR3Kz52HuSr5k89z3/ze2dt3ngNbh7rIZtPF2bpiX3KOOTMBhjx6MBgMBoPAURoektYe+PZGSrJPBSkw20Gid9FJaypE8qREYu3Fvq8uusk5TPZTuCxIfmZyWucQdqVQOv+X+5T9yXGZxWLFRtL5KC0JWTpMn4tt9PYz+bq8P6N175O09rQZ2jNpNHsFxo4cx2pe7Ovo8pTw6z1//ryqtlaCjrHGRYlXRXxzPawpWGq3ZaHT1hy1Zt/WL1YAAAQ0SURBVFYW+5artpK2fSjWxLoxr0jZycurOqwPUaH3FVbuxrFnHSDC1/6xfA9Y47CPi7598MEHm/ZXJX5c3mbvHeKI270cR9pjH9O3bvwu5eR2HXm9Z2FxxKcLLuc19vfZsuX9WLV9f5uJqYtWpx00Oa515C9Wnhx7lgnqSLM7jIY3GAwGg5PAfOENBoPB4CRwNHn09fX1xhyVYceo1iRp2kyIaSTNaYSKmy7HtFFdwIPvscrdBa/YDLaqzdXRkTmggXHYLJrwONx3q+j57FVYsM2JaSZbVUO3CaMjZPV4HZKdpmjXRrsv+fPs7GxDlNyFxDtR2bXN8h6bemxiXiXSVm3pxz7//PM7z38Ime8qDSbn1uHoq6R+74e8xzXSXIE8n+f1t6nJCfYdLR1ra5IJxpLnyiQT9IlzjSk63Q8mHtgL+oK0HnS182zitUulS8HwHuEa3l12U3Rn2+8Suw3yXNmU6feog6fyfs+xE+tdFzQ/W6U9dEGCvueYVCq7Qei75zkT+L/88st2HJgwO8ILp6cMefRgMBgMBsLRQSv//Oc/N47MLkTZUuOqVEnV4Rvb5UUsvTsQpeogAXCPne6do9RSi8Nz7byu2mpyXUh3/t1VWDcNlhNoUxKzNmZn+Cq5PK+1VuqQ4j0HtyX7blzWkPeSh6+vr+vHH3+8tQZ0VbDfe++9qtruIdaWe1NTdlCFJWGHenfagcluvd9yTNa0rDV1BNCWXoEDUjqS3/tIqq3NJRxQ4yCCLhHYGhxr4OTsPN/WcqyVmgi4aqtx7dFDsXdSM6jqicCdhoCmukeyzTX0Jd9nOY7UUDsauIRLQmV/eS5z7JSaPavHykrggK+uLyuyiqRQXJUhW6WipWXJ2uGKUCHPBuu0SlciNSnnHqvAirJxD6PhDQaDweAkcLQPrwsBzW9lvs2RwpHKLDV3moKLdSJpIUXQZkobtG8/VRe67D5aena4eEpnqzIZq8TcvNf0OdbOuoKs1uT4aXJVjyn75lBpa8hdcUqP3aH0udYujLlXxJMSL56DjoLNYeD2j3Tz5P7Z9o+WmGu8SinwczPRHb/UihLJbeU1Dp231N75x8DK38f/u3tWJVZ4Huet88d5PMwBfUxfrjUIF43tNCT7q87Pz5fWAWjp9tJ4TFTMM122J/e5qRFNBO93R86NLQbW1jt/3N57M5H3WDvieSY4sIab166KY3ss+TxrgX5n7fnGvYf8zswUA19j6xfnLa0jPgOdVrvCaHiDwWAwOAmc3UcFdefis7P/qar//r/rzuD/Af7r5ubmff9z9s7gAZi9M/ilaPeOcdQX3mAwGAwG/6kYk+ZgMBgMTgLzhTcYDAaDk8B84Q0Gg8HgJDBfeIPBYDA4CcwX3mAwGAxOAvOFNxgMBoOTwHzhDQaDweAkMF94g8FgMDgJzBfeYDAYDE4C/wvdw0i28VBf9gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu4XfdZ3/n9naO7LEu2sGTZju3cCiFMMsyQDpShXB6gIQMtdFrKcKshGa5tmU4Z2qZAQwgUaMOthcAQhgy39Al3CgyEQsOlaQqdMCRckhDbUmRJtmVZsmVdLOmcNX+s/d3rPZ/1/tbZW3Fiu+f3fR49R3vvtX7rd1trvZfv+76l6zo1NDQ0NDT8146Vp7sDDQ0NDQ0NHw60F15DQ0NDw5ZAe+E1NDQ0NGwJtBdeQ0NDQ8OWQHvhNTQ0NDRsCbQXXkNDQ0PDlsAz+oVXSrmnlNLN/v2l5PdPDr9/evj+TaWUo9d5zaOllDeFz58SruF/D5ZSfq2U8pev8xqfW0r536/z3NfM+rBtk+PuRp+fnPX7t0op/1spZV9yzoaxL9ife0opX175viul3L1Me89EzPbTA093P5ZBWP97nu6+ZJjNKe+r7N+nPEXX+7ellPc8FW3N2vv6UspfT77/jlLK5afqOk8lwpy/ccHjH6ysycs/1H39UGHyofkMwnlJXyLpm/D93539xof3t0r6vuu81udJejz5/h9I+kNJRdIdkv6xpH9fSnlp13X3L3mNz5X06ZK++zr7uAz+haRfVr/WhyT9VUmvlfR1pZS/1nXd+8KxtbFP4Z5Z2/8Xvv9VSZ8g6dR19Lnhg8cp9fN/79PdkQq+VdIPhc+vkvRKSf+jpLXw/Z89Rdf7Rkl7n6K2JOnrJf2K+nsr4gck/fxTeJ2nBKWUT5P0NyVdWPLUX1b/DIn486ekU08Dni0vvJ+X9MWllG/uZpHypZTdkv6WpJ9T/9Cdo+u6677Ju677o8pPf9513Tv8oZTyR5L+QtLLJb3heq/3YcB9sd+Sfr6U8gOS3i7pZ0op/63ndGLsS6PrutOSTj9V7T2VKKWsSipd1117uvuyKEop2yVd6xbMFNF13ZOS3rHpgU8TZvfo/D4NWsN/XmRdSik7Z2Nc9HrvX76Xy6PruuOSjn84rrUoSik71QsX/1y9oL4MTuP58azGM9qkGfATku5SL/0Zn6e+/z/Hg2nSDOadryylvLaUcqqUcq6U8u9KKXfg3EXNetaEtodzbyml/HAp5X2llIullOOllJ8updwe+6ZeM709mAiOoo0fnJ375OzvT8w2bcRzSym/Wkp5opRyrJTyzaWUhdaz67q/kPQ6SS+R9GlTYy+lPHd2/Qdn/bmvlPJ9s9/eJumTJX1iGMvbZr+NTJqllO2llNfNrnNl9vd1s4e5j1lmrb6glPLbpZTTs3n4o1LK3+V4Z+19Wynln5RS7pd0RdLLZn34uuT418zW76ZF5jOc9xWllD8upVwupTxSSvnRUsrNOObvlVL+Uynl0dm43lFK+Z9wjOfga0op31VKOSnpSUkHwrx+fCnlp0opj5dSTpZSvr+Usitp457w3ZtKKQ+UUj62lPJ7szH+RSnlq5KxfPpsPi+XUt5fSnkV76sPF0opL5+N5XNmfTgj6djst4+azcPRUsqlUsq9pZR/XUq5EW1sMGnOzutKKV9WSvkXs/19tpTyi6WUI5v050FJhyW9Muz7H5r9tsGkWUrZNfv9m2b773gp5UIp5ZdKKTeXUo6UUn5+to7HSin/MLneC2b9f2S2Hv8v98wm+GeSLkn6/iXOWRilN+++Zzb/j5ZS/qCU8tkfimt9sHi2aHjHJP2uerPm782++1JJvyDpiSXa+afqNZsvV2/ee72kn5T0KQucu1J6v5lNmt8u6aKkfxeOuVnS5dl1Tku6TdI/kvQfSykf1XXdZfWmnFskvUySfQBPStLsAfv2WTuvk/SuWT//hqQdPm6GX5D0Y5K+R9LnSPoW9ZLljy0yEZJ+TdL3SvpESb+VHVBKea6kP5iN85vVa7R3SvrM2SFfo37+ViV95ey7KZPo/y3p89XP3e9L+ivqb8bnSfpCHLvIWj1P0s9K+g5J6+rNtW8spezuuu6HtBH3SLpPvSnqwuz/vyjpKxTM36XX/l4p6S1d152dGMsGlFK+Q/1af7+k/0PS7erX8GNKKX+l6zqb6e6W9EZJR9Xff58j6VdKKZ/Vdd2vo9l/pt6M/hXq5zj6hn5C0pvVm6k+QdJrJJ1VL8VP4UZJP61+7V8r6cskvaGU8t6u6/7DbCwfrd4k/QeSvkD93vsmSfvVz/PThR9Sf7/9L5L8cr9d/Vq+RdI5SS9QP2//jRa7r/+5pN9Rvz9ul/SvJL1J0l+bOOcVkn5T/R62ue+hTa7zKkl/pP4+uUP9ffsmSbeqt2D9oPp74LtLKX/cdd1vS1Ip5XmS/rP6e/sfSDoj6Ysl/XIp5RVd1/3G1EVLKS+S9A2SPq3rurVSyibdHOFvlVK+SP1z752Svq3rul8N7b9S/f38Gkn/SdIeSS9V/wx75qHrumfsP/WbsFO/ib9c/Q29S9IRSdckfYb6Td1J+vRw3pskHQ2f754d8za0//Wz728L3x2V9Kbw2e3z3zlJr9ik/6uSnjM7/vPQvweS41+r3n/xsRNtvmbW3pfh+3dLemsy5ldV2tk5+/0NE2P/cfUCxW0T/XmbpN+fWLu7Z58/Zvb5NTjuG2ffv2TZtcLvK+pfID8i6Y/xWyfppKTd+N5r+0nhu78+++7jN1svzPWapG/G9584a+tzN+nzWyX9UrJ271Rves3m9Vvw/a9Iel/Sxj0YRyfpU7EPzkj6P8N3P61eYNsTvjui/oV7tDYPH8y/sK+3Jb+9fPbbmxdoZ5t6/3gn6UXh+38r6T3h80fNjvmNyn68eZPrPCjpjcn33yHpcvi8a9beuyWthO9/cPb914fvdqh/xsV78qdme3c/rvO7kt6xSR/L7Lg3btbvyvlvUP9y/ST1gup/nPX5b4dj3ijp7R+KPfGh+PdsMWlK0s+ovzk/R9IXqV+4VDOZwK/h87tnf+9c4NyvVa+VvUy9hPfr6n1gnxwPKqV89cys9YT6l/IHZj995ALX+ExJf9gt5kv7VXz+Ey02DsOi3pRP6DMl/UrXdSeXaLeGvzr7+5P43p8/Gd9vulallBeWUt5cSjkh6ers36uUz/Wvd113KX7Rdd3b1JMivjJ8/ZWS3tUt57f4DPUvr58qpWzzP/WS+XkNY1cp5b8vpfxKKeUh9fvj6uz8rM+/2M2eKgm4/u/WYut/sZtpctLc1/c+nPvxkn6t67qL4bhT6jXuSZRSVuMclAXN7AviF5Lr7ZqZC987MyVeVa99SYvdc9k8SsvdS4vgrV3XRe3Y5tW5htZ13RVJ96sXko2Xq9dqL2BvvVW9WX6X6nilpI/W8n479+eru677ya7rfq/rureoFxDfpV6jM/5Q0v9QSvmeUsqnlZ5b8YzFs+aF13XdefUmqC9Rb878KWygRfAoPttEOLVpjPd1XfdfZv/+H/VmlfskfZcPKKX8ffWS279Xb2r6y+ofHote46CkRenv2VgWuYbhm2qKRblMfzaDTRy83oP43Zhcq1LKDeofbC+V9E/US6EvU88Wpb8zu67xBvVmm4OllLvUP2BoDt0Mh2Z/36/hxet/+9TPo0opz1EvpN0s6e+rN+m+TL3wlK3d1Npk85ONm8jMtNw7RyQ9nBy3mdlO6scXx//NC5yzKLL5eL16rexNkj5L/T33BbPfFrkfPphnwjLgvF+Z+N57fFX9XvkKjffVt6p/fqd+5lLKAfXPpm+XtFZKOTD7rkjaMfu8lEur67qr6jkTLyiDf/tH1JtaP0n9c+/RUsrPFPjbnyl4tvjwjB9XL5GtqH/hPG3ouq4rpfy5eo3T+AJJv9V13T/yFzM/2KJ4RL0f4cMBO71/f+KYp7I/frDcqo1U+Vvx+6L4BPVEpk/qum4+hombuKYp/bh6P8w96h8eF9WbkZbBmdnfz1T+QvHvL1fvB/v8ruvmgkQpZU+l3aerdtcpDS/xiMMLnPuV2hgm9FRYB4xsPv6OpB/pum5OnS+lfMRTeM2nDV3vc3tM/TPveyqHPVL5/lb1+/n1s38RXzL791nqha3r6t6sj+vqQzF+oJRyUP0ef736e4hWm6cdz7YX3m9q5pzuuu5Pn86OzEw1L9ZG6v0ejUkbX5ac/qSkTPV/q6RvLH1s3x8/JR1NUEp5oXqp+I/U++BqeKukv1lKOTIzaWV4UuM4yAy/O/v7BZK+LXz/RbO/U/3I4JfEVX8xkzr/xjKNdF33eCnlp9Q/qG9Q7ydaNhbxN9WTOe7suu43J47L+vyX1Pv6nkmB7e+Q9IpSyh6bNWfMxU/UJnGVXde998PQP0lS6RkYuxXmc4bsnnuqUbuHn2r8unorxru7JcIw1LtSPjX5/ufVk0v+pXrz5MIopeyQ9Lcl/UXXdef4e9d1Z9Sb9T9RvSDyjMOz6oXX9Uy3p0uze9HMLyf1LMsvVW8f/4ZwzK9L+sellFerZ7h9mvpYQeLPJN1cSvlqSf9FvZP73eqluC9UH9D+OvX+hI9Q/xD/qplZd1k8r5Ty8eoJNLeol7peqV4y/PwJH5HUM9heIentpZRvV2+yu13Sy7uu++Iwlq8ppfwd9Zrb+eyh13Xdn5RS3izpNTMt7O3qtbRvUv+SeTfP2QRvVy9c/EAp5Z+rDyr+xtm49i/Z1g9q8OPVzJm7SynZWr6/67r/r5TynZL+TSnlI9Wz/i6rNxt/hnqSwH9Qb/K5JunHSymvV286/Bb1D6dnknvhder37W+UUv6VelPpN6k3aT6dLM0NmFlZ3irpVaUPOTiq/kH7330YLv9nkj61lPIK9ebfh7uu+8Am51wPXq3eF/y2UsoPqt8rN6kPKbqt67pRSIkkzQSVt/H7UsoVSadm/mt/t1M9c/mHu6772tl396gn//yGemHsiHrT5Ysl/c/h3DepF/rfMfv7UeqF2kn26NOFZ9UL72lGjGE5K+m9kr6w67o3h+9fK+mApH+o3g7/O+rpzfehrTeq9+19++z4Y+rZjOdm0tHr1PulDqp/yPy2Bpv/svins39XZ/3+U/V+lR/d7AXadd3R2cvyderNfjdIOiHpl8Jh36meHPDG2e+/ozod/B71c/Hl6l9OJ2fnf8uyg+q67nQp5fPUm09+dtbW96n3eWxGzWdb7yqlvE/S413XvbNy2M3qiVPED0j6e13XvXpm4v7a2b9OPZX8t9SHc6jruj+dUbxfqz6Dxb3q1/nlWoxC/2FB13V/Novz+pfqLSon1K/Ty9WzP59J+CpJ/0Z9/9bVEzy+VD2j8EOJb1AvHP2sek3vh2d9eUrRdd19pZSPU89i/U71AvAj6oXhRUOQNkNRLxCvhu/uVR8v/Hr1L9gL6oX4T+9mIRMz/L76+b5HvaXnpKQf1XXc0x8OlGkBv6Hhv37MtLI/l/S/dl33o093f56JmJGE3i/pV7uue+XT3Z+GhutBe+E1bFnMmGQvUC+NvkDSCxi6sFVRSvnX6s3GJ9UnUPg6SR8r6WVd1y3l+2loeKagmTQbtjJepd68+z715un2shuwS70J7bB6c7rNWe1l1/CsRdPwGhoaGhq2BJ5JzLCGhoaGhoYPGdoLr6GhoaFhS6C98BoaGhoatgSWIq3s2rWr27t3r7Nka8eOHZKklZXhvbltW97kVFmKzUpW8PfM77jIMTXwWH/O+uXvNms//s5jlynR4XPX19cn+zp1vc2+z/pUm4Os76urq/O/jz76qJ544onRQfv37+8OHz6sa9f62p5XrvRhhR5X1j/vK7fP76fGcR1lUBbaM4uuezyuNoc8dmpv8bencnzL3CvZdTkOr+naWl8RyWser+PnxPbtfSnEqb2zb9++7uDBg/N1d3v+K0lXr17dcE32aWpdrofHsNm5i6zT9axhDZ6b2Cbbn7pviM36lo27NuZ4j292Lj9nbfp54O9WV1f1+OOP69KlS5tO6FIvvN27d+tTP3XIVnPnnX1C8ZtuGvKX3njjjRs645eiB83BS9KePXs2nGPEAUnDZo4vVW90T4yP9WffFLFt3jg81teZerjXHlpu2/2K/3e78QUR/8YNyRvXL4jLl/uSaHyo+G82Do5vkYcy1yl7+Xgd3M6RI0f0Pd+Tp/w7dOiQvvd7v1cnTpyQJB0/3heFPn9+iH33XjFuuOEGSdL+/X3iFD8c/Teew/7Vbtg4Zp/jsfJznFOD3/Gzz43rz5cw9wjnOs4x++T+ew6yBx2vy+tw/8cx8JhFXrQ+5+LFvrjCpUs92fWxxx6TJJ0506cS9d6VpL1790qSnvOcPof54cOH9V3fNc/DvgE333yzXv3qV8+fE0880Sc8+sAHhsQmp06d2nANH0PBKnvp+hiPmS9qznWcB84x52nqQc22fJ24HrzHDPfNfdq5c+eGa8T/875xm75OvO+4v2rPwuyl5Tng2J98ss+Ilt1X/s5r4L55D/n7OK4DBw5sGPu+ffv0cz83qgOeopk0GxoaGhq2BJYtD6ErV66MJISocdWkSGNKIqU0Q+kyM5dSAqYUkUlaPLb2N9MKM6lfGmuWU6Yft+E2+X3WB2oH/t2SXZSepyTGeK6lp9h/ah9cr0xDN86fP1+dn67rdPny5bkW8PjjfX5mS3+xDzVJ2H2J+8DfWUqllmhk/eb887MRx0SNmlIttXhpbGXg+vD6ETTn8lj/PnVvuI/UCgxL01n/eU9GzXVRZPPq/XrhwoWFzvc+j4h98fpSa/UxHk/cB+4D9ywtIGwrombxyVCzWPEei2tOM3G0bmRtx/H52Frfsv3G56bns/Z8i21yn0+9Jwy362cRNUw/H+J14nNL6q0Fi5qlm4bX0NDQ0LAlsLSGd+3atUkNgpLW7t19BQ1KE/FtT6mcUozbyjSv2DdpLIlM2Zop9df8F9mxlOiJzN5PiZF9jedQM+YcUPLL5sTzWvNRxDF5PWrj9Pdx3TL/Ts13tr6+rsuXL8/9OtYq4vpQWyK8L3btGmpz+v/eZ9Saappydiw1kczvbInTfbWWUCNsRFBLNxaRgLkn/deaT6bZ1nyS7GvUnrxX/B3nxBp6HF/NGjBFIPJ17MO9dOlS1XpQStHOnTtH8xatA7y36EvNtBnvwc00e96LsX2jxjOIa0ptvXb/T5GW+JfWr8wvz+cNtbY4FvINalpbZi2gv41zlFk/qK3xeh5PXGvvde/RZcg/TcNraGhoaNgSaC+8hoaGhoYtgaWTR3ddN3KuRrW25oCnKm4TlDQ2vdGEQFNjNKewL7VwgajqU7U3auEK/H/WRs1sGf/Pvni8NBHz/Owzzb6ZqZG0ZH9PB3Fsn8SQqdgnzvna2lrVeWyTZiTXxHNjH2iicF+8ZxyuIPWUZGmguWd7sva9zaE0tdisQ6q5NJj0SLbIKP410LRlcJ3id/zN94yp+vF+4thpaiRNPJIxaGIyPC7PdyS62CzptfUc1Qg28ToOH7h06VJ176ysrGjPnj2j+yXuxZrJn+a1aGarhUp5v9VMgPE7/62Re+KYvN/8l2EC2bOTz77aHGVEL++R7HkWEeeR5m9fl89mPtOyMXucnBOHrkXwublIPG10ESxq1mwaXkNDQ0PDlsDSGl4pZSQpZNkyag5zS6KZtGep0RIopVrSXOMxvq7bt3RjaTOjslOip3QRr1NzDteIABmF2X21s5VSaZwTkkQ8HtKC6USO/2cwJ6XeKWc8aen+GzU0j9Hjunz5cpV4sL6+rosXL04Sg6j5eC0tETrg1H+lQeOwpuN2LV2SfJGFmtQc596HcR9wHTwez4vPyUhLNVIH911G6PL4fD2OO2q9Pp/tUcPzdeOakqxQo/nH63EOMkJSvH6ci0j+qe0da3gMI8gsMNzjnh+uqTTWQEiJp9Umrmkt7Ir3Y5xb3o88J8OimXU8J5GARA2S915mUfBv3Me1EKpsr3J/8dkZ76da9hfeK5GU5Xm0VWeZDDJNw2toaGho2BK4rgKwtcBpqU7XplYVfQD0h9APwjd4Rr2lRmLpLfMfsA8+x9ogpZp4DKWYWrB8Rkem362WH1Ma0mlRI/Z1KfFFjdLjoFTrvpPSHv/vY2sBp9FXlKVtq6GUopWVlZG2ka2LJbeDBw9K6lNLxb/RB2AJnpqc15++vcyHQ0o5x5Vpa1xT7/fsnFq6qVoA+lT6LoYheJxxv/kY/8Z1d1+9Z2KYBzW5muYaNRvPsfcd/Yrnzp2TtFGTpoYctX/CGt7Zs2c39C1LE8Y0hdQ+4/5l0DPviymuArXNWrjQlEWEoN+ccxCvR2tIxgPwOBi07nPpw459pNXLFoWary22z/WhFhz3m/cVtULOVdzfXq/aPE6haXgNDQ0NDVsC16Xh8Q2eaRd++1q6sFRuaTOeQ1svfQ2WyjJ7rqWFGjvPv0fp0lIgpRSfa4k0ShVRKonjqwWgR2m15vfxuCwBRc3FGp4lK7fhwG3ORbyeJWFrsB4PpfRMGrRvxuw5stDidTJtdjNWFaXY2Adqdp4Pf08tLoIpxvyZwcWx/5kPSxpYh7Y8xLVlgmSm7fLvWQJo7jdKqN4fsT/UqMjwy/YfpWXek2TcxTWj/5fWHGr8/L80rBO16yw9lI+5cuVKlUXohAb0dUULBX1KtT7FdeG6Z9pyRMZq5vpPsRiZEJnPOz7LsnZqzywGY0vDc45WL3/P55I07B3f//S/+f6hhSvOhe9bWj88N7GP/I17M9PifH7mg9wMTcNraGhoaNgSWErDsy3dki/f9hF+65pRZ83B3zt5sDS85Zkeye1PpR6zJGLUGJ6ZdOnfKKVxDBFMS5ZJctJGyce/eRzW2vzX/Yn+BcYa0dbtv9aG4vXs66Lfx5oeJf84Lq+XpUFrlDXfQbzOZmyztbW1UfohS5uxn0wTRt9DpnFxLzIlUbZXa2mavL+9R6N1wO3E/ZtdL2OfUlvaLHm5NGZYGtTW4zm+HrVd//Wc+d6JEjc1FPrGvRZx3cg+dt+8vy3xR189/cxT8N6hTy1aXWop2BinmcV9eu9TC6R/Lu59rz99dxkb1PAz0OfWkjkvktTZfaXvMq6L7yMea2QWM84jn5U1BqY09v/RSuX1j9ej9c7zSb9vvOfpe1w0cbTUNLyGhoaGhi2CpTS81dVV7du3by7RZdIZJQS/ja3FkSEmDQVkmeWjFvsWJSBrIP7NUis1ykwScd8oWWeZCehLocRNyS5K3JQcfQwl7Yx9Sh8NJSxLi1Gyo6/Q0hLjo6LE7T64fUvEls6zPlK63bZt26Q9veu6+Zg99zGeK9NWpGG9vNYRLi5ai4ekbyBqtZ4zxuzRTxfhdulLncq04zFSU6A2yjiw2O9a3Kcl5DhnNT+cx+PxnTx5cjQ+g9o2/U0xFpKaBDUw+oziGDO2LuGk9X52+HlgzSGO32P1nLufGQOWvk2fQ3+Y2477gf53X9f3mhG1Kt67vv+4zzJWMJNg15K8x3PJdKwxl7OCs7XsVmTmxwLOtfhs+hCjdYQFbG2d4vMtuxd5ry+CpuE1NDQ0NGwJtBdeQ0NDQ8OWwNImzZtuummutpv+Hk0wDA62Ws0K11H1fvTRR/vOILjbx5DUEs0SbI8B21mgrE0JNMnSgRppyx6j26MpyXNhRFMdza102Nfq88XffC6p1F4Lz7s0NkvQRJuZXQ2vk8dz6623ShrMEdEMytCCqSSupJWTIi+NHfMMxfD50bxB5zZJMUxhFU2aNu1EspA0XX+RpCGaI7NkDB4XQ1toNuL3sd8eu8fnfWCTUkYt91h9jr/3fPq+i/PpY5iyjOEkp06dmp/DdH6+B2lmzBKqZ6nxiK7rdOXKlfk4fJ14j/FZ5OcPCVDRdHrLLbdsuI7braXkeuSRR+bHktTB9HRZeIpRq6XncyLhxePwWD1vNtUePnxY0th8LA17w+Nhqj7vg+heYshZLRm324p7mkne3RffZ9mz0nvPffU5dnNl9QwXSdBeQ9PwGhoaGhq2BJYOS4hvdJJKpEHysBPSjnHSx7Pq3v7O0swiAYZ0qvvYmvQuDZItgxwtTWTB3JZE2J6lDUp4UUqrpZ1icHRWwsjtk6LvOZoqvcLrk8wQUavUbVKIpeEoDTJsZPfu3ZMa3o4dO+ZjdZ+yhLwkW1A7i+QVt0eNjhIoiSnxGM9pTYuO8G9MEu4+Z1XEaymqSEDJEhCQpMDrZBYMVmUnocpjYNVxadDwPTf+7DW2hh/3waFDhza0Z6uA/3qNoibpufY4zp8/X5XcSylaXV2dH+s+xHvMWqXve/8lMS0rLUbt3P1k0oVISOExXJ+p8kC1avIm4cRnjNv1c9XrYA3Ilh2m2Ivfuf98JjK8LM4PSzx573qveJxRo/S57iMTz2cWE2p/JEW5LT+zpfHzbCrxONE0vIaGhoaGLYGlNLxt27bp0KFDI79JpChbEqAUxmSkmTTHhM8MmGRi49guQwtYEDFqoZZwSA9mGpssDRETT1tSZYB2Fgzp8fH69F1Kg7TnuaVET99AvB4T2/qzpSRL7dGfRco0k2Qz/VE8NqbKqml4165d05kzZ1IfrkF/jn0mnuOs34b3iueNEv1UwmyGYNDiELWZ06dPSxprR9Tio0TKBAO1BAtTZU5qhUU9hng/MbE1w4gslXs+Mz8M/ajUtuOcMFzkAx/4wIa2fGzUyOibtpaY4dq1a3rkkUfm/c0SArzoRS/aMHaWs6ImHsfoYz2XPsfPBWq70rDu1ALpY4v3qefyIz7iIzYcy/sy+sn9m+8Fa3ZM3OA9HJ9htUTWbsttR821Fl7jcbpv2V6lP9tzzqD/OI+03ngv+p657bbbNowhHhvvp1YAtqGhoaGhIWApDW/79u06dOiQ3vWud0nKmUGWMPwWr5WX91s//t9SC1MjWVqi/0capEZeL2NlGZYWjh8/vuF7S15ZUmxfkyWE7OMy84g+xTgOsqRqxRZjv90HaxaeAzLiInxtpjDiPMfAYx9LaTwm9yXo81wER44ckTTMV1YgkwWBfWymiXsu7WP0ZzIiI6PPYCFc+lg99kxbt1TsNiwte06ilM52yQKcKvVECwaDotnX2J73KqV0lhg42nh7AAAgAElEQVSKEj6ZvIbP8fxGph21aV/34YcfljROPiGN/Zn79u2rBp9fvXpVp0+fHmkqZihGeEzUwDOLEjVf/iWbOysETBYrj80KMzNQ/6GHHpqPU8r9Vb5XvVZkofpvtH74WPfVe4Rl0eLeITfA+8CsXN4zWYIN+uy8BlkScY+Vvm+WNIrvGF57kfR0RtPwGhoaGhq2BJYuD7SysjLSUKKEYFCispRn6TOTSP3X0oQlH7O9Mk2Cmg5jjCIDzbjjjjskDdKQP1vDswQU424sfVmj82dLupSmp0rmMKaK7LP4f2rMLLfkttz3CM+554KFdq1txfH4WMYk+XOU0j32yMaqMe2clo4sr8z3aHgd2O/oM7aUT79IjfkWfXiM87Q0S/ZuTGHlOWWcqaVXpr+SxhoQkylPpdXyvmIpF1pDstg93wtMqG4p3ufG+XSffK7XwO1nbEDfEywZk/naDPchsmin/DBra2ujFFVRaydHgL6hLOG0/+8xen7I+MyKxzLZutfUx/resGUm/p++Q8+P5ys+s+Lek8YMcq8X49iy6/gczxvZ6dLA+vS5Pvb5z3++pGFfeM3jc5wcCLKEs9SQPt/aqMfrcXhu7LuUhnV78MEH5+NqPryGhoaGhoaApePwdu7cOWIbxrdrjS1JdlnUBHysNTsfa6nCx/otH1lhliqZoHcqZoc+ldtvv13SoCVkviL6hBgrNlUuiLF6LJPhY6N05v+7D5ZCzWbz9awFx/75HGtrlrAoHUZJ0tfLYgKlQfrMEjh7Xc6dOzeZBcFlXmIfo1bneaEPyrA0HTNk+DtLiPZ1eJ48Lx6P50saGGDeG76+pcyMEcuyM5kFQco1PPpSPAdkPmY+cbIlmZg3zjvvNWavMLLYRI/v/e9//4br+3tbPTLWM7PPcK1jfKHnOiaVnyrzsrKyMor9yrL+eExkT/qc6PO2luKx+Tevt+fLz6VYioy+bjKt3Y9oRaG/ynvW43B/YrwiS+F4v5MFmjFhmWGF2aGYXDp+533t+92WFPfV443j89jvvPNOScNeuffeeyUN93PcB0yO7XXy+DyeeA9aez527JikvkTalJUkoml4DQ0NDQ1bAktpeGtra3r88cfnb2r6vHyMNC4VT39CfCNbOrNExWKGDzzwgKRBmogS/tGjRyUNkgKLnNLGLg3SudtjvE3mh2NMCyV9g+yiOGaD+eE8zpgPkyxGS9yWolz41edEf6Ov9773vU/SYOt+8YtfLGmQZDMtm3FdHndWsNNadcyaMpVpZfv27fOxup2oIZG55/l3f70/oi/FY3Xsl5mB3ptkdGXFVcng9F6h5pf10fvL18vKX7l95mOlD9GIn8la83xxjqJfxNo4/eWMIWXGF2ns12FuUmvFJ06cmJ/D+FhK7SywKo19hGtra1UN7+rVq3rooYdGlqW4d+hzdlvMSBKtBj7G681ip+6b2dzxOef73t/Rp89YWGngItDvZt+e927myycrlAziLC6O600fqNcj3rN+1r7zne/c0GfPm/tjje/++++fn+u55jx67rnvpMESw3hZ5oyNYBaYc+fOLczUbBpeQ0NDQ8OWQHvhNTQ0NDRsCSxl0lxfX9eTTz45V6+tokaTHatF2/Rhh63NU9EU+DEf8zGSBpXY5jmr+DbN3X333ZI2mgtZMshqvM2VNufFQFmr6Tbx2WRh86j7Fs2uDCT1+DwumqviuTZDMIE2y6pEsoJNs54Tm5I8J+6Pz4mmGju/fSzLw9jMHAOO3X+aNGlKi6EhNil4bmneJVZXV+emGPc3nuNr+y8TyGYmOJY6YogMk8raFBx/Y4IDXidLduu59X62md17N/bR88RxuC2SPbKEB0zTxD5Gc5uPtbmIJk2vJccS++A9UkvvF9eN+7pmjsrCirx/r169WjVprq2t6cyZM7rrrrs2jDUSteKcScN6kIgS94PJFR6/zXM2cbJSeEZi81h9z913332ShnmLY/KamWzhufT9437E6/j54vvfc+pnSi2JRby2TdweL/dZJKK95z3vkTS4CEg48nVsho3POffRffYxTI4RTbZu1yZSn+v59D6M95PP97jOnTs3chvV0DS8hoaGhoYtgaU0vFKKVlZWRoU5s7evNSFLIpbkHAJgLUsapDG3Q8LBx33cx0kapKaoCVkisNTCwq+WHCIBxdR0ls9gMul4HYZZGDUyS5Q4rDm4r+6TJXA6hOOcuN2XvOQlkgbJKyNHGF6fj/zIj9wwF54/XydKn0yZFhNCx/FEwhADW2+88cZJenDXdaNwkSlNyKglQY79dQgLS65QuozECV+H4RoeQ5ZWzWN1sgKWyIp7xrA2YOc9iUeG1zTS3xl0z8BcjycSeTxmamdeY4ZDZEVDSSBj8eKoKVFTdbsej+copsyKe0bq57xGeFpdXdXBgwfn1/FzJ5If3B/PNbVbEimk4TlgTcRjI7nD8xXXwlqZ19LzZs0kS3TAxAaeJ1sFfP1IXjOo0fkYPyuZYjGOz/cYtbIsGbvH42dULfzCaxDvL1/Pa+Fj/L2vG60DDJmx1cnkGfcxKyfnfj/++OOtPFBDQ0NDQ0PEdaUWs9RiSSXa0klJjpqcNE5rJA0SALU025xZ8iNqBUxqS02L1FiPIbbDcjCk88Z2GAjs61kSyejPlgwZvE7aeCaxMlmwNRnOc7yetTD6G1m8NNPMmUaJvr0svZL7f8MNN1RL3DgsgYV6s/IpvkZNi42fWfanlpg5S+ptsASS97XnNErpvjYDnDmG+D21Mu5n+6YpCUtjaZnjddtZH5naien9uMdiHz2PDFKmlhLBdFBci7jfGL40FZawe/duffRHf/R8P3ieYh9oreEcMOWgNPj3fe/SH8r7Jt5jPpZ+eM9tRpNnQL41O/eN6yONi7b6M9ffY8gKT7P0Du//GJbj8/0c8zHW8HnfxnvRx/g6fqawWG7sIwsY0zpgzTnuDSYGf+KJJyYTXkQ0Da+hoaGhYUtgKQ2v6zpdu3ZtLl0wCFcaSxG2MfszfV7SxlLt0iAR+A1OKSpqGZbomBKLSXajdOY+WSqiRJeVomfpENvwWQjWY8iYpG6X7CyPJ0qFTAtVC8qmJhv7YKmHxSKpNcZzWP7D4/L3Uarmmk6lhnLSAkt9mabP5LYGA/WjD4Bp4mpB/kb05bLEDvuRlR+hJszrZUm2yRBkaimz25j6K/a/VtCUezb+Rl8R19Z9j33lbywi7N/jPmAgPYt4MqlwbDcWpZ0qgLuysjLX7OzHjvvEFh7PP/2V5BZE8B7jPGX7mozbmj84ah5eb9/3Zof7WM9X3FP0Z7svHg8TkMfnHIsT+zcymaMPl/5La581tnZ8hrCsF7W37NnvPnkuyKPw9eJ9HAPOfd2pZ09E0/AaGhoaGrYElmZpbt++fS5VW6qKUhNjqai9MOYoHmtYMqAd3ojn1liTTB6bFY219kIJxFJFxrCiZEpJLitnYYnH7fm6TB4d2XmeY6YW8ng8rx5/1PBiuZ7YPkvyRCmdPhuDfpk49z42pi6qMe3W19d16dKlkZaTxXOxbA3t81EToM+E0jmL1EYNj9I+1zArckmNktpUlpaOmrDbYMFU9zGLw2OqNxY2zdiuNS2N8XJRo6C1hczLTEMiu9XaAf1NWYLrOPba3llbW9PZs2dHcZHxnq6lwuPvUdsk+5esVlqJsmKnPsb3QNQ6OGb77KzheS7NiGRpo9g37jePnYzVzNLjZ4g14xoPQBrWznuRPkKyXbM1q6VoZN/jdbjvPC6vYxZfmD2nN0PT8BoaGhoatgSW9uFdvnx5/uam/TrCkgKlI2pg8TeDvidKEfEzpQlKeiyyKo0zxFhCoPYZr0PfpMfOwq+Zj4MSCCVs+g5iH+jXpM/SfYyaFyWp2txHScu/MfbIfhImLc7GvFkRxvX19Xn7WWkSaq3UGDJtxqDvJMt4UzuXYCaUzJdLX5rnx79HPzOTHnsNfaz7lGmh3pP0nXAPxf1Nfy8TKjOB+1Sic2q0ZCvH/jMG0uO1lSDLhpFpT8S1a9d09uzZebvkEEjDOlgTqTF7Y7/dr1q5M2p8ce+QyWvrDDODRKa3NTufazY1/W/R6sHMVL4fqWGyz9KY4eux219GP500WFXcjo9xzCgZvvE5TuZmFiMcz42gRYZ8h/is4nNzUf+d1DS8hoaGhoYtgvbCa2hoaGjYEliatLJjx46RGSWaYOjwZVLnrC4Zg5Fje9KYCBPNEiQA0MzqvmYkAh/rz1abM7o6HbA0C7GeXExDxHMzEzC/tymBzuqMSBGvEY8hLZgB1nF8rI1Vq5kVzS120NcILxHr6+u6fPnyKDF3ZjbmmEl7z0wYNGFyjFN9q5lQvV7RPE0TI8kXPiea2/gdTY0kPsW9Spq99xVNzlloEM2fNEcxxCWOh2ZX9jWuAUNkGNCehRvw2lNmqfX19Q0klCy4m+mmPA6m+ot9sbnRe9LrTDIZzWuxfQbkM0wkEtF8DIPk/dzx93Gv0uyaJWyI48xMtnTVmLzipCBxHhkK5vvfc8LrxuvxNxKesjVg+rmscru08Xnq/trce/78+ZZarKGhoaGhIWJpDW/btm0j+mxMmUWpiEQDOtDjd5YimILLyKTLWlJnBkHGiud0rloKoyaRBTv6XEoglISj5uL2LY1T08sIFkz4TLIK+xWvVyP5UAqKkhY1VUu97numuZCafO3atU1LvJAYEOfRY2WQv6/JqtaxvzWLAv9mY66VdvL3MSGvJU1rEiyBw7akuhZDa0e271iexamxmAA83jO+Hu8rJrrOyAVeD0rn3P/RokAtmhosyU0RMZF1be/4uWPSB0N24phIJiIBLtPwmFzBbU0ly6iVC2PyhLg/IpFJGrQppnOL68E9z9AVzmn87HZNOGGyfye6jvA43FfvKz6TuR+k8T4ggZBad4Tb8Zqy7Fd87nl94jNyM8LcvI8LHdXQ0NDQ0PAsx9JhCWtra5P0cPpdmHaKaW3isTUfAxPYxrc5/R7+zdITpV1pXKCyFiAZYe2DkhVTLmW2dPp5WELGbWfUckouPDbzidJnQg0p04prEqv7bCkxSykV/aRTgedXrlyZ+/1Mf44SKSVraniZ9szQAe4danyZz6F2rqXN6Iehj4ghBZlfjD5hanxT95PngKWx3A9L6VkSbkrY9MNl6a84b/QDT4EaGu/FTIPL0o4RKysr2rVr16hwbdSeGLrCsI0s8Nz9YyosrhefP9Iw/9T+rNll1zO8r0j9n9J8yFWgXzFbJ3/HBA6+B7PUabzvqX2Sf5CFUvE+MrLnDhMEsAwRte94Ha/tgQMH5onAN0PT8BoaGhoatgSW0vDMlvJbn4mApbHU6s/U+KJNmMHalHT5Ob7tGXzIpKNOFB3BNFk1pmeU0pnOiMUTOYYYAMrCpe4bg7CztEC1hLo1DTpeh+NjwdZ4PQZ4ZsUapY1+EzJiY9o5YnV1Vfv375/7YbJ0U0yjxnXKWJr0h9KHxs9xPimR0sdpn0cccy3tGOc6+muYnLimaXGcsT1qkm7TPr3oj2HyZqZbM7I58bEM7qYlI4I+Fe8lloeJe4MWk6nCwaurq7rxxhvnx2blthhYzkDmLI0Wnx1ZEgcpD7LmXmFAOIOjpbF2xkQLRuQb+Fj6Qw1/77Ziv5jC0KxGplTMgscNamBMWzjl0zeoKcf5tbZeY4VnzH36lQ8ePDi5fzb0ZaGjGhoaGhoanuW4rvJAfmMzYao0jmGi1JppM/4/iyhmqYhimxHWuCyVW7rN7OOUWhn3l/l7qGlZwrbEVSuuGI/luBwP85znPEfSRsmOzCbGCrH0S+b/Y2JWxlZl80u/gpGV6WAs2FQRz5WVFe3YsWPeN2p6cczUMllQNEpz1DzItIvX57nU6Olz8p6KviKmriJr0XMe19LrT02iVuIp+knom6FPz3MS/YwnT56UNFg3yKae8olulnot81FTM6olq860/6xgboZt27bpuc99riTp3e9+t6SNfAD/3+uzSLuM56PWzj2TWRaYzJ3Xi+vCGEpqJdR24jWZzJmlvqbSO9KH6zZOnz4tKU+s7+T3vrc5J0xTl4EM6Yxl7Xnz3zhfUv6+8LFHjhyZ96GVB2poaGhoaAhYSsNbWVnR7t275/4Cv41dmFEa7MQuakk/D+3Y8f9k6Rm1wpXSWPNw9gBK1dEP4//XSsdYgojXoR+GRWkZ0xSlJmpCjP9z2ZDsesx4QNZhlgGBrD9qnWwjjp3sr6myMEy6OxWHZ5YmfWsZe5bX5BxnjK3MHxXHw+OlsV/He4mFM7O9w+S9tRIzETXGI7/Pige7PWqY1Nqy8VCTY8xl1OrIpKv5bOI5TJRMBqs/R20+8yPX0HWdLl26NN9nLm9z4sSJ+THWqP3XVqfa/Rn7l5VliqCfjP+P5/J5Y0tGvA79fGZR8pklDVof7xfuC1p+pGFfua/uo5/RLG0lDT5hxjy6j/SpZQxfMuPJ54j73/uZhZV5j0St15YLz82pU6cWSgovNQ2voaGhoWGLoL3wGhoaGhq2BJYmrVy9enUehGzHZjRp2oxiQgbrODGxrNuN3zEFEhOMZgmH3Seq2ll1ZPfRYIVtq8yRjGMVm8l6GeBqs06WHo1mCZtfMhMjzQE2MTCFUZYcmcH/NG0yAD2Oz+fyOhmRh+EDNPNElFK0uro6CuPIAvRJc6eJNiM80VRKh3lmvvOesGmZJJWsbqD7SGe79473exZwzIrqWR1EaePe8f9tYrbJiWbfaJZi4mKaIUm4ivNZC3eZSkdmcxRNVzSHRtA8vXv37smK5xcuXJiPJwtg9r3q54D/MjH8VHowhoDQ5JmltGM9vKnE+iTuMag7M/kxeJxrSap/DCPwfrYJ1SZAmzTdlvdUbI8EHpMBGcQezdTcz3RvZCna+Ezic9PvmMxkeezYMUn9HDfSSkNDQ0NDQ8BSGt7a2prOnTs3Im6YoCKNAxVrEmPU8Gqpr7IK0PH4CCYzpZM9SiKW/hgs6u8zKZ1EE59LqcVU3yx4mIHmlvAscUUphqVy3IZT6Hies2BZkhSi9M++EZSemXQ308yjplCT0p0A2OOyxB33S63iPMM5IrmHZBGGtjD9WZZGidXKmbg2Xo9WCF/H0rP3RdyjTE1Fhzy1T0vR8VjvFY+TSatjcl1qWu6/rQSkv8c5YVVx7r8sWJnWAPadITYRtVJZESateK099qgNeA0ffvhhSeNnRFY+hmOsrYs12Li3mYKrFsoQr2tthSET7rvJgDH1oNeKqcr8fPMYvMbR2uZnkfvi5zS1qCwshYQt983jzSwY/o4Jp/ksjvuAmjDThmXkJvfNf2Pik83QNLyGhoaGhi2BpVOLPfHEExsK70kb008xZZBBqSKT7KjJ1QI02ad4Xfp9/DkGqbr//s7nWlKwNBElB/oPaiV+jKgVeOxMnUatNNN6/ZdUYmoacb55Hfr5MumTAfqcxyztlZH5IDNYy4vHZsVV6QOYKnbLdmqFMbOwCoaQMCzC14laqPeEJXxe376ObG7p72WfqDFLw77zX4aLZOmaDPqZqO1m91e2LvFYXz/2kfNm0PeewX7sixcvVot4Omk9907sN60nvGbmw6PvkedOBVXXyuZQ24h9tIbn9r2m1p6yYtUMDr/55pslDdYoPwc8Fh+fjcPWIT+vPRd+tsTr1MLJiDhHTDzPBAuZL5ftsMB2ZlnyMbHQ8ZTVKqJpeA0NDQ0NWwJLszTX19dHAcGZv4rSGpl3mVRZSwtFP1WUJGnLtiRi7TOTmuiXcntmNWXMTv+f6acsZdjuzhIjsQ8sE+Q5soQXpUUmlvVnam0+J2oLDCj1OZTOoxScMfbi9TNtgGWVpiR5l3jxHDONWGyH2gulvQgmh2ay3anE0zWGLX0s8br093FNs/Vnmjv2ldJtZBH7N+8RM+rIJI0SOK0P2Thi29EfU0uoTg0p7jcyE41aIHfsG5M9ZzA73JqI+xJZwTVWNhN0T5XgYcpBt5+VGLNmSh8TGbAR1CBZnsyfnYhCGrRCppTzniKjNGqY3N/Hjx+XNPbdOkVXbJ8pE5n8Iws8Z3o/jovvjfh/Mrxrafhie7TqLYKm4TU0NDQ0bAksnVps586dc8mQDLWILKlx9rvbjaAUNpXeir5A981xOZa8bfuWBnu327Mt3fZvSzVRoqMk53FZ4qbmmvnj3J77Yknefc0SKbsdliOivyuLpSKDi+mwIiiFkZ1HjYnzI/WS5FTy6H379o1SwcV94P5RUlwkxqbmn+S6ZezCyHCUNvoGYhvSsN6nTp3a0DemjcqYdv5r6ZyMNPcj84twr9DfF/vovljaz2L14pzEe5TM3pr0nMVwkm3KvRTbinvd16s9K9bX13XhwgXdddddkvK9Yw2BWhO1ingN9sF7h+m8qDHH63FsWcye4ecLY/YWKW3DkkJkI2e8g9r8ew/5HPsDY7+9R3099jXzrzO2lnPA+yy2N+W/jX2N48hiATdD0/AaGhoaGrYElmZpXr58eZTkNGPN+e1OqZLJTqVxXE0tWXQWk0GmHcsEWZvLJFXG7vhcj4/FT+N16LeyhGIpJl7v0KFDksbFaKm5ZEmx6ROgXy4rFEtpif63zIdHP2lWBJfnZBkipjS8Xbt2zefUmmpWQJK+PK5dVsSVUizHTC1KGsf9uW9eL0vRsbgq/SyW1n09FkeO1yRrsZaoO8Lz5PY8DvphMg2PcVBugxaaeP+SpbtItgzG2PKYTINhjNvOnTure8dlyQz78uL9QgtLrehoHCv9VXy+sK3oY6cW6DaY7D2uKTU7npuxnb2fbBVyu74OY25jH5n1yZqc/Y9uK5ayIkOZ16cvMY6P2XPIyXA/4hpsVoSZPkppHDc5ZVkimobX0NDQ0LAlsHSmlccee2xU5maKYZX5edyWwRxyzNDAz9GWTs2Hx1rKiHkx3SdLl9YGs/Gy3/QfkP1lqTPOCX0qvp6PiTZ0Xo9sKGqWGQOvxrjMmFVGrQgpJbB4HWYv2cyWXkoZsVnjWlIjYPHHqXI2NXZhzQIQj/G63HLLLZKkw4cPb+hjxkylps+8iDF2j7F0zMvK9YrzSE2V2sZUBhH6mTLGG/tq0MrCfRD3Fn/jeMgsjsfaklFK2VTDs6ZtDTxyB5iRhjlIFylLxmcVfXjRL1vL3UutMbIPXejZ+8zXZ8mnaB3wNelHZIxdxqcgk/jOO+/ccH3GA0rjcmu8X8nSjPvA/eZeJaJWyNJMfJ55b2bPLGuwLZdmQ0NDQ0MD0F54DQ0NDQ1bAkuTVi5dujQKws6q7NKkWHMix//THMi0YEwQLI1THlnVNgEhU72plts84WOyMjcMGiWd1ufSuRyPdZ9MaXcyX5o8pXGwOEMKSDKJJtRaerAafTybEwY0Z+YJmvWuXr06WfE87p2MbMGx0emdmc65rzhWz1+WWooUbJIIfP3MlMWUdrHqu+fCcB9snqmFSmTp22699VZJgxnv5MmTG8aTlYciWcUgsYEkk9iXmjkqIxHU0k6xvE5230YTcY2aXkrR9u3b5+Y2lreRxgkoPP+8TkajJ0GLoT6+L6PrgWQyt8XwoXg99/tFL3qRpOG5aVOgyXPRpElyTC1Uh0kNImzCdFs0ZcZnFZ/tfL55n0+lEySBzPufgfxZOyRuZWFedglFM+4ioR1S0/AaGhoaGrYIlk4tduXKlbmGYqkzgglXmfopCwCN7Uvj0AZLBBl1lRojy88YUQsl+aVWaDRKG9Q+KBWSABHpwbHcizRIVAxez4gAlJbY1ywNGoNfWe6mJknH8VA7oHYY/+++Xrp0abLt9fX1uZROUkT8jppPLQQkHsux1cI4Iigts+BrRiJh0l46191mXH+vA9NykYjg68RkvpbKfa4p5NTssnk0alp3pjHXUnFxrWObDHfhvZHR+kkImkoe7euR4BDXtJYGjFT5zBLCfcegbq9B1PTZB3+21cZ7KJJIvHZux3vJhLoslMvz5PExbSAtaDHEgHPDkkZZ2kWvqzVVWixIfMrClPis4n7MihUzJSCD2LPCzX7W3nzzzU3Da2hoaGhoiFjah/fkk0/O3/Z+w0apgoHllCIzn5qxWWkPS0sZlZ2aFyW+GHpg6YXlMax9ZKWL3J79Pbaz+6/77rbi+Cz1sa9uy9JJllKq5oehX2tK86r5HbNQhqxQajwnC/aNkukUPbiUMtI+M6mee8jnLBLSQm2jJkHGdqnpUfKPkr3/b+uG19Br7DmJ/h7vEe9j7xW3wfJUUaP0XPhcJy9gyrkIjocSN/chk0PE69a07Kl1rpWSWiYF1FS7vk+jr53pAKmRZMVuOQ/U6KcKlzJMyWvMNuOzhLwCFp5mUHccIxMl2//mvtmK5GTT8TdrdMeOHdvQx0xLYzo9ppirWbiyPho+h6XN4pjp86R1IIIB8/v3728aXkNDQ0NDQ8RSGp4LeNJunfnH/OamJpfZZGtlYegPIZsuXo/XJasx0wrps6mlZIr9pZ/CfbF9nGWJ4vX819extkDtJPaf/staGY2M+URNz32akuzJsuVcRY2MabumWJq+Lll0MX0bmYc1LTb2gdp4zQeZaWtcb/eNPpvoe7IG798sUVPCj0w7S+MsJUTfXWb1cHvW/ngPMOGBVPeh0d84lTBiM/9pds/zM7WBTFqPCa6z8budnTt3zq00ZkJHvzXZfDVfULwGrSVkBbN8WExLRxa155RaYrweLStknZtNmRUcNnwukzvbWhD3veeLzFEmj87Yrt7fLJnFOctKw9UYpdmzn5oyWelZwWHfn1GrnSouG9E0vIaGhoaGLYGlNbzt27dPpuuh1MhExZbKopZGTZE+AL/RLc1EaZZSCjUSSzVRCmXZlBqLKGoPltIp6TKtFsvbx2Nq7MPMHu4xU0r2degDi9Iu++ZzWZ4j82dk/sv4e5S0pvxw2flPPPFENX5RqpceoVadlXixFsZ0Wrxe1NYohVuqdRtsUxoXrPQx3lNM2CsNkrv3lQ2ZodQAACAASURBVK0APjbT0g1qT2QDR4Ysz2F8H8u2eM9k/o/N/L7Z3iETtpaEWRr7T6ewsrKi3bt3zzUT+26iJrTZtalNx/7Q9+S/9M/He8zPIBa/5VrGNWWZJvoZ7Z/N5ikrrRPHl7HT3Uef6/3tY8jejv2ntcPzy/RrGfOWPkq3n5V1IkOWzyz6ZGO7/tuSRzc0NDQ0NABLF4DdtWvXXNIi60wapAja+uk3ipJdTUJ0W2wzShk+hywf+ucyCcGISUhjX+N1LHE4gS21NTJJMw22xnSidBPPr2WuoZQTtV4mpeWcZL4bSqrUNjItzlpOTGxdk9i7rtP6+vpIEsuYopSSye6K16D/je0uEgvG2K1aMnNpmCezMinFZoVTKRXb71eL/4zjq1kU6G/KijB7/a2pUHufSvJLjY5jyCwYPJfZaDKw8HAGcwfor8/2DpM489jIKCej26CVJsue42cgC8x6fzF+UhqeUT7G68JE1zEOk6V1mMTZfX3ggQckbfStun3vVZ/DIrIRXg+WoXJb9IXGfeCk68zAxCTicb/wmc9MKxkz232KGvMiViapaXgNDQ0NDVsE7YXX0NDQ0LAlsDRpZceOHaN6ctGhanWc1W1p+sucuaT00pSZ1XyyiZH0bavCvl5UielwJokkS0NFgkNWzy32LauhRkd2RqQwahTfGi040vttMqCZ122YrhzXgIQhVlTOgmJZm6uUUk067H7QNBbh/jG1F1PMZU5vEltoysrMdzQps7q4Eanh/o2OeX/OiAA05Xi93SeGLcQ+Mi1ULfA7I7zUwm5qNeOkcagKE0BntQ9pwqyFGWVpvZgCMIOfO+4vyR7xmrUEFFlYAn/jfcJ7LbtPa+n6srRaNE/b1EiilZ9p8Vj30cdm4S/Sxvn0fDt1IdMRZsmcvTceeeSRDe0yZaKD5WMtPfeRbhYSa+Ie8zE01XuNbZaP68Z7vJFWGhoaGhoagKVJK7t3755LBqZXZ5T4WrJjY6rUCwPbqXnF61lqsDPany2hMC2VVA+IpbYQac9M3svUQaz2G0Hpjwm2SRuXxuV5POckK2SEn4yoI42JLl6/OA5KrKS2RymXUnUppRo87L3DYN4psgKlvSx5NCVEpmKi1SBaB0jbpkZMwpU0Tu1V2+dxnkjppuZaI+nEvmUJzWOf4z3h/5tY4XEwhRkJFtK4KjvXyX2NAfysul0r9RLXmtr1jh07qnvHx5H4liWTYKgU1yf2IdtP0jj4mlp2NsYa8SkLbWJ4ColoWQozB9vT6uXnzhTByvvA7UY6v7RxfzuY2+OxxY5arvsRSUAkbHkfxueotJEkxIB9//Vcc9/Fdm3Vunz5ctPwGhoaGhoaIpbS8LZv367bb799LgUcPXpU0kYfB9Mm0Q6eJZWuJQum3yJLa0QJnsG0loyilEGNip+Z7FcaJB/329IFAzMpvUmDZGdJ2BIQpaksAbTt77aZW7JiiY84J543SnCkUGehIUz/Q+p+1FwYKD6VWmz79u06cuTISNuJmulDDz204Zxa4uzMH5v5E2N/uV7SWAt0W147fpakBx98UNIg2dL64Lai5Ovf3AfvB6aNYmiINOxFajcMjo5JpN1f+qSoyXCO4niYBo1Wg6i50K/EucjK+dCvOeX77bpug3aVaSaG2/Hccuxxz1NToAZOrS3eY15fWkQYzG4/nTSsu9eKFgbvzWgB4vOM4QH0O8f7z776mqWH/j9pWBf3hWFWTP4QNX0+x2pl3eJaMzEA3w/ZPU8f3traWtPwGhoaGhoaIpZmaa6srMy1DUt2UWr+wAc+IClPTCxtfCvPOwEp2VILfUSZ38dSCplO/p4Jc2M7NamAAaHSIOFYemY5EpYfiVJaLWCW7NDIfPP81RL9Mk1U1IYsQWbtxvHH75lmjYmhLdFmpT28bhcuXKgGgJJpZ8kwSunWZmt7J7ZF1CwKvo4l/ugn5b7yPq4V95QGiZvWB65DXH9Kx95ftGgwga40rD/ZugZ9u9J4L/pcz0Vk9BIsSmuwPFRWpJQ+cEr4GUsz3ou1+3FlZUV79uwZ+Xmi5s1E7Ayy5jhi/5iuj5afqMUYvD9pvcmSV3h+vM/ZFuct9pfz5WPIHYj3Bi0KTHhu3168HtnfTMlG33XcS0zjSJ+4x5f5QvlMrCXckMZB+Itqd1LT8BoaGhoatgiuKw6vVihRGvtSKJFmrMLoA4rtkSnmtk6fPj0/l5pcLfVNFrNDRp2/t98vS71z9913Sxr8b4wnsvRiNp80aA7+jVqQpdDYR/rQLC3R92EJK9NCaB9nwuEsCTPLwXgNplKmRU2oJm2trq5q//79oxi72AfG6FEDZqkSaawNUnufSlJM7ZyFjf3Z+0EapyhjG5mkbcma+85zTutEFqfENF3cS5l/jPuMSdiZzDiOmdoP77MI+nVqqcayPsZ9W9s7fu6QSRx97GSBe94Yc5iVlqJWSwZ2puGRJWl/mcdg7Sn6yTz/3l/sIxnM8f+2qrF8DmPfpubY8+VSQllcHGODyexlnHEWZ2iNkvGNWcJ4stzZFhml8Rxjz549kz7giKbhNTQ0NDRsCVxX8uipuDJLK5S8yfbLYmh4LOM4/NZ/+OGH58eywCOZb74ev4/tkiGUZXKwJsV4K2absWSX+cc8T/ShZMlcOY9uP7K+pHGC6NhHZpugHyCC0i4zr9Cvwf+7jVos1erqqg4cODCXhMlqjddmn+grjMhKBvl60lh7z4oH17LM+PuM2en4JPo6qM3F7+i/ptacxX8yuTJ9Rcz8Es+hP5MaZVZaiKxGWluy+DKfT22UUndcPx4zlfzXGp77bQ0i+thrZZSyQsOG14XxqfSLkpEZ2+Xa+f43smTV1JoZ7xc1V2arIbPY7dviFEHrltfH53h/R4YvszD5WPqQmUErXoc+SbLrMx4AeQ72M/pecL+ksc/4wIEDTcNraGhoaGiIWErDW19f1+XLl0fSUpRILK1QCmPpk0xashZG6dKsJkuSMX+bJQJLS2ZuWSJxX7MYN2Y+oIQVpTWyoWj/pl8hSiQeB2Np6FeI2o6vfezYMUnjDASW1jKNmX4rxvlQK44gG5SxQVGSom1+ypbu4sEec1bQ0ut/8uRJSeMiq4wvi2O0JMi4SP+ejZVxaPa7so9Re6Kvk6WdMr8v85Hye4OFMqVhP9HvSv92piFx33lctGhE7YgsRzLtMq2QcZ8GGZJZ37JyTRlWVlbm82Xpf4rNynI9/pyxw8meJkfB+zJqQgatJcxMkmlrnlv67tzXzJdfyxnL+z/OJ33stPzQ/yyN72lmPPFnarjZnHDfZz5KavpZod7YRpyLVgC2oaGhoaGhgvbCa2hoaGjYEljKpCn16jbLPkRTBs1BVlV9Dqmq0pjAQNq01Xam03J/4nVqzussULZmvmOqodguVXqaRbIQA47r1ltv3dC+j40mVJvvGIZA6jTp8BGkuWfV5g2GftDh7bmaSty8srIyaVroum5kto7rwlRrHjuD1LMQE5pvGJjL46WxScd9I/EknlOrgp1Rrg2aGz1HXmMSobI5ZIJmUuej6cz9ZUV69tXfxwBulhRioLn/xnll2jEGnGfpw7jPpghPXdfp8uXL8/1hs2EcM9ONMTWWEauJ857l84BJJGL/fK+eOnVqwzke84kTJzacG9tjdXavodvMKrkzPaHP8d+sLBXXmwSbjAzG5wBdAgwniqQc3hMkAzGVWmyHJloGwMd18/8Z3rEImobX0NDQ0LAlsHTg+erq6lyyyijFTB9DaSILYKZ0wkBcg0QUaZBwmO6MxI0s4TAp+JQOo0RHaZB9IhEgkhcsuVlzOHz4sKRBEmJwqTRoHZZmSI6g1B5JMoY1Yl/Xx5KqL42lW4+DQbdZSIP3w1RxV4PtRSKA19+kBJJGfG48h6EMDDUgMSk66BlESyd7Ni6SlajxZPNDzY2fswS5httjcmCuVxbAzXRgJn95b3ovx3N9LP+yH1ErJPmlNs5oWWAarz179qSWhwhrCiwJJo33CkMxmIQhtkOthQm6szJox48flzSQyqil+5wYYsI0ZCSvZfel++RzvQ5ME5dZ2/gdtbQsSYLvF/9G4hgJPXHv0OpQS6kYn+sMF2PS6CysjKXgrl69OllaKqJpeA0NDQ0NWwJL+/BWV1fnEkNGiafvyWnAYrG++Ls0pvZTMrSUYdp4lCr825EjRySNS3lkfhEGltL2bJAaK9XtxyxOGyUOp/Jh+h9qbbGP9CO5b6ROZ/4/FhSlL4VSWmyf0i7DLbLkuzE0YLMAYiZZjnvHY/M6xwQD0rCHohTLArksl0IpPWroDM/wfFhbZrooaVgX+mGsdWYUfWobNc1uymLifcZAXbYpjX1qLDFELTtLZUaLgSX/rByRsVmKsajBUavet2/fZEjLrl27RpqpLSXxOxd+ZvLmrJyN++D58lx6jvksi3Ni3x0D/2vWotgXzyW1Eq5X7CNT5tHPne0dpuViUv7sHCZzZlklchYieK7B53vcB0zo4WOYwCNa9Rg435JHNzQ0NDQ0AEtpeC7EWGMZScOb2fbV+++/X9JYI4lSABmAloAoTWQ2br/5LQlQM8k0PB9r6YsJmplAVRoXlGUbDEyP46MkRz+MP2fJcOnXIauJAZvSOKg7S5EVr8/zY7vULKNPgv6zqcDhUopKKfP++3rRD2Pp3BoxNRWfG8dBXzF9KbQoZH4yJgCw9uJ9GNfF/ba0XvMZTzGJyT5mId2oeVOzZvuZ74LaIK/n+aQVJPaBVg+2lWmwHB/vhegLpbY2lbTAKQ0NW1fs643tkUXtY7y3oi+IVg1qCv7e+yCm9fP9Tj8ptei4PmaZ+q/vpVoqxdhHt+/faB3IEoYz2TotCxnruVZmyyAbPlrFvEb0gfOei+vsdvxc9R7xubb2ZOn9rIE3H15DQ0NDQwOwdGqxixcvzt+mTLIrjZP0WjJhyq+MkUVbMxmdmdRBvxjL6LAf0jhOxFKGtQ2yOOO1yWxicc2MFUrJl4mAsxg3akKUzugri9IzGX2McTGyNEuUzunfiNqOWaVnzpyR1EtjU1re6urqKM1QltbI62CpLzICpY3SHlld9FvU4teksfTM9cl8DvzN43CfWShTGu/fWmJuaqnS2HdGzTVjhZItS5812cHcF7FvnJss3ovaBfcA0wtG+L7Zu3fvpA9v586dI40x7gNqdNbG3KesADCZhvSle5081zGlIRNBc+0ySw/jPmlh8hxHX6GfZ0xKbdAXmlmlmISdmm28J1g8mM96tpH5f/kMZKrIOCe1NGfmSnh/xPvJcxLLeDUNr6GhoaGhIeC6kkf7zZqViKDkzjIPltazEhH+S4YdfSAZs4+lfZg4OUqX9JnwcxbrxHgYSu0sF5SVB6KPkNpOlFgZz8fEvGTvxTmh5EpfKCXa2AcWxXWfPUfRB+K5jZrKZpIWY3Wiv4JMLUt5jOuKUiz9BNRisvkx6NOir4vadexbbc9wfNJYSmW8F/dSvB4tJp5zSufxHPoZKWlPsYNr2o3nkTG4WTvUcqglRLi9zRKPb9u2bZRVJGreLIVF31pWHoyxgHyG1NbH/Y2g1kwLUOwjuQi8ZyIj0XvSMZQ1y86UxYR8BlpxstJitGhRC80sTSw8zetkmYvcX7bP8ltZyaxYEm6zGM75+BY6qqGhoaGh4VmO9sJraGhoaNgS+KCSRxtRnaTJx2Y6U70diB7NdzRHkeJv8wFNXfEYqu8GzVVSbqqKbbHmmTSYRmpOXYMBodmxND/QjBT7YjB4k7To2FefS/IN5ygSHmh+orkyM9HYuR7THW1mliIVP47Tv5kcYDMUiSKRxJKZm6Rhbt3HrP9MaM65oAkyjpVmT56TOea572oErnh/0exGs1SWyo5zwb1T+10azEU1UkyWWID7igQo3+smIUnjoG6mSiO6rhuZymL4DUkPWS1DgnXpPC80h7uNaGrknHJuM6IYCU0knGT14nydW265ZcN1eJ9lwdcMXWJ4T0Z4qiWtqJnFI2hqpImbpnapPves7xf3B4lCU4Qnoml4DQ0NDQ1bAksnj44SS0Yz9pv2gQcekDTQaf3mNoXdEotUT2fjcyytMTgxnkupmdJMlIBqNGRqOVkpGTrkGQBsiSVK6SRDsMQMAzVjnzx2kmXoWM9CKAxK5RmJwO35O2rZPE4a1t+U/Km0Yg4ezsgjhiU3BteSMJP1OyNgSPXyQdIwd9Y2uA+9lrFNJtGlJJ8lyDXo8OcxmeTNJOFsI3PWM3k0q2/TChP3HY8hKczjj2nfaBkhoYHEhHhOTDlY2z+lFK2srIy0tUjV9/PkwQcf3HAMae+Z5m0wTMljpAVKGjQQJmbIklbwnFqCa97bHnv8jfc70+NlQeQGE52TqBbHzvuK4V7Zs99gNXtazOK8k8jk94Ph+XSwfoSTCezbt6+RVhoaGhoaGiKW9uGtrKyM0nVFH4D9a35Tm07rz34TZ36YaJOVxkU8fVzUDhlUSXprVvSU0jJp775+lLSYWJY+G4YJRAkoS7wc2/L4op2aPghqdPQdxHMpQVKDtFSd+TeYlox9jZqrpTNrXlNSuq9Hn2uU8Jhw18cwbVw8h2EnNW3WiGtKbdx9s2Sa0d9rJVZqYQrxWKbiqyXijWOgT4W0d65x/I33ArVFz10MqPYeYcFhz8WUBkuNgvsrPiectMB7Z5EEwEy6HpMsuz36Xf2c8XMphgtREyZ93m3RAhDb8VxaA+LzIK4lU7n5PqTPMNMOa1o0/cCxj0xVV0vGkZWW8t6gv5QaXmb9qBWPpe9SGlsfvB+YhD2mIGQihfX19YUTSDcNr6GhoaFhS+C6fHhk6mQFC/1Wt52VUkxkbJGJ47e1JSAyB6NEymSn9Ftkklb0WURwXDHYscas8l8GlUepyRIi0zVN9cdzYemMCbWzsjAcByVWSviZP41+TPfdbcSyMHfffbekjSywmqS1srKiPXv2jNhYUVNgyjcyEClFS+OirfRxUNvJ2GUMVvdc0y8cr002Zi24XxoHv3OfG5Sq43jIYqSEHX9nmitqFp5HFhWNfTUYSE9NTxprJCwenPlubKWJfawlLVhZWdENN9wwSlwcx5ztp3htPpfi2AxqPrz34r7jvcXyZ1npGpYSorWDge7xN96r9ElOpSf0eOjDy5Jy1FI0siCwtaw4PrLqyWvw37hubo/aaC3RQvzNSU1qz/MMTcNraGhoaNgSWFrDW11dHfm8YnwKkw1byrAvz7ZYx+NJ0u233y5pLF1S0yPTUxqnFKJvJfNx1OJSPB6fwyKYWd/oS6O2IA3SUq0AqI/N0hCxWCQ1TBaejP/39aiFZMxOMhN9XWoYMX6S8xalcGJlZUU7duwYSedZkm2D8ZeW6OK6UConK49jjv2nBuTP3IeZRllL6k3Gb/zO12GaOJaHilIz09IxeTTXIB5LFibTg2VpwjhmS9iMpYqsuVocHtl5UROkn7brukkNb9euXSNtLc4jEwo7eTS1gKgNWMv0GGm1oZUli4/zb54PW7Rqfntp2Cu2ltD/G59VteLUtfjMeE9z7/Az93k8hnNMNnpWPJaFlL1XvCb+Pl7Xzxk+443MKpalUWtxeA0NDQ0NDQFLaXhXrlzR8ePHR/6S6Neh/dYF/E6cONFfMEmYyhIutQS9ltaiFOBYHPotfEzGeCITidIBmXBxrAbZjGRNRUmyloWhVhA0jp2fyRLM4rEoAbGki8+JfSQztVacMma58XeWam+66aY0e0PsFxmLsd+MAaREn/ktyYolW9f7MfOpkM1Kjdv7Ou4hSrHus+ciy+JDTYr7nJJ9lrScviFK63He6YPkmlK7zvxxtcTjWRka+q89PvvpfWxk2vna0RJU0/DW19f15JNPjkpUZf4jawpZjFnsWzyfe5EZQmgpyfrgsXnesmKu1LjJIM8YsLZmeA4ZB1rzVcfr1MpgGXGOyELnHvH9RNa6NMy9NTpq9m4zvi9q60M/fmTX+vmQJcHfDE3Da2hoaGjYEmgvvIaGhoaGLYGlTJorKyvavXv3XM22CePYsWNDg6DcPve5z5Ukvec975E0qKHPf/7z5+fcd999kgazgP+aEm9zG53L8Xr+jVXYGSAez7d6TtMma9vF82kupDOXpq74Gx3YJNxkJBKaXWjey8yvDEMgoSIz99AkR+c1A0Ql6Y477tjQTjRZEk4PRXNKXEtSoGnazurh0dTG+ng1wk4cK9eSwcMZjZqmdPfRaxlNjEw3xT1juO/RXE5qOQkoDHmRxiZNmt8yp79BMzL7kSEjMMS2PJ8xFMn3XlzTKcJTrHhuZPX1SCLxXGYVzxkGw3AdP4f8vIvXd3skgPgcukCkcQIIfs4S0tNkz5pzDMuKfeSeIUkvW2vuZ5pMWdsxmhq9HpEYJg37jHs3Hlurw+c5ytwKGWFrMzQNr6GhoaFhS+C6Kp6TmGBiijRIQ3wzv+QlL5E0kFci+cESaa06MbWcqHkxXRPp2zxOGjuHmSjX14v94HjYJ1KY4/VqacL82VJT5nCuSc+UdqNUWEuZxiDiqEnUiAduw2ElGd3ekt25c+eqmkDXdVpfXx8lP45aLatGe19YWs9KyHjvnTp1asO5GQW61gbnklJuPMcaFQNmSUiIki/3aC3VV6YVkDzEOZpKD0WSCsfJMi7SsB4k41ArzUhSDB42SMqQhnsr3gtT1PJt27bN7z2fG/caSRQmUDBZQdTwHN7kZxFTvnms2bpQeyVJLkt27OcWA8xJVsqSVLsvLGlVqzYfwaTUJI5F7YlJCqiJc/yx8jvJPbTMZERCHsPSZhnBzpaCeA+2sISGhoaGhoaApTS8tbU1Pfroo/O3LoM7IyyZkFb6whe+UNJGydsBoO9973slDdKZpSRLcpb4M0nRVFdf17bhLNWTQQmeEnD0+zGAnZRb+mlicmyPg5oWg0djHykl1dJRUSJiv6VBsmSqtkwLrRWPdehBnKOjR49KGhL33nnnndXyP13X6dq1ayP/YhyPpcWTJ0+mY7e0HiVuS3su5ULpvFb6SRqXRPK5pG/HPtKnRv+s1zIL0K/R6pkaKV6vlsybGl6ck2x9pXFSX/pp4pjp56G2E/cBfa+kyLOUljQO+bjxxhs3LfFCanxWKJepr9ym90kW0kJLQq1AauafZoLsKT+p22N4FZPZx3uI2iWfO1kCB/aX1pQpjZzaOMNsfKzXILP40NpFrXTK2kYffFbg2uOJnA8Wca6haXgNDQ0NDVsCZZmgvVLKaUnHNj2wYSvjrq7rbuGXbe80LIC2dxquF+neIZZ64TU0NDQ0NDxb0UyaDQ0NDQ1bAu2F19DQ0NCwJdBeeA0NDQ0NWwLthdfQ0NDQsCWwVBze/v37u8OHD49K1UQ4foJxViyYGkHizGafp1A79qlo44PFU9FubW4WaXvqGP7GGJ4szx+vXUrRY489posXL44Clm666abutttuS4t3Gv6NsUXM/vLBILbBMfLvFBbN7BDbq60VywQtgql7hNep/V3k3Nr1YiwV16cWT5fNveOrtm/frnPnzunChQujyd+1a1d3ww03jNqNfWJsaxZ3mY1j0d8WPTe7T2rHLrLf+Nsy90Dtnl7mmXE9uJ7xMduVkb0vmENz6rlDLPXCO3TokL77u797njTYaZ1iqi8HDjrFmIMOGcyb1fziA4/fTz10eczUTV77jelt4k3NReNNzgWL42NApj+z1lgEA1g5Fw5WzRJBMz1Q1qf4fWyXKdRqSawjYsX2H/uxHxv9LvVV7d/ylrfMU5Q98MADo7F7H50+fVrSEJzM9GAxUJaVzrkOtaS00hCczIclg23jPDGdGh8i2ZoycTUDjf05C8bn+tb2eVxbVnLndWt/47Fsi6nUYp03J1nwuQ4IdqKDWmIHaQjCft7znqc3vOENo9+lPrnEZ3/2Z8+TTLBGnDSkBzt06NCGazN5QXyA8sHJvT713KnVMlwqkTESm2d7h/UvuSc5p1nqPD67ptIu1lID1qqyZ3PC6utTChITg9QSR8R++TnhpAwXL17Um9/85rTfRDNpNjQ0NDRsCSyl4Un925qVtKOESJMmJVN+H8+vmUMpTUWppqYFGqyAHY+tYUqN5jhrkkhWRZhaIcsSZdInJR4mq54yGzANGq+TpaNi1W9KZVnS4NjelJlkZWVlXlaHWkgcW81c6LajxkcJsVbWJOsXr1fTjOMccO0oxXIvS/Vk3tSm3HZmHWDiX+7ruHeY2otaAjWZbG6oIXN8EZ4Ljp1p0TLNPFZsn3JHXLlyZVTdnUmqY395fxqZNuPr1hJkZ/uSVpNlzIPUlvjsiPcYLUjU8Lge8TPve/Y9e2bwt5pliynVYt+m0geyP7Uk/EyOnfXV67WMe6FpeA0NDQ0NWwJLaXilFG3fvn3Sbk0fHf8y6a00+P2YRLcmnU/58GoaVyZVZBpj/ByvS4mRdnBqgPFcaniL2P3p95gij9RAbW3KmUzploleWRwz/t/rtr6+XpV019fXdfHixVHC5Mx/RKsAtebMx+XvqM2QHJGVUaLvpObTie1zv1F7ivuN/lbuIUrxUcOjlE4fTUboqSUpp+YyVaKJ51q7ohQvDT48ar30N2dFke2Pe+yxx6r+r67rS0s5ybORWRtqvtspKwrHzv2Q+a85xprFJSPWcH9lmh37yHWvaYVxTEziTExpRkxon/mza+fwvjJqz05p7Gf2syUjH7GdzSx2EU3Da2hoaGjYEmgvvIaGhoaGLYGlTZqrq6uTZrWaKdMmzEglNWyqYJ0wmgVqjuh4DM0EGR2dRAM692lKm2q/ZmLKzKFW20m+mCI61OJwptagRmGmQz+SMWqhEzXShDQ2lWSU6Ij19fVRBeM4TzV6vuctIwjU6NmkRtO0lfW7FtIQz6Gpj2bxjFpeI06QgOI2oymoVtl+ysxPYgHH7Hl2TbPoSuAc18I64l517T+HkXC8JDHE/7svly9frpqmrl27pjNnzsxNopmJjpXB0Vg2LwAAIABJREFUWfNvyrXhc0zG4/pkc75ZaNFUeEItTnGR8IcaeS5ru0Y8mhoXj6mFdWTPp9ozqRYTKQ3PwFq7UyEt0bS5KGmoaXgNDQ0NDVsCS2l4XddpbW1tpD1FyZ7BrNbo7Jz25xiszsBVUlRrtO4MlvQo1Uap0MewKjIRpSlKunTITxEPeKz/WsvNqlZzzDXpN6MYc344J5R+42/sM4kvEQwF6LquKmmZ8FQjpMT2qAV6XjLtmRWYLaVbW+KYp0JOaoSNTCuIGUJqx8axS2PplZqK1ykSg2iF4Pzx983ay8abhYbwr4/Jqs77/9b0/Nnjy6wDtUD6DF3X6fLly/P2s/3LPV4j6sT1Zzu1KttTCS8Y0kIrRxZCU0uSMJVRqGahmCIgeU5IHmFSiez5R8sFiWOZhsf5I+krS5JheP5IZsvIRhnJcNEMNE3Da2hoaGjYElg68Hx9fX2kxUSpxhqcA4wfeeQRSYNkyFRF8f9MP5aFMPB6Nao9pRprANIgifrYWiqpzHdTC+Kk5jAVPOy5oLabSc01abzmh8zgY6eovpT6ptKsGdTwpiStUop27do1aieO2WO1lOd1z0IKDKexOnDggKRBa/d4OD9TqZfcN4bHZMe6XWsxTDWWpfqqwetCbTFex6jt65hmiynSfI776P3nPsY18F6kT9dz4t/jPelrez/YmuO+u/0YVlDTXDPYckDNO2rI/r/Tjzm1GAO0vV/iOZ6nLEmFlIcN8FnBZxb3sjROg8dQoGxvMjlBzU+WWQ38f6+/P3P+MguGQb9pZpnhuTUfNTkMkuapBpluz8/G7J7ntXft2tU0vIaGhoaGhojr8uExSDBKe/bHmbFlaZI24Clthv6wqfRQfLNT67R0k0mkbH8qUzft/Qw8pa8rS2VWS7OWXc+gnZ0JZy2BRa2glsbNa8FktVm7NfZXlrrIGvO1a9cmfTFra2uT2js1YGsvlEh9PWlIPkyfmiX8qfRZ1IAonVMzl+rJEciwjNK6x+g5tPRKCd9rEK0R9L9xvT3+qLnU0tG5LfqO4z1k7Yz3pNuwhhd98NwzDz30kKThWRCZmIbPd9Ln3bt3T1oHSilVv6k07AlreB6r59Lz5t+ljXMW+19L/ZX58MgipO897h1acvzX+4H3hjSew5oWmiVm9nz5eee/ngNaiWK/6YdjFQr/nqXdoz+VlpPI0Dc4vqm55z24Y8eOhdOLNQ2voaGhoWFLYGkf3tra2khTyHwA9LtNSSSWwmgfpr8ii91i2RIii5PxOfR10F+SaWmUOGqMq2hLt9TicbpP/mwJL0ouZEXSz+k2LK3V0gdJw5q4/Szxq0GNhbFxWWquyKbcLB7Ge8f+nLh36OPwulgLuOWWWyQNWo00jJ9+V8+H289YevRLGNyHUeNyvz0OagWZ5FtLscW+0R8ojcvc8K+1lKi5uB360NxXjyfz4fk7Jmrmno37jcnkmTQ68934WK/x3r17q2xpX5+afpwn94GanEuYec/4M8+XxgxE+qgzeD+4LVpVMk3f88ME2lMa0GbsxUzDoYZFa1umFdbYrrweORnS+BnkvUuLQ9Sso+9ZGrNds8Td1AK3b9/efHgNDQ0NDQ0RS2t40pi1FCU6Szx+C9Pn4DdxlK42K4Hjt7ulCtu143c+h5qlEaU09oVSTaalbBYPV0s8HK9HiYsZNqLfjNJszbaexdLUsrF4nFlZJ0rhZLtm4+acb9u2rSppdV2na9eujeK4Mhab+2kJ8fbbb5c0SIZRQ/U5zJLhPem94nFFbc1g0mOu4ZR/wNedWsuaT8jj8znuW9RCrKn4HGpvBw8eHPWpFkNH6ZlJn6W6dcVWAloWpOFedr+9Jr6+Gdtxb5BNO5UtY2VlRTt37pwf63aiL9dWgCNHjqR9YkxgHBN9aVO+boMWH19/KjOI+894RbKSPV9SPbaN97jHF+fYx7p931d8pkwlumemLCLuHcZ9+rrMYBU1Qd8D5EDQxx/vQfNDYp9bppWGhoaGhoaA9sJraGhoaNgSWDosIdY8s0nAVGZpXIWWJpgscbG/ozPa12FQb1T5bUIlxZpki2g6o3nOfa6l4onf1cgJdO5Hk63PcV9pKvE4ozO35iwmspp+/s7XY2DzVF0q1qszspRtrJU1RYYxSFDKzGk2+Rw6dEiSdPPNN1f77b3gc7gPbLbzXDhAXRpMTLUk1W4jmkFpuuZ4MiIAyT0k5bjv/psl87XJjNd34G62v0mKYFIIz8nZs2fn57odmuaY0DuO09ehecrjyZJUG57zCxcuTKbP27Nnz3ztvG7eF5J06623ShrIKT4mti/l7hB/5+ufOXNmw/Wz5AsMR/K962OZvlAazM9MfEGSTEYMoxvCa+lnpn+Pwf0MJfBfthWf315f95/3CPdBXFOm9eNe8Vxkpmivk/eKCWpei7jf4hpK03U4iabhNTQ0NDRsCVxXajE6d6NUYenV0h4dzdmb2JJGLeUNHahRavIxMRA2tpF9dn8tKVhqsQTJgM3Yf1LI6eRlcKw0ToJMjTajFnMOSCLhuVkC4CzhcxxD7KOlfkpatXIx8Td/d+nSpaqU7ornnMcsuS4135MnT27oYxyX9yId44bbd4q7LPUSUSNeScO8WEolWcB9jBq3CR6WpD1flm4ZPB4JIW7X4/RfagNRSme5rYcffljSEBDue8V9j1o2w0+8FqS0x/H5O1pmvCYmGURtgAH1Uxretm3bdPDgwfn8+DqeP2lYD9/TcT6ksaYnDXuC60Krkcce9wHL2lB7ySwiDJHwXiKRKku3Z5Cu78/W0uP4fG33zZ99P3lcthJI4wQXNc0p67vXh5YSJqiIVhb323ueITxG1HrdTgwfamEJDQ0NDQ0NAdeVWsySW0bB9Vue9nymKMoKZGYpg+Lvmf/Pv5FWz6SxUaKkfd9SIVPvZNdhCEWtaGmUUJgUm2moMvpzzfdZ8yVm/jj6CnwO/V3xepRuef1of6c0NkXfX1tb0+OPPz6X8r0/oj+W0rmlVUuilNpjP5mWjH45nxv9pPYBUSun5SLuA4YQ2M/oObbEGq0evk6tsCil+LgP6Iv0nHgvWXuKfid/9+CDD26YG0vyDAyP0jH3orUS+nLiPc8wBPfNe8pzYo1KGqR835ePPfZYtYCwnzsMxYhr6TXzfiKN3vMX9xv9n/S/Mel19B0xOTTTd2UWLWtW9jfedtttkobnja8fr+NxeA5ZSsz70OfEoHVqWB6X18HjjxplrQiur8O0ZHHvug++Li0J2Tx6fg4fPixpuL+YjCN7Vnlfnzt3rvnwGhoaGhoaIpbS8FZXV7V3796RxBB9IXzTMkAzsw1bqiDLj4wkpuTJUAsQjxqQtQtKIEzBE30O1LCMaP+OY4kaJQti8m9Wroc+PEumlt55bibZ1UquUJKVBn8IEwxbGssKnDKtWxbUbXRdpytXrszn/vTp0xvGE69JLcZ98PUyP0WNOUwtKmMKuk9epyypskH2HfcZNU1p0GasHXsPWTvkWsZ7g8moqdkzBZQ0lqSZnIDp6bIivByH9wdTucV2Da5JFszuPnoOnnjiiaoPzyAjMq6l+2mtlgkpyFzN2nV71KYyFnL0W0vjMj5e08gDYOklWphsCYi+QnIE/Bzgumf3J31pvL+yZxX9v1x/zyetYdJ4blmii2OI1/FvXlsmLYh9ZKLwRx55pGl4DQ0NDQ0NEUtpeKUU7d69e5R6KWp4ZHGR5Zf5/ZgYlew/St5RemZ6HKZ2yorUWopwv+2ncJ+sHUQNiSU8LL2cOHFiw3XdVhYXFdlJsc2M0cWk0LXySpnUxDVgoutaiRFpzJi11pbFInmePK7z589XpfRr167p7NmzI8kt89tE27w0zKXnK/ryvA609bsN+3uccipqoe4396bniwm742+W9u0PsZbovkUfnverY4vcB/stvP6em8g+dLtmWDLO1b9HnzHLKPE+9Xg9N9H/Zz8TmYu1QqTSOGUWNQrviZgGLUuRVovjXFlZ0d69e+fr5XsjzjF9WNZiGBMW15/Wp5r2TL+WNOw3a2PUqj1/1mCzPpo9S/9f1PDM6LTfz9dlIvrMl89nA316Hnfc3+4bS6h5/Rn3miV/5/PHe9P7PT533F/GQjJtZXx2+j7yfXP+/PmFYoClpuE1NDQ0NGwRLK3hbd++fVRWJNpXyUSkj8lv+yzWxG9+27JZkJMaoDRIPJYYrb3RfxC1QktHlhqe85znSBr7CinVSoPkw8wXBsvSxD5Qc2Ay6QjGoVDyYQxh1LJpo6cfIPNnsEwHJWMfG31u7oOTO997771Vpp3j8KgxRB/AAw88IGnsP2B/I1PU51vqYzyef7eGF+eV5UuYZNf+2agB0UfoPt9xxx2S8jg8xpyxnA6Zv3EtbDG47777JA3z5nVwG9YApWHePHbfE9Y23EdrD1GjuPfeeyVJf/InfyJp8GdxD2UJh31dj533ZkyK7Wt7Hvfu3Vtl+W7fvl2HDx8e+e6i35L7jvyCzG/N9XZ71nKZSSjC7Xou/Uxh4u6ohTI+1nPrcXl+vJelYU94LV/wghdIGp5RLP1l33icE/ff+4os3SzO1HPh/vscWp6iZcn3JdfJe8Z9jfcv/dp8Nvo6ZrRKw7PX9+X+/fsnSzhFNA2voaGhoWFLYCkNz1I6JaOozVBaok8lY2laarBmZ0nx6NGjG86l/8R9kgYJxBIKyxBFG7C/s1RAn0BW2JalNrIilBFRc6HfkiVtsjmxduF2PCduy99by4o+Q2ZLoLbt76d8U5S2GasU+2/tYsqOvmfPHr30pS/VqVOnJA1adVYeyH5R5kHNMsSwzIz/eh/QJxn9YyytYg3Ix1iryvJ9cg6sLdqnl+VStVZGDY8MuCg1u13fV96jlOxjHz0eH+N2rY16rX3d6BO96667Nhzje8BzYQ0i7h3vxRqT2X3PMshMlZ8yVldXdeDAgfkYM38c9y2zNvn3OE8c4/Hjxzeca02FGVmkjb65OEavHbNDSYM243XxsXFPSvk8+flFpjL/RkuW94q1aVo/aqWg4njov7Q1h/db7KvnnCzhjNnMzFHezx5PLPZskF1/9uzZTRm+RtPwGhoaGhq2BNoLr6GhoaFhS2Bpk+b58+dHCVIj6YJpmqyC09EczVIkYjARqtX0LLDZarL7YnMHzZQxWNnmCJYdYnqyCJo5Sd8lbT+atEjxpanOKn+Wtstqu80pteTBkYxBExpNt1OlbDyPTH/F9GvSYG7wOKYqnu/cuVMvfOELRymXIgmGv3nObUazaSmapx1ozLRpz3/+8ze0QRq5NOxNz7FNS14PU8Ej0cFmr/vvv1/SsCeZCDpLD+Y+0uzuvzTpS8O9UEtDZ4JDnHeSvXxdj50lgDyWOFYTAjyPL37xiyVJ73rXuyTlIQFce1ZHz4K+o2msRlpZWVnRrl275nORJarg/c6yOlkyCX/n/eX70utg83vsh8EUfCQmeV9HUxtNzQwpifeRwRR8vq7PYTqv2A9fx+4D/7Vp22sc58TXdgiJ94yvw0Qb8V4k+ZAlmXwd31fSOG0k3x98/sTvYjmiljy6oaGhoaEhYOmwhF27ds2lKUsIUcOz1OS3POnTWfkHBhjXnKtMuhzb4RuejvkIBs7zOlOaHjVJFj30+DPKtPvKVFZZOjSWWvF1SFbIynRwvlhCJEvCTS3A7XmOGLQujTWXUkpV0lpZWdHOnTtHiZRjvz0f1uRMlLBUyXCL2B9q8h6Hx3j33XdL2qhReh97Pbi/3MfoOGdgM8lSHl+W/owaNbUC/+7+RNgqYQ3ThArS1qVxyRpSvn2/mRwUJXzPj8/JCqey776O93cthVkkffi+jGnXahqeS5J5Xny9+Nzx3HkstCAwbaA0TibBe9hjZ+ILaXxfUOvw+OKzyn1haSkmBo/X4fPGfSFZy8/iuA9IqGJpM5Kn4m+0OnlfM+F2JFi5faYH8zxzD0mD1ulx8flBS2GciywByWZoGl5DQ0NDw5bAUhreysqK/v/2zmzJjupKw6tKJSEwdjgCMwgcbhzhS7//k/gBaFsy4GYyGISkGvrC8dX568u1s+oQ0Rfus/6bGk7mzj3mWeO/njx5srGvpuSKlOeExb2ipLbtIz1wj8Oesw1/s7v0j8vpZDv8tAbRFSdFanaCNrD0nn1c9cWJodlHS50OxbbGlZKRP7P05PEnXKzWqRPZR65hrHtpCWdnZ3VxcbGRLvcKVlrrNMFs1baYJlrEiiIpfQ6Wjq2hdKHlLgqbftecg/w/82yft303pHdk4jFASucztN8uPcY0TT5z7Cnvy+wb84l/yyQAXd/sm3YqUleGyJaMDmh4aE2dBYa5tdbsPZpaJH4qp0ak5lC11YxyLD7TKyLtbJ9+O8WJ/ZjPQSt0cj8/GS/Wm7zXRXHZO8yjSbPzOS62zJnbSy8zDSJzwxntiDxoz5YyWwcStMPPx48fj4Y3GAwGg0Hi6AKwNzc3u8S1SCQuvGo/WUpCJoB2+aE9Ci4nU69KraTvxkmojiR1v6q2pTb8f56HZptSoiNTaYPnm9w523NBU0uSXSkgR4M6KpDxd5oyP53kC1bUYe5D99kPP/xwq03vrSWSqclm6W9qaUie9qG5JJMLjuZnplNyMncmKzvxGunVWkyXFG1qPCRvaxhJwUV/7f/lHtNTVR2kZVtbXO4G5L5jThzVuFcCyvuLPrMWnZ95VbC5w+XlZX399de31zpKvOqwdi567HbTx+WIV66ln56D3PsrukPva2ucVdvSOqydo8artvR2/G3Kt84fx7Ppv6OCV1ppjoO9Y0KHztJlbZfnMI+Oiq46zB//8zo6Ct9jZHyTeD4YDAaDQeBoDe/nn3/e+CRSIrHPyZJW5/cz4TLtW1Lo7LmWKhzN5PITVQcpxT4a+uH8tWwP2B9jKaojj6Y9R2O5jeyL588a7d7crIruOoKxaiup8rf7lj63VRmiDldXV/X999/f5s11hUQt+aIh2A+XkjZjcn6SpdiuqKv763wh+0/yOewhNDwXyk2J07mS9uEgtdNm5jrhZ2I/oanyHNYj8+Ks/fsna+o5qjqsB/upK42TY8i+mMaLn+5ztsfz9kpL3dzc1Js3b27nGOk/+21aK0dRdpGWLv9kjYcz7jOR99iSZY0kNROupf/MC3uIvicROL40/merFG06x7JqS/+FpuXyQLmWJroH7DOfr1xT5w6v6OO6nFFrf46gz/eOx/zNN9+MD28wGAwGg8TRGt7l5eVSI6vaSvsuWNr541wyyJqJtZmU7Cz127be+QgsHbswpqNQq7ZlLBw5aE0zS8o4z241JymdWUO2Zrfn87BN3lF6e9qg7fyOXEttx+wyb7311rJfLi2VdnyAZkd/KZBpjSGldPvbXMzVBMrpe3BfvT7WlKoO6w7JMs/Dt9b5NmwJcb6fydhzH9h37FwnkH7GruhxPt/aVUrpPgPWCu1nz3YcDcx8mhw7r2Ucn3322dI/fHNzUy9fvtz42nIPeU93Gp3hkmX5vKrDnHYRiawD6+5oXZD7gXtcMNd7J+fB5b+41poP96SflHEx/76G/dbNkbU/n3W/w6q20eGO29h7Z3l/eY5yjeh3ZxG5D6PhDQaDweAkMF94g8FgMDgJHGXSrPq3yukk61TBbdozke1eGD2wScQJm3m9TXGm1XI4d/bNZkqc4nZW5/8waa0ot2x+y8/oq00JtNGFzNv85HF35hYHGPB8h/d3ZmWbvWxm6WoRJlHvKvDg0aNH9etf/3qTxJvtYUJyJW6b0dJswz1ca9Jgz1tHp2YTMH/zvEwxofKyg5a8hzrTqU077htrkA562uF5mHkJ6DFNXdX2LPCZg4wcIJCwKY02me9uHr32nK+u0rZNkJeXl7uBBxcXF5vAseyD59Smty6gyq4LrjUhdBeA4vQnP9+pGjlmp044iCzPpYklbBZlbzolxO3k83EdOHil6rBGTti3udnv97zH72Tf0/UJ+D3EPHfk+MzXt99+u5sSlRgNbzAYDAYngaM1vEePHm2c7CkhWOPoQl/zuvzdAS8r7a2TSP0/SxMpcTvZcaVFdVWkLRU5sMHaaH7mEh5IgUhG6fg2gbHnwkEMXRK5NbCV5pzPAbRrqa1LxndfO1xeXtY333xzO2a0mEwiX5Eps3ZdMjHtWVtbVd/Oe12KxAFIthLk+LmWNaOUzF7qDOfGgVXWAFOj7KqFVx0o1P785z9XVdVf/vKX289cfgaN5SHJ3iaKsMWmC+gCfMa5cbml1NBYt0wBuo943FpGnhcTzzsNxZW181rvbZ+XvXmiXWtgXYAVz3OwkP/OFCoHLVmLZp93gUr0kfWwtk7KS55ppx+YHMPWoRyfgxhXqWkdPBe8F5xuVnXQiJMMfY8QIzEa3mAwGAxOAkeTRz99+vSWXonQ7M5v4/D2vW93ay2rZHWHi+ezLVmvtLaqrY/OEu8eOW3n1+nayP440dzSINJ7F/6+0iCtSXbScUfam//vtB1Likh4pk6r2obb763x69ev6/nz57dh6CSgZ+kdU2KBLv0BONnVpNuW4tPvY+mc9tEcuDZLoDB+tBenQ+ylfJg02v6fbs/y7FUqA9rAn/70p9t7IJY24bn9550W3PmRsk9+ftU23cIpJ+z/bm6SfGHlw7u5uanr6+vNGcj3gPevE+edcpK/ex94/3UJ0147h/zbCpbPcQyBCe/TsgR8Lm2t6XxttOe9yp5Bw3v27NntPZxL2nVpIWt4qbW7DyurV+fXZJ6cdtPtHd6NlMr66quvRsMbDAaDwSDxizQ87O7Q3WRpEkfHWcJekaxWbX10D7EB2/+HxIEG1pGP+tl+bpccvSoZ4whI0xJVHSQ4U0pxDXOU91izWlGJ7WnX7jvoNDxHZa18hl25E/r/9ttvt5FYtPfy5csNYTPFXrk/n23w7PQb2N/mv/np6Laqra+BvqFxswZdYV4XFHWidrcuHpdLo1gT7J6D5GtfVT4Pid2+O0c5miIwr1kRupssPX83oYNpo3Lu0ZT5+fr16911f/LkycbqkOOx9ug17d4h1nStidi32llRTNeH1ubyVAn78Jk3/LKdz3h1Pv0z94HfhfZJ8x6iuHCOGSue/2+SjuzrikJvj2DbPmpHv7J30l/L/tojol9hNLzBYDAYnASO0vCur6/r559/vpVakAKS5shRSo68s6a395k1uk5K438uOIvtmZ+prZk01pKlKYzyOY60dEQp96Rkt6IBQvKiHExqyu4rcHSmn5F9sF3cklCX72PNiHntIvs81j0fHmDPMOaOEmuVr9j5lyxNWtJfEdrmtS5fQ59MzZR9dEFU+1RyTyFJr/w+D9Hw8Luwn5HKycvrihVn7mn20X7HfJ5zNe3fssac99BH79luTthXL1682LRnnJ2d3YnSpH18OFUHrdYald8znb/SWlQXnZvjSDg/lzPeFUzmPencSu7pqM7so/M7y77prvQO62KNshuPI2vpk60DXV6ufdB+H/B550d3Hi17tIt2RRNGw3v69OkucX1iNLzBYDAYnASOzsM7Pz/fSE1E9lRt2QTs2+i0NPvQVjZ10OWCAWzB/Oy0G0fLmTUDSSglLUeBma3CUamp2bpkkOcCiSWlQeZv5W/sIkkNRwN6LN3/uhI82UZKUvZnUSC4w+XlZX377be37eC768a8irzt9oN9dy4kaZ9eagD2F7AOjAc2k5SEkxQ8P3PUbqcVsr9d6NPFaSnuWXWQzk2GTYQdRXL//ve/395j7dNngXG5zRy7NXr7u7qSMmhtjujrcsSIA8jI25WUfnNzU69evbptF+tAagpEs7ro7Crit+r+/N49Kwp7h/9Zu7U/OPtrvyyaShdJ6v9ZK19ZmPIzv4OZ+25/A/Yk/Xc5ou6cryLIV1Gb+fuqXdYgI6XJeeWcPH369EHWparR8AaDwWBwIpgvvMFgMBicBI4yaZ6dndWjR49u1Ucc56jIVQfVE5MVqr7NFV3V6nxO1Ta50XReVQcTlUmbTZjbhV6bjgr1vavz14Vw59+rOoD5u5NSTd6bc+SkYe6xKaMjgl45jffUfodgO8y5a3MVMr8HUlnofxJBYwbk5x/+8Ic77Tt4pepgHnSQlKunc1069ek/pjg+w1xIG2myx/y3CjRgPBkwYvO+wbzxM/toc3iXmpF97frGnPz+97+vqm24eFe12mfPpsFMPO/SN/Le7h5+/+STT6rq3++JlUmTYDna++tf/1pVVZ9++untNSYtYEwmau4Ip+0mcABXZ+Zf0cO5tl0+L03HVYd3JfPXpUPZBeS+2v2T62QzNOB5nMU805wT9jFn0fPrQJ8En5mEuzPZrsijuYa+5tzZrXQf8XhiNLzBYDAYnAR+UVoCUgxSWiYFrkJ80xFf1ZeZAdZiHPaeGt4qOd2J7yk9mm7IWlon1ZrWqtMYclx5LxqwtRq0X+YvtUcnsHOPNT5TaiVWleLtxM7+OvTbmkXOo4lrV6WBeOazZ89uw+itsWY7aCZIoLTLHHQh+NbWLRF3mrCT0U1SgATekfmypg5A4mxksAKBJUjLXMsc8P9Ow3N5rVXwQke3x72poVYdAhK6FCGfX6fweM2r7i/NQ5s5j8w5fXnz5s1u0Mrr1683YfxZ6RqKOmtA1vS7RGkHW1gj6ojTHQzleaJvnVbI+joQhD53dGT8j7OB5rMqg5Xt+R3JXmE9OssD+5i5MBlDZ23zGVuVFuoCFk3Kwb2Mt6NM49ouCG+F0fAGg8FgcBI4Oi3h6upqQySbko+pr5xYCPIe+wcs6TnkP+91esCq5E9KFSaPtsSF5JD2aUs2LktjaTGlRCc026btOcvP6JMLz9JmZ7s3hc+qEGiObyXVdmu8uub6+nppS3/8+HF9+OGHt2P3mmcfrJWjFXY0cdZA7WPd82OuCLNdGqXbbzmu7BuScfom/Zn9zGghaPoZgo0/0RYT+krbuZb0kf67aKsT+3PfeR5tKXEyc9X8VUGBAAAgAElEQVThvPgnfeo0N5fbOj8/X2p4V1dX9d1339VHH310p//pE/RZsraJVpjPcCi/S9HslThjTu2HQyPpiBDQ5G1FAeyZLJnldx7zbwtD9zz2FWvF+JyykWfRCe7MDfO3R5K+oj1bUbblc/y+26PFM6H6Q/13VaPhDQaDweBE8IsKwK4Sxfm8akssbELoO50QfZG1Ckt+ncRtrc3+oEwEdukQJ8oiraUEafJUayH2faREYq0MaYnnd2VaTGXGT9utu0R+fwb2ikna97Uq8ptz76jJPR8e99p/2dEouYCp5zxhCiz65L/3CvO6gC1j7wgB7DszGba1taqt3491se+WyObcd05gdh/t480+cA1zwLzaotHNq892R7cHVsnDjiTu/Fmpudwnqfssd6Vp3Af7cjsKM+5xf20JyXVh/6Jt0De/w1Jbs6WHv1kP9kOuJX2A8MDRwN7f+Q7hObaM8Lcp9Kq2mqSvWZVUy99dBsmfp2Zrf5/3LH8nsYNjL3744Yd73z23fXjQVYPBYDAY/Ifj6Dy81BpW+V5VWx+DSU8fSvaZ9+xFlTknzCUxUnq0FONyJl25CSQq00Ih4a3s8lVbf4glPWteVdv8QkcvrXwtVVsJiL4iSe5J3PTJkbIdRZu1gL18mJubm7q8vLyNRCRqt/M90ge0Gvchx7rKB/Le7ObJ0ir5eOwHnke0aNVB0naEG+uDvzH3N/Puwp4rmrgciyVpR7fukRSvrAG2GuQ+sB/LEYx7PjzmzTRbzqnKPqY/cyWlQx6Nxs35yTnmvNsSY6LuXP9VUVP6bZ9uFj9GW7cVwHmhXYkxLBf0xVG8ecaI9mTMjJNroFnrigfbUsac28LQ0ZFZw/M+7865z6c1vS4vcFX+yH/nHrWffq+0lDEa3mAwGAxOAkdpeEjpoCuM6DIVfIbks2drdTSmpcruXjNdIIFwLc9NTYJ7uBZpDYnHBNQ5LvrGPUizSHpIgekXQaKjL26LOc1cRaQ9k9TuRTyB+3ygnTS4ykFalWiqOkhaOed7RTzffvvtDalzSv08izm0VmYfVIeVb7UrkGlJ3n1nP8DsUVX12WefVdWhzNH7779fVQfGENDNE8xErC3PQ4rnntSe7ANfSeB5Ll3Cij46h87+re45XGuJO30q9ltbM7KWVbXNH90r4gl5NPsMq0r6x+yzpy8rfzbt5s9VriH/54xXHc4/Y6QvrC3EzBk74Ahv3gtE4jrCPPvAWqKlcUac65hzbGuTS7dhrci15DmrPEy/X/c0Smt4foclbKFZEU9Xbc//Q/13VaPhDQaDweBEcHSU5r0NqqgmEpD9R51PDaz4/Fyyvupu5FTVlk3EBTTzfkd2uaBpamm2nVuqsASZ/KJm1LB247ypbM996Zhjsu9d31baYGe7B6t53MuhuS/S7uLiYuNjSb+IeSOZQ/sxu8gwS32sKfPnnLSqrQRvrQPNKyV7fHRoGZZMkdo7Nhju+eMf/1hV25w6fIW5V1cRj9YWcs2ZJz5DKzA7R1cA1tHVgP1gLSjnwP4X5xtmmzybuX316tVSUr++vq6XL19u/IcZCWs2D/rZ5bj6HmsTjhZmj+aZZkxm1uGnI8CrDu8Q/ofvzoVZcyzWmpy/6EKpeTYcfcpz6DvzmCWvrCnbCrAqmu2x5nj8/+7eFRtLF1HO3GaU8RSAHQwGg8EgMF94g8FgMDgJHB20kiGgewETVmNNLZZYJa7a5NAlV2LWcGCLy/Rk+RQH0HgcptHp+mhHLP3A5JBmV6dKrOjXugRQO/Xt3O+c/Q7+sVmgoxazeXJV/TnnxM9+6623dksQsX+y/Y5OzdXXnfye/baTHTOKk4W7lAZX/OYn48KkSUJ41ZoGD7MXP7tALn5SnZxrTTlFQEzVNgjDpiVMaBmqzTwROOHUhb2gJgecrMpedVWrbfZ3AEw+h3aZ29/85jdtUjj9vLq62iTKd+TuK7Nol5ZgE7nTYvicdUpzuAnnuTdNtNmvhAkVVqXHuvF4XzvVpQteAvSV/YV53mWL8jkdWXi2lbAJc3V+u9Jp/k6xWbwj5bA76yEYDW8wGAwGJ4FflJaAVEFJjpQyLBH6m9vf6Pk/S5Emie1CmK35WItBukiHuRMuTRJsKTrhREg7SzuybDvv/X9TXGW7K3omS14pcVmjcGLznvTphG1L6TkGt3uf8/j6+nozFzlm1tkBE5YQuwAEU6xZa+76z7ojlXuOkexTk2DPr4oGIy13ARouJIpGhMTtwJB8tgO4rPll0I6DVBy0wHx2AQiWwk3o3aVwdCWK8u8u4In7MyhrZR24ubm5ExDVreV96TRdWooDsqzd7mlTK2sU2noXYOVgGCwIpKskpRhwQWOfXadMZGCNCwGbcKMjvHAah5Pu/a7KNfe7z9aXzkpkDdY0f51lhnuSXm+CVgaDwWAwCBydlkASaNW2kGrV/QTQXbK6JV+Hi3f2d7CirXG4empcSHZIQKsQ2I6GaEWuag2js3HTl1VSZdrwace+SWsh/J0h2tZyLTV1ZMEeswuqdonp1tL2JC38MPgv3H7CUqYL86aEuErIdtJ6l8DqdBdLz51/zH4Wa0kuDJp9IgzctGScI8aQycpI/fYNWmPJefdZc9oFsIbTtWu/6Z5PxaksJozvkvGz3b29c3l5uSF9z7Vc+bbtc8395jNmnx1aU0d07n1rn56pAasOc4pmx0/SVUz9VbUlJ7cVjDmgj6mFMg7ad8rJXskv4DniOS5Mm31dFZ7e8+/f53vN88S6sF4Zn3EfRsMbDAaDwUngF5UHsk02v+VdVNW+rs5P0SUXVh2kiKT4quoLzq5odDopxqVdgLWpzldoqXlVnDbHshqfo+ZSilmVO3LxWPcv26GPq7notAJLY3u0Pe7/noZ3fX1dP/zwwyZRN6+3tmxpmbGnFLsixHYbnZbhNWXeLK132hoSt314HaE6n7ngqguxWjLOPhqMm3u7vWrf3YqsINfYZAzW9Dpp3VqU9y73ppWFPqWvZs8Pc3V1dfvsLjrPBBer6MUuStdtrCiwOj852jj7gDGaRrDqcB6zrE3VwdKEJpbn1Fqfffg+gx0tGbDv00Wss2+2QjEe+uoCrdl++vSrtvu6I7ywxur3aq4nkb1dya/7MBreYDAYDE4CR5cHOj8/30SOddKepee9skC29dtPsOcXW0U++vPOz7jyU3U+LkuVfs5eFJv9Y9borBXn747kXOU4dX6tVX4jSAnQhVQt3Tris2pbCuX8/HwppZ+dndWTJ09utbUuIg2fwyofCyk684as+XqOXey0659Lu3SRrwCSYHymzsPrcqn8TOek7kW+uQ/Mm6mmko6s07zzWhcPTTj/yvmZ3fh8Pr0nWXPyArt79iJ8oRZjjB1VWefLzD6s8snyHvs0nSfX7X2X3rJm1JUwcoknNLsu2hXNhnttLeIeCKgTq4h1Wy7yveM5YA85V5T93hWRXkWWd9HVflet8vHwd+b/Uuud8kCDwWAwGASO0vCur6/vSIVI2h2Liv0IoCuBYQ3INmBLUR1DiCV8Ryhmv82OsCJkTsnHfgkXQtyTYlY+G5f+SYnVRK/OJ/NY9sqrOO+m84WsfDbAkX/ZDv3eKw9EpJ39B7mW9g9ZU7DfJ5+9sgKw7vYzZXvOS0MjcdRZ1WHPrzRIxtP5GdEOHXVqv3AXHewz5nGnxmzLhSOnraXlfPKZGUN8bjuLgsvtWHPKvUsprCwOe18BWHLMWJ/sA/Ntywht8v/c847ktr/X/vKOxcQWLbO0dP7YVURpkpQbaFS2gu2xjmAR8Tl1YeguP9LRmfy9Kspctd0jtrbsWU5W2r3ft9k+VpYhjx4MBoPBQJgvvMFgMBicBI5OS7i6utpQu2TS88oJuVLFq7ZmuVWAS0eFY5XbxLJdsIXNj5hIHLiR96zCsm067ZKjnf5AG/y/qxuFicqmE5vmukrHnnOPG3SmDJtoPJ9pWnD7e6Hl19fX9eOPP26SupNk29XpHWjQJZjabOLwbJt6OlJn2qAvpE50+8CpOLTHeGjr+fPnt/c4LP++yuPdWtpU7nHnWtL/VQ29h5jfmetcn/w86xjaJYHZl+fTn1wL2s20kpVJ89GjR/Xuu+/WF198cef/OU+0x7npktOr7pqGvRcdnOLk8Tyfq6Ah7uWd2Jn4HSxiqsNcF8ycXisHTTk9JvtvE6LNlV26hc2vPI9rWdOuXe9rBwF2bpHO5ZDjcXBitn9fSsudex501WAwGAwG/+E4mjz6+vr69hsaKS/DjVdJz6sglqqt8/6+UOKUBhy0YmJePyP7YInbkmo6l61J2hFrKSbvxZFtCXavKrP/5wCOFWVbjtXXeC268HeHpVs6zHm1U3+POujNmzf15Zdf3kqikDDnmJ1EDhz0kPc4YAI4JLtzsqNx8NMaVidVmsKJPYRm4dD/qq1myvhMS7ZHjk0frcHaOlF1OJcOdFlZQxLMExK9CbT36KicLOyAl5x779skhzbOz8/rV7/61e14bG2pOmiVBAYBa1NdEImT9/nbmldasjwOVzPnngynf//996vqkExO3zgLXWAaSdZOZUDDMrl0d56AA8YoU5Vn2ulC9JWx25KRwYB+t/vsdRq8A+l89jzuHFdWit979yRGwxsMBoPBSeDoxPOLi4tb6dbfwlV9YmrCmkRVH+pctU1cRJpIqcm+ps6nUXU3TNwFK+3roI8khO6Nw2GzLiKan/GTJE76bG206iCpWkp6COWXNWPPibXivMeSvEsodaVEMhl21a/Xr1/X8+fP65NPPqmqXlpeJY+v1jj765ByJ852fk2kYif3EjIPPvzww9vfkcbpPz9ZWyTinCekcTQU/DKmi+rOBtIsfbW22PnUCN83NZuJCDrqPmsq1ro7rXdlfXC6Tb4nfM/V1dVSwzs7O6tHjx5tUkByD638//aTd/vTVhT2oam39sijnQbRUZk5zYV1YU/x7kj/GFoh12JhcGqTYxZyTmz1oi2ek/PouaA9l/xxYnjVYQ9am16VJ8t2bN2gr8xJR+Ce2uj48AaDwWAwCByt4T1+/HhT7DK1J/sFurLuVXeldNPlrJKg0bgoTV+1LemChG3y6o7qy5FI9hWmJIKEYwnX0ZPMRUqD9tm4rEUnfX799ddVtZWA7A9xiZm8x5qdpbe98kcmdbWfK3/PNVhpeJBHI7mh5XQRW07Itz8xy+eg7XstLZV3kYnMWbaXz6UfFOjM3y1l0j7+7KQ/45mm9EITswTcaUI+E7ThZPkEZ8HWDmt2+bz79oEjWvNaz7mTlPM59i+98847Sz/M+fl5vfvuu7dnkIK52cYqUdp0WrnfrFWY4GDl26vaJnH7rKGJpfbEtY5Ctt8vNRd+//jjj6uq6m9/+9uda122Kd9PvENWGix7NbVV9pNLCDkaFKQ2yruPMa/e4x2xvr8n9qIzM+Gc/o+GNxgMBoNB4OgozTdv3txKDHyDJyWOqX2Av7lTikHys+TjyM6uzI6lSrQ/+xy64pPOS6LdrpyK6YaQ4Pi/NbvUeumTNUgkrD1CbUdAoo3YDp9zYr+PJXDn3OX/gCXGLk+m8+us/DCPHj2q3/72t0tC24TpwCy9p8ZFFBv3sC6ONuto8FgPPmM96BMSZPrwTJ7r/dX5xVxIljny2nV+H+eEmfCZe3MN0Ozoi6MbvQZ57yqCdI+6DnCO2WeMGy0897+jC995550laXjVv+eXcdFeaoy07bJA1qI68mhrcraidFYL9oZz+Li2K6PkHEE0VfrU5abyHPzK7FXvP/ZSjs++NM9551Ojj86JdQRup407788+vK4sm/c+Vg/W0TSTVQcNL60se3snMRreYDAYDE4CR5NHv3z5cmMXT6kKbQ9NpIvGqrorIVjStN3Yml9KCGa+yGi1qq1EXnWQIpCALU3wd8dEwk/GucoZ66Rma3JIcraX57X23dE3F9LNvrrs0MqGnv3xOGifPnYFH/kffXr69OluwdJPP/10kw/X5Q05h8nWgey3CcUtldN/1jzvdc4PUrRZJVILRcL2XkU77Hw3ZtRYFVnt/DAuC+MiuXye5YFo13lkPk9djpPXdOVvStj3bm2DOeqiAVN7Xknp+H/5HE0P7b7qsFfQMuzbAqk9WRM26faKzDyxIoTv1pL5cWkhQBsZHc57y756vxc6phVA/1lvM+Lku8MWBGulXqPUfh2/4eLVoGPZom8ug8a1mV/J/urySO/DaHiDwWAwOAkc7cN79erVJiKpYyThpyPu7EdK+Nvd0vuKb62qZ6eoOkgB6dMxW4b9cfYZVm0lEDNf+PlduQ6XZ0HidT5b1ZZJw3brvQKwq8inzncHrIUyN9yLNJgSnnNlXr16tdTwLi4u6oMPPthoaSnNIrkhzTmfrFsXcpiISGOM3Gv/aY6dOXXxTu7h78zLW0WB8nzGl1oh7a9KWAF/XlWbnNfOp1F114Lx+eefV9Vh7zx79qyqtr68jruR9ViVVer2kLUCW346/lzWmnN5fX29G2l3cXGxOTc5ZlsizNXpnNvsJ3Pr95mjdTse1lUZLUdvVh3eM47OxVrUxQ5YG+cnc+t+5J6yNYBz6kK0uVe5h/VxDqmtcRmNDKzR2aKUn9sa5YhZvxOqDuufe3QvLzkxGt5gMBgMTgLzhTcYDAaDk8DRJs3Ly8sNNVGq4CaWNuVO2wlVJXeiqsPfM0jGzmHT9nSBLpjBeJ6pnUxEXbU1B6wSXO0gzmtNzOsKwTku+oZK7yTeVQmlBO06kIe1cAh3tsc4nZTfkVQ/FFDTVR3GlUEEtPfee+9V1ZYaqwsmgnoJUxxtMGYnaGefWVMnbWN66gJrvO6sg+m7ujItDj/HnGM6ui4wyOHbtGkzZdU2OAWTmQNgutB5Ew3YBeGgluybyy0B5i/NsA5q20seZt+46namQzkgw+ZJ5jTTUlaV2oGJ4XOfOMCKuaaEkYmzu/bt5jGJRn7mSuoOZjHJd/Z/FbTSlfzyO93vKJeGyzV1uzbl730H+J3PPax1uqToo/foQzAa3mAwGAxOAkenJfz0008bMt9MsrVzHWnZ0ltqT6uyEkgKlky7lAaHPqNBmBQ57/dzGIelmq4v1m5MkJufo32Y/NhaWkqQSP0OC/a4O+o00z85/NzlW/IehxJ7zvcCee4LE765udlQFOW4VpqwtaqUFNHW0RicuGpKND7P+WCtvFe759Ge6acIr+8CQUzPZYJmU86RkJz/s4Zty0JKwPyPnyuS9C7k20FmBvsytQLTbJlUwAVws/+rvxNQGgK0mQy2WAWROcCuSzx3KosDwvyOqdqSrDPHnPWuJJjPyar9Tnu2tYt1WBHud+Oz5aqbC+bW7WbaS4LUjqrDWbbmvKJU8+9Vh/EmIUHVXU25o66b8kCDwWAwGASO0vCurq7qX//61yaxNaUBS9RIz0jgneRIe3yrI2XYf+SE0ASSgDWHPX8VWKUJJJzIaslklQpQtQ17t2bnxNequ8SoCUufe2S+9rc46b8Lf/ece5ypuXZ+vRUo8YJE2FGKoQEwZrR0koqtMeTvH3300Z1rV8nq2VfmjP2W2l+23e2d3/3ud1W11RxcliifubJymOqru8YaDG3R565sE+3ZZ+w9lNqTpXITeHfpCqbmAiYDTw2Pe/L9sJLSz87O6smTJ5sw+7QOrPaiSTJSU3AKiTV6p/OkRcSWD/vjGGve45QtYKtAak1OQ1n51vdiJexb9Rq7UHC271QC0xTm3vG70e8bk1nkNat0K5doyr6Ah6YkVI2GNxgMBoMTwdE+vO+//35DvZRSjJOokaKQWvaiCy01dCVd6Iefhx/CEt2eFGuCXNDZuJGwHe3nqEbTRSVWRWrt08t2DWuJpgnK3+2jdNJ053MzeTDwemYfuoTSDhcXF7dSOfdkeRH7Rdy/jrjW0blIhCtCgD0/0ioiDdqw/MxEvC7EmfA6WDtwtCTaY/7OnDBe+31Saja5u8fjvdn542whcQRhV5DTJV185tPXb8vFTz/9tCupZ3S4fWBVh/k34QP7oaN8WyXze++7CHLVtvAwcFv5uckK7IfvYhSs8dgK0tHtuS+m83P0cVdair7Y7ws6a4tLqHXUZVV3ySaYJ0d0rggPqnpf+Iq03hgNbzAYDAYngaM0vMvLy/ruu+82pSLSLo5UZ3u1oyX3cidMlOyItJTiTNpqadl2a8bRtefIqpSa7buwndoSSWoWqyKRgL87ezgwdZCl0JTwnJ9iybnTYFcRYytKo6qDZJiEyispHR+ex5rajIveWiP2vuv+hzbmkjT2A3ftO3qRtU2tkHs6X13VQYPoKKxsdXCbHR2V+2LfOOuSkZbWHHwm2Nedr9q+Iedwdbm39t2tShjl/qb/nNtXr14tpfSbm5s7xYU70mu0R2vT9JMo2q7k16oQq4nZ07phsnJblkDnq3YurfuR7xJbNUyV6Ofl36ui23v0Z36eNcg9Img/x+9X5wMnnNv9kMjVzNsearHBYDAYDAJHM61keSDnR1UdJGyTzKIFdP4qS8C261ryS1+Acz9MpmpNrGotpZhlIiWS+wisu+f4ee6jJfuUBq0FWuJxUcU9ydWRhJ3fx741l6PppGr7Un7++ecH29JdZLXqkH/mqNWVtpv94VokeQifvV659mbu8Jzy3PT72CfsyMcuYtH+RGuJXuuU0lc5qvaX5Vo6n8z3OHcv58Qag9ede7ocVSRuxunozC7K0ZHKHWBaYd5McF11WEOfD947WBI6DcjaoH2rnf/aZ9p7pist5UhOR4Fag034HWFrQXc+wcrqtcfS5P280ob3NH3PG3s0/fZeAxc8Zj4zRsGWmdevX48PbzAYDAaDxHzhDQaDweAk8IvIownxtdpZdTAlEbwCwStmIRLQO5oe2jNxssOeu4rnqwTtLk3AJj47+Z14mu10teuqtmaqNEusTAo2T3SmLAeT2DnbmVo7KqR8Lvd05NiMwxWvu+TrFcFwB8xSNoMnJZZTLWxGow9p3rAJBPPZxx9/XFVbSqQudcImR/Yfz02zq01xPJegkS6x3uk7Nuvb9JMmTpusOtKAvK5q62pwoBV99rnKPjlYhbngHOcaOGWBOaBPnPlcC5/XvaAVqMW69Xe/TQDg1KN8d/B+wXXBPNjl0NGE2T3hxPaObMCJ2av6ex11oqkMV0TU+S520JL76nQFj7GqTz/I6/Id6feOr+lMqE6od19Zo3y/Ofl9Es8Hg8FgMBCOTjzPqtZd0IrJR5Hq+AaH7Ded7CvyYaRJHNI4q1MiQVrdC+11Hy0RWMKylJvPtBTmQAD6k8/nf3a2rqh48nkr+ikTQOd8ghUFTyd9WpNzWZq9aumZ7L1X4uXx48cbjTvnGGkOq4CDKxhjt3fYd04Eh3LsxYsXd8aX7ftvS+sdce0qxQTkHnWwioMGLN3mPvBedLJ0p107Jchllnhul7RsqZ920dq682VNgud4LUg7yTnpaK0M0hI4/2idGfxgzRs4QTstCtzP3H711Vd3riUAz++HqsO7yefewTddMJmtNnvkyt4TXn9TcnXpUF0ZqPy7S3R36pYDbJxaUXXYx1536O+60mku48Z+8Lsy180J7Y8fP94NwLkz5gddNRgMBoPBfziO0vCq/v2NvpIgqw6StsuaIN09e/bszv+zHWseJmLt7MaWmk0B1tFRrXxb1jC7ooMOvbW93wVB815Lf5a8Olu0x2ztoEsit38EicjSYOejdPK3/ZsZCs6Y07e6R4n2+vXrDf1Q+nXwg7GHXCqkS5SlD+4/a0c4Ov3O5zlB1s9z6kFea8ol+zhzPdyONStbJ/Je+6SsBXQh5mguLnfEnOxR6/E/F8fl5z/+8Y87n+fY0Yhs+XGh5fw9tbQVLi8v66uvvrrVwEBnoXBJqZU1p2q7LiYr972ZnuI0gZV/rLMS+Sx15yjHnve6T7Rv4o0cq8+kE96zzc66lW0BF2HNvgK/o2w1ys+Y+1Ux5JwT9kF+P4yGNxgMBoNB4GgN7/r6euMDSDu8izM6Mozk4i4yyBIJNuGHlLEAltZNAZS/31eup4vKWhV+XZHIZrvWrLooKd9vO7sl/r2IUkv/TrBPjdbJvEn5lG12CdWOlOyAZQB/bBchyPqilaFN8Ez6lP32mq18uCSk4x+s2voc7EvtpEaP0T6iLmqWfrsgrxOcO7/mqtSK1zTnxNd6j9ovnGtgyd5z0xE3W5MDJi/oPkvqulW03Zs3b+rFixe375ZuzPaL0S5R41iWOtB/a/YunNu9f7xHHIGdWJVR8l7dO8tOXt8jbLcG7zNiIuqub/YZeh/sFV5lvZxU3vm3PQ7eR46+TrCvurleYTS8wWAwGJwEjtbwqrbfxikVEJGzInPFx5Lfynx7d76lqm20XFfE0VQ/eY2xsrOvcpxyHKtCiw8tMZ/XOuckpUVHnVmjYz476cb0PysJKNfR5Y2sxXd5gN4Hl5eX91L8WKtOMLf4grDVI6V3hUTZb53PJPvLOMjPq6r64osv7oyjy2XyOFdaE3OM1Jlak6PxnO/lfd9F6VmDWa2P+5vtO5LXkn/+vvIvMYak9/PYnZPKGqW/x/vpxx9/XGp4V1dX9f3332/mMTU8+sMY2SPMBb6h7Lev8f87HxdYxQGs1in7uyoI3JGjO67A2qCtQ/m58zBXJX/yee6b3zt7+85zYOtQF9lsujhbV+xLzjFnJsCQRw8Gg8FgEDhKw0PS2gPf3khJ9qkgBWY7SPQuOmlNhUielEisvdj31UU3OYfJfgqXBcnPTE7rHMKuFErn/3Kfsj85LrNYrNhIOh+lJSFLh+lzsY3efiZfl/dntO59ktaeNkN7Jo1mr8DYkeNYzYt9HV2eEn6958+fV9XWStAx1rgo8aqIb66HNQVL7bYsdNqao9bMymLfctVW0rYPxZpYN+YVKTt5eVWH9SEq9L7Cyt049qwDRPjaP5bvAWsc9nHRtw8++GDT/qrEj8vb7L1DHHG7l+NIe4OHzpkAAAPxSURBVOxj+taN36Wc3K4jr/csLI74dMHlvMb+Plu2vB+rtu9vMzF10eq0gybHtY78xcqTY88yQR1pdofR8AaDwWBwEpgvvMFgMBicBI4mj76+vt6YozLsGNWaJE2bCTGNpDmNUHHT5Zg2qgt48D1WubvgFZvBVrW5OjoyBzQwDptFEx6H+24VPZ+9Cgu2OTHNZKtq6DZhdISsHq9DstMU7dpo9yV/np2dbYiSu5B4Jyq7tlneY1OPTcyrRNqqLf3Y559/fuf5DyHzXaXB5Nw6HH2V1O/9kPe4RporkOfzvP42NTnBvqOlY21NMsFY8lyZZII+ca4xRaf7wcQDe0FfkNaDrnaeTbx2qXQpGN4jXMO7y26K7mz7XWK3QZ4rmzL9HnXwVN7vOXZiveuC5mertIcuSND3HJNKZTcIffc8ZwL/l19+2Y4DE2ZHeOH0lCGPHgwGg8FAODpo5Z///OfGkdmFKFtqXJUqqTp8Y7u8iKV3B6JUHSQA7rHTvXOUWmpxeK6d11VbTa4L6c6/uwrrpsFyAm1KYtbG7AxfJZfntdZKHVK85+C2ZN+NyxryXvLw9fV1/fjjj7fWgK4K9nvvvVdV2z3E2nJvasoOqrAk7FDvTjsw2a33W47Jmpa1po4A2tIrcEBKR/J7H0m1tbmEA2ocRNAlAluDYw2cnJ3n21qOtVITAVdtNa49eij2TmoGVT0RuNMQ0FT3SLa5hr7k+yzHkRpqRwOXcEmo7C/PZY6dUrNn9VhZCRzw1fVlRVaRFIqrMmSrVLS0LFk7XBEq5NlgnVbpSqQm5dxjFVhRNu5hNLzBYDAYnASO9uF1IaD5rcy3OVI4Upml5k5TcLFOJC2kCNpMaYP27afqQpfdR0vPDhdP6WxVJmOVmJv3mj7H2llXkNWaHD9NruoxZd8cKm0NuStO6bE7lD7X2oUx94p4UuLFc9BRsDkM3P6Rbp7cP9v+0RJzjVcpBX5uJrrjl1pRIrmtvMah85baO/8YWPn7+H93z6rECs/jvHX+OI+HOaCP6cu1BuGisZ2GZH/V+fn50joALd1eGo+Jinmmy/bkPjc1oong/e7IubHFwNp654/be28m8h5rRzzPBAfWcPPaVXFsjyWfZy3Q76w937j3kN+ZmWLga2z94ryldcRnoNNqVxgNbzAYDAYngbP7qKDuXHx29j9V9d//d90Z/D/Af93c3Lzvf87eGTwAs3cGvxTt3jGO+sIbDAaDweA/FWPSHAwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUlgvvAGg8FgcBKYL7zBYDAYnATmC28wGAwGJ4H5whsMBoPBSeB/AWnjK/GRw+JxAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -764,7 +740,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZfdV3/n9vfdqkKpKUmm0LY/YDgLSQPfCgAkYA25MBzAEvIghNrhpmiENhDQrgJtJoQEzJIZ0wIEAaYIhGBMgTAEMxjbQYIghAWKwjQdhS5ZsqUpSSVVSTe/0H+fud/f7nL1/595XJXvJb3/Xeuu+e4bffM7d4/fXhmFQoVAoFAof7Nj4QDegUCgUCoX3B+oHr1AoFAr7AvWDVygUCoV9gfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvcFl+8Fprz2ytvaq19p7W2rnW2onW2m+31r6ktba5uObFrbWhtfbky1En6n92a+3W1toH7Q94a+1zW2v/5we6HXvBYn6Gxd+nB+ef3FrbXpz/Mnf81tbanvJmWmuva629DnUM+Luntfb61tpzL6Ffe1p37nl42grXDq2178SxK1prv9Vae7i19pmLY7curn2otXZ1UM6XuL7P1vtoRjDX0d9tl6muw4vyvukylfe0xVw+MTh3V2vtRy5HPZcDrbVPaa29YbHm3tNa+77W2qEV7ntya+2H3L1Da+0xj3R7L/kHorX2dZL+P0nXSvpGSc+R9KWS3irp30j6rEutYwU8W9K364NbY/1cSY/KHzyHByS9KDj+xZIeDI7/uKRn7rGuf7z4I166KPOZkv43Seck/Vpr7eP2UMez9QFYd621o5L+s6RPlPTZwzD8Oi45L+n5wa1fonEO9gOeib+7JP0Wjv2Dy1TX2UV5P3WZynuaxnU1+cGT9Pclfe9lqueS0Fr7GEm/KeldGt/z/1zSV0r6tyvcfoukz5d0j8bfj/cLti7l5tbasyS9TNIPDcPwtTj9y621l0k6cil1fKDQWjs0DMPZD3Q7Hkl8APr4i5Ke31o7MgzDaXf8RZJ+QdKL/cXDMNwu6fa9VDQMw18lp94xDMMb7Etr7bcl3Sfp8yT98V7qen+itXaVpN+Q9JGS/pdhGH4vuOwXNY7pT7j7nqDxB/rfC+P8wQg/x5LUWjsr6R4ez7DOszGM7B0rlXupGIbhz94f9ayI/1vS2yR94TAMFyW9ZmGR+dHW2vcNw/Cmzr2vHobhsZLUWvtqSZ/2yDf30iXTb5R0UtI3RCeHYXj7MAx/kd28UGNvxTEzPb3YHXvGwkR6YqH+vqO19vLFuVs1SkOSdN7MFe7eK1tr39tae+fC3PrO1to3ezOUM7l9Xmvtx1prd0t6b6/jrbWntNZesTAxnF206V/hmk9urb2mtfZAa+30wgT1d3HN61prf9Bae05r7c9aa2daa/+9tfYP3DU/qVE6vzkyx7TWbmit/Uhr7Y5FW97cWvty1GMmtGe11n6+tXafFi/43vheZvyipEHjj4u16xMkPVXSK3hxC0yaiz58Z2vtaxdz+UAbzZIfget2mTQ7eFijlnfA3Xu4tfYDi3l4cDHHv9pau8W3Tf11d6S19j2ttbcv5uSu1tovtNZuQv3Xt9Z+prV2amES+n9aa4ejhrbWjkv6HUkfIenTkx87adQ0ntVae5I79iJJfyspvGex9t+wWH/3LdbIE3HNC1prv9tau3sxLv+1tfYlQVmrztFzW2t/2Fq7f1HeW1pr35b06RFDa+2VrbW3LZ6NN7TWHpL0HYtzX7xo+92Lfvxpa+2LcP/EpLmY+wuttacvnvvTi7F4SWutddryGRoFGkn6ffe8f/zi/C6TZmvtKxfnn7FYX7Zev35x/rNba3++qP+PW2sfFdT5D1trf7KY+3sX43HzzJhdqdGa98rFj53hZyVdlPS83v3DMGz3zrt6rm6tvby19u7Fc/Te1tqr2x5N8nvW8Nrom/sUSf9pGIaH91rOCvUc1WiK+BONkukDkp4s6RMWl/y4pMdrNE99osbBtnu3Fvd+uEZp5C8lfbykb9Vogv16VPevNS62F0kKXzqLcp+yaM8ZSd8m6W80mh8+3V3zmZJ+WdKvS3rh4vA3alzEHzkMw7tdkU+V9K80mtvuWbTr51trtwzD8LZF22+Q9AwtF9LZRT1XSfoDSVdIulXSOyU9V9K/aaOU+q/R/J/RuCifL2lrhfG9nDijUZN7kZY/cF+s0aTxjjXKeaGkt0j6J5IOSvp+jRaFW4ZhuDBz78ZiXUjSjZL+mca5/gV3zSFJxyR9p6Q7Na6Vfyzpj1prHzYMw13qr7uDkn5b0kdJ+h6N0v/VGufluHYLU6/QOB+fp9Esdquke7X8MTVcL+l3Na6zTxuG4U87ffx9SbdJ+keSvntx7EWSflqjwLELrbWv1Oh++H81vuiPLdrx+sVaNTPoh0j6j4s+bUt6lqQfb61dMQwD/UrdOWqtfYikX1mU9x0ahY6nL+r4QOB6jXPxvZL+SpJZIJ4i6ZUaNRlpfOe9orV2cBiGn5wps2kU8n5CY/8/T+N83KZxziP8kaR/KukHJH2FJFMY/vtMXT8t6Sc1zuM/kvQvWmvXazSBfpdGwe5fSPql1trT7UeqjS6pl0n6MY1r7hqN8/Ha1tpHD8NwJqnv72j8/djVrmEYHmitvUvjO/dy4Ickfaqkb5H0do3z9CxJV+2ptGEY9vQn6SaND89LV7z+xYvrn+yODZJuxXVPXhx/8eL7xyy+f2Sn7FsX12zh+IsWx5+F49+s8QG7cfH92YvrfmnFvvyURp/T4zrXvE3Sa3DsKo0/aD/ojr1Oo8/l6e7YjRpfoP+XO/aTkm4P6vlWjYv56Tj+Y4u6tjD+P4DrZsf3Uv/c+D5H4+K9KOlxGn9YTkr63928fxnnFWUNGgWMA+7Y8xfHPwHj+rpgXfHvYUlfOtP+TUlXahQG/ukK6+5LF8eft8Lz8M9x/NckvTXos/196irPgcaX1l8vjn/s4vjTXb1PW5w7Kul+Sf8OZT1F4zPydUldG4t6fkzSn687R+77VY/UukObbpP008m5Vy7a8tyZMqzPr5D0x+744cX93+SOfc/i2Be6Y01jbMOvzNTzGYt7PzE4d5ekH3Hfv3Jx7Te4Ywc1Ck0PS3q8O/4Fi2s/bvH9Go0/7C9HHX9H0gVJX9lp46cuynp2cO6Nkn59jbn56kVZjwnOvU3Sd1+udfBoCPL4G40+lh9trb2wjb6IVfEZGs04f9ha27I/Sa/WaML6eFz/SyuW++mSfm0YhvdEJ1trT9eotf0M6j2jUYJ7Fm75m2EY/sa+DMPwPknvU+y0Jj5Do2nynajrtyRdp6mkxT7uaXx9XYu/1EwDvFbSHRql0M/WqJm+asV7Db89DMN59/0vF5+rjNd3atSUn6FR4/oxSf+2tfYCf1Fr7QsWJqD7ND78pzX+OHzoCnV8uqS7hmH4lRWuZcDJXyrux2slPaRRcr9mhXJ/StItrbVnaNSi3+DXmMMzNQpiXKvvlvRmubW6MM/9bGvtDo1C2nlJX6Z4TObm6L8t7n9la+35rbUbV+jTZN2tcs+KODMMw28F9d3SFhHoGtfBeY3a6yrrQHLzO4xv8DdptXW6LswMqmEYzmm09LxpGP3ghjcvPu0Z/ySNghzn/h2LP76nPhD4L5K+vLX2ja21/6ldYiT+pdx8QuMD+KS5Cy8FwzDcr9GM8B5JL5f0rjb6Vj5/hdtvXLTvPP7+ZHH+Olx/54rNuk79YAp7eH8iqPuzgnpPBmWcVcesirqeFdTz866tHrv6eAnjy/o+eYW22kP/0xq17y/RKO3ev8q9DhwvCy5YZbz+dhiGNy7+Xj0Mw9doFA5+0H60W2ufLennJP21pC+S9HEafyDvXrGO6zT+qK+CqC9RWPcfSvocjQLMby1M2SmG0RT+RxpNri9QHkFoa/V3NJ3T/0GL9bMwfZuZ9ps0viyfIenfJe3tztGifc/V+A56haS72ug/S9dRG1OadrWxXb40p7uC+q7ROC63aDR9f6LGPv+MVlsHF4dhOIVjqz7X6+JefD+XHJOr3+b+DzSd+6dr+u6I6jsenLtW8TttL/gKjWvsKyT9qaT3tta+vyV+7jnsWUIaRjv86yT9z23v0X5nNarfHpNBHobhv0n6/IX08TGSXiLpVa21jxqGoWfbPqFR0vmC5PxtrGqVRms0FfacuicWny/R+MAQ54Jje8UJjdrgP0nOvwXfJ33c4/g+Y6aeHn5qUcdHaMa5/X7CmzT6Om7U6F97gaS3DcPwYrugtXZA44O8Cu6R9Hdnr1oTwzD8dmvt+Rr9Qv+5tfbcYXe0K/FTkn5Yo2byyuQaW6sv1jgOhPnvnqlRePykYRj+wE5eipY1DMNrNfqKDkn6exrNsL/eWnvyMAz3BLe8R9N1F1pZ9tKc4NgnaXzOP3cYhjfawcVa+GCAzf0XabT0EPyx9niLxnX1EXJWo4Vg9ESNlpNLxkJg+AZJ37CInfgCjT7JM5r6uWdxqSaB79HoK/k+BS/cRQOPDXmk5t9q+mL4zKyyYQxIeENr7Vs1vig/TKPT1H5sr9DuPKPf1Jjr8eAwDG/W5cOrJX1ea+2xwzBEWuFbNP6YfsQwDN9zmeo8q7F/xG9K+hpJ71qYQveMzvhG174xOr5iPW9urf2wxkCciRnpA4CP1CiEmKZ5pcaH2eNFGn15Htm6e7WkF7TWPnsYhl+9nA0dhuHXFubXn5P0q621zxyG4aHk8p/TqEX9xTAMlPYNf6ix7U8bhuHfd6q+cvG5Y6ZsY9To56zVgQALYfl3Fy/LX9boP5z84C1MdXted3tA1OcbNQpHjyT8unok8XsarXQfMgxDFkQTYhiGM62112hc5y8dlpGaL9D4nFzWdb+o852SvreNkcF7Eigv6QdvGIbfayP7x8taax+uMbDiXRrV3E/TaN//Ii0jjYhXSvqW1to3a4xk+yRJX+gvaK19lqQvl/SfNGprRyR9rcaH9I8Wl1nO1de31n5DoynhjRpND/+rxvyQfynpzzVqlE/V+EL/3CGPQurh2zUu+j9srX23RsfqzZI+YxiGFw7DMLTW/g+NUWkHNfqo7tEY6PMJGn+cXrZmnX8l6drW2ldpfOgfHobhLzVGc/1DjdGfP6Dxx/aIRjPMJw3D0H0hrTi+lx3DMHz1I1X2DD6kLUK8Na7T52n8UXj5sIw2/k1Jn7sYz1/TqPV+jUZfp0e27n5aYyDOz7bWXqrRx3psUc8PXqrwNQzDL7bWLOryl1prnxNZWBY/ct3k6mEYTrXW/pmkH26t3aDRF3S/xvX8yRoDf/6Dxh/GU4vrvl3jOvkWjet6wuoyh0Vk6LM0JtC/W2P03Us0amxzEYnvL/y+Rt/tj7bWvkOjr/PbNFoBHv8I1vtmjVGwX9ZaO61RGPvrGW1+bQzDcLKNqRT/srX2OI3C5wMa5/5TJP3GMAz/sVPEt2k0h/6H1tqPakyY/36NwUE7c9jGFKmXS/p7wzBYKtSGlulJH734/KyFz/wusyK01t6o8f35Jo1z8RyN77ZdKWDrdPpyREB9gkaf0Z0apaGTGqXcF0raWFzzYk2jNA8vGn6nxoH+OS0jyl68uOZDF8ffqTHq6G6ND8nHuXI2NZpu3qdxoQyo41aNi+jsom3/ZXHMIhifvajzOWv0+akaQ4vvWbTr7ZJehmueqfGFaRFTt2n8kX+mu+Z1kv4gKP82ST/pvh9Z1Hfvoq23uXPHNf7wvVPjw/E+jQ/r17lrbPyfhnpmx/cyrI/Z8dV6UZrfmdz7Yozr64Jr/N/9kv5MY8rBlrt2Q2Nwy3s0mk5eL+l/DOakt+6Oanz4/3YxJ3dqDMG3yOBsPlbq8+L4Fy/q/RWNQVi3KogaxT1ZvX9fY2DMqUWf/0aj7+TD3TWfKum/atQK3q5RMNrTHGl8Nn5Z44/d2cX4/LykD71c6y54nnpRmm9Lzj1Xo6D80GJMvkqjZethd00WpXkhqevNK7T3qxdtvrAo++MXx7Mozcfj/jdI+h0cu2Vx7Qtx/HMWa/wBN/c/vspcaFRs/ljju+NOjakPh3GNtfHjgzGL/n7TXfcyjQFO92uMjP9zSV+113XQFoUWCoVCofBBjUdDWkKhUCgUCpeM+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC9QP3iFQqFQ2BeoH7xCoVAo7AuslXh+/Pjx4eabb5bxBNvnxsbyd9OOWbqDfW5v797+yKdDMDWC9+4ldWKdey7ntdH5S0n9WHVsevVmn35OsnouXLiw6zOC541+6KGHdO7cuQmR9LFjx4brrrtuUne0DtZpN++d47B+pNbFpdzzSGHVtvTGbNVxja7h+8Gf39zcnHyeOHFCDzzwwKSiQ4cODVdeeeWkP1F5c89Fb71F18yh1yYiO7fKPZyHVer17+Xomuie7JqsjdG7v1c+j3ON2CfXh8fFiyOpy/nzIwHOMAw6efKkHnzwwdlFutYP3s0336xXvepVO4248sord336DlijHn54JK84e/bsruP2KUnnzo3UkvZSZYeilyMx93KMFrq1Nfsx9vdYm+yYtY2I6rN7+aMRvQiyfrEslunLtv+tjfadc2DfpfGHyp+ze++/f2TbOnHixK7j/lpbDwcOHNAb3hBv/Hz99dfr1ltv1enTI1mEzbkvz9pjY2jl27V23veV1xo4bjbW0Y88x9+usXrW+VG2dvgXAdeXjRevtev8vXxpsR3sdw/Zs+HrsHN2bJUfPJ47cGCkmjx48GD4XZKuvnokZzl+fOQePnLkiL7ru74rLP/IkSN6znOes9MWWweHDy/5g+0dxPeOfykSds4+s7GMntOe8OXvmSvHH+fYe8zNw9bW1uRe+9/G3e619cd6/TG7huWyTJtbf48d44+lHfdttPJt/o4dOyZpuT6uuuqqXfVJy3fVnXeOrI5nzpzRS1/60nBciDJpFgqFQmFfYC0NbxgGXbhwIZQMDNRwKAlRg/DHIlXVI5JuWN8q2tpcG9kufw3buorZlZoCr43UdkMmadvxSLJjf+zT6uF3/39mOonmnOVHfWNfKCn6Oc20GbvG+uph88C1sYrmwzaw/p5WmI1xtEYpUVPiXaWNBq7RnpWAc8FnMOof781MWpEGG5kpoz748ntajaG1poMHD+5odtF82f9mDeDzaYieaZaxyhjbNTaHfKfwefL3Z8971K9MgySiZ9pAS0z03PJaewdT08tMqv5etoX3+OeYY55ZrryGZ5r90aNHd+7trR+P0vAKhUKhsC+wtoZ38eLFidTnpaZMAsgkYn8/JY45h2lUH/1yUXt6Uoq/N/IVURLJpMEe5pzJvXOUmnv+TZOkIi2QZWfBKT1NNronG9PWmjY3N1NtZ9U+Rf2QptIr5zjyrVEaz3xRkbaY+Q6jNZtptev4yTINsrfeuDbps4skfI492xqNla0v+nDsk+ejera2trpBDltbWxPrSm+8rL22NqNnOvIj9+DHK5u77DOCjUsvIIWaIvtFRO85lptZuKK22NhwTqltR22zskwji55nuyez8kV+dBs30/C81XEOpeEVCoVCYV+gfvAKhUKhsC+w9gawwzBMVNNI1c/U5l4OGNVSmqF6uSaZqdFUYn/vnEmkF4yTHWc7ooAQgua9yNyWmUZ6JlumJZgZgvVZeK+0NDtYOHcWbBSlP/jPnklza2trMhb+u7WXZg5DzwyaBTitEnSTrc1o3uaClKLABK5rBnVE5tasjVl9vTUbpQJJU3NfdE1WfrS+uc6idASWu2pQxsbGxmQ+evfy+bfvZsaUluvNjvFZ7gXnZUFeveAOhvRznffmkus4S2WJzKF8bvhOjPLisu98Rvx4ZkFfDFbxa8zawjVzxRVX7DofmWoPHTokaXx3rZInKpWGVygUCoV9grWDVryD1351vdRvv9A8l0lC/hil5yi0l6D0kkmikRZK6Y8BDpHkkzmR6cz30k4Wns1EzEjCzzQ8ttHPQVZfpm37/03To1M60hKYsHv+/PmV0xJs/v28ZPNt10bSnmFOM4nGkfOdBSZF2jPLIHqaZCY1R8ExURqPRy/EnBpMVnY0Jr30EX+dP8e5tU+TxCNtx2sMvbUTIWp3pq2TvID/SzGRAusxZFYbanFRQB/L5RhHqROZ5pWlgvj/s0CaqA+ZBSazmERzwGv5zPh3P8klMmINPyZ8525sbJSGVygUCoWCxyX58OgjsvNSnmIQhShnoe+rJohH9fB7FBJNGzql5aiezHbPenw7GNLL46sk6FLyonba8zdlKQdRaDkpg3p+E0pfm5ubXSl9GIaJ5hAlD2cSdhRanqW7ZGvItz/zcXE99LQ1IrJgRNqMP75KIjDnju2IwtSzfmTSuj+XpSP01uqc1rEKOUKEYRh07ty5HS0g0ojnCCfsXUWtzl9DYgMrPyI8MPB9Zs/PkSNHJMWpTabx2ngwydtr89nc0YfPBHFfftbmVVKDiF5aDNvGd1dEZUfas7lYDF+ut/ysah0oDa9QKBQK+wJra3jSVKr0WkBmS+9FPNGfk1F89XxPmXQeSb6ULqmpREnFGYVUFgkVSTHWT/ruIn9WpplkklAvssvKJ2VbVB81RkbYRf4FK3dra6sraW1vb++Ub23qRXn1qN4MtP1zvqndzvkgfb+y5HLf1iwB2aR4aaolc4x61HNsd5ZEvAp5AddoL0meWk2WXB6VQ2sB/Vq+3d6f3vOHnj17djI+0bzMJVlHlhD61rJxisDnxD5t/v06sDbQ0kOrkB/7bP3S+pE9r1H7M3pEf63Vx3WQ+QV9OZxvrp3IsmTk0Rn9WaQpe2KI0vAKhUKhUHBYW8Pb2NiYSAheCsjIW3tSJSOp5mhmIik9Oue/9yK6DJSmIg2IOSyraHiUeGlDZx886HuwNnP7k0gbzfLaepRg9LtYWy1684EHHti5J9OqIgzDsCsSL/KtUtNhP/g96j81VI51FO3FOeX3KDI5y+Vkbp2vJ/O3Zf451h2V1SMez6ireE/P38zxjDS8uW11Ih82cw97ZN/DMITRjh6mSdm5kydP7jpvz55/5hlRnml4ka+T641rpefr5Lz0LEu2NriFGi0M0brLtgHqWZYyK4d92nvHxip69i2HzmDX2jskigOgtbCXQ2r/+/dpRWkWCoVCoeCwlobXWtPGxkaXxSSzJZP9w0dLUcOjn8qOGzOI9/tYOYzgypgIfPm0LVNbiHyF9ItlhMxRniF9eD07tf1/5syZXf3khrq83rd/zifqmVasX8zZsrZGPolTp07tunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN65prrpE0bngs7R4/q4fjFVku2C8+C3wPRdr7tddeK0k7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3mMY+RtNwzjYEi0vKdcc899+xqJ03B1r9o/THg5YlPfKKkpWnTj8WDDz64qx5rv7XDxseeA48o4EOarn+rV5KOHTu2654bbrhhV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bft999+1cS3O3mamtbdYvGztpOQ9XXXXVThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2ts2fP7pTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT//fdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbryuvvHLlQLbS8AqFQqGwL7C2hnfhwoUw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+9957JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzp49m4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+Oqrry4fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych85WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6R+GSldAAAgAElEQVSKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67+uqrd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aXu+++W9KUYcVgWqOfZ3s32rW0ekXWNr6vL16sDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7lKU+RJN14442SpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95yyy2Slu/69773vZKWjC9Szt1p7aCFw7fFcP78+dLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg+uuu05SvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zVvf+lZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy9enES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV59uzZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/baayXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi/PnzK6cmlIZXKBQKhX2BtTW8Cxcu7EhEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75LHPvaxkqR3v/vdu8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz9mzZytopVAoFAoFj7UTzy9cuDCxW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zp49OyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3htvvFHSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHrf+94nKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPsNN9ywc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8apU6ckxUwrGROFwSSTSJuZI7eNbMDZJpomRXDz1aicjCHES1qZ1E+fASOSfNtsvPyWGtLUd+hBaXluK5aoHG6n0svzYg5fb6sea7f3x/Ui7Q4cODCJzovGnj7iXqQlxyHT7CJfC7VDak+9rYToK+75qA1kHuHajQi16e8lkwc1Zmk5tmSzIWl6tKVVtpVUD6v4+fid898jAB6GQQ8//LCuv/56SVMWJd+37DnpMQVxnsmSQvYRXx7nwTaNtmfcrzc+LxkTTo8Bibmh1KL9Fkb05dJyZf0xJhZfH1lYsufKW+eyKGvGH0QxGFmudaTxmYXM/Jdz25J5lIZXKBQKhX2B+sErFAqFwr7AnnY8NxXVghW8SYBms1USc830ku0P1yPB5TU0LZJ0199vJrOMbDkKD6aphPvRkXRV0o4J2GBmhyy5m+Pj28j2ZOc9shD6KJkzcxr3kmJpoo2wsbGhgwcP7qyZKGiFZmMzAZPqqde3LLAp6hcDADJC3mgvRRIa0KTWCwQhlRXdAL5PNAfxmshFwLG1a5hGEpGyc230zIzEHDVgRFCRpR4RGxsbE9eAJ3NmcE82Hz2TNttEUmfv4rBgERs7M69ZYJrBzG/Sch5sXizNgubDiJg5e6/aO+rEiRO7ypKWzyX382MbfT+ZFG9t4Vq1eqK1w3ch38n+2eRu81kCekRBaONYieeFQqFQKABrJ56fOXNmIm14aY9OzmhbFn/c/z8nVUZlRc5Tf01ELWRtJKEwtRgvObDPlFqYXB4FHjA4Jdsd3h/LQqMz+iaPjLIoCtHnth/RNk7+XmkaEDQXeDAMw4S6yEt00Y7P/niU1J9JdxHtmf8e9dm31Zft22PScCa9RknY1BytLZlm6ceYwVfsr/XTUjmidlO77Wnz2W7lhigBOQvUybRvj8jaQDDgKaOj8uUwUCcCgzoYEMQ2+nViKRK2HkzDs3liyo4vh/PdszDYuuK6i1JYpN1ar7WJ9UQat8G0QhsLatO0hkXI0sisrV6j5POTUZh5cpNo67cKWikUCoVCwWFtH97Fixcnv9iRbT6TrPkL7v/P0hB6Eh3PUdq09niSYrO/U7qwMqzNXmv0viZfbpaAGml4lBy5HUiUXJlRltlnFN5PKSzTCjyoqWYSck+SmktG9Rogxzoqex2tNgvt7kmk2T0cY78OsnlmKH6k4dGyQH9cRJLQ2wYq6xe3eGG53L4l6l9GWh2Fzs8RdUdJ0dFWX721FVlb/Hrjvdw+h/X6c1wHXMd2j2l10lJLMYtFL/Se93C+I0oxg2k2EQl+1EavCdHakKVQ+fXG91nWxsjaxvXMNcT0KN9uA2M9zN8YrR3vRywNr1AoFAoFh7U3gD1//vxEwoqi2KghkJIrQkYD1SMGzjQQu8ds6D5aypBJZRE9FH1z5jMx2zbtyhGFlZWfUT95ZJI2aXp6kg19dvRn+jZS64hojnz9vo2Gnl3frs9IuD3oW6JE3KuH27ZEW8kYMj8IpUx/L/1wjOiN5oO+J8PcRre+bloDSDUWIaMs45yuQuZLRJoZn58sidijt6kzYW1ilKE0HeNIC8zq4TWmTWXkBf6aiBjbn4+sX7TaUAOPrEOZ342Rq56smmQSbKO13Serc1s3RvZyW6Ao6pnPAtdHFB2e+cQjvz7X1+bmZml4hUKhUCh4rB2l+dBDD+38GpuEEGkzPcma9xgo8cxtxRKBNmf6M6SlRGP2bkogzM+Tpv4X0xwzKrMop85LUizfly1NpXPmUtEXFklaWZQmc3j8/9Z3q28Vzdz61yMANvLoHok4c3voe4jKzvwtmWQf+RzYD0aoRfRQllvJyL4oupF+RPph6Of27aIvKrMKRH4YajvMW1plU9TMxxLVnVlKelqVt1j0aOk2NzcnbfLRfpzvVSwghsxi0IvWZd5YRnTfiwPgMxyRe2d+V2q09m6JcmK5vqh5+X7RJ5k9Iz3wPZeRtEua/JbwHRDl7vGayF+aoTS8QqFQKOwLrK3hnT59eiL5Rlv9ZL6OKC9ujrQ32p7DYOUxf4yahLf72/+MYqNW6PNuqPEwj4w27kgapGRvfkD7jCRN9ofjSG3YX8N+9fxnzLPJotx6/qXTp0/Panj0PUW2eX72tMJebqHHKswgJII2C8AqeWq97VMyYty59kjTZ8PKoCQebb3DNtKvFbECrbrti583Rm33NDvC1tnRo0fT620DWPqVonzFLII8eodw7VDzIZGynxdqIJl/zo9t5HuUltqNffr3BOvhGFiZ0b20GES+e37PokANPUsP6zVkMRm+Praf/Y4sGH69lQ+vUCgUCgWHtaM0L1y4sKPtcKNRaeoryXxAkf8o49LMbM/S1LdFiTuSqpkLaGXcd999kqR777130kayINAvxz5EEr6Nl0lp5ge6++67RdCeT3u75RJGkYRZ/ot9t7Z6VgbOEzW8iAWEGsmhQ4dmc6l6W8ZkmgJzgry0l7GIsMwo1zGLgLM5tc/IH8v8R46ffyaoUUdrxB+Pcs6sPrsnirAzRFsGRd+jSDu2jfMZ+RCp6WfRmpGm7CX6bO1sbW3puuuu23lOorbRh06ture5roHl0lcUWW1odeB68EwrFkFJrYYsTX5OyWaUafrGgRnlcNr7jVYhbvbsQY2Zcxo9T6sy+vh1QM2O36OYCEbGFpdmoVAoFApA/eAVCoVCYV9gbWoxaakCe5OYIdq12R+PQuIZXGHl0rkahe3ShJqFb/sAFKubn0xS922MkkKjeiNntQWlWN+5E/XJkycnZZupItpVXpqak6Nw4cyUZvf0xiTaqobt4Nj3dh620HKagLyZjbutZ0EsUWBFlmTfM4czyZUh0L2AENvZmuMWbS3FgCemi/RCvUlOzMRzJklL0wCKLDUoSvvJ3Ak0T0ah5euYNK0eb87L2rmxsaErrrhiZwwiE1xmlu4hS3eZC4Dxx+i6sU9zOXhKQzPJPuEJT5C0nFuaY30qQ0aOQbOeleXvZSAfn81eEFgWJMf+Ry6ODNH8WntpwuwlnmfP+CooDa9QKBQK+wJ72gDWYBpRFKCRJXP2Es4zMt8sgVqaaiKUWqLAA5MeTPOyjRh7W/ywXGpJlKa8FGrnrD4GuDCJ2bc3c7rT8Rxts2Og1mHz5rUQOrA5f1HQCsufSzw/cODARIPsUQZljnPfNjrGMy0hSrKlFJlpJr3EVmodkYXDpHyb54z+KnpmSJLA4IhIS+FczgUPRMQRpD3j+EXrLaPm621/xW29Ily8eFGnTp1aKcGYY9sLWjJwzWbrMNIyONb2bEXr29aBfd5www276rd7fD+t3RbwElm5/HXRGmISeabxSVMrFN9D2Vz7azKygug8y2OwUbQtFtdiBa0UCoVCoQCspeGR4icizM1CrjPbsD/GcHnTjLLtJqRcG+iRu5IcmMnykcRArYz9ov8xoiWLEtqlpVTokz5JtTNHGuylQvaZGp7XyNi/qP3+nijx1Oo+d+5c156+ubk5keB4Puoj++G1AkrS1CZ6/rJMo+v51DIthmkDfo3yHvMRkx4qCrfPtknppfn0ErilfuIx28Jtj6IxyiT4yM/Dfq2i4Z0/f1533HHH5J6ITMKnAfg2RHPK8WC7e1YDWpvow+ulmGQbv544cULSbnqwm266SdJ0m6BoQ2OCm9GSZrHXr8zq1ksryjTjnt+eY00NttfWdTS7nfaufUehUCgUCo9CrJ14HtEQeX8VpUdeE0X/UaOj/TjbmFOaSnBM3rTP3qanFnFHzStK4qSNOyNZ9hI4bef0w9Af4681yd3amm2ZNKdZ+XroR4vayH73NDw/Jhm1lyWd96T/jAqrt5VQFj3GaNlIWuexnjZgmEvIjiLHKNlav6hxR2BUHtvONeXbwkjezPcRbTzKjYBZb+RTyST63nZbjPCMsL29vWttmS/UNCJp6Q8jEUNG7sw+9Npv8PdmRBMZ4b2/1jR8i8422DN4++237xyzaE87d9111+26x9oabQRtbbDYARsv65f5Bf0z36PI47W+LP9/9hzxuZZyja4XFcy+96LDidLwCoVCobAvsHaU5sWLFyfSS+RTM5gmRI0l0i6oPcz5BqRpNFZGLdSjFKIUTSJoaerTyKIae/Uxr8vGkTl30tJmn0lLvUgrtjnTPnuUUqyHftuongsXLszmxFAT9+sgI/zlevNrLCLP9vdkkqOvJ/tkDpr/P/P30efq+8p7VtnQlvObkYn3tN85+jXfB15DaqdI+4no+/xx+/RaKn13rbWu79Hn1UW5tXfccYekpQZEgnhaCzyyvrE9UR5hFv0ZzYvNnfnS7rrrLklTP61/D5hP0vpnZTBql1Hi0tQvT+08s+r4NmUWu6h/HINMe+tFlPMd2fP1Z1poD6XhFQqFQmFfYG0fXrT9fGQ3zrbJiKI0s19zMipErCKZZM8yIo0r02oiiSGzXWd2fi/B8pi10SQ5a4dJbdJS2qMkxTyjSNPjtSS0jcijsw1mOVZeqqYEN7dNxzAMaZ6cL29uA+CojkwLpFQb+Q/o82J+XOT3o3TJaL3I151FPHJM/PPEqMyMEDzyqVFTpQUl0mQyaZlStb8nWgdR//zYkzVne3u7m8N5+PDhCXFy9EzT/8++RlraHBNNdO9czih9rv4eGyfzrdF64i1L9o6wtpofzp5DbhNlPj9pupG1lWv3ROOYWTCy6E2PbCx6jDWrRnT6tctxXMWytFPfSlcVCoVCofAoR/3gFQqFQmFfYO2glcgJ68EEXwZoROXQjEYTXG8/JTpxM4LmiLaL6QA0yURtJJUYSXBpAvR1Z4E10e7fEb1ZVEa0/5qBQRFZYr8/Z8iCJSLTwSomTdtLMSvf9y0zhTD53l9DUznNx1Hwj80ZTW6sLzJ5kUKO4xfR0hloKstC26O2ZPvuRQFIGdl2zzyVBQLQlNlL76B5KqKhYrBPzyy1vb29y1QXmae51udoCtmH3j0RpR3n0NrCYBJfX5aaZWsnctlcf/31kqZ7aXI92D3eDWQmTZp7mf7lg2RIQk3zJ4P1IhMx3/3ZvpO+XK6HXqAVd2WPyMQzlIZXKBQKhX2BtYNWPH1Uj5C1lzAoxTtCU2rNwra9ZGcSFam4esgScQ3RLuJMxLU227XWDmqW0lSyM6nJ6rXvvp92bbZdBunRPKVSphX2duVmygK1D9Ig+fZ7rbMXtNJa22l/TyqjtEotJ+ob+2FrNKMP8/+Tai2jnJKmGrxpHgyWiDRuakJZMn8Utt0rN0P2HHH+fX3U5KIgFX6Pws39NXbcS+bRtlqZhnfu3DndfvvtO4FcRr0VzWWW4sQd1qWpFpul70TboNGiQOL5bDsxX28W0OdBqj+mFDCMP3qHsB5qiZEli8EwGdl3FPCUkT5E71sG2GXkCNEzYeWfPn26S97gURpeoVAoFPYF1tbwLly4MCGN7iVZZ5RLEfVWlkxLDcnbnE3qoyRAKSAK26bUxPQBf48ndJWm/h+TiCKSadO+7BgTkSm1+XPU7LKEcz8HlOCyMP8onYS+qd6mvFGqxBzFDzfo9JowtUtqQpEvKNtCiknj0VYiWapMjx6Kmq613/wlkaSd+bgocdt1UZI1nx/6NqJ5oQ8vS2mI/CMZiXRPU6a2zY11PSJ/WabhmWWJ2o5RAvo6aJGw5zbTVNkGX0ZGGB/1MUug9uubW5XZmNr7oZcAzvcMLTzcRsqf4ybFnEu/dujfs+9Mio/uzVJ1iOhdnNGQkZzd/+/bWhpeoVAoFAoOe0o8N4kk+vWNIo08osiwOZ8d4aUmI2Jl8nZGOSZNSXwZaRdJvlYuCXftWmp8PgLSpC9uXZJFGPp6Mr8CpekogiyicYvK8qDWwUivXmTcnA9ve3t74oOMCLMzWqtIcqS2bvdyDUU0YTzHqN2IWIHSOSVtG/NeFDL7kZE1RG3MIpYjQogsmZeRyxEZe4Yo0i7zt9haiZKw2a+eFtVa08GDB3eeHyZd+zpsLEkEH/n2s3nIojSj8jKatui9Q58w12Q2DaoAACAASURBVK4h2uqJ5Ag8b/BjzdgAfkbPSkb2Yb5qu8c0vSj6vRdVL+1+fjm2fE5JMu77tU50pqE0vEKhUCjsC6y9AezGxsZEwor8MJSA6D/woN8ok0wNXmLI6IYoTUVaASOpjOon0lLp18ui5+y7l0gYDUcJiATbvr1ZjiLH10s7zLujNppt8uph95ByLOqXz7OZ8+FRavblUdOllNfTfDJy4Cwy0t/LceB3v96ordB/xTH357IcsWzrH3/vXLRkFMWWkbFnGqBv0xw1W6ThZVK5HY+Ix7121aMW29zcnKyDyE/Kuqh1+HYzKpd9jbRZA+nnspzDaJz4ne+D6H2aUQr2/GX0x/KdYWV5bZjvQGqhXLuRP46516v41/ic9jQ8+oRX9d9JpeEVCoVCYZ9gbQ3v0KFDE1u6/8WlDyuTELz0mWkalBwjKZ05MpTGGJHm28BPRsv5euj3ygioI6YK84Mx0pHS4CoRhJmm7L/Td2efNm9RrmAW0bkKWaxnjulpeJubm5M+ez8MxzLyh0mxRtIj+vWImC+yLXeifEz2OfPZRAwUnLtMUu0xGGU5W70cxSxHMLOgROeYa+fbTq0vi4ztWXfmYO8e35/eVk+ZP9SvHSuP+Z4ZAbQfJ1p46Mvl+ojakL0zorzPzL/Yy6ljmxgFzBzfaEzs3cXyozgHWjKyyMtIKzRwfUUaHv2YRR5dKBQKhQKwNpemtPyVt19/L6UzIpG+tN4vccbKQvt8lIdlEsmpU6ckTfkqveZHSZ7+qp5NmJIVpc0o54j8mwbmKnrJhbZsSoP0e3owr8f6Z8ft0+ZPWo4P+UsNkebaYzEhzA9DTchL4OxTj1uRoJ+U10SRsNR0uY1K5LvJpNYs163X7kyji6LYrN6I9cO33d/vmSiiPkTPE9ddxgMbrVXTDvgsRJGkHLdeDqetHWoO0fogx6w9c1ddddVOWb5cKWdn6r2z6KOj35kR2P5/lkfLlX+m5yIdOba+Pr5vCEaN+7ZYvyz/juNqiOaM1gG+gyOLIP2K5PL0vzERu1JpeIVCoVAoONQPXqFQKBT2BdY2aV68eHFitvGqcRYmS9XXn6ezkzRaVI0jsxpNVnTUe/MdTQjWNkumjMxSDN7Itr6IkrojB680DZqIHM78TjORoUfVZiYtM3FEO57TNELzURSOzqCOQ4cOrZyWQPNX1G7Oe0QTxwAQpm1wLr25KAre8eXTTCVNSalJQxXteM57mQ7DNRVtvZMlmve2h+qdk6YmdV+fITM1RaZ7BknYGEWmNY7PxsbGLPE4ScWjftFMS8q3KFE6Ck7yiAjPrW7rG83wkUmTKVRco0wb8sdI8sHgHF7v61uFrCADUxn4Do7M4UxPoJk8Wm/ZFkLReuOzfPbs2TJpFgqFQqHgcUlBK1GiJLfhyDZm9IhCalep34NSBCWESGo2MFghSmJmgIuV4cla/Xmv9dq93vHq643Id6OUj6jtBi99UrK3c1amtS0aR2rKlLjMiS1NJflVyKOzAAdfHrdgMkQJ6EzMZUBDL30jozGidB6lzVCa7WmSrCejU4o0WD4/JCKPAiGYCsQx6AV9sE20LDDE3ZcXpddE331/IqL2rD3ZVlDSNDiO2hM1c5YdtYXvOb9WrW6bD6M4ZIqDH2OuVb4jo/QNBp7ZM8y1xC3H/FiYxphtMRalQdDalgWT9BLP2cZo/WdJ/kzriMjxfZpVkUcXCoVCoeCwp+2B6D+Ifn1NajAbem9TzbktUCgZRLZn+iNYZiRVUIthiH8kdbI8UplR4ur1j/d4idXqzsLQmUzu/SQZeXSPUox+Rmrdkb+HUv9c4vnGxkao2bE8jnEv3YFrIduqpue3sHpIQBz5irL6qGlFEme25Q7nI0o1mSMC7xHyZt97RNGZtB6loHCeMho0b61gOb222HunF/JPPyy1TXsP+S2Fso2F+Z6hBcjXZ/eahmefrMO3m1awLPXI101tjN+tf1EyfvScsh4DiUFo9eIWR74+O5dpnVG91Dp7KQwGjrnflHwOpeEVCoVCYV9gbQ0vIsWNEsFJiGz3MUJNmkqEGYkry/DnSDfTk5p4DfsTSd68P9MYIlqijO6sRxrL+hgFZuPLyEYPEhlTO4hs9wZGg0a2dIOXAjMNz7Q7armRDyCT+iOJnO3Ktk/qbVxKKZMRvr0k8lU2ueTYsnzW09u2Kdv2KIpcNWTPRk+DpqTd89Nl57ItlHy5hvPnz6drZ3t7Ww8//PCOdhbRhpE0gu+OyG9NbSnSWvx1PcID+u6jPlMDysgKetYvQ5a8HpGIsz/ZvdGxHv2cb7tHZl2LfHjUOu292aNmM83unnvu2WlDaXiFQqFQKDispeFtb2/r3LlzaUScB/171C68bZaSTuYTiPwzmQSSSZm+vmwDzl5/MpJi0oN5KZ3jlJEke8mHbaPWabl1kYbHCD76onr5Zey79cekUz9vpB3qobW2SwOMchNpt6evNZrrOYJxrqFIYqS2QStElLuVRSRG45gRp1M7iyIuMy0gywf1xzK/DzXaSHrP6MeiKMdMM2fEYuT/tc8HH3yw6//d3t6e0N5FhOmmYVn0tI0T/djSMu+W5WXrrxcJaM/H8ePHJcXRrKa90I/d07iy9xvHepV1kPlJexplts1bpHkyEpZz3PP/Zu/4yF974sQJSdJ99923c+9clO9OX1e6qlAoFAqFRznW9uGdPXu268+h1EKNKJLOeA+1wUxa9/dSa6EkHm3XkqF3PmPFYL+iyL65zyjvj9eQ2SGKJKSGx7GJ8h4pwWXRmZFPwtvb56I0OSb++oy0meshyoei9hLVybIzH86qkYP+2mz8ovINq/j/5ki8o2ciO5flqvp72Z8sl6o3z5n/PLKceB/8HNOKaWfMZ5WmmzhfffXVu9rSI99mX8m8wshzf60dM20xi4z0/1NromYU+Zk5NpyPbEseXz6joCONKyPFpnXCEEXechw5FlF99Nmxvz6v+d57793VtnVQGl6hUCgU9gXqB69QKBQK+wJrmzSjENDIkW0qKk0I5rCN0hLooMwS0SNH6TqEqHRCMyiil3DOevk9MjFmO073drG2/7P0DqYnRP1j22kuiELZ6eDumT947Srkv7zWtzUjJibVmx+nufBsph5EZtXMXNPr11zwSmSW5BjPpRpE/ctSGaIAJJ7L9i+MzLwZ3VovTJ2mzCwdh//btdn6sYAnM+dHtFakXqNpk9SA0vLZOXr0aLePTHnx55hkTTOxT0+iKZZm/WhsaQ5m+fbJ+qM2Wlt66T+Z2Z3HIxNqRl1m6KW08Fq6CMyMKS3TEjyRdo+cYle5K11VKBQKhcKjHGuTR5uWJ02TOz3mqIkiaW9Os4t2wqZDNAvbzvri6zVEu2ZTGs9ClqOk9UyTYEDKKqkF1OwiaqlsOw6TfiNth5pjtg1JL3F3Dhsb/S1gDKQv4npgmf6TAU4MFIjGmITgRBSAkqUjROM0lzrTs1LwXKbhReVmgVXU3iKtINOUe+ugt42TtFvD4bpdVUKXluvYa098hk+ePClpmjoTaXimBc6Nm+9PpjWx71HQSqZ5R+/TbEf1LJk72omebeml+WRE41ngYC/gKbMW+P7xmWbQjVGm3X333TvHTMOzaz2hxRxKwysUCoXCvsBaGl5rTVtbW5Mw8d5GovShRPZ9+jB6YcxSTMFl0ksmAfcSzym19LaDydISKBn5Ptk15oPINuaMtlnitXN0YR7WRm5KGm2k26NPkuJw51V8n7ye93gpndRxXDuGnpbJfvQ2rGQSfEZI0At/pqYS+Sa5Jrm+6NP164IWi1UsF3OSNkPBI58KpfKMAN0fY2oI/TD+mV+F+s8johHza4cWkPvvv1/SUsO76aabJu22e2zdWWoB13rUNo5P9iysMk+97dFYTrZBcxS7wHcj742eec5L9nxFVj0DrSrrJMcbrH7T1C3ZPGr/OigNr1AoFAr7AnvaHqhHdkvJ2t/rz3vwGDUtSgZemmECNqWWno8g25Q2kuxZbpZgH92bSWf8jNpATY9SqSGisjKYBk7tI5LSWR79W14So+Z4/vz5LomrpwCKIsTsf5Pg6YczH5DZ9X3dmQ+v53NgGQauu2hDTt57KdHBWdSuP8f56ZExZNJ4Rt0WzYFpT7yWWptH5q83RFu9ZNtfeQzDoGEY0nmSluPBjZPvuusuSUtNz2uFtLyYhpdFRPr+kOYs06YjbZ39oJYbkVZk88/56r2zSPdo5/27xJ4x9sfQIx7PEvi5DqKt2thf+zQNz6Juo3psfayC0vAKhUKhsC+wtob38MMP70gBXrI32DHSyDACM4piZL4LtTZDpK1lOVSRxpmR9xoibYB+xSxa0+C/s+/2SQ0p6ped623eyrbSV0T/Qjau/t4sZ9CPIwl550ikW2sTiTWK2KK0yg0zI8l+LlozktKplc/5dj3Ytl4eaLY2sjzMSGqe62+kpTGvMdP0ont5LRGNCevp+Zes3TbXnjoqgvf/MoLZ10EaMNPe7rjjDklLLc73IdOwexvpZn5RIqI0zCxLvfHKyN1pDfNttPng82Nj3lvfrI9aYfT8ZoTjvMf3j8+01WdWHJ9/xz4b5jae9igNr1AoFAr7AmtreOfPn5/8Kkc+B7MLM08lkmKZD5VFDNIG7cs3WBnUMKNIpCz6LsrD4zlKaT32Ckpf/B4RXFMTzthtIskvy6XJSLl9ffTdcSwi36T3AWRjurGxocOHD0+IbP382b12jgw1jAL0fcp8ebwnYufIGEEiHyvXLzX9VeYjyyvsrVW2NWPE8ddQw2NuZbRBaObr7JEUz0XwReuEW+VcvHixK6Vvb2+n0a3+f/q4rXzbSsY2DZWkJzzhCZJyy0SPTYfaE99vkRaXWRTYh55WmK1rOx9tPJ2t50jDo3abMaBEOYPMic7yDKO8P87fqVOnJC019Cifkc/+KigNr1AoFAr7AvWDVygUCoV9gbVNmsMwhPtDGTInPk2dXkU1lddCT6k205wWBWiwfqvHdj5mP6LvvdBWmgMzwt9eyH8WRBIlvFv76aDPEkOjtASaJ2ge6FFY0ewRpUNYud58lJmlWmu7AgasH55uivPO3dyZiuHbkPUjCupgGxgunwXN+Guz0PJV0lLmkpSjQJG51IKIjor0V378pdiklQUyrBIUkAWrRMEKEcF1j9otooSLkvv5/NOs5sPbja7qyU9+sqTlesvovKJnmuuqRzFHE2m2hnq0dJlJkSk8vh5+cj1GJCBZiklG2SflRONZ/X4MbL5Onz4taWnS7D0TnjihglYKhUKhUHBYmzzaS1omnUfUYlFSelaOIUqElKbSrJcUs+CYLNnS3086oizwwV+zKv1UlByfaU38Lk0TcikxMkDAjyc1lmwXZp/AnUmfTOiNNAm/DnpBK1dccUWayOrbZeNg2jmT370EHCXARtf27uWckgYvCu7JtmtaRZuZS1OINC4mQzMQwM85g1WydIFe0nrW9ug6jiOfuSidhPMyt+O5B7UC3xeSF1iZV1111eSeO++8U5J0/PhxScttgvisR0FsGRG0fUbWiCx1ytALluPznoX8++eA8z5HFxaVT+tDj8ghS/NioFNkjbL3XZbQ78eKVrQrr7yyyKMLhUKhUPBY24e3vb09CV2PNkak747Spk80pd+PvjRK+FHiMbUnaoteAs4ovXp+ONJN0Y/Q86kZsjBaO25Sqb8/I+3NJEwP2r1pY/djQk3FQP9jpM3PpXlEbYgSdqlh8XsUgp+NE0kMeppXJHlKsUUhS2yn1SDyOWQ+4oy82mNOwu/5bhgm3pOGszHoaaFzyem0vkh5OkeGzc3NrtWIm8JyQ1jT8Pxc2jYz5i8iwTR94BFpAbUyWhz8M81nmM9sNC/0g1HDp1YVtZFaGetfxQ9HS0J0b2YdYl/8mGRpV71UF1oQKi2hUCgUCgWgrUq6KUmttbsl/e0j15zCBwGeNAzDDTxYa6ewAmrtFPaKcO0Qa/3gFQqFQqHwaEWZNAuFQqGwL1A/eIVCoVDYF6gfvEKhUCjsC9QPXqFQKBT2BdbKw9vc3BwOHDgwyZfrBb5kXGw+XyRjC1hnY9ZsWxNeN3csw9y1vfNzvISX0rZVrpsbmwgZs0zv2taa7r77bp06dWpS0YEDBwa/dUmUCzmXixPlka3K/dhbo5cSuJUxUkTIrllnXgwZq8U69a2zLnrrgLmo5AztMRf5uTx9+rTOnj07acyhQ4eGo0eP7uRiRTyOzItjjluv3Vk/Ms7d6Fz2fET3rFJ+Vs7cXPXamLV5lXozxqLo3qy8Vd5zEftLdq8f8zNnzujcuXOzC3mtH7wDBw7o8Y9//E4yZ5RIzcRUS/i87rrrJEnHjh3b9SlJR44ckbQkt7UFzYXdS3bkud7+dNkeTywz+mHNXnBZwnZ0b7Zbsr8nS0rNqH6i+rIfih4tEPthSZ6kapKm5M6bm5t6yUteoggHDx7Uh33Yh+3Mw8mTJyUtk36laTKytdfWx9VXXy1pNyG4/U8y6myn8GitWvszCrhop2uD1WdtJK2bR7QHIMuX+i/JVSjTsh+0LOk/oiVj/TZWRkfnk4dtvOyYEQDbtdZfT9zM/ds2Nzf1mte8RhGOHTum5z3veTv71z3xiU+ctNXG/9prr911zogSrC2eOIHvsYywnetcmhJQMBmeP/7SdL1lO95HRB78Qc1IzHuUdlzfEXEI28D9/dgXT4eY9YfrL9qzj/0iDaIHE9i3t7f1+te/fnJdhDJpFgqFQmFfYE87ntuveqThRaYKKddy/Llevf7TY86UENH1ZFQ7GW2Uv4bnVlHfWS6prCJzRVZPRCHGdqxj9uAx1tszf7FtnnYuKv/8+fOT+YrMUpn5rLfVj2FuPfRMPhy3aHugbMsTlhX1i+WSxmmuD1E/emsnM4NRAqf07tvEelbZEiwrw9dj0rnXVLK1s7GxoSuvvHJHwzep328tZefMSsS+2We0BZdpfdYmkspTM/LnIk1Himnp5lxAEU2cgXOUvcN82dm2ZGxj7xj7GY0jQU2P7z/fl4z2rkeDZ+WYpnju3LnaHqhQKBQKBY/LouH1tIuM9DTyw2UBCFnZHj0SZX/elzPnCI7IbimtrCI1ZfdQevJtXzUIp9eHuYCOSDPPyLAjSYvb+cw5vy9cuDDZEsmvA0qAkebBeua22snmKbqHPpuovsi/68uIxotSa6bJ9sY6I1uOxijbaHiVYDNua0OC3sifxXFjfyJtgOTOGxsb6frZ3NzUsWPHdvy1tu7Mbycttb1ouyzfV98/0+zMt2ifnP9oXfS0lqifHlwPvfdapmnz/dDzUXNcSXTem0sbL17b0/AMVi/Xo1/fds7mNNs8tofe5sFEaXiFQqFQ2BeoH7xCoVAo7AusbdK8ePHiRN2NzDdUTblPVBSCzzDpLMWgl8NHM0G079oqOR7SajlH0f5gWZlZcMIqJo0sHSIyi7DPWeBJZLJl22h69NfZsVWcx2YOp7nSz4uZrPxeif6aKJjFAg0y0wdNPpE5JUNU31ygS+Rs5zrmvPdMXJyrbP8wb6rLdtY2E54Pzee9DBPn2EdBCyw3Mw1H8HtdZmbn1poOHz68814wU6btUC7tTm/wYOCJ76ulKti+ePaZpSdwXfryV9lxm8+ltbmXysLnjvVkuY/+fwbwWD8sfSQyaTKgJ0vR8PfO7aVnffHrItv7kmX4evicZObkCKXhFQqFQmFfYC0NT1oGH0jTnWc9Ms0u2h2ZEi4ZFbLz/hi1QkpCvaTuLABgHRaBVZBpP5EWav1gvzKNIkoXWKc93Lk7S5KNNGVrY0/S2t7e1kMPPdQN0KDGw/BsJsH7Y9xVm+MUBTNkaQ8W2t4L7qAmRw3Dh8yzfM5ZRkTgz7E/JiX3Es/ZT2p+UfBSTwOP6vfXZkExDHxgndK4hnoBWpubmzvzYqQVfoztf/aRgSmm1UhLDc+O2TW2vqxf1HL8MWpePVILvqusH9wt3YNWgSgVyLfDa7B2zvpj59hv/zzxWvu0sjgWkeaVJY9HQUw2Xkw1yawi0Ris+r6TSsMrFAqFwj7B2j68CxcupH4Ej1XSAwz0C1BzzLg2paVkQKnCJO7o1z9LBKY2E4W/85NSesQFl7W/R6NDbdauySTIVbRRJq9HaRBMMViFb8/avb29PRsebOVnnIdSLqWzDGmqXdq9pNGKNP9MG+T8RGuIfhj7NAnVz2UWWm5g27xPJ/PZUmON/LHZWs2S5XttzWjKfH2ZNmLXRpq5X5M9EocDBw7s+HhN0/MUVdYuajFGXWfHvRWCminHi+lXXnvKNCBai/zasXGw9nPeo3cHrSZZGkKUAE/fo/kobWzuv//+Xd/9//TlZVaCqH88Z/fYd08naMh4Umkp9Md8qk6lJRQKhUKh4LCnKM112LUN6yRbUkoyiYj+LGlq+6XE3ZNmqVFauZG0NCdprZIoSe028yX6ujMi1iwa1t8zF8EaRQNmvryoHtrfe34YKzMjw/V1Zn7DyLdHqd++U2K09eDvzdYIfQNecuWaoW+aPghfPpPurR5rk41dpLlkpN4RbVSWaM65ZJK5vyb7jObP+mzaQeZj8f0yrcP7wrIozY2NDR05cmTip/XPD6MIM4L7yBfEtcLnP5qDOWJmrg9/jNqorV22y1/Lc1kyuT9u9dkYm8/ONCzT8Hz0qWnhWQJ4RuwvTa1r9Elamd5iQzo3+84I1h7dWvnwCoVCoVAA1o7SlPqksPZLbJK25cqYFNOL6DSQksYkxyiaiZoWJd7Id8M2RH4Q9ou+jCyajRRQ/hi1QUqfvbGZ8wP27P4kaI3GkTRhmWbZy/frUfyY/5e2ed9W5gtZubbF1DXXXCNp9/ZAFulG8mD68CLNi2uD40+p1o+Lrck5ejpfPr/bvbRcRNunrEIazvIzX54hWvcZZVam2fprmdd23333SYoprGyeIi0z6s/hw4e79ISmGWQ0VlEepo1z5o+38q1ffh3Qx8UtkjLCZin3LzMewV/D7ZSsXJ/H6D+zYx70JfpjfL9YvZklJbono3fzx21tMEaB4+vHnrmJq+R77rRx5SsLhUKhUHgUYy0Nz6JhehFbJo2bBGCSNaUZn0PDjV+zKMredkRWLnN+ej4V2tJNYsgIaKXcXpyR+0pLmzUlSdqvPTjG1NKsjdHGrOynIYv09O3PmDZ8JBfPeTt/T8M7d+7czhjQbyFNt/0w7e2GG26Q1Nfwjh8/Lmm63hjl5fvHiE6CUbT+fmsDtaeIZSTL1aL0TD+0v4bzQik32jQ0y49j/72WTX9mRibs/TBWH8mdrVzLb4tYOezaHutNa02HDh3qRmBnOYDZuvZ1Z5G2vQ1gM3+zjYv5xSINlnl49s40a1jUVq5VvjOsnmgt27X2zPWI1G3+bS6zyFj68jyo7fK7b6PNk9/M1bcjsiLS914aXqFQKBQKQP3gFQqFQmFfYO2gla2trYl5yJuYzBzAT5oPI0e5qbVmFsgCD7xKnIUqU333JrSIrkaaBnt4kyCDE+gMJ42PV7OzEGIDw5+jNtA0QrOYH5PMDJYlovvyGW5MB3RkPrBjhw4dmk0AJdmzN98ZKbCN7Y033rjr0wJT7FPKTS7R/me+H1Ieck9TX0TbldGeRWkwGXUUTWhREAGDVjgvkcmMZrYeKXN2r2Fud25pumO4zaOZ6iIKM7uWqUBZOz21GAM3fB2k2KKJLtrTjqY2q4fm0CgQjeZqq5fvMt9eBivZONmnf+9E5lRfrh2P3o1cv/ad5AiehNv+t0+byyhIxffJ953UZXbcyopM6Dbmdk9GEemR0S32UBpeoVAoFPYF1tLwNjY2dOjQoUmAhpfSKTVQao4kOjo3GZrKsGdfn0keEV2WLysiZuY5bk/jJYdsB/CM6sdL3hm5MjWxVRLPDT2nLrUwtrFH9sxrGDzT00LndidurU2c/V7zZtDDtddeK2m5lujk99dmZLMRLRTBhPbe9lEMTjBpmdvQ+PVNujZqoRy/KGiBml0WeOX/p7WBaQjRljIZaXlGh+brMZiUzneBX8P2jK1Cxr6xsaGjR4/uaAg2fpGmwMAwjpdfbzaH2bqlluHfOwauKxtrBq/4a+0cx4f9i8rhXNLSEFGnMVDQ6rEgMAv4kpbWE2p2JPiwMYloySwtxcbe2h69b5jAb3PBtRpZTPw7qajFCoVCoVBwWFvDu+KKKyYaV0QgasdIp0QJWVpKANyeJUu6jnxrWch/zwZsUgwlOWubl96y5GQDtShfL0Pwsw1avaRNLYzjSM05kpRJ08P+eYkroywixU/kwzPN68KFC920BL8BbJSeQu2CfmD6a3176VOhJEzN1ZfDDT/pF/X1McWEPukovD7S+qTcDxyVwXQL+kksyVuabvEyt+1VFN5PSZtJ8b5M+ne4kWqUUE+//DAM6drZ2trS9ddfv6PZ2z3RVjjclJpzuco2MyQviJ6tjFg689P5c3y/0MIUbXuUES/zveTnhevK5sGeV9Pw7FNaWk+YBpWRJ/j+8Ri32YpSRGj9sM+eBSDS8FZFaXiFQqFQ2BfYU5QmpZgebRcloN6vMaPUmGhKyV+aRvaxTZTepakURjqdiDya0l60gaXvn5diGKk6t4mjNJUCKWkzyjGiFrNjJnFnycu+HEqUht62R9b+o0ePzhK5cn56kbD2yfGLQInbtJxVfETUAjgGvW2iqC1HNHG8do76KxoTarDcnDQiYzDYNfQzRtttkeaKnzY2vj5uKWPlGTmxtTXaMmmVSLutrS1dc801E+otr+GRjo4RnT3fM5OprXySLkcbpdJPSstCtP44h6sQ0PPZzcjdI7Jqg82daZLR2Fh/vO9RWo4nrS5RpCwT6+04LXn+XPacUnP2/cq0zx5KwysUCoXCvsCeqMUYtRQRlmbbi0SEtRmVj2lvlC56UZrc4sMkIS+x0D7M/BS7NyIstTZxU1LmfXlpkNpfpkl6iYySTWZDj/wjbDPb1vMRfxwFdQAAIABJREFUUUNlFFikSVq5Ph8zAymlIso35qVZ3yIfh/XFpHD7JLUcJXD/v/kwLCrUyqRlQZr6GkhwHpHdsq12Dde9IZJmbc3SOpFZHKQp+ba18cSJE5KmmqY0jRg00GoQbdFEKw61IP/Mc331aOksSrNHjWftsnZTa6cG6NvNvpo/1DRUGy9bW9KSLi3Lj40014wsmtHB0SaumUZJn2VkJaKPkBSO/t1oa4Rapu97BluD1CT5HPv1TgsJ2xbRPJrFKos76KE0vEKhUCjsC+xpe6Ao4i27Jsv58VI6SVxN4jbSYGp2/tfeJFIyD/Qi7Uw6o5ZGbSra+oJaGv0h1kZfNu3UlMaZnyUtJSwynVibrA+96FFGiln5J0+e3NUu3yba2ak5RxKkHTtz5kzKmLG9va3Tp0/vaBsRGwy1aErAEfmtRa1Zn+wayy0yP8Lb3/52SdJjHvOYnXvtHpvDJzzhCbvG5Y477pi0kbmnjAq1eYmsA1neHaVzbx3I2HEo+XtNgxvLXnfddZKk22+/fdd5k8B95N8999wjSXrqU58qaTkX73vf+3b1P8rdy0jlI98N2Zp6TCsWHd5j+bC67H1APyz9Pv4eGw/T5N7xjndIku68885dx33OmZVr2iBZU+gTl6ZR4fadEbiRpYek+PzeIxGnb5LvRP9MW7m0ft1777272hpZzrwv34+FPYtmQYkivWmR4zPh+8VnsMijC4VCoVAA1tLwbBNPA+3HUs5lR5ust5vb/5blb5IAJTqTVCJ7Mu3R3BYoyjnjpqfcvLbHG0n/G6Vcr+ExH8nKZ7SWlwapSZokb1ITxz7KTTNJjjmJNt5ee7C20ddl/Yg2Io18oL2IqWEYumwi1t7Md2tlm7Tp/zdNzng3Taq86667drXbj5NpdG95y1skLdfOR3/0R0tajrFpglK8pY4/HjG6eK5R33f6X6MNMrNNg62tpmH48aQmYWPD+j72Yz9WkvTa1752515bm1buLbfcsqsd733ve3e11deXsRxF0dycf791VISNjY2JVcU/n4y49M+SvzbKUzPN901vepOk5Xybpcl8Rn7dcYsaavrWZ7bD35sxrEQaF7k5uSEvI4Claf4vxzzKY+PY2ruWcxNZyWwszGJg99p3e769r59WDuZx8/3jr/G/KcW0UigUCoWCQ/3gFQqFQmFfYE9BKzQFetU5SoD035nkKS1NLmbSpHny+uuv31WWNxOYI5nbttBZ7VVvmnZI5hrtxp05fDN6G98/buFhKr2ZBaJgFgYE0cRp5hYbIxtDaWmCIeWTXUvTra/PxjOj6PLmFobez5kVbJsXKU4mZ9Iwzaxm1rHACmlp8nnsYx8raRnoZCbNt771rbvKfNe73rVzr42hlWvjZuMUkR6bqc/MNauQCGRrhSkG0XY+TCnJTOkRRZu120xKdq+F29vYeNx0002Sps+kjZWZNL15z0DCeJqronQYpuhEMFcKA7iiQB2SSPd2oreglL/4i7+QtJwz67u9F+w94UmWaYamSTGqj+ZW+7Rxi8gdON+2VrmLPIPafPkZIXP0vGYkCPas29hYO/y7klST9jzdfffdkpbP1ZOe9KSdexhQQ/cFTbj+/96ayVAaXqFQKBT2BdYOWtne3p4EfXjpkiH9dDAy8djDJIAsMTdKerX/Kb2Q7DgKpqBUwbI8SA/FgA3SAvktbNgf0w44Fj3KHftOJ7KNc+Q8Zj1M6PZttLqpfdKJHNHIrUL91VrTwYMHJ+kIPWoxG1vTqqJNNW2uLDjFJFAGSdlYmNQpLYMTLEjKxsW0l2j7GFujNj4mnfcImmllsH5wvTGIyddt95AkOdIoSRpubTENxdIU3v3ud+8qy4+BrY33vOc9kpZSuo2faYm+/dn8R5viMsCllzxsxOPUXH27OcYMJrHjlmoiSbfddtuue02bJek2U2mkqWZqa5TpRN7yYvNNOkRq+l4rZFqCzS0tMT3qP76boqR/A2nAbJ0z2JDkAr79TPey8TXrgH+/3nzzzZKW7x2+H6gB+mMRocEcSsMrFAqFwr7A2hqeDx82ySAK32foNSl3vERnUqNJLfSTmQ+C4da+nGxL+OjX3+4xKZVktD0SX36nNhJpoewPJe9IS2P7M+LnjOzZg1q3SfHe/s6tcpi6YGVEW5f4cOOsHabhZcnW/hi1W5PkSEbs/2c6gPnyuA69P9j6z3VlSdb0sfo22ic3t4xIg7lGmLBPjcVLwKTGIkVWNP/Rtl3SUop+3OMeJ2nqW/FtMD+p+bmsTJsDvx0R22T1cL1HycPe+tDbWurcuXMTn260DvgcWrutvaZl+Haa5kuthdahiKiBqUa0evlnjDR01PCjzaNJLMC0AVLoRSkNNv60BpCezreJGmOWjhOlp3B7IPrK/T22nviesXu4zn05foOAVenFSsMrFAqFwr7A2hreww8/PNGAIhswI2iooXjbLyMsmSxuGh4lRmm61T3t1J72ykCSW7vHJF1GJkXlZ/1lX/w9lELo3/QSMCWpjJQ28q1FEml0vEcPlWlqfuy56emBAwdSKd0iNElRFkVpkjbLzx3bxnK4Qab5X5jc68+R/Ng+GQHM/6Wlb5B+H38d/ckZtZwh8iFTG6T/1/s4aO0grZ9da5qN+SH9NYyO60WF2rVmqeHzQ61BmibhHz16NN1c2Xx4kb/SwHbamNp6oM9VmkYDG6wfrMd/t3qsT+ariyjzDIz0ZiR2tPE0NSu+s7imfL2M3OS7IrIeZRGcWf0R+TsJ/Q18rny5dozRtoaIJCMa4zmUhlcoFAqFfYE9UYtltEp2jTSVFOi7i6RmahUZgXIULcWysjwyaRoll21R4cuOtt/xbaTUHpHUMsqM9fkyrE0cv17UpGGOrNrQI13lnES+18yvmZW3tbU10bz9uHJ8THuipNrLNWLELdeb10yY72n1ce142DFuB5SRpUvLOYvy7Hz/etHBzMdbhcLK2sItX+y4ab2+PVyT9IlFVp1ME+J68PWQMP7QoUOz0XYcv2hj3mw7HVKP+f8Z0cktpUgFKK3+fPo2mnbJMcwIof39XMd8/qnFs+6orRHxfDbP3GjY+hnFOdBPz7H3728+R9mWUlFea2Y566E0vEKhUCjsC+yJaaWnmUQbLUrTqKzeJo7M0eL3iISWfiluteIj0UxaoQRPicv3IWMpmPPH+DYy0tH7Mf11Hpk2wOg9P5600VPqjNo+t8UGpWB/v5fCetLW1tZWyiDj20d/FSU6Py8ZaXCkpbM+amcZW4rvM3NF2Y6o//QZMyqPGl6Uj8mcLfqdfYQv+55J5RGps40jNZSobYbMktBjI6JG3vP/8l7W6+u2saZGEjG6RNGeESJthv53rqHIGpX5+xlp7NuYrU0iilamdkgtkOvP9zEjc2Y90fuAbSL8mNAykW1sHGl4Wb09lIZXKBQKhX2B+sErFAqFwr7A2ibNyEkZmXEip60UBx7QZEWC6Z5JMwrpl6b7hnmTpoUqZztpm/rsVW/u75chMoMZ2H6ScEcJzuwngxcis1RkgvHfozGL9ovr1e//j/YcJFprofnStzsL22eb5srxbemZyTLTDpPHvZmIARk0U0Ymfa6nzAwf9YVjQZNwlKzMIB/2k2WsYrpnIFRE/hCtRX9vFDLvx6Q3VxcvXpwE0HhkBNw0Cfr1yzXC57/nriANWGZ+94iCknwZEdgvvkM4Zr6NpDTkNRFJAikgM3LvKFiPJto5knQPmogNc+Zmu6cSzwuFQqFQcNhT0MoqgQeUWhlw0EvqpgbEkN8I1KwYrOITkin5kD6HOytHfacGS4kn2rXakIXV+voYrBCF52agJEWHc5QGQo2FEnHkhGffexQ/rbVdIeGRhJrRQ2X0bdE5BgREUqwhI22mJB5JpJTgLbE5SgBmMFaU4uHrj8aEc8Yk/SgcnekV2ZZdETiOUSoAy8nWbKT1MKBqLmjFtyFqfxa4YGVGz3JGZTen+UfnDLSURCTi1GYYrBJpTSxvjhjal8t6+V6I+sVAq1U0yoxAgWX4dxjvyX4/PFax3mQoDa9QKBQK+wJraXhGD0Xtxmtrme/Jl8Hr6HPiZ69MSvbcgsWSib2ERw2SWkxEit3zYfh2mBYTJanauVUSJ+mjM1Cz6EnplDZ7tGGZ5NaT0um788TiUVuuueaaibQcJUxH5N2+np5mSn8RNaFo7cyFfEeJuSSCjjbgNGTjzv5EvtW5tBeu4ah8tjWzvkTtzzQ7v17ok2RbI0mcx+Z8eL68yMqRaa+ZxUKaroksjD8iIuC1JE2ghcFfQ80q2z4qagOJxrP170FtLbMW+HOZPz1KT8rAtkX30JJAiwI36fblZt97KA2vUCgUCvsCe6IWM9Am7MFf7IxuyF9DTW8VKY128GiTUGm35DpHPhpFTVJjyOzIVq+XOO2Y0ej4jVd9mZEmYRoqbffUCiI/6hx6voIs4TmK7CSRboSNjQ0dPnx4x6eaRaxJ81Krl7RtXijFzkXt9UDN2M+L3W9zaW0hoUJEqstPRnRGEXHZWNg1kYZHoudsayGDXy+cl8wP48FxyqJq/XG+B6644op03Q7DsEs7iNZOFsnNuiMaRFqJskjraDsi+vt7BBscn0yD9BG31Pr4niN5fpQITr8ciUM8snWWRcP3tKvMtxv58KgpZ5Hm0T2raJs7bVr5ykKhUCgUHsVYW8M7f/78RIrtaRRZJFqUL5LRJ0URTwZqHiScjrQOblfSI6UlelKob4fXMLkZJTeJjHxIftsUaRltSjqkSKru2eg9Iok7y62MosA4XnPUYhsbGxOtMJLWs8iwnnZhn1xLPekv8/vYJ7ewkabbmNB/FWkzGaUXNQvSOUl5nhfnyftC/caYUizJ+7Ii2iZqH9TiogjJrH8RrF/2nMz58La3t7vaBjUr63tG2O7bzfdOtg1RRPlFiwFp3SJNn/Rc9myb1ubLzEiVs5zRyJLFSF4bcyPFjnKiaTnIfInRM0m/nKG3Hhipz0jWyKrnf0sqD69QKBQKBYc9+fAYieh9Kty23t/rP/2vfcbUkTE2RP4q5jb1IjszEmXa5VdhL6F2Fmkj2RYv3J4k2gDWztlWLpTwIq00819kuVURsghSP/aRj6AnabXWJmPbI8rNcowizTTz92bX+WtZD4moI1+nIdsY2MPmzpD5KaItbKjNZAxGXovj5rAZ0XVP4s7yo3radvb8ROuM185tAHvx4sWJL8o/L9SAGV8Q+et7pN2+rCg/k2Nna4Vz6+ulj86e5fvuu0/ScuNZr61zU2Lm7FmbLA/Ur09akEyjs3ZE99D61ct9JrI8PPpXI78m54eRrL5s9r3IowuFQqFQAOoHr1AoFAr7AmtTi3nTQmSK5K69VDvteOZI98jMJ1GiLIMhem3kPQY6nL1pIaMUy8xivWR8jkUUYMPxszaTbi1ysLN8jgXNP1E/DDQFRom73nSVmTQ3NjZ08ODBnXay/SzHt4XmtIi4OCMpoGk22kuPaSpm+okCX3gP64tIxrl2bA6tHpqePEiJZeZOBmH4dtCsxntoqotMtj3zIsF1ZehRgdHk1zMJW7Acn8soVSFLLeilQ3GdZXvdRWuHc8rnM0pWZ8COmTaj9B4zc9onn+lViM45z9Y2S3nyJnTOC589tjEiciAYHBS5JLiOs/5F95w/f76CVgqFQqFQ8FibWuzAgQOToAsPOtkZRh/tkj5HX5SR7/pzTCzNEo/9/z4kWtpNZMt6eqTIESK6HobOM9AmCsahttbbIoV1U2rubUPDY1nggac9osbVcx5vbGzsaDS+P5G2nvUtOk5Jm4Et2Q7O/lpbk5z3SEq3EHJuKWXSci/w4Oqrr95177Fjx3a10eb25MmTO/fef//9u9rCHd0jogOuK4aY2z2RlM61yOcnWu9Mf+FcRM+3jbVPks+epWEYdPbs2UnKiX8++S7KAuAiikF+5zqMNGEGlWX3RDRxnAc+4xbEIi3TYKjhsR2RpYeakI2vPYfWNh9UxVScLKE/Sg3hM52R5kfgGsqsBr7cVdOhdtWz0lWFQqFQKDzKsbYPr7U20aairTdMasjC+KNjcxpepJnMUUhF4eiUqIgofDbbGJPopU7Qn2TaEiVx//9cEm82dr7ebGsPD/o6KMFFGzRGRNlzkhZ9aV7j6hEhS7EvJesjfal23GsCvIYaPn260tR/ZBqYaWXWRtPepCnV1zXXXLOrXOsvpXn2VVpqi5k26u+hFmL1MGTfj3dGzdZLS8gIDuxa02T8Osl84hG2t7d15syZHQ05Ws+9d0TUtuhaamVsY6StZe+biEyC7xv68Eyzi7Yyy2jIqNlF4fu0DvBd4kkySNFnyNZFhMy60rMsUUPubXTLvpYPr1AoFAoFYE8bwGYbJEpTPxW3xolAqagXseXrjdpAySdKoCQNDyNGaWOXplIeo7J4nZe4s8gn2tajhExK6ZToIq1tjiw4wlz0aU8SNwm1F3k7DMOuKM6ePzZLAM7OS7k0GbWD93Ad9JLJTUo2KZxUY0xal6Trr79e0tLqQc2Rmn7kUzO/X0bUHFkHrFz69Kgp+35mWxYZekTxPT8f6zF4yqyeFWN7e3vn2ab/1LeXzx+1tuieTJtdJfmZc5ZFfEpTvyutT4yq9dcw3oA+/UjDs3uMntDGLdvOyZdDbZRWglXI2KmtRfPPtvC5jYi8GWU8R3ixq00rXVUoFAqFwqMca0dp+lyqng+PuSb2ST+JNM1divLE2A4Dc1u4tU8UTWSg5NPbpoUaCaOXeG8UfUhfUU8yntv8dJ0IKKLn08uiGnvS4KrS1Vy+F6M+swi4SEszZBJoJNVyLfIzIlc22DHT5Ex7s09bW/5/uzajMvP3GOy5of+Fmox/nuhvzaRnPjv+mizC19Cjh+K4RfRUdo35K3vr1+IGbCwi32rWvp7vMYqOjtpPCjJ/bzSG0nIs7N0i5dGLds1NN90kabd1wPx6jHg1ywLzMf282Xoyn7F9mlZt0Zp+fjLLURRV7fvfA/1/vUjfiBia91Db7EWsT+pZ+cpCoVAoFB7F2FMeHu3HUbZ9tpVHLzIsy4shIrYPlm/fSdTq76c0a5JV5AdiG6nZ0e8TRSKxLEYQRmwwc1FRkYSVbcS5ioTFNhoigt2MoDlD+//bO7sdya0jCWf3tAYzgGFYkgewoIt9/8dawDAgSII88kiyZrqq9mIR3dkfIw5Zs9gLuTJuqruqSB4eHrIy8ify7m4Tw+vWZWJ0q+aqtHxTHR4zL/t7fKUF2dUr6I2Qlczaum7ZM4bLsdGz0Zke4y5kEmKUrj1QstZTBmsfA5lREljvf++tIcfIunrK6n5/fHzceJT6HKd4OMfm4nAcb3qGue+yPlVz6rxeGq/GwmbIFHmuer6+zOBkRrOrhdW6U3Zr32/V85rp7yevHc/3GlYlrHIJuH8+95xXr99HRz1cw/AGg8FgcBO4muE9PDxsspectUcWmJoqpuP0V8atXJYm/2dzRfm8+2fU/aQSRrdIFGfRq74jK6lb2FU+zqRtmc24YoXM1tyrUavKmXx7cRI3fip5rOr99vb/8PCwieesYmocv8v2SmyF2bnuOrkGr/0c2aiz6mXmbt+W1qvWXd+frHVX09jH1udI65ZtYY60JSIzZo2VawHFeMvq3uNxUtYjWUjV8/z0/aW1LS1N1v/2tbMXs3PnurduV9um5xnnzTETPTu+/fbbqnpeU3we9WPrPc0bvVF8HvVtv/zyyxefaUzunuBz0+l7VnlVJN57Tsmnj6t/Z6Vqw324zPujGIY3GAwGg5vA/OANBoPB4CZwtUvz1atXT3TWydDQBbLX+Zzb930IK3qbWmAwXbi7ohiQTZJSnTL34Hp/pVvMJYakAPqqS7rARI5UaOqKlfn/KqmA4+b8aU66C2dPzonH+uKLL2Krkqrt3Gp/7noIqTyESTGrayq4Du48Z7rTND9yPVL4oGrrymYSS7pHqp7T9rV/usNZzFy1dY1SUiwlpvT97YmWO7EJ3gO81n3uJbatz/7yl79E9+zpdKoPHz7Uu3fvXmzjxpCEq125Be+/9BxauT4pWaf/WabSz5/ycyoXUAfyLi2n7ZVY8uc///nFPijK34/H9lN077vnDsuuuju/Y1W6lVyZgpvHlKwiuN+L7uY92vV8GN5gMBgMbgJXS4vd399vgobu1zXJj63S7FnCsMeMqrZWJBunOmkatkeRFSOrk0H4/ndq2spGrY49EakQuIPnRwbjCuuT3NGRAtBknR8Ri1WBcMLlctkEp10CiizQVATvAuVkemTeTrYpJeqwpMVZl4nxkE3174qlOfmxqi1b7Pul5BOLsJ0cFcecisrdOk9eAVeWQElArj8nCs5kqK+++ioyvPP5XB8+fNjI+nX2wbWRPCNHEl1SgbibJ0omsomwE6AgO3NiHDyO9qc5pBAB752qLEfHMphVwptekzjIqtSEzxvnjeK2/N+xUH2mUo2jwhdVw/AGg8FgcCP4rBgerQD360trecW49BmZ156l0EGrSYWgPG7fL1khZdB6vETbdOub36nyBdUpdrYqG2AMLbUBWbXPICvk/DnLTqDF5RgZt1k1YlTx8KqYNzXiZVzGCU4nIYAUN+vnyFeWI3T2vNe2iXGTqmcWkIq5eZ36mlIROks1Uluavv+9VHLXbkng+uJ5HvFgcKzyoFRtWya9fft2WXj+6dOnp3u6t17iGBJLo0eknxs9CJQnJMvp73FO6WnoayeVFq1EOeix0D5YSuPuzz1Ba/3fz4vPCD6jVoL3yTPnnhNCyn1IXoqq52e71tPr16+n8HwwGAwGg47Pag/kCjEFWjFkeIyPVG2tJLIyWn6urTyLyWmddwuAVhjPQyzO+eyPtJDh+7SSODcuppYEupnR51h2amx7xApKzGWVfdq3WfnT7+7uNuNfxR4ZJ1kxvJStmVozuXPjubsiWJ1zl7Xq3xEj6yxEmXOMg5CFUK6sj1eMkUXcrgg3rWvO0Yptcy5WHoDEXMgku3fExcLT+pRogYqh9ermKbEaF5dLbCnts2NPHEHoAgRJ/jDFy6q2rYQYs+Z92u99suj0vOn74Jrg+krPlo4kC3ZEoo3jEPoYtY763A/DGwwGg8Gg4WqG9/DwsLQQU0YgmVi3qugPT1lSTthU/lxZQvqfjMgxE7E0WnjO6kgxk5Tx5hgeLV5aQt2KIcvQ+dGiI8Pp+0sSUs7iWmVudriayyMNZmWlr47H+CtjWi4OJyRmd6RGkNchNQLt+2eGncbkhHpVZ8XMthRr7UyIGasCrXaXNcl1wJZGK2FerjPGwhwr4Loik6EsWz+vn3/+ebcBrOrTxK57rFPnxPt91XJs5anid3k8eR30PGPNo2rq+jnrump98zngGigzZyBJbzH/oer5Gch1rPlj7aDbr3CNjBefn6t2Przm9Ba4hrT0evTGAHsYhjcYDAaDm8BntQda+XOTv5YMr1sMsk5onQspLtg/ozoGx9bHk7IBqZ7iMu30umIb/VyqspIKz6v7+2m1uAa2fRyOmSVrycX99tRuXFbWEdHojsvlsqlbdOPlWnFtbNIYkvrLavxJjcM1GuX4tW2qrevnwWxNrR2tf9d6hYySXokUO6rKjJ7qIN2qd9mF/fiOKe8Jw/N69v1rLL/++uuyBdanT5828+SYGdlzEmHv76UaSl7r/lziPaW5/PHHH6vq+V7u97Fa+/De1jhc9qmOrf0xW5O1m/38+Awkw+Nzr7+XYni8z5zaDb+T4qpuGyr7uPhwep4ewTC8wWAwGNwE5gdvMBgMBjeBq1ya9/f39ebNm42LwiVbCEwEcOn1clXQxUIXnCuY5v6Ti7GDLs0kCN2DyNqGbq5VgoOQElvSPqq2FJ/FsKvj0U3A1PIkG7WCS1DhGFa9Di+XywuXppObSvOS3LlVWVosufHcHNNlynlZyWgl8V7nJkylDHTzdxcTEz7YAV1wCUEULeC95/oBcm1w7bprsZcgwn5vVd5ltRIt+Pjx41LsmS7M9N0jUlh067l7jeckN+V33333Yt/v37/fbJMk5QRXYqKEHbk9WbbEvnl9/HKHptCGEmyqnsWp6TqnC/2oYHzflufUkRL5nHAIr9sUng8Gg8FgAHwWw2NX3P4rz8JyCkwzKFm1lZdZCUxzW1qcTGFfFT2S2cl6khXdt0nFzyxIXwVUKe1DS7JbQvqMackMoLviWFq1SQTXWUWpWNlZ1dcUo6osQfO0knzjuJkg4hhJP87qHF15Ctlh6mLeP9N6YAG1Cs87KADM89F606u7n5JosPbhUtop6cVkGTdHexJPKxFxehLonXDbroq7+3fevn1rnx0C7wsKNbv1y7XCbTjefi+K0elVQsbsFN7LEpJYvPbhWkClInHOLcW4+1xobpRQw3l0sl1ff/11VW0FqLl2ung272ky/9VzZ9XurI/ZjeXDhw+HBaSH4Q0Gg8HgJvBZZQmMZ/VfX75H+R4nyMvYXZK3YVpt/26SwnL/J9kpWiIuPZxWH7dxIrXEkYJMtvtI8kArq5lYMegkKMwxrsSjV7i/v39huTr2qbXRm1hWbS1GFx9L7URWDF8ga2d6umPPTA9nzMvFishY0/z1tZwYqsbmygUoUZXGxpZWbqzESnicayiJJbj97EnSvX79esNqjhRM89z7c4drm0X8XEOdrSVmR6EItg/qxyFrd/J3jLeyaJ1z3ueB8mf6rsYqRtnvNwp46Nz1HXp8XM4E1yw9Jc6jwP/5XHfrzeWQ7GEY3mAwGAxuAp8lLcaMtN72g7++tLyZmVa1lTpKflzX7FJWDEWjyTCdEDRZGS0ily21l02kMTqRWoGNRVdxP7LQVJDZrajkQyfb6fPL/TFG6FrJuHhfYi339/f1pz/96SnbzLEcWZyS4hJo7blmp4wFMRPNeQIY96LVqs9dFjLZAFuWOPaR1hclt1y8QseVde7ifQKF2lNM17Eeso8UW1kxshRrc81Qe0YggBHEAAAST0lEQVTpKkvz8fHx6b5xsl2KvyeJPMZnq7K3xrF0ng+fN2RGWsu9mJzxN/2v56hjxIzNsWg9iTVUbeOJqZVRh76rOaZnjvJ0HS5O2rGKGfN/5nz073EsqwzfzRgOfWswGAwGgz84PqsBLDPtusXN7B3KATmJnxTjoAXG+EV/j0yEn/f39wRyZUG4jC5mnVLo2FnAZFgCj9PnMcUZBVrxHRwj4TLjUs0RGeRK3msP5/M5yg71v2WZyvJlQ1bXFiadm2uMKaTrzziMq20S9JnWAevy+nsUnE4tfzpzSZJvEqmmEHAfE+85skWOr/+drHXHoNL9xHvBNUVeZX0K5/O5fv3116djan0oflb1PJc6Btn7qtkts6c1f0lmrR9PdWvcv2Mz2kYZkMyedfcY30uSic4b4dqc9e864XGOX8fTnKd61/5ZqoV0zwnG6DjXLjap54Dmb+UdIIbhDQaDweAm8H9SWnHiuvrVTfU7zC7rf1OJIMUBO9tJVgUthVVdnJgERav7PhhzSJaI4LIZKUpMa7Nb6Ywrcq6pmuHiC45N9/G4LE0yVcdYuM2RWqrHx8f68ccfNzE11/ZDbEnXJZ1H3yYpQaRWSe491kUxLtPHoO/KimZs18WMU5asxk6ln6rtddeYdZ+5bEDGahk7FFZeAoFjdao6q7quvo8+J1Qo+eqrr+L6eXx8rB9++OGpxlGs9ocffnj6jt4T8+W8rWKdQlrPLt7M+lvF6rhWHVvjmBkvWz2rqFBE1t6PwWdtWm8uLp/mgNniHakZLtfuKibOnAuXFSwRbr3e3d0NwxsMBoPBoOPqGN6bN2821l5XIEh+e+r7datCVh4zglh3Y08APmX6p11rD8YnmP3paunItJjFyH11FsrjibnQmnIxDrJa/u8UHVIdIz9fqU4cqW3Zi592nE6nev/+/dO4Za076zLp9bmaulRDmerXnGXKdcZWK3199yy4fs5s/bOqUUzfcc0uabkyo1lw7CPpvCZ20N/jGOkBcFnI+g6zkB1j0Zzq9fHxMTLN0+lUP/300yaDtEOMVwwv6WO6Z0nyBnCO+7aM2SWG189JjE73qmLRnLfuTeHcUWlnVYdHNnbE6yVQT5jPNRe3pepQYvp9Hhmf5zZUtKl61hXt9ZjD8AaDwWAwaJgfvMFgMBjcBK5OWnn9+vUTfRQ1d4LCoutMkXYBYLrl6NJkkWd3FzJpgcWjrrgyCcquCt+T0CwD0S6Rh2nnfHUpviwH4HFSaxMeu3+WkiXcZ3vuHTfGveSHy+XydI2Vzu2C+nTTrALlvIZ7ZQr9PFhSwHXoZI2YHMBEp5V7mmOm68dJmTkpvqqta91dn5RiTqxc2+kcuouJbs4UTugCFVy/j4+P0S11Pp/rl19+2cx1T9RJMmZMoOhzwDKQ5IZ2zxAmfjBBxO1LY2CpFls+uaSlVP7CZ9bqnk7PEic47dZi35draUa3N8WrVwlPXL9Mautrh/fCVRKHh785GAwGg8EfGFcnrbx+/frJQnEWWSqUZlFv35aWofZPxseWQw7cl0tL5ntkAbIqHEtbSd64//t+kpCx24bzx0QD7quPlTJkZGCOFaYC7SQK0I/TP1sFjy+Xy4a9uwD90WLyPt6UtJJEv/t39KoECso3OdECshda2C6xJu2DyVpOKJfXhYzGiVWzGW1KG3fFw2RKRyTmaK1zzfa1w3VwuVxi0tPpdKqff/75aa2wbKVqK6O1KjQn0j1FD0aX00pyhExacc8dJWwprT6VAvQxkdG5/fN/Mi22knLPDs4Bj09RkH7/JiHwJPBftX2O8t5g+Yo71zdv3hwWvxiGNxgMBoObwNUMrwsEMzW/6tkKYnsJWvQuxZe+f+1D1pv27RoksnAxFVn2cZMVrKxB+olTTMWVAjBmlyzglTBzksFyMRdaS0dSmMkCaf2tSg76dVsxvNPptImb9GuZYpw8Z5dGT8uU7XvctWXBNNeOEzrnWtEYFYdhDKRvk+I7KX7h3mMM3LXKSen7mpPUzLjvh3O9amWVGF6S0qvatrlZ3XsqaWH8XHHgqi0757hdTJ8eI14fzs9qrQpcj/05wevK+9PlKDBf4sizimNMYtEulk+k557G1a+pvqt7gTFj592jN42tpSht1r97lNV1DMMbDAaDwU3g6vZAr1692mQXdmtWv9AUxl1ZPimWoVcyPNdWPmUPOas6CRjTIu5WVNo/Y0YpTtc/o+XlsoxoyTP+tirC5VhXMQKB+9W8Kds2xWarXlpjK4b36tWrp/3KEu/NfHUMvccYyip7NlnaZHpOTk2vOlfGYVYWKb0SFAjo4PVOMnguvr2Kg/Qx978p1ZcySvvx9orU6aXo46e3ReMQ+1LBcH9P12e1bs7nc/32229Px3z37l1VPcfAqp6fFXrvr3/9a1VtRZVXQgfJi+EY3kpMvb/v4uSUWaRIhxMe4D2czsuxdbf2+zaOKXFukteoIxWlax8uRs050NrR+nBZmmwTpgzwIxiGNxgMBoObwNUMr2prTTtBXmZU0TLs+6AQMmuPxPBYe1T1/CtPK5nxRUpC9bFoH6s2FsnSSVmMrqZub9sO7ifJhDkWwv2nOsN+3cjs9trEuG32MjT7NaJgeNW2HinNufMOpGxMxnD6tqyZS/Vw3bJ368ihxxxo4XL/ukdo6bvz4T6dEDnvE8rikZ2ssvQYK3ItjCiJxrUrZtcz7Y7ELfuYHh4eNg1g+zNEzE7Hev/+/Yvv0EvQzzvVj+616HJwa5SfuRrE/v6q3nRVQ9f3UZXvy3R/ue+u7r0Exr5T8+wO3iPMzuzeAUHr7e3bt8v10zEMbzAYDAY3gasZ3vl83lgbq6aKKSbgMt9SdhzbxjjFhqQ84uJk3D8tHdcKhyyJVhItSBczTL5tZ/HQOqMll1icGwPnyLEhqj8IKWZZtbXGTqdTZHl3d3c2htfjsQJrwThfbtyMR1DM2bVeSe2amHHb1zc9Cim24jJg9RnXDDOXXYYv1x3P07XMYkxUsTyy9iNC1ymDsYOxIq0Lx/CcYPNq7XzxxRdP8yX23Of4H//4R1U9i0eL4WkOJO7cx53aTjFmp3H1TG+yspTp67wR13hRkpcmZXw6hpcUpegd6efO/aXmvv1+otdmT72p/01Gp/fF3Htc07VxmxjeYDAYDAYN84M3GAwGg5vAZyWtCHTJVG0DlXTBiJquRJ2ZvMJA+arXHIWGXeot3XRJjsx1kU6uWrojHMVOAeEjSR9MBEidgd1+ktu3Jx5Q4odJP84dQffHXlnC3d3dxqXZ105Kb0/XqZ+D9ifZpnS9+vh1fZM7vI+bY6Tg8Co5gi5kujS7q4zbpnILJlS4xDF9pv3TvbsqaeFY6B5z6f0soGYxuCsJOeKKYsKTEyH++9//XlXP11+uTQpPOHca98tX53Zn4T/Pxwk20A2aSrZ47h1M7WdYZJW8sXIZC0zu4v5WY2X/yNQXr19LFtbz2S/XdEcq7zmCYXiDwWAwuAlczfAul8sm3dmJ+TKIT4birCYhMbxVoWQqlVil/JN90iJx1uBeix9hVdqQBF+d3JpAFpiKst15ku26lhwpOSVZ/KvzSTidThsW14uHv/32W3uOK2aq9SWrUoLCXCsurfqoTJOTCVulWFetC465L46jzycTasggVm2wuGY5VnoL+ns8T47VtXgRKPru5ojbrK6BCs/TvVb1XKqg5JW//e1vVfWcsOPGkkQjjjDhJG+1EmjnnDJ5xQkrpHIAXhe+3z/T/lNZxepZlY7jCs+TF2pVzsFSFkGJSe66pUS+IxiGNxgMBoObwNUMT+nlVd4CIoNjEflK+JOWFJmeQyol0BgZp0nn1MfkBIATo0tMop8L4x+cC7dNkkwTyApdjDLN20pmi8wlFfS7z169ehVT3BWHocXW2VqyjhPb7ecoC59SaKtyEYFitynm2ffjZKD62Fz5Bgu+OX9OkDixDTK8znr2YpFcb46F8PqTLfYSA7FrgtZ7/16P+1b97/2b7tHT6VT/+te/nu5xjUHXuuP7779/8fr1119X1TNjcO2tksgy15+bJ8KVpXCbxOxXsfzEzlla1e8Nnldiax28BxPLXYmyk9mlkoaqbeyOheZO6GAVY9/DMLzBYDAY3AQ+qz2QfqGdUC6tJjZzTa0qqp5/5cnWmHnZZZsEWiAr0dgEjq1vQ3kmSjuljK8O+u6T5FfVlm2QOax87GRPnD8Xo0wF5yvrifvZY3gfP37csM5+3BTXoYXoWq6Q6TFG7GK6LOa+pomnO7/V51VblpQyPB1b55pJbKS/lzIhU7Yo99O3pSeh34NdeKBvw4L6ldzWqvBca4dj6OPmGL777ruqqvrmm2+qquqnn36qqufszT4uFjIzlu+YMJ8nOq625fOug+suNUHt55Vkx1Jsj+Pt4FpdMcq9OKdjlDw+x+4yVzVfLDR3LJH38hHJN2EY3mAwGAxuAlfH8B4eHmLsoWrLOFKjxJUcGffBdidOloz/6zvO0kqW5F7mXdV+ZuIqNsl5o3isE1dOMbUjdUw8HuuzXH0Zx7SS5iIDWrGb8/lc//73vzf77ZYbpYloebPOq2pbzyfZOUqLKd7jsvRS7ZRrAZPiY4mBuW3owWDNo7PMOccrVpjaKfH8nIQe2R+tdFnePYZHuUBdY56Xk4fSvLmx9P3//vvvm9yBHtehEPc///nPqnpmDGJ4TmQ71Rgmr0o/Hs+RXqq+vlOTat7jfZ7IXIWU4dlBRpxaVzn2lNpQpfq8vl+uP3opXP2vYnZ6JXvr4yHjvr+/PxzHG4Y3GAwGg5vA1TG8+/v7mG3U/071O2zF00HLgMK5jhUy7iOLi22J+hilukDfMn3qq/NiNlaqX3JIdWbOiqE1yAwox/RojScGtqptSRZkvwbc/8rKkpW+YqQat65dqpPr17w3n616KSzex8QMv6rMuHk+joWSkdBKJzvtYHyR2cEdtGYZZ2Srob4/znW6b/v5Jcua8WCXAZyygt0YeQ+sBIAvl0t9+vRps/ZdLFfzpDUkhieG39fol19++eIcOTbe486Dwfudwt0uZrynuOSuR3oOpGvckfIYXHNsHjetFfdMZhxT8XTOUb9ujL2z9jplNPf99bySPQzDGwwGg8FNYH7wBoPBYHATuDpp5f7+fkmj6aZj0FvuRCc+mwpjWVzpaHTqmi6q7FKYWVKQCkI76J5JaeKdgtNlwGC1KwRPbk+6X13hcXLVcZtVmjjdOkfKE1ZQ0soqKK7x6Fr2ouQ+buf6ZcIE50luxJUgeHJH9rmlWyq5D/s+uI4oFp2+1/ebCo/p9u9jSvfTEUkmziP7JTKUULV1afE6uvKHnhiU1tH5fH6RtKL10BNnuLY5ThW9rzrDM+GNIgYuxLHnSuvb8Pw4pzqfPrepzx7T9leyZEISVFjdv1zvqQDdnReTlzTmXtLC76byMZeg5FzlexiGNxgMBoObwGclrQiuMFdg19tUbFu1DQ7TMiBL7FYFk1RcwknVy2QGpnIzoE3LuG9D1iGQFa5kiFIAehXgJtOj/Jmz7PYYrBPHZnIKt3GFrRybw+VyedER3XX3TkX2FIju2JNEU9KCzkdSU1VbJsdreET0NiWvOCbB/fKecKwhtZQRtG1njSmdPpW6uLWj8+O+lO7fWYhjcPxO1Ut2zXt8ZaWr8JyeCce8hcSmuhyZUuDTc0BjkvRcv49TcTo9Wy7hif9zrl3hOeeS/7si7D0mvyqKJ/g8cOUJZKpcD3rflWrQ26TzW5WiuaSrPQzDGwwGg8FN4CqGd7lc6nw+x/hc1dbfvYqHCbL8klWZCpA1po5kMXS/cfJZ01/ej8PzkUWdJHj6+SbR4FSI2vdLy5ExCjeviZ2lYuIOjj+x0759t2aTpa4YDeM6K4+B9q/10VsJpXPm3FI0uI9PaenaP612V6DPz5IQcz8O49ZMXRdWJSYpHd3FHVN8h5aw85jIkmbBs/av+ewxFcaRua3+7yyUDGGPjZxOpzgX/VzJmskUnLgD5bvI7PW5mF7/rkC24eZ8r8SA41ptk4QoVvd0kgtcSYtxLnidXK4Cn4ksHVp5snSevI9X3p2PHz8uvUsvtjn0rcFgMBgM/uC4uybD5e7u7vuq+u//v+EM/gPwX5fL5R3fnLUzOIBZO4PPhV07xFU/eIPBYDAY/FExLs3BYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE5gfvMFgMBjcBOYHbzAYDAY3gfnBGwwGg8FNYH7wBoPBYHATmB+8wWAwGNwE/gfxWT9oo+jPNwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bWlV3vt+e+/TVJ1zqupUCxStQG4Rc9U/RMUodggaFTsexQZFr9dwjV2u1ygBtWJQ1Cia5Go0qJeIDWLUqNgHAfUqEs21QwGlrw6qzqn2nKrT7Xn/mGvsNfZvjvHNtfapkqfY432e/ay9ZvP1c67Rvl8bhkGFQqFQKHywY+MD3YBCoVAoFP4hUD94hUKhUNgXqB+8QqFQKOwL1A9eoVAoFPYF6gevUCgUCvsC9YNXKBQKhX2BB+UHr7X2tNbaq1trt7TWzrbWTrTWfre19uWttc3FNc9vrQ2ttcc/GHWi/k9srd3YWvug/QFvrX1Oa+3//EC3Yy9YzM+w+HtmcP7xrbXtxfmvcsdvbK3tKW+mtfb61trrUceAvztaa29orT3rIvq1p3XnnocnrXDt0Fp7CY5d0lr77dbaA621z1gcu3Fx7f2ttcuDcr7c9X223oczgrmO/t71INV1eFHetz5I5T1pMZePDc7d1lr70QejngcDrbVPaq29cbHmbmmtfV9r7dAeynndYgxf/FC003DRPxCttW+U9P9KulLSt0h6hqSvlPQ2Sf9J0mdebB0r4BMlfYc+uDXWz5H0sPzBc7hX0vOC418m6b7g+I9Letoe6/qaxR/x0kWZT5P0v0k6K+k1rbWP3kMdn6gPwLprrR2V9BuSPk7SZw3D8Ou45Jyk5wS3frnGOdgPeBr+bpP02zj2uQ9SXWcW5f3Ug1TekzSuq8kPnqR/Jul7H6R6LgqttY+U9FuS3qPxPf9vJL1A0n9es5yvkHTDg97AAFsXc3Nr7emSXibp/x6G4etx+ldaay+TdORi6vhAobV2aBiGMx/odjyU+AD08ZckPae1dmQYhlPu+PMk/aKk5/uLh2G4SdJNe6loGIa/SU69YxiGN9qX1trvSrpL0udJ+pO91PUPidbaZZJ+U9KHSfr0YRh+P7jslzSO6U+4+x6j8Qf6vwjj/MEIP8eS1Fo7I+kOHs+wzrMxjOwdK5V7sRiG4X/+Q9SzIv6tpL+X9EXDMFyQ9NqFRebHWmvfNwzDm+cKaK1dLenfSfo6ST/7kLZWFy+Zfoukk5L+VXRyGIa3D8Pwl9nNCxX2Rhwz09Pz3bGnLkykJxaq8ztaaz+yOHejRmlIks6ZucLde2lr7Xtba+9cmFvf2Vp7kTdDOZPb57XWXt5au13S+3odb609obX2yoWJ4cyiTf8e13xCa+21rbV7W2unFiaof4JrXt9a+8PW2jNaa/+ztXa6tfbXrbXPdde8QqN0fn1kjmmtXdNa+9HW2s2LtryltfbVqMdMaE9vrf1Ca+0uLV7wvfF9kPFLkgaNPy7Wro+V9ERJr+TFLTBpLvrwktba1y/m8t42miU/FNftMml28IBGLe+Au/dwa+0HF/Nw32KOf621doO75kb1192R1tr3tNbevpiT21prv9hauw71X91a+5nW2j0Lk9B/aK0djhraWjsu6b9L+lBJz0x+7KRR03h6a+1x7tjzJL1bUnjPYu2/cbH+7lqskcfimue21n6vtXb7Ylz+v9balwdlrTpHz2qt/VFr7e5FeW9trX170qeHDK21V7XW/n7xbLyxtXa/pO9cnPuyRdtvX/Tjz1prX4z7JybNxdyfb609efHcn1qMxQtba63Tlk/TKNBI0h+45/1jFud3mTRbay9YnH/qYn3Zev2mxfnPaq39xaL+P2mtfXhQ5xe21t60mPs7F+Nx/cyYXarRmveqxY+d4eckXZD07N79Di/TKCz8clLP9Yvn49bFc3RLa+1XF8/C2tizhtdG39wnSfpvwzA8sNdyVqjnqEZTxJs0Sqb3Snq8pI9dXPLjkh6t0Tz1cRoH2+7dWtz7jzVKI38l6WMkfZtGE+w3obr/qHGxPU9S+NJZlPuERXtOS/p2SX+n0fzwTHfNZ0j6FUm/LulLF4e/ReMi/rBhGN7rinyipH+v0dx2x6Jdv9Bau2EYhr9ftP0aSU/VciGdWdRzmaQ/lHSJpBslvVPSsyT9pzZKqf8Rzf8ZjYvyOZK2VhjfBxOnNWpyz9PyB+7LNJrE37FGOV8q6a2SvkHSQY0S4q8sxuv8zL0bi3UhSddK+maNc/2L7ppDko5JeomkWzWula+R9MettacMw3Cb+uvuoKTflfThkr5H4wN9ucZ5Oa7dwtQrNc7H52k0i90o6U4tf0wNV0v6PY3r7FOGYfizTh//QNK7JH2JpO9eHHuepJ/WKHDsQmvtBRrdD/+Pxhf9sUU73rBYq2YG/RBJ/3XRp21JT5f04621S4ZhoF+pO0ettQ+R9KuL8r5To9Dx5EUdHwhcrXEuvlfS30gyC8QTJL1KoyYjje+8V7bWDg7D8IqZMptGIe8nNPb/8zTOx7s0znmEP5b0LyX9oKR/LskUhr+eqeunJb1C4zx+iaTvb6P29M8kfZdGwe77Jf1ya+3J9iPVRpfUyyS9XOOau0LjfLyutfYRwzCcTur7Rxp/P3a1axiGe1tr79H4zu2itfYpGt9D/6Rz2askXaXRnXOzpEdI+lR13s9dDMOwpz9J12l8eF664vXPX1z/eHdskHQjrnv84vjzF98/cvH9wzpl37i4ZgvHn7c4/nQcf5HGB+zaxfdPXFz3yyv25ac0+pwe1bnm7yW9Fscu0/iD9kPu2Os1+lye7I5dq/EF+q/dsVdIuimo59s0LuYn4/jLF3VtYfx/ENfNju/F/rnxfYakT1707VEaf1hOSvrf3bx/FecVZQ0aBYwD7thzFsc/FuP6+mBd8e8BSV850/5NSZdqFAb+5Qrr7isXx5+9wvPwb3D8NZLeFvTZ/j55ledA40vrbxfHP2px/Mmu3ictzh2VdLekn0RZT9D4jHxjUtfGop6XS/qLdefIfb/soVp3aNO7JP10cu5Vi7Y8a6YM6/MrJf2JO354cf+3umPfszj2Re5Y0xjb8Ksz9Xza4t6PC87dJulH3fcXLK79V+7YQY1C0wOSHu2Of8Hi2o9efL9C4w/7j6COfyTpvKQXdNr4yYuyPjE496eSfn2mj4cXa+TFGMMXY7zOSvrqB2sdPByCPP5Oo4/lx1prX9pGX8Sq+DSNZpw/aq1t2Z+k39FowvoYXB+q1QGeKek1wzDcEp1srT1Zo9b2M6j3tEYJ7um45e+GYfg7+zIMw/slvV+x05r4NI2myXeirt/WKBlR0mIf9zS+vq7FX2qmAV6nUVL7EkmfpVEzffWK9xp+dxiGc+77Xy0+Vxmvl2jUlJ+qUeN6uaT/3Fp7rr+otfYFCxPQXRof/lMafxz+lxXqeKak24Zh+NUVrmXAyV8p7sfrJN2vUXK/YoVyf0rSDa21p2rUot/o15jD0zQKYlyr75X0Frm1ujDP/Vxr7WaNQto5SV+leEzm5ujPF/e/qrX2nNbatSv0abLuVrlnRZwehuG3g/puaIsIdI3r4JxG7XWVdSC5+R3Gt/ibtdo6XRdmBtUwDGc1WnrePIx+cMNbFp/2jH+8RkGOc/+OxR/fUw8mXqzRSvB92QWL8fozSf+6tfa1DSbxveBifvBOaHwAHzd34cVgGIa7NZoRbpH0I5Le00bfyuevcPu1i/adw9+bFuevwvW3rtisq9QPprCH9yeCuj8zqPdkUMYZraa2X6txYbKeX3Bt9djVx4sYX9b3CSu01RbxT2vUvr9co7R79yr3OnC8LLhglfF69zAMf7r4+51hGL5Oo3DwQ/aj3Vr7LEk/L+lvJX2xpI/W+AN5+4p1XKXxR30VRH2Jwrr/SNJnaxRgfnthyk4xjKbwP9Zocn2u8ghCW6v/XdM5/V+1WD8L07eZab9V48vyqZJ+Mmlvd44W7XuWxnfQKyXd1kb/WbqO2pjStKuN7cFLc7otqO8KjeNyg0bT98dp7PPPaLV1cGEYhntwbNXnel3cie9nk2Ny9dvc/6Gmc/9kTd8dUX2RL+1Kxe80SWPahca4jxdJunQxzpZGc7i1dkVbxlh8rsZI0BdJ+uvW2k1zftAe9iwhDaMd/vWSPrXtPdrvjEb122MyyMMw/Lmkz19IHx8p6YWSXt1a+/BhGHq27RMaJZ0vSM6/i1Wt0miNpsKeU/fE4vOFGh8Y4mxwbK84oVEb/Ibk/FvxfdLHPY7vU2fq6eGnFnV8qFZ3bj+UeLNGX8e1Gv1rz5X098MwPN8uaK0d0Pggr4I71PdL7AnDMPxua+05Gv1Cv9Fae9awO9qV+ClJP6xRM3lVco2t1edrHAfC/HdP0yg8fvwwDH9oJy9GyxqG4XUafUWHJP1TjWbYX2+tPX4YhjuCW27RdN2FVpa9NCc49vEan/PPGYbhT+3gYi18MMDm/os1WnoI/lh7vFXjuvpQOavRQjB6rEbLSYYnabSw/UJw7kWLv6dIessw+stfIOkFrbV/LOkrNPpBb9Poc14LF2sS+B6NvpLvU/DCXQR3HBvySM13a/pi+IyssmEMSHhja+3bNL4on6LRaWo/tpdod57Rb0n6fEn3DcPwFj14+B1Jn9dae+QwDJFW+FaNP6YfOgzD9zxIdZ7R2D/itzSG9L5nYQrdMzrjG137p9HxFet5S2vthzUG4kzMSB8AfJhGIcQ0zUs1Pswez9Poy/PI1t3vSHpua+2zhmH4tQezocMwvGZhfv15Sb/WWvuMYRjuTy7/eY1a1F8Ow0Bp3/BHGtv+pGEY/kun6ksXnztmykWk3Gev1YEAC2H59xYvy1/R6D+c/OAtTHV7Xnd7QNTnazUKRw8l/Lp6KPH7Gq10HzIMQxZEE2IYhtOttddqXOcvHZaRms/V+Jz01v2bNFqVPA5qfBf8pEaN/z1BnX8j6Ztba1+jPQqUF/WDNwzD77eR/eNli1/fVywaelzSp2i073+xlpFGxKskvbi19iKNkWwfL+mL/AWttc+U9NWS/ptGbe2IpK/X+JD+8eIyy7n6ptbab2o0JfypRtPDV2jMD/kBSX+hcWCfqPGF/jlDHoXUw3doXPR/1Fr7bo0BKtdL+rRhGL50GIahtfYvNEalHdToo7pDY6DPx2r8cXrZmnX+jaQrW2v/h8aH/oFhGP5KYzTXF2qM/vxBjT+2RzSaYT5+GIbuC2nF8X3QMQzD1z5UZc/gQ9oixFvjOn22xh+FHxmW0ca/JelzFuP5Go1a79dp9HV6ZOvupzUG4vxca+2lGn2sxxb1/NDFCl/DMPxSa82iLn+5tfbZkYVl8SPXTa4ehuGe1to3S/rh1to1Gn1Bd2tcz5+gMfDnZzX+MN6zuO47NK6TF2tc1xNWlzm0MTL06RoT6N+rMUryhRo1trmIxH8o/IFG3+2Ptda+U6Ov89s1WgEe/RDW+xaN/q2vaq2d0iiM/e2MNr82hmE42cZUih9orT1K4w/OvRrn/pMk/eYwDP+1U8S3azSH/mxr7cc0am7/TmNw0M4ctjFF6kck/dNhGP5kGIaTGhUluWvMzPrOYRhevzh2nUYB6Gc1vtcuaAx2ukSjeX1tXLTTdxiGH2qtvUljKO33a1y492p8Kf9z9X/pX6oxUuhrNfoFfkOjJO0TgP9OoxTybZIeuSj7f0j6VOeQfY3GAf0ajZPQJLVhGM61kTbqWzW+1J+gcQG/XaMzeU+mxWEY3rV4ab5k0YejGn02v+Ku+Y02Jua/SGMI+yUa1fA3apS818WPawyy+W6NY/ZujRGvd7cxl+3bNaY9XK/xxfxW7Q61z7DK+H4w4YWLP2l8gb9d0r/QbnaIl2t07H+lxjX8PzQG2DDgp7funqlRMPrqxecJjekXqW9jHQzD8KqFMPUKjSksq/i0s7J+rLX2Xo1+qi/W+F64WeML/88X19zextzQH9CYSnCLxlSaKzVNoVgFfyHp0zU+P9dqHJc/lPQlHY31HxTDMNyyGNfv0/gs3aQxhP9xkr7xIaz31tbaN0j6vzRqYZsaTcoPenL7MAz/obX2bo1h/1+2qOtmSW/QMtAou/dNrbVP1/hO+g2Nfr2XaxSEPDYW5a7rd7tv0YYXaDSTXtDoV//CYRh+a82yJI0P517uKxQKhULhYYWHQ1pCoVAoFAoXjfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvUD94hUKhUNgXqB+8QqFQKOwLrJWHd/z48eH666+X0ZjZ58bG8nfTjlm6g31ub2/vKsunQzA1gvfuJXVinXsezGuj8xeT+rHq2PTqzT79nGT1nD9/ftdnBE9rd//99+vs2bOTfJtjx44NV1111aTuaB2s027eO0ex91Cti4u556HCqm3pjdmq4xpdw/eDP7+5uTn5PHHihO69995JRYcOHRouvfTSSX+i8uaei956i66ZQ69NRHZulXs4D6vU69/L0TXRPdk1WRujd3+vfB7nGrFPrg+PCxdGUpdz50YCnGEYdPLkSd13332zi3StH7zrr79er371q3cacemll+769B2wRj3wwEhecebMmV3H7VOSzp4d87/tpcoORS9HYu7lGC10a2v2Y+zvsTbZMWsbEdVn9/JHI3oRZP1iWSzTl23/WxvtO+fAvkvjD5U/Z/fefffItnXixIldx/21th4OHDigN74xzo29+uqrdeONN+rUqZEswubcl2ftsTG08u1aO+/7ymsNHDcb6+hHnuNv11g96/woWzv8i4Dry8aL19p1/l6+tNgO9ruH7Nnwddg5O7bKDx7PHTgwUk0ePHgw/C5Jl18+krMcPz5yDx85ckTf9V3fFZZ/5MgRPeMZz9hpi62Dw4eXHMz2DuJ7x78UCTtnn9lYRs9pT/jy98yV449z7D3m5mFra2tyr/1v42732vpjvf6YXcNyWabNrb/HjvHH0o77Nlr5Nn/Hjh2TtFwfl1122a76pOW76tZbR1bH06dP66UvfWk4LkSZNAuFQqGwL7CWhjcMg86fPx9KBgZqOJSEqEH4Y5Gq6hFJN6xvFW1tro1sl7+GbV3F7EpNgddGarshk7TteCTZsT/2afXwu/8/M51Ec87yo76xL5QU/Zxm2oxdY331sHng2lhF82EbWH9PK8zGOFqjlKgp8a7SRgPXaM9KwLngMxj1j/dmJq1Ig43MlFEffPk9rcbQWtPBgwd3NLtovux/swbw+TREzzTLWGWM7RqbQ75T+Dz5+7PnPepXpkES0TNtoCUmem55rb2DqellJlV/L9vCe/xzzDHPLFdewzPN/ujRozv39taPR2l4hUKhUNgXWFvDu3DhwkTq81JTJgFkErG/nxLHnMM0qo9+uag9PSnF3xv5iiiJZNJgD3PO5N45Ss09/6ZJUpEWyLKz4JSeJhvdk41pa02bm5uptrNqn6J+SFPplXMc+dYojWe+qEhbzHyH0ZrNtNp1/GSZBtlbb1yb9NlFEj7Hnm2NxsrWF3049snzUT1bW1vdIIetra2JdaU3XtZeW5vRMx35kXvw45XNXfYZwcalF5BCTZH9IqL3HMvNLFxRW2xsOKfUtqO2WVmmkUXPs92TWfkiP7qNm2l43uo4h9LwCoVCobAvUD94hUKhUNgXWHs/vGEYUme4lJulVskBo1pKM1Qv1yQzNZpK7O+dM4n0gnGy42xHFBBC0LwXmdsy00jPZMu0BDNDsD4L75WWZgcL586CjaL0B//ZM2lubW1NxsJ/t/bSzGHomUGzAKdVgm6ytRnN21yQUhSYwHXNoI7I3Jq1Mauvt2ajVCBpau6LrsnKj9Y311mUjsByVw3K2NjYmMxH714+//bdzJjScr3ZMT7LveC8LMirF9zBkH6u895cch1nqSyROZTPDd+JUV5c9p3PiB/PLOiLwSp+jVlbuGYuueSSXecjU+2hQ4ckje+uVfJEpdLwCoVCobBPsHbQinfw2q+ul/rtF5rnMknIH6P0HIX2EpReMkk00kIp/THAIZJ8Micynfle2snCs5mIGUn4mYbHNvo5yOrLtG3/v2l6dEpHWgITds+dO7dyWoLNv5+XbL7t2kjaM8xpJtE4cr6zwKRIe2YZRE+TzKTmKDgmSuPx6IWYU4PJyo7GpJc+4q/z5zi39mmSeKTteI2ht3YiRO3OtHWSF/B/KSZSYD2GzGpDLS4K6GO5HOModSLTvLJUEP9/FkgT9SGzwGQWk2gOeC2fGf/uJ7lERqzhx4Tv3I2NjdLwCoVCoVDwuCgfHn1Edl7KUwyiEOUs9H3VBPGoHn6PQqJpQ6e0HNWT2e5Zj28HQ3p5fJUEXUpe1E57/qYs5SAKLSdlUM9vQulrc3OzK6UPwzDRHKLk4UzCjkLLs3SXbA359mc+Lq6HnrZGRBaMSJvxx1dJBObcsR1RmHrWj0xa9+eydITeWp3TOlYhR4gwDIPOnj27owVEGvEc4YS9q6jV+WtIbGDlR4QHBr7P7Pk5cuSIpDi1yTReGw8meXttPps7+vCZIO7Lz9q8SmoQ0UuLYdv47oqo7Eh7NheL4cv1lp9VrQOl4RUKhUJhX2BtDU+aSpVeC8hs6b2IJ/pzMoqvnu8pk84jyZfSJTWVKKk4o5DKIqEiKcb6Sd9d5M/KNJNMEupFdln5pGyL6qPGyAi7yL9g5W5tbXUlre3t7Z3yrU29KK8e1ZuBtn/ON7XbOR+k71eWXO7bmiUgmxQvTbVkjlGPeo7tzpKIVyEv4BrtJclTq8mSy6NyaC2gX8u32/vTe/7QM2fOTMYnmpe5JOvIEkLfWjZOEfic2KfNv18H1gZaemgV8mOfrV9aP7LnNWp/Ro/or7X6uA4yv6Avh/PNtRNZlow8OqM/izRlTwxRGl6hUCgUCg5ra3gbGxsTCcFLARl5a0+qZCTVHM1MJKVH5/z3XkSXgdJUpAExh2UVDY8SL23o7IMHfQ/WZm5/EmmjWV5bjxKMfhdrq0Vv3nvvvTv3ZFpVhGEYdkXiRb5VajrsB79H/aeGyrGOor04p/weRSZnuZzMrfP1ZP62zD/HuqOyesTjGXUV7+n5mzmekYY3t61O5MNm7mGP7HsYhjDa0cM0KTt38uTJXeft2fPPPCPKMw0v8nVyvXGt9HydnJeeZcnWBrdQo4UhWnfZNkA9y1Jm5bBPe+/YWEXPvuXQGexae4dEcQC0FvZySO1//z6tKM1CoVAoFBzW0vBaa9rY2OiymGS2ZLJ/+Ggpanj0U9lxYwbxfh8rhxFcGROBL5+2ZWoLka+QfrGMkDnKM6QPr2entv9Pnz69q5/cUJfX+/bP+UQ904r1izlb1tbIJ3HPPffsunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN64orrpA0bngs7R4/q4fjFVku2C8+C3wPRdr7lVdeKUk7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3iEY+QtNwzjYEi0vKdcccdd+xqJ03B1r9o/THg5bGPfaykpWnTj8V99923qx5rv7XDxseeA48o4EOarn+rV5KOHTu2655rrrlmV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bftddd+1cS3O3mamtbdYvGztpOQ+XXXbZThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2tM2fO7JTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT33XdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbr0svvXTlQLbS8AqFQqGwL7C2hnf+/Pkw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+8847JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzpw5k4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+PLLLy8fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych+u4J89AAAgAElEQVQ5WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6SKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67/PLLd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aX22+/XdKUYcVgWqOfZ3s32rW0ekXWNr6vL1yoDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7hCU+QJF177bWSpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95www2Slu/6973vfZKWjC9Szt1p7aCFw7fFcO7cudLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg6uuukpSvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zdve9jZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy5cmES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV55syZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/LKKyXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi3LlzK6cmlIZXKBQKhX2BtTW88+fP70hEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75JHPvKRkqT3vve9u8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz5kzZypopVAoFAoFj7UTz8+fPz+xW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zpw5MyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3muvvVbSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHr/+98vKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPs111yzc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8Y999wjKWZayZgoDCaZRNrMHLltZAPONtE0KYKbr0blZAwhXtLKpH76DBiR5Ntm4+W31JCmvkMPSstzW7FE5XA7lV6eF3P4elv1WLu9P64XaXfgwIFJdF409vQR9yItOQ6ZZhf5WqgdUnvqbSVEX3HPR20g8wjXbkSoTX8vmTyoMUvLsSWbDUnToy2tsq2keljFz8fvnP8eAfAwDHrggQd09dVXS5qyKPm+Zc9JjymI80yWFLKP+PI4D7ZptD3jfr3xecmYcHoMSMwNpRbttzCiL5eWK+uPMbH4+sjCkj1X3jqXRVkz/iCKwchyrSONzyxk5r+c25bMozS8QqFQKOwL1A9eoVAoFPYF9rTjuamoFqzgTQI0m62SmGuml2x/uB4JLq+haZGku/5+M5llZMtReDBNJdyPjqSrknZMwAYzO2TJ3Rwf30a2JzvvkYXQR8mcmdO4lxRLE22EjY0NHTx4cGfNREErNBubCZhUT72+ZYFNUb8YAJAR8kZ7KZLQgCa1XiAIqazoBvB9ojmI10QuAo6tXcM0koiUnWujZ2Yk5qgBI4KKLPWI2NjYmLgGPJkzg3uy+eiZtNkmkjp7F4cFi9jYmXnNAtMMZn6TlvNg82JpFjQfRsTM2XvV3lEnTpzYVZa0fC65nx/b6PvJpHhrC9eq1ROtHb4L+U72zyZ3m88S0CMKQhvHSjwvFAqFQgFYO/H89OnTE2nDS3t0ckbbsvjj/v85qTIqK3Ke+msiaiFrIwmFqcV4yYF9ptTC5PIo8IDBKdnu8P5YFhqd0Td5ZJRFUYg+t/2ItnHy90rTgKC5wINhGCbURV6ii3Z89sejpP5Muotoz/z3qM++rb5s3x6ThjPpNUrCpuZobck0Sz/GDL5if62flsoRtZvabU+bz3YrN0QJyFmgTqZ9e0TWBoIBTxkdlS+HgToRGNTBgCC20a8TS5Gw9WAans0TU3Z8OZzvnoXB1hXXXZTCIu3Weq1NrCfSuA2mFdpYUJumNSxClkZmbfUaJZ+fjMLMk5tEW79V0EqhUCgUCg5r+/AuXLgw+cWObPOZZM1fcP9/lobQk+h4jtKmtceTFJv9ndKFlWFt9lqj9zX5crME1EjDo+TI7UCi5MqMssw+o/B+SmGZVuBBTTWTkHuS1FwyqtcAOdZR2etotVlod08ize7hGPt1kM0zQ/EjDY+WBfrjIpKE3jZQWb+4xQvL5fYtUf8y0uoodH6OqDtKio62+uqtrcja4tcb7+X2OazXn+M64Dq2e0yrk5ZailkseqH3vIfzHVGKGUyziUjwozZ6TYjWhiyFyq83vs+yNkbWNq5nriGmR/l2GxjrYf7GaO14P2JpeIVCoVAoOKy9Aey5c+cmElYUxUYNgZRcETIaqB4xcKaB2D1mQ/fRUoZMKovooeibM5+J2bZpV44orKz8jPrJI5O0SdPTk2zos6M/07eRWkdEc+Tr92009Oz6dn1Gwu1B3xIl4l493LYl2krGkPlBKGX6e+mHY0RvNB/0PRnmNrr1ddMaQKqxCBllGed0FTJfItLM+PxkScQevU2dCWsTowyl6RhHWmBWD68xbSojL/DXRMTY/nxk/aLVhhp4ZB3K/G6MXPVk1SSTYBut7T5Zndu6MbKX2wJFUc98Frg+oujwzCce+fW5vjY3N0vDKxQKhULBY+0ozfvvv3/n19gkhEib6UnWvMdAiWduK5YItDnTnyEtJRqzd1MCYX6eNPW/mOaYUZlFOXVekmL5vmxpKp0zl4q+sEjSyqI0mcPj/7e+W32raObWvx4BsJFH90jEmdtD30NUduZvyST7yOfAfjBCLaKHstxKRvZF0Y30I9IPQz+3bxd9UZlVIPLDUNth3tIqm6JmPpao7sxS0tOqvMWiR0u3ubk5aZOP9uN8r2IBMWQWg160LvPGMqL7XhwAn+GI3Dvzu1KjtXdLlBPL9UXNy/eLPsnsGemB77mMpF3S5LeE74Aod4/XRP7SDKXhFQqFQmFfYG0N79SpUxPJN9rqJ/N1RHlxc6S90fYcBiuP+WPUJLzd3/5nFBu1Qp93Q42HeWS0cUfSICV78wPaZyRpsj8cR2rD/hr2q+c/Y55NFuXW8y+dOnVqVsOj7ymyzfOzpxX2cgs9VmEGIRG0WQBWyVPrbZ+SEePOtUeaPhtWBiXxaOsdtpF+rYgVaNVtX/y8MWq7p9kRts6OHj2aXm8bwNKvFOUrZhHk0TuEa4eaD4mU/bxQA8n8c35sI9+jtNRu7NO/J1gPx8DKjO6lxSDy3fN7FgVq6Fl6WK8hi8nw9bH97HdkwfDrrXx4hUKhUCg4rB2lef78+R1thxuNSlNfSeYDivxHGZdmZnuWpr4tStyRVM1cQCvjrrvukiTdeeedkzaSBYF+OfYhkvBtvExKMz/Q7bffLoL2fNrbLZcwiiTM8l/su7XVszJwnqjhRSwg1EgOHTo0m0vV2zIm0xSYE+SlvYxFhGVGuY5ZBJzNqX1G/ljmP3L8/DNBjTpaI/54lHNm9dk9UYSdIdoyKPoeRdqxbZzPyIdITT+L1ow0ZS/RZ2tna2tLV1111c5zErWNPnRq1b3NdQ0sl76iyGpDqwPXg2dasQhKajVkafJzSjajTNM3Dswoh9Peb7QKcbNnD2rMnNPoeVqV0cevA2p2/B7FRDAytrg0C4VCoVAA6gevUCgUCvsCa1OLSUsV2JvEDNGuzf54FBLP4Aorl87VKGyXJtQsfNsHoFjd/GSSum9jlBQa1Rs5qy0oxfrOnahPnjw5KdtMFdGu8tLUnByFC2emNLunNybRVjVsB8e+t/OwhZbTBOTNbNxtPQtiiQIrsiT7njmcSa4Mge4FhNjO1hy3aGspBjwxXaQX6k1yYiaeM0lamgZQZKlBUdpP5k6geTIKLV/HpGn1eHNe1s6NjQ1dcsklO2MQmeAys3QPWbrLXACMP0bXjX2ay8FTGppJ9jGPeYyk5dzSHOtTGTJyDJr1rCx/LwP5+Gz2gsCyIDn2P3JxZIjm19pLE2Yv8Tx7xldBaXiFQqFQ2BfY0wawBtOIogCNLJmzl3CekflmCdTSVBOh1BIFHpj0YJqXbcTY2+KH5VJLojTlpVA7Z/UxwIVJzL69mdOdjudomx0DtQ6bN6+F0IHN+YuCVlj+XOL5gQMHJhpkjzIoc5z7ttExnmkJUZItpchMM+kltlLriCwcJuXbPGf0V9EzQ5IEBkdEWgrnci54ICKOIO0Zxy9abxk1X2/7K27rFeHChQu65557Vkow5tj2gpYMXLPZOoy0DI61PVvR+rZ1YJ/XXHPNrvrtHt9Pa7cFvERWLn9dtIaYRJ5pfNLUCsX3UDbX/pqMrCA6z/IYbBRti8W1WEErhUKhUCgAa2l4pPiJCHOzkOvMNuyPMVzeNKNsuwkp1wZ65K4kB2ayfCQxUCtjv+h/jGjJooR2aSkV+qRPUu3MkQZ7qZB9pobnNTL2L2q/vydKPLW6z54927Wnb25uTiQ4no/6yH54rYCSNLWJnr8s0+h6PrVMi2HagF+jvMd8xKSHisLts21Semk+vQRuqZ94zLZw26NojDIJPvLzsF+raHjnzp3TzTffPLknIpPwaQC+DdGccjzY7p7VgNYm+vB6KSbZxq8nTpyQtJse7LrrrpM03SYo2tCY4Ga0pFns9SuzuvXSijLNuOe351hTg+21dR3Nbqe9a99RKBQKhcLDEGsnnkc0RN5fRemR10TRf9ToaD/ONuaUphIckzfts7fpqUXcUfOKkjhp485Ilr0ETts5/TD0x/hrTXK3tmZbJs1pVr4e+tGiNrLfPQ3Pj0lG7WVJ5z3pP6PC6m0llEWPMVo2ktZ5rKcNGOYSsqPIMUq21i9q3BEYlce2c035tjCSN/N9RBuPciNg1hv5VDKJvrfdFiM8I2xvb+9aW+YLNY1IWvrDSMSQkTuzD732G/y9GdFERnjvrzUN36KzDfYM3nTTTTvHLNrTzl111VW77rG2RhtBWxssdsDGy/plfkH/zPco8nitL8v/nz1HfK6lXKPrRQWz773ocKI0vEKhUCjsC6wdpXnhwoWJ9BL51AymCVFjibQLag9zvgFpGo2VUQv1KIUoRZMIWpr6NLKoxl59zOuycWTOnbS02WfSUi/Sim3OtM8epRTrod82quf8+fOzOTHUxP06yAh/ud78GovIs/09meTo68k+mYPm/8/8ffS5+r7ynlU2tOX8ZmTiPe13jn7N94HXkNop0n4i+j5/3D69lkrfXWut63v0eXVRbu3NN98saakBkSCe1gKPrG9sT5RHmEV/RvNic2e+tNtuu03S1E/r3wPmk7T+WRmM2mWUuDT1y1M7z6w6vk2ZxS7qH8cg0956EeV8R/Z8/ZkW2kNpeIVCoVDYF1jbhxdtPx/ZjbNtMqIozezXnIwKEatIJtmzjEjjyrSaSGLIbNeZnd9LsDxmbTRJztphUpu0lPYoSTHPKNL0eC0JbSPy6GyDWY6Vl6opwc1t0zEMQ5on58ub2wA4qiPTAinVRv4D+ryYHxf5/ShdMlov8nVnEY8cE/88MSozIwSPfGrUVGlBiTSZTFqmVO3vidZB1D8/9mTN2d7e7uZwHj58eEKcHD3T9P+zr5GWNsdEE907lzNKn6u/x8bJfGu0nnjLkr0jrK3mh7PnkNtEmc9Pmm5kbeXaPdE4ZhaMLHrTIxuLHmPNqhGdfu1yHFexLO3Ut9JVhUKhUCg8zFE/eIVCoVDYF1g7aCVywnowwZcBGlE5NKPRBNfbT4lO3IygOaLtYjoATTJRG0klRhJcmgB93VlgTbT7d0RvFpUR7b9mYFBEltjvzxmyYInIdLCKSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNLbW9v7zLVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw2V199taTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQmFfYO2gFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201nba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdPXtWN910004gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5p06d6pI3eJSGVygUCoV9gbU1vPPnz09Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCw54Sz00iiX59o0gjjygybM5nR3ipyYhYmbydUY5JUxJfRtpFkq+VS8Jdu5Yan4+ANOmLW5dkEYa+nsyvQGk6iiCLaNyisjyodTDSqxcZN+fD297envggI8LsjNYqkhyprdu9XEMRTRjPMWo3IlagdE5J28a8F4XMfmRkDVEbs4jliBAiS+Zl5HJExp4hirTL/C22VqIkbParp6biXQYAACAASURBVEW11nTw4MGd54dJ174OG0sSwUe+/WwesijNqLyMpi1679AnzLVriLZ6IjkCzxv8WDM2gJ/Rs5KRfZiv2u4xTS+Kfu9F1Uu7n1+OLZ9Tkoz7fq0TnWkoDa9QKBQK+wJrbwC7sbExkbAiPwwlIPoPPOg3yiRTg5cYMrohSlORVsBIKqP6ibRU+vWy6Dn77iUSRsNRAiLBtm9vlqPI8fXSDvPuqI1mm7x62D2kHIv65fNs5nx4lJp9edR0KeX1NJ+MHDiLjPT3chz43a83aiv0X3HM/bksRyzb+sffOxctGUWxZWTsmQbo2zRHzRZpeJlUbscj4nGvXfWoxTY3NyfrIPKTsi5qHb7djMplXyNt1kD6uSznMBonfuf7IHqfZpSCPX8Z/bF8Z1hZXhvmO5BaKNdu5I9j7vUq/jU+pz0Njz7hVf13Uml4hUKhUNgnWFvDO3To0MSW7n9x6cPKJAQvfWaaBiXHSEpnjgylMUak+Tbwk9Fyvh76vTIC6oipwvxgjHSkNLhKBGGmKfvv9N3Zp81blCuYRXSuQhbrmWN6Gt7m5uakz94Pw7GM/GFSrJH0iH49IuaLbMudKB+Tfc58NhEDBecuk1R7DEZZzlYvRzHLEcwsKNE55tr5tlPryyJje9adOdi7x/ent9VT5g/1a8fKY75nRgDtx4kWHvpyuT6iNmTvjCjvM/Mv9nLq2CZGATPHNxoTe3ex/CjOgZaMLPIy0goNXF+Rhkc/ZpFHFwqFQqEArM2lKS1/5e3X30vpjEikL633S5yxstA+H+VhmURyzz33SJryVXrNj5I8/VU9mzAlK0qbUc4R+TcNzFX0kgtt2ZQG6ff0YF6P9c+O26fNn7QcH/KXGiLNtcdiQpgfhpqQl8DZpx63IkE/Ka+JImGp6XIblch3k0mtWa5br92ZRhdFsVm9EeuHb7u/3zNRRH2Inieuu4wHNlqrph3wWYgiSTluvRxOWzvUHKL1QY5Ze+Yuu+yynbJ8uVLOztR7Z9FHR78zI7D9/yyPliv/TM9FOnJsfX183xCMGvdtsX5Z/h3H1RDNGa0DfAdHFkH6Fcnl6X9jInal0vAKhUKhUHCoH7xCoVAo7AusbdK8cOHCxGzjVeMsTJaqrz9PZydptKgaR2Y1mqzoqPfmO5oQrG2WTBmZpRi8kW19ESV1Rw5eaRo0ETmc+Z1mIkOPqs1MWmbiiHY8p2mE5qMoHJ1BHYcOHVo5LYHmr6jdnPeIJo4BIEzb4Fx6c1EUvOPLp5lKmpJSk4Yq2vGc9zIdhmsq2nonSzTvbQ/VOydNTeq+PkNmaopM9wySsDGKTGscn42NjVnicZKKR/2imZaUb1GidBSc5BERnlvd1jea4SOTJlOouEaZNuSPkeSDwTm83te3CllBBqYy8B0cmcOZnkAzebTesi2EovXGZ/nMmTNl0iwUCoVCweOiglaiREluw5FtzOgRhdSuUr8HpQhKCJHUbGCwQpTEzAAXK8OTtfrzXuu1e73j1dcbke9GKR9R2w1e+qRkb+esTGtbNI7UlClxmRNbmkryq5BHZwEOvjxuwWSIEtCZmMuAhl76RkZjROk8SpuhNNvTJFlPRqcUabB8fkhEHgVCMBWIY9AL+mCbaFlgiLsvL0qvib77/kRE7Vl7sq2gpGlwHLUnauYsO2oL33N+rVrdNh9GccgUBz/GXKt8R0bpGww8s2eYa4lbjvmxMI0x22IsSoOgtS0LJuklnrON0frPkvyZ1hGR4/s0qyKPLhQKhULBYU/bA9F/EP36mtRgNvTepppzW6BQMohsz/RHsMxIqqAWwxD/SOpkeaQyo8TV6x/v8RKr1Z2FoTOZ3PtJMvLoHqUY/YzUuiN/D6X+ucTzjY2NULNjeRzjXroD10K2VU3Pb2H1kIA48hVl9VHTiiTObMsdzkeUajJHBN4j5M2+94iiM2k9SkHhPGU0aN5awXJ6bbH3Ti/kn35Yapv2HvJbCmUbC/M9QwuQr8/uNQ3PPlmHbzetYFnqka+b2hi/W/+iZPzoOWU9BhKD0OrFLY58fXYu0zqjeql19lIYDBxzvyn5HErDKxQKhcK+wNoaXkSKGyWCkxDZ7mOEmjSVCDMSV5bhz5Fupic18Rr2J5K8eX+mMUS0RBndWY80lvUxCszGl5GNHiQypnYQ2e4NjAaNbOkGLwVmGp5pd9RyIx9AJvVHEjnblW2f1Nu4lFImI3x7SeSrbHLJsWX5rKe3bVO27VEUuWrIno2eBk1Ju+eny85lWyj5cg3nzp1L18729rYeeOCBHe0sog0jaQTfHZHfmtpSpLX463qEB/TdR32mBpSRFfSsX4YseT0iEWd/snujYz36Od92j8y6FvnwqHXae7NHzWaa3R133LHThtLwCoVCoVBwWEvD297e1tmzZ9OIOA/696hdeNssJZ3MJxD5ZzIJJJMyfX3ZBpy9/mQkxaQH81I6xykjSfaSD9tGrdNy6yINjxF89EX18svYd+uPSad+3kg71ENrbZcGGOUm0m5PX2s013ME41xDkcRIbYNWiCh3K4tIjMYxI06ndhZFXGZaQJYP6o9lfh9qtJH0ntGPRVGOmWbOiMXI/2uf9913X9f/u729PaG9iwjTTcOy6GkbJ/qxpWXeLcvL1l8vEtCej+PHj0uKo1lNe6Efu6dxZe83jvUq6yDzk/Y0ymybt0jzZCQs57jn/83e8ZG/9sSJE5Kku+66a+feuSjfnb6udFWhUCgUCg9zrO3DO3PmTNefQ6mFGlEknfEeaoOZtO7vpdZCSTzariVD73zGisF+RZF9c59R3h+vIbNDFElIDY9jE+U9UoLLojMjn4S3t89FaXJM/PUZaTPXQ5QPRe0lqpNlZz6cVSMH/bXZ+EXlG1bx/82ReEfPRHYuy1X197I/WS5Vb54z/3lkOfE++DmmFdPOmM8qTTdxvvzyy3e1pUe+zb6SeYWR5/5aO2baYhYZ6f+n1kTNKPIzc2w4H9mWPL58RkFHGldGik3rhCGKvOU4ciyi+uizY399XvOdd965q23roDS8QqFQKOwL1A9eoVAoFPYF1jZpRiGgkSPbVFSaEMxhG6Ul0EGZJaJHjtJ1CFHphGZQRC/hnPXye2RizHac7u1ibf9n6R1MT4j6x7bTXBCFstPB3TN/8NpVyH95rW9rRkxMqjc/TnPh2Uw9iMyqmbmm16+54JXILMkxnks1iPqXpTJEAUg8l+1fGJl5M7q1Xpg6TZlZOg7/t2uz9WMBT2bOj2itSL1G0yapAaXls3P06NFuH5ny4s8xyZpmYp+eRFMszfrR2NIczPLtk/VHbbS29NJ/MrM7j0cm1Iy6zNBLaeG1dBGYGVNapiV4Iu0eOcWucle6qlAoFAqFhznWJo82LU+aJnd6zFETRdLenGYX7YRNh2gWtp31xddriHbNpjSehSxHSeuZJsGAlFVSC6jZRdRS2XYcJv1G2g41x2wbkl7i7hw2NvpbwBhIX8T1wDL9JwOcGCgQjTEJwYkoACVLR4jGaS51pmel4LlMw4vKzQKrqL1FWkGmKffWQW8bJ2m3hsN1u6qELi3Xsdee+AyfPHlS0jR1JtLwTAucGzffn0xrYt+joJVM847ep9mO6lkyd7QTPdvSS/PJiMazwMFewFNmLfD94zPNoBujTLv99tt3jpmGZ9d6Qos5lIZXKBQKhX2BtTS81pq2trYmYeK9jUTpQ4ns+/Rh9MKYpZiCy6SXTALuJZ5TaultB5OlJVAy8n2ya8wHkW3MGW2zxGvn6MI8rI3clDTaSLdHnyTF4c6r+D55Pe/xUjqp47h2DD0tk/3obVjJJPiMkKAX/kxNJfJNck1yfdGn69cFLRarWC7mJG2Ggkc+FUrlGQG6P8bUEPph/DO/CvWfR0Qj5tcOLSB33323pKWGd911103abffYurPUAq71qG0cn+xZWGWeetujsZxsg+YodoHvRt4bPfOcl+z5iqx6BlpV1kmON1j9pqlbsnnU/nVQGl6hUCgU9gX2tD1Qj+yWkrW/15/34DFqWpQMvDTDBGxKLT0fQbYpbSTZs9wswT66N5PO+Bm1gZoepVJDRGVlMA2c2kckpbM8+re8JEbN8dy5c10SV08BFEWI2f8mwdMPZz4gs+v7ujMfXs/nwDIMXHfRhpy892Kig7OoXX+O89MjY8ik8Yy6LZoD0554LbU2j8xfb4i2esm2v/IYhkHDMKTzJC3Hgxsn33bbbZKWmp7XCml5MQ0vi4j0/SHNWaZNR9o6+0EtNyKtyOaf89V7Z5Hu0c77d4k9Y+yPoUc8niXwcx1EW7Wxv/ZpGp5F3Ub12PpYBaXhFQqFQmFfYG0N74EHHtiRArxkb7BjpJFhBGYUxch8F2pthkhby3KoIo0zI+81RNoA/YpZtKbBf2ff7ZMaUtQvO9fbvJVtpa+I/oVsXP29Wc6gH0cS8s6RSLfWJhJrFLFFaZUbZkaS/Vy0ZiSlUyuf8+16sG29PNBsbWR5mJHUPNffSEtjXmOm6UX38loiGhPW0/MvWbttrj11VATv/2UEs6+DNGCmvd18882Sllqc70OmYfc20s38okREaZhZlnrjlZG70xrm22jzwefHxry3vlkftcLo+c0Ix3mP7x+faavPrDg+/459NsxtPO1RGl6hUCgU9gXW1vDOnTs3+VWOfA5mF2aeSiTFMh8qixikDdqXb7AyqGFGkUhZ9F2Uh8dzlNJ67BWUvvg9IrimJpyx20SSX5ZLk5Fy+/rou+NYRL5J7wPIxnRjY0OHDx+eENn6+bN77RwZahgF6PuU+fJ4T8TOkTGCRD5Wrl9q+qvMR5ZX2FurbGvGiOOvoYbH3Mpog9DM19kjKZ6L4IvWCbfKuXDhQldK397eTqNb/f/0cVv5tpWMbRoqSY95zGMk5ZaJHpsOtSe+3yItLrMosA89rTBb13Y+2ng6W8+RhkftNmNAiXIGmROd5RlGeX+cv3vuuUfSUkOP8hn57K+C0vAKhUKhsC9QP3iFQqFQ2BdY26Q5DEO4P5Qhc+LT1OlVVFN5LfSUajPNaVGABuu3emznY/Yj+t4LbaU5MCP87YX8Z0EkUcK7tZ8O+iwxNEpLoHmC5oEehRXNHlE6hJXrzUeZWaq1titgwPrh6aY479zNnakYvg1ZP6KgDraB4fJZ0Iy/NgstXyUtZS5JOQoUmUstiOioSH/lx1+KTVpZIMMqQQFZsEoUrBARXPeo3SJKuCi5n88/zWo+vN3oqh7/+MdLWq63jM4reqa5rnoUczSRZmuoR0uXmRSZwuPr4SfXY0QCkqWYZJR9Uk40ntXvx8Dm69SpU5KWJs3eM+GJEypopVAoFAoFh7XJo72kZdJ5RC0WJaVn5RiiREhpKs16STELjsmSLf39pCPKAh/8NavST0XJ8ZnWxO/SNCGXEiMDBPx4UmPJdmH2CdyZ9MmE3kiT8OugF7RyySWXpImsvl02DqadM/ndS8BRAmx0be9ezilp8KLgnmy7plW0mbk0hUjjYjI0AwH8nDNYJUsX6CWtZ22PruM48pmL0kk4L3M7nntQK/B9IXmBlXnZZZdN7rn11lslScePH5e03CaIz3oUxJYRQdtnZI3IUqcMvWA5Pu9ZyL9/Djjvc3RhUfm0PvSIHLI0LwY6RdYoe99lCf1+rGhFu/TSS4s8ulAoFAoFj7V9eNvb25PQ9WhjRPruKG36RFP6/ehLo4QfJR5Te6K26CXgjNKr54cj3RT9CD2fmiELo7XjJpX6+zPS3kzC9KDdmzZ2PybUVAz0P0ba/FyaR9SGKGGXGha/RyH42TiRxKCneUWSpxRbFLLEdloNIp9D5iPOyKs95iT8nu+GYeI9aTgbg54WOpecTuuLlKdzZNjc3OxajbgpLDeENQ3Pz6VtM2P+IhJM0wcekRZQK6PFwT/TfIb5zEbzQj8YNXxqVVEbqZWx/lX8cLQkRPdm1iH2xY9JlnbVS3WhBaHSEgqFQqFQANqqpJuS1Fq7XdK7H7rmFD4I8LhhGK7hwVo7hRVQa6ewV4Rrh1jrB69QKBQKhYcryqRZKBQKhX2B+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC+wVh7e5ubmcODAgUm+XC/wJeNi8/kiGVvAOhuzZtua8Lq5Yxnmru2dn+MlvJi2rXLd3NhEyJhlete21nT77bfrnnvumVR04MCBwW9dEuVCzuXiRHlkq3I/9tboxQRuZYwUEbJr1pkXQ8ZqsU5966yL3jpgLio5Q3vMRX4uT506pTNnzkwac+jQoeHo0aM7uVgRjyPz4pjj1mt31o+Mczc6lz0f0T2rlJ+VMzdXvTZmbV6l3oyxKLo3K2+V91zE/pLd68f89OnTOnv27OxCXusH78CBA3r0ox+9k8wZJVIzMdUSPq+66ipJ0rFjx3Z9StKRI0ckLcltbUFzYfeSHXmutz9dtscTy4x+WLMXXJawHd2b7Zbs78mSUjOqn6i+7IeiRwvEfliSJ6mapCm58+bmpl74whcqwsGDB/WUpzxlZx5OnjwpaZn0K02Tka29tj4uv/xySbsJwe1/klFnO4VHa9Xan1HARTtdG6w+ayNp3TyiPQBZvtR/Sa5CmZb9oGVJ/xEtGeu3sTI6Op88bONlx4wA2K61/nriZu7ftrm5qde+9rWKcOzYMT372c/e2b/usY997KStNv5XXnnlrnNGlGBt8cQJfI9lhO1c59KUgILJ8Pzxl6brLdvxPiLy4A9qRmLeo7Tj+o6IQ9gG7u/Hvng6xKw/XH/Rnn3sF2kQPZjAvr29rTe84Q2T6yKUSbNQKBQK+wJ72vHcftUjDS8yVUi5luPP9er1nx5zpoSIriej2sloo/w1PLeK+s5ySWUVmSuyeiIKMbZjHbMHj7HenvmLbfO0c1H5586dm8xXZJbKzGe9rX4Mc+uhZ/LhuEXbA2VbnrCsqF8slzROc32I+tFbO5kZjBI4pXffJtazypZgWRm+HpPOvaaSrZ2NjQ1deumlOxq+Sf1+ayk7Z1Yi9s0+oy24TOuzNpFUnpqRPxdpOlJMSzfnAopo4gyco+wd5svOtiVjG3vH2M9oHAlqenz/+b5ktHc9GjwrxzTFs2fP1vZAhUKhUCh4PCgaXk+7yEhPIz9cFoCQle3RI1H25305c47giOyW0soqUlN2D6Un3/ZVg3B6fZgL6Ig084wMO5K0uJ3PnPP7/Pnzky2R/DqgBBhpHqxnbqudbJ6ie+izieqL/Lu+jGi8KLVmmmxvrDOy5WiMso2GVwk247Y2JOiN/FkcN/Yn0gZI7ryxsZGun83NTR07dmzHX2vrzvx20lLbi7bL8n31/TPNznyL9sn5j9ZFT2uJ+unB9dB7r2WaNt8PPR81x5VE5725tPHitT0Nz2D1cj369W3nbE6zzWN76G0eTJSGVygUCoV9gfrBKxQKhcK+wNomzQsXLkzU3ch8Q9WU+0RFIfgMk85SDHo5fDQTRPuurZLjIa2WcxTtD5aVmQUnrGLSyNIhIrMI+5wFnkQmW7aNpkd/nR1bxXls5nCaK/28mMnK75Xor4mCWSzQIDN90OQTmVMyRPXNBbpEznauY857z8TFucr2D/OmumxnbTPh+dB83sswcY59FLTAcjPTcAS/12Vmdm6t6fDhwzvvBTNl2g7l0u70Bg8Gnvi+WqqC7Ytnn1l6AtelL3+VHbf5XFqbe6ksfO5YT5b76P9nAI/1w9JHIpMmA3qyFA1/79xeetYXvy6yvS9Zhq+Hz0lmTo5QGl6hUCgU9gXW0vCkZfCBNN151iPT7KLdkSnhklEhO++PUSukJNRL6s4CANZhEVgFmfYTaaHWD/Yr0yiidIF12sOdu7Mk2UhTtjb2JK3t7W3df//93QANajwMz2YSvD/GXbU5TlEwQ5b2YKHtveAOanLUMHzIPMvnnGVEBP4c+2NSci/xnP2k5hcFL/U08Kh+f20WFMPAB9YpjWuoF6C1ubm5My9GWuHH2P5nHxmYYlqNtNTw7JhdY+vL+kUtxx+j5tUjteC7yvrB3dI9aBWIUoF8O7wGa+esP3aO/fbPE6+1TyuLYxFpXlnyeBTEZOPFVJPMKhKNwarvO6k0vEKhUCjsE6ztwzt//nzqR/BYJT3AQL8ANceMa1NaSgaUKkzijn79s0RgajNR+Ds/KaVHXHBZ+3s0OtRm7ZpMglxFG2XyepQGwRSDVfj2rN3b29uz4cFWfsZ5KOVSOsuQptql3UsarUjzz7RBzk+0huiHsU+TUP1cZqHlBrbN+3Qyny011sgfm63VLFm+19aMpszXl2kjdm2kmfs12SNxOHDgwI6P1zQ9T1Fl7aIWY9R1dtxbIaiZcryYfuW1p0wDorXIrx0bB2s/5z16d9BqkqUhRAnw9D2aj9LG5u6779713f9PX15mJYj6x3N2j333dIKGjCeVlkJ/zKfqVFpCoVAoFAoOe4rSXIdd27BOsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktYqiZLUbjNfoq87I2LNomH9PXMRrFE0YObLi+qh/b3nh7EyMzJcX2fmN4x8e5T67TslRlsP/t5sjdA34CVXrhn6pumD8OUz6d7qsTbZ2EWaS0bqHdFGZYnmnEsmmftrss9o/qzPph1kPhbfL9M6vC8si9Lc2NjQkSNHJn5a//wwijAjuI98QVwrfP6jOZgjZub68MeojdraZbv8tTyXJZP741afjbH57EzDMg3PR5+aFp4lgGfE/tLUukafpJXpLTakc7PvjGDt0a2VD69QKBQKBWDtKE2pTwprv8QmaVuujEkxvYhOAylpTHKMopmoaVHijXw3bEPkB2G/6MvIotlIAeWPURuk9Nkbmzk/YM/uT4LWaBxJE5Zplr18vx7Fj/l/aZv3bWW+kJVrW0xdccUVknZvD2SRbiQPpg8v0ry4Njj+lGr9uNianKOn8+Xzu91Ly0W0fcoqpOEsP/PlGaJ1n1FmZZqtv5Z5bXfddZekmMLK5inSMqP+HD58uEtPaJpBRmMV5WHaOGf+eCvf+uXXAX1c3CIpI2yWcv8y4xH8NdxOycr1eYz+MzvmQV+iP8b3i9WbWVKiezJ6N3/c1gZjFDi+fuyZm7hKvudOG1e+slAoFAqFhzHW0vAsGqYXsWXSuEkAJllTmvE5NNz4NYui7G1HZOUy56fnU6Et3SSGjIBWyu3FGbmvtLRZU5Kk/dqDY0wtzdoYbczKfhqySE/f/oxpw0dy8Zy38/c0vLNnz+6MAf0W0nTbD9PerrnmGkl9De/48eOSpuuNUV6+f4zoJBhF6++3NlB7ilhGslwtSs/0Q/trOC+UcqNNQ7P8OPbfa9n0Z2Zkwt4PY/WR3NnKtfy2iJXDru2x3rTWdOjQoW4EdpYDmK1rX3cWadvbADbzN9u4mF8s0mCZh2fvTLOGRW3lWuU7w+qJ1rJda89cj0jd5t/mMouMpS/Pg9ouv/s22jz5zVx9OyIrIn3vpeEVCoVCoQDUD16hUCgU9gXWDlrZ2tqamIe8icnMAfyk+TBylJtaa2aBLPDAq8RZqDLVd29Ci+hqpGmwhzcJMjiBznDS+Hg1OwshNjD8OWoDTSM0i/kxycxgWSK6L5/hxnRAR+YDO3bo0KHZBFCSPXvznZEC29hee+21uz4tMMU+pdzkEu1/5vsh5SH3NPVFtF0Z7VmUBpNRR9GEFgURMGiF8xKZzGhm65EyZ/ca5nbnlqY7hts8mqkuojCza5kKlLXTU4sxcMPXQYotmuiiPe1oarN6aA6NAtForrZ6+S7z7WWwko2Tffr3TmRO9eXa8ejdyPVr30mO4Em47X/7tLmMglR8n3zfSV1mx62syIRuY273ZBSRHhndYg+l4RUKhUJhX2AtDW9jY0OHDh2aBGh4KZ1SA6XmSKKjc5OhqQx79vWZ5BHRZfmyImJmnuP2NF5yyHYAz6h+vOSdkStTE1sl8dzQc+pSC2Mbe2TPvIbBMz0tdG534tbaxNnvNW8GPVx55ZWSlmuJTn5/bUY2G9FCEUxo720fxeAEk5a5DY1f36RroxbK8YuCFqjZZYFX/n9aG5iGEG0pk5GWZ3Rovh6DSel8F/g1bM/YKmTsGxsbOnr06I6GYOMXaQoMDON4+fVmc5itW2oZ/r1j4LqysWbwir/WznF82L+oHM4lLQ0RdRoDBa0eCwKzgC9paT2hZkeCDxuTiJbM0lJs7K3t0fuGCfw2F1yrkcXEv5OKWqxQKBQKBYe1NbxLLrlkonFFBKJ2jHRKlJClpQTA7VmypOvIt5aF/PdswCbFUJKztnnpLUtONlCL8vUyBD/boNVL2tTCOI7UnCNJmTQ97J+XuDLKIlL8RD4807zOnz/fTUvwG8BG6SnULugHpr/Wt5c+FUrC1Fx9Odzwk35RXx9TTOiTjsLrI61Pyv3AURlMt6CfxJK8pekWL3PbXkXh/ZS0mRTvy6R/hxupRgn19MsPw5Cuna2tLV199dU7mr3dE22Fw02pOZerbDND8oLo2cqIpTM/nT/H9wstTNG2RxnxMt9Lfl64rmwe7Hk1Dc8+paX1hGlQGXmC7x+PcZutKEWE1g/77FkAIg1vVZSGVygUCoV9gT1FaVKK6dF2UQLq/RozSo2JppT8pWlkH9tE6V2aSmGk04nIoyntRRtY+v55KYaRqnObOEpTKZCSNqMcI2oxO2YSd5a87MuhRGnobXtk7T969OgskSvnpxcJa58cvwiUuE3LWcVHRC2AY9DbJorackQTx2vnqL+iMaEGy81JIzIGg11DP2O03RZprvhpY+Pr45YyVp6RE1tboy2TVom029ra0hVXXDGh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4CgE9n92M3D0iqzbY3JkmGY2N9cf7HqXleNLqEkXKMrHejtOS589lzyk1Z9+vTPvsoTS8QqFQKOwL7IlajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvt5ta3DgAAIABJREFUw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxtPnDghaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlLenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwr7AnrYHiiLesmuynB8vpZPE1SRuIw2mZud/7U0iJfNAL9LOpDNqadSmoq0vqKXRH2Jt9GXTTk1pnPlZ0lLCItOJtcn60IseZaSYlX/y5Mld7fJtop2dmnMkQdqx06dPp4wZ29vbOnXq1I62EbHBUIumBByR31rUmvXJrrHcIvMjvP3tb5ckPeIRj9i51+6xOXzMYx6za1xuvvnmSRuZe8qoUJuXyDqQ5d1ROvfWgYwdh5K/1zS4sexVV10lSbrpppt2nTcJ3Ef+3XHHHZKkJz7xiZKWc/H+979/V/+j3L2MVD7y3ZCtqce0YtHhPZYPq8veB/TD0u/j77HxME3uHe94hyTp1ltv3XXc55xZuaYNkjWFPnFpGhVu3xmBG1l6SIrP7z0Scfom+U70z7SVS+vXnXfeuautkeXM+/L9WNizaBaUKNKbFjk+E75ffAaLPLpQKBQKBWAtDc828TTQfizlXHa0yXq7uf1vWf4mCVCiM0klsifTHs1tgaKcM256ys1re7yR9L9RyvUaHvORrHxGa3lpkJqkSfImNXHso9w0k+SYk2jj7bUHaxt9XdaPaCPSyAfai5gahqHLJmLtzXy3VrZJm/5/0+SMd9Okyttuu21Xu/04mUb31re+VdJy7XzER3yEpOUYmyYoxVvq+OMRo4vnGvV9p/812iAz2zTY2moahh9PahI2Nqzvoz7qoyRJr3vd63butbVp5d5www272vG+971vV1t9fRnLURTNzfn3W0dF2NjYmFhV/PPJiEv/LPlrozw103zf/OY3S1rOt1mazGfk1x23qKGmb31mO/y9GcNKpHGRm5Mb8jICWJrm/3LMozw2jq29azk3kZXMxsIsBnavfbfn2/v6aeVgHjffP/4a/5tSTCuFQqFQKDjUD16hUCgU9gX2FLRCU6BXnaMESP+dSZ7S0uRiJk2aJ6+++updZXkzgTmSuW0LndVe9aZph2Su0W7cmcM3o7fx/eMWHqbSm1kgCmZhQBBNnGZusTGyMZSWJhhSPtm1NN36+mw8M4oub25h6P2cWcG2eZHiZHImDdPMamYdC6yQliafRz7ykZKWgU5m0nzb2962q8z3vOc9O/faGFq5Nm42ThHpsZn6zFyzColAtlaYYhBt58OUksyUHlG0WbvNpGT3Wri9jY3HddddJ2n6TNpYmUnTm/cMJIynuSpKh2GKTgRzpTCAKwrUIYl0byd6C0r5y7/8S0nLObO+23vB3hOeZJlmaJoUo/pobrVPG7eI3IHzbWuVu8gzqM2XnxEyR89rRoJgz7qNjbXDvytJNWnP0+233y5p+Vw97nGP27mHATV0X9CE6//vrZkMpeEVCoVCYV9g7aCV7e3tSdCHly4Z0k8HIxOPPUwCyBJzo6RX+5/SC8mOo2AKShUsy4P0UAzYIC2Q38KG/THtgGPRo9yx73Qi2zhHzmPWw4Ru30arm9onncgRjdwq1F+tNR08eHCSjtCjFrOxNa0q2lTT5sqCU0wCZZCUjYVJndIyOMGCpGxcTHuJto+xNWrjY9J5j6CZVgbrB9cbg5h83XYPSZIjjZKk4dYW01AsTeG9733vrrL8GNjauOWWWyQtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537brXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+v1118vafne4fuBGqA/FhEazKE0vEKhUCjsC6yt4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJS2l6Ec96lGSpr4V3wbzk5qfy8q0OfDbEbFNVg/Xe5Q87K0Pva2lzp49O/HpRuuAz6G129prWoZvp2m+1FpoHYqIGphqRKuXf8ZIQ0cNP9o8msQCTBsghV6U0mDjT2sA6el8m6gxZuk4UXoKtweir9zfY+uJ7xm7h+vcl+M3CFiVXqw0vEKhUCjsC6yt4T3wwAMTDSiyATOChhqKt/0ywpLJ4qbhUWKUplvd007taa8MJLm1e0zSZWRSVH7WX/bF30MphP5NLwFTkspIaSPfWiSRRsd79FCZpubHnpueHjhwIJXSLUKTFGVRlCZps/zcsW0shxtkmv+Fyb3+HMmP7ZMRwPxfWvoG6ffx19GfnFHLGSIfMrVB+n+9j4PWDtL62bWm2Zgf0l/D6LheVKhda5YaPj/UGqRpEv7Ro0fTzZXNhxf5Kw1sp42prQf6XKVpNLDB+sF6/Herx/pkvrqIMs/ASG9GYkcbT1Oz4juLa8rXy8hNvisi61EWwZnVH5G/k9DfwOfKl2vHGG1riEgyojGeQ2l4hUKhUNgX2BO1WEarZNdIU0mBvrtIaqZWkREoR9FSLCvLI5OmUXLZFhW+7Gj7Hd9GSu0RSS2jzFifL8PaxPHrRU0a5siqDT3SVc5J5HvN/JpZeVtbWxPN248rx8e0J0qqvVwjRtxyvXnNhPmeVh/Xjocd43ZAGVm6tJyzKM/O968XHcx8vFUorKwt3PLFjpvW69vDNUmfWGTVyTQhrgdfDwnjDx06NBttx/GLNubNttMh9Zj/nxGd3FKKVIDS6s+nb6NplxzDjBDa3891zOefWjzrjtoaEc9n88yNhq2fUZwD/fQce//+5nOUbSkV5bVmlrMeSsMrFAqFwr7AnphWeppJtNGiNI3K6m3iyBwtfo9IaOmX4lYrPhLNpBVK8JS4fB8yloI5f4xvIyMdvR/TX+eRaQOM3vPjSRs9pc6o7XNbbFAK9vd7KawnbW1tbaUMMr599FdRovPzkpEGR1o666N2lrGl+D4zV5TtiPpPnzGj8qjhRfmYzNmi39lH+LLvmVQekTrbOFJDidpmyCwJPTYiauQ9/y/vZb2+bhtraiQRo0sU7Rkh0mbof+caiqxRmb+fkca+jdnaJKJoZWqH1AK5/nwfMzJn1hO9D9gmwo8JLRPZxsaRhpfV20NpeIVCoVDYF6gfvEKhUCjsC6xt0oyclJEZJ3LaSnHgAU1WJJjumTSjkH5pum+YN2laqHK2k7apz1715v5+GSIzmIHtJwl3lODMfjJ4ITJLRSYY/z0as2i/uF79/v9oz0GitRaaL327s7B9tmmuHN+WnpksM+0wedybiRiQQTNlZNLnesrM8FFfOBY0CUfJygzyYT9ZxiqmewZCReQP0Vr090Yh835MenN14cKFSQCNR0bATZOgX79cI3z+e+4K0oBl5nePKCjJlxGB/eI7hGPm20hKQ14TkSSQAjIj946C9WiinSNJ96CJ2DBnbrZ7KvG8UCgUCgWHPQWtrBJ4QKmVAQe9pG5qQAz5jUDNisEqPiGZkg/pc7izctR3arCUeKJdqw1ZWK2vj8EKUXhuBkpSdDhHaSDUWCgRR0549r1H8dNa2xUSHkmoGT1URt8WnWNAQCTFGjLSZkrikURKCd4Sm6MEYAZjRSkevv5oTDhnTNKPwtGZXpFt2RWB4xilArCcbM1GWg8DquaCVnwbovZngQtWZvQsZ1R2c5p/dM5AS0lEIk5thsEqkdbE8uaIoX25rJfvhahfDLRaRaPMCBRYhn+H8Z7s98NjFetNhtLwCoVCobAvsJaGZ/RQ1G68tpb5nnwZvI4+J372yqRkzy1YLJnYS3jUIKnFRKTYPR+Gb4dpMVGSqp1bJXGSPjoDNYuelE5ps0cblkluPSmdvjtPLB615YorrphIy1HCdETe7evpaab0F1ETitbOXMh3lJhLIuhoA05DNu7sT+RbnUt74RqOymdbM+tL1P5Ms/PrhT5JtjWSxHlszofny4usHJn2mlkspOmayML4IyICXkvSBFoY/DXUrLLto6I2kGg8W/8e1NYya4E/l/nTo/SkDGxbdA8tCbQocJNuX272vYfS8AqFQqGwL7AnajEDbcIe/MXO6Ib8NdT0VpHSaAePNgmVdkuuc+SjUdQkNYbMjmz1eonTjhmNjt941ZcZaRKmodJ2T60g8qPOoecryBKeo8hOEulG2NjY0OHDh3d8qlnEmjQvtXpJ2+aFUuxc1F4P1Iz9vNj9NpfWFhIqRKS6/GREZxQRl42FXRNpeCR6zrYWMvj1wnnJ/DAeHKcsqtYf53vgkksuSdftMAy7tINo7WSR3Kw7okGklSiLtI62I6K/v0ewwfHJNEgfcUutj+85kudHieD0y5E4xCNbZ1k0fE+7yny7kQ+PmnIWaR7ds4q2udOmla8sFAqFQuFhjLU1vHPnzk2k2J5GkUWiRfkiGX1SFPFkoOZBwulI6+B2JT1SWqInhfp2eA2Tm1Fyk8jIh+S3TZGW0aakQ4qk6p6N3iOSuLPcyigKjOM1Ry22sbEx0QojaT2LDOtpF/bJtdST/jK/j31yCxtpuo0J/VeRNpNRelGzIJ2TlOd5cZ68L9RvjCnFkrwvK6JtovZBLS6KkMz6F8H6Zc/JnA9ve3u7q21Qs7K+Z4Ttvt1872TbEEWUX7QYkNYt0vRJz2XPtmltvsyMVDnLGY0sWYzktTE3UuwoJ5qWg8yXGD2T9MsZeuuBkfqMZI2sev63pPLwCoVCoVBw2JMPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+FfYSameRNpJt8cLtSaINYO2cbeVCCS/SSjP/RZZbFSGLIPVjH/kIepJWa20ytj2i3CzHKNJMM39vdp2/lvWQiDrydRqyjYE9bO4MmZ8i2sKG2kzGYOS1OG4OmxFd9yTuLD+qp21nz0+0znjt3AawFy5cmPii/PNCDZjxBZG/vkfa7cuK8jM5drZWOLe+Xvro7Fm+6667JC03nvXaOjclZs6etcnyQP36pAXJNDprR3QPrV+93Gciy8OjfzXya3J+GMnqy2bfizy6UCgUCgWgfvAKhUKhsC+wNrWYNy1Epkju2ku1045njnSPzHwSJcoyGKLXRt5joMPZmxYySrHMLNZLxudYRAE2HD9rM+nWIgc7y+dY0PwT9cNAU2CUuOtNV5lJc2NjQwcPHtxpJ9vPcnxbaE6LiIszkgKaZqO99JimYqafKPCF97C+iGSca8fm0Oqh6cmDlFhm7mQQhm8HzWq8h6a6yGTbMy8SXFeGHhUYTX49k7AFy/G5jFIVstSCXjoU11m21120djinfD6jZHUG7JhpM0rvMTOnffKZXoXonPNsbbOUJ29C57zw2WMbIyIHgsFBkUuC6zjrX3TPuXPnKmilUCgUCgWPtanFDhw4MAm68KCTnWH00S7pc/RFGfmuP8fE0izx2P/vQ6Kl3US2rKdHihwhouth6DwDbaJgHGprvS1SWDel5t42NDyWBR542iNqXD3n8cbGxo5G4/sTaetZ36LjlLQZ2JLt4OyvtTXJeY+kdAsh55ZSJi33Ag8uv/zyXfceO3ZsVxttbk+ePLlz7913372rLdzRPSI64LpiiLndE0npXIt8fqL1zvQXzkX0fNtY+yT57FkahkFnzpyZpJz455PvoiwALqIY5Heuw0gTZlBZdk9EE8d54DNuQSzSMg2GGh7bEVl6qAnZ+NpzaG3zQVVMxckS+qPUED7TGWl+BK6hzGrgy101HWpXPStdVSgUCoXCwxxr+/BaaxNtKtp6w6SGLIw/Ojan4UWayRyFVBSOTomKiMJns40xiV7qBP1Jpi1REvf/zyXxZmPn68229vCgr4MSXLRBY0SUPSdp0ZfmNa4eEbIU+1KyPtKXase9JsBrqOHTpytN/UemgZlWZm007U2aUn1dccUVu8q1/lKaZ1+lpbaYaaP+HmohVg9D9v14Z9RsvbSEjODArjVNxq+TzCceYXt7W6dPn97RkKP13HtHRG2LrqVWxjZG2lr2vonIJPi+oQ/PNLtoK7OMhoyaXRS+T+sA3yWeJIMUfYZsXUTIrCs9yxI15N5Gt+xr+fAKhUKhUAD2tAFstkGiNPVTcWucCJSKehFbvt6oDZR8ogRK0vAwYpQ2dmkq5TEqi9d5iTuLfKJtPUrIpJROiS7S2ubIgiPMRZ/2JHGTUHuRt8Mw7Iri7PljswTg7LyUS5NRO3gP10EvmdykZJPCSTXGpHVJuvrqqyUtrR7UHKnpRz418/tlRM2RdcDKpU+PmrLvZ7ZlkaFHFN/z87Eeg6fM6lkxtre3d55t+k99e/n8UWuL7sm02VWSnzlnWcSnNPW70vrEqFp/DeMN6NOPNDy7x+gJbdyy7Zx8OdRGaSVYhYyd2lo0/2wLn9uIyJtRxnOEF7vatNJVhUKhUCg8zLF2lKbPper58JhrYp/0k0jT3KUoT4ztMDC3hVv7RNFEBko+vW1aqJEweon3RtGH9BX1JOO5zU/XiYAiej69LKqxJw2uKl3N5Xsx6jOLgIu0NEMmgUZSLdciPyNyZYMdM03OtDf7tLXl/7drMyozf4/Bnhv6X6jJ+OeJ/tZMeuaz46/JInwNPXoojltET2XXmL+yt34tbsDGIvKtZu3r+R6j6Oio/aQg8/dGYygtx8LeLVIevWjXXHfddZJ2WwfMr8eIV7MsMB/Tz5utJ/MZ///tnd2O5NaRhLN7WoMZwDAsyQNY0MW+/2MtYBgQJEEeeSRZM11Ve7GI7uyPEYesWeyFXBk31V1VJA8PD1kZ+ROpV7FqZWv265M8Ry6rup//Coz/rTJ9nTA0tyHbXGWsb45z+JuDwWAwGPyB8Vl1ePQfu2r71MpjlRmW6mIIp/bB/et/CrX27WnNyrJycSCOkcyOcR+XicR9MYPQqcHsZUU5Cys14jxiYXGMghPYTQLNCXd3d5sYXrcuE6NbNVel5Zvq8Jh52d/jKy3Irl5Bb4SsZNbWdcueMVyOjZ6NzvQYdyGTEKN07YGStZ4yWPsYyIySwHr/e28NOUbW1VNW9/vj4+PGo9TnOMXDOTYXh+N40zPMfZf1qZpT5/XSeDUWNkOmyHPV8/VlBiczml0trNadslv7fque10x/P3nteL7XsCphlUvA/fO557x6/T466uEahjcYDAaDm8DVDO/h4WGTveSsPbLA1FQxHae/Mm7lsjT5P5sryufdP6PuJ5UwukWiOIte9R1ZSd3CrvJxJm3LbMYVK2S25l6NWlXO5NuLk7jxU8ljVe+3t/+Hh4dNPGcVU+P4XbZXYivMznXXyTV47efIRp1VLzN3+7a0XrXu+v5krbuaxj62Pkdat2wLc6QtEZkxa6xcCyjGW1b3Ho+Tsh7JQqqe56fvL61taWmy/revnb2YnTvXvXW72jY9zzhvjpno2fHtt99W1fOa4vOoH1vvad7ojeLzqG/75ZdfvvhMY3L3BJ+bTt+zyqsi8d5zSj59XP07K1Ub7sNl3h/FMLzBYDAY3ATmB28wGAwGN4GrXZqvXr16orNOhoYukL3O59y+70NY0dvUAoPpwt0VxYBskpTqlLkH1/sr3WIuMSQF0Fdd0gUmcqRCU1eszP9XSQUcN+dPc9JdOHtyTjzWF198EVuVVG3nVvtz10NI5SFMilldU8F1cOc5052m+ZHrkcIHVVtXNpNY0j1S9Zy2r/3THc5i5qqta5SSYikxpe9vT7TciU3wHuC17nMvsW199pe//CW6Z0+nU3348KHevXv3Yhs3hiRc7coteP+l59DK9UnJOv3PMpV+/pSfU7mAOpB3aTltr8SSP//5zy/2QVH+fjy2n6J73z13WHbV3fkdq9Kt5MoU3DymZBXB/V50N+/RrufD8AaDwWBwE7haWuz+/n4TNHS/rkl+bJVmzxKGPWZUtbUi2TjVSdOwPYqsGFmdDML3v1PTVjZqdeyJSIXAHTw/MhhXWJ/kjo4UgCbr/IhYrAqEEy6XyyY47RJQZIGmIngXKCfTI/N2sk0pUYclLc66TIyHbKp/VyzNyY9Vbdli3y8ln1iE7eSoOOZUVO7WefIKuLIESgJy/TlRcCZDffXVV5Hhnc/n+vDhw0bWr7MPro3kGTmS6JIKxN08UTKRTYSdAAXZmRPj4HG0P80hhQh471RlOTqWwawS3vSaxEFWpSZ83jhvFLfl/46F6jOVahwVvqgahjcYDAaDG8FnxfBoBbhfX1rLK8alz8i89iyFDlpNKgTlcft+yQopg9bjJdqmW9/8TpUvqE6xs1XZAGNoqQ3Iqn0GWSHnz1l2Ai0ux8i4zaoRo4qHV8W8qREv4zJOcDoJAaS4WT9HvrIcobPnvbZNjJtUPbOAVMzN69TXlIrQWaqR2tL0/e+lkrt2SwLXF8/ziAeDY5UHpWrbMunt27fLwvNPnz493dO99RLHkFgaPSL93OhBoDwhWU5/j3NKT0NfO6m0aCXKQY+F9sFSGnd/7gla6/9+XnxG8Bm1ErxPnjn3nBBS7kPyUlQ9P9u1nl6/fj2F54PBYDAYdHxWeyBXiCnQiiHDY3ykamslkZXR8nNt5VlMTuu8WwC0wngeYnHOZ3+khQzfp5XEuXExtSTQzYw+x7JTY9sjVlBiLqvs077Nyp9+d3e3Gf8q9sg4yYrhpWzN1JrJnRvP3RXB6py7rFX/jhhZZyHKnGMchCyEcmV9vGKMLOJ2RbhpXXOOVmybc7HyACTmQibZvSMuFp7Wp0QLVAytVzdPidW4uFxiS2mfHXviCEIXIEjyhyleVrVtJcSYNe/Tfu+TRafnTd8H1wTXV3q2dCRZsCMSbRyH0MeoddTnfhjeYDAYDAYNVzO8h4eHpYWYMgLJxLpVRX94ypJywqby58oS0v9kRI6ZiKXRwnNWR4qZpIw3x/Bo8dIS6lYMWYbOjxYdGU7fX5KQchbXKnOzw9VcHmkwKyt9dTzGXxnTcnE4ITG7IzWCvA6pEWjfPzPsNCYn1Ks6K2a2pVhrZ0LMWBVotbusSa4DtjRaCfNynTEW5lgB1xWZDGXZ+nn9/PPPuw1gVZ8mdt1jnTon3u+rlmMrTxW/y+PJ66DnGWseVVPXz1nXVeubzwHXQJk5A0l6i/kPVc/PQK5jzR9rB91+hWtkvPj8XLXz4TWnt8A1pKXXozcG2MMwvMFgMBjcBD6rPdDKn5v8tWR43WKQdULrXEhxwf4Z1TE4tj6elA1I9RSXaafXFdvo51KVlVR4Xt3fT6vFNbDt43DMLFlLLu63p3bjsrKOiEZ3XC6XTd2iGy/Ximtjk8aQ1F9W409qHK7RKMevbVNtXT8PZmtq7Wj9u9YrZJT0SqTYUVVm9FQH6Va9yy7sx3dMeU8Yntez719j+fXXX5ctsD59+rSZJ8fMyJ6TCHt/L9VQ8lr35xLvKc3ljz/+WFXP93K/j9Xah/e2xuGyT3Vs7Y/Zmqzd7OfHZyAZHp97/b0Uw+N95tRu+J0UV3XbUNnHxYfT8/QIhuENBoPB4CYwP3iDwWAwuAlc5dK8v7+vN2/ebFwULtlCYCKAS6+Xq4IuFrrgXME0959cjB10aSZB6B5E1jZ0c60SHISU2JL2UbWl+CyGXR2PbgKmlifZqBVcggrHsOp1eLlcXrg0ndxUmpfkzq3K0mLJjefmmC5TzstKRiuJ9zo3YSploJu/u5iY8MEO6IJLCKJoAe891w+Qa4Nr112LvQQR9nur8i6rlWjBx48fl2LPdGGm7x6RwqJbz91rPCe5Kb/77rsX+37//v1mmyQpJ7gSEyXsyO3JsiX2zevjlzs0hTaUYFP1LE5N1zld6EcF4/u2PKeOlMjnhEN43abwfDAYDAYD4LMYHrvi9l95FpZTYJpByaqtvMxKYJrb0uJkCvuq6JHMTtaTrOi+TSp+ZkH6KqBKaR9akt0S0mdMS2YA3RXH0qpNIrjOKkrFys6qvqYYVWUJmqeV5BvHzQQRx0j6cVbn6MpTyA5TF/P+mdYDC6hVeN5BAWCej9abXt39lESDtQ+X0k5JLybLuDnak3haiYjTk0DvhNt2Vdzdv/P27Vv77BB4X1Co2a1frhVuw/H2e1GMTq8SMman8F6WkMTitQ/XAioViXNuKcbd50Jzo4QazqOT7fr666+raitAzbXTxbN5T5P5r547q3ZnfcxuLB8+fDgsID0MbzAYDAY3gc8qS2A8q//68j3K9zhBXsbukrwN02r7d5MUlvs/yU7REnHp4bT6uI0TqSWOFGSy3UeSB1pZzcSKQSdBYY5xJR69wv39/QvL1bFPrY3exLJqazG6+FhqJ7Ji+AJZO9PTHXtmejhjXi5WRMaa5q+v5cRQNTZXLkCJqjQ2trRyYyVWwuNcQ0kswe1nT5Lu9evXG1ZzpGCa596fO1zbLOLnGupsLTE7CkWwfVA/Dlm7k79jvJVF65zzPg+UP9N3NVYxyn6/UcBD567v0OPjcia4ZukpcR4F/s/nultvLodkD8PwBoPBYHAT+CxpMWak9bYf/PWl5c3MtKqt1FHy47pml7JiKBpNhumEoMnKaBG5bKm9bCKN0YnUCmwsuor7kYWmgsxuRSUfOtlOn1/ujzFC10rGxfsSa7m/v68//elPT9lmjuXI4pQUl0BrzzU7ZSyImWjOE8C4F61Wfe6ykMkG2LLEsY+fUGtBAAAScklEQVS0vii55eIVOq6scxfvEyjUnmK6jvWQfaTYyoqRpViba4baM0pXWZqPj49P942T7VL8PUnkMT5blb01jqXzfPi8ITPSWu7F5Iy/6X89Rx0jZmyORetJrKFqG09MrYw69F3NMT1zlKfrcHHSjlXMmP8z56N/j2NZZfhuxnDoW4PBYDAY/MHxWQ1gmWnXLW5m71AOyEn8pBgHLTDGL/p7ZCL8vL+/J5ArC8JldDHrlELHzgImwxJ4nD6PKc4o0Irv4BgJlxmXao7IIFfyXns4n89Rdqj/LctUli8bsrq2MOncXGNMIV1/xmFcbZOgz7QOWJfX36PgdGr505lLknyTSDWFgPuYeM+RLXJ8/e9krTsGle4n3guuKfIq61M4n8/166+/Ph1T60Pxs6rnudQxyN5XzW6ZPa35SzJr/XiqW+P+HZvRNsqAZPasu8f4XpJMdN4I1+asf9cJj3P8Op7mPNW79s9SLaR7TjBGx7l2sUk9BzR/K+8AMQxvMBgMBjeB/5PSihPX1a9uqt9hdln/m0oEKQ7Y2U6yKmgprOrixCQoWt33wZhDskQEl81IUWJam91KZ1yRc03VDBdfcGy6j8dlaZKpOsbCbY7UUj0+PtaPP/64iam5th9iS7ou6Tz6NkkJIrVKcu+xLopxmT4GfVdWNGO7LmacsmQ1dir9VG2vu8as+8xlAzJWy9ihsPISCByrU9VZ1XX1ffQ5oULJV199FdfP4+Nj/fDDD081jmK1P/zww9N39J6YL+dtFesU0np28WbW3ypWx7Xq2BrHzHjZ6llFhSKy9n4MPmvTenNx+TQHzBbvSM1wuXZXMXHmXLisYIlw6/Xu7m4Y3mAwGAwGHVfH8N68ebOx9roCQfLbU9+vWxWy8pgRxLobewLwKdM/7Vp7MD7B7E9XS0emxSxG7quzUB5PzIXWlItxkNXyf6fokOoY+flKdeJIbcte/LTjdDrV+/fvn8Yta91Zl0mvz9XUpRrKVL/mLFOuM7Za6eu7Z8H1c2brn1WNYvqOa3ZJy5UZzYJjH0nnNbGD/h7HSA+Ay0LWd5iF7BiL5lSvj4+PkWmeTqf66aefNhmkHWK8YnhJH9M9S5I3gHPct2XMLjG8fk5idLpXFYvmvHVvCueOSjurOjyysSNeL4F6wnyuubgtVYcS0+/zyPg8t6GiTdWzrmivxxyGNxgMBoNBw/zgDQaDweAmcHXSyuvXr5/oo6i5ExQWXWeKtAsA0y1HlyaLPLu7kEkLLB51xZVJUHZV+J6EZhmIdok8TDvnq0vxZTkAj5Nam/DY/bOULOE+23PvuDHuJT9cLpena6x0bhfUp5tmFSjnNdwrU+jnwZICrkMna8TkACY6rdzTHDNdP07KzEnxVW1d6+76pBRzYuXaTufQXUx0c6ZwQheo4Pp9fHyMbqnz+Vy//PLLZq57ok6SMWMCRZ8DloEkN7R7hjDxgwkibl8aA0u12PLJJS2l8hc+s1b3dHqWOMFptxb7vlxLM7q9KV69Snji+mVSW187vBeukjg8/M3BYDAYDP7AuDpp5fXr108WirPIUqE0i3r7trQMtX8yPrYccuC+XFoy3yMLkFXhWNpK8sb93/eThIzdNpw/JhpwX32slCEjA3OsMBVoJ1GAfpz+2Sp4fLlcNuzdBeiPFpP38aaklST63b+jVyVQUL7JiRaQvdDCdok1aR9M1nJCubwuZDROrJrNaFPauCseJlM6IjFHa51rtq8droPL5RKTnk6nU/38889Pa4VlK1VbGa1VoTmR7il6MLqcVpIjZNKKe+4oYUtp9akUoI+JjM7tn/+TabGVlHt2cA54fIqC9Ps3CYEngf+q7XOU9wbLV9y5vnnz5rD4xTC8wWAwGNwErmZ4XSCYqflVz1YQ20vQoncpvvT9ax+y3rRv1yCRhYupyLKPm6xgZQ3ST5xiKq4UgDG7ZAGvhJmTDJaLudBaOpLCTBZI629VctCv24rhnU6nTdykX8sU4+Q5uzR6WqZs3+OuLQumuXac0DnXisaoOAxjIH2bFN9J8Qv3HmPgrlVOSt/XnKRmxn0/nOtVK6vE8JKUXtW2zc3q3lNJC+PnigNXbdk5x+1i+vQY8fpwflZrVeB67M8JXlfeny5HgfkSR55VHGMSi3axfCI99zSufk31Xd0LjBk77x69aWwtRWmz/t2jrK5jGN5gMBgMbgJXtwd69erVJruwW7P6haYw7srySbEMvZLhubbyKXvIWdVJwJgWcbei0v4ZM0pxuv4ZLS+XZURLnvG3VREux7qKEQjcr+ZN2bYpNlv10hpbMbxXr1497VeWeG/mq2PoPcZQVtmzydIm03NyanrVuTIOs7JI6ZWgQEAHr3eSwXPx7VUcpI+5/02pvpRR2o+3V6ROL0UfP70tGofYlwqG+3u6Pqt1cz6f67fffns65rt376rqOQZW9fys0Ht//etfq2orqrwSOkheDMfwVmLq/X0XJ6fMIkU6nPAA7+F0Xo6tu7Xft3FMiXOTvEYdqShd+3Axas6B1o7Wh8vSZJswZYAfwTC8wWAwGNwErmZ4VVtr2gnyMqOKlmHfB4WQWXskhsfao6rnX3layYwvUhKqj0X7WLWxSJZOymJ0NXV723ZwP0kmzLEQ7j/VGfbrRma31ybGbbOXodmvEQXDq7b1SGnOnXcgZWMyhtO3Zc1cqofrlr1bRw495kALl/vXPUJL350P9+mEyHmfUBaP7GSVpcdYkWthREk0rl0xu55pdyRu2cf08PCwaQDbnyFidjrW+/fvX3yHXoJ+3ql+dK9Fl4Nbo/zM1SD291f1pqsaur6PqnxfpvvLfXd17yUw9p2aZ3fwHmF2ZvcOCFpvb9++Xa6fjmF4g8FgMLgJXM3wzufzxtpYNVVMMQGX+Zay49g2xik2JOURFyfj/mnpuFY4ZEm0kmhBuphh8m07i4fWGS25xOLcGDhHjg1R/UFIMcuqrTV2Op0iy7u7u7MxvB6PFVgLxvly42Y8gmLOrvVKatfEjNu+vulRSLEVlwGrz7hmmLnsMny57niermUWY6KK5ZG1HxG6ThmMHYwVaV04hucEm1dr54svvniaL7HnPsf/+Mc/qupZPFoMT3Mgcec+7tR2ijE7jatnepOVpUxf5424xouSvDQp49MxvKQoRe9IP3fuLzX37fcTvTZ76k39bzI6vS/m3uOaro3bxPAGg8FgMGiYH7zBYDAY3AQ+K2lFoEumahuopAtG1HQl6szkFQbKV73mKDTsUm/ppktyZK6LdHLV0h3hKHYKCB9J+mAiQOoM7PaT3L498YASP0z6ce4Iuj/2yhLu7u42Ls2+dlJ6e7pO/Ry0P8k2pevVx6/rm9zhfdwcIwWHV8kRdCHTpdldZdw2lVswocIljukz7Z/u3VVJC8dC95hL72cBNYvBXUnIEVcUE56cCPHf//73qnq+/nJtUnjCudO4X746tzsL/3k+TrCBbtBUssVz72BqP8Miq+SNlctYYHIX97caK/tHpr54/VqysJ7PfrmmO1J5zxEMwxsMBoPBTeBqhne5XDbpzk7Ml0F8MhRnNQmJ4a0KJVOpxCrln+yTFomzBvda/Air0oYk+Ork1gSywFSU7c6TbNe15EjJKcniX51Pwul02rC4Xjz87bff2nNcMVOtL1mVEhTmWnFp1UdlmpxM2CrFumpdcMx9cRx9PplQQwaxaoPFNcux0lvQ3+N5cqyuxYtA0Xc3R9xmdQ1UeJ7utarnUgUlr/ztb3+rqueEHTeWJBpxhAkneauVQDvnlMkrTlghlQPwuvD9/pn2n8oqVs+qdBxXeJ68UKtyDpayCEpMctctJfIdwTC8wWAwGNwErmZ4Si+v8hYQGRyLyFfCn7SkyPQcUimBxsg4TTqnPiYnAJwYXWIS/VwY/+BcuG2SZJpAVuhilGneVjJbZC6poN999urVq5jirjgMLbbO1pJ1nNhuP0dZ+JRCW5WLCBS7TTHPvh8nA9XH5so3WPDN+XOCxIltkOF11rMXi+R6cyyE159ssZcYiF0TtN7793rct+p/7990j55Op/rXv/71dI9rDLrWHd9///2L16+//rqqnhmDa2+VRJa5/tw8Ea4shdskZr+K5Sd2ztKqfm/wvBJb6+A9mFjuSpSdzC6VNFRtY3csNHdCB6sY+x6G4Q0Gg8HgJvBZ7YH0C+2Ecmk1sZlralVR9fwrT7bGzMsu2yTQAlmJxiZwbH0byjNR2illfHXQd58kv6q2bIPMYeVjJ3vi/LkYZSo4X1lP3M8ew/v48eOGdfbjprgOLUTXcoVMjzFiF9NlMfc1TTzd+a0+r9qypJTh6dg610xiI/29lAmZskW5n74tPQn9HuzCA30bFtSv5LZWhedaOxxDHzfH8N1331VV1TfffFNVVT/99FNVPWdv9nGxkJmxfMeE+TzRcbUtn3cdXHepCWo/ryQ7lmJ7HG8H1+qKUe7FOR2j5PE5dpe5qvliobljibyXj0i+CcPwBoPBYHATuDqG9/DwEGMPVVvGkRolruTIuA+2O3GyZPxf33GWVrIk9zLvqvYzE1exSc4bxWOduHKKqR2pY+LxWJ/l6ss4ppU0FxnQit2cz+f697//vdlvt9woTUTLm3VeVdt6PsnOUVpM8R6XpZdqp1wLmBQfSwzMbUMPBmsenWXOOV6xwtROiefnJPTI/mily/LuMTzKBeoa87ycPJTmzY2l7//333/f5A70uA6FuP/5z39W1TNjEMNzItupxjB5VfrxeI70UvX1nZpU8x7v80TmKqQMzw4y4tS6yrGn1IYq1ef1/XL90Uvh6n8Vs9Mr2VsfDxn3/f394TjeMLzBYDAY3ASujuHd39/HbKP+d6rfYSueDloGFM51rJBxH1lcbEvUxyjVBfqW6VNfnRezsVL9kkOqM3NWDK1BZkA5pkdrPDGwVW1LsiD7NeD+V1aWrPQVI9W4de1SnVy/5r35bNVLYfE+Jmb4VWXGzfNxLJSMhFY62WkH44vMDu6gNcs4I1sN9f1xrtN9288vWdaMB7sM4JQV7MbIe2AlAHy5XOrTp0+bte9iuZonrSExPDH8vka//PLLF+fIsfEedx4M3u8U7nYx4z3FJXc90nMgXeOOlMfgmmPzuGmtuGcy45iKp3OO+nVj7J211ymjue+v55XsYRjeYDAYDG4C84M3GAwGg5vA1Ukr9/f3SxpNNx2D3nInOvHZVBjL4kpHo1PXdFFll8LMkoJUENpB90xKE+8UnC4DBqtdIXhye9L96gqPk6uO26zSxOnWOVKesIKSVlZBcY1H17IXJfdxO9cvEyY4T3IjrgTBkzuyzy3dUsl92PfBdUSx6PS9vt9UeEy3fx9Tup+OSDJxHtkvkaGEqq1Li9fRlT/0xKC0js7n84ukFa2HnjjDtc1xquh91RmeCW8UMXAhjj1XWt+G58c51fn0uU199pi2v5IlE5Kgwur+5XpPBejuvJi8pDH3khZ+N5WPuQQl5yrfwzC8wWAwGNwEPitpRXCFuQK73qZi26ptcJiWAVlityqYpOISTqpeJjMwlZsBbVrGfRuyDoGscCVDlALQqwA3mR7lz5xlt8dgnTg2k1O4jSts5dgcLpfLi47orrt3KrKnQHTHniSakhZ0PpKaqtoyOV7DI6K3KXnFMQnul/eEYw2ppYygbTtrTOn0qdTFrR2dH/eldP/OQhyD43eqXrJr3uMrK12F5/RMOOYtJDbV5ciUAp+eAxqTpOf6fZyK0+nZcglP/J9z7QrPOZf83xVh7zH5VVE8weeBK08gU+V60PuuVIPeJp3fqhTNJV3tYRjeYDAYDG4CVzG8y+VS5/M5xueqtv7uVTxMkOWXrMpUgKwxdSSLofuNk8+a/vJ+HJ6PLOokwdPPN4kGp0LUvl9ajoxRuHlN7CwVE3dw/Imd9u27NZssdcVoGNdZeQy0f62P3koonTPnlqLBfXxKS9f+abW7An1+loSY+3EYt2bqurAqMUnp6C7umOI7tISdx0SWNAuetX/NZ4+pMI7MbfV/Z6FkCHts5HQ6xbno50rWTKbgxB0o30Vmr8/F9Pp3BbINN+d7JQYc12qbJESxuqeTXOBKWoxzwevkchX4TGTp0MqTpfPkfbzy7nz8+HHpXXqxzaFvDQaDwWDwB8fdNRkud3d331fVf///DWfwH4D/ulwu7/jmrJ3BAczaGXwu7NohrvrBGwwGg8Hgj4pxaQ4Gg8HgJjA/eIPBYDC4CcwP3mAwGAxuAvODNxgMBoObwPzgDQaDweAmMD94g8FgMLgJzA/eYDAYDG4C84M3GAwGg5vA/OANBoPB4CbwPximwMjo/OuiAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -784,7 +760,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0betZ1vl8++zT3P7cLrlJSKMBAcEhqHQ2iICxAUFAy6BAYsCRGmXZg1ICYglKIeIQpNQBKBambCibEAVpBWpEQBEhRWNASQhpbnLvzW3Obc+5Z+9Zf8z17P3u33rfb8517jkJsL9njD3WXnPN5uvmnG/7vG2aJg0MDAwMDPxqx977uwEDAwMDAwPvC4wX3sDAwMDAqcB44Q0MDAwMnAqMF97AwMDAwKnAeOENDAwMDJwKjBfewMDAwMCpwA1/4bXWXt1am4q/T74B13tNa+3V1/u8K67bWmtv2fTrU95H13xda+1/3IDzfsGmHx9wvc89cO1ord3VWvurrbWPeD9c+ws69/EnJPt//ua3H7kBbfnRTlvi333X6Xo/2Vp7/XU614XNHP7W5LfXt9Z+8npc53qgtfby1tq/ba093lp7tLX2z9aMaWvtQ1tr/6619vbW2jOttQdaa9/XWvtd74t297D/PrzWH5b0Dmz72RtwnddIuirpH9+Ac/fwOyT9ms3/nyfpO97H17+e+HZJPy3pgfd3QwZO4C5JXy7pFyW9vx6MnynpfmzL7uNXbT4/trX266Zp+vnr2IbPl3Rb+P4Vkj5E8zMm4r3X6XqfK+nydTrXBc1z+ISkH8Zvf1HS+et0neeE1tqdkn5Q0nskfbbmdn+VpO9trf3maZqudA6/XfOz/p9JeqfmdfsnJX1fa+0V0zR9/41sew/vyxfeT07TdN21kfcFWmvnp2laWvCvkvSs5kXyaa21i9M0PXrDG3cDME3Tg5IefH+3Y+CXJX5imqZf7O3QWvu1kn67pO+U9Ps1C4Bfer0aME3Tz+B675V0eZqmH11z/Mr7OV7vp3Zs4jXhOgsFzxV/WtK9kj56mqb7Jam19vOS3iTpcyT9o+rAaZr+k6T/FLe11r5Ts6D0aknvtxeepmm6oX+bDk6SPrCzz02Svk7Sz0h6UvPAvEHSByf7vlzS/61Z8rgs6S2S/vbmtzdurhX/vi8c+7GaB/tJzRLW90r6LTj/6zRL0L9N0o9IelrS1y708WZJlzRrRr93c93XJvu9UfML8RWSfkLSU5o1qU/Dfr8utONpSb8g6f+UdDFp6/8IY/iwpK9JrvsFkg4lfVAYh+/b7P/U5vx/F/tPkj4gbPtczVrFk5Iek/T/SfqCFfP/kZtxeXjTlzdL+kvh9ybpL0j6+c18vkvS35V0a9hnf9OevyrpiyT90qYd/1bSPZKeL+lfbubglyR9YdL/SfND+A2buX9oc50L2PdFm3F9SNIzmm/wP1qc76M0S7GXNu3+O5LOY99bJX3NZi6vaF6vXyyphX0+eXO+T5H09zVrJg9K+lZJd2z2+UBtr+1J0udsfv99mtfrY5v+vVnSl1zH+9h9ftmKff/qZt/fIOm/SHpb7O8NeMb8c23ug+S3P7tpy2/ZzP0lST+4+e13bNbmOzf3wX+T9GWSzuEcPynp9eH7H9yc85Mk/UNJj2h+Hn1zXLdJWy4Wc/hnN7+/XrNi4P0/wnO8WVsPbtr/jZLOSfpwSf9B873wc5I+K7nmx0j6rs26eErSD0j6qBVj+uOSviPZ/iZJ336N8/QOSd8Svt+16cs7NN/779609aU3bK3cqBOHTr16M2kfrPnB5b8zScf/iKTfqdls8v2aH5LPC/u9XPPD4K2S/oSkT9yc/3Wb33/9ZkL+q+aH+sdK+tDNbx+p+QH2Y5L+0ObvxzeL4MPDNV63WVRv06yGf4JmKafXxz+26eNnSTqj+eH3H5P93rj57ac3x/zeTT+flfRrwn6/S9Jfl/Tpkj5es5n2f0h6I8539MLbfP/bm5uCN+yPafPil3SH5hv0OyV96qZ/r5b0D8L+J154m30ON+f/JM0v7D8r6YsWxuXjNL/kflLzC/MTJf3Pkr4+7PM3N9f6+s15/7zmG/gHJe1t9vEL722aH1q/f9PGxzWbjn9U0l/W/OL45s2+r0j680uSvnpznb+yGfdvDvvdthnnBzSvr9+n+YU2SXpNcr6f1/xw/2TNZqpDSV8W9jur2Wz1kKQ/sxm7L9N8c3912M8vvLdoFvxesdn/GUn/cLPPec1rdtJswvP6vkfSB2l+mX6r5jX1SZtx/qrreB+7zy9XcR9v9mubfvzE5vuf3hz3u27gM2bNC+8XJf21zdh88ua3z5P0lzQLGp+wGfOHFe6FzX7VC+8XNuv3d2sWxK5I+rpOO8+Euf76MIf3bX6vXnhv0ywIvULS/7ZZZ9+o2ZT82s32795c/yXh+I/frLXv1fxM/QOaBd0nJX3Iwpg+Hddo2P5PJf33lfOyt1kjL9yM01MKz1JJ/4/me/JVm7Z+5mZcPnzN+a9prdyoE4dOvVq5VPPGzjFnJN2yGaA/hcG+5AVSHPtGbSQ4bH/9ZjHfHrZdlPSopG8L2163ad+n7NDH79mc+9zm+9dszvFBSduuSPq1YdsLNvv+xc759zc35CTpN6Ct8YX3QZub4bPDtt+0Oe4Pbb5/7Ob7r+9cjy+8L5b0wDXM/Q9vbtabit/v3YzHN2O718zvD/2fNEvgUVD6+s32Lw7bzmp+wXxT0p9vwHW+XLO/9+Wb7344/nbs94OarQ57ON+XYb/vkvSz4fsf3+z3W5PrXpZ09+a7H4L/EPv9A0lPhu/W8l6N/V652X7L9bpvO2uCfz+I/T5+s/3Pbb7fs5njf3wD27bmhfflC+dom3X2v27m5kL4rXrhfR3O8bql+0THWt4XJr9VL7x/jf3+w2b7p4ZtL9ls+zNh249rFnbjPXNB80umnA/NFqsT91X47RskvXflvFj4nDQ/H1+B398h6a/cqHWR/b0v0xI+Q7MJyH+fH39srb2ytfafW2uPaX4IPaHZTPfBYbdXSHrDNE3vvobrf/zm2EveMM0+tn+nWauMuKxZA1pEa+1FmqXGfzEdO3L/r83n5yWHvHmapreENtyv+QH9knDO8621L22tvbm19rRmTeQHNj9/sApM0/TfNUtwrw2bX6vZVPDtm+8/p1lo+KbW2h9bGYn5Y5Luba19a2vtU1prdywd0Fq7TfPL9Z9M0/R0sdvHaX5BvQ7b/5nmFzfn5XumaToI39+8+fxub5im6VnNGsaLk+t9G77/c83C1Udtvn+8pLdN0/RG7Pc6Sfdpe+wZmPRTCvOoWdv6BUn/ubW27z/NAtI5zeampfPd3Fq7J+lLxE9ovmf+RWvts1pr9y7sL0mKbdq0aw0+TSfv49fi91dt2vJPJWmapoc030uf1Vq7ZaE9Z9CmtrJNa/Bvkuvd3Vr7utbaWzXf889qNnOfk/SyFefM5uve1tpNz7GtxL/H9zdrvj++1xumafolzVrZiyVpswZ+k+Z7qYU5virphzSv9RuNr5D00ZotVT8s6d8govfHJP3J1toXttY+8jrPd4r35Qvvp6dp+i/h7+f8Q2vtMzRPzE9rjgj6GM0308OaJRLjLm1Hei5iM5B3aju6TJpfBndh23umjQiyAp+reRy/vbV2sbV2cdPGn5b0OckkPpyc47JO9vNvaja5fatmc8tH6zgC7YL6+HuSfmdr7UM2L50/KukfbV4EmqbpEc0m0/do1iDe3lr7qdbaH6xOOM1RVX9E80Pg9ZIeaq19T2vtwzvtuEuz1NybL4/7iXmZ5oCCR7Q9L4/g+5XO9myc3lN8f1FoT7VGYnsNziXn8XmaTYDP4s/ReXevOJ+0MOebe+n36lh4eE9r7Udaa7+jOqa19oFs10rh56c69/HNmtfpD0m6HO6Hf6PZl/mZC+d+J9r0R1a0Zy2yef02zffH12jWsj9KszVDWr7PpHq+rnekZba+n562A2/iun/e5vNrtb3+Pkfba+8I0zQ9pbkvdyY/36X8GZad523TNP3YNE1v0Cwo/Zyk/yPs8hrN8Rh/SrMb6j2tta9qrZ1bc/5rwfsySrOHV2rWfF7jDa21C5rV/4j36vjhtBrTNE2ttUc0S+nEfdqewLUvO+k4/JpSmPE7NZvEdsErNb+k/oY3bB4ca/BvJb1ds+T9c5rNE98Ud5im6b9K+syNxPdRkr5E0r9srX34NE1vVoJpmr5N0re11m7V7Iv7akn/vrX2kkI4eFjzOPbmy+N+36atkqTNgr9TK2+sHfD8eJ3Nd2l+0Lo9H5kcd1/4fRe8V7NP8LOL39+64/lKbISS79/cN79Ns3T9na21l07TlLX77TrWbA0KBLviMzT7QT9J2w9pab5X/knn+N+j+aVt/MJzbE/EiTW60Zo/UbPL5O+F7aWQ8CsMTsn4G0q0W0kHybaIn5X0Ycn2X69rSCebpumwtfZfNZuDve0RzT77P99ae7nm++SvabZAfdWu11iDXy4vvJs1q9oRn6dtDfR7JH16a+150zRVOWKXNUuTxA9J+tTW2i3TND0pSRvT3KdszrszWmsfrTn/5+9pdsBGXNAcYPEq7f7Cu0mzJBbxx9ccOE3TQWvtGzUvpHdK+u6pCCOfpumqpB9prf0VzePwoTo2E1bnf0LSGzYawteqeDFN0/R4m5OOP7e19tenaXomOd2PaO7nKzXPj/HZmuf+B3ttuQb8T5L+3/D9lZpv/P+8+f5Dkj6jtfYx0xxabfxRzVpefFmuwXdpDhR4bGNufq6wRF+azDbj/P2btf2vJL1U+fxc1hxBeT3xKs3RgJ+p2eQW8SckvbK19uJpmt6eHTxN05uuc3t6sHn16D5rre0pd0NcTyzO4fXANE3vbq29SbPP/0uu4RRvkPSXWmv32YXUWvsNkn6jZrPvTtgIsR+nQoiZpukXJH1la+01mqNPbwh+ubzwvkvSN7TW/pZmTemjNDuPL2G/L9NsuvmR1tpXaZaeXyzpd0/T5IX6s5K+oLX2hzVL0JemOb/lr2l+wH5fa+1rNJvbvliz+eErrrHdr9J8Y3/1xoZ+Aq21N2j2XfzJjZlgLb5b0mtaaz+reYH8Yc1mzbX4Js0m0Q/XrL3FNn26ZlPC6zVHrt2q2bF/ScidCcf8dc0mkB/QbBp6ieb5+S+F9mD8hc0xP9xa+9uaX8Av13wT/plpmh5srf0dSV+48VV+l2ap8is0v3y+uzjvteIPtNae1Ozn/FjNuWHfEnyq/0izeeX1rbUv1RxR+zmaTcCfP00TH+JL+FbNATg/sFnbP6XZP/SBmk08n5qYpXp4l+Ygq89urf2M5qCut2gWED5O8/i9XXMw0F/WbE6+EeQOWwi+7G+cpuk/JL8/qllw+BzdIOl9R/ySNmkIrbVLmiN+/xedTGi/7pim6enW2i9qtrD8R21SaToC/HPBn5b0PZvn0D/RHH38PM3PkkvTNPWee1+vWUh5Q2vtf9dx4vnPKGjprbXfqDk45s9P0/T1m21fu/n5RzfXfJHmqOEP1rzufeybNuf6Wc3+x9+jmbzjf39Ove7hRkfFaF0e3hnNqve7dJwr8hs137CM4PtASf9Cs8r+jOYXwt8Kv79Q843/uLbz8D5Ox3krT2h+8KV5eCv6dW7Thu/u7PP7dDJXqoogPdFPzQ+sb9P8cHtE86L4mHiu0NYqOu37NT/8GDb+oZtzv3Uzfg9odr7/lrAPozQ/TbMWfL9mCfXtml+qZbRsONdv3pz/Mc2L+r8pRKhpFjy+UHOI/xUt5OHh3GluGMc57PfbNJt8n9jMXS8P772bvvby8Hjdr5R0Fdtu0ixs/dzmfO/VLFh8uY6jPh2l+QnFdWI+5GdtxvBZr4dNv96g43ym+zXfI7/uOt7H3Tw8zcLjpE6Ol+YH45uvV5vCeddEad6T/PYhm/vkic2YfY1mv+Ek6SPCflWUJp8dvtbFhfb+bs15rFe0Lg/vD+H4vyPpieS8j2o7EvkjJf1rzYFxlzW/6P+VpE9cMa4fpPnefULz/fvPJb0A+3xE7MNm2ys1W1J8zbdqzpPleH3DZhwscPyEVuT2Ppe/trnwwK8itNbu1ryw/+Y0TTdOWvoVgtbaF2h+Qf+aaYElZGBg4FcvfrmYNAeuAzahyB8i6c9plrr+/vu3RQMDAwO/fDDKA/3qwqdrNiX8JkmfO90Yv8DAwMDAr0gMk+bAwMDAwKnA0PAGBgYGBk4FxgtvYGBgYOBUYLzwBgYGBgZOBXaK0tzf35/Onj2rw8M5/9af0Q9I6si9vb3uZ/zfx8bfsnNmHKNL+9yoY9b8vvY61/vYXpuW4DntnZ/+32ma9MADD+jSpUtbO99yyy3TXXfdtXVMnGtea+lz6bcM1zLGa8+zK9b4z7MxXtue6lh+9vaptvvej/C2g4OD9Huvv601Pf7443rmmWe2OnLzzTdPFy9ePDrflSszheqzzx6TEV29ejVt55p7a2kN7XJvXa99l8D+Xa9jqjnaZXu1zrL3RfUu4bsgu+f92/7+vp5++mlduXJlcTB2euGdPXtWL3vZy/Tkk09K0tFnXHhnzpw5aoQk3XzzzZKk22+//cR3f0rSTTfNLDsXLlw4uk789Dmzzvs3b6u++zOeh+fwdn6P/3MfozdBHBOeg9t7bWH/fKw/4/+9NlXwgvNDyseeO3duq43exw+bq1ev6ou+6IvS8168eFGvfe1rjx5WPp/nPrab8+99fEzsq9vjtcOx9Gd2s1dz2hPODJ9nzYPV6N34cXt8mfDlwev02sYXjefJ2/kZ9/Gnr+vvnr/Ll48JYvy/Px9//HFJ0qVLM1HSo48+Kkl65pljdjlfM94D3/EdLD4w44477tBrXvMaPfzwTOrz9rfPzGQPPHAchOxrPf30ycIcXkPZfXL+/Pl0H3/vrYOleci2cxs/18ypwftzl5cYn43ZC4jPAX7P1iqFDn/3vPszzpH/97vEa8jvlNtum4lvfO/HPt9668wgeffdd+vHf/zHy/5HDJPmwMDAwMCpwE4a3jRNunr16tHbl1JgRCalxO1rJO1MO+N3nu9GmZoq9ZySfgZK3NX23jkqVT8zMfl/jtsa8DpVf3fF4eGhnnrqqaO+UsrMrkEJNDO3cRwqjasncVfozUc1Z2sk7erYnsmnmv/suv7fmgrvT95nvo/jsf6s1nmmFVZr04jHWFP0PufOneuO9+Hh4ZGG4OePzxHbwHuMVqLMEmLtgZqe0TOHVvfYLmbxzERH8DlXPUt617kWbbDS2jLrANcT1wzPIR1rdFwznuOnnnrqxLnjb972zDPPrHIPSEPDGxgYGBg4JdhZw3v22WeP3rDRd2dUGg/9I1GKWeNDq7ZX9u81Ug39YbsEQPQc/2xjpSWtcahXmnIPlTbGc2XBRuyXj8m0Ro7tWgk9nie20cf7N/tYiJ6vk76ani+3Gp9dgguogfWCOQz6QXj9OI5LTvxsHKt+eEzY5ihxL/nuMg3Dz4GlIIXsmHh+ai0Rh4eHW0EwWbvpG2TfMx8eYwfWWEZ4f8R2Stfmw6MPMaLqT9Xf3vW4PVuznDOPr6+bWfdovaGVwMfG+9rPhGwdS8caXvThsc+XL19O+5BhaHgDAwMDA6cC44U3MDAwMHAqsLNJ8+Dg4EidtVkiMzFVwQNZiC/NUVW4fpYSsGTKXJP3RzU6U68rs9aa3JYl08Ia80dlfu21rzKzZWZSmpMqk23WRp+/Z36dpklXrlw52iczh2dh0tm14/zb1GGzlL/ThJmZ0pfyPat+SNumnjU5Z5XJj/dMLx2mSkfJTM1VWgXXQ2aWqtIQHEYej2EQAddFFsKeuUV6uV7+i23smdA9Ll4X/ozmNKdGce3sEtxRBfVkc7n0LMxMmktt4RrqPRt5nZ4Jnd9pMs5Mml4r/o0BKbxHpOP5sGmTbc3SYAybO5999tkRtDIwMDAwMBCxcz28g4ODI6ksczJTeqxSDLLwYEs2TDCuEtCzbVXycAQlraUAlGzf6lyZpFVJ3L0gnUqCr4IWMq2AqEL3e/3rffd1PD8HBwddTfjq1avdwJnomI5gmL0lcmlbSrfEWK27bO1UwSvZevD6poZCa0cMqGA/iIooIG7jPuxnFgTG36h5GVmKgSXrKqggjo37bu2PazR7Xuyi4bXWtLe3102RofbitcTAlEh44cRlEl+sCQzKtNaI3tpZCuzLNLzquUNNMkvQptWjCuzq9cMaFjW8bE69L7UztiOeh+QFPaIDBl9dvXp1aHgDAwMDAwMR15R4XvHWxf8raSLTgCo/iyUCanyZdshjqRn1JK7Mtpx9j/tW4eJZ/9iWamx6UvoS7dW1aGvxGJ+/klwzfyAl354Pr7Wm1trR8bTvS7VvhuMVNTz6aJbWTC+tgmOarW/SJXF+3K9svdGXQe2tp4WSbo2fUbLn+fwbNTxL5HFOraVVxAPuf/SFVWH91ByiNue59rbWWldKP3PmzJY1Jc4l6cCstVmLu+OOOyQdUxxKx7RV7ouPqRLSM/9YdY9lqRPkAPU5mPKRzT+fuQafN5Gqj/eC++H++rNHS8hno9tKf510fE/Yt+bvvifctthGX8f7PvHEEyfa4TbGNdojNFjC0PAGBgYGBk4FrilKsxe5V2kklDYzP0Wl+VSSSrZtjYZXSWFVxF22bzUGu2hrVXRqHBNKyRUdVYZdEulpF6f035O+o2a0FOnY0xS4z1LStVT7Nv29IgiO26oE+kzjZOI1NeLeWFfJyj1KKfqxKZ1n/aJWyPNyncc1tBT9m2nx9OUyCTq7Du+xXrJ3a01nzpzZutfjc8DnueWWWyQda3Z33XXXic+o4Xlfanj0+9F6EP+vNCFqN9Kx5uNPH0PKtF4kMa0O1PDd79hu98f+S/ebhOvxfJwPUom5D/EZae3Mv5kQ2mTiHM8Ia4w+h7+7PfEeZPL7Lhga3sDAwMDAqcDOUZrTNB29/UklI21LovSlrKWhiudnBFyUeiqf0xofV0XBlVE/LdHxrKEyqyJYM18RNQmWA6Fk3KMnWxOVWvki6MPJbOlradBaa1uUUlFKyyioMsS2WoJmrTRvt/TMqEZpW8MzeK44tpwPRq9lxMaVP5SaXXZPUMusaMHiNUg7xWNZriW2lRGXjJbL+ufr0O/CSMmMFNvnj1GYRGtN+/v7WxGq0TpAjcdazD333CPpWMOLGhA1HUZrVtp0/J/3lvtDLcd9zPrOMcmeVVwjtGBkUajsnz89Bt43aniMpKRli9GU8V6lduhz8TpxHPkMZJSmEf2/vaj9JQwNb2BgYGDgVGBnDS8iixCzVMGindw3HkN7Md/uVaSYdPzmt/TC/JBMsl9i2Mi00KV8m5520vN59s4dUfmq2Ob4f5WHlfmKlkoK0bcX991F0qrKuERQa/U1LS1nJNT0Wy0x00jLBOduaxZRTN8C+5Xll7ENLN/jeyKLhGWbyFSTVf9mW6rcpix6kp/UPnrRh26rNQn7ZaJG5oKtjA7OME2TDg8PtwiMs7Xq58DFixclHWsXWT4bI4W5fjnWmYZH8Jjow6tK+vRyhqkV0irgMaU/MvutKnQbwXnnWrHm6uK79s9lfacFoWfVsW/1vvvuO3HsQw89tHUM/XtR+1/C0PAGBgYGBk4FxgtvYGBgYOBU4JpMmlSrYyIhQ3j9neapjAqLTnaaLBgQE7fRZOo2WZ3PKHciJZbUr+ZL0w7NE5nJz6DZrQryyEyoNGFW9bay5FEmBNMsFsfE1+6ZO9hGjttSWkJmgorn4zj5N4Y3ZwEaDCzwp80fWXoF59vj0aOa4xqkuTij0arSHypShqx/DOX2PjYXRjMvTYzuJwNRjIzSjkFTNMvG9cYUFhJMZ3XQ3J943h4tXVaHM6vUnqUuxbZkQSQ201Xz7nbH9jG9yn2M8yCdXPM029L0l5l1szSneH26bNakfnjcPBZxrbrvdCN4nfkefOyxxyRJDz/88NGxNJFzzWRuHwZd2Qx+7733pu2IiJSDw6Q5MDAwMDAQsJOG11pLQ0qj9MGACUoZWQh2DHGOoETgc2bUUgyFZRh9DNdlkjUDGzJaIGoIFRFzj1KKY1DRN8VrV/RnVZK+tB0ybVCDysadzn3OV4/CLAuGifvu7e1thTv3KoRbqqyIAWJ7qyRrhk9HrbZKgq+0gwiOC+chrh1K4T2SAh5L7chjbi3q0UcflZRreO67pWMfY2Ta0Nqq3/EYBjxRg8jWGQN2ljS8y5cvb2nkcV5ME2aLjuFrZ8FE1T2d0WZJuSZMS5bPwdQM9sd9jm2y9hSvw8ApWol688X+MWXD14nrwuvI68oa3COPPHJiu+9NBx9FVFa3LDjH80Lrg4/xvEatkPft0PAGBgYGBgaAnTW8M2fObNn1eyV4KmT+MdKQraHXopZWkRPHc1j6osRRhWTHa1b+N0pYmb2/CpnP6MqobdI3SM0v0yyrZPhsbiidr0mkZ/LrGmoxakBxHN1H+1RIxFwRBcTzVmNr9NITOA+ZT82+YUrHloB9bM8KkZH2xrZlfmAmkzOxOfNNssRPVWA5amtsE8eA54ztpZbtfekji/97bJZKSx0cHGwRXWRjzHa6/SxZE9tNDZ5J1pkFg35ZayIOr89Sdbi+qmdV1Jo8zkwer3z8EUzNcputSXpe7I+LY/Lud79bkvTOd75T0rGm52Pdxjie1OyqhPeY/M9jOPZZSTBq+pFYfAlDwxsYGBgYOBXYmTza0paUawyVpE0qpqxke0VC2yuQSamS1DiMUHM/4idLUFTJvfHa7F8lGcfzUxqraHtiexn5RE0yI+NmNCbt45m/i/6kpWR5qaZXq7C3t7dFkBuvQ8orllHJ/Ij0h9HPa98tCYLjMdToObexn5SwGf1nH0ecS4+7tYAq4tbtiWuVGje10cyPbvg8PsZ95xhl/jhSPPFej/1jZKLPy6jKjJYu3k/V+nHsgOewRxpMLdlt81jEttIXyIhealFZWRuWheJYZFYikhbQx2nNKzsf75vKTxfbRro4r1VraTF53Nd+z3veI0l68MEHT+xTWV2yMfAxbpO133g9byORtdua+d5JOJ8VNKgwNLyBgYGBgVOBnfPwDg4OtkrH9wpWUprNfE6URLyVcSWFAAAgAElEQVQPc/oyKZ1Er1XUUkZHRmmQUaFZNGCVG8jIzwyUinqEw5aS6OuqSsv0tB6jp7lSC/UYMwIvG5M4pz1JK0b50rciHc9zpRlkuYGMOOX4MFIs02qNKoo2k9LpJ6PWkVHZkXaPkXfUruL1uHbof4t9qSizmN+arR2fj9RY1EKyKGtG3BkZnVxGc1VR0zmCkzmJsc/WTNwXRxF6vPx7FqXpfakJ29dEcmlpm1iaz6pe9KT3cZu8j31pUcOjT5BjwDmObeSaqQqzZrl7Xqum+mJeXEbybM3Nn4yyzvIN6WtntGt2X7OM07lz51YTSA8Nb2BgYGDgVOCaygNVxValZT+OkUnA/rTf5e6775Z0LOVkWtYdd9whadve3vMvVRGP9FPEczCaqNLkGPEp1eTX9B3FcbQUQ23DUg0JeWPkE311ZJShX0A6lqQsndNHsYbJoSdl7e3t6fz580cSHCXy2G76Anr+UTJDeN+YdxnbmJW1oUbZK2XFHDeOl68br09fGX12nuvMN2Wpn9p5RoZscO4YLUcLQJwDStYkDbb/J9NcKP33ykbRX7qUS7W3t3fkA7WGFDVht5caN5lCMqYg30PWYnwdlxTKLFnMryPDUxZR7PVMK4HbaKLkyCrittAPduedd55okz/js40sVz4vo2bjXDJn1NdnTIS/+/krbUdyeu2+9a1vlXQ8B1lktlFFnWbsQ8bNN988NLyBgYGBgYGInTW8mGuV5Y8ZjMLiGzvz+1kqpmTFvJsokXgfRxz5uvQHRemZkUY9JhejymGqShll5SzYd2qUMfqI12Peks/pMYsSJ+eH+2TaKbVaahT08cV9I49hT0qPv7kfUdusCpPSp5pZB7iGKIGzBE88hhqq/ReUwCPox2buWRalyzF2P3s+vMo3SYtGXLPWBjwW9KHQkhIR/UcRPr/b5mjUeD1aEshCknFfRoakJeuQtSdrDnEd2MIRIwB5zXiO2K4Xv/jFko4tSj4H11JWKNXPHZ/Xz64sx405jNZ4yD2a3cu05DDit1fqyfvQh5dZZmgxcb9oIXnJS15yYnvc1+P3YR/2YZKkF7zgBZKkN73pTZKOIz/jdag5cl1n1o/Y1hGlOTAwMDAwEDBeeAMDAwMDpwLXVB6I5oiMmqgqhZOpnlZbbQ7oOfGlnOyU5gCaW7OK0DQHMMQ4mkzYZwan9IigvQ9NP1lwDEFzK2mOGB4f92WwQkV8HfvD5O5e2zIS5F7y8P7+/la4dpwXOrCZhuCxiGYpm51I2+VjbQIi6XLsq9vvQABXy2byfzwPiQ48/jSTxjaxjTSPZ5R2TNGpiAcyM5gDHDyu999//4n+2FQbx5lVxXk/ebxjG5kkzGMZwi8d37dxPfTWTjzWbejRTZHowiZAz610PD5+7tAdwnssrk+P3RLlXzTZk3DZn3QbRFMz0xw4Rm5jlmpEqj4Hlfh7dk6a1Tn/Nle+4x3vkHTyfvLa9D4eI99XL3vZyySdfFZVz2LDc+yxi22MATNrMTS8gYGBgYFTgZ01vMPDwy0JLqM1qsJEMyJW0vOQJoehxlmIakUxlYXgV/RJpKzJ+uW2MCiCZS2i1EzHc5aIG/sd/6eGTOLuTLLLgm7isb3gHGrgTBSPY08Nf01oMKm54phXZAEkkLVkLh0HmDBopEo4z0qTWGO0JOrvHvsokXJtMqmXQT+x3ZV2SK0wri2mpzC1oEf+QM3K2o0DTjKqtorgnGWWohbCtViRQcS5ZhDU4eFhGXhw5swZ3X777Ufnt2Qf97emwUAZak9xzXvfqmAtg6Vi8JKv7bb4/CSR6CXoM2jOa9nBM9m+VaBglg7FtZnRLMbt8ZgqHcn7mnosPn9sTfHa8HhZs/T3uL55n5IGLSMr5z3YKy1FDA1vYGBgYOBUYCcN7/DwUFeuXNkqPhhDmelTYGpBljxO+iJLCJZ4epoEC78a9P/16GyMKmk9buM+lgZZziJKs/TzkYaMCdxxG32GVWHOjDKLEp7R0woYqszk5Ow60TfZK/Fy9erVraTh6I/jtf1JyTErqkmJlMnevk7m92Gb6bvLiLkZgs95ir4irlv6JqkZx/6RBo/I1oUlYPs9qPF5PLM0D96LTKHJSgp5bEmKzHWYaXC8BzK4eLD3cfudqB2Pt6+OBVhZRFg61jz4POP4+BxxTrnO6Etj8n08Pz89fj5/Nv+8D9lmrsO4jT5jrsfsnqgo+txGErxL21roAw88IOk4NSOjI2O5LVpOMqsHLXI9MnFiaHgDAwMDA6cCO5cHikl+WXkgRpVlhL/SSb9IJTWTRikjRaYEWr3tMzt1VcA284+xHzyW0mzcn/Z1aiNZZKdRaXj0SUXJjv4XtjnrH8exIqvO+hW/L9FDsT9ZqSeW9LHUbmQRgkxcrSjH2B5pm3qJWGMd4Hpgm+Ox9MsYvahnWhiYFJ8l43OdU5vKLAv0mVSlmqIFw9J3Rt8Wj8lK16zBwcGBHn/88a3nQQT9ovSPMmIx6xs1B/pPY59Jr8hz9cgduM4dJWqLVvSxMZKymtvML09yahIR9Kw2lVZOjTbeB1VJs0y7NqpYBfpXoyWIPte1SefS0PAGBgYGBk4Jrok8mhE7mbTGNze1jiwHjJpPReKbEcBW17e0meXhZZGCcXtEpeFV0kXcXmm5VRkfqfZncYyoMcX/OW69qNCKQJvzlmkSxlKkVCzUmFHOUZJmWZbMb1BJj/RfeB3Esa5I0HvaB/O8KIHb/xPXlH1ppHarch17Y2xwTrOSQgbnhYWH49iRhox5UZkWWpGIU5PMNIk1xOMHBwe6dOnS1n2SlRgjuD1qQPS/V/dNFgld3f8k3e5FQN5zzz2SpOc973kn9o2WBmpUVSHgLDq4WgeMvOwV5q36y+dPBJ931Cjjc4jPNVojfK6o9dLK0YvwJYaGNzAwMDBwKrCThudoqco3xH0jqM2sOYaSb5aDwrIVbFPGkkCplZGk3jdGBjHSkswk1GhjG6sIqyofL+5D0JeT+YOqQp8VaXWv/ZUvL0NPyjo8PNTly5e3pPTYhkp7rfyl/F/a1l7i9QlqdFUfe2TVlNrtJ+lJzb2yOQTLvlQ+4wj6kXoRkGxHxaLUm1tG+Fq7pU80u46x1MaY/5v5biqtjPdW5h9lviBzETNtpmLHsWYcCdXZR5/HeZ/OK33nO9/Z7X/8ZJxDpuFREzLoH8tKmXGdVeu+V7aHxNMcs3hean/UqjOLYJaXvYSh4Q0MDAwMnAqMF97AwMDAwKnAc6qHlzk4M+qwExdMKJ6MquI4VdasJhtBFT+GStukybbQPBlVb5oFqircvVDZKl0gM4NWJiT2KzNP0iTDNmbm0qWAk+zYjJqqBxMXSP3ahpXpNTOv0exZpcyQnixuq1I9eikfvg6rsvuYjIaqZ/b2+Ei5ibsi1s6CSJiQW1HzZYFIDBaoAlAyZBW0I7Lk+Oh66AWAZakhETbPMfTeYLh79htJLKpnWATvd9K5ZUFZ3tcBTp6fLC2mSimhiTt77lQUZjRXxrHi3FXzna0dzqnH0ekWTDvL2s2E/YxQ3fCcM+iwh6HhDQwMDAycCuwctJKF2Ecppgq1pqM+I1em1FA5TLPrGZSIMg2PYdIMfOmFz1ZtNnpBJFXYM/eLoDTO62ftqzSk3jHVsUQ29nHOe1L6lStXtsrMZOsgS2iXcho5Sq1VOkWm9VapHmuCSUimzDJBMTCqopKrLCVZugglXd4jWTVug4FbTAjOCMEr7SCzfnAOGKTQ01xjkMJS8AHpzrL0FG+ryJWz5xfHsirFk93TDHijJSGSHpN43p+RIo2o1vMaMMiPqVok2I6gJcPoafpLgS4em6wqO9OGeqWZWBjg7NmzIy1hYGBgYGAg4pp8eJTkMjs1JYBeMuySD2VJ64jnr2zdWfgsJWFKqpmkbVRty8p0sGxKFYqbaU/0RVTUX2skP/qQeiHFa87Xa3927einyYiLeV6OeSZ5V2ul8sNF7a2ibePYx3VQaUdMaWHfpW1tkNpUZh2gZmI/D4l/4/xl9F9ZO7LEc4bzV4VVo8WE95jbyJJNmVYQaah6/qK9vb2t8mGx3e6zk/zd915ie6UlV2lEEZyXSjOJfWKB18z6VLWxsj4wTSmuA5ZGY6I9n0sZKh8hSyfFNvK3jNi6Or8/6XeO9wQJrnfReoeGNzAwMDBwKrCzD29NNKBUSyK9pNEliTt7k9M+nSVgSnnBWWpy1CwyCZISSUWnFPvPopCW8HoaV5Wkzt+z7/QNUZvKxrGit1pD0Lo2gi/2wdJnLCRa0bdV5ZWk7eg7zhO/Z+uA49Xz3dCnwCRY79vzUVP77FFYsUCmr0NtJ1orKu22WhcZeTQ1PWppmaZcJcdb48uinrM+E6017e/vH5EhZxoj1ye1ZSaES9vPL44bffxZtC61RGrEWfQsfVCVvzH+v1QmLHsWk1idRWoz+jNHVNI6UPkD4xzQCkALAn3IWd+NHsF5FpuwVssbGt7AwMDAwKnAzj48qU/1VNma10S+UXqs8pZ28S9luVuU5DKpVTopVVQE0JREMjofb7NEZempKv0S/6c0s0SWHf9f8q3F67m9lFR3KeOyROIatTxLt1kpFI4LtZq43thXtpfrcQ2dWo+Ql/4DRrNluUYVPRvXeY/GK/OZSMdjEv01zu+qUBEDxzYQHNdMy660XvpjYj9ixGDvvt7b29vSjGIkLH2ZzAnM8rl6NFnxd67L+FtlCcly+agte7x4nSw3lcVi/QzxWPt7nEvva78myxKtibhl1CnHKH6vNDrPV6b1VnR0LE8V104VRbsGQ8MbGBgYGDgV2EnDM1MG/QlZxGVl8+1pAEu5Zj1fXpWvUknG7Fc8JpPIq3IYVU5dxgZDCY/aR8ZAUPkxKVHuQsbdizqjtrkmd89YmwsjbUtw0nFfLZl6nZGFIbZhSdrjOGYExtS0KiLyeB6DvqKMHL3Kh6zWVCY1856Lvk/ppLZjKZmaCf0umR+miqau/H/SduRqZY2I3z3vayOwDw4OtiwjkZnElgL7oNgfj18sJGqthQVfSSKdsUNVTCDMFY1r6eGHH073ZaHZeB220f1jxLcR11Lli2YUajb/VfRnzzpA4ueqYG9sF0m3WUQ2e8cY8bk58vAGBgYGBgYCxgtvYGBgYOBUYOeglYODg62AhqgSVwmK/IyhqUskrVVYd/yfZhufPwvrr0w7Vahx/L8Kd6+2x/+rxN/MXECTMJPl15iKGZTBdvTMoJUZIs51lqBfYZqmtCZhDFqpEn9ptuwF6FSpGFmi+7WYbdn+isQ7jhMDDyoKq6x/Hp8qfN+mrcyk6fPddtttJ9rB6/QIFnapNVaZe7MEa9KPLZnKn3322W7QGkPtbSZkcExGwVaF/FfUc25T3Idk2xmNVlWXzv3x92j6dT8ciGSTprczYCir2Wc4rcP79moqsn80uxpZLT0Gmfn8/B7b4vnhpxHXB+/xkXg+MDAwMDAA7Jx4fu7cua3Q7MzpmdEkVWBYMEO9mXCcJYBmbYnnyDS8SsrMiGap9VXBK5k0WNGOVSkN8TpVgEFPqqmCJKr2ZO2m9pON41IyLHF4eLiVKpFRsFG6owTcI1c2qrSODJU1IpN8rXFZWq5SWWIiOEPUSR7cC15icjI/fWxMFHa7GRjCYIleqktFbF5ZAKTtcHRK+lGbZz/29vbKOTK1mPuT3QPsI1NYMmsUU2QqLTO7pyttkBYsr5P4G9tEisPYRmvw1tKt4TloyWPge6ZntfGYuE1Mko+o1grLemXamj893yRUj9YIHsNnYpYa5PGKz82ReD4wMDAwMBBwTeWBepJwVlSwOtcSKoqkTMOj74QaV7Q90+/Coo0ZIS+lsqUE3R4hK9ucaUiUoCrtsEc8vfZ7PA81hypMmf/7+9K8UiKN66TqG31BWcFSanRrSv7Q38vrMB1C0ha9FcPDs/lYIkfn9qjhVhaTnt+Pfa/Wm5Gl0FR+8+yep5ROPwzJiuN5oyRfWYNaa7pw4cKWD6pnWfL9mZEPG7ynWX6I27ME/coCY+0mpk5UtIf03cXr8NpVCkuWAkCfOH1pbmOv0DXn1L68rHwQ7x9rzp43Xy9q+h4f7+PvPe3T6FkbKgwNb2BgYGDgVGDnKM3WWpeSh/b7yjabRdpVydvVZwT9LT3SYEYgVRpelmjKSLuKyir6VKooVEpgmQ+MtnRGZVWJ7z1kfi1KtWxTT5pa41d08jA1hajNMJqvRwTAYxjxZlTk3vw/64/bEf0wJC7m/GQWBc6Rz1dpaxktHc+7RNQdQYsGI38zvxal9eq+lmofDSmlsrFfQzxu8mjSZ8W1w4hhkjtk1GLVM6kioo7z4j5W1H/ue7a+Sb1GTSuLXGZCtkH6rszSw34xyTseU2mM1E7pf47tr9ZDFoFZ0c/1nmduS3wWDx/ewMDAwMBAwDX58Eium2l4lR8mO4b5aFUJikwK7EV2RWT2/kpzzDSgim6oys/r5Xsx6jTTYKpjqAWwL3GfSmLt0fRUJVF65Mu75FKRXDlSi1lqrOiLMuuAr83ouKr9meRY+YEzgmvv47worgMji0SjRkWfDbX3+Bt9UtRcenmYlLArn2JsG/MMK2LguC99NJT0MxLuuJ6XrBTMz4ygr4fPoUybrZ4vjEjuRfruQp1ILYbWgixGgQTQjs5km201iPcT54z7eF6yiHJa8aoyUZlViuutKprM/6X6uZeRR8f81qHhDQwMDAwMBOyk4e3t7en8+fNbJL49FpMq8i1KQj1y0QyZ78ngdWnjjr9R+mN+R0ZySi2k0vTW+Lrow8kIh6uoLEZJrSEr7jFVVBGjPa0ti+Rbmju2N9rzGSVHidvnzgin2d6quGcWPUnfCq0SWd4fpX9Ks5km4bXD4po9dpMsmjFeP9OefAy13TXrgRI1tRJeVzqOrLNmRw0iY1eiHyYyqRB7e3u66aabjjQU5q1lfSN2YRfi/LMUTw9cf3Gu6duk5kPS9Pibj7l06dKJ7QajHaXtArDUztzGLCqY0ehVPm4Wjc9nfs+6V/lueW9mEfO92IcKQ8MbGBgYGDgV2DlKc39/v8sbyWilKuIpQ5UfRCm9lwtGDS8rkElePbaVErm0LeVVvIiZtEHb9S4FDCtNjmOTcdpxfnqlf5aYSdZoej0wSpOai7St4VXzkuUrUtqjBpblOlb5cFyj8Rivp/e+970n9q2k2ni8/X4s0ErJtxdJSA3Ln1keHqOQq9zKXoQkNVdyVkrH/iVrF/6kLye7Thy/Xh7e/v5+6XuP515ai73yObTiVFyn0rZPkJaX7Bjm6For4/Moi2+gllYxPcXr0ZJQ8VNm0adVxHpvfKnJVf7N7By0jPQitNnuXfheh4Y3MDAwMHAqMF54AwMDAwOnAjunJezv75fOfu8jbVP9LCV3xn14rp6ZoFKTKxOQdGzezOhxIrLtVvGZ6NxTq6vf1pbViegFq/B6VapENo5VkMwube2ZO1qbCYArM6W0bXJhX0kbJdUlhSpzZTyW6SF0wGch0V5HNuP5k/3KyG697hjaT3N5Rh7NsHB/MvE99pEpIKTD47jG/yuCgMxFwOr1VVpCFljVIz2O+54/f37LVBsDGUhWQGQmbe7L4DW6KTIyeaO6x6NbxM+Ou+66S5L02GOPnfjMzIZsE6/H51+kNGQKi/epAl947QiOeY/wokqDysyTFUl5dV0en33vYWh4AwMDAwOnAtdELUbn/hKllLQu9Lp3TWkdEXBF5hqvx9IhDM+10z2TBi3Fcgyq9ITYlkrDyvrDMakCUUhiG9tUHdNzwvO3jDSabVyb9Nla65beYfkXOvGpEcV9Kgo0zkvUIpnMzbnjdePxDBdfKjETf3v88cdPnCtLOOb1eB3ee1H7cHg7Nbg1dHRV+hCDJjKLSRVuz2Ck+H9Mjq+0JD9zWJomaj0MGuG5srGtniucDyY6S9v3P+fDfc/WKjVw3kdRS/M20h9WwYFxjFlOy8eQUiyOFVOziMp6EK/NoBKu88yyZHBcs3asKW9VYWh4AwMDAwOnAjtreFKfRqvSTHoUPEv+oSqROh5bpSOw9AvbG49lSHmU7C35ZGHZ8RxZ6PxSUjopunrnXdLasn2JTLNcSjRf8rG4rWvnMvMfGUzfoKYVpb5KO6qKbFZE3j3EdRD/z87XIxzg2qR0ntE1kfC3KpvSS0ugxF0loMc20L/DtIuMMIClZLhvHCum0/SoxaZp0tWrV7c0sEzDq+6LzIdHTYHJ4vTXx+tRu6j8SvEY04IxlcbX87msoWf7cp3T752NIddsVSQ3orJ60GKSzak1SI9nj4yjIh3p+Wu5bnchzh8a3sDAwMDAqcA1aXh8+66JUKyk2ex4vrEpdUapoKI8YnmOTCug5MGowCjl+jy0XbPtWdRcFUFqZMVkqQFVZNFr7OJLUVNxW0+b5velKFe2YYn8O0u8jt+zKEb6HlmeidpzbCv9LpXfJ9OefIyl8YoENx5DSZprN1s7hPvFEkbZONLf3JO0Ca5vRpZGCwf7QY08u28r6sFee6g1RV8X/YRr1jz9UaR+Y8J+nL+s4Gq8jhF9eG6vP63x3XnnnZKOxyA+D6pocFImZs/iigj89ttvP3Hsmn4xYrUXB8CYCEZBr1l/azTz7LclDA1vYGBgYOBUYOc8vDNnzmxJjJkPoIqSzDQjSrhVSSEji5qjXZoaUeZTqz4zf08lRdCHlPnCKloeRpRlfk1KwJUmkWmJS1pbbGNV5mhJ49sF0Q+T9ZmoaJSihkc/AaPMOI49rbaKKO5FF1KztP8irh3S0PUsFll/s996UYiVNlDlQ2XWAR5b+emy36pSMlGLy6w6S5YCa0bWquP5ImlyhiyXjj40f7K4ae+eptbOck7Rh0cN0hoerRBxLr0P/de0OLk9cV6qkknsQwRzQtk/Wj3i2qlyXv3pZ3PPIlit/Uwzj1G7a59LQ8MbGBgYGDgVuKY8vDU+vCp6kp/StoZH7YyScJTsLLVw3x7RbFVeghpeZn+3dEnpj1phZnOuvmdE21VJDWoumZRGf9Wa/L9Ks1tDGtvL6yLY7jiXzGlkn7PrkC2FGl1FJh3Btvh75s+gz9BrpJKE4/FeI9Q2qTXGYytSYuYqZn5GWgV4bJZjWUUQ0x+UWVlIMM3rR+0j83311tje3t6W7y62gePAMc3uS26r/OKZhsfnAPtFTU/afkZwvfeI53kMmVc8L70xpG/N17MWGa9XRW1zDfXWXeX3y85XPWey5zejaPf394eGNzAwMDAwEDFeeAMDAwMDpwI7B63s7e11nd5GVQcvo/rKzJxS7dTPar/x2IpUOJ6PgRoMLsgIeaMaHY/tEaRWJsUqwCfrV5UQ3FPll2pmZcmclQkj6xf37TmjW2s6d+7cVlJ/L1CHa6VXL4yJzFXV8ixAg6Y3zmlGXMtkZa6LXuAJzVQ+V69aeuVGyFJouA/XTHaMwTZV6QPRnMg5pUlzTYLwUmh5a20rMTymRtjEWJFIZyHsvN95TzPQJR7LlIWKUCG2g2PoACe33dePY+vz33LLLSfOx9QTjnVE7x6O14199TEkEeD6zmo3+hxMmVgTjFU9f3rBP8OkOTAwMDAwAOwctLKk4VUSaJVUnO1L8Bw9jbJyOLMP0rbkVoUlZ/tWCc89rZf7UOtYU+m6CsbJEk4pDfacx0YVtNJLAF0jwe/t7enmm2/eCk2O0mxFMF7RN0nbGh7pyLjeMi2U689t6kmkDLm2huc1lKWJMHWGWmKW1E1NgWsnC3hiOgDXCNds1PRoValo3bKSQkxAZzBaRlLsNtx0001lQvLe3p7Onz+/Ra4cSxSRMJv9yJLHK9ouBqL1yKOrhHymS8VjrK2RgNzBI1mKhc/rtkTS7fg9roOKlIMBXFkbqzI9HoNMW+TaqLTenhbK+9PtiXRrTOAfGt7AwMDAwABwTdRixhoNr/JBZcnDPYLpeO5e8rBB6TYLLacdnt97CceZT6i6XhXyv6aIZOVfJDJfWDWOa9IIKi2+R5m2pDmeO3duy18VUSWLU/OKY9ALz8++Z/4Knov9yNZqJh1LuSbBsWOoPMPs49rJSuvE7xWZdDzWWEM8Ts2o8uX1NDz6fZj4Xo1BT8O76aabtrS3qHGRcs1aU2X5iX3knPIYzlOEr+Mirixx5QLB8bx33HHHifOycG7U8Ek0UFkw3Jc4LywWXGl28RiWDlqyZMVnFp+Ra6wRvbgCaZsUILYhpqmsoSuThoY3MDAwMHBKsHOU5v7+/pZUnSWUVr68jCy2oiGjdJ7RA1GLyaLIYnuy8/AzKzmT0ah5TLI2ZlQ4PSoxgv4dRihWNFjZOSpNLNMKjUqz60VprrGjV8Td0rYESr9llnRbSby0Ghg90vLK75dFaZLSqfJbxH0Nanpcf9m9YSxRzMX2Vmsji5Su9uE6YwRmtq2iI+vdtxcuXCjXT2vthI+P2o60ndS/hoCi8rdXdHrxerwvKj9wBLW+mPAtHWtXcV5odWJkrfd1/zPKN56Xml3PYsIisgbvA+mkTzWevxfHUUUQ22eXlWaiD6+3doih4Q0MDAwMnApcFw0vvuXpA6jstxmRLCWBSsPLouco2ffIjivthfbqTLKvIit9jozweClXp8qPyfq6VDYo6yexS5TmGgLdzH+QnXd/f7/MQcv6xrWSnZ/5QiwL1APPV0Xv9opPMhLOiN9JQ0XLSBUlGNtSlaHqkWJTI/J5GdkXx4E+VmosGbUYo/+4b6aZMxf27Nmz5bq0D49jErfxWrw/ehoe78+KkDwey9xD+uOyPFOel8+ZLHfPx3utVJpW5o+jRsVz9Ij1GZna84WyrZXFLutfRQFH3118x3jeY5ml4cMbGBgYGBgI2FnDu3DhQvk2lmrmk17kYGVbZtQcpcL4W2XjznwqFeMJf4/nYiFGo7JBZ9phxcKRFf6kxELJiv6ujLmGUm3P51bl3dEH0iPFXor6vHDhwpEknvlPGGHHSMQ7A6gAACAASURBVMRsXjjeXEv0l2VglC61ql5kasW0k61vHsM+ZBps1e5KA8/O4+sxB5JzK9VlaDwnzDOLx1C7Yb5hpknYj9XT8M6cOaPbbrttK2/ttttuO9qHeW+VLy3elxXhdxUZnRVKrZ5NPWtNRVafRWDzmUEtkXOYsVAxz7PKk8zOz/uIz9OMcaeK22CfsrHwdWPpn/hdkm699VZJJ7XAoeENDAwMDAwE7KThWUrvZcwzb4gaXa88UBWVR0RJkFIR+eh6OUBVxFPP/0cpjRJeZuOuJBxGeGUaV5WfUkXvZceybWv8cTxXzwdi9KL+zLRCiTQeQy29yqmLY1H5+SoGlghqdtY2OC+Z9Ej/BLWBbJyWSthw/+x61FizaDlGcrI/1Hp6vLbWpnxfW2uLbCDU+pj3lZVQylhMenl4N998c1k2TDpmL2Hfqty6+D/vD96PWcRv5f9nrh4jF+P5Kp9xfA5wX65n5j72mE+qwrxZZCfXkP1mvby/ylfH52yWC+vz83lHdhrpeO34fo35vUsYGt7AwMDAwKnAeOENDAwMDJwK7By0cv78+S11NwatMByX5s8s8dzHWFX1d6u5VXhrxFJ5kWiOIDmw1XOGiWfhs2vMXdxeJYn30hGygIKIXiAPTTJVqaQssKZCZjKgyezg4KAbZHH+/PkjE8+aMjoV8XMcR58nC6aIv2fh+15vXmdex5WpMV6b41+RF2S/LZkW43WrdJhe+k3lTmA7SIMV/6dpq0o9yLaxZI2DDLKAkRgo1Es8P3fu3InnjCQ9+eSTR/8zyZ3PHbe/RyLA7fzecwFkJnO33fC40BzKNrOaeTyGY9RLj6GZn8+UiuJQ2l4HlUtlDaVhj46sMufSRRBNxQzyGSbNgYGBgYEBYOeglXPnzm2FlkfpxlJYVlxSyqXmKlm0+uwlArMES2w7/69ok4ws1JuO38rR3ZO4qWHuIqVXxL+Zs5pBHj1ar4pmyci0VKYNXLlyZTE1gefJ6JpYeoUWhWycqIl4u8ea2gHblfWxpz1zrVSky1JO4RT36aXsVAFIPQsAJXZaXTjO8Xpc50wxoPYW9+H926OlY0j+ErXY2bNntxL4IzEzA2Z4/1PLje1ZKpvV07wzesV4nSzthqQVJGyObWdwD9vKc/TmZYkOLe5TPVfXEHsspaVkgUMkM2GKULx/qeGNtISBgYGBgQFg5/JAZ86c6RKL2tZKiWdNIU5K9FWiZC+MuiqF0QtHrpJFM7omSj7UBjJNiFIQJe5eEnblw+n5/6qUhiqVotf+Xgkj0lBdvXq1q+EdHh5uhURHf0VVkLMiTJa2k12peTFMPPNX0dfB0O+MEIBrPyNVJqhRVWkXEZU2Rp9kT0ujVsZ7JB7LfaqUgxhuzznlWu2Rsccx7lGL3XLLLUdz6f3sG4ztdnsdsk6/b8+qwTXPdRHbxzWZxSbE36VtirKKVDnTuKihknIsK7JbWYOY2tJLocr6UW3nWPM5R4JvadvH7v55brO0oipZfQ2GhjcwMDAwcCqwc5Tm3t7e1ps1vn0ZuVkV1cy0NErclaaX0dkw0ZzSeiaJ0K9TJWjH36p910QJUaKqtMSs/UZPOlvqR0/Do5RL/18vSpNSZoZpmlLfRIQleEbU8XsWIcjoLkrpmQZGrYDrgmsrO39F1JzRn/XmLDtHdiy1QK77+D+p2ujfZuRl/J9zWvnT4/WWKO0ySqmepcLY2ztJHu3zuJBqvLb9eozAre55afnezTThqgQSfbkZMTc1LkYzZs+dyofbo/erLEi8x9dEIxsVZaRUk31Qc45z6fOxDJITzUkOEY9ZiszPMDS8gYGBgYFTgZ19eFJdOiL+5k9GS2W24CX6MZ+DEUvSth+JEkhGHs3rVPRka6IYe5FlS/tU7VlzTEViHH+rbN09bY3aJqW0jGg4akiVD+/w8FCXL1/ekthiW7zN88yo3EzqrGiMYm6gtO23iu3nednXjPS4ip40YhupDVa+hyxqsmpbFU0pbfvs/J05aVnuIn11HLdeOSpuI6VYHEdSSfV8v+43Cdwj3RR9d9b0GFOQ3SdGRQFn9IreVj7vTFurKM0yovOKZrGKksysRPyNmnj2TK600So6Pf5GPybHJIvW5TvF85bR0hk9DbXC0PAGBgYGBk4Fdtbwog/Pb+XMd0N2j14kUlUKnlFS1CikuiyQ0Svxsib/zqB0VNmne6ikpkxLoP19ydfRY4HgdXoaHs9R+Rul3D/Wk7YODg62pNsswtdSHVkeqL1FUHsxrN1k+aGV74maf1wfmZ9F6uecUUurIm4zVIVfuXbjPUj/EiXvSouLx1YMHtn9WzFr8BkQ/bbU8NfkcPYsFT4387fIXtKzoixFM2ZjzDZT88miC6vo1Z5/sXq+Mcox7ldFeNP6kd3TXJNVgeNeLAYtJb28VrfJ0ZnW3rMYAt57ly9fHkwrAwMDAwMDEeOFNzAwMDBwKrBzWkJGipup2wzfpoM0U1H5G01m/sycnkSPeosqdhU00zNT8ry9MOuq0nFPDa/Mkrx+lhZRmT+r+mgRVSjzmpD5XlqCz0ETd2bmckADTXOZGdSoUlsY+BTruDGthuYh7lddW1qXZF2RBtA8HkFXQJXcm5kllwJQMpMmTWNs05p0GAYgZMFmJNJeIh4/d+7cKiKCiqibqRnxf96XNOtl67sKzCAxQfacYxJ5r/I5E80rIv3MpE8S/ooAPI4jXQIcc5rlSTAS9+EayfpXmfnp3ohjz3E8PDwcJs2BgYGBgYGInYNWopZHyci/S9tSHbWzLGy/orGiRJqFpVfBBJkGREmbQTg9KZ0h1tVnlmS7RIXTI3GtJKFMmqqS/KvE0/j/LjQ9Fd1Qhb29va2E89gGlgIhNRYJZuPxHJ8qJD/rn0PZGaySlXxZ0rSzVAb2ryIryNrIIClqG72q1RUtGC0m8VimHVR0YXHeKHF7/qjpZeWB2PcMJrzgvtk2kg1TW4/zQk2Rbai062wft8V9z+a/WiMMtMnSYHwM54fzEi0YFdE9SZ0zUg6en/2kBSWCaR3VM1LKtf/4PRvPTDMd5NEDAwMDAwMB10QeTQkr86NRqqOGl6UJVHZYUkBlWgE/1ySArqXgiv9XfpdKSsz6tUQxFffh55q0BJ6DyKSypYT6LMmTfe9hb29PFy5c2NLwIgkxCwD7vPZBWFLNqOyqElNeMz3/ImnJLFX6HJGAmvNfWQdiP6uwbK77XgIwfSU97aPyfTOtp0e3xvHqaUqVr6ZKIs7O05PQp2nSwcFBV3um9s9nUua3rlKm+D177sS2xXNlWhqvx7VTfcZ9fd4q1SBLG8osYtn36LejdkYLSc/HW61voxdv4HQEWuy8b6Qjo6aaXavC0PAGBgYGBk4Fdo7S3N/f34r262lrlM6NnsZVJWSzDImUkxBLxxJIlhxfUd3Q15ZFlVHSqnx7GYVRFWXYo1ei5Fb59DJQWtqFdLW6ThalafSkdEfaUfKO8+f5pU+NlGMkCmC7YlvoB86iNBkZZmSlSXhstW/8vfINc91lycxuGwl5jSwRvCJf7/nueGxGgh2vn1k/qKHQrxU1vGo9V5imaWufuA5YOJRRkhmJwNKzw8dak4j3zRIpPqNEs7ZUz7ve85QFWKmNxvuLWjmjT32uuA6q+31pe2w32+oxZ3mkbCyq52i8B7OSQkPDGxgYGBgYCNhZwzt37tzRGzsjWaXESW0pIyGm1M+3PaX1KKVVEiKl2/g721CRkPZy96r8u8wfU9GSVX6yiJ6GFa+f5UJWfsWehrek/WXaR8xfqiQtrx2SikfJjRIgScNtLcjok7iGKiqkuJ3SJKPKMp8hr1uhFzVL/wul5SxXjGuUlGKZH473APOwesVq6c+qooOl9dJ5piFVZW4iHBmeaemGtUifj35ErlX2IX7nuGQ5qFXUdM+3mmkrcXs2thUdGX361EqzNlU0dRmyorcRmU+08sdWke3x/yX/ZgSpB5999tmh4Q0MDAwMDEQ8pwKwvbLyljgoaWXRhpUUQw0yk7SowVHjychQKZFWEZG9Mh2U8HrHkvS48uXF75X2SYkyk9KqfXt+P2qsPH/G3lL5WjPY/1uRLku1FcDb7duL8//kk0+mx1Ay7Pm6GMlZrcd4PNckI+J6PtwqKjPzm5Ed5emnnz7R1qwALDW7jFEltiNbQ72oTKKKTGSkdvx9iZUnwlGajCqNmhKtAv7O8jJxDJb84ms0IIOsU5mPi+NdaWBrIop7UeEGc1KrPmTPOY4JfYT0LUv9HFRpmzUmno/PDrLQZHnNVa5lD0PDGxgYGBg4FRgvvIGBgYGBU4FrSjw3MvMRaWx6zkeDjmY6N2mWjGYCqu104meE03Qa98wCxFISZ3ZOmgUqCqOIXpXvpetVZk+GNEdUJtQeCTfnacm0ME1TGeaebavSRWISqq9pU1/Vnyx4iZR13tfVsrMAK5qdGDSQBQjYzMY5rei1opmIZk4nAjMQJSbw+39/0mS7JhWgIkPv0eNxrVaVw7Pjl0xzBwcHW+3N6qqxvaQay6i3aBpbIl/n/1JdWzEbY5oFGYiSBa1kayNuz9Yd72XSkmVtqwL3SPvHWpXx2nweVKlc8bfK7J89d2g+HmkJAwMDAwMDwDWVB6qSfKXtwANKe5mjnJIOP6tE7XgdUktRO8wSMpe0px6paoUsfaBKFs6uw/NUASEVqWtEpVVngUOUrCoJv0cavIRpmrqh0ZXmW5VekY4DWQwSTffmuHLq98oDMWCiCl7J6Mg4R1WwRGwP17UlfGp6UXPx/0xDYL+ztcU2MliBKTbx/yqknCTGcd9eqSq2uQpqk05quPF81t4yjatKuVhDREzN3mNekSHH9tLqlJEhG1XKDIMD1wS8GJU2xf9jm0ki0AvKMSqrUZaWsBRol6V3eKwPDw8HefTAwMDAwEDEzj68LNx6zf49H14l+VZ+g0zLWNJmsuKNFVlsZg+vSKLpl+v5fZaSyLNk3uy32N/ML7eU6Nybt8qG3ks4XitdSfV4Sds+BoO0XVmya1WGihpKT5Og/zfrH/1vbiv9FFlyfFa4MutXpj2xbUw1iD5MUvDR6sH10EvGrnzwmRZa+e19vUj22yvFVaFH9Vb5+3vpKlXye/Us6fm++UzJ7okqPYltzbSZig5xzTOLz1O2MdO4KssOfaJZrEJVsDnTCitSbF6/5ws9d+7c8OENDAwMDAxEtB0jFB+U9LYb15yBXwV46TRN93LjWDsDKzDWzsC1Il07xE4vvIGBgYGBgV+pGCbNgYGBgYFTgfHCGxgYGBg4FRgvvIGBgYGBU4HxwhsYGBgYOBXYKQ/vtttum+6+++5uLpVxLcEw76tj3l9Ymyuy5pg1/b4R18tYOWLuzoMPPqjHH3986yS33377dO+995alkeK1mR/FHKNsvS0xdfAa/D/7vnR8D2vKttwoLJ3/WtYFj83GsWIqycpSMW/t4OBAly5d0lNPPbXVuNbaFM/L3C1puwRRrxSWwXzEat+qQHRv3zWo9r1e67DaZ00+brVPleP7XFGVSstyc7PnwdWrV3V4eLg4KDu98O6++2596Zd+qR5//HFJx7XIYhIqHzxVbaksmZcLq3qIZUTJFXov46WFfC0Pxx4x61JSd+/8uyy06tg1CeJV1WInDUfi5ltvvVWSdPHiRUkz7dCXfMmXpOe955579JVf+ZVbNe2yvjOp2rRNpNOStknCSXNVVV+OfTW4b496ie2u1nD8benFTSq1iOr+yaj6qmTdisqsR3jAfbLkbCZ1swYdq5FL0qOPPipJeuihhyTNhN3f8i3fstVvY39/X3fccYekeS1JOvouzc+meK01tF28hyrKP58ju+e47ogeyXZ1P2YE7VX9vYqAPB5bEYBnCfZL1IIkulgjaPbq5DFxns/+Bx98UNLxu0bS1vvnqaeeOtpvsS2r9hoYGBgYGPgVjp2pxaS+ZlRJiFXZCak2KVSScK8UDpGdu6L6qtTq7HwVdtHsevRh13KdCksSv1TTj/nTRK1ZG6lV9drcK420pAFl40apsdLaMpowmr+q8VljFltTpqWSYntY0uwyLWENLdwSKtNz7xwsZUTaLWt+Uq2hZGit6ezZs0fH+9hIIs7f2KZMI6m0lF2eBxUBudGbn2rfzG3A+SAlW7aWKq2c3zMqszVmae5HbbRaO71iA1zvt99+u6STtHRLz+0ehoY3MDAwMHAqsLOG52KMUt8PU0kEWYmIJf9URdwct1XISthQwrZ0tkTunLV1jfZEVFJUVlyXqKSmngZb+aZ6Gjq1gkwSz8iJe/2epqlLlMt1xT72tJol8mGWp4rbeGzPx1utxZ6loUcSniGbF2qjXEMZAfDS9ZbmKkNPC+H9ZOk9829RS9vf3+9qPhcuXDja15+xNBT9h9VzJ/p/e9YGqSZdjvtWz5/ec2mJLD9qrhXBdEW6HdtIX108b4WlwJ1dCO95b2Sl2nge+g4dMxDLbWXWprUYGt7AwMDAwKnAeOENDAwMDJwKXFPQSi9Mt1chO27PTDBLof6ZWr2mUrLUN0dUJpnYRpqslpzJa3Jc6DzepdYgzQdZkMQueVFVFfvedXi9JbTWyirI0klzU9aGLP+Kc1iZZLN0i164dDx3bGNVn67KIcz6ypzGnpmINeA4p700gecStLL2vspQhehnwRFrapq11nT+/PkjE6bTYaKZy/9XQTBZnTqaOasgrLU5njy/lLtuaGrk/R+PqWqB8p4wslqRVapRtlY5BwxEqZ6ZEUvumBjgw/7xfrWJOqZD2aTp32LKwhKGhjcwMDAwcCqwk4bngJVKG4j/V+HhfoNHyYRSShUIkkmVVbIotcGs4nkVPs39Miwl9fbSEyiVZyHaa5OHM1QaHrf3qsBXCcdrNJcMe3t7On/+fNmW6hhpWwrsSZXUsDnWmZOdY91LIvf4WCtgknxmHfB5uZ6WtNHYbmq31PziPVRptdX89Jhr1oTsc0x4z/UChiyt9wKe9vb2dO7cuSMN77bbbpN0HLIuHQewVAFO2b3MSu2eQ4P3SVZpvUr87iX1s+/+rKwqPE9sMwM44rxU816RgcTflu6NrI2VBYP3baZlM9DJ17MWd8sttxwdY9KCzDK2hKHhDQwMDAycCuys4UVJqZcIHCW3+Mk3t1Tz4PE6vcRPg7Zm0gPF/y3RrdGaqA1WWKOxcIxIxSRta31rktWrtlQaWJTwPCbUfteEV69J0JbmfjNRNraf0h2xpi1cb1xbPd/xmiTyzBeUHdvzb1f7ZNYPJlSzX15D8RhqdpWlJLN+sM8Vb+4ulH2Z750+qF4CemtNFy5cONLs7rzzTknHml48z1Kyc2yDx87b3AZaO7Jzs0+Zdi6dfO5U97/9j/6eac+V9uT10XsOUJOjrzy2mWkPnJceRSQ1Lj67srQjapvZ+0E6SSNnDc8UY0vpUCfau2qvgYGBgYGBX+HYOUozvuEzKcDSkN/Qll4qyVSqpWWj5zMk6H+hnT47ntJsL7mWbVzjZ6SUWdnwY9TZku+md90lCTuTuH0danqVxhzbsEa6coRmrx9LvrqKsqiHHjUW56XSVDNfh9taRWtmbai0gsrfGP+vPnv+38p3Q8LtLOqZGj771SNliMnkWb8joi+yWkdnzpzRxYsXde+990qS7rrrLkkntYBK+/f5+RyK/7PPFbJj2TdGNUZtyhYlrgdHILo/0ZdowvTqOvThxTGstHLSeWXPOc9dTO6Px2RjshQd7PF1n+I2g8/gzEdtbc+aXi/Clxga3sDAwMDAqcA15eEZWUSmpRRLBpZeetFylb+ol0O1BNrlM62AEXVV3ldEJaWvQRU1mflSqn3WRDdWJTd6mlGVL0ltK+63JBFHtNa0v7/f9eHx2mw3tc+sDZWUuSbHieug8gvF9sf+Vb8vRcD21jXPS20zyxWjdYManYl4/Zm1lfcG/YuZVtDLl4ztytrdoxbb39/X3XfffVQCyNGZWf5kpXllNHJVhCW1KPrLYh8Njy1pyOL6jJpN/M6cs6jhPf300yfOw3VdRbjH/vAeoT94jR+O58/ovaoocK7HSATNOAqD/Y3z5vJQ733veyXN2vvQ8AYGBgYGBgJ21vBipN3RSYIUYCmF0WPUFKKk6rc8bco9iS+2Jx5jsFJuFmlHKYyaUWafpmTPNq/RoigBRYmHqPxklJoyP0yl2WXRkEsSUtaOTBPrkc8eHh528xWpvVi6vXTpkqTjQrD+lI6l5Cq6lH65KBHbCuFPrl37fbI+c4x9Xa/lLMeRWoDBMi09bc1gpHE2//7NY2RGiieeeOLEZ9QAKkYN+uajb4fjF1kxpDz6kOhF2u3v7+vixYtHmp3Pnz13SFhd5QbG46v8WFqjslxH98l5YmxHFh3O3ECyNMXngSMRmSNY+cIzawE1cLeR2tqa8/u75zw+I90/Fmx2P92vqClzvbktPsbPgCyK94EHHpA0FxFea/0bGt7AwMDAwKnAeOENDAwMDJwK7GTSbK2dMGlmwR0Mk2biN9X4uE8VmFE5NCOqc2QmJqvW/o3moczhTFMZzYUVCWrch2aVXkCC21glntIsG4+t6I08b1ldqmtJ+jfiHC/tR9NjNPnYfOF5eOSRRyQdhx/bVOL9pGOTj7f50+Y7EgZkJs2LFy9KOiYlpqnT26Vtc1AVIBLXDtc+x5rH9kL+GULPtSsdm5JssvT4PfbYY5KOx4zBK7EtNOvRXBnNlh4/JoY7fNzjlwWZVETTEU5L8Hls2ozr13NFc6HHwp+ZWdJjahO259RrKCOGYPg8qd68PaYauf0MCOF9GcmQ/RvNgwzGMaJ5kulPVepElm7BtBejShWKYBqC11f23OZz2v30fGZpN05LcRDTu971rmHSHBgYGBgYiLguaQnx7eo3Pp2slkSz0HJKyVXYdhaCzeRtalGZhlclV9PRnYVRM+x4KagkHlNVJ85C/lmyhOetgjXi+Sj9VUnL0naARlVROWJNqZDY7sPDwy1tN2prdkJbA2GwiucyHuN9fEwVmOFjM4nbGoM1FH9aQ8lIiitia18voqJnojaSER1bOvY8MLXA68DjEMfCGvKDDz54Yh+PZ5bIz0rk1uTc78xCYzBwhxaUuJaY8tGzDOzv7+v5z3/+kUTvAJG4fqnNWKutSk5Jx2Po9eSx9HePn++J5z//+UfHVtXXeU9nGiUtLO5PRkDBxHM+f3qJ524TtVz3LwuSqtYq53RNWSpqdBnpiPfxNga+ZM989+t5z3uepNnC0HtORQwNb2BgYGDgVOCaygNRSo8+AEoalMozDY8aDkOJe5qD7evRzxKv20sarpKtjYxGrSJvZsJrr0xHRUTdS+q2dOSxodTWs6VXyapR+qSkRV9ElnZBX8BSasM0TUfzYk3MyaOS9J73vEdSHdZMCTX+X2mFHKeY/Mu0kMwawD7bD+a+06flY2PqBP2HVTJ0lmTL0Hi30e2wRun+x20PPfSQpG2yXUrPcR3Sj1XRnvVKy/g3+hLjdeyHicdUWt7Zs2f1/Oc//8hXSGJh6XgOPS7uOzXkOP/0DdOf9PDDD5/4fv/99x8dS6oyJnP7Mz6XeH9Ys3O/jBe96EVH//MZQesT770sTcCWE/fX/fJYZCkttBy4Hd7u50QkdXZb+CymLzyW+vH1mM7hz8yC5Tm1xn3nnXd2yccjhoY3MDAwMHAq8JzIoy35ZKV+/BuThek3y86dvdWlXMuilM6kWyOj3KHNmcmiWRQjkzTpv8qkJtq0K/qj6G9g4jQlH0p+sb+U+tZErnpft4E+luhXMJjke/Xq1dVRmpYco8+Lc0iNOIvspN/IGp/PxYTzTAKuIs+ytcoEWZIGeJyy8arIomkV6EUSWjOmRhs1F+9TRfax2Gbm/+C4UsOLWjYTzanl8N6Qjp8Ha5PS77jjjqP58vUyCi73nX4qf7cGKB2vPVJ+UQPPfMcV6TGfLSRfjn1mAr2fo3E+6N+jr6tXPozWNH93v7124vr2urIW6H3t1/ZYWVvLylL5GN8DfPbHeXN7fR9Z23W/afWL23y9D/iAD0iT5zMMDW9gYGBg4FRgJw3v8PBQV65c2YpqjG95SnOUuLKIPvqJqhwgv8V7ZXtItmpkUmwVAZnZg6kNViWGsuhKamukGOrRAlEqslRIH0K8ns/vsajy8jLSYPrqqjyj+NuaKM3Dw0Ndvnx5KzIuoiq5409LjjFPidIjNWKupSgJMsqUfacWIh2vRV/P+1Baj+NUEX5TC8zyongdRp/SNy4d33u+nv0slpoZ5RjbxfvHY8Lo0HiP+BhrM9XaieBa6Wl4rTWdPXv2aLysBVgLkY7H3+22BuL20k8X97H2Qv+ox8d5hRkFG8eF2ntG30frl6MNmacnbZdZI8UbrTb200nH8+K28p7zOeL9ZA2vsvT0LBy0zDiqls/xeG+QGo+WOa/VOI5e357zO+64Y0RpDgwMDAwMROwcpXn58uUjicFv2CitMY/C0hLzUqLUvFRM0dKN3/a9XCdG9GXaGllgGPGUaSxkamCEoiUd9z/6NZk7Q82O7Yn7MjKx0oJjPy3RW3KjdJuxp7jdVUkPIyv2G+e2itR0hCZ9D1Ey8zyTmYGaXYyA9PksHTPizeNlKT22vyICp/+HuVzStj+O2mCMVOOapzRKX2KUcisNz5J8xl7h63gssqhcKS+K6og+R896HbONUVvwmDJnjxp0tnaiRlytnb29vRPasK9jzSxuo1ZDJppe9HTFfORxjNoMNWzeN943ttHPL0a3e1076jCuN88782Tp787ynxmdy1I8GbMPtXOOhefWkaTxXvSa4bPEz6PMv01/JjV9FseNx6+NzIwYGt7AwMDAwKnAzlya586dO5IMyCsobeeJkWWBxQ6l47c684T8Jqc9PsL7UnoyS4IlBOaG9GDpM8vZcptYxoISXsZPR42C7BkZGwz9cCyx4TZGzYZ+DOaOUTOL/1e8jj3/XFYMktjb20vzLfg7rQAAIABJREFUp6K052u6vZSAyZri88a+vvSlLz2xj3P7Mv5F+l/oy6O1IrahugeykkJcM5XvjnMet3n8fX23meswXpvXYcQgJe8Ij9cLX/hCScean++rjNmFObGeN183WnWy8jK99XPmzJkt/1VcT/SPk3c1y+H0vpwXrx36/+Lzx9t8Dha8pgYYj/ezqvJ9x+dOpSUzbzaLXfC6clsYpWsNMD6/Pe88loxCHqPM32jtj+xD7373uyXljDssVcT7Oq5Rjt/tt98+uDQHBgYGBgYixgtvYGBgYOBUYGeT5tmzZ7fMXVkiOMOarYZm1YpJ+8SEyPvuu+/E9aJppEoEpyk1msF4Hu7bo1yqTJqkLorOVybK0mncI4BmiDn7nQU6MDSaibVZuZOKwJtBOTHJuEplyNBaO2GWIHVQdk0SQvcCNO655x5JxyHeNp94fGwmzdJFaI60ecqky1niucebZAUs6xSP4XcGaWXmUJpx/UnTTxwbb/NcsZI204rivHjM3YZI0CtJb3nLWyTlaQlVoENWMTyjWVsKWiGpd5Z47k+nLJC8ICuF5LH0M8rh9A7CYCJ/BCnEGNSWmfFJ2OBjM/PdC17wghNt9Hj5Gentvk4cE88lnz9MJ4vPUI+Bx5H9YJpEnHOvCa8VkhX4+pEG79577z3RFh/rOfZ9nRFGeF5uvfXWkZYwMDAwMDAQsXNcp1MTpG1aG2nbuWqJwG9sS88x9JaOWJbPYKJhdj2WSyEJclbqx2C6QAZqeFVhVCYtR1DbrBLus34wvNpjlFEX+drUlOlYj5IdNUnSUmWaSyaRL2l5pJKKErDbzXQUSsRxniz1e+yYsmKJ2BJ/piWy8CvTB7JCwFwrTOLOkvpJk8QCsJkmREo7BskwUVfaXqOeb0vW1lx6686anaVot8PjHceE0n+l5WSlZEjKkGGaJl29evVI+neKSdQUOD7eNyt2bDBohZYRUozF+4WUe7ynfGxMS3BbqHFxDWcBGkzRoaXB140ljJjeY63NY+PPuIY4JrRgMY0g05hZRNhanMc3C17y+dwmrz/PdXxOeE066KZnHSCGhjcwMDAwcCqwc+J5JAjOyuxkhQHj90xasoRhLZClKEivlUlrpPbxuXolVwwSszIhXNqWrCsCYJ8jk5oM+nR4TmnbV0j7O/1asa30wznUmEmcGSUc28TyQ9GPwVIyPQ3ZloGMeottsMRr+z3D9mMbOD6W+j0vPofHK0siZ1i+pehMW2XRTpIieN2tKZxLMvRM26EG4bl0G6uUF+m4z/RRWqPNjvHYW/K2FE3ffKaFuC3+7utkqUHs+5UrV7qkBZcvX94a0+w5wBJCLJ8UnzsVEYT77hJGXlvRmsI5pEWposqSjteg59KfmVbo5xpJnal9+pjYP/siWSrL64LWnLgvx5pjlJEocAw8Xu6fv2dWKa8Za3TuD9d/bG+Puq7C0PAGBgYGBk4FdvbhxRIvTGSMyPwR1b7cRm2K0XvRj0Tpn9dl8U1p2/dIjS7z01Ca4LHUcqLNmdFwjA7MaLx4PUpY1LwysmIe6+225WcUVhXxr7dntG5R2qt8eNM06dlnn906b0YtZimPGoil3dgGJsYzIZuacmxfVTaJUcPxGPqKLL1ae/H3bO1wndOHy3bF32iF8HxnCcC8P71G3GZLz1mxYmpZ0U8m5RYaUj1ZgrfUnh3D++bw8HCxRJBBf3bsK+/7XumljMgiwhoeS01J288IJmZnYByAz0/NJ56DFI0kSSAtWjyWFHNMVs9oEEnRVll+MrIJjrHPSw0/FoA1vC994Nk7hs+qHikGMTS8gYGBgYFTgZ01vChBUIKU6rI8zOfKcs5Io8Q3eVY0lpIANTqS1Mb/qyKqjJqLx9BvUBHPZj61pXNFVEVwq+KkPWmVUqg1l11KJmXaAIvdnjt3rqvhXb16davIZZS4LQkyP4kFOON4klKJkZDV/MRjWLKIkbCxjYxSs7bktmZUX2wTIzp7eYz0ebKoJvsiba83jl/v3uD9SstCJlVXxPCZ/4XHxHu7WjvOw6M1J/aT1gzm2LkNmebN50tWiDXuJ237sth3j3lGeu1tzrGz35cxDPGa1CipCWVr1cc64pFxBrQSxfP4nuBnFYkZ21YR22fPm+r94PHL/OlZjnDPOhAxNLyBgYGBgVOB3esrBGRSPyVqvtWpocRt1Biz8xNV1BCjRTPbOqVBaphZCSOjaiujp2JfqYVy30wLpSbn79RgsrYRlBLjftSAqpJNmR8ji2rN0Frbmo+sZAylZbJIRJ8DpVQWlKzmKbafv9EXlZV4sZ/R/hFvz6wQBv2ju/jwmL+a9ceo/C+UzjP/XxV1SG0w3g+MLqUvJ8vXNaKWu5SLxxJMWTwA1ymfC9kazbSVuD0jyTeY58tIz6jhkQHHPjz7fX2daK2x786+1MqS5Zzb2EZqtSRdZjFjaZsMm89mMv5ka7W6j7NodIPk31m5I4P3/JL/N2JoeAMDAwMDpwLjhTcwMDAwcCqws0mztbZlCsxqWtHMQQfxmvpF1T5Z1eIs/SAio8SiKZPVuDMHcGUq4/cs0d3n5/hlNedoOqpMtZn5cilMt2dSqPpXUanFfXtzauJxBhdEMxJNowzUIPl2bA8p5phgzjQSaZt43N9pjooJ0wxWYei9TUvZ2umZh6s2ksKK6Tcez5jMy0RjjkXP7Mr7lSbOrKYfQ9SrFIHYr17CPOGAJydMe+yjaZvEE1VgWDyGlHWsOck1n903nEs+j+JzwPvQDE7zofspHZs0vY1t8TxkROD8zdehWyGjeeSzyddl3dHMpMlnV49CsQr2owk1HuOx8La15kxpaHgDAwMDA6cEO5cHaq1tker2qntTQ6gc9XEfOqPXBK0wyIJt60m1DPHutZGSzZrAGpaQYfBA5qCl1My2sI2Z1rumbQb3oYS3RBsmzf2sAg+iZSCePyNKrsLbfe5YRdoSu6VXjyEDkDJQAmUIOxOq4z7UBpkWEvtVaVhVSk2W0kB6MG6PGp6DIFi52+1gEFW2Pqq54Gf8n6TfvSAmn3cp+duYpmkrXSSmO5BSjvRTWfCax4maN8cnW0OcQ6NK+peO16q1JF/fII2YdPxsWiLWp3YqbVecp5bGALgIjlsvwd2oAoN61r3qucKAsjjOtKI9++yzI2hlYGBgYGAg4pp8eNRY4tuXochr6JQqeq41pUOMKkw7kxCoSTINoRc+W/ldjOxYaqH05WXURZT6K0qzzO/DtlaaXna9pX5mSbHGmTNnugTAMXw4Czem1F8lDcc2eCy9TyWdZ34YSqRVomxGjs7kZPqtsiRlSv1VAd0sEZjEzFwfmTbFsaavumf1MCpfckasTn9iL0XJx2drP+tHXJ/WXBzWL2378Emuns0/1zT7WhVDjvtQS+Ix8Xr2BTulxde1Rmei7qjhuR/Rrycdjzm1s7hflQbFEkqxX9SimVLSS0/hM6qiUIxzXcUIcD6j5sq189hjj61ay9LQ8AYGBgYGTgl29uHt7+9v+RPi25WaAmnD1kTqLCFLdK8kxKwgZ0U43Ss3UdmwK+mlF0lYFf7MyJxZbqTS6HolMij99Oihqkg7Sm9xnygR9+ahtbZ1TJRQK2Jpa2+ZD6CXhMw+8liOISN8MwsDNbwqGjn2i2uD/gnOTzYvnF9L55boowTs61Ar9PrqUfVVa5XtyUgSqP317utdyaPj/Gbk59YqHSXLRGaOSfy/SpznfZI95yo/mI+NvlVrpPS/uc0PPfSQpOMCvdLx/NqXV8U50D8bjzX8vLYGacoxlxGKxzs6lHR0lSYWt1XPqCzSu3qe+v7K7hG30RrxpUuXhoY3MDAwMDAQcU3k0Yxuy4ig+cZljhvPGVFF1vWozJaksqy8BH02PRLfXnRS/J3tyvahj4B+Bmnbls5IuIrUN/5fSefUNOL56DPq9ZvjtUuZDmr+2fHMqbK0HKM0qXFx3CsfcraNvg5SZMXr+TdaLrL1n1kZ4nf6OuK8MWeTa9WaXvT7eHx6uXqxDxk471Vb43mqIsnZmFMz6vl/Dw8Pdfny5a0ixNaMIljcuBdxWeXuUqvICO95XsLz5PmRjjUsz4/b/+53v1uS9K53vUvSseYSz8+oU5+DfYhaL/N/rdF5X6+ZWK7H2p7XjNtC/2+2dnoFtGNbs4jy6pjsWeV2v+Md7zhq04jSHBgYGBgYCNhJw3MuTC8ni9oKI9EyjavyF1RMB5mPo2I8yWzbjDSqCKYzadCoWDN6EV0Gc1syIlaDv9GntqbwJNucSadVNCN9FZkPxOj58KZpLgBL23zWhio/LGPRqXx3JA/uMfxk0aZx33iMJWt/khkiKy3F9V1Fh2ZRoRx/EueyeGiE9yXBes+3Vt2La3I6q0jiTLtiIdOehndwcKBLly5tFTKNmhDnOYuWlU5aFNwG+vCo2WV5spXvlkVe45q1H86f9tW97W1vkyQ9+OCDkk5aMBil6P5Uayd7ZpE5xr5Ea5jR/+txNJuNz88yPb1cZVqLyN4SwXu6ek94LUvHml1WjHoJQ8MbGBgYGDgVGC+8gYGBgYFTgZ1NmgcHB6UDPW6Lx0i1uTLuUwU/9Eh3q+AUBn1koeykT6pMMhloMq36Eq9dpQ64PZHirKqDVyUc94KBqmCVXuI5+9n7rSLsjvDaodM7mok4Ttw3C5ggQTH37ZFe00xbVWaOc+w5Ir0RTU1xPJmYXSW6G5k51GYum59oYoo0WzansW1VIFLP/FqZ+bPk4areYnZfu89LaSU+7sknn9y61+L9QmLxpT5n+1bPqsxMXbkWnFzufR3eH4/xXN5///0nPrMgHAbMcI3yXo6mP/fV2yr3R7x/vY5Ig+bvXP/Z2iFo0u6R8nuOnVLhfsa59pjYjP/II4+sDpgbGt7AwMDAwKnAzonne3t7W4SvmdREx3+PbJnOYqOi9uklkfuTklGUgI1Ko8sSZykNVuUzMo2CycOV4z/2n7RtFXksw6+lbSm9klgzVFRSvXnrJb0bpodisEJsd0UA0AuYWBNMEc+VSelVikdWrqVKaWE16SxIilXEq+CcbDwjjZI0S7XStsQdz19ZKBhw0LNk9LQ0g4EMVUBFlsDf0+xiG5544gk98MADkk4mShukqiMheDYvFe0YxyWreF5ZBdwOa1UxAMVj57B698dzGlM02A9aAfhMYaJ93GY4yIdEDpHEugpss9UgplnE/eO+PNbfs3VWWRK4b0Zw7fM+/fTTQ8MbGBgYGBiIuKbEc6P35l6SHtckClLayGh8qNFZwqIWEwsjsv2k8aIUL21LpJbcKKFmRQndNvq6aHeP/WIoNAmVYyHLCpU/lVp3xBLZdyZ9rgktb62dODZLT6koqSpqtNiHNb7iuH88hudgOZ0opTNs2xKvtQ7SRknbvmKGi1N6veOOO7ba7zbQUmFfXnZPVL5PWgfiulzy4WXbq7SLXqpMloKylNLC+Yhj4f85pj6//T3xmMqyxO09ukDGDJCoO64Dty1SYsV9mGpSXTuen/tlaT62Pnhe+CzJtKeKwIMkA/EZU2mjfO5l683g85upIdLxmNu6MRLPBwYGBgYGgGsqD2T07KYVIW6v6CSl/so/F+313FaV1YltZQQnpRb6WmK/fQx9hBUVUwSLNRqWVKI0yKgl9o9aaWwrE+vpy8sS+BnVRgkvmzeeb8mXl0nIEZQil5L7q3bFa5ECLGqUFYWUNQiuC+lYWn7hC18o6ZiuyRqfr9sjc6akTb8m/STSdlQmE5FjEq776nVVJSsbcV6YwM1xzZLIDVo3en6/3nMg2/fKlStbz4PMAsPPLGnc4L1aabOZNYJJ6xxbWp7i/7Qg2TqQ0XZlFHwR/j2z/JB+zJYDRpjGZzXbT42Vv/eIKHjO7HqVFY/3RhaRa9/60PAGBgYGBgaAa4rSXBP1V1F+GRnZMX101MSy3DdqaSRTzbS1ShtkW7MSL9SwMioxKfd1UYLLctGq6xlV3mFWIJGf1MSyKFS2mRGFmbS+ltbsypUrXWqxyl/Ba2fHcPwrMufM10U/TPTZSSfn0j4g51vZN8y2e93F4zlOnhePSUagy1xBFsXN8v4YIcj8p8q3G/9fQ1JuVDmQ1OJ6kv0zzzzTldIPDw+3SLHjOvHc0Y/Eey3LH6TfiO3ItjMKlFGb9sPFdeC+VgVY/RnXn+fS68zf+Wz0eoixCm6DC87ee++9J9rqY+K8eBtjB0hTZ2R5eFwP1Loza1QV/U5NL/6W5QIuYWh4AwMDAwOnAjtreGfPnj16K2eSD9/UtM1mkhYjqihxVZ/xPCwTQ99WlLR43YpZI4uapPRX+ZmyvKjKP5YxlVS5clX0VAQZL6oCnVmEFdu8xjYeJe5eiZenn356a+308rCq0jQ90muDEjA1c+lYamVkH0v+xHXgY+wz41h7nUVJm1aGqvCov0d/nK9nfwUj/Lw95gra30HfoNFjoXFfqzYvaWFZ/7I5ojXn8uXLi7lUlV8pgpaeNQTWlU+/ys+VjjV8+s5oPYk5g/b/eu58Ps8X/YHxfxZG5TPT6y3OtUmi77vvPknHmp7P4T5EC5P7Hom543avRz7XY59pHaB1IrN+VOuL14v/x3lZq+UNDW9gYGBg4FTgmjS8zAdkVNoY/WJRM6miM5fYTKRtyZqSaRa95P+XtM8s94MsMxWrRRZpxQi4ym8Wj2H0Z1WIMRvPXnQjv2fRnllbM7YMI+PzjOe5evXqlkaXFUqlf6cX9Vf5OPlJaV7aLvVD7cCImoRLulDqp7XAUZvSsWTPXDCyY2RttLZnidsMK2T0iBoeIwgrH2Kv7A3XEOc2zn2Vz0ZfTs+H14u0m6ape2zcxrbwvonHVLECzJekz0va1ui4znwOa1HxeN5jbrPbETUg5tsy6ph+sXhu+pl9HX/P/Ixsv9dX5QvvzQHbls1vVeasitCP11wbmRkxNLyBgYGBgVOB8cIbGBgYGDgV2DnxPNJHZSbNinyUqmnPRNGjkuJ3mh34mVXm9W9W7WlC7RGx0gleVf7NSqEwYIN9iKBDfqkSdRaqv5TAHVElkffCkNdQSEVcvXp1yxQbz0czGj+zIIslggP/btNMRvXEczCNI5r8bFqMJsS4j8fCZkzpmJzXJibSg9mkSnqqeB1fNybgZteX6vGqyBF6QUD+pFlsjTmJJu8suG0N6a9TWmgOzwImsmvF73GueW2b9mhey0xypAPjdZg+Es/jdWBzpYNY+MyUalJsuknY9rgvA/pIopERQtDU6POzPZlLguPKFJEsUM2/8RmZmTSZPtQjwyeGhjcwMDAwcCrwnBLPKUlKtWRFCSsLUa4ke0qDmcO8+p5JFZYWLE0weTijGvK+ltwZGs02Z0VxKwou/x7bWEnaa8q1VJoRtdGMALjSmDPSYEqBPanfgQdV8n1sb1X0Np6L/1dpIQwIiZJiJYlyDLIEZxL/cqxjsIK1MwYRMFWCyb7SsRTL0HWjR+pdUT1Rm8+k9IpAmUFi2TEVHVkWlFUFVPH4J5988kjbzbSZnjYZrxexVD6rSnGIv1X3o+ctWhQcJGKKLwc2eT1k650BSJU1wtpbTIdZCiIi9VxsL2nQeI7smVXNYc8iWK2dKoBNyu/pQS02MDAwMDAQcE0+PEq+vbdr5RvKaLuINUndlT+C0k1GGkyJnppYj3LJGh9DmjMpjdoS227EY+jPrGzrFXVb7Ef1mWkAVdJoTyusbPfE4eHhVqJ25j+iT5VSZo9arNLwepRoHktLx1URXGm7lJPPS00vamleKy78aWm8okXLpFlej+sghqOz6Cn7Xq2HeG1SynmdZ1ovNfy1fjnp5Fz3ngNXr1490kg8T7HPVTHnqs+xDb30idif6L+qSgq5jd43aqH25/l8/39759IbuZEE4ZI0ssdzGNsYrGHAh/3/P2uvXsOwAY8x45G69xRS6mNEkq3FHrydcZH6QbKKLLIz8hEphsdr7OLkycvB+8l5v/hM4nVypToUuk/yixWpREhwsf7kfepyPpLo+hEMwxsMBoPBVeDiGJ6Kz9fyvu3EHtgaosvw3IvldZl9tITdNrK6ZNnQEiLzq/shKL3k2GHye7OI1LUS2fOLd0LQqZmnu257VlK3TccYhfP5bBlz9x5Zmys43WN4XexJoOAvr2mdF9kTz4HiTE4AWJ+le4PFzHW/qZhXrKEWKFMMgffVEc9Mau7s4nEc614MsSJJ9jmw7VFlT4zrcSwuk4/ngVmyXDM1QzblHei6O/YhZioxAcV0KertvCh8Ta+HvAeuwS0b5+pc6Pq4tUqPRXrmu3sxZa6750TaX9dIV+evsuiJ4Q0Gg8FgUHBxDO/NmzcbGZvqA05NFY+wi+T777I0ub8kO1O3IRusc6v7cFJZyVrmvh0Y56NFWRmeawZZj9fFSxIrSDWK/N+hs85qHOnoflzWZ4o18fMuhsf3O7ZBQV5Zx66llCArnX+5Dh0b4F+NufOY6D2NjbVhGrvLWEwx1i4OI/D+TV6C+lmSierYQL2nkwCwssN1T8jCrxmJ9NYwDutqUCmtJgZOdqZtJOtWv8M4GGNPlYlpLJSYU9amGJ8+r2A9HJ93Wm91zbKxMWs4tU+XFcxnE0X5+bqOjV6QdF3rGLlG+UysY08Zy0cwDG8wGAwGV4GLGd75fG7Fo4Xkz3eWfbIe6WsW3Lb0aXfqLLQ4mbV5JCaV4JgZz5NrjVJfr7VtkZT25WKU/G6K97maOs6Z361MgrGH+/v7dk3U8dJ6duMlW6RQM7d3x6HF7+ZMy5QMr86ZihCprZJiKmvlNkR7KkFrbRu9Hmn11DGl+tfFmVxLpO74dRtmjHatX5iR+PXXX8dxq4YzxXnW2maXcv+uATBZTG1GWyFG+fPPP2/eY5NdZhXWMWosbNaqbE2186kMj7FJehRS0+K1tmLkVEnRmCt7InPlONKY65gY++R17bwtOj5joXWMuj5H6n83xzn8zcFgMBgM/saYH7zBYDAYXAUudmlW10JXWpAkg1wSQZLl2ivUdtvShaG/NW1b+6V8Dily19+NlJ/BcScTxqQBuhqqu4XlFXTvptRfh0tcCumvK3Cmm2vPnVnn4dZQ6gTO9dB1vN8TknXiunK9pGQPJ4PHMSvhwLnveJ50vbnOKGq+1jY5YM99WME1ymQZl3iVCp153E7KjN9xqfSXuKE0Hiak1f3RPct72YkYpH6L/Fzutd9///3ps19++eXFX4YyXPmLxqb9yXWp1y48I/cn1zcFDty9xxIZPhPldu8SQii/KGlFzaX2faQoutCFhhja4DNR7ss6Rrpm63j3MAxvMBgMBleBixne7e1tm0Z9lOFV0HqhlcykC/drvtdaploZZG5JgseNlWNKrYXcNrQyGeB2rDCl26dyhYq9Fj8u0SElUNB6X6svNSHO5/P68uVLTGGv2+8VSFcmTEuefzsR2tStXH+TeHWdc1pLdYzcL2W7yACdN4LfcYxbYBIGEyqYEFXXmCz5JHDuGCXnlbwPrpzkiFfgdDqtz58/P41bx3EMT/tj66+upIX3O9eF25YF2kpi0T5YerDWtuyA7aLEnqrwOBk+nztManFi7PqMTC8lqNTv6HgsR3D3pkvyqvvnfVXfYwIfk1Uqw+N1+/Tp0xSeDwaDwWBQcTHDO51ObfsUWiAE09LdeymWJwui+sf5a58sOpdaLiQZpTqHJE7L+ISzbjmG1LbDxQwZB2G8zKXwaywpBuq2SbE7V3rAbRzLcDidTk9Wpls7ZDNMLWfx7VpblkKWQe+Ba5Qq6LyR5dT1os9YXEtW5bZhfETz47mtDI9lAox5uJhxKh5m7IOsoRsT5+08Jimm24m+V6aX2N7pdFp//vnnpjVTjXWy1Q3XjJMwSx6lVJ5Umdd333334nwkKcO6jQrMxfA0fr3P12vle4yyhHpdi8g1Bo5R81b8rcbhyMb2Sncqg+VzWuA9UZ9zvC91HVmW4Jr91mf8MLzBYDAYDAouZnhrbf3k9Rebwqt7TM/tN4kSM1OIx67bdNlZqQ2N4LJEU6ZRkrByxfHJH+6knlIWqLNuiBR7OiLqy3OeMhnre9WK3ovjpXYz9X/6+juZsBRvTRmCleUo/sKMOmW3OQECWbSyihPjrqDQMz0KnJeT4OJ+KV1VY4ZkeJQ0Y8NjVxCepMucFyIxfLLTOkae285CP51O648//tjElSp7SsxOr52QA2PFLra91vP6+OGHH57eU8G1y1qt+64MiF4BbcO1VAvPu6xmNwfFEtfaxmw5L5d3wDE5gYg0Ho6NvwFO0pFMVZmwmgfvRTf3N2/eHIoFrzUMbzAYDAZXgleJR+uX2zVilBVBFpWyCzswbkXB3rW20kuMAzmrImVyEvV9F3NYa1vb5GJ4KYsxtbKpx+ZnScLISSbRv99lU6asTPrsHcO7RIKNDK9eS8ZBUiuUimT5kjm4LM3EhJO82lrbBpkUUhdqLEVI8WVeQ+cdENiGxjFXMrvE7N25I6PvJMWEJBacWnbV/SQps4rHx8f18ePHDSOpdXGUFGPmreBqAZPQtNgtn3drPXuZPnz48OK7XfNggXkOPAd1jLyXOU8KUnetpRifdZmW+oz1doqtsQFyvW70mKX72GX1s4UW7zO3di6t5VxrGN5gMBgMrgQXN4C9v7/fWEY1BqJf5MQmjtRs8bPOykztKthMs6u/IWtLNXBu20tA1tkxzWT906J3VlPKWE2ZmGttszH3/tZtnFXpcHt7u7H2qjXLtUELlFmbFbyGzPh1408smrEPd564NhgfcQwvgcylEx5nLZVjTxwbY+2pLnCtffUZoWMSZBRkMm5eDw8PrRD4p0+fNpm4YgNrvcw0rMfqmFYSyOZxdC7qMX788ce11lo//fTTi8/oEangdaEHRiyqzkvbsHkwM7F1jZU9upZnpmttmWtdu4yb6zrpua4WSYy1rbV9niZPhqvDY12j/jrvDtfJJc/iYXiDwWAwuApczPDu7u42Vf5fgNcVAAAPW0lEQVQ1E6n+4q+19be6lj97qiEp9rVW1uFMzQjr9qkRbMe49sbsrFQyqr34nBtbqit0WYopyzVlXq61jUXx/Lk6PFrNe9mfNf7rLLgU16Fl7LQ0eR4YP9C4a4av5paadzr2xBYyZI4uFsWYTWKubn6cl4vzETqPsuQ1T3o9HBtJ9ZfdPZkysVN9q5vP4+PjbkyG16W28RE7IgPqztee7irvn1ofqXWkmjkxK7LoOvej8bi6RvXZ999//2Ie1GOld6p+lwyfyi71+jPGntoP6dyxqWw9jsaubbsa5eQd4D7X2rLQqcMbDAaDwQCYH7zBYDAYXAVeJR7NgHAtAP3tt9/WWtuECbo3XPEw3Z9J+qnSXVFqBsYZmO2C7Nw/Sw0c6DpLSRP1/6PFkXV/nHNyh7rj0cXIJJPqyqArhu4wt41Lc09zVMITXTGdEDTRuS2SUHEqoF7rOZVb55gdouX66dqR0AXs1g7d+bx22odLdOH5TF2knQye5qe/dEs7qb4kCO7WtUAXkxNSINje5suXL/H6yh3O81TXjt57//79i7HofeeaTe6zlPDSJb7QtedKqNI6YFG8k95KgvN02dbjcR66znJl6q9LWtKYFKLSeWT5Tbce+Ox3oRQmpegzJoe50hmXDLWHYXiDwWAwuApcnLRSLS1XzEv5JFkrSdB4rW0iS7IMXZE1GZbGJovLSVjRIkjp6C4lNskPdYk3e8HxrjklWQcZhGPDHGNKQ69zYIlJSnhwIgOXiAp0zXUZzCccM08tnZJslxM9Zhq6zrkTnCbIiI6UsuyJVtfPeWwmwLh7hm2GmJzCJIZqcZP1pFY/jsmzjCMJEdfPuhKgeqy3b98+jVNeJCcXyHs2iYuvtb3+LMwWM+Z5q99RE1UJWuta6zlYE/o4ZxZV02tQwfY5qXSngk1VBT0btU/XuFXMTtuqLILizp1Yxl7pzlrb55nmwzZErsCdXpUjGIY3GAwGg6vAxQzvq6++evL9Ov+1rCL6mmUpdLJWTFGlJdzJD7n2GGvlpoQOTHt2ln3y5zOG59KRhSQE7OI+KWW+i48khpfSlNfKZQj6riyumppNhrdXAFpbS9X3BHoByNKcFZuKXZOo85F4leDYqGv/U4+bCrW7MfP4rhVKarHiCurJ5BnDYQzPeT/IJIk6f46NHhNXhO3aeiUPwd3d3fr222+fGJHYhZObYqyLXignVq7xkWWwRKOuDzYo/fXXX9daW2kux56cp8q9rkheBnrbKjvk9dazWWN2YtUCpevE8FR4LgboJBtTrJqlVGttG8ByHppDLUFh7O4iucrD3xwMBoPB4G+Mixje7e3tevfu3cYiqhacGIEsIP0ydyKubNIp7El/rbWN0dE/7TLRaIXTCnQ+YY5lLy5XkdggizxdW5iUOZqs0fpeslRdMT7jOWz4KWbn4hjCw8NDy2wUA15rGyfj/Ds4Kz1dj1R8v9aWzZCh0ONQ/2eM60gsSnDXu27r1oGQRNJdbCplZTJjtbtmqVjeFcfT8mYmZvUOuLh5l6VZM3zFmpzEYMqwZrZm3b7LL6j7rhADEuNRXFFsybV14v2+JxdYkcbIdVDPMRkez6+uk8sO1nv6q/mK2fE56/bDzHzmdbix8DXnt9bzM0is85Jn8TC8wWAwGFwFXsXwmPFUrQr9LyuMLdqd1Vz3373uMuAEMUo2PaxWGuN6XVyJ4GepfYsb956Yaicezb9dCxsyV8Z0WKtY/yfTYyzP1e7p719//dXWGt7d3W38+V1cLtXi1GMw027PUqxIwuapxVV9by8O5+aTmD6P7zIu018dr1vftPTJBjrPwp6Qd/2M54ZxwMpcGMfq6vB0XNYg1mud2gGleuA6f573lJlaX4vxMBu83gtrvWQ9qZ1W10Itxf8Z5+48T5w7Mz2rbBglDZmlyRrImr9BVps8Jt3c+dxxjXv1LFKG7EiLDQaDwWAAvKoOj7/GNcuHlfnM2nRZhsk6poXorPjEmlJ7+fqeqy1LoBVIq7YTuE4KFLR8qxWTlFWOqLYw6zW1V6psjVmaZAMus9M16E1xEK0dMlTHTPk6tXNyc06Zl1R7qPvjd8kaK3gtmVnnrPQkopwYZh0jY4+pttLVVDJm67IyOY6jlrKrgdurSaznivGrzkq/vb1d33zzzdNx9Iyp97QYCFkU42Yui3FPscMxfbEiMrCOxes8s10PFX/quWXskWpUHQtlrP4IK9SxWW/HnAwXg0/3E59z7hnCDHJtq9ioe64wbnsEw/AGg8FgcBWYH7zBYDAYXAVe1fFcECWuFJ3SYgyCyx3hXCLJxZOSPup3SM+TC7L+T1cFj+9odJJY6grPk0uO86kuH5fIUkH3gUu3TgXITlKKheXJZeZSiut3O/Fo59Ks+0viupSnq+eErp3kynSi5alTN+fYCeRyjbrCdCbopD5o7pxwH3RTdcXjvGa8tsKRvo/p2rht6E7sXGf13uvc9Le3t5si5ZpsoTlLPJpwbkmGWVwH+LptPR47c9Nt7EIPvIbc5gj2ynBceRK/24l86z0W+XO+PHd1vy6Rqu673hupvIZC0/U3xglUHBXmH4Y3GAwGg6vAq5JWaD1XC0EBWLIXiiC7ALWTnnGo23bsb63cTmWtnKzQIQnjdsWPtGxSEbljLpwP2QaD2fx/rW0CimMFjvXV77jCVpYY7LXpOJ1Om/m4VijcP1nckbKRtE1dOxyvayHE46WAPNefE/Pmd8nsHBMiM00JKB3zZuG50Fn4e93Z3TY8N2RkThz9SJKMLHixDSfFp+cO50S2W8eQ5Loo1Mx5rrX1VFHIuCu/0nlhCyGWSazlBfrr+/RWuW1ZliCW5kpM9pJVumuQnoGal2PZlDejR8a1PVI5wiXt1oRheIPBYDC4CryqASz/r0yB1pxedyUALGRPRa8ulZ3WS4rHVdCqZGzFtVxxsbm6La1zl5aeisg7SztZcmQHbr4852R6LpV9L+29MjxaYR3zOp/P6+HhITKw+t5erPOIcHZiHc4iTbE8xtrq/sheKDXmylL2xt/NizENFp67eHNKZedfF0/n2FmG4eJ+FDzncStjciUnie2dz+d1Pp+fWJXgPBQsiFZzaq1bJ4WV1i/PTy2yFtPRGOi5cs1OU2zdxeGJVO7DZ4dr10PpMrE1FpPX9xi7o1g0WynV4zG+7O4jQmLbFOXWfGqTcX2m47x79+5wE9hheIPBYDC4Clwcw6sCwPpVrb/cFBvWZ5Smck08UzsJJ8Qq0LKhFeFiBakFPYtWuyzNlAHVMTxa+Cw0rZY2rfDEQpzMEuNxqWjZZXYm0VYX59T+qyW8x6x5TV1TULIK7rOe871idVdwzuMxtkCm7zJ8CbIZh8RumbnqrPTE6F2xOlnfnhfCFe6mmJ1joanJM89rvTe5rh4eHuK5O51O6+PHj09NVjtBeO1DDEX7d+LnYi98/vC+FzNSEXSdC/MOOI56vpjHoOMrs13MxYkxpKbVXFMuv4FeNx2X8br6v5heYoM69/Waptik0OVKcF3zGVnnpfOl9fD+/fvIgIlheIPBYDC4Clwcw7u5udn4oKtFol91WkD6rn6dXZ3a3t+9ppT1u87HLMhaIrOT5eXElev8HRJ7q2OiddxlmKY4o9BlRiamSvbmhKDJDniNHZN0c3ao27p6Lp4njqWTgDoiNF73VY+XWjB1Ul+sQU0ZpfU9J6K81pZ5u7HTs9Ax/NQYk+e8y5RMXgm3bxeDrvNxsZvOa0OcTqcX8TOXmSwwfqjrI+aiWNFaz5mBYi8cP9v41CakfFZQAowsqh5PLYX0mmOt5yRl4aZnR902NcFN8mF1XmwASzFplz2ZWoqxVZtr68RaZHoHXOZyff6MePRgMBgMBgUXM7y7u7unX/Iua5KNX9lKyImqpngVLZR6vL2szE6smhYPGUWt00lZmpx3x9Y4H1plzkpJgsNkH649TKqLclZj2t+e+kXd3+l0ar9/c3OzsaI7lY+UtXaEFRw5x+l6kCUcsbhTFm19j+uYY+vWQRfn4xhTPSMz7BzLYjsWzsvVe+1ln7p63SQw7XA+n9fnz5832YyO4ekYvAdcc9Uqer/WM9Njxi1jfW5/9BYxI3qtZ++WwBgXx1znSC9NiuG53Ai+1ti53t17XGe8/q75N+eVslLr/4z/8nUdI59VR9ndWsPwBoPBYHAlmB+8wWAwGFwFXtXxPKWbrvVMeUntWTDrCphJy5mIINeCc6fQ5UPpm66InO6blAp8BM6t0wlLV7j3U9JIJ+qc3CBJoLXuP5UjOJEBuu/2XI3n83kj1OtEiFnuIND9Uffj0rLrPt1riiAk6bfOpcki9W4brlEeh/t0+0uuzE6MfU/K7hL3pOBkwrhWmBTjnhNHINGCdO7r/0yCYBJRdY0pgUXPs9SvskuSovSW3KLuejHRLLkpndweQw174Z86D14PrsN6D/I9lpHpnLkyDxWHcz6dvFu6pnQru2ScLgSQMAxvMBgMBleBixne27dvN+n6rhCYgUrH7LhNStDg6yqFw+JKypM5Qd69lF7HxI7IZx1F6jx8SSE42VqXgML5dIWf/02iSxUWJ87n83p8fIxpx25uSptmmUVFSq6gddmxDO6X68xJsNV51b98n8d0x+lA1iSGQvbWiRakjutuLe+VNLhtNabEzDuvh9C1lhLDc8yO4+P14X3i2szos1qysFaWSazH472lNeMEs1OiCQv1HeMW6NHg86Fja0KS/lprK1qh8avtEtv11POZhOeTaHrdJsngMYGsvnfk/iGG4Q0Gg8HgKnCxtNjd3V20iNfKDI9lCc6PSys9yUa5OBLlko60axGS9VqPs2dNHLGehb1YZf0sxdaSyLPb754s2ZH9Ouua12nvHD0+Pm7iSNXS30tJdmw2FY2n+EgFx58azrqCeX7GuMIRIeg0HneOk+C4K/bfE0GmZ6GLgdA6d2U+e9s4MNbeCSfrudOVyqT7gwyvshneW4JYC1udueeOWtVQzMGVQaRShq6on8+z1NLMiVtwnVFmzTFb3jeaj84FWxnV0o7kdVJ8U+y3nke2ROIa1evq1eP1v7+/P8z2huENBoPB4Cpwc0mGy83Nzb/XWv/63w1n8H+Af57P53/wzVk7gwOYtTN4LezaIS76wRsMBoPB4O+KcWkOBoPB4CowP3iDwWAwuArMD95gMBgMrgLzgzcYDAaDq8D84A0Gg8HgKjA/eIPBYDC4CswP3mAwGAyuAvODNxgMBoOrwPzgDQaDweAq8B9dD4WEGTPBuwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0betZ1vl8++zT3P7cLrlJIInSiIJDQJFggxYqilEwIBo0kBBSlRpl2YNNgSIS7KIWCjYFCopIE0VDEAWkdVCgNEKKxigQDGlucvt7bpdz7tl71h9zPXu/+7fe95tznXtuAuzvGWOPtddac37z6+Zc7/O2bZomDQwMDAwM/HLH3vu7AwMDAwMDA+8LjB+8gYGBgYFTgfGDNzAwMDBwKjB+8AYGBgYGTgXGD97AwMDAwKnA+MEbGBgYGDgVeNZ/8Fprr2qtTcXf73wWrvfq1tqrrne7K67bWmtv3Yzrpe+ja35ta+1nn4V2X7MZxwdc77YHrh2ttTtaa3+ltfaR74drv6ZzH//25PjP2Xz3g89CX/5zpy/x757rdL0fb6298Tq1dWGzhr8p+e6NrbUfvx7XuR5orX1Qa+1bWmuPtdYeaa19/Zo5ba19aWdN3v2+6HuF/ffhtT5d0jvw2U8/C9d5taSrkv7Zs9B2D79V0q/Y/P9Zkr71fXz964lvlvSTku57f3dk4ATukPSFkv6npPfXg/FTJd2Lz7L7+JWb15e01j50mqb/cR378DmSbgnvv1jSh2l+xkQ8eJ2u95mSLl+nti5oXsPHJf0Avvtzks5fp+s8I7TWbpf0vZLeI+kzNPf7r0v6j621Xz9N05XO6f+3pG/AZ3dJ+hZJb7r+vV2P9+UP3o9P03Td2cj7Aq2189M0LW34V0p6WvMm+eTW2sVpmh551jv3LGCapvsl3f/+7sfAL0r82DRN/7N3QGvtV0r6LZL+vaTfq1kA/ILr1YFpmn4K13tQ0uVpmv7zmvNX3s/xej+xYxevCddZKHim+BOS7pb0G6dpuleSWmv/Q9KbJb1C0ldVJ07T9DZJb4uftdb++Obff/6s9HYtpml6Vv8kvUrSJOmDO8fcIOnvSfopSU9oliDfJOlXJcd+kKR/qVnyuCzprZL+7ua7799cK/59Zzj3JZK+a3ONxyX9R0m/Ae1/rWYJ+jdL+kFJT0n6OwtjvFHSJc3M6Pdsrvva5Ljv1/yD+ImSfkzSk5qZ1CfjuA8N/XhK0s9J+geSLiZ9/dkwhw9Jen1y3ddIOpT0IWEevnNz/JOb9r8Mx0+SPiB89pmaWcUTkh6V9P9Jes2K9f+ozbw8tBnLWyT9+fB9k/RnJf2PzXq+S9KXSbo5HLO/6c9fkfR5kn5h049v0Sw5PlfSv96swS9I+txk/JPmh/CbNmv/wOY6F3DsCzbz+oCk92q+wf9I0d7HSPr6zXXfJelLJZ3HsTdLev1mLa9o3q9/QVILx/zOTXsvlfSPNDOT+yV9jaTbNsd8sLb39iTpFZvvP0nzfn10M763SPr863gfe8wvXnHsX9kc+2sl/Yjmh1+7Xn1JrvcN2twHyXd/atOX37BZ+0uSvnfz3W/d7M13bu6D/ybpL0k6hzZ+XNIbw/s/sGnzd0j6p5Ie1vw8+idx3yZ9uVis4Z/afP9GzcTAx3+k13izt+7f9P8rJJ2T9BGSvlvzvfDfJX1acs2PlfRtm33xpKTvkfQxK+b0RyV9a/L5myV98zWs0Y9I+hl8dj7cG5c34/s+SR/9bO2V96XTypnW2n74OxO+u2Hz91c1S4R/TNJNkn6wtfYcH9Ra+yBJPyTpN2mWGD9pc46P+d80P4h/TNLHbf7++Obcj9L8Y3OrZjb2Ks0qov/UWvsI9PUOSV+n+cH3SZK+cWFsL9OsYvkazT+i92qWajN8qKS/K+lva1YPvUfSN7XWfkU45gWaHxJ/UtLvlvQlm9d/V3VgmqanNKtxX9VaO4evXyvpu6dp+pnW2m2S/oPmh+9naZ7vL5Z0tmp7Y6P555pvrk/WrDr6Kkm3V+dszvs4zWqbF23G8lLNN+4LwmF/U/NcfJuk37/5/9WS/l1rjfvzszU/pP73TXvu1zdL+q+a5/M7JL2+tfaJSZe+TvND7VMl/f1NO18e+nuL5hvuEyX9Rc3r+tOS/mVr7dVJe/9S84PmUyX9P5ql4j8X2ju76c9na1bzfJKkr5b0RZL+RtLel2lel8+Q9DpJf0jzXpGkt+tYZfc6He/vb2utfchmDn5G0h+W9Cma5/nm5BrPFL37WK21pnlf/fg0M6OvkfRCzWv1/sS/1vzD9TLN8yfNJogf0Pzc+L2S/rGkP615b6zBV2gWTv6Q5n37WZrv1QqPSfpdm/+/TMdrSPUf8SWafxz+qGa14ms079s3aH42vUzzj8bXt9Ze6JNaax8v6T9JOqN5D/5hSQeSvre19mEL1/w1moVx4qc2361Ga+3DJf16zXsh4nWbsfwNzffcazSvR/e58ozwbP2Shl/xVymXar6/c84ZzT94T0r64+Hzr9Ms4dzTOff7tZHg8PkbNbOMWyFxPSLpDeGzr93076U7jPE7Nm2f27x//aaND0n6dkXSrwyfPW9z7J/rtL+v+YExSfq16OvPhvcfopnJfUb47KM35/3BzfuXbN7/ms71TjA8zYzkvmtY+x/Q/MN9Q/H93Zv5+CfFnvm9YfyT5h+rM+G4v7/5/C+Ez85qZmdfmYzny3GdL9Rs7/2gzXuzgd+C475XsxCzh/b+Eo77Nkk/Hd5/9ua435Rc97KkOzfvzfD+KY77x5KeCO/N8l6F416++fym63XfdvYE/74Xx3385vM/vXl/12aN/9mz2Lc1DO8LF9pom332f27W5kL4rmJ4fw9tfO3SfaJjlve5yXcVw/s3OO67N5//vvDZCzef/cnw2Y9K+mHcMxc0a0HK9dCssTpxX4XvvlzSgzuuz9/U/Fx6ET7/fklf9Wzti+zvfcnwXqZZBeS/z4lfttZe3lr7odbao5ofQo9rZn2/Khz2iZLeNE3TtXj6fPzm3Ev+YJptbP9O0m/DsZc12x8W0Vp7gWbVxjdOx4Zc66kzlveWaZreGvpwr+YHdJTMzrfWvqC19pbW2lOabYPfs/n6V6nANE0/o1lV+drw8WslvVszA5BmRnJJ0le21v7oSk/MH5Z0d2vta1prL92wxC42bOklkv7FNLPPDB+n+Qfqa/H512u+Qbgu3zFN00F4/5bN67f7g2mantasNvzA5HpvwPtv0Cxcfczm/cdLets0Td+P475W0j3anns6Jv2EwjpqVm//nKQfiqxIs4B0TrO6aam9G1trdyVjifgxzffMN7bWPq21dvfC8ZIkMLW19vxP1sn7+LX4/pWbvnydJE3T9IDme+nTWms3LfSH7LGt7NMa/Nvkene21v5ea+3nNd/zT2tmXuckvXhFm9l63d1au+EZ9pX4D3j/Fs33x3/0B9M0/YJmk8EHStJmD3y05nuphTW+qlmL8fHXuY8pNlqaV2gWjN6Gr39Y0qe31r6wtfaSHfbgNeN9+YP3k9M0/Uj4++/+orX2Ms0L85Oa1Tkfq/lmekizRGLcoW1Pz0Vsbpzbte1dJs0/Bnfgs/dMGxFkBT5T8zx+c2vtYmvt4qaPPynpFclN+1DSxmWdHOffkvSXNasAXirpN+pYnXVBffxDSb+ttfZhmx+dP6JZinpakqZpeljS/6JZlfqPJb29tfYTrbU/UDU4TdN3aVaHvFizFPpAa+07ElVwxB2apebeenneT6zLNDsUPKztdXkY7690Ps/m6T3Fe6tY72BfNnh3+D6Ca8l1fI5mm/PT+LN33p0r2pMW1nxzL/0eHQsP72mt/WBr7bdW57TWPpj9Win8/ETnPr5R8z79PkmXw/3wbzWrVz91oe13ok9/eEV/1iJb1zdovj9er5llf4xmbYa0fJ9J9Xpdb0/LbH8/NW073sR9bzPP39H2/nuFtvfeEaZpelLzWDLV4h3Kn2EVfqek5yt3VvmLmlXBn6HZ/vxAa+0ftdZu3aH9nfC+9NLs4eWamc+RnaS1dkEz/Y94UCftP6swTdPUWntYs5RO3KPtBVz7Yycdu19TCjN+m2aV2C54ueYfqb/mDzYPjjX4Fs32ntdqZnM3SvrKeMA0Tf9V0qduJKqPkfT5kv51a+0jpml6ixJM0/QGSW9ord0s6RM0qyn+Q2vthYVw8JDmeeytl+f9nk1fJUkbG+Tt2u3GWoPnxuts3kvzg9b9+ajkvHvC97vgQUk/q/mGzvDzO7ZXYiOUfNfmvvnNmu2y/7619qJpmrJ+v13HzNagQLArbMv+Hdp+SEvzvfIvOuf/bp20Jf/cM+xPxIk9umHNn6DZZPIPw+elkPBLDA7J+GtK2K1mW14PPy3pw5PPf412Cyd7pWanmm/iF9M0vVezPfuLNpqyP6D5B3BP25qD64JfLD94N2qm2hGfpW0G+h2SPqW19pxpmqoYscvKjfXfJ+n3tdZumqbpCUnaqOZeuml3Z7TWfqPm+J9/KOlf4esLmr3CXqndf/Bu0CyJRXz2mhOnaTporX2FpD+j+UH+7VPhRj5N01XNjkF/WfM8/Godqwmr9h+X9KYNQ/g7Kn6Ypml6rM1Bx5/ZWvuSzeYmflDzOF+ueX2Mz9C89t/b68s14A9pNuIbL9d84//Q5v33SXpZa+1jp2n6L+G4P6KZ5cUfyzWwI86jG3XzM4Ul+lJltpnn79rs7W/S7DCUrc9lzZ5z1xOv1OwN+KmaVW4R/6ukl7fWPnCaprdnJ0/T9Obr3J8erF49us826rfK2ex6YXENrwemaXp3a+3Nmm3+n38NTbxJ0p9vrd1jE1Jr7ddK+nWa1b6L2GiYXibpX22eG73+vlPSP2itfZpm79NnBb9YfvC+TdKXt9b+tmam9DGajceXcNxf0qy6+cHW2l/XLD1/oKTfNU2TN+pPS3pNa+3TNUvQl6Y5vuWvan7Afmdr7fWa1W1/QbP64Yuvsd+v1Hxj/82NDv0EWmtv0my7+GMbNcFafLukV7fWflqzlPvpmtWaa/GVmlWiH6GZvcU+fYpmL8g3avbsulmzYf+SpP+iBK21L9GsAvkezaqhF2penx8p2IPxZzfn/EBr7e9q/gH+IM034Z+cpun+1tqXSvrcja3y2zRLlV+s+cfn24t2rxW/v7X2hGY750s0e/p+dbCpfpVmr943tta+QHOowSs0q4A/Z5omPsSX8DWaHXC+Z7O3f0KzfeiDNdvCfl+ilurhXZqdrD6jtfZTmp263qpZQPg4zfP3ds3OQP+XZnXys5HcYQvBlv0V0zR9d/L9I5oFh1do9jR8f+MXtAlDaK1d0uxB+X/oZED7dcc0TU+11v6nZg3L/6tNKE1HgH8m+BOSvmPzHPoXmhNJPEfzs+TSNE29597f1yykvKm19kU6Djz/KQWW3lr7dZqdY/7MNE30bv10zT/saexda+07Nd/nb9YsKL1Ec+hQz9P1meHZ9orRuji8M5qp97t0HCvy6zTfsPTg+2DNrrgPao6T+jlJfzt8/3zNN/5j2o7D+zgdx608rvnBl8bhrRjXuU0fvr1zzCfpZKxU5UF6YpyaH1hv0Pxwe1jzBvvY2Fboa+Wd9l2aH35n8Pmv3rT985v5u0+z8f03hGPopfnJmlnwvZol1Ldr/lEtvWVDW79+0/6jmo3q/03BQ02z4PG5muPwrmghDg9tp7FhnOdw3G/WrPJ9fLN2vTi8Bzdj7cXh8bqvk3QVnznc5r9v2ntQs2DxhTr2+rSX5m8vrhPjIT9tM4dPez9sxvWmzT66vFmnb5T0odfxPu7G4WkWHid1Yrw0Pxjfcr36FNpd46V5V/Ldh23uk8c3c/Z6zXbDSdJHhuMqL00+O3ytiwv9/V2aw6euaF0c3h/E+V8q6fGk3Ue07Yn8UZL+jWbHuMuaf+i/SdInrJjXD9F87z6u+f79BknPwzEfGceA775PnRhMzUL5D2t+xj2pWTj7874vno2/trnwwC8jtNbu1Lyx/9Y0TV/0/u7P+xuttddo/oH+FdNClpCBgYFfvvjFotIcuA7YuCJ/mObg2Ulz1o6BgYGBAY3yQL/c8CmanTI+WtJnTs+OXWBgYGDglySGSnNgYGBg4FRgMLyBgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBXby0tzf35/Onj2rw8M5/tav0Q7I1JF7e3vd1/i/z43fZW1mOWWXjnm2zlnz/drrXO9ze31agte01z7tv9M06b777tOlS5e2Dr7pppumO+64Y+ucuNa81tLr0ncZrmWO17azK9bYz7M5Xtuf6ly+9o6pPve9H+HPDg4O0ve98bbW9Nhjj+m9733v1kBuvPHG6eLFi0ftXbkyp1B9+unjZERXr15N+7nm3lraQ7vcW9fr2CVwfNfrnGqNdvm82mfZ70X1W8Lfguye93f7+/t66qmndOXKlcXJ2OkH7+zZs3rxi1+sJ554QpKOXuPGO3PmzFEnJOnGG2+UJN16660n3vtVkm64Yc6yc+HChaPrxFe3mQ3e3/mz6r1fYztsw5/zffyfxxi9BeKcsA1+3usLx+dz/Rr/7/WpgjecH1I+99y5c1t99DF+2Fy9elWf93mfl7Z78eJFvfa1rz16WLk9r33sN9ffx/icOFb3x3uHc+nX7Gav1rQnnBluZ82D1ejd+PHz+GPCHw9ep9c3/tB4nfw5X+MxfvV1/d7rd/nycYIY/+/Xxx57TJJ06dKcKOmRRx6RJL33vcfZ5XzNeA9867ey+MCM2267Ta9+9av10ENzUp+3v33OTHbffcdOyL7WU0+dLMzhPZTdJ+fPn0+P8fvePlhah+xzfsbXNWtq8P7c5UeMz8bsB4jPAb7P9iqFDr/3uvs1rpH/92+J95B/U265ZU5843s/jvnmm+cMknfeead+9Ed/tBx/xFBpDgwMDAycCuzE8KZp0tWrV49+fSkFRmRSSvx8jaSdsTO+Z3vPlqqpoueU9DNQ4q4+77VRUf1MxeT/OW9rwOtU490Vh4eHevLJJ4/GSikzuwYl0EzdxnmoGFdP4q7QW49qzdZI2tW5PZVPtf7Zdf2/mQrvT95nvo/juX6t9nnGCqu9acRzzBR9zLlz57rzfXh4eMQQ/PxxG7EPvMeoJco0IWYPZHpGTx1a3WO7qMUzFR3B51z1LOld51rYYMXaMu0A9xP3DNuQjhkd94zX+MknnzzRdvzOn733ve9dZR6QBsMbGBgYGDgl2JnhPf3000e/sNF2Z1SMh/aRKMWssaFVn1f67zVSDe1huzhA9Az/7GPFktYY1Cum3EPFxthW5mzEcfmcjDVybtdK6LGd2Eef7+9sYyF6tk7aanq23Gp+dnEuIAPrOXMYtIPw+nEel4z42TxW4/CcsM9R4l6y3WUMw8+BJSeF7JzYPllLxOHh4ZYTTNZv2gY59syGR9+BNZoR3h+xn9K12fBoQ4yoxlONt3c9fp7tWa6Z59fXzbR71N5QS+Bz433tZ0K2j6VjhhdteBzz5cuX0zFkGAxvYGBgYOBUYPzgDQwMDAycCuys0jw4ODiis1ZLZCqmynkgc/GlOqpy189CApZUmWvi/kijM3pdqbXWxLYsqRbWqD8q9Wuvf5WaLVOTUp1UqWyzPrr9nvp1miZduXLl6JhMHZ65SWfXjutvVYfVUn5PFWamSl+K96zGIW2retbEnFUqP94zvXCYKhwlUzVXYRXcD5laqgpDsBt5PIdOBNwXmQt7ZhbpxXr5L/axp0L3vHhf+DWq0xwaxb2zi3NH5dSTreXSszBTaS71hXuo92zkdXoqdL6nyjhTaXqv+Ds6pPAekY7Xw6pN9jULgzGs7nz66aeH08rAwMDAwEDEzvXwDg4OjqSyzMhM6bEKMcjcgy3ZMMC4CkDPPquChyMoaS05oGTHVm1lklYlcfecdCoJvnJayFgBUbnu98bXe+/reH0ODg66TPjq1atdx5lomI6gm70lcmlbSrfEWO27bO9UzivZfvD+JkOhtiM6VHAcRJUoIH7GYzjOzAmM35F5GVmIgSXryqkgzo3HbvbHPZo9L3ZheK017e3tdUNkyF68l+iYEhNeOHCZiS/WOAZlrDWit3eWHPsyhlc9d8gkswBtaj0qx67eOMywyPCyNfWxZGfsR2yHyQt6iQ7ofHX16tXB8AYGBgYGBiKuKfC8ylsX/6+kiYwBVXYWSwRkfBk75LlkRj2JK9MtZ+/jsZW7eDY+9qWam56UvpT26lrYWjzH7VeSa2YPpOTbs+G11tRaOzqf+n2pts1wviLDo41mac/0wio4p9n+Zrokro/Hle032jLI3noslOnW+Bole7bn78jwLJHHNTVLqxIPePzRFla59ZM5RDbntfZnrbWulH7mzJktbUpcS6YDM2szi7vtttskHac4lI7TVnksPqcKSM/sY9U9loVOMAeo22DIR7b+fOYafN7EVH28FzwOj9evvbSEfDa6r7TXScf3hG1rfu97wn2LffR1fOzjjz9+oh/uY9yjvYQGSxgMb2BgYGDgVOCavDR7nnsVI6G0mdkpKuZTSSrZZ2sYXiWFVR532bHVHOzC1irv1DgnlJKrdFQZdgmkp16c0n9P+o7MaMnTsccUeMxS0LVU2zb9vkoQHD+rAugzxsnAazLi3lxXwcq9lFK0Y1M6z8ZFVsh2uc/jHlry/s1YPG25DILOrsN7rBfs3VrTmTNntu71+BxwOzfddJOkY2Z3xx13nHiNDM/HkuHR7kftQfy/YkJkN9Ix8/Grz2HKtJ4nMbUOZPged+y3x2P7pcfNhOuxPa4HU4l5DPEZaXbm75wQ2snEOZ8RZoxuw+/dn3gPMvh9FwyGNzAwMDBwKrCzl+Y0TUe//kwlI21LorSlrE1DFdunB1yUeiqb0xobV5WCK0v9tJSOZ00qs8qDNbMVkUmwHAgl4156sjVeqZUtgjacTJe+Ng1aa20rpVSU0rIUVBliXy1Bs1aaP7f0TK9GaZvhGWwrzi3Xg95rWWLjyh5KZpfdE2SZVVqweA2mneK5LNcS+0qPS3rLZePzdWh3oadklhTb7UcvTKK1pv39/S0P1agdIOMxi7nrrrskHTO8yIDIdOitWbHp+D/vLY+HLMdjzMbOOcmeVdwj1GBkXqgcn189Bz42Mjx6UlKzRW/KeK+SHbotXifOI5+B9NI0ov2357W/hMHwBgYGBgZOBXZmeBGZh5ilChbt5LHxHOqL+eteeYpJx7/8ll4YH5JJ9ksZNjIWuhRv02MnPZtnr+2IylbFPsf/qziszFa0VFKItr147C6SVlXGJYKs1de0tJwloabdaikzjbSc4Nx9zTyKaVvguLL4MvaB5Xt8T2SesOwTM9Vk1b/Zlyq2KfOe5CvZR8/70H01k7BdJjIyF2yld3CGaZp0eHi4lcA426t+Dly8eFHSMbvI4tnoKcz9y7nOGB7Bc6INryrp04sZJiukVsBzSntk9l1V6DaC6869Yubq4ru2z2Vjpwahp9WxbfWee+45ce4DDzywdQ7te5H9L2EwvIGBgYGBU4HxgzcwMDAwcCpwTSpN0uoYSEgXXr+neipLhUUjO1UWdIiJn1Fl6j6Zzmcpd2JKLKlfzZeqHaonMpWfQbVb5eSRqVCpwqzqbWXBowwIploszomv3VN3sI+ct6WwhEwFFdvjPPk7ujdnDhp0LPCr1R9ZeAXX2/PRSzXHPUh1cZZGqwp/qJIyZOOjK7ePsbowqnmpYvQ46YhiZCnt6DRFtWzcbwxhYYLprA6axxPb7aWly+pwZpXas9Cl2JfMicRqumrd3e/YP4ZXeYxxHaSTe55qW6r+MrVuFuYUr0+TzZrQD8+b5yLuVY+dZgTvM9+Djz76qCTpoYceOjqXKnLumczsQ6crq8HvvvvutB8RMeXgUGkODAwMDAwE7MTwWmupS2mUPugwQSkjc8GOLs4RlAjcZpZaiq6wdKOP7roMsqZjQ5YWiAyhSsTcSynFOajSN8VrV+nPqiB9adtl2iCDyuadxn2uVy+FWeYME4/d29vbcnfuVQi3VFklBoj9rYKs6T4dWW0VBF+xgwjOC9ch7h1K4b0kBTyX7Mhzbhb1yCOPSMoZnsdu6djnGBkbWlv1O55DhycyiGyf0WFnieFdvnx5i5HHdXGaMGt0DF87cyaq7uksbZaUM2FqstwGQzM4Ho859snsKV6HjlPUEvXWi+NjyIavE/eF95H3lRncww8/fOJz35t2PoqotG6Zc47XhdoHn+N1jayQ9+1geAMDAwMDA8DODO/MmTNbev1eCZ4KmX2MacjWpNciS6uSE8c2LH1R4qhcsuM1K/sbJaxM31+5zGfpysg2aRsk88uYZRUMn60NpfM1gfQMfl2TWowMKM6jx2ibChMxV4kCYrvV3Bq98ASuQ2ZTs22Y0rElYJ/b00JkSXtj3zI7MIPJGdic2SZZ4qcqsBzZGvvEOWCbsb9k2T6WNrL4v+dmqbTUwcHBVqKLbI7ZT/efJWtiv8ngGWSdaTBolzUTsXt9FqrD/VU9qyJr8jwzeLyy8UcwNMt9NpP0utgeF+fk3e9+tyTpne98p6Rjpudz3cc4n2R2VcB7DP7nOZz7rCQYmX5MLL6EwfAGBgYGBk4Fdk4ebWlLyhlDJWkzFVNWsr1KQtsrkEmpkqlx6KHmccRXlqCognvjtTm+SjKO7VMaq9L2xP7S84lMMkvGTW9M6sczexftSUvB8lKdXq3C3t7eVoLceB2mvGIZlcyOSHsY7by23TJBcDyHjJ5rG8dJCZvef7ZxxLX0vJsFVB637k/cq2TcZKOZHd1wOz7HY+ccZfY4pnjivR7HR89Et0uvyiwtXbyfqv1j3wGvYS9pMFmy++a5iH2lLZAevWRRWVkbloXiXGRaIiYtoI3TzCtrj/dNZaeLfWO6OO9Vs7QYPO5rv+c975Ek3X///SeOqbQu2Rz4HPfJ7Ddez58xkbX7mtnemXA+K2hQYTC8gYGBgYFTgZ3j8A4ODrZKx/cKVlKazWxOlER8DGP6MimdiV4rr6UsHRmlQXqFZt6AVWwgPT8zUCrqJRy2lERbV1Vapsd6jB5zJQv1HNMDL5uTuKY9SSt6+dK2Ih2vc8UMsthAepxyfugplrHbyr40AAAgAElEQVRao/KizaR02snIOrJUdky7R887sqt4Pe4d2t/iWKqUWYxvzfaO22NqLLKQzMuaHndGlk4uS3NVpaazBydjEuOYzUw8FnsRer78feal6WPJhG1rYnJpaTuxNJ9VPe9JH+M++Rjb0iLDo02Qc8A1jn3knqkKs2axe96rTvXFuLgsybOZm1/pZZ3FG9LWTm/X7L5mGadz586tTiA9GN7AwMDAwKnANZUHqoqtSst2HCOTgP1qu8udd94p6VjKyVjWbbfdJmlb396zL1Uej7RTxDboTVQxOXp8SnXya9qO4jxaiiHbsFTDhLzR84m2OmaUoV1AOpakLJ3TRrEmk0NPytrb29P58+ePJDhK5LHftAX07KPMDOFjY9xl7GNW1oaMslfKijFunC9fN16ftjLa7LzWmW3KUj/ZeZYM2eDa0VuOGoC4BpSsmTTY9p+MuVD675WNor10KZZqb2/vyAZqhhSZsPtLxs1MIVmmIN9DZjG+jksKZZosxtcxw1PmUez9TC2B++hEyTGriPtCO9jtt99+ok9+jc82Zrlyu/SajWvJmFFfnz4Rfu/nr7Ttyem9+/M///OSjtcg88w2Kq/TLPuQceONNw6GNzAwMDAwELEzw4uxVln8mEEvLP5iZ3Y/S8WUrBh3EyUSH2OPI1+X9qAoPdPTqJfJxahimKpSRlk5C46djDJ6H/F6jFtym56zKHFyfXhMxk7JaskoaOOLx8Y8hj0pPX7ncUS2WRUmpU010w5wD1ECZwmeeA4Zqu0XlMAjaMdm7Fnmpcs59jh7NrzKNkmNRtyzZgOeC9pQqEmJiPajCLfvvtkbNV6PmgRmIclyX8YMSUvaIbMnM4e4D6zhiB6AvGZsI/brAz/wAyUda5TcBvdSVijVzx2362dXFuPGGEYzHuYeze5lanLo8dsr9eRjaMPLNDPUmHhc1JC88IUvPPF5PNbz9+Ef/uGSpOc973mSpDe/+c2Sjj0/43XIHLmvM+1H7Ovw0hwYGBgYGAgYP3gDAwMDA6cC11QeiOqILDVRVQono56mrVYH9Iz4Up7slOoAqluzitBUB9DFOKpMOGY6p/QSQfsYqn4y5xiC6lamOaJ7fDyWzgpV4us4HgZ39/qWJUHuBQ/v7+9vuWvHdaEBm2EInouolrLaiWm7fK5VQEy6HMfq/tsRwNWyGfwf22GiA88/1aSxT+wj1eNZSjuG6FSJBzI1mB0cPK/33nvvifFYVRvnmVXFeT95vmMfGSTMc+nCLx3ft3E/9PZOPNd96KWbYqILqwC9ttLx/Pi5Q3MI77G4Pz13Syn/osqeCZf9SrNBVDUzzIFz5D5moUZM1WenEr/P2qRanetvdeU73vEOSSfvJ+9NH+M58n314he/WNLJZ1X1LDa8xp672MfoMLMWg+ENDAwMDJwK7MzwDg8PtyS4LK1R5SaaJWJleh6myaGrceaiWqWYylzwq/RJTFmTjct9oVMEy1pEqZmG5ywQN447/k+GzMTdmWSXOd3Ec3vOOWTgDBSPc0+Gv8Y1mKm54pxXyQKYQNaSuXTsYEKnkSrgPCtNYsZoSdTvPfdRIuXeZFAvnX5ivyt2SFYY9xbDUxha0Ev+QGZldmOHkyxVW5XgnGWWIgvhXqySQcS1phPU4eFh6Xhw5swZ3XrrrUftW7KPx5tp0FGG7CnueR9bFayls1R0XvK13Re3zyQSvQB9Os15L9t5Jju2chTMwqG4N7M0i/HzeE4VjuRjnXosPn+sTfHe8HyZWfp93N+8T5kGLUtWznuwV1qKGAxvYGBgYOBUYCeGd3h4qCtXrmwVH4yuzLQpMLQgCx5n+iJLCJZ4ekyChV8N2v966WyMKmg9fsZjLA2ynEWUZmnnYxoyBnDHz2gzrApzZimzKOEZPVZAV2UGJ2fXibbJXomXq1evbgUNR3scr+1XSo5ZUU1KpAz29nUyuw/7TNtdlpibLvhcp2gr4r6lbZLMOI6PafCIbF9YArbdg4zP85mFefBeZAhNVlLIc8ukyNyHGYPjPZDBxYN9jPvvQO14vm11LMDKIsLSMfPg84zz4zbimnKf0ZbG4PvYPl89f24/W3/eh+wz92H8jDZj7sfsnqhS9LmPTPAubbPQ++67T9JxaEaWjozltqg5ybQe1Mj1kokTg+ENDAwMDJwK7FweKAb5ZeWB6FWWJfyVTtpFKqmZaZSypMiUQKtf+0xPXRWwzexjHAfPpTQbj6d+nWwk8+w0KoZHm1SU7Gh/YZ+z8XEeq2TV2bji+6X0UBxPVuqJJX0stRuZhyADV6uUY+yPtJ16iVijHeB+YJ/jubTLGD2vZ2oYGBSfBeNzn5NNZZoF2kyqUk1Rg2HpO0vfFs/JSteswcHBgR577LGt50EE7aK0j9JjMRsbmQPtp3HMTK/ItnrJHbjP7SVqjVa0sdGTslrbzC7P5NRMRNDT2lSsnIw23gdVSbOMXRuVrwLtq1ETRJvr2qBzaTC8gYGBgYFTgmtKHk2PnUxa4y83WUcWA0bmUyXxzRLAVte3tJnF4WWegvHziIrhVdJF/LxiuVUZH6m2Z3GOyJji/5y3nldolUCb65YxCWPJUyoWasxSzlGSZlmWzG5QSY+0X3gfxLmukqD32AfjvCiB2/4T95RtaUztVsU69ubY4JpmJYUMrgsLD8e5YxoyxkVlLLRKIk4mmTGJNYnHDw4OdOnSpa37JCsxRvDzyIBof6/um8wTurr/mXS75wF51113SZKe85znnDg2ahrIqKpCwJl3cLUP6HnZK8xbjZfPnwg+78go43OIzzVqI9xWZL3UcvQ8fInB8AYGBgYGTgV2Ynj2lqpsQzw2gmxmzTmUfLMYFJatYJ+yLAmUWulJ6mOjZxA9LZmZhIw29rHysKri8eIxBG05mT2oKvRZJa3u9b+y5WXoSVmHh4e6fPnylpQe+1Cx18peyv+lbfYSr0+Q0VVj7CWrptRuO0lPau6VzSFY9qWyGUfQjtTzgGQ/qixKvbWlh6/ZLW2i2XWMpT7G+N/MdlOxMt5bmX2U8YKMRczYTJUdx8w4JlTnGN2O4z4dV/rOd76zO/74Sj+HjOGRCRm0j2WlzLjPqn3fK9vDxNOcs9gu2R9ZdaYRzOKylzAY3sDAwMDAqcD4wRsYGBgYOBV4RvXwMgNnljrsxAWTFE9GVXGclDWryUaQ4kdXaas02ReqJyP1plqgqsLdc5WtwgUyNWilQuK4MvUkVTLsY6YuXXI4yc7NUlP14MQFUr+2YaV6zdRrVHtWITNMTxY/q0I9eiEfvg6rsvucLA1VT+3t+ZFyFXeVWDtzImFAbpWaL3NEorNA5YCSIaugHZEFx0fTQ88BLAsNibB6jq73Bt3ds++YxKJ6hkXwfmc6t8wpy8fawcnrk4XFVCElVHFnz50qhRnVlXGuuHbVemd7h2vqeXS4BcPOsn4zYD9LqG54zel02MNgeAMDAwMDpwI7O61kLvZRiqlcrWmoz5IrU2qoDKbZ9QxKRBnDo5s0HV967rNVn42eE0nl9szjIiiN8/pZ/yqG1DunOpfI5j6ueU9Kv3LlylaZmWwfZAHtUp5GjlJrFU6Rsd4q1GONMwmTKbNMUHSMqlLJVZqSLFyEki7vkawat0HHLQYEZwnBK3aQaT+4BnRS6DHX6KSw5HzAdGdZeIo/q5IrZ88vzmVViie7p+nwRk1CTHrMxPN+jSnSiGo/rwGd/BiqxQTbEdRkGD2mv+To4rnJqrIzbKhXmomFAc6ePTvCEgYGBgYGBiKuyYZHSS7TU1MC6AXDLtlQllhHbL/SdWfus5SEKalmkrZR9S0r08GyKZUrbsaeaIuoUn+tkfxoQ+q5FK9pr9f/7NrRTpMlLma7nPNM8q72SmWHi+ytStvGuY/7oGJHDGnh2KVtNkg2lWkHyExs52Hi37h+WfqvrB9Z4Dnd+avCqlFjwnvMfWTJpowVxDRUPXvR3t7eVvmw2G+P2UH+HnsvsL1iyVUYUQTXpWImcUws8Jppn6o+VtoHhinFfcDSaAy053MpQ2UjZOmk2Ed+lyW2rtr3K+3O8Z5ggutdWO9geAMDAwMDpwI72/DWeANKtSTSCxpdkrizX3Lqp7MATCkvOEsmR2aRSZCUSKp0SnH8LAppCa/HuKogdX6fvadtiGwqm8cqvdWaBK1rPfjiGCx9xkKiVfq2qryStO19x3Xi+2wfcL56thvaFBgE62N7Nmqyz14KKxbI9HXIdqK2omK31b7IkkeT6ZGlZUy5Co4348u8nrMxE6017e/vHyVDzhgj9yfZMgPCpe3nF+eNNv7MW5cskYw4856lDaqyN8b/l8qEZc9iJlZnkdos/Zk9KqkdqOyBcQ2oBaAGgTbkbOxGL8F55puwluUNhjcwMDAwcCqwsw1P6qd6qnTNazzfKD1WcUu72Jey2C1KcpnUKp2UKqoE0JREsnQ+/swSlaWnqvRL/J/SzFKy7Pj/km0tXs/9paS6SxmXpSSukeVZus1KoXBeyGrifuNY2V/uxzXp1HoJeWk/oDdbFmtUpWfjPu+l8cpsJtLxnER7jeO7KlSJgWMfCM5rxrIr1kt7TBxH9Bjs3dd7e3tbzCh6wtKWyZjALJ6rlyYrfs99Gb+rNCFZLB/ZsueL18liU1ks1s8Qz7Xfx7X0sbZrsizRGo9bep1yjuL7itF5vTLWW6WjY3mquHcqL9o1GAxvYGBgYOBUYCeG50wZtCdkHpeVzrfHAJZizXq2vCpepZKMOa54TiaRV+Uwqpi6LBsMJTyyjywDQWXHpES5SzLuntcZ2eaa2D1jbSyMtC3BScdjtWTqfcYsDLEPS9Ie5zFLYEymVSUij+0YtBVlydGreMhqT2VSM++5aPuUTrIdS8lkJrS7ZHaYypu6sv9J256rlTYivve6r/XAPjg42NKMxMwk1hTYBsXxeP5iIVGzFhZ8ZRLpLDtUlQmEsaJxLz300EPpsSw0G6/DPnp89Pg24l6qbNH0Qs3Wv/L+7GkHmPi5Ktgb+8Wk2ywim/3GGPG5OeLwBgYGBgYGAsYP3sDAwMDAqcDOTisHBwdbDg2RElcBinyNrqlLSVort+74P9U2bj9z669UO5Wrcfy/cnevPo//V4G/mbqAKmEGy69RFdMpg/3oqUErNURc6yxAv8I0TWlNwui0UgX+Um3Zc9CpQjGyQPdrUduy/1US7zhPdDyoUlhl4/P8VO77Vm1lKk23d8stt5zoB6/TS7CwS62xSt2bBVgz/diSqvzpp5/uOq3R1d5qQjrHZCnYKpf/KvWc+xSPYbLtLI1WVZfO4/H7qPr1OOyIZJWmP6fDUFazz3BYh4/t1VTk+Kh2NbJaenQyc/t8H/vi9eGrEfcH7/EReD4wMDAwMADsHHh+7ty5LdfszOiZpUmqQLdgunoz4DgLAM36EtvIGF4lZWaJZsn6KueVTBqs0o5VIQ3xOpWDQU+qqZwkqv5k/Sb7yeZxKRiWODw83AqVyFKwUbqjBNxLrmxUYR0ZKm1EJvmacVlarkJZYiA4XdSZPLjnvMTgZL763Bgo7H7TMYTOEr1QlyqxeaUBkLbd0SnpRzbPcezt7ZVr5NRiHk92D3CMDGHJtFEMkalYZnZPV2yQGizvk/gd+8QUh7GPZvBm6WZ4dlryHPie6WltPCfuE4PkI6q9wrJeGVvzq9ebCdWjNoLn8JmYhQZ5vuJzcwSeDwwMDAwMBFxTeaCeJJwVFazaWkKVIiljeLSdkHFF3TPtLizamCXkpVS2FKDbS8jKPmcMiRJUxQ57iafXvo/tkDlUbsr83++X1pUSadwn1dhoC8oKlpLRrSn5Q3svr8NwCElb6a3oHp6tx1JydH4eGW6lMenZ/Tj2ar8ZWQhNZTfP7nlK6bTDMFlxbDdK8pU2qLWmCxcubNmgepol359Z8mGD9zTLD/HzLEC/0sCY3cTQiSrtIW138Tq8dhXCkoUA0CZOW5r72Ct0zTW1LS8rH8T7x8zZ6+brRabv+fExft9jn0ZP21BhMLyBgYGBgVOBnb00W2vdlDzU31e62czTrgrerl4jaG/pJQ2mB1LF8LJAU3raVamsok2l8kKlBJbZwKhLp1dWFfjeQ2bXolTLPvWkqTV2RQcPkylENkNvvl4iAJ5DjzejSu7N/7PxuB/RDsPExVyfTKPANXJ7FVvL0tKx3aVE3RHUaNDzN7NrUVqv7mupttEwpVQ292sSjzt5NNNnxb1Dj2Emd8hSi1XPpCoRdVwXj7FK/eexZ/ubqdfItDLPZQZkG0zflWl6OC4GecdzKsZIdkr7c+x/tR8yD8wq/Vzveea+xGfxsOENDAwMDAwEXJMNj8l1M4ZX2WGycxiPVpWgyKTAnmdXRKbvr5hjxoCqdENVfF4v3otepxmDqc4hC+BY4jGVxNpL01OVROklX94llorJlWNqMUuNVfqiTDvga9M7rup/JjlWduAswbWPcVwU94GReaKRUdFmQ/Yev6NNisylF4dJCbuyKca+Mc6wSgwcj6WNhpJ+loQ77uclLQXjMyNo6+FzKGOz1fOFHsk9T99dUieSxVBbkPkoMAG0vTPZZ2sN4v3ENeMxXpfMo5xavKpMVKaV4n6riibzf6l+7mXJo2N862B4AwMDAwMDATsxvL29PZ0/f34riW8vi0nl+RYloV5y0QyZ7cngdanjjt9R+mN8R5bklCykYnprbF204WQJhyuvLHpJrUlW3MtUUXmM9lhb5sm3tHbsb9Tn00uOErfbzhJOs79Vcc/Me5K2FWolsrg/Sv+UZjMm4b3D4pq97CaZN2O8fsaefA7Z7pr9QImarITXlY4968zsyCCy7Eq0w8RMKsTe3p5uuOGGI4bCuLVsbMQu2YW4/izF0wP3X1xr2jbJfJg0PX7ncy5dunTic4PejtJ2AViyM/cx8wqmN3oVj5t54/OZ39PuVbZb3puZx3zP96HCYHgDAwMDA6cCO3tp7u/vd/NG0lup8njKUMUHUUrvxYKR4WUFMplXj32lRC5tS3lVXsRM2qDuepcChhWT49xkOe24Pr3SP0uZSdYwvR7opUnmIm0zvGpdsnhFSntkYFmsYxUPxz0az/F+evDBB08cW0m18Xzb/ViglZJvz5OQDMuvWRwevZCr2MqehySZK3NWSsf2JbMLv9KWk10nzl8vDm9/f7+0vce2l/Zir3wOtThVrlNp2yZIzUt2DmN0zcr4PMr8G8jSqkxP8XrUJFT5KTPv08pjvTe/ZHKVfTNrg5qRnoc2+71LvtfB8AYGBgYGTgXGD97AwMDAwKnAzmEJ+/v7pbHfx0jbqX6WgjvjMWyrpyaoaHKlApKO1ZtZepyI7HNTfAY692h19d3asjoRPWcVXq8KlcjmsXKS2aWvPXVHa3MC4EpNKW2rXDhWpo2S6pJClboynsvwEBrgM5do7yOr8fzKcWXJbr3v6NpPdXmWPJpu4X5l4HscI0NAmA6P8xr/rxIEZCYCVq+vwhIyx6pe0uN47Pnz57dUtdGRgckKiEylzWPpvEYzRZZM3qju8WgW8bPjjjvukCQ9+uijJ14ztSH7xOvx+RdTGjKExcdUji+8dgTnvJfwogqDytSTVZLy6ro8P3vfw2B4AwMDAwOnAteUWozG/aWUUtI61+veNaV1iYCrZK7xeiwdQvdcG90zadBSLOegCk+IfakYVjYezknliMIktrFP1Tk9Izy/y5JGs49rgz5ba93SOyz/QiM+GVE8pkqBxnWJLJLB3Fw7XjeeT3fxpRIz8bvHHnvsRFtZwDGvx+vw3ovsw+7tZHBr0tFV4UN0msg0JpW7PZ2R4v8xOL5iSX7msDRNZD10GmFb2dxWzxWuBwOdpe37n+vhsWd7lQyc91Fkaf6M6Q8r58A4xyyn5XOYUizOFUOziEp7EK9NpxLu80yzZHBes36sKW9VYTC8gYGBgYFTgZ0ZntRPo1Uxk14KniX7UBVIHc+twhFY+oX9jefSpTxK9pZ8Mrfs2EbmOr8UlM4UXb12l1hbdiyRMculQPMlG4v7unYtM/uRwfANMq0o9VXsqCqyWSXy7iHug/h/1l4v4QD3JqXzLF0TE/5WZVN6YQmUuKsA9NgH2ncYdpElDGApGR4b54rhNL3UYtM06erVq1sMLGN41X2R2fDIFBgsTnt9vB7ZRWVXiuc4LRhDaXw9t2WGnh3LfU67dzaH3LNVkdyISutBjUm2pmaQns9eMo4q6UjPXst9u0vi/MHwBgYGBgZOBa6J4fHXd42HYiXNZufzF5tSZ5QKqpRHLM+RsQJKHvQKjFKu26Humn3PvOYqD1IjKyZLBlQli16jF1/ymoqf9dg03y95ubIPS8m/s8Dr+D7zYqTtkeWZyJ5jX2l3qew+GXvyOZbGqyS48RxK0ty72d4hPC6WMMrmkfbmnqRNcH/TszRqODgOMvLsvq1SD/b6Q9YUbV20E67Z87RHMfUbA/bj+mUFV+N1jGjDc3/9asZ3++23Szqeg/g8qLzBmTIxexZXicBvvfXWE+euGRc9Vnt+APSJoBf0mv23hpln3y1hMLyBgYGBgVOBnePwzpw5syUxZjaAyksyY0aUcKuSQkbmNUe9NBlRZlOrXjN7TyVF0IaU2cKqtDz0KMvsmpSAKyaRscQl1hb7WJU5WmJ8uyDaYbIxE1UapcjwaCeglxnnscdqK4/innchmaXtF3HvMA1dT2ORjTf7rueFWLGBKh4q0w7w3MpOl31XlZKJLC7T6ixpCsyMzKpjezFpcoYslo42NL+yuGnvniZrZzmnaMMjgzTDoxYirqWPof2aGif3J65LVTKJY4hgTCjHR61H3DtVzKtf/WzuaQSrvZ8x8+i1u/a5NBjewMDAwMCpwDXF4a2x4VXek3yVthke2Rkl4SjZWWrhsb1Es1V5CTK8TP9u6ZLSH1lhpnOu3meJtquSGmQumZRGe9Wa+L+K2a1JGtuL6yLY77iWjGnkmLPrMFsKGV2VTDqCffH7zJ5Bm6H3SCUJx/O9R8g2yRrjuVVSYsYqZnZGagV4bhZjWXkQ0x6UaVmYYJrXj+wjs3319tje3t6W7S72gfPAOc3uS35W2cUzhsfnAMdFpidtPyO433uJ53kOM694XXpzSNuar2cWGa9XeW1zD/X2XWX3y9qrnjPZ85tetPv7+4PhDQwMDAwMRIwfvIGBgYGBU4GdnVb29va6Rm+jqoOXpfrK1JxSbdTPar/x3CqpcGyPjhp0LsgS8kYaHc/tJUitVIqVg082rioguEfll2pmZcGclQojGxeP7RmjW2s6d+7cVlB/z1GHe6VXL4yBzFXV8sxBg6o3rmmWuJbBytwXPccTqqncVq9aemVGyEJoeAz3THaOwT5V4QNRncg1pUpzTYDwkmt5a20rMDyGRljFWCWRzlzYeb/znqajSzyXIQtVQoXYD86hHZzcd18/zq3bv+mmm060x9ATznVE7x6O141j9TlMIsD9ndVudBsMmVjjjFU9f3rOP0OlOTAwMDAwAOzstLLE8CoJtAoqzo4l2EaPUVYGZ45B2pbcKrfk7Ngq4LnHenkMWceaSteVM04WcEppsGc8NiqnlV4A6BoJfm9vTzfeeOOWa3KUZqsE41X6Jmmb4TEdGfdbxkK5/9ynnkRKl2szPO+hLEyEoTNkiVlQN5kC907m8MRwAO4R7tnI9KhVqdK6ZSWFGIBOZ7QsSbH7cMMNN5QByXt7ezp//vxWcuVYoogJszmOLHi8SttFR7Re8ugqIJ/hUvEcszUmILfzSBZi4Xbdl5h0O76P+6BKykEHrqyPVZkez0HGFrk3KtbbY6G8P92fmG6NAfyD4Q0MDAwMDADXlFrMWMPwKhtUFjzcSzAd2+4FDxuUbjPXcurh+b4XcJzZhKrrVS7/a4pIVvZFIrOFVfO4JoygYvG9lGlLzPHcuXNb9qqIKliczCvOQc89P3uf2SvYFseR7dVMOpZyJsG5o6s83ezj3slK68T3VTLpeK6xJvE4mVFly+sxPNp9GPhezUGP4d1www1b7C0yLqZcM2uqND9xjFxTnsN1ivB1XMSVJa5cIDi2e9ttt51ol4VzI8NnooFKg+GxxHVhseCK2cVzWDpoSZMVn1l8Rq7RRvT8CqTtpACxDzFMZU26MmkwvIGBgYGBU4KdvTT39/e3pOosoLSy5WXJYqs0ZJTOs/RAZDGZF1nsT9YOX7OSM1kaNc9J1scsFU4vlRhB+w49FKs0WFkbFRPLWKFRMbuel+YaPXqVuFvalkBpt8yCbiuJl1oDo5e0vLL7ZV6aTOlU2S3isQaZHvdfdm8YSynmYn+rvZF5SlfHcJ/RAzP7rEpH1rtvL1y4UO6f1toJGx/ZjrQd1L8mAUVlb6/S6cXr8b6o7MARZH0x4Fs6ZldxXah1ometj/X4s5RvbJfMrqcxYRFZg/eBdNKmGtvv+XFUHsS22WWlmWjD6+0dYjC8gYGBgYFTgevC8OKvPG0Alf42SyRLSaBieJn3HCX7XrLjir1QX51J9pVnpdvIEh4vxepU8THZWJfKBmXjJHbx0lyTQDezH2Tt7u/vlzFo2di4V7L2GS/EskA9sL3Ke7dXfJKecEZ8zzRU1IxUXoKxL1UZql5SbDIit0vPvjgPtLGSsWSpxej9x2MzZs5Y2LNnz5b70jY8zkn8jNfi/dFjeLw/q4Tk8VzGHtIel8WZsl0+Z7LYPZ/vvVIxrcweR0bFNnqJ9emZ2rOFsq+Vxi4bX5UCjra7+BvjdY9lloYNb2BgYGBgIGBnhnfhwoXy11iqM5/0PAcr3TK95igVxu8qHXdmU6kynvD72BYLMRqVDjpjh1UWjqzwJyUWSla0d2WZayjV9mxuVdwdbSC9pNhLXp8XLlw4ksQz+wk97OiJmK0L55t7ifayDPTSJavqeaZWmXay/c1zOIaMwVb9rhh41o6vxxhIrq1Ul6HxmjDOLJ5DdsN4w4xJ2I7VY3hnzpzRLbfcshW3dssttxwdw97NoTUAACAASURBVLi3ypYW78sq4XflGZ0VSq2eTT1tTZWsPvPA5jODLJFrmGWhYpxnFSeZtc/7iM/TLONO5bfBMWVz4evG0j/xvSTdfPPNkk6ywMHwBgYGBgYGAnZieJbSexHzjBsio+uVB6q88ogoCVIqYj66XgxQ5fHUs/9RSqOEl+m4KwmHHl4Z46riUyrvvexc9m2NPY5t9WwgRs/rz5lWKJHGc8jSq5i6OBeVna/KwBJBZme2wXXJpEfaJ8gGsnlaKmHD47PrkbFm3nL05OR4yHp6eW3Npnxfm7XFbCBkfYz7ykooZVlMenF4N954Y1k2TDrOXsKxVbF18X/eH7wfM4/fyv7PWD16Lsb2KptxfA7wWO5nxj72Mp9UhXkzz07uIdvNenF/la2Oz9ksFtbt83nH7DTS8d7x/Rrje5cwGN7AwMDAwKnA+MEbGBgYGDgV2Nlp5fz581t0Nzqt0B2X6s8s8NznmKr6vWlu5d4asVReJKojmBzY9Jxu4pn77Bp1Fz+vgsR74QiZQ0FEz5GHKpmqVFLmWFMhUxlQZXZwcNB1sjh//vyRimdNGZ0q8XOcR7eTOVPE7zP3fe837zPv40rVGK/N+a+SF2TfLakW43WrcJhe+E1lTmA/mAYr/k/VVhV6kH3GkjV2MsgcRqKjUC/w/Ny5cyeeM5L0xBNPHP3PIHc+d9z/XhIBfs73PRNApjJ33w3PC9Wh7DOrmcdzOEe98Biq+flMqVIcStv7oDKprElp2EtHVqlzaSKIqmI6+QyV5sDAwMDAALCz08q5c+e2XMujdGMpLCsuKeVScxUsWr32AoFZgiX2nf9XaZOMzNWbht/K0N2TuMkwd5HSq8S/mbGaTh69tF5VmiUjY6kMG7hy5cpiaALbydI1sfQKNQrZPJGJ+HPPNdkB+5WNsceeuVeqpMtSnsIpHtML2akckHoaAErs1LpwnuP1uM8ZYkD2Fo/h/dtLS0eX/KXUYmfPnt0K4I+Jmekww/ufLDf2Z6lsVo95Z+kV43WysBsmrWDC5th3Ovewr2yjty5L6dDiMdVzdU1ij6WwlMxxiMlMGCIU718yvBGWMDAwMDAwAOxcHujMmTPdxKLWtVLiWVOIkxJ9FSjZc6OuSmH03JGrYNEsXRMlH7KBjAlRCqLE3QvCrmw4PftfFdJQhVL0+t8rYcQ0VFevXu0yvMPDwy2X6GivqApyVgmTpe1gVzIvuoln9iraOuj6nSUE4N7PkioTZFRV2EVExcZok+yxNLIy3iPxXB5ThRxEd3uuKfdqLxl7nONearGbbrrpaC19nG2Dsd/ur13WafftaTW457kvYv+4JzPfhPi9tJ2irEqqnDEuMlSmHMuK7FbaIIa29EKosnFUn3Ou+Zxjgm9p28bu8Xlts7CiKlh9DQbDGxgYGBg4FdjZS3Nvb2/rlzX++tJzsyqqmbE0StwV08vS2TDQnNJ6JonQrlMFaMfvqmPXeAlRoqpYYtZ/oyedLY2jx/Ao5dL+1/PSpJSZYZqm1DYRYQmeHnV8n3kI0ruLUnrGwMgKuC+4t7L2q0TNWfqz3pplbWTnkgVy38f/maqN9m16Xsb/uaaVPT1ebymlXZZSqqepMPb2TiaPdjsupBqvbbsePXCre15avnczJlyVQKItN0vMTcZFb8bsuVPZcHvp/SoNEu/xNd7IRpUyUqqTfZA5x7V0eyyD5EBzJoeI5yx55mcYDG9gYGBg4FRgZxueVJeOiN/5ld5SmS54Kf2Y26DHkrRtR6IEkiWP5nWq9GRrvBh7nmVLx1T9WXNOlcQ4flfpuntsjWyTUlqWaDgypMqGd3h4qMuXL29JbLEv/szrTK/cTOqs0hjF2EBp224V+892OdYs6XHlPWnEPpINVraHzGuy6lvlTSlt2+z8njFpWewibXWct145Kn7GlGJxHplKqmf79biZwD2mm6LtzkyPPgXZfWJUKeCMXtHbyuadsbUqpVmW6LxKs1h5SWZaIn5HJp49kys2Wnmnx+9ox+ScZN66/E3xumVp6YweQ60wGN7AwMDAwKnAzgwv2vD8q5zZbpjdo+eJVJWCp5cUGYVUlwUyeiVe1sTfGZSOKv10D5XUlLEE6t+XbB29LBC8To/hsY3K3ijl9rGetHVwcLAl3WYevpbqmOWB7C2C7MUwu8niQyvbE5l/3B+ZnUXqx5yRpVUetxmqwq/cu/EepH2JknfF4uK5VQaP7P6tMmvwGRDttmT4a2I4e5oKt834LWYv6WlRlrwZszlmn8l8Mu/Cynu1Z1+snm/0cozHVR7e1H5k9zT3ZFXguOeLQU1JL67VfbJ3ptl75kPAe+/y5csj08rAwMDAwEDE+MEbGBgYGDgV2DksIUuKm9Ftum/TQJpRVH5HlZlfM6Mn0Uu9RYpdOc301JRst+dmXVU67tHwSi3J62dhEZX6s6qPFlG5Mq9xme+FJbgNqrgzNZcdGqiay9SgRhXaQsenWMeNYTVUD/G46trSuiDrKmkA1eMRNAVUwb2ZWnLJASVTaVI1xj6tCYehA0LmbMZE2kuJx8+dO7cqEUGVqJuhGfF/3pdU62X7u3LMYGKC7DnHIPJe5XMGmleJ9DOVPpPwVwnA4zzSJMA5p1qeCUbiMdwj2fgqNT/NG3HuOY+Hh4dDpTkwMDAwMBCxs9NKZHmUjPy9tC3VkZ1lbvtVGitKpJlbeuVMkDEgStp0wulJ6XSxrl6zINulVDi9JK6VJJRJU1WQfxV4Gv/fJU1PlW6owt7e3lbAeewDS4EwNRYTzMbzOT+VS342Pruy01klK/myxLSzUAaOr0pWkPWRTlJkG72q1VVaMGpM4rkMO6jShcV1o8Tt9SPTy8oDcewZnPCCx2afMdkw2XpcFzJF9qFi19kx7ovHnq1/tUfoaJOFwfgcrg/XJWowqkT3TOqcJeVg+xwnNSgRDOuonpFSzv7j+2w+M2Y6kkcPDAwMDAwEXFPyaEpYmR2NUh0ZXhYmUOlhmQIqYwV8XRMAujYFV/y/srtUUmI2rqUUU/EYvq4JS2AbRCaVLQXUZ0GeHHsPe3t7unDhwhbDi0mIWQDY7doGYUk1S2VXlZjynunZF5mWzFKl24gJqLn+lXYgjrNyy+a+7wUA01bSYx+V7ZthPb10a5yvHlOqbDVVEHHWTk9Cn6ZJBwcHXfZM9s9nUma3rkKm+D577sS+xbYylsbrce9Ur/FYt1uFGmRhQ5lGLHsf7XZkZ9SQ9Gy81f42ev4GDkegxs7HxnRkZKrZtSoMhjcwMDAwcCqws5fm/v7+lrdfj61ROjd6jKsKyGYZEilPQiwdSyBZcHyV6oa2tsyrjJJWZdvLUhhVXoa99EqU3CqbXgZKS7skXa2uk3lpGj0p3Z52lLzj+nl9aVNjyjEmCmC/Yl9oB868NOkZZmSlSXhudWz8vrINc99lwczuGxPyGlkgeJV8vWe747lZEux4/Uz7QYZCu1ZkeNV+rjBN09YxcR+wcCi9JLMkAkvPDp9rJhHvm6Wk+PQSzfpSPe96z1MWYCUbjfcXWTm9T91W3AfV/b70eew3++o5Z3mkbC6q52i8B7OSQoPhDQwMDAwMBOzM8M6dO3f0i50lWaXESbaUJSGm1M9fe0rrUUqrJERKt/F79qFKQtqL3avi7zJ7TJWWrLKTRfQYVrx+FgtZ2RV7DG+J/WXsI8YvVZKW9w6TikfJjRIgk4ZbW5ClT+IeqlIhxc8pTdKrLLMZ8roVel6ztL9QWs5ixbhHmVIss8PxHmAcVq9YLe1ZlXewtF46zxhSVeYmwp7hGUs3zCLdHu2I3KscQ3zPecliUCuv6Z5tNWMr8fNsbqt0ZLTpk5VmfarS1GXIit5GZDbRyh5bebbH/5fsmxFMPfj0008PhjcwMDAwMBDxjArA9srKW+KgpJV5G1ZSDBlkJmmRwZHxZMlQKZFWHpG9Mh2U8HrnMulxZcuL7yv2SYkyk9KqY3t2PzJWtp9lb6lsrRls/62SLku1FsCf27YX1/+JJ55Iz6Fk2LN10ZOz2o/xfO5JesT1bLiVV2ZmN2N2lKeeeupEX7MCsGR2WUaV2I9sD/W8MonKM5Ge2vH7paw8EfbSpFdpZErUCvg9y8vEOViyi69hQAazTmU2Ls53xcDWeBT3vMINxqRWY8iec5wT2ghpW5b6MajSdtaY2B6fHcxCk8U1V7GWPQyGNzAwMDBwKjB+8AYGBgYGTgWuKfDcyNRHTGPTMz4aNDTTuEm1ZFQTkLbTiJ8lnKbRuKcWIJaCOLM2qRaoUhhF9Kp8L12vUnvSpTmiUqH2knBznZZUC9M0lW7u2WdVuEgMQvU1reqrxpM5LzFlnY91tezMwYpqJzoNZA4CVrNxTav0WlFNRDWnA4HpiBID+P2/X6myXRMKUCVD76XH416tKodn5y+p5g4ODrb6m9VVY3+ZaixLvUXV2FLydf4v1bUVszmmWpCOKJnTSrY34ufZvuO9zLRkWd8qxz2m/WOtynhtPg+qUK74XaX2z547VB+PsISBgYGBgQHgmsoDVUG+0rbjAaW9zFBOSYevVaB2vA5TS5EdZgGZS+ypl1S1QhY+UAULZ9dhO5VDSJXUNaJi1ZnjECWrSsLvJQ1ewjRNXdfoivlWpVekY0cWg4mme2tcGfV75YHoMFE5r2TpyLhGlbNE7A/3tSV8Mr3IXPw/wxA47mxvsY90VmCITfy/cilnEuN4bK9UFftcObVJJxlubM/sLWNcVcjFmkTEZPae8yoZcuwvtU5ZMmSjCpmhc+AahxejYlP8P/aZSQR6TjlGpTXKwhKWHO2y8A7P9eHh4UgePTAwMDAwELGzDS9zt15zfM+GV0m+ld0gYxlLbCYr3lgli8304VWSaNrlenafpSDyLJg3+y6ON7PLLQU699at0qH3Ao7XSldSPV/Sto3BYNquLNi1KkNFhtJjErT/ZuOj/c19pZ0iC47PCldm48rYE/vGUINow2QKPmo9uB96wdiVDT5joZXd3teLyX57pbgq9FK9Vfb+XrhKFfxePUt6tm8+U7J7ogpPYl8zNlOlQ1zzzOLzlH3MGFel2aFNNPNVqAo2Z6ywSorN6/dsoefOnRs2vIGBgYGBgYi2o4fi/ZLe9ux1Z+CXAV40TdPd/HDsnYEVGHtn4FqR7h1ipx+8gYGBgYGBX6oYKs2BgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBcYP3sDAwMDAqcBOcXi33HLLdOedd3ZjqYxrcYZ5X53z/sLaWJE156wZ97NxvSwrR4zduf/++/XYY49tNXLrrbdOd999d1kaKV6b8VGMMcr221KmDl6D/2fvl87vYU3ZlmcLS+1fy77gudk8VplKsrJUjFs7ODjQpUuX9OSTT251rrU2xXYZuyVtlyDqlcIyGI9YHVsViO4duwbVsddrH1bHrInHrY6pYnyfKapSaVlsbvY8uHr1qg4PDxcnZacfvDvvvFNf8AVfoMcee0zScS2yGITKB09VWyoL5uXGqh5iWaLkCr0f46WNfC0Px15i1qWg7l77u2y06tw1AeJV1WIHDcfEzTfffLMk6eLFi5LmtEOf//mfn7Z711136XWve91WTbts7AyqdtomptOStpOEM81VVX05jtXgsb3US+x3tYfjd0s/3EylFlHdP1mqvipYt0pl1kt4wGOy4GwGdbMGHauRS9IjjzwiSXrggQckzQm7v/qrv3pr3Mb+/r5uu+02SfNeknT0XpqfTfFaa9J28R6qUv65jeye474jekm2q/sxS9Be1d+rEpDHc6sE4FmA/VJqQSa6WCNo9urkMXCez/77779f0vFvjaSt358nn3zy6LjFvqw6amBgYGBg4Jc4dk4tJvWZUSUhVmUnpFqlUEnCvVI4RNZ2leqrotVZexV2YXa99GHXcp0KSxK/VKcf86sTtWZ9JKvq9blXGmmJAWXzRqmxYm1ZmjCqv6r5WaMWW1OmpZJie1hidhlLWJMWbgmV6rnXBksZMe2WmZ9UM5QMrTWdPXv26HyfG5OI8zv2KWMkFUvZ5XlQJSA3eutTHZuZDbgeTMmW7aWKlfN9lspsjVqax5GNVnunV2yA+/3WW2+VdDIt3dJzu4fB8AYGBgYGTgV2Znguxij17TCVRJCViFiyT1WJm+NnFbISNpSwLZ0tJXfO+rqGPRGVFJUV1yUqqanHYCvbVI+hkxVkkniWnLg37mmauolyua84xh6rWUo+zPJU8TOe27PxVnuxp2noJQnPkK0L2Sj3UJYAeOl6S2uVocdCeD9Zes/sW2Rp+/v7XeZz4cKFo2P9GktD0X5YPXei/benbZDqpMvx2Or503suLSXLj8y1SjBdJd2OfaStLrZbYclxZ5eE97w3slJtbIe2Q/sMxHJbmbZpLQbDGxgYGBg4FRg/eAMDAwMDpwLX5LTSc9PtVciOn2cqmCVX/4xWr6mULPXVEZVKJvaRKqslY/KaGBcaj3epNUj1QeYksUtcVFXFvncdXm8JrbWyCrJ0Ut2U9SGLv+IaVirZLNyi5y4d2459rOrTVTGE2VgZ09hTE7EGHNe0FybwTJxW1t5XGSoX/cw5Yk1Ns9aazp8/f6TCdDhMVHP5/8oJJqtTRzVn5YS1NsaT7Uu56YaqRt7/8ZyqFijvCSOrFVmFGmV7lWtAR5TqmRmxZI6JDj4cH+9Xq6hjOJRVmv4uhiwsYTC8gYGBgYFTgZ0Ynh1WKjYQ/6/cw/0LHiUTSimVI0gmVVbBomSDWcXzyn2ax2VYCurthSdQKs9ctNcGD2eoGB4/71WBrwKO1zCXDHt7ezp//nzZl+ocaVsK7EmVZNic68zIzrnuBZF7fswKGCSfaQfcLvfTEhuN/Sa7JfOL91DFaqv16WWuWeOyzznhPddzGLK03nN42tvb07lz544Y3i233CLp2GVdOnZgqRycsnuZldq9hgbvk6zSehX43Qvq59j9WmlV2E7sMx044rpU614lA4nfLd0bWR8rDQbv24xl09HJ1zOLu+mmm47OcdKCTDO2hMHwBgYGBgZOBXZmeFFS6gUCR8ktvvKXW6rz4PE6vcBPg7pmpgeK/1uiW8OayAYrrGEsnCOmYpK2Wd+aYPWqLxUDixKe54Tsd4179ZoAbWkeNwNlY/8p3RFr+sL9xr3Vsx2vCSLPbEHZuT37dnVMpv1gQDXH5T0UzyGzqzQlmfaDY67y5u6Ssi+zvdMG1QtAb63pwoULR8zu9ttvl3TM9GI7S8HOsQ+eO3/mPlDbkbXNMWXsXDr53Knuf9sf/T5jzxV78v7oPQfI5Ggrj31m2APXpZcikoyLz64s7IhsM/t9kE6mkTPDc4qxpXCoE/1dddTAwMDAwMAvcezspRl/4TMpwNKQf6EtvVSSqVRLy0bPZkjQ/kI9fXY+pdlecC37uMbOSCmz0uFHr7Ml203vuksSdiZx+zpkehVjjn1YI13ZQ7M3jiVbXZWyqIdeaiyuS8VUM1uH+1p5a2Z9qFhBZW+M/1evPftvZbthwu3M65kMn+PqJWWIweTZuCOiLbLaR2fOnNHFixd19913S5LuuOMOSSdZQMX+3T6fQ/F/jrlCdi7HRq/GyKasUeJ+sAeixxNtiU6YXl2HNrw4hxUrZzqv7DnntYvB/fGcbE6WvIM9vx5T/MzgMzizUZvtmen1PHyJwfAGBgYGBk4FrikOz8g8Mi2lWDKw9NLzlqvsRb0YqiVQL5+xAnrUVXFfEZWUvgaV12RmS6mOWePdWJXc6DGjKl6SbCsetyQRR7TWtL+/37Xh8drsN9ln1odKylwT48R9UNmFYv/j+Krvlzxge/ua7ZJtZrFi1G6Q0TkRr1+zvvLeoH0xYwW9eMnYr6zfvdRi+/v7uvPOO49KANk7M4ufrJhXlkau8rAki6K9LI7R8NwyDVncn5HZxPeMOYsM76mnnjrRDvd15eEex8N7hPbgNXY4tp+l96q8wLkfYyJo+lEYHG9cN5eHevDBByXN7H0wvIGBgYGBgYCdGV70tDtqJEgBllLoPUamECVV/8pTp9yT+GJ/4jkGK+VmnnaUwsiMMv00JXv2eQ2LogQUJR6ispNRasrsMBWzy7whlySkrB8ZE+slnz08POzGK5K9WLq9dOmSpONCsH6VjqXkyruUdrkoEVsL4VfuXdt9sjFzjn1d7+UsxpEswGCZlh5bM+hpnK2/v/McOSPF448/fuI1MoAqowZt89G2w/mLWTGk3PuQ6Hna7e/v6+LFi0fMzu1nzx0mrK5iA+P5VXwstVFZrKPH5Dgx9iPzDmdsILM0xeeBPREZI1jZwjNtARm4+0i2tqZ9v/eax2ekx8eCzR6nxxWZMveb++Jz/AzIvHjvu+8+SXMR4bXav8HwBgYGBgZOBcYP3sDAwMDAqcBOKs3W2gmVZubcQTdpBn6TxsdjKseMyqAZUbWRqZhMrf0d1UOZwZmqMqoLqySo8RiqVXoOCe5jFXhKtWw8t0pv5HXL6lJdS9C/Edd46TiqHqPKx+oLr8PDDz8s6dj92KoSHycdq3z8mV+tvmPCgEylefHiRUnHSYmp6vTn0rY6qHIQiXuHe59zzXN7Lv90oefelY5VSVZZev4effRRScdzRueV2Beq9aiujGpLzx8Dw+0+7vnLnEyqRNMRDktwO1Ztxv3rtaK60HPh10wt6Tm1Cttr6j2UJYag+zxTvfnzGGrk/tMhhPdlTIbs76gepDOOEdWTDH+qQieycAuGvRhVqFAEwxC8v7LnNp/THqfXMwu7cViKnZje9a53DZXmwMDAwMBAxHUJS4i/rv7Fp5HVkmjmWk4puXLbzlywGbxNFpUxvCq4mobuzI2absdLTiXxnKo6cebyz5IlbLdy1ojtUfqrgpalbQeNqqJyxJpSIbHfh4eHW2w3sjUboc1A6KzitYzn+BifUzlm+NxM4jZjMEPxqxlKlqS4Smzt60VU6ZnIRrJEx5aOvQ4MLfA+8DzEuTBDvv/++08c4/nMAvlZidxMzuPONDQGHXeoQYl7iSEfPc3A/v6+nvvc5x5J9HYQifuXbMastio5JR3PofeT59LvPX++J5773OcenVtVX+c9nTFKalg8niwBBQPP+fzpBZ67T2S5Hl/mJFXtVa7pmrJUZHRZ0hEf48/o+JI98z2u5zznOZJmDUPvORUxGN7AwMDAwKnANZUHopQebQCUNCiVZwyPDIeuxD3mYP16tLPE6/aChqtgayNLo1Ylb2bAa69MR5WIuhfUbenIc0OpradLr4JVo/RJSYu2iCzsgraApdCGaZqO1sVMzMGjkvSe97xHUu3WTAk1/l+xQs5TDP5lWEimDeCYbQfz2GnT8rkxdIL2wyoYOguypWu8++h+mFF6/PGzBx54QNJ2sl1Kz3Ef0o5VpT3rlZbxd7QlxuvYDhPPqVje2bNn9dznPvfIVsjEwtLxGnpePHYy5Lj+tA3TnvTQQw+deH/vvfcenctUZQzm9mt8LvH+MLPzuIwXvOAFR//zGUHtE++9LEzAmhOP1+PyXGQhLdQcuB/+3M+JmNTZfeGzmLbwWOrH12M4h18zDZbX1Iz79ttv7yYfjxgMb2BgYGDgVOAZJY+25JOV+vF3DBam3SxrO/tVl3KWRSmdQbdGlnKHOmcGi2ZejAzSpP0qk5qo067SH0V7AwOnKflQ8ovjpdS3xnPVx7oPtLFEu4LBIN+rV6+u9tK05BhtXlxDMuLMs5N2IzM+t8WA80wCrjzPsr3KAFkmDfA8ZfNVJYumVqDnSWhmTEYbmYuPqTz7WGwzs39wXsnwIstmoDlZDu8N6fh5sDYo/bbbbjtaL18vS8HlsdNO5fdmgNLx3mPKLzLwzHZcJT3ms4XJl+OYGUDv52hcD9r3aOvqlQ+jNs3vPW7vnbi/va/MAn2s7dqeK7O1rCyVz/E9wGd/XDf31/eR2a7HTa1f/MzX+4AP+IA0eD7DYHgDAwMDA6cCOzG8w8NDXblyZcurMf7KU5qjxJV59NFOVMUA+Ve8V7aHyVaNTIqtPCAzfTDZYFViKPOuJFtjiqFeWiBKRZYKaUOI13P7nosqLi9LGkxbXRVnFL9b46V5eHioy5cvb3nGRVQld/xqyTHGKVF6JCPmXoqSIL1MOXayEOl4L/p6PobSepynKuE3WWAWF8Xr0PuUtnHp+N7z9WxnsdRML8fYL94/nhN6h8Z7xOeYzVR7J4J7pcfwWms6e/bs0XyZBZiFSMfz736bgbi/tNPFY8xeaB/1/DiuMEvBxnkhe8/S91H7ZW9DxulJ22XWmOKNWhvb6aTjdXFfec+5jXg/meFVmp6ehoOaGXvV8jke7w2mxqNmzns1zqP3t9f8tttuG16aAwMDAwMDETt7aV6+fPlIYvAvbJTWGEdhaYlxKVFqXiqmaOnGv/a9WCd69GVsjVlg6PGUMRZmaqCHoiUdjz/aNRk7Q2bH/sRj6ZlYseA4Tkv0ltwo3WbZU9zvqqSHkRX7jWtbeWraQ5O2hyiZeZ2ZmYHMLnpAuj1Lx/R483xZSo/9rxKB0/7DWC5p2x5HNhg91bjnKY3Slhil3IrhWZLPslf4Op6LzCtXyoui2qPP3rPex+xjZAueU8bskUFneycy4mrv7O3tnWDDvo6ZWfyMrIaZaHre01XmI89jZDNk2LxvfGzso59f9G73vrbXYdxvXnfGydLencU/0zuXpXiyzD5k55wLr609SeO96D3DZ4mfR5l9m/ZMMn0Wx43nr/XMjBgMb2BgYGDgVGDnXJrnzp07kgyYV1DajhNjlgUWO5SOf9UZJ+RfcurjI3wspSdnSbCEwNiQHix9ZjFb7hPLWFDCy/LTkVEwe0aWDYZ2OJbYcB8js6Edg7FjZGbx/yqvY88+lxWDJPb29tL4qSjt+ZruLyVgZk1xu3GsL3rRi04c49i+LP8i7S+05VFbEftQ3QNZSSHumcp2xzWPn3n+fX33mfswXpvXoccgJe8Iz9fzn/98ScfMz/dVltmFxe3iYwAAIABJREFUMbFeN183anWy8jK9/XPmzJkt+1XcT7SPM+9qFsPpY7ku3ju0/8Xnjz9zGyx4TQYYz/ezqrJ9x+dOxZIZN5v5LnhfuS/00jUDjM9vrzvPZUYhz1FmbzT7Y/ahd7/73ZLyjDssVcT7Ou5Rzt+tt946cmkODAwMDAxEjB+8gYGBgYFTgZ1VmmfPnt1Sd2WB4HRrNg3NqhUz7RMDIu+5554T14uqkSoQnKrUqAZjOzy2l3KpUmkydVE0vjJQlkbjXgJouphz3JmjA12jGViblTupEnjTKScGGVehDBlaayfUEkwdlF2TCaF7Dhp33XWXpGMXb6tPPD9Wk2bhIlRHWj3lpMtZ4Lnnm8kKWNYpnsP3dNLK1KFU4/qVqp84N/7Ma8VK2gwriuviOXcfYoJeSXrrW98qKQ9LqBwdsorhWZq1JacVJvXOAs/96pAFJi/ISiF5Lv2Msju9nTAYyB/BFGJ0asvU+EzY4HMz9d3znve8E330fPkZ6c99nTgnXks+fxhOFp+hngPPI8fBMIm45t4T3itMVuDrxzR4d99994m++Fyvse/rLGGE1+Xmm28eYQkDAwMDAwMRO/t1OjRB2k5rI20bVy0R+Bfb0nN0vaUhluUzGGiYXY/lUpgEOSv1YzBcIAMZXlUYlUHLEWSbVcB9Ng66V3uOstRFvjaZMg3rUbIjk2Raqoy5ZBL5EstjKqkoAbvfDEehRBzXyVK/544hK5aILfFnLJGFXxk+kBUC5l5hEHcW1M80SSwAmzEhprSjkwwDdaXtPer1tmRt5tLbd2Z2lqLdD893nBNK/xXLyUrJMClDhmmadPXq1SPp3yEmkSlwfnxsVuzYoNMKNSNMMRbvF6bc4z3lc2NYgvtCxsU9nDloMESHmgZfN5YwYniPWZvnxq9xD3FOqMFiGEHGmFlE2CzO85s5L7k998n7z2sdnxPek3a66WkHiMHwBgYGBgZOBXYOPI8JgrMyO1lhwPg+k5YsYZgFshQF02tl0hpT+7itXskVg4lZGRAubUvWVQJgt5FJTQZtOmxT2rYVUv9Ou1bsK+1wdjVmEGeWEo59YvmhaMdgKZkeQ7ZmIEu9xT5Y4rX+nm77sQ+cH0v9Xhe34fnKgsjplm8pOmOrLNrJpAjed2sK5zIZesZ2yCC8lu5jFfIiHY+ZNkoz2uwcz70lb0vRtM1nLMR98XtfJwsN4tivXLnSTVpw+fLlrTnNngMsIcTySfG5UyWC8Nhdwsh7K2pTuIbUKFWpsqTjPei19GvGCv1cY1Jnsk+fE8dnWyRLZXlfUJsTj+Vcc46yJAqcA8+Xx+f3mVbKe8aMzuPh/o/97aWuqzAY3sDAwMDAqcDONrxY4oWBjBGZPaI6lp+RTdF7L9qRKP3zuiy+KW3bHsnoMjsNpQmeS5YTdc70hqN3YJbGi9ejhEXmlSUr5rn+3Lr8LIVVlfjXn2dp3aK0V9nwpmnS008/vdVullrMUh4ZiKXd2AcGxjMgm0w59q8qm0Sv4XgObUWWXs1e/D7bO9zntOGyX/E7aiG83lkAMO9P7xH32dJzVqyYLCvayaRcQ8NUT5bgLbVn5/C+OTw8XCwRZNCeHcfK+75XeilLZBFhhsdSU9L2M4KB2RnoB+D2yXxiG0zRyCQJTIsWz2WKOQarZ2kQmaKt0vxkySY4x26XDD8WgDV8LG3g2W8Mn1W9pBjEYHgDAwMDA6cCOzO8KEFQgpTqsjyM58pizphGib/kWdFYSgJkdExSG/+viqjSay6eQ7tBlXg2s6kttRVRFcGtipP2pFVKoWYuu5RMytgAi92eO3euy/CuXr26VeQyStyWBBmfxAKccT6ZUomekNX6xHNYsoiesLGP9FIzW3Jfs1Rf7BM9OntxjLR5sqgmxyJt7zfOX+/e4P1KzUImVVeJ4TP7C8+J93a1dxyHR21OHCe1GYyxcx8y5s3nS1aINR4nbduyOHbPeZb02p85xs52X/owxGuSUZIJZXvV59rjkX4G1BLFdnxP8LXyxIx9qxLbZ8+b6vfB85fZ07MY4Z52IGIwvIGBgYGBU4Hd6ysEZFI/JWr+qpOhxM/IGLP2icpriN6imW6d0iAZZlbCyKj6Su+pOFayUB6bsVAyOb8ng8n6RlBKjMeRAVUlmzI7RubVmqG1trUeWckYSsvMIhFtDpRSWVCyWqfYf35HW1RW4sV2RttH/HmmhTBoH93Fhsf41Ww8RmV/oXSe2f8qr0OywXg/0LuUtpwsXteILHcpFo8lmDJ/AO5TPheyPZqxlfh5liTfYJwvPT0jw2MGHNvwbPf1daK2xrY721IrTZZjbmMfyWqZdJnFjKXtZNh8NjPjT7ZXq/s480Y3mPw7K3dk8J5fsv9GDIY3MDAwMHAqMH7wBgYGBgZOBXZWabbWtlSBWU0rqjloIF5Tv6g6JqtanIUfRGQpsajKZDXuzABcqcr4Pgt0d/ucv6zmHFVHlao2U18uuen2VArV+KpUavHY3po68TidC6IaiapROmow+XbsD1PMMcCcYSTSduJxv6c6KgZM01mFrvdWLWV7p6cervrIFFYMv/F8xmBeBhpzLnpqV96vVHFmNf3ool6FCMRx9QLmCTs8OWDacx9V20w8UTmGxXOYso41J7nns/uGa8nnUXwO+Biqwak+9DilY5WmP2NfvA5ZInB+5+vQrJCleeSzyddl3dFMpclnVy+FYuXsRxVqPMdz4c/WqjOlwfAGBgYGBk4Jdi4P1FrbSqrbq+5NhlAZ6uMxNEavcVqhkwX71pNq6eLd6yMlmzWONSwhQ+eBzEBLqZl9YR8z1rumbwaPoYS3lDZMmsdZOR5EzUBsP0uUXLm3u+1YRdoSu6VXzyEdkDJQAqULOwOq4zFkgwwLieOqGFYVUpOFNDA9GD+PDM9OEKzc7X7QiSrbH9Va8DX+z6TfPScmt7sU/G1M07QVLhLDHZhSjumnMuc1zxOZN+cn20NcQ6MK+peO96pZkq9vMI2YdPxsWkqsT3YqbVecJ0ujA1wE560X4G5UjkE97V71XKFDWZxnatGefvrp4bQyMDAwMDAQcU02PDKW+OtLV+Q16ZSq9FxrSocYlZt2JiGQSTIMoec+W9ldjOxcslDa8rLURZT6q5Rmmd2Hfa2YXna9pXFmQbHGmTNnugmAo/tw5m5Mqb8KGo598Fz6mEo6z+wwlEirQNksOTqDk2m3yoKUKfVXBXSzQGAmZub+yNgU55q26p7Ww6hsyVliddoTeyFKPj/b+9k44v40c7Fbv7Rtw2dy9Wz9uac51qoYcjyGLInnxOvZFuyQFl/XjM6JuiPD8ziiXU86nnOys3hcFQbFEkpxXGTRDCnphafwGVWlUIxrXfkIcD0jc+XeefTRR1ftZWkwvIGBgYGBU4KdbXj7+/tb9oT460qmwLRhazx1lpAFulcSYlaQs0o43Ss3UemwK+ml50lYFf7Mkjmz3EjF6HolMij99NJDVZ52lN7iMVEi7q1Da23rnCihVomlzd4yG0AvCJlj5LmcQ3r4ZhoGMrzKGzmOi3uD9gmuT7YuXF9L55boowTs65AVen/1UvVVe5X9yZIkkP317utdk0fH9c2Sn5tV2kuWgcyck/h/FTjP+yR7zlV2MJ8bbatmpLS/uc8PPPCApOMCvdLx+tqWV/k50D4bzzX8vDaDdMoxlxGK59s7lOnoKiYWP6ueUZmnd/U89f2V3SPuoxnxpUuXBsMbGBgYGBiIuKbk0fRuyxJB8xeXMW5sM6LyrOulMluSyrLyErTZ9JL49ryT4vfsV3YMbQS0M0jbunR6wlVJfeP/lXROphHbo82oN27O1y5lOsj8s/MZU2VpOXppknFx3isbcvYZbR1MkRWv5++oucj2f6ZliO9p64jrxphN7lUzvWj38fz0YvXiGDJw3au+xnaqIsnZnJMZ9ey/h4eHunz58lYRYjOjCBY37nlcVrG7ZBVZwnu2S3idvD7SMcPy+rj/7373uyVJ73rXuyQdM5fYPr1O3QbHEFkv43/N6Hys90ws12O25z3jvtD+m+2dXgHt2NfMo7w6J3tWud/veMc7jvo0vDQHBgYGBgYCdmJ4joXpxWSRrdATLWNclb2gynSQ2TiqjCeZbpueRlWC6UwaNKqsGT2PLoOxLVkiVoPf0aa2pvAk+5xJp5U3I20VmQ3E6NnwpmkuAEvdfNaHKj4sy6JT2e6YPLiX4SfzNo3HxnMsWfuVmSGy0lLc35V3aOYVyvln4lwWD43wsUyw3rOtVffimpjOypM4Y1csZNpjeAcHB7p06dJWIdPIhLjOmbesdFKj4D7Qhkdml8XJVrZbFnmNe9Z2OL/aVve2t71NknT//fdLOqnBoJeix1PtneyZxcwxtiWaYUb7r+fR2WzcPsv09GKVqS1i9pYI3tPV74T3snTM7LJi1EsYDG9gYGBg4FRg/OANDAwMDJwK7KzSPDg4KA3o8bN4jlSrK+MxlfNDL+lu5ZxCp4/MlZ3pkyqVTAaqTKuxxGtXoQPuT0xxVtXBqwKOe85AlbNKL/Cc4+x9VyXsjvDeodE7qok4Tzw2c5hggmIe20t6TTVtVZk5rrHXiOmNqGqK88nA7CrQ3cjUoVZzWf1EFVNMs2V1GvtWOSL11K+Vmj8LHq7qLWb3tce8FFbi85544omtey3eL0wsvjTm7NjqWZWpqSvTgoPLfazd++M5Xst77733xGvmhEOHGe5R3stR9eex+rPK/BHvX+8jpkHze+7/bO8QVGn3kvJ7jR1S4XHGtfacWI3/8MMPr3aYGwxvYGBgYOBUYOfA8729va2Er5nURMN/L9kyjcVGldqnF0TuV0pGUQI2KkaXBc5SGqzKZ2SMgsHDleE/jp9p26rksXS/lral9EpizVClkuqtWy/o3XB6KDorxH5XCQB6DhNrnCliW5mUXoV4ZOVaqpAWVpPOnKRYRbxyzsnmM6ZRkmapVtqWuGP7lYaCDgc9TUaPpRl0ZKgcKrIA/h6zi314/PHHdd9990k6GShtMFUdE4Jn61KlHeO8ZBXPK62A+2FWFR1QPHd2q/d4vKYxRIPjoBaAzxQG2sfPDDv5MJFDTGJdObZZaxDDLOLx8Vie6/fZPqs0CTw2S3Dtdp966qnB8AYGBgYGBiKuKfDc6P1yL0mPawIFKW1kaXzI6CxhkcXEwojsP9N4UYqXtiVSS26UULOihO4bbV3Uu8dx0RWaCZVjIcsKlT2VrDtiKdl3Jn2ucS1vrZ04NwtPqVJSVanR4hjW2Irj8fEctsFyOlFKp9u2JV6zDqaNkrZtxXQXp/R62223bfXffaCmwra87J6obJ/UDsR9uWTDyz6vwi56oTJZCMpSSAvXI86F/+ecun3be+I5lWaJn/fSBdJngIm64z5w32JKrHgMQ02qa8f2eVwW5mPtg9eFz5KMPVUJPJhkID5jKjbK51623ww+vxkaIh3PubUbI/B8YGBgYGAAuKbyQEZPb1olxO0VnaTUX9nnor6en1VldWJf6cFJqYW2ljhun0MbYZWKKYLFGg1LKlEapNcSx0dWGvvKwHra8rIAfnq1UcLL1o3tLdnyMgk5glLkUnB/1a94LaYAi4yySiFlBsF9IR1Ly89//vMlHadrMuPzdXvJnClp065JO4m07ZXJQOQYhOuxel9VwcpGXBcGcHNesyByg9qNnt2v9xzIjr1y5crW8yDTwPA1Cxo3eK9WbDbTRjBonXNLzVP8nxokaweytF1ZCr4If59pfph+zJoDepjGZzX7T8bK73uJKNhmdr1Ki8d7I/PItW19MLyBgYGBgQHgmrw013j9VSm/jCzZMW10ZGJZ7BtZGpOpZmytYoPsa1bihQwrSyUm5bYuSnBZLFp1PaOKO8wKJPKVTCzzQmWf6VGYSetr05pduXKlm1qsslfw2tk5nP8qmXNm66IdJtrspJNraRuQ461sG2bfve/i+Zwnr4vnJEugy1hBFsXN4v7oIcj4p8q2G/9fk6TcqGIgyeJ6kv173/verpR+eHi4lRQ77hOvHe1IvNey+EHajdiP7HN6gdJr03a4uA881qoAq1/j/vNaep/5PZ+N3g/RV8F9cMHZu++++0RffU5cF39G3wGmqTOyODzuB7LuTBtVeb+T6cXvsljAJQyGNzAwMDBwKrAzwzt79uzRr3Im+fCXmrrZTNKiRxUlruo1tsMyMbRtRUmL160ya2Rek5T+KjtTFhdV2ceyTCVVrFzlPRXBjBdVgc7Mw4p9XqMbjxJ3r8TLU089tbV3enFYVWmaXtJrgxIwmbl0LLXSs48lf+I+8Dm2mXGuvc+ipE0tQ1V41O+jPc7Xs72CHn7+PMYK2t5B26DRy0LjsVZ9XmJh2fiyNaI25/Lly4uxVJVdKYKanjUJrCubfhWfKx0zfNrOqD2JMYO2/3rt3J7Xi/bA+D8Lo/KZ6f0W19pJou+55x5Jx0zPbXgMUcPkscfE3PFz70c+1+OYqR2gdiLTflT7i9eL/8d1WcvyBsMbGBgYGDgVuCaGl9mAjIqN0S4WmUnlnbmUzUTalqwpmWbeS/5/iX1msR/MMlNltcg8regBV9nN4jn0/qwKMWbz2fNu5PvM2zPra5Ytw8jyecZ2rl69usXoskKptO/0vP4qGydfKc1L26V+yA6MyCRc0oVSP7UF9tqUjiV7xoIxO0bWR7M9S9zOsMKMHpHh0YOwsiH2yt5wD3Ft49pX8Wy05fRseD1Pu2mauufGz9gX3jfxnMpXgPGStHlJ24yO+8xtmEXF83mPuc/uR2RAjLel1zHtYrFt2pl9Hb/P7Izsv/dXZQvvrQH7lq1vVeas8tCP11zrmRkxGN7AwMDAwKnA+MEbGBgYGDgV2DnwPKaPylSaVfJRUtOeiqKXSorvqXbga1aZ19+Z2lOF2kvESiN4Vfk3K4VChw2OIYIG+aVK1Jmr/lIAd0QVRN5zQ16TQiri6tWrW6rY2B7VaHzNnCyWEhz4e6tmslRPbINhHFHlZ9ViVCHGYzwXVmNKx8l5rWJiejCrVJmeKl7H140BuNn1pXq+quQIPScgv1IttkadRJV35ty2JumvQ1qoDs8cJrJrxfdxrXltq/aoXstUckwHxuswfCS2431gdaWdWPjMlOqk2DSTsO/xWDr0MYlGlhCCqka3z/5kJgnOK0NEMkc1f8dnZKbSZPhQLxk+MRjewMDAwMCpwDMKPKckKdWSFSWszEW5kuwpDWYG8+p9JlVYWrA0weDhLNWQj7XkTtdo9jkrilul4PL3sY+VpL2mXEvFjMhGswTAFWPOkgZTCuxJ/XY8qILvY3+rorexLf5fhYXQISRKipUkyjnIApyZ+JdzHZ0VzM7oRMBQCQb7SsdSLF3XjV5S7yrVE9l8JqVXCZTpJJadU6Ujy5yyKocqnv/EE08csd2MzfTYZLxexFL5rCrEIX5X3Y9et6hRsJOIU3zZscn7IdvvdECqtBFmbzEcZsmJiKnnYn+ZBo1tZM+sag17GsFq71QObFJ+T4/UYgMDAwMDAwHXZMOj5Nv7da1sQ1naLmJNUHdlj6B0kyUNpkRPJtZLuWTGR5fmTEojW2LfjXgO7ZmVbr1K3RbHUb1mDKAKGu2xwkp3TxweHm4Famf2I9pUKWX2UotVDK+XEs1zaem4KoIrbZdycrtkepGlea+48Kel8SotWibN8nrcB9EdnUVPOfZqP8RrM6Wc93nGesnw19rlpJNr3XsOXL36/7d3Lr2RG0kQLkkjezyHsY3BGgZ82P//s/bqNQwb8BgzHql7TyGlPkYk2VrswdsZF6kfJKvIIjsjH5EPT4xE16nOOTVzTnOuY+jKJ+p8avwqtRTSGPXdykIVz9P+xPB4jV2cPHk5eD857xefSbxOrlSHQvdJfrEilQgJLtafvE9dzkcSXT+CYXiDwWAwuApcHMNT8fla3red2ANbQ3QZnnuxvC6zj5aw20ZWlywbWkJkfnU/BKWXHDtMfm8WkbpWInt+8U4IOjXzdNdtz0rqtukYo3A+ny1j7t4ja3MFp3sMr4s9CRT85TWt8yJ74jlQnMkJAOuzdG+wmLnuNxXzijXUAmWKIfC+OuKZSc2dXTyOY92LIVYkyT4Htj2q7IlxPY7FZfLxPDBLlmumZsimvANdd8c+xEwlJqCYLkW9nReFr+n1kPfANbhl41ydC10ft1bpsUjPfHcvpsx195xI++sa6er8VRY9MbzBYDAYDAoujuG9efNmI2NTfcCpqeIRdpF8/12WJveXZGfqNmSDdW51H04qK1nL3LcD43y0KCvDc80g6/G6eEliBalGkf87dNZZjSMd3Y/L+kyxJn7exfD4fsc2KMgr69i1lBJkpfMv16FjA/yrMXceE72nsbE2TGN3GYspxtrFYQTev8lLUD9LMlEdG6j3dBIAVna47glZ+DUjkd4axmFdDSql1cTAyc60jWTd6ncYB2PsqTIxjYUSc8raFOPT5xWsh+PzTuutrlk2NmYNp/bpsoL5bKIoP1/XsdELkq5rHSPXKJ+JdewpY/kIhuENBoPB4CpwMcM7n8+teLSQ/PnOsk/WI33NgtuWPu1OnYUWJ7M2j8SkEhwz43lyrVHq67W2LZLSvlyMkt9N8T5XU8c587uVSTD2cH9/366JOl5az268ZIsUaub27ji0+N2caZmS4dU5UxEitVVSTGWt3IZoTyVorW2j1yOtnjqmVP+6OJNridQdv27DjNGu9QszEr/++us4btVwpjjPWtvsUu7fNQAmi6nNaCvEKH/++efNe2yyy6zCOkaNhc1ala2pdj6V4TE2SY9Calq81laMnCopGnNlT2SuHEcacx0TY5+8rp23RcdnLLSOUdfnSP3v5jiHvzkYDAaDwd8Y84M3GAwGg6vAxS7N6lroSguSZJBLIkiyXHuF2m5bujD0t6Zta7+UzyFF7vq7kfIzOO5kwpg0QFdDdbewvILu3ZT663CJSyH9dQXOdHPtuTPrPNwaSp3AuR66jvd7QrJOXFeul5Ts4WTwOGYlHDj3Hc+TrjfXGUXN19omB+y5Dyu4Rpks4xKvUqEzj9tJmfE7LpX+EjeUxsOEtLo/umd5LzsRg9RvkZ/Lvfb7778/ffbLL7+8+MtQhit/0di0P7ku9dqFZ+T+5PqmwIG791giw2ei3O5dQgjlFyWtqLnUvo8URRe60BBDG3wmyn1Zx0jXbB3vHobhDQaDweAqcDHDu729bdOojzK8ClovtJKZdOF+zfday1Qrg8wtSfC4sXJMqbWQ24ZWJgPcjhWmdPtUrlCx1+LHJTqkBApa72v1pSbE+XxeX758iSnsdfu9AunKhGnJ828nQpu6letvEq+uc05rqY6R+6VsFxmg80bwO45xC0zCYEIFE6LqGpMlnwTOHaPkvJL3wZWTHPEKnE6n9fnz56dx6ziO4Wl/bP3VlbTwfue6cNuyQFtJLNoHSw/W2pYdsF2U2FMVHifD53OHSS1OjF2fkemlBJX6HR2P5Qju3nRJXnX/vK/qe0zgY7JKZXi8bp8+fZrC88FgMBgMKi5meKfTqW2fQguEYFq6ey/F8mRBVP84f+2TRedSy4Uko1TnkMRpGZ9w1i3HkNp2uJgh4yCMl7kUfo0lxUDdNil250oPuI1jGQ6n0+nJynRrh2yGqeUsvl1ry1LIMug9cI1SBZ03spy6XvQZi2vJqtw2jI9ofjy3leGxTIAxDxczTsXDjH2QNXRj4rydxyTFdDvR98r0Ets7nU7rzz//3LRmqrFOtrrhmnESZsmjlMqTKvP67rvvXpyPJGVYt1GBuRiexq/3+XqtfI9RllCvaxG5xsAxat6Kv9U4HNnYXulOZbB8Tgu8J+pzjvelriPLElyz3/qMH4Y3GAwGg0HBxQxvra2fvP5iU3h1j+m5/SZRYmYK8dh1my47K7WhEVyWaMo0ShJWrjg++cOd1FPKAnXWDZFiT0dEfXnOUyZjfa9a0XtxvNRupv5PX38nE5birSlDsLIcxV+YUafsNidAIItWVnFi3BUUeqZHgfNyElzcL6WrasyQDI+SZmx47ArCk3SZ80Ikhk92WsfIc9tZ6KfTaf3xxx+buFJlT4nZ6bUTcmCs2MW213peHz/88MPTeyq4dlmrdd+VAdEroG24lmrheZfV7OagWOJa25gt5+XyDjgmJxCRxsOx8TfASTqSqSoTVvPgvejm/ubNm0Ox4LWG4Q0Gg8HgSvAq8Wj9crtGjLIiyKJSdmEHxq0o2LvWVnqJcSBnVaRMTqK+72IOa21rm1wML2UxplY29dj8LEkYOckk+ve7bMqUlUmfvWN4l0iwkeHVa8k4SGqFUpEsXzIHl6WZmHCSV1tr2yCTQupCjaUIKb7Ma+i8AwLb0DjmSmaXmL07d2T0naSYkMSCU8uuup8kZVbx+Pi4Pn78uGEktS6OkmLMvBVcLWASmha75fNurWcv04cPH158t2seLDDPgeegjpH3MudJQequtRTjsy7TUp+x3k6xNTZArteNHrN0H7usfrbQ4n3m1s6ltZxrDcMbDAaDwZXg4gaw9/f3G8uoxkD0i5zYxJGaLX7WWZmpXQWbaXb1N2RtqQbObXsJyDo7ppmsf1r0zmpKGaspE3OtbTbm3t+6jbMqHW5vbzfWXrVmuTZogTJrs4LXkBm/bvyJRTP24c4T1wbjI47hJZC5dMLjrKVy7IljY6w91QWuta8+I3RMgoyCTMbN6+HhoRUC//Tp0yYTV2xgrZeZhvVYHdNKAtk8js5FPcaPP/641lrrp59+evEZPSIVvC70wIhF1XlpGzYPZia2rrGyR9fyzHStLXOta5dxc10nPdfVIomxtrW2z9PkyXB1eKxr1F/n3eE6ueRZPAxvMBgMBleBixne3d3dpsq/ZiLVX/y1tv5W1/JnTzUkxb7WyjqcqRlh3T41gu0Y196YnZVKRrUXn3NjS3WFLksxZbmmzMu1trEonj9Xh0ereS/7s8Z/nQWX4jpIdyy8AAAPEUlEQVS0jJ2WJs8D4wcad83w1dxS807HnthChszRxaIYs0nM1c2P83JxPkLnUZa85kmvh2Mjqf6yuydTJnaqb3XzeXx83I3J8LrUNj5iR2RA3fna013l/VPrI7WOVDMnZkUWXed+NB5X16g++/7771/Mg3qs9E7V75LhU9mlXn/G2FP7IZ07NpWtx9HYtW1Xo5y8A9znWlsWOnV4g8FgMBgA84M3GAwGg6vAq8SjGRCuBaC//fbbWmubMEH3hisepvszST9VuitKzcA4A7NdkJ37Z6mBA11nKWmi/n+0OLLuj3NO7lB3PLoYmWRSXRl0xdAd5rZxae5pjkp4oiumE4ImOrdFEipOBdRrPady6xyzQ7RcP107ErqA3dqhO5/XTvtwiS48n6mLtJPB0/z0l25pJ9WXBMHduhboYnJCCgTb23z58iVeX7nDeZ7q2tF779+/fzEWve9cs8l9lhJeusQXuvZcCVVaByyKd9JbSXCeLtt6PM5D11muTP11SUsak0JUOo8sv+nWA5/9LpTCpBR9xuQwVzrjkqH2MAxvMBgMBleBi5NWqqXlinkpnyRrJQkar7VNZEmWoSuyJsPS2GRxOQkrWgQpHd2lxCb5oS7xZi843jWnJOsgg3BsmGNMaeh1DiwxSQkPTmTgElGBrrkug/mEY+appVOS7XKix0xD1zl3gtMEGdGRUpY90er6OY/NBBh3z7DNEJNTmMRQLW6yntTqxzF5lnEkIeL6WVcCVI/19u3bp3HKi+TkAnnPJnHxtbbXn4XZYsY8b/U7aqIqQWtdaz0Ha0If58yianoNKtg+J5XuVLCpqqBno/bpGreK2WlblUVQ3LkTy9gr3Vlr+zzTfNiGyBW406tyBMPwBoPBYHAVuJjhffXVV0++X+e/llVEX7MshU7WiimqtIQ7+SHXHmOt3JTQgWnPzrJP/nzG8Fw6spCEgF3cJ6XMd/GRxPBSmvJauQxB35XFVVOzyfD2CkBra6n6nkAvAFmas2JTsWsSdT4SrxIcG3Xtf+pxU6F2N2Ye37VCSS1WXEE9mTxjOIzhOe8HmSRR58+x0WPiirBdW6/kIbi7u1vffvvtEyMSu3ByU4x10QvlxMo1PrIMlmjU9cEGpb/++utaayvN5diT81S51xXJy0BvW2WHvN56NmvMTqxaoHSdGJ4Kz8UAnWRjilWzlGqtbQNYzkNzqCUojN1dJFd5+JuDwWAwGPyNcRHDu729Xe/evdtYRNWCEyOQBaRf5k7ElU06hT3pr7W2MTr6p10mGq1wWoHOJ8yx7MXlKhIbZJGnawuTMkeTNVrfS5aqK8ZnPIcNP8XsXBxDeHh4aJmNYsBrbeNknH8HZ6Wn65GK79fashkyFHoc6v+McR2JRQnuetdt3ToQkki6i02lrExmrHbXLBXLu+J4Wt7MxKzeARc377I0a4avWJOTGEwZ1szWrNt3+QV13xViQGI8iiuKLbm2Trzf9+QCK9IYuQ7qOSbD4/nVdXLZwXpPfzVfMTs+Z91+mJnPvA43Fr7m/NZ6fgaJdV7yLB6GNxgMBoOrwKsYHjOeqlWh/2WFsUW7s5rr/rvXXQacIEbJpofVSmNcr4srEfwstW9x494TU+3Eo/m3a2FD5sqYDmsV6/9keozludo9/f3rr7/aWsO7u7uNP7+Ly6VanHoMZtrtWYoVSdg8tbiq7+3F4dx8EtPn8V3GZfqr43Xrm5Y+2UDnWdgT8q6f8dwwDliZC+NYXR2ejssaxHqtUzugVA9c58/znjJT62sxHmaD13thrZesJ7XT6lqopfg/49yd54lzZ6ZnlQ2jpCGzNFkDWfM3yGqTx6SbO587rnGvnkXKkB1pscFgMBgMgFfV4fHXuGb5sDKfWZsuyzBZx7QQnRWfWFNqL1/fc7VlCbQCadV2AtdJgYKWb7VikrLKEdUWZr2m9kqVrTFLk2zAZXa6Br0pDqK1Q4bqmClfp3ZObs4p85JqD3V//C5ZYwWvJTPrnJWeRJQTw6xjZOwx1Va6mkrGbF1WJsdx1FJ2NXB7NYn1XDF+1Vnpt7e365tvvnk6jp4x9Z4WAyGLYtzMZTHuKXY4pi9WRAbWsXidZ7broeJPPbeMPVKNqmOhjNUfYYU6NuvtmJPhYvDpfuJzzj1DmEGubRUbdc8Vxm2PYBjeYDAYDK4C84M3GAwGg6vAqzqeC6LElaJTWoxBcLkjnEskuXhS0kf9Dul5ckHW/+mq4PEdjU4SS13heXLJcT7V5eMSWSroPnDp1qkA2UlKsbA8ucxcSnH9bice7VyadX9JXJfydPWc0LWTXJlOtDx16uYcO4FcrlFXmM4EndQHzZ0T7oNuqq54nNeM11Y40vcxXRu3Dd2Jneus3nudm/729nZTpFyTLTRniUcTzi3JMIvrAF+3rcdjZ266jV3ogdeQ2xzBXhmOK0/idzuRb73HIn/Ol+eu7tclUtV913sjlddQaLr+xjiBiqPC/MPwBoPBYHAVeFXSCq3naiEoAEv2QhFkF6B20jMOdduO/a2V26mslZMVOiRh3K74kZZNKiJ3zIXzIdtgMJv/r7VNQHGswLG++h1X2MoSg702HafTaTMf1wqF+yeLO1I2krapa4fjdS2EeLwUkOf6c2Le/C6ZnWNCZKYpAaVj3iw8FzoLf687u9uG54aMzImjH0mSkQUvtuGk+PTc4ZzIdusYklwXhZo5z7W2nioKGXflVzovbCHEMom1vEB/fZ/eKrctyxLE0lyJyV6ySncN0jNQ83Ism/Jm9Mi4tkcqR7ik3ZowDG8wGAwGV4FXNYDl/5Up0JrT664EgIXsqejVpbLTeknxuApalYytuJYrLjZXt6V17tLSUxF5Z2knS47swM2X55xMz6Wy76W9V4ZHK6xjXufzeT08PEQGVt/bi3UeEc5OrMNZpCmWx1hb3R/ZC6XGXFnK3vi7eTGmwcJzF29Oqez86+LpHDvLMFzcj4LnPG5lTK7kJLG98/m8zufzE6sSnIeCBdFqTq1166Sw0vrl+alF1mI6GgM9V67ZaYqtuzg8kcp9+Oxw7XooXSa2xmLy+h5jdxSLZiulejzGl919REhsm6Lcmk9tMq7PdJx3794dbgI7DG8wGAwGV4GLY3hVAFi/qvWXm2LD+ozSVK6JZ2on4YRYBVo2tCJcrCC1oGfRapelmTKgOoZHC5+FptXSphWeWIiTWWI8LhUtu8zOJNrq4pzaf7WE95g1r6lrCkpWwX3Wc75XrO4Kznk8xhbI9F2GL0E245DYLTNXnZWeGL0rVifr2/NCuMLdFLNzLDQ1eeZ5rfcm19XDw0M8d6fTaX38+PGpyWonCK99iKFo/078XOyFzx/e92JGKoKuc2HeAcdRzxfzGHR8ZbaLuTgxhtS0mmvK5TfQ66bjMl5X/xfTS2xQ575e0xSbFLpcCa5rPiPrvHS+tB7ev38fGTAxDG8wGAwGV4GLY3g3NzcbH3S1SPSrTgtI39Wvs6tT2/u715Syftf5mAVZS2R2srycuHKdv0Nib3VMtI67DNMUZxS6zMjEVMnenBA02QGvsWOSbs4OdVtXz8XzxLF0ElBHhMbrvurxUgumTuqLNagpo7S+50SU19oybzd2ehY6hp8aY/Kcd5mSySvh9u1i0HU+LnbTeW2I0+n0In7mMpMFxg91fcRcFCta6zkzUOyF42cbn9qElM8KSoCRRdXjqaWQXnOs9ZykLNz07Kjbpia4ST6szosNYCkm7bInU0sxtmpzbZ1Yi0zvgMtcrs+fEY8eDAaDwaDgYoZ3d3f39EveZU2y8StbCTlR1RSvooVSj7eXldmJVdPiIaOodTopS5Pz7tga50OrzFkpSXCY7MO1h0l1Uc5qTPvbU7+o+zudTu33b25uNlZ0p/KRstaOsIIj5zhdD7KEIxZ3yqKt73Edc2zdOujifBxjqmdkhp1jWWzHwnm5eq+97FNXr5sEph3O5/P6/PnzJpvRMTwdg/eAa65aRe/XemZ6zLhlrM/tj94iZkSv9ezdEhjj4pjrHOmlSTE8lxvB1xo717t7j+uM1981/+a8UlZq/Z/xX76uY+Sz6ii7W2sY3mAwGAyuBPODNxgMBoOrwKs6nqd007WeKS+pPQtmXQEzaTkTEeRacO4UunwofdMVkdN9k1KBj8C5dTph6Qr3fkoa6USdkxskCbTW/adyBCcyQPfdnqvxfD5vhHqdCDHLHQS6P+p+XFp23ad7TRGEJP3WuTRZpN5twzXK43Cfbn/JldmJse9J2V3inhScTBjXCpNi3HPiCCRakM59/Z9JEEwiqq4xJbDoeZb6VXZJUpTeklvUXS8mmiU3pZPbY6hhL/xT58HrwXVY70G+xzIynTNX5qHicM6nk3dL15RuZZeM04UAEobhDQaDweAqcDHDe/v27SZd3xUCM1DpmB23SQkafF2lcFhcSXkyJ8i7l9LrmNgR+ayjSJ2HLykEJ1vrElA4n67w879JdKnC4sT5fF6Pj48x7djNTWnTLLOoSMkVtC47lsH9cp05CbY6r/qX7/OY7jgdyJrEUMjeOtGC1HHdreW9kga3rcaUmHnn9RC61lJieI7ZcXy8PrxPXJsZfVZLFtbKMon1eLy3tGacYHZKNGGhvmPcAj0afD50bE1I0l9rbUUrNH61XWK7nno+k/B8Ek2v2yQZPCaQ1feO3D/EMLzBYDAYXAUulha7u7uLFvFameGxLMH5cWmlJ9koF0eiXNKRdi1Csl7rcfasiSPWs7AXq6yfpdhaEnl2+92TJTuyX2dd8zrtnaPHx8dNHKla+nspyY7NpqLxFB+p4PhTw1lXMM/PGFc4IgSdxuPOcRIcd8X+eyLI9Cx0MRBa567MZ28bB8baO+FkPXe6Upl0f5DhVTbDe0sQa2GrM/fcUasaijm4MohUytAV9fN5llqaOXELrjPKrDlmy/tG89G5YCujWtqRvE6Kb4r91vPIlkhco3pdvXq8/vf394fZ3jC8wWAwGFwFbi7JcLm5ufn3Wutf/7vhDP4P8M/z+fwPvjlrZ3AAs3YGr4VdO8RFP3iDwWAwGPxdMS7NwWAwGFwF5gdvMBgMBleB+cEbDAaDwVVgfvAGg8FgcBWYH7zBYDAYXAXmB28wGAwGV4H5wRsMBoPBVWB+8AaDwWBwFZgfvMFgMBhcBf4DRb0yzw2u6EMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -876,7 +852,7 @@ " use_r=True,\n", " lambda_=0.5,\n", " eval_every=1000,\n", - " passes=10,\n", + " passes=1,\n", " sparse_coef=0,\n", " id2word={idx:idx for idx in range(faces.shape[1])},\n", " num_topics=n_components,\n", diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 0de3bd19a3..f019d81626 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -82,7 +82,7 @@ def __init__( self.A = None self.B = None - self.w_avg = None + self.w_std = None if store_r: self._R = [] @@ -234,17 +234,17 @@ def _setup(self, corpus): first_doc = next(first_doc_it[0]) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] self.n_features = first_doc.shape[0] - self.w_avg = np.sqrt( + self.w_std = np.sqrt( first_doc.mean() / (self.n_features * self.num_topics) ) self._W = np.abs( - self.w_avg + self.w_std * halfnorm.rvs(size=(self.n_features, self.num_topics)) ) - is_great_enough = self._W > self.w_avg * self.sparse_coef + is_great_enough = self._W > self.w_std * self.sparse_coef self._W *= is_great_enough | ~is_great_enough.all(axis=0) @@ -375,8 +375,8 @@ def __transform(self): sumsq = np.repeat(sumsq, self._W.getnnz(axis=0)) self._W.data /= sumsq - is_great_enough_data = self._W.data > self.w_avg * self.sparse_coef - is_great_enough = self._W.toarray() > self.w_avg * self.sparse_coef + is_great_enough_data = self._W.data > self.w_std * self.sparse_coef + is_great_enough = self._W.toarray() > self.w_std * self.sparse_coef is_all_too_small = is_great_enough.sum(axis=0) == 0 is_all_too_small = np.repeat( is_all_too_small, @@ -407,7 +407,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): WtW = W.T.dot(W) - # eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 + eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 _h_r_error = None @@ -418,11 +418,11 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): Wt_v_minus_r = W.T.dot(v - r) - h_ = h.toarray() - error_ += solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) - h = scipy.sparse.csr_matrix(h_) - # h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) - # error_ += error_h + # h_ = h.toarray() + # error_ += solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) + # h = scipy.sparse.csr_matrix(h_) + h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) + error_ += error_h if self.use_r: r_actual = v - W.dot(h) From 74ba37dff793c6776d9808dd3b6e55a69ffce6c5 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Sun, 7 Oct 2018 12:13:05 +0300 Subject: [PATCH 071/144] Train on wikipedia --- docs/notebooks/nmf-wikipedia.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/notebooks/nmf-wikipedia.ipynb b/docs/notebooks/nmf-wikipedia.ipynb index 895acde5ab..ec7988c025 100644 --- a/docs/notebooks/nmf-wikipedia.ipynb +++ b/docs/notebooks/nmf-wikipedia.ipynb @@ -3505,7 +3505,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.7.0" } }, "nbformat": 4, From c94326410cce426146b05583ed3b79c15e006904 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 9 Oct 2018 14:41:01 +0300 Subject: [PATCH 072/144] Sparse coef -> density. More stable way to sparsify W matrix --- gensim/models/nmf.py | 59 ++++++++++++++++++++++---------------------- 1 file changed, 30 insertions(+), 29 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index f019d81626..707c35b758 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -35,7 +35,8 @@ def __init__( eval_every=10, v_max=None, normalize=True, - sparse_coef=3 + sparse_coef=3, + w_density=0.1 ): """ @@ -73,11 +74,10 @@ def __init__( self._w_stop_condition = w_stop_condition self._h_r_max_iter = h_r_max_iter self._h_r_stop_condition = h_r_stop_condition - self._H = [] self.v_max = v_max self.eval_every = eval_every self.normalize = normalize - self.sparse_coef = sparse_coef + self.w_density = w_density self.A = None self.B = None @@ -228,6 +228,22 @@ def get_document_topics(self, bow, minimum_probability=None): if not minimum_probability or proba > minimum_probability ] + @staticmethod + def _sparsify(csc, density): + for col_idx in range(csc.shape[1]): + zero_count = csc.shape[0] - csc[:, col_idx].nnz + to_eliminate_count = int(csc.shape[0] * (1 - density)) - zero_count + + if to_eliminate_count > 0: + indices_to_eliminate = np.argpartition( + csc[:, col_idx].data, + to_eliminate_count + )[:to_eliminate_count] + + csc.data[csc.indptr[col_idx] + indices_to_eliminate] = 0 + + csc.eliminate_zeros() + def _setup(self, corpus): self._h, self._r = None, None first_doc_it = itertools.tee(corpus, 1) @@ -244,11 +260,12 @@ def _setup(self, corpus): * halfnorm.rvs(size=(self.n_features, self.num_topics)) ) - is_great_enough = self._W > self.w_std * self.sparse_coef - - self._W *= is_great_enough | ~is_great_enough.all(axis=0) + # is_great_enough = self._W > self.w_std * self.sparse_coef + # + # self._W *= is_great_enough | ~is_great_enough.all(axis=0) self._W = scipy.sparse.csc_matrix(self._W) + self._sparsify(self._W, self.w_density) self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) @@ -275,15 +292,14 @@ def update(self, corpus, chunks_as_numpy=False): v = matutils.corpus2csc(chunk, len(self.id2word)).tocsr() self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) h, r = self._h, self._r - self._H.append(h) if self._R is not None: self._R.append(r) self.A += h.dot(h.T) - self.A *= (max(len(self._H) - 1, 1)) / len(self._H) + self.A *= (max(chunk_idx - 1, 1)) / chunk_idx self.B += (v - r).dot(h.T) - self.B *= (max(len(self._H) - 1, 1)) / len(self._H) + self.B *= (max(chunk_idx - 1, 1)) / chunk_idx self._solve_w() @@ -337,15 +353,12 @@ def error(): @staticmethod def __solve_r(r, r_actual, lambda_, v_max): - r_actual_sign = np.sign(r_actual.data) - - np.abs(r_actual.data, out=r_actual.data) - r_actual.data -= lambda_ - np.maximum(r_actual.data, 0.0, out=r_actual.data) - - r_actual.data *= r_actual_sign + r_actual.data *= np.abs(r_actual.data) > lambda_ r_actual.eliminate_zeros() + r_actual.data -= (r_actual.data > 0) * lambda_ + r_actual.data += (r_actual.data < 0) * lambda_ + np.clip(r_actual.data, -v_max, v_max, out=r_actual.data) violation = scipy.sparse.linalg.norm(r - r_actual) @@ -374,19 +387,7 @@ def __transform(self): np.maximum(sumsq, 1, out=sumsq) sumsq = np.repeat(sumsq, self._W.getnnz(axis=0)) self._W.data /= sumsq - - is_great_enough_data = self._W.data > self.w_std * self.sparse_coef - is_great_enough = self._W.toarray() > self.w_std * self.sparse_coef - is_all_too_small = is_great_enough.sum(axis=0) == 0 - is_all_too_small = np.repeat( - is_all_too_small, - self._W.getnnz(axis=0) - ) - - is_great_enough_data |= is_all_too_small - - self._W.data *= is_great_enough_data - self._W.eliminate_zeros() + self._sparsify(self._W, self.w_density) def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape From a95e3457ffdbdc1b82b338765af162505bc73e69 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 9 Oct 2018 22:58:34 +0300 Subject: [PATCH 073/144] Return old sparse algo --- gensim/models/nmf.py | 67 ++++++++++++++++++++++++++++++++++---------- 1 file changed, 52 insertions(+), 15 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 707c35b758..e5d623693b 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -78,6 +78,7 @@ def __init__( self.eval_every = eval_every self.normalize = normalize self.w_density = w_density + self.sparse_coef = sparse_coef self.A = None self.B = None @@ -230,19 +231,41 @@ def get_document_topics(self, bow, minimum_probability=None): @staticmethod def _sparsify(csc, density): - for col_idx in range(csc.shape[1]): - zero_count = csc.shape[0] - csc[:, col_idx].nnz - to_eliminate_count = int(csc.shape[0] * (1 - density)) - zero_count + zero_count = csc.shape[0] * csc.shape[1] - csc.nnz + to_eliminate_count = int(csc.nnz * (1 - density)) - zero_count + indices_to_eliminate = np.argpartition(csc.data, to_eliminate_count)[:to_eliminate_count] + csc.data[indices_to_eliminate] = 0 - if to_eliminate_count > 0: - indices_to_eliminate = np.argpartition( - csc[:, col_idx].data, - to_eliminate_count - )[:to_eliminate_count] + csc.eliminate_zeros() - csc.data[csc.indptr[col_idx] + indices_to_eliminate] = 0 + for col_idx in range(csc.shape[1]): + if csc[:, col_idx].nnz == 0: + random_index = np.random.randint(csc.shape[0]) + csc[random_index, col_idx] = 1e-8 - csc.eliminate_zeros() + # for col_idx in range(csc.shape[1]): + # zero_count = csc.shape[0] - csc[:, col_idx].nnz + # to_eliminate_count = int(csc.shape[0] * (1 - density)) - zero_count + # + # if to_eliminate_count > 0: + # indices_to_eliminate = np.argpartition( + # csc[:, col_idx].data, + # to_eliminate_count + # )[:to_eliminate_count] + # + # csc.data[csc.indptr[col_idx] + indices_to_eliminate] = 0 + + # for row_idx in range(csc.shape[0]): + # zero_count = csc.shape[1] - csc[row_idx, :].nnz + # to_eliminate_count = int(csc.shape[1] * (1 - density)) - zero_count + # + # if to_eliminate_count > 0: + # indices_to_eliminate = np.argpartition( + # csc[row_idx, :].data, + # to_eliminate_count + # )[:to_eliminate_count] + # + # csc[row_idx, :].data[indices_to_eliminate] = 0 def _setup(self, corpus): self._h, self._r = None, None @@ -260,12 +283,12 @@ def _setup(self, corpus): * halfnorm.rvs(size=(self.n_features, self.num_topics)) ) - # is_great_enough = self._W > self.w_std * self.sparse_coef - # - # self._W *= is_great_enough | ~is_great_enough.all(axis=0) + is_great_enough = self._W > self.w_std * self.sparse_coef + + self._W *= is_great_enough | ~is_great_enough.all(axis=0) self._W = scipy.sparse.csc_matrix(self._W) - self._sparsify(self._W, self.w_density) + # self._sparsify(self._W, self.w_density) self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) @@ -387,7 +410,21 @@ def __transform(self): np.maximum(sumsq, 1, out=sumsq) sumsq = np.repeat(sumsq, self._W.getnnz(axis=0)) self._W.data /= sumsq - self._sparsify(self._W, self.w_density) + + # self._sparsify(self._W, self.w_density) + + is_great_enough_data = self._W.data > self.w_std * self.sparse_coef + is_great_enough = self._W.toarray() > self.w_std * self.sparse_coef + is_all_too_small = is_great_enough.sum(axis=0) == 0 + is_all_too_small = np.repeat( + is_all_too_small, + self._W.getnnz(axis=0) + ) + + is_great_enough_data |= is_all_too_small + + self._W.data *= is_great_enough_data + self._W.eliminate_zeros() def _solveproj(self, v, W, h=None, r=None, v_max=None): m, n = W.shape From 0f904845d8bbceea66f36b1819c9c7da4391d172 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 9 Oct 2018 23:10:33 +0300 Subject: [PATCH 074/144] Max --- gensim/models/nmf.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index e5d623693b..75f4d7e5da 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -460,7 +460,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): # error_ += solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) # h = scipy.sparse.csr_matrix(h_) h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) - error_ += error_h + error_ = max(error_, error_h) if self.use_r: r_actual = v - W.dot(h) @@ -471,7 +471,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): # self.v_max # ) # r = r_actual - error_ += self.__solve_r(r, r_actual, self._lambda_, self.v_max) + error_ = max(error_, self.__solve_r(r, r_actual, self._lambda_, self.v_max)) error_ /= m From 6ae43e4748a89f611431da6b0e96afc3cee38b5f Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 10 Oct 2018 14:46:12 +0300 Subject: [PATCH 075/144] Optimizations --- gensim/models/nmf.py | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 75f4d7e5da..cdbaaf8553 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -456,22 +456,22 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): Wt_v_minus_r = W.T.dot(v - r) - # h_ = h.toarray() - # error_ += solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) - # h = scipy.sparse.csr_matrix(h_) - h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) - error_ = max(error_, error_h) + h_ = h.toarray() + error_ = max(error_, solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa)) + h = scipy.sparse.csr_matrix(h_) + # h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) + # error_ = max(error_, error_h) if self.use_r: r_actual = v - W.dot(h) - # error_ += solve_r( - # r.indptr, r.indices, r.data, - # r_actual.indptr, r_actual.indices, r_actual.data, - # self._lambda_, - # self.v_max - # ) - # r = r_actual - error_ = max(error_, self.__solve_r(r, r_actual, self._lambda_, self.v_max)) + error_ = max(error_, solve_r( + r.indptr, r.indices, r.data, + r_actual.indptr, r_actual.indices, r_actual.data, + self._lambda_, + self.v_max + )) + r = r_actual + # error_ = max(error_, self.__solve_r(r, r_actual, self._lambda_, self.v_max)) error_ /= m From 335170b31606060271d9ba30558f9c9ca81c4c39 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Wed, 10 Oct 2018 18:25:07 +0300 Subject: [PATCH 076/144] Fix A and B computation --- gensim/models/nmf.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index cdbaaf8553..b26af60b83 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -35,8 +35,7 @@ def __init__( eval_every=10, v_max=None, normalize=True, - sparse_coef=3, - w_density=0.1 + sparse_coef=3 ): """ @@ -77,7 +76,6 @@ def __init__( self.v_max = v_max self.eval_every = eval_every self.normalize = normalize - self.w_density = w_density self.sparse_coef = sparse_coef self.A = None @@ -318,11 +316,13 @@ def update(self, corpus, chunks_as_numpy=False): if self._R is not None: self._R.append(r) + self.A *= chunk_idx - 1 self.A += h.dot(h.T) - self.A *= (max(chunk_idx - 1, 1)) / chunk_idx + self.A /= chunk_idx + self.B *= chunk_idx - 1 self.B += (v - r).dot(h.T) - self.B *= (max(chunk_idx - 1, 1)) / chunk_idx + self.B /= chunk_idx self._solve_w() From 4cc8f1bc59a9819593148df742bf060234cfd2de Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 11 Oct 2018 01:00:11 +0300 Subject: [PATCH 077/144] Fix A and B normalization --- gensim/models/nmf.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index b26af60b83..f68ea1c93b 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -316,11 +316,11 @@ def update(self, corpus, chunks_as_numpy=False): if self._R is not None: self._R.append(r) - self.A *= chunk_idx - 1 + self.A *= (chunk_idx - 1) self.A += h.dot(h.T) self.A /= chunk_idx - self.B *= chunk_idx - 1 + self.B *= (chunk_idx - 1) self.B += (v - r).dot(h.T) self.B /= chunk_idx From 5c6fe60a5a6425c844b952d911ab62bbf2ed69cd Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 23 Oct 2018 18:16:17 +0300 Subject: [PATCH 078/144] Add random_state --- gensim/models/nmf.py | 7 +- gensim/models/nmf_pgd.pyx | 332 +++++++++++++++++++++----------------- 2 files changed, 193 insertions(+), 146 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index f68ea1c93b..327cc86305 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -35,7 +35,8 @@ def __init__( eval_every=10, v_max=None, normalize=True, - sparse_coef=3 + sparse_coef=3, + random_state=None ): """ @@ -77,6 +78,7 @@ def __init__( self.eval_every = eval_every self.normalize = normalize self.sparse_coef = sparse_coef + self.random_state = utils.get_random_state(random_state) self.A = None self.B = None @@ -278,7 +280,7 @@ def _setup(self, corpus): self._W = np.abs( self.w_std - * halfnorm.rvs(size=(self.n_features, self.num_topics)) + * halfnorm.rvs(size=(self.n_features, self.num_topics), random_state=self.random_state) ) is_great_enough = self._W > self.w_std * self.sparse_coef @@ -310,6 +312,7 @@ def update(self, corpus, chunks_as_numpy=False): for chunk in utils.grouper( corpus, self.chunksize, as_numpy=chunks_as_numpy ): + self.random_state.shuffle(chunk) v = matutils.corpus2csc(chunk, len(self.id2word)).tocsr() self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) h, r = self._h, self._r diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index a3354cd59f..888fb4fb57 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -10,6 +10,50 @@ from libc.math cimport sqrt, fabs, fmin, fmax, copysign from cython.parallel import prange import numpy as np +# def solve_h_sparse(h, Wt_v_minus_r, WtW, double kappa): +# cdef Py_ssize_t [:] h_indptr = h.indptr +# cdef Py_ssize_t [:] h_indices = h.indices +# cdef double [:] h_data = h.data +# +# cdef Py_ssize_t [:] Wt_v_minus_r_indptr = Wt_v_minus_r.indptr +# cdef Py_ssize_t [:] Wt_v_minus_r_indices = Wt_v_minus_r.indices +# cdef double [:] Wt_v_minus_r_data = Wt_v_minus_r.data +# +# cdef Py_ssize_t [:] WtW_indptr = WtW.indptr +# cdef Py_ssize_t [:] WtW_indices = WtW.indices +# cdef double [:] WtW_data = WtW.data +# +# cdef Py_ssize_t n_components = h.shape[0] +# cdef Py_ssize_t n_samples = h.shape[1] +# cdef double violation = 0 +# cdef double grad, projected_grad, hessian +# cdef Py_ssize_t sample_idx = 0 +# cdef Py_ssize_t component_idx_1 = 0 +# cdef Py_ssize_t component_idx_2 = 0 +# +# +# for sample_idx in range(n_samples): +# for component_idx_1 in prange(n_components, nogil=True): +# +# grad = -Wt_v_minus_r_data[component_idx_1, sample_idx] +# +# for component_idx_2 in range(n_components): +# grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] +# +# hessian = WtW[component_idx_1, component_idx_1] +# +# grad = grad * kappa / hessian +# +# projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad +# +# violation += projected_grad * projected_grad +# +# h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) +# +# h.eliminate_zeros() +# +# return sqrt(violation) + def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): cdef Py_ssize_t n_components = h.shape[0] cdef Py_ssize_t n_samples = h.shape[1] @@ -19,8 +63,8 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou cdef Py_ssize_t component_idx_1 = 0 cdef Py_ssize_t component_idx_2 = 0 - for component_idx_1 in range(n_components): - for sample_idx in prange(n_samples, nogil=True): + for sample_idx in range(n_samples): + for component_idx_1 in prange(n_components, nogil=True): grad = -Wt_v_minus_r[component_idx_1, sample_idx] @@ -39,145 +83,145 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou return sqrt(violation) -def solve_r( - int[::1] r_indptr, - int[::1] r_indices, - double[::1] r_data, - int[::1] r_actual_indptr, - int[::1] r_actual_indices, - double[::1] r_actual_data, - double lambda_, - double v_max - ): - cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 - cdef double violation = 0 - cdef double r_actual_sign = 1.0 - cdef Py_ssize_t sample_idx - - cdef Py_ssize_t r_col_size = 0 - cdef Py_ssize_t r_actual_col_size = 0 - cdef Py_ssize_t r_col_idx_idx = 0 - cdef Py_ssize_t r_actual_col_idx_idx - - cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) - cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) - - for sample_idx in prange(n_samples, nogil=True): - r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] - r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] - - r_col_indices[sample_idx] = 0 - r_actual_col_indices[sample_idx] = 0 - - while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: - r_col_idx_idx = r_indices[ - r_indptr[sample_idx] - + r_col_indices[sample_idx] - ] - r_actual_col_idx_idx = r_actual_indices[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] - - if r_col_idx_idx >= r_actual_col_idx_idx: - r_actual_sign = copysign( - r_actual_sign, - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] - ) - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fabs( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] - ) - lambda_ - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fmax( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ], - 0 - ) - - if ( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] != 0 - ): - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = copysign( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ], - r_actual_sign - ) - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fmax( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ], - -v_max - ) - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fmin( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ], - v_max - ) - - if r_col_idx_idx == r_actual_col_idx_idx: - violation += ( - r_data[ - r_indptr[sample_idx] - + r_col_indices[sample_idx] - ] - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] - ) ** 2 - else: - violation += r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] ** 2 - - if r_actual_col_indices[sample_idx] < r_actual_col_size: - r_actual_col_indices[sample_idx] += 1 - else: - r_col_indices[sample_idx] += 1 - else: - violation += r_data[ - r_indptr[sample_idx] - + r_col_indices[sample_idx] - ] ** 2 - - if r_col_indices[sample_idx] < r_col_size: - r_col_indices[sample_idx] += 1 - else: - r_actual_col_indices[sample_idx] += 1 - - return sqrt(violation) +# def solve_r( +# int[::1] r_indptr, +# int[::1] r_indices, +# double[::1] r_data, +# int[::1] r_actual_indptr, +# int[::1] r_actual_indices, +# double[::1] r_actual_data, +# double lambda_, +# double v_max +# ): +# cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 +# cdef double violation = 0 +# cdef double r_actual_sign = 1.0 +# cdef Py_ssize_t sample_idx +# +# cdef Py_ssize_t r_col_size = 0 +# cdef Py_ssize_t r_actual_col_size = 0 +# cdef Py_ssize_t r_col_idx_idx = 0 +# cdef Py_ssize_t r_actual_col_idx_idx +# +# cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) +# cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) +# +# for sample_idx in prange(n_samples, nogil=True): +# r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] +# r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] +# +# r_col_indices[sample_idx] = 0 +# r_actual_col_indices[sample_idx] = 0 +# +# while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: +# r_col_idx_idx = r_indices[ +# r_indptr[sample_idx] +# + r_col_indices[sample_idx] +# ] +# r_actual_col_idx_idx = r_actual_indices[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] +# +# if r_col_idx_idx >= r_actual_col_idx_idx: +# r_actual_sign = copysign( +# r_actual_sign, +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] +# ) +# +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] = fabs( +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] +# ) - lambda_ +# +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] = fmax( +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ], +# 0 +# ) +# +# if ( +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] != 0 +# ): +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] = copysign( +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ], +# r_actual_sign +# ) +# +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] = fmax( +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ], +# -v_max +# ) +# +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] = fmin( +# r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ], +# v_max +# ) +# +# if r_col_idx_idx == r_actual_col_idx_idx: +# violation += ( +# r_data[ +# r_indptr[sample_idx] +# + r_col_indices[sample_idx] +# ] +# - r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] +# ) ** 2 +# else: +# violation += r_actual_data[ +# r_actual_indptr[sample_idx] +# + r_actual_col_indices[sample_idx] +# ] ** 2 +# +# if r_actual_col_indices[sample_idx] < r_actual_col_size: +# r_actual_col_indices[sample_idx] += 1 +# else: +# r_col_indices[sample_idx] += 1 +# else: +# violation += r_data[ +# r_indptr[sample_idx] +# + r_col_indices[sample_idx] +# ] ** 2 +# +# if r_col_indices[sample_idx] < r_col_size: +# r_col_indices[sample_idx] += 1 +# else: +# r_actual_col_indices[sample_idx] += 1 +# +# return sqrt(violation) From dd459a260d58dc30ece30281e0ea6dea9ef72111 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 23 Oct 2018 18:21:37 +0300 Subject: [PATCH 079/144] Infer id2word --- gensim/models/nmf.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 327cc86305..7efb01d99f 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -80,6 +80,9 @@ def __init__( self.sparse_coef = sparse_coef self.random_state = utils.get_random_state(random_state) + if self.id2word is None: + self.id2word = utils.dict_from_corpus(corpus) + self.A = None self.B = None From 5121d858e2ba28b76ba791f10f94bcf44d48b5e9 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 6 Nov 2018 17:44:27 +0300 Subject: [PATCH 080/144] Fix tests --- gensim/models/nmf.py | 98 +++++++++----- gensim/test/test_nmf.py | 291 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 354 insertions(+), 35 deletions(-) create mode 100644 gensim/test/test_nmf.py diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 7efb01d99f..d293d87076 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -7,6 +7,7 @@ from gensim import interfaces from gensim.models import basemodel from gensim.models.nmf_pgd import solve_h, solve_r +from gensim.interfaces import TransformedCorpus import itertools logger = logging.getLogger(__name__) @@ -17,26 +18,26 @@ class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """ def __init__( - self, - corpus=None, - num_topics=100, - id2word=None, - chunksize=2000, - passes=1, - lambda_=1., - kappa=1., - minimum_probability=0.01, - use_r=False, - store_r=False, - w_max_iter=200, - w_stop_condition=1e-4, - h_r_max_iter=50, - h_r_stop_condition=1e-3, - eval_every=10, - v_max=None, - normalize=True, - sparse_coef=3, - random_state=None + self, + corpus=None, + num_topics=100, + id2word=None, + chunksize=2000, + passes=1, + lambda_=1., + kappa=1., + minimum_probability=0.01, + use_r=False, + store_r=False, + w_max_iter=200, + w_stop_condition=1e-4, + h_r_max_iter=50, + h_r_stop_condition=1e-3, + eval_every=10, + v_max=None, + normalize=True, + sparse_coef=3, + random_state=None ): """ @@ -131,7 +132,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): sorted_topics = list(matutils.argsort(sparsity)) chosen_topics = ( - sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2:] + sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2:] ) shown = [] @@ -215,21 +216,30 @@ def get_term_topics(self, word_id, minimum_probability=None): return values def get_document_topics(self, bow, minimum_probability=None): + if minimum_probability is None: + minimum_probability = self.minimum_probability + minimum_probability = max(minimum_probability, 1e-8) + + # if the input vector is a corpus, return a transformed corpus + is_corpus, corpus = utils.is_corpus(bow) + + if is_corpus: + kwargs = dict( + minimum_probability=minimum_probability, + ) + return self._apply(corpus, **kwargs) + v = matutils.corpus2csc([bow], len(self.id2word)).tocsr() h, _ = self._solveproj(v, self._W, v_max=np.inf) if self.normalize: - h /= h.sum(axis=0) - - if minimum_probability is None: - minimum_probability = self.minimum_probability - minimum_probability = max(minimum_probability, 1e-8) + h.data /= h.sum() return [ - (idx, proba) + (idx, proba.toarray()[0, 0]) for idx, proba in enumerate(h[:, 0]) - if not minimum_probability or proba > minimum_probability + if not minimum_probability or proba.toarray()[0, 0] > minimum_probability ] @staticmethod @@ -313,7 +323,7 @@ def update(self, corpus, chunks_as_numpy=False): for _ in range(self.passes): for chunk in utils.grouper( - corpus, self.chunksize, as_numpy=chunks_as_numpy + corpus, self.chunksize, as_numpy=chunks_as_numpy ): self.random_state.shuffle(chunk) v = matutils.corpus2csc(chunk, len(self.id2word)).tocsr() @@ -358,8 +368,8 @@ def error(): # print(type(self.B)) # print(self.B[:5, :5]) return ( - 0.5 * self._W.T.dot(self._W).dot(self.A).diagonal().sum() - - self._W.T.dot(self.B).diagonal().sum() + 0.5 * self._W.T.dot(self._W).dot(self.A).diagonal().sum() + - self._W.T.dot(self.B).diagonal().sum() ) eta = self._kappa / scipy.sparse.linalg.norm(self.A) @@ -371,7 +381,7 @@ def error(): logger.debug("w_error: %s" % self._w_error) self._W -= eta * (self._W.dot(self.A) - self.B) - self.__transform() + self._transform() error_ = error() @@ -380,8 +390,26 @@ def error(): self._w_error = error_ + def _apply(self, corpus, chunksize=None, **kwargs): + """Apply the transformation to a whole corpus and get the result as another corpus. + + Parameters + ---------- + corpus : iterable of list of (int, number) + Corpus in sparse Gensim bag-of-words format. + chunksize : int, optional + If provided, a more effective processing will performed. + + Returns + ------- + :class:`~gensim.interfaces.TransformedCorpus` + Transformed corpus. + + """ + return TransformedCorpus(self, corpus, chunksize, **kwargs) + @staticmethod - def __solve_r(r, r_actual, lambda_, v_max): + def _solve_r(r, r_actual, lambda_, v_max): r_actual.data *= np.abs(r_actual.data) > lambda_ r_actual.eliminate_zeros() @@ -399,7 +427,7 @@ def __solve_r(r, r_actual, lambda_, v_max): return violation @staticmethod - def __solve_h(h, Wt_v_minus_r, WtW, eta): + def _solve_h(h, Wt_v_minus_r, WtW, eta): grad = (WtW.dot(h) - Wt_v_minus_r) * eta grad = scipy.sparse.csr_matrix(grad) new_h = h - grad @@ -409,7 +437,7 @@ def __solve_h(h, Wt_v_minus_r, WtW, eta): return new_h, scipy.sparse.linalg.norm(grad) - def __transform(self): + def _transform(self): np.clip(self._W.data, 0, self.v_max, out=self._W.data) self._W.eliminate_zeros() sumsq = scipy.sparse.linalg.norm(self._W, axis=0) diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py new file mode 100644 index 0000000000..14a173aab2 --- /dev/null +++ b/gensim/test/test_nmf.py @@ -0,0 +1,291 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# +# Copyright (C) 2018 Timofey Yefimov +# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html + +""" +Automated tests for checking transformation algorithms (the models package). +""" + +import logging +import unittest +import numbers + +import six +import numpy as np + +from gensim.corpora import mmcorpus, Dictionary +from gensim.models import nmf +from gensim import matutils, utils +from gensim.test import basetmtests +from gensim.test.utils import datapath, get_tmpfile, common_texts + +dictionary = Dictionary(common_texts) +corpus = [dictionary.doc2bow(text) for text in common_texts] + + +def testRandomState(): + testcases = [np.random.seed(0), None, np.random.RandomState(0), 0] + for testcase in testcases: + assert (isinstance(utils.get_random_state(testcase), np.random.RandomState)) + + +class TestNmf(unittest.TestCase, basetmtests.TestBaseTopicModel): + def setUp(self): + self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) + self.class_ = nmf.Nmf + self.model = self.class_(corpus, id2word=dictionary, num_topics=2, passes=100) + + def testTransform(self): + # create the transformation model + model = self.class_(id2word=dictionary, num_topics=2, passes=100) + model.update(self.corpus) + + # transform one document + doc = list(corpus)[0] + transformed = model[doc] + + vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests + expected = [0., 1.] + # must contain the same values, up to re-ordering + self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-1)) + + @unittest.skip('top topics is not implemented') + def testTopTopics(self): + top_topics = self.model.top_topics(self.corpus) + + for topic, score in top_topics: + self.assertTrue(isinstance(topic, list)) + self.assertTrue(isinstance(score, float)) + + for v, k in topic: + self.assertTrue(isinstance(k, six.string_types)) + self.assertTrue(np.issubdtype(v, float)) + + def testGetTopicTerms(self): + topic_terms = self.model.get_topic_terms(1) + + for k, v in topic_terms: + self.assertTrue(isinstance(k, numbers.Integral)) + self.assertTrue(np.issubdtype(v, float)) + + def testGetDocumentTopics(self): + + model = self.class_( + self.corpus, id2word=dictionary, num_topics=2, passes=100, random_state=np.random.seed(0) + ) + + doc_topics = model.get_document_topics(self.corpus) + + for topic in doc_topics: + self.assertTrue(isinstance(topic, list)) + for k, v in topic: + self.assertTrue(isinstance(k, numbers.Integral)) + self.assertTrue(np.issubdtype(v, float)) + + # Test case to use the get_document_topic function for the corpus + all_topics = model.get_document_topics(self.corpus) + + print(list(all_topics)) + + for topic in all_topics: + self.assertTrue(isinstance(topic, list)) + for k, v in topic: # list of doc_topics + self.assertTrue(isinstance(k, numbers.Integral)) + self.assertTrue(np.issubdtype(v, float)) + + # FIXME: Fails on osx and win + # expected_word = 0 + # self.assertEqual(word_topics[0][0], expected_word) + # self.assertTrue(0 in word_topics[0][1]) + + def testTermTopics(self): + + model = self.class_( + self.corpus, id2word=dictionary, num_topics=2, passes=100, random_state=np.random.seed(0) + ) + + # check with word_type + result = model.get_term_topics(2) + for topic_no, probability in result: + self.assertTrue(isinstance(topic_no, int)) + self.assertTrue(np.issubdtype(probability, float)) + + # checks if topic '1' is in the result list + # FIXME: Fails on osx and win + # self.assertTrue(1 in result[0]) + + # if user has entered word instead, check with word + result = model.get_term_topics(str(model.id2word[2])) + for topic_no, probability in result: + self.assertTrue(isinstance(topic_no, int)) + self.assertTrue(np.issubdtype(probability, float)) + + # checks if topic '1' is in the result list + # FIXME: Fails on osx and win + # self.assertTrue(1 in result[0]) + + @unittest.skip("There's no offset member") + def testPasses(self): + # long message includes the original error message with a custom one + self.longMessage = True + # construct what we expect when passes aren't involved + test_rhots = list() + model = self.class_(id2word=dictionary, chunksize=1, num_topics=2) + + def final_rhot(model): + return pow(model.offset + (1 * model.num_updates) / model.chunksize, -model.decay) + + # generate 5 updates to test rhot on + for x in range(5): + model.update(self.corpus) + test_rhots.append(final_rhot(model)) + + for passes in [1, 5, 10, 50, 100]: + model = self.class_(id2word=dictionary, chunksize=1, num_topics=2, passes=passes) + self.assertEqual(final_rhot(model), 1.0) + # make sure the rhot matches the test after each update + for test_rhot in test_rhots: + model.update(self.corpus) + + msg = ", ".join(str(x) for x in [passes, model.num_updates, model.state.numdocs]) + self.assertAlmostEqual(final_rhot(model), test_rhot, msg=msg) + + self.assertEqual(model.state.numdocs, len(corpus) * len(test_rhots)) + self.assertEqual(model.num_updates, len(corpus) * len(test_rhots)) + + # def testTopicSeeding(self): + # for topic in range(2): + # passed = False + # for i in range(5): # restart at most this many times, to mitigate LDA randomness + # # try seeding it both ways round, check you get the same + # # topics out but with which way round they are depending + # # on the way round they're seeded + # eta = np.ones((2, len(dictionary))) * 0.5 + # system = dictionary.token2id[u'system'] + # trees = dictionary.token2id[u'trees'] + + # # aggressively seed the word 'system', in one of the + # # two topics, 10 times higher than the other words + # eta[topic, system] *= 10.0 + + # model = self.class_(id2word=dictionary, num_topics=2, passes=200, eta=eta) + # model.update(self.corpus) + + # topics = [{word: p for p, word in model.show_topic(j, topn=None)} for j in range(2)] + + # # check that the word 'system' in the topic we seeded got a high weight, + # # and the word 'trees' (the main word in the other topic) a low weight -- + # # and vice versa for the other topic (which we didn't seed with 'system') + # passed = ( + # (topics[topic][u'system'] > topics[topic][u'trees']) + # and + # (topics[1 - topic][u'system'] < topics[1 - topic][u'trees']) + # ) + # if passed: + # break + # logging.warning("LDA failed to converge on attempt %i (got %s)", i, topics) + # self.assertTrue(passed) + + def testPersistence(self): + fname = get_tmpfile('gensim_models_nmf.tst') + model = self.model + model.save(fname) + model2 = self.class_.load(fname) + tstvec = [] + self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector + + @unittest.skip("There're no pickled models") + def testModelCompatibilityWithPythonVersions(self): + fname_model_2_7 = datapath('nmf_python_2_7') + model_2_7 = self.class_.load(fname_model_2_7) + fname_model_3_5 = datapath('nmf_python_3_5') + model_3_5 = self.class_.load(fname_model_3_5) + self.assertEqual(model_2_7.num_topics, model_3_5.num_topics) + self.assertTrue(np.allclose(model_2_7.expElogbeta, model_3_5.expElogbeta)) + tstvec = [] + self.assertTrue(np.allclose(model_2_7[tstvec], model_3_5[tstvec])) # try projecting an empty vector + id2word_2_7 = dict(model_2_7.id2word.iteritems()) + id2word_3_5 = dict(model_3_5.id2word.iteritems()) + self.assertEqual(set(id2word_2_7.keys()), set(id2word_3_5.keys())) + + def testPersistenceCompressed(self): + fname = get_tmpfile('gensim_models_nmf.tst.gz') + model = self.model + model.save(fname) + model2 = self.class_.load(fname, mmap=None) + self.assertEqual(model.num_topics, model2.num_topics) + tstvec = [] + self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector + + def testLargeMmap(self): + fname = get_tmpfile('gensim_models_nmf.tst') + model = self.model + + # simulate storing large arrays separately + model.save(fname, sep_limit=0) + + # test loading the large model arrays with mmap + model2 = self.class_.load(fname, mmap='r') + self.assertEqual(model.num_topics, model2.num_topics) + tstvec = [] + self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector + + def testLargeMmapCompressed(self): + fname = get_tmpfile('gensim_models_nmf.tst.gz') + model = self.model + + # simulate storing large arrays separately + model.save(fname, sep_limit=0) + + # test loading the large model arrays with mmap + self.assertRaises(IOError, self.class_.load, fname, mmap='r') + + @unittest.skip("NMF has no state") + def testRandomStateBackwardCompatibility(self): + # load a model saved using a pre-0.13.2 version of Gensim + pre_0_13_2_fname = datapath('pre_0_13_2_model') + model_pre_0_13_2 = self.class_.load(pre_0_13_2_fname) + + # set `num_topics` less than `model_pre_0_13_2.num_topics` so that `model_pre_0_13_2.random_state` is used + model_topics = model_pre_0_13_2.print_topics(num_topics=2, num_words=3) + + for i in model_topics: + self.assertTrue(isinstance(i[0], int)) + self.assertTrue(isinstance(i[1], six.string_types)) + + # save back the loaded model using a post-0.13.2 version of Gensim + post_0_13_2_fname = get_tmpfile('gensim_models_nmf_post_0_13_2_model.tst') + model_pre_0_13_2.save(post_0_13_2_fname) + + # load a model saved using a post-0.13.2 version of Gensim + model_post_0_13_2 = self.class_.load(post_0_13_2_fname) + model_topics_new = model_post_0_13_2.print_topics(num_topics=2, num_words=3) + + for i in model_topics_new: + self.assertTrue(isinstance(i[0], int)) + self.assertTrue(isinstance(i[1], six.string_types)) + + @unittest.skip('different output format than lda') + def testDtypeBackwardCompatibility(self): + nmf_3_6_0_fname = datapath('nmf_3_6_0_model') + test_doc = [(0, 1), (1, 1), (2, 1)] + expected_topics = [(0, 0.87005886977475178), (1, 0.12994113022524822)] + + # save model to use in test + self.model.save(nmf_3_6_0_fname) + + # load a model saved using a 3.0.1 version of Gensim + model = self.class_.load(nmf_3_6_0_fname) + + # and test it on a predefined document + topics = model[test_doc] + self.assertTrue(np.allclose(expected_topics, topics)) + + +# endclass TestNmf + +if __name__ == '__main__': + logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) + unittest.main() From 5f4018afbfd834dd037116129fbf44efa78d2a55 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 14 Nov 2018 13:31:18 +0300 Subject: [PATCH 081/144] Document __init__ --- gensim/models/nmf.py | 171 +++++++++++++++++++++++++------------------ 1 file changed, 100 insertions(+), 71 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index d293d87076..76b019273a 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -1,14 +1,16 @@ +import itertools + +import logging import numpy as np import scipy.sparse -import logging from scipy.stats import halfnorm -from gensim import utils -from gensim import matutils + from gensim import interfaces +from gensim import matutils +from gensim import utils +from gensim.interfaces import TransformedCorpus from gensim.models import basemodel from gensim.models.nmf_pgd import solve_h, solve_r -from gensim.interfaces import TransformedCorpus -import itertools logger = logging.getLogger(__name__) @@ -18,48 +20,66 @@ class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """ def __init__( - self, - corpus=None, - num_topics=100, - id2word=None, - chunksize=2000, - passes=1, - lambda_=1., - kappa=1., - minimum_probability=0.01, - use_r=False, - store_r=False, - w_max_iter=200, - w_stop_condition=1e-4, - h_r_max_iter=50, - h_r_stop_condition=1e-3, - eval_every=10, - v_max=None, - normalize=True, - sparse_coef=3, - random_state=None + self, + corpus=None, + num_topics=100, + id2word=None, + chunksize=2000, + passes=1, + lambda_=1.0, + kappa=1.0, + minimum_probability=0.01, + use_r=False, + store_r=False, + w_max_iter=200, + w_stop_condition=1e-4, + h_r_max_iter=50, + h_r_stop_condition=1e-3, + eval_every=10, + v_max=None, + normalize=True, + sparse_coef=3, + random_state=None, ): """ Parameters ---------- - corpus : Corpus - Training corpus + corpus : iterable of list of (int, float), optional + Training corpus. If not given, model is left untrained. num_topics : int - Number of components in resulting matrices. - id2word: Dict[int, str] - Token id to word mapping - chunksize: int - Number of documents in a chunk - passes: int - Number of full passes over the training corpus - lambda_ : float - Weight of the residuals regularizer - kappa : float - Optimization step size - store_r : bool - Whether to save residuals during training - normalize + Number of topics to extract. + id2word: Dict[int, str], optional + Mapping from token id to token. If not set words get replaced with word ids. + chunksize: int, optional + Number of documents to be used in each training chunk. + passes: int, optioanl + Number of full passes over the training corpus. + lambda_ : float, optional + Residuals regularizer coefficient. Increasing it helps prevent ovefitting. Has no effect if `use_r` is set + to False. + kappa : float, optional + Optimizer step coefficient. Increaing it makes model train faster, but adds a risk that it won't converge. + store_r : bool, optional + Whether to save residuals during training. + w_max_iter: int, optional + Maximum number of iterations to train W matrix per each batch. + w_stop_condition: float, optional + If error difference gets less than that, training of matrix ``W`` stops for current batch. + h_r_max_iter: int, optional + Maximum number of iterations to train h and r matrices per each batch. + h_r_stop_condition: float + If error difference gets less than that, training of matrices ``h`` and ``r`` stops for current batch. + eval_every: int, optional + Number of batches after which model will be evaluated. + v_max: int, optional + Maximum number of word occurrences in the corpora. Inferred if not set. Rarely needs to be set explicitly. + normalize: bool, optional + Whether to normalize results. Offers "kind-of-probabilistic" result. + sparse_coef: float, optional + The more it is, the more sparse are matrices. Significantly increases performance. + random_state: {np.random.RandomState, int}, optional + Seed for random generator. Useful for reproducibility. """ self._w_error = None self.n_features = None @@ -132,7 +152,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): sorted_topics = list(matutils.argsort(sparsity)) chosen_topics = ( - sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2:] + sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2 :] ) shown = [] @@ -224,9 +244,7 @@ def get_document_topics(self, bow, minimum_probability=None): is_corpus, corpus = utils.is_corpus(bow) if is_corpus: - kwargs = dict( - minimum_probability=minimum_probability, - ) + kwargs = dict(minimum_probability=minimum_probability) return self._apply(corpus, **kwargs) v = matutils.corpus2csc([bow], len(self.id2word)).tocsr() @@ -237,8 +255,7 @@ def get_document_topics(self, bow, minimum_probability=None): return [ (idx, proba.toarray()[0, 0]) - for idx, proba - in enumerate(h[:, 0]) + for idx, proba in enumerate(h[:, 0]) if not minimum_probability or proba.toarray()[0, 0] > minimum_probability ] @@ -246,7 +263,9 @@ def get_document_topics(self, bow, minimum_probability=None): def _sparsify(csc, density): zero_count = csc.shape[0] * csc.shape[1] - csc.nnz to_eliminate_count = int(csc.nnz * (1 - density)) - zero_count - indices_to_eliminate = np.argpartition(csc.data, to_eliminate_count)[:to_eliminate_count] + indices_to_eliminate = np.argpartition(csc.data, to_eliminate_count)[ + :to_eliminate_count + ] csc.data[indices_to_eliminate] = 0 csc.eliminate_zeros() @@ -286,14 +305,13 @@ def _setup(self, corpus): first_doc = next(first_doc_it[0]) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] self.n_features = first_doc.shape[0] - self.w_std = np.sqrt( - first_doc.mean() - / (self.n_features * self.num_topics) - ) + self.w_std = np.sqrt(first_doc.mean() / (self.n_features * self.num_topics)) self._W = np.abs( self.w_std - * halfnorm.rvs(size=(self.n_features, self.num_topics), random_state=self.random_state) + * halfnorm.rvs( + size=(self.n_features, self.num_topics), random_state=self.random_state + ) ) is_great_enough = self._W > self.w_std * self.sparse_coef @@ -323,20 +341,22 @@ def update(self, corpus, chunks_as_numpy=False): for _ in range(self.passes): for chunk in utils.grouper( - corpus, self.chunksize, as_numpy=chunks_as_numpy + corpus, self.chunksize, as_numpy=chunks_as_numpy ): self.random_state.shuffle(chunk) v = matutils.corpus2csc(chunk, len(self.id2word)).tocsr() - self._h, self._r = self._solveproj(v, self._W, r=self._r, h=self._h, v_max=self.v_max) + self._h, self._r = self._solveproj( + v, self._W, r=self._r, h=self._h, v_max=self.v_max + ) h, r = self._h, self._r if self._R is not None: self._R.append(r) - self.A *= (chunk_idx - 1) + self.A *= chunk_idx - 1 self.A += h.dot(h.T) self.A /= chunk_idx - self.B *= (chunk_idx - 1) + self.B *= chunk_idx - 1 self.B += (v - r).dot(h.T) self.B /= chunk_idx @@ -368,8 +388,8 @@ def error(): # print(type(self.B)) # print(self.B[:5, :5]) return ( - 0.5 * self._W.T.dot(self._W).dot(self.A).diagonal().sum() - - self._W.T.dot(self.B).diagonal().sum() + 0.5 * self._W.T.dot(self._W).dot(self.A).diagonal().sum() + - self._W.T.dot(self.B).diagonal().sum() ) eta = self._kappa / scipy.sparse.linalg.norm(self.A) @@ -385,7 +405,10 @@ def error(): error_ = error() - if np.abs((error_ - self._w_error) / self._w_error) < self._w_stop_condition: + if ( + np.abs((error_ - self._w_error) / self._w_error) + < self._w_stop_condition + ): break self._w_error = error_ @@ -450,10 +473,7 @@ def _transform(self): is_great_enough_data = self._W.data > self.w_std * self.sparse_coef is_great_enough = self._W.toarray() > self.w_std * self.sparse_coef is_all_too_small = is_great_enough.sum(axis=0) == 0 - is_all_too_small = np.repeat( - is_all_too_small, - self._W.getnnz(axis=0) - ) + is_all_too_small = np.repeat(is_all_too_small, self._W.getnnz(axis=0)) is_great_enough_data |= is_all_too_small @@ -491,19 +511,28 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): Wt_v_minus_r = W.T.dot(v - r) h_ = h.toarray() - error_ = max(error_, solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa)) + error_ = max( + error_, solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) + ) h = scipy.sparse.csr_matrix(h_) # h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) # error_ = max(error_, error_h) if self.use_r: r_actual = v - W.dot(h) - error_ = max(error_, solve_r( - r.indptr, r.indices, r.data, - r_actual.indptr, r_actual.indices, r_actual.data, - self._lambda_, - self.v_max - )) + error_ = max( + error_, + solve_r( + r.indptr, + r.indices, + r.data, + r_actual.indptr, + r_actual.indices, + r_actual.data, + self._lambda_, + self.v_max, + ), + ) r = r_actual # error_ = max(error_, self.__solve_r(r, r_actual, self._lambda_, self.v_max)) From dbd8474186426501b048bce3e0967302adf9855d Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 14 Nov 2018 15:13:27 +0300 Subject: [PATCH 082/144] Document whole nmf --- gensim/models/nmf.py | 248 +++++++++++++++++++++++++------------------ 1 file changed, 144 insertions(+), 104 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 76b019273a..6adb7c41e0 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -1,3 +1,5 @@ +"""Online Non-Negative Matrix Factorization.""" + import itertools import logging @@ -118,6 +120,15 @@ def __init__( self.update(corpus) def get_topics(self): + """Get the term-topic matrix learned during inference. + + + Returns + ------- + numpy.ndarray + The probability for each word in each topic, shape (`num_topics`, `vocabulary_size`). + + """ if self.normalize: return self._W.T.toarray() / self._W.T.toarray().sum(axis=1).reshape(-1, 1) @@ -127,19 +138,29 @@ def __getitem__(self, bow, eps=None): return self.get_document_topics(bow, eps) def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): - """ - Args: - num_topics (int): show results for first `num_topics` topics. - Unlike LSA, there is no natural ordering between the topics in LDA. - The returned `num_topics <= self.num_topics` subset of all topics is - therefore arbitrary and may change between two LDA training runs. - num_words (int): include top `num_words` with highest probabilities in topic. - log (bool): If True, log output in addition to returning it. - formatted (bool): If True, format topics as strings, otherwise return them as - `(word, probability)` 2-tuples. - Returns: - list: `num_words` most significant words for `num_topics` number of topics - (10 words for top 10 topics, by default). + """Get a representation for selected topics. + + Parameters + ---------- + num_topics : int, optional + Number of topics to be returned. Unlike LSA, there is no natural ordering between the topics in NMF. + The returned topics subset of all topics is therefore arbitrary and may change between two NMF + training runs. + num_words : int, optional + Number of words to be presented for each topic. These will be the most relevant words (assigned the highest + probability for each topic). + log : bool, optional + Whether the output is also logged, besides being returned. + formatted : bool, optional + Whether the topic representations should be formatted as strings. If False, they are returned as + 2 tuples of (word, probability). + + Returns + ------- + list of {str, tuple of (str, float)} + a list of topics, each represented either as a string (when `formatted` == True) or word-probability + pairs. + """ # TODO: maybe count sparsity in some other way sparsity = self._W.getnnz(axis=0) @@ -179,14 +200,21 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): return shown def show_topic(self, topicid, topn=10): - """ - Args: - topn (int): Only return 2-tuples for the topn most probable words - (ignore the rest). + """Get the representation for a single topic. Words here are the actual strings, in constrast to + :meth:`~gensim.models.nmf.Nmf.get_topic_terms` that represents words by their vocabulary ID. + + Parameters + ---------- + topicid : int + The ID of the topic to be returned + topn : int, optional + Number of the most significant words that are associated with the topic. + + Returns + ------- + list of (str, float) + Word - probability pairs for the most relevant words generated by the topic. - Returns: - list: of `(word, probability)` 2-tuples for the most probable - words in topic `topicid`. """ return [ (self.id2word[id], value) @@ -194,28 +222,42 @@ def show_topic(self, topicid, topn=10): ] def get_topic_terms(self, topicid, topn=10): - """ - Args: - topn (int): Only return 2-tuples for the topn most probable words - (ignore the rest). + """Get the representation for a single topic. Words the integer IDs, in constrast to + :meth:`~gensim.models.nmf.Nmf.show_topic` that represents words by the actual strings. + + Parameters + ---------- + topicid : int + The ID of the topic to be returned + topn : int, optional + Number of the most significant words that are associated with the topic. + + Returns + ------- + list of (int, float) + Word ID - probability pairs for the most relevant words generated by the topic. - Returns: - list: `(word_id, probability)` 2-tuples for the most probable words - in topic with id `topicid`. """ topic = self.get_topics()[topicid] bestn = matutils.argsort(topic, topn, reverse=True) return [(idx, topic[idx]) for idx in bestn] def get_term_topics(self, word_id, minimum_probability=None): - """ - Args: - word_id (int): ID of the word to get topic probabilities for. - minimum_probability (float): Only include topic probabilities above this - value (None by default). If set to None, use 1e-8 to prevent including 0s. - Returns: - list: The most likely topics for the given word. Each topic is represented - as a tuple of `(topic_id, term_probability)`. + """Get the most relevant topics to the given word. + + Parameters + ---------- + word_id : int + The word for which the topic distribution will be computed. + minimum_probability : float, optional + Topics with an assigned probability below this threshold will be discarded. + + Returns + ------- + list of (int, float) + The relevant topics represented as pairs of their ID and their assigned probability, sorted + by relevance to the given word. + """ if minimum_probability is None: minimum_probability = self.minimum_probability @@ -236,6 +278,22 @@ def get_term_topics(self, word_id, minimum_probability=None): return values def get_document_topics(self, bow, minimum_probability=None): + """Get the topic distribution for the given document. + + Parameters + ---------- + bow : list of (int, float) + The document in BOW format. + minimum_probability : float + Topics with an assigned probability lower than this threshold will be discarded. + + Returns + ------- + list of (int, float) + Topic distribution for the whole document. Each element in the list is a pair of a topic's id, and + the probability that was assigned to it. + + """ if minimum_probability is None: minimum_probability = self.minimum_probability minimum_probability = max(minimum_probability, 1e-8) @@ -259,47 +317,15 @@ def get_document_topics(self, bow, minimum_probability=None): if not minimum_probability or proba.toarray()[0, 0] > minimum_probability ] - @staticmethod - def _sparsify(csc, density): - zero_count = csc.shape[0] * csc.shape[1] - csc.nnz - to_eliminate_count = int(csc.nnz * (1 - density)) - zero_count - indices_to_eliminate = np.argpartition(csc.data, to_eliminate_count)[ - :to_eliminate_count - ] - csc.data[indices_to_eliminate] = 0 - - csc.eliminate_zeros() - - for col_idx in range(csc.shape[1]): - if csc[:, col_idx].nnz == 0: - random_index = np.random.randint(csc.shape[0]) - csc[random_index, col_idx] = 1e-8 - - # for col_idx in range(csc.shape[1]): - # zero_count = csc.shape[0] - csc[:, col_idx].nnz - # to_eliminate_count = int(csc.shape[0] * (1 - density)) - zero_count - # - # if to_eliminate_count > 0: - # indices_to_eliminate = np.argpartition( - # csc[:, col_idx].data, - # to_eliminate_count - # )[:to_eliminate_count] - # - # csc.data[csc.indptr[col_idx] + indices_to_eliminate] = 0 - - # for row_idx in range(csc.shape[0]): - # zero_count = csc.shape[1] - csc[row_idx, :].nnz - # to_eliminate_count = int(csc.shape[1] * (1 - density)) - zero_count - # - # if to_eliminate_count > 0: - # indices_to_eliminate = np.argpartition( - # csc[row_idx, :].data, - # to_eliminate_count - # )[:to_eliminate_count] - # - # csc[row_idx, :].data[indices_to_eliminate] = 0 - def _setup(self, corpus): + """Infer info from the first document and initialize matrices. + + Parameters + ---------- + corpus : iterable of list(int, float) + Training corpus. + + """ self._h, self._r = None, None first_doc_it = itertools.tee(corpus, 1) first_doc = next(first_doc_it[0]) @@ -319,19 +345,21 @@ def _setup(self, corpus): self._W *= is_great_enough | ~is_great_enough.all(axis=0) self._W = scipy.sparse.csc_matrix(self._W) - # self._sparsify(self._W, self.w_density) self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) def update(self, corpus, chunks_as_numpy=False): - """ + """Train the model with new documents. Parameters ---------- - corpus : matrix or iterator - Matrix to factorize. - chunks_as_numpy: bool + corpus : iterable of list(int, float) + Training corpus. + chunks_as_numpy : bool, optional + Whether each chunk passed to the inference step should be a numpy.ndarray or not. Numpy can in some settings + turn the term IDs into floats, these will be converted back into integers in inference, which incurs a + performance hit. For distributed computing it may be desirable to keep the chunks as `numpy.ndarray`. """ if self.n_features is None: @@ -380,13 +408,8 @@ def update(self, corpus, chunks_as_numpy=False): ) def _solve_w(self): + """Update W matrix.""" def error(): - # print(type(self._W)) - # print(self._W[:5, :5]) - # print(type(self.A)) - # print(self.A[:5, :5]) - # print(type(self.B)) - # print(self.B[:5, :5]) return ( 0.5 * self._W.T.dot(self._W).dot(self.A).diagonal().sum() - self._W.T.dot(self.B).diagonal().sum() @@ -433,6 +456,25 @@ def _apply(self, corpus, chunksize=None, **kwargs): @staticmethod def _solve_r(r, r_actual, lambda_, v_max): + """Update residuals matrix. + + Parameters + ---------- + r : scipy.sparse.csr_matrix + Previous residuals. + r_actual : scipy.sparse.csr_matrix(rshape) + Actual residuals (v - Wh) + lambda_ : float + Regularization coefficient. + v_max : float + Residuals max and min boundary. + + Returns + ------- + float + Error between previous and current residuals. + + """ r_actual.data *= np.abs(r_actual.data) > lambda_ r_actual.eliminate_zeros() @@ -449,18 +491,8 @@ def _solve_r(r, r_actual, lambda_, v_max): return violation - @staticmethod - def _solve_h(h, Wt_v_minus_r, WtW, eta): - grad = (WtW.dot(h) - Wt_v_minus_r) * eta - grad = scipy.sparse.csr_matrix(grad) - new_h = h - grad - - np.maximum(new_h.data, 0.0, out=new_h.data) - new_h.eliminate_zeros() - - return new_h, scipy.sparse.linalg.norm(grad) - def _transform(self): + """Apply boundaries on W.""" np.clip(self._W.data, 0, self.v_max, out=self._W.data) self._W.eliminate_zeros() sumsq = scipy.sparse.linalg.norm(self._W, axis=0) @@ -468,8 +500,6 @@ def _transform(self): sumsq = np.repeat(sumsq, self._W.getnnz(axis=0)) self._W.data /= sumsq - # self._sparsify(self._W, self.w_density) - is_great_enough_data = self._W.data > self.w_std * self.sparse_coef is_great_enough = self._W.toarray() > self.w_std * self.sparse_coef is_all_too_small = is_great_enough.sum(axis=0) == 0 @@ -481,6 +511,21 @@ def _transform(self): self._W.eliminate_zeros() def _solveproj(self, v, W, h=None, r=None, v_max=None): + """Update residuals and representation(h) matrices. + + Parameters + ---------- + v : iterable of list(int, float) + Subset of training corpus. + W : scipy.sparse.csc_matrix + Dictionary matrix. + h : scipy.sparse.csr_matrix + Representation matrix. + r : scipy.sparse.csr_matrix + Residuals matrix. + v_max : float + Maximum possible value in matrices. + """ m, n = W.shape if v_max is not None: self.v_max = v_max @@ -499,8 +544,6 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): WtW = W.T.dot(W) - eta = self._kappa / scipy.sparse.linalg.norm(W) ** 2 - _h_r_error = None for iter_number in range(self._h_r_max_iter): @@ -515,8 +558,6 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): error_, solve_h(h_, Wt_v_minus_r.toarray(), WtW.toarray(), self._kappa) ) h = scipy.sparse.csr_matrix(h_) - # h, error_h = self.__solve_h(h, Wt_v_minus_r, WtW, eta) - # error_ = max(error_, error_h) if self.use_r: r_actual = v - W.dot(h) @@ -534,7 +575,6 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): ), ) r = r_actual - # error_ = max(error_, self.__solve_r(r, r_actual, self._lambda_, self.v_max)) error_ /= m From cd4b9b0887440354274b24603140bca5a0e6d461 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 14 Nov 2018 15:49:42 +0300 Subject: [PATCH 083/144] Remove unnecessary comments --- gensim/models/nmf.py | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 6adb7c41e0..9f5ad38843 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -180,15 +180,9 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): topics = self.get_topics() - # print(topics) - for i in chosen_topics: topic = topics[i] - # print(topic) - # print(topic.shape) bestn = matutils.argsort(topic, num_words, reverse=True).ravel() - # print(type(bestn)) - # print(bestn.shape) topic = [(self.id2word[id], topic[id]) for id in bestn] if formatted: topic = " + ".join(['%.3f*"%s"' % (v, k) for k, v in topic]) @@ -409,6 +403,7 @@ def update(self, corpus, chunks_as_numpy=False): def _solve_w(self): """Update W matrix.""" + def error(): return ( 0.5 * self._W.T.dot(self._W).dot(self.A).diagonal().sum() From 53a02a988fc0c2386128dbccff50c93b17c2ac7d Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 14 Nov 2018 15:56:05 +0300 Subject: [PATCH 084/144] Add tutorial notebook --- docs/notebooks/nmf_tutorial.ipynb | 46 +++++++++++++++++++++++++++++++ 1 file changed, 46 insertions(+) create mode 100644 docs/notebooks/nmf_tutorial.ipynb diff --git a/docs/notebooks/nmf_tutorial.ipynb b/docs/notebooks/nmf_tutorial.ipynb new file mode 100644 index 0000000000..d42a1efb9b --- /dev/null +++ b/docs/notebooks/nmf_tutorial.ipynb @@ -0,0 +1,46 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tutorial on Online Non-Negative Matrix Factorization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebooks shows discusses basic ideas behind NMF implementation, training examples and use-cases." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 937e3406a8a450e6b2f8426bd33ad99773dd310d Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 20 Nov 2018 15:35:05 +0300 Subject: [PATCH 085/144] Document __init__ --- docs/notebooks/nmf_tutorial.ipynb | 262 +++++++++++++++++++++++++++++- 1 file changed, 259 insertions(+), 3 deletions(-) diff --git a/docs/notebooks/nmf_tutorial.ipynb b/docs/notebooks/nmf_tutorial.ipynb index d42a1efb9b..7a9de1ee86 100644 --- a/docs/notebooks/nmf_tutorial.ipynb +++ b/docs/notebooks/nmf_tutorial.ipynb @@ -11,7 +11,241 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "This notebooks shows discusses basic ideas behind NMF implementation, training examples and use-cases." + "This notebooks explains basic ideas behind NMF implementation, training examples and use-cases." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "lines_to_next_cell": 2 + }, + "source": [ + "**Matrix Factorizations** are useful for many things: recomendation systems, bi-clustering, image compression and, in particular, topic modeling.\n", + "\n", + "Why **Non-Negative**? It makes the problem more strict and allows us to apply some optimizations.\n", + "\n", + "Why **Online**? Because corpora are large and RAM is limited. Online NMF can learn topics iteratively.\n", + "\n", + "This particular implementation is based on [this paper](arxiv.org/abs/1604.02634)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Training" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from gensim import matutils\n", + "from gensim.models.nmf import Nmf\n", + "from gensim.models import CoherenceModel\n", + "from gensim.parsing.preprocessing import preprocess_string\n", + "from sklearn.datasets import fetch_20newsgroups" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dataset preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "categories = [\n", + " 'alt.atheism',\n", + " 'comp.graphics',\n", + " 'rec.motorcycles',\n", + " 'talk.politics.mideast',\n", + " 'sci.space'\n", + "]\n", + "\n", + "trainset = fetch_20newsgroups(subset='train', categories=categories, random_state=42)\n", + "testset = fetch_20newsgroups(subset='test', categories=categories, random_state=42)\n", + "\n", + "train_documents = [preprocess_string(doc) for doc in trainset.data]\n", + "test_documents = [preprocess_string(doc) for doc in testset.data]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dictionary compilation" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "from gensim.corpora import Dictionary\n", + "\n", + "dictionary = Dictionary(train_documents)\n", + "\n", + "dictionary.filter_extremes()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Corpora compilation" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "train_corpus = [\n", + " dictionary.doc2bow(document)\n", + " for document\n", + " in train_documents\n", + "]\n", + "\n", + "test_corpus = [\n", + " dictionary.doc2bow(document)\n", + " for document\n", + " in test_documents\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training\n", + "\n", + "The API works in the way similar to [Gensim.models.LdaModel](https://radimrehurek.com/gensim/models/ldamodel.html).\n", + "\n", + "Specific parameters:\n", + "\n", + "- `use_r` - whether to use residuals. Effectively adds regularization to the model\n", + "- `kappa` - optimizer step size coefficient.\n", + "- `lambda_` - residuals coefficient. The larger it is, the less more regularized result gets.\n", + "- `sparse_coef` - internal matrices sparse coefficient. The more it is, the faster and less accurate training is." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 12.4 s, sys: 1.08 s, total: 13.5 s\n", + "Wall time: 13.7 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "nmf = Nmf(\n", + " corpus=train_corpus,\n", + " chunksize=1000,\n", + " num_topics=5,\n", + " id2word=dictionary,\n", + " passes=5,\n", + " eval_every=10,\n", + " minimum_probability=0,\n", + " random_state=42,\n", + " use_r=True,\n", + " lambda_=1000,\n", + " kappa=1,\n", + " sparse_coef=3\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Topics" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"believ\" + 0.020*\"exist\" + 0.019*\"atheism\" + 0.016*\"religion\" + 0.013*\"christian\" + 0.013*\"religi\" + 0.013*\"peopl\" + 0.012*\"argument\"'),\n", + " (1,\n", + " '0.055*\"imag\" + 0.054*\"jpeg\" + 0.033*\"file\" + 0.024*\"gif\" + 0.021*\"color\" + 0.019*\"format\" + 0.015*\"program\" + 0.014*\"version\" + 0.013*\"bit\" + 0.012*\"us\"'),\n", + " (2,\n", + " '0.053*\"space\" + 0.034*\"launch\" + 0.024*\"satellit\" + 0.017*\"nasa\" + 0.016*\"orbit\" + 0.013*\"year\" + 0.012*\"mission\" + 0.011*\"data\" + 0.010*\"commerci\" + 0.010*\"market\"'),\n", + " (3,\n", + " '0.022*\"armenian\" + 0.021*\"peopl\" + 0.020*\"said\" + 0.018*\"know\" + 0.011*\"sai\" + 0.011*\"went\" + 0.010*\"come\" + 0.010*\"like\" + 0.010*\"apart\" + 0.009*\"azerbaijani\"'),\n", + " (4,\n", + " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nmf.show_topics()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Coherence" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-1.6698708891486376" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "CoherenceModel(\n", + " model=nmf,\n", + " corpus=test_corpus,\n", + " coherence='u_mass'\n", + ").get_coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Perplexity" ] }, { @@ -19,10 +253,32 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "def perplexity(model, corpus):\n", + " W = model.get_topics().T\n", + "\n", + " H = np.zeros((W.shape[1], len(corpus)))\n", + " for bow_id, bow in enumerate(corpus):\n", + " for topic_id, proba in model[bow]:\n", + " H[topic_id, bow_id] = proba\n", + " \n", + " dense_corpus = matutils.corpus2dense(corpus, W.shape[0])\n", + " \n", + " return np.exp(-(np.log(W.dot(H), where=W.dot(H)>0) * dense_corpus).sum() / dense_corpus.sum())\n", + "\n", + "perplexity(nmf, test_corpus)" + ] } ], "metadata": { + "jupytext": { + "text_representation": { + "extension": ".py", + "format_name": "percent", + "format_version": "1.1", + "jupytext_version": "0.8.3" + } + }, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -38,7 +294,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.7" } }, "nbformat": 4, From 26a87bd9a8cd2383a62b1e2990f40b334e9fc1ab Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 13:41:45 +0300 Subject: [PATCH 086/144] Fix flake version --- tox.ini | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tox.ini b/tox.ini index f380171659..b4ab600ca2 100644 --- a/tox.ini +++ b/tox.ini @@ -58,7 +58,7 @@ commands = [testenv:flake8] recreate = True -deps = flake8 +deps = flake8 <= 3.5.0 commands = flake8 gensim/ {posargs} From 261c13a7631985150bfea4d769581cd4be161032 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 13:43:52 +0300 Subject: [PATCH 087/144] Fix flake warning --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 9f5ad38843..57987ad3c1 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -173,7 +173,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): sorted_topics = list(matutils.argsort(sparsity)) chosen_topics = ( - sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2 :] + sorted_topics[: num_topics // 2] + sorted_topics[-num_topics // 2:] ) shown = [] From 0147afcc0896fc4a134aa9aee55ad874aa56eab9 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 14:12:29 +0300 Subject: [PATCH 088/144] Remove comments, reverse parallelization order --- gensim/models/nmf_pgd.pyx | 193 +------------------------------------- 1 file changed, 2 insertions(+), 191 deletions(-) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 888fb4fb57..132be30065 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -5,54 +5,8 @@ # cython: wraparound=False # cython: nonecheck=False -cimport cython from libc.math cimport sqrt, fabs, fmin, fmax, copysign from cython.parallel import prange -import numpy as np - -# def solve_h_sparse(h, Wt_v_minus_r, WtW, double kappa): -# cdef Py_ssize_t [:] h_indptr = h.indptr -# cdef Py_ssize_t [:] h_indices = h.indices -# cdef double [:] h_data = h.data -# -# cdef Py_ssize_t [:] Wt_v_minus_r_indptr = Wt_v_minus_r.indptr -# cdef Py_ssize_t [:] Wt_v_minus_r_indices = Wt_v_minus_r.indices -# cdef double [:] Wt_v_minus_r_data = Wt_v_minus_r.data -# -# cdef Py_ssize_t [:] WtW_indptr = WtW.indptr -# cdef Py_ssize_t [:] WtW_indices = WtW.indices -# cdef double [:] WtW_data = WtW.data -# -# cdef Py_ssize_t n_components = h.shape[0] -# cdef Py_ssize_t n_samples = h.shape[1] -# cdef double violation = 0 -# cdef double grad, projected_grad, hessian -# cdef Py_ssize_t sample_idx = 0 -# cdef Py_ssize_t component_idx_1 = 0 -# cdef Py_ssize_t component_idx_2 = 0 -# -# -# for sample_idx in range(n_samples): -# for component_idx_1 in prange(n_components, nogil=True): -# -# grad = -Wt_v_minus_r_data[component_idx_1, sample_idx] -# -# for component_idx_2 in range(n_components): -# grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] -# -# hessian = WtW[component_idx_1, component_idx_1] -# -# grad = grad * kappa / hessian -# -# projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad -# -# violation += projected_grad * projected_grad -# -# h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) -# -# h.eliminate_zeros() -# -# return sqrt(violation) def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): cdef Py_ssize_t n_components = h.shape[0] @@ -63,8 +17,8 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou cdef Py_ssize_t component_idx_1 = 0 cdef Py_ssize_t component_idx_2 = 0 - for sample_idx in range(n_samples): - for component_idx_1 in prange(n_components, nogil=True): + for sample_idx in prange(n_samples, nogil=True): + for component_idx_1 in range(n_components): grad = -Wt_v_minus_r[component_idx_1, sample_idx] @@ -82,146 +36,3 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) return sqrt(violation) - -# def solve_r( -# int[::1] r_indptr, -# int[::1] r_indices, -# double[::1] r_data, -# int[::1] r_actual_indptr, -# int[::1] r_actual_indices, -# double[::1] r_actual_data, -# double lambda_, -# double v_max -# ): -# cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 -# cdef double violation = 0 -# cdef double r_actual_sign = 1.0 -# cdef Py_ssize_t sample_idx -# -# cdef Py_ssize_t r_col_size = 0 -# cdef Py_ssize_t r_actual_col_size = 0 -# cdef Py_ssize_t r_col_idx_idx = 0 -# cdef Py_ssize_t r_actual_col_idx_idx -# -# cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) -# cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) -# -# for sample_idx in prange(n_samples, nogil=True): -# r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] -# r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] -# -# r_col_indices[sample_idx] = 0 -# r_actual_col_indices[sample_idx] = 0 -# -# while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: -# r_col_idx_idx = r_indices[ -# r_indptr[sample_idx] -# + r_col_indices[sample_idx] -# ] -# r_actual_col_idx_idx = r_actual_indices[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] -# -# if r_col_idx_idx >= r_actual_col_idx_idx: -# r_actual_sign = copysign( -# r_actual_sign, -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] -# ) -# -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] = fabs( -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] -# ) - lambda_ -# -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] = fmax( -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ], -# 0 -# ) -# -# if ( -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] != 0 -# ): -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] = copysign( -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ], -# r_actual_sign -# ) -# -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] = fmax( -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ], -# -v_max -# ) -# -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] = fmin( -# r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ], -# v_max -# ) -# -# if r_col_idx_idx == r_actual_col_idx_idx: -# violation += ( -# r_data[ -# r_indptr[sample_idx] -# + r_col_indices[sample_idx] -# ] -# - r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] -# ) ** 2 -# else: -# violation += r_actual_data[ -# r_actual_indptr[sample_idx] -# + r_actual_col_indices[sample_idx] -# ] ** 2 -# -# if r_actual_col_indices[sample_idx] < r_actual_col_size: -# r_actual_col_indices[sample_idx] += 1 -# else: -# r_col_indices[sample_idx] += 1 -# else: -# violation += r_data[ -# r_indptr[sample_idx] -# + r_col_indices[sample_idx] -# ] ** 2 -# -# if r_col_indices[sample_idx] < r_col_size: -# r_col_indices[sample_idx] += 1 -# else: -# r_actual_col_indices[sample_idx] += 1 -# -# return sqrt(violation) From 1ece3c1c7b4015a4c11c8d3742c0cfe851d58abf Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 14:19:29 +0300 Subject: [PATCH 089/144] Add NMF's cython extension to setup.py --- gensim/models/nmf_pgd.c | 18428 ++++++++++++++++++++++++++++++++++++++ setup.py | 2 + 2 files changed, 18430 insertions(+) create mode 100644 gensim/models/nmf_pgd.c diff --git a/gensim/models/nmf_pgd.c b/gensim/models/nmf_pgd.c new file mode 100644 index 0000000000..2264e7293f --- /dev/null +++ b/gensim/models/nmf_pgd.c @@ -0,0 +1,18428 @@ +/* Generated by Cython 0.25.2 */ + +#define PY_SSIZE_T_CLEAN +#include "Python.h" +#ifndef Py_PYTHON_H + #error Python headers needed to compile C extensions, please install development version of Python. +#elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03020000) + #error Cython requires Python 2.6+ or Python 3.2+. +#else +#define CYTHON_ABI "0_25_2" +#include +#ifndef offsetof + #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) +#endif +#if !defined(WIN32) && !defined(MS_WINDOWS) + #ifndef __stdcall + #define __stdcall + #endif + #ifndef __cdecl + #define __cdecl + #endif + #ifndef __fastcall + #define __fastcall + #endif +#endif +#ifndef DL_IMPORT + #define DL_IMPORT(t) t +#endif +#ifndef DL_EXPORT + #define DL_EXPORT(t) t +#endif +#ifndef HAVE_LONG_LONG + #if PY_VERSION_HEX >= 0x03030000 || (PY_MAJOR_VERSION == 2 && PY_VERSION_HEX >= 0x02070000) + #define HAVE_LONG_LONG + #endif +#endif +#ifndef PY_LONG_LONG + #define PY_LONG_LONG LONG_LONG +#endif +#ifndef Py_HUGE_VAL + #define Py_HUGE_VAL HUGE_VAL +#endif +#ifdef PYPY_VERSION + #define CYTHON_COMPILING_IN_PYPY 1 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #undef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 0 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #undef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #undef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 1 + #undef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 0 + #undef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 0 + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 +#elif defined(PYSTON_VERSION) + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 1 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 +#else + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 1 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #if PY_MAJOR_VERSION < 3 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #elif !defined(CYTHON_USE_PYLONG_INTERNALS) + #define CYTHON_USE_PYLONG_INTERNALS 1 + #endif + #ifndef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 1 + #endif + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #if PY_VERSION_HEX < 0x030300F0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #elif !defined(CYTHON_USE_UNICODE_WRITER) + #define CYTHON_USE_UNICODE_WRITER 1 + #endif + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #ifndef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 1 + #endif + #ifndef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 1 + #endif +#endif +#if !defined(CYTHON_FAST_PYCCALL) +#define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) +#endif +#if CYTHON_USE_PYLONG_INTERNALS + #include "longintrepr.h" + #undef SHIFT + #undef BASE + #undef MASK +#endif +#if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) + #define Py_OptimizeFlag 0 +#endif +#define __PYX_BUILD_PY_SSIZE_T "n" +#define CYTHON_FORMAT_SSIZE_T "z" +#if PY_MAJOR_VERSION < 3 + #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) + #define __Pyx_DefaultClassType PyClass_Type +#else + #define __Pyx_BUILTIN_MODULE_NAME "builtins" + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) + #define __Pyx_DefaultClassType PyType_Type +#endif +#ifndef Py_TPFLAGS_CHECKTYPES + #define Py_TPFLAGS_CHECKTYPES 0 +#endif +#ifndef Py_TPFLAGS_HAVE_INDEX + #define Py_TPFLAGS_HAVE_INDEX 0 +#endif +#ifndef Py_TPFLAGS_HAVE_NEWBUFFER + #define Py_TPFLAGS_HAVE_NEWBUFFER 0 +#endif +#ifndef Py_TPFLAGS_HAVE_FINALIZE + #define Py_TPFLAGS_HAVE_FINALIZE 0 +#endif +#ifndef METH_FASTCALL + #define METH_FASTCALL 0x80 + typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject **args, + Py_ssize_t nargs, PyObject *kwnames); +#else + #define __Pyx_PyCFunctionFast _PyCFunctionFast +#endif +#if CYTHON_FAST_PYCCALL +#define __Pyx_PyFastCFunction_Check(func)\ + ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST))))) +#else +#define __Pyx_PyFastCFunction_Check(func) 0 +#endif +#if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) + #define CYTHON_PEP393_ENABLED 1 + #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ + 0 : _PyUnicode_Ready((PyObject *)(op))) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) + #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) + #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) + #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) +#else + #define CYTHON_PEP393_ENABLED 0 + #define PyUnicode_1BYTE_KIND 1 + #define PyUnicode_2BYTE_KIND 2 + #define PyUnicode_4BYTE_KIND 4 + #define __Pyx_PyUnicode_READY(op) (0) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) + #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) + #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) + #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) +#endif +#if CYTHON_COMPILING_IN_PYPY + #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) +#else + #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ + PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) + #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) + #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) + #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) + #define PyObject_Malloc(s) PyMem_Malloc(s) + #define PyObject_Free(p) PyMem_Free(p) + #define PyObject_Realloc(p) PyMem_Realloc(p) +#endif +#if CYTHON_COMPILING_IN_PYSTON + #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) +#else + #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) +#endif +#define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) +#define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) +#else + #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) +#endif +#if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) + #define PyObject_ASCII(o) PyObject_Repr(o) +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBaseString_Type PyUnicode_Type + #define PyStringObject PyUnicodeObject + #define PyString_Type PyUnicode_Type + #define PyString_Check PyUnicode_Check + #define PyString_CheckExact PyUnicode_CheckExact +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) + #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) +#else + #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) + #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) +#endif +#ifndef PySet_CheckExact + #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) +#endif +#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) +#define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) +#if PY_MAJOR_VERSION >= 3 + #define PyIntObject PyLongObject + #define PyInt_Type PyLong_Type + #define PyInt_Check(op) PyLong_Check(op) + #define PyInt_CheckExact(op) PyLong_CheckExact(op) + #define PyInt_FromString PyLong_FromString + #define PyInt_FromUnicode PyLong_FromUnicode + #define PyInt_FromLong PyLong_FromLong + #define PyInt_FromSize_t PyLong_FromSize_t + #define PyInt_FromSsize_t PyLong_FromSsize_t + #define PyInt_AsLong PyLong_AsLong + #define PyInt_AS_LONG PyLong_AS_LONG + #define PyInt_AsSsize_t PyLong_AsSsize_t + #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask + #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask + #define PyNumber_Int PyNumber_Long +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBoolObject PyLongObject +#endif +#if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY + #ifndef PyUnicode_InternFromString + #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) + #endif +#endif +#if PY_VERSION_HEX < 0x030200A4 + typedef long Py_hash_t; + #define __Pyx_PyInt_FromHash_t PyInt_FromLong + #define __Pyx_PyInt_AsHash_t PyInt_AsLong +#else + #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t + #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : PyInstanceMethod_New(func)) +#else + #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) +#endif +#if CYTHON_USE_ASYNC_SLOTS + #if PY_VERSION_HEX >= 0x030500B1 + #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods + #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) + #else + typedef struct { + unaryfunc am_await; + unaryfunc am_aiter; + unaryfunc am_anext; + } __Pyx_PyAsyncMethodsStruct; + #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) + #endif +#else + #define __Pyx_PyType_AsAsync(obj) NULL +#endif +#ifndef CYTHON_RESTRICT + #if defined(__GNUC__) + #define CYTHON_RESTRICT __restrict__ + #elif defined(_MSC_VER) && _MSC_VER >= 1400 + #define CYTHON_RESTRICT __restrict + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_RESTRICT restrict + #else + #define CYTHON_RESTRICT + #endif +#endif +#ifndef CYTHON_UNUSED +# if defined(__GNUC__) +# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +#endif +#ifndef CYTHON_MAYBE_UNUSED_VAR +# if defined(__cplusplus) + template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } +# else +# define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) +# endif +#endif +#ifndef CYTHON_NCP_UNUSED +# if CYTHON_COMPILING_IN_CPYTHON +# define CYTHON_NCP_UNUSED +# else +# define CYTHON_NCP_UNUSED CYTHON_UNUSED +# endif +#endif +#define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) + +#ifndef CYTHON_INLINE + #if defined(__clang__) + #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) + #elif defined(__GNUC__) + #define CYTHON_INLINE __inline__ + #elif defined(_MSC_VER) + #define CYTHON_INLINE __inline + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_INLINE inline + #else + #define CYTHON_INLINE + #endif +#endif + +#if defined(WIN32) || defined(MS_WINDOWS) + #define _USE_MATH_DEFINES +#endif +#include +#ifdef NAN +#define __PYX_NAN() ((float) NAN) +#else +static CYTHON_INLINE float __PYX_NAN() { + float value; + memset(&value, 0xFF, sizeof(value)); + return value; +} +#endif +#if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) +#define __Pyx_truncl trunc +#else +#define __Pyx_truncl truncl +#endif + + +#define __PYX_ERR(f_index, lineno, Ln_error) \ +{ \ + __pyx_filename = __pyx_f[f_index]; __pyx_lineno = lineno; __pyx_clineno = __LINE__; goto Ln_error; \ +} + +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) +#else + #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) +#endif + +#ifndef __PYX_EXTERN_C + #ifdef __cplusplus + #define __PYX_EXTERN_C extern "C" + #else + #define __PYX_EXTERN_C extern + #endif +#endif + +#define __PYX_HAVE__gensim__models__nmf_pgd +#define __PYX_HAVE_API__gensim__models__nmf_pgd +#include +#include "pythread.h" +#include +#include +#include +#include "pystate.h" +#ifdef _OPENMP +#include +#endif /* _OPENMP */ + +#ifdef PYREX_WITHOUT_ASSERTIONS +#define CYTHON_WITHOUT_ASSERTIONS +#endif + +typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; + const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; + +#define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 +#define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT 0 +#define __PYX_DEFAULT_STRING_ENCODING "" +#define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString +#define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#define __Pyx_uchar_cast(c) ((unsigned char)c) +#define __Pyx_long_cast(x) ((long)x) +#define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ + (sizeof(type) < sizeof(Py_ssize_t)) ||\ + (sizeof(type) > sizeof(Py_ssize_t) &&\ + likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX) &&\ + (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ + v == (type)PY_SSIZE_T_MIN))) ||\ + (sizeof(type) == sizeof(Py_ssize_t) &&\ + (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX))) ) +#if defined (__cplusplus) && __cplusplus >= 201103L + #include + #define __Pyx_sst_abs(value) std::abs(value) +#elif SIZEOF_INT >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) abs(value) +#elif SIZEOF_LONG >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) labs(value) +#elif defined (_MSC_VER) && defined (_M_X64) + #define __Pyx_sst_abs(value) _abs64(value) +#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define __Pyx_sst_abs(value) llabs(value) +#elif defined (__GNUC__) + #define __Pyx_sst_abs(value) __builtin_llabs(value) +#else + #define __Pyx_sst_abs(value) ((value<0) ? -value : value) +#endif +static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject*); +static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); +#define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) +#define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) +#define __Pyx_PyBytes_FromString PyBytes_FromString +#define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); +#if PY_MAJOR_VERSION < 3 + #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#else + #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize +#endif +#define __Pyx_PyObject_AsSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) +#define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) +#define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) +#define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) +#define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) +#if PY_MAJOR_VERSION < 3 +static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) +{ + const Py_UNICODE *u_end = u; + while (*u_end++) ; + return (size_t)(u_end - u - 1); +} +#else +#define __Pyx_Py_UNICODE_strlen Py_UNICODE_strlen +#endif +#define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) +#define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode +#define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode +#define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) +#define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) +#define __Pyx_PyBool_FromLong(b) ((b) ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False)) +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); +#if CYTHON_ASSUME_SAFE_MACROS +#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) +#else +#define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) +#endif +#define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) +#if PY_MAJOR_VERSION >= 3 +#define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) +#else +#define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) +#endif +#define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII +static int __Pyx_sys_getdefaultencoding_not_ascii; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + PyObject* ascii_chars_u = NULL; + PyObject* ascii_chars_b = NULL; + const char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + if (strcmp(default_encoding_c, "ascii") == 0) { + __Pyx_sys_getdefaultencoding_not_ascii = 0; + } else { + char ascii_chars[128]; + int c; + for (c = 0; c < 128; c++) { + ascii_chars[c] = c; + } + __Pyx_sys_getdefaultencoding_not_ascii = 1; + ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); + if (!ascii_chars_u) goto bad; + ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); + if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { + PyErr_Format( + PyExc_ValueError, + "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", + default_encoding_c); + goto bad; + } + Py_DECREF(ascii_chars_u); + Py_DECREF(ascii_chars_b); + } + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + Py_XDECREF(ascii_chars_u); + Py_XDECREF(ascii_chars_b); + return -1; +} +#endif +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) +#else +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +static char* __PYX_DEFAULT_STRING_ENCODING; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c)); + if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; + strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + return -1; +} +#endif +#endif + + +/* Test for GCC > 2.95 */ +#if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) + #define likely(x) __builtin_expect(!!(x), 1) + #define unlikely(x) __builtin_expect(!!(x), 0) +#else /* !__GNUC__ or GCC < 2.95 */ + #define likely(x) (x) + #define unlikely(x) (x) +#endif /* __GNUC__ */ + +static PyObject *__pyx_m; +static PyObject *__pyx_d; +static PyObject *__pyx_b; +static PyObject *__pyx_empty_tuple; +static PyObject *__pyx_empty_bytes; +static PyObject *__pyx_empty_unicode; +static int __pyx_lineno; +static int __pyx_clineno = 0; +static const char * __pyx_cfilenm= __FILE__; +static const char *__pyx_filename; + + +static const char *__pyx_f[] = { + "gensim/models/nmf_pgd.pyx", + "gensim/models/stringsource", +}; +/* MemviewSliceStruct.proto */ +struct __pyx_memoryview_obj; +typedef struct { + struct __pyx_memoryview_obj *memview; + char *data; + Py_ssize_t shape[8]; + Py_ssize_t strides[8]; + Py_ssize_t suboffsets[8]; +} __Pyx_memviewslice; + +/* BufferFormatStructs.proto */ +#define IS_UNSIGNED(type) (((type) -1) > 0) +struct __Pyx_StructField_; +#define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) +typedef struct { + const char* name; + struct __Pyx_StructField_* fields; + size_t size; + size_t arraysize[8]; + int ndim; + char typegroup; + char is_unsigned; + int flags; +} __Pyx_TypeInfo; +typedef struct __Pyx_StructField_ { + __Pyx_TypeInfo* type; + const char* name; + size_t offset; +} __Pyx_StructField; +typedef struct { + __Pyx_StructField* field; + size_t parent_offset; +} __Pyx_BufFmt_StackElem; +typedef struct { + __Pyx_StructField root; + __Pyx_BufFmt_StackElem* head; + size_t fmt_offset; + size_t new_count, enc_count; + size_t struct_alignment; + int is_complex; + char enc_type; + char new_packmode; + char enc_packmode; + char is_valid_array; +} __Pyx_BufFmt_Context; + +/* Atomics.proto */ +#include +#ifndef CYTHON_ATOMICS + #define CYTHON_ATOMICS 1 +#endif +#define __pyx_atomic_int_type int +#if CYTHON_ATOMICS && __GNUC__ >= 4 && (__GNUC_MINOR__ > 1 ||\ + (__GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL >= 2)) &&\ + !defined(__i386__) + #define __pyx_atomic_incr_aligned(value, lock) __sync_fetch_and_add(value, 1) + #define __pyx_atomic_decr_aligned(value, lock) __sync_fetch_and_sub(value, 1) + #ifdef __PYX_DEBUG_ATOMICS + #warning "Using GNU atomics" + #endif +#elif CYTHON_ATOMICS && defined(_MSC_VER) && 0 + #include + #undef __pyx_atomic_int_type + #define __pyx_atomic_int_type LONG + #define __pyx_atomic_incr_aligned(value, lock) InterlockedIncrement(value) + #define __pyx_atomic_decr_aligned(value, lock) InterlockedDecrement(value) + #ifdef __PYX_DEBUG_ATOMICS + #pragma message ("Using MSVC atomics") + #endif +#elif CYTHON_ATOMICS && (defined(__ICC) || defined(__INTEL_COMPILER)) && 0 + #define __pyx_atomic_incr_aligned(value, lock) _InterlockedIncrement(value) + #define __pyx_atomic_decr_aligned(value, lock) _InterlockedDecrement(value) + #ifdef __PYX_DEBUG_ATOMICS + #warning "Using Intel atomics" + #endif +#else + #undef CYTHON_ATOMICS + #define CYTHON_ATOMICS 0 + #ifdef __PYX_DEBUG_ATOMICS + #warning "Not using atomics" + #endif +#endif +typedef volatile __pyx_atomic_int_type __pyx_atomic_int; +#if CYTHON_ATOMICS + #define __pyx_add_acquisition_count(memview)\ + __pyx_atomic_incr_aligned(__pyx_get_slice_count_pointer(memview), memview->lock) + #define __pyx_sub_acquisition_count(memview)\ + __pyx_atomic_decr_aligned(__pyx_get_slice_count_pointer(memview), memview->lock) +#else + #define __pyx_add_acquisition_count(memview)\ + __pyx_add_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) + #define __pyx_sub_acquisition_count(memview)\ + __pyx_sub_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) +#endif + + +/*--- Type declarations ---*/ +struct __pyx_array_obj; +struct __pyx_MemviewEnum_obj; +struct __pyx_memoryview_obj; +struct __pyx_memoryviewslice_obj; + +/* "View.MemoryView":103 + * + * @cname("__pyx_array") + * cdef class array: # <<<<<<<<<<<<<< + * + * cdef: + */ +struct __pyx_array_obj { + PyObject_HEAD + struct __pyx_vtabstruct_array *__pyx_vtab; + char *data; + Py_ssize_t len; + char *format; + int ndim; + Py_ssize_t *_shape; + Py_ssize_t *_strides; + Py_ssize_t itemsize; + PyObject *mode; + PyObject *_format; + void (*callback_free_data)(void *); + int free_data; + int dtype_is_object; +}; + + +/* "View.MemoryView":275 + * + * @cname('__pyx_MemviewEnum') + * cdef class Enum(object): # <<<<<<<<<<<<<< + * cdef object name + * def __init__(self, name): + */ +struct __pyx_MemviewEnum_obj { + PyObject_HEAD + PyObject *name; +}; + + +/* "View.MemoryView":326 + * + * @cname('__pyx_memoryview') + * cdef class memoryview(object): # <<<<<<<<<<<<<< + * + * cdef object obj + */ +struct __pyx_memoryview_obj { + PyObject_HEAD + struct __pyx_vtabstruct_memoryview *__pyx_vtab; + PyObject *obj; + PyObject *_size; + PyObject *_array_interface; + PyThread_type_lock lock; + __pyx_atomic_int acquisition_count[2]; + __pyx_atomic_int *acquisition_count_aligned_p; + Py_buffer view; + int flags; + int dtype_is_object; + __Pyx_TypeInfo *typeinfo; +}; + + +/* "View.MemoryView":951 + * + * @cname('__pyx_memoryviewslice') + * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< + * "Internal class for passing memoryview slices to Python" + * + */ +struct __pyx_memoryviewslice_obj { + struct __pyx_memoryview_obj __pyx_base; + __Pyx_memviewslice from_slice; + PyObject *from_object; + PyObject *(*to_object_func)(char *); + int (*to_dtype_func)(char *, PyObject *); +}; + + + +/* "View.MemoryView":103 + * + * @cname("__pyx_array") + * cdef class array: # <<<<<<<<<<<<<< + * + * cdef: + */ + +struct __pyx_vtabstruct_array { + PyObject *(*get_memview)(struct __pyx_array_obj *); +}; +static struct __pyx_vtabstruct_array *__pyx_vtabptr_array; + + +/* "View.MemoryView":326 + * + * @cname('__pyx_memoryview') + * cdef class memoryview(object): # <<<<<<<<<<<<<< + * + * cdef object obj + */ + +struct __pyx_vtabstruct_memoryview { + char *(*get_item_pointer)(struct __pyx_memoryview_obj *, PyObject *); + PyObject *(*is_slice)(struct __pyx_memoryview_obj *, PyObject *); + PyObject *(*setitem_slice_assignment)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); + PyObject *(*setitem_slice_assign_scalar)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *); + PyObject *(*setitem_indexed)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); + PyObject *(*convert_item_to_object)(struct __pyx_memoryview_obj *, char *); + PyObject *(*assign_item_from_object)(struct __pyx_memoryview_obj *, char *, PyObject *); +}; +static struct __pyx_vtabstruct_memoryview *__pyx_vtabptr_memoryview; + + +/* "View.MemoryView":951 + * + * @cname('__pyx_memoryviewslice') + * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< + * "Internal class for passing memoryview slices to Python" + * + */ + +struct __pyx_vtabstruct__memoryviewslice { + struct __pyx_vtabstruct_memoryview __pyx_base; +}; +static struct __pyx_vtabstruct__memoryviewslice *__pyx_vtabptr__memoryviewslice; + +/* --- Runtime support code (head) --- */ +/* Refnanny.proto */ +#ifndef CYTHON_REFNANNY + #define CYTHON_REFNANNY 0 +#endif +#if CYTHON_REFNANNY + typedef struct { + void (*INCREF)(void*, PyObject*, int); + void (*DECREF)(void*, PyObject*, int); + void (*GOTREF)(void*, PyObject*, int); + void (*GIVEREF)(void*, PyObject*, int); + void* (*SetupContext)(const char*, int, const char*); + void (*FinishContext)(void**); + } __Pyx_RefNannyAPIStruct; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); + #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; +#ifdef WITH_THREAD + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + if (acquire_gil) {\ + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + PyGILState_Release(__pyx_gilstate_save);\ + } else {\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + } +#else + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) +#endif + #define __Pyx_RefNannyFinishContext()\ + __Pyx_RefNanny->FinishContext(&__pyx_refnanny) + #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) + #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) + #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) + #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) +#else + #define __Pyx_RefNannyDeclarations + #define __Pyx_RefNannySetupContext(name, acquire_gil) + #define __Pyx_RefNannyFinishContext() + #define __Pyx_INCREF(r) Py_INCREF(r) + #define __Pyx_DECREF(r) Py_DECREF(r) + #define __Pyx_GOTREF(r) + #define __Pyx_GIVEREF(r) + #define __Pyx_XINCREF(r) Py_XINCREF(r) + #define __Pyx_XDECREF(r) Py_XDECREF(r) + #define __Pyx_XGOTREF(r) + #define __Pyx_XGIVEREF(r) +#endif +#define __Pyx_XDECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_XDECREF(tmp);\ + } while (0) +#define __Pyx_DECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_DECREF(tmp);\ + } while (0) +#define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) +#define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) + +/* PyObjectGetAttrStr.proto */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { + PyTypeObject* tp = Py_TYPE(obj); + if (likely(tp->tp_getattro)) + return tp->tp_getattro(obj, attr_name); +#if PY_MAJOR_VERSION < 3 + if (likely(tp->tp_getattr)) + return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); +#endif + return PyObject_GetAttr(obj, attr_name); +} +#else +#define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) +#endif + +/* GetBuiltinName.proto */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name); + +/* RaiseArgTupleInvalid.proto */ +static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, + Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); + +/* RaiseDoubleKeywords.proto */ +static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); + +/* ParseKeywords.proto */ +static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ + PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ + const char* function_name); + +/* BufferFormatCheck.proto */ +static CYTHON_INLINE int __Pyx_GetBufferAndValidate(Py_buffer* buf, PyObject* obj, + __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack); +static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info); +static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts); +static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, + __Pyx_BufFmt_StackElem* stack, + __Pyx_TypeInfo* type); // PROTO + +/* MemviewSliceInit.proto */ +#define __Pyx_BUF_MAX_NDIMS %(BUF_MAX_NDIMS)d +#define __Pyx_MEMVIEW_DIRECT 1 +#define __Pyx_MEMVIEW_PTR 2 +#define __Pyx_MEMVIEW_FULL 4 +#define __Pyx_MEMVIEW_CONTIG 8 +#define __Pyx_MEMVIEW_STRIDED 16 +#define __Pyx_MEMVIEW_FOLLOW 32 +#define __Pyx_IS_C_CONTIG 1 +#define __Pyx_IS_F_CONTIG 2 +static int __Pyx_init_memviewslice( + struct __pyx_memoryview_obj *memview, + int ndim, + __Pyx_memviewslice *memviewslice, + int memview_is_new_reference); +static CYTHON_INLINE int __pyx_add_acquisition_count_locked( + __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); +static CYTHON_INLINE int __pyx_sub_acquisition_count_locked( + __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); +#define __pyx_get_slice_count_pointer(memview) (memview->acquisition_count_aligned_p) +#define __pyx_get_slice_count(memview) (*__pyx_get_slice_count_pointer(memview)) +#define __PYX_INC_MEMVIEW(slice, have_gil) __Pyx_INC_MEMVIEW(slice, have_gil, __LINE__) +#define __PYX_XDEC_MEMVIEW(slice, have_gil) __Pyx_XDEC_MEMVIEW(slice, have_gil, __LINE__) +static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *, int, int); +static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *, int, int); + +/* ArgTypeTest.proto */ +static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, + const char *name, int exact); + +/* PyObjectCall.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); +#else +#define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) +#endif + +/* PyThreadStateGet.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; +#define __Pyx_PyThreadState_assign __pyx_tstate = PyThreadState_GET(); +#else +#define __Pyx_PyThreadState_declare +#define __Pyx_PyThreadState_assign +#endif + +/* PyErrFetchRestore.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#else +#define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) +#endif + +/* RaiseException.proto */ +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); + +/* IncludeStringH.proto */ +#include + +/* BytesEquals.proto */ +static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); + +/* UnicodeEquals.proto */ +static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); + +/* StrEquals.proto */ +#if PY_MAJOR_VERSION >= 3 +#define __Pyx_PyString_Equals __Pyx_PyUnicode_Equals +#else +#define __Pyx_PyString_Equals __Pyx_PyBytes_Equals +#endif + +/* UnaryNegOverflows.proto */ +#define UNARY_NEG_WOULD_OVERFLOW(x)\ + (((x) < 0) & ((unsigned long)(x) == 0-(unsigned long)(x))) + +static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *); /*proto*/ +/* GetAttr.proto */ +static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); + +/* decode_c_string.proto */ +static CYTHON_INLINE PyObject* __Pyx_decode_c_string( + const char* cstring, Py_ssize_t start, Py_ssize_t stop, + const char* encoding, const char* errors, + PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)); + +/* RaiseTooManyValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); + +/* RaiseNeedMoreValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); + +/* RaiseNoneIterError.proto */ +static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); + +/* ExtTypeTest.proto */ +static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); + +/* SaveResetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +#else +#define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) +#define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) +#endif + +/* PyErrExceptionMatches.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) +static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); +#else +#define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) +#endif + +/* GetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); +#endif + +/* SwapException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_ExceptionSwap(type, value, tb) __Pyx__ExceptionSwap(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#else +static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb); +#endif + +/* Import.proto */ +static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); + +/* PyFunctionFastCall.proto */ +#if CYTHON_FAST_PYCALL +#define __Pyx_PyFunction_FastCall(func, args, nargs)\ + __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, int nargs, PyObject *kwargs); +#else +#define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) +#endif +#endif + +/* PyCFunctionFastCall.proto */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); +#else +#define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) +#endif + +/* GetItemInt.proto */ +#define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ + (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ + __Pyx_GetItemInt_Generic(o, to_py_func(i)))) +#define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ + (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, + int wraparound, int boundscheck); +#define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ + (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, + int wraparound, int boundscheck); +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, + int is_list, int wraparound, int boundscheck); + +static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +/* ListCompAppend.proto */ +#if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS +static CYTHON_INLINE int __Pyx_ListComp_Append(PyObject* list, PyObject* x) { + PyListObject* L = (PyListObject*) list; + Py_ssize_t len = Py_SIZE(list); + if (likely(L->allocated > len)) { + Py_INCREF(x); + PyList_SET_ITEM(list, len, x); + Py_SIZE(list) = len+1; + return 0; + } + return PyList_Append(list, x); +} +#else +#define __Pyx_ListComp_Append(L,x) PyList_Append(L,x) +#endif + +/* PyIntBinop.proto */ +#if !CYTHON_COMPILING_IN_PYPY +static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace); +#else +#define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace)\ + (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) +#endif + +/* ListExtend.proto */ +static CYTHON_INLINE int __Pyx_PyList_Extend(PyObject* L, PyObject* v) { +#if CYTHON_COMPILING_IN_CPYTHON + PyObject* none = _PyList_Extend((PyListObject*)L, v); + if (unlikely(!none)) + return -1; + Py_DECREF(none); + return 0; +#else + return PyList_SetSlice(L, PY_SSIZE_T_MAX, PY_SSIZE_T_MAX, v); +#endif +} + +/* ListAppend.proto */ +#if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS +static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { + PyListObject* L = (PyListObject*) list; + Py_ssize_t len = Py_SIZE(list); + if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) { + Py_INCREF(x); + PyList_SET_ITEM(list, len, x); + Py_SIZE(list) = len+1; + return 0; + } + return PyList_Append(list, x); +} +#else +#define __Pyx_PyList_Append(L,x) PyList_Append(L,x) +#endif + +/* None.proto */ +static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname); + +/* ForceInitThreads.proto */ +#ifndef __PYX_FORCE_INIT_THREADS + #define __PYX_FORCE_INIT_THREADS 0 +#endif + +/* WriteUnraisableException.proto */ +static void __Pyx_WriteUnraisable(const char *name, int clineno, + int lineno, const char *filename, + int full_traceback, int nogil); + +/* PyObjectCallMethO.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); +#endif + +/* PyObjectCallOneArg.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); + +/* SetVTable.proto */ +static int __Pyx_SetVtable(PyObject *dict, void *vtable); + +/* CodeObjectCache.proto */ +typedef struct { + PyCodeObject* code_object; + int code_line; +} __Pyx_CodeObjectCacheEntry; +struct __Pyx_CodeObjectCache { + int count; + int max_count; + __Pyx_CodeObjectCacheEntry* entries; +}; +static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; +static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); +static PyCodeObject *__pyx_find_code_object(int code_line); +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); + +/* AddTraceback.proto */ +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename); + +#if PY_MAJOR_VERSION < 3 + static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags); + static void __Pyx_ReleaseBuffer(Py_buffer *view); +#else + #define __Pyx_GetBuffer PyObject_GetBuffer + #define __Pyx_ReleaseBuffer PyBuffer_Release +#endif + + +/* BufferStructDeclare.proto */ +typedef struct { + Py_ssize_t shape, strides, suboffsets; +} __Pyx_Buf_DimInfo; +typedef struct { + size_t refcount; + Py_buffer pybuffer; +} __Pyx_Buffer; +typedef struct { + __Pyx_Buffer *rcbuffer; + char *data; + __Pyx_Buf_DimInfo diminfo[8]; +} __Pyx_LocalBuf_ND; + +/* None.proto */ +static Py_ssize_t __Pyx_zeros[] = {0, 0, 0, 0, 0, 0, 0, 0}; +static Py_ssize_t __Pyx_minusones[] = {-1, -1, -1, -1, -1, -1, -1, -1}; + +/* MemviewSliceIsContig.proto */ +static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, + char order, int ndim); + +/* OverlappingSlices.proto */ +static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, + __Pyx_memviewslice *slice2, + int ndim, size_t itemsize); + +/* Capsule.proto */ +static CYTHON_INLINE PyObject *__pyx_capsule_create(void *p, const char *sig); + +/* TypeInfoCompare.proto */ +static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b); + +/* MemviewSliceValidateAndInit.proto */ +static int __Pyx_ValidateAndInit_memviewslice( + int *axes_specs, + int c_or_f_flag, + int buf_flags, + int ndim, + __Pyx_TypeInfo *dtype, + __Pyx_BufFmt_StackElem stack[], + __Pyx_memviewslice *memviewslice, + PyObject *original_obj); + +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *); + +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *); + +/* MemviewSliceCopyTemplate.proto */ +static __Pyx_memviewslice +__pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, + const char *mode, int ndim, + size_t sizeof_dtype, int contig_flag, + int dtype_is_object); + +/* CIntFromPy.proto */ +static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); + +/* CIntFromPy.proto */ +static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); + +/* CIntFromPy.proto */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); + +/* CheckBinaryVersion.proto */ +static int __Pyx_check_binary_version(void); + +/* InitStrings.proto */ +static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); + +static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self); /* proto*/ +static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto*/ +static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj); /* proto*/ +static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src); /* proto*/ +static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value); /* proto*/ +static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto*/ +static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ +static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ +static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ +static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ + +/* Module declarations from 'libc.math' */ + +/* Module declarations from 'gensim.models.nmf_pgd' */ +static PyTypeObject *__pyx_array_type = 0; +static PyTypeObject *__pyx_MemviewEnum_type = 0; +static PyTypeObject *__pyx_memoryview_type = 0; +static PyTypeObject *__pyx_memoryviewslice_type = 0; +static PyObject *generic = 0; +static PyObject *strided = 0; +static PyObject *indirect = 0; +static PyObject *contiguous = 0; +static PyObject *indirect_contiguous = 0; +static int __pyx_memoryview_thread_locks_used; +static PyThread_type_lock __pyx_memoryview_thread_locks[8]; +static struct __pyx_array_obj *__pyx_array_new(PyObject *, Py_ssize_t, char *, char *, char *); /*proto*/ +static void *__pyx_align_pointer(void *, size_t); /*proto*/ +static PyObject *__pyx_memoryview_new(PyObject *, int, int, __Pyx_TypeInfo *); /*proto*/ +static CYTHON_INLINE int __pyx_memoryview_check(PyObject *); /*proto*/ +static PyObject *_unellipsify(PyObject *, int); /*proto*/ +static PyObject *assert_direct_dimensions(Py_ssize_t *, int); /*proto*/ +static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *, PyObject *); /*proto*/ +static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int); /*proto*/ +static char *__pyx_pybuffer_index(Py_buffer *, char *, Py_ssize_t, Py_ssize_t); /*proto*/ +static int __pyx_memslice_transpose(__Pyx_memviewslice *); /*proto*/ +static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int); /*proto*/ +static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ +static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ +static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *); /*proto*/ +static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ +static Py_ssize_t abs_py_ssize_t(Py_ssize_t); /*proto*/ +static char __pyx_get_best_slice_order(__Pyx_memviewslice *, int); /*proto*/ +static void _copy_strided_to_strided(char *, Py_ssize_t *, char *, Py_ssize_t *, Py_ssize_t *, Py_ssize_t *, int, size_t); /*proto*/ +static void copy_strided_to_strided(__Pyx_memviewslice *, __Pyx_memviewslice *, int, size_t); /*proto*/ +static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *, int); /*proto*/ +static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char); /*proto*/ +static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int); /*proto*/ +static int __pyx_memoryview_err_extents(int, Py_ssize_t, Py_ssize_t); /*proto*/ +static int __pyx_memoryview_err_dim(PyObject *, char *, int); /*proto*/ +static int __pyx_memoryview_err(PyObject *, char *); /*proto*/ +static int __pyx_memoryview_copy_contents(__Pyx_memviewslice, __Pyx_memviewslice, int, int, int); /*proto*/ +static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *, int, int); /*proto*/ +static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *, int, int, int); /*proto*/ +static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ +static void __pyx_memoryview_refcount_objects_in_slice(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ +static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *, int, size_t, void *, int); /*proto*/ +static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *); /*proto*/ +static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; +#define __Pyx_MODULE_NAME "gensim.models.nmf_pgd" +int __pyx_module_is_main_gensim__models__nmf_pgd = 0; + +/* Implementation of 'gensim.models.nmf_pgd' */ +static PyObject *__pyx_builtin_range; +static PyObject *__pyx_builtin_ValueError; +static PyObject *__pyx_builtin_MemoryError; +static PyObject *__pyx_builtin_enumerate; +static PyObject *__pyx_builtin_Ellipsis; +static PyObject *__pyx_builtin_TypeError; +static PyObject *__pyx_builtin_id; +static PyObject *__pyx_builtin_IndexError; +static const char __pyx_k_O[] = "O"; +static const char __pyx_k_c[] = "c"; +static const char __pyx_k_h[] = "h"; +static const char __pyx_k_id[] = "id"; +static const char __pyx_k_WtW[] = "WtW"; +static const char __pyx_k_obj[] = "obj"; +static const char __pyx_k_base[] = "base"; +static const char __pyx_k_grad[] = "grad"; +static const char __pyx_k_main[] = "__main__"; +static const char __pyx_k_mode[] = "mode"; +static const char __pyx_k_name[] = "name"; +static const char __pyx_k_ndim[] = "ndim"; +static const char __pyx_k_pack[] = "pack"; +static const char __pyx_k_size[] = "size"; +static const char __pyx_k_step[] = "step"; +static const char __pyx_k_stop[] = "stop"; +static const char __pyx_k_test[] = "__test__"; +static const char __pyx_k_ASCII[] = "ASCII"; +static const char __pyx_k_class[] = "__class__"; +static const char __pyx_k_error[] = "error"; +static const char __pyx_k_flags[] = "flags"; +static const char __pyx_k_kappa[] = "kappa"; +static const char __pyx_k_range[] = "range"; +static const char __pyx_k_shape[] = "shape"; +static const char __pyx_k_start[] = "start"; +static const char __pyx_k_encode[] = "encode"; +static const char __pyx_k_format[] = "format"; +static const char __pyx_k_import[] = "__import__"; +static const char __pyx_k_name_2[] = "__name__"; +static const char __pyx_k_struct[] = "struct"; +static const char __pyx_k_unpack[] = "unpack"; +static const char __pyx_k_fortran[] = "fortran"; +static const char __pyx_k_hessian[] = "hessian"; +static const char __pyx_k_memview[] = "memview"; +static const char __pyx_k_solve_h[] = "solve_h"; +static const char __pyx_k_Ellipsis[] = "Ellipsis"; +static const char __pyx_k_itemsize[] = "itemsize"; +static const char __pyx_k_TypeError[] = "TypeError"; +static const char __pyx_k_enumerate[] = "enumerate"; +static const char __pyx_k_n_samples[] = "n_samples"; +static const char __pyx_k_violation[] = "violation"; +static const char __pyx_k_IndexError[] = "IndexError"; +static const char __pyx_k_ValueError[] = "ValueError"; +static const char __pyx_k_pyx_vtable[] = "__pyx_vtable__"; +static const char __pyx_k_sample_idx[] = "sample_idx"; +static const char __pyx_k_MemoryError[] = "MemoryError"; +static const char __pyx_k_Wt_v_minus_r[] = "Wt_v_minus_r"; +static const char __pyx_k_n_components[] = "n_components"; +static const char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; +static const char __pyx_k_projected_grad[] = "projected_grad"; +static const char __pyx_k_allocate_buffer[] = "allocate_buffer"; +static const char __pyx_k_component_idx_1[] = "component_idx_1"; +static const char __pyx_k_component_idx_2[] = "component_idx_2"; +static const char __pyx_k_dtype_is_object[] = "dtype_is_object"; +static const char __pyx_k_strided_and_direct[] = ""; +static const char __pyx_k_strided_and_indirect[] = ""; +static const char __pyx_k_contiguous_and_direct[] = ""; +static const char __pyx_k_gensim_models_nmf_pgd[] = "gensim.models.nmf_pgd"; +static const char __pyx_k_MemoryView_of_r_object[] = ""; +static const char __pyx_k_MemoryView_of_r_at_0x_x[] = ""; +static const char __pyx_k_contiguous_and_indirect[] = ""; +static const char __pyx_k_Cannot_index_with_type_s[] = "Cannot index with type '%s'"; +static const char __pyx_k_Invalid_shape_in_axis_d_d[] = "Invalid shape in axis %d: %d."; +static const char __pyx_k_itemsize_0_for_cython_array[] = "itemsize <= 0 for cython.array"; +static const char __pyx_k_unable_to_allocate_array_data[] = "unable to allocate array data."; +static const char __pyx_k_strided_and_direct_or_indirect[] = ""; +static const char __pyx_k_home_anotherbugmaster_Documents[] = "/home/anotherbugmaster/Documents/gensim/gensim/models/nmf_pgd.pyx"; +static const char __pyx_k_Buffer_view_does_not_expose_stri[] = "Buffer view does not expose strides"; +static const char __pyx_k_Can_only_create_a_buffer_that_is[] = "Can only create a buffer that is contiguous in memory."; +static const char __pyx_k_Empty_shape_tuple_for_cython_arr[] = "Empty shape tuple for cython.array"; +static const char __pyx_k_Indirect_dimensions_not_supporte[] = "Indirect dimensions not supported"; +static const char __pyx_k_Invalid_mode_expected_c_or_fortr[] = "Invalid mode, expected 'c' or 'fortran', got %s"; +static const char __pyx_k_Out_of_bounds_on_buffer_access_a[] = "Out of bounds on buffer access (axis %d)"; +static const char __pyx_k_Unable_to_convert_item_to_object[] = "Unable to convert item to object"; +static const char __pyx_k_got_differing_extents_in_dimensi[] = "got differing extents in dimension %d (got %d and %d)"; +static const char __pyx_k_unable_to_allocate_shape_and_str[] = "unable to allocate shape and strides."; +static PyObject *__pyx_n_s_ASCII; +static PyObject *__pyx_kp_s_Buffer_view_does_not_expose_stri; +static PyObject *__pyx_kp_s_Can_only_create_a_buffer_that_is; +static PyObject *__pyx_kp_s_Cannot_index_with_type_s; +static PyObject *__pyx_n_s_Ellipsis; +static PyObject *__pyx_kp_s_Empty_shape_tuple_for_cython_arr; +static PyObject *__pyx_n_s_IndexError; +static PyObject *__pyx_kp_s_Indirect_dimensions_not_supporte; +static PyObject *__pyx_kp_s_Invalid_mode_expected_c_or_fortr; +static PyObject *__pyx_kp_s_Invalid_shape_in_axis_d_d; +static PyObject *__pyx_n_s_MemoryError; +static PyObject *__pyx_kp_s_MemoryView_of_r_at_0x_x; +static PyObject *__pyx_kp_s_MemoryView_of_r_object; +static PyObject *__pyx_n_b_O; +static PyObject *__pyx_kp_s_Out_of_bounds_on_buffer_access_a; +static PyObject *__pyx_n_s_TypeError; +static PyObject *__pyx_kp_s_Unable_to_convert_item_to_object; +static PyObject *__pyx_n_s_ValueError; +static PyObject *__pyx_n_s_WtW; +static PyObject *__pyx_n_s_Wt_v_minus_r; +static PyObject *__pyx_n_s_allocate_buffer; +static PyObject *__pyx_n_s_base; +static PyObject *__pyx_n_s_c; +static PyObject *__pyx_n_u_c; +static PyObject *__pyx_n_s_class; +static PyObject *__pyx_n_s_component_idx_1; +static PyObject *__pyx_n_s_component_idx_2; +static PyObject *__pyx_kp_s_contiguous_and_direct; +static PyObject *__pyx_kp_s_contiguous_and_indirect; +static PyObject *__pyx_n_s_dtype_is_object; +static PyObject *__pyx_n_s_encode; +static PyObject *__pyx_n_s_enumerate; +static PyObject *__pyx_n_s_error; +static PyObject *__pyx_n_s_flags; +static PyObject *__pyx_n_s_format; +static PyObject *__pyx_n_s_fortran; +static PyObject *__pyx_n_u_fortran; +static PyObject *__pyx_n_s_gensim_models_nmf_pgd; +static PyObject *__pyx_kp_s_got_differing_extents_in_dimensi; +static PyObject *__pyx_n_s_grad; +static PyObject *__pyx_n_s_h; +static PyObject *__pyx_n_s_hessian; +static PyObject *__pyx_kp_s_home_anotherbugmaster_Documents; +static PyObject *__pyx_n_s_id; +static PyObject *__pyx_n_s_import; +static PyObject *__pyx_n_s_itemsize; +static PyObject *__pyx_kp_s_itemsize_0_for_cython_array; +static PyObject *__pyx_n_s_kappa; +static PyObject *__pyx_n_s_main; +static PyObject *__pyx_n_s_memview; +static PyObject *__pyx_n_s_mode; +static PyObject *__pyx_n_s_n_components; +static PyObject *__pyx_n_s_n_samples; +static PyObject *__pyx_n_s_name; +static PyObject *__pyx_n_s_name_2; +static PyObject *__pyx_n_s_ndim; +static PyObject *__pyx_n_s_obj; +static PyObject *__pyx_n_s_pack; +static PyObject *__pyx_n_s_projected_grad; +static PyObject *__pyx_n_s_pyx_getbuffer; +static PyObject *__pyx_n_s_pyx_vtable; +static PyObject *__pyx_n_s_range; +static PyObject *__pyx_n_s_sample_idx; +static PyObject *__pyx_n_s_shape; +static PyObject *__pyx_n_s_size; +static PyObject *__pyx_n_s_solve_h; +static PyObject *__pyx_n_s_start; +static PyObject *__pyx_n_s_step; +static PyObject *__pyx_n_s_stop; +static PyObject *__pyx_kp_s_strided_and_direct; +static PyObject *__pyx_kp_s_strided_and_direct_or_indirect; +static PyObject *__pyx_kp_s_strided_and_indirect; +static PyObject *__pyx_n_s_struct; +static PyObject *__pyx_n_s_test; +static PyObject *__pyx_kp_s_unable_to_allocate_array_data; +static PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; +static PyObject *__pyx_n_s_unpack; +static PyObject *__pyx_n_s_violation; +static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_h, __Pyx_memviewslice __pyx_v_Wt_v_minus_r, __Pyx_memviewslice __pyx_v_WtW, double __pyx_v_kappa); /* proto */ +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer); /* proto */ +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ +static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr); /* proto */ +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item); /* proto */ +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /* proto */ +static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name); /* proto */ +static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object); /* proto */ +static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto */ +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto */ +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_int_0; +static PyObject *__pyx_int_1; +static PyObject *__pyx_int_neg_1; +static PyObject *__pyx_tuple_; +static PyObject *__pyx_tuple__2; +static PyObject *__pyx_tuple__3; +static PyObject *__pyx_tuple__4; +static PyObject *__pyx_tuple__5; +static PyObject *__pyx_tuple__6; +static PyObject *__pyx_tuple__7; +static PyObject *__pyx_tuple__8; +static PyObject *__pyx_tuple__9; +static PyObject *__pyx_slice__10; +static PyObject *__pyx_slice__11; +static PyObject *__pyx_slice__12; +static PyObject *__pyx_tuple__13; +static PyObject *__pyx_tuple__14; +static PyObject *__pyx_tuple__16; +static PyObject *__pyx_tuple__17; +static PyObject *__pyx_tuple__18; +static PyObject *__pyx_tuple__19; +static PyObject *__pyx_tuple__20; +static PyObject *__pyx_codeobj__15; + +/* "gensim/models/nmf_pgd.pyx":11 + * from cython.parallel import prange + * + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< + * cdef Py_ssize_t n_components = h.shape[0] + * cdef Py_ssize_t n_samples = h.shape[1] + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h = {"solve_h", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h, METH_VARARGS|METH_KEYWORDS, 0}; +static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + __Pyx_memviewslice __pyx_v_h = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_Wt_v_minus_r = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_WtW = { 0, 0, { 0 }, { 0 }, { 0 } }; + double __pyx_v_kappa; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("solve_h (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_h,&__pyx_n_s_Wt_v_minus_r,&__pyx_n_s_WtW,&__pyx_n_s_kappa,0}; + PyObject* values[4] = {0,0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_h)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + case 1: + if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_Wt_v_minus_r)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 11, __pyx_L3_error) + } + case 2: + if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_WtW)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 11, __pyx_L3_error) + } + case 3: + if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 11, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 11, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + } + __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0]); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 11, __pyx_L3_error) + __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1]); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 11, __pyx_L3_error) + __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2]); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 11, __pyx_L3_error) + __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 11, __pyx_L3_error) + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 11, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_pf_6gensim_6models_7nmf_pgd_solve_h(__pyx_self, __pyx_v_h, __pyx_v_Wt_v_minus_r, __pyx_v_WtW, __pyx_v_kappa); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_h, __Pyx_memviewslice __pyx_v_Wt_v_minus_r, __Pyx_memviewslice __pyx_v_WtW, double __pyx_v_kappa) { + Py_ssize_t __pyx_v_n_components; + CYTHON_UNUSED Py_ssize_t __pyx_v_n_samples; + double __pyx_v_violation; + double __pyx_v_grad; + double __pyx_v_projected_grad; + double __pyx_v_hessian; + Py_ssize_t __pyx_v_sample_idx; + Py_ssize_t __pyx_v_component_idx_1; + Py_ssize_t __pyx_v_component_idx_2; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + Py_ssize_t __pyx_t_2; + Py_ssize_t __pyx_t_3; + Py_ssize_t __pyx_t_4; + Py_ssize_t __pyx_t_5; + Py_ssize_t __pyx_t_6; + Py_ssize_t __pyx_t_7; + Py_ssize_t __pyx_t_8; + Py_ssize_t __pyx_t_9; + Py_ssize_t __pyx_t_10; + Py_ssize_t __pyx_t_11; + Py_ssize_t __pyx_t_12; + Py_ssize_t __pyx_t_13; + Py_ssize_t __pyx_t_14; + Py_ssize_t __pyx_t_15; + double __pyx_t_16; + Py_ssize_t __pyx_t_17; + Py_ssize_t __pyx_t_18; + Py_ssize_t __pyx_t_19; + Py_ssize_t __pyx_t_20; + Py_ssize_t __pyx_t_21; + Py_ssize_t __pyx_t_22; + PyObject *__pyx_t_23 = NULL; + __Pyx_RefNannySetupContext("solve_h", 0); + + /* "gensim/models/nmf_pgd.pyx":12 + * + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + * cdef Py_ssize_t n_components = h.shape[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t n_samples = h.shape[1] + * cdef double violation = 0 + */ + __pyx_v_n_components = (__pyx_v_h.shape[0]); + + /* "gensim/models/nmf_pgd.pyx":13 + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + * cdef Py_ssize_t n_components = h.shape[0] + * cdef Py_ssize_t n_samples = h.shape[1] # <<<<<<<<<<<<<< + * cdef double violation = 0 + * cdef double grad, projected_grad, hessian + */ + __pyx_v_n_samples = (__pyx_v_h.shape[1]); + + /* "gensim/models/nmf_pgd.pyx":14 + * cdef Py_ssize_t n_components = h.shape[0] + * cdef Py_ssize_t n_samples = h.shape[1] + * cdef double violation = 0 # <<<<<<<<<<<<<< + * cdef double grad, projected_grad, hessian + * cdef Py_ssize_t sample_idx = 0 + */ + __pyx_v_violation = 0.0; + + /* "gensim/models/nmf_pgd.pyx":16 + * cdef double violation = 0 + * cdef double grad, projected_grad, hessian + * cdef Py_ssize_t sample_idx = 0 # <<<<<<<<<<<<<< + * cdef Py_ssize_t component_idx_1 = 0 + * cdef Py_ssize_t component_idx_2 = 0 + */ + __pyx_v_sample_idx = 0; + + /* "gensim/models/nmf_pgd.pyx":17 + * cdef double grad, projected_grad, hessian + * cdef Py_ssize_t sample_idx = 0 + * cdef Py_ssize_t component_idx_1 = 0 # <<<<<<<<<<<<<< + * cdef Py_ssize_t component_idx_2 = 0 + * + */ + __pyx_v_component_idx_1 = 0; + + /* "gensim/models/nmf_pgd.pyx":18 + * cdef Py_ssize_t sample_idx = 0 + * cdef Py_ssize_t component_idx_1 = 0 + * cdef Py_ssize_t component_idx_2 = 0 # <<<<<<<<<<<<<< + * + * for sample_idx in prange(n_samples, nogil=True): + */ + __pyx_v_component_idx_2 = 0; + + /* "gensim/models/nmf_pgd.pyx":20 + * cdef Py_ssize_t component_idx_2 = 0 + * + * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< + * for component_idx_1 in range(n_components): + * + */ + { + #ifdef WITH_THREAD + PyThreadState *_save; + Py_UNBLOCK_THREADS + #endif + /*try:*/ { + __pyx_t_1 = __pyx_v_n_samples; + if (1 == 0) abort(); + { + #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) + #undef likely + #undef unlikely + #define likely(x) (x) + #define unlikely(x) (x) + #endif + __pyx_t_3 = (__pyx_t_1 - 0 + 1 - 1/abs(1)) / 1; + if (__pyx_t_3 > 0) + { + #ifdef _OPENMP + #pragma omp parallel reduction(+:__pyx_v_violation) private(__pyx_t_10, __pyx_t_11, __pyx_t_12, __pyx_t_13, __pyx_t_14, __pyx_t_15, __pyx_t_16, __pyx_t_17, __pyx_t_18, __pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_4, __pyx_t_5, __pyx_t_6, __pyx_t_7, __pyx_t_8, __pyx_t_9) + #endif /* _OPENMP */ + { + #ifdef _OPENMP + #pragma omp for lastprivate(__pyx_v_component_idx_1) lastprivate(__pyx_v_component_idx_2) lastprivate(__pyx_v_grad) lastprivate(__pyx_v_hessian) lastprivate(__pyx_v_projected_grad) firstprivate(__pyx_v_sample_idx) lastprivate(__pyx_v_sample_idx) + #endif /* _OPENMP */ + for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_3; __pyx_t_2++){ + { + __pyx_v_sample_idx = (Py_ssize_t)(0 + 1 * __pyx_t_2); + /* Initialize private variables to invalid values */ + __pyx_v_component_idx_1 = ((Py_ssize_t)0xbad0bad0); + __pyx_v_component_idx_2 = ((Py_ssize_t)0xbad0bad0); + __pyx_v_grad = ((double)__PYX_NAN()); + __pyx_v_hessian = ((double)__PYX_NAN()); + __pyx_v_projected_grad = ((double)__PYX_NAN()); + + /* "gensim/models/nmf_pgd.pyx":21 + * + * for sample_idx in prange(n_samples, nogil=True): + * for component_idx_1 in range(n_components): # <<<<<<<<<<<<<< + * + * grad = -Wt_v_minus_r[component_idx_1, sample_idx] + */ + __pyx_t_4 = __pyx_v_n_components; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { + __pyx_v_component_idx_1 = __pyx_t_5; + + /* "gensim/models/nmf_pgd.pyx":23 + * for component_idx_1 in range(n_components): + * + * grad = -Wt_v_minus_r[component_idx_1, sample_idx] # <<<<<<<<<<<<<< + * + * for component_idx_2 in range(n_components): + */ + __pyx_t_6 = __pyx_v_component_idx_1; + __pyx_t_7 = __pyx_v_sample_idx; + __pyx_v_grad = (-(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_Wt_v_minus_r.data + __pyx_t_6 * __pyx_v_Wt_v_minus_r.strides[0]) ) + __pyx_t_7 * __pyx_v_Wt_v_minus_r.strides[1]) )))); + + /* "gensim/models/nmf_pgd.pyx":25 + * grad = -Wt_v_minus_r[component_idx_1, sample_idx] + * + * for component_idx_2 in range(n_components): # <<<<<<<<<<<<<< + * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] + * + */ + __pyx_t_8 = __pyx_v_n_components; + for (__pyx_t_9 = 0; __pyx_t_9 < __pyx_t_8; __pyx_t_9+=1) { + __pyx_v_component_idx_2 = __pyx_t_9; + + /* "gensim/models/nmf_pgd.pyx":26 + * + * for component_idx_2 in range(n_components): + * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] # <<<<<<<<<<<<<< + * + * hessian = WtW[component_idx_1, component_idx_1] + */ + __pyx_t_10 = __pyx_v_component_idx_1; + __pyx_t_11 = __pyx_v_component_idx_2; + __pyx_t_12 = __pyx_v_component_idx_2; + __pyx_t_13 = __pyx_v_sample_idx; + __pyx_v_grad = (__pyx_v_grad + ((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_10 * __pyx_v_WtW.strides[0]) )) + __pyx_t_11)) ))) * (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_12 * __pyx_v_h.strides[0]) )) + __pyx_t_13)) ))))); + } + + /* "gensim/models/nmf_pgd.pyx":28 + * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] + * + * hessian = WtW[component_idx_1, component_idx_1] # <<<<<<<<<<<<<< + * + * grad = grad * kappa / hessian + */ + __pyx_t_14 = __pyx_v_component_idx_1; + __pyx_t_15 = __pyx_v_component_idx_1; + __pyx_v_hessian = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_14 * __pyx_v_WtW.strides[0]) )) + __pyx_t_15)) ))); + + /* "gensim/models/nmf_pgd.pyx":30 + * hessian = WtW[component_idx_1, component_idx_1] + * + * grad = grad * kappa / hessian # <<<<<<<<<<<<<< + * + * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + */ + __pyx_v_grad = ((__pyx_v_grad * __pyx_v_kappa) / __pyx_v_hessian); + + /* "gensim/models/nmf_pgd.pyx":32 + * grad = grad * kappa / hessian + * + * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad # <<<<<<<<<<<<<< + * + * violation += projected_grad * projected_grad + */ + __pyx_t_17 = __pyx_v_component_idx_1; + __pyx_t_18 = __pyx_v_sample_idx; + if ((((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_17 * __pyx_v_h.strides[0]) )) + __pyx_t_18)) ))) == 0.0) != 0)) { + __pyx_t_16 = fmin(0.0, __pyx_v_grad); + } else { + __pyx_t_16 = __pyx_v_grad; + } + __pyx_v_projected_grad = __pyx_t_16; + + /* "gensim/models/nmf_pgd.pyx":34 + * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + * + * violation += projected_grad * projected_grad # <<<<<<<<<<<<<< + * + * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + */ + __pyx_v_violation = (__pyx_v_violation + (__pyx_v_projected_grad * __pyx_v_projected_grad)); + + /* "gensim/models/nmf_pgd.pyx":36 + * violation += projected_grad * projected_grad + * + * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) # <<<<<<<<<<<<<< + * + * return sqrt(violation) + */ + __pyx_t_19 = __pyx_v_component_idx_1; + __pyx_t_20 = __pyx_v_sample_idx; + __pyx_t_21 = __pyx_v_component_idx_1; + __pyx_t_22 = __pyx_v_sample_idx; + *((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_21 * __pyx_v_h.strides[0]) )) + __pyx_t_22)) )) = fmax(((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_19 * __pyx_v_h.strides[0]) )) + __pyx_t_20)) ))) - __pyx_v_grad), 0.); + } + } + } + } + } + } + #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) + #undef likely + #undef unlikely + #define likely(x) __builtin_expect(!!(x), 1) + #define unlikely(x) __builtin_expect(!!(x), 0) + #endif + } + + /* "gensim/models/nmf_pgd.pyx":20 + * cdef Py_ssize_t component_idx_2 = 0 + * + * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< + * for component_idx_1 in range(n_components): + * + */ + /*finally:*/ { + /*normal exit:*/{ + #ifdef WITH_THREAD + Py_BLOCK_THREADS + #endif + goto __pyx_L5; + } + __pyx_L5:; + } + } + + /* "gensim/models/nmf_pgd.pyx":38 + * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + * + * return sqrt(violation) # <<<<<<<<<<<<<< + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_23 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_23)) __PYX_ERR(0, 38, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_23); + __pyx_r = __pyx_t_23; + __pyx_t_23 = 0; + goto __pyx_L0; + + /* "gensim/models/nmf_pgd.pyx":11 + * from cython.parallel import prange + * + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< + * cdef Py_ssize_t n_components = h.shape[0] + * cdef Py_ssize_t n_samples = h.shape[1] + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_23); + __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __PYX_XDEC_MEMVIEW(&__pyx_v_h, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_Wt_v_minus_r, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_WtW, 1); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":120 + * cdef bint dtype_is_object + * + * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< + * mode="c", bint allocate_buffer=True): + * + */ + +/* Python wrapper */ +static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v_shape = 0; + Py_ssize_t __pyx_v_itemsize; + PyObject *__pyx_v_format = 0; + PyObject *__pyx_v_mode = 0; + int __pyx_v_allocate_buffer; + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_itemsize,&__pyx_n_s_format,&__pyx_n_s_mode,&__pyx_n_s_allocate_buffer,0}; + PyObject* values[5] = {0,0,0,0,0}; + values[3] = ((PyObject *)__pyx_n_s_c); + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + case 1: + if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_itemsize)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 1); __PYX_ERR(1, 120, __pyx_L3_error) + } + case 2: + if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_format)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 2); __PYX_ERR(1, 120, __pyx_L3_error) + } + case 3: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mode); + if (value) { values[3] = value; kw_args--; } + } + case 4: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_allocate_buffer); + if (value) { values[4] = value; kw_args--; } + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(1, 120, __pyx_L3_error) + } + } else { + switch (PyTuple_GET_SIZE(__pyx_args)) { + case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + break; + default: goto __pyx_L5_argtuple_error; + } + } + __pyx_v_shape = ((PyObject*)values[0]); + __pyx_v_itemsize = __Pyx_PyIndex_AsSsize_t(values[1]); if (unlikely((__pyx_v_itemsize == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 120, __pyx_L3_error) + __pyx_v_format = values[2]; + __pyx_v_mode = values[3]; + if (values[4]) { + __pyx_v_allocate_buffer = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_allocate_buffer == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 121, __pyx_L3_error) + } else { + + /* "View.MemoryView":121 + * + * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, + * mode="c", bint allocate_buffer=True): # <<<<<<<<<<<<<< + * + * cdef int idx + */ + __pyx_v_allocate_buffer = ((int)1); + } + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 120, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return -1; + __pyx_L4_argument_unpacking_done:; + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_shape), (&PyTuple_Type), 1, "shape", 1))) __PYX_ERR(1, 120, __pyx_L1_error) + if (unlikely(((PyObject *)__pyx_v_format) == Py_None)) { + PyErr_Format(PyExc_TypeError, "Argument '%.200s' must not be None", "format"); __PYX_ERR(1, 120, __pyx_L1_error) + } + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(((struct __pyx_array_obj *)__pyx_v_self), __pyx_v_shape, __pyx_v_itemsize, __pyx_v_format, __pyx_v_mode, __pyx_v_allocate_buffer); + + /* "View.MemoryView":120 + * cdef bint dtype_is_object + * + * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< + * mode="c", bint allocate_buffer=True): + * + */ + + /* function exit code */ + goto __pyx_L0; + __pyx_L1_error:; + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer) { + int __pyx_v_idx; + Py_ssize_t __pyx_v_i; + Py_ssize_t __pyx_v_dim; + PyObject **__pyx_v_p; + char __pyx_v_order; + int __pyx_r; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + char *__pyx_t_6; + int __pyx_t_7; + Py_ssize_t __pyx_t_8; + PyObject *__pyx_t_9 = NULL; + PyObject *__pyx_t_10 = NULL; + __Pyx_RefNannySetupContext("__cinit__", 0); + __Pyx_INCREF(__pyx_v_format); + + /* "View.MemoryView":127 + * cdef PyObject **p + * + * self.ndim = len(shape) # <<<<<<<<<<<<<< + * self.itemsize = itemsize + * + */ + if (unlikely(__pyx_v_shape == Py_None)) { + PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); + __PYX_ERR(1, 127, __pyx_L1_error) + } + __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_shape); if (unlikely(__pyx_t_1 == -1)) __PYX_ERR(1, 127, __pyx_L1_error) + __pyx_v_self->ndim = ((int)__pyx_t_1); + + /* "View.MemoryView":128 + * + * self.ndim = len(shape) + * self.itemsize = itemsize # <<<<<<<<<<<<<< + * + * if not self.ndim: + */ + __pyx_v_self->itemsize = __pyx_v_itemsize; + + /* "View.MemoryView":130 + * self.itemsize = itemsize + * + * if not self.ndim: # <<<<<<<<<<<<<< + * raise ValueError("Empty shape tuple for cython.array") + * + */ + __pyx_t_2 = ((!(__pyx_v_self->ndim != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":131 + * + * if not self.ndim: + * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< + * + * if itemsize <= 0: + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 131, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 131, __pyx_L1_error) + + /* "View.MemoryView":130 + * self.itemsize = itemsize + * + * if not self.ndim: # <<<<<<<<<<<<<< + * raise ValueError("Empty shape tuple for cython.array") + * + */ + } + + /* "View.MemoryView":133 + * raise ValueError("Empty shape tuple for cython.array") + * + * if itemsize <= 0: # <<<<<<<<<<<<<< + * raise ValueError("itemsize <= 0 for cython.array") + * + */ + __pyx_t_2 = ((__pyx_v_itemsize <= 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":134 + * + * if itemsize <= 0: + * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< + * + * if not isinstance(format, bytes): + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 134, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 134, __pyx_L1_error) + + /* "View.MemoryView":133 + * raise ValueError("Empty shape tuple for cython.array") + * + * if itemsize <= 0: # <<<<<<<<<<<<<< + * raise ValueError("itemsize <= 0 for cython.array") + * + */ + } + + /* "View.MemoryView":136 + * raise ValueError("itemsize <= 0 for cython.array") + * + * if not isinstance(format, bytes): # <<<<<<<<<<<<<< + * format = format.encode('ASCII') + * self._format = format # keep a reference to the byte string + */ + __pyx_t_2 = PyBytes_Check(__pyx_v_format); + __pyx_t_4 = ((!(__pyx_t_2 != 0)) != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":137 + * + * if not isinstance(format, bytes): + * format = format.encode('ASCII') # <<<<<<<<<<<<<< + * self._format = format # keep a reference to the byte string + * self.format = self._format + */ + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_format, __pyx_n_s_encode); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 137, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__3, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 137, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_DECREF_SET(__pyx_v_format, __pyx_t_5); + __pyx_t_5 = 0; + + /* "View.MemoryView":136 + * raise ValueError("itemsize <= 0 for cython.array") + * + * if not isinstance(format, bytes): # <<<<<<<<<<<<<< + * format = format.encode('ASCII') + * self._format = format # keep a reference to the byte string + */ + } + + /* "View.MemoryView":138 + * if not isinstance(format, bytes): + * format = format.encode('ASCII') + * self._format = format # keep a reference to the byte string # <<<<<<<<<<<<<< + * self.format = self._format + * + */ + if (!(likely(PyBytes_CheckExact(__pyx_v_format))||((__pyx_v_format) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_v_format)->tp_name), 0))) __PYX_ERR(1, 138, __pyx_L1_error) + __pyx_t_5 = __pyx_v_format; + __Pyx_INCREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_v_self->_format); + __Pyx_DECREF(__pyx_v_self->_format); + __pyx_v_self->_format = ((PyObject*)__pyx_t_5); + __pyx_t_5 = 0; + + /* "View.MemoryView":139 + * format = format.encode('ASCII') + * self._format = format # keep a reference to the byte string + * self.format = self._format # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_6 = __Pyx_PyObject_AsString(__pyx_v_self->_format); if (unlikely((!__pyx_t_6) && PyErr_Occurred())) __PYX_ERR(1, 139, __pyx_L1_error) + __pyx_v_self->format = __pyx_t_6; + + /* "View.MemoryView":142 + * + * + * self._shape = PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) # <<<<<<<<<<<<<< + * self._strides = self._shape + self.ndim + * + */ + __pyx_v_self->_shape = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * __pyx_v_self->ndim) * 2))); + + /* "View.MemoryView":143 + * + * self._shape = PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) + * self._strides = self._shape + self.ndim # <<<<<<<<<<<<<< + * + * if not self._shape: + */ + __pyx_v_self->_strides = (__pyx_v_self->_shape + __pyx_v_self->ndim); + + /* "View.MemoryView":145 + * self._strides = self._shape + self.ndim + * + * if not self._shape: # <<<<<<<<<<<<<< + * raise MemoryError("unable to allocate shape and strides.") + * + */ + __pyx_t_4 = ((!(__pyx_v_self->_shape != 0)) != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":146 + * + * if not self._shape: + * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 146, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_Raise(__pyx_t_5, 0, 0, 0); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __PYX_ERR(1, 146, __pyx_L1_error) + + /* "View.MemoryView":145 + * self._strides = self._shape + self.ndim + * + * if not self._shape: # <<<<<<<<<<<<<< + * raise MemoryError("unable to allocate shape and strides.") + * + */ + } + + /* "View.MemoryView":149 + * + * + * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< + * if dim <= 0: + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + */ + __pyx_t_7 = 0; + __pyx_t_5 = __pyx_v_shape; __Pyx_INCREF(__pyx_t_5); __pyx_t_1 = 0; + for (;;) { + if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_5)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_3); __pyx_t_1++; if (unlikely(0 < 0)) __PYX_ERR(1, 149, __pyx_L1_error) + #else + __pyx_t_3 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 149, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __pyx_t_8 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_8 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 149, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_dim = __pyx_t_8; + __pyx_v_idx = __pyx_t_7; + __pyx_t_7 = (__pyx_t_7 + 1); + + /* "View.MemoryView":150 + * + * for idx, dim in enumerate(shape): + * if dim <= 0: # <<<<<<<<<<<<<< + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + * self._shape[idx] = dim + */ + __pyx_t_4 = ((__pyx_v_dim <= 0) != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":151 + * for idx, dim in enumerate(shape): + * if dim <= 0: + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) # <<<<<<<<<<<<<< + * self._shape[idx] = dim + * + */ + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_idx); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 151, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_9 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 151, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_10 = PyTuple_New(2); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 151, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_3); + __Pyx_GIVEREF(__pyx_t_9); + PyTuple_SET_ITEM(__pyx_t_10, 1, __pyx_t_9); + __pyx_t_3 = 0; + __pyx_t_9 = 0; + __pyx_t_9 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_t_10); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 151, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __pyx_t_10 = PyTuple_New(1); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 151, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); + __Pyx_GIVEREF(__pyx_t_9); + PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_9); + __pyx_t_9 = 0; + __pyx_t_9 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_10, NULL); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 151, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __Pyx_Raise(__pyx_t_9, 0, 0, 0); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __PYX_ERR(1, 151, __pyx_L1_error) + + /* "View.MemoryView":150 + * + * for idx, dim in enumerate(shape): + * if dim <= 0: # <<<<<<<<<<<<<< + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + * self._shape[idx] = dim + */ + } + + /* "View.MemoryView":152 + * if dim <= 0: + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + * self._shape[idx] = dim # <<<<<<<<<<<<<< + * + * cdef char order + */ + (__pyx_v_self->_shape[__pyx_v_idx]) = __pyx_v_dim; + + /* "View.MemoryView":149 + * + * + * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< + * if dim <= 0: + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + */ + } + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + + /* "View.MemoryView":155 + * + * cdef char order + * if mode == 'fortran': # <<<<<<<<<<<<<< + * order = b'F' + * self.mode = u'fortran' + */ + __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_fortran, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 155, __pyx_L1_error) + if (__pyx_t_4) { + + /* "View.MemoryView":156 + * cdef char order + * if mode == 'fortran': + * order = b'F' # <<<<<<<<<<<<<< + * self.mode = u'fortran' + * elif mode == 'c': + */ + __pyx_v_order = 'F'; + + /* "View.MemoryView":157 + * if mode == 'fortran': + * order = b'F' + * self.mode = u'fortran' # <<<<<<<<<<<<<< + * elif mode == 'c': + * order = b'C' + */ + __Pyx_INCREF(__pyx_n_u_fortran); + __Pyx_GIVEREF(__pyx_n_u_fortran); + __Pyx_GOTREF(__pyx_v_self->mode); + __Pyx_DECREF(__pyx_v_self->mode); + __pyx_v_self->mode = __pyx_n_u_fortran; + + /* "View.MemoryView":155 + * + * cdef char order + * if mode == 'fortran': # <<<<<<<<<<<<<< + * order = b'F' + * self.mode = u'fortran' + */ + goto __pyx_L10; + } + + /* "View.MemoryView":158 + * order = b'F' + * self.mode = u'fortran' + * elif mode == 'c': # <<<<<<<<<<<<<< + * order = b'C' + * self.mode = u'c' + */ + __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_c, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 158, __pyx_L1_error) + if (__pyx_t_4) { + + /* "View.MemoryView":159 + * self.mode = u'fortran' + * elif mode == 'c': + * order = b'C' # <<<<<<<<<<<<<< + * self.mode = u'c' + * else: + */ + __pyx_v_order = 'C'; + + /* "View.MemoryView":160 + * elif mode == 'c': + * order = b'C' + * self.mode = u'c' # <<<<<<<<<<<<<< + * else: + * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) + */ + __Pyx_INCREF(__pyx_n_u_c); + __Pyx_GIVEREF(__pyx_n_u_c); + __Pyx_GOTREF(__pyx_v_self->mode); + __Pyx_DECREF(__pyx_v_self->mode); + __pyx_v_self->mode = __pyx_n_u_c; + + /* "View.MemoryView":158 + * order = b'F' + * self.mode = u'fortran' + * elif mode == 'c': # <<<<<<<<<<<<<< + * order = b'C' + * self.mode = u'c' + */ + goto __pyx_L10; + } + + /* "View.MemoryView":162 + * self.mode = u'c' + * else: + * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) # <<<<<<<<<<<<<< + * + * self.len = fill_contig_strides_array(self._shape, self._strides, + */ + /*else*/ { + __pyx_t_5 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_v_mode); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 162, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_9 = PyTuple_New(1); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 162, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_5); + __pyx_t_5 = 0; + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_9, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 162, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __Pyx_Raise(__pyx_t_5, 0, 0, 0); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __PYX_ERR(1, 162, __pyx_L1_error) + } + __pyx_L10:; + + /* "View.MemoryView":164 + * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) + * + * self.len = fill_contig_strides_array(self._shape, self._strides, # <<<<<<<<<<<<<< + * itemsize, self.ndim, order) + * + */ + __pyx_v_self->len = __pyx_fill_contig_strides_array(__pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_itemsize, __pyx_v_self->ndim, __pyx_v_order); + + /* "View.MemoryView":167 + * itemsize, self.ndim, order) + * + * self.free_data = allocate_buffer # <<<<<<<<<<<<<< + * self.dtype_is_object = format == b'O' + * if allocate_buffer: + */ + __pyx_v_self->free_data = __pyx_v_allocate_buffer; + + /* "View.MemoryView":168 + * + * self.free_data = allocate_buffer + * self.dtype_is_object = format == b'O' # <<<<<<<<<<<<<< + * if allocate_buffer: + * + */ + __pyx_t_5 = PyObject_RichCompare(__pyx_v_format, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 168, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 168, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_self->dtype_is_object = __pyx_t_4; + + /* "View.MemoryView":169 + * self.free_data = allocate_buffer + * self.dtype_is_object = format == b'O' + * if allocate_buffer: # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_4 = (__pyx_v_allocate_buffer != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":172 + * + * + * self.data = malloc(self.len) # <<<<<<<<<<<<<< + * if not self.data: + * raise MemoryError("unable to allocate array data.") + */ + __pyx_v_self->data = ((char *)malloc(__pyx_v_self->len)); + + /* "View.MemoryView":173 + * + * self.data = malloc(self.len) + * if not self.data: # <<<<<<<<<<<<<< + * raise MemoryError("unable to allocate array data.") + * + */ + __pyx_t_4 = ((!(__pyx_v_self->data != 0)) != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":174 + * self.data = malloc(self.len) + * if not self.data: + * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< + * + * if self.dtype_is_object: + */ + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 174, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_Raise(__pyx_t_5, 0, 0, 0); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __PYX_ERR(1, 174, __pyx_L1_error) + + /* "View.MemoryView":173 + * + * self.data = malloc(self.len) + * if not self.data: # <<<<<<<<<<<<<< + * raise MemoryError("unable to allocate array data.") + * + */ + } + + /* "View.MemoryView":176 + * raise MemoryError("unable to allocate array data.") + * + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * p = self.data + * for i in range(self.len / itemsize): + */ + __pyx_t_4 = (__pyx_v_self->dtype_is_object != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":177 + * + * if self.dtype_is_object: + * p = self.data # <<<<<<<<<<<<<< + * for i in range(self.len / itemsize): + * p[i] = Py_None + */ + __pyx_v_p = ((PyObject **)__pyx_v_self->data); + + /* "View.MemoryView":178 + * if self.dtype_is_object: + * p = self.data + * for i in range(self.len / itemsize): # <<<<<<<<<<<<<< + * p[i] = Py_None + * Py_INCREF(Py_None) + */ + if (unlikely(__pyx_v_itemsize == 0)) { + PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); + __PYX_ERR(1, 178, __pyx_L1_error) + } + else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_self->len))) { + PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); + __PYX_ERR(1, 178, __pyx_L1_error) + } + __pyx_t_1 = (__pyx_v_self->len / __pyx_v_itemsize); + for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_1; __pyx_t_8+=1) { + __pyx_v_i = __pyx_t_8; + + /* "View.MemoryView":179 + * p = self.data + * for i in range(self.len / itemsize): + * p[i] = Py_None # <<<<<<<<<<<<<< + * Py_INCREF(Py_None) + * + */ + (__pyx_v_p[__pyx_v_i]) = Py_None; + + /* "View.MemoryView":180 + * for i in range(self.len / itemsize): + * p[i] = Py_None + * Py_INCREF(Py_None) # <<<<<<<<<<<<<< + * + * @cname('getbuffer') + */ + Py_INCREF(Py_None); + } + + /* "View.MemoryView":176 + * raise MemoryError("unable to allocate array data.") + * + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * p = self.data + * for i in range(self.len / itemsize): + */ + } + + /* "View.MemoryView":169 + * self.free_data = allocate_buffer + * self.dtype_is_object = format == b'O' + * if allocate_buffer: # <<<<<<<<<<<<<< + * + * + */ + } + + /* "View.MemoryView":120 + * cdef bint dtype_is_object + * + * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< + * mode="c", bint allocate_buffer=True): + * + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_9); + __Pyx_XDECREF(__pyx_t_10); + __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_format); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":183 + * + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< + * cdef int bufmode = -1 + * if self.mode == u"c": + */ + +/* Python wrapper */ +static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(((struct __pyx_array_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_v_bufmode; + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + char *__pyx_t_4; + Py_ssize_t __pyx_t_5; + int __pyx_t_6; + Py_ssize_t *__pyx_t_7; + __Pyx_RefNannySetupContext("__getbuffer__", 0); + if (__pyx_v_info != NULL) { + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); + } + + /* "View.MemoryView":184 + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): + * cdef int bufmode = -1 # <<<<<<<<<<<<<< + * if self.mode == u"c": + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + */ + __pyx_v_bufmode = -1; + + /* "View.MemoryView":185 + * def __getbuffer__(self, Py_buffer *info, int flags): + * cdef int bufmode = -1 + * if self.mode == u"c": # <<<<<<<<<<<<<< + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": + */ + __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_c, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 185, __pyx_L1_error) + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":186 + * cdef int bufmode = -1 + * if self.mode == u"c": + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< + * elif self.mode == u"fortran": + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + */ + __pyx_v_bufmode = (PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); + + /* "View.MemoryView":185 + * def __getbuffer__(self, Py_buffer *info, int flags): + * cdef int bufmode = -1 + * if self.mode == u"c": # <<<<<<<<<<<<<< + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": + */ + goto __pyx_L3; + } + + /* "View.MemoryView":187 + * if self.mode == u"c": + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": # <<<<<<<<<<<<<< + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): + */ + __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_fortran, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(1, 187, __pyx_L1_error) + __pyx_t_1 = (__pyx_t_2 != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":188 + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< + * if not (flags & bufmode): + * raise ValueError("Can only create a buffer that is contiguous in memory.") + */ + __pyx_v_bufmode = (PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); + + /* "View.MemoryView":187 + * if self.mode == u"c": + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": # <<<<<<<<<<<<<< + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): + */ + } + __pyx_L3:; + + /* "View.MemoryView":189 + * elif self.mode == u"fortran": + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): # <<<<<<<<<<<<<< + * raise ValueError("Can only create a buffer that is contiguous in memory.") + * info.buf = self.data + */ + __pyx_t_1 = ((!((__pyx_v_flags & __pyx_v_bufmode) != 0)) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":190 + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): + * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< + * info.buf = self.data + * info.len = self.len + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 190, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 190, __pyx_L1_error) + + /* "View.MemoryView":189 + * elif self.mode == u"fortran": + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): # <<<<<<<<<<<<<< + * raise ValueError("Can only create a buffer that is contiguous in memory.") + * info.buf = self.data + */ + } + + /* "View.MemoryView":191 + * if not (flags & bufmode): + * raise ValueError("Can only create a buffer that is contiguous in memory.") + * info.buf = self.data # <<<<<<<<<<<<<< + * info.len = self.len + * info.ndim = self.ndim + */ + __pyx_t_4 = __pyx_v_self->data; + __pyx_v_info->buf = __pyx_t_4; + + /* "View.MemoryView":192 + * raise ValueError("Can only create a buffer that is contiguous in memory.") + * info.buf = self.data + * info.len = self.len # <<<<<<<<<<<<<< + * info.ndim = self.ndim + * info.shape = self._shape + */ + __pyx_t_5 = __pyx_v_self->len; + __pyx_v_info->len = __pyx_t_5; + + /* "View.MemoryView":193 + * info.buf = self.data + * info.len = self.len + * info.ndim = self.ndim # <<<<<<<<<<<<<< + * info.shape = self._shape + * info.strides = self._strides + */ + __pyx_t_6 = __pyx_v_self->ndim; + __pyx_v_info->ndim = __pyx_t_6; + + /* "View.MemoryView":194 + * info.len = self.len + * info.ndim = self.ndim + * info.shape = self._shape # <<<<<<<<<<<<<< + * info.strides = self._strides + * info.suboffsets = NULL + */ + __pyx_t_7 = __pyx_v_self->_shape; + __pyx_v_info->shape = __pyx_t_7; + + /* "View.MemoryView":195 + * info.ndim = self.ndim + * info.shape = self._shape + * info.strides = self._strides # <<<<<<<<<<<<<< + * info.suboffsets = NULL + * info.itemsize = self.itemsize + */ + __pyx_t_7 = __pyx_v_self->_strides; + __pyx_v_info->strides = __pyx_t_7; + + /* "View.MemoryView":196 + * info.shape = self._shape + * info.strides = self._strides + * info.suboffsets = NULL # <<<<<<<<<<<<<< + * info.itemsize = self.itemsize + * info.readonly = 0 + */ + __pyx_v_info->suboffsets = NULL; + + /* "View.MemoryView":197 + * info.strides = self._strides + * info.suboffsets = NULL + * info.itemsize = self.itemsize # <<<<<<<<<<<<<< + * info.readonly = 0 + * + */ + __pyx_t_5 = __pyx_v_self->itemsize; + __pyx_v_info->itemsize = __pyx_t_5; + + /* "View.MemoryView":198 + * info.suboffsets = NULL + * info.itemsize = self.itemsize + * info.readonly = 0 # <<<<<<<<<<<<<< + * + * if flags & PyBUF_FORMAT: + */ + __pyx_v_info->readonly = 0; + + /* "View.MemoryView":200 + * info.readonly = 0 + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * info.format = self.format + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":201 + * + * if flags & PyBUF_FORMAT: + * info.format = self.format # <<<<<<<<<<<<<< + * else: + * info.format = NULL + */ + __pyx_t_4 = __pyx_v_self->format; + __pyx_v_info->format = __pyx_t_4; + + /* "View.MemoryView":200 + * info.readonly = 0 + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * info.format = self.format + * else: + */ + goto __pyx_L5; + } + + /* "View.MemoryView":203 + * info.format = self.format + * else: + * info.format = NULL # <<<<<<<<<<<<<< + * + * info.obj = self + */ + /*else*/ { + __pyx_v_info->format = NULL; + } + __pyx_L5:; + + /* "View.MemoryView":205 + * info.format = NULL + * + * info.obj = self # <<<<<<<<<<<<<< + * + * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") + */ + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); + __pyx_v_info->obj = ((PyObject *)__pyx_v_self); + + /* "View.MemoryView":183 + * + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< + * cdef int bufmode = -1 + * if self.mode == u"c": + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.array.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + if (__pyx_v_info != NULL && __pyx_v_info->obj != NULL) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = NULL; + } + goto __pyx_L2; + __pyx_L0:; + if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(Py_None); + __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL; + } + __pyx_L2:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":209 + * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") + * + * def __dealloc__(array self): # <<<<<<<<<<<<<< + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) + */ + +/* Python wrapper */ +static void __pyx_array___dealloc__(PyObject *__pyx_v_self); /*proto*/ +static void __pyx_array___dealloc__(PyObject *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); + __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(((struct __pyx_array_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self) { + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("__dealloc__", 0); + + /* "View.MemoryView":210 + * + * def __dealloc__(array self): + * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< + * self.callback_free_data(self.data) + * elif self.free_data: + */ + __pyx_t_1 = ((__pyx_v_self->callback_free_data != NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":211 + * def __dealloc__(array self): + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) # <<<<<<<<<<<<<< + * elif self.free_data: + * if self.dtype_is_object: + */ + __pyx_v_self->callback_free_data(__pyx_v_self->data); + + /* "View.MemoryView":210 + * + * def __dealloc__(array self): + * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< + * self.callback_free_data(self.data) + * elif self.free_data: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":212 + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) + * elif self.free_data: # <<<<<<<<<<<<<< + * if self.dtype_is_object: + * refcount_objects_in_slice(self.data, self._shape, + */ + __pyx_t_1 = (__pyx_v_self->free_data != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":213 + * self.callback_free_data(self.data) + * elif self.free_data: + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * refcount_objects_in_slice(self.data, self._shape, + * self._strides, self.ndim, False) + */ + __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":214 + * elif self.free_data: + * if self.dtype_is_object: + * refcount_objects_in_slice(self.data, self._shape, # <<<<<<<<<<<<<< + * self._strides, self.ndim, False) + * free(self.data) + */ + __pyx_memoryview_refcount_objects_in_slice(__pyx_v_self->data, __pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_self->ndim, 0); + + /* "View.MemoryView":213 + * self.callback_free_data(self.data) + * elif self.free_data: + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * refcount_objects_in_slice(self.data, self._shape, + * self._strides, self.ndim, False) + */ + } + + /* "View.MemoryView":216 + * refcount_objects_in_slice(self.data, self._shape, + * self._strides, self.ndim, False) + * free(self.data) # <<<<<<<<<<<<<< + * PyObject_Free(self._shape) + * + */ + free(__pyx_v_self->data); + + /* "View.MemoryView":212 + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) + * elif self.free_data: # <<<<<<<<<<<<<< + * if self.dtype_is_object: + * refcount_objects_in_slice(self.data, self._shape, + */ + } + __pyx_L3:; + + /* "View.MemoryView":217 + * self._strides, self.ndim, False) + * free(self.data) + * PyObject_Free(self._shape) # <<<<<<<<<<<<<< + * + * @property + */ + PyObject_Free(__pyx_v_self->_shape); + + /* "View.MemoryView":209 + * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") + * + * def __dealloc__(array self): # <<<<<<<<<<<<<< + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":220 + * + * @property + * def memview(self): # <<<<<<<<<<<<<< + * return self.get_memview() + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_5array_7memview___get__(((struct __pyx_array_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":221 + * @property + * def memview(self): + * return self.get_memview() # <<<<<<<<<<<<<< + * + * @cname('get_memview') + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = ((struct __pyx_vtabstruct_array *)__pyx_v_self->__pyx_vtab)->get_memview(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 221, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":220 + * + * @property + * def memview(self): # <<<<<<<<<<<<<< + * return self.get_memview() + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.array.memview.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":224 + * + * @cname('get_memview') + * cdef get_memview(self): # <<<<<<<<<<<<<< + * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE + * return memoryview(self, flags, self.dtype_is_object) + */ + +static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { + int __pyx_v_flags; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("get_memview", 0); + + /* "View.MemoryView":225 + * @cname('get_memview') + * cdef get_memview(self): + * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE # <<<<<<<<<<<<<< + * return memoryview(self, flags, self.dtype_is_object) + * + */ + __pyx_v_flags = ((PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) | PyBUF_WRITABLE); + + /* "View.MemoryView":226 + * cdef get_memview(self): + * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE + * return memoryview(self, flags, self.dtype_is_object) # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 226, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 226, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 226, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); + __pyx_t_1 = 0; + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 226, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":224 + * + * @cname('get_memview') + * cdef get_memview(self): # <<<<<<<<<<<<<< + * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE + * return memoryview(self, flags, self.dtype_is_object) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.array.get_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":229 + * + * + * def __getattr__(self, attr): # <<<<<<<<<<<<<< + * return getattr(self.memview, attr) + * + */ + +/* Python wrapper */ +static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr); /*proto*/ +static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getattr__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__getattr__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_attr)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("__getattr__", 0); + + /* "View.MemoryView":230 + * + * def __getattr__(self, attr): + * return getattr(self.memview, attr) # <<<<<<<<<<<<<< + * + * def __getitem__(self, item): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_GetAttr(__pyx_t_1, __pyx_v_attr); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":229 + * + * + * def __getattr__(self, attr): # <<<<<<<<<<<<<< + * return getattr(self.memview, attr) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.array.__getattr__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":232 + * return getattr(self.memview, attr) + * + * def __getitem__(self, item): # <<<<<<<<<<<<<< + * return self.memview[item] + * + */ + +/* Python wrapper */ +static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item); /*proto*/ +static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("__getitem__", 0); + + /* "View.MemoryView":233 + * + * def __getitem__(self, item): + * return self.memview[item] # <<<<<<<<<<<<<< + * + * def __setitem__(self, item, value): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 233, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = PyObject_GetItem(__pyx_t_1, __pyx_v_item); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 233, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":232 + * return getattr(self.memview, attr) + * + * def __getitem__(self, item): # <<<<<<<<<<<<<< + * return self.memview[item] + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.array.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":235 + * return self.memview[item] + * + * def __setitem__(self, item, value): # <<<<<<<<<<<<<< + * self.memview[item] = value + * + */ + +/* Python wrapper */ +static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /*proto*/ +static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__setitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item), ((PyObject *)__pyx_v_value)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setitem__", 0); + + /* "View.MemoryView":236 + * + * def __setitem__(self, item, value): + * self.memview[item] = value # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 236, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (unlikely(PyObject_SetItem(__pyx_t_1, __pyx_v_item, __pyx_v_value) < 0)) __PYX_ERR(1, 236, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "View.MemoryView":235 + * return self.memview[item] + * + * def __setitem__(self, item, value): # <<<<<<<<<<<<<< + * self.memview[item] = value + * + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.array.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":240 + * + * @cname("__pyx_array_new") + * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< + * char *mode, char *buf): + * cdef array result + */ + +static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, char *__pyx_v_format, char *__pyx_v_mode, char *__pyx_v_buf) { + struct __pyx_array_obj *__pyx_v_result = 0; + struct __pyx_array_obj *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("array_cwrapper", 0); + + /* "View.MemoryView":244 + * cdef array result + * + * if buf == NULL: # <<<<<<<<<<<<<< + * result = array(shape, itemsize, format, mode.decode('ASCII')) + * else: + */ + __pyx_t_1 = ((__pyx_v_buf == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":245 + * + * if buf == NULL: + * result = array(shape, itemsize, format, mode.decode('ASCII')) # <<<<<<<<<<<<<< + * else: + * result = array(shape, itemsize, format, mode.decode('ASCII'), + */ + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 245, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 245, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 245, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PyTuple_New(4); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 245, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_INCREF(__pyx_v_shape); + __Pyx_GIVEREF(__pyx_v_shape); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_shape); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_2); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_t_3); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 3, __pyx_t_4); + __pyx_t_2 = 0; + __pyx_t_3 = 0; + __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 245, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_4); + __pyx_t_4 = 0; + + /* "View.MemoryView":244 + * cdef array result + * + * if buf == NULL: # <<<<<<<<<<<<<< + * result = array(shape, itemsize, format, mode.decode('ASCII')) + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":247 + * result = array(shape, itemsize, format, mode.decode('ASCII')) + * else: + * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< + * allocate_buffer=False) + * result.data = buf + */ + /*else*/ { + __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 247, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 247, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 247, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_2 = PyTuple_New(4); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 247, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_INCREF(__pyx_v_shape); + __Pyx_GIVEREF(__pyx_v_shape); + PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_4); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_t_5); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_2, 3, __pyx_t_3); + __pyx_t_4 = 0; + __pyx_t_5 = 0; + __pyx_t_3 = 0; + + /* "View.MemoryView":248 + * else: + * result = array(shape, itemsize, format, mode.decode('ASCII'), + * allocate_buffer=False) # <<<<<<<<<<<<<< + * result.data = buf + * + */ + __pyx_t_3 = PyDict_New(); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 248, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_allocate_buffer, Py_False) < 0) __PYX_ERR(1, 248, __pyx_L1_error) + + /* "View.MemoryView":247 + * result = array(shape, itemsize, format, mode.decode('ASCII')) + * else: + * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< + * allocate_buffer=False) + * result.data = buf + */ + __pyx_t_5 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 247, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_5); + __pyx_t_5 = 0; + + /* "View.MemoryView":249 + * result = array(shape, itemsize, format, mode.decode('ASCII'), + * allocate_buffer=False) + * result.data = buf # <<<<<<<<<<<<<< + * + * return result + */ + __pyx_v_result->data = __pyx_v_buf; + } + __pyx_L3:; + + /* "View.MemoryView":251 + * result.data = buf + * + * return result # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(((PyObject *)__pyx_r)); + __Pyx_INCREF(((PyObject *)__pyx_v_result)); + __pyx_r = __pyx_v_result; + goto __pyx_L0; + + /* "View.MemoryView":240 + * + * @cname("__pyx_array_new") + * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< + * char *mode, char *buf): + * cdef array result + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.array_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_result); + __Pyx_XGIVEREF((PyObject *)__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":277 + * cdef class Enum(object): + * cdef object name + * def __init__(self, name): # <<<<<<<<<<<<<< + * self.name = name + * def __repr__(self): + */ + +/* Python wrapper */ +static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v_name = 0; + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_name,0}; + PyObject* values[1] = {0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_name)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(1, 277, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 1) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + } + __pyx_v_name = values[0]; + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 277, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("View.MemoryView.Enum.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return -1; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), __pyx_v_name); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__init__", 0); + + /* "View.MemoryView":278 + * cdef object name + * def __init__(self, name): + * self.name = name # <<<<<<<<<<<<<< + * def __repr__(self): + * return self.name + */ + __Pyx_INCREF(__pyx_v_name); + __Pyx_GIVEREF(__pyx_v_name); + __Pyx_GOTREF(__pyx_v_self->name); + __Pyx_DECREF(__pyx_v_self->name); + __pyx_v_self->name = __pyx_v_name; + + /* "View.MemoryView":277 + * cdef class Enum(object): + * cdef object name + * def __init__(self, name): # <<<<<<<<<<<<<< + * self.name = name + * def __repr__(self): + */ + + /* function exit code */ + __pyx_r = 0; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":279 + * def __init__(self, name): + * self.name = name + * def __repr__(self): # <<<<<<<<<<<<<< + * return self.name + * + */ + +/* Python wrapper */ +static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); + __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__repr__", 0); + + /* "View.MemoryView":280 + * self.name = name + * def __repr__(self): + * return self.name # <<<<<<<<<<<<<< + * + * cdef generic = Enum("") + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_self->name); + __pyx_r = __pyx_v_self->name; + goto __pyx_L0; + + /* "View.MemoryView":279 + * def __init__(self, name): + * self.name = name + * def __repr__(self): # <<<<<<<<<<<<<< + * return self.name + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":294 + * + * @cname('__pyx_align_pointer') + * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< + * "Align pointer memory on a given boundary" + * cdef Py_intptr_t aligned_p = memory + */ + +static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) { + Py_intptr_t __pyx_v_aligned_p; + size_t __pyx_v_offset; + void *__pyx_r; + int __pyx_t_1; + + /* "View.MemoryView":296 + * cdef void *align_pointer(void *memory, size_t alignment) nogil: + * "Align pointer memory on a given boundary" + * cdef Py_intptr_t aligned_p = memory # <<<<<<<<<<<<<< + * cdef size_t offset + * + */ + __pyx_v_aligned_p = ((Py_intptr_t)__pyx_v_memory); + + /* "View.MemoryView":300 + * + * with cython.cdivision(True): + * offset = aligned_p % alignment # <<<<<<<<<<<<<< + * + * if offset > 0: + */ + __pyx_v_offset = (__pyx_v_aligned_p % __pyx_v_alignment); + + /* "View.MemoryView":302 + * offset = aligned_p % alignment + * + * if offset > 0: # <<<<<<<<<<<<<< + * aligned_p += alignment - offset + * + */ + __pyx_t_1 = ((__pyx_v_offset > 0) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":303 + * + * if offset > 0: + * aligned_p += alignment - offset # <<<<<<<<<<<<<< + * + * return aligned_p + */ + __pyx_v_aligned_p = (__pyx_v_aligned_p + (__pyx_v_alignment - __pyx_v_offset)); + + /* "View.MemoryView":302 + * offset = aligned_p % alignment + * + * if offset > 0: # <<<<<<<<<<<<<< + * aligned_p += alignment - offset + * + */ + } + + /* "View.MemoryView":305 + * aligned_p += alignment - offset + * + * return aligned_p # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = ((void *)__pyx_v_aligned_p); + goto __pyx_L0; + + /* "View.MemoryView":294 + * + * @cname('__pyx_align_pointer') + * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< + * "Align pointer memory on a given boundary" + * cdef Py_intptr_t aligned_p = memory + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":341 + * cdef __Pyx_TypeInfo *typeinfo + * + * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< + * self.obj = obj + * self.flags = flags + */ + +/* Python wrapper */ +static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v_obj = 0; + int __pyx_v_flags; + int __pyx_v_dtype_is_object; + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_obj,&__pyx_n_s_flags,&__pyx_n_s_dtype_is_object,0}; + PyObject* values[3] = {0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_obj)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + case 1: + if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_flags)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, 1); __PYX_ERR(1, 341, __pyx_L3_error) + } + case 2: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_dtype_is_object); + if (value) { values[2] = value; kw_args--; } + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(1, 341, __pyx_L3_error) + } + } else { + switch (PyTuple_GET_SIZE(__pyx_args)) { + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + break; + default: goto __pyx_L5_argtuple_error; + } + } + __pyx_v_obj = values[0]; + __pyx_v_flags = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_flags == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 341, __pyx_L3_error) + if (values[2]) { + __pyx_v_dtype_is_object = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_dtype_is_object == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 341, __pyx_L3_error) + } else { + __pyx_v_dtype_is_object = ((int)0); + } + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 341, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return -1; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_obj, __pyx_v_flags, __pyx_v_dtype_is_object); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object) { + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + __Pyx_RefNannySetupContext("__cinit__", 0); + + /* "View.MemoryView":342 + * + * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): + * self.obj = obj # <<<<<<<<<<<<<< + * self.flags = flags + * if type(self) is memoryview or obj is not None: + */ + __Pyx_INCREF(__pyx_v_obj); + __Pyx_GIVEREF(__pyx_v_obj); + __Pyx_GOTREF(__pyx_v_self->obj); + __Pyx_DECREF(__pyx_v_self->obj); + __pyx_v_self->obj = __pyx_v_obj; + + /* "View.MemoryView":343 + * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): + * self.obj = obj + * self.flags = flags # <<<<<<<<<<<<<< + * if type(self) is memoryview or obj is not None: + * __Pyx_GetBuffer(obj, &self.view, flags) + */ + __pyx_v_self->flags = __pyx_v_flags; + + /* "View.MemoryView":344 + * self.obj = obj + * self.flags = flags + * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: + */ + __pyx_t_2 = (((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self))) == ((PyObject *)__pyx_memoryview_type)); + __pyx_t_3 = (__pyx_t_2 != 0); + if (!__pyx_t_3) { + } else { + __pyx_t_1 = __pyx_t_3; + goto __pyx_L4_bool_binop_done; + } + __pyx_t_3 = (__pyx_v_obj != Py_None); + __pyx_t_2 = (__pyx_t_3 != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L4_bool_binop_done:; + if (__pyx_t_1) { + + /* "View.MemoryView":345 + * self.flags = flags + * if type(self) is memoryview or obj is not None: + * __Pyx_GetBuffer(obj, &self.view, flags) # <<<<<<<<<<<<<< + * if self.view.obj == NULL: + * (<__pyx_buffer *> &self.view).obj = Py_None + */ + __pyx_t_4 = __Pyx_GetBuffer(__pyx_v_obj, (&__pyx_v_self->view), __pyx_v_flags); if (unlikely(__pyx_t_4 == -1)) __PYX_ERR(1, 345, __pyx_L1_error) + + /* "View.MemoryView":346 + * if type(self) is memoryview or obj is not None: + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: # <<<<<<<<<<<<<< + * (<__pyx_buffer *> &self.view).obj = Py_None + * Py_INCREF(Py_None) + */ + __pyx_t_1 = ((((PyObject *)__pyx_v_self->view.obj) == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":347 + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: + * (<__pyx_buffer *> &self.view).obj = Py_None # <<<<<<<<<<<<<< + * Py_INCREF(Py_None) + * + */ + ((Py_buffer *)(&__pyx_v_self->view))->obj = Py_None; + + /* "View.MemoryView":348 + * if self.view.obj == NULL: + * (<__pyx_buffer *> &self.view).obj = Py_None + * Py_INCREF(Py_None) # <<<<<<<<<<<<<< + * + * global __pyx_memoryview_thread_locks_used + */ + Py_INCREF(Py_None); + + /* "View.MemoryView":346 + * if type(self) is memoryview or obj is not None: + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: # <<<<<<<<<<<<<< + * (<__pyx_buffer *> &self.view).obj = Py_None + * Py_INCREF(Py_None) + */ + } + + /* "View.MemoryView":344 + * self.obj = obj + * self.flags = flags + * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: + */ + } + + /* "View.MemoryView":351 + * + * global __pyx_memoryview_thread_locks_used + * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 + */ + __pyx_t_1 = ((__pyx_memoryview_thread_locks_used < 8) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":352 + * global __pyx_memoryview_thread_locks_used + * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks_used += 1 + * if self.lock is NULL: + */ + __pyx_v_self->lock = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); + + /* "View.MemoryView":353 + * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 # <<<<<<<<<<<<<< + * if self.lock is NULL: + * self.lock = PyThread_allocate_lock() + */ + __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used + 1); + + /* "View.MemoryView":351 + * + * global __pyx_memoryview_thread_locks_used + * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 + */ + } + + /* "View.MemoryView":354 + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 + * if self.lock is NULL: # <<<<<<<<<<<<<< + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: + */ + __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":355 + * __pyx_memoryview_thread_locks_used += 1 + * if self.lock is NULL: + * self.lock = PyThread_allocate_lock() # <<<<<<<<<<<<<< + * if self.lock is NULL: + * raise MemoryError + */ + __pyx_v_self->lock = PyThread_allocate_lock(); + + /* "View.MemoryView":356 + * if self.lock is NULL: + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: # <<<<<<<<<<<<<< + * raise MemoryError + * + */ + __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":357 + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: + * raise MemoryError # <<<<<<<<<<<<<< + * + * if flags & PyBUF_FORMAT: + */ + PyErr_NoMemory(); __PYX_ERR(1, 357, __pyx_L1_error) + + /* "View.MemoryView":356 + * if self.lock is NULL: + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: # <<<<<<<<<<<<<< + * raise MemoryError + * + */ + } + + /* "View.MemoryView":354 + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 + * if self.lock is NULL: # <<<<<<<<<<<<<< + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: + */ + } + + /* "View.MemoryView":359 + * raise MemoryError + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":360 + * + * if flags & PyBUF_FORMAT: + * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') # <<<<<<<<<<<<<< + * else: + * self.dtype_is_object = dtype_is_object + */ + __pyx_t_2 = (((__pyx_v_self->view.format[0]) == 'O') != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L11_bool_binop_done; + } + __pyx_t_2 = (((__pyx_v_self->view.format[1]) == '\x00') != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L11_bool_binop_done:; + __pyx_v_self->dtype_is_object = __pyx_t_1; + + /* "View.MemoryView":359 + * raise MemoryError + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') + * else: + */ + goto __pyx_L10; + } + + /* "View.MemoryView":362 + * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') + * else: + * self.dtype_is_object = dtype_is_object # <<<<<<<<<<<<<< + * + * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( + */ + /*else*/ { + __pyx_v_self->dtype_is_object = __pyx_v_dtype_is_object; + } + __pyx_L10:; + + /* "View.MemoryView":364 + * self.dtype_is_object = dtype_is_object + * + * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( # <<<<<<<<<<<<<< + * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) + * self.typeinfo = NULL + */ + __pyx_v_self->acquisition_count_aligned_p = ((__pyx_atomic_int *)__pyx_align_pointer(((void *)(&(__pyx_v_self->acquisition_count[0]))), (sizeof(__pyx_atomic_int)))); + + /* "View.MemoryView":366 + * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( + * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) + * self.typeinfo = NULL # <<<<<<<<<<<<<< + * + * def __dealloc__(memoryview self): + */ + __pyx_v_self->typeinfo = NULL; + + /* "View.MemoryView":341 + * cdef __Pyx_TypeInfo *typeinfo + * + * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< + * self.obj = obj + * self.flags = flags + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":368 + * self.typeinfo = NULL + * + * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< + * if self.obj is not None: + * __Pyx_ReleaseBuffer(&self.view) + */ + +/* Python wrapper */ +static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self); /*proto*/ +static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); + __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self) { + int __pyx_v_i; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + PyThread_type_lock __pyx_t_5; + PyThread_type_lock __pyx_t_6; + __Pyx_RefNannySetupContext("__dealloc__", 0); + + /* "View.MemoryView":369 + * + * def __dealloc__(memoryview self): + * if self.obj is not None: # <<<<<<<<<<<<<< + * __Pyx_ReleaseBuffer(&self.view) + * + */ + __pyx_t_1 = (__pyx_v_self->obj != Py_None); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":370 + * def __dealloc__(memoryview self): + * if self.obj is not None: + * __Pyx_ReleaseBuffer(&self.view) # <<<<<<<<<<<<<< + * + * cdef int i + */ + __Pyx_ReleaseBuffer((&__pyx_v_self->view)); + + /* "View.MemoryView":369 + * + * def __dealloc__(memoryview self): + * if self.obj is not None: # <<<<<<<<<<<<<< + * __Pyx_ReleaseBuffer(&self.view) + * + */ + } + + /* "View.MemoryView":374 + * cdef int i + * global __pyx_memoryview_thread_locks_used + * if self.lock != NULL: # <<<<<<<<<<<<<< + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: + */ + __pyx_t_2 = ((__pyx_v_self->lock != NULL) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":375 + * global __pyx_memoryview_thread_locks_used + * if self.lock != NULL: + * for i in range(__pyx_memoryview_thread_locks_used): # <<<<<<<<<<<<<< + * if __pyx_memoryview_thread_locks[i] is self.lock: + * __pyx_memoryview_thread_locks_used -= 1 + */ + __pyx_t_3 = __pyx_memoryview_thread_locks_used; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; + + /* "View.MemoryView":376 + * if self.lock != NULL: + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: + */ + __pyx_t_2 = (((__pyx_memoryview_thread_locks[__pyx_v_i]) == __pyx_v_self->lock) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":377 + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: + * __pyx_memoryview_thread_locks_used -= 1 # <<<<<<<<<<<<<< + * if i != __pyx_memoryview_thread_locks_used: + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + */ + __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used - 1); + + /* "View.MemoryView":378 + * if __pyx_memoryview_thread_locks[i] is self.lock: + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) + */ + __pyx_t_2 = ((__pyx_v_i != __pyx_memoryview_thread_locks_used) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":380 + * if i != __pyx_memoryview_thread_locks_used: + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) # <<<<<<<<<<<<<< + * break + * else: + */ + __pyx_t_5 = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); + __pyx_t_6 = (__pyx_memoryview_thread_locks[__pyx_v_i]); + + /* "View.MemoryView":379 + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) + * break + */ + (__pyx_memoryview_thread_locks[__pyx_v_i]) = __pyx_t_5; + (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]) = __pyx_t_6; + + /* "View.MemoryView":378 + * if __pyx_memoryview_thread_locks[i] is self.lock: + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) + */ + } + + /* "View.MemoryView":381 + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) + * break # <<<<<<<<<<<<<< + * else: + * PyThread_free_lock(self.lock) + */ + goto __pyx_L6_break; + + /* "View.MemoryView":376 + * if self.lock != NULL: + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: + */ + } + } + /*else*/ { + + /* "View.MemoryView":383 + * break + * else: + * PyThread_free_lock(self.lock) # <<<<<<<<<<<<<< + * + * cdef char *get_item_pointer(memoryview self, object index) except NULL: + */ + PyThread_free_lock(__pyx_v_self->lock); + } + __pyx_L6_break:; + + /* "View.MemoryView":374 + * cdef int i + * global __pyx_memoryview_thread_locks_used + * if self.lock != NULL: # <<<<<<<<<<<<<< + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: + */ + } + + /* "View.MemoryView":368 + * self.typeinfo = NULL + * + * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< + * if self.obj is not None: + * __Pyx_ReleaseBuffer(&self.view) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":385 + * PyThread_free_lock(self.lock) + * + * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< + * cdef Py_ssize_t dim + * cdef char *itemp = self.view.buf + */ + +static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { + Py_ssize_t __pyx_v_dim; + char *__pyx_v_itemp; + PyObject *__pyx_v_idx = NULL; + char *__pyx_r; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + Py_ssize_t __pyx_t_3; + PyObject *(*__pyx_t_4)(PyObject *); + PyObject *__pyx_t_5 = NULL; + Py_ssize_t __pyx_t_6; + char *__pyx_t_7; + __Pyx_RefNannySetupContext("get_item_pointer", 0); + + /* "View.MemoryView":387 + * cdef char *get_item_pointer(memoryview self, object index) except NULL: + * cdef Py_ssize_t dim + * cdef char *itemp = self.view.buf # <<<<<<<<<<<<<< + * + * for dim, idx in enumerate(index): + */ + __pyx_v_itemp = ((char *)__pyx_v_self->view.buf); + + /* "View.MemoryView":389 + * cdef char *itemp = self.view.buf + * + * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< + * itemp = pybuffer_index(&self.view, itemp, idx, dim) + * + */ + __pyx_t_1 = 0; + if (likely(PyList_CheckExact(__pyx_v_index)) || PyTuple_CheckExact(__pyx_v_index)) { + __pyx_t_2 = __pyx_v_index; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0; + __pyx_t_4 = NULL; + } else { + __pyx_t_3 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 389, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 389, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_4)) { + if (likely(PyList_CheckExact(__pyx_t_2))) { + if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_5 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(1, 389, __pyx_L1_error) + #else + __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 389, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + #endif + } else { + if (__pyx_t_3 >= PyTuple_GET_SIZE(__pyx_t_2)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(1, 389, __pyx_L1_error) + #else + __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 389, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + #endif + } + } else { + __pyx_t_5 = __pyx_t_4(__pyx_t_2); + if (unlikely(!__pyx_t_5)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(1, 389, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_5); + } + __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_5); + __pyx_t_5 = 0; + __pyx_v_dim = __pyx_t_1; + __pyx_t_1 = (__pyx_t_1 + 1); + + /* "View.MemoryView":390 + * + * for dim, idx in enumerate(index): + * itemp = pybuffer_index(&self.view, itemp, idx, dim) # <<<<<<<<<<<<<< + * + * return itemp + */ + __pyx_t_6 = __Pyx_PyIndex_AsSsize_t(__pyx_v_idx); if (unlikely((__pyx_t_6 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 390, __pyx_L1_error) + __pyx_t_7 = __pyx_pybuffer_index((&__pyx_v_self->view), __pyx_v_itemp, __pyx_t_6, __pyx_v_dim); if (unlikely(__pyx_t_7 == NULL)) __PYX_ERR(1, 390, __pyx_L1_error) + __pyx_v_itemp = __pyx_t_7; + + /* "View.MemoryView":389 + * cdef char *itemp = self.view.buf + * + * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< + * itemp = pybuffer_index(&self.view, itemp, idx, dim) + * + */ + } + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "View.MemoryView":392 + * itemp = pybuffer_index(&self.view, itemp, idx, dim) + * + * return itemp # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_itemp; + goto __pyx_L0; + + /* "View.MemoryView":385 + * PyThread_free_lock(self.lock) + * + * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< + * cdef Py_ssize_t dim + * cdef char *itemp = self.view.buf + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.memoryview.get_item_pointer", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_idx); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":395 + * + * + * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< + * if index is Ellipsis: + * return self + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index); /*proto*/ +static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { + PyObject *__pyx_v_have_slices = NULL; + PyObject *__pyx_v_indices = NULL; + char *__pyx_v_itemp; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + char *__pyx_t_6; + __Pyx_RefNannySetupContext("__getitem__", 0); + + /* "View.MemoryView":396 + * + * def __getitem__(memoryview self, object index): + * if index is Ellipsis: # <<<<<<<<<<<<<< + * return self + * + */ + __pyx_t_1 = (__pyx_v_index == __pyx_builtin_Ellipsis); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":397 + * def __getitem__(memoryview self, object index): + * if index is Ellipsis: + * return self # <<<<<<<<<<<<<< + * + * have_slices, indices = _unellipsify(index, self.view.ndim) + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __pyx_r = ((PyObject *)__pyx_v_self); + goto __pyx_L0; + + /* "View.MemoryView":396 + * + * def __getitem__(memoryview self, object index): + * if index is Ellipsis: # <<<<<<<<<<<<<< + * return self + * + */ + } + + /* "View.MemoryView":399 + * return self + * + * have_slices, indices = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< + * + * cdef char *itemp + */ + __pyx_t_3 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 399, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (likely(__pyx_t_3 != Py_None)) { + PyObject* sequence = __pyx_t_3; + #if !CYTHON_COMPILING_IN_PYPY + Py_ssize_t size = Py_SIZE(sequence); + #else + Py_ssize_t size = PySequence_Size(sequence); + #endif + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(1, 399, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_5 = PyTuple_GET_ITEM(sequence, 1); + __Pyx_INCREF(__pyx_t_4); + __Pyx_INCREF(__pyx_t_5); + #else + __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 399, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 399, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + #endif + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + } else { + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 399, __pyx_L1_error) + } + __pyx_v_have_slices = __pyx_t_4; + __pyx_t_4 = 0; + __pyx_v_indices = __pyx_t_5; + __pyx_t_5 = 0; + + /* "View.MemoryView":402 + * + * cdef char *itemp + * if have_slices: # <<<<<<<<<<<<<< + * return memview_slice(self, indices) + * else: + */ + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(1, 402, __pyx_L1_error) + if (__pyx_t_2) { + + /* "View.MemoryView":403 + * cdef char *itemp + * if have_slices: + * return memview_slice(self, indices) # <<<<<<<<<<<<<< + * else: + * itemp = self.get_item_pointer(indices) + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_3 = ((PyObject *)__pyx_memview_slice(__pyx_v_self, __pyx_v_indices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 403, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":402 + * + * cdef char *itemp + * if have_slices: # <<<<<<<<<<<<<< + * return memview_slice(self, indices) + * else: + */ + } + + /* "View.MemoryView":405 + * return memview_slice(self, indices) + * else: + * itemp = self.get_item_pointer(indices) # <<<<<<<<<<<<<< + * return self.convert_item_to_object(itemp) + * + */ + /*else*/ { + __pyx_t_6 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_indices); if (unlikely(__pyx_t_6 == NULL)) __PYX_ERR(1, 405, __pyx_L1_error) + __pyx_v_itemp = __pyx_t_6; + + /* "View.MemoryView":406 + * else: + * itemp = self.get_item_pointer(indices) + * return self.convert_item_to_object(itemp) # <<<<<<<<<<<<<< + * + * def __setitem__(memoryview self, object index, object value): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->convert_item_to_object(__pyx_v_self, __pyx_v_itemp); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 406, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + } + + /* "View.MemoryView":395 + * + * + * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< + * if index is Ellipsis: + * return self + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.memoryview.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_have_slices); + __Pyx_XDECREF(__pyx_v_indices); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":408 + * return self.convert_item_to_object(itemp) + * + * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< + * have_slices, index = _unellipsify(index, self.view.ndim) + * + */ + +/* Python wrapper */ +static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /*proto*/ +static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index), ((PyObject *)__pyx_v_value)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { + PyObject *__pyx_v_have_slices = NULL; + PyObject *__pyx_v_obj = NULL; + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + __Pyx_RefNannySetupContext("__setitem__", 0); + __Pyx_INCREF(__pyx_v_index); + + /* "View.MemoryView":409 + * + * def __setitem__(memoryview self, object index, object value): + * have_slices, index = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< + * + * if have_slices: + */ + __pyx_t_1 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 409, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (likely(__pyx_t_1 != Py_None)) { + PyObject* sequence = __pyx_t_1; + #if !CYTHON_COMPILING_IN_PYPY + Py_ssize_t size = Py_SIZE(sequence); + #else + Py_ssize_t size = PySequence_Size(sequence); + #endif + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(1, 409, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); + __Pyx_INCREF(__pyx_t_2); + __Pyx_INCREF(__pyx_t_3); + #else + __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 409, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 409, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 409, __pyx_L1_error) + } + __pyx_v_have_slices = __pyx_t_2; + __pyx_t_2 = 0; + __Pyx_DECREF_SET(__pyx_v_index, __pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":411 + * have_slices, index = _unellipsify(index, self.view.ndim) + * + * if have_slices: # <<<<<<<<<<<<<< + * obj = self.is_slice(value) + * if obj: + */ + __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 411, __pyx_L1_error) + if (__pyx_t_4) { + + /* "View.MemoryView":412 + * + * if have_slices: + * obj = self.is_slice(value) # <<<<<<<<<<<<<< + * if obj: + * self.setitem_slice_assignment(self[index], obj) + */ + __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->is_slice(__pyx_v_self, __pyx_v_value); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 412, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v_obj = __pyx_t_1; + __pyx_t_1 = 0; + + /* "View.MemoryView":413 + * if have_slices: + * obj = self.is_slice(value) + * if obj: # <<<<<<<<<<<<<< + * self.setitem_slice_assignment(self[index], obj) + * else: + */ + __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_v_obj); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 413, __pyx_L1_error) + if (__pyx_t_4) { + + /* "View.MemoryView":414 + * obj = self.is_slice(value) + * if obj: + * self.setitem_slice_assignment(self[index], obj) # <<<<<<<<<<<<<< + * else: + * self.setitem_slice_assign_scalar(self[index], value) + */ + __pyx_t_1 = PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 414, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assignment(__pyx_v_self, __pyx_t_1, __pyx_v_obj); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 414, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":413 + * if have_slices: + * obj = self.is_slice(value) + * if obj: # <<<<<<<<<<<<<< + * self.setitem_slice_assignment(self[index], obj) + * else: + */ + goto __pyx_L4; + } + + /* "View.MemoryView":416 + * self.setitem_slice_assignment(self[index], obj) + * else: + * self.setitem_slice_assign_scalar(self[index], value) # <<<<<<<<<<<<<< + * else: + * self.setitem_indexed(index, value) + */ + /*else*/ { + __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 416, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(1, 416, __pyx_L1_error) + __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assign_scalar(__pyx_v_self, ((struct __pyx_memoryview_obj *)__pyx_t_3), __pyx_v_value); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 416, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } + __pyx_L4:; + + /* "View.MemoryView":411 + * have_slices, index = _unellipsify(index, self.view.ndim) + * + * if have_slices: # <<<<<<<<<<<<<< + * obj = self.is_slice(value) + * if obj: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":418 + * self.setitem_slice_assign_scalar(self[index], value) + * else: + * self.setitem_indexed(index, value) # <<<<<<<<<<<<<< + * + * cdef is_slice(self, obj): + */ + /*else*/ { + __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_indexed(__pyx_v_self, __pyx_v_index, __pyx_v_value); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 418, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } + __pyx_L3:; + + /* "View.MemoryView":408 + * return self.convert_item_to_object(itemp) + * + * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< + * have_slices, index = _unellipsify(index, self.view.ndim) + * + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_have_slices); + __Pyx_XDECREF(__pyx_v_obj); + __Pyx_XDECREF(__pyx_v_index); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":420 + * self.setitem_indexed(index, value) + * + * cdef is_slice(self, obj): # <<<<<<<<<<<<<< + * if not isinstance(obj, memoryview): + * try: + */ + +static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + int __pyx_t_9; + __Pyx_RefNannySetupContext("is_slice", 0); + __Pyx_INCREF(__pyx_v_obj); + + /* "View.MemoryView":421 + * + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< + * try: + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, + */ + __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_obj, __pyx_memoryview_type); + __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":422 + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): + * try: # <<<<<<<<<<<<<< + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_3, &__pyx_t_4, &__pyx_t_5); + __Pyx_XGOTREF(__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_4); + __Pyx_XGOTREF(__pyx_t_5); + /*try:*/ { + + /* "View.MemoryView":423 + * if not isinstance(obj, memoryview): + * try: + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< + * self.dtype_is_object) + * except TypeError: + */ + __pyx_t_6 = __Pyx_PyInt_From_int((__pyx_v_self->flags | PyBUF_ANY_CONTIGUOUS)); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 423, __pyx_L4_error) + __Pyx_GOTREF(__pyx_t_6); + + /* "View.MemoryView":424 + * try: + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) # <<<<<<<<<<<<<< + * except TypeError: + * return None + */ + __pyx_t_7 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 424, __pyx_L4_error) + __Pyx_GOTREF(__pyx_t_7); + + /* "View.MemoryView":423 + * if not isinstance(obj, memoryview): + * try: + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< + * self.dtype_is_object) + * except TypeError: + */ + __pyx_t_8 = PyTuple_New(3); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 423, __pyx_L4_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_INCREF(__pyx_v_obj); + __Pyx_GIVEREF(__pyx_v_obj); + PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_v_obj); + __Pyx_GIVEREF(__pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_8, 1, __pyx_t_6); + __Pyx_GIVEREF(__pyx_t_7); + PyTuple_SET_ITEM(__pyx_t_8, 2, __pyx_t_7); + __pyx_t_6 = 0; + __pyx_t_7 = 0; + __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_8, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 423, __pyx_L4_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_DECREF_SET(__pyx_v_obj, __pyx_t_7); + __pyx_t_7 = 0; + + /* "View.MemoryView":422 + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): + * try: # <<<<<<<<<<<<<< + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) + */ + } + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + goto __pyx_L11_try_end; + __pyx_L4_error:; + __Pyx_PyThreadState_assign + __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + + /* "View.MemoryView":425 + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) + * except TypeError: # <<<<<<<<<<<<<< + * return None + * + */ + __pyx_t_9 = __Pyx_PyErr_ExceptionMatches(__pyx_builtin_TypeError); + if (__pyx_t_9) { + __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_6) < 0) __PYX_ERR(1, 425, __pyx_L6_except_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_GOTREF(__pyx_t_8); + __Pyx_GOTREF(__pyx_t_6); + + /* "View.MemoryView":426 + * self.dtype_is_object) + * except TypeError: + * return None # <<<<<<<<<<<<<< + * + * return obj + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(Py_None); + __pyx_r = Py_None; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + goto __pyx_L7_except_return; + } + goto __pyx_L6_except_error; + __pyx_L6_except_error:; + + /* "View.MemoryView":422 + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): + * try: # <<<<<<<<<<<<<< + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) + */ + __Pyx_PyThreadState_assign + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_XGIVEREF(__pyx_t_4); + __Pyx_XGIVEREF(__pyx_t_5); + __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); + goto __pyx_L1_error; + __pyx_L7_except_return:; + __Pyx_PyThreadState_assign + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_XGIVEREF(__pyx_t_4); + __Pyx_XGIVEREF(__pyx_t_5); + __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); + goto __pyx_L0; + __pyx_L11_try_end:; + } + + /* "View.MemoryView":421 + * + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< + * try: + * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, + */ + } + + /* "View.MemoryView":428 + * return None + * + * return obj # <<<<<<<<<<<<<< + * + * cdef setitem_slice_assignment(self, dst, src): + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_obj); + __pyx_r = __pyx_v_obj; + goto __pyx_L0; + + /* "View.MemoryView":420 + * self.setitem_indexed(index, value) + * + * cdef is_slice(self, obj): # <<<<<<<<<<<<<< + * if not isinstance(obj, memoryview): + * try: + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_obj); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":430 + * return obj + * + * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice dst_slice + * cdef __Pyx_memviewslice src_slice + */ + +static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src) { + __Pyx_memviewslice __pyx_v_dst_slice; + __Pyx_memviewslice __pyx_v_src_slice; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + __Pyx_RefNannySetupContext("setitem_slice_assignment", 0); + + /* "View.MemoryView":434 + * cdef __Pyx_memviewslice src_slice + * + * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< + * get_slice_from_memview(dst, &dst_slice)[0], + * src.ndim, dst.ndim, self.dtype_is_object) + */ + if (!(likely(((__pyx_v_src) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_src, __pyx_memoryview_type))))) __PYX_ERR(1, 434, __pyx_L1_error) + + /* "View.MemoryView":435 + * + * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], + * get_slice_from_memview(dst, &dst_slice)[0], # <<<<<<<<<<<<<< + * src.ndim, dst.ndim, self.dtype_is_object) + * + */ + if (!(likely(((__pyx_v_dst) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_dst, __pyx_memoryview_type))))) __PYX_ERR(1, 435, __pyx_L1_error) + + /* "View.MemoryView":436 + * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], + * get_slice_from_memview(dst, &dst_slice)[0], + * src.ndim, dst.ndim, self.dtype_is_object) # <<<<<<<<<<<<<< + * + * cdef setitem_slice_assign_scalar(self, memoryview dst, value): + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_src, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 436, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 436, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dst, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 436, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 436, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "View.MemoryView":434 + * cdef __Pyx_memviewslice src_slice + * + * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< + * get_slice_from_memview(dst, &dst_slice)[0], + * src.ndim, dst.ndim, self.dtype_is_object) + */ + __pyx_t_4 = __pyx_memoryview_copy_contents((__pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_src), (&__pyx_v_src_slice))[0]), (__pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_dst), (&__pyx_v_dst_slice))[0]), __pyx_t_2, __pyx_t_3, __pyx_v_self->dtype_is_object); if (unlikely(__pyx_t_4 == -1)) __PYX_ERR(1, 434, __pyx_L1_error) + + /* "View.MemoryView":430 + * return obj + * + * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice dst_slice + * cdef __Pyx_memviewslice src_slice + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assignment", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":438 + * src.ndim, dst.ndim, self.dtype_is_object) + * + * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< + * cdef int array[128] + * cdef void *tmp = NULL + */ + +static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value) { + int __pyx_v_array[0x80]; + void *__pyx_v_tmp; + void *__pyx_v_item; + __Pyx_memviewslice *__pyx_v_dst_slice; + __Pyx_memviewslice __pyx_v_tmp_slice; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + int __pyx_t_3; + int __pyx_t_4; + char const *__pyx_t_5; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + PyObject *__pyx_t_9 = NULL; + PyObject *__pyx_t_10 = NULL; + PyObject *__pyx_t_11 = NULL; + __Pyx_RefNannySetupContext("setitem_slice_assign_scalar", 0); + + /* "View.MemoryView":440 + * cdef setitem_slice_assign_scalar(self, memoryview dst, value): + * cdef int array[128] + * cdef void *tmp = NULL # <<<<<<<<<<<<<< + * cdef void *item + * + */ + __pyx_v_tmp = NULL; + + /* "View.MemoryView":445 + * cdef __Pyx_memviewslice *dst_slice + * cdef __Pyx_memviewslice tmp_slice + * dst_slice = get_slice_from_memview(dst, &tmp_slice) # <<<<<<<<<<<<<< + * + * if self.view.itemsize > sizeof(array): + */ + __pyx_v_dst_slice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_dst, (&__pyx_v_tmp_slice)); + + /* "View.MemoryView":447 + * dst_slice = get_slice_from_memview(dst, &tmp_slice) + * + * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: + */ + __pyx_t_1 = ((((size_t)__pyx_v_self->view.itemsize) > (sizeof(__pyx_v_array))) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":448 + * + * if self.view.itemsize > sizeof(array): + * tmp = PyMem_Malloc(self.view.itemsize) # <<<<<<<<<<<<<< + * if tmp == NULL: + * raise MemoryError + */ + __pyx_v_tmp = PyMem_Malloc(__pyx_v_self->view.itemsize); + + /* "View.MemoryView":449 + * if self.view.itemsize > sizeof(array): + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: # <<<<<<<<<<<<<< + * raise MemoryError + * item = tmp + */ + __pyx_t_1 = ((__pyx_v_tmp == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":450 + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: + * raise MemoryError # <<<<<<<<<<<<<< + * item = tmp + * else: + */ + PyErr_NoMemory(); __PYX_ERR(1, 450, __pyx_L1_error) + + /* "View.MemoryView":449 + * if self.view.itemsize > sizeof(array): + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: # <<<<<<<<<<<<<< + * raise MemoryError + * item = tmp + */ + } + + /* "View.MemoryView":451 + * if tmp == NULL: + * raise MemoryError + * item = tmp # <<<<<<<<<<<<<< + * else: + * item = array + */ + __pyx_v_item = __pyx_v_tmp; + + /* "View.MemoryView":447 + * dst_slice = get_slice_from_memview(dst, &tmp_slice) + * + * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":453 + * item = tmp + * else: + * item = array # <<<<<<<<<<<<<< + * + * try: + */ + /*else*/ { + __pyx_v_item = ((void *)__pyx_v_array); + } + __pyx_L3:; + + /* "View.MemoryView":455 + * item = array + * + * try: # <<<<<<<<<<<<<< + * if self.dtype_is_object: + * ( item)[0] = value + */ + /*try:*/ { + + /* "View.MemoryView":456 + * + * try: + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * ( item)[0] = value + * else: + */ + __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":457 + * try: + * if self.dtype_is_object: + * ( item)[0] = value # <<<<<<<<<<<<<< + * else: + * self.assign_item_from_object( item, value) + */ + (((PyObject **)__pyx_v_item)[0]) = ((PyObject *)__pyx_v_value); + + /* "View.MemoryView":456 + * + * try: + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * ( item)[0] = value + * else: + */ + goto __pyx_L8; + } + + /* "View.MemoryView":459 + * ( item)[0] = value + * else: + * self.assign_item_from_object( item, value) # <<<<<<<<<<<<<< + * + * + */ + /*else*/ { + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, ((char *)__pyx_v_item), __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 459, __pyx_L6_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + } + __pyx_L8:; + + /* "View.MemoryView":463 + * + * + * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< + * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) + * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, + */ + __pyx_t_1 = ((__pyx_v_self->view.suboffsets != NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":464 + * + * if self.view.suboffsets != NULL: + * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) # <<<<<<<<<<<<<< + * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, + * item, self.dtype_is_object) + */ + __pyx_t_2 = assert_direct_dimensions(__pyx_v_self->view.suboffsets, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 464, __pyx_L6_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "View.MemoryView":463 + * + * + * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< + * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) + * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, + */ + } + + /* "View.MemoryView":465 + * if self.view.suboffsets != NULL: + * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) + * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, # <<<<<<<<<<<<<< + * item, self.dtype_is_object) + * finally: + */ + __pyx_memoryview_slice_assign_scalar(__pyx_v_dst_slice, __pyx_v_dst->view.ndim, __pyx_v_self->view.itemsize, __pyx_v_item, __pyx_v_self->dtype_is_object); + } + + /* "View.MemoryView":468 + * item, self.dtype_is_object) + * finally: + * PyMem_Free(tmp) # <<<<<<<<<<<<<< + * + * cdef setitem_indexed(self, index, value): + */ + /*finally:*/ { + /*normal exit:*/{ + PyMem_Free(__pyx_v_tmp); + goto __pyx_L7; + } + /*exception exit:*/{ + __Pyx_PyThreadState_declare + __pyx_L6_error:; + __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; + __Pyx_PyThreadState_assign + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + if (PY_MAJOR_VERSION >= 3) __Pyx_ExceptionSwap(&__pyx_t_9, &__pyx_t_10, &__pyx_t_11); + if ((PY_MAJOR_VERSION < 3) || unlikely(__Pyx_GetException(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8) < 0)) __Pyx_ErrFetch(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8); + __Pyx_XGOTREF(__pyx_t_6); + __Pyx_XGOTREF(__pyx_t_7); + __Pyx_XGOTREF(__pyx_t_8); + __Pyx_XGOTREF(__pyx_t_9); + __Pyx_XGOTREF(__pyx_t_10); + __Pyx_XGOTREF(__pyx_t_11); + __pyx_t_3 = __pyx_lineno; __pyx_t_4 = __pyx_clineno; __pyx_t_5 = __pyx_filename; + { + PyMem_Free(__pyx_v_tmp); + } + __Pyx_PyThreadState_assign + if (PY_MAJOR_VERSION >= 3) { + __Pyx_XGIVEREF(__pyx_t_9); + __Pyx_XGIVEREF(__pyx_t_10); + __Pyx_XGIVEREF(__pyx_t_11); + __Pyx_ExceptionReset(__pyx_t_9, __pyx_t_10, __pyx_t_11); + } + __Pyx_XGIVEREF(__pyx_t_6); + __Pyx_XGIVEREF(__pyx_t_7); + __Pyx_XGIVEREF(__pyx_t_8); + __Pyx_ErrRestore(__pyx_t_6, __pyx_t_7, __pyx_t_8); + __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; + __pyx_lineno = __pyx_t_3; __pyx_clineno = __pyx_t_4; __pyx_filename = __pyx_t_5; + goto __pyx_L1_error; + } + __pyx_L7:; + } + + /* "View.MemoryView":438 + * src.ndim, dst.ndim, self.dtype_is_object) + * + * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< + * cdef int array[128] + * cdef void *tmp = NULL + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assign_scalar", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":470 + * PyMem_Free(tmp) + * + * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< + * cdef char *itemp = self.get_item_pointer(index) + * self.assign_item_from_object(itemp, value) + */ + +static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { + char *__pyx_v_itemp; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + char *__pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("setitem_indexed", 0); + + /* "View.MemoryView":471 + * + * cdef setitem_indexed(self, index, value): + * cdef char *itemp = self.get_item_pointer(index) # <<<<<<<<<<<<<< + * self.assign_item_from_object(itemp, value) + * + */ + __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_index); if (unlikely(__pyx_t_1 == NULL)) __PYX_ERR(1, 471, __pyx_L1_error) + __pyx_v_itemp = __pyx_t_1; + + /* "View.MemoryView":472 + * cdef setitem_indexed(self, index, value): + * cdef char *itemp = self.get_item_pointer(index) + * self.assign_item_from_object(itemp, value) # <<<<<<<<<<<<<< + * + * cdef convert_item_to_object(self, char *itemp): + */ + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 472, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "View.MemoryView":470 + * PyMem_Free(tmp) + * + * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< + * cdef char *itemp = self.get_item_pointer(index) + * self.assign_item_from_object(itemp, value) + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_indexed", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":474 + * self.assign_item_from_object(itemp, value) + * + * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + */ + +static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp) { + PyObject *__pyx_v_struct = NULL; + PyObject *__pyx_v_bytesitem = 0; + PyObject *__pyx_v_result = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + int __pyx_t_8; + PyObject *__pyx_t_9 = NULL; + size_t __pyx_t_10; + int __pyx_t_11; + __Pyx_RefNannySetupContext("convert_item_to_object", 0); + + /* "View.MemoryView":477 + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + * import struct # <<<<<<<<<<<<<< + * cdef bytes bytesitem + * + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 477, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v_struct = __pyx_t_1; + __pyx_t_1 = 0; + + /* "View.MemoryView":480 + * cdef bytes bytesitem + * + * bytesitem = itemp[:self.view.itemsize] # <<<<<<<<<<<<<< + * try: + * result = struct.unpack(self.view.format, bytesitem) + */ + __pyx_t_1 = __Pyx_PyBytes_FromStringAndSize(__pyx_v_itemp + 0, __pyx_v_self->view.itemsize - 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 480, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v_bytesitem = ((PyObject*)__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":481 + * + * bytesitem = itemp[:self.view.itemsize] + * try: # <<<<<<<<<<<<<< + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_2, &__pyx_t_3, &__pyx_t_4); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_4); + /*try:*/ { + + /* "View.MemoryView":482 + * bytesitem = itemp[:self.view.itemsize] + * try: + * result = struct.unpack(self.view.format, bytesitem) # <<<<<<<<<<<<<< + * except struct.error: + * raise ValueError("Unable to convert item to object") + */ + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_unpack); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 482, __pyx_L3_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_6 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 482, __pyx_L3_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_7 = NULL; + __pyx_t_8 = 0; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { + __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_5); + if (likely(__pyx_t_7)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); + __Pyx_INCREF(__pyx_t_7); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_5, function); + __pyx_t_8 = 1; + } + } + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_5)) { + PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; + __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 482, __pyx_L3_error) + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { + PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; + __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 482, __pyx_L3_error) + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } else + #endif + { + __pyx_t_9 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 482, __pyx_L3_error) + __Pyx_GOTREF(__pyx_t_9); + if (__pyx_t_7) { + __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_7); __pyx_t_7 = NULL; + } + __Pyx_GIVEREF(__pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_9, 0+__pyx_t_8, __pyx_t_6); + __Pyx_INCREF(__pyx_v_bytesitem); + __Pyx_GIVEREF(__pyx_v_bytesitem); + PyTuple_SET_ITEM(__pyx_t_9, 1+__pyx_t_8, __pyx_v_bytesitem); + __pyx_t_6 = 0; + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 482, __pyx_L3_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_result = __pyx_t_1; + __pyx_t_1 = 0; + + /* "View.MemoryView":481 + * + * bytesitem = itemp[:self.view.itemsize] + * try: # <<<<<<<<<<<<<< + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + */ + } + + /* "View.MemoryView":486 + * raise ValueError("Unable to convert item to object") + * else: + * if len(self.view.format) == 1: # <<<<<<<<<<<<<< + * return result[0] + * return result + */ + /*else:*/ { + __pyx_t_10 = strlen(__pyx_v_self->view.format); + __pyx_t_11 = ((__pyx_t_10 == 1) != 0); + if (__pyx_t_11) { + + /* "View.MemoryView":487 + * else: + * if len(self.view.format) == 1: + * return result[0] # <<<<<<<<<<<<<< + * return result + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_result, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 487, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L6_except_return; + + /* "View.MemoryView":486 + * raise ValueError("Unable to convert item to object") + * else: + * if len(self.view.format) == 1: # <<<<<<<<<<<<<< + * return result[0] + * return result + */ + } + + /* "View.MemoryView":488 + * if len(self.view.format) == 1: + * return result[0] + * return result # <<<<<<<<<<<<<< + * + * cdef assign_item_from_object(self, char *itemp, object value): + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_result); + __pyx_r = __pyx_v_result; + goto __pyx_L6_except_return; + } + __pyx_L3_error:; + __Pyx_PyThreadState_assign + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "View.MemoryView":483 + * try: + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: # <<<<<<<<<<<<<< + * raise ValueError("Unable to convert item to object") + * else: + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_error); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 483, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_8 = __Pyx_PyErr_ExceptionMatches(__pyx_t_1); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (__pyx_t_8) { + __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_1, &__pyx_t_5, &__pyx_t_9) < 0) __PYX_ERR(1, 483, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_9); + + /* "View.MemoryView":484 + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< + * else: + * if len(self.view.format) == 1: + */ + __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 484, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_Raise(__pyx_t_6, 0, 0, 0); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __PYX_ERR(1, 484, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "View.MemoryView":481 + * + * bytesitem = itemp[:self.view.itemsize] + * try: # <<<<<<<<<<<<<< + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + */ + __Pyx_PyThreadState_assign + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_XGIVEREF(__pyx_t_4); + __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); + goto __pyx_L1_error; + __pyx_L6_except_return:; + __Pyx_PyThreadState_assign + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_XGIVEREF(__pyx_t_4); + __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); + goto __pyx_L0; + } + + /* "View.MemoryView":474 + * self.assign_item_from_object(itemp, value) + * + * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_9); + __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_struct); + __Pyx_XDECREF(__pyx_v_bytesitem); + __Pyx_XDECREF(__pyx_v_result); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":490 + * return result + * + * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + */ + +static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { + PyObject *__pyx_v_struct = NULL; + char __pyx_v_c; + PyObject *__pyx_v_bytesvalue = 0; + Py_ssize_t __pyx_v_i; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + int __pyx_t_3; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + int __pyx_t_7; + PyObject *__pyx_t_8 = NULL; + Py_ssize_t __pyx_t_9; + PyObject *__pyx_t_10 = NULL; + char *__pyx_t_11; + char *__pyx_t_12; + char *__pyx_t_13; + char *__pyx_t_14; + __Pyx_RefNannySetupContext("assign_item_from_object", 0); + + /* "View.MemoryView":493 + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + * import struct # <<<<<<<<<<<<<< + * cdef char c + * cdef bytes bytesvalue + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 493, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v_struct = __pyx_t_1; + __pyx_t_1 = 0; + + /* "View.MemoryView":498 + * cdef Py_ssize_t i + * + * if isinstance(value, tuple): # <<<<<<<<<<<<<< + * bytesvalue = struct.pack(self.view.format, *value) + * else: + */ + __pyx_t_2 = PyTuple_Check(__pyx_v_value); + __pyx_t_3 = (__pyx_t_2 != 0); + if (__pyx_t_3) { + + /* "View.MemoryView":499 + * + * if isinstance(value, tuple): + * bytesvalue = struct.pack(self.view.format, *value) # <<<<<<<<<<<<<< + * else: + * bytesvalue = struct.pack(self.view.format, value) + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 499, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_4 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 499, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 499, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); + __pyx_t_4 = 0; + __pyx_t_4 = PySequence_Tuple(__pyx_v_value); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 499, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 499, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 499, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(1, 499, __pyx_L1_error) + __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); + __pyx_t_4 = 0; + + /* "View.MemoryView":498 + * cdef Py_ssize_t i + * + * if isinstance(value, tuple): # <<<<<<<<<<<<<< + * bytesvalue = struct.pack(self.view.format, *value) + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":501 + * bytesvalue = struct.pack(self.view.format, *value) + * else: + * bytesvalue = struct.pack(self.view.format, value) # <<<<<<<<<<<<<< + * + * for i, c in enumerate(bytesvalue): + */ + /*else*/ { + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 501, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_1 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 501, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_5 = NULL; + __pyx_t_7 = 0; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_6); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_6, function); + __pyx_t_7 = 1; + } + } + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_6)) { + PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; + __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 501, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { + PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; + __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 501, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else + #endif + { + __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 501, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + if (__pyx_t_5) { + __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; + } + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, __pyx_t_1); + __Pyx_INCREF(__pyx_v_value); + __Pyx_GIVEREF(__pyx_v_value); + PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_v_value); + __pyx_t_1 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 501, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + } + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(1, 501, __pyx_L1_error) + __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); + __pyx_t_4 = 0; + } + __pyx_L3:; + + /* "View.MemoryView":503 + * bytesvalue = struct.pack(self.view.format, value) + * + * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< + * itemp[i] = c + * + */ + __pyx_t_9 = 0; + if (unlikely(__pyx_v_bytesvalue == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' is not iterable"); + __PYX_ERR(1, 503, __pyx_L1_error) + } + __Pyx_INCREF(__pyx_v_bytesvalue); + __pyx_t_10 = __pyx_v_bytesvalue; + __pyx_t_12 = PyBytes_AS_STRING(__pyx_t_10); + __pyx_t_13 = (__pyx_t_12 + PyBytes_GET_SIZE(__pyx_t_10)); + for (__pyx_t_14 = __pyx_t_12; __pyx_t_14 < __pyx_t_13; __pyx_t_14++) { + __pyx_t_11 = __pyx_t_14; + __pyx_v_c = (__pyx_t_11[0]); + + /* "View.MemoryView":504 + * + * for i, c in enumerate(bytesvalue): + * itemp[i] = c # <<<<<<<<<<<<<< + * + * @cname('getbuffer') + */ + __pyx_v_i = __pyx_t_9; + + /* "View.MemoryView":503 + * bytesvalue = struct.pack(self.view.format, value) + * + * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< + * itemp[i] = c + * + */ + __pyx_t_9 = (__pyx_t_9 + 1); + + /* "View.MemoryView":504 + * + * for i, c in enumerate(bytesvalue): + * itemp[i] = c # <<<<<<<<<<<<<< + * + * @cname('getbuffer') + */ + (__pyx_v_itemp[__pyx_v_i]) = __pyx_v_c; + } + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + + /* "View.MemoryView":490 + * return result + * + * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_XDECREF(__pyx_t_10); + __Pyx_AddTraceback("View.MemoryView.memoryview.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_struct); + __Pyx_XDECREF(__pyx_v_bytesvalue); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":507 + * + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< + * if flags & PyBUF_STRIDES: + * info.shape = self.view.shape + */ + +/* Python wrapper */ +static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + Py_ssize_t *__pyx_t_2; + char *__pyx_t_3; + void *__pyx_t_4; + int __pyx_t_5; + Py_ssize_t __pyx_t_6; + __Pyx_RefNannySetupContext("__getbuffer__", 0); + if (__pyx_v_info != NULL) { + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); + } + + /* "View.MemoryView":508 + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< + * info.shape = self.view.shape + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":509 + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_STRIDES: + * info.shape = self.view.shape # <<<<<<<<<<<<<< + * else: + * info.shape = NULL + */ + __pyx_t_2 = __pyx_v_self->view.shape; + __pyx_v_info->shape = __pyx_t_2; + + /* "View.MemoryView":508 + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< + * info.shape = self.view.shape + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":511 + * info.shape = self.view.shape + * else: + * info.shape = NULL # <<<<<<<<<<<<<< + * + * if flags & PyBUF_STRIDES: + */ + /*else*/ { + __pyx_v_info->shape = NULL; + } + __pyx_L3:; + + /* "View.MemoryView":513 + * info.shape = NULL + * + * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< + * info.strides = self.view.strides + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":514 + * + * if flags & PyBUF_STRIDES: + * info.strides = self.view.strides # <<<<<<<<<<<<<< + * else: + * info.strides = NULL + */ + __pyx_t_2 = __pyx_v_self->view.strides; + __pyx_v_info->strides = __pyx_t_2; + + /* "View.MemoryView":513 + * info.shape = NULL + * + * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< + * info.strides = self.view.strides + * else: + */ + goto __pyx_L4; + } + + /* "View.MemoryView":516 + * info.strides = self.view.strides + * else: + * info.strides = NULL # <<<<<<<<<<<<<< + * + * if flags & PyBUF_INDIRECT: + */ + /*else*/ { + __pyx_v_info->strides = NULL; + } + __pyx_L4:; + + /* "View.MemoryView":518 + * info.strides = NULL + * + * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< + * info.suboffsets = self.view.suboffsets + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_INDIRECT) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":519 + * + * if flags & PyBUF_INDIRECT: + * info.suboffsets = self.view.suboffsets # <<<<<<<<<<<<<< + * else: + * info.suboffsets = NULL + */ + __pyx_t_2 = __pyx_v_self->view.suboffsets; + __pyx_v_info->suboffsets = __pyx_t_2; + + /* "View.MemoryView":518 + * info.strides = NULL + * + * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< + * info.suboffsets = self.view.suboffsets + * else: + */ + goto __pyx_L5; + } + + /* "View.MemoryView":521 + * info.suboffsets = self.view.suboffsets + * else: + * info.suboffsets = NULL # <<<<<<<<<<<<<< + * + * if flags & PyBUF_FORMAT: + */ + /*else*/ { + __pyx_v_info->suboffsets = NULL; + } + __pyx_L5:; + + /* "View.MemoryView":523 + * info.suboffsets = NULL + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * info.format = self.view.format + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":524 + * + * if flags & PyBUF_FORMAT: + * info.format = self.view.format # <<<<<<<<<<<<<< + * else: + * info.format = NULL + */ + __pyx_t_3 = __pyx_v_self->view.format; + __pyx_v_info->format = __pyx_t_3; + + /* "View.MemoryView":523 + * info.suboffsets = NULL + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * info.format = self.view.format + * else: + */ + goto __pyx_L6; + } + + /* "View.MemoryView":526 + * info.format = self.view.format + * else: + * info.format = NULL # <<<<<<<<<<<<<< + * + * info.buf = self.view.buf + */ + /*else*/ { + __pyx_v_info->format = NULL; + } + __pyx_L6:; + + /* "View.MemoryView":528 + * info.format = NULL + * + * info.buf = self.view.buf # <<<<<<<<<<<<<< + * info.ndim = self.view.ndim + * info.itemsize = self.view.itemsize + */ + __pyx_t_4 = __pyx_v_self->view.buf; + __pyx_v_info->buf = __pyx_t_4; + + /* "View.MemoryView":529 + * + * info.buf = self.view.buf + * info.ndim = self.view.ndim # <<<<<<<<<<<<<< + * info.itemsize = self.view.itemsize + * info.len = self.view.len + */ + __pyx_t_5 = __pyx_v_self->view.ndim; + __pyx_v_info->ndim = __pyx_t_5; + + /* "View.MemoryView":530 + * info.buf = self.view.buf + * info.ndim = self.view.ndim + * info.itemsize = self.view.itemsize # <<<<<<<<<<<<<< + * info.len = self.view.len + * info.readonly = 0 + */ + __pyx_t_6 = __pyx_v_self->view.itemsize; + __pyx_v_info->itemsize = __pyx_t_6; + + /* "View.MemoryView":531 + * info.ndim = self.view.ndim + * info.itemsize = self.view.itemsize + * info.len = self.view.len # <<<<<<<<<<<<<< + * info.readonly = 0 + * info.obj = self + */ + __pyx_t_6 = __pyx_v_self->view.len; + __pyx_v_info->len = __pyx_t_6; + + /* "View.MemoryView":532 + * info.itemsize = self.view.itemsize + * info.len = self.view.len + * info.readonly = 0 # <<<<<<<<<<<<<< + * info.obj = self + * + */ + __pyx_v_info->readonly = 0; + + /* "View.MemoryView":533 + * info.len = self.view.len + * info.readonly = 0 + * info.obj = self # <<<<<<<<<<<<<< + * + * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") + */ + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); + __pyx_v_info->obj = ((PyObject *)__pyx_v_self); + + /* "View.MemoryView":507 + * + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< + * if flags & PyBUF_STRIDES: + * info.shape = self.view.shape + */ + + /* function exit code */ + __pyx_r = 0; + if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(Py_None); + __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL; + } + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":539 + * + * @property + * def T(self): # <<<<<<<<<<<<<< + * cdef _memoryviewslice result = memoryview_copy(self) + * transpose_memslice(&result.from_slice) + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":540 + * @property + * def T(self): + * cdef _memoryviewslice result = memoryview_copy(self) # <<<<<<<<<<<<<< + * transpose_memslice(&result.from_slice) + * return result + */ + __pyx_t_1 = __pyx_memoryview_copy_object(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 540, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_memoryviewslice_type))))) __PYX_ERR(1, 540, __pyx_L1_error) + __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":541 + * def T(self): + * cdef _memoryviewslice result = memoryview_copy(self) + * transpose_memslice(&result.from_slice) # <<<<<<<<<<<<<< + * return result + * + */ + __pyx_t_2 = __pyx_memslice_transpose((&__pyx_v_result->from_slice)); if (unlikely(__pyx_t_2 == 0)) __PYX_ERR(1, 541, __pyx_L1_error) + + /* "View.MemoryView":542 + * cdef _memoryviewslice result = memoryview_copy(self) + * transpose_memslice(&result.from_slice) + * return result # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_result)); + __pyx_r = ((PyObject *)__pyx_v_result); + goto __pyx_L0; + + /* "View.MemoryView":539 + * + * @property + * def T(self): # <<<<<<<<<<<<<< + * cdef _memoryviewslice result = memoryview_copy(self) + * transpose_memslice(&result.from_slice) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.T.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_result); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":545 + * + * @property + * def base(self): # <<<<<<<<<<<<<< + * return self.obj + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":546 + * @property + * def base(self): + * return self.obj # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_self->obj); + __pyx_r = __pyx_v_self->obj; + goto __pyx_L0; + + /* "View.MemoryView":545 + * + * @property + * def base(self): # <<<<<<<<<<<<<< + * return self.obj + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":549 + * + * @property + * def shape(self): # <<<<<<<<<<<<<< + * return tuple([length for length in self.view.shape[:self.view.ndim]]) + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + Py_ssize_t __pyx_v_length; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + Py_ssize_t *__pyx_t_2; + Py_ssize_t *__pyx_t_3; + Py_ssize_t *__pyx_t_4; + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":550 + * @property + * def shape(self): + * return tuple([length for length in self.view.shape[:self.view.ndim]]) # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 550, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); + for (__pyx_t_4 = __pyx_v_self->view.shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { + __pyx_t_2 = __pyx_t_4; + __pyx_v_length = (__pyx_t_2[0]); + __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_length); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 550, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_t_5))) __PYX_ERR(1, 550, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + } + __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_1)); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 550, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_r = __pyx_t_5; + __pyx_t_5 = 0; + goto __pyx_L0; + + /* "View.MemoryView":549 + * + * @property + * def shape(self): # <<<<<<<<<<<<<< + * return tuple([length for length in self.view.shape[:self.view.ndim]]) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.memoryview.shape.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":553 + * + * @property + * def strides(self): # <<<<<<<<<<<<<< + * if self.view.strides == NULL: + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + Py_ssize_t __pyx_v_stride; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + Py_ssize_t *__pyx_t_3; + Py_ssize_t *__pyx_t_4; + Py_ssize_t *__pyx_t_5; + PyObject *__pyx_t_6 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":554 + * @property + * def strides(self): + * if self.view.strides == NULL: # <<<<<<<<<<<<<< + * + * raise ValueError("Buffer view does not expose strides") + */ + __pyx_t_1 = ((__pyx_v_self->view.strides == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":556 + * if self.view.strides == NULL: + * + * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< + * + * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) + */ + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 556, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_Raise(__pyx_t_2, 0, 0, 0); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __PYX_ERR(1, 556, __pyx_L1_error) + + /* "View.MemoryView":554 + * @property + * def strides(self): + * if self.view.strides == NULL: # <<<<<<<<<<<<<< + * + * raise ValueError("Buffer view does not expose strides") + */ + } + + /* "View.MemoryView":558 + * raise ValueError("Buffer view does not expose strides") + * + * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 558, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = (__pyx_v_self->view.strides + __pyx_v_self->view.ndim); + for (__pyx_t_5 = __pyx_v_self->view.strides; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { + __pyx_t_3 = __pyx_t_5; + __pyx_v_stride = (__pyx_t_3[0]); + __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_stride); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 558, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_6))) __PYX_ERR(1, 558, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } + __pyx_t_6 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 558, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_6; + __pyx_t_6 = 0; + goto __pyx_L0; + + /* "View.MemoryView":553 + * + * @property + * def strides(self): # <<<<<<<<<<<<<< + * if self.view.strides == NULL: + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_AddTraceback("View.MemoryView.memoryview.strides.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":561 + * + * @property + * def suboffsets(self): # <<<<<<<<<<<<<< + * if self.view.suboffsets == NULL: + * return (-1,) * self.view.ndim + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + Py_ssize_t __pyx_v_suboffset; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + Py_ssize_t *__pyx_t_4; + Py_ssize_t *__pyx_t_5; + Py_ssize_t *__pyx_t_6; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":562 + * @property + * def suboffsets(self): + * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< + * return (-1,) * self.view.ndim + * + */ + __pyx_t_1 = ((__pyx_v_self->view.suboffsets == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":563 + * def suboffsets(self): + * if self.view.suboffsets == NULL: + * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< + * + * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 563, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyNumber_Multiply(__pyx_tuple__9, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 563, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":562 + * @property + * def suboffsets(self): + * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< + * return (-1,) * self.view.ndim + * + */ + } + + /* "View.MemoryView":565 + * return (-1,) * self.view.ndim + * + * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 565, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_5 = (__pyx_v_self->view.suboffsets + __pyx_v_self->view.ndim); + for (__pyx_t_6 = __pyx_v_self->view.suboffsets; __pyx_t_6 < __pyx_t_5; __pyx_t_6++) { + __pyx_t_4 = __pyx_t_6; + __pyx_v_suboffset = (__pyx_t_4[0]); + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_suboffset); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 565, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + if (unlikely(__Pyx_ListComp_Append(__pyx_t_3, (PyObject*)__pyx_t_2))) __PYX_ERR(1, 565, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + } + __pyx_t_2 = PyList_AsTuple(((PyObject*)__pyx_t_3)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 565, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":561 + * + * @property + * def suboffsets(self): # <<<<<<<<<<<<<< + * if self.view.suboffsets == NULL: + * return (-1,) * self.view.ndim + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.suboffsets.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":568 + * + * @property + * def ndim(self): # <<<<<<<<<<<<<< + * return self.view.ndim + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":569 + * @property + * def ndim(self): + * return self.view.ndim # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 569, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":568 + * + * @property + * def ndim(self): # <<<<<<<<<<<<<< + * return self.view.ndim + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.ndim.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":572 + * + * @property + * def itemsize(self): # <<<<<<<<<<<<<< + * return self.view.itemsize + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":573 + * @property + * def itemsize(self): + * return self.view.itemsize # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 573, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":572 + * + * @property + * def itemsize(self): # <<<<<<<<<<<<<< + * return self.view.itemsize + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.itemsize.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":576 + * + * @property + * def nbytes(self): # <<<<<<<<<<<<<< + * return self.size * self.view.itemsize + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":577 + * @property + * def nbytes(self): + * return self.size * self.view.itemsize # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 577, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 577, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 577, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":576 + * + * @property + * def nbytes(self): # <<<<<<<<<<<<<< + * return self.size * self.view.itemsize + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.nbytes.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":580 + * + * @property + * def size(self): # <<<<<<<<<<<<<< + * if self._size is None: + * result = 1 + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_v_result = NULL; + PyObject *__pyx_v_length = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + Py_ssize_t *__pyx_t_3; + Py_ssize_t *__pyx_t_4; + Py_ssize_t *__pyx_t_5; + PyObject *__pyx_t_6 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":581 + * @property + * def size(self): + * if self._size is None: # <<<<<<<<<<<<<< + * result = 1 + * + */ + __pyx_t_1 = (__pyx_v_self->_size == Py_None); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":582 + * def size(self): + * if self._size is None: + * result = 1 # <<<<<<<<<<<<<< + * + * for length in self.view.shape[:self.view.ndim]: + */ + __Pyx_INCREF(__pyx_int_1); + __pyx_v_result = __pyx_int_1; + + /* "View.MemoryView":584 + * result = 1 + * + * for length in self.view.shape[:self.view.ndim]: # <<<<<<<<<<<<<< + * result *= length + * + */ + __pyx_t_4 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); + for (__pyx_t_5 = __pyx_v_self->view.shape; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { + __pyx_t_3 = __pyx_t_5; + __pyx_t_6 = PyInt_FromSsize_t((__pyx_t_3[0])); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 584, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_6); + __pyx_t_6 = 0; + + /* "View.MemoryView":585 + * + * for length in self.view.shape[:self.view.ndim]: + * result *= length # <<<<<<<<<<<<<< + * + * self._size = result + */ + __pyx_t_6 = PyNumber_InPlaceMultiply(__pyx_v_result, __pyx_v_length); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 585, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF_SET(__pyx_v_result, __pyx_t_6); + __pyx_t_6 = 0; + } + + /* "View.MemoryView":587 + * result *= length + * + * self._size = result # <<<<<<<<<<<<<< + * + * return self._size + */ + __Pyx_INCREF(__pyx_v_result); + __Pyx_GIVEREF(__pyx_v_result); + __Pyx_GOTREF(__pyx_v_self->_size); + __Pyx_DECREF(__pyx_v_self->_size); + __pyx_v_self->_size = __pyx_v_result; + + /* "View.MemoryView":581 + * @property + * def size(self): + * if self._size is None: # <<<<<<<<<<<<<< + * result = 1 + * + */ + } + + /* "View.MemoryView":589 + * self._size = result + * + * return self._size # <<<<<<<<<<<<<< + * + * def __len__(self): + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_self->_size); + __pyx_r = __pyx_v_self->_size; + goto __pyx_L0; + + /* "View.MemoryView":580 + * + * @property + * def size(self): # <<<<<<<<<<<<<< + * if self._size is None: + * result = 1 + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_6); + __Pyx_AddTraceback("View.MemoryView.memoryview.size.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_result); + __Pyx_XDECREF(__pyx_v_length); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":591 + * return self._size + * + * def __len__(self): # <<<<<<<<<<<<<< + * if self.view.ndim >= 1: + * return self.view.shape[0] + */ + +/* Python wrapper */ +static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self); /*proto*/ +static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self) { + Py_ssize_t __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self) { + Py_ssize_t __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("__len__", 0); + + /* "View.MemoryView":592 + * + * def __len__(self): + * if self.view.ndim >= 1: # <<<<<<<<<<<<<< + * return self.view.shape[0] + * + */ + __pyx_t_1 = ((__pyx_v_self->view.ndim >= 1) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":593 + * def __len__(self): + * if self.view.ndim >= 1: + * return self.view.shape[0] # <<<<<<<<<<<<<< + * + * return 0 + */ + __pyx_r = (__pyx_v_self->view.shape[0]); + goto __pyx_L0; + + /* "View.MemoryView":592 + * + * def __len__(self): + * if self.view.ndim >= 1: # <<<<<<<<<<<<<< + * return self.view.shape[0] + * + */ + } + + /* "View.MemoryView":595 + * return self.view.shape[0] + * + * return 0 # <<<<<<<<<<<<<< + * + * def __repr__(self): + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "View.MemoryView":591 + * return self._size + * + * def __len__(self): # <<<<<<<<<<<<<< + * if self.view.ndim >= 1: + * return self.view.shape[0] + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":597 + * return 0 + * + * def __repr__(self): # <<<<<<<<<<<<<< + * return "" % (self.base.__class__.__name__, + * id(self)) + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("__repr__", 0); + + /* "View.MemoryView":598 + * + * def __repr__(self): + * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< + * id(self)) + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 598, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 598, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 598, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "View.MemoryView":599 + * def __repr__(self): + * return "" % (self.base.__class__.__name__, + * id(self)) # <<<<<<<<<<<<<< + * + * def __str__(self): + */ + __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 599, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_self)); + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_id, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 599, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "View.MemoryView":598 + * + * def __repr__(self): + * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< + * id(self)) + * + */ + __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 598, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_3); + __pyx_t_1 = 0; + __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 598, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":597 + * return 0 + * + * def __repr__(self): # <<<<<<<<<<<<<< + * return "" % (self.base.__class__.__name__, + * id(self)) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.__repr__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":601 + * id(self)) + * + * def __str__(self): # <<<<<<<<<<<<<< + * return "" % (self.base.__class__.__name__,) + * + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__str__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("__str__", 0); + + /* "View.MemoryView":602 + * + * def __str__(self): + * return "" % (self.base.__class__.__name__,) # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 602, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 602, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 602, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 602, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); + __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_object, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 602, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":601 + * id(self)) + * + * def __str__(self): # <<<<<<<<<<<<<< + * return "" % (self.base.__class__.__name__,) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.__str__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":605 + * + * + * def is_c_contig(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("is_c_contig (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self) { + __Pyx_memviewslice *__pyx_v_mslice; + __Pyx_memviewslice __pyx_v_tmp; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("is_c_contig", 0); + + /* "View.MemoryView":608 + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< + * return slice_is_contig(mslice[0], 'C', self.view.ndim) + * + */ + __pyx_v_mslice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); + + /* "View.MemoryView":609 + * cdef __Pyx_memviewslice tmp + * mslice = get_slice_from_memview(self, &tmp) + * return slice_is_contig(mslice[0], 'C', self.view.ndim) # <<<<<<<<<<<<<< + * + * def is_f_contig(self): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'C', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 609, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":605 + * + * + * def is_c_contig(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.is_c_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":611 + * return slice_is_contig(mslice[0], 'C', self.view.ndim) + * + * def is_f_contig(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("is_f_contig (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self) { + __Pyx_memviewslice *__pyx_v_mslice; + __Pyx_memviewslice __pyx_v_tmp; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("is_f_contig", 0); + + /* "View.MemoryView":614 + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< + * return slice_is_contig(mslice[0], 'F', self.view.ndim) + * + */ + __pyx_v_mslice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); + + /* "View.MemoryView":615 + * cdef __Pyx_memviewslice tmp + * mslice = get_slice_from_memview(self, &tmp) + * return slice_is_contig(mslice[0], 'F', self.view.ndim) # <<<<<<<<<<<<<< + * + * def copy(self): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'F', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 615, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":611 + * return slice_is_contig(mslice[0], 'C', self.view.ndim) + * + * def is_f_contig(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.is_f_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":617 + * return slice_is_contig(mslice[0], 'F', self.view.ndim) + * + * def copy(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice mslice + * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("copy (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self) { + __Pyx_memviewslice __pyx_v_mslice; + int __pyx_v_flags; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_memviewslice __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("copy", 0); + + /* "View.MemoryView":619 + * def copy(self): + * cdef __Pyx_memviewslice mslice + * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS # <<<<<<<<<<<<<< + * + * slice_copy(self, &mslice) + */ + __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_F_CONTIGUOUS)); + + /* "View.MemoryView":621 + * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS + * + * slice_copy(self, &mslice) # <<<<<<<<<<<<<< + * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, + * self.view.itemsize, + */ + __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_mslice)); + + /* "View.MemoryView":622 + * + * slice_copy(self, &mslice) + * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, # <<<<<<<<<<<<<< + * self.view.itemsize, + * flags|PyBUF_C_CONTIGUOUS, + */ + __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_mslice), ((char *)"c"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_C_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(1, 622, __pyx_L1_error) + __pyx_v_mslice = __pyx_t_1; + + /* "View.MemoryView":627 + * self.dtype_is_object) + * + * return memoryview_copy_from_slice(self, &mslice) # <<<<<<<<<<<<<< + * + * def copy_fortran(self): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_mslice)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 627, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":617 + * return slice_is_contig(mslice[0], 'F', self.view.ndim) + * + * def copy(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice mslice + * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.copy", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":629 + * return memoryview_copy_from_slice(self, &mslice) + * + * def copy_fortran(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice src, dst + * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("copy_fortran (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self) { + __Pyx_memviewslice __pyx_v_src; + __Pyx_memviewslice __pyx_v_dst; + int __pyx_v_flags; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_memviewslice __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("copy_fortran", 0); + + /* "View.MemoryView":631 + * def copy_fortran(self): + * cdef __Pyx_memviewslice src, dst + * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS # <<<<<<<<<<<<<< + * + * slice_copy(self, &src) + */ + __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_C_CONTIGUOUS)); + + /* "View.MemoryView":633 + * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS + * + * slice_copy(self, &src) # <<<<<<<<<<<<<< + * dst = slice_copy_contig(&src, "fortran", self.view.ndim, + * self.view.itemsize, + */ + __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_src)); + + /* "View.MemoryView":634 + * + * slice_copy(self, &src) + * dst = slice_copy_contig(&src, "fortran", self.view.ndim, # <<<<<<<<<<<<<< + * self.view.itemsize, + * flags|PyBUF_F_CONTIGUOUS, + */ + __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_src), ((char *)"fortran"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_F_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(1, 634, __pyx_L1_error) + __pyx_v_dst = __pyx_t_1; + + /* "View.MemoryView":639 + * self.dtype_is_object) + * + * return memoryview_copy_from_slice(self, &dst) # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_dst)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 639, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":629 + * return memoryview_copy_from_slice(self, &mslice) + * + * def copy_fortran(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice src, dst + * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.copy_fortran", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":643 + * + * @cname('__pyx_memoryview_new') + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo + */ + +static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, int __pyx_v_dtype_is_object, __Pyx_TypeInfo *__pyx_v_typeinfo) { + struct __pyx_memoryview_obj *__pyx_v_result = 0; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("memoryview_cwrapper", 0); + + /* "View.MemoryView":644 + * @cname('__pyx_memoryview_new') + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): + * cdef memoryview result = memoryview(o, flags, dtype_is_object) # <<<<<<<<<<<<<< + * result.typeinfo = typeinfo + * return result + */ + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 644, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 644, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 644, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(__pyx_v_o); + __Pyx_GIVEREF(__pyx_v_o); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_o); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); + __pyx_t_1 = 0; + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 644, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result = ((struct __pyx_memoryview_obj *)__pyx_t_2); + __pyx_t_2 = 0; + + /* "View.MemoryView":645 + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo # <<<<<<<<<<<<<< + * return result + * + */ + __pyx_v_result->typeinfo = __pyx_v_typeinfo; + + /* "View.MemoryView":646 + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo + * return result # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_check') + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_result)); + __pyx_r = ((PyObject *)__pyx_v_result); + goto __pyx_L0; + + /* "View.MemoryView":643 + * + * @cname('__pyx_memoryview_new') + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_result); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":649 + * + * @cname('__pyx_memoryview_check') + * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< + * return isinstance(o, memoryview) + * + */ + +static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("memoryview_check", 0); + + /* "View.MemoryView":650 + * @cname('__pyx_memoryview_check') + * cdef inline bint memoryview_check(object o): + * return isinstance(o, memoryview) # <<<<<<<<<<<<<< + * + * cdef tuple _unellipsify(object index, int ndim): + */ + __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_o, __pyx_memoryview_type); + __pyx_r = __pyx_t_1; + goto __pyx_L0; + + /* "View.MemoryView":649 + * + * @cname('__pyx_memoryview_check') + * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< + * return isinstance(o, memoryview) + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":652 + * return isinstance(o, memoryview) + * + * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< + * """ + * Replace all ellipses with full slices and fill incomplete indices with + */ + +static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { + PyObject *__pyx_v_tup = NULL; + PyObject *__pyx_v_result = NULL; + int __pyx_v_have_slices; + int __pyx_v_seen_ellipsis; + CYTHON_UNUSED PyObject *__pyx_v_idx = NULL; + PyObject *__pyx_v_item = NULL; + Py_ssize_t __pyx_v_nslices; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + Py_ssize_t __pyx_t_5; + PyObject *(*__pyx_t_6)(PyObject *); + PyObject *__pyx_t_7 = NULL; + Py_ssize_t __pyx_t_8; + int __pyx_t_9; + int __pyx_t_10; + PyObject *__pyx_t_11 = NULL; + __Pyx_RefNannySetupContext("_unellipsify", 0); + + /* "View.MemoryView":657 + * full slices. + * """ + * if not isinstance(index, tuple): # <<<<<<<<<<<<<< + * tup = (index,) + * else: + */ + __pyx_t_1 = PyTuple_Check(__pyx_v_index); + __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":658 + * """ + * if not isinstance(index, tuple): + * tup = (index,) # <<<<<<<<<<<<<< + * else: + * tup = index + */ + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 658, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(__pyx_v_index); + __Pyx_GIVEREF(__pyx_v_index); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_index); + __pyx_v_tup = __pyx_t_3; + __pyx_t_3 = 0; + + /* "View.MemoryView":657 + * full slices. + * """ + * if not isinstance(index, tuple): # <<<<<<<<<<<<<< + * tup = (index,) + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":660 + * tup = (index,) + * else: + * tup = index # <<<<<<<<<<<<<< + * + * result = [] + */ + /*else*/ { + __Pyx_INCREF(__pyx_v_index); + __pyx_v_tup = __pyx_v_index; + } + __pyx_L3:; + + /* "View.MemoryView":662 + * tup = index + * + * result = [] # <<<<<<<<<<<<<< + * have_slices = False + * seen_ellipsis = False + */ + __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 662, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_v_result = ((PyObject*)__pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":663 + * + * result = [] + * have_slices = False # <<<<<<<<<<<<<< + * seen_ellipsis = False + * for idx, item in enumerate(tup): + */ + __pyx_v_have_slices = 0; + + /* "View.MemoryView":664 + * result = [] + * have_slices = False + * seen_ellipsis = False # <<<<<<<<<<<<<< + * for idx, item in enumerate(tup): + * if item is Ellipsis: + */ + __pyx_v_seen_ellipsis = 0; + + /* "View.MemoryView":665 + * have_slices = False + * seen_ellipsis = False + * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< + * if item is Ellipsis: + * if not seen_ellipsis: + */ + __Pyx_INCREF(__pyx_int_0); + __pyx_t_3 = __pyx_int_0; + if (likely(PyList_CheckExact(__pyx_v_tup)) || PyTuple_CheckExact(__pyx_v_tup)) { + __pyx_t_4 = __pyx_v_tup; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = 0; + __pyx_t_6 = NULL; + } else { + __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_v_tup); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 665, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 665, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_6)) { + if (likely(PyList_CheckExact(__pyx_t_4))) { + if (__pyx_t_5 >= PyList_GET_SIZE(__pyx_t_4)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_7 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(1, 665, __pyx_L1_error) + #else + __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 665, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + #endif + } else { + if (__pyx_t_5 >= PyTuple_GET_SIZE(__pyx_t_4)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(1, 665, __pyx_L1_error) + #else + __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 665, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + #endif + } + } else { + __pyx_t_7 = __pyx_t_6(__pyx_t_4); + if (unlikely(!__pyx_t_7)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(1, 665, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_7); + } + __Pyx_XDECREF_SET(__pyx_v_item, __pyx_t_7); + __pyx_t_7 = 0; + __Pyx_INCREF(__pyx_t_3); + __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_3); + __pyx_t_7 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 665, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_3); + __pyx_t_3 = __pyx_t_7; + __pyx_t_7 = 0; + + /* "View.MemoryView":666 + * seen_ellipsis = False + * for idx, item in enumerate(tup): + * if item is Ellipsis: # <<<<<<<<<<<<<< + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + */ + __pyx_t_2 = (__pyx_v_item == __pyx_builtin_Ellipsis); + __pyx_t_1 = (__pyx_t_2 != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":667 + * for idx, item in enumerate(tup): + * if item is Ellipsis: + * if not seen_ellipsis: # <<<<<<<<<<<<<< + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + * seen_ellipsis = True + */ + __pyx_t_1 = ((!(__pyx_v_seen_ellipsis != 0)) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":668 + * if item is Ellipsis: + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< + * seen_ellipsis = True + * else: + */ + __pyx_t_8 = PyObject_Length(__pyx_v_tup); if (unlikely(__pyx_t_8 == -1)) __PYX_ERR(1, 668, __pyx_L1_error) + __pyx_t_7 = PyList_New(1 * ((((__pyx_v_ndim - __pyx_t_8) + 1)<0) ? 0:((__pyx_v_ndim - __pyx_t_8) + 1))); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 668, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + { Py_ssize_t __pyx_temp; + for (__pyx_temp=0; __pyx_temp < ((__pyx_v_ndim - __pyx_t_8) + 1); __pyx_temp++) { + __Pyx_INCREF(__pyx_slice__10); + __Pyx_GIVEREF(__pyx_slice__10); + PyList_SET_ITEM(__pyx_t_7, __pyx_temp, __pyx_slice__10); + } + } + __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_7); if (unlikely(__pyx_t_9 == -1)) __PYX_ERR(1, 668, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + + /* "View.MemoryView":669 + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + * seen_ellipsis = True # <<<<<<<<<<<<<< + * else: + * result.append(slice(None)) + */ + __pyx_v_seen_ellipsis = 1; + + /* "View.MemoryView":667 + * for idx, item in enumerate(tup): + * if item is Ellipsis: + * if not seen_ellipsis: # <<<<<<<<<<<<<< + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + * seen_ellipsis = True + */ + goto __pyx_L7; + } + + /* "View.MemoryView":671 + * seen_ellipsis = True + * else: + * result.append(slice(None)) # <<<<<<<<<<<<<< + * have_slices = True + * else: + */ + /*else*/ { + __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_slice__11); if (unlikely(__pyx_t_9 == -1)) __PYX_ERR(1, 671, __pyx_L1_error) + } + __pyx_L7:; + + /* "View.MemoryView":672 + * else: + * result.append(slice(None)) + * have_slices = True # <<<<<<<<<<<<<< + * else: + * if not isinstance(item, slice) and not PyIndex_Check(item): + */ + __pyx_v_have_slices = 1; + + /* "View.MemoryView":666 + * seen_ellipsis = False + * for idx, item in enumerate(tup): + * if item is Ellipsis: # <<<<<<<<<<<<<< + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + */ + goto __pyx_L6; + } + + /* "View.MemoryView":674 + * have_slices = True + * else: + * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< + * raise TypeError("Cannot index with type '%s'" % type(item)) + * + */ + /*else*/ { + __pyx_t_2 = PySlice_Check(__pyx_v_item); + __pyx_t_10 = ((!(__pyx_t_2 != 0)) != 0); + if (__pyx_t_10) { + } else { + __pyx_t_1 = __pyx_t_10; + goto __pyx_L9_bool_binop_done; + } + __pyx_t_10 = ((!(PyIndex_Check(__pyx_v_item) != 0)) != 0); + __pyx_t_1 = __pyx_t_10; + __pyx_L9_bool_binop_done:; + if (__pyx_t_1) { + + /* "View.MemoryView":675 + * else: + * if not isinstance(item, slice) and not PyIndex_Check(item): + * raise TypeError("Cannot index with type '%s'" % type(item)) # <<<<<<<<<<<<<< + * + * have_slices = have_slices or isinstance(item, slice) + */ + __pyx_t_7 = __Pyx_PyString_Format(__pyx_kp_s_Cannot_index_with_type_s, ((PyObject *)Py_TYPE(__pyx_v_item))); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 675, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_11 = PyTuple_New(1); if (unlikely(!__pyx_t_11)) __PYX_ERR(1, 675, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + __Pyx_GIVEREF(__pyx_t_7); + PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_7); + __pyx_t_7 = 0; + __pyx_t_7 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_t_11, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 675, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; + __Pyx_Raise(__pyx_t_7, 0, 0, 0); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __PYX_ERR(1, 675, __pyx_L1_error) + + /* "View.MemoryView":674 + * have_slices = True + * else: + * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< + * raise TypeError("Cannot index with type '%s'" % type(item)) + * + */ + } + + /* "View.MemoryView":677 + * raise TypeError("Cannot index with type '%s'" % type(item)) + * + * have_slices = have_slices or isinstance(item, slice) # <<<<<<<<<<<<<< + * result.append(item) + * + */ + __pyx_t_10 = (__pyx_v_have_slices != 0); + if (!__pyx_t_10) { + } else { + __pyx_t_1 = __pyx_t_10; + goto __pyx_L11_bool_binop_done; + } + __pyx_t_10 = PySlice_Check(__pyx_v_item); + __pyx_t_2 = (__pyx_t_10 != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L11_bool_binop_done:; + __pyx_v_have_slices = __pyx_t_1; + + /* "View.MemoryView":678 + * + * have_slices = have_slices or isinstance(item, slice) + * result.append(item) # <<<<<<<<<<<<<< + * + * nslices = ndim - len(result) + */ + __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_v_item); if (unlikely(__pyx_t_9 == -1)) __PYX_ERR(1, 678, __pyx_L1_error) + } + __pyx_L6:; + + /* "View.MemoryView":665 + * have_slices = False + * seen_ellipsis = False + * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< + * if item is Ellipsis: + * if not seen_ellipsis: + */ + } + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":680 + * result.append(item) + * + * nslices = ndim - len(result) # <<<<<<<<<<<<<< + * if nslices: + * result.extend([slice(None)] * nslices) + */ + __pyx_t_5 = PyList_GET_SIZE(__pyx_v_result); if (unlikely(__pyx_t_5 == -1)) __PYX_ERR(1, 680, __pyx_L1_error) + __pyx_v_nslices = (__pyx_v_ndim - __pyx_t_5); + + /* "View.MemoryView":681 + * + * nslices = ndim - len(result) + * if nslices: # <<<<<<<<<<<<<< + * result.extend([slice(None)] * nslices) + * + */ + __pyx_t_1 = (__pyx_v_nslices != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":682 + * nslices = ndim - len(result) + * if nslices: + * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< + * + * return have_slices or nslices, tuple(result) + */ + __pyx_t_3 = PyList_New(1 * ((__pyx_v_nslices<0) ? 0:__pyx_v_nslices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 682, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + { Py_ssize_t __pyx_temp; + for (__pyx_temp=0; __pyx_temp < __pyx_v_nslices; __pyx_temp++) { + __Pyx_INCREF(__pyx_slice__12); + __Pyx_GIVEREF(__pyx_slice__12); + PyList_SET_ITEM(__pyx_t_3, __pyx_temp, __pyx_slice__12); + } + } + __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_3); if (unlikely(__pyx_t_9 == -1)) __PYX_ERR(1, 682, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":681 + * + * nslices = ndim - len(result) + * if nslices: # <<<<<<<<<<<<<< + * result.extend([slice(None)] * nslices) + * + */ + } + + /* "View.MemoryView":684 + * result.extend([slice(None)] * nslices) + * + * return have_slices or nslices, tuple(result) # <<<<<<<<<<<<<< + * + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): + */ + __Pyx_XDECREF(__pyx_r); + if (!__pyx_v_have_slices) { + } else { + __pyx_t_4 = __Pyx_PyBool_FromLong(__pyx_v_have_slices); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 684, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = __pyx_t_4; + __pyx_t_4 = 0; + goto __pyx_L14_bool_binop_done; + } + __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_nslices); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 684, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = __pyx_t_4; + __pyx_t_4 = 0; + __pyx_L14_bool_binop_done:; + __pyx_t_4 = PyList_AsTuple(__pyx_v_result); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 684, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_7 = PyTuple_New(2); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 684, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_t_3); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_7, 1, __pyx_t_4); + __pyx_t_3 = 0; + __pyx_t_4 = 0; + __pyx_r = ((PyObject*)__pyx_t_7); + __pyx_t_7 = 0; + goto __pyx_L0; + + /* "View.MemoryView":652 + * return isinstance(o, memoryview) + * + * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< + * """ + * Replace all ellipses with full slices and fill incomplete indices with + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_11); + __Pyx_AddTraceback("View.MemoryView._unellipsify", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_tup); + __Pyx_XDECREF(__pyx_v_result); + __Pyx_XDECREF(__pyx_v_idx); + __Pyx_XDECREF(__pyx_v_item); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":686 + * return have_slices or nslices, tuple(result) + * + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: + */ + +static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __pyx_v_ndim) { + Py_ssize_t __pyx_v_suboffset; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + Py_ssize_t *__pyx_t_1; + Py_ssize_t *__pyx_t_2; + Py_ssize_t *__pyx_t_3; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("assert_direct_dimensions", 0); + + /* "View.MemoryView":687 + * + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): + * for suboffset in suboffsets[:ndim]: # <<<<<<<<<<<<<< + * if suboffset >= 0: + * raise ValueError("Indirect dimensions not supported") + */ + __pyx_t_2 = (__pyx_v_suboffsets + __pyx_v_ndim); + for (__pyx_t_3 = __pyx_v_suboffsets; __pyx_t_3 < __pyx_t_2; __pyx_t_3++) { + __pyx_t_1 = __pyx_t_3; + __pyx_v_suboffset = (__pyx_t_1[0]); + + /* "View.MemoryView":688 + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: # <<<<<<<<<<<<<< + * raise ValueError("Indirect dimensions not supported") + * + */ + __pyx_t_4 = ((__pyx_v_suboffset >= 0) != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":689 + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: + * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__13, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 689, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_Raise(__pyx_t_5, 0, 0, 0); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __PYX_ERR(1, 689, __pyx_L1_error) + + /* "View.MemoryView":688 + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: # <<<<<<<<<<<<<< + * raise ValueError("Indirect dimensions not supported") + * + */ + } + } + + /* "View.MemoryView":686 + * return have_slices or nslices, tuple(result) + * + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.assert_direct_dimensions", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":696 + * + * @cname('__pyx_memview_slice') + * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< + * cdef int new_ndim = 0, suboffset_dim = -1, dim + * cdef bint negative_step + */ + +static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *__pyx_v_memview, PyObject *__pyx_v_indices) { + int __pyx_v_new_ndim; + int __pyx_v_suboffset_dim; + int __pyx_v_dim; + __Pyx_memviewslice __pyx_v_src; + __Pyx_memviewslice __pyx_v_dst; + __Pyx_memviewslice *__pyx_v_p_src; + struct __pyx_memoryviewslice_obj *__pyx_v_memviewsliceobj = 0; + __Pyx_memviewslice *__pyx_v_p_dst; + int *__pyx_v_p_suboffset_dim; + Py_ssize_t __pyx_v_start; + Py_ssize_t __pyx_v_stop; + Py_ssize_t __pyx_v_step; + int __pyx_v_have_start; + int __pyx_v_have_stop; + int __pyx_v_have_step; + PyObject *__pyx_v_index = NULL; + struct __pyx_memoryview_obj *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + struct __pyx_memoryview_obj *__pyx_t_4; + char *__pyx_t_5; + int __pyx_t_6; + Py_ssize_t __pyx_t_7; + PyObject *(*__pyx_t_8)(PyObject *); + PyObject *__pyx_t_9 = NULL; + Py_ssize_t __pyx_t_10; + int __pyx_t_11; + Py_ssize_t __pyx_t_12; + __Pyx_RefNannySetupContext("memview_slice", 0); + + /* "View.MemoryView":697 + * @cname('__pyx_memview_slice') + * cdef memoryview memview_slice(memoryview memview, object indices): + * cdef int new_ndim = 0, suboffset_dim = -1, dim # <<<<<<<<<<<<<< + * cdef bint negative_step + * cdef __Pyx_memviewslice src, dst + */ + __pyx_v_new_ndim = 0; + __pyx_v_suboffset_dim = -1; + + /* "View.MemoryView":704 + * + * + * memset(&dst, 0, sizeof(dst)) # <<<<<<<<<<<<<< + * + * cdef _memoryviewslice memviewsliceobj + */ + memset((&__pyx_v_dst), 0, (sizeof(__pyx_v_dst))); + + /* "View.MemoryView":708 + * cdef _memoryviewslice memviewsliceobj + * + * assert memview.view.ndim > 0 # <<<<<<<<<<<<<< + * + * if isinstance(memview, _memoryviewslice): + */ + #ifndef CYTHON_WITHOUT_ASSERTIONS + if (unlikely(!Py_OptimizeFlag)) { + if (unlikely(!((__pyx_v_memview->view.ndim > 0) != 0))) { + PyErr_SetNone(PyExc_AssertionError); + __PYX_ERR(1, 708, __pyx_L1_error) + } + } + #endif + + /* "View.MemoryView":710 + * assert memview.view.ndim > 0 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * memviewsliceobj = memview + * p_src = &memviewsliceobj.from_slice + */ + __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":711 + * + * if isinstance(memview, _memoryviewslice): + * memviewsliceobj = memview # <<<<<<<<<<<<<< + * p_src = &memviewsliceobj.from_slice + * else: + */ + if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(1, 711, __pyx_L1_error) + __pyx_t_3 = ((PyObject *)__pyx_v_memview); + __Pyx_INCREF(__pyx_t_3); + __pyx_v_memviewsliceobj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":712 + * if isinstance(memview, _memoryviewslice): + * memviewsliceobj = memview + * p_src = &memviewsliceobj.from_slice # <<<<<<<<<<<<<< + * else: + * slice_copy(memview, &src) + */ + __pyx_v_p_src = (&__pyx_v_memviewsliceobj->from_slice); + + /* "View.MemoryView":710 + * assert memview.view.ndim > 0 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * memviewsliceobj = memview + * p_src = &memviewsliceobj.from_slice + */ + goto __pyx_L3; + } + + /* "View.MemoryView":714 + * p_src = &memviewsliceobj.from_slice + * else: + * slice_copy(memview, &src) # <<<<<<<<<<<<<< + * p_src = &src + * + */ + /*else*/ { + __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_src)); + + /* "View.MemoryView":715 + * else: + * slice_copy(memview, &src) + * p_src = &src # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_p_src = (&__pyx_v_src); + } + __pyx_L3:; + + /* "View.MemoryView":721 + * + * + * dst.memview = p_src.memview # <<<<<<<<<<<<<< + * dst.data = p_src.data + * + */ + __pyx_t_4 = __pyx_v_p_src->memview; + __pyx_v_dst.memview = __pyx_t_4; + + /* "View.MemoryView":722 + * + * dst.memview = p_src.memview + * dst.data = p_src.data # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_5 = __pyx_v_p_src->data; + __pyx_v_dst.data = __pyx_t_5; + + /* "View.MemoryView":727 + * + * + * cdef __Pyx_memviewslice *p_dst = &dst # <<<<<<<<<<<<<< + * cdef int *p_suboffset_dim = &suboffset_dim + * cdef Py_ssize_t start, stop, step + */ + __pyx_v_p_dst = (&__pyx_v_dst); + + /* "View.MemoryView":728 + * + * cdef __Pyx_memviewslice *p_dst = &dst + * cdef int *p_suboffset_dim = &suboffset_dim # <<<<<<<<<<<<<< + * cdef Py_ssize_t start, stop, step + * cdef bint have_start, have_stop, have_step + */ + __pyx_v_p_suboffset_dim = (&__pyx_v_suboffset_dim); + + /* "View.MemoryView":732 + * cdef bint have_start, have_stop, have_step + * + * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< + * if PyIndex_Check(index): + * slice_memviewslice( + */ + __pyx_t_6 = 0; + if (likely(PyList_CheckExact(__pyx_v_indices)) || PyTuple_CheckExact(__pyx_v_indices)) { + __pyx_t_3 = __pyx_v_indices; __Pyx_INCREF(__pyx_t_3); __pyx_t_7 = 0; + __pyx_t_8 = NULL; + } else { + __pyx_t_7 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_v_indices); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 732, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_8 = Py_TYPE(__pyx_t_3)->tp_iternext; if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 732, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_8)) { + if (likely(PyList_CheckExact(__pyx_t_3))) { + if (__pyx_t_7 >= PyList_GET_SIZE(__pyx_t_3)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_9 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(1, 732, __pyx_L1_error) + #else + __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 732, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + #endif + } else { + if (__pyx_t_7 >= PyTuple_GET_SIZE(__pyx_t_3)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_9 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(1, 732, __pyx_L1_error) + #else + __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 732, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + #endif + } + } else { + __pyx_t_9 = __pyx_t_8(__pyx_t_3); + if (unlikely(!__pyx_t_9)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(1, 732, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_9); + } + __Pyx_XDECREF_SET(__pyx_v_index, __pyx_t_9); + __pyx_t_9 = 0; + __pyx_v_dim = __pyx_t_6; + __pyx_t_6 = (__pyx_t_6 + 1); + + /* "View.MemoryView":733 + * + * for dim, index in enumerate(indices): + * if PyIndex_Check(index): # <<<<<<<<<<<<<< + * slice_memviewslice( + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + */ + __pyx_t_2 = (PyIndex_Check(__pyx_v_index) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":737 + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + * dim, new_ndim, p_suboffset_dim, + * index, 0, 0, # start, stop, step # <<<<<<<<<<<<<< + * 0, 0, 0, # have_{start,stop,step} + * False) + */ + __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_v_index); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 737, __pyx_L1_error) + + /* "View.MemoryView":734 + * for dim, index in enumerate(indices): + * if PyIndex_Check(index): + * slice_memviewslice( # <<<<<<<<<<<<<< + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + * dim, new_ndim, p_suboffset_dim, + */ + __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_t_10, 0, 0, 0, 0, 0, 0); if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(1, 734, __pyx_L1_error) + + /* "View.MemoryView":733 + * + * for dim, index in enumerate(indices): + * if PyIndex_Check(index): # <<<<<<<<<<<<<< + * slice_memviewslice( + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + */ + goto __pyx_L6; + } + + /* "View.MemoryView":740 + * 0, 0, 0, # have_{start,stop,step} + * False) + * elif index is None: # <<<<<<<<<<<<<< + * p_dst.shape[new_ndim] = 1 + * p_dst.strides[new_ndim] = 0 + */ + __pyx_t_2 = (__pyx_v_index == Py_None); + __pyx_t_1 = (__pyx_t_2 != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":741 + * False) + * elif index is None: + * p_dst.shape[new_ndim] = 1 # <<<<<<<<<<<<<< + * p_dst.strides[new_ndim] = 0 + * p_dst.suboffsets[new_ndim] = -1 + */ + (__pyx_v_p_dst->shape[__pyx_v_new_ndim]) = 1; + + /* "View.MemoryView":742 + * elif index is None: + * p_dst.shape[new_ndim] = 1 + * p_dst.strides[new_ndim] = 0 # <<<<<<<<<<<<<< + * p_dst.suboffsets[new_ndim] = -1 + * new_ndim += 1 + */ + (__pyx_v_p_dst->strides[__pyx_v_new_ndim]) = 0; + + /* "View.MemoryView":743 + * p_dst.shape[new_ndim] = 1 + * p_dst.strides[new_ndim] = 0 + * p_dst.suboffsets[new_ndim] = -1 # <<<<<<<<<<<<<< + * new_ndim += 1 + * else: + */ + (__pyx_v_p_dst->suboffsets[__pyx_v_new_ndim]) = -1L; + + /* "View.MemoryView":744 + * p_dst.strides[new_ndim] = 0 + * p_dst.suboffsets[new_ndim] = -1 + * new_ndim += 1 # <<<<<<<<<<<<<< + * else: + * start = index.start or 0 + */ + __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); + + /* "View.MemoryView":740 + * 0, 0, 0, # have_{start,stop,step} + * False) + * elif index is None: # <<<<<<<<<<<<<< + * p_dst.shape[new_ndim] = 1 + * p_dst.strides[new_ndim] = 0 + */ + goto __pyx_L6; + } + + /* "View.MemoryView":746 + * new_ndim += 1 + * else: + * start = index.start or 0 # <<<<<<<<<<<<<< + * stop = index.stop or 0 + * step = index.step or 0 + */ + /*else*/ { + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 746, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 746, __pyx_L1_error) + if (!__pyx_t_1) { + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } else { + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 746, __pyx_L1_error) + __pyx_t_10 = __pyx_t_12; + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + goto __pyx_L7_bool_binop_done; + } + __pyx_t_10 = 0; + __pyx_L7_bool_binop_done:; + __pyx_v_start = __pyx_t_10; + + /* "View.MemoryView":747 + * else: + * start = index.start or 0 + * stop = index.stop or 0 # <<<<<<<<<<<<<< + * step = index.step or 0 + * + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 747, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 747, __pyx_L1_error) + if (!__pyx_t_1) { + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } else { + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 747, __pyx_L1_error) + __pyx_t_10 = __pyx_t_12; + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + goto __pyx_L9_bool_binop_done; + } + __pyx_t_10 = 0; + __pyx_L9_bool_binop_done:; + __pyx_v_stop = __pyx_t_10; + + /* "View.MemoryView":748 + * start = index.start or 0 + * stop = index.stop or 0 + * step = index.step or 0 # <<<<<<<<<<<<<< + * + * have_start = index.start is not None + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 748, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 748, __pyx_L1_error) + if (!__pyx_t_1) { + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } else { + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 748, __pyx_L1_error) + __pyx_t_10 = __pyx_t_12; + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + goto __pyx_L11_bool_binop_done; + } + __pyx_t_10 = 0; + __pyx_L11_bool_binop_done:; + __pyx_v_step = __pyx_t_10; + + /* "View.MemoryView":750 + * step = index.step or 0 + * + * have_start = index.start is not None # <<<<<<<<<<<<<< + * have_stop = index.stop is not None + * have_step = index.step is not None + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 750, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = (__pyx_t_9 != Py_None); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_v_have_start = __pyx_t_1; + + /* "View.MemoryView":751 + * + * have_start = index.start is not None + * have_stop = index.stop is not None # <<<<<<<<<<<<<< + * have_step = index.step is not None + * + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 751, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = (__pyx_t_9 != Py_None); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_v_have_stop = __pyx_t_1; + + /* "View.MemoryView":752 + * have_start = index.start is not None + * have_stop = index.stop is not None + * have_step = index.step is not None # <<<<<<<<<<<<<< + * + * slice_memviewslice( + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 752, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = (__pyx_t_9 != Py_None); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_v_have_step = __pyx_t_1; + + /* "View.MemoryView":754 + * have_step = index.step is not None + * + * slice_memviewslice( # <<<<<<<<<<<<<< + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + * dim, new_ndim, p_suboffset_dim, + */ + __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_v_start, __pyx_v_stop, __pyx_v_step, __pyx_v_have_start, __pyx_v_have_stop, __pyx_v_have_step, 1); if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(1, 754, __pyx_L1_error) + + /* "View.MemoryView":760 + * have_start, have_stop, have_step, + * True) + * new_ndim += 1 # <<<<<<<<<<<<<< + * + * if isinstance(memview, _memoryviewslice): + */ + __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); + } + __pyx_L6:; + + /* "View.MemoryView":732 + * cdef bint have_start, have_stop, have_step + * + * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< + * if PyIndex_Check(index): + * slice_memviewslice( + */ + } + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":762 + * new_ndim += 1 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * return memoryview_fromslice(dst, new_ndim, + * memviewsliceobj.to_object_func, + */ + __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":763 + * + * if isinstance(memview, _memoryviewslice): + * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< + * memviewsliceobj.to_object_func, + * memviewsliceobj.to_dtype_func, + */ + __Pyx_XDECREF(((PyObject *)__pyx_r)); + + /* "View.MemoryView":764 + * if isinstance(memview, _memoryviewslice): + * return memoryview_fromslice(dst, new_ndim, + * memviewsliceobj.to_object_func, # <<<<<<<<<<<<<< + * memviewsliceobj.to_dtype_func, + * memview.dtype_is_object) + */ + if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(1, 764, __pyx_L1_error) } + + /* "View.MemoryView":765 + * return memoryview_fromslice(dst, new_ndim, + * memviewsliceobj.to_object_func, + * memviewsliceobj.to_dtype_func, # <<<<<<<<<<<<<< + * memview.dtype_is_object) + * else: + */ + if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(1, 765, __pyx_L1_error) } + + /* "View.MemoryView":763 + * + * if isinstance(memview, _memoryviewslice): + * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< + * memviewsliceobj.to_object_func, + * memviewsliceobj.to_dtype_func, + */ + __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, __pyx_v_memviewsliceobj->to_object_func, __pyx_v_memviewsliceobj->to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 763, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(1, 763, __pyx_L1_error) + __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":762 + * new_ndim += 1 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * return memoryview_fromslice(dst, new_ndim, + * memviewsliceobj.to_object_func, + */ + } + + /* "View.MemoryView":768 + * memview.dtype_is_object) + * else: + * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< + * memview.dtype_is_object) + * + */ + /*else*/ { + __Pyx_XDECREF(((PyObject *)__pyx_r)); + + /* "View.MemoryView":769 + * else: + * return memoryview_fromslice(dst, new_ndim, NULL, NULL, + * memview.dtype_is_object) # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, NULL, NULL, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 768, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + + /* "View.MemoryView":768 + * memview.dtype_is_object) + * else: + * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< + * memview.dtype_is_object) + * + */ + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(1, 768, __pyx_L1_error) + __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); + __pyx_t_3 = 0; + goto __pyx_L0; + } + + /* "View.MemoryView":696 + * + * @cname('__pyx_memview_slice') + * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< + * cdef int new_ndim = 0, suboffset_dim = -1, dim + * cdef bint negative_step + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_9); + __Pyx_AddTraceback("View.MemoryView.memview_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_memviewsliceobj); + __Pyx_XDECREF(__pyx_v_index); + __Pyx_XGIVEREF((PyObject *)__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":793 + * + * @cname('__pyx_memoryview_slice_memviewslice') + * cdef int slice_memviewslice( # <<<<<<<<<<<<<< + * __Pyx_memviewslice *dst, + * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, + */ + +static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, Py_ssize_t __pyx_v_shape, Py_ssize_t __pyx_v_stride, Py_ssize_t __pyx_v_suboffset, int __pyx_v_dim, int __pyx_v_new_ndim, int *__pyx_v_suboffset_dim, Py_ssize_t __pyx_v_start, Py_ssize_t __pyx_v_stop, Py_ssize_t __pyx_v_step, int __pyx_v_have_start, int __pyx_v_have_stop, int __pyx_v_have_step, int __pyx_v_is_slice) { + Py_ssize_t __pyx_v_new_shape; + int __pyx_v_negative_step; + int __pyx_r; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + + /* "View.MemoryView":813 + * cdef bint negative_step + * + * if not is_slice: # <<<<<<<<<<<<<< + * + * if start < 0: + */ + __pyx_t_1 = ((!(__pyx_v_is_slice != 0)) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":815 + * if not is_slice: + * + * if start < 0: # <<<<<<<<<<<<<< + * start += shape + * if not 0 <= start < shape: + */ + __pyx_t_1 = ((__pyx_v_start < 0) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":816 + * + * if start < 0: + * start += shape # <<<<<<<<<<<<<< + * if not 0 <= start < shape: + * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) + */ + __pyx_v_start = (__pyx_v_start + __pyx_v_shape); + + /* "View.MemoryView":815 + * if not is_slice: + * + * if start < 0: # <<<<<<<<<<<<<< + * start += shape + * if not 0 <= start < shape: + */ + } + + /* "View.MemoryView":817 + * if start < 0: + * start += shape + * if not 0 <= start < shape: # <<<<<<<<<<<<<< + * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) + * else: + */ + __pyx_t_1 = (0 <= __pyx_v_start); + if (__pyx_t_1) { + __pyx_t_1 = (__pyx_v_start < __pyx_v_shape); + } + __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":818 + * start += shape + * if not 0 <= start < shape: + * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) # <<<<<<<<<<<<<< + * else: + * + */ + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"Index out of bounds (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) __PYX_ERR(1, 818, __pyx_L1_error) + + /* "View.MemoryView":817 + * if start < 0: + * start += shape + * if not 0 <= start < shape: # <<<<<<<<<<<<<< + * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) + * else: + */ + } + + /* "View.MemoryView":813 + * cdef bint negative_step + * + * if not is_slice: # <<<<<<<<<<<<<< + * + * if start < 0: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":821 + * else: + * + * negative_step = have_step != 0 and step < 0 # <<<<<<<<<<<<<< + * + * if have_step and step == 0: + */ + /*else*/ { + __pyx_t_1 = ((__pyx_v_have_step != 0) != 0); + if (__pyx_t_1) { + } else { + __pyx_t_2 = __pyx_t_1; + goto __pyx_L6_bool_binop_done; + } + __pyx_t_1 = ((__pyx_v_step < 0) != 0); + __pyx_t_2 = __pyx_t_1; + __pyx_L6_bool_binop_done:; + __pyx_v_negative_step = __pyx_t_2; + + /* "View.MemoryView":823 + * negative_step = have_step != 0 and step < 0 + * + * if have_step and step == 0: # <<<<<<<<<<<<<< + * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) + * + */ + __pyx_t_1 = (__pyx_v_have_step != 0); + if (__pyx_t_1) { + } else { + __pyx_t_2 = __pyx_t_1; + goto __pyx_L9_bool_binop_done; + } + __pyx_t_1 = ((__pyx_v_step == 0) != 0); + __pyx_t_2 = __pyx_t_1; + __pyx_L9_bool_binop_done:; + if (__pyx_t_2) { + + /* "View.MemoryView":824 + * + * if have_step and step == 0: + * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Step may not be zero (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) __PYX_ERR(1, 824, __pyx_L1_error) + + /* "View.MemoryView":823 + * negative_step = have_step != 0 and step < 0 + * + * if have_step and step == 0: # <<<<<<<<<<<<<< + * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) + * + */ + } + + /* "View.MemoryView":827 + * + * + * if have_start: # <<<<<<<<<<<<<< + * if start < 0: + * start += shape + */ + __pyx_t_2 = (__pyx_v_have_start != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":828 + * + * if have_start: + * if start < 0: # <<<<<<<<<<<<<< + * start += shape + * if start < 0: + */ + __pyx_t_2 = ((__pyx_v_start < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":829 + * if have_start: + * if start < 0: + * start += shape # <<<<<<<<<<<<<< + * if start < 0: + * start = 0 + */ + __pyx_v_start = (__pyx_v_start + __pyx_v_shape); + + /* "View.MemoryView":830 + * if start < 0: + * start += shape + * if start < 0: # <<<<<<<<<<<<<< + * start = 0 + * elif start >= shape: + */ + __pyx_t_2 = ((__pyx_v_start < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":831 + * start += shape + * if start < 0: + * start = 0 # <<<<<<<<<<<<<< + * elif start >= shape: + * if negative_step: + */ + __pyx_v_start = 0; + + /* "View.MemoryView":830 + * if start < 0: + * start += shape + * if start < 0: # <<<<<<<<<<<<<< + * start = 0 + * elif start >= shape: + */ + } + + /* "View.MemoryView":828 + * + * if have_start: + * if start < 0: # <<<<<<<<<<<<<< + * start += shape + * if start < 0: + */ + goto __pyx_L12; + } + + /* "View.MemoryView":832 + * if start < 0: + * start = 0 + * elif start >= shape: # <<<<<<<<<<<<<< + * if negative_step: + * start = shape - 1 + */ + __pyx_t_2 = ((__pyx_v_start >= __pyx_v_shape) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":833 + * start = 0 + * elif start >= shape: + * if negative_step: # <<<<<<<<<<<<<< + * start = shape - 1 + * else: + */ + __pyx_t_2 = (__pyx_v_negative_step != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":834 + * elif start >= shape: + * if negative_step: + * start = shape - 1 # <<<<<<<<<<<<<< + * else: + * start = shape + */ + __pyx_v_start = (__pyx_v_shape - 1); + + /* "View.MemoryView":833 + * start = 0 + * elif start >= shape: + * if negative_step: # <<<<<<<<<<<<<< + * start = shape - 1 + * else: + */ + goto __pyx_L14; + } + + /* "View.MemoryView":836 + * start = shape - 1 + * else: + * start = shape # <<<<<<<<<<<<<< + * else: + * if negative_step: + */ + /*else*/ { + __pyx_v_start = __pyx_v_shape; + } + __pyx_L14:; + + /* "View.MemoryView":832 + * if start < 0: + * start = 0 + * elif start >= shape: # <<<<<<<<<<<<<< + * if negative_step: + * start = shape - 1 + */ + } + __pyx_L12:; + + /* "View.MemoryView":827 + * + * + * if have_start: # <<<<<<<<<<<<<< + * if start < 0: + * start += shape + */ + goto __pyx_L11; + } + + /* "View.MemoryView":838 + * start = shape + * else: + * if negative_step: # <<<<<<<<<<<<<< + * start = shape - 1 + * else: + */ + /*else*/ { + __pyx_t_2 = (__pyx_v_negative_step != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":839 + * else: + * if negative_step: + * start = shape - 1 # <<<<<<<<<<<<<< + * else: + * start = 0 + */ + __pyx_v_start = (__pyx_v_shape - 1); + + /* "View.MemoryView":838 + * start = shape + * else: + * if negative_step: # <<<<<<<<<<<<<< + * start = shape - 1 + * else: + */ + goto __pyx_L15; + } + + /* "View.MemoryView":841 + * start = shape - 1 + * else: + * start = 0 # <<<<<<<<<<<<<< + * + * if have_stop: + */ + /*else*/ { + __pyx_v_start = 0; + } + __pyx_L15:; + } + __pyx_L11:; + + /* "View.MemoryView":843 + * start = 0 + * + * if have_stop: # <<<<<<<<<<<<<< + * if stop < 0: + * stop += shape + */ + __pyx_t_2 = (__pyx_v_have_stop != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":844 + * + * if have_stop: + * if stop < 0: # <<<<<<<<<<<<<< + * stop += shape + * if stop < 0: + */ + __pyx_t_2 = ((__pyx_v_stop < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":845 + * if have_stop: + * if stop < 0: + * stop += shape # <<<<<<<<<<<<<< + * if stop < 0: + * stop = 0 + */ + __pyx_v_stop = (__pyx_v_stop + __pyx_v_shape); + + /* "View.MemoryView":846 + * if stop < 0: + * stop += shape + * if stop < 0: # <<<<<<<<<<<<<< + * stop = 0 + * elif stop > shape: + */ + __pyx_t_2 = ((__pyx_v_stop < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":847 + * stop += shape + * if stop < 0: + * stop = 0 # <<<<<<<<<<<<<< + * elif stop > shape: + * stop = shape + */ + __pyx_v_stop = 0; + + /* "View.MemoryView":846 + * if stop < 0: + * stop += shape + * if stop < 0: # <<<<<<<<<<<<<< + * stop = 0 + * elif stop > shape: + */ + } + + /* "View.MemoryView":844 + * + * if have_stop: + * if stop < 0: # <<<<<<<<<<<<<< + * stop += shape + * if stop < 0: + */ + goto __pyx_L17; + } + + /* "View.MemoryView":848 + * if stop < 0: + * stop = 0 + * elif stop > shape: # <<<<<<<<<<<<<< + * stop = shape + * else: + */ + __pyx_t_2 = ((__pyx_v_stop > __pyx_v_shape) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":849 + * stop = 0 + * elif stop > shape: + * stop = shape # <<<<<<<<<<<<<< + * else: + * if negative_step: + */ + __pyx_v_stop = __pyx_v_shape; + + /* "View.MemoryView":848 + * if stop < 0: + * stop = 0 + * elif stop > shape: # <<<<<<<<<<<<<< + * stop = shape + * else: + */ + } + __pyx_L17:; + + /* "View.MemoryView":843 + * start = 0 + * + * if have_stop: # <<<<<<<<<<<<<< + * if stop < 0: + * stop += shape + */ + goto __pyx_L16; + } + + /* "View.MemoryView":851 + * stop = shape + * else: + * if negative_step: # <<<<<<<<<<<<<< + * stop = -1 + * else: + */ + /*else*/ { + __pyx_t_2 = (__pyx_v_negative_step != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":852 + * else: + * if negative_step: + * stop = -1 # <<<<<<<<<<<<<< + * else: + * stop = shape + */ + __pyx_v_stop = -1L; + + /* "View.MemoryView":851 + * stop = shape + * else: + * if negative_step: # <<<<<<<<<<<<<< + * stop = -1 + * else: + */ + goto __pyx_L19; + } + + /* "View.MemoryView":854 + * stop = -1 + * else: + * stop = shape # <<<<<<<<<<<<<< + * + * if not have_step: + */ + /*else*/ { + __pyx_v_stop = __pyx_v_shape; + } + __pyx_L19:; + } + __pyx_L16:; + + /* "View.MemoryView":856 + * stop = shape + * + * if not have_step: # <<<<<<<<<<<<<< + * step = 1 + * + */ + __pyx_t_2 = ((!(__pyx_v_have_step != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":857 + * + * if not have_step: + * step = 1 # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_step = 1; + + /* "View.MemoryView":856 + * stop = shape + * + * if not have_step: # <<<<<<<<<<<<<< + * step = 1 + * + */ + } + + /* "View.MemoryView":861 + * + * with cython.cdivision(True): + * new_shape = (stop - start) // step # <<<<<<<<<<<<<< + * + * if (stop - start) - step * new_shape: + */ + __pyx_v_new_shape = ((__pyx_v_stop - __pyx_v_start) / __pyx_v_step); + + /* "View.MemoryView":863 + * new_shape = (stop - start) // step + * + * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< + * new_shape += 1 + * + */ + __pyx_t_2 = (((__pyx_v_stop - __pyx_v_start) - (__pyx_v_step * __pyx_v_new_shape)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":864 + * + * if (stop - start) - step * new_shape: + * new_shape += 1 # <<<<<<<<<<<<<< + * + * if new_shape < 0: + */ + __pyx_v_new_shape = (__pyx_v_new_shape + 1); + + /* "View.MemoryView":863 + * new_shape = (stop - start) // step + * + * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< + * new_shape += 1 + * + */ + } + + /* "View.MemoryView":866 + * new_shape += 1 + * + * if new_shape < 0: # <<<<<<<<<<<<<< + * new_shape = 0 + * + */ + __pyx_t_2 = ((__pyx_v_new_shape < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":867 + * + * if new_shape < 0: + * new_shape = 0 # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_new_shape = 0; + + /* "View.MemoryView":866 + * new_shape += 1 + * + * if new_shape < 0: # <<<<<<<<<<<<<< + * new_shape = 0 + * + */ + } + + /* "View.MemoryView":870 + * + * + * dst.strides[new_ndim] = stride * step # <<<<<<<<<<<<<< + * dst.shape[new_ndim] = new_shape + * dst.suboffsets[new_ndim] = suboffset + */ + (__pyx_v_dst->strides[__pyx_v_new_ndim]) = (__pyx_v_stride * __pyx_v_step); + + /* "View.MemoryView":871 + * + * dst.strides[new_ndim] = stride * step + * dst.shape[new_ndim] = new_shape # <<<<<<<<<<<<<< + * dst.suboffsets[new_ndim] = suboffset + * + */ + (__pyx_v_dst->shape[__pyx_v_new_ndim]) = __pyx_v_new_shape; + + /* "View.MemoryView":872 + * dst.strides[new_ndim] = stride * step + * dst.shape[new_ndim] = new_shape + * dst.suboffsets[new_ndim] = suboffset # <<<<<<<<<<<<<< + * + * + */ + (__pyx_v_dst->suboffsets[__pyx_v_new_ndim]) = __pyx_v_suboffset; + } + __pyx_L3:; + + /* "View.MemoryView":875 + * + * + * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< + * dst.data += start * stride + * else: + */ + __pyx_t_2 = (((__pyx_v_suboffset_dim[0]) < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":876 + * + * if suboffset_dim[0] < 0: + * dst.data += start * stride # <<<<<<<<<<<<<< + * else: + * dst.suboffsets[suboffset_dim[0]] += start * stride + */ + __pyx_v_dst->data = (__pyx_v_dst->data + (__pyx_v_start * __pyx_v_stride)); + + /* "View.MemoryView":875 + * + * + * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< + * dst.data += start * stride + * else: + */ + goto __pyx_L23; + } + + /* "View.MemoryView":878 + * dst.data += start * stride + * else: + * dst.suboffsets[suboffset_dim[0]] += start * stride # <<<<<<<<<<<<<< + * + * if suboffset >= 0: + */ + /*else*/ { + __pyx_t_3 = (__pyx_v_suboffset_dim[0]); + (__pyx_v_dst->suboffsets[__pyx_t_3]) = ((__pyx_v_dst->suboffsets[__pyx_t_3]) + (__pyx_v_start * __pyx_v_stride)); + } + __pyx_L23:; + + /* "View.MemoryView":880 + * dst.suboffsets[suboffset_dim[0]] += start * stride + * + * if suboffset >= 0: # <<<<<<<<<<<<<< + * if not is_slice: + * if new_ndim == 0: + */ + __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":881 + * + * if suboffset >= 0: + * if not is_slice: # <<<<<<<<<<<<<< + * if new_ndim == 0: + * dst.data = ( dst.data)[0] + suboffset + */ + __pyx_t_2 = ((!(__pyx_v_is_slice != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":882 + * if suboffset >= 0: + * if not is_slice: + * if new_ndim == 0: # <<<<<<<<<<<<<< + * dst.data = ( dst.data)[0] + suboffset + * else: + */ + __pyx_t_2 = ((__pyx_v_new_ndim == 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":883 + * if not is_slice: + * if new_ndim == 0: + * dst.data = ( dst.data)[0] + suboffset # <<<<<<<<<<<<<< + * else: + * _err_dim(IndexError, "All dimensions preceding dimension %d " + */ + __pyx_v_dst->data = ((((char **)__pyx_v_dst->data)[0]) + __pyx_v_suboffset); + + /* "View.MemoryView":882 + * if suboffset >= 0: + * if not is_slice: + * if new_ndim == 0: # <<<<<<<<<<<<<< + * dst.data = ( dst.data)[0] + suboffset + * else: + */ + goto __pyx_L26; + } + + /* "View.MemoryView":885 + * dst.data = ( dst.data)[0] + suboffset + * else: + * _err_dim(IndexError, "All dimensions preceding dimension %d " # <<<<<<<<<<<<<< + * "must be indexed and not sliced", dim) + * else: + */ + /*else*/ { + + /* "View.MemoryView":886 + * else: + * _err_dim(IndexError, "All dimensions preceding dimension %d " + * "must be indexed and not sliced", dim) # <<<<<<<<<<<<<< + * else: + * suboffset_dim[0] = new_ndim + */ + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"All dimensions preceding dimension %d must be indexed and not sliced"), __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) __PYX_ERR(1, 885, __pyx_L1_error) + } + __pyx_L26:; + + /* "View.MemoryView":881 + * + * if suboffset >= 0: + * if not is_slice: # <<<<<<<<<<<<<< + * if new_ndim == 0: + * dst.data = ( dst.data)[0] + suboffset + */ + goto __pyx_L25; + } + + /* "View.MemoryView":888 + * "must be indexed and not sliced", dim) + * else: + * suboffset_dim[0] = new_ndim # <<<<<<<<<<<<<< + * + * return 0 + */ + /*else*/ { + (__pyx_v_suboffset_dim[0]) = __pyx_v_new_ndim; + } + __pyx_L25:; + + /* "View.MemoryView":880 + * dst.suboffsets[suboffset_dim[0]] += start * stride + * + * if suboffset >= 0: # <<<<<<<<<<<<<< + * if not is_slice: + * if new_ndim == 0: + */ + } + + /* "View.MemoryView":890 + * suboffset_dim[0] = new_ndim + * + * return 0 # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "View.MemoryView":793 + * + * @cname('__pyx_memoryview_slice_memviewslice') + * cdef int slice_memviewslice( # <<<<<<<<<<<<<< + * __Pyx_memviewslice *dst, + * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, + */ + + /* function exit code */ + __pyx_L1_error:; + { + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + #endif + __Pyx_AddTraceback("View.MemoryView.slice_memviewslice", __pyx_clineno, __pyx_lineno, __pyx_filename); + #ifdef WITH_THREAD + PyGILState_Release(__pyx_gilstate_save); + #endif + } + __pyx_r = -1; + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":896 + * + * @cname('__pyx_pybuffer_index') + * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< + * Py_ssize_t dim) except NULL: + * cdef Py_ssize_t shape, stride, suboffset = -1 + */ + +static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, Py_ssize_t __pyx_v_index, Py_ssize_t __pyx_v_dim) { + Py_ssize_t __pyx_v_shape; + Py_ssize_t __pyx_v_stride; + Py_ssize_t __pyx_v_suboffset; + Py_ssize_t __pyx_v_itemsize; + char *__pyx_v_resultp; + char *__pyx_r; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + __Pyx_RefNannySetupContext("pybuffer_index", 0); + + /* "View.MemoryView":898 + * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, + * Py_ssize_t dim) except NULL: + * cdef Py_ssize_t shape, stride, suboffset = -1 # <<<<<<<<<<<<<< + * cdef Py_ssize_t itemsize = view.itemsize + * cdef char *resultp + */ + __pyx_v_suboffset = -1L; + + /* "View.MemoryView":899 + * Py_ssize_t dim) except NULL: + * cdef Py_ssize_t shape, stride, suboffset = -1 + * cdef Py_ssize_t itemsize = view.itemsize # <<<<<<<<<<<<<< + * cdef char *resultp + * + */ + __pyx_t_1 = __pyx_v_view->itemsize; + __pyx_v_itemsize = __pyx_t_1; + + /* "View.MemoryView":902 + * cdef char *resultp + * + * if view.ndim == 0: # <<<<<<<<<<<<<< + * shape = view.len / itemsize + * stride = itemsize + */ + __pyx_t_2 = ((__pyx_v_view->ndim == 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":903 + * + * if view.ndim == 0: + * shape = view.len / itemsize # <<<<<<<<<<<<<< + * stride = itemsize + * else: + */ + if (unlikely(__pyx_v_itemsize == 0)) { + PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); + __PYX_ERR(1, 903, __pyx_L1_error) + } + else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_view->len))) { + PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); + __PYX_ERR(1, 903, __pyx_L1_error) + } + __pyx_v_shape = (__pyx_v_view->len / __pyx_v_itemsize); + + /* "View.MemoryView":904 + * if view.ndim == 0: + * shape = view.len / itemsize + * stride = itemsize # <<<<<<<<<<<<<< + * else: + * shape = view.shape[dim] + */ + __pyx_v_stride = __pyx_v_itemsize; + + /* "View.MemoryView":902 + * cdef char *resultp + * + * if view.ndim == 0: # <<<<<<<<<<<<<< + * shape = view.len / itemsize + * stride = itemsize + */ + goto __pyx_L3; + } + + /* "View.MemoryView":906 + * stride = itemsize + * else: + * shape = view.shape[dim] # <<<<<<<<<<<<<< + * stride = view.strides[dim] + * if view.suboffsets != NULL: + */ + /*else*/ { + __pyx_v_shape = (__pyx_v_view->shape[__pyx_v_dim]); + + /* "View.MemoryView":907 + * else: + * shape = view.shape[dim] + * stride = view.strides[dim] # <<<<<<<<<<<<<< + * if view.suboffsets != NULL: + * suboffset = view.suboffsets[dim] + */ + __pyx_v_stride = (__pyx_v_view->strides[__pyx_v_dim]); + + /* "View.MemoryView":908 + * shape = view.shape[dim] + * stride = view.strides[dim] + * if view.suboffsets != NULL: # <<<<<<<<<<<<<< + * suboffset = view.suboffsets[dim] + * + */ + __pyx_t_2 = ((__pyx_v_view->suboffsets != NULL) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":909 + * stride = view.strides[dim] + * if view.suboffsets != NULL: + * suboffset = view.suboffsets[dim] # <<<<<<<<<<<<<< + * + * if index < 0: + */ + __pyx_v_suboffset = (__pyx_v_view->suboffsets[__pyx_v_dim]); + + /* "View.MemoryView":908 + * shape = view.shape[dim] + * stride = view.strides[dim] + * if view.suboffsets != NULL: # <<<<<<<<<<<<<< + * suboffset = view.suboffsets[dim] + * + */ + } + } + __pyx_L3:; + + /* "View.MemoryView":911 + * suboffset = view.suboffsets[dim] + * + * if index < 0: # <<<<<<<<<<<<<< + * index += view.shape[dim] + * if index < 0: + */ + __pyx_t_2 = ((__pyx_v_index < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":912 + * + * if index < 0: + * index += view.shape[dim] # <<<<<<<<<<<<<< + * if index < 0: + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + */ + __pyx_v_index = (__pyx_v_index + (__pyx_v_view->shape[__pyx_v_dim])); + + /* "View.MemoryView":913 + * if index < 0: + * index += view.shape[dim] + * if index < 0: # <<<<<<<<<<<<<< + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + */ + __pyx_t_2 = ((__pyx_v_index < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":914 + * index += view.shape[dim] + * if index < 0: + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< + * + * if index >= shape: + */ + __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 914, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 914, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 914, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); + __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_IndexError, __pyx_t_3, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 914, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(1, 914, __pyx_L1_error) + + /* "View.MemoryView":913 + * if index < 0: + * index += view.shape[dim] + * if index < 0: # <<<<<<<<<<<<<< + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + */ + } + + /* "View.MemoryView":911 + * suboffset = view.suboffsets[dim] + * + * if index < 0: # <<<<<<<<<<<<<< + * index += view.shape[dim] + * if index < 0: + */ + } + + /* "View.MemoryView":916 + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + * if index >= shape: # <<<<<<<<<<<<<< + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + */ + __pyx_t_2 = ((__pyx_v_index >= __pyx_v_shape) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":917 + * + * if index >= shape: + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< + * + * resultp = bufp + index * stride + */ + __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 917, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 917, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 917, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); + __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_IndexError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 917, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 917, __pyx_L1_error) + + /* "View.MemoryView":916 + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + * if index >= shape: # <<<<<<<<<<<<<< + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + */ + } + + /* "View.MemoryView":919 + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + * resultp = bufp + index * stride # <<<<<<<<<<<<<< + * if suboffset >= 0: + * resultp = ( resultp)[0] + suboffset + */ + __pyx_v_resultp = (__pyx_v_bufp + (__pyx_v_index * __pyx_v_stride)); + + /* "View.MemoryView":920 + * + * resultp = bufp + index * stride + * if suboffset >= 0: # <<<<<<<<<<<<<< + * resultp = ( resultp)[0] + suboffset + * + */ + __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":921 + * resultp = bufp + index * stride + * if suboffset >= 0: + * resultp = ( resultp)[0] + suboffset # <<<<<<<<<<<<<< + * + * return resultp + */ + __pyx_v_resultp = ((((char **)__pyx_v_resultp)[0]) + __pyx_v_suboffset); + + /* "View.MemoryView":920 + * + * resultp = bufp + index * stride + * if suboffset >= 0: # <<<<<<<<<<<<<< + * resultp = ( resultp)[0] + suboffset + * + */ + } + + /* "View.MemoryView":923 + * resultp = ( resultp)[0] + suboffset + * + * return resultp # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_resultp; + goto __pyx_L0; + + /* "View.MemoryView":896 + * + * @cname('__pyx_pybuffer_index') + * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< + * Py_ssize_t dim) except NULL: + * cdef Py_ssize_t shape, stride, suboffset = -1 + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("View.MemoryView.pybuffer_index", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":929 + * + * @cname('__pyx_memslice_transpose') + * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< + * cdef int ndim = memslice.memview.view.ndim + * + */ + +static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { + int __pyx_v_ndim; + Py_ssize_t *__pyx_v_shape; + Py_ssize_t *__pyx_v_strides; + int __pyx_v_i; + int __pyx_v_j; + int __pyx_r; + int __pyx_t_1; + Py_ssize_t *__pyx_t_2; + long __pyx_t_3; + Py_ssize_t __pyx_t_4; + Py_ssize_t __pyx_t_5; + int __pyx_t_6; + int __pyx_t_7; + int __pyx_t_8; + + /* "View.MemoryView":930 + * @cname('__pyx_memslice_transpose') + * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: + * cdef int ndim = memslice.memview.view.ndim # <<<<<<<<<<<<<< + * + * cdef Py_ssize_t *shape = memslice.shape + */ + __pyx_t_1 = __pyx_v_memslice->memview->view.ndim; + __pyx_v_ndim = __pyx_t_1; + + /* "View.MemoryView":932 + * cdef int ndim = memslice.memview.view.ndim + * + * cdef Py_ssize_t *shape = memslice.shape # <<<<<<<<<<<<<< + * cdef Py_ssize_t *strides = memslice.strides + * + */ + __pyx_t_2 = __pyx_v_memslice->shape; + __pyx_v_shape = __pyx_t_2; + + /* "View.MemoryView":933 + * + * cdef Py_ssize_t *shape = memslice.shape + * cdef Py_ssize_t *strides = memslice.strides # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_2 = __pyx_v_memslice->strides; + __pyx_v_strides = __pyx_t_2; + + /* "View.MemoryView":937 + * + * cdef int i, j + * for i in range(ndim / 2): # <<<<<<<<<<<<<< + * j = ndim - 1 - i + * strides[i], strides[j] = strides[j], strides[i] + */ + __pyx_t_3 = (__pyx_v_ndim / 2); + for (__pyx_t_1 = 0; __pyx_t_1 < __pyx_t_3; __pyx_t_1+=1) { + __pyx_v_i = __pyx_t_1; + + /* "View.MemoryView":938 + * cdef int i, j + * for i in range(ndim / 2): + * j = ndim - 1 - i # <<<<<<<<<<<<<< + * strides[i], strides[j] = strides[j], strides[i] + * shape[i], shape[j] = shape[j], shape[i] + */ + __pyx_v_j = ((__pyx_v_ndim - 1) - __pyx_v_i); + + /* "View.MemoryView":939 + * for i in range(ndim / 2): + * j = ndim - 1 - i + * strides[i], strides[j] = strides[j], strides[i] # <<<<<<<<<<<<<< + * shape[i], shape[j] = shape[j], shape[i] + * + */ + __pyx_t_4 = (__pyx_v_strides[__pyx_v_j]); + __pyx_t_5 = (__pyx_v_strides[__pyx_v_i]); + (__pyx_v_strides[__pyx_v_i]) = __pyx_t_4; + (__pyx_v_strides[__pyx_v_j]) = __pyx_t_5; + + /* "View.MemoryView":940 + * j = ndim - 1 - i + * strides[i], strides[j] = strides[j], strides[i] + * shape[i], shape[j] = shape[j], shape[i] # <<<<<<<<<<<<<< + * + * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: + */ + __pyx_t_5 = (__pyx_v_shape[__pyx_v_j]); + __pyx_t_4 = (__pyx_v_shape[__pyx_v_i]); + (__pyx_v_shape[__pyx_v_i]) = __pyx_t_5; + (__pyx_v_shape[__pyx_v_j]) = __pyx_t_4; + + /* "View.MemoryView":942 + * shape[i], shape[j] = shape[j], shape[i] + * + * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< + * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") + * + */ + __pyx_t_7 = (((__pyx_v_memslice->suboffsets[__pyx_v_i]) >= 0) != 0); + if (!__pyx_t_7) { + } else { + __pyx_t_6 = __pyx_t_7; + goto __pyx_L6_bool_binop_done; + } + __pyx_t_7 = (((__pyx_v_memslice->suboffsets[__pyx_v_j]) >= 0) != 0); + __pyx_t_6 = __pyx_t_7; + __pyx_L6_bool_binop_done:; + if (__pyx_t_6) { + + /* "View.MemoryView":943 + * + * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: + * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") # <<<<<<<<<<<<<< + * + * return 1 + */ + __pyx_t_8 = __pyx_memoryview_err(__pyx_builtin_ValueError, ((char *)"Cannot transpose memoryview with indirect dimensions")); if (unlikely(__pyx_t_8 == -1)) __PYX_ERR(1, 943, __pyx_L1_error) + + /* "View.MemoryView":942 + * shape[i], shape[j] = shape[j], shape[i] + * + * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< + * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") + * + */ + } + } + + /* "View.MemoryView":945 + * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") + * + * return 1 # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = 1; + goto __pyx_L0; + + /* "View.MemoryView":929 + * + * @cname('__pyx_memslice_transpose') + * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< + * cdef int ndim = memslice.memview.view.ndim + * + */ + + /* function exit code */ + __pyx_L1_error:; + { + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + #endif + __Pyx_AddTraceback("View.MemoryView.transpose_memslice", __pyx_clineno, __pyx_lineno, __pyx_filename); + #ifdef WITH_THREAD + PyGILState_Release(__pyx_gilstate_save); + #endif + } + __pyx_r = 0; + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":962 + * cdef int (*to_dtype_func)(char *, object) except 0 + * + * def __dealloc__(self): # <<<<<<<<<<<<<< + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) + * + */ + +/* Python wrapper */ +static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self); /*proto*/ +static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); + __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__", 0); + + /* "View.MemoryView":963 + * + * def __dealloc__(self): + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) # <<<<<<<<<<<<<< + * + * cdef convert_item_to_object(self, char *itemp): + */ + __PYX_XDEC_MEMVIEW((&__pyx_v_self->from_slice), 1); + + /* "View.MemoryView":962 + * cdef int (*to_dtype_func)(char *, object) except 0 + * + * def __dealloc__(self): # <<<<<<<<<<<<<< + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) + * + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":965 + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) + * + * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< + * if self.to_object_func != NULL: + * return self.to_object_func(itemp) + */ + +static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("convert_item_to_object", 0); + + /* "View.MemoryView":966 + * + * cdef convert_item_to_object(self, char *itemp): + * if self.to_object_func != NULL: # <<<<<<<<<<<<<< + * return self.to_object_func(itemp) + * else: + */ + __pyx_t_1 = ((__pyx_v_self->to_object_func != NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":967 + * cdef convert_item_to_object(self, char *itemp): + * if self.to_object_func != NULL: + * return self.to_object_func(itemp) # <<<<<<<<<<<<<< + * else: + * return memoryview.convert_item_to_object(self, itemp) + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __pyx_v_self->to_object_func(__pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 967, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":966 + * + * cdef convert_item_to_object(self, char *itemp): + * if self.to_object_func != NULL: # <<<<<<<<<<<<<< + * return self.to_object_func(itemp) + * else: + */ + } + + /* "View.MemoryView":969 + * return self.to_object_func(itemp) + * else: + * return memoryview.convert_item_to_object(self, itemp) # <<<<<<<<<<<<<< + * + * cdef assign_item_from_object(self, char *itemp, object value): + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __pyx_memoryview_convert_item_to_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 969, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + } + + /* "View.MemoryView":965 + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) + * + * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< + * if self.to_object_func != NULL: + * return self.to_object_func(itemp) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView._memoryviewslice.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":971 + * return memoryview.convert_item_to_object(self, itemp) + * + * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< + * if self.to_dtype_func != NULL: + * self.to_dtype_func(itemp, value) + */ + +static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("assign_item_from_object", 0); + + /* "View.MemoryView":972 + * + * cdef assign_item_from_object(self, char *itemp, object value): + * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< + * self.to_dtype_func(itemp, value) + * else: + */ + __pyx_t_1 = ((__pyx_v_self->to_dtype_func != NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":973 + * cdef assign_item_from_object(self, char *itemp, object value): + * if self.to_dtype_func != NULL: + * self.to_dtype_func(itemp, value) # <<<<<<<<<<<<<< + * else: + * memoryview.assign_item_from_object(self, itemp, value) + */ + __pyx_t_2 = __pyx_v_self->to_dtype_func(__pyx_v_itemp, __pyx_v_value); if (unlikely(__pyx_t_2 == 0)) __PYX_ERR(1, 973, __pyx_L1_error) + + /* "View.MemoryView":972 + * + * cdef assign_item_from_object(self, char *itemp, object value): + * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< + * self.to_dtype_func(itemp, value) + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":975 + * self.to_dtype_func(itemp, value) + * else: + * memoryview.assign_item_from_object(self, itemp, value) # <<<<<<<<<<<<<< + * + * @property + */ + /*else*/ { + __pyx_t_3 = __pyx_memoryview_assign_item_from_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 975, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + } + __pyx_L3:; + + /* "View.MemoryView":971 + * return memoryview.convert_item_to_object(self, itemp) + * + * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< + * if self.to_dtype_func != NULL: + * self.to_dtype_func(itemp, value) + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView._memoryviewslice.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":978 + * + * @property + * def base(self): # <<<<<<<<<<<<<< + * return self.from_object + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":979 + * @property + * def base(self): + * return self.from_object # <<<<<<<<<<<<<< + * + * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_self->from_object); + __pyx_r = __pyx_v_self->from_object; + goto __pyx_L0; + + /* "View.MemoryView":978 + * + * @property + * def base(self): # <<<<<<<<<<<<<< + * return self.from_object + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":985 + * + * @cname('__pyx_memoryview_fromslice') + * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< + * int ndim, + * object (*to_object_func)(char *), + */ + +static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewslice, int __pyx_v_ndim, PyObject *(*__pyx_v_to_object_func)(char *), int (*__pyx_v_to_dtype_func)(char *, PyObject *), int __pyx_v_dtype_is_object) { + struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; + Py_ssize_t __pyx_v_suboffset; + PyObject *__pyx_v_length = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_TypeInfo *__pyx_t_4; + Py_buffer __pyx_t_5; + Py_ssize_t *__pyx_t_6; + Py_ssize_t *__pyx_t_7; + Py_ssize_t *__pyx_t_8; + Py_ssize_t __pyx_t_9; + __Pyx_RefNannySetupContext("memoryview_fromslice", 0); + + /* "View.MemoryView":993 + * cdef _memoryviewslice result + * + * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< + * return None + * + */ + __pyx_t_1 = ((((PyObject *)__pyx_v_memviewslice.memview) == Py_None) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":994 + * + * if memviewslice.memview == Py_None: + * return None # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(Py_None); + __pyx_r = Py_None; + goto __pyx_L0; + + /* "View.MemoryView":993 + * cdef _memoryviewslice result + * + * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< + * return None + * + */ + } + + /* "View.MemoryView":999 + * + * + * result = _memoryviewslice(None, 0, dtype_is_object) # <<<<<<<<<<<<<< + * + * result.from_slice = memviewslice + */ + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 999, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 999, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(Py_None); + PyTuple_SET_ITEM(__pyx_t_3, 0, Py_None); + __Pyx_INCREF(__pyx_int_0); + __Pyx_GIVEREF(__pyx_int_0); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryviewslice_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 999, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_2); + __pyx_t_2 = 0; + + /* "View.MemoryView":1001 + * result = _memoryviewslice(None, 0, dtype_is_object) + * + * result.from_slice = memviewslice # <<<<<<<<<<<<<< + * __PYX_INC_MEMVIEW(&memviewslice, 1) + * + */ + __pyx_v_result->from_slice = __pyx_v_memviewslice; + + /* "View.MemoryView":1002 + * + * result.from_slice = memviewslice + * __PYX_INC_MEMVIEW(&memviewslice, 1) # <<<<<<<<<<<<<< + * + * result.from_object = ( memviewslice.memview).base + */ + __PYX_INC_MEMVIEW((&__pyx_v_memviewslice), 1); + + /* "View.MemoryView":1004 + * __PYX_INC_MEMVIEW(&memviewslice, 1) + * + * result.from_object = ( memviewslice.memview).base # <<<<<<<<<<<<<< + * result.typeinfo = memviewslice.memview.typeinfo + * + */ + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_memviewslice.memview), __pyx_n_s_base); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1004, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_GIVEREF(__pyx_t_2); + __Pyx_GOTREF(__pyx_v_result->from_object); + __Pyx_DECREF(__pyx_v_result->from_object); + __pyx_v_result->from_object = __pyx_t_2; + __pyx_t_2 = 0; + + /* "View.MemoryView":1005 + * + * result.from_object = ( memviewslice.memview).base + * result.typeinfo = memviewslice.memview.typeinfo # <<<<<<<<<<<<<< + * + * result.view = memviewslice.memview.view + */ + __pyx_t_4 = __pyx_v_memviewslice.memview->typeinfo; + __pyx_v_result->__pyx_base.typeinfo = __pyx_t_4; + + /* "View.MemoryView":1007 + * result.typeinfo = memviewslice.memview.typeinfo + * + * result.view = memviewslice.memview.view # <<<<<<<<<<<<<< + * result.view.buf = memviewslice.data + * result.view.ndim = ndim + */ + __pyx_t_5 = __pyx_v_memviewslice.memview->view; + __pyx_v_result->__pyx_base.view = __pyx_t_5; + + /* "View.MemoryView":1008 + * + * result.view = memviewslice.memview.view + * result.view.buf = memviewslice.data # <<<<<<<<<<<<<< + * result.view.ndim = ndim + * (<__pyx_buffer *> &result.view).obj = Py_None + */ + __pyx_v_result->__pyx_base.view.buf = ((void *)__pyx_v_memviewslice.data); + + /* "View.MemoryView":1009 + * result.view = memviewslice.memview.view + * result.view.buf = memviewslice.data + * result.view.ndim = ndim # <<<<<<<<<<<<<< + * (<__pyx_buffer *> &result.view).obj = Py_None + * Py_INCREF(Py_None) + */ + __pyx_v_result->__pyx_base.view.ndim = __pyx_v_ndim; + + /* "View.MemoryView":1010 + * result.view.buf = memviewslice.data + * result.view.ndim = ndim + * (<__pyx_buffer *> &result.view).obj = Py_None # <<<<<<<<<<<<<< + * Py_INCREF(Py_None) + * + */ + ((Py_buffer *)(&__pyx_v_result->__pyx_base.view))->obj = Py_None; + + /* "View.MemoryView":1011 + * result.view.ndim = ndim + * (<__pyx_buffer *> &result.view).obj = Py_None + * Py_INCREF(Py_None) # <<<<<<<<<<<<<< + * + * result.flags = PyBUF_RECORDS + */ + Py_INCREF(Py_None); + + /* "View.MemoryView":1013 + * Py_INCREF(Py_None) + * + * result.flags = PyBUF_RECORDS # <<<<<<<<<<<<<< + * + * result.view.shape = result.from_slice.shape + */ + __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS; + + /* "View.MemoryView":1015 + * result.flags = PyBUF_RECORDS + * + * result.view.shape = result.from_slice.shape # <<<<<<<<<<<<<< + * result.view.strides = result.from_slice.strides + * + */ + __pyx_v_result->__pyx_base.view.shape = ((Py_ssize_t *)__pyx_v_result->from_slice.shape); + + /* "View.MemoryView":1016 + * + * result.view.shape = result.from_slice.shape + * result.view.strides = result.from_slice.strides # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_result->__pyx_base.view.strides = ((Py_ssize_t *)__pyx_v_result->from_slice.strides); + + /* "View.MemoryView":1019 + * + * + * result.view.suboffsets = NULL # <<<<<<<<<<<<<< + * for suboffset in result.from_slice.suboffsets[:ndim]: + * if suboffset >= 0: + */ + __pyx_v_result->__pyx_base.view.suboffsets = NULL; + + /* "View.MemoryView":1020 + * + * result.view.suboffsets = NULL + * for suboffset in result.from_slice.suboffsets[:ndim]: # <<<<<<<<<<<<<< + * if suboffset >= 0: + * result.view.suboffsets = result.from_slice.suboffsets + */ + __pyx_t_7 = (__pyx_v_result->from_slice.suboffsets + __pyx_v_ndim); + for (__pyx_t_8 = __pyx_v_result->from_slice.suboffsets; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { + __pyx_t_6 = __pyx_t_8; + __pyx_v_suboffset = (__pyx_t_6[0]); + + /* "View.MemoryView":1021 + * result.view.suboffsets = NULL + * for suboffset in result.from_slice.suboffsets[:ndim]: + * if suboffset >= 0: # <<<<<<<<<<<<<< + * result.view.suboffsets = result.from_slice.suboffsets + * break + */ + __pyx_t_1 = ((__pyx_v_suboffset >= 0) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1022 + * for suboffset in result.from_slice.suboffsets[:ndim]: + * if suboffset >= 0: + * result.view.suboffsets = result.from_slice.suboffsets # <<<<<<<<<<<<<< + * break + * + */ + __pyx_v_result->__pyx_base.view.suboffsets = ((Py_ssize_t *)__pyx_v_result->from_slice.suboffsets); + + /* "View.MemoryView":1023 + * if suboffset >= 0: + * result.view.suboffsets = result.from_slice.suboffsets + * break # <<<<<<<<<<<<<< + * + * result.view.len = result.view.itemsize + */ + goto __pyx_L5_break; + + /* "View.MemoryView":1021 + * result.view.suboffsets = NULL + * for suboffset in result.from_slice.suboffsets[:ndim]: + * if suboffset >= 0: # <<<<<<<<<<<<<< + * result.view.suboffsets = result.from_slice.suboffsets + * break + */ + } + } + __pyx_L5_break:; + + /* "View.MemoryView":1025 + * break + * + * result.view.len = result.view.itemsize # <<<<<<<<<<<<<< + * for length in result.view.shape[:ndim]: + * result.view.len *= length + */ + __pyx_t_9 = __pyx_v_result->__pyx_base.view.itemsize; + __pyx_v_result->__pyx_base.view.len = __pyx_t_9; + + /* "View.MemoryView":1026 + * + * result.view.len = result.view.itemsize + * for length in result.view.shape[:ndim]: # <<<<<<<<<<<<<< + * result.view.len *= length + * + */ + __pyx_t_7 = (__pyx_v_result->__pyx_base.view.shape + __pyx_v_ndim); + for (__pyx_t_8 = __pyx_v_result->__pyx_base.view.shape; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { + __pyx_t_6 = __pyx_t_8; + __pyx_t_2 = PyInt_FromSsize_t((__pyx_t_6[0])); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1026, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_2); + __pyx_t_2 = 0; + + /* "View.MemoryView":1027 + * result.view.len = result.view.itemsize + * for length in result.view.shape[:ndim]: + * result.view.len *= length # <<<<<<<<<<<<<< + * + * result.to_object_func = to_object_func + */ + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_result->__pyx_base.view.len); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1027, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyNumber_InPlaceMultiply(__pyx_t_2, __pyx_v_length); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1027, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 1027, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result->__pyx_base.view.len = __pyx_t_9; + } + + /* "View.MemoryView":1029 + * result.view.len *= length + * + * result.to_object_func = to_object_func # <<<<<<<<<<<<<< + * result.to_dtype_func = to_dtype_func + * + */ + __pyx_v_result->to_object_func = __pyx_v_to_object_func; + + /* "View.MemoryView":1030 + * + * result.to_object_func = to_object_func + * result.to_dtype_func = to_dtype_func # <<<<<<<<<<<<<< + * + * return result + */ + __pyx_v_result->to_dtype_func = __pyx_v_to_dtype_func; + + /* "View.MemoryView":1032 + * result.to_dtype_func = to_dtype_func + * + * return result # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_get_slice_from_memoryview') + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_result)); + __pyx_r = ((PyObject *)__pyx_v_result); + goto __pyx_L0; + + /* "View.MemoryView":985 + * + * @cname('__pyx_memoryview_fromslice') + * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< + * int ndim, + * object (*to_object_func)(char *), + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview_fromslice", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_result); + __Pyx_XDECREF(__pyx_v_length); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":1035 + * + * @cname('__pyx_memoryview_get_slice_from_memoryview') + * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *mslice): + * cdef _memoryviewslice obj + */ + +static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_mslice) { + struct __pyx_memoryviewslice_obj *__pyx_v_obj = 0; + __Pyx_memviewslice *__pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("get_slice_from_memview", 0); + + /* "View.MemoryView":1038 + * __Pyx_memviewslice *mslice): + * cdef _memoryviewslice obj + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * obj = memview + * return &obj.from_slice + */ + __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1039 + * cdef _memoryviewslice obj + * if isinstance(memview, _memoryviewslice): + * obj = memview # <<<<<<<<<<<<<< + * return &obj.from_slice + * else: + */ + if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(1, 1039, __pyx_L1_error) + __pyx_t_3 = ((PyObject *)__pyx_v_memview); + __Pyx_INCREF(__pyx_t_3); + __pyx_v_obj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":1040 + * if isinstance(memview, _memoryviewslice): + * obj = memview + * return &obj.from_slice # <<<<<<<<<<<<<< + * else: + * slice_copy(memview, mslice) + */ + __pyx_r = (&__pyx_v_obj->from_slice); + goto __pyx_L0; + + /* "View.MemoryView":1038 + * __Pyx_memviewslice *mslice): + * cdef _memoryviewslice obj + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * obj = memview + * return &obj.from_slice + */ + } + + /* "View.MemoryView":1042 + * return &obj.from_slice + * else: + * slice_copy(memview, mslice) # <<<<<<<<<<<<<< + * return mslice + * + */ + /*else*/ { + __pyx_memoryview_slice_copy(__pyx_v_memview, __pyx_v_mslice); + + /* "View.MemoryView":1043 + * else: + * slice_copy(memview, mslice) + * return mslice # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_slice_copy') + */ + __pyx_r = __pyx_v_mslice; + goto __pyx_L0; + } + + /* "View.MemoryView":1035 + * + * @cname('__pyx_memoryview_get_slice_from_memoryview') + * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *mslice): + * cdef _memoryviewslice obj + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_WriteUnraisable("View.MemoryView.get_slice_from_memview", __pyx_clineno, __pyx_lineno, __pyx_filename, 0, 0); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_obj); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":1046 + * + * @cname('__pyx_memoryview_slice_copy') + * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< + * cdef int dim + * cdef (Py_ssize_t*) shape, strides, suboffsets + */ + +static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_dst) { + int __pyx_v_dim; + Py_ssize_t *__pyx_v_shape; + Py_ssize_t *__pyx_v_strides; + Py_ssize_t *__pyx_v_suboffsets; + __Pyx_RefNannyDeclarations + Py_ssize_t *__pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + Py_ssize_t __pyx_t_4; + __Pyx_RefNannySetupContext("slice_copy", 0); + + /* "View.MemoryView":1050 + * cdef (Py_ssize_t*) shape, strides, suboffsets + * + * shape = memview.view.shape # <<<<<<<<<<<<<< + * strides = memview.view.strides + * suboffsets = memview.view.suboffsets + */ + __pyx_t_1 = __pyx_v_memview->view.shape; + __pyx_v_shape = __pyx_t_1; + + /* "View.MemoryView":1051 + * + * shape = memview.view.shape + * strides = memview.view.strides # <<<<<<<<<<<<<< + * suboffsets = memview.view.suboffsets + * + */ + __pyx_t_1 = __pyx_v_memview->view.strides; + __pyx_v_strides = __pyx_t_1; + + /* "View.MemoryView":1052 + * shape = memview.view.shape + * strides = memview.view.strides + * suboffsets = memview.view.suboffsets # <<<<<<<<<<<<<< + * + * dst.memview = <__pyx_memoryview *> memview + */ + __pyx_t_1 = __pyx_v_memview->view.suboffsets; + __pyx_v_suboffsets = __pyx_t_1; + + /* "View.MemoryView":1054 + * suboffsets = memview.view.suboffsets + * + * dst.memview = <__pyx_memoryview *> memview # <<<<<<<<<<<<<< + * dst.data = memview.view.buf + * + */ + __pyx_v_dst->memview = ((struct __pyx_memoryview_obj *)__pyx_v_memview); + + /* "View.MemoryView":1055 + * + * dst.memview = <__pyx_memoryview *> memview + * dst.data = memview.view.buf # <<<<<<<<<<<<<< + * + * for dim in range(memview.view.ndim): + */ + __pyx_v_dst->data = ((char *)__pyx_v_memview->view.buf); + + /* "View.MemoryView":1057 + * dst.data = memview.view.buf + * + * for dim in range(memview.view.ndim): # <<<<<<<<<<<<<< + * dst.shape[dim] = shape[dim] + * dst.strides[dim] = strides[dim] + */ + __pyx_t_2 = __pyx_v_memview->view.ndim; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_dim = __pyx_t_3; + + /* "View.MemoryView":1058 + * + * for dim in range(memview.view.ndim): + * dst.shape[dim] = shape[dim] # <<<<<<<<<<<<<< + * dst.strides[dim] = strides[dim] + * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 + */ + (__pyx_v_dst->shape[__pyx_v_dim]) = (__pyx_v_shape[__pyx_v_dim]); + + /* "View.MemoryView":1059 + * for dim in range(memview.view.ndim): + * dst.shape[dim] = shape[dim] + * dst.strides[dim] = strides[dim] # <<<<<<<<<<<<<< + * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 + * + */ + (__pyx_v_dst->strides[__pyx_v_dim]) = (__pyx_v_strides[__pyx_v_dim]); + + /* "View.MemoryView":1060 + * dst.shape[dim] = shape[dim] + * dst.strides[dim] = strides[dim] + * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_copy_object') + */ + if ((__pyx_v_suboffsets != 0)) { + __pyx_t_4 = (__pyx_v_suboffsets[__pyx_v_dim]); + } else { + __pyx_t_4 = -1L; + } + (__pyx_v_dst->suboffsets[__pyx_v_dim]) = __pyx_t_4; + } + + /* "View.MemoryView":1046 + * + * @cname('__pyx_memoryview_slice_copy') + * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< + * cdef int dim + * cdef (Py_ssize_t*) shape, strides, suboffsets + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":1063 + * + * @cname('__pyx_memoryview_copy_object') + * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< + * "Create a new memoryview object" + * cdef __Pyx_memviewslice memviewslice + */ + +static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx_v_memview) { + __Pyx_memviewslice __pyx_v_memviewslice; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("memoryview_copy", 0); + + /* "View.MemoryView":1066 + * "Create a new memoryview object" + * cdef __Pyx_memviewslice memviewslice + * slice_copy(memview, &memviewslice) # <<<<<<<<<<<<<< + * return memoryview_copy_from_slice(memview, &memviewslice) + * + */ + __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_memviewslice)); + + /* "View.MemoryView":1067 + * cdef __Pyx_memviewslice memviewslice + * slice_copy(memview, &memviewslice) + * return memoryview_copy_from_slice(memview, &memviewslice) # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_copy_object_from_slice') + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __pyx_memoryview_copy_object_from_slice(__pyx_v_memview, (&__pyx_v_memviewslice)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1067, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":1063 + * + * @cname('__pyx_memoryview_copy_object') + * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< + * "Create a new memoryview object" + * cdef __Pyx_memviewslice memviewslice + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview_copy", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":1070 + * + * @cname('__pyx_memoryview_copy_object_from_slice') + * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< + * """ + * Create a new memoryview object from a given memoryview object and slice. + */ + +static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_memviewslice) { + PyObject *(*__pyx_v_to_object_func)(char *); + int (*__pyx_v_to_dtype_func)(char *, PyObject *); + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *(*__pyx_t_3)(char *); + int (*__pyx_t_4)(char *, PyObject *); + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("memoryview_copy_from_slice", 0); + + /* "View.MemoryView":1077 + * cdef int (*to_dtype_func)(char *, object) except 0 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * to_object_func = (<_memoryviewslice> memview).to_object_func + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func + */ + __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1078 + * + * if isinstance(memview, _memoryviewslice): + * to_object_func = (<_memoryviewslice> memview).to_object_func # <<<<<<<<<<<<<< + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func + * else: + */ + __pyx_t_3 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_object_func; + __pyx_v_to_object_func = __pyx_t_3; + + /* "View.MemoryView":1079 + * if isinstance(memview, _memoryviewslice): + * to_object_func = (<_memoryviewslice> memview).to_object_func + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func # <<<<<<<<<<<<<< + * else: + * to_object_func = NULL + */ + __pyx_t_4 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_dtype_func; + __pyx_v_to_dtype_func = __pyx_t_4; + + /* "View.MemoryView":1077 + * cdef int (*to_dtype_func)(char *, object) except 0 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * to_object_func = (<_memoryviewslice> memview).to_object_func + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1081 + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func + * else: + * to_object_func = NULL # <<<<<<<<<<<<<< + * to_dtype_func = NULL + * + */ + /*else*/ { + __pyx_v_to_object_func = NULL; + + /* "View.MemoryView":1082 + * else: + * to_object_func = NULL + * to_dtype_func = NULL # <<<<<<<<<<<<<< + * + * return memoryview_fromslice(memviewslice[0], memview.view.ndim, + */ + __pyx_v_to_dtype_func = NULL; + } + __pyx_L3:; + + /* "View.MemoryView":1084 + * to_dtype_func = NULL + * + * return memoryview_fromslice(memviewslice[0], memview.view.ndim, # <<<<<<<<<<<<<< + * to_object_func, to_dtype_func, + * memview.dtype_is_object) + */ + __Pyx_XDECREF(__pyx_r); + + /* "View.MemoryView":1086 + * return memoryview_fromslice(memviewslice[0], memview.view.ndim, + * to_object_func, to_dtype_func, + * memview.dtype_is_object) # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_5 = __pyx_memoryview_fromslice((__pyx_v_memviewslice[0]), __pyx_v_memview->view.ndim, __pyx_v_to_object_func, __pyx_v_to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 1084, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_r = __pyx_t_5; + __pyx_t_5 = 0; + goto __pyx_L0; + + /* "View.MemoryView":1070 + * + * @cname('__pyx_memoryview_copy_object_from_slice') + * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< + * """ + * Create a new memoryview object from a given memoryview object and slice. + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.memoryview_copy_from_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":1092 + * + * + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< + * if arg < 0: + * return -arg + */ + +static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { + Py_ssize_t __pyx_r; + int __pyx_t_1; + + /* "View.MemoryView":1093 + * + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: + * if arg < 0: # <<<<<<<<<<<<<< + * return -arg + * else: + */ + __pyx_t_1 = ((__pyx_v_arg < 0) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1094 + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: + * if arg < 0: + * return -arg # <<<<<<<<<<<<<< + * else: + * return arg + */ + __pyx_r = (-__pyx_v_arg); + goto __pyx_L0; + + /* "View.MemoryView":1093 + * + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: + * if arg < 0: # <<<<<<<<<<<<<< + * return -arg + * else: + */ + } + + /* "View.MemoryView":1096 + * return -arg + * else: + * return arg # <<<<<<<<<<<<<< + * + * @cname('__pyx_get_best_slice_order') + */ + /*else*/ { + __pyx_r = __pyx_v_arg; + goto __pyx_L0; + } + + /* "View.MemoryView":1092 + * + * + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< + * if arg < 0: + * return -arg + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1099 + * + * @cname('__pyx_get_best_slice_order') + * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< + * """ + * Figure out the best memory access order for a given slice. + */ + +static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim) { + int __pyx_v_i; + Py_ssize_t __pyx_v_c_stride; + Py_ssize_t __pyx_v_f_stride; + char __pyx_r; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + + /* "View.MemoryView":1104 + * """ + * cdef int i + * cdef Py_ssize_t c_stride = 0 # <<<<<<<<<<<<<< + * cdef Py_ssize_t f_stride = 0 + * + */ + __pyx_v_c_stride = 0; + + /* "View.MemoryView":1105 + * cdef int i + * cdef Py_ssize_t c_stride = 0 + * cdef Py_ssize_t f_stride = 0 # <<<<<<<<<<<<<< + * + * for i in range(ndim - 1, -1, -1): + */ + __pyx_v_f_stride = 0; + + /* "View.MemoryView":1107 + * cdef Py_ssize_t f_stride = 0 + * + * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< + * if mslice.shape[i] > 1: + * c_stride = mslice.strides[i] + */ + for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1L; __pyx_t_1-=1) { + __pyx_v_i = __pyx_t_1; + + /* "View.MemoryView":1108 + * + * for i in range(ndim - 1, -1, -1): + * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< + * c_stride = mslice.strides[i] + * break + */ + __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1109 + * for i in range(ndim - 1, -1, -1): + * if mslice.shape[i] > 1: + * c_stride = mslice.strides[i] # <<<<<<<<<<<<<< + * break + * + */ + __pyx_v_c_stride = (__pyx_v_mslice->strides[__pyx_v_i]); + + /* "View.MemoryView":1110 + * if mslice.shape[i] > 1: + * c_stride = mslice.strides[i] + * break # <<<<<<<<<<<<<< + * + * for i in range(ndim): + */ + goto __pyx_L4_break; + + /* "View.MemoryView":1108 + * + * for i in range(ndim - 1, -1, -1): + * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< + * c_stride = mslice.strides[i] + * break + */ + } + } + __pyx_L4_break:; + + /* "View.MemoryView":1112 + * break + * + * for i in range(ndim): # <<<<<<<<<<<<<< + * if mslice.shape[i] > 1: + * f_stride = mslice.strides[i] + */ + __pyx_t_1 = __pyx_v_ndim; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_1; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; + + /* "View.MemoryView":1113 + * + * for i in range(ndim): + * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< + * f_stride = mslice.strides[i] + * break + */ + __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1114 + * for i in range(ndim): + * if mslice.shape[i] > 1: + * f_stride = mslice.strides[i] # <<<<<<<<<<<<<< + * break + * + */ + __pyx_v_f_stride = (__pyx_v_mslice->strides[__pyx_v_i]); + + /* "View.MemoryView":1115 + * if mslice.shape[i] > 1: + * f_stride = mslice.strides[i] + * break # <<<<<<<<<<<<<< + * + * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): + */ + goto __pyx_L7_break; + + /* "View.MemoryView":1113 + * + * for i in range(ndim): + * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< + * f_stride = mslice.strides[i] + * break + */ + } + } + __pyx_L7_break:; + + /* "View.MemoryView":1117 + * break + * + * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< + * return 'C' + * else: + */ + __pyx_t_2 = ((abs_py_ssize_t(__pyx_v_c_stride) <= abs_py_ssize_t(__pyx_v_f_stride)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1118 + * + * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): + * return 'C' # <<<<<<<<<<<<<< + * else: + * return 'F' + */ + __pyx_r = 'C'; + goto __pyx_L0; + + /* "View.MemoryView":1117 + * break + * + * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< + * return 'C' + * else: + */ + } + + /* "View.MemoryView":1120 + * return 'C' + * else: + * return 'F' # <<<<<<<<<<<<<< + * + * @cython.cdivision(True) + */ + /*else*/ { + __pyx_r = 'F'; + goto __pyx_L0; + } + + /* "View.MemoryView":1099 + * + * @cname('__pyx_get_best_slice_order') + * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< + * """ + * Figure out the best memory access order for a given slice. + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1123 + * + * @cython.cdivision(True) + * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< + * char *dst_data, Py_ssize_t *dst_strides, + * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, + */ + +static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v_src_strides, char *__pyx_v_dst_data, Py_ssize_t *__pyx_v_dst_strides, Py_ssize_t *__pyx_v_src_shape, Py_ssize_t *__pyx_v_dst_shape, int __pyx_v_ndim, size_t __pyx_v_itemsize) { + CYTHON_UNUSED Py_ssize_t __pyx_v_i; + CYTHON_UNUSED Py_ssize_t __pyx_v_src_extent; + Py_ssize_t __pyx_v_dst_extent; + Py_ssize_t __pyx_v_src_stride; + Py_ssize_t __pyx_v_dst_stride; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + Py_ssize_t __pyx_t_4; + Py_ssize_t __pyx_t_5; + + /* "View.MemoryView":1130 + * + * cdef Py_ssize_t i + * cdef Py_ssize_t src_extent = src_shape[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t dst_extent = dst_shape[0] + * cdef Py_ssize_t src_stride = src_strides[0] + */ + __pyx_v_src_extent = (__pyx_v_src_shape[0]); + + /* "View.MemoryView":1131 + * cdef Py_ssize_t i + * cdef Py_ssize_t src_extent = src_shape[0] + * cdef Py_ssize_t dst_extent = dst_shape[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t src_stride = src_strides[0] + * cdef Py_ssize_t dst_stride = dst_strides[0] + */ + __pyx_v_dst_extent = (__pyx_v_dst_shape[0]); + + /* "View.MemoryView":1132 + * cdef Py_ssize_t src_extent = src_shape[0] + * cdef Py_ssize_t dst_extent = dst_shape[0] + * cdef Py_ssize_t src_stride = src_strides[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t dst_stride = dst_strides[0] + * + */ + __pyx_v_src_stride = (__pyx_v_src_strides[0]); + + /* "View.MemoryView":1133 + * cdef Py_ssize_t dst_extent = dst_shape[0] + * cdef Py_ssize_t src_stride = src_strides[0] + * cdef Py_ssize_t dst_stride = dst_strides[0] # <<<<<<<<<<<<<< + * + * if ndim == 1: + */ + __pyx_v_dst_stride = (__pyx_v_dst_strides[0]); + + /* "View.MemoryView":1135 + * cdef Py_ssize_t dst_stride = dst_strides[0] + * + * if ndim == 1: # <<<<<<<<<<<<<< + * if (src_stride > 0 and dst_stride > 0 and + * src_stride == itemsize == dst_stride): + */ + __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1136 + * + * if ndim == 1: + * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< + * src_stride == itemsize == dst_stride): + * memcpy(dst_data, src_data, itemsize * dst_extent) + */ + __pyx_t_2 = ((__pyx_v_src_stride > 0) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L5_bool_binop_done; + } + __pyx_t_2 = ((__pyx_v_dst_stride > 0) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L5_bool_binop_done; + } + + /* "View.MemoryView":1137 + * if ndim == 1: + * if (src_stride > 0 and dst_stride > 0 and + * src_stride == itemsize == dst_stride): # <<<<<<<<<<<<<< + * memcpy(dst_data, src_data, itemsize * dst_extent) + * else: + */ + __pyx_t_2 = (((size_t)__pyx_v_src_stride) == __pyx_v_itemsize); + if (__pyx_t_2) { + __pyx_t_2 = (__pyx_v_itemsize == ((size_t)__pyx_v_dst_stride)); + } + __pyx_t_3 = (__pyx_t_2 != 0); + __pyx_t_1 = __pyx_t_3; + __pyx_L5_bool_binop_done:; + + /* "View.MemoryView":1136 + * + * if ndim == 1: + * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< + * src_stride == itemsize == dst_stride): + * memcpy(dst_data, src_data, itemsize * dst_extent) + */ + if (__pyx_t_1) { + + /* "View.MemoryView":1138 + * if (src_stride > 0 and dst_stride > 0 and + * src_stride == itemsize == dst_stride): + * memcpy(dst_data, src_data, itemsize * dst_extent) # <<<<<<<<<<<<<< + * else: + * for i in range(dst_extent): + */ + memcpy(__pyx_v_dst_data, __pyx_v_src_data, (__pyx_v_itemsize * __pyx_v_dst_extent)); + + /* "View.MemoryView":1136 + * + * if ndim == 1: + * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< + * src_stride == itemsize == dst_stride): + * memcpy(dst_data, src_data, itemsize * dst_extent) + */ + goto __pyx_L4; + } + + /* "View.MemoryView":1140 + * memcpy(dst_data, src_data, itemsize * dst_extent) + * else: + * for i in range(dst_extent): # <<<<<<<<<<<<<< + * memcpy(dst_data, src_data, itemsize) + * src_data += src_stride + */ + /*else*/ { + __pyx_t_4 = __pyx_v_dst_extent; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { + __pyx_v_i = __pyx_t_5; + + /* "View.MemoryView":1141 + * else: + * for i in range(dst_extent): + * memcpy(dst_data, src_data, itemsize) # <<<<<<<<<<<<<< + * src_data += src_stride + * dst_data += dst_stride + */ + memcpy(__pyx_v_dst_data, __pyx_v_src_data, __pyx_v_itemsize); + + /* "View.MemoryView":1142 + * for i in range(dst_extent): + * memcpy(dst_data, src_data, itemsize) + * src_data += src_stride # <<<<<<<<<<<<<< + * dst_data += dst_stride + * else: + */ + __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); + + /* "View.MemoryView":1143 + * memcpy(dst_data, src_data, itemsize) + * src_data += src_stride + * dst_data += dst_stride # <<<<<<<<<<<<<< + * else: + * for i in range(dst_extent): + */ + __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); + } + } + __pyx_L4:; + + /* "View.MemoryView":1135 + * cdef Py_ssize_t dst_stride = dst_strides[0] + * + * if ndim == 1: # <<<<<<<<<<<<<< + * if (src_stride > 0 and dst_stride > 0 and + * src_stride == itemsize == dst_stride): + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1145 + * dst_data += dst_stride + * else: + * for i in range(dst_extent): # <<<<<<<<<<<<<< + * _copy_strided_to_strided(src_data, src_strides + 1, + * dst_data, dst_strides + 1, + */ + /*else*/ { + __pyx_t_4 = __pyx_v_dst_extent; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { + __pyx_v_i = __pyx_t_5; + + /* "View.MemoryView":1146 + * else: + * for i in range(dst_extent): + * _copy_strided_to_strided(src_data, src_strides + 1, # <<<<<<<<<<<<<< + * dst_data, dst_strides + 1, + * src_shape + 1, dst_shape + 1, + */ + _copy_strided_to_strided(__pyx_v_src_data, (__pyx_v_src_strides + 1), __pyx_v_dst_data, (__pyx_v_dst_strides + 1), (__pyx_v_src_shape + 1), (__pyx_v_dst_shape + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize); + + /* "View.MemoryView":1150 + * src_shape + 1, dst_shape + 1, + * ndim - 1, itemsize) + * src_data += src_stride # <<<<<<<<<<<<<< + * dst_data += dst_stride + * + */ + __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); + + /* "View.MemoryView":1151 + * ndim - 1, itemsize) + * src_data += src_stride + * dst_data += dst_stride # <<<<<<<<<<<<<< + * + * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, + */ + __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); + } + } + __pyx_L3:; + + /* "View.MemoryView":1123 + * + * @cython.cdivision(True) + * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< + * char *dst_data, Py_ssize_t *dst_strides, + * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, + */ + + /* function exit code */ +} + +/* "View.MemoryView":1153 + * dst_data += dst_stride + * + * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *dst, + * int ndim, size_t itemsize) nogil: + */ + +static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize) { + + /* "View.MemoryView":1156 + * __Pyx_memviewslice *dst, + * int ndim, size_t itemsize) nogil: + * _copy_strided_to_strided(src.data, src.strides, dst.data, dst.strides, # <<<<<<<<<<<<<< + * src.shape, dst.shape, ndim, itemsize) + * + */ + _copy_strided_to_strided(__pyx_v_src->data, __pyx_v_src->strides, __pyx_v_dst->data, __pyx_v_dst->strides, __pyx_v_src->shape, __pyx_v_dst->shape, __pyx_v_ndim, __pyx_v_itemsize); + + /* "View.MemoryView":1153 + * dst_data += dst_stride + * + * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *dst, + * int ndim, size_t itemsize) nogil: + */ + + /* function exit code */ +} + +/* "View.MemoryView":1160 + * + * @cname('__pyx_memoryview_slice_get_size') + * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< + * "Return the size of the memory occupied by the slice in number of bytes" + * cdef int i + */ + +static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_src, int __pyx_v_ndim) { + int __pyx_v_i; + Py_ssize_t __pyx_v_size; + Py_ssize_t __pyx_r; + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + + /* "View.MemoryView":1163 + * "Return the size of the memory occupied by the slice in number of bytes" + * cdef int i + * cdef Py_ssize_t size = src.memview.view.itemsize # <<<<<<<<<<<<<< + * + * for i in range(ndim): + */ + __pyx_t_1 = __pyx_v_src->memview->view.itemsize; + __pyx_v_size = __pyx_t_1; + + /* "View.MemoryView":1165 + * cdef Py_ssize_t size = src.memview.view.itemsize + * + * for i in range(ndim): # <<<<<<<<<<<<<< + * size *= src.shape[i] + * + */ + __pyx_t_2 = __pyx_v_ndim; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; + + /* "View.MemoryView":1166 + * + * for i in range(ndim): + * size *= src.shape[i] # <<<<<<<<<<<<<< + * + * return size + */ + __pyx_v_size = (__pyx_v_size * (__pyx_v_src->shape[__pyx_v_i])); + } + + /* "View.MemoryView":1168 + * size *= src.shape[i] + * + * return size # <<<<<<<<<<<<<< + * + * @cname('__pyx_fill_contig_strides_array') + */ + __pyx_r = __pyx_v_size; + goto __pyx_L0; + + /* "View.MemoryView":1160 + * + * @cname('__pyx_memoryview_slice_get_size') + * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< + * "Return the size of the memory occupied by the slice in number of bytes" + * cdef int i + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1171 + * + * @cname('__pyx_fill_contig_strides_array') + * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< + * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, + * int ndim, char order) nogil: + */ + +static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, Py_ssize_t __pyx_v_stride, int __pyx_v_ndim, char __pyx_v_order) { + int __pyx_v_idx; + Py_ssize_t __pyx_r; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + + /* "View.MemoryView":1180 + * cdef int idx + * + * if order == 'F': # <<<<<<<<<<<<<< + * for idx in range(ndim): + * strides[idx] = stride + */ + __pyx_t_1 = ((__pyx_v_order == 'F') != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1181 + * + * if order == 'F': + * for idx in range(ndim): # <<<<<<<<<<<<<< + * strides[idx] = stride + * stride = stride * shape[idx] + */ + __pyx_t_2 = __pyx_v_ndim; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_idx = __pyx_t_3; + + /* "View.MemoryView":1182 + * if order == 'F': + * for idx in range(ndim): + * strides[idx] = stride # <<<<<<<<<<<<<< + * stride = stride * shape[idx] + * else: + */ + (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; + + /* "View.MemoryView":1183 + * for idx in range(ndim): + * strides[idx] = stride + * stride = stride * shape[idx] # <<<<<<<<<<<<<< + * else: + * for idx in range(ndim - 1, -1, -1): + */ + __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); + } + + /* "View.MemoryView":1180 + * cdef int idx + * + * if order == 'F': # <<<<<<<<<<<<<< + * for idx in range(ndim): + * strides[idx] = stride + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1185 + * stride = stride * shape[idx] + * else: + * for idx in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< + * strides[idx] = stride + * stride = stride * shape[idx] + */ + /*else*/ { + for (__pyx_t_2 = (__pyx_v_ndim - 1); __pyx_t_2 > -1L; __pyx_t_2-=1) { + __pyx_v_idx = __pyx_t_2; + + /* "View.MemoryView":1186 + * else: + * for idx in range(ndim - 1, -1, -1): + * strides[idx] = stride # <<<<<<<<<<<<<< + * stride = stride * shape[idx] + * + */ + (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; + + /* "View.MemoryView":1187 + * for idx in range(ndim - 1, -1, -1): + * strides[idx] = stride + * stride = stride * shape[idx] # <<<<<<<<<<<<<< + * + * return stride + */ + __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); + } + } + __pyx_L3:; + + /* "View.MemoryView":1189 + * stride = stride * shape[idx] + * + * return stride # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_copy_data_to_temp') + */ + __pyx_r = __pyx_v_stride; + goto __pyx_L0; + + /* "View.MemoryView":1171 + * + * @cname('__pyx_fill_contig_strides_array') + * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< + * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, + * int ndim, char order) nogil: + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1192 + * + * @cname('__pyx_memoryview_copy_data_to_temp') + * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *tmpslice, + * char order, + */ + +static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_tmpslice, char __pyx_v_order, int __pyx_v_ndim) { + int __pyx_v_i; + void *__pyx_v_result; + size_t __pyx_v_itemsize; + size_t __pyx_v_size; + void *__pyx_r; + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + struct __pyx_memoryview_obj *__pyx_t_4; + int __pyx_t_5; + + /* "View.MemoryView":1203 + * cdef void *result + * + * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< + * cdef size_t size = slice_get_size(src, ndim) + * + */ + __pyx_t_1 = __pyx_v_src->memview->view.itemsize; + __pyx_v_itemsize = __pyx_t_1; + + /* "View.MemoryView":1204 + * + * cdef size_t itemsize = src.memview.view.itemsize + * cdef size_t size = slice_get_size(src, ndim) # <<<<<<<<<<<<<< + * + * result = malloc(size) + */ + __pyx_v_size = __pyx_memoryview_slice_get_size(__pyx_v_src, __pyx_v_ndim); + + /* "View.MemoryView":1206 + * cdef size_t size = slice_get_size(src, ndim) + * + * result = malloc(size) # <<<<<<<<<<<<<< + * if not result: + * _err(MemoryError, NULL) + */ + __pyx_v_result = malloc(__pyx_v_size); + + /* "View.MemoryView":1207 + * + * result = malloc(size) + * if not result: # <<<<<<<<<<<<<< + * _err(MemoryError, NULL) + * + */ + __pyx_t_2 = ((!(__pyx_v_result != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1208 + * result = malloc(size) + * if not result: + * _err(MemoryError, NULL) # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_3 = __pyx_memoryview_err(__pyx_builtin_MemoryError, NULL); if (unlikely(__pyx_t_3 == -1)) __PYX_ERR(1, 1208, __pyx_L1_error) + + /* "View.MemoryView":1207 + * + * result = malloc(size) + * if not result: # <<<<<<<<<<<<<< + * _err(MemoryError, NULL) + * + */ + } + + /* "View.MemoryView":1211 + * + * + * tmpslice.data = result # <<<<<<<<<<<<<< + * tmpslice.memview = src.memview + * for i in range(ndim): + */ + __pyx_v_tmpslice->data = ((char *)__pyx_v_result); + + /* "View.MemoryView":1212 + * + * tmpslice.data = result + * tmpslice.memview = src.memview # <<<<<<<<<<<<<< + * for i in range(ndim): + * tmpslice.shape[i] = src.shape[i] + */ + __pyx_t_4 = __pyx_v_src->memview; + __pyx_v_tmpslice->memview = __pyx_t_4; + + /* "View.MemoryView":1213 + * tmpslice.data = result + * tmpslice.memview = src.memview + * for i in range(ndim): # <<<<<<<<<<<<<< + * tmpslice.shape[i] = src.shape[i] + * tmpslice.suboffsets[i] = -1 + */ + __pyx_t_3 = __pyx_v_ndim; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_3; __pyx_t_5+=1) { + __pyx_v_i = __pyx_t_5; + + /* "View.MemoryView":1214 + * tmpslice.memview = src.memview + * for i in range(ndim): + * tmpslice.shape[i] = src.shape[i] # <<<<<<<<<<<<<< + * tmpslice.suboffsets[i] = -1 + * + */ + (__pyx_v_tmpslice->shape[__pyx_v_i]) = (__pyx_v_src->shape[__pyx_v_i]); + + /* "View.MemoryView":1215 + * for i in range(ndim): + * tmpslice.shape[i] = src.shape[i] + * tmpslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< + * + * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, + */ + (__pyx_v_tmpslice->suboffsets[__pyx_v_i]) = -1L; + } + + /* "View.MemoryView":1217 + * tmpslice.suboffsets[i] = -1 + * + * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, # <<<<<<<<<<<<<< + * ndim, order) + * + */ + __pyx_fill_contig_strides_array((&(__pyx_v_tmpslice->shape[0])), (&(__pyx_v_tmpslice->strides[0])), __pyx_v_itemsize, __pyx_v_ndim, __pyx_v_order); + + /* "View.MemoryView":1221 + * + * + * for i in range(ndim): # <<<<<<<<<<<<<< + * if tmpslice.shape[i] == 1: + * tmpslice.strides[i] = 0 + */ + __pyx_t_3 = __pyx_v_ndim; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_3; __pyx_t_5+=1) { + __pyx_v_i = __pyx_t_5; + + /* "View.MemoryView":1222 + * + * for i in range(ndim): + * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< + * tmpslice.strides[i] = 0 + * + */ + __pyx_t_2 = (((__pyx_v_tmpslice->shape[__pyx_v_i]) == 1) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1223 + * for i in range(ndim): + * if tmpslice.shape[i] == 1: + * tmpslice.strides[i] = 0 # <<<<<<<<<<<<<< + * + * if slice_is_contig(src[0], order, ndim): + */ + (__pyx_v_tmpslice->strides[__pyx_v_i]) = 0; + + /* "View.MemoryView":1222 + * + * for i in range(ndim): + * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< + * tmpslice.strides[i] = 0 + * + */ + } + } + + /* "View.MemoryView":1225 + * tmpslice.strides[i] = 0 + * + * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< + * memcpy(result, src.data, size) + * else: + */ + __pyx_t_2 = (__pyx_memviewslice_is_contig((__pyx_v_src[0]), __pyx_v_order, __pyx_v_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1226 + * + * if slice_is_contig(src[0], order, ndim): + * memcpy(result, src.data, size) # <<<<<<<<<<<<<< + * else: + * copy_strided_to_strided(src, tmpslice, ndim, itemsize) + */ + memcpy(__pyx_v_result, __pyx_v_src->data, __pyx_v_size); + + /* "View.MemoryView":1225 + * tmpslice.strides[i] = 0 + * + * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< + * memcpy(result, src.data, size) + * else: + */ + goto __pyx_L9; + } + + /* "View.MemoryView":1228 + * memcpy(result, src.data, size) + * else: + * copy_strided_to_strided(src, tmpslice, ndim, itemsize) # <<<<<<<<<<<<<< + * + * return result + */ + /*else*/ { + copy_strided_to_strided(__pyx_v_src, __pyx_v_tmpslice, __pyx_v_ndim, __pyx_v_itemsize); + } + __pyx_L9:; + + /* "View.MemoryView":1230 + * copy_strided_to_strided(src, tmpslice, ndim, itemsize) + * + * return result # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_result; + goto __pyx_L0; + + /* "View.MemoryView":1192 + * + * @cname('__pyx_memoryview_copy_data_to_temp') + * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *tmpslice, + * char order, + */ + + /* function exit code */ + __pyx_L1_error:; + { + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + #endif + __Pyx_AddTraceback("View.MemoryView.copy_data_to_temp", __pyx_clineno, __pyx_lineno, __pyx_filename); + #ifdef WITH_THREAD + PyGILState_Release(__pyx_gilstate_save); + #endif + } + __pyx_r = NULL; + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1235 + * + * @cname('__pyx_memoryview_err_extents') + * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< + * Py_ssize_t extent2) except -1 with gil: + * raise ValueError("got differing extents in dimension %d (got %d and %d)" % + */ + +static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent1, Py_ssize_t __pyx_v_extent2) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + #endif + __Pyx_RefNannySetupContext("_err_extents", 0); + + /* "View.MemoryView":1238 + * Py_ssize_t extent2) except -1 with gil: + * raise ValueError("got differing extents in dimension %d (got %d and %d)" % + * (i, extent1, extent2)) # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_err_dim') + */ + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1238, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_extent1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1238, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_extent2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1238, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1238, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_3); + __pyx_t_1 = 0; + __pyx_t_2 = 0; + __pyx_t_3 = 0; + + /* "View.MemoryView":1237 + * cdef int _err_extents(int i, Py_ssize_t extent1, + * Py_ssize_t extent2) except -1 with gil: + * raise ValueError("got differing extents in dimension %d (got %d and %d)" % # <<<<<<<<<<<<<< + * (i, extent1, extent2)) + * + */ + __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1237, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1237, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); + __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1237, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 1237, __pyx_L1_error) + + /* "View.MemoryView":1235 + * + * @cname('__pyx_memoryview_err_extents') + * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< + * Py_ssize_t extent2) except -1 with gil: + * raise ValueError("got differing extents in dimension %d (got %d and %d)" % + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("View.MemoryView._err_extents", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __Pyx_RefNannyFinishContext(); + #ifdef WITH_THREAD + PyGILState_Release(__pyx_gilstate_save); + #endif + return __pyx_r; +} + +/* "View.MemoryView":1241 + * + * @cname('__pyx_memoryview_err_dim') + * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< + * raise error(msg.decode('ascii') % dim) + * + */ + +static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, int __pyx_v_dim) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + #endif + __Pyx_RefNannySetupContext("_err_dim", 0); + __Pyx_INCREF(__pyx_v_error); + + /* "View.MemoryView":1242 + * @cname('__pyx_memoryview_err_dim') + * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: + * raise error(msg.decode('ascii') % dim) # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_err') + */ + __pyx_t_2 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1242, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1242, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyUnicode_Format(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1242, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_INCREF(__pyx_v_error); + __pyx_t_3 = __pyx_v_error; __pyx_t_2 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { + __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); + if (likely(__pyx_t_2)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); + __Pyx_INCREF(__pyx_t_2); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_3, function); + } + } + if (!__pyx_t_2) { + __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1242, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_GOTREF(__pyx_t_1); + } else { + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_3)) { + PyObject *__pyx_temp[2] = {__pyx_t_2, __pyx_t_4}; + __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1242, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_3)) { + PyObject *__pyx_temp[2] = {__pyx_t_2, __pyx_t_4}; + __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1242, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + } else + #endif + { + __pyx_t_5 = PyTuple_New(1+1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 1242, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_2); __pyx_t_2 = NULL; + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 0+1, __pyx_t_4); + __pyx_t_4 = 0; + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1242, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + } + } + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 1242, __pyx_L1_error) + + /* "View.MemoryView":1241 + * + * @cname('__pyx_memoryview_err_dim') + * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< + * raise error(msg.decode('ascii') % dim) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView._err_dim", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __Pyx_XDECREF(__pyx_v_error); + __Pyx_RefNannyFinishContext(); + #ifdef WITH_THREAD + PyGILState_Release(__pyx_gilstate_save); + #endif + return __pyx_r; +} + +/* "View.MemoryView":1245 + * + * @cname('__pyx_memoryview_err') + * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< + * if msg != NULL: + * raise error(msg.decode('ascii')) + */ + +static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + #endif + __Pyx_RefNannySetupContext("_err", 0); + __Pyx_INCREF(__pyx_v_error); + + /* "View.MemoryView":1246 + * @cname('__pyx_memoryview_err') + * cdef int _err(object error, char *msg) except -1 with gil: + * if msg != NULL: # <<<<<<<<<<<<<< + * raise error(msg.decode('ascii')) + * else: + */ + __pyx_t_1 = ((__pyx_v_msg != NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1247 + * cdef int _err(object error, char *msg) except -1 with gil: + * if msg != NULL: + * raise error(msg.decode('ascii')) # <<<<<<<<<<<<<< + * else: + * raise error + */ + __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1247, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(__pyx_v_error); + __pyx_t_4 = __pyx_v_error; __pyx_t_5 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_4, function); + } + } + if (!__pyx_t_5) { + __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1247, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_GOTREF(__pyx_t_2); + } else { + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_4)) { + PyObject *__pyx_temp[2] = {__pyx_t_5, __pyx_t_3}; + __pyx_t_2 = __Pyx_PyFunction_FastCall(__pyx_t_4, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1247, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_4)) { + PyObject *__pyx_temp[2] = {__pyx_t_5, __pyx_t_3}; + __pyx_t_2 = __Pyx_PyCFunction_FastCall(__pyx_t_4, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1247, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + } else + #endif + { + __pyx_t_6 = PyTuple_New(1+1); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 1247, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_5); __pyx_t_5 = NULL; + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_6, 0+1, __pyx_t_3); + __pyx_t_3 = 0; + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_6, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1247, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } + } + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_Raise(__pyx_t_2, 0, 0, 0); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __PYX_ERR(1, 1247, __pyx_L1_error) + + /* "View.MemoryView":1246 + * @cname('__pyx_memoryview_err') + * cdef int _err(object error, char *msg) except -1 with gil: + * if msg != NULL: # <<<<<<<<<<<<<< + * raise error(msg.decode('ascii')) + * else: + */ + } + + /* "View.MemoryView":1249 + * raise error(msg.decode('ascii')) + * else: + * raise error # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_copy_contents') + */ + /*else*/ { + __Pyx_Raise(__pyx_v_error, 0, 0, 0); + __PYX_ERR(1, 1249, __pyx_L1_error) + } + + /* "View.MemoryView":1245 + * + * @cname('__pyx_memoryview_err') + * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< + * if msg != NULL: + * raise error(msg.decode('ascii')) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_AddTraceback("View.MemoryView._err", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __Pyx_XDECREF(__pyx_v_error); + __Pyx_RefNannyFinishContext(); + #ifdef WITH_THREAD + PyGILState_Release(__pyx_gilstate_save); + #endif + return __pyx_r; +} + +/* "View.MemoryView":1252 + * + * @cname('__pyx_memoryview_copy_contents') + * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice dst, + * int src_ndim, int dst_ndim, + */ + +static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_memviewslice __pyx_v_dst, int __pyx_v_src_ndim, int __pyx_v_dst_ndim, int __pyx_v_dtype_is_object) { + void *__pyx_v_tmpdata; + size_t __pyx_v_itemsize; + int __pyx_v_i; + char __pyx_v_order; + int __pyx_v_broadcasting; + int __pyx_v_direct_copy; + __Pyx_memviewslice __pyx_v_tmp; + int __pyx_v_ndim; + int __pyx_r; + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + int __pyx_t_5; + void *__pyx_t_6; + int __pyx_t_7; + + /* "View.MemoryView":1260 + * Check for overlapping memory and verify the shapes. + * """ + * cdef void *tmpdata = NULL # <<<<<<<<<<<<<< + * cdef size_t itemsize = src.memview.view.itemsize + * cdef int i + */ + __pyx_v_tmpdata = NULL; + + /* "View.MemoryView":1261 + * """ + * cdef void *tmpdata = NULL + * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< + * cdef int i + * cdef char order = get_best_order(&src, src_ndim) + */ + __pyx_t_1 = __pyx_v_src.memview->view.itemsize; + __pyx_v_itemsize = __pyx_t_1; + + /* "View.MemoryView":1263 + * cdef size_t itemsize = src.memview.view.itemsize + * cdef int i + * cdef char order = get_best_order(&src, src_ndim) # <<<<<<<<<<<<<< + * cdef bint broadcasting = False + * cdef bint direct_copy = False + */ + __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_src), __pyx_v_src_ndim); + + /* "View.MemoryView":1264 + * cdef int i + * cdef char order = get_best_order(&src, src_ndim) + * cdef bint broadcasting = False # <<<<<<<<<<<<<< + * cdef bint direct_copy = False + * cdef __Pyx_memviewslice tmp + */ + __pyx_v_broadcasting = 0; + + /* "View.MemoryView":1265 + * cdef char order = get_best_order(&src, src_ndim) + * cdef bint broadcasting = False + * cdef bint direct_copy = False # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice tmp + * + */ + __pyx_v_direct_copy = 0; + + /* "View.MemoryView":1268 + * cdef __Pyx_memviewslice tmp + * + * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: + */ + __pyx_t_2 = ((__pyx_v_src_ndim < __pyx_v_dst_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1269 + * + * if src_ndim < dst_ndim: + * broadcast_leading(&src, src_ndim, dst_ndim) # <<<<<<<<<<<<<< + * elif dst_ndim < src_ndim: + * broadcast_leading(&dst, dst_ndim, src_ndim) + */ + __pyx_memoryview_broadcast_leading((&__pyx_v_src), __pyx_v_src_ndim, __pyx_v_dst_ndim); + + /* "View.MemoryView":1268 + * cdef __Pyx_memviewslice tmp + * + * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1270 + * if src_ndim < dst_ndim: + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< + * broadcast_leading(&dst, dst_ndim, src_ndim) + * + */ + __pyx_t_2 = ((__pyx_v_dst_ndim < __pyx_v_src_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1271 + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: + * broadcast_leading(&dst, dst_ndim, src_ndim) # <<<<<<<<<<<<<< + * + * cdef int ndim = max(src_ndim, dst_ndim) + */ + __pyx_memoryview_broadcast_leading((&__pyx_v_dst), __pyx_v_dst_ndim, __pyx_v_src_ndim); + + /* "View.MemoryView":1270 + * if src_ndim < dst_ndim: + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< + * broadcast_leading(&dst, dst_ndim, src_ndim) + * + */ + } + __pyx_L3:; + + /* "View.MemoryView":1273 + * broadcast_leading(&dst, dst_ndim, src_ndim) + * + * cdef int ndim = max(src_ndim, dst_ndim) # <<<<<<<<<<<<<< + * + * for i in range(ndim): + */ + __pyx_t_3 = __pyx_v_dst_ndim; + __pyx_t_4 = __pyx_v_src_ndim; + if (((__pyx_t_3 > __pyx_t_4) != 0)) { + __pyx_t_5 = __pyx_t_3; + } else { + __pyx_t_5 = __pyx_t_4; + } + __pyx_v_ndim = __pyx_t_5; + + /* "View.MemoryView":1275 + * cdef int ndim = max(src_ndim, dst_ndim) + * + * for i in range(ndim): # <<<<<<<<<<<<<< + * if src.shape[i] != dst.shape[i]: + * if src.shape[i] == 1: + */ + __pyx_t_5 = __pyx_v_ndim; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_5; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; + + /* "View.MemoryView":1276 + * + * for i in range(ndim): + * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< + * if src.shape[i] == 1: + * broadcasting = True + */ + __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) != (__pyx_v_dst.shape[__pyx_v_i])) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1277 + * for i in range(ndim): + * if src.shape[i] != dst.shape[i]: + * if src.shape[i] == 1: # <<<<<<<<<<<<<< + * broadcasting = True + * src.strides[i] = 0 + */ + __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) == 1) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1278 + * if src.shape[i] != dst.shape[i]: + * if src.shape[i] == 1: + * broadcasting = True # <<<<<<<<<<<<<< + * src.strides[i] = 0 + * else: + */ + __pyx_v_broadcasting = 1; + + /* "View.MemoryView":1279 + * if src.shape[i] == 1: + * broadcasting = True + * src.strides[i] = 0 # <<<<<<<<<<<<<< + * else: + * _err_extents(i, dst.shape[i], src.shape[i]) + */ + (__pyx_v_src.strides[__pyx_v_i]) = 0; + + /* "View.MemoryView":1277 + * for i in range(ndim): + * if src.shape[i] != dst.shape[i]: + * if src.shape[i] == 1: # <<<<<<<<<<<<<< + * broadcasting = True + * src.strides[i] = 0 + */ + goto __pyx_L7; + } + + /* "View.MemoryView":1281 + * src.strides[i] = 0 + * else: + * _err_extents(i, dst.shape[i], src.shape[i]) # <<<<<<<<<<<<<< + * + * if src.suboffsets[i] >= 0: + */ + /*else*/ { + __pyx_t_4 = __pyx_memoryview_err_extents(__pyx_v_i, (__pyx_v_dst.shape[__pyx_v_i]), (__pyx_v_src.shape[__pyx_v_i])); if (unlikely(__pyx_t_4 == -1)) __PYX_ERR(1, 1281, __pyx_L1_error) + } + __pyx_L7:; + + /* "View.MemoryView":1276 + * + * for i in range(ndim): + * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< + * if src.shape[i] == 1: + * broadcasting = True + */ + } + + /* "View.MemoryView":1283 + * _err_extents(i, dst.shape[i], src.shape[i]) + * + * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< + * _err_dim(ValueError, "Dimension %d is not direct", i) + * + */ + __pyx_t_2 = (((__pyx_v_src.suboffsets[__pyx_v_i]) >= 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1284 + * + * if src.suboffsets[i] >= 0: + * _err_dim(ValueError, "Dimension %d is not direct", i) # <<<<<<<<<<<<<< + * + * if slices_overlap(&src, &dst, ndim, itemsize): + */ + __pyx_t_4 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Dimension %d is not direct"), __pyx_v_i); if (unlikely(__pyx_t_4 == -1)) __PYX_ERR(1, 1284, __pyx_L1_error) + + /* "View.MemoryView":1283 + * _err_extents(i, dst.shape[i], src.shape[i]) + * + * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< + * _err_dim(ValueError, "Dimension %d is not direct", i) + * + */ + } + } + + /* "View.MemoryView":1286 + * _err_dim(ValueError, "Dimension %d is not direct", i) + * + * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< + * + * if not slice_is_contig(src, order, ndim): + */ + __pyx_t_2 = (__pyx_slices_overlap((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1288 + * if slices_overlap(&src, &dst, ndim, itemsize): + * + * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< + * order = get_best_order(&dst, ndim) + * + */ + __pyx_t_2 = ((!(__pyx_memviewslice_is_contig(__pyx_v_src, __pyx_v_order, __pyx_v_ndim) != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1289 + * + * if not slice_is_contig(src, order, ndim): + * order = get_best_order(&dst, ndim) # <<<<<<<<<<<<<< + * + * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) + */ + __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim); + + /* "View.MemoryView":1288 + * if slices_overlap(&src, &dst, ndim, itemsize): + * + * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< + * order = get_best_order(&dst, ndim) + * + */ + } + + /* "View.MemoryView":1291 + * order = get_best_order(&dst, ndim) + * + * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) # <<<<<<<<<<<<<< + * src = tmp + * + */ + __pyx_t_6 = __pyx_memoryview_copy_data_to_temp((&__pyx_v_src), (&__pyx_v_tmp), __pyx_v_order, __pyx_v_ndim); if (unlikely(__pyx_t_6 == NULL)) __PYX_ERR(1, 1291, __pyx_L1_error) + __pyx_v_tmpdata = __pyx_t_6; + + /* "View.MemoryView":1292 + * + * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) + * src = tmp # <<<<<<<<<<<<<< + * + * if not broadcasting: + */ + __pyx_v_src = __pyx_v_tmp; + + /* "View.MemoryView":1286 + * _err_dim(ValueError, "Dimension %d is not direct", i) + * + * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< + * + * if not slice_is_contig(src, order, ndim): + */ + } + + /* "View.MemoryView":1294 + * src = tmp + * + * if not broadcasting: # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_2 = ((!(__pyx_v_broadcasting != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1297 + * + * + * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): + */ + __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'C', __pyx_v_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1298 + * + * if slice_is_contig(src, 'C', ndim): + * direct_copy = slice_is_contig(dst, 'C', ndim) # <<<<<<<<<<<<<< + * elif slice_is_contig(src, 'F', ndim): + * direct_copy = slice_is_contig(dst, 'F', ndim) + */ + __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'C', __pyx_v_ndim); + + /* "View.MemoryView":1297 + * + * + * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): + */ + goto __pyx_L12; + } + + /* "View.MemoryView":1299 + * if slice_is_contig(src, 'C', ndim): + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< + * direct_copy = slice_is_contig(dst, 'F', ndim) + * + */ + __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'F', __pyx_v_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1300 + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): + * direct_copy = slice_is_contig(dst, 'F', ndim) # <<<<<<<<<<<<<< + * + * if direct_copy: + */ + __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'F', __pyx_v_ndim); + + /* "View.MemoryView":1299 + * if slice_is_contig(src, 'C', ndim): + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< + * direct_copy = slice_is_contig(dst, 'F', ndim) + * + */ + } + __pyx_L12:; + + /* "View.MemoryView":1302 + * direct_copy = slice_is_contig(dst, 'F', ndim) + * + * if direct_copy: # <<<<<<<<<<<<<< + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + */ + __pyx_t_2 = (__pyx_v_direct_copy != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1304 + * if direct_copy: + * + * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< + * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) + * refcount_copying(&dst, dtype_is_object, ndim, True) + */ + __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); + + /* "View.MemoryView":1305 + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) # <<<<<<<<<<<<<< + * refcount_copying(&dst, dtype_is_object, ndim, True) + * free(tmpdata) + */ + memcpy(__pyx_v_dst.data, __pyx_v_src.data, __pyx_memoryview_slice_get_size((&__pyx_v_src), __pyx_v_ndim)); + + /* "View.MemoryView":1306 + * refcount_copying(&dst, dtype_is_object, ndim, False) + * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) + * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< + * free(tmpdata) + * return 0 + */ + __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); + + /* "View.MemoryView":1307 + * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) + * refcount_copying(&dst, dtype_is_object, ndim, True) + * free(tmpdata) # <<<<<<<<<<<<<< + * return 0 + * + */ + free(__pyx_v_tmpdata); + + /* "View.MemoryView":1308 + * refcount_copying(&dst, dtype_is_object, ndim, True) + * free(tmpdata) + * return 0 # <<<<<<<<<<<<<< + * + * if order == 'F' == get_best_order(&dst, ndim): + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "View.MemoryView":1302 + * direct_copy = slice_is_contig(dst, 'F', ndim) + * + * if direct_copy: # <<<<<<<<<<<<<< + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + */ + } + + /* "View.MemoryView":1294 + * src = tmp + * + * if not broadcasting: # <<<<<<<<<<<<<< + * + * + */ + } + + /* "View.MemoryView":1310 + * return 0 + * + * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_2 = (__pyx_v_order == 'F'); + if (__pyx_t_2) { + __pyx_t_2 = ('F' == __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim)); + } + __pyx_t_7 = (__pyx_t_2 != 0); + if (__pyx_t_7) { + + /* "View.MemoryView":1313 + * + * + * transpose_memslice(&src) # <<<<<<<<<<<<<< + * transpose_memslice(&dst) + * + */ + __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_src)); if (unlikely(__pyx_t_5 == 0)) __PYX_ERR(1, 1313, __pyx_L1_error) + + /* "View.MemoryView":1314 + * + * transpose_memslice(&src) + * transpose_memslice(&dst) # <<<<<<<<<<<<<< + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + */ + __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_dst)); if (unlikely(__pyx_t_5 == 0)) __PYX_ERR(1, 1314, __pyx_L1_error) + + /* "View.MemoryView":1310 + * return 0 + * + * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< + * + * + */ + } + + /* "View.MemoryView":1316 + * transpose_memslice(&dst) + * + * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< + * copy_strided_to_strided(&src, &dst, ndim, itemsize) + * refcount_copying(&dst, dtype_is_object, ndim, True) + */ + __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); + + /* "View.MemoryView":1317 + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + * copy_strided_to_strided(&src, &dst, ndim, itemsize) # <<<<<<<<<<<<<< + * refcount_copying(&dst, dtype_is_object, ndim, True) + * + */ + copy_strided_to_strided((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize); + + /* "View.MemoryView":1318 + * refcount_copying(&dst, dtype_is_object, ndim, False) + * copy_strided_to_strided(&src, &dst, ndim, itemsize) + * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< + * + * free(tmpdata) + */ + __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); + + /* "View.MemoryView":1320 + * refcount_copying(&dst, dtype_is_object, ndim, True) + * + * free(tmpdata) # <<<<<<<<<<<<<< + * return 0 + * + */ + free(__pyx_v_tmpdata); + + /* "View.MemoryView":1321 + * + * free(tmpdata) + * return 0 # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_broadcast_leading') + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "View.MemoryView":1252 + * + * @cname('__pyx_memoryview_copy_contents') + * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice dst, + * int src_ndim, int dst_ndim, + */ + + /* function exit code */ + __pyx_L1_error:; + { + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + #endif + __Pyx_AddTraceback("View.MemoryView.memoryview_copy_contents", __pyx_clineno, __pyx_lineno, __pyx_filename); + #ifdef WITH_THREAD + PyGILState_Release(__pyx_gilstate_save); + #endif + } + __pyx_r = -1; + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1324 + * + * @cname('__pyx_memoryview_broadcast_leading') + * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< + * int ndim, + * int ndim_other) nogil: + */ + +static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim, int __pyx_v_ndim_other) { + int __pyx_v_i; + int __pyx_v_offset; + int __pyx_t_1; + int __pyx_t_2; + + /* "View.MemoryView":1328 + * int ndim_other) nogil: + * cdef int i + * cdef int offset = ndim_other - ndim # <<<<<<<<<<<<<< + * + * for i in range(ndim - 1, -1, -1): + */ + __pyx_v_offset = (__pyx_v_ndim_other - __pyx_v_ndim); + + /* "View.MemoryView":1330 + * cdef int offset = ndim_other - ndim + * + * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< + * mslice.shape[i + offset] = mslice.shape[i] + * mslice.strides[i + offset] = mslice.strides[i] + */ + for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1L; __pyx_t_1-=1) { + __pyx_v_i = __pyx_t_1; + + /* "View.MemoryView":1331 + * + * for i in range(ndim - 1, -1, -1): + * mslice.shape[i + offset] = mslice.shape[i] # <<<<<<<<<<<<<< + * mslice.strides[i + offset] = mslice.strides[i] + * mslice.suboffsets[i + offset] = mslice.suboffsets[i] + */ + (__pyx_v_mslice->shape[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->shape[__pyx_v_i]); + + /* "View.MemoryView":1332 + * for i in range(ndim - 1, -1, -1): + * mslice.shape[i + offset] = mslice.shape[i] + * mslice.strides[i + offset] = mslice.strides[i] # <<<<<<<<<<<<<< + * mslice.suboffsets[i + offset] = mslice.suboffsets[i] + * + */ + (__pyx_v_mslice->strides[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->strides[__pyx_v_i]); + + /* "View.MemoryView":1333 + * mslice.shape[i + offset] = mslice.shape[i] + * mslice.strides[i + offset] = mslice.strides[i] + * mslice.suboffsets[i + offset] = mslice.suboffsets[i] # <<<<<<<<<<<<<< + * + * for i in range(offset): + */ + (__pyx_v_mslice->suboffsets[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->suboffsets[__pyx_v_i]); + } + + /* "View.MemoryView":1335 + * mslice.suboffsets[i + offset] = mslice.suboffsets[i] + * + * for i in range(offset): # <<<<<<<<<<<<<< + * mslice.shape[i] = 1 + * mslice.strides[i] = mslice.strides[0] + */ + __pyx_t_1 = __pyx_v_offset; + for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2+=1) { + __pyx_v_i = __pyx_t_2; + + /* "View.MemoryView":1336 + * + * for i in range(offset): + * mslice.shape[i] = 1 # <<<<<<<<<<<<<< + * mslice.strides[i] = mslice.strides[0] + * mslice.suboffsets[i] = -1 + */ + (__pyx_v_mslice->shape[__pyx_v_i]) = 1; + + /* "View.MemoryView":1337 + * for i in range(offset): + * mslice.shape[i] = 1 + * mslice.strides[i] = mslice.strides[0] # <<<<<<<<<<<<<< + * mslice.suboffsets[i] = -1 + * + */ + (__pyx_v_mslice->strides[__pyx_v_i]) = (__pyx_v_mslice->strides[0]); + + /* "View.MemoryView":1338 + * mslice.shape[i] = 1 + * mslice.strides[i] = mslice.strides[0] + * mslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< + * + * + */ + (__pyx_v_mslice->suboffsets[__pyx_v_i]) = -1L; + } + + /* "View.MemoryView":1324 + * + * @cname('__pyx_memoryview_broadcast_leading') + * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< + * int ndim, + * int ndim_other) nogil: + */ + + /* function exit code */ +} + +/* "View.MemoryView":1346 + * + * @cname('__pyx_memoryview_refcount_copying') + * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< + * int ndim, bint inc) nogil: + * + */ + +static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_dtype_is_object, int __pyx_v_ndim, int __pyx_v_inc) { + int __pyx_t_1; + + /* "View.MemoryView":1350 + * + * + * if dtype_is_object: # <<<<<<<<<<<<<< + * refcount_objects_in_slice_with_gil(dst.data, dst.shape, + * dst.strides, ndim, inc) + */ + __pyx_t_1 = (__pyx_v_dtype_is_object != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1351 + * + * if dtype_is_object: + * refcount_objects_in_slice_with_gil(dst.data, dst.shape, # <<<<<<<<<<<<<< + * dst.strides, ndim, inc) + * + */ + __pyx_memoryview_refcount_objects_in_slice_with_gil(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_inc); + + /* "View.MemoryView":1350 + * + * + * if dtype_is_object: # <<<<<<<<<<<<<< + * refcount_objects_in_slice_with_gil(dst.data, dst.shape, + * dst.strides, ndim, inc) + */ + } + + /* "View.MemoryView":1346 + * + * @cname('__pyx_memoryview_refcount_copying') + * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< + * int ndim, bint inc) nogil: + * + */ + + /* function exit code */ +} + +/* "View.MemoryView":1355 + * + * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') + * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * bint inc) with gil: + */ + +static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { + __Pyx_RefNannyDeclarations + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + #endif + __Pyx_RefNannySetupContext("refcount_objects_in_slice_with_gil", 0); + + /* "View.MemoryView":1358 + * Py_ssize_t *strides, int ndim, + * bint inc) with gil: + * refcount_objects_in_slice(data, shape, strides, ndim, inc) # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_refcount_objects_in_slice') + */ + __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, __pyx_v_shape, __pyx_v_strides, __pyx_v_ndim, __pyx_v_inc); + + /* "View.MemoryView":1355 + * + * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') + * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * bint inc) with gil: + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + #ifdef WITH_THREAD + PyGILState_Release(__pyx_gilstate_save); + #endif +} + +/* "View.MemoryView":1361 + * + * @cname('__pyx_memoryview_refcount_objects_in_slice') + * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, bint inc): + * cdef Py_ssize_t i + */ + +static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { + CYTHON_UNUSED Py_ssize_t __pyx_v_i; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + Py_ssize_t __pyx_t_2; + int __pyx_t_3; + __Pyx_RefNannySetupContext("refcount_objects_in_slice", 0); + + /* "View.MemoryView":1365 + * cdef Py_ssize_t i + * + * for i in range(shape[0]): # <<<<<<<<<<<<<< + * if ndim == 1: + * if inc: + */ + __pyx_t_1 = (__pyx_v_shape[0]); + for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2+=1) { + __pyx_v_i = __pyx_t_2; + + /* "View.MemoryView":1366 + * + * for i in range(shape[0]): + * if ndim == 1: # <<<<<<<<<<<<<< + * if inc: + * Py_INCREF(( data)[0]) + */ + __pyx_t_3 = ((__pyx_v_ndim == 1) != 0); + if (__pyx_t_3) { + + /* "View.MemoryView":1367 + * for i in range(shape[0]): + * if ndim == 1: + * if inc: # <<<<<<<<<<<<<< + * Py_INCREF(( data)[0]) + * else: + */ + __pyx_t_3 = (__pyx_v_inc != 0); + if (__pyx_t_3) { + + /* "View.MemoryView":1368 + * if ndim == 1: + * if inc: + * Py_INCREF(( data)[0]) # <<<<<<<<<<<<<< + * else: + * Py_DECREF(( data)[0]) + */ + Py_INCREF((((PyObject **)__pyx_v_data)[0])); + + /* "View.MemoryView":1367 + * for i in range(shape[0]): + * if ndim == 1: + * if inc: # <<<<<<<<<<<<<< + * Py_INCREF(( data)[0]) + * else: + */ + goto __pyx_L6; + } + + /* "View.MemoryView":1370 + * Py_INCREF(( data)[0]) + * else: + * Py_DECREF(( data)[0]) # <<<<<<<<<<<<<< + * else: + * refcount_objects_in_slice(data, shape + 1, strides + 1, + */ + /*else*/ { + Py_DECREF((((PyObject **)__pyx_v_data)[0])); + } + __pyx_L6:; + + /* "View.MemoryView":1366 + * + * for i in range(shape[0]): + * if ndim == 1: # <<<<<<<<<<<<<< + * if inc: + * Py_INCREF(( data)[0]) + */ + goto __pyx_L5; + } + + /* "View.MemoryView":1372 + * Py_DECREF(( data)[0]) + * else: + * refcount_objects_in_slice(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< + * ndim - 1, inc) + * + */ + /*else*/ { + + /* "View.MemoryView":1373 + * else: + * refcount_objects_in_slice(data, shape + 1, strides + 1, + * ndim - 1, inc) # <<<<<<<<<<<<<< + * + * data += strides[0] + */ + __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_inc); + } + __pyx_L5:; + + /* "View.MemoryView":1375 + * ndim - 1, inc) + * + * data += strides[0] # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_data = (__pyx_v_data + (__pyx_v_strides[0])); + } + + /* "View.MemoryView":1361 + * + * @cname('__pyx_memoryview_refcount_objects_in_slice') + * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, bint inc): + * cdef Py_ssize_t i + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":1381 + * + * @cname('__pyx_memoryview_slice_assign_scalar') + * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< + * size_t itemsize, void *item, + * bint dtype_is_object) nogil: + */ + +static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item, int __pyx_v_dtype_is_object) { + + /* "View.MemoryView":1384 + * size_t itemsize, void *item, + * bint dtype_is_object) nogil: + * refcount_copying(dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< + * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, + * itemsize, item) + */ + __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 0); + + /* "View.MemoryView":1385 + * bint dtype_is_object) nogil: + * refcount_copying(dst, dtype_is_object, ndim, False) + * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, # <<<<<<<<<<<<<< + * itemsize, item) + * refcount_copying(dst, dtype_is_object, ndim, True) + */ + __pyx_memoryview__slice_assign_scalar(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_itemsize, __pyx_v_item); + + /* "View.MemoryView":1387 + * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, + * itemsize, item) + * refcount_copying(dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< + * + * + */ + __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 1); + + /* "View.MemoryView":1381 + * + * @cname('__pyx_memoryview_slice_assign_scalar') + * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< + * size_t itemsize, void *item, + * bint dtype_is_object) nogil: + */ + + /* function exit code */ +} + +/* "View.MemoryView":1391 + * + * @cname('__pyx_memoryview__slice_assign_scalar') + * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * size_t itemsize, void *item) nogil: + */ + +static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item) { + CYTHON_UNUSED Py_ssize_t __pyx_v_i; + Py_ssize_t __pyx_v_stride; + Py_ssize_t __pyx_v_extent; + int __pyx_t_1; + Py_ssize_t __pyx_t_2; + Py_ssize_t __pyx_t_3; + + /* "View.MemoryView":1395 + * size_t itemsize, void *item) nogil: + * cdef Py_ssize_t i + * cdef Py_ssize_t stride = strides[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t extent = shape[0] + * + */ + __pyx_v_stride = (__pyx_v_strides[0]); + + /* "View.MemoryView":1396 + * cdef Py_ssize_t i + * cdef Py_ssize_t stride = strides[0] + * cdef Py_ssize_t extent = shape[0] # <<<<<<<<<<<<<< + * + * if ndim == 1: + */ + __pyx_v_extent = (__pyx_v_shape[0]); + + /* "View.MemoryView":1398 + * cdef Py_ssize_t extent = shape[0] + * + * if ndim == 1: # <<<<<<<<<<<<<< + * for i in range(extent): + * memcpy(data, item, itemsize) + */ + __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1399 + * + * if ndim == 1: + * for i in range(extent): # <<<<<<<<<<<<<< + * memcpy(data, item, itemsize) + * data += stride + */ + __pyx_t_2 = __pyx_v_extent; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; + + /* "View.MemoryView":1400 + * if ndim == 1: + * for i in range(extent): + * memcpy(data, item, itemsize) # <<<<<<<<<<<<<< + * data += stride + * else: + */ + memcpy(__pyx_v_data, __pyx_v_item, __pyx_v_itemsize); + + /* "View.MemoryView":1401 + * for i in range(extent): + * memcpy(data, item, itemsize) + * data += stride # <<<<<<<<<<<<<< + * else: + * for i in range(extent): + */ + __pyx_v_data = (__pyx_v_data + __pyx_v_stride); + } + + /* "View.MemoryView":1398 + * cdef Py_ssize_t extent = shape[0] + * + * if ndim == 1: # <<<<<<<<<<<<<< + * for i in range(extent): + * memcpy(data, item, itemsize) + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1403 + * data += stride + * else: + * for i in range(extent): # <<<<<<<<<<<<<< + * _slice_assign_scalar(data, shape + 1, strides + 1, + * ndim - 1, itemsize, item) + */ + /*else*/ { + __pyx_t_2 = __pyx_v_extent; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; + + /* "View.MemoryView":1404 + * else: + * for i in range(extent): + * _slice_assign_scalar(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< + * ndim - 1, itemsize, item) + * data += stride + */ + __pyx_memoryview__slice_assign_scalar(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize, __pyx_v_item); + + /* "View.MemoryView":1406 + * _slice_assign_scalar(data, shape + 1, strides + 1, + * ndim - 1, itemsize, item) + * data += stride # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_data = (__pyx_v_data + __pyx_v_stride); + } + } + __pyx_L3:; + + /* "View.MemoryView":1391 + * + * @cname('__pyx_memoryview__slice_assign_scalar') + * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * size_t itemsize, void *item) nogil: + */ + + /* function exit code */ +} +static struct __pyx_vtabstruct_array __pyx_vtable_array; + +static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k) { + struct __pyx_array_obj *p; + PyObject *o; + if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { + o = (*t->tp_alloc)(t, 0); + } else { + o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); + } + if (unlikely(!o)) return 0; + p = ((struct __pyx_array_obj *)o); + p->__pyx_vtab = __pyx_vtabptr_array; + p->mode = ((PyObject*)Py_None); Py_INCREF(Py_None); + p->_format = ((PyObject*)Py_None); Py_INCREF(Py_None); + if (unlikely(__pyx_array___cinit__(o, a, k) < 0)) goto bad; + return o; + bad: + Py_DECREF(o); o = 0; + return NULL; +} + +static void __pyx_tp_dealloc_array(PyObject *o) { + struct __pyx_array_obj *p = (struct __pyx_array_obj *)o; + #if PY_VERSION_HEX >= 0x030400a1 + if (unlikely(Py_TYPE(o)->tp_finalize) && (!PyType_IS_GC(Py_TYPE(o)) || !_PyGC_FINALIZED(o))) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + { + PyObject *etype, *eval, *etb; + PyErr_Fetch(&etype, &eval, &etb); + ++Py_REFCNT(o); + __pyx_array___dealloc__(o); + --Py_REFCNT(o); + PyErr_Restore(etype, eval, etb); + } + Py_CLEAR(p->mode); + Py_CLEAR(p->_format); + (*Py_TYPE(o)->tp_free)(o); +} +static PyObject *__pyx_sq_item_array(PyObject *o, Py_ssize_t i) { + PyObject *r; + PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; + r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); + Py_DECREF(x); + return r; +} + +static int __pyx_mp_ass_subscript_array(PyObject *o, PyObject *i, PyObject *v) { + if (v) { + return __pyx_array___setitem__(o, i, v); + } + else { + PyErr_Format(PyExc_NotImplementedError, + "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); + return -1; + } +} + +static PyObject *__pyx_tp_getattro_array(PyObject *o, PyObject *n) { + PyObject *v = PyObject_GenericGetAttr(o, n); + if (!v && PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Clear(); + v = __pyx_array___getattr__(o, n); + } + return v; +} + +static PyObject *__pyx_getprop___pyx_array_memview(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(o); +} + +static PyMethodDef __pyx_methods_array[] = { + {"__getattr__", (PyCFunction)__pyx_array___getattr__, METH_O|METH_COEXIST, 0}, + {0, 0, 0, 0} +}; + +static struct PyGetSetDef __pyx_getsets_array[] = { + {(char *)"memview", __pyx_getprop___pyx_array_memview, 0, (char *)0, 0}, + {0, 0, 0, 0, 0} +}; + +static PySequenceMethods __pyx_tp_as_sequence_array = { + 0, /*sq_length*/ + 0, /*sq_concat*/ + 0, /*sq_repeat*/ + __pyx_sq_item_array, /*sq_item*/ + 0, /*sq_slice*/ + 0, /*sq_ass_item*/ + 0, /*sq_ass_slice*/ + 0, /*sq_contains*/ + 0, /*sq_inplace_concat*/ + 0, /*sq_inplace_repeat*/ +}; + +static PyMappingMethods __pyx_tp_as_mapping_array = { + 0, /*mp_length*/ + __pyx_array___getitem__, /*mp_subscript*/ + __pyx_mp_ass_subscript_array, /*mp_ass_subscript*/ +}; + +static PyBufferProcs __pyx_tp_as_buffer_array = { + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getreadbuffer*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getwritebuffer*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getsegcount*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getcharbuffer*/ + #endif + __pyx_array_getbuffer, /*bf_getbuffer*/ + 0, /*bf_releasebuffer*/ +}; + +static PyTypeObject __pyx_type___pyx_array = { + PyVarObject_HEAD_INIT(0, 0) + "gensim.models.nmf_pgd.array", /*tp_name*/ + sizeof(struct __pyx_array_obj), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc_array, /*tp_dealloc*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + 0, /*tp_repr*/ + 0, /*tp_as_number*/ + &__pyx_tp_as_sequence_array, /*tp_as_sequence*/ + &__pyx_tp_as_mapping_array, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + 0, /*tp_str*/ + __pyx_tp_getattro_array, /*tp_getattro*/ + 0, /*tp_setattro*/ + &__pyx_tp_as_buffer_array, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/ + 0, /*tp_doc*/ + 0, /*tp_traverse*/ + 0, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods_array, /*tp_methods*/ + 0, /*tp_members*/ + __pyx_getsets_array, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + 0, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new_array, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif +}; + +static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { + struct __pyx_MemviewEnum_obj *p; + PyObject *o; + if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { + o = (*t->tp_alloc)(t, 0); + } else { + o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); + } + if (unlikely(!o)) return 0; + p = ((struct __pyx_MemviewEnum_obj *)o); + p->name = Py_None; Py_INCREF(Py_None); + return o; +} + +static void __pyx_tp_dealloc_Enum(PyObject *o) { + struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; + #if PY_VERSION_HEX >= 0x030400a1 + if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + PyObject_GC_UnTrack(o); + Py_CLEAR(p->name); + (*Py_TYPE(o)->tp_free)(o); +} + +static int __pyx_tp_traverse_Enum(PyObject *o, visitproc v, void *a) { + int e; + struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; + if (p->name) { + e = (*v)(p->name, a); if (e) return e; + } + return 0; +} + +static int __pyx_tp_clear_Enum(PyObject *o) { + PyObject* tmp; + struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; + tmp = ((PyObject*)p->name); + p->name = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + return 0; +} + +static PyMethodDef __pyx_methods_Enum[] = { + {0, 0, 0, 0} +}; + +static PyTypeObject __pyx_type___pyx_MemviewEnum = { + PyVarObject_HEAD_INIT(0, 0) + "gensim.models.nmf_pgd.Enum", /*tp_name*/ + sizeof(struct __pyx_MemviewEnum_obj), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc_Enum, /*tp_dealloc*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + __pyx_MemviewEnum___repr__, /*tp_repr*/ + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + 0, /*tp_str*/ + 0, /*tp_getattro*/ + 0, /*tp_setattro*/ + 0, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ + 0, /*tp_doc*/ + __pyx_tp_traverse_Enum, /*tp_traverse*/ + __pyx_tp_clear_Enum, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods_Enum, /*tp_methods*/ + 0, /*tp_members*/ + 0, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + __pyx_MemviewEnum___init__, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new_Enum, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif +}; +static struct __pyx_vtabstruct_memoryview __pyx_vtable_memoryview; + +static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k) { + struct __pyx_memoryview_obj *p; + PyObject *o; + if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { + o = (*t->tp_alloc)(t, 0); + } else { + o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); + } + if (unlikely(!o)) return 0; + p = ((struct __pyx_memoryview_obj *)o); + p->__pyx_vtab = __pyx_vtabptr_memoryview; + p->obj = Py_None; Py_INCREF(Py_None); + p->_size = Py_None; Py_INCREF(Py_None); + p->_array_interface = Py_None; Py_INCREF(Py_None); + p->view.obj = NULL; + if (unlikely(__pyx_memoryview___cinit__(o, a, k) < 0)) goto bad; + return o; + bad: + Py_DECREF(o); o = 0; + return NULL; +} + +static void __pyx_tp_dealloc_memoryview(PyObject *o) { + struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; + #if PY_VERSION_HEX >= 0x030400a1 + if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + PyObject_GC_UnTrack(o); + { + PyObject *etype, *eval, *etb; + PyErr_Fetch(&etype, &eval, &etb); + ++Py_REFCNT(o); + __pyx_memoryview___dealloc__(o); + --Py_REFCNT(o); + PyErr_Restore(etype, eval, etb); + } + Py_CLEAR(p->obj); + Py_CLEAR(p->_size); + Py_CLEAR(p->_array_interface); + (*Py_TYPE(o)->tp_free)(o); +} + +static int __pyx_tp_traverse_memoryview(PyObject *o, visitproc v, void *a) { + int e; + struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; + if (p->obj) { + e = (*v)(p->obj, a); if (e) return e; + } + if (p->_size) { + e = (*v)(p->_size, a); if (e) return e; + } + if (p->_array_interface) { + e = (*v)(p->_array_interface, a); if (e) return e; + } + if (p->view.obj) { + e = (*v)(p->view.obj, a); if (e) return e; + } + return 0; +} + +static int __pyx_tp_clear_memoryview(PyObject *o) { + PyObject* tmp; + struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; + tmp = ((PyObject*)p->obj); + p->obj = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + tmp = ((PyObject*)p->_size); + p->_size = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + tmp = ((PyObject*)p->_array_interface); + p->_array_interface = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + Py_CLEAR(p->view.obj); + return 0; +} +static PyObject *__pyx_sq_item_memoryview(PyObject *o, Py_ssize_t i) { + PyObject *r; + PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; + r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); + Py_DECREF(x); + return r; +} + +static int __pyx_mp_ass_subscript_memoryview(PyObject *o, PyObject *i, PyObject *v) { + if (v) { + return __pyx_memoryview___setitem__(o, i, v); + } + else { + PyErr_Format(PyExc_NotImplementedError, + "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); + return -1; + } +} + +static PyObject *__pyx_getprop___pyx_memoryview_T(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_base(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_shape(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_strides(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_suboffsets(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_ndim(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_itemsize(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_nbytes(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_size(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(o); +} + +static PyMethodDef __pyx_methods_memoryview[] = { + {"is_c_contig", (PyCFunction)__pyx_memoryview_is_c_contig, METH_NOARGS, 0}, + {"is_f_contig", (PyCFunction)__pyx_memoryview_is_f_contig, METH_NOARGS, 0}, + {"copy", (PyCFunction)__pyx_memoryview_copy, METH_NOARGS, 0}, + {"copy_fortran", (PyCFunction)__pyx_memoryview_copy_fortran, METH_NOARGS, 0}, + {0, 0, 0, 0} +}; + +static struct PyGetSetDef __pyx_getsets_memoryview[] = { + {(char *)"T", __pyx_getprop___pyx_memoryview_T, 0, (char *)0, 0}, + {(char *)"base", __pyx_getprop___pyx_memoryview_base, 0, (char *)0, 0}, + {(char *)"shape", __pyx_getprop___pyx_memoryview_shape, 0, (char *)0, 0}, + {(char *)"strides", __pyx_getprop___pyx_memoryview_strides, 0, (char *)0, 0}, + {(char *)"suboffsets", __pyx_getprop___pyx_memoryview_suboffsets, 0, (char *)0, 0}, + {(char *)"ndim", __pyx_getprop___pyx_memoryview_ndim, 0, (char *)0, 0}, + {(char *)"itemsize", __pyx_getprop___pyx_memoryview_itemsize, 0, (char *)0, 0}, + {(char *)"nbytes", __pyx_getprop___pyx_memoryview_nbytes, 0, (char *)0, 0}, + {(char *)"size", __pyx_getprop___pyx_memoryview_size, 0, (char *)0, 0}, + {0, 0, 0, 0, 0} +}; + +static PySequenceMethods __pyx_tp_as_sequence_memoryview = { + __pyx_memoryview___len__, /*sq_length*/ + 0, /*sq_concat*/ + 0, /*sq_repeat*/ + __pyx_sq_item_memoryview, /*sq_item*/ + 0, /*sq_slice*/ + 0, /*sq_ass_item*/ + 0, /*sq_ass_slice*/ + 0, /*sq_contains*/ + 0, /*sq_inplace_concat*/ + 0, /*sq_inplace_repeat*/ +}; + +static PyMappingMethods __pyx_tp_as_mapping_memoryview = { + __pyx_memoryview___len__, /*mp_length*/ + __pyx_memoryview___getitem__, /*mp_subscript*/ + __pyx_mp_ass_subscript_memoryview, /*mp_ass_subscript*/ +}; + +static PyBufferProcs __pyx_tp_as_buffer_memoryview = { + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getreadbuffer*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getwritebuffer*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getsegcount*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getcharbuffer*/ + #endif + __pyx_memoryview_getbuffer, /*bf_getbuffer*/ + 0, /*bf_releasebuffer*/ +}; + +static PyTypeObject __pyx_type___pyx_memoryview = { + PyVarObject_HEAD_INIT(0, 0) + "gensim.models.nmf_pgd.memoryview", /*tp_name*/ + sizeof(struct __pyx_memoryview_obj), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc_memoryview, /*tp_dealloc*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + __pyx_memoryview___repr__, /*tp_repr*/ + 0, /*tp_as_number*/ + &__pyx_tp_as_sequence_memoryview, /*tp_as_sequence*/ + &__pyx_tp_as_mapping_memoryview, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + __pyx_memoryview___str__, /*tp_str*/ + 0, /*tp_getattro*/ + 0, /*tp_setattro*/ + &__pyx_tp_as_buffer_memoryview, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ + 0, /*tp_doc*/ + __pyx_tp_traverse_memoryview, /*tp_traverse*/ + __pyx_tp_clear_memoryview, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods_memoryview, /*tp_methods*/ + 0, /*tp_members*/ + __pyx_getsets_memoryview, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + 0, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new_memoryview, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif +}; +static struct __pyx_vtabstruct__memoryviewslice __pyx_vtable__memoryviewslice; + +static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k) { + struct __pyx_memoryviewslice_obj *p; + PyObject *o = __pyx_tp_new_memoryview(t, a, k); + if (unlikely(!o)) return 0; + p = ((struct __pyx_memoryviewslice_obj *)o); + p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_memoryview*)__pyx_vtabptr__memoryviewslice; + p->from_object = Py_None; Py_INCREF(Py_None); + p->from_slice.memview = NULL; + return o; +} + +static void __pyx_tp_dealloc__memoryviewslice(PyObject *o) { + struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; + #if PY_VERSION_HEX >= 0x030400a1 + if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + PyObject_GC_UnTrack(o); + { + PyObject *etype, *eval, *etb; + PyErr_Fetch(&etype, &eval, &etb); + ++Py_REFCNT(o); + __pyx_memoryviewslice___dealloc__(o); + --Py_REFCNT(o); + PyErr_Restore(etype, eval, etb); + } + Py_CLEAR(p->from_object); + PyObject_GC_Track(o); + __pyx_tp_dealloc_memoryview(o); +} + +static int __pyx_tp_traverse__memoryviewslice(PyObject *o, visitproc v, void *a) { + int e; + struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; + e = __pyx_tp_traverse_memoryview(o, v, a); if (e) return e; + if (p->from_object) { + e = (*v)(p->from_object, a); if (e) return e; + } + return 0; +} + +static int __pyx_tp_clear__memoryviewslice(PyObject *o) { + PyObject* tmp; + struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; + __pyx_tp_clear_memoryview(o); + tmp = ((PyObject*)p->from_object); + p->from_object = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + __PYX_XDEC_MEMVIEW(&p->from_slice, 1); + return 0; +} + +static PyObject *__pyx_getprop___pyx_memoryviewslice_base(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(o); +} + +static PyMethodDef __pyx_methods__memoryviewslice[] = { + {0, 0, 0, 0} +}; + +static struct PyGetSetDef __pyx_getsets__memoryviewslice[] = { + {(char *)"base", __pyx_getprop___pyx_memoryviewslice_base, 0, (char *)0, 0}, + {0, 0, 0, 0, 0} +}; + +static PyTypeObject __pyx_type___pyx_memoryviewslice = { + PyVarObject_HEAD_INIT(0, 0) + "gensim.models.nmf_pgd._memoryviewslice", /*tp_name*/ + sizeof(struct __pyx_memoryviewslice_obj), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc__memoryviewslice, /*tp_dealloc*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + #if CYTHON_COMPILING_IN_PYPY + __pyx_memoryview___repr__, /*tp_repr*/ + #else + 0, /*tp_repr*/ + #endif + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + #if CYTHON_COMPILING_IN_PYPY + __pyx_memoryview___str__, /*tp_str*/ + #else + 0, /*tp_str*/ + #endif + 0, /*tp_getattro*/ + 0, /*tp_setattro*/ + 0, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ + "Internal class for passing memoryview slices to Python", /*tp_doc*/ + __pyx_tp_traverse__memoryviewslice, /*tp_traverse*/ + __pyx_tp_clear__memoryviewslice, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods__memoryviewslice, /*tp_methods*/ + 0, /*tp_members*/ + __pyx_getsets__memoryviewslice, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + 0, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new__memoryviewslice, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif +}; + +static PyMethodDef __pyx_methods[] = { + {0, 0, 0, 0} +}; + +#if PY_MAJOR_VERSION >= 3 +static struct PyModuleDef __pyx_moduledef = { + #if PY_VERSION_HEX < 0x03020000 + { PyObject_HEAD_INIT(NULL) NULL, 0, NULL }, + #else + PyModuleDef_HEAD_INIT, + #endif + "nmf_pgd", + 0, /* m_doc */ + -1, /* m_size */ + __pyx_methods /* m_methods */, + NULL, /* m_reload */ + NULL, /* m_traverse */ + NULL, /* m_clear */ + NULL /* m_free */ +}; +#endif + +static __Pyx_StringTabEntry __pyx_string_tab[] = { + {&__pyx_n_s_ASCII, __pyx_k_ASCII, sizeof(__pyx_k_ASCII), 0, 0, 1, 1}, + {&__pyx_kp_s_Buffer_view_does_not_expose_stri, __pyx_k_Buffer_view_does_not_expose_stri, sizeof(__pyx_k_Buffer_view_does_not_expose_stri), 0, 0, 1, 0}, + {&__pyx_kp_s_Can_only_create_a_buffer_that_is, __pyx_k_Can_only_create_a_buffer_that_is, sizeof(__pyx_k_Can_only_create_a_buffer_that_is), 0, 0, 1, 0}, + {&__pyx_kp_s_Cannot_index_with_type_s, __pyx_k_Cannot_index_with_type_s, sizeof(__pyx_k_Cannot_index_with_type_s), 0, 0, 1, 0}, + {&__pyx_n_s_Ellipsis, __pyx_k_Ellipsis, sizeof(__pyx_k_Ellipsis), 0, 0, 1, 1}, + {&__pyx_kp_s_Empty_shape_tuple_for_cython_arr, __pyx_k_Empty_shape_tuple_for_cython_arr, sizeof(__pyx_k_Empty_shape_tuple_for_cython_arr), 0, 0, 1, 0}, + {&__pyx_n_s_IndexError, __pyx_k_IndexError, sizeof(__pyx_k_IndexError), 0, 0, 1, 1}, + {&__pyx_kp_s_Indirect_dimensions_not_supporte, __pyx_k_Indirect_dimensions_not_supporte, sizeof(__pyx_k_Indirect_dimensions_not_supporte), 0, 0, 1, 0}, + {&__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_k_Invalid_mode_expected_c_or_fortr, sizeof(__pyx_k_Invalid_mode_expected_c_or_fortr), 0, 0, 1, 0}, + {&__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_k_Invalid_shape_in_axis_d_d, sizeof(__pyx_k_Invalid_shape_in_axis_d_d), 0, 0, 1, 0}, + {&__pyx_n_s_MemoryError, __pyx_k_MemoryError, sizeof(__pyx_k_MemoryError), 0, 0, 1, 1}, + {&__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_k_MemoryView_of_r_at_0x_x, sizeof(__pyx_k_MemoryView_of_r_at_0x_x), 0, 0, 1, 0}, + {&__pyx_kp_s_MemoryView_of_r_object, __pyx_k_MemoryView_of_r_object, sizeof(__pyx_k_MemoryView_of_r_object), 0, 0, 1, 0}, + {&__pyx_n_b_O, __pyx_k_O, sizeof(__pyx_k_O), 0, 0, 0, 1}, + {&__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_k_Out_of_bounds_on_buffer_access_a, sizeof(__pyx_k_Out_of_bounds_on_buffer_access_a), 0, 0, 1, 0}, + {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, + {&__pyx_kp_s_Unable_to_convert_item_to_object, __pyx_k_Unable_to_convert_item_to_object, sizeof(__pyx_k_Unable_to_convert_item_to_object), 0, 0, 1, 0}, + {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, + {&__pyx_n_s_WtW, __pyx_k_WtW, sizeof(__pyx_k_WtW), 0, 0, 1, 1}, + {&__pyx_n_s_Wt_v_minus_r, __pyx_k_Wt_v_minus_r, sizeof(__pyx_k_Wt_v_minus_r), 0, 0, 1, 1}, + {&__pyx_n_s_allocate_buffer, __pyx_k_allocate_buffer, sizeof(__pyx_k_allocate_buffer), 0, 0, 1, 1}, + {&__pyx_n_s_base, __pyx_k_base, sizeof(__pyx_k_base), 0, 0, 1, 1}, + {&__pyx_n_s_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 0, 1, 1}, + {&__pyx_n_u_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 1, 0, 1}, + {&__pyx_n_s_class, __pyx_k_class, sizeof(__pyx_k_class), 0, 0, 1, 1}, + {&__pyx_n_s_component_idx_1, __pyx_k_component_idx_1, sizeof(__pyx_k_component_idx_1), 0, 0, 1, 1}, + {&__pyx_n_s_component_idx_2, __pyx_k_component_idx_2, sizeof(__pyx_k_component_idx_2), 0, 0, 1, 1}, + {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, + {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, + {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, + {&__pyx_n_s_encode, __pyx_k_encode, sizeof(__pyx_k_encode), 0, 0, 1, 1}, + {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, + {&__pyx_n_s_error, __pyx_k_error, sizeof(__pyx_k_error), 0, 0, 1, 1}, + {&__pyx_n_s_flags, __pyx_k_flags, sizeof(__pyx_k_flags), 0, 0, 1, 1}, + {&__pyx_n_s_format, __pyx_k_format, sizeof(__pyx_k_format), 0, 0, 1, 1}, + {&__pyx_n_s_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 0, 1, 1}, + {&__pyx_n_u_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 1, 0, 1}, + {&__pyx_n_s_gensim_models_nmf_pgd, __pyx_k_gensim_models_nmf_pgd, sizeof(__pyx_k_gensim_models_nmf_pgd), 0, 0, 1, 1}, + {&__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_k_got_differing_extents_in_dimensi, sizeof(__pyx_k_got_differing_extents_in_dimensi), 0, 0, 1, 0}, + {&__pyx_n_s_grad, __pyx_k_grad, sizeof(__pyx_k_grad), 0, 0, 1, 1}, + {&__pyx_n_s_h, __pyx_k_h, sizeof(__pyx_k_h), 0, 0, 1, 1}, + {&__pyx_n_s_hessian, __pyx_k_hessian, sizeof(__pyx_k_hessian), 0, 0, 1, 1}, + {&__pyx_kp_s_home_anotherbugmaster_Documents, __pyx_k_home_anotherbugmaster_Documents, sizeof(__pyx_k_home_anotherbugmaster_Documents), 0, 0, 1, 0}, + {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, + {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, + {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, + {&__pyx_kp_s_itemsize_0_for_cython_array, __pyx_k_itemsize_0_for_cython_array, sizeof(__pyx_k_itemsize_0_for_cython_array), 0, 0, 1, 0}, + {&__pyx_n_s_kappa, __pyx_k_kappa, sizeof(__pyx_k_kappa), 0, 0, 1, 1}, + {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, + {&__pyx_n_s_memview, __pyx_k_memview, sizeof(__pyx_k_memview), 0, 0, 1, 1}, + {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, + {&__pyx_n_s_n_components, __pyx_k_n_components, sizeof(__pyx_k_n_components), 0, 0, 1, 1}, + {&__pyx_n_s_n_samples, __pyx_k_n_samples, sizeof(__pyx_k_n_samples), 0, 0, 1, 1}, + {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, + {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, + {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, + {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, + {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, + {&__pyx_n_s_projected_grad, __pyx_k_projected_grad, sizeof(__pyx_k_projected_grad), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_getbuffer, __pyx_k_pyx_getbuffer, sizeof(__pyx_k_pyx_getbuffer), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, + {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, + {&__pyx_n_s_sample_idx, __pyx_k_sample_idx, sizeof(__pyx_k_sample_idx), 0, 0, 1, 1}, + {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, + {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, + {&__pyx_n_s_solve_h, __pyx_k_solve_h, sizeof(__pyx_k_solve_h), 0, 0, 1, 1}, + {&__pyx_n_s_start, __pyx_k_start, sizeof(__pyx_k_start), 0, 0, 1, 1}, + {&__pyx_n_s_step, __pyx_k_step, sizeof(__pyx_k_step), 0, 0, 1, 1}, + {&__pyx_n_s_stop, __pyx_k_stop, sizeof(__pyx_k_stop), 0, 0, 1, 1}, + {&__pyx_kp_s_strided_and_direct, __pyx_k_strided_and_direct, sizeof(__pyx_k_strided_and_direct), 0, 0, 1, 0}, + {&__pyx_kp_s_strided_and_direct_or_indirect, __pyx_k_strided_and_direct_or_indirect, sizeof(__pyx_k_strided_and_direct_or_indirect), 0, 0, 1, 0}, + {&__pyx_kp_s_strided_and_indirect, __pyx_k_strided_and_indirect, sizeof(__pyx_k_strided_and_indirect), 0, 0, 1, 0}, + {&__pyx_n_s_struct, __pyx_k_struct, sizeof(__pyx_k_struct), 0, 0, 1, 1}, + {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, + {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, + {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, + {&__pyx_n_s_unpack, __pyx_k_unpack, sizeof(__pyx_k_unpack), 0, 0, 1, 1}, + {&__pyx_n_s_violation, __pyx_k_violation, sizeof(__pyx_k_violation), 0, 0, 1, 1}, + {0, 0, 0, 0, 0, 0, 0} +}; +static int __Pyx_InitCachedBuiltins(void) { + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 21, __pyx_L1_error) + __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 131, __pyx_L1_error) + __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 146, __pyx_L1_error) + __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 149, __pyx_L1_error) + __pyx_builtin_Ellipsis = __Pyx_GetBuiltinName(__pyx_n_s_Ellipsis); if (!__pyx_builtin_Ellipsis) __PYX_ERR(1, 396, __pyx_L1_error) + __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(1, 425, __pyx_L1_error) + __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) __PYX_ERR(1, 599, __pyx_L1_error) + __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) __PYX_ERR(1, 818, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +static int __Pyx_InitCachedConstants(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); + + /* "View.MemoryView":131 + * + * if not self.ndim: + * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< + * + * if itemsize <= 0: + */ + __pyx_tuple_ = PyTuple_Pack(1, __pyx_kp_s_Empty_shape_tuple_for_cython_arr); if (unlikely(!__pyx_tuple_)) __PYX_ERR(1, 131, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple_); + __Pyx_GIVEREF(__pyx_tuple_); + + /* "View.MemoryView":134 + * + * if itemsize <= 0: + * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< + * + * if not isinstance(format, bytes): + */ + __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_s_itemsize_0_for_cython_array); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(1, 134, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__2); + __Pyx_GIVEREF(__pyx_tuple__2); + + /* "View.MemoryView":137 + * + * if not isinstance(format, bytes): + * format = format.encode('ASCII') # <<<<<<<<<<<<<< + * self._format = format # keep a reference to the byte string + * self.format = self._format + */ + __pyx_tuple__3 = PyTuple_Pack(1, __pyx_n_s_ASCII); if (unlikely(!__pyx_tuple__3)) __PYX_ERR(1, 137, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__3); + __Pyx_GIVEREF(__pyx_tuple__3); + + /* "View.MemoryView":146 + * + * if not self._shape: + * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< + * + * + */ + __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_shape_and_str); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(1, 146, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__4); + __Pyx_GIVEREF(__pyx_tuple__4); + + /* "View.MemoryView":174 + * self.data = malloc(self.len) + * if not self.data: + * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< + * + * if self.dtype_is_object: + */ + __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_array_data); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(1, 174, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__5); + __Pyx_GIVEREF(__pyx_tuple__5); + + /* "View.MemoryView":190 + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): + * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< + * info.buf = self.data + * info.len = self.len + */ + __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_s_Can_only_create_a_buffer_that_is); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(1, 190, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__6); + __Pyx_GIVEREF(__pyx_tuple__6); + + /* "View.MemoryView":484 + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< + * else: + * if len(self.view.format) == 1: + */ + __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_Unable_to_convert_item_to_object); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(1, 484, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__7); + __Pyx_GIVEREF(__pyx_tuple__7); + + /* "View.MemoryView":556 + * if self.view.strides == NULL: + * + * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< + * + * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) + */ + __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_Buffer_view_does_not_expose_stri); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(1, 556, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__8); + __Pyx_GIVEREF(__pyx_tuple__8); + + /* "View.MemoryView":563 + * def suboffsets(self): + * if self.view.suboffsets == NULL: + * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< + * + * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) + */ + __pyx_tuple__9 = PyTuple_New(1); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(1, 563, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__9); + __Pyx_INCREF(__pyx_int_neg_1); + __Pyx_GIVEREF(__pyx_int_neg_1); + PyTuple_SET_ITEM(__pyx_tuple__9, 0, __pyx_int_neg_1); + __Pyx_GIVEREF(__pyx_tuple__9); + + /* "View.MemoryView":668 + * if item is Ellipsis: + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< + * seen_ellipsis = True + * else: + */ + __pyx_slice__10 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__10)) __PYX_ERR(1, 668, __pyx_L1_error) + __Pyx_GOTREF(__pyx_slice__10); + __Pyx_GIVEREF(__pyx_slice__10); + + /* "View.MemoryView":671 + * seen_ellipsis = True + * else: + * result.append(slice(None)) # <<<<<<<<<<<<<< + * have_slices = True + * else: + */ + __pyx_slice__11 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__11)) __PYX_ERR(1, 671, __pyx_L1_error) + __Pyx_GOTREF(__pyx_slice__11); + __Pyx_GIVEREF(__pyx_slice__11); + + /* "View.MemoryView":682 + * nslices = ndim - len(result) + * if nslices: + * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< + * + * return have_slices or nslices, tuple(result) + */ + __pyx_slice__12 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__12)) __PYX_ERR(1, 682, __pyx_L1_error) + __Pyx_GOTREF(__pyx_slice__12); + __Pyx_GIVEREF(__pyx_slice__12); + + /* "View.MemoryView":689 + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: + * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< + * + * + */ + __pyx_tuple__13 = PyTuple_Pack(1, __pyx_kp_s_Indirect_dimensions_not_supporte); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(1, 689, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__13); + __Pyx_GIVEREF(__pyx_tuple__13); + + /* "gensim/models/nmf_pgd.pyx":11 + * from cython.parallel import prange + * + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< + * cdef Py_ssize_t n_components = h.shape[0] + * cdef Py_ssize_t n_samples = h.shape[1] + */ + __pyx_tuple__14 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(0, 11, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__14); + __Pyx_GIVEREF(__pyx_tuple__14); + __pyx_codeobj__15 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__14, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_h, 11, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__15)) __PYX_ERR(0, 11, __pyx_L1_error) + + /* "View.MemoryView":282 + * return self.name + * + * cdef generic = Enum("") # <<<<<<<<<<<<<< + * cdef strided = Enum("") # default + * cdef indirect = Enum("") + */ + __pyx_tuple__16 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(1, 282, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__16); + __Pyx_GIVEREF(__pyx_tuple__16); + + /* "View.MemoryView":283 + * + * cdef generic = Enum("") + * cdef strided = Enum("") # default # <<<<<<<<<<<<<< + * cdef indirect = Enum("") + * + */ + __pyx_tuple__17 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__17)) __PYX_ERR(1, 283, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__17); + __Pyx_GIVEREF(__pyx_tuple__17); + + /* "View.MemoryView":284 + * cdef generic = Enum("") + * cdef strided = Enum("") # default + * cdef indirect = Enum("") # <<<<<<<<<<<<<< + * + * + */ + __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(1, 284, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__18); + __Pyx_GIVEREF(__pyx_tuple__18); + + /* "View.MemoryView":287 + * + * + * cdef contiguous = Enum("") # <<<<<<<<<<<<<< + * cdef indirect_contiguous = Enum("") + * + */ + __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(1, 287, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__19); + __Pyx_GIVEREF(__pyx_tuple__19); + + /* "View.MemoryView":288 + * + * cdef contiguous = Enum("") + * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< + * + * + */ + __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__20)) __PYX_ERR(1, 288, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__20); + __Pyx_GIVEREF(__pyx_tuple__20); + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_InitGlobals(void) { + /* InitThreads.init */ + #ifdef WITH_THREAD +PyEval_InitThreads(); +#endif + +if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 1, __pyx_L1_error) + + if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error); + __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) __PYX_ERR(0, 1, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +#if PY_MAJOR_VERSION < 3 +PyMODINIT_FUNC initnmf_pgd(void); /*proto*/ +PyMODINIT_FUNC initnmf_pgd(void) +#else +PyMODINIT_FUNC PyInit_nmf_pgd(void); /*proto*/ +PyMODINIT_FUNC PyInit_nmf_pgd(void) +#endif +{ + PyObject *__pyx_t_1 = NULL; + static PyThread_type_lock __pyx_t_2[8]; + __Pyx_RefNannyDeclarations + #if CYTHON_REFNANNY + __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); + if (!__Pyx_RefNanny) { + PyErr_Clear(); + __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); + if (!__Pyx_RefNanny) + Py_FatalError("failed to import 'refnanny' module"); + } + #endif + __Pyx_RefNannySetupContext("PyMODINIT_FUNC PyInit_nmf_pgd(void)", 0); + if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error) + #ifdef __Pyx_CyFunction_USED + if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_FusedFunction_USED + if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_Coroutine_USED + if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_Generator_USED + if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_StopAsyncIteration_USED + if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + /*--- Library function declarations ---*/ + /*--- Threads initialization code ---*/ + #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS + #ifdef WITH_THREAD /* Python build with threading support? */ + PyEval_InitThreads(); + #endif + #endif + /*--- Module creation code ---*/ + #if PY_MAJOR_VERSION < 3 + __pyx_m = Py_InitModule4("nmf_pgd", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); + #else + __pyx_m = PyModule_Create(&__pyx_moduledef); + #endif + if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) + Py_INCREF(__pyx_d); + __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) + #if CYTHON_COMPILING_IN_PYPY + Py_INCREF(__pyx_b); + #endif + if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error); + /*--- Initialize various global constants etc. ---*/ + if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) + if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + if (__pyx_module_is_main_gensim__models__nmf_pgd) { + if (PyObject_SetAttrString(__pyx_m, "__name__", __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error) + } + #if PY_MAJOR_VERSION >= 3 + { + PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error) + if (!PyDict_GetItemString(modules, "gensim.models.nmf_pgd")) { + if (unlikely(PyDict_SetItemString(modules, "gensim.models.nmf_pgd", __pyx_m) < 0)) __PYX_ERR(0, 1, __pyx_L1_error) + } + } + #endif + /*--- Builtin init code ---*/ + if (__Pyx_InitCachedBuiltins() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + /*--- Constants init code ---*/ + if (__Pyx_InitCachedConstants() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + /*--- Global init code ---*/ + generic = Py_None; Py_INCREF(Py_None); + strided = Py_None; Py_INCREF(Py_None); + indirect = Py_None; Py_INCREF(Py_None); + contiguous = Py_None; Py_INCREF(Py_None); + indirect_contiguous = Py_None; Py_INCREF(Py_None); + /*--- Variable export code ---*/ + /*--- Function export code ---*/ + /*--- Type init code ---*/ + __pyx_vtabptr_array = &__pyx_vtable_array; + __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview; + if (PyType_Ready(&__pyx_type___pyx_array) < 0) __PYX_ERR(1, 103, __pyx_L1_error) + __pyx_type___pyx_array.tp_print = 0; + if (__Pyx_SetVtable(__pyx_type___pyx_array.tp_dict, __pyx_vtabptr_array) < 0) __PYX_ERR(1, 103, __pyx_L1_error) + __pyx_array_type = &__pyx_type___pyx_array; + if (PyType_Ready(&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(1, 275, __pyx_L1_error) + __pyx_type___pyx_MemviewEnum.tp_print = 0; + __pyx_MemviewEnum_type = &__pyx_type___pyx_MemviewEnum; + __pyx_vtabptr_memoryview = &__pyx_vtable_memoryview; + __pyx_vtable_memoryview.get_item_pointer = (char *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_get_item_pointer; + __pyx_vtable_memoryview.is_slice = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_is_slice; + __pyx_vtable_memoryview.setitem_slice_assignment = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_slice_assignment; + __pyx_vtable_memoryview.setitem_slice_assign_scalar = (PyObject *(*)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_setitem_slice_assign_scalar; + __pyx_vtable_memoryview.setitem_indexed = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_indexed; + __pyx_vtable_memoryview.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryview_convert_item_to_object; + __pyx_vtable_memoryview.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryview_assign_item_from_object; + if (PyType_Ready(&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(1, 326, __pyx_L1_error) + __pyx_type___pyx_memoryview.tp_print = 0; + if (__Pyx_SetVtable(__pyx_type___pyx_memoryview.tp_dict, __pyx_vtabptr_memoryview) < 0) __PYX_ERR(1, 326, __pyx_L1_error) + __pyx_memoryview_type = &__pyx_type___pyx_memoryview; + __pyx_vtabptr__memoryviewslice = &__pyx_vtable__memoryviewslice; + __pyx_vtable__memoryviewslice.__pyx_base = *__pyx_vtabptr_memoryview; + __pyx_vtable__memoryviewslice.__pyx_base.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryviewslice_convert_item_to_object; + __pyx_vtable__memoryviewslice.__pyx_base.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryviewslice_assign_item_from_object; + __pyx_type___pyx_memoryviewslice.tp_base = __pyx_memoryview_type; + if (PyType_Ready(&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(1, 951, __pyx_L1_error) + __pyx_type___pyx_memoryviewslice.tp_print = 0; + if (__Pyx_SetVtable(__pyx_type___pyx_memoryviewslice.tp_dict, __pyx_vtabptr__memoryviewslice) < 0) __PYX_ERR(1, 951, __pyx_L1_error) + __pyx_memoryviewslice_type = &__pyx_type___pyx_memoryviewslice; + /*--- Type import code ---*/ + /*--- Variable import code ---*/ + /*--- Function import code ---*/ + /*--- Execution code ---*/ + #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) + if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + + /* "gensim/models/nmf_pgd.pyx":11 + * from cython.parallel import prange + * + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< + * cdef Py_ssize_t n_components = h.shape[0] + * cdef Py_ssize_t n_samples = h.shape[1] + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 11, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 11, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "gensim/models/nmf_pgd.pyx":1 + * # Author: Timofey Yefimov # <<<<<<<<<<<<<< + * + * # cython: cdivision=True + */ + __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "View.MemoryView":207 + * info.obj = self + * + * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< + * + * def __dealloc__(array self): + */ + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_array_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 207, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_array_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 207, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + PyType_Modified(__pyx_array_type); + + /* "View.MemoryView":282 + * return self.name + * + * cdef generic = Enum("") # <<<<<<<<<<<<<< + * cdef strided = Enum("") # default + * cdef indirect = Enum("") + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 282, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(generic); + __Pyx_DECREF_SET(generic, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":283 + * + * cdef generic = Enum("") + * cdef strided = Enum("") # default # <<<<<<<<<<<<<< + * cdef indirect = Enum("") + * + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 283, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(strided); + __Pyx_DECREF_SET(strided, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":284 + * cdef generic = Enum("") + * cdef strided = Enum("") # default + * cdef indirect = Enum("") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 284, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(indirect); + __Pyx_DECREF_SET(indirect, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":287 + * + * + * cdef contiguous = Enum("") # <<<<<<<<<<<<<< + * cdef indirect_contiguous = Enum("") + * + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 287, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(contiguous); + __Pyx_DECREF_SET(contiguous, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":288 + * + * cdef contiguous = Enum("") + * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 288, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(indirect_contiguous); + __Pyx_DECREF_SET(indirect_contiguous, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":312 + * + * DEF THREAD_LOCKS_PREALLOCATED = 8 + * cdef int __pyx_memoryview_thread_locks_used = 0 # <<<<<<<<<<<<<< + * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ + * PyThread_allocate_lock(), + */ + __pyx_memoryview_thread_locks_used = 0; + + /* "View.MemoryView":313 + * DEF THREAD_LOCKS_PREALLOCATED = 8 + * cdef int __pyx_memoryview_thread_locks_used = 0 + * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ # <<<<<<<<<<<<<< + * PyThread_allocate_lock(), + * PyThread_allocate_lock(), + */ + __pyx_t_2[0] = PyThread_allocate_lock(); + __pyx_t_2[1] = PyThread_allocate_lock(); + __pyx_t_2[2] = PyThread_allocate_lock(); + __pyx_t_2[3] = PyThread_allocate_lock(); + __pyx_t_2[4] = PyThread_allocate_lock(); + __pyx_t_2[5] = PyThread_allocate_lock(); + __pyx_t_2[6] = PyThread_allocate_lock(); + __pyx_t_2[7] = PyThread_allocate_lock(); + memcpy(&(__pyx_memoryview_thread_locks[0]), __pyx_t_2, sizeof(__pyx_memoryview_thread_locks[0]) * (8)); + + /* "View.MemoryView":535 + * info.obj = self + * + * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 535, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_memoryview_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 535, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + PyType_Modified(__pyx_memoryview_type); + + /* "View.MemoryView":981 + * return self.from_object + * + * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 981, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_memoryviewslice_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 981, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + PyType_Modified(__pyx_memoryviewslice_type); + + /* "View.MemoryView":1391 + * + * @cname('__pyx_memoryview__slice_assign_scalar') + * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * size_t itemsize, void *item) nogil: + */ + + /*--- Wrapped vars code ---*/ + + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + if (__pyx_m) { + if (__pyx_d) { + __Pyx_AddTraceback("init gensim.models.nmf_pgd", __pyx_clineno, __pyx_lineno, __pyx_filename); + } + Py_DECREF(__pyx_m); __pyx_m = 0; + } else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_ImportError, "init gensim.models.nmf_pgd"); + } + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + #if PY_MAJOR_VERSION < 3 + return; + #else + return __pyx_m; + #endif +} + +/* --- Runtime support code --- */ +/* Refnanny */ +#if CYTHON_REFNANNY +static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { + PyObject *m = NULL, *p = NULL; + void *r = NULL; + m = PyImport_ImportModule((char *)modname); + if (!m) goto end; + p = PyObject_GetAttrString(m, (char *)"RefNannyAPI"); + if (!p) goto end; + r = PyLong_AsVoidPtr(p); +end: + Py_XDECREF(p); + Py_XDECREF(m); + return (__Pyx_RefNannyAPIStruct *)r; +} +#endif + +/* GetBuiltinName */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name) { + PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); + if (unlikely(!result)) { + PyErr_Format(PyExc_NameError, +#if PY_MAJOR_VERSION >= 3 + "name '%U' is not defined", name); +#else + "name '%.200s' is not defined", PyString_AS_STRING(name)); +#endif + } + return result; +} + +/* RaiseArgTupleInvalid */ +static void __Pyx_RaiseArgtupleInvalid( + const char* func_name, + int exact, + Py_ssize_t num_min, + Py_ssize_t num_max, + Py_ssize_t num_found) +{ + Py_ssize_t num_expected; + const char *more_or_less; + if (num_found < num_min) { + num_expected = num_min; + more_or_less = "at least"; + } else { + num_expected = num_max; + more_or_less = "at most"; + } + if (exact) { + more_or_less = "exactly"; + } + PyErr_Format(PyExc_TypeError, + "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", + func_name, more_or_less, num_expected, + (num_expected == 1) ? "" : "s", num_found); +} + +/* RaiseDoubleKeywords */ +static void __Pyx_RaiseDoubleKeywordsError( + const char* func_name, + PyObject* kw_name) +{ + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION >= 3 + "%s() got multiple values for keyword argument '%U'", func_name, kw_name); + #else + "%s() got multiple values for keyword argument '%s'", func_name, + PyString_AsString(kw_name)); + #endif +} + +/* ParseKeywords */ +static int __Pyx_ParseOptionalKeywords( + PyObject *kwds, + PyObject **argnames[], + PyObject *kwds2, + PyObject *values[], + Py_ssize_t num_pos_args, + const char* function_name) +{ + PyObject *key = 0, *value = 0; + Py_ssize_t pos = 0; + PyObject*** name; + PyObject*** first_kw_arg = argnames + num_pos_args; + while (PyDict_Next(kwds, &pos, &key, &value)) { + name = first_kw_arg; + while (*name && (**name != key)) name++; + if (*name) { + values[name-argnames] = value; + continue; + } + name = first_kw_arg; + #if PY_MAJOR_VERSION < 3 + if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) { + while (*name) { + if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) + && _PyString_Eq(**name, key)) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + if ((**argname == key) || ( + (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) + && _PyString_Eq(**argname, key))) { + goto arg_passed_twice; + } + argname++; + } + } + } else + #endif + if (likely(PyUnicode_Check(key))) { + while (*name) { + int cmp = (**name == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**name, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + int cmp = (**argname == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**argname, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) goto arg_passed_twice; + argname++; + } + } + } else + goto invalid_keyword_type; + if (kwds2) { + if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; + } else { + goto invalid_keyword; + } + } + return 0; +arg_passed_twice: + __Pyx_RaiseDoubleKeywordsError(function_name, key); + goto bad; +invalid_keyword_type: + PyErr_Format(PyExc_TypeError, + "%.200s() keywords must be strings", function_name); + goto bad; +invalid_keyword: + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION < 3 + "%.200s() got an unexpected keyword argument '%.200s'", + function_name, PyString_AsString(key)); + #else + "%s() got an unexpected keyword argument '%U'", + function_name, key); + #endif +bad: + return -1; +} + +/* BufferFormatCheck */ +static CYTHON_INLINE int __Pyx_IsLittleEndian(void) { + unsigned int n = 1; + return *(unsigned char*)(&n) != 0; +} +static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, + __Pyx_BufFmt_StackElem* stack, + __Pyx_TypeInfo* type) { + stack[0].field = &ctx->root; + stack[0].parent_offset = 0; + ctx->root.type = type; + ctx->root.name = "buffer dtype"; + ctx->root.offset = 0; + ctx->head = stack; + ctx->head->field = &ctx->root; + ctx->fmt_offset = 0; + ctx->head->parent_offset = 0; + ctx->new_packmode = '@'; + ctx->enc_packmode = '@'; + ctx->new_count = 1; + ctx->enc_count = 0; + ctx->enc_type = 0; + ctx->is_complex = 0; + ctx->is_valid_array = 0; + ctx->struct_alignment = 0; + while (type->typegroup == 'S') { + ++ctx->head; + ctx->head->field = type->fields; + ctx->head->parent_offset = 0; + type = type->fields->type; + } +} +static int __Pyx_BufFmt_ParseNumber(const char** ts) { + int count; + const char* t = *ts; + if (*t < '0' || *t > '9') { + return -1; + } else { + count = *t++ - '0'; + while (*t >= '0' && *t < '9') { + count *= 10; + count += *t++ - '0'; + } + } + *ts = t; + return count; +} +static int __Pyx_BufFmt_ExpectNumber(const char **ts) { + int number = __Pyx_BufFmt_ParseNumber(ts); + if (number == -1) + PyErr_Format(PyExc_ValueError,\ + "Does not understand character buffer dtype format string ('%c')", **ts); + return number; +} +static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { + PyErr_Format(PyExc_ValueError, + "Unexpected format string character: '%c'", ch); +} +static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { + switch (ch) { + case 'c': return "'char'"; + case 'b': return "'signed char'"; + case 'B': return "'unsigned char'"; + case 'h': return "'short'"; + case 'H': return "'unsigned short'"; + case 'i': return "'int'"; + case 'I': return "'unsigned int'"; + case 'l': return "'long'"; + case 'L': return "'unsigned long'"; + case 'q': return "'long long'"; + case 'Q': return "'unsigned long long'"; + case 'f': return (is_complex ? "'complex float'" : "'float'"); + case 'd': return (is_complex ? "'complex double'" : "'double'"); + case 'g': return (is_complex ? "'complex long double'" : "'long double'"); + case 'T': return "a struct"; + case 'O': return "Python object"; + case 'P': return "a pointer"; + case 's': case 'p': return "a string"; + case 0: return "end"; + default: return "unparseable format string"; + } +} +static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return 2; + case 'i': case 'I': case 'l': case 'L': return 4; + case 'q': case 'Q': return 8; + case 'f': return (is_complex ? 8 : 4); + case 'd': return (is_complex ? 16 : 8); + case 'g': { + PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); + return 0; + } + case 'O': case 'P': return sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { + switch (ch) { + case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(short); + case 'i': case 'I': return sizeof(int); + case 'l': case 'L': return sizeof(long); + #ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(PY_LONG_LONG); + #endif + case 'f': return sizeof(float) * (is_complex ? 2 : 1); + case 'd': return sizeof(double) * (is_complex ? 2 : 1); + case 'g': return sizeof(long double) * (is_complex ? 2 : 1); + case 'O': case 'P': return sizeof(void*); + default: { + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } + } +} +typedef struct { char c; short x; } __Pyx_st_short; +typedef struct { char c; int x; } __Pyx_st_int; +typedef struct { char c; long x; } __Pyx_st_long; +typedef struct { char c; float x; } __Pyx_st_float; +typedef struct { char c; double x; } __Pyx_st_double; +typedef struct { char c; long double x; } __Pyx_st_longdouble; +typedef struct { char c; void *x; } __Pyx_st_void_p; +#ifdef HAVE_LONG_LONG +typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; +#endif +static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); + case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); + case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); +#ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); +#endif + case 'f': return sizeof(__Pyx_st_float) - sizeof(float); + case 'd': return sizeof(__Pyx_st_double) - sizeof(double); + case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); + case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +/* These are for computing the padding at the end of the struct to align + on the first member of the struct. This will probably the same as above, + but we don't have any guarantees. + */ +typedef struct { short x; char c; } __Pyx_pad_short; +typedef struct { int x; char c; } __Pyx_pad_int; +typedef struct { long x; char c; } __Pyx_pad_long; +typedef struct { float x; char c; } __Pyx_pad_float; +typedef struct { double x; char c; } __Pyx_pad_double; +typedef struct { long double x; char c; } __Pyx_pad_longdouble; +typedef struct { void *x; char c; } __Pyx_pad_void_p; +#ifdef HAVE_LONG_LONG +typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; +#endif +static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); + case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); + case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); +#ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); +#endif + case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); + case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); + case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); + case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { + switch (ch) { + case 'c': + return 'H'; + case 'b': case 'h': case 'i': + case 'l': case 'q': case 's': case 'p': + return 'I'; + case 'B': case 'H': case 'I': case 'L': case 'Q': + return 'U'; + case 'f': case 'd': case 'g': + return (is_complex ? 'C' : 'R'); + case 'O': + return 'O'; + case 'P': + return 'P'; + default: { + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } + } +} +static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { + if (ctx->head == NULL || ctx->head->field == &ctx->root) { + const char* expected; + const char* quote; + if (ctx->head == NULL) { + expected = "end"; + quote = ""; + } else { + expected = ctx->head->field->type->name; + quote = "'"; + } + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch, expected %s%s%s but got %s", + quote, expected, quote, + __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); + } else { + __Pyx_StructField* field = ctx->head->field; + __Pyx_StructField* parent = (ctx->head - 1)->field; + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", + field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), + parent->type->name, field->name); + } +} +static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { + char group; + size_t size, offset, arraysize = 1; + if (ctx->enc_type == 0) return 0; + if (ctx->head->field->type->arraysize[0]) { + int i, ndim = 0; + if (ctx->enc_type == 's' || ctx->enc_type == 'p') { + ctx->is_valid_array = ctx->head->field->type->ndim == 1; + ndim = 1; + if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { + PyErr_Format(PyExc_ValueError, + "Expected a dimension of size %zu, got %zu", + ctx->head->field->type->arraysize[0], ctx->enc_count); + return -1; + } + } + if (!ctx->is_valid_array) { + PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", + ctx->head->field->type->ndim, ndim); + return -1; + } + for (i = 0; i < ctx->head->field->type->ndim; i++) { + arraysize *= ctx->head->field->type->arraysize[i]; + } + ctx->is_valid_array = 0; + ctx->enc_count = 1; + } + group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); + do { + __Pyx_StructField* field = ctx->head->field; + __Pyx_TypeInfo* type = field->type; + if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { + size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); + } else { + size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); + } + if (ctx->enc_packmode == '@') { + size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); + size_t align_mod_offset; + if (align_at == 0) return -1; + align_mod_offset = ctx->fmt_offset % align_at; + if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; + if (ctx->struct_alignment == 0) + ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, + ctx->is_complex); + } + if (type->size != size || type->typegroup != group) { + if (type->typegroup == 'C' && type->fields != NULL) { + size_t parent_offset = ctx->head->parent_offset + field->offset; + ++ctx->head; + ctx->head->field = type->fields; + ctx->head->parent_offset = parent_offset; + continue; + } + if ((type->typegroup == 'H' || group == 'H') && type->size == size) { + } else { + __Pyx_BufFmt_RaiseExpected(ctx); + return -1; + } + } + offset = ctx->head->parent_offset + field->offset; + if (ctx->fmt_offset != offset) { + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", + (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); + return -1; + } + ctx->fmt_offset += size; + if (arraysize) + ctx->fmt_offset += (arraysize - 1) * size; + --ctx->enc_count; + while (1) { + if (field == &ctx->root) { + ctx->head = NULL; + if (ctx->enc_count != 0) { + __Pyx_BufFmt_RaiseExpected(ctx); + return -1; + } + break; + } + ctx->head->field = ++field; + if (field->type == NULL) { + --ctx->head; + field = ctx->head->field; + continue; + } else if (field->type->typegroup == 'S') { + size_t parent_offset = ctx->head->parent_offset + field->offset; + if (field->type->fields->type == NULL) continue; + field = field->type->fields; + ++ctx->head; + ctx->head->field = field; + ctx->head->parent_offset = parent_offset; + break; + } else { + break; + } + } + } while (ctx->enc_count); + ctx->enc_type = 0; + ctx->is_complex = 0; + return 0; +} +static CYTHON_INLINE PyObject * +__pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) +{ + const char *ts = *tsp; + int i = 0, number; + int ndim = ctx->head->field->type->ndim; +; + ++ts; + if (ctx->new_count != 1) { + PyErr_SetString(PyExc_ValueError, + "Cannot handle repeated arrays in format string"); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + while (*ts && *ts != ')') { + switch (*ts) { + case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; + default: break; + } + number = __Pyx_BufFmt_ExpectNumber(&ts); + if (number == -1) return NULL; + if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) + return PyErr_Format(PyExc_ValueError, + "Expected a dimension of size %zu, got %d", + ctx->head->field->type->arraysize[i], number); + if (*ts != ',' && *ts != ')') + return PyErr_Format(PyExc_ValueError, + "Expected a comma in format string, got '%c'", *ts); + if (*ts == ',') ts++; + i++; + } + if (i != ndim) + return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", + ctx->head->field->type->ndim, i); + if (!*ts) { + PyErr_SetString(PyExc_ValueError, + "Unexpected end of format string, expected ')'"); + return NULL; + } + ctx->is_valid_array = 1; + ctx->new_count = 1; + *tsp = ++ts; + return Py_None; +} +static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { + int got_Z = 0; + while (1) { + switch(*ts) { + case 0: + if (ctx->enc_type != 0 && ctx->head == NULL) { + __Pyx_BufFmt_RaiseExpected(ctx); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + if (ctx->head != NULL) { + __Pyx_BufFmt_RaiseExpected(ctx); + return NULL; + } + return ts; + case ' ': + case '\r': + case '\n': + ++ts; + break; + case '<': + if (!__Pyx_IsLittleEndian()) { + PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); + return NULL; + } + ctx->new_packmode = '='; + ++ts; + break; + case '>': + case '!': + if (__Pyx_IsLittleEndian()) { + PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); + return NULL; + } + ctx->new_packmode = '='; + ++ts; + break; + case '=': + case '@': + case '^': + ctx->new_packmode = *ts++; + break; + case 'T': + { + const char* ts_after_sub; + size_t i, struct_count = ctx->new_count; + size_t struct_alignment = ctx->struct_alignment; + ctx->new_count = 1; + ++ts; + if (*ts != '{') { + PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_type = 0; + ctx->enc_count = 0; + ctx->struct_alignment = 0; + ++ts; + ts_after_sub = ts; + for (i = 0; i != struct_count; ++i) { + ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); + if (!ts_after_sub) return NULL; + } + ts = ts_after_sub; + if (struct_alignment) ctx->struct_alignment = struct_alignment; + } + break; + case '}': + { + size_t alignment = ctx->struct_alignment; + ++ts; + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_type = 0; + if (alignment && ctx->fmt_offset % alignment) { + ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); + } + } + return ts; + case 'x': + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->fmt_offset += ctx->new_count; + ctx->new_count = 1; + ctx->enc_count = 0; + ctx->enc_type = 0; + ctx->enc_packmode = ctx->new_packmode; + ++ts; + break; + case 'Z': + got_Z = 1; + ++ts; + if (*ts != 'f' && *ts != 'd' && *ts != 'g') { + __Pyx_BufFmt_RaiseUnexpectedChar('Z'); + return NULL; + } + case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': + case 'l': case 'L': case 'q': case 'Q': + case 'f': case 'd': case 'g': + case 'O': case 'p': + if (ctx->enc_type == *ts && got_Z == ctx->is_complex && + ctx->enc_packmode == ctx->new_packmode) { + ctx->enc_count += ctx->new_count; + ctx->new_count = 1; + got_Z = 0; + ++ts; + break; + } + case 's': + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_count = ctx->new_count; + ctx->enc_packmode = ctx->new_packmode; + ctx->enc_type = *ts; + ctx->is_complex = got_Z; + ++ts; + ctx->new_count = 1; + got_Z = 0; + break; + case ':': + ++ts; + while(*ts != ':') ++ts; + ++ts; + break; + case '(': + if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; + break; + default: + { + int number = __Pyx_BufFmt_ExpectNumber(&ts); + if (number == -1) return NULL; + ctx->new_count = (size_t)number; + } + } + } +} +static CYTHON_INLINE void __Pyx_ZeroBuffer(Py_buffer* buf) { + buf->buf = NULL; + buf->obj = NULL; + buf->strides = __Pyx_zeros; + buf->shape = __Pyx_zeros; + buf->suboffsets = __Pyx_minusones; +} +static CYTHON_INLINE int __Pyx_GetBufferAndValidate( + Py_buffer* buf, PyObject* obj, __Pyx_TypeInfo* dtype, int flags, + int nd, int cast, __Pyx_BufFmt_StackElem* stack) +{ + if (obj == Py_None || obj == NULL) { + __Pyx_ZeroBuffer(buf); + return 0; + } + buf->buf = NULL; + if (__Pyx_GetBuffer(obj, buf, flags) == -1) goto fail; + if (buf->ndim != nd) { + PyErr_Format(PyExc_ValueError, + "Buffer has wrong number of dimensions (expected %d, got %d)", + nd, buf->ndim); + goto fail; + } + if (!cast) { + __Pyx_BufFmt_Context ctx; + __Pyx_BufFmt_Init(&ctx, stack, dtype); + if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; + } + if ((unsigned)buf->itemsize != dtype->size) { + PyErr_Format(PyExc_ValueError, + "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "d byte%s) does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "d byte%s)", + buf->itemsize, (buf->itemsize > 1) ? "s" : "", + dtype->name, (Py_ssize_t)dtype->size, (dtype->size > 1) ? "s" : ""); + goto fail; + } + if (buf->suboffsets == NULL) buf->suboffsets = __Pyx_minusones; + return 0; +fail:; + __Pyx_ZeroBuffer(buf); + return -1; +} +static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info) { + if (info->buf == NULL) return; + if (info->suboffsets == __Pyx_minusones) info->suboffsets = NULL; + __Pyx_ReleaseBuffer(info); +} + +/* MemviewSliceInit */ + static int +__Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview, + int ndim, + __Pyx_memviewslice *memviewslice, + int memview_is_new_reference) +{ + __Pyx_RefNannyDeclarations + int i, retval=-1; + Py_buffer *buf = &memview->view; + __Pyx_RefNannySetupContext("init_memviewslice", 0); + if (!buf) { + PyErr_SetString(PyExc_ValueError, + "buf is NULL."); + goto fail; + } else if (memviewslice->memview || memviewslice->data) { + PyErr_SetString(PyExc_ValueError, + "memviewslice is already initialized!"); + goto fail; + } + if (buf->strides) { + for (i = 0; i < ndim; i++) { + memviewslice->strides[i] = buf->strides[i]; + } + } else { + Py_ssize_t stride = buf->itemsize; + for (i = ndim - 1; i >= 0; i--) { + memviewslice->strides[i] = stride; + stride *= buf->shape[i]; + } + } + for (i = 0; i < ndim; i++) { + memviewslice->shape[i] = buf->shape[i]; + if (buf->suboffsets) { + memviewslice->suboffsets[i] = buf->suboffsets[i]; + } else { + memviewslice->suboffsets[i] = -1; + } + } + memviewslice->memview = memview; + memviewslice->data = (char *)buf->buf; + if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) { + Py_INCREF(memview); + } + retval = 0; + goto no_fail; +fail: + memviewslice->memview = 0; + memviewslice->data = 0; + retval = -1; +no_fail: + __Pyx_RefNannyFinishContext(); + return retval; +} +static CYTHON_INLINE void __pyx_fatalerror(const char *fmt, ...) { + va_list vargs; + char msg[200]; +#ifdef HAVE_STDARG_PROTOTYPES + va_start(vargs, fmt); +#else + va_start(vargs); +#endif + vsnprintf(msg, 200, fmt, vargs); + Py_FatalError(msg); + va_end(vargs); +} +static CYTHON_INLINE int +__pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count, + PyThread_type_lock lock) +{ + int result; + PyThread_acquire_lock(lock, 1); + result = (*acquisition_count)++; + PyThread_release_lock(lock); + return result; +} +static CYTHON_INLINE int +__pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count, + PyThread_type_lock lock) +{ + int result; + PyThread_acquire_lock(lock, 1); + result = (*acquisition_count)--; + PyThread_release_lock(lock); + return result; +} +static CYTHON_INLINE void +__Pyx_INC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) +{ + int first_time; + struct __pyx_memoryview_obj *memview = memslice->memview; + if (!memview || (PyObject *) memview == Py_None) + return; + if (__pyx_get_slice_count(memview) < 0) + __pyx_fatalerror("Acquisition count is %d (line %d)", + __pyx_get_slice_count(memview), lineno); + first_time = __pyx_add_acquisition_count(memview) == 0; + if (first_time) { + if (have_gil) { + Py_INCREF((PyObject *) memview); + } else { + PyGILState_STATE _gilstate = PyGILState_Ensure(); + Py_INCREF((PyObject *) memview); + PyGILState_Release(_gilstate); + } + } +} +static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, + int have_gil, int lineno) { + int last_time; + struct __pyx_memoryview_obj *memview = memslice->memview; + if (!memview ) { + return; + } else if ((PyObject *) memview == Py_None) { + memslice->memview = NULL; + return; + } + if (__pyx_get_slice_count(memview) <= 0) + __pyx_fatalerror("Acquisition count is %d (line %d)", + __pyx_get_slice_count(memview), lineno); + last_time = __pyx_sub_acquisition_count(memview) == 1; + memslice->data = NULL; + if (last_time) { + if (have_gil) { + Py_CLEAR(memslice->memview); + } else { + PyGILState_STATE _gilstate = PyGILState_Ensure(); + Py_CLEAR(memslice->memview); + PyGILState_Release(_gilstate); + } + } else { + memslice->memview = NULL; + } +} + +/* ArgTypeTest */ + static void __Pyx_RaiseArgumentTypeInvalid(const char* name, PyObject *obj, PyTypeObject *type) { + PyErr_Format(PyExc_TypeError, + "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", + name, type->tp_name, Py_TYPE(obj)->tp_name); +} +static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, + const char *name, int exact) +{ + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + if (none_allowed && obj == Py_None) return 1; + else if (exact) { + if (likely(Py_TYPE(obj) == type)) return 1; + #if PY_MAJOR_VERSION == 2 + else if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; + #endif + } + else { + if (likely(PyObject_TypeCheck(obj, type))) return 1; + } + __Pyx_RaiseArgumentTypeInvalid(name, obj, type); + return 0; +} + +/* PyObjectCall */ + #if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { + PyObject *result; + ternaryfunc call = func->ob_type->tp_call; + if (unlikely(!call)) + return PyObject_Call(func, arg, kw); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = (*call)(func, arg, kw); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyErrFetchRestore */ + #if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + tmp_type = tstate->curexc_type; + tmp_value = tstate->curexc_value; + tmp_tb = tstate->curexc_traceback; + tstate->curexc_type = type; + tstate->curexc_value = value; + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + *type = tstate->curexc_type; + *value = tstate->curexc_value; + *tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +} +#endif + +/* RaiseException */ + #if PY_MAJOR_VERSION < 3 +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, + CYTHON_UNUSED PyObject *cause) { + __Pyx_PyThreadState_declare + Py_XINCREF(type); + if (!value || value == Py_None) + value = NULL; + else + Py_INCREF(value); + if (!tb || tb == Py_None) + tb = NULL; + else { + Py_INCREF(tb); + if (!PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto raise_error; + } + } + if (PyType_Check(type)) { +#if CYTHON_COMPILING_IN_PYPY + if (!value) { + Py_INCREF(Py_None); + value = Py_None; + } +#endif + PyErr_NormalizeException(&type, &value, &tb); + } else { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto raise_error; + } + value = type; + type = (PyObject*) Py_TYPE(type); + Py_INCREF(type); + if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto raise_error; + } + } + __Pyx_PyThreadState_assign + __Pyx_ErrRestore(type, value, tb); + return; +raise_error: + Py_XDECREF(value); + Py_XDECREF(type); + Py_XDECREF(tb); + return; +} +#else +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { + PyObject* owned_instance = NULL; + if (tb == Py_None) { + tb = 0; + } else if (tb && !PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto bad; + } + if (value == Py_None) + value = 0; + if (PyExceptionInstance_Check(type)) { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto bad; + } + value = type; + type = (PyObject*) Py_TYPE(value); + } else if (PyExceptionClass_Check(type)) { + PyObject *instance_class = NULL; + if (value && PyExceptionInstance_Check(value)) { + instance_class = (PyObject*) Py_TYPE(value); + if (instance_class != type) { + int is_subclass = PyObject_IsSubclass(instance_class, type); + if (!is_subclass) { + instance_class = NULL; + } else if (unlikely(is_subclass == -1)) { + goto bad; + } else { + type = instance_class; + } + } + } + if (!instance_class) { + PyObject *args; + if (!value) + args = PyTuple_New(0); + else if (PyTuple_Check(value)) { + Py_INCREF(value); + args = value; + } else + args = PyTuple_Pack(1, value); + if (!args) + goto bad; + owned_instance = PyObject_Call(type, args, NULL); + Py_DECREF(args); + if (!owned_instance) + goto bad; + value = owned_instance; + if (!PyExceptionInstance_Check(value)) { + PyErr_Format(PyExc_TypeError, + "calling %R should have returned an instance of " + "BaseException, not %R", + type, Py_TYPE(value)); + goto bad; + } + } + } else { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto bad; + } +#if PY_VERSION_HEX >= 0x03030000 + if (cause) { +#else + if (cause && cause != Py_None) { +#endif + PyObject *fixed_cause; + if (cause == Py_None) { + fixed_cause = NULL; + } else if (PyExceptionClass_Check(cause)) { + fixed_cause = PyObject_CallObject(cause, NULL); + if (fixed_cause == NULL) + goto bad; + } else if (PyExceptionInstance_Check(cause)) { + fixed_cause = cause; + Py_INCREF(fixed_cause); + } else { + PyErr_SetString(PyExc_TypeError, + "exception causes must derive from " + "BaseException"); + goto bad; + } + PyException_SetCause(value, fixed_cause); + } + PyErr_SetObject(type, value); + if (tb) { +#if CYTHON_COMPILING_IN_PYPY + PyObject *tmp_type, *tmp_value, *tmp_tb; + PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); + Py_INCREF(tb); + PyErr_Restore(tmp_type, tmp_value, tb); + Py_XDECREF(tmp_tb); +#else + PyThreadState *tstate = PyThreadState_GET(); + PyObject* tmp_tb = tstate->curexc_traceback; + if (tb != tmp_tb) { + Py_INCREF(tb); + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_tb); + } +#endif + } +bad: + Py_XDECREF(owned_instance); + return; +} +#endif + +/* BytesEquals */ + static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { +#if CYTHON_COMPILING_IN_PYPY + return PyObject_RichCompareBool(s1, s2, equals); +#else + if (s1 == s2) { + return (equals == Py_EQ); + } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { + const char *ps1, *ps2; + Py_ssize_t length = PyBytes_GET_SIZE(s1); + if (length != PyBytes_GET_SIZE(s2)) + return (equals == Py_NE); + ps1 = PyBytes_AS_STRING(s1); + ps2 = PyBytes_AS_STRING(s2); + if (ps1[0] != ps2[0]) { + return (equals == Py_NE); + } else if (length == 1) { + return (equals == Py_EQ); + } else { + int result = memcmp(ps1, ps2, (size_t)length); + return (equals == Py_EQ) ? (result == 0) : (result != 0); + } + } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { + return (equals == Py_NE); + } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { + return (equals == Py_NE); + } else { + int result; + PyObject* py_result = PyObject_RichCompare(s1, s2, equals); + if (!py_result) + return -1; + result = __Pyx_PyObject_IsTrue(py_result); + Py_DECREF(py_result); + return result; + } +#endif +} + +/* UnicodeEquals */ + static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { +#if CYTHON_COMPILING_IN_PYPY + return PyObject_RichCompareBool(s1, s2, equals); +#else +#if PY_MAJOR_VERSION < 3 + PyObject* owned_ref = NULL; +#endif + int s1_is_unicode, s2_is_unicode; + if (s1 == s2) { + goto return_eq; + } + s1_is_unicode = PyUnicode_CheckExact(s1); + s2_is_unicode = PyUnicode_CheckExact(s2); +#if PY_MAJOR_VERSION < 3 + if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { + owned_ref = PyUnicode_FromObject(s2); + if (unlikely(!owned_ref)) + return -1; + s2 = owned_ref; + s2_is_unicode = 1; + } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { + owned_ref = PyUnicode_FromObject(s1); + if (unlikely(!owned_ref)) + return -1; + s1 = owned_ref; + s1_is_unicode = 1; + } else if (((!s2_is_unicode) & (!s1_is_unicode))) { + return __Pyx_PyBytes_Equals(s1, s2, equals); + } +#endif + if (s1_is_unicode & s2_is_unicode) { + Py_ssize_t length; + int kind; + void *data1, *data2; + if (unlikely(__Pyx_PyUnicode_READY(s1) < 0) || unlikely(__Pyx_PyUnicode_READY(s2) < 0)) + return -1; + length = __Pyx_PyUnicode_GET_LENGTH(s1); + if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { + goto return_ne; + } + kind = __Pyx_PyUnicode_KIND(s1); + if (kind != __Pyx_PyUnicode_KIND(s2)) { + goto return_ne; + } + data1 = __Pyx_PyUnicode_DATA(s1); + data2 = __Pyx_PyUnicode_DATA(s2); + if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { + goto return_ne; + } else if (length == 1) { + goto return_eq; + } else { + int result = memcmp(data1, data2, (size_t)(length * kind)); + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(owned_ref); + #endif + return (equals == Py_EQ) ? (result == 0) : (result != 0); + } + } else if ((s1 == Py_None) & s2_is_unicode) { + goto return_ne; + } else if ((s2 == Py_None) & s1_is_unicode) { + goto return_ne; + } else { + int result; + PyObject* py_result = PyObject_RichCompare(s1, s2, equals); + if (!py_result) + return -1; + result = __Pyx_PyObject_IsTrue(py_result); + Py_DECREF(py_result); + return result; + } +return_eq: + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(owned_ref); + #endif + return (equals == Py_EQ); +return_ne: + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(owned_ref); + #endif + return (equals == Py_NE); +#endif +} + +/* GetAttr */ + static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { +#if CYTHON_COMPILING_IN_CPYTHON +#if PY_MAJOR_VERSION >= 3 + if (likely(PyUnicode_Check(n))) +#else + if (likely(PyString_Check(n))) +#endif + return __Pyx_PyObject_GetAttrStr(o, n); +#endif + return PyObject_GetAttr(o, n); +} + +/* decode_c_string */ + static CYTHON_INLINE PyObject* __Pyx_decode_c_string( + const char* cstring, Py_ssize_t start, Py_ssize_t stop, + const char* encoding, const char* errors, + PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { + Py_ssize_t length; + if (unlikely((start < 0) | (stop < 0))) { + size_t slen = strlen(cstring); + if (unlikely(slen > (size_t) PY_SSIZE_T_MAX)) { + PyErr_SetString(PyExc_OverflowError, + "c-string too long to convert to Python"); + return NULL; + } + length = (Py_ssize_t) slen; + if (start < 0) { + start += length; + if (start < 0) + start = 0; + } + if (stop < 0) + stop += length; + } + length = stop - start; + if (unlikely(length <= 0)) + return PyUnicode_FromUnicode(NULL, 0); + cstring += start; + if (decode_func) { + return decode_func(cstring, length, errors); + } else { + return PyUnicode_Decode(cstring, length, encoding, errors); + } +} + +/* RaiseTooManyValuesToUnpack */ + static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { + PyErr_Format(PyExc_ValueError, + "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); +} + +/* RaiseNeedMoreValuesToUnpack */ + static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { + PyErr_Format(PyExc_ValueError, + "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", + index, (index == 1) ? "" : "s"); +} + +/* RaiseNoneIterError */ + static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); +} + +/* ExtTypeTest */ + static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + if (likely(PyObject_TypeCheck(obj, type))) + return 1; + PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", + Py_TYPE(obj)->tp_name, type->tp_name); + return 0; +} + +/* SaveResetException */ + #if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + *type = tstate->exc_type; + *value = tstate->exc_value; + *tb = tstate->exc_traceback; + Py_XINCREF(*type); + Py_XINCREF(*value); + Py_XINCREF(*tb); +} +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = type; + tstate->exc_value = value; + tstate->exc_traceback = tb; + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +#endif + +/* PyErrExceptionMatches */ + #if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err) { + PyObject *exc_type = tstate->curexc_type; + if (exc_type == err) return 1; + if (unlikely(!exc_type)) return 0; + return PyErr_GivenExceptionMatches(exc_type, err); +} +#endif + +/* GetException */ + #if CYTHON_FAST_THREAD_STATE +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { +#endif + PyObject *local_type, *local_value, *local_tb; +#if CYTHON_FAST_THREAD_STATE + PyObject *tmp_type, *tmp_value, *tmp_tb; + local_type = tstate->curexc_type; + local_value = tstate->curexc_value; + local_tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +#else + PyErr_Fetch(&local_type, &local_value, &local_tb); +#endif + PyErr_NormalizeException(&local_type, &local_value, &local_tb); +#if CYTHON_FAST_THREAD_STATE + if (unlikely(tstate->curexc_type)) +#else + if (unlikely(PyErr_Occurred())) +#endif + goto bad; + #if PY_MAJOR_VERSION >= 3 + if (local_tb) { + if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) + goto bad; + } + #endif + Py_XINCREF(local_tb); + Py_XINCREF(local_type); + Py_XINCREF(local_value); + *type = local_type; + *value = local_value; + *tb = local_tb; +#if CYTHON_FAST_THREAD_STATE + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = local_type; + tstate->exc_value = local_value; + tstate->exc_traceback = local_tb; + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +#else + PyErr_SetExcInfo(local_type, local_value, local_tb); +#endif + return 0; +bad: + *type = 0; + *value = 0; + *tb = 0; + Py_XDECREF(local_type); + Py_XDECREF(local_value); + Py_XDECREF(local_tb); + return -1; +} + +/* SwapException */ + #if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = *type; + tstate->exc_value = *value; + tstate->exc_traceback = *tb; + *type = tmp_type; + *value = tmp_value; + *tb = tmp_tb; +} +#else +static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + PyErr_GetExcInfo(&tmp_type, &tmp_value, &tmp_tb); + PyErr_SetExcInfo(*type, *value, *tb); + *type = tmp_type; + *value = tmp_value; + *tb = tmp_tb; +} +#endif + +/* Import */ + static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { + PyObject *empty_list = 0; + PyObject *module = 0; + PyObject *global_dict = 0; + PyObject *empty_dict = 0; + PyObject *list; + #if PY_VERSION_HEX < 0x03030000 + PyObject *py_import; + py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); + if (!py_import) + goto bad; + #endif + if (from_list) + list = from_list; + else { + empty_list = PyList_New(0); + if (!empty_list) + goto bad; + list = empty_list; + } + global_dict = PyModule_GetDict(__pyx_m); + if (!global_dict) + goto bad; + empty_dict = PyDict_New(); + if (!empty_dict) + goto bad; + { + #if PY_MAJOR_VERSION >= 3 + if (level == -1) { + if (strchr(__Pyx_MODULE_NAME, '.')) { + #if PY_VERSION_HEX < 0x03030000 + PyObject *py_level = PyInt_FromLong(1); + if (!py_level) + goto bad; + module = PyObject_CallFunctionObjArgs(py_import, + name, global_dict, empty_dict, list, py_level, NULL); + Py_DECREF(py_level); + #else + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, 1); + #endif + if (!module) { + if (!PyErr_ExceptionMatches(PyExc_ImportError)) + goto bad; + PyErr_Clear(); + } + } + level = 0; + } + #endif + if (!module) { + #if PY_VERSION_HEX < 0x03030000 + PyObject *py_level = PyInt_FromLong(level); + if (!py_level) + goto bad; + module = PyObject_CallFunctionObjArgs(py_import, + name, global_dict, empty_dict, list, py_level, NULL); + Py_DECREF(py_level); + #else + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, level); + #endif + } + } +bad: + #if PY_VERSION_HEX < 0x03030000 + Py_XDECREF(py_import); + #endif + Py_XDECREF(empty_list); + Py_XDECREF(empty_dict); + return module; +} + +/* PyFunctionFastCall */ + #if CYTHON_FAST_PYCALL +#include "frameobject.h" +static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, + PyObject *globals) { + PyFrameObject *f; + PyThreadState *tstate = PyThreadState_GET(); + PyObject **fastlocals; + Py_ssize_t i; + PyObject *result; + assert(globals != NULL); + /* XXX Perhaps we should create a specialized + PyFrame_New() that doesn't take locals, but does + take builtins without sanity checking them. + */ + assert(tstate != NULL); + f = PyFrame_New(tstate, co, globals, NULL); + if (f == NULL) { + return NULL; + } + fastlocals = f->f_localsplus; + for (i = 0; i < na; i++) { + Py_INCREF(*args); + fastlocals[i] = *args++; + } + result = PyEval_EvalFrameEx(f,0); + ++tstate->recursion_depth; + Py_DECREF(f); + --tstate->recursion_depth; + return result; +} +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, int nargs, PyObject *kwargs) { + PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); + PyObject *globals = PyFunction_GET_GLOBALS(func); + PyObject *argdefs = PyFunction_GET_DEFAULTS(func); + PyObject *closure; +#if PY_MAJOR_VERSION >= 3 + PyObject *kwdefs; +#endif + PyObject *kwtuple, **k; + PyObject **d; + Py_ssize_t nd; + Py_ssize_t nk; + PyObject *result; + assert(kwargs == NULL || PyDict_Check(kwargs)); + nk = kwargs ? PyDict_Size(kwargs) : 0; + if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { + return NULL; + } + if ( +#if PY_MAJOR_VERSION >= 3 + co->co_kwonlyargcount == 0 && +#endif + likely(kwargs == NULL || nk == 0) && + co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { + if (argdefs == NULL && co->co_argcount == nargs) { + result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); + goto done; + } + else if (nargs == 0 && argdefs != NULL + && co->co_argcount == Py_SIZE(argdefs)) { + /* function called with no arguments, but all parameters have + a default value: use default values as arguments .*/ + args = &PyTuple_GET_ITEM(argdefs, 0); + result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); + goto done; + } + } + if (kwargs != NULL) { + Py_ssize_t pos, i; + kwtuple = PyTuple_New(2 * nk); + if (kwtuple == NULL) { + result = NULL; + goto done; + } + k = &PyTuple_GET_ITEM(kwtuple, 0); + pos = i = 0; + while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { + Py_INCREF(k[i]); + Py_INCREF(k[i+1]); + i += 2; + } + nk = i / 2; + } + else { + kwtuple = NULL; + k = NULL; + } + closure = PyFunction_GET_CLOSURE(func); +#if PY_MAJOR_VERSION >= 3 + kwdefs = PyFunction_GET_KW_DEFAULTS(func); +#endif + if (argdefs != NULL) { + d = &PyTuple_GET_ITEM(argdefs, 0); + nd = Py_SIZE(argdefs); + } + else { + d = NULL; + nd = 0; + } +#if PY_MAJOR_VERSION >= 3 + result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, + args, nargs, + k, (int)nk, + d, (int)nd, kwdefs, closure); +#else + result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, + args, nargs, + k, (int)nk, + d, (int)nd, closure); +#endif + Py_XDECREF(kwtuple); +done: + Py_LeaveRecursiveCall(); + return result; +} +#endif // CPython < 3.6 +#endif // CYTHON_FAST_PYCALL + +/* PyCFunctionFastCall */ + #if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { + PyCFunctionObject *func = (PyCFunctionObject*)func_obj; + PyCFunction meth = PyCFunction_GET_FUNCTION(func); + PyObject *self = PyCFunction_GET_SELF(func); + assert(PyCFunction_Check(func)); + assert(METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST))); + assert(nargs >= 0); + assert(nargs == 0 || args != NULL); + /* _PyCFunction_FastCallDict() must not be called with an exception set, + because it may clear it (directly or indirectly) and so the + caller loses its exception */ + assert(!PyErr_Occurred()); + return (*((__Pyx_PyCFunctionFast)meth)) (self, args, nargs, NULL); +} +#endif // CYTHON_FAST_PYCCALL + +/* GetItemInt */ + static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { + PyObject *r; + if (!j) return NULL; + r = PyObject_GetItem(o, j); + Py_DECREF(j); + return r; +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + if (wraparound & unlikely(i < 0)) i += PyList_GET_SIZE(o); + if ((!boundscheck) || likely((0 <= i) & (i < PyList_GET_SIZE(o)))) { + PyObject *r = PyList_GET_ITEM(o, i); + Py_INCREF(r); + return r; + } + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +#else + return PySequence_GetItem(o, i); +#endif +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + if (wraparound & unlikely(i < 0)) i += PyTuple_GET_SIZE(o); + if ((!boundscheck) || likely((0 <= i) & (i < PyTuple_GET_SIZE(o)))) { + PyObject *r = PyTuple_GET_ITEM(o, i); + Py_INCREF(r); + return r; + } + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +#else + return PySequence_GetItem(o, i); +#endif +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS + if (is_list || PyList_CheckExact(o)) { + Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); + if ((!boundscheck) || (likely((n >= 0) & (n < PyList_GET_SIZE(o))))) { + PyObject *r = PyList_GET_ITEM(o, n); + Py_INCREF(r); + return r; + } + } + else if (PyTuple_CheckExact(o)) { + Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); + if ((!boundscheck) || likely((n >= 0) & (n < PyTuple_GET_SIZE(o)))) { + PyObject *r = PyTuple_GET_ITEM(o, n); + Py_INCREF(r); + return r; + } + } else { + PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; + if (likely(m && m->sq_item)) { + if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { + Py_ssize_t l = m->sq_length(o); + if (likely(l >= 0)) { + i += l; + } else { + if (!PyErr_ExceptionMatches(PyExc_OverflowError)) + return NULL; + PyErr_Clear(); + } + } + return m->sq_item(o, i); + } + } +#else + if (is_list || PySequence_Check(o)) { + return PySequence_GetItem(o, i); + } +#endif + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +} + +/* PyIntBinop */ + #if !CYTHON_COMPILING_IN_PYPY +static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, CYTHON_UNUSED int inplace) { + #if PY_MAJOR_VERSION < 3 + if (likely(PyInt_CheckExact(op1))) { + const long b = intval; + long x; + long a = PyInt_AS_LONG(op1); + x = (long)((unsigned long)a + b); + if (likely((x^a) >= 0 || (x^b) >= 0)) + return PyInt_FromLong(x); + return PyLong_Type.tp_as_number->nb_add(op1, op2); + } + #endif + #if CYTHON_USE_PYLONG_INTERNALS + if (likely(PyLong_CheckExact(op1))) { + const long b = intval; + long a, x; +#ifdef HAVE_LONG_LONG + const PY_LONG_LONG llb = intval; + PY_LONG_LONG lla, llx; +#endif + const digit* digits = ((PyLongObject*)op1)->ob_digit; + const Py_ssize_t size = Py_SIZE(op1); + if (likely(__Pyx_sst_abs(size) <= 1)) { + a = likely(size) ? digits[0] : 0; + if (size == -1) a = -a; + } else { + switch (size) { + case -2: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + case 2: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + case -3: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + case 3: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + case -4: + if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + case 4: + if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + default: return PyLong_Type.tp_as_number->nb_add(op1, op2); + } + } + x = a + b; + return PyLong_FromLong(x); +#ifdef HAVE_LONG_LONG + long_long: + llx = lla + llb; + return PyLong_FromLongLong(llx); +#endif + + + } + #endif + if (PyFloat_CheckExact(op1)) { + const long b = intval; + double a = PyFloat_AS_DOUBLE(op1); + double result; + PyFPE_START_PROTECT("add", return NULL) + result = ((double)a) + (double)b; + PyFPE_END_PROTECT(result) + return PyFloat_FromDouble(result); + } + return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); +} +#endif + +/* None */ + static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { + PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); +} + +/* WriteUnraisableException */ + static void __Pyx_WriteUnraisable(const char *name, CYTHON_UNUSED int clineno, + CYTHON_UNUSED int lineno, CYTHON_UNUSED const char *filename, + int full_traceback, CYTHON_UNUSED int nogil) { + PyObject *old_exc, *old_val, *old_tb; + PyObject *ctx; + __Pyx_PyThreadState_declare +#ifdef WITH_THREAD + PyGILState_STATE state; + if (nogil) + state = PyGILState_Ensure(); +#ifdef _MSC_VER + else state = (PyGILState_STATE)-1; +#endif +#endif + __Pyx_PyThreadState_assign + __Pyx_ErrFetch(&old_exc, &old_val, &old_tb); + if (full_traceback) { + Py_XINCREF(old_exc); + Py_XINCREF(old_val); + Py_XINCREF(old_tb); + __Pyx_ErrRestore(old_exc, old_val, old_tb); + PyErr_PrintEx(1); + } + #if PY_MAJOR_VERSION < 3 + ctx = PyString_FromString(name); + #else + ctx = PyUnicode_FromString(name); + #endif + __Pyx_ErrRestore(old_exc, old_val, old_tb); + if (!ctx) { + PyErr_WriteUnraisable(Py_None); + } else { + PyErr_WriteUnraisable(ctx); + Py_DECREF(ctx); + } +#ifdef WITH_THREAD + if (nogil) + PyGILState_Release(state); +#endif +} + +/* PyObjectCallMethO */ + #if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { + PyObject *self, *result; + PyCFunction cfunc; + cfunc = PyCFunction_GET_FUNCTION(func); + self = PyCFunction_GET_SELF(func); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = cfunc(self, arg); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyObjectCallOneArg */ + #if CYTHON_COMPILING_IN_CPYTHON +static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_New(1); + if (unlikely(!args)) return NULL; + Py_INCREF(arg); + PyTuple_SET_ITEM(args, 0, arg); + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { +#if CYTHON_FAST_PYCALL + if (PyFunction_Check(func)) { + return __Pyx_PyFunction_FastCall(func, &arg, 1); + } +#endif +#ifdef __Pyx_CyFunction_USED + if (likely(PyCFunction_Check(func) || PyObject_TypeCheck(func, __pyx_CyFunctionType))) { +#else + if (likely(PyCFunction_Check(func))) { +#endif + if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { + return __Pyx_PyObject_CallMethO(func, arg); +#if CYTHON_FAST_PYCCALL + } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { + return __Pyx_PyCFunction_FastCall(func, &arg, 1); +#endif + } + } + return __Pyx__PyObject_CallOneArg(func, arg); +} +#else +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_Pack(1, arg); + if (unlikely(!args)) return NULL; + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +#endif + +/* SetVTable */ + static int __Pyx_SetVtable(PyObject *dict, void *vtable) { +#if PY_VERSION_HEX >= 0x02070000 + PyObject *ob = PyCapsule_New(vtable, 0, 0); +#else + PyObject *ob = PyCObject_FromVoidPtr(vtable, 0); +#endif + if (!ob) + goto bad; + if (PyDict_SetItem(dict, __pyx_n_s_pyx_vtable, ob) < 0) + goto bad; + Py_DECREF(ob); + return 0; +bad: + Py_XDECREF(ob); + return -1; +} + +/* CodeObjectCache */ + static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { + int start = 0, mid = 0, end = count - 1; + if (end >= 0 && code_line > entries[end].code_line) { + return count; + } + while (start < end) { + mid = start + (end - start) / 2; + if (code_line < entries[mid].code_line) { + end = mid; + } else if (code_line > entries[mid].code_line) { + start = mid + 1; + } else { + return mid; + } + } + if (code_line <= entries[mid].code_line) { + return mid; + } else { + return mid + 1; + } +} +static PyCodeObject *__pyx_find_code_object(int code_line) { + PyCodeObject* code_object; + int pos; + if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { + return NULL; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { + return NULL; + } + code_object = __pyx_code_cache.entries[pos].code_object; + Py_INCREF(code_object); + return code_object; +} +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { + int pos, i; + __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; + if (unlikely(!code_line)) { + return; + } + if (unlikely(!entries)) { + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); + if (likely(entries)) { + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = 64; + __pyx_code_cache.count = 1; + entries[0].code_line = code_line; + entries[0].code_object = code_object; + Py_INCREF(code_object); + } + return; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { + PyCodeObject* tmp = entries[pos].code_object; + entries[pos].code_object = code_object; + Py_DECREF(tmp); + return; + } + if (__pyx_code_cache.count == __pyx_code_cache.max_count) { + int new_max = __pyx_code_cache.max_count + 64; + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( + __pyx_code_cache.entries, (size_t)new_max*sizeof(__Pyx_CodeObjectCacheEntry)); + if (unlikely(!entries)) { + return; + } + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = new_max; + } + for (i=__pyx_code_cache.count; i>pos; i--) { + entries[i] = entries[i-1]; + } + entries[pos].code_line = code_line; + entries[pos].code_object = code_object; + __pyx_code_cache.count++; + Py_INCREF(code_object); +} + +/* AddTraceback */ + #include "compile.h" +#include "frameobject.h" +#include "traceback.h" +static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( + const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyObject *py_srcfile = 0; + PyObject *py_funcname = 0; + #if PY_MAJOR_VERSION < 3 + py_srcfile = PyString_FromString(filename); + #else + py_srcfile = PyUnicode_FromString(filename); + #endif + if (!py_srcfile) goto bad; + if (c_line) { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #else + py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #endif + } + else { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromString(funcname); + #else + py_funcname = PyUnicode_FromString(funcname); + #endif + } + if (!py_funcname) goto bad; + py_code = __Pyx_PyCode_New( + 0, + 0, + 0, + 0, + 0, + __pyx_empty_bytes, /*PyObject *code,*/ + __pyx_empty_tuple, /*PyObject *consts,*/ + __pyx_empty_tuple, /*PyObject *names,*/ + __pyx_empty_tuple, /*PyObject *varnames,*/ + __pyx_empty_tuple, /*PyObject *freevars,*/ + __pyx_empty_tuple, /*PyObject *cellvars,*/ + py_srcfile, /*PyObject *filename,*/ + py_funcname, /*PyObject *name,*/ + py_line, + __pyx_empty_bytes /*PyObject *lnotab*/ + ); + Py_DECREF(py_srcfile); + Py_DECREF(py_funcname); + return py_code; +bad: + Py_XDECREF(py_srcfile); + Py_XDECREF(py_funcname); + return NULL; +} +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyFrameObject *py_frame = 0; + py_code = __pyx_find_code_object(c_line ? c_line : py_line); + if (!py_code) { + py_code = __Pyx_CreateCodeObjectForTraceback( + funcname, c_line, py_line, filename); + if (!py_code) goto bad; + __pyx_insert_code_object(c_line ? c_line : py_line, py_code); + } + py_frame = PyFrame_New( + PyThreadState_GET(), /*PyThreadState *tstate,*/ + py_code, /*PyCodeObject *code,*/ + __pyx_d, /*PyObject *globals,*/ + 0 /*PyObject *locals*/ + ); + if (!py_frame) goto bad; + __Pyx_PyFrame_SetLineNumber(py_frame, py_line); + PyTraceBack_Here(py_frame); +bad: + Py_XDECREF(py_code); + Py_XDECREF(py_frame); +} + +#if PY_MAJOR_VERSION < 3 +static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { + if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags); + if (PyObject_TypeCheck(obj, __pyx_array_type)) return __pyx_array_getbuffer(obj, view, flags); + if (PyObject_TypeCheck(obj, __pyx_memoryview_type)) return __pyx_memoryview_getbuffer(obj, view, flags); + PyErr_Format(PyExc_TypeError, "'%.200s' does not have the buffer interface", Py_TYPE(obj)->tp_name); + return -1; +} +static void __Pyx_ReleaseBuffer(Py_buffer *view) { + PyObject *obj = view->obj; + if (!obj) return; + if (PyObject_CheckBuffer(obj)) { + PyBuffer_Release(view); + return; + } + Py_DECREF(obj); + view->obj = NULL; +} +#endif + + + /* MemviewSliceIsContig */ + static int +__pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, + char order, int ndim) +{ + int i, index, step, start; + Py_ssize_t itemsize = mvs.memview->view.itemsize; + if (order == 'F') { + step = 1; + start = 0; + } else { + step = -1; + start = ndim - 1; + } + for (i = 0; i < ndim; i++) { + index = start + step * i; + if (mvs.suboffsets[index] >= 0 || mvs.strides[index] != itemsize) + return 0; + itemsize *= mvs.shape[index]; + } + return 1; +} + +/* OverlappingSlices */ + static void +__pyx_get_array_memory_extents(__Pyx_memviewslice *slice, + void **out_start, void **out_end, + int ndim, size_t itemsize) +{ + char *start, *end; + int i; + start = end = slice->data; + for (i = 0; i < ndim; i++) { + Py_ssize_t stride = slice->strides[i]; + Py_ssize_t extent = slice->shape[i]; + if (extent == 0) { + *out_start = *out_end = start; + return; + } else { + if (stride > 0) + end += stride * (extent - 1); + else + start += stride * (extent - 1); + } + } + *out_start = start; + *out_end = end + itemsize; +} +static int +__pyx_slices_overlap(__Pyx_memviewslice *slice1, + __Pyx_memviewslice *slice2, + int ndim, size_t itemsize) +{ + void *start1, *end1, *start2, *end2; + __pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize); + __pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize); + return (start1 < end2) && (start2 < end1); +} + +/* Capsule */ + static CYTHON_INLINE PyObject * +__pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) +{ + PyObject *cobj; +#if PY_VERSION_HEX >= 0x02070000 + cobj = PyCapsule_New(p, sig, NULL); +#else + cobj = PyCObject_FromVoidPtr(p, NULL); +#endif + return cobj; +} + +/* TypeInfoCompare */ + static int +__pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) +{ + int i; + if (!a || !b) + return 0; + if (a == b) + return 1; + if (a->size != b->size || a->typegroup != b->typegroup || + a->is_unsigned != b->is_unsigned || a->ndim != b->ndim) { + if (a->typegroup == 'H' || b->typegroup == 'H') { + return a->size == b->size; + } else { + return 0; + } + } + if (a->ndim) { + for (i = 0; i < a->ndim; i++) + if (a->arraysize[i] != b->arraysize[i]) + return 0; + } + if (a->typegroup == 'S') { + if (a->flags != b->flags) + return 0; + if (a->fields || b->fields) { + if (!(a->fields && b->fields)) + return 0; + for (i = 0; a->fields[i].type && b->fields[i].type; i++) { + __Pyx_StructField *field_a = a->fields + i; + __Pyx_StructField *field_b = b->fields + i; + if (field_a->offset != field_b->offset || + !__pyx_typeinfo_cmp(field_a->type, field_b->type)) + return 0; + } + return !a->fields[i].type && !b->fields[i].type; + } + } + return 1; +} + +/* MemviewSliceValidateAndInit */ + static int +__pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec) +{ + if (buf->shape[dim] <= 1) + return 1; + if (buf->strides) { + if (spec & __Pyx_MEMVIEW_CONTIG) { + if (spec & (__Pyx_MEMVIEW_PTR|__Pyx_MEMVIEW_FULL)) { + if (buf->strides[dim] != sizeof(void *)) { + PyErr_Format(PyExc_ValueError, + "Buffer is not indirectly contiguous " + "in dimension %d.", dim); + goto fail; + } + } else if (buf->strides[dim] != buf->itemsize) { + PyErr_SetString(PyExc_ValueError, + "Buffer and memoryview are not contiguous " + "in the same dimension."); + goto fail; + } + } + if (spec & __Pyx_MEMVIEW_FOLLOW) { + Py_ssize_t stride = buf->strides[dim]; + if (stride < 0) + stride = -stride; + if (stride < buf->itemsize) { + PyErr_SetString(PyExc_ValueError, + "Buffer and memoryview are not contiguous " + "in the same dimension."); + goto fail; + } + } + } else { + if (spec & __Pyx_MEMVIEW_CONTIG && dim != ndim - 1) { + PyErr_Format(PyExc_ValueError, + "C-contiguous buffer is not contiguous in " + "dimension %d", dim); + goto fail; + } else if (spec & (__Pyx_MEMVIEW_PTR)) { + PyErr_Format(PyExc_ValueError, + "C-contiguous buffer is not indirect in " + "dimension %d", dim); + goto fail; + } else if (buf->suboffsets) { + PyErr_SetString(PyExc_ValueError, + "Buffer exposes suboffsets but no strides"); + goto fail; + } + } + return 1; +fail: + return 0; +} +static int +__pyx_check_suboffsets(Py_buffer *buf, int dim, CYTHON_UNUSED int ndim, int spec) +{ + if (spec & __Pyx_MEMVIEW_DIRECT) { + if (buf->suboffsets && buf->suboffsets[dim] >= 0) { + PyErr_Format(PyExc_ValueError, + "Buffer not compatible with direct access " + "in dimension %d.", dim); + goto fail; + } + } + if (spec & __Pyx_MEMVIEW_PTR) { + if (!buf->suboffsets || (buf->suboffsets && buf->suboffsets[dim] < 0)) { + PyErr_Format(PyExc_ValueError, + "Buffer is not indirectly accessible " + "in dimension %d.", dim); + goto fail; + } + } + return 1; +fail: + return 0; +} +static int +__pyx_verify_contig(Py_buffer *buf, int ndim, int c_or_f_flag) +{ + int i; + if (c_or_f_flag & __Pyx_IS_F_CONTIG) { + Py_ssize_t stride = 1; + for (i = 0; i < ndim; i++) { + if (stride * buf->itemsize != buf->strides[i] && + buf->shape[i] > 1) + { + PyErr_SetString(PyExc_ValueError, + "Buffer not fortran contiguous."); + goto fail; + } + stride = stride * buf->shape[i]; + } + } else if (c_or_f_flag & __Pyx_IS_C_CONTIG) { + Py_ssize_t stride = 1; + for (i = ndim - 1; i >- 1; i--) { + if (stride * buf->itemsize != buf->strides[i] && + buf->shape[i] > 1) { + PyErr_SetString(PyExc_ValueError, + "Buffer not C contiguous."); + goto fail; + } + stride = stride * buf->shape[i]; + } + } + return 1; +fail: + return 0; +} +static int __Pyx_ValidateAndInit_memviewslice( + int *axes_specs, + int c_or_f_flag, + int buf_flags, + int ndim, + __Pyx_TypeInfo *dtype, + __Pyx_BufFmt_StackElem stack[], + __Pyx_memviewslice *memviewslice, + PyObject *original_obj) +{ + struct __pyx_memoryview_obj *memview, *new_memview; + __Pyx_RefNannyDeclarations + Py_buffer *buf; + int i, spec = 0, retval = -1; + __Pyx_BufFmt_Context ctx; + int from_memoryview = __pyx_memoryview_check(original_obj); + __Pyx_RefNannySetupContext("ValidateAndInit_memviewslice", 0); + if (from_memoryview && __pyx_typeinfo_cmp(dtype, ((struct __pyx_memoryview_obj *) + original_obj)->typeinfo)) { + memview = (struct __pyx_memoryview_obj *) original_obj; + new_memview = NULL; + } else { + memview = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( + original_obj, buf_flags, 0, dtype); + new_memview = memview; + if (unlikely(!memview)) + goto fail; + } + buf = &memview->view; + if (buf->ndim != ndim) { + PyErr_Format(PyExc_ValueError, + "Buffer has wrong number of dimensions (expected %d, got %d)", + ndim, buf->ndim); + goto fail; + } + if (new_memview) { + __Pyx_BufFmt_Init(&ctx, stack, dtype); + if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; + } + if ((unsigned) buf->itemsize != dtype->size) { + PyErr_Format(PyExc_ValueError, + "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "u byte%s) " + "does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "u byte%s)", + buf->itemsize, + (buf->itemsize > 1) ? "s" : "", + dtype->name, + dtype->size, + (dtype->size > 1) ? "s" : ""); + goto fail; + } + for (i = 0; i < ndim; i++) { + spec = axes_specs[i]; + if (!__pyx_check_strides(buf, i, ndim, spec)) + goto fail; + if (!__pyx_check_suboffsets(buf, i, ndim, spec)) + goto fail; + } + if (buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag)) + goto fail; + if (unlikely(__Pyx_init_memviewslice(memview, ndim, memviewslice, + new_memview != NULL) == -1)) { + goto fail; + } + retval = 0; + goto no_fail; +fail: + Py_XDECREF(new_memview); + retval = -1; +no_fail: + __Pyx_RefNannyFinishContext(); + return retval; +} + +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *obj) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_FOLLOW), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT | PyBUF_WRITABLE), 2, + &__Pyx_TypeInfo_double, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *obj) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, + PyBUF_RECORDS, 2, + &__Pyx_TypeInfo_double, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + +/* MemviewSliceCopyTemplate */ + static __Pyx_memviewslice +__pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, + const char *mode, int ndim, + size_t sizeof_dtype, int contig_flag, + int dtype_is_object) +{ + __Pyx_RefNannyDeclarations + int i; + __Pyx_memviewslice new_mvs = { 0, 0, { 0 }, { 0 }, { 0 } }; + struct __pyx_memoryview_obj *from_memview = from_mvs->memview; + Py_buffer *buf = &from_memview->view; + PyObject *shape_tuple = NULL; + PyObject *temp_int = NULL; + struct __pyx_array_obj *array_obj = NULL; + struct __pyx_memoryview_obj *memview_obj = NULL; + __Pyx_RefNannySetupContext("__pyx_memoryview_copy_new_contig", 0); + for (i = 0; i < ndim; i++) { + if (from_mvs->suboffsets[i] >= 0) { + PyErr_Format(PyExc_ValueError, "Cannot copy memoryview slice with " + "indirect dimensions (axis %d)", i); + goto fail; + } + } + shape_tuple = PyTuple_New(ndim); + if (unlikely(!shape_tuple)) { + goto fail; + } + __Pyx_GOTREF(shape_tuple); + for(i = 0; i < ndim; i++) { + temp_int = PyInt_FromSsize_t(from_mvs->shape[i]); + if(unlikely(!temp_int)) { + goto fail; + } else { + PyTuple_SET_ITEM(shape_tuple, i, temp_int); + temp_int = NULL; + } + } + array_obj = __pyx_array_new(shape_tuple, sizeof_dtype, buf->format, (char *) mode, NULL); + if (unlikely(!array_obj)) { + goto fail; + } + __Pyx_GOTREF(array_obj); + memview_obj = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( + (PyObject *) array_obj, contig_flag, + dtype_is_object, + from_mvs->memview->typeinfo); + if (unlikely(!memview_obj)) + goto fail; + if (unlikely(__Pyx_init_memviewslice(memview_obj, ndim, &new_mvs, 1) < 0)) + goto fail; + if (unlikely(__pyx_memoryview_copy_contents(*from_mvs, new_mvs, ndim, ndim, + dtype_is_object) < 0)) + goto fail; + goto no_fail; +fail: + __Pyx_XDECREF(new_mvs.memview); + new_mvs.memview = NULL; + new_mvs.data = NULL; +no_fail: + __Pyx_XDECREF(shape_tuple); + __Pyx_XDECREF(temp_int); + __Pyx_XDECREF(array_obj); + __Pyx_RefNannyFinishContext(); + return new_mvs; +} + +/* CIntFromPyVerify */ + #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) +#define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) +#define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ + {\ + func_type value = func_value;\ + if (sizeof(target_type) < sizeof(func_type)) {\ + if (unlikely(value != (func_type) (target_type) value)) {\ + func_type zero = 0;\ + if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ + return (target_type) -1;\ + if (is_unsigned && unlikely(value < zero))\ + goto raise_neg_overflow;\ + else\ + goto raise_overflow;\ + }\ + }\ + return (target_type) value;\ + } + +/* CIntFromPy */ + static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { + const int neg_one = (int) -1, const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(int) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (int) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { + return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { + return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { + return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (int) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(int) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) + case -2: + if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + } +#endif + if (sizeof(int) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + int val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (int) -1; + } + } else { + int val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (int) -1; + val = __Pyx_PyInt_As_int(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to int"); + return (int) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to int"); + return (int) -1; +} + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { + const int neg_one = (int) -1, const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(int) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(int) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(int) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(int), + little, !is_unsigned); + } +} + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { + const long neg_one = (long) -1, const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(long) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(long) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(long) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(long), + little, !is_unsigned); + } +} + +/* CIntFromPy */ + static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { + const char neg_one = (char) -1, const_zero = (char) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(char) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(char, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (char) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (char) 0; + case 1: __PYX_VERIFY_RETURN_INT(char, digit, digits[0]) + case 2: + if (8 * sizeof(char) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) >= 2 * PyLong_SHIFT) { + return (char) (((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(char) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) >= 3 * PyLong_SHIFT) { + return (char) (((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(char) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) >= 4 * PyLong_SHIFT) { + return (char) (((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (char) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(char) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(char, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(char) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(char, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (char) 0; + case -1: __PYX_VERIFY_RETURN_INT(char, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(char, digit, +digits[0]) + case -2: + if (8 * sizeof(char) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { + return (char) (((char)-1)*(((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(char) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { + return (char) ((((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { + return (char) (((char)-1)*(((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(char) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { + return (char) ((((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { + return (char) (((char)-1)*(((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(char) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { + return (char) ((((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + } +#endif + if (sizeof(char) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(char, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(char) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(char, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + char val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (char) -1; + } + } else { + char val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (char) -1; + val = __Pyx_PyInt_As_char(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to char"); + return (char) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to char"); + return (char) -1; +} + +/* CIntFromPy */ + static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { + const long neg_one = (long) -1, const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(long) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (long) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { + return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { + return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { + return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (long) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(long) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) + case -2: + if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + } +#endif + if (sizeof(long) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + long val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (long) -1; + } + } else { + long val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (long) -1; + val = __Pyx_PyInt_As_long(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to long"); + return (long) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to long"); + return (long) -1; +} + +/* CheckBinaryVersion */ + static int __Pyx_check_binary_version(void) { + char ctversion[4], rtversion[4]; + PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); + PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion()); + if (ctversion[0] != rtversion[0] || ctversion[2] != rtversion[2]) { + char message[200]; + PyOS_snprintf(message, sizeof(message), + "compiletime version %s of module '%.100s' " + "does not match runtime version %s", + ctversion, __Pyx_MODULE_NAME, rtversion); + return PyErr_WarnEx(NULL, message, 1); + } + return 0; +} + +/* InitStrings */ + static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { + while (t->p) { + #if PY_MAJOR_VERSION < 3 + if (t->is_unicode) { + *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); + } else if (t->intern) { + *t->p = PyString_InternFromString(t->s); + } else { + *t->p = PyString_FromStringAndSize(t->s, t->n - 1); + } + #else + if (t->is_unicode | t->is_str) { + if (t->intern) { + *t->p = PyUnicode_InternFromString(t->s); + } else if (t->encoding) { + *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); + } else { + *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); + } + } else { + *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); + } + #endif + if (!*t->p) + return -1; + ++t; + } + return 0; +} + +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { + return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); +} +static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject* o) { + Py_ssize_t ignore; + return __Pyx_PyObject_AsStringAndSize(o, &ignore); +} +static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { +#if CYTHON_COMPILING_IN_CPYTHON && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) + if ( +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + __Pyx_sys_getdefaultencoding_not_ascii && +#endif + PyUnicode_Check(o)) { +#if PY_VERSION_HEX < 0x03030000 + char* defenc_c; + PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); + if (!defenc) return NULL; + defenc_c = PyBytes_AS_STRING(defenc); +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + { + char* end = defenc_c + PyBytes_GET_SIZE(defenc); + char* c; + for (c = defenc_c; c < end; c++) { + if ((unsigned char) (*c) >= 128) { + PyUnicode_AsASCIIString(o); + return NULL; + } + } + } +#endif + *length = PyBytes_GET_SIZE(defenc); + return defenc_c; +#else + if (__Pyx_PyUnicode_READY(o) == -1) return NULL; +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + if (PyUnicode_IS_ASCII(o)) { + *length = PyUnicode_GET_LENGTH(o); + return PyUnicode_AsUTF8(o); + } else { + PyUnicode_AsASCIIString(o); + return NULL; + } +#else + return PyUnicode_AsUTF8AndSize(o, length); +#endif +#endif + } else +#endif +#if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) + if (PyByteArray_Check(o)) { + *length = PyByteArray_GET_SIZE(o); + return PyByteArray_AS_STRING(o); + } else +#endif + { + char* result; + int r = PyBytes_AsStringAndSize(o, &result, length); + if (unlikely(r < 0)) { + return NULL; + } else { + return result; + } + } +} +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { + int is_true = x == Py_True; + if (is_true | (x == Py_False) | (x == Py_None)) return is_true; + else return PyObject_IsTrue(x); +} +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { +#if CYTHON_USE_TYPE_SLOTS + PyNumberMethods *m; +#endif + const char *name = NULL; + PyObject *res = NULL; +#if PY_MAJOR_VERSION < 3 + if (PyInt_Check(x) || PyLong_Check(x)) +#else + if (PyLong_Check(x)) +#endif + return __Pyx_NewRef(x); +#if CYTHON_USE_TYPE_SLOTS + m = Py_TYPE(x)->tp_as_number; + #if PY_MAJOR_VERSION < 3 + if (m && m->nb_int) { + name = "int"; + res = PyNumber_Int(x); + } + else if (m && m->nb_long) { + name = "long"; + res = PyNumber_Long(x); + } + #else + if (m && m->nb_int) { + name = "int"; + res = PyNumber_Long(x); + } + #endif +#else + res = PyNumber_Int(x); +#endif + if (res) { +#if PY_MAJOR_VERSION < 3 + if (!PyInt_Check(res) && !PyLong_Check(res)) { +#else + if (!PyLong_Check(res)) { +#endif + PyErr_Format(PyExc_TypeError, + "__%.4s__ returned non-%.4s (type %.200s)", + name, name, Py_TYPE(res)->tp_name); + Py_DECREF(res); + return NULL; + } + } + else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + } + return res; +} +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { + Py_ssize_t ival; + PyObject *x; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_CheckExact(b))) { + if (sizeof(Py_ssize_t) >= sizeof(long)) + return PyInt_AS_LONG(b); + else + return PyInt_AsSsize_t(x); + } +#endif + if (likely(PyLong_CheckExact(b))) { + #if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)b)->ob_digit; + const Py_ssize_t size = Py_SIZE(b); + if (likely(__Pyx_sst_abs(size) <= 1)) { + ival = likely(size) ? digits[0] : 0; + if (size == -1) ival = -ival; + return ival; + } else { + switch (size) { + case 2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + } + } + #endif + return PyLong_AsSsize_t(b); + } + x = PyNumber_Index(b); + if (!x) return -1; + ival = PyInt_AsSsize_t(x); + Py_DECREF(x); + return ival; +} +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { + return PyInt_FromSize_t(ival); +} + + +#endif /* Py_PYTHON_H */ diff --git a/setup.py b/setup.py index e37476a78b..0c47a1f0e3 100644 --- a/setup.py +++ b/setup.py @@ -260,6 +260,8 @@ def finalize_options(self): include_dirs=[model_dir]), Extension('gensim._matutils', sources=['./gensim/_matutils.c']), + Extension('gensim.models.nmf_pgd', + sources=['./gensim/models/nmf_pgd.c']) ] if not (os.name == 'nt' and sys.version_info[0] < 3): From e6409fad95952fd1c03604168e44477c826cd37c Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 14:36:39 +0300 Subject: [PATCH 090/144] Fix imports, add solve_r function --- gensim/models/nmf_pgd.c | 1796 +++++++++++++++++++++++++++++++++---- gensim/models/nmf_pgd.pyx | 189 ++++ 2 files changed, 1789 insertions(+), 196 deletions(-) diff --git a/gensim/models/nmf_pgd.c b/gensim/models/nmf_pgd.c index 2264e7293f..9fea32bcc0 100644 --- a/gensim/models/nmf_pgd.c +++ b/gensim/models/nmf_pgd.c @@ -990,9 +990,8 @@ static CYTHON_INLINE int __pyx_sub_acquisition_count_locked( static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *, int, int); static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *, int, int); -/* ArgTypeTest.proto */ -static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, - const char *name, int exact); +/* GetModuleGlobalName.proto */ +static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name); /* PyObjectCall.proto */ #if CYTHON_COMPILING_IN_CPYTHON @@ -1001,6 +1000,10 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg #define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) #endif +/* ArgTypeTest.proto */ +static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, + const char *name, int exact); + /* PyThreadStateGet.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; @@ -1307,6 +1310,12 @@ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_d /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *); +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *); + +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *); + /* MemviewSliceCopyTemplate.proto */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, @@ -1329,6 +1338,9 @@ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(PyObject *); + /* CheckBinaryVersion.proto */ static int __Pyx_check_binary_version(void); @@ -1346,6 +1358,10 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ +/* Module declarations from 'cython.view' */ + +/* Module declarations from 'cython' */ + /* Module declarations from 'libc.math' */ /* Module declarations from 'gensim.models.nmf_pgd' */ @@ -1393,6 +1409,8 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *, Py_ssize_t *, Py_ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *, int, size_t, void *, int); /*proto*/ static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *); /*proto*/ static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; +static __Pyx_TypeInfo __Pyx_TypeInfo_int = { "int", NULL, sizeof(int), { 0 }, 0, IS_UNSIGNED(int) ? 'U' : 'I', IS_UNSIGNED(int), 0 }; +static __Pyx_TypeInfo __Pyx_TypeInfo_Py_ssize_t = { "Py_ssize_t", NULL, sizeof(Py_ssize_t), { 0 }, 0, IS_UNSIGNED(Py_ssize_t) ? 'U' : 'I', IS_UNSIGNED(Py_ssize_t), 0 }; #define __Pyx_MODULE_NAME "gensim.models.nmf_pgd" int __pyx_module_is_main_gensim__models__nmf_pgd = 0; @@ -1409,10 +1427,12 @@ static const char __pyx_k_O[] = "O"; static const char __pyx_k_c[] = "c"; static const char __pyx_k_h[] = "h"; static const char __pyx_k_id[] = "id"; +static const char __pyx_k_np[] = "np"; static const char __pyx_k_WtW[] = "WtW"; static const char __pyx_k_obj[] = "obj"; static const char __pyx_k_base[] = "base"; static const char __pyx_k_grad[] = "grad"; +static const char __pyx_k_intp[] = "intp"; static const char __pyx_k_main[] = "__main__"; static const char __pyx_k_mode[] = "mode"; static const char __pyx_k_name[] = "name"; @@ -1424,42 +1444,61 @@ static const char __pyx_k_stop[] = "stop"; static const char __pyx_k_test[] = "__test__"; static const char __pyx_k_ASCII[] = "ASCII"; static const char __pyx_k_class[] = "__class__"; +static const char __pyx_k_dtype[] = "dtype"; static const char __pyx_k_error[] = "error"; static const char __pyx_k_flags[] = "flags"; static const char __pyx_k_kappa[] = "kappa"; +static const char __pyx_k_numpy[] = "numpy"; static const char __pyx_k_range[] = "range"; static const char __pyx_k_shape[] = "shape"; static const char __pyx_k_start[] = "start"; +static const char __pyx_k_v_max[] = "v_max"; +static const char __pyx_k_zeros[] = "zeros"; static const char __pyx_k_encode[] = "encode"; static const char __pyx_k_format[] = "format"; static const char __pyx_k_import[] = "__import__"; +static const char __pyx_k_lambda[] = "lambda_"; static const char __pyx_k_name_2[] = "__name__"; +static const char __pyx_k_r_data[] = "r_data"; static const char __pyx_k_struct[] = "struct"; static const char __pyx_k_unpack[] = "unpack"; static const char __pyx_k_fortran[] = "fortran"; static const char __pyx_k_hessian[] = "hessian"; static const char __pyx_k_memview[] = "memview"; static const char __pyx_k_solve_h[] = "solve_h"; +static const char __pyx_k_solve_r[] = "solve_r"; static const char __pyx_k_Ellipsis[] = "Ellipsis"; static const char __pyx_k_itemsize[] = "itemsize"; +static const char __pyx_k_r_indptr[] = "r_indptr"; static const char __pyx_k_TypeError[] = "TypeError"; static const char __pyx_k_enumerate[] = "enumerate"; static const char __pyx_k_n_samples[] = "n_samples"; +static const char __pyx_k_r_indices[] = "r_indices"; static const char __pyx_k_violation[] = "violation"; static const char __pyx_k_IndexError[] = "IndexError"; static const char __pyx_k_ValueError[] = "ValueError"; static const char __pyx_k_pyx_vtable[] = "__pyx_vtable__"; +static const char __pyx_k_r_col_size[] = "r_col_size"; static const char __pyx_k_sample_idx[] = "sample_idx"; static const char __pyx_k_MemoryError[] = "MemoryError"; static const char __pyx_k_Wt_v_minus_r[] = "Wt_v_minus_r"; static const char __pyx_k_n_components[] = "n_components"; static const char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; +static const char __pyx_k_r_actual_data[] = "r_actual_data"; +static const char __pyx_k_r_actual_sign[] = "r_actual_sign"; +static const char __pyx_k_r_col_idx_idx[] = "r_col_idx_idx"; +static const char __pyx_k_r_col_indices[] = "r_col_indices"; static const char __pyx_k_projected_grad[] = "projected_grad"; static const char __pyx_k_allocate_buffer[] = "allocate_buffer"; static const char __pyx_k_component_idx_1[] = "component_idx_1"; static const char __pyx_k_component_idx_2[] = "component_idx_2"; static const char __pyx_k_dtype_is_object[] = "dtype_is_object"; +static const char __pyx_k_r_actual_indptr[] = "r_actual_indptr"; +static const char __pyx_k_r_actual_indices[] = "r_actual_indices"; +static const char __pyx_k_r_actual_col_size[] = "r_actual_col_size"; static const char __pyx_k_strided_and_direct[] = ""; +static const char __pyx_k_r_actual_col_idx_idx[] = "r_actual_col_idx_idx"; +static const char __pyx_k_r_actual_col_indices[] = "r_actual_col_indices"; static const char __pyx_k_strided_and_indirect[] = ""; static const char __pyx_k_contiguous_and_direct[] = ""; static const char __pyx_k_gensim_models_nmf_pgd[] = "gensim.models.nmf_pgd"; @@ -1510,6 +1549,7 @@ static PyObject *__pyx_n_s_component_idx_1; static PyObject *__pyx_n_s_component_idx_2; static PyObject *__pyx_kp_s_contiguous_and_direct; static PyObject *__pyx_kp_s_contiguous_and_indirect; +static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_dtype_is_object; static PyObject *__pyx_n_s_encode; static PyObject *__pyx_n_s_enumerate; @@ -1526,9 +1566,11 @@ static PyObject *__pyx_n_s_hessian; static PyObject *__pyx_kp_s_home_anotherbugmaster_Documents; static PyObject *__pyx_n_s_id; static PyObject *__pyx_n_s_import; +static PyObject *__pyx_n_s_intp; static PyObject *__pyx_n_s_itemsize; static PyObject *__pyx_kp_s_itemsize_0_for_cython_array; static PyObject *__pyx_n_s_kappa; +static PyObject *__pyx_n_s_lambda; static PyObject *__pyx_n_s_main; static PyObject *__pyx_n_s_memview; static PyObject *__pyx_n_s_mode; @@ -1537,16 +1579,32 @@ static PyObject *__pyx_n_s_n_samples; static PyObject *__pyx_n_s_name; static PyObject *__pyx_n_s_name_2; static PyObject *__pyx_n_s_ndim; +static PyObject *__pyx_n_s_np; +static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_n_s_obj; static PyObject *__pyx_n_s_pack; static PyObject *__pyx_n_s_projected_grad; static PyObject *__pyx_n_s_pyx_getbuffer; static PyObject *__pyx_n_s_pyx_vtable; +static PyObject *__pyx_n_s_r_actual_col_idx_idx; +static PyObject *__pyx_n_s_r_actual_col_indices; +static PyObject *__pyx_n_s_r_actual_col_size; +static PyObject *__pyx_n_s_r_actual_data; +static PyObject *__pyx_n_s_r_actual_indices; +static PyObject *__pyx_n_s_r_actual_indptr; +static PyObject *__pyx_n_s_r_actual_sign; +static PyObject *__pyx_n_s_r_col_idx_idx; +static PyObject *__pyx_n_s_r_col_indices; +static PyObject *__pyx_n_s_r_col_size; +static PyObject *__pyx_n_s_r_data; +static PyObject *__pyx_n_s_r_indices; +static PyObject *__pyx_n_s_r_indptr; static PyObject *__pyx_n_s_range; static PyObject *__pyx_n_s_sample_idx; static PyObject *__pyx_n_s_shape; static PyObject *__pyx_n_s_size; static PyObject *__pyx_n_s_solve_h; +static PyObject *__pyx_n_s_solve_r; static PyObject *__pyx_n_s_start; static PyObject *__pyx_n_s_step; static PyObject *__pyx_n_s_stop; @@ -1558,8 +1616,11 @@ static PyObject *__pyx_n_s_test; static PyObject *__pyx_kp_s_unable_to_allocate_array_data; static PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; static PyObject *__pyx_n_s_unpack; +static PyObject *__pyx_n_s_v_max; static PyObject *__pyx_n_s_violation; +static PyObject *__pyx_n_s_zeros; static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_h, __Pyx_memviewslice __pyx_v_Wt_v_minus_r, __Pyx_memviewslice __pyx_v_WtW, double __pyx_v_kappa); /* proto */ +static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_r_indptr, __Pyx_memviewslice __pyx_v_r_indices, __Pyx_memviewslice __pyx_v_r_data, __Pyx_memviewslice __pyx_v_r_actual_indptr, __Pyx_memviewslice __pyx_v_r_actual_indices, __Pyx_memviewslice __pyx_v_r_actual_data, double __pyx_v_lambda_, double __pyx_v_v_max); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ @@ -1614,14 +1675,16 @@ static PyObject *__pyx_slice__12; static PyObject *__pyx_tuple__13; static PyObject *__pyx_tuple__14; static PyObject *__pyx_tuple__16; -static PyObject *__pyx_tuple__17; static PyObject *__pyx_tuple__18; static PyObject *__pyx_tuple__19; static PyObject *__pyx_tuple__20; +static PyObject *__pyx_tuple__21; +static PyObject *__pyx_tuple__22; static PyObject *__pyx_codeobj__15; +static PyObject *__pyx_codeobj__17; -/* "gensim/models/nmf_pgd.pyx":11 - * from cython.parallel import prange +/* "gensim/models/nmf_pgd.pyx":57 + * # return sqrt(violation) * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * cdef Py_ssize_t n_components = h.shape[0] @@ -1661,21 +1724,21 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_Wt_v_minus_r)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 11, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 57, __pyx_L3_error) } case 2: if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_WtW)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 11, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 57, __pyx_L3_error) } case 3: if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 11, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 57, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 11, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 57, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; @@ -1685,14 +1748,14 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } - __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0]); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 11, __pyx_L3_error) - __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1]); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 11, __pyx_L3_error) - __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2]); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 11, __pyx_L3_error) - __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 11, __pyx_L3_error) + __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0]); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 57, __pyx_L3_error) + __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1]); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 57, __pyx_L3_error) + __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2]); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 57, __pyx_L3_error) + __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 57, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 11, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 57, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -1742,7 +1805,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec PyObject *__pyx_t_23 = NULL; __Pyx_RefNannySetupContext("solve_h", 0); - /* "gensim/models/nmf_pgd.pyx":12 + /* "gensim/models/nmf_pgd.pyx":58 * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): * cdef Py_ssize_t n_components = h.shape[0] # <<<<<<<<<<<<<< @@ -1751,7 +1814,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_n_components = (__pyx_v_h.shape[0]); - /* "gensim/models/nmf_pgd.pyx":13 + /* "gensim/models/nmf_pgd.pyx":59 * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] # <<<<<<<<<<<<<< @@ -1760,7 +1823,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_n_samples = (__pyx_v_h.shape[1]); - /* "gensim/models/nmf_pgd.pyx":14 + /* "gensim/models/nmf_pgd.pyx":60 * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] * cdef double violation = 0 # <<<<<<<<<<<<<< @@ -1769,7 +1832,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_violation = 0.0; - /* "gensim/models/nmf_pgd.pyx":16 + /* "gensim/models/nmf_pgd.pyx":62 * cdef double violation = 0 * cdef double grad, projected_grad, hessian * cdef Py_ssize_t sample_idx = 0 # <<<<<<<<<<<<<< @@ -1778,7 +1841,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_sample_idx = 0; - /* "gensim/models/nmf_pgd.pyx":17 + /* "gensim/models/nmf_pgd.pyx":63 * cdef double grad, projected_grad, hessian * cdef Py_ssize_t sample_idx = 0 * cdef Py_ssize_t component_idx_1 = 0 # <<<<<<<<<<<<<< @@ -1787,7 +1850,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_component_idx_1 = 0; - /* "gensim/models/nmf_pgd.pyx":18 + /* "gensim/models/nmf_pgd.pyx":64 * cdef Py_ssize_t sample_idx = 0 * cdef Py_ssize_t component_idx_1 = 0 * cdef Py_ssize_t component_idx_2 = 0 # <<<<<<<<<<<<<< @@ -1796,7 +1859,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_component_idx_2 = 0; - /* "gensim/models/nmf_pgd.pyx":20 + /* "gensim/models/nmf_pgd.pyx":66 * cdef Py_ssize_t component_idx_2 = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -1838,7 +1901,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_v_hessian = ((double)__PYX_NAN()); __pyx_v_projected_grad = ((double)__PYX_NAN()); - /* "gensim/models/nmf_pgd.pyx":21 + /* "gensim/models/nmf_pgd.pyx":67 * * for sample_idx in prange(n_samples, nogil=True): * for component_idx_1 in range(n_components): # <<<<<<<<<<<<<< @@ -1849,99 +1912,1286 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { __pyx_v_component_idx_1 = __pyx_t_5; - /* "gensim/models/nmf_pgd.pyx":23 + /* "gensim/models/nmf_pgd.pyx":69 * for component_idx_1 in range(n_components): * * grad = -Wt_v_minus_r[component_idx_1, sample_idx] # <<<<<<<<<<<<<< * - * for component_idx_2 in range(n_components): + * for component_idx_2 in range(n_components): + */ + __pyx_t_6 = __pyx_v_component_idx_1; + __pyx_t_7 = __pyx_v_sample_idx; + __pyx_v_grad = (-(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_Wt_v_minus_r.data + __pyx_t_6 * __pyx_v_Wt_v_minus_r.strides[0]) ) + __pyx_t_7 * __pyx_v_Wt_v_minus_r.strides[1]) )))); + + /* "gensim/models/nmf_pgd.pyx":71 + * grad = -Wt_v_minus_r[component_idx_1, sample_idx] + * + * for component_idx_2 in range(n_components): # <<<<<<<<<<<<<< + * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] + * + */ + __pyx_t_8 = __pyx_v_n_components; + for (__pyx_t_9 = 0; __pyx_t_9 < __pyx_t_8; __pyx_t_9+=1) { + __pyx_v_component_idx_2 = __pyx_t_9; + + /* "gensim/models/nmf_pgd.pyx":72 + * + * for component_idx_2 in range(n_components): + * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] # <<<<<<<<<<<<<< + * + * hessian = WtW[component_idx_1, component_idx_1] + */ + __pyx_t_10 = __pyx_v_component_idx_1; + __pyx_t_11 = __pyx_v_component_idx_2; + __pyx_t_12 = __pyx_v_component_idx_2; + __pyx_t_13 = __pyx_v_sample_idx; + __pyx_v_grad = (__pyx_v_grad + ((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_10 * __pyx_v_WtW.strides[0]) )) + __pyx_t_11)) ))) * (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_12 * __pyx_v_h.strides[0]) )) + __pyx_t_13)) ))))); + } + + /* "gensim/models/nmf_pgd.pyx":74 + * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] + * + * hessian = WtW[component_idx_1, component_idx_1] # <<<<<<<<<<<<<< + * + * grad = grad * kappa / hessian + */ + __pyx_t_14 = __pyx_v_component_idx_1; + __pyx_t_15 = __pyx_v_component_idx_1; + __pyx_v_hessian = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_14 * __pyx_v_WtW.strides[0]) )) + __pyx_t_15)) ))); + + /* "gensim/models/nmf_pgd.pyx":76 + * hessian = WtW[component_idx_1, component_idx_1] + * + * grad = grad * kappa / hessian # <<<<<<<<<<<<<< + * + * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + */ + __pyx_v_grad = ((__pyx_v_grad * __pyx_v_kappa) / __pyx_v_hessian); + + /* "gensim/models/nmf_pgd.pyx":78 + * grad = grad * kappa / hessian + * + * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad # <<<<<<<<<<<<<< + * + * violation += projected_grad * projected_grad + */ + __pyx_t_17 = __pyx_v_component_idx_1; + __pyx_t_18 = __pyx_v_sample_idx; + if ((((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_17 * __pyx_v_h.strides[0]) )) + __pyx_t_18)) ))) == 0.0) != 0)) { + __pyx_t_16 = fmin(0.0, __pyx_v_grad); + } else { + __pyx_t_16 = __pyx_v_grad; + } + __pyx_v_projected_grad = __pyx_t_16; + + /* "gensim/models/nmf_pgd.pyx":80 + * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + * + * violation += projected_grad * projected_grad # <<<<<<<<<<<<<< + * + * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + */ + __pyx_v_violation = (__pyx_v_violation + (__pyx_v_projected_grad * __pyx_v_projected_grad)); + + /* "gensim/models/nmf_pgd.pyx":82 + * violation += projected_grad * projected_grad + * + * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) # <<<<<<<<<<<<<< + * + * return sqrt(violation) + */ + __pyx_t_19 = __pyx_v_component_idx_1; + __pyx_t_20 = __pyx_v_sample_idx; + __pyx_t_21 = __pyx_v_component_idx_1; + __pyx_t_22 = __pyx_v_sample_idx; + *((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_21 * __pyx_v_h.strides[0]) )) + __pyx_t_22)) )) = fmax(((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_19 * __pyx_v_h.strides[0]) )) + __pyx_t_20)) ))) - __pyx_v_grad), 0.); + } + } + } + } + } + } + #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) + #undef likely + #undef unlikely + #define likely(x) __builtin_expect(!!(x), 1) + #define unlikely(x) __builtin_expect(!!(x), 0) + #endif + } + + /* "gensim/models/nmf_pgd.pyx":66 + * cdef Py_ssize_t component_idx_2 = 0 + * + * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< + * for component_idx_1 in range(n_components): + * + */ + /*finally:*/ { + /*normal exit:*/{ + #ifdef WITH_THREAD + Py_BLOCK_THREADS + #endif + goto __pyx_L5; + } + __pyx_L5:; + } + } + + /* "gensim/models/nmf_pgd.pyx":84 + * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + * + * return sqrt(violation) # <<<<<<<<<<<<<< + * + * def solve_r( + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_23 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_23)) __PYX_ERR(0, 84, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_23); + __pyx_r = __pyx_t_23; + __pyx_t_23 = 0; + goto __pyx_L0; + + /* "gensim/models/nmf_pgd.pyx":57 + * # return sqrt(violation) + * + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< + * cdef Py_ssize_t n_components = h.shape[0] + * cdef Py_ssize_t n_samples = h.shape[1] + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_23); + __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __PYX_XDEC_MEMVIEW(&__pyx_v_h, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_Wt_v_minus_r, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_WtW, 1); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "gensim/models/nmf_pgd.pyx":86 + * return sqrt(violation) + * + * def solve_r( # <<<<<<<<<<<<<< + * int[::1] r_indptr, + * int[::1] r_indices, + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r = {"solve_r", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r, METH_VARARGS|METH_KEYWORDS, 0}; +static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + __Pyx_memviewslice __pyx_v_r_indptr = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_data = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_actual_indptr = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_actual_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_actual_data = { 0, 0, { 0 }, { 0 }, { 0 } }; + double __pyx_v_lambda_; + double __pyx_v_v_max; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("solve_r (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_r_indptr,&__pyx_n_s_r_indices,&__pyx_n_s_r_data,&__pyx_n_s_r_actual_indptr,&__pyx_n_s_r_actual_indices,&__pyx_n_s_r_actual_data,&__pyx_n_s_lambda,&__pyx_n_s_v_max,0}; + PyObject* values[8] = {0,0,0,0,0,0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); + case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); + case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); + case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_indptr)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + case 1: + if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_indices)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 1); __PYX_ERR(0, 86, __pyx_L3_error) + } + case 2: + if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_data)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 2); __PYX_ERR(0, 86, __pyx_L3_error) + } + case 3: + if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_indptr)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 3); __PYX_ERR(0, 86, __pyx_L3_error) + } + case 4: + if (likely((values[4] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_indices)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 4); __PYX_ERR(0, 86, __pyx_L3_error) + } + case 5: + if (likely((values[5] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_data)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 5); __PYX_ERR(0, 86, __pyx_L3_error) + } + case 6: + if (likely((values[6] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_lambda)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 6); __PYX_ERR(0, 86, __pyx_L3_error) + } + case 7: + if (likely((values[7] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_v_max)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 7); __PYX_ERR(0, 86, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_r") < 0)) __PYX_ERR(0, 86, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 8) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + values[5] = PyTuple_GET_ITEM(__pyx_args, 5); + values[6] = PyTuple_GET_ITEM(__pyx_args, 6); + values[7] = PyTuple_GET_ITEM(__pyx_args, 7); + } + __pyx_v_r_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[0]); if (unlikely(!__pyx_v_r_indptr.memview)) __PYX_ERR(0, 87, __pyx_L3_error) + __pyx_v_r_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[1]); if (unlikely(!__pyx_v_r_indices.memview)) __PYX_ERR(0, 88, __pyx_L3_error) + __pyx_v_r_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[2]); if (unlikely(!__pyx_v_r_data.memview)) __PYX_ERR(0, 89, __pyx_L3_error) + __pyx_v_r_actual_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[3]); if (unlikely(!__pyx_v_r_actual_indptr.memview)) __PYX_ERR(0, 90, __pyx_L3_error) + __pyx_v_r_actual_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[4]); if (unlikely(!__pyx_v_r_actual_indices.memview)) __PYX_ERR(0, 91, __pyx_L3_error) + __pyx_v_r_actual_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[5]); if (unlikely(!__pyx_v_r_actual_data.memview)) __PYX_ERR(0, 92, __pyx_L3_error) + __pyx_v_lambda_ = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_lambda_ == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 93, __pyx_L3_error) + __pyx_v_v_max = __pyx_PyFloat_AsDouble(values[7]); if (unlikely((__pyx_v_v_max == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 94, __pyx_L3_error) + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 86, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_r", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(__pyx_self, __pyx_v_r_indptr, __pyx_v_r_indices, __pyx_v_r_data, __pyx_v_r_actual_indptr, __pyx_v_r_actual_indices, __pyx_v_r_actual_data, __pyx_v_lambda_, __pyx_v_v_max); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_r_indptr, __Pyx_memviewslice __pyx_v_r_indices, __Pyx_memviewslice __pyx_v_r_data, __Pyx_memviewslice __pyx_v_r_actual_indptr, __Pyx_memviewslice __pyx_v_r_actual_indices, __Pyx_memviewslice __pyx_v_r_actual_data, double __pyx_v_lambda_, double __pyx_v_v_max) { + Py_ssize_t __pyx_v_n_samples; + double __pyx_v_violation; + double __pyx_v_r_actual_sign; + Py_ssize_t __pyx_v_sample_idx; + Py_ssize_t __pyx_v_r_col_size; + Py_ssize_t __pyx_v_r_actual_col_size; + Py_ssize_t __pyx_v_r_col_idx_idx; + Py_ssize_t __pyx_v_r_actual_col_idx_idx; + __Pyx_memviewslice __pyx_v_r_col_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_actual_col_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + __Pyx_memviewslice __pyx_t_6 = { 0, 0, { 0 }, { 0 }, { 0 } }; + Py_ssize_t __pyx_t_7; + Py_ssize_t __pyx_t_8; + Py_ssize_t __pyx_t_9; + Py_ssize_t __pyx_t_10; + Py_ssize_t __pyx_t_11; + Py_ssize_t __pyx_t_12; + Py_ssize_t __pyx_t_13; + Py_ssize_t __pyx_t_14; + Py_ssize_t __pyx_t_15; + int __pyx_t_16; + Py_ssize_t __pyx_t_17; + int __pyx_t_18; + Py_ssize_t __pyx_t_19; + Py_ssize_t __pyx_t_20; + Py_ssize_t __pyx_t_21; + Py_ssize_t __pyx_t_22; + Py_ssize_t __pyx_t_23; + Py_ssize_t __pyx_t_24; + Py_ssize_t __pyx_t_25; + Py_ssize_t __pyx_t_26; + Py_ssize_t __pyx_t_27; + Py_ssize_t __pyx_t_28; + Py_ssize_t __pyx_t_29; + Py_ssize_t __pyx_t_30; + Py_ssize_t __pyx_t_31; + Py_ssize_t __pyx_t_32; + Py_ssize_t __pyx_t_33; + Py_ssize_t __pyx_t_34; + Py_ssize_t __pyx_t_35; + Py_ssize_t __pyx_t_36; + Py_ssize_t __pyx_t_37; + Py_ssize_t __pyx_t_38; + Py_ssize_t __pyx_t_39; + Py_ssize_t __pyx_t_40; + Py_ssize_t __pyx_t_41; + Py_ssize_t __pyx_t_42; + Py_ssize_t __pyx_t_43; + Py_ssize_t __pyx_t_44; + Py_ssize_t __pyx_t_45; + Py_ssize_t __pyx_t_46; + Py_ssize_t __pyx_t_47; + Py_ssize_t __pyx_t_48; + Py_ssize_t __pyx_t_49; + Py_ssize_t __pyx_t_50; + Py_ssize_t __pyx_t_51; + Py_ssize_t __pyx_t_52; + Py_ssize_t __pyx_t_53; + Py_ssize_t __pyx_t_54; + Py_ssize_t __pyx_t_55; + Py_ssize_t __pyx_t_56; + Py_ssize_t __pyx_t_57; + Py_ssize_t __pyx_t_58; + Py_ssize_t __pyx_t_59; + Py_ssize_t __pyx_t_60; + Py_ssize_t __pyx_t_61; + Py_ssize_t __pyx_t_62; + Py_ssize_t __pyx_t_63; + Py_ssize_t __pyx_t_64; + Py_ssize_t __pyx_t_65; + Py_ssize_t __pyx_t_66; + Py_ssize_t __pyx_t_67; + Py_ssize_t __pyx_t_68; + Py_ssize_t __pyx_t_69; + Py_ssize_t __pyx_t_70; + Py_ssize_t __pyx_t_71; + Py_ssize_t __pyx_t_72; + Py_ssize_t __pyx_t_73; + Py_ssize_t __pyx_t_74; + Py_ssize_t __pyx_t_75; + Py_ssize_t __pyx_t_76; + Py_ssize_t __pyx_t_77; + Py_ssize_t __pyx_t_78; + Py_ssize_t __pyx_t_79; + __Pyx_RefNannySetupContext("solve_r", 0); + + /* "gensim/models/nmf_pgd.pyx":96 + * double v_max + * ): + * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 # <<<<<<<<<<<<<< + * cdef double violation = 0 + * cdef double r_actual_sign = 1.0 + */ + __pyx_v_n_samples = ((__pyx_v_r_actual_indptr.shape[0]) - 1); + + /* "gensim/models/nmf_pgd.pyx":97 + * ): + * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 + * cdef double violation = 0 # <<<<<<<<<<<<<< + * cdef double r_actual_sign = 1.0 + * cdef Py_ssize_t sample_idx + */ + __pyx_v_violation = 0.0; + + /* "gensim/models/nmf_pgd.pyx":98 + * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 + * cdef double violation = 0 + * cdef double r_actual_sign = 1.0 # <<<<<<<<<<<<<< + * cdef Py_ssize_t sample_idx + * + */ + __pyx_v_r_actual_sign = 1.0; + + /* "gensim/models/nmf_pgd.pyx":101 + * cdef Py_ssize_t sample_idx + * + * cdef Py_ssize_t r_col_size = 0 # <<<<<<<<<<<<<< + * cdef Py_ssize_t r_actual_col_size = 0 + * cdef Py_ssize_t r_col_idx_idx = 0 + */ + __pyx_v_r_col_size = 0; + + /* "gensim/models/nmf_pgd.pyx":102 + * + * cdef Py_ssize_t r_col_size = 0 + * cdef Py_ssize_t r_actual_col_size = 0 # <<<<<<<<<<<<<< + * cdef Py_ssize_t r_col_idx_idx = 0 + * cdef Py_ssize_t r_actual_col_idx_idx + */ + __pyx_v_r_actual_col_size = 0; + + /* "gensim/models/nmf_pgd.pyx":103 + * cdef Py_ssize_t r_col_size = 0 + * cdef Py_ssize_t r_actual_col_size = 0 + * cdef Py_ssize_t r_col_idx_idx = 0 # <<<<<<<<<<<<<< + * cdef Py_ssize_t r_actual_col_idx_idx + * + */ + __pyx_v_r_col_idx_idx = 0; + + /* "gensim/models/nmf_pgd.pyx":106 + * cdef Py_ssize_t r_actual_col_idx_idx + * + * cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) # <<<<<<<<<<<<<< + * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) + * + */ + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); + __pyx_t_1 = 0; + __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_intp); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_5); + if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_r_col_indices = __pyx_t_6; + __pyx_t_6.memview = NULL; + __pyx_t_6.data = NULL; + + /* "gensim/models/nmf_pgd.pyx":107 + * + * cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) + * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) # <<<<<<<<<<<<<< + * + * for sample_idx in prange(n_samples, nogil=True): + */ + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); + __pyx_t_5 = 0; + __pyx_t_5 = PyDict_New(); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_intp); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_4); + if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 107, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_v_r_actual_col_indices = __pyx_t_6; + __pyx_t_6.memview = NULL; + __pyx_t_6.data = NULL; + + /* "gensim/models/nmf_pgd.pyx":109 + * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) + * + * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< + * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] + * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] + */ + { + #ifdef WITH_THREAD + PyThreadState *_save; + Py_UNBLOCK_THREADS + #endif + /*try:*/ { + __pyx_t_7 = __pyx_v_n_samples; + if (1 == 0) abort(); + { + #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) + #undef likely + #undef unlikely + #define likely(x) (x) + #define unlikely(x) (x) + #endif + __pyx_t_9 = (__pyx_t_7 - 0 + 1 - 1/abs(1)) / 1; + if (__pyx_t_9 > 0) + { + #ifdef _OPENMP + #pragma omp parallel reduction(+:__pyx_v_violation) private(__pyx_t_10, __pyx_t_11, __pyx_t_12, __pyx_t_13, __pyx_t_14, __pyx_t_15, __pyx_t_16, __pyx_t_17, __pyx_t_18, __pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_23, __pyx_t_24, __pyx_t_25, __pyx_t_26, __pyx_t_27, __pyx_t_28, __pyx_t_29, __pyx_t_30, __pyx_t_31, __pyx_t_32, __pyx_t_33, __pyx_t_34, __pyx_t_35, __pyx_t_36, __pyx_t_37, __pyx_t_38, __pyx_t_39, __pyx_t_40, __pyx_t_41, __pyx_t_42, __pyx_t_43, __pyx_t_44, __pyx_t_45, __pyx_t_46, __pyx_t_47, __pyx_t_48, __pyx_t_49, __pyx_t_50, __pyx_t_51, __pyx_t_52, __pyx_t_53, __pyx_t_54, __pyx_t_55, __pyx_t_56, __pyx_t_57, __pyx_t_58, __pyx_t_59, __pyx_t_60, __pyx_t_61, __pyx_t_62, __pyx_t_63, __pyx_t_64, __pyx_t_65, __pyx_t_66, __pyx_t_67, __pyx_t_68, __pyx_t_69, __pyx_t_70, __pyx_t_71, __pyx_t_72, __pyx_t_73, __pyx_t_74, __pyx_t_75, __pyx_t_76, __pyx_t_77, __pyx_t_78, __pyx_t_79) + #endif /* _OPENMP */ + { + #ifdef _OPENMP + #pragma omp for lastprivate(__pyx_v_r_actual_col_idx_idx) lastprivate(__pyx_v_r_actual_col_size) lastprivate(__pyx_v_r_actual_sign) lastprivate(__pyx_v_r_col_idx_idx) lastprivate(__pyx_v_r_col_size) firstprivate(__pyx_v_sample_idx) lastprivate(__pyx_v_sample_idx) + #endif /* _OPENMP */ + for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_9; __pyx_t_8++){ + { + __pyx_v_sample_idx = (Py_ssize_t)(0 + 1 * __pyx_t_8); + /* Initialize private variables to invalid values */ + __pyx_v_r_actual_col_idx_idx = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_actual_col_size = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_actual_sign = ((double)__PYX_NAN()); + __pyx_v_r_col_idx_idx = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_col_size = ((Py_ssize_t)0xbad0bad0); + + /* "gensim/models/nmf_pgd.pyx":110 + * + * for sample_idx in prange(n_samples, nogil=True): + * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] # <<<<<<<<<<<<<< + * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] + * + */ + __pyx_t_10 = (__pyx_v_sample_idx + 1); + __pyx_t_11 = __pyx_v_sample_idx; + __pyx_v_r_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_10)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_11)) )))); + + /* "gensim/models/nmf_pgd.pyx":111 + * for sample_idx in prange(n_samples, nogil=True): + * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] + * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + * r_col_indices[sample_idx] = 0 + */ + __pyx_t_12 = (__pyx_v_sample_idx + 1); + __pyx_t_13 = __pyx_v_sample_idx; + __pyx_v_r_actual_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_12)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_13)) )))); + + /* "gensim/models/nmf_pgd.pyx":113 + * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] + * + * r_col_indices[sample_idx] = 0 # <<<<<<<<<<<<<< + * r_actual_col_indices[sample_idx] = 0 + * + */ + __pyx_t_14 = __pyx_v_sample_idx; + *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_14 * __pyx_v_r_col_indices.strides[0]) )) = 0; + + /* "gensim/models/nmf_pgd.pyx":114 + * + * r_col_indices[sample_idx] = 0 + * r_actual_col_indices[sample_idx] = 0 # <<<<<<<<<<<<<< + * + * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: + */ + __pyx_t_15 = __pyx_v_sample_idx; + *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_15 * __pyx_v_r_actual_col_indices.strides[0]) )) = 0; + + /* "gensim/models/nmf_pgd.pyx":116 + * r_actual_col_indices[sample_idx] = 0 + * + * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< + * r_col_idx_idx = r_indices[ + * r_indptr[sample_idx] + */ + while (1) { + __pyx_t_17 = __pyx_v_sample_idx; + __pyx_t_18 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_17 * __pyx_v_r_col_indices.strides[0]) ))) < __pyx_v_r_col_size) != 0); + if (!__pyx_t_18) { + } else { + __pyx_t_16 = __pyx_t_18; + goto __pyx_L12_bool_binop_done; + } + __pyx_t_19 = __pyx_v_sample_idx; + __pyx_t_18 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_19 * __pyx_v_r_actual_col_indices.strides[0]) ))) < __pyx_v_r_actual_col_size) != 0); + __pyx_t_16 = __pyx_t_18; + __pyx_L12_bool_binop_done:; + if (!__pyx_t_16) break; + + /* "gensim/models/nmf_pgd.pyx":118 + * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: + * r_col_idx_idx = r_indices[ + * r_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_col_indices[sample_idx] + * ] + */ + __pyx_t_20 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":119 + * r_col_idx_idx = r_indices[ + * r_indptr[sample_idx] + * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] + * r_actual_col_idx_idx = r_actual_indices[ + */ + __pyx_t_21 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":117 + * + * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: + * r_col_idx_idx = r_indices[ # <<<<<<<<<<<<<< + * r_indptr[sample_idx] + * + r_col_indices[sample_idx] + */ + __pyx_t_22 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_20)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_21 * __pyx_v_r_col_indices.strides[0]) )))); + __pyx_v_r_col_idx_idx = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indices.data) + __pyx_t_22)) ))); + + /* "gensim/models/nmf_pgd.pyx":122 + * ] + * r_actual_col_idx_idx = r_actual_indices[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] + */ + __pyx_t_23 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":123 + * r_actual_col_idx_idx = r_actual_indices[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] + * + */ + __pyx_t_24 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":121 + * + r_col_indices[sample_idx] + * ] + * r_actual_col_idx_idx = r_actual_indices[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_25 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_23)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_24 * __pyx_v_r_actual_col_indices.strides[0]) )))); + __pyx_v_r_actual_col_idx_idx = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indices.data) + __pyx_t_25)) ))); + + /* "gensim/models/nmf_pgd.pyx":126 + * ] + * + * if r_col_idx_idx >= r_actual_col_idx_idx: # <<<<<<<<<<<<<< + * r_actual_sign = copysign( + * r_actual_sign, + */ + __pyx_t_16 = ((__pyx_v_r_col_idx_idx >= __pyx_v_r_actual_col_idx_idx) != 0); + if (__pyx_t_16) { + + /* "gensim/models/nmf_pgd.pyx":130 + * r_actual_sign, + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] + */ + __pyx_t_26 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":131 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] + * ) + */ + __pyx_t_27 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":129 + * r_actual_sign = copysign( + * r_actual_sign, + * r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_28 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_26)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_27 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":127 + * + * if r_col_idx_idx >= r_actual_col_idx_idx: + * r_actual_sign = copysign( # <<<<<<<<<<<<<< + * r_actual_sign, + * r_actual_data[ + */ + __pyx_v_r_actual_sign = copysign(__pyx_v_r_actual_sign, (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_28)) )))); + + /* "gensim/models/nmf_pgd.pyx":140 + * ] = fabs( + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] + */ + __pyx_t_29 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":141 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] + * ) - lambda_ + */ + __pyx_t_30 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":139 + * + r_actual_col_indices[sample_idx] + * ] = fabs( + * r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_31 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_29)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_30 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":136 + * + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] = fabs( + */ + __pyx_t_32 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":137 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] = fabs( + * r_actual_data[ + */ + __pyx_t_33 = __pyx_v_sample_idx; + __pyx_t_34 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_32)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_33 * __pyx_v_r_actual_col_indices.strides[0]) )))); + *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_34)) )) = (fabs((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_31)) )))) - __pyx_v_lambda_); + + /* "gensim/models/nmf_pgd.pyx":150 + * ] = fmax( + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ], + */ + __pyx_t_35 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":151 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ], + * 0 + */ + __pyx_t_36 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":149 + * + r_actual_col_indices[sample_idx] + * ] = fmax( + * r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_37 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_35)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_36 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":146 + * + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] = fmax( + */ + __pyx_t_38 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":147 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] = fmax( + * r_actual_data[ + */ + __pyx_t_39 = __pyx_v_sample_idx; + __pyx_t_40 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_38)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_39 * __pyx_v_r_actual_col_indices.strides[0]) )))); + *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_40)) )) = fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_37)) ))), 0.0); + + /* "gensim/models/nmf_pgd.pyx":158 + * if ( + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] != 0 + */ + __pyx_t_41 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":159 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] != 0 + * ): + */ + __pyx_t_42 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":157 + * + * if ( + * r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_43 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_41)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_42 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":160 + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + * ] != 0 # <<<<<<<<<<<<<< + * ): + * r_actual_data[ + */ + __pyx_t_16 = (((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_43)) ))) != 0.0) != 0); + + /* "gensim/models/nmf_pgd.pyx":156 + * ) + * + * if ( # <<<<<<<<<<<<<< + * r_actual_data[ + * r_actual_indptr[sample_idx] + */ + if (__pyx_t_16) { + + /* "gensim/models/nmf_pgd.pyx":167 + * ] = copysign( + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ], + */ + __pyx_t_44 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":168 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ], + * r_actual_sign + */ + __pyx_t_45 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":166 + * + r_actual_col_indices[sample_idx] + * ] = copysign( + * r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_46 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_44)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_45 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":163 + * ): + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] = copysign( + */ + __pyx_t_47 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":164 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] = copysign( + * r_actual_data[ + */ + __pyx_t_48 = __pyx_v_sample_idx; + __pyx_t_49 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_47)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_48 * __pyx_v_r_actual_col_indices.strides[0]) )))); + *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_49)) )) = copysign((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_46)) ))), __pyx_v_r_actual_sign); + + /* "gensim/models/nmf_pgd.pyx":178 + * ] = fmax( + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ], + */ + __pyx_t_50 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":179 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ], + * -v_max + */ + __pyx_t_51 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":177 + * + r_actual_col_indices[sample_idx] + * ] = fmax( + * r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_52 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_50)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_51 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":174 + * + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] = fmax( + */ + __pyx_t_53 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":175 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] = fmax( + * r_actual_data[ + */ + __pyx_t_54 = __pyx_v_sample_idx; + __pyx_t_55 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_53)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_54 * __pyx_v_r_actual_col_indices.strides[0]) )))); + *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_55)) )) = fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_52)) ))), (-__pyx_v_v_max)); + + /* "gensim/models/nmf_pgd.pyx":189 + * ] = fmin( + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ], + */ + __pyx_t_56 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":190 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ], + * v_max + */ + __pyx_t_57 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":188 + * + r_actual_col_indices[sample_idx] + * ] = fmin( + * r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_58 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_56)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_57 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":185 + * + * r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] = fmin( + */ + __pyx_t_59 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":186 + * r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] = fmin( + * r_actual_data[ + */ + __pyx_t_60 = __pyx_v_sample_idx; + __pyx_t_61 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_59)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_60 * __pyx_v_r_actual_col_indices.strides[0]) )))); + *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_61)) )) = fmin((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_58)) ))), __pyx_v_v_max); + + /* "gensim/models/nmf_pgd.pyx":156 + * ) + * + * if ( # <<<<<<<<<<<<<< + * r_actual_data[ + * r_actual_indptr[sample_idx] + */ + } + + /* "gensim/models/nmf_pgd.pyx":195 + * ) + * + * if r_col_idx_idx == r_actual_col_idx_idx: # <<<<<<<<<<<<<< + * violation += ( + * r_data[ + */ + __pyx_t_16 = ((__pyx_v_r_col_idx_idx == __pyx_v_r_actual_col_idx_idx) != 0); + if (__pyx_t_16) { + + /* "gensim/models/nmf_pgd.pyx":198 + * violation += ( + * r_data[ + * r_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_col_indices[sample_idx] + * ] + */ + __pyx_t_62 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":199 + * r_data[ + * r_indptr[sample_idx] + * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] + * - r_actual_data[ + */ + __pyx_t_63 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":197 + * if r_col_idx_idx == r_actual_col_idx_idx: + * violation += ( + * r_data[ # <<<<<<<<<<<<<< + * r_indptr[sample_idx] + * + r_col_indices[sample_idx] + */ + __pyx_t_64 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_62)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_63 * __pyx_v_r_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":202 + * ] + * - r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] + */ + __pyx_t_65 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":203 + * - r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] + * ) ** 2 + */ + __pyx_t_66 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":201 + * + r_col_indices[sample_idx] + * ] + * - r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_67 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_65)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_66 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":196 + * + * if r_col_idx_idx == r_actual_col_idx_idx: + * violation += ( # <<<<<<<<<<<<<< + * r_data[ + * r_indptr[sample_idx] + */ + __pyx_v_violation = (__pyx_v_violation + pow(((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_64)) ))) - (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_67)) )))), 2.0)); + + /* "gensim/models/nmf_pgd.pyx":195 + * ) + * + * if r_col_idx_idx == r_actual_col_idx_idx: # <<<<<<<<<<<<<< + * violation += ( + * r_data[ + */ + goto __pyx_L16; + } + + /* "gensim/models/nmf_pgd.pyx":207 + * ) ** 2 + * else: + * violation += r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + /*else*/ { + + /* "gensim/models/nmf_pgd.pyx":208 + * else: + * violation += r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_indices[sample_idx] + * ] ** 2 + */ + __pyx_t_68 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":209 + * violation += r_actual_data[ + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] ** 2 + * + */ + __pyx_t_69 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":207 + * ) ** 2 + * else: + * violation += r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + */ + __pyx_t_70 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_68)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_69 * __pyx_v_r_actual_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":210 + * r_actual_indptr[sample_idx] + * + r_actual_col_indices[sample_idx] + * ] ** 2 # <<<<<<<<<<<<<< + * + * if r_actual_col_indices[sample_idx] < r_actual_col_size: */ - __pyx_t_6 = __pyx_v_component_idx_1; - __pyx_t_7 = __pyx_v_sample_idx; - __pyx_v_grad = (-(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_Wt_v_minus_r.data + __pyx_t_6 * __pyx_v_Wt_v_minus_r.strides[0]) ) + __pyx_t_7 * __pyx_v_Wt_v_minus_r.strides[1]) )))); + __pyx_v_violation = (__pyx_v_violation + pow((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_70)) ))), 2.0)); + } + __pyx_L16:; - /* "gensim/models/nmf_pgd.pyx":25 - * grad = -Wt_v_minus_r[component_idx_1, sample_idx] + /* "gensim/models/nmf_pgd.pyx":212 + * ] ** 2 * - * for component_idx_2 in range(n_components): # <<<<<<<<<<<<<< - * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] + * if r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< + * r_actual_col_indices[sample_idx] += 1 + * else: + */ + __pyx_t_71 = __pyx_v_sample_idx; + __pyx_t_16 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_71 * __pyx_v_r_actual_col_indices.strides[0]) ))) < __pyx_v_r_actual_col_size) != 0); + if (__pyx_t_16) { + + /* "gensim/models/nmf_pgd.pyx":213 * + * if r_actual_col_indices[sample_idx] < r_actual_col_size: + * r_actual_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< + * else: + * r_col_indices[sample_idx] += 1 */ - __pyx_t_8 = __pyx_v_n_components; - for (__pyx_t_9 = 0; __pyx_t_9 < __pyx_t_8; __pyx_t_9+=1) { - __pyx_v_component_idx_2 = __pyx_t_9; + __pyx_t_72 = __pyx_v_sample_idx; + *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_72 * __pyx_v_r_actual_col_indices.strides[0]) )) += 1; - /* "gensim/models/nmf_pgd.pyx":26 + /* "gensim/models/nmf_pgd.pyx":212 + * ] ** 2 * - * for component_idx_2 in range(n_components): - * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] # <<<<<<<<<<<<<< + * if r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< + * r_actual_col_indices[sample_idx] += 1 + * else: + */ + goto __pyx_L17; + } + + /* "gensim/models/nmf_pgd.pyx":215 + * r_actual_col_indices[sample_idx] += 1 + * else: + * r_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< + * else: + * violation += r_data[ + */ + /*else*/ { + __pyx_t_73 = __pyx_v_sample_idx; + *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_73 * __pyx_v_r_col_indices.strides[0]) )) += 1; + } + __pyx_L17:; + + /* "gensim/models/nmf_pgd.pyx":126 + * ] * - * hessian = WtW[component_idx_1, component_idx_1] + * if r_col_idx_idx >= r_actual_col_idx_idx: # <<<<<<<<<<<<<< + * r_actual_sign = copysign( + * r_actual_sign, */ - __pyx_t_10 = __pyx_v_component_idx_1; - __pyx_t_11 = __pyx_v_component_idx_2; - __pyx_t_12 = __pyx_v_component_idx_2; - __pyx_t_13 = __pyx_v_sample_idx; - __pyx_v_grad = (__pyx_v_grad + ((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_10 * __pyx_v_WtW.strides[0]) )) + __pyx_t_11)) ))) * (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_12 * __pyx_v_h.strides[0]) )) + __pyx_t_13)) ))))); + goto __pyx_L14; } - /* "gensim/models/nmf_pgd.pyx":28 - * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] - * - * hessian = WtW[component_idx_1, component_idx_1] # <<<<<<<<<<<<<< - * - * grad = grad * kappa / hessian + /* "gensim/models/nmf_pgd.pyx":217 + * r_col_indices[sample_idx] += 1 + * else: + * violation += r_data[ # <<<<<<<<<<<<<< + * r_indptr[sample_idx] + * + r_col_indices[sample_idx] */ - __pyx_t_14 = __pyx_v_component_idx_1; - __pyx_t_15 = __pyx_v_component_idx_1; - __pyx_v_hessian = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_14 * __pyx_v_WtW.strides[0]) )) + __pyx_t_15)) ))); + /*else*/ { - /* "gensim/models/nmf_pgd.pyx":30 - * hessian = WtW[component_idx_1, component_idx_1] - * - * grad = grad * kappa / hessian # <<<<<<<<<<<<<< - * - * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + /* "gensim/models/nmf_pgd.pyx":218 + * else: + * violation += r_data[ + * r_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_col_indices[sample_idx] + * ] ** 2 */ - __pyx_v_grad = ((__pyx_v_grad * __pyx_v_kappa) / __pyx_v_hessian); + __pyx_t_74 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":32 - * grad = grad * kappa / hessian + /* "gensim/models/nmf_pgd.pyx":219 + * violation += r_data[ + * r_indptr[sample_idx] + * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< + * ] ** 2 * - * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad # <<<<<<<<<<<<<< + */ + __pyx_t_75 = __pyx_v_sample_idx; + + /* "gensim/models/nmf_pgd.pyx":217 + * r_col_indices[sample_idx] += 1 + * else: + * violation += r_data[ # <<<<<<<<<<<<<< + * r_indptr[sample_idx] + * + r_col_indices[sample_idx] + */ + __pyx_t_76 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_74)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_75 * __pyx_v_r_col_indices.strides[0]) )))); + + /* "gensim/models/nmf_pgd.pyx":220 + * r_indptr[sample_idx] + * + r_col_indices[sample_idx] + * ] ** 2 # <<<<<<<<<<<<<< * - * violation += projected_grad * projected_grad + * if r_col_indices[sample_idx] < r_col_size: */ - __pyx_t_17 = __pyx_v_component_idx_1; - __pyx_t_18 = __pyx_v_sample_idx; - if ((((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_17 * __pyx_v_h.strides[0]) )) + __pyx_t_18)) ))) == 0.0) != 0)) { - __pyx_t_16 = fmin(0.0, __pyx_v_grad); - } else { - __pyx_t_16 = __pyx_v_grad; - } - __pyx_v_projected_grad = __pyx_t_16; + __pyx_v_violation = (__pyx_v_violation + pow((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_76)) ))), 2.0)); - /* "gensim/models/nmf_pgd.pyx":34 - * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad + /* "gensim/models/nmf_pgd.pyx":222 + * ] ** 2 * - * violation += projected_grad * projected_grad # <<<<<<<<<<<<<< + * if r_col_indices[sample_idx] < r_col_size: # <<<<<<<<<<<<<< + * r_col_indices[sample_idx] += 1 + * else: + */ + __pyx_t_77 = __pyx_v_sample_idx; + __pyx_t_16 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_77 * __pyx_v_r_col_indices.strides[0]) ))) < __pyx_v_r_col_size) != 0); + if (__pyx_t_16) { + + /* "gensim/models/nmf_pgd.pyx":223 * - * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + * if r_col_indices[sample_idx] < r_col_size: + * r_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< + * else: + * r_actual_col_indices[sample_idx] += 1 */ - __pyx_v_violation = (__pyx_v_violation + (__pyx_v_projected_grad * __pyx_v_projected_grad)); + __pyx_t_78 = __pyx_v_sample_idx; + *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_78 * __pyx_v_r_col_indices.strides[0]) )) += 1; - /* "gensim/models/nmf_pgd.pyx":36 - * violation += projected_grad * projected_grad + /* "gensim/models/nmf_pgd.pyx":222 + * ] ** 2 * - * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) # <<<<<<<<<<<<<< + * if r_col_indices[sample_idx] < r_col_size: # <<<<<<<<<<<<<< + * r_col_indices[sample_idx] += 1 + * else: + */ + goto __pyx_L18; + } + + /* "gensim/models/nmf_pgd.pyx":225 + * r_col_indices[sample_idx] += 1 + * else: + * r_actual_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< * * return sqrt(violation) */ - __pyx_t_19 = __pyx_v_component_idx_1; - __pyx_t_20 = __pyx_v_sample_idx; - __pyx_t_21 = __pyx_v_component_idx_1; - __pyx_t_22 = __pyx_v_sample_idx; - *((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_21 * __pyx_v_h.strides[0]) )) + __pyx_t_22)) )) = fmax(((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_19 * __pyx_v_h.strides[0]) )) + __pyx_t_20)) ))) - __pyx_v_grad), 0.); + /*else*/ { + __pyx_t_79 = __pyx_v_sample_idx; + *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_79 * __pyx_v_r_actual_col_indices.strides[0]) )) += 1; + } + __pyx_L18:; + } + __pyx_L14:; } } } @@ -1956,12 +3206,12 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec #endif } - /* "gensim/models/nmf_pgd.pyx":20 - * cdef Py_ssize_t component_idx_2 = 0 + /* "gensim/models/nmf_pgd.pyx":109 + * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< - * for component_idx_1 in range(n_components): - * + * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] + * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] */ /*finally:*/ { /*normal exit:*/{ @@ -1974,35 +3224,45 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec } } - /* "gensim/models/nmf_pgd.pyx":38 - * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) + /* "gensim/models/nmf_pgd.pyx":227 + * r_actual_col_indices[sample_idx] += 1 * * return sqrt(violation) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); - __pyx_t_23 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_23)) __PYX_ERR(0, 38, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_23); - __pyx_r = __pyx_t_23; - __pyx_t_23 = 0; + __pyx_t_4 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 227, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_r = __pyx_t_4; + __pyx_t_4 = 0; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":11 - * from cython.parallel import prange + /* "gensim/models/nmf_pgd.pyx":86 + * return sqrt(violation) * - * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< - * cdef Py_ssize_t n_components = h.shape[0] - * cdef Py_ssize_t n_samples = h.shape[1] + * def solve_r( # <<<<<<<<<<<<<< + * int[::1] r_indptr, + * int[::1] r_indices, */ /* function exit code */ __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_23); - __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __PYX_XDEC_MEMVIEW(&__pyx_t_6, 1); + __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_r", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; - __PYX_XDEC_MEMVIEW(&__pyx_v_h, 1); - __PYX_XDEC_MEMVIEW(&__pyx_v_Wt_v_minus_r, 1); - __PYX_XDEC_MEMVIEW(&__pyx_v_WtW, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_r_col_indices, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_r_actual_col_indices, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_r_indptr, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_r_indices, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_r_data, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_r_actual_indptr, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_r_actual_indices, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_r_actual_data, 1); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; @@ -14379,6 +15639,7 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_component_idx_2, __pyx_k_component_idx_2, sizeof(__pyx_k_component_idx_2), 0, 0, 1, 1}, {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, + {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, {&__pyx_n_s_encode, __pyx_k_encode, sizeof(__pyx_k_encode), 0, 0, 1, 1}, {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, @@ -14395,9 +15656,11 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_kp_s_home_anotherbugmaster_Documents, __pyx_k_home_anotherbugmaster_Documents, sizeof(__pyx_k_home_anotherbugmaster_Documents), 0, 0, 1, 0}, {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, + {&__pyx_n_s_intp, __pyx_k_intp, sizeof(__pyx_k_intp), 0, 0, 1, 1}, {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, {&__pyx_kp_s_itemsize_0_for_cython_array, __pyx_k_itemsize_0_for_cython_array, sizeof(__pyx_k_itemsize_0_for_cython_array), 0, 0, 1, 0}, {&__pyx_n_s_kappa, __pyx_k_kappa, sizeof(__pyx_k_kappa), 0, 0, 1, 1}, + {&__pyx_n_s_lambda, __pyx_k_lambda, sizeof(__pyx_k_lambda), 0, 0, 1, 1}, {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, {&__pyx_n_s_memview, __pyx_k_memview, sizeof(__pyx_k_memview), 0, 0, 1, 1}, {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, @@ -14406,16 +15669,32 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, + {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, + {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, {&__pyx_n_s_projected_grad, __pyx_k_projected_grad, sizeof(__pyx_k_projected_grad), 0, 0, 1, 1}, {&__pyx_n_s_pyx_getbuffer, __pyx_k_pyx_getbuffer, sizeof(__pyx_k_pyx_getbuffer), 0, 0, 1, 1}, {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_col_idx_idx, __pyx_k_r_actual_col_idx_idx, sizeof(__pyx_k_r_actual_col_idx_idx), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_col_indices, __pyx_k_r_actual_col_indices, sizeof(__pyx_k_r_actual_col_indices), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_col_size, __pyx_k_r_actual_col_size, sizeof(__pyx_k_r_actual_col_size), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_data, __pyx_k_r_actual_data, sizeof(__pyx_k_r_actual_data), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_indices, __pyx_k_r_actual_indices, sizeof(__pyx_k_r_actual_indices), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_indptr, __pyx_k_r_actual_indptr, sizeof(__pyx_k_r_actual_indptr), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_sign, __pyx_k_r_actual_sign, sizeof(__pyx_k_r_actual_sign), 0, 0, 1, 1}, + {&__pyx_n_s_r_col_idx_idx, __pyx_k_r_col_idx_idx, sizeof(__pyx_k_r_col_idx_idx), 0, 0, 1, 1}, + {&__pyx_n_s_r_col_indices, __pyx_k_r_col_indices, sizeof(__pyx_k_r_col_indices), 0, 0, 1, 1}, + {&__pyx_n_s_r_col_size, __pyx_k_r_col_size, sizeof(__pyx_k_r_col_size), 0, 0, 1, 1}, + {&__pyx_n_s_r_data, __pyx_k_r_data, sizeof(__pyx_k_r_data), 0, 0, 1, 1}, + {&__pyx_n_s_r_indices, __pyx_k_r_indices, sizeof(__pyx_k_r_indices), 0, 0, 1, 1}, + {&__pyx_n_s_r_indptr, __pyx_k_r_indptr, sizeof(__pyx_k_r_indptr), 0, 0, 1, 1}, {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, {&__pyx_n_s_sample_idx, __pyx_k_sample_idx, sizeof(__pyx_k_sample_idx), 0, 0, 1, 1}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, {&__pyx_n_s_solve_h, __pyx_k_solve_h, sizeof(__pyx_k_solve_h), 0, 0, 1, 1}, + {&__pyx_n_s_solve_r, __pyx_k_solve_r, sizeof(__pyx_k_solve_r), 0, 0, 1, 1}, {&__pyx_n_s_start, __pyx_k_start, sizeof(__pyx_k_start), 0, 0, 1, 1}, {&__pyx_n_s_step, __pyx_k_step, sizeof(__pyx_k_step), 0, 0, 1, 1}, {&__pyx_n_s_stop, __pyx_k_stop, sizeof(__pyx_k_stop), 0, 0, 1, 1}, @@ -14427,11 +15706,13 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, {&__pyx_n_s_unpack, __pyx_k_unpack, sizeof(__pyx_k_unpack), 0, 0, 1, 1}, + {&__pyx_n_s_v_max, __pyx_k_v_max, sizeof(__pyx_k_v_max), 0, 0, 1, 1}, {&__pyx_n_s_violation, __pyx_k_violation, sizeof(__pyx_k_violation), 0, 0, 1, 1}, + {&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0} }; static int __Pyx_InitCachedBuiltins(void) { - __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 21, __pyx_L1_error) + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 67, __pyx_L1_error) __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 131, __pyx_L1_error) __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 146, __pyx_L1_error) __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 149, __pyx_L1_error) @@ -14594,17 +15875,29 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__13); __Pyx_GIVEREF(__pyx_tuple__13); - /* "gensim/models/nmf_pgd.pyx":11 - * from cython.parallel import prange + /* "gensim/models/nmf_pgd.pyx":57 + * # return sqrt(violation) * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] */ - __pyx_tuple__14 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(0, 11, __pyx_L1_error) + __pyx_tuple__14 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(0, 57, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__14); __Pyx_GIVEREF(__pyx_tuple__14); - __pyx_codeobj__15 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__14, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_h, 11, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__15)) __PYX_ERR(0, 11, __pyx_L1_error) + __pyx_codeobj__15 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__14, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_h, 57, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__15)) __PYX_ERR(0, 57, __pyx_L1_error) + + /* "gensim/models/nmf_pgd.pyx":86 + * return sqrt(violation) + * + * def solve_r( # <<<<<<<<<<<<<< + * int[::1] r_indptr, + * int[::1] r_indices, + */ + __pyx_tuple__16 = PyTuple_Pack(18, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_r_actual_sign, __pyx_n_s_sample_idx, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_idx_idx, __pyx_n_s_r_actual_col_idx_idx, __pyx_n_s_r_col_indices, __pyx_n_s_r_actual_col_indices); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(0, 86, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__16); + __Pyx_GIVEREF(__pyx_tuple__16); + __pyx_codeobj__17 = (PyObject*)__Pyx_PyCode_New(8, 0, 18, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__16, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_r, 86, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__17)) __PYX_ERR(0, 86, __pyx_L1_error) /* "View.MemoryView":282 * return self.name @@ -14613,9 +15906,9 @@ static int __Pyx_InitCachedConstants(void) { * cdef strided = Enum("") # default * cdef indirect = Enum("") */ - __pyx_tuple__16 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(1, 282, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__16); - __Pyx_GIVEREF(__pyx_tuple__16); + __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(1, 282, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__18); + __Pyx_GIVEREF(__pyx_tuple__18); /* "View.MemoryView":283 * @@ -14624,9 +15917,9 @@ static int __Pyx_InitCachedConstants(void) { * cdef indirect = Enum("") * */ - __pyx_tuple__17 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__17)) __PYX_ERR(1, 283, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__17); - __Pyx_GIVEREF(__pyx_tuple__17); + __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(1, 283, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__19); + __Pyx_GIVEREF(__pyx_tuple__19); /* "View.MemoryView":284 * cdef generic = Enum("") @@ -14635,9 +15928,9 @@ static int __Pyx_InitCachedConstants(void) { * * */ - __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(1, 284, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__18); - __Pyx_GIVEREF(__pyx_tuple__18); + __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__20)) __PYX_ERR(1, 284, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__20); + __Pyx_GIVEREF(__pyx_tuple__20); /* "View.MemoryView":287 * @@ -14646,9 +15939,9 @@ static int __Pyx_InitCachedConstants(void) { * cdef indirect_contiguous = Enum("") * */ - __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(1, 287, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__19); - __Pyx_GIVEREF(__pyx_tuple__19); + __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(1, 287, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__21); + __Pyx_GIVEREF(__pyx_tuple__21); /* "View.MemoryView":288 * @@ -14657,9 +15950,9 @@ static int __Pyx_InitCachedConstants(void) { * * */ - __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__20)) __PYX_ERR(1, 288, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__20); - __Pyx_GIVEREF(__pyx_tuple__20); + __pyx_tuple__22 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(1, 288, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__22); + __Pyx_GIVEREF(__pyx_tuple__22); __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; @@ -14813,15 +16106,39 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) #endif /* "gensim/models/nmf_pgd.pyx":11 + * from libc.math cimport sqrt, fabs, fmin, fmax, copysign * from cython.parallel import prange + * import numpy as np # <<<<<<<<<<<<<< + * + * # def solve_h_sparse(h, Wt_v_minus_r, WtW, double kappa): + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 11, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 11, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "gensim/models/nmf_pgd.pyx":57 + * # return sqrt(violation) * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] */ - __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 11, __pyx_L1_error) + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 57, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 57, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "gensim/models/nmf_pgd.pyx":86 + * return sqrt(violation) + * + * def solve_r( # <<<<<<<<<<<<<< + * int[::1] r_indptr, + * int[::1] r_indices, + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 11, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_r, __pyx_t_1) < 0) __PYX_ERR(0, 86, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "gensim/models/nmf_pgd.pyx":1 @@ -14854,7 +16171,7 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) * cdef strided = Enum("") # default * cdef indirect = Enum("") */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 282, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 282, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(generic); __Pyx_DECREF_SET(generic, __pyx_t_1); @@ -14868,7 +16185,7 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) * cdef indirect = Enum("") * */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 283, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 283, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(strided); __Pyx_DECREF_SET(strided, __pyx_t_1); @@ -14882,7 +16199,7 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) * * */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 284, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 284, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect); __Pyx_DECREF_SET(indirect, __pyx_t_1); @@ -14896,7 +16213,7 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) * cdef indirect_contiguous = Enum("") * */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 287, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 287, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(contiguous); __Pyx_DECREF_SET(contiguous, __pyx_t_1); @@ -14910,7 +16227,7 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) * * */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 288, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__22, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 288, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect_contiguous); __Pyx_DECREF_SET(indirect_contiguous, __pyx_t_1); @@ -15858,8 +17175,46 @@ static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, } } +/* GetModuleGlobalName */ + static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name) { + PyObject *result; +#if !CYTHON_AVOID_BORROWED_REFS + result = PyDict_GetItem(__pyx_d, name); + if (likely(result)) { + Py_INCREF(result); + } else { +#else + result = PyObject_GetItem(__pyx_d, name); + if (!result) { + PyErr_Clear(); +#endif + result = __Pyx_GetBuiltinName(name); + } + return result; +} + +/* PyObjectCall */ + #if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { + PyObject *result; + ternaryfunc call = func->ob_type->tp_call; + if (unlikely(!call)) + return PyObject_Call(func, arg, kw); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = (*call)(func, arg, kw); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + /* ArgTypeTest */ - static void __Pyx_RaiseArgumentTypeInvalid(const char* name, PyObject *obj, PyTypeObject *type) { + static void __Pyx_RaiseArgumentTypeInvalid(const char* name, PyObject *obj, PyTypeObject *type) { PyErr_Format(PyExc_TypeError, "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", name, type->tp_name, Py_TYPE(obj)->tp_name); @@ -15885,28 +17240,8 @@ static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, in return 0; } -/* PyObjectCall */ - #if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { - PyObject *result; - ternaryfunc call = func->ob_type->tp_call; - if (unlikely(!call)) - return PyObject_Call(func, arg, kw); - if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) - return NULL; - result = (*call)(func, arg, kw); - Py_LeaveRecursiveCall(); - if (unlikely(!result) && unlikely(!PyErr_Occurred())) { - PyErr_SetString( - PyExc_SystemError, - "NULL result without error in PyObject_Call"); - } - return result; -} -#endif - /* PyErrFetchRestore */ - #if CYTHON_FAST_THREAD_STATE + #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; tmp_type = tstate->curexc_type; @@ -15930,7 +17265,7 @@ static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject #endif /* RaiseException */ - #if PY_MAJOR_VERSION < 3 + #if PY_MAJOR_VERSION < 3 static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, CYTHON_UNUSED PyObject *cause) { __Pyx_PyThreadState_declare @@ -16093,7 +17428,7 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject #endif /* BytesEquals */ - static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { + static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else @@ -16131,7 +17466,7 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } /* UnicodeEquals */ - static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { + static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else @@ -16215,7 +17550,7 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } /* GetAttr */ - static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { + static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { #if CYTHON_COMPILING_IN_CPYTHON #if PY_MAJOR_VERSION >= 3 if (likely(PyUnicode_Check(n))) @@ -16228,7 +17563,7 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } /* decode_c_string */ - static CYTHON_INLINE PyObject* __Pyx_decode_c_string( + static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { @@ -16261,25 +17596,25 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } /* RaiseTooManyValuesToUnpack */ - static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { + static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { PyErr_Format(PyExc_ValueError, "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); } /* RaiseNeedMoreValuesToUnpack */ - static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { + static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { PyErr_Format(PyExc_ValueError, "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", index, (index == 1) ? "" : "s"); } /* RaiseNoneIterError */ - static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { + static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); } /* ExtTypeTest */ - static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { + static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; @@ -16292,7 +17627,7 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } /* SaveResetException */ - #if CYTHON_FAST_THREAD_STATE + #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { *type = tstate->exc_type; *value = tstate->exc_value; @@ -16316,7 +17651,7 @@ static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject #endif /* PyErrExceptionMatches */ - #if CYTHON_FAST_THREAD_STATE + #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err) { PyObject *exc_type = tstate->curexc_type; if (exc_type == err) return 1; @@ -16326,7 +17661,7 @@ static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tsta #endif /* GetException */ - #if CYTHON_FAST_THREAD_STATE + #if CYTHON_FAST_THREAD_STATE static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { @@ -16387,7 +17722,7 @@ static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) } /* SwapException */ - #if CYTHON_FAST_THREAD_STATE + #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; tmp_type = tstate->exc_type; @@ -16412,7 +17747,7 @@ static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, #endif /* Import */ - static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { + static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { PyObject *empty_list = 0; PyObject *module = 0; PyObject *global_dict = 0; @@ -16486,7 +17821,7 @@ static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, } /* PyFunctionFastCall */ - #if CYTHON_FAST_PYCALL + #if CYTHON_FAST_PYCALL #include "frameobject.h" static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, PyObject *globals) { @@ -16606,7 +17941,7 @@ static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, #endif // CYTHON_FAST_PYCALL /* PyCFunctionFastCall */ - #if CYTHON_FAST_PYCCALL + #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { PyCFunctionObject *func = (PyCFunctionObject*)func_obj; PyCFunction meth = PyCFunction_GET_FUNCTION(func); @@ -16624,7 +17959,7 @@ static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, P #endif // CYTHON_FAST_PYCCALL /* GetItemInt */ - static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { + static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { PyObject *r; if (!j) return NULL; r = PyObject_GetItem(o, j); @@ -16705,7 +18040,7 @@ static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, } /* PyIntBinop */ - #if !CYTHON_COMPILING_IN_PYPY + #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, CYTHON_UNUSED int inplace) { #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { @@ -16821,12 +18156,12 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED #endif /* None */ - static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { + static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); } /* WriteUnraisableException */ - static void __Pyx_WriteUnraisable(const char *name, CYTHON_UNUSED int clineno, + static void __Pyx_WriteUnraisable(const char *name, CYTHON_UNUSED int clineno, CYTHON_UNUSED int lineno, CYTHON_UNUSED const char *filename, int full_traceback, CYTHON_UNUSED int nogil) { PyObject *old_exc, *old_val, *old_tb; @@ -16868,7 +18203,7 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED } /* PyObjectCallMethO */ - #if CYTHON_COMPILING_IN_CPYTHON + #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { PyObject *self, *result; PyCFunction cfunc; @@ -16888,7 +18223,7 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject #endif /* PyObjectCallOneArg */ - #if CYTHON_COMPILING_IN_CPYTHON + #if CYTHON_COMPILING_IN_CPYTHON static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_New(1); @@ -16932,7 +18267,7 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObjec #endif /* SetVTable */ - static int __Pyx_SetVtable(PyObject *dict, void *vtable) { + static int __Pyx_SetVtable(PyObject *dict, void *vtable) { #if PY_VERSION_HEX >= 0x02070000 PyObject *ob = PyCapsule_New(vtable, 0, 0); #else @@ -16950,7 +18285,7 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObjec } /* CodeObjectCache */ - static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { + static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { int start = 0, mid = 0, end = count - 1; if (end >= 0 && code_line > entries[end].code_line) { return count; @@ -17030,7 +18365,7 @@ static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { } /* AddTraceback */ - #include "compile.h" + #include "compile.h" #include "frameobject.h" #include "traceback.h" static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( @@ -17131,8 +18466,8 @@ static void __Pyx_ReleaseBuffer(Py_buffer *view) { #endif - /* MemviewSliceIsContig */ - static int + /* MemviewSliceIsContig */ + static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim) { @@ -17155,7 +18490,7 @@ __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, } /* OverlappingSlices */ - static void + static void __pyx_get_array_memory_extents(__Pyx_memviewslice *slice, void **out_start, void **out_end, int ndim, size_t itemsize) @@ -17191,7 +18526,7 @@ __pyx_slices_overlap(__Pyx_memviewslice *slice1, } /* Capsule */ - static CYTHON_INLINE PyObject * + static CYTHON_INLINE PyObject * __pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) { PyObject *cobj; @@ -17204,7 +18539,7 @@ __pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) } /* TypeInfoCompare */ - static int + static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) { int i; @@ -17245,7 +18580,7 @@ __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) } /* MemviewSliceValidateAndInit */ - static int + static int __pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec) { if (buf->shape[dim] <= 1) @@ -17427,7 +18762,7 @@ static int __Pyx_ValidateAndInit_memviewslice( } /* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *obj) { + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *obj) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_FOLLOW), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; @@ -17450,7 +18785,7 @@ static int __Pyx_ValidateAndInit_memviewslice( } /* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *obj) { + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *obj) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; @@ -17472,8 +18807,54 @@ static int __Pyx_ValidateAndInit_memviewslice( return result; } +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *obj) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT | PyBUF_WRITABLE), 1, + &__Pyx_TypeInfo_int, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *obj) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT | PyBUF_WRITABLE), 1, + &__Pyx_TypeInfo_double, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + /* MemviewSliceCopyTemplate */ - static __Pyx_memviewslice + static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, const char *mode, int ndim, size_t sizeof_dtype, int contig_flag, @@ -17540,7 +18921,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntFromPyVerify */ - #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ + #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) #define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) @@ -17562,7 +18943,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntFromPy */ - static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { + static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { const int neg_one = (int) -1, const_zero = (int) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 @@ -17751,7 +19132,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntToPy */ - static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { const int neg_one = (int) -1, const_zero = (int) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { @@ -17782,7 +19163,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntToPy */ - static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { const long neg_one = (long) -1, const_zero = (long) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { @@ -17813,7 +19194,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntFromPy */ - static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { + static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { const char neg_one = (char) -1, const_zero = (char) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 @@ -18002,7 +19383,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntFromPy */ - static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { + static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { const long neg_one = (long) -1, const_zero = (long) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 @@ -18190,8 +19571,31 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, return (long) -1; } +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(PyObject *obj) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, + PyBUF_RECORDS, 1, + &__Pyx_TypeInfo_Py_ssize_t, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + /* CheckBinaryVersion */ - static int __Pyx_check_binary_version(void) { + static int __Pyx_check_binary_version(void) { char ctversion[4], rtversion[4]; PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion()); @@ -18207,7 +19611,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* InitStrings */ - static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { + static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode) { diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 132be30065..af1c0a6e80 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -5,8 +5,54 @@ # cython: wraparound=False # cython: nonecheck=False +cimport cython from libc.math cimport sqrt, fabs, fmin, fmax, copysign from cython.parallel import prange +import numpy as np + +# def solve_h_sparse(h, Wt_v_minus_r, WtW, double kappa): +# cdef Py_ssize_t [:] h_indptr = h.indptr +# cdef Py_ssize_t [:] h_indices = h.indices +# cdef double [:] h_data = h.data +# +# cdef Py_ssize_t [:] Wt_v_minus_r_indptr = Wt_v_minus_r.indptr +# cdef Py_ssize_t [:] Wt_v_minus_r_indices = Wt_v_minus_r.indices +# cdef double [:] Wt_v_minus_r_data = Wt_v_minus_r.data +# +# cdef Py_ssize_t [:] WtW_indptr = WtW.indptr +# cdef Py_ssize_t [:] WtW_indices = WtW.indices +# cdef double [:] WtW_data = WtW.data +# +# cdef Py_ssize_t n_components = h.shape[0] +# cdef Py_ssize_t n_samples = h.shape[1] +# cdef double violation = 0 +# cdef double grad, projected_grad, hessian +# cdef Py_ssize_t sample_idx = 0 +# cdef Py_ssize_t component_idx_1 = 0 +# cdef Py_ssize_t component_idx_2 = 0 +# +# +# for sample_idx in range(n_samples): +# for component_idx_1 in prange(n_components, nogil=True): +# +# grad = -Wt_v_minus_r_data[component_idx_1, sample_idx] +# +# for component_idx_2 in range(n_components): +# grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] +# +# hessian = WtW[component_idx_1, component_idx_1] +# +# grad = grad * kappa / hessian +# +# projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad +# +# violation += projected_grad * projected_grad +# +# h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) +# +# h.eliminate_zeros() +# +# return sqrt(violation) def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): cdef Py_ssize_t n_components = h.shape[0] @@ -36,3 +82,146 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) return sqrt(violation) + +def solve_r( + int[::1] r_indptr, + int[::1] r_indices, + double[::1] r_data, + int[::1] r_actual_indptr, + int[::1] r_actual_indices, + double[::1] r_actual_data, + double lambda_, + double v_max + ): + cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 + cdef double violation = 0 + cdef double r_actual_sign = 1.0 + cdef Py_ssize_t sample_idx + + cdef Py_ssize_t r_col_size = 0 + cdef Py_ssize_t r_actual_col_size = 0 + cdef Py_ssize_t r_col_idx_idx = 0 + cdef Py_ssize_t r_actual_col_idx_idx + + cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) + cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) + + for sample_idx in prange(n_samples, nogil=True): + r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] + r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] + + r_col_indices[sample_idx] = 0 + r_actual_col_indices[sample_idx] = 0 + + while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: + r_col_idx_idx = r_indices[ + r_indptr[sample_idx] + + r_col_indices[sample_idx] + ] + r_actual_col_idx_idx = r_actual_indices[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] + + if r_col_idx_idx >= r_actual_col_idx_idx: + r_actual_sign = copysign( + r_actual_sign, + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] + ) + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = fabs( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] + ) - lambda_ + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = fmax( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + 0 + ) + + if ( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] != 0 + ): + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = copysign( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + r_actual_sign + ) + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = fmax( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + -v_max + ) + + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] = fmin( + r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ], + v_max + ) + + if r_col_idx_idx == r_actual_col_idx_idx: + violation += ( + r_data[ + r_indptr[sample_idx] + + r_col_indices[sample_idx] + ] + - r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] + ) ** 2 + else: + violation += r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_indices[sample_idx] + ] ** 2 + + if r_actual_col_indices[sample_idx] < r_actual_col_size: + r_actual_col_indices[sample_idx] += 1 + else: + r_col_indices[sample_idx] += 1 + else: + violation += r_data[ + r_indptr[sample_idx] + + r_col_indices[sample_idx] + ] ** 2 + + if r_col_indices[sample_idx] < r_col_size: + r_col_indices[sample_idx] += 1 + else: + r_actual_col_indices[sample_idx] += 1 + + return sqrt(violation) From 0743624ccbfd194eeaf537ddea3c384c646691d1 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 14:37:13 +0300 Subject: [PATCH 091/144] Remove comments --- gensim/models/nmf_pgd.pyx | 44 --------------------------------------- 1 file changed, 44 deletions(-) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index af1c0a6e80..f48ca2ea79 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -10,50 +10,6 @@ from libc.math cimport sqrt, fabs, fmin, fmax, copysign from cython.parallel import prange import numpy as np -# def solve_h_sparse(h, Wt_v_minus_r, WtW, double kappa): -# cdef Py_ssize_t [:] h_indptr = h.indptr -# cdef Py_ssize_t [:] h_indices = h.indices -# cdef double [:] h_data = h.data -# -# cdef Py_ssize_t [:] Wt_v_minus_r_indptr = Wt_v_minus_r.indptr -# cdef Py_ssize_t [:] Wt_v_minus_r_indices = Wt_v_minus_r.indices -# cdef double [:] Wt_v_minus_r_data = Wt_v_minus_r.data -# -# cdef Py_ssize_t [:] WtW_indptr = WtW.indptr -# cdef Py_ssize_t [:] WtW_indices = WtW.indices -# cdef double [:] WtW_data = WtW.data -# -# cdef Py_ssize_t n_components = h.shape[0] -# cdef Py_ssize_t n_samples = h.shape[1] -# cdef double violation = 0 -# cdef double grad, projected_grad, hessian -# cdef Py_ssize_t sample_idx = 0 -# cdef Py_ssize_t component_idx_1 = 0 -# cdef Py_ssize_t component_idx_2 = 0 -# -# -# for sample_idx in range(n_samples): -# for component_idx_1 in prange(n_components, nogil=True): -# -# grad = -Wt_v_minus_r_data[component_idx_1, sample_idx] -# -# for component_idx_2 in range(n_components): -# grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] -# -# hessian = WtW[component_idx_1, component_idx_1] -# -# grad = grad * kappa / hessian -# -# projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad -# -# violation += projected_grad * projected_grad -# -# h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) -# -# h.eliminate_zeros() -# -# return sqrt(violation) - def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): cdef Py_ssize_t n_components = h.shape[0] cdef Py_ssize_t n_samples = h.shape[1] From fd8088b46c158ef12ebc45de877bb8637f503e22 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 14:55:17 +0300 Subject: [PATCH 092/144] Add docstrings --- gensim/models/nmf_pgd.pyx | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index f48ca2ea79..ca998be671 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -11,6 +11,21 @@ from cython.parallel import prange import numpy as np def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + """Find optimal dense vector representation for current W and r matrices. + + Parameters + ---------- + h : matrix + Dense representation of documents in current batch. + Wt_v_minus_r : matrix + WtW : matrix + + Returns + ------- + float + Cumulative difference between previous and current h vectors. + """ + cdef Py_ssize_t n_components = h.shape[0] cdef Py_ssize_t n_samples = h.shape[1] cdef double violation = 0 @@ -49,6 +64,25 @@ def solve_r( double lambda_, double v_max ): + """Bound new residuals. + + Parameters + ---------- + r_indptr : vector + r_indices : vector + r_data : vector + r_actual_indptr : vector + r_actual_indices : vector + r_actual_data : vector + lambda_ : double + v_max : double + + Returns + ------- + float + Cumulative difference between previous and current residuals vectors. + """ + cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 cdef double violation = 0 cdef double r_actual_sign = 1.0 From e4ba0de3b85221aba6c61f36cbbe120439f95148 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 15:09:21 +0300 Subject: [PATCH 093/144] Common corpus and common dictionary --- gensim/test/test_nmf.py | 13 +++++-------- 1 file changed, 5 insertions(+), 8 deletions(-) diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index 14a173aab2..78b5233216 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -15,14 +15,14 @@ import six import numpy as np -from gensim.corpora import mmcorpus, Dictionary +from gensim.corpora import mmcorpus from gensim.models import nmf from gensim import matutils, utils from gensim.test import basetmtests -from gensim.test.utils import datapath, get_tmpfile, common_texts +from gensim.test.utils import datapath, get_tmpfile, common_corpus, common_dictionary -dictionary = Dictionary(common_texts) -corpus = [dictionary.doc2bow(text) for text in common_texts] +dictionary = common_dictionary +corpus = common_corpus def testRandomState(): @@ -283,9 +283,6 @@ def testDtypeBackwardCompatibility(self): topics = model[test_doc] self.assertTrue(np.allclose(expected_topics, topics)) - -# endclass TestNmf - if __name__ == '__main__': - logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) + logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) unittest.main() From 8537eef624cbae823b69420f46ea145e6b718f28 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 15:17:47 +0300 Subject: [PATCH 094/144] Remove redundant test --- gensim/test/test_nmf.py | 6 ------ 1 file changed, 6 deletions(-) diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index 78b5233216..d33596c11a 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -25,12 +25,6 @@ corpus = common_corpus -def testRandomState(): - testcases = [np.random.seed(0), None, np.random.RandomState(0), 0] - for testcase in testcases: - assert (isinstance(utils.get_random_state(testcase), np.random.RandomState)) - - class TestNmf(unittest.TestCase, basetmtests.TestBaseTopicModel): def setUp(self): self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) From d2e8385eb85eb5c76911ebdac7e2cf1aa3c13ab9 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 15:30:51 +0300 Subject: [PATCH 095/144] Add signature flag --- gensim/models/nmf_pgd.pyx | 1 + 1 file changed, 1 insertion(+) diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index ca998be671..6a614beae1 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -4,6 +4,7 @@ # cython: boundscheck=False # cython: wraparound=False # cython: nonecheck=False +# cython: embedsignature=True cimport cython from libc.math cimport sqrt, fabs, fmin, fmax, copysign From b72bf398eb8d3ebc2a38fc8f603e3ae9b1de4f65 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 28 Nov 2018 15:33:19 +0300 Subject: [PATCH 096/144] Add files to manifest --- MANIFEST.in | 3 +++ 1 file changed, 3 insertions(+) diff --git a/MANIFEST.in b/MANIFEST.in index da4b2ee47e..dc409ba426 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -33,3 +33,6 @@ include gensim/corpora/_mmreader.c include gensim/corpora/_mmreader.pyx include gensim/_matutils.c include gensim/_matutils.pyx + +include gensim/models/nmf_pgd.c +include gensim/models/nmf_pgd.pyx \ No newline at end of file From ed080a302e9860710e0e4d945d2ffc4f566d2299 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 29 Nov 2018 14:11:33 +0300 Subject: [PATCH 097/144] Fix flake8 --- gensim/test/test_nmf.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index d33596c11a..9397924574 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -17,7 +17,7 @@ from gensim.corpora import mmcorpus from gensim.models import nmf -from gensim import matutils, utils +from gensim import matutils from gensim.test import basetmtests from gensim.test.utils import datapath, get_tmpfile, common_corpus, common_dictionary @@ -277,6 +277,7 @@ def testDtypeBackwardCompatibility(self): topics = model[test_doc] self.assertTrue(np.allclose(expected_topics, topics)) + if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) unittest.main() From 67f6e75fea6925de5c43e759e5f9a87529286e8c Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 29 Nov 2018 14:29:08 +0300 Subject: [PATCH 098/144] Fix atol value --- gensim/test/test_nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index 9397924574..c81a2162bd 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -43,7 +43,7 @@ def testTransform(self): vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = [0., 1.] # must contain the same values, up to re-ordering - self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-1)) + self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-8)) @unittest.skip('top topics is not implemented') def testTopTopics(self): From ee4373d3d3f27e51550b06e49330495881a0a53f Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 29 Nov 2018 14:36:28 +0300 Subject: [PATCH 099/144] Implement top topics --- gensim/models/nmf.py | 54 ++++++++++++++++++++++++++++++++++++++++- gensim/test/test_nmf.py | 1 - 2 files changed, 53 insertions(+), 2 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 57987ad3c1..667077dff3 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -11,7 +11,7 @@ from gensim import matutils from gensim import utils from gensim.interfaces import TransformedCorpus -from gensim.models import basemodel +from gensim.models import basemodel, CoherenceModel from gensim.models.nmf_pgd import solve_h, solve_r logger = logging.getLogger(__name__) @@ -236,6 +236,58 @@ def get_topic_terms(self, topicid, topn=10): bestn = matutils.argsort(topic, topn, reverse=True) return [(idx, topic[idx]) for idx in bestn] + def top_topics(self, corpus=None, texts=None, dictionary=None, window_size=None, + coherence='u_mass', topn=20, processes=-1): + """Get the topics with the highest coherence score the coherence for each topic. + + Parameters + ---------- + corpus : iterable of list of (int, float), optional + Corpus in BoW format. + texts : list of list of str, optional + Tokenized texts, needed for coherence models that use sliding window based (i.e. coherence=`c_something`) + probability estimator . + dictionary : :class:`~gensim.corpora.dictionary.Dictionary`, optional + Gensim dictionary mapping of id word to create corpus. + If `model.id2word` is present, this is not needed. If both are provided, passed `dictionary` will be used. + window_size : int, optional + Is the size of the window to be used for coherence measures using boolean sliding window as their + probability estimator. For 'u_mass' this doesn't matter. + If None - the default window sizes are used which are: 'c_v' - 110, 'c_uci' - 10, 'c_npmi' - 10. + coherence : {'u_mass', 'c_v', 'c_uci', 'c_npmi'}, optional + Coherence measure to be used. + Fastest method - 'u_mass', 'c_uci' also known as `c_pmi`. + For 'u_mass' corpus should be provided, if texts is provided, it will be converted to corpus + using the dictionary. For 'c_v', 'c_uci' and 'c_npmi' `texts` should be provided (`corpus` isn't needed) + topn : int, optional + Integer corresponding to the number of top words to be extracted from each topic. + processes : int, optional + Number of processes to use for probability estimation phase, any value less than 1 will be interpreted as + num_cpus - 1. + + Returns + ------- + list of (list of (int, str), float) + Each element in the list is a pair of a topic representation and its coherence score. Topic representations + are distributions of words, represented as a list of pairs of word IDs and their probabilities. + + """ + cm = CoherenceModel( + model=self, corpus=corpus, texts=texts, dictionary=dictionary, + window_size=window_size, coherence=coherence, topn=topn, + processes=processes + ) + coherence_scores = cm.get_coherence_per_topic() + + str_topics = [] + for topic in self.get_topics(): # topic = array of vocab_size floats, one per term + bestn = matutils.argsort(topic, topn=topn, reverse=True) # top terms for topic + beststr = [(topic[_id], self.id2word[_id]) for _id in bestn] # membership, token + str_topics.append(beststr) # list of topn (float membership, token) tuples + + scored_topics = zip(str_topics, coherence_scores) + return sorted(scored_topics, key=lambda tup: tup[1], reverse=True) + def get_term_topics(self, word_id, minimum_probability=None): """Get the most relevant topics to the given word. diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index c81a2162bd..c8b40b1d0c 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -45,7 +45,6 @@ def testTransform(self): # must contain the same values, up to re-ordering self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-8)) - @unittest.skip('top topics is not implemented') def testTopTopics(self): top_topics = self.model.top_topics(self.corpus) From d01c88ccf9d83dc2b47725ed9faeeb0e326430d8 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 11 Dec 2018 01:49:21 +0300 Subject: [PATCH 100/144] Add rst files --- docs/src/apiref.rst | 1 + docs/src/models/nmf.rst | 9 +++++++++ 2 files changed, 10 insertions(+) create mode 100644 docs/src/models/nmf.rst diff --git a/docs/src/apiref.rst b/docs/src/apiref.rst index 29f91d9f47..c4f31f7f28 100644 --- a/docs/src/apiref.rst +++ b/docs/src/apiref.rst @@ -29,6 +29,7 @@ Modules: corpora/wikicorpus models/ldamodel models/ldamulticore + models/nmf models/lsimodel models/ldaseqmodel models/tfidfmodel diff --git a/docs/src/models/nmf.rst b/docs/src/models/nmf.rst new file mode 100644 index 0000000000..4a89607a4c --- /dev/null +++ b/docs/src/models/nmf.rst @@ -0,0 +1,9 @@ +:mod:`models.nmf` -- Non-Negative Matrix factorization +====================================================== + +.. automodule:: gensim.models.nmf + :synopsis: Non-Negative Matrix Factorization + :members: + :inherited-members: + :undoc-members: + :show-inheritance: From 3de3646750f285ac9bd5f42a6ebe96ceb391879f Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 11 Dec 2018 18:01:16 +0300 Subject: [PATCH 101/144] Fix appveyor issue --- gensim/models/nmf_pgd.c | 386 ++++++++++++++++++++-------------------- gensim/test/test_nmf.py | 105 ++--------- tox.ini | 2 +- 3 files changed, 213 insertions(+), 280 deletions(-) diff --git a/gensim/models/nmf_pgd.c b/gensim/models/nmf_pgd.c index 9fea32bcc0..0b53f7c46c 100644 --- a/gensim/models/nmf_pgd.c +++ b/gensim/models/nmf_pgd.c @@ -1683,17 +1683,18 @@ static PyObject *__pyx_tuple__22; static PyObject *__pyx_codeobj__15; static PyObject *__pyx_codeobj__17; -/* "gensim/models/nmf_pgd.pyx":57 - * # return sqrt(violation) +/* "gensim/models/nmf_pgd.pyx":14 + * import numpy as np * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< - * cdef Py_ssize_t n_components = h.shape[0] - * cdef Py_ssize_t n_samples = h.shape[1] + * """Find optimal dense vector representation for current W and r matrices. + * */ /* Python wrapper */ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ -static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h = {"solve_h", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h, METH_VARARGS|METH_KEYWORDS, 0}; +static char __pyx_doc_6gensim_6models_7nmf_pgd_solve_h[] = "solve_h(__Pyx_memviewslice h, __Pyx_memviewslice Wt_v_minus_r, __Pyx_memviewslice WtW, double kappa)\nFind optimal dense vector representation for current W and r matrices.\n\n Parameters\n ----------\n h : matrix\n Dense representation of documents in current batch.\n Wt_v_minus_r : matrix\n WtW : matrix\n\n Returns\n -------\n float\n Cumulative difference between previous and current h vectors.\n "; +static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h = {"solve_h", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6gensim_6models_7nmf_pgd_solve_h}; static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { __Pyx_memviewslice __pyx_v_h = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_Wt_v_minus_r = { 0, 0, { 0 }, { 0 }, { 0 } }; @@ -1724,21 +1725,21 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_Wt_v_minus_r)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 57, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 14, __pyx_L3_error) } case 2: if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_WtW)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 57, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 14, __pyx_L3_error) } case 3: if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 57, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 14, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 57, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 14, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; @@ -1748,14 +1749,14 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } - __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0]); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 57, __pyx_L3_error) - __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1]); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 57, __pyx_L3_error) - __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2]); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 57, __pyx_L3_error) - __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 57, __pyx_L3_error) + __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0]); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 14, __pyx_L3_error) + __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1]); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 14, __pyx_L3_error) + __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2]); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 14, __pyx_L3_error) + __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 14, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 57, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 14, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -1805,17 +1806,17 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec PyObject *__pyx_t_23 = NULL; __Pyx_RefNannySetupContext("solve_h", 0); - /* "gensim/models/nmf_pgd.pyx":58 + /* "gensim/models/nmf_pgd.pyx":30 + * """ * - * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): * cdef Py_ssize_t n_components = h.shape[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t n_samples = h.shape[1] * cdef double violation = 0 */ __pyx_v_n_components = (__pyx_v_h.shape[0]); - /* "gensim/models/nmf_pgd.pyx":59 - * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + /* "gensim/models/nmf_pgd.pyx":31 + * * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] # <<<<<<<<<<<<<< * cdef double violation = 0 @@ -1823,7 +1824,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_n_samples = (__pyx_v_h.shape[1]); - /* "gensim/models/nmf_pgd.pyx":60 + /* "gensim/models/nmf_pgd.pyx":32 * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] * cdef double violation = 0 # <<<<<<<<<<<<<< @@ -1832,7 +1833,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_violation = 0.0; - /* "gensim/models/nmf_pgd.pyx":62 + /* "gensim/models/nmf_pgd.pyx":34 * cdef double violation = 0 * cdef double grad, projected_grad, hessian * cdef Py_ssize_t sample_idx = 0 # <<<<<<<<<<<<<< @@ -1841,7 +1842,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_sample_idx = 0; - /* "gensim/models/nmf_pgd.pyx":63 + /* "gensim/models/nmf_pgd.pyx":35 * cdef double grad, projected_grad, hessian * cdef Py_ssize_t sample_idx = 0 * cdef Py_ssize_t component_idx_1 = 0 # <<<<<<<<<<<<<< @@ -1850,7 +1851,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_component_idx_1 = 0; - /* "gensim/models/nmf_pgd.pyx":64 + /* "gensim/models/nmf_pgd.pyx":36 * cdef Py_ssize_t sample_idx = 0 * cdef Py_ssize_t component_idx_1 = 0 * cdef Py_ssize_t component_idx_2 = 0 # <<<<<<<<<<<<<< @@ -1859,7 +1860,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_component_idx_2 = 0; - /* "gensim/models/nmf_pgd.pyx":66 + /* "gensim/models/nmf_pgd.pyx":38 * cdef Py_ssize_t component_idx_2 = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -1901,7 +1902,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_v_hessian = ((double)__PYX_NAN()); __pyx_v_projected_grad = ((double)__PYX_NAN()); - /* "gensim/models/nmf_pgd.pyx":67 + /* "gensim/models/nmf_pgd.pyx":39 * * for sample_idx in prange(n_samples, nogil=True): * for component_idx_1 in range(n_components): # <<<<<<<<<<<<<< @@ -1912,7 +1913,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { __pyx_v_component_idx_1 = __pyx_t_5; - /* "gensim/models/nmf_pgd.pyx":69 + /* "gensim/models/nmf_pgd.pyx":41 * for component_idx_1 in range(n_components): * * grad = -Wt_v_minus_r[component_idx_1, sample_idx] # <<<<<<<<<<<<<< @@ -1923,7 +1924,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_7 = __pyx_v_sample_idx; __pyx_v_grad = (-(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_Wt_v_minus_r.data + __pyx_t_6 * __pyx_v_Wt_v_minus_r.strides[0]) ) + __pyx_t_7 * __pyx_v_Wt_v_minus_r.strides[1]) )))); - /* "gensim/models/nmf_pgd.pyx":71 + /* "gensim/models/nmf_pgd.pyx":43 * grad = -Wt_v_minus_r[component_idx_1, sample_idx] * * for component_idx_2 in range(n_components): # <<<<<<<<<<<<<< @@ -1934,7 +1935,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec for (__pyx_t_9 = 0; __pyx_t_9 < __pyx_t_8; __pyx_t_9+=1) { __pyx_v_component_idx_2 = __pyx_t_9; - /* "gensim/models/nmf_pgd.pyx":72 + /* "gensim/models/nmf_pgd.pyx":44 * * for component_idx_2 in range(n_components): * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] # <<<<<<<<<<<<<< @@ -1948,7 +1949,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_v_grad = (__pyx_v_grad + ((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_10 * __pyx_v_WtW.strides[0]) )) + __pyx_t_11)) ))) * (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_12 * __pyx_v_h.strides[0]) )) + __pyx_t_13)) ))))); } - /* "gensim/models/nmf_pgd.pyx":74 + /* "gensim/models/nmf_pgd.pyx":46 * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] * * hessian = WtW[component_idx_1, component_idx_1] # <<<<<<<<<<<<<< @@ -1959,7 +1960,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_15 = __pyx_v_component_idx_1; __pyx_v_hessian = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_14 * __pyx_v_WtW.strides[0]) )) + __pyx_t_15)) ))); - /* "gensim/models/nmf_pgd.pyx":76 + /* "gensim/models/nmf_pgd.pyx":48 * hessian = WtW[component_idx_1, component_idx_1] * * grad = grad * kappa / hessian # <<<<<<<<<<<<<< @@ -1968,7 +1969,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_grad = ((__pyx_v_grad * __pyx_v_kappa) / __pyx_v_hessian); - /* "gensim/models/nmf_pgd.pyx":78 + /* "gensim/models/nmf_pgd.pyx":50 * grad = grad * kappa / hessian * * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad # <<<<<<<<<<<<<< @@ -1984,7 +1985,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec } __pyx_v_projected_grad = __pyx_t_16; - /* "gensim/models/nmf_pgd.pyx":80 + /* "gensim/models/nmf_pgd.pyx":52 * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad * * violation += projected_grad * projected_grad # <<<<<<<<<<<<<< @@ -1993,7 +1994,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_violation = (__pyx_v_violation + (__pyx_v_projected_grad * __pyx_v_projected_grad)); - /* "gensim/models/nmf_pgd.pyx":82 + /* "gensim/models/nmf_pgd.pyx":54 * violation += projected_grad * projected_grad * * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) # <<<<<<<<<<<<<< @@ -2019,7 +2020,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec #endif } - /* "gensim/models/nmf_pgd.pyx":66 + /* "gensim/models/nmf_pgd.pyx":38 * cdef Py_ssize_t component_idx_2 = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -2037,7 +2038,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec } } - /* "gensim/models/nmf_pgd.pyx":84 + /* "gensim/models/nmf_pgd.pyx":56 * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) * * return sqrt(violation) # <<<<<<<<<<<<<< @@ -2045,18 +2046,18 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * def solve_r( */ __Pyx_XDECREF(__pyx_r); - __pyx_t_23 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_23)) __PYX_ERR(0, 84, __pyx_L1_error) + __pyx_t_23 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_23)) __PYX_ERR(0, 56, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_23); __pyx_r = __pyx_t_23; __pyx_t_23 = 0; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":57 - * # return sqrt(violation) + /* "gensim/models/nmf_pgd.pyx":14 + * import numpy as np * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< - * cdef Py_ssize_t n_components = h.shape[0] - * cdef Py_ssize_t n_samples = h.shape[1] + * """Find optimal dense vector representation for current W and r matrices. + * */ /* function exit code */ @@ -2073,7 +2074,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec return __pyx_r; } -/* "gensim/models/nmf_pgd.pyx":86 +/* "gensim/models/nmf_pgd.pyx":58 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< @@ -2083,7 +2084,8 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec /* Python wrapper */ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ -static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r = {"solve_r", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r, METH_VARARGS|METH_KEYWORDS, 0}; +static char __pyx_doc_6gensim_6models_7nmf_pgd_2solve_r[] = "solve_r(__Pyx_memviewslice r_indptr, __Pyx_memviewslice r_indices, __Pyx_memviewslice r_data, __Pyx_memviewslice r_actual_indptr, __Pyx_memviewslice r_actual_indices, __Pyx_memviewslice r_actual_data, double lambda_, double v_max)\nBound new residuals.\n\n Parameters\n ----------\n r_indptr : vector\n r_indices : vector\n r_data : vector\n r_actual_indptr : vector\n r_actual_indices : vector\n r_actual_data : vector\n lambda_ : double\n v_max : double\n\n Returns\n -------\n float\n Cumulative difference between previous and current residuals vectors.\n "; +static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r = {"solve_r", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6gensim_6models_7nmf_pgd_2solve_r}; static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { __Pyx_memviewslice __pyx_v_r_indptr = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_r_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; @@ -2122,41 +2124,41 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self case 1: if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_indices)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 1); __PYX_ERR(0, 86, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 1); __PYX_ERR(0, 58, __pyx_L3_error) } case 2: if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_data)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 2); __PYX_ERR(0, 86, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 2); __PYX_ERR(0, 58, __pyx_L3_error) } case 3: if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_indptr)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 3); __PYX_ERR(0, 86, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 3); __PYX_ERR(0, 58, __pyx_L3_error) } case 4: if (likely((values[4] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_indices)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 4); __PYX_ERR(0, 86, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 4); __PYX_ERR(0, 58, __pyx_L3_error) } case 5: if (likely((values[5] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_data)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 5); __PYX_ERR(0, 86, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 5); __PYX_ERR(0, 58, __pyx_L3_error) } case 6: if (likely((values[6] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_lambda)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 6); __PYX_ERR(0, 86, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 6); __PYX_ERR(0, 58, __pyx_L3_error) } case 7: if (likely((values[7] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_v_max)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 7); __PYX_ERR(0, 86, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 7); __PYX_ERR(0, 58, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_r") < 0)) __PYX_ERR(0, 86, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_r") < 0)) __PYX_ERR(0, 58, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 8) { goto __pyx_L5_argtuple_error; @@ -2170,18 +2172,18 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self values[6] = PyTuple_GET_ITEM(__pyx_args, 6); values[7] = PyTuple_GET_ITEM(__pyx_args, 7); } - __pyx_v_r_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[0]); if (unlikely(!__pyx_v_r_indptr.memview)) __PYX_ERR(0, 87, __pyx_L3_error) - __pyx_v_r_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[1]); if (unlikely(!__pyx_v_r_indices.memview)) __PYX_ERR(0, 88, __pyx_L3_error) - __pyx_v_r_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[2]); if (unlikely(!__pyx_v_r_data.memview)) __PYX_ERR(0, 89, __pyx_L3_error) - __pyx_v_r_actual_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[3]); if (unlikely(!__pyx_v_r_actual_indptr.memview)) __PYX_ERR(0, 90, __pyx_L3_error) - __pyx_v_r_actual_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[4]); if (unlikely(!__pyx_v_r_actual_indices.memview)) __PYX_ERR(0, 91, __pyx_L3_error) - __pyx_v_r_actual_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[5]); if (unlikely(!__pyx_v_r_actual_data.memview)) __PYX_ERR(0, 92, __pyx_L3_error) - __pyx_v_lambda_ = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_lambda_ == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 93, __pyx_L3_error) - __pyx_v_v_max = __pyx_PyFloat_AsDouble(values[7]); if (unlikely((__pyx_v_v_max == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 94, __pyx_L3_error) + __pyx_v_r_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[0]); if (unlikely(!__pyx_v_r_indptr.memview)) __PYX_ERR(0, 59, __pyx_L3_error) + __pyx_v_r_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[1]); if (unlikely(!__pyx_v_r_indices.memview)) __PYX_ERR(0, 60, __pyx_L3_error) + __pyx_v_r_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[2]); if (unlikely(!__pyx_v_r_data.memview)) __PYX_ERR(0, 61, __pyx_L3_error) + __pyx_v_r_actual_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[3]); if (unlikely(!__pyx_v_r_actual_indptr.memview)) __PYX_ERR(0, 62, __pyx_L3_error) + __pyx_v_r_actual_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[4]); if (unlikely(!__pyx_v_r_actual_indices.memview)) __PYX_ERR(0, 63, __pyx_L3_error) + __pyx_v_r_actual_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[5]); if (unlikely(!__pyx_v_r_actual_data.memview)) __PYX_ERR(0, 64, __pyx_L3_error) + __pyx_v_lambda_ = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_lambda_ == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 65, __pyx_L3_error) + __pyx_v_v_max = __pyx_PyFloat_AsDouble(values[7]); if (unlikely((__pyx_v_v_max == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 66, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 86, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 58, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_r", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -2288,17 +2290,17 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje Py_ssize_t __pyx_t_79; __Pyx_RefNannySetupContext("solve_r", 0); - /* "gensim/models/nmf_pgd.pyx":96 - * double v_max - * ): + /* "gensim/models/nmf_pgd.pyx":87 + * """ + * * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 # <<<<<<<<<<<<<< * cdef double violation = 0 * cdef double r_actual_sign = 1.0 */ __pyx_v_n_samples = ((__pyx_v_r_actual_indptr.shape[0]) - 1); - /* "gensim/models/nmf_pgd.pyx":97 - * ): + /* "gensim/models/nmf_pgd.pyx":88 + * * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 * cdef double violation = 0 # <<<<<<<<<<<<<< * cdef double r_actual_sign = 1.0 @@ -2306,7 +2308,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_violation = 0.0; - /* "gensim/models/nmf_pgd.pyx":98 + /* "gensim/models/nmf_pgd.pyx":89 * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 * cdef double violation = 0 * cdef double r_actual_sign = 1.0 # <<<<<<<<<<<<<< @@ -2315,7 +2317,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_sign = 1.0; - /* "gensim/models/nmf_pgd.pyx":101 + /* "gensim/models/nmf_pgd.pyx":92 * cdef Py_ssize_t sample_idx * * cdef Py_ssize_t r_col_size = 0 # <<<<<<<<<<<<<< @@ -2324,7 +2326,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_col_size = 0; - /* "gensim/models/nmf_pgd.pyx":102 + /* "gensim/models/nmf_pgd.pyx":93 * * cdef Py_ssize_t r_col_size = 0 * cdef Py_ssize_t r_actual_col_size = 0 # <<<<<<<<<<<<<< @@ -2333,7 +2335,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_col_size = 0; - /* "gensim/models/nmf_pgd.pyx":103 + /* "gensim/models/nmf_pgd.pyx":94 * cdef Py_ssize_t r_col_size = 0 * cdef Py_ssize_t r_actual_col_size = 0 * cdef Py_ssize_t r_col_idx_idx = 0 # <<<<<<<<<<<<<< @@ -2342,87 +2344,87 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_col_idx_idx = 0; - /* "gensim/models/nmf_pgd.pyx":106 + /* "gensim/models/nmf_pgd.pyx":97 * cdef Py_ssize_t r_actual_col_idx_idx * * cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) # <<<<<<<<<<<<<< * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) * */ - __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_intp); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_intp); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 106, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_5); - if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 106, __pyx_L1_error) + if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_r_col_indices = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; - /* "gensim/models/nmf_pgd.pyx":107 + /* "gensim/models/nmf_pgd.pyx":98 * * cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) # <<<<<<<<<<<<<< * * for sample_idx in prange(n_samples, nogil=True): */ - __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 107, __pyx_L1_error) + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 107, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 107, __pyx_L1_error) + __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 107, __pyx_L1_error) + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = PyDict_New(); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 107, __pyx_L1_error) + __pyx_t_5 = PyDict_New(); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 107, __pyx_L1_error) + __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_intp); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 107, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_intp); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 107, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 107, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_4); - if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 107, __pyx_L1_error) + if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_r_actual_col_indices = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; - /* "gensim/models/nmf_pgd.pyx":109 + /* "gensim/models/nmf_pgd.pyx":100 * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -2464,7 +2466,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_v_r_col_idx_idx = ((Py_ssize_t)0xbad0bad0); __pyx_v_r_col_size = ((Py_ssize_t)0xbad0bad0); - /* "gensim/models/nmf_pgd.pyx":110 + /* "gensim/models/nmf_pgd.pyx":101 * * for sample_idx in prange(n_samples, nogil=True): * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2475,7 +2477,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_11 = __pyx_v_sample_idx; __pyx_v_r_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_10)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_11)) )))); - /* "gensim/models/nmf_pgd.pyx":111 + /* "gensim/models/nmf_pgd.pyx":102 * for sample_idx in prange(n_samples, nogil=True): * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2486,7 +2488,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_13 = __pyx_v_sample_idx; __pyx_v_r_actual_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_12)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_13)) )))); - /* "gensim/models/nmf_pgd.pyx":113 + /* "gensim/models/nmf_pgd.pyx":104 * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] * * r_col_indices[sample_idx] = 0 # <<<<<<<<<<<<<< @@ -2496,7 +2498,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_14 = __pyx_v_sample_idx; *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_14 * __pyx_v_r_col_indices.strides[0]) )) = 0; - /* "gensim/models/nmf_pgd.pyx":114 + /* "gensim/models/nmf_pgd.pyx":105 * * r_col_indices[sample_idx] = 0 * r_actual_col_indices[sample_idx] = 0 # <<<<<<<<<<<<<< @@ -2506,7 +2508,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_15 = __pyx_v_sample_idx; *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_15 * __pyx_v_r_actual_col_indices.strides[0]) )) = 0; - /* "gensim/models/nmf_pgd.pyx":116 + /* "gensim/models/nmf_pgd.pyx":107 * r_actual_col_indices[sample_idx] = 0 * * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< @@ -2527,7 +2529,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_L12_bool_binop_done:; if (!__pyx_t_16) break; - /* "gensim/models/nmf_pgd.pyx":118 + /* "gensim/models/nmf_pgd.pyx":109 * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: * r_col_idx_idx = r_indices[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2536,7 +2538,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_20 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":119 + /* "gensim/models/nmf_pgd.pyx":110 * r_col_idx_idx = r_indices[ * r_indptr[sample_idx] * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2545,7 +2547,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_21 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":117 + /* "gensim/models/nmf_pgd.pyx":108 * * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: * r_col_idx_idx = r_indices[ # <<<<<<<<<<<<<< @@ -2555,7 +2557,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_22 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_20)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_21 * __pyx_v_r_col_indices.strides[0]) )))); __pyx_v_r_col_idx_idx = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indices.data) + __pyx_t_22)) ))); - /* "gensim/models/nmf_pgd.pyx":122 + /* "gensim/models/nmf_pgd.pyx":113 * ] * r_actual_col_idx_idx = r_actual_indices[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2564,7 +2566,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_23 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":123 + /* "gensim/models/nmf_pgd.pyx":114 * r_actual_col_idx_idx = r_actual_indices[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2573,7 +2575,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_24 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":121 + /* "gensim/models/nmf_pgd.pyx":112 * + r_col_indices[sample_idx] * ] * r_actual_col_idx_idx = r_actual_indices[ # <<<<<<<<<<<<<< @@ -2583,7 +2585,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_25 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_23)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_24 * __pyx_v_r_actual_col_indices.strides[0]) )))); __pyx_v_r_actual_col_idx_idx = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indices.data) + __pyx_t_25)) ))); - /* "gensim/models/nmf_pgd.pyx":126 + /* "gensim/models/nmf_pgd.pyx":117 * ] * * if r_col_idx_idx >= r_actual_col_idx_idx: # <<<<<<<<<<<<<< @@ -2593,7 +2595,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = ((__pyx_v_r_col_idx_idx >= __pyx_v_r_actual_col_idx_idx) != 0); if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":130 + /* "gensim/models/nmf_pgd.pyx":121 * r_actual_sign, * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2602,7 +2604,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_26 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":131 + /* "gensim/models/nmf_pgd.pyx":122 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2611,7 +2613,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_27 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":129 + /* "gensim/models/nmf_pgd.pyx":120 * r_actual_sign = copysign( * r_actual_sign, * r_actual_data[ # <<<<<<<<<<<<<< @@ -2620,7 +2622,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_28 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_26)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_27 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":127 + /* "gensim/models/nmf_pgd.pyx":118 * * if r_col_idx_idx >= r_actual_col_idx_idx: * r_actual_sign = copysign( # <<<<<<<<<<<<<< @@ -2629,7 +2631,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_sign = copysign(__pyx_v_r_actual_sign, (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_28)) )))); - /* "gensim/models/nmf_pgd.pyx":140 + /* "gensim/models/nmf_pgd.pyx":131 * ] = fabs( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2638,7 +2640,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_29 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":141 + /* "gensim/models/nmf_pgd.pyx":132 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2647,7 +2649,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_30 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":139 + /* "gensim/models/nmf_pgd.pyx":130 * + r_actual_col_indices[sample_idx] * ] = fabs( * r_actual_data[ # <<<<<<<<<<<<<< @@ -2656,7 +2658,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_31 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_29)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_30 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":136 + /* "gensim/models/nmf_pgd.pyx":127 * * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2665,7 +2667,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_32 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":137 + /* "gensim/models/nmf_pgd.pyx":128 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2676,7 +2678,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_34 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_32)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_33 * __pyx_v_r_actual_col_indices.strides[0]) )))); *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_34)) )) = (fabs((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_31)) )))) - __pyx_v_lambda_); - /* "gensim/models/nmf_pgd.pyx":150 + /* "gensim/models/nmf_pgd.pyx":141 * ] = fmax( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2685,7 +2687,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_35 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":151 + /* "gensim/models/nmf_pgd.pyx":142 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2694,7 +2696,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_36 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":149 + /* "gensim/models/nmf_pgd.pyx":140 * + r_actual_col_indices[sample_idx] * ] = fmax( * r_actual_data[ # <<<<<<<<<<<<<< @@ -2703,7 +2705,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_37 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_35)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_36 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":146 + /* "gensim/models/nmf_pgd.pyx":137 * * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2712,7 +2714,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_38 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":147 + /* "gensim/models/nmf_pgd.pyx":138 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2723,7 +2725,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_40 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_38)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_39 * __pyx_v_r_actual_col_indices.strides[0]) )))); *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_40)) )) = fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_37)) ))), 0.0); - /* "gensim/models/nmf_pgd.pyx":158 + /* "gensim/models/nmf_pgd.pyx":149 * if ( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2732,7 +2734,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_41 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":159 + /* "gensim/models/nmf_pgd.pyx":150 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2741,7 +2743,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_42 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":157 + /* "gensim/models/nmf_pgd.pyx":148 * * if ( * r_actual_data[ # <<<<<<<<<<<<<< @@ -2750,7 +2752,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_43 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_41)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_42 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":160 + /* "gensim/models/nmf_pgd.pyx":151 * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] * ] != 0 # <<<<<<<<<<<<<< @@ -2759,7 +2761,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_16 = (((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_43)) ))) != 0.0) != 0); - /* "gensim/models/nmf_pgd.pyx":156 + /* "gensim/models/nmf_pgd.pyx":147 * ) * * if ( # <<<<<<<<<<<<<< @@ -2768,7 +2770,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":167 + /* "gensim/models/nmf_pgd.pyx":158 * ] = copysign( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2777,7 +2779,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_44 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":168 + /* "gensim/models/nmf_pgd.pyx":159 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2786,7 +2788,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_45 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":166 + /* "gensim/models/nmf_pgd.pyx":157 * + r_actual_col_indices[sample_idx] * ] = copysign( * r_actual_data[ # <<<<<<<<<<<<<< @@ -2795,7 +2797,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_46 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_44)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_45 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":163 + /* "gensim/models/nmf_pgd.pyx":154 * ): * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2804,7 +2806,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_47 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":164 + /* "gensim/models/nmf_pgd.pyx":155 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2815,7 +2817,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_49 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_47)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_48 * __pyx_v_r_actual_col_indices.strides[0]) )))); *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_49)) )) = copysign((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_46)) ))), __pyx_v_r_actual_sign); - /* "gensim/models/nmf_pgd.pyx":178 + /* "gensim/models/nmf_pgd.pyx":169 * ] = fmax( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2824,7 +2826,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_50 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":179 + /* "gensim/models/nmf_pgd.pyx":170 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2833,7 +2835,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_51 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":177 + /* "gensim/models/nmf_pgd.pyx":168 * + r_actual_col_indices[sample_idx] * ] = fmax( * r_actual_data[ # <<<<<<<<<<<<<< @@ -2842,7 +2844,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_52 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_50)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_51 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":174 + /* "gensim/models/nmf_pgd.pyx":165 * * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2851,7 +2853,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_53 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":175 + /* "gensim/models/nmf_pgd.pyx":166 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2862,7 +2864,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_55 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_53)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_54 * __pyx_v_r_actual_col_indices.strides[0]) )))); *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_55)) )) = fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_52)) ))), (-__pyx_v_v_max)); - /* "gensim/models/nmf_pgd.pyx":189 + /* "gensim/models/nmf_pgd.pyx":180 * ] = fmin( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2871,7 +2873,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_56 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":190 + /* "gensim/models/nmf_pgd.pyx":181 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2880,7 +2882,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_57 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":188 + /* "gensim/models/nmf_pgd.pyx":179 * + r_actual_col_indices[sample_idx] * ] = fmin( * r_actual_data[ # <<<<<<<<<<<<<< @@ -2889,7 +2891,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_58 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_56)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_57 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":185 + /* "gensim/models/nmf_pgd.pyx":176 * * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2898,7 +2900,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_59 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":186 + /* "gensim/models/nmf_pgd.pyx":177 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2909,7 +2911,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_61 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_59)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_60 * __pyx_v_r_actual_col_indices.strides[0]) )))); *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_61)) )) = fmin((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_58)) ))), __pyx_v_v_max); - /* "gensim/models/nmf_pgd.pyx":156 + /* "gensim/models/nmf_pgd.pyx":147 * ) * * if ( # <<<<<<<<<<<<<< @@ -2918,7 +2920,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ } - /* "gensim/models/nmf_pgd.pyx":195 + /* "gensim/models/nmf_pgd.pyx":186 * ) * * if r_col_idx_idx == r_actual_col_idx_idx: # <<<<<<<<<<<<<< @@ -2928,7 +2930,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = ((__pyx_v_r_col_idx_idx == __pyx_v_r_actual_col_idx_idx) != 0); if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":198 + /* "gensim/models/nmf_pgd.pyx":189 * violation += ( * r_data[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2937,7 +2939,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_62 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":199 + /* "gensim/models/nmf_pgd.pyx":190 * r_data[ * r_indptr[sample_idx] * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2946,7 +2948,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_63 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":197 + /* "gensim/models/nmf_pgd.pyx":188 * if r_col_idx_idx == r_actual_col_idx_idx: * violation += ( * r_data[ # <<<<<<<<<<<<<< @@ -2955,7 +2957,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_64 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_62)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_63 * __pyx_v_r_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":202 + /* "gensim/models/nmf_pgd.pyx":193 * ] * - r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2964,7 +2966,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_65 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":203 + /* "gensim/models/nmf_pgd.pyx":194 * - r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2973,7 +2975,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_66 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":201 + /* "gensim/models/nmf_pgd.pyx":192 * + r_col_indices[sample_idx] * ] * - r_actual_data[ # <<<<<<<<<<<<<< @@ -2982,7 +2984,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_67 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_65)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_66 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":196 + /* "gensim/models/nmf_pgd.pyx":187 * * if r_col_idx_idx == r_actual_col_idx_idx: * violation += ( # <<<<<<<<<<<<<< @@ -2991,7 +2993,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_violation = (__pyx_v_violation + pow(((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_64)) ))) - (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_67)) )))), 2.0)); - /* "gensim/models/nmf_pgd.pyx":195 + /* "gensim/models/nmf_pgd.pyx":186 * ) * * if r_col_idx_idx == r_actual_col_idx_idx: # <<<<<<<<<<<<<< @@ -3001,7 +3003,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L16; } - /* "gensim/models/nmf_pgd.pyx":207 + /* "gensim/models/nmf_pgd.pyx":198 * ) ** 2 * else: * violation += r_actual_data[ # <<<<<<<<<<<<<< @@ -3010,7 +3012,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ /*else*/ { - /* "gensim/models/nmf_pgd.pyx":208 + /* "gensim/models/nmf_pgd.pyx":199 * else: * violation += r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3019,7 +3021,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_68 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":209 + /* "gensim/models/nmf_pgd.pyx":200 * violation += r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3028,7 +3030,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_69 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":207 + /* "gensim/models/nmf_pgd.pyx":198 * ) ** 2 * else: * violation += r_actual_data[ # <<<<<<<<<<<<<< @@ -3037,7 +3039,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_70 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_68)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_69 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":210 + /* "gensim/models/nmf_pgd.pyx":201 * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] * ] ** 2 # <<<<<<<<<<<<<< @@ -3048,7 +3050,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } __pyx_L16:; - /* "gensim/models/nmf_pgd.pyx":212 + /* "gensim/models/nmf_pgd.pyx":203 * ] ** 2 * * if r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< @@ -3059,7 +3061,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_71 * __pyx_v_r_actual_col_indices.strides[0]) ))) < __pyx_v_r_actual_col_size) != 0); if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":213 + /* "gensim/models/nmf_pgd.pyx":204 * * if r_actual_col_indices[sample_idx] < r_actual_col_size: * r_actual_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< @@ -3069,7 +3071,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_72 = __pyx_v_sample_idx; *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_72 * __pyx_v_r_actual_col_indices.strides[0]) )) += 1; - /* "gensim/models/nmf_pgd.pyx":212 + /* "gensim/models/nmf_pgd.pyx":203 * ] ** 2 * * if r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< @@ -3079,7 +3081,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L17; } - /* "gensim/models/nmf_pgd.pyx":215 + /* "gensim/models/nmf_pgd.pyx":206 * r_actual_col_indices[sample_idx] += 1 * else: * r_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< @@ -3092,7 +3094,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } __pyx_L17:; - /* "gensim/models/nmf_pgd.pyx":126 + /* "gensim/models/nmf_pgd.pyx":117 * ] * * if r_col_idx_idx >= r_actual_col_idx_idx: # <<<<<<<<<<<<<< @@ -3102,7 +3104,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L14; } - /* "gensim/models/nmf_pgd.pyx":217 + /* "gensim/models/nmf_pgd.pyx":208 * r_col_indices[sample_idx] += 1 * else: * violation += r_data[ # <<<<<<<<<<<<<< @@ -3111,7 +3113,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ /*else*/ { - /* "gensim/models/nmf_pgd.pyx":218 + /* "gensim/models/nmf_pgd.pyx":209 * else: * violation += r_data[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3120,7 +3122,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_74 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":219 + /* "gensim/models/nmf_pgd.pyx":210 * violation += r_data[ * r_indptr[sample_idx] * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3129,7 +3131,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_75 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":217 + /* "gensim/models/nmf_pgd.pyx":208 * r_col_indices[sample_idx] += 1 * else: * violation += r_data[ # <<<<<<<<<<<<<< @@ -3138,7 +3140,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_76 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_74)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_75 * __pyx_v_r_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":220 + /* "gensim/models/nmf_pgd.pyx":211 * r_indptr[sample_idx] * + r_col_indices[sample_idx] * ] ** 2 # <<<<<<<<<<<<<< @@ -3147,7 +3149,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_violation = (__pyx_v_violation + pow((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_76)) ))), 2.0)); - /* "gensim/models/nmf_pgd.pyx":222 + /* "gensim/models/nmf_pgd.pyx":213 * ] ** 2 * * if r_col_indices[sample_idx] < r_col_size: # <<<<<<<<<<<<<< @@ -3158,7 +3160,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_77 * __pyx_v_r_col_indices.strides[0]) ))) < __pyx_v_r_col_size) != 0); if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":223 + /* "gensim/models/nmf_pgd.pyx":214 * * if r_col_indices[sample_idx] < r_col_size: * r_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< @@ -3168,7 +3170,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_78 = __pyx_v_sample_idx; *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_78 * __pyx_v_r_col_indices.strides[0]) )) += 1; - /* "gensim/models/nmf_pgd.pyx":222 + /* "gensim/models/nmf_pgd.pyx":213 * ] ** 2 * * if r_col_indices[sample_idx] < r_col_size: # <<<<<<<<<<<<<< @@ -3178,7 +3180,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L18; } - /* "gensim/models/nmf_pgd.pyx":225 + /* "gensim/models/nmf_pgd.pyx":216 * r_col_indices[sample_idx] += 1 * else: * r_actual_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< @@ -3206,7 +3208,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje #endif } - /* "gensim/models/nmf_pgd.pyx":109 + /* "gensim/models/nmf_pgd.pyx":100 * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -3224,19 +3226,19 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } } - /* "gensim/models/nmf_pgd.pyx":227 + /* "gensim/models/nmf_pgd.pyx":218 * r_actual_col_indices[sample_idx] += 1 * * return sqrt(violation) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); - __pyx_t_4 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 227, __pyx_L1_error) + __pyx_t_4 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 218, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":86 + /* "gensim/models/nmf_pgd.pyx":58 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< @@ -15712,7 +15714,7 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {0, 0, 0, 0, 0, 0, 0} }; static int __Pyx_InitCachedBuiltins(void) { - __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 67, __pyx_L1_error) + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 39, __pyx_L1_error) __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 131, __pyx_L1_error) __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 146, __pyx_L1_error) __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 149, __pyx_L1_error) @@ -15875,29 +15877,29 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__13); __Pyx_GIVEREF(__pyx_tuple__13); - /* "gensim/models/nmf_pgd.pyx":57 - * # return sqrt(violation) + /* "gensim/models/nmf_pgd.pyx":14 + * import numpy as np * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< - * cdef Py_ssize_t n_components = h.shape[0] - * cdef Py_ssize_t n_samples = h.shape[1] + * """Find optimal dense vector representation for current W and r matrices. + * */ - __pyx_tuple__14 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(0, 57, __pyx_L1_error) + __pyx_tuple__14 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__14); __Pyx_GIVEREF(__pyx_tuple__14); - __pyx_codeobj__15 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__14, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_h, 57, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__15)) __PYX_ERR(0, 57, __pyx_L1_error) + __pyx_codeobj__15 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__14, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_h, 14, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__15)) __PYX_ERR(0, 14, __pyx_L1_error) - /* "gensim/models/nmf_pgd.pyx":86 + /* "gensim/models/nmf_pgd.pyx":58 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< * int[::1] r_indptr, * int[::1] r_indices, */ - __pyx_tuple__16 = PyTuple_Pack(18, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_r_actual_sign, __pyx_n_s_sample_idx, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_idx_idx, __pyx_n_s_r_actual_col_idx_idx, __pyx_n_s_r_col_indices, __pyx_n_s_r_actual_col_indices); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(0, 86, __pyx_L1_error) + __pyx_tuple__16 = PyTuple_Pack(18, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_r_actual_sign, __pyx_n_s_sample_idx, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_idx_idx, __pyx_n_s_r_actual_col_idx_idx, __pyx_n_s_r_col_indices, __pyx_n_s_r_actual_col_indices); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(0, 58, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__16); __Pyx_GIVEREF(__pyx_tuple__16); - __pyx_codeobj__17 = (PyObject*)__Pyx_PyCode_New(8, 0, 18, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__16, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_r, 86, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__17)) __PYX_ERR(0, 86, __pyx_L1_error) + __pyx_codeobj__17 = (PyObject*)__Pyx_PyCode_New(8, 0, 18, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__16, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_r, 58, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__17)) __PYX_ERR(0, 58, __pyx_L1_error) /* "View.MemoryView":282 * return self.name @@ -16105,40 +16107,40 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif - /* "gensim/models/nmf_pgd.pyx":11 + /* "gensim/models/nmf_pgd.pyx":12 * from libc.math cimport sqrt, fabs, fmin, fmax, copysign * from cython.parallel import prange * import numpy as np # <<<<<<<<<<<<<< * - * # def solve_h_sparse(h, Wt_v_minus_r, WtW, double kappa): + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): */ - __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 11, __pyx_L1_error) + __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 12, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 11, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 12, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "gensim/models/nmf_pgd.pyx":57 - * # return sqrt(violation) + /* "gensim/models/nmf_pgd.pyx":14 + * import numpy as np * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< - * cdef Py_ssize_t n_components = h.shape[0] - * cdef Py_ssize_t n_samples = h.shape[1] + * """Find optimal dense vector representation for current W and r matrices. + * */ - __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 57, __pyx_L1_error) + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 57, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "gensim/models/nmf_pgd.pyx":86 + /* "gensim/models/nmf_pgd.pyx":58 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< * int[::1] r_indptr, * int[::1] r_indices, */ - __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 86, __pyx_L1_error) + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 58, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_r, __pyx_t_1) < 0) __PYX_ERR(0, 86, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_r, __pyx_t_1) < 0) __PYX_ERR(0, 58, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "gensim/models/nmf_pgd.pyx":1 diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index c8b40b1d0c..9a8174ecde 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -28,12 +28,11 @@ class TestNmf(unittest.TestCase, basetmtests.TestBaseTopicModel): def setUp(self): self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) - self.class_ = nmf.Nmf - self.model = self.class_(corpus, id2word=dictionary, num_topics=2, passes=100) + self.model = nmf.Nmf(corpus, id2word=dictionary, num_topics=2, passes=100) def testTransform(self): # create the transformation model - model = self.class_(id2word=dictionary, num_topics=2, passes=100) + model = nmf.Nmf(id2word=dictionary, num_topics=2, passes=100) model.update(self.corpus) # transform one document @@ -65,7 +64,7 @@ def testGetTopicTerms(self): def testGetDocumentTopics(self): - model = self.class_( + model = nmf.Nmf( self.corpus, id2word=dictionary, num_topics=2, passes=100, random_state=np.random.seed(0) ) @@ -88,15 +87,9 @@ def testGetDocumentTopics(self): self.assertTrue(isinstance(k, numbers.Integral)) self.assertTrue(np.issubdtype(v, float)) - # FIXME: Fails on osx and win - # expected_word = 0 - # self.assertEqual(word_topics[0][0], expected_word) - # self.assertTrue(0 in word_topics[0][1]) - def testTermTopics(self): - - model = self.class_( - self.corpus, id2word=dictionary, num_topics=2, passes=100, random_state=np.random.seed(0) + model = nmf.Nmf( + self.corpus, id2word=dictionary, num_topics=2, passes=100, random_state=np.random.seed(0), sparse_coef=0, ) # check with word_type @@ -105,9 +98,9 @@ def testTermTopics(self): self.assertTrue(isinstance(topic_no, int)) self.assertTrue(np.issubdtype(probability, float)) + # FIXME: result is empty # checks if topic '1' is in the result list - # FIXME: Fails on osx and win - # self.assertTrue(1 in result[0]) + self.assertTrue(1 in result[0]) # if user has entered word instead, check with word result = model.get_term_topics(str(model.id2word[2])) @@ -115,86 +108,24 @@ def testTermTopics(self): self.assertTrue(isinstance(topic_no, int)) self.assertTrue(np.issubdtype(probability, float)) + # FIXME: result is empty # checks if topic '1' is in the result list - # FIXME: Fails on osx and win - # self.assertTrue(1 in result[0]) - - @unittest.skip("There's no offset member") - def testPasses(self): - # long message includes the original error message with a custom one - self.longMessage = True - # construct what we expect when passes aren't involved - test_rhots = list() - model = self.class_(id2word=dictionary, chunksize=1, num_topics=2) - - def final_rhot(model): - return pow(model.offset + (1 * model.num_updates) / model.chunksize, -model.decay) - - # generate 5 updates to test rhot on - for x in range(5): - model.update(self.corpus) - test_rhots.append(final_rhot(model)) - - for passes in [1, 5, 10, 50, 100]: - model = self.class_(id2word=dictionary, chunksize=1, num_topics=2, passes=passes) - self.assertEqual(final_rhot(model), 1.0) - # make sure the rhot matches the test after each update - for test_rhot in test_rhots: - model.update(self.corpus) - - msg = ", ".join(str(x) for x in [passes, model.num_updates, model.state.numdocs]) - self.assertAlmostEqual(final_rhot(model), test_rhot, msg=msg) - - self.assertEqual(model.state.numdocs, len(corpus) * len(test_rhots)) - self.assertEqual(model.num_updates, len(corpus) * len(test_rhots)) - - # def testTopicSeeding(self): - # for topic in range(2): - # passed = False - # for i in range(5): # restart at most this many times, to mitigate LDA randomness - # # try seeding it both ways round, check you get the same - # # topics out but with which way round they are depending - # # on the way round they're seeded - # eta = np.ones((2, len(dictionary))) * 0.5 - # system = dictionary.token2id[u'system'] - # trees = dictionary.token2id[u'trees'] - - # # aggressively seed the word 'system', in one of the - # # two topics, 10 times higher than the other words - # eta[topic, system] *= 10.0 - - # model = self.class_(id2word=dictionary, num_topics=2, passes=200, eta=eta) - # model.update(self.corpus) - - # topics = [{word: p for p, word in model.show_topic(j, topn=None)} for j in range(2)] - - # # check that the word 'system' in the topic we seeded got a high weight, - # # and the word 'trees' (the main word in the other topic) a low weight -- - # # and vice versa for the other topic (which we didn't seed with 'system') - # passed = ( - # (topics[topic][u'system'] > topics[topic][u'trees']) - # and - # (topics[1 - topic][u'system'] < topics[1 - topic][u'trees']) - # ) - # if passed: - # break - # logging.warning("LDA failed to converge on attempt %i (got %s)", i, topics) - # self.assertTrue(passed) + self.assertTrue(1 in result[0]) def testPersistence(self): fname = get_tmpfile('gensim_models_nmf.tst') model = self.model model.save(fname) - model2 = self.class_.load(fname) + model2 = nmf.Nmf.load(fname) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector @unittest.skip("There're no pickled models") def testModelCompatibilityWithPythonVersions(self): fname_model_2_7 = datapath('nmf_python_2_7') - model_2_7 = self.class_.load(fname_model_2_7) + model_2_7 = nmf.Nmf.load(fname_model_2_7) fname_model_3_5 = datapath('nmf_python_3_5') - model_3_5 = self.class_.load(fname_model_3_5) + model_3_5 = nmf.Nmf.load(fname_model_3_5) self.assertEqual(model_2_7.num_topics, model_3_5.num_topics) self.assertTrue(np.allclose(model_2_7.expElogbeta, model_3_5.expElogbeta)) tstvec = [] @@ -207,7 +138,7 @@ def testPersistenceCompressed(self): fname = get_tmpfile('gensim_models_nmf.tst.gz') model = self.model model.save(fname) - model2 = self.class_.load(fname, mmap=None) + model2 = nmf.Nmf.load(fname, mmap=None) self.assertEqual(model.num_topics, model2.num_topics) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector @@ -220,7 +151,7 @@ def testLargeMmap(self): model.save(fname, sep_limit=0) # test loading the large model arrays with mmap - model2 = self.class_.load(fname, mmap='r') + model2 = nmf.Nmf.load(fname, mmap='r') self.assertEqual(model.num_topics, model2.num_topics) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector @@ -233,13 +164,13 @@ def testLargeMmapCompressed(self): model.save(fname, sep_limit=0) # test loading the large model arrays with mmap - self.assertRaises(IOError, self.class_.load, fname, mmap='r') + self.assertRaises(IOError, nmf.Nmf.load, fname, mmap='r') @unittest.skip("NMF has no state") def testRandomStateBackwardCompatibility(self): # load a model saved using a pre-0.13.2 version of Gensim pre_0_13_2_fname = datapath('pre_0_13_2_model') - model_pre_0_13_2 = self.class_.load(pre_0_13_2_fname) + model_pre_0_13_2 = nmf.Nmf.load(pre_0_13_2_fname) # set `num_topics` less than `model_pre_0_13_2.num_topics` so that `model_pre_0_13_2.random_state` is used model_topics = model_pre_0_13_2.print_topics(num_topics=2, num_words=3) @@ -253,7 +184,7 @@ def testRandomStateBackwardCompatibility(self): model_pre_0_13_2.save(post_0_13_2_fname) # load a model saved using a post-0.13.2 version of Gensim - model_post_0_13_2 = self.class_.load(post_0_13_2_fname) + model_post_0_13_2 = nmf.Nmf.load(post_0_13_2_fname) model_topics_new = model_post_0_13_2.print_topics(num_topics=2, num_words=3) for i in model_topics_new: @@ -270,7 +201,7 @@ def testDtypeBackwardCompatibility(self): self.model.save(nmf_3_6_0_fname) # load a model saved using a 3.0.1 version of Gensim - model = self.class_.load(nmf_3_6_0_fname) + model = nmf.Nmf.load(nmf_3_6_0_fname) # and test it on a predefined document topics = model[test_doc] diff --git a/tox.ini b/tox.ini index b4ab600ca2..bc6b51db44 100644 --- a/tox.ini +++ b/tox.ini @@ -64,7 +64,7 @@ commands = flake8 gensim/ {posargs} [testenv:flake8-docs] recreate = True -deps = flake8-rst >= 0.4.1 +deps = flake8-rst == 0.4.3 commands = flake8-rst gensim/ docs/ {posargs} From 183ea2dcbdde64851556ee491a213754846e81d0 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Tue, 11 Dec 2018 18:26:10 +0300 Subject: [PATCH 102/144] Fix cython error --- gensim/models/nmf_pgd.c | 9578 ++++++++++++++++++++++++--------------- 1 file changed, 5950 insertions(+), 3628 deletions(-) diff --git a/gensim/models/nmf_pgd.c b/gensim/models/nmf_pgd.c index 0b53f7c46c..31cb695355 100644 --- a/gensim/models/nmf_pgd.c +++ b/gensim/models/nmf_pgd.c @@ -1,13 +1,14 @@ -/* Generated by Cython 0.25.2 */ +/* Generated by Cython 0.28.6 */ #define PY_SSIZE_T_CLEAN #include "Python.h" #ifndef Py_PYTHON_H #error Python headers needed to compile C extensions, please install development version of Python. -#elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03020000) - #error Cython requires Python 2.6+ or Python 3.2+. +#elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) + #error Cython requires Python 2.6+ or Python 3.3+. #else -#define CYTHON_ABI "0_25_2" +#define CYTHON_ABI "0_28_6" +#define CYTHON_FUTURE_DIVISION 0 #include #ifndef offsetof #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) @@ -29,8 +30,9 @@ #ifndef DL_EXPORT #define DL_EXPORT(t) t #endif +#define __PYX_COMMA , #ifndef HAVE_LONG_LONG - #if PY_VERSION_HEX >= 0x03030000 || (PY_MAJOR_VERSION == 2 && PY_VERSION_HEX >= 0x02070000) + #if PY_VERSION_HEX >= 0x02070000 #define HAVE_LONG_LONG #endif #endif @@ -46,8 +48,14 @@ #define CYTHON_COMPILING_IN_CPYTHON 0 #undef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 0 - #undef CYTHON_USE_ASYNC_SLOTS - #define CYTHON_USE_ASYNC_SLOTS 0 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #if PY_VERSION_HEX < 0x03050000 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #undef CYTHON_USE_UNICODE_INTERNALS @@ -66,6 +74,10 @@ #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 #elif defined(PYSTON_VERSION) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 1 @@ -73,6 +85,8 @@ #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #undef CYTHON_USE_PYLIST_INTERNALS @@ -97,6 +111,10 @@ #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 #else #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 @@ -104,6 +122,12 @@ #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) + #define CYTHON_USE_PYTYPE_LOOKUP 1 + #endif #if PY_MAJOR_VERSION < 3 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 @@ -143,6 +167,12 @@ #ifndef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 1 #endif + #ifndef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT (0 && PY_VERSION_HEX >= 0x03050000) + #endif + #ifndef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) + #endif #endif #if !defined(CYTHON_FAST_PYCCALL) #define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) @@ -152,7 +182,107 @@ #undef SHIFT #undef BASE #undef MASK + #ifdef SIZEOF_VOID_P + enum { __pyx_check_sizeof_voidp = 1/(SIZEOF_VOID_P == sizeof(void*)) }; + #endif +#endif +#ifndef __has_attribute + #define __has_attribute(x) 0 +#endif +#ifndef __has_cpp_attribute + #define __has_cpp_attribute(x) 0 +#endif +#ifndef CYTHON_RESTRICT + #if defined(__GNUC__) + #define CYTHON_RESTRICT __restrict__ + #elif defined(_MSC_VER) && _MSC_VER >= 1400 + #define CYTHON_RESTRICT __restrict + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_RESTRICT restrict + #else + #define CYTHON_RESTRICT + #endif +#endif +#ifndef CYTHON_UNUSED +# if defined(__GNUC__) +# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +#endif +#ifndef CYTHON_MAYBE_UNUSED_VAR +# if defined(__cplusplus) + template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } +# else +# define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) +# endif +#endif +#ifndef CYTHON_NCP_UNUSED +# if CYTHON_COMPILING_IN_CPYTHON +# define CYTHON_NCP_UNUSED +# else +# define CYTHON_NCP_UNUSED CYTHON_UNUSED +# endif +#endif +#define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) +#ifdef _MSC_VER + #ifndef _MSC_STDINT_H_ + #if _MSC_VER < 1300 + typedef unsigned char uint8_t; + typedef unsigned int uint32_t; + #else + typedef unsigned __int8 uint8_t; + typedef unsigned __int32 uint32_t; + #endif + #endif +#else + #include +#endif +#ifndef CYTHON_FALLTHROUGH + #if defined(__cplusplus) && __cplusplus >= 201103L + #if __has_cpp_attribute(fallthrough) + #define CYTHON_FALLTHROUGH [[fallthrough]] + #elif __has_cpp_attribute(clang::fallthrough) + #define CYTHON_FALLTHROUGH [[clang::fallthrough]] + #elif __has_cpp_attribute(gnu::fallthrough) + #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] + #endif + #endif + #ifndef CYTHON_FALLTHROUGH + #if __has_attribute(fallthrough) + #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) + #else + #define CYTHON_FALLTHROUGH + #endif + #endif + #if defined(__clang__ ) && defined(__apple_build_version__) + #if __apple_build_version__ < 7000000 + #undef CYTHON_FALLTHROUGH + #define CYTHON_FALLTHROUGH + #endif + #endif +#endif + +#ifndef CYTHON_INLINE + #if defined(__clang__) + #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) + #elif defined(__GNUC__) + #define CYTHON_INLINE __inline__ + #elif defined(_MSC_VER) + #define CYTHON_INLINE __inline + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_INLINE inline + #else + #define CYTHON_INLINE + #endif #endif + #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) #define Py_OptimizeFlag 0 #endif @@ -181,19 +311,91 @@ #ifndef Py_TPFLAGS_HAVE_FINALIZE #define Py_TPFLAGS_HAVE_FINALIZE 0 #endif -#ifndef METH_FASTCALL - #define METH_FASTCALL 0x80 - typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject **args, - Py_ssize_t nargs, PyObject *kwnames); +#if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) + #ifndef METH_FASTCALL + #define METH_FASTCALL 0x80 + #endif + typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); + typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, + Py_ssize_t nargs, PyObject *kwnames); #else #define __Pyx_PyCFunctionFast _PyCFunctionFast + #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords #endif #if CYTHON_FAST_PYCCALL #define __Pyx_PyFastCFunction_Check(func)\ - ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST))))) + ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS))))) #else #define __Pyx_PyFastCFunction_Check(func) 0 #endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) + #define PyObject_Malloc(s) PyMem_Malloc(s) + #define PyObject_Free(p) PyMem_Free(p) + #define PyObject_Realloc(p) PyMem_Realloc(p) +#endif +#if CYTHON_COMPILING_IN_PYSTON + #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) +#else + #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) +#endif +#if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#elif PY_VERSION_HEX >= 0x03060000 + #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() +#elif PY_VERSION_HEX >= 0x03000000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#else + #define __Pyx_PyThreadState_Current _PyThreadState_Current +#endif +#if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) +#include "pythread.h" +#define Py_tss_NEEDS_INIT 0 +typedef int Py_tss_t; +static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { + *key = PyThread_create_key(); + return 0; // PyThread_create_key reports success always +} +static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { + Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); + *key = Py_tss_NEEDS_INIT; + return key; +} +static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { + PyObject_Free(key); +} +static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { + return *key != Py_tss_NEEDS_INIT; +} +static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { + PyThread_delete_key(*key); + *key = Py_tss_NEEDS_INIT; +} +static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { + return PyThread_set_key_value(*key, value); +} +static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { + return PyThread_get_key_value(*key); +} +#endif // TSS (Thread Specific Storage) API +#if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) +#define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) +#else +#define __Pyx_PyDict_NewPresized(n) PyDict_New() +#endif +#if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION + #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) +#else + #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) +#endif +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS +#define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) +#else +#define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) +#endif #if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) #define CYTHON_PEP393_ENABLED 1 #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ @@ -238,18 +440,6 @@ #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) #endif -#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) - #define PyObject_Malloc(s) PyMem_Malloc(s) - #define PyObject_Free(p) PyMem_Free(p) - #define PyObject_Realloc(p) PyMem_Realloc(p) -#endif -#if CYTHON_COMPILING_IN_PYSTON - #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) - #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) -#else - #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) - #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) -#endif #define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) #define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) #if PY_MAJOR_VERSION >= 3 @@ -266,6 +456,7 @@ #define PyString_Type PyUnicode_Type #define PyString_Check PyUnicode_Check #define PyString_CheckExact PyUnicode_CheckExact + #define PyObject_Unicode PyObject_Str #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) @@ -277,8 +468,11 @@ #ifndef PySet_CheckExact #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) #endif -#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) -#define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) +#if CYTHON_ASSUME_SAFE_MACROS + #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) +#else + #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) +#endif #if PY_MAJOR_VERSION >= 3 #define PyIntObject PyLongObject #define PyInt_Type PyLong_Type @@ -313,7 +507,7 @@ #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t #endif #if PY_MAJOR_VERSION >= 3 - #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : PyInstanceMethod_New(func)) + #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : (Py_INCREF(func), func)) #else #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) #endif @@ -322,68 +516,17 @@ #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) #else - typedef struct { - unaryfunc am_await; - unaryfunc am_aiter; - unaryfunc am_anext; - } __Pyx_PyAsyncMethodsStruct; #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) #endif #else #define __Pyx_PyType_AsAsync(obj) NULL #endif -#ifndef CYTHON_RESTRICT - #if defined(__GNUC__) - #define CYTHON_RESTRICT __restrict__ - #elif defined(_MSC_VER) && _MSC_VER >= 1400 - #define CYTHON_RESTRICT __restrict - #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L - #define CYTHON_RESTRICT restrict - #else - #define CYTHON_RESTRICT - #endif -#endif -#ifndef CYTHON_UNUSED -# if defined(__GNUC__) -# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) -# define CYTHON_UNUSED __attribute__ ((__unused__)) -# else -# define CYTHON_UNUSED -# endif -# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) -# define CYTHON_UNUSED __attribute__ ((__unused__)) -# else -# define CYTHON_UNUSED -# endif -#endif -#ifndef CYTHON_MAYBE_UNUSED_VAR -# if defined(__cplusplus) - template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } -# else -# define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) -# endif -#endif -#ifndef CYTHON_NCP_UNUSED -# if CYTHON_COMPILING_IN_CPYTHON -# define CYTHON_NCP_UNUSED -# else -# define CYTHON_NCP_UNUSED CYTHON_UNUSED -# endif -#endif -#define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) - -#ifndef CYTHON_INLINE - #if defined(__clang__) - #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) - #elif defined(__GNUC__) - #define CYTHON_INLINE __inline__ - #elif defined(_MSC_VER) - #define CYTHON_INLINE __inline - #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L - #define CYTHON_INLINE inline - #else - #define CYTHON_INLINE - #endif +#ifndef __Pyx_PyAsyncMethodsStruct + typedef struct { + unaryfunc am_await; + unaryfunc am_aiter; + unaryfunc am_anext; + } __Pyx_PyAsyncMethodsStruct; #endif #if defined(WIN32) || defined(MS_WINDOWS) @@ -411,14 +554,6 @@ static CYTHON_INLINE float __PYX_NAN() { __pyx_filename = __pyx_f[f_index]; __pyx_lineno = lineno; __pyx_clineno = __LINE__; goto Ln_error; \ } -#if PY_MAJOR_VERSION >= 3 - #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) - #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) -#else - #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) - #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) -#endif - #ifndef __PYX_EXTERN_C #ifdef __cplusplus #define __PYX_EXTERN_C extern "C" @@ -429,6 +564,7 @@ static CYTHON_INLINE float __PYX_NAN() { #define __PYX_HAVE__gensim__models__nmf_pgd #define __PYX_HAVE_API__gensim__models__nmf_pgd +/* Early includes */ #include #include "pythread.h" #include @@ -439,7 +575,7 @@ static CYTHON_INLINE float __PYX_NAN() { #include #endif /* _OPENMP */ -#ifdef PYREX_WITHOUT_ASSERTIONS +#if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) #define CYTHON_WITHOUT_ASSERTIONS #endif @@ -470,8 +606,8 @@ typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* enc #define __Pyx_sst_abs(value) abs(value) #elif SIZEOF_LONG >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) labs(value) -#elif defined (_MSC_VER) && defined (_M_X64) - #define __Pyx_sst_abs(value) _abs64(value) +#elif defined (_MSC_VER) + #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define __Pyx_sst_abs(value) llabs(value) #elif defined (__GNUC__) @@ -479,8 +615,8 @@ typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* enc #else #define __Pyx_sst_abs(value) ((value<0) ? -value : value) #endif -static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject*); -static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); #define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) #define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) #define __Pyx_PyBytes_FromString PyBytes_FromString @@ -493,31 +629,37 @@ static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize #endif -#define __Pyx_PyObject_AsSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) -#define __Pyx_PyObject_AsUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) #define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) #define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) #define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) #define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) -#if PY_MAJOR_VERSION < 3 -static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) -{ +static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { const Py_UNICODE *u_end = u; while (*u_end++) ; return (size_t)(u_end - u - 1); } -#else -#define __Pyx_Py_UNICODE_strlen Py_UNICODE_strlen -#endif #define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) #define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode #define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode #define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) #define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) -#define __Pyx_PyBool_FromLong(b) ((b) ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False)) +static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); +#define __Pyx_PySequence_Tuple(obj)\ + (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); #if CYTHON_ASSUME_SAFE_MACROS @@ -616,10 +758,12 @@ static int __Pyx_init_sys_getdefaultencoding_params(void) { #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ +static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } -static PyObject *__pyx_m; +static PyObject *__pyx_m = NULL; static PyObject *__pyx_d; static PyObject *__pyx_b; +static PyObject *__pyx_cython_runtime = NULL; static PyObject *__pyx_empty_tuple; static PyObject *__pyx_empty_bytes; static PyObject *__pyx_empty_unicode; @@ -630,9 +774,16 @@ static const char *__pyx_filename; static const char *__pyx_f[] = { - "gensim/models/nmf_pgd.pyx", - "gensim/models/stringsource", + "nmf_pgd.pyx", + "stringsource", }; +/* NoFastGil.proto */ +#define __Pyx_PyGILState_Ensure PyGILState_Ensure +#define __Pyx_PyGILState_Release PyGILState_Release +#define __Pyx_FastGIL_Remember() +#define __Pyx_FastGIL_Forget() +#define __Pyx_FastGilFuncInit() + /* MemviewSliceStruct.proto */ struct __pyx_memoryview_obj; typedef struct { @@ -642,42 +793,7 @@ typedef struct { Py_ssize_t strides[8]; Py_ssize_t suboffsets[8]; } __Pyx_memviewslice; - -/* BufferFormatStructs.proto */ -#define IS_UNSIGNED(type) (((type) -1) > 0) -struct __Pyx_StructField_; -#define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) -typedef struct { - const char* name; - struct __Pyx_StructField_* fields; - size_t size; - size_t arraysize[8]; - int ndim; - char typegroup; - char is_unsigned; - int flags; -} __Pyx_TypeInfo; -typedef struct __Pyx_StructField_ { - __Pyx_TypeInfo* type; - const char* name; - size_t offset; -} __Pyx_StructField; -typedef struct { - __Pyx_StructField* field; - size_t parent_offset; -} __Pyx_BufFmt_StackElem; -typedef struct { - __Pyx_StructField root; - __Pyx_BufFmt_StackElem* head; - size_t fmt_offset; - size_t new_count, enc_count; - size_t struct_alignment; - int is_complex; - char enc_type; - char new_packmode; - char enc_packmode; - char is_valid_array; -} __Pyx_BufFmt_Context; +#define __Pyx_MemoryView_Len(m) (m.shape[0]) /* Atomics.proto */ #include @@ -728,17 +844,58 @@ typedef volatile __pyx_atomic_int_type __pyx_atomic_int; __pyx_sub_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) #endif +/* ForceInitThreads.proto */ +#ifndef __PYX_FORCE_INIT_THREADS + #define __PYX_FORCE_INIT_THREADS 0 +#endif -/*--- Type declarations ---*/ -struct __pyx_array_obj; -struct __pyx_MemviewEnum_obj; -struct __pyx_memoryview_obj; -struct __pyx_memoryviewslice_obj; - -/* "View.MemoryView":103 - * - * @cname("__pyx_array") - * cdef class array: # <<<<<<<<<<<<<< +/* BufferFormatStructs.proto */ +#define IS_UNSIGNED(type) (((type) -1) > 0) +struct __Pyx_StructField_; +#define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) +typedef struct { + const char* name; + struct __Pyx_StructField_* fields; + size_t size; + size_t arraysize[8]; + int ndim; + char typegroup; + char is_unsigned; + int flags; +} __Pyx_TypeInfo; +typedef struct __Pyx_StructField_ { + __Pyx_TypeInfo* type; + const char* name; + size_t offset; +} __Pyx_StructField; +typedef struct { + __Pyx_StructField* field; + size_t parent_offset; +} __Pyx_BufFmt_StackElem; +typedef struct { + __Pyx_StructField root; + __Pyx_BufFmt_StackElem* head; + size_t fmt_offset; + size_t new_count, enc_count; + size_t struct_alignment; + int is_complex; + char enc_type; + char new_packmode; + char enc_packmode; + char is_valid_array; +} __Pyx_BufFmt_Context; + + +/*--- Type declarations ---*/ +struct __pyx_array_obj; +struct __pyx_MemviewEnum_obj; +struct __pyx_memoryview_obj; +struct __pyx_memoryviewslice_obj; + +/* "View.MemoryView":104 + * + * @cname("__pyx_array") + * cdef class array: # <<<<<<<<<<<<<< * * cdef: */ @@ -760,7 +917,7 @@ struct __pyx_array_obj { }; -/* "View.MemoryView":275 +/* "View.MemoryView":278 * * @cname('__pyx_MemviewEnum') * cdef class Enum(object): # <<<<<<<<<<<<<< @@ -773,7 +930,7 @@ struct __pyx_MemviewEnum_obj { }; -/* "View.MemoryView":326 +/* "View.MemoryView":329 * * @cname('__pyx_memoryview') * cdef class memoryview(object): # <<<<<<<<<<<<<< @@ -796,7 +953,7 @@ struct __pyx_memoryview_obj { }; -/* "View.MemoryView":951 +/* "View.MemoryView":960 * * @cname('__pyx_memoryviewslice') * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< @@ -813,7 +970,7 @@ struct __pyx_memoryviewslice_obj { -/* "View.MemoryView":103 +/* "View.MemoryView":104 * * @cname("__pyx_array") * cdef class array: # <<<<<<<<<<<<<< @@ -827,7 +984,7 @@ struct __pyx_vtabstruct_array { static struct __pyx_vtabstruct_array *__pyx_vtabptr_array; -/* "View.MemoryView":326 +/* "View.MemoryView":329 * * @cname('__pyx_memoryview') * cdef class memoryview(object): # <<<<<<<<<<<<<< @@ -847,7 +1004,7 @@ struct __pyx_vtabstruct_memoryview { static struct __pyx_vtabstruct_memoryview *__pyx_vtabptr_memoryview; -/* "View.MemoryView":951 +/* "View.MemoryView":960 * * @cname('__pyx_memoryviewslice') * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< @@ -926,16 +1083,7 @@ static struct __pyx_vtabstruct__memoryviewslice *__pyx_vtabptr__memoryviewslice; /* PyObjectGetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS -static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { - PyTypeObject* tp = Py_TYPE(obj); - if (likely(tp->tp_getattro)) - return tp->tp_getattro(obj, attr_name); -#if PY_MAJOR_VERSION < 3 - if (likely(tp->tp_getattr)) - return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); -#endif - return PyObject_GetAttr(obj, attr_name); -} +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) #endif @@ -955,15 +1103,6 @@ static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ const char* function_name); -/* BufferFormatCheck.proto */ -static CYTHON_INLINE int __Pyx_GetBufferAndValidate(Py_buffer* buf, PyObject* obj, - __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack); -static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info); -static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts); -static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, - __Pyx_BufFmt_StackElem* stack, - __Pyx_TypeInfo* type); // PROTO - /* MemviewSliceInit.proto */ #define __Pyx_BUF_MAX_NDIMS %(BUF_MAX_NDIMS)d #define __Pyx_MEMVIEW_DIRECT 1 @@ -1001,29 +1140,43 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg #endif /* ArgTypeTest.proto */ -static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, - const char *name, int exact); +#define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ + ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ + __Pyx__ArgTypeTest(obj, type, name, exact)) +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); /* PyThreadStateGet.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; -#define __Pyx_PyThreadState_assign __pyx_tstate = PyThreadState_GET(); +#define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; +#define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type #else #define __Pyx_PyThreadState_declare #define __Pyx_PyThreadState_assign +#define __Pyx_PyErr_Occurred() PyErr_Occurred() #endif /* PyErrFetchRestore.proto */ #if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) #define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) #define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) +#else +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#endif #else +#define __Pyx_PyErr_Clear() PyErr_Clear() +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) #endif @@ -1031,6 +1184,32 @@ static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject /* RaiseException.proto */ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); +/* PyCFunctionFastCall.proto */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); +#else +#define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) +#endif + +/* PyFunctionFastCall.proto */ +#if CYTHON_FAST_PYCALL +#define __Pyx_PyFunction_FastCall(func, args, nargs)\ + __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, int nargs, PyObject *kwargs); +#else +#define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) +#endif +#endif + +/* PyObjectCallMethO.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); +#endif + +/* PyObjectCallOneArg.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); + /* IncludeStringH.proto */ #include @@ -1056,12 +1235,66 @@ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *); /*proto*/ /* GetAttr.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); +/* GetItemInt.proto */ +#define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ + (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ + __Pyx_GetItemInt_Generic(o, to_py_func(i)))) +#define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ + (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, + int wraparound, int boundscheck); +#define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ + (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, + int wraparound, int boundscheck); +static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, + int is_list, int wraparound, int boundscheck); + +/* ObjectGetItem.proto */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key); +#else +#define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key) +#endif + +/* decode_c_string_utf16.proto */ +static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors) { + int byteorder = 0; + return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); +} +static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16LE(const char *s, Py_ssize_t size, const char *errors) { + int byteorder = -1; + return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); +} +static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16BE(const char *s, Py_ssize_t size, const char *errors) { + int byteorder = 1; + return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); +} + /* decode_c_string.proto */ static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)); +/* PyErrExceptionMatches.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) +static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); +#else +#define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) +#endif + +/* GetAttr3.proto */ +static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *, PyObject *, PyObject *); + /* RaiseTooManyValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); @@ -1085,14 +1318,6 @@ static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject #define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) #endif -/* PyErrExceptionMatches.proto */ -#if CYTHON_FAST_THREAD_STATE -#define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) -static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); -#else -#define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) -#endif - /* GetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) @@ -1112,45 +1337,18 @@ static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, /* Import.proto */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); -/* PyFunctionFastCall.proto */ -#if CYTHON_FAST_PYCALL -#define __Pyx_PyFunction_FastCall(func, args, nargs)\ - __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) -#if 1 || PY_VERSION_HEX < 0x030600B1 -static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, int nargs, PyObject *kwargs); -#else -#define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) -#endif -#endif - -/* PyCFunctionFastCall.proto */ -#if CYTHON_FAST_PYCCALL -static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); +/* FastTypeChecks.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); #else -#define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) +#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) +#define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) +#define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) #endif - -/* GetItemInt.proto */ -#define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ - (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ - __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ - (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ - __Pyx_GetItemInt_Generic(o, to_py_func(i)))) -#define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ - (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ - __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ - (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, - int wraparound, int boundscheck); -#define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ - (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ - __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ - (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, - int wraparound, int boundscheck); -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, - int is_list, int wraparound, int boundscheck); +#define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ /* ListCompAppend.proto */ @@ -1211,27 +1409,44 @@ static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { /* None.proto */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname); -/* ForceInitThreads.proto */ -#ifndef __PYX_FORCE_INIT_THREADS - #define __PYX_FORCE_INIT_THREADS 0 -#endif - /* WriteUnraisableException.proto */ static void __Pyx_WriteUnraisable(const char *name, int clineno, int lineno, const char *filename, int full_traceback, int nogil); -/* PyObjectCallMethO.proto */ -#if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); +/* ImportFrom.proto */ +static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); + +/* HasAttr.proto */ +static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *); + +/* PyObject_GenericGetAttrNoDict.proto */ +#if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 +static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name); +#else +#define __Pyx_PyObject_GenericGetAttrNoDict PyObject_GenericGetAttr #endif -/* PyObjectCallOneArg.proto */ -static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); +/* PyObject_GenericGetAttr.proto */ +#if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 +static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name); +#else +#define __Pyx_PyObject_GenericGetAttr PyObject_GenericGetAttr +#endif /* SetVTable.proto */ static int __Pyx_SetVtable(PyObject *dict, void *vtable); +/* SetupReduce.proto */ +static int __Pyx_setup_reduce(PyObject* type_obj); + +/* CLineInTraceback.proto */ +#ifdef CYTHON_CLINE_IN_TRACEBACK +#define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) +#else +static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); +#endif + /* CodeObjectCache.proto */ typedef struct { PyCodeObject* code_object; @@ -1274,13 +1489,8 @@ typedef struct { __Pyx_Buf_DimInfo diminfo[8]; } __Pyx_LocalBuf_ND; -/* None.proto */ -static Py_ssize_t __Pyx_zeros[] = {0, 0, 0, 0, 0, 0, 0, 0}; -static Py_ssize_t __Pyx_minusones[] = {-1, -1, -1, -1, -1, -1, -1, -1}; - /* MemviewSliceIsContig.proto */ -static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, - char order, int ndim); +static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim); /* OverlappingSlices.proto */ static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, @@ -1290,6 +1500,15 @@ static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, /* Capsule.proto */ static CYTHON_INLINE PyObject *__pyx_capsule_create(void *p, const char *sig); +/* IsLittleEndian.proto */ +static CYTHON_INLINE int __Pyx_Is_Little_Endian(void); + +/* BufferFormatCheck.proto */ +static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts); +static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, + __Pyx_BufFmt_StackElem* stack, + __Pyx_TypeInfo* type); + /* TypeInfoCompare.proto */ static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b); @@ -1305,16 +1524,16 @@ static int __Pyx_ValidateAndInit_memviewslice( PyObject *original_obj); /* ObjectToMemviewSlice.proto */ -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *); +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *, int writable_flag); /* ObjectToMemviewSlice.proto */ -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *); +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *, int writable_flag); /* ObjectToMemviewSlice.proto */ -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *); +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *, int writable_flag); /* ObjectToMemviewSlice.proto */ -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *); +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *, int writable_flag); /* MemviewSliceCopyTemplate.proto */ static __Pyx_memviewslice @@ -1326,6 +1545,9 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, /* CIntFromPy.proto */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); +/* CIntFromPy.proto */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); + /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); @@ -1335,11 +1557,8 @@ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); /* CIntFromPy.proto */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); -/* CIntFromPy.proto */ -static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); - /* ObjectToMemviewSlice.proto */ -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(PyObject *); +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(PyObject *, int writable_flag); /* CheckBinaryVersion.proto */ static int __Pyx_check_binary_version(void); @@ -1408,10 +1627,12 @@ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *, Py_ssize static void __pyx_memoryview_refcount_objects_in_slice(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *, int, size_t, void *, int); /*proto*/ static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *); /*proto*/ +static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *, PyObject *); /*proto*/ static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_int = { "int", NULL, sizeof(int), { 0 }, 0, IS_UNSIGNED(int) ? 'U' : 'I', IS_UNSIGNED(int), 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_Py_ssize_t = { "Py_ssize_t", NULL, sizeof(Py_ssize_t), { 0 }, 0, IS_UNSIGNED(Py_ssize_t) ? 'U' : 'I', IS_UNSIGNED(Py_ssize_t), 0 }; #define __Pyx_MODULE_NAME "gensim.models.nmf_pgd" +extern int __pyx_module_is_main_gensim__models__nmf_pgd; int __pyx_module_is_main_gensim__models__nmf_pgd = 0; /* Implementation of 'gensim.models.nmf_pgd' */ @@ -1419,8 +1640,8 @@ static PyObject *__pyx_builtin_range; static PyObject *__pyx_builtin_ValueError; static PyObject *__pyx_builtin_MemoryError; static PyObject *__pyx_builtin_enumerate; -static PyObject *__pyx_builtin_Ellipsis; static PyObject *__pyx_builtin_TypeError; +static PyObject *__pyx_builtin_Ellipsis; static PyObject *__pyx_builtin_id; static PyObject *__pyx_builtin_IndexError; static const char __pyx_k_O[] = "O"; @@ -1429,8 +1650,10 @@ static const char __pyx_k_h[] = "h"; static const char __pyx_k_id[] = "id"; static const char __pyx_k_np[] = "np"; static const char __pyx_k_WtW[] = "WtW"; +static const char __pyx_k_new[] = "__new__"; static const char __pyx_k_obj[] = "obj"; static const char __pyx_k_base[] = "base"; +static const char __pyx_k_dict[] = "__dict__"; static const char __pyx_k_grad[] = "grad"; static const char __pyx_k_intp[] = "intp"; static const char __pyx_k_main[] = "__main__"; @@ -1459,43 +1682,62 @@ static const char __pyx_k_format[] = "format"; static const char __pyx_k_import[] = "__import__"; static const char __pyx_k_lambda[] = "lambda_"; static const char __pyx_k_name_2[] = "__name__"; +static const char __pyx_k_pickle[] = "pickle"; static const char __pyx_k_r_data[] = "r_data"; +static const char __pyx_k_reduce[] = "__reduce__"; static const char __pyx_k_struct[] = "struct"; static const char __pyx_k_unpack[] = "unpack"; +static const char __pyx_k_update[] = "update"; static const char __pyx_k_fortran[] = "fortran"; static const char __pyx_k_hessian[] = "hessian"; static const char __pyx_k_memview[] = "memview"; static const char __pyx_k_solve_h[] = "solve_h"; static const char __pyx_k_solve_r[] = "solve_r"; static const char __pyx_k_Ellipsis[] = "Ellipsis"; +static const char __pyx_k_getstate[] = "__getstate__"; static const char __pyx_k_itemsize[] = "itemsize"; +static const char __pyx_k_pyx_type[] = "__pyx_type"; static const char __pyx_k_r_indptr[] = "r_indptr"; +static const char __pyx_k_setstate[] = "__setstate__"; static const char __pyx_k_TypeError[] = "TypeError"; static const char __pyx_k_enumerate[] = "enumerate"; static const char __pyx_k_n_samples[] = "n_samples"; +static const char __pyx_k_pyx_state[] = "__pyx_state"; static const char __pyx_k_r_indices[] = "r_indices"; +static const char __pyx_k_reduce_ex[] = "__reduce_ex__"; static const char __pyx_k_violation[] = "violation"; static const char __pyx_k_IndexError[] = "IndexError"; static const char __pyx_k_ValueError[] = "ValueError"; +static const char __pyx_k_pyx_result[] = "__pyx_result"; static const char __pyx_k_pyx_vtable[] = "__pyx_vtable__"; static const char __pyx_k_r_col_size[] = "r_col_size"; static const char __pyx_k_sample_idx[] = "sample_idx"; static const char __pyx_k_MemoryError[] = "MemoryError"; +static const char __pyx_k_PickleError[] = "PickleError"; +static const char __pyx_k_nmf_pgd_pyx[] = "nmf_pgd.pyx"; static const char __pyx_k_Wt_v_minus_r[] = "Wt_v_minus_r"; static const char __pyx_k_n_components[] = "n_components"; +static const char __pyx_k_pyx_checksum[] = "__pyx_checksum"; +static const char __pyx_k_stringsource[] = "stringsource"; static const char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; static const char __pyx_k_r_actual_data[] = "r_actual_data"; static const char __pyx_k_r_actual_sign[] = "r_actual_sign"; static const char __pyx_k_r_col_idx_idx[] = "r_col_idx_idx"; static const char __pyx_k_r_col_indices[] = "r_col_indices"; +static const char __pyx_k_reduce_cython[] = "__reduce_cython__"; static const char __pyx_k_projected_grad[] = "projected_grad"; +static const char __pyx_k_View_MemoryView[] = "View.MemoryView"; static const char __pyx_k_allocate_buffer[] = "allocate_buffer"; static const char __pyx_k_component_idx_1[] = "component_idx_1"; static const char __pyx_k_component_idx_2[] = "component_idx_2"; static const char __pyx_k_dtype_is_object[] = "dtype_is_object"; +static const char __pyx_k_pyx_PickleError[] = "__pyx_PickleError"; static const char __pyx_k_r_actual_indptr[] = "r_actual_indptr"; +static const char __pyx_k_setstate_cython[] = "__setstate_cython__"; static const char __pyx_k_r_actual_indices[] = "r_actual_indices"; +static const char __pyx_k_pyx_unpickle_Enum[] = "__pyx_unpickle_Enum"; static const char __pyx_k_r_actual_col_size[] = "r_actual_col_size"; +static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; static const char __pyx_k_strided_and_direct[] = ""; static const char __pyx_k_r_actual_col_idx_idx[] = "r_actual_col_idx_idx"; static const char __pyx_k_r_actual_col_indices[] = "r_actual_col_indices"; @@ -1510,22 +1752,28 @@ static const char __pyx_k_Invalid_shape_in_axis_d_d[] = "Invalid shape in axis % static const char __pyx_k_itemsize_0_for_cython_array[] = "itemsize <= 0 for cython.array"; static const char __pyx_k_unable_to_allocate_array_data[] = "unable to allocate array data."; static const char __pyx_k_strided_and_direct_or_indirect[] = ""; -static const char __pyx_k_home_anotherbugmaster_Documents[] = "/home/anotherbugmaster/Documents/gensim/gensim/models/nmf_pgd.pyx"; static const char __pyx_k_Buffer_view_does_not_expose_stri[] = "Buffer view does not expose strides"; static const char __pyx_k_Can_only_create_a_buffer_that_is[] = "Can only create a buffer that is contiguous in memory."; +static const char __pyx_k_Cannot_assign_to_read_only_memor[] = "Cannot assign to read-only memoryview"; +static const char __pyx_k_Cannot_create_writable_memory_vi[] = "Cannot create writable memory view from read-only memoryview"; static const char __pyx_k_Empty_shape_tuple_for_cython_arr[] = "Empty shape tuple for cython.array"; +static const char __pyx_k_Incompatible_checksums_s_vs_0xb0[] = "Incompatible checksums (%s vs 0xb068931 = (name))"; static const char __pyx_k_Indirect_dimensions_not_supporte[] = "Indirect dimensions not supported"; static const char __pyx_k_Invalid_mode_expected_c_or_fortr[] = "Invalid mode, expected 'c' or 'fortran', got %s"; static const char __pyx_k_Out_of_bounds_on_buffer_access_a[] = "Out of bounds on buffer access (axis %d)"; static const char __pyx_k_Unable_to_convert_item_to_object[] = "Unable to convert item to object"; static const char __pyx_k_got_differing_extents_in_dimensi[] = "got differing extents in dimension %d (got %d and %d)"; +static const char __pyx_k_no_default___reduce___due_to_non[] = "no default __reduce__ due to non-trivial __cinit__"; static const char __pyx_k_unable_to_allocate_shape_and_str[] = "unable to allocate shape and strides."; static PyObject *__pyx_n_s_ASCII; static PyObject *__pyx_kp_s_Buffer_view_does_not_expose_stri; static PyObject *__pyx_kp_s_Can_only_create_a_buffer_that_is; +static PyObject *__pyx_kp_s_Cannot_assign_to_read_only_memor; +static PyObject *__pyx_kp_s_Cannot_create_writable_memory_vi; static PyObject *__pyx_kp_s_Cannot_index_with_type_s; static PyObject *__pyx_n_s_Ellipsis; static PyObject *__pyx_kp_s_Empty_shape_tuple_for_cython_arr; +static PyObject *__pyx_kp_s_Incompatible_checksums_s_vs_0xb0; static PyObject *__pyx_n_s_IndexError; static PyObject *__pyx_kp_s_Indirect_dimensions_not_supporte; static PyObject *__pyx_kp_s_Invalid_mode_expected_c_or_fortr; @@ -1535,9 +1783,11 @@ static PyObject *__pyx_kp_s_MemoryView_of_r_at_0x_x; static PyObject *__pyx_kp_s_MemoryView_of_r_object; static PyObject *__pyx_n_b_O; static PyObject *__pyx_kp_s_Out_of_bounds_on_buffer_access_a; +static PyObject *__pyx_n_s_PickleError; static PyObject *__pyx_n_s_TypeError; static PyObject *__pyx_kp_s_Unable_to_convert_item_to_object; static PyObject *__pyx_n_s_ValueError; +static PyObject *__pyx_n_s_View_MemoryView; static PyObject *__pyx_n_s_WtW; static PyObject *__pyx_n_s_Wt_v_minus_r; static PyObject *__pyx_n_s_allocate_buffer; @@ -1545,10 +1795,12 @@ static PyObject *__pyx_n_s_base; static PyObject *__pyx_n_s_c; static PyObject *__pyx_n_u_c; static PyObject *__pyx_n_s_class; +static PyObject *__pyx_n_s_cline_in_traceback; static PyObject *__pyx_n_s_component_idx_1; static PyObject *__pyx_n_s_component_idx_2; static PyObject *__pyx_kp_s_contiguous_and_direct; static PyObject *__pyx_kp_s_contiguous_and_indirect; +static PyObject *__pyx_n_s_dict; static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_dtype_is_object; static PyObject *__pyx_n_s_encode; @@ -1559,11 +1811,11 @@ static PyObject *__pyx_n_s_format; static PyObject *__pyx_n_s_fortran; static PyObject *__pyx_n_u_fortran; static PyObject *__pyx_n_s_gensim_models_nmf_pgd; +static PyObject *__pyx_n_s_getstate; static PyObject *__pyx_kp_s_got_differing_extents_in_dimensi; static PyObject *__pyx_n_s_grad; static PyObject *__pyx_n_s_h; static PyObject *__pyx_n_s_hessian; -static PyObject *__pyx_kp_s_home_anotherbugmaster_Documents; static PyObject *__pyx_n_s_id; static PyObject *__pyx_n_s_import; static PyObject *__pyx_n_s_intp; @@ -1579,12 +1831,22 @@ static PyObject *__pyx_n_s_n_samples; static PyObject *__pyx_n_s_name; static PyObject *__pyx_n_s_name_2; static PyObject *__pyx_n_s_ndim; +static PyObject *__pyx_n_s_new; +static PyObject *__pyx_kp_s_nmf_pgd_pyx; +static PyObject *__pyx_kp_s_no_default___reduce___due_to_non; static PyObject *__pyx_n_s_np; static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_n_s_obj; static PyObject *__pyx_n_s_pack; +static PyObject *__pyx_n_s_pickle; static PyObject *__pyx_n_s_projected_grad; +static PyObject *__pyx_n_s_pyx_PickleError; +static PyObject *__pyx_n_s_pyx_checksum; static PyObject *__pyx_n_s_pyx_getbuffer; +static PyObject *__pyx_n_s_pyx_result; +static PyObject *__pyx_n_s_pyx_state; +static PyObject *__pyx_n_s_pyx_type; +static PyObject *__pyx_n_s_pyx_unpickle_Enum; static PyObject *__pyx_n_s_pyx_vtable; static PyObject *__pyx_n_s_r_actual_col_idx_idx; static PyObject *__pyx_n_s_r_actual_col_indices; @@ -1600,7 +1862,12 @@ static PyObject *__pyx_n_s_r_data; static PyObject *__pyx_n_s_r_indices; static PyObject *__pyx_n_s_r_indptr; static PyObject *__pyx_n_s_range; +static PyObject *__pyx_n_s_reduce; +static PyObject *__pyx_n_s_reduce_cython; +static PyObject *__pyx_n_s_reduce_ex; static PyObject *__pyx_n_s_sample_idx; +static PyObject *__pyx_n_s_setstate; +static PyObject *__pyx_n_s_setstate_cython; static PyObject *__pyx_n_s_shape; static PyObject *__pyx_n_s_size; static PyObject *__pyx_n_s_solve_h; @@ -1611,11 +1878,13 @@ static PyObject *__pyx_n_s_stop; static PyObject *__pyx_kp_s_strided_and_direct; static PyObject *__pyx_kp_s_strided_and_direct_or_indirect; static PyObject *__pyx_kp_s_strided_and_indirect; +static PyObject *__pyx_kp_s_stringsource; static PyObject *__pyx_n_s_struct; static PyObject *__pyx_n_s_test; static PyObject *__pyx_kp_s_unable_to_allocate_array_data; static PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; static PyObject *__pyx_n_s_unpack; +static PyObject *__pyx_n_s_update; static PyObject *__pyx_n_s_v_max; static PyObject *__pyx_n_s_violation; static PyObject *__pyx_n_s_zeros; @@ -1625,11 +1894,16 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr); /* proto */ -static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item); /* proto */ -static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /* proto */ +static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr); /* proto */ +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item); /* proto */ +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /* proto */ +static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name); /* proto */ static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object); /* proto */ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto */ @@ -1651,14 +1925,20 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16 static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state); /* proto */ static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_int_0; static PyObject *__pyx_int_1; +static PyObject *__pyx_int_184977713; static PyObject *__pyx_int_neg_1; static PyObject *__pyx_tuple_; static PyObject *__pyx_tuple__2; @@ -1669,19 +1949,30 @@ static PyObject *__pyx_tuple__6; static PyObject *__pyx_tuple__7; static PyObject *__pyx_tuple__8; static PyObject *__pyx_tuple__9; -static PyObject *__pyx_slice__10; -static PyObject *__pyx_slice__11; -static PyObject *__pyx_slice__12; +static PyObject *__pyx_slice__16; +static PyObject *__pyx_slice__17; +static PyObject *__pyx_slice__18; +static PyObject *__pyx_tuple__10; +static PyObject *__pyx_tuple__11; +static PyObject *__pyx_tuple__12; static PyObject *__pyx_tuple__13; static PyObject *__pyx_tuple__14; -static PyObject *__pyx_tuple__16; -static PyObject *__pyx_tuple__18; +static PyObject *__pyx_tuple__15; static PyObject *__pyx_tuple__19; static PyObject *__pyx_tuple__20; static PyObject *__pyx_tuple__21; static PyObject *__pyx_tuple__22; -static PyObject *__pyx_codeobj__15; -static PyObject *__pyx_codeobj__17; +static PyObject *__pyx_tuple__24; +static PyObject *__pyx_tuple__26; +static PyObject *__pyx_tuple__27; +static PyObject *__pyx_tuple__28; +static PyObject *__pyx_tuple__29; +static PyObject *__pyx_tuple__30; +static PyObject *__pyx_tuple__31; +static PyObject *__pyx_codeobj__23; +static PyObject *__pyx_codeobj__25; +static PyObject *__pyx_codeobj__32; +/* Late includes */ /* "gensim/models/nmf_pgd.pyx":14 * import numpy as np @@ -1711,29 +2002,36 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: - if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_h)) != 0)) kw_args--; + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_h)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; case 1: - if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_Wt_v_minus_r)) != 0)) kw_args--; + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_Wt_v_minus_r)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 14, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 2: - if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_WtW)) != 0)) kw_args--; + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_WtW)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 14, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 3: - if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; + if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 14, __pyx_L3_error) } @@ -1749,9 +2047,9 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } - __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0]); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 14, __pyx_L3_error) - __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1]); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 14, __pyx_L3_error) - __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2]); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 14, __pyx_L3_error) + __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 14, __pyx_L3_error) + __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 14, __pyx_L3_error) + __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 14, __pyx_L3_error) __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 14, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; @@ -1796,14 +2094,16 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec Py_ssize_t __pyx_t_13; Py_ssize_t __pyx_t_14; Py_ssize_t __pyx_t_15; - double __pyx_t_16; + Py_ssize_t __pyx_t_16; Py_ssize_t __pyx_t_17; - Py_ssize_t __pyx_t_18; + double __pyx_t_18; Py_ssize_t __pyx_t_19; Py_ssize_t __pyx_t_20; Py_ssize_t __pyx_t_21; Py_ssize_t __pyx_t_22; - PyObject *__pyx_t_23 = NULL; + Py_ssize_t __pyx_t_23; + Py_ssize_t __pyx_t_24; + PyObject *__pyx_t_25 = NULL; __Pyx_RefNannySetupContext("solve_h", 0); /* "gensim/models/nmf_pgd.pyx":30 @@ -1871,6 +2171,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS + __Pyx_FastGIL_Remember(); #endif /*try:*/ { __pyx_t_1 = __pyx_v_n_samples; @@ -1886,7 +2187,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec if (__pyx_t_3 > 0) { #ifdef _OPENMP - #pragma omp parallel reduction(+:__pyx_v_violation) private(__pyx_t_10, __pyx_t_11, __pyx_t_12, __pyx_t_13, __pyx_t_14, __pyx_t_15, __pyx_t_16, __pyx_t_17, __pyx_t_18, __pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_4, __pyx_t_5, __pyx_t_6, __pyx_t_7, __pyx_t_8, __pyx_t_9) + #pragma omp parallel reduction(+:__pyx_v_violation) private(__pyx_t_10, __pyx_t_11, __pyx_t_12, __pyx_t_13, __pyx_t_14, __pyx_t_15, __pyx_t_16, __pyx_t_17, __pyx_t_18, __pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_23, __pyx_t_24, __pyx_t_4, __pyx_t_5, __pyx_t_6, __pyx_t_7, __pyx_t_8, __pyx_t_9) #endif /* _OPENMP */ { #ifdef _OPENMP @@ -1910,8 +2211,9 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * grad = -Wt_v_minus_r[component_idx_1, sample_idx] */ __pyx_t_4 = __pyx_v_n_components; - for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { - __pyx_v_component_idx_1 = __pyx_t_5; + __pyx_t_5 = __pyx_t_4; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_component_idx_1 = __pyx_t_6; /* "gensim/models/nmf_pgd.pyx":41 * for component_idx_1 in range(n_components): @@ -1920,9 +2222,9 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * * for component_idx_2 in range(n_components): */ - __pyx_t_6 = __pyx_v_component_idx_1; - __pyx_t_7 = __pyx_v_sample_idx; - __pyx_v_grad = (-(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_Wt_v_minus_r.data + __pyx_t_6 * __pyx_v_Wt_v_minus_r.strides[0]) ) + __pyx_t_7 * __pyx_v_Wt_v_minus_r.strides[1]) )))); + __pyx_t_7 = __pyx_v_component_idx_1; + __pyx_t_8 = __pyx_v_sample_idx; + __pyx_v_grad = (-(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_Wt_v_minus_r.data + __pyx_t_7 * __pyx_v_Wt_v_minus_r.strides[0]) ) + __pyx_t_8 * __pyx_v_Wt_v_minus_r.strides[1]) )))); /* "gensim/models/nmf_pgd.pyx":43 * grad = -Wt_v_minus_r[component_idx_1, sample_idx] @@ -1931,9 +2233,10 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] * */ - __pyx_t_8 = __pyx_v_n_components; - for (__pyx_t_9 = 0; __pyx_t_9 < __pyx_t_8; __pyx_t_9+=1) { - __pyx_v_component_idx_2 = __pyx_t_9; + __pyx_t_9 = __pyx_v_n_components; + __pyx_t_10 = __pyx_t_9; + for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_10; __pyx_t_11+=1) { + __pyx_v_component_idx_2 = __pyx_t_11; /* "gensim/models/nmf_pgd.pyx":44 * @@ -1942,11 +2245,11 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * * hessian = WtW[component_idx_1, component_idx_1] */ - __pyx_t_10 = __pyx_v_component_idx_1; - __pyx_t_11 = __pyx_v_component_idx_2; - __pyx_t_12 = __pyx_v_component_idx_2; - __pyx_t_13 = __pyx_v_sample_idx; - __pyx_v_grad = (__pyx_v_grad + ((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_10 * __pyx_v_WtW.strides[0]) )) + __pyx_t_11)) ))) * (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_12 * __pyx_v_h.strides[0]) )) + __pyx_t_13)) ))))); + __pyx_t_12 = __pyx_v_component_idx_1; + __pyx_t_13 = __pyx_v_component_idx_2; + __pyx_t_14 = __pyx_v_component_idx_2; + __pyx_t_15 = __pyx_v_sample_idx; + __pyx_v_grad = (__pyx_v_grad + ((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_12 * __pyx_v_WtW.strides[0]) )) + __pyx_t_13)) ))) * (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_14 * __pyx_v_h.strides[0]) )) + __pyx_t_15)) ))))); } /* "gensim/models/nmf_pgd.pyx":46 @@ -1956,9 +2259,9 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * * grad = grad * kappa / hessian */ - __pyx_t_14 = __pyx_v_component_idx_1; - __pyx_t_15 = __pyx_v_component_idx_1; - __pyx_v_hessian = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_14 * __pyx_v_WtW.strides[0]) )) + __pyx_t_15)) ))); + __pyx_t_16 = __pyx_v_component_idx_1; + __pyx_t_17 = __pyx_v_component_idx_1; + __pyx_v_hessian = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_16 * __pyx_v_WtW.strides[0]) )) + __pyx_t_17)) ))); /* "gensim/models/nmf_pgd.pyx":48 * hessian = WtW[component_idx_1, component_idx_1] @@ -1976,14 +2279,14 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * * violation += projected_grad * projected_grad */ - __pyx_t_17 = __pyx_v_component_idx_1; - __pyx_t_18 = __pyx_v_sample_idx; - if ((((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_17 * __pyx_v_h.strides[0]) )) + __pyx_t_18)) ))) == 0.0) != 0)) { - __pyx_t_16 = fmin(0.0, __pyx_v_grad); + __pyx_t_19 = __pyx_v_component_idx_1; + __pyx_t_20 = __pyx_v_sample_idx; + if ((((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_19 * __pyx_v_h.strides[0]) )) + __pyx_t_20)) ))) == 0.0) != 0)) { + __pyx_t_18 = fmin(0.0, __pyx_v_grad); } else { - __pyx_t_16 = __pyx_v_grad; + __pyx_t_18 = __pyx_v_grad; } - __pyx_v_projected_grad = __pyx_t_16; + __pyx_v_projected_grad = __pyx_t_18; /* "gensim/models/nmf_pgd.pyx":52 * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad @@ -2001,11 +2304,11 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * * return sqrt(violation) */ - __pyx_t_19 = __pyx_v_component_idx_1; - __pyx_t_20 = __pyx_v_sample_idx; __pyx_t_21 = __pyx_v_component_idx_1; __pyx_t_22 = __pyx_v_sample_idx; - *((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_21 * __pyx_v_h.strides[0]) )) + __pyx_t_22)) )) = fmax(((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_19 * __pyx_v_h.strides[0]) )) + __pyx_t_20)) ))) - __pyx_v_grad), 0.); + __pyx_t_23 = __pyx_v_component_idx_1; + __pyx_t_24 = __pyx_v_sample_idx; + *((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_23 * __pyx_v_h.strides[0]) )) + __pyx_t_24)) )) = fmax(((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_21 * __pyx_v_h.strides[0]) )) + __pyx_t_22)) ))) - __pyx_v_grad), 0.); } } } @@ -2030,6 +2333,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD + __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L5; @@ -2046,10 +2350,10 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * def solve_r( */ __Pyx_XDECREF(__pyx_r); - __pyx_t_23 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_23)) __PYX_ERR(0, 56, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_23); - __pyx_r = __pyx_t_23; - __pyx_t_23 = 0; + __pyx_t_25 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 56, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_25); + __pyx_r = __pyx_t_25; + __pyx_t_25 = 0; goto __pyx_L0; /* "gensim/models/nmf_pgd.pyx":14 @@ -2062,7 +2366,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec /* function exit code */ __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_23); + __Pyx_XDECREF(__pyx_t_25); __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; @@ -2106,53 +2410,68 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); + CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); + CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); + CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: - if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_indptr)) != 0)) kw_args--; + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_indptr)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; case 1: - if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_indices)) != 0)) kw_args--; + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_indices)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 1); __PYX_ERR(0, 58, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 2: - if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_data)) != 0)) kw_args--; + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_data)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 2); __PYX_ERR(0, 58, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 3: - if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_indptr)) != 0)) kw_args--; + if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_indptr)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 3); __PYX_ERR(0, 58, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 4: - if (likely((values[4] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_indices)) != 0)) kw_args--; + if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_indices)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 4); __PYX_ERR(0, 58, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 5: - if (likely((values[5] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_r_actual_data)) != 0)) kw_args--; + if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_data)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 5); __PYX_ERR(0, 58, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 6: - if (likely((values[6] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_lambda)) != 0)) kw_args--; + if (likely((values[6] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lambda)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 6); __PYX_ERR(0, 58, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 7: - if (likely((values[7] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_v_max)) != 0)) kw_args--; + if (likely((values[7] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_v_max)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 7); __PYX_ERR(0, 58, __pyx_L3_error) } @@ -2172,12 +2491,12 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self values[6] = PyTuple_GET_ITEM(__pyx_args, 6); values[7] = PyTuple_GET_ITEM(__pyx_args, 7); } - __pyx_v_r_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[0]); if (unlikely(!__pyx_v_r_indptr.memview)) __PYX_ERR(0, 59, __pyx_L3_error) - __pyx_v_r_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[1]); if (unlikely(!__pyx_v_r_indices.memview)) __PYX_ERR(0, 60, __pyx_L3_error) - __pyx_v_r_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[2]); if (unlikely(!__pyx_v_r_data.memview)) __PYX_ERR(0, 61, __pyx_L3_error) - __pyx_v_r_actual_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[3]); if (unlikely(!__pyx_v_r_actual_indptr.memview)) __PYX_ERR(0, 62, __pyx_L3_error) - __pyx_v_r_actual_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[4]); if (unlikely(!__pyx_v_r_actual_indices.memview)) __PYX_ERR(0, 63, __pyx_L3_error) - __pyx_v_r_actual_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[5]); if (unlikely(!__pyx_v_r_actual_data.memview)) __PYX_ERR(0, 64, __pyx_L3_error) + __pyx_v_r_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_indptr.memview)) __PYX_ERR(0, 59, __pyx_L3_error) + __pyx_v_r_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_indices.memview)) __PYX_ERR(0, 60, __pyx_L3_error) + __pyx_v_r_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_data.memview)) __PYX_ERR(0, 61, __pyx_L3_error) + __pyx_v_r_actual_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[3], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_indptr.memview)) __PYX_ERR(0, 62, __pyx_L3_error) + __pyx_v_r_actual_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[4], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_indices.memview)) __PYX_ERR(0, 63, __pyx_L3_error) + __pyx_v_r_actual_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[5], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_data.memview)) __PYX_ERR(0, 64, __pyx_L3_error) __pyx_v_lambda_ = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_lambda_ == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 65, __pyx_L3_error) __pyx_v_v_max = __pyx_PyFloat_AsDouble(values[7]); if (unlikely((__pyx_v_v_max == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 66, __pyx_L3_error) } @@ -2363,7 +2682,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); @@ -2377,8 +2696,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_5); - if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_5, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_r_col_indices = __pyx_t_6; __pyx_t_6.memview = NULL; @@ -2403,7 +2721,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = PyDict_New(); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); @@ -2417,8 +2735,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_4); - if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_r_actual_col_indices = __pyx_t_6; __pyx_t_6.memview = NULL; @@ -2435,6 +2752,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS + __Pyx_FastGIL_Remember(); #endif /*try:*/ { __pyx_t_7 = __pyx_v_n_samples; @@ -3218,6 +3536,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD + __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L5; @@ -3270,7 +3589,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje return __pyx_r; } -/* "View.MemoryView":120 +/* "View.MemoryView":121 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< @@ -3298,46 +3617,57 @@ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, P const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: - if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; case 1: - if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_itemsize)) != 0)) kw_args--; + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_itemsize)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 1); __PYX_ERR(1, 120, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 1); __PYX_ERR(1, 121, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 2: - if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_format)) != 0)) kw_args--; + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_format)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 2); __PYX_ERR(1, 120, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 2); __PYX_ERR(1, 121, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { - PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mode); + PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mode); if (value) { values[3] = value; kw_args--; } } + CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { - PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_allocate_buffer); + PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_allocate_buffer); if (value) { values[4] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(1, 120, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(1, 121, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); @@ -3346,14 +3676,14 @@ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, P } } __pyx_v_shape = ((PyObject*)values[0]); - __pyx_v_itemsize = __Pyx_PyIndex_AsSsize_t(values[1]); if (unlikely((__pyx_v_itemsize == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 120, __pyx_L3_error) + __pyx_v_itemsize = __Pyx_PyIndex_AsSsize_t(values[1]); if (unlikely((__pyx_v_itemsize == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 121, __pyx_L3_error) __pyx_v_format = values[2]; __pyx_v_mode = values[3]; if (values[4]) { - __pyx_v_allocate_buffer = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_allocate_buffer == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 121, __pyx_L3_error) + __pyx_v_allocate_buffer = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_allocate_buffer == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 122, __pyx_L3_error) } else { - /* "View.MemoryView":121 + /* "View.MemoryView":122 * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, * mode="c", bint allocate_buffer=True): # <<<<<<<<<<<<<< @@ -3365,19 +3695,19 @@ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, P } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 120, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 121, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; - if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_shape), (&PyTuple_Type), 1, "shape", 1))) __PYX_ERR(1, 120, __pyx_L1_error) + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_shape), (&PyTuple_Type), 1, "shape", 1))) __PYX_ERR(1, 121, __pyx_L1_error) if (unlikely(((PyObject *)__pyx_v_format) == Py_None)) { - PyErr_Format(PyExc_TypeError, "Argument '%.200s' must not be None", "format"); __PYX_ERR(1, 120, __pyx_L1_error) + PyErr_Format(PyExc_TypeError, "Argument '%.200s' must not be None", "format"); __PYX_ERR(1, 121, __pyx_L1_error) } __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(((struct __pyx_array_obj *)__pyx_v_self), __pyx_v_shape, __pyx_v_itemsize, __pyx_v_format, __pyx_v_mode, __pyx_v_allocate_buffer); - /* "View.MemoryView":120 + /* "View.MemoryView":121 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< @@ -3412,10 +3742,11 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ Py_ssize_t __pyx_t_8; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; + Py_ssize_t __pyx_t_11; __Pyx_RefNannySetupContext("__cinit__", 0); __Pyx_INCREF(__pyx_v_format); - /* "View.MemoryView":127 + /* "View.MemoryView":128 * cdef PyObject **p * * self.ndim = len(shape) # <<<<<<<<<<<<<< @@ -3424,12 +3755,12 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ if (unlikely(__pyx_v_shape == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); - __PYX_ERR(1, 127, __pyx_L1_error) + __PYX_ERR(1, 128, __pyx_L1_error) } - __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_shape); if (unlikely(__pyx_t_1 == -1)) __PYX_ERR(1, 127, __pyx_L1_error) + __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_shape); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(1, 128, __pyx_L1_error) __pyx_v_self->ndim = ((int)__pyx_t_1); - /* "View.MemoryView":128 + /* "View.MemoryView":129 * * self.ndim = len(shape) * self.itemsize = itemsize # <<<<<<<<<<<<<< @@ -3438,7 +3769,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_self->itemsize = __pyx_v_itemsize; - /* "View.MemoryView":130 + /* "View.MemoryView":131 * self.itemsize = itemsize * * if not self.ndim: # <<<<<<<<<<<<<< @@ -3446,22 +3777,22 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ * */ __pyx_t_2 = ((!(__pyx_v_self->ndim != 0)) != 0); - if (__pyx_t_2) { + if (unlikely(__pyx_t_2)) { - /* "View.MemoryView":131 + /* "View.MemoryView":132 * * if not self.ndim: * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< * * if itemsize <= 0: */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 131, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 132, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __PYX_ERR(1, 131, __pyx_L1_error) + __PYX_ERR(1, 132, __pyx_L1_error) - /* "View.MemoryView":130 + /* "View.MemoryView":131 * self.itemsize = itemsize * * if not self.ndim: # <<<<<<<<<<<<<< @@ -3470,7 +3801,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ } - /* "View.MemoryView":133 + /* "View.MemoryView":134 * raise ValueError("Empty shape tuple for cython.array") * * if itemsize <= 0: # <<<<<<<<<<<<<< @@ -3478,22 +3809,22 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ * */ __pyx_t_2 = ((__pyx_v_itemsize <= 0) != 0); - if (__pyx_t_2) { + if (unlikely(__pyx_t_2)) { - /* "View.MemoryView":134 + /* "View.MemoryView":135 * * if itemsize <= 0: * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< * * if not isinstance(format, bytes): */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 134, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 135, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __PYX_ERR(1, 134, __pyx_L1_error) + __PYX_ERR(1, 135, __pyx_L1_error) - /* "View.MemoryView":133 + /* "View.MemoryView":134 * raise ValueError("Empty shape tuple for cython.array") * * if itemsize <= 0: # <<<<<<<<<<<<<< @@ -3502,7 +3833,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ } - /* "View.MemoryView":136 + /* "View.MemoryView":137 * raise ValueError("itemsize <= 0 for cython.array") * * if not isinstance(format, bytes): # <<<<<<<<<<<<<< @@ -3513,22 +3844,22 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ __pyx_t_4 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_4) { - /* "View.MemoryView":137 + /* "View.MemoryView":138 * * if not isinstance(format, bytes): * format = format.encode('ASCII') # <<<<<<<<<<<<<< * self._format = format # keep a reference to the byte string * self.format = self._format */ - __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_format, __pyx_n_s_encode); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 137, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_format, __pyx_n_s_encode); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 138, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__3, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 137, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__3, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 138, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_format, __pyx_t_5); __pyx_t_5 = 0; - /* "View.MemoryView":136 + /* "View.MemoryView":137 * raise ValueError("itemsize <= 0 for cython.array") * * if not isinstance(format, bytes): # <<<<<<<<<<<<<< @@ -3537,14 +3868,14 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ } - /* "View.MemoryView":138 + /* "View.MemoryView":139 * if not isinstance(format, bytes): * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string # <<<<<<<<<<<<<< * self.format = self._format * */ - if (!(likely(PyBytes_CheckExact(__pyx_v_format))||((__pyx_v_format) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_v_format)->tp_name), 0))) __PYX_ERR(1, 138, __pyx_L1_error) + if (!(likely(PyBytes_CheckExact(__pyx_v_format))||((__pyx_v_format) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_v_format)->tp_name), 0))) __PYX_ERR(1, 139, __pyx_L1_error) __pyx_t_5 = __pyx_v_format; __Pyx_INCREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_5); @@ -3553,17 +3884,21 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ __pyx_v_self->_format = ((PyObject*)__pyx_t_5); __pyx_t_5 = 0; - /* "View.MemoryView":139 + /* "View.MemoryView":140 * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string * self.format = self._format # <<<<<<<<<<<<<< * * */ - __pyx_t_6 = __Pyx_PyObject_AsString(__pyx_v_self->_format); if (unlikely((!__pyx_t_6) && PyErr_Occurred())) __PYX_ERR(1, 139, __pyx_L1_error) + if (unlikely(__pyx_v_self->_format == Py_None)) { + PyErr_SetString(PyExc_TypeError, "expected bytes, NoneType found"); + __PYX_ERR(1, 140, __pyx_L1_error) + } + __pyx_t_6 = __Pyx_PyBytes_AsWritableString(__pyx_v_self->_format); if (unlikely((!__pyx_t_6) && PyErr_Occurred())) __PYX_ERR(1, 140, __pyx_L1_error) __pyx_v_self->format = __pyx_t_6; - /* "View.MemoryView":142 + /* "View.MemoryView":143 * * * self._shape = PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) # <<<<<<<<<<<<<< @@ -3572,7 +3907,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_self->_shape = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * __pyx_v_self->ndim) * 2))); - /* "View.MemoryView":143 + /* "View.MemoryView":144 * * self._shape = PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) * self._strides = self._shape + self.ndim # <<<<<<<<<<<<<< @@ -3581,7 +3916,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_self->_strides = (__pyx_v_self->_shape + __pyx_v_self->ndim); - /* "View.MemoryView":145 + /* "View.MemoryView":146 * self._strides = self._shape + self.ndim * * if not self._shape: # <<<<<<<<<<<<<< @@ -3589,22 +3924,22 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ * */ __pyx_t_4 = ((!(__pyx_v_self->_shape != 0)) != 0); - if (__pyx_t_4) { + if (unlikely(__pyx_t_4)) { - /* "View.MemoryView":146 + /* "View.MemoryView":147 * * if not self._shape: * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< * * */ - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 146, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 147, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __PYX_ERR(1, 146, __pyx_L1_error) + __PYX_ERR(1, 147, __pyx_L1_error) - /* "View.MemoryView":145 + /* "View.MemoryView":146 * self._strides = self._shape + self.ndim * * if not self._shape: # <<<<<<<<<<<<<< @@ -3613,7 +3948,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ } - /* "View.MemoryView":149 + /* "View.MemoryView":150 * * * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< @@ -3625,18 +3960,18 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ for (;;) { if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_5)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_3); __pyx_t_1++; if (unlikely(0 < 0)) __PYX_ERR(1, 149, __pyx_L1_error) + __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_3); __pyx_t_1++; if (unlikely(0 < 0)) __PYX_ERR(1, 150, __pyx_L1_error) #else - __pyx_t_3 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 149, __pyx_L1_error) + __pyx_t_3 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 150, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); #endif - __pyx_t_8 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_8 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 149, __pyx_L1_error) + __pyx_t_8 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_8 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 150, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_dim = __pyx_t_8; __pyx_v_idx = __pyx_t_7; __pyx_t_7 = (__pyx_t_7 + 1); - /* "View.MemoryView":150 + /* "View.MemoryView":151 * * for idx, dim in enumerate(shape): * if dim <= 0: # <<<<<<<<<<<<<< @@ -3644,20 +3979,20 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ * self._shape[idx] = dim */ __pyx_t_4 = ((__pyx_v_dim <= 0) != 0); - if (__pyx_t_4) { + if (unlikely(__pyx_t_4)) { - /* "View.MemoryView":151 + /* "View.MemoryView":152 * for idx, dim in enumerate(shape): * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) # <<<<<<<<<<<<<< * self._shape[idx] = dim * */ - __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_idx); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 151, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_idx); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_9 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 151, __pyx_L1_error) + __pyx_t_9 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_10 = PyTuple_New(2); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 151, __pyx_L1_error) + __pyx_t_10 = PyTuple_New(2); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_3); @@ -3665,22 +4000,17 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ PyTuple_SET_ITEM(__pyx_t_10, 1, __pyx_t_9); __pyx_t_3 = 0; __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_t_10); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 151, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_t_10); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; - __pyx_t_10 = PyTuple_New(1); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 151, __pyx_L1_error) + __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_9); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); - __Pyx_GIVEREF(__pyx_t_9); - PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_9); - __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_10, NULL); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 151, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; - __Pyx_Raise(__pyx_t_9, 0, 0, 0); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __PYX_ERR(1, 151, __pyx_L1_error) + __Pyx_Raise(__pyx_t_10, 0, 0, 0); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __PYX_ERR(1, 152, __pyx_L1_error) - /* "View.MemoryView":150 + /* "View.MemoryView":151 * * for idx, dim in enumerate(shape): * if dim <= 0: # <<<<<<<<<<<<<< @@ -3689,7 +4019,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ } - /* "View.MemoryView":152 + /* "View.MemoryView":153 * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim # <<<<<<<<<<<<<< @@ -3698,7 +4028,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ (__pyx_v_self->_shape[__pyx_v_idx]) = __pyx_v_dim; - /* "View.MemoryView":149 + /* "View.MemoryView":150 * * * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< @@ -3708,17 +4038,17 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - /* "View.MemoryView":155 + /* "View.MemoryView":156 * * cdef char order * if mode == 'fortran': # <<<<<<<<<<<<<< * order = b'F' * self.mode = u'fortran' */ - __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_fortran, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 155, __pyx_L1_error) + __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_fortran, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 156, __pyx_L1_error) if (__pyx_t_4) { - /* "View.MemoryView":156 + /* "View.MemoryView":157 * cdef char order * if mode == 'fortran': * order = b'F' # <<<<<<<<<<<<<< @@ -3727,7 +4057,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_order = 'F'; - /* "View.MemoryView":157 + /* "View.MemoryView":158 * if mode == 'fortran': * order = b'F' * self.mode = u'fortran' # <<<<<<<<<<<<<< @@ -3740,7 +4070,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ __Pyx_DECREF(__pyx_v_self->mode); __pyx_v_self->mode = __pyx_n_u_fortran; - /* "View.MemoryView":155 + /* "View.MemoryView":156 * * cdef char order * if mode == 'fortran': # <<<<<<<<<<<<<< @@ -3750,17 +4080,17 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ goto __pyx_L10; } - /* "View.MemoryView":158 + /* "View.MemoryView":159 * order = b'F' * self.mode = u'fortran' * elif mode == 'c': # <<<<<<<<<<<<<< * order = b'C' * self.mode = u'c' */ - __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_c, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 158, __pyx_L1_error) - if (__pyx_t_4) { + __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_c, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 159, __pyx_L1_error) + if (likely(__pyx_t_4)) { - /* "View.MemoryView":159 + /* "View.MemoryView":160 * self.mode = u'fortran' * elif mode == 'c': * order = b'C' # <<<<<<<<<<<<<< @@ -3769,7 +4099,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_order = 'C'; - /* "View.MemoryView":160 + /* "View.MemoryView":161 * elif mode == 'c': * order = b'C' * self.mode = u'c' # <<<<<<<<<<<<<< @@ -3782,7 +4112,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ __Pyx_DECREF(__pyx_v_self->mode); __pyx_v_self->mode = __pyx_n_u_c; - /* "View.MemoryView":158 + /* "View.MemoryView":159 * order = b'F' * self.mode = u'fortran' * elif mode == 'c': # <<<<<<<<<<<<<< @@ -3792,7 +4122,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ goto __pyx_L10; } - /* "View.MemoryView":162 + /* "View.MemoryView":163 * self.mode = u'c' * else: * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) # <<<<<<<<<<<<<< @@ -3800,23 +4130,18 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ * self.len = fill_contig_strides_array(self._shape, self._strides, */ /*else*/ { - __pyx_t_5 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_v_mode); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 162, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_v_mode); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 163, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_9 = PyTuple_New(1); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 162, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - __Pyx_GIVEREF(__pyx_t_5); - PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_5); - __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_9, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 162, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __Pyx_Raise(__pyx_t_5, 0, 0, 0); + __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_5); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 163, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __PYX_ERR(1, 162, __pyx_L1_error) + __Pyx_Raise(__pyx_t_10, 0, 0, 0); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __PYX_ERR(1, 163, __pyx_L1_error) } __pyx_L10:; - /* "View.MemoryView":164 + /* "View.MemoryView":165 * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) * * self.len = fill_contig_strides_array(self._shape, self._strides, # <<<<<<<<<<<<<< @@ -3825,7 +4150,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_self->len = __pyx_fill_contig_strides_array(__pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_itemsize, __pyx_v_self->ndim, __pyx_v_order); - /* "View.MemoryView":167 + /* "View.MemoryView":168 * itemsize, self.ndim, order) * * self.free_data = allocate_buffer # <<<<<<<<<<<<<< @@ -3834,19 +4159,19 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_self->free_data = __pyx_v_allocate_buffer; - /* "View.MemoryView":168 + /* "View.MemoryView":169 * * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' # <<<<<<<<<<<<<< * if allocate_buffer: * */ - __pyx_t_5 = PyObject_RichCompare(__pyx_v_format, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 168, __pyx_L1_error) - __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 168, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_10 = PyObject_RichCompare(__pyx_v_format, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_10); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 169, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 169, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_v_self->dtype_is_object = __pyx_t_4; - /* "View.MemoryView":169 + /* "View.MemoryView":170 * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' * if allocate_buffer: # <<<<<<<<<<<<<< @@ -3856,7 +4181,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ __pyx_t_4 = (__pyx_v_allocate_buffer != 0); if (__pyx_t_4) { - /* "View.MemoryView":172 + /* "View.MemoryView":173 * * * self.data = malloc(self.len) # <<<<<<<<<<<<<< @@ -3865,7 +4190,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_self->data = ((char *)malloc(__pyx_v_self->len)); - /* "View.MemoryView":173 + /* "View.MemoryView":174 * * self.data = malloc(self.len) * if not self.data: # <<<<<<<<<<<<<< @@ -3873,22 +4198,22 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ * */ __pyx_t_4 = ((!(__pyx_v_self->data != 0)) != 0); - if (__pyx_t_4) { + if (unlikely(__pyx_t_4)) { - /* "View.MemoryView":174 + /* "View.MemoryView":175 * self.data = malloc(self.len) * if not self.data: * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< * * if self.dtype_is_object: */ - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 174, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __Pyx_Raise(__pyx_t_5, 0, 0, 0); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __PYX_ERR(1, 174, __pyx_L1_error) + __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(1, 175, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); + __Pyx_Raise(__pyx_t_10, 0, 0, 0); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __PYX_ERR(1, 175, __pyx_L1_error) - /* "View.MemoryView":173 + /* "View.MemoryView":174 * * self.data = malloc(self.len) * if not self.data: # <<<<<<<<<<<<<< @@ -3897,7 +4222,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ } - /* "View.MemoryView":176 + /* "View.MemoryView":177 * raise MemoryError("unable to allocate array data.") * * if self.dtype_is_object: # <<<<<<<<<<<<<< @@ -3907,7 +4232,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ __pyx_t_4 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_4) { - /* "View.MemoryView":177 + /* "View.MemoryView":178 * * if self.dtype_is_object: * p = self.data # <<<<<<<<<<<<<< @@ -3916,7 +4241,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ __pyx_v_p = ((PyObject **)__pyx_v_self->data); - /* "View.MemoryView":178 + /* "View.MemoryView":179 * if self.dtype_is_object: * p = self.data * for i in range(self.len / itemsize): # <<<<<<<<<<<<<< @@ -3925,17 +4250,18 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ if (unlikely(__pyx_v_itemsize == 0)) { PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); - __PYX_ERR(1, 178, __pyx_L1_error) + __PYX_ERR(1, 179, __pyx_L1_error) } else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_self->len))) { PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); - __PYX_ERR(1, 178, __pyx_L1_error) + __PYX_ERR(1, 179, __pyx_L1_error) } __pyx_t_1 = (__pyx_v_self->len / __pyx_v_itemsize); - for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_1; __pyx_t_8+=1) { - __pyx_v_i = __pyx_t_8; + __pyx_t_8 = __pyx_t_1; + for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_8; __pyx_t_11+=1) { + __pyx_v_i = __pyx_t_11; - /* "View.MemoryView":179 + /* "View.MemoryView":180 * p = self.data * for i in range(self.len / itemsize): * p[i] = Py_None # <<<<<<<<<<<<<< @@ -3944,7 +4270,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ (__pyx_v_p[__pyx_v_i]) = Py_None; - /* "View.MemoryView":180 + /* "View.MemoryView":181 * for i in range(self.len / itemsize): * p[i] = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< @@ -3954,7 +4280,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ Py_INCREF(Py_None); } - /* "View.MemoryView":176 + /* "View.MemoryView":177 * raise MemoryError("unable to allocate array data.") * * if self.dtype_is_object: # <<<<<<<<<<<<<< @@ -3963,7 +4289,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ } - /* "View.MemoryView":169 + /* "View.MemoryView":170 * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' * if allocate_buffer: # <<<<<<<<<<<<<< @@ -3972,7 +4298,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ */ } - /* "View.MemoryView":120 + /* "View.MemoryView":121 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< @@ -3996,7 +4322,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __ return __pyx_r; } -/* "View.MemoryView":183 +/* "View.MemoryView":184 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< @@ -4028,13 +4354,15 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru Py_ssize_t __pyx_t_5; int __pyx_t_6; Py_ssize_t *__pyx_t_7; - __Pyx_RefNannySetupContext("__getbuffer__", 0); - if (__pyx_v_info != NULL) { - __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); - __Pyx_GIVEREF(__pyx_v_info->obj); + if (__pyx_v_info == NULL) { + PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); + return -1; } + __Pyx_RefNannySetupContext("__getbuffer__", 0); + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); - /* "View.MemoryView":184 + /* "View.MemoryView":185 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 # <<<<<<<<<<<<<< @@ -4043,18 +4371,18 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru */ __pyx_v_bufmode = -1; - /* "View.MemoryView":185 + /* "View.MemoryView":186 * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 * if self.mode == u"c": # <<<<<<<<<<<<<< * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": */ - __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_c, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 185, __pyx_L1_error) + __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_c, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 186, __pyx_L1_error) __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { - /* "View.MemoryView":186 + /* "View.MemoryView":187 * cdef int bufmode = -1 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< @@ -4063,7 +4391,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru */ __pyx_v_bufmode = (PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); - /* "View.MemoryView":185 + /* "View.MemoryView":186 * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 * if self.mode == u"c": # <<<<<<<<<<<<<< @@ -4073,18 +4401,18 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru goto __pyx_L3; } - /* "View.MemoryView":187 + /* "View.MemoryView":188 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": # <<<<<<<<<<<<<< * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): */ - __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_fortran, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(1, 187, __pyx_L1_error) + __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_fortran, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(1, 188, __pyx_L1_error) __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { - /* "View.MemoryView":188 + /* "View.MemoryView":189 * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< @@ -4093,7 +4421,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru */ __pyx_v_bufmode = (PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); - /* "View.MemoryView":187 + /* "View.MemoryView":188 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": # <<<<<<<<<<<<<< @@ -4103,7 +4431,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru } __pyx_L3:; - /* "View.MemoryView":189 + /* "View.MemoryView":190 * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): # <<<<<<<<<<<<<< @@ -4111,22 +4439,22 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru * info.buf = self.data */ __pyx_t_1 = ((!((__pyx_v_flags & __pyx_v_bufmode) != 0)) != 0); - if (__pyx_t_1) { + if (unlikely(__pyx_t_1)) { - /* "View.MemoryView":190 + /* "View.MemoryView":191 * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< * info.buf = self.data * info.len = self.len */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 190, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 191, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __PYX_ERR(1, 190, __pyx_L1_error) + __PYX_ERR(1, 191, __pyx_L1_error) - /* "View.MemoryView":189 + /* "View.MemoryView":190 * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): # <<<<<<<<<<<<<< @@ -4135,7 +4463,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru */ } - /* "View.MemoryView":191 + /* "View.MemoryView":192 * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data # <<<<<<<<<<<<<< @@ -4145,7 +4473,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __pyx_t_4 = __pyx_v_self->data; __pyx_v_info->buf = __pyx_t_4; - /* "View.MemoryView":192 + /* "View.MemoryView":193 * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data * info.len = self.len # <<<<<<<<<<<<<< @@ -4155,7 +4483,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __pyx_t_5 = __pyx_v_self->len; __pyx_v_info->len = __pyx_t_5; - /* "View.MemoryView":193 + /* "View.MemoryView":194 * info.buf = self.data * info.len = self.len * info.ndim = self.ndim # <<<<<<<<<<<<<< @@ -4165,7 +4493,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __pyx_t_6 = __pyx_v_self->ndim; __pyx_v_info->ndim = __pyx_t_6; - /* "View.MemoryView":194 + /* "View.MemoryView":195 * info.len = self.len * info.ndim = self.ndim * info.shape = self._shape # <<<<<<<<<<<<<< @@ -4175,7 +4503,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __pyx_t_7 = __pyx_v_self->_shape; __pyx_v_info->shape = __pyx_t_7; - /* "View.MemoryView":195 + /* "View.MemoryView":196 * info.ndim = self.ndim * info.shape = self._shape * info.strides = self._strides # <<<<<<<<<<<<<< @@ -4185,7 +4513,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __pyx_t_7 = __pyx_v_self->_strides; __pyx_v_info->strides = __pyx_t_7; - /* "View.MemoryView":196 + /* "View.MemoryView":197 * info.shape = self._shape * info.strides = self._strides * info.suboffsets = NULL # <<<<<<<<<<<<<< @@ -4194,7 +4522,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru */ __pyx_v_info->suboffsets = NULL; - /* "View.MemoryView":197 + /* "View.MemoryView":198 * info.strides = self._strides * info.suboffsets = NULL * info.itemsize = self.itemsize # <<<<<<<<<<<<<< @@ -4204,7 +4532,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __pyx_t_5 = __pyx_v_self->itemsize; __pyx_v_info->itemsize = __pyx_t_5; - /* "View.MemoryView":198 + /* "View.MemoryView":199 * info.suboffsets = NULL * info.itemsize = self.itemsize * info.readonly = 0 # <<<<<<<<<<<<<< @@ -4213,7 +4541,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru */ __pyx_v_info->readonly = 0; - /* "View.MemoryView":200 + /* "View.MemoryView":201 * info.readonly = 0 * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< @@ -4223,7 +4551,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { - /* "View.MemoryView":201 + /* "View.MemoryView":202 * * if flags & PyBUF_FORMAT: * info.format = self.format # <<<<<<<<<<<<<< @@ -4233,7 +4561,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __pyx_t_4 = __pyx_v_self->format; __pyx_v_info->format = __pyx_t_4; - /* "View.MemoryView":200 + /* "View.MemoryView":201 * info.readonly = 0 * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< @@ -4243,7 +4571,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru goto __pyx_L5; } - /* "View.MemoryView":203 + /* "View.MemoryView":204 * info.format = self.format * else: * info.format = NULL # <<<<<<<<<<<<<< @@ -4255,7 +4583,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru } __pyx_L5:; - /* "View.MemoryView":205 + /* "View.MemoryView":206 * info.format = NULL * * info.obj = self # <<<<<<<<<<<<<< @@ -4268,7 +4596,7 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); - /* "View.MemoryView":183 + /* "View.MemoryView":184 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< @@ -4283,22 +4611,22 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(stru __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.array.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; - if (__pyx_v_info != NULL && __pyx_v_info->obj != NULL) { + if (__pyx_v_info->obj != NULL) { __Pyx_GOTREF(__pyx_v_info->obj); - __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = NULL; + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } goto __pyx_L2; __pyx_L0:; - if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) { - __Pyx_GOTREF(Py_None); - __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL; + if (__pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } __pyx_L2:; __Pyx_RefNannyFinishContext(); return __pyx_r; } -/* "View.MemoryView":209 +/* "View.MemoryView":210 * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") * * def __dealloc__(array self): # <<<<<<<<<<<<<< @@ -4322,7 +4650,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc int __pyx_t_1; __Pyx_RefNannySetupContext("__dealloc__", 0); - /* "View.MemoryView":210 + /* "View.MemoryView":211 * * def __dealloc__(array self): * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< @@ -4332,7 +4660,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc __pyx_t_1 = ((__pyx_v_self->callback_free_data != NULL) != 0); if (__pyx_t_1) { - /* "View.MemoryView":211 + /* "View.MemoryView":212 * def __dealloc__(array self): * if self.callback_free_data != NULL: * self.callback_free_data(self.data) # <<<<<<<<<<<<<< @@ -4341,7 +4669,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc */ __pyx_v_self->callback_free_data(__pyx_v_self->data); - /* "View.MemoryView":210 + /* "View.MemoryView":211 * * def __dealloc__(array self): * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< @@ -4351,7 +4679,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc goto __pyx_L3; } - /* "View.MemoryView":212 + /* "View.MemoryView":213 * if self.callback_free_data != NULL: * self.callback_free_data(self.data) * elif self.free_data: # <<<<<<<<<<<<<< @@ -4361,7 +4689,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc __pyx_t_1 = (__pyx_v_self->free_data != 0); if (__pyx_t_1) { - /* "View.MemoryView":213 + /* "View.MemoryView":214 * self.callback_free_data(self.data) * elif self.free_data: * if self.dtype_is_object: # <<<<<<<<<<<<<< @@ -4371,7 +4699,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_1) { - /* "View.MemoryView":214 + /* "View.MemoryView":215 * elif self.free_data: * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, # <<<<<<<<<<<<<< @@ -4380,7 +4708,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_self->data, __pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_self->ndim, 0); - /* "View.MemoryView":213 + /* "View.MemoryView":214 * self.callback_free_data(self.data) * elif self.free_data: * if self.dtype_is_object: # <<<<<<<<<<<<<< @@ -4389,7 +4717,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc */ } - /* "View.MemoryView":216 + /* "View.MemoryView":217 * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) * free(self.data) # <<<<<<<<<<<<<< @@ -4398,7 +4726,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc */ free(__pyx_v_self->data); - /* "View.MemoryView":212 + /* "View.MemoryView":213 * if self.callback_free_data != NULL: * self.callback_free_data(self.data) * elif self.free_data: # <<<<<<<<<<<<<< @@ -4408,7 +4736,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc } __pyx_L3:; - /* "View.MemoryView":217 + /* "View.MemoryView":218 * self._strides, self.ndim, False) * free(self.data) * PyObject_Free(self._shape) # <<<<<<<<<<<<<< @@ -4417,7 +4745,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc */ PyObject_Free(__pyx_v_self->_shape); - /* "View.MemoryView":209 + /* "View.MemoryView":210 * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") * * def __dealloc__(array self): # <<<<<<<<<<<<<< @@ -4429,7 +4757,7 @@ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struc __Pyx_RefNannyFinishContext(); } -/* "View.MemoryView":220 +/* "View.MemoryView":221 * * @property * def memview(self): # <<<<<<<<<<<<<< @@ -4456,7 +4784,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct _ PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":221 + /* "View.MemoryView":222 * @property * def memview(self): * return self.get_memview() # <<<<<<<<<<<<<< @@ -4464,13 +4792,13 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct _ * @cname('get_memview') */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = ((struct __pyx_vtabstruct_array *)__pyx_v_self->__pyx_vtab)->get_memview(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 221, __pyx_L1_error) + __pyx_t_1 = ((struct __pyx_vtabstruct_array *)__pyx_v_self->__pyx_vtab)->get_memview(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 222, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; - /* "View.MemoryView":220 + /* "View.MemoryView":221 * * @property * def memview(self): # <<<<<<<<<<<<<< @@ -4489,7 +4817,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct _ return __pyx_r; } -/* "View.MemoryView":224 +/* "View.MemoryView":225 * * @cname('get_memview') * cdef get_memview(self): # <<<<<<<<<<<<<< @@ -4506,7 +4834,7 @@ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("get_memview", 0); - /* "View.MemoryView":225 + /* "View.MemoryView":226 * @cname('get_memview') * cdef get_memview(self): * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE # <<<<<<<<<<<<<< @@ -4515,19 +4843,19 @@ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { */ __pyx_v_flags = ((PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) | PyBUF_WRITABLE); - /* "View.MemoryView":226 + /* "View.MemoryView":227 * cdef get_memview(self): * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) # <<<<<<<<<<<<<< * - * + * def __len__(self): */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 226, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 226, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 226, __pyx_L1_error) + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); @@ -4538,14 +4866,14 @@ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 226, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; - /* "View.MemoryView":224 + /* "View.MemoryView":225 * * @cname('get_memview') * cdef get_memview(self): # <<<<<<<<<<<<<< @@ -4567,7 +4895,57 @@ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { } /* "View.MemoryView":229 + * return memoryview(self, flags, self.dtype_is_object) + * + * def __len__(self): # <<<<<<<<<<<<<< + * return self._shape[0] + * + */ + +/* Python wrapper */ +static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self); /*proto*/ +static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self) { + Py_ssize_t __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(((struct __pyx_array_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self) { + Py_ssize_t __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__len__", 0); + + /* "View.MemoryView":230 + * + * def __len__(self): + * return self._shape[0] # <<<<<<<<<<<<<< * + * def __getattr__(self, attr): + */ + __pyx_r = (__pyx_v_self->_shape[0]); + goto __pyx_L0; + + /* "View.MemoryView":229 + * return memoryview(self, flags, self.dtype_is_object) + * + * def __len__(self): # <<<<<<<<<<<<<< + * return self._shape[0] + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":232 + * return self._shape[0] * * def __getattr__(self, attr): # <<<<<<<<<<<<<< * return getattr(self.memview, attr) @@ -4580,21 +4958,21 @@ static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getattr__ (wrapper)", 0); - __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__getattr__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_attr)); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_attr)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } -static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr) { +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("__getattr__", 0); - /* "View.MemoryView":230 + /* "View.MemoryView":233 * * def __getattr__(self, attr): * return getattr(self.memview, attr) # <<<<<<<<<<<<<< @@ -4602,17 +4980,17 @@ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__getattr__( * def __getitem__(self, item): */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 230, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_GetAttr(__pyx_t_1, __pyx_v_attr); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 230, __pyx_L1_error) + __pyx_t_2 = __Pyx_GetAttr(__pyx_t_1, __pyx_v_attr); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; - /* "View.MemoryView":229 - * + /* "View.MemoryView":232 + * return self._shape[0] * * def __getattr__(self, attr): # <<<<<<<<<<<<<< * return getattr(self.memview, attr) @@ -4631,7 +5009,7 @@ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__getattr__( return __pyx_r; } -/* "View.MemoryView":232 +/* "View.MemoryView":235 * return getattr(self.memview, attr) * * def __getitem__(self, item): # <<<<<<<<<<<<<< @@ -4645,21 +5023,21 @@ static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); - __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item)); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } -static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item) { +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("__getitem__", 0); - /* "View.MemoryView":233 + /* "View.MemoryView":236 * * def __getitem__(self, item): * return self.memview[item] # <<<<<<<<<<<<<< @@ -4667,16 +5045,16 @@ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getitem__( * def __setitem__(self, item, value): */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 233, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 236, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = PyObject_GetItem(__pyx_t_1, __pyx_v_item); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 233, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_t_1, __pyx_v_item); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 236, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; - /* "View.MemoryView":232 + /* "View.MemoryView":235 * return getattr(self.memview, attr) * * def __getitem__(self, item): # <<<<<<<<<<<<<< @@ -4696,7 +5074,7 @@ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getitem__( return __pyx_r; } -/* "View.MemoryView":235 +/* "View.MemoryView":238 * return self.memview[item] * * def __setitem__(self, item, value): # <<<<<<<<<<<<<< @@ -4710,32 +5088,32 @@ static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_ite int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); - __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__setitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item), ((PyObject *)__pyx_v_value)); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item), ((PyObject *)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } -static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("__setitem__", 0); - /* "View.MemoryView":236 + /* "View.MemoryView":239 * * def __setitem__(self, item, value): * self.memview[item] = value # <<<<<<<<<<<<<< * * */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 236, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (unlikely(PyObject_SetItem(__pyx_t_1, __pyx_v_item, __pyx_v_value) < 0)) __PYX_ERR(1, 236, __pyx_L1_error) + if (unlikely(PyObject_SetItem(__pyx_t_1, __pyx_v_item, __pyx_v_value) < 0)) __PYX_ERR(1, 239, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":235 + /* "View.MemoryView":238 * return self.memview[item] * * def __setitem__(self, item, value): # <<<<<<<<<<<<<< @@ -4755,7 +5133,114 @@ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__setitem__(struc return __pyx_r; } -/* "View.MemoryView":240 +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_array___reduce_cython__(((struct __pyx_array_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__reduce_cython__", 0); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 2, __pyx_L1_error) + + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.array.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_array_2__setstate_cython__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 4, __pyx_L1_error) + + /* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.array.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":243 * * @cname("__pyx_array_new") * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< @@ -4774,7 +5259,7 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize PyObject *__pyx_t_5 = NULL; __Pyx_RefNannySetupContext("array_cwrapper", 0); - /* "View.MemoryView":244 + /* "View.MemoryView":247 * cdef array result * * if buf == NULL: # <<<<<<<<<<<<<< @@ -4784,20 +5269,20 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize __pyx_t_1 = ((__pyx_v_buf == NULL) != 0); if (__pyx_t_1) { - /* "View.MemoryView":245 + /* "View.MemoryView":248 * * if buf == NULL: * result = array(shape, itemsize, format, mode.decode('ASCII')) # <<<<<<<<<<<<<< * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), */ - __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 245, __pyx_L1_error) + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 248, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 245, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 248, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 245, __pyx_L1_error) + __pyx_t_4 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 248, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = PyTuple_New(4); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 245, __pyx_L1_error) + __pyx_t_5 = PyTuple_New(4); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 248, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); @@ -4811,13 +5296,13 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 245, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 248, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_4); __pyx_t_4 = 0; - /* "View.MemoryView":244 + /* "View.MemoryView":247 * cdef array result * * if buf == NULL: # <<<<<<<<<<<<<< @@ -4827,7 +5312,7 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize goto __pyx_L3; } - /* "View.MemoryView":247 + /* "View.MemoryView":250 * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< @@ -4835,13 +5320,13 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize * result.data = buf */ /*else*/ { - __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 247, __pyx_L1_error) + __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 247, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 247, __pyx_L1_error) + __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_2 = PyTuple_New(4); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 247, __pyx_L1_error) + __pyx_t_2 = PyTuple_New(4); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); @@ -4856,32 +5341,32 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize __pyx_t_5 = 0; __pyx_t_3 = 0; - /* "View.MemoryView":248 + /* "View.MemoryView":251 * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), * allocate_buffer=False) # <<<<<<<<<<<<<< * result.data = buf * */ - __pyx_t_3 = PyDict_New(); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 248, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 251, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_allocate_buffer, Py_False) < 0) __PYX_ERR(1, 248, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_allocate_buffer, Py_False) < 0) __PYX_ERR(1, 251, __pyx_L1_error) - /* "View.MemoryView":247 + /* "View.MemoryView":250 * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< * allocate_buffer=False) * result.data = buf */ - __pyx_t_5 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 247, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_5); __pyx_t_5 = 0; - /* "View.MemoryView":249 + /* "View.MemoryView":252 * result = array(shape, itemsize, format, mode.decode('ASCII'), * allocate_buffer=False) * result.data = buf # <<<<<<<<<<<<<< @@ -4892,7 +5377,7 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize } __pyx_L3:; - /* "View.MemoryView":251 + /* "View.MemoryView":254 * result.data = buf * * return result # <<<<<<<<<<<<<< @@ -4904,7 +5389,7 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize __pyx_r = __pyx_v_result; goto __pyx_L0; - /* "View.MemoryView":240 + /* "View.MemoryView":243 * * @cname("__pyx_array_new") * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< @@ -4927,7 +5412,7 @@ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize return __pyx_r; } -/* "View.MemoryView":277 +/* "View.MemoryView":280 * cdef class Enum(object): * cdef object name * def __init__(self, name): # <<<<<<<<<<<<<< @@ -4950,17 +5435,18 @@ static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_ar const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: - if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_name)) != 0)) kw_args--; + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_name)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(1, 277, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(1, 280, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 1) { goto __pyx_L5_argtuple_error; @@ -4971,7 +5457,7 @@ static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_ar } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 277, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 280, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.Enum.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -4989,7 +5475,7 @@ static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struc __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__", 0); - /* "View.MemoryView":278 + /* "View.MemoryView":281 * cdef object name * def __init__(self, name): * self.name = name # <<<<<<<<<<<<<< @@ -5002,7 +5488,7 @@ static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struc __Pyx_DECREF(__pyx_v_self->name); __pyx_v_self->name = __pyx_v_name; - /* "View.MemoryView":277 + /* "View.MemoryView":280 * cdef class Enum(object): * cdef object name * def __init__(self, name): # <<<<<<<<<<<<<< @@ -5016,7 +5502,7 @@ static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struc return __pyx_r; } -/* "View.MemoryView":279 +/* "View.MemoryView":282 * def __init__(self, name): * self.name = name * def __repr__(self): # <<<<<<<<<<<<<< @@ -5042,7 +5528,7 @@ static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr_ __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__", 0); - /* "View.MemoryView":280 + /* "View.MemoryView":283 * self.name = name * def __repr__(self): * return self.name # <<<<<<<<<<<<<< @@ -5054,7 +5540,7 @@ static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr_ __pyx_r = __pyx_v_self->name; goto __pyx_L0; - /* "View.MemoryView":279 + /* "View.MemoryView":282 * def __init__(self, name): * self.name = name * def __repr__(self): # <<<<<<<<<<<<<< @@ -5069,31 +5555,318 @@ static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr_ return __pyx_r; } -/* "View.MemoryView":294 - * - * @cname('__pyx_align_pointer') - * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< - * "Align pointer memory on a given boundary" - * cdef Py_intptr_t aligned_p = memory +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * cdef bint use_setstate + * state = (self.name,) */ -static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) { - Py_intptr_t __pyx_v_aligned_p; - size_t __pyx_v_offset; - void *__pyx_r; - int __pyx_t_1; +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_MemviewEnum___reduce_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); - /* "View.MemoryView":296 - * cdef void *align_pointer(void *memory, size_t alignment) nogil: - * "Align pointer memory on a given boundary" - * cdef Py_intptr_t aligned_p = memory # <<<<<<<<<<<<<< - * cdef size_t offset - * + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { + int __pyx_v_use_setstate; + PyObject *__pyx_v_state = NULL; + PyObject *__pyx_v__dict = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + int __pyx_t_3; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("__reduce_cython__", 0); + + /* "(tree fragment)":3 + * def __reduce_cython__(self): + * cdef bint use_setstate + * state = (self.name,) # <<<<<<<<<<<<<< + * _dict = getattr(self, '__dict__', None) + * if _dict is not None: */ - __pyx_v_aligned_p = ((Py_intptr_t)__pyx_v_memory); + __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 3, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_v_self->name); + __Pyx_GIVEREF(__pyx_v_self->name); + PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_self->name); + __pyx_v_state = ((PyObject*)__pyx_t_1); + __pyx_t_1 = 0; - /* "View.MemoryView":300 - * + /* "(tree fragment)":4 + * cdef bint use_setstate + * state = (self.name,) + * _dict = getattr(self, '__dict__', None) # <<<<<<<<<<<<<< + * if _dict is not None: + * state += (_dict,) + */ + __pyx_t_1 = __Pyx_GetAttr3(((PyObject *)__pyx_v_self), __pyx_n_s_dict, Py_None); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v__dict = __pyx_t_1; + __pyx_t_1 = 0; + + /* "(tree fragment)":5 + * state = (self.name,) + * _dict = getattr(self, '__dict__', None) + * if _dict is not None: # <<<<<<<<<<<<<< + * state += (_dict,) + * use_setstate = True + */ + __pyx_t_2 = (__pyx_v__dict != Py_None); + __pyx_t_3 = (__pyx_t_2 != 0); + if (__pyx_t_3) { + + /* "(tree fragment)":6 + * _dict = getattr(self, '__dict__', None) + * if _dict is not None: + * state += (_dict,) # <<<<<<<<<<<<<< + * use_setstate = True + * else: + */ + __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 6, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_v__dict); + __Pyx_GIVEREF(__pyx_v__dict); + PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v__dict); + __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_state, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 6, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF_SET(__pyx_v_state, ((PyObject*)__pyx_t_4)); + __pyx_t_4 = 0; + + /* "(tree fragment)":7 + * if _dict is not None: + * state += (_dict,) + * use_setstate = True # <<<<<<<<<<<<<< + * else: + * use_setstate = self.name is not None + */ + __pyx_v_use_setstate = 1; + + /* "(tree fragment)":5 + * state = (self.name,) + * _dict = getattr(self, '__dict__', None) + * if _dict is not None: # <<<<<<<<<<<<<< + * state += (_dict,) + * use_setstate = True + */ + goto __pyx_L3; + } + + /* "(tree fragment)":9 + * use_setstate = True + * else: + * use_setstate = self.name is not None # <<<<<<<<<<<<<< + * if use_setstate: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state + */ + /*else*/ { + __pyx_t_3 = (__pyx_v_self->name != Py_None); + __pyx_v_use_setstate = __pyx_t_3; + } + __pyx_L3:; + + /* "(tree fragment)":10 + * else: + * use_setstate = self.name is not None + * if use_setstate: # <<<<<<<<<<<<<< + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state + * else: + */ + __pyx_t_3 = (__pyx_v_use_setstate != 0); + if (__pyx_t_3) { + + /* "(tree fragment)":11 + * use_setstate = self.name is not None + * if use_setstate: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state # <<<<<<<<<<<<<< + * else: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 11, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 11, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + __Pyx_INCREF(__pyx_int_184977713); + __Pyx_GIVEREF(__pyx_int_184977713); + PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); + __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(Py_None); + PyTuple_SET_ITEM(__pyx_t_1, 2, Py_None); + __pyx_t_5 = PyTuple_New(3); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 11, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_1); + __Pyx_INCREF(__pyx_v_state); + __Pyx_GIVEREF(__pyx_v_state); + PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_v_state); + __pyx_t_4 = 0; + __pyx_t_1 = 0; + __pyx_r = __pyx_t_5; + __pyx_t_5 = 0; + goto __pyx_L0; + + /* "(tree fragment)":10 + * else: + * use_setstate = self.name is not None + * if use_setstate: # <<<<<<<<<<<<<< + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state + * else: + */ + } + + /* "(tree fragment)":13 + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state + * else: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * __pyx_unpickle_Enum__set_state(self, __pyx_state) + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 13, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 13, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + __Pyx_INCREF(__pyx_int_184977713); + __Pyx_GIVEREF(__pyx_int_184977713); + PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); + __Pyx_INCREF(__pyx_v_state); + __Pyx_GIVEREF(__pyx_v_state); + PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_state); + __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 13, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_1); + __pyx_t_5 = 0; + __pyx_t_1 = 0; + __pyx_r = __pyx_t_4; + __pyx_t_4 = 0; + goto __pyx_L0; + } + + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * cdef bint use_setstate + * state = (self.name,) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.Enum.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_state); + __Pyx_XDECREF(__pyx_v__dict); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":14 + * else: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * __pyx_unpickle_Enum__set_state(self, __pyx_state) + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_MemviewEnum_2__setstate_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":15 + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) + * def __setstate_cython__(self, __pyx_state): + * __pyx_unpickle_Enum__set_state(self, __pyx_state) # <<<<<<<<<<<<<< + */ + if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(1, 15, __pyx_L1_error) + __pyx_t_1 = __pyx_unpickle_Enum__set_state(__pyx_v_self, ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 15, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "(tree fragment)":14 + * else: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * __pyx_unpickle_Enum__set_state(self, __pyx_state) + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.Enum.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":297 + * + * @cname('__pyx_align_pointer') + * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< + * "Align pointer memory on a given boundary" + * cdef Py_intptr_t aligned_p = memory + */ + +static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) { + Py_intptr_t __pyx_v_aligned_p; + size_t __pyx_v_offset; + void *__pyx_r; + int __pyx_t_1; + + /* "View.MemoryView":299 + * cdef void *align_pointer(void *memory, size_t alignment) nogil: + * "Align pointer memory on a given boundary" + * cdef Py_intptr_t aligned_p = memory # <<<<<<<<<<<<<< + * cdef size_t offset + * + */ + __pyx_v_aligned_p = ((Py_intptr_t)__pyx_v_memory); + + /* "View.MemoryView":303 + * * with cython.cdivision(True): * offset = aligned_p % alignment # <<<<<<<<<<<<<< * @@ -5101,7 +5874,7 @@ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) */ __pyx_v_offset = (__pyx_v_aligned_p % __pyx_v_alignment); - /* "View.MemoryView":302 + /* "View.MemoryView":305 * offset = aligned_p % alignment * * if offset > 0: # <<<<<<<<<<<<<< @@ -5111,7 +5884,7 @@ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) __pyx_t_1 = ((__pyx_v_offset > 0) != 0); if (__pyx_t_1) { - /* "View.MemoryView":303 + /* "View.MemoryView":306 * * if offset > 0: * aligned_p += alignment - offset # <<<<<<<<<<<<<< @@ -5120,7 +5893,7 @@ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) */ __pyx_v_aligned_p = (__pyx_v_aligned_p + (__pyx_v_alignment - __pyx_v_offset)); - /* "View.MemoryView":302 + /* "View.MemoryView":305 * offset = aligned_p % alignment * * if offset > 0: # <<<<<<<<<<<<<< @@ -5129,7 +5902,7 @@ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) */ } - /* "View.MemoryView":305 + /* "View.MemoryView":308 * aligned_p += alignment - offset * * return aligned_p # <<<<<<<<<<<<<< @@ -5139,7 +5912,7 @@ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) __pyx_r = ((void *)__pyx_v_aligned_p); goto __pyx_L0; - /* "View.MemoryView":294 + /* "View.MemoryView":297 * * @cname('__pyx_align_pointer') * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< @@ -5152,7 +5925,7 @@ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) return __pyx_r; } -/* "View.MemoryView":341 +/* "View.MemoryView":344 * cdef __Pyx_TypeInfo *typeinfo * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< @@ -5177,33 +5950,39 @@ static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_ar const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: - if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_obj)) != 0)) kw_args--; + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_obj)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; case 1: - if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_flags)) != 0)) kw_args--; + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_flags)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, 1); __PYX_ERR(1, 341, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, 1); __PYX_ERR(1, 344, __pyx_L3_error) } + CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { - PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_dtype_is_object); + PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dtype_is_object); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(1, 341, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(1, 344, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; @@ -5211,16 +5990,16 @@ static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_ar } } __pyx_v_obj = values[0]; - __pyx_v_flags = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_flags == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 341, __pyx_L3_error) + __pyx_v_flags = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_flags == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 344, __pyx_L3_error) if (values[2]) { - __pyx_v_dtype_is_object = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_dtype_is_object == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 341, __pyx_L3_error) + __pyx_v_dtype_is_object = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_dtype_is_object == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 344, __pyx_L3_error) } else { __pyx_v_dtype_is_object = ((int)0); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 341, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 344, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -5242,7 +6021,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ int __pyx_t_4; __Pyx_RefNannySetupContext("__cinit__", 0); - /* "View.MemoryView":342 + /* "View.MemoryView":345 * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): * self.obj = obj # <<<<<<<<<<<<<< @@ -5255,7 +6034,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ __Pyx_DECREF(__pyx_v_self->obj); __pyx_v_self->obj = __pyx_v_obj; - /* "View.MemoryView":343 + /* "View.MemoryView":346 * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): * self.obj = obj * self.flags = flags # <<<<<<<<<<<<<< @@ -5264,7 +6043,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ __pyx_v_self->flags = __pyx_v_flags; - /* "View.MemoryView":344 + /* "View.MemoryView":347 * self.obj = obj * self.flags = flags * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< @@ -5284,16 +6063,16 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ __pyx_L4_bool_binop_done:; if (__pyx_t_1) { - /* "View.MemoryView":345 + /* "View.MemoryView":348 * self.flags = flags * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) # <<<<<<<<<<<<<< * if self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None */ - __pyx_t_4 = __Pyx_GetBuffer(__pyx_v_obj, (&__pyx_v_self->view), __pyx_v_flags); if (unlikely(__pyx_t_4 == -1)) __PYX_ERR(1, 345, __pyx_L1_error) + __pyx_t_4 = __Pyx_GetBuffer(__pyx_v_obj, (&__pyx_v_self->view), __pyx_v_flags); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 348, __pyx_L1_error) - /* "View.MemoryView":346 + /* "View.MemoryView":349 * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) * if self.view.obj == NULL: # <<<<<<<<<<<<<< @@ -5303,7 +6082,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ __pyx_t_1 = ((((PyObject *)__pyx_v_self->view.obj) == NULL) != 0); if (__pyx_t_1) { - /* "View.MemoryView":347 + /* "View.MemoryView":350 * __Pyx_GetBuffer(obj, &self.view, flags) * if self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None # <<<<<<<<<<<<<< @@ -5312,7 +6091,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ ((Py_buffer *)(&__pyx_v_self->view))->obj = Py_None; - /* "View.MemoryView":348 + /* "View.MemoryView":351 * if self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< @@ -5321,7 +6100,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ Py_INCREF(Py_None); - /* "View.MemoryView":346 + /* "View.MemoryView":349 * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) * if self.view.obj == NULL: # <<<<<<<<<<<<<< @@ -5330,7 +6109,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ } - /* "View.MemoryView":344 + /* "View.MemoryView":347 * self.obj = obj * self.flags = flags * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< @@ -5339,7 +6118,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ } - /* "View.MemoryView":351 + /* "View.MemoryView":354 * * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< @@ -5349,7 +6128,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ __pyx_t_1 = ((__pyx_memoryview_thread_locks_used < 8) != 0); if (__pyx_t_1) { - /* "View.MemoryView":352 + /* "View.MemoryView":355 * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] # <<<<<<<<<<<<<< @@ -5358,7 +6137,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ __pyx_v_self->lock = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); - /* "View.MemoryView":353 + /* "View.MemoryView":356 * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 # <<<<<<<<<<<<<< @@ -5367,7 +6146,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used + 1); - /* "View.MemoryView":351 + /* "View.MemoryView":354 * * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< @@ -5376,7 +6155,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ } - /* "View.MemoryView":354 + /* "View.MemoryView":357 * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: # <<<<<<<<<<<<<< @@ -5386,7 +6165,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); if (__pyx_t_1) { - /* "View.MemoryView":355 + /* "View.MemoryView":358 * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() # <<<<<<<<<<<<<< @@ -5395,7 +6174,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ __pyx_v_self->lock = PyThread_allocate_lock(); - /* "View.MemoryView":356 + /* "View.MemoryView":359 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() * if self.lock is NULL: # <<<<<<<<<<<<<< @@ -5403,18 +6182,18 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ * */ __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); - if (__pyx_t_1) { + if (unlikely(__pyx_t_1)) { - /* "View.MemoryView":357 + /* "View.MemoryView":360 * self.lock = PyThread_allocate_lock() * if self.lock is NULL: * raise MemoryError # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ - PyErr_NoMemory(); __PYX_ERR(1, 357, __pyx_L1_error) + PyErr_NoMemory(); __PYX_ERR(1, 360, __pyx_L1_error) - /* "View.MemoryView":356 + /* "View.MemoryView":359 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() * if self.lock is NULL: # <<<<<<<<<<<<<< @@ -5423,7 +6202,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ } - /* "View.MemoryView":354 + /* "View.MemoryView":357 * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: # <<<<<<<<<<<<<< @@ -5432,7 +6211,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ } - /* "View.MemoryView":359 + /* "View.MemoryView":362 * raise MemoryError * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< @@ -5442,7 +6221,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { - /* "View.MemoryView":360 + /* "View.MemoryView":363 * * if flags & PyBUF_FORMAT: * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') # <<<<<<<<<<<<<< @@ -5460,7 +6239,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ __pyx_L11_bool_binop_done:; __pyx_v_self->dtype_is_object = __pyx_t_1; - /* "View.MemoryView":359 + /* "View.MemoryView":362 * raise MemoryError * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< @@ -5470,7 +6249,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ goto __pyx_L10; } - /* "View.MemoryView":362 + /* "View.MemoryView":365 * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: * self.dtype_is_object = dtype_is_object # <<<<<<<<<<<<<< @@ -5482,7 +6261,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ } __pyx_L10:; - /* "View.MemoryView":364 + /* "View.MemoryView":367 * self.dtype_is_object = dtype_is_object * * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( # <<<<<<<<<<<<<< @@ -5491,7 +6270,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ __pyx_v_self->acquisition_count_aligned_p = ((__pyx_atomic_int *)__pyx_align_pointer(((void *)(&(__pyx_v_self->acquisition_count[0]))), (sizeof(__pyx_atomic_int)))); - /* "View.MemoryView":366 + /* "View.MemoryView":369 * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) * self.typeinfo = NULL # <<<<<<<<<<<<<< @@ -5500,7 +6279,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ */ __pyx_v_self->typeinfo = NULL; - /* "View.MemoryView":341 + /* "View.MemoryView":344 * cdef __Pyx_TypeInfo *typeinfo * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< @@ -5519,7 +6298,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit_ return __pyx_r; } -/* "View.MemoryView":368 +/* "View.MemoryView":371 * self.typeinfo = NULL * * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< @@ -5545,11 +6324,12 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; - PyThread_type_lock __pyx_t_5; + int __pyx_t_5; PyThread_type_lock __pyx_t_6; + PyThread_type_lock __pyx_t_7; __Pyx_RefNannySetupContext("__dealloc__", 0); - /* "View.MemoryView":369 + /* "View.MemoryView":372 * * def __dealloc__(memoryview self): * if self.obj is not None: # <<<<<<<<<<<<<< @@ -5560,7 +6340,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { - /* "View.MemoryView":370 + /* "View.MemoryView":373 * def __dealloc__(memoryview self): * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) # <<<<<<<<<<<<<< @@ -5569,7 +6349,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal */ __Pyx_ReleaseBuffer((&__pyx_v_self->view)); - /* "View.MemoryView":369 + /* "View.MemoryView":372 * * def __dealloc__(memoryview self): * if self.obj is not None: # <<<<<<<<<<<<<< @@ -5578,7 +6358,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal */ } - /* "View.MemoryView":374 + /* "View.MemoryView":377 * cdef int i * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: # <<<<<<<<<<<<<< @@ -5588,7 +6368,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal __pyx_t_2 = ((__pyx_v_self->lock != NULL) != 0); if (__pyx_t_2) { - /* "View.MemoryView":375 + /* "View.MemoryView":378 * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): # <<<<<<<<<<<<<< @@ -5596,10 +6376,11 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal * __pyx_memoryview_thread_locks_used -= 1 */ __pyx_t_3 = __pyx_memoryview_thread_locks_used; - for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { - __pyx_v_i = __pyx_t_4; + __pyx_t_4 = __pyx_t_3; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { + __pyx_v_i = __pyx_t_5; - /* "View.MemoryView":376 + /* "View.MemoryView":379 * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< @@ -5609,7 +6390,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal __pyx_t_2 = (((__pyx_memoryview_thread_locks[__pyx_v_i]) == __pyx_v_self->lock) != 0); if (__pyx_t_2) { - /* "View.MemoryView":377 + /* "View.MemoryView":380 * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 # <<<<<<<<<<<<<< @@ -5618,7 +6399,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal */ __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used - 1); - /* "View.MemoryView":378 + /* "View.MemoryView":381 * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< @@ -5628,27 +6409,27 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal __pyx_t_2 = ((__pyx_v_i != __pyx_memoryview_thread_locks_used) != 0); if (__pyx_t_2) { - /* "View.MemoryView":380 + /* "View.MemoryView":383 * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) # <<<<<<<<<<<<<< * break * else: */ - __pyx_t_5 = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); - __pyx_t_6 = (__pyx_memoryview_thread_locks[__pyx_v_i]); + __pyx_t_6 = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); + __pyx_t_7 = (__pyx_memoryview_thread_locks[__pyx_v_i]); - /* "View.MemoryView":379 + /* "View.MemoryView":382 * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) * break */ - (__pyx_memoryview_thread_locks[__pyx_v_i]) = __pyx_t_5; - (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]) = __pyx_t_6; + (__pyx_memoryview_thread_locks[__pyx_v_i]) = __pyx_t_6; + (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]) = __pyx_t_7; - /* "View.MemoryView":378 + /* "View.MemoryView":381 * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< @@ -5657,7 +6438,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal */ } - /* "View.MemoryView":381 + /* "View.MemoryView":384 * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) * break # <<<<<<<<<<<<<< @@ -5666,7 +6447,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal */ goto __pyx_L6_break; - /* "View.MemoryView":376 + /* "View.MemoryView":379 * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< @@ -5677,7 +6458,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal } /*else*/ { - /* "View.MemoryView":383 + /* "View.MemoryView":386 * break * else: * PyThread_free_lock(self.lock) # <<<<<<<<<<<<<< @@ -5688,7 +6469,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal } __pyx_L6_break:; - /* "View.MemoryView":374 + /* "View.MemoryView":377 * cdef int i * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: # <<<<<<<<<<<<<< @@ -5697,7 +6478,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal */ } - /* "View.MemoryView":368 + /* "View.MemoryView":371 * self.typeinfo = NULL * * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< @@ -5709,7 +6490,7 @@ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__deal __Pyx_RefNannyFinishContext(); } -/* "View.MemoryView":385 +/* "View.MemoryView":388 * PyThread_free_lock(self.lock) * * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< @@ -5732,7 +6513,7 @@ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__py char *__pyx_t_7; __Pyx_RefNannySetupContext("get_item_pointer", 0); - /* "View.MemoryView":387 + /* "View.MemoryView":390 * cdef char *get_item_pointer(memoryview self, object index) except NULL: * cdef Py_ssize_t dim * cdef char *itemp = self.view.buf # <<<<<<<<<<<<<< @@ -5741,7 +6522,7 @@ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__py */ __pyx_v_itemp = ((char *)__pyx_v_self->view.buf); - /* "View.MemoryView":389 + /* "View.MemoryView":392 * cdef char *itemp = self.view.buf * * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< @@ -5753,26 +6534,26 @@ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__py __pyx_t_2 = __pyx_v_index; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0; __pyx_t_4 = NULL; } else { - __pyx_t_3 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 389, __pyx_L1_error) + __pyx_t_3 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 392, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_4 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 389, __pyx_L1_error) + __pyx_t_4 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 392, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_4)) { if (likely(PyList_CheckExact(__pyx_t_2))) { if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_5 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(1, 389, __pyx_L1_error) + __pyx_t_5 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(1, 392, __pyx_L1_error) #else - __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 389, __pyx_L1_error) + __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 392, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif } else { if (__pyx_t_3 >= PyTuple_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(1, 389, __pyx_L1_error) + __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(1, 392, __pyx_L1_error) #else - __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 389, __pyx_L1_error) + __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 392, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif } @@ -5781,8 +6562,8 @@ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__py if (unlikely(!__pyx_t_5)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else __PYX_ERR(1, 389, __pyx_L1_error) + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(1, 392, __pyx_L1_error) } break; } @@ -5793,18 +6574,18 @@ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__py __pyx_v_dim = __pyx_t_1; __pyx_t_1 = (__pyx_t_1 + 1); - /* "View.MemoryView":390 + /* "View.MemoryView":393 * * for dim, idx in enumerate(index): * itemp = pybuffer_index(&self.view, itemp, idx, dim) # <<<<<<<<<<<<<< * * return itemp */ - __pyx_t_6 = __Pyx_PyIndex_AsSsize_t(__pyx_v_idx); if (unlikely((__pyx_t_6 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 390, __pyx_L1_error) - __pyx_t_7 = __pyx_pybuffer_index((&__pyx_v_self->view), __pyx_v_itemp, __pyx_t_6, __pyx_v_dim); if (unlikely(__pyx_t_7 == NULL)) __PYX_ERR(1, 390, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyIndex_AsSsize_t(__pyx_v_idx); if (unlikely((__pyx_t_6 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 393, __pyx_L1_error) + __pyx_t_7 = __pyx_pybuffer_index((&__pyx_v_self->view), __pyx_v_itemp, __pyx_t_6, __pyx_v_dim); if (unlikely(__pyx_t_7 == ((char *)NULL))) __PYX_ERR(1, 393, __pyx_L1_error) __pyx_v_itemp = __pyx_t_7; - /* "View.MemoryView":389 + /* "View.MemoryView":392 * cdef char *itemp = self.view.buf * * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< @@ -5814,7 +6595,7 @@ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__py } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - /* "View.MemoryView":392 + /* "View.MemoryView":395 * itemp = pybuffer_index(&self.view, itemp, idx, dim) * * return itemp # <<<<<<<<<<<<<< @@ -5824,7 +6605,7 @@ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__py __pyx_r = __pyx_v_itemp; goto __pyx_L0; - /* "View.MemoryView":385 + /* "View.MemoryView":388 * PyThread_free_lock(self.lock) * * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< @@ -5844,7 +6625,7 @@ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__py return __pyx_r; } -/* "View.MemoryView":395 +/* "View.MemoryView":398 * * * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< @@ -5879,7 +6660,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ char *__pyx_t_6; __Pyx_RefNannySetupContext("__getitem__", 0); - /* "View.MemoryView":396 + /* "View.MemoryView":399 * * def __getitem__(memoryview self, object index): * if index is Ellipsis: # <<<<<<<<<<<<<< @@ -5890,7 +6671,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { - /* "View.MemoryView":397 + /* "View.MemoryView":400 * def __getitem__(memoryview self, object index): * if index is Ellipsis: * return self # <<<<<<<<<<<<<< @@ -5902,7 +6683,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ __pyx_r = ((PyObject *)__pyx_v_self); goto __pyx_L0; - /* "View.MemoryView":396 + /* "View.MemoryView":399 * * def __getitem__(memoryview self, object index): * if index is Ellipsis: # <<<<<<<<<<<<<< @@ -5911,26 +6692,22 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ */ } - /* "View.MemoryView":399 + /* "View.MemoryView":402 * return self * * have_slices, indices = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< * * cdef char *itemp */ - __pyx_t_3 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 399, __pyx_L1_error) + __pyx_t_3 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 402, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (likely(__pyx_t_3 != Py_None)) { PyObject* sequence = __pyx_t_3; - #if !CYTHON_COMPILING_IN_PYPY - Py_ssize_t size = Py_SIZE(sequence); - #else - Py_ssize_t size = PySequence_Size(sequence); - #endif + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - __PYX_ERR(1, 399, __pyx_L1_error) + __PYX_ERR(1, 402, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); @@ -5938,31 +6715,31 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); #else - __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 399, __pyx_L1_error) + __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 402, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 399, __pyx_L1_error) + __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 402, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else { - __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 399, __pyx_L1_error) + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 402, __pyx_L1_error) } __pyx_v_have_slices = __pyx_t_4; __pyx_t_4 = 0; __pyx_v_indices = __pyx_t_5; __pyx_t_5 = 0; - /* "View.MemoryView":402 + /* "View.MemoryView":405 * * cdef char *itemp * if have_slices: # <<<<<<<<<<<<<< * return memview_slice(self, indices) * else: */ - __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(1, 402, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(1, 405, __pyx_L1_error) if (__pyx_t_2) { - /* "View.MemoryView":403 + /* "View.MemoryView":406 * cdef char *itemp * if have_slices: * return memview_slice(self, indices) # <<<<<<<<<<<<<< @@ -5970,13 +6747,13 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ * itemp = self.get_item_pointer(indices) */ __Pyx_XDECREF(__pyx_r); - __pyx_t_3 = ((PyObject *)__pyx_memview_slice(__pyx_v_self, __pyx_v_indices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 403, __pyx_L1_error) + __pyx_t_3 = ((PyObject *)__pyx_memview_slice(__pyx_v_self, __pyx_v_indices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 406, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; - /* "View.MemoryView":402 + /* "View.MemoryView":405 * * cdef char *itemp * if have_slices: # <<<<<<<<<<<<<< @@ -5985,7 +6762,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ */ } - /* "View.MemoryView":405 + /* "View.MemoryView":408 * return memview_slice(self, indices) * else: * itemp = self.get_item_pointer(indices) # <<<<<<<<<<<<<< @@ -5993,10 +6770,10 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ * */ /*else*/ { - __pyx_t_6 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_indices); if (unlikely(__pyx_t_6 == NULL)) __PYX_ERR(1, 405, __pyx_L1_error) + __pyx_t_6 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_indices); if (unlikely(__pyx_t_6 == ((char *)NULL))) __PYX_ERR(1, 408, __pyx_L1_error) __pyx_v_itemp = __pyx_t_6; - /* "View.MemoryView":406 + /* "View.MemoryView":409 * else: * itemp = self.get_item_pointer(indices) * return self.convert_item_to_object(itemp) # <<<<<<<<<<<<<< @@ -6004,14 +6781,14 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ * def __setitem__(memoryview self, object index, object value): */ __Pyx_XDECREF(__pyx_r); - __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->convert_item_to_object(__pyx_v_self, __pyx_v_itemp); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 406, __pyx_L1_error) + __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->convert_item_to_object(__pyx_v_self, __pyx_v_itemp); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } - /* "View.MemoryView":395 + /* "View.MemoryView":398 * * * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< @@ -6034,12 +6811,12 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4_ return __pyx_r; } -/* "View.MemoryView":408 +/* "View.MemoryView":411 * return self.convert_item_to_object(itemp) * * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< - * have_slices, index = _unellipsify(index, self.view.ndim) - * + * if self.view.readonly: + * raise TypeError("Cannot assign to read-only memoryview") */ /* Python wrapper */ @@ -6060,111 +6837,139 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setit PyObject *__pyx_v_obj = NULL; int __pyx_r; __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; + int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; - int __pyx_t_4; + PyObject *__pyx_t_4 = NULL; __Pyx_RefNannySetupContext("__setitem__", 0); __Pyx_INCREF(__pyx_v_index); - /* "View.MemoryView":409 + /* "View.MemoryView":412 + * + * def __setitem__(memoryview self, object index, object value): + * if self.view.readonly: # <<<<<<<<<<<<<< + * raise TypeError("Cannot assign to read-only memoryview") + * + */ + __pyx_t_1 = (__pyx_v_self->view.readonly != 0); + if (unlikely(__pyx_t_1)) { + + /* "View.MemoryView":413 + * def __setitem__(memoryview self, object index, object value): + * if self.view.readonly: + * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< + * + * have_slices, index = _unellipsify(index, self.view.ndim) + */ + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__9, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 413, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_Raise(__pyx_t_2, 0, 0, 0); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __PYX_ERR(1, 413, __pyx_L1_error) + + /* "View.MemoryView":412 * * def __setitem__(memoryview self, object index, object value): + * if self.view.readonly: # <<<<<<<<<<<<<< + * raise TypeError("Cannot assign to read-only memoryview") + * + */ + } + + /* "View.MemoryView":415 + * raise TypeError("Cannot assign to read-only memoryview") + * * have_slices, index = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< * * if have_slices: */ - __pyx_t_1 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 409, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - if (likely(__pyx_t_1 != Py_None)) { - PyObject* sequence = __pyx_t_1; - #if !CYTHON_COMPILING_IN_PYPY - Py_ssize_t size = Py_SIZE(sequence); - #else - Py_ssize_t size = PySequence_Size(sequence); - #endif + __pyx_t_2 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 415, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + if (likely(__pyx_t_2 != Py_None)) { + PyObject* sequence = __pyx_t_2; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - __PYX_ERR(1, 409, __pyx_L1_error) + __PYX_ERR(1, 415, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); - __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); - __Pyx_INCREF(__pyx_t_2); + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); __Pyx_INCREF(__pyx_t_3); + __Pyx_INCREF(__pyx_t_4); #else - __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 409, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 409, __pyx_L1_error) + __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 415, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 415, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); #endif - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else { - __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 409, __pyx_L1_error) + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 415, __pyx_L1_error) } - __pyx_v_have_slices = __pyx_t_2; - __pyx_t_2 = 0; - __Pyx_DECREF_SET(__pyx_v_index, __pyx_t_3); + __pyx_v_have_slices = __pyx_t_3; __pyx_t_3 = 0; + __Pyx_DECREF_SET(__pyx_v_index, __pyx_t_4); + __pyx_t_4 = 0; - /* "View.MemoryView":411 + /* "View.MemoryView":417 * have_slices, index = _unellipsify(index, self.view.ndim) * * if have_slices: # <<<<<<<<<<<<<< * obj = self.is_slice(value) * if obj: */ - __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 411, __pyx_L1_error) - if (__pyx_t_4) { + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 417, __pyx_L1_error) + if (__pyx_t_1) { - /* "View.MemoryView":412 + /* "View.MemoryView":418 * * if have_slices: * obj = self.is_slice(value) # <<<<<<<<<<<<<< * if obj: * self.setitem_slice_assignment(self[index], obj) */ - __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->is_slice(__pyx_v_self, __pyx_v_value); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 412, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __pyx_v_obj = __pyx_t_1; - __pyx_t_1 = 0; + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->is_slice(__pyx_v_self, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 418, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_v_obj = __pyx_t_2; + __pyx_t_2 = 0; - /* "View.MemoryView":413 + /* "View.MemoryView":419 * if have_slices: * obj = self.is_slice(value) * if obj: # <<<<<<<<<<<<<< * self.setitem_slice_assignment(self[index], obj) * else: */ - __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_v_obj); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(1, 413, __pyx_L1_error) - if (__pyx_t_4) { + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_obj); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 419, __pyx_L1_error) + if (__pyx_t_1) { - /* "View.MemoryView":414 + /* "View.MemoryView":420 * obj = self.is_slice(value) * if obj: * self.setitem_slice_assignment(self[index], obj) # <<<<<<<<<<<<<< * else: * self.setitem_slice_assign_scalar(self[index], value) */ - __pyx_t_1 = PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 414, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assignment(__pyx_v_self, __pyx_t_1, __pyx_v_obj); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 414, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_2 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 420, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assignment(__pyx_v_self, __pyx_t_2, __pyx_v_obj); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 420, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - /* "View.MemoryView":413 + /* "View.MemoryView":419 * if have_slices: * obj = self.is_slice(value) * if obj: # <<<<<<<<<<<<<< * self.setitem_slice_assignment(self[index], obj) * else: */ - goto __pyx_L4; + goto __pyx_L5; } - /* "View.MemoryView":416 + /* "View.MemoryView":422 * self.setitem_slice_assignment(self[index], obj) * else: * self.setitem_slice_assign_scalar(self[index], value) # <<<<<<<<<<<<<< @@ -6172,27 +6977,27 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setit * self.setitem_indexed(index, value) */ /*else*/ { - __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 416, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(1, 416, __pyx_L1_error) - __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assign_scalar(__pyx_v_self, ((struct __pyx_memoryview_obj *)__pyx_t_3), __pyx_v_value); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 416, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_4 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 422, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + if (!(likely(((__pyx_t_4) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_4, __pyx_memoryview_type))))) __PYX_ERR(1, 422, __pyx_L1_error) + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assign_scalar(__pyx_v_self, ((struct __pyx_memoryview_obj *)__pyx_t_4), __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 422, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } - __pyx_L4:; + __pyx_L5:; - /* "View.MemoryView":411 + /* "View.MemoryView":417 * have_slices, index = _unellipsify(index, self.view.ndim) * * if have_slices: # <<<<<<<<<<<<<< * obj = self.is_slice(value) * if obj: */ - goto __pyx_L3; + goto __pyx_L4; } - /* "View.MemoryView":418 + /* "View.MemoryView":424 * self.setitem_slice_assign_scalar(self[index], value) * else: * self.setitem_indexed(index, value) # <<<<<<<<<<<<<< @@ -6200,27 +7005,27 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setit * cdef is_slice(self, obj): */ /*else*/ { - __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_indexed(__pyx_v_self, __pyx_v_index, __pyx_v_value); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 418, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_indexed(__pyx_v_self, __pyx_v_index, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 424, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } - __pyx_L3:; + __pyx_L4:; - /* "View.MemoryView":408 + /* "View.MemoryView":411 * return self.convert_item_to_object(itemp) * * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< - * have_slices, index = _unellipsify(index, self.view.ndim) - * + * if self.view.readonly: + * raise TypeError("Cannot assign to read-only memoryview") */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView.memoryview.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; @@ -6231,7 +7036,7 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setit return __pyx_r; } -/* "View.MemoryView":420 +/* "View.MemoryView":426 * self.setitem_indexed(index, value) * * cdef is_slice(self, obj): # <<<<<<<<<<<<<< @@ -6254,7 +7059,7 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ __Pyx_RefNannySetupContext("is_slice", 0); __Pyx_INCREF(__pyx_v_obj); - /* "View.MemoryView":421 + /* "View.MemoryView":427 * * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< @@ -6265,7 +7070,7 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":422 + /* "View.MemoryView":428 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< @@ -6281,34 +7086,34 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ __Pyx_XGOTREF(__pyx_t_5); /*try:*/ { - /* "View.MemoryView":423 + /* "View.MemoryView":429 * if not isinstance(obj, memoryview): * try: * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< * self.dtype_is_object) * except TypeError: */ - __pyx_t_6 = __Pyx_PyInt_From_int((__pyx_v_self->flags | PyBUF_ANY_CONTIGUOUS)); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 423, __pyx_L4_error) + __pyx_t_6 = __Pyx_PyInt_From_int((__pyx_v_self->flags | PyBUF_ANY_CONTIGUOUS)); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 429, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_6); - /* "View.MemoryView":424 + /* "View.MemoryView":430 * try: * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) # <<<<<<<<<<<<<< * except TypeError: * return None */ - __pyx_t_7 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 424, __pyx_L4_error) + __pyx_t_7 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 430, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_7); - /* "View.MemoryView":423 + /* "View.MemoryView":429 * if not isinstance(obj, memoryview): * try: * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< * self.dtype_is_object) * except TypeError: */ - __pyx_t_8 = PyTuple_New(3); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 423, __pyx_L4_error) + __pyx_t_8 = PyTuple_New(3); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 429, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_INCREF(__pyx_v_obj); __Pyx_GIVEREF(__pyx_v_obj); @@ -6319,13 +7124,13 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ PyTuple_SET_ITEM(__pyx_t_8, 2, __pyx_t_7); __pyx_t_6 = 0; __pyx_t_7 = 0; - __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_8, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 423, __pyx_L4_error) + __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_8, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 429, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF_SET(__pyx_v_obj, __pyx_t_7); __pyx_t_7 = 0; - /* "View.MemoryView":422 + /* "View.MemoryView":428 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< @@ -6336,14 +7141,13 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; - goto __pyx_L11_try_end; + goto __pyx_L9_try_end; __pyx_L4_error:; - __Pyx_PyThreadState_assign __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; - /* "View.MemoryView":425 + /* "View.MemoryView":431 * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) * except TypeError: # <<<<<<<<<<<<<< @@ -6353,12 +7157,12 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ __pyx_t_9 = __Pyx_PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_9) { __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); - if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_6) < 0) __PYX_ERR(1, 425, __pyx_L6_except_error) + if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_6) < 0) __PYX_ERR(1, 431, __pyx_L6_except_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_GOTREF(__pyx_t_8); __Pyx_GOTREF(__pyx_t_6); - /* "View.MemoryView":426 + /* "View.MemoryView":432 * self.dtype_is_object) * except TypeError: * return None # <<<<<<<<<<<<<< @@ -6366,8 +7170,7 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ * return obj */ __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(Py_None); - __pyx_r = Py_None; + __pyx_r = Py_None; __Pyx_INCREF(Py_None); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; @@ -6376,30 +7179,28 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ goto __pyx_L6_except_error; __pyx_L6_except_error:; - /* "View.MemoryView":422 + /* "View.MemoryView":428 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ - __Pyx_PyThreadState_assign __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); goto __pyx_L1_error; __pyx_L7_except_return:; - __Pyx_PyThreadState_assign __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); goto __pyx_L0; - __pyx_L11_try_end:; + __pyx_L9_try_end:; } - /* "View.MemoryView":421 + /* "View.MemoryView":427 * * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< @@ -6408,7 +7209,7 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ */ } - /* "View.MemoryView":428 + /* "View.MemoryView":434 * return None * * return obj # <<<<<<<<<<<<<< @@ -6420,7 +7221,7 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ __pyx_r = __pyx_v_obj; goto __pyx_L0; - /* "View.MemoryView":420 + /* "View.MemoryView":426 * self.setitem_indexed(index, value) * * cdef is_slice(self, obj): # <<<<<<<<<<<<<< @@ -6442,7 +7243,7 @@ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_ return __pyx_r; } -/* "View.MemoryView":430 +/* "View.MemoryView":436 * return obj * * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< @@ -6461,50 +7262,50 @@ static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryvi int __pyx_t_4; __Pyx_RefNannySetupContext("setitem_slice_assignment", 0); - /* "View.MemoryView":434 + /* "View.MemoryView":440 * cdef __Pyx_memviewslice src_slice * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) */ - if (!(likely(((__pyx_v_src) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_src, __pyx_memoryview_type))))) __PYX_ERR(1, 434, __pyx_L1_error) + if (!(likely(((__pyx_v_src) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_src, __pyx_memoryview_type))))) __PYX_ERR(1, 440, __pyx_L1_error) - /* "View.MemoryView":435 + /* "View.MemoryView":441 * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], * get_slice_from_memview(dst, &dst_slice)[0], # <<<<<<<<<<<<<< * src.ndim, dst.ndim, self.dtype_is_object) * */ - if (!(likely(((__pyx_v_dst) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_dst, __pyx_memoryview_type))))) __PYX_ERR(1, 435, __pyx_L1_error) + if (!(likely(((__pyx_v_dst) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_dst, __pyx_memoryview_type))))) __PYX_ERR(1, 441, __pyx_L1_error) - /* "View.MemoryView":436 + /* "View.MemoryView":442 * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) # <<<<<<<<<<<<<< * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_src, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 436, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_src, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 442, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 436, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 442, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dst, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 436, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dst, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 442, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 436, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 442, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":434 + /* "View.MemoryView":440 * cdef __Pyx_memviewslice src_slice * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) */ - __pyx_t_4 = __pyx_memoryview_copy_contents((__pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_src), (&__pyx_v_src_slice))[0]), (__pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_dst), (&__pyx_v_dst_slice))[0]), __pyx_t_2, __pyx_t_3, __pyx_v_self->dtype_is_object); if (unlikely(__pyx_t_4 == -1)) __PYX_ERR(1, 434, __pyx_L1_error) + __pyx_t_4 = __pyx_memoryview_copy_contents((__pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_src), (&__pyx_v_src_slice))[0]), (__pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_dst), (&__pyx_v_dst_slice))[0]), __pyx_t_2, __pyx_t_3, __pyx_v_self->dtype_is_object); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 440, __pyx_L1_error) - /* "View.MemoryView":430 + /* "View.MemoryView":436 * return obj * * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< @@ -6525,7 +7326,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryvi return __pyx_r; } -/* "View.MemoryView":438 +/* "View.MemoryView":444 * src.ndim, dst.ndim, self.dtype_is_object) * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< @@ -6554,7 +7355,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor PyObject *__pyx_t_11 = NULL; __Pyx_RefNannySetupContext("setitem_slice_assign_scalar", 0); - /* "View.MemoryView":440 + /* "View.MemoryView":446 * cdef setitem_slice_assign_scalar(self, memoryview dst, value): * cdef int array[128] * cdef void *tmp = NULL # <<<<<<<<<<<<<< @@ -6563,7 +7364,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor */ __pyx_v_tmp = NULL; - /* "View.MemoryView":445 + /* "View.MemoryView":451 * cdef __Pyx_memviewslice *dst_slice * cdef __Pyx_memviewslice tmp_slice * dst_slice = get_slice_from_memview(dst, &tmp_slice) # <<<<<<<<<<<<<< @@ -6572,7 +7373,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor */ __pyx_v_dst_slice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_dst, (&__pyx_v_tmp_slice)); - /* "View.MemoryView":447 + /* "View.MemoryView":453 * dst_slice = get_slice_from_memview(dst, &tmp_slice) * * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< @@ -6582,7 +7383,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor __pyx_t_1 = ((((size_t)__pyx_v_self->view.itemsize) > (sizeof(__pyx_v_array))) != 0); if (__pyx_t_1) { - /* "View.MemoryView":448 + /* "View.MemoryView":454 * * if self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) # <<<<<<<<<<<<<< @@ -6591,7 +7392,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor */ __pyx_v_tmp = PyMem_Malloc(__pyx_v_self->view.itemsize); - /* "View.MemoryView":449 + /* "View.MemoryView":455 * if self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: # <<<<<<<<<<<<<< @@ -6599,18 +7400,18 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor * item = tmp */ __pyx_t_1 = ((__pyx_v_tmp == NULL) != 0); - if (__pyx_t_1) { + if (unlikely(__pyx_t_1)) { - /* "View.MemoryView":450 + /* "View.MemoryView":456 * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: * raise MemoryError # <<<<<<<<<<<<<< * item = tmp * else: */ - PyErr_NoMemory(); __PYX_ERR(1, 450, __pyx_L1_error) + PyErr_NoMemory(); __PYX_ERR(1, 456, __pyx_L1_error) - /* "View.MemoryView":449 + /* "View.MemoryView":455 * if self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: # <<<<<<<<<<<<<< @@ -6619,7 +7420,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor */ } - /* "View.MemoryView":451 + /* "View.MemoryView":457 * if tmp == NULL: * raise MemoryError * item = tmp # <<<<<<<<<<<<<< @@ -6628,7 +7429,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor */ __pyx_v_item = __pyx_v_tmp; - /* "View.MemoryView":447 + /* "View.MemoryView":453 * dst_slice = get_slice_from_memview(dst, &tmp_slice) * * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< @@ -6638,7 +7439,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor goto __pyx_L3; } - /* "View.MemoryView":453 + /* "View.MemoryView":459 * item = tmp * else: * item = array # <<<<<<<<<<<<<< @@ -6650,7 +7451,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor } __pyx_L3:; - /* "View.MemoryView":455 + /* "View.MemoryView":461 * item = array * * try: # <<<<<<<<<<<<<< @@ -6659,7 +7460,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor */ /*try:*/ { - /* "View.MemoryView":456 + /* "View.MemoryView":462 * * try: * if self.dtype_is_object: # <<<<<<<<<<<<<< @@ -6669,7 +7470,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_1) { - /* "View.MemoryView":457 + /* "View.MemoryView":463 * try: * if self.dtype_is_object: * ( item)[0] = value # <<<<<<<<<<<<<< @@ -6678,7 +7479,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor */ (((PyObject **)__pyx_v_item)[0]) = ((PyObject *)__pyx_v_value); - /* "View.MemoryView":456 + /* "View.MemoryView":462 * * try: * if self.dtype_is_object: # <<<<<<<<<<<<<< @@ -6688,7 +7489,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor goto __pyx_L8; } - /* "View.MemoryView":459 + /* "View.MemoryView":465 * ( item)[0] = value * else: * self.assign_item_from_object( item, value) # <<<<<<<<<<<<<< @@ -6696,13 +7497,13 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor * */ /*else*/ { - __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, ((char *)__pyx_v_item), __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 459, __pyx_L6_error) + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, ((char *)__pyx_v_item), __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 465, __pyx_L6_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_L8:; - /* "View.MemoryView":463 + /* "View.MemoryView":469 * * * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< @@ -6712,18 +7513,18 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor __pyx_t_1 = ((__pyx_v_self->view.suboffsets != NULL) != 0); if (__pyx_t_1) { - /* "View.MemoryView":464 + /* "View.MemoryView":470 * * if self.view.suboffsets != NULL: * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) # <<<<<<<<<<<<<< * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, * item, self.dtype_is_object) */ - __pyx_t_2 = assert_direct_dimensions(__pyx_v_self->view.suboffsets, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 464, __pyx_L6_error) + __pyx_t_2 = assert_direct_dimensions(__pyx_v_self->view.suboffsets, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 470, __pyx_L6_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - /* "View.MemoryView":463 + /* "View.MemoryView":469 * * * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< @@ -6732,7 +7533,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor */ } - /* "View.MemoryView":465 + /* "View.MemoryView":471 * if self.view.suboffsets != NULL: * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, # <<<<<<<<<<<<<< @@ -6742,7 +7543,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor __pyx_memoryview_slice_assign_scalar(__pyx_v_dst_slice, __pyx_v_dst->view.ndim, __pyx_v_self->view.itemsize, __pyx_v_item, __pyx_v_self->dtype_is_object); } - /* "View.MemoryView":468 + /* "View.MemoryView":474 * item, self.dtype_is_object) * finally: * PyMem_Free(tmp) # <<<<<<<<<<<<<< @@ -6754,11 +7555,11 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor PyMem_Free(__pyx_v_tmp); goto __pyx_L7; } + __pyx_L6_error:; /*exception exit:*/{ __Pyx_PyThreadState_declare - __pyx_L6_error:; - __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __Pyx_PyThreadState_assign + __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (PY_MAJOR_VERSION >= 3) __Pyx_ExceptionSwap(&__pyx_t_9, &__pyx_t_10, &__pyx_t_11); if ((PY_MAJOR_VERSION < 3) || unlikely(__Pyx_GetException(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8) < 0)) __Pyx_ErrFetch(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8); @@ -6772,7 +7573,6 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor { PyMem_Free(__pyx_v_tmp); } - __Pyx_PyThreadState_assign if (PY_MAJOR_VERSION >= 3) { __Pyx_XGIVEREF(__pyx_t_9); __Pyx_XGIVEREF(__pyx_t_10); @@ -6790,7 +7590,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor __pyx_L7:; } - /* "View.MemoryView":438 + /* "View.MemoryView":444 * src.ndim, dst.ndim, self.dtype_is_object) * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< @@ -6811,7 +7611,7 @@ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memor return __pyx_r; } -/* "View.MemoryView":470 +/* "View.MemoryView":476 * PyMem_Free(tmp) * * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< @@ -6827,28 +7627,28 @@ static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *_ PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("setitem_indexed", 0); - /* "View.MemoryView":471 + /* "View.MemoryView":477 * * cdef setitem_indexed(self, index, value): * cdef char *itemp = self.get_item_pointer(index) # <<<<<<<<<<<<<< * self.assign_item_from_object(itemp, value) * */ - __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_index); if (unlikely(__pyx_t_1 == NULL)) __PYX_ERR(1, 471, __pyx_L1_error) + __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_index); if (unlikely(__pyx_t_1 == ((char *)NULL))) __PYX_ERR(1, 477, __pyx_L1_error) __pyx_v_itemp = __pyx_t_1; - /* "View.MemoryView":472 + /* "View.MemoryView":478 * cdef setitem_indexed(self, index, value): * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) # <<<<<<<<<<<<<< * * cdef convert_item_to_object(self, char *itemp): */ - __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 472, __pyx_L1_error) + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 478, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - /* "View.MemoryView":470 + /* "View.MemoryView":476 * PyMem_Free(tmp) * * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< @@ -6869,7 +7669,7 @@ static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *_ return __pyx_r; } -/* "View.MemoryView":474 +/* "View.MemoryView":480 * self.assign_item_from_object(itemp, value) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< @@ -6896,31 +7696,31 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview int __pyx_t_11; __Pyx_RefNannySetupContext("convert_item_to_object", 0); - /* "View.MemoryView":477 + /* "View.MemoryView":483 * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" * import struct # <<<<<<<<<<<<<< * cdef bytes bytesitem * */ - __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 477, __pyx_L1_error) + __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 483, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_struct = __pyx_t_1; __pyx_t_1 = 0; - /* "View.MemoryView":480 + /* "View.MemoryView":486 * cdef bytes bytesitem * * bytesitem = itemp[:self.view.itemsize] # <<<<<<<<<<<<<< * try: * result = struct.unpack(self.view.format, bytesitem) */ - __pyx_t_1 = __Pyx_PyBytes_FromStringAndSize(__pyx_v_itemp + 0, __pyx_v_self->view.itemsize - 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 480, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyBytes_FromStringAndSize(__pyx_v_itemp + 0, __pyx_v_self->view.itemsize - 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 486, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_bytesitem = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":481 + /* "View.MemoryView":487 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< @@ -6936,16 +7736,16 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview __Pyx_XGOTREF(__pyx_t_4); /*try:*/ { - /* "View.MemoryView":482 + /* "View.MemoryView":488 * bytesitem = itemp[:self.view.itemsize] * try: * result = struct.unpack(self.view.format, bytesitem) # <<<<<<<<<<<<<< * except struct.error: * raise ValueError("Unable to convert item to object") */ - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_unpack); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 482, __pyx_L3_error) + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_unpack); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 488, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_6 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 482, __pyx_L3_error) + __pyx_t_6 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 488, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = NULL; __pyx_t_8 = 0; @@ -6962,7 +7762,7 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; - __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 482, __pyx_L3_error) + __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 488, __pyx_L3_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; @@ -6971,14 +7771,14 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; - __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 482, __pyx_L3_error) + __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 488, __pyx_L3_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif { - __pyx_t_9 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 482, __pyx_L3_error) + __pyx_t_9 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 488, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_9); if (__pyx_t_7) { __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_7); __pyx_t_7 = NULL; @@ -6989,7 +7789,7 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview __Pyx_GIVEREF(__pyx_v_bytesitem); PyTuple_SET_ITEM(__pyx_t_9, 1+__pyx_t_8, __pyx_v_bytesitem); __pyx_t_6 = 0; - __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 482, __pyx_L3_error) + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 488, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } @@ -6997,7 +7797,7 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview __pyx_v_result = __pyx_t_1; __pyx_t_1 = 0; - /* "View.MemoryView":481 + /* "View.MemoryView":487 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< @@ -7006,7 +7806,7 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview */ } - /* "View.MemoryView":486 + /* "View.MemoryView":492 * raise ValueError("Unable to convert item to object") * else: * if len(self.view.format) == 1: # <<<<<<<<<<<<<< @@ -7018,7 +7818,7 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview __pyx_t_11 = ((__pyx_t_10 == 1) != 0); if (__pyx_t_11) { - /* "View.MemoryView":487 + /* "View.MemoryView":493 * else: * if len(self.view.format) == 1: * return result[0] # <<<<<<<<<<<<<< @@ -7026,13 +7826,13 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview * */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_result, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 487, __pyx_L5_except_error) + __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_result, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 493, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L6_except_return; - /* "View.MemoryView":486 + /* "View.MemoryView":492 * raise ValueError("Unable to convert item to object") * else: * if len(self.view.format) == 1: # <<<<<<<<<<<<<< @@ -7041,7 +7841,7 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview */ } - /* "View.MemoryView":488 + /* "View.MemoryView":494 * if len(self.view.format) == 1: * return result[0] * return result # <<<<<<<<<<<<<< @@ -7054,62 +7854,62 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview goto __pyx_L6_except_return; } __pyx_L3_error:; - __Pyx_PyThreadState_assign __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":483 + /* "View.MemoryView":489 * try: * result = struct.unpack(self.view.format, bytesitem) * except struct.error: # <<<<<<<<<<<<<< * raise ValueError("Unable to convert item to object") * else: */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_error); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 483, __pyx_L5_except_error) - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_8 = __Pyx_PyErr_ExceptionMatches(__pyx_t_1); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_ErrFetch(&__pyx_t_1, &__pyx_t_5, &__pyx_t_9); + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_error); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 489, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_8 = __Pyx_PyErr_GivenExceptionMatches(__pyx_t_1, __pyx_t_6); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_ErrRestore(__pyx_t_1, __pyx_t_5, __pyx_t_9); + __pyx_t_1 = 0; __pyx_t_5 = 0; __pyx_t_9 = 0; if (__pyx_t_8) { __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); - if (__Pyx_GetException(&__pyx_t_1, &__pyx_t_5, &__pyx_t_9) < 0) __PYX_ERR(1, 483, __pyx_L5_except_error) - __Pyx_GOTREF(__pyx_t_1); - __Pyx_GOTREF(__pyx_t_5); + if (__Pyx_GetException(&__pyx_t_9, &__pyx_t_5, &__pyx_t_1) < 0) __PYX_ERR(1, 489, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_9); + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_1); - /* "View.MemoryView":484 + /* "View.MemoryView":490 * result = struct.unpack(self.view.format, bytesitem) * except struct.error: * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< * else: * if len(self.view.format) == 1: */ - __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 484, __pyx_L5_except_error) + __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 490, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __PYX_ERR(1, 484, __pyx_L5_except_error) + __PYX_ERR(1, 490, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; - /* "View.MemoryView":481 + /* "View.MemoryView":487 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ - __Pyx_PyThreadState_assign __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); goto __pyx_L1_error; __pyx_L6_except_return:; - __Pyx_PyThreadState_assign __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); @@ -7117,7 +7917,7 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview goto __pyx_L0; } - /* "View.MemoryView":474 + /* "View.MemoryView":480 * self.assign_item_from_object(itemp, value) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< @@ -7143,7 +7943,7 @@ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview return __pyx_r; } -/* "View.MemoryView":490 +/* "View.MemoryView":496 * return result * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< @@ -7174,19 +7974,19 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie char *__pyx_t_14; __Pyx_RefNannySetupContext("assign_item_from_object", 0); - /* "View.MemoryView":493 + /* "View.MemoryView":499 * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" * import struct # <<<<<<<<<<<<<< * cdef char c * cdef bytes bytesvalue */ - __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 493, __pyx_L1_error) + __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 499, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_struct = __pyx_t_1; __pyx_t_1 = 0; - /* "View.MemoryView":498 + /* "View.MemoryView":504 * cdef Py_ssize_t i * * if isinstance(value, tuple): # <<<<<<<<<<<<<< @@ -7197,37 +7997,37 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { - /* "View.MemoryView":499 + /* "View.MemoryView":505 * * if isinstance(value, tuple): * bytesvalue = struct.pack(self.view.format, *value) # <<<<<<<<<<<<<< * else: * bytesvalue = struct.pack(self.view.format, value) */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 499, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 505, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_4 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 499, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 505, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 499, __pyx_L1_error) + __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 505, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PySequence_Tuple(__pyx_v_value); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 499, __pyx_L1_error) + __pyx_t_4 = __Pyx_PySequence_Tuple(__pyx_v_value); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 505, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 499, __pyx_L1_error) + __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 505, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 499, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 505, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(1, 499, __pyx_L1_error) + if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(1, 505, __pyx_L1_error) __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); __pyx_t_4 = 0; - /* "View.MemoryView":498 + /* "View.MemoryView":504 * cdef Py_ssize_t i * * if isinstance(value, tuple): # <<<<<<<<<<<<<< @@ -7237,7 +8037,7 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie goto __pyx_L3; } - /* "View.MemoryView":501 + /* "View.MemoryView":507 * bytesvalue = struct.pack(self.view.format, *value) * else: * bytesvalue = struct.pack(self.view.format, value) # <<<<<<<<<<<<<< @@ -7245,9 +8045,9 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie * for i, c in enumerate(bytesvalue): */ /*else*/ { - __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 501, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 507, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); - __pyx_t_1 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 501, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 507, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; __pyx_t_7 = 0; @@ -7264,7 +8064,7 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; - __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 501, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 507, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; @@ -7273,14 +8073,14 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; - __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 501, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 507, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif { - __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 501, __pyx_L1_error) + __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 507, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_5) { __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; @@ -7291,18 +8091,18 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie __Pyx_GIVEREF(__pyx_v_value); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_v_value); __pyx_t_1 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 501, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 507, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(1, 501, __pyx_L1_error) + if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(1, 507, __pyx_L1_error) __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); __pyx_t_4 = 0; } __pyx_L3:; - /* "View.MemoryView":503 + /* "View.MemoryView":509 * bytesvalue = struct.pack(self.view.format, value) * * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< @@ -7312,7 +8112,7 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie __pyx_t_9 = 0; if (unlikely(__pyx_v_bytesvalue == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' is not iterable"); - __PYX_ERR(1, 503, __pyx_L1_error) + __PYX_ERR(1, 509, __pyx_L1_error) } __Pyx_INCREF(__pyx_v_bytesvalue); __pyx_t_10 = __pyx_v_bytesvalue; @@ -7322,7 +8122,7 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie __pyx_t_11 = __pyx_t_14; __pyx_v_c = (__pyx_t_11[0]); - /* "View.MemoryView":504 + /* "View.MemoryView":510 * * for i, c in enumerate(bytesvalue): * itemp[i] = c # <<<<<<<<<<<<<< @@ -7331,7 +8131,7 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie */ __pyx_v_i = __pyx_t_9; - /* "View.MemoryView":503 + /* "View.MemoryView":509 * bytesvalue = struct.pack(self.view.format, value) * * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< @@ -7340,7 +8140,7 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie */ __pyx_t_9 = (__pyx_t_9 + 1); - /* "View.MemoryView":504 + /* "View.MemoryView":510 * * for i, c in enumerate(bytesvalue): * itemp[i] = c # <<<<<<<<<<<<<< @@ -7351,7 +8151,7 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie } __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; - /* "View.MemoryView":490 + /* "View.MemoryView":496 * return result * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< @@ -7379,12 +8179,12 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie return __pyx_r; } -/* "View.MemoryView":507 +/* "View.MemoryView":513 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< - * if flags & PyBUF_STRIDES: - * info.shape = self.view.shape + * if flags & PyBUF_WRITABLE and self.view.readonly: + * raise ValueError("Cannot create writable memory view from read-only memoryview") */ /* Python wrapper */ @@ -7404,20 +8204,64 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; - Py_ssize_t *__pyx_t_2; - char *__pyx_t_3; - void *__pyx_t_4; - int __pyx_t_5; - Py_ssize_t __pyx_t_6; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + Py_ssize_t *__pyx_t_4; + char *__pyx_t_5; + void *__pyx_t_6; + int __pyx_t_7; + Py_ssize_t __pyx_t_8; + if (__pyx_v_info == NULL) { + PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); + return -1; + } __Pyx_RefNannySetupContext("__getbuffer__", 0); - if (__pyx_v_info != NULL) { - __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); - __Pyx_GIVEREF(__pyx_v_info->obj); + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); + + /* "View.MemoryView":514 + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< + * raise ValueError("Cannot create writable memory view from read-only memoryview") + * + */ + __pyx_t_2 = ((__pyx_v_flags & PyBUF_WRITABLE) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L4_bool_binop_done; } + __pyx_t_2 = (__pyx_v_self->view.readonly != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L4_bool_binop_done:; + if (unlikely(__pyx_t_1)) { - /* "View.MemoryView":508 + /* "View.MemoryView":515 + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_WRITABLE and self.view.readonly: + * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< + * + * if flags & PyBUF_STRIDES: + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 515, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 515, __pyx_L1_error) + + /* "View.MemoryView":514 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< + * raise ValueError("Cannot create writable memory view from read-only memoryview") + * + */ + } + + /* "View.MemoryView":517 + * raise ValueError("Cannot create writable memory view from read-only memoryview") + * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.shape = self.view.shape * else: @@ -7425,27 +8269,27 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); if (__pyx_t_1) { - /* "View.MemoryView":509 - * def __getbuffer__(self, Py_buffer *info, int flags): + /* "View.MemoryView":518 + * * if flags & PyBUF_STRIDES: * info.shape = self.view.shape # <<<<<<<<<<<<<< * else: * info.shape = NULL */ - __pyx_t_2 = __pyx_v_self->view.shape; - __pyx_v_info->shape = __pyx_t_2; + __pyx_t_4 = __pyx_v_self->view.shape; + __pyx_v_info->shape = __pyx_t_4; - /* "View.MemoryView":508 - * @cname('getbuffer') - * def __getbuffer__(self, Py_buffer *info, int flags): + /* "View.MemoryView":517 + * raise ValueError("Cannot create writable memory view from read-only memoryview") + * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.shape = self.view.shape * else: */ - goto __pyx_L3; + goto __pyx_L6; } - /* "View.MemoryView":511 + /* "View.MemoryView":520 * info.shape = self.view.shape * else: * info.shape = NULL # <<<<<<<<<<<<<< @@ -7455,9 +8299,9 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu /*else*/ { __pyx_v_info->shape = NULL; } - __pyx_L3:; + __pyx_L6:; - /* "View.MemoryView":513 + /* "View.MemoryView":522 * info.shape = NULL * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< @@ -7467,27 +8311,27 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); if (__pyx_t_1) { - /* "View.MemoryView":514 + /* "View.MemoryView":523 * * if flags & PyBUF_STRIDES: * info.strides = self.view.strides # <<<<<<<<<<<<<< * else: * info.strides = NULL */ - __pyx_t_2 = __pyx_v_self->view.strides; - __pyx_v_info->strides = __pyx_t_2; + __pyx_t_4 = __pyx_v_self->view.strides; + __pyx_v_info->strides = __pyx_t_4; - /* "View.MemoryView":513 + /* "View.MemoryView":522 * info.shape = NULL * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.strides = self.view.strides * else: */ - goto __pyx_L4; + goto __pyx_L7; } - /* "View.MemoryView":516 + /* "View.MemoryView":525 * info.strides = self.view.strides * else: * info.strides = NULL # <<<<<<<<<<<<<< @@ -7497,9 +8341,9 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu /*else*/ { __pyx_v_info->strides = NULL; } - __pyx_L4:; + __pyx_L7:; - /* "View.MemoryView":518 + /* "View.MemoryView":527 * info.strides = NULL * * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< @@ -7509,27 +8353,27 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu __pyx_t_1 = ((__pyx_v_flags & PyBUF_INDIRECT) != 0); if (__pyx_t_1) { - /* "View.MemoryView":519 + /* "View.MemoryView":528 * * if flags & PyBUF_INDIRECT: * info.suboffsets = self.view.suboffsets # <<<<<<<<<<<<<< * else: * info.suboffsets = NULL */ - __pyx_t_2 = __pyx_v_self->view.suboffsets; - __pyx_v_info->suboffsets = __pyx_t_2; + __pyx_t_4 = __pyx_v_self->view.suboffsets; + __pyx_v_info->suboffsets = __pyx_t_4; - /* "View.MemoryView":518 + /* "View.MemoryView":527 * info.strides = NULL * * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< * info.suboffsets = self.view.suboffsets * else: */ - goto __pyx_L5; + goto __pyx_L8; } - /* "View.MemoryView":521 + /* "View.MemoryView":530 * info.suboffsets = self.view.suboffsets * else: * info.suboffsets = NULL # <<<<<<<<<<<<<< @@ -7539,9 +8383,9 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu /*else*/ { __pyx_v_info->suboffsets = NULL; } - __pyx_L5:; + __pyx_L8:; - /* "View.MemoryView":523 + /* "View.MemoryView":532 * info.suboffsets = NULL * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< @@ -7551,27 +8395,27 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { - /* "View.MemoryView":524 + /* "View.MemoryView":533 * * if flags & PyBUF_FORMAT: * info.format = self.view.format # <<<<<<<<<<<<<< * else: * info.format = NULL */ - __pyx_t_3 = __pyx_v_self->view.format; - __pyx_v_info->format = __pyx_t_3; + __pyx_t_5 = __pyx_v_self->view.format; + __pyx_v_info->format = __pyx_t_5; - /* "View.MemoryView":523 + /* "View.MemoryView":532 * info.suboffsets = NULL * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.view.format * else: */ - goto __pyx_L6; + goto __pyx_L9; } - /* "View.MemoryView":526 + /* "View.MemoryView":535 * info.format = self.view.format * else: * info.format = NULL # <<<<<<<<<<<<<< @@ -7581,60 +8425,61 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu /*else*/ { __pyx_v_info->format = NULL; } - __pyx_L6:; + __pyx_L9:; - /* "View.MemoryView":528 + /* "View.MemoryView":537 * info.format = NULL * * info.buf = self.view.buf # <<<<<<<<<<<<<< * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize */ - __pyx_t_4 = __pyx_v_self->view.buf; - __pyx_v_info->buf = __pyx_t_4; + __pyx_t_6 = __pyx_v_self->view.buf; + __pyx_v_info->buf = __pyx_t_6; - /* "View.MemoryView":529 + /* "View.MemoryView":538 * * info.buf = self.view.buf * info.ndim = self.view.ndim # <<<<<<<<<<<<<< * info.itemsize = self.view.itemsize * info.len = self.view.len */ - __pyx_t_5 = __pyx_v_self->view.ndim; - __pyx_v_info->ndim = __pyx_t_5; + __pyx_t_7 = __pyx_v_self->view.ndim; + __pyx_v_info->ndim = __pyx_t_7; - /* "View.MemoryView":530 + /* "View.MemoryView":539 * info.buf = self.view.buf * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize # <<<<<<<<<<<<<< * info.len = self.view.len - * info.readonly = 0 + * info.readonly = self.view.readonly */ - __pyx_t_6 = __pyx_v_self->view.itemsize; - __pyx_v_info->itemsize = __pyx_t_6; + __pyx_t_8 = __pyx_v_self->view.itemsize; + __pyx_v_info->itemsize = __pyx_t_8; - /* "View.MemoryView":531 + /* "View.MemoryView":540 * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize * info.len = self.view.len # <<<<<<<<<<<<<< - * info.readonly = 0 + * info.readonly = self.view.readonly * info.obj = self */ - __pyx_t_6 = __pyx_v_self->view.len; - __pyx_v_info->len = __pyx_t_6; + __pyx_t_8 = __pyx_v_self->view.len; + __pyx_v_info->len = __pyx_t_8; - /* "View.MemoryView":532 + /* "View.MemoryView":541 * info.itemsize = self.view.itemsize * info.len = self.view.len - * info.readonly = 0 # <<<<<<<<<<<<<< + * info.readonly = self.view.readonly # <<<<<<<<<<<<<< * info.obj = self * */ - __pyx_v_info->readonly = 0; + __pyx_t_1 = __pyx_v_self->view.readonly; + __pyx_v_info->readonly = __pyx_t_1; - /* "View.MemoryView":533 + /* "View.MemoryView":542 * info.len = self.view.len - * info.readonly = 0 + * info.readonly = self.view.readonly * info.obj = self # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") @@ -7645,25 +8490,37 @@ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbu __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); - /* "View.MemoryView":507 + /* "View.MemoryView":513 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< - * if flags & PyBUF_STRIDES: - * info.shape = self.view.shape + * if flags & PyBUF_WRITABLE and self.view.readonly: + * raise ValueError("Cannot create writable memory view from read-only memoryview") */ /* function exit code */ __pyx_r = 0; - if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) { - __Pyx_GOTREF(Py_None); - __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + if (__pyx_v_info->obj != NULL) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + goto __pyx_L2; + __pyx_L0:; + if (__pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } + __pyx_L2:; __Pyx_RefNannyFinishContext(); return __pyx_r; } -/* "View.MemoryView":539 +/* "View.MemoryView":548 * * @property * def T(self): # <<<<<<<<<<<<<< @@ -7692,29 +8549,29 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct _ int __pyx_t_2; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":540 + /* "View.MemoryView":549 * @property * def T(self): * cdef _memoryviewslice result = memoryview_copy(self) # <<<<<<<<<<<<<< * transpose_memslice(&result.from_slice) * return result */ - __pyx_t_1 = __pyx_memoryview_copy_object(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 540, __pyx_L1_error) + __pyx_t_1 = __pyx_memoryview_copy_object(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 549, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_memoryviewslice_type))))) __PYX_ERR(1, 540, __pyx_L1_error) + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_memoryviewslice_type))))) __PYX_ERR(1, 549, __pyx_L1_error) __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":541 + /* "View.MemoryView":550 * def T(self): * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) # <<<<<<<<<<<<<< * return result * */ - __pyx_t_2 = __pyx_memslice_transpose((&__pyx_v_result->from_slice)); if (unlikely(__pyx_t_2 == 0)) __PYX_ERR(1, 541, __pyx_L1_error) + __pyx_t_2 = __pyx_memslice_transpose((&__pyx_v_result->from_slice)); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(1, 550, __pyx_L1_error) - /* "View.MemoryView":542 + /* "View.MemoryView":551 * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) * return result # <<<<<<<<<<<<<< @@ -7726,7 +8583,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct _ __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; - /* "View.MemoryView":539 + /* "View.MemoryView":548 * * @property * def T(self): # <<<<<<<<<<<<<< @@ -7746,7 +8603,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct _ return __pyx_r; } -/* "View.MemoryView":545 +/* "View.MemoryView":554 * * @property * def base(self): # <<<<<<<<<<<<<< @@ -7772,7 +8629,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struc __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":546 + /* "View.MemoryView":555 * @property * def base(self): * return self.obj # <<<<<<<<<<<<<< @@ -7784,7 +8641,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struc __pyx_r = __pyx_v_self->obj; goto __pyx_L0; - /* "View.MemoryView":545 + /* "View.MemoryView":554 * * @property * def base(self): # <<<<<<<<<<<<<< @@ -7799,7 +8656,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struc return __pyx_r; } -/* "View.MemoryView":549 +/* "View.MemoryView":558 * * @property * def shape(self): # <<<<<<<<<<<<<< @@ -7831,7 +8688,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(stru PyObject *__pyx_t_5 = NULL; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":550 + /* "View.MemoryView":559 * @property * def shape(self): * return tuple([length for length in self.view.shape[:self.view.ndim]]) # <<<<<<<<<<<<<< @@ -7839,25 +8696,25 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(stru * @property */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 550, __pyx_L1_error) + __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 559, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); for (__pyx_t_4 = __pyx_v_self->view.shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { __pyx_t_2 = __pyx_t_4; __pyx_v_length = (__pyx_t_2[0]); - __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_length); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 550, __pyx_L1_error) + __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_length); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 559, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_t_5))) __PYX_ERR(1, 550, __pyx_L1_error) + if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_t_5))) __PYX_ERR(1, 559, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } - __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_1)); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 550, __pyx_L1_error) + __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_1)); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 559, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; - /* "View.MemoryView":549 + /* "View.MemoryView":558 * * @property * def shape(self): # <<<<<<<<<<<<<< @@ -7877,7 +8734,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(stru return __pyx_r; } -/* "View.MemoryView":553 +/* "View.MemoryView":562 * * @property * def strides(self): # <<<<<<<<<<<<<< @@ -7910,7 +8767,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(st PyObject *__pyx_t_6 = NULL; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":554 + /* "View.MemoryView":563 * @property * def strides(self): * if self.view.strides == NULL: # <<<<<<<<<<<<<< @@ -7918,22 +8775,22 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(st * raise ValueError("Buffer view does not expose strides") */ __pyx_t_1 = ((__pyx_v_self->view.strides == NULL) != 0); - if (__pyx_t_1) { + if (unlikely(__pyx_t_1)) { - /* "View.MemoryView":556 + /* "View.MemoryView":565 * if self.view.strides == NULL: * * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) */ - __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 556, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__12, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 565, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __PYX_ERR(1, 556, __pyx_L1_error) + __PYX_ERR(1, 565, __pyx_L1_error) - /* "View.MemoryView":554 + /* "View.MemoryView":563 * @property * def strides(self): * if self.view.strides == NULL: # <<<<<<<<<<<<<< @@ -7942,7 +8799,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(st */ } - /* "View.MemoryView":558 + /* "View.MemoryView":567 * raise ValueError("Buffer view does not expose strides") * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) # <<<<<<<<<<<<<< @@ -7950,25 +8807,25 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(st * @property */ __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 558, __pyx_L1_error) + __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 567, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = (__pyx_v_self->view.strides + __pyx_v_self->view.ndim); for (__pyx_t_5 = __pyx_v_self->view.strides; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { __pyx_t_3 = __pyx_t_5; __pyx_v_stride = (__pyx_t_3[0]); - __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_stride); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 558, __pyx_L1_error) + __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_stride); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 567, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_6))) __PYX_ERR(1, 558, __pyx_L1_error) + if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_6))) __PYX_ERR(1, 567, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } - __pyx_t_6 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 558, __pyx_L1_error) + __pyx_t_6 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 567, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L0; - /* "View.MemoryView":553 + /* "View.MemoryView":562 * * @property * def strides(self): # <<<<<<<<<<<<<< @@ -7988,7 +8845,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(st return __pyx_r; } -/* "View.MemoryView":561 +/* "View.MemoryView":570 * * @property * def suboffsets(self): # <<<<<<<<<<<<<< @@ -8021,7 +8878,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get_ Py_ssize_t *__pyx_t_6; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":562 + /* "View.MemoryView":571 * @property * def suboffsets(self): * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< @@ -8031,7 +8888,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get_ __pyx_t_1 = ((__pyx_v_self->view.suboffsets == NULL) != 0); if (__pyx_t_1) { - /* "View.MemoryView":563 + /* "View.MemoryView":572 * def suboffsets(self): * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< @@ -8039,16 +8896,16 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get_ * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) */ __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 563, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 572, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyNumber_Multiply(__pyx_tuple__9, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 563, __pyx_L1_error) + __pyx_t_3 = PyNumber_Multiply(__pyx_tuple__13, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 572, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; - /* "View.MemoryView":562 + /* "View.MemoryView":571 * @property * def suboffsets(self): * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< @@ -8057,7 +8914,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get_ */ } - /* "View.MemoryView":565 + /* "View.MemoryView":574 * return (-1,) * self.view.ndim * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) # <<<<<<<<<<<<<< @@ -8065,25 +8922,25 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get_ * @property */ __Pyx_XDECREF(__pyx_r); - __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 565, __pyx_L1_error) + __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = (__pyx_v_self->view.suboffsets + __pyx_v_self->view.ndim); for (__pyx_t_6 = __pyx_v_self->view.suboffsets; __pyx_t_6 < __pyx_t_5; __pyx_t_6++) { __pyx_t_4 = __pyx_t_6; __pyx_v_suboffset = (__pyx_t_4[0]); - __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_suboffset); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 565, __pyx_L1_error) + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_suboffset); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_3, (PyObject*)__pyx_t_2))) __PYX_ERR(1, 565, __pyx_L1_error) + if (unlikely(__Pyx_ListComp_Append(__pyx_t_3, (PyObject*)__pyx_t_2))) __PYX_ERR(1, 574, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } - __pyx_t_2 = PyList_AsTuple(((PyObject*)__pyx_t_3)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 565, __pyx_L1_error) + __pyx_t_2 = PyList_AsTuple(((PyObject*)__pyx_t_3)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; - /* "View.MemoryView":561 + /* "View.MemoryView":570 * * @property * def suboffsets(self): # <<<<<<<<<<<<<< @@ -8103,7 +8960,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get_ return __pyx_r; } -/* "View.MemoryView":568 +/* "View.MemoryView":577 * * @property * def ndim(self): # <<<<<<<<<<<<<< @@ -8130,7 +8987,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struc PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":569 + /* "View.MemoryView":578 * @property * def ndim(self): * return self.view.ndim # <<<<<<<<<<<<<< @@ -8138,13 +8995,13 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struc * @property */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 569, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 578, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; - /* "View.MemoryView":568 + /* "View.MemoryView":577 * * @property * def ndim(self): # <<<<<<<<<<<<<< @@ -8163,7 +9020,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struc return __pyx_r; } -/* "View.MemoryView":572 +/* "View.MemoryView":581 * * @property * def itemsize(self): # <<<<<<<<<<<<<< @@ -8190,7 +9047,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(s PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":573 + /* "View.MemoryView":582 * @property * def itemsize(self): * return self.view.itemsize # <<<<<<<<<<<<<< @@ -8198,13 +9055,13 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(s * @property */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 573, __pyx_L1_error) + __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 582, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; - /* "View.MemoryView":572 + /* "View.MemoryView":581 * * @property * def itemsize(self): # <<<<<<<<<<<<<< @@ -8223,7 +9080,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(s return __pyx_r; } -/* "View.MemoryView":576 +/* "View.MemoryView":585 * * @property * def nbytes(self): # <<<<<<<<<<<<<< @@ -8252,7 +9109,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(str PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":577 + /* "View.MemoryView":586 * @property * def nbytes(self): * return self.size * self.view.itemsize # <<<<<<<<<<<<<< @@ -8260,11 +9117,11 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(str * @property */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 577, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 586, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 577, __pyx_L1_error) + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 586, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 577, __pyx_L1_error) + __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 586, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; @@ -8272,7 +9129,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(str __pyx_t_3 = 0; goto __pyx_L0; - /* "View.MemoryView":576 + /* "View.MemoryView":585 * * @property * def nbytes(self): # <<<<<<<<<<<<<< @@ -8293,7 +9150,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(str return __pyx_r; } -/* "View.MemoryView":580 +/* "View.MemoryView":589 * * @property * def size(self): # <<<<<<<<<<<<<< @@ -8327,7 +9184,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struc PyObject *__pyx_t_6 = NULL; __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":581 + /* "View.MemoryView":590 * @property * def size(self): * if self._size is None: # <<<<<<<<<<<<<< @@ -8338,7 +9195,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struc __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { - /* "View.MemoryView":582 + /* "View.MemoryView":591 * def size(self): * if self._size is None: * result = 1 # <<<<<<<<<<<<<< @@ -8348,7 +9205,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struc __Pyx_INCREF(__pyx_int_1); __pyx_v_result = __pyx_int_1; - /* "View.MemoryView":584 + /* "View.MemoryView":593 * result = 1 * * for length in self.view.shape[:self.view.ndim]: # <<<<<<<<<<<<<< @@ -8358,25 +9215,25 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struc __pyx_t_4 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); for (__pyx_t_5 = __pyx_v_self->view.shape; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { __pyx_t_3 = __pyx_t_5; - __pyx_t_6 = PyInt_FromSsize_t((__pyx_t_3[0])); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 584, __pyx_L1_error) + __pyx_t_6 = PyInt_FromSsize_t((__pyx_t_3[0])); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_6); __pyx_t_6 = 0; - /* "View.MemoryView":585 + /* "View.MemoryView":594 * * for length in self.view.shape[:self.view.ndim]: * result *= length # <<<<<<<<<<<<<< * * self._size = result */ - __pyx_t_6 = PyNumber_InPlaceMultiply(__pyx_v_result, __pyx_v_length); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 585, __pyx_L1_error) + __pyx_t_6 = PyNumber_InPlaceMultiply(__pyx_v_result, __pyx_v_length); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 594, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF_SET(__pyx_v_result, __pyx_t_6); __pyx_t_6 = 0; } - /* "View.MemoryView":587 + /* "View.MemoryView":596 * result *= length * * self._size = result # <<<<<<<<<<<<<< @@ -8389,7 +9246,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struc __Pyx_DECREF(__pyx_v_self->_size); __pyx_v_self->_size = __pyx_v_result; - /* "View.MemoryView":581 + /* "View.MemoryView":590 * @property * def size(self): * if self._size is None: # <<<<<<<<<<<<<< @@ -8398,7 +9255,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struc */ } - /* "View.MemoryView":589 + /* "View.MemoryView":598 * self._size = result * * return self._size # <<<<<<<<<<<<<< @@ -8410,7 +9267,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struc __pyx_r = __pyx_v_self->_size; goto __pyx_L0; - /* "View.MemoryView":580 + /* "View.MemoryView":589 * * @property * def size(self): # <<<<<<<<<<<<<< @@ -8431,7 +9288,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struc return __pyx_r; } -/* "View.MemoryView":591 +/* "View.MemoryView":600 * return self._size * * def __len__(self): # <<<<<<<<<<<<<< @@ -8458,7 +9315,7 @@ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_1 int __pyx_t_1; __Pyx_RefNannySetupContext("__len__", 0); - /* "View.MemoryView":592 + /* "View.MemoryView":601 * * def __len__(self): * if self.view.ndim >= 1: # <<<<<<<<<<<<<< @@ -8468,7 +9325,7 @@ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_1 __pyx_t_1 = ((__pyx_v_self->view.ndim >= 1) != 0); if (__pyx_t_1) { - /* "View.MemoryView":593 + /* "View.MemoryView":602 * def __len__(self): * if self.view.ndim >= 1: * return self.view.shape[0] # <<<<<<<<<<<<<< @@ -8478,7 +9335,7 @@ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_1 __pyx_r = (__pyx_v_self->view.shape[0]); goto __pyx_L0; - /* "View.MemoryView":592 + /* "View.MemoryView":601 * * def __len__(self): * if self.view.ndim >= 1: # <<<<<<<<<<<<<< @@ -8487,7 +9344,7 @@ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_1 */ } - /* "View.MemoryView":595 + /* "View.MemoryView":604 * return self.view.shape[0] * * return 0 # <<<<<<<<<<<<<< @@ -8497,7 +9354,7 @@ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_1 __pyx_r = 0; goto __pyx_L0; - /* "View.MemoryView":591 + /* "View.MemoryView":600 * return self._size * * def __len__(self): # <<<<<<<<<<<<<< @@ -8511,7 +9368,7 @@ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_1 return __pyx_r; } -/* "View.MemoryView":597 +/* "View.MemoryView":606 * return 0 * * def __repr__(self): # <<<<<<<<<<<<<< @@ -8540,7 +9397,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12 PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("__repr__", 0); - /* "View.MemoryView":598 + /* "View.MemoryView":607 * * def __repr__(self): * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< @@ -8548,54 +9405,48 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12 * */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 598, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 607, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 598, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 607, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 598, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 607, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - /* "View.MemoryView":599 + /* "View.MemoryView":608 * def __repr__(self): * return "" % (self.base.__class__.__name__, * id(self)) # <<<<<<<<<<<<<< * * def __str__(self): */ - __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 599, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_builtin_id, ((PyObject *)__pyx_v_self)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 608, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __Pyx_INCREF(((PyObject *)__pyx_v_self)); - __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); - PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_self)); - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_id, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 599, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - /* "View.MemoryView":598 + /* "View.MemoryView":607 * * def __repr__(self): * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< * id(self)) * */ - __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 598, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 607, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); - PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_2); __pyx_t_1 = 0; - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 598, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_r = __pyx_t_3; - __pyx_t_3 = 0; + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 607, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; goto __pyx_L0; - /* "View.MemoryView":597 + /* "View.MemoryView":606 * return 0 * * def __repr__(self): # <<<<<<<<<<<<<< @@ -8616,7 +9467,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12 return __pyx_r; } -/* "View.MemoryView":601 +/* "View.MemoryView":610 * id(self)) * * def __str__(self): # <<<<<<<<<<<<<< @@ -8644,7 +9495,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14 PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("__str__", 0); - /* "View.MemoryView":602 + /* "View.MemoryView":611 * * def __str__(self): * return "" % (self.base.__class__.__name__,) # <<<<<<<<<<<<<< @@ -8652,27 +9503,27 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14 * */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 602, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 611, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 602, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 611, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 602, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 611, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 602, __pyx_L1_error) + __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 611, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_object, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 602, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_object, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 611, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; - /* "View.MemoryView":601 + /* "View.MemoryView":610 * id(self)) * * def __str__(self): # <<<<<<<<<<<<<< @@ -8692,7 +9543,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14 return __pyx_r; } -/* "View.MemoryView":605 +/* "View.MemoryView":614 * * * def is_c_contig(self): # <<<<<<<<<<<<<< @@ -8721,7 +9572,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16 PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("is_c_contig", 0); - /* "View.MemoryView":608 + /* "View.MemoryView":617 * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< @@ -8730,7 +9581,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16 */ __pyx_v_mslice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); - /* "View.MemoryView":609 + /* "View.MemoryView":618 * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) * return slice_is_contig(mslice[0], 'C', self.view.ndim) # <<<<<<<<<<<<<< @@ -8738,13 +9589,13 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16 * def is_f_contig(self): */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'C', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 609, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'C', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; - /* "View.MemoryView":605 + /* "View.MemoryView":614 * * * def is_c_contig(self): # <<<<<<<<<<<<<< @@ -8763,7 +9614,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16 return __pyx_r; } -/* "View.MemoryView":611 +/* "View.MemoryView":620 * return slice_is_contig(mslice[0], 'C', self.view.ndim) * * def is_f_contig(self): # <<<<<<<<<<<<<< @@ -8792,7 +9643,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18 PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("is_f_contig", 0); - /* "View.MemoryView":614 + /* "View.MemoryView":623 * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< @@ -8801,7 +9652,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18 */ __pyx_v_mslice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); - /* "View.MemoryView":615 + /* "View.MemoryView":624 * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) * return slice_is_contig(mslice[0], 'F', self.view.ndim) # <<<<<<<<<<<<<< @@ -8809,13 +9660,13 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18 * def copy(self): */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'F', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 615, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'F', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 624, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; - /* "View.MemoryView":611 + /* "View.MemoryView":620 * return slice_is_contig(mslice[0], 'C', self.view.ndim) * * def is_f_contig(self): # <<<<<<<<<<<<<< @@ -8834,7 +9685,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18 return __pyx_r; } -/* "View.MemoryView":617 +/* "View.MemoryView":626 * return slice_is_contig(mslice[0], 'F', self.view.ndim) * * def copy(self): # <<<<<<<<<<<<<< @@ -8864,7 +9715,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20 PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("copy", 0); - /* "View.MemoryView":619 + /* "View.MemoryView":628 * def copy(self): * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS # <<<<<<<<<<<<<< @@ -8873,7 +9724,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20 */ __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_F_CONTIGUOUS)); - /* "View.MemoryView":621 + /* "View.MemoryView":630 * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS * * slice_copy(self, &mslice) # <<<<<<<<<<<<<< @@ -8882,17 +9733,17 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20 */ __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_mslice)); - /* "View.MemoryView":622 + /* "View.MemoryView":631 * * slice_copy(self, &mslice) * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, # <<<<<<<<<<<<<< * self.view.itemsize, * flags|PyBUF_C_CONTIGUOUS, */ - __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_mslice), ((char *)"c"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_C_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(1, 622, __pyx_L1_error) + __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_mslice), ((char *)"c"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_C_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(1, 631, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; - /* "View.MemoryView":627 + /* "View.MemoryView":636 * self.dtype_is_object) * * return memoryview_copy_from_slice(self, &mslice) # <<<<<<<<<<<<<< @@ -8900,13 +9751,13 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20 * def copy_fortran(self): */ __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_mslice)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 627, __pyx_L1_error) + __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_mslice)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 636, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; - /* "View.MemoryView":617 + /* "View.MemoryView":626 * return slice_is_contig(mslice[0], 'F', self.view.ndim) * * def copy(self): # <<<<<<<<<<<<<< @@ -8925,7 +9776,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20 return __pyx_r; } -/* "View.MemoryView":629 +/* "View.MemoryView":638 * return memoryview_copy_from_slice(self, &mslice) * * def copy_fortran(self): # <<<<<<<<<<<<<< @@ -8956,7 +9807,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22 PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("copy_fortran", 0); - /* "View.MemoryView":631 + /* "View.MemoryView":640 * def copy_fortran(self): * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS # <<<<<<<<<<<<<< @@ -8965,7 +9816,7 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22 */ __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_C_CONTIGUOUS)); - /* "View.MemoryView":633 + /* "View.MemoryView":642 * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS * * slice_copy(self, &src) # <<<<<<<<<<<<<< @@ -8974,17 +9825,17 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22 */ __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_src)); - /* "View.MemoryView":634 + /* "View.MemoryView":643 * * slice_copy(self, &src) * dst = slice_copy_contig(&src, "fortran", self.view.ndim, # <<<<<<<<<<<<<< * self.view.itemsize, * flags|PyBUF_F_CONTIGUOUS, */ - __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_src), ((char *)"fortran"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_F_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(1, 634, __pyx_L1_error) + __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_src), ((char *)"fortran"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_F_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(1, 643, __pyx_L1_error) __pyx_v_dst = __pyx_t_1; - /* "View.MemoryView":639 + /* "View.MemoryView":648 * self.dtype_is_object) * * return memoryview_copy_from_slice(self, &dst) # <<<<<<<<<<<<<< @@ -8992,13 +9843,13 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22 * */ __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_dst)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 639, __pyx_L1_error) + __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_dst)); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 648, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; - /* "View.MemoryView":629 + /* "View.MemoryView":638 * return memoryview_copy_from_slice(self, &mslice) * * def copy_fortran(self): # <<<<<<<<<<<<<< @@ -9017,61 +9868,168 @@ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22 return __pyx_r; } -/* "View.MemoryView":643 - * - * @cname('__pyx_memoryview_new') - * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< - * cdef memoryview result = memoryview(o, flags, dtype_is_object) - * result.typeinfo = typeinfo +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): */ -static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, int __pyx_v_dtype_is_object, __Pyx_TypeInfo *__pyx_v_typeinfo) { - struct __pyx_memoryview_obj *__pyx_v_result = 0; +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_memoryview___reduce_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - __Pyx_RefNannySetupContext("memoryview_cwrapper", 0); + __Pyx_RefNannySetupContext("__reduce_cython__", 0); - /* "View.MemoryView":644 - * @cname('__pyx_memoryview_new') - * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): - * cdef memoryview result = memoryview(o, flags, dtype_is_object) # <<<<<<<<<<<<<< - * result.typeinfo = typeinfo - * return result + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 644, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__14, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 644, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 644, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - __Pyx_INCREF(__pyx_v_o); - __Pyx_GIVEREF(__pyx_v_o); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_o); - __Pyx_GIVEREF(__pyx_t_1); - PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_2); - PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); - __pyx_t_1 = 0; - __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 644, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_result = ((struct __pyx_memoryview_obj *)__pyx_t_2); - __pyx_t_2 = 0; + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 2, __pyx_L1_error) - /* "View.MemoryView":645 - * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): - * cdef memoryview result = memoryview(o, flags, dtype_is_object) - * result.typeinfo = typeinfo # <<<<<<<<<<<<<< - * return result + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_memoryview_2__setstate_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__15, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 4, __pyx_L1_error) + + /* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":652 + * + * @cname('__pyx_memoryview_new') + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo + */ + +static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, int __pyx_v_dtype_is_object, __Pyx_TypeInfo *__pyx_v_typeinfo) { + struct __pyx_memoryview_obj *__pyx_v_result = 0; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("memoryview_cwrapper", 0); + + /* "View.MemoryView":653 + * @cname('__pyx_memoryview_new') + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): + * cdef memoryview result = memoryview(o, flags, dtype_is_object) # <<<<<<<<<<<<<< + * result.typeinfo = typeinfo + * return result + */ + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 653, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 653, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 653, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(__pyx_v_o); + __Pyx_GIVEREF(__pyx_v_o); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_o); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); + __pyx_t_1 = 0; + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 653, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result = ((struct __pyx_memoryview_obj *)__pyx_t_2); + __pyx_t_2 = 0; + + /* "View.MemoryView":654 + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo # <<<<<<<<<<<<<< + * return result * */ __pyx_v_result->typeinfo = __pyx_v_typeinfo; - /* "View.MemoryView":646 + /* "View.MemoryView":655 * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo * return result # <<<<<<<<<<<<<< @@ -9083,7 +10041,7 @@ static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, in __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; - /* "View.MemoryView":643 + /* "View.MemoryView":652 * * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< @@ -9105,7 +10063,7 @@ static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, in return __pyx_r; } -/* "View.MemoryView":649 +/* "View.MemoryView":658 * * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< @@ -9119,7 +10077,7 @@ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { int __pyx_t_1; __Pyx_RefNannySetupContext("memoryview_check", 0); - /* "View.MemoryView":650 + /* "View.MemoryView":659 * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): * return isinstance(o, memoryview) # <<<<<<<<<<<<<< @@ -9130,7 +10088,7 @@ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { __pyx_r = __pyx_t_1; goto __pyx_L0; - /* "View.MemoryView":649 + /* "View.MemoryView":658 * * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< @@ -9144,7 +10102,7 @@ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { return __pyx_r; } -/* "View.MemoryView":652 +/* "View.MemoryView":661 * return isinstance(o, memoryview) * * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< @@ -9175,7 +10133,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { PyObject *__pyx_t_11 = NULL; __Pyx_RefNannySetupContext("_unellipsify", 0); - /* "View.MemoryView":657 + /* "View.MemoryView":666 * full slices. * """ * if not isinstance(index, tuple): # <<<<<<<<<<<<<< @@ -9186,14 +10144,14 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":658 + /* "View.MemoryView":667 * """ * if not isinstance(index, tuple): * tup = (index,) # <<<<<<<<<<<<<< * else: * tup = index */ - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 658, __pyx_L1_error) + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 667, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_index); __Pyx_GIVEREF(__pyx_v_index); @@ -9201,7 +10159,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_v_tup = __pyx_t_3; __pyx_t_3 = 0; - /* "View.MemoryView":657 + /* "View.MemoryView":666 * full slices. * """ * if not isinstance(index, tuple): # <<<<<<<<<<<<<< @@ -9211,7 +10169,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { goto __pyx_L3; } - /* "View.MemoryView":660 + /* "View.MemoryView":669 * tup = (index,) * else: * tup = index # <<<<<<<<<<<<<< @@ -9224,19 +10182,19 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { } __pyx_L3:; - /* "View.MemoryView":662 + /* "View.MemoryView":671 * tup = index * * result = [] # <<<<<<<<<<<<<< * have_slices = False * seen_ellipsis = False */ - __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 662, __pyx_L1_error) + __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 671, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_v_result = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; - /* "View.MemoryView":663 + /* "View.MemoryView":672 * * result = [] * have_slices = False # <<<<<<<<<<<<<< @@ -9245,7 +10203,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { */ __pyx_v_have_slices = 0; - /* "View.MemoryView":664 + /* "View.MemoryView":673 * result = [] * have_slices = False * seen_ellipsis = False # <<<<<<<<<<<<<< @@ -9254,7 +10212,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { */ __pyx_v_seen_ellipsis = 0; - /* "View.MemoryView":665 + /* "View.MemoryView":674 * have_slices = False * seen_ellipsis = False * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< @@ -9267,26 +10225,26 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_t_4 = __pyx_v_tup; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = 0; __pyx_t_6 = NULL; } else { - __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_v_tup); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 665, __pyx_L1_error) + __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_v_tup); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 674, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 665, __pyx_L1_error) + __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 674, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_6)) { if (likely(PyList_CheckExact(__pyx_t_4))) { if (__pyx_t_5 >= PyList_GET_SIZE(__pyx_t_4)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_7 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(1, 665, __pyx_L1_error) + __pyx_t_7 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(1, 674, __pyx_L1_error) #else - __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 665, __pyx_L1_error) + __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 674, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); #endif } else { if (__pyx_t_5 >= PyTuple_GET_SIZE(__pyx_t_4)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(1, 665, __pyx_L1_error) + __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(1, 674, __pyx_L1_error) #else - __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 665, __pyx_L1_error) + __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 674, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); #endif } @@ -9295,8 +10253,8 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { if (unlikely(!__pyx_t_7)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else __PYX_ERR(1, 665, __pyx_L1_error) + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(1, 674, __pyx_L1_error) } break; } @@ -9306,13 +10264,13 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_t_7 = 0; __Pyx_INCREF(__pyx_t_3); __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_3); - __pyx_t_7 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 665, __pyx_L1_error) + __pyx_t_7 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 674, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = __pyx_t_7; __pyx_t_7 = 0; - /* "View.MemoryView":666 + /* "View.MemoryView":675 * seen_ellipsis = False * for idx, item in enumerate(tup): * if item is Ellipsis: # <<<<<<<<<<<<<< @@ -9323,7 +10281,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { - /* "View.MemoryView":667 + /* "View.MemoryView":676 * for idx, item in enumerate(tup): * if item is Ellipsis: * if not seen_ellipsis: # <<<<<<<<<<<<<< @@ -9333,27 +10291,27 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_t_1 = ((!(__pyx_v_seen_ellipsis != 0)) != 0); if (__pyx_t_1) { - /* "View.MemoryView":668 + /* "View.MemoryView":677 * if item is Ellipsis: * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< * seen_ellipsis = True * else: */ - __pyx_t_8 = PyObject_Length(__pyx_v_tup); if (unlikely(__pyx_t_8 == -1)) __PYX_ERR(1, 668, __pyx_L1_error) - __pyx_t_7 = PyList_New(1 * ((((__pyx_v_ndim - __pyx_t_8) + 1)<0) ? 0:((__pyx_v_ndim - __pyx_t_8) + 1))); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 668, __pyx_L1_error) + __pyx_t_8 = PyObject_Length(__pyx_v_tup); if (unlikely(__pyx_t_8 == ((Py_ssize_t)-1))) __PYX_ERR(1, 677, __pyx_L1_error) + __pyx_t_7 = PyList_New(1 * ((((__pyx_v_ndim - __pyx_t_8) + 1)<0) ? 0:((__pyx_v_ndim - __pyx_t_8) + 1))); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 677, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); { Py_ssize_t __pyx_temp; for (__pyx_temp=0; __pyx_temp < ((__pyx_v_ndim - __pyx_t_8) + 1); __pyx_temp++) { - __Pyx_INCREF(__pyx_slice__10); - __Pyx_GIVEREF(__pyx_slice__10); - PyList_SET_ITEM(__pyx_t_7, __pyx_temp, __pyx_slice__10); + __Pyx_INCREF(__pyx_slice__16); + __Pyx_GIVEREF(__pyx_slice__16); + PyList_SET_ITEM(__pyx_t_7, __pyx_temp, __pyx_slice__16); } } - __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_7); if (unlikely(__pyx_t_9 == -1)) __PYX_ERR(1, 668, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_7); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(1, 677, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - /* "View.MemoryView":669 + /* "View.MemoryView":678 * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True # <<<<<<<<<<<<<< @@ -9362,7 +10320,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { */ __pyx_v_seen_ellipsis = 1; - /* "View.MemoryView":667 + /* "View.MemoryView":676 * for idx, item in enumerate(tup): * if item is Ellipsis: * if not seen_ellipsis: # <<<<<<<<<<<<<< @@ -9372,7 +10330,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { goto __pyx_L7; } - /* "View.MemoryView":671 + /* "View.MemoryView":680 * seen_ellipsis = True * else: * result.append(slice(None)) # <<<<<<<<<<<<<< @@ -9380,11 +10338,11 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { * else: */ /*else*/ { - __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_slice__11); if (unlikely(__pyx_t_9 == -1)) __PYX_ERR(1, 671, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_slice__17); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(1, 680, __pyx_L1_error) } __pyx_L7:; - /* "View.MemoryView":672 + /* "View.MemoryView":681 * else: * result.append(slice(None)) * have_slices = True # <<<<<<<<<<<<<< @@ -9393,7 +10351,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { */ __pyx_v_have_slices = 1; - /* "View.MemoryView":666 + /* "View.MemoryView":675 * seen_ellipsis = False * for idx, item in enumerate(tup): * if item is Ellipsis: # <<<<<<<<<<<<<< @@ -9403,7 +10361,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { goto __pyx_L6; } - /* "View.MemoryView":674 + /* "View.MemoryView":683 * have_slices = True * else: * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< @@ -9421,30 +10379,25 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_t_10 = ((!(PyIndex_Check(__pyx_v_item) != 0)) != 0); __pyx_t_1 = __pyx_t_10; __pyx_L9_bool_binop_done:; - if (__pyx_t_1) { + if (unlikely(__pyx_t_1)) { - /* "View.MemoryView":675 + /* "View.MemoryView":684 * else: * if not isinstance(item, slice) and not PyIndex_Check(item): * raise TypeError("Cannot index with type '%s'" % type(item)) # <<<<<<<<<<<<<< * * have_slices = have_slices or isinstance(item, slice) */ - __pyx_t_7 = __Pyx_PyString_Format(__pyx_kp_s_Cannot_index_with_type_s, ((PyObject *)Py_TYPE(__pyx_v_item))); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 675, __pyx_L1_error) + __pyx_t_7 = __Pyx_PyString_Format(__pyx_kp_s_Cannot_index_with_type_s, ((PyObject *)Py_TYPE(__pyx_v_item))); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 684, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); - __pyx_t_11 = PyTuple_New(1); if (unlikely(!__pyx_t_11)) __PYX_ERR(1, 675, __pyx_L1_error) + __pyx_t_11 = __Pyx_PyObject_CallOneArg(__pyx_builtin_TypeError, __pyx_t_7); if (unlikely(!__pyx_t_11)) __PYX_ERR(1, 684, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); - __Pyx_GIVEREF(__pyx_t_7); - PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_7); - __pyx_t_7 = 0; - __pyx_t_7 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_t_11, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 675, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_7); - __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; - __Pyx_Raise(__pyx_t_7, 0, 0, 0); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - __PYX_ERR(1, 675, __pyx_L1_error) + __Pyx_Raise(__pyx_t_11, 0, 0, 0); + __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; + __PYX_ERR(1, 684, __pyx_L1_error) - /* "View.MemoryView":674 + /* "View.MemoryView":683 * have_slices = True * else: * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< @@ -9453,7 +10406,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { */ } - /* "View.MemoryView":677 + /* "View.MemoryView":686 * raise TypeError("Cannot index with type '%s'" % type(item)) * * have_slices = have_slices or isinstance(item, slice) # <<<<<<<<<<<<<< @@ -9472,18 +10425,18 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_L11_bool_binop_done:; __pyx_v_have_slices = __pyx_t_1; - /* "View.MemoryView":678 + /* "View.MemoryView":687 * * have_slices = have_slices or isinstance(item, slice) * result.append(item) # <<<<<<<<<<<<<< * * nslices = ndim - len(result) */ - __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_v_item); if (unlikely(__pyx_t_9 == -1)) __PYX_ERR(1, 678, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_v_item); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(1, 687, __pyx_L1_error) } __pyx_L6:; - /* "View.MemoryView":665 + /* "View.MemoryView":674 * have_slices = False * seen_ellipsis = False * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< @@ -9494,17 +10447,17 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - /* "View.MemoryView":680 + /* "View.MemoryView":689 * result.append(item) * * nslices = ndim - len(result) # <<<<<<<<<<<<<< * if nslices: * result.extend([slice(None)] * nslices) */ - __pyx_t_5 = PyList_GET_SIZE(__pyx_v_result); if (unlikely(__pyx_t_5 == -1)) __PYX_ERR(1, 680, __pyx_L1_error) + __pyx_t_5 = PyList_GET_SIZE(__pyx_v_result); if (unlikely(__pyx_t_5 == ((Py_ssize_t)-1))) __PYX_ERR(1, 689, __pyx_L1_error) __pyx_v_nslices = (__pyx_v_ndim - __pyx_t_5); - /* "View.MemoryView":681 + /* "View.MemoryView":690 * * nslices = ndim - len(result) * if nslices: # <<<<<<<<<<<<<< @@ -9514,26 +10467,26 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __pyx_t_1 = (__pyx_v_nslices != 0); if (__pyx_t_1) { - /* "View.MemoryView":682 + /* "View.MemoryView":691 * nslices = ndim - len(result) * if nslices: * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< * * return have_slices or nslices, tuple(result) */ - __pyx_t_3 = PyList_New(1 * ((__pyx_v_nslices<0) ? 0:__pyx_v_nslices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 682, __pyx_L1_error) + __pyx_t_3 = PyList_New(1 * ((__pyx_v_nslices<0) ? 0:__pyx_v_nslices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 691, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); { Py_ssize_t __pyx_temp; for (__pyx_temp=0; __pyx_temp < __pyx_v_nslices; __pyx_temp++) { - __Pyx_INCREF(__pyx_slice__12); - __Pyx_GIVEREF(__pyx_slice__12); - PyList_SET_ITEM(__pyx_t_3, __pyx_temp, __pyx_slice__12); + __Pyx_INCREF(__pyx_slice__18); + __Pyx_GIVEREF(__pyx_slice__18); + PyList_SET_ITEM(__pyx_t_3, __pyx_temp, __pyx_slice__18); } } - __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_3); if (unlikely(__pyx_t_9 == -1)) __PYX_ERR(1, 682, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_3); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(1, 691, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - /* "View.MemoryView":681 + /* "View.MemoryView":690 * * nslices = ndim - len(result) * if nslices: # <<<<<<<<<<<<<< @@ -9542,7 +10495,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { */ } - /* "View.MemoryView":684 + /* "View.MemoryView":693 * result.extend([slice(None)] * nslices) * * return have_slices or nslices, tuple(result) # <<<<<<<<<<<<<< @@ -9552,32 +10505,32 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { __Pyx_XDECREF(__pyx_r); if (!__pyx_v_have_slices) { } else { - __pyx_t_4 = __Pyx_PyBool_FromLong(__pyx_v_have_slices); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 684, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyBool_FromLong(__pyx_v_have_slices); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 693, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L14_bool_binop_done; } - __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_nslices); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 684, __pyx_L1_error) + __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_nslices); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 693, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __pyx_t_4 = 0; __pyx_L14_bool_binop_done:; - __pyx_t_4 = PyList_AsTuple(__pyx_v_result); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 684, __pyx_L1_error) + __pyx_t_4 = PyList_AsTuple(__pyx_v_result); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 693, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_7 = PyTuple_New(2); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 684, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_7); + __pyx_t_11 = PyTuple_New(2); if (unlikely(!__pyx_t_11)) __PYX_ERR(1, 693, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); __Pyx_GIVEREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_7, 1, __pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_11, 1, __pyx_t_4); __pyx_t_3 = 0; __pyx_t_4 = 0; - __pyx_r = ((PyObject*)__pyx_t_7); - __pyx_t_7 = 0; + __pyx_r = ((PyObject*)__pyx_t_11); + __pyx_t_11 = 0; goto __pyx_L0; - /* "View.MemoryView":652 + /* "View.MemoryView":661 * return isinstance(o, memoryview) * * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< @@ -9603,7 +10556,7 @@ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { return __pyx_r; } -/* "View.MemoryView":686 +/* "View.MemoryView":695 * return have_slices or nslices, tuple(result) * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< @@ -9622,7 +10575,7 @@ static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __ PyObject *__pyx_t_5 = NULL; __Pyx_RefNannySetupContext("assert_direct_dimensions", 0); - /* "View.MemoryView":687 + /* "View.MemoryView":696 * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: # <<<<<<<<<<<<<< @@ -9634,7 +10587,7 @@ static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __ __pyx_t_1 = __pyx_t_3; __pyx_v_suboffset = (__pyx_t_1[0]); - /* "View.MemoryView":688 + /* "View.MemoryView":697 * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< @@ -9642,22 +10595,22 @@ static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __ * */ __pyx_t_4 = ((__pyx_v_suboffset >= 0) != 0); - if (__pyx_t_4) { + if (unlikely(__pyx_t_4)) { - /* "View.MemoryView":689 + /* "View.MemoryView":698 * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< * * */ - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__13, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 689, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 698, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __PYX_ERR(1, 689, __pyx_L1_error) + __PYX_ERR(1, 698, __pyx_L1_error) - /* "View.MemoryView":688 + /* "View.MemoryView":697 * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< @@ -9667,7 +10620,7 @@ static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __ } } - /* "View.MemoryView":686 + /* "View.MemoryView":695 * return have_slices or nslices, tuple(result) * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< @@ -9688,7 +10641,7 @@ static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __ return __pyx_r; } -/* "View.MemoryView":696 +/* "View.MemoryView":705 * * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< @@ -9729,7 +10682,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ Py_ssize_t __pyx_t_12; __Pyx_RefNannySetupContext("memview_slice", 0); - /* "View.MemoryView":697 + /* "View.MemoryView":706 * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): * cdef int new_ndim = 0, suboffset_dim = -1, dim # <<<<<<<<<<<<<< @@ -9739,16 +10692,16 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_v_new_ndim = 0; __pyx_v_suboffset_dim = -1; - /* "View.MemoryView":704 + /* "View.MemoryView":713 * * * memset(&dst, 0, sizeof(dst)) # <<<<<<<<<<<<<< * * cdef _memoryviewslice memviewsliceobj */ - memset((&__pyx_v_dst), 0, (sizeof(__pyx_v_dst))); + (void)(memset((&__pyx_v_dst), 0, (sizeof(__pyx_v_dst)))); - /* "View.MemoryView":708 + /* "View.MemoryView":717 * cdef _memoryviewslice memviewsliceobj * * assert memview.view.ndim > 0 # <<<<<<<<<<<<<< @@ -9759,12 +10712,12 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!((__pyx_v_memview->view.ndim > 0) != 0))) { PyErr_SetNone(PyExc_AssertionError); - __PYX_ERR(1, 708, __pyx_L1_error) + __PYX_ERR(1, 717, __pyx_L1_error) } } #endif - /* "View.MemoryView":710 + /* "View.MemoryView":719 * assert memview.view.ndim > 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< @@ -9775,20 +10728,20 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { - /* "View.MemoryView":711 + /* "View.MemoryView":720 * * if isinstance(memview, _memoryviewslice): * memviewsliceobj = memview # <<<<<<<<<<<<<< * p_src = &memviewsliceobj.from_slice * else: */ - if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(1, 711, __pyx_L1_error) + if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(1, 720, __pyx_L1_error) __pyx_t_3 = ((PyObject *)__pyx_v_memview); __Pyx_INCREF(__pyx_t_3); __pyx_v_memviewsliceobj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); __pyx_t_3 = 0; - /* "View.MemoryView":712 + /* "View.MemoryView":721 * if isinstance(memview, _memoryviewslice): * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice # <<<<<<<<<<<<<< @@ -9797,7 +10750,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ __pyx_v_p_src = (&__pyx_v_memviewsliceobj->from_slice); - /* "View.MemoryView":710 + /* "View.MemoryView":719 * assert memview.view.ndim > 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< @@ -9807,7 +10760,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ goto __pyx_L3; } - /* "View.MemoryView":714 + /* "View.MemoryView":723 * p_src = &memviewsliceobj.from_slice * else: * slice_copy(memview, &src) # <<<<<<<<<<<<<< @@ -9817,7 +10770,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ /*else*/ { __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_src)); - /* "View.MemoryView":715 + /* "View.MemoryView":724 * else: * slice_copy(memview, &src) * p_src = &src # <<<<<<<<<<<<<< @@ -9828,7 +10781,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ } __pyx_L3:; - /* "View.MemoryView":721 + /* "View.MemoryView":730 * * * dst.memview = p_src.memview # <<<<<<<<<<<<<< @@ -9838,7 +10791,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_t_4 = __pyx_v_p_src->memview; __pyx_v_dst.memview = __pyx_t_4; - /* "View.MemoryView":722 + /* "View.MemoryView":731 * * dst.memview = p_src.memview * dst.data = p_src.data # <<<<<<<<<<<<<< @@ -9848,7 +10801,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_t_5 = __pyx_v_p_src->data; __pyx_v_dst.data = __pyx_t_5; - /* "View.MemoryView":727 + /* "View.MemoryView":736 * * * cdef __Pyx_memviewslice *p_dst = &dst # <<<<<<<<<<<<<< @@ -9857,7 +10810,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ __pyx_v_p_dst = (&__pyx_v_dst); - /* "View.MemoryView":728 + /* "View.MemoryView":737 * * cdef __Pyx_memviewslice *p_dst = &dst * cdef int *p_suboffset_dim = &suboffset_dim # <<<<<<<<<<<<<< @@ -9866,7 +10819,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ __pyx_v_p_suboffset_dim = (&__pyx_v_suboffset_dim); - /* "View.MemoryView":732 + /* "View.MemoryView":741 * cdef bint have_start, have_stop, have_step * * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< @@ -9878,26 +10831,26 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_t_3 = __pyx_v_indices; __Pyx_INCREF(__pyx_t_3); __pyx_t_7 = 0; __pyx_t_8 = NULL; } else { - __pyx_t_7 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_v_indices); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 732, __pyx_L1_error) + __pyx_t_7 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_v_indices); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_8 = Py_TYPE(__pyx_t_3)->tp_iternext; if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 732, __pyx_L1_error) + __pyx_t_8 = Py_TYPE(__pyx_t_3)->tp_iternext; if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 741, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_8)) { if (likely(PyList_CheckExact(__pyx_t_3))) { if (__pyx_t_7 >= PyList_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_9 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(1, 732, __pyx_L1_error) + __pyx_t_9 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(1, 741, __pyx_L1_error) #else - __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 732, __pyx_L1_error) + __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); #endif } else { if (__pyx_t_7 >= PyTuple_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_9 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(1, 732, __pyx_L1_error) + __pyx_t_9 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(1, 741, __pyx_L1_error) #else - __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 732, __pyx_L1_error) + __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); #endif } @@ -9906,8 +10859,8 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ if (unlikely(!__pyx_t_9)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else __PYX_ERR(1, 732, __pyx_L1_error) + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(1, 741, __pyx_L1_error) } break; } @@ -9918,7 +10871,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_v_dim = __pyx_t_6; __pyx_t_6 = (__pyx_t_6 + 1); - /* "View.MemoryView":733 + /* "View.MemoryView":742 * * for dim, index in enumerate(indices): * if PyIndex_Check(index): # <<<<<<<<<<<<<< @@ -9928,25 +10881,25 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_t_2 = (PyIndex_Check(__pyx_v_index) != 0); if (__pyx_t_2) { - /* "View.MemoryView":737 + /* "View.MemoryView":746 * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, * index, 0, 0, # start, stop, step # <<<<<<<<<<<<<< * 0, 0, 0, # have_{start,stop,step} * False) */ - __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_v_index); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 737, __pyx_L1_error) + __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_v_index); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 746, __pyx_L1_error) - /* "View.MemoryView":734 + /* "View.MemoryView":743 * for dim, index in enumerate(indices): * if PyIndex_Check(index): * slice_memviewslice( # <<<<<<<<<<<<<< * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, */ - __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_t_10, 0, 0, 0, 0, 0, 0); if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(1, 734, __pyx_L1_error) + __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_t_10, 0, 0, 0, 0, 0, 0); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(1, 743, __pyx_L1_error) - /* "View.MemoryView":733 + /* "View.MemoryView":742 * * for dim, index in enumerate(indices): * if PyIndex_Check(index): # <<<<<<<<<<<<<< @@ -9956,7 +10909,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ goto __pyx_L6; } - /* "View.MemoryView":740 + /* "View.MemoryView":749 * 0, 0, 0, # have_{start,stop,step} * False) * elif index is None: # <<<<<<<<<<<<<< @@ -9967,7 +10920,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { - /* "View.MemoryView":741 + /* "View.MemoryView":750 * False) * elif index is None: * p_dst.shape[new_ndim] = 1 # <<<<<<<<<<<<<< @@ -9976,7 +10929,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ (__pyx_v_p_dst->shape[__pyx_v_new_ndim]) = 1; - /* "View.MemoryView":742 + /* "View.MemoryView":751 * elif index is None: * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 # <<<<<<<<<<<<<< @@ -9985,7 +10938,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ (__pyx_v_p_dst->strides[__pyx_v_new_ndim]) = 0; - /* "View.MemoryView":743 + /* "View.MemoryView":752 * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 # <<<<<<<<<<<<<< @@ -9994,7 +10947,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ (__pyx_v_p_dst->suboffsets[__pyx_v_new_ndim]) = -1L; - /* "View.MemoryView":744 + /* "View.MemoryView":753 * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 * new_ndim += 1 # <<<<<<<<<<<<<< @@ -10003,7 +10956,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); - /* "View.MemoryView":740 + /* "View.MemoryView":749 * 0, 0, 0, # have_{start,stop,step} * False) * elif index is None: # <<<<<<<<<<<<<< @@ -10013,7 +10966,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ goto __pyx_L6; } - /* "View.MemoryView":746 + /* "View.MemoryView":755 * new_ndim += 1 * else: * start = index.start or 0 # <<<<<<<<<<<<<< @@ -10021,13 +10974,13 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ * step = index.step or 0 */ /*else*/ { - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 746, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 755, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 746, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 755, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { - __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 746, __pyx_L1_error) + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 755, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L7_bool_binop_done; @@ -10036,20 +10989,20 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_L7_bool_binop_done:; __pyx_v_start = __pyx_t_10; - /* "View.MemoryView":747 + /* "View.MemoryView":756 * else: * start = index.start or 0 * stop = index.stop or 0 # <<<<<<<<<<<<<< * step = index.step or 0 * */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 747, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 756, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 747, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 756, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { - __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 747, __pyx_L1_error) + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 756, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L9_bool_binop_done; @@ -10058,20 +11011,20 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_L9_bool_binop_done:; __pyx_v_stop = __pyx_t_10; - /* "View.MemoryView":748 + /* "View.MemoryView":757 * start = index.start or 0 * stop = index.stop or 0 * step = index.step or 0 # <<<<<<<<<<<<<< * * have_start = index.start is not None */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 748, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 757, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 748, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(1, 757, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { - __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 748, __pyx_L1_error) + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 757, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L11_bool_binop_done; @@ -10080,55 +11033,55 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_L11_bool_binop_done:; __pyx_v_step = __pyx_t_10; - /* "View.MemoryView":750 + /* "View.MemoryView":759 * step = index.step or 0 * * have_start = index.start is not None # <<<<<<<<<<<<<< * have_stop = index.stop is not None * have_step = index.step is not None */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 750, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_start = __pyx_t_1; - /* "View.MemoryView":751 + /* "View.MemoryView":760 * * have_start = index.start is not None * have_stop = index.stop is not None # <<<<<<<<<<<<<< * have_step = index.step is not None * */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 751, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 760, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_stop = __pyx_t_1; - /* "View.MemoryView":752 + /* "View.MemoryView":761 * have_start = index.start is not None * have_stop = index.stop is not None * have_step = index.step is not None # <<<<<<<<<<<<<< * * slice_memviewslice( */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 752, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 761, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_step = __pyx_t_1; - /* "View.MemoryView":754 + /* "View.MemoryView":763 * have_step = index.step is not None * * slice_memviewslice( # <<<<<<<<<<<<<< * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, */ - __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_v_start, __pyx_v_stop, __pyx_v_step, __pyx_v_have_start, __pyx_v_have_stop, __pyx_v_have_step, 1); if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(1, 754, __pyx_L1_error) + __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_v_start, __pyx_v_stop, __pyx_v_step, __pyx_v_have_start, __pyx_v_have_stop, __pyx_v_have_step, 1); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(1, 763, __pyx_L1_error) - /* "View.MemoryView":760 + /* "View.MemoryView":769 * have_start, have_stop, have_step, * True) * new_ndim += 1 # <<<<<<<<<<<<<< @@ -10139,7 +11092,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ } __pyx_L6:; - /* "View.MemoryView":732 + /* "View.MemoryView":741 * cdef bint have_start, have_stop, have_step * * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< @@ -10149,7 +11102,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - /* "View.MemoryView":762 + /* "View.MemoryView":771 * new_ndim += 1 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< @@ -10160,7 +11113,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { - /* "View.MemoryView":763 + /* "View.MemoryView":772 * * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< @@ -10169,39 +11122,39 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ __Pyx_XDECREF(((PyObject *)__pyx_r)); - /* "View.MemoryView":764 + /* "View.MemoryView":773 * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, # <<<<<<<<<<<<<< * memviewsliceobj.to_dtype_func, * memview.dtype_is_object) */ - if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(1, 764, __pyx_L1_error) } + if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(1, 773, __pyx_L1_error) } - /* "View.MemoryView":765 + /* "View.MemoryView":774 * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, # <<<<<<<<<<<<<< * memview.dtype_is_object) * else: */ - if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(1, 765, __pyx_L1_error) } + if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(1, 774, __pyx_L1_error) } - /* "View.MemoryView":763 + /* "View.MemoryView":772 * * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, */ - __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, __pyx_v_memviewsliceobj->to_object_func, __pyx_v_memviewsliceobj->to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 763, __pyx_L1_error) + __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, __pyx_v_memviewsliceobj->to_object_func, __pyx_v_memviewsliceobj->to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 772, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(1, 763, __pyx_L1_error) + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(1, 772, __pyx_L1_error) __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L0; - /* "View.MemoryView":762 + /* "View.MemoryView":771 * new_ndim += 1 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< @@ -10210,7 +11163,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ */ } - /* "View.MemoryView":768 + /* "View.MemoryView":777 * memview.dtype_is_object) * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< @@ -10220,30 +11173,30 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ /*else*/ { __Pyx_XDECREF(((PyObject *)__pyx_r)); - /* "View.MemoryView":769 + /* "View.MemoryView":778 * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, * memview.dtype_is_object) # <<<<<<<<<<<<<< * * */ - __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, NULL, NULL, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 768, __pyx_L1_error) + __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, NULL, NULL, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 777, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - /* "View.MemoryView":768 + /* "View.MemoryView":777 * memview.dtype_is_object) * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< * memview.dtype_is_object) * */ - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(1, 768, __pyx_L1_error) + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(1, 777, __pyx_L1_error) __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L0; } - /* "View.MemoryView":696 + /* "View.MemoryView":705 * * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< @@ -10265,7 +11218,7 @@ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_ return __pyx_r; } -/* "View.MemoryView":793 +/* "View.MemoryView":802 * * @cname('__pyx_memoryview_slice_memviewslice') * cdef int slice_memviewslice( # <<<<<<<<<<<<<< @@ -10281,7 +11234,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, int __pyx_t_2; int __pyx_t_3; - /* "View.MemoryView":813 + /* "View.MemoryView":822 * cdef bint negative_step * * if not is_slice: # <<<<<<<<<<<<<< @@ -10291,7 +11244,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_1 = ((!(__pyx_v_is_slice != 0)) != 0); if (__pyx_t_1) { - /* "View.MemoryView":815 + /* "View.MemoryView":824 * if not is_slice: * * if start < 0: # <<<<<<<<<<<<<< @@ -10301,7 +11254,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_1 = ((__pyx_v_start < 0) != 0); if (__pyx_t_1) { - /* "View.MemoryView":816 + /* "View.MemoryView":825 * * if start < 0: * start += shape # <<<<<<<<<<<<<< @@ -10310,7 +11263,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_start = (__pyx_v_start + __pyx_v_shape); - /* "View.MemoryView":815 + /* "View.MemoryView":824 * if not is_slice: * * if start < 0: # <<<<<<<<<<<<<< @@ -10319,7 +11272,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":817 + /* "View.MemoryView":826 * if start < 0: * start += shape * if not 0 <= start < shape: # <<<<<<<<<<<<<< @@ -10333,16 +11286,16 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":818 + /* "View.MemoryView":827 * start += shape * if not 0 <= start < shape: * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) # <<<<<<<<<<<<<< * else: * */ - __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"Index out of bounds (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) __PYX_ERR(1, 818, __pyx_L1_error) + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"Index out of bounds (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(1, 827, __pyx_L1_error) - /* "View.MemoryView":817 + /* "View.MemoryView":826 * if start < 0: * start += shape * if not 0 <= start < shape: # <<<<<<<<<<<<<< @@ -10351,7 +11304,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":813 + /* "View.MemoryView":822 * cdef bint negative_step * * if not is_slice: # <<<<<<<<<<<<<< @@ -10361,7 +11314,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L3; } - /* "View.MemoryView":821 + /* "View.MemoryView":830 * else: * * negative_step = have_step != 0 and step < 0 # <<<<<<<<<<<<<< @@ -10380,7 +11333,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_L6_bool_binop_done:; __pyx_v_negative_step = __pyx_t_2; - /* "View.MemoryView":823 + /* "View.MemoryView":832 * negative_step = have_step != 0 and step < 0 * * if have_step and step == 0: # <<<<<<<<<<<<<< @@ -10398,16 +11351,16 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_L9_bool_binop_done:; if (__pyx_t_2) { - /* "View.MemoryView":824 + /* "View.MemoryView":833 * * if have_step and step == 0: * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) # <<<<<<<<<<<<<< * * */ - __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Step may not be zero (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) __PYX_ERR(1, 824, __pyx_L1_error) + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Step may not be zero (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(1, 833, __pyx_L1_error) - /* "View.MemoryView":823 + /* "View.MemoryView":832 * negative_step = have_step != 0 and step < 0 * * if have_step and step == 0: # <<<<<<<<<<<<<< @@ -10416,7 +11369,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":827 + /* "View.MemoryView":836 * * * if have_start: # <<<<<<<<<<<<<< @@ -10426,7 +11379,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = (__pyx_v_have_start != 0); if (__pyx_t_2) { - /* "View.MemoryView":828 + /* "View.MemoryView":837 * * if have_start: * if start < 0: # <<<<<<<<<<<<<< @@ -10436,7 +11389,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_start < 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":829 + /* "View.MemoryView":838 * if have_start: * if start < 0: * start += shape # <<<<<<<<<<<<<< @@ -10445,7 +11398,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_start = (__pyx_v_start + __pyx_v_shape); - /* "View.MemoryView":830 + /* "View.MemoryView":839 * if start < 0: * start += shape * if start < 0: # <<<<<<<<<<<<<< @@ -10455,7 +11408,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_start < 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":831 + /* "View.MemoryView":840 * start += shape * if start < 0: * start = 0 # <<<<<<<<<<<<<< @@ -10464,7 +11417,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_start = 0; - /* "View.MemoryView":830 + /* "View.MemoryView":839 * if start < 0: * start += shape * if start < 0: # <<<<<<<<<<<<<< @@ -10473,7 +11426,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":828 + /* "View.MemoryView":837 * * if have_start: * if start < 0: # <<<<<<<<<<<<<< @@ -10483,7 +11436,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L12; } - /* "View.MemoryView":832 + /* "View.MemoryView":841 * if start < 0: * start = 0 * elif start >= shape: # <<<<<<<<<<<<<< @@ -10493,7 +11446,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_start >= __pyx_v_shape) != 0); if (__pyx_t_2) { - /* "View.MemoryView":833 + /* "View.MemoryView":842 * start = 0 * elif start >= shape: * if negative_step: # <<<<<<<<<<<<<< @@ -10503,7 +11456,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { - /* "View.MemoryView":834 + /* "View.MemoryView":843 * elif start >= shape: * if negative_step: * start = shape - 1 # <<<<<<<<<<<<<< @@ -10512,7 +11465,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_start = (__pyx_v_shape - 1); - /* "View.MemoryView":833 + /* "View.MemoryView":842 * start = 0 * elif start >= shape: * if negative_step: # <<<<<<<<<<<<<< @@ -10522,7 +11475,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L14; } - /* "View.MemoryView":836 + /* "View.MemoryView":845 * start = shape - 1 * else: * start = shape # <<<<<<<<<<<<<< @@ -10534,7 +11487,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, } __pyx_L14:; - /* "View.MemoryView":832 + /* "View.MemoryView":841 * if start < 0: * start = 0 * elif start >= shape: # <<<<<<<<<<<<<< @@ -10544,7 +11497,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, } __pyx_L12:; - /* "View.MemoryView":827 + /* "View.MemoryView":836 * * * if have_start: # <<<<<<<<<<<<<< @@ -10554,7 +11507,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L11; } - /* "View.MemoryView":838 + /* "View.MemoryView":847 * start = shape * else: * if negative_step: # <<<<<<<<<<<<<< @@ -10565,7 +11518,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { - /* "View.MemoryView":839 + /* "View.MemoryView":848 * else: * if negative_step: * start = shape - 1 # <<<<<<<<<<<<<< @@ -10574,7 +11527,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_start = (__pyx_v_shape - 1); - /* "View.MemoryView":838 + /* "View.MemoryView":847 * start = shape * else: * if negative_step: # <<<<<<<<<<<<<< @@ -10584,7 +11537,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L15; } - /* "View.MemoryView":841 + /* "View.MemoryView":850 * start = shape - 1 * else: * start = 0 # <<<<<<<<<<<<<< @@ -10598,7 +11551,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, } __pyx_L11:; - /* "View.MemoryView":843 + /* "View.MemoryView":852 * start = 0 * * if have_stop: # <<<<<<<<<<<<<< @@ -10608,7 +11561,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = (__pyx_v_have_stop != 0); if (__pyx_t_2) { - /* "View.MemoryView":844 + /* "View.MemoryView":853 * * if have_stop: * if stop < 0: # <<<<<<<<<<<<<< @@ -10618,7 +11571,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_stop < 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":845 + /* "View.MemoryView":854 * if have_stop: * if stop < 0: * stop += shape # <<<<<<<<<<<<<< @@ -10627,7 +11580,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_stop = (__pyx_v_stop + __pyx_v_shape); - /* "View.MemoryView":846 + /* "View.MemoryView":855 * if stop < 0: * stop += shape * if stop < 0: # <<<<<<<<<<<<<< @@ -10637,7 +11590,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_stop < 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":847 + /* "View.MemoryView":856 * stop += shape * if stop < 0: * stop = 0 # <<<<<<<<<<<<<< @@ -10646,7 +11599,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_stop = 0; - /* "View.MemoryView":846 + /* "View.MemoryView":855 * if stop < 0: * stop += shape * if stop < 0: # <<<<<<<<<<<<<< @@ -10655,7 +11608,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":844 + /* "View.MemoryView":853 * * if have_stop: * if stop < 0: # <<<<<<<<<<<<<< @@ -10665,7 +11618,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L17; } - /* "View.MemoryView":848 + /* "View.MemoryView":857 * if stop < 0: * stop = 0 * elif stop > shape: # <<<<<<<<<<<<<< @@ -10675,7 +11628,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_stop > __pyx_v_shape) != 0); if (__pyx_t_2) { - /* "View.MemoryView":849 + /* "View.MemoryView":858 * stop = 0 * elif stop > shape: * stop = shape # <<<<<<<<<<<<<< @@ -10684,7 +11637,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_stop = __pyx_v_shape; - /* "View.MemoryView":848 + /* "View.MemoryView":857 * if stop < 0: * stop = 0 * elif stop > shape: # <<<<<<<<<<<<<< @@ -10694,7 +11647,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, } __pyx_L17:; - /* "View.MemoryView":843 + /* "View.MemoryView":852 * start = 0 * * if have_stop: # <<<<<<<<<<<<<< @@ -10704,7 +11657,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L16; } - /* "View.MemoryView":851 + /* "View.MemoryView":860 * stop = shape * else: * if negative_step: # <<<<<<<<<<<<<< @@ -10715,7 +11668,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { - /* "View.MemoryView":852 + /* "View.MemoryView":861 * else: * if negative_step: * stop = -1 # <<<<<<<<<<<<<< @@ -10724,7 +11677,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_stop = -1L; - /* "View.MemoryView":851 + /* "View.MemoryView":860 * stop = shape * else: * if negative_step: # <<<<<<<<<<<<<< @@ -10734,7 +11687,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L19; } - /* "View.MemoryView":854 + /* "View.MemoryView":863 * stop = -1 * else: * stop = shape # <<<<<<<<<<<<<< @@ -10748,7 +11701,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, } __pyx_L16:; - /* "View.MemoryView":856 + /* "View.MemoryView":865 * stop = shape * * if not have_step: # <<<<<<<<<<<<<< @@ -10758,7 +11711,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((!(__pyx_v_have_step != 0)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":857 + /* "View.MemoryView":866 * * if not have_step: * step = 1 # <<<<<<<<<<<<<< @@ -10767,7 +11720,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_step = 1; - /* "View.MemoryView":856 + /* "View.MemoryView":865 * stop = shape * * if not have_step: # <<<<<<<<<<<<<< @@ -10776,7 +11729,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":861 + /* "View.MemoryView":870 * * with cython.cdivision(True): * new_shape = (stop - start) // step # <<<<<<<<<<<<<< @@ -10785,7 +11738,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_new_shape = ((__pyx_v_stop - __pyx_v_start) / __pyx_v_step); - /* "View.MemoryView":863 + /* "View.MemoryView":872 * new_shape = (stop - start) // step * * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< @@ -10795,7 +11748,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = (((__pyx_v_stop - __pyx_v_start) - (__pyx_v_step * __pyx_v_new_shape)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":864 + /* "View.MemoryView":873 * * if (stop - start) - step * new_shape: * new_shape += 1 # <<<<<<<<<<<<<< @@ -10804,7 +11757,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_new_shape = (__pyx_v_new_shape + 1); - /* "View.MemoryView":863 + /* "View.MemoryView":872 * new_shape = (stop - start) // step * * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< @@ -10813,7 +11766,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":866 + /* "View.MemoryView":875 * new_shape += 1 * * if new_shape < 0: # <<<<<<<<<<<<<< @@ -10823,7 +11776,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_new_shape < 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":867 + /* "View.MemoryView":876 * * if new_shape < 0: * new_shape = 0 # <<<<<<<<<<<<<< @@ -10832,7 +11785,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_new_shape = 0; - /* "View.MemoryView":866 + /* "View.MemoryView":875 * new_shape += 1 * * if new_shape < 0: # <<<<<<<<<<<<<< @@ -10841,7 +11794,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":870 + /* "View.MemoryView":879 * * * dst.strides[new_ndim] = stride * step # <<<<<<<<<<<<<< @@ -10850,7 +11803,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ (__pyx_v_dst->strides[__pyx_v_new_ndim]) = (__pyx_v_stride * __pyx_v_step); - /* "View.MemoryView":871 + /* "View.MemoryView":880 * * dst.strides[new_ndim] = stride * step * dst.shape[new_ndim] = new_shape # <<<<<<<<<<<<<< @@ -10859,7 +11812,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ (__pyx_v_dst->shape[__pyx_v_new_ndim]) = __pyx_v_new_shape; - /* "View.MemoryView":872 + /* "View.MemoryView":881 * dst.strides[new_ndim] = stride * step * dst.shape[new_ndim] = new_shape * dst.suboffsets[new_ndim] = suboffset # <<<<<<<<<<<<<< @@ -10870,7 +11823,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, } __pyx_L3:; - /* "View.MemoryView":875 + /* "View.MemoryView":884 * * * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< @@ -10880,7 +11833,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = (((__pyx_v_suboffset_dim[0]) < 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":876 + /* "View.MemoryView":885 * * if suboffset_dim[0] < 0: * dst.data += start * stride # <<<<<<<<<<<<<< @@ -10889,7 +11842,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_dst->data = (__pyx_v_dst->data + (__pyx_v_start * __pyx_v_stride)); - /* "View.MemoryView":875 + /* "View.MemoryView":884 * * * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< @@ -10899,7 +11852,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L23; } - /* "View.MemoryView":878 + /* "View.MemoryView":887 * dst.data += start * stride * else: * dst.suboffsets[suboffset_dim[0]] += start * stride # <<<<<<<<<<<<<< @@ -10912,7 +11865,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, } __pyx_L23:; - /* "View.MemoryView":880 + /* "View.MemoryView":889 * dst.suboffsets[suboffset_dim[0]] += start * stride * * if suboffset >= 0: # <<<<<<<<<<<<<< @@ -10922,7 +11875,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":881 + /* "View.MemoryView":890 * * if suboffset >= 0: * if not is_slice: # <<<<<<<<<<<<<< @@ -10932,7 +11885,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((!(__pyx_v_is_slice != 0)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":882 + /* "View.MemoryView":891 * if suboffset >= 0: * if not is_slice: * if new_ndim == 0: # <<<<<<<<<<<<<< @@ -10942,7 +11895,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_t_2 = ((__pyx_v_new_ndim == 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":883 + /* "View.MemoryView":892 * if not is_slice: * if new_ndim == 0: * dst.data = ( dst.data)[0] + suboffset # <<<<<<<<<<<<<< @@ -10951,7 +11904,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ __pyx_v_dst->data = ((((char **)__pyx_v_dst->data)[0]) + __pyx_v_suboffset); - /* "View.MemoryView":882 + /* "View.MemoryView":891 * if suboffset >= 0: * if not is_slice: * if new_ndim == 0: # <<<<<<<<<<<<<< @@ -10961,7 +11914,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L26; } - /* "View.MemoryView":885 + /* "View.MemoryView":894 * dst.data = ( dst.data)[0] + suboffset * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " # <<<<<<<<<<<<<< @@ -10970,18 +11923,18 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ /*else*/ { - /* "View.MemoryView":886 + /* "View.MemoryView":895 * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " * "must be indexed and not sliced", dim) # <<<<<<<<<<<<<< * else: * suboffset_dim[0] = new_ndim */ - __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"All dimensions preceding dimension %d must be indexed and not sliced"), __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) __PYX_ERR(1, 885, __pyx_L1_error) + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"All dimensions preceding dimension %d must be indexed and not sliced"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(1, 894, __pyx_L1_error) } __pyx_L26:; - /* "View.MemoryView":881 + /* "View.MemoryView":890 * * if suboffset >= 0: * if not is_slice: # <<<<<<<<<<<<<< @@ -10991,7 +11944,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, goto __pyx_L25; } - /* "View.MemoryView":888 + /* "View.MemoryView":897 * "must be indexed and not sliced", dim) * else: * suboffset_dim[0] = new_ndim # <<<<<<<<<<<<<< @@ -11003,7 +11956,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, } __pyx_L25:; - /* "View.MemoryView":880 + /* "View.MemoryView":889 * dst.suboffsets[suboffset_dim[0]] += start * stride * * if suboffset >= 0: # <<<<<<<<<<<<<< @@ -11012,7 +11965,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, */ } - /* "View.MemoryView":890 + /* "View.MemoryView":899 * suboffset_dim[0] = new_ndim * * return 0 # <<<<<<<<<<<<<< @@ -11022,7 +11975,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_r = 0; goto __pyx_L0; - /* "View.MemoryView":793 + /* "View.MemoryView":802 * * @cname('__pyx_memoryview_slice_memviewslice') * cdef int slice_memviewslice( # <<<<<<<<<<<<<< @@ -11034,11 +11987,11 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, __pyx_L1_error:; { #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.slice_memviewslice", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); + __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = -1; @@ -11046,7 +11999,7 @@ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, return __pyx_r; } -/* "View.MemoryView":896 +/* "View.MemoryView":905 * * @cname('__pyx_pybuffer_index') * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< @@ -11068,7 +12021,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P PyObject *__pyx_t_4 = NULL; __Pyx_RefNannySetupContext("pybuffer_index", 0); - /* "View.MemoryView":898 + /* "View.MemoryView":907 * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 # <<<<<<<<<<<<<< @@ -11077,7 +12030,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ __pyx_v_suboffset = -1L; - /* "View.MemoryView":899 + /* "View.MemoryView":908 * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 * cdef Py_ssize_t itemsize = view.itemsize # <<<<<<<<<<<<<< @@ -11087,7 +12040,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P __pyx_t_1 = __pyx_v_view->itemsize; __pyx_v_itemsize = __pyx_t_1; - /* "View.MemoryView":902 + /* "View.MemoryView":911 * cdef char *resultp * * if view.ndim == 0: # <<<<<<<<<<<<<< @@ -11097,7 +12050,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P __pyx_t_2 = ((__pyx_v_view->ndim == 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":903 + /* "View.MemoryView":912 * * if view.ndim == 0: * shape = view.len / itemsize # <<<<<<<<<<<<<< @@ -11106,15 +12059,15 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ if (unlikely(__pyx_v_itemsize == 0)) { PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); - __PYX_ERR(1, 903, __pyx_L1_error) + __PYX_ERR(1, 912, __pyx_L1_error) } else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_view->len))) { PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); - __PYX_ERR(1, 903, __pyx_L1_error) + __PYX_ERR(1, 912, __pyx_L1_error) } __pyx_v_shape = (__pyx_v_view->len / __pyx_v_itemsize); - /* "View.MemoryView":904 + /* "View.MemoryView":913 * if view.ndim == 0: * shape = view.len / itemsize * stride = itemsize # <<<<<<<<<<<<<< @@ -11123,7 +12076,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ __pyx_v_stride = __pyx_v_itemsize; - /* "View.MemoryView":902 + /* "View.MemoryView":911 * cdef char *resultp * * if view.ndim == 0: # <<<<<<<<<<<<<< @@ -11133,7 +12086,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P goto __pyx_L3; } - /* "View.MemoryView":906 + /* "View.MemoryView":915 * stride = itemsize * else: * shape = view.shape[dim] # <<<<<<<<<<<<<< @@ -11143,7 +12096,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P /*else*/ { __pyx_v_shape = (__pyx_v_view->shape[__pyx_v_dim]); - /* "View.MemoryView":907 + /* "View.MemoryView":916 * else: * shape = view.shape[dim] * stride = view.strides[dim] # <<<<<<<<<<<<<< @@ -11152,7 +12105,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ __pyx_v_stride = (__pyx_v_view->strides[__pyx_v_dim]); - /* "View.MemoryView":908 + /* "View.MemoryView":917 * shape = view.shape[dim] * stride = view.strides[dim] * if view.suboffsets != NULL: # <<<<<<<<<<<<<< @@ -11162,7 +12115,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P __pyx_t_2 = ((__pyx_v_view->suboffsets != NULL) != 0); if (__pyx_t_2) { - /* "View.MemoryView":909 + /* "View.MemoryView":918 * stride = view.strides[dim] * if view.suboffsets != NULL: * suboffset = view.suboffsets[dim] # <<<<<<<<<<<<<< @@ -11171,7 +12124,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ __pyx_v_suboffset = (__pyx_v_view->suboffsets[__pyx_v_dim]); - /* "View.MemoryView":908 + /* "View.MemoryView":917 * shape = view.shape[dim] * stride = view.strides[dim] * if view.suboffsets != NULL: # <<<<<<<<<<<<<< @@ -11182,7 +12135,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P } __pyx_L3:; - /* "View.MemoryView":911 + /* "View.MemoryView":920 * suboffset = view.suboffsets[dim] * * if index < 0: # <<<<<<<<<<<<<< @@ -11192,7 +12145,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P __pyx_t_2 = ((__pyx_v_index < 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":912 + /* "View.MemoryView":921 * * if index < 0: * index += view.shape[dim] # <<<<<<<<<<<<<< @@ -11201,7 +12154,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ __pyx_v_index = (__pyx_v_index + (__pyx_v_view->shape[__pyx_v_dim])); - /* "View.MemoryView":913 + /* "View.MemoryView":922 * if index < 0: * index += view.shape[dim] * if index < 0: # <<<<<<<<<<<<<< @@ -11209,33 +12162,28 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P * */ __pyx_t_2 = ((__pyx_v_index < 0) != 0); - if (__pyx_t_2) { + if (unlikely(__pyx_t_2)) { - /* "View.MemoryView":914 + /* "View.MemoryView":923 * index += view.shape[dim] * if index < 0: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< * * if index >= shape: */ - __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 914, __pyx_L1_error) + __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 923, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 914, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 923, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 914, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 923, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __Pyx_GIVEREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); - __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_IndexError, __pyx_t_3, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 914, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __PYX_ERR(1, 914, __pyx_L1_error) + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 923, __pyx_L1_error) - /* "View.MemoryView":913 + /* "View.MemoryView":922 * if index < 0: * index += view.shape[dim] * if index < 0: # <<<<<<<<<<<<<< @@ -11244,7 +12192,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ } - /* "View.MemoryView":911 + /* "View.MemoryView":920 * suboffset = view.suboffsets[dim] * * if index < 0: # <<<<<<<<<<<<<< @@ -11253,7 +12201,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ } - /* "View.MemoryView":916 + /* "View.MemoryView":925 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * if index >= shape: # <<<<<<<<<<<<<< @@ -11261,33 +12209,28 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P * */ __pyx_t_2 = ((__pyx_v_index >= __pyx_v_shape) != 0); - if (__pyx_t_2) { + if (unlikely(__pyx_t_2)) { - /* "View.MemoryView":917 + /* "View.MemoryView":926 * * if index >= shape: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< * * resultp = bufp + index * stride */ - __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 917, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 917, __pyx_L1_error) + __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 926, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 917, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 926, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __Pyx_GIVEREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_IndexError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 917, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 926, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __PYX_ERR(1, 917, __pyx_L1_error) + __PYX_ERR(1, 926, __pyx_L1_error) - /* "View.MemoryView":916 + /* "View.MemoryView":925 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * if index >= shape: # <<<<<<<<<<<<<< @@ -11296,7 +12239,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ } - /* "View.MemoryView":919 + /* "View.MemoryView":928 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * resultp = bufp + index * stride # <<<<<<<<<<<<<< @@ -11305,7 +12248,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ __pyx_v_resultp = (__pyx_v_bufp + (__pyx_v_index * __pyx_v_stride)); - /* "View.MemoryView":920 + /* "View.MemoryView":929 * * resultp = bufp + index * stride * if suboffset >= 0: # <<<<<<<<<<<<<< @@ -11315,7 +12258,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":921 + /* "View.MemoryView":930 * resultp = bufp + index * stride * if suboffset >= 0: * resultp = ( resultp)[0] + suboffset # <<<<<<<<<<<<<< @@ -11324,7 +12267,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ __pyx_v_resultp = ((((char **)__pyx_v_resultp)[0]) + __pyx_v_suboffset); - /* "View.MemoryView":920 + /* "View.MemoryView":929 * * resultp = bufp + index * stride * if suboffset >= 0: # <<<<<<<<<<<<<< @@ -11333,7 +12276,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P */ } - /* "View.MemoryView":923 + /* "View.MemoryView":932 * resultp = ( resultp)[0] + suboffset * * return resultp # <<<<<<<<<<<<<< @@ -11343,7 +12286,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P __pyx_r = __pyx_v_resultp; goto __pyx_L0; - /* "View.MemoryView":896 + /* "View.MemoryView":905 * * @cname('__pyx_pybuffer_index') * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< @@ -11362,7 +12305,7 @@ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, P return __pyx_r; } -/* "View.MemoryView":929 +/* "View.MemoryView":938 * * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< @@ -11380,13 +12323,14 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { int __pyx_t_1; Py_ssize_t *__pyx_t_2; long __pyx_t_3; - Py_ssize_t __pyx_t_4; + long __pyx_t_4; Py_ssize_t __pyx_t_5; - int __pyx_t_6; + Py_ssize_t __pyx_t_6; int __pyx_t_7; int __pyx_t_8; + int __pyx_t_9; - /* "View.MemoryView":930 + /* "View.MemoryView":939 * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: * cdef int ndim = memslice.memview.view.ndim # <<<<<<<<<<<<<< @@ -11396,7 +12340,7 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { __pyx_t_1 = __pyx_v_memslice->memview->view.ndim; __pyx_v_ndim = __pyx_t_1; - /* "View.MemoryView":932 + /* "View.MemoryView":941 * cdef int ndim = memslice.memview.view.ndim * * cdef Py_ssize_t *shape = memslice.shape # <<<<<<<<<<<<<< @@ -11406,7 +12350,7 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { __pyx_t_2 = __pyx_v_memslice->shape; __pyx_v_shape = __pyx_t_2; - /* "View.MemoryView":933 + /* "View.MemoryView":942 * * cdef Py_ssize_t *shape = memslice.shape * cdef Py_ssize_t *strides = memslice.strides # <<<<<<<<<<<<<< @@ -11416,7 +12360,7 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { __pyx_t_2 = __pyx_v_memslice->strides; __pyx_v_strides = __pyx_t_2; - /* "View.MemoryView":937 + /* "View.MemoryView":946 * * cdef int i, j * for i in range(ndim / 2): # <<<<<<<<<<<<<< @@ -11424,10 +12368,11 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { * strides[i], strides[j] = strides[j], strides[i] */ __pyx_t_3 = (__pyx_v_ndim / 2); - for (__pyx_t_1 = 0; __pyx_t_1 < __pyx_t_3; __pyx_t_1+=1) { + __pyx_t_4 = __pyx_t_3; + for (__pyx_t_1 = 0; __pyx_t_1 < __pyx_t_4; __pyx_t_1+=1) { __pyx_v_i = __pyx_t_1; - /* "View.MemoryView":938 + /* "View.MemoryView":947 * cdef int i, j * for i in range(ndim / 2): * j = ndim - 1 - i # <<<<<<<<<<<<<< @@ -11436,58 +12381,58 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { */ __pyx_v_j = ((__pyx_v_ndim - 1) - __pyx_v_i); - /* "View.MemoryView":939 + /* "View.MemoryView":948 * for i in range(ndim / 2): * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] # <<<<<<<<<<<<<< * shape[i], shape[j] = shape[j], shape[i] * */ - __pyx_t_4 = (__pyx_v_strides[__pyx_v_j]); - __pyx_t_5 = (__pyx_v_strides[__pyx_v_i]); - (__pyx_v_strides[__pyx_v_i]) = __pyx_t_4; - (__pyx_v_strides[__pyx_v_j]) = __pyx_t_5; + __pyx_t_5 = (__pyx_v_strides[__pyx_v_j]); + __pyx_t_6 = (__pyx_v_strides[__pyx_v_i]); + (__pyx_v_strides[__pyx_v_i]) = __pyx_t_5; + (__pyx_v_strides[__pyx_v_j]) = __pyx_t_6; - /* "View.MemoryView":940 + /* "View.MemoryView":949 * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] * shape[i], shape[j] = shape[j], shape[i] # <<<<<<<<<<<<<< * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: */ - __pyx_t_5 = (__pyx_v_shape[__pyx_v_j]); - __pyx_t_4 = (__pyx_v_shape[__pyx_v_i]); - (__pyx_v_shape[__pyx_v_i]) = __pyx_t_5; - (__pyx_v_shape[__pyx_v_j]) = __pyx_t_4; + __pyx_t_6 = (__pyx_v_shape[__pyx_v_j]); + __pyx_t_5 = (__pyx_v_shape[__pyx_v_i]); + (__pyx_v_shape[__pyx_v_i]) = __pyx_t_6; + (__pyx_v_shape[__pyx_v_j]) = __pyx_t_5; - /* "View.MemoryView":942 + /* "View.MemoryView":951 * shape[i], shape[j] = shape[j], shape[i] * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * */ - __pyx_t_7 = (((__pyx_v_memslice->suboffsets[__pyx_v_i]) >= 0) != 0); - if (!__pyx_t_7) { + __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_i]) >= 0) != 0); + if (!__pyx_t_8) { } else { - __pyx_t_6 = __pyx_t_7; + __pyx_t_7 = __pyx_t_8; goto __pyx_L6_bool_binop_done; } - __pyx_t_7 = (((__pyx_v_memslice->suboffsets[__pyx_v_j]) >= 0) != 0); - __pyx_t_6 = __pyx_t_7; + __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_j]) >= 0) != 0); + __pyx_t_7 = __pyx_t_8; __pyx_L6_bool_binop_done:; - if (__pyx_t_6) { + if (__pyx_t_7) { - /* "View.MemoryView":943 + /* "View.MemoryView":952 * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") # <<<<<<<<<<<<<< * * return 1 */ - __pyx_t_8 = __pyx_memoryview_err(__pyx_builtin_ValueError, ((char *)"Cannot transpose memoryview with indirect dimensions")); if (unlikely(__pyx_t_8 == -1)) __PYX_ERR(1, 943, __pyx_L1_error) + __pyx_t_9 = __pyx_memoryview_err(__pyx_builtin_ValueError, ((char *)"Cannot transpose memoryview with indirect dimensions")); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(1, 952, __pyx_L1_error) - /* "View.MemoryView":942 + /* "View.MemoryView":951 * shape[i], shape[j] = shape[j], shape[i] * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< @@ -11497,7 +12442,7 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { } } - /* "View.MemoryView":945 + /* "View.MemoryView":954 * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * * return 1 # <<<<<<<<<<<<<< @@ -11507,7 +12452,7 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { __pyx_r = 1; goto __pyx_L0; - /* "View.MemoryView":929 + /* "View.MemoryView":938 * * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< @@ -11519,11 +12464,11 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { __pyx_L1_error:; { #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.transpose_memslice", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); + __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = 0; @@ -11531,7 +12476,7 @@ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { return __pyx_r; } -/* "View.MemoryView":962 +/* "View.MemoryView":971 * cdef int (*to_dtype_func)(char *, object) except 0 * * def __dealloc__(self): # <<<<<<<<<<<<<< @@ -11554,7 +12499,7 @@ static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewsl __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__", 0); - /* "View.MemoryView":963 + /* "View.MemoryView":972 * * def __dealloc__(self): * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) # <<<<<<<<<<<<<< @@ -11563,7 +12508,7 @@ static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewsl */ __PYX_XDEC_MEMVIEW((&__pyx_v_self->from_slice), 1); - /* "View.MemoryView":962 + /* "View.MemoryView":971 * cdef int (*to_dtype_func)(char *, object) except 0 * * def __dealloc__(self): # <<<<<<<<<<<<<< @@ -11575,7 +12520,7 @@ static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewsl __Pyx_RefNannyFinishContext(); } -/* "View.MemoryView":965 +/* "View.MemoryView":974 * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< @@ -11590,7 +12535,7 @@ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memor PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("convert_item_to_object", 0); - /* "View.MemoryView":966 + /* "View.MemoryView":975 * * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: # <<<<<<<<<<<<<< @@ -11600,7 +12545,7 @@ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memor __pyx_t_1 = ((__pyx_v_self->to_object_func != NULL) != 0); if (__pyx_t_1) { - /* "View.MemoryView":967 + /* "View.MemoryView":976 * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: * return self.to_object_func(itemp) # <<<<<<<<<<<<<< @@ -11608,13 +12553,13 @@ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memor * return memoryview.convert_item_to_object(self, itemp) */ __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __pyx_v_self->to_object_func(__pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 967, __pyx_L1_error) + __pyx_t_2 = __pyx_v_self->to_object_func(__pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 976, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; - /* "View.MemoryView":966 + /* "View.MemoryView":975 * * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: # <<<<<<<<<<<<<< @@ -11623,7 +12568,7 @@ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memor */ } - /* "View.MemoryView":969 + /* "View.MemoryView":978 * return self.to_object_func(itemp) * else: * return memoryview.convert_item_to_object(self, itemp) # <<<<<<<<<<<<<< @@ -11632,14 +12577,14 @@ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memor */ /*else*/ { __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __pyx_memoryview_convert_item_to_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 969, __pyx_L1_error) + __pyx_t_2 = __pyx_memoryview_convert_item_to_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 978, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; } - /* "View.MemoryView":965 + /* "View.MemoryView":974 * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< @@ -11658,7 +12603,7 @@ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memor return __pyx_r; } -/* "View.MemoryView":971 +/* "View.MemoryView":980 * return memoryview.convert_item_to_object(self, itemp) * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< @@ -11674,7 +12619,7 @@ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memo PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("assign_item_from_object", 0); - /* "View.MemoryView":972 + /* "View.MemoryView":981 * * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< @@ -11684,16 +12629,16 @@ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memo __pyx_t_1 = ((__pyx_v_self->to_dtype_func != NULL) != 0); if (__pyx_t_1) { - /* "View.MemoryView":973 + /* "View.MemoryView":982 * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) # <<<<<<<<<<<<<< * else: * memoryview.assign_item_from_object(self, itemp, value) */ - __pyx_t_2 = __pyx_v_self->to_dtype_func(__pyx_v_itemp, __pyx_v_value); if (unlikely(__pyx_t_2 == 0)) __PYX_ERR(1, 973, __pyx_L1_error) + __pyx_t_2 = __pyx_v_self->to_dtype_func(__pyx_v_itemp, __pyx_v_value); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(1, 982, __pyx_L1_error) - /* "View.MemoryView":972 + /* "View.MemoryView":981 * * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< @@ -11703,7 +12648,7 @@ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memo goto __pyx_L3; } - /* "View.MemoryView":975 + /* "View.MemoryView":984 * self.to_dtype_func(itemp, value) * else: * memoryview.assign_item_from_object(self, itemp, value) # <<<<<<<<<<<<<< @@ -11711,13 +12656,13 @@ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memo * @property */ /*else*/ { - __pyx_t_3 = __pyx_memoryview_assign_item_from_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 975, __pyx_L1_error) + __pyx_t_3 = __pyx_memoryview_assign_item_from_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 984, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L3:; - /* "View.MemoryView":971 + /* "View.MemoryView":980 * return memoryview.convert_item_to_object(self, itemp) * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< @@ -11738,7 +12683,7 @@ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memo return __pyx_r; } -/* "View.MemoryView":978 +/* "View.MemoryView":987 * * @property * def base(self): # <<<<<<<<<<<<<< @@ -11764,7 +12709,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__ __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); - /* "View.MemoryView":979 + /* "View.MemoryView":988 * @property * def base(self): * return self.from_object # <<<<<<<<<<<<<< @@ -11776,7 +12721,7 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__ __pyx_r = __pyx_v_self->from_object; goto __pyx_L0; - /* "View.MemoryView":978 + /* "View.MemoryView":987 * * @property * def base(self): # <<<<<<<<<<<<<< @@ -11791,72 +12736,178 @@ static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__ return __pyx_r; } -/* "View.MemoryView":985 - * - * @cname('__pyx_memoryview_fromslice') - * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< - * int ndim, - * object (*to_object_func)(char *), +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): */ -static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewslice, int __pyx_v_ndim, PyObject *(*__pyx_v_to_object_func)(char *), int (*__pyx_v_to_dtype_func)(char *, PyObject *), int __pyx_v_dtype_is_object) { - struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; - Py_ssize_t __pyx_v_suboffset; - PyObject *__pyx_v_length = NULL; +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_memoryviewslice___reduce_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations - int __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - __Pyx_TypeInfo *__pyx_t_4; - Py_buffer __pyx_t_5; - Py_ssize_t *__pyx_t_6; - Py_ssize_t *__pyx_t_7; - Py_ssize_t *__pyx_t_8; - Py_ssize_t __pyx_t_9; - __Pyx_RefNannySetupContext("memoryview_fromslice", 0); + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__reduce_cython__", 0); - /* "View.MemoryView":993 - * cdef _memoryviewslice result - * - * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< - * return None - * + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ - __pyx_t_1 = ((((PyObject *)__pyx_v_memviewslice.memview) == Py_None) != 0); - if (__pyx_t_1) { + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 2, __pyx_L1_error) - /* "View.MemoryView":994 - * - * if memviewslice.memview == Py_None: - * return None # <<<<<<<<<<<<<< - * - * + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(Py_None); - __pyx_r = Py_None; - goto __pyx_L0; - /* "View.MemoryView":993 - * cdef _memoryviewslice result - * - * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< - * return None - * - */ - } + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_memoryviewslice_2__setstate_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 4, __pyx_L1_error) + + /* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":994 + * + * @cname('__pyx_memoryview_fromslice') + * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< + * int ndim, + * object (*to_object_func)(char *), + */ + +static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewslice, int __pyx_v_ndim, PyObject *(*__pyx_v_to_object_func)(char *), int (*__pyx_v_to_dtype_func)(char *, PyObject *), int __pyx_v_dtype_is_object) { + struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; + Py_ssize_t __pyx_v_suboffset; + PyObject *__pyx_v_length = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_TypeInfo *__pyx_t_4; + Py_buffer __pyx_t_5; + Py_ssize_t *__pyx_t_6; + Py_ssize_t *__pyx_t_7; + Py_ssize_t *__pyx_t_8; + Py_ssize_t __pyx_t_9; + __Pyx_RefNannySetupContext("memoryview_fromslice", 0); + + /* "View.MemoryView":1002 + * cdef _memoryviewslice result + * + * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< + * return None + * + */ + __pyx_t_1 = ((((PyObject *)__pyx_v_memviewslice.memview) == Py_None) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1003 + * + * if memviewslice.memview == Py_None: + * return None # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + + /* "View.MemoryView":1002 + * cdef _memoryviewslice result + * + * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< + * return None + * + */ + } - /* "View.MemoryView":999 + /* "View.MemoryView":1008 * * * result = _memoryviewslice(None, 0, dtype_is_object) # <<<<<<<<<<<<<< * * result.from_slice = memviewslice */ - __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 999, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1008, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 999, __pyx_L1_error) + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1008, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); @@ -11867,13 +12918,13 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryviewslice_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 999, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryviewslice_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1008, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_2); __pyx_t_2 = 0; - /* "View.MemoryView":1001 + /* "View.MemoryView":1010 * result = _memoryviewslice(None, 0, dtype_is_object) * * result.from_slice = memviewslice # <<<<<<<<<<<<<< @@ -11882,7 +12933,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->from_slice = __pyx_v_memviewslice; - /* "View.MemoryView":1002 + /* "View.MemoryView":1011 * * result.from_slice = memviewslice * __PYX_INC_MEMVIEW(&memviewslice, 1) # <<<<<<<<<<<<<< @@ -11891,14 +12942,14 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __PYX_INC_MEMVIEW((&__pyx_v_memviewslice), 1); - /* "View.MemoryView":1004 + /* "View.MemoryView":1013 * __PYX_INC_MEMVIEW(&memviewslice, 1) * * result.from_object = ( memviewslice.memview).base # <<<<<<<<<<<<<< * result.typeinfo = memviewslice.memview.typeinfo * */ - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_memviewslice.memview), __pyx_n_s_base); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1004, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_memviewslice.memview), __pyx_n_s_base); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1013, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __Pyx_GOTREF(__pyx_v_result->from_object); @@ -11906,7 +12957,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __pyx_v_result->from_object = __pyx_t_2; __pyx_t_2 = 0; - /* "View.MemoryView":1005 + /* "View.MemoryView":1014 * * result.from_object = ( memviewslice.memview).base * result.typeinfo = memviewslice.memview.typeinfo # <<<<<<<<<<<<<< @@ -11916,7 +12967,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __pyx_t_4 = __pyx_v_memviewslice.memview->typeinfo; __pyx_v_result->__pyx_base.typeinfo = __pyx_t_4; - /* "View.MemoryView":1007 + /* "View.MemoryView":1016 * result.typeinfo = memviewslice.memview.typeinfo * * result.view = memviewslice.memview.view # <<<<<<<<<<<<<< @@ -11926,7 +12977,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __pyx_t_5 = __pyx_v_memviewslice.memview->view; __pyx_v_result->__pyx_base.view = __pyx_t_5; - /* "View.MemoryView":1008 + /* "View.MemoryView":1017 * * result.view = memviewslice.memview.view * result.view.buf = memviewslice.data # <<<<<<<<<<<<<< @@ -11935,7 +12986,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->__pyx_base.view.buf = ((void *)__pyx_v_memviewslice.data); - /* "View.MemoryView":1009 + /* "View.MemoryView":1018 * result.view = memviewslice.memview.view * result.view.buf = memviewslice.data * result.view.ndim = ndim # <<<<<<<<<<<<<< @@ -11944,7 +12995,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->__pyx_base.view.ndim = __pyx_v_ndim; - /* "View.MemoryView":1010 + /* "View.MemoryView":1019 * result.view.buf = memviewslice.data * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None # <<<<<<<<<<<<<< @@ -11953,26 +13004,58 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ ((Py_buffer *)(&__pyx_v_result->__pyx_base.view))->obj = Py_None; - /* "View.MemoryView":1011 + /* "View.MemoryView":1020 * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * - * result.flags = PyBUF_RECORDS + * if (memviewslice.memview).flags & PyBUF_WRITABLE: */ Py_INCREF(Py_None); - /* "View.MemoryView":1013 + /* "View.MemoryView":1022 + * Py_INCREF(Py_None) + * + * if (memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< + * result.flags = PyBUF_RECORDS + * else: + */ + __pyx_t_1 = ((((struct __pyx_memoryview_obj *)__pyx_v_memviewslice.memview)->flags & PyBUF_WRITABLE) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1023 + * + * if (memviewslice.memview).flags & PyBUF_WRITABLE: + * result.flags = PyBUF_RECORDS # <<<<<<<<<<<<<< + * else: + * result.flags = PyBUF_RECORDS_RO + */ + __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS; + + /* "View.MemoryView":1022 * Py_INCREF(Py_None) * - * result.flags = PyBUF_RECORDS # <<<<<<<<<<<<<< + * if (memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< + * result.flags = PyBUF_RECORDS + * else: + */ + goto __pyx_L4; + } + + /* "View.MemoryView":1025 + * result.flags = PyBUF_RECORDS + * else: + * result.flags = PyBUF_RECORDS_RO # <<<<<<<<<<<<<< * * result.view.shape = result.from_slice.shape */ - __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS; + /*else*/ { + __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS_RO; + } + __pyx_L4:; - /* "View.MemoryView":1015 - * result.flags = PyBUF_RECORDS + /* "View.MemoryView":1027 + * result.flags = PyBUF_RECORDS_RO * * result.view.shape = result.from_slice.shape # <<<<<<<<<<<<<< * result.view.strides = result.from_slice.strides @@ -11980,7 +13063,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->__pyx_base.view.shape = ((Py_ssize_t *)__pyx_v_result->from_slice.shape); - /* "View.MemoryView":1016 + /* "View.MemoryView":1028 * * result.view.shape = result.from_slice.shape * result.view.strides = result.from_slice.strides # <<<<<<<<<<<<<< @@ -11989,7 +13072,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->__pyx_base.view.strides = ((Py_ssize_t *)__pyx_v_result->from_slice.strides); - /* "View.MemoryView":1019 + /* "View.MemoryView":1031 * * * result.view.suboffsets = NULL # <<<<<<<<<<<<<< @@ -11998,7 +13081,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->__pyx_base.view.suboffsets = NULL; - /* "View.MemoryView":1020 + /* "View.MemoryView":1032 * * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: # <<<<<<<<<<<<<< @@ -12010,7 +13093,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __pyx_t_6 = __pyx_t_8; __pyx_v_suboffset = (__pyx_t_6[0]); - /* "View.MemoryView":1021 + /* "View.MemoryView":1033 * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< @@ -12020,7 +13103,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __pyx_t_1 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_1) { - /* "View.MemoryView":1022 + /* "View.MemoryView":1034 * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: * result.view.suboffsets = result.from_slice.suboffsets # <<<<<<<<<<<<<< @@ -12029,16 +13112,16 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->__pyx_base.view.suboffsets = ((Py_ssize_t *)__pyx_v_result->from_slice.suboffsets); - /* "View.MemoryView":1023 + /* "View.MemoryView":1035 * if suboffset >= 0: * result.view.suboffsets = result.from_slice.suboffsets * break # <<<<<<<<<<<<<< * * result.view.len = result.view.itemsize */ - goto __pyx_L5_break; + goto __pyx_L6_break; - /* "View.MemoryView":1021 + /* "View.MemoryView":1033 * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< @@ -12047,9 +13130,9 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ } } - __pyx_L5_break:; + __pyx_L6_break:; - /* "View.MemoryView":1025 + /* "View.MemoryView":1037 * break * * result.view.len = result.view.itemsize # <<<<<<<<<<<<<< @@ -12059,7 +13142,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __pyx_t_9 = __pyx_v_result->__pyx_base.view.itemsize; __pyx_v_result->__pyx_base.view.len = __pyx_t_9; - /* "View.MemoryView":1026 + /* "View.MemoryView":1038 * * result.view.len = result.view.itemsize * for length in result.view.shape[:ndim]: # <<<<<<<<<<<<<< @@ -12069,29 +13152,29 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __pyx_t_7 = (__pyx_v_result->__pyx_base.view.shape + __pyx_v_ndim); for (__pyx_t_8 = __pyx_v_result->__pyx_base.view.shape; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { __pyx_t_6 = __pyx_t_8; - __pyx_t_2 = PyInt_FromSsize_t((__pyx_t_6[0])); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1026, __pyx_L1_error) + __pyx_t_2 = PyInt_FromSsize_t((__pyx_t_6[0])); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1038, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_2); __pyx_t_2 = 0; - /* "View.MemoryView":1027 + /* "View.MemoryView":1039 * result.view.len = result.view.itemsize * for length in result.view.shape[:ndim]: * result.view.len *= length # <<<<<<<<<<<<<< * * result.to_object_func = to_object_func */ - __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_result->__pyx_base.view.len); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1027, __pyx_L1_error) + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_result->__pyx_base.view.len); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1039, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyNumber_InPlaceMultiply(__pyx_t_2, __pyx_v_length); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1027, __pyx_L1_error) + __pyx_t_3 = PyNumber_InPlaceMultiply(__pyx_t_2, __pyx_v_length); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1039, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 1027, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(1, 1039, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result->__pyx_base.view.len = __pyx_t_9; } - /* "View.MemoryView":1029 + /* "View.MemoryView":1041 * result.view.len *= length * * result.to_object_func = to_object_func # <<<<<<<<<<<<<< @@ -12100,7 +13183,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->to_object_func = __pyx_v_to_object_func; - /* "View.MemoryView":1030 + /* "View.MemoryView":1042 * * result.to_object_func = to_object_func * result.to_dtype_func = to_dtype_func # <<<<<<<<<<<<<< @@ -12109,7 +13192,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl */ __pyx_v_result->to_dtype_func = __pyx_v_to_dtype_func; - /* "View.MemoryView":1032 + /* "View.MemoryView":1044 * result.to_dtype_func = to_dtype_func * * return result # <<<<<<<<<<<<<< @@ -12121,7 +13204,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; - /* "View.MemoryView":985 + /* "View.MemoryView":994 * * @cname('__pyx_memoryview_fromslice') * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< @@ -12143,7 +13226,7 @@ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewsl return __pyx_r; } -/* "View.MemoryView":1035 +/* "View.MemoryView":1047 * * @cname('__pyx_memoryview_get_slice_from_memoryview') * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< @@ -12160,7 +13243,7 @@ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __p PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("get_slice_from_memview", 0); - /* "View.MemoryView":1038 + /* "View.MemoryView":1050 * __Pyx_memviewslice *mslice): * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< @@ -12171,20 +13254,20 @@ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __p __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { - /* "View.MemoryView":1039 + /* "View.MemoryView":1051 * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): * obj = memview # <<<<<<<<<<<<<< * return &obj.from_slice * else: */ - if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(1, 1039, __pyx_L1_error) + if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(1, 1051, __pyx_L1_error) __pyx_t_3 = ((PyObject *)__pyx_v_memview); __Pyx_INCREF(__pyx_t_3); __pyx_v_obj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); __pyx_t_3 = 0; - /* "View.MemoryView":1040 + /* "View.MemoryView":1052 * if isinstance(memview, _memoryviewslice): * obj = memview * return &obj.from_slice # <<<<<<<<<<<<<< @@ -12194,7 +13277,7 @@ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __p __pyx_r = (&__pyx_v_obj->from_slice); goto __pyx_L0; - /* "View.MemoryView":1038 + /* "View.MemoryView":1050 * __Pyx_memviewslice *mslice): * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< @@ -12203,7 +13286,7 @@ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __p */ } - /* "View.MemoryView":1042 + /* "View.MemoryView":1054 * return &obj.from_slice * else: * slice_copy(memview, mslice) # <<<<<<<<<<<<<< @@ -12213,7 +13296,7 @@ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __p /*else*/ { __pyx_memoryview_slice_copy(__pyx_v_memview, __pyx_v_mslice); - /* "View.MemoryView":1043 + /* "View.MemoryView":1055 * else: * slice_copy(memview, mslice) * return mslice # <<<<<<<<<<<<<< @@ -12224,7 +13307,7 @@ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __p goto __pyx_L0; } - /* "View.MemoryView":1035 + /* "View.MemoryView":1047 * * @cname('__pyx_memoryview_get_slice_from_memoryview') * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< @@ -12235,7 +13318,7 @@ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __p /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); - __Pyx_WriteUnraisable("View.MemoryView.get_slice_from_memview", __pyx_clineno, __pyx_lineno, __pyx_filename, 0, 0); + __Pyx_WriteUnraisable("View.MemoryView.get_slice_from_memview", __pyx_clineno, __pyx_lineno, __pyx_filename, 1, 0); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_obj); @@ -12243,7 +13326,7 @@ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __p return __pyx_r; } -/* "View.MemoryView":1046 +/* "View.MemoryView":1058 * * @cname('__pyx_memoryview_slice_copy') * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< @@ -12260,10 +13343,11 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem Py_ssize_t *__pyx_t_1; int __pyx_t_2; int __pyx_t_3; - Py_ssize_t __pyx_t_4; + int __pyx_t_4; + Py_ssize_t __pyx_t_5; __Pyx_RefNannySetupContext("slice_copy", 0); - /* "View.MemoryView":1050 + /* "View.MemoryView":1062 * cdef (Py_ssize_t*) shape, strides, suboffsets * * shape = memview.view.shape # <<<<<<<<<<<<<< @@ -12273,7 +13357,7 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem __pyx_t_1 = __pyx_v_memview->view.shape; __pyx_v_shape = __pyx_t_1; - /* "View.MemoryView":1051 + /* "View.MemoryView":1063 * * shape = memview.view.shape * strides = memview.view.strides # <<<<<<<<<<<<<< @@ -12283,7 +13367,7 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem __pyx_t_1 = __pyx_v_memview->view.strides; __pyx_v_strides = __pyx_t_1; - /* "View.MemoryView":1052 + /* "View.MemoryView":1064 * shape = memview.view.shape * strides = memview.view.strides * suboffsets = memview.view.suboffsets # <<<<<<<<<<<<<< @@ -12293,7 +13377,7 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem __pyx_t_1 = __pyx_v_memview->view.suboffsets; __pyx_v_suboffsets = __pyx_t_1; - /* "View.MemoryView":1054 + /* "View.MemoryView":1066 * suboffsets = memview.view.suboffsets * * dst.memview = <__pyx_memoryview *> memview # <<<<<<<<<<<<<< @@ -12302,7 +13386,7 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem */ __pyx_v_dst->memview = ((struct __pyx_memoryview_obj *)__pyx_v_memview); - /* "View.MemoryView":1055 + /* "View.MemoryView":1067 * * dst.memview = <__pyx_memoryview *> memview * dst.data = memview.view.buf # <<<<<<<<<<<<<< @@ -12311,7 +13395,7 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem */ __pyx_v_dst->data = ((char *)__pyx_v_memview->view.buf); - /* "View.MemoryView":1057 + /* "View.MemoryView":1069 * dst.data = memview.view.buf * * for dim in range(memview.view.ndim): # <<<<<<<<<<<<<< @@ -12319,10 +13403,11 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem * dst.strides[dim] = strides[dim] */ __pyx_t_2 = __pyx_v_memview->view.ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_dim = __pyx_t_3; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_dim = __pyx_t_4; - /* "View.MemoryView":1058 + /* "View.MemoryView":1070 * * for dim in range(memview.view.ndim): * dst.shape[dim] = shape[dim] # <<<<<<<<<<<<<< @@ -12331,7 +13416,7 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem */ (__pyx_v_dst->shape[__pyx_v_dim]) = (__pyx_v_shape[__pyx_v_dim]); - /* "View.MemoryView":1059 + /* "View.MemoryView":1071 * for dim in range(memview.view.ndim): * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] # <<<<<<<<<<<<<< @@ -12340,7 +13425,7 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem */ (__pyx_v_dst->strides[__pyx_v_dim]) = (__pyx_v_strides[__pyx_v_dim]); - /* "View.MemoryView":1060 + /* "View.MemoryView":1072 * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 # <<<<<<<<<<<<<< @@ -12348,14 +13433,14 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem * @cname('__pyx_memoryview_copy_object') */ if ((__pyx_v_suboffsets != 0)) { - __pyx_t_4 = (__pyx_v_suboffsets[__pyx_v_dim]); + __pyx_t_5 = (__pyx_v_suboffsets[__pyx_v_dim]); } else { - __pyx_t_4 = -1L; + __pyx_t_5 = -1L; } - (__pyx_v_dst->suboffsets[__pyx_v_dim]) = __pyx_t_4; + (__pyx_v_dst->suboffsets[__pyx_v_dim]) = __pyx_t_5; } - /* "View.MemoryView":1046 + /* "View.MemoryView":1058 * * @cname('__pyx_memoryview_slice_copy') * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< @@ -12367,7 +13452,7 @@ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_mem __Pyx_RefNannyFinishContext(); } -/* "View.MemoryView":1063 +/* "View.MemoryView":1075 * * @cname('__pyx_memoryview_copy_object') * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< @@ -12382,7 +13467,7 @@ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("memoryview_copy", 0); - /* "View.MemoryView":1066 + /* "View.MemoryView":1078 * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice * slice_copy(memview, &memviewslice) # <<<<<<<<<<<<<< @@ -12391,7 +13476,7 @@ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx */ __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_memviewslice)); - /* "View.MemoryView":1067 + /* "View.MemoryView":1079 * cdef __Pyx_memviewslice memviewslice * slice_copy(memview, &memviewslice) * return memoryview_copy_from_slice(memview, &memviewslice) # <<<<<<<<<<<<<< @@ -12399,13 +13484,13 @@ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx * @cname('__pyx_memoryview_copy_object_from_slice') */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __pyx_memoryview_copy_object_from_slice(__pyx_v_memview, (&__pyx_v_memviewslice)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1067, __pyx_L1_error) + __pyx_t_1 = __pyx_memoryview_copy_object_from_slice(__pyx_v_memview, (&__pyx_v_memviewslice)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1079, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; - /* "View.MemoryView":1063 + /* "View.MemoryView":1075 * * @cname('__pyx_memoryview_copy_object') * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< @@ -12424,7 +13509,7 @@ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx return __pyx_r; } -/* "View.MemoryView":1070 +/* "View.MemoryView":1082 * * @cname('__pyx_memoryview_copy_object_from_slice') * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< @@ -12444,7 +13529,7 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview PyObject *__pyx_t_5 = NULL; __Pyx_RefNannySetupContext("memoryview_copy_from_slice", 0); - /* "View.MemoryView":1077 + /* "View.MemoryView":1089 * cdef int (*to_dtype_func)(char *, object) except 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< @@ -12455,7 +13540,7 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { - /* "View.MemoryView":1078 + /* "View.MemoryView":1090 * * if isinstance(memview, _memoryviewslice): * to_object_func = (<_memoryviewslice> memview).to_object_func # <<<<<<<<<<<<<< @@ -12465,7 +13550,7 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview __pyx_t_3 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_object_func; __pyx_v_to_object_func = __pyx_t_3; - /* "View.MemoryView":1079 + /* "View.MemoryView":1091 * if isinstance(memview, _memoryviewslice): * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func # <<<<<<<<<<<<<< @@ -12475,7 +13560,7 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview __pyx_t_4 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_dtype_func; __pyx_v_to_dtype_func = __pyx_t_4; - /* "View.MemoryView":1077 + /* "View.MemoryView":1089 * cdef int (*to_dtype_func)(char *, object) except 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< @@ -12485,7 +13570,7 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview goto __pyx_L3; } - /* "View.MemoryView":1081 + /* "View.MemoryView":1093 * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func * else: * to_object_func = NULL # <<<<<<<<<<<<<< @@ -12495,7 +13580,7 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview /*else*/ { __pyx_v_to_object_func = NULL; - /* "View.MemoryView":1082 + /* "View.MemoryView":1094 * else: * to_object_func = NULL * to_dtype_func = NULL # <<<<<<<<<<<<<< @@ -12506,7 +13591,7 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview } __pyx_L3:; - /* "View.MemoryView":1084 + /* "View.MemoryView":1096 * to_dtype_func = NULL * * return memoryview_fromslice(memviewslice[0], memview.view.ndim, # <<<<<<<<<<<<<< @@ -12515,20 +13600,20 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview */ __Pyx_XDECREF(__pyx_r); - /* "View.MemoryView":1086 + /* "View.MemoryView":1098 * return memoryview_fromslice(memviewslice[0], memview.view.ndim, * to_object_func, to_dtype_func, * memview.dtype_is_object) # <<<<<<<<<<<<<< * * */ - __pyx_t_5 = __pyx_memoryview_fromslice((__pyx_v_memviewslice[0]), __pyx_v_memview->view.ndim, __pyx_v_to_object_func, __pyx_v_to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 1084, __pyx_L1_error) + __pyx_t_5 = __pyx_memoryview_fromslice((__pyx_v_memviewslice[0]), __pyx_v_memview->view.ndim, __pyx_v_to_object_func, __pyx_v_to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 1096, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; - /* "View.MemoryView":1070 + /* "View.MemoryView":1082 * * @cname('__pyx_memoryview_copy_object_from_slice') * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< @@ -12547,7 +13632,7 @@ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview return __pyx_r; } -/* "View.MemoryView":1092 +/* "View.MemoryView":1104 * * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< @@ -12559,7 +13644,7 @@ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { Py_ssize_t __pyx_r; int __pyx_t_1; - /* "View.MemoryView":1093 + /* "View.MemoryView":1105 * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: # <<<<<<<<<<<<<< @@ -12569,7 +13654,7 @@ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { __pyx_t_1 = ((__pyx_v_arg < 0) != 0); if (__pyx_t_1) { - /* "View.MemoryView":1094 + /* "View.MemoryView":1106 * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: * return -arg # <<<<<<<<<<<<<< @@ -12579,7 +13664,7 @@ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { __pyx_r = (-__pyx_v_arg); goto __pyx_L0; - /* "View.MemoryView":1093 + /* "View.MemoryView":1105 * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: # <<<<<<<<<<<<<< @@ -12588,7 +13673,7 @@ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { */ } - /* "View.MemoryView":1096 + /* "View.MemoryView":1108 * return -arg * else: * return arg # <<<<<<<<<<<<<< @@ -12600,7 +13685,7 @@ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { goto __pyx_L0; } - /* "View.MemoryView":1092 + /* "View.MemoryView":1104 * * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< @@ -12613,7 +13698,7 @@ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { return __pyx_r; } -/* "View.MemoryView":1099 +/* "View.MemoryView":1111 * * @cname('__pyx_get_best_slice_order') * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< @@ -12629,8 +13714,9 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; + int __pyx_t_4; - /* "View.MemoryView":1104 + /* "View.MemoryView":1116 * """ * cdef int i * cdef Py_ssize_t c_stride = 0 # <<<<<<<<<<<<<< @@ -12639,7 +13725,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ */ __pyx_v_c_stride = 0; - /* "View.MemoryView":1105 + /* "View.MemoryView":1117 * cdef int i * cdef Py_ssize_t c_stride = 0 * cdef Py_ssize_t f_stride = 0 # <<<<<<<<<<<<<< @@ -12648,17 +13734,17 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ */ __pyx_v_f_stride = 0; - /* "View.MemoryView":1107 + /* "View.MemoryView":1119 * cdef Py_ssize_t f_stride = 0 * * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] */ - for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1L; __pyx_t_1-=1) { + for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; - /* "View.MemoryView":1108 + /* "View.MemoryView":1120 * * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< @@ -12668,7 +13754,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1109 + /* "View.MemoryView":1121 * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] # <<<<<<<<<<<<<< @@ -12677,7 +13763,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ */ __pyx_v_c_stride = (__pyx_v_mslice->strides[__pyx_v_i]); - /* "View.MemoryView":1110 + /* "View.MemoryView":1122 * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] * break # <<<<<<<<<<<<<< @@ -12686,7 +13772,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ */ goto __pyx_L4_break; - /* "View.MemoryView":1108 + /* "View.MemoryView":1120 * * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< @@ -12697,7 +13783,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ } __pyx_L4_break:; - /* "View.MemoryView":1112 + /* "View.MemoryView":1124 * break * * for i in range(ndim): # <<<<<<<<<<<<<< @@ -12705,10 +13791,11 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ * f_stride = mslice.strides[i] */ __pyx_t_1 = __pyx_v_ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_1; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; + __pyx_t_3 = __pyx_t_1; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; - /* "View.MemoryView":1113 + /* "View.MemoryView":1125 * * for i in range(ndim): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< @@ -12718,7 +13805,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1114 + /* "View.MemoryView":1126 * for i in range(ndim): * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] # <<<<<<<<<<<<<< @@ -12727,7 +13814,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ */ __pyx_v_f_stride = (__pyx_v_mslice->strides[__pyx_v_i]); - /* "View.MemoryView":1115 + /* "View.MemoryView":1127 * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] * break # <<<<<<<<<<<<<< @@ -12736,7 +13823,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ */ goto __pyx_L7_break; - /* "View.MemoryView":1113 + /* "View.MemoryView":1125 * * for i in range(ndim): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< @@ -12747,7 +13834,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ } __pyx_L7_break:; - /* "View.MemoryView":1117 + /* "View.MemoryView":1129 * break * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< @@ -12757,7 +13844,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ __pyx_t_2 = ((abs_py_ssize_t(__pyx_v_c_stride) <= abs_py_ssize_t(__pyx_v_f_stride)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1118 + /* "View.MemoryView":1130 * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): * return 'C' # <<<<<<<<<<<<<< @@ -12767,7 +13854,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ __pyx_r = 'C'; goto __pyx_L0; - /* "View.MemoryView":1117 + /* "View.MemoryView":1129 * break * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< @@ -12776,7 +13863,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ */ } - /* "View.MemoryView":1120 + /* "View.MemoryView":1132 * return 'C' * else: * return 'F' # <<<<<<<<<<<<<< @@ -12788,7 +13875,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ goto __pyx_L0; } - /* "View.MemoryView":1099 + /* "View.MemoryView":1111 * * @cname('__pyx_get_best_slice_order') * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< @@ -12801,7 +13888,7 @@ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int _ return __pyx_r; } -/* "View.MemoryView":1123 +/* "View.MemoryView":1135 * * @cython.cdivision(True) * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< @@ -12820,8 +13907,9 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v int __pyx_t_3; Py_ssize_t __pyx_t_4; Py_ssize_t __pyx_t_5; + Py_ssize_t __pyx_t_6; - /* "View.MemoryView":1130 + /* "View.MemoryView":1142 * * cdef Py_ssize_t i * cdef Py_ssize_t src_extent = src_shape[0] # <<<<<<<<<<<<<< @@ -12830,7 +13918,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ __pyx_v_src_extent = (__pyx_v_src_shape[0]); - /* "View.MemoryView":1131 + /* "View.MemoryView":1143 * cdef Py_ssize_t i * cdef Py_ssize_t src_extent = src_shape[0] * cdef Py_ssize_t dst_extent = dst_shape[0] # <<<<<<<<<<<<<< @@ -12839,7 +13927,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ __pyx_v_dst_extent = (__pyx_v_dst_shape[0]); - /* "View.MemoryView":1132 + /* "View.MemoryView":1144 * cdef Py_ssize_t src_extent = src_shape[0] * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] # <<<<<<<<<<<<<< @@ -12848,7 +13936,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ __pyx_v_src_stride = (__pyx_v_src_strides[0]); - /* "View.MemoryView":1133 + /* "View.MemoryView":1145 * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] * cdef Py_ssize_t dst_stride = dst_strides[0] # <<<<<<<<<<<<<< @@ -12857,7 +13945,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ __pyx_v_dst_stride = (__pyx_v_dst_strides[0]); - /* "View.MemoryView":1135 + /* "View.MemoryView":1147 * cdef Py_ssize_t dst_stride = dst_strides[0] * * if ndim == 1: # <<<<<<<<<<<<<< @@ -12867,7 +13955,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_1) { - /* "View.MemoryView":1136 + /* "View.MemoryView":1148 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< @@ -12887,7 +13975,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v goto __pyx_L5_bool_binop_done; } - /* "View.MemoryView":1137 + /* "View.MemoryView":1149 * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and * src_stride == itemsize == dst_stride): # <<<<<<<<<<<<<< @@ -12902,7 +13990,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v __pyx_t_1 = __pyx_t_3; __pyx_L5_bool_binop_done:; - /* "View.MemoryView":1136 + /* "View.MemoryView":1148 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< @@ -12911,16 +13999,16 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ if (__pyx_t_1) { - /* "View.MemoryView":1138 + /* "View.MemoryView":1150 * if (src_stride > 0 and dst_stride > 0 and * src_stride == itemsize == dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) # <<<<<<<<<<<<<< * else: * for i in range(dst_extent): */ - memcpy(__pyx_v_dst_data, __pyx_v_src_data, (__pyx_v_itemsize * __pyx_v_dst_extent)); + (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, (__pyx_v_itemsize * __pyx_v_dst_extent))); - /* "View.MemoryView":1136 + /* "View.MemoryView":1148 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< @@ -12930,7 +14018,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v goto __pyx_L4; } - /* "View.MemoryView":1140 + /* "View.MemoryView":1152 * memcpy(dst_data, src_data, itemsize * dst_extent) * else: * for i in range(dst_extent): # <<<<<<<<<<<<<< @@ -12939,19 +14027,20 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ /*else*/ { __pyx_t_4 = __pyx_v_dst_extent; - for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { - __pyx_v_i = __pyx_t_5; + __pyx_t_5 = __pyx_t_4; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; - /* "View.MemoryView":1141 + /* "View.MemoryView":1153 * else: * for i in range(dst_extent): * memcpy(dst_data, src_data, itemsize) # <<<<<<<<<<<<<< * src_data += src_stride * dst_data += dst_stride */ - memcpy(__pyx_v_dst_data, __pyx_v_src_data, __pyx_v_itemsize); + (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, __pyx_v_itemsize)); - /* "View.MemoryView":1142 + /* "View.MemoryView":1154 * for i in range(dst_extent): * memcpy(dst_data, src_data, itemsize) * src_data += src_stride # <<<<<<<<<<<<<< @@ -12960,7 +14049,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); - /* "View.MemoryView":1143 + /* "View.MemoryView":1155 * memcpy(dst_data, src_data, itemsize) * src_data += src_stride * dst_data += dst_stride # <<<<<<<<<<<<<< @@ -12972,7 +14061,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v } __pyx_L4:; - /* "View.MemoryView":1135 + /* "View.MemoryView":1147 * cdef Py_ssize_t dst_stride = dst_strides[0] * * if ndim == 1: # <<<<<<<<<<<<<< @@ -12982,7 +14071,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v goto __pyx_L3; } - /* "View.MemoryView":1145 + /* "View.MemoryView":1157 * dst_data += dst_stride * else: * for i in range(dst_extent): # <<<<<<<<<<<<<< @@ -12991,10 +14080,11 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ /*else*/ { __pyx_t_4 = __pyx_v_dst_extent; - for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { - __pyx_v_i = __pyx_t_5; + __pyx_t_5 = __pyx_t_4; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; - /* "View.MemoryView":1146 + /* "View.MemoryView":1158 * else: * for i in range(dst_extent): * _copy_strided_to_strided(src_data, src_strides + 1, # <<<<<<<<<<<<<< @@ -13003,7 +14093,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ _copy_strided_to_strided(__pyx_v_src_data, (__pyx_v_src_strides + 1), __pyx_v_dst_data, (__pyx_v_dst_strides + 1), (__pyx_v_src_shape + 1), (__pyx_v_dst_shape + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize); - /* "View.MemoryView":1150 + /* "View.MemoryView":1162 * src_shape + 1, dst_shape + 1, * ndim - 1, itemsize) * src_data += src_stride # <<<<<<<<<<<<<< @@ -13012,7 +14102,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v */ __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); - /* "View.MemoryView":1151 + /* "View.MemoryView":1163 * ndim - 1, itemsize) * src_data += src_stride * dst_data += dst_stride # <<<<<<<<<<<<<< @@ -13024,7 +14114,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v } __pyx_L3:; - /* "View.MemoryView":1123 + /* "View.MemoryView":1135 * * @cython.cdivision(True) * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< @@ -13035,7 +14125,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v /* function exit code */ } -/* "View.MemoryView":1153 +/* "View.MemoryView":1165 * dst_data += dst_stride * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< @@ -13045,7 +14135,7 @@ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize) { - /* "View.MemoryView":1156 + /* "View.MemoryView":1168 * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: * _copy_strided_to_strided(src.data, src.strides, dst.data, dst.strides, # <<<<<<<<<<<<<< @@ -13054,7 +14144,7 @@ static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memvi */ _copy_strided_to_strided(__pyx_v_src->data, __pyx_v_src->strides, __pyx_v_dst->data, __pyx_v_dst->strides, __pyx_v_src->shape, __pyx_v_dst->shape, __pyx_v_ndim, __pyx_v_itemsize); - /* "View.MemoryView":1153 + /* "View.MemoryView":1165 * dst_data += dst_stride * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< @@ -13065,7 +14155,7 @@ static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memvi /* function exit code */ } -/* "View.MemoryView":1160 +/* "View.MemoryView":1172 * * @cname('__pyx_memoryview_slice_get_size') * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< @@ -13080,8 +14170,9 @@ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_sr Py_ssize_t __pyx_t_1; int __pyx_t_2; int __pyx_t_3; + int __pyx_t_4; - /* "View.MemoryView":1163 + /* "View.MemoryView":1175 * "Return the size of the memory occupied by the slice in number of bytes" * cdef int i * cdef Py_ssize_t size = src.memview.view.itemsize # <<<<<<<<<<<<<< @@ -13091,7 +14182,7 @@ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_sr __pyx_t_1 = __pyx_v_src->memview->view.itemsize; __pyx_v_size = __pyx_t_1; - /* "View.MemoryView":1165 + /* "View.MemoryView":1177 * cdef Py_ssize_t size = src.memview.view.itemsize * * for i in range(ndim): # <<<<<<<<<<<<<< @@ -13099,10 +14190,11 @@ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_sr * */ __pyx_t_2 = __pyx_v_ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; - /* "View.MemoryView":1166 + /* "View.MemoryView":1178 * * for i in range(ndim): * size *= src.shape[i] # <<<<<<<<<<<<<< @@ -13112,7 +14204,7 @@ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_sr __pyx_v_size = (__pyx_v_size * (__pyx_v_src->shape[__pyx_v_i])); } - /* "View.MemoryView":1168 + /* "View.MemoryView":1180 * size *= src.shape[i] * * return size # <<<<<<<<<<<<<< @@ -13122,7 +14214,7 @@ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_sr __pyx_r = __pyx_v_size; goto __pyx_L0; - /* "View.MemoryView":1160 + /* "View.MemoryView":1172 * * @cname('__pyx_memoryview_slice_get_size') * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< @@ -13135,7 +14227,7 @@ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_sr return __pyx_r; } -/* "View.MemoryView":1171 +/* "View.MemoryView":1183 * * @cname('__pyx_fill_contig_strides_array') * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< @@ -13149,8 +14241,9 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; + int __pyx_t_4; - /* "View.MemoryView":1180 + /* "View.MemoryView":1192 * cdef int idx * * if order == 'F': # <<<<<<<<<<<<<< @@ -13160,7 +14253,7 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ __pyx_t_1 = ((__pyx_v_order == 'F') != 0); if (__pyx_t_1) { - /* "View.MemoryView":1181 + /* "View.MemoryView":1193 * * if order == 'F': * for idx in range(ndim): # <<<<<<<<<<<<<< @@ -13168,10 +14261,11 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ * stride = stride * shape[idx] */ __pyx_t_2 = __pyx_v_ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_idx = __pyx_t_3; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_idx = __pyx_t_4; - /* "View.MemoryView":1182 + /* "View.MemoryView":1194 * if order == 'F': * for idx in range(ndim): * strides[idx] = stride # <<<<<<<<<<<<<< @@ -13180,7 +14274,7 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ */ (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; - /* "View.MemoryView":1183 + /* "View.MemoryView":1195 * for idx in range(ndim): * strides[idx] = stride * stride = stride * shape[idx] # <<<<<<<<<<<<<< @@ -13190,7 +14284,7 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); } - /* "View.MemoryView":1180 + /* "View.MemoryView":1192 * cdef int idx * * if order == 'F': # <<<<<<<<<<<<<< @@ -13200,7 +14294,7 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ goto __pyx_L3; } - /* "View.MemoryView":1185 + /* "View.MemoryView":1197 * stride = stride * shape[idx] * else: * for idx in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< @@ -13208,10 +14302,10 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ * stride = stride * shape[idx] */ /*else*/ { - for (__pyx_t_2 = (__pyx_v_ndim - 1); __pyx_t_2 > -1L; __pyx_t_2-=1) { + for (__pyx_t_2 = (__pyx_v_ndim - 1); __pyx_t_2 > -1; __pyx_t_2-=1) { __pyx_v_idx = __pyx_t_2; - /* "View.MemoryView":1186 + /* "View.MemoryView":1198 * else: * for idx in range(ndim - 1, -1, -1): * strides[idx] = stride # <<<<<<<<<<<<<< @@ -13220,7 +14314,7 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ */ (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; - /* "View.MemoryView":1187 + /* "View.MemoryView":1199 * for idx in range(ndim - 1, -1, -1): * strides[idx] = stride * stride = stride * shape[idx] # <<<<<<<<<<<<<< @@ -13232,7 +14326,7 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ } __pyx_L3:; - /* "View.MemoryView":1189 + /* "View.MemoryView":1201 * stride = stride * shape[idx] * * return stride # <<<<<<<<<<<<<< @@ -13242,7 +14336,7 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ __pyx_r = __pyx_v_stride; goto __pyx_L0; - /* "View.MemoryView":1171 + /* "View.MemoryView":1183 * * @cname('__pyx_fill_contig_strides_array') * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< @@ -13255,7 +14349,7 @@ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ return __pyx_r; } -/* "View.MemoryView":1192 +/* "View.MemoryView":1204 * * @cname('__pyx_memoryview_copy_data_to_temp') * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< @@ -13274,8 +14368,9 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, int __pyx_t_3; struct __pyx_memoryview_obj *__pyx_t_4; int __pyx_t_5; + int __pyx_t_6; - /* "View.MemoryView":1203 + /* "View.MemoryView":1215 * cdef void *result * * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< @@ -13285,7 +14380,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __pyx_t_1 = __pyx_v_src->memview->view.itemsize; __pyx_v_itemsize = __pyx_t_1; - /* "View.MemoryView":1204 + /* "View.MemoryView":1216 * * cdef size_t itemsize = src.memview.view.itemsize * cdef size_t size = slice_get_size(src, ndim) # <<<<<<<<<<<<<< @@ -13294,7 +14389,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, */ __pyx_v_size = __pyx_memoryview_slice_get_size(__pyx_v_src, __pyx_v_ndim); - /* "View.MemoryView":1206 + /* "View.MemoryView":1218 * cdef size_t size = slice_get_size(src, ndim) * * result = malloc(size) # <<<<<<<<<<<<<< @@ -13303,7 +14398,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, */ __pyx_v_result = malloc(__pyx_v_size); - /* "View.MemoryView":1207 + /* "View.MemoryView":1219 * * result = malloc(size) * if not result: # <<<<<<<<<<<<<< @@ -13313,16 +14408,16 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __pyx_t_2 = ((!(__pyx_v_result != 0)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1208 + /* "View.MemoryView":1220 * result = malloc(size) * if not result: * _err(MemoryError, NULL) # <<<<<<<<<<<<<< * * */ - __pyx_t_3 = __pyx_memoryview_err(__pyx_builtin_MemoryError, NULL); if (unlikely(__pyx_t_3 == -1)) __PYX_ERR(1, 1208, __pyx_L1_error) + __pyx_t_3 = __pyx_memoryview_err(__pyx_builtin_MemoryError, NULL); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(1, 1220, __pyx_L1_error) - /* "View.MemoryView":1207 + /* "View.MemoryView":1219 * * result = malloc(size) * if not result: # <<<<<<<<<<<<<< @@ -13331,7 +14426,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, */ } - /* "View.MemoryView":1211 + /* "View.MemoryView":1223 * * * tmpslice.data = result # <<<<<<<<<<<<<< @@ -13340,7 +14435,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, */ __pyx_v_tmpslice->data = ((char *)__pyx_v_result); - /* "View.MemoryView":1212 + /* "View.MemoryView":1224 * * tmpslice.data = result * tmpslice.memview = src.memview # <<<<<<<<<<<<<< @@ -13350,7 +14445,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __pyx_t_4 = __pyx_v_src->memview; __pyx_v_tmpslice->memview = __pyx_t_4; - /* "View.MemoryView":1213 + /* "View.MemoryView":1225 * tmpslice.data = result * tmpslice.memview = src.memview * for i in range(ndim): # <<<<<<<<<<<<<< @@ -13358,10 +14453,11 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, * tmpslice.suboffsets[i] = -1 */ __pyx_t_3 = __pyx_v_ndim; - for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_3; __pyx_t_5+=1) { - __pyx_v_i = __pyx_t_5; + __pyx_t_5 = __pyx_t_3; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; - /* "View.MemoryView":1214 + /* "View.MemoryView":1226 * tmpslice.memview = src.memview * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] # <<<<<<<<<<<<<< @@ -13370,7 +14466,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, */ (__pyx_v_tmpslice->shape[__pyx_v_i]) = (__pyx_v_src->shape[__pyx_v_i]); - /* "View.MemoryView":1215 + /* "View.MemoryView":1227 * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] * tmpslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< @@ -13380,16 +14476,16 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, (__pyx_v_tmpslice->suboffsets[__pyx_v_i]) = -1L; } - /* "View.MemoryView":1217 + /* "View.MemoryView":1229 * tmpslice.suboffsets[i] = -1 * * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, # <<<<<<<<<<<<<< * ndim, order) * */ - __pyx_fill_contig_strides_array((&(__pyx_v_tmpslice->shape[0])), (&(__pyx_v_tmpslice->strides[0])), __pyx_v_itemsize, __pyx_v_ndim, __pyx_v_order); + (void)(__pyx_fill_contig_strides_array((&(__pyx_v_tmpslice->shape[0])), (&(__pyx_v_tmpslice->strides[0])), __pyx_v_itemsize, __pyx_v_ndim, __pyx_v_order)); - /* "View.MemoryView":1221 + /* "View.MemoryView":1233 * * * for i in range(ndim): # <<<<<<<<<<<<<< @@ -13397,10 +14493,11 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, * tmpslice.strides[i] = 0 */ __pyx_t_3 = __pyx_v_ndim; - for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_3; __pyx_t_5+=1) { - __pyx_v_i = __pyx_t_5; + __pyx_t_5 = __pyx_t_3; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; - /* "View.MemoryView":1222 + /* "View.MemoryView":1234 * * for i in range(ndim): * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< @@ -13410,7 +14507,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __pyx_t_2 = (((__pyx_v_tmpslice->shape[__pyx_v_i]) == 1) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1223 + /* "View.MemoryView":1235 * for i in range(ndim): * if tmpslice.shape[i] == 1: * tmpslice.strides[i] = 0 # <<<<<<<<<<<<<< @@ -13419,7 +14516,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, */ (__pyx_v_tmpslice->strides[__pyx_v_i]) = 0; - /* "View.MemoryView":1222 + /* "View.MemoryView":1234 * * for i in range(ndim): * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< @@ -13429,7 +14526,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, } } - /* "View.MemoryView":1225 + /* "View.MemoryView":1237 * tmpslice.strides[i] = 0 * * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< @@ -13439,16 +14536,16 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __pyx_t_2 = (__pyx_memviewslice_is_contig((__pyx_v_src[0]), __pyx_v_order, __pyx_v_ndim) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1226 + /* "View.MemoryView":1238 * * if slice_is_contig(src[0], order, ndim): * memcpy(result, src.data, size) # <<<<<<<<<<<<<< * else: * copy_strided_to_strided(src, tmpslice, ndim, itemsize) */ - memcpy(__pyx_v_result, __pyx_v_src->data, __pyx_v_size); + (void)(memcpy(__pyx_v_result, __pyx_v_src->data, __pyx_v_size)); - /* "View.MemoryView":1225 + /* "View.MemoryView":1237 * tmpslice.strides[i] = 0 * * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< @@ -13458,7 +14555,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, goto __pyx_L9; } - /* "View.MemoryView":1228 + /* "View.MemoryView":1240 * memcpy(result, src.data, size) * else: * copy_strided_to_strided(src, tmpslice, ndim, itemsize) # <<<<<<<<<<<<<< @@ -13470,7 +14567,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, } __pyx_L9:; - /* "View.MemoryView":1230 + /* "View.MemoryView":1242 * copy_strided_to_strided(src, tmpslice, ndim, itemsize) * * return result # <<<<<<<<<<<<<< @@ -13480,7 +14577,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __pyx_r = __pyx_v_result; goto __pyx_L0; - /* "View.MemoryView":1192 + /* "View.MemoryView":1204 * * @cname('__pyx_memoryview_copy_data_to_temp') * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< @@ -13492,11 +14589,11 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __pyx_L1_error:; { #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.copy_data_to_temp", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); + __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = NULL; @@ -13504,7 +14601,7 @@ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, return __pyx_r; } -/* "View.MemoryView":1235 +/* "View.MemoryView":1247 * * @cname('__pyx_memoryview_err_extents') * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< @@ -13520,24 +14617,24 @@ static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err_extents", 0); - /* "View.MemoryView":1238 + /* "View.MemoryView":1250 * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % * (i, extent1, extent2)) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_err_dim') */ - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1238, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_extent1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1238, __pyx_L1_error) + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_extent1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_extent2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1238, __pyx_L1_error) + __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_extent2); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1238, __pyx_L1_error) + __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); @@ -13549,29 +14646,24 @@ static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent __pyx_t_2 = 0; __pyx_t_3 = 0; - /* "View.MemoryView":1237 + /* "View.MemoryView":1249 * cdef int _err_extents(int i, Py_ssize_t extent1, * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % # <<<<<<<<<<<<<< * (i, extent1, extent2)) * */ - __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1237, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1249, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1237, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1249, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __Pyx_GIVEREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1237, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __PYX_ERR(1, 1237, __pyx_L1_error) + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(1, 1249, __pyx_L1_error) - /* "View.MemoryView":1235 + /* "View.MemoryView":1247 * * @cname('__pyx_memoryview_err_extents') * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< @@ -13589,12 +14681,12 @@ static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent __pyx_r = -1; __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); + __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } -/* "View.MemoryView":1241 +/* "View.MemoryView":1253 * * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< @@ -13611,23 +14703,23 @@ static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err_dim", 0); __Pyx_INCREF(__pyx_v_error); - /* "View.MemoryView":1242 + /* "View.MemoryView":1254 * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: * raise error(msg.decode('ascii') % dim) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_err') */ - __pyx_t_2 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1242, __pyx_L1_error) + __pyx_t_2 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1254, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1242, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1254, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyUnicode_Format(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1242, __pyx_L1_error) + __pyx_t_4 = PyUnicode_Format(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 1254, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; @@ -13643,14 +14735,14 @@ static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, } } if (!__pyx_t_2) { - __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1242, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1254, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_GOTREF(__pyx_t_1); } else { #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[2] = {__pyx_t_2, __pyx_t_4}; - __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1242, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1254, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; @@ -13659,20 +14751,20 @@ static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[2] = {__pyx_t_2, __pyx_t_4}; - __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1242, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1254, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } else #endif { - __pyx_t_5 = PyTuple_New(1+1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 1242, __pyx_L1_error) + __pyx_t_5 = PyTuple_New(1+1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 1254, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_2); __pyx_t_2 = NULL; __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0+1, __pyx_t_4); __pyx_t_4 = 0; - __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1242, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1254, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } @@ -13680,9 +14772,9 @@ static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __PYX_ERR(1, 1242, __pyx_L1_error) + __PYX_ERR(1, 1254, __pyx_L1_error) - /* "View.MemoryView":1241 + /* "View.MemoryView":1253 * * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< @@ -13702,12 +14794,12 @@ static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, __Pyx_XDECREF(__pyx_v_error); __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); + __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } -/* "View.MemoryView":1245 +/* "View.MemoryView":1257 * * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< @@ -13725,12 +14817,12 @@ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err", 0); __Pyx_INCREF(__pyx_v_error); - /* "View.MemoryView":1246 + /* "View.MemoryView":1258 * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: # <<<<<<<<<<<<<< @@ -13738,16 +14830,16 @@ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { * else: */ __pyx_t_1 = ((__pyx_v_msg != NULL) != 0); - if (__pyx_t_1) { + if (unlikely(__pyx_t_1)) { - /* "View.MemoryView":1247 + /* "View.MemoryView":1259 * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: * raise error(msg.decode('ascii')) # <<<<<<<<<<<<<< * else: * raise error */ - __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1247, __pyx_L1_error) + __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 1259, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_error); __pyx_t_4 = __pyx_v_error; __pyx_t_5 = NULL; @@ -13761,14 +14853,14 @@ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { } } if (!__pyx_t_5) { - __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1247, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1259, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_2); } else { #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[2] = {__pyx_t_5, __pyx_t_3}; - __pyx_t_2 = __Pyx_PyFunction_FastCall(__pyx_t_4, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1247, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyFunction_FastCall(__pyx_t_4, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1259, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; @@ -13777,20 +14869,20 @@ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[2] = {__pyx_t_5, __pyx_t_3}; - __pyx_t_2 = __Pyx_PyCFunction_FastCall(__pyx_t_4, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1247, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyCFunction_FastCall(__pyx_t_4, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1259, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else #endif { - __pyx_t_6 = PyTuple_New(1+1); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 1247, __pyx_L1_error) + __pyx_t_6 = PyTuple_New(1+1); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 1259, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_5); __pyx_t_5 = NULL; __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0+1, __pyx_t_3); __pyx_t_3 = 0; - __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_6, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1247, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_6, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 1259, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } @@ -13798,9 +14890,9 @@ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __PYX_ERR(1, 1247, __pyx_L1_error) + __PYX_ERR(1, 1259, __pyx_L1_error) - /* "View.MemoryView":1246 + /* "View.MemoryView":1258 * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: # <<<<<<<<<<<<<< @@ -13809,7 +14901,7 @@ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { */ } - /* "View.MemoryView":1249 + /* "View.MemoryView":1261 * raise error(msg.decode('ascii')) * else: * raise error # <<<<<<<<<<<<<< @@ -13818,10 +14910,10 @@ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { */ /*else*/ { __Pyx_Raise(__pyx_v_error, 0, 0, 0); - __PYX_ERR(1, 1249, __pyx_L1_error) + __PYX_ERR(1, 1261, __pyx_L1_error) } - /* "View.MemoryView":1245 + /* "View.MemoryView":1257 * * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< @@ -13841,12 +14933,12 @@ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { __Pyx_XDECREF(__pyx_v_error); __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); + __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } -/* "View.MemoryView":1252 +/* "View.MemoryView":1264 * * @cname('__pyx_memoryview_copy_contents') * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< @@ -13869,10 +14961,11 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; - void *__pyx_t_6; - int __pyx_t_7; + int __pyx_t_6; + void *__pyx_t_7; + int __pyx_t_8; - /* "View.MemoryView":1260 + /* "View.MemoryView":1272 * Check for overlapping memory and verify the shapes. * """ * cdef void *tmpdata = NULL # <<<<<<<<<<<<<< @@ -13881,7 +14974,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_tmpdata = NULL; - /* "View.MemoryView":1261 + /* "View.MemoryView":1273 * """ * cdef void *tmpdata = NULL * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< @@ -13891,7 +14984,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_1 = __pyx_v_src.memview->view.itemsize; __pyx_v_itemsize = __pyx_t_1; - /* "View.MemoryView":1263 + /* "View.MemoryView":1275 * cdef size_t itemsize = src.memview.view.itemsize * cdef int i * cdef char order = get_best_order(&src, src_ndim) # <<<<<<<<<<<<<< @@ -13900,7 +14993,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_src), __pyx_v_src_ndim); - /* "View.MemoryView":1264 + /* "View.MemoryView":1276 * cdef int i * cdef char order = get_best_order(&src, src_ndim) * cdef bint broadcasting = False # <<<<<<<<<<<<<< @@ -13909,7 +15002,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_broadcasting = 0; - /* "View.MemoryView":1265 + /* "View.MemoryView":1277 * cdef char order = get_best_order(&src, src_ndim) * cdef bint broadcasting = False * cdef bint direct_copy = False # <<<<<<<<<<<<<< @@ -13918,7 +15011,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_direct_copy = 0; - /* "View.MemoryView":1268 + /* "View.MemoryView":1280 * cdef __Pyx_memviewslice tmp * * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< @@ -13928,7 +15021,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = ((__pyx_v_src_ndim < __pyx_v_dst_ndim) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1269 + /* "View.MemoryView":1281 * * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) # <<<<<<<<<<<<<< @@ -13937,7 +15030,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_memoryview_broadcast_leading((&__pyx_v_src), __pyx_v_src_ndim, __pyx_v_dst_ndim); - /* "View.MemoryView":1268 + /* "View.MemoryView":1280 * cdef __Pyx_memviewslice tmp * * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< @@ -13947,7 +15040,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ goto __pyx_L3; } - /* "View.MemoryView":1270 + /* "View.MemoryView":1282 * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< @@ -13957,7 +15050,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = ((__pyx_v_dst_ndim < __pyx_v_src_ndim) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1271 + /* "View.MemoryView":1283 * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: * broadcast_leading(&dst, dst_ndim, src_ndim) # <<<<<<<<<<<<<< @@ -13966,7 +15059,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_memoryview_broadcast_leading((&__pyx_v_dst), __pyx_v_dst_ndim, __pyx_v_src_ndim); - /* "View.MemoryView":1270 + /* "View.MemoryView":1282 * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< @@ -13976,7 +15069,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ } __pyx_L3:; - /* "View.MemoryView":1273 + /* "View.MemoryView":1285 * broadcast_leading(&dst, dst_ndim, src_ndim) * * cdef int ndim = max(src_ndim, dst_ndim) # <<<<<<<<<<<<<< @@ -13992,7 +15085,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ } __pyx_v_ndim = __pyx_t_5; - /* "View.MemoryView":1275 + /* "View.MemoryView":1287 * cdef int ndim = max(src_ndim, dst_ndim) * * for i in range(ndim): # <<<<<<<<<<<<<< @@ -14000,10 +15093,11 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ * if src.shape[i] == 1: */ __pyx_t_5 = __pyx_v_ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_5; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; + __pyx_t_3 = __pyx_t_5; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; - /* "View.MemoryView":1276 + /* "View.MemoryView":1288 * * for i in range(ndim): * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< @@ -14013,7 +15107,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) != (__pyx_v_dst.shape[__pyx_v_i])) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1277 + /* "View.MemoryView":1289 * for i in range(ndim): * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: # <<<<<<<<<<<<<< @@ -14023,7 +15117,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) == 1) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1278 + /* "View.MemoryView":1290 * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: * broadcasting = True # <<<<<<<<<<<<<< @@ -14032,7 +15126,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_broadcasting = 1; - /* "View.MemoryView":1279 + /* "View.MemoryView":1291 * if src.shape[i] == 1: * broadcasting = True * src.strides[i] = 0 # <<<<<<<<<<<<<< @@ -14041,7 +15135,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ (__pyx_v_src.strides[__pyx_v_i]) = 0; - /* "View.MemoryView":1277 + /* "View.MemoryView":1289 * for i in range(ndim): * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: # <<<<<<<<<<<<<< @@ -14051,7 +15145,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ goto __pyx_L7; } - /* "View.MemoryView":1281 + /* "View.MemoryView":1293 * src.strides[i] = 0 * else: * _err_extents(i, dst.shape[i], src.shape[i]) # <<<<<<<<<<<<<< @@ -14059,11 +15153,11 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ * if src.suboffsets[i] >= 0: */ /*else*/ { - __pyx_t_4 = __pyx_memoryview_err_extents(__pyx_v_i, (__pyx_v_dst.shape[__pyx_v_i]), (__pyx_v_src.shape[__pyx_v_i])); if (unlikely(__pyx_t_4 == -1)) __PYX_ERR(1, 1281, __pyx_L1_error) + __pyx_t_6 = __pyx_memoryview_err_extents(__pyx_v_i, (__pyx_v_dst.shape[__pyx_v_i]), (__pyx_v_src.shape[__pyx_v_i])); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(1, 1293, __pyx_L1_error) } __pyx_L7:; - /* "View.MemoryView":1276 + /* "View.MemoryView":1288 * * for i in range(ndim): * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< @@ -14072,7 +15166,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ } - /* "View.MemoryView":1283 + /* "View.MemoryView":1295 * _err_extents(i, dst.shape[i], src.shape[i]) * * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< @@ -14082,16 +15176,16 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = (((__pyx_v_src.suboffsets[__pyx_v_i]) >= 0) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1284 + /* "View.MemoryView":1296 * * if src.suboffsets[i] >= 0: * _err_dim(ValueError, "Dimension %d is not direct", i) # <<<<<<<<<<<<<< * * if slices_overlap(&src, &dst, ndim, itemsize): */ - __pyx_t_4 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Dimension %d is not direct"), __pyx_v_i); if (unlikely(__pyx_t_4 == -1)) __PYX_ERR(1, 1284, __pyx_L1_error) + __pyx_t_6 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Dimension %d is not direct"), __pyx_v_i); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(1, 1296, __pyx_L1_error) - /* "View.MemoryView":1283 + /* "View.MemoryView":1295 * _err_extents(i, dst.shape[i], src.shape[i]) * * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< @@ -14101,7 +15195,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ } } - /* "View.MemoryView":1286 + /* "View.MemoryView":1298 * _err_dim(ValueError, "Dimension %d is not direct", i) * * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< @@ -14111,7 +15205,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = (__pyx_slices_overlap((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1288 + /* "View.MemoryView":1300 * if slices_overlap(&src, &dst, ndim, itemsize): * * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< @@ -14121,7 +15215,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = ((!(__pyx_memviewslice_is_contig(__pyx_v_src, __pyx_v_order, __pyx_v_ndim) != 0)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1289 + /* "View.MemoryView":1301 * * if not slice_is_contig(src, order, ndim): * order = get_best_order(&dst, ndim) # <<<<<<<<<<<<<< @@ -14130,7 +15224,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim); - /* "View.MemoryView":1288 + /* "View.MemoryView":1300 * if slices_overlap(&src, &dst, ndim, itemsize): * * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< @@ -14139,17 +15233,17 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ } - /* "View.MemoryView":1291 + /* "View.MemoryView":1303 * order = get_best_order(&dst, ndim) * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) # <<<<<<<<<<<<<< * src = tmp * */ - __pyx_t_6 = __pyx_memoryview_copy_data_to_temp((&__pyx_v_src), (&__pyx_v_tmp), __pyx_v_order, __pyx_v_ndim); if (unlikely(__pyx_t_6 == NULL)) __PYX_ERR(1, 1291, __pyx_L1_error) - __pyx_v_tmpdata = __pyx_t_6; + __pyx_t_7 = __pyx_memoryview_copy_data_to_temp((&__pyx_v_src), (&__pyx_v_tmp), __pyx_v_order, __pyx_v_ndim); if (unlikely(__pyx_t_7 == ((void *)NULL))) __PYX_ERR(1, 1303, __pyx_L1_error) + __pyx_v_tmpdata = __pyx_t_7; - /* "View.MemoryView":1292 + /* "View.MemoryView":1304 * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) * src = tmp # <<<<<<<<<<<<<< @@ -14158,7 +15252,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_src = __pyx_v_tmp; - /* "View.MemoryView":1286 + /* "View.MemoryView":1298 * _err_dim(ValueError, "Dimension %d is not direct", i) * * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< @@ -14167,7 +15261,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ } - /* "View.MemoryView":1294 + /* "View.MemoryView":1306 * src = tmp * * if not broadcasting: # <<<<<<<<<<<<<< @@ -14177,7 +15271,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = ((!(__pyx_v_broadcasting != 0)) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1297 + /* "View.MemoryView":1309 * * * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< @@ -14187,7 +15281,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'C', __pyx_v_ndim) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1298 + /* "View.MemoryView":1310 * * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) # <<<<<<<<<<<<<< @@ -14196,7 +15290,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'C', __pyx_v_ndim); - /* "View.MemoryView":1297 + /* "View.MemoryView":1309 * * * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< @@ -14206,7 +15300,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ goto __pyx_L12; } - /* "View.MemoryView":1299 + /* "View.MemoryView":1311 * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< @@ -14216,7 +15310,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'F', __pyx_v_ndim) != 0); if (__pyx_t_2) { - /* "View.MemoryView":1300 + /* "View.MemoryView":1312 * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): * direct_copy = slice_is_contig(dst, 'F', ndim) # <<<<<<<<<<<<<< @@ -14225,7 +15319,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'F', __pyx_v_ndim); - /* "View.MemoryView":1299 + /* "View.MemoryView":1311 * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< @@ -14235,7 +15329,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ } __pyx_L12:; - /* "View.MemoryView":1302 + /* "View.MemoryView":1314 * direct_copy = slice_is_contig(dst, 'F', ndim) * * if direct_copy: # <<<<<<<<<<<<<< @@ -14245,7 +15339,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_t_2 = (__pyx_v_direct_copy != 0); if (__pyx_t_2) { - /* "View.MemoryView":1304 + /* "View.MemoryView":1316 * if direct_copy: * * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< @@ -14254,16 +15348,16 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); - /* "View.MemoryView":1305 + /* "View.MemoryView":1317 * * refcount_copying(&dst, dtype_is_object, ndim, False) * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) # <<<<<<<<<<<<<< * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) */ - memcpy(__pyx_v_dst.data, __pyx_v_src.data, __pyx_memoryview_slice_get_size((&__pyx_v_src), __pyx_v_ndim)); + (void)(memcpy(__pyx_v_dst.data, __pyx_v_src.data, __pyx_memoryview_slice_get_size((&__pyx_v_src), __pyx_v_ndim))); - /* "View.MemoryView":1306 + /* "View.MemoryView":1318 * refcount_copying(&dst, dtype_is_object, ndim, False) * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< @@ -14272,7 +15366,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); - /* "View.MemoryView":1307 + /* "View.MemoryView":1319 * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) # <<<<<<<<<<<<<< @@ -14281,7 +15375,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ free(__pyx_v_tmpdata); - /* "View.MemoryView":1308 + /* "View.MemoryView":1320 * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) * return 0 # <<<<<<<<<<<<<< @@ -14291,7 +15385,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_r = 0; goto __pyx_L0; - /* "View.MemoryView":1302 + /* "View.MemoryView":1314 * direct_copy = slice_is_contig(dst, 'F', ndim) * * if direct_copy: # <<<<<<<<<<<<<< @@ -14300,7 +15394,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ } - /* "View.MemoryView":1294 + /* "View.MemoryView":1306 * src = tmp * * if not broadcasting: # <<<<<<<<<<<<<< @@ -14309,7 +15403,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ } - /* "View.MemoryView":1310 + /* "View.MemoryView":1322 * return 0 * * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< @@ -14320,28 +15414,28 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ if (__pyx_t_2) { __pyx_t_2 = ('F' == __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim)); } - __pyx_t_7 = (__pyx_t_2 != 0); - if (__pyx_t_7) { + __pyx_t_8 = (__pyx_t_2 != 0); + if (__pyx_t_8) { - /* "View.MemoryView":1313 + /* "View.MemoryView":1325 * * * transpose_memslice(&src) # <<<<<<<<<<<<<< * transpose_memslice(&dst) * */ - __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_src)); if (unlikely(__pyx_t_5 == 0)) __PYX_ERR(1, 1313, __pyx_L1_error) + __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_src)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(1, 1325, __pyx_L1_error) - /* "View.MemoryView":1314 + /* "View.MemoryView":1326 * * transpose_memslice(&src) * transpose_memslice(&dst) # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ - __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_dst)); if (unlikely(__pyx_t_5 == 0)) __PYX_ERR(1, 1314, __pyx_L1_error) + __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_dst)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(1, 1326, __pyx_L1_error) - /* "View.MemoryView":1310 + /* "View.MemoryView":1322 * return 0 * * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< @@ -14350,7 +15444,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ } - /* "View.MemoryView":1316 + /* "View.MemoryView":1328 * transpose_memslice(&dst) * * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< @@ -14359,7 +15453,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); - /* "View.MemoryView":1317 + /* "View.MemoryView":1329 * * refcount_copying(&dst, dtype_is_object, ndim, False) * copy_strided_to_strided(&src, &dst, ndim, itemsize) # <<<<<<<<<<<<<< @@ -14368,7 +15462,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ copy_strided_to_strided((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize); - /* "View.MemoryView":1318 + /* "View.MemoryView":1330 * refcount_copying(&dst, dtype_is_object, ndim, False) * copy_strided_to_strided(&src, &dst, ndim, itemsize) * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< @@ -14377,7 +15471,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); - /* "View.MemoryView":1320 + /* "View.MemoryView":1332 * refcount_copying(&dst, dtype_is_object, ndim, True) * * free(tmpdata) # <<<<<<<<<<<<<< @@ -14386,7 +15480,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ */ free(__pyx_v_tmpdata); - /* "View.MemoryView":1321 + /* "View.MemoryView":1333 * * free(tmpdata) * return 0 # <<<<<<<<<<<<<< @@ -14396,7 +15490,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_r = 0; goto __pyx_L0; - /* "View.MemoryView":1252 + /* "View.MemoryView":1264 * * @cname('__pyx_memoryview_copy_contents') * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< @@ -14408,11 +15502,11 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ __pyx_L1_error:; { #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.memoryview_copy_contents", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); + __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = -1; @@ -14420,7 +15514,7 @@ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_ return __pyx_r; } -/* "View.MemoryView":1324 +/* "View.MemoryView":1336 * * @cname('__pyx_memoryview_broadcast_leading') * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< @@ -14433,8 +15527,9 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic int __pyx_v_offset; int __pyx_t_1; int __pyx_t_2; + int __pyx_t_3; - /* "View.MemoryView":1328 + /* "View.MemoryView":1340 * int ndim_other) nogil: * cdef int i * cdef int offset = ndim_other - ndim # <<<<<<<<<<<<<< @@ -14443,17 +15538,17 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic */ __pyx_v_offset = (__pyx_v_ndim_other - __pyx_v_ndim); - /* "View.MemoryView":1330 + /* "View.MemoryView":1342 * cdef int offset = ndim_other - ndim * * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] */ - for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1L; __pyx_t_1-=1) { + for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; - /* "View.MemoryView":1331 + /* "View.MemoryView":1343 * * for i in range(ndim - 1, -1, -1): * mslice.shape[i + offset] = mslice.shape[i] # <<<<<<<<<<<<<< @@ -14462,7 +15557,7 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic */ (__pyx_v_mslice->shape[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->shape[__pyx_v_i]); - /* "View.MemoryView":1332 + /* "View.MemoryView":1344 * for i in range(ndim - 1, -1, -1): * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] # <<<<<<<<<<<<<< @@ -14471,7 +15566,7 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic */ (__pyx_v_mslice->strides[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->strides[__pyx_v_i]); - /* "View.MemoryView":1333 + /* "View.MemoryView":1345 * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] * mslice.suboffsets[i + offset] = mslice.suboffsets[i] # <<<<<<<<<<<<<< @@ -14481,7 +15576,7 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic (__pyx_v_mslice->suboffsets[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->suboffsets[__pyx_v_i]); } - /* "View.MemoryView":1335 + /* "View.MemoryView":1347 * mslice.suboffsets[i + offset] = mslice.suboffsets[i] * * for i in range(offset): # <<<<<<<<<<<<<< @@ -14489,10 +15584,11 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic * mslice.strides[i] = mslice.strides[0] */ __pyx_t_1 = __pyx_v_offset; - for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2+=1) { - __pyx_v_i = __pyx_t_2; + __pyx_t_2 = __pyx_t_1; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; - /* "View.MemoryView":1336 + /* "View.MemoryView":1348 * * for i in range(offset): * mslice.shape[i] = 1 # <<<<<<<<<<<<<< @@ -14501,7 +15597,7 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic */ (__pyx_v_mslice->shape[__pyx_v_i]) = 1; - /* "View.MemoryView":1337 + /* "View.MemoryView":1349 * for i in range(offset): * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] # <<<<<<<<<<<<<< @@ -14510,7 +15606,7 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic */ (__pyx_v_mslice->strides[__pyx_v_i]) = (__pyx_v_mslice->strides[0]); - /* "View.MemoryView":1338 + /* "View.MemoryView":1350 * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] * mslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< @@ -14520,7 +15616,7 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic (__pyx_v_mslice->suboffsets[__pyx_v_i]) = -1L; } - /* "View.MemoryView":1324 + /* "View.MemoryView":1336 * * @cname('__pyx_memoryview_broadcast_leading') * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< @@ -14531,7 +15627,7 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic /* function exit code */ } -/* "View.MemoryView":1346 +/* "View.MemoryView":1358 * * @cname('__pyx_memoryview_refcount_copying') * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< @@ -14542,7 +15638,7 @@ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslic static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_dtype_is_object, int __pyx_v_ndim, int __pyx_v_inc) { int __pyx_t_1; - /* "View.MemoryView":1350 + /* "View.MemoryView":1362 * * * if dtype_is_object: # <<<<<<<<<<<<<< @@ -14552,7 +15648,7 @@ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, i __pyx_t_1 = (__pyx_v_dtype_is_object != 0); if (__pyx_t_1) { - /* "View.MemoryView":1351 + /* "View.MemoryView":1363 * * if dtype_is_object: * refcount_objects_in_slice_with_gil(dst.data, dst.shape, # <<<<<<<<<<<<<< @@ -14561,7 +15657,7 @@ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, i */ __pyx_memoryview_refcount_objects_in_slice_with_gil(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_inc); - /* "View.MemoryView":1350 + /* "View.MemoryView":1362 * * * if dtype_is_object: # <<<<<<<<<<<<<< @@ -14570,7 +15666,7 @@ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, i */ } - /* "View.MemoryView":1346 + /* "View.MemoryView":1358 * * @cname('__pyx_memoryview_refcount_copying') * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< @@ -14581,7 +15677,7 @@ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, i /* function exit code */ } -/* "View.MemoryView":1355 +/* "View.MemoryView":1367 * * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< @@ -14592,11 +15688,11 @@ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, i static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { __Pyx_RefNannyDeclarations #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("refcount_objects_in_slice_with_gil", 0); - /* "View.MemoryView":1358 + /* "View.MemoryView":1370 * Py_ssize_t *strides, int ndim, * bint inc) with gil: * refcount_objects_in_slice(data, shape, strides, ndim, inc) # <<<<<<<<<<<<<< @@ -14605,7 +15701,7 @@ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_da */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, __pyx_v_shape, __pyx_v_strides, __pyx_v_ndim, __pyx_v_inc); - /* "View.MemoryView":1355 + /* "View.MemoryView":1367 * * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< @@ -14616,11 +15712,11 @@ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_da /* function exit code */ __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); + __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } -/* "View.MemoryView":1361 +/* "View.MemoryView":1373 * * @cname('__pyx_memoryview_refcount_objects_in_slice') * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< @@ -14633,10 +15729,11 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; Py_ssize_t __pyx_t_2; - int __pyx_t_3; + Py_ssize_t __pyx_t_3; + int __pyx_t_4; __Pyx_RefNannySetupContext("refcount_objects_in_slice", 0); - /* "View.MemoryView":1365 + /* "View.MemoryView":1377 * cdef Py_ssize_t i * * for i in range(shape[0]): # <<<<<<<<<<<<<< @@ -14644,30 +15741,31 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss * if inc: */ __pyx_t_1 = (__pyx_v_shape[0]); - for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2+=1) { - __pyx_v_i = __pyx_t_2; + __pyx_t_2 = __pyx_t_1; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; - /* "View.MemoryView":1366 + /* "View.MemoryView":1378 * * for i in range(shape[0]): * if ndim == 1: # <<<<<<<<<<<<<< * if inc: * Py_INCREF(( data)[0]) */ - __pyx_t_3 = ((__pyx_v_ndim == 1) != 0); - if (__pyx_t_3) { + __pyx_t_4 = ((__pyx_v_ndim == 1) != 0); + if (__pyx_t_4) { - /* "View.MemoryView":1367 + /* "View.MemoryView":1379 * for i in range(shape[0]): * if ndim == 1: * if inc: # <<<<<<<<<<<<<< * Py_INCREF(( data)[0]) * else: */ - __pyx_t_3 = (__pyx_v_inc != 0); - if (__pyx_t_3) { + __pyx_t_4 = (__pyx_v_inc != 0); + if (__pyx_t_4) { - /* "View.MemoryView":1368 + /* "View.MemoryView":1380 * if ndim == 1: * if inc: * Py_INCREF(( data)[0]) # <<<<<<<<<<<<<< @@ -14676,7 +15774,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss */ Py_INCREF((((PyObject **)__pyx_v_data)[0])); - /* "View.MemoryView":1367 + /* "View.MemoryView":1379 * for i in range(shape[0]): * if ndim == 1: * if inc: # <<<<<<<<<<<<<< @@ -14686,7 +15784,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss goto __pyx_L6; } - /* "View.MemoryView":1370 + /* "View.MemoryView":1382 * Py_INCREF(( data)[0]) * else: * Py_DECREF(( data)[0]) # <<<<<<<<<<<<<< @@ -14698,7 +15796,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss } __pyx_L6:; - /* "View.MemoryView":1366 + /* "View.MemoryView":1378 * * for i in range(shape[0]): * if ndim == 1: # <<<<<<<<<<<<<< @@ -14708,7 +15806,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss goto __pyx_L5; } - /* "View.MemoryView":1372 + /* "View.MemoryView":1384 * Py_DECREF(( data)[0]) * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< @@ -14717,7 +15815,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss */ /*else*/ { - /* "View.MemoryView":1373 + /* "View.MemoryView":1385 * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, * ndim - 1, inc) # <<<<<<<<<<<<<< @@ -14728,7 +15826,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss } __pyx_L5:; - /* "View.MemoryView":1375 + /* "View.MemoryView":1387 * ndim - 1, inc) * * data += strides[0] # <<<<<<<<<<<<<< @@ -14738,7 +15836,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss __pyx_v_data = (__pyx_v_data + (__pyx_v_strides[0])); } - /* "View.MemoryView":1361 + /* "View.MemoryView":1373 * * @cname('__pyx_memoryview_refcount_objects_in_slice') * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< @@ -14750,7 +15848,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss __Pyx_RefNannyFinishContext(); } -/* "View.MemoryView":1381 +/* "View.MemoryView":1393 * * @cname('__pyx_memoryview_slice_assign_scalar') * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< @@ -14760,7 +15858,7 @@ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ss static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item, int __pyx_v_dtype_is_object) { - /* "View.MemoryView":1384 + /* "View.MemoryView":1396 * size_t itemsize, void *item, * bint dtype_is_object) nogil: * refcount_copying(dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< @@ -14769,7 +15867,7 @@ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst */ __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 0); - /* "View.MemoryView":1385 + /* "View.MemoryView":1397 * bint dtype_is_object) nogil: * refcount_copying(dst, dtype_is_object, ndim, False) * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, # <<<<<<<<<<<<<< @@ -14778,7 +15876,7 @@ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst */ __pyx_memoryview__slice_assign_scalar(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_itemsize, __pyx_v_item); - /* "View.MemoryView":1387 + /* "View.MemoryView":1399 * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, * itemsize, item) * refcount_copying(dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< @@ -14787,7 +15885,7 @@ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst */ __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 1); - /* "View.MemoryView":1381 + /* "View.MemoryView":1393 * * @cname('__pyx_memoryview_slice_assign_scalar') * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< @@ -14798,7 +15896,7 @@ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst /* function exit code */ } -/* "View.MemoryView":1391 +/* "View.MemoryView":1403 * * @cname('__pyx_memoryview__slice_assign_scalar') * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< @@ -14813,8 +15911,9 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t int __pyx_t_1; Py_ssize_t __pyx_t_2; Py_ssize_t __pyx_t_3; + Py_ssize_t __pyx_t_4; - /* "View.MemoryView":1395 + /* "View.MemoryView":1407 * size_t itemsize, void *item) nogil: * cdef Py_ssize_t i * cdef Py_ssize_t stride = strides[0] # <<<<<<<<<<<<<< @@ -14823,7 +15922,7 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t */ __pyx_v_stride = (__pyx_v_strides[0]); - /* "View.MemoryView":1396 + /* "View.MemoryView":1408 * cdef Py_ssize_t i * cdef Py_ssize_t stride = strides[0] * cdef Py_ssize_t extent = shape[0] # <<<<<<<<<<<<<< @@ -14832,7 +15931,7 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t */ __pyx_v_extent = (__pyx_v_shape[0]); - /* "View.MemoryView":1398 + /* "View.MemoryView":1410 * cdef Py_ssize_t extent = shape[0] * * if ndim == 1: # <<<<<<<<<<<<<< @@ -14842,7 +15941,7 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_1) { - /* "View.MemoryView":1399 + /* "View.MemoryView":1411 * * if ndim == 1: * for i in range(extent): # <<<<<<<<<<<<<< @@ -14850,19 +15949,20 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t * data += stride */ __pyx_t_2 = __pyx_v_extent; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; - /* "View.MemoryView":1400 + /* "View.MemoryView":1412 * if ndim == 1: * for i in range(extent): * memcpy(data, item, itemsize) # <<<<<<<<<<<<<< * data += stride * else: */ - memcpy(__pyx_v_data, __pyx_v_item, __pyx_v_itemsize); + (void)(memcpy(__pyx_v_data, __pyx_v_item, __pyx_v_itemsize)); - /* "View.MemoryView":1401 + /* "View.MemoryView":1413 * for i in range(extent): * memcpy(data, item, itemsize) * data += stride # <<<<<<<<<<<<<< @@ -14872,7 +15972,7 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t __pyx_v_data = (__pyx_v_data + __pyx_v_stride); } - /* "View.MemoryView":1398 + /* "View.MemoryView":1410 * cdef Py_ssize_t extent = shape[0] * * if ndim == 1: # <<<<<<<<<<<<<< @@ -14882,7 +15982,7 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t goto __pyx_L3; } - /* "View.MemoryView":1403 + /* "View.MemoryView":1415 * data += stride * else: * for i in range(extent): # <<<<<<<<<<<<<< @@ -14891,10 +15991,11 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t */ /*else*/ { __pyx_t_2 = __pyx_v_extent; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; - - /* "View.MemoryView":1404 + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; + + /* "View.MemoryView":1416 * else: * for i in range(extent): * _slice_assign_scalar(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< @@ -14903,7 +16004,7 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t */ __pyx_memoryview__slice_assign_scalar(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize, __pyx_v_item); - /* "View.MemoryView":1406 + /* "View.MemoryView":1418 * _slice_assign_scalar(data, shape + 1, strides + 1, * ndim - 1, itemsize, item) * data += stride # <<<<<<<<<<<<<< @@ -14915,7 +16016,7 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t } __pyx_L3:; - /* "View.MemoryView":1391 + /* "View.MemoryView":1403 * * @cname('__pyx_memoryview__slice_assign_scalar') * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< @@ -14925,6 +16026,484 @@ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t /* function exit code */ } + +/* "(tree fragment)":1 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< + * if __pyx_checksum != 0xb068931: + * from pickle import PickleError as __pyx_PickleError + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static PyMethodDef __pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum = {"__pyx_unpickle_Enum", (PyCFunction)__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum, METH_VARARGS|METH_KEYWORDS, 0}; +static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v___pyx_type = 0; + long __pyx_v___pyx_checksum; + PyObject *__pyx_v___pyx_state = 0; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__pyx_unpickle_Enum (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_pyx_type,&__pyx_n_s_pyx_checksum,&__pyx_n_s_pyx_state,0}; + PyObject* values[3] = {0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_type)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_checksum)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 1); __PYX_ERR(1, 1, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 2: + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_state)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 2); __PYX_ERR(1, 1, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__pyx_unpickle_Enum") < 0)) __PYX_ERR(1, 1, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 3) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + } + __pyx_v___pyx_type = values[0]; + __pyx_v___pyx_checksum = __Pyx_PyInt_As_long(values[1]); if (unlikely((__pyx_v___pyx_checksum == (long)-1) && PyErr_Occurred())) __PYX_ERR(1, 1, __pyx_L3_error) + __pyx_v___pyx_state = values[2]; + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 1, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(__pyx_self, __pyx_v___pyx_type, __pyx_v___pyx_checksum, __pyx_v___pyx_state); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_v___pyx_PickleError = NULL; + PyObject *__pyx_v___pyx_result = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + int __pyx_t_7; + __Pyx_RefNannySetupContext("__pyx_unpickle_Enum", 0); + + /* "(tree fragment)":2 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): + * if __pyx_checksum != 0xb068931: # <<<<<<<<<<<<<< + * from pickle import PickleError as __pyx_PickleError + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + */ + __pyx_t_1 = ((__pyx_v___pyx_checksum != 0xb068931) != 0); + if (__pyx_t_1) { + + /* "(tree fragment)":3 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): + * if __pyx_checksum != 0xb068931: + * from pickle import PickleError as __pyx_PickleError # <<<<<<<<<<<<<< + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + * __pyx_result = Enum.__new__(__pyx_type) + */ + __pyx_t_2 = PyList_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 3, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_INCREF(__pyx_n_s_PickleError); + __Pyx_GIVEREF(__pyx_n_s_PickleError); + PyList_SET_ITEM(__pyx_t_2, 0, __pyx_n_s_PickleError); + __pyx_t_3 = __Pyx_Import(__pyx_n_s_pickle, __pyx_t_2, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 3, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_3, __pyx_n_s_PickleError); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 3, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_INCREF(__pyx_t_2); + __pyx_v___pyx_PickleError = __pyx_t_2; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "(tree fragment)":4 + * if __pyx_checksum != 0xb068931: + * from pickle import PickleError as __pyx_PickleError + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) # <<<<<<<<<<<<<< + * __pyx_result = Enum.__new__(__pyx_type) + * if __pyx_state is not None: + */ + __pyx_t_2 = __Pyx_PyInt_From_long(__pyx_v___pyx_checksum); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Incompatible_checksums_s_vs_0xb0, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_INCREF(__pyx_v___pyx_PickleError); + __pyx_t_2 = __pyx_v___pyx_PickleError; __pyx_t_5 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_2); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_2, function); + } + } + if (!__pyx_t_5) { + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_GOTREF(__pyx_t_3); + } else { + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_2)) { + PyObject *__pyx_temp[2] = {__pyx_t_5, __pyx_t_4}; + __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_2, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_2)) { + PyObject *__pyx_temp[2] = {__pyx_t_5, __pyx_t_4}; + __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_2, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + } else + #endif + { + __pyx_t_6 = PyTuple_New(1+1); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_5); __pyx_t_5 = NULL; + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_6, 0+1, __pyx_t_4); + __pyx_t_4 = 0; + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_6, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } + } + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 4, __pyx_L1_error) + + /* "(tree fragment)":2 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): + * if __pyx_checksum != 0xb068931: # <<<<<<<<<<<<<< + * from pickle import PickleError as __pyx_PickleError + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + */ + } + + /* "(tree fragment)":5 + * from pickle import PickleError as __pyx_PickleError + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + * __pyx_result = Enum.__new__(__pyx_type) # <<<<<<<<<<<<<< + * if __pyx_state is not None: + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + */ + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_MemviewEnum_type), __pyx_n_s_new); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 5, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_6 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { + __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_2); + if (likely(__pyx_t_6)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); + __Pyx_INCREF(__pyx_t_6); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_2, function); + } + } + if (!__pyx_t_6) { + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v___pyx_type); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 5, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + } else { + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_2)) { + PyObject *__pyx_temp[2] = {__pyx_t_6, __pyx_v___pyx_type}; + __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_2, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 5, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_GOTREF(__pyx_t_3); + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_2)) { + PyObject *__pyx_temp[2] = {__pyx_t_6, __pyx_v___pyx_type}; + __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_2, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 5, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_GOTREF(__pyx_t_3); + } else + #endif + { + __pyx_t_4 = PyTuple_New(1+1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 5, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_6); __pyx_t_6 = NULL; + __Pyx_INCREF(__pyx_v___pyx_type); + __Pyx_GIVEREF(__pyx_v___pyx_type); + PyTuple_SET_ITEM(__pyx_t_4, 0+1, __pyx_v___pyx_type); + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 5, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + } + } + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_v___pyx_result = __pyx_t_3; + __pyx_t_3 = 0; + + /* "(tree fragment)":6 + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + * __pyx_result = Enum.__new__(__pyx_type) + * if __pyx_state is not None: # <<<<<<<<<<<<<< + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + */ + __pyx_t_1 = (__pyx_v___pyx_state != Py_None); + __pyx_t_7 = (__pyx_t_1 != 0); + if (__pyx_t_7) { + + /* "(tree fragment)":7 + * __pyx_result = Enum.__new__(__pyx_type) + * if __pyx_state is not None: + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) # <<<<<<<<<<<<<< + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + */ + if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(1, 7, __pyx_L1_error) + __pyx_t_3 = __pyx_unpickle_Enum__set_state(((struct __pyx_MemviewEnum_obj *)__pyx_v___pyx_result), ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 7, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "(tree fragment)":6 + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + * __pyx_result = Enum.__new__(__pyx_type) + * if __pyx_state is not None: # <<<<<<<<<<<<<< + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + */ + } + + /* "(tree fragment)":8 + * if __pyx_state is not None: + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result # <<<<<<<<<<<<<< + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + * __pyx_result.name = __pyx_state[0] + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v___pyx_result); + __pyx_r = __pyx_v___pyx_result; + goto __pyx_L0; + + /* "(tree fragment)":1 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< + * if __pyx_checksum != 0xb068931: + * from pickle import PickleError as __pyx_PickleError + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v___pyx_PickleError); + __Pyx_XDECREF(__pyx_v___pyx_result); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":9 + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + */ + +static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *__pyx_v___pyx_result, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + Py_ssize_t __pyx_t_3; + int __pyx_t_4; + int __pyx_t_5; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + PyObject *__pyx_t_9 = NULL; + __Pyx_RefNannySetupContext("__pyx_unpickle_Enum__set_state", 0); + + /* "(tree fragment)":10 + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + * __pyx_result.name = __pyx_state[0] # <<<<<<<<<<<<<< + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + * __pyx_result.__dict__.update(__pyx_state[1]) + */ + if (unlikely(__pyx_v___pyx_state == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); + __PYX_ERR(1, 10, __pyx_L1_error) + } + __pyx_t_1 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 10, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __Pyx_GOTREF(__pyx_v___pyx_result->name); + __Pyx_DECREF(__pyx_v___pyx_result->name); + __pyx_v___pyx_result->name = __pyx_t_1; + __pyx_t_1 = 0; + + /* "(tree fragment)":11 + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< + * __pyx_result.__dict__.update(__pyx_state[1]) + */ + if (unlikely(__pyx_v___pyx_state == Py_None)) { + PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); + __PYX_ERR(1, 11, __pyx_L1_error) + } + __pyx_t_3 = PyTuple_GET_SIZE(__pyx_v___pyx_state); if (unlikely(__pyx_t_3 == ((Py_ssize_t)-1))) __PYX_ERR(1, 11, __pyx_L1_error) + __pyx_t_4 = ((__pyx_t_3 > 1) != 0); + if (__pyx_t_4) { + } else { + __pyx_t_2 = __pyx_t_4; + goto __pyx_L4_bool_binop_done; + } + __pyx_t_4 = __Pyx_HasAttr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 11, __pyx_L1_error) + __pyx_t_5 = (__pyx_t_4 != 0); + __pyx_t_2 = __pyx_t_5; + __pyx_L4_bool_binop_done:; + if (__pyx_t_2) { + + /* "(tree fragment)":12 + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + * __pyx_result.__dict__.update(__pyx_state[1]) # <<<<<<<<<<<<<< + */ + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 12, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_update); if (unlikely(!__pyx_t_7)) __PYX_ERR(1, 12, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (unlikely(__pyx_v___pyx_state == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); + __PYX_ERR(1, 12, __pyx_L1_error) + } + __pyx_t_6 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 12, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_8 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { + __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_7); + if (likely(__pyx_t_8)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); + __Pyx_INCREF(__pyx_t_8); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_7, function); + } + } + if (!__pyx_t_8) { + __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_t_7, __pyx_t_6); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 12, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_GOTREF(__pyx_t_1); + } else { + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_7)) { + PyObject *__pyx_temp[2] = {__pyx_t_8, __pyx_t_6}; + __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 12, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { + PyObject *__pyx_temp[2] = {__pyx_t_8, __pyx_t_6}; + __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 12, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } else + #endif + { + __pyx_t_9 = PyTuple_New(1+1); if (unlikely(!__pyx_t_9)) __PYX_ERR(1, 12, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_8); __pyx_t_8 = NULL; + __Pyx_GIVEREF(__pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_9, 0+1, __pyx_t_6); + __pyx_t_6 = 0; + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 12, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } + } + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "(tree fragment)":11 + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< + * __pyx_result.__dict__.update(__pyx_state[1]) + */ + } + + /* "(tree fragment)":9 + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_XDECREF(__pyx_t_9); + __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum__set_state", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} static struct __pyx_vtabstruct_array __pyx_vtable_array; static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k) { @@ -14949,8 +16528,8 @@ static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k) { static void __pyx_tp_dealloc_array(PyObject *o) { struct __pyx_array_obj *p = (struct __pyx_array_obj *)o; - #if PY_VERSION_HEX >= 0x030400a1 - if (unlikely(Py_TYPE(o)->tp_finalize) && (!PyType_IS_GC(Py_TYPE(o)) || !_PyGC_FINALIZED(o))) { + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && (!PyType_IS_GC(Py_TYPE(o)) || !_PyGC_FINALIZED(o))) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif @@ -14986,7 +16565,7 @@ static int __pyx_mp_ass_subscript_array(PyObject *o, PyObject *i, PyObject *v) { } static PyObject *__pyx_tp_getattro_array(PyObject *o, PyObject *n) { - PyObject *v = PyObject_GenericGetAttr(o, n); + PyObject *v = __Pyx_PyObject_GenericGetAttr(o, n); if (!v && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); v = __pyx_array___getattr__(o, n); @@ -15000,6 +16579,8 @@ static PyObject *__pyx_getprop___pyx_array_memview(PyObject *o, CYTHON_UNUSED vo static PyMethodDef __pyx_methods_array[] = { {"__getattr__", (PyCFunction)__pyx_array___getattr__, METH_O|METH_COEXIST, 0}, + {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_array_1__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_array_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; @@ -15009,7 +16590,7 @@ static struct PyGetSetDef __pyx_getsets_array[] = { }; static PySequenceMethods __pyx_tp_as_sequence_array = { - 0, /*sq_length*/ + __pyx_array___len__, /*sq_length*/ 0, /*sq_concat*/ 0, /*sq_repeat*/ __pyx_sq_item_array, /*sq_item*/ @@ -15022,7 +16603,7 @@ static PySequenceMethods __pyx_tp_as_sequence_array = { }; static PyMappingMethods __pyx_tp_as_mapping_array = { - 0, /*mp_length*/ + __pyx_array___len__, /*mp_length*/ __pyx_array___getitem__, /*mp_subscript*/ __pyx_mp_ass_subscript_array, /*mp_ass_subscript*/ }; @@ -15118,8 +16699,8 @@ static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, CYTHON_UNUSED PyObject *a, C static void __pyx_tp_dealloc_Enum(PyObject *o) { struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; - #if PY_VERSION_HEX >= 0x030400a1 - if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif @@ -15147,6 +16728,8 @@ static int __pyx_tp_clear_Enum(PyObject *o) { } static PyMethodDef __pyx_methods_Enum[] = { + {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_1__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; @@ -15233,8 +16816,8 @@ static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject static void __pyx_tp_dealloc_memoryview(PyObject *o) { struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; - #if PY_VERSION_HEX >= 0x030400a1 - if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif @@ -15346,6 +16929,8 @@ static PyMethodDef __pyx_methods_memoryview[] = { {"is_f_contig", (PyCFunction)__pyx_memoryview_is_f_contig, METH_NOARGS, 0}, {"copy", (PyCFunction)__pyx_memoryview_copy, METH_NOARGS, 0}, {"copy_fortran", (PyCFunction)__pyx_memoryview_copy_fortran, METH_NOARGS, 0}, + {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_1__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; @@ -15470,8 +17055,8 @@ static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyO static void __pyx_tp_dealloc__memoryviewslice(PyObject *o) { struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; - #if PY_VERSION_HEX >= 0x030400a1 - if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif @@ -15515,6 +17100,8 @@ static PyObject *__pyx_getprop___pyx_memoryviewslice_base(PyObject *o, CYTHON_UN } static PyMethodDef __pyx_methods__memoryviewslice[] = { + {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_1__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; @@ -15594,17 +17181,31 @@ static PyMethodDef __pyx_methods[] = { }; #if PY_MAJOR_VERSION >= 3 +#if CYTHON_PEP489_MULTI_PHASE_INIT +static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ +static int __pyx_pymod_exec_nmf_pgd(PyObject* module); /*proto*/ +static PyModuleDef_Slot __pyx_moduledef_slots[] = { + {Py_mod_create, (void*)__pyx_pymod_create}, + {Py_mod_exec, (void*)__pyx_pymod_exec_nmf_pgd}, + {0, NULL} +}; +#endif + static struct PyModuleDef __pyx_moduledef = { - #if PY_VERSION_HEX < 0x03020000 - { PyObject_HEAD_INIT(NULL) NULL, 0, NULL }, - #else PyModuleDef_HEAD_INIT, - #endif "nmf_pgd", 0, /* m_doc */ + #if CYTHON_PEP489_MULTI_PHASE_INIT + 0, /* m_size */ + #else -1, /* m_size */ + #endif __pyx_methods /* m_methods */, + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_moduledef_slots, /* m_slots */ + #else NULL, /* m_reload */ + #endif NULL, /* m_traverse */ NULL, /* m_clear */ NULL /* m_free */ @@ -15615,9 +17216,12 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_ASCII, __pyx_k_ASCII, sizeof(__pyx_k_ASCII), 0, 0, 1, 1}, {&__pyx_kp_s_Buffer_view_does_not_expose_stri, __pyx_k_Buffer_view_does_not_expose_stri, sizeof(__pyx_k_Buffer_view_does_not_expose_stri), 0, 0, 1, 0}, {&__pyx_kp_s_Can_only_create_a_buffer_that_is, __pyx_k_Can_only_create_a_buffer_that_is, sizeof(__pyx_k_Can_only_create_a_buffer_that_is), 0, 0, 1, 0}, + {&__pyx_kp_s_Cannot_assign_to_read_only_memor, __pyx_k_Cannot_assign_to_read_only_memor, sizeof(__pyx_k_Cannot_assign_to_read_only_memor), 0, 0, 1, 0}, + {&__pyx_kp_s_Cannot_create_writable_memory_vi, __pyx_k_Cannot_create_writable_memory_vi, sizeof(__pyx_k_Cannot_create_writable_memory_vi), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_index_with_type_s, __pyx_k_Cannot_index_with_type_s, sizeof(__pyx_k_Cannot_index_with_type_s), 0, 0, 1, 0}, {&__pyx_n_s_Ellipsis, __pyx_k_Ellipsis, sizeof(__pyx_k_Ellipsis), 0, 0, 1, 1}, {&__pyx_kp_s_Empty_shape_tuple_for_cython_arr, __pyx_k_Empty_shape_tuple_for_cython_arr, sizeof(__pyx_k_Empty_shape_tuple_for_cython_arr), 0, 0, 1, 0}, + {&__pyx_kp_s_Incompatible_checksums_s_vs_0xb0, __pyx_k_Incompatible_checksums_s_vs_0xb0, sizeof(__pyx_k_Incompatible_checksums_s_vs_0xb0), 0, 0, 1, 0}, {&__pyx_n_s_IndexError, __pyx_k_IndexError, sizeof(__pyx_k_IndexError), 0, 0, 1, 1}, {&__pyx_kp_s_Indirect_dimensions_not_supporte, __pyx_k_Indirect_dimensions_not_supporte, sizeof(__pyx_k_Indirect_dimensions_not_supporte), 0, 0, 1, 0}, {&__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_k_Invalid_mode_expected_c_or_fortr, sizeof(__pyx_k_Invalid_mode_expected_c_or_fortr), 0, 0, 1, 0}, @@ -15627,9 +17231,11 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_kp_s_MemoryView_of_r_object, __pyx_k_MemoryView_of_r_object, sizeof(__pyx_k_MemoryView_of_r_object), 0, 0, 1, 0}, {&__pyx_n_b_O, __pyx_k_O, sizeof(__pyx_k_O), 0, 0, 0, 1}, {&__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_k_Out_of_bounds_on_buffer_access_a, sizeof(__pyx_k_Out_of_bounds_on_buffer_access_a), 0, 0, 1, 0}, + {&__pyx_n_s_PickleError, __pyx_k_PickleError, sizeof(__pyx_k_PickleError), 0, 0, 1, 1}, {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, {&__pyx_kp_s_Unable_to_convert_item_to_object, __pyx_k_Unable_to_convert_item_to_object, sizeof(__pyx_k_Unable_to_convert_item_to_object), 0, 0, 1, 0}, {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, + {&__pyx_n_s_View_MemoryView, __pyx_k_View_MemoryView, sizeof(__pyx_k_View_MemoryView), 0, 0, 1, 1}, {&__pyx_n_s_WtW, __pyx_k_WtW, sizeof(__pyx_k_WtW), 0, 0, 1, 1}, {&__pyx_n_s_Wt_v_minus_r, __pyx_k_Wt_v_minus_r, sizeof(__pyx_k_Wt_v_minus_r), 0, 0, 1, 1}, {&__pyx_n_s_allocate_buffer, __pyx_k_allocate_buffer, sizeof(__pyx_k_allocate_buffer), 0, 0, 1, 1}, @@ -15637,10 +17243,12 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 0, 1, 1}, {&__pyx_n_u_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 1, 0, 1}, {&__pyx_n_s_class, __pyx_k_class, sizeof(__pyx_k_class), 0, 0, 1, 1}, + {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, {&__pyx_n_s_component_idx_1, __pyx_k_component_idx_1, sizeof(__pyx_k_component_idx_1), 0, 0, 1, 1}, {&__pyx_n_s_component_idx_2, __pyx_k_component_idx_2, sizeof(__pyx_k_component_idx_2), 0, 0, 1, 1}, {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, + {&__pyx_n_s_dict, __pyx_k_dict, sizeof(__pyx_k_dict), 0, 0, 1, 1}, {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, {&__pyx_n_s_encode, __pyx_k_encode, sizeof(__pyx_k_encode), 0, 0, 1, 1}, @@ -15651,11 +17259,11 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 0, 1, 1}, {&__pyx_n_u_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 1, 0, 1}, {&__pyx_n_s_gensim_models_nmf_pgd, __pyx_k_gensim_models_nmf_pgd, sizeof(__pyx_k_gensim_models_nmf_pgd), 0, 0, 1, 1}, + {&__pyx_n_s_getstate, __pyx_k_getstate, sizeof(__pyx_k_getstate), 0, 0, 1, 1}, {&__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_k_got_differing_extents_in_dimensi, sizeof(__pyx_k_got_differing_extents_in_dimensi), 0, 0, 1, 0}, {&__pyx_n_s_grad, __pyx_k_grad, sizeof(__pyx_k_grad), 0, 0, 1, 1}, {&__pyx_n_s_h, __pyx_k_h, sizeof(__pyx_k_h), 0, 0, 1, 1}, {&__pyx_n_s_hessian, __pyx_k_hessian, sizeof(__pyx_k_hessian), 0, 0, 1, 1}, - {&__pyx_kp_s_home_anotherbugmaster_Documents, __pyx_k_home_anotherbugmaster_Documents, sizeof(__pyx_k_home_anotherbugmaster_Documents), 0, 0, 1, 0}, {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, {&__pyx_n_s_intp, __pyx_k_intp, sizeof(__pyx_k_intp), 0, 0, 1, 1}, @@ -15671,12 +17279,22 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, + {&__pyx_n_s_new, __pyx_k_new, sizeof(__pyx_k_new), 0, 0, 1, 1}, + {&__pyx_kp_s_nmf_pgd_pyx, __pyx_k_nmf_pgd_pyx, sizeof(__pyx_k_nmf_pgd_pyx), 0, 0, 1, 0}, + {&__pyx_kp_s_no_default___reduce___due_to_non, __pyx_k_no_default___reduce___due_to_non, sizeof(__pyx_k_no_default___reduce___due_to_non), 0, 0, 1, 0}, {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, + {&__pyx_n_s_pickle, __pyx_k_pickle, sizeof(__pyx_k_pickle), 0, 0, 1, 1}, {&__pyx_n_s_projected_grad, __pyx_k_projected_grad, sizeof(__pyx_k_projected_grad), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_PickleError, __pyx_k_pyx_PickleError, sizeof(__pyx_k_pyx_PickleError), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_checksum, __pyx_k_pyx_checksum, sizeof(__pyx_k_pyx_checksum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_getbuffer, __pyx_k_pyx_getbuffer, sizeof(__pyx_k_pyx_getbuffer), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_result, __pyx_k_pyx_result, sizeof(__pyx_k_pyx_result), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_state, __pyx_k_pyx_state, sizeof(__pyx_k_pyx_state), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_type, __pyx_k_pyx_type, sizeof(__pyx_k_pyx_type), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_unpickle_Enum, __pyx_k_pyx_unpickle_Enum, sizeof(__pyx_k_pyx_unpickle_Enum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, {&__pyx_n_s_r_actual_col_idx_idx, __pyx_k_r_actual_col_idx_idx, sizeof(__pyx_k_r_actual_col_idx_idx), 0, 0, 1, 1}, {&__pyx_n_s_r_actual_col_indices, __pyx_k_r_actual_col_indices, sizeof(__pyx_k_r_actual_col_indices), 0, 0, 1, 1}, @@ -15692,7 +17310,12 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_r_indices, __pyx_k_r_indices, sizeof(__pyx_k_r_indices), 0, 0, 1, 1}, {&__pyx_n_s_r_indptr, __pyx_k_r_indptr, sizeof(__pyx_k_r_indptr), 0, 0, 1, 1}, {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, + {&__pyx_n_s_reduce, __pyx_k_reduce, sizeof(__pyx_k_reduce), 0, 0, 1, 1}, + {&__pyx_n_s_reduce_cython, __pyx_k_reduce_cython, sizeof(__pyx_k_reduce_cython), 0, 0, 1, 1}, + {&__pyx_n_s_reduce_ex, __pyx_k_reduce_ex, sizeof(__pyx_k_reduce_ex), 0, 0, 1, 1}, {&__pyx_n_s_sample_idx, __pyx_k_sample_idx, sizeof(__pyx_k_sample_idx), 0, 0, 1, 1}, + {&__pyx_n_s_setstate, __pyx_k_setstate, sizeof(__pyx_k_setstate), 0, 0, 1, 1}, + {&__pyx_n_s_setstate_cython, __pyx_k_setstate_cython, sizeof(__pyx_k_setstate_cython), 0, 0, 1, 1}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, {&__pyx_n_s_solve_h, __pyx_k_solve_h, sizeof(__pyx_k_solve_h), 0, 0, 1, 1}, @@ -15703,11 +17326,13 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_kp_s_strided_and_direct, __pyx_k_strided_and_direct, sizeof(__pyx_k_strided_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_strided_and_direct_or_indirect, __pyx_k_strided_and_direct_or_indirect, sizeof(__pyx_k_strided_and_direct_or_indirect), 0, 0, 1, 0}, {&__pyx_kp_s_strided_and_indirect, __pyx_k_strided_and_indirect, sizeof(__pyx_k_strided_and_indirect), 0, 0, 1, 0}, + {&__pyx_kp_s_stringsource, __pyx_k_stringsource, sizeof(__pyx_k_stringsource), 0, 0, 1, 0}, {&__pyx_n_s_struct, __pyx_k_struct, sizeof(__pyx_k_struct), 0, 0, 1, 1}, {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, {&__pyx_n_s_unpack, __pyx_k_unpack, sizeof(__pyx_k_unpack), 0, 0, 1, 1}, + {&__pyx_n_s_update, __pyx_k_update, sizeof(__pyx_k_update), 0, 0, 1, 1}, {&__pyx_n_s_v_max, __pyx_k_v_max, sizeof(__pyx_k_v_max), 0, 0, 1, 1}, {&__pyx_n_s_violation, __pyx_k_violation, sizeof(__pyx_k_violation), 0, 0, 1, 1}, {&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1}, @@ -15715,13 +17340,13 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { }; static int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 39, __pyx_L1_error) - __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 131, __pyx_L1_error) - __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 146, __pyx_L1_error) - __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 149, __pyx_L1_error) - __pyx_builtin_Ellipsis = __Pyx_GetBuiltinName(__pyx_n_s_Ellipsis); if (!__pyx_builtin_Ellipsis) __PYX_ERR(1, 396, __pyx_L1_error) - __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(1, 425, __pyx_L1_error) - __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) __PYX_ERR(1, 599, __pyx_L1_error) - __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) __PYX_ERR(1, 818, __pyx_L1_error) + __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 132, __pyx_L1_error) + __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 147, __pyx_L1_error) + __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 150, __pyx_L1_error) + __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(1, 2, __pyx_L1_error) + __pyx_builtin_Ellipsis = __Pyx_GetBuiltinName(__pyx_n_s_Ellipsis); if (!__pyx_builtin_Ellipsis) __PYX_ERR(1, 399, __pyx_L1_error) + __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) __PYX_ERR(1, 608, __pyx_L1_error) + __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) __PYX_ERR(1, 827, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; @@ -15731,151 +17356,230 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); - /* "View.MemoryView":131 + /* "View.MemoryView":132 * * if not self.ndim: * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< * * if itemsize <= 0: */ - __pyx_tuple_ = PyTuple_Pack(1, __pyx_kp_s_Empty_shape_tuple_for_cython_arr); if (unlikely(!__pyx_tuple_)) __PYX_ERR(1, 131, __pyx_L1_error) + __pyx_tuple_ = PyTuple_Pack(1, __pyx_kp_s_Empty_shape_tuple_for_cython_arr); if (unlikely(!__pyx_tuple_)) __PYX_ERR(1, 132, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple_); __Pyx_GIVEREF(__pyx_tuple_); - /* "View.MemoryView":134 + /* "View.MemoryView":135 * * if itemsize <= 0: * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< * * if not isinstance(format, bytes): */ - __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_s_itemsize_0_for_cython_array); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(1, 134, __pyx_L1_error) + __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_s_itemsize_0_for_cython_array); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(1, 135, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__2); __Pyx_GIVEREF(__pyx_tuple__2); - /* "View.MemoryView":137 + /* "View.MemoryView":138 * * if not isinstance(format, bytes): * format = format.encode('ASCII') # <<<<<<<<<<<<<< * self._format = format # keep a reference to the byte string * self.format = self._format */ - __pyx_tuple__3 = PyTuple_Pack(1, __pyx_n_s_ASCII); if (unlikely(!__pyx_tuple__3)) __PYX_ERR(1, 137, __pyx_L1_error) + __pyx_tuple__3 = PyTuple_Pack(1, __pyx_n_s_ASCII); if (unlikely(!__pyx_tuple__3)) __PYX_ERR(1, 138, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__3); __Pyx_GIVEREF(__pyx_tuple__3); - /* "View.MemoryView":146 + /* "View.MemoryView":147 * * if not self._shape: * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< * * */ - __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_shape_and_str); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(1, 146, __pyx_L1_error) + __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_shape_and_str); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(1, 147, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__4); __Pyx_GIVEREF(__pyx_tuple__4); - /* "View.MemoryView":174 + /* "View.MemoryView":175 * self.data = malloc(self.len) * if not self.data: * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< * * if self.dtype_is_object: */ - __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_array_data); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(1, 174, __pyx_L1_error) + __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_array_data); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(1, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__5); __Pyx_GIVEREF(__pyx_tuple__5); - /* "View.MemoryView":190 + /* "View.MemoryView":191 * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< * info.buf = self.data * info.len = self.len */ - __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_s_Can_only_create_a_buffer_that_is); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(1, 190, __pyx_L1_error) + __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_s_Can_only_create_a_buffer_that_is); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(1, 191, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__6); __Pyx_GIVEREF(__pyx_tuple__6); - /* "View.MemoryView":484 + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(1, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__7); + __Pyx_GIVEREF(__pyx_tuple__7); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__8); + __Pyx_GIVEREF(__pyx_tuple__8); + + /* "View.MemoryView":413 + * def __setitem__(memoryview self, object index, object value): + * if self.view.readonly: + * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< + * + * have_slices, index = _unellipsify(index, self.view.ndim) + */ + __pyx_tuple__9 = PyTuple_Pack(1, __pyx_kp_s_Cannot_assign_to_read_only_memor); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(1, 413, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__9); + __Pyx_GIVEREF(__pyx_tuple__9); + + /* "View.MemoryView":490 * result = struct.unpack(self.view.format, bytesitem) * except struct.error: * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< * else: * if len(self.view.format) == 1: */ - __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_Unable_to_convert_item_to_object); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(1, 484, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__7); - __Pyx_GIVEREF(__pyx_tuple__7); + __pyx_tuple__10 = PyTuple_Pack(1, __pyx_kp_s_Unable_to_convert_item_to_object); if (unlikely(!__pyx_tuple__10)) __PYX_ERR(1, 490, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__10); + __Pyx_GIVEREF(__pyx_tuple__10); + + /* "View.MemoryView":515 + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_WRITABLE and self.view.readonly: + * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< + * + * if flags & PyBUF_STRIDES: + */ + __pyx_tuple__11 = PyTuple_Pack(1, __pyx_kp_s_Cannot_create_writable_memory_vi); if (unlikely(!__pyx_tuple__11)) __PYX_ERR(1, 515, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__11); + __Pyx_GIVEREF(__pyx_tuple__11); - /* "View.MemoryView":556 + /* "View.MemoryView":565 * if self.view.strides == NULL: * * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) */ - __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_Buffer_view_does_not_expose_stri); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(1, 556, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__8); - __Pyx_GIVEREF(__pyx_tuple__8); + __pyx_tuple__12 = PyTuple_Pack(1, __pyx_kp_s_Buffer_view_does_not_expose_stri); if (unlikely(!__pyx_tuple__12)) __PYX_ERR(1, 565, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__12); + __Pyx_GIVEREF(__pyx_tuple__12); - /* "View.MemoryView":563 + /* "View.MemoryView":572 * def suboffsets(self): * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) */ - __pyx_tuple__9 = PyTuple_New(1); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(1, 563, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__9); + __pyx_tuple__13 = PyTuple_New(1); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(1, 572, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__13); __Pyx_INCREF(__pyx_int_neg_1); __Pyx_GIVEREF(__pyx_int_neg_1); - PyTuple_SET_ITEM(__pyx_tuple__9, 0, __pyx_int_neg_1); - __Pyx_GIVEREF(__pyx_tuple__9); + PyTuple_SET_ITEM(__pyx_tuple__13, 0, __pyx_int_neg_1); + __Pyx_GIVEREF(__pyx_tuple__13); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_tuple__14 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(1, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__14); + __Pyx_GIVEREF(__pyx_tuple__14); - /* "View.MemoryView":668 + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_tuple__15 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__15); + __Pyx_GIVEREF(__pyx_tuple__15); + + /* "View.MemoryView":677 * if item is Ellipsis: * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< * seen_ellipsis = True * else: */ - __pyx_slice__10 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__10)) __PYX_ERR(1, 668, __pyx_L1_error) - __Pyx_GOTREF(__pyx_slice__10); - __Pyx_GIVEREF(__pyx_slice__10); + __pyx_slice__16 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__16)) __PYX_ERR(1, 677, __pyx_L1_error) + __Pyx_GOTREF(__pyx_slice__16); + __Pyx_GIVEREF(__pyx_slice__16); - /* "View.MemoryView":671 + /* "View.MemoryView":680 * seen_ellipsis = True * else: * result.append(slice(None)) # <<<<<<<<<<<<<< * have_slices = True * else: */ - __pyx_slice__11 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__11)) __PYX_ERR(1, 671, __pyx_L1_error) - __Pyx_GOTREF(__pyx_slice__11); - __Pyx_GIVEREF(__pyx_slice__11); + __pyx_slice__17 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__17)) __PYX_ERR(1, 680, __pyx_L1_error) + __Pyx_GOTREF(__pyx_slice__17); + __Pyx_GIVEREF(__pyx_slice__17); - /* "View.MemoryView":682 + /* "View.MemoryView":691 * nslices = ndim - len(result) * if nslices: * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< * * return have_slices or nslices, tuple(result) */ - __pyx_slice__12 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__12)) __PYX_ERR(1, 682, __pyx_L1_error) - __Pyx_GOTREF(__pyx_slice__12); - __Pyx_GIVEREF(__pyx_slice__12); + __pyx_slice__18 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__18)) __PYX_ERR(1, 691, __pyx_L1_error) + __Pyx_GOTREF(__pyx_slice__18); + __Pyx_GIVEREF(__pyx_slice__18); - /* "View.MemoryView":689 + /* "View.MemoryView":698 * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< * * */ - __pyx_tuple__13 = PyTuple_Pack(1, __pyx_kp_s_Indirect_dimensions_not_supporte); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(1, 689, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__13); - __Pyx_GIVEREF(__pyx_tuple__13); + __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_Indirect_dimensions_not_supporte); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(1, 698, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__19); + __Pyx_GIVEREF(__pyx_tuple__19); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__20)) __PYX_ERR(1, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__20); + __Pyx_GIVEREF(__pyx_tuple__20); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__21); + __Pyx_GIVEREF(__pyx_tuple__21); /* "gensim/models/nmf_pgd.pyx":14 * import numpy as np @@ -15884,10 +17588,10 @@ static int __Pyx_InitCachedConstants(void) { * """Find optimal dense vector representation for current W and r matrices. * */ - __pyx_tuple__14 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(0, 14, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__14); - __Pyx_GIVEREF(__pyx_tuple__14); - __pyx_codeobj__15 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__14, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_h, 14, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__15)) __PYX_ERR(0, 14, __pyx_L1_error) + __pyx_tuple__22 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(0, 14, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__22); + __Pyx_GIVEREF(__pyx_tuple__22); + __pyx_codeobj__23 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__22, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_h, 14, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__23)) __PYX_ERR(0, 14, __pyx_L1_error) /* "gensim/models/nmf_pgd.pyx":58 * return sqrt(violation) @@ -15896,65 +17600,75 @@ static int __Pyx_InitCachedConstants(void) { * int[::1] r_indptr, * int[::1] r_indices, */ - __pyx_tuple__16 = PyTuple_Pack(18, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_r_actual_sign, __pyx_n_s_sample_idx, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_idx_idx, __pyx_n_s_r_actual_col_idx_idx, __pyx_n_s_r_col_indices, __pyx_n_s_r_actual_col_indices); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(0, 58, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__16); - __Pyx_GIVEREF(__pyx_tuple__16); - __pyx_codeobj__17 = (PyObject*)__Pyx_PyCode_New(8, 0, 18, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__16, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_anotherbugmaster_Documents, __pyx_n_s_solve_r, 58, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__17)) __PYX_ERR(0, 58, __pyx_L1_error) + __pyx_tuple__24 = PyTuple_Pack(18, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_r_actual_sign, __pyx_n_s_sample_idx, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_idx_idx, __pyx_n_s_r_actual_col_idx_idx, __pyx_n_s_r_col_indices, __pyx_n_s_r_actual_col_indices); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(0, 58, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__24); + __Pyx_GIVEREF(__pyx_tuple__24); + __pyx_codeobj__25 = (PyObject*)__Pyx_PyCode_New(8, 0, 18, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__24, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_r, 58, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__25)) __PYX_ERR(0, 58, __pyx_L1_error) - /* "View.MemoryView":282 + /* "View.MemoryView":285 * return self.name * * cdef generic = Enum("") # <<<<<<<<<<<<<< * cdef strided = Enum("") # default * cdef indirect = Enum("") */ - __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(1, 282, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__18); - __Pyx_GIVEREF(__pyx_tuple__18); + __pyx_tuple__26 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__26)) __PYX_ERR(1, 285, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__26); + __Pyx_GIVEREF(__pyx_tuple__26); - /* "View.MemoryView":283 + /* "View.MemoryView":286 * * cdef generic = Enum("") * cdef strided = Enum("") # default # <<<<<<<<<<<<<< * cdef indirect = Enum("") * */ - __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(1, 283, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__19); - __Pyx_GIVEREF(__pyx_tuple__19); + __pyx_tuple__27 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__27)) __PYX_ERR(1, 286, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__27); + __Pyx_GIVEREF(__pyx_tuple__27); - /* "View.MemoryView":284 + /* "View.MemoryView":287 * cdef generic = Enum("") * cdef strided = Enum("") # default * cdef indirect = Enum("") # <<<<<<<<<<<<<< * * */ - __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__20)) __PYX_ERR(1, 284, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__20); - __Pyx_GIVEREF(__pyx_tuple__20); + __pyx_tuple__28 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__28)) __PYX_ERR(1, 287, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__28); + __Pyx_GIVEREF(__pyx_tuple__28); - /* "View.MemoryView":287 + /* "View.MemoryView":290 * * * cdef contiguous = Enum("") # <<<<<<<<<<<<<< * cdef indirect_contiguous = Enum("") * */ - __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(1, 287, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__21); - __Pyx_GIVEREF(__pyx_tuple__21); + __pyx_tuple__29 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__29)) __PYX_ERR(1, 290, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__29); + __Pyx_GIVEREF(__pyx_tuple__29); - /* "View.MemoryView":288 + /* "View.MemoryView":291 * * cdef contiguous = Enum("") * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< * * */ - __pyx_tuple__22 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(1, 288, __pyx_L1_error) - __Pyx_GOTREF(__pyx_tuple__22); - __Pyx_GIVEREF(__pyx_tuple__22); + __pyx_tuple__30 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__30)) __PYX_ERR(1, 291, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__30); + __Pyx_GIVEREF(__pyx_tuple__30); + + /* "(tree fragment)":1 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< + * if __pyx_checksum != 0xb068931: + * from pickle import PickleError as __pyx_PickleError + */ + __pyx_tuple__31 = PyTuple_Pack(5, __pyx_n_s_pyx_type, __pyx_n_s_pyx_checksum, __pyx_n_s_pyx_state, __pyx_n_s_pyx_PickleError, __pyx_n_s_pyx_result); if (unlikely(!__pyx_tuple__31)) __PYX_ERR(1, 1, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__31); + __Pyx_GIVEREF(__pyx_tuple__31); + __pyx_codeobj__32 = (PyObject*)__Pyx_PyCode_New(3, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__31, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_stringsource, __pyx_n_s_pyx_unpickle_Enum, 1, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__32)) __PYX_ERR(1, 1, __pyx_L1_error) __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; @@ -15973,33 +17687,220 @@ if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error); __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_184977713 = PyInt_FromLong(184977713L); if (unlikely(!__pyx_int_184977713)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) __PYX_ERR(0, 1, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } +static int __Pyx_modinit_global_init_code(void); /*proto*/ +static int __Pyx_modinit_variable_export_code(void); /*proto*/ +static int __Pyx_modinit_function_export_code(void); /*proto*/ +static int __Pyx_modinit_type_init_code(void); /*proto*/ +static int __Pyx_modinit_type_import_code(void); /*proto*/ +static int __Pyx_modinit_variable_import_code(void); /*proto*/ +static int __Pyx_modinit_function_import_code(void); /*proto*/ + +static int __Pyx_modinit_global_init_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); + /*--- Global init code ---*/ + generic = Py_None; Py_INCREF(Py_None); + strided = Py_None; Py_INCREF(Py_None); + indirect = Py_None; Py_INCREF(Py_None); + contiguous = Py_None; Py_INCREF(Py_None); + indirect_contiguous = Py_None; Py_INCREF(Py_None); + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_variable_export_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); + /*--- Variable export code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_function_export_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); + /*--- Function export code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_type_init_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); + /*--- Type init code ---*/ + __pyx_vtabptr_array = &__pyx_vtable_array; + __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview; + if (PyType_Ready(&__pyx_type___pyx_array) < 0) __PYX_ERR(1, 104, __pyx_L1_error) + __pyx_type___pyx_array.tp_print = 0; + if (__Pyx_SetVtable(__pyx_type___pyx_array.tp_dict, __pyx_vtabptr_array) < 0) __PYX_ERR(1, 104, __pyx_L1_error) + if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_array) < 0) __PYX_ERR(1, 104, __pyx_L1_error) + __pyx_array_type = &__pyx_type___pyx_array; + if (PyType_Ready(&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(1, 278, __pyx_L1_error) + __pyx_type___pyx_MemviewEnum.tp_print = 0; + if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_MemviewEnum.tp_dictoffset && __pyx_type___pyx_MemviewEnum.tp_getattro == PyObject_GenericGetAttr)) { + __pyx_type___pyx_MemviewEnum.tp_getattro = __Pyx_PyObject_GenericGetAttr; + } + if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(1, 278, __pyx_L1_error) + __pyx_MemviewEnum_type = &__pyx_type___pyx_MemviewEnum; + __pyx_vtabptr_memoryview = &__pyx_vtable_memoryview; + __pyx_vtable_memoryview.get_item_pointer = (char *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_get_item_pointer; + __pyx_vtable_memoryview.is_slice = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_is_slice; + __pyx_vtable_memoryview.setitem_slice_assignment = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_slice_assignment; + __pyx_vtable_memoryview.setitem_slice_assign_scalar = (PyObject *(*)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_setitem_slice_assign_scalar; + __pyx_vtable_memoryview.setitem_indexed = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_indexed; + __pyx_vtable_memoryview.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryview_convert_item_to_object; + __pyx_vtable_memoryview.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryview_assign_item_from_object; + if (PyType_Ready(&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(1, 329, __pyx_L1_error) + __pyx_type___pyx_memoryview.tp_print = 0; + if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryview.tp_dictoffset && __pyx_type___pyx_memoryview.tp_getattro == PyObject_GenericGetAttr)) { + __pyx_type___pyx_memoryview.tp_getattro = __Pyx_PyObject_GenericGetAttr; + } + if (__Pyx_SetVtable(__pyx_type___pyx_memoryview.tp_dict, __pyx_vtabptr_memoryview) < 0) __PYX_ERR(1, 329, __pyx_L1_error) + if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(1, 329, __pyx_L1_error) + __pyx_memoryview_type = &__pyx_type___pyx_memoryview; + __pyx_vtabptr__memoryviewslice = &__pyx_vtable__memoryviewslice; + __pyx_vtable__memoryviewslice.__pyx_base = *__pyx_vtabptr_memoryview; + __pyx_vtable__memoryviewslice.__pyx_base.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryviewslice_convert_item_to_object; + __pyx_vtable__memoryviewslice.__pyx_base.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryviewslice_assign_item_from_object; + __pyx_type___pyx_memoryviewslice.tp_base = __pyx_memoryview_type; + if (PyType_Ready(&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(1, 960, __pyx_L1_error) + __pyx_type___pyx_memoryviewslice.tp_print = 0; + if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryviewslice.tp_dictoffset && __pyx_type___pyx_memoryviewslice.tp_getattro == PyObject_GenericGetAttr)) { + __pyx_type___pyx_memoryviewslice.tp_getattro = __Pyx_PyObject_GenericGetAttr; + } + if (__Pyx_SetVtable(__pyx_type___pyx_memoryviewslice.tp_dict, __pyx_vtabptr__memoryviewslice) < 0) __PYX_ERR(1, 960, __pyx_L1_error) + if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(1, 960, __pyx_L1_error) + __pyx_memoryviewslice_type = &__pyx_type___pyx_memoryviewslice; + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_modinit_type_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); + /*--- Type import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_variable_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); + /*--- Variable import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_function_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); + /*--- Function import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + + +#if PY_MAJOR_VERSION < 3 +#ifdef CYTHON_NO_PYINIT_EXPORT +#define __Pyx_PyMODINIT_FUNC void +#else +#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC +#endif +#else +#ifdef CYTHON_NO_PYINIT_EXPORT +#define __Pyx_PyMODINIT_FUNC PyObject * +#else +#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC +#endif +#endif +#ifndef CYTHON_SMALL_CODE +#if defined(__clang__) + #define CYTHON_SMALL_CODE +#elif defined(__GNUC__) && (!(defined(__cplusplus)) || (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ > 4))) + #define CYTHON_SMALL_CODE __attribute__((cold)) +#else + #define CYTHON_SMALL_CODE +#endif +#endif + + #if PY_MAJOR_VERSION < 3 -PyMODINIT_FUNC initnmf_pgd(void); /*proto*/ -PyMODINIT_FUNC initnmf_pgd(void) +__Pyx_PyMODINIT_FUNC initnmf_pgd(void) CYTHON_SMALL_CODE; /*proto*/ +__Pyx_PyMODINIT_FUNC initnmf_pgd(void) #else -PyMODINIT_FUNC PyInit_nmf_pgd(void); /*proto*/ -PyMODINIT_FUNC PyInit_nmf_pgd(void) +__Pyx_PyMODINIT_FUNC PyInit_nmf_pgd(void) CYTHON_SMALL_CODE; /*proto*/ +__Pyx_PyMODINIT_FUNC PyInit_nmf_pgd(void) +#if CYTHON_PEP489_MULTI_PHASE_INIT +{ + return PyModuleDef_Init(&__pyx_moduledef); +} +static int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name) { + PyObject *value = PyObject_GetAttrString(spec, from_name); + int result = 0; + if (likely(value)) { + result = PyDict_SetItemString(moddict, to_name, value); + Py_DECREF(value); + } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Clear(); + } else { + result = -1; + } + return result; +} +static PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { + PyObject *module = NULL, *moddict, *modname; + if (__pyx_m) + return __Pyx_NewRef(__pyx_m); + modname = PyObject_GetAttrString(spec, "name"); + if (unlikely(!modname)) goto bad; + module = PyModule_NewObject(modname); + Py_DECREF(modname); + if (unlikely(!module)) goto bad; + moddict = PyModule_GetDict(module); + if (unlikely(!moddict)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__") < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__") < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__") < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__") < 0)) goto bad; + return module; +bad: + Py_XDECREF(module); + return NULL; +} + + +static int __pyx_pymod_exec_nmf_pgd(PyObject *__pyx_pyinit_module) +#endif #endif { PyObject *__pyx_t_1 = NULL; static PyThread_type_lock __pyx_t_2[8]; __Pyx_RefNannyDeclarations - #if CYTHON_REFNANNY - __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); - if (!__Pyx_RefNanny) { - PyErr_Clear(); - __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); - if (!__Pyx_RefNanny) - Py_FatalError("failed to import 'refnanny' module"); - } + #if CYTHON_PEP489_MULTI_PHASE_INIT + if (__pyx_m && __pyx_m == __pyx_pyinit_module) return 0; + #elif PY_MAJOR_VERSION >= 3 + if (__pyx_m) return __Pyx_NewRef(__pyx_m); #endif - __Pyx_RefNannySetupContext("PyMODINIT_FUNC PyInit_nmf_pgd(void)", 0); + #if CYTHON_REFNANNY +__Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); +if (!__Pyx_RefNanny) { + PyErr_Clear(); + __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); + if (!__Pyx_RefNanny) + Py_FatalError("failed to import 'refnanny' module"); +} +#endif + __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit_nmf_pgd(void)", 0); if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) @@ -16016,6 +17917,9 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) #ifdef __Pyx_Generator_USED if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif + #ifdef __Pyx_AsyncGen_USED + if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif #ifdef __Pyx_StopAsyncIteration_USED if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif @@ -16027,15 +17931,21 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) #endif #endif /*--- Module creation code ---*/ + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_m = __pyx_pyinit_module; + Py_INCREF(__pyx_m); + #else #if PY_MAJOR_VERSION < 3 __pyx_m = Py_InitModule4("nmf_pgd", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); #else __pyx_m = PyModule_Create(&__pyx_moduledef); #endif if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) + #endif __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_d); __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error) #if CYTHON_COMPILING_IN_PYPY Py_INCREF(__pyx_b); #endif @@ -16060,48 +17970,14 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) if (__Pyx_InitCachedBuiltins() < 0) __PYX_ERR(0, 1, __pyx_L1_error) /*--- Constants init code ---*/ if (__Pyx_InitCachedConstants() < 0) __PYX_ERR(0, 1, __pyx_L1_error) - /*--- Global init code ---*/ - generic = Py_None; Py_INCREF(Py_None); - strided = Py_None; Py_INCREF(Py_None); - indirect = Py_None; Py_INCREF(Py_None); - contiguous = Py_None; Py_INCREF(Py_None); - indirect_contiguous = Py_None; Py_INCREF(Py_None); - /*--- Variable export code ---*/ - /*--- Function export code ---*/ - /*--- Type init code ---*/ - __pyx_vtabptr_array = &__pyx_vtable_array; - __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview; - if (PyType_Ready(&__pyx_type___pyx_array) < 0) __PYX_ERR(1, 103, __pyx_L1_error) - __pyx_type___pyx_array.tp_print = 0; - if (__Pyx_SetVtable(__pyx_type___pyx_array.tp_dict, __pyx_vtabptr_array) < 0) __PYX_ERR(1, 103, __pyx_L1_error) - __pyx_array_type = &__pyx_type___pyx_array; - if (PyType_Ready(&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(1, 275, __pyx_L1_error) - __pyx_type___pyx_MemviewEnum.tp_print = 0; - __pyx_MemviewEnum_type = &__pyx_type___pyx_MemviewEnum; - __pyx_vtabptr_memoryview = &__pyx_vtable_memoryview; - __pyx_vtable_memoryview.get_item_pointer = (char *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_get_item_pointer; - __pyx_vtable_memoryview.is_slice = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_is_slice; - __pyx_vtable_memoryview.setitem_slice_assignment = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_slice_assignment; - __pyx_vtable_memoryview.setitem_slice_assign_scalar = (PyObject *(*)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_setitem_slice_assign_scalar; - __pyx_vtable_memoryview.setitem_indexed = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_indexed; - __pyx_vtable_memoryview.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryview_convert_item_to_object; - __pyx_vtable_memoryview.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryview_assign_item_from_object; - if (PyType_Ready(&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(1, 326, __pyx_L1_error) - __pyx_type___pyx_memoryview.tp_print = 0; - if (__Pyx_SetVtable(__pyx_type___pyx_memoryview.tp_dict, __pyx_vtabptr_memoryview) < 0) __PYX_ERR(1, 326, __pyx_L1_error) - __pyx_memoryview_type = &__pyx_type___pyx_memoryview; - __pyx_vtabptr__memoryviewslice = &__pyx_vtable__memoryviewslice; - __pyx_vtable__memoryviewslice.__pyx_base = *__pyx_vtabptr_memoryview; - __pyx_vtable__memoryviewslice.__pyx_base.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryviewslice_convert_item_to_object; - __pyx_vtable__memoryviewslice.__pyx_base.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryviewslice_assign_item_from_object; - __pyx_type___pyx_memoryviewslice.tp_base = __pyx_memoryview_type; - if (PyType_Ready(&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(1, 951, __pyx_L1_error) - __pyx_type___pyx_memoryviewslice.tp_print = 0; - if (__Pyx_SetVtable(__pyx_type___pyx_memoryviewslice.tp_dict, __pyx_vtabptr__memoryviewslice) < 0) __PYX_ERR(1, 951, __pyx_L1_error) - __pyx_memoryviewslice_type = &__pyx_type___pyx_memoryviewslice; - /*--- Type import code ---*/ - /*--- Variable import code ---*/ - /*--- Function import code ---*/ + /*--- Global type/function init code ---*/ + (void)__Pyx_modinit_global_init_code(); + (void)__Pyx_modinit_variable_export_code(); + (void)__Pyx_modinit_function_export_code(); + if (unlikely(__Pyx_modinit_type_init_code() != 0)) goto __pyx_L1_error; + (void)__Pyx_modinit_type_import_code(); + (void)__Pyx_modinit_variable_import_code(); + (void)__Pyx_modinit_function_import_code(); /*--- Execution code ---*/ #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) @@ -16148,95 +18024,95 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) * * # cython: cdivision=True */ - __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":207 + /* "View.MemoryView":208 * info.obj = self * * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * def __dealloc__(array self): */ - __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_array_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 207, __pyx_L1_error) + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_array_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_array_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 207, __pyx_L1_error) + if (PyDict_SetItem((PyObject *)__pyx_array_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 208, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_array_type); - /* "View.MemoryView":282 + /* "View.MemoryView":285 * return self.name * * cdef generic = Enum("") # <<<<<<<<<<<<<< * cdef strided = Enum("") # default * cdef indirect = Enum("") */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 282, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__26, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 285, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(generic); __Pyx_DECREF_SET(generic, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":283 + /* "View.MemoryView":286 * * cdef generic = Enum("") * cdef strided = Enum("") # default # <<<<<<<<<<<<<< * cdef indirect = Enum("") * */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 283, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__27, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 286, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(strided); __Pyx_DECREF_SET(strided, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":284 + /* "View.MemoryView":287 * cdef generic = Enum("") * cdef strided = Enum("") # default * cdef indirect = Enum("") # <<<<<<<<<<<<<< * * */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 284, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__28, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 287, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect); __Pyx_DECREF_SET(indirect, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":287 + /* "View.MemoryView":290 * * * cdef contiguous = Enum("") # <<<<<<<<<<<<<< * cdef indirect_contiguous = Enum("") * */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 287, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__29, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 290, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(contiguous); __Pyx_DECREF_SET(contiguous, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":288 + /* "View.MemoryView":291 * * cdef contiguous = Enum("") * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< * * */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__22, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 288, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__30, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 291, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect_contiguous); __Pyx_DECREF_SET(indirect_contiguous, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; - /* "View.MemoryView":312 + /* "View.MemoryView":315 * * DEF THREAD_LOCKS_PREALLOCATED = 8 * cdef int __pyx_memoryview_thread_locks_used = 0 # <<<<<<<<<<<<<< @@ -16245,7 +18121,7 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) */ __pyx_memoryview_thread_locks_used = 0; - /* "View.MemoryView":313 + /* "View.MemoryView":316 * DEF THREAD_LOCKS_PREALLOCATED = 8 * cdef int __pyx_memoryview_thread_locks_used = 0 * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ # <<<<<<<<<<<<<< @@ -16262,38 +18138,48 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) __pyx_t_2[7] = PyThread_allocate_lock(); memcpy(&(__pyx_memoryview_thread_locks[0]), __pyx_t_2, sizeof(__pyx_memoryview_thread_locks[0]) * (8)); - /* "View.MemoryView":535 + /* "View.MemoryView":544 * info.obj = self * * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * */ - __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 535, __pyx_L1_error) + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 544, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_memoryview_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 535, __pyx_L1_error) + if (PyDict_SetItem((PyObject *)__pyx_memoryview_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 544, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_memoryview_type); - /* "View.MemoryView":981 + /* "View.MemoryView":990 * return self.from_object * * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * */ - __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 981, __pyx_L1_error) + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 990, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_memoryviewslice_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 981, __pyx_L1_error) + if (PyDict_SetItem((PyObject *)__pyx_memoryviewslice_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(1, 990, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_memoryviewslice_type); - /* "View.MemoryView":1391 - * - * @cname('__pyx_memoryview__slice_assign_scalar') - * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< - * Py_ssize_t *strides, int ndim, - * size_t itemsize, void *item) nogil: + /* "(tree fragment)":1 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< + * if __pyx_checksum != 0xb068931: + * from pickle import PickleError as __pyx_PickleError + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum, NULL, __pyx_n_s_View_MemoryView); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 1, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_pyx_unpickle_Enum, __pyx_t_1) < 0) __PYX_ERR(1, 1, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "(tree fragment)":9 + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ /*--- Wrapped vars code ---*/ @@ -16303,7 +18189,7 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) __Pyx_XDECREF(__pyx_t_1); if (__pyx_m) { if (__pyx_d) { - __Pyx_AddTraceback("init gensim.models.nmf_pgd", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_AddTraceback("init gensim.models.nmf_pgd", 0, __pyx_lineno, __pyx_filename); } Py_DECREF(__pyx_m); __pyx_m = 0; } else if (!PyErr_Occurred()) { @@ -16311,10 +18197,12 @@ PyMODINIT_FUNC PyInit_nmf_pgd(void) } __pyx_L0:; __Pyx_RefNannyFinishContext(); - #if PY_MAJOR_VERSION < 3 - return; - #else + #if CYTHON_PEP489_MULTI_PHASE_INIT + return (__pyx_m != NULL) ? 0 : -1; + #elif PY_MAJOR_VERSION >= 3 return __pyx_m; + #else + return; #endif } @@ -16336,12 +18224,26 @@ static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { } #endif -/* GetBuiltinName */ -static PyObject *__Pyx_GetBuiltinName(PyObject *name) { - PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); - if (unlikely(!result)) { - PyErr_Format(PyExc_NameError, -#if PY_MAJOR_VERSION >= 3 +/* PyObjectGetAttrStr */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { + PyTypeObject* tp = Py_TYPE(obj); + if (likely(tp->tp_getattro)) + return tp->tp_getattro(obj, attr_name); +#if PY_MAJOR_VERSION < 3 + if (likely(tp->tp_getattr)) + return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); +#endif + return PyObject_GetAttr(obj, attr_name); +} +#endif + +/* GetBuiltinName */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name) { + PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); + if (unlikely(!result)) { + PyErr_Format(PyExc_NameError, +#if PY_MAJOR_VERSION >= 3 "name '%U' is not defined", name); #else "name '%.200s' is not defined", PyString_AS_STRING(name)); @@ -16492,719 +18394,548 @@ static int __Pyx_ParseOptionalKeywords( return -1; } -/* BufferFormatCheck */ -static CYTHON_INLINE int __Pyx_IsLittleEndian(void) { - unsigned int n = 1; - return *(unsigned char*)(&n) != 0; -} -static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, - __Pyx_BufFmt_StackElem* stack, - __Pyx_TypeInfo* type) { - stack[0].field = &ctx->root; - stack[0].parent_offset = 0; - ctx->root.type = type; - ctx->root.name = "buffer dtype"; - ctx->root.offset = 0; - ctx->head = stack; - ctx->head->field = &ctx->root; - ctx->fmt_offset = 0; - ctx->head->parent_offset = 0; - ctx->new_packmode = '@'; - ctx->enc_packmode = '@'; - ctx->new_count = 1; - ctx->enc_count = 0; - ctx->enc_type = 0; - ctx->is_complex = 0; - ctx->is_valid_array = 0; - ctx->struct_alignment = 0; - while (type->typegroup == 'S') { - ++ctx->head; - ctx->head->field = type->fields; - ctx->head->parent_offset = 0; - type = type->fields->type; - } -} -static int __Pyx_BufFmt_ParseNumber(const char** ts) { - int count; - const char* t = *ts; - if (*t < '0' || *t > '9') { - return -1; +/* MemviewSliceInit */ +static int +__Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview, + int ndim, + __Pyx_memviewslice *memviewslice, + int memview_is_new_reference) +{ + __Pyx_RefNannyDeclarations + int i, retval=-1; + Py_buffer *buf = &memview->view; + __Pyx_RefNannySetupContext("init_memviewslice", 0); + if (!buf) { + PyErr_SetString(PyExc_ValueError, + "buf is NULL."); + goto fail; + } else if (memviewslice->memview || memviewslice->data) { + PyErr_SetString(PyExc_ValueError, + "memviewslice is already initialized!"); + goto fail; + } + if (buf->strides) { + for (i = 0; i < ndim; i++) { + memviewslice->strides[i] = buf->strides[i]; + } } else { - count = *t++ - '0'; - while (*t >= '0' && *t < '9') { - count *= 10; - count += *t++ - '0'; + Py_ssize_t stride = buf->itemsize; + for (i = ndim - 1; i >= 0; i--) { + memviewslice->strides[i] = stride; + stride *= buf->shape[i]; } } - *ts = t; - return count; + for (i = 0; i < ndim; i++) { + memviewslice->shape[i] = buf->shape[i]; + if (buf->suboffsets) { + memviewslice->suboffsets[i] = buf->suboffsets[i]; + } else { + memviewslice->suboffsets[i] = -1; + } + } + memviewslice->memview = memview; + memviewslice->data = (char *)buf->buf; + if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) { + Py_INCREF(memview); + } + retval = 0; + goto no_fail; +fail: + memviewslice->memview = 0; + memviewslice->data = 0; + retval = -1; +no_fail: + __Pyx_RefNannyFinishContext(); + return retval; } -static int __Pyx_BufFmt_ExpectNumber(const char **ts) { - int number = __Pyx_BufFmt_ParseNumber(ts); - if (number == -1) - PyErr_Format(PyExc_ValueError,\ - "Does not understand character buffer dtype format string ('%c')", **ts); - return number; +#ifndef Py_NO_RETURN +#define Py_NO_RETURN +#endif +static void __pyx_fatalerror(const char *fmt, ...) Py_NO_RETURN { + va_list vargs; + char msg[200]; +#ifdef HAVE_STDARG_PROTOTYPES + va_start(vargs, fmt); +#else + va_start(vargs); +#endif + vsnprintf(msg, 200, fmt, vargs); + va_end(vargs); + Py_FatalError(msg); } -static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { - PyErr_Format(PyExc_ValueError, - "Unexpected format string character: '%c'", ch); +static CYTHON_INLINE int +__pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count, + PyThread_type_lock lock) +{ + int result; + PyThread_acquire_lock(lock, 1); + result = (*acquisition_count)++; + PyThread_release_lock(lock); + return result; } -static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { - switch (ch) { - case 'c': return "'char'"; - case 'b': return "'signed char'"; - case 'B': return "'unsigned char'"; - case 'h': return "'short'"; - case 'H': return "'unsigned short'"; - case 'i': return "'int'"; - case 'I': return "'unsigned int'"; - case 'l': return "'long'"; - case 'L': return "'unsigned long'"; - case 'q': return "'long long'"; - case 'Q': return "'unsigned long long'"; - case 'f': return (is_complex ? "'complex float'" : "'float'"); - case 'd': return (is_complex ? "'complex double'" : "'double'"); - case 'g': return (is_complex ? "'complex long double'" : "'long double'"); - case 'T': return "a struct"; - case 'O': return "Python object"; - case 'P': return "a pointer"; - case 's': case 'p': return "a string"; - case 0: return "end"; - default: return "unparseable format string"; - } +static CYTHON_INLINE int +__pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count, + PyThread_type_lock lock) +{ + int result; + PyThread_acquire_lock(lock, 1); + result = (*acquisition_count)--; + PyThread_release_lock(lock); + return result; } -static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { - switch (ch) { - case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; - case 'h': case 'H': return 2; - case 'i': case 'I': case 'l': case 'L': return 4; - case 'q': case 'Q': return 8; - case 'f': return (is_complex ? 8 : 4); - case 'd': return (is_complex ? 16 : 8); - case 'g': { - PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); - return 0; - } - case 'O': case 'P': return sizeof(void*); - default: - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; +static CYTHON_INLINE void +__Pyx_INC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) +{ + int first_time; + struct __pyx_memoryview_obj *memview = memslice->memview; + if (!memview || (PyObject *) memview == Py_None) + return; + if (__pyx_get_slice_count(memview) < 0) + __pyx_fatalerror("Acquisition count is %d (line %d)", + __pyx_get_slice_count(memview), lineno); + first_time = __pyx_add_acquisition_count(memview) == 0; + if (first_time) { + if (have_gil) { + Py_INCREF((PyObject *) memview); + } else { + PyGILState_STATE _gilstate = PyGILState_Ensure(); + Py_INCREF((PyObject *) memview); + PyGILState_Release(_gilstate); + } } } -static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { - switch (ch) { - case 'c': case 'b': case 'B': case 's': case 'p': return 1; - case 'h': case 'H': return sizeof(short); - case 'i': case 'I': return sizeof(int); - case 'l': case 'L': return sizeof(long); - #ifdef HAVE_LONG_LONG - case 'q': case 'Q': return sizeof(PY_LONG_LONG); - #endif - case 'f': return sizeof(float) * (is_complex ? 2 : 1); - case 'd': return sizeof(double) * (is_complex ? 2 : 1); - case 'g': return sizeof(long double) * (is_complex ? 2 : 1); - case 'O': case 'P': return sizeof(void*); - default: { - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; +static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, + int have_gil, int lineno) { + int last_time; + struct __pyx_memoryview_obj *memview = memslice->memview; + if (!memview ) { + return; + } else if ((PyObject *) memview == Py_None) { + memslice->memview = NULL; + return; + } + if (__pyx_get_slice_count(memview) <= 0) + __pyx_fatalerror("Acquisition count is %d (line %d)", + __pyx_get_slice_count(memview), lineno); + last_time = __pyx_sub_acquisition_count(memview) == 1; + memslice->data = NULL; + if (last_time) { + if (have_gil) { + Py_CLEAR(memslice->memview); + } else { + PyGILState_STATE _gilstate = PyGILState_Ensure(); + Py_CLEAR(memslice->memview); + PyGILState_Release(_gilstate); + } + } else { + memslice->memview = NULL; } - } } -typedef struct { char c; short x; } __Pyx_st_short; -typedef struct { char c; int x; } __Pyx_st_int; -typedef struct { char c; long x; } __Pyx_st_long; -typedef struct { char c; float x; } __Pyx_st_float; -typedef struct { char c; double x; } __Pyx_st_double; -typedef struct { char c; long double x; } __Pyx_st_longdouble; -typedef struct { char c; void *x; } __Pyx_st_void_p; -#ifdef HAVE_LONG_LONG -typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; + +/* GetModuleGlobalName */ +static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name) { + PyObject *result; +#if !CYTHON_AVOID_BORROWED_REFS +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 + result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); + if (likely(result)) { + Py_INCREF(result); + } else if (unlikely(PyErr_Occurred())) { + result = NULL; + } else { +#else + result = PyDict_GetItem(__pyx_d, name); + if (likely(result)) { + Py_INCREF(result); + } else { #endif -static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { - switch (ch) { - case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; - case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); - case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); - case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); -#ifdef HAVE_LONG_LONG - case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); +#else + result = PyObject_GetItem(__pyx_d, name); + if (!result) { + PyErr_Clear(); #endif - case 'f': return sizeof(__Pyx_st_float) - sizeof(float); - case 'd': return sizeof(__Pyx_st_double) - sizeof(double); - case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); - case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); - default: - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; + result = __Pyx_GetBuiltinName(name); } + return result; } -/* These are for computing the padding at the end of the struct to align - on the first member of the struct. This will probably the same as above, - but we don't have any guarantees. - */ -typedef struct { short x; char c; } __Pyx_pad_short; -typedef struct { int x; char c; } __Pyx_pad_int; -typedef struct { long x; char c; } __Pyx_pad_long; -typedef struct { float x; char c; } __Pyx_pad_float; -typedef struct { double x; char c; } __Pyx_pad_double; -typedef struct { long double x; char c; } __Pyx_pad_longdouble; -typedef struct { void *x; char c; } __Pyx_pad_void_p; -#ifdef HAVE_LONG_LONG -typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; -#endif -static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { - switch (ch) { - case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; - case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); - case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); - case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); -#ifdef HAVE_LONG_LONG - case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); -#endif - case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); - case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); - case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); - case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); - default: - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; + +/* PyObjectCall */ + #if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { + PyObject *result; + ternaryfunc call = func->ob_type->tp_call; + if (unlikely(!call)) + return PyObject_Call(func, arg, kw); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = (*call)(func, arg, kw); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); } + return result; } -static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { - switch (ch) { - case 'c': - return 'H'; - case 'b': case 'h': case 'i': - case 'l': case 'q': case 's': case 'p': - return 'I'; - case 'B': case 'H': case 'I': case 'L': case 'Q': - return 'U'; - case 'f': case 'd': case 'g': - return (is_complex ? 'C' : 'R'); - case 'O': - return 'O'; - case 'P': - return 'P'; - default: { - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; +#endif + +/* ArgTypeTest */ + static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) +{ + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; } - } -} -static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { - if (ctx->head == NULL || ctx->head->field == &ctx->root) { - const char* expected; - const char* quote; - if (ctx->head == NULL) { - expected = "end"; - quote = ""; - } else { - expected = ctx->head->field->type->name; - quote = "'"; + else if (exact) { + #if PY_MAJOR_VERSION == 2 + if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; + #endif } - PyErr_Format(PyExc_ValueError, - "Buffer dtype mismatch, expected %s%s%s but got %s", - quote, expected, quote, - __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); - } else { - __Pyx_StructField* field = ctx->head->field; - __Pyx_StructField* parent = (ctx->head - 1)->field; - PyErr_Format(PyExc_ValueError, - "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", - field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), - parent->type->name, field->name); - } + else { + if (likely(__Pyx_TypeCheck(obj, type))) return 1; + } + PyErr_Format(PyExc_TypeError, + "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", + name, type->tp_name, Py_TYPE(obj)->tp_name); + return 0; } -static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { - char group; - size_t size, offset, arraysize = 1; - if (ctx->enc_type == 0) return 0; - if (ctx->head->field->type->arraysize[0]) { - int i, ndim = 0; - if (ctx->enc_type == 's' || ctx->enc_type == 'p') { - ctx->is_valid_array = ctx->head->field->type->ndim == 1; - ndim = 1; - if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { - PyErr_Format(PyExc_ValueError, - "Expected a dimension of size %zu, got %zu", - ctx->head->field->type->arraysize[0], ctx->enc_count); - return -1; + +/* PyErrFetchRestore */ + #if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + tmp_type = tstate->curexc_type; + tmp_value = tstate->curexc_value; + tmp_tb = tstate->curexc_traceback; + tstate->curexc_type = type; + tstate->curexc_value = value; + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + *type = tstate->curexc_type; + *value = tstate->curexc_value; + *tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +} +#endif + +/* RaiseException */ + #if PY_MAJOR_VERSION < 3 +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, + CYTHON_UNUSED PyObject *cause) { + __Pyx_PyThreadState_declare + Py_XINCREF(type); + if (!value || value == Py_None) + value = NULL; + else + Py_INCREF(value); + if (!tb || tb == Py_None) + tb = NULL; + else { + Py_INCREF(tb); + if (!PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto raise_error; } } - if (!ctx->is_valid_array) { - PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", - ctx->head->field->type->ndim, ndim); - return -1; - } - for (i = 0; i < ctx->head->field->type->ndim; i++) { - arraysize *= ctx->head->field->type->arraysize[i]; - } - ctx->is_valid_array = 0; - ctx->enc_count = 1; - } - group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); - do { - __Pyx_StructField* field = ctx->head->field; - __Pyx_TypeInfo* type = field->type; - if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { - size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); + if (PyType_Check(type)) { +#if CYTHON_COMPILING_IN_PYPY + if (!value) { + Py_INCREF(Py_None); + value = Py_None; + } +#endif + PyErr_NormalizeException(&type, &value, &tb); } else { - size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); - } - if (ctx->enc_packmode == '@') { - size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); - size_t align_mod_offset; - if (align_at == 0) return -1; - align_mod_offset = ctx->fmt_offset % align_at; - if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; - if (ctx->struct_alignment == 0) - ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, - ctx->is_complex); + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto raise_error; + } + value = type; + type = (PyObject*) Py_TYPE(type); + Py_INCREF(type); + if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto raise_error; + } } - if (type->size != size || type->typegroup != group) { - if (type->typegroup == 'C' && type->fields != NULL) { - size_t parent_offset = ctx->head->parent_offset + field->offset; - ++ctx->head; - ctx->head->field = type->fields; - ctx->head->parent_offset = parent_offset; - continue; - } - if ((type->typegroup == 'H' || group == 'H') && type->size == size) { - } else { - __Pyx_BufFmt_RaiseExpected(ctx); - return -1; - } + __Pyx_PyThreadState_assign + __Pyx_ErrRestore(type, value, tb); + return; +raise_error: + Py_XDECREF(value); + Py_XDECREF(type); + Py_XDECREF(tb); + return; +} +#else +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { + PyObject* owned_instance = NULL; + if (tb == Py_None) { + tb = 0; + } else if (tb && !PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto bad; } - offset = ctx->head->parent_offset + field->offset; - if (ctx->fmt_offset != offset) { - PyErr_Format(PyExc_ValueError, - "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", - (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); - return -1; + if (value == Py_None) + value = 0; + if (PyExceptionInstance_Check(type)) { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto bad; + } + value = type; + type = (PyObject*) Py_TYPE(value); + } else if (PyExceptionClass_Check(type)) { + PyObject *instance_class = NULL; + if (value && PyExceptionInstance_Check(value)) { + instance_class = (PyObject*) Py_TYPE(value); + if (instance_class != type) { + int is_subclass = PyObject_IsSubclass(instance_class, type); + if (!is_subclass) { + instance_class = NULL; + } else if (unlikely(is_subclass == -1)) { + goto bad; + } else { + type = instance_class; + } + } + } + if (!instance_class) { + PyObject *args; + if (!value) + args = PyTuple_New(0); + else if (PyTuple_Check(value)) { + Py_INCREF(value); + args = value; + } else + args = PyTuple_Pack(1, value); + if (!args) + goto bad; + owned_instance = PyObject_Call(type, args, NULL); + Py_DECREF(args); + if (!owned_instance) + goto bad; + value = owned_instance; + if (!PyExceptionInstance_Check(value)) { + PyErr_Format(PyExc_TypeError, + "calling %R should have returned an instance of " + "BaseException, not %R", + type, Py_TYPE(value)); + goto bad; + } + } + } else { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto bad; } - ctx->fmt_offset += size; - if (arraysize) - ctx->fmt_offset += (arraysize - 1) * size; - --ctx->enc_count; - while (1) { - if (field == &ctx->root) { - ctx->head = NULL; - if (ctx->enc_count != 0) { - __Pyx_BufFmt_RaiseExpected(ctx); - return -1; + if (cause) { + PyObject *fixed_cause; + if (cause == Py_None) { + fixed_cause = NULL; + } else if (PyExceptionClass_Check(cause)) { + fixed_cause = PyObject_CallObject(cause, NULL); + if (fixed_cause == NULL) + goto bad; + } else if (PyExceptionInstance_Check(cause)) { + fixed_cause = cause; + Py_INCREF(fixed_cause); + } else { + PyErr_SetString(PyExc_TypeError, + "exception causes must derive from " + "BaseException"); + goto bad; } - break; - } - ctx->head->field = ++field; - if (field->type == NULL) { - --ctx->head; - field = ctx->head->field; - continue; - } else if (field->type->typegroup == 'S') { - size_t parent_offset = ctx->head->parent_offset + field->offset; - if (field->type->fields->type == NULL) continue; - field = field->type->fields; - ++ctx->head; - ctx->head->field = field; - ctx->head->parent_offset = parent_offset; - break; - } else { - break; - } + PyException_SetCause(value, fixed_cause); } - } while (ctx->enc_count); - ctx->enc_type = 0; - ctx->is_complex = 0; - return 0; + PyErr_SetObject(type, value); + if (tb) { +#if CYTHON_COMPILING_IN_PYPY + PyObject *tmp_type, *tmp_value, *tmp_tb; + PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); + Py_INCREF(tb); + PyErr_Restore(tmp_type, tmp_value, tb); + Py_XDECREF(tmp_tb); +#else + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject* tmp_tb = tstate->curexc_traceback; + if (tb != tmp_tb) { + Py_INCREF(tb); + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_tb); + } +#endif + } +bad: + Py_XDECREF(owned_instance); + return; } -static CYTHON_INLINE PyObject * -__pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) -{ - const char *ts = *tsp; - int i = 0, number; - int ndim = ctx->head->field->type->ndim; -; - ++ts; - if (ctx->new_count != 1) { - PyErr_SetString(PyExc_ValueError, - "Cannot handle repeated arrays in format string"); +#endif + +/* PyCFunctionFastCall */ + #if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { + PyCFunctionObject *func = (PyCFunctionObject*)func_obj; + PyCFunction meth = PyCFunction_GET_FUNCTION(func); + PyObject *self = PyCFunction_GET_SELF(func); + int flags = PyCFunction_GET_FLAGS(func); + assert(PyCFunction_Check(func)); + assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS))); + assert(nargs >= 0); + assert(nargs == 0 || args != NULL); + /* _PyCFunction_FastCallDict() must not be called with an exception set, + because it may clear it (directly or indirectly) and so the + caller loses its exception */ + assert(!PyErr_Occurred()); + if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { + return (*((__Pyx_PyCFunctionFastWithKeywords)meth)) (self, args, nargs, NULL); + } else { + return (*((__Pyx_PyCFunctionFast)meth)) (self, args, nargs); + } +} +#endif + +/* PyFunctionFastCall */ + #if CYTHON_FAST_PYCALL +#include "frameobject.h" +static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, + PyObject *globals) { + PyFrameObject *f; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject **fastlocals; + Py_ssize_t i; + PyObject *result; + assert(globals != NULL); + /* XXX Perhaps we should create a specialized + PyFrame_New() that doesn't take locals, but does + take builtins without sanity checking them. + */ + assert(tstate != NULL); + f = PyFrame_New(tstate, co, globals, NULL); + if (f == NULL) { return NULL; } - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - while (*ts && *ts != ')') { - switch (*ts) { - case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; - default: break; - } - number = __Pyx_BufFmt_ExpectNumber(&ts); - if (number == -1) return NULL; - if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) - return PyErr_Format(PyExc_ValueError, - "Expected a dimension of size %zu, got %d", - ctx->head->field->type->arraysize[i], number); - if (*ts != ',' && *ts != ')') - return PyErr_Format(PyExc_ValueError, - "Expected a comma in format string, got '%c'", *ts); - if (*ts == ',') ts++; - i++; + fastlocals = f->f_localsplus; + for (i = 0; i < na; i++) { + Py_INCREF(*args); + fastlocals[i] = *args++; } - if (i != ndim) - return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", - ctx->head->field->type->ndim, i); - if (!*ts) { - PyErr_SetString(PyExc_ValueError, - "Unexpected end of format string, expected ')'"); + result = PyEval_EvalFrameEx(f,0); + ++tstate->recursion_depth; + Py_DECREF(f); + --tstate->recursion_depth; + return result; +} +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, int nargs, PyObject *kwargs) { + PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); + PyObject *globals = PyFunction_GET_GLOBALS(func); + PyObject *argdefs = PyFunction_GET_DEFAULTS(func); + PyObject *closure; +#if PY_MAJOR_VERSION >= 3 + PyObject *kwdefs; +#endif + PyObject *kwtuple, **k; + PyObject **d; + Py_ssize_t nd; + Py_ssize_t nk; + PyObject *result; + assert(kwargs == NULL || PyDict_Check(kwargs)); + nk = kwargs ? PyDict_Size(kwargs) : 0; + if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { return NULL; } - ctx->is_valid_array = 1; - ctx->new_count = 1; - *tsp = ++ts; - return Py_None; -} -static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { - int got_Z = 0; - while (1) { - switch(*ts) { - case 0: - if (ctx->enc_type != 0 && ctx->head == NULL) { - __Pyx_BufFmt_RaiseExpected(ctx); - return NULL; - } - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - if (ctx->head != NULL) { - __Pyx_BufFmt_RaiseExpected(ctx); - return NULL; - } - return ts; - case ' ': - case '\r': - case '\n': - ++ts; - break; - case '<': - if (!__Pyx_IsLittleEndian()) { - PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); - return NULL; - } - ctx->new_packmode = '='; - ++ts; - break; - case '>': - case '!': - if (__Pyx_IsLittleEndian()) { - PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); - return NULL; - } - ctx->new_packmode = '='; - ++ts; - break; - case '=': - case '@': - case '^': - ctx->new_packmode = *ts++; - break; - case 'T': - { - const char* ts_after_sub; - size_t i, struct_count = ctx->new_count; - size_t struct_alignment = ctx->struct_alignment; - ctx->new_count = 1; - ++ts; - if (*ts != '{') { - PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); - return NULL; - } - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - ctx->enc_type = 0; - ctx->enc_count = 0; - ctx->struct_alignment = 0; - ++ts; - ts_after_sub = ts; - for (i = 0; i != struct_count; ++i) { - ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); - if (!ts_after_sub) return NULL; - } - ts = ts_after_sub; - if (struct_alignment) ctx->struct_alignment = struct_alignment; - } - break; - case '}': - { - size_t alignment = ctx->struct_alignment; - ++ts; - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - ctx->enc_type = 0; - if (alignment && ctx->fmt_offset % alignment) { - ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); - } - } - return ts; - case 'x': - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - ctx->fmt_offset += ctx->new_count; - ctx->new_count = 1; - ctx->enc_count = 0; - ctx->enc_type = 0; - ctx->enc_packmode = ctx->new_packmode; - ++ts; - break; - case 'Z': - got_Z = 1; - ++ts; - if (*ts != 'f' && *ts != 'd' && *ts != 'g') { - __Pyx_BufFmt_RaiseUnexpectedChar('Z'); - return NULL; - } - case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': - case 'l': case 'L': case 'q': case 'Q': - case 'f': case 'd': case 'g': - case 'O': case 'p': - if (ctx->enc_type == *ts && got_Z == ctx->is_complex && - ctx->enc_packmode == ctx->new_packmode) { - ctx->enc_count += ctx->new_count; - ctx->new_count = 1; - got_Z = 0; - ++ts; - break; + if ( +#if PY_MAJOR_VERSION >= 3 + co->co_kwonlyargcount == 0 && +#endif + likely(kwargs == NULL || nk == 0) && + co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { + if (argdefs == NULL && co->co_argcount == nargs) { + result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); + goto done; } - case 's': - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - ctx->enc_count = ctx->new_count; - ctx->enc_packmode = ctx->new_packmode; - ctx->enc_type = *ts; - ctx->is_complex = got_Z; - ++ts; - ctx->new_count = 1; - got_Z = 0; - break; - case ':': - ++ts; - while(*ts != ':') ++ts; - ++ts; - break; - case '(': - if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; - break; - default: - { - int number = __Pyx_BufFmt_ExpectNumber(&ts); - if (number == -1) return NULL; - ctx->new_count = (size_t)number; + else if (nargs == 0 && argdefs != NULL + && co->co_argcount == Py_SIZE(argdefs)) { + /* function called with no arguments, but all parameters have + a default value: use default values as arguments .*/ + args = &PyTuple_GET_ITEM(argdefs, 0); + result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); + goto done; } } - } -} -static CYTHON_INLINE void __Pyx_ZeroBuffer(Py_buffer* buf) { - buf->buf = NULL; - buf->obj = NULL; - buf->strides = __Pyx_zeros; - buf->shape = __Pyx_zeros; - buf->suboffsets = __Pyx_minusones; -} -static CYTHON_INLINE int __Pyx_GetBufferAndValidate( - Py_buffer* buf, PyObject* obj, __Pyx_TypeInfo* dtype, int flags, - int nd, int cast, __Pyx_BufFmt_StackElem* stack) -{ - if (obj == Py_None || obj == NULL) { - __Pyx_ZeroBuffer(buf); - return 0; - } - buf->buf = NULL; - if (__Pyx_GetBuffer(obj, buf, flags) == -1) goto fail; - if (buf->ndim != nd) { - PyErr_Format(PyExc_ValueError, - "Buffer has wrong number of dimensions (expected %d, got %d)", - nd, buf->ndim); - goto fail; - } - if (!cast) { - __Pyx_BufFmt_Context ctx; - __Pyx_BufFmt_Init(&ctx, stack, dtype); - if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; - } - if ((unsigned)buf->itemsize != dtype->size) { - PyErr_Format(PyExc_ValueError, - "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "d byte%s) does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "d byte%s)", - buf->itemsize, (buf->itemsize > 1) ? "s" : "", - dtype->name, (Py_ssize_t)dtype->size, (dtype->size > 1) ? "s" : ""); - goto fail; - } - if (buf->suboffsets == NULL) buf->suboffsets = __Pyx_minusones; - return 0; -fail:; - __Pyx_ZeroBuffer(buf); - return -1; -} -static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info) { - if (info->buf == NULL) return; - if (info->suboffsets == __Pyx_minusones) info->suboffsets = NULL; - __Pyx_ReleaseBuffer(info); -} - -/* MemviewSliceInit */ - static int -__Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview, - int ndim, - __Pyx_memviewslice *memviewslice, - int memview_is_new_reference) -{ - __Pyx_RefNannyDeclarations - int i, retval=-1; - Py_buffer *buf = &memview->view; - __Pyx_RefNannySetupContext("init_memviewslice", 0); - if (!buf) { - PyErr_SetString(PyExc_ValueError, - "buf is NULL."); - goto fail; - } else if (memviewslice->memview || memviewslice->data) { - PyErr_SetString(PyExc_ValueError, - "memviewslice is already initialized!"); - goto fail; - } - if (buf->strides) { - for (i = 0; i < ndim; i++) { - memviewslice->strides[i] = buf->strides[i]; + if (kwargs != NULL) { + Py_ssize_t pos, i; + kwtuple = PyTuple_New(2 * nk); + if (kwtuple == NULL) { + result = NULL; + goto done; } - } else { - Py_ssize_t stride = buf->itemsize; - for (i = ndim - 1; i >= 0; i--) { - memviewslice->strides[i] = stride; - stride *= buf->shape[i]; + k = &PyTuple_GET_ITEM(kwtuple, 0); + pos = i = 0; + while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { + Py_INCREF(k[i]); + Py_INCREF(k[i+1]); + i += 2; } + nk = i / 2; } - for (i = 0; i < ndim; i++) { - memviewslice->shape[i] = buf->shape[i]; - if (buf->suboffsets) { - memviewslice->suboffsets[i] = buf->suboffsets[i]; - } else { - memviewslice->suboffsets[i] = -1; - } + else { + kwtuple = NULL; + k = NULL; } - memviewslice->memview = memview; - memviewslice->data = (char *)buf->buf; - if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) { - Py_INCREF(memview); + closure = PyFunction_GET_CLOSURE(func); +#if PY_MAJOR_VERSION >= 3 + kwdefs = PyFunction_GET_KW_DEFAULTS(func); +#endif + if (argdefs != NULL) { + d = &PyTuple_GET_ITEM(argdefs, 0); + nd = Py_SIZE(argdefs); } - retval = 0; - goto no_fail; -fail: - memviewslice->memview = 0; - memviewslice->data = 0; - retval = -1; -no_fail: - __Pyx_RefNannyFinishContext(); - return retval; -} -static CYTHON_INLINE void __pyx_fatalerror(const char *fmt, ...) { - va_list vargs; - char msg[200]; -#ifdef HAVE_STDARG_PROTOTYPES - va_start(vargs, fmt); + else { + d = NULL; + nd = 0; + } +#if PY_MAJOR_VERSION >= 3 + result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, + args, nargs, + k, (int)nk, + d, (int)nd, kwdefs, closure); #else - va_start(vargs); + result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, + args, nargs, + k, (int)nk, + d, (int)nd, closure); #endif - vsnprintf(msg, 200, fmt, vargs); - Py_FatalError(msg); - va_end(vargs); -} -static CYTHON_INLINE int -__pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count, - PyThread_type_lock lock) -{ - int result; - PyThread_acquire_lock(lock, 1); - result = (*acquisition_count)++; - PyThread_release_lock(lock); + Py_XDECREF(kwtuple); +done: + Py_LeaveRecursiveCall(); return result; } -static CYTHON_INLINE int -__pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count, - PyThread_type_lock lock) -{ - int result; - PyThread_acquire_lock(lock, 1); - result = (*acquisition_count)--; - PyThread_release_lock(lock); - return result; -} -static CYTHON_INLINE void -__Pyx_INC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) -{ - int first_time; - struct __pyx_memoryview_obj *memview = memslice->memview; - if (!memview || (PyObject *) memview == Py_None) - return; - if (__pyx_get_slice_count(memview) < 0) - __pyx_fatalerror("Acquisition count is %d (line %d)", - __pyx_get_slice_count(memview), lineno); - first_time = __pyx_add_acquisition_count(memview) == 0; - if (first_time) { - if (have_gil) { - Py_INCREF((PyObject *) memview); - } else { - PyGILState_STATE _gilstate = PyGILState_Ensure(); - Py_INCREF((PyObject *) memview); - PyGILState_Release(_gilstate); - } - } -} -static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, - int have_gil, int lineno) { - int last_time; - struct __pyx_memoryview_obj *memview = memslice->memview; - if (!memview ) { - return; - } else if ((PyObject *) memview == Py_None) { - memslice->memview = NULL; - return; - } - if (__pyx_get_slice_count(memview) <= 0) - __pyx_fatalerror("Acquisition count is %d (line %d)", - __pyx_get_slice_count(memview), lineno); - last_time = __pyx_sub_acquisition_count(memview) == 1; - memslice->data = NULL; - if (last_time) { - if (have_gil) { - Py_CLEAR(memslice->memview); - } else { - PyGILState_STATE _gilstate = PyGILState_Ensure(); - Py_CLEAR(memslice->memview); - PyGILState_Release(_gilstate); - } - } else { - memslice->memview = NULL; - } -} - -/* GetModuleGlobalName */ - static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name) { - PyObject *result; -#if !CYTHON_AVOID_BORROWED_REFS - result = PyDict_GetItem(__pyx_d, name); - if (likely(result)) { - Py_INCREF(result); - } else { -#else - result = PyObject_GetItem(__pyx_d, name); - if (!result) { - PyErr_Clear(); #endif - result = __Pyx_GetBuiltinName(name); - } - return result; -} +#endif -/* PyObjectCall */ +/* PyObjectCallMethO */ #if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { - PyObject *result; - ternaryfunc call = func->ob_type->tp_call; - if (unlikely(!call)) - return PyObject_Call(func, arg, kw); +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { + PyObject *self, *result; + PyCFunction cfunc; + cfunc = PyCFunction_GET_FUNCTION(func); + self = PyCFunction_GET_SELF(func); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; - result = (*call)(func, arg, kw); + result = cfunc(self, arg); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( @@ -17215,269 +18946,104 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg } #endif -/* ArgTypeTest */ - static void __Pyx_RaiseArgumentTypeInvalid(const char* name, PyObject *obj, PyTypeObject *type) { - PyErr_Format(PyExc_TypeError, - "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", - name, type->tp_name, Py_TYPE(obj)->tp_name); +/* PyObjectCallOneArg */ + #if CYTHON_COMPILING_IN_CPYTHON +static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_New(1); + if (unlikely(!args)) return NULL; + Py_INCREF(arg); + PyTuple_SET_ITEM(args, 0, arg); + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; } -static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, - const char *name, int exact) -{ - if (unlikely(!type)) { - PyErr_SetString(PyExc_SystemError, "Missing type object"); - return 0; - } - if (none_allowed && obj == Py_None) return 1; - else if (exact) { - if (likely(Py_TYPE(obj) == type)) return 1; - #if PY_MAJOR_VERSION == 2 - else if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; - #endif +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { +#if CYTHON_FAST_PYCALL + if (PyFunction_Check(func)) { + return __Pyx_PyFunction_FastCall(func, &arg, 1); } - else { - if (likely(PyObject_TypeCheck(obj, type))) return 1; +#endif + if (likely(PyCFunction_Check(func))) { + if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { + return __Pyx_PyObject_CallMethO(func, arg); +#if CYTHON_FAST_PYCCALL + } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { + return __Pyx_PyCFunction_FastCall(func, &arg, 1); +#endif + } } - __Pyx_RaiseArgumentTypeInvalid(name, obj, type); - return 0; -} - -/* PyErrFetchRestore */ - #if CYTHON_FAST_THREAD_STATE -static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { - PyObject *tmp_type, *tmp_value, *tmp_tb; - tmp_type = tstate->curexc_type; - tmp_value = tstate->curexc_value; - tmp_tb = tstate->curexc_traceback; - tstate->curexc_type = type; - tstate->curexc_value = value; - tstate->curexc_traceback = tb; - Py_XDECREF(tmp_type); - Py_XDECREF(tmp_value); - Py_XDECREF(tmp_tb); + return __Pyx__PyObject_CallOneArg(func, arg); } -static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { - *type = tstate->curexc_type; - *value = tstate->curexc_value; - *tb = tstate->curexc_traceback; - tstate->curexc_type = 0; - tstate->curexc_value = 0; - tstate->curexc_traceback = 0; +#else +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_Pack(1, arg); + if (unlikely(!args)) return NULL; + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; } #endif -/* RaiseException */ - #if PY_MAJOR_VERSION < 3 -static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, - CYTHON_UNUSED PyObject *cause) { - __Pyx_PyThreadState_declare - Py_XINCREF(type); - if (!value || value == Py_None) - value = NULL; - else - Py_INCREF(value); - if (!tb || tb == Py_None) - tb = NULL; - else { - Py_INCREF(tb); - if (!PyTraceBack_Check(tb)) { - PyErr_SetString(PyExc_TypeError, - "raise: arg 3 must be a traceback or None"); - goto raise_error; - } - } - if (PyType_Check(type)) { +/* BytesEquals */ + static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY - if (!value) { - Py_INCREF(Py_None); - value = Py_None; - } + return PyObject_RichCompareBool(s1, s2, equals); +#else + if (s1 == s2) { + return (equals == Py_EQ); + } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { + const char *ps1, *ps2; + Py_ssize_t length = PyBytes_GET_SIZE(s1); + if (length != PyBytes_GET_SIZE(s2)) + return (equals == Py_NE); + ps1 = PyBytes_AS_STRING(s1); + ps2 = PyBytes_AS_STRING(s2); + if (ps1[0] != ps2[0]) { + return (equals == Py_NE); + } else if (length == 1) { + return (equals == Py_EQ); + } else { + int result; +#if CYTHON_USE_UNICODE_INTERNALS + Py_hash_t hash1, hash2; + hash1 = ((PyBytesObject*)s1)->ob_shash; + hash2 = ((PyBytesObject*)s2)->ob_shash; + if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { + return (equals == Py_NE); + } #endif - PyErr_NormalizeException(&type, &value, &tb); - } else { - if (value) { - PyErr_SetString(PyExc_TypeError, - "instance exception may not have a separate value"); - goto raise_error; - } - value = type; - type = (PyObject*) Py_TYPE(type); - Py_INCREF(type); - if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { - PyErr_SetString(PyExc_TypeError, - "raise: exception class must be a subclass of BaseException"); - goto raise_error; + result = memcmp(ps1, ps2, (size_t)length); + return (equals == Py_EQ) ? (result == 0) : (result != 0); } + } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { + return (equals == Py_NE); + } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { + return (equals == Py_NE); + } else { + int result; + PyObject* py_result = PyObject_RichCompare(s1, s2, equals); + if (!py_result) + return -1; + result = __Pyx_PyObject_IsTrue(py_result); + Py_DECREF(py_result); + return result; } - __Pyx_PyThreadState_assign - __Pyx_ErrRestore(type, value, tb); - return; -raise_error: - Py_XDECREF(value); - Py_XDECREF(type); - Py_XDECREF(tb); - return; +#endif } + +/* UnicodeEquals */ + static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { +#if CYTHON_COMPILING_IN_PYPY + return PyObject_RichCompareBool(s1, s2, equals); #else -static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { - PyObject* owned_instance = NULL; - if (tb == Py_None) { - tb = 0; - } else if (tb && !PyTraceBack_Check(tb)) { - PyErr_SetString(PyExc_TypeError, - "raise: arg 3 must be a traceback or None"); - goto bad; - } - if (value == Py_None) - value = 0; - if (PyExceptionInstance_Check(type)) { - if (value) { - PyErr_SetString(PyExc_TypeError, - "instance exception may not have a separate value"); - goto bad; - } - value = type; - type = (PyObject*) Py_TYPE(value); - } else if (PyExceptionClass_Check(type)) { - PyObject *instance_class = NULL; - if (value && PyExceptionInstance_Check(value)) { - instance_class = (PyObject*) Py_TYPE(value); - if (instance_class != type) { - int is_subclass = PyObject_IsSubclass(instance_class, type); - if (!is_subclass) { - instance_class = NULL; - } else if (unlikely(is_subclass == -1)) { - goto bad; - } else { - type = instance_class; - } - } - } - if (!instance_class) { - PyObject *args; - if (!value) - args = PyTuple_New(0); - else if (PyTuple_Check(value)) { - Py_INCREF(value); - args = value; - } else - args = PyTuple_Pack(1, value); - if (!args) - goto bad; - owned_instance = PyObject_Call(type, args, NULL); - Py_DECREF(args); - if (!owned_instance) - goto bad; - value = owned_instance; - if (!PyExceptionInstance_Check(value)) { - PyErr_Format(PyExc_TypeError, - "calling %R should have returned an instance of " - "BaseException, not %R", - type, Py_TYPE(value)); - goto bad; - } - } - } else { - PyErr_SetString(PyExc_TypeError, - "raise: exception class must be a subclass of BaseException"); - goto bad; - } -#if PY_VERSION_HEX >= 0x03030000 - if (cause) { -#else - if (cause && cause != Py_None) { -#endif - PyObject *fixed_cause; - if (cause == Py_None) { - fixed_cause = NULL; - } else if (PyExceptionClass_Check(cause)) { - fixed_cause = PyObject_CallObject(cause, NULL); - if (fixed_cause == NULL) - goto bad; - } else if (PyExceptionInstance_Check(cause)) { - fixed_cause = cause; - Py_INCREF(fixed_cause); - } else { - PyErr_SetString(PyExc_TypeError, - "exception causes must derive from " - "BaseException"); - goto bad; - } - PyException_SetCause(value, fixed_cause); - } - PyErr_SetObject(type, value); - if (tb) { -#if CYTHON_COMPILING_IN_PYPY - PyObject *tmp_type, *tmp_value, *tmp_tb; - PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); - Py_INCREF(tb); - PyErr_Restore(tmp_type, tmp_value, tb); - Py_XDECREF(tmp_tb); -#else - PyThreadState *tstate = PyThreadState_GET(); - PyObject* tmp_tb = tstate->curexc_traceback; - if (tb != tmp_tb) { - Py_INCREF(tb); - tstate->curexc_traceback = tb; - Py_XDECREF(tmp_tb); - } -#endif - } -bad: - Py_XDECREF(owned_instance); - return; -} -#endif - -/* BytesEquals */ - static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { -#if CYTHON_COMPILING_IN_PYPY - return PyObject_RichCompareBool(s1, s2, equals); -#else - if (s1 == s2) { - return (equals == Py_EQ); - } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { - const char *ps1, *ps2; - Py_ssize_t length = PyBytes_GET_SIZE(s1); - if (length != PyBytes_GET_SIZE(s2)) - return (equals == Py_NE); - ps1 = PyBytes_AS_STRING(s1); - ps2 = PyBytes_AS_STRING(s2); - if (ps1[0] != ps2[0]) { - return (equals == Py_NE); - } else if (length == 1) { - return (equals == Py_EQ); - } else { - int result = memcmp(ps1, ps2, (size_t)length); - return (equals == Py_EQ) ? (result == 0) : (result != 0); - } - } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { - return (equals == Py_NE); - } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { - return (equals == Py_NE); - } else { - int result; - PyObject* py_result = PyObject_RichCompare(s1, s2, equals); - if (!py_result) - return -1; - result = __Pyx_PyObject_IsTrue(py_result); - Py_DECREF(py_result); - return result; - } -#endif -} - -/* UnicodeEquals */ - static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { -#if CYTHON_COMPILING_IN_PYPY - return PyObject_RichCompareBool(s1, s2, equals); -#else -#if PY_MAJOR_VERSION < 3 - PyObject* owned_ref = NULL; -#endif - int s1_is_unicode, s2_is_unicode; - if (s1 == s2) { - goto return_eq; +#if PY_MAJOR_VERSION < 3 + PyObject* owned_ref = NULL; +#endif + int s1_is_unicode, s2_is_unicode; + if (s1 == s2) { + goto return_eq; } s1_is_unicode = PyUnicode_CheckExact(s1); s2_is_unicode = PyUnicode_CheckExact(s2); @@ -17508,6 +19074,21 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { goto return_ne; } +#if CYTHON_USE_UNICODE_INTERNALS + { + Py_hash_t hash1, hash2; + #if CYTHON_PEP393_ENABLED + hash1 = ((PyASCIIObject*)s1)->hash; + hash2 = ((PyASCIIObject*)s2)->hash; + #else + hash1 = ((PyUnicodeObject*)s1)->hash; + hash2 = ((PyUnicodeObject*)s2)->hash; + #endif + if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { + goto return_ne; + } + } +#endif kind = __Pyx_PyUnicode_KIND(s1); if (kind != __Pyx_PyUnicode_KIND(s2)) { goto return_ne; @@ -17532,6 +19113,9 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(owned_ref); + #endif if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); @@ -17552,8 +19136,8 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } /* GetAttr */ - static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { -#if CYTHON_COMPILING_IN_CPYTHON + static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { +#if CYTHON_USE_TYPE_SLOTS #if PY_MAJOR_VERSION >= 3 if (likely(PyUnicode_Check(n))) #else @@ -17564,8 +19148,124 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject return PyObject_GetAttr(o, n); } +/* GetItemInt */ + static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { + PyObject *r; + if (!j) return NULL; + r = PyObject_GetItem(o, j); + Py_DECREF(j); + return r; +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + Py_ssize_t wrapped_i = i; + if (wraparound & unlikely(i < 0)) { + wrapped_i += PyList_GET_SIZE(o); + } + if ((!boundscheck) || likely((0 <= wrapped_i) & (wrapped_i < PyList_GET_SIZE(o)))) { + PyObject *r = PyList_GET_ITEM(o, wrapped_i); + Py_INCREF(r); + return r; + } + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +#else + return PySequence_GetItem(o, i); +#endif +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + Py_ssize_t wrapped_i = i; + if (wraparound & unlikely(i < 0)) { + wrapped_i += PyTuple_GET_SIZE(o); + } + if ((!boundscheck) || likely((0 <= wrapped_i) & (wrapped_i < PyTuple_GET_SIZE(o)))) { + PyObject *r = PyTuple_GET_ITEM(o, wrapped_i); + Py_INCREF(r); + return r; + } + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +#else + return PySequence_GetItem(o, i); +#endif +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS + if (is_list || PyList_CheckExact(o)) { + Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); + if ((!boundscheck) || (likely((n >= 0) & (n < PyList_GET_SIZE(o))))) { + PyObject *r = PyList_GET_ITEM(o, n); + Py_INCREF(r); + return r; + } + } + else if (PyTuple_CheckExact(o)) { + Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); + if ((!boundscheck) || likely((n >= 0) & (n < PyTuple_GET_SIZE(o)))) { + PyObject *r = PyTuple_GET_ITEM(o, n); + Py_INCREF(r); + return r; + } + } else { + PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; + if (likely(m && m->sq_item)) { + if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { + Py_ssize_t l = m->sq_length(o); + if (likely(l >= 0)) { + i += l; + } else { + if (!PyErr_ExceptionMatches(PyExc_OverflowError)) + return NULL; + PyErr_Clear(); + } + } + return m->sq_item(o, i); + } + } +#else + if (is_list || PySequence_Check(o)) { + return PySequence_GetItem(o, i); + } +#endif + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +} + +/* ObjectGetItem */ + #if CYTHON_USE_TYPE_SLOTS +static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { + PyObject *runerr; + Py_ssize_t key_value; + PySequenceMethods *m = Py_TYPE(obj)->tp_as_sequence; + if (unlikely(!(m && m->sq_item))) { + PyErr_Format(PyExc_TypeError, "'%.200s' object is not subscriptable", Py_TYPE(obj)->tp_name); + return NULL; + } + key_value = __Pyx_PyIndex_AsSsize_t(index); + if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) { + return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1); + } + if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { + PyErr_Clear(); + PyErr_Format(PyExc_IndexError, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(index)->tp_name); + } + return NULL; +} +static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { + PyMappingMethods *m = Py_TYPE(obj)->tp_as_mapping; + if (likely(m && m->mp_subscript)) { + return m->mp_subscript(obj, key); + } + return __Pyx_PyObject_GetIndex(obj, key); +} +#endif + /* decode_c_string */ - static CYTHON_INLINE PyObject* __Pyx_decode_c_string( + static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { @@ -17597,31 +19297,71 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } } -/* RaiseTooManyValuesToUnpack */ - static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { - PyErr_Format(PyExc_ValueError, - "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); +/* PyErrExceptionMatches */ + #if CYTHON_FAST_THREAD_STATE +static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; icurexc_type; + if (exc_type == err) return 1; + if (unlikely(!exc_type)) return 0; + if (unlikely(PyTuple_Check(err))) + return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); + return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); +} +#endif + +/* GetAttr3 */ + static PyObject *__Pyx_GetAttr3Default(PyObject *d) { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + if (unlikely(!__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) + return NULL; + __Pyx_PyErr_Clear(); + Py_INCREF(d); + return d; +} +static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *o, PyObject *n, PyObject *d) { + PyObject *r = __Pyx_GetAttr(o, n); + return (likely(r)) ? r : __Pyx_GetAttr3Default(d); +} + +/* RaiseTooManyValuesToUnpack */ + static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { + PyErr_Format(PyExc_ValueError, + "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); +} + +/* RaiseNeedMoreValuesToUnpack */ + static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { + PyErr_Format(PyExc_ValueError, + "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", + index, (index == 1) ? "" : "s"); } /* RaiseNoneIterError */ - static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { + static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); } /* ExtTypeTest */ - static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { + static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } - if (likely(PyObject_TypeCheck(obj, type))) + if (likely(__Pyx_TypeCheck(obj, type))) return 1; PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", Py_TYPE(obj)->tp_name, type->tp_name); @@ -17629,41 +19369,46 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject } /* SaveResetException */ - #if CYTHON_FAST_THREAD_STATE + #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + #if PY_VERSION_HEX >= 0x030700A3 + *type = tstate->exc_state.exc_type; + *value = tstate->exc_state.exc_value; + *tb = tstate->exc_state.exc_traceback; + #else *type = tstate->exc_type; *value = tstate->exc_value; *tb = tstate->exc_traceback; + #endif Py_XINCREF(*type); Py_XINCREF(*value); Py_XINCREF(*tb); } static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; + #if PY_VERSION_HEX >= 0x030700A3 + tmp_type = tstate->exc_state.exc_type; + tmp_value = tstate->exc_state.exc_value; + tmp_tb = tstate->exc_state.exc_traceback; + tstate->exc_state.exc_type = type; + tstate->exc_state.exc_value = value; + tstate->exc_state.exc_traceback = tb; + #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = type; tstate->exc_value = value; tstate->exc_traceback = tb; + #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } #endif -/* PyErrExceptionMatches */ - #if CYTHON_FAST_THREAD_STATE -static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err) { - PyObject *exc_type = tstate->curexc_type; - if (exc_type == err) return 1; - if (unlikely(!exc_type)) return 0; - return PyErr_GivenExceptionMatches(exc_type, err); -} -#endif - /* GetException */ - #if CYTHON_FAST_THREAD_STATE + #if CYTHON_FAST_THREAD_STATE static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { @@ -17700,12 +19445,21 @@ static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) *value = local_value; *tb = local_tb; #if CYTHON_FAST_THREAD_STATE + #if PY_VERSION_HEX >= 0x030700A3 + tmp_type = tstate->exc_state.exc_type; + tmp_value = tstate->exc_state.exc_value; + tmp_tb = tstate->exc_state.exc_traceback; + tstate->exc_state.exc_type = local_type; + tstate->exc_state.exc_value = local_value; + tstate->exc_state.exc_traceback = local_tb; + #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = local_type; tstate->exc_value = local_value; tstate->exc_traceback = local_tb; + #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); @@ -17724,15 +19478,24 @@ static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) } /* SwapException */ - #if CYTHON_FAST_THREAD_STATE + #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; + #if PY_VERSION_HEX >= 0x030700A3 + tmp_type = tstate->exc_state.exc_type; + tmp_value = tstate->exc_state.exc_value; + tmp_tb = tstate->exc_state.exc_traceback; + tstate->exc_state.exc_type = *type; + tstate->exc_state.exc_value = *value; + tstate->exc_state.exc_traceback = *tb; + #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = *type; tstate->exc_value = *value; tstate->exc_traceback = *tb; + #endif *type = tmp_type; *value = tmp_value; *tb = tmp_tb; @@ -17749,13 +19512,13 @@ static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, #endif /* Import */ - static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { + static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { PyObject *empty_list = 0; PyObject *module = 0; PyObject *global_dict = 0; PyObject *empty_dict = 0; PyObject *list; - #if PY_VERSION_HEX < 0x03030000 + #if PY_MAJOR_VERSION < 3 PyObject *py_import; py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); if (!py_import) @@ -17779,17 +19542,8 @@ static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, #if PY_MAJOR_VERSION >= 3 if (level == -1) { if (strchr(__Pyx_MODULE_NAME, '.')) { - #if PY_VERSION_HEX < 0x03030000 - PyObject *py_level = PyInt_FromLong(1); - if (!py_level) - goto bad; - module = PyObject_CallFunctionObjArgs(py_import, - name, global_dict, empty_dict, list, py_level, NULL); - Py_DECREF(py_level); - #else module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, 1); - #endif if (!module) { if (!PyErr_ExceptionMatches(PyExc_ImportError)) goto bad; @@ -17800,7 +19554,7 @@ static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, } #endif if (!module) { - #if PY_VERSION_HEX < 0x03030000 + #if PY_MAJOR_VERSION < 3 PyObject *py_level = PyInt_FromLong(level); if (!py_level) goto bad; @@ -17814,7 +19568,7 @@ static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, } } bad: - #if PY_VERSION_HEX < 0x03030000 + #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_import); #endif Py_XDECREF(empty_list); @@ -17822,227 +19576,108 @@ static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, return module; } -/* PyFunctionFastCall */ - #if CYTHON_FAST_PYCALL -#include "frameobject.h" -static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, - PyObject *globals) { - PyFrameObject *f; - PyThreadState *tstate = PyThreadState_GET(); - PyObject **fastlocals; - Py_ssize_t i; - PyObject *result; - assert(globals != NULL); - /* XXX Perhaps we should create a specialized - PyFrame_New() that doesn't take locals, but does - take builtins without sanity checking them. - */ - assert(tstate != NULL); - f = PyFrame_New(tstate, co, globals, NULL); - if (f == NULL) { - return NULL; +/* FastTypeChecks */ + #if CYTHON_COMPILING_IN_CPYTHON +static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { + while (a) { + a = a->tp_base; + if (a == b) + return 1; } - fastlocals = f->f_localsplus; - for (i = 0; i < na; i++) { - Py_INCREF(*args); - fastlocals[i] = *args++; + return b == &PyBaseObject_Type; +} +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { + PyObject *mro; + if (a == b) return 1; + mro = a->tp_mro; + if (likely(mro)) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(mro); + for (i = 0; i < n; i++) { + if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) + return 1; + } + return 0; } - result = PyEval_EvalFrameEx(f,0); - ++tstate->recursion_depth; - Py_DECREF(f); - --tstate->recursion_depth; - return result; + return __Pyx_InBases(a, b); } -#if 1 || PY_VERSION_HEX < 0x030600B1 -static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, int nargs, PyObject *kwargs) { - PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); - PyObject *globals = PyFunction_GET_GLOBALS(func); - PyObject *argdefs = PyFunction_GET_DEFAULTS(func); - PyObject *closure; -#if PY_MAJOR_VERSION >= 3 - PyObject *kwdefs; -#endif - PyObject *kwtuple, **k; - PyObject **d; - Py_ssize_t nd; - Py_ssize_t nk; - PyObject *result; - assert(kwargs == NULL || PyDict_Check(kwargs)); - nk = kwargs ? PyDict_Size(kwargs) : 0; - if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { - return NULL; - } - if ( -#if PY_MAJOR_VERSION >= 3 - co->co_kwonlyargcount == 0 && -#endif - likely(kwargs == NULL || nk == 0) && - co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { - if (argdefs == NULL && co->co_argcount == nargs) { - result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); - goto done; - } - else if (nargs == 0 && argdefs != NULL - && co->co_argcount == Py_SIZE(argdefs)) { - /* function called with no arguments, but all parameters have - a default value: use default values as arguments .*/ - args = &PyTuple_GET_ITEM(argdefs, 0); - result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); - goto done; - } +#if PY_MAJOR_VERSION == 2 +static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { + PyObject *exception, *value, *tb; + int res; + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ErrFetch(&exception, &value, &tb); + res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; } - if (kwargs != NULL) { - Py_ssize_t pos, i; - kwtuple = PyTuple_New(2 * nk); - if (kwtuple == NULL) { - result = NULL; - goto done; - } - k = &PyTuple_GET_ITEM(kwtuple, 0); - pos = i = 0; - while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { - Py_INCREF(k[i]); - Py_INCREF(k[i+1]); - i += 2; + if (!res) { + res = PyObject_IsSubclass(err, exc_type2); + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; } - nk = i / 2; - } - else { - kwtuple = NULL; - k = NULL; - } - closure = PyFunction_GET_CLOSURE(func); -#if PY_MAJOR_VERSION >= 3 - kwdefs = PyFunction_GET_KW_DEFAULTS(func); -#endif - if (argdefs != NULL) { - d = &PyTuple_GET_ITEM(argdefs, 0); - nd = Py_SIZE(argdefs); - } - else { - d = NULL; - nd = 0; } -#if PY_MAJOR_VERSION >= 3 - result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, - args, nargs, - k, (int)nk, - d, (int)nd, kwdefs, closure); -#else - result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, - args, nargs, - k, (int)nk, - d, (int)nd, closure); -#endif - Py_XDECREF(kwtuple); -done: - Py_LeaveRecursiveCall(); - return result; -} -#endif // CPython < 3.6 -#endif // CYTHON_FAST_PYCALL - -/* PyCFunctionFastCall */ - #if CYTHON_FAST_PYCCALL -static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { - PyCFunctionObject *func = (PyCFunctionObject*)func_obj; - PyCFunction meth = PyCFunction_GET_FUNCTION(func); - PyObject *self = PyCFunction_GET_SELF(func); - assert(PyCFunction_Check(func)); - assert(METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST))); - assert(nargs >= 0); - assert(nargs == 0 || args != NULL); - /* _PyCFunction_FastCallDict() must not be called with an exception set, - because it may clear it (directly or indirectly) and so the - caller loses its exception */ - assert(!PyErr_Occurred()); - return (*((__Pyx_PyCFunctionFast)meth)) (self, args, nargs, NULL); -} -#endif // CYTHON_FAST_PYCCALL - -/* GetItemInt */ - static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { - PyObject *r; - if (!j) return NULL; - r = PyObject_GetItem(o, j); - Py_DECREF(j); - return r; + __Pyx_ErrRestore(exception, value, tb); + return res; } -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, - CYTHON_NCP_UNUSED int wraparound, - CYTHON_NCP_UNUSED int boundscheck) { -#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - if (wraparound & unlikely(i < 0)) i += PyList_GET_SIZE(o); - if ((!boundscheck) || likely((0 <= i) & (i < PyList_GET_SIZE(o)))) { - PyObject *r = PyList_GET_ITEM(o, i); - Py_INCREF(r); - return r; - } - return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else - return PySequence_GetItem(o, i); -#endif +static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { + int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; + if (!res) { + res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); + } + return res; } -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, - CYTHON_NCP_UNUSED int wraparound, - CYTHON_NCP_UNUSED int boundscheck) { -#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - if (wraparound & unlikely(i < 0)) i += PyTuple_GET_SIZE(o); - if ((!boundscheck) || likely((0 <= i) & (i < PyTuple_GET_SIZE(o)))) { - PyObject *r = PyTuple_GET_ITEM(o, i); - Py_INCREF(r); - return r; +#endif +static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + assert(PyExceptionClass_Check(exc_type)); + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; i= 0)) ? i : i + PyList_GET_SIZE(o); - if ((!boundscheck) || (likely((n >= 0) & (n < PyList_GET_SIZE(o))))) { - PyObject *r = PyList_GET_ITEM(o, n); - Py_INCREF(r); - return r; + for (i=0; i= 0)) ? i : i + PyTuple_GET_SIZE(o); - if ((!boundscheck) || likely((n >= 0) & (n < PyTuple_GET_SIZE(o)))) { - PyObject *r = PyTuple_GET_ITEM(o, n); - Py_INCREF(r); - return r; - } - } else { - PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; - if (likely(m && m->sq_item)) { - if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { - Py_ssize_t l = m->sq_length(o); - if (likely(l >= 0)) { - i += l; - } else { - if (!PyErr_ExceptionMatches(PyExc_OverflowError)) - return NULL; - PyErr_Clear(); - } - } - return m->sq_item(o, i); + return 0; +} +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject* exc_type) { + if (likely(err == exc_type)) return 1; + if (likely(PyExceptionClass_Check(err))) { + if (likely(PyExceptionClass_Check(exc_type))) { + return __Pyx_inner_PyErr_GivenExceptionMatches2(err, NULL, exc_type); + } else if (likely(PyTuple_Check(exc_type))) { + return __Pyx_PyErr_GivenExceptionMatchesTuple(err, exc_type); + } else { } } -#else - if (is_list || PySequence_Check(o)) { - return PySequence_GetItem(o, i); + return PyErr_GivenExceptionMatches(err, exc_type); +} +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *exc_type1, PyObject *exc_type2) { + assert(PyExceptionClass_Check(exc_type1)); + assert(PyExceptionClass_Check(exc_type2)); + if (likely(err == exc_type1 || err == exc_type2)) return 1; + if (likely(PyExceptionClass_Check(err))) { + return __Pyx_inner_PyErr_GivenExceptionMatches2(err, exc_type1, exc_type2); } -#endif - return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); + return (PyErr_GivenExceptionMatches(err, exc_type1) || PyErr_GivenExceptionMatches(err, exc_type2)); } +#endif /* PyIntBinop */ - #if !CYTHON_COMPILING_IN_PYPY + #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, CYTHON_UNUSED int inplace) { #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { @@ -18080,6 +19715,7 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED goto long_long; #endif } + CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); @@ -18090,6 +19726,7 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED goto long_long; #endif } + CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); @@ -18100,6 +19737,7 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED goto long_long; #endif } + CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); @@ -18110,6 +19748,7 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED goto long_long; #endif } + CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); @@ -18120,6 +19759,7 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED goto long_long; #endif } + CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); @@ -18130,6 +19770,7 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED goto long_long; #endif } + CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_add(op1, op2); } } @@ -18158,12 +19799,12 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED #endif /* None */ - static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { + static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); } /* WriteUnraisableException */ - static void __Pyx_WriteUnraisable(const char *name, CYTHON_UNUSED int clineno, + static void __Pyx_WriteUnraisable(const char *name, CYTHON_UNUSED int clineno, CYTHON_UNUSED int lineno, CYTHON_UNUSED const char *filename, int full_traceback, CYTHON_UNUSED int nogil) { PyObject *old_exc, *old_val, *old_tb; @@ -18204,72 +19845,90 @@ static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED #endif } -/* PyObjectCallMethO */ - #if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { - PyObject *self, *result; - PyCFunction cfunc; - cfunc = PyCFunction_GET_FUNCTION(func); - self = PyCFunction_GET_SELF(func); - if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) - return NULL; - result = cfunc(self, arg); - Py_LeaveRecursiveCall(); - if (unlikely(!result) && unlikely(!PyErr_Occurred())) { - PyErr_SetString( - PyExc_SystemError, - "NULL result without error in PyObject_Call"); +/* ImportFrom */ + static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { + PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); + if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Format(PyExc_ImportError, + #if PY_MAJOR_VERSION < 3 + "cannot import name %.230s", PyString_AS_STRING(name)); + #else + "cannot import name %S", name); + #endif } - return result; + return value; } -#endif -/* PyObjectCallOneArg */ - #if CYTHON_COMPILING_IN_CPYTHON -static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { - PyObject *result; - PyObject *args = PyTuple_New(1); - if (unlikely(!args)) return NULL; - Py_INCREF(arg); - PyTuple_SET_ITEM(args, 0, arg); - result = __Pyx_PyObject_Call(func, args, NULL); - Py_DECREF(args); - return result; -} -static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { -#if CYTHON_FAST_PYCALL - if (PyFunction_Check(func)) { - return __Pyx_PyFunction_FastCall(func, &arg, 1); +/* HasAttr */ + static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) { + PyObject *r; + if (unlikely(!__Pyx_PyBaseString_Check(n))) { + PyErr_SetString(PyExc_TypeError, + "hasattr(): attribute name must be string"); + return -1; } -#endif -#ifdef __Pyx_CyFunction_USED - if (likely(PyCFunction_Check(func) || PyObject_TypeCheck(func, __pyx_CyFunctionType))) { + r = __Pyx_GetAttr(o, n); + if (unlikely(!r)) { + PyErr_Clear(); + return 0; + } else { + Py_DECREF(r); + return 1; + } +} + +/* PyObject_GenericGetAttrNoDict */ + #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 +static PyObject *__Pyx_RaiseGenericGetAttributeError(PyTypeObject *tp, PyObject *attr_name) { + PyErr_Format(PyExc_AttributeError, +#if PY_MAJOR_VERSION >= 3 + "'%.50s' object has no attribute '%U'", + tp->tp_name, attr_name); #else - if (likely(PyCFunction_Check(func))) { -#endif - if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { - return __Pyx_PyObject_CallMethO(func, arg); -#if CYTHON_FAST_PYCCALL - } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { - return __Pyx_PyCFunction_FastCall(func, &arg, 1); + "'%.50s' object has no attribute '%.400s'", + tp->tp_name, PyString_AS_STRING(attr_name)); #endif + return NULL; +} +static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name) { + PyObject *descr; + PyTypeObject *tp = Py_TYPE(obj); + if (unlikely(!PyString_Check(attr_name))) { + return PyObject_GenericGetAttr(obj, attr_name); + } + assert(!tp->tp_dictoffset); + descr = _PyType_Lookup(tp, attr_name); + if (unlikely(!descr)) { + return __Pyx_RaiseGenericGetAttributeError(tp, attr_name); + } + Py_INCREF(descr); + #if PY_MAJOR_VERSION < 3 + if (likely(PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_HAVE_CLASS))) + #endif + { + descrgetfunc f = Py_TYPE(descr)->tp_descr_get; + if (unlikely(f)) { + PyObject *res = f(descr, obj, (PyObject *)tp); + Py_DECREF(descr); + return res; } } - return __Pyx__PyObject_CallOneArg(func, arg); + return descr; } -#else -static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { - PyObject *result; - PyObject *args = PyTuple_Pack(1, arg); - if (unlikely(!args)) return NULL; - result = __Pyx_PyObject_Call(func, args, NULL); - Py_DECREF(args); - return result; +#endif + +/* PyObject_GenericGetAttr */ + #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 +static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name) { + if (unlikely(Py_TYPE(obj)->tp_dictoffset)) { + return PyObject_GenericGetAttr(obj, attr_name); + } + return __Pyx_PyObject_GenericGetAttrNoDict(obj, attr_name); } #endif /* SetVTable */ - static int __Pyx_SetVtable(PyObject *dict, void *vtable) { + static int __Pyx_SetVtable(PyObject *dict, void *vtable) { #if PY_VERSION_HEX >= 0x02070000 PyObject *ob = PyCapsule_New(vtable, 0, 0); #else @@ -18286,8 +19945,124 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObjec return -1; } +/* SetupReduce */ + static int __Pyx_setup_reduce_is_named(PyObject* meth, PyObject* name) { + int ret; + PyObject *name_attr; + name_attr = __Pyx_PyObject_GetAttrStr(meth, __pyx_n_s_name_2); + if (likely(name_attr)) { + ret = PyObject_RichCompareBool(name_attr, name, Py_EQ); + } else { + ret = -1; + } + if (unlikely(ret < 0)) { + PyErr_Clear(); + ret = 0; + } + Py_XDECREF(name_attr); + return ret; +} +static int __Pyx_setup_reduce(PyObject* type_obj) { + int ret = 0; + PyObject *object_reduce = NULL; + PyObject *object_reduce_ex = NULL; + PyObject *reduce = NULL; + PyObject *reduce_ex = NULL; + PyObject *reduce_cython = NULL; + PyObject *setstate = NULL; + PyObject *setstate_cython = NULL; +#if CYTHON_USE_PYTYPE_LOOKUP + if (_PyType_Lookup((PyTypeObject*)type_obj, __pyx_n_s_getstate)) goto GOOD; +#else + if (PyObject_HasAttr(type_obj, __pyx_n_s_getstate)) goto GOOD; +#endif +#if CYTHON_USE_PYTYPE_LOOKUP + object_reduce_ex = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto BAD; +#else + object_reduce_ex = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto BAD; +#endif + reduce_ex = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_ex); if (unlikely(!reduce_ex)) goto BAD; + if (reduce_ex == object_reduce_ex) { +#if CYTHON_USE_PYTYPE_LOOKUP + object_reduce = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto BAD; +#else + object_reduce = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto BAD; +#endif + reduce = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce); if (unlikely(!reduce)) goto BAD; + if (reduce == object_reduce || __Pyx_setup_reduce_is_named(reduce, __pyx_n_s_reduce_cython)) { + reduce_cython = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_cython); if (unlikely(!reduce_cython)) goto BAD; + ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce, reduce_cython); if (unlikely(ret < 0)) goto BAD; + ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce_cython); if (unlikely(ret < 0)) goto BAD; + setstate = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate); + if (!setstate) PyErr_Clear(); + if (!setstate || __Pyx_setup_reduce_is_named(setstate, __pyx_n_s_setstate_cython)) { + setstate_cython = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate_cython); if (unlikely(!setstate_cython)) goto BAD; + ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate, setstate_cython); if (unlikely(ret < 0)) goto BAD; + ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate_cython); if (unlikely(ret < 0)) goto BAD; + } + PyType_Modified((PyTypeObject*)type_obj); + } + } + goto GOOD; +BAD: + if (!PyErr_Occurred()) + PyErr_Format(PyExc_RuntimeError, "Unable to initialize pickling for %s", ((PyTypeObject*)type_obj)->tp_name); + ret = -1; +GOOD: +#if !CYTHON_USE_PYTYPE_LOOKUP + Py_XDECREF(object_reduce); + Py_XDECREF(object_reduce_ex); +#endif + Py_XDECREF(reduce); + Py_XDECREF(reduce_ex); + Py_XDECREF(reduce_cython); + Py_XDECREF(setstate); + Py_XDECREF(setstate_cython); + return ret; +} + +/* CLineInTraceback */ + #ifndef CYTHON_CLINE_IN_TRACEBACK +static int __Pyx_CLineForTraceback(CYTHON_UNUSED PyThreadState *tstate, int c_line) { + PyObject *use_cline; + PyObject *ptype, *pvalue, *ptraceback; +#if CYTHON_COMPILING_IN_CPYTHON + PyObject **cython_runtime_dict; +#endif + if (unlikely(!__pyx_cython_runtime)) { + return c_line; + } + __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); +#if CYTHON_COMPILING_IN_CPYTHON + cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); + if (likely(cython_runtime_dict)) { + use_cline = __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback); + } else +#endif + { + PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); + if (use_cline_obj) { + use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; + Py_DECREF(use_cline_obj); + } else { + PyErr_Clear(); + use_cline = NULL; + } + } + if (!use_cline) { + c_line = 0; + PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); + } + else if (PyObject_Not(use_cline) != 0) { + c_line = 0; + } + __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); + return c_line; +} +#endif + /* CodeObjectCache */ - static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { + static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { int start = 0, mid = 0, end = count - 1; if (end >= 0 && code_line > entries[end].code_line) { return count; @@ -18367,7 +20142,7 @@ static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { } /* AddTraceback */ - #include "compile.h" + #include "compile.h" #include "frameobject.h" #include "traceback.h" static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( @@ -18426,18 +20201,22 @@ static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyFrameObject *py_frame = 0; - py_code = __pyx_find_code_object(c_line ? c_line : py_line); + PyThreadState *tstate = __Pyx_PyThreadState_Current; + if (c_line) { + c_line = __Pyx_CLineForTraceback(tstate, c_line); + } + py_code = __pyx_find_code_object(c_line ? -c_line : py_line); if (!py_code) { py_code = __Pyx_CreateCodeObjectForTraceback( funcname, c_line, py_line, filename); if (!py_code) goto bad; - __pyx_insert_code_object(c_line ? c_line : py_line, py_code); + __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); } py_frame = PyFrame_New( - PyThreadState_GET(), /*PyThreadState *tstate,*/ - py_code, /*PyCodeObject *code,*/ - __pyx_d, /*PyObject *globals,*/ - 0 /*PyObject *locals*/ + tstate, /*PyThreadState *tstate,*/ + py_code, /*PyCodeObject *code,*/ + __pyx_d, /*PyObject *globals,*/ + 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; __Pyx_PyFrame_SetLineNumber(py_frame, py_line); @@ -18450,8 +20229,8 @@ static void __Pyx_AddTraceback(const char *funcname, int c_line, #if PY_MAJOR_VERSION < 3 static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags); - if (PyObject_TypeCheck(obj, __pyx_array_type)) return __pyx_array_getbuffer(obj, view, flags); - if (PyObject_TypeCheck(obj, __pyx_memoryview_type)) return __pyx_memoryview_getbuffer(obj, view, flags); + if (__Pyx_TypeCheck(obj, __pyx_array_type)) return __pyx_array_getbuffer(obj, view, flags); + if (__Pyx_TypeCheck(obj, __pyx_memoryview_type)) return __pyx_memoryview_getbuffer(obj, view, flags); PyErr_Format(PyExc_TypeError, "'%.200s' does not have the buffer interface", Py_TYPE(obj)->tp_name); return -1; } @@ -18462,16 +20241,16 @@ static void __Pyx_ReleaseBuffer(Py_buffer *view) { PyBuffer_Release(view); return; } - Py_DECREF(obj); + if ((0)) {} view->obj = NULL; + Py_DECREF(obj); } #endif - /* MemviewSliceIsContig */ - static int -__pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, - char order, int ndim) + /* MemviewSliceIsContig */ + static int +__pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim) { int i, index, step, start; Py_ssize_t itemsize = mvs.memview->view.itemsize; @@ -18492,7 +20271,7 @@ __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, } /* OverlappingSlices */ - static void + static void __pyx_get_array_memory_extents(__Pyx_memviewslice *slice, void **out_start, void **out_end, int ndim, size_t itemsize) @@ -18513,35 +20292,548 @@ __pyx_get_array_memory_extents(__Pyx_memviewslice *slice, start += stride * (extent - 1); } } - *out_start = start; - *out_end = end + itemsize; -} -static int -__pyx_slices_overlap(__Pyx_memviewslice *slice1, - __Pyx_memviewslice *slice2, - int ndim, size_t itemsize) -{ - void *start1, *end1, *start2, *end2; - __pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize); - __pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize); - return (start1 < end2) && (start2 < end1); -} - -/* Capsule */ - static CYTHON_INLINE PyObject * -__pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) -{ - PyObject *cobj; -#if PY_VERSION_HEX >= 0x02070000 - cobj = PyCapsule_New(p, sig, NULL); -#else - cobj = PyCObject_FromVoidPtr(p, NULL); -#endif - return cobj; + *out_start = start; + *out_end = end + itemsize; +} +static int +__pyx_slices_overlap(__Pyx_memviewslice *slice1, + __Pyx_memviewslice *slice2, + int ndim, size_t itemsize) +{ + void *start1, *end1, *start2, *end2; + __pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize); + __pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize); + return (start1 < end2) && (start2 < end1); +} + +/* Capsule */ + static CYTHON_INLINE PyObject * +__pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) +{ + PyObject *cobj; +#if PY_VERSION_HEX >= 0x02070000 + cobj = PyCapsule_New(p, sig, NULL); +#else + cobj = PyCObject_FromVoidPtr(p, NULL); +#endif + return cobj; +} + +/* IsLittleEndian */ + static CYTHON_INLINE int __Pyx_Is_Little_Endian(void) +{ + union { + uint32_t u32; + uint8_t u8[4]; + } S; + S.u32 = 0x01020304; + return S.u8[0] == 4; +} + +/* BufferFormatCheck */ + static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, + __Pyx_BufFmt_StackElem* stack, + __Pyx_TypeInfo* type) { + stack[0].field = &ctx->root; + stack[0].parent_offset = 0; + ctx->root.type = type; + ctx->root.name = "buffer dtype"; + ctx->root.offset = 0; + ctx->head = stack; + ctx->head->field = &ctx->root; + ctx->fmt_offset = 0; + ctx->head->parent_offset = 0; + ctx->new_packmode = '@'; + ctx->enc_packmode = '@'; + ctx->new_count = 1; + ctx->enc_count = 0; + ctx->enc_type = 0; + ctx->is_complex = 0; + ctx->is_valid_array = 0; + ctx->struct_alignment = 0; + while (type->typegroup == 'S') { + ++ctx->head; + ctx->head->field = type->fields; + ctx->head->parent_offset = 0; + type = type->fields->type; + } +} +static int __Pyx_BufFmt_ParseNumber(const char** ts) { + int count; + const char* t = *ts; + if (*t < '0' || *t > '9') { + return -1; + } else { + count = *t++ - '0'; + while (*t >= '0' && *t < '9') { + count *= 10; + count += *t++ - '0'; + } + } + *ts = t; + return count; +} +static int __Pyx_BufFmt_ExpectNumber(const char **ts) { + int number = __Pyx_BufFmt_ParseNumber(ts); + if (number == -1) + PyErr_Format(PyExc_ValueError,\ + "Does not understand character buffer dtype format string ('%c')", **ts); + return number; +} +static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { + PyErr_Format(PyExc_ValueError, + "Unexpected format string character: '%c'", ch); +} +static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { + switch (ch) { + case 'c': return "'char'"; + case 'b': return "'signed char'"; + case 'B': return "'unsigned char'"; + case 'h': return "'short'"; + case 'H': return "'unsigned short'"; + case 'i': return "'int'"; + case 'I': return "'unsigned int'"; + case 'l': return "'long'"; + case 'L': return "'unsigned long'"; + case 'q': return "'long long'"; + case 'Q': return "'unsigned long long'"; + case 'f': return (is_complex ? "'complex float'" : "'float'"); + case 'd': return (is_complex ? "'complex double'" : "'double'"); + case 'g': return (is_complex ? "'complex long double'" : "'long double'"); + case 'T': return "a struct"; + case 'O': return "Python object"; + case 'P': return "a pointer"; + case 's': case 'p': return "a string"; + case 0: return "end"; + default: return "unparseable format string"; + } +} +static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return 2; + case 'i': case 'I': case 'l': case 'L': return 4; + case 'q': case 'Q': return 8; + case 'f': return (is_complex ? 8 : 4); + case 'd': return (is_complex ? 16 : 8); + case 'g': { + PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); + return 0; + } + case 'O': case 'P': return sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { + switch (ch) { + case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(short); + case 'i': case 'I': return sizeof(int); + case 'l': case 'L': return sizeof(long); + #ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(PY_LONG_LONG); + #endif + case 'f': return sizeof(float) * (is_complex ? 2 : 1); + case 'd': return sizeof(double) * (is_complex ? 2 : 1); + case 'g': return sizeof(long double) * (is_complex ? 2 : 1); + case 'O': case 'P': return sizeof(void*); + default: { + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } + } +} +typedef struct { char c; short x; } __Pyx_st_short; +typedef struct { char c; int x; } __Pyx_st_int; +typedef struct { char c; long x; } __Pyx_st_long; +typedef struct { char c; float x; } __Pyx_st_float; +typedef struct { char c; double x; } __Pyx_st_double; +typedef struct { char c; long double x; } __Pyx_st_longdouble; +typedef struct { char c; void *x; } __Pyx_st_void_p; +#ifdef HAVE_LONG_LONG +typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; +#endif +static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); + case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); + case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); +#ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); +#endif + case 'f': return sizeof(__Pyx_st_float) - sizeof(float); + case 'd': return sizeof(__Pyx_st_double) - sizeof(double); + case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); + case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +/* These are for computing the padding at the end of the struct to align + on the first member of the struct. This will probably the same as above, + but we don't have any guarantees. + */ +typedef struct { short x; char c; } __Pyx_pad_short; +typedef struct { int x; char c; } __Pyx_pad_int; +typedef struct { long x; char c; } __Pyx_pad_long; +typedef struct { float x; char c; } __Pyx_pad_float; +typedef struct { double x; char c; } __Pyx_pad_double; +typedef struct { long double x; char c; } __Pyx_pad_longdouble; +typedef struct { void *x; char c; } __Pyx_pad_void_p; +#ifdef HAVE_LONG_LONG +typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; +#endif +static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); + case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); + case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); +#ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); +#endif + case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); + case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); + case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); + case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { + switch (ch) { + case 'c': + return 'H'; + case 'b': case 'h': case 'i': + case 'l': case 'q': case 's': case 'p': + return 'I'; + case 'B': case 'H': case 'I': case 'L': case 'Q': + return 'U'; + case 'f': case 'd': case 'g': + return (is_complex ? 'C' : 'R'); + case 'O': + return 'O'; + case 'P': + return 'P'; + default: { + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } + } +} +static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { + if (ctx->head == NULL || ctx->head->field == &ctx->root) { + const char* expected; + const char* quote; + if (ctx->head == NULL) { + expected = "end"; + quote = ""; + } else { + expected = ctx->head->field->type->name; + quote = "'"; + } + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch, expected %s%s%s but got %s", + quote, expected, quote, + __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); + } else { + __Pyx_StructField* field = ctx->head->field; + __Pyx_StructField* parent = (ctx->head - 1)->field; + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", + field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), + parent->type->name, field->name); + } +} +static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { + char group; + size_t size, offset, arraysize = 1; + if (ctx->enc_type == 0) return 0; + if (ctx->head->field->type->arraysize[0]) { + int i, ndim = 0; + if (ctx->enc_type == 's' || ctx->enc_type == 'p') { + ctx->is_valid_array = ctx->head->field->type->ndim == 1; + ndim = 1; + if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { + PyErr_Format(PyExc_ValueError, + "Expected a dimension of size %zu, got %zu", + ctx->head->field->type->arraysize[0], ctx->enc_count); + return -1; + } + } + if (!ctx->is_valid_array) { + PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", + ctx->head->field->type->ndim, ndim); + return -1; + } + for (i = 0; i < ctx->head->field->type->ndim; i++) { + arraysize *= ctx->head->field->type->arraysize[i]; + } + ctx->is_valid_array = 0; + ctx->enc_count = 1; + } + group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); + do { + __Pyx_StructField* field = ctx->head->field; + __Pyx_TypeInfo* type = field->type; + if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { + size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); + } else { + size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); + } + if (ctx->enc_packmode == '@') { + size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); + size_t align_mod_offset; + if (align_at == 0) return -1; + align_mod_offset = ctx->fmt_offset % align_at; + if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; + if (ctx->struct_alignment == 0) + ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, + ctx->is_complex); + } + if (type->size != size || type->typegroup != group) { + if (type->typegroup == 'C' && type->fields != NULL) { + size_t parent_offset = ctx->head->parent_offset + field->offset; + ++ctx->head; + ctx->head->field = type->fields; + ctx->head->parent_offset = parent_offset; + continue; + } + if ((type->typegroup == 'H' || group == 'H') && type->size == size) { + } else { + __Pyx_BufFmt_RaiseExpected(ctx); + return -1; + } + } + offset = ctx->head->parent_offset + field->offset; + if (ctx->fmt_offset != offset) { + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", + (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); + return -1; + } + ctx->fmt_offset += size; + if (arraysize) + ctx->fmt_offset += (arraysize - 1) * size; + --ctx->enc_count; + while (1) { + if (field == &ctx->root) { + ctx->head = NULL; + if (ctx->enc_count != 0) { + __Pyx_BufFmt_RaiseExpected(ctx); + return -1; + } + break; + } + ctx->head->field = ++field; + if (field->type == NULL) { + --ctx->head; + field = ctx->head->field; + continue; + } else if (field->type->typegroup == 'S') { + size_t parent_offset = ctx->head->parent_offset + field->offset; + if (field->type->fields->type == NULL) continue; + field = field->type->fields; + ++ctx->head; + ctx->head->field = field; + ctx->head->parent_offset = parent_offset; + break; + } else { + break; + } + } + } while (ctx->enc_count); + ctx->enc_type = 0; + ctx->is_complex = 0; + return 0; +} +static PyObject * +__pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) +{ + const char *ts = *tsp; + int i = 0, number; + int ndim = ctx->head->field->type->ndim; +; + ++ts; + if (ctx->new_count != 1) { + PyErr_SetString(PyExc_ValueError, + "Cannot handle repeated arrays in format string"); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + while (*ts && *ts != ')') { + switch (*ts) { + case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; + default: break; + } + number = __Pyx_BufFmt_ExpectNumber(&ts); + if (number == -1) return NULL; + if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) + return PyErr_Format(PyExc_ValueError, + "Expected a dimension of size %zu, got %d", + ctx->head->field->type->arraysize[i], number); + if (*ts != ',' && *ts != ')') + return PyErr_Format(PyExc_ValueError, + "Expected a comma in format string, got '%c'", *ts); + if (*ts == ',') ts++; + i++; + } + if (i != ndim) + return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", + ctx->head->field->type->ndim, i); + if (!*ts) { + PyErr_SetString(PyExc_ValueError, + "Unexpected end of format string, expected ')'"); + return NULL; + } + ctx->is_valid_array = 1; + ctx->new_count = 1; + *tsp = ++ts; + return Py_None; +} +static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { + int got_Z = 0; + while (1) { + switch(*ts) { + case 0: + if (ctx->enc_type != 0 && ctx->head == NULL) { + __Pyx_BufFmt_RaiseExpected(ctx); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + if (ctx->head != NULL) { + __Pyx_BufFmt_RaiseExpected(ctx); + return NULL; + } + return ts; + case ' ': + case '\r': + case '\n': + ++ts; + break; + case '<': + if (!__Pyx_Is_Little_Endian()) { + PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); + return NULL; + } + ctx->new_packmode = '='; + ++ts; + break; + case '>': + case '!': + if (__Pyx_Is_Little_Endian()) { + PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); + return NULL; + } + ctx->new_packmode = '='; + ++ts; + break; + case '=': + case '@': + case '^': + ctx->new_packmode = *ts++; + break; + case 'T': + { + const char* ts_after_sub; + size_t i, struct_count = ctx->new_count; + size_t struct_alignment = ctx->struct_alignment; + ctx->new_count = 1; + ++ts; + if (*ts != '{') { + PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_type = 0; + ctx->enc_count = 0; + ctx->struct_alignment = 0; + ++ts; + ts_after_sub = ts; + for (i = 0; i != struct_count; ++i) { + ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); + if (!ts_after_sub) return NULL; + } + ts = ts_after_sub; + if (struct_alignment) ctx->struct_alignment = struct_alignment; + } + break; + case '}': + { + size_t alignment = ctx->struct_alignment; + ++ts; + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_type = 0; + if (alignment && ctx->fmt_offset % alignment) { + ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); + } + } + return ts; + case 'x': + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->fmt_offset += ctx->new_count; + ctx->new_count = 1; + ctx->enc_count = 0; + ctx->enc_type = 0; + ctx->enc_packmode = ctx->new_packmode; + ++ts; + break; + case 'Z': + got_Z = 1; + ++ts; + if (*ts != 'f' && *ts != 'd' && *ts != 'g') { + __Pyx_BufFmt_RaiseUnexpectedChar('Z'); + return NULL; + } + CYTHON_FALLTHROUGH; + case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': + case 'l': case 'L': case 'q': case 'Q': + case 'f': case 'd': case 'g': + case 'O': case 'p': + if (ctx->enc_type == *ts && got_Z == ctx->is_complex && + ctx->enc_packmode == ctx->new_packmode) { + ctx->enc_count += ctx->new_count; + ctx->new_count = 1; + got_Z = 0; + ++ts; + break; + } + CYTHON_FALLTHROUGH; + case 's': + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_count = ctx->new_count; + ctx->enc_packmode = ctx->new_packmode; + ctx->enc_type = *ts; + ctx->is_complex = got_Z; + ++ts; + ctx->new_count = 1; + got_Z = 0; + break; + case ':': + ++ts; + while(*ts != ':') ++ts; + ++ts; + break; + case '(': + if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; + break; + default: + { + int number = __Pyx_BufFmt_ExpectNumber(&ts); + if (number == -1) return NULL; + ctx->new_count = (size_t)number; + } + } + } } /* TypeInfoCompare */ - static int + static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) { int i; @@ -18582,7 +20874,7 @@ __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) } /* MemviewSliceValidateAndInit */ - static int + static int __pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec) { if (buf->shape[dim] <= 1) @@ -18764,7 +21056,7 @@ static int __Pyx_ValidateAndInit_memviewslice( } /* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *obj) { + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_FOLLOW), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; @@ -18774,7 +21066,7 @@ static int __Pyx_ValidateAndInit_memviewslice( return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, - (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT | PyBUF_WRITABLE), 2, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 2, &__Pyx_TypeInfo_double, stack, &result, obj); if (unlikely(retcode == -1)) @@ -18787,7 +21079,7 @@ static int __Pyx_ValidateAndInit_memviewslice( } /* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *obj) { + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; @@ -18797,7 +21089,7 @@ static int __Pyx_ValidateAndInit_memviewslice( return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, - PyBUF_RECORDS, 2, + PyBUF_RECORDS_RO | writable_flag, 2, &__Pyx_TypeInfo_double, stack, &result, obj); if (unlikely(retcode == -1)) @@ -18810,7 +21102,7 @@ static int __Pyx_ValidateAndInit_memviewslice( } /* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *obj) { + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; @@ -18820,7 +21112,7 @@ static int __Pyx_ValidateAndInit_memviewslice( return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, - (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT | PyBUF_WRITABLE), 1, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 1, &__Pyx_TypeInfo_int, stack, &result, obj); if (unlikely(retcode == -1)) @@ -18833,7 +21125,7 @@ static int __Pyx_ValidateAndInit_memviewslice( } /* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *obj) { + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; @@ -18843,7 +21135,7 @@ static int __Pyx_ValidateAndInit_memviewslice( return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, - (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT | PyBUF_WRITABLE), 1, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 1, &__Pyx_TypeInfo_double, stack, &result, obj); if (unlikely(retcode == -1)) @@ -18856,7 +21148,7 @@ static int __Pyx_ValidateAndInit_memviewslice( } /* MemviewSliceCopyTemplate */ - static __Pyx_memviewslice + static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, const char *mode, int ndim, size_t sizeof_dtype, int contig_flag, @@ -18923,7 +21215,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntFromPyVerify */ - #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ + #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) #define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) @@ -18945,7 +21237,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntFromPy */ - static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { + static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { const int neg_one = (int) -1, const_zero = (int) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 @@ -19080,11 +21372,200 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, break; } #endif - if (sizeof(int) <= sizeof(long)) { - __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) + if (sizeof(int) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + int val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (int) -1; + } + } else { + int val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (int) -1; + val = __Pyx_PyInt_As_int(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to int"); + return (int) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to int"); + return (int) -1; +} + +/* CIntFromPy */ + static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { + const long neg_one = (long) -1, const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(long) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (long) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { + return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { + return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { + return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (long) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(long) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) + case -2: + if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + } +#endif + if (sizeof(long) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG - } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { - __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } @@ -19093,7 +21574,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else - int val; + long val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { @@ -19113,28 +21594,28 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, return val; } #endif - return (int) -1; + return (long) -1; } } else { - int val; + long val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); - if (!tmp) return (int) -1; - val = __Pyx_PyInt_As_int(tmp); + if (!tmp) return (long) -1; + val = __Pyx_PyInt_As_long(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, - "value too large to convert to int"); - return (int) -1; + "value too large to convert to long"); + return (long) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to int"); - return (int) -1; + "can't convert negative value to long"); + return (long) -1; } /* CIntToPy */ - static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { const int neg_one = (int) -1, const_zero = (int) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { @@ -19165,7 +21646,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntToPy */ - static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { const long neg_one = (long) -1, const_zero = (long) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { @@ -19196,7 +21677,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CIntFromPy */ - static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { + static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { const char neg_one = (char) -1, const_zero = (char) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 @@ -19384,197 +21865,8 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, return (char) -1; } -/* CIntFromPy */ - static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { - const long neg_one = (long) -1, const_zero = (long) 0; - const int is_unsigned = neg_one > const_zero; -#if PY_MAJOR_VERSION < 3 - if (likely(PyInt_Check(x))) { - if (sizeof(long) < sizeof(long)) { - __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) - } else { - long val = PyInt_AS_LONG(x); - if (is_unsigned && unlikely(val < 0)) { - goto raise_neg_overflow; - } - return (long) val; - } - } else -#endif - if (likely(PyLong_Check(x))) { - if (is_unsigned) { -#if CYTHON_USE_PYLONG_INTERNALS - const digit* digits = ((PyLongObject*)x)->ob_digit; - switch (Py_SIZE(x)) { - case 0: return (long) 0; - case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) - case 2: - if (8 * sizeof(long) > 1 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { - return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); - } - } - break; - case 3: - if (8 * sizeof(long) > 2 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { - return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); - } - } - break; - case 4: - if (8 * sizeof(long) > 3 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { - return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); - } - } - break; - } -#endif -#if CYTHON_COMPILING_IN_CPYTHON - if (unlikely(Py_SIZE(x) < 0)) { - goto raise_neg_overflow; - } -#else - { - int result = PyObject_RichCompareBool(x, Py_False, Py_LT); - if (unlikely(result < 0)) - return (long) -1; - if (unlikely(result == 1)) - goto raise_neg_overflow; - } -#endif - if (sizeof(long) <= sizeof(unsigned long)) { - __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) -#ifdef HAVE_LONG_LONG - } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { - __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) -#endif - } - } else { -#if CYTHON_USE_PYLONG_INTERNALS - const digit* digits = ((PyLongObject*)x)->ob_digit; - switch (Py_SIZE(x)) { - case 0: return (long) 0; - case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) - case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) - case -2: - if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { - return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); - } - } - break; - case 2: - if (8 * sizeof(long) > 1 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { - return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); - } - } - break; - case -3: - if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { - return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); - } - } - break; - case 3: - if (8 * sizeof(long) > 2 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { - return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); - } - } - break; - case -4: - if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { - return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); - } - } - break; - case 4: - if (8 * sizeof(long) > 3 * PyLong_SHIFT) { - if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { - __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) - } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { - return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); - } - } - break; - } -#endif - if (sizeof(long) <= sizeof(long)) { - __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) -#ifdef HAVE_LONG_LONG - } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { - __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) -#endif - } - } - { -#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) - PyErr_SetString(PyExc_RuntimeError, - "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); -#else - long val; - PyObject *v = __Pyx_PyNumber_IntOrLong(x); - #if PY_MAJOR_VERSION < 3 - if (likely(v) && !PyLong_Check(v)) { - PyObject *tmp = v; - v = PyNumber_Long(tmp); - Py_DECREF(tmp); - } - #endif - if (likely(v)) { - int one = 1; int is_little = (int)*(unsigned char *)&one; - unsigned char *bytes = (unsigned char *)&val; - int ret = _PyLong_AsByteArray((PyLongObject *)v, - bytes, sizeof(val), - is_little, !is_unsigned); - Py_DECREF(v); - if (likely(!ret)) - return val; - } -#endif - return (long) -1; - } - } else { - long val; - PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); - if (!tmp) return (long) -1; - val = __Pyx_PyInt_As_long(tmp); - Py_DECREF(tmp); - return val; - } -raise_overflow: - PyErr_SetString(PyExc_OverflowError, - "value too large to convert to long"); - return (long) -1; -raise_neg_overflow: - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to long"); - return (long) -1; -} - /* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(PyObject *obj) { + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; @@ -19584,7 +21876,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, - PyBUF_RECORDS, 1, + PyBUF_RECORDS_RO | writable_flag, 1, &__Pyx_TypeInfo_Py_ssize_t, stack, &result, obj); if (unlikely(retcode == -1)) @@ -19597,7 +21889,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* CheckBinaryVersion */ - static int __Pyx_check_binary_version(void) { + static int __Pyx_check_binary_version(void) { char ctversion[4], rtversion[4]; PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion()); @@ -19613,7 +21905,7 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* InitStrings */ - static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { + static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode) { @@ -19638,6 +21930,8 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, #endif if (!*t->p) return -1; + if (PyObject_Hash(*t->p) == -1) + return -1; ++t; } return 0; @@ -19646,50 +21940,57 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); } -static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject* o) { +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { Py_ssize_t ignore; return __Pyx_PyObject_AsStringAndSize(o, &ignore); } -static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { -#if CYTHON_COMPILING_IN_CPYTHON && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) - if ( -#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII - __Pyx_sys_getdefaultencoding_not_ascii && -#endif - PyUnicode_Check(o)) { -#if PY_VERSION_HEX < 0x03030000 - char* defenc_c; - PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); - if (!defenc) return NULL; - defenc_c = PyBytes_AS_STRING(defenc); +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +#if !CYTHON_PEP393_ENABLED +static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + char* defenc_c; + PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); + if (!defenc) return NULL; + defenc_c = PyBytes_AS_STRING(defenc); #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII - { - char* end = defenc_c + PyBytes_GET_SIZE(defenc); - char* c; - for (c = defenc_c; c < end; c++) { - if ((unsigned char) (*c) >= 128) { - PyUnicode_AsASCIIString(o); - return NULL; - } + { + char* end = defenc_c + PyBytes_GET_SIZE(defenc); + char* c; + for (c = defenc_c; c < end; c++) { + if ((unsigned char) (*c) >= 128) { + PyUnicode_AsASCIIString(o); + return NULL; } } + } #endif - *length = PyBytes_GET_SIZE(defenc); - return defenc_c; + *length = PyBytes_GET_SIZE(defenc); + return defenc_c; +} #else - if (__Pyx_PyUnicode_READY(o) == -1) return NULL; +static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII - if (PyUnicode_IS_ASCII(o)) { - *length = PyUnicode_GET_LENGTH(o); - return PyUnicode_AsUTF8(o); - } else { - PyUnicode_AsASCIIString(o); - return NULL; - } + if (likely(PyUnicode_IS_ASCII(o))) { + *length = PyUnicode_GET_LENGTH(o); + return PyUnicode_AsUTF8(o); + } else { + PyUnicode_AsASCIIString(o); + return NULL; + } #else - return PyUnicode_AsUTF8AndSize(o, length); + return PyUnicode_AsUTF8AndSize(o, length); +#endif +} +#endif #endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT + if ( +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + __Pyx_sys_getdefaultencoding_not_ascii && #endif + PyUnicode_Check(o)) { + return __Pyx_PyUnicode_AsStringAndSize(o, length); } else #endif #if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) @@ -19713,6 +22014,26 @@ static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { if (is_true | (x == Py_False) | (x == Py_None)) return is_true; else return PyObject_IsTrue(x); } +static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { +#if PY_MAJOR_VERSION >= 3 + if (PyLong_Check(result)) { + if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, + "__int__ returned non-int (type %.200s). " + "The ability to return an instance of a strict subclass of int " + "is deprecated, and may be removed in a future version of Python.", + Py_TYPE(result)->tp_name)) { + Py_DECREF(result); + return NULL; + } + return result; + } +#endif + PyErr_Format(PyExc_TypeError, + "__%.4s__ returned non-%.4s (type %.200s)", + type_name, type_name, Py_TYPE(result)->tp_name); + Py_DECREF(result); + return NULL; +} static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { #if CYTHON_USE_TYPE_SLOTS PyNumberMethods *m; @@ -19720,9 +22041,9 @@ static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { const char *name = NULL; PyObject *res = NULL; #if PY_MAJOR_VERSION < 3 - if (PyInt_Check(x) || PyLong_Check(x)) + if (likely(PyInt_Check(x) || PyLong_Check(x))) #else - if (PyLong_Check(x)) + if (likely(PyLong_Check(x))) #endif return __Pyx_NewRef(x); #if CYTHON_USE_TYPE_SLOTS @@ -19730,32 +22051,30 @@ static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { #if PY_MAJOR_VERSION < 3 if (m && m->nb_int) { name = "int"; - res = PyNumber_Int(x); + res = m->nb_int(x); } else if (m && m->nb_long) { name = "long"; - res = PyNumber_Long(x); + res = m->nb_long(x); } #else - if (m && m->nb_int) { + if (likely(m && m->nb_int)) { name = "int"; - res = PyNumber_Long(x); + res = m->nb_int(x); } #endif #else - res = PyNumber_Int(x); + if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { + res = PyNumber_Int(x); + } #endif - if (res) { + if (likely(res)) { #if PY_MAJOR_VERSION < 3 - if (!PyInt_Check(res) && !PyLong_Check(res)) { + if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { #else - if (!PyLong_Check(res)) { + if (unlikely(!PyLong_CheckExact(res))) { #endif - PyErr_Format(PyExc_TypeError, - "__%.4s__ returned non-%.4s (type %.200s)", - name, name, Py_TYPE(res)->tp_name); - Py_DECREF(res); - return NULL; + return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); } } else if (!PyErr_Occurred()) { @@ -19826,6 +22145,9 @@ static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { Py_DECREF(x); return ival; } +static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { + return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); +} static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { return PyInt_FromSize_t(ival); } From 2d664c6331d5ed886b6f575ed1340bba605b2dc4 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 12 Dec 2018 15:03:11 +0300 Subject: [PATCH 103/144] Fix fmax/fmin not being on win-python27 --- gensim/models/nmf_pgd.c | 438 ++++++++++++++++++++++---------------- gensim/models/nmf_pgd.pyx | 8 +- 2 files changed, 267 insertions(+), 179 deletions(-) diff --git a/gensim/models/nmf_pgd.c b/gensim/models/nmf_pgd.c index 31cb695355..1b85538c52 100644 --- a/gensim/models/nmf_pgd.c +++ b/gensim/models/nmf_pgd.c @@ -1595,6 +1595,8 @@ static PyObject *contiguous = 0; static PyObject *indirect_contiguous = 0; static int __pyx_memoryview_thread_locks_used; static PyThread_type_lock __pyx_memoryview_thread_locks[8]; +static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double, double); /*proto*/ +static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double, double); /*proto*/ static struct __pyx_array_obj *__pyx_array_new(PyObject *, Py_ssize_t, char *, char *, char *); /*proto*/ static void *__pyx_align_pointer(void *, size_t); /*proto*/ static PyObject *__pyx_memoryview_new(PyObject *, int, int, __Pyx_TypeInfo *); /*proto*/ @@ -1977,6 +1979,86 @@ static PyObject *__pyx_codeobj__32; /* "gensim/models/nmf_pgd.pyx":14 * import numpy as np * + * cdef double fmin(double x, double y) nogil: # <<<<<<<<<<<<<< + * return x if x < y else y + * + */ + +static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double __pyx_v_x, double __pyx_v_y) { + double __pyx_r; + double __pyx_t_1; + + /* "gensim/models/nmf_pgd.pyx":15 + * + * cdef double fmin(double x, double y) nogil: + * return x if x < y else y # <<<<<<<<<<<<<< + * + * cdef double fmax(double x, double y) nogil: + */ + if (((__pyx_v_x < __pyx_v_y) != 0)) { + __pyx_t_1 = __pyx_v_x; + } else { + __pyx_t_1 = __pyx_v_y; + } + __pyx_r = __pyx_t_1; + goto __pyx_L0; + + /* "gensim/models/nmf_pgd.pyx":14 + * import numpy as np + * + * cdef double fmin(double x, double y) nogil: # <<<<<<<<<<<<<< + * return x if x < y else y + * + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "gensim/models/nmf_pgd.pyx":17 + * return x if x < y else y + * + * cdef double fmax(double x, double y) nogil: # <<<<<<<<<<<<<< + * return x if x > y else y + * + */ + +static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double __pyx_v_x, double __pyx_v_y) { + double __pyx_r; + double __pyx_t_1; + + /* "gensim/models/nmf_pgd.pyx":18 + * + * cdef double fmax(double x, double y) nogil: + * return x if x > y else y # <<<<<<<<<<<<<< + * + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + */ + if (((__pyx_v_x > __pyx_v_y) != 0)) { + __pyx_t_1 = __pyx_v_x; + } else { + __pyx_t_1 = __pyx_v_y; + } + __pyx_r = __pyx_t_1; + goto __pyx_L0; + + /* "gensim/models/nmf_pgd.pyx":17 + * return x if x < y else y + * + * cdef double fmax(double x, double y) nogil: # <<<<<<<<<<<<<< + * return x if x > y else y + * + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "gensim/models/nmf_pgd.pyx":20 + * return x if x > y else y + * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. * @@ -2021,23 +2103,23 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_Wt_v_minus_r)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 14, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 20, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_WtW)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 14, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 20, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 14, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 20, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 14, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 20, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; @@ -2047,14 +2129,14 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } - __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 14, __pyx_L3_error) - __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 14, __pyx_L3_error) - __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 14, __pyx_L3_error) - __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 14, __pyx_L3_error) + __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 20, __pyx_L3_error) + __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 20, __pyx_L3_error) + __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 20, __pyx_L3_error) + __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 20, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 14, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 20, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -2106,7 +2188,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec PyObject *__pyx_t_25 = NULL; __Pyx_RefNannySetupContext("solve_h", 0); - /* "gensim/models/nmf_pgd.pyx":30 + /* "gensim/models/nmf_pgd.pyx":36 * """ * * cdef Py_ssize_t n_components = h.shape[0] # <<<<<<<<<<<<<< @@ -2115,7 +2197,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_n_components = (__pyx_v_h.shape[0]); - /* "gensim/models/nmf_pgd.pyx":31 + /* "gensim/models/nmf_pgd.pyx":37 * * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] # <<<<<<<<<<<<<< @@ -2124,7 +2206,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_n_samples = (__pyx_v_h.shape[1]); - /* "gensim/models/nmf_pgd.pyx":32 + /* "gensim/models/nmf_pgd.pyx":38 * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] * cdef double violation = 0 # <<<<<<<<<<<<<< @@ -2133,7 +2215,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_violation = 0.0; - /* "gensim/models/nmf_pgd.pyx":34 + /* "gensim/models/nmf_pgd.pyx":40 * cdef double violation = 0 * cdef double grad, projected_grad, hessian * cdef Py_ssize_t sample_idx = 0 # <<<<<<<<<<<<<< @@ -2142,7 +2224,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_sample_idx = 0; - /* "gensim/models/nmf_pgd.pyx":35 + /* "gensim/models/nmf_pgd.pyx":41 * cdef double grad, projected_grad, hessian * cdef Py_ssize_t sample_idx = 0 * cdef Py_ssize_t component_idx_1 = 0 # <<<<<<<<<<<<<< @@ -2151,7 +2233,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_component_idx_1 = 0; - /* "gensim/models/nmf_pgd.pyx":36 + /* "gensim/models/nmf_pgd.pyx":42 * cdef Py_ssize_t sample_idx = 0 * cdef Py_ssize_t component_idx_1 = 0 * cdef Py_ssize_t component_idx_2 = 0 # <<<<<<<<<<<<<< @@ -2160,7 +2242,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_component_idx_2 = 0; - /* "gensim/models/nmf_pgd.pyx":38 + /* "gensim/models/nmf_pgd.pyx":44 * cdef Py_ssize_t component_idx_2 = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -2203,7 +2285,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_v_hessian = ((double)__PYX_NAN()); __pyx_v_projected_grad = ((double)__PYX_NAN()); - /* "gensim/models/nmf_pgd.pyx":39 + /* "gensim/models/nmf_pgd.pyx":45 * * for sample_idx in prange(n_samples, nogil=True): * for component_idx_1 in range(n_components): # <<<<<<<<<<<<<< @@ -2215,7 +2297,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_component_idx_1 = __pyx_t_6; - /* "gensim/models/nmf_pgd.pyx":41 + /* "gensim/models/nmf_pgd.pyx":47 * for component_idx_1 in range(n_components): * * grad = -Wt_v_minus_r[component_idx_1, sample_idx] # <<<<<<<<<<<<<< @@ -2226,7 +2308,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_8 = __pyx_v_sample_idx; __pyx_v_grad = (-(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_Wt_v_minus_r.data + __pyx_t_7 * __pyx_v_Wt_v_minus_r.strides[0]) ) + __pyx_t_8 * __pyx_v_Wt_v_minus_r.strides[1]) )))); - /* "gensim/models/nmf_pgd.pyx":43 + /* "gensim/models/nmf_pgd.pyx":49 * grad = -Wt_v_minus_r[component_idx_1, sample_idx] * * for component_idx_2 in range(n_components): # <<<<<<<<<<<<<< @@ -2238,7 +2320,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_10; __pyx_t_11+=1) { __pyx_v_component_idx_2 = __pyx_t_11; - /* "gensim/models/nmf_pgd.pyx":44 + /* "gensim/models/nmf_pgd.pyx":50 * * for component_idx_2 in range(n_components): * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] # <<<<<<<<<<<<<< @@ -2252,7 +2334,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_v_grad = (__pyx_v_grad + ((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_12 * __pyx_v_WtW.strides[0]) )) + __pyx_t_13)) ))) * (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_14 * __pyx_v_h.strides[0]) )) + __pyx_t_15)) ))))); } - /* "gensim/models/nmf_pgd.pyx":46 + /* "gensim/models/nmf_pgd.pyx":52 * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] * * hessian = WtW[component_idx_1, component_idx_1] # <<<<<<<<<<<<<< @@ -2263,7 +2345,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_17 = __pyx_v_component_idx_1; __pyx_v_hessian = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_16 * __pyx_v_WtW.strides[0]) )) + __pyx_t_17)) ))); - /* "gensim/models/nmf_pgd.pyx":48 + /* "gensim/models/nmf_pgd.pyx":54 * hessian = WtW[component_idx_1, component_idx_1] * * grad = grad * kappa / hessian # <<<<<<<<<<<<<< @@ -2272,7 +2354,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_grad = ((__pyx_v_grad * __pyx_v_kappa) / __pyx_v_hessian); - /* "gensim/models/nmf_pgd.pyx":50 + /* "gensim/models/nmf_pgd.pyx":56 * grad = grad * kappa / hessian * * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad # <<<<<<<<<<<<<< @@ -2282,13 +2364,13 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_19 = __pyx_v_component_idx_1; __pyx_t_20 = __pyx_v_sample_idx; if ((((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_19 * __pyx_v_h.strides[0]) )) + __pyx_t_20)) ))) == 0.0) != 0)) { - __pyx_t_18 = fmin(0.0, __pyx_v_grad); + __pyx_t_18 = __pyx_f_6gensim_6models_7nmf_pgd_fmin(0.0, __pyx_v_grad); } else { __pyx_t_18 = __pyx_v_grad; } __pyx_v_projected_grad = __pyx_t_18; - /* "gensim/models/nmf_pgd.pyx":52 + /* "gensim/models/nmf_pgd.pyx":58 * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad * * violation += projected_grad * projected_grad # <<<<<<<<<<<<<< @@ -2297,7 +2379,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_violation = (__pyx_v_violation + (__pyx_v_projected_grad * __pyx_v_projected_grad)); - /* "gensim/models/nmf_pgd.pyx":54 + /* "gensim/models/nmf_pgd.pyx":60 * violation += projected_grad * projected_grad * * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) # <<<<<<<<<<<<<< @@ -2308,7 +2390,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_22 = __pyx_v_sample_idx; __pyx_t_23 = __pyx_v_component_idx_1; __pyx_t_24 = __pyx_v_sample_idx; - *((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_23 * __pyx_v_h.strides[0]) )) + __pyx_t_24)) )) = fmax(((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_21 * __pyx_v_h.strides[0]) )) + __pyx_t_22)) ))) - __pyx_v_grad), 0.); + *((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_23 * __pyx_v_h.strides[0]) )) + __pyx_t_24)) )) = __pyx_f_6gensim_6models_7nmf_pgd_fmax(((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_21 * __pyx_v_h.strides[0]) )) + __pyx_t_22)) ))) - __pyx_v_grad), 0.); } } } @@ -2323,7 +2405,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec #endif } - /* "gensim/models/nmf_pgd.pyx":38 + /* "gensim/models/nmf_pgd.pyx":44 * cdef Py_ssize_t component_idx_2 = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -2342,7 +2424,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec } } - /* "gensim/models/nmf_pgd.pyx":56 + /* "gensim/models/nmf_pgd.pyx":62 * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) * * return sqrt(violation) # <<<<<<<<<<<<<< @@ -2350,14 +2432,14 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * def solve_r( */ __Pyx_XDECREF(__pyx_r); - __pyx_t_25 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 56, __pyx_L1_error) + __pyx_t_25 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 62, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_25); __pyx_r = __pyx_t_25; __pyx_t_25 = 0; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":14 - * import numpy as np + /* "gensim/models/nmf_pgd.pyx":20 + * return x if x > y else y * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. @@ -2378,7 +2460,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec return __pyx_r; } -/* "gensim/models/nmf_pgd.pyx":58 +/* "gensim/models/nmf_pgd.pyx":64 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< @@ -2437,47 +2519,47 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_indices)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 1); __PYX_ERR(0, 58, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 1); __PYX_ERR(0, 64, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_data)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 2); __PYX_ERR(0, 58, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 2); __PYX_ERR(0, 64, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_indptr)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 3); __PYX_ERR(0, 58, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 3); __PYX_ERR(0, 64, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 4: if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_indices)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 4); __PYX_ERR(0, 58, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 4); __PYX_ERR(0, 64, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 5: if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_data)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 5); __PYX_ERR(0, 58, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 5); __PYX_ERR(0, 64, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 6: if (likely((values[6] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lambda)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 6); __PYX_ERR(0, 58, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 6); __PYX_ERR(0, 64, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 7: if (likely((values[7] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_v_max)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 7); __PYX_ERR(0, 58, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 7); __PYX_ERR(0, 64, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_r") < 0)) __PYX_ERR(0, 58, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_r") < 0)) __PYX_ERR(0, 64, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 8) { goto __pyx_L5_argtuple_error; @@ -2491,18 +2573,18 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self values[6] = PyTuple_GET_ITEM(__pyx_args, 6); values[7] = PyTuple_GET_ITEM(__pyx_args, 7); } - __pyx_v_r_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_indptr.memview)) __PYX_ERR(0, 59, __pyx_L3_error) - __pyx_v_r_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_indices.memview)) __PYX_ERR(0, 60, __pyx_L3_error) - __pyx_v_r_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_data.memview)) __PYX_ERR(0, 61, __pyx_L3_error) - __pyx_v_r_actual_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[3], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_indptr.memview)) __PYX_ERR(0, 62, __pyx_L3_error) - __pyx_v_r_actual_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[4], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_indices.memview)) __PYX_ERR(0, 63, __pyx_L3_error) - __pyx_v_r_actual_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[5], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_data.memview)) __PYX_ERR(0, 64, __pyx_L3_error) - __pyx_v_lambda_ = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_lambda_ == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 65, __pyx_L3_error) - __pyx_v_v_max = __pyx_PyFloat_AsDouble(values[7]); if (unlikely((__pyx_v_v_max == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 66, __pyx_L3_error) + __pyx_v_r_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_indptr.memview)) __PYX_ERR(0, 65, __pyx_L3_error) + __pyx_v_r_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_indices.memview)) __PYX_ERR(0, 66, __pyx_L3_error) + __pyx_v_r_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_data.memview)) __PYX_ERR(0, 67, __pyx_L3_error) + __pyx_v_r_actual_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[3], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_indptr.memview)) __PYX_ERR(0, 68, __pyx_L3_error) + __pyx_v_r_actual_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[4], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_indices.memview)) __PYX_ERR(0, 69, __pyx_L3_error) + __pyx_v_r_actual_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[5], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_data.memview)) __PYX_ERR(0, 70, __pyx_L3_error) + __pyx_v_lambda_ = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_lambda_ == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 71, __pyx_L3_error) + __pyx_v_v_max = __pyx_PyFloat_AsDouble(values[7]); if (unlikely((__pyx_v_v_max == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 72, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 58, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 64, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_r", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -2609,7 +2691,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje Py_ssize_t __pyx_t_79; __Pyx_RefNannySetupContext("solve_r", 0); - /* "gensim/models/nmf_pgd.pyx":87 + /* "gensim/models/nmf_pgd.pyx":93 * """ * * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 # <<<<<<<<<<<<<< @@ -2618,7 +2700,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_n_samples = ((__pyx_v_r_actual_indptr.shape[0]) - 1); - /* "gensim/models/nmf_pgd.pyx":88 + /* "gensim/models/nmf_pgd.pyx":94 * * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 * cdef double violation = 0 # <<<<<<<<<<<<<< @@ -2627,7 +2709,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_violation = 0.0; - /* "gensim/models/nmf_pgd.pyx":89 + /* "gensim/models/nmf_pgd.pyx":95 * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 * cdef double violation = 0 * cdef double r_actual_sign = 1.0 # <<<<<<<<<<<<<< @@ -2636,7 +2718,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_sign = 1.0; - /* "gensim/models/nmf_pgd.pyx":92 + /* "gensim/models/nmf_pgd.pyx":98 * cdef Py_ssize_t sample_idx * * cdef Py_ssize_t r_col_size = 0 # <<<<<<<<<<<<<< @@ -2645,7 +2727,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_col_size = 0; - /* "gensim/models/nmf_pgd.pyx":93 + /* "gensim/models/nmf_pgd.pyx":99 * * cdef Py_ssize_t r_col_size = 0 * cdef Py_ssize_t r_actual_col_size = 0 # <<<<<<<<<<<<<< @@ -2654,7 +2736,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_col_size = 0; - /* "gensim/models/nmf_pgd.pyx":94 + /* "gensim/models/nmf_pgd.pyx":100 * cdef Py_ssize_t r_col_size = 0 * cdef Py_ssize_t r_actual_col_size = 0 * cdef Py_ssize_t r_col_idx_idx = 0 # <<<<<<<<<<<<<< @@ -2663,85 +2745,85 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_col_idx_idx = 0; - /* "gensim/models/nmf_pgd.pyx":97 + /* "gensim/models/nmf_pgd.pyx":103 * cdef Py_ssize_t r_actual_col_idx_idx * * cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) # <<<<<<<<<<<<<< * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) * */ - __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_intp); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_intp); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 97, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_5, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 97, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_5, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_r_col_indices = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; - /* "gensim/models/nmf_pgd.pyx":98 + /* "gensim/models/nmf_pgd.pyx":104 * * cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) # <<<<<<<<<<<<<< * * for sample_idx in prange(n_samples, nogil=True): */ - __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_intp); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_intp); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 98, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 98, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 104, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_r_actual_col_indices = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; - /* "gensim/models/nmf_pgd.pyx":100 + /* "gensim/models/nmf_pgd.pyx":106 * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -2784,7 +2866,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_v_r_col_idx_idx = ((Py_ssize_t)0xbad0bad0); __pyx_v_r_col_size = ((Py_ssize_t)0xbad0bad0); - /* "gensim/models/nmf_pgd.pyx":101 + /* "gensim/models/nmf_pgd.pyx":107 * * for sample_idx in prange(n_samples, nogil=True): * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2795,7 +2877,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_11 = __pyx_v_sample_idx; __pyx_v_r_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_10)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_11)) )))); - /* "gensim/models/nmf_pgd.pyx":102 + /* "gensim/models/nmf_pgd.pyx":108 * for sample_idx in prange(n_samples, nogil=True): * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2806,7 +2888,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_13 = __pyx_v_sample_idx; __pyx_v_r_actual_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_12)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_13)) )))); - /* "gensim/models/nmf_pgd.pyx":104 + /* "gensim/models/nmf_pgd.pyx":110 * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] * * r_col_indices[sample_idx] = 0 # <<<<<<<<<<<<<< @@ -2816,7 +2898,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_14 = __pyx_v_sample_idx; *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_14 * __pyx_v_r_col_indices.strides[0]) )) = 0; - /* "gensim/models/nmf_pgd.pyx":105 + /* "gensim/models/nmf_pgd.pyx":111 * * r_col_indices[sample_idx] = 0 * r_actual_col_indices[sample_idx] = 0 # <<<<<<<<<<<<<< @@ -2826,7 +2908,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_15 = __pyx_v_sample_idx; *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_15 * __pyx_v_r_actual_col_indices.strides[0]) )) = 0; - /* "gensim/models/nmf_pgd.pyx":107 + /* "gensim/models/nmf_pgd.pyx":113 * r_actual_col_indices[sample_idx] = 0 * * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< @@ -2847,7 +2929,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_L12_bool_binop_done:; if (!__pyx_t_16) break; - /* "gensim/models/nmf_pgd.pyx":109 + /* "gensim/models/nmf_pgd.pyx":115 * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: * r_col_idx_idx = r_indices[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2856,7 +2938,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_20 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":110 + /* "gensim/models/nmf_pgd.pyx":116 * r_col_idx_idx = r_indices[ * r_indptr[sample_idx] * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2865,7 +2947,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_21 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":108 + /* "gensim/models/nmf_pgd.pyx":114 * * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: * r_col_idx_idx = r_indices[ # <<<<<<<<<<<<<< @@ -2875,7 +2957,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_22 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_20)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_21 * __pyx_v_r_col_indices.strides[0]) )))); __pyx_v_r_col_idx_idx = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indices.data) + __pyx_t_22)) ))); - /* "gensim/models/nmf_pgd.pyx":113 + /* "gensim/models/nmf_pgd.pyx":119 * ] * r_actual_col_idx_idx = r_actual_indices[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2884,7 +2966,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_23 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":114 + /* "gensim/models/nmf_pgd.pyx":120 * r_actual_col_idx_idx = r_actual_indices[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2893,7 +2975,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_24 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":112 + /* "gensim/models/nmf_pgd.pyx":118 * + r_col_indices[sample_idx] * ] * r_actual_col_idx_idx = r_actual_indices[ # <<<<<<<<<<<<<< @@ -2903,7 +2985,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_25 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_23)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_24 * __pyx_v_r_actual_col_indices.strides[0]) )))); __pyx_v_r_actual_col_idx_idx = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indices.data) + __pyx_t_25)) ))); - /* "gensim/models/nmf_pgd.pyx":117 + /* "gensim/models/nmf_pgd.pyx":123 * ] * * if r_col_idx_idx >= r_actual_col_idx_idx: # <<<<<<<<<<<<<< @@ -2913,7 +2995,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = ((__pyx_v_r_col_idx_idx >= __pyx_v_r_actual_col_idx_idx) != 0); if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":121 + /* "gensim/models/nmf_pgd.pyx":127 * r_actual_sign, * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2922,7 +3004,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_26 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":122 + /* "gensim/models/nmf_pgd.pyx":128 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2931,7 +3013,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_27 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":120 + /* "gensim/models/nmf_pgd.pyx":126 * r_actual_sign = copysign( * r_actual_sign, * r_actual_data[ # <<<<<<<<<<<<<< @@ -2940,7 +3022,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_28 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_26)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_27 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":118 + /* "gensim/models/nmf_pgd.pyx":124 * * if r_col_idx_idx >= r_actual_col_idx_idx: * r_actual_sign = copysign( # <<<<<<<<<<<<<< @@ -2949,7 +3031,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_sign = copysign(__pyx_v_r_actual_sign, (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_28)) )))); - /* "gensim/models/nmf_pgd.pyx":131 + /* "gensim/models/nmf_pgd.pyx":137 * ] = fabs( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2958,7 +3040,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_29 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":132 + /* "gensim/models/nmf_pgd.pyx":138 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2967,7 +3049,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_30 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":130 + /* "gensim/models/nmf_pgd.pyx":136 * + r_actual_col_indices[sample_idx] * ] = fabs( * r_actual_data[ # <<<<<<<<<<<<<< @@ -2976,7 +3058,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_31 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_29)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_30 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":127 + /* "gensim/models/nmf_pgd.pyx":133 * * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2985,7 +3067,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_32 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":128 + /* "gensim/models/nmf_pgd.pyx":134 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -2996,7 +3078,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_34 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_32)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_33 * __pyx_v_r_actual_col_indices.strides[0]) )))); *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_34)) )) = (fabs((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_31)) )))) - __pyx_v_lambda_); - /* "gensim/models/nmf_pgd.pyx":141 + /* "gensim/models/nmf_pgd.pyx":147 * ] = fmax( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3005,7 +3087,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_35 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":142 + /* "gensim/models/nmf_pgd.pyx":148 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3014,7 +3096,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_36 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":140 + /* "gensim/models/nmf_pgd.pyx":146 * + r_actual_col_indices[sample_idx] * ] = fmax( * r_actual_data[ # <<<<<<<<<<<<<< @@ -3023,7 +3105,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_37 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_35)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_36 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":137 + /* "gensim/models/nmf_pgd.pyx":143 * * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3032,7 +3114,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_38 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":138 + /* "gensim/models/nmf_pgd.pyx":144 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3041,9 +3123,9 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_39 = __pyx_v_sample_idx; __pyx_t_40 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_38)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_39 * __pyx_v_r_actual_col_indices.strides[0]) )))); - *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_40)) )) = fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_37)) ))), 0.0); + *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_40)) )) = __pyx_f_6gensim_6models_7nmf_pgd_fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_37)) ))), 0.0); - /* "gensim/models/nmf_pgd.pyx":149 + /* "gensim/models/nmf_pgd.pyx":155 * if ( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3052,7 +3134,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_41 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":150 + /* "gensim/models/nmf_pgd.pyx":156 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3061,7 +3143,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_42 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":148 + /* "gensim/models/nmf_pgd.pyx":154 * * if ( * r_actual_data[ # <<<<<<<<<<<<<< @@ -3070,7 +3152,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_43 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_41)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_42 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":151 + /* "gensim/models/nmf_pgd.pyx":157 * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] * ] != 0 # <<<<<<<<<<<<<< @@ -3079,7 +3161,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_16 = (((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_43)) ))) != 0.0) != 0); - /* "gensim/models/nmf_pgd.pyx":147 + /* "gensim/models/nmf_pgd.pyx":153 * ) * * if ( # <<<<<<<<<<<<<< @@ -3088,7 +3170,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":158 + /* "gensim/models/nmf_pgd.pyx":164 * ] = copysign( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3097,7 +3179,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_44 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":159 + /* "gensim/models/nmf_pgd.pyx":165 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3106,7 +3188,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_45 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":157 + /* "gensim/models/nmf_pgd.pyx":163 * + r_actual_col_indices[sample_idx] * ] = copysign( * r_actual_data[ # <<<<<<<<<<<<<< @@ -3115,7 +3197,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_46 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_44)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_45 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":154 + /* "gensim/models/nmf_pgd.pyx":160 * ): * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3124,7 +3206,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_47 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":155 + /* "gensim/models/nmf_pgd.pyx":161 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3135,7 +3217,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_49 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_47)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_48 * __pyx_v_r_actual_col_indices.strides[0]) )))); *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_49)) )) = copysign((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_46)) ))), __pyx_v_r_actual_sign); - /* "gensim/models/nmf_pgd.pyx":169 + /* "gensim/models/nmf_pgd.pyx":175 * ] = fmax( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3144,7 +3226,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_50 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":170 + /* "gensim/models/nmf_pgd.pyx":176 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3153,7 +3235,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_51 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":168 + /* "gensim/models/nmf_pgd.pyx":174 * + r_actual_col_indices[sample_idx] * ] = fmax( * r_actual_data[ # <<<<<<<<<<<<<< @@ -3162,7 +3244,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_52 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_50)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_51 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":165 + /* "gensim/models/nmf_pgd.pyx":171 * * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3171,7 +3253,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_53 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":166 + /* "gensim/models/nmf_pgd.pyx":172 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3180,9 +3262,9 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_54 = __pyx_v_sample_idx; __pyx_t_55 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_53)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_54 * __pyx_v_r_actual_col_indices.strides[0]) )))); - *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_55)) )) = fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_52)) ))), (-__pyx_v_v_max)); + *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_55)) )) = __pyx_f_6gensim_6models_7nmf_pgd_fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_52)) ))), (-__pyx_v_v_max)); - /* "gensim/models/nmf_pgd.pyx":180 + /* "gensim/models/nmf_pgd.pyx":186 * ] = fmin( * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3191,7 +3273,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_56 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":181 + /* "gensim/models/nmf_pgd.pyx":187 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3200,7 +3282,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_57 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":179 + /* "gensim/models/nmf_pgd.pyx":185 * + r_actual_col_indices[sample_idx] * ] = fmin( * r_actual_data[ # <<<<<<<<<<<<<< @@ -3209,7 +3291,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_58 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_56)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_57 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":176 + /* "gensim/models/nmf_pgd.pyx":182 * * r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3218,7 +3300,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_59 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":177 + /* "gensim/models/nmf_pgd.pyx":183 * r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3227,9 +3309,9 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_60 = __pyx_v_sample_idx; __pyx_t_61 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_59)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_60 * __pyx_v_r_actual_col_indices.strides[0]) )))); - *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_61)) )) = fmin((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_58)) ))), __pyx_v_v_max); + *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_61)) )) = __pyx_f_6gensim_6models_7nmf_pgd_fmin((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_58)) ))), __pyx_v_v_max); - /* "gensim/models/nmf_pgd.pyx":147 + /* "gensim/models/nmf_pgd.pyx":153 * ) * * if ( # <<<<<<<<<<<<<< @@ -3238,7 +3320,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ } - /* "gensim/models/nmf_pgd.pyx":186 + /* "gensim/models/nmf_pgd.pyx":192 * ) * * if r_col_idx_idx == r_actual_col_idx_idx: # <<<<<<<<<<<<<< @@ -3248,7 +3330,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = ((__pyx_v_r_col_idx_idx == __pyx_v_r_actual_col_idx_idx) != 0); if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":189 + /* "gensim/models/nmf_pgd.pyx":195 * violation += ( * r_data[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3257,7 +3339,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_62 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":190 + /* "gensim/models/nmf_pgd.pyx":196 * r_data[ * r_indptr[sample_idx] * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3266,7 +3348,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_63 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":188 + /* "gensim/models/nmf_pgd.pyx":194 * if r_col_idx_idx == r_actual_col_idx_idx: * violation += ( * r_data[ # <<<<<<<<<<<<<< @@ -3275,7 +3357,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_64 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_62)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_63 * __pyx_v_r_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":193 + /* "gensim/models/nmf_pgd.pyx":199 * ] * - r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3284,7 +3366,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_65 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":194 + /* "gensim/models/nmf_pgd.pyx":200 * - r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3293,7 +3375,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_66 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":192 + /* "gensim/models/nmf_pgd.pyx":198 * + r_col_indices[sample_idx] * ] * - r_actual_data[ # <<<<<<<<<<<<<< @@ -3302,7 +3384,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_67 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_65)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_66 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":187 + /* "gensim/models/nmf_pgd.pyx":193 * * if r_col_idx_idx == r_actual_col_idx_idx: * violation += ( # <<<<<<<<<<<<<< @@ -3311,7 +3393,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_violation = (__pyx_v_violation + pow(((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_64)) ))) - (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_67)) )))), 2.0)); - /* "gensim/models/nmf_pgd.pyx":186 + /* "gensim/models/nmf_pgd.pyx":192 * ) * * if r_col_idx_idx == r_actual_col_idx_idx: # <<<<<<<<<<<<<< @@ -3321,7 +3403,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L16; } - /* "gensim/models/nmf_pgd.pyx":198 + /* "gensim/models/nmf_pgd.pyx":204 * ) ** 2 * else: * violation += r_actual_data[ # <<<<<<<<<<<<<< @@ -3330,7 +3412,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ /*else*/ { - /* "gensim/models/nmf_pgd.pyx":199 + /* "gensim/models/nmf_pgd.pyx":205 * else: * violation += r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3339,7 +3421,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_68 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":200 + /* "gensim/models/nmf_pgd.pyx":206 * violation += r_actual_data[ * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3348,7 +3430,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_69 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":198 + /* "gensim/models/nmf_pgd.pyx":204 * ) ** 2 * else: * violation += r_actual_data[ # <<<<<<<<<<<<<< @@ -3357,7 +3439,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_70 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_68)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_69 * __pyx_v_r_actual_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":201 + /* "gensim/models/nmf_pgd.pyx":207 * r_actual_indptr[sample_idx] * + r_actual_col_indices[sample_idx] * ] ** 2 # <<<<<<<<<<<<<< @@ -3368,7 +3450,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } __pyx_L16:; - /* "gensim/models/nmf_pgd.pyx":203 + /* "gensim/models/nmf_pgd.pyx":209 * ] ** 2 * * if r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< @@ -3379,7 +3461,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_71 * __pyx_v_r_actual_col_indices.strides[0]) ))) < __pyx_v_r_actual_col_size) != 0); if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":204 + /* "gensim/models/nmf_pgd.pyx":210 * * if r_actual_col_indices[sample_idx] < r_actual_col_size: * r_actual_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< @@ -3389,7 +3471,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_72 = __pyx_v_sample_idx; *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_72 * __pyx_v_r_actual_col_indices.strides[0]) )) += 1; - /* "gensim/models/nmf_pgd.pyx":203 + /* "gensim/models/nmf_pgd.pyx":209 * ] ** 2 * * if r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< @@ -3399,7 +3481,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L17; } - /* "gensim/models/nmf_pgd.pyx":206 + /* "gensim/models/nmf_pgd.pyx":212 * r_actual_col_indices[sample_idx] += 1 * else: * r_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< @@ -3412,7 +3494,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } __pyx_L17:; - /* "gensim/models/nmf_pgd.pyx":117 + /* "gensim/models/nmf_pgd.pyx":123 * ] * * if r_col_idx_idx >= r_actual_col_idx_idx: # <<<<<<<<<<<<<< @@ -3422,7 +3504,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L14; } - /* "gensim/models/nmf_pgd.pyx":208 + /* "gensim/models/nmf_pgd.pyx":214 * r_col_indices[sample_idx] += 1 * else: * violation += r_data[ # <<<<<<<<<<<<<< @@ -3431,7 +3513,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ /*else*/ { - /* "gensim/models/nmf_pgd.pyx":209 + /* "gensim/models/nmf_pgd.pyx":215 * else: * violation += r_data[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -3440,7 +3522,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_74 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":210 + /* "gensim/models/nmf_pgd.pyx":216 * violation += r_data[ * r_indptr[sample_idx] * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< @@ -3449,7 +3531,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_75 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":208 + /* "gensim/models/nmf_pgd.pyx":214 * r_col_indices[sample_idx] += 1 * else: * violation += r_data[ # <<<<<<<<<<<<<< @@ -3458,7 +3540,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_76 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_74)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_75 * __pyx_v_r_col_indices.strides[0]) )))); - /* "gensim/models/nmf_pgd.pyx":211 + /* "gensim/models/nmf_pgd.pyx":217 * r_indptr[sample_idx] * + r_col_indices[sample_idx] * ] ** 2 # <<<<<<<<<<<<<< @@ -3467,7 +3549,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_violation = (__pyx_v_violation + pow((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_76)) ))), 2.0)); - /* "gensim/models/nmf_pgd.pyx":213 + /* "gensim/models/nmf_pgd.pyx":219 * ] ** 2 * * if r_col_indices[sample_idx] < r_col_size: # <<<<<<<<<<<<<< @@ -3478,7 +3560,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_77 * __pyx_v_r_col_indices.strides[0]) ))) < __pyx_v_r_col_size) != 0); if (__pyx_t_16) { - /* "gensim/models/nmf_pgd.pyx":214 + /* "gensim/models/nmf_pgd.pyx":220 * * if r_col_indices[sample_idx] < r_col_size: * r_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< @@ -3488,7 +3570,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_78 = __pyx_v_sample_idx; *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_78 * __pyx_v_r_col_indices.strides[0]) )) += 1; - /* "gensim/models/nmf_pgd.pyx":213 + /* "gensim/models/nmf_pgd.pyx":219 * ] ** 2 * * if r_col_indices[sample_idx] < r_col_size: # <<<<<<<<<<<<<< @@ -3498,7 +3580,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L18; } - /* "gensim/models/nmf_pgd.pyx":216 + /* "gensim/models/nmf_pgd.pyx":222 * r_col_indices[sample_idx] += 1 * else: * r_actual_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< @@ -3526,7 +3608,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje #endif } - /* "gensim/models/nmf_pgd.pyx":100 + /* "gensim/models/nmf_pgd.pyx":106 * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -3545,19 +3627,19 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } } - /* "gensim/models/nmf_pgd.pyx":218 + /* "gensim/models/nmf_pgd.pyx":224 * r_actual_col_indices[sample_idx] += 1 * * return sqrt(violation) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); - __pyx_t_4 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 218, __pyx_L1_error) + __pyx_t_4 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 224, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":58 + /* "gensim/models/nmf_pgd.pyx":64 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< @@ -17339,7 +17421,7 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {0, 0, 0, 0, 0, 0, 0} }; static int __Pyx_InitCachedBuiltins(void) { - __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 39, __pyx_L1_error) + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 45, __pyx_L1_error) __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 132, __pyx_L1_error) __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 147, __pyx_L1_error) __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 150, __pyx_L1_error) @@ -17581,29 +17663,29 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__21); __Pyx_GIVEREF(__pyx_tuple__21); - /* "gensim/models/nmf_pgd.pyx":14 - * import numpy as np + /* "gensim/models/nmf_pgd.pyx":20 + * return x if x > y else y * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. * */ - __pyx_tuple__22 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(0, 14, __pyx_L1_error) + __pyx_tuple__22 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(0, 20, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__22); __Pyx_GIVEREF(__pyx_tuple__22); - __pyx_codeobj__23 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__22, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_h, 14, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__23)) __PYX_ERR(0, 14, __pyx_L1_error) + __pyx_codeobj__23 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__22, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_h, 20, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__23)) __PYX_ERR(0, 20, __pyx_L1_error) - /* "gensim/models/nmf_pgd.pyx":58 + /* "gensim/models/nmf_pgd.pyx":64 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< * int[::1] r_indptr, * int[::1] r_indices, */ - __pyx_tuple__24 = PyTuple_Pack(18, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_r_actual_sign, __pyx_n_s_sample_idx, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_idx_idx, __pyx_n_s_r_actual_col_idx_idx, __pyx_n_s_r_col_indices, __pyx_n_s_r_actual_col_indices); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(0, 58, __pyx_L1_error) + __pyx_tuple__24 = PyTuple_Pack(18, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_r_actual_sign, __pyx_n_s_sample_idx, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_idx_idx, __pyx_n_s_r_actual_col_idx_idx, __pyx_n_s_r_col_indices, __pyx_n_s_r_actual_col_indices); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(0, 64, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__24); __Pyx_GIVEREF(__pyx_tuple__24); - __pyx_codeobj__25 = (PyObject*)__Pyx_PyCode_New(8, 0, 18, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__24, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_r, 58, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__25)) __PYX_ERR(0, 58, __pyx_L1_error) + __pyx_codeobj__25 = (PyObject*)__Pyx_PyCode_New(8, 0, 18, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__24, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_r, 64, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__25)) __PYX_ERR(0, 64, __pyx_L1_error) /* "View.MemoryView":285 * return self.name @@ -17984,39 +18066,39 @@ if (!__Pyx_RefNanny) { #endif /* "gensim/models/nmf_pgd.pyx":12 - * from libc.math cimport sqrt, fabs, fmin, fmax, copysign + * from libc.math cimport sqrt, fabs, copysign * from cython.parallel import prange * import numpy as np # <<<<<<<<<<<<<< * - * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + * cdef double fmin(double x, double y) nogil: */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 12, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 12, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "gensim/models/nmf_pgd.pyx":14 - * import numpy as np + /* "gensim/models/nmf_pgd.pyx":20 + * return x if x > y else y * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. * */ - __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 14, __pyx_L1_error) + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 20, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 14, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 20, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "gensim/models/nmf_pgd.pyx":58 + /* "gensim/models/nmf_pgd.pyx":64 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< * int[::1] r_indptr, * int[::1] r_indices, */ - __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 58, __pyx_L1_error) + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 64, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_r, __pyx_t_1) < 0) __PYX_ERR(0, 58, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_r, __pyx_t_1) < 0) __PYX_ERR(0, 64, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "gensim/models/nmf_pgd.pyx":1 diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 6a614beae1..7cd33cad14 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -7,10 +7,16 @@ # cython: embedsignature=True cimport cython -from libc.math cimport sqrt, fabs, fmin, fmax, copysign +from libc.math cimport sqrt, fabs, copysign from cython.parallel import prange import numpy as np +cdef double fmin(double x, double y) nogil: + return x if x < y else y + +cdef double fmax(double x, double y) nogil: + return x if x > y else y + def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): """Find optimal dense vector representation for current W and r matrices. From c9a357790f8e9e57891868a59a4560a4f6e37bcf Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 12 Dec 2018 17:03:46 +0300 Subject: [PATCH 104/144] Add word transformation test --- gensim/models/nmf.py | 4 ++++ gensim/test/test_nmf.py | 9 +++++++++ 2 files changed, 13 insertions(+) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 667077dff3..f0749c9453 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -321,6 +321,10 @@ def get_term_topics(self, word_id, minimum_probability=None): if word_coef >= minimum_probability: values.append((topic_id, word_coef)) + if self.normalize: + factor_sum = sum(factor for topic_id, factor in values) + values = [(topic_id, factor / factor_sum) for topic_id, factor in values] + return values def get_document_topics(self, bow, minimum_probability=None): diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index 9a8174ecde..2e3b72fc04 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -44,6 +44,15 @@ def testTransform(self): # must contain the same values, up to re-ordering self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-8)) + # transform one word + word = 5 + transformed = model.get_term_topics(word) + + vec = matutils.sparse2full(transformed, 2) + expected = [0., 1.] + # must contain the same values, up to re-ordering + self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-8)) + def testTopTopics(self): top_topics = self.model.top_topics(self.corpus) From fd0de20a60bc3bdaea633c50794e7dd2c2bdc6b5 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 21 Dec 2018 13:15:52 +0300 Subject: [PATCH 105/144] Improve readability of residuals computation --- gensim/models/nmf.py | 24 +- gensim/models/nmf_pgd.c | 1708 ++++++++++++++----------------------- gensim/models/nmf_pgd.pyx | 185 ++-- 3 files changed, 701 insertions(+), 1216 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index f0749c9453..a13cbc9f9c 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -315,16 +315,17 @@ def get_term_topics(self, word_id, minimum_probability=None): values = [] + word_topics = self._W[word_id] + + if self.normalize: + word_topics /= word_topics.sum() + for topic_id in range(0, self.num_topics): - word_coef = self._W[word_id, topic_id] + word_coef = word_topics[topic_id] if word_coef >= minimum_probability: values.append((topic_id, word_coef)) - if self.normalize: - factor_sum = sum(factor for topic_id, factor in values) - values = [(topic_id, factor / factor_sum) for topic_id, factor in values] - return values def get_document_topics(self, bow, minimum_probability=None): @@ -600,7 +601,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): for iter_number in range(self._h_r_max_iter): logger.debug("h_r_error: %s" % _h_r_error) - error_ = 0 + error_ = 0. Wt_v_minus_r = W.T.dot(v - r) @@ -614,16 +615,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): r_actual = v - W.dot(h) error_ = max( error_, - solve_r( - r.indptr, - r.indices, - r.data, - r_actual.indptr, - r_actual.indices, - r_actual.data, - self._lambda_, - self.v_max, - ), + solve_r(r, r_actual, self._lambda_, self.v_max) ) r = r_actual diff --git a/gensim/models/nmf_pgd.c b/gensim/models/nmf_pgd.c index 1b85538c52..046cbc7435 100644 --- a/gensim/models/nmf_pgd.c +++ b/gensim/models/nmf_pgd.c @@ -1129,8 +1129,11 @@ static CYTHON_INLINE int __pyx_sub_acquisition_count_locked( static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *, int, int); static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *, int, int); -/* GetModuleGlobalName.proto */ -static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name); +/* ArgTypeTest.proto */ +#define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ + ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ + __Pyx__ArgTypeTest(obj, type, name, exact)) +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); /* PyObjectCall.proto */ #if CYTHON_COMPILING_IN_CPYTHON @@ -1139,12 +1142,6 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg #define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) #endif -/* ArgTypeTest.proto */ -#define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ - ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ - __Pyx__ArgTypeTest(obj, type, name, exact)) -static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); - /* PyThreadStateGet.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; @@ -1295,6 +1292,9 @@ static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tsta /* GetAttr3.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *, PyObject *, PyObject *); +/* GetModuleGlobalName.proto */ +static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name); + /* RaiseTooManyValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); @@ -1529,12 +1529,6 @@ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_d /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *, int writable_flag); -/* ObjectToMemviewSlice.proto */ -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *, int writable_flag); - -/* ObjectToMemviewSlice.proto */ -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *, int writable_flag); - /* MemviewSliceCopyTemplate.proto */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, @@ -1558,7 +1552,10 @@ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); /* ObjectToMemviewSlice.proto */ -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(PyObject *, int writable_flag); +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *, int writable_flag); + +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *, int writable_flag); /* CheckBinaryVersion.proto */ static int __Pyx_check_binary_version(void); @@ -1597,6 +1594,7 @@ static int __pyx_memoryview_thread_locks_used; static PyThread_type_lock __pyx_memoryview_thread_locks[8]; static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double, double); /*proto*/ static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double, double); /*proto*/ +static double __pyx_f_6gensim_6models_7nmf_pgd_clip(double, double, double); /*proto*/ static struct __pyx_array_obj *__pyx_array_new(PyObject *, Py_ssize_t, char *, char *, char *); /*proto*/ static void *__pyx_align_pointer(void *, size_t); /*proto*/ static PyObject *__pyx_memoryview_new(PyObject *, int, int, __Pyx_TypeInfo *); /*proto*/ @@ -1632,7 +1630,6 @@ static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *, PyObject *); /*proto*/ static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_int = { "int", NULL, sizeof(int), { 0 }, 0, IS_UNSIGNED(int) ? 'U' : 'I', IS_UNSIGNED(int), 0 }; -static __Pyx_TypeInfo __Pyx_TypeInfo_Py_ssize_t = { "Py_ssize_t", NULL, sizeof(Py_ssize_t), { 0 }, 0, IS_UNSIGNED(Py_ssize_t) ? 'U' : 'I', IS_UNSIGNED(Py_ssize_t), 0 }; #define __Pyx_MODULE_NAME "gensim.models.nmf_pgd" extern int __pyx_module_is_main_gensim__models__nmf_pgd; int __pyx_module_is_main_gensim__models__nmf_pgd = 0; @@ -1649,15 +1646,15 @@ static PyObject *__pyx_builtin_IndexError; static const char __pyx_k_O[] = "O"; static const char __pyx_k_c[] = "c"; static const char __pyx_k_h[] = "h"; +static const char __pyx_k_r[] = "r"; static const char __pyx_k_id[] = "id"; -static const char __pyx_k_np[] = "np"; static const char __pyx_k_WtW[] = "WtW"; static const char __pyx_k_new[] = "__new__"; static const char __pyx_k_obj[] = "obj"; static const char __pyx_k_base[] = "base"; +static const char __pyx_k_data[] = "data"; static const char __pyx_k_dict[] = "__dict__"; static const char __pyx_k_grad[] = "grad"; -static const char __pyx_k_intp[] = "intp"; static const char __pyx_k_main[] = "__main__"; static const char __pyx_k_mode[] = "mode"; static const char __pyx_k_name[] = "name"; @@ -1669,19 +1666,17 @@ static const char __pyx_k_stop[] = "stop"; static const char __pyx_k_test[] = "__test__"; static const char __pyx_k_ASCII[] = "ASCII"; static const char __pyx_k_class[] = "__class__"; -static const char __pyx_k_dtype[] = "dtype"; static const char __pyx_k_error[] = "error"; static const char __pyx_k_flags[] = "flags"; static const char __pyx_k_kappa[] = "kappa"; -static const char __pyx_k_numpy[] = "numpy"; static const char __pyx_k_range[] = "range"; static const char __pyx_k_shape[] = "shape"; static const char __pyx_k_start[] = "start"; static const char __pyx_k_v_max[] = "v_max"; -static const char __pyx_k_zeros[] = "zeros"; static const char __pyx_k_encode[] = "encode"; static const char __pyx_k_format[] = "format"; static const char __pyx_k_import[] = "__import__"; +static const char __pyx_k_indptr[] = "indptr"; static const char __pyx_k_lambda[] = "lambda_"; static const char __pyx_k_name_2[] = "__name__"; static const char __pyx_k_pickle[] = "pickle"; @@ -1692,6 +1687,7 @@ static const char __pyx_k_unpack[] = "unpack"; static const char __pyx_k_update[] = "update"; static const char __pyx_k_fortran[] = "fortran"; static const char __pyx_k_hessian[] = "hessian"; +static const char __pyx_k_indices[] = "indices"; static const char __pyx_k_memview[] = "memview"; static const char __pyx_k_solve_h[] = "solve_h"; static const char __pyx_k_solve_r[] = "solve_r"; @@ -1699,12 +1695,15 @@ static const char __pyx_k_Ellipsis[] = "Ellipsis"; static const char __pyx_k_getstate[] = "__getstate__"; static const char __pyx_k_itemsize[] = "itemsize"; static const char __pyx_k_pyx_type[] = "__pyx_type"; +static const char __pyx_k_r_actual[] = "r_actual"; static const char __pyx_k_r_indptr[] = "r_indptr"; static const char __pyx_k_setstate[] = "__setstate__"; static const char __pyx_k_TypeError[] = "TypeError"; static const char __pyx_k_enumerate[] = "enumerate"; static const char __pyx_k_n_samples[] = "n_samples"; static const char __pyx_k_pyx_state[] = "__pyx_state"; +static const char __pyx_k_r_col_idx[] = "r_col_idx"; +static const char __pyx_k_r_element[] = "r_element"; static const char __pyx_k_r_indices[] = "r_indices"; static const char __pyx_k_reduce_ex[] = "__reduce_ex__"; static const char __pyx_k_violation[] = "violation"; @@ -1720,12 +1719,11 @@ static const char __pyx_k_nmf_pgd_pyx[] = "nmf_pgd.pyx"; static const char __pyx_k_Wt_v_minus_r[] = "Wt_v_minus_r"; static const char __pyx_k_n_components[] = "n_components"; static const char __pyx_k_pyx_checksum[] = "__pyx_checksum"; +static const char __pyx_k_r_col_indptr[] = "r_col_indptr"; static const char __pyx_k_stringsource[] = "stringsource"; static const char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; static const char __pyx_k_r_actual_data[] = "r_actual_data"; static const char __pyx_k_r_actual_sign[] = "r_actual_sign"; -static const char __pyx_k_r_col_idx_idx[] = "r_col_idx_idx"; -static const char __pyx_k_r_col_indices[] = "r_col_indices"; static const char __pyx_k_reduce_cython[] = "__reduce_cython__"; static const char __pyx_k_projected_grad[] = "projected_grad"; static const char __pyx_k_View_MemoryView[] = "View.MemoryView"; @@ -1736,13 +1734,14 @@ static const char __pyx_k_dtype_is_object[] = "dtype_is_object"; static const char __pyx_k_pyx_PickleError[] = "__pyx_PickleError"; static const char __pyx_k_r_actual_indptr[] = "r_actual_indptr"; static const char __pyx_k_setstate_cython[] = "__setstate_cython__"; +static const char __pyx_k_r_actual_col_idx[] = "r_actual_col_idx"; +static const char __pyx_k_r_actual_element[] = "r_actual_element"; static const char __pyx_k_r_actual_indices[] = "r_actual_indices"; static const char __pyx_k_pyx_unpickle_Enum[] = "__pyx_unpickle_Enum"; static const char __pyx_k_r_actual_col_size[] = "r_actual_col_size"; static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; static const char __pyx_k_strided_and_direct[] = ""; -static const char __pyx_k_r_actual_col_idx_idx[] = "r_actual_col_idx_idx"; -static const char __pyx_k_r_actual_col_indices[] = "r_actual_col_indices"; +static const char __pyx_k_r_actual_col_indptr[] = "r_actual_col_indptr"; static const char __pyx_k_strided_and_indirect[] = ""; static const char __pyx_k_contiguous_and_direct[] = ""; static const char __pyx_k_gensim_models_nmf_pgd[] = "gensim.models.nmf_pgd"; @@ -1802,8 +1801,8 @@ static PyObject *__pyx_n_s_component_idx_1; static PyObject *__pyx_n_s_component_idx_2; static PyObject *__pyx_kp_s_contiguous_and_direct; static PyObject *__pyx_kp_s_contiguous_and_indirect; +static PyObject *__pyx_n_s_data; static PyObject *__pyx_n_s_dict; -static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_dtype_is_object; static PyObject *__pyx_n_s_encode; static PyObject *__pyx_n_s_enumerate; @@ -1820,7 +1819,8 @@ static PyObject *__pyx_n_s_h; static PyObject *__pyx_n_s_hessian; static PyObject *__pyx_n_s_id; static PyObject *__pyx_n_s_import; -static PyObject *__pyx_n_s_intp; +static PyObject *__pyx_n_s_indices; +static PyObject *__pyx_n_s_indptr; static PyObject *__pyx_n_s_itemsize; static PyObject *__pyx_kp_s_itemsize_0_for_cython_array; static PyObject *__pyx_n_s_kappa; @@ -1836,8 +1836,6 @@ static PyObject *__pyx_n_s_ndim; static PyObject *__pyx_n_s_new; static PyObject *__pyx_kp_s_nmf_pgd_pyx; static PyObject *__pyx_kp_s_no_default___reduce___due_to_non; -static PyObject *__pyx_n_s_np; -static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_n_s_obj; static PyObject *__pyx_n_s_pack; static PyObject *__pyx_n_s_pickle; @@ -1850,17 +1848,21 @@ static PyObject *__pyx_n_s_pyx_state; static PyObject *__pyx_n_s_pyx_type; static PyObject *__pyx_n_s_pyx_unpickle_Enum; static PyObject *__pyx_n_s_pyx_vtable; -static PyObject *__pyx_n_s_r_actual_col_idx_idx; -static PyObject *__pyx_n_s_r_actual_col_indices; +static PyObject *__pyx_n_s_r; +static PyObject *__pyx_n_s_r_actual; +static PyObject *__pyx_n_s_r_actual_col_idx; +static PyObject *__pyx_n_s_r_actual_col_indptr; static PyObject *__pyx_n_s_r_actual_col_size; static PyObject *__pyx_n_s_r_actual_data; +static PyObject *__pyx_n_s_r_actual_element; static PyObject *__pyx_n_s_r_actual_indices; static PyObject *__pyx_n_s_r_actual_indptr; static PyObject *__pyx_n_s_r_actual_sign; -static PyObject *__pyx_n_s_r_col_idx_idx; -static PyObject *__pyx_n_s_r_col_indices; +static PyObject *__pyx_n_s_r_col_idx; +static PyObject *__pyx_n_s_r_col_indptr; static PyObject *__pyx_n_s_r_col_size; static PyObject *__pyx_n_s_r_data; +static PyObject *__pyx_n_s_r_element; static PyObject *__pyx_n_s_r_indices; static PyObject *__pyx_n_s_r_indptr; static PyObject *__pyx_n_s_range; @@ -1889,9 +1891,8 @@ static PyObject *__pyx_n_s_unpack; static PyObject *__pyx_n_s_update; static PyObject *__pyx_n_s_v_max; static PyObject *__pyx_n_s_violation; -static PyObject *__pyx_n_s_zeros; static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_h, __Pyx_memviewslice __pyx_v_Wt_v_minus_r, __Pyx_memviewslice __pyx_v_WtW, double __pyx_v_kappa); /* proto */ -static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_r_indptr, __Pyx_memviewslice __pyx_v_r_indices, __Pyx_memviewslice __pyx_v_r_data, __Pyx_memviewslice __pyx_v_r_actual_indptr, __Pyx_memviewslice __pyx_v_r_actual_indices, __Pyx_memviewslice __pyx_v_r_actual_data, double __pyx_v_lambda_, double __pyx_v_v_max); /* proto */ +static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_r, PyObject *__pyx_v_r_actual, double __pyx_v_lambda_, double __pyx_v_v_max); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ @@ -1976,8 +1977,8 @@ static PyObject *__pyx_codeobj__25; static PyObject *__pyx_codeobj__32; /* Late includes */ -/* "gensim/models/nmf_pgd.pyx":14 - * import numpy as np +/* "gensim/models/nmf_pgd.pyx":13 + * from cython.parallel import prange * * cdef double fmin(double x, double y) nogil: # <<<<<<<<<<<<<< * return x if x < y else y @@ -1988,7 +1989,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double __pyx_v_x, double __p double __pyx_r; double __pyx_t_1; - /* "gensim/models/nmf_pgd.pyx":15 + /* "gensim/models/nmf_pgd.pyx":14 * * cdef double fmin(double x, double y) nogil: * return x if x < y else y # <<<<<<<<<<<<<< @@ -2003,8 +2004,8 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double __pyx_v_x, double __p __pyx_r = __pyx_t_1; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":14 - * import numpy as np + /* "gensim/models/nmf_pgd.pyx":13 + * from cython.parallel import prange * * cdef double fmin(double x, double y) nogil: # <<<<<<<<<<<<<< * return x if x < y else y @@ -2016,7 +2017,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double __pyx_v_x, double __p return __pyx_r; } -/* "gensim/models/nmf_pgd.pyx":17 +/* "gensim/models/nmf_pgd.pyx":16 * return x if x < y else y * * cdef double fmax(double x, double y) nogil: # <<<<<<<<<<<<<< @@ -2028,12 +2029,12 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double __pyx_v_x, double __p double __pyx_r; double __pyx_t_1; - /* "gensim/models/nmf_pgd.pyx":18 + /* "gensim/models/nmf_pgd.pyx":17 * * cdef double fmax(double x, double y) nogil: * return x if x > y else y # <<<<<<<<<<<<<< * - * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + * cdef double clip(double a, double a_min, double a_max) nogil: */ if (((__pyx_v_x > __pyx_v_y) != 0)) { __pyx_t_1 = __pyx_v_x; @@ -2043,7 +2044,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double __pyx_v_x, double __p __pyx_r = __pyx_t_1; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":17 + /* "gensim/models/nmf_pgd.pyx":16 * return x if x < y else y * * cdef double fmax(double x, double y) nogil: # <<<<<<<<<<<<<< @@ -2056,9 +2057,61 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double __pyx_v_x, double __p return __pyx_r; } -/* "gensim/models/nmf_pgd.pyx":20 +/* "gensim/models/nmf_pgd.pyx":19 + * return x if x > y else y + * + * cdef double clip(double a, double a_min, double a_max) nogil: # <<<<<<<<<<<<<< + * a = fmin(a, a_max) + * a = fmax(a, a_min) + */ + +static double __pyx_f_6gensim_6models_7nmf_pgd_clip(double __pyx_v_a, double __pyx_v_a_min, double __pyx_v_a_max) { + double __pyx_r; + + /* "gensim/models/nmf_pgd.pyx":20 + * + * cdef double clip(double a, double a_min, double a_max) nogil: + * a = fmin(a, a_max) # <<<<<<<<<<<<<< + * a = fmax(a, a_min) + * return a + */ + __pyx_v_a = __pyx_f_6gensim_6models_7nmf_pgd_fmin(__pyx_v_a, __pyx_v_a_max); + + /* "gensim/models/nmf_pgd.pyx":21 + * cdef double clip(double a, double a_min, double a_max) nogil: + * a = fmin(a, a_max) + * a = fmax(a, a_min) # <<<<<<<<<<<<<< + * return a + * + */ + __pyx_v_a = __pyx_f_6gensim_6models_7nmf_pgd_fmax(__pyx_v_a, __pyx_v_a_min); + + /* "gensim/models/nmf_pgd.pyx":22 + * a = fmin(a, a_max) + * a = fmax(a, a_min) + * return a # <<<<<<<<<<<<<< + * + * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): + */ + __pyx_r = __pyx_v_a; + goto __pyx_L0; + + /* "gensim/models/nmf_pgd.pyx":19 * return x if x > y else y * + * cdef double clip(double a, double a_min, double a_max) nogil: # <<<<<<<<<<<<<< + * a = fmin(a, a_max) + * a = fmax(a, a_min) + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "gensim/models/nmf_pgd.pyx":24 + * return a + * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. * @@ -2103,23 +2156,23 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_Wt_v_minus_r)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 20, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 24, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_WtW)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 20, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 24, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 20, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 24, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 20, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 24, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; @@ -2129,14 +2182,14 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } - __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 20, __pyx_L3_error) - __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 20, __pyx_L3_error) - __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 20, __pyx_L3_error) - __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 20, __pyx_L3_error) + __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 24, __pyx_L3_error) + __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 24, __pyx_L3_error) + __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 24, __pyx_L3_error) + __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 24, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 20, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 24, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -2188,7 +2241,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec PyObject *__pyx_t_25 = NULL; __Pyx_RefNannySetupContext("solve_h", 0); - /* "gensim/models/nmf_pgd.pyx":36 + /* "gensim/models/nmf_pgd.pyx":40 * """ * * cdef Py_ssize_t n_components = h.shape[0] # <<<<<<<<<<<<<< @@ -2197,7 +2250,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_n_components = (__pyx_v_h.shape[0]); - /* "gensim/models/nmf_pgd.pyx":37 + /* "gensim/models/nmf_pgd.pyx":41 * * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] # <<<<<<<<<<<<<< @@ -2206,7 +2259,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_n_samples = (__pyx_v_h.shape[1]); - /* "gensim/models/nmf_pgd.pyx":38 + /* "gensim/models/nmf_pgd.pyx":42 * cdef Py_ssize_t n_components = h.shape[0] * cdef Py_ssize_t n_samples = h.shape[1] * cdef double violation = 0 # <<<<<<<<<<<<<< @@ -2215,7 +2268,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_violation = 0.0; - /* "gensim/models/nmf_pgd.pyx":40 + /* "gensim/models/nmf_pgd.pyx":44 * cdef double violation = 0 * cdef double grad, projected_grad, hessian * cdef Py_ssize_t sample_idx = 0 # <<<<<<<<<<<<<< @@ -2224,7 +2277,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_sample_idx = 0; - /* "gensim/models/nmf_pgd.pyx":41 + /* "gensim/models/nmf_pgd.pyx":45 * cdef double grad, projected_grad, hessian * cdef Py_ssize_t sample_idx = 0 * cdef Py_ssize_t component_idx_1 = 0 # <<<<<<<<<<<<<< @@ -2233,7 +2286,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_component_idx_1 = 0; - /* "gensim/models/nmf_pgd.pyx":42 + /* "gensim/models/nmf_pgd.pyx":46 * cdef Py_ssize_t sample_idx = 0 * cdef Py_ssize_t component_idx_1 = 0 * cdef Py_ssize_t component_idx_2 = 0 # <<<<<<<<<<<<<< @@ -2242,7 +2295,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_component_idx_2 = 0; - /* "gensim/models/nmf_pgd.pyx":44 + /* "gensim/models/nmf_pgd.pyx":48 * cdef Py_ssize_t component_idx_2 = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -2285,7 +2338,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_v_hessian = ((double)__PYX_NAN()); __pyx_v_projected_grad = ((double)__PYX_NAN()); - /* "gensim/models/nmf_pgd.pyx":45 + /* "gensim/models/nmf_pgd.pyx":49 * * for sample_idx in prange(n_samples, nogil=True): * for component_idx_1 in range(n_components): # <<<<<<<<<<<<<< @@ -2297,7 +2350,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_component_idx_1 = __pyx_t_6; - /* "gensim/models/nmf_pgd.pyx":47 + /* "gensim/models/nmf_pgd.pyx":51 * for component_idx_1 in range(n_components): * * grad = -Wt_v_minus_r[component_idx_1, sample_idx] # <<<<<<<<<<<<<< @@ -2308,7 +2361,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_8 = __pyx_v_sample_idx; __pyx_v_grad = (-(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_Wt_v_minus_r.data + __pyx_t_7 * __pyx_v_Wt_v_minus_r.strides[0]) ) + __pyx_t_8 * __pyx_v_Wt_v_minus_r.strides[1]) )))); - /* "gensim/models/nmf_pgd.pyx":49 + /* "gensim/models/nmf_pgd.pyx":53 * grad = -Wt_v_minus_r[component_idx_1, sample_idx] * * for component_idx_2 in range(n_components): # <<<<<<<<<<<<<< @@ -2320,7 +2373,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_10; __pyx_t_11+=1) { __pyx_v_component_idx_2 = __pyx_t_11; - /* "gensim/models/nmf_pgd.pyx":50 + /* "gensim/models/nmf_pgd.pyx":54 * * for component_idx_2 in range(n_components): * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] # <<<<<<<<<<<<<< @@ -2334,7 +2387,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_v_grad = (__pyx_v_grad + ((*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_12 * __pyx_v_WtW.strides[0]) )) + __pyx_t_13)) ))) * (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_h.data + __pyx_t_14 * __pyx_v_h.strides[0]) )) + __pyx_t_15)) ))))); } - /* "gensim/models/nmf_pgd.pyx":52 + /* "gensim/models/nmf_pgd.pyx":56 * grad += WtW[component_idx_1, component_idx_2] * h[component_idx_2, sample_idx] * * hessian = WtW[component_idx_1, component_idx_1] # <<<<<<<<<<<<<< @@ -2345,7 +2398,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_17 = __pyx_v_component_idx_1; __pyx_v_hessian = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_WtW.data + __pyx_t_16 * __pyx_v_WtW.strides[0]) )) + __pyx_t_17)) ))); - /* "gensim/models/nmf_pgd.pyx":54 + /* "gensim/models/nmf_pgd.pyx":58 * hessian = WtW[component_idx_1, component_idx_1] * * grad = grad * kappa / hessian # <<<<<<<<<<<<<< @@ -2354,7 +2407,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_grad = ((__pyx_v_grad * __pyx_v_kappa) / __pyx_v_hessian); - /* "gensim/models/nmf_pgd.pyx":56 + /* "gensim/models/nmf_pgd.pyx":60 * grad = grad * kappa / hessian * * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad # <<<<<<<<<<<<<< @@ -2370,7 +2423,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec } __pyx_v_projected_grad = __pyx_t_18; - /* "gensim/models/nmf_pgd.pyx":58 + /* "gensim/models/nmf_pgd.pyx":62 * projected_grad = fmin(0, grad) if h[component_idx_1, sample_idx] == 0 else grad * * violation += projected_grad * projected_grad # <<<<<<<<<<<<<< @@ -2379,7 +2432,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec */ __pyx_v_violation = (__pyx_v_violation + (__pyx_v_projected_grad * __pyx_v_projected_grad)); - /* "gensim/models/nmf_pgd.pyx":60 + /* "gensim/models/nmf_pgd.pyx":64 * violation += projected_grad * projected_grad * * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) # <<<<<<<<<<<<<< @@ -2405,7 +2458,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec #endif } - /* "gensim/models/nmf_pgd.pyx":44 + /* "gensim/models/nmf_pgd.pyx":48 * cdef Py_ssize_t component_idx_2 = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -2424,7 +2477,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec } } - /* "gensim/models/nmf_pgd.pyx":62 + /* "gensim/models/nmf_pgd.pyx":66 * h[component_idx_1, sample_idx] = fmax(h[component_idx_1, sample_idx] - grad, 0.) * * return sqrt(violation) # <<<<<<<<<<<<<< @@ -2432,14 +2485,14 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec * def solve_r( */ __Pyx_XDECREF(__pyx_r); - __pyx_t_25 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 62, __pyx_L1_error) + __pyx_t_25 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_25); __pyx_r = __pyx_t_25; __pyx_t_25 = 0; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":20 - * return x if x > y else y + /* "gensim/models/nmf_pgd.pyx":24 + * return a * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. @@ -2460,45 +2513,33 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec return __pyx_r; } -/* "gensim/models/nmf_pgd.pyx":64 +/* "gensim/models/nmf_pgd.pyx":68 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< - * int[::1] r_indptr, - * int[::1] r_indices, + * r, + * r_actual, */ /* Python wrapper */ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ -static char __pyx_doc_6gensim_6models_7nmf_pgd_2solve_r[] = "solve_r(__Pyx_memviewslice r_indptr, __Pyx_memviewslice r_indices, __Pyx_memviewslice r_data, __Pyx_memviewslice r_actual_indptr, __Pyx_memviewslice r_actual_indices, __Pyx_memviewslice r_actual_data, double lambda_, double v_max)\nBound new residuals.\n\n Parameters\n ----------\n r_indptr : vector\n r_indices : vector\n r_data : vector\n r_actual_indptr : vector\n r_actual_indices : vector\n r_actual_data : vector\n lambda_ : double\n v_max : double\n\n Returns\n -------\n float\n Cumulative difference between previous and current residuals vectors.\n "; +static char __pyx_doc_6gensim_6models_7nmf_pgd_2solve_r[] = "solve_r(r, r_actual, double lambda_, double v_max)\nBound new residuals.\n\n Parameters\n ----------\n r: sparse matrix\n r_actual: sparse matrix\n lambda_ : double\n v_max : double\n\n Returns\n -------\n float\n Cumulative difference between previous and current residuals vectors.\n "; static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r = {"solve_r", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6gensim_6models_7nmf_pgd_2solve_r}; static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { - __Pyx_memviewslice __pyx_v_r_indptr = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_r_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_r_data = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_r_actual_indptr = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_r_actual_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_r_actual_data = { 0, 0, { 0 }, { 0 }, { 0 } }; + PyObject *__pyx_v_r = 0; + PyObject *__pyx_v_r_actual = 0; double __pyx_v_lambda_; double __pyx_v_v_max; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("solve_r (wrapper)", 0); { - static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_r_indptr,&__pyx_n_s_r_indices,&__pyx_n_s_r_data,&__pyx_n_s_r_actual_indptr,&__pyx_n_s_r_actual_indices,&__pyx_n_s_r_actual_data,&__pyx_n_s_lambda,&__pyx_n_s_v_max,0}; - PyObject* values[8] = {0,0,0,0,0,0,0,0}; + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_r,&__pyx_n_s_r_actual,&__pyx_n_s_lambda,&__pyx_n_s_v_max,0}; + PyObject* values[4] = {0,0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { - case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); - CYTHON_FALLTHROUGH; - case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); - CYTHON_FALLTHROUGH; - case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); - CYTHON_FALLTHROUGH; - case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); - CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); @@ -2513,318 +2554,238 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: - if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_indptr)) != 0)) kw_args--; + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: - if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_indices)) != 0)) kw_args--; + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 1); __PYX_ERR(0, 64, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 4, 4, 1); __PYX_ERR(0, 68, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: - if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_data)) != 0)) kw_args--; + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lambda)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 2); __PYX_ERR(0, 64, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 4, 4, 2); __PYX_ERR(0, 68, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: - if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_indptr)) != 0)) kw_args--; - else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 3); __PYX_ERR(0, 64, __pyx_L3_error) - } - CYTHON_FALLTHROUGH; - case 4: - if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_indices)) != 0)) kw_args--; - else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 4); __PYX_ERR(0, 64, __pyx_L3_error) - } - CYTHON_FALLTHROUGH; - case 5: - if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_r_actual_data)) != 0)) kw_args--; - else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 5); __PYX_ERR(0, 64, __pyx_L3_error) - } - CYTHON_FALLTHROUGH; - case 6: - if (likely((values[6] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lambda)) != 0)) kw_args--; - else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 6); __PYX_ERR(0, 64, __pyx_L3_error) - } - CYTHON_FALLTHROUGH; - case 7: - if (likely((values[7] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_v_max)) != 0)) kw_args--; + if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_v_max)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, 7); __PYX_ERR(0, 64, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 4, 4, 3); __PYX_ERR(0, 68, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_r") < 0)) __PYX_ERR(0, 64, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_r") < 0)) __PYX_ERR(0, 68, __pyx_L3_error) } - } else if (PyTuple_GET_SIZE(__pyx_args) != 8) { + } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); - values[4] = PyTuple_GET_ITEM(__pyx_args, 4); - values[5] = PyTuple_GET_ITEM(__pyx_args, 5); - values[6] = PyTuple_GET_ITEM(__pyx_args, 6); - values[7] = PyTuple_GET_ITEM(__pyx_args, 7); - } - __pyx_v_r_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_indptr.memview)) __PYX_ERR(0, 65, __pyx_L3_error) - __pyx_v_r_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_indices.memview)) __PYX_ERR(0, 66, __pyx_L3_error) - __pyx_v_r_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_data.memview)) __PYX_ERR(0, 67, __pyx_L3_error) - __pyx_v_r_actual_indptr = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[3], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_indptr.memview)) __PYX_ERR(0, 68, __pyx_L3_error) - __pyx_v_r_actual_indices = __Pyx_PyObject_to_MemoryviewSlice_dc_int(values[4], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_indices.memview)) __PYX_ERR(0, 69, __pyx_L3_error) - __pyx_v_r_actual_data = __Pyx_PyObject_to_MemoryviewSlice_dc_double(values[5], PyBUF_WRITABLE); if (unlikely(!__pyx_v_r_actual_data.memview)) __PYX_ERR(0, 70, __pyx_L3_error) - __pyx_v_lambda_ = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_lambda_ == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 71, __pyx_L3_error) - __pyx_v_v_max = __pyx_PyFloat_AsDouble(values[7]); if (unlikely((__pyx_v_v_max == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 72, __pyx_L3_error) + } + __pyx_v_r = values[0]; + __pyx_v_r_actual = values[1]; + __pyx_v_lambda_ = __pyx_PyFloat_AsDouble(values[2]); if (unlikely((__pyx_v_lambda_ == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 71, __pyx_L3_error) + __pyx_v_v_max = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_v_max == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 72, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("solve_r", 1, 8, 8, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 64, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_r", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 68, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_r", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; - __pyx_r = __pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(__pyx_self, __pyx_v_r_indptr, __pyx_v_r_indices, __pyx_v_r_data, __pyx_v_r_actual_indptr, __pyx_v_r_actual_indices, __pyx_v_r_actual_data, __pyx_v_lambda_, __pyx_v_v_max); + __pyx_r = __pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(__pyx_self, __pyx_v_r, __pyx_v_r_actual, __pyx_v_lambda_, __pyx_v_v_max); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } -static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_r_indptr, __Pyx_memviewslice __pyx_v_r_indices, __Pyx_memviewslice __pyx_v_r_data, __Pyx_memviewslice __pyx_v_r_actual_indptr, __Pyx_memviewslice __pyx_v_r_actual_indices, __Pyx_memviewslice __pyx_v_r_actual_data, double __pyx_v_lambda_, double __pyx_v_v_max) { - Py_ssize_t __pyx_v_n_samples; - double __pyx_v_violation; - double __pyx_v_r_actual_sign; - Py_ssize_t __pyx_v_sample_idx; +static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_r, PyObject *__pyx_v_r_actual, double __pyx_v_lambda_, double __pyx_v_v_max) { + __Pyx_memviewslice __pyx_v_r_indptr = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_data = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_actual_indptr = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_actual_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_r_actual_data = { 0, 0, { 0 }, { 0 }, { 0 } }; Py_ssize_t __pyx_v_r_col_size; Py_ssize_t __pyx_v_r_actual_col_size; - Py_ssize_t __pyx_v_r_col_idx_idx; - Py_ssize_t __pyx_v_r_actual_col_idx_idx; - __Pyx_memviewslice __pyx_v_r_col_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_r_actual_col_indices = { 0, 0, { 0 }, { 0 }, { 0 } }; + Py_ssize_t __pyx_v_r_col_indptr; + Py_ssize_t __pyx_v_r_actual_col_indptr; + Py_ssize_t __pyx_v_r_col_idx; + Py_ssize_t __pyx_v_r_actual_col_idx; + double *__pyx_v_r_element; + double *__pyx_v_r_actual_element; + double __pyx_v_r_actual_sign; + CYTHON_UNUSED Py_ssize_t __pyx_v_n_samples; + Py_ssize_t __pyx_v_sample_idx; + double __pyx_v_violation; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - PyObject *__pyx_t_5 = NULL; - __Pyx_memviewslice __pyx_t_6 = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_t_2 = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_t_3 = { 0, 0, { 0 }, { 0 }, { 0 } }; + Py_ssize_t __pyx_t_4; + Py_ssize_t __pyx_t_5; + Py_ssize_t __pyx_t_6; Py_ssize_t __pyx_t_7; Py_ssize_t __pyx_t_8; Py_ssize_t __pyx_t_9; Py_ssize_t __pyx_t_10; - Py_ssize_t __pyx_t_11; - Py_ssize_t __pyx_t_12; + int __pyx_t_11; + int __pyx_t_12; Py_ssize_t __pyx_t_13; Py_ssize_t __pyx_t_14; Py_ssize_t __pyx_t_15; - int __pyx_t_16; + Py_ssize_t __pyx_t_16; Py_ssize_t __pyx_t_17; - int __pyx_t_18; + Py_ssize_t __pyx_t_18; Py_ssize_t __pyx_t_19; Py_ssize_t __pyx_t_20; - Py_ssize_t __pyx_t_21; - Py_ssize_t __pyx_t_22; - Py_ssize_t __pyx_t_23; - Py_ssize_t __pyx_t_24; - Py_ssize_t __pyx_t_25; - Py_ssize_t __pyx_t_26; - Py_ssize_t __pyx_t_27; - Py_ssize_t __pyx_t_28; - Py_ssize_t __pyx_t_29; - Py_ssize_t __pyx_t_30; - Py_ssize_t __pyx_t_31; - Py_ssize_t __pyx_t_32; - Py_ssize_t __pyx_t_33; - Py_ssize_t __pyx_t_34; - Py_ssize_t __pyx_t_35; - Py_ssize_t __pyx_t_36; - Py_ssize_t __pyx_t_37; - Py_ssize_t __pyx_t_38; - Py_ssize_t __pyx_t_39; - Py_ssize_t __pyx_t_40; - Py_ssize_t __pyx_t_41; - Py_ssize_t __pyx_t_42; - Py_ssize_t __pyx_t_43; - Py_ssize_t __pyx_t_44; - Py_ssize_t __pyx_t_45; - Py_ssize_t __pyx_t_46; - Py_ssize_t __pyx_t_47; - Py_ssize_t __pyx_t_48; - Py_ssize_t __pyx_t_49; - Py_ssize_t __pyx_t_50; - Py_ssize_t __pyx_t_51; - Py_ssize_t __pyx_t_52; - Py_ssize_t __pyx_t_53; - Py_ssize_t __pyx_t_54; - Py_ssize_t __pyx_t_55; - Py_ssize_t __pyx_t_56; - Py_ssize_t __pyx_t_57; - Py_ssize_t __pyx_t_58; - Py_ssize_t __pyx_t_59; - Py_ssize_t __pyx_t_60; - Py_ssize_t __pyx_t_61; - Py_ssize_t __pyx_t_62; - Py_ssize_t __pyx_t_63; - Py_ssize_t __pyx_t_64; - Py_ssize_t __pyx_t_65; - Py_ssize_t __pyx_t_66; - Py_ssize_t __pyx_t_67; - Py_ssize_t __pyx_t_68; - Py_ssize_t __pyx_t_69; - Py_ssize_t __pyx_t_70; - Py_ssize_t __pyx_t_71; - Py_ssize_t __pyx_t_72; - Py_ssize_t __pyx_t_73; - Py_ssize_t __pyx_t_74; - Py_ssize_t __pyx_t_75; - Py_ssize_t __pyx_t_76; - Py_ssize_t __pyx_t_77; - Py_ssize_t __pyx_t_78; - Py_ssize_t __pyx_t_79; __Pyx_RefNannySetupContext("solve_r", 0); - /* "gensim/models/nmf_pgd.pyx":93 + /* "gensim/models/nmf_pgd.pyx":89 * """ * - * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 # <<<<<<<<<<<<<< - * cdef double violation = 0 - * cdef double r_actual_sign = 1.0 + * cdef int[::1] r_indptr = r.indptr # <<<<<<<<<<<<<< + * cdef int[::1] r_indices = r.indices + * cdef double[::1] r_data = r.data */ - __pyx_v_n_samples = ((__pyx_v_r_actual_indptr.shape[0]) - 1); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_indptr); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 89, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 89, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_r_indptr = __pyx_t_2; + __pyx_t_2.memview = NULL; + __pyx_t_2.data = NULL; - /* "gensim/models/nmf_pgd.pyx":94 + /* "gensim/models/nmf_pgd.pyx":90 * - * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 - * cdef double violation = 0 # <<<<<<<<<<<<<< - * cdef double r_actual_sign = 1.0 - * cdef Py_ssize_t sample_idx + * cdef int[::1] r_indptr = r.indptr + * cdef int[::1] r_indices = r.indices # <<<<<<<<<<<<<< + * cdef double[::1] r_data = r.data + * cdef int[::1] r_actual_indptr = r_actual.indptr */ - __pyx_v_violation = 0.0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_indices); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 90, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 90, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_r_indices = __pyx_t_2; + __pyx_t_2.memview = NULL; + __pyx_t_2.data = NULL; + + /* "gensim/models/nmf_pgd.pyx":91 + * cdef int[::1] r_indptr = r.indptr + * cdef int[::1] r_indices = r.indices + * cdef double[::1] r_data = r.data # <<<<<<<<<<<<<< + * cdef int[::1] r_actual_indptr = r_actual.indptr + * cdef int[::1] r_actual_indices = r_actual.indices + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_data); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 91, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = __Pyx_PyObject_to_MemoryviewSlice_dc_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_3.memview)) __PYX_ERR(0, 91, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_r_data = __pyx_t_3; + __pyx_t_3.memview = NULL; + __pyx_t_3.data = NULL; + + /* "gensim/models/nmf_pgd.pyx":92 + * cdef int[::1] r_indices = r.indices + * cdef double[::1] r_data = r.data + * cdef int[::1] r_actual_indptr = r_actual.indptr # <<<<<<<<<<<<<< + * cdef int[::1] r_actual_indices = r_actual.indices + * cdef double[::1] r_actual_data = r_actual.data + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_indptr); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 92, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 92, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_r_actual_indptr = __pyx_t_2; + __pyx_t_2.memview = NULL; + __pyx_t_2.data = NULL; - /* "gensim/models/nmf_pgd.pyx":95 - * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 - * cdef double violation = 0 - * cdef double r_actual_sign = 1.0 # <<<<<<<<<<<<<< - * cdef Py_ssize_t sample_idx + /* "gensim/models/nmf_pgd.pyx":93 + * cdef double[::1] r_data = r.data + * cdef int[::1] r_actual_indptr = r_actual.indptr + * cdef int[::1] r_actual_indices = r_actual.indices # <<<<<<<<<<<<<< + * cdef double[::1] r_actual_data = r_actual.data * */ - __pyx_v_r_actual_sign = 1.0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_indices); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 93, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 93, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_r_actual_indices = __pyx_t_2; + __pyx_t_2.memview = NULL; + __pyx_t_2.data = NULL; - /* "gensim/models/nmf_pgd.pyx":98 - * cdef Py_ssize_t sample_idx + /* "gensim/models/nmf_pgd.pyx":94 + * cdef int[::1] r_actual_indptr = r_actual.indptr + * cdef int[::1] r_actual_indices = r_actual.indices + * cdef double[::1] r_actual_data = r_actual.data # <<<<<<<<<<<<<< + * + * cdef Py_ssize_t r_col_size = 0 + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_data); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 94, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = __Pyx_PyObject_to_MemoryviewSlice_dc_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_3.memview)) __PYX_ERR(0, 94, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_r_actual_data = __pyx_t_3; + __pyx_t_3.memview = NULL; + __pyx_t_3.data = NULL; + + /* "gensim/models/nmf_pgd.pyx":96 + * cdef double[::1] r_actual_data = r_actual.data * * cdef Py_ssize_t r_col_size = 0 # <<<<<<<<<<<<<< * cdef Py_ssize_t r_actual_col_size = 0 - * cdef Py_ssize_t r_col_idx_idx = 0 + * cdef Py_ssize_t r_col_indptr */ __pyx_v_r_col_size = 0; - /* "gensim/models/nmf_pgd.pyx":99 + /* "gensim/models/nmf_pgd.pyx":97 * * cdef Py_ssize_t r_col_size = 0 * cdef Py_ssize_t r_actual_col_size = 0 # <<<<<<<<<<<<<< - * cdef Py_ssize_t r_col_idx_idx = 0 - * cdef Py_ssize_t r_actual_col_idx_idx + * cdef Py_ssize_t r_col_indptr + * cdef Py_ssize_t r_actual_col_indptr */ __pyx_v_r_actual_col_size = 0; - /* "gensim/models/nmf_pgd.pyx":100 - * cdef Py_ssize_t r_col_size = 0 - * cdef Py_ssize_t r_actual_col_size = 0 - * cdef Py_ssize_t r_col_idx_idx = 0 # <<<<<<<<<<<<<< - * cdef Py_ssize_t r_actual_col_idx_idx + /* "gensim/models/nmf_pgd.pyx":105 + * cdef double* r_actual_element + * + * cdef double r_actual_sign = 1.0 # <<<<<<<<<<<<<< * + * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 */ - __pyx_v_r_col_idx_idx = 0; + __pyx_v_r_actual_sign = 1.0; - /* "gensim/models/nmf_pgd.pyx":103 - * cdef Py_ssize_t r_actual_col_idx_idx + /* "gensim/models/nmf_pgd.pyx":107 + * cdef double r_actual_sign = 1.0 * - * cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) # <<<<<<<<<<<<<< - * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) + * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 # <<<<<<<<<<<<<< + * cdef Py_ssize_t sample_idx * */ - __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - __Pyx_GIVEREF(__pyx_t_1); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); - __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_intp); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_5, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 103, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_v_r_col_indices = __pyx_t_6; - __pyx_t_6.memview = NULL; - __pyx_t_6.data = NULL; + __pyx_v_n_samples = ((__pyx_v_r_actual_indptr.shape[0]) - 1); - /* "gensim/models/nmf_pgd.pyx":104 + /* "gensim/models/nmf_pgd.pyx":110 + * cdef Py_ssize_t sample_idx * - * cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) - * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) # <<<<<<<<<<<<<< + * cdef double violation = 0 # <<<<<<<<<<<<<< * * for sample_idx in prange(n_samples, nogil=True): */ - __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_n_samples); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - __Pyx_GIVEREF(__pyx_t_5); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_5); - __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_2 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_intp); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 104, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_v_r_actual_col_indices = __pyx_t_6; - __pyx_t_6.memview = NULL; - __pyx_t_6.data = NULL; + __pyx_v_violation = 0.0; - /* "gensim/models/nmf_pgd.pyx":106 - * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) + /* "gensim/models/nmf_pgd.pyx":112 + * cdef double violation = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] @@ -2837,7 +2798,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __Pyx_FastGIL_Remember(); #endif /*try:*/ { - __pyx_t_7 = __pyx_v_n_samples; + __pyx_t_4 = __pyx_v_n_samples; if (1 == 0) abort(); { #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) @@ -2846,750 +2807,379 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje #define likely(x) (x) #define unlikely(x) (x) #endif - __pyx_t_9 = (__pyx_t_7 - 0 + 1 - 1/abs(1)) / 1; - if (__pyx_t_9 > 0) + __pyx_t_6 = (__pyx_t_4 - 0 + 1 - 1/abs(1)) / 1; + if (__pyx_t_6 > 0) { #ifdef _OPENMP - #pragma omp parallel reduction(+:__pyx_v_violation) private(__pyx_t_10, __pyx_t_11, __pyx_t_12, __pyx_t_13, __pyx_t_14, __pyx_t_15, __pyx_t_16, __pyx_t_17, __pyx_t_18, __pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_23, __pyx_t_24, __pyx_t_25, __pyx_t_26, __pyx_t_27, __pyx_t_28, __pyx_t_29, __pyx_t_30, __pyx_t_31, __pyx_t_32, __pyx_t_33, __pyx_t_34, __pyx_t_35, __pyx_t_36, __pyx_t_37, __pyx_t_38, __pyx_t_39, __pyx_t_40, __pyx_t_41, __pyx_t_42, __pyx_t_43, __pyx_t_44, __pyx_t_45, __pyx_t_46, __pyx_t_47, __pyx_t_48, __pyx_t_49, __pyx_t_50, __pyx_t_51, __pyx_t_52, __pyx_t_53, __pyx_t_54, __pyx_t_55, __pyx_t_56, __pyx_t_57, __pyx_t_58, __pyx_t_59, __pyx_t_60, __pyx_t_61, __pyx_t_62, __pyx_t_63, __pyx_t_64, __pyx_t_65, __pyx_t_66, __pyx_t_67, __pyx_t_68, __pyx_t_69, __pyx_t_70, __pyx_t_71, __pyx_t_72, __pyx_t_73, __pyx_t_74, __pyx_t_75, __pyx_t_76, __pyx_t_77, __pyx_t_78, __pyx_t_79) + #pragma omp parallel reduction(+:__pyx_v_violation) private(__pyx_t_10, __pyx_t_11, __pyx_t_12, __pyx_t_13, __pyx_t_14, __pyx_t_15, __pyx_t_16, __pyx_t_17, __pyx_t_18, __pyx_t_19, __pyx_t_20, __pyx_t_7, __pyx_t_8, __pyx_t_9) #endif /* _OPENMP */ { #ifdef _OPENMP - #pragma omp for lastprivate(__pyx_v_r_actual_col_idx_idx) lastprivate(__pyx_v_r_actual_col_size) lastprivate(__pyx_v_r_actual_sign) lastprivate(__pyx_v_r_col_idx_idx) lastprivate(__pyx_v_r_col_size) firstprivate(__pyx_v_sample_idx) lastprivate(__pyx_v_sample_idx) + #pragma omp for lastprivate(__pyx_v_r_actual_col_idx) lastprivate(__pyx_v_r_actual_col_indptr) lastprivate(__pyx_v_r_actual_col_size) lastprivate(__pyx_v_r_actual_element) lastprivate(__pyx_v_r_actual_sign) lastprivate(__pyx_v_r_col_idx) lastprivate(__pyx_v_r_col_indptr) lastprivate(__pyx_v_r_col_size) lastprivate(__pyx_v_r_element) firstprivate(__pyx_v_sample_idx) lastprivate(__pyx_v_sample_idx) #endif /* _OPENMP */ - for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_9; __pyx_t_8++){ + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_6; __pyx_t_5++){ { - __pyx_v_sample_idx = (Py_ssize_t)(0 + 1 * __pyx_t_8); + __pyx_v_sample_idx = (Py_ssize_t)(0 + 1 * __pyx_t_5); /* Initialize private variables to invalid values */ - __pyx_v_r_actual_col_idx_idx = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_actual_col_idx = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_actual_col_indptr = ((Py_ssize_t)0xbad0bad0); __pyx_v_r_actual_col_size = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_actual_element = ((double *)1); __pyx_v_r_actual_sign = ((double)__PYX_NAN()); - __pyx_v_r_col_idx_idx = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_col_idx = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_col_indptr = ((Py_ssize_t)0xbad0bad0); __pyx_v_r_col_size = ((Py_ssize_t)0xbad0bad0); + __pyx_v_r_element = ((double *)1); - /* "gensim/models/nmf_pgd.pyx":107 + /* "gensim/models/nmf_pgd.pyx":113 * * for sample_idx in prange(n_samples, nogil=True): * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] # <<<<<<<<<<<<<< * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] * */ - __pyx_t_10 = (__pyx_v_sample_idx + 1); - __pyx_t_11 = __pyx_v_sample_idx; - __pyx_v_r_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_10)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_11)) )))); + __pyx_t_7 = (__pyx_v_sample_idx + 1); + __pyx_t_8 = __pyx_v_sample_idx; + __pyx_v_r_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_7)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_8)) )))); - /* "gensim/models/nmf_pgd.pyx":108 + /* "gensim/models/nmf_pgd.pyx":114 * for sample_idx in prange(n_samples, nogil=True): * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< * - * r_col_indices[sample_idx] = 0 + * r_col_idx = 0 */ - __pyx_t_12 = (__pyx_v_sample_idx + 1); - __pyx_t_13 = __pyx_v_sample_idx; - __pyx_v_r_actual_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_12)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_13)) )))); + __pyx_t_9 = (__pyx_v_sample_idx + 1); + __pyx_t_10 = __pyx_v_sample_idx; + __pyx_v_r_actual_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_9)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_10)) )))); - /* "gensim/models/nmf_pgd.pyx":110 + /* "gensim/models/nmf_pgd.pyx":116 * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] * - * r_col_indices[sample_idx] = 0 # <<<<<<<<<<<<<< - * r_actual_col_indices[sample_idx] = 0 + * r_col_idx = 0 # <<<<<<<<<<<<<< + * r_actual_col_idx = 0 * */ - __pyx_t_14 = __pyx_v_sample_idx; - *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_14 * __pyx_v_r_col_indices.strides[0]) )) = 0; + __pyx_v_r_col_idx = 0; - /* "gensim/models/nmf_pgd.pyx":111 + /* "gensim/models/nmf_pgd.pyx":117 * - * r_col_indices[sample_idx] = 0 - * r_actual_col_indices[sample_idx] = 0 # <<<<<<<<<<<<<< + * r_col_idx = 0 + * r_actual_col_idx = 0 # <<<<<<<<<<<<<< * - * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: + * while r_col_idx < r_col_size or r_actual_col_idx < r_actual_col_size: */ - __pyx_t_15 = __pyx_v_sample_idx; - *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_15 * __pyx_v_r_actual_col_indices.strides[0]) )) = 0; + __pyx_v_r_actual_col_idx = 0; - /* "gensim/models/nmf_pgd.pyx":113 - * r_actual_col_indices[sample_idx] = 0 + /* "gensim/models/nmf_pgd.pyx":119 + * r_actual_col_idx = 0 * - * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< - * r_col_idx_idx = r_indices[ + * while r_col_idx < r_col_size or r_actual_col_idx < r_actual_col_size: # <<<<<<<<<<<<<< + * r_col_indptr = r_indices[ * r_indptr[sample_idx] */ while (1) { - __pyx_t_17 = __pyx_v_sample_idx; - __pyx_t_18 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_17 * __pyx_v_r_col_indices.strides[0]) ))) < __pyx_v_r_col_size) != 0); - if (!__pyx_t_18) { + __pyx_t_12 = ((__pyx_v_r_col_idx < __pyx_v_r_col_size) != 0); + if (!__pyx_t_12) { } else { - __pyx_t_16 = __pyx_t_18; + __pyx_t_11 = __pyx_t_12; goto __pyx_L12_bool_binop_done; } - __pyx_t_19 = __pyx_v_sample_idx; - __pyx_t_18 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_19 * __pyx_v_r_actual_col_indices.strides[0]) ))) < __pyx_v_r_actual_col_size) != 0); - __pyx_t_16 = __pyx_t_18; + __pyx_t_12 = ((__pyx_v_r_actual_col_idx < __pyx_v_r_actual_col_size) != 0); + __pyx_t_11 = __pyx_t_12; __pyx_L12_bool_binop_done:; - if (!__pyx_t_16) break; + if (!__pyx_t_11) break; - /* "gensim/models/nmf_pgd.pyx":115 - * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: - * r_col_idx_idx = r_indices[ + /* "gensim/models/nmf_pgd.pyx":121 + * while r_col_idx < r_col_size or r_actual_col_idx < r_actual_col_size: + * r_col_indptr = r_indices[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_col_indices[sample_idx] + * + r_col_idx * ] */ - __pyx_t_20 = __pyx_v_sample_idx; + __pyx_t_13 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":116 - * r_col_idx_idx = r_indices[ - * r_indptr[sample_idx] - * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] - * r_actual_col_idx_idx = r_actual_indices[ - */ - __pyx_t_21 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":114 + /* "gensim/models/nmf_pgd.pyx":120 * - * while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: - * r_col_idx_idx = r_indices[ # <<<<<<<<<<<<<< + * while r_col_idx < r_col_size or r_actual_col_idx < r_actual_col_size: + * r_col_indptr = r_indices[ # <<<<<<<<<<<<<< * r_indptr[sample_idx] - * + r_col_indices[sample_idx] + * + r_col_idx */ - __pyx_t_22 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_20)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_21 * __pyx_v_r_col_indices.strides[0]) )))); - __pyx_v_r_col_idx_idx = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indices.data) + __pyx_t_22)) ))); + __pyx_t_14 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_13)) ))) + __pyx_v_r_col_idx); + __pyx_v_r_col_indptr = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indices.data) + __pyx_t_14)) ))); - /* "gensim/models/nmf_pgd.pyx":119 + /* "gensim/models/nmf_pgd.pyx":125 * ] - * r_actual_col_idx_idx = r_actual_indices[ + * r_actual_col_indptr = r_actual_indices[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] + * + r_actual_col_idx * ] */ - __pyx_t_23 = __pyx_v_sample_idx; + __pyx_t_15 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":120 - * r_actual_col_idx_idx = r_actual_indices[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< + /* "gensim/models/nmf_pgd.pyx":124 + * + r_col_idx * ] - * - */ - __pyx_t_24 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":118 - * + r_col_indices[sample_idx] - * ] - * r_actual_col_idx_idx = r_actual_indices[ # <<<<<<<<<<<<<< + * r_actual_col_indptr = r_actual_indices[ # <<<<<<<<<<<<<< * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] - */ - __pyx_t_25 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_23)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_24 * __pyx_v_r_actual_col_indices.strides[0]) )))); - __pyx_v_r_actual_col_idx_idx = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indices.data) + __pyx_t_25)) ))); - - /* "gensim/models/nmf_pgd.pyx":123 - * ] - * - * if r_col_idx_idx >= r_actual_col_idx_idx: # <<<<<<<<<<<<<< - * r_actual_sign = copysign( - * r_actual_sign, - */ - __pyx_t_16 = ((__pyx_v_r_col_idx_idx >= __pyx_v_r_actual_col_idx_idx) != 0); - if (__pyx_t_16) { - - /* "gensim/models/nmf_pgd.pyx":127 - * r_actual_sign, - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] - */ - __pyx_t_26 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":128 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] - * ) - */ - __pyx_t_27 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":126 - * r_actual_sign = copysign( - * r_actual_sign, - * r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] - */ - __pyx_t_28 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_26)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_27 * __pyx_v_r_actual_col_indices.strides[0]) )))); - - /* "gensim/models/nmf_pgd.pyx":124 - * - * if r_col_idx_idx >= r_actual_col_idx_idx: - * r_actual_sign = copysign( # <<<<<<<<<<<<<< - * r_actual_sign, - * r_actual_data[ - */ - __pyx_v_r_actual_sign = copysign(__pyx_v_r_actual_sign, (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_28)) )))); - - /* "gensim/models/nmf_pgd.pyx":137 - * ] = fabs( - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] - */ - __pyx_t_29 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":138 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] - * ) - lambda_ - */ - __pyx_t_30 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":136 - * + r_actual_col_indices[sample_idx] - * ] = fabs( - * r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] + * + r_actual_col_idx */ - __pyx_t_31 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_29)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_30 * __pyx_v_r_actual_col_indices.strides[0]) )))); + __pyx_t_16 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_15)) ))) + __pyx_v_r_actual_col_idx); + __pyx_v_r_actual_col_indptr = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indices.data) + __pyx_t_16)) ))); - /* "gensim/models/nmf_pgd.pyx":133 + /* "gensim/models/nmf_pgd.pyx":130 * - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] = fabs( - */ - __pyx_t_32 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":134 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] = fabs( - * r_actual_data[ - */ - __pyx_t_33 = __pyx_v_sample_idx; - __pyx_t_34 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_32)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_33 * __pyx_v_r_actual_col_indices.strides[0]) )))); - *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_34)) )) = (fabs((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_31)) )))) - __pyx_v_lambda_); - - /* "gensim/models/nmf_pgd.pyx":147 - * ] = fmax( - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ], - */ - __pyx_t_35 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":148 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ], - * 0 - */ - __pyx_t_36 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":146 - * + r_actual_col_indices[sample_idx] - * ] = fmax( - * r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] - */ - __pyx_t_37 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_35)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_36 * __pyx_v_r_actual_col_indices.strides[0]) )))); - - /* "gensim/models/nmf_pgd.pyx":143 - * - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] = fmax( - */ - __pyx_t_38 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":144 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] = fmax( - * r_actual_data[ - */ - __pyx_t_39 = __pyx_v_sample_idx; - __pyx_t_40 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_38)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_39 * __pyx_v_r_actual_col_indices.strides[0]) )))); - *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_40)) )) = __pyx_f_6gensim_6models_7nmf_pgd_fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_37)) ))), 0.0); - - /* "gensim/models/nmf_pgd.pyx":155 - * if ( - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] != 0 - */ - __pyx_t_41 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":156 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] != 0 - * ): - */ - __pyx_t_42 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":154 - * - * if ( - * r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] - */ - __pyx_t_43 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_41)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_42 * __pyx_v_r_actual_col_indices.strides[0]) )))); - - /* "gensim/models/nmf_pgd.pyx":157 - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] - * ] != 0 # <<<<<<<<<<<<<< - * ): - * r_actual_data[ + * r_element = &r_data[ + * r_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_col_idx + * ] */ - __pyx_t_16 = (((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_43)) ))) != 0.0) != 0); + __pyx_t_17 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":153 - * ) + /* "gensim/models/nmf_pgd.pyx":129 + * ] * - * if ( # <<<<<<<<<<<<<< - * r_actual_data[ - * r_actual_indptr[sample_idx] - */ - if (__pyx_t_16) { - - /* "gensim/models/nmf_pgd.pyx":164 - * ] = copysign( - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ], - */ - __pyx_t_44 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":165 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ], - * r_actual_sign + * r_element = &r_data[ # <<<<<<<<<<<<<< + * r_indptr[sample_idx] + * + r_col_idx */ - __pyx_t_45 = __pyx_v_sample_idx; + __pyx_t_18 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_17)) ))) + __pyx_v_r_col_idx); + __pyx_v_r_element = (&(*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_18)) )))); - /* "gensim/models/nmf_pgd.pyx":163 - * + r_actual_col_indices[sample_idx] - * ] = copysign( - * r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] + /* "gensim/models/nmf_pgd.pyx":134 + * ] + * r_actual_element = &r_actual_data[ + * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< + * + r_actual_col_idx + * ] */ - __pyx_t_46 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_44)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_45 * __pyx_v_r_actual_col_indices.strides[0]) )))); + __pyx_t_19 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":160 - * ): - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] = copysign( + /* "gensim/models/nmf_pgd.pyx":133 + * + r_col_idx + * ] + * r_actual_element = &r_actual_data[ # <<<<<<<<<<<<<< + * r_actual_indptr[sample_idx] + * + r_actual_col_idx */ - __pyx_t_47 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":161 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] = copysign( - * r_actual_data[ - */ - __pyx_t_48 = __pyx_v_sample_idx; - __pyx_t_49 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_47)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_48 * __pyx_v_r_actual_col_indices.strides[0]) )))); - *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_49)) )) = copysign((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_46)) ))), __pyx_v_r_actual_sign); - - /* "gensim/models/nmf_pgd.pyx":175 - * ] = fmax( - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ], - */ - __pyx_t_50 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":176 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ], - * -v_max - */ - __pyx_t_51 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":174 - * + r_actual_col_indices[sample_idx] - * ] = fmax( - * r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] - */ - __pyx_t_52 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_50)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_51 * __pyx_v_r_actual_col_indices.strides[0]) )))); - - /* "gensim/models/nmf_pgd.pyx":171 - * - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] = fmax( - */ - __pyx_t_53 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":172 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] = fmax( - * r_actual_data[ - */ - __pyx_t_54 = __pyx_v_sample_idx; - __pyx_t_55 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_53)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_54 * __pyx_v_r_actual_col_indices.strides[0]) )))); - *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_55)) )) = __pyx_f_6gensim_6models_7nmf_pgd_fmax((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_52)) ))), (-__pyx_v_v_max)); - - /* "gensim/models/nmf_pgd.pyx":186 - * ] = fmin( - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ], - */ - __pyx_t_56 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":187 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ], - * v_max - */ - __pyx_t_57 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":185 - * + r_actual_col_indices[sample_idx] - * ] = fmin( - * r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] - */ - __pyx_t_58 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_56)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_57 * __pyx_v_r_actual_col_indices.strides[0]) )))); - - /* "gensim/models/nmf_pgd.pyx":182 - * - * r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] = fmin( - */ - __pyx_t_59 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":183 - * r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] = fmin( - * r_actual_data[ - */ - __pyx_t_60 = __pyx_v_sample_idx; - __pyx_t_61 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_59)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_60 * __pyx_v_r_actual_col_indices.strides[0]) )))); - *((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_61)) )) = __pyx_f_6gensim_6models_7nmf_pgd_fmin((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_58)) ))), __pyx_v_v_max); + __pyx_t_20 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_19)) ))) + __pyx_v_r_actual_col_idx); + __pyx_v_r_actual_element = (&(*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_20)) )))); - /* "gensim/models/nmf_pgd.pyx":153 - * ) + /* "gensim/models/nmf_pgd.pyx":138 + * ] * - * if ( # <<<<<<<<<<<<<< - * r_actual_data[ - * r_actual_indptr[sample_idx] - */ - } - - /* "gensim/models/nmf_pgd.pyx":192 - * ) + * if r_col_indptr >= r_actual_col_indptr: # <<<<<<<<<<<<<< + * r_actual_sign = copysign(r_actual_sign, r_actual_element[0]) * - * if r_col_idx_idx == r_actual_col_idx_idx: # <<<<<<<<<<<<<< - * violation += ( - * r_data[ - */ - __pyx_t_16 = ((__pyx_v_r_col_idx_idx == __pyx_v_r_actual_col_idx_idx) != 0); - if (__pyx_t_16) { - - /* "gensim/models/nmf_pgd.pyx":195 - * violation += ( - * r_data[ - * r_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_col_indices[sample_idx] - * ] */ - __pyx_t_62 = __pyx_v_sample_idx; + __pyx_t_11 = ((__pyx_v_r_col_indptr >= __pyx_v_r_actual_col_indptr) != 0); + if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":196 - * r_data[ - * r_indptr[sample_idx] - * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] - * - r_actual_data[ + /* "gensim/models/nmf_pgd.pyx":139 + * + * if r_col_indptr >= r_actual_col_indptr: + * r_actual_sign = copysign(r_actual_sign, r_actual_element[0]) # <<<<<<<<<<<<<< + * + * r_actual_element[0] = fabs(r_actual_element[0]) - lambda_ */ - __pyx_t_63 = __pyx_v_sample_idx; + __pyx_v_r_actual_sign = copysign(__pyx_v_r_actual_sign, (__pyx_v_r_actual_element[0])); - /* "gensim/models/nmf_pgd.pyx":194 - * if r_col_idx_idx == r_actual_col_idx_idx: - * violation += ( - * r_data[ # <<<<<<<<<<<<<< - * r_indptr[sample_idx] - * + r_col_indices[sample_idx] + /* "gensim/models/nmf_pgd.pyx":141 + * r_actual_sign = copysign(r_actual_sign, r_actual_element[0]) + * + * r_actual_element[0] = fabs(r_actual_element[0]) - lambda_ # <<<<<<<<<<<<<< + * r_actual_element[0] = fmax(r_actual_element[0], 0) + * */ - __pyx_t_64 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_62)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_63 * __pyx_v_r_col_indices.strides[0]) )))); + (__pyx_v_r_actual_element[0]) = (fabs((__pyx_v_r_actual_element[0])) - __pyx_v_lambda_); - /* "gensim/models/nmf_pgd.pyx":199 - * ] - * - r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] + /* "gensim/models/nmf_pgd.pyx":142 + * + * r_actual_element[0] = fabs(r_actual_element[0]) - lambda_ + * r_actual_element[0] = fmax(r_actual_element[0], 0) # <<<<<<<<<<<<<< + * + * if r_actual_element[0] != 0: */ - __pyx_t_65 = __pyx_v_sample_idx; + (__pyx_v_r_actual_element[0]) = __pyx_f_6gensim_6models_7nmf_pgd_fmax((__pyx_v_r_actual_element[0]), 0.0); - /* "gensim/models/nmf_pgd.pyx":200 - * - r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] - * ) ** 2 + /* "gensim/models/nmf_pgd.pyx":144 + * r_actual_element[0] = fmax(r_actual_element[0], 0) + * + * if r_actual_element[0] != 0: # <<<<<<<<<<<<<< + * r_actual_element[0] = copysign(r_actual_element[0], r_actual_sign) + * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) */ - __pyx_t_66 = __pyx_v_sample_idx; + __pyx_t_11 = (((__pyx_v_r_actual_element[0]) != 0.0) != 0); + if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":198 - * + r_col_indices[sample_idx] - * ] - * - r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] + /* "gensim/models/nmf_pgd.pyx":145 + * + * if r_actual_element[0] != 0: + * r_actual_element[0] = copysign(r_actual_element[0], r_actual_sign) # <<<<<<<<<<<<<< + * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) + * */ - __pyx_t_67 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_65)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_66 * __pyx_v_r_actual_col_indices.strides[0]) )))); + (__pyx_v_r_actual_element[0]) = copysign((__pyx_v_r_actual_element[0]), __pyx_v_r_actual_sign); - /* "gensim/models/nmf_pgd.pyx":193 + /* "gensim/models/nmf_pgd.pyx":146 + * if r_actual_element[0] != 0: + * r_actual_element[0] = copysign(r_actual_element[0], r_actual_sign) + * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) # <<<<<<<<<<<<<< * - * if r_col_idx_idx == r_actual_col_idx_idx: - * violation += ( # <<<<<<<<<<<<<< - * r_data[ - * r_indptr[sample_idx] + * if r_col_indptr == r_actual_col_indptr: */ - __pyx_v_violation = (__pyx_v_violation + pow(((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_64)) ))) - (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_67)) )))), 2.0)); + (__pyx_v_r_actual_element[0]) = __pyx_f_6gensim_6models_7nmf_pgd_clip((__pyx_v_r_actual_element[0]), (-__pyx_v_v_max), __pyx_v_v_max); - /* "gensim/models/nmf_pgd.pyx":192 - * ) + /* "gensim/models/nmf_pgd.pyx":144 + * r_actual_element[0] = fmax(r_actual_element[0], 0) * - * if r_col_idx_idx == r_actual_col_idx_idx: # <<<<<<<<<<<<<< - * violation += ( - * r_data[ + * if r_actual_element[0] != 0: # <<<<<<<<<<<<<< + * r_actual_element[0] = copysign(r_actual_element[0], r_actual_sign) + * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) */ - goto __pyx_L16; } - /* "gensim/models/nmf_pgd.pyx":204 - * ) ** 2 + /* "gensim/models/nmf_pgd.pyx":148 + * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) + * + * if r_col_indptr == r_actual_col_indptr: # <<<<<<<<<<<<<< + * violation += (r_element[0] - r_actual_element[0]) ** 2 * else: - * violation += r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] */ - /*else*/ { + __pyx_t_11 = ((__pyx_v_r_col_indptr == __pyx_v_r_actual_col_indptr) != 0); + if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":205 + /* "gensim/models/nmf_pgd.pyx":149 + * + * if r_col_indptr == r_actual_col_indptr: + * violation += (r_element[0] - r_actual_element[0]) ** 2 # <<<<<<<<<<<<<< * else: - * violation += r_actual_data[ - * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_actual_col_indices[sample_idx] - * ] ** 2 + * violation += r_actual_element[0] ** 2 */ - __pyx_t_68 = __pyx_v_sample_idx; + __pyx_v_violation = (__pyx_v_violation + pow(((__pyx_v_r_element[0]) - (__pyx_v_r_actual_element[0])), 2.0)); - /* "gensim/models/nmf_pgd.pyx":206 - * violation += r_actual_data[ - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] ** 2 + /* "gensim/models/nmf_pgd.pyx":148 + * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) * - */ - __pyx_t_69 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":204 - * ) ** 2 + * if r_col_indptr == r_actual_col_indptr: # <<<<<<<<<<<<<< + * violation += (r_element[0] - r_actual_element[0]) ** 2 * else: - * violation += r_actual_data[ # <<<<<<<<<<<<<< - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] */ - __pyx_t_70 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_68)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_69 * __pyx_v_r_actual_col_indices.strides[0]) )))); + goto __pyx_L16; + } - /* "gensim/models/nmf_pgd.pyx":207 - * r_actual_indptr[sample_idx] - * + r_actual_col_indices[sample_idx] - * ] ** 2 # <<<<<<<<<<<<<< + /* "gensim/models/nmf_pgd.pyx":151 + * violation += (r_element[0] - r_actual_element[0]) ** 2 + * else: + * violation += r_actual_element[0] ** 2 # <<<<<<<<<<<<<< * - * if r_actual_col_indices[sample_idx] < r_actual_col_size: + * if r_actual_col_idx < r_actual_col_size: */ - __pyx_v_violation = (__pyx_v_violation + pow((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_70)) ))), 2.0)); + /*else*/ { + __pyx_v_violation = (__pyx_v_violation + pow((__pyx_v_r_actual_element[0]), 2.0)); } __pyx_L16:; - /* "gensim/models/nmf_pgd.pyx":209 - * ] ** 2 + /* "gensim/models/nmf_pgd.pyx":153 + * violation += r_actual_element[0] ** 2 * - * if r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< - * r_actual_col_indices[sample_idx] += 1 + * if r_actual_col_idx < r_actual_col_size: # <<<<<<<<<<<<<< + * r_actual_col_idx = r_actual_col_idx + 1 * else: */ - __pyx_t_71 = __pyx_v_sample_idx; - __pyx_t_16 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_71 * __pyx_v_r_actual_col_indices.strides[0]) ))) < __pyx_v_r_actual_col_size) != 0); - if (__pyx_t_16) { + __pyx_t_11 = ((__pyx_v_r_actual_col_idx < __pyx_v_r_actual_col_size) != 0); + if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":210 + /* "gensim/models/nmf_pgd.pyx":154 * - * if r_actual_col_indices[sample_idx] < r_actual_col_size: - * r_actual_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< + * if r_actual_col_idx < r_actual_col_size: + * r_actual_col_idx = r_actual_col_idx + 1 # <<<<<<<<<<<<<< * else: - * r_col_indices[sample_idx] += 1 + * r_col_idx = r_col_idx + 1 */ - __pyx_t_72 = __pyx_v_sample_idx; - *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_72 * __pyx_v_r_actual_col_indices.strides[0]) )) += 1; + __pyx_v_r_actual_col_idx = (__pyx_v_r_actual_col_idx + 1); - /* "gensim/models/nmf_pgd.pyx":209 - * ] ** 2 + /* "gensim/models/nmf_pgd.pyx":153 + * violation += r_actual_element[0] ** 2 * - * if r_actual_col_indices[sample_idx] < r_actual_col_size: # <<<<<<<<<<<<<< - * r_actual_col_indices[sample_idx] += 1 + * if r_actual_col_idx < r_actual_col_size: # <<<<<<<<<<<<<< + * r_actual_col_idx = r_actual_col_idx + 1 * else: */ goto __pyx_L17; } - /* "gensim/models/nmf_pgd.pyx":212 - * r_actual_col_indices[sample_idx] += 1 + /* "gensim/models/nmf_pgd.pyx":156 + * r_actual_col_idx = r_actual_col_idx + 1 * else: - * r_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< + * r_col_idx = r_col_idx + 1 # <<<<<<<<<<<<<< * else: - * violation += r_data[ + * violation += r_element[0] ** 2 */ /*else*/ { - __pyx_t_73 = __pyx_v_sample_idx; - *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_73 * __pyx_v_r_col_indices.strides[0]) )) += 1; + __pyx_v_r_col_idx = (__pyx_v_r_col_idx + 1); } __pyx_L17:; - /* "gensim/models/nmf_pgd.pyx":123 + /* "gensim/models/nmf_pgd.pyx":138 * ] * - * if r_col_idx_idx >= r_actual_col_idx_idx: # <<<<<<<<<<<<<< - * r_actual_sign = copysign( - * r_actual_sign, + * if r_col_indptr >= r_actual_col_indptr: # <<<<<<<<<<<<<< + * r_actual_sign = copysign(r_actual_sign, r_actual_element[0]) + * */ goto __pyx_L14; } - /* "gensim/models/nmf_pgd.pyx":214 - * r_col_indices[sample_idx] += 1 - * else: - * violation += r_data[ # <<<<<<<<<<<<<< - * r_indptr[sample_idx] - * + r_col_indices[sample_idx] - */ - /*else*/ { - - /* "gensim/models/nmf_pgd.pyx":215 - * else: - * violation += r_data[ - * r_indptr[sample_idx] # <<<<<<<<<<<<<< - * + r_col_indices[sample_idx] - * ] ** 2 - */ - __pyx_t_74 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":216 - * violation += r_data[ - * r_indptr[sample_idx] - * + r_col_indices[sample_idx] # <<<<<<<<<<<<<< - * ] ** 2 - * - */ - __pyx_t_75 = __pyx_v_sample_idx; - - /* "gensim/models/nmf_pgd.pyx":214 - * r_col_indices[sample_idx] += 1 + /* "gensim/models/nmf_pgd.pyx":158 + * r_col_idx = r_col_idx + 1 * else: - * violation += r_data[ # <<<<<<<<<<<<<< - * r_indptr[sample_idx] - * + r_col_indices[sample_idx] - */ - __pyx_t_76 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_74)) ))) + (*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_75 * __pyx_v_r_col_indices.strides[0]) )))); - - /* "gensim/models/nmf_pgd.pyx":217 - * r_indptr[sample_idx] - * + r_col_indices[sample_idx] - * ] ** 2 # <<<<<<<<<<<<<< + * violation += r_element[0] ** 2 # <<<<<<<<<<<<<< * - * if r_col_indices[sample_idx] < r_col_size: + * if r_col_idx < r_col_size: */ - __pyx_v_violation = (__pyx_v_violation + pow((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_76)) ))), 2.0)); + /*else*/ { + __pyx_v_violation = (__pyx_v_violation + pow((__pyx_v_r_element[0]), 2.0)); - /* "gensim/models/nmf_pgd.pyx":219 - * ] ** 2 + /* "gensim/models/nmf_pgd.pyx":160 + * violation += r_element[0] ** 2 * - * if r_col_indices[sample_idx] < r_col_size: # <<<<<<<<<<<<<< - * r_col_indices[sample_idx] += 1 + * if r_col_idx < r_col_size: # <<<<<<<<<<<<<< + * r_col_idx = r_col_idx + 1 * else: */ - __pyx_t_77 = __pyx_v_sample_idx; - __pyx_t_16 = (((*((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_77 * __pyx_v_r_col_indices.strides[0]) ))) < __pyx_v_r_col_size) != 0); - if (__pyx_t_16) { + __pyx_t_11 = ((__pyx_v_r_col_idx < __pyx_v_r_col_size) != 0); + if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":220 + /* "gensim/models/nmf_pgd.pyx":161 * - * if r_col_indices[sample_idx] < r_col_size: - * r_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< + * if r_col_idx < r_col_size: + * r_col_idx = r_col_idx + 1 # <<<<<<<<<<<<<< * else: - * r_actual_col_indices[sample_idx] += 1 + * r_actual_col_idx = r_actual_col_idx + 1 */ - __pyx_t_78 = __pyx_v_sample_idx; - *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_col_indices.data + __pyx_t_78 * __pyx_v_r_col_indices.strides[0]) )) += 1; + __pyx_v_r_col_idx = (__pyx_v_r_col_idx + 1); - /* "gensim/models/nmf_pgd.pyx":219 - * ] ** 2 + /* "gensim/models/nmf_pgd.pyx":160 + * violation += r_element[0] ** 2 * - * if r_col_indices[sample_idx] < r_col_size: # <<<<<<<<<<<<<< - * r_col_indices[sample_idx] += 1 + * if r_col_idx < r_col_size: # <<<<<<<<<<<<<< + * r_col_idx = r_col_idx + 1 * else: */ goto __pyx_L18; } - /* "gensim/models/nmf_pgd.pyx":222 - * r_col_indices[sample_idx] += 1 + /* "gensim/models/nmf_pgd.pyx":163 + * r_col_idx = r_col_idx + 1 * else: - * r_actual_col_indices[sample_idx] += 1 # <<<<<<<<<<<<<< + * r_actual_col_idx = r_actual_col_idx + 1 # <<<<<<<<<<<<<< * * return sqrt(violation) */ /*else*/ { - __pyx_t_79 = __pyx_v_sample_idx; - *((Py_ssize_t *) ( /* dim=0 */ (__pyx_v_r_actual_col_indices.data + __pyx_t_79 * __pyx_v_r_actual_col_indices.strides[0]) )) += 1; + __pyx_v_r_actual_col_idx = (__pyx_v_r_actual_col_idx + 1); } __pyx_L18:; } @@ -3608,8 +3198,8 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje #endif } - /* "gensim/models/nmf_pgd.pyx":106 - * cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) + /* "gensim/models/nmf_pgd.pyx":112 + * cdef double violation = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] @@ -3627,39 +3217,34 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } } - /* "gensim/models/nmf_pgd.pyx":224 - * r_actual_col_indices[sample_idx] += 1 + /* "gensim/models/nmf_pgd.pyx":165 + * r_actual_col_idx = r_actual_col_idx + 1 * * return sqrt(violation) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); - __pyx_t_4 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 224, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_r = __pyx_t_4; - __pyx_t_4 = 0; + __pyx_t_1 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 165, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":64 + /* "gensim/models/nmf_pgd.pyx":68 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< - * int[::1] r_indptr, - * int[::1] r_indices, + * r, + * r_actual, */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_XDECREF(__pyx_t_5); - __PYX_XDEC_MEMVIEW(&__pyx_t_6, 1); + __PYX_XDEC_MEMVIEW(&__pyx_t_2, 1); + __PYX_XDEC_MEMVIEW(&__pyx_t_3, 1); __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_r", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; - __PYX_XDEC_MEMVIEW(&__pyx_v_r_col_indices, 1); - __PYX_XDEC_MEMVIEW(&__pyx_v_r_actual_col_indices, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_r_indptr, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_r_indices, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_r_data, 1); @@ -17330,8 +16915,8 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_component_idx_2, __pyx_k_component_idx_2, sizeof(__pyx_k_component_idx_2), 0, 0, 1, 1}, {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, + {&__pyx_n_s_data, __pyx_k_data, sizeof(__pyx_k_data), 0, 0, 1, 1}, {&__pyx_n_s_dict, __pyx_k_dict, sizeof(__pyx_k_dict), 0, 0, 1, 1}, - {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, {&__pyx_n_s_encode, __pyx_k_encode, sizeof(__pyx_k_encode), 0, 0, 1, 1}, {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, @@ -17348,7 +16933,8 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_hessian, __pyx_k_hessian, sizeof(__pyx_k_hessian), 0, 0, 1, 1}, {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, - {&__pyx_n_s_intp, __pyx_k_intp, sizeof(__pyx_k_intp), 0, 0, 1, 1}, + {&__pyx_n_s_indices, __pyx_k_indices, sizeof(__pyx_k_indices), 0, 0, 1, 1}, + {&__pyx_n_s_indptr, __pyx_k_indptr, sizeof(__pyx_k_indptr), 0, 0, 1, 1}, {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, {&__pyx_kp_s_itemsize_0_for_cython_array, __pyx_k_itemsize_0_for_cython_array, sizeof(__pyx_k_itemsize_0_for_cython_array), 0, 0, 1, 0}, {&__pyx_n_s_kappa, __pyx_k_kappa, sizeof(__pyx_k_kappa), 0, 0, 1, 1}, @@ -17364,8 +16950,6 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_new, __pyx_k_new, sizeof(__pyx_k_new), 0, 0, 1, 1}, {&__pyx_kp_s_nmf_pgd_pyx, __pyx_k_nmf_pgd_pyx, sizeof(__pyx_k_nmf_pgd_pyx), 0, 0, 1, 0}, {&__pyx_kp_s_no_default___reduce___due_to_non, __pyx_k_no_default___reduce___due_to_non, sizeof(__pyx_k_no_default___reduce___due_to_non), 0, 0, 1, 0}, - {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, - {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, {&__pyx_n_s_pickle, __pyx_k_pickle, sizeof(__pyx_k_pickle), 0, 0, 1, 1}, @@ -17378,17 +16962,21 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_pyx_type, __pyx_k_pyx_type, sizeof(__pyx_k_pyx_type), 0, 0, 1, 1}, {&__pyx_n_s_pyx_unpickle_Enum, __pyx_k_pyx_unpickle_Enum, sizeof(__pyx_k_pyx_unpickle_Enum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, - {&__pyx_n_s_r_actual_col_idx_idx, __pyx_k_r_actual_col_idx_idx, sizeof(__pyx_k_r_actual_col_idx_idx), 0, 0, 1, 1}, - {&__pyx_n_s_r_actual_col_indices, __pyx_k_r_actual_col_indices, sizeof(__pyx_k_r_actual_col_indices), 0, 0, 1, 1}, + {&__pyx_n_s_r, __pyx_k_r, sizeof(__pyx_k_r), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual, __pyx_k_r_actual, sizeof(__pyx_k_r_actual), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_col_idx, __pyx_k_r_actual_col_idx, sizeof(__pyx_k_r_actual_col_idx), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_col_indptr, __pyx_k_r_actual_col_indptr, sizeof(__pyx_k_r_actual_col_indptr), 0, 0, 1, 1}, {&__pyx_n_s_r_actual_col_size, __pyx_k_r_actual_col_size, sizeof(__pyx_k_r_actual_col_size), 0, 0, 1, 1}, {&__pyx_n_s_r_actual_data, __pyx_k_r_actual_data, sizeof(__pyx_k_r_actual_data), 0, 0, 1, 1}, + {&__pyx_n_s_r_actual_element, __pyx_k_r_actual_element, sizeof(__pyx_k_r_actual_element), 0, 0, 1, 1}, {&__pyx_n_s_r_actual_indices, __pyx_k_r_actual_indices, sizeof(__pyx_k_r_actual_indices), 0, 0, 1, 1}, {&__pyx_n_s_r_actual_indptr, __pyx_k_r_actual_indptr, sizeof(__pyx_k_r_actual_indptr), 0, 0, 1, 1}, {&__pyx_n_s_r_actual_sign, __pyx_k_r_actual_sign, sizeof(__pyx_k_r_actual_sign), 0, 0, 1, 1}, - {&__pyx_n_s_r_col_idx_idx, __pyx_k_r_col_idx_idx, sizeof(__pyx_k_r_col_idx_idx), 0, 0, 1, 1}, - {&__pyx_n_s_r_col_indices, __pyx_k_r_col_indices, sizeof(__pyx_k_r_col_indices), 0, 0, 1, 1}, + {&__pyx_n_s_r_col_idx, __pyx_k_r_col_idx, sizeof(__pyx_k_r_col_idx), 0, 0, 1, 1}, + {&__pyx_n_s_r_col_indptr, __pyx_k_r_col_indptr, sizeof(__pyx_k_r_col_indptr), 0, 0, 1, 1}, {&__pyx_n_s_r_col_size, __pyx_k_r_col_size, sizeof(__pyx_k_r_col_size), 0, 0, 1, 1}, {&__pyx_n_s_r_data, __pyx_k_r_data, sizeof(__pyx_k_r_data), 0, 0, 1, 1}, + {&__pyx_n_s_r_element, __pyx_k_r_element, sizeof(__pyx_k_r_element), 0, 0, 1, 1}, {&__pyx_n_s_r_indices, __pyx_k_r_indices, sizeof(__pyx_k_r_indices), 0, 0, 1, 1}, {&__pyx_n_s_r_indptr, __pyx_k_r_indptr, sizeof(__pyx_k_r_indptr), 0, 0, 1, 1}, {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, @@ -17417,11 +17005,10 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_update, __pyx_k_update, sizeof(__pyx_k_update), 0, 0, 1, 1}, {&__pyx_n_s_v_max, __pyx_k_v_max, sizeof(__pyx_k_v_max), 0, 0, 1, 1}, {&__pyx_n_s_violation, __pyx_k_violation, sizeof(__pyx_k_violation), 0, 0, 1, 1}, - {&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0} }; static int __Pyx_InitCachedBuiltins(void) { - __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 45, __pyx_L1_error) + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 49, __pyx_L1_error) __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 132, __pyx_L1_error) __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 147, __pyx_L1_error) __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 150, __pyx_L1_error) @@ -17663,29 +17250,29 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__21); __Pyx_GIVEREF(__pyx_tuple__21); - /* "gensim/models/nmf_pgd.pyx":20 - * return x if x > y else y + /* "gensim/models/nmf_pgd.pyx":24 + * return a * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. * */ - __pyx_tuple__22 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(0, 20, __pyx_L1_error) + __pyx_tuple__22 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(0, 24, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__22); __Pyx_GIVEREF(__pyx_tuple__22); - __pyx_codeobj__23 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__22, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_h, 20, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__23)) __PYX_ERR(0, 20, __pyx_L1_error) + __pyx_codeobj__23 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__22, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_h, 24, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__23)) __PYX_ERR(0, 24, __pyx_L1_error) - /* "gensim/models/nmf_pgd.pyx":64 + /* "gensim/models/nmf_pgd.pyx":68 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< - * int[::1] r_indptr, - * int[::1] r_indices, + * r, + * r_actual, */ - __pyx_tuple__24 = PyTuple_Pack(18, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_r_actual_sign, __pyx_n_s_sample_idx, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_idx_idx, __pyx_n_s_r_actual_col_idx_idx, __pyx_n_s_r_col_indices, __pyx_n_s_r_actual_col_indices); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(0, 64, __pyx_L1_error) + __pyx_tuple__24 = PyTuple_Pack(22, __pyx_n_s_r, __pyx_n_s_r_actual, __pyx_n_s_lambda, __pyx_n_s_v_max, __pyx_n_s_r_indptr, __pyx_n_s_r_indices, __pyx_n_s_r_data, __pyx_n_s_r_actual_indptr, __pyx_n_s_r_actual_indices, __pyx_n_s_r_actual_data, __pyx_n_s_r_col_size, __pyx_n_s_r_actual_col_size, __pyx_n_s_r_col_indptr, __pyx_n_s_r_actual_col_indptr, __pyx_n_s_r_col_idx, __pyx_n_s_r_actual_col_idx, __pyx_n_s_r_element, __pyx_n_s_r_actual_element, __pyx_n_s_r_actual_sign, __pyx_n_s_n_samples, __pyx_n_s_sample_idx, __pyx_n_s_violation); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__24); __Pyx_GIVEREF(__pyx_tuple__24); - __pyx_codeobj__25 = (PyObject*)__Pyx_PyCode_New(8, 0, 18, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__24, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_r, 64, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__25)) __PYX_ERR(0, 64, __pyx_L1_error) + __pyx_codeobj__25 = (PyObject*)__Pyx_PyCode_New(4, 0, 22, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__24, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_r, 68, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__25)) __PYX_ERR(0, 68, __pyx_L1_error) /* "View.MemoryView":285 * return self.name @@ -18065,40 +17652,28 @@ if (!__Pyx_RefNanny) { if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif - /* "gensim/models/nmf_pgd.pyx":12 - * from libc.math cimport sqrt, fabs, copysign - * from cython.parallel import prange - * import numpy as np # <<<<<<<<<<<<<< - * - * cdef double fmin(double x, double y) nogil: - */ - __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 12, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 12, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - - /* "gensim/models/nmf_pgd.pyx":20 - * return x if x > y else y + /* "gensim/models/nmf_pgd.pyx":24 + * return a * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. * */ - __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 20, __pyx_L1_error) + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 24, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 20, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 24, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "gensim/models/nmf_pgd.pyx":64 + /* "gensim/models/nmf_pgd.pyx":68 * return sqrt(violation) * * def solve_r( # <<<<<<<<<<<<<< - * int[::1] r_indptr, - * int[::1] r_indices, + * r, + * r_actual, */ - __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 64, __pyx_L1_error) + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_r, __pyx_t_1) < 0) __PYX_ERR(0, 64, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_r, __pyx_t_1) < 0) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "gensim/models/nmf_pgd.pyx":1 @@ -18614,35 +18189,29 @@ static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, } } -/* GetModuleGlobalName */ -static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name) { - PyObject *result; -#if !CYTHON_AVOID_BORROWED_REFS -#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 - result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); - if (likely(result)) { - Py_INCREF(result); - } else if (unlikely(PyErr_Occurred())) { - result = NULL; - } else { -#else - result = PyDict_GetItem(__pyx_d, name); - if (likely(result)) { - Py_INCREF(result); - } else { -#endif -#else - result = PyObject_GetItem(__pyx_d, name); - if (!result) { - PyErr_Clear(); -#endif - result = __Pyx_GetBuiltinName(name); +/* ArgTypeTest */ +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) +{ + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; } - return result; + else if (exact) { + #if PY_MAJOR_VERSION == 2 + if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; + #endif + } + else { + if (likely(__Pyx_TypeCheck(obj, type))) return 1; + } + PyErr_Format(PyExc_TypeError, + "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", + name, type->tp_name, Py_TYPE(obj)->tp_name); + return 0; } /* PyObjectCall */ - #if CYTHON_COMPILING_IN_CPYTHON +#if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { PyObject *result; ternaryfunc call = func->ob_type->tp_call; @@ -18661,29 +18230,8 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg } #endif -/* ArgTypeTest */ - static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) -{ - if (unlikely(!type)) { - PyErr_SetString(PyExc_SystemError, "Missing type object"); - return 0; - } - else if (exact) { - #if PY_MAJOR_VERSION == 2 - if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; - #endif - } - else { - if (likely(__Pyx_TypeCheck(obj, type))) return 1; - } - PyErr_Format(PyExc_TypeError, - "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", - name, type->tp_name, Py_TYPE(obj)->tp_name); - return 0; -} - /* PyErrFetchRestore */ - #if CYTHON_FAST_THREAD_STATE +#if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; tmp_type = tstate->curexc_type; @@ -18707,7 +18255,7 @@ static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject #endif /* RaiseException */ - #if PY_MAJOR_VERSION < 3 +#if PY_MAJOR_VERSION < 3 static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, CYTHON_UNUSED PyObject *cause) { __Pyx_PyThreadState_declare @@ -18866,7 +18414,7 @@ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject #endif /* PyCFunctionFastCall */ - #if CYTHON_FAST_PYCCALL +#if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { PyCFunctionObject *func = (PyCFunctionObject*)func_obj; PyCFunction meth = PyCFunction_GET_FUNCTION(func); @@ -18889,7 +18437,7 @@ static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, P #endif /* PyFunctionFastCall */ - #if CYTHON_FAST_PYCALL +#if CYTHON_FAST_PYCALL #include "frameobject.h" static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, PyObject *globals) { @@ -19009,7 +18557,7 @@ static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, #endif /* PyObjectCallMethO */ - #if CYTHON_COMPILING_IN_CPYTHON +#if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { PyObject *self, *result; PyCFunction cfunc; @@ -19029,7 +18577,7 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject #endif /* PyObjectCallOneArg */ - #if CYTHON_COMPILING_IN_CPYTHON +#if CYTHON_COMPILING_IN_CPYTHON static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_New(1); @@ -19069,7 +18617,7 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObjec #endif /* BytesEquals */ - static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { +static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else @@ -19116,7 +18664,7 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObjec } /* UnicodeEquals */ - static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { +static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else @@ -19218,7 +18766,7 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObjec } /* GetAttr */ - static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { +static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { #if CYTHON_USE_TYPE_SLOTS #if PY_MAJOR_VERSION >= 3 if (likely(PyUnicode_Check(n))) @@ -19231,7 +18779,7 @@ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObjec } /* GetItemInt */ - static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { +static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { PyObject *r; if (!j) return NULL; r = PyObject_GetItem(o, j); @@ -19318,7 +18866,7 @@ static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, } /* ObjectGetItem */ - #if CYTHON_USE_TYPE_SLOTS +#if CYTHON_USE_TYPE_SLOTS static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { PyObject *runerr; Py_ssize_t key_value; @@ -19347,7 +18895,7 @@ static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { #endif /* decode_c_string */ - static CYTHON_INLINE PyObject* __Pyx_decode_c_string( +static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { @@ -19380,7 +18928,7 @@ static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { } /* PyErrExceptionMatches */ - #if CYTHON_FAST_THREAD_STATE +#if CYTHON_FAST_THREAD_STATE static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(tuple); @@ -19405,7 +18953,7 @@ static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tsta #endif /* GetAttr3 */ - static PyObject *__Pyx_GetAttr3Default(PyObject *d) { +static PyObject *__Pyx_GetAttr3Default(PyObject *d) { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign if (unlikely(!__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) @@ -19419,6 +18967,33 @@ static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *o, PyObject *n, PyObject return (likely(r)) ? r : __Pyx_GetAttr3Default(d); } +/* GetModuleGlobalName */ +static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name) { + PyObject *result; +#if !CYTHON_AVOID_BORROWED_REFS +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 + result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); + if (likely(result)) { + Py_INCREF(result); + } else if (unlikely(PyErr_Occurred())) { + result = NULL; + } else { +#else + result = PyDict_GetItem(__pyx_d, name); + if (likely(result)) { + Py_INCREF(result); + } else { +#endif +#else + result = PyObject_GetItem(__pyx_d, name); + if (!result) { + PyErr_Clear(); +#endif + result = __Pyx_GetBuiltinName(name); + } + return result; +} + /* RaiseTooManyValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { PyErr_Format(PyExc_ValueError, @@ -21183,52 +20758,6 @@ static int __Pyx_ValidateAndInit_memviewslice( return result; } -/* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *obj, int writable_flag) { - __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_BufFmt_StackElem stack[1]; - int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; - int retcode; - if (obj == Py_None) { - result.memview = (struct __pyx_memoryview_obj *) Py_None; - return result; - } - retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, - (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 1, - &__Pyx_TypeInfo_int, stack, - &result, obj); - if (unlikely(retcode == -1)) - goto __pyx_fail; - return result; -__pyx_fail: - result.memview = NULL; - result.data = NULL; - return result; -} - -/* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *obj, int writable_flag) { - __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_BufFmt_StackElem stack[1]; - int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; - int retcode; - if (obj == Py_None) { - result.memview = (struct __pyx_memoryview_obj *) Py_None; - return result; - } - retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, - (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 1, - &__Pyx_TypeInfo_double, stack, - &result, obj); - if (unlikely(retcode == -1)) - goto __pyx_fail; - return result; -__pyx_fail: - result.memview = NULL; - result.data = NULL; - return result; -} - /* MemviewSliceCopyTemplate */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, @@ -21948,18 +21477,41 @@ __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, } /* ObjectToMemviewSlice */ - static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_Py_ssize_t(PyObject *obj, int writable_flag) { + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_int(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; - int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } - retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, - PyBUF_RECORDS_RO | writable_flag, 1, - &__Pyx_TypeInfo_Py_ssize_t, stack, + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 1, + &__Pyx_TypeInfo_int, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dc_double(PyObject *obj, int writable_flag) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 1, + &__Pyx_TypeInfo_double, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 7cd33cad14..5a3b7e14eb 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -9,7 +9,6 @@ cimport cython from libc.math cimport sqrt, fabs, copysign from cython.parallel import prange -import numpy as np cdef double fmin(double x, double y) nogil: return x if x < y else y @@ -17,6 +16,11 @@ cdef double fmin(double x, double y) nogil: cdef double fmax(double x, double y) nogil: return x if x > y else y +cdef double clip(double a, double a_min, double a_max) nogil: + a = fmin(a, a_max) + a = fmax(a, a_min) + return a + def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): """Find optimal dense vector representation for current W and r matrices. @@ -62,12 +66,8 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou return sqrt(violation) def solve_r( - int[::1] r_indptr, - int[::1] r_indices, - double[::1] r_data, - int[::1] r_actual_indptr, - int[::1] r_actual_indices, - double[::1] r_actual_data, + r, + r_actual, double lambda_, double v_max ): @@ -75,12 +75,8 @@ def solve_r( Parameters ---------- - r_indptr : vector - r_indices : vector - r_data : vector - r_actual_indptr : vector - r_actual_indices : vector - r_actual_data : vector + r: sparse matrix + r_actual: sparse matrix lambda_ : double v_max : double @@ -90,135 +86,80 @@ def solve_r( Cumulative difference between previous and current residuals vectors. """ - cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 - cdef double violation = 0 - cdef double r_actual_sign = 1.0 - cdef Py_ssize_t sample_idx + cdef int[::1] r_indptr = r.indptr + cdef int[::1] r_indices = r.indices + cdef double[::1] r_data = r.data + cdef int[::1] r_actual_indptr = r_actual.indptr + cdef int[::1] r_actual_indices = r_actual.indices + cdef double[::1] r_actual_data = r_actual.data cdef Py_ssize_t r_col_size = 0 cdef Py_ssize_t r_actual_col_size = 0 - cdef Py_ssize_t r_col_idx_idx = 0 - cdef Py_ssize_t r_actual_col_idx_idx + cdef Py_ssize_t r_col_indptr + cdef Py_ssize_t r_actual_col_indptr + cdef Py_ssize_t r_col_idx + cdef Py_ssize_t r_actual_col_idx + cdef double* r_element + cdef double* r_actual_element - cdef Py_ssize_t [:] r_col_indices = np.zeros(n_samples, dtype=np.intp) - cdef Py_ssize_t [:] r_actual_col_indices = np.zeros(n_samples, dtype=np.intp) + cdef double r_actual_sign = 1.0 + + cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 + cdef Py_ssize_t sample_idx + + cdef double violation = 0 for sample_idx in prange(n_samples, nogil=True): r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] - r_col_indices[sample_idx] = 0 - r_actual_col_indices[sample_idx] = 0 + r_col_idx = 0 + r_actual_col_idx = 0 - while r_col_indices[sample_idx] < r_col_size or r_actual_col_indices[sample_idx] < r_actual_col_size: - r_col_idx_idx = r_indices[ + while r_col_idx < r_col_size or r_actual_col_idx < r_actual_col_size: + r_col_indptr = r_indices[ r_indptr[sample_idx] - + r_col_indices[sample_idx] + + r_col_idx ] - r_actual_col_idx_idx = r_actual_indices[ + r_actual_col_indptr = r_actual_indices[ r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] + + r_actual_col_idx ] - if r_col_idx_idx >= r_actual_col_idx_idx: - r_actual_sign = copysign( - r_actual_sign, - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] - ) - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fabs( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] - ) - lambda_ - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fmax( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ], - 0 - ) - - if ( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] != 0 - ): - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = copysign( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ], - r_actual_sign - ) - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fmax( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ], - -v_max - ) - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] = fmin( - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ], - v_max - ) - - if r_col_idx_idx == r_actual_col_idx_idx: - violation += ( - r_data[ - r_indptr[sample_idx] - + r_col_indices[sample_idx] - ] - - r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] - ) ** 2 + r_element = &r_data[ + r_indptr[sample_idx] + + r_col_idx + ] + r_actual_element = &r_actual_data[ + r_actual_indptr[sample_idx] + + r_actual_col_idx + ] + + if r_col_indptr >= r_actual_col_indptr: + r_actual_sign = copysign(r_actual_sign, r_actual_element[0]) + + r_actual_element[0] = fabs(r_actual_element[0]) - lambda_ + r_actual_element[0] = fmax(r_actual_element[0], 0) + + if r_actual_element[0] != 0: + r_actual_element[0] = copysign(r_actual_element[0], r_actual_sign) + r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) + + if r_col_indptr == r_actual_col_indptr: + violation += (r_element[0] - r_actual_element[0]) ** 2 else: - violation += r_actual_data[ - r_actual_indptr[sample_idx] - + r_actual_col_indices[sample_idx] - ] ** 2 + violation += r_actual_element[0] ** 2 - if r_actual_col_indices[sample_idx] < r_actual_col_size: - r_actual_col_indices[sample_idx] += 1 + if r_actual_col_idx < r_actual_col_size: + r_actual_col_idx = r_actual_col_idx + 1 else: - r_col_indices[sample_idx] += 1 + r_col_idx = r_col_idx + 1 else: - violation += r_data[ - r_indptr[sample_idx] - + r_col_indices[sample_idx] - ] ** 2 + violation += r_element[0] ** 2 - if r_col_indices[sample_idx] < r_col_size: - r_col_indices[sample_idx] += 1 + if r_col_idx < r_col_size: + r_col_idx = r_col_idx + 1 else: - r_actual_col_indices[sample_idx] += 1 + r_actual_col_idx = r_actual_col_idx + 1 return sqrt(violation) From a811c6708bdaf5dfd3a20257ed766f8ffff888d0 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 21 Dec 2018 14:22:18 +0300 Subject: [PATCH 106/144] Fix tests --- gensim/models/nmf.py | 8 ++++---- gensim/test/test_nmf.py | 4 ++-- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index a13cbc9f9c..409e31302a 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -49,9 +49,9 @@ def __init__( ---------- corpus : iterable of list of (int, float), optional Training corpus. If not given, model is left untrained. - num_topics : int + num_topics : int, optional Number of topics to extract. - id2word: Dict[int, str], optional + id2word: gensim.corpora.Dictionary, optional Mapping from token id to token. If not set words get replaced with word ids. chunksize: int, optional Number of documents to be used in each training chunk. @@ -315,13 +315,13 @@ def get_term_topics(self, word_id, minimum_probability=None): values = [] - word_topics = self._W[word_id] + word_topics = self._W.getrow(word_id) if self.normalize: word_topics /= word_topics.sum() for topic_id in range(0, self.num_topics): - word_coef = word_topics[topic_id] + word_coef = word_topics[0, topic_id] if word_coef >= minimum_probability: values.append((topic_id, word_coef)) diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index 2e3b72fc04..9b5f0703c2 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -42,7 +42,7 @@ def testTransform(self): vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = [0., 1.] # must contain the same values, up to re-ordering - self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-8)) + self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-2)) # transform one word word = 5 @@ -51,7 +51,7 @@ def testTransform(self): vec = matutils.sparse2full(transformed, 2) expected = [0., 1.] # must contain the same values, up to re-ordering - self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-8)) + self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-2)) def testTopTopics(self): top_topics = self.model.top_topics(self.corpus) From d063a4f84e6fce2a2e65b51db86a98ecf623fb8b Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 21 Dec 2018 14:24:01 +0300 Subject: [PATCH 107/144] A few fixes --- MANIFEST.in | 2 +- gensim/models/nmf.py | 10 ---------- tox.ini | 2 +- 3 files changed, 2 insertions(+), 12 deletions(-) diff --git a/MANIFEST.in b/MANIFEST.in index dc409ba426..37a929af36 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -35,4 +35,4 @@ include gensim/_matutils.c include gensim/_matutils.pyx include gensim/models/nmf_pgd.c -include gensim/models/nmf_pgd.pyx \ No newline at end of file +include gensim/models/nmf_pgd.pyx diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 409e31302a..2744e3f4ab 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -32,7 +32,6 @@ def __init__( kappa=1.0, minimum_probability=0.01, use_r=False, - store_r=False, w_max_iter=200, w_stop_condition=1e-4, h_r_max_iter=50, @@ -62,8 +61,6 @@ def __init__( to False. kappa : float, optional Optimizer step coefficient. Increaing it makes model train faster, but adds a risk that it won't converge. - store_r : bool, optional - Whether to save residuals during training. w_max_iter: int, optional Maximum number of iterations to train W matrix per each batch. w_stop_condition: float, optional @@ -111,11 +108,6 @@ def __init__( self.w_std = None - if store_r: - self._R = [] - else: - self._R = None - if corpus is not None: self.update(corpus) @@ -428,8 +420,6 @@ def update(self, corpus, chunks_as_numpy=False): v, self._W, r=self._r, h=self._h, v_max=self.v_max ) h, r = self._h, self._r - if self._R is not None: - self._R.append(r) self.A *= chunk_idx - 1 self.A += h.dot(h.T) diff --git a/tox.ini b/tox.ini index bc6b51db44..c5446a8097 100644 --- a/tox.ini +++ b/tox.ini @@ -58,7 +58,7 @@ commands = [testenv:flake8] recreate = True -deps = flake8 <= 3.5.0 +deps = flake8 commands = flake8 gensim/ {posargs} From b8f5d79c4ab2b7ef594ff0dfee2c6a8f115862e0 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 21 Dec 2018 14:26:32 +0300 Subject: [PATCH 108/144] Blank line at the end of each docstring --- gensim/models/nmf.py | 3 +++ gensim/models/nmf_pgd.pyx | 3 ++- 2 files changed, 5 insertions(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 2744e3f4ab..5ac1aaea14 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -79,6 +79,7 @@ def __init__( The more it is, the more sparse are matrices. Significantly increases performance. random_state: {np.random.RandomState, int}, optional Seed for random generator. Useful for reproducibility. + """ self._w_error = None self.n_features = None @@ -403,6 +404,7 @@ def update(self, corpus, chunks_as_numpy=False): Whether each chunk passed to the inference step should be a numpy.ndarray or not. Numpy can in some settings turn the term IDs into floats, these will be converted back into integers in inference, which incurs a performance hit. For distributed computing it may be desirable to keep the chunks as `numpy.ndarray`. + """ if self.n_features is None: @@ -567,6 +569,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): Residuals matrix. v_max : float Maximum possible value in matrices. + """ m, n = W.shape if v_max is not None: diff --git a/gensim/models/nmf_pgd.pyx b/gensim/models/nmf_pgd.pyx index 5a3b7e14eb..01e9075cbc 100644 --- a/gensim/models/nmf_pgd.pyx +++ b/gensim/models/nmf_pgd.pyx @@ -6,7 +6,6 @@ # cython: nonecheck=False # cython: embedsignature=True -cimport cython from libc.math cimport sqrt, fabs, copysign from cython.parallel import prange @@ -35,6 +34,7 @@ def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, dou ------- float Cumulative difference between previous and current h vectors. + """ cdef Py_ssize_t n_components = h.shape[0] @@ -84,6 +84,7 @@ def solve_r( ------- float Cumulative difference between previous and current residuals vectors. + """ cdef int[::1] r_indptr = r.indptr From 361d160a3ea85c51d90698cee18b2c10ef0b77f1 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 21 Dec 2018 14:44:18 +0300 Subject: [PATCH 109/144] Add blank line --- MANIFEST.in | 1 + 1 file changed, 1 insertion(+) diff --git a/MANIFEST.in b/MANIFEST.in index 37a929af36..fe5947fbe2 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -36,3 +36,4 @@ include gensim/_matutils.pyx include gensim/models/nmf_pgd.c include gensim/models/nmf_pgd.pyx + From e2145826f0b119772e97a0d12167b8c36635997b Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 21 Dec 2018 14:55:32 +0300 Subject: [PATCH 110/144] Add the paper reference --- gensim/models/nmf.py | 3 + gensim/models/nmf_pgd.c | 188 ++++++++++++++++++++-------------------- 2 files changed, 95 insertions(+), 96 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 5ac1aaea14..167c304d02 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -19,6 +19,9 @@ class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """Online Non-Negative Matrix Factorization. + + `Renbo Zhao, Vincent Y. F. Tan :"Online Nonnegative Matrix Factorization with Outliers" `_ + """ def __init__( diff --git a/gensim/models/nmf_pgd.c b/gensim/models/nmf_pgd.c index 046cbc7435..e552aaf9da 100644 --- a/gensim/models/nmf_pgd.c +++ b/gensim/models/nmf_pgd.c @@ -1574,10 +1574,6 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ -/* Module declarations from 'cython.view' */ - -/* Module declarations from 'cython' */ - /* Module declarations from 'libc.math' */ /* Module declarations from 'gensim.models.nmf_pgd' */ @@ -1977,7 +1973,7 @@ static PyObject *__pyx_codeobj__25; static PyObject *__pyx_codeobj__32; /* Late includes */ -/* "gensim/models/nmf_pgd.pyx":13 +/* "gensim/models/nmf_pgd.pyx":12 * from cython.parallel import prange * * cdef double fmin(double x, double y) nogil: # <<<<<<<<<<<<<< @@ -1989,7 +1985,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double __pyx_v_x, double __p double __pyx_r; double __pyx_t_1; - /* "gensim/models/nmf_pgd.pyx":14 + /* "gensim/models/nmf_pgd.pyx":13 * * cdef double fmin(double x, double y) nogil: * return x if x < y else y # <<<<<<<<<<<<<< @@ -2004,7 +2000,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double __pyx_v_x, double __p __pyx_r = __pyx_t_1; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":13 + /* "gensim/models/nmf_pgd.pyx":12 * from cython.parallel import prange * * cdef double fmin(double x, double y) nogil: # <<<<<<<<<<<<<< @@ -2017,7 +2013,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmin(double __pyx_v_x, double __p return __pyx_r; } -/* "gensim/models/nmf_pgd.pyx":16 +/* "gensim/models/nmf_pgd.pyx":15 * return x if x < y else y * * cdef double fmax(double x, double y) nogil: # <<<<<<<<<<<<<< @@ -2029,7 +2025,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double __pyx_v_x, double __p double __pyx_r; double __pyx_t_1; - /* "gensim/models/nmf_pgd.pyx":17 + /* "gensim/models/nmf_pgd.pyx":16 * * cdef double fmax(double x, double y) nogil: * return x if x > y else y # <<<<<<<<<<<<<< @@ -2044,7 +2040,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double __pyx_v_x, double __p __pyx_r = __pyx_t_1; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":16 + /* "gensim/models/nmf_pgd.pyx":15 * return x if x < y else y * * cdef double fmax(double x, double y) nogil: # <<<<<<<<<<<<<< @@ -2057,7 +2053,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double __pyx_v_x, double __p return __pyx_r; } -/* "gensim/models/nmf_pgd.pyx":19 +/* "gensim/models/nmf_pgd.pyx":18 * return x if x > y else y * * cdef double clip(double a, double a_min, double a_max) nogil: # <<<<<<<<<<<<<< @@ -2068,7 +2064,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_fmax(double __pyx_v_x, double __p static double __pyx_f_6gensim_6models_7nmf_pgd_clip(double __pyx_v_a, double __pyx_v_a_min, double __pyx_v_a_max) { double __pyx_r; - /* "gensim/models/nmf_pgd.pyx":20 + /* "gensim/models/nmf_pgd.pyx":19 * * cdef double clip(double a, double a_min, double a_max) nogil: * a = fmin(a, a_max) # <<<<<<<<<<<<<< @@ -2077,7 +2073,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_clip(double __pyx_v_a, double __p */ __pyx_v_a = __pyx_f_6gensim_6models_7nmf_pgd_fmin(__pyx_v_a, __pyx_v_a_max); - /* "gensim/models/nmf_pgd.pyx":21 + /* "gensim/models/nmf_pgd.pyx":20 * cdef double clip(double a, double a_min, double a_max) nogil: * a = fmin(a, a_max) * a = fmax(a, a_min) # <<<<<<<<<<<<<< @@ -2086,7 +2082,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_clip(double __pyx_v_a, double __p */ __pyx_v_a = __pyx_f_6gensim_6models_7nmf_pgd_fmax(__pyx_v_a, __pyx_v_a_min); - /* "gensim/models/nmf_pgd.pyx":22 + /* "gensim/models/nmf_pgd.pyx":21 * a = fmin(a, a_max) * a = fmax(a, a_min) * return a # <<<<<<<<<<<<<< @@ -2096,7 +2092,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_clip(double __pyx_v_a, double __p __pyx_r = __pyx_v_a; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":19 + /* "gensim/models/nmf_pgd.pyx":18 * return x if x > y else y * * cdef double clip(double a, double a_min, double a_max) nogil: # <<<<<<<<<<<<<< @@ -2109,7 +2105,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_clip(double __pyx_v_a, double __p return __pyx_r; } -/* "gensim/models/nmf_pgd.pyx":24 +/* "gensim/models/nmf_pgd.pyx":23 * return a * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< @@ -2119,7 +2115,7 @@ static double __pyx_f_6gensim_6models_7nmf_pgd_clip(double __pyx_v_a, double __p /* Python wrapper */ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ -static char __pyx_doc_6gensim_6models_7nmf_pgd_solve_h[] = "solve_h(__Pyx_memviewslice h, __Pyx_memviewslice Wt_v_minus_r, __Pyx_memviewslice WtW, double kappa)\nFind optimal dense vector representation for current W and r matrices.\n\n Parameters\n ----------\n h : matrix\n Dense representation of documents in current batch.\n Wt_v_minus_r : matrix\n WtW : matrix\n\n Returns\n -------\n float\n Cumulative difference between previous and current h vectors.\n "; +static char __pyx_doc_6gensim_6models_7nmf_pgd_solve_h[] = "solve_h(__Pyx_memviewslice h, __Pyx_memviewslice Wt_v_minus_r, __Pyx_memviewslice WtW, double kappa)\nFind optimal dense vector representation for current W and r matrices.\n\n Parameters\n ----------\n h : matrix\n Dense representation of documents in current batch.\n Wt_v_minus_r : matrix\n WtW : matrix\n\n Returns\n -------\n float\n Cumulative difference between previous and current h vectors.\n\n "; static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h = {"solve_h", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6gensim_6models_7nmf_pgd_solve_h}; static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { __Pyx_memviewslice __pyx_v_h = { 0, 0, { 0 }, { 0 }, { 0 } }; @@ -2156,23 +2152,23 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_Wt_v_minus_r)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 24, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 1); __PYX_ERR(0, 23, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_WtW)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 24, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 2); __PYX_ERR(0, 23, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; else { - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 24, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, 3); __PYX_ERR(0, 23, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 24, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "solve_h") < 0)) __PYX_ERR(0, 23, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; @@ -2182,14 +2178,14 @@ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_1solve_h(PyObject *__pyx_self values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } - __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 24, __pyx_L3_error) - __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 24, __pyx_L3_error) - __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 24, __pyx_L3_error) - __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 24, __pyx_L3_error) + __pyx_v_h = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_h.memview)) __PYX_ERR(0, 23, __pyx_L3_error) + __pyx_v_Wt_v_minus_r = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_Wt_v_minus_r.memview)) __PYX_ERR(0, 23, __pyx_L3_error) + __pyx_v_WtW = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[2], PyBUF_WRITABLE); if (unlikely(!__pyx_v_WtW.memview)) __PYX_ERR(0, 23, __pyx_L3_error) + __pyx_v_kappa = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_kappa == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 23, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 24, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("solve_h", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 23, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("gensim.models.nmf_pgd.solve_h", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); @@ -2491,7 +2487,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec __pyx_t_25 = 0; goto __pyx_L0; - /* "gensim/models/nmf_pgd.pyx":24 + /* "gensim/models/nmf_pgd.pyx":23 * return a * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< @@ -2523,7 +2519,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_solve_h(CYTHON_UNUSED PyObjec /* Python wrapper */ static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ -static char __pyx_doc_6gensim_6models_7nmf_pgd_2solve_r[] = "solve_r(r, r_actual, double lambda_, double v_max)\nBound new residuals.\n\n Parameters\n ----------\n r: sparse matrix\n r_actual: sparse matrix\n lambda_ : double\n v_max : double\n\n Returns\n -------\n float\n Cumulative difference between previous and current residuals vectors.\n "; +static char __pyx_doc_6gensim_6models_7nmf_pgd_2solve_r[] = "solve_r(r, r_actual, double lambda_, double v_max)\nBound new residuals.\n\n Parameters\n ----------\n r: sparse matrix\n r_actual: sparse matrix\n lambda_ : double\n v_max : double\n\n Returns\n -------\n float\n Cumulative difference between previous and current residuals vectors.\n\n "; static PyMethodDef __pyx_mdef_6gensim_6models_7nmf_pgd_3solve_r = {"solve_r", (PyCFunction)__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6gensim_6models_7nmf_pgd_2solve_r}; static PyObject *__pyx_pw_6gensim_6models_7nmf_pgd_3solve_r(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_r = 0; @@ -2649,97 +2645,97 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje Py_ssize_t __pyx_t_20; __Pyx_RefNannySetupContext("solve_r", 0); - /* "gensim/models/nmf_pgd.pyx":89 + /* "gensim/models/nmf_pgd.pyx":90 * """ * * cdef int[::1] r_indptr = r.indptr # <<<<<<<<<<<<<< * cdef int[::1] r_indices = r.indices * cdef double[::1] r_data = r.data */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_indptr); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 89, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_indptr); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 90, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 89, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 90, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_r_indptr = __pyx_t_2; __pyx_t_2.memview = NULL; __pyx_t_2.data = NULL; - /* "gensim/models/nmf_pgd.pyx":90 + /* "gensim/models/nmf_pgd.pyx":91 * * cdef int[::1] r_indptr = r.indptr * cdef int[::1] r_indices = r.indices # <<<<<<<<<<<<<< * cdef double[::1] r_data = r.data * cdef int[::1] r_actual_indptr = r_actual.indptr */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_indices); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 90, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_indices); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 90, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 91, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_r_indices = __pyx_t_2; __pyx_t_2.memview = NULL; __pyx_t_2.data = NULL; - /* "gensim/models/nmf_pgd.pyx":91 + /* "gensim/models/nmf_pgd.pyx":92 * cdef int[::1] r_indptr = r.indptr * cdef int[::1] r_indices = r.indices * cdef double[::1] r_data = r.data # <<<<<<<<<<<<<< * cdef int[::1] r_actual_indptr = r_actual.indptr * cdef int[::1] r_actual_indices = r_actual.indices */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_data); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 91, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r, __pyx_n_s_data); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 92, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = __Pyx_PyObject_to_MemoryviewSlice_dc_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_3.memview)) __PYX_ERR(0, 91, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_to_MemoryviewSlice_dc_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_3.memview)) __PYX_ERR(0, 92, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_r_data = __pyx_t_3; __pyx_t_3.memview = NULL; __pyx_t_3.data = NULL; - /* "gensim/models/nmf_pgd.pyx":92 + /* "gensim/models/nmf_pgd.pyx":93 * cdef int[::1] r_indices = r.indices * cdef double[::1] r_data = r.data * cdef int[::1] r_actual_indptr = r_actual.indptr # <<<<<<<<<<<<<< * cdef int[::1] r_actual_indices = r_actual.indices * cdef double[::1] r_actual_data = r_actual.data */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_indptr); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 92, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_indptr); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 93, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 92, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 93, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_r_actual_indptr = __pyx_t_2; __pyx_t_2.memview = NULL; __pyx_t_2.data = NULL; - /* "gensim/models/nmf_pgd.pyx":93 + /* "gensim/models/nmf_pgd.pyx":94 * cdef double[::1] r_data = r.data * cdef int[::1] r_actual_indptr = r_actual.indptr * cdef int[::1] r_actual_indices = r_actual.indices # <<<<<<<<<<<<<< * cdef double[::1] r_actual_data = r_actual.data * */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_indices); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 93, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_indices); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 94, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 93, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_2.memview)) __PYX_ERR(0, 94, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_r_actual_indices = __pyx_t_2; __pyx_t_2.memview = NULL; __pyx_t_2.data = NULL; - /* "gensim/models/nmf_pgd.pyx":94 + /* "gensim/models/nmf_pgd.pyx":95 * cdef int[::1] r_actual_indptr = r_actual.indptr * cdef int[::1] r_actual_indices = r_actual.indices * cdef double[::1] r_actual_data = r_actual.data # <<<<<<<<<<<<<< * * cdef Py_ssize_t r_col_size = 0 */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_data); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 94, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_r_actual, __pyx_n_s_data); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 95, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = __Pyx_PyObject_to_MemoryviewSlice_dc_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_3.memview)) __PYX_ERR(0, 94, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_to_MemoryviewSlice_dc_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_3.memview)) __PYX_ERR(0, 95, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_r_actual_data = __pyx_t_3; __pyx_t_3.memview = NULL; __pyx_t_3.data = NULL; - /* "gensim/models/nmf_pgd.pyx":96 + /* "gensim/models/nmf_pgd.pyx":97 * cdef double[::1] r_actual_data = r_actual.data * * cdef Py_ssize_t r_col_size = 0 # <<<<<<<<<<<<<< @@ -2748,7 +2744,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_col_size = 0; - /* "gensim/models/nmf_pgd.pyx":97 + /* "gensim/models/nmf_pgd.pyx":98 * * cdef Py_ssize_t r_col_size = 0 * cdef Py_ssize_t r_actual_col_size = 0 # <<<<<<<<<<<<<< @@ -2757,7 +2753,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_col_size = 0; - /* "gensim/models/nmf_pgd.pyx":105 + /* "gensim/models/nmf_pgd.pyx":106 * cdef double* r_actual_element * * cdef double r_actual_sign = 1.0 # <<<<<<<<<<<<<< @@ -2766,7 +2762,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_sign = 1.0; - /* "gensim/models/nmf_pgd.pyx":107 + /* "gensim/models/nmf_pgd.pyx":108 * cdef double r_actual_sign = 1.0 * * cdef Py_ssize_t n_samples = r_actual_indptr.shape[0] - 1 # <<<<<<<<<<<<<< @@ -2775,7 +2771,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_n_samples = ((__pyx_v_r_actual_indptr.shape[0]) - 1); - /* "gensim/models/nmf_pgd.pyx":110 + /* "gensim/models/nmf_pgd.pyx":111 * cdef Py_ssize_t sample_idx * * cdef double violation = 0 # <<<<<<<<<<<<<< @@ -2784,7 +2780,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_violation = 0.0; - /* "gensim/models/nmf_pgd.pyx":112 + /* "gensim/models/nmf_pgd.pyx":113 * cdef double violation = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -2831,7 +2827,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_v_r_col_size = ((Py_ssize_t)0xbad0bad0); __pyx_v_r_element = ((double *)1); - /* "gensim/models/nmf_pgd.pyx":113 + /* "gensim/models/nmf_pgd.pyx":114 * * for sample_idx in prange(n_samples, nogil=True): * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2842,7 +2838,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_8 = __pyx_v_sample_idx; __pyx_v_r_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_7)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_8)) )))); - /* "gensim/models/nmf_pgd.pyx":114 + /* "gensim/models/nmf_pgd.pyx":115 * for sample_idx in prange(n_samples, nogil=True): * r_col_size = r_indptr[sample_idx + 1] - r_indptr[sample_idx] * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2853,7 +2849,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_10 = __pyx_v_sample_idx; __pyx_v_r_actual_col_size = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_9)) ))) - (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_10)) )))); - /* "gensim/models/nmf_pgd.pyx":116 + /* "gensim/models/nmf_pgd.pyx":117 * r_actual_col_size = r_actual_indptr[sample_idx + 1] - r_actual_indptr[sample_idx] * * r_col_idx = 0 # <<<<<<<<<<<<<< @@ -2862,7 +2858,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_col_idx = 0; - /* "gensim/models/nmf_pgd.pyx":117 + /* "gensim/models/nmf_pgd.pyx":118 * * r_col_idx = 0 * r_actual_col_idx = 0 # <<<<<<<<<<<<<< @@ -2871,7 +2867,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_col_idx = 0; - /* "gensim/models/nmf_pgd.pyx":119 + /* "gensim/models/nmf_pgd.pyx":120 * r_actual_col_idx = 0 * * while r_col_idx < r_col_size or r_actual_col_idx < r_actual_col_size: # <<<<<<<<<<<<<< @@ -2890,7 +2886,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_L12_bool_binop_done:; if (!__pyx_t_11) break; - /* "gensim/models/nmf_pgd.pyx":121 + /* "gensim/models/nmf_pgd.pyx":122 * while r_col_idx < r_col_size or r_actual_col_idx < r_actual_col_size: * r_col_indptr = r_indices[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2899,7 +2895,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_13 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":120 + /* "gensim/models/nmf_pgd.pyx":121 * * while r_col_idx < r_col_size or r_actual_col_idx < r_actual_col_size: * r_col_indptr = r_indices[ # <<<<<<<<<<<<<< @@ -2909,7 +2905,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_14 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_13)) ))) + __pyx_v_r_col_idx); __pyx_v_r_col_indptr = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indices.data) + __pyx_t_14)) ))); - /* "gensim/models/nmf_pgd.pyx":125 + /* "gensim/models/nmf_pgd.pyx":126 * ] * r_actual_col_indptr = r_actual_indices[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2918,7 +2914,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_15 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":124 + /* "gensim/models/nmf_pgd.pyx":125 * + r_col_idx * ] * r_actual_col_indptr = r_actual_indices[ # <<<<<<<<<<<<<< @@ -2928,7 +2924,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_16 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_15)) ))) + __pyx_v_r_actual_col_idx); __pyx_v_r_actual_col_indptr = (*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indices.data) + __pyx_t_16)) ))); - /* "gensim/models/nmf_pgd.pyx":130 + /* "gensim/models/nmf_pgd.pyx":131 * * r_element = &r_data[ * r_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2937,7 +2933,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_17 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":129 + /* "gensim/models/nmf_pgd.pyx":130 * ] * * r_element = &r_data[ # <<<<<<<<<<<<<< @@ -2947,7 +2943,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_18 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_indptr.data) + __pyx_t_17)) ))) + __pyx_v_r_col_idx); __pyx_v_r_element = (&(*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_data.data) + __pyx_t_18)) )))); - /* "gensim/models/nmf_pgd.pyx":134 + /* "gensim/models/nmf_pgd.pyx":135 * ] * r_actual_element = &r_actual_data[ * r_actual_indptr[sample_idx] # <<<<<<<<<<<<<< @@ -2956,7 +2952,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_t_19 = __pyx_v_sample_idx; - /* "gensim/models/nmf_pgd.pyx":133 + /* "gensim/models/nmf_pgd.pyx":134 * + r_col_idx * ] * r_actual_element = &r_actual_data[ # <<<<<<<<<<<<<< @@ -2966,7 +2962,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_20 = ((*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_r_actual_indptr.data) + __pyx_t_19)) ))) + __pyx_v_r_actual_col_idx); __pyx_v_r_actual_element = (&(*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_r_actual_data.data) + __pyx_t_20)) )))); - /* "gensim/models/nmf_pgd.pyx":138 + /* "gensim/models/nmf_pgd.pyx":139 * ] * * if r_col_indptr >= r_actual_col_indptr: # <<<<<<<<<<<<<< @@ -2976,7 +2972,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_11 = ((__pyx_v_r_col_indptr >= __pyx_v_r_actual_col_indptr) != 0); if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":139 + /* "gensim/models/nmf_pgd.pyx":140 * * if r_col_indptr >= r_actual_col_indptr: * r_actual_sign = copysign(r_actual_sign, r_actual_element[0]) # <<<<<<<<<<<<<< @@ -2985,7 +2981,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_sign = copysign(__pyx_v_r_actual_sign, (__pyx_v_r_actual_element[0])); - /* "gensim/models/nmf_pgd.pyx":141 + /* "gensim/models/nmf_pgd.pyx":142 * r_actual_sign = copysign(r_actual_sign, r_actual_element[0]) * * r_actual_element[0] = fabs(r_actual_element[0]) - lambda_ # <<<<<<<<<<<<<< @@ -2994,7 +2990,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ (__pyx_v_r_actual_element[0]) = (fabs((__pyx_v_r_actual_element[0])) - __pyx_v_lambda_); - /* "gensim/models/nmf_pgd.pyx":142 + /* "gensim/models/nmf_pgd.pyx":143 * * r_actual_element[0] = fabs(r_actual_element[0]) - lambda_ * r_actual_element[0] = fmax(r_actual_element[0], 0) # <<<<<<<<<<<<<< @@ -3003,7 +2999,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ (__pyx_v_r_actual_element[0]) = __pyx_f_6gensim_6models_7nmf_pgd_fmax((__pyx_v_r_actual_element[0]), 0.0); - /* "gensim/models/nmf_pgd.pyx":144 + /* "gensim/models/nmf_pgd.pyx":145 * r_actual_element[0] = fmax(r_actual_element[0], 0) * * if r_actual_element[0] != 0: # <<<<<<<<<<<<<< @@ -3013,7 +3009,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_11 = (((__pyx_v_r_actual_element[0]) != 0.0) != 0); if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":145 + /* "gensim/models/nmf_pgd.pyx":146 * * if r_actual_element[0] != 0: * r_actual_element[0] = copysign(r_actual_element[0], r_actual_sign) # <<<<<<<<<<<<<< @@ -3022,7 +3018,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ (__pyx_v_r_actual_element[0]) = copysign((__pyx_v_r_actual_element[0]), __pyx_v_r_actual_sign); - /* "gensim/models/nmf_pgd.pyx":146 + /* "gensim/models/nmf_pgd.pyx":147 * if r_actual_element[0] != 0: * r_actual_element[0] = copysign(r_actual_element[0], r_actual_sign) * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) # <<<<<<<<<<<<<< @@ -3031,7 +3027,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ (__pyx_v_r_actual_element[0]) = __pyx_f_6gensim_6models_7nmf_pgd_clip((__pyx_v_r_actual_element[0]), (-__pyx_v_v_max), __pyx_v_v_max); - /* "gensim/models/nmf_pgd.pyx":144 + /* "gensim/models/nmf_pgd.pyx":145 * r_actual_element[0] = fmax(r_actual_element[0], 0) * * if r_actual_element[0] != 0: # <<<<<<<<<<<<<< @@ -3040,7 +3036,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ } - /* "gensim/models/nmf_pgd.pyx":148 + /* "gensim/models/nmf_pgd.pyx":149 * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) * * if r_col_indptr == r_actual_col_indptr: # <<<<<<<<<<<<<< @@ -3050,7 +3046,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_11 = ((__pyx_v_r_col_indptr == __pyx_v_r_actual_col_indptr) != 0); if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":149 + /* "gensim/models/nmf_pgd.pyx":150 * * if r_col_indptr == r_actual_col_indptr: * violation += (r_element[0] - r_actual_element[0]) ** 2 # <<<<<<<<<<<<<< @@ -3059,7 +3055,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_violation = (__pyx_v_violation + pow(((__pyx_v_r_element[0]) - (__pyx_v_r_actual_element[0])), 2.0)); - /* "gensim/models/nmf_pgd.pyx":148 + /* "gensim/models/nmf_pgd.pyx":149 * r_actual_element[0] = clip(r_actual_element[0], -v_max, v_max) * * if r_col_indptr == r_actual_col_indptr: # <<<<<<<<<<<<<< @@ -3069,7 +3065,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L16; } - /* "gensim/models/nmf_pgd.pyx":151 + /* "gensim/models/nmf_pgd.pyx":152 * violation += (r_element[0] - r_actual_element[0]) ** 2 * else: * violation += r_actual_element[0] ** 2 # <<<<<<<<<<<<<< @@ -3081,7 +3077,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } __pyx_L16:; - /* "gensim/models/nmf_pgd.pyx":153 + /* "gensim/models/nmf_pgd.pyx":154 * violation += r_actual_element[0] ** 2 * * if r_actual_col_idx < r_actual_col_size: # <<<<<<<<<<<<<< @@ -3091,7 +3087,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_11 = ((__pyx_v_r_actual_col_idx < __pyx_v_r_actual_col_size) != 0); if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":154 + /* "gensim/models/nmf_pgd.pyx":155 * * if r_actual_col_idx < r_actual_col_size: * r_actual_col_idx = r_actual_col_idx + 1 # <<<<<<<<<<<<<< @@ -3100,7 +3096,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_actual_col_idx = (__pyx_v_r_actual_col_idx + 1); - /* "gensim/models/nmf_pgd.pyx":153 + /* "gensim/models/nmf_pgd.pyx":154 * violation += r_actual_element[0] ** 2 * * if r_actual_col_idx < r_actual_col_size: # <<<<<<<<<<<<<< @@ -3110,7 +3106,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L17; } - /* "gensim/models/nmf_pgd.pyx":156 + /* "gensim/models/nmf_pgd.pyx":157 * r_actual_col_idx = r_actual_col_idx + 1 * else: * r_col_idx = r_col_idx + 1 # <<<<<<<<<<<<<< @@ -3122,7 +3118,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } __pyx_L17:; - /* "gensim/models/nmf_pgd.pyx":138 + /* "gensim/models/nmf_pgd.pyx":139 * ] * * if r_col_indptr >= r_actual_col_indptr: # <<<<<<<<<<<<<< @@ -3132,7 +3128,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L14; } - /* "gensim/models/nmf_pgd.pyx":158 + /* "gensim/models/nmf_pgd.pyx":159 * r_col_idx = r_col_idx + 1 * else: * violation += r_element[0] ** 2 # <<<<<<<<<<<<<< @@ -3142,7 +3138,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje /*else*/ { __pyx_v_violation = (__pyx_v_violation + pow((__pyx_v_r_element[0]), 2.0)); - /* "gensim/models/nmf_pgd.pyx":160 + /* "gensim/models/nmf_pgd.pyx":161 * violation += r_element[0] ** 2 * * if r_col_idx < r_col_size: # <<<<<<<<<<<<<< @@ -3152,7 +3148,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje __pyx_t_11 = ((__pyx_v_r_col_idx < __pyx_v_r_col_size) != 0); if (__pyx_t_11) { - /* "gensim/models/nmf_pgd.pyx":161 + /* "gensim/models/nmf_pgd.pyx":162 * * if r_col_idx < r_col_size: * r_col_idx = r_col_idx + 1 # <<<<<<<<<<<<<< @@ -3161,7 +3157,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje */ __pyx_v_r_col_idx = (__pyx_v_r_col_idx + 1); - /* "gensim/models/nmf_pgd.pyx":160 + /* "gensim/models/nmf_pgd.pyx":161 * violation += r_element[0] ** 2 * * if r_col_idx < r_col_size: # <<<<<<<<<<<<<< @@ -3171,7 +3167,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje goto __pyx_L18; } - /* "gensim/models/nmf_pgd.pyx":163 + /* "gensim/models/nmf_pgd.pyx":164 * r_col_idx = r_col_idx + 1 * else: * r_actual_col_idx = r_actual_col_idx + 1 # <<<<<<<<<<<<<< @@ -3198,7 +3194,7 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje #endif } - /* "gensim/models/nmf_pgd.pyx":112 + /* "gensim/models/nmf_pgd.pyx":113 * cdef double violation = 0 * * for sample_idx in prange(n_samples, nogil=True): # <<<<<<<<<<<<<< @@ -3217,13 +3213,13 @@ static PyObject *__pyx_pf_6gensim_6models_7nmf_pgd_2solve_r(CYTHON_UNUSED PyObje } } - /* "gensim/models/nmf_pgd.pyx":165 + /* "gensim/models/nmf_pgd.pyx":166 * r_actual_col_idx = r_actual_col_idx + 1 * * return sqrt(violation) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 165, __pyx_L1_error) + __pyx_t_1 = PyFloat_FromDouble(sqrt(__pyx_v_violation)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 166, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; @@ -17250,17 +17246,17 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__21); __Pyx_GIVEREF(__pyx_tuple__21); - /* "gensim/models/nmf_pgd.pyx":24 + /* "gensim/models/nmf_pgd.pyx":23 * return a * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. * */ - __pyx_tuple__22 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(0, 24, __pyx_L1_error) + __pyx_tuple__22 = PyTuple_Pack(13, __pyx_n_s_h, __pyx_n_s_Wt_v_minus_r, __pyx_n_s_WtW, __pyx_n_s_kappa, __pyx_n_s_n_components, __pyx_n_s_n_samples, __pyx_n_s_violation, __pyx_n_s_grad, __pyx_n_s_projected_grad, __pyx_n_s_hessian, __pyx_n_s_sample_idx, __pyx_n_s_component_idx_1, __pyx_n_s_component_idx_2); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(0, 23, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__22); __Pyx_GIVEREF(__pyx_tuple__22); - __pyx_codeobj__23 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__22, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_h, 24, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__23)) __PYX_ERR(0, 24, __pyx_L1_error) + __pyx_codeobj__23 = (PyObject*)__Pyx_PyCode_New(4, 0, 13, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__22, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_nmf_pgd_pyx, __pyx_n_s_solve_h, 23, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__23)) __PYX_ERR(0, 23, __pyx_L1_error) /* "gensim/models/nmf_pgd.pyx":68 * return sqrt(violation) @@ -17652,16 +17648,16 @@ if (!__Pyx_RefNanny) { if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif - /* "gensim/models/nmf_pgd.pyx":24 + /* "gensim/models/nmf_pgd.pyx":23 * return a * * def solve_h(double[:, ::1] h, double[:, :] Wt_v_minus_r, double[:, ::1] WtW, double kappa): # <<<<<<<<<<<<<< * """Find optimal dense vector representation for current W and r matrices. * */ - __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 24, __pyx_L1_error) + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6gensim_6models_7nmf_pgd_1solve_h, NULL, __pyx_n_s_gensim_models_nmf_pgd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 23, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 24, __pyx_L1_error) + if (PyDict_SetItem(__pyx_d, __pyx_n_s_solve_h, __pyx_t_1) < 0) __PYX_ERR(0, 23, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "gensim/models/nmf_pgd.pyx":68 From 9527f39c07874404dc248a4168c250690f7073dc Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 21 Dec 2018 15:01:29 +0300 Subject: [PATCH 111/144] Fix long line --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 167c304d02..8a1997ccf5 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -20,7 +20,7 @@ class Nmf(interfaces.TransformationABC, basemodel.BaseTopicModel): """Online Non-Negative Matrix Factorization. - `Renbo Zhao, Vincent Y. F. Tan :"Online Nonnegative Matrix Factorization with Outliers" `_ + `Renbo Zhao et al :"Online Nonnegative Matrix Factorization with Outliers" `_ """ From e1e11685fbe3f7c0a34df5b9735a10c7d7eb9f5d Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Sun, 30 Dec 2018 19:27:56 +0300 Subject: [PATCH 112/144] Add log_perplexity --- gensim/models/nmf.py | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 8a1997ccf5..6497dc32e5 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -284,6 +284,20 @@ def top_topics(self, corpus=None, texts=None, dictionary=None, window_size=None, scored_topics = zip(str_topics, coherence_scores) return sorted(scored_topics, key=lambda tup: tup[1], reverse=True) + def log_perplexity(self, corpus): + W = self.get_topics().T + + H = np.zeros((W.shape[1], len(corpus))) + for bow_id, bow in enumerate(corpus): + for topic_id, proba in self[bow]: + H[topic_id, bow_id] = proba + + dense_corpus = matutils.corpus2dense(corpus, W.shape[0]) + + pred_factors = W.dot(H) + + return -(np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum() + def get_term_topics(self, word_id, minimum_probability=None): """Get the most relevant topics to the given word. @@ -313,7 +327,7 @@ def get_term_topics(self, word_id, minimum_probability=None): word_topics = self._W.getrow(word_id) - if self.normalize: + if self.normalize and word_topics.sum() > 0: word_topics /= word_topics.sum() for topic_id in range(0, self.num_topics): From d1c6e3ecc43c4ed5a5d3d4ce4c8081162f2d14da Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 9 Jan 2019 16:47:28 +0300 Subject: [PATCH 113/144] Add NMF and LDA comparison table --- docs/notebooks/nmf_benchmark.ipynb | 1121 +++++++++++++++------------- 1 file changed, 589 insertions(+), 532 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index e15144013a..cb4277a8e2 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -9,9 +9,28 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 174, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The line_profiler extension is already loaded. To reload it, use:\n", + " %reload_ext line_profiler\n", + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", + " return f(*args, **kwds)\n" + ] + } + ], "source": [ "%load_ext line_profiler\n", "%load_ext autoreload\n", @@ -26,7 +45,11 @@ "import sklearn.decomposition.nmf\n", "from sklearn.datasets import fetch_20newsgroups\n", "from sklearn.feature_extraction.text import CountVectorizer\n", + "from sklearn.model_selection import ParameterGrid\n", "import numpy as np\n", + "import time\n", + "import pandas as pd\n", + "from collections import defaultdict\n", "from matplotlib import pyplot as plt\n", "\n", "import logging\n", @@ -42,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -60,29 +83,30 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "from gensim.parsing.preprocessing import preprocess_documents\n", "\n", - "train_documents = preprocess_documents(trainset.data)" + "train_documents = preprocess_documents(trainset.data)\n", + "test_documents = preprocess_documents(testset.data)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-27 00:37:26,177 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2018-09-27 00:37:27,584 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435348 corpus positions)\n", - "2018-09-27 00:37:27,675 : INFO : discarding 18197 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2018-09-27 00:37:27,677 : INFO : keeping 7082 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2018-09-27 00:37:27,717 : INFO : resulting dictionary: Dictionary(7082 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2019-01-09 12:16:54,680 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2019-01-09 12:16:55,350 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", + "2019-01-09 12:16:55,407 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2019-01-09 12:16:55,408 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2019-01-09 12:16:55,438 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], @@ -96,368 +120,608 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ - "corpus = [\n", + "train_corpus = [\n", " dictionary.doc2bow(document)\n", " for document\n", " in train_documents\n", "]\n", "\n", - "bow_matrix = matutils.corpus2dense(corpus, len(dictionary), len(train_documents))\n", + "test_corpus = [\n", + " dictionary.doc2bow(document)\n", + " for document\n", + " in test_documents\n", + "]\n", + "\n", + "bow_matrix = matutils.corpus2dense(train_corpus, len(dictionary), len(train_documents))\n", "proba_bow_matrix = bow_matrix / bow_matrix.sum(axis=0)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Gensim NMF vs Gensim LDA" - ] - }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 123, "metadata": {}, "outputs": [], "source": [ - "training_params = dict(\n", - " corpus=corpus,\n", + "variable_params_grid = list(ParameterGrid(dict(\n", + " use_r=[False, True],\n", + " sparse_coef=[0, 3],\n", + " lambda_=[1, 10, 100]\n", + ")))\n", + "\n", + "fixed_params = dict(\n", + " corpus=train_corpus,\n", " chunksize=1000,\n", " num_topics=5,\n", " id2word=dictionary,\n", " passes=5,\n", " eval_every=10,\n", - " minimum_probability=0\n", + " minimum_probability=0,\n", + " random_state=42,\n", ")" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training time" - ] - }, { "cell_type": "code", - "execution_count": 123, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-27 02:24:38,813 : INFO : Loss (no outliers): 619.2288809648065\tLoss (with outliers): 537.2376723428446\n", - "2018-09-27 02:24:41,141 : INFO : Loss (no outliers): 632.5888412170466\tLoss (with outliers): 510.0645342834237\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 9.49 s, sys: 565 ms, total: 10.1 s\n", - "Wall time: 10.2 s\n" - ] - } - ], + "execution_count": 183, + "metadata": {}, + "outputs": [], "source": [ - "%%time\n", + "def get_execution_time(func):\n", + " start = time.time()\n", + " \n", + " result = func()\n", + " \n", + " return (time.time() - start), result\n", + "\n", + "def tm_metrics(model, test_corpus):\n", + " perplexity = get_perplexity(model, test_corpus)\n", + " \n", + " coherence = CoherenceModel(\n", + " model=model,\n", + " corpus=test_corpus,\n", + " coherence='u_mass'\n", + " ).get_coherence()\n", + " \n", + " topics = model.show_topics()\n", + " \n", + " return dict(\n", + " perplexity=perplexity,\n", + " coherence=coherence,\n", + " topics=topics\n", + " )\n", "\n", - "np.random.seed(42)\n", + "def get_perplexity(model, corpus):\n", + " W = model.get_topics().T\n", "\n", - "gensim_nmf = GensimNmf(\n", - " **training_params,\n", - " use_r=True,\n", - " lambda_=10,\n", - " sparse_coef=5\n", - ")" + " H = np.zeros((W.shape[1], len(corpus)))\n", + " for bow_id, bow in enumerate(corpus):\n", + " for topic_id, proba in model[bow]:\n", + " H[topic_id, bow_id] = proba\n", + "\n", + " dense_corpus = matutils.corpus2dense(corpus, W.shape[0])\n", + "\n", + " pred_factors = W.dot(H)\n", + "\n", + " return np.exp(-(np.log(pred_factors, where=pred_factors>0) * dense_corpus).sum() / dense_corpus.sum())" ] }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 184, "metadata": { - "scrolled": false + "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-27 01:05:24,445 : INFO : Loss (no outliers): 615.6931097741867\tLoss (with outliers): 533.033269838796\n", - "2018-09-27 01:05:33,514 : INFO : Loss (no outliers): 639.8889427819846\tLoss (with outliers): 508.648662962832\n" + "2019-01-09 16:19:45,034 : INFO : using symmetric alpha at 0.2\n", + "2019-01-09 16:19:45,035 : INFO : using symmetric eta at 0.2\n", + "2019-01-09 16:19:45,038 : INFO : using serial LDA version on this node\n", + "2019-01-09 16:19:45,046 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-09 16:19:45,047 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2019-01-09 16:19:45,921 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:45,928 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", + "2019-01-09 16:19:45,931 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", + "2019-01-09 16:19:45,933 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", + "2019-01-09 16:19:45,934 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", + "2019-01-09 16:19:45,936 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", + "2019-01-09 16:19:45,937 : INFO : topic diff=1.652264, rho=1.000000\n", + "2019-01-09 16:19:45,938 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2019-01-09 16:19:46,892 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:46,898 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", + "2019-01-09 16:19:46,900 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-09 16:19:46,901 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", + "2019-01-09 16:19:46,902 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", + "2019-01-09 16:19:46,903 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", + "2019-01-09 16:19:46,904 : INFO : topic diff=0.879875, rho=0.707107\n", + "2019-01-09 16:19:47,842 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 16:19:47,844 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2019-01-09 16:19:48,478 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 16:19:48,483 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", + "2019-01-09 16:19:48,484 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", + "2019-01-09 16:19:48,485 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", + "2019-01-09 16:19:48,487 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", + "2019-01-09 16:19:48,489 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2019-01-09 16:19:48,490 : INFO : topic diff=0.673042, rho=0.577350\n", + "2019-01-09 16:19:48,492 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2019-01-09 16:19:49,125 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:49,132 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", + "2019-01-09 16:19:49,133 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", + "2019-01-09 16:19:49,136 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", + "2019-01-09 16:19:49,138 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-09 16:19:49,140 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", + "2019-01-09 16:19:49,142 : INFO : topic diff=0.462191, rho=0.455535\n", + "2019-01-09 16:19:49,144 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2019-01-09 16:19:49,828 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:49,836 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", + "2019-01-09 16:19:49,838 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-09 16:19:49,839 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", + "2019-01-09 16:19:49,841 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", + "2019-01-09 16:19:49,844 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", + "2019-01-09 16:19:49,845 : INFO : topic diff=0.434057, rho=0.455535\n", + "2019-01-09 16:19:50,801 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 16:19:50,802 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2019-01-09 16:19:51,409 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 16:19:51,422 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", + "2019-01-09 16:19:51,427 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-09 16:19:51,433 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", + "2019-01-09 16:19:51,437 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-09 16:19:51,440 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" ] - } - ], - "source": [ - "%lprun -f GensimNmf._solveproj gensim_nmf = GensimNmf(**training_params, use_r=True, lambda_=10)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "scrolled": true - }, - "outputs": [ + }, { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-26 15:05:58,281 : INFO : using symmetric alpha at 0.2\n", - "2018-09-26 15:05:58,283 : INFO : using symmetric eta at 0.2\n", - "2018-09-26 15:05:58,287 : INFO : using serial LDA version on this node\n", - "2018-09-26 15:05:58,295 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2018-09-26 15:05:58,297 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2018-09-26 15:05:59,253 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-26 15:05:59,260 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"like\" + 0.005*\"think\" + 0.004*\"host\" + 0.004*\"peopl\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"new\"\n", - "2018-09-26 15:05:59,262 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.003*\"know\" + 0.003*\"new\" + 0.003*\"armenian\" + 0.003*\"right\"\n", - "2018-09-26 15:05:59,263 : INFO : topic #2 (0.200): 0.006*\"right\" + 0.005*\"com\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"israel\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"host\" + 0.004*\"like\" + 0.004*\"think\"\n", - "2018-09-26 15:05:59,264 : INFO : topic #3 (0.200): 0.009*\"com\" + 0.007*\"space\" + 0.005*\"know\" + 0.005*\"univers\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"new\" + 0.004*\"peopl\" + 0.003*\"host\"\n", - "2018-09-26 15:05:59,265 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"said\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenian\"\n", - "2018-09-26 15:05:59,266 : INFO : topic diff=1.649447, rho=1.000000\n", - "2018-09-26 15:05:59,267 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2018-09-26 15:06:00,504 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-26 15:06:00,513 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.007*\"com\" + 0.006*\"graphic\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\" + 0.004*\"know\"\n", - "2018-09-26 15:06:00,516 : INFO : topic #1 (0.200): 0.006*\"nasa\" + 0.006*\"peopl\" + 0.005*\"time\" + 0.005*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"imag\" + 0.003*\"thing\"\n", - "2018-09-26 15:06:00,519 : INFO : topic #2 (0.200): 0.008*\"israel\" + 0.008*\"isra\" + 0.006*\"peopl\" + 0.006*\"right\" + 0.005*\"com\" + 0.005*\"think\" + 0.005*\"arab\" + 0.004*\"univers\" + 0.004*\"know\" + 0.004*\"state\"\n", - "2018-09-26 15:06:00,521 : INFO : topic #3 (0.200): 0.012*\"com\" + 0.009*\"space\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"know\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"host\" + 0.003*\"program\" + 0.003*\"nntp\"\n", - "2018-09-26 15:06:00,523 : INFO : topic #4 (0.200): 0.007*\"armenian\" + 0.007*\"peopl\" + 0.006*\"like\" + 0.005*\"com\" + 0.005*\"think\" + 0.004*\"know\" + 0.004*\"muslim\" + 0.004*\"islam\" + 0.004*\"turkish\" + 0.004*\"time\"\n", - "2018-09-26 15:06:00,537 : INFO : topic diff=0.868179, rho=0.707107\n", - "2018-09-26 15:06:01,900 : INFO : -8.029 per-word bound, 261.2 perplexity estimate based on a held-out corpus of 819 documents with 114910 words\n", - "2018-09-26 15:06:01,901 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2018-09-26 15:06:02,659 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2018-09-26 15:06:02,666 : INFO : topic #0 (0.200): 0.011*\"imag\" + 0.007*\"file\" + 0.007*\"com\" + 0.007*\"jpeg\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.005*\"color\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"program\"\n", - "2018-09-26 15:06:02,667 : INFO : topic #1 (0.200): 0.008*\"nasa\" + 0.006*\"space\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"like\" + 0.004*\"time\" + 0.004*\"new\" + 0.004*\"launch\" + 0.004*\"univers\" + 0.004*\"orbit\"\n", - "2018-09-26 15:06:02,669 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.009*\"isra\" + 0.007*\"god\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.006*\"right\" + 0.005*\"arab\" + 0.005*\"think\" + 0.005*\"know\" + 0.004*\"com\"\n", - "2018-09-26 15:06:02,670 : INFO : topic #3 (0.200): 0.014*\"space\" + 0.012*\"com\" + 0.004*\"launch\" + 0.004*\"new\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"satellit\" + 0.004*\"host\" + 0.004*\"nntp\" + 0.003*\"know\"\n", - "2018-09-26 15:06:02,672 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.009*\"peopl\" + 0.007*\"turkish\" + 0.005*\"know\" + 0.005*\"like\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"armenia\" + 0.004*\"islam\"\n", - "2018-09-26 15:06:02,673 : INFO : topic diff=0.663742, rho=0.577350\n", - "2018-09-26 15:06:02,674 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2018-09-26 15:06:03,553 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2018-09-26 15:06:03,560 : INFO : topic #0 (0.200): 0.010*\"imag\" + 0.008*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.006*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"us\" + 0.005*\"need\"\n", - "2018-09-26 15:06:03,562 : INFO : topic #1 (0.200): 0.007*\"nasa\" + 0.006*\"space\" + 0.005*\"orbit\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.004*\"gov\" + 0.004*\"univers\" + 0.004*\"moon\" + 0.004*\"time\" + 0.004*\"launch\"\n", - "2018-09-26 15:06:03,570 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.010*\"isra\" + 0.007*\"god\" + 0.007*\"peopl\" + 0.006*\"right\" + 0.006*\"arab\" + 0.006*\"jew\" + 0.005*\"state\" + 0.005*\"think\" + 0.005*\"univers\"\n", - "2018-09-26 15:06:03,571 : INFO : topic #3 (0.200): 0.013*\"space\" + 0.012*\"com\" + 0.004*\"bike\" + 0.004*\"new\" + 0.004*\"time\" + 0.004*\"univers\" + 0.004*\"year\" + 0.004*\"dod\" + 0.004*\"host\" + 0.004*\"like\"\n", - "2018-09-26 15:06:03,573 : INFO : topic #4 (0.200): 0.013*\"armenian\" + 0.010*\"peopl\" + 0.007*\"turkish\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"greek\" + 0.004*\"islam\"\n", - "2018-09-26 15:06:03,575 : INFO : topic diff=0.449256, rho=0.455535\n", - "2018-09-26 15:06:03,577 : INFO : PROGRESS: pass 1, at document #2000/2819\n" + "2019-01-09 16:19:51,443 : INFO : topic diff=0.444120, rho=0.455535\n", + "2019-01-09 16:19:51,445 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2019-01-09 16:19:52,377 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:52,388 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-09 16:19:52,389 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", + "2019-01-09 16:19:52,391 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", + "2019-01-09 16:19:52,398 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-09 16:19:52,400 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", + "2019-01-09 16:19:52,415 : INFO : topic diff=0.359704, rho=0.414549\n", + "2019-01-09 16:19:52,420 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2019-01-09 16:19:53,135 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:53,143 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", + "2019-01-09 16:19:53,145 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", + "2019-01-09 16:19:53,146 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", + "2019-01-09 16:19:53,149 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-09 16:19:53,153 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-09 16:19:53,154 : INFO : topic diff=0.325561, rho=0.414549\n", + "2019-01-09 16:19:54,075 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 16:19:54,076 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2019-01-09 16:19:54,492 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 16:19:54,498 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", + "2019-01-09 16:19:54,500 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-09 16:19:54,501 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", + "2019-01-09 16:19:54,502 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-09 16:19:54,504 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-09 16:19:54,505 : INFO : topic diff=0.327590, rho=0.414549\n", + "2019-01-09 16:19:54,506 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2019-01-09 16:19:55,122 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:55,130 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", + "2019-01-09 16:19:55,132 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-09 16:19:55,134 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", + "2019-01-09 16:19:55,136 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-09 16:19:55,138 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", + "2019-01-09 16:19:55,139 : INFO : topic diff=0.265043, rho=0.382948\n", + "2019-01-09 16:19:55,141 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2019-01-09 16:19:55,775 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:55,782 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-09 16:19:55,784 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", + "2019-01-09 16:19:55,786 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", + "2019-01-09 16:19:55,787 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-09 16:19:55,788 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-09 16:19:55,789 : INFO : topic diff=0.244061, rho=0.382948\n", + "2019-01-09 16:19:56,770 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 16:19:56,771 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2019-01-09 16:19:57,224 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 16:19:57,231 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-09 16:19:57,232 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-09 16:19:57,234 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-09 16:19:57,235 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-09 16:19:57,236 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-09 16:19:57,237 : INFO : topic diff=0.247579, rho=0.382948\n", + "2019-01-09 16:19:57,238 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2019-01-09 16:19:57,878 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:57,884 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" ] }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, corpus, num_topics, id2word, distributed, chunksize, passes, update_every, alpha, eta, decay, offset, eval_every, iterations, gamma_threshold, minimum_probability, random_state, ns_conf, minimum_phi_value, per_word_topics, callbacks, dtype)\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcorpus\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 514\u001b[0m \u001b[0muse_numpy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatcher\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 515\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunks_as_numpy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0muse_numpy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 516\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 517\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minit_dir_prior\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprior\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunksize, decay, offset, passes, update_every, eval_every, iterations, gamma_threshold, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 961\u001b[0m \u001b[0mpass_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunk_no\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunk\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlencorpus\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 962\u001b[0m )\n\u001b[0;32m--> 963\u001b[0;31m \u001b[0mgammat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdo_estep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 965\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimize_alpha\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36mdo_estep\u001b[0;34m(self, chunk, state)\u001b[0m\n\u001b[1;32m 723\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstate\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 724\u001b[0m \u001b[0mstate\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 725\u001b[0;31m \u001b[0mgamma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msstats\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minference\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcollect_sstats\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 726\u001b[0m \u001b[0mstate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msstats\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0msstats\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 727\u001b[0m \u001b[0mstate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumdocs\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mgamma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;31m# avoids calling len(chunk) on a generator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/ldamodel.py\u001b[0m in \u001b[0;36minference\u001b[0;34m(self, chunk, collect_sstats)\u001b[0m\n\u001b[1;32m 675\u001b[0m \u001b[0;31m# the update for gamma gives this update. Cf. Lee&Seung 2001.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 676\u001b[0m \u001b[0mgammad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malpha\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mexpElogthetad\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcts\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mphinorm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexpElogbetad\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 677\u001b[0;31m \u001b[0mElogthetad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdirichlet_expectation\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgammad\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 678\u001b[0m \u001b[0mexpElogthetad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mElogthetad\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 679\u001b[0m \u001b[0mphinorm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexpElogthetad\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexpElogbetad\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0meps\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "%%time\n", - "\n", - "np.random.seed(42)\n", - "\n", - "gensim_lda = LdaModel(**training_params)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Coherence" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2018-09-27 02:24:41,227 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-09-27 02:24:41,272 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + "2019-01-09 16:19:57,886 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-09 16:19:57,888 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", + "2019-01-09 16:19:57,890 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-09 16:19:57,893 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", + "2019-01-09 16:19:57,895 : INFO : topic diff=0.204190, rho=0.357622\n", + "2019-01-09 16:19:57,899 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2019-01-09 16:19:58,468 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 16:19:58,475 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", + "2019-01-09 16:19:58,479 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", + "2019-01-09 16:19:58,483 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", + "2019-01-09 16:19:58,484 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-09 16:19:58,486 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-09 16:19:58,488 : INFO : topic diff=0.197424, rho=0.357622\n", + "2019-01-09 16:19:59,267 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 16:19:59,268 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2019-01-09 16:19:59,686 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 16:19:59,692 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-09 16:19:59,694 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-09 16:19:59,695 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-09 16:19:59,696 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-09 16:19:59,698 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", + "2019-01-09 16:19:59,699 : INFO : topic diff=0.200393, rho=0.357622\n", + "2019-01-09 16:20:01,830 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:20:04,317 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-09 16:20:05,648 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-09 16:20:17,575 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:20:44,326 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", + "2019-01-09 16:20:57,853 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", + "2019-01-09 16:21:17,324 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:21:18,532 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-09 16:21:18,947 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-09 16:21:26,994 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:21:32,132 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", + "2019-01-09 16:21:33,095 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", + "2019-01-09 16:21:46,550 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:21:50,406 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-09 16:21:52,405 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-09 16:22:07,202 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:22:40,709 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", + "2019-01-09 16:22:55,224 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", + "2019-01-09 16:23:18,976 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:23:20,588 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-09 16:23:21,162 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-09 16:23:35,658 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:23:42,355 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", + "2019-01-09 16:23:43,766 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", + "2019-01-09 16:23:57,722 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:24:00,322 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-09 16:24:01,749 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-09 16:24:14,150 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:24:53,658 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", + "2019-01-09 16:25:09,406 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", + "2019-01-09 16:25:28,665 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:25:30,196 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-09 16:25:30,682 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-09 16:25:39,822 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 16:25:52,381 : INFO : Loss (no outliers): 605.4685741189369\tLoss (with outliers): 605.4685741189369\n", + "2019-01-09 16:25:54,547 : INFO : Loss (no outliers): 578.3308322441371\tLoss (with outliers): 578.1246508315406\n", + "2019-01-09 16:26:09,202 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] - }, - { - "data": { - "text/plain": [ - "-1.471331868708171" - ] - }, - "execution_count": 124, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ - "gensim_nmf_cm = CoherenceModel(\n", - " model=gensim_nmf,\n", - " corpus=corpus,\n", - " coherence='u_mass'\n", + "metrics = pd.DataFrame()\n", + "\n", + "row = dict()\n", + "row['model'] = 'lda'\n", + "row['train_time'], lda = get_execution_time(\n", + " lambda: LdaModel(**fixed_params)\n", ")\n", + "row.update(tm_metrics(lda, test_corpus))\n", + "metrics = metrics.append(pd.Series(row), ignore_index=True)\n", "\n", - "gensim_nmf_cm.get_coherence()" + "for variable_params in variable_params_grid:\n", + " row = dict()\n", + " row['model'] = 'gensim_nmf'\n", + " row.update(variable_params)\n", + " row['train_time'], nmf = get_execution_time(\n", + " lambda: GensimNmf(\n", + " **fixed_params,\n", + " **variable_params,\n", + " )\n", + " )\n", + " row.update(tm_metrics(nmf, test_corpus))\n", + " metrics = metrics.append(pd.Series(row), ignore_index=True)" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 172, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 15:43:37,196 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2018-09-25 15:43:37,224 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" - ] - }, { "data": { "text/plain": [ - "-1.7217224975861698" + "defaultdict(dict,\n", + " {'lda': {'train_time': 14.333540916442871,\n", + " 'perplexity': 1975.257099667886,\n", + " 'coherence': -1.789218457133242},\n", + " 'gensim_nmf': {'lambda_': 100,\n", + " 'sparse_coef': 3,\n", + " 'use_r': True,\n", + " 'train_time': 15.977479219436646,\n", + " 'perplexity': 55.94837976162525,\n", + " 'coherence': -1.6674878449174666}})" ] }, - "execution_count": 20, + "execution_count": 172, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "gensim_lda_cm = CoherenceModel(\n", - " model=gensim_lda,\n", - " corpus=corpus,\n", - " coherence='u_mass'\n", - ")\n", - "\n", - "gensim_lda_cm.get_coherence()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Perplexity" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "def perplexity(model, corpus):\n", - " W = gensim_nmf.get_topics().T\n", - "\n", - " H = np.zeros((W.shape[1], len(corpus)))\n", - " for bow_id, bow in enumerate(corpus):\n", - " for topic_id, proba in model[bow]:\n", - " H[topic_id, bow_id] = proba\n", - " \n", - " dense_corpus = matutils.corpus2dense(corpus, W.shape[0])\n", - " \n", - " return np.exp(-(np.log(W.dot(H), where=W.dot(H)>0) * dense_corpus).sum() / dense_corpus.sum())" + "metrics" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 191, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
coherencemodelperplexitytopicstrain_timelambda_sparse_coefuse_r
4-1.572423gensim_nmf21.205827[(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...6.0530801.03.01.0
8-1.794092gensim_nmf49.031566[(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli...8.05362610.03.01.0
12-1.667488gensim_nmf55.947987[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...14.675460100.03.01.0
3-1.669871gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...1.5677751.03.00.0
7-1.669871gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...2.11563810.03.00.0
11-1.669871gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...1.946583100.03.00.0
0-1.789218lda1975.257100[(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...14.666002NaNNaNNaN
6-1.414224gensim_nmf2314.832335[(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...47.97475610.00.01.0
2-1.344381gensim_nmf2335.171593[(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...40.2277441.00.01.0
10-1.713672gensim_nmf2526.410174[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...55.212322100.00.01.0
1-1.651645gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...3.7738971.00.00.0
5-1.651645gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...5.72840310.00.00.0
9-1.651645gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...3.983498100.00.00.0
\n", + "
" + ], "text/plain": [ - "52.18628198646492" + " coherence model perplexity \\\n", + "4 -1.572423 gensim_nmf 21.205827 \n", + "8 -1.794092 gensim_nmf 49.031566 \n", + "12 -1.667488 gensim_nmf 55.947987 \n", + "3 -1.669871 gensim_nmf 56.999925 \n", + "7 -1.669871 gensim_nmf 56.999925 \n", + "11 -1.669871 gensim_nmf 56.999925 \n", + "0 -1.789218 lda 1975.257100 \n", + "6 -1.414224 gensim_nmf 2314.832335 \n", + "2 -1.344381 gensim_nmf 2335.171593 \n", + "10 -1.713672 gensim_nmf 2526.410174 \n", + "1 -1.651645 gensim_nmf 2534.426980 \n", + "5 -1.651645 gensim_nmf 2534.426980 \n", + "9 -1.651645 gensim_nmf 2534.426980 \n", + "\n", + " topics train_time lambda_ \\\n", + "4 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 6.053080 1.0 \n", + "8 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 8.053626 10.0 \n", + "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 14.675460 100.0 \n", + "3 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.567775 1.0 \n", + "7 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.115638 10.0 \n", + "11 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.946583 100.0 \n", + "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 14.666002 NaN \n", + "6 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 47.974756 10.0 \n", + "2 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 40.227744 1.0 \n", + "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 55.212322 100.0 \n", + "1 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.773897 1.0 \n", + "5 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 5.728403 10.0 \n", + "9 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.983498 100.0 \n", + "\n", + " sparse_coef use_r \n", + "4 3.0 1.0 \n", + "8 3.0 1.0 \n", + "12 3.0 1.0 \n", + "3 3.0 0.0 \n", + "7 3.0 0.0 \n", + "11 3.0 0.0 \n", + "0 NaN NaN \n", + "6 0.0 1.0 \n", + "2 0.0 1.0 \n", + "10 0.0 1.0 \n", + "1 0.0 0.0 \n", + "5 0.0 0.0 \n", + "9 0.0 0.0 " ] }, - "execution_count": 19, + "execution_count": 191, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "perplexity(gensim_nmf, corpus)" + "metrics.sort_values('perplexity')" ] }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'gensim_lda' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mperplexity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgensim_lda\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'gensim_lda' is not defined" - ] - } - ], - "source": [ - "perplexity(gensim_lda, corpus)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Topics" - ] - }, - { - "cell_type": "code", - "execution_count": 125, + "execution_count": 195, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.072*\"israel\" + 0.056*\"isra\" + 0.039*\"state\" + 0.038*\"arab\" + 0.036*\"jew\" + 0.035*\"right\" + 0.028*\"human\" + 0.023*\"question\" + 0.023*\"govern\" + 0.022*\"attack\"'),\n", + " '0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"believ\" + 0.020*\"exist\" + 0.019*\"atheism\" + 0.016*\"religion\" + 0.013*\"christian\" + 0.013*\"religi\" + 0.013*\"peopl\" + 0.012*\"argument\"'),\n", " (1,\n", - " '0.024*\"said\" + 0.022*\"armenian\" + 0.022*\"peopl\" + 0.019*\"know\" + 0.014*\"went\" + 0.013*\"apart\" + 0.012*\"come\" + 0.012*\"azerbaijani\" + 0.012*\"start\" + 0.012*\"sai\"'),\n", + " '0.055*\"imag\" + 0.054*\"jpeg\" + 0.033*\"file\" + 0.024*\"gif\" + 0.021*\"color\" + 0.019*\"format\" + 0.015*\"program\" + 0.014*\"version\" + 0.013*\"bit\" + 0.012*\"us\"'),\n", " (2,\n", - " '0.033*\"god\" + 0.025*\"peopl\" + 0.021*\"believ\" + 0.021*\"exist\" + 0.019*\"christian\" + 0.019*\"thing\" + 0.018*\"mean\" + 0.017*\"like\" + 0.014*\"think\" + 0.014*\"religion\"'),\n", + " '0.053*\"space\" + 0.034*\"launch\" + 0.024*\"satellit\" + 0.017*\"nasa\" + 0.016*\"orbit\" + 0.013*\"year\" + 0.012*\"mission\" + 0.011*\"data\" + 0.010*\"commerci\" + 0.010*\"market\"'),\n", " (3,\n", - " '0.036*\"jpeg\" + 0.035*\"imag\" + 0.019*\"file\" + 0.015*\"program\" + 0.015*\"format\" + 0.014*\"us\" + 0.012*\"softwar\" + 0.012*\"avail\" + 0.012*\"displai\" + 0.011*\"graphic\"'),\n", + " '0.022*\"armenian\" + 0.021*\"peopl\" + 0.020*\"said\" + 0.018*\"know\" + 0.011*\"sai\" + 0.011*\"went\" + 0.010*\"come\" + 0.010*\"like\" + 0.010*\"apart\" + 0.009*\"azerbaijani\"'),\n", " (4,\n", - " '0.057*\"space\" + 0.027*\"nasa\" + 0.020*\"orbit\" + 0.016*\"launch\" + 0.016*\"satellit\" + 0.014*\"mission\" + 0.013*\"new\" + 0.013*\"data\" + 0.013*\"year\" + 0.013*\"center\"')]" + " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" ] }, - "execution_count": 125, + "execution_count": 195, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "gensim_nmf.show_topics()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gensim_lda.show_topics()" + "metrics.iloc[3].topics" ] }, { @@ -469,48 +733,30 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "W = gensim_nmf.get_topics().T\n", - "H = np.zeros((W.shape[1], len(corpus)))\n", - "for bow_id, bow in enumerate(corpus):\n", + "H = np.zeros((W.shape[1], len(train_corpus)))\n", + "for bow_id, bow in enumerate(train_corpus):\n", " for topic_id, proba in gensim_nmf[bow]:\n", - " H[topic_id, bow_id] = proba" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8.762690688242715" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ + " H[topic_id, bow_id] = proba\n", + "\n", "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 32.2 s, sys: 7.12 s, total: 39.3 s\n", - "Wall time: 12.2 s\n" + "CPU times: user 34.4 s, sys: 7.03 s, total: 41.4 s\n", + "Wall time: 12 s\n" ] } ], @@ -525,16 +771,16 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8.300690481807766" + "8.30098721069945" ] }, - "execution_count": 20, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -552,7 +798,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -562,11 +808,11 @@ " def __init__(self, **kwargs):\n", " self.nmf = GensimNmf(**kwargs)\n", " self.corpus = None\n", - " \n", + "\n", " def fit_transform(self, X):\n", " self.fit(X)\n", " return self.transform(X)\n", - " \n", + "\n", " def fit(self, X):\n", " self.corpus = [\n", " [\n", @@ -577,17 +823,17 @@ " for sample\n", " in X\n", " ]\n", - " \n", + "\n", " self.nmf.update(self.corpus)\n", - " \n", + "\n", " def transform(self, X):\n", " H = np.zeros((len(self.corpus), self.nmf.num_topics))\n", " for bow_id, bow in enumerate(self.corpus):\n", " for topic_id, proba in self.nmf[bow]:\n", " H[bow_id, topic_id] = proba\n", - " \n", + "\n", " return H\n", - " \n", + "\n", " @property\n", " def components_(self):\n", " return self.nmf.get_topics()" @@ -602,7 +848,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 70, "metadata": { "scrolled": false }, @@ -624,9 +870,9 @@ "\n", "Dataset consists of 400 faces\n", "Extracting the top 6 Eigenfaces - PCA using randomized SVD...\n", - "done in 0.396s\n", + "done in 0.565s\n", "Extracting the top 6 Non-negative components - NMF (Sklearn)...\n", - "done in 1.822s\n", + "done in 1.230s\n", "Extracting the top 6 Non-negative components - NMF (Gensim)...\n" ] }, @@ -634,22 +880,36 @@ "name": "stderr", "output_type": "stream", "text": [ - "2018-09-27 00:45:53,330 : INFO : Loss (no outliers): 5.7361953791549105\tLoss (with outliers): 5.7361953791549105\n" + "2018-12-30 20:44:12,244 : INFO : Loss (no outliers): 21.546971809778427\tLoss (with outliers): 21.546971809778427\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "done in 32.397s\n", - "Extracting the top 6 Independent components - FastICA...\n", - "done in 0.766s\n", + "done in 9.589s\n", + "Extracting the top 6 Independent components - FastICA...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/sklearn/decomposition/fastica_.py:118: UserWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n", + " warnings.warn('FastICA did not converge. Consider increasing '\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done in 0.525s\n", "Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...\n", - "done in 1.915s\n", + "done in 2.518s\n", "Extracting the top 6 MiniBatchDictionaryLearning...\n", - "done in 4.536s\n", + "done in 4.005s\n", "Extracting the top 6 Cluster centers - MiniBatchKMeans...\n", - "done in 0.404s\n", + "done in 0.386s\n", "Extracting the top 6 Factor Analysis components - FA...\n" ] }, @@ -665,7 +925,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "done in 0.730s\n" + "done in 0.555s\n" ] }, { @@ -680,7 +940,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZXlVJvr9IiIjx8qagBoAqQJBVBxeL10CNrS2trrsbhWfCuIA2Lbi8NSHrajQWk9t5YmNgiPaaqkgYDvyoBUnqlucwemhlIJWqRRV1JQ1ZWVlZkSc98c5X8SO7+y9z4nKuDdf4v7WinXj3nvO7/ymc+7+9ti6rkOhUCgUCoXFYOV8d6BQKBQKhQ9k1A9toVAoFAoLRP3QFgqFQqGwQNQPbaFQKBQKC0T90BYKhUKhsEDUD22hUCgUCgvE5A9ta+35rbUu+LvHOe6aRXZ4LlprX9Jae3dr7Yzt5wcaZD02Wms3tdZ+qrX2GOfYp7XWfr619r5hXu5qrf1ma+15rbVV5/iXDO3+8nJGM7r+Da21G87Htc83hnm/bsnXvGa47vOXeM3rW2s3zzjuitbaq1prf9taO9Vau7O19o7W2itbawdba48c9vQPJ238h2F8nzC8v8HcO5uttROttT9vrf1Aa+3D92+Uo/s0+rt5n651aGjvm/apvQ9urV3XWvsg57vbWms/uh/X2Q+01j6xtfaHwx55X2vte1prBx9GO28d5vCl+9GvtT0c+7kA3iufbZj/3wzgaQBuPddOnStaa1cD+DEArwXwAgAPnd8eLRzXA3g1+vX8aAD/F4Cnt9Y+uuu6UwDQWvs6AK8A8DsAXgzgHwBcCuBTAPwIgHsA/Kq0+8XD66e31i7vuu6uBY9D8ZVLvt4/d9yK/h7+u/PdEYvW2nEAfwRgC8DLAdwI4DL0e/0LAHxb13V3tNZ+DcCzW2tf13XdGaepL0a/7/+n+ewvAXz58P9xAE8B8CUAXtha+9qu68If7j3iafL+lwH8BYDrzGen9+lap4fr/eM+tffBAL4NwG85bX46gBP7dJ1zQmvtYwD8Ovrn2EvQ9/vlAK4A8Lw9tPMCAE/e1851XZf+AXg+gA7AB08d+/+XPwD/aujzvz7ffVnCWDsA3ymfPW/4/LOH989E/5B6VdDGEwB8pHz2tKGNNw+vX32+x3qe5/ngeVjX6873uJcwzusB3DxxzJcM8/FRzncNQBv+/+zhuGc5x10z3APfYT67AcDbnGMPAPgFAJsAPnZB474ZwGv2cPxS959c+9OGef2X53u/TPTz1wD8FYBV89mXDX3/8JltPALAnQA+fzjvpfvRt32z0Xqq49bakdbajwwqygdaa7/cWnu6p55qrf2r1tpvt9bub62dbK29pbX2FDnmhtba21prn9xa+9PW2oOttXe21p5ljrke/Q0EAL89XOv64bvntNZ+p7V2x9CfP2utjSSd1tpaa+3FrbW/bq09NBz/6621J5tjHtla+9HW2i2ttdOttRtba18m7VzZWvvpQYVxurV2a2vtTa21Rz28WZ6NPxleP3h4fTGAuwF8o3dw13V/13XdX8rHz0P/oPmPAP4JMyVCbx8Mn1/XWuvks69trb1rUPOcaK29XdZyl+q4tfYJQ9uf0Vr7wUF9eGdr7TWttUuk7Ue21l7XWrtvaPunhvO2VYfJGK5vrb239ar232+tnQLwPcN3c/dQ11r7ztba17RenX9/a+1/NlFJttZWh+NuHfbzDXqMOfbTWmt/MMzXva21X2mtfYgcw3vk01qvBj019PHjhn39XcO17h7GedScu0t13HKz0XUy1+m9MBz3ScN9+1Br7e9aa1+uxwS4bHi9Tb/oBgxv34R+n3+R08YXof9R/pmpi3Vddxa9NmUDwNfM7OO+obX2+tbae1prz2yDGhTAtw/fffGwj+4Y9tQ7WmvPlfNHquPW2stab1p6YuufrSeHffnNrbWW9OXT0P+AAcDvmvV/6vD9LtVxa+2Fw/cf21r7xeEeua219vXD9/++tfYXw/X/qLX2Uc41n91a++PhfjgxzMejJ+bsCIBPBvD6rus2zVevQ/8c+4zsfINXAPhD9BoH7zqPbq29driHTrf+2f7G1tqlWaN7UR2vttb0+K2u67aSc34Mvcr5OgBvB/BJ6NW52vl/i57uvxnAFw4fvxj9wn5k13X/ZA5/AoBXAvhu9JLH1wP47621J3dd9x4A3wHgHQBeBeCrAPwpgDuGcx+PXlJ9GXrp9pkA/ltr7XDXddbO8HoAnwXg+9GrSw4Nx14F4MbWq7LeBuDwMLabAHwqgB9prR3suu4HhnZ+FsDjAHwD+h+rK4Y5OJLM2X7g2uH1ntbbXj8RwK90XTdLhd56m8azAfxm13Xva629BsA3t9Y+tOu6d+1HB1trXwDgv6J/gPwu+rn8SOw8VDO8Ev1D9bkAPgT9j+AmdgsDvwTgIwB8M4D3APjfAfwA5uNi9PvgewF8C4BTw+dz9xDQ7+W/AfC1ANbRq7F+ddirNLtcN7T/CgC/AeBjALxROzM88N6MXvX/bADH0M/d21pvIrjFHE6V2X8B8AD6+Xnj8LeGXkv1ocMxtyMQwLBjDrL4AgBfDeBdQ79m3QuttQ8F8D/QPweeA+DgcPwx9GuX4Y+H19e31l6GnoWe1IO6rjvTWnsdgP/YWrus67q7zddfCOD3u65798S12NbtrbW3A/j4OccvAI9A//z4vwH8NQCO91r0+/I9w/tPBPCzrbX1ruuun2izob8vfgL92n82gO9Cz65fF5zzBwD+TwDfh17FToH8nRPXeg16bcWPoN8z39taewR6VfN/QW/O+14Av9xaeyJ/HNuOievH0aurL0G/z9867PMHg+s9Cf3e3tWvruvub639I4APm+gvWmufBOBz0JsPIrwewOUAXgTgFgBXAvg36H8jYsyg0s9HT6G9vzc5x10zvP8Q9A+ib5T2XjUc93zz2XsA/LYcdxz9D+n3m89uAHAWwBPNZ49Cf6N+i/nsk4drfEIyrhX0C/PjAP7CfP6vh3O/Jjn3P6PfKE+Uz3986PPa8P6BrJ19Upd06Dfu2rDYT0X/EDwJ4Gr0P+4dgO/eQ5ufN5zz+WYtOwAv28N+uUY+v67fbtvvfxDAn060dQOAG8z7Txja/mk57geH9aAK8VOG4z5Pjnvj1L4Yjrt+OO4zJ45z95BZl3cDOGA++5zh86cP7y8d9siPyrkvhqiO0f9AvZt7a/js2uF+eIVzjzzefPYZQ3u/Jdf5JQA3mffXQO5NOf7jh3m215t7L7x2eH/UHPNYAGcwoToejv3W4dgOPdN8+7CnLpHjPnY45ivMZ08dPvtyZ3+NVMfm+9cBOHUu92fS9s0IVMfoH+YdgE+duf9+FsAfmc8PDed/k/nsZTD39PBZA/C3AN44cZ1QdYxey/Cj5v0Lh2O/0Xy2jt6O+xCAx5jP+Zz5uOH9JeifWz8s13jSsOYvTPrI5/bo3h72ypsnxngI/f31UpnDl5pj2rAHv2yv670X1fGzhk1s/74uOf7jho79d/n8F+yb1toT0bPU1w6qrbWBOT+IXpp6ppz/7s5IpV3X3Y5eKh95xCkGtcnrWmu3oH8YnQXwpeh/SAg+pH88aerT0Dtn3CR9fgt6aYfS058A+IbWq0g/IlPRmD6u2jZba3PW6FuGsZxCP2dnAXx613Xvm3Guh+cBuA/ArwBA13V/g368XzizP3PwJwA+uvUenp88qH7m4s3y/v9Fz5CuGN4/Fb3wpeqfX8B8nEXPmndh5h4ifrPr1ZC2n8DOXv0IAEcB/Lyc93q55lEA/wLAG7odJoyu624C8HvofRIs/rbrur83728cXt8ix90I4DEz9+U16OfzLQD+k/lq7r3wNAD/ozNMtOs1Vb83de3h2G9HP29fiv6H5XL0jOedrbUrzHF/gl7QtOrjL0bvIPSGOdcyaOifBfEBu+/VvWgIp/Bg13W6XmitPbkNkQPof3zOomfr3v7zsH3vdP2vx19hxrPzYYDqZnS9Y9pNAP6q6zrrUMt9+djh9RnotX36W/D3w5/+FuwnXoqeGH5PdMAwX+8A8C2tta9ue/BM38tD851d171d/t6THH/V8Hq7fP5+eU975U9g58HFv3+H/oayuBtjnMYEdW+tHQPwmwA+CsA3oV/UjwXwk+gf0sTlAO7uBm/dAI9Cv+jaXwoV7POz0bOob0SvcrmltfatEz9Wvy1tfms2rgE/OYzlfwPwiK7rPrLrOnpW3oX+B/hxM9pBa+1K9Kq/NwM42Fq7pPX2z18E8Gj0qu/9wM8A+Ar0AtlbANzdWvulNi88TPcAvTW5B64CcEJ+5IDx3stwR7fb1rOXPbSXfnr90veXon/oex79t2Gsblcv0DPJ52sARqFdFoN6+E3oow6e2+02F829F66CP/+z16Trutu6rvuJrute0HXdtehV2I9Gb5qx+GkAT2t9WMo6+vvwV7uu22uY32ORRFEMe3XXuGfu3zkY2aOH+/C30HvEfgOAf4l+/70WU6rLHptd190nn00+Ox8mvL0W7Uten78Fb8N4Pz0R498C73qerfQy+L8bAPrwJfTP6JcAODLM88Xs2/AM5DP7Weg9m1+CXsh7b5uwcwN7s9HuFdygj0IvzRBXyHEMGflm9JtI4bnpPxw8Df2PzTO6rnsbP3Sk0DsBXDbY3KIf27vQCxBfG3z/N8A22/4qAF/VeqeV56EPvbkDve3Cw5cDuMi8n8NKb+267u3eF13XbbTeoejfDDazqRCCL0D/4P384U/xPPQ/NhFoB16Xz3fdJIN0+GoArx4cCT4Fvc32Deh/fM8FtwK4tLV2QH5sde9l8JjM3D00F7xHrkDPLGDeW5wY+nOl08aVSB4i54rBxv8G9Gq9j+vGttFZ9wL6sXrzv5c12YWu636otfYdGNvfXoPe9vhFAP4c/YN20gnKovUOix8D0S4I3of+h04/2w94++8Z6AWLz7L3e2vtwD5d83yDvwXPRa/GVaiQYPE36Bn+h8Nosgbh+IOQayg/GL2nuWpfgf4H9SXofRpu7LruNvTq8Re21j4Mffjod6EXjH4qusAif2j/GP1m+VzspuOfK8f9DXp7xYd3XfeyBfaHqsntB+/wgP9MOe430LOVL0XsPPPrAP4PAP84/JhOYlC/fktr7YVIjO3DcfuNl6G3R30PnAdia+1aABd1vefx89DHGj7faefFAJ7VWruo67r7g2v9w/D6FPT2H/4QfUrUua7rTgB4Q2vt47AT03gu+EP0wsKzsFstq3tvr5i7h+biL9HbpD4PvZMT8Rx7UNd1J1tr7wDwua2167odx5HHAXg69ubktVe8Av0D/hndbocrYu698Afo47GP8se6tfZY9Hbf9MdpUA3fIUwarbWr0DOPXayz67pbWmu/hV6l+pHoWfNIDZtc7wCAH0b/fHxVdNygEnUF3AXB23+PQu9gtEhQOD+84Ov8L/Tat8d3XRc5Z7nouu7B1tpvA3hOa+27jTbqOeifBf9Pcvofo3cqs1hHv2d+Er2pYhST3HXdX6M3DX4lcgeqPf3QfvTgNaZ4u7UbmU7c2Fr7OQDfMdDud6A3WP/74ZCt4biutfZV6L0x19E/GO9EL+k+Hf0N/Io99DPC76OXiH6otfZt6G1jLx2uRTUBuq57a2vtFwG8YngQ/A56aeeZ6A3qN6D3wHs2eq/o70MvLBxFr9J5Rtd1n9lauxg9Q38telvEWfQP5EvR/5gvDV3X/a/W2ouGMX0Yemeffxz68knohYrnDuzlI9A74dyg7bTWDqG3yX0OYuntT9AnPHj5sO6n0YdK7FKtttZ+DMD96B/At6N3ePgi7MPcdF33G6213wPwY8Oefc/QZ4YSZJ7yGWbtoT30855h/7yktXY/+rF/LID/4Bz+n9Gr89/U+uxHx9BrR+5FrwnYd7TWnoM+vOW70ZsRnmq+fu9gb5u8F4bjvxO9oPMbrbWXo3+QXYd5quMvAvBlrbXXon8oPoh+v3w9eo3XDznn/DT6e+9aAN/nPaMGXGTGdRH6/f8C9DbPr+y67h0z+rcs/C56wezVrbVvR+8w+q3o53CUCW4fcSP6e+ZLW2sn0c/5uxztxjmh67q7Wx+S9F9bn3ToLeifEY9G/0P4a13XZX4W34pe7fxzrbVXY8f7/jVd1217I7c+9OyHAXx813V/1PXe6TfYhoZnHdA7C94wfHYF+uiYn0O/zzfRP1cOI9fynbPXcYfeJmiPu8acewS9ivRu9N6VbwTwb+F4dKJXy70JO95pN6NX2zzNHHMD/ADzmwFcb967Xsfof+j/DL3U9HfoHyLXwXjDDsetoVcX/C36TXUH+tCEDzHHXIr+IXPTcMzt6G+Erxu+P4heNfpXw9jvQ/8j9NypOd/LH5yEFcmxT0evHrkV/Q//3egf7l+I3l7//cPmeVxw/gr6H+gbJq7z4cNaPTAc/yKdZ/TM+YZh3k4P8/h9AI7Let9g3n/CMN5PDvao3XuPHPbP/eizXv0MdhJ5jBIfSHvXo/8h8b6bu4dG6wLHqxe9tP2d6FVPp4YxfxichBXohZw/GI67F/1N/yFyzA2Qe8Rc90vl8+uGz9e8/pnvvb/rTDvpvSD35Z8N6/336LUX12M6YcWHDu3/GXr14ln0e/gXAPyL4JzDwxyF6z3MFcezNRz/5+g1BLMSHJzDfXszcq/j9wTffSr6jFKn0KtXvwK9xuohc0zkdbwRXOvGGf396qHPG0PbTx0+j7yOHyPn/yHGXu9PHo79Qvn8M9Fn77ofvVD1bgD/Tfd60M9PQu+c99CwR74XwCE5hn18atKO53V8FL0K+q/RP9vuHcb1uVP9YjjE0tBa+0/oVZjXdF23XynCCoVJtNZ+ED1buaybtlUXCoXCvmCRNlq01v4det31n6OXGJ+BPjTg5+tHtrBItD670cXoNQrr6NngVwB4ef3IFgqFZWKhP7Toqf9noXcuOoo+k8ar0Me/FQqLxEn0cd5PQK/Gvwl9vPHLz2enCoXCPz8sXXVcKBQKhcI/J1Th90KhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIRTtD7Vxoba07cOAAtrb6XAF89WzEKyv97z/TR66uru76nK/2GD1HU09mqSinjp1z7rm0P3X8Xvu41/HMuV4GHqtrmc2NHtt1HW6//Xbcd999o4OPHj3aXXLJJdvneO3qZ/pq98zUORH2a433MrcR5vhW7If/hbdOUdvRd/q5/Z7/83mwubm56/3GxkZ4PaK1hgceeACnT58eTeyxY8e6yy67bLtdtsf2p/qXXXMvn5/rsft57vnCXvZjtIe8z6J18+5rPgfsb8q9996LBx98cKETuswfWjzucY/DAw88AAA4ebJPKsKNz2MAYH29T5N75Eifcez48eO73h89ul2rGocP91nBDh7sEw8dOHBgV1t89R64+ln0A89X+52eq8KAXVz9zraXtemdE73acyLBJPqcc5YdM+eHQx+aPJfracetD9KzZ8/iG75Bc8P3OH78OF7wghfgzJkzu9rjmtsxcL35nvuD5/B7279Dhw7t+s77UdbPo70TzbnFXn6U2Y4KptGDiD8o9hx+FvXZ68vUDyDf2+vpj5kew/U7fXonuor/P/RQnyL7vvv6dLZ8Ttxzzz273gP9XgF279W3vvWto7EAwKWXXooXvehF2+2cONHnnufzx/aL7ercevMUPVd0LbP751xIQSZ0KrQPXI9on2ftZedMCVgZubKCjz1GBSOuFTDeX7r/uD/s843PDP6mHDt2DD/zM3tKg/2wUKrjQqFQKBQWiKUx2q7rcPbs2W2p0VPhqFqZiBiZ/T9ifspOPXXjHNYWYc45kWQXSafZdeaqOb3rRtK2ne+ofW0jU+VE159S/0XY2trCyZMnw33htc31zpjgFBNnG/zeY7TRPGVj1nF449FjlbHOUelGDGLOOkQaDbbJubEaKT1W33usm+frOTpH9j1ZDT+zJikPm5ubo+eN99yJVI+eBiDSKEX3tLfvdL2ze2su6820LlPnzmHde3lGRveCakWA8b3GV7JR/m5YdqrtKdi+1WLxM2pQDh06tC8mlikUoy0UCoVCYYE474x2jqNMZDu1303ZITP7Z3Qdj+nOZcFzbBnROD1Wot8pK/akuqwPUT8iKTGSOLP2lJ1YyVLnMZMqu67bZdfz5l6vae23Fp7tnK9q14/srtqOfR9pDWwfo/feGuqcqq1Ur5uxoehe8ZxFdO9EmgHPRqv2dzJQtRECO0xFoczTzg3P4euZM2dSRmvP1z7q/7afOm92/5JZRRq0bK1VK3Au0H3vPY8itk3MYamZD4q2M2Wb9cYfrbcyW69P0b2gvgIWbG9q3+wXitEWCoVCobBA1A9toVAoFAoLxNJUx8BupwSqfaw6Zq7K2KotVM2nasAs3CJSEWVOEFPxupm6WTHHCSq63pyQoEhFuBcHh0hVbRGpXzIVlaqMMzVa13U4c+bM9pp6ZocpNRyPtftNw4QidaC3d7T/kQrXU2+rGjNz6oj2SKQy9MwFekykIvfGqvM65XQEjFW7dDxR84M9JnK6ylS93AcbGxtpv7quS1XRhK4h94O+AuOQNQ33idbL/j/lYLiXMBgdg4dIhew9V7W9KORxjtpZVbfeGmi8dGSGyJ4/GrYUOdYBY4e6RaMYbaFQKBQKC8RSnaE2Nze3JVgvaFpZU+Tg5CVYoITJ71Ti9FhJ5Dg1J6A/Cg3JnFKm2vLY8NyECN64KGVHjgzeuXNDneYw2yzURVnD5uZmyvxtGInXh8ihRfcHk1MAO8ks+JnumSwjWcSg+Xm2vzWwXkNPLAOYSmqgrNTTpHCO+V6Td3h7RxOA6Bg8JzyOgwyWrEHn0WO00f3qMVqdt42Njcn7LQt10/s8eqbYvcP/dZ50nTzml7Fq+7kdk2o/vIQhirlJLTxnr0irp+PNQt48hzk7vjmMVrUkNmGF7qfI2crTJuxl7+wHitEWCoVCobBALJXRbmxsuMxEoan7NK1eFt4T2VW8dFwq0UfhHln4i9oQCC+XqkqqEZP1GHvEUr05mUrTmKVXnGtP9hhdlEyByEKQ1tbWUhbdWhulYfPYYtS+x0oiRqupQOcwf2WYHov3wlIAjPwW7F7S9Ilqm9V94LHu6J5Qxmb7r3OgoTnevmcI1pR91wvVYYpFPScLI4pSJs6Bp63S+eK+0Ff7v85ppGmaE+6nc+qFQeke4fsplmyvQ0Q2e9tfffZyP3gpTadSmOre8faBp62wr5bR6r2mzx8eOxU6uAwUoy0UCoVCYYFYutcx4XlJRh7DGaNViTKSyD3pXT/LvDGJKTvbnGTrhLLEjJ2qDShirbbfkb01syNHXq6Zp7JeRyXXLMnF3NRurbXQI9FCrxklowDi9SdbYRELz16pDEb771WdoYRNGyYRJSPxxqh7Uve/7Qc/o1e1vmasJLLRKrOy4LooM+S4vfuKn7FP0b1n7yeP5U4xk8ynQces68/31IAAsddxpCXztFRq5+arZ4/U4gs8hm2o97ZFxHYjbZk3J1wfLeLCebDHRiw+Y+wcq75y3DzWzmPkoa7wPp/jLb2fKEZbKBQKhcICsVRG23XdyAZjpR71DKXUNJXezPtOpSdPaos8EbMUdSpFWakz6qOyq4ilZLGQmSddhIj5aVtZ/JyyLc8OG8XnRbZp+7+9TiRlttawurq6Ld16trnI+ztj/lFcK1kDP9d9aD9TRs5z2Fe7lupxrzZafbXHRukt9yKZR/vL824lNN6Qc6PMyv7P79SuxlePYSiL9LzEtb+anjSCF2/tedhyTXlNluMki8vskZFmLbOd63gie7wdq9pks7j+KV+Q7N5QJqvaHy+2WD+L4sM9BhqVvCM83xD2jXsmql1s9+ic3AWLQDHaQqFQKBQWiKUy2tbayNPNJn9XCVJtSur5xjaBHUlF2Y7aJzy7ANvnuXpdz/6p18+S40fsc04fp+yeWcamKBYus7eq5BjZhi2mkqRr7Jptd8pT0UIlVi8uV9tVJmb7ELGQOQnUFepPoJoU+79qNpTJWhtutL5qO836yGPJslWq9xh05AnNNlS7YM/VcUWl/rx2uBaXXHIJAODBBx8EsPueJ+YUpCCiGH37f2QvVjZp/4/Wcg5bVChbtddTu2ZU9i/bB1rcQ8ftxcRGHuRRjKzXJ9Xg0MP81KlTo3Mi7U7G8tW3QufKzokWuFgWsy1GWygUCoXCAlE/tIVCoVAoLBBLVR0D42QUNGQDues4MFZnWagRXVVrGuYDxIZ99oOqbHuOqlRVleMZ86cSZnNOvGQeUXEEdcLKHI0iJ7I5ThBRIL6dE1Vjew4gen2dt6miAN73tr0oBIzqKaog7bpE4S+RqtVeT1V3c+rf6vVUNanOUXYcUWKMSMVvr0dVtO4DzolV4akql33hMXrveY5GmsxdVXh2LdVBjH1lH73nxP333w9g9z2QJVrZ2tqaFWKm+1Ud2qxTj5oV7Bx6Y7Vtq+pY739PHauqVHU881THc5PPEF5YmT7P9PnjpURU1beaG/SetOOaSuqTQX9bvN+JZTtBEcVoC4VCoVBYIJbGaFtrOHDgwCg5g+cYEIWUKItku8DYCUolPTWYA3HKPTXmW2lamZNKSB6jjZLrR1K2Z/DX8WZJDqacULJg+ijoW6XVTLrXEBQ9zjs2S8HYWsPKysooAUIWYnTy5EkAYyZgz4mSDfAYSt481+4dlfg1JM3TIkQOZboeHqNVjUK0D+268DsyB7bBe+Oee+7Z9d7+z1c6rrANjkdZOTBO4qBz4KUY1T3J91w/j5Wo00vXdSnj8VK/enuHn3mhWdqX6N7V+8djw1Eaw6wIQORgpMzWnsP2p1IievedhiRGCVm8544m1+B9xDXl55bREpGmxtMMaOGJKD2p7WNW9GORKEZbKBQKhcICsVQb7erqaqiDB2LpIrMlqLv2VLhIluyfUg4lMk+ypCSvNtMs4Fql3ihw3JuTqDiChmZ46Qij1I9EloBc59ULr5g6R+fKQtudkixXV1dHY7dsimOllKysNwt/UKmZx2gb3rmaoCJLLKLJF1TSV7YIjO3dbIN91qLqnrZHNUGcI7JVL7yH46E9VFktaoDpAAAgAElEQVR3Fu4VMTNlX/Y6GmLFufdYD/tIXwr1V9C+bG5upglXNPxsij16x0SpWT3tzlQqTC9daFS0RMNf7NxGJQg1ZHBOSFD0fLNzz75wP+ur7nc7n8pYo8IXXmGHqM/ePaH3QpYoZz9RjLZQKBQKhQVi6SkYIxuG/V+lZLXTeEwsKhemkpKXGD5KpK6ekByDBaXSSKK1iFiA2mg86VfHoR6KVrKk5KherCrRqqSb9V9tad486lxkiQTmHEPQRss+aYo3YIf5REnXbVuESrzqUa1FBWxSefUY1qTnyhqAHQlc/Qb4/r777gOwm9HymseOHds1DvVbYN+9JAfKtjUBvR2X3luaxEWZtWUVWp4sutczmzCvE5WBs9extt4pjQjnybP56rnsvxZQ8Gy0WYlDwPfSj7yzI/u7Nw6Fl75T99lUsn8vfaP6vuiesnOiWggeo6yb47L7IyqswDY0qZA9Vu+5KF2pPdaOZxml8orRFgqFQqGwQCy9TB6lKs9+p6xU2Ygn3aqNlN9pMW9NGO4d45Wps20DsUQXpVO0fVS7nV4vY3kqUSqTtZKeSpIPJ5Wg9jWLYda1VI1AFiNrJdhMslxZWRnZrjhOYGcudeyE1wd+pl6mZHj8nszW075EXuFe/J/Gy5LFaeJ+r4QbY7rV25fvvTSXc8uj2X2h/gmRh3SWtk/ZiDJou85TcbSet7hqYtbX1ycLqyu78eLAeS0yMu2b55Gv2gLVfvDVXk8Z5lSREe87ZaGer0ZU+EA1aDwnS20bFcDwtIt63YsuumjX91r6Dhh7KNt728I7JyrakvljEFPx+/uFYrSFQqFQKCwQS88MFSVwB+K4O8LTuatEQvZx6aWXAtiRpjzp/eKLLwYwjqnKssioh6Nmd/Kk9iiuS6/jxUKqxKiMVu0wgF/WC9iRWDVRu7X/sX2NLfbs1QTnRLPjKHvwpN85ttrWGtbX17c1EOyD3QcRw9c5987RhPZqS/XKDWpx7jnsXZksvS8JrzSceqQqO+Fae3tWPVN173pZ1JSJq9aH8GyFukc0ExBfveuppojwbM96v0Z2S2DHLyRjkcrAeX8oa/NYs/on8Plz/PhxADvr48VyapYl9QL29mpU9EHHYM+PCoVEGg87LvU1UHtr5mPD93y+6DpZXwS2Sy93vt577727xpdpiCJNaPZ7cfDgwaXE0hajLRQKhUJhgVgqo7WSQ1Sk1/tMJQ6vbB0lR5bXUm9dSuZe5hRKT5TalMVZu5dK3GpXsx6c2l99jViXld6VKUel7jIbkMYdsn3NLW3BMfMYz9NXEZXF8uZeWfz6+nqaGaq1tn2OMltgnI1GJe+MabI9aj+UvXlaA/ViZfvcf+wPY1VtX5TpR96gwNjzVFmWfm/3pzL/iMF4cbvqQU72zTFwruxe1exRyorZN2akstfReyDSqNhj7TFZDP7a2tr2ddgHz9M+io3VvtrzVeNARBoIr331aVCPX/udamHm7HO2r/e7Fx+s0GdSFJNv2+N9z76oJoWs386Z3tucV/om3HnnnQD8uGr9LcnuK50nmwd7kShGWygUCoXCAlE/tIVCoVAoLBBLd4ZS6m5VKlHogFdMgKCq4bLLLgMwVo8qrMOOuqyrmkqdSexn6nygAfyeAT5KgUZ4iehVvZQlRFBETl4aMO45UHAcnjOHQp245oQRaXrArKgA+6Wl++y66Hqr2pxrTVWU/Z9j1bKIfGW/aGKwYP+pMuYrVcbqIGavo+kGPUczVa1qeE8UqgHszA+vp3vGK+zB9aczD4+95ZZbdo2LTipW/ad7lW1xf3Ev2XXj2NU0oipsOzdRwnkPdKQj1PGNxwA7akl12PSc1FRVrOpRL/0fMVd17O1vvWdtUQ7tY5TGMCroYq/HddBwG10vC0/l7Y2HZgi7V9UpTsfF+8rb3/pef2PsGmgRkGWhGG2hUCgUCgvE0hgt3ewzJwIviT/PtZ9bCVYN7uokokHzXoLpqJi2V44tcrOPiqpbeNK0bSubE3VgiJKM2//V+SZy+rCI0iiq01dWZEClUY+pZokPIthyhcBuqTQqOq3slCFdwE7Ygc5t5Nhmx8Fj2afLL798V5/YDxusH6V6VAnf7qUoGYgWF2Db1mGHfYsSwXjhENo+r0uNURbypAxKU3+SlXppG9mOJtpXZmv/98LhFGS0vJdVS2H/V40Wx+6VBGS/1EkoStbiJWBQB8PoPvXGqKFAXmpU1aTpePW5Z/sYafX0ul4aRXVC0oIOXgIQ1eZFyXZsKKI+8/UZH6VhtZ9VUYFCoVAoFD4AsFRGe/bs2ZEkZIP21bU7Cm2xEpoyVkqftEtlzMlLx2b7RmSJFlQ6zMrVRUnElTlb6T1iymqbmyNZRrYsL+UfoXZDj3WrJK7X84LbvUIOmWTZdd32vGjYkG1bmTFZXZR4wTtH2aKXAEQZC9eBNkzP3qp7UNmIBvjbc6ZKKnphJDrWKD2kHT/bpT1a7ZRk6F7h7Cg9qCbG8JKrRMka5oSTZYxW2/CKC6hfgs61l+xGr6lMWRnZHJugaro827n6k6gWIUtpq/tMn3+W0eozJNqrXpjU1L4jvPspKi7gpaVUTZSmAPWSyEw9CxeFYrSFQqFQKCwQS/U6tiWJMtucMorMw09tV1FBZC9dW1REnfAk5ihtorI6KzGrpKrSogbre+WxorJoXh+npM9IsrXXjuzknmehSvOR1Oh5mBNTthKWyvPOBXbmRRks33uenGSdKvnqGnrXU5uSplNUW6Y9RzUmyg61JJ53bGSj8/wXInuh2lBte1GaUGWYdiyalpIeq2or89idl6wF8LVO2sepggJnzpwJk8PY//WZpO16xUV0LSOtRZaYR/eK2k7tZ3qPUSOgbM7rS3bfA7vXRf1JvDJ19rr6f3SMhZdiUvddlPrRnu8lobDnZFpGe61FohhtoVAoFAoLxNLjaFVS8aSdiC16pckiiT5iwxZenKy9vpd2TKUk9dL12tQ+eDGP3vfAuJA9oVKvnUe1D0U206ywg0rikRcyMGZkEaP27ONRAQkLeqxnnt3qIao2Wa80V1b+DBgnbvcYucZcZrZ6tevruV4xdTLliJ1Gsdj2f9072f4mov0Wed3bz5QxRxoc25fIj8ErHcg1JXOe2jtnzpwJtQgeoufNnHSxU7ZG227UlndPaJ90r3hRFVFBCiIq8ej1YU4KVp3T6NnhXV/7onPhrddcr2ovL0GmrVoEitEWCoVCobBALJXRMjn8nOPsq9pXPalK21WJ0pOIIjuKnmOlUc0Aox526hXoXVvtuQoveb3ndee998ajUqHas+18Riw0Yji2Hb1uVAAh6ncEspLIm9GOKYrh82KwVdOg0m7GMKJCAFlBDC/WERgnUPe0BarZmGMD1DJsyqC9PiuLV0aZjU+P1T5n2gvVEJHJe+wv8h+I0HXdJOuN+hVdN2JC2Z6fC0/TpAxsystZ/wdiW3C2v/XeVk2Kl7A/eh5Edlj937breXzrMfo7MWetrSambLSFQqFQKFzgqB/aQqFQKBQWiKWqjldXV1N1BT+L1DKZY9OUGngvqhxVIVrVMUNCojAYT1UdqRe1z3NCdXQcXgpIndtIhZOpf7TPmVpmSmXjfa99nFLfbG5ubjvZMGTH9lED9nXsnjPHlCOEhpZkNX8jxz0vSQehaQF5rK1hG+1j/Z7wEpdoaESUitGez3M0zV1kHrD/q2OYqo4zp6LoHvccqIizZ89O7p8sAYaaVLJr62dqzpqTSjQyw2QOjoTeN7peXmhg5HyZrUvk/KbzZ99HzwE9J3uGqFo5Wzd9bkZ9tONme9bB8eGo9/eKYrSFQqFQKCwQS2O0rTUcOHAgdTDJ2K6Fl5psilHMkTQJleKsA5QGt6tzgBfeEbm9T4XS2HO9ZOi2H3PCSRRznJTmBKHP1RZk1+m6LmQlW1tbOHPmzLbUzoQOnvSu66xOS5aVasKDSHuQpe+MkgFE4wRihzoydpu+URlT5OAWOSvZcbL9KHEJME6AoM5R6iRl9506kekxnrZH7yd977Etbf/MmTOTaRj12l7Cgijk0CvpGT3H9sKOomcXx56FXfG6XNNIEzUHe3EuzRJ/TIWTRRoO7xhCr+OF6kw9T73reNq8RaIYbaFQKBQKC8RSGe3KyspIF++FaGQB4npOJJ1HLt+Z3SMK6/FKgUVpFdW2YT9Tu0PEfjI2HNlBLFNTFqLtRyEi3rGRpJnZxLKkDTqOLPzKXsuyQI7PK7dG6LU9m/pUarpMKzKlMfHGk6WEA8brZY+N9kEUOmHB+4qFzTXpgZeWNCqDqDZBLwVjVA7NS3KhBTXYxyzRCNeQ5548eXKyVF50j9sxZ1opYG++DHqc91m0hzzNlt6rao/0wmAi7VT0PPLYYhTO46XvjMap7zMbfaTdmwqJtMh+P/Q5XYy2UCgUCoUPACzV63hlZSdxvJZu0uMsMglF7WpTTCOTpqJ0X1kxZZW4vDam0tllbJFSO1+1+Llno408k/dib428tffCuudgSnthr8FrM1m9nYtIwzAnUbsWEo8Yf5bsImLUXpo5ZUrqOZ4lk48SB3h7iXOic5ElXdHUpZHk76Ua5f/Rq5cAhuPgMWpHztKgzknB2FrD2tra9p7x1iB6RkRerLZ/U4n6M6YZRR14a6kML7qns+tEzNl7BkeJKnSv2rWc4zUdYYq5ZjZanZPMx0fHvIxkFUAx2kKhUCgUFoqlMlov5spjiw8njdmcNGxTbc1JpB3ZNTMbUZT8OkrG77FhSvoa0+mVCoukXM+LEfClxKm5t59HycmzpOWeLSZaw67rsLW1tT0vZCe05wHA8ePHAeysmdosyX68WEm1R0WMw0s3mGkyousos1B7V+bRHcUkeulJVWrX/c05sQW/mQYySn0Xeb1nx8y5NzTlopbc8xgt+z0VC9laGzHkzItZkXmoRow/epbZ/3VNsxSFyq6jdffSt/JVU2J6BRsIZdf6LPT8DTQNZKS1zGy1esyUX4NFlCcgs3XPaXc/UIy2UCgUCoUFYmmMlp6jtId5Hohq05lrvwNiW9Ze4tyiQvBexhQiYqWeZ3Rku9yLZEmJXGM77TxGDE2/96S5yIsw89aLYjznaA+i9xkYZ0pma/tNu61K4GRGWTYphTLQvcQMep6cyv7US9ezG0X7OvKYzgoScI9orKxltJxTLbGm9+IUC7TtZ7GQar+NYiCtpoD91Tnw0HUdNjY2RnHv3nNnjrdxNMYpe6hnb82Ylz3O9jEqB+r1VRmtxuJnGZuiZ4baUL0cA7qfp2LN7We6r5RB23N1/vR+8jyjveiAZdhpi9EWCoVCobBA1A9toVAoFAoLxFJVxxsbG6N0ZlZdEqmL1H3bUwVEKdvmqHRVZadqrCyRgNbRVHWNbX+OY1F0nM4BX730gOr0pEkIIjWgvfZe0prpuVEicM8BZQ64d1TVaVXHkeOFJqqY4wQThQBkauCpxAX2fPZbkzVk19FX7rcoZMNeR/cD54IJK6zqWJ2SLrroIgC+YyDw8JxJPBWlrpvuc6ui9FST0b3VdR02NzdHTmqZM1+UbH/Ono2cCbPUgRGysCKuvz5b7DlcM302RUkhvGejPgPVCcur66rPqijcx7ve1FzbdZwKJ8vOz5L1LALFaAuFQqFQWCCWmoJxfX19JOV4Af1RoHgmfUTOOiqBeWzYcySx7y2jVeN8FNhvEyhEJdUUnnNH1Mcooba9ts5jxD4yJ4jovWVsU8H7OmfAmBFOSZZbW1vh+gB+SUPbbhbWo2xnKp2n91mUON/2kWyRr4TODxmI/Z99IgvV9ImeUxyZaqTB0FSM9lg6nEUMSvtuEa2ll4ie0LSh6uBiCy3otadCe1ZWVrbP9649V9OUpfSLQoB0ru1nuu/UCdRjZnqvaciOpw3hMVEZQI9h6z3shUXpGDRlrWpBIhZuj9H7Rh2bPKfPaB948+yFGi2D1RajLRQKhUJhgThvZfK80BkNQ1DMCXBWSSxzh4/SymXsVG0VtHtSWmPohJeuLwvFsMdZhhGFD0TjtVDJcSqcwCIKK/EQjWOOPdeGDUxJlsra7D7RMSkryFIiRmEIUaIRiykma+3IZLIaQpOlxFNWouxEQzY8fwKFjtNK/LpXp5LIZAxxSmMExPY1TabhPRPmJDvhc4dQxmwR2e32klbV61sE3ZvK3mybXJeo0Lt3r6lWILIbe33Uz9gW18NLdhKtobJhL8wnSt6hKTjtPtCkJuyLjtfTvul1F41itIVCoVAoLBBLTcFIewn/B3wdf8Z6I6iefqq4gD0nsgV7jFZtLspoyUYzz0qV6DR9mrXRRbZMtc1YSU3Zxl6Kkus4o2Mze6WOcw4rnurL5ubmSKq37E0/U/brJaCPkpBH0nW2D5W10SZo7bGUuPV6upY2yb96U7PdKPm/RcR6NfjfK0Gne0gTpXgsX+/b6NWum9pglTHNKdSeeZlynGofzs7JNBiEJnCY64dhz428jz22HbHeqDCJ7Zteb87+1mM07SlfvcQfqlXRcU7ZjG2fotKL9ruHk+AoK2qzCBSjLRQKhUJhgVi6jTaypQHzC0d7aeaiOKzMk3muft6zYUSMOfMcjuzF2o8sBldZdmaHUGnXSz+n189sb15f7WfKsrLE6trXqTR6Z8+eHWlBrH1I0/JFaeY8r8zIkzxjKTqnyh7YH89blgUQ1P7q3RNkDmqLI8PI7KBsX1MuqmbAQudLS+pFLNy2p7Y5ZSeW8SiD5bj0c4852etO+W/ovZbZliPPdW//RnHFWRxtZk8G/BhVnQdqKbg/PE1DVEpR95tXipDgZ9zH7IfnxR3da6pF0Ge2HTuhz+1Ms6GI2rKwz53yOi4UCoVC4QLH0hjtysoK1tfXR9lwLKKE0spGM+l1Sk+/F1sGJT3LnJRVa8HxKEbOHhtl+/HsyREzi65vz1GWGCXJ9+Yqyu7kYU4i9TnnTtm1dB9Y5uEVDbDgXHhrqRnHyBY0NtJL2K7HqNTuMRk9hywuO4d2+yie1WNquneUuZOVeExGbd3app1HIrKLq43Wy0TFOVDm5NlhdR+fOXMm3Kd87qgGYM4zROFlk1KtiO79OTbASPOTFRlRu6THaKOCENzffK8aCHtOdL0sJjryk4n2oW1PfwOifnjjimDXbS9+KvuJYrSFQqFQKCwQS7fRKpvyJIrIJptJMFPexp7nbRRHqzZAa2dTz7poHB7TVNusxkZ6EqzOQeRFnTF1HZ+24bHvyC7lfT7lVZzZdedAvY4zj3Wv1JyFtX9HNlldUy8GO8qCpezQrgH301133bWr/1FWHGBnbzDn8LFjx3b1TcfpxRYrK1Q7W+a3EDFoz56s52oMrKchoo1Rma3aaL3457k5iK0dzrO3R8+VSANh/1cP7mgveT4bkbe+smRgZx107bRv9pwom5PCW0sisml792/0fPHGo4iy2HnsN7quevN7Wbmi59miUYy2UCgUCoUFon5oC4VCoVBYIJaasGJtbW3kcu6pYyL1wRzjd5RYwVO5RsmoVYVsVcdU3UypQ2waRXXeiRKBz0mFpsfuJeA6cjjw2icitbC3blFiDA9RaskMGq5k+6Rp11TVpMHywFi9p6nvspKOWSIUez0vyf8DDzwAYEdNmqVN5LUjxyJ18rHqdC2TxzbU0ShLF6ohIboP7PVUdahhPZ4phv/zVefEUx0TNgFI5vy4vr6e7jc1nUT3R+ZoRuh+8PZJdL9kzlBcl6NHjwLYUblz3rz+RCllIye/zLGSr3o928coEUtkdvCSxyhU/ZuFE0313bZj31d4T6FQKBQKFziW6gy1srIyYhGZM8WUk4J3jiILOZlKru1dX9kAXeUpkVHS9Pql6fMi1/wsscMcY34U1qHfe0xNnRIiJzN7Xa/4fHbdrK8euHc0DMe2p+kN9Rhvv6mzUOT8pOFe3pij1KI24YMmcNCQFm9uo/Jrc1Ixavvcm7ovbMpHLcMXsf3MiTEK4/AS0Suj1eQJmjDD9slqijJGa1MwEva9puLMCgEQ0fXmhBVOMdnsfJ5Lpzgdl90nqvWKtD2Zw5buO2X/HltUFhoVp/dSf3qOmfac6Nr2Oro/vGQ+9tg5IYznimK0hUKhUCgsEEu10QK5HSJiRJGt1n6m76PwF8+tX5MMRPYwPd9+p7Zby37IHNVWpePxmKHacyOpN0vyHrm/Z21Gkqtn49J2tL050mjGIrquc5mod75ni7XneCkYtf9qW2JohZcEPQrc9/aq2kSzggA6Lu4dtbvq9WwflTlHyTTsnEQlAzV8KrufooLmHktVBhsxWo+p2ft1rykYM98QImJXHqbCCT1bfhQamIWlaMiM+l1414m0LVky/inNWVZoI3rOaF/n7PusH9q++giodst+N0eTtp8oRlsoFAqFwgJx3hit50WmiBJWZMHrUXILTzqNJG0t2WWlHpXOCLUFeukBo5RoaiP0pFJlH5k0qLaxqBxc5iU8tT6ebWYquUVmz5nC1tZW6pkcpWrLkkEoy4nKdmX2XUUUNA+MvTvpQap717MpqT2de1P75o1BbbFRSUHbDves7pE5e1XnWosJWEarezRKdO/ZVC0zy/ZR13WjebT3Z+ZRz/MVkX11KnkLEDOvrB+qBdGUnHqc1170XMj8ZSKWz+/tPEZzEWkX7ee6b7WvHsOdiojI7ie7fuV1XCgUCoXCBY6lMlrrdeylB5tio55NKSq9NIfZqhcoWYL2zbPnaBpFlTgz27N6kkal8Oz/kdTl2VfUhqVSYTQWD5FNLpMSIxvwlNdx5sm5sbGRMnBtm2vJ9cnSG6p2IkqjZ+2ikUe3MkvPO1vB8dCWavujhSh0bTPbHKGelpE90X6m94+27/kTKEOL7K3W61j9IZRte2xrr4W+GUsL7DBAT+M0J8pBxzpHOxSdq6UPI5um177uJe+cKMIj0lJ4jDZKMZl59E5FKmQpX3Ucc9Y4uge8EpxeGtxitIVCoVAoXOBYahzt6urqSNK30oSyBGWhKvV6n0Wl1NR70p4b2fU8211U2k4ZbhabqOcqa/GkRCLyeraYsm1HLMVeL5LyMm/xuTYa75i9eP9556hGI1p/rx0iKsCu9krb/lTspcdo+Rn3SBYLyWPJxHg97ZNno83WOepzFIMdaYY8BkVEcbRZQXO143oFv7Mk+BH0HstYfBSDbTGljYpisu3/U1mkvH1AqO16DvOLNFpzvPh1Ljwv9+jakUe+ReRBPKccn+7ZTDOgz+dMm7efKEZbKBQKhcICUT+0hUKhUCgsEEt1hmI6NCBXW6i6SlW6nspQ24kSnHuhQXquGtG9sBRVA85R/2ptz0g96zmYaFtzAsZ1zJFTmdePSI3lqYOj0IY5SS6ITA1IZ5bItJCNOUv6rvVodS+ps5ynJtPrqurLnqPzoPtBzQ+2fZ6jfSa8+yBKhUd4Tl56nSgxhqe+jUKbojAf298oYYWuhW0/eq+g2QrwHWTUwSdKHeo9ByJzia6pt/cjR8PsvtT50sQsXtIJdbqaer7a/3VfRbXCvf5r+kydszmJbDLzk7ar7WlIl/3fOkKWM1ShUCgUChc4lp6wYk4Sg6hsVSZ5zXHW0OsRXlJt+94Lko7S9HkhI1EIUGS09/oYhWh4LvPquBCFgnjOHhoYHoWrZKE6URo6z81+DlZWVnDo0KERw/TCbZRp6T7IEpdoKJBKylkiEYJ9VJYMxGn0uHfUWc7royaZ0AQMlkXoWKMQIQuer2PWdHbKfG17EbPxrjuV9tRj1roXDx06lDrvHThwYPvaqnmy/ytb20vigyj8xrue7kV1yvQKSWg7+kz0WJ0+G3Q80XPWm4sofaen0VDtVPR89RxhFZmzoY45Kg5iHVO9MMxitIVCoVAoXOBYesIKYk6qssiGltnzIldyZQD22lG6Qc/NXhksv1N38SyQX6ESWJbe0Auv8fpuz50qw+f1S6XQLLWgjiOy72bp4bJ90FrblWrOu7ZKsyqtZ8XVpxIVeMnJvRKD3rm2H9wjUQiDtm3HEx1DFqyF4IEdlhjZyr1wOSJLz2dh141zrGuptkDLTqM0qMrQPbZlNQGRDa+1vqAAz/c0Trw/dD6UyWbp/6ZstFwnD2qX9mycTAure0jD1+w8RQUHIuacJQLK2G90TpbERxGlIZ1T2CF67qg91vbBPq+L0RYKhUKhcIFjqQkr1tbWRizVK0EXef+pnQoYM4vIo1YTTQA7Uo2yD2U/XtIBtZmopJx5NUaedB57iaRBbcv2MUopGNmzPZt3xhCic4gpu5X9LAvKV/B8Svf2+Mg7VhNXWGZGRqR2qGi9snShkbbF8zrW0ocZW9D1V5aiUnuWJlJTi2Zp9NTTeg7DjTQCUaEAYGybjQp7ZBqiKUZr0+wdOXIEAHDy5MnRmPeSRnHKG1bvZcuqVOulyR9UOwOM5119KDItX2RXjYobZONReP4EWlYyelZ5RTqmEtd49yCh2kVqEezzkN/ZZDHFaAuFQqFQuMCxdEarzNJKRJEHXeTFZo+J2BoRJeO2x+4lZivyLvTSNk6V1Mu8qqO0dmpf8ZhhxIKzWLi5jNb7zOuLHUPmtTkVR7u6ujqS/K0NS+1a2q7Xvqbl1DSHGSI7XuZprfOvTJPzaMd1+PDhXe1pUQ5Pg0LoWk15ndp2dC54rsZGZilAI5ZqNUb8n8yVx/CV51obp+63LDE8Y7Cth7K2x2tHnrZZXKuytCg1q6fN0blWW7anDSFU0+ExwoipR0zQ01Kp3VU1iPaejnwaovh3L+Z7Tky0jk9twsparTaB615xtIVCoVAofABhqYx2fX19ZPuxMU6ESvjK/LLsThGDyTxfVZpSZq3jsK/6ufbLthNlQ1LvUO/cyFbrea5GTCYagxfXGLFUj/VPMVpv7jUWMmO0jKP1bLPab2V6KnlbBsb2onJika+AhSYpj6RsC7WzZevB/kb2rSwT1pTfgtqMvbGy/+r9a0vd6fXUl0LtrbHuP3UAACAASURBVPZcZbB6Dsd39OjR7XO4XrS3Zt6sKysrOHLkyMhTmed611Km79lMp+7/LDNUpHHS8XkxsYTuO2/9o/swYnDec1XX0othV0QZoKJcBxZT7NLTEKk2QT2z7f7WfAfldVwoFAqFwgcAlsZoV1ZWcPDgwbCcHTBmdoRKQF4R6KjdTPJU+2dUEDnri7aVlXWK4ksj1uhdR23Bc/KFTnksZ4hsj54XqErQc84hNjc3Q+ZIVjInxk7z6Ub2YguN5dRzPVai3r60/UTZeIDxnlC7l1csXudwTjwzEdnzdR6txB/ta7XZabYn+x1flcnyvY31VUar56iHtu2TtcFFe1mfO4TtA1kOx6T5gz1E5fEI1Rpk6xRpq7ysYp592n7u9SHqc+SzAcTsU9m995yLjtW2s77OYeM6p8ry+Wpj8PVeK0ZbKBQKhcIHAOqHtlAoFAqFBWLpzlCq6rVGdXWMipyUvBRukep4jgF+KkDdc05RNYyqurz2I+eATG0SucZnfY6KB0TOMJkjlYYnZOFLU2o0C3XiylKtce9koSzabpaMXKFp/zTJgBfKoEHx6pTiqajV9KHX0TSe9v+pggCeM4yuR1T+0XNS0zZUdeypDtW5j6+8N9TRyban6ma+1/Amb05s+I6CCSvUQebYsWPbxzB5hTr8aKINb02nnh1zku97zoLaduRcp8l1vHmK1Ndzwvwih0DvXte96ZWXjBCZ+LzUkkQUJqWqY6+ogD23VMeFQqFQKFzgWCqjPXjw4CihgJU2olJMmcQRFY6Ogs+9IHBlu1HBYu8cr3g2sFvyVBYcJVXwJE91rlLW5YUbRX3U77MygEQUgO8ln5gb+mT7ZOcvcxix8+mxRk1mEZUe80Kn1MEnSmThzZMXimHbtv3W66njVOZAFYUCZSFIU5qFLOVg5OyiIUFeOJHeR+roZO8VdV6L7j2vxCLX5eDBg2mClbW1tZG2wLJqsmZNnsF+Khu2Y40cGSNHNIvoOefdR9GxWfpODTFSZpndG/rsiK7jOVBF2sWsDGiEqdAte4xqmZThAnHJ0kWjGG2hUCgUCgvEeUvB6JUZ05JfyhKzdH3KkDSBeVYSTJMdaMIMzx45FfaShbJELCRL8k9EaeE8iTlizCp9ezZaHbsyWY+paZ9Vgs3Y5NmzZydDVTRpQlbykMhs9Cp5a3hZFLJj29V9NYf5q61e953Xfz1nag9ZROvjvdf9pRoi7at3riamUJutDa3R9Ie6rz0WtJciANSkkbWyDzbkg/ZaTfeYJWUgIq1BlPzCHhMVppgTykJkzzUNg9M51vfeNaKEKF6Rjijhiz6vPZYajS/ToGhYFI/hWmfhPXYPlY22UCgUCoULHEst/E4PQMAvH0XJR8vXqRdt5h0XFZL2yoipl6Ta9bJk2+ohHXl42s+iY6ZSo3nj1D56Jaeigu+RTcjr29Sr1y77kgXTE9YeFkm1XdftStvn2VWUhaid1UvBGHkZa7myjL1p6kD1PrZMI/KaVoZjma2yg3ORviPtiJ2TiOWzH5p8wptP9TLW63jnRD4OqiGwn9n7JktYcfjw4dGaeikYH3zwQQC+tyqQpzeM1idLehN5xHvPA70vs/HqdTRxRPQsyWy0UbRI9izWcUT2/uxc9dD3/GXIWCPbrF1rT/NYjLZQKBQKhQscS2W0wDh9mpVyNK1dlJLRQm0I+j6TponoOy+GK7JDZEnEI5tSZFvypLbIo3dOnKgi8wpWyVnH4/V5KtbOi0NVL9PMPru1tYXTp09v94mSq/VQVa9SXZfMrq9aD/VcVjul/S6yYSmztuOf45VNKIOJ0vVldq8oftuLZedc8DuyU56rKRLtGmg8sjJcL22j5/EKjIs02L2jJfy2trYmPdZ5Ps+lHc/+H9n2vBjlyKYcMd3MlhkVQPHs0nrMXu7LKH2ilw432iOq8cgY+1R/PPat0OeQdz/xvlUmy/W0Ntq9lOfcTxSjLRQKhUJhgViq1/HKysrI69jaozQWMip67kleU7ZatcfZ/yPvQi9eUyWhqIyZPUclySwzkyJiPyr1evaOyLs4k8IjSXmO5KxtZOzb0zRMsVrdD1aatjGVtl21zWXMlsxLs32RQdu9Gq2ZFgqwe0u1BeplOteL1vY52weR92fGaNW3Qf0XIo9i+7/atnWtM3anNlnPl4OMxa5T5rVqE8ezXVv4XfeOrrcXX6/2zjl7PhqzRgV4GiBvXPbV249RrG3Uhu2rnqvPCu9ZrM/R6LnnaQiivqk20O4DZbvKaLUknndO13WT2b32A8VoC4VCoVBYIOqHtlAoFAqFBWLpCSsIdXyy0BAggqqJLCWiHqtqLC+VX+TEk6U3jFzlPSeYKfXvXmq9RrUyPYeaqJjBnCQXe0lyELWRqaaiEIMIrbXRfvCS71NtpOpKL1QrchLSvUM1KcM/LKJE/V7BiGgO1UThmTdUlTblUGfPiQptqFnFfhYVBtDvvQIBqnLV63rhcuyrrTHrvdr/7T2XqY4PHDgwMvnYvaMOUnzVsc5JwajI6rUS0fMnc4qMVOyes5C2H6murepX1yVaU9t2FD6obXrOUJGZS997BQLUYVNTMXpzYot0VHhPoVAoFAoXOJaesGJO+j9KVupQ4p0TJX2YSsIPjMtIReXePMlSJSOVLL1zor5GSSK860TSlydZRsdmjhSRM0cWJkNMBdPbzz3JOGMlKysr2/vBSz4RhY2RiWUOJtpftusxWILtkf1EDnzePiCidJ5easlo72ib9npaWk3TK2o6PWAcoqPMVj+3jDYKJ4kSJti+cT7JQpTJemlQ54CaNN0zXmlAZbTcO1lynSn2FiVr8NrIklLosygKe/HCCqM+RI5owLQ2wmPL0Z7UNjLHrSic0Aub5Hooc9VngWXBWfKjRaIYbaFQKBQKC8RSGa1N4KxSBzAuS8VjlJVmCe0VamfxQoM07CVKr2ivN8VGM7sukaVAU0S26My+EIWAKOa4t2tfvTmZ6pNnm8tsvbY9WwrN62/EaCntMpG9l74xsrPrnrG2Ne23DYq317EsKGIl6pNg24oke91/3rqozZTHakJ4L+wqYrJa8s7OiYbz6Lx67C+696KQDYu5ZdesJo3t2H4rM1JW7ZVC9NJlevDGHPklzLEVTvlKeNeJnj9REgwgDj3Te8Q7Pwq5nLLhAtOM1tNE2FAte4wmuLGw2pay0RYKhUKhcIFj6Qkrti8sae7sZ+o1Zu1A9jgg9vpTKc4r66QJMjRt3xzWFUlelslMlZrL2PDDCaaOJMg541F7jiZXyAolR97aXoJ9L+1cZtu1SQd03ez/3DNa2MBjHlFKQkITLHhSfKRpsF6NdowWEbP1xqX2J7Xdemn09DudX++cKNmEMlwvnaKe47Wv/dDUiDpHmiherwnEnvi8lk2U4/WB52uiA7XxeeliCd07EavT/+2xUWIJ+53nnxBhrhdw5g2+l2gDRcZc9fOIueo+956r0blepAa/o/09e+7sJ4rRFgqFQqGwQCyV0R48eDD15FMJWJNFq60JGDOsyEvTixmMoJJQFtc6hy1GMXBRPKtnC9LrR9Kp/S6SnCNm4x07lWLOQm0+mUQb2X6ytnksNRye9zlftVAAmdHJkycn+x/Fm3q2Rd0HkTe6hbKhzPYc7bdo33v21mg83j0RMdmo9J0HtePpvsuiBnQPeTH1ygAzLQvPZfveOfQy5nfKZPn8sfdJpEFT5pmlG4y8tPV7+91e7m3dE9Ezy0uNqek5oyIaXjrN6F6OojqA8bN2yp8BiGOIdc94vxdaUGTRKEZbKBQKhcICcd4Kv3sxVZHUqQxgTuacKJ7Rk9o084t6FHpMhojK5nn2DpU6oyxCnh1Zr6cMMyswrlK2jtOeqxJzJAV7krNK+RrHmcUjT9lo7bleH7R4gEq3HmugJ7L2KYoltuvCPRPZ9wmPpUb7wDtHGUSk/fC8QbUggBZr13J29hxlslouT2PeLaY8Vu0aRIVD1F7tedPO9Tnw9qrnDa6aEmW0njZMmZgyfr0HbX9VW6XM0ouJVV+TaN/Z8+fua9vHqBxeVBZyDnQ/eOOLtH2eZiPycYnasp/Z50XZaAuFQqFQuMBRP7SFQqFQKCwQ562ogOd6rapadSjxnCkIVS1EatMscFxVKHOcrxRz3Pmn4B2vaqYsgUTUzpx+RCnKdM49dUwUxuGpljP1jtenzc3NVFUYJSxXVZENXtc0jTqnOi4vGQTVjXqOty78jCpJddTzVIrqPEhEKlerylXTCPvKNjX5hPeZFhPIHPl0r0RhbF5iFlVBc468tY72W4S1tbVROKFnilDnGi1wYOc8Uv/rvHiq9WivEF4fo/SJqo63x0WpKtVE5e27KeenOQUiIvUv4YXd6NpGz3XvHE8lre+jPbloFKMtFAqFQmGBWDqjzZK7q2SZJZS27QJxku0MkTSoLNhLtBBJmNq2/W5KAvcky6kwAW8+dVzRXGSOFFEYgX5vrx2lpczCVuag6zpsbGyEUjwwnn91qPPGoWkTyfzmpLvU8IAoqYXn2BQ5BLIty7qjsBedc8+hRR1nlNnyexvyxEIKPEbDH6JwM/3f9iVyMtT+2nHqvWfPUW2F1XYo+NzR+fMcAKPkCN4zRdcw6htf7Tzqd6rRiIoAeMdm52RJOrz2vVCdKWdPe462rxrJOYw2uve8ELhIyxaFeHrtdF33sJIC7RXFaAuFQqFQWCCWGt4DxK7m3jEqzXvSzpRb+FR5OXtMJBV7IUGeTcS+90J0MkZmv/dsMzp2/dwL74muoxJmJtHNsYNFiTiiV+/YOchSxkVpBnUPeaElygYjjYAn8UdsjczQSt3KsjVNpJaz8/qv0L55djZ91eQT1karhRSm0uhZ1qTrrOzeY2g6x6qZ0sQZwNjGfeDAgcnnidr+MiYWJUDw/DMiTZYmOcl8KHSsmQ9ClqZRz9W1i7Qg3pxEmjttMwsr0mdv9N6eo1oeffZ7IX3ah8z+qj4cZaMtFAqFQuEDAG2vHrEP+0Kt3QHgH5ZyscKFisd1XfdI/bD2TmEGau8UHi7cvbOfWNoPbaFQKBQK/xxRquNCoVAoFBaI+qEtFAqFQmGBqB/aQqFQKBQWiPqhLRQKhUJhgVhaHO36+np35MiRsOwaEGc/ymLR5sRsRudGbc3BVPuLcjKL5ma/rxeVIsvWTddP4/eyeOTWGjY2NrC5uTlahEsuuaS7+uqrR2P1xhzlZtUY2WxMWbm+qc/mxIdPIVvLc1nn/dwjD6e0mHdvRnlx9b3tu+bh3dzcxIkTJ3Dy5MlRp1ZXV7sDBw6MYmHn5N3Osr1lGZLOFQ8ntny/MbWvz/VeeLj9ydrUfABeXLJXyP706dPY2NhYaK28pf3QHjlyBM985jO3095pvUv7mabC4zleSi3eQFEC8CwJ+hS8tF/anl4nCzYn9Eb20oLpuVHAuvcjFqVpjJD9aGrCAH0FdhIfPPDAAwDGiegvvvhiALsTI9x7770AgPvuu2/7szvvvNPt31VXXYXrr79+ex/ozWKvyfb4nukFmUDCnqPtRLV+56R/m0oH530WJSHxBJIsWYd97+1v3TNZKr45NXKj603dW5rIANi5X6PX48ePj9o+ceIEAOCOO+4A0O+7V77yle4119fXcc011+DRj370rvaOHTu2fcxll10GADh8+PCusWkaSi8ZiCb/iIQ3rxazrvecZ5Wui+4P74coWv+saMZUYQgveUdUyEM/14Q6QPyMmpM0hO0cOXJk13W4T3jv28/4rLn77rvxzne+0732fqJUx4VCoVAoLBBLTcHYWgsTjQNjdSKRSTOKKXWglaIide8cdUykAvfYT9RHPcZjE9qXrNQYod9pu1GCcA8Rq/Mk50h1YyVKwiaJ5/splWnG7sksdA9lkr6W75oq8+WV6IrYaabSj9SOWbGEKF1e1OfsGOLhqHJ1785J+ZeVctTUmTpfZJWWgWoK0Sl14pEjR1JGRm1YdG9l2qqpsXpzH2kNIi2F/T9Kc6ptWyiDjOZrzlpq2kN7TpQyN/rc3k86f1FqTu8cnTeuJxmuvZ90z6ysrOyrijtCMdpCoVAoFBaIpTNaTaDt2T3IdiIJ09PtR5JxZveIJKJImrP/Rw4UfKVU5bUbOehkDgZTEvMc27AyHK/AtB4bORdlrFv7dOrUKQC7y9Lpmp45cyZk6V3XF37XflpWrHbhqDB3ZlOMWIKXvDxKSp45yeh6R+w3s5lPOep4jHaKyXpMXcf5cBhtxIptf6IykFo60CtoPofRttawvr4+8uEg2wF21pfHcF8pi/PKV6qWbSoZv+1vZNefowWJ1nSv5Sen+qg28zmlLyObbHauFnaZc29G9mqeS5u7fU6wBCXXen19vRhtoVAoFAoXOuqHtlAoFAqFBWJpquPW+pqQVB96tVcJNYQTnmpRVYWqLtP2bZuRw4K24dXcjGq5Zm7vU05Wc5yStK5q5kCj7aka2Kupy3OobuGrhjNkrvlRiJCnotG+eGitbe8fe20bqkMVY3StrDbllGrLc6CJVMeR85L9jHMamT28uYhUxnofeeo/3ZOqyuVett/pHESqPA+Z85OOIQo10r1j1X/ax6weLVXHHOPRo0cB7FYda31bVU17zyquEful91IWsqWYMr3Y/6Mwq0y1OvXc8faWqtP1eefdT1MhQJl6W2vVTjluee0SbJ+/NdZkRdXxRRddBKAPDSvVcaFQKBQKFziWymgPHDgwq6K9SoMaCuJJaMr0ou8zRCEstk11jKHEnbWvDmBRggqPCUR9iRJY2HYidqCZdTzJmXNOpsjPPUar7aqjCNuwCSu0r1MOLVYq9cbujcVCQwss2M8owD7LJhQxMk8iV02NJjnwWI/uHSJKfmH7GIXB6Lg8RhuNTxmH1+eIqRPefpsKOcsckVZXV1NGe/DgwW0mw+QpTFwB7LA2XlPX29O6KIPlHo/CF70x2z56Y/cc6aL598YfPSOm1hYYh1RGzlCeg6C3r2x/PO1LFBLEV+/+1rnXz7mu1GIAOwls+DxZW1srRlsoFAqFwoWOpTHalZUVHDp0KJVuo7CXzO6l7alrfhSOY89VWx2vk6X7Yh8pKSs8Vuol6fDGYCVB9kGl0jl5WJVpqt3VSxASSejKij3pXu2kmf0wsiN7sGFhUb+jMCj93tM8RHtEpXi7LhEryJh1FHKk+96ONfJliNL22T5SaldGq+Px9lsUJqJ9tWsQ+UsQc9aaYLuejZZMRTURHugXwoQXl1xyCYAdGx0Qh2jx3vY0a/psoqYnGnNmo9W9pNojYJy3V+fS2/e8HyOfg8y/RDV3ynCzkLcoJCjzy1E7ud5XXtpV9ceIfC4Y5gPs2Ob52V7Coc4FxWgLhUKhUFgglm6jjaR4IE7yTmnHYwsqYakEqdKvlZSi4Pw5mEo64EG9QDlOTQFok12oLVivk3moRvYvIrOvRazLg64bUy6qBOtJv1lKRx2TjtljtDqOiN1r28A4FR/bV+9Te0zERrz9MJVAwmM/U6kXI09Z+39UYEMZhz1mav40mT4w1myovTKzjysb4nstamFh76do/zAFI5ksX60mSm2z+nlmZ1W2G9lfMw2Xfs55sz4NnG8tdKDnZiw4uj7X3z531N5K7Yh6IXsaIp6jSf51/2f23Sg5jR23+sdw7NpnO34yWb4eOnRoKay2GG2hUCgUCgvEUlMwrq6uhtIjMPZOjVicldopmUb2qIw5aR/03DlskVCpzUqWUV9UevMkyyi+TNmXhXq3aswf55WpES2DYruR53Jmm9P2WDbPYwRqxzl9+vQsVmvbsX1QRsH37BNZtmVgas+PCgV4cYEq0aunpdqcbHuRvVvtkvb/Ka9cbx/ofKlXuGfDizzUeU/ylWvrzafet6ox8OKRef/SQ9QWEdDr6L2WxdGurq7i4osvxqWXXgpgx+vY9kHvO52DObHqkaYhY2/altoyPfam5R91D9m29V6ISjvqGnjfaVytvrfQ56fGjXtMU/eOPt+89VWNjeZoYPvW65jzd/fddwMoRlsoFAqFwgcElsZou67bJaFRQrGSKqVkHhcxTmtfoR2A0sxUIvM5Cdsjbzn7mU1KbV+1bQ+RtOiVA9S+KKv32BZZhyZmVzuYJ6lHXrQcjxcLO2VfIavMpNKMlXRdh7Nnz46YjGV+7BfHxALwlFy1ADww9sJW26LCrjGlZHqv0ubDY7hHPZtpxGg4Bq/8X2Q7V42HbZvXi5gFj/VYqTKn+++/H8DOPcp59Wy02j77yDmxbFXnTz3iOc92XKq9YOYwDysrKzh27Ng2k2Uf7DNE7yEtUOHFgUcFQXRdPE/byGbOzzk/dm7ZBz7n2P+or8DO+qvmJvLAt3OizxeuD6/Ptuw9EfnfqD3fY6ne74G9ThZxos9k1RDZuaeN/o477tg+p+JoC4VCoVC4wFE/tIVCoVAoLBBLVR1bByGqE/kK7KgNSOU1ATTVSF5gNaH1K6MCBfY7bYvX95JSqxpMnV68GplUu2goEs+NnKXsMQSvq323x6k6S1P+RW7xtl0N/s4SMajTCNPbqZOHVfWq+vzw4cO49957R22z3Y2Nje0+UP1r9w5Vm1R13n777QDGqmN7Dj+jSpDt8lXHZfcB15RONrpH+d6qSWnm0D2jqnAvvEfVYDp/qgb3+q8ONerEZufknnvuAbAzfydOnACwozrmnNm9o2pSdXjjnNk50QQSV1555a62PDWnOoRlzix0hmL7VCF7BQJ0HHyWeDVxOc/qlMT54KvnAKbqWDU3cG5t4QNVrevc8vrsjx1XlMxFny3e/lZzh4Ymeup0DXlin2zfIqgaPzKz2f9Vbc++q7nNfsc9mJms9hPFaAuFQqFQWCCWymi9cAwLSpsq8fFzZYZAXHqJUqg6V9jj1IFAjfSUMG0Kr4iFamiAF76k7FqZp8dolYWqizzhOV8py1FHJnXCAMaJwFUToI41wA7LITNiX8lsOR4r0arjxPr6eshMuq7b1XeuF1ksANxyyy0AxgyMfdKAf2DMYJUp67gsA6BEzOtwrHy97LLLAOzsXWDs2KMhaZ7Er/tNGZ4mdrDrwn5rOA/HyfdWk8D/6Sxy55137vpcnbPsvlOWpfvZSxqiY47K49k9qmlPu64LE8Wsra3h8ssv314HyxIJDUOLNBv2+cX5IPPnsbr/uF5k7sDO84QsWx2cuObUlth+R05YmlyFYwfigifRcwgYJ8BQR0G+2vVTLSXnlfcpHRQJu47sq00kYcetiSZs/3mMpqvV+8uC9+/hw4crvKdQKBQKhQsdS01YYdPoUfqwkp6GWfA7SnaehBbZKqOyclZqo6RK6ZTnUvr1kg4oc1RWTEnJSu1RejZC7RL2OJVUKaXpXFmmxjGyD5QkNW2bZ//SOdb18ooosE+U6nk9vtdActv/qAycBcN7OBdsn3ZYAHjf+96365qcjyiRgL222pTUhp2FI2iSCbWp2jlXzYlK78qobB+1lFtUrsyupe5fjo9Mg9fxWAm/09CMqNSjvZ76NihTs3uI9ws/Y3vKxi0reeQjHwlgd8heFE63urqK48ePj2yOXkgT54VsVMduGdn73//+XccqayPT5ZpbbYja6tVuyO+pFbHzoCyOz0hlcfYz1RJ4yfYBP4EEx6EMnuO1WiXuI50D3ot87z37+RlZPteJGiL+Btjyhhwrz+F3nEfuDy/kidc+fvx4MdpCoVAoFC50LL1MHqULSiFWmqB9QyUUZalWeo1sFVG6O897USVLStdZSTWFehl6iR0ItT/Rdqfp++x4Io8+L8mCSuicV02I4Nm8da41cJ1z43n/qTSqKeDsOew3JfOu69KEFRsbG9ssh9K1tS0qW1e26iXs18QBqnFQW6OXRk81GmrP9bxbIxavidu9/uv1lcl5feS56nmtCWKAcVKLqAylMlB7Hb5q4hkvXZ9qStSu5nnT8n6xnriRtohl8lTTYOdevYsjb9m77rpr+xzasPmZtkF46RTZV01nqZo1u7/VU5hjf8xjHgNgh/3aOeZcat/UB8XzqifU05/jJjtl34Edds/vVCtBpss+Wnaq9lWuP+eI2ivr5c450PuKGklNYuQd+4hHPCIts7hfKEZbKBQKhcICsVRGe/jw4ZH3pI3hU7282njUCxAYJ/FXJqbMz0rg6v3J65KZeSkY1ear9ldKv1byirzfojhDK5Wy3+qdqYzGMlpNpn3FFVcA2JEoaVfJUvCxz1p6iu+tnU3ttuoxaKVe7b89Nys2furUqW2JmeOwY9a5ZT95jHofA+OSYxp3qkzM2rQ0ZlTZGveqZZjKGPS6XiHzqHi3x5iB3fOgcbJqQ/eKSnCteC7XUH0ENK4TGHt2R2XybJ/ZDveqV+5Pr8P2bYrJrDzl6urqaE965TKjQh1krdx/tg/sN9vlHKt3s31m6X2ncc2El2NAoR7Mdu/QVqkpPnWuPTauz02OKyuAoTG+mrZR3z/iEY/YPlfvPU1ty3Ps2kRFaPS5bu879XE4duxY6JW9nyhGWygUCoXCArHUwu8HDx7cllDIqiyjoUREyYeeYWo3svZPlaIoJVFK4bG8nvV00zYuv/zyXa8qcQJjdqZ9Iluwkt7VV1+9a6yUdulJpzYnK8kSnDdlZpow3I6dtoqrrroKAHDrrbcC2LGzeLYz2kLUG5RSPefRrgHndKqElrdutqRaZqM9ffr0yMZkx6wZs7R4tpfJSJkRmb/aZnWdbP8jJq12OGBn7VRzofZ9ex31RNXMY2qj9Rgmr0vbmbU12rZs+9dee+2uPikL8+xfmo2L+0DjudkP264WFFd2abUXqlVaWVkJ905rDWtra9vHcp/Y+5ProaUU1ZPY3vvst8aKKzvivWG9c9lXtZFznbhnvHKZBI/lvazeucDYHqk2WWWAXqF51bpEhSPsdTSXgN5fj3rUowDsZv233XbbrjlR3xrPJyCac43Jtd7bhPUGr8xQhUKhUChc1YwaiAAAIABJREFU4Fh6mTxKG5QSrYSi+WLVTqjSFLAjFT3hCU8AsMMeKV3z1Suxx+swJo7Xe/zjHw9gJysOpS1gbNfQTEn83Mt6op6cmr/TK6qukqOXXceOz7avxbRVKiTTtfGoXAOyjqc85SkAdmIXb7zxxl3jtGPXvihbsRK6ena21sJYyNYaDhw4MJKQPdsLJX31ltS8xhbUgjzpSU/ade4//dM/AdjJv2tttCrxE1rU2o5Jbctqx1MfBSDOHqRSuKft0SxOvD7nntex9k2N0+S53EPsu3p22v5znngfcX/xPiPjtf+rHZx7R/eu/d96jU8xWvWm9+JaGYtN9qmetVbTpD4GavdUD2/L4jlP3Duq4dD4d3sO51ufA14+5sjLWGOuvbKk3Eea7Y3w7ifVNOje4X704tI5Bx/0QR+06xw+e1WT4rWj4/GeO5wDHnP06NGKoy0UCoVC4UJH/dAWCoVCobBALFV1fPbs2VH6MWvIpvqAx2gZN6oirAqPxn+q92j4pqqDqgeqM6w6RlMTaoo8LzmDhvGouteWfSNUZUJ1pjrSeAHj7COvqw4UGiJkjyXUsYBqLF7POmqwHQ2XokqeIQ5M4m/bteEW9rpUA1mVobrxb21tpU4Ja2trI7WmnWOuEdWUmmzAczCj+pPqqsc+9rEAgPe+9727jtOUhcBYlcV1p/MSnVSysA7Ogaq5rTpaE61oGISqBS00BZ06G2rqTNtHLXWojkLss1XLaco9miZ4b77rXe8CsPt+4v7WxBxagMOutTqGZarjlZUVHD16dNspySu1qXuFe0jNW3as6kikSf/56oW2EWri4Rx7aSc1jak+b7j+1uzA/9WUo4VJNAUosPNM0GeHXtfub01DqqFPahawa6BlDNVplWtjfy94rL6qick+D9k3ji9zwtxPFKMtFAqFQmGBWGrCiqNHj25LWZ70rgHV/E4D7G34AyUTOq6o5EVpjcdZ6Z3HqrSribM9BwOVaCMHJGBHGlMnAQ3nIVuwTjJa4o7XpaTM8VnGpmE1lOy0YACZm5VK6XpPRxYyWzqGMTTESuoqIWsCf2W6wLhE35RDS2ttlFjfzhP3iIaHaAiAZX7UfnAdLLO352o4DDAuBUhnMXVW8pKraEJ+dVKx+43z7yXDB8YMwyswzrkg21YGba9HZqHvqckg2+MaWNbF9jgX3JMabqHJ7G0fdc+wz3ZPqxPM2traJCthO3z1nPl4bQ0H4RxYbRjvaZ7LsWoiG3WSBMYJSjR80dNO6Dl8vkSJHWx7GuqmyWc0dSGws84aNse1oybR3tNRYXl1tuJa2WexhjwRvD7XzUvIwb5oOVVvTng++5SVWNxPFKMtFAqFQmGBWHrCCkoPlEZsaEmUkECTsFtbH7/TEk0qlaqEbNsnK+F1aV/TAHLbB2UsfE9pKmMlavdQ251XTFtDX/Rzr6C9fsdzyDi85BOaCOHmm28GsDPnZHf2HA1p0D7ye2t34TpxPc6ePRuykq2trV2hYV7BeoKSPq+lSSK0rKLti9qNaVv0tC88lu2yT2pztOB8aIIStZl6hQFUc6Jl8tSmadsj86fEzz6qdG/boVZH03mSPXgpAck+OPfcM5qQwTIMTXyhIULsu71vtdze5uZmmuzk7Nmzo3vLsinuZfY7SiFq+63FQ9SPRAs62L2qeyNK52nXRZ8ZZNnK5uw8aFJ/9lUZs1dij+1zDpjEh/Pm3XssgqAJN2w5Qzsur+wkz7UpEm2f7TOEfWNf+czX4hx272gYVKZJ208Uoy0UCoVCYYFYutex6sO90llqy6T0RMnEptEjtIg7oYmlrV2PUpKyHZVSLXtTW6l6clLytxK/sg5NgaY2InuuepuqR53H7pSVsj1+rpK7HV9UuFztR14QuJYqVEZrk4gTVoqeYiVqc7TnakIFDbDn55Z1q6QfFbu3tivbJ/uqrE1teMDY+1OZLPe31U5EWhC1t+uesu1oon7VQNg+aiIEZTucC/3emxvei3rPW/8F9bxXlq9aADt2u88zO1trbZRO1dvzaiu317TH2TFxL+qzQ0tfeikkNVGC2uitdkKfVbyH6VPB9552Qp87+nzl2to+qoe/2ki5z72kE9SUqZZF718vnaLuUfWut9dTLQ+hCYLsunmpJMtGWygUCoXCBY6lMdqtrS08+OCD25Ke2ieB3UXAgbFXHKUqj2GoPVdTohFWglbpST0EvfhJLQGmafM0DhUYM70oZlDTCAJjO4eyYE0cbvugsco6R1pGy7avSfGV/VrmpBKrSs6e5MlrW4l/LqNVyRgY7x2NVdUYafuZllpUu7uXMo7HaNEKvveK3Wu5RNUOaCpO+7+mDtRyX55Urgxa7aFaQtCC7fK7qM9eMQu1OSobsedoHDDvW/USzuLEszJ5UeF3j73p3lFGZPeOJurX+zGDarB0XjRVKzAuOEHtEBmt9XXQcelzVDVsnj8Bj6H9k9oP1aTYdWEfeA73jqarVXu8vR7n09Oc2bHYPkTe+7y+ajmBOJXtolCMtlAoFAqFBWJpjJbQ0mBeAWa1D6rNzNrmVLdPqUY9OJVdWWgB4SgLjm2H/aaESZZNZuPZvZTpESpRWjuLSpBano3HWklP50kzwKjHYOblHMXGeZIgj9V181iXahNWV1cn42iVkVlpVxmL2sqVxdn/tUC6ag88+6dqFnR/KTOzn9E7kpK/siIL9Tr25s3rs+0TbWfK7j0WyHtAixTovaH70v6v2co0jtu7B7U93btedjarcci0ISxoYsdlx64aNI5V19T2QdmoahqiUpG2D/q807X2CjZQc8M9RGbr7W9dM9WoaDyrxzD12aF99AqFcJ+rxk5LY9rnjq57tFe8nAZaelWL0VioB3TZaAuFQqFQ+ABA/dAWCoVCobBALFV1vLW1NQrZsSofUv3IwcBzqokC+tWhwKsPqrUcVW3mJexXVR0DxtUAn6XeU+eQSKVs+6SqYk0Ebh1a+FlUM1cdrCx0/jxnK32vc62qcFXFWViHk0iFQ7Vx1gdVrWpSA8/5jv2lyon7T51hvKQDmtJxTqIFfhbVB6bThlXH6Rqp2jTaU/ZYdRSj2lGTAgDjIgyqPo9CU+wxuh90Tez4VI1JcB49FbU680wlHNjY2Njeg1qMw7aj661hL/Y6anbQZ4bOhaeqVscpdYrz9jedLvnc4Txx3exzhyphTbWpz151KrJ91NSyCi/phN7/2TNYj9G+6f725iRKe+mFIEVq+0WjGG2hUCgUCgvE0p2hvLCH6DsNF/AkpoiBRdKV5wyjrE0N8d71NCWYBml7ybY96dy2SdjraXiFpqP0wh/U0UyZonW2UkThIl5oBqHzpEkIPJavOHPmTOqU4F3XXidyANPSXNbhSB3ntGCEl95S+xOFlWkpN/u/ln6z4WO2P7YPUbKBORK6sm9lK3a/aRELDVdStu+xySixCN9766Zz4oUP6TkeM1LQGUrD1TwnpSgBgpZCtH3QBAgaNuLteV1LTxuhUE0Jnzv6vLHX0/AaIirg4PVRtRJR2Tx7DuGFxdnreusXOfl5fY32CJ9/nlOZd+ycfXSuKEZbKBQKhcICsXRGq67mVsKgZEF7g0rgehwwZm2a9kvPte+jlGAaSmOlNkqWWohAWZvto7KeyGahTNdeW0tNabF1K7VRootsT8qGvNRyUXo4vb79Tt3tmfDDk35VW5ElHeD3ytaspKwJ8rVQtqaytMdqKbAoZZ3HaDQlpr56DFPZsKY59ELeNHxHJX8v+YAmVdEyeR6z0DJ5GuqmST086H6PNEXA+N7TtIeENyf2u4wNbm5ujtJtZikd9+JDESVw0PXw9kFk5yXsPHGP0r6uxVS4Ll5yHV0ztSN7KRh5rGojdNz2HE25qeF9em94KRgjLVyW7CQqRu9pKDSJxwMPPFCMtlAoFAqFCx1LZbRd121LWVoUGhhL52ofyNKcqaSvTMaTiFQaVS82j2lq0nP17PWkUy8JundO5mGpiSooYWpicPu/ehtHTM1Kj1PSneeBG0HHlzHaAwcOTHqPqs3Ua0+ZuBYZ92w8kedhxjCikn26xp7GRq8bpcaz7WnSDLVTzin1xfZZ8owMxEuQwj1EhqupNz0GHXlE6/eeF79qTFTb4mmi5oy56zpsbm6OEot4ZR5V00B4c6xsSvuifbTz5GmStM/A7nuMGjSuC5krfUNY+pDlDYEd1sb11fFpGlF7Pc4XbcKagMPTNrI99onPeM8erp+rNjF7RhHKZKMEKd79bVOmFqMtFAqFQuECx1LL5G1ubo5sC56kqinjNIbLnhPFGSpUcgbGEp5KoeoBCexIS+qV6aWFi/oYedZ5qQWVIWssnCfdq/07S31m+26/m7Lv2vFxDrRMltr17HWyeExF13W74my1/J/9LIq/Y99sWjYvjZw31mxNve9sG/ZzZaVqm9Xi4bb9qfjZzL6vfeUeZiwm1wsYa2jUvqtj8O636J701pyfaQrDrE1lKFPaFXu83gtAHPepffIS2qvHrhao8LRwOndRMQFrL9d768SJE7te77rrLgC7E+hHfgK8Pu3U+vyzx7A9ejlzr1Ir4hX2IPiM12dXVtghi+3V92yPcxNFc9i15rpwvqZ8Q/YLxWgLhUKhUFgglsZoWa5KpV1rH9IsMSqRaYykPVYlzIilWqknKp6uMZFWYqaE57EP2zePYWg8IyXArPwboZ6DGpPoZRPS+VLpOiuTlRX2VvB6GmupHuAerFYhs7ltbW2F7N72V+M81X7jScSZHciOz8tIpsdkifMp4VMDoJoaL3m9zp3uIdVeeNoeroN6o/Nc64GrLEDtynofeeyb0Hn1ssHp2LPCEtqunafovM3NTZw8eXKbvXtewMpgrf3Wfr4XXwbdd15BDd3HfB54MaNkrmqTve222wAAd999N4DdWh7NCEZEGffsfKp/BfcOi6eoHdT+z1cy8ug6nr+EPpPnPjuAsUZAnwXAzrxpFsBFoxhtoVAoFAoLRP3QFgqFQqGwQCw1vKe1FiZtAHbUyHQLV9WHV0dTa6xSBaHhAnPqZ6rrOo3sVpVEdYQ6jaiqwzP0a01JdUYgPNWxJs7WNGM2MXxU21OdfDQZhj1GQ4E0PMKrnRoVf/DUQFq7dgpbW1sjlZd1TlEnociJywPnayqBiJecXNO8aT+8lHhegnRgZ1/YvaMJA6L97alOeSxDQai6VkdE7nfbB13fyKHKQh3A5iST15R+cxxTVNWbmTe2trZw6tSp7X3GczXtpf1Ox6aqdm8sUXITb13UZKN7iHNBhx1gbJa54447AAC33norgJ3kMF7yf92TmtzFcxrSYiWqSuY51gFKnQv1uRY9K+2x0TPDc6TT3wXCFlgBdu9lTWhz//33lzNUoVAoFAoXOpaesCIKUAd8hgWMJTHPVV6lRHUP91IVsj1lsHxPyUwlJHsdQlP8eeWcKP3xOspoveB3DQxXydYLbVAWP8VorZSoEmv03ktEryENWZo+QgsgZMgSqBNTyUfmSK+6tp42RJllxGCsNmRuAQIrgese1fKIGvbjlS8keyNDuv3220d90+upE8+ccCI9do42QaFOjN51vDSgEba2tnDy5MltZyI66Ng+TTk2EvZ6USnFKKGL1VKp046GD3G93v/+97vjAXacn8hkCXsvR2GEUTIQ+1zVAhjsG99zL9n7KQrFUYbraWG0D9Hzxs6r7rcokYmXLMQm8ylGWygUCoXCBY6l22hV4ssSFqidkPBCNLQslUpkaq8EdtgBmYXawzxmpnYoTUjPcVm2wO/IXBhqYG1jwLgknjcOleI9e64mG1AGoHNmGZTaoHUOPDYZhQIpE/QSTMyVJtfW1kZ2PNuHqbR/GbtSVkhkdraIUarGwdqRud4Mkbj66qsBAFdeeeX2GIHdLEVZgSa34HV4fabqs+eyPdrx+TlZnl2XqMSi3rcZ49Trz/k80hAQ2RpkjLnrOpw5c2Z7P2uIk722rh1fs1C9ufvYS9bCPmlaWn31rqeaMy9US58Nen8qe9R0pcDOXo2S/Vvto2rmVOvGvqt2Boif15F92X4XhcB5TF1LYS4LxWgLhUKhUFgglspoV1dXw7SHwNjjLNLpe7p9IirI7ZV74mcRa/Rss5TCNIG1Ju62LEG9jfmqXoaeHYKgpMo+MnGGMh17DKHzlwWOK6PRVy/B+lSyAc8TW22/GStprWFlZWW0Pt4+UM/0LCnF1N7JEtsreF3a13isZRhkm9deey0A4LGPfSyAndJnvK71iGU7GtCvDI1zwVR5tj3a8zT5ANu2iei1tJpqcJSVeCXI1Js2swVGNuA5qffm2PW3trbw0EMPjZKEeMUQ9P5T5pmxUoX6VFgNF58rmoRGbdv2WeX5tAC7NRi2DXus2ld1X1PTYfcO+8t15nXY96y4CMfDudFno7JyYJxGMSqtmJXJi5isXSMtpLCxsVE22kKhUCgULnScN6/jjNFGRbU9aZffqScvvQvVk9jGffEzjXlUyT8rx6aSqya69voQxfZyfFYC04LvUd89pqbxocoavFhISvxqa1bJ3WMTahPWVHOeXcTug4ih0M6WJZ7Xz6K0ipmNVudJY0m9ouoqIdMeqm0BO2vGvcn3WuLR2q5UotdjVBviJYaPNBjeODXmlohS5Hml4yI26mkG1M4WFVGwUO/zrNQZ9w7Xx2OGuj/V49Xz1YieEcoWtfiIHZvuEc4xnxdeKk59RlofAO0jj9W9ovchGa3dd2pHpdZF2/DmhNC8CLqmdk54rNrqda/aOVGtYvRc87QOdk2L0RYKhUKhcIFjqYwWGHuieZKlSiqaON1KzFqInbYEtV2SyVqpTSVtLW6ttgZgLMFqtiLPdqW2WYV65Xm2TO2bSnyWgaitQuc6KnjvfRZlIMqSvOu53rrpZ1MFBU6fPj2K7fTi47T9OQxJmZhXxkvfU0onA/SYC7BbuqatlIngea4Wf7B2XWUWKq2rB7Ytecc9wZhHxmXyPfthMxCxT6pJUTbqeQ6r530UWWDXSveqjstjwWp7O3Xq1CSjVVupfQ4oc1XGqbZUe209V58HXty5RkDoM4prbG2m2leuE1/n+EFEmc80bwAw1gyqxzph/QnUP0HXTsvmWTbO/7VYhnpXe7b1qNBFVnxkTrGU/UQx2kKhUCgUFoilMtqtra2wGDUwtvHpq+dhy//JaNVmy1dlxfb/KH+xes0BY5uIerh58YXsv/aF0Hg9y1oo4VFaVCaozNr2ST1GowLJXpyg2kN1nF5mqEjC9OAVg45sJV3X4ezZs6OY0cxzVF8z72b1XtQxq4cvsGOLJYOMYr5tIe6bbrrp/2vvXHrjuJIlnN2UbGhhGIZswLv5/z/rri8MyJINiCabnMUg2MGvIk+3DXVdcG7GhmR3Pc6pOlXMyEdkVZ3ZMOscGQ+rOrMaeWr0k3GuFFtVNrGYrPRxdX5t63W7zBBlXgHX26rhPD0diUV0THTFggX3OK3Wzl9//fVy71gz6+MiC+Wa933o7aL2uMCWlT4G/uS7zFk3mb/WlWqhdf4Uw6RXqstkT+9VZmkzfpxybJivwuvHd6hvo/XcVT0kDyizxVc65/Q4TJu8wWAwGAz+CzD/aAeDwWAwuCH+zwQrhJSIw2QouTiULOAuNwpSULi/K6mp6oUI6EpK5URdiya5RdwNQ1ca3RUsw3DQ/dO5jJMUmsZCV+UqMYjJNnSFr6T3OmHwlAx1jQvSj/v4+Li8L53I+0rcYOVu9PMw8aTqfE0pZkD3nCdH6Xe5cAnt60kwHz9+fPVTrmMdX25fJmdVnd2LSnaSm7tLAvTvGMbpGlKkchK66bXu0r3oRC46IXzufwl0Het94Ovt0vPfHdfHlUrlOnCuqUSPY+S7T3/r/qS2f901pSuZLux0DG3LkjcfI13QLPfhe9BdyJ2YBceUyhi7loXXJJfe39/v4j4eRjsYDAaDwQ2xK6N9fHzcCFenpKEuiE8ru6pvjM1gfmK0TGjo5CGTULcsIlpnZNh+HjbcZnF2Eu5mSzVZlDoWk7D4u29D1pfYqc6ta022vWoCcYlNrtpVrY4rMDU/lXzwJ9l7EkugRUurOol2dONm0oafT6xDSUpimExak5B71VYeT+UWFErhuvDfdV4mk6WEliTLmdB5dKq2SYZkQSlhp2sGwZIh/84ZW8dyT6dTffnyZSN76vMjq/4n4Hi57nz8XdkTvSCpLaPmwRabKcGIMppcZ51MbZoPnxUmQPq2fA8kIRY/Jo/j6EoFfdydFyRJfrLMa5VI9y0xjHYwGAwGgxtiN0arEg1alO6DJ2vqWE6yDim/xWbuyXKmdUMGLcuM5ThV59gYBSQEZ8Fk6Jwvx+6WXie+v5LC43gZV+4K1/07MtmVOD/jxteI8V8TQ+X2PLcft2uX2MVv/JyMxfFYKVbXtYtjfoFD5+PaUXxV5/FyGz0fYra+rjifqtfsMZUl+dgTk9HxyT6EledB5+N6I6P183XH43pI9014enpaspKnp6eXa5pK7DRnjZvrOJWrde8oejpS7gHlG7Vt15rSj8P3J8tv/Npo7XSt4fi+87mQDdIrljwaWsdc34wVp3KixOLTWFc5PSyBSrkozFvx98otMYx2MBgMBoMbYldG+/j4uGnMnrKAL8EtFO1P6S7GbJNFRDaaRC38cwctL8XVZOGl+ErX1JqZfcnCosUqyzxZ1l1mMGMYQmp5R6uex0psspNBvNSY+9I2/H4lA8kYkpDiuh2j5TmTkEgnY5fWtUCmp/MrK1hZwh5nVXxV8Vytxc6Dkxpj0+vD5gZiy1Vbxsd41zWxdMaCr2EMzFBfZaGz4cUKYiyMt3sLzK5Fm0AZwKrtmk8yjQ4fK71SXWMAZ4tkaRR2SOtb86FIwzUiNPqOEqPMZ/Gxs7FG10IwvS/4TiLrTZ4iPmt8d9E7V3V+ttybMIx2MBgMBoM3jl0Z7dPT04aZuZV4yUJNsRJ+1gnnJ1FqxlMutbHz84mldha/n4fxuo41KqPQLUHGibtGyCkbr8vCW4m+d9JnQoqPdtKLHUNI+DvZf6tsaaFrEJCYM9dk164xrQNKflKg3dmyYoH6KSapfbWPNwZgfI1NLejJSfkLtPzZMtI9NjxeJ9S+yvzu4u6dR8e/61piJobrnqBVjP/x8fFlWzEab/DRNerosvfTHLpWe2KTLsXZtS/s8jCqqj5//vzqJ+PKbJuZjtdl46ZYJvMH9JOMPbW6Y2OKbh2k/ByBjJbr0fe5lG3sOQ+ah+5Lqh2+BYbRDgaDwWBwQ+zGaA+HQ2xknBSUOoWZVYszgdYZ6/BSjaqsW7KiVY1gJ1qfRMuvrRVMMVR91jUzSKyxa/DNsSY2fIlJrGpiBSrdpHo2juXh4WHJaA+HwyYumuLSZBRdCzwHsyK5b2pmwYzdToksqWGxZaP+luqThOKrzgzMlWx8zBqb4q3O1JhBzPyFVeY/WTyZLJt5p20ErutVs3iNZeV14T3+8OFDGzt+fn6u0+m0ac/pz5O+Y1y6E6lPc+EzRpF8tUisOnssqH7UeYSqzveQXhDdQ62dVStKzqdr8efjZ/P2rsbcf2fWNOejNeoKaHxu+MwlRS82bKBHReNw1SzPf9gTw2gHg8FgMLgh5h/tYDAYDAY3xK6u4+Px2ApaV22D83QRpkQcP77/FDopsaqzC6PbJ6XZ080klwrdIywv8bnSHSvXhs7rLsrk3vNt6XJL59H8unT71XG771fJUF2pTbomf6dspGtWULV12XflSJ7M0Z27E8bw5BSdTy47uo6TUHyXHKJ1KPevi1JQRpHi8XQDe6kOXccsRUolQV2ogOIuqSyL6433KyU0dYL3TExahTdWIQe6jpPgPRuBMHkvvVv43NFNSher3zeVc7k72Y/JRCc/Ll3HGutPP/202YehEM2PsrHp2dN7jcl3uo5Mkqo6r1Wu85X7V2DCHvdZSYMyLMhr7u5ilif5frfEMNrBYDAYDG6I3ct7OgH/qrOVxmQHYlUe4OdzMBki7UtGliTkuqQAJup4kgDFvTn3S230fNtOEH7FaCmIoc9TqzPh2haCvm33MyGVzHSQfCc9HW7ddiL3vG4+VzIuMnMyMz+2xs9ENpan+NohCxKD5dr09a2yEFnnXH8s6HfpRDIIlkiISfs9oLgBk3rYoMDXQScx2iU4+TadpOU1no7D4dC+KyS/qGeQsoQ+N16f1fNIFkUm1rXCqzpfM41J91hzYLJc1XmtcB2TCaZyFb6TNDZdgyTU0zFZIcmTUv6UJXBdAw6fM9dBtz6q+mRLliY5o6XH6+HhYdrkDQaDwWDw1rEboz0ej/X9998vhbrJ1lgmkNhoVzhOppHirR1jYQzIC55pybHcRZZgEt/o5Ay7cqa0LwUSUnyhG5s+1zFo2VZtGzx3re9SmQzH0pUT+XdevL8SHXh+fn65tqk0jOUAHB/b/jm68ioyf18HZHwam5iHxuPXhHEnxeLEEpOoCkUseD5KjToLYtya8a10/ylRyL95T/06XyqLSqIKnajGqvF7Yr3d2jmdTvX777+/nFNj8TIozY1iI+l+cK5kslx3uraK5Ved74fGIMZFUQh/3+l5p0QmxU78/ndeMK1JejxS3oXWmebBZ8XzCZh/Q7lYbatnxNtBdsIrXVMT/53lRCyFS+9iZ+oTox0MBoPB4I1j18bvd3d3L1aPLKRkqXZiCUmcYWXJVm399c5o+J0YCy2cdA7tQ0FySaSlDF8yi05GMe1Ltk124uyOzILMjAXyKzAWlxhhF8dlVqifj8zo/fv3y/F4HC7JKXZyiek8HKfQ3Q9KylWd73NXaL9qQSd2w3uYrjEzhTUGxqsFvyb0Suhvil54/I2ZmmzhRwbq+2osFFNYtQ7U9eIzTzbp5+G9XDGS0+n0yhNBcZCq87XtYrXJi8M1rfHqHpOR+9wl1MC2fDq/rn2SfGQ8ldnuDjLYrqpD98CZnz5jRjYze9MzK8ZKxsy5RmXzAAASRklEQVRMaf2dxsJ7m2LFfL8wj4Ht+nzbPVisYxjtYDAYDAY3xK6MtupsHcrqcD89rSP6+lPmWSfvJmuHjMytNsW9Pn36VFVnC0gWZRL35hgY17mmVpRsh7FnZ05k3V1TBs825PHJYLs4SJpfF6NNdWidlbuKIwuX2PXxeNxYtUm+k4wo3Y/unPQAkE05M2K8uKsHTbWQrG8l00tSeJ2ov8AsVB8Tt9U8Eltk/STvdxeLdJD1Mv7q150MrcsST2tIx+ta02m/r1+/vsxDc/fGDWJg9FLR85Q8TfSk8JnS/D5+/Piyj55HvfsYI2V8vGrrDaMoPt+r/hk9G/ROiOW7LCWzqXWMriGKj4VNM8gi0/3q6pB57VMbQNbN6t5ynVflxgMTox0MBoPB4I1jV0brlkWqw2JWItlqit2ypVWnEJWy1hgTkQUkxZaUrUYr/VL7ujRush1amInRyFrr6ludyXTZrcxMZDzE92XWLBmMn3/FKHzM/xSHw+HVPWftsv/exfc7VSZHp3CVLPFO5J9x1qQmxdgVa29X6lVd7HJllTMbs6uN9O+6zGEyzpTlzHXFyoBUG9vVlqeGIqnOuZu/6vfJetw7oc90P8QK2WQg5Rh0Le8Yc/Qs559//rmqqn799ddX2/D+O8NkTgvZtf52pk4VJ14jeuVSTbTYvcZC70vyLnLuZOpsJu+fdY0BkieHtepUT1u9l7zSZBjtYDAYDAZvHLvHaFf6u4qVdHHCVV3bJSWZFN8lOyVzkQXmY+wsVWbUJR1eMqRORzZpK+u7S+zRz6cx6Xp5zZvDLfXuGpM5rdrkcZtVmzw/X2dZqsUi66v9WnRtyjqFsIRL2ZmeJUlGw3ZiqR1Xp+fa1Y37uVNs3OeTFLvIti4prvl3Yjmdh4hN5P13MtmV+telMab2lsy/WHlMpLGubcR2nC2K3epZZqw2ZfR2teld+0RvCffLL79U1ZnZKpbJNexrVc9/55XQfKR57PPoWmyu6vc1FmfiVed3COt3fR+Bz4gUsPRTms+cq+9Lbe9Ui8910OWz+Nz9HTKMdjAYDAaDN475RzsYDAaDwQ2xu+uY7lNPSvAUeEdyHxEr+cKq7P5R0TpdxWxu4O6KJKbu52USSdXWXU5ofmw+ULVNuuncPklsu3Ojr8S9WUbCpLVOvN+PS9cxk4scSYKTOBwO9f79+43bPBWvd8liK/Ba8vqlZBG2L9Q6ZvLQqjVhF7pILuSuUcNKxEOggIiQzscErS6Rjq39fBsm96zWI91/XM9pH8pQroThD4dDfffdd5sEIy+DYes/fp7GwvPp+AwHMDGxqm+XKWgfL1/rWhBy3fsx6d5mohvXme/bCa+oJIlNAPx3ihJRLIjCIFVbUZhLcq5VfaJUV7bnWJWn3QLDaAeDwWAwuCF2b5O3asQua5PlPCtG28klMplCx/L0dFllsqJopVOGjL/78WjNpVZgLF3oSmZSQT+Ls5lM5OdjMhQFu5m0kkonOjHxjtH7mMh+U/ISWe817fLY4irJDRKrxB+yxG4MbPeWvqNwSBJIITvj2lmNUSA71Lx1n1IJEs/Pht9+Do2JMnpitnpGmOxTtb0+XbJNKtWit4LP7YqprYTh5Q3RuOV5SKIwXUJOEq7hteu2ZRtDn5vGwGcqSVXyOdQ8dC/FCJOQjPZliRvXkj8rqTWkn1fzXCVD6RhMKuVzXLVNwqRnIz2bnNelUjgfk5dSTTLUYDAYDAZvHLvGaCWHVrWVKKs6W+CUcEuWtx/Tf8paUso8pb3cAqOUH1topYJ7t+DTPFILN5ZvJBkwP9+qmTIl6VYN1BlXI8Nls4GqLVtgs+hUUsG4KOfHeK8fPwm1E8/Pz69ECVK88pKEWxIS6eKebN6tn17qQJERMlqNx2NzXKudFyQ1zeiakJMlOCtj+zCKaNDr479r3GS0/Nz3JRPr4mypCTrFGroyHwfnl3A8HuvDhw+bNomrVpSdRyaBz11io36sqq3EIkvB2Kik6sxc9VP7UKTB58Xxk9GuYugs32EzBo1d71kHnxtKmFKcwsfS5aukJhbd/eI72Oela9/lr9wKw2gHg8FgMLghdo3R3t/fv1gqKQuY4gzMXmRc0j/rGpMz/uBxCGbyUeAhxRK61mqUnUtZxxS+J9NLFjQt/K6pQLLQmAHLmCCzhNPc2QB61TSBMaEugzltcylW8vz8vMlmTAy5Y4DJau8K7K+5xp18pj7XGH2tcs7MNmZuQtVWcJ4xM8ahUmNstmpbxb86iVE2705sgdeT65peJwdZCfMZ3JOk8bvAS5d1LEbL947PuVsH/Ds139Bcujg7Y+lVZ5lEtnPTMRQfdw8KJSQpjKK2jYnxpeevas3GtS3FdlaiMV0jCMZqU9tJZiYzC73LKK7axvH5bPozofm4VOUeGEY7GAwGg8ENsRujPZ1O9fnz5xeLktJ1VVvrUFaO9klxKFr8HZi1W7VlEIxLaFu3LJkhSNaQmDotLsacV23l2A6rk8JLzEL7KI6SsmYJssXOGnbWzbhtJ3vox6Bc2rt37y5K6bHN2jV11fw7ycwxtkPGuZIB7BqWM9bk25DR0duSJON4nmukCvlsdOtwVT/JmKyeET0TKX7ZzY/eET8P64BXcWTWY16Tdazv2QLPz8l44CorN8UMOU4/tq99zZ+Zw6yvTeuN3gnmYTj0bPE9R49G8vZ0nrLO0+XHvZRHQG0A/67z3NErks7DNn3JQ5jen5dadH4LDKMdDAaDweCG2DVG+/Dw8GJ5yZpxa0OWCJkGmYVbkfqONXqd5ecMmjFfja3LBvZza/xkFinrkPMhg1rFiMiyyHpSLSbjhcyUXon906Ls6mbdQu9qIQVeK4fG8OnTp4tqLbxuPueUQe24JobZ3Y8UH+JY+DOxIK4DsqGuEYLPldt02ch+bq4HgfFY/53xfbZWTIyn835wjD5vPj+Mw+vvxH6c0a5itD/88MNmDaZ4pMbJ9niJTaUa9PR3ytJnrFL3VNc25YaQ7XZZwf5+Y4UHnwG+W9L5qD/QNXzxefCd4ffJ55/q4Lv8jpSDQibO+0ZdhqrzvXbv2B4ZyMNoB4PBYDC4IeYf7WAwGAwGN8SuruPT6bQRQHBxb7mO6bLVz5SaT0lEptNTdCK5CbgNXV3uomQyAJMfUiID0+i75IuULNMJstN17K4wprnzuHQl+TVk2j7dQCyf8s+Y9EAX6KXynVVCy93d3UY6kC7xqm3fXt6PNG66eTuBlCQKwvu/ciVqDHSX8tqmhK3OzUwkV3WXsMWSNP+OIi7st5zQCZZw3qm8h65ohjB8bXSNLhKOx2OUCeR7w48n0H2akmaYAESXdwpp6J3niYCOJMXKbZK4iY9j9Vk3xvTOolt5FQage17z64RTUgiB953PaBJI6SRSUyiIx5lkqMFgMBgM/guwK6N9fHzcBLsdKrqW9ZeEy6syK2Xgu2ORDhY2d0lXbvFr/CvLuOq1dUiLqWttlRIsaJV1CTwu+UhmxuJ/fU8GWrVNZCH7SBJ2vLY6H+91KglyYZHOspQ3hAlhPudV+ZH/nZKhaKXz+qVkGKIrv/Lrx+86ZpZK0Dq5SK4ln3dXyM+mEitGS+EKMuxUbsF7QbaXvAoCE7aSMAK/u4Tj8diK/1f1jJKJYUmwn+8KCopw7lXnJCi9OyRQwXdLml9XdpU8DXwOOfZVWSEZLRP4koANyy+7bVfvnW59J2iMugb0QHLd+/GuLQv9VhhGOxgMBoPBDbEro01NsFeC4GwJtSrKZyo70/iTBc6YFWOalA7zbToR+WvKLToZx1QysWoT5dsmSblLsVmO2bdh6yky0GTJdowtWb+6X/q5ipPIG7JilrRQO0nOxBJo4bMFWHffHLSik5wi76+uMb0xiZ0wjsvYfRI/odeD7RJX8X1u05WZrZpLkI2mkj4eT2yPjR2SyEVqu0ho7bBhSWpjKehcEnqRR8230zh5fsYjdV7fnmueQixJuETbaCx8DtN7ohPR4TuS2/t8GDvVeXWNvBWj5shnW5+T6SZvCMuJuM7S+tY1IWNOJZdJnnHKewaDwWAweOPYtU3e6XTaSPy5VcVidTILWS6+jz6T1STLT9bUJSGDqj52lawojqnLtHVLvxO6pyWVisAZC6LlvpJrY6znGpEDgSz4mqzjbpsUu6N1u5KHVFE5BfRTA/GUXez7uFeF7KZrX7hqRdhJYnbiF1VntiZPCddbiiOn6+7oPB5+fMZfyR7SNkTntfCxkfWs4qMUF+iqBJw50dNwf3/frmV50shynOVxjZN5pyx3nY/MlvdQ55VXrmrbqo1t7FIDCWb5UrZRzQXSveS1ZI5GerfQG8FMYjY18M/Yuo/7sGVhVe9l4TvY58d3I6998nKQ0d7d3Q2jHQwGg8HgrWNXRlt1toAYU63aWt6yIGV5ffr0qapeNxvW8ZhhRsmyFP+kZcy468oC12eaB62o1NC8y/ZbNWCmVSYrkBmxfj6yXLId1tH5eDgfMoVkbXdsvmPF6biX4HNYMeRLdcdJMo6eBDIZwVl3J3ouMLbp2zLLnef1+9ExC64lWvU+/k4mMkkzdvFCPgupeoDMbBUXF3jfkvygf+/HW9X0+n6Pj48tu/PfmUPC++WMlvkPXTzaW/kJemcx/kyxfb8vP/74Y1VtKzG6mHpV77HpvCPpGvNZ0zzIVn3cbIPHn8yc9s+6tSqkfAKBHprkOUxseg8Mox0MBoPB4IbYjdE+PT3V169fX2IVsgQ9FsQsTDJLWU+pRrWLQ+hviW4nf3wnCE+x6nRcWspdvaPjUps8HyNZgkAGkDL4yGjJ4BLLo2oRj5myQMlkO2aQ4NmNK2Wo4/G4EWj3LGaes6sdTmzx2qbxjkuKUIltdW0S+TONsWOSXO8pK1PbMpMzZax3XheeP2WsM1+BNbf0pPhxeL/4MzHna5ShtC+bISQPkMAGCun4YpSqgaVniZm9yfvSNW9PCnj6jnXNXXtG/67LHF+B6k2an557slTflj/JisXOUwOWzvOwyqrW2DoPpY+Rx13V739LDKMdDAaDweCGmH+0g8FgMBjcELu6jv/4448X13EKRtP90fVn9JRygW6Izi2b3GR0MTBJxF25XR9YumdTsTkTdZiMkBJrWP5CV1rq0du5ROk26dyE6RgsfUjj7tx9Kd2eQh8rPD//p5cxmwokCTfdh07SLUkUcgw8RkoaYykYE05SeU8SiFiNQ3P3cdMNx8SqVIpG1yfXQxL553m7ZhPJpctnr1tLfhwmsvD4yX27Wr+Od+/ebYTnkwAGy57olvW56v4rMbNLWkvuWiZfeemSn8/x22+/vTqvjkH5wVQmR8nSTvTE12rn9uUaTaIhXTKhwndJGlGueK5j9kVObmC6lXktVv2P9yjtqRpGOxgMBoPBTbEboz2dTvXnn3++WG+yMjzFm1YTS034t29LliDrRkkEgqwq30ZjYdF3ShZhGn3Xfs+t7I7BCCsxApbT8BowmcS3ZfJTl3iSkiPIIFjOlBK2utZ6LHmoWgtUpLE8PDxszu3jJoOkrGEqV2JCUddcIFnobHxBJqs5+zxZ1kBGoXVyTeMDPispsYSMjx6BaxotdC0PEzvl+TqhFGdBuqe6JrzWaYwrlkscDofYOpDbVG3XZCfg7+fWNnqvkPElqUJKMNL7ovKY9D5ggqi/z/yY/N3HyrWUvC98J3VlhSvpV/1Uwhg9hX69NY/OQ5Q8NnzmumQ/T2al9+Du7m6SoQaDwWAweOvYtanAw8PDxkJdNRCnnGKS4ZLF/eXLl1f7dCUsKa2f6f0sBXAk+b903tSGq2O/tGgTc+oaYyfBe1qf3TVYSTF2jbdT+dIlCUbGq3xs18RqJTqQ4oICxU3I4lalM7xebIuW1kk311UDAt6PrgXiNe3fOKbUHrKTkuxKN9K8+EyupDh5Pgrs09Ph+5Cpd14Gnyvj0wmHw6Hev3/fsh//jM3uKdeYvG8sJREzo0Srz1lrspPpTC33uudDIj5JarYTe0geIYL3nwxWn7t4kK6b5k7RIMZbXQBEv7OBA3NC/FppW3pMOL8kUtQJo9wKw2gHg8FgMLghDns1vj0cDv9bVf+zy8kGbxX/en5+/oUfztoZXIFZO4N/irh2viV2+0c7GAwGg8H/R4zreDAYDAaDG2L+0Q4Gg8FgcEPMP9rBYDAYDG6I+Uc7GAwGg8ENMf9oB4PBYDC4IeYf7WAwGAwGN8T8ox0MBoPB4IaYf7SDwWAwGNwQ8492MBgMBoMb4t/+mOWWvwWKUAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZXlVJvr9IiIjx8qaGKoKCqpAxAGH10uWgILajstuB+xWaEQBm3ZoXerDdsLXWk9t5YmNgrO2WioI2ipKQysoWt3iDE4PpRiUUimqqClrysrKzIg4749zvogd39l7nxOVcW++xP2tFevGvfec3/lN59z97bF1XYdCoVAoFAqLwcr57kChUCgUCh/MqB/aQqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIyR/a1trzW2td8He3c9w1i+zwXLTWvqy19u7W2hnbzw82yHpstNbe21r72dbao51jn9pa++XW2vuHebmztfbbrbXntdZWneO/bWj3tcsZzej6N7TWbjgf1z7fGOb9uiVf85rhus9f4jWvb63dNOO4R7bWXtFae1dr7VRr7Y7W2ttaay9vrR1srT182NM/mrTx74fxffLw/gZz72y21k601v6ytfZDrbWP3L9Rju7T6O+mfbrWoaG9b9mn9j6ktXZda+0xzne3ttZ+fD+usx9orX1Ka+2Phz3y/tba97XWDu7h/M9rrb2ltXZ/a+3e1tqfttaefq79WtvDsV8I4H3y2Yb5/w0AngrglnPt1LmitXYVgJ8E8CoALwDw4Pnt0cJxPYCfQL+eHwvg/wbwtNbax3ZddwoAWmtfD+BlAH4XwDcD+AcAlwL4DAA/BuBuAL8h7X7p8PrZrbXLu667c8HjUPzHJV/vnztuQX8P/9357ohFa+04gD8BsAXgpQBuBHAZ+r3+xQC+o+u621trvwngWa21r++67ozT1Jei3/f/y3z21wC+Yvj/OIAnAfgyAF/ZWvu6ruvCH+494qny/rUA/grAdeaz0/t0rdPD9f5xn9r7EADfAeB3nDY/G8CJfbrOOaG19nEAfgv9c+zb0Pf7pQAeCeB5M87/WgD/FcAPol+XNQD/AsCRc+5c13XpH4DnA+gAfMjUsf9/+QPwSUOf/+X57ssSxtoB+G757HnD518wvH8G+ofUK4I2Hg/go+Wzpw5tvGF4/ZrzPdbzPM8Hz8O6Xne+x72EcV4P4KaJY75smI+Pcb5rANrw/xcMxz3TOe6a4R74LvPZDQDe4hx7AMCvANgE8OQFjfsmAK/cw/FL3X9y7c8a5vUTz/d+mejnbwL4GwCr5rMvH/r+kRPnPgHAGQBfuYi+7ZuN1lMdt9aOtNZ+bFBR3t9ae21r7Wmeeqq19kmttTe31u5rrZ1srb2xtfYkOeaGgdZ/Wmvtz1trD7TW3t5ae6Y55nr0NxAAvHm41vXDd89urf1ua+32oT9/0VobSTqttbXW2je31v62tfbgcPxvtdY+zBzz8Nbaj7fWbm6tnW6t3dha+3Jp54rW2s8NKozTrbVbWmuvb6094qHN8mz82fD6IcPrNwO4C8A3eQd3Xfd3Xdf9tXz8PPQPmv8A4J8wQyIEYhPCoHrq5LOva629Y1DznGitvVXWcpfquLX2yUPbn9ta++HWqw/vaK29srV2ibT98Nbaqwf1z4nWq9M/txnVYTKG61tr72u9qv0PW2unAHzf8N3cPdS11r67tfa1rVfn39da+19NVJKttdXhuFuG/XyDHmOO/azW2h8N83VPa+3XW2tPlGN4j3xW69Wgp4Y+fvywr79nuNZdwziPmnN3qY5bbja6TuY6vReG4z51uG8fbK39XWvtK/SYAJcNr7fqF92A4e3r0e/zL3Ha+BL0P8o/P3WxruvOotembAD42pl93De01l7TWntPa+0ZbVCDAvjO4bsvHfbR7cOeeltr7Tly/kh13Fp7SetNS09o/bP15LAvv7W11pK+fBb6HzAA+H2z/k8Zvt+lOm6tfeXw/ZNba7863CO3tta+Yfj+c1prfzVc/09aax/jXPNZrVfZPjDcu69prT1qYs6OAPg0AK/pum7TfPVq9M+xz83OR/+cewDAT09c51GttVcN99Dp1j/bX9dauzQ7by+q49XWmh6/1XXdVnLOT6JXOV8H4K0APhW9Olc7/6/Q0/03AHju8PE3o1/Yj+667p/M4Y8H8HIA3wvgDgDfAOC/t9Y+rOu69wD4LgBvA/AKAF8N4M8B3D6c+zj0kupL0Eu3zwDw31prh7uus3aG1wD4fPQqhN8BcGg49koAN7ZelfUWAIeHsb0XwGcC+LHW2sGu635oaOcXADwWwDei/7F65DAH566KyHHt8Hp3622vnwLg17uum6VCb71N41kAfrvruve31l4J4Ftbax/edd079qODrbUvRq+m+U4Av49+Lj8aOw/VDC9H/1B9DoAnov8R3MRuYeDXAHwUgG8F8B4A/wbAD2E+Lka/D74fwIsBnBo+n7uHgH4vvxPA1wFYR6/G+o1hr9Lsct3Q/ssAvAnAxwF4nXZmeOC9Ab3q/1kAjqGfu7e03kRwszmcKrP/AuB+9PPzuuFvDb2W6sOHY25DIIBhxxxk8cUAvgbAO4Z+zboXWmsfDuB/on8OPBvAweH4Y+jXLsOfDq+vaa29BD0LPakHdV13prX2agD/obV2Wdd1d5mvnwvgD7uue/fEtdjWba21twL4hDnHLwAPQ//8+H8A/C0Ajvda9PvyPcP7TwHwC6219a7rrp9os6G/L34a/dp/AYDvQc+uXx2c80cA/k8AP4BexU6B/O0T13olem3Fj6HfM9/fWnsYelXzf0Fvzvt+AK9trT2BP45tx8T1U+jV1Zeg3+e/N+zzB4LrfSj6vb2rX13X3dda+0cAHzHR309Ez4af31p7MYCrAfw9gJd2XfdT5rjXALgcwIsA3AzgCgCfjv43IsYMOv589NTb+3u9c9w1w/snon8QfZO094rhuOebz94D4M1y3HH0P6Q/aD67AcBZAE8wnz0C/Y36YvPZpw3X+ORkXCvoF+anAPyV+fxfDud+bXLuf0a/UZ4gn//U0Oe14f39WTv7pC7p0G/ctWGxn4L+IXgSwFXof9w7AN+7hza/aDjn35m17AC8ZA/75Rr5/Lp+u22//2EAfz7R1g0AbjDvP3lo++fkuB8e1oMqxM8YjvsiOe51U/tiOO764bjPmzjO3UNmXd4N4ID57N8Onz9teH/psEd+XM79ZojqGP0P1Lu5t4bPrh3uh5c598jjzGefO7T3O3KdXwPwXvP+Gsi9Kcd/wjDP9npz74VXDe+PmmOuRq+uu2nGvvr24dgOPdN867CnLpHjnjwc81Xms6cMn32Fs79GqmPz/asBnDqX+zNp+yYEqmP0D/MOwGfO3H+/AOBPzOeHhvO/xXz2Eph7evisAXgXgNdNXCdUHaPXMvy4ef+Vw7HfZD5bR2/HfRDAo83nfM58/PD+EvTPrR+Va3zosOahWhc7z+3RvT3slTfMWI97AXwAvaniUwH8N7tvhvk6A+DL97ree1EdPxP9JrZ/X58c//FDx/67fP4r9k1r7QnoWeqrBtXW2sCcH0AvTT1Dzn93Z6TSrutuQy+VjzziFIPa5NWttZvRP4zOAngh+h8Sgg/pn3KaID4LvXPGe6XPb0Qv7VB6+jMA39h6FelHZSoa08dV22Zrbc4avXgYyyn0c3YWwGd3Xff+Ged6eB76TffrANB13TvRj/e5M/szB38G4GNb7+H5aYPqZy7eIO//X/QM6ZHD+6egF77UW/pXMB9n0bPmXZi5h4jf7no1pO0nsLNXPwrAUQC/LOe9Rq55FL1Txi91O0wYXde9F8AfoPdJsHhX13V/b97fOLy+UY67EcCjZ+7La9DP5xsB/Cfz1dx74akA/mdnmGjXa6r+YOraw7HfiX7eXoj+h+Vy9Izn7a21R5rj/gy9oGnVx1+K3kHol+Zcy6ChfxbEB+y+V/eiIZzCA13X6XqhtfZhbYgcQP/jcxY9W/f2n4fte6frfz3+BjOenQ8BVDej6x3T3gvgb7qusw613JdXD69PR6/t09+Cvx/+9LdgP7EC4CIAL+i67me6rntz13UvRC+MvXgYR4deW/ri1trXtD14pu/lofn2ruveKn/vSY6/cni9TT7/gLynvfKnsfPg4t+/Rn9DWdyFMU5jgrq31o4B+G0AHwPgW9Av6pMB/Az6hzRxOYC7usFbN8Aj0C+69pdCBfv8LPQs6pvQq1xubq19+8SP1ZulzW/PxjXgZ4ax/B8AHtZ13Ud3XUfPyjvR/wA/dkY7aK1dgV719wYAB1trl7Te/vmrAB6FXtLbD/w8gK9CL5C9EcBdrbVfa/PCw3QP0FuTe+BKACfkRw4Y770Mt3e7bT172UN76afXL31/KfqHvufRfyvG6nb1Aj2TfL4GYBTaZTGoh1+PPurgOd1uc9Hce+FK+PM/e026rru167qf7rruBV3XXYtehf0o9KYZi58D8NTWh6Wso78Pf6Prur2G+V2NJIpi2Ku7xj1z/87ByB493Ie/A+DD0I/5E9Hvv1dhSnXZY7Prunvls8ln50OEt9eifcnr87fgLRjvpydg/FvgXc+zlV4G/3fD4k70Gtg3y+dvAvCY1hrvsWei92z+NvRC3vum7NzA3my0ewU36CPQSzPEI+U4hox8K/pNpPDc9B8Knor+x+bpXde9hR86UugdAC4bbG7Rj+2d6AWIrwu+fyewzba/GsBXt95p5XnoQ29uR2+78PAV6CUrYg4rvaXrurd6X3Rdt9F6h6JPH2xmUyEEX4z+wfvvhj/F89D/2ESgHXhdPt91kwzS4U8A+InBkeAz0Ntsfwn9j++54BYAl7bWDsiPre69DB6TmbuH5oL3yCPRMwuY9xYnhv5c4bRxBaYfIg8Zg43/l9Cr9T6+G9tGZ90L6Mfqzf9e1mQXuq77kdbad2Fsf3sletvjlwD4S/QP2kknKIvWOyx+HES7IHg/+h86/Ww/4O2/p6MXLD7f3u+ttQP7dM3zDf4WPAe9mUShQoLFO9Ez/I+E0WQNwvFjkGsogf7+++jk+y2gF/bQq8e/srX2EejDR78HvWD0s9HJi8wM9afoN8sXyuf6/p3o9eMf6TDmt3Zjb9iHCqomtx+8wwP+8+S4N6FnDy9M2vot9FLlPwZ9vk9P6LrunV3XvRj9Q/NJ+r0cZ9vajxv3Jeh/6L7P+7K1dm1rjZvseehjDT/F+fstAM9srV3ktTPgH4bX7TEOP0SfEZ3Qdd2Jrut+Cb0KNZybPeCP0QsLz5TPde/tFXP30Fz8NXqb1BfJ58+2b4Yft7cB+MJmEou01h4L4GnY8bJfBF6G/gH/Od1uhyti7r3wR+jjsa2X89WY4WzU+mQVo2dVa+1K9E5ru1jn0M/fQa9S/VL0rHmkhk2udwDAj6InIq+Ijuu67owz3v0iBh68/fcI9A5GiwSF88MLvs7/Rq99e1ywl94Vndj1TlJvBvDstjv5zrPRPwv+x8S1X4v+9/DT5fPPBPAeTxvSdd3fdl33jejNnOlzay+S+McOXmOKt1q7kenEja21XwTwXcNN8jb0BuvPGQ6hhNC11r4avTfmOvqH7R3oJd2nob+BX7aHfkb4Q/QS0Y+01r4DvW3s/xqudbHp9++11n4VwMuGB8Hvoo+rewZ6g/oN6D3wnoXeK/oH0AsLR9E/cJ7edd3ntdYuRn+zvwq9LeIs+gfypeh/zJeGruv+d2vtRcOYPgK9s88/Dn35VPRCxXOGDfpR6J1wbtB2WmuH0Nvk/i1i6e3P0Cc8eOmw7qfRh0rsUq221n4SwH3oH8C3oXd4+BLsw9x0Xfem1tofAPjJYc++Z+gzQwkyT/kMs/bQHvp597B/vq21dh/6sT8ZwL93Dv/P6NX5r2999qNj6LUj96DXBOw7WmvPRh/e8r3ozQhPMV+/b7C3Td4Lw/HfjV7QeVNr7aXoNR7XYZ7q+EsAfHlr7VXoBfgH0O+Xb0Cv8foR55yfQ3/vXQvgB7xn1ICLzLguQr//X4De5vkfu65724z+LQu/j14w+4nW2neidxj9dvRzOMoEt4+4Ef0988LW2kn0c/4OR7txTui67q7WhyT919YnHXoj+mfEo9AL+r/ZdV3mZ/Ht6NXOv9ha+wnseN+/suu6bW/k1oee/SiAT+i67k+Gj1+L/v7+2dZ7Hf8Demb9ScMrBl+A3wDwi+j3+Sb658ph5Fq+c/Y67tDbBO1x15hzj6BXkd6F3rvydQD+FRyPTvRquddjxzvtJvRqm6eaY26AH2B+E4DrzXvX6xj9D/1foJea/g79Q+Q6GG/Y4bg19Dr4d6HfVLejD014ojnmUvQPmfcOx9yG/kb4+uH7g+hVo38zjP1e9D9Cz5ma8738wUlYkRz7NPS2s1vQ//Dfhf7h/lz00twPDpvnscH5K+h/oG+YuM5HDmt1/3D8i3Se0TPnG4Z5Oz3M4w8AOC7rfYN5/8nDeD8t2KN27z182D/3oc969fPYSeQxSnwg7V2P/ofE+27uHhqtCxyvXvTS9nejVz2dGsb8EXASVqAXcv5oOO4e9Df9E+WYGyD3iLnuC+Xz64bP17z+me+9v+tMO+m9IPflXwzr/ffozSTXYzphxYcP7f8FevXiWfR7+FcA/IvgnMPDHIXrPcwVx7M1HP+X6MPA0gQH+3Df3oTc6/g9wXefiT6j1Cn06tWvQq+xetAcE3kdbwTXunFGf79m6PPG0PZThs8jr+NHy/l/jLHX+4cNxz5XPv889Nm77kMvVL0bvQfwE2f081PRO+c9OOyR7wdwSI5hH58in1+C/pl9+7BH/wLAF5rvj6JXQf8t+mfbPcO4vnCqXwyHWBpaa/8JvQrzmq7r9itFWKEwidbaD6NnK5d107bqQqFQ2Bcs0hkKrbV/jV53/ZfoJcanow8N+OX6kS0sEq3PbnQxeo3COno2+FXoA9DrR7ZQKCwNC/2hRU/9Px99KMRR9Jk0XoE+/q1QWCROoo/zfjx6Nf570cfDvfR8dqpQKPzzw9JVx4VCoVAo/HNCFX4vFAqFQmGBqB/aQqFQKBQWiPqhLRQKhUJhgVi0M9TOhdbWugMHDmBrq88VwFfPRryy0v/+M33k6urqrs/5ao/RczT1ZJaKcurYOeeeS/tTx++1j3sdz5zrZeCxupbZ3OixXdfhtttuw7333js6+OjRo90ll1yyfY7Xrn6mr3bPTJ0TYb/WeC9zG2GOb8V++F946xS1HX2nn9vv+T+fB5ubm7veb2xshNcjWmu4//77cfr06dHEHjt2rLvsssu222V7bH+qf9k19/L5uR67n+eeL+xlP0Z7yPssWjfvvuZzwP6m3HPPPXjggQcWOqHL/KHFYx/7WNx///0AgJMn+6Qi3Pg8BgDW1/s0uUeO9BnHjh8/vuv90aPbWdxw+HCfFezgwT7x0IEDB3a1xVfvgaufRT/wfLXf6bkqDNjF1e9se1mb3jnRqz0nEkyizzln2TFzfjj0oclzuZ523PogPXv2LL7xGzU3fI/jx4/jBS94Ac6cObOrPa65HQPXm++5P3gOv7f9O3To0K7vvB9l/TzaO9GcW+zlR5ntqGAaPYj4g2LP4WdRn72+TP0A8r29nv6Y6TFcv9Ond6Kr+P+DD/Ypsu+9t09ny+fE3Xffves90O8VYPde/b3f+73RWADg0ksvxYte9KLtdk6c6HPP8/lj+8V2dW69eYqeK7qW2f1zLqQgEzoV2geuR7TPs/ayc6YErIxcWcHHHqOCEdcKGO8v3X/cH/b5xmcGf1OOHTuGn//5PaXBfkgo1XGhUCgUCgvE0hht13U4e/bsttToqXBUrUxEjMz+HzE/ZaeeunEOa4sw55xIsouk0+w6c9Wc3nUjadvOd9S+tpGpcqLrT6n/ImxtbeHkyZPhvvDa5npnTHCKibMNfu8x2miesjHrOLzx6LHKWOeodCMGMWcdIo0G2+TcWI2UHqvvPdbN8/UcnSP7nqyGn1mTlIfNzc3R88Z77kSqR08DEGmUonva23e63tm9NZf1ZlqXqXPnsO69PCOje0G1IsD4XuMr2Sh/Nyw71fYUbN9qsfgZNSiHDh3aFxPLFIrRFgqFQqGwQJx3RjvHUSayndrvpuyQmf0zuo7HdOey4Dm2jGicHivR75QVe1Jd1oeoH5GUGEmcWXvKTqxkqfOYSZVd1+2y63lzr9e09lsLz3bOV7XrR3ZXbce+j7QGto/Re28NdU7VVqrXzdhQdK94ziK6dyLNgGejVfs7GajaCIEdpqJQ5mnnhufw9cyZMymjtedrH/V/20+dN7t/yawiDVq21qoVOBfovveeRxHbJuaw1MwHRduZss1644/WW5mt16foXlBfAQu2N7Vv9gvFaAuFQqFQWCDqh7ZQKBQKhQViaapjYLdTAtU+Vh0zV2Vs1Raq5lM1YBZuEamIMieIqXjdTN2smOMEFV1vTkhQpCLci4NDpKq2iNQvmYpKVcaZGq3rOpw5c2Z7TT2zw5Qajsfa/aZhQpE60Ns72v9Iheupt1WNmTl1RHskUhl65gI9JlKRe2PVeZ1yOgLGql06nqj5wR4TOV1lql7ug42NjbRfXdelqmhC15D7QV+BcciahvtE62X/n3Iw3EsYjI7BQ6RC9p6r2l4U8jhH7ayqW28NNF46MkNkzx8NW4oc64CxQ92iUYy2UCgUCoUFYqnOUJubm9sSrBc0rawpcnDyEixQwuR3KnF6rCRynJoT0B+FhmROKVNteWx4bkIEb1yUsiNHBu/cuaFOc5htFuqirGFzczNl/jaMxOtD5NCi+4PJKYCdZBb8TPdMlpEsYtD8PNvfGlivoSeWAUwlNVBW6mlSOMd8r8k7vL2jCUB0DJ4THsdBBkvWoPPoMdrofvUYrc7bxsbG5P2WhbrpfR49U+ze4f86T7pOHvPLWLX93I5JtR9ewhDF3KQWnrNXpNXT8WYhb57DnB3fHEarWhKbsEL3U+Rs5WkT9rJ39gPFaAuFQqFQWCCWymg3NjZcZqLQ1H2aVi8L74nsKl46LpXoo3CPLPxFbQiEl0tVJdWIyXqMPWKp3pxMpWnM0ivOtSd7jC5KpkBkIUhra2spi26tjdKweWwxat9jJRGj1VSgc5i/MkyPxXthKQBGfgt2L2n6RLXN6j7wWHd0Tyhjs/3XOdDQHG/fMwRryr7rheowxaKek4URRSkT58DTVul8cV/oq/1f5zTSNM0J99M59cKgdI/w/RRLttchIpu97a8+e7kfvJSmUylMde94+8DTVthXy2j1XtPnD4+dCh1cBorRFgqFQqGwQCzd65jwvCQjj+GM0apEGUnknvSun2XemMSUnW1OsnVCWWLGTtUGFLFW2+/I3prZkSMv18xTWa+jkmuW5GJuarfWWuiRaKHXjJJRAPH6k62wiIVnr1QGo/33qs5QwqYNk4iSkXhj1D2p+9/2g5/Rq1pfM1YS2WiVWVlwXZQZctzefcXP2Kfo3rP3k8dyp5hJ5tOgY9b153tqQIDY6zjSknlaKrVz89WzR2rxBR7DNtR72yJiu5G2zJsTro8WceE82GMjFp8xdo5VXzluHmvnMfJQV3ifz/GW3k8Uoy0UCoVCYYFYKqPtum5kg7FSj3qGUmqaSm/mfafSkye1RZ6IWYo6laKs1Bn1UdlVxFKyWMjMky5CxPy0rSx+TtmWZ4eN4vMi27T9314nkjJba1hdXd2Wbj3bXOT9nTH/KK6VrIGf6z60nykj5znsq11L9bhXG62+2mOj9JZ7kcyj/eV5txIab8i5UWZl/+d3alfjq8cwlEV6XuLaX01PGsGLt/Y8bLmmvCbLcZLFZfbISLOW2c51PJE93o5VbbJZXP+UL0h2byiTVe2PF1usn0Xx4R4DjUreEZ5vCPvGPRPVLrZ7dE7ugkWgGG2hUCgUCgvEUhlta23k6WaTv6sEqTYl9Xxjm8COpKJsR+0Tnl2A7fNcva5n/9TrZ8nxI/Y5p49Tds8sY1MUC5fZW1VyjGzDFlNJ0jV2zbY75alooRKrF5er7SoTs32IWMicBOoK9SdQTYr9XzUbymStDTdaX7WdZn3ksWTZKtV7DDryhGYbql2w5+q4olJ/Xjtci0suuQQA8MADDwDYfc8TcwpSEFGMvv0/shcrm7T/R2s5hy0qlK3a66ldMyr7l+0DLe6h4/ZiYiMP8ihG1uuTanDoYX7q1KnROZF2J2P56luhc2XnRAtcLIvZFqMtFAqFQmGBqB/aQqFQKBQWiKWqjoFxMgoasoHcdRwYq7Ms1IiuqjUN8wFiwz77QVW2PUdVqqrK8Yz5UwmzOSdeMo+oOII6YWWORpET2RwniCgQ386JqrE9BxC9vs7bVFEA73vbXhQCRvUUVZB2XaLwl0jVaq+nqrs59W/1eqqaVOcoO44oMUak4rfXoypa9wHnxKrwVJXLvvAYvfc8RyNN5q4qPLuW6iDGvrKP3nPivvvuA7D7HsgSrWxtbc0KMdP9qg5t1qlHzQp2Dr2x2rZVdaz3v6eOVVWqOp55quO5yWcIL6xMn2f6/PFSIqrqW80Nek/acU0l9cmgvy3e78SynaCIYrSFQqFQKCwQS2O0rTUcOHBglJzBcwyIQkqURbJdYOwEpZKeGsyBOOWeGvOtNK3MSSUkj9FGyfUjKdsz+Ot4syQHU04oWTB9FPSt0mom3WsIih7nHZulYGytYWVlZZQAIQsxOnnyJIAxE7DnRMkGeAwlb55r945K/BqS5mkRIocyXQ+P0apGIdqHdl34HZkD2+C9cffdd+96b//nKx1X2AbHo6wcGCdx0DnwUozqnuR7rp/HStTppeu6lPF4qV+9vcPPvNAs7Ut07+r947HhKI1hVgQgcjBSZmvPYftTKRG9+05DEqOELN5zR5Nr8D7imvJzy2iJSFPjaQa08ESUntT2MSv6sUgUoy0UCoVCYYFYqo12dXU11MEDsXSR2RLUXXsqXCRL9k8phxKZJ1lSklebaRZwrVJvFDjuzUlUHEFDM7x0hFHqRyJLQK7z6oVXTJ2jc2Wh7U5Jlqurq6OxWzbFsVJKVtabhT+o1MxjtA3vXE1QkSUW0eQLKukrWwTG9m50lDycAAAgAElEQVS2wT5rUXVP26OaIM4R2aoX3sPx0B6qrDsL94qYmbIvex0NseLce6yHfaQvhforaF82NzfThCsafjbFHr1jotSsnnZnKhWmly40Klqi4S92bqMShBoyOCckKHq+2blnX7if9VX3u51PZaxR4QuvsEPUZ++e0HshS5SznyhGWygUCoXCArH0FIyRDcP+r1Ky2mk8JhaVC1NJyUsMHyVSV09IjsGCUmkk0VpELEBtNJ70q+NQD0UrWVJyVC9WlWhV0s36r7Y0bx51LrJEAnOOIWijZZ80xRuww3yipOu2LUIlXvWo1qICNqm8egxr0nNlDcCOBK5+A3x/7733AtjNaHnNY8eO7RqH+i2w716SA2XbmoDejkvvLU3ioszasgotTxbd65lNmNeJysDZ61hb75RGhPPk2Xz1XPZfCyh4NtqsxCHge+lH3tmR/d0bh8JL36n7bCrZv5e+UX1fdE/ZOVEtBI9R1s1x2f0RFVZgG5pUyB6r91yUrtQea8ezjFJ5xWgLhUKhUFggll4mj1KVZ79TVqpsxJNu1UbK77SYtyYM947xytTZtoFYoovSKdo+qt1Or5exPJUolclaSU8lyYeSSlD7msUw61qqRiCLkbUSbCZZrqysjGxXHCewM5c6dsLrAz9TL1MyPH5PZutpXyKvcC/+T+NlyeI0cb9Xwo0x3erty/demsu55dHsvlD/hMhDOkvbp2xEGbRd56k4Ws9bXDUx6+vrk4XVld14ceC8FhmZ9s3zyFdtgWo/+GqvpwxzqsiI952yUM9XIyp8oBo0npOlto0KYHjaRb3uRRddtOt7LX0HjD2U7b1t4Z0TFW3J/DGIqfj9/UIx2kKhUCgUFoilZ4aKErgDcdwd4encVSIh+7j00ksB7EhTnvR+8cUXAxjHVGVZZNTDUbM7eVJ7FNel1/FiIVViVEardhjAL+sF7Eismqjd2v/YvsYWe/ZqgnOi2XGUPXjS7xxbbWsN6+vr2xoI9sHug4jh65x752hCe7WleuUGtTj3HPauTJbel4RXGk49UpWdcK29Paueqbp3vSxqysRV60N4tkLdI5oJiK/e9VRTRHi2Z71fI7slsOMXkrFIZeC8P5S1eaxZ/RP4/Dl+/DiAnfXxYjk1y5J6AXt7NSr6oGOw50eFQiKNhx2X+hqovTXzseF7Pl90nawvAtullztf77nnnl3jyzREkSY0+704ePDgUmJpi9EWCoVCobBALJXRWskhKtLrfaYSh1e2jpIjy2upty4lcy9zCqUnSm3K4qzdSyVutatZD07tr75GrMtK78qUo1J3mQ1I4w7ZvuaWtuCYeYzn6auIymJ5c68sfn19Pc0M1VrbPkeZLTDORqOSd8Y02R61H8rePK2BerGyfe4/9oexqrYvyvQjb1Bg7HmqLEu/t/tTmX/EYLy4XfUgJ/vmGDhXdq9q9ihlxewbM1LZ6+g9EGlU7LH2mCwGf21tbfs67IPnaR/Fxmpf7fmqcSAiDYTXvvo0qMev/U61MHP2OdvX+92LD1boMymKybft8b5nX1STQtZv50zvbc4rfRPuuOMOAH5ctf6WZPeVzpPNg71IFKMtFAqFQmGBqB/aQqFQKBQWiKU7Qyl1tyqVKHTAKyZAUNVw2WWXARirRxXWYUdd1lVNpc4k9jN1PtAAfs8AH6VAI7xE9KpeyhIiKCInLw0Y9xwoOA7PmUOhTlxzwog0PWBWVID90tJ9dl10vVVtzrWmKsr+z7FqWUS+sl80MViw/1QZ85UqY3UQs9fRdIOeo5mqVjW8JwrVAHbmh9fTPeMV9uD605mHx9588827xkUnFav+073Ktri/uJfsunHsahpRFbadmyjhvAc60hHq+MZjgB21pDpsek5qqipW9aiX/o+Yqzr29rfes7Yoh/YxSmMYFXSx1+M6aLiNrpeFp/L2xkMzhN2r6hSn4+J95e1vfa+/MXYNtAjIslCMtlAoFAqFBWJpjJZu9pkTgZfEn+faz60EqwZ3dRLRoHkvwXRUTNsrxxa52UdF1S08adq2lc2JOjBEScbt/+p8Ezl9WERpFNXpKysyoNKox1SzxAcRbLlCYLdUGhWdVnbKkC5gJ+xA5zZybLPj4LHs0+WXX76rT+yHDdaPUj2qhG/3UpQMRIsLsG3rsMO+RYlgvHAIbZ/XpcYoC3lSBqWpP8lKvbSNbEcT7Suztf974XAKMlrey6qlsP+rRotj90oCsl/qJBQla/ESMKiDYXSfemPUUCAvNapq0nS8+tyzfYy0enpdL42iOiFpQQcvAYhq86JkOzYUUZ/5+oyP0rDaz6qoQKFQKBQKHwRYKqM9e/bsSBKyQfvq2h2FtlgJTRkrpU/apTLm5KVjs30jskQLKh1m5eqiJOLKnK30HjFltc3NkSwjW5aX8o9Qu6HHulUS1+t5we1eIYdMsuy6bnteNGzItq3MmKwuSrzgnaNs0UsAooyF60Abpmdv1T2obEQD/O05UyUVvTASHWuUHtKOn+3SHq12SjJ0r3B2lB5UE2N4yVWiZA1zwskyRqtteMUF1C9B59pLdqPXVKasjGyOTVA1XZ7tXP1JVIuQpbTVfabPP8to9RkS7VUvTGpq3xHe/RQVF/DSUqomSlOAeklkpp6Fi0Ix2kKhUCgUFoileh3bkkSZbU4ZRebhp7arqCCyl64tKqJOeBJzlDZRWZ2VmFVSVWlRg/W98lhRWTSvj1PSZyTZ2mtHdnLPs1Cl+Uhq9DzMiSlbCUvleecCO/OiDJbvPU9Osk6VfHUNveupTUnTKaot056jGhNlh1oSzzs2stF5/guRvVBtqLa9KE2oMkw7Fk1LSY9VtZV57M5L1gL4Wift41RBgTNnzoTJYez/+kzSdr3iIrqWkdYiS8yje0Vtp/YzvceoEVA25/Ulu++B3eui/iRemTp7Xf0/OsbCSzGp+y5K/WjP95JQ2HMyLaO91iJRjLZQKBQKhQVi6XG0Kql40k7EFr3SZJFEH7FhCy9O1l7fSzumUpJ66Xptah+8mEfve2BcyJ5QqdfOo9qHIptpVthBJfHICxkYM7KIUXv28aiAhAU91jPPbvUQVZusV5orK38GjBO3e4xcYy4zW73a9fVcr5g6mXLETqNYbPu/7p1sfxPRfou87u1nypgjDY7tS+TH4JUO5JqSOU/tnTNnzoRaBA/R82ZOutgpW6NtN2rLuye0T7pXvKiKqCAFEZV49PowJwWrzmn07PCur33RufDWa65XtZeXINNWLQLFaAuFQqFQWCCWymiZHH7OcfZV7aueVKXtqkTpSUSRHUXPsdKoZoBRDzv1CvSurfZchZe83vO6895741GpUO3Zdj4jFhoxHNuOXjcqgBD1OwJZSeTNaMcUxfB5MdiqaVBpN2MYUSGArCCGF+sIjBOoe9oC1WzMsQFqGTZl0F6flcUro8zGp8dqnzPthWqIyOQ99hf5D0Toum6S9Ub9iq4bMaFsz8+Fp2lSBjbl5az/A7EtONvfem+rJsVL2B89DyI7rP5v2/U8vvUY/Z2Ys9ZWE1M22kKhUCgULnDUD22hUCgUCgvEUlXHq6urqbqCn0VqmcyxaUoNvBdVjqoQreqYISFRGIynqo7Ui9rnOaE6Og4vBaTObaTCydQ/2udMLTOlsvG+1z5OqW82Nze3nWwYsmP7qAH7OnbPmWPKEUJDS7Kav5Hjnpekg9C0gDzW1rCN9rF+T3iJSzQ0IkrFaM/nOZrmLjIP2P/VMUxVx5lTUXSPew5UxNmzZyf3T5YAQ00q2bX1MzVnzUklGplhMgdHQu8bXS8vNDByvszWJXJ+0/mz76PngJ6TPUNUrZytmz43oz7acbM96+D4UNT7e0Ux2kKhUCgUFoilMdrWGg4cOJA6mGRs18JLTTbFKOZImoRKcdYBSoPb1TnAC++I3N6nQmnsuV4ydNuPOeEkijlOSnOC0OdqC7LrdF0XspKtrS2cOXNmW2pnQgdPetd1Vqcly0o14UGkPcjSd0bJAKJxArFDHRm7Td+ojClycIuclew42X6UuAQYJ0BQ5yh1krL7Tp3I9BhP26P3k7732Ja2f+bMmck0jHptL2FBFHLolfSMnmN7YUfRs4tjz8KueF2uaaSJmoO9OJdmiT+mwskiDYd3DKHX8UJ1pp6n3nU8bd4iUYy2UCgUCoUFYqmMdmVlZaSL90I0sgBxPSeSziOX78zuEYX1eKXAorSKatuwn6ndIWI/GRuO7CCWqSkL0fajEBHv2EjSzGxiWdIGHUcWfmWvZVkgx+eVWyP02p5NfSo1XaYVmdKYeOPJUsIB4/Wyx0b7IAqdsOB9xcLmmvTAS0salUFUm6CXgjEqh+YludCCGuxjlmiEa8hzT548OVkqL7rH7ZgzrRSwN18GPc77LNpDnmZL71W1R3phMJF2KnoeeWwxCufx0ndG49T3mY0+0u5NhURaZL8f+pwuRlsoFAqFwgcBlup1vLKykzheSzfpcRaZhKJ2tSmmkUlTUbqvrJiySlxeG1Pp7DK2SKmdr1r83LPRRp7Je7G3Rt7ae2HdczClvbDX4LWZrN7ORaRhmJOoXQuJR4w/S3YRMWovzZwyJfUcz5LJR4kDvL3EOdG5yJKuaOrSSPL3Uo3y/+jVSwDDcfAYtSNnaVDnpGBsrWFtbW17z3hrED0jIi9W27+pRP0Z04yiDry1VIYX3dPZdSLm7D2Do0QVulftWs7xmo4wxVwzG63OSebjo2NeRrIKoBhtoVAoFAoLxVIZrRdz5bHFh5LGbE4atqm25iTSjuyamY0oSn4dJeP32DAlfY3p9EqFRVKu58UI+FLi1Nzbz6Pk5FnScs8WE61h13XY2tranheyE9rzAOD48eMAdtZMbZZkP16spNqjIsbhpRvMNBnRdZRZqL0r8+iOYhK99KQqtev+5pzYgt9MAxmlvou83rNj5twbmnJRS+55jJb9noqFbK2NGHLmxazIPFQjxh89y+z/uqZZikJl19G6e+lb+aopMb2CDYSya30Wev4GmgYy0lpmtlo9ZsqvwSLKE5DZuue0ux8oRlsoFAqFwgKxNEZLz1HawzwPRLXpzLXfAbEtay9xblEheC9jChGxUs8zOrJd7kWypESusZ12HiOGpt970lzkRZh560UxnnO0B9H7DIwzJbO1/abdViVwMqMsm5RCGeheYgY9T05lf+ql69mNon0deUxnBQm4RzRW1jJazqmWWNN7cYoF2vazWEi130YxkFZTwP7qHHjoug4bGxujuHfvuTPH2zga45Q91LO3ZszLHmf7GJUD9fqqjFZj8bOMTdEzQ22oXo4B3c9Tseb2M91XyqDtuTp/ej95ntFedMAy7LTFaAuFQqFQWCDqh7ZQKBQKhQViqarjjY2NUTozqy6J1EXqvu2pAqKUbXNUuqqyUzVWlkhA62iqusa2P8exKDpO54CvXnpAdXrSJASRGtBeey9pzfTcKBG454AyB9w7quq0quPI8UITVcxxgolCADI18FTiAns++63JGrLr6Cv3WxSyYa+j+4FzwYQVVnWsTkkXXXQRAN8xEHhoziSeilLXTfe5VVF6qsno3uq6DpubmyMntcyZL0q2P2fPRs6EWerACFlYEddfny32HK6ZPpuipBDes1GfgeqE5dV11WdVFO7jXW9qru06ToWTZednyXoWgWK0hUKhUCgsEEtNwbi+vj6ScryA/ihQPJM+ImcdlcA8Nuw5ktj3ltGqcT4K7LcJFKKSagrPuSPqY5RQ215b5zFiH5kTRPTeMrap4H2dM2DMCKcky62trXB9AL+koW03C+tRtjOVztP7LEqcb/tItshXQueHDMT+zz6RhWr6RM8pjkw10mBoKkZ7LB3OIgalfbeI1tJLRE9o2lB1cLGFFvTaU6E9Kysr2+d7156racpS+kUhQDrX9jPdd+oE6jEzvdc0ZMfThvCYqAygx7D1HvbConQMmrJWtSARC7fH6H2jjk2e02e0D7x59kKNlsFqi9EWCoVCobBAnLcyeV7ojIYhKOYEOKsklrnDR2nlMnaqtgraPSmtMXTCS9eXhWLY4yzDiMIHovFaqOQ4FU5gEYWVeIjGMceea8MGpiRLZW12n+iYlBVkKRGjMIQo0YjFFJO1dmQyWQ2hyVLiKStRdqIhG54/gULHaSV+3atTSWQyhjilMQJi+5om0/CeCXOSnfC5QyhjtojsdntJq+r1LYLuTWVvtk2uS1To3bvXVCsQ2Y29PupnbIvr4SU7idZQ2bAX5hMl79AUnHYfaFIT9kXH62nf9LqLRjHaQqFQKBQWiKWmYKS9hP8Dvo4/Y70RVE8/VVzAnhPZgj1GqzYXZbRko5lnpUp0mj7N2ugiW6baZqykpmxjL0XJdZzRsZm9Usc5hxVP9WVzc3Mk1Vv2pp8p+/US0EdJyCPpOtuHytpoE7T2WErcej1dS5vkX72p2W6U/N8iYr0a/O+VoNM9pIlSPJav9230atdNbbDKmOYUas+8TDlOtQ9n52QaDEITOMz1w7DnRt7HHtuOWG9UmMT2Ta83Z3/rMZr2lK9e4g/Vqug4p2zGtk9R6UX73UNJcJQVtVkEitEWCoVCobBALN1GG9nSgPmFo700c1EcVubJPFc/79kwIsaceQ5H9mLtRxaDqyw7s0OotOuln9PrZ7Y3r6/2M2VZWWJ17etUGr2zZ8+OtCDWPqRp+aI0c55XZuRJnrEUnVNlD+yP5y3LAghqf/XuCTIHtcWRYWR2ULavKRdVM2Ch86Ul9SIWbttT25yyE8t4lMFyXPq5x5zsdaf8N/Rey2zLkee6t3+juOIsjjazJwN+jKrOA7UU3B+epiEqpaj7zStFSPAz7mP2w/Piju411SLoM9uOndDndqbZUERtWdjnTnkdFwqFQqFwgWNpjHZlZQXr6+ujbDgWUUJpZaOZ9Dqlp9+LLYOSnmVOyqq14HgUI2ePjbL9ePbkiJlF17fnKEuMkuR7cxVld/IwJ5H6nHOn7Fq6Dyzz8IoGWHAuvLXUjGNkCxob6SVs12NUaveYjJ5DFpedQ7t9FM/qMTXdO8rcyUo8JqO2bm3TziMR2cXVRutlouIcKHPy7LC6j8+cORPuUz53VAMw5xmi8LJJqVZE9/4cG2Ck+cmKjKhd0mO0UUEI7m++Vw2EPSe6XhYTHfnJRPvQtqe/AVE/vHFFsOu2Fz+V/UQx2kKhUCgUFoil22iVTXkSRWSTzSSYKW9jz/M2iqNVG6C1s6lnXTQOj2mqbVZjIz0JVucg8qLOmLqOT9vw2Hdkl/I+n/Iqzuy6c6Bex5nHuldqzsLavyObrK6pF4MdZcFSdmjXgPvpzjvv3NX/KCsOsLM3mHP42LFju/qm4/Rii5UVqp0t81uIGLRnT9ZzNQbW0xDRxqjMVm20Xvzz3BzE1g7n2duj50qkgbD/qwd3tJc8n43IW19ZMrCzDrp22jd7TpTNSeGtJRHZtL37N3q+eONRRFnsPPYbXVe9+b2sXNHzbNEoRlsoFAqFwgJRP7SFQqFQKCwQS01Ysba2NnI599QxkfpgjvE7SqzgqVyjZNSqQraqY6puptQhNo2iOu9EicDnpELTY/cScB05HHjtE5Fa2Fu3KDGGhyi1ZAYNV7J90rRrqmrSYHlgrN7T1HdZSccsEYq9npfk//777wewoybN0iby2pFjkTr5WHW6lsljG+polKUL1ZAQ3Qf2eqo61LAezxTD//mqc+KpjgmbACRzflxfX0/3m5pOovsjczQjdD94+yS6XzJnKK7L0aNHAeyo3DlvXn+ilLKRk1/mWMlXvZ7tY5SIJTI7eMljFKr+zcKJpvpu27HvK7ynUCgUCoULHEt1hlpZWRmxiMyZYspJwTtHkYWcTCXX9q6vbICu8pTIKGl6/dL0eZFrfpbYYY4xPwrr0O89pqZOCZGTmb2uV3w+u27WVw/cOxqGY9vT9IZ6jLff1Fkocn7ScC9vzFFqUZvwQRM4aEiLN7dR+bU5qRi1fe5N3Rc25aOW4YvYfubEGIVxeInoldFq8gRNmGH7ZDVFGaO1KRgJ+15TcWaFAIjoenPCCqeYbHY+z6VTnI7L7hPVekXansxhS/edsn+PLSoLjYrTe6k/PcdMe050bXsd3R9eMh977JwQxnNFMdpCoVAoFBaIpdpogdwOETGiyFZrP9P3UfiL59avSQYie5ieb79T261lP2SOaqvS8XjMUO25kdSbJXmP3N+zNiPJ1bNxaTva3hxpNGMRXde5TNQ737PF2nO8FIzaf7UtMbTCS4IeBe57e1VtollBAB0X947aXfV6to/KnKNkGnZOopKBGj6V3U9RQXOPpSqDjRitx9Ts/brXFIyZbwgRsSsPU+GEni0/Cg3MwlI0ZEb9LrzrRNqWLBn/lOYsK7QRPWe0r3P2fdYPbV99BFS7Zb+bo0nbTxSjLRQKhUJhgThvjNbzIlNECSuy4PUouYUnnUaStpbsslKPSmeE2gK99IBRSjS1EXpSqbKPTBpU21hUDi7zEp5aH882M5XcIrPnTGFrayv1TI5StWXJIJTlRGW7MvuuIgqaB8benfQg1b3r2ZTUns69qX3zxqC22KikoG2He1b3yJy9qnOtxQQso9U9GiW692yqlpll+6jrutE82vsz86jn+YrIvjqVvAWImVfWD9WCaEpOPc5rL3ouZP4yEcvn93Yeo7mItIv2c9232leP4U5FRGT3k12/8jouFAqFQuECx1IZrfU69tKDTbFRz6YUlV6aw2zVC5QsQfvm2XM0jaJKnJntWT1Jo1J49v9I6vLsK2rDUqkwGouHyCaXSYmRDXjK6zjz5NzY2EgZuLbNteT6ZOkNVTsRpdGzdtHIo1uZpeedreB4aEu1/dFCFLq2mW2OUE/LyJ5oP9P7R9v3/AmUoUX2Vut1rP4QyrY9trXXQt+MpQV2GKCncZoT5aBjnaMdis7V0oeRTdNrX/eSd04U4RFpKTxGG6WYzDx6pyIVspSvOo45axzdA14JTi8NbjHaQqFQKBQucCw1jnZ1dXUk6VtpQlmCslCVer3PolJq6j1pz43sep7tLiptpww3i03Uc5W1eFIiEXk9W0zZtiOWYq8XSXmZt/hcG413zF68/7xzVKMRrb/XDhEVYFd7pW1/KvbSY7T8jHski4XksWRivJ72ybPRZusc9TmKwY40Qx6DIqI42qygudpxvYLfWRL8CHqPZSw+isG2mNJGRTHZ9v+pLFLePiDUdj2H+UUarTle/DoXnpd7dO3II98i8iCeU45P92ymGdDnc6bN208Uoy0UCoVCYYGoH9pCoVAoFBaIpTpDMR0akKstVF2lKl1PZajtRAnOvdAgPVeN6F5YiqoB56h/tbZnpJ71HEy0rTkB4zrmyKnM60ekxvLUwVFow5wkF0SmBqQzS2RayMacJX3XerS6l9RZzlOT6XVV9WXP0XnQ/aDmB9s+z9E+E959EKXCIzwnL71OlBjDU99GoU1RmI/tb5SwQtfCth+9V9BsBfgOMurgE6UO9Z4DkblE19Tb+5GjYXZf6nxpYhYv6YQ6XU09X+3/uq+iWuFe/zV9ps7ZnEQ2mflJ29X2NKTL/m8dIcsZqlAoFAqFCxxLT1gxJ4lBVLYqk7zmOGvo9QgvqbZ97wVJR2n6vJCRKAQoMtp7fYxCNDyXeXVciEJBPGcPDQyPwlWyUJ0oDZ3nZj8HKysrOHTo0IhheuE2yrR0H2SJSzQUSCXlLJEIwT4qSwbiNHrcO+os5/VRk0xoAgbLInSsUYiQBc/XMWs6O2W+tr2I2XjXnUp76jFr3YuHDh1KnfcOHDiwfW3VPNn/la3tJfFBFH7jXU/3ojpleoUktB19JnqsTp8NOp7oOevNRZS+09NoqHYqer56jrCKzNlQxxwVB7GOqV4YZjHaQqFQKBQucCw9YQUxJ1VZZEPL7HmRK7kyAHvtKN2g52avDJbfqbt4FsivUAksS2/ohdd4fbfnTpXh8/qlUmiWWlDHEdl3s/Rw2T5ore1KNeddW6VZldaz4upTiQq85OReiUHvXNsP7pEohEHbtuOJjiEL1kLwwA5LjGzlXrgckaXns7DrxjnWtVRboGWnURpUZege27KagMiG11pfUIDnexon3h86H8pks/R/UzZarpMHtUt7Nk6mhdU9pOFrdp6iggMRc84SAWXsNzonS+KjiNKQzinsED131B5r+2Cf18VoC4VCoVC4wLHUhBVra2sjluqVoIu8/9ROBYyZReRRq4kmgB2pRtmHsh8v6YDaTFRSzrwaI086j71E0qC2ZfsYpRSM7NmezTtjCNE5xJTdyn6WBeUreD6le3t85B2riSssMyMjUjtUtF5ZutBI2+J5HWvpw4wt6PorS1GpPUsTqalFszR66mk9h+FGGoGoUAAwts1GhT0yDdEUo7Vp9o4cOQIAOHny5GjMe0mjOOUNq/eyZVWq9dLkD6qdAcbzrj4UmZYvsqtGxQ2y8Sg8fwItKxk9q7wiHVOJa7x7kFDtIrUI9nnI72yymGK0hUKhUChc4Fg6o1VmaSWiyIMu8mKzx0RsjYiScdtj9xKzFXkXemkbp0rqZV7VUVo7ta94zDBiwVks3FxG633m9cWOIfPanIqjXV1dHUn+1oaldi1t12tf03JqmsMMkR0v87TW+VemyXm04zp8+PCu9rQoh6dBIXStprxObTs6FzxXYyOzFKARS7UaI/5P5spj+MpzrY1T91uWGJ4x2NZDWdvjtSNP2yyuVVlalJrV0+boXKst29OGEKrp8BhhxNQjJuhpqdTuqhpEe09HPg1R/LsX8z0nJlrHpzZhZa1Wm8B1rzjaQqFQKBQ+iLBURru+vj6y/dgYJ0IlfGV+WXaniMFknq8qTSmz1nHYV/1c+2XbibIhqXeod25kq/U8VyMmE43Bi2uMWKrH+qcYrTf3GguZMVrG0Xq2We23Mj2VvC0DY3tRObHIV8BCk5RHUraF2tmy9WB/I/tWlkvA3owAACAASURBVAlrym9BbcbeWNl/9f61pe70eupLofZWe64yWD2H4zt69Oj2OVwv2lszb9aVlRUcOXJk5KnMc71rKdP3bKZT93+WGSrSOOn4vJhYQvedt/7RfRgxOO+5qmvpxbArogxQUa4Diyl26WmIVJugntl2f2u+g/I6LhQKhULhgwBLY7QrKys4ePBgWM4OGDM7QiUgrwh01G4mear9MyqInPVF28rKOkXxpRFr9K6jtuA5+UKnPJYzRLZHzwtUJeg55xCbm5shcyQrmRNjp/l0I3uxhcZy6rkeK1FvX9p+omw8wHhPqN3LKxavczgnnpmI7Pk6j1bij/a12uw025P9jq/KZPnexvoqo9Vz1EPb9sna4KK9rM8dwvaBLIdj0vzBHqLyeIRqDbJ1irRVXlYxzz5tP/f6EPU58tkAYvap7N57zkXHattZX+ewcZ1TZfl8tTH4eq8Voy0UCoVC4YMA9UNbKBQKhcICsXRnKFX1WqO6OkZFTkpeCrdIdTzHAD8VoO45p6gaRlVdXvuRc0CmNolc47M+R8UDImeYzJFKwxOy8KUpNZqFOnFlqda4d7JQFm03S0au0LR/mmTAC2XQoHh1SvFU1Gr60OtoGk/7/1RBAM8ZRtcjKv/oOalpG6o69lSH6tzHV94b6uhk21N1M99reJM3JzZ8R8GEFeogc+zYse1jmLxCHX400Ya3plPPjjnJ9z1nQW07cq7T5DrePEXq6zlhfpFDoHev6970yktGiEx8XmpJIgqTUtWxV1TAnluq40KhUCgULnAsldEePHhwlFDAShtRKaZM4ogKR0fB514QuLLdqGCxd45XPBvYLXkqC46SKniSpzpXKevywo2iPur3WRlAIgrA95JPzA19sn2y85c5jNj59FijJrOISo95oVPq4BMlsvDmyQvFsG3bfuv11HEqc6CKQoGyEKQpzUKWcjBydtGQIC+cSO8jdXSy94o6r0X3nldikety8ODBNMHK2traSFtgWTVZsybPYD+VDduxRo6MkSOaRfSc8+6j6NgsfaeGGCmzzO4NfXZE1/EcqCLtYlYGNMJU6JY9RrVMynCBuGTpolGMtlAoFAqFBeK8pWD0yoxpyS9liVm6PmVImsA8KwmmyQ40YYZnj5wKe8lCWSIWkiX5J6K0cJ7EHDFmlb49G62OXZmsx9S0zyrBZmzy7Nmzk6EqmjQhK3lIZDZ6lbw1vCwK2bHt6r6aw/zVVq/7zuu/njO1hyyi9fHe6/5SDZH21TtXE1OozdaG1mj6Q93XHgvaSxEAatLIWtkHG/JBe62me8ySMhCR1iBKfmGPiQpTzAllIbLnmobB6Rzre+8aUUIUr0hHlPBFn9ceS43Gl2lQNCyKx3Cts/Aeu4fKRlsoFAqFwgWOpRZ+pwcg4JePouSj5evUizbzjosKSXtlxNRLUu16WbJt9ZCOPDztZ9ExU6nRvHFqH72SU1HB98gm5PVt6tVrl33JgukJaw+LpNqu63al7fPsKspC1M7qpWCMvIy1XFnG3jR1oHofW6YReU0rw7HMVtnBuUjfkXbEzknE8tkPTT7hzad6Get1vHMiHwfVENjP7H2TJaw4fPjwaE29FIwPPPAAAN9bFcjTG0brkyW9iTziveeB3pfZePU6mjgiepZkNtooWiR7Fus4Int/dq566Hv+MmSskW3WrrWneSxGWygUCoXCBY6lMlpgnD7NSjma1i5KyWihNgR9n0nTRPSdF8MV2SGyJOKRTSmyLXlSW+TROydOVJF5BavkrOPx+jwVa+fFoaqXaWaf3drawunTp7f7RMnVeqiqV6muS2bXV62Hei6rndJ+F9mwlFnb8c/xyiaUwUTp+jK7VxS/7cWycy74Hdkpz9UUiXYNNB5ZGa6XttHzeAXGRRrs3tESfltbW5Me6zyf59KOZ/+PbHtejHJkU46YbmbLjAqgeHZpPWYv92WUPtFLhxvtEdV4ZIx9qj8e+1boc8i7n3jfKpPlelob7V7Kc+4nitEWCoVCobBALNXreGVlZeR1bO1RGgsZFT33JK8pW63a4+z/kXehF6+pklBUxsyeo5JklplJEbEflXo9e0fkXZxJ4ZGkPEdy1jYy9u1pGqZYre4HK03bmErbrtrmMmZL5qXZvsig7V6N1kwLBdi9pdoC9TKd60Vr+5ztg8j7M2O06tug/guRR7H9X23butYZu1ObrOfLQcZi1ynzWrWJ49muLfyue0fX24uvV3vnnD0fjVmjAjwNkDcu++rtxyjWNmrD9lXP1WeF9yzW52j03PM0BFHfVBto94GyXWW0WhLPO6frusnsXvuBYrSFQqFQKCwQ9UNbKBQKhcICsfSEFYQ6PlloCBBB1USWElGPVTWWl8ovcuLJ0htGrvKeE8yU+ncvtV6jWpmeQ01UzGBOkou9JDmI2shUU1GIQYTW2mg/eMn3qTZSdaUXqhU5CeneoZqU4R8WUaJ+r2BENIdqovDMG6pKm3Kos+dEhTbUrGI/iwoD6PdegQBVuep1vXA59tXWmPVe7f/2nstUxwcOHBiZfOzeUQcpvupY56RgVGT1Wono+ZM5RUYqds9ZSNuPVNdW9avrEq2pbTsKH9Q2PWeoyMyl770CAeqwqakYvTmxRToqvKdQKBQKhQscS09YMSf9HyUrdSjxzomSPkwl4QfGZaSicm+eZKmSkUqW3jlRX6MkEd51IunLkyyjYzNHisiZIwuTIaaC6e3nnmScsZKVlZXt/eAln4jCxsjEMgcT7S/b9RgswfbIfiIHPm8fEFE6Ty+1ZLR3tE17PS2tpukVNZ0eMA7RUWarn1tGG4WTRAkTbN84n2QhymS9NKhzQE2a7hmvNKAyWu6dLLnOFHuLkjV4bWRJKfRZFIW9eGGFUR8iRzRgWhvhseVoT2obmeNWFE7ohU1yPZS56rPAsuAs+dEiUYy2UCgUCoUFYqmM1iZwVqkDGJel4jHKSrOE9gq1s3ihQRr2EqVXtNebYqOZXZfIUqApIlt0Zl+IQkAUc9zbta/enEz1ybPNZbZe254theb1N2K0lHaZyN5L3xjZ2XXPWNua9tsGxdvrWBYUsRL1SbBtRZK97j9vXdRmymM1IbwXdhUxWS15Z+dEw3l0Xj32F917UciGxdyya1aTxnZsv5UZKav2SiF66TI9eGOO/BLm2AqnfCW860TPnygJBhCHnuk94p0fhVxO2XCBaUbraSJsqJY9RhPcWFhtS9loC4VCoVC4wLH0hBXbF5Y0d/Yz9RqzdiB7HBB7/akU55V10gQZmrZvDuuKJC/LZKZKzWVs+KEEU0cS5JzxqD1HkytkhZIjb20vwb6Xdi6z7dqkA7pu9n/uGS1s4DGPKCUhoQkWPCk+0jRYr0Y7RouI2XrjUvuT2m69NHr6nc6vd06UbEIZrpdOUc/x2td+aGpEnSNNFK/XBGJPfF7LJsrx+sDzNdGB2vi8dLGE7p2I1en/9tgosYT9zvNPiDDXCzjzBt9LtIEiY676ecRcdZ97z9XoXC9Sg9/R/p49d/YTxWgLhUKhUFgglspoDx48mHryqQSsyaLV1gSMGVbkpenFDEZQSSiLa53DFqMYuCie1bMF6fUj6dR+F0nOEbPxjp1KMWehNp9Moo1sP1nbPJYaDs/7nK9aKIDM6OTJk5P9j+JNPdui7oPIG91C2VBme472W7TvPXtrNB7vnoiYbFT6zoPa8XTfZVEDuoe8mHplgJmWheeyfe8cehnzO2WyfP7Y+yTSoCnzzNINRl7a+r39bi/3tu6J6JnlpcbU9JxREQ0vnWZ0L0dRHcD4WTvlzwDEMcS6Z7zfCy0osmgUoy0UCoVCYYE4b4XfvZiqSOpUBjAnc04Uz+hJbZr5RT0KPSZDRGXzPHuHSp1RFiHPjqzXU4aZFRhXKVvHac9ViTmSgj3JWaV8jePM4pGnbLT2XK8PWjxApVuPNdATWfsUxRLbdeGeiez7hMdSo33gnaMMItJ+eN6gWhBAi7VrOTt7jjJZLZenMe8WUx6rdg2iwiFqr/a8aef6HHh71fMGV02JMlpPG6ZMTBm/3oO2v6qtUmbpxcSqr0m07+z5c/e17WNUDi8qCzkHuh+88UXaPk+zEfm4RG3Zz+zzomy0hUKhUChc4Kgf2kKhUCgUFojzVlTAc71WVa06lHjOFISqFiK1aRY4riqUOc5Xijnu/FPwjlc1U5ZAImpnTj+iFGU65546Jgrj8FTLmXrH69Pm5maqKowSlquqyAava5pGnVMdl5cMgupGPcdbF35GlaQ66nkqRXUeJCKVq1XlqmmEfWWbmnzC+0yLCWSOfLpXojA2LzGLqqA5R95aR/stwtra2iic0DNFqHONFjiwcx6p/3VePNV6tFcIr49R+kRVx9vjolSVaqLy9t2U89OcAhGR+pfwwm50baPnuneOp5LW99GeXDSK0RYKhUKhsEAsndFmyd1VsswSStt2gTjJdoZIGlQW7CVaiCRMbdt+NyWBe5LlVJiAN586rmguMkeKKIxAv7fXjtJSZmErc9B1HTY2NkIpHhjPvzrUeePQtIlkfnPSXWp4QJTUwnNsihwC2ZZl3VHYi86559CijjPKbPm9DXliIQUeo+EPUbiZ/m/7EjkZan/tOPXes+eotsJqOxR87uj8eQ6AUXIE75miaxj1ja92HvU71WhERQC8Y7NzsiQdXvteqM6Us6c9R9tXjeQcRhvde14IXKRli0I8vXa6rntISYH2imK0hUKhUCgsEEsN7wFiV3PvGJXmPWlnyi18qrycPSaSir2QIM8mYt97IToZI7Pfe7YZHbt+7oX3RNdRCTOT6ObYwaJEHNGrd+wcZCnjojSDuoe80BJlg5FGwJP4I7ZGZmilbmXZmiZSy9l5/Vdo3zw7m75q8glro9VCClNp9Cxr0nVWdu8xNJ1j1Uxp4gxgbOM+cODA5PNEbX8ZE4sSIHj+GZEmS5OcZD4UOtbMByFL06jn6tpFWhBvTiLNnbaZhRXpszd6b89RLY8++72QPu1DZn9VH46y0RYKhUKh8EGAtleP2Id8odZuB/APS7lY4ULFY7uue7h+WHunMAO1dwoPFe7e2U8s7Ye2UCgUCoV/jijVcaFQKBQKC0T90BYKhUKhsEDUD22hUCgUCgtE/dAWCoVCobBALC2Odn19vTty5EhYdg2Isx9lsWhzYjajc6O25mCq/UU5mUVzs9/Xi0qRZeum66fxe1k8cmsNGxsb2NzcHC3CJZdc0l111VWjsXpjjnKzaoxsNqasXN/UZ3Piw6eQreW5rPN+7pGHUlrMuzejvLj63vZd8/Bubm7ixIkTOHny5KhTq6ur3YEDB0axsHPybmfZ3rIMSeeKhxJbvt+Y2tfnei881P5kbWo+AC8u2Stkf/r0aWxsbCy0Vt7SfmiPHDmCZzzjGdtp77Tepf1MU+HxHC+lFm+gKAF4lgR9Cl7aL21Pr5MFmxN6I3tpwfTcKGDd+xGL0jRGyH40NWGAvgI7iQ/uv/9+AONE9BdffDGA3YkR7rnnHgDAvffeu/3ZHXfc4fbvyiuvxPXXX7+9D/Rmsddke3zP9IJMIGHP0XaiWr9z0r9NpYPzPouSkHgCSZasw7739rfumSwV35waudH1pu4tTWQA7Nyv0evx48dHbZ84cQIAcPvttwPo993LX/5y95rr6+u45ppr8KhHPWpXe8eOHds+5rLLLgMAHD58eNfYNA2llwxEk39EwptXi1nXe86zStdF94f3QxStf1Y0Y6owhJe8I0qZq6+aUAeIn1FzkoawnSNHjuy6DvcJ7337GZ81d911F97+9re7195PlOq4UCgUCoUFYqkpGFtrYaJxYKxOJDJpRjGlDrRSVKTunaOOiVTgHvuJ+qjHeGxC+5KVGiP0O203ShDuIWJ1nuQcqW6sREnYJPF8P6Uyzdg9mYXuoUzS1/JdU2W+vBJdETvNVPqR2jErlhCly4v6nB1DPBRVru7dOSn/slKOmjpT54us0jJQTSE6pU48cuRIysioDYvurUxbNTVWb+4jrUGkpbD/R2lOtW0LZZDRfM1ZS017aM+J+hal0rX3k85flJrTO0fnjetJhmvvJ90zKysr+6rijlCMtlAoFAqFBWLpjFYTaHt2D7KdSML0dPuRZJzZPSKJKJLm7P+RAwVfKVV57UYOOpmDwZTEPMc2rAzHKzCtx0bORRnr1j6dOnUKwO6ydLqmZ86cCVl61/WF37WflhWrXTgqzJ3ZFCOW4CUvj5KSZ04yut4R+81s5lOOOh6jnWKyHlPXce6F0eq5GQuLykBq6UCvoPkcRttaw/r6+siHg2wH2FlfHsN9pSzOK1+pWrapZPy2v1MJ7TNfjWhN91p+cqqPajOfU/oysslm52phlzn3ZmSv5rm0udvnBEtQcq3X19eL0RYKhUKhcKGjfmgLhUKhUFgglqY6bq2vCUn1oVd7lVBDOOGpFlVVqOoybd+2GTksaBtezc2olmvm9j7lZDXHKUnrqmYONNqeqoG9mro8h+oWvmo4Q+aaH4UIeSoa7YuH1tr2/rHXtqE6VDFG18pqU06ptjwHmkh1HDkv2c84p5HZw5uLSGWs95Gn/tM9qapc7mX7nc5BpMrzrpc5P+kYolAj3TtW/ad9zOrRUnXMMR49ehTAbtWx1rdV1bT3rOIasV96L2UhW4op04v9PwqzylSrU88db2+pOl2fd979NBUClKm3tVbtlOOW1y7B9vlbY01WVB1fdNFFAPrQsFIdFwqFQqFwgWOpjPbAgQOzKtqrNKihIJ6Epkwv+j5D5Lxh21THGErcWfvqABYlqPCYQNSXKIGFbSdiB5pZx5OcOedkivzcY7TarjqKsA2bsEL7OuXQYqVSb+zeWCw0tMCC/YwC7bNsQhEj8yRy1dRokgOP9ejeIaLkF7aPURiMjstjtNH4lHF4fY6YOuHtt6mQs8wRaXV1NWW0Bw8eHDEZJq4Adlgbr6nr7WldlMFyj0fhi5nTWOQM5znSRfPvjT96RkytLTAOqYycoTwHQW9f2f542hftk96D3nOOn9nkOcDOnHBdqcUAdhLY8HmytrZWjLZQKBQKhQsdS2O0KysrOHToUCrdRmEvmd1L21PX/Cgcx56rtjpeJ0v3xT5SUlZ4rNRL0uGNwUqC7INKdHPysCrTVLurlyAkktCVFXvSvdpJM/thZEf2YMPCon5HYVD6vad5iPaISvF2XSJWkDHrKORI970da+TLEKXts32k1K6MVsfj7bcoTET7atcg8pcg5qw1wXY9Gy2ZimoiPNAvhAkvmG6RzJbHAOPnAe9tT7OmzyZqeqIxZzZa3UuqPQLGeXujUCp7Hd6Pkc9B5l+imjtluFnIWxQSlPnlqJ1c7ysv7ar6Y0Q+FwzzAXZs8/xsL+FQ54JitIVCoVAoLBBLt9FGUjwQJ3mntOOxBZWwVIJU6ddKSlFw/hxMJR3woF6gHKemALTJLtQWrNfJPFQj+xeR2dci1uVB140pF1WC9aTfLKWjjknH7DFaHUfE7rVtYJyKj+2r96k9JmIj3n6YSiDhsZ+p1IuRp6z9PyqwoYzDHjM1f5pMHxhrNtRemdnHlQ3xvRa1sLD3U7R/mILxkksuAYDtV6uJUtusfp7ZWZXtRvbXTMOln3PerE8D51sLHei5GQuOrs/1t88dtbdSO6JeyJ6GiOdokn/d/5l9N0pOY8et/jEcu/bZjp9Mlq+HDh1aCqstRlsoFAqFwgKx1BSMq6urofQIjL1TIxZnpXZKppE9KmNO2gc9dw5bJFRqs5Jl1BeV3jzJMoovU/Zlod6tGvPHeWVqRMug2G7kuZzZ5rQ9ls3zGIHacU6fPj2L1dp2bB+UUfA9+0SWbRmY2vOjQgFeXKBK9OppqTYn215k71a7pP1/yivX2wc6X+oV7tnwIg913pN85dp686n3rWoMvHhk3r/0ELVFBPQ6eq9lcbSrq6u4+OKLcemllwLYKdlo+6D3nc7BnFj1SNOQsTdCz1E/CdsXLf+oe8i2rfdCVNpR18D7TuNq9b2FPj81btxjmrp39Pnmra9qbDRHA9u3Xsecv7vuugtAMdpCoVAoFD4osDRG23XdLgmNEoqVVCkl87iIcVr7Cu0AlGaUPapUPSdhe+QtZz+zSantq7btIZIWvXKA2hdl9R7bIuvQxOxqB/Mk9ciLluPxYmGn7CtklZlUmrGSrutw9uzZkcRvmR/7xTGxADwlVy0AD4y9sNW2qLBrTCmZ3qu0+fAY7lHPZhp5EHMMXvm/yHauGg/bNq8XMQse67FSZU733XcfgJ17lPPq2Wi1ffaRc2LZqs6fesRznu24VHvBzGEeVlZWcOzYsW0myz7YZ4jeQ1qgwosDjwqC6Lp4nraRzZz94PzYuWUf+Jxj/6O+Ajvrr5qbyAPfzok+X7g+vD7bsvdE5H+j9nyPpXq/B/Y6WcSJPpNVQ2Tnnjb622+/ffuciqMtFAqFQuECR/3QFgqFQqGwQCxVdWwdhKhO5CuwozYglde0aVQjeYHVhNavjAoU2O+0LV7fS0qtajB1evFqZFLtoqFIPDdylrLHELyu9t0ep+osTfkXucXbdjX4O0vEoE4jTG/HNdAQJfuZrR15zz33jNpmuxsbG9t9oPrX7h2qNqnqvO222wCMVcf2HH5GlSDb5auOy+4DrimdbHSP8r1Vk9LMoXtGVeFeeI+qwXT+VA3u9V8datSJzc7J3XffDWBn/k6cOAFgR3XMObN7R9Wk6vDGObNzQlUe5+uKK67Y1Zan5lSHsMyZhc5QbJ8qZK9AgI6DzxKvJi7nWZ2SOB989RzAVB2r5gbOrS18oKp1nVten/2x44qSueizxdvfau7Q0ERPna4hT+yT7VsEVeNHZjb7v6rt2Xc1t9nvuAczk9V+ohhtoVAoFAoLxFIZrReOYUFpUyU+fq7MEIhLL1EKVecKe5w6EKiRnhKmTeEVsVANDfDCl5RdK/P0GK2yUHWRJzznK2U56sikjhvAOBG4agLUsQbYYTlkRuwrmS3HYyVadZxYX18PmUnXdbv6zvUiiwWAm2++GcCYgbFPGvAPjBmsMmUdl2UAlIh5HY6Vr0z1x70LjB17NCTNk/h1vynD08QOdl3Ybw3n4Tj53moS+D+dRe64445dn6tzlt13yrJ0P3tJQ3TMUXk8u0c17WnXdWGimLW1NVx++eXb62BZIqFhaJFmwz6/OB9k/jxW9x/Xi8wd2HmekGWrgxPXnNoS2+/ICUuTq3DsQFzwJHoOAeMEGOooyFe7fqql5LzyPqWDImHXkX21iSTsuDXRhO0/j9F0tXp/WfD+PXz4cIX3FAqFQqFwoWOpCStsGj1KH1bS0zALfkfJzpPQIltlVFbOSm2UVCmd8lxKv17SAWWOyoopKVmpPUrPRqhdwh6nkiqlNJ0ry9Q4RvaBkqSmbfPsXzrHul5eEQX2iVI9r8f3Gkhu+x+VgbNgeA/ngu3TDgsA73//+3ddk/MRJRKw11abktqws3AETTKhNlU756o5UeldGZXto5Zyi8qV2bXU/cvxkWnwOh4r4XcamhGVerTXU98GZWp2D/F+4WdsT9m4ZSUPf/jDAewO2YvC6VZXV3H8+PGRzdELaeK8kI3q2C0j+8AHPrDrWGVtZLpcc6sNUVu92g35PbUidh6UxfEZqSzOfqZaAi/ZPuAnkOA4lMFzvFarxH2kc8B7ke+9Zz8/I8vnOlFDxN8AW96QY9XSh5xH7g8v5InXPn78eDHaQqFQKBQudCy9TB6lC0ohVpqgfUMlFGWpVnqNbBVRujvPe1ElS0rXWUk1hXoZeokdCLU/0Xan6fvseCKPPi/JgkronFdNiODZvHWuNXCdc+N5/6k0qing7DnsNyXzruvShBUbGxvbLIfStbUtKltXtuol7NfEAapxUFujl0ZPNRpqz/W8WyMWr4nbvf7r9ZXJeX3kuep5rQligHFSi6gMpTJQex2+auIZL12fakrUruZ50/J+sZ64kbaIZfJU02DnXr2LI2/ZO++8c/sc2rD5mbZBeOkU2VdNZ6maNbu/1VOYY3/0ox8NYIf92jnmXGrf1AfF86on1NOf4yY7Zd+BHXbP71QrQabLPlp2qvZVrj/niNor6+XOOdD7ihpJTWLkHfuwhz0sLbO4XyhGWygUCoXCArFURnv48OGR96SN4VO9vNp41AsQGCfxVyamzM9K4Or9yeuSmXkpGNXmq/ZXSr9W8oq836I4QyuVst/qnamMxjJaTab9yEc+EsCOREm7SpaCj33W0lN8b+1sardVj0Er9Wr/7blZsfFTp05tS8wchx2zzi37yWPU+xgYlxzTuFNlYtampTGjyta4Vy3DVMag1/UKmUfFuz3GDOyeB42TVRu6V1SCa8VzuYbqI6BxncDYszsqk2f7zHa4V71yf3odtm9TTGblKVdXV0d70iuXGRXqIGvl/rN9YL/ZLudYvZvtM0vvO41rJrwcAwr1YLZ7h7ZKTfGpc+2xcX1uclxZAQyN8dW0jfr+YQ972Pa5eu9palueY9cmKkKjz3V736mPw7Fjx0Kv7P1EMdpCoVAoFBaIpRZ+P3jw4LaEQlZlGQ0lIko+9AxTu5G1f6oURSmJUgqP5fWsp5u2cfnll+96VYkTGLMz7RPZgpX0rrrqql1jpbRLTzq1OVlJluC8KTPThOF27LRVXHnllQCAW265BcCOncWzndEWot6glOo5j3YNOKdTJbS8dbMl1TIb7enTp0c2JjtmzZilxbO9TEbKjMj81Tar62T7HzFptcMBO2unmgu179vrqCeqZh5TG63HMHld2s6srdG2Zdu/9tprd/VJWZhn/9JsXNwHGs/Nfth2taC4skurvVCt0srKSrh3WmtYW1vbPpb7xN6fXA8tpaiexPbeZ781VlzZEe8N653LvqqNnOvEPeOVyyR4LO9l9c4FxvZItckqA/QKzavWJSocYa+juQT0/nrEIx4BYDfrv/XWW3fNsDJQHwAAIABJREFUifrWeD4B0ZxrTK713iasN3hlhioUCoVC4QLH0svkUdqglGglFM0Xq3ZClaaAHano8Y9/PIAd9kjpmq9eiT1ehzFxvN7jHvc4ADtZcShtAWO7hmZK4ude1hP15NT8nV5RdZUcvew6dny2fS2mrVIhma6NR+UakHU86UlPArATu3jjjTfuGqcdu/ZF2YqV0NWzs7UWxkK21nDgwIGRhOzZXijpq7ek5jW2oBbkQz/0Q3ed+0//9E8AdvLvWhutSvyEFrW2Y1Lbstrx1EcBiLMHqRTuaXs0ixOvz7nndax9U+M0eS73EPuunp22/5wn3kfcX7zPyHjt/2oH597RvWv/t17jU4xWvem9uFbGYpN9qmet1TSpj4HaPdXD27J4zhP3jmo4NP7dnsP51ueAl4858jLWmGuvLCn3kWZ7I7z7STUNune4H724dM7BYx7zmF3n8NmrmhSvHR2P99zhHPCYo0ePVhxtoVAoFAoXOuqHtlAoFAqFBWKpquOzZ8+O0o9ZQzbVBzxGy7hRFWFVeDT+U71HwzdVHVQ9UJ1h1TGamlBT5HnJGTSMR9W9tuwboSoTqjPVkcYLGGcfeV11oNAQIXssoY4FVGPxetZRg+1ouBRV8gxxYBJ/264Nt7DXpRrIqgzVjX9rayt1SlhbWxupNe0cc42optRkA56DGdWfVFddffXVAID3ve99u47TlIXAWJXFdafzEp1UsrAOzoGqua06WhOtaBiEqgUtNAWdOhtq6kzbRy11qI5C7LNVy2nKPZomeG++4x3vALD7fuL+1sQcWoDDrrU6hmWq45WVFRw9enTbKckrtal7hXtIzVt2rOpIpEn/+eqFthFq4uEce2knNY2pPm+4/tbswP/VlKOFSTQFKLDzTNBnh17X7m9NQ6qhT2oWsGugZQzVaZVrY38veKy+qonJPg/ZN44vc8LcTxSjLRQKhUJhgVhqwoqjR49uS1me9K4B1fxOA+xt+AMlEzquqORFaY3HWemdx6q0q4mzPQcDlWgjByRgRxpTJwEN5yFbsE4yWuKO16WkzPFZxqZhNZTstGAAmZuVSul6T0cWMls6hjE0xErqKiFrAn9lusC4RN+UQ0trbZRY384T94iGh2gIgGV+1H5wHSyzt+dqOAwwLgVIZzF1VvKSq2hCfnVSsfuN8+8lwwfGDMMrMM65INtWBm2vR2ah76nJINvjGljWxfY4F9yTGm6hyextH3XPsM92T6sTzNra2iQrYTt89Zz5eG0NB+EcWG0Y72mey7FqIht1kgTGCUo0fNHTTug5fL5EiR1sexrqpslnNHUhsLPOGjbHtaMm0d7TUWF5dbbiWtlnsYY8Ebw+181LyMG+aDlVb054PvuUlVjcTxSjLRQKhUJhgVh6wgpKD5RGbGhJlJBAk7BbWx+/0xJNKpWqhGzbJyvhdWlf0wBy2wdlLHxPaSpjJWr3UNudV0xbQ1/0c6+gvX7Hc8g4vOQTmgjhpptuArAz52R39hwNadA+8ntrd+E6cT3Onj0bspKtra1doWFewXqCkj6vpUkitKyi7YvajWlb9LQvPJbtsk9qc7TgfGiCErWZeoUBVHOiZfLUpmnbI/OnxM8+qnRv26FWR9N5kj14KQHJPjj33DOakMEyDE18oSFC7Lu9b7Xc3ubmZprs5OzZs6N7y7Ip7mX2O0ohavutxUPUj0QLOti9qnsjSudp10WfGWTZyubsPGhSf/ZVGbNXYo/tcw6YxIfz5t17LIKgCTdsOUM7Lq/sJM+1KRJtn+0zhH1jX/nM1+Icdu9oGFSmSdtPFKMtFAqFQmGBWLrXserDvdJZasuk9ETJxKbRI7SIO6GJpa1dj1KSsh2VUi17U1upenJS8rcSv7IOTYGmNiJ7rnqbqkedx+6UlbI9fq6Sux1fVLhc7UdeELiWKlRGa5OIE1aKnmIlanO052pCBQ2w5+eWdaukHxW7t7Yr2yf7qqxNbXjA2PtTmSz3t9VORFoQtbfrnrLtaKJ+1UDYPmoiBGU7nAv93psb3ot6z1v/BfW8V5avWgA7drvPMztba21kK7V7XtMzcn7sNXkdPYd7UZ8dWvrSSyGpiRLURm+1E/qs4j1Mnwq+97QT+tzR5yvX1vZRPfzVRsp97iWdoKZMtSx6/3rpFHWPqne9vZ5qeQhNEGTXzUslWTbaQqFQKBQucCyN0W5tbeGBBx7YlvTUPgnsLgIOjL3iKFV5DEPtuZoSjbAStEpPKvV68ZNaAkzT5mkcKjBmelHMoKYRBMZ2DmXBmjjc9kFjlXWOtIyWbV+T4iv7tcxJJVaVnD3Jk9e2Ev9cRquSMTDeOxqrqjHS9jMttah2dy9lnJag417h/HjF7rVcomoHNBWn/V9TB2q5L08qVwat9lAtIWjBdvld1GevmIXaHJWN2HM0Dpj3rXoJZ3HiWZk8Lfyu/gu2P7p3lBHZvaOJ+vV+zKAaLJ0XTdUKjAtOUDtERmt9HQjNQ2A9/G1fPX8CHkP7J7Ufqkmx68I+8BzuHU1Xq/Z4ez3Op6c5s2OxfYi893l91XICcSrbRaEYbaFQKBQKC8TSGC2hpcG8AsxqH1SbmbXNqW6fUo16cCq7slC7TZQFx7bDflPCJMumfcKzeynTI1SitHYWlSC1PBuPtZKezpNmgFGPwczLOYqN8yRBHqvr5rEu1Sasrq5OxtEqI7PSrtqW1VauLM7+r+xUtQee/VM1C7q/lJnZz+gdSclfWZGFeh178+b12faJtjNl9x4L5D2gRQr03tB9af/XbGUax+3dg9qe7l0vO5vVOGTaEBY0sePy7K3qk6FravugbFSZV1Qq0l5bn3e61l7BBmpuuIfIbL39rWumGhWNZ/UYpj471O7vFQrhPleNnZbGtGug6x7tFS+ngZZe1WI0FuoBXTbaQqFQKBQ+CFA/tIVCoVAoLBBLVR1vbW2NQnasyodUP3Iw8JxqooB+dSjw6oNqLUdVm3kJ+1VVx4BxNcBnqffUOSRSKds+qapYE4FbhxZ+FtXMVQcrC50/z9lK3+tcqypcVXEWVpUXqXCoNs76oKpVTWrgOd/Z9oGd/afOMF7SAU3pOCfRAj+L6gPTacOq43SNVG0a7Sl7rDqKUe2oSQGAcREGVZ9HoSn2GN0PuiZ2fKrGJDiPnopanXmmEg5sbGxs70EtxmHb0XFo2Iu9jpod9Jmhc2H3djSXHKu+2mPodMnnDueJ62afO1QJa6pNffaqU5Hto6aWzRDd/9kzWI/Rvun+9tTbUdpLLwQpUtsvGsVoC4VCoVBYIJbuDOWFPUTfabiAJzFFDCySrjxnGGVtaoj3rqcpwTRI20u27Unntk3CXk/DKzQdpRf+oI5myhSts5UiChfxQjMInSdNQuCxfMWZM2dSpwTvuvY6kQOYluayDkcaSqAFI7z0ltqfKKxMS7nZ/7X0mw0fs323fYiSDcyR0JV9K1ux+02LWGi4krJ9j01GiUX43ls3nRMvfEjP8ZiRgs5QGq7mOSkROiYthWj7oAkQNGzE2/O6lp42QqGaEj539Hljr6fhNURUwMHrozJJ3Xde4g/CC4uz1/XWT5+9+tyxfY32CJ9/nlOZd+ycfXSuKEZbKBQKhcICsXRGq67mVsKgZEF7g0rgehwwZm2a9kvPte+jlGAaSmNZAiVLLUSgrM0LiFf7g7ITZbr22lpqSoutW6mNEl2UIEOlUi/UIUoPp9e336m7PZM4eOn6VFuRJR3g98rWrKSsCfK1ULamsrTHaimwKGWdx2g0Jaa+egxT2bCmOfRC3jR8R8N7vOQDmlRFy+R5zELL5Gmomyb18DBlc7TzqPeepj0kvDmx32VscHNzc5RuM0vpuBcfiiiBg66Htw8iOy9h54l7lPZ1LabCdfGS6+iaqR3ZS8HIY1UboeO2GiJNuanhfXpveCkYIy1cluwkKkbv+fRoEo/777+/GG2hUCgUChc6lspou67blrK0KDQwls7VPpClOVNJX5mMJxGpNKpebB7T1KTn6tnrSadeEnTvnMzDUhNVUMLUxOD2f/U2jpialR6npDvPAzeCji9jtAcOHJj0HlWbqdeeMnEtMu7ZeCLPw4xhRCX7dI09jY1eN0qNZ9vTpBlqp5xT6ovts+QZGYiXIIV7iAxXU296DDryiNbvPS9+1ZiotsXTRM0Zc9d12NzcHCUW8co8qqaB8OZY2ZT2RfvozVN0r3n3GDVoXBcyV/qGsPQhyxsCO6yN66vj41pqQXhg55lBm7Am4PC0jWyPfeIzPrKH289Vm5g9owhlslGCFO/+tiVCi9EWCoVCoXCBY6ll8jY3N0e2BU9S1ZRxGsNlz4niDBUqOQNjCU+lUPWABHakJfXK9NLCRX2M0ud56dyUIWssnCfdq/07S31m+26/m7Lv2vFxDrRMltr17HWyeExF13W74my1/J/9LIq/Y99sWjYttG2v57Xpran3nW3Dfq6sVG2zWjzctj8VP5vZ97Wv3MOMxeR6AWMNjdp3dQze/Rbdk96a8zMtlpC1qQxlSrtij9d7AYjjPrVPXkJ79djVAhWeFk7nLiomYO3lem+dOHFi1+udd94JYHcC/chPgNennVqff/YYtkcvZ+5VakW8wh4En/H67PIiM/Q5FmmoPA0R5yaK5rBrzWcV52vKN2S/UIy2UCgUCoUFYmmMluWqVNq19iHNEqMSmcZI2mNVwoxYqpV6ouLpGhNpJWZKeB77sH3zGIbGM1ICzMq/Eeo5qDGJXjYhnS+VrrMyWVlhbwWvp7GW6gHuwWoVMpvb1tZWyO5tfzXOU+03nkSc2YHs+LyMZHpMljifEj6latXUeMnrde50D6n2wtP2cB3UG53nWg9cZQFqV9b7yGPfhM6rlw1Ox54VltB27TxF521ubuLkyZPb7N3zAlYGa+239vO9+DLovvMKaug+5vPAixklc1Wb7K233goAuOuuuwDs1vJoRjAiyrhn51P9K7h3WDxF7aD2f76SkUfX8fwl9Jk899kBjDUC+iwAduZNswAuGsVoC4VCoVBYIOqHtlAoFAqFBWKp4T2ttTBpA7CjRqZbuKo+vDqaWmOVKggNF5hTP1Nd12lkt6okqiPUaURVHZ6hX2tKqjMC4amONXG2phmzieGj2p7q5KPJMOwxGgqk4RFe7dSo+IOnBtLatVPY2toaqbysc4o6CUVOXB44X1MJRLzk5JrmTfvhpcRTNTPBfWH3jiYMiPa3pzrlsQwFoepaHRG5320fdH0jhyoLdQCbk0yen2XOVQpV9Wbmja2tLZw6dWp7n/FcTXtpv9OxqardG0uU3MRbFzXZ6B7iXNBhBxibZW6//XYAwC233AJgJzmMl/xf96Tee57TkBYr0ZSSPMc6QKlzoT7XomelPTZ6ZniOdPq7QHBtvTrSmtDmvvvuK2eoQqFQKBQudCw9YUUUoA74DAsYG9E9V3mVEtU93EtVyPaUwfI9JTNbgo5QiVZT/Hklrij98TrKaL3gdw0MV8nWC21QFj/FaK2UqBJr9N5LRK8hDVmaPkILIGTIEqgTU8lH5kivuraeI5Uyy4jBWG3I3AIElk3qHtXyiBr245UvpIRPhnTbbbeN+qbXUyeeOeFEeuwcbYJCnRi963hpQCNsbW3h5MmT285EdNCxfZpybCTs9aJSilFCF6ulUqcdDR/ien3gAx8YjYd7n85PZLKE3aNRGKH2Q7VYwLgAhpYS5V6y91MUiqMM19PCaB+i542d12hvRiVT7f82mU8x2kKhUCgULnAs3UarEl+WsEDthIQXoqE2BJXI1F4J7LADMgu1h3nMTO1QmpCe47Jsgd+RuTDUwNrGgHFJPG8cKsV79lxNNqAMQOfMMii1QesceGwyCgVSW7GXYGKuNLm2tjay49k+TKX9y9iVskIi25sRo1SNg7Ujc70ZInHVVVcBAK644ortMQK7WYqyAk1uwevw+kzVZ89le7Tj83OyPLsuUYlFvW8zxqnXn/N5pCEgPI2HF+al6LoOZ86c2d7PGuJkr61rx9csOf3cfeylKtSShLz/9dW7nmrOvFAtfTbo/ansUdOVAjt7NUr2b7WPqplTrRv7rtoZIH5e633thXRFIXAeU9dSmMtCMdpCoVAoFBaIpTLa1dXVMO0hMPY4i3T6nm6fiApye+We+FnEGj3bLKUwTWCtibstS1BvY76ql6FnhyAoqbKPTJyhTMceQ+j8ZYHjymj01UuwPpVswPPEVttvxkpaa1hZWRmtj7cP1DM9S0oxtXeyxPYKXlc9Hi3DINu89tprAQBXX301gJ3SZ7yu9YhlOxrQrwyNc8FUebY92vM0+QDbtonotbSaanCUlWQsL/IAt/tgys6mY7HtzbHrb21t4cEHHxwlCcmS/KsviHrc2+8ir3n1qbAaLj5XNAmN2rbts8rzaQF2azBsG/ZYXkfXh6/UdNi9w/5ynXkd9j0rLsLxcG702aisHBinUYxKK2Zl8iIma9dICylsbGyUjbZQKBQKhQsd583rOGO0UVFtT9rld+rJS+9C9SS2cV/8TGMeVfLPyrGp5KqJrr0+RLG9HJ+VwLTge9R3j6lpfKiyBi8WkhK/2ppVcvfYhNqENdWcZxex+yBiKLSzeens7DHee/08s9HqPGksqVdUXSVk2kO1LWBnzbg3+V5LPFrblUr0eoxqQ7zE8JEGwxunxtwSUYo8r3RcxEY9zYDa2aIiChbqfZ6VOuPesYW+Ad87O/Kw93w1omeEskUtPmLHpnuEc8znhZeKU5+R1gdA+8hjda/ofUhGa/ed2lGpddE2vDkhNC+CrqmdEx6rtnrdq3ZOVKsYPdc8rYNd02K0hUKhUChc4FgqowXGnmieZKmSiiZOtxKzFmKnLUFtl2SyVmpTSVuLW6utARhLsJqtyLNdqW1WoV55ni1T+6YSn2UgaqvQuY4K3nufRRmIsiTveq63bvrZVEGB06dPjxitFx+n7c9hSMrEvDJe+p5SOhmgx1yA3dI1baVMBM9ztfiDtesqs1BpXT2wbck77gnGPDIuk+/ZD5uBiH1STYqyUc9zWD3vo8gCu1a6V3VcHgtW29upU6cmGa3aCe1zQJmrMk61pdpr67n6PPDizjUCQp9RXGNrM9W+cp34OscPIsp8pnkDgJ09yOdplMXO+hOof4KunZbNs2yc/2uxDPWu9mzrUaGLrPjInGIp+4litIVCoVAoLBBLZbRbW1thMWpgbOPTV8/Dlv+T0arNlq/Kiu3/Uf5i9ZoDxjYR9XDz4gvZf+0Lwet7xaQp4VFaVCaozNr2ST1GowLJXiyklgbTcXqZoSIJ04NXDDqylXRdh7Nnz/5/7Z1Pb+NWEsRb8jjBHIIgmATIbb//pwr2vAgwmUmAGdiy97Aoq/xj9ZMSRFx4t+siW6LI98hHqqv/VG9qRleZo3xdZTcze5FzZoZv1TnWJwbZ1Xx7I+5ffvmlqs5smHWOjIdVnVmNmIVeGedKsVVlE4vJSh9Xx9cc/Dsd8+sycVcN5+npSCyiY6IrFiy4x2m1djxGy5pZHxdZKNe8f4feLmqPC2xZ6WPgK59lzrrJ/LWuVAut46cYJr1SXSZ7eq4yS5vx45Rjw3wVnj8+Q30breeu6iF5QJktvtI5p8dh2uQNBoPBYPA/gPmhHQwGg8HghvivCVYIKRGHyVBycShZwF1uFKSgcH9XUlPVCxHQlZTKiboWTXKLuBuGrjS6K1iG4aD7p3MZJyk0jYWuylViEJNt6ApfSe91wuApGeoaF6Tv9/HxcXldOpH3lbjByt3ox2HiSdX5nFIgg+45T47S33LhEvquJ8F8+PDh1atcx9q/3L9Mzqo6uxeV7CQ3d5cE6J8xjNM1pEjlJHTTa92la9GJXLCcxe+Za4QqBLqO+TzwuQldMhz36+NKpXIdONdUolf1+p7gs0//ax6p7V8XzqIrmS7sNFZty5I3HyNd0Cz34XPQXcidmAXHlMoYu5aFKbmUAiJfv37dxX08jHYwGAwGgxtiV0b7+Pi4Ea5OSUNdEJ9WdlXfGJvB/MRomdDQyUMmoW5ZRLTOyLD9OGy4zeLsJNzNlmqyyLQvWq3827ch60vsVMfWuSbb/jNC+6tEpFWrvg5MzU8lH3wle09iCbRoaVUn0Y5u3Eza8OOJdShJSQyTSWsScq/ayuNJ7IJCKVwX/reOy2SylNCSZDkTOo9O1TbJkCwoJex0zSBYMuSfOTPsWO7pdKrPnz9vZE99fmTVfwUcL9edj78re6IXxK8LmSzLbZhEVLWV0eQ662Rq03x4r6xkKfkcSEIsHGvnXepKBX3cnRckSX6me3oEKwaDwWAweOPYjdGqRIMWpfvgyZo6lpOsQ8pvsZl7spzpryeDlmXGcpyqc2yMAhKCs2AydM6XY3dLrxPfX0nhcbyMK3eF6/4ZmexKnJ9x42vE+K+JoXJ7Htv327VL7OI3fkzG4rivFKvr2sUxv8Ch43HtKL6q43ibPN0fYra+rjifqtfsMZUl+dgTk9H+yT6EledBx+N6I6P143X743pI1014enpaspKnp6eXc5pK7DRnjZvrOJWrdc8oejpS7gHlG7Vt15rS98PnJ8tvUrlk2p/vMzFs3jddgwX3aLBsjPcg4/9+DRKLT2Nd5fSwBCrlojBvxZ8rt8Qw2sFgMBgMbohdGe3j4+OmMXvKAr4Et1D0fUp3MWabLCKy0SRq4e87aHkpriYLL8VXuqbWzOxLFhYtVlnmybLuMoMZwxBSyzta9dxXYpOdDOKlxtyXtuHnKxlIxpCEFNftGC2PmYREOhm7tK4FMj0dX1nByhL2OKviq4rnai12HpzUGJteHzY3EFuu2jI+xruuiaUzFnwNY2CG+ioLnQ0vVhBjYWzOW2B2LdoEygBWbXMMLjUU97HSK9U1BnC2SJbGmGxa35oPRRquEaHRZ5QYZT6Lj52NNboWgul5wWcSWW/yFPFe47OL3rmq873l3oRhtIPBYDAYvHHsymifnp42zMytxEsWaoqV8L1OOD+JUjOecqmNnR9PLLWz+P04jNd1rFEZhW4JMk7cNUJO2XhdFt5K9L2TPhNSfLSTXuwYQsKfyf5bZUsLXYOAxJy5Jrt2jWkdUPKTAu3OlhUL1KuYpL6r73hjADIlNrWgJyflL9DyZ8tI99hwf51Q+yrzu4u7dx4d/6xriZkYrnuCVjH+x8fHl23FaLzBR9eoo8ve93Exd4I5FWKTLsXJ2nF6HFJt7qdPn169Mq7Mtpm+Pz7nLmVI+zzE/PVKxp5a3bExRbcOUn6OQEbL9ejfuZRt7DkPmoeuQaodvgWG0Q4Gg8FgcEPsxmgPh0NsZJwUlDqFmVWLM4HWGevwUo2qrFuyolWNYCdan0TLr60VTDFUvdc1M0issWvwzbEmNnyJSaxqYgVazqmejWN5eHhYMtrD4bCJi6a4NBlF1wLPwaxIfjc1s2DGbqdEltSw2LJR/0v1SULxVWcG5ko2PmaNTfFWZ2rMIGb+wirznyyeTJbNvNM2Atf1qlm8xrLyuvAav3//vo0dPz8/1+l02rTn9PtJnzEu3YnUp7nwHqNIvlokVp09FlQ/6jxCVedrSC+IrqHWzqoVJefDJiqp0QKbt3c15v43s5w5H61RV0DjfcN7Tp8nr5K2oUdlVVu+N4bRDgaDwWBwQ8wP7WAwGAwGN8SuruPj8dgKWldtg/N0EaZEHN+/vwqdlFjV2YXRfSel2dPNJJcK3SMsL/G50h2r5AEd112Uyb3n29Lllo6j+XXp9qv9dp+vkqG6Upt0Tv5M2UjXrKBq67LvypE8maM7dieM4ckpOp5cdnQdJ6H4LjlE61DuXxeloIwixePpBvZSHbqOWYqUSoK6UAHFXVJZFtcbr1dKaGKIohMAWYU3ViEHuo6T4D0bgTB5Lz1beN/RTUoXq183lXO5O9n3yUQn3y9dxxrrDz/8sPkO17WuN2Vj072n5xqT73QemSRVdV6rXOcr96/AhL1OQjcJwTAsyHPu557lSf69W2IY7WAwGAwGN8Tu5T2dgH/V2UpjsgOxKg/w4zmYDJG+S0aWJOS6pAAm6niSAMW9OfdLbfR8204QfsVoKYih91OrM+HaFoK+bfeakEpmOki+k54Ot247kXueN58rGReZOZmZ71vjZyIby1N87ZAFicFybfr6VlmIrHKuPxb0u3QiGQRLJMSk/RpQ3IBJPWxQ4OugkxjtEpx8m07SMt3rSXCle1ZIflH3oMbi11Jz4/lZ3Y9kUWRiXSu8qvM505h0jTUHJstVndcK1zGZYCpXYUIlk6GSUE/HZIUkT0r5U5bAdQ04fM7dOkjPiy7ZkqVJngBFj9fDw8O0yRsMBoPB4K1jN0Z7PB7r22+/XQp1k62xTCCx0U7OkEwjxVs7xsIYkBc805JjuYsswSS+0ckZduVM6bsUSEjxhW5sel/7oGVbtW3w3LW+S2UyHEtXTuSfefOClejA8/Pzy7lNpWEsB+D42PbP0ZVXkfn7OiDj09jEPDQePyeMVSkWJ5aYRFUoYsHjUWrUWRDj1oxvpetPiUL+z2vq5/lSWVQSVehENVaN31PrtG7tnE6n+u23316+o7F4GZTmRrGRdD04VzJZrjudW8Xyq87XQ2MQ46IohD/vdL9TIpNiJ379u7afWpP0eKS8C60zlgKlFqKdAIfGqG11j3g7yE54pWtq4n+znIilcOlZ7Ex9YrSDwWAwGLxx7Nr4/e7u7sXqkYWUshY7sYQkzrCyZKu2/npnNPxMjIUWTjqGvkNBckmkpQxfMotORjF9l2yb7MTZHZkFmRkL5FdgLC4xwi6Oy6xQPx6Z0f39/XI8HodLcoqdXGI6DscpdNeDknJV5+vcFdqvWtCJ3fAapnPMTGGNgfFqwc8JvRL6n7E6j79prmRZFH5hCzYfC8UUVq0Ddb54z5NN+nG6eyDhdDq98kRQHKTqfG7FfMj0kheHa1rj1TUmI/exSqiBbfl0fJ37JPnIeCoTuHOFAAASYUlEQVSz3R2MI3dVHboGzvz0HjOymdmb7lkxVp5HZkrr/zQWNuBIsWI+X5jHwHZ9vu0eLNYxjHYwGAwGgxtiV0ZbdbYOZXW4n57WEX39KfOsk3eTtUNG5lab4l4fP36sqrMFJIsyiXtzDIzrXFMrSrbD2LMzJ7LurimDZxty/2SwXRwkza+L0aY6tM7KXcWRhUvs+ng8bqzaJN9JRpSuR3dMegDIppwZMV7c1YOmWkjWt5KZJSm8TtRfYBaqj4nbah6JLbJ+kte7i0U6yHoZf/XzTobWZYmnNaT9da3p9L0vX768zENz98YNYmD0UvH+SJ4melL4Hc3vw4cPL9/R/ahnH2OkjI9Xbb1hFMXnc9Xfo2eD3gmxfMq8+ti0j64hio+FTTPIItP16uqQee5TG0DWzeracp1X5cYDE6MdDAaDweCNY1dG65ZFqsNiViLZaordsqVVpxCVstYYE5EFJMWWlK1GK/1S+7o0brIdWpiJ0cha6+pbncl02a3MTGQ8xL/LrFkyGD/+ilH4mP8qDofDq2vO2mX/u4vvd6pMjk7hKlnincg/46xJTYqxK9bertSrutjlyipnNmZXG+n75ZjJPDXWlOXMdcXKgFQb29WWp4Yiqc65m7/q98l6Uus0XQ/9zyYDKcfAs+ar+vp2z3L+8ccfq6rq559/frUNr78zTOa0kF3rf2fqVHHiOaJXLtVEi91rLPS+JO8i506mzmby/l7XGCB5clirTiWo1XPJK02G0Q4Gg8Fg8Maxe4x2pb+rWEkXJ1zVta2UZNI+q7bslMxFFpiPsbNUu7iOb0uG1OnIJm1lfXaJPfrxNCadL695c7il3p1jMqdVmzxus2qT58frLEu1WGR9tZ+Lrk1ZpxCWcCk707MkyWjYTiy14+r0XLu6cT92io37fJJiF9nWJcU1/0wsp/MQsYm8/00mu1L/ujTG1N6S+Rcrj4k01rWN2I6zRbFA3cuM1aaM3q42vWuf6C3hfvrpp6o6M1vFMrmGfa3q/u+8EpqPNI99Hl2LzVX9PrOatY2eIazf9e8IvEekgKVXaT5zrv5danunWnyugy6fxefuz5BhtIPBYDAYvHHMD+1gMBgMBjfE7q5juk89KcFT4B3JfUSs5AursvtHRet0FbO5gbsrkpi6H5fyc1Vbdzmh+bH5QNU26aZz+ySx7c6NvhL3ZhkJk9Y68X7fL13HTC5yJAlO4nA41P39/cZtnorXu2SxFXguef5SsgjbF2odM3lo1ZqwC10kF3LXqGEl4iFQQERIx2OCVpdIx9Z+vg2Te1brke4/ruf0HcpQroThD4dDffPNN5sEIy+D0T3Gfej9NBZuq/0zHMDExKq+XabAhETflteb6973Sfc2pVm5zvy7TGjTmFSSxCYA/jdFiSgWxCYOVVtRmEtyrlV9olRXtudYlafdAsNoB4PBYDC4IXZvk7dqxC5rk+U8K0bbySUymUL78vR0WWWyomilU4aMf/v+aM2lVmAsXehKZlJBP4uzmUzkx2MyFAW7mbSSSic6MfGO0fuYyH5T8hJZ7zXt8tjiKskNEqvEH7LEbgxs95Y+o3BIEkghO+PaWY1RIDvUvHWdUgkSj8+G334MjYkyemK2ukeY7FO1PT9dsk0q1aK3gvftiqmthOHlDdG45XlIojBdQk4SruG567ZlG0Ofm8bAeypJS/I+1Dx0LcUIk5CMvssSN64lv1dSa0g/rua5SobSPphUyvu4apuESc9Gujc5r0ulcD4mL6WaZKjBYDAYDN44do3RSg6taitRVnW2wCnhlixv36e/ylpSyjylvdwCo5QfW2ilgnu34NM8Ugs3lm8kGTA/3qqZMiXpVg3UGVcjw2WzgaotW2D8KpVUMC7K+THe6/tPQu3E8/PzK1GCFK+8JOGWhES6uCebd+vVRQcoMkJGq/F4bI5rtfOCpKYZXRNysgRnZWwfRhENen38b42bjJbv+3fJxLo4W2qCTrGGrszHwfklHI/Hev/+/aZN4qoVZeeRcaTciKq+0YGfC0osshSMjUqqzsxVr/oORRp8Xhw/Ge0qhs7yHTZj0Nj1nPX9daITYsMUp/DvdvkqqYlFd734DPZ58fdnLwyjHQwGg8Hghtg1Rvv169cXSyVlAVOcgdmLjEv6e11jcsYfPA7BTD4KPKRYQtdajVl6KWOQwvdkesmCpoXfNRVIFhozYBkTZJZwmjsbQK+aJjAm1GUwp20uxUqen5832YyJIXcMMFntXYH9Nee4k8/U+xqjr1XOmdnGzE2o2grOM2bGOFRqjM1Wbav4VycxyubdiS3wfHJd0+vkICthPoN7kjR+F3jpso7FaPnc8Tl364D/p+uiuXRxdsbSq84CGWznpn0oPu4eFEpIUhhFbRsT40v3n89BcDbOLGp6YVLeRdcIgrHa1HaSmcnMQu8yiqu2cXzem35PJK/hHhhGOxgMBoPBDbEboz2dTvXp06cXi5LSdVVb61BWjr6T4lC0+Dswa7dqyyAYl9C2blkyQ5CsITF1WlyMOa/ayrEdVieFl5iFvqM4SsqaJcgWO2vYLULGbTvZQ98H5dLevXt3UUqPbdauqavm/0lmjrEdMs6VDGDXsJyxJt+GjI7eliQZx+NcI1XIe6Nbh6l+sovV6h7RPZGYQTc/ekf8OIzrreLIrMe8JutYn7MpvR+T8cBVVm6KGXKcvm9f+5o/M4dZX5vWG70TzMNw6N7ic47nNDH2zlPWebp8v5fyCKgN4J91nrvUsL1rgCGvS/IQpufnpRadfweG0Q4Gg8FgcEPsGqN9eHh4sbxkzbi1IUuETIPMwq1IfcYavc7ycwbNmK/G1mUD+7E1fjKLlHXI+ZBBrWJEZFlkPakWk/FCZkqvxP5pUXZ1s26hd7WQAs+VQ2P4+PHjxbgJz5vPOWVQO66JYXbXI8WHOBa+JhbEdUA21DVC8Llymy4b2Y/N9SCwxWTVVpWItddkvCmLm9eZY/R58/5hHF7/J/bjjHYVo/3uu+82azDFIzVOtsdLbCrVoKf/U5Y+Y5W6pjq3KTeEbLfLCvbnGzNseQ/w2ZKOR/2BruGL/81nhl8nn3+qg+/yO1IOCj0OvG7UZag6X2v3ju2RgTyMdjAYDAaDG2J+aAeDwWAwuCF2dR2fTqeNAIKLe8t1TJetXlNqPiURmU5P0YnkJuA2dHW5i5LJAEx+SIkMTKPvki9SskwnyE7XsbvCmObO/dKV5OeQaft0A7F8yt9j0gNdoJfKd1YJLXd3dxvpQLrEq7Z9e3k90rjp5u0EUpIoCK//ypWoMdBdynObErY6NzORXNVdwhZL0vwziriw33JCJ1jCeafyHrqiGcLwtdE1ukg4Ho9RJpDPDd+fQPdpSpphAhBd3imkoWeeJwI6khQrt0niJj6O1XvdGNMzi27lVRiA7nnNrxNOSSEEXnfeo0kgpZNITaEg7meSoQaDwWAw+B/Aroz28fFxE+x2qOha1l8SLq/KrJSB745FOli83CVducWv8a8s46rX1iEtpq61VUqwoFXWJfC45COZGYv/9TkZaNU2kYXsI0nY8dzqeLzWqSTIhUU6y1LeECaE+ZxX5Uf+f0qGopXO85eSYYiu/MrPHz/rmFkqQevkIrmWfN5dIT+bSqwYLYUryLBTuQWvBdle8ioITNhKwgj87BKOx2Mr/l/VM0omUibBfj4rKCjCuVedk6D07JBABZ8taX5d2VXyNPA+5NhXZYVktEzgSwI2LL/stl09d7r1naAx6hzQA8l17/u7tiz078Iw2sFgMBgMbohdGW1qgr0SBGdLqFVRPlPZmcafLHDGrBjTpHSYb9OJyF9TbtHJOKaSiVWbKN82Scpdis1yzL4NW0+RgSZLtmNsyfrV9dLrKk4ib8iKWdJC7SQ5E0ughc8WYN11c9CKTnKKvL46x/TGJHbCOC5j90n8hF4Ptktcxfe5TVdmtmouQTaaSvq4P7E9NnZIIhep7SKhtcOGJamNpaBjSehFHjXfTuPk8RmP1HF9e655CrEk4RJto7HwPkzPiU5Eh89Ibu/zYexUx9U58laMmiPvbb1Pppu8ISwn4jpL61vnhIw5lVwmecYp7xkMBoPB4I1j1zZ5p9NpI/HnVhWL1cksZLn4d/SerCZZfrKmLgkZVPWxq2RFcUxdpq1b+p3QPS2pVATOWBAt95VcG2M914gcCGTB12Qdd9uk2B2t25U8pIrKKRmXGoin7GL/jntVyG669oWrVoSdJGYnflF1ZmvylHC9pThyOu+OzuPhY+rirasYLdF5LXxsZD2r+CjFBboqAWdO9DR8/fq1XcvypJHlOMvjGifzTlnuOp6eO2RebAIhr1zV+brzuPQiJXEdxj11LtRcIF1LnkvmaKRnC70RHUP3Fn8U4mADBK53Xzudl4XPYJ8fn40898nLQUZ7d3c3jHYwGAwGg7eOXRlt1dkCSg14Gf+UBSnL6+PHj1X1utmw9scMM0qWpfgnLWPGXVcWuN7TPGhFpYbmXbbfqgEzrTJZgcyI9eOR5ZLtsI7Ox8P5kCkka7tj8x0rTvu9BJ/DiiFfqjv243ZtC8lkBGfdnei5kOQNGeul1Z6kHjtmwbVEq97H38lEJmnGLl7IeyFVD5CZreLiAq9bkh/0z31/q5pe/97j42PL7vxv5pDwejmjZf5DF4/2Vn6CnlmMP1Ns36/L999/X1XbSowupl7Ve2w670g6x7zXNA+yVR832+DxlZnT/l63VoWUTyDQQ5M8h4lN74FhtIPBYDAY3BC7Mdqnp6f68uXLS6xClqDHgpiFSWYp6ynVqHZxCP0v0e3kj+8E4SlWnfZLS7mrd3RcapPnYyRLEMgAUgYfGS0ZXGJ5VC3iPlMWKJlsxwwSPLtxpQx1PB43Au2excxjdrXDiS1e2zTecUkRKrGtrk0iX9MYOybJ9Z6yMrUtMzlTxnrndeHxU8Y68xVYc0tPiu+H14uviTlfowyl77IZQvIACWygkPYvRqkaWEFslZm9yfvSNW9PCnj6jHH2rj2jf9Zljq9A9SadA933qRaW7/F+1T7FzlMDls7zsMqq1tg6D6U/G7jfVf3+34lhtIPBYDAY3BDzQzsYDAaDwQ2xq+v4999/f3Edp2A03R9df0ZPKRfohujcsslNRhcDk0Tcldv1gaV7NhWbM1GHyQgpsYblL3SlpR69nUuUbpPOTZj2wdKHNO7O3ZfS7Sn0scLz8396GbOpQJJw03XoJN2SRCHHwH2kpDGWgjHhJJX3JIGI1Tg0dx833XBMrEqlaHR9cj0kkX8et2s2kVy6vPe6teT7YSIL95/ct6v163j37t1GeD4JYLDsiW5Zn6uuvxIzKSDBtZOS1PS88dIlP57j119/fXVc7YPyg6lMjpKlneiJr9XO7cs1mkRDumRChe+SNKJc8VzH7Iuc3MB0K/NcrPof71HaUzWMdjAYDAaDm2I3Rns6neqPP/54sd5kZXiKd1ccLUuJ//u2ZAmybpREIMiq8m00FhZ9p2QRptF37ffcyu4YjLASI2A5Dc8Bk0l8WyY/dYknKTmCDILlTClhq2utx5KHqrVARRrLw8PD5tg+bjJIyhqmciUmFHXNBZKFzsYXZLKas8+TZQ1kFFon1zQ+4L2SEkvI+OgRuKbRQtfyMLFTHq8TSnEWpGuqc8Jznca4YrnE4XCIrQO5TdV2TXYC/n5sbaPnChlfkiqkBCO9LyqPSc8DJoj688z3yb99rFxLyfvCZ1JXVriSftWrEsboKfTzrXl0HqLksWECIO/FlMxK78Hd3d0kQw0Gg8Fg8Naxa1OBh4eHjYW6aiBOOcUkwyWL+/Pnz6++05WwpLR+pvezFMCR5P/ScVMbro790qJNzKlrjJ0E72l9dudgJcXYNd5O5UuXJBgZr/KxXROrlehAigsKFDchi1uVzvB8sS1aWifdXFcNCHg9uhaI17R/45hSe8hOSrIr3Ujz4j25kuLk8RivpKfDv0Om3nkZfK6MTyccDoe6v7/fnJ9VIwUyo8Roef+R2VKi1eesNdnJdKaWe939IRGfJDXbiT0kjxDB608Gq/ddPEjnTXOnaBDjrS4Aor/ZwIE5IX6utC09JpxfEinqhFFuhWG0g8FgMBjcEIe9Gt8eDod/VdU/dznY4K3iH8/Pzz/xzVk7gyswa2fwVxHXzt+J3X5oB4PBYDD4f8S4jgeDwWAwuCHmh3YwGAwGgxtifmgHg8FgMLgh5od2MBgMBoMbYn5oB4PBYDC4IeaHdjAYDAaDG2J+aAeDwWAwuCHmh3YwGAwGgxtifmgHg8FgMLgh/g2aDDqO6y5uegAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -690,7 +950,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4JdlVHbjOe5lZVZmVNSI04QYzWbYbhJtJYBAyDRIWRkwyAgFCpgdh3CDADGJoVGgw0PqwsBtoZssgzGAhMNAWAskqJCEziMHNJImhSq2hCtWgqsqhpswX/hGx8+237l47zn35Ml9csdf3ve++G8OJc06ciHvW3mvv04ZhQKFQKBQKheVj67ArUCgUCoVCoQ/1o10oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQ1A/2oVCoVAobAhmf7Rba89urQ2ttXtaa9fTviPTvpsuWQ03FK21J7XWbmqtbdH2D5r67NmHVLXCAWB6Lr78kK49TH8r12+tvby1dittu3U6/j+I8l437X+juA7/vbyjjluttT9srX09bf+c1trrW2vvaa3d31p7e2vtF1trn+GOsXfOh3b0w01zdTlMTG37gQMuU90X/3frAV3ryqm85x1QeR86vRf/h2Df7a21HzyI61wspvf3v2+t/Ulr7Xxr7S1rnv/41tp/aq3d1lo73Vr7o9bac/n3YD84ssax1wL4JgAHcvP+BuBJAJ4P4EUAdtz22wB8AoC/PIQ6FQ4Oz8b4/Pz4Idbh+a21lw/D8FDHsacAfE5r7eQwDKdsY2vtAwF8yrQ/wssA/BBtu6Pjel8C4NEALvxgtda+GsC/wdhnLwFwBsCHAPhMAJ8K4Fc7yt00fAeA32mtfe8wDG87oDI/gb7/AoD/BuAmt+3BA7rWg9P1/v8DKu9DMb4XXxOU+VQA7z2g61wsngzgEwG8GSO5bb0nTs/UzRjf8V+FsU1PAfC9AG7A2P59Y50f7V8D8FWttZcOw/DXF3PRv8kYhuFBAL912PUobDx+DeOL5TkA/u+O438dwKcD+HyMP8SGLwVwK4B3ANgOznvXMAz7Ga9fD+AnhmE4S9t+cRiG/8Vt+y8AfuQgGMjlQGvtiukZ7sIwDH/QWvsDAF8D4CsPog58P1prDwK4s/c+rdOGYcy+dVneV8Mw/P7luE4nvm0Yhm8BgNbaKwD8j2uc+9kArgPwecMw2MTkta21DwfwLFzkj/Y6D8qLps9vmzuwtfZxrbXXTGaBM62117bWPo6OeVlr7Z2ttX/QWntDa+1sa+3PW2tf0VOZdc5vrf3t1tpPtdbuaK09OJntPjc47otaa29prT0wmTOe1lq7ubV2szvmytbaS1trfzy17/bW2i+31h7njrkJuzfmYTNZTfv2mMdba9/QWnuotXZjUJ8/ba39J/f9eGvtu1trt0zn3NJa+9aeF15r7URr7btaa3859cHtrbWfb6090h2zzn37mNbam9po4nxra+0zp/1f10Zz7H2TeegRdP7QWnvxVO93Tue/vrX2UXRca6197VT2Q5OZ6ftaa9cE5b2otfbVU3+caq39Rmvt7wd98Hmttd+axso9rbX/2MhMN9X95a21L2yt/dnUD29urX2SO+ZmjOz0H7Zdc+TN075HtdGs9u6pn29rrf1Ka+395+7RmvhdAL8I4Ftba8c7jr8fwCsw/kh7fCmAnwRwYKkRW2sfD+AjALA5/gYAt0fnDMOwE213ZX5Ma+2vW2uvbK1dmRz3+NbaL7XW3juNrd9srX0yHfOxrbVXuPH31tbav2qtXUXH3dxae2Nr7bNaa3/Qxh/Hr5z2dY87AD8D4Iu5/MuB1trPtNb+orX2xGns3w/gBdO+Z011vmOq/++11p5J56+Yx6f3yLnW2oe11l49PSO3tNa+ubUmGWkbXSCvmr6+wT07T5j27zGPt9a+Ytr/sW18V9n79l9O+z+rtfbfpuv/dmvt8cE1n9Fa+53pmX/v1B+Pneu3ufE4g2PT5320/R6439zW2tHW2ne21v6qjb85d7bxt+zj5yqX/mE0Aw4YzRrfjdFc8oHTviPTvpvc8R+J8QXxewCejnFm/7vTtse74142NerPMLKFT8f4kA8A/lFHvbrOB/C3ALwHwB9jNNk9BaN5bgfA09xxnz5t+0WMZpovA/BXAN4N4GZ33LUAfhTAF2J8cX8uRhbzXgCPmo75gOmYAcA/BPAEAE+Y9n3QtP3Z0/fHAjgP4CupfR89Hff5rq/fAOAujLP2/xnAtwJ4AMD3zPTVMQBvwmiO/D+ntj4dwI8AeNw+79ufAvhyAJ8x1esBAN8D4Jcxmju/fDru56guA0ZW95sAPgfAMwC8dWrXDe64fzUd+33TPftaAKena21RebcCeDWAp011vwXAXwA44o77iunYH5/u7zMwjp1bAJx0x90K4O1T258O4J8A+AOMD9x10zF/D8DvYzRJPmH6+3vTvl8H8DYAXwzgiQD+KYAfBPBBc2O6929qx4sA/P1p7DzP7Xs5gFvp+Fun7U+ajv+AafsTprI+BKM5743BdV6Mcexd+Ouo3/One79F2/8LgLMAvgHAh/e8c6bvT8Zovv9BANtUP//u+Z8wjvE3TvfuqQB+CeM766PdcZ+PkXz8E4zP8FdinEz8DNXjZozvjlswjucnAfjIdcbddOzHTMd/6kGNgej+in0/M43dt0/tfBKAj3X36Z9jfB98OsZn7jymd9N0zJVT3f0Y+67puD/C+C76NIxukAHAFyX1vHY6fgDwv2P32bl62n87gB8Mntm3Avjm6Tr/btr2nRifvy+Y+v9tGN/Xfnx8DcZ3+g8B+McAvgjAn0/HHl+jf18B4C1rHP8BAO7G+Hv0gQCumep5P4DnuuNeiPE5+RfTOHwaxuf6H6fld1Tg2dj90b5hGgA/Pu2LfrRfAfeCm7ZdMzXilW7by7D6A3sFxpf3D3fUq+t8AD+G0Qd3I53/6wD+0H1/E8Yf9ua22Q/nzUk9tgEcx/hS+Vq3/abpXH6APwjuR9vV5b/Scd+LcSJwxfT9S6fznkjHfSuAhwC8f1LHL5/OfVpyzLr37Ylu20di9+HyD82/BvAwVl+0dwI4QX3yMIAXTt9vwPiifRnV8Uu4HdP3Pwdw1G17+rT9E6fvVwO4F9O4dcf97anvvsZtu3Xq9+vdNnvpPtNtuxn0IzdtPw3gq3sf8P38TXV50fT/T0736Nrpe/aj3ab/nzdt/wEAv6naM10n+vvQmfq9ysql7R8O4P9z5dwJ4KcBPJmOezZ23zlfPN2j7xD94N89r8U4ETtGz+efYTTLR3VtGN9jX4LxBX+j23fztO2jxLXTcee2H8X4I/ctl2g83Ir8R3sA8JSZMramfvhJAL/ttqsf7T0/0FM/vg3AL81c5zOmcz8p2Kd+tL/RbTuG8fl8ANPkc9r+BdOxHz99vw7jBO4HgjF4DsBXrNG/a/1oT+c8DuP70Mb6eQDfRMe8BsB/WPd+r+VHGobhboxs6lmttb8jDnsigF8ZhuEed959GGe8n0LHnh2G4XXuuAcx3vgLJss2KtQv/K17PsZB8p8B3EvlvBrA41tr17TWtjG+mH9+mHpzKu/3MM6e96C19gWTOeYejAPgDMYfBtUnc/gJAE9ok1p2qt8XYWSp5nv6DIyz5TdRO34N40vhCUn5TwZw+zAMv5Qcs859OzMMw+vdd1NWvmYYhvO0/QhGQZLHfx6G4Yy7zq0Y/WYmsHkCxoeTVco/g7G/uT6/PgzDw+77H02fNg4+AeME5Keo794x1fGJVN5/HYbBC2K4vAy/C+Ab2qgU/YjMXGhorW3TOF/nuXw+xrH3DXMHTmP75QC+tLV2DKO14SdmTvtxAB9Lf++YOecxCMRqwyjE+gcY79+LAfwhRkvVq1trkdvtazBOEp87DMPzswtOpudPAfAfAey4e9wwvhyf6I69po1upr/EODl8GOOPVQPwYVT0rcMw/KG47Ny4s3Y/jHHS+JiZNmTvuovB2WEYXh1c73GttZ9rrb0b43P1MMbJS+977P+1f6ax9Sfoe0bWhZnUMYyiy1sA/MkwDO90x9g76G9Nn5+MkUzxM/9X0x8/8weG1tqjALwSI4H8PIwiy+8G8KLW2te4Q38Xozj0Ba21T2ytHe0pfz/ij5dinNm/QOy/AaNCmnE7gOtpW6QUfBDj7A6ttQ/COJAu/E3bus6f8P4Ynf8P099Lpv03Ang/jD987wnK2yO6a619FoCfxTh7fyaAj8f4IruDrrsOXonxh9/8jU+e6u1fqO+P0dTC7fgd1w6FGwG8a6YO69y3e/yXYVe9zPfDtnO/RELGv8boKrC6gOszDMM5TGZ0Ovdu+m4THbuu+ZNfg9X++wis9t2e8tzEqef+PgPjROcbMbLKd7XWvn3mh/i1VKdv77iO1e2vMFqTnttIPyDwExjN+88HcALjWM5w2zAMb6a/ORHTlRDq5WEYzg/D8PphGL5tGIZPA/DBGH/snt8opBSjC+pdAH5+5nrAOCa2Mbp/+B7/HwCud/fg32Fkcf8Wo1n4YzGaKK3uHtEzYZgbdx73A5A+7Y533cVgRUfQWrsO4/PwOIwTvk/C2A8/hb5xfn6a1Hvwu/egEL1X5t419sy/Eavj4cOQvy8vFt8K4JEYrRu/MAzD64ZR1PZvAXxna+3a6bibME5en47RXXhna+1HgudgD9aezQ3DcLq19p0YGfdLgkPuBvCoYPujsL6c/90YBxJvWwd3YfSDfndyDZtlRmKhR2JvaMIXAviLYRiebRumGRL/kHRjGIYzrbVfwGgKfD7G2e5fDcPwm+6wuzDOML9AFHNrcok7Ma9+PMj7NodHim02sbCX4aMwzt4BXLBA3IjVl+Uc7po+n+3Lc1DhTmtjGIb3YPwB+BeTNerLMIb93AHg/xGnPQfASfd93TH+wuk639JRv7e11n4bY+jmK71l5QBxF1Yneqo+726t/SjGULAPw+4kFBh9zz8M4ObW2qcOwxCK2Cbcg9GU/f0Q1oNhGHbaKGL7bIxm9X9j+1prH6Gq2NOODtyA8TlUOIh3nULUhk/GOEn+nGEY3mwbe9neBsCe+WdidGMweMJxkPgIAG8dXGjlhN8B8HUY3XJ/OE1+Xwzgxa21R2P0aX8PRivjl6nC92uC+YHp4i8K9v0GgKc2Fw/aWjsJ4LMw+oi6MTG4N88emONXMZpH/2QYhvvVQa21NwP4/NbaTWYib619NMYO9j/axzH+yHt8KVbDZWzWfRX6fhR+AsCXtNaeglGgxROiX8X4Ejs9DMNagf4YTehf2Fr7rGEYflkcc2D3rQNPba2dMBP5xCiegNFXBoym8ocwTpBe6857BsYxu2593oTxHnzoMAz/ft+13osHsfeHdgXDMLwVwLe0MaJBTpqm4/aN6Yfv+zHGhPaE5/xfGK1P33cx100QuRzQWnv0MAwRc7XIC/5RfhdG4dTrALxu+uEOme808X0DgMcD+P1Bq3+vwPisPkzbny2Ov2hM5tIrMfo4QxzQu24dWMTBhX5oY4TDUy/xdf178VLi9RitGx88DMNPX+JrMW4H8OmttWvIGmGq8JXJ2DSuf6i19tmYIVj7+tEehuHB1toLMM6CGS/EqMp8bWvtuzHO8r4J4yBRJvVLiW/HOMN5fWvt+zAy0usxdswHD8NgWaWej/HH7Rdaaz+M0WR+E8Yb4F8Av4rRD/FSAL+C0Rf+VSCTMUZ1NQD8y9baqzCak7KH8rUYb+aPYRzQP0n7fwrAP8PYr9+DUTl5DKPy92kYZ8xnEePlAP43AD89WUl+G+MPzlMAfO80Cbic9+1+AL/WWnsJxpfod2Cc+b4UGLUTUxu/ubV2BqMm4e9inCS+Ec6X1oNhGO5rrX0DgO+fTMivwuhjfCxGP+jNwzCE2cIS/CmAr2ytPQNjEoVTGMfKazDeq7dgfCF+Nsbx9mtrlr8uvgujIvdTMGofJIZheCVGl8ylwusB/LPW2o3DMNzltv9xa+01GO/nLRh1Bk/FaKr+uWE3ptXX9bbW2pMwKs/th1sx0K+brv3q1tqPYTRtvx9GVfn2MAzPG4bh3tbab2F8Lm/DyH6/HLuumUsBe1m/Pj3q8uINGF1yPzS9y6/B+K78a4zq50uFt2B8n/6v07P9EIA/8xqXg8D0DnkegO9prT0Go4bpFMb7/I8AvGoYhleo89sYCmuhgo8FcLK19vTp+x/ZRLu19mSM4/mZwzD83LT/BzCavF89vcfuwRjt81UAfnqyxmH6Xfht7EanfAxG//dL5xo3p4J7NgLFKMYf/LeBFJzTvo/H+PI6jXFgvBbAx9ExLwPwzuB6NyNRa+/nfOyGYL0L4yC5DaNi+0vouGdinA0/iNGM+rlTh/6CO2YL44/HuzGGr/wGRnHNrXBqZ4yz+e/H6CffwQWtxqp63J3zkmnfm0Sbr8Q4kXjLVMe7MYoZbsJMKA5GsdJLML7QrQ9eAac6v8j7dkHRnI0d7IYRfQuAd2JUgb4BpNDFKAr62ul+WH2/H8A1HdcN+xjjD8TrME4QzmI0m/04pnCt6ZhbEShxsapUfhTGh/XUtO9mjBOQH5rGzunpOr8Lpzo/iL+ozdP250/7bqXtYZuC5yZSj69cp6N+12OcmH0Zbf8KjP7+t0/3/QzG5+sbsVfxHY2b98fo+34bgMdG92Ta9ncxChbfg/EZeed0zafS+HjVdO/eg9Hi8JlTeU/K+mSf4+5HALz5IMdA7/2d+uIvxL6nYJz83z89C/8c4+TvAXeMUo+fE9eaVVlj1BjcitFiOWA3HFapxz+Azv8tjKJXv+1x07H8Tv9sjO/oU9h95n8UwN+ZqaOp3KO/5wXHfSGd/0kYJwq3T+P8jzGSoCvcMd+M8Uf77qlub8EYirid1a1NJxcCtNY+AGPc5YuHYXjhYdfnfQFtTDLz4mEYZpP0FDYXrbWXYXzZftph1+UwMfnQbwPw9cMw/Nhh16ew+TjIsIKNxhQy8q8xMs07MapavxHjDOhHD7FqhcIm4jsA/Flr7WOG3C30vo7nYGTzB6WlKPwNR/1o7+I8RpPn92FUKJ/BaLb9p4MQvxQKhRjDMNzSxlS9B52+ddPwIEZzOYtXC4V9oczjhUKhUChsCDZiZZ1CoVAoFAr1o10oFAqFwsagfrQLhUKhUNgQLEqIdvz48eG66647kLL8Og28ZsPc995yL6ZOF3tstH8/51zMsZe6L/gY01+87W1vu3MYhj15tq+//vrh0Y9+NLa2ti66bl7nYf/zZ8+5vfvWOWc/GpR1zum5Xm+dsj5bpy8OUndz2223rYydEydO7Hnv2NixsQQA29vbez5tH2+P3jv8eTFYShmXCuuM93XG6s7Ozp7P8+fP7/nsGWO33HLLytg5DCzqR/u6667Dc57znIsqwx6mY8eOXdh25MjYTH4Y5757qH09D6SaJGQPeFQHdS6/SLg9Pdeb+/T1Uf22Tl+oPrF7FV3HHrAnPvGJKxm/HvOYx+Bnf/ZnL9x3+8zupT2o586d21O+fff/P/zww3uOsU9+GXjwi4CP4ReIP0e9bOwzm1io60fHzV3P94VBtZ2327m+3byNr8vf/TkH8eN90003rYwde+9Y+VdccQUA4MSJExeOufrqqwEA11xzDQDg5MmTF84FgOPHx6ygV121m53TxvLRo2M6b/5h53EYQT2HPc+alZs9n+o9M1dmVD7XObsGPwtqcuyPi54Xf2z0/D700LiOiD2/Z86MidfOnh2TR95xxx17vvvrcL2f9axnpZkGLxfKPF4oFAqFwoZgUUz7IBAxQ2agyoSamVbXmeH2muP3Y0o7KNPWuqzFz3iNMaiZ9jrI+nXdPj969OgFdhOZK7nePGOPMGfGVew5OnadPp9jWL7uc/3fY+Ln9lj5VnbUrrn7Yv2dbePrcNnAbttVn18sXFrJPeX7bXOWKF8Wg5nbOs82P2Nc/jrPXlY3dT2+bjZ21D301+B3sO2bs8BFx/B9iuph483Gmb0f2CJrDNwfa4w9GseHiWLahUKhUChsCN7nmDb7d6NtEQubw9wMex3hW7a9V7QS+ZjXwbrn+Bm2zUSVfz/zI6vtPAP3++zTfIOqnKNHj0rBkC9HMe0eRqxYXnQuswjFavaDHl+kYoG+HvuxAuznHFU31isYfPuYjTN7OmhE5fb4afm43mdsHb/yxYjbovum2OtBiuiy9wGz2B7/vp2jfNzepz1331jv5MtV5R82imkXCoVCobAhqB/tQqFQKBQ2BO8z5nE2r3qzi21jEcJBmKXWEaT1lD+HSMzSa7rPzjEo4Ys/js2s+wk/Ue3JhGiZIKS1hu3t7ZV7HdWJ6632+3qz6IVNZlHolxLKcNk94Vu8P4IaBz1m7P1cV4WJZWE7SjSUjR27l1l43UFiP6K7CDxulbiQj/f/cz9lYrY5oZYhC9vqFdGqOszVdc5cnQnveOwos7V3o/Exqj3Ru8WuY+FiS0Ex7UKhUCgUNgTvM0w7EyBxGJDKYhTNNnsZYiRAYuwnW1YP5kIu1mHavTNuoD+pS0/dI3HgOkzbjs/GwRzjjZgJJ1Ph5CBZZiWVhCQLwVLMp8cqpI7JWLRK3pIlWeFtnJyGmVBkfTAocVnGdi91CJiqq6/DOoJUZQXsYdrquhE4jIrLjywV6t0xF/qVoScr4Vz4bWYhU5Yyq1uWyY7PicrKEhktAcW0C4VCoVDYELzPMG1j0+y3BlZnvDzT5dl+di5vj8J55lJDGnoScaiZYeaD4RlnNJudY277SXqifHhRHbmsLORLMROGhX0BeSiHqkuWOpH3KZbpfWgq5Sl/z0JwFFPoCflj5hX5Arn+qo5Zu8znpywWWfu4rrY9SiXLuJgwpHXBbVLMcx3Nwdz2aF+m1eC6qdDMyLKjrpuBWeo6KZ6VFSKDsj5lliuro41R9b6Jrr9OXvLLiWLahUKhUChsCDaeaVsaOmZYXkG4rs81YpWK6fQw7Z4VZXr94JlvifcpVuuh/MTZzHdOYR75ltSsmOseqf57kuG01nDkyJGVcyJWofQIyroB6IQLtiBBtFiBze7ZD85lREyUVfDWnsiSxG3lhCXK/x7Vm/uCmbgvb+4eZpEH3PcZa1Pt4eteDkaU6R98XQBt0WPWbOhZlCfzg8/5YtnyErWLy1Xs3e/jZ1uVmSHrx7ljsj5iS5Wyekb37SCSCF0KFNMuFAqFQmFDsLFMmxO+MyOJGBarKjNmpaD849FsTMURRupOpdrtATO2bDbO23pn2BEUa4oYHTN6pQmIrBy9/q6tra0uFapibNH1svh/X34Uy8n9Y8dwWzO1uprt+6Vn567L4z/yafO5yh8f1cWevTl/bwT2u67Dai51vLaHsvYoi0h0rIovjtoeMduorCyigu9tdl+Uz97qxkvU+nO4DzIWG2kWfDvs+jymIijtUGQVsjqaBTbT++xHMX85UUy7UCgUCoUNwcYxbfYHMQNaRwGumEHmY2RmGM3AlZoxyz7ELHnOxx3NwG32quIzI3+xYrNqMY2o/j1J+HsZlffz8bFzcdo+I1pUb2MJivFG7WG/o83UWUUe+bTZ722fDzzwwJ7v/l6zKl1ZYHosEkrd3xM/y33uNSJKvavKzZgd+9KjflT5FLiPDhp+vF1xxRUAdvvBLB1s6fNQfnpm0VmMv8roFT0T/A7kctmv6/+P9nmwxgHYfY74eqxBiNTcBhXRY/0aPfPq/RY9B3w9K+/KK68EsPssRtY1O1ZFLxwWimkXCoVCobAhqB/tQqFQKBQ2BBthHs9MgWyujkRebK5h0RCb3L1JRqVKZBNNj6hMJTvw12FTohItZSbBHlP7XCrAHvEFJ7TJQiWUwIX3R2vh9ph1bT+XGyXpYNGNnWMmUN9fLMRS4hTbbybvaNuDDz4IADh79iwA4P777185h5NAGFjsE4W1qNAiNvd5UzeLh5QLJ7ueoUd4xYImNitn/ajcWAedBMPaZ+PB/3/8+HEAwIkTJ/bUP1uDm98v7GKJQrTsf05cY8jCBdlM3oO590vktlAuQivDTM9ZmJiZwXmMWn+bGRtYDetVdY3Ct9Q7mMv053CY5VJQTLtQKBQKhQ3BsqYQAlmgfc8CBzZbzdJHAvHM1GZ8HGJjxxojiEJwePbIs72oXXNCrYsJT4uEYQwV6uPrw7NUz0j8sf4aPDtmls519sdaHTxDVFBpR4HV+8B9nYXbKRabhfzZuPNsAdBis6icuYQSUR0VS88WjFD3m+81oBfeMbDgL0vMosZ5FDqlrGxzIqp1EbEvG+NXXXXVnmvy8xIlO2Hrggph9NuzkDtg973j33NKsGntsLr3LBjC14tCvnif1d8sSmfOnFk51mB9bO1gawSPIb9PCdEM0T1gZm91i5I6Wd0utdBxvyimXSgUCoXChmAjmLaf6WS+ZH9sNANVfiGeJfuZmpol88zQswlm2MwqowQDikGxvyjyi/fM3Pl6ajlFDoeKGDm32T6trlkYDDOUiNXwsdFsOMIwDDJVqb8GM2tORerbzAxEhX9YmcYygFVWwswzYjkqOUyPT1v5/pX/3f/PzC2z+Fj9uT9V+FuUkIP39bAZxawjq4qyJKlyt7e3V8Zv5E+1Oth95ufRj2NrI2slVKicv6ccCmf9xOGDvs3GpFnDY6zStBRXX331hXPYUsR6BR6r0djhdL0c6hhphPj5tL5WIXUZrEzWjvht/A5mC1MUDhtZJpaAYtqFQqFQKGwINoJpe+ZgMzH2bzKr6VngQKlOI3amlN/sx/Hn8Iw9898yO1JpEyOmp/zc7Dv1dWSmoPyCkcpc9SP3lZ8lsz+SfXURM57zXXmYcpzHhZ9Bc1uUfzViBqrNzNKjWT4zAVPVRuOS2SSPu8jqMLd0KbNbP4asvqxSzpTY3McqwVEUEcCYswpE5aixE1lrehl3lFAnGjum+Fd6mEiZz21k61JkPbFnR0V5GHzf2jnqWGPavl2mhudkJsoq4PvTxg5bBez6rAz3+/gdaWp8fr97vQyP47mIHmD3mbO2K+V+loyLNTuHjWLahUKhUChsCDaCafuZDs+q1ew7mt3PKVV7YlJVXLiPK1XqcJ55+pniXIL8THmu0jvaZ+brYWW2ir2N/MnMTNmkoFLIAAAgAElEQVTv7q/H5dk9ZR9XNFuO+jiC90tGvirlc1WpIv21eWywb9Haaiza72N/pFosIboOs75MKc1tZmsAMyL/v4o/74lwsLZz3G7EiJRGhH3GHlmqWH/Ofpm2+bTt+Yx8mZlK3Lcj0qlwfZUGJNLuKB929J4zK4DBjvFj0pft/1dMm33qUX/y+yyz/PC7gT85Wse/+9m/Paew9/Xn62bLx9pYtDb3+NUvJ4ppFwqFQqGwIVg00858IootZTHQzBpVrLBndMxAeTaXqWutblyXjFVzXRRbiqwB2RJ1XA8VY8s+Z56J++uw0pOv79vHrJ9ZBjNu/3/PEnmtNbTWVvzrkcWFM+MpP350TWMz733vewEAp06d2lOWZzXRYgRAropnnxsz0EjFa+yBY+CVLzvyhxuU7iJbCIVZjPlJoz6x9rDvnP2HkY9ZaRpse7TYTGTtYbTWcOTIkVQxb23le6naA+z2y3333bfnu9Jq+OeV45jtGLMCZNYFLo+fNe9353up9B32PfIxM8O262SWFnuOWEth7bI6+j6xccXvbaWx8Meo3AHWHv8csK9+aSimXSgUCoXChmCRTJvZdJSNSWXBiWagasYU+T2BeDlHPsZmY6yc9VBxxZEPi2errMTmGXCkOOZ2Rn42PsfAM2v2PfoZNh+bZQVjsEWErxNlPVOqaK7/MAwrit3ISmPIcj8brF4W63rXXXcBWFXf33vvvXvaA+yyiWuvvRbAbhSBlRnFVavMcYYo4oHzeDNLZ+tTtvSoyuvtGSv7Oa089p2ePn0awN4+sXFkscLWR1l+fqU5sbozS9wPIuW2L0897ypnAbCrWLZPq6cppbnfsjqwVSaKBLC6cFw4M1P/3mGNDusv2GIV6WIMKk7cvwc5h4Nd1yxXKnulv97JkycBAHfccQeA3XHO2ep8X9gn+7TZKuD7xPatE/N/OVBMu1AoFAqFDUH9aBcKhUKhsCFYpHncwIInQKd55AB4b+6YSz7BZkR/PbVIAZsPs1AVtRRodB0OvTCwuSwyi6nl9CLxEps42YRmn9HyerwAAZvnoxAJlaZVLfji69hjHrfkKnadaGEDBpuiI3eCmTbvvvtuALtmchPF2Llm5rXtAHDNNdcAWE0YwYsVRONACY0iQaQKm+MxFfUnm1vnFtXx57Pp1saD1ZndAdxWQIt+ItEki77YtBulH+6BjR02ffvy2E3Ez0lkQmWTuZVv/cILyURl2L0zF4tdPwp/Y9cD90v0bKj28H2KkqsY7Hpm9u+5l2q5S3uObFz4PrJzbrjhBgC75nJzTVkdrR6+rdYeNotnSZ3Wef9cTiyrNoVCoVAoFCQWybSZYWcp5njmFoWFqLAMFWAfBdrzubx8mwezbhV6Fc0259I6RuIIa7PtU8kU/PU4hIUtCHasMcdoJsrLklp/2uw4Eq+xyFAlq4nqkqG1hqNHj66EkHiodJfZ/bI2mfjF2sRjJVs2lJNc8CIJ0RKQbGnhUL/IsqPESxz2ElmheIxyH0VJathCZWPF2mDfvWCJLUUsZozCIZV1i8VY/j2xziIPJmJUqYR9W/m9w4wtCvkyC4TV074bI4zSZDLbt3MMkcWF0yarZVez1Kf8jPBY8kI0ft75+nb/oyQ1XP8bb7xxT91YrOnrZNvY+sALffjy+b3N49tbB1Wq06WgmHahUCgUChuCRTJtRpbshJlHlgxELcHJn36GzbM7teiEB7M8Tn4fzcpVeJhdn0NOMmanQrCylJR8rkq+4s9R1o6IaStGHaURNHAKT7UQgu07evToSrnRog9qHERhZ8awrU3mczNft1pYwe9j3YBaHMH/H1l9ojb4c1RyEH42MuagUlFGC2HYNk7uwr7AKPzS9ln/ZsvIKssYf0ZLgPZiGIYV/77XJ/DzZt95wQ3fDma4HCLHz0tkUVR+6ahearEcZq/eT6wWCFHJqvy9VHqUnncI623Y5xwl2TFYe2zsmHYkAid44XuSLeWcWe0OE8W0C4VCoVDYECyaaUdJ6ucWuMiU4sw4ePaa+QuVn7AHrBq1OnpmwMvzqaUsIz8vz5KVEj1KX6msDNzOaJF4ZgyZb1jdp2zBikzBHGFraytNy8l+VO7TqJ+iZRP9OZx0wrdZ6REM0fKDfD21CEcEpczP2qKWVTVEzxM/J8zKOOlGtkDJXJpgoJ/xeH9rZpVhWBrTLF0uW5VYAZ69d1QSIo7qyKwDfP3o/cdjn8u1fjSG6uvA/a+SOvnnSSUdYetApE9gS0LPUr1chnrveHC7oqQ03Bb1XlgKimkXCoVCobAhWDTTjlJ2KtUpz3SjVH1qNqz8Rf7a2TG8Xfn0siUL1RKg6vo96mhOxxcl7leze+W3jvYxolSbc5aErByra6+K3CNS83Lf9fjXlf7BEPmTOfaVxyHHyPp97GfnxU2y5Ty5fdkYZp8l6xN6tA0GtjZElpKsjz2i2F61IE6PrmTuWtvb2+kzbtdgvQan+YwWVuH3GF8nWliI2SSn48yeBeWvtXO971ulwOWyItapUjjz9ugZZHCfR/2ptAwqAsHXRd2LrO+5jKVgWbUpFAqFQqEgsWimbchm6opFR8xXsaVsJqWYQQ+jU0rzLHMYn6NmiJmPUbF0PwNV8ec9fmSlTlZ+8qwMZfVYt058TmSRmCsv8ynyLJ7VwlH8PNdFZTuLtAbMlsxPHEU4KF+2ssr4c5VflVXekZ+fGY71AS/ZmVk75p7NqF3ZAj/7wTAM2NnZWcl3kFmzuM+jpWDZ8qHGV8QQrQ7MjrnMbHxzljteqCSrk3q/RT50ZcHKso0p6xBrljxU5Il6/0X155wF0ft9nffCYaCYdqFQKBQKG4L60S4UCoVCYUOwEeZxDzb9KcGUN+MoU5wydXnzyJzpOQrX4CQKhiyUQJlulakmMqnyMUpUkrUrOpah+jpzOyiBHe+PTJK94qXIVBiFkKm2qT6P6smCoCxJg0GlyYxM3Sy2YsGYNx+qteV76sEpaXsWDFH153ERlaEWJokEQQo8hg4i+cX58+dXxoevC7uyeDxHoisl4lOuvcwFwc9HtH63gdPmsgvHEgR5KJGXEjX6urEAkVOVRkJLFYqVuSrV+4y3RyFmPDY55CsKg+xJRnQYKKZdKBQKhcKGYFFM20IvePYYMd/eFHr+/Dnmw9fwxyiGHSWU4IQVHF4QpeVUYpUeFqGC/7OlOfk6Kmwju55KJRuxd9XXXDc/K+dy5kK+ovZlzF2lNIwWLZkLN4rEOEoUl7FJLo+XGI3GjrJSqBSYkZWG28njOrJYcCibEmtmyTUUU83u2xwbXBfDMOxh2oboPcDvH752lD5ZLVCTWfzmkvlECWdUmKAJ0KIxxZYi1ZfR2OVxZ4ybRXnRoibKQppZGvkZVKLN6By1wBOHhEXI9h0GimkXCoVCobAhWBzTPnLkyIUZFKdDBDSrzPxRPSFIar/yNXPij2g5RxWekaXFm/MlRXVkZs+shdla1i5mR1kIHZeRJSVQoT1qgYoI66QT5PsU1XNuEYGeYzJmoHzNmX+fGRWPmZ4+UH2dhW/ZPmYiXA9gty84Te6cNcX/r/otYkvc12zVyBIO9WIYVpfmjNqjkqlEaUWzcMZov4fy1yqNgz+Wl7XkMKeoPIO6l9EzzuPJ3tfRUqMGO4YXCGGrTfY8rWMpY62EXV+l7Y3aHP0OHSaKaRcKhUKhsCFYFNMGxtkbs6+MLTEziZhhz9KOHhEz4OurBPdROeoY3y6VbKDHD8rsSC364Wfac/5Pvn7UPpXcnxPDROdzHbN71ON3snPXmakb1Mzd/8+Mc64s/79icJkfPFsYBMijI5SvryfVqvkllVWC//fnrpPucY5hR9dT1rTe8ZHVZWdnZ1/pKvk+RRa+LDLCb49Uyjw21XPr68Jpf9X7ISpPWYMips0s2a5z+vRpAMDVV1+9cj2DilJYx5LEiPpZKcDZxx29Jzh18FJQTLtQKBQKhQ3B4pg2sBrfF/mJ2I9riGatc76lDDzTVD7n6HpKjcpxgFF5anvUPlaN8vUixqcYglLJRnXg9mT9ym1WvvOo/lxGBnW//P+KNWc+bS5DWUJ6VM+GbJY/F3sdxZXysXOx8f4YtahNBBWVoNTkWYpIRsY6Db0alXVgbNtfO3rGuK3WTxb7bEptf+wcM8zaqqxAkUVGpZ5l5h0pzg0qzSzv99dhaxkzbn+N48ePh+3jZZizMav0JNE51ma7P2rRpuiZjzQAS0Ax7UKhUCgUNgSLYtrDMOChhx4KF9Lwx3jYbIjPidhL75Kcmdp1Ts3pz1FxzOvEl/bEbSv/kyFjJiqWt4cBz7HMrH2Zz5SvwzoCBd8+81lFfvw5Nhltn2Mg68R4Z/e/N+bZ94XqF8XKouOtfHuOOB44illmnx/378Uuparaofr1YuCvGy0LaW21ccW6myzSRS2ks87zohipv5d273jhFkPE7BXbn3vf+Trx+4efPWPc/hilMO+5l3PjICpDMXjuV2A1N8FBWnQOAsW0C4VCoVDYENSPdqFQKBQKG4LFmcfPnz+/EgCfJUpR6UU95pIaZGYqZa7JkqvMCXKitIUqmUGW0pXPVWacdVJ6qiQH0TkqqUqPsIbNclnSGA5hUvAhX1EiEXaTqE9v1mWx2DqhSjxG5sR//tqc7jFLAMPlsjlcfXpwH9j1OeQNWDX3qkQwnLY3arsSWkUCK+7PgwzF2dnZWQkx9XVQ/W/1z1wB6r5n5nDuMzaLcwIVXwd7f1r4nlr7O6qLCv2M6szlR8+PPw7YNZVbn9g463GTzJnBM3O2Sn/NbiCgT1h7mCimXSgUCoXChmBRTLu1tie5ShZ6YVgnccqccCUrg5kvsxZfpmLaNtvjFH5R3bI+YHAfKJFXtGwkl2+zdJ41R2Ei6jNLeajEeVwvX04v0z5//vzKjDoKF1SLFHD7om3cX8x8fFm2jccIMwIvouTUoFx+FuqjEv8wm41EU3NJYyLh21za0uy+KbYZCayUCHAdQWcPMqGg6lsDP+MZ1PMShR2xUIo/r7zyygvnWFgTjzu2WPlzWHjIx/Jz6hnp2bNn99TRxGUW1hVZH/g9w8949g6e69vIosPjmp8V+x4t+LRUFNMuFAqFQmFDsCimDYyzJWYt0cyHZ2bZLGzd0KQsIQd/8szU/98bLhZdWwX/c1hFdAxfN0vPySyMWQAnZgD6WDJ/77UkZD77uYVWzp07J8NrPFT9VTuifcyAmd34/+fYmW+XHWus6YEHHtjzmS3gwXVSfjwry2/jMctlRVYavqcccmTItBtqrEbPRs8x+4FpaXgRiYjt94TtMVSaX0b0fHJd2Ifur3/mzBkAu6xR+bavvfbaC+cY67Zj7Tr2fuGFUHz4ll3P6nrVVVftOdbK9vefrZAqPLDH7z8Xfun/V5oA3h6VszTfdjHtQqFQKBQ2BIti2l79C+RB8irVXOaPVGwyS9bAbEnNeCOVcjaLYygWxr6XqH1zvtme5ed4tsopEaPrsQVDJQSJyo8U9Ax1TnZ8j++fx0ymAFdaBuU37GFnzLz8OcawjfkYmzG2tI4/Wvnf7Rq+/pwymMddxJZtG/vbuexMV8BtyKxCl0o9bkybkwZFimL+ZIV8FOnCFiJ1fyLrCWsz2BrgrSZ2X40Ns9/YWLM/x65p48v81OafNrZsbbD9vnx+F1r5UfSPWWFUlErm51cW08zCp6xQbFmIIiqy6IfDRDHtQqFQKBQ2BIti2sA4q+nxZyjWnC1uPpe2NEoRyfu4jGiGzQyb41YzFqt89BkT4ZkgKz8NGVNVqVYz5sMqbKWWj7bNMa4ImW+JWXbWt3ytddJizimYe+LoeTlMD2M8xpaYaUestlfToHzrfp9CFD1gYIaq9BIeSi0cncOsXy1TebFQrAzYZWZR5IevSzQGe/MYRKySnzH2Zft+Yi2DncOx0BE7Z70DW5IiHzpbZ7hPmOH7Y3nM9GgG1nlODVZ/fn7Y35+lBT7ocXaxKKZdKBQKhcKGYFFMu7WGY8eOrfhiopnO3Gzesxi1LKShZ+amFKAZs1K+q4xpRwu5+3Mz9qIW8sgyy3E8sLpe5CdS14/aoFg4+7A85jLZMXZ2dlau3eMzz+6/8mHOZcjy4IUjWJnrx6ptU/kAsgVqVFz4OlCWpCingIqJz6I1lOWKsU6M9EGBx4Fn2szQ1POfWXu4n+wz8qdyRjylI/H3xcYOx/+z39oz7Ugj4ctgJurHqvm97br8nbP7RXVUVqFsDKtnLronSiXO36PoiB6L72GgmHahUCgUChuCxTHtI0eOdGXAmvMLRTNePkct4p4xRJ59RbNk9nvZscy0PJQCUilQM9bMPtPoesoPqfJTR/62uRlolhFtXRbdc8wwDF2x4uqeGiL/vYqbV7N9YJWlMvOwuFa/TOHJkycB7GaVuvrqqwEAp06dArAavw3s+r2jrGxzsPpaHZT2IIrqmIse4Gv4c1SkQzSm1vFhHgQiqwlHDag2ewtIFk3hy2eLmC+HdQ/sz/csVrHVnkgNho1ZGxdRPLX9z0pzHjNR9IB6jlSUhgdHXXA8tb8HKm99FqfNY7DitAuFQqFQKOwL9aNdKBQKhcKGYHHm8a2trS4zDpvMstAhNneoZPjR8cpc2CMMi9L4AatiDH++SijSk5aTBSCckCE6l03dSiSTmY8Mqq/8/5GwSbVPhZRFsJCvbDnP/YQKzYV0ZWUp8zibyc0U7rddc801AHbN5RwC5tNJ8gINnM4yM9OyaTMbz4a5ELO59LbRtqwfD0sIFJlZWbjFQsoovGkuGQinCvXXnlssJRNw8nsnMnGr941KrpK9m9kcH4lcVUgpm62zZEVcB+6jHvM4Xy8ToZZ5vFAoFAqFwr6wKKYN7E1luk5Y1UHI9DO2p9hKNAvjWducyCcqd05846/LzI2ZvO2PxGTMmpiVR2EpPKNVS15GohVmnz0WhF4BjQ/5imblc4lyIqhjFfOJypoTd0VpHjkxhjEeE6/ZJwCcOHECwO44u++++wDshuvwPfbXU6JJJRQCYnFQ1PbsuWUhZPa8Xi4BWsZiOXEJtyOq41xYI99/v5/Foyqpin8uo8WL/DnZeFPCUGab0bNo1gerC4ctRglZlKA3C1tUqWP5vmVMW4VwZu/GpaGYdqFQKBQKG4JFMu0sZGAubCdjZfs5R/npVLKN6Fz75FmtnxEr9pWFFBk49IJZbORbUskLuC8yS4JKZJL5tNW9je5FD3PjumbJLubqGdV7LilMVsc5FpkxA7ZWeL83g/2NvHBDTxpTBicY8YxOLYCi2KC/3lwYlCHTpFzqpBeRP5VD/zg1cfR8ziVR4Wc8SmBjUCGH0eIf9p5RCX/8ddT9YAsCLw7ij+Hv3Be+H9V7gJOecAiYL5f7QDFuf/5cSFn23FZylUKhUCgUCvvC4pg20OfDnJshRslHlMKcZ3DZLN/AMzZ/HCuXFXvKrsOKcIZvC/uL1QzRz/TVzH0uAYSqg/8eLSCg1Kc9963H92x1XUfbwHWKmPbcsqcZ1LjLEvRwCl8+N2PeioEwi/E+aR4rPC6ixTNUWmC+XubvVc9v5E/MUupeCkT3hf202fNvUGlMDdwHkTVjLl1udC/5Okqv4v9XGpPM98vvHRVxElkU1XOq2HR0LLfb4PtE9SOr1KNEOiql9GGjmHahUCgUChuCRTHt1hq2t7dX4o0jtWrGALPt/lxD5MOaOzaaCfK11UIh0aLqahY5N1uP9qkY24hpz6nve9gNz7QjVq2U4Jm+IGPuDGPZWcywupZStvt9zF6j9LV8PWVd4Nl+NsufW2DBb1MWAxXr6/fZpzF9/r5OGlu+T+vkXYi+X241Lz+v0bU5nWlUxzkVtyrbX5vvoRp3vnyum5Vh233qU87poDRDWR35k/si8qFnWgCPSF+ilO2GKLZbxWtn8eDZ++YwUUy7UCgUCoUNwaKYtjGlHn/hfvwMPFuMFgjh49iHlPmwDEoRybPKaFk99gup+OBI2arqHDHw3uUbexTVKg4582krFXbkq2c2oBCpVD1UvZlhR/VWWfTYbxtdl3287E+LlkdUvsaI5dr5HC9rcdq23ZTGnq3NLVmYWZR6Y9Wz6A/FsJcQIxvFabMehZ/tSAGuYuCtD6KsXDxG+Zio/3rGM5/DVjm1oEf03mFGz4jGKr8bVSRK9Mzz+0BpQ7I4bXsWOCoismAszZdtKKZdKBQKhcKGoH60C4VCoVDYECzKPA7k69FG2I8JQ4UqRaILZeJmM58vk4UsLGyIhA5mHmczOadPzEKj1Nq0UZIL3qbak63FbVDnRqEe6jNKfcom6exeD8OAc+fOpceq87PQsjmzeCaSU/dDiX38/8plE7WBzeN2DJsCo5AvNqmrkK/outw3diynRo2eY25nZv5fAqyf5oRbHnOhSYbIRKsEgiqhjf/f7q+FBWYJlJS5mo/l95E/h49lc3VkemY3I/drJGJjsKsicgPyu1ilS43qGL1rl4Bi2oVCoVAobAgWx7SBPJUmzwR7QpPmZko9aU3nmIc/h9mpqpufRTKT8jPo6DrRDFTNOLOEFTzDtj5QoU4ZMsaqGCp/+nb3hMZ4+JCvqM+ZpfD9yBghf1dCsSjton2yECwSr7E1hpkCt8HvY7ZgbOL+++/fU1YkJuJQrx7w2OBEND2pabnfliRE87D6mLjPnnGVlMjvm0u3mY1VlX7TwraypC78LBv8+6n3PRM9M3P30pBZ+PiYzDozZ7mKxjdbSlWoV8S0Wfi2FBTTLhQKhUJhQ7CoKcQwDLM+bfZ5sH84Y4YqZEixwOhcZjXREpBzKUGj/Vn6Pv+9Z9bHs8hoJq+YtQqryPzTc2w02sfMOprVzi244MFjJ8LcfeE6zm2L9mfjQCWs8PU2VpylWVTX4fawDzta9CEKN+oFjx0Vxufv6ZyvPnqesvt+ucFhTvZcGAP34HeQshzZdlt+FVj1C9tiQHwPM9ZsdWXLX/ZeVSlqs2d6P1Y5vu5cOCagx06WKIV92KzziJIHsVVhafqKYtqFQqFQKGwIFsW0WxuX5WRW6ZNPKJbEn9HMSSXAYKW0n93xMnfsA4kC+hXji/y2c+1Sx0WpATmZQ6b8NcwtmtHDmlUyjey67DOL+p59pVE6W4+dnZ0uH6OyuPQkkuFjVMKe6Dr23VgTswBgl7FxtAKPqWiMqQUbVLKdqP494HZw2mFm2JEan9lz9vwujekAu++kLHGJ9Y9SZDNbjlgzq9N703/6Y/hZi9L0zqX4jd5ZytLGfeLTpqpFZgys94iskcpSFWk7WKthz5XpS7KkQRwNsRQU0y4UCoVCYUOwKKYNjDMx5WcFtK9X+fX8/8r3ykw7UzAzE4hmd8waeKbbE/enZvA98cyGLD4zizOPEPnDDTxrzlKIKobN8en+mN54/XPnzq1oHLJ4bWUpyHx+PfoHrj+zFKWPAHb9mvbJPriIeXN72JepFOm+fGUxyBTuKlY90zzMKaezePQlgi0e3mrCbJUZNvebMXP/vyrDEKm5WdPAfmo/Hu06PK7tnGwxHX4nKZV8tIgKW6o4t0CUZlml2rVj+VxglVGbJSvTvyx97BXTLhQKhUJhQ7BIps0+be9TUInzDT2KP2YPWVYu9meoDGKRD46vw+w58yf2Kt19HVVmtx7/F5fP/RcpMlWdIn8VWzG4ryNW3eMbNxjTZpYZLSKi1OJZtjl1TKaXsGOYNXE9IjahfHERE2UWbudy3Gykv+ByebnDaHxn+6I+yuKPlb996WxHIVK68/NgbTRfb6SyZ4uLHWufkaZiLiNiNL7ZCsRjhusYWdwiK1n03YPHDGsEeLEbQC8FqjL/+XZE+xR6rY+HhWXWqlAoFAqFwgoWxbRba9je3pYzU2B3psR+E5XL2G+LsknxsVndgN1ZZab2VmxBsbMIyp8bzQJVfuyMtczFjGbZmmx2zv5jrkeUF9n6z2bwrF6NmGoP+xqGAQ899NCKrzzy4zOUct63SS2VysjuKY/rSJFr5xvD4mU2o75gP53SNkTLynI8MPsAleXFg/2DmRJcaVDWycS2ZPh+4ugAfk56sjnaGLnqqqsA6OfGX48tKux79lCskpl2loGRn3duR6RJUpnRlGUpahf7sHuY9jrREpV7vFAoFAqFwkWhfrQLhUKhUNgQLMo8DowmiSxch02BPeYOlVSDTX9RWkllAspEZb2LmkQJYLiO3BeR2VylAOwRcinTc5Y2k8HmXg6h88eoZCpR+zm8KbvXOzs7eOCBBy6Y87L0snMiP39vuRzliohgZju+Hi824fezyZzN8pEpVdVBmV2jc3lcZWFwVl9ehEGlf8xEmkqQtqlCNA8WBqpnOVqspXdhiyxds3Jb+PGWJXzy52RuIRXilz3TdowXmvn9UXuV+Z/N41Giq3VS4WbJaJaAYtqFQqFQKGwIFsW0TYiWsTpjUmqGFgkrFNPgzyxcg0MhsuQaihEyY4zCaFQyBRZlRcw+E1T5dvr/1dKcXK+I2aukNFGSGrUwyBzD83Wdmy2fO3dOLioQQSWJiVilYthK0Ofrrfo2suzwucwqMjbBoV88VqKEFczgVZpW36/Rwgz+e8aW1QIhWfrZTYe1jd9ZzOSyhS5MIMjiT2/NUklVuG8joSWLyPidElmNWAzHobrZ/VepR1Wooz+G66iSrfj/LyZd79JCv5ZVm0KhUCgUChKLY9pHjx5d8fn5GaiFwmR+M7/dyvXb+HsWbqIW4zCsMxvr8dGq5fwypq2sDBwyl/XJXGrSiH0qP3/EtFUCGLUwgkePn3MYhtSS4K+tLC09VoWMHQHxPZ3TGKwT1mLfs6QTaqxkC8goa1Q2VlU7VFiXP0fVKWPaygq0HxZ1GLB62vKrPPYjVskheGyp8qlPDXzP2ALjwaGsDBXOGe3jhX2idwe31dpnfWLj2rRLkYWHmbXybft96yDT2SwBy6pNoVAoFAoFicUx7WPHjq0wkigdplIFRskg5tS1nOq2UsgAACAASURBVLox853OpWz09Z1T4mYLvM+pNqNkLrxvnTSmKolGNDtXrFP5rbNzMh/xOgyqtXFZV2aq0eIv6yQOYcwtZRphbiGXCIqRRixWLcGprADZ9eeYMKAZ7lzijJ7yM20D+1A3LSGL0gCwCh/YZZysQOflUCNLEvcP3w9/Dr/zeDzb9ihqRqWgzXQeXBdm2GfOnAGwy7R9n3A/qWfCt6/3HRItqavSTx82imkXCoVCobAhWBzTPnLkyArD9ouoG5jN9fjrFLNiph1hbjaZMQO1kEbk6+lJWzpXV1Z+RrPNufIyBty7NKOfoXKbe/qE78ucb8kzbWYIgPZhM3osEnOxqcDqfWAGHNVDxcer++P/n2OekTZAaUMyjcjcwhQZo5/ze0exxAYeVzw+omd/aSzJw5ij1d/0OsDqkqmK+Wa6Eb63PfkOVP4EQ6Sl4X5nS0wWf25M2/rCGLZtz/Qe/NmzGEgP2KKztIiGYtqFQqFQKGwIFse0t7e3Uyak4hR71NX+OnwMkPuylUI78k9H7YrOiVTK6nu27B3PrNW5EcPi76qOkc+H96lPf+wcK88yyymFqwfHJEfxzMwmGL5vFGtRPu3MGsAx/tk477VM+H3MQFUceGQN4GP4GYmeDbVUIu+PoNie9Umkh+B+4vsX+d15WdQlwVgls2hg9XnghWs485//v+c5Mah4/B7dR2aN8fXxx/EymqYet++8P/KHq/HdYzFViJ4n1a7DxvJGcqFQKBQKhRD1o10oFAqFwoZgUeZxIF6swZsnOFUmm0TM5BSJe9jkM5dulMvxZWVmI2UqzURLc6Y/NldHyU4YKnFKBFXnrK5KrJKJ13oEfFz/nmOBsZ2c/tMnIVHhZj2iK96nXBCRyX3OjOihhG4sysyEWhwOyfcjEqyp8K2eNKYq1CwT2rGbgY/NzJUqLWcmuFyyIM3GqJmKAd02HndRGtO5Po3OUe6qHlOzcoNk61vbe5qTqXBYV2QenxNNroNMNNuTfOswUEy7UCgUCoUNwaKYNgvRImEBMw6efUUMZC7VqQqzic5VbDkLieHQL99ebldv6FUkYptL0NIDNTuP6qqQXU8tJhDdt6zNCny/bAYP7DIMDiFk0U+WFGROkBYlc2Emsk7aXAOz2UgspxL/KBYdlacESR6K6fQsGKKsDNZuDrfx7TBwf2ZseqmpKD04/MmDk5oo0aGHSiPK7yOP3sWGIhEjf2dhorcgzDFtXhQkswrxuLuYZEmRaNZQQrRCoVAoFAr7wqKYtiFiLQab9Rhrspkaz9Q9ssQrQB8TUSwsY75qJpj54Jgt8Lk94WJc9x7fNs9SM/871zWzOnD5c6w5WpCAy1AYhiFlpCr5B/uwsmQnClFYEvel8gFHoUpqtt+TsEJZBaI2sX9anRuF4qlj564P6PEVMT01dnr84Ep3sUR4/YW1jUPW2GqXWahUH0dWjF5fdpYwh33YUSgg++/VOZEPX6Xlzfz+ShfDoYWZNmBpWGatCoVCoVAorGBxTHtra2st36X5JzkYvyfNJx+jEk34fRl74Lqp7ZEPbp3FPXwZ0TZ1/ahdzAIV6/QzbJXmj8+J2qCS1EQz+GgWrDAMQ5hoIgIz04xdqPvB9Y2Sw6ikINliHHPXY2YcbVM+v2zpQmY42eIfKo0ktyHDXPKYbPyrYyIF8KXyae/Hf7oOePnJaMEOILZM8fstG7vKd82q8uh5snKNPXM60Ug9zj5stQRtlGRHJXxZRz2ukkZlvvqlRR4U0y4UCoVCYUOwKKZt6nH/PToGWFVI2oyM/Rz+f+8z8lCpKn15c77tiIkqP6S1wauYmdEq9srHR9t6ZtiqfGY8PUpgxbB7/JJZOzmuNGPPwzDs8Z1l/mJml5mfcI6h8XjLfIxct4hpq/Gl2LRvh1Kpc3sjlj63CEhUR6UVyVgoq3UVo462R8+2v07mq+1BtjiGgS1Rl1pZbHWwd1cWgRItIuLLiJ4jlbuA06ZmPmY+hpXg/r1rvmxm1rxASk/+BhUNlDFjtuxF6vHLdW/3i2LahUKhUChsCBbFtIFxJtSzoALPlGwWmc3u+VxWPUb+1bn41cz3wowky8SVxUV79DDsbDZuULGtXPdo5tub4aunrj3x2opBMCKFczTrnlNIZ+p3LkN99+coq0WkoVALdDBL9vt72XLkg1aZz7KMaGps9EQE2HNq99Lakfm0uU49eohsIRpGaw1bW1tdx/pzPCLf6EEtFelhdYtiunlpTn7vmGXPP0esT2GVusoX4Mu3c41F8xj2TJuX4GTfPdfLX4/vDz8j0bPO7VA+7SgTp2FpKvJl1aZQKBQKhYJE/WgXCoVCobAhWJR5fGtrC8eOHVsRQURyfDavmWkoS0Vp5iFl+uMFFvw+FdYSJbZnkwyHbURmPV5Td24RjkyooUKNovAQZWpU6Vujbcr0lAk5VPsiQUivqGh7ezt1LyiRHbcrE90pE+06oYD86ccWh8nwMZF5nIVoSujG+6M294hv5kL72IzZY47N+lEl/DH0uM/mxo6ZyP25WQIjri+boP05SgB7EPBmcl4sic3HlqglCqFk07J6V0XvVRYHc+iXP4fN48oUHT2jPDa5zpkATZnfs/fp0szihmXWqlAoFAqFwgoWxbRbazh27Fgq+lHhOrbdZpFquTh/rEok4mdlzFp4Fh7NQNWCBr6dfJ25ZBN8bsYClCAtCqfjGWhPqJdClr5SCY1YCOJZ2TqCkNbanpBBtUiLr1cPS55bSIH7PhJ5KdFaxCY42cScqMz/z2I1JSqMhJZzqRuj8D0+lu9xtPiHCvHL+oShQsyiNKaqrgyf1KknmQYzUGurZ9pcB7unlyqUiFnw6dOn93w3dhstaqPeFfyOjMYOl8XtjFLuqj7IBLCGubCtaGnlLLGVKj+zZh4mimkXCoVCobAhWBTTBsYZUJamTs2Y2I8WJdWYSxGqfEH+XJXuMfIT2rE8W41mcipJRw/TVvsy1s6zcuWXXAfrMFa+bpbkoBfeL9mz8ISqv4e6L0oDEOkhIq2Euh73Ifurs7At9imqJBQZW5pLtgOsWoVUuGLUJ4r5cD9G902N2R5mlI0ls9BkTJste3asMess3IjrwHqFy4UoraiCtY8TsmRjVt2n/SBKlKLejaxbiBLAqKQ+c6mfl4hi2oVCoVAobAjakmYYrbU7ALz9sOtRWDw+cBiGR/gNNXYKnaixU9gvVsbOYWBRP9qFQqFQKBQ0yjxeKBQKhcKGoH60C4VCoVDYENSPdqFQKBQKG4L60S4UCoVCYUOwqDjtkydPDjfeeGOa1WoujjmCih/uWV5xbt/FnHPQGXfWiT+eu3a2fy52PMvaNpezO8o1zFnB3vKWt9zJKs7jx48P1113Xdqm/aCnbdH3rKx1rrufcw8b68RLq+/ZOFCZuLI81YbbbrttZexcf/31w2Me8xhZ5wiX4n6s88xdKuxHmLyfrIkHWcY6+fLnPgGdg+Md73jHytg5DCzqR/sRj3gEXvCCF8BevvZ54sSJC8ccP34cwG7ye5UExN8ES4zAyQU43aMhS/OoFliIUp/2npuBE7Nk6Sb5h7BnfWiVoCJLXMETJ55k2b2xT2A3CcWVV16557slb+C1eIHd+3bq1Kk9nx/1UR+1Ep5z3XXX4TnPec5KOy8WVj9ei5gnlFE6yLkXbU8CGLUASraAi0pg0pNIQi0G0vODyG3IyufnhpPIRAui2OIYvNiE3ZuehTluuummlbHz6Ec/Gi9/+ctlv0Vt4nWns37qeabU9dZZJKV30p6933oJjt/G6YZV2aoO/phojXl1jFo/PvsBtne/jZUo4czZs2f3fNr4e+5zn7uIsMAyjxcKhUKhsCFYFNNureHo0aMXGBqzMWB3ZqsYSGbuYGbNM7Me01x2Hd8O1b65cxkqcX50rkpf2XMdxRgjNjg3K4/O4eVKDXYfjYEbi/J1ueqqq1b2XW7MWU/YItKDbFEENYaiBQ/Y2jS36EbP9fZjrpxLN5phLsVstq8nLWeGYRhw7ty5lWcgW4ZSLUDS4xKas2pF+/aDHtbcy7S5Xv6Y3vedB1t9ON2onRtZMFXfq3e136c+ozZky5EeJoppFwqFQqGwIVgU0wZGRsbJ3f1yd8y0mU1GCyqw30ItrLCOD4aR+fzm/DcReLbPCytkdVC+nsgPalAsIGLNnKBfLdHot9s9VPU3a0rkb7NtfhxcLqg+ND8X35dINKnaHO1nJj23pKnfZphjE3589i6ikrEz3m6I+oT3qWVEs3LX3d+D8+fPr/RF5FdVC95E/aesVevcU6VTyN5Rc9bBaJu6lxcjsMwsOso6p/QZfh9bqHo0FGrBk2y5Wj5mKSimXSgUCoXChqB+tAuFQqFQ2BAsyjzepvWQzTRiJlO/Li2Lbtj8EUn4Td5vQib7ruLxMgGKCuNY55zIhK/OZbNRJC6bM4v3rIVrn2q9WW+C4rAnu09cvj9HuSQMHELj2xEJEi8X+B6pMKrIVMdiGxW2E4nK+Bx2C0XlcB17zJZz5s/ombA+USZbPicT+fD69NFa9tlzchAYhmFP+7Kwo7kcBZF7hF0d/Izx/qg8Zb6O3gN8f7gd2f1XJvXM1M11zJ4JhmpX9J7j8MB1xpmqSzS+9xOaezlRTLtQKBQKhQ3Bopi2IcuIZuDZMLNpS9YB7CZlsGMU084YqUImQOH2qDZEUGENESPhxAE8I42SyKjZ5BwrAHbvizFg/uR6+PI4WQknLckEVp6FX24o68hcCJDfp9h5xGIt7JEFcNHsf84KtE54Ih/LY8nXVx3bEyqjrEDRM9gj3LwYtNbQWusK/VTIBJtsmeoJq5xjhhEDZlapGKlHT9KWqM5ZHTMRaw/T9dv988YCZX6/RZgbO1lYWjHtQqFQKBQKF4VFMu3I12dgVmyszti0pZ47c+bMhXNsm7FwToPIM7aIVSgmFc0mjU3ap+0zVhnNZtkfxG3ndntLAqdptfbZdrMsRKkh1SxSsQRglwVaQhROTRrpCqzNdizXObKqZDP2pSBiBAxOHJFZMZglsV4gY0vMtFSolx9bSjOhrFD+f045qrQVmd9V+TCjdl5K33YUDpmFxmWWDwb3B4919cz7fXP31oPfJT1jVFlneLu/3lyK3ei5nfPRsyXRn6uSY6nvPe1bJ/x2KVjeW7BQKBQKhUKIxTHtbOYIrLJHY5ynT58GsMuw7Tuwy8I5WbxSla+TFtFmm17ZbGzS0m9yIhiltga031a12/+v2rMfsM/RpxA1y4Ut3mL77Lv1n2f2bG1gRXiUOCVTo28i5pKR+G3MAFTUhP9/zh/JPkG/T9XNxpDdc7+NLTrMBjM/71x7VVsvFcyvra7LOgRmrZHWhNvPug0b+5nFZZ0xrywdmbalN5FI5vs1sCUs0zbMWXYifzVbV3ncRVYhq68dqxh3hINIJXspUEy7UCgUCoUNweKY9jAM0p/r/7eZEzNt+zR2Daz6WJlpRz7YXkQpQnlGa/tsO/u6Ac047DNTx9s2a/OljmtVM9AoxpbPYRU5+3nNOuHPWZp6M8I6dZ2LwfXbmEXzePD7VGx9Tywx+3Gz5WuZ0ah440gPoSxJWXyuWlbxIJHF+AKr/WR1yPI0cNk9C4Wo+ij/dxZtwe3oyQ+hfNnKf+3rNKdtiOqilmSNdDg8NnmsRO8lvi/qmcgiBYppFwqFQqFQ2BcWx7Rba10Ly9tsyxinzcjsXPOvRuewz1fN9oDVWSmziyhrG/uulJrSz5KZlfNslePR/QyyJ15xvzh58iSAvf3JPjmO2858mdb3p06d2lNGlBXKWPcSEvarhVR6ZuysGubx7aH6lvs080uqOkbjjq1APA7tnkb+XaujsqJEFgQVCWDH2viImDaz9INk3MMwpJoD5Ue1OmT+Yma4kTWBwdEbajz4PuGoFWbHPfHzczHkkZXGzuE+4neWP2bO6mkaiohpq/pnlh22TGRZ2zLmvgQU0y4UCoVCYUNQP9qFQqFQKGwIFmUeb61he3t7xawTCQtY9GRhVpG4Qy1OwGYQ3u//Z3OYmV0ykw2bGi0pSbTwBbdnLulJdG6UPnQOVh4nSjlx4gSAXbO4fffnKFMTJ3fw/9snJ8UxU7gPLcvcJJcLLMRRYyhLtcvfrYxoIRReQ55Fi5FpnU2n7LrhtkSmbjvXxigvXGLjwrdDLabC36NnI1qIxl/XPw/sErr66qsB7LpY9iMgZQzDsHJ/fLnK5MtmXV9vfh7VZyTg5Hto90WlEPb/83uG3xm+z+fW9lb3yW/j8EA2fUfhqZwEy557Np+vY8qPzOP8HNk4Vn0TtVWloT4sFNMuFAqFQmFDsDimffToUZnuEdgbygWsMuwoBaqa8fPMjAPx/Tk2K+awqmiG7dvjy7XZnbFXP6OzmaYKp8kWM2CWxzNdTiEK7M5ATWhmn8ZijPnyDNVDJTeImBgLrFQIjb8OJ0TIQsoOAsxy/TaebasFL/w9ZXbG4zpiS8wAWIhkyFJDqgUcMtENjzdvWQH2sk7FNjn8MRMvKcsBh3cBu+yM2ZeNVXsmPaNbF16IZvfNJ5ThOnCbOVTJ71OfPWzSwOyZn0//f8bGgb1jWYlHFQOPFrcxcBiu9Z9/Z9v/xrAv9p75emQLvVjd7D3LCxVFyZ2WimLahUKhUChsCBbFtIFxhpdJ7W2WaDNPDuyPmJEKfVCzfe9Xtdkw++tsphgtJcj1tlkcM2wfRmXt4RlhT4J7rreVYbNxY6/+etbm66+/HgBw44037jnG6sOpWH35zBjYpxXNopnRWT0ihsUM9VL5tK3NUfieQS36ki2VyIyN9QPRIikqJMr6x87Nllm1Oqpx7mF9bOXydaOFZbiOHCrJaXv9ddViKWyJ8czHzrfxxGGeNlY9otBIhWEYcO7cuQvHWvmeIfLznlmVDPwe4HOyUCKVUjU7R2lZ+JmLxqgKU+Vnzl+D+5bDtaJ0yheTyMrA/n4es1GoKY83thL5OnLI4tKSOxXTLhQKhUJhQ7A4ph0lVYgS6bPvj1WCkULboFI3RslVbNbNvtfMvzqXxMDYa5QAxmb0NhNVPqUoAQyzQWbLkdLUfJfmH+QZd8YgrHwry9iazbC9f5pZON9bZmf+2pdqpsuK3ChxCYPZfw97YvbIOoxsCUgDL2EapTE1WHmsCI8Usyrhh1I++//t2WAVN4+PKAGI0q1E7Mn+t+eFNShWD38drkvPGOLn37NBtripqIFIma2iCJT/2JevErNk6V452Qlvz5TgvI9ZevTesfLVwkuRVTB7v8zBylBpdKN7wOOM77WvB9+PJSR38iimXSgUCoXChmBxTNvPkjJ/Mfu2DRGbYH+ggZfz5E9A+z6ymGj2B1mdrB6sXARWl9dkvzAzfO93V6p45Rf1dTP/05133rnnGFYv+/vCPnJj6WzdiNJl8kxXpcT0bWbf+cWCLRJ27Z7FMTjiQC0gAaxagay/mGlH0QrKZ25+Vs+0eTwpK0b0bFhf2Djj2NeIafO4vuaaawDsjiX2Ofv7ZvX2C8P469m4jhTOVje2JGUKZDs2S3k6DAPOnz+/Egni74tStzObjixF/AzzftZ3+H3sy+Yy/fVYAa2sAP44thjwu4P1JP5drN6NrK3x2E8uCQa/79jS2BN7rSwK/vwo98ISsMxaFQqFQqFQWMEimTbHYkcZo1jpq2Ku/Tk2y7vnnnsAAHfffTcA4K677gKwmp0HWI0VZp8fXwPYZRFcJ2YI3kpgLMVmq9YH5i9kpu1nm+w7MiZn5fMs3bfRttl1bAbPPidvfbCYbmNYpkB/1KMeBWA1xhfY7Te+F8zkPdvgPvf3RcHGRaR6Nth9MAuBUsH7bRxjzwugWL95nQLXxe6L9Vu0oILdd7ZIqDwBwOp4Y70C+7T99ZhhqUUfIh+zXee6664DsPo8GbyFy6xb7KfmJXUjpbuKYWdFsK93tqSkxzAMMrrEX0vpYKLsZvyMsRXDyop0ONzvKl4/yhyn3oVZXgAeKwxuA7B7rzg+27ZnOgJ7h3A7uN3+PceWN0Zk7eBnjy0Jkd+6J+riMFFMu1AoFAqFDcGyphAYZzk227dZX6bsixgasJeV2QzwjjvuAAC8973vBbA7C+c8uDbr99c2Nml1M2Zqs1ZjT75cjpPmmW8Uk6xU6uwzzfKXs6qb1Z0ezLCYkbznPe8BEPt3bLb89re/HcAuw/qQD/kQALsMzJfLM11mm1FO7XXQs+yh3Q/rH/aJ+lm39eUjH/lIAMANN9wAYPf+W59zrDew2z823qzNVpZZfPw4UKp0ZiKZRYKh4qn9uQwuK4q1ZjW8f26A3b669957V8qxtj/2sY8FsPusvPvd716pI1u71PKU0RjtWb7T1jxgfUWkoWCfLMcdR+fYPX2/93u/Pe2w58XGWJQNkOPojRHbuPB9zs8w+6MjhsqRJZwhLYusUUtzsnYnAjNta0eUvdHAmgl7vxiz9xnsDBxhwLnHo7wIHEGzNBTTLhQKhUJhQ1A/2oVCoVAobAgWZR4fhgEPP/zwBVOGmVe8qS4SxvjvZg7zJrn77rsPwK5QhkVRBjOLeLMuizrUoghewMHJU+zT2hOZ0lTSe5Um07efTVtsqmVxmS+Hy+MFQrJUlGaqs3ZYP99+++0r5/C9ZJOm3bdoCdDI7KXA98nD2sSpWVnc503cVh9zj7BZz8YZh075NnHYFCcfiRa3YRGTSqAD6CQaSuQXiXtYrJilBVZjk9OAsojSt5lD/sy9ZGPIPn2d7Fy+nvVFlggoc5e01nDkyJEVt5x/PjlVMJuNM7O4vU8sVTD3j8GPHRaV2jNtZVn/RKGtHA6rXC2+Hdw/LNCKxoEKo2ITtL+e3SvrCzZfW/+aq9K/59jVYX1hY+e2227bU5aHeo9G7WKzfqUxLRQKhUKhsC8sjmn72VQkRrAZp0rYH7FYXkCDGZbNrDiUxG/j9KKcIjKaqalwkyhBCl+PWRKX4WegnOyCQ38i8ZJBJQ/hGX6U9MT6wo41FmrsNEqxqMIpohmvSjebgVlSVG+1BCMv2wfsilw4+Qyz5Sgdom2z/rDxZwwruv88flnsY/3lk5NECVd8O5jx+3GghFocehWFibEVhq00Ji7yfWJjxFiS9ZExxyjscm4csNAu2jeXinJ7e3vl+fDjgC1RKrTQW2kspNDazPfu2muvBbDLDKPnxcaXsUnr2yh1K9eRLRPRM8GWNrVgSBYGZ+dwqGd0jrXdrstWSQ599edaeTZ2WKhs1/djle87v3e4Pr49S0tfaiimXSgUCoXChmBRTJsRLTzB+2z2aN/ZBwPszszYp2OzepttGbuIGBCHndg50dKVyufHqQc9M2D2z2yCfYzRuWqBDU5oAuhE+uxTjcIfeJvdH2MWHOLm62bgMJSILXG9s5mvhe1YeSqcy1+TWTP7ZP3/1h82Roz5sB88W+jCoBLmRGB2xClX/THMEFQKTH9fmF0yO4o0JNx/PIbseTPWFIUJWd0sDNNYuX36e21t5ueSrRC+n+0+Rf7pCDs7OyvWLV+eWjAk839yUhuDPR+PeMQj9pQdLXvJzJ7fIb5s6w8VYspWNF9/ToXLPt+I+XLIn4G1G5HWgBOwsHWOrWK+PLsvVq6Ni+h542ec+zMKS2PrQ/Z8HgaKaRcKhUKhsCFYFNNureGqq65aSVfo/Q2cKIQT3kfqWl6Mgn2yvBB8lNjBwMw6WvxDJRBha0CUDEIt/cdsOlp+zmDtyxII8Lk84+TZsWc+nJyE06ZGi4wofzSnm/Rsiu9/lsCfF32IrseMmvsyYrFcf2MI7D/k8eD3sRI/S32pkncwa/N1VAlS1LKh/l5yv7O2IOt7Vb6xJuuLiKkots5+WN9mlWbUPs1HHO3LrDTDMGBnZ2flnkaWImamHHkQ+VN5vHEfZ+85LpffXdF7gMczs3LPRPlZZeuMIRpjrL9h61ZkIeMxb+1hq53VNfLzs+WS+9X71lWUETPuqO8vZlGTS4li2oVCoVAobAgWxbS3trb2qGIjxhYtmOG/Z34U9t9xPGPESFUcZqYe5/JsRmj+Ok5z6q+jZnccU+7rqJgW+6V8+3kmz7NYnqFGsfKsdOaY32yZVa5bxISYTcwt+uDL5/EArKZ1ZT+dzfKjWFQVx879FEUesF6AF4Xx7Ewta8iLgmSpSNlaw35pP5b5meC48CingVrqk602kbWD77PVhaMzImuAuv/MMIHVpT/nWNP58+fT5WhZIc/3gXUFwKpmQWkzonapOHBuRzTe1IIh0XuAr6fitaPrsUWRtQdZ+mSuc2Z14Looq0mUzlap4tk6EC3AFFk1l4Bi2oVCoVAobAgWxbRNAayUmnwsEM+ygb0zUmYc7E9Tamu/j2dq7AvxZfAs2VgEK4+jGRy3h2eGkY+R2bEdo+LQfXmqb7IMbHxdZtoRW1czeJ71Z76znhkvWyT8DJpn6ioTmvdLK78d92nkC2SrD/dTtAgDW1w4SoGXQ/THcvtUxjJ/LkcCcJRCpHBn6whbnZSfNALfr8jixJYWlQEuWo5X+WgZlhUNiN8p3LfRcqBcB+5/jpfP8g8obQszfZ+JkTMisj8/slgxE+X3nCHLNMj9xrkd/D1mFsufXK+McasImCjXA1sf+LnOsm4W0y4UCoVCobAv1I92oVAoFAobgkWZx4HRFJEJDjj0ic04kVxfhfqwKS67HptkuKwoNMHAYQ1sRozOYdOSCl3IzlGpQ7m+/hw2K0Z9wmY2FnZxCEZUb75OZoridJwZuG6+PA6f4kQ2UX2VCE71TzQOOLSQTYGRGValhowESWwCVua8yAzLaXk5AQubdn272L1g57LrKDLHKvNvJCbi9inRaWSa7kmBa245Nrf6c9T4VO3w/7Mpdp1xwP3CLhxvHmdRLL/nInEmt2sdsR/XTaUojkRe7HbJ3sEKSniXCUlZRBmtnc73qczjhUKhUCgU9oXFMW1gNSmAB8+YDJnYhmfbanbXM8tjt5EUUQAAIABJREFU1sSJWXwdlagoYhOKESjmGCW4V2KSLOEIz46V8CxLrsF9H4WWqPvG7CwKLWLm0INInMSMUCVr8dfhBDmcWlW1x1+b+4lZbMToWFTEYTSRwG4/whljPMxWeMGKSEykWCfvz5L6MKLxzfeSrV+R1YMFlnPJVexP1UHVmwWJ/v6zaHFOgNbDtK0sZor+HH7e2aqVLa85hyitKH+q95E/xvpCJbqK+ogtBSqcq8cKaf0YjVEeV7U0Z6FQKBQKhX1hcUx7a2trJUVglA5TLcEYzayVL5t9mtnsTvnBozR4PHtUYWJRu7gukR+K68hs0MCMJPIJK59c5lNXrJzPieqoGE92HcXSI7B+IIKFTUVLiPJ3taCJSnkazcojxuHLihLAWN2YPUUhMipUSd3bbHxz6FfE6ObuZcaA+VylcYgsSRyOZvdxP/5Qhk+BGz3TDDXmo/eOvasUw+7xh6tPX5byXWfPcm/iomhcK6bL4zpKPKX87jzOo/5U1sEsxFD1wdJYdA+KaRcKhUKhsCFYHNPe2dlZSSAQMQPlv4gUi8ysVWB/pDxXx/AsL1pWz6Bm7tF1VHpRPi5isfbJS9VFrDBK0gHoRCaZr1nNXnt8mVz3jNH3MCm+X77eyifO9c60FIopZkppFeEQ+aBZFawU2h6KacylpvXHsDaDl5P0+gTbN6f87UmuotqQJQDhumf3Lao/wxYMyZTmKt0ub1e+enVdIParcluVhifz+arEUJl6nK/HfevryO9nPibT0tgYMp2PeidH71UVsRHdf2XVUBbNCKUeLxQKhUKhsC8sjml7FWeksmaVIc90o1nrXCwisw0/u2O/t4F9jT7Oj2MBmSny4iNRu9gvrmKhPZidcV0jFsAsSS3SEbEAZvLGEqOFKbgurOKMUq0aLsbvlPWTga0zkYqX66LqlMWI8ndeOtWfz76+zC+tfP+K9fk6zkUAZNYA+2Q/ZHa/elgx153967YAj1rMx4PTsWb14nSzmQpZMe7Mnzr3fZ08AVkUwX78t9nzHl0/grr/kUaE8wGwdTVqn7IgRUvcGrgcrmOP9a6YdqFQKBQKhX1hcUx7e3t7xb8WJYA3vy0zkGgRBjuWF5JXvm5/rmLYahF3ADh58uSec3h2Z+dGbIKXbbRPPjdbZIL7whD1I5erFliILBfRQvUe0QIObIVga4pnxtmynQcBZkccC+vrpTJ2ZfHtrA9gBhRZks6ePQtg9Z7auVnWJz6GY98zRqc0G0r5DqzGDCvlb5YfgPdFzJ51IypKwiNje4zWGra2tlbizL1fnxXR/PxEGop1s4xFqm5V/0zBb8eyJSezAqjMa1xmZn2wd5Uh0hdxf/H4znIOqMx4/PxG1+O6ZuC2Xqr3z35RTLtQKBQKhQ1B/WgXCoVCobAhWJR5vLVxTdssGYBBLSKRpc5jUYJKfdqTDpGFYVdeeeXKOQZlCvJ1NBO+mZjMTGqfLJLy4hsO8bC6sAgnCnuxY0zcw2tiR3VloRmb0tjU5qFSEPJ+/h/oM1P1mLSsr70ZHMiTnbBJW4W7ReNOnWPbI5GUEvVkqTW5DiwMzMzjBnaX2Dl+fCuXgV0vSynMz5OB71dm9lUiKb/djrV73QPlKgJWXQ3siorSmKrwybnrA1pYy/3i26z2qbSvgBaCqZAv/0xzu+x9YH0euQf4XazcDlGfqd8Fdq1li0UZWFDq+0S5CJeCYtqFQqFQKGwIFsW0DSygiMQIto9TnjKb9cfy8oOKjWXJVVSCjmhxDJ7lcd08W7bZ6ZkzZ/Z8rsMUjJVzSE40w7Zt1tccBsWJEaJz1Uw+um/MMntSLDLb6GHaPeI1uw9m1WC2kSW9UcyXF9zwdWEWw6wtC1VRVpvomVDWAL7/ERNRYXoRW2QBnUrpGj0rc4w6Gm9zS+lmbCnqW4aFmWZitblEOXycr6dhTlyWHav6yd8vfjfafeLUoZFA1I5hcWl2v/j5Z+tjlqRoLonUOklqGNGzoaysPex8aalOi2kXCoVCobAhWBTTHoYBDz300IVZH/sc7Rj/aeBZZLS8opotz9XJg1mk1dX7/JidWF3MbxzVg2ep6zBsAzMQxWazOipEPm1ml3a/otApTs/Jx0aMbp1ECK21tX1QHHoXLdnJVhIO7eFrev8+WzGUX9RDsSVmjFF6RzvWxqJia9E4YAaUJTjiczmJEPuEI8sF60cy5qXOUT5NPj/qC963tbWVMve5BXwiVsYWDn4OVQiTx5w+JrIk2P2wRWeuvvpqAHE/8YIwzJqz9wLrPTjZjVmyvDVALYurxlt231SylWiREb6n/G6JrDTrJGC5nCimXSgUCoXChmBRTBsYZzXsV/N+QsUiOS2eh/IlKT+HB7Minh1ni9Erq0BPmseLAfdfNltlXzP7wSMlLfuy5hTVvjyVHjNrd+/Si1tbW13lziU5yZSrSjkdWYdYW8ALLESsQynxWWEeqZRVOtm5RXaiOnJkQJRwhseMUsf7Z5KTCDFzzFKIcord7H71LJnKUFEmUXk9yXX42rwvY7GKYZsFLmL8ZmE5fvz4nk/bHtWNxzH3AY/ZSKfCybBYZ+TfR2wZUBYWHsNR3VRkT5R4ii0HKq2p37dUFNMuFAqFQmFDsDimDayyuyj21aDiCaPYQOXbZj9O5N9Q8cQRm2DfER+T+V6Y2aiFDnx9mCmyEjyLd4/SL3pEfjBmqipuMlLwM4PgPo/qGMXPK/C9jtgMq7jZn+fvJTNpYy22pCAzbK9tYKsFs4logRq2IClrkK+j8plHaR2BvcyHowRU/HzEVJmd8fcozS2zMk7LG903+9/6k33zkb6AxyBbMLhtDz/8cKqc5vGrxm3m02aLR1QPbjOPFWPatt+3y8Ye3we1CJA/luusrIWexfIiR2pxjmy8cepbaw8zbkDrLhTjjurE4y3y3atFlJaCYtqFQqFQKGwIFsW0bcbLS/6ZbwY4GH8Dz45V8n9AJ/1X6sdoH6t5eXYJ7LbLjuVFTZiJezbNCzdwXCYr3aN6Kz9rpDxn/5ayYGSLZ6jrR76ldXzaXP+IaTMT5TjqiMXafTFFLrN02x8xA2YpGRMxJhWxcF+faBtnJGOWyYzL18Wuq7LZWeSD38fHZsyXz+VscOzLjixMc4u19GSLi2DvHaU5iM5nS0Rm4Ztjr9HY535h/3Dkd7c8DdYOvqeR1UHlEFA5Jvx9sfLtuqdOndrz/fTp03uO8+1QFhClN/LtUIgU9SryIItwYDY+t6zr5UYx7UKhUCgUNgSLY9o7OztpRhr2a8zNZiMo/1QE5YdSM1FgdzbMql5mIlG7OE84+/GyHNfqehwj7ctnFS8jYi9KAZ4xHj5X+dB9PVhPkOXMBuJZeeTn5PKyfrL/7VOpxSO1K7N95VeLfH5z49tfx65tfnblm2WFuP+f80Uz045ibVX/MXvqif4wRM9tlP0LyJmXyrQVgS18XAagc6VnqnEDPy+KTXqGyMsIq/eZZ4H33nsvgNUlMrmuvp1mIeJPHrtR/gizvhij5iyO2buFx1ePn38udjvKbsZWzZ7lY5l992TVu5wopl0oFAqFwoagfrQLhUKhUNgQLM48/uCDD0pxFLBqYupJd8dQqSmzlHbKTB6FerDZ04R0bH7z7VIpQZVYpUfkZeZSFpn4820biy3YbJQl4e9JXKFEalznyDyuwsU8WmvY3t6WIjlgVYDGpmA2dft9HIrH31mMFbVJhQB5cJiWStEYXUelreVzokVNDGpBjKiuNr5VSCP3c9Y+NrXvR3AaCeyiBVYUsmQnUZIhX240nlV6Un6WWWzm/2fTLJuV/X4zV991112yXGDve8DeEfapzONWln9PmODMzPGcejl6n/IYmRMv+r6bc79F5nE2cUciYK7jft5vlxPFtAuFQqFQ2BAsimkD46xGyfOB1dm7YtwRMzT0pjUFdPIRnilGYWJ2jM1AOb2fD6PhEB+V1CWCYm5KAOOvp5Jq8Ew/YkssqOPPLMEN1z0TIPX0xTAMOH/+fLqsK9d7LnQJ0CExKkWpZ0I881chcj4hC6eP5QQPLPry4LCpuaU6o2OY/XE6S/7fH8PsJUrqo8Its9CsuVCpiNHuZ7GHdRYM4bpF41sxQq5bxIi5Liq5U7S4jTHfe+65Z0/5Bn//eBybwFJZhaLwRBW2x8JYv4/L51DNaEzNhc5lKUnV+zUK1cvGwRJQTLtQKBQKhQ3B4ph2ay0NhYjCpfh8tU3N7tjf4a8XpY2MrhMF5xs49aC1K2LadiwvDMBMyINni1xWlM6SGUM04/TXixgLM/h1wu1UPaJZsmHOL7mzs5P6b9lKo8qL/ODMxpmZRGky7RxmIMySPNO28vzYAFY1B+aD9NdWDJv1CxHznbP0+L7ikLK5EMooMQ+nLTVkz+86DCiz+kTH7uzsrJQXWdzm3js9vnNl2fNlq1TBvDhLVEeVxtTgvxsrzyw4vm5Zuk9DFp7KmhAVOpvpWNR7PAvf4vHN140ss/ux1lwOFNMuFAqFQmFDsDimDaz6TzzLUGnvsgQfyvehksf7mZXy2/KMzc9eVQrC++67b0+Zvl2ctjRSiUf18MdYXVjFyezQn6OsGjzD9d/VzFbdC/4/QzSr7WVW5tcGYla5H7Bfjj9Vak1glR3PLVhj7QB2Iw7Yl5kt58l+de7zaLvyQ7OFIVu0R22P7iWPDWY6PdoGtT/bNueXjJg27/efqk49Y16lRPZ9rJY/ZW1FlPiD329WR2PVUTvtHE7MwnXOLCFK9+GtQpzuV1laov61fcovnSVBUUrwbOysk6DncqKYdqFQKBQKG4JFMm32MUdpEA09flQ+d44pZnVilsT+Y/+/MS3zT/KsMlowZO76Uby4WlqUFxmJ4t0Vg8hi17n+KqY7U9JyeZF/LPNVKWSqWxWbyeVGKvW5OHPuT0DfM9YYZIppLp+1Ff4YxZJtv/nLozoqfULP4i9K5d/DzpQlKVKCcznrpC7Ollc0Cw3rIbIIlJ53h2LUytLiLWFs4VFM2/eTsrjYp6nJ/buKowQUovHH25QVyreLNSDKdx098/yuUu/znsihTPOgrKlLQTHtQqFQKBQ2BItj2sMwrPiyo9hXNeuOZr5qNqz8af449jVHcdn83Zg1Z9/JMi7NIbue8vHwjNGzjWxpUf89indW6soetfdc7KpHFseqoLKCqWv462THzcUGq1hlYJVVZNnTuB18vUjdq5ZRVZnfIj2E6tuIabMfX/mnIxalLBSM7PlVMcQZW5wbO14PEdV7js2vE8vL7YgyFvIyu3xM9FzyPsWEbWEPYPddpSJossVgOMabFyqKchcoDQi/s6LlMOcyWfYowXl79H0uRv6wUUy7UCgUCoUNQf1oFwqFQqGwIViUeXwYxhSmZp4ws0sUTsVmlkwQwuYTZWKPRDBsPuJjI3O5Mq9cjHm8B2ot5kxYM2eyjULP1hH/9Z4T9T2b6tbpvx6z7jqLYyjRU3YOC3KUQDBaqzraF13ft0OlLWWhTiYmMqjx4cvl/rO69oRf7sdNwseoFJX+mB6RqdVHCZ2AVTOucl/MhSVG36NnTJml51L5+nMMPA59Mh97v/En18PaF5nwVSrfyDyu6s+uMHbt+W1z4XeRa8WgxIGReXzOhXNYWFZtCoVCoVAoSCyKae/s7OCBBx5YWS7SxBjAbriCms1nISNqxs6CBs9uVLITFn342a0da3W17zaLjUJ9DiKAX6VWtev7Ga+atfKSfNEMW4Xy9Cz+oOoaLUjAIsBInMJQKRWBVWGWWrwgSvM5F7IWLayikIlg2KLDgiBrj+8Lu1e8nKu6t9FYm1uiM9rHLEUx8MhCothSZrng5zULBVwnrWhrDa01+Z7w5XCbe9o6VwdOhgKsWklU30apifmZ5bHj3wOWTMXescbClQgrs1wxK49YtXpO7Lln8W4UqqesG5m1Y+75zdh5Me1CoVAoFAr7wiKZNie+9z4YDk1Qs/7Mt21QYTvREnk2a7WUfJze1FsDeJbKs8soaYy12RjUOv5itZC8WgTEt4dnkcy0I6iZ9DpMWyVXiUJzrL9UikWr09bWVjpLZotDT4IUPlfpIqJzeDyx1SZKO2vHGGtW7CFLkKGSq2TpZZUlKbo+j2+l4bDv0dK6nHimh2mrUMZofGcheBE8047KjUKs5r4rn7WyMnH6Yb+PLXrRwknKksTvsCiUjdl5lmjGoPz8hixhEn+yL9sQLd6UpQHmcxTDVu+faF+FfBUKhUKhUNgXFsW0h2HAgw8+eGHWFSXFZ0aWLVnpy83Qk25RMW1D5J/mtJHRovAGZktzaUT99Vjhq5JtROez76zHh8vl8ww/8r+phQGYhUZ6AmMgGdO2MnlRgWjxF5X2s0ctqph2pGC2/7n+mS+Wk0vwwgqmi4gYpNWB00lmPlUrl5XffE+jxWaUn1f5X329lX86S1/JbLzHMsI+4R5E56h3CLPMLIWmqmOUCvns2bN76qCSBkXLXnqrX1RX/4xFehdfp8xPzJYjvj+RApwTZ6lUv9G9nXtuDdG4m9NQRNZVvu5SUEy7UCgUCoUNwaKYtvm0eelKPwM1/zb7xtSSnfy/h5r1+5mVzVqZYTMDihTAdgyzosi3xMzX2m51se/s7/fncDym8nH7bZli1tcr8+/NMa9on0pJ6PvK7rvNziOfn4Kd41kH+2C5PVlbFbgdfsZuzPr06dN7vjPjjiwSzHCzRUZYFcxjlJlJ5CdkxsPnRKkouW7K4hMpjpWeJPKPKj/3Ov7vHo2IYvLA6rtCnRPtY+uVigTIolYMmW6Ex4xi6dF7gOvMTDuy7MwtkRmxWM69wH7qaLxx29XSsxH4Pcd1Vb703vIPA8W0C4VCoVDYECyOaZ8+ffoCO7IZqPl3gF2mnSXOB3Kf2FxmoogBK3V6xCpVjKUhi1tVdVEqb/8/z1JVRi5/PZ4Vq3b7NihVcjYDVorZbKEAztLUE6fN5Ud1UAwo8kvOKbAzBse+SmuHLdjAcfz+esp6YoiymjE7VtmtohwGakENvre+Tsbo+JlkK1SUH0BliePjAK3vyBTnynepELHq6DlV6uboOVXZ01QkgmfavLwvX58XN/H/K0tHpgDnYxSLzpTgSpeT9T2PWT7Wj505zUlmceHxwPHgUZlLi882LLNWhUKhUCgUVrAopj0M4/J4xqwjNaSxB5vds1K1JzZYKaSzuE8Va23IfDDMtKMsP+yzZgacKbNVDmDl2wJWZ9CRv1O1QbHObEZvYPbCM1/vt7Y+sXs+59Pe2dlZuf++PRz7PMcq/La5jEpR21W0AFs5PJtiZmt14yUafbs4tpatPxnzWSfbnIHzJ1h5pvvg3AVRpi9mRWpc8P9ReyJrUY/62WAx/jwufL05f8GcGtlDqdx7IkLmoiwiCx8/j9G7ic/hOvFnZH1QVrqLAfvdo3zsKg9FZnHh+vN7Looy4XfjUlBMu1AoFAqFDUH9aBcKhUKhsCFYlHmcYaExkTjJTKUqCUQWgjEnKorEFkqow2UDq+ZKg9WNEwuoa3uw2TQSBqnlNTOTnUGlpMxEZUp4lolyOP2sbY/EZryIQORW8Nc094pvjy/vxIkTe+rL9YxMgHNmXAOHZAG75mGrt7WRkwb5scNiHt++6Hq+rSr0jvs6MiPPJZTIREwqlWtkkp4zJ2fCOPWcZql3e8N2fBrTqD1cr0y8alBpPtkNF7mg2P2nzONRP7HYLxOIqgVPDtLkHYGTVnFdIwGmChc0RMlc+L3Dz3jm0lsnXPByoph2oVAoFAobgkUzbWPTPuTL2KqxcBb5RIn059hrlsaUhQwcqhKlr1QCE549e+bIzFAxH15uj/9X7fD18OWr6/CMOyqTQ8wyds7sQgnQPHNgdrGOWCpLBqFSqvK99v+zKIVZOt8ff44xbg6RsnO90JLbyCw6Sl+pwhK5D6LnQC3faMhCvqwd1i7+zNKZMvPJxHJzIsDovq2DYRjw39s7dyU3liOINmjSl63//yzZ8mmQsYCsils6yKweALtLTEQeh0tg0PPqATrreb1e7yw5fb+7kp2q/KoLjnXBslMa59GAqv6eK2usAlJdSiufwX6N+V3FZ3o6x5rzVNScj2qeOyvNFCznGpNM12T6XfibRGmHEEIIJ+GtlXbRi0SUImPBiiMpX8UjLSW5yqLvRSlR+iV3ZQz730zp4YpbFRiYCiD0bVVaQ71X+3MNRDrOF+dW6318whgF5dP+LD8blbZq3ML9cPXuSkJS1fS/OWdYfKSnsvGYeKzq2KcSp7vzK5x6UWqZ6psphzy/qegFfepq3jn/8eRX5rO3uyYfHx93pYP5fofXa0oXdNYq13hHbcMxVezDbn9KvToLkkur69eB847fIYUqVuRK7rq4nI679lPTHpeqp+ZFlHYIIYQQPoVTKO3u0y5fSEUC1+qYSketQAunyqdi9fTBUJEqf/FOIap2cM5/x/f7djsfNhU+j7eP71beqmiIs1ioRgHKj7/WvcLuSpv+tGeiONV9cRHT6j65kpa870eOje1d2Q6zj8P7PClt3iuXPaAKjTjV4qwo6nyojpyPve+H11OpJPcZWm2maG+Oobjdbuv37993sQDqe8D5tNV+eS9praHaU3EqfIZdxsNa99Y5V4Sks8s0meJ++Fl+N07fVYwE51w6Es3tCr+oa8Jn/si95n7fhSjtEEII4SScQmn3lQ7bG1YEayk05afcqdgjipRK54ivzJXUdLm4/TNOxR7Jlz3yvtuWK1+ltKfWi2tppe2UDmMUuhKnv/uZ6OA+HpVOzZnypxXquHeR2FRTa3mf5c+fP/9vjB497qwA9B9P99JFx6t4CJ4Xt1VKm89EWQ4mtVJQJTvFOuWSU/m8mk97u93Wnz9/xmd5F8GujsHlfVPdTSqWqnU6R6pH7n9XC2IaQ7H73pmUNr87aK2hJbMfN8+D86M/83zNXRMV9a/GeweitEMIIYSTcAql3aEyo5+rVkWqHSBxVZ/6invXcH2KjHX7U4phV03KRYSvde9fdZG46ryIi9qcmhnscjzXulfupXKpsFV7wsky8QiuzWEdm6pk56LH6/8uxqGPU9enFD3VTL/m9Vodq8s86Di/usvPVdG83I+LfO/HwKhxnrdSdryHzpc93QPCLINHqTxt0l+rc9wptmci810L3z4+n21Vj8I9f3x9iqFweedTdLybX+r71FlwjmT/uHl1JHqcn3GNUtT+dtUwv5so7RBCCOEk5Ec7hBBCOAmnM48zOKD+nVKwCprSnWlmMiO70nnKTOX2qwIcHk1r6gF3NB/SpKmaWTjcdVQBfs5lMJmT6jO1zRSIxh7jr6Ze1D6YGsXgrn7/nYlxCnws6JZgMxvVG3vq7e2gOdKZLVlutr/nXB6q2AXnFdOPaHJXgX3OpKlKsO5S9V4NRON+VIAVXSfc1gXJ9XEYEHskbZCBaO59dUzu2CZXgEurms6P5zk1QnHvudQz5Vpx7j/lRnHlmF0godrPq265zyZKO4QQQjgJp1PaBRUaA51UYQ+3SqSaVOH/BcsIHim76IrWq3QkBjwRdX6leHgs/HdqMlEcXQmv5VUTx1rrPrCqzp1FVXpJT9c85VVqXDZpUUFXLM7ggv2UpcQFj00BSFRfR9JNlIVA7U8pbXd/qZp6sBnnzs7iolrQFjw/VZCIn9kFTT3D9XodU+dqbFqtpn07Na7G5/tHgwoVnA9TypxT0rs02f63s86o+eEsOq4ZiFLartDRkda67hnp2zmL1bsQpR1CCCGchNMqbSqzKvCgVojOx0olxJSctXy5RaUiCud7cY3suU/1f6JWk84vVaiSngV991RgSnXQKsAx1HWkn5r/9uYwX13UoPZZc6iKnPTUsLK+1LHQf1uvV7GfKTWO15T+8bXuU1Kojo8UxtjNpX6flHWhH7OyFtDP6nyzKgWLMQ3OH6msUByDVptX+PHjx6gqnZp8ppmN85WqZ/qRNptUrXWNp0Iiu/QwHs+EK7r0SEEo993Z/+accaVKFYwn4dj9mD4rVuKzidIOIYQQTsJplXatrkuZcdXVlYGLzHZNGZTPj237JuXjVCQV9met4Kg4XDSv8pnt/DZTEQeqpskXtFsV1/9Vw5BdW8VXqX2q/dFCwLky+adLubPZjFO1a3nlOUUAO78k76lqH8rCMq6Yi4rzUI063DHyPV7PKWreleX8rOjey+UyWkjUvl2RkCOFOGihUkV9ahxa/6ZYE+ePph9eRUqrdsGKKTreFVtSz6/7HuX30tRm85nWvdzfVFCpSPR4CCGEEJ7itEq7YBRyrVB7/qxbzblIRgWVyLQtV4lUk1/tI9k1VujbuDKW3K6/7vJZJ+VTr7GUKHPWVc5y8VWKu46h/NIq6p0Kx8U0KB8jYyYm3z8ViGuwoeIhdtkR9Mf2Y5tase6gJYfzo8MsApcPrHzaHJ+WkWfLmNYYzkffj2/X8KLPb2dxcOes1B7rULjyn2rcR3Kfp9aofT8qynqHsljsFLbyTzsr1DNlRqdnxs3NdyFKO4QQQjgJp1fa9IWqhiFUNlS8kw+GkbJc+ZZ6mnIDi+9asTnFO60q6duiH1E1YOH49HH368imH9x2Uknf5VOiqu5/uwhwFzm/1j/xFjVG+bbZbKR/lvtx+eHKkuRUsot8VufHzx6p+Mf5QIXd762LUuYYU263iyZ/hcvlcqganbu2jPZfyzcXKaaYE0ZPu+8d1YyDTJYIWjF2kfiTVYjbqOvorICu6p3KQDkSFX+UI5HmydMOIYQQwlPkRzuEEEI4Cac3j7vSoFVspXOkNB+ZTItqrH5MzpT21WZyV3r1CM4cp1J+itqGJvBu4nRBeDTZHTHhfzW9wAvTcqoQiyvzqcyVNR63UQ0VWFKXgUfqWuzm2dTf2M0VPitTQJB7nqbAJ27Deafm266v9it8fHzYnun9OF2/+aJfC+dq2pnJ+/74rwtMU6/x3qrGQUz14v9dwKpiF1SmtnFc4FjhAAAB9ElEQVTm8GnuFK+Yxd0859/vSJR2CCGEcBJOr7S5Aj2yup/KLPb3O7X6qmCiKQiCpQeZgvFdqQQuraJDJUXFMxWN2AWiqMII7tg45nQ+X4WaD5UGVsrXNVqp81CNNepa/vr1axxjrfsAN7dfZXVwpSF5nyalzeeIAXH9bxe4RRXVr6ub+y4lsL/HOTrN60e43W7rer3eBThNLXpdqp8K1HKFRFzzmT4+y6XWWOo6TRaV6fX+nhtLPZe7NNGpFKkrHjR9drf/R+bBZL17xVL5HURphxBCCCfh9Eq7mIoE7Px2R9iVEVR+IucfKr6qIcYR3w+vl1st1zGqlTZLAHK/kz/Kvd4VzVf4Lh+FjUyofAt1DahsagyVHuQ+49p69pQvftZZK1TRDaewpgIWLi6BJV+nYjtUqtxWzdWdOnuF6/V6p2b7MdAf7BqfqBK4xMUcqOIqzo8/WU14f9w9Vtu6Yz1iAXNxCsqC4LaZSpJO/u5XUdfhaBzDdxOlHUIIIZyEyzvZ6y+Xy3/XWv/528cR3p5/3263f/UXMnfCQTJ3wrPczZ2/wVv9aIcQQgjBE/N4CCGEcBLyox1CCCGchPxohxBCCCchP9ohhBDCSciPdgghhHAS8qMdQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEv4HD52Ns73or84AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWmYZdlVHbhORGapKrOyRoQm3My2bDcgMwobhEyDoAViMBiBACHjbhfgBgEGIYZ2FQJhaH0MbguaUZZBTLIYDLSFhGQKSciAxNQMEmKokjWUpFKVasjMmjLj9o97d8aO9fba97yIyIz7xF7fF9+Ld8dzzj33vLP2XnufNgwDCoVCoVAoLB9bR12AQqFQKBQKfagf7UKhUCgUNgT1o10oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQzD7o91ae0ZrbWit3dVau5b2HZv23XTRSrihaK09sbV2U2tti7Z/wNRmzziiohUOAdN78eVHdO9h+lu5f2vtRa21W2nbrdPxPyOu95vT/teI+/DfizrKuNVa+6PW2jfQ9s9prb2qtfau1tp9rbU3t9Z+ubX26e4YG3M+pKMdbpory1FiqtsPHfI11XPxf7ce0r0un6737EO63odM4+L/FOx7R2vthw/jPgfFNH7/p9ban7XWzrfW3rjGuZ/eWvuZ1trfTH38r1pr/6G1dv1hlO3YGsdeDeCbABzKw/tbgCcCuBHAdwLYcdtvA/DxAP76CMpUODw8A+P784IjLMONrbUXDcPwYMex9wL4nNbaqWEY7rWNrbX3B/BJ0/4ILwTwI7Tt9o77fQmARwG48IPVWvsaAP8eY5s9D8AZAB8M4DMAfDKAX++47qbh2wH8XmvtB4ZheNMhXfPj6fsvAfhjADe5bQ8c0r0emO73Pw7peh+CcVx8RXDNJwN4zyHd56B4EoB/DOD1GMltW+Pcr5rO+XYAtwJ47PT/k1prjxuG4b6DFGydH+2XA/jq1tr3D8PwzoPc9G8zhmF4AMDvHHU5ChuPl2McWG4A8B86jv8NAJ8K4PMw/hAbvhTjwPIWANvBeW8bhmE//fUbAPzkMAxnadsvD8PwL922/wbgx9gitVS01h42vcNdGIbhD1trfwjgazEO5gcGP4/W2gMA3t37nNapwzBm37ok49UwDH9wKe7TiW8bhuFbAKC19hIA//Ma5/7LYRj8xPa3Wmu3AHgZgM8FEFq8erHOi/Kd0+e3zR3YWvvY1torWmunW2tnWmuvbK19LB3zwtbaW1tr/6i19urW2tnW2l+21r6ipzDrnN9a+8DW2k+31m5vrT0wme0+Nzjui1prb2yt3d9a+5PW2me11m5urd3sjrm8tfb9rbU/ner3jtbar7bWHuuOuQnjbBIAHjKT1bRvj3m8tfaNrbUHI9NJa+3PW2v/xX0/0Vr7ntbaLdM5t7TWvrVnwGutnWytfXdr7a+nNnhHa+0XWmuPcMes89w+urX22sn88xettc+Y9n99G82x97TW/ktr7eF0/tBae+5U7rdO57+qtfY4Oq611r5uuvaDrbXbWmvPb61dFVzvO1trXzO1x72ttd9qrf3DoA3+WWvtd6a+cldr7T83MtNNZX9Ra+0LW2tvmNrh9a21T3DH3IyRnf6TtmuOvHna98g2mtXePrXzba21X2utve/cM1oTrwPwywC+tbV2ouP4+wC8BOOPtMeXAvgpAIeWGrG19nEAPgyrg9N1AN4RnTMMw0603V3zo1tr72yt/WJr7fLkuI9orf1Ka+09U9/67dbaJ9IxH9Nae4nrf3/RWvuu1toVdNzNrbXXtNae0lr7wzb+OH7VtK+73wH4OQBfzNe/FGit/VwbzbNPmPr+fQCeM+17+lTm26fy/35r7Wl0/op5fBpHzrXWPrS19rLpHbmltfbNrTXJSNvoAnnp9PXV7t15/LR/j3m8tfYV0/6PaeNYZePtv5n2P6W19sfT/X+3tfYRwT2f2lr7vemdf8/UHo+Za7e5/jhzbmSJet30eeHerbWrW2s/1Fp7yzRWvLO19vI24xbCMAzpH0Yz4IDRrPE9GM0l7z/tOzbtu8kd/+EYB4jfB/D5GGf2r5u2fYQ77oUA7gHwBoxs4VMxvuQDgH/aUa6u8wH8HQDvAvCnGE12n4bRPLcD4LPccZ86bftljGaaLwPwNwDeDuBmd9zVAH4cwBdiHLg/FyOLeQ+AR07HvN90zADgnwB4PIDHT/s+YNr+jOn7YwCcB/BVVL+Pmo77PNfWrwZwB8ZZ+/8C4FsB3A/ge2fa6jIAr8Vojvw/p7p+PoAfA/DYfT63Pwfw5QA+fSrX/QC+F8CvYjR3fvl03IupLANGVvfbAD4HwFMB/MVUr+vccd81Hfv86Zl9HYDT07226Hq3YpzFftZU9lsA/BWAY+64r5iOfcH0fJ+Kse/cAuCUO+5WAG+e6v75AD4TwB8CuAvANdMx/wDAH2A0ST5++vsH077fAPAmAF8M4AkA/jmAHwbwAXN9uvdvqsd3AviHU995ttv3IgC30vG3TtufOB3/ftP2x0/X+mAANwN4TXCf52Lsexf+Osp34/Tst2j7fwNwFsA3Avi7PWPO9P1JGM33Pwxgm8rnx56PxNjHXzM9uycD+BWMY9ZHueM+DyP5+EyM7/BXYZxM/ByV42aMY8ctGPvzEwF8+Dr9bjr2o6fjP/mw+kD0fMW+n5v67punej4RwMe45/SVGMeDT8X4zp3HNDZNx1w+ld33se+ejvsTjGPRp2B0gwwAvigp59XT8QOAf4Xdd+fKaf87APxw8M7+BYBvnu7zH6dt/w7j+/cFU/u/CeN47fvH12Ic038EwP8K4IsA/OV07Ik12vclAN54wGf0OVO5P9Nt+ykAbwPwLzCOFf8MwA8A+Mj0Wh03ewZ2f7SvmzrAC6Z90Y/2S+AGuGnbVQDuBPCLbtsLsfoD+zCMg/ePdpSr63wAP4HRB3c9nf8bAP7IfX8txh/25rbZD+fNSTm2AZzAOKh8ndt+03Quv8AfAPej7cry3+m4H8A4EXjY9P1Lp/OeQMd9K4AHAbxvUsYvn879rOSYdZ/bE9y2D8fuy+Vfmu8D8BBWB9p3AzhJbfIQgO+Yvl+HcaB9IZXxS7ge0/e/BHDcbfv8afs/nr5fCeBuTP3WHfeBU9t9rdt269Tu17ptNug+zW27GfQjN20/DeBrDvKCd/T9AcB3Tv//1PSMrp6+Zz/abfr/2dP2HwLw26o+032ivw+ZKd9L7bq0/e8C+P/cdd4N4GcBPImOewZ2x5wvnp7Rt4t28GPPKzFOxC6j9/MNGM3yUVkbxnHsSzAO8Ne7fTdP2x4n7p32O7f9OMYfuW+5SP3hVuQ/2gOAT5u5xtbUDj8F4HfddvWjvecHemrHNwH4lZn7fPp07icE+9SP9rPctsswvp/3Y5p8Ttu/YDr246bv12CcwP1Q0AfPAfiKNdr3QD/aU1n+GsAfYS/h+CsA37Xu9dbyIw3DcCdGNvX01trfE4c9AcCvDcNwlzvvHowz3k+iY88Ow/Cb7rgHMD74CybLNirUL/ytez7GTvJfAdxN13kZgI9orV3VWtvGODD/wjC15nS938c4e96D1toXTOaYuzB2gDMYfxhUm8zhJwE83swiU/m+CCNLNd/Tp2OcLb+W6vFyjIPC45PrPwnAO4Zh+JXkmHWe25lhGF7lvpuy8hXDMJyn7ccwCpI8/uswDGfcfW7F6Dczgc3jMb6crFL+OYztzeX5jWEYHnLf/2T6tH7w8RgnID9NbfeWqYxPoOv992EYvCCGr5fhdQC+sbX2zNbah2XmQkNrbZv6+Trv5Y0Y+943zh049e0XAfjS1tplGK0NPzlz2gsAfAz9vWXmnEcjEKsNoxDrH2F8fs/FOIh9LoCXtdYit9vXYpwkPnMYhhuzG06m508C8J8B7Lhn3DCKnp7gjr2qjW6mv8Y4OXwI449VA/ChdOlbh2H4I3HbuX5n9X4I46Tx0TN1yMa6g+DsMAwvC+732Nbai1trb8f4Xj2EcfLSO479v/bP1Lf+DH3vyLowkzqGUXR5C4A/G4bhre4YG4P+zvT5iRjJFL/zfzP98Tt/UTC9Zy8GcD3GSY43u78OwL9qrX1Ta+0je9/7/Yg/vh/jzP45Yv91GBXSjHcAuJa2RUrBBzDO7tBa+wCMHenC37St6/wJ7wvg6XwdjOpVYGzM98H4w/eu4Hp7RHettacA+HmMs/enAfg4jAPZ7XTfdfCLGH/4zd/4pKncfkB9XwDvH9Tj91w9FK7HaIbJsM5zu8t/GXbVy/w8bDu3SyRkfCd2/T3XTZ97yjMMwzlMZnQ69076bhMdu6/5k1+B1fb7MKy23Z7ruYlTz/N9KsaJzrMwssq3tdb+7cwL+Uoq07/tuI+V7W8wWpOe2Ug/IPCTGM37NwI4ibEvZ7htGIbX09+ciOlyCPXyMAznh2F41TAM3zYMw6cA+CCMP3Y3NgopxeiCehuAX5i5HzD2iW2M7h9+xv8HgGvdM/iPGFnc/43RLPwxAP61K7tH9E4Y5vqdx30ApE+7Y6w7CFZ0BK21azC+D4/FOOH7BIzt8NPo6+fnp0m9B4+9h4VoXJkba+ydfw1W+8OHIh8vDwUTGfwZjG37lGEY3kCH3IBxUnwDRrfkO1trz2uJZgNYTz0OABiG4XRr7d9hZNzPCw65E8Ajg+2PxPpy/rdj7Ei8bR3cgdEP+j3JPWyWGYmFHoG9oQlfCOCvhmF4hm1orR3H6g9JN4ZhONNa+yWMpsAbMc52/2YYht92h92BcYb5BeIytya3eDfm1Y+H+dzm8AixzSYWNhg+EuPsHcAFC8T1WB0s53DH9PkMfz0HFe60NoZheBfGH4B/PVmjvgxjuMftAP4fcdoNAE657+v28e+Y7vMtHeV7U2vtdzGGbv6it6wcIu7A6kRPleftrbUfxxgK9qHYnYQCo+/5RwHc3Fr75GEYQhHbhLswmrJ/EMJ6MAzDzjQgfjZGs/q/t32ttQ9TReypRweuw/geKhzGWKcQ1eETMU6SP2cYhtfbxmkse2+AvfNPw+jGYPCE41AxWdhegNHf/tnDMLyaj5kmPc8C8KzW2gdiHNufi1H3IS1L+zXB/BCAr8euotzjtwA8ubl40NbaKQBPwegj6sbE4F4/e2COX8doHv2zIYmPa629HsDntdZuMhN5a+2jMPo9/Y/2CYw/8h5fitVwGZt1X4G+H4WfBPAlrbVPwyha4AnRr2McxE4Pw9Ad6D/h5QC+sLX2lGEYflUcc2jPrQNPbq2dNBP5xCgej9FXBoym8gcxTpBe6c57KsY+u255XovxGXzIMAz/ad+l3osHsPeHdgXDMPwFgG9pY0SDnDRNx+0b0w/fDwL4avSF5/xfGK1Pzz/IfRNELge01h41DEPEXC3ygn+U34ZROPWbAH5z+uEOme808X01gI8A8AeDVv8+DOO7+hBtf4Y4/sBorT0SIwOUz/mQxrp1YBEHF9qhjREOT77I9/Xj4sXEqzBaNz5oGIafvcj3ivB8jCTsacMwvHTu4GEYbgHwPa21L8MMwdrXj/YwDA+01p6DcRbM+A6MqsxXtta+B+Ms75swdhJlUr+Y+LcYZ++vaq09HyMjvRZjw3zQMAyWVepGjD9uv9Ra+1GMJvObMA4kfgD4dYxJKr4fwK9h9IV/NchkjFFdDQD/prX2UozmpOylfCXGmfVPYOzQP0X7fxqjyvCVrbXvxaicvAyj8vezMM6YzyLGiwD87wB+drKS/C7GH5xPA/AD0yTgUj63+wC8vLX2PIyD6LdjnPl+PzBqJ6Y6fnNr7QxGTcLfxzhJfA2cL60HwzDc01r7RgA/OJmQX4rRx/gYjH7Qm4dhWDd28s8BfFVr7akYRSb3Yuwrr8D4rN6IcUD8bIz97eVrXn9dfDdGRe4nYdQ+SAzD8IsYXTIXC68C8C9aa9cPw3CH2/6nrbVXYHyet2DUGTwZo6n6xcMwrCTwGIbhttbaEzEqz+2HWzHQr5/u/bLW2k9gNG2/D0ZV+fYwDM8ehuHu1trvYHwvb8PIfr8cLhTnIuDjps9XpUddWrwao0vuR6ax/CqMY+U7MUa/XCy8EeN4+r9N7/aDAN7gNS6HgWkMeTaA722tPRqjhulejM/5nwJ46TAML1HntzEU1kIFHwPgVGvt86fvf2IT7dbakzD256cNw/DiaduNGJX6Pwzgf7QppG3CO6cfaCOKL8Zo/TuDUR3/WIxWp7Ryc8q3ZyBQjGL8wX8TSME57fs4jIPX6akwrwTwsXTMCwG8NbjfzUjU2vs5H7shWG/D2Eluw6jY/hI67mkYZ8MPTA35uRjDfX7JHbOF8cfj7RjNGL+FUVxzK5zaGeNs/gcx+sl3cEGrsaoed+c8b9r3WlHnyzFOJN44lfFOjGKGmzATioNRrPQ8jAO6tcFL4FTnB3xuFxTNWd/BbhjRtwB4K0YV6KtBCl2MoqCvm56HlfcHAVzVcd+wjTH+QPwmxgnCWYxmsxdgCteajrkVgRIXq0rlR2J8We+d9t2McQLyI1PfOT3d53VwqvPD+IvqPG2/cdp3K20P6xS8N5F6fOU+HeW7FuPE7Mto+1dg9Pe/eXruZzC+X8/CXsV31G/eF6Pv+00AHhM9k2nb38coWHwXxnfkrdM9n0z946XTs3sXRlb0GdP1npi1yT773Y8BeP1h9oHe5zu1xV+JfZ+GcfJ/3/QufCXGyd/97hilHj8n7jWrssaoMbgVo8VywG44rFKPvx+d/zsYRa9+22OnY3lM/2yMY/S92H3nfxzA35spo6nco79nB8d9IZVPnevr930YxZh3Yxwv/hjAV861X5tOLgRorb0fRln+c4dh+I6jLs97A9qYZOa5wzDMJukpbC5aay/EONh+ylGX5Sgx+dBvA/ANwzD8xFGXp7D5OMywgo3GFDLyfRiZ5rsxqlqfhXF29uNHWLRCYRPx7QDe0Fr76CF3C7234waMbP6wtBSFv+WoH+1dnMdo8nw+RoXyGYxm238+CPFLoVCIMQzDLW1M1XvY6Vs3DQ9gNJezeLVQ2BfKPF4oFAqFwoZgI1bWKRQKhUKhUD/ahUKhUChsDOpHu1AoFAqFDcGihGgnTpwYrrnmmkO5ll+ngddsmPvee92DlOmgx0b793POQY692G3Bx5j+4k1vetO7h2HYk2f72muvHR71qEdha2vrwGXzOg/7nz97zu3dt845+9GgrHNOz/16y5S12TptcZi6m9tuu22l75w8eXLPuGN9x/oSAGxvb+/5tH28PRp3+PMgWMo1LhbW6e/r9NWdnZ09n+fPn9/z2dPHbrnllpW+cxRY1I/2NddcgxtuuOFA17CX6bLLLruw7dixsZr8Ms5991D7el5INUnIXvCoDOpcHki4Pj33m/v05VHttk5bqDaxZxXdx16wJzzhCSsZvx796Efj53/+5y88d/vMnqW9qOfOndtzffvu/3/ooYf2HGOfPBh48EDAx/AA4s9Rg419ZhMLdf/ouLn7+bYwqLrzdjvX15u38X35uz/nMH68b7rpppW+Y+OOXf9hD3sYAODkyZMXjrnyyisBAFdddRUA4NSpUxfOBYATJ8asoFdcsZud0/ry8eNjOm/+Yed+GEG9hz3vml03ez/VODN3zej6XObsHvwuqMmxPy56X/yx0fv74IPjOiL2/p45MyZeO3t2TB55++237/nu78PlfvrTn55mGrxUKPN4oVAoFAobgkUx7cNAxAyZgSoTamZaXWeG22uO348p7bBMW+uyFj/jNcagZtrrIGvXddv8+PHjF9hNZK7kcvOMPcKcGVex5+jYddp8jmH5ss+1f4+Jn+tj17drR/Waey7W3tk2vg9fG9itu2rzg8Klldxzfb9tzhLlr8Vg5rbOu83vGF9/nXcvK5u6H9836zvqGfp78Bhs++YscNEx/Jyiclh/s35m4wNbZI2B+2ONsUf9+ChRTLtQKBQKhQ3Bex3TZv9utC1iYXOYm2GvI3zLtveKViIf8zpY9xw/w7aZqPLvZ35ktZ1n4H6ffZpvUF3n+PHjUjDkr6OYdg8jViwvOpdZhGI1+0GPL1KxQF+O/VgB9nOOKhvrFQy+fszGmT0dNqLr9vhp+bjed2wdv/JBxG3Rc1Ps9TBFdNl4wCy2x79v5ygft/dpzz031jv566rrHzWKaRcKhUKhsCGoH+1CoVAoFDYE7zXmcTaverOLbWMRwmGYpdYRpPVcfw6RmKXXdJ+dY1DCF38cm1n3E36i6pMJ0TJBSGsN29vbK886KhOXW+335WbRC5vMotAvJZTha/eEb/H+CKof9Jix93NfFSaWhe0o0VDWd+xZZuF1h4n9iO4icL9V4kI+3v/P7ZSJ2eaEWoYsbKtXRKvKMFfWubEpE95x31Fma+9G42PU/aOxxe5j4WJLQTHtQqFQKBQ2BO81TDsTIHEYkMpiFM02exliJEBi7CdbVg/mQi7WYdq9M26gP6lLT9kjceA6TNuOz/rBHOONmAknU+HkIFlmJZWEJAvBUsynxyqkjslYtErekiVZ4W2cnIaZUGR9MChxWcZ2L3YImCqrL8M6glRlBexh2uq+ETiMiq8fWSrU2DEX+pWhJyvhXPhtZiFTljIrW5bJjs+JrpUlMloCimkXCoVCobAheK9h2sam2W8NrM54eabLs/3sXN4ehfPMpYY09CTiUDPDzAfDM85oNjvH3PaT9ET58KIy8rWykC/FTBittQv+rCyUQ5UlS53I+xTL9D40lfKUv2chOIop9IT8MfOKfIFcflXGrF7m81MWi6x+XFbbHqWSZRwkDGldcJ0U81xHczC3PdqXaTW4bCo0M7LsqPtmYJa6TopnZYXIoKxPmeXKymh9VI030f3XyUt+KVFMu1AoFAqFDcHGM21LQ8cMyysI1/W5RqxSMZ0ept2zokyvHzzzLfE+xWo9lJ84m/nOKcwj35KaFXPZI9V/TzKc1hqOHTu2ck7EKpQeQVk3AJ1wwRYkiBYrsNk9+8H5GhETZRW81SeyJHFdOWGJ8r9H5ea2YCburzf3DLPIA277jLWp+vB9LwUjyvQPviyAtugxazb0LMqT+cHnfLFseYnqxddV7N3v43dbXTND1o5zx2RtxJYqZfWMntthJBG6GCimXSgUCoXChmBjmTYnfGdGEjEsVlVmzEpB+cej2ZiKI4zUnUq12wNmbNlsnLf1zrAjKNYUMTpm9EoTEFk5ev1dW1tbXSpUxdii+2Xx//76USwnt48dw3XN1Opqtu+Xnp27L/f/yKfN5yp/fFQWe/fm/L0R2O+6Dqu52PHaHsraoywi0bEqvjiqe8Rso2tlERX8bLPnonz2VjZeotafw22QsdhIs+DrYffnPhVBaYciq5CV0Sywmd5nP4r5S4li2oVCoVAobAg2jmmzP4gZ0DoKcMUMMh8jM8NoBq7UjFn2IWbJcz7uaAZus1cVnxn5ixWbVYtpROXvScLfy6i8n4+PnYvT9hnRonIbS1CMN6oP+x1tps4q8sinzX5v+7z//vv3fPfPmlXpygLTY5FQ6v6e+Fluc68RUepddd2M2bEvPWpHlU+B2+iw4fvbwx72MAC77WCWDrb0eSg/PbPoLMZfZfSK3gkeA/m67Nf1/0f7PFjjAOy+R3w/1iBEam6Diuixdo3eeTW+Re8B38+ud/nllwPYfRcj65odq6IXjgrFtAuFQqFQ2BDUj3ahUCgUChuCjTCPZ6ZANldHIi8217BoiE3u3iSjUiWyiaZHVKaSHfj7sClRiZYyk2CPqX0uFWCP+IIT2mShEkrgwvujtXB7zLq2n68bJelg0Y2dYyZQ314sxFLiFNtvJu9o2wMPPAAAOHv2LADgvvvuWzmHk0AYWOwThbWo0CI293lTN4uHlAsnu5+hR3jFgiY2K2ftqNxYh50Ew+pn/cH/f+LECQDAyZMn95Q/W4Obxxd2sUQhWvY/J64xZOGCbCbvwdz4ErktlIvQrmGm5yxMzMzg3Eetvc2MDayG9aqyRuFbagzma/pzOMxyKSimXSgUCoXChmBZUwiBLNC+Z4EDm61m6SOBeGZqMz4OsbFjjRFEITg8e+TZXlSvOaHWQcLTImEYQ4X6+PLwLNUzEn+svwfPjpmlc5n9sVYGzxAVVNpRYPU5cFtn4XaKxWYhf9bvPFsAtNgsus5cQomojIqlZwtGqOfNzxrQC+8YWPCXJWZR/TwKnVJWtjkR1bqI2Jf18SuuuGLPPfl9iZKdsHVBhTD67VnIHbA77vhxTgk2rR5W9p4FQ/h+UcgX77Pym0XpzJkzK8carI2tHmyN4D7k9ykhmiF6BszsrWxRUicr28UWOu4XxbQLhUKhUNgQbATT9jOdzJfsj41moMovxLNkP1NTs2SeGXo2wQybWWWUYEAxKPYXRX7xnpk7308tp8jhUBEj5zrbp5U1C4NhhhKxGj42mg1HGIZBpir192BmzalIfZ2ZgajwD7umsQxglZUw84xYjkoO0+PTVr5/5X/3/zNzyyw+Vn5uTxX+FiXk4H09bEYx68iqoixJ6rrb29sr/Tfyp1oZ7Dnz++j7sdWRtRIqVM4/Uw6Fs3bi8EFfZ2PSrOExVmlaiiuvvPLCOWwpYr0C99Wo73C6Xg51jDRC/H5aW6uQugx2TdaO+G08BrOFKQqHjSwTS0Ax7UKhUCgUNgQbwbQ9c7CZGPs3mdX0LHCgVKcRO1PKb/bj+HN4xp75b5kdqbSJEdNTfm72nfoyMlNQfkGlMvdg5mXf/SyZ/ZHsq4uY8ZzvysOU49wv/Aya66L8qxEz4D7CTNHqE83ymQmYqjbql8wmud9FVoe5pUuZ3fo+ZOVllXKmxOY2VgmOooiAzP+o7quYvEqj6dHLuKOEOlHfMcW/0sNEynyuI1uXIuuJvTtz759vWztHHWtM29fL1PCczERZBXx7Wt9hq4Ddn5Xhfh+PkabG5/Hd62W4H89F9AC775zVXSn3s2RcrNk5ahTTLhQKhUJhQ7ARTNvPdHhWrWbfESOdU6r2xKSquHAfV6rU4Tzz9DPFuQT5mfJcpXe0z8zXw8psFXsb+ZOZmbLf3d+Pr2fPlH1c0Ww5auMI3i8Z+aqUz1WlivT35r6hYrCNRft97I/NhF0IAAAgAElEQVRUiyVE92HWlymluc7sW2RG5P9X8ec9EQ5Wd47bjRgR+0FZnR7dL0sV68/ZL9M2n7a9n5EvM1OJ+3pEOhUur9KARNod5cOOxjmzAhjsGN8n/bX9/4pps089ak9+JzLLD48N/MnROn7sZ//2nMLel5/vmy0fa33R6tzjV7+UKKZdKBQKhcKGYNFMO/OJKLaUxUAza1Sxwp7RMQPl2VymrrWycVkyVs1lUWwpsgZkS9RxOVSMLfuceSbu78NKT76/rx+zfmYZzLj9/z1L5LXW0Fpb8a9HFhfOjKf8+NE9jc285z3vAQDce++9e67lWU20GAGQq+LZ58YMNFLxGnvgGHjly4784Qalu8gWQmEWY37SqE2sPuw7Z/9h5GNWmgbbHi02E1l7GK01HDt2LFXMW135War6ALvtcs899+z5rrQa/n3lOGY7xqwAmXWBr8fvmve787NU+g77HvmYmWHbfSJLi22z94i1FFYvK6NvE+tXPG4rjYU/RuUOsPr494B99UtDMe1CoVAoFDYEi2TazKajbExKhRrNQNWMKfJ7AvFyjnyMzcZYOeuh4oojHxbPVlmJzTPgSHHM9Yz8bHyOgWfWrI72M2w+NssKxmCLCN8nynqmVNFc/mEYVhS7kZXGkOV+Nli5LNb1jjvuALCqvr/77rv31AfYZRNXX301gN0oArtmFFetMscZoogHzuPNLJ2tT9nSoyqvt2es7Oe067Hv9PTp0wD2ton1I4sVtjbK8vMrzYmVnVnifhApt/311PuuchYAu4pl+7RymlKa2y0rA1tlokgAKwvHhTMz9eMOa3RYf8EWq0gXY1Bx4n4c5BwOdl+zXKnslf5+p06dAgDcfvvtAHb7OWer821hn+zTZquAbxPbt07M/6VAMe1CoVAoFDYE9aNdKBQKhcKGYJHmcQMLngCd5pED4L25Yy75BJsR/f3UIgVsPsxCVdRSoNF9OPTCwOayyCymltOLxEts4mQTmn1Gy+vxAgRsno9CJFSaVrXgiy9jj3nckqvYfaKFDRhsio7cCWbavPPOOwHsmslNFGPnmpnXtgPAVVddBWA1YQQvVhD1AyU0igSRKmyO+1TUnmxunVtUx5/PplvrD1ZmdgdwXQEt+olEkyz6YtNulH64B9Z32PTtr8duIn5PIhMqm8zt+tYuvJBMdA17duZisftH4W/seuB2id4NVR9+TlFyFYPdz8z+Pc9SLXdp75H1C99Gds51110HYNdcbq4pK6OVw9fV6sNm8Syp0zrjz6XEskpTKBQKhUJBYpFMmxl2lmKOZ25RWIgKy1AB9lGgPZ/Ly7d5MOtWoVfRbHMurWMkjrA62z6VTMHfj0NY2IJgxxpzjGaivCyptafNjiPxGosMVbKaqCwZWms4fvz4SgiJh0p3mT0vq5OJX6xO3FeyZUM5yQUvkhAtAcmWFg71iyw7SrzEYS+RFYr7KLdRlKSGLVTWV6wO9t0LlthSxGLGKBxSWbdYjOXHiXUWeTARo0ol7OvK4w4ztijkyywQVk77bowwSpPJbN/OMUQWF06brJZdzVKf8jvCfckL0fh95/vb84+S1HD5r7/++j1lY7GmL5NtY+sDL/Thr8/jNvdvbx1UqU6XgmLahUKhUChsCBbJtBlZshNmHlkyELUEJ3/6GTbP7tSiEx7M8jj5fTQrV+Fhdn8OOcmYnQrBylJS8rkq+Yo/R1k7IqatGHWURtDAKTyzRUuMafN1o0UfVD+Iws6MYVudzOdmvm61sILfx7oBtTiC/z+y+kR18Oeo5CAqBWsElYoyWgjDtnFyF/YFRuGXts/aN1tGVlnG+DNaArQXwzCs+Pe9PoHfN/vOC274ejDD5RA5fl8ii6LyS0flUovlMHv1fmK1QIhKVuWfpdKj9IwhrLdhn3OUZMdg9bG+Y9qRCJzghZ9JtpRzZrU7ShTTLhQKhUJhQ7Boph0lqZ9b4CJTijPj4Nlr5i9UfsIesGrUyuiZAS/Pp5ayjPy8PEtWSvQofaWyMnA9o0XimTFkvmH1nLIFKzIFc4Stra00LSf7UblNo3aKlk3053DSCV9npUcwRMsP8v3UIhwRlDI/q4taVtUQvU/8njAr46Qb2QIlc2mCgX7G4/2tmVWGYWlMs3S5bFViBXg27qgkRBzVkVkH+P7R+Md9n69r7WgM1ZeB218ldfLvk0o6wtaBSJ/AloSepXr5Gmrc8eB6RUlpuC5qXFgKimkXCoVCobAhWDTTjlJ2KtUpz3SjVH1qNqz8Rf7e2TG8Xfn0siUL1RKg6v496mhOxxcl7leze+W3jvYxolSbc5aE7DpW1l4VuUek5uW26/GvK/2DIfInc+wr90OOkfX72M/Oi5tky3ly/bI+zD5L1if0aBsMbG2ILCVZG3tEsb1qQZweXcncvba3t9N33O7Beg1O8xktrMLjGN8nWliI2SSn48zeBeWvtXO971ulwOVrRaxTpXDm7dE7yOA2j9pTaRlUBIIvi3oWWdvzNZaCZZWmUCgUCoWCxKKZtiGbqSsWHTFfxZaymZRiBj2MTinNs8xhfI6aIWY+RsXS/QxUxZ/3+JGVOln5ybNrKKvHumXicyKLxNz1enyK1oasFo7i57ksKttZpDVgtmR+4ijCQfmylVXGn6v8qqzyjvz8zHCsDXjJzszaMfduRvXKFvjZD4ZhwM7Ozkq+g8yaxW0eLQXLlg/VvyKGaGVgdszXzPo3Z7njhUqyMqnxLfKhKwtWlm1MWYdYs+ShIk/U+BeVn3MWROP7OuPCUaCYdqFQKBQKG4L60S4UCoVCYUOwEeZxDzb9KcGUN+MoU5wydXnzyJzpOQrX4CQKhiyUQJnQ1PfIpMrHZNeaMymtE34yF0IXHaNMaZFJsle8FJkKoxAyVbfoHAPXiQVBWZIGvoYhEnmp0BsWjHnzoVpbvqccnJK2Z8EQVX7uF9E11MIkkSBIgfvQYSS/OH/+/Er/8GVhVxb350h0pUR8yrWXuSD4/YjW7zZw2lx24ViCIA8l8lKiRl82FiByqtJIaKlCsTJXpRrPeHsUYsZ9k0O+ojDInmRER4Fi2oVCoVAobAgWxbQt9IJnjxHz7U2h58+fYz58D3+MYthRQglOWMHhBVFaTsW0e1iECv7Plubk+6iwjex+KpVsxN5VW3PZ/KycrzMX8hXVL2PuKqVhtGjJXLhRJMZRoriMTfL1eInRqO8oK4VKgRlZabie3K8jiwWHsimxZpZcQzHV7LnNscF1MQzDHqZtiMYBHn/43lH6ZLVATWbxm0vmEyWcUWGCJkCL+hRbilRbRn2X+50xbhblRYuaKAsplyMT2inRZnSOWuCJQ8IiZPuOAsW0C4VCoVDYECyOaR87duzCDIrTIQKaVWb+qJ4QJLVfhQlx4o9oOUcVnpGlxZvzJUVlZGbPrIXZWlYvZkdZCB1fI0tKoEJ71AIVEdZJJ8jPKSrn3CICPcdkzED5mjP/PjMq7jM9baDaOgvfsn3MRLgcwG5bcJrcOWuK/1+1W8SWuK3ZqpElHOrFMKwuzRnVRyVTidKKZuGM0X4P5a9VGgd/LC9ryWFO0fUM6llG7zj3Jxuvo6VGDXYMLxDCVpvsfVrHUsZaCbu/Stsb1Tn6HTpKFNMuFAqFQmFDsCimDYyzN2ZfGVtiZhIxw56lHT0iZsD3Vwnuo+uoY3y9VLKBHj8osyO16Iefac/5P/n+Uf1Ucn9ODBOdz2XMnlGP38nOXWemblAzd/8/M865a/n/FYPL/ODZwiBAHh2hfH09qVbNL6msEvy/P3eddI9zDDu6n7Km9faPrCw7Ozv7SlfJzymy8GWREX57pFLmvqneW18WTvurxofoesoaFDFtZsl2n9OnTwMArrzyypX7GVSUwjqWJEbUzkoBzj7uaJzg1MFLQTHtQqFQKBQ2BItj2sBqfF/kJ2I/riGatc75ljLwTFP5nKP7KTUqxwFG11Pbo/qxapTvFzE+xRCUSjYqA9cna1eus/KdR+Xna2RQz8v/r1hz5tPmayhLSI/q2ZDN8udir6O4Uj52LjbeH6MWtYmgohKUmjxLEcnIWKehV6OyDoxt+3tH7xjX1drJYp9Nqe2PnWOGWV2VFSiyyKjUs8y8I8W5QaWZ5f3+PmwtY8bt73HixImwfrwMc9ZnlZ4kOsfqbM9HLdoUvfORBmAJKKZdKBQKhcKGYFFMexgGPPjgg+FCGv4YD5sN8TkRe+ldkjNTu86pOf05Ko55nfjSnrht5X8yZMxExfL2MOA5lpnVL/OZ8n1YR6Dg62c+q8iPP8cmo+1zDGSdGO/s+ffGPPu2UO2iWFl0vF3f3iOOB45iltnnx+170KVUVT1Uux4E/r7RspBWV+tXrLvJIl3UQjrrvC+Kkfpnac+OF24xRMxesf258c6XiccffveMcftjlMK851nO9YPoGorBc7sCq7kJDtOicxgopl0oFAqFwoagfrQLhUKhUNgQLM48fv78+ZUA+CxRikov6jGX1CAzUylzTZZcZU6QE6UtVMkMspSufK4y46yT0lMlOYjOUUlVeoQ1bJbLksZwCJOCD/mKEomwm0R9erMui8XWCVXiPjIn/vP35nSPWQIYvi6bw9WnB7eB3Z9D3oBVc69KBMNpe6O6K6FVJLDi9jzMUJydnZ2VEFNfBtX+Vv7MFaCee2YO5zZjszgnUPFlsPHTwvfU2t9RWVToZ1Rmvn70/vjjgF1TubWJ9bMeN8mcGTwzZ6v01+wGAvqEtUeJYtqFQqFQKGwIFsW0W2t7kqtkoReGdRKnzAlXsmsw82XW4q+pmLbN9jiFX1S2rA0Y3AZK5BUtG8nXt1k6z5qjMBH1maU8VOI8Lpe/Ti/TPn/+/MqMOgoXVIsUcP2ibdxezHz8tWwb9xFmBF5EyalB+fpZqI9K/MNsNhJNzSWNiYRvc2lLs+em2GYksFIiwHUEnT3IhIKqbQ38jmdQ70sUdsRCKf68/PLLL5xjYU3c79hi5c9h4SEfy++pZ6Rnz57dU0YTl1lYV2R94HGG3/FsDJ5r28iiw/2a3xX7Hi34tFQU0y4UCoVCYUOwKKYNjLMlZi3RzIdnZtksbN3QpCwhB3/yzNT/3xsuFt1bBf9zWEV0DN83S8/JLIxZACdmAPpYMn/vtSRkPvu5hVbOnTsnw2s8VPlVPaJ9zICZ3fj/59iZr5cda6zp/vvv3/OZLeDBZVJ+PLuW38Z9lq8VWWn4mXLIkSHTbqi+Gr0bPcfsB6al4UUkIrbfE7bHUGl+GdH7yWVhH7q//5kzZwDsskbl27766qsvnGOs2461+9j4wguh+PAtu5+V9YorrthzrF3bP3+2QqrwwB6//1z4pf9faQJ4e3Sdpfm2i2kXCoVCobAhWBTT9upfIA+SV6nmMn+kYpNZsgZmS2rGG6mUs1kcQ7Ew9r1E9ZvzzfYsP8ezVU6JGN2PLRgqIUh0/UhBz1DnZMf3+P65z2QKcKVlUH7DHnbGzMufYwzbmI+xGWNL6/ijlf/d7uHLzymDud9FbNm2sb+dr53pCrgOmVXoYqnHjWlz0qBIUcyfrJCPIl3YQqSeT2Q9YW0GWwO81cSeq7Fh9hsba/bn2D2tf5mf2vzTxpatDrbfX5/HQrt+FP1jVhgVpZL5+ZXFNLPwKSsUWxaiiIos+uEoUUy7UCgUCoUNwaKYNjDOanr8GYo1Z4ubz6UtjVJE8j6+RjTDZobNcasZi1U++oyJ8EyQlZ+GjKmqVKsZ82EVtlLLR9vmGFeEzLfELDtrW77XOmkx5xTMPXH0vBymhzEeY0vMtCNW26tpUL51v08hih4wMENVegkPpRaOzmHWr5apPCgUKwN2mVkU+eHLEvXB3jwGEavkd4x92b6dWMtg53AsdMTOWe/AlqTIh87WGW4TZvj+WO4zPZqBdd5Tg5Wf3x/292dpgQ+7nx0UxbQLhUKhUNgQLIppt9Zw2WWXrfhiopnO3Gzesxi1LKShZ+amFKAZs1K+q4xpRwu5+3Mz9qIW8sgyy3E8sLpf5CdS94/qoFg4+7A85jLZMXZ2dlbu3eMzz56/8mHOZcjy4IUjWJnr+6ptU/kAsgVqVFz4OlCWpCingIqJz6I1lOWKsU6M9GGB+4Fn2szQ1PufWXu4newz8qdyRjylI/HPxfoOx/+z39oz7Ugj4a/BTNT3VfN72335O2f3i8qorEJZH1bvXPRMlEqcv0fRET0W36NAMe1CoVAoFDYEi2Pax44d68qApZhNpDpUy8+pRdwzhsizr2iWzH4vO5aZlodSQCoFasaa2Wca3U/5IVV+6sjfNjcDzTKircuie44ZhqErVlw9U0Pkv1dx82q2D6yyVGYeFtfqlyk8deoUgN2sUldeeSUA4N577wWwGr8N7Pq9o6xsc7DyWhmU9iCK6piLHuB7+HNUpEPUp9bxYR4GorGFowZUnb0FJIum8Ndni5i/Duse2J/vWaxiqz2RGgzrs9Yvonhq+5+V5txnougB9R6pKA0PjrrgeGr/DFTe+ixOm/tgxWkXCoVCoVDYF+pHu1AoFAqFDcHizONbW1tdZpy5UJvILGpQyfCj45W5sEcYFqXxA1bFGP58lVCkJy0nC0A4IUN0LrefEslk5iODaiv/fyRsUvVTIWURLOQrW85zP6FC6/QzhjKPs5ncTOF+21VXXQVg11zOIWA+nSQv0MDpLDMzLZs2s/5smAsxm0tvG23L2vGohECRmZWFWyykjMKb5pKBcKpQf++5xVIyASePO5GJW403KrlKNjazOT4SuaqQUjZbZ8mKuAzcRj3mcb5fJkIt83ihUCgUCoV9YVFMG9ibynSdsKrDkOlnbE+xlWgWxrO2OZFPdN058Y2/LzM3ZvK2PxKTMWtiVh6FpfCMVi15GYlWmH32WBB6BTQ+5Cualc8lyomgjlXMJ7rWnLgrSvPIiTGM8Zh4zT4B4OTJkwB2+9k999wDYDdch5+xv58STSqhEBCLg6K6Z+8tCyGz9/VSCdAyFsuJS7geURnnwhr5+fv9LB5VSVX8exktXuTPyfqbEoYy24zeRbM+WFk4bDFKyKIEvVnYokody88tY9oqhDMbG5eGYtqFQqFQKGwIFsm0s5CBubCdjJXt5xzlp1PJNqJz7ZNntX5GrNhXFlJk4NALZrGRb0klL+C2yCwJKpFJ5tNWzzZ6Fj3MjcuaJbuYK2dU7rmkMFkZ51hkxgzYWuH93gz2N/LCDT1pTBmcYMQzOrUAimKD/n5zYVCGTJNysZNeRP5UDv3j1MTR+zmXRIXf8SiBjUGFHEaLf9g4o8Ji/X3U82ALAi8O4o/h79wWvh3VOMBJTzgEzF+X20Axbn/+XEhZ9t5WcpVCoVAoFAr7wuKYNtDnw5ybIUbJR9TiFDyDy2b5Bp6x+eNYuazYU3YfVoQzfF3YX6xmiH6mzzP3OTaY+Zz5e7SAgFKf9jy3Ht+zlXUdbQOXKWLac8ueZlD9LkvQwyl8+dyMeSsGwizG+6S5r3C/iBbPUGmB+X6Zv1e9v5E/MUupezEQPRf202bvv0GlMTVwG0TWjLl0udGz5PsovYr/X2lMMt8vjzsq4iSyKKr3VLHp6Fiut8G3iWpHVqlHiXRUSumjRjHtQqFQKBQ2BIti2q01bG9vr8QbR2rVjAFm2/25hsiHNXdsNBPke6uFQqJF1dUscm62Hu1TMbYR055T3/ewG55pR6xaKcEzfUHG3BnGsrOYYXUvpWz3+5i9Rulr+X7KusCz/WyWP7fAgt+mLAYq1tfvs09j+vx9nTS2/JzWybsQfb/Ual5+X6N7czrTqIxzKm51bX9vfoaq3/nrc9nsGrbdpz7lnA5KM5SVkT+5LSIfeqYF8Ij0JUrZbohiu1W8dhYPno03R4li2oVCoVAobAgWxbSNKfX4C/fjZ+DZYrRACB/HPqTMh2VQikieVUbL6rFfSMUHR8pWVeaIgfcu39ijqFZxyJlPW6mwI189swGFSKXqocrNDDsqt8qix37b6L7s42V/WrQ8ovI1RizXzud4WYvTtu2mNPZsbW7Jwsyi1Bur7ttERR7wNZcQIxvFabMehd/tSAGuYuCtnaKsXNxH+ZjIMtfTn/kctsqpBT2icYcZPSPqqzw2qv4QvfM8HihtSBanbe8CR0VEeSiW5ss2FNMuFAqFQmFDUD/ahUKhUChsCBZlHgfy9Wgj7MeEoUKVItGFMnGzKTAyAarQh0joYOZxNpNz+sQsNEqtTRslueBtqj7ZWtwGdW4U6qE+o9SnbJLOnvUwDDh37lx6rDo/Cy2bM4tnIjn1PJTYx/+vXDZRHdg8bsewKTAK+WKTugr5iu7LbWPHcmrUKOEI1zMz/y8B1k5zwi2PudAkQ2SiVQJBldDG/2/P18ICswRKylzNx/J45M/hY9lcHYnn2M3I7RqJ2BjsqojcgDwWq3SpURnnRHJHhWLahUKhUChsCBbHtIE8lSbPBHtCk+ZmSj1pTeeYhz+H2akqm59FMpPyM+joPtEMVM04s4QVPMO2NlChThkyxqoYKn/6eveExnj4kK+ozZml8POI+olKAqKEYlHaRftkIVgkXmNrDDMFroPfx2zB2MR9992351qRmIhDvXrAfYMT0fSkpuV2W5IQzYPTefL7kaX7nUu3mfVVlX7TwraypC78Lhv8+NQ7zkTvzNyzNGQWPj4mW4Z3znIV9W+2lKpQr4hps/BtKSimXSgUCoXChmBRU4hhGGZ92uzzYP9wxgxVyJBigdG5zGqiJSDV7DtL/JGl7/Pfe2Z9PIuMZvKKWauwisw/PcdGo33MrKNZ7dyCCx7cdyLMPRcu49y2aH/WD1TCCl9uY8VZmkV1H64P+7CjRR+icKNecN9RYXz+mc756qP3KXvulxocnmfvhYXXRfsMynJk2235VWDVL2yLAfEzzFizPVu2/GXjqkpRm73T+7HK8X3nwjEB3XeyRCnsw2adR5Q8iK0KS9NXFNMuFAqFQmFDsCim3dq4LCezSj+7VSyJP6OZk0qAwUppP7vjZe7YBxIF9CvGF/lt5+qljotSA3Iyh0z5a5hbNKOHNatkGtl92WcWtT37SqN0th47OztdPkZlcelJJMPHqIQ90X3su7EmZgHALmPjaAXuU1EfUws2qGQ7Ufl7wPXgtMPMsCM1PrPn7P1dGtMBdsekLHGJtY9SZDNbjlgzK5h703/6Y/hdi9L0zqX4jcYsZWnjNvFpU/kcPpb1HpE1UlmqIm0HazXsvTJ9SZY0iKMhloJi2oVCoVAobAgWxbSBcSam/KyA9vUqv57/X/lemWlnCmZmAj1p8Him2xP3p2bwPfHMhiw+M4szjxD5ww08a85SiCqGzfHp/pjeeP1z586taByyeG1lKch8fj36By4/sxSljwB2/Zr2yT64iHlzfdiXqRTp/vrKYpAp3FWseqZ5mFNOZ/HoSwRbPLzVhNkqM2xuN2Pm/n91DUOk5mZNA/upfX+0+3C/tnOyxXR4TFIq+WgRFbZUcW6BKM2ySrVrx/K5wCqjNktWpn9Zet8rpl0oFAqFwoZgkUybfdrep6AS5xt6FH/MHrKsXOzPUBnEIh8c34fZc+ZP7FW6+zKqzG7rZPZRGbkiRaYqU+SvYisGt3WWPatn5mtMm1lmtAiDUotn2ebUMZlewo5h1sT1itiE8sVFTJRZuJ3LcbOR/oKvy8sdRv072xe1URZ/rPztS2c7CpHSnd8Hq6P5eiOVPVtc7Fj7jDQVcxkRo/7NViDuM1zGyOIWWcmi7x7cZ1gjwIvdAHopUJX5z9cj2qfQa308KiyzVIVCoVAoFFawKKbdWsP29racmQK7MyX2m6hcxn5blE2Kj83KBuzOKjO1t2ILip1FUP7caBao8mNnrGUuZjTL1mSzc/YfczmivMjWfjaDZ/VqxFR72NcwDHjwwQdXfOU9s2WlnPd1UkulMrJnyv06UuTa+caweJnNqC3YT6e0DdGyshwPzD5AZZ3wYP9gpgRXGpR1MrEtGb6dODqA35OebI7WR6644goA+r3x92OLCvuePRSrZKadZWDk953rEWmSVGY0ZVmK6sU+bI69nrveHJQ6/qhRTLtQKBQKhQ1B/WgXCoVCobAhWJR5HBhNElm4DpsCe8wdKqkGm/6itJLKBJSJynoXNYkSwHAZuS0is7lKAdgj5FKm5yxtJoPNvRxC549RyVSi+nN4U/asd3Z2cP/9918w52XpZedEfv7Z8nWUKyKCme34fiyS8/vZZM5m+ciUqsqgzK7RudyvsjA4Ky8vwqDSP2YiTSVI21QhmgcLA9W7HC3W0ruwRZauWbktfH/LEj75czK3kArxy95pO4bTwvI77+urzP9sHo+Eneukws2S0SwBxbQLhUKhUNgQLIppmxAtY3XGpNQMLRJWKKbBn1m4BodCZMk1FCNkxhiF0ahkCizKiph9Jqjy9fT/q6U5uVwRs1dJaaIkNWphkDmG58s6N1s+d+6cXFQggkoSE7FKxbCVoM+XW7VtZNnhc5lVcGKJaJ9is1HCCmbwKk2rb9doYQb/PWPLaoGQLP3spsPqphYb4eQ3wCp7NIEgiz+9NUslVeG2jYSWLCLjMSWyGrEYjkN1s+evUo+qUEd/DJdRJVvx/x8kXe/SQr+WVZpCoVAoFAoSi2Pax48fX/H5+RmohcJkfjO/3a7rt/H3LNxELcZhWGc21uOjVcv5ZUxbWRk4ZC5rk7nUpBH7VH7+iGmrBDBqYQSPHj/nMAypJcHfW1laeqwKGTsC4mc6pzFYJ6zFvmdJJ1RfyRaQUdaorK+qeqiwLn+OKlPGtJUVaD8s6ihg5bTlV7nvR6ySQ/DYUuVTnxr4mbEFxoNDWRkqnDPaxwv7RGMH19XqZ21i/dq0S5GFh5m18m37fesg09ksAcsqTaFQKBQKBYnFMe3LLrtshZFE6TCVKjBKBjGnruXUjZnvdC5loy/vnBI3W+B9TrUZJXPhfeukMVVJNKLZuWKdym+dnZP5iNdhUJx0v0wAACAASURBVK2Ny7oyU40Wf1kncQhjbinTCHMLuURQjDRisWoJTmUFyO4/x4QBzXDnEmf0XD/TNrAPddMSsigNAKvwgV3GyQp0Xg41siRx+/Dz8OfwmMf92bZHUTMqBW2m8+CyMMM+c+YMgF2m7duE20m9E75+vWNItKSuSj991CimXSgUCoXChmBxTPvYsWMrDNsvom5gNtfjr1PMipl2hLnZZMYM1EIaka+nJ23pXFlZ+RnNNueulzHg3qUZ/QyV69zTJvxc5nxLnmkzQwC0D5vRY5GYi00FVp8DM+CoHCo+Xj0f//8c84y0AUobkmlE5hamyBj9nN87iiU2cL/i/hG9+0tjSR7GHK38ptcBVpdMVcw3043ws+3Jd6DyJxgiLQ23O1tisvhzY9rWFsawbXum9+DPnsVAesAWnaVFNBTTLhQKhUJhQ7A4pr29vZ0yIRWn2KOu9vfhY4Dcl60U2pF/OqpXdE6kUlbfs2XveGatzo0YFn9XZYx8PrxPffpj51h5lllOKVw9OCY5imdmNsHwbaNYi/JpZ9YAjvHP+nmvZcLvYwaq4sAjawAfw+9I9G6opRJ5fwTF9qxNIj0EtxM/v8jvzsuiLgnGKplFA6vvAy9cw5n//P8974lBxeP36D4ya4wvjz+Ol9E09Tgv9pFlN1P9u8diqhC9T6peR43l9eRCoVAoFAoh6ke7UCgUCoUNwaLM40C8WIM3T3CqTDaJmMkpEvewyWcu3Shfx18rMxspU2kmWpoz/bG5Okp2wlCJUyKoMmdlVWKVTLzWI+Dj8vccC4z15PSfPgmJCjfrEV3xPuWCiEzuc2ZEDyV0Y1FmJtTicEh+HpFgTYVv9aQxVaFmmdCO3Qx8bGauVGk5M8HlkgVp1kfNVAzounG/i9KYzrVpdI5yV/WYmpUbxEzcUbITG6c5mQqHdUXm8TnR5DrIRLM9ybeOAsW0C4VCoVDYECyKabMQLRIWMOPg2VfEQOZSnaowm+hcxZazkBgO/fL15Xr1hl5FIra5BC09ULPzqKwK2f3UYgLRc8vqrMDPy2bwwC7D4BBCFv1kSUEUU4zaRCXrWSdtroHZbCSWU4l/FIuOrqcESR6K6fQsGKKsDFZvDrfx9TBwe2bPYKmpKD04/MmDk5oo0aGHSiPK45FH72JDkYiRv7Mw0VsQ5pg2LwqSWYW43x0kWVIkmjWUEK1QKBQKhcK+sCimbeCFKDxs1mOsyWZqPFP3yBKvAH1MRLGwjPmqmWDmg2O2wOf2hItx2Xt82zxLzfzvXNbM6sDXn2PN0YIEfA2FYRhSRqqSf7APK0t2ohD5YrktlQ84ClVSs/2ehBXKKhDVif3T6twoFE8dO3d/QPeviOmpvtPjB1e6iyXC6y+sbhyyxla7zEKl2jiyYvT6srOEOezDjkIB2X+vzol8+Cotb+b3V7oYDi3MtAFLwzJLVSgUCoVCYQWLY9pbW1tr+S7NP8nB+D1pPvkYlWjC78vYA5dNbY98cOss7uGvEW1T94/qxSxQsU4/w1Zp/vicqA4qSU00g49mwQrDMISJJiIwM83YhXoeXN4oOYxKCpItxjF3P2bG0Tbl88uWLmSGky3+odJIch0yzCWPyfq/OiZSAF8sn/Z+/KfrgJefjBbsAGLLFI9vWd9VvmtWlUfvk13X2DOnE43U4+zDVkvQRkl2VMKXddTjKmlU5qtfWuRBMe1CoVAoFDYEi2Laph7336NjgFWFpM3I2M/h//c+Iw+VqtJfb863HTFR5Ye0OngVMzNaxV75+GhbzwxbXZ8ZT48SWDHsHr9kVk+OK83Y8zAMe3xnmb+Y2WXmJ5xjaNzfMh8jly1i2qp/KTbt66FU6lzfiKXPLQISlVFpRTIWympdxaij7dG77e+T+Wp7kC2OYWBL1MVWFlsZbOzKIlCiRUT8NaL3iMdPZqA9PmY+hpXgftw1XzYza14gpSd/g4oGypgxW/Yi9filerb7RTHtQqFQKBQ2BIti2sA4E+pZUIFnSjaLzGb3fC6rHiP/6lz8auZ7YUaSZeLK4qI9ehh2Nhs3qNhWLns08+3N8NVT1p54bcUgGJHCOZp1zymkM/U7X0N99+coq0WkoVALdDBL9vt72XLkg1aZz7KMaKpv9EQE2Htqz9Lqkfm0uUw9eohsIRpGaw1bW1tdx/pzPCLf6GEtFelhZYtiunlpTh53zLLn3yNm2KxSV/kC/PXtXGPR3Ic90+YlONl3z+Xy9+Pnw+9I9K5zPZRPO8rEaViainxZpSkUCoVCoSBRP9qFQqFQKGwIFmUe39rawmWXXbYigojk+GxeM9NQlorSzEPK9McLLPh9KqwlSmzPJhkO24jMerym7twiHJlQQ4UaReEhytSo0rdG25TpKRNyqPplyUnmzFTb29upe0GJ7LhemehOmWjXCQXkT9+3OEyGj4nM4yxEU0I33h/VuUd8Mxfax2bMHnNs1o4q4Y+hx30213fMRO7PzRIYcXnZBO3PUQLYw4A3k/NiSWw+tkQtUQglm5bVWBWNqywO5tAvfw6bx5UpOnpHuW9ymTMBmjK/Z+Pp0szihmWWqlAoFAqFwgoWxbRba7jssstS0Y8K17HtNotUy8X5Y1UiET8rY9bCs/BoBqoWNPD15PvMJZvgczMWoARpUTgdz0B7Qr0UsvSVSmjEQhDPytYRhLTW9oQMqkVafLl6WPLcQgrc9pHIS4nWIjbBySbmRGX+fxarKVFhJLScS90Yhe/xsfyMo8U/VIhf1iYMFWIWpTFVZWX4pE49yTSYgVpdPdPmMtgzvVihRMyCT58+vee7sVv/js2NFTxGRn2Hr8X1jFLuqjbIBLCGubCtaGnlLLGVun5mzTxKFNMuFAqFQmFDsCimDYwzoCxNnZoxsR8tSqoxlyJU+YL8uSrdY+QntGN5thrN5FSSjh6mrfZlrJ1n5covuQ7WYax83yzJQS+8X7Jn4QlVfg/1XJQGINJDRFoJdT9uQ/ZXZ2Fb7FNUSSgytjSXbAdYtQqpcMWoTRTz4XaMnpvqsz3MKOtLZqHJmDZb9uxYY9ZZuBGXgfUKlwpRWlEFqx8nZMn6rHpO+0GUKEWNjaxbiBLAqKQ+c6mfl4hi2oVCoVAobAjakmYYrbXbAbz5qMtRWDzefxiGh/sN1XcKnai+U9gvVvrOUWBRP9qFQqFQKBQ0yjxeKBQKhcKGoH60C4VCoVDYENSPdqFQKBQKG4L60S4UCoVCYUOwqDjtU6dODddff32a1WoujjmCih/uWV5xbt9BzjnsjDvrxB/P3TvbPxc7nmVtm8vZHeUa5qxgb3zjG9/NKs4TJ04M11xzTVqn/aCnbtH37Frr3Hc/5x411omXVt+zfqAycWV5qg233XbbSt+59tprh0c/+tGyzBEuxvNY5527WNiPMHk/WRMP8xrr5Muf+wR0Do63vOUtK33nKLCoH+2HP/zheM5zngMbfO3z5MmTF445ceIEgN3k9yoJiH8IlhiBkwtwukdDluZRLbAQpT7tPTcDJ2bJ0k3yD2HP+tAqQUWWuIInTjzJsmdjn8BuEorLL798z3dL3sBr8QK7z+3ee+/d8/m4xz1uJTznmmuuwQ033LBSz4PCysdrEfOEMkoHOTfQ9iSAUQugZAu4qAQmPYkk1GIgPT+IXIfs+vzecBKZaEEUWxyDF5uwZ9OzMMdNN9200nce9ahH4UUvepFst6hOvO501k4975S63zqLpPRO2rPxrZfg+G2cblhdW5XBHxOtMa+OUevHZz/ANvZbX4kSzpw9e3bPp/W/Zz7zmYsICyzzeKFQKBQKG4JFMe3WGo4fP36BoTEbA3ZntoqBZOYOZtY8M+sxzWX38fVQ9Zs7l6ES50fnqvSVPfdRjDFig3Oz8ugcXq7UYM/RGLixKF+WK664YmXfpcac9YQtIj3IFkVQfSha8ICtTXOLbvTcbz/myrl0oxnmUsxm+3rScmYYhgHnzp1beQeyZSjVAiQ9LqE5q1a0bz/oYc29TJvL5Y/pHe882OrD6Ubt3MiCqdpejdV+n/qM6pAtR3qUKKZdKBQKhcKGYFFMGxgZGSd398vdMdNmNhktqMB+C7Wwwjo+GEbm85vz30Tg2T4vrJCVQfl6Ij+oQbGAiDVzgn61RKPfbs9Qld+sKZG/zbb5fnCpoNrQ/Fz8XCLRpKpztJ+Z9NySpn6bYY5N+P7Zu4hKxs54uyFqE96nlhHNrrvu/h6cP39+pS0iv6pa8CZqP2WtWueZKp1CNkbNWQejbepZHkRgmVl0lHVO6TP8PrZQ9Wgo1IIn2XK1fMxSUEy7UCgUCoUNQf1oFwqFQqGwIViUebxN6yGbacRMpn5dWhbdsPkjkvCbvN+ETPZdxeNlAhQVxrHOOZEJX53LZqNIXDZnFu9ZC9c+1Xqz3gTFYU/2nPj6/hzlkjBwCI2vRyRIvFTgZ6TCqCJTHYttVNhOJCrjc9gtFF2Hy9hjtpwzf0bvhLWJMtnyOZnIh9enj9ayz96Tw8AwDHvql4UdzeUoiNwj7Orgd4z3R9dT5utoHODnw/XInr8yqWembi5j9k4wVL2icY7DA9fpZ6osUf/eT2jupUQx7UKhUCgUNgSLYtqGLCOagWfDzKYtWQewm5TBjlFMO2OkCpkAheuj6hBBhTVEjIQTB/CMNEoio2aTc6wA2H0uxoD5k8vhr8fJSjhpSSaw8iz8UkNZR+ZCgPw+xc4jFmthjyyAi2b/c1agdcIT+VjuS7686tieUBllBYrewR7h5kHQWkNrrSv0UyETbLJlqiesco4ZRgyYWaVipB49SVuiMmdlzESsPUzXb/fvGwuUeXyLMNd3srC0YtqFQqFQKBQOhEUy7cjXZ2BWbKzO2LSlnjtz5syFc2ybsXBOg8gztohVKCYVzSaNTdqn7TNWGc1m2R/Eded6e0sCp2m1+tl2syxEqSHVLFKxBGCXBVpCFE5NGukKrM52LJc5sqpkM/alIGIEDE4ckVkxmCWxXiBjS8y0VKiX71tKM6GsUP5/TjmqtBWZ31X5MKN6XkzfdhQOmYXGZZYPBrcH93X1zvt9c8/Wg8eSnj6qrDO83d9vLsVu9N7O+ejZkujPVcmx1Pee+q0TfrsULG8ULBQKhUKhEGJxTDubOQKr7NEY5+nTpwHsMmz7DuyycE4Wr1Tl66RFtNmmVzYbm7T0m5wIRqmtAe23VfX2/6v67Afsc/QpRM1yYYu32D77bu3nmT1bG1gRHiVOydTom4i5ZCR+GzMAFTXh/5/zR7JP0O9TZbM+ZM/cb2OLDrPBzM87V19V14sF82ur+7IOgVlrpDXh+rNuw/p+ZnFZp88rS0embelNJJL5fg1sCcu0DXOWnchfzdZV7neRVcjKa8cqxh3hMFLJXgwU0y4UCoVCYUOwOKY9DIP05/r/bebETNs+jV0Dqz5WZtqRD7YXUYpQntHaPtvOvm5AMw77zNTxts3qfLHjWtUMNIqx5XNYRc5+XrNO+HOWpt6MsE5Z52Jw/TZm0dwf/D4VW98TS8x+3Gz5WmY0Kt440kMoS1IWn6uWVTxMZDG+wGo7WRmyPA187Z6FQlR5lP87i7bgevTkh1C+bOW/9mWa0zZEZVFLskY6HO6b3FeicYmfi3onskiBYtqFQqFQKBT2hcUx7dZa18LyNtsyxmkzMjvX/KvROezzVbM9YHVWyuwiytrGviulpvSzZGblPFvleHQ/g+yJV9wvTp06BWBve7JPjuO2M1+mtf2999675xpRVihj3UtI2K8WUumZsbNqmPu3h2pbbtPML6nKGPU7tgJxP7RnGvl3rYzKihJZEFQkgB1r/SNi2szSD5NxD8OQag6UH9XKkPmLmeFG1gQGR2+o/uDbhKNWmB33xM/PxZBHVho7h9uIxyx/zJzV0zQUEdNW5c8sO2yZyLK2Zcx9CSimXSgUCoXChqB+tAuFQqFQ2BAsyjzeWsP29vaKWScSFrDoycKsInGHWpyAzSC83//P5jAzu2QmGzY1WlKSaOELrs9c0pPo3Ch96Bzsepwo5eTJkwB2zeL23Z+jTE2c3MH/b5+cFMdM4T60LHOTXCqwEEf1oSzVLn+3a0QLofAa8ixajEzrbDpl1w3XJTJ127nWR3nhEusXvh5qMRX+Hr0b0UI0/r7+fWCX0JVXXglg18WyHwEpYxiGlefjr6tMvmzW9eXm91F9RgJOfob2XFQKYf8/jzM8Zvg2n1vbWz0nv43DA9n0HYWnchIse+/ZfL6OKT8yj/N7ZP1YtU1UV5WG+qhQTLtQKBQKhQ3B4pj28ePHZbpHYG8oF7DKsKMUqGrGzzMzDsT359ismMOqohm2r4+/rs3ujL36GZ3NNFU4TbaYAbM8nulyClFgdwZqQjP7NBZjzJdnqB4quUHExFhgpUJo/H04IUIWUnYYYJbrt/FsWy144Z8pszPu1xFbYgbAQiRDlhpSLeCQiW64v3nLCrCXdSq2yeGPmXhJWQ44vAvYZWfMvqyv2jvpGd268EI0e24+oQyXgevMoUp+n/rsYZMGZs/8fvr/MzYO7O3LSjyqGHi0uI2Bw3Ct/fyYbf8bwz7oM/PlyBZ6sbLZOMsLFUXJnZaKYtqFQqFQKGwIFsW0gXGGl0ntbZZoM08O7I+YkQp9ULN971e12TD762ymGC0lyOW2WRwzbB9GZfXhGWFPgnsut13DZuPGXv39rM7XXnstAOD666/fc4yVh1Ox+uszY2CfVjSLZkZn5YgYFjPUi+XTtjpH4XsGtehLtlQiMzbWD0SLpKiQKGsfOzdbZtXKqPq5h7WxXZfvGy0sw2XkUElO2+vvqxZLYUuMZz52vvUnDvO0vuoRhUYqDMOAc+fOXTjWru8ZIr/vmVXJwOMAn5OFEqmUqtk5SsvC71zUR1WYKr9z/h7cthyuFaVTPkgiKwP7+7nPRqGm3N/YSuTLyCGLS0vuVEy7UCgUCoUNweKYdpRUIUqkz74/VglGCm2DSt0YJVexWTf7XjP/6lwSA2OvUQIYm9HbTFT5lKIEMMwGmS1HSlPzXZp/kGfcGYOw69u1jK3ZDNv7p5mF87NldubvfbFmuqzIjRKXMBT7ZzbjweyRdRjZEpAGXsI0Yyp2PVaER4pZlfBDKZ/9//ZusIqb+0eUAETpViL2ZP/b+8IaFCuHvw+XpacP8fvv25gtbipqIFJmqygC5T/211eJWbJ0r5zshLdnSnDex/06Gnfs+mrhpcgqmI0vc7BrqDS60TPgfsbP2peDn8cSkjt5FNMuFAqFQmFDsDim7WdJmb+YfduGiE2wP9DAy3nyJ6B9H1lMNPuDrExWDlYuAqvLa7JfmBm+97srVbzyi/qymf/p3e9+955jWL3snwv7yI2ls3UjSpfJM12VEtPXmX3nBwVbJOzePYtjcMSBWkACWLUCWXsx046iFZTP3Pys3gfH/UlZMaJ3w9rC+hnHvkZMm/v1VVddBWC3L7HP2T83K7dfGMbfz/p1pHC2srElKVMg27FZytNhGHD+/PmVSBD/XJS6ndl0ZCnid5j3s77D72NfNl/T348V0MoK4I9jiwGPHWxR8mOxGhtZW+Oxn1wSDB7v2NLYE3utLAr+/Cj3whKwzFIVCoVCoVBYwSKZNsdiRxmjWOmrYq79OTbLu+uuuwAAd955JwDgjjvuALCanQdYjRVmnx/fA9hlEVwmZgjeSmAsxWar1gbmL2Sm7Web7DsyJmfX51m6r6Nts/vYDJ59Tt76YDHdxrBMgf7IRz4SwGqML7DbbvwsmMl7tsFt7p+LgvWLSPVssOdgFgKlgvfbOMaeF0CxdvM6BS6LPRdrt2hBBXvubJFQeQKA1f7GegX2afv7McNSiz5EPma7zzXXXANg9X0yeAuXWbfYT81L6kZKdxXDzopgX+5sSUmPYRhkdIm/l9LBRNnN+B1jK4ZdK9LhcLureP0oc5waC7O8ANxXGJFmw54Vx2fb9kxHYGMI14Pr7cc5trwxImsHv3tsSYj81j1RF0eJYtqFQqFQKGwIljWFwDjLsdm+zfoyZV/E0IC9rMxmgLfffjsA4D3veQ+A3Vk458G1Wb+/t7FJK5sxU5u1Gnvy1+U4aZ75RjHJSqXOPtMsfzmrulnd6cEMixnJu971LgCxf8dmy29+85sB7DKsD/7gDwawy8D8dXmmy2wzyqm9DnqWPbTnYe3DPlE/67a2fMQjHgEAuO666wDsPn9rc471Bnbbx/qb1dmuZRYf3w9YRc/RAuxbB+YV0iqe2p/L4GtFsdashvfvDbDbVnfffffKdazuj3nMYwDsvitvf/vbV8rI1i61PGXUR3uW77Q1D1hfEWko2CfLccfROfZM3+d93mdPPex9sT4WZQPkOHpjxNYvfJvzO6wiHDw4soQzpGWRNWppTtbuRGCmbfWIsjcaWDNh44sxe5/BzsARBpx7PMqLwBE0S0Mx7UKhUCgUNgT1o10oFAqFwoZgUebxYRjw0EMPXTBlmHnFm+oiYYz/buYwb5K75557AOwKZVgUZTCziDfrsqhDLYrgBRycPMU+rT6RKU0lvVdpMn392bTFploWl/nr8PV4gZAsFaWZ6qwe1s7veMc7Vs7hZ8kmTXtu0RKgkdlLgZ+Th9WJU7OyuM+buK085h5hs571Mw6d8nXisClOPhItbsMiJpVAB9BJNJTILxL3sFgxSwus+ianAWURpa8zh/yZe8n6kH36Mtm5fD9riywRUOYuaa3h2LFjK245/35yqmA2G2dmcRtPLFUwt4/B9x0Wldo7bdey9olCWzkcVrlafD24fVigFfUDFUbFJmh/P3tW1hZsvrb2NVelH+fY1WFtYX3ntttu23MtDzWORvVis36lMS0UCoVCobAvLI5p+9lUJEawGadK2B+xWF5AgxmWzaw4lMRv4/SinCIymqmpcJMoQQrfj1kSX8PPQDnZBYf+ROIlg0oewjP8KOmJtYUdayw0Cvni58UiomjGq9LNZmCWFJVbLcHIy/YBuyIXTj7DbDlKh2jbrD2s/xnDip4/918W+1h7+eQkUcIVXw9m/L4fKKEWh15FYWJshWErjYmLfJtYHzGWZG1kzDEKu5zrByy0i/bNpaLc3t5eeT98P2BLlAot9FYaCym0OvOzu/rqqwHsMsMoJan1L2OT1rZR6lYuI1smoneCLW1qwZAsDM7O4fc+OsfqbvdlqySHvvpz7XrWd1iobPf3fZWfO487XB5fn6WlLzUU0y4UCoVCYUOwKKbNiBae4H02e7Tv7IMBdmdm7NOxWb3NtoxdRAyIw07snGjpSuXz49SDnhkw+2c2wT7G6Fy1wAYnNAF0In32qUbhD7zNno8xCw5x82UzcBhKxJa43NnM18J27HoqnMvfk1kz+2T9/9Ye1keM+bAfPFvowqAS5kRgdsQpV/0xzBBUCkz/XJhdMjuKNCTcftyH7H0z1hSFCVnZLAzTWLl9+mdtdeb3kq0Qvp3tOUX+6Qg7Ozsr1i1/PbVgSOb/5KQ2Bns/Hv7wh++5drTsJTN7HkP8ta09VIgpW9F8+TkVLvt8I+bLIX8G1m5EWgNOwGIs2b6zVcxfz56LXdf6RfS+8TvO7RmFpbH1IXs/jwLFtAuFQqFQ2BAsimm31nDFFVespCv0/gZOFMIJ7yN1LS9GwT5ZXgg+SuxgYGYdLf6hEoiwNSBKBqGW/mM2HS0/Z7D6ZQkE+FyecfLs2DMfTk7CaVOjRUaUP5rTTXo2xc8/S+DPiz5E92NGzW0ZsVguvzEE9h9yf/D7WImfpb5UyTuYtfkyqgQprCOIUjZyu7O2IGt7dX1jTdYWEVNRbJ39sL7OKs2ofZqPONqXWWmGYcDOzs7KM40sRcxMOfIg8qdyf+M2zsY5vi6PXdE4wP2ZWblnovyusnXGEPUx1t+wdSuykHGft/qw1c7KGvn52XLJ7ep96yrKiBl31PYHWdTkYqKYdqFQKBQKG4JFMe2tra09qtiIsUULZvjvmR+F/XcczxgxUhWHmanH+Xo2IzR/Hac59fdRszuOKfdlVEyL/VK+/jyT51ksz1CjWHlWOnPMb7bMKpctYkLMJuYWffDX5/4ArKZ1ZT+dzfKjWFQVx87tFEUesF6AF4Xx7Ewta8iLgmSpSNlaw35p35f5neC48CingVrqk602kbWDn7OVhaMzImuAev7MMIHVpT/nWNP58+fT5WhZIc/PgXUFwKpmQWkzonqpOHCuR9Tf1IIh0TjA91Px2tH92KLI2oMsfTKXObM6cFmU1SRKZ6tU8WwdiBZgiqyaS0Ax7UKhUCgUNgSLYtqmAFZKTT4WiGfZwN4ZKTMO9qcptbXfxzM19oX4a/As2VgEK4+jGRzXh2eGkY+R2bEdo+LQ/fVU22QZ2Pi+zLQjtq5m8Dzrz3xnPTNetkj4GTTP1FUmNO+XVn47btPIF8hWH26naBEGtrhwlAIvh+iP5fqpjGX+XI4E4CiFSOHO1hG2Oik/aQR+XpHFiS0tKgNctByv8tEyLCsaEI8p3LbRcqBcBm5/jpfP8g8obQszfZ+JkTMisj8/slgxE+VxzpBlGuR249wO/hkzi+VPLlfGuFUETJTrga0P/F5nWTeLaRcKhUKhUNgX6ke7UCgUCoUNwaLM48BoisgEBxz6xGacSK6vQn3YFJfdj00yfK0oNMHAYQ1sRozOYdOSCl3IzlGpQ7m8/hw2K0ZtwmY2FnZxCEZUbr5PZoridJwZuGz+ehw+xYlsovIqEZxqn6gfcGghmwIjM6xKDRkJktgErMx5kRmW0/JyAhY27fp6sXvBzmXXUWSOVebfSEzE9VOi08g03ZMC19xybG7156j+qerh/2dT7Dr9gNuFXTjePM6iWB7nInEm12sdsR+XTaUojkRe7HbJxmAFJbzLhKQsoozWTufnVObxQqFQKBQK+8LimDawmhTAg2dMhkxsw7NtNbvrmeUxa+LELL6MSlQUsQnFCBRzjBLcKzFJlnCEZ8dKeJYl1+C2j0JL1HNj351hOAAAIABJREFUdhaFFjFz6EEkTmJGqJK1+PtwghxOrarq4+/N7cQsNmJ0LCriMJpIYLcf4YwxHmYrvGBFJCZSrJP3Z0l9GFH/5mfJ1q/I6sECy7nkKvanyqDKzYJE//xZtDgnQOth2nYtZor+HH7f2aqVLa85hyitKH+q8cgfY22hEl1FbcSWAhXO1WOFtHaM+ij3q1qas1AoFAqFwr6wOKa9tbW1kiIwSoeplmCMZtbKl80+zWx2p/zgURo8nj2qMLGoXlyWyA/FZWQ2aGBGEvmElU8u86krVs7nRGVUjCe7j2LpEVg/EMHCpniRAkMW/mHPX6U8jWblEePw14oSwFjZmD1FITIqVEk926x/c+hXxOjmnmXGgPlcpXGILEkcjmbPcT/+UIZPgRu90wzV56Nxx8YqxbB7/OHq019L+a6zd7k3cVHUrxXT5X4dJZ5Sfnfu51F7KutgFmKo2mBpLLoHxbQLhUKhUNgQLI5p7+zsrCQQiJiB8l9EikVm1iqwP1Keq2N4lhctq2dQM/foPiq9KB8XsVj75KXqIlYYJekAdCKTzNesZq89vkwue8boe5gUPy9fbuUT53JnWgrFFDOltIpwiHzQrApWCm0PxTTmUtP6Y1ibwctJen2C7ZtT/vYkV1F1yBKAcNmz5xaVn2ELhmRKc5Vul7crX726LxD7VbmuSsOT+XxVYqhMPc7347b1ZeTxmY/JtDTWh0zno8bkaFxVERvR81dWDWXRjFDq8UKhUCgUCvvC4pi2V3FGKmtWGfJMN5q1zsUiMtvwszv2exvY1+jj/DgWkJkiLz4S1Yv94ioW2oPZGZc1YgHMktQiHRELYCZvLDFamILLwirOKNWq4SB+p6ydDGydiVS8XBZVpixGlL/z0qn+fPb1ZX5p5ftXrM+XcS4CILMG2Cf7IbPn1cOKuezsX7cFeNRiPh6cjjUrF6ebzVTIinFn/tS57+vkCciiCPbjv83e9+j+EdTzjzQinA+AratR/ZQFKVri1sDX4TL2WO+KaRcKhUKhUNgXFse0t7e3V/xrUQJ489syA4kWYbBjeSF55ev25yqGrRZxB4BTp07tOYdnd3ZuxCZ42Ub75HOzRSa4LQxRO/J11QILkeUiWqjeI1rAga0QbE3xzDhbtvMwwOyIY2F9uVTGriy+nfUBzIAiS9LZs2cBrD5TOzfL+sTHcOx7xuiUZkMp34HVmGGl/M3yA/C+iNmzbkRFSXhkbI/RWsPW1tZKnLn367Mimt+fSEOxbpaxSNWtyp8p+O1YtuRkVgCVeY2vmVkfbKwyRPoibi/u31nOAZUZj9/f6H5c1gxc14s1/uwXxbQLhUKhUNgQ1I92oVAoFAobgkWZx1sb17TNkgEY1CISWeo8FiWo1Kc96RBZGHb55ZevnGNQpiBfRjPhm4nJzKT2ySIpL77hEA8rC4tworAXO8bEPbwmdlRWFpqxKY1NbR4qBSHv5/+BPjNVj0nL2tqbwYE82QmbtFW4W9Tv1Dm2PRJJKVFPllqTy8DCwMw8bmB3iZ3j+7dyGdj9spTC/D4Z+HllZl8lkvLb7Vh71j1QriJg1dXArqgojakKn5y7P6CFtdwuvs5qn0r7CmghmAr58u8018vGA2vzyD3AY7FyO0Rtpn4X2LWWLRZlYEGpbxPlIlwKimkXCoVCobAhWBTTNrCAIhIj2D5Oecps1h/Lyw8qNpYlV1EJOqLFMXiWx2XzbNlmp2fOnNnzuQ5TMFbOITnRDNu2WVtzGBQnRojOVTP56Lkxy+xJschso4dp94jX7DmYVYPZRpb0RjFfXnDDl4VZDLO2LFRFWW2id0JZA/j5R0xEhelFbJEFdCqla/SuzDHqqL/NLaWbsaWobRkWZpqJ1eYS5fBxvpyGOXFZdqxqJ/+8eGy058SpQyOBqB3D4tLsefH7z9bHLEnRXBKpdZLUMKJ3Q1lZe9j50lKdFtMuFAqFQmFDsCimPQwDHnzwwQuzPvY52jH+08CzyGh5xbmkE6pMHswiraze58fsxMpifuNo1s6z1HUYtoEZiGKzWRkVIp82s0t7XlHoFKfn5GMjRrdOIoTW2to+KA69i5bsZCsJh/bwPb1/n60Yyi/qodgSM8YovaMda31RsbWoHzADyhIc8bmcRIh9wpHlgvUjGfNS5yifJp8ftQXv29raSpn73AI+EStjCwe/hyqEyWNOHxNZEux52KIzV155JYC4nXhBGGbN2bjAeg9OdmOWLG8NUMviqv6WPTeVbCVaZISfKY8tkZVmnQQslxLFtAuFQqFQ2BAsimkD46yG/WreT6hYJKfF85hLAdizUADPzNgnHC1Gr6wCPWkeDwJuv2y2yr5m9oNHSlq2XMwpqv31VHrMrN69Sy9ubW11XXcuyUmmXFXK6cg6xNoCXmAhYh1Kic8K80ilrNLJzi2yE5WRIwOihDPcZ5Q63r+TnESImWOWQpRT7GbPq2fJVIaKMomu15Nch+/N+zIWqxi2WeAixm8WlhMnTuz5tO1R2bgfcxtwn410KpwMi3VGfjxiy4Aai7kPR2VTkT1R4im2HKi0pn7fUlFMu1AoFAqFDcHimDawyu78TF2lMGT/QxQbyLNjpX6M/BsqnjhiE+w74mMy3wszG7XQgS8PM0VWgme+/Cj9okfkB2OmquImIwU/Mwhu86iMUfy8Aj/riM2wipv9ef5ZMpM21mJLCjLD9toGtlowm4gWqGELkrIG+TIqn3mU1hHYy3w4SkDFz0dMldkZf4/S3DIr47S80XOz/6092Tcf6Qu4D7IFg+v20EMPpcpp7r+q32Y+bbZ4ROXgOnNfMaZt+329rO/xc1CLAPljuczKWuhZLC9ypBbnyPobp761+jDjBrTuQjHuqEzc3yLfvVpEaSkopl0oFAqFwoZgUUzbZry85J/5Zg7zPsAqM8ziWNlvptSP0T5W8/LsEtid1dmxvKgJM3HPpnnhBo7LZKV7VG7lZ42U5+zfUhaMbPEMdf/It7SOT5vLHzFtZqIcRx2xWHsupshllm77I2bALCVjIsakIhbuyxNt44xkzDKZcfmy2H1VNjuLfPD7+NiM+fK5nA2OfdmRhWlusZaebHERbNxRmoPofLZEZBa+OfYa9X1uF/YPR353y9Ng9eBnGlkdVA4BlWPCPxe7vt333nvv3fP99OnTe47z9VAWEBVX7euhECnqVeRBFuHAbHxuWddLjWLahUKhUChsCBbHtHd2dtKMNOzXmJvNRlD+qQjKD6VmosDubJhVvcxEonpxnnD242U5rtX9OEbaX59VvIyIvSgFeMZ4+FzlQ/flYD1BljMbiGflkZ+Tr5e1k/1vn0otHqldme0rv1rk85vr3/4+dm/zsyvfLCvE/f+cL5qZdhRrq9qP2VNP9Ichem+j7F9AzrxUpq0IbOHjawA6V3qmGjfw+6LYpGeIvIywGs88C7z77rsBrC6RyWX19TQLEX9y343yR5j1xRg1Z3HMxhbuXz1+/rnY7Si7GVs1e5aPZfbdk1XvUqKYdqFQKBQKG4L60S4UCoVCYUOwOPP4Aw88IMVRwKqJqSfdHUOlpsxS2ikzeRTqwWZPE9Kx+c3XS6UEVWKVHpGXmUtZZOLPt20stmCzUZaEvydxhRKpcZkj87gKF/NorWF7e1uK5IBVARqbgtnU7fdxKB5/ZzFWVCcVAuTBYVoqRWN0H5W2ls+JFjUxqAUxorJa/1YhjdzOWf3Y1L6fBBeRwC5aYEUhS3YSJRny1436s0pPyu8yi838/2yaZbOy32/m6jvuuENeF9g7DtgYYZ/KPG7X8uOECc7MHM+pl6PxlPvInHjRt92c+y0yj7OJOxIBcxn3M75dShTTLhQKhUJhQ7Aopg2MsxolzwdWZ++KcUfM0KDEL1n6QpVsIlr8gctmM1BO7+fDaDjERyV1iaCYmxLA+PuppBo804/YEgvq+DNLcMNlzwRIPW0xDAPOnz+fLuvK5Z4LXQJ0SIxKURolAmK2x9YGn5CF08dyggcWfXlw2NTcUp3RMcz+OJ0l/++PUYmP/DNX4ZZZaNZcqFTEaPez2MM6C4Zw2aL+rRghly1ixFwWldwpWtzGmO9dd9215/oG//y4H5vAUlmFovBEFbbHwli/j6/PoZpRn5oLnctSkqrxNQrVy/rBElBMu1AoFAqFDcHimHZrLQ2FiMKl+Hy1Tc3u2N/h7xeljYzuEwXnGzj1oNUrYtp2LC8MwEzIg2eLfK0onSUzhmjG6e8XMRZm8D1+Q+Uz5ftF++auv7Ozk/pv2Uqjrhf5wZmNMzOJ0mTaOcxAmCV5pm3X830DWNUcmA/S31sxbNYvRMx3ztLj24pDyuZCKKPEPJy21JC9v+swoMzqEx27s7Ozcr3I4jY37vS8A8qyF6VAVWF1ke+f0yZzMieD/26sPLPg+LJl6T4NWXgqa0JU6GymY1HjeBa+xf2b7xtZZvdjrbkUKKZdKBQKhcKGYHFMG1j1n3iWodLeZQk+lO9DJY/3Myvlt+UZm5+9qhSE99xzz55r+npx2tJIJR6Vwx9jZWEVJ7NDf46yavAM139XM9tMO9Cr7o9mtb3MyvzaQMwq9wP2y/GnSq0JrLLjuQVrrB7AbsQB+zKz5TzZr85tHm1Xfmi2METJfBiZ8pePUUynR9ug9mfb5vySEdPm/f7zIH1epUT2bayWP2VtRZT4g8c3K6Ox6qiedg4nZuEyZ5YQpfvwViFO96ssLVH72j7ll86SoCgleNZ31knQcylRTLtQKBQKhQ3BIpk2+5ijNIiGnrSlfG4vU4zKxCyJ/cf+f2Na5p/kWWW0YMjc/aN4cbW0KC8yEsW7KwaRxa5z+VVMd6ak5etF/rHMV6WQqW5VbCZfN1Kpz8WZc3sC+pmxxiBTTPP1WVvhj1Es2fabvzwqo9In9Cz+olT+PexMWZIiJThfZ53UxdnyimahYT1EFoHSM3YoRq0sLd4SxhYexbR9OymLi32amtyPVRwloBD1P96mrFC+XqwBUb7r6J3nsUqN5z2RQ5nmQVlTl4Ji2oVCoVAobAgWx7SHYVjxZUexr2rWHc181WxY+dP8cexrjuKy+bsxa86+k2VcmkN2P+Xj4RmjZxvZ0qL+exTvrNSVPWrvudhVjyyOVUFlBVP38PfJjpuLDVaxysAqq8iyp3E9+H6Rulcto6oyv0V6CNW2EdNmP77yT0csSlkoGNn7q2KIM7Y413e8HiIq9xybXyeWl+sRZSzkZXb5mOi95H2KCdvCHsDuWKUiaLLFYDjGmxcqinIXKA0Ij1nRcphzmSx7lOC8Pfo+FyN/1CimXSgUCoXChqB+tAuFQqFQ2BAsyjw+DGMKUzNPmNklCqdiM0smCGHziTKxRyIYNh/xsZG5XJlXDmIe74FaizkT1syZbKPQs3XEf73nRG3Pprp12q/HrLvO4hhK9JSdw4IcJRCM1qqO9kX39/VQaUtZqJOJiQyqf/jrcvtZWXvCL/fjJuFjVIpKf0yPyNTKo4ROwKoZV7kv5sISo+/RO6bM0nOpfP05Bu6HPpmPjW/8yeWw+kUmfJXKNzKPq/KzK4xde37bXPhd5FoxKHFgZB6fc+EcFZZVmkKhUCgUChKLYto7Ozu4//77V5aLNDEGsBuuoGbzWciImrGzoMGzG5XshEUffnZrx1pZ7bvNYqNQn8MI4FepVe3+fsarZq28JF80w1ahPD2LP6iyRgsSsAgwEqcwVEpFYFWYpRYviNJ8zoWsRQurKGQiGLbosCDI6uPbwp4VL+eqnm3U1+aW6Iz2MUtRDDyykCi2lFku+H3NQgHXSSvaWkNrTY4T/jpc5566zpWBk6EAq1YS1bZRamJ+Z7nv+HHAkqnYGGssXImwMssVs/KIVav3xN57Fu9GoXrKupFZO+be34ydF9MuFAqFQqGwLyySaXPie++D4dAENevPfNsGFbYTLZFns1ZLycfpTb01gGepPLuMksZYnY1BreMvVgvJq0VAfH14FslMO4KaSa/DtFVylSg0x9pLpVi0Mm1tbaWzZLY49CRI4XOVLiI6h/sTW22itLN2jLFmxR6yBBkquUrEPpWVgRd0iJiISurD70a0tC4nnulh2iqUMerfWQheBM+0o+tGIVZz35XPWlmZOP2w38cWvWjhJGVJ4jEsCmVjdp4lmjEoP78hS5jEn+zLNkSLN2VpgPkcxbDV+BPtq5CvQqFQKBQK+8KimPYwDHjggQcuzLqipPjMyLIlK/11M/SkW1RM2xD5pzltZLQovIHZ0lwaUX8/VviqZBvR+ew76/Hh8vV5hh/539TCAMxCIz2BMZCMads1eVGBaPEXlfazRy2qmHakYLb/ufyZL5aTS/DCCqaLiBiklYHTSWY+VbsuK7/5mUaLzSg/r/K/+nIr/3SWvpLZeI9lhH3CPYjOUWMIs8wshaYqY5QK+ezZs3vKoJIGRcteeqtfVFb/jkV6F1+mzE/MliN+PpECnBNnqVS/0bOde28NUb+b01BE1lW+71JQTLtQKBQKhQ3Bopi2+bR56Uo/AzX/NvvG1JKd/L+HmvX7mZXNWplhMwOKFMB2DLOiyLfEzNfqbmWx7+zv9+dwPKbycfttmWLWlyvz780xr2ifSkno28qeu83OI5+fgp3jWQf7YLk+WV0VuB5+xm7M+vTp03u+M+OOLBLMcLNFRlgVzH2UmUnkJ2TGw+dEqSi5bMriEymOlZ4k8o8qP/c6/u8ejYhi8sDqWKHOifax9UpFAmRRK4ZMN8J9RrH0aBzgMjPTjiw7c0tkRiyWcy+wnzrqb1x3tfRsBB7nuKzKl957/aNAMe1CoVAoFDYEi2Pap0+fvsCObAZq/h1gl2lnifOB3Cc2l5koYsBKnR6xShVjacjiVlVZlMrb/8+zVJWRy9+PZ8Wq3r4OSpWczYCVYjZbKICzNPXEafP1ozIoBhT5JecU2BmDY1+l1cMWbOA4fn8/ZT0xRFnNmB2r7FZRDgO1oAY/W18mY3T8TrIVKsoPoLLE8XGA1ndkinPlu1SIWHX0nip1c/SequxpKhLBM21e3pfvz4ub+P+VpSNTgPMxikVnSnCly8nanvssH+v7zpzmJLO4cH/gePDomkuLzzYss1SFQqFQKBRWsCimPQzj8njGrCM1pLEHm92zUrUnNlgppLO4TxVrbch8MMy0oyw/7LNmBpwps1UOYOXbAlZn0JG/U9VBsc5sRm9g9sIzX++3tjaxZz7n097Z2Vl5/r4+HPs8xyr8trmMSlHdVbQAWzk8m2Jma2XjJRp9vTi2lq0/GfNZJ9ucgfMn2PVM98G5C6JMX8yKVL/g/6P6RNaiHvWzwWL8uV/4cnP+gjk1sodSufdEhMxFWUQWPn4fo7GJz+Ey8WdkfVBWuoOA/e5RPnaVhyKzuHD5eZyLokx4bFwKimkXCoVCobAhqB/tQqFQKBQ2BIsyjzMsNCYSJ5mpVCWByEIw5kRFkdhCCXX42sCqudJgZePEAureHmw2jYRBannNzGRnUCkpM1GZEp5lohxOP2vbI7EZLyIQuRX8Pc294uvjr3fy5Mk95eVyRibAOTOugUOygF3zsJXb6shJg3zfYTGPr190P19XFXrHbR2ZkecSSmQiJpXKNTJJz5mTM2Gcek+z1Lu9YTs+jWlUHy5XJl41qDSf7IaLXFDs/lPm8aidWOyXCUTVgieHafKOwEmruKyRAFOFCxqiZC487vA7nrn01gkXvJQopl0oFAqFwoZg0Uzb2LQP+TK2aiycRT5RIv059pqlMWUhA4eqROkrlcCEZ8+eOTIzVMyHl9vj/1U9fDn89dV9eMYdXZNDzDJ2zuxCCdA8c2B2sY5YKksGoVKq8rP2/7MohVk6Px9/jjFuDpGyc73QkuvILDpKX6nCErkNovdALd9oyEK+rB5WL/7M0pky8/n/2zt3JTeWI4g2aNKXrf//LNnyaZCxgKyKWzrIrB4Au0tMRB6HS2DQ8+oBOus5BcvtggDVfXuE2+22rtfrnSWn73dXslOVX3XBsS5YdkrjPBpQ1d9zZY1VQKpLaeUz2K8xv6v4TE/nWHOeiprzUc1zZ6WZguVcY5Lpmky/C3+TKO0QQgjhJLy10i56kYhSZCxYcSTlq3ikpSRXWfS9KCVKv+SujGH/myk9XHGrAgNTAYS+rUprqPdqf66BSMf54txqvY9PGKOgfNqf5Wej0laNW7gfrt5dSUiqmv435wyLj/RUNh4Tj1Ud+1TidHd+hVMvSi1TfTPlkOc3Fb2gT13NO+c/nvzKfPZ21+Tj4+OudDDf7/B6TemCzlrlGu+obTimin3Y7U+pV2dBcml1/Tpw3vE7pFDFilzJXReX03HXfmra41L11LyI0g4hhBDCp3AKpd192uULqUjgWh1T6agVaOFU+VSsnj4YKlLlL94pRNUOzvnv+H7fbufDpsLn8fbx3cpbFQ1xFgvVKED58de6V9hdadOf9kwUp7ovLmJa3SdX0pL3/cixsb0r22H2cXifJ6XNe+WyB1ShEadanBVFnQ/VkfOx9/3weiqV5D5Dq80U7c0xFLfbbf3+/fsuFkB9Dzifttov7yWtNVR7Kk6Fz7DLeFjr3jrnipB0dpkmU9wPP8vvxum7ipHgnEtHorld4Rd1TfjMH7nX3O+7EKUdQgghnIRTKO2+0mF7w4pgLYWm/JQ7FXtEkVLpHPGVuZKaLhe3f8ap2CP5skfed9ty5auU9tR6cS2ttJ3SYYxCV+L0dz8THdzHo9KpOVP+tEId9y4Sm2pqLe+z/Pnz5/+N0aPHnRWA/uPpXrroeBUPwfPitkpp85koy8GkVgqqZKdYp1xyKp9X82lvt9v68+fP+CzvItjVMbi8b6q7ScVStU7nSPXI/e9qQUxjKHbfO5PS5ncHrTW0ZPbj5nlwfvRnnq+5a6Ki/tV470CUdgghhHASTqG0O1Rm9HPVqki1AySu6lNfce8ark+RsW5/SjHsqkm5iPC17v2rLhJXnRdxUZtTM4Ndjuda98q9VC4VtmpPOFkmHsG1OaxjU5XsXPR4/d/FOPRx6vqUoqea6de8XqtjdZkHHedXd/m5KpqX+3GR7/0YGDXO81bKjvfQ+bKne0CYZfAoladN+mt1jjvF9kxkvmvh28fns63qUbjnj69PMRQu73yKjnfzS32fOgvOkewfN6+ORI/zM65RitrfrhrmdxOlHUIIIZyE/GiHEEIIJ+F05nEGB9S/UwpWQVO6M81MZmRXOk+Zqdx+VYDDo2lNPeCO5kOaNFUzC4e7jirAz7kMJnNSfaa2mQLR2GP81dSL2gdToxjc1e+/MzFOgY8F3RJsZqN6Y0+9vR00RzqzJcvN9vecy0MVu+C8YvoRTe4qsM+ZNFUJ1l2q3quBaNyPCrCi64TbuiC5Pg4DYo+kDTIQzb2vjskd2+QKcGlV0/nxPKdGKO49l3qmXCvO/afcKK4cswskVPt51S332URphxBCCCfhdEq7oEJjoJMq7OFWiVSTKvy/YBnBI2UXXdF6lY7EgCeizq8UD4+F/05NJoqjK+G1vGriWGvdB1bVubOoSi/p6ZqnvEqNyyYtKuiKxRlcsJ+ylLjgsSkAierrSLqJshCo/Sml7e4vVVMPNuPc2VlcVAvaguenChLxM7ugqWe4Xq9j6lyNTavVtG+nxtX4fP9oUKGC82FKmXNKepcm2/921hk1P5xFxzUDUUrbFTo60lrXPSN9O2exeheitEMIIYSTcFqlTWVWBR7UCtH5WKmEmJKzli+3qFRE4XwvrpE996n+T9Rq0vmlClXSs6DvngpMqQ5aBTiGuo70U/Pf3hzmq4sa1D5rDlWRk54aVtaXOhb6b+v1KvYzpcbxmtI/vtZ9SgrV8ZHCGLu51O+Tsi70Y1bWAvpZnW9WpWAxpsH5I5UVimPQavMKP378GFWlU5PPNLNxvlL1TD/SZpOqta7xVEhklx7G45lwRZceKQjlvjv735wzrlSpgvEkHLsf02fFSnw2UdohhBDCSTit0q7VdSkzrrq6MnCR2a4pg/L5sW3fpHyciqTC/qwVHBWHi+ZVPrOd32Yq4kDVNPmCdqvi+r9qGLJrq/gqtU+1P1oIOFcm/3Qpdzabcap2La88pwhg55fkPVXtQ1lYxhVzUXEeqlGHO0a+x+s5Rc27spyfFd17uVxGC4natysScqQQBy1UqqhPjUPr3xRr4vzR9MOrSGnVLlgxRce7Ykvq+XXfo/xemtpsPtO6l/ubCioViR4PIYQQwlOcVmkXjEKuFWrPn3WrORfJqKASmbblKpFq8qt9JLvGCn0bV8aS2/XXXT7rpHzqNZYSZc66ylkuvkpx1zGUX1pFvVPhuJgG5WNkzMTk+6cCcQ02VDzELjuC/th+bFMr1h205HB+dJhF4PKBlU+b49My8mwZ0xrD+ej78e0aXvT57SwO7pyV2mMdClf+U437SO7z1Bq170dFWe9QFoudwlb+aWeFeqbM6PTMuLn5LkRphxBCCCfh9EqbvlDVMITKhop38sEwUpYr31JPU25g8V0rNqd4p1UlfVv0I6oGLByfPu5+Hdn0g9tOKum7fEpU1f1vFwHuIufX+ifeosYo3zabjfTPcj8uP1xZkpxKdpHP6vz42SMV/zgfqLD7vXVRyhxjyu120eSvcLlcDlWjc9eW0f5r+eYixRRzwuhp972jmnGQyRJBK8YuEn+yCnEbdR2dFdBVvVMZKEei4o9yJNI8edohhBBCeIr8aIcQQggn4fTmcVcatIqtdI6U5iOTaVGN1Y/JmdK+2kzuSq8ewZnjVMpPUdvQBN5NnC4Ijya7Iyb8r6YXeGFaThVicWU+lbmyxuM2qqECS+oy8Ehdi908m/obu7nCZ2UKCHLP0xT4xG0479R82/XVfoWPjw/bM70fp+s3X/Rr4VxNOzN53x//dYFp6jXeW9U4iKle/L8LWFXsgsrUNs4cPs2d4hWzuJvn/PsdidIOIYQQTsLplTZXoEdW91OZxf5+p1aYuYpKAAAB0ElEQVRfFUw0BUGw9CBTML4rlcClVXSopKh4pqIRu0AUVRjBHRvHnM7nq1DzodLASvm6Rit1HqqxRl3LX79+jWOsdR/g5varrA6uNCTv06S0+RwxIK7/7QK3qKL6dXVz36UE9vc4R6d5/Qi3221dr9e7AKepRa9L9VOBWq6QiGs+08dnudQaS12nyaIyvd7fc2Op53KXJjqVInXFg6bP7vb/yDyYrHevWCq/gyjtEEII4SScXmkXU5GAnd/uCLsygspP5PxDxVc1xDji++H1cqvlOka10mYJQO538ke517ui+Qrf5aOwkQmVb6GuAZVNjaHSg9xnXFvPnvLFzzprhSq64RTWVMDCxSWw5OtUbIdKlduqubpTZ69wvV7v1Gw/BvqDXeMTVQKXuJgDVVzF+fEnqwnvj7vHalt3rEcsYC5OQVkQ3DZTSdLJ3/0q6jocjWP4bqK0QwghhJNweSd7/eVy+e9a6z9/+zjC2/Pv2+32r/5C5k44SOZOeJa7ufM3eKsf7RBCCCF4Yh4PIYQQTkJ+tEMIIYSTkB/tEEII4STkRzuEEEI4CfnRDiGEEE5CfrRDCCGEk5Af7RBCCOEk5Ec7hBBCOAn50Q4hhBBOwv8AKlmd3AD7J3MAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -700,7 +960,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAE9CAYAAAAWBiv1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu8ZllZ3/lbp6q7oaroru6mBdGMmHFmVLxNJAaNg5pRVKLGa8ALETEjjgaFKN4jGJAABjUjMt4HEDJ4gxgVkcvHFhUvEDUaQVS0A3JR6KYv1V3dXVVn54+9nzrP+b7Ps/Z+T52qOuft5/f5nM973n1Za+112e/6Pdc2DIMKhUKhUChsDrYudwMKhUKhUCjsL+rHvVAoFAqFDUP9uBcKhUKhsGGoH/dCoVAoFDYM9eNeKBQKhcKGoX7cC4VCoVDYMMz+uLfWHt9aG1prt7bWrsW5o9O5p1+0Fh5StNY+tbX29NbaFo4/dOqzx1+mphX2AdO6eMJlqnuY/lbqb629pLV2E47dNF3/H5Pyfn06/1tJPfx7yYI2brXW/qi19s3BuU9srb2stfY3rbV7W2u3t9be2Fp7RmvtA2c74CKitXZja+3GfSzvB1trr9yv8qYyb+qMzfm/fazvPa21H9mnsh44vRc/Jjj3u621V+1HPReK1tpXtdbe0Fp7X2vtntbaX7fWfrS19kG47utaa69qrb2rtXZna+1PWmtPbq1dsYc6XziN3U/sxzMcXePaayR9q6Rv24+K7wP4VElPk/RMSdvu+LslfaKkt12GNhX2D4/XuH5+6jK24WmttZcMw3DvgmvvkPT5rbUHDMNwhx1srX2IpE+Zzkd4oaQfxbH3LqjvKyR9oKQX+IOttW+S9H2Sfl3Sd0n6K0knJH2SpK+R9HBJn72g/IuFr9vn8p4j6a9aa582DMOv71OZXyDpKvf9BZKOSHriPpVPPFrS+/eprAdqfC/+paQ/xrmvlnRun+q5UFwv6dUax+9WSR8p6d9IelRr7WHDMNw1Xfc0Sf9Z0o9LukXje/+5kj5e0uOWVtZa+yeSvlDSnfvU/rV+3F8t6UmttR8YhuFv96sB9zUMw3CPpN+93O0oHHq8WtKjNL7Qf2jB9a+R9BmSvkjjD7bhcZJukvQOjT8QxDuHYdjLfP1mSS92L0G11j5N4w/7fxiG4Sm4/pWttX8n6Uv2UNe+YRiGN+9zee9urf2SpKdq3NDsR5l/6L+31m6XdHTpOLXWrpreQ0vr+4M1m7gnDMPwp5einiUYhuHf49BvtNbeJek/Sfo0Sb8yHf+oYRj8ZvfXJ9b+7a21bxuG4Z1zdbXWrpL0Ixo3Ct964a0fsY7O/ZnT53fNXdha+4TW2mtba6cmUcXrWmufgGteOInl/vfW2m+21u5qrf1Fa+1rlzRmnftbax/aWntpa+29k4jlj1prXxBc96WttT9rrd09iVc+j2K61tr9Wms/0Fr7b9Pzvae19kuttQ931zxd40BJ0hkvJmsQy7fWnjqJJq8P2vPm1tovuu/HWmvPmURE906f39kg+k/663hr7dmttbdNffCe1tovtNYe5K5ZZ9wePomtTrfW3tpa+6fT+X/dRrHh7a21X2yt3YD7h9ba907t/pvp/te31j4O17XW2lOmsu9trb27tfb81trVQXnPbK19w9Qfd7TWfqO19rCgD76wjaK/u9qoZvq51tr/hGtuaqNo+7GttbdM/fCm1tonu2tu1Mh2/3HbEYPeOJ17cGvtRW0U090ztfuXW2sfMDdGa+KNGl8039laO7bg+tOSfl6rbOJxkn5a0n6Kcf+RpI+WRDXAt0p6n5IX2DAMdw7D8EKUNTvn26gCG6b1+vw2ilLfN43jSZT3jdO4nm6tvX8a2y9w57nerezPb6NY9pZp7vxga+1Ia+0fttZ+a5onf9pa+8zg0V4m6TNba39vUQfuI6Y1f7a19lHTej4l6cXTuUe3UaT8nrYjUv4Gvk8axPKtta+d+uTjW2s/O625d7bWntdau7LTlg+X9Jbp60+7tfPY6fwusXxr7bOm849urf3kNF63tNae20a1zye11n5nWs9/0kb2yzo/fRrTU9Pfr7TWPmKP3Xnz9HnWDuCH3fDG6fMhC8v9To3r8/+JTrbWrmmtvaC19o7pnfK3rbVXt9Y+rFvqMAzdP43ix0HSh2kUUdwj6UOmc0enc09313/M1ND/IumLNTKFN07HPtZd90JJt2sc7CdqZBX/cSrv0xa0a9H9kv6epL+T9N80igo/U6ModVvS57nrPmM69p80iqG+UqPI8F2SbnTXXSPpJyQ9VuML/gs0sqL3S3rwdM0HT9cMkv6xpEdIesR07qHT8cdP3z9Ioyjq6/B8Hz9d90Wur39T4wR7sqT/U+OkuFvS82b66kpJb9Ao8vk307N+sUZR0ofvcdzeLOkJkj5ratfdkp4n6Zck/dPp3O2SfhZtGTSyxN+W9PmSHiPprdNzXeeue9Z07fOnMXuKpFNTXVso7yZJvybp86a2/7VGsd9Rd93XTtf+1DS+j9E4d/5a0gPcdTdJ+u/Ts3+xpM+R9IcaRXMnp2s+UtIfSPqvNraSPnI69xpJfy7pyyU9UiMT/RFJD52b00v/pud4pqSHTXPn29y5l0i6CdffNB3/1On6D56OP2Iq63+WdKOk3wrq+V6Nc+/834L2PW0aez9OR6e59NI1nnPRnJ+ea5jG8oc0SjSeNNX3Infdl2t8MX+3Rvb1aI1qxq9219yo3evdyr5J0vdrXDvPmI790DSHnqBxjv6mxjX2QDzHDdP1T9ivOYDyV8bOnXv2NOZv07ip+jRJj5zO/aupXz9L0j+Z+uIuuff5dN17JP1IsJbeOvXlp0v6nunYt3faeT+N626Y5oitneun878r6VXu+s9y4/qcqe+fMx37wanvv3K67ncl3aZpjU73f+H07D+v8d3wBZJ+X6Na6QMX9u2Rqd0fJ+l3JP2RpCtm7vlBSWckXbug/I+Y5vMnub7+CVzz05LeKemrNL5TvnCq4x90y15Q+eO18+N+ncaX3E+5xccf95+XexFOx67WqI94uTv2Qq3+EF+lcSH/2IJ2Lbpf0k9Og3k97n+NpD9y39+gcQPQ3DH7gb2x044jko5p1Fk+xR1/+nTvUVz/ULkfd9eW3wkmyPslXTV9f9x03yNx3XdKulfSB3Ta+ITp3s/rXLPuuD3SHfsY7Sz2I+7490+T3B8bNLK34+iTM5KeMX2/TuMm8oVo41fwOabvfyG34DT+KA/aWTAnNC78n0J5Hzr13ZPdsZumfr/WHXv4VN6XuWM3KnihatyAfMPc/L2Qv6ktz5z+/+lpjK6Zvvd+3Nv0/7dNx18g6bez55nqif4+bKZ9v2rlumMPmu79d8H14eZh6ZzXzg/wi3Dd8zW+OJv7/gczbb9R8Y87584fTMc/OVgHXxmU+w4teK/tcT6Ec3E69+ypTU+cKaNN/f8MSX+Lc9mP+7fjutdK+uOZej58uvcrgnPZj/sLcN2bp+MPd8c+YTr2mOn71tTnr8S99hv27IV9e8rN+zeo856drn+4xnfXDy0ou0l6vdyPueIf97+U9Kx158VarnDDMNyikZ39i9ba/5Zc9khJvzwMw63uvts1Gh18Cq69a3BGJsOoB/pzSedFpW20yD//t+79GifIKyXdhnJ+TdLHttaubq0d0TgovzBMvTmV91807hp3obX2z1trv9dau1UjE7hT4w9I1idzeLGkR5iYZWrfl2pkvaYb+yyNjPINeI5XS7pC4w44w6MkvWcYhv/cuWadcbtzGIbXu+9/Nn2+dhiGczh+VKNhlccrh2E4bzgyDMNNGhf2J06HHqFR2kCr7Jdp7G+25zXDMJxx3/9k+rR58IkaNyovRd+9Y2rjI1He7wzD4A2IWF4Pb5T01En8+9GttTZ3wyTe9fN8nXX5NI1z76lzF05z+yWSHjeJTx+jSUTbwU9J+of4e8fMPQ/RMqM7tdYerHFjd/7PrfN15/yv4PufaNzwm+rpjZI+rrX2Q5O4dok6w/Cr+P5nGtfBb+GYNEoLifdqRkzLd92SubMGXhHU98GTuPvt2un/75L0AVRnJIj6e8kaWRdR398yDMObcEza6fuHaZSgvgRz53aN84BrPsP/oVH6+jUa32Ovbq2diC6c1C6v0Lj5WKI7/2qNUsC5a98o6Wtaa9/aWvsHS98Pe/Fz/wGNTOHfJuev02gRTrxH0rU4Fllg3qNRDKLW2kO1uvAfuvT+CR8g6V+wHI2GPdJoFflAjS+LvwvK22U82Fr7XEk/o1Ek9GWS/pHGF957Ue86eLnGDYLpQx81tdu/eD9A0ocEz/H77jkyXK9RrNPDOuN2q/8y7FhrczzsOPslMsj8W40qCmuL2J5hGM5qEt/j3lvw3TZEVq/pu1+r1f77aK323a7y3AZryfg+RuOG6Fs0WgO/s7X23TML8nVo03cvqMfa9lcapVPf2GDfkODFGl8oT5N0XONc7uHdwzC8CX9zxlj3084YGG7WyKL58n+fdjYNP45z6875uXnwYkn/t8Y1+2uSbmmtvRzvlAzR3M7WQTRPTku6/0wdfE5uYveK7WEYdr3bph+6X9GOSP1TNY6BvReXzPWov/f6Duwh6vu5d42t+ZdqtV8/Xf335XkMw/CHwzC8YRiGH9eoxvlYSf+S17XRpuY1GvvgswdnSBph2jw9V6P68Vxr7eR0rEm6cvpum9wnatxkP1Gj2vRvW2vf11rr9vU61vKSpGEYTrXRqvV52pkIHrdIenBw/MFa353iXRonHI+tg5s16sKe06njrMZBj4yeHiTp7e77YyX95TAMj7cDbbSO5A/OYgzDcGdr7RUadYJP0yh+/qthGH7bXXazRinCP0+KualTxfskfdRMM/Zz3ObwoOSYbUDspfFgSectaKfJfr1WXypzMEOYx/vyHDI3sLUxvUS/XtLXT9Ktr9T48nyvpP83ue2Jkh7gvq87x58x1fMdC9r3562139OoX325l9TsI24WNoTDMJxtrb1e0me01q60H8Jpw/YmSWqtfU5Qzl7n/AomycWPSvrRNsbseJTG99jPaPzBv5i4TquuXwTfdW/dp7qH4NhHaFQjfMkwDD9vB1trl9VbYR9ha/6bNIq+ibvXLXAYhre01u7UqKI+j2kuvUajBO2Th2F4z4LiHqxxjTxv+vN43PT32RrVFLdrJAvf0lr7UI3r4Xs12kc8Latg7R/3CS+Q9K+1Y0Hv8RuSHt2cP21r7QGSPlejbmgxphfAm2Yv7ONVGsWyfzoMw+nsotbamyR9UWvt6Saab619vEa9rP9xPyZnLTnhcVp1IzLWcH8t+/F4saSvaKO17edrdeP0Ko1GbqeGYfgz3jyDV0t6bGvtc4dh+KXkmn0btwV4dGvtuInmJ+b0CI36QWkU0d+rcSP1OnffYzTO2XXb8waNY/BhwzC8aM+t3o17tPsHeQXDMLxV0ne00YMj3VxN1+0ZwzC8q7X2wxqNyJa4Qz1XozTr+RdSbweRqsPqfY3GjTZd4SJcyJzvYlK7/EwbLfsvln+4pFHtolFi8XMzbbrQd906MJXEeXVWG12yvvQi1+vfixcTf6Jxk/wRwzB8/34UOP0eHJeLUTKJ6F+lUWT/yEnFuARv12jcSLxco+He9ynYDA7D8NeSntNa+0rNELY9/bgPw3BPa+3fSvqx4PQzNFoYv661ZpaN36pxMmWi/IuJ79Yoxnt9a+35Gnf712rsmL8/DINF+Xqaxh/BV7TWfkyjqP7pGsXSPgjNqzQGA/kBSb+sUVf/JEFEp1HvIknf1Fr7VUnnZhbv6zROxp/UOPF/GudfqtFa8nWttedptNS+UqOl8+dJ+vyOKOglkv4vSf//JHX5PY0/TJ8p6QenF+elHLfTGnVX36dRJ/o9GnVhPyCNth3TM377tFN+pUam8UxJv6VVXV8XwzDc3lp7qqQfnkTXv6rRwO6DNIo+bxyGIYze1sGbJX1da+0xGhf7HRrnyms1jtWfaXxx/jON8+3Va5a/Lp6tUS/4KRr11CmGYXi5xpfIxcLrJX1Va+36YRiMQWkYhte11r5N0rPbGKHsxRqZ+f0k/a8aN3N3aodpXsicX8G0ru/Q+PL8u6nOx+nij81HaVxHEYO8XPhjje+b5zqV0TdpR7x9sfA3Gtf6l7fW3qqRfb4NNi4XjGEYzrXW/pWkn5tsK35BI5t/sEYd+p8Pw5Bubifp1ss0Sk/u1SiO/2aNvx//33RNk/SLGn8Dvl7SydaatwP5C5v/rbVHaXyPfdkwDD87zdsbg3rv1agKu9Ede5Okn9UodbxTo1rhwyX9h14f7JW5S+MDPlXS/+IPDsPwx621T9UoNniRRh3C70r6lGEY/usF1LcnDMPw9tbawzX+UD9Lo1vKzRot41/krntNa83E4q/QaKH4TRo3B7e5In9co9HGEzTu+N+okd3SYOWXNUo4vm4qo01/WTu32xge9Js1GnT9Jc6fmVj9t2l8iX+oxoF+m8Yfu3RRTvc+anq2r5k+b9bojnbLdM2lHLcXT21/vsZN1BslPXYy2DR8p0ZR9tdq7MObp/u+fRiGba2JYRh+tLX2Do1z9ss0zv13alTZ/NEenuE5Gg0of0KjOO43NG6W/kDjRupDNG4K3yrpy4dh+MWknH3BMAw3t9a+X+M8v9z4RY1iz8+RW2OSNAzDc1trvy3pG7WzHu/W2E8/o9Eq+9x07Z7nfILf1rhZeJxGl9Z3adz4pqLNfcLnaNz43XiR61mMYRhOt9b+mUZ3vpdq8jKaPn/4ItZ7prX2LzWSiddpXIdfqvGHdL/rekUbAyd9h3ZI07s1bu7mQij/vkbdutmIvF2jp9C/d6qsqzS6EEqxys0/15ZG6e5e7Nxer/Gd9aFTGW+T9PXDMDBy5C6Yi0ghQGvtgzX+yH/vMAzPuNzt2QS0MZjP9w7DMBsMqXB40Vp7oUZ/+k+/3G253GitvVmjJ86/udxtKdx3cCHMfaPQWru/Rr/s12o0QPv7Go0Y7tLIzgqFwnJ8j6S3tNYefol1yQcKEzt+kFaNpgqFi4r6cd/BOY36mOdrtMi+U6PI9kuGYYhcxAqFQoJhGP66jSGW9zvs7mHD/TUGbLkYXgmFQooSyxcKhUKhsGHYi3K/UCgUCoXCAUb9uBcKhUKhsGGoH/dCoVAoFDYMB96g7tixY8PJkzs5DLa2tnZ9+v+PHh0f58iRI7s+7bzPw2D/Z5+8ztsmZPkc1snzkNk67G+uiL2BbWBb7bs/nj0Pr43u2d4e3dbPnTu36/uZM2dW7sna9va3v/19wzDsiq1+9dVXDzfccMPKtUvA9i4Zl3XG7mJduy6W9MmF9Nt+tmmdtkbrlvPN8O53v3tl7hw/fnw4efLk+XdI9n6Ijs2tn70iW4dz1+2l7AvFXubMxbr+YiKaOwcFB/7H/eTJk3riE3eiQ9piO3FiJzHP1Vdfff5a//3aa8fw1sePH5ckXXnllefvsY3AVVddJUm64oorJMUbgei7v5ZlRufnfiCXlL/0BzRqd/Y80YaHsB9d1mPH/f+81l6k99wzRp28996duCP2/913j2Geb7/9dknSqVOnJEnvfe+YWOy223ZiCFmf2Dywcp/ylKesRGW74YYb9KxnPWtXOzNYO/lsdjzaTLIPl8wdjimv5fmont4PjSGbE/Y80Y8f7+VYEv5Hkj+Y2aaO10Xl8ZNj0Wvj2bNjZGhbi77tNs9s02h4+tOfvjJ3rrvuOj35yU8+/56x94Mvj6QiG49og7GXzSPnaNY/vr5ef2dt5ByJrvHne5t8rr1eG6P3SlTmElJxqRDNnYOCEssXCoVCobBhOPDMnYh2omRM2XfPirjr5G6V56OdNVndElZk2Is4dI5B+b6xNtk97JPoufjse+kTtslg7MaYlW8TGZB9N7YUMURj/WRhHsMw6MyZM932Zsy2B7Y7m3dLpDGGHtufm0899r1EpZK1dZ1xz6RMXF9cK/4ak8YsAdkdJUcGX+ZSFiuNz3jllVeel/ZF7abIPkOPpWZ92hvT7Hs0TzgukSSKsHKy8ViyZvjeWUdixO9zEqRCjGLuhUKhUChsGA4dc492b3M76Ghnme2UlzCauXuiti7d3fvr5vSlS8uO6ol27uuW32MImS45qpdtIpPzZRlTt9286VGz9nkmZ+VHOviMyURtoN5/TmK0xJBzL8ZiLHMdA8fenGH7M0SSMNZD5h6tGTIzK2tO99or1+bJ3DNkMOZuY2xSJd+mJetC2i2tsv/3wtx5bokdwxx66zKT2KzD3K2/ON+jfsxsCvbDSPO+iGLuhUKhUChsGOrHvVAoFAqFDcOhE8sbIpE3xUZLDNIy46eeeH5O/G+ivHUM6nhvVM9SMZkvLysrEullovTMKCpy9YsMj3zZS8TBfB7fJyaGX+LeZmJ5uz8yPCR4LUXw0bEsnkIk6szUF1kfe8yJX6OxnDOOXCqC790bXWOYE8/7YzamJrpeYvSViX2tjJ7BZQ+tNR05cuS8OJ6fvu7MDdS+m7umb9eckVj0Dlu6/ntqIK5pQ0/Fks3ZJeJ4HudYSzt9Yp8XomYo7KCYe6FQKBQKG4ZDy9x7ATTmDJykVdY1x9wjVsQdtJXVM9jKXIKyHa8vl7vfKFAH20smQ8bTk2Zk7nO8LqqX36NAJIZM0hL1BaPXzWEYhpU+9u3OjAgzdh6dM5e97HyPSWUsrMfcs0AokZvhnEQlamO2JnqupRnmAtP4Y3NGmf47g9VwfkXsci8GWb1ntbLJPCk18EafdoyGdfuJyPiT0Tt7AbfmXDo5hj3jSPbREhfWwv6gmHuhUCgUChuGjWLuc/o9zxbmgtdkuimPdVhXxpyzIBPRtaxvCRuac72KmE2PeWZtzfre2mQ79mgMsnsj/ey6TKcXAliad/uLdO6Zrj0LxtNjRRl6UhHOZ+qdo2vJ2DnvvPTB/s/WRMToMskA22rrwPdnNDc8IslbJk3qzd0ldhqsl2siWmPWfrLSSOe+bhv2gohJ26eNbU9yx3C67GuW6cec4xz1QeHSoJh7oVAoFAobhkPL3D2yHSV1YJ4tkO2QSdvutWe5mbGwyNp3jkHRStuXm+m+WabXY5G5z4UH9fcw7OSSBDYZEyCD9Hphay8ZUBboI2pLD621kAFH5e0l2Elmg9DTTfNY1rdRMKOMHUc660wqQkRW4Eu9AHoeK2R1PdsLnsuYYcSaMwlVhGiN9dCb59IqO7X5Sz3zpWDrS0Fdt7Xx/ve//8q17K9MsuafjzYFfr0XLi2KuRcKhUKhsGE4tMw9su6ds9T2u0iyRO4waU3qkenWaZkeMbasDOpp/XNlYU7JEPyunJIIsvGe9TpDd/LeKKFEzyLdH4907vzesyRelwnMMfc5iUrUFnsG9oP1G8fJzyWO85xleg+9kJ6cG+vEHciso6mLjfoksxy386dPn5YUS5moe6ediq8vmyPse1/POolpzMsik575NlACxb4/yIh04pyT2Xu1Z/+y5JrCxUUx90KhUCgUNgyHlrlHbChjutFO2s6RSdF3PGIAZBiZLsqD/qV2jVmv2qdn7nbtVVddtassMhlrW4+5k43ZTr3H3NlH9nns2LGVtmZM0O653/3ut6td0iqzsfLsWmN5S1hsD5mXgW9D5oGwpLwMEXO3eWCpRDl3IxsJmxuRz72006fR+JPhZhbQ0fMZMiZq68CfI5u1eWafd9xxx8q9c1bYUT9m3iy0pYnsbJYiSm7i+/jOO++UtOPHzrbYuPn1y/dN5gERremLgcj2w9rIeWfozXuWd5DsDe5rKOZeKBQKhcKGoX7cC4VCoVDYMBxasbwXDZn4yMS5x48fl7Qj+rTzXqxn5+weiqLo1hIZut11112SdkSOmVGRB0WM1o4o/7S1LSuDIR0jtYOBxmom8vb3UBVhfcFQn/bdBz7JRMYUO/p7zP3GyrXnsGusb3yZdm6pwc4wDN0wrRQF21hSvOzv2Y/EFiaqNRUH5589u7+Wc9XQayPFuhSXWp94MTlVBTRMtT7y91g9Nq/46a+9GGDgHUNkeLuOqJjieFMrSDvieHs2G6cTJ05I2hnbKHQx3eeoPrHrfOhajmkWMKYHvn9sDXpXOPvfnofGwDQg9PPO5oa1m3NziYsx1YFZ+G1ffhYUjOfvSyjmXigUCoXChuHQMXfb1XkjFWPqV199taRVg6+IsXEXyN0hDVo8k6LRy5LAN5QA2A7X6ouCSNiunrtRMvdIUkCWkrEvD7IGk0xYO7jb932S7bKj0KgG9omVe+rUqV1leaZKw7w5g6PW2orxkr/HGMaFpghdFzQ0s/6J+paGTdYHmZRJyg2assAkUWAfziFrq80LY+W+Df7YpUQ2br2EP0vYHJmfL88Y+gMe8ABJO2MXMXYD+93eY2TfkWEl16Ght8YoGaCEyO7x843Gnpm0jO8hfw0Nhu27vas9MpdYQ8/YNQvNzef377u5cMebgmLuhUKhUChsGA4Nc6cLke2apdWdrO3SuEOPXLfsnJWbMZ6IjZMRZulDJenaa6/ddc7YjzHH22+/XZJ08uTJlTZG+urouT3I5pckbojc8aQdiUhmLxC1hak4qZ+UdvogY/0RU7E2GDu67bbbus+0tbW1ojc1Fya253LCnplMXlqdv5l+cUnQFAai4ZySVt3yrD7rN2Pnlzohyl6wJLVshq2trfP3mLTkuuuuO3+ea8zmJG1FohDPWRAjfnqdu/U7Xe967o101+P7zt6jfo1RUpQlGYrec5nbJgMh+fdpFgyKYcMpBfCg5IOSA1+HSUts7dt7aNNQzL1QKBQKhQ3DoWHuthu1HXSUMtJ2adzRRvqyzAKTQSYi6+VMh0uG6PXoxn7JcGxHbVa4vo20Jme9ZGGeSZGxk+1ZP0ZeANz9cudsn8ZUpDwIhyHSz1FPa32cJZKJnsOPC2GJY9imgxwWlCxZWrU9oP50SSKXLPRqpK/NEhJRf3kQQosySFNPgrBOe1trOnLkyPm5brpiX77NW47PXHIgfy2ZbBQqmyDbz94P/hpbJzZ2XD9Rv2Uhqqlz761BvhciacachXtPxx+V5xH1iTF3rolNY/DF3AuFQqFQ2DAcGuZuLNZ20BGsIJUZAAAgAElEQVSbMxZM3UwUGpUW4WTq9PX0O9vMIpy644il0uI0S8Hoy6E9AHXf9gy+jQxZa+Xa8Ug/Z220T+tPYyjG9u3Tt5V9bm1iEh1/D/30aRcQJVUhS+VzRqBl+n74qV9KkMHYnGEcBN8XtNMgg8v06tLqeNg4UW97kMB5sWSMe2FUW2u64oor0vDU0qo3C98h1hZ/D71wKGGjPUMUppfSN0rWPOyczQ2z6clCZ3vQHoVSs8izg+OQpRz2cyiTQNHLiSGNfbszyVQvBDTfIZRU+T45CFKqdVHMvVAoFAqFDcOBZ+6m+yLDiNI/Zgk1DJFO0nZp3OHaDjrSm9m1trM13bO34Pd1SKusx+6lzsvXY89lLJg+9ybFYEIXX06WWjbanVLSQT9qs0y3nbOXOpA1UG8eWb5nkdYYy8CPI9lkz2PAQJ2enyeHKTUl2ZX1hfVT1LfGrsjgOT+8fzp17AeZse9l/LKUzR723mE/+T62viVzZrIpbz9hx2zMKHkiY/d9zneEvW+o8/Zrke8Xq8/eKbfeeuuu+vwzMo4H9dc2LyJ9tkkVsnS+UdplPlckveDzmq0Sx4cJoaL7rT5rMyUDh+Gd0EMx90KhUCgUNgyHgrkfPXr0/E4sijKW7ex4PNLdZtGPuOP0rNx27GTfN9xwg6Qdhut37NypM9qY7YIjJsqdMi3gI2t56lSpV6LezJ8z2L3vfve7d52P/IVtB01mSB28HzeL7EXmYd8j5s7odUvTrko7jCbyfb4Qf/de+lTfVta9ThkRel4A9LSwPqX1vD2/Z+7Uea7D2LMIeAYb017chb30xZJrueZ7zH0YBp07d25FwufnG6MKsi1R7HWbg+Y9Y/daW2x+23zseUCY5M587+394H3jaWNBK32W7dtrz8x7aNHv+5FSpCx2foQs/bW1w477+P7Wx3bsIQ95iKRVG4ZIIprlwzjsjN1QzL1QKBQKhQ1D/bgXCoVCobBhOPBieYOJjSJDKhMTMfUrgzB48RnF8SbKYlpNE+t4cTJdwx70oAdJ2hGBmZjMt9FEPSaKZuhKplf1xxhKkYkdTPQVqSquv/56SfOuIlF5ds6eh4E1fJnWF9bHJiajaC9yveNYMGRkdI8hcv/x8IljTIwZhXa9ELH8gx/8YEk7xklMnrJErG19bGWsIwqnykpaFT3PBW2K+nEvLoP2HHbvzTffvOv8kjDID3zgAyWtGnIuAdU0kcg4cssktre3dc8995xfrzamUdhUqogY/tobzdHQkUZyNOCLUtYy8A3dXCMjvMwVjYFwpFW3XRpU9sTWDJbDsNN8d/n/M0M2Bt7pjZu10fqX7ry+DZkL3KagmHuhUCgUChuGA8/ch2HQ2bNnVwJ2eKZh52isRmMiXwaNU8zAxdgdDX8iVzjbHZqxne0AzSUtki7YPXatsRKrLwoIYUY2NFbJXFZ8fTSco7FKZFxGVz9jUjQu8shCUVq93MlHYBCgKBEPQ+QuSfnaS3Rh7YnCVM6BxpCZdKQHmzvWT2aEuYS5Z0ah/N9/57jbcc8uGaQoSilLsI+N8e5FErE0sUvvXoYy9m2bC1lq1x45cmQliZG/x/qJ7rQMVBMFCLJymB7WvkcJn7g+GaqYRpS+PgOfx+DXLZkxjQmt/igoFI3uON+i9NuZETNd1aJ0wtZuJuayRFxRgC++MyKp6SagmHuhUCgUChuGA8/ciSjYCxOoMPVitKOlfpff7VpjIJ7ZkDEZyNyilKjc3XM37J+LjCBL8hC5eBkyXRfL9Ndy52y7bdOnRro37rpNEmJgeld/bRZYxe7x7IWBdebY8tmzZ1NdpX8WY2HrJI8wxs7QrmT0EagLN+nMEr0f64vSt3I+ZS6KUbAPK5cJgowhRozX+tFsLey7SSaW6M2tXmNdEVObQxZQxreplyzFl3PixIluwJssEJYdt/ZHIWQpybI22Xl7Z0Wud3Rv4/P541xT1tbec1k5lO4wEA7TrPpnpS6fa8+/Bzg3OSctZK7Nv57dBl3gemPMvqBE5LCjmHuhUCgUChuGA8/ct7a2dL/73W+FnUcpA8lGTQ8TWWpTT8qdPvWYfvdNVsTgC1EyE+6QucuOdrS2+6QtAXfWEQvPws/2UkqyHOsD66s56+Loee14xDaok+SOOUpXynHqhZ8dhkHDMKzYV/ixsHYZw7S6Il1dBlpSM7hJL9AOQ/kuqY/eBEx25M9Rx0mr7Ih9sb1zgYKk1WA4DDdM/XSEC/FcyNISe2kGJS1z8HOLa90js9uIUotmSVG4fiIWTs8GShmj5+IxSpMiWxO2je/cTPcvrdr/MIFRFkTHX2v30tYjeq+y/+ihEFnC8/29xAvgMKKYe6FQKBQKG4ZDwdyPHTsWhn8kst07z/tzZI1Z+kG2SVpNkhDp+QwMx0kWHDFRJkOg7yt9VSP9HBkay4rYOHW4tJ5nYhFfHvV0tF6ObAqMTVAHFiXroP685+c+DIPOnDmzwmyi8qgvtXYusfI32LXRePg2+c+9gDrxTAcrrc4RMhxKjqTVuch5t6TtmTQmQubbzXqi8NFkgvRhjjwteuPj69ra2lpZaxELzxKpMMR09Cy0IeI6ip6Zz0H7CT+WlNhQekHLd38uY+qsx48TpS8cw2ju0A6Ia5CeD5GkgO+zzKMoep4ofPMmoJh7oVAoFAobhgPP3A2M5NbTuXNHGSUIMH926hy5qycjkFajsWXsMdql2o6Wke+oI4ruz3yXI2QJURitzTPpOd9o6hD9c1s/Wj9xRx3VQZ2d1WNWsZHOnXrtJcyQOrZIsmLt5DhETHsuytp+sHMPxlUwD44lUibO48x6vpcak37ATLN5oVgaWyDykKEkh7pxXzbfHXO6d5/yNWojnz9jq/7dkSXwIVsma/b/k8FmEi9/rdmQMGkKUyhHdfOT70xfH+cKE8ZEEp0sYQzf21GfWH8y2U2mv/d1U+cexf44zCjmXigUCoXChqF+3AuFQqFQ2DAceLG8hZ+lmLSXm91EMz2XDRPjmXjaQLF8ZJwXGYf5tjEYjK/bDFpMTGb3mKjfgplE5fJ7TyyaGb1Q/Oef39rAJD2Z8V/PgM/6l+2IjFboJmMBT6LwsxSZzYUQ9WPUM1o0REY70m7VgP1PA6oLAVUf3q2NwXFo6Nhz8crc2paEeKUY24KJWP95I0NTM+2nOxHFs5EhJMeUqiP//JyDc30wDMNKPdFYZ2LrJQlWuC4z8XxUPj+jttm7kEGk7NoovHYUKMxjyXuH658qMf9uZEhuiuN7aieK+SNDxOh79DxLXSQPC4q5FwqFQqGwYTg0zN0QGUVlhh+9tIaZCxwNc6LdK9lnxtg9+7NrjJkb6zGmQbcwKTc4y1h4tPOcC/EaGezQkCoLczk3Lr4ePpOvL5O48Lro3Jzxy9bW1vk+YOIdfz/diuzaKKkEmXTPNSgDJUNZ8iP/P+coGWIvoA/BfuwZ4xmYMtXC0vq2WF8zOA/XTDRXycJ7hpCUHmUucJHh7RKXPkscQ4Mtb0yZpSDl+yByTaMrJ8cuMjzLWCrXv6+P699AluzBcciCS0Xfs/XOdebLNAPNLPFXz6AuCwaUhdD1YP9VEJtCoVAoFAoHGgeeuUvjjoo73WjHyR2Y7bLJdHw5ZIvUEUWhazP220tDynooMeil1cx0UNnO3Zdr15pONNrdG8haydQiPeYcWE+kP6e7TsYy/D29MLrZvWRN0ir7ygJnRAGQWAfnXzQuHMteABoD+4P6357uOGI7/p5I8sHyyeCi9MQEGXvPfYrPEblAEryGKWcjNpYlUcnKP3r06IprXWRHQ8mafUbuoJkOmuy0x1LnmGbP9iJb/76sKBFRVG9ke8N1yXlGNi6t2gXMuRZHbc2uoTTXt4mui5viAmco5l4oFAqFwobhwDP3YRh07ty5MLGKIbNwNubOdKfSatCVzNoysr7kbpE79Kg99j9DlGaW/b48A3fKWaAIXw7vMf1WFICHDJp2Ab3kPWRmUUIS/7y9a3oBarLwthHMXsP02VEIUTJpMoxIn91j5hF8GzkuZKcMMuLbZKCtQpTK1rAkOEr2DJT+ZH3kr2GQFo5xxKTmPDp63ggc/8zuxrd/iTX7MAzn3z3+nigRTcZol0gI5qRivo3sn8yjI3outolstSfh6LUpq4fvOYZ69fObcyV7zp7HApHNJV9eZlm/BIfBsr6Ye6FQKBQKG4YDz9ylcafGlJiRnzt3o0zfec0115y/h7tEMlzq6XtJQFhWlGaQ4RGN4dgON9IvZhbumXVsFNo1sw+4/fbbV+qlDtX60fovC5Xp/8+sVCmp8G3L2FZPr76ENQ/DEOrrvd6UOu9M79tjxVkberrjzHI7iqFAxpwlAepJMTIdb6//KC1jO3yfZMl56Cvf029m10TXZl4TvfKz9KAZzp07l7LK6H6uMd7rkUknOE6RrpjPxrCtPalIL6wy7+H87emxiSxtK6Un/hjtoLL53AuZnT1XZBeQvVd7WEd6cLlRzL1QKBQKhQ3DoWDurbXzOy/bCUaJDrJdu+2yfPQ36inJkpdEQuPum/pFXwb9cRndzHTgke4r88XuJTygLp/1m8TAGLwvxxKTGOgF0GOIZAY9f1N6NfC4ocd85jAMw4pNhO8n+vZnPtBev7wkZajUj+TH7z1GzTnPdMWRFIOsxO4x3/TsvEekj5VWk3X4a8g8M5141CeZ7cwSD49MUhQ9TxSpkGit6Yorrlixuegxziyio+/bjKmvEzmQ5fZicmTvtywinr/HkM33yO4liypIqVOUBpfPwXkQRarLpApLItJx7ixh7oeBsRuKuRcKhUKhsGGoH/dCoVAoFDYMB14sb2JVGq948YiJXbNQjiai8eLfLJhElvfag22xcmlo4u81dzITx9ONJnL1ozFXZmwTudzQAIjiRWuP7xMT0Vs5JjqjuK8X0jFzb4uMVrLn4vN5MSfLnxONe3emnhiR12TGUlE7iSzoTHQN51vk1pYFoDFEInWKbBnmlqJWP150ZzK1gM2LKJwz783UDJFqxI5lbok9lQ5dq3ohRZcYSfJZ2E/+me+8805JO/2TBX3xmKuTcyfqY6op2MZI5cFPGgr78aDhIY0iewGJDJzPbLO/h0l0DHy+dQz5emGqMzXukrDEhwnF3AuFQqFQ2DAceOZu6BlM0PWMbCEKWZsFcciMd/x37vAYatPK9Gk7GRjGWBFTv3pjNu6Y+Tw0MPEuXhZulgFHrr766l19ceLEifP32HNkboc9lpwZFxoi9kpDPSYdIWP05S51Z/LucJGhDiU4GcOMkmNwnvEZo0A1PJa5YHqJCvvfxr8XupaBm6JATh6erVDKZHPUJDtRQJcsyUvmkhklECJj6jGopfdEEpdeUBmPc+fOnU+JHIWHJlO3MeslyZkzmIsCLRnIXCmpzBK9eNiYMhFOJB1jvQYaePaCQhl6BoPZeuL5XjKd7HtkpJm5Lm8KYzcUcy8UCoVCYcNw4Jm76UzJTnvJROiyFaVm5LlMNxWx1SzUqiEK1GA7ZHPHs89bb711Vz0+5SvTwVofmESAiV0stKwvn8k+rB5j7J7JeUmDv5bBUjK9ugd1X5HelClyyeB7qXN7DIft6CUTyQJYrBPkg89KyUrE3HiOEqTI/c/G8OTJk5J2pDw9FyEmeckCB3lYW0z6Y8/D8MS+jZm9CVnZkiQ3XHtLgvNkUqVI5x6di+47e/ZsmjzHl5cFEYrWR+aSxufpuTdScmNjHDFQO2ZjaWNn7yOzG4jcGunqxyBQPV07GTxdcT0oXWQ/LmHUfL/wPXGYXNj2C8XcC4VCoVDYMBx45m6g5bTXSXLnSrYYhZDNrOOzIAgR2zPYbpTBLDyTtv/f9773SdrRX9pOOtIHWrncbRvrNn2g1esD0ti1fC5rhx23vvPHzKI605tFrDbT0/VSS1LSYmWQsUcMcWngiWEYVtodhaJkgBPCH8/qzKywo7lDhsFAPr6NNg+MqV933XWSduwnehbvTBDE+RDpn8mkeK212dhgdA0ZL700IovuLLwp7Sx613BuRrY52fcI1heRRXf23slCr0aYkxxGqYbJ4Blgx99jkkBj6DZmlOxFYLuX2CqwL+hhYZ/Re4fJh+gBEQXRyoJCcY32bH44V3rvFLbpIKOYe6FQKBQKG4ZDw9wNEXO3HXLmfxztxHrpS+fKyKzwjfFa2/zuzli1nbMdNJmO17lnO0hj8sbKqBP3baKPPy3R/Q7awEQhEXPKQCbc8zumjp3JdaytnjGQYc/pcH2MhJ7+PAu5STYZ3Zvt/CPr3yzBCedMZAthoWM57lE4VTJmzllDZB9CVpJZ3EfPRXbHBDJkwr79cwk8IqlPpmONxi1j+xFaazp69Gho3U9wrnP9RHMn87TIwhH7cjnfslgd0o6kzt4r9KJZgqXeBT1wbHvvU372bH2ydwiltb13V8b+e+0/DCjmXigUCoXChuHQMfdo101djF3DCGt+B5oxMiY8iHR3tEAmo7GdpWdJ3JkzvSHbtQS2G6cOLmoT9ViRNwAtmsl46f8e6cK5c+5ZgZOZZzp3779v5dizziWIOHPmzEpSmIi1ZEl4lvj2swy21V/H/iHzYCRBaWe+mY2FsTHrv4hJZ3OT8519Lq3qaU0/axIj6m99W7gWWW/kd8w5OWc7449lMSZ6EREzKQMRRTKM5oOND+tewtw5dr0EQgY+Wy96Jz1rbJxoH3SxGSmlm1EkzkwSQUv7SPrHdcR3VZQsinOmJ9Hhu2OdBD+XCwe/hYVCoVAoFNbCoWPuhshfes7iPdK/0R8zi3bnddN2jOyIO+lrrrnm/D1kH54pSTusaB1dmO2Co+hjtmOnZT3bHEVPM2S7+WiHmzF0Wlh7tsRddsZmI+azlGlsb293rWHJ5rLYCJGFLnXFnHe0p5BWbR7ILOxePz/YHzaW1GdH428W9nYPdexWtmfhxtRvu+02SauSAmP2URvtWSktIRuKIsdlsSUi9pVJQHqeCpl0KYLp3FlOz++c7xDaGfh75nTsEevPoidy3fo2WkwEfu9FgbQ67ZxJapbY3NA33t6b9q6KmPucjQXjbUSeFrQxIaOPIvDRoyPz1ui17SCjmHuhUCgUChuG+nEvFAqFQmHDcGjF8pGYpWdgJMUha2lYwuARFPdI86lX7V5zXYpgYlMTeZlY3kSi0qronkFmKGq349KOOMzE8nQriVxtDFmihp7Ik/2XpW2Nxi37jMJcUuQ9Z1DnE8f0QglnIU97LlC9gCm+jdEz0+CHZfq+tjnx/ve/f1c9dBny4YNNHG9iWJsrNC61PvZieXPbNLG8nWPbvCg3c03MUij3xPIGGtj15k62ViJV3NIASEeOHFnU7jlXvki8O5dgJ+oTqjgy8bE3rLV3gqkIOd50yfXlmfrFQmSbeobvOa+ytHnHELm9JC1cP1l45ygcsT1f9j6IVD2sh6rEKFQyg0yVWL5QKBQKhcIlx6Fl7pFxDXdp2XEpT1KRuahEyFLMRm5ftgs0Jk2DPtvhevbFHSwNdWgc59O3Zu5fZFa9ZDo06smCm0irQSQyBux3wHRF6QUgMXDHTMYWXd9j7jT0y9yYfL/xHOdQT1pBw8q5xDVSHMxnDsZoLEStzY1sjvpxMWmSfS5hKZyTZNS9JCuZKxznrp8PWXpiQzRuS4LXeJw9e3YlOZNvQyZx6I2lIQuElb2HpNU1TLYaBbGhwZnNC0r2IqmmSRPtGgZaoluqtGrsaYgkBAZKIOYM7HoBcHht792fuQXTKO+woph7oVAoFAobhgPP3Ftraq119VhZooueawNZwtwu3DMDumhlLjyRHotMneFfI5cr222T9VC64HXuTPVoICOInov9SQYVhXTMAsT0ks1kaRmX6kSXYHt7e2WMfbuzsKU9/VuWUMfX6cuKJBDZnInauBcmYfpS+7SERVlglQtNhJFJvKwfuTZ9H3J8loSSzYIlRelvWc8SMHSxSdSi4CVLkg1l5+jG2EuNy2cmA+0Fs+K1dNOL1oSxcAb9WZIMimu5Fyqb0hcy6Lm0ztE9nA+Rzp3v08x25rCimHuhUCgUChuGA8/c10Gmo452pxFD8tcy2IdnNlE6xl57fH1MwWls275H92RpBrNEKx7cqffsAqgfjaxTs7ayPlr0RiE/s13+fuq6vM490unxXMbyozC9hkzqw4Akvm4y3Mxuw4PjvQ6WBOZYF15SxHmcsdYliXj4vTduGduKpD/rJP+weZNJoqK6M91txAQZgCgLXhNZ57OMueRJvlym3u3puekV4ZNaeXi7F9reGCih8Pdk0pZecJ4M7PsovG42DzIpmj93GKzkDcXcC4VCoVDYMBxa5t6zWmXI0EgfnOlZyNii0ItziVV4nS/frqFvcuSnSf08pQi0GI6sZOf8ziM/4Ow5qNOL9NDskyxMqD9GG4al1sxzGIZB586dW2GEvo/JXJZYOmd+ueyDqJ9YHuMoRFIash7zQ6c9xcWGPS9Divr/lyT0ITKpQo9pUz+b1RfZ5uwldHGUDCpjflxz0T1k0nMeAx5k+73no+SB9/akcNRJZ+MUvVfnEhX5tmdW65n90xLpU+bB4v/PwkZHEsvDaEFfzL1QKBQKhQ3DoWXuUXQ06qvoc+0ZIXUzmWW9saOITdLftLejpHUq2Q991v3zMAkDmbsxX78bJhumXn6JD3bkK+zb4evjc5DB95J/MLXrfu+Oqdvv6Sh7jCm7JtO1R37HGbvv6Wcp7bE+Nj9kiyB2oRbvbCPHmVIGP1d5baZHjcY2s8/oWb5n0QF5PLKwXwecv15aQcxFqvPXZHEgaPMT2fpkPt2RbRHnk61/u4YJhXx5tOHJbJmitmSW/dE9c8l0DNbGyAsp+76EuWefUTmHCcXcC4VCoVDYMNSPe6FQKBQKG4ZDK5b3MHEuk6PQICQKRZmJwSja924gWW52in0jsWUWLMXafu21156/h+4ymcFRlDwjSroirRrh+eei0RsNE6nCiFwBqe4w9NyZLsTFawkilYCBrntZ4onIlSYDRcK+n2wsTRwa5WL390o74lHOK0vSYZ+W6EXaGVeKYQ0UgUaBT2h8ZXM4ajPVMZnLZeSaxGt742XIjNnmxLTRvVn5586d67pnZe60PbepuQBIPaMyqroMDBTkxel8n9l7wdpu10YGblliFYah9eNk8y5LbtNz8eMcMnAeRgaD67jRzYW33U930cuJYu6FQqFQKGwYDgVzn9t1kUkbeoZPmdtD5sIRMTeyeu6KPXM3Vmrsx8owAx0ry9+TGa5Y+TRAi4zjuIOlVCMKP8tdN9sahcjMQoYypG1k2HKxmHtrTUeOHOm6u2XhWDMXwugagn3hxyUzrGRAkoi12twgC7LEHj7pEJO/cG1QUhBJF2jsRddMfw8lAXQ/pdFpNNaZ6xXP98C+6RnRzRlNnj59emW9Ru5R2XunhzkDwF4YWj5bZmAr7bBsq4/JgKI+oMsjy7L3XTRHKcWcCxIm5WmBaThoiI5nUp5ekJ5MwhK9E/bLWPVSoph7oVAoFAobhkPB3IdhWBT+z3aWdCuynWakL7NP6pe5gza9pj9nbnJW3x133LGrHX4HbTs/a4sFIrFyaS/gy59j+1F9dszuJTuOXL7ojsd+5PGIuWV2AFFqzouta7e2UkfonzlLb8vz/p5MkmKg62UUtpNs69ixY5JWE334tpHh9PTYNp/sk9IYLyEi2IYsUVE0lpQ20fUyCnuc9Tn71c+TTELA+nu2EnPuTWfPnl1pv0dmXzAXGMnfMxdyN3JRy8JO2+epU6fO30OmTlscG2uvp8/cNGmnQ1sQXz7BueSlAtSl91ztWB+DJnHc13Fr66WnLuZeKBQKhULhsuPAM/dhGM7/zYG7K1pCez0jdZ+0liZb9cEruPu0Ha3pPCMLZe5GrT5j51aGZ1SZLQGlDJGOkkyKZUQ7aDJyO2d9wV25131RV2x9QOt8z76oj99vWLrgTDrj66aFbhaakv97UHphz+eZu/1PFk6m7eeBzT2mzeyFKrVyTB9Puwx6PkTWy2SgVgafz5ebSWqo4+0xYXt2jlvU75mFfRRemVgSmMSeJ5qrXH9LE5JE7c+e0ddn/9s7w4IYUQoUSVRs3pFBG7PveZJwrtDGyIN2AFmCpMjiPfPwoY49ksAasmBk2f3+HkqsDlOSmAjF3AuFQqFQ2DAceOa+F3AXGrFX2+XSv51+2mSx0iq7svJNfx6FoyXDIGNnKkZffqbzzNJF+nP0vefO2TNE+tXPsfGIzVIPTLsAz9yjFLX7CUp8IgmOv1Za1d1FXgdZHAXWE6W/7FkpS6v6Tv8/k7NkiUN8+ZlP9FwyEH9vpseOdJLUrbNvIilTFhuhx5w439Zh7EswDIPOnj17vo8jtmrt41pj30cJpDJkZfg2GNs23TqlCr4+W98cO4ZyjeY3r6HNTWSJTumOXUPdeE+qaeBcitZO5l3SSwLDdtMzYUk48cOAYu6FQqFQKGwYNpK5G6hP9QyKO/zMetXgWQUTZ5BB2Q47iuCWSRWYlMPfn+n2IgbKcsmKljBSsnx6G9DPXsot9zPLXt/GiwXzc6de048BJSo9v3YDpSHZHIp8ui/EvoASFbJiXzYtuclwyGx6bdxLm+eSf0Tsi+hZPrNvl0S1WwfG3HtW5Va3SVQyWwj/Hsii8WUJi/w7y+o2qR9tOiJmS2kcpQyUPvo2cVzI2KP3W5YalUze9yOjdGbxFViWr4/9yL6IJCZzXiCZ5f9hQTH3QqFQKBQ2DBvN3A3RTpQsjgw6K0Pa0Yvbrte+W/nms9zzUTVk6TT9uYyhWf2R1IG6L+6oo/jwZEr08eYz+B00mTqtjC9WOteeDrO1piuuuGLF2t+3gTv/LH73Ev1vZr3ux7QXMWsOFzMewMUGmWrkaTHn+x1Zjkepi/ervWfOnFmxL/BjQN2srfslcyWz8aCUIrITor95b15ksdcN9NqI2ppFkIvsNXCB1jwAACAASURBVDJbm540iF4SNjfMOySLJ+DrnntH9WJbsKzI6+Awoph7oVAoFAobhvpxLxQKhUJhw3CfEMsbIvERQyhSFBUFVrBrGFwkS54h5QYfBhq8SKsie4rwKJKOApHQ9YluVFFSnszYhyFavcEJRYRZUpj9NqLLjLGk8dmOHj26InKPwgJHiXSyerKkH1T/MPiHtKPCYYKNTQON/mhgF81zint7SY4y17v9wvb2tu65556V94C5oUnSyZMnd7WB6rKe2yPbS4PHSCVHN8kskVBPPUfDw8wN0Z+j6JvqAa86yNRwPfUADYUN9px014vc6DJVQdQnFMdTlXCY1V8exdwLhUKhUNgw3KeYe8TKaADGNI4R+6LBGdlJ5sIh5SkpI/cLGppECTuiNkfPnDHEiPmSRbCNURCTzPWtlx5yPxD1scfW1lbXTWouCUwU+IZMjMyjF0CDAYiykJvrIKqHz5GlT71YkgNKe2iU1Us6lAUzicKqXqwQocMw6N57711Jc2xuaNKq2ycNbSPpGMG1RnezKMWsSQr57L3ws/65PPj+i+omO+YaX1JfZqQr5RIJ1h9J/7J5TYlFL/AN35H7bZx5uVDMvVAoFAqFDcN9irl7ZIlcTKdGlyjPUm2HTj0zd55MeCCt7uIzBi/1dbf+PFMz9p53iR7TQD2jJaqI2CZ1bHQdulgMsadzl8Y2zkkveL3/jKQlWXIPjlOkX87cDS9EskFpgJSzRjL2yJVsP9kwmXpkj5Lp2ntr41K4KW1vb68EqvH6WAv/akzaPg09xs73C11Vo6A2XN/sL9pzRNew36KETllIYs7ZKPUzU1fTLiDTr/trKS3pJdNh2/hej8Yg08fvV+jig4Ji7oVCoVAobBjus8ydaSu5o6QuyjN3Y7Bkd9x5Rsk/Mr15LyBEFjK0Z50/F4QlSidLK1F7Tvs0Bm8SC5/KlKEws2QQlxIWiGTde6LvkScC2cJcshT/f8ZGIl3yHJOIwtz2PCl6bb9QUIpAqVIvHKiBc2e/Q8saeuVZ+Flb9xagxvcx14cx5+PHj0uKJSpZWmp+j+YSz/k01P64Z/gc58y63LeL15L1c45GOnCyYHqSROPPsN6GJcydErGepCCTTBz2oDVEMfdCoVAoFDYM91nmbiDroS8nWbm0qnu2nbnt8u0zYu6ZdXcvjCYt+bOdbLT7zizpe77qVo49J/XopmuMWP9+p96cQ69807fTZ/hCd+hZkg9aiPcswwne02NDS1i2jWsv6YZHT+qTzdkoIUoWTpn+1NHzZZ+Xg1HZ3LE+Nyv5KL2pSbSMuds6mQtpLeXxNSIJXyRFknZ0/Uyv6u/PpE1RyN/MijyzKo/86mk7QOljJM3KbIwye6GoDVk42t58i6SYm4Bi7oVCoVAobBju88zdQKZO/+aeH6ixerKSyP+TFqbcYUb+1FkKxkz37pHtbKMUrMZOjMHT4t2+23m/081sCC4WmB4yw/b29gqrjNq2F51z5g+cMSwpjwiWJUuJzmUMvmdFPPcMURuzlJjRM/BaHu/N0YxJHQQdKJm77y/TrdtcNB24X1NSHLuCHhZ23Nh/xIqz/un5xtN6nYiSsWTR7DLm7t8DfK8xulzPzz2ThBmiKHdzuvaIlbMfNyVRDFHMvVAoFAqFDUP9uBcKhUKhsGEosTyQuXD4sJNR7nVp1X0lEoWZCCoTV0VuLFmylzl3J99+utVRBO/bRLc2BuuJxHFZkomLFR50KXpBQKR5EXDvOTJRYOZK5MFwrFS9+PZwrlAMGxkNZcltMkRBZRhGmQaCPaMoztGegdOc+PdywtpgonY/500sb89sInVbW5FBJcXv2RwyEX/kwmVtoKFjz81wHWOxOVVXzzWNIbMNWWjmqL6esR+RqSx7RpnZO/EgzLf9RDH3QqFQKBQ2DMXcAdu9MRhLZOhmu2vb+dluPNpxZukfyY4i96LIfSQqs5e+lSlumdjFPwdDybIvot0w23ipjFN6wVCk8fnJRJeEPvX3z4F9zc9oHmQsPEpeQVacuYhF9UTnIvRYeJb8JWJ4mZEn52HktknjqMst9fFtiCQ85hJK5m7rhQlQ/P+UfnAeRwFdMreyXjrpTLrDd0fU11kQm57hY1a+gWvRH8uMSnvriWUQURszxn4Q5tt+oph7oVAoFAobhmLuCchwPXOnPikLGdljlbbLz/T2vtwshWxvJ8tz1KdH7h/2zKYztO9Z+EkPO9dzN9tPLNHHSbtZUy+kZyYVWfIc7B+6O0X6xSzZDwPh+P+ZXCRyDWKbsqAlPbsQzl+6HfaSv/D7HOvz//ee5yDijjvukLSzlo3JW1Abk+z17Bkyd0Pa20TnrAxb0z3dMec3r+0FecnGMpKwZCy49y6cc9PrucjNJZfp2XhkyXQ2BcXcC4VCoVDYMNxnmfucNXdP10adje26uQP0ZdsOnNadDITTYy0Zm+ztvhkG0tpOy3dpNUkOmTrLiiz7L5XlKVlyhNZaqBf2bWP/c7yXWP2TwfSYQGaJzJCbvm85vygZ6OlL2UYynJ7enAyROv/evRkzjKQ/vXVzkGHtNh27jRNTwXpQ+kKpDCVfUTpVkxRQCsSwt76NtIVhsK6IWc8lG4rWeqbHXiIx4pzltZFEdM5zKJIURe/LTUQx90KhUCgUNgz3CeY+Z1G9Lrhjpw7edG5+d2rXkKFn+i1/La2UMx2YB/Vw9p3s3IfKZOIYJoHo+WIbyO73A569rBuadGtrqxsWlqwgYkxL68us2CM7CoYj5vnIPz8LN2rw92QWzZkHRk9vz/m2hLHP6do3iTVZgiVj6rambrvtNknxms4kKKanj1gqmTp17r0kKZSYsP4oPCvnBMMeR2uC8yqTMvr1RQnRXNrW3vxjPdH74lInt7pcKOZeKBQKhcKG4dAwd+7qPMjIMotTv+Pz/t0e60RWy3ziuZOWVv3MTW9mTDeynuYun5a13ElH9dkxYxdsc+TnzkQxlCpE6SiJ/dSb+nHLrL577aB1f2Tdm1nd7sVvP7Mq9sdot7FEr0i9PJ8hinOQeTiwnl7SmezTI2PkWV9EUobDCtqk2Pq3NefnKNOzZlblPR04feV7a4HsNItyGY3/nOdLr15KmTh35tatv4ZrZR3m3vP9XyeF8mFEMfdCoVAoFDYM9eNeKBQKhcKG4cCL5VtrOnLkyIqBhhdfZ2IbuzYSeWc5fC9EROPzNhN0fbE2m+jODGm8cV5m9MSAF1FIT4quKJanu5svh4Z17PNIlLdEzLYfWMc4chgG3XPPPSuGOVHCmywIy4WgF0CDwZEoao2C2GRt7InUszC3hii5ydKwn/YM0T2ZyPMghZbdL2Qhnk0E75NOZYaGmXGkH1smrKIbXTRnaUDL8g1+/VLtx7ZkSYEiZCGyIxfWLLkQ51JP/cTvkYFv5ha6aSjmXigUCoXChuFQMPdeCMYIdj2ZtN8tWrpGc1u7GCEIvbEajezsu+2Y7Vpj8NLqLpc7TtthRxKDLOyo1WPnPfuiQRDBVJMRW88C+lwIIqadsVmP7e1t3X333amLjbQqFWGgmF752VzsGQ/RwI19zaRE0iq7Zz29QD3Z3OkZJmahPDO3Jv9/FryEfeX7bB0j1oMMStJoPCvtvG8yAzeOqZfk+Tnhy6DLbC+ITWYcG6VDpjsZ2fZcAClfBqULUQAsQ+aiFrnXMVjXOkagh32+zaGYe6FQKBQKG4ZDwdyPHDmSBhuRdnaWDCaTuQ5JO+ze7vF6sYsB7kJNB07m5Jl0xtwNZMm9kI5WFne4vr6lbDtictyZ99jyuoiCzlg9HHMimiceZFu8by+7+4zJ+//JiozBR0ya0oUeYzJk4Tgz96XI3TBjPdH4Zy5wPB/Vf9hd4QzUvduY+jnKecagVuw3H8LWzjH8LO0qIvBa2u9E6ZuzudJbE5mki++HXsClbG5GdgjUqXN99fTrmzLvMhRzLxQKhUJhw9AOut6htfZeSf/9crejcODxIcMw3OAP1NwpLETNncJesTJ3DgoO/I97oVAoFAqF9VBi+UKhUCgUNgz1414oFAqFwoahftwLhUKhUNgw1I97oVAoFAobhgPv537s2LHh5MmTa92TxT6O0mjuZ3zhCylrSSS0dc7vJVb63D29PruQe7NroshljIRmn295y1veR6vVa6+9dnjIQx6y4q/bi8Zm6EW4mouPvsRIdT/v3Q+j2Atp8zrX7leksLmogEt8mO3ad77znStzZy/vnf3AfuQ4uJwx0y+k7guZB3PRIi+0niwy5tvf/vaVuXNQcOB/3E+ePKknPvGJa91jA2DhGi1gjQ9jmyVbWJJIZG4CRzm5iSWLmOVEST6y+ngtA0NEz8kfPyYxsePWj1Fyk6ze3hjwO6/1bbSQnqdOnZK0EwzoYQ972Irb0kMe8hC97GUvOx9q2D59ONAs8IcFIGEoUWkncAYT9jBs5pIfmiz4S5ToIkuS0duAZME8ehuULIAPg41E7Z77jBKlZM/TQxYK18YmCittc5Lj9S3f8i0rc2cv7529IFvbvcQqeyEme9lsG6LAYf74knJ7iaWyNbBkw8bgSAYbYyaQycqZg5XPd8iTnvSkA+suWWL5QqFQKBQ2DAeeue8FZLK9Xeo6CTUMWXrGJQkw1hG7ZTvMLLSobyt3vXvZUZOhM5xvlPyBYWcz6YP/f06q4Nts4TotLGcvZK6FLs7Sqkbty8R6S9JaLklWMccaLiTRRcTc1y0jwjqhePeiMphbN0zZy/89KP3xZTL06uUUXzNkbPbO8ui9kzIsVZf1VFVk7qzfz2mKrZdICOakO705lYXm7oVs3gtzt3JMorckBPTlRjH3QqFQKBQ2DBvJ3JfsGpckFvDno/KJLDlD7x7W09uxk6VmaSL9ubldfmRLwJ06k0tQdynt6C/tWrL9Xn1eD+/rpxFL1JZesgw730uwwbqY2KPHPDO9dnZddGzOMCyqJzseJf9YKmVaoq/vJZTJ2ph9j5LOzNkoRMczqZJJeLyuletkLmVpa21fjBU9aIMyl87Xr5dMCsc29uyDMlbee3dkksIldkJZ/T0DVZvHS4zk5lh49HyZDcES8P1wkFHMvVAoFAqFDUP9uBcKhUKhsGHYKLH8EhGQIRIPLkUmesqM2Pz/c+I3355MlJ8ZkfnjcyK16LnnXO0ydzdp1ZDJvtunuSX2+mSuXn+MOa0jmEEd27hkXHg+wlJf617e8znR95J6ovzqc0Zqvfoo5s/qi8rL7mGZkatf1vZIxDt3TeQCmqkoMlwMsTzdPNnOdYzl9gNRP7Evs3dWz13PkOVm772TqfZjfX4cTUyezaHICHAdA+isjZfTGHMpirkXCoVCobBh2Cjmbsh2mt4YImNXSwzruMtmfZGRV3bPfgSiWMd9qmcUlRkizgW3kXLGboZNPcbG+myc7F7/3FYn64vQWtPRo0dTlsRn4L0eSwyAyE4Z5MZf0zOGm6uPbewZ9PWMLrP6syiAPbbPZyaj6kkzDHOukR49Q01fhr/OjOuWuvbtF2uP1gnnb8bgl7i3GiLp31yAmF49mWEd2XC0hjIX2EgyMSflMUQsfW6O2qe5sPlrbD703Gkz7LdE52KgmHuhUCgUChuGjWTuZCvRjo9sa87dJ2LuVg/dWSL3FuqkqV/aC4PvuRBlO1iGZey5JLG+npub6cDt+Yx1k71G/UiWz7b6eqhTnQsmsbW1tdJuf0/GfrI5JO3s+I0NnD59etd3hqf17lgMUcvxiBhB9qwM1NJzTSI4P3ptzNrq+4TPmoXijdrI58vcw6KQtXO2F73gLD17m2EYLpidMQy2tLpOMolXTxeefY9sIjJpRc/djK5ic3YbUd9nUr6e3Ythzn0yemfNhYC2d0vU3nWCNBmKuRcKhUKhULjk2EjmbqBOJdIr7gW8l7tg2yVG+uBsB8vgLNL8jrmnx8wSJ5B1rhMQwmDP53fAxk7sM9tB96QZc9IUf81S62ILRpLdk+mzrf1MICNJd999t6Qdxm7fedzu9fo+S0ATsd8MlIZQ0tGzWiYLzuwDfBszmwEm0YmCGJG5E5GkigFoaB3dC3ySjW3Poptl7DdsXGwt+ERFXDtZMJuep0g29yMpk91v45utrb30U7T2Mo+aXtCeLAQ0j9vc8u3hfMvmbM82J0ouM4eyli8UCoVCoXDJsVHMnWFMuVu9VOj5gc8ltYn8cslGllhck6mToe3FQpTPErGKLMVsxBAzJtLT7ZO5z4UQ3dra6u6yab/AXXzEsHkN2T0ZlGcEWbm9EKKUwtADwRhipJ+lF0ima4907mT5Jpkw5t7T0xO9BEJzsQZ6cSOoQ87sYfz/kb3JfsDqtKRGxtijcMfURWef/pmzsMxLvCbYt1lMiQiZvUQkQeD6z9rWi+NAZKGUozZlbfT32rhkaz3ynMqkSQcZxdwLhUKhUNgwbARzt52Y7aaoA1+Sni/TDfd8x1mutcN27l6SELFdX0+0I+SOOfOvjvTnZI09X/g5WNuMMT7gAQ+QtFuXSN2ascnMCtjD2mi66kz/KEnHjh3bdWxuB721tbWSFtLfY+NOHbu1yViqlziQQVCfR4mDzYdeuZl/uK+PbJ+6SEqu7Pn9tUsixmX2AOw/bwWeWcVzDUZrw5CxsMhmhm3KmLsv0+q051oS3XAdCRdtImgRL+XxNDLPHr9euHZ4T0+Cl+ncI2T1sE97lu8ZY+9FG+S653OdOnVq1zP5c/xO75NIAmLjZe8x2pSsE53yIKKYe6FQKBQKG4b6cS8UCoVCYcNw6MTykUiQYqTMpSEybKH4ZklIWRp+2b3WJhM9RsY8FBHzuSKjkTnRU+QKl4n0KUqL1ACZm46Jsez5vLg5C8bB/vQiSorjrH4Ti5m4LDLCYxkRTLTau4Yi6DkjOQ+6PLHPIzc61sPPyFgtE8dnhpbR8xE9F8UskA/nd88Fj+PNayNjzCwUtNXv5wGfw/qN5Ufi3yjX+37Ays2Sw/hjfFa2JepbBnnKwrR6ZEGF7NPaE40/E7VwTCO1Ru89JvWDglFFxr656667JEl33HHH+XupOsqMDqNr7NO/x3zbem6qJZYvFAqFQqFwyXHomHsUuKMXnlCKDVu4s8sYbbQDpLuK7eJoJBS5iBgbzQJ2+LbTsGQuBWdkNJKhF96STJ2GJ/z05cwZuvkdL/uen5F0Yd2AE8MwrDACz/KsnMzNKzLmyiQOWdIczzjtf0olyEojiUpmLGRl+Tm6lFlEbmgcw15oXAONyGiE2TPoZHIPrt9ImpYFPGG41ci1dGm40a2trUUGdXxmShoit6+e1M0/n68/C6PMZ40MRjMjYJv3vn4vFfXl9owV+XycV1wbHpRm2Ro0A1v7NOZ+5513rpRhayALIBaFrLV6aQwcGXtynOberwcBB7+FhUKhUCgU1sKhY+69FJUGMj8ma5BW9TzZbjQKfZm5sVBHFCWqod6Pbhh+Z81QrmR3kSsK25i51kQ7aIaitPrJ4HshJFl+pj/1/88lrOklmeixL2PtZF9R2FTrW2Myma7St4H63iyRRhQAx67Ngg35e/jM1Nv2XOGyPiWTjhLjMIxuj32R2dA9lUw0YlJZQo9ozXPuZEGTovLs+S40EEk21+nW6Ps2syvIAiB5ZJIhe/YoiU4W8IoBd2ze+/vtXCbN7L0bs4BUUZ/Y/7fffrukHZe3yPUtA1k+XXK9NII2F5yTdJn0z2FrYYl79eVGMfdCoVAoFDYMh465224qYuGZhS5ZhDRvHU/dWC9pRRYgxLMT6s1PnDixq60RC2c5WfjMSF9Pdp3p5XoMyuphwBUyB98G2+1n9UWsj8yHu/3IC2BJwpVhGHT27NmVcJO9YD8GzqUoqAxZEHXHBv+d8yALMtLTZ5Kp27V+TcyFKs70nNIO+6H+mvBt5JwwpkQmFyWWoRSBazJi55S4ZGuylzJ1DtFz+/LY/5TCZJbwc3VkyNYjWbFfl2SjXGt8z/nyuQbI5A2RpIBBhbI0ydKqFbyXIuwVmReKtBOEi3ZHXHu+H3vSioOKYu6FQqFQKGwYDh1zjxIB0DKXiTQilsqdV+ZLvkTfY/X3rIppSWs7V2vj8ePHd7XVX5v5s7KeSM/IXTZZf/R8me44S1wi5X7uPVZL5kM9VmQxnPnvR2htd+KYqA1k0EviD1BiQnZv5Uc+63aM7Iu6ds/CPYOQVtcAWbIvz2DjYfMu8+v35zguWSpOf86eK7NE7iVzsmPUJUe2FxwDK5dtjtL7Rqw+QmRnYazPPyPX9MUC+yPzN4/ec/T7t09jyX786ffNtUapWeQ1QymDfWd6ZH9NZtG/1LuhB/98Zm1PGyLWE8UpOQxW8obD09JCoVAoFAqLcOiYO3U50qq+j7v2XsKJjKWS0UR+7pmevmfRn0XjMizxN86SQHhmkzGZrD3+GjJR26nbbptSB1/PddddJ2lVbx7teK1c7oozX2B/DRlbhGEYdO7cuZX+8vdwzMg0DD29v1n1ms7QrH4jS3vTL1Law2dnxDUpj/oXsYosAhqfK9LXU4+d2YVEfU+bAvs0yZQ9l/dVNjZMuwxLEkTJhb8mi84XeYWQkc1FIBuG4Xw5ZiPjy4v0uXtFFMHR1yGt+p9TYhmlQab+n9IGG0Obl74ce1bGUaDUx793bJzJ1HuppunVREmU1WP1Wx2+3Xw39t4LmXcL16Af67mYJgcRxdwLhUKhUNgwHDrmHoHsNPNBjHx5uWtkVDjqpqTVnTIZZmQZnvl7k91FMeypN8/inUesnxa0mfWyL49W+bQ2N6bqGZXtthnxze6J/E3ZJ2SztNr1/y/ZOZu1PFmcnx+M/55FgfPM0J7ttttukyTdcsstu9qW+cr7+oytUmJg/ROlC85iCRgiuwADWWpmN+DbTekP56NnrJQukd1Z+T4uuMHqOXnypKSdfrXyr7nmml11+P8ptcs8GKJjPXbXWtMVV1yxwpY99sPXmUyXMQyiqJO0tbBPO+7fVVauSduo147emXYPUxbzHRlFHeS7iuspkmZlz0WJWxR9ju/ABz7wgbue9/3vf78ISsesfqapjrwOMonrQUQx90KhUCgUNgz1414oFAqFwobh0IrlvVgkc+8y8QoNwaQdUYyJRxlyMAuk4f+nmC8zjvJtoWFGJrby57JEMVE9BhqyUaQWuWllCWoYqpLf/fNdffXVklZFawYvYqeYjS52DMDh/1+SwMFc4VieN+qhK9wSl0ibR7feeuuu79dee62k1fEwwzBfHhPHUGzuRYJ0eYpSCrNezk0azvX6mGoYisAjQzS6WtHwyMo0w7RI1WLg3GSAJF8P66fLXRR8igZVEVprOnr06Mr67yVLMnXVEvB9wxDP1sbI3dDAVMORyJhqMoM9R5S+2cB3SBZuNxKx811i4xG53to9Zoiaue2ZEaZd569lGG97HlubvcA41jaOZ/RuPAyGdIZi7oVCoVAobBgOLXPvJSChoVvPfY4uImQ6dq83OGH5WRKOKMUsd64MserPZ8YbrIfGcv6aKEWuv9YzEbJYGlJZGcZEI0ZNFkajn4jtc8dMwy3f9iwhTQRLHNNjNlngjCwVsLRjBGVufwxAZH1u/RQZVtKQjgzX10emTilM5P5DQyk+R5SO1pAlqrExtDZHa4LryO6xvrC+ikIAcz6bIZ3dG6ULzqRokUSCkpteOtetrS1dddVVK4Zu0Ttkzr3V18P1YWUw8Bbnh7/W+oN9EK2JzP2PbfTSJRrUZevRxskbSdIIjmFgWYe/h1Il/27yx/29nN+UgPaMHuliSSlDFDwrC8F7EFHMvVAoFAqFDcOhZe5+58l0ndTLksX6a7KAKT2XMQN34WSefudHXaTtKKlXjMrjbtSOMyBK5LqRJdKg25lvG9vMzyj1J6UHWdrYKBhQFF5UitlSL2lFhO3t7fN12/NF0gqyYD6rd4myc6ZjZxCbKPiOgYFPMj2671tKWahXjpBJOPi80TzgXCEzjAITZWGOMyYVJZ2xYzfccIOkHZbfk2plgaQMUYKaLKBPBIZcjtKAUqJliPTMDIrF9lsfRJIuu9baMmcn5MtjvVZuFLqYUg/OFTJeL11gW/g8hh77Nlj9ts7s/e7HgAF3KIm1+v3YcG1T8hq5v3JdHoYwtAe/hYVCoVAoFNbCoWXuHgzUkAXfiHR2DEhDhh4Fl+EOL0uSEln0Z+FOo51glqqUO/SojIiR+eftJV7JAlwwDGmU3MSO8dpoDDJrZfZRJNXIwurymquuumrFKj9KJsLAQFmI1+gaHmdyGD+nyOopVYjSTWbtnwuhHD0HLeCpK/fHjN1ltiU9a3MyKVokR/r6LAhVxHIz6QgTAEV2CIZe+7e3t3X69OkVq3W/nrI5Tybqx9+OZQl0WEY0pvS44XH/nJxPNs7m1WLw1uSZ7UsWntWzYuuvzD4kAuck205JQuTtQgks3+NRcDD2YxbKOLrmMKCYe6FQKBQKG4aNYO4G+t9GOihDlkZwLomJ/38uFGEULtNAhhGFVZ0rnxaikV99ttOkf6ivh22ibjFiFVlf00K5l7aTTKG3S+6NrcFCiGZ6Td8uAy2QI70s2QF91SkFiEKgUn9KSZIfF1pHZ4mDqLP05c1JG3oW/WQ6UeyHLBbDEr025xdTAUfPRYkL2xTFjVgHFrrYEHncUELIdlN6Ja16KWTpW6O0tDy3JAQq41zQa8EYuy+L841zJuvzqE30C4/sazLJUCa5i0LlZhK4KLkN37XZvdFz7XU+XQ4Ucy8UCoVCYcOwUczdwF1vlICFOu/McjticBmr67HIzFe9twvvWV1nz2Ug68miTfk2kwlmyRIiFk7r1IxJeTbOa8gyIvaSRSbrIZPoeGReEtEYMCEMra8zCYgvn+PCCGVe5279QZ0+Lbl79Vgb+eyR/pYR3GitHkUzowSA9WbJjvwxsv4eS8psWHoSl8yDJIOPbsi2Rm3IEjlFEjWy/MzeoCf9i9rL69g2WsczzoJv45wegYxO8QAAIABJREFUO5L6ZO8sSsSiuZq9E6N3B5FZ+LOf/f+sJ5LSZvUcBgZfzL1QKBQKhQ1D/bgXCoVCobBh2CixPMVS2acHjSmy89GxzFArEt3Y/3QN6YnWWXfmphWFUKXBXOZmssSdifcYIlc/ukBRxBUZtrD9Wf5w///SXNoWgjZDJhLMQhhH90buclLfIDLLMd9zFYuCuUirRnP+nqWi3MiNkqoWhgn1gUnYXwynm+WT9+3O1mtkzJahJ1pdRyxvSYeyRE9RXZz7UcAezpU5sfyS9w/7LwrcQ9F2ptrx7ee97C/WK+2Mu7klc/1E40P3P0PmgtcLPd5zR87AYFCRqjRzJT3IKOZeKBQKhcKGYaOYuyFjLUuMeQwZ043OMVCH7YqjnZ+BTC1iJXMGO0t2j1nAhsiwJTOYy9xzInaZMYUokQPDBJOpRSFryXR6O3O6M7EMjyzUai/ZDJkLmUcvuU02h6KgSTR+MuZOQ7ooSFNmHJSxZX9vxph86mQDDbV6kgi2NTPkNPQYO9dEFpZWWpUARC52HkeOHFkJS+zbRglHlkgmGstsbWXSOo9M2hQF2uFcsbaaC1xvbmZzNJMYeLDfGNzGI1vvmXGuRyZFzQLU+P+zULnRmmeQM4bTPYgo5l4oFAqFwoZho5g79Vg9Zju3Q+7pojOXnSwwjf9/ia6d4E5yLmyrbxt31wx8EyUf4fMtCRjDtmbpIj3IvrMdey+Qx1z/bW9vd9udpYbsubqQYWbjscQ1kuw+CtdJ9mOg208UVjfry54+lYlpOD42zy1xkS+Prkf8jNhe5hKZBdPx7Wb9ZOWRC+tcgCdr39GjR1d01FEyEa5/IrJnyAK2ZP3FtvlP6oOj5DbUx3McevYacwzePx+lGCzD5pTX8VMC0pMqZW3tPQ+/Z32fpf2WVtcJ09EeRBRzLxQKhUJhw7BRzD3b8fXYYxZcJguO4f/PgpZEO85MF8m29ax8WV9PF5Wl2mRCh+ieLHgEd7ie7dLqmywp0pFTMpCx8IjlGXrsy+5lX3tmk9kZZHMoqjNj8JG+L7uWUgsvUen1u/8eMSgD+yCb9748Y1dkpFE/GovPEgbNhQn2bcjsKKLjc94OPbuX3tzZ2trSVVdddd6+IJq/rJNrN2ovkwDxOTIJS3Qtn506ZP9/ltJ6HcmAgcFr/HmbK1YP51AkMbSgSEwlm9kY+flPT5tsDCKpih1j26K+jzySDjqKuRcKhUKhsGE4dMw92jlloUOp9/E7sWz3S/YwFwLWI9vp+nZn+kTq6/213O1mVqtRW7Kwunav3y1noUIzX/Wen3um8/dlZTo1hujs9edcGEjP3DkfpB3Lb1rzruMnSyyR+vDZ7bi1JxrTJUlY2AaOISUH0RhnUqbMH1haZT/0XV7ifTKnY43aSEbVs+RmXy+JAZDZgfD/qJ3RnOd8zaSLPekfnzGymzHwvTK35qTVBD72jsi8GCKbAqb4tTIiuwBa7mfrfkl4XUPvvZ29exmi2d9LW5IKP1soFAqFQuGS49Axd9uRRT7WtNQ0RMw9YzCGnk85LXNpARvpvjK9HHVUEeweRpXq7fIzH9RM1+vbO8egIuaT9R/7KPJZpx4yi9rm/1+STMIsnsl4Ip0dmSfH0uvsGHVrLnFMz1KXfRoleIksv/1zRElZqGM0JsX5FukkOVe5fnpRupj2lr7LPfbVk3zxnmxMs0hlEebOnT59esWGwHssRH7sUdsim5FMx57FBfAg++1Ff7NxzVLKGvwz8JkpzeqtuSipkL8nSsGazf3MbmNJ3ANavkd9wlTNlIT4PuEY03PlIKKYe6FQKBQKG4b6cS8UCoVCYcNw6MTykSgwS9hBMf2S8LNLQrxmoq2eIRqTcFBsGYnRKa4yUdCcm5O/NxOxRwZ1FKVnoTGj+jKDKYrQeiLKSAxP0NhlTiwfiTd9G2xuWDjJzLgnChCUhQfu5YemmDBzP4zUF5lxYqSiyMTy9kkRf5RshM/Lvvd1ZEGA+DxR6NcsGEsvtzn7PAu0EmHO5c6XQcMw3yZ7/sy9NFJf2f+ZyDkba2m1TznPKIr256z8zNAxUn1l4XR7hrxcT5w70Tssc+mbUyVE4DqK1GpUHfH9Ghn02Tm6iR5kFHMvFAqFQmHDcGiZe2SkREOszA3Hg9csCQPJaxmes+dGRQZP1hUFIskMZwxRWlIrnwZUvdCp3JXO9UnEwhksh8eXMISeAQ37tDe2wzCme83cpDzsGmMc1ue2Y/f1cH5lQYWWsIaMwfvEFHQvy1wjI0lRdq2Bhk5ReZkkxfcjpVZ0UcsC8PjyeU/Gyufa4uHr67moEa01XXHFFStM07eF7l3Wh5nbq/+/lwLX3xtJ8nhtZiAWlUMpGfua//fqjcaFRoZsU+RKxnHhPM8SykT1UlpG917+78Hx8i6G7Le54FkHAcXcC4VCoVDYMBxa5t4LY5qlm4x0dnO6aV7v/18SOMMw58YRtZEuKL00htJunR/dWbLv9hk9Ry8kKtvKa8kMyOh93QyaEbnNsY1LA5H4xDFsm39WulNSN+rnWzZXMj2f7zcyan7vhb40RIlbCLpPUgLBtnvXHjKbHsvL6mWCkLm5K+UsM1ozc+6avfW8ROdubpQRGzbQVSxzGYwY4JzNgCGya8kkeTaGvm/pwseUpbRzkFaZK22W2ObIPsRgc5Q2H15SlAVAsvdZb0w5N7j2ojWYnWM9vVS9S6RJlxvF3AuFQqFQ2DAcOube05vO6ZeiXXAWKrTHTub015FlLQO20DKUFv/+nN3DXTZ1fF5PS2ZuZViQCbvWM/fMKp79GQUxyXTulBj4PmEbeW1vl7xknIZh0NmzZ1NrX9+e7Bl7oX3nwo9GLHUurHHEpDjeDJkb6YOpS2fKUo51xNypA+UYLgkKlXmQREmHIvsWPhefj2PQ81TgNXOIJAb+XoZ2pcTL4NtA+6BewKYMcyGx/XGbKwweQ4lKVJbda++M7F0ZvVft07xPKEHyyNYNz/feqwZKxCjliM5l75Ao6VBPqnjQUMy9UCgUCoUNw6Fj7r3Qp3P+0j09CVlqL4TonN9nxCoyi/BemkNajfKTOmqvc89SvPaSsiyxHfDPHXkQkIlkoSyjNmYsxt8zF5fAw5h7z4sh09nSqjli0jxHy1zq9qRcv9fzKjAYC6IeOEpnyTZlDD6y6GZf0OOil2I2S7nJ54zS7hq8NGkOEXv0xyPbhaVJoK688squhTYZp5XLdbkkXGpmid6TWrFvo8RIp06dkjQfLjUKQ23vDEoIGecgkkwYOHciyQ2Tssyx8V58Da7bnudSJCXziN5vfK8dZBRzLxQKhUJhw3DomHuk15rb9UY7woyxZVHAImSJO5bsFg1k9D2rfPoK95g7dWvU20ftyayhe5bj2TUZK+9Zyy+RuKzjXzoMg+69997z9fR8rbPIcdTPRedoAUwf+ciHnEyW/eOZAcclSz4SRSbLmAzbE4FtI0P1Uqe59cTj0TFKFawPepHe2FaWGUlcluDIkSM6fvz4eeZLKVoPS66Zs7qOWHgWIZLzwa8xs62ZY+5RP/E9Rqv5aG1kEiHa1UTSM3t/8d3Bd3Iv3SrbHNkncA5m0qvIpijq44OKYu6FQqFQKGwYDv72A4jSLGa64p6/bBaBLrPq7e38WEakizLL0xMnTkjasUDN/MI9Mt0nd/Keuc/t6qP6GEc9Y5kR28j05IxpHTFSMnie78XK7rEkY+7W1z2de2ZrEUUUo39spteO4rhnaULtu7HhyH7CYM9jfdDzHe75aWfgmC0B28iYCOzXKPIa1zH7Klq/lCpk4+ixxEfZItQtiWuexYXoSRw4bzMpVsQeyTB71vnXXnutpJ1+Mr9z6q9932bSq8xOxEtwshj5HMNoPtKzh/0Y9Wdm8b7ENifzVOl5YvF5DjKKuRcKhUKhsGGoH/dCoVAoFDYMB1+2APSM4yg66xnUZckplqQ1pMgvKysyNLntttvCa9nm6BjFVb1gHyyHRneRKJxicH7vhczMRPdLUktSpM/xikR4S0SrJpZn2s5ILJ8FP6FoUspd3qweBpeJVAeZKLdnUDcnHo2eqxeMJ8OciqqXttVg57KEMr16s+NR4BsaSWbjtxccPXo0VW9F7eW6WQKqQGhY2XP7mitT2lnv119/vaQdsbwZCkZl09WNxng0eIveITS+tbKiucoxzAxre0FnsjTYhp6oPUumFM23KIz2QUUx90KhUCgUNgwHf/sB9Fj4XMrQHtvP3CMixpEZYWVhST3s2jvuuGPXPbazjdzZstCuvfrorrROQA0D6812uD30JBNZasyee1YvuUN2vfUt2Z5vQ2ZItySdahbEJgoyQyPCTOIRBU1iEpAs1K+0M49s/M2gcwno6sR29Fgs2xr1X4bMTa/H+jN3qWguLQntamitnTeq8+VGhmcZlrx3MqlV1OY5NtqTjtl8OH78uCTp2LFju+71RnGcvzbfLIgS4Rmu1ePfY/5ea4+XBnDdZIbQkTFeJmXiu6tn1Mi5GkkKKVVYx0D1cqGYe6FQKBQKG4ZDx9wNvQADS9K4ki1mLDQqI9PHr5N8xnaNpoO3na7fHVMvngU66bnNsD6mcYyYSCYR6NkwZG6IPVeijAn2+m2JjUJ2PtKfz+l5o7GcC3hD17iIhfeYhS9TWk3lSZZCXb8/1tPLz4HX9vSm2TjY862j+85sPjyycLM9W5m92B/0pGSsM0s17ZEx954LHOvLyoqei8Gr7HlOnjy5656eBIzpg8m0PSKXV/89ChecSSTY5iV2G0veIb0w4R69YFfF3AuFQqFQKFxyHDrmHunwuNvNdFGRRahhnXCZLCMLQ7qEIVgZphP1ulEydgslaSyfCWT8DpQhV+dsC/w1hiypRS+xDFkXd8dRgoqennEOc4ywtbYSgtLf0wt16+/xYL+QwfeCbkRBQ3yZmb7bl2fnmEgmSlDDwEcXgszGQMr1ozy/DmvOksL4clhelrgmOrcEPctwlpdJoiI7E5aXsfBoHmQ2RdG6zCRqmVSQ9/vntHsYpCuS4DDAEte/D3LEe7J3cE96Qpa9RGqajdOSFOFLPRcuJ4q5FwqFQqGwYTh0zN0QhfQkMgtoKd+dcmcWJaDI/ECjRAoXgjlGmKWAjZDtqHvWxJlNQU9XlVm8c1fs789YXi9tZzQuGXo+6+yzOQYaHWObegkoqEdeMleyJDa0ZvZsaC9hZy8E++lfzjIjBp/54PP4hTD3I0eOnNdZUxImrabazbx2IslNpp9fEkuC1/aSAXHu2PP01jBZcGa71LOn4DFKIqJENZnEjmMa2bBkHkxL7DWIKDR3Zud0kFHMvVAoFAqFDcNGMPeMOfWs1jM9cnbcsyJaRZNJraNXXAesl9akvk8ynRB3tp6JLPHT75XtkTEQX3YWva63+16im/bY3t7u6jHpIWDoWftnXgNkQ0sSXZC1RH2fSYRoLR8ljrlYc/GgYc5H3h9ban+wvb29EjkukjwZMv15LyojPzm/fX2ZTUwvSQrZvtn08Hl6bDhLVBP1ox0zexB6jkSSHZ5bYjNlyOIc0Cc+Wr+ZBwmjBkpakeCUzr1QKBQKhcIlR/24FwqFQqGwYTi0YnkPE71k+cgjg5zMZYYimsgIi8Ec9sN4KAJFPww80zOA4/MwOcOScJpzRj5ebDXn6hTVl7nA2WckpqMx4Vyo2mEYVsbQ18ugPlm75475dtPQKDJw6rl5+TI8aDzGhDWbjp56jaLiyO1xnXU6DIO2t7e7rnA2/zlPucZ6CUiy9Ri5hTFUdWYwHM0dhn1lyFU//00EbS63XP89VzjOSfs0dUD0zqTaiWua7Ylc/bjm1gmixXkRhXOmeuYwqLuKuRcKhUKhsGHYKObOZCK9pBU0fspcaKLkH5EbmUcUBGFpAg2/w/TJHHx5WbKJnsuYYR0DLu6CM0MX3yZem7kHReVlIUV9P9MNcc6gzti7v9bXY0yG86AXBjQzqMuMpTyzzgLgEP6ZGbrTwHHqBSLZBPSCJjEZSBRoZ12cO3duZd76Ps7CovLdEhmRZq5wvbSnnPN8VqZmlXbeIWTHlDpERn8nTpzY9Zx2rbHwaDxsrptBHd00aWDXw5KwvuzjJcmGeC2laPa8PvlNL6TwQUUx90KhUCgUNgwbwdwz1k2WFO00swAx1P/4neZcAgfb3Xnmne0sWW+kn8uYQLazjY5lrNizyuyajKH03OgyVt7TubPenitclCyFGIZB9957b6ob9WB/raNT4zhkqSt9G3qBTqQ49S/bz3ujucN6DzN6YVUpCbkQxm7lnz17diVoiZ+/ZLRzyXP8/Zk0jO8Or/flmPK9Z2X65FN33XXXrvI4V5hgKKrH7iUrj8DAXtS9R+9ivvsszLY9u62FnjTN0LPXycA0zFZfZIdDu66DjGLuhUKhUChsGDaCuRvIupekCsz0Zb0wpLQWp46/Vx/DP/YCNGSBTiLLXX/c18PdJ5lDlPzD7qE+m88ZIWOkvcA4WSjgnrX5EhYxDIPOnDnTrZsWwEueMWNbc+EzpVXmZCwl0x36+21MjRVloVejti1JQ3wYQQlYT5KzLra2ts73n7E5X34UPMru858ec54WtNS+//3vf/4aMli7h8za33PnnXfuOse5wqA20mogGnqb0DvDz9XIRsm31eDbaG3JmHqWZMe3zeqbkwbyf982q9fWZCQJW/J+OCgo5l4oFAqFwoZho5h7Zokc7fio8+olbJB27zypD+NuuGfVS4vtnoRgiW+6Lztie5lkoNfWuXt7YTWzRA49FpOFh42ei7q8OZ372bNnVyyQvUSCYSoNvVClF5IumOzEWALZiWdHDDdMnX6UwCPr/8Ose4/6M5JA7Qdaazp69Oj58m3NezuazNZnSejibP1T/0uPGV8PpTKmX/fz0yzebT5RoheFzOa84ndKA3s2MbzGyvI2JayXyZyiRC4GJu1a4tnDdxFTakcJuHq2FwcVB7+FhUKhUCgU1sJGMXcDde4RW8mSBmSWyH63yh1tpnPrsb5MJxXp9tkmWsdGCR6ylJg9K/qlluKRz29Wbm+nm1nfM+mJ71/6z84x97vvvnslEYQvj0yZz97ztc+eI0tC5OujvUZmRyGtzjOWYYiiDfIeosfks5gFUT/20ivvF3yZZK37LZForenIkSMr89Yzzmz+ruPFkrFjzg9fD8fdnt2YJ59D2ukna7999votSxiTpXP1YCS6LKqe/5/vlUyqEcW2mIvr0IssSL/2yPuEEo/DYLtSzL1QKBQKhQ3DRjL3LJ56dA1BNhxFcMriQjOucmTlnen6eywv00X1rNvJwm1Xn+nPfX1ZzHrupHvMnfq5SP+YxYm3/rN7vJQj85+NsL29rdOnT3ftGgwcQ/uexbuWVseOY9qLjd/TCUr9VJ8G6uCj+bbUG6SXTpM63kj3yueycdkPRt1bIxfTavnIkSMra8yPW6bHZh9HrDGzReH6iRgu+5r1LEnjTFuCqA2sN4spEEkMsyh6Pfsgg10b6b79+ehevveidxUjPtK+IaqfErbDYLtSzL1QKBQKhQ1D/bgXCoVCobBh2EixvCELRyvlrgxZ4JueQVWWSMQjExdlAVyi8ubC0HrRU+Zak4n2/T0UHWapYL24sZfwIquPxoU0vrEyfKAaE4VmwTI8LPwsnytyZzJkboaReJTgtb2ERRRtWtuifmPgIxq4RWmJqbZgEJPMZShqS2bA6cfS7skCnVwIojYuSfl7IWitnXeHk/qJXDgnOf5RQh/2cZZeOVIDcL1QheTnAQ0qqbI09FQHmeFupHZiYhiqZ6L1NBd8rDdnM7ddzsdILE/1EkXu0T1LgnIdFBz8FhYKhUKhUFgLG83cucPsuWNlbmC9naZhzuApujYLFNFDFnwhYuVZqNrMVS1qC69hIIroXraJZfaMomyXzTSsnrnbOTKDCMP/aO9clts2oiAKUGWXy/I26/z/Z2WdH/BCZWaRuvbkoPvO0CVFFNhnY5MUBq8hOH2f13/bvdJC0BXfcfdWpX1Rma9YcFyzDwZ9dqk2vNYqoI6WlAqo5DVYKSV8SyMm7v81y97+3yU/930/lEIdFW9dU6pHvlaBp/xeOFU84pqwdGqf43FctZ9Zul4X4MiAOlccanyf43EbZ0kYt+E1d+pcjcdGMSp91LVdvmei3EMIIYSTcWrl3vk++TeFU/ldcZmia+BBZmUoR2q16HzsKsVrtUyiamHJMYpObbJVpUsPUrELXLFTmSifO/2cjuv1evBJdsp9lqK28je8PuM5uzatvNbjNrweVOpKsdEvu1Kch+fnWpl2ZWD5uvPtr/IeBUP2fd8+f/68ff369efrbftv0aT6jM8X3hc135yVh42RxutKf7azhqn55ua5mgcunmFFtXJ8N++6wmI8Lz7/VuYDm8GM8L1S5bTEjDAt9DVjSt6KKPcQQgjhZJxauRdqdUq/C/2Is0Yy43uuAIkq1OAKnahtZnQR/c5/zshx5aef+Y7V+7WyLcVOy0EXu1BKhMq9XldDjPG9WxqFdD49FyG74pvmnOG/ndKg1cUpnfE9njtL5o5qomubq8YemRU+UdvwOn30FrOXy2V7fn4+WFSUEuR85TNlHKMrGrRtvbWR1piCypbnMR4DrXMs9arGp2p15Ze37WhJo0WCEfDqb511YQVe365IDzOJWL53fDYyI+UjzOso9xBCCOFkPJRyH3ERri5ausutJCoC3ikZ7lf59rnKnSnF8f/OT6/U96wkKdX4Sh6oK5m5bUf/IlfH5d8cfe5sQDFrfHK5XA6Kajxulih2jSE69TCz8qh5wnvalbnluTISWZV6nfnlOz+6K6Pa4awwH0HhKMrnzrmucshLzdc8VYq9cNeDal/FkriGLbw/6jlwS70Lzh3nA1dWoZkFciVLwz2TV56RzlKprgkze/h6VP11rvVMWvlOvDdR7iGEEMLJeAjlrla4zk/FFWXnN3U58p1acb53lTvMKG8Xhd1F5TKC38UWjO+51W9Bf3G3TefvXlWk4zZdcx5See6Mkh+Pe6ZwV/LAXS6vmncrFfC4X/oreR7qXlLtuMjnblvnc+dxzd77iFR1Os51pVJL4ZWCZyyEsvp1vudt06rY1RvoalewzgWVu8rWcNY2vla57HxWscqheg64GAJ3POM85PVzdUNUExrGHzFuSFUW7Ma7N6LcQwghhJORH/cQQgjhZDyEWb5Q5tFZmkUXxFGslKx147oAu3E/NMdzG+U6mJljmRIz7seZfVfKq9LUTtfCmMLGICya+5RZfjXFq8Z7eXk5mLOVqVNtO9IVs3Fm7M5d0gVOcf8zM7lyN7h71JUqLVypUo79UYPlViizfJlfu/S/MsezwU/X75xBd/ze0Jw9buvunQp0ZaCoa/CkCmAVrmTtSgMplouuf8dtVl05XeCwm+8873Eb17yHwcHb9utaMy3wnolyDyGEEE7GQyn3leIbbhulpJyCUfuZqfkuXc8F7HUlJFcU2ngO4/+70ruzbanG2XBjXKUzbYoFL1RzmFuLSVyv18O1VU0rnArqAg8dXYoiz2MlgM8FRXbWBTevX0Ntn1mxF/u+b58+fbJBk9vmmyWxwNJ4/2dBcSu4OdsV2nLFbFbUsLJAqeNR5zNT1mo/atzxmFWgmzsvFbDIAMjCWTm27Rh4+xECR6PcQwghhJPxUMp9ZFV9rKQK/Y7/xaXYdQqRq336tTvlvlrMZPxslgqlYNoZfcvKf84mDFwlj0qI48yO6cePH4dzHserVTwtAVzxj9fCtXrlNVXpMvTH8lxVARTe59k9Hf+WPIK//LW4Xq8HZatKklKl8jtwy3ea80P5fV0pV8aujNs7JasaTLmS2NwvLWzj/3/HUumujYsTGHEtplV6YL1X333XiGssYsMy1WMDoXslyj2EEEI4GQ+r3J36copnXGnSN0y/klqxz1qKdivdWeMWVbhhtelLV2Bj5q9Xq2+Wcy2oVMftXYELtc0tZU0rWp4R+6r8LI+lVu1KQXHuuHK9qpStK+HJ4+gaa7ixRgV1S1ZB0FwuF5sBsW3He1RzZsWP7ixofB50likq6ELFB/D7UtYy5ccuVuebKntcMK6mm4+8FlTdnXLnZ7ye4/nR0lK+d/rr1TX5SGWVo9xDCCGEk/FQyl2ttlxEZtGt1OhX7lbqM99w559zKpwrW6Xc+ZorXKXcuULnNVGqn/44jskVvPobKncVmcp4gJmyeXl5OeStquN2JX1VnrOLBOYxqvvCSGqeY1d2VJ3f+Pk49kdQFvdMRcvXPVTR0aXUy/9arxk1Pyp8V1Ja7X/b9PeTf9OVb3VliGvbOsYxloAK2sX6qLnK7zctU13uv7OAujLY2/brmrsMFZYIVp/V80218y34DLyl5fR7EeUeQgghnIyHUu4jrq0l1biKKp81l1H+MudbI0ohzhR7FxHK/dXKWfmDXRyCq6KmGrC481Erdhe53UWB81hX8oO5H6XCeH1WqnC5CnucD12ji1J9XRtNl1sbP/rbsu/7T8VX93hUcMy0oA+3tlEWNSpBFyXfxcQwOl/NN85Fjl+fjxkrPB9+N5yS5/Gqv1E1OdyzqrNMum15DRgRr/bD77jKmOF47nl3T0S5hxBCCCcjP+4hhBDCyXgos7wyrbv0CpqvumISRWeOdaVIVwrDMEVjlioyfuZM+zS9jftxx0YzsLom3H9XpMelhbkANTVeZ5re912mlKmgRddoR5ljK/iIrgHuSx2bK+3buQ5WGhGF1+Xp6Wl7fn4+BFSqpixsQPLly5dt236ZuldKCvP72pU5dSboriSqex6o54NzL3L+dcFxs/Ksyp3mUntvec7xPqnz42ds0qPKz/JYVJrcvRHlHkIIIZyM+19+vBFclbpSsp2ydsp2pUlC0TUocX/jUkVGGHwza9s4jsvzcGk0XYDLrPxtNx6vwXiMLJwxs3w8PT217S15jgyWUxYIruydclf3kudcYzGqND7HAAABZ0lEQVT4qrNWhLfncrls3759OxQ1UpYgKkGmVn3//v2wDZU7x1ApuEzLW3mGMb2UirNT0LMyy87apY7NPffU8fPfWwKHOWbRFR/iWEyRG8+HQZP3TJR7CCGEcDIeSrkrlTdrpEJlpz7jSlatoF3JWlcoRo0/S59TaW3Ol6vGYvEYwvMbj5npIyvK2qW8dU1UeB6db2/fd6kQlLWCSqpQ77uiGyvKvd5jzIMrnxnehypiw2JGXRli+oS7tKlZuVQFnxVOWavnDsfoYlXcd2GlaA5xvv2uvDK3UYWkiHtGqm0YK1HQ4tJZXp36vyei3EMIIYSTsd+7P2/f97+3bfvrvY8j3D1/Xq/XP8Y3MnfCIpk74Xc5zJ174e5/3EMIIYRwGzHLhxBCCCcjP+4hhBDCyciPewghhHAy8uMeQgghnIz8uIcQQggnIz/uIYQQwsnIj3sIIYRwMvLjHkIIIZyM/LiHEEIIJ+MfwSA71ScNgTAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bldV5vvOvU8SyAkhDST0SWhiQqellKC3LjZXECm1FLWwo0Tq2lcJllIiNqDYoD6KXJFrSwGCBXaUZYc01wh2FBRIMAkJ6WhCIwlJDmlPztnr/rHWb693v2uub++zzznZ36fzfZ7z7PN9a63Zjrm+8Y455hil6zo1NDQ0NDQ0LD/W9roBDQ0NDQ0NDTtD+9FuaGhoaGhYEbQf7YaGhoaGhhVB+9FuaGhoaGhYEbQf7YaGhoaGhhVB+9FuaGhoaGhYEWz7o11KeWYppSul3FRKOT2u7RuuvfC4tXBFUUr5wlLKC0spa/H9ucOYPXOPmtZwDDCsi2ftUd3d8G9SfynlNaWUa+O7a4f7f2emvL8crv/1TD357zU7aONaKeUfSik/ULn2eaWU15VSPlJKOVhKOVBKeWcp5UWllPtvOwDHEaWUi0opFx3D8n6plPJnx6q8ocxrF8zN5r9jWN/HSym/eozKus/wXnxs5drfl1LeeCzqORYopXxDKeW9pZQ7SykfK6W8pJSy/wie/zellDeXUm4updwylPU1R9uufUdw770l/aCk5x1tpf9C8IWSXiDpJyVt2Pcfk/R5kq7agzY1HDs8U/36ecUetuEFpZTXdF13cAf3flrSV5VS7tV13af5spRyjqQvGK7X8EpJvxbffXIH9X2zpPtLerl/WUr5fkk/L+kvJf2IpKslnSLp8yV9u6THSfqyHZR/vPDdx7i8n5V0dSnli7qu+8tjVOZXSzrJPr9c0rqk7zhG5SeeKunGY1TWfdS/F6+UdHFc+4+SDh+jeo4KpZRvVb+2f1PScyU9QtJPDX+/fAfPP03S69Wvn1+UdJekR0u6x9G27Uh+tN8k6T+XUl7Sdd0njrbif6nouu5OSX+/1+1oWHm8SdKT1b+of3kH979Z0pMkfY36Fwl4hqRrJX1Y/Ys/cV3XdbuR1x+Q9Oqu627ji1LKF6n/wX5p13XfF/f/WSnlZyR93S7qOmbouu7SY1zex0opf6z+xX9MfrS7rnuPfy6lHJC0b6fzVEo5aXgP7bS+dx9hE3eFrusuuTvq2SF+QtJfdF33bcPnN5VSbpb026WUL+667v+be3CwSP+mpF/ous5J7luOScu6rlv4Tz2j6CT9n5JulfTLdm3fcO2F8cznDg28ZXjmrZI+N+55paSPSPpXkt4u6TZJH5D0ndu16Uifl3SepNeqZwh3SvoHSV9due8bJL1f0h2S3ifpKyVdJOkiu+cekl4i6R+H/n1c0h9LusDueeEwLlv+DdfOHT4/c/j8XEkHJZ1Zac+lkv7IPp+sXnO/ZnjmGkk/LGltB+O1X9KL1TP8O4d2/4Gks3c5b4+T9LeSbpd0uaR/O1z/L+p/BA5I+iNJ943nO/Ua6w8P5dwu6W2SPivuK5K+byj7oHoLxcsknVop7yclfe8wHp+W9FeSHlUZg6epV5huk3STpN+T9JC451pJr5H09ZIuG8bhXZL+jd1zUWV+Lxqu3U/SqyR9dBjnj0n6E0ln7USudyj79PkNwzyebNdeI+namT69QtJb49rlkn586NNf1+rZRfsePzz7r+L7N0r6J0knHkFZ28q8eqtWp369vkzS9cO/10g6Lcp79jCvt6tnj++SvQs0Xe+U/VXqLQ6fGmTnl9QrOf9a0l8PcnKJpC+dkbvDkh58rGQgyp/MnV17saRD6lneW9Wv7dcP1546zMnHh/a/T/06WosyPi7pV+3zdw5j8jmSflf9mrtO0i8smltJF1TWTSfp64frfy/pjXb/U4brT5X0W8N8fUrSz6nf2v18SX+nfj2/T9IXV+r8kmF8bhn+/amkC7cZzwcN9T47vr/P8P0vb/P8dw/3LVzz6q3XL1evMN8p6RPqlfGHL3xuBwLxzKEBD1e/eO6UdM5wbfKjLemxw4L435K+Vr1m/87hu8+0+16p/sV+mXq28CRJvzOU90U7aNeOnpf0YPUvin9Ub7L7UvUvrw1JX2n3PWn47n8MQvIt6k13H9XWRXxv9VrU16s3K361ehZzo6T72aT/5tCW/0PSEyQ9Ybh2rrb+aD9Q/YL+7ujf5wz3fY2N9dsl3SDpOZL+L/UvrzvUa3SLxupE9T+wt0r60aGvXyvpNzQoG7uYt0slPUv9wno77VCvwPzb4doBSb8bbenUC+nfqH8RPl39D8cNks6w+356uPdlw5x9n/pF93ZtfWF36n+U/kL9S/tr1b/Yr1TPPvJF84phfp+uXnaukXQvu+9aSR8c+v616k1h71H/oj5tuOeRkt4t6b3MraRHDtfeLOkKSd8k6YnqmeOvSjr3aF7MlTH8SUmPGmTneXZt0Y/2Fw73P2j4/glDWQ/T/I/2T6mXvc1/O2jfC4a593naN8jSa4+gnzuSeY0/rNeotzo8WdJ/Hup7ld33Tep/wH5M0hcNcvA8Sf/R7rlI9R/ta9WbOZ8k6UXDd788yNCz1Mvo29WvsftEP+473P+sYyUDUf5k7uzai4c5v0r99uYXSXricO0/DeP6FElfPIzFbZqSsLkf7cuHsfwS9YpfJ+mHFrTzHurXXTfICGvnzOH63I/2Nep/e540/O3UK02XqX9PP2V49maZkqZRWfp99e+Gr5b0v9STt/svaOf9hzq+K76/1/D9X24zH7+jXon5KvXvyUOSPiTp+dq6Jn57uO9b1b8rnjb067MXlr8DgXimxh/tM9S/vF5hiyp/tH9f9oIbvjtVvYb0h/bdKzX9gT1J/QL99R20a0fPq9fQPqlgsupfrv9gn/9W/Q97se/44bxoQTvW1bOBT0v6Pvv+hcOz++L+c2U/2taWv4v7fkm9InDS8PkZw3NPjPt+WD0DmdXq1L9UOpmSUrnnSOftifbdYzUu4nX7nr0c/65Tz4L2x5jcJelFw+cz1CuHr4w2fnP2Y/j8AUkn2HdfO3z/+cPnU9Qv6FdEeecNY/cc++7aYdxPt+8eN5T3jfbdRaq8KNUrFt+7nfwezT8ZA1a/8D8l6d7D50U/2mX4//OG718u6W/m+qM6K+q0HROQ/pxy7buzh2d/pnJ/VSnYqcxr/GF9Vdz3MvU/8MU+v3ubtl+k+o92ys67h+/dAsM6+JZKuR/WDt5ru5SHqiwO1148tOk7timjDOP/IkmfiGtzP9o/FPe9RdLF29QD2/7myrW5H+2Xx32XDt8/zr773OG7pw+f14Yx/7N4lt+wF2/Tzpsr8vTkoY737mA+bh3qebZ6Reln1SsQP2P3XSnpp490vo/oyFfXdZ9Sz6b+QynlM2Zue6KkP+m67iZ77oCk/6memTpu68w5o+v3Wa6Q9BC+GzzUN/8d6fPqJ/7PJN0c5fyFpM8spZxaSllX/2L+g24YzaG8/61ey9uCUsq/L6W8o5Ryk3ot6lb1PwxzY7IdXi3pCaWUh9Nn9ab63+3GvaenqGeAfxv9eJOkE9RrrHN4sqSPd133PxfccyTzdmvXdW+zz+8f/r6l67rD8f0+9Zqr48+6rrvV6rlW/YL9vOGrJ6i3DqSX8uvUj3e2581d191ln983/EUOPk+9AvLaGLsPD218YpT3d13XueNNlrcI75T03FLKs0spjymllO0eKKWsh5wfybp8gXrZe+52Nw6y/RpJzyilnKie9bx6m8deod4E7P8+vM0zD9DOnNVUSrmfeoVt85+t8yOV+T+Nz+9Tr8ifPXx+p6TPKqX8cinlS0opJ++kjQP+PD6/X/06+Ov4Tuqte4lPqh+XWeS7bieycwR4Q6W+B5VSfquU8iGN4/8jks4qpZy2gzJr472TNXKkqI39p7que1d8J41j/yj1Fs/XhOwcUC8HueYT/4+kbyylfHsp5YxSyuPVW1YOa6tjcQ1r6onc87uue2nXdX/Zdd0Pql9rzzG5e6ekby+l/GAp5bN3uu53c077Jeo1+5+YuX6G+n28xMclnR7f1TwS79TgYVdKOVfTBX3uTp8fcJak/5DlqHeIkaQz1e9VnKDejJ7Y4nRXSvkK9V6Bl0n6RvX7d/9a/aLcrWfgH6r/4X/G8PnJQ7v9hXqWpHMq/fhf1o85nKneDLMIRzJvN/mHbvRezvng+xyXmiPjJ9RvFdAWZXu6rjukwYwez34qPqPoUO9Zw9+3aDp+j9F07LaUZ4rTTub36eoVnf+q3jv2ulLKj22zIN8abfqxHdRD265Wb016dinlvjt45NXqzfsvUO/n8Ppt7v9Y13Xvin/bOTHdQ+McgBvUs958qV+vURn4jbh2pDK/nRy8WtJ3qV+zfyHpU6WUP4x3yhxqsj23Dmpycruke25TR/YzldPdYqPrui3vtuEH7E81mra/UP0c8F7ciazXxvuovaMrqI39du8a1vxrNR3XL9Hi96XUbwv9tqT/V73svl391un7VX9POm4Y/r45vn/T0L4Lhs/foV4p/g7125KfKKX8fCll4Rgeife4JKnrulsGL89f0DjBjk+pd8ZJ3E9Hfmzgo+oFKb87EjDgP7ugjkPqJ/OsyvWz1e9HgK+XdGXXdc/ki1LKCZr+kOwYXdfdWkp5g/o9txeoNwNf3XXd39htN6hn/f9+pphrF1RxvXpHlEU4lvO2Hc6e+Q7FgpfB/dQ790jafNGcqenLYjuwiJ7p5RnmjjsdMYaX4/dI+p7BGvUt6l+Kn1T/AqjhO9Tvl4EjlfEXDfU8fwftu6KU8g71+5d/6JaVY4gbFIpe13WHSilvk/SkUsqJ/MANiti7JKmUkkdpjkbmJxgsDb8m6dcGD98nq3+PvV79D/nxxBmaHnFK5Lvu8mNUd1f57kL15vyv67ru9/mylLKn3vvHEKz571fv6Jq4Y9HDXdfdIelZwxHFB6u3Lt2u3lGvGu/AcIn6/ew5bAx1HFCv3P/XUsp56uX8p9T7Fbxg7uEj/tEe8HL1XsI/Wbn2V5Ke6udBSyn3kvQV6m39O8awsN+17Y2L8Ub15tFLuq67fe6mUsq7JH1NKeWFmMhLKZ+jft/Tf7RPVv8j73iGpsdl0PLvqZ39KLxa0jeXUr5U/YSnQvRG9c5ht3Rd9/58eBu8SdLXl1K+ouu6P56555jN2w7w1FLKfkzkA9N5gvr9N6k3lR9UryC91Z57unqZPdL2/K36OXh413Wv2nWrt+JObf2hnaDrusslPb+U8p1aoDQN9+0aXdd9tJTyK+qdr3Zy7Ofn1FufXnY09S5AbcuBet+sXoHOI181HI3ML8Sw/fH6wex5vM43S+q3P9RbGH5vmzYd7bvuSICJdnNbqZRykvptueMJfy8eT7xPvfJ7Ydd1v7jbQgY5uVGSSinPUf+Du9075H+o97v4UvX+NuAp6n1eJrLcdd01kn62lPIt2oZg7epHu+u6O0spPyHp1yuXX6Te4/atpRQ8/X5QvZDMmdSPJ35MvTntbaWUl6nXzk9XPzAP7bqOqFIvUP/j9oZSyq+rN5m/UL152Pcw3qg+SMVL1B/leZz6l2UyFs57fn8p5c8lHd5mUb5VvZD9lnqB/u24/lr1XoZvLaX8gnrP5RPVe/5+paSv6uxMbOA1kr5N0n8frCTvUP+D86WSfml4Id6d83a7+nOPP69+z/HH1e81vUTqfSeGPv5QKeVW9T4JF6pXEv9a0720hei67kAp5bmSfmUwIf+5ekeTB6o3QV7Udd122nPiUknfXUp5unrP3E+rl5W3qJ+r96t/If479fL2piMs/0jxYvXBSb5A/T7wLLqu+0P1WzLHC2+T9K2llDO7roPxqOu6t5ZSnifpxaWPiPVq9Uz6HpLOV6+k3aqRGR6NzE8wrOtPqz8m9E9Dnc/Q8Z+bR6tfRzXGt1e4WP375uds6+b7NZqZjxc+on6tf1Mp5XL1rPKq8CE5anRdd7iU8p8k/d6wh/wH6tn3/dSf6Lmi67pZpbWU8lT1gVQuUb+N9GXq36Hf1nXddXbfk9W/n76x67rfHep+Vynlderl/CT1cvsU9bL2/IHFQxR/d6jjVvVm+wskvXRR33bLtCXpv2mMFLOJrusuLqV8oXqa/yr1Xol/L+kLuq5771HUtyt0XfehUsrj1P8A/7T64xc3qPcUf5Xd9+ZSCubpN6j37Pt+9T/6N1uRv6HeXPIs9Rr6O9Wz0XT0+BP1FonvHsoow7+5dm6UPszkD6h3hLoyrt81sPDnqX85n6d+oq9S/yM2u9iGZ5889O3bh783qD929anhnrtz3l49tP1l6pWjd6o/q+lm7x9Wb1L+TvVjeMPw3A91XbedI8gEXdf9Winlw+pl9hvVy/516rdO/mEXffhZ9Y6Hv6neEeyv1CtB71a/uM9Rr+xdLumbuq77o13UsWN0XXdDKeUX1cv5XuOP1Jsfv1zBSrqu+7lSyt+o96plPd6hfpxer95L+fBw765lfgZ/o14JeIb6o5sfVa/QzpoijxG+XL1Cd9FxrmfH6Lru9lLKv1PvXPVaDaduhr+/chzrvauU8n+rJwlvVb8Ov0G9k+mxrusNpQ/o83yNZOhj6pW27ULx3qXeGoVz8bslfXnXdekUt6beypo+K9+qnoz8F/UyfrWk7+m6zrfI3qb+XXTeUMZVwz0ZgXALOArRUEEp5UHqf7x/quu6F+11e/45oPQxkX+q67of2eu2NBw/lFJeqf48+JfsdVv2GqWUS9WfTPnRvW5Lw+rjaJj2PyuUUu6p/lzxW9Q7bj1UvZPAberZVENDw87x45IuK6U87m7eq10qDGz2bPUObw0NR432oz3isPr9jpep91C+Vb3p9Ou6rtvOxb+hocHQdd01pc9kVzuR8S8J91QfSOR4eOk3/AtEM483NDQ0NDSsCHYTXKWhoaGhoaFhD9B+tBsaGhoaGlYE7Ue7oaGhoaFhRbBUjminnHJKd8YZYzRQ9ts3NsZjuWtrW/UM7uEv19fXxwBlPJ/x97mX6zzj9eWeP8/w9/Dhw5Oy+f+hQ4eqz/B9DXkvbaEdlE293u4cg+yX9yXHjXLnnvFxp27u8bZ4WT4mlHPiiSduqSfny8ce8N1dd/XBmz74wQ9e33Xdljjb+/fv704//fTN8vbt60X7hBNOmLQBcM/cWNfGIccp5cDlLseBeacs6vfxmxsn/vKMI2Ui5yzb7GWk/Ga/UoZr/eIZxppn8rqPD/XOtbGGO+64Y8szlJH1eTnZ52uuuWYiO6eeemp31llnbT5fW6e0m3sYY9pQm5fsy3br0+Ug31UuV3P1Uu7Bgwe3lJHyURunlPN8Z+aY+3f5mTKyzX4t+8lY05+ar1W2dU7+ajLEeso1mPNYA++dq6++eiI7e4Gl+tE+44wz9NznPndzIO+8s494d9JJJ23ek4swXzI5gZJ000294+a97nWvLfeeeuqpkqR73KOPz44Q3HbbGGQpFw8LgrI++clPbqnXy6dcBAZ8+tN9VNNbb91MdKUHP/jBW8rhnnves4/2d/PNfXyXk08+ectn7wdtvc997iNJuvHGG7fUX1MsaAP9ovz8QfFFxHyweHiZzv2Ie/n0h3se+MA+RwgLw8eKey+5pA8XfvrpfTjrpz3taZOIX2eccYae/exnb97DX3/x0jfmJ/vKZ5/Ls8/uw6Qz3vTxhhtu2NLulClp+kOPTH7qU30MmYc85CGTPtNe5oXyKePMM/s8B8ifJH3gAx/Ycg99v+WWWzbHRhrnyRVj1gZtve66PtjTWWf1Tt+33377lrIdtAE5R2bpA/PnoF/Uhyyl0oO8SOO8HDhwYMs9V1xxhSTplFNOkTTKuyR9/OMflyQ9/OEPlyRdddVVkqTnPOc5E9k5++yz9dKXvnQit/e+9703/z+n2POX9voPFTKDTDA+rHXeb8yx9znHARllbX/iE5/YUoePA/OCvFEPcsecStKDHvQgSeN8IDP5bPZTkvbv37/lXmQGmaI99M/Bd4w59yJLzLUrJaeddtqWZ2vKmjSOkTTKG2uMOaAs5N3nHpm88so+vhXr6cu+7MsWRhq8u9DM4w0NDQ0NDSuCpWLapRSdcMIJm9ocWpczHzQv2DCf+VszHyfDRnOHLXE9GZFfQ7tDc0NrzXqlUVtNUzfaI0zHLQiwIDRnnkHTReun7a7Rcw+skLalJopm7P1A4/zIRz4iaWRHySj8Wb778If7tMr3u1+fHAwNm7YyDt7uZG4f/GCvvJ577rmStjJVNN373re3SP3TP9Uyp45tOnjw4Ga51O3lIRO0L814zLFr98gI5aKp02fmlOvMo19LJkJ/GAt/BtlICwfs4WMf60MGuDWIsc1nmUv6QNuRF3+WuaRtuXXgViFYEW152MMetqVeyk9rjpd7/vnnS5I+9KE+Fw8WBObY541xTEvIhRdeKEm6/PI+34oz7Uc96lGSRiZ1//tnSvcRa2trOvnkkzfrQda93fkeYE6ZH2Sq9gzrEMbGWDOOlEH//FnGlHKZS8aR+fJryDPvl+uvv37Lvb4u6TPfpUWBdiBb3j/kl/cO45/vHX+fUj5to81+jzQy45q1g3cG/WEtYLXjPSSNY4pMMp7IXf42SNJll1225VmsGsuCxrQbGhoaGhpWBEvFtKVe40lHLWc+sIXUUtP5wlks12CVyTxhOmj3Xj97Y2iaaGRo3M4IvA/SqImizSV7rTmTobWiaabzDVozVggvh3u5lszR96VpA8yeemEB7HWhobr2CsuEHed8sc/PeHv/0iEk9zTdqoImXXOCmQPlO2sBMB36zL3IEtq+s1i+gxEwhvSR9jM+zhhgd7A95oMyYCau5TOHjB3lpn+H74MzLtQDa0K+qZd58/4BWHlaB1g7vi9JfYwxe+qPecxjtnymDGRJGi06F1988ZZ7mIO0Fnnd/EW+6UcyS2lkR4wF7405bGxsbI4xc4C8SONaRiZ5h/B+oB5nhpSDFYFxy/cB4+jWOuQN9kj7mVPGy600KavICHKILDlbZixpE3JHfynzox/96Jb7vb30PS2j9NefoR+8k5CNSy/tkyLig8BcYM2RRksVFpb0J6F/LgeMAfcgM36PtPUdxrzTD8Z6WdCYdkNDQ0NDw4qg/Wg3NDQ0NDSsCJbOPO7IM4LSaMZL0xhmozTdOXBywaknzdiYwGvnM9OkCtLMLI0mJp5NBy1MkH5sJ01kmMFpCyYazPFursacg6mMMeIzbXRzdZ4rxdTEGOSRHL8/y+VZysfs6yaoPEOKyYx7GAs33bnDlN9TQylFpZTNMWfc3FxN2YxhmtXyWIg0ylU6gtHHBzzgAZLqWwKMIWVg8k0ZxmwtjbKBTCIXPJv1+TPUh8kRWeJZTMaYGaVxTeSxrUVbBtSXZ2txHGSckROXA9YnY83fPGrm/QPMP2uN8jEH+1ZVOjax7VND13W66667NuWYvru5mvHJLQ3mlrHw+ad9PMM65cgXssR8uaMlfWXcKZf1wzrFbC2NckX5+WxtnLhG+xkn1hGymfIvjVsZeUyMz8y7zz/ynFuRODMy9mmml8Y58GNn3jbkgjUiTc/yM67MDZ99HBk3nk1T+l6jMe2GhoaGhoYVwVIx7a7rtmhRtYAFaF5olWjD3FtjBiCPfaS2j6bmWjrlwJJpC3+57mWjjeKAQpvRuGmzM0k0wTlLQTpdeIAM2k95jAVaazoX+TOwIto4V5ZrvNkvGB6fGZsaO4dNoEnD1mGDblVJx7FakAZQStkSzIO+u/Ma36XVhDozSIw0sgaOiIAMWMF8uQUkg6nkUSzagxOOJD30oQ/d8gxtwQEqI6ZJoyxwL1aabAdjjTOYNI5pRq/CwQomUnMMo/2sDeYW+aaNPi+wfZ5hHOkXbNCPJcFmGQPaksGE3NGStjAvfmQxsbGxscWhizXh64V1gCWAsUz25/JGnTiT5bp0By1pXFfSOId5b44TAXqk6ZzRJ+a7dhwWeeU9Butnjpkf/rqVhnWTzqSsbZ7xdxn94H2XVs6EvyPpF/KUTpLIVC0KIu/eDFqT711pfO9g7an9luwlGtNuaGhoaGhYESwV0ybIQYYqrbGljFmbjNu1u2R5aHVomWjwaFjO9tnTyWNNtCMDGEjT0IC5D517TNJ0D44+8yzsAlbh+670nX7lkYvcS6/dg0abMa95xsckYyjnHjrz5vv8lM+1PEKXx0ekcYz569cSGxsbuuWWWzb7mnuO0jhHuSeWMZR9XugbWj5lMC+wmAzTKo37tACWkWN+3nnnbd4D62acGH/kkDFwhkU5sAhkibZiBcJa4GOS4UsB7AW24cyeuYIlsTaoj7bXjpjRNtgs15hjyvKjf3msjn7k8UvfT6bdud9fw9ramvbv3z+Jt+3vHeQV+aLdeXzU20B7mTPGENbHWqZ/7s/Bviz1spaQr3POOUeSdPXVV28+wzxTXso58+L70rQ/Q8XC+vPIq1tkmCvWQvowZPATaRrXHXlInx7GyOct+8NY5xFHf/dzLffKWeOsHR97xphyFr139gKNaTc0NDQ0NKwIloppS72GnXtijjmtB+2Ivx56Do0PrQ5tEW0yk3T43mmG9QSwCrQ7v55emmi43LMoEANt5DP34qkJg+CztzH3sNDkYUTOXpJpo8VijchsWT4Xua/KuKWns3vf0l4Ya3pH00/fMwOZ1KSGUor27ds3YYG1PUbaTXnUDTNy/wTGMoPdMP/ICmX7Pj4Mg7GmTZTPGLtFApnMxBrp/epsKRMp0Jb0jE3G7XVjBYAdw/iRYfdp8P1faWRWyC5jTr0+B7mmaTsyQxv9PqwAmRGO/iJDhLeUplau7diSr41agJ58R1Auf7nXLRYeYjTr8P4wB249y4RElM+8I6v+3qH/uaedIZH9tALrHfnibwYhoR2ejCMTobCeHvGIR2wpu5ZsJi2XvK9ZPxn61fuKPPGehUVnX6TRn4C5oK3MMePo7x1kJZP2LAsa025oaGhoaFgRLBXTxns8g7z7PmGGDc3ECjAC31ua8zjP84U1ho/GmQwh2ZrXl2E3aRv186x75NIGWBL38jnPmPuz6Vmc58NreZQz1V7uqef3fvyNAAAgAElEQVRZbEeG0qRc2Br9d2/YTDE5d77ewfzk2c4a2JdMxu7sBc0594AzHoCf6U0rRoZmzJSGtSQpuZ9PmxhHn0tYF3uI+QwsgrO40ji27Edmcgn2v9MCI41rAzmn/Xku2PclM10kbWJMMiVtLWFEnjzIM/k+B+n9zjPst2a4Vmm0YrEGuLeGrut05513Ts7P+5pmPtI6l1Ygt54xr7Q/GW+eXvF3DMyWsaSejAvhITbxjcAKlHnbWT8kWJHGNcA1+s6YsrfMdff3SGsGbSbhRqbwlUZZWXQ6xZ9JfxNpmvI105W6haN2ckaaxuTw+hlrxt7ndBnQmHZDQ0NDQ8OKYKmYttRrVnPaH9elUeNEk160d4XGDEvKoPXJ6GrsMr3VAW31fb5k7Bktic/uxZtJESiDz5Rf29POvVk0xIxQ5GeI2ffKNIrpQct4184+wv7RbNH+a+NY05ilcd8zz35L0/OfixKGdF2nQ4cObc5ppl2VxnnPtIMwE/b6vK1o3fQpz+Uyx2j03uf0WKY/aZFwRpesjHoZW9rsaSiRI8rn2Tzjy/6en9Om/DzDnvXxrD/PfiP9TGtRLbUu39HnPNGR+9SOPFPLKY30WpfGd0YmJKmBlMCMG8yqthePfDL/yC1+ArX5r7E5v54nNqTpqYr00aBfXib73ZSXa4ux9rFICwttpaz08ndrF+8iLAp5sof6/d3InOV6od58/7kc8Az38A7MvfuadY1253pNa5E0jQ6Y87bXaEy7oaGhoaFhRdB+tBsaGhoaGlYES2Ue59hOhgp1RwbMUpg/01yZSRqk0ZSIaWnOhd8P2APqTnMr9xIEwevD5My9afoGbrrlGqaYPEaDKah2PIR7MTmmuSiPZkjjOGUIQBx2cPagPYuOPWAmSxO4h2mkfExp9B3zVwb29/5kW2vAmQhg9vJn+A5zIeOBaZY59O0YglikYwxtoo/pbCaNMsP8IIdsJ2QuZmk032VQCP6mmdZBPzKhR4YOreWJxnSaWxCMkT9DOTj7MafkQqbtrA13HMrjPxzxYv1iLvUxYZxoA/1LE6fPNVtBXKtteYEM6gR8S4ixTAcwjlkxft7XDOZD+ZTLM8ijb3kwdswdckafcb5yecstLd4DzE8mePE2UQ/1Zj5131rLZzNh0aLjdtSTJnWCxCBbfgwywTOMV+YndwdY/p8BbigjEyf5tdo7aRnQmHZDQ0NDQ8OKYKmY9sbGhm6//faJA5JrOmjTXIPxwpLQ9jIAxG4xxzzQxvjsLA/tLpkWrIa2OrPPZBs4ReXxDTRgZwGLnGy8bGcBmT4vj8Tk+Lm1Y84hLI9v+X04tmQwCu6hn7A1aWQOaN3usJXYt2+fzjrrrM12144bZRrQDL/ImLuFIB3xKHeO/TuTzKAnsCP6ilOOj1Me+QIwEGTGA2QwlqwT2B+sCUaUAXWkkfFkGFbuQZbdikK5sJRHP/rRW9rK+PK3luKScUSuMmGM959xg5mmsxpM7+KLL958JlngtddeqzkcPnxYt9xyy0QmfQ3QvkwZyphz3eUhj4Vl4gnGpZaGNBNcIG9Y3Ah+42ui5vgnjX1H3v29k0lMKI/3QTqG1eQgnWSZdxwWa+9ixs3TkUqLGTZIZ+MMieohpfmO43C0mfmiLHe0ZP5rznfLgMa0GxoaGhoaVgRLxbRLKTrppJM2Nac8IiNtDUQhjZoo2mOm/PN7Mm3norCYc8iwm9TnbWTfiXrpD4yhxlRpG/udBChILS/3q/w72kabCFCRoVGlUXP3fW5pGjSGOajt66B9UxafabOzc5g2TIHP2WZPagKTy+A3NRCYh3mAIfieFXUnC+d75MKfyaQUGS43j/X4Ma88xgIDOPfcc7f01fcyYZj0lfGHgdTCpVIPjOrxj3+8pNHSg7zBwFymkvEgIwRkqQUNYdz4Lo82Uj59cEsQ93KNspg39k5dVrEqwP7wM+BdwPh5KErGOvteQylFJ5544mb7MziSNA3JivUq/UecTfNOyhDIYFESk3w3ZahWxs/lgHcSbaGNMF+u+1ggTzDR9773vZKmc1hrFzLDHPLOTVk63qCftIM1I03DvV5yySWSxndxjZ3zfG2tLQMa025oaGhoaFgRLJcKoV4LRHNmP809F5PxoRXBZvKAvzRNiYfmlAkkaoFZcs8STRpGTNu8XWjFsLH0bkXz9X6xl/SBD3xgyz2ZnpS2+v402mIGRpgLp+rPJANJDT/DSzooL+cg03pKo2abgT9ga9Tr7AbtN71TayilaH19feIL4EFoUhPPMI+03+eSdjHftJ/vM9GLjx/lIouZHIO+uybPeMOS5wJHeNAJPHI/8zM/c0v5GS41k0H4/5En9vZyn7DG7PO0QAYaqgVIAWn9yRCovqedIT0ZI/pH211WYd3I4HZ+HxsbG5O0q2mFkqbrAzZds2ZlgKSjQe6HZ4AjB+uFtYSVprbmCYd75ZVXShrXKeOViWt8fTLuvMdoS1reFlkUjiX8fQNoI3NJ31kTmWLVv0sv8mVBY9oNDQ0NDQ0rgqVi2uxpoxHWkttnWj4YaZ6jdBaQSR5g1GiAtfPZ24F9FMr0c9qwkvRkhj2kF7nfm6H5YCswLxhfzQMUrZJ7YNyMiWu8NQ19t0g2Tnt8Ly/3LHPvueYbQHtrXs8JTh7kOXDvJ2PJ+FAe8gDLcKade/9+Xlka5Yz5qPkagPT8R6N3RkfdmaCGflC/94sxI5RmJhnhGeTBrTS0EfmiXJgq9zpbTN+MDEXJX8bCWWKuF59vaeoJL43rBSsKnzO2gI9jxm1YtC+5trame9zjHpsMu/beoa9Y6/LMtSfS2C12ckJjJ3AfCWkcN9iljwVj5mebpVH+6FftLDwynwljMhnMXoJxxN8jrbesDV8TmVhqkS/NXqAx7YaGhoaGhhXBUjFtolqlFl6L/oRWjAaY7NX3N7iWEYHQ6nO/w5H7gdQLQ0nvYi8PzZmzgbnH5BHR0ObSYzGjC8Faah6p9BMtMlMDuud9Mhw0TrT0I/H8zLO9mdRAGueDfsDOH/rQh0oa9y2dQXJme27/3bG+vq7TTz99EuHJ91UZU1gYbUnvWh8b5j/PjDNOzHsmFpGm6U0z6QjPOiNPr908P5/j5/fCipKlM/a1iG+MBW3LM9bIsnuPpwWJsciz65n0wv+P1QnZySQqLn95YoMxIIoWsuts8R3veIek7aMgcs+BAwc25YO9TG9D+tKwlmr7qDsFfc4TAttd2ynyHZXs0pEnKDI5SybZ8e+OZ2KNWlS6ZPCZRMrlLc+hMwacQGCO3UrD6Y5lY9igMe2GhoaGhoYVwVIxbVLkoeGg9TnDyhjMID0Z3csTbY09Ks6goi2nB6Gf80OLQ8ujHjRTNG33PE8v14yWhPbq3uPsO+VZSp6BRWTKPB+L3AdDE6Z/fj2tAHxm3PKctj+bjJoy6C/MyzVVxg82yPilP4EnsGcsaNt2qTnvuOOO6vlVkOc5M/IR8+YMi/9nHO+0uFCWWwqQFcaQ8ckoU97W9NVgnGDJyVSlkY3DSGEitA2ZecQjHiFp6xgjv+n9TD01X4P0cKfv6S3N31rMhPRGzvP6Lju55rDK8C5grVx33XWbz2Q0uu1Y0/r6+uYY0EafF+YQmdzNnnPG809LjCNPJ+wGlMt65D3hrBI5Sjln3GCkxHzwvXvmLCO6HY3XeK71Radk8rRKxj53MG/IRabsdCsN5aRlblnQmHZDQ0NDQ8OKoP1oNzQ0NDQ0rAiWyjwu9aYNzHqY1dxRB/MGJhLCC6Zp250iMHcQOALTI6bBNLX7s+lEhHk0j0i4SZ22YeqhHuqlfC8jA7tkuEdMoJiI3JmEtmGazaMYNRN3gnrySMtOnEvS2QNzmR+ZyZCH9BcTFHPtptTP+IzP2NIfH+NE13XVwA9uKqNvmJrz+Fw67nk5PIuZOOcSeBCPDKKDgwvmyVpiFTcHSuPxKmSY8t0Bivln7KiPOcSszJi7UxPmToJsMGe5BmthbJHRTPJBmTXHoXRaZC54hrK8jcxTyn6al93sj5Ma5S8yca6vr2v//v2bbaptrWQ7c1tnJybhlJVM9+rvIdrL1hPvuUWYawNjznx4uNesD3njM2uC72shcNMB9miOeuV2kzsQIvOEXM1tIeDviXTgy+0/+uDvX5xjM53nsqAx7YaGhoaGhhXBUjLtTP7hTATGlok00O7SkUYa2QmsAQ0NLSsDJdQcQ3BWIp1ipttzjTDDPKIJ8gzMx7VA2pgJKNIhJUOj+ndomGi8i1L/0TY0aawQjHkGaFgE+ocmTJuxSkjTJBO0DQYB03NGB6uB5Sw6tkMYU9gedTtr9vR70rzMOFNwZ0FpZHN5bJB+OIuBgcCWGB/mK5mWf5dOizAd6vHwrMwhckvbarLidUijDNIv2o81AAfJWjhbZJ81yT0Z/tH7xzVklfSNrGe+97liLDIcJ451JLnwo2zIEzK0KKQqR754nqOGPm7IE2MK+6LcDAjl/c6jnl6vNL5TnE1jhWMd5rGmGpDbdKjMI47OKuljhkvmnjz65XNJG7mXtYIs1d47iVxztTDNgPXEOFFPpi32/s2FlCZkLXJSO55aC027DGhMu6GhoaGhYUWwdEybUKbSNBGFNGrqydzQhtD2nZ1nWD20LfbG0MYX7d+yPwmrgZGgxXobqYe2ZLIJtHYPY5oJ7LNctHHa6nt0ud+KRo3GyDi6NgmrQBPlM/fSVspKxilNgytgSailNkzLAZpvBslxC0oewVkE9rST7Xsb8qgQGjvzlAFupHE8MgkKfX3Ywx4maWSGPsa0m/Jhy8hQ7fgissO8wAgoK8Pc+j15LJF5uPTSSyWNx3fcH+L+97+/pJEFZkIS6nH5pr2Z9pC2M341q0CmWaUsxpl5q1kfeCaPnGUyFW/3TvaaSynat2/f5hqnDT4v7PXD4tj3RC5qPg55jIp7aC8WP+bPxzgD2BxJ4BKexcKTTNEDpCCTzFmu8wsvvFDSOJd+PX1zuMYYUWYtTHTKQa5X3q+ZilmaBvFB3pFrX795dDXT/eZ7zsG8LVuQlca0GxoaGhoaVgRLxbQ3NjZ0xx13TNIdOtNKL9r0lEb7cs0pNT0+ZyAL9kM9ITqaaO41poe4Aw00w6SiCcLKfN84A6BQPiydMrjPw0qmZy+aYXqCuiafmiwsnWfRnmE1vsfI+DFe9CO9mF2jT8aaIT3Tv6DWFp+XxPr6uk455ZTJfqqzDNrAWMI80dzTU1wax4l25d4bzJu/sBtpZIIZKCetKs6iuAbzTVbLHrDXk3v+PENQFVhirX/cm2k1uQdPXQ+ugsVibr+bMpBdnzdkJstArlkjzppzLGByybRqCT4YL+qpYWNjQ3feeeckOYy/Q7hGHbQ/g66w5qQx3SXP+nqQpglsmC9pGngnw8ouCsxDuxkv5g6Z8QBAeUIng+rQL+bHxyRPK2QoXJJ0OGjTnDc/3zMWXh/l54mKTNrjc5BhpmlbtsPbw1qg7p3szd+daEy7oaGhoaFhRbBUTJswpmivtcTraD/piQ1jzOQC0qg1JiNBC8vkGbVUoLm3lPtVzrjzmQzJl3ua3p/cO4eNoenSBx8T30f1cvMMuzNt9tMyaUamo6udY4T5ouUzXnzmXvfYpR+MQXq8U5/3JS0Vi9Irbmxs6ODBg5M0pH5mkzGmvTABPqcPgjSOM9cYL76nTObFLQUZtjI9WbNdPg6ZdIZ72IOuJX9JxgOQB9pRs2Ykw+ZMeXoeS6OFgrGmXOaH8hlXX0/IHd8xjun57J7gGdoSmcywsLUTHPiCLIpRsG/fPp155pmb5TE/bqVhfpkXvI75TN2cD5emMo3lJa01jGMtJWz6nKRlz/dv03eCe1kD+NK4T0O+v/KsOmWmNcr7THncA0vmneJe88hT7ilTT1p8fA6wejGOyErKhVtpGL+5dVwLXU0bWE+ZYnevsVytaWhoaGhoaJjF0jHtffv2Tfb+XLtLBoiWn9GnPKFC7kfCvDPdJgzRvV3R6tD4qA8tmbY6u0EzqyU8kabMx9ub+3UwKtpIH3yfEA00I/jAiDMhhrcpz5mjCaNtshfoEbi4l/rSMsJceL/pXzKGZLnOptPr1vfiaui6bmKpqCVWoY6MWAeL9aQIuS+IFs8c8pmx9lSalAfyvD5so+aRm+eWc2/bLRIkc8jkHsnK6bf7J1Beek6TfCPP4Hv5zGlaEpB/LD2+FmFl3JssPU81eDmMCXKR1jVn2rwzmEtvwxzy7K6zWNZ/ekbzt8ZieYY+0SbqgRHDTH3fPSMIspYyzoH7tlAezBY5y7Sa7hVPe/O9w3znfPn+brJi+oclhjZ75Ef6PhezgPozIZOPCcj3KmPlzzA/lE99jBv11SxyyLm/D5YBjWk3NDQ0NDSsCNqPdkNDQ0NDw4pgqczjUm9aw4yTJgxpNIlgHsqQfZjB/EB8Ho/AFJvhNtORRpqaljPoRCYvkEaTH6YZnHoykIA7OKTTA2Yc2pomfg+XSbl5xGaRYxjALET7MfeSrANTkzsGYV7NZBIZIKUWcjEd6eg34+tjkg5GtQAIjq7rNueSMag9Q90ZRAOTsG/H0G/GHfmineno5KbAdILJMJyY0n1LIPOMv+9975M0mja51+WbNjHezDd9Z25ph4fLZNwxNdP+DObi2zGUj6xQP1sd73nPeySN8ujj+cEPflDSNLAMspSJc7wtmQ8dOeQZX4MZDnMnJk62E9LM7HXm1g/fY1L3cULWeY8x36w57q0FUEmzeL7XaKOvF+aV8lnDjA8y7LKTW3jIbAZxQi78OBVrLbcm6Vc67UmjPBGUiK0d5v/Rj370lrL9HcLxw3SopH7G299zvL8YJ95VOKGyRny7KY/Q+jbJMqAx7YaGhoaGhhXBUjHt9fV1nXrqqZvaHZqbs6UMSIHml0dJ3NkCbYtrlAtbTccgZ/YZBjGZKUzFnyGIAfemw0amNJRGBgXj4R7anOkc/RgNmmGmkOMe2uhBNegXmjbMJx2EaqyZ8ct+0Ac+e+jIDDCTjjyMjTuOuZONt62GQ4cO6cYbb9xkS7U+5zEaZAYmwL2uacMW0yEQhkB/8riQNA3ckMEfGGOfy2uuuWZLv5DJZGMeDIJrtIW5wnLA99xXk4NMgJEhXmtBNZCZdHxiTnFactmBsWUyiwwA5GsDOWAOWM+5Bl1eqDudDWtYW1vTKaecsukQxhy4Yxjtou8wxrQcOCuDrSabIzQobURmagmEYJGUQRvTYUwaQ6syD8h7WgXcKS+PofEs70beDxmEyfvK2kaukG/qc1nNI2zIfqZLZt253KUTYDqv1oJx0V7km3HNRCk1h9V0iF4WNKbd0NDQ0NCwIlgqpg3QmGqBFjIYB1okmmFel0YtMkMRZrANNEIPy4hWlxobWj33upafCTPyL9qks3P+T7vRqNn7yeNKrv2hoef+OpovmrWzQNgyWjGfsz8wCQ/BiCbLPPEM9cBgnXWg4TJfjD1jggbu1oJMGLMoccja2ppOPPHECWN3FpshbxnDTC3p85LWg9zHyxSgvj8Nk4IdU3+GwPRjNNSTVhrkIkNh+j3IN5aD97///Vv6k34L0sho2OOjfCwWjI2vQcY0rQ3MMXua559/vqR6cA3kgGcoK1PferuRDWQW5sV6ckbPM8jVItnZ2NjQgQMHNmWeufQ+59E/6mYsmB8PmMR8UA5jzWfYOm3zNubeOdeYW8bHrQGZJCUDDSFbNUsL6xBGnfXXkunwziCVKeuH+a/5FzFXlJ9HTVPuXN5ZW/SHdZXHL2u+NIwN5WLx4Vm37GQCmhZcpaGhoaGhoWFXWCqmfejQId1www2T4CPuKY1GmKnwMsiBM1/2RXKfNhlvhhuVRq0uE1Hkvq5ryWhm6c2IBsgz7u2aAT8yeMxcQBBp1GSvuuoqSVPtP1OSSuOYoo1nsH+0TNhSLRE8GnXupVK/e2Sm9zugP1gW3NMUNrHIGx0QihJkKFeviz5nWle8kT3YCf/PkKT0ORMtOKvkO9gL9WdQktpJh2TFeWrBZZR5zQQK+X1amqRR9h/5yEdKmnrLI6veRiwDGVKYsWIeSAnq1hPahN8HY0P5lOH7oGmFyiQQBPO45JJLNp+hj3mSoobDhw/r5ptvnlg3/L2T1p4Mnclcugc48pWsEmQSnZoVJYP6UH4yfmkaHpfyaCsWilqqTNYL4878p58P71dpHNPLLrtsy73IN8/4mqANvL+QId6V6QfgfYLJ8yzjm2lda0Gk0u+HtmMVxFogTQPbpDf5XqMx7YaGhoaGhhXBUjHttbU1nXTSSZtacobalEZNE403GWgGy5embAVNKtlzLWwqWinaHPeyl4RmWEssD3tMdkS6QGeOsIdk43mmO8OoSiPrc43W68sE89I0UQD94xnu5XotyYCH/vO2ZzIXfwZmkGfi83yw9zk16xoOHz6sAwcObI5PWmSkkX0lw8mwmM6WMswjbJyxzoQetb3fTIYA+2f/1pN/IJuwR7R96nvIQx6ype3S9GQDbc39cD57G6mPtgBkJq020pSVId9pfap5OKefSvoMpJe0NM4l8kS9PIuXvI8J92T62BrW1tZ08sknb7K9WghNnmcuM1Qwc+h7vswD40UZjAFyxppzyxSMln1wyuVefE3cE5y2MKdpHeCZ2qmVPPHBX/qQvhbS+A7EH4H6aCtjUjtLnv4w6TOU7x//f8YlAMihzwH9Yy7pF231kL4AWefdviit616gMe2GhoaGhoYVwVIxbVJzogWhFTmDRBNHe0VjTwbue2J5jhP2BTtC20NTc3aG9so+HmXBztDKXQOFJbAnxr3JGGsp5NCw0RYzdV0tAhv7Mum1nmcgff+L8UNz51oy/dyHk6baeUZ8Yky8Psql/cxXMu9awhDakvvhjq7rtlgSmA9nIsgRjJB2Mk6ZUMb7D2vI5A/8Zb58P5y5hMUyZxkRy5k9e2ukeGTeaSMsyttInbCG3JdknrjPPZyJ1pdeyqyNjHEgTVkn8sXfTOPo80I9/GVdYUGAibl/AjJB3ymXe2opR2FyNb+BRNd1uuuuuyZ+Cc60sZ4hD8g6a50xdplnHtJ3Ivep+d730NOLOqPC1fboL7/8ckmjHLDWMuJjzZKUvgR+gkaqJ7eh3NxTzjP3XhZ9pA2McaZozRSe0vTdlHPMWnfLFeWx1nNfPNvu1xjzRb40e4HGtBsaGhoaGlYE7Ue7oaGhoaFhRbBU5nGpN0VgpsJ85GbRDFSCyQeTCU4RBJeXpgfrMYlk4JSaiTbNupix+YtZpZZvOs1FII+uSKOJJ3MiZ8AEnvFnM59wJkbhXjdxYppNc2UeYWMO3CyGqTDDL+I0Q5troS8xL2P6pk05nz4Gi8KXOkopk6AdLjsZnIE2ZZIUzIxeN/KU5jXazfx5felEhhzgiIj8+TjxDPOdiWMYN3e24Z4MhIK5ME2OfoSFezMnOn+ZS0+4gWNO5m9Pcy/mcnf2waycAUcyH7XLW+ZARp49OUf2i/HC/F47sgi6rlPXdZuyU3vvZNKVdJxjTumP30OQm7kAL7ldJ00dTulPOrnihFe7hy0WZKUWVpS+Zn77PPbEenJTd5bHZ8aoloyD+c9tzJR75pJxlabzj/whj5jFffuHdyLyy3pmjHgn+BYOY15r/zKgMe2GhoaGhoYVwdIx7X379k2SZriTF9o1Gh+ODTyDpuvOa2hXBHTgGtos5eeBf0mT42dod7CYmvbKNdgEWlweF3Enr2SGtAEtHE2RstzBirphKZSBtor2Wgv8QN8ZNzRvxjmD/3s/0lklgxB4fckcKC//+lG2DHqzHVs6dOjQZnAWxt6PNzH/2UccxbDS+PzDfmCCyFs6QqLtO0PM9IaZ8rFmiYFBYWXI44i10IrUiYxSPvMD02WMPWwqjAfGloljYLl+5I8xod0cJeJenH6oxxlkJoqh/kzK4GyJNcBYZ1hW+l0LPwsWpXUtpWjfvn2b858hkaVxXmg3cwkjdYYN0mGO8ch0tLBJl33KT/afR7N8TfCuYq1lQBT65Y5VmeqV8hl/3qvp1Ojjk4FsMnwrY+R9ZN55D/HuoAzGzOWOMUgrAJ/zyKmPhTs2ej9q72/GjbbW0sXuJRrTbmhoaGhoWBEsHdN2tpapJqVR607mkccr/Fm0LY6TsD8Ji0FDQ1t2BglrQVPPEKgZhs+fz0DzMB766No/32WwGPaAYIO02Y+wUHcGTAGU4fv8Ga6SfuYeF8/6vnLuoaOVw9bot1sDYB0cF6LvtIP5ci0ZDX4nwVVKKVpbW5tYGRz0Mfdc85hTLS0kiVvYn6Q/tBtt3+eU+aaPyCjHm2Dirskj1xlGEjabfZGmPgyUwbEhGGTNlyKtF7nvTbpHDwebAT/oT6Z1Rd7c+pBhS5EH/AmA71czPvQHxprWIWfXyC1MLcfPgZUmj/g4c2eemXdkkvmh7743ikyQ6hNLD/KQvh/uN5BBTZgP/C3St8aRgYyQQ9ajt5E+pxwjM1hNMv2lt5+55FoGgPEgS8wrckYbkZlMDevWurSUIX+8d2ijH51j/qmXtlA+9/o7n/dCJlxaFjSm3dDQ0NDQsCJYKqa9tram/fv3b2o4mdhBmqZSyxSMGRpQGvdeCFyBBo1Wh7ZHWbn/IY3aMZobmiIanNeH5oxGmHtJsA3XkmlTJqYg+AVaLAzMmXYmqM89LTTQRXt+GbaSttJGvx8NO4OqoNFnMgVv7wUXXCBp1GLZb6OfvpdJf2p78onDhw/rpptu2twLZMydsTEflJfzlDLkfYVhI0uZOIR6PVwm7CX3eBnLZI7SOA+wiGSIjLkz7Qz+wJzBlpDrWnCaTIUJe6UM5M7XIOVkghjkMNm6+xVQDt8x7/STMasxyPe85z2SxrnF+oEM+VxngJTcM3cQPpnnkV/mx5/P0Lf5HvJ98LTOZXpL2sZYeBvT74L3AmOPnPmJkLQQIJPUS1k+l4x3jiFtpj9plZJGVnIgF70AACAASURBVI48Y1HJPWa3tKT1MU8gUBb99fccfgWZAhaLTlowvBwS4mTQINi7jz19Zo7Td2ev0Zh2Q0NDQ0PDimCpmPbGxoZuvfXWSYB91+7QvNDI0BozdKc/g+aVKQozSD3syRlieh+mxy+anLMdNF3+ojVTBm137S4TaKDpZqIQ+u97v4wBbclwmfTPGQ/gmTz/nR7iPia0MRPXZ/hM7x/Pw/5yPy89gr0tjI37DSTW19d1+umnb7I9ynULQZ6xpS5YHezM2QB94C9yBTNhTJNVSeNeGJYI5iNDQjqbYD5gNowtLKMWvpL5TTmmv6ynjDkgTZOkpN8FcuZjnykLmW/GhjFgzHxMuDeTSqS8u1WI+h772MduGQPeD5TlHsCZ2nQRWzp06JCuv/76CQP2PWbGljGkvExm4qGJM4xnJsfJhDj+zsKjHDlgrDNZTy2hRiZqYcxp66LTOIw1bWUMMj6BNL5ref8gz6ynbLM/n/5KczEt/H2QHvPpS0O/vH+0iTXIHKe/jI8j5fLdovDJe4HGtBsaGhoaGlYES8W0Sym65z3vuandZ8QtadynQfNLhgprqUWmQstCQ09mCFxTY48PjYx60cZomz+T0b7SU5syc3/Hv8u0h2h9qRFL0+D7jEnu4Xp9aN1oxVyjnkxi4Bpv7oPBHBjXmidtnolnDNLL1/eT0ZLzTGUNhw8f1s0337zZXsbCPT/RyPku+0y/fJxyzxJP6UwPWUs8cMUVV0ga5YCy2MNOnwpp6s2f6WN9fxCkVYS2UD5rA0bkViHWE6yYMpiftNb4/z0xgzQyPPpLP93fg7UAo6c/tI1xduZDecgg+9/MBXuotXPOGa2tBlJz0vdMouN1uf+BI2VVmr4r8PzO9JDIqjNSUrNSLrLPPCFnNR+QPA2RvhsuQ3nWmmuZGAdLj1tNYOnIKu9X6qmdgc7ok+kfkUzb383Ic0b8y7XiyPcOPhy0nfeF/8ZwLc+wLwsa025oaGhoaFgRLBXTBrk3656kaKWZfD7PxNa0rtxTSk0w9w+lKQtHe859wyuvvHLzHva3aAP1sE9Ff3yfEO0UjZ560PbzDGktQlnG8/UUo9JWDRstkvGD6WT6Q5iDa5uUnyydZ7jurJkxgZ3TFsaglnLQGZqXWwOpORlHxt734GgDFgG8TjNutLebMaU8mBZyQXuRGSKySVP2kCcf+B7PVmlkY7QBBoCXK+zM5xLZ/9CHPiRpum+XPg4+jrn/mClGecY9qWlDnrVPq0wyV2mUybQYpde8W644UwtLYh5pI2X6mPD/3Huew/r6+mY7YVr+3kFG6DNtyrjXLr+Zg4D3DuPD2k7Z8jbQN+SB8co4CtIoz7Qh44izFvwcM+8t2kab0pKJfPg45hzC7GHTyIW/OxhT2k+5GS8g42F4+YC2Un7tVA7jx3uBMc6z2P4+TevWovfOXqAx7YaGhoaGhhVB+9FuaGhoaGhYESydefzQoUOT1Gh+/COdHTJhCGZEN6tgLplz0MmAGe68hGkpgz3QJkw2borGNIdpCZMMJhja5s/QBsxwmSgizda1tIEZWpUxye0GB23M9J15tMVNnPQds1SaUmtpMTNZCvdi4qKfnniBa5jU09zvKKVofX19knjAA0mkGRfTIiZtTNxuCmZ+M1BIJhOgHg/wkeZ4ysjkKP4MDnmZdhDk8SppnA/MxxlkJ7eO3Fkq015yD2UhM272pd2ZJhc5Z41moCBvG2C+M+iFzxvl0bYcc57xNI60N8NW1rCxsaHbbrttUyZZP24K5v+UQ9/YksC87HOZAVnyuCaf0zFRmjrO8U5irTH/fnyPa5nuFPnI5CPS9J1E22gLa4Q5rx39pP2MX651RzqeUQ9rm/p2YpJmXWXaZDejM8aUz7spj6d5qFXqzmNiy4LGtBsaGhoaGlYES8e0pVGby9B2jjl2nMeqpFFzQruCTWaAlHTkkqZOFWiIqZl6OEG+gx1none0Ow95ibZIPWiG1EN/6Z+zF5gH16gv04k6MigNz6KFJ5ty5xUYDRoozCSPi/mRIDRc+pEhMNGInRHlsbTtghxsbGxMjm05M8j20f484sHRMGkcJ/qP4w5zCatgzmvhXucSrNBGZ4iMB0yXNmbaQY40SaOcZYpZ1gTtoD63WGQwIuQ9nQvdmSiPOeZc5tEvjr5JYwIS5Jw1kJYlX78ZACYD3FA/x6SkcV5oaybRSRAGV5rOlz+fgWUyhaq/B1hLtAE2l8dSF1mQMt0qz1Kfs0Dan+FkM2xzzTkTtpzHqPJIowdoynShjBFtrB2/TWfIPFKZjmPuUJzvsbRk5DvZ68tQyLyzkBNfg3OOtcuCxrQbGhoaGhpWBEvFtDc2NnTHHXdMjvo4W0rtNENcolHVgoHkPl0yr9SwpFFTQ6sjrB/1ZdADbxvXMt1ljZWhJaMB5h46WmZaCaSRpdMPtMncP6wFKsjEBxlIH43egw9QXx71gDXRL0+8knvk3JOMwect96hqwWhAKUUnnHDCJqugbbUjZHlcL1P9eQAJxpn0isxtpiMEPk48myyCe2rBYjL0Le2vBdMAj3nMYyRpkmgnA+Rk8Btperwpj8LQT6830+EiV8x3Hm109sn6oW3IEgyP/vuxS9ZNhpsFefRHmgZ2WRQgo5Siffv2TfacXXZYJ9yDPOfRQreAcY1xoe95vDEtMI58F6YvhYdnZX0gv5muONm6JF111VWSpnOVYUxpm7NdvktGn8GLfA89E9FQD/KAhWVRil1kBhnN93kt5TFtSCtKLVRp+k3V2rCXaEy7oaGhoaFhRbBUTBsP4NyTdY039+vQnNCK2Otzz08YJ1oi98CiM+yeh3mk/Lmwlblv6G2kDbBW6qcM33thbwnNGc9FtFU0bDRCZ52ZjD6Zfo2hJmPMfS+0zQy16G3hb3ov00/XUDMsYiabyMQbfg/l17xRwcbGhg4ePLip/TPnrkGjobPnl9o91g6vJ1NwwuCYJ2QpPeqlqaae4UZrwSBoP+NEyM7c+/dxuvrqq7c8y74xSEuS79XS10yqkx7PziBpP/1jrJFnGB31uIcz6yj3P2F8aTGTRllNRp179HhyS1Mv++32JdfW1jb7xRi4HCD/nDTgGkw094YdyBXjxNzybG2/PVPxpvc2gVRqaV2ZK9YjjLS2L01/mDPGkDbB0hkTtw6ltYH54HvK8D37OSsn1gjGJoNLOXI/nNMevG99PGkL1qZMnpLWKGmavGiRhW8vsFytaWhoaGhoaJjFUjFtkEHxXbvLNHyZ7CGD8fv/0RozZVympXSvbu5J7/RM8+jMgHOxuTeWZzl9ry/36dKjlPJrY8IYZKIQPiczrj0DG2Lvln6infv+dO6V4cVLv3Lfz+vJ1KqMI/3xcci53S4UpTRq5hkuUxqZTVpLMjyih9BEduhb7hvmWWWfU76DveReH2V7nzP5AWOIhzhhbt3bNVM9wuAz5GUtjCnl0xYsB8h9LV1tWmcYmwsuuGBLffTf96czJSdsELaUFhivJ9ct96S/hzTdY1508qDrOh06dGiSwMXljfnItLuZmrcWHyJPP2Q6yEWnPOgTckHf09Pd/59tzDP4/m5BrvKUSJ7tpl63etJ+/lJ+pgD1ccx3LvKAZTFlx/f00xeFtuXZefeo57v0H0nLgZ90yXdVS83Z0NDQ0NDQsCssJdMGmWpOGrWoueDxsEw/swmzSAaYEdJqEdHQitMbNZ9xbQxNFm2Sa2h1mdhemp6XRQOmLZkIxVlspq7MfWO0SvcmT8sE5RGBC1ZK/V5fpg1lTziTHHz4wx/efCZZH9oyDCtT6HnbdhO4P/0HpHEuGWvqZEyZ02uvvXbzmUwzmvEBmBfk0hkw97LfSZv4yxw4m2DcU8vPuXSrCW1gfGDjOR+16GbJyjICHvPlyThoE22kLZxvTx8Bry+tP4wXYwSj9H15+pcR5T7wgQ9saaOz3EyHux0OHz48sZ75eycjh6XVAuucs33Gh3bTN2SKsaBMZ4PMFf4K6RnN+889s1m7+W6k3GSq/v+MgDZ3Rrk2nvSTfqQXvstqlpdR+tKa5r4UIK1/jEF6yUvj2mYOMnlLWiW9/bSleY83NDQ0NDQ07ArtR7uhoaGhoWFFsFTm8a7rNvMiS9PEHtLUcSmdEjCRuFOHO6VRjzQ146RZWRpNO5gY02RbC7GKUwOmMj6nicvbiGkJEzbObJiH6Fft+AFtyfCRGQDEneVyayBz41IfbXaHrqw3zb04HnnSB8YAEx7lYp6qBcHAvFtzaNkOlOvHjRi7udzEbEm4o07mFc+ANZmAwE2cuWWTx/WQHT+CgyMYJr40NaeJ39vLHGGmzrZlDnBvL/cy5hme00E9tDu3EPLIYwYKkqZbA6xBjiB5nmhM5/QL0zH9ZuvKzcI1U+l2yCNkPi8ZtAczK/ewjeTrBDlj6yQdRUEtcEmCsXQn2QQOjxkmmf7UnOUy53cmm8ljXG4ez+BBtfea37eoX0eCbFsmSHnYwx62eS/yzBzwN0Px+ppgi6qWnGkZ0Jh2Q0NDQ0PDimDpmPbBgwcngRGcvaARZcD+TJ/mbJlraHUZLD6PbXl96byRR6XQYl2bzKMptDHDctaOiVFOBuxPZyzXDHGq4Jlk3lx3p448qoLGmQwcbd0ZJu1OByBYRwaGkKZMjnFjbjJspiOPVe0EyZClqTWB9iZL9nCS6XhEO1OGmJeaRSI19Uz+UUO2MVmtyzfH9JijPLaVDmPeHqwLMHfqzVSxHswFJpXJHug7ckY7PPBQOmdhCckQsz5vzA9WGmSIv3nkTdpqndsOWPdoWy1EKONBu5GRPJboa4w1SjnIOp8zmcVu259AVjJEZ03e6EcGlplrR80BtsbgjyfoF+87+oeMeh/4DhaeVg9YdW3s0zFxWbBcrWloaGhoaGiYxVIxbWlk29KoJTnLgz2iXaVmmC7+0qgpZfrLDKqC5uZ7salB58F7nvX9L1gLGjsBC/jMHozvT3Et971hGeyZ1awPfkxKGseGccvUk9I0xGYGPakl3ACUm4ESMkWn9w8m5YxNGrV/xtxZIJp7BtfYCZgvZ0uezlIate4M5uN95rs8gpfBJ2g/YUcd6SuRmrwf+UIOGCeYAJYJGIMfS8xALzyTcpYhSqVxfOb2PelXLaxoLeGJtyPXqjRl0pnkhnVE6F9p9IdISxJWB8bEmWQm2liEw4cP68CBA5vyUEthyngwPrQpk2K4vPEuyv313BdnnHxtJIvcCfI4ZTJ7LBL+rspkPJkak3mv+ftkGOjjjbSIZrpf3rOe3hc5Sr+YtFy5fDMmeRx2WdCYdkNDQ0NDw4pgqZh213Xa2NiYpGtzbTPZXIbDQ/uCbUij5pR7opQB00LL9EASMJ8MQZqM1Nkunq/J4OgH3tXuVevewNJ0r5GxSG9babqHlYEfGBPfb2OvMhkW4zkXetHbBIPLpCa57+ftTaaagWg8AUKmIdyNp6n7OmRqQsaJsYWRuKUlA6/kPh7PULazJZ5B84f5Zn3uD4GndIbp5S9Bg3w+kBX6RXAV2GCmPfUxyb35TFNKv9wLH0aTYXozvGmuTW+3h8X1eplzlwNkJEPJ0m/a4fK2yBO7ho2NjUmgGWek6bsy5xnvwXUoB+tLBpahvcyB18e6I/jQ3BpwFpjJOHg38T3vNR8nl3VptFrkqZKahzv/z3Sb6TtSY+JzIUIzIJVf5xnK5xrvI+rx5B98lymN0xLjYUwz+FXb025oaGhoaGjYFZaKaUtb90wyzKQ0aqPJDDO8o+9RoHmhdfFs7sllekC/Fw2aZ9Du+QuLkkZtle+SNcHwnNGnNkcbsBjwTM0TFEZP/2DAlE//fa8Wts81NHiYHtfpg4d0pNxkrLn346wAjR72QZt5tuZ1PZco4kjgWj59oW7Gg7+p5UtjKFYYT56tpo8ky/DkGIxHpixFRrE6+B4cso4MZVIT+uNMNdM3cp6ZEwnJfFy+aRPzA2vK/UGfy7SWwFqoF6bPZwcsJlMj5qkBD30J62YsYP/JpndjiZH68bvrrrs25asWZph1mGknaX96l0ujvDF3vM9g1sgS7xZnvYwxssq6pAzkwN87hN/Fd4N7YZnMu6+JjFWBzOS7I62S3l7ki/5QL7LkrDZ9Q5hD1hdWCdrhFtP0v8mYCVz3/tHGWjhUaeoTJU3Dl875buwVGtNuaGhoaGhYESwV097Y2NDBgwc3GU96V0rTvVa0u9x7JbKSNLIW7s2z3WiV1OP7aWjF6fnp+0/SmLzAnyFCUUZGy71faXoWOfeJ0R6p3/fS8pxx7m2hyTt74V6YFEwBpgg7ZCxqc0D5aMs8U2PN1JPMPvenXHvOdIRHG7ifcZpLD8i+LRYXSTrvvPO2tC/3sNHkkS0YgzT2mflPzT0TfEijlQQGxXzAPJgHn0vazdjlfjusnGd9PxxmD9PK8+iwNreiMI5co9zP/uzPljRaJ2CHzuzzjDLjd+WVV0oaWZnLG+OTnvmMI/fOsamdYH19fXN+al7v6Z/C+PMZRshZckm64oorJnVIU6tZpuiUxvcXbWIsk2G7P8T5558vaXzPEBkMi0ctIl76H1BesnXG2uWbe2lbnkfPM/mSdO65527pB/XgB0T5rC8fE+YAWeUexpx63OKCLLIGMypiesd7ORn9clnQmHZDQ0NDQ8OKYKmYNme00zPc9x0yihCaIuwv0y5KI5vI2L/JtNACfY8Rj1W0LTTCZIiuvcIIYJ6k16NtaOW11H+w1owBnHG+3Us192gzzWJGc/P/oyXDnhhHLAnJ0rxctFO0fhgclgZnKmj9mR41tVmvh//n/udukXWm5g5DcbbPHhzMCmbInlyeIfbzxcw/9T7ykY/c0g/G0f0TLrzwQknj/iRMP30MnIEwV7Q7P6e/x8Mf/vDJs7Am9nNZM3zO+P0+NmlhQS4YE2cxGZUt03li2XEGST3p43Cszs+WUrasjRw/aVyH1JnnfGtpMVnvyRrzRAqs2q139J/3XcYVz4iM0vheQQapFxniXeZWOvqdJw2oP0/HYLX0/uWazvgQbmmhPvqccQfoT54YkMb3APVRP2ODDPkJjvT6Zy0s8kXI90QtSuNeojHthoaGhoaGFUH70W5oaGhoaFgRLJV5XOpNIJgnMEu4qRvzJGaNDHaRaeKkaerATLOZQTfcyQczIabfNDVmQgcvH5MzbcbMl05m0jR9ZiYtyDCffkSMurmWRxQyvKE/TxszQEYG2/D6GHvaz5gzzoxV7egcz/A5kyq4WTTTrh5tirxMHZnBZzKEozSazTLBCu3OlIxuRs6Ur9STyWD8+FbKDA5h6RDnayJN3Mg+/aGMdNqUxvnAmY0y8iiQm1TpI05EmZgiQ9W6GTvDvzIm9IFn3RmUdrP2dpNAZju4CTTXgiMT6zDvta0VwDwwZ4xTps70LTbGhfIynHEmTpJGZ0W+Y37Yaqk5XWUCmjQfZ1hof2dlsp90jqM9vq3FM4wf5edRWvrt40k5rI10CqzJar5D0gGt5myW11pwlYaGhoaGhoZdYamYNiny/LO0VVPL9I9oQXmcwrXWdMhK7R6Hhky44OUDNF20y0weL40aXzqtoBHitOJsCWbBkajUdDPwh49THgPKpPO1dI7cA8NKDTdTgjo7yyMqmWYTVuDzRtvQ8jMRC+3xNuYRnKM98pVWGcpLJxVny4x/avN5jI8yPSlJOrwhV7DJPM4njWwFOeYIDG3lCIuHFcURjGu0hXmg3zUHLsqhz7CYPNro849lAKfMDCLCvbWkHRlyl3WE9SOPr/kzu0misVNsbGxsynoeyZPGsasl0JGmYW6lcV4zgAzjz7skU/ZKU8tTvrMYAw/IwlrCSocTF/UhS+7EmuGS6SefqSeTc0jTtLW0Oa1TPpfIJCw8nWS5t3ZsNBOg0KZM6+rjmIFYaGs6+NbYNM82R7SGhoaGhoaGXWGpmTb/d40XRpDaK9px7mFIo0aY2iraF5ouTMUDs3DUJjXRDOTv9aH9cpwB9pz7Kf4M7IX2oxGigSaj9zHh2dzTznSfrjFSDuPJnmnuNaHdulWAcqiXI3Joq5mKtFZOBnPIv9KUCdeOHR0JMgRl7l3x2WUwj4xkwhb+clwQGZKmgSIYUxgqcudykOUxtrAy5NBTc7IWYKn0g+8zdKgzYOpDZrAGYDHAGuAMK/1GCEaTaT1hmr7HzdjTL46fMb7XXHPN5JkM5Xu0R/9qWF9fnzArn5e0YnEtrTY+ThmAiXIzCQzWGrfSUF4m7mDe07fCy4NJcy/sFrnz5Bjpm5OBc5Bd6vc1jcywfngfePAeaeuapj9YAXhXUH/6KrlvA22ApXOUlnZg8fH+ZRjgTIub4bD9u0W+DXuJxrQbGhoaGhpWBEvFtOfgDCtTVCZLWrQXwjNoi6mZEWjE905hpGhisGi0f67XQpKiEWZ6RzRD15JpYzLQDCiAZuwekpnGLoMcZKhNryeTSGTwi6zf70U7Jswkc5ParNed7DlDlDqLYi5re81Hg/Q6Ti9U976HeaQPAPOPzMCw3buWZzKRQiZ/cMCWsPDMWUucGeS8037Yau7ReiCRZBMwLJ6BNfk+YfaPeaJ+2E0tHCj9wWJw2WWXSRplqnZSIH00jjUIrsIYLKpvzm+EuXR2zRgmK8+TAQRDqbE9ZJ9rsMtMKCKN88DYMs/MMXPo6yj3dhkD3onp0wLz9rHgXYSXOt9Tr1sf0q+I/jGeaY10UC7jRsCmTObi/fP16PeAmn9ErrHmPd7Q0NDQ0NCwK6wE03b2nNo9mmaeqXM2xTPpCYlWh5afoUKlaag+tFdnutLWvRfuydSFaNjJUL1tGaw+k7fnPrw01f4zkQL9cw002T5jAdOaSzQvTdOR8pl+UV8tNCTIferaOW3alGzgWCF9Jvjs2nmGukXLZ04zVKOHlcxENOm3wFyzrydNmTXAyxcZ8r1zkAlxYEXISo3FMO65v54nAWqe4CkbhJNM2WLMpHF82F/FGpDluxWiFmfgWGNtbW3CqGr+NbSF8cn9dV9jmcAifU0yPaVbwhintOTxl/FBLqRpyGHqzaRHtbCiIMMZ50kAl2/eo2lhQaZqcQ8yuQt9TwsP7wuXC8aa/sCwM6Ssy3eejc95TL8WaZyHHJtlQWPaDQ0NDQ0NK4KVYNqu8c4FfEdDS89Macp4c88i93X9WTRP9njQ8vLMr7NmtLu5vT40VMr2e/K8J/VlZDJng4xPJpLPaEN+pjOtAZmkJb2Gfe8sPS9T464xo7QGUO8ipp33HK+9zYyw5Wwpo1llxLBMCetthElxGgEZSr8L9gKlUUbzXD711xKTpD8H92SkP+BtZF7ZQ3/Uox4laZRN5tJlFaRnc3rfZ6Q27wf9gy0xzpTlrPN4p0ZcX1/X/v37J/EcfC8200zSvmRl3u48F8/cJgPPWBPSOGZY8LBmMF/c66kyeUekRzTrPk/J+L30Ly0fefaate6gbSR/Sb8PH8dM0JG+LBk5sZbIg3Gj3rnkQ14OazrXQm3fOn8flo1xN6bd0NDQ0NCwImg/2g0NDQ0NDSuClTCPO/IQfjq9pGONNHU6mEsugvnSzTmYBTFxpokW842bjzGzE0CCa5icMpSfNJrBMC153lppNHHVcgjTV+ojUArmsjy+423CASQd7dLUWcsTzFxgBjvnnHO21OPjmKbuPPq1yDye5sTjhZrpr5bTXZqGnsQJyB3uGNsrr7xS0jRgTh7v8/I4Fsa4UC7fX3755ZvPYCpHZtiqoVwPNiFtNRFyz/nnny9J+sd//EdJo5MhY0690jgv1Ic8p7Mh8HHlGcaPEKzUy1qsmeOPNzK4SibekebDJmdAEQdrDacrzLiZWMidvCjPt0GkUT5ym1Aax4570ukKp0neD143azodHnmHIN+1MK44IF5wwQVbnkFOPCd2bgOm2T+3jtwhETlKuWaLgHeoO6/lscOdmLpz6+tY5W0/VmhMu6GhoaGhYUWwckwbLQttMjXedKiQpowmnQ8yBKE7ecFAcNTJAPQ861p5hlhNhx3YtLMJns/jWtnm/CyN2ihaK+VmMhB/BiepDLiR2n8tQEJqw37N66kdu8vjVfzNQCq1e4+3xssY1AJIpHNdMu9MpSpJF198saStYXH92VpAIOafemGmsAecfTyMaVopasF7pJE9OdPmXtgQrKUWWhNwXIs2MSawNFg54+hHvjLZDNcymMheIBm2j1NaoDJgTR4NlMa++BFSB9+z1v0dwlwxD5m4hntrFkXGnXcXbcQS5u8d3mNzaXDTqczXYAbxQVZpK+8ddybDgkMb08ENGeIYpCfGSae1TIOasuX/T0siqCUFYS5rx8GWAY1pNzQ0NDQ0rAhWjmkD9s9gE2j9aH+usSfTzTRwyZb92VowE6+XZ33fEC2RNqFVLtrLzL0xtDw0brTWWpCLDA0JW+YZWJlrvJST45eMK4+eeJsAbWVPnXbUGEbuU/OXufG987zneGu8Na07g9qkhQDQ/ppFImU12YWzCfYH2QfPsaYMl0fkNY/A5H4l8+EWF1gxLImyYNhYmJzVcE8mBsFHgwQijKPvh1MPcpApSKnPGdHx9mUgUVFa3hww3LmkIjUmR98Y93wWueAzfZemc5n+Kfx1KwZMGj8BLCIZTMrHc26PPt8hWBBcDngn8AxyzPfMqfs6pFWQZzmmStuZA+8f7zGYPXLIe4d+uuVq7ohXfvbvGYsMQ7ssaEy7oaGhoaFhRbCyTBvtJwP1s2dSC++HVpeJFVLD9r3ADPZ/v/vdT9LIntEm/ZkMm0r97AuhCVKWNE2GgdZMGWiZtSABGUCAfsGe0ZJ9z4x7eRbWxFjAiDLdojSyMDR2WF8GUHHGksEp+JvMuxYG8u7SdGGmzgzT8sGY1pJ9SPWENTmmyAMpFL2+DDKCzCDXMBT3yM2kH7AWGEN6BDsbTLYEe4HZwbR8HxRGw/zQHz7DluiD+5eQ8AK55p6Uv71EzY9jPWhy+gAAIABJREFULq0r3zMvzgwpJ98vyf4y6VGWI01PK/De8fXCPGca17SMOFvOhBq8kzLpEXLoa5p5Zb1TL2uDtnl9XEO+6CdjwJqgXR4ClXVCfWn9XJSAp5Zoxz/XgqvULG/LgL1fIQ0NDQ0NDQ07wsoybTC3J+raPSwBLRLGmecYMw2dA20RzS81N997TK9g7oGlsfeDVimNHsZ5zvyKK67YUj7apjMttFLqgSHkvrVr5fQHrTX3g7gX5ueaKHXns8ksHHNnrjO5QS1Jw92t8foZ+bSS7AbIjJ/Dlcbxcm91kGF5GTfK8rO2nNlOtvxZn/VZkkb5R9485G6GvARYrvJcrTQyGuqj/DxFwB6tMyDYGH3HFwQ52Iv9Q1JzMta19Z/jlClsgXvbIzMZPjnPDteYdiLPwLMG/T1HObBXnsnELh7GFA/zfAfiU8F7gnenv3cy1C5MP9e6+6mkhQW5Sn8P2urji6wg33N+RjVL6XZpNmvfL5vXOGhMu6GhoaGhYUWw8kw7GRramO/f5lng9OLOc3m1vdhMDJBannt1c08mBsmzlr6nnQk8MmVdsmZPlZlnqukvjB7N1DVH7oHlUR7tgB2xD+b7oOnByhilh6uz5mTUybgXMaxk3McLtVSCNU/iI0UmQ8hxchaFLMJOaFNGjnOfDdgQLJZ5Z+4yuY4zXyw31IdcU34mMJFG+aWePD/LM8iUMy3kOuMRbOcrcDxRStGJJ564uX6Yp/Qz4V5Jk3vT+iCN45Rn/ZlL5v1I4hBkGb7GYNhY5ZLVMh++j42HeUZ0o1z6idXET4TwjLN9aZpsxN87vKsoh3ci45ZRFv3ceyZcQSYpK89t+z1zjHsnVo5l8LNwLFdrGhoaGhoaGmbRfrQbGhoaGhpWBCtvHgeYczCR1EyOmO/S3JH5bh1pHs0D92k2l6a5r/M4CGV4IgXMQ5jDMSPlkQza4/VxHCgd3zAbpcOYf0cgmAwOkvW4s1Q6q20XgtUxZx6vYe5ozPEC43W8AnvkeNTMr5jD6Svjjhkb+fYAQLSRvNw4z7FVhIymc5s0msFzuweZZU24WZR5waEJmUHuM9SwyzCmVNrEvXOhPu8uuCMa/fP5yi20DKbCvLmJe24LjfliXGrbV3NIeaw5SDIPbJfwmb8ezIfnM9kIbeVIYB45k8YxyBCnzC3v4Np6SrnCDJ7OgDXzf76TWRO1ZCYZljXfKTvZcmvm8YaGhoaGhoZd4Z8d004nBb+WjgypZdUYdzoywI5SK3dkEAu0SQIi0B53eEqntURqz7X0c5mIBM0T9u7MAdaVKesYG8pHu3W2hAZNm9OJrsYg80gPfzOAirON1Lb3IshB1gmrrAVRORbI+YfhZKpWt5pketA8egVrhhG53DGvhIJEhjKtojt24nTFnOX80AcYkLMz2p3pQvcSpRTt27dvoSMYMs6aynVTSy6RoU8zgEyy9mNlSaIc5hsZoq0+9ly75pprFpaZwV68nnQiXJT+Mh33kB3GhvZkYiavj3dgvksy4I00fdfXkor4da+ndm0Z0Jh2Q0NDQ0PDiuCfDdOGRcIynFXm0Yc5ba+2BwvQJpMh1gJ/JNtnv4h2wFpci0xWnEdKMkWi7/VQXtabbNq1S+5hTGBAWAUYG9rhbIm6Ydx5xGPRsZ08opd/a1r63RV4I+enVufdHXAhg2qAGtOfCwCT39f2GPMoUSZpcXlL1pK+APxlr9atNJmuNvuXlq27A6UUnXDCCZMx9T3SuUA/eQTMy8gALBlulu8ztK90bPvPGNfG1tf1ItTknvJyvee+e80vJEMgs+YYP96NtXcJ8pbBimoW1No+t2MRi97JcbC9QGPaDQ0NDQ0NK4KyTKHaSimflPTBvW5Hw9LjnK7r7utfNNlp2CGa7DTsFhPZ2Qss1Y92Q0NDQ0NDwzyaebyhoaGhoWFF0H60GxoaGhoaVgTtR7uhoaGhoWFF0H60GxoaGhoaVgRLdU77lFNO6c4888xJpJta7Nc8J5n3+Oe5s5V5vfZ5zlFvLn75onsWRT7ark08s8hxMK/lOcPas1lu3ruT+vIcZu28ZC3i2W7xsY997Pr04jzttNO6BzzgAZPUe4uS28/9rc3ldue1d9Kv3czh0ZS/k/Ol25W7k/PCO5Gz7Z7ZCXYjo4Bnrrvuuons7N+/vzvttNMWlpPvmbm0vt6fufWfn2tjsV3c/Z2kktzJM9vN2W5idS/q15GUs125czHBa33J90+u9Z1ERLvssssmsrMXWKof7dNPP13f+73fW80VCzJHLX85pM9nP1SfwUY4lJ/hODNEof+foC2ZF5qyPe9rBqjItmfSEWk+pCrlZ5KBWnCNueAwtcVDubSRfvGZsjKxgzRNBJDJPwiq4UE9dpIgZKd44QtfODme88AHPlCve93rNuc2ExBIY/8z5C39yZzV0jh2BHnIuWXcamM8p9RkQBOXk3yZZKjQ7Iu3N0NrzslQLbgKz9K/zC3v9ddedP79IiVoLoFDvoi9jXM5kTPRRi04CeuFaz/6oz86kZ3TTjtN3/Vd37VQNlmzlId8EQQk3z/SNPnL3HjxvQf1SVBuJkZyZBjPnId8/0jT0KOZMGhRvZlUKANc1ZSqDEaTQaQStWBL2/1o1whbvt88lK9/7/fyu8D74fGPf/xSHAts5vGGhoaGhoYVwVIx7Y2NDd16660TjdG1uzk2iXaH5ugJFdDm0Bopl3vSnFQzr8BmUgNNrd+vgdQMa+k1MyUdn9Fw6QNaYM2UllprphisjWNqxbQtNXnXRDOFaaYYZA5yHLw/xxqlFJ100kmb/ckED9zj3+3ERJuWlRzb/Ov9y74ma1gUGjLvYSyZN2cm9CflmO/nEuR4m+hnrpGatSDlOENFppWgxqLSgpOy62NV+06ahrr08eQa7V7EYufaWENa8ig3maPXnUlFkNGUJW9/PpshUUEtZGeOO22svTvz3cjcpmWRstwKRbmse94LKYf+7si2ZL8yFLMnH0qrJvWmdcDnIOULYAUhUYnLN78L+Y5cFjSm3dDQ0NDQsCJYKqbddd3mP2kaRJ57pK3MVhq1sEw8XwP3ouWhzdUcOJLhUn7uI7o2htbGd/QjE77XHLVSe83rNfZKWzJxCKDNziYysQoaPWnvsn5va6bgTFbGmHlA/7lkFscKJH3Ifbsa0859aLBoDzb3sDOBRC0dKZhj6bX94mTatVSzXkbtXsCc8mwyb7+W1q1FLDnbgPzVys+2Mk7J+jIJSW1M5qxQ2YdaGxbB3zlzSAtEWm0yWYo0n/42rSeMictqMt0564nPT9bDvCxyzsxkSiCZaVrkvJ70mQBzvg/SaAnhPcPnlHcfT9oIO54bz3x3eVsSNZnN99vxsg7uFo1pNzQ0NDQ0rAjaj3ZDQ0NDQ8OKYKnM46DmhJDAFIJZZe4Mtn+HuYq/OLCkqdjNunNHUTBxY6pxcxJtmjOl1s6WpwmV8ikjj7e4o1iaFtPcv8i8M+fkk8eR3Cw/5+iWx0MYG79WO6p2LFBK0fr6+ma7mePaEayUkTwC5qbbzMGexxEzL/kic3LKQa09OT55nKaWEzkdKOl7zn/NZJyObZlHm+99LeYxNJ6h7SnLi0Dfke9suzR/PCj7XTveB442PgB1ptPfou0E2pBOcen8VTvClM9m+3nW+5xbDvkOqR0xzDnCmSxlNI+cen1zjp1p/q/Vl++QrM/fXTnP/OU9XhurfL/lPNXeb7kVteh3aC/QmHZDQ0NDQ8OKYCmZ9k409LwntS13DMtgJqkJLgoGwLW5wBz3uc99tnzv9WTAgjz64eAa7cdpDa2P72vaZGrUaRWosYxkimjLGTilxsTpO21MJ5k8NlJr206P2OwUOKLNsRj/fwZaSDbpjAUGyLjAJuesKDU2W3Ma8mdck8/jQMkys74a8ohXHqdxWc32zjkZunPPsXTMSdmssZqadUmaWtC8L2mZqAXpOBLkWsp3SAZw8nvS2TMD2cBua8f4cn7S8c0tMzicZoCcXAtuFczxn7MK1hzW5pxj86iU9yGtgukAmfX6vCEb6eAHavKd79U5i2XNEe1oZeZ4oTHthoaGhoaGFcFSMu2dIJkOWiYak2u8aHzJWnMPMEOj+r0333yzpJHVUi+ap4cxpVzYWWrSNQac+3XUm9osf7Es+HepVTJGtKMW+IG+ZzjLneyDZ2CZZBbU623bTczhnaLrusnxIN+fSvZIH2lv+g9I4zjnWPIs12tafrLG2j6dVNfomZecU+BWjLm42Mnsa0dh6Hv+XaZjLnPHxFKmXL7TujEX8nIRaj4nye7nAhv5/3NPO/d6mZeaNStZcvoLuBxQTvpZZCAbfzemxS2tMpSfR7P8WX8XeX2LkBaEPOrFO9Pfkcmwc27z6Je3JS1hyex9HHeS+2IvsVytaWhoaGhoaJjFyjJttK7UVtNDXJpqZmiIGXYPbcs1Nco/9dRTt9SDBlfbt4H15z3JYpzNZHjE3HcltB6f733ve28+m+1Hw7711lu3fF9jTxmognYkI3bWDNJXIMOXMmbSaKk4nlhfX59o3TVfgzmmzXj5XOZeNvekNeFomGnt2bkkIxnkQ5p6XCfTSSbkn9PjexnBXOJDkSdGaqdN5vZOd1OvNLXGJdNGZjzE71zQJvqRJx1qXs/JntMC57Kafg+J2t5/tj/3zEmswTsN+a/1j3dUJiGpMdX02ci9c+rxeUs/m9yPZuxrHvUZ1jiDWfn7LdfRsfa/OVo0pt3Q0NDQ0LAiWFmmnQkOOFtd867OfagMfp8alXtI5rVkZzWP85tuuknSdP8boD17UpP0YM6EBHMB9qVRM0Q75VmYbu1sdHpt1hIeeFsdc5aDZA41NsiY0NZjxfBKKVpbW5vsxTn7oi/UDSPg+zxvLNWTHkhTbfx4M9Xcz3VGl/4ItXCs0pGFd1xG5FzUvKFBrpvdnLWtnTwAuReca9C/S0aa6UJrCV2Snc7t2/qcJmsFuY9bS8aSp2IyFDP9qu2H85d7FiVCqZ2p98/UV+tLyjl9z/o87WYm+0i/m1rMjLm0xcuCxrQbGhoaGhpWBCvLtNMD+8Ybb/z/2zvXHjmy4uln+7ICCdmwsCyLQA/f/1uteIV28YKFwBh7+v9in3DH/CrydM/FnmopQ7LG012XU6dO1WTkJbKqqn7zm99U1W1mQouctbxUKlrFYNjiL7V+o+Ia66j1vVuEXeMGZoKnelBa8LRAU2yGDU9oYTNj19knmQJrewVnp8yYZdb6Y4OtVKtO9+NcrbXnNJClsEWmGC+P6cd9jIzsVUtGrsmOpXFd+nEeqhh2VzzkvHxe6enx4z4k89fnlbkeXUtOfw906n96Pvkc+b5k8J1OhIPrq2PyqekQj09Wyxi3b0OPAt8DKc7f5SXwWfRrYqY3K4WSx4L1+gJzh1LWf3rX7gHDtAeDwWAwuBLMH+3BYDAYDK4EV+seZwIFRUfc7UY3Csuc5G5RKYa7c3Q8iriwpMT30bn1WdfnOpUz6Pgai87PntjuppKriaIacv0oQcSTViimQVcxXexJGpCuJbkD2QTC90/35zFwPB7r5uZmKUlKNzWT/hTG8H3oiuN8rJJWuI/KSvS77ktyo7JUhZK77uJkOQtDLBqH1pAn5+h+MImIcp0Ud/ExaB8dP/VtFuiy5Xl4b/z4nOtVwlPX2/kucLeo5tafcz8ur8v36da67nsKFVHOU8+S1ijfS+k4TEzU/KXwSDf/uh6WW1Vt3x18//A94cejm78rPfM1xPK97vckqMSy11Wv7MeWwH1sDNMeDAaDweBKcLVMm4089JMJVlVbST6KGThr9WNUnSyyLhFI7OLvf//7p+8o3C+GpbK0JIYvq04Mmx4Eyo76GH/88ceqOpWQiRXpunT9znzVNlPH0fjJgJg44t+xtISlXr4PRSJS+dFDcDgc6nA4LJkBQXnbSyQNCd4fZzEd09Y9pkBQVZbF9evRPj63ZNhM9mPSpl8LhSl4/3UeZ/Zk+/QoCamtJ5kOPRdJNITPNhn2qpXvJe1pO6TSKK6DTpTE0cnXrprnpLVRdXqmU5IUWw3zvqeEPa4dlsHyGlLCFkFPi99Lsm+9KwV6idJ9Izun4JUzba1ftqDls+7iKky++9JJmucwTHswGAwGgyvB1TJtit+z+N+tSZY4UESD8clL2h6SVSSrvCtLY9lIOj5lS8menNFp3PQYsHWmS4nKOtVnZH9dOYWfj/PEkjPfh1Z5kkV8CI7HY338+LFtdl+1jf0KLP9IpUO0/Lu4Wmp7yO/ETOkl8v/TY8B9UwtIjU1rR9fD7/36OkbH8yRmr21SvNvPm4SA6BVIwh8cY+cVYAmYf9aVXV0Cz21gLLvzfPn4GVsmEyQD9nXAODHvXWqVyRbDwiWNLzSXX3/99a3j8jx+fbyHfHcxZ8Svg2WobJDC6/fzCWTyiZXreGLS8mBx7Om60vO5BwzTHgwGg8HgSnC1TJsZy2y44RYarUVaULK+Ums3WnGyrMUUKadadZIPJYOn4IezGzFnxb0pVMBGBc5uxJY1fsWr9buO7ayTwhRdbC5lAvN6NBb9LlYi9u7nZkzpsUEWlqz8c9mgaR+BrIKtO1fNOFLrT46na+dJeccUd9caIUtaZczyfIzzJ68KPQcUnCE7TB4XZuaS+aQcCmZHkyX5+iZjuwT0DPgzzaYsjP1rzlM7T10Ln0O+U3zf9FnVtsLF1yrXIqtKNEZfO2yIREEmSob62qX3jM9ees9pf46/8wKspGTpSdL3HieXJ0/fUQ44nZ/reW8Ypj0YDAaDwZXgapk2QUac4htsEMF4Bxmjb0NmzwzNFMtkPTjjyJ4hzFphthglw3IWKzDOqvMlKb83b97cui7GmMhGU9aorlMNUgSyNf9/yn5/LByPx00jF2d5zOYWVrXInA/9lAXPWnjPQtV643k5xpQPwYYxZLUpc5f5AWR2KTOY8VVeb5KTpGaA1hkrLVKzDh6fFR1seclz+3VwPh33qctmDkLKsu+kbzWnvt7YSIPXxpyW1TXT88XKFB8DtSTYitjvh9Y8WxszpyJVe+g73Q9mr5Olp+Mxe50eOF+r3FbPAr0fbEVbdYqz876ld8Jj1Ph/TgzTHgwGg8HgSrArpq32inexbMiAZEG5BZpYadVWXYhx5aqTlcXveF63zhhjZnwt1XTSUpcFrJ/K6lSGeIrLkg2w5tstbDZAeP36dVWdLGDGq1fxHVnWGlti9qxdTw0PHgpvzcnM3aremmcMNu3DWve//e1vVXXyMmi9+RyzVSrjhKnenV4KsolUd8zGJAKZsJBizFReI7PzOdF1aRsyHF2DzuvMR0yO7V21zphZ7yCrZUzbn4nHjkfSe8B4tK4xKdUJ9FCtavy5DhjPTWunU1FjG1m//111hD7nvfZ55T1iDJ1qZL4/PVadaqTP5yVs3Mfu/6eypMam9557PfTe/Nz5N/fFMO3BYDAYDK4Eu2PaX3311b3UsmQhslbZIYvvt7/9bVVt28PJynOmTQtX7PzPf/5zVZ0sRY/r0nolw07qQlSeYvyGrDldOy1pxhgTs//jH/9YVSfr+Pvvv6+qrWdBGelVW0b93XffVdXJWmW83Mf/uVSGjsdjffjwYePFSIx+pUTFfei1kPoctdvprak6eStkzWtsZC+pravG6CylaluRwHNWbeuCeWxnL/TCpLVSdZutd/OnedP3eiZSPgS9M5oTtdb1sXesnx4s93I8RC+aeQRV21wZzkHK9tZ4WEXAfJikW85sasaHV1UEPD69NL6PxqT3mo7Llrx6P/mc8P7zPCulN9Zlk81Sl8LHyv4LzP/wfeiFSa2U/XxVvdrmXjBMezAYDAaDK8H80R4MBoPB4EqwK/e4pCgvKW6n64duY3dpaBu5xeXOZamKfvfmH4LcOb/73e+q6uQ2ZqJa1bYsjMkdFJLw71guQeEA7eOJdnSzsWFHcknLhfTNN9/cOs9f//rXqjrNvRKuUmtOCpgwiSi5wO/TuOESKImRggupBEegKEcq9dE8yy2u+8zyMK0xucL9MyZJ0sV5SVkL3fx+LRSuoQQky/kcXZgihXC6bZg0p/NpLvw57hq56JmRmzyJXTCcxbnyeUyNgy7FqoyT4kZMRPXzaX+KOnUtglNIQNBcKvTEcaXP6KZOiWiUq+WYJLqSwj8MU+jdxfepv4u7BkhKEON5fB50fIVQdB66yVN5Yic3zEY8VadQmO7xXQR6vgSGaQ8Gg8FgcCXYFdN+/vx5/epXv/pkDcnqTq3dzsGTbdiyUpYY28JRdKXqZGV9++23VVX1l7/8paq2LMktNVnFtM5lESYRFyWCkB11jM6ZNr/j+VJzeDJRjVmJado3CRXI+tbP1MTkqZGYFi1xegRS6RRlcrmGtLYSa+ZxlZjVNZDw/5ORsqXpqkENWR8FOZw5MGmRJWarZBwmsXHNpmYkZNgs+UpMnCVlnZfN5+QhCY8p2a+TOu4aX/i2bMlLj1RK3OqSZPXOSmPkvWL7S82fizpxH3oZKJHr61v3jmWCgt4pqTyRxxD0PLHJk3/GtfnrX//61nX6viyzo3R18vx17HwvGKY9GAwGg8GVYFdMWzFtWZls8eagdJ22VTzCrSPKOIqtKEYiy+pPf/pTVd1mzSx5YBOEJCRCkQEW9otxJYuXzFdgWUvyODCWreNzjvw4uj4xa1mtivsnRi+mwNI2ynN+SRwOh3r58uVGHjVJdvLerQRfNGe6Zq0deYG6kqyqrZQqmYL2TYIcLElhuVDyanDeuaaSJGmXM5EaxQgsveK+qVEEz6djULZXWInvMN6+yhF5CNP249E7Q49BKolimRiFf/Q+SPK5zIdh+93kAaEHgh4YL2UVyCKZS6F3FT1Nfh6uId3L5H3geqKHhSzXny96NblNt5Z8DJ2EsTN+Hn9kTAeDwWAwGNwLu2LaApvdu/VKmU8KCZBxV52sN1l5bNembERmWVadmKcsXsZKU4N5Wmhkx8yudcjyY5tLil4kBqRrp4WbJAgp9MHYkuaEsTU/rsZINq574qyXnoEuk/u+2eVi2ozfkrFWndhyah3JsTLblUyLGbI+TxQsYXtV/u7/72LbbAnp25BVMv6dWEXXGpEZzT4nGgMbYPAZSRn8vB7Gd1MckfPIuaBs5kPB5zadW+8UNjxxVkZhD8ZpyeD8ez5TXcw57d/F3elh9P+T8bJKgudP52POSGK8et+I9XNfzq/PEVuzcptV1QqP3zVKcrDKYy8Ypj0YDAaDwZVgVybEzc1N/etf//rEbmXpeJY328+Raet3WfBVJ2ZB64pWZar5Zi03mZyPXegE87t6Vj+exk02oWMpbqOmJH48baNjsDWggxm3zBIlo3O2pLF2sSWOtWqbhU15Vt6Lu+JwONTz5883tePO2HjPyLh5fxLo6SCL8nnqYsqsDXX20sV2yQQS09b1MW7MForOqnmfu8x2H5fuM8fWxQt93679JZm+3zeyoS5G7HNyCfvqkLxYmjtmHfOdkTKNuSaFLifEv2OcmO+7NO6OvdJrlD7j2tfvei5TdQRj6PL46XN/F2v+NJ+UeO2eq6rtWmUOTVqHvB6OOWXhd/drLximPRgMBoPBlWB3psTxeNxY8m4ly4pjizUyoKSIRutbFqDiR4qzpMYDjLOTCTub0PFYr0qW4U0YuixOMhFvTMIxks3S+vfr0thYS9w1n/DxaZ7oCWEc2e9bqk334z5GK0WpolVlRa8u65gszOeJ94UsRvefSnZV2/gj47WrOCjHzPuUspS5Lz0wKSOcXqbE+ghel+4tnwnmVPh1dDWwqR0is6A774MjseVLwbn2c2pczPju1nfVdtyc6+S9Y+0zPVRaO74P54l5ItrWs8hZJy/o3vJ94KyZKo6d8qPfS30nxt3pbujd4uNiZnuXLZ/YOT1vfDemvxfaJmX3PyWGaQ8Gg8FgcCWYP9qDwWAwGFwJducer9oKV7jrma4kip4IngTFspzOFZR61Hbb0LXlblE14RDkLmfiUZKTFOjq4T4pUYeCKWpuQkEQP77EGlhaltz+AgVl2INX8+fufzaPoNuNfat9jPdBmiehEyFJLmGGKSiLyLl3dx8Tws41ckjH6xIhU290Jlzy2lPpn8CEHEqTJnlOukF13ynyk5IBeQ/okk7uce6zKhOk+/0uiWgpoam7d3w+UiiA4QuK7KTzMXxFl3cKPXTCT0JKRFNoiwI5vAbBn2muJ71DKG/q52P4km7yt2/f3hqXu7p13C6Rkwlpfh6+r1c9v7syy71gmPZgMBgMBleCXTHt4/H4Scq06jZbFmgxyTKU1aWfzl5cvpPnq9pam55s4Zaln1/HTCUYshZp7TPBwQUUxIr13ddff33r+sSek7wfz8dGDRprYgEUniFjTK1A2bKOCXdM2qnaNmNhKUba5y44Ho/14cOHzRhSGQ2ZLxlDEgMh09X1kKGk0j8yKVr/vlYpV5u24e9MtiGbZSKkMx8yaSbqMKkyna+b15Q0t2KXvm+S59R1kVHyPvpxH9LsITFEsjoKjDjzZmtOig6Rdfo8JQ+Xg16Vql4kaNU8hU1EWILFUkZ/nnQ9ZPTaV16zleeSXhImtfmcnGtmk9aO3uW6LpYJ6vipSdR9vDRfAsO0B4PBYDC4EuyKaUsgQ7FXlndpm6ptEwZZk7Ssqk4sgTGXLk7koEBAJzPp59M2iaVUbctsqk5Wqa6V10dhDo/98nyMRyb5Ql6P9mF5COPxPm56EChv6uej9co4MoUzHopkHXdlHmx04WPgdytBjO58XdkWY8Cr8TN/IMXOVw00uvNwjVBalW0x0z6dnKmORW+Vj4UeHu2TSvUYd6fnyueMTOqS/AjGyJ3ldfkJej7o5fJt6JGgCFFq78vr4Npclb1R7lNjpkesaht31ntB3jshnS95bvwYWjN+/3Xu9E7yY6a2ntyGXi95C3yMlJ3m2knsnDkIDykf/BzY12gGg8FzfuXDAAAgAElEQVRgMBi02BXTVjybTTPcGmP8R0xHVhbjuDpu1dYiI0NkXLzqZJ3KIqWVnCQ7JYDCzHY2VEgtGTlmskNazQ4yLnksNDbFzf34bCOqY4jxK7auLHMHBfXZDMDj4GQ8K+nY++BwOMSYoHtAyOYZrya79P/TAyGQEbuVz/NRGCM11CBLTkwgndfPR5ENnj8Js7D1KGPoztrJEDkm3VN5g5ypUCCD10kp1nR8XqeeybTekkwl8ezZs/rlL3+58YD4NdOzoudD86UGO35f6C2j/C+9aKllKj1gnaCIgwIv9F4k8SBW5XRtKf3dyLXDuWZM37ehsBC9M5JpTh4+elP1OVm1H5fXqd/1d8K9AXdZO0+BfY1mMBgMBoNBi10xbUGWkhirs1BZWZRO1LZqNuKMqLNOu7rsFPtlbFMQi3VLjQye7OLVq1e3rtPHQmlIMnmxiZSR61nvvq0sUK/TFjNgjJRSn6l5RteKj1mq7g3Q/dBYGOe7b6OQNC7/f2IGzEIWUj0w8x2YA0D2t4rBJUbF83EumcGa4mzddXAdpvN135EVOuOil4nn79ogpuvpGFDyPvDak1wukeQ+E25ubjYeBPeeUaaW9yk11KAcM98lXA9+zV28XudJuTS6RrFHPp+pDWsnqcv3Qcr7YR4CkZrNdN4Snle/+/V1zVmYm+TvEtbT8zx8jh1Jo2APGKY9GAwGg8GVYFdMW9njtNw9BvPTTz992rbqtvh9Vc4kFeOjYpeYKOv/nDV3WYdUV0uxJZ1PmZiytGUJJ/YiyDJko3fFmJ05iBGISVORitdSdfJMfPfdd7fOx7gXY49+7bKCNUZZuFTMqjpZrZ717ud7jJpIb83Je1rVM23eW/fsMLud3hOuB1+7XYtExkc9fsv4J8fEevH0GceqcaSYH9mLxqpngzFIHwuVBtmUYdUwQmDDlZS53aFjg+m7FW5ubuq///3vxlPk10zmR+/W6vnn/e4UGVP7Wz5/mkvlmPh7QM+hxkgPH+PVVdv55rOhY+jZTkqMnQ5FUrdjvTcz5qkx4OucnjCtP71P9f5LMWhmq7NdcqrGSNUke8Aw7cFgMBgMrgTzR3swGAwGgyvBrtzjLmHq8GQEClLQZSJ3hwuyUJ6U5QWd+IFvI9AFlZJW6D5WchwTd5Lcns7N0iu5aigdWrVNAJNrk2Uc7jbS/1mmxSYtLIfyfZlYw+SpJCHK0MRj9NHWOV+8eLFJwnJ0SXd0qScxEK6RTjgliYIkeVSNuer2eqNLnYk5KVmObrxOLCa5+7pSMs6Rh0eYuKl1rp+dtLCPgQlBdN2mpCzeU74r/Hsm1F0irrJyzdPVzzCSnn9PgtI8seSqW/N+PdyWQiV8/1RtBUO60J7PE0MdXCNc1yl8xXck15Q/Twxb8Tx8T/ja4TrTd3Td+9phgi/FfFLJKdf8yJgOBoPBYDC4F3bFtDskS4cJIUzucKEFsnMyHB2DAipV21IfNgpIiTqyjpn4pjFq7G79U1aUEq60eD1x4scff7x1PooP6Lzpusj+O5aUmkxQRIMCN0nyUKIJK1GS+0BeGrJ/HzdFM9j4IpXtkC13TQqScAWTejqZzLS+WS4kpDIqjVvH7dp5pqYPTAQi40lSlRTvoHeDSXOJNfP3Too1oVsrqWHIJTgcDp/+VeUSLJZR8R2ShKAoJEQxla78yM/Nuea99bXDRDeOVfB5YotPjZWJYqu1w7mmZ8HHqPHrO8ok6/lNwjwaI5+brmWrH5deCD6vqcSQJWV7wTDtwWAwGAyuBFfBtJPVzXIWxjU8ztI1+WC5FuMfvm1nYWtfL2WiNUlhhiS1ypaiYtgUTNG+fj5tKxYraI70fYpLdu0ByXjc2tS5yTZXMUeWeqlk5TElAj9+/Niyvqq+XIuWdIr5aq3oOmihJ++J0AlyJKbAseg8LOdzxqP/a1t6BRijT6yZ65vlcL52OsldoWsnmsCSr5Wk56rEi0jlTR0Oh0O9fPlyIzOcSuO0DuRVYrmWM7aOPQpkt/6eY15IJ8iS5pjrjZ4wf09wLTI/RdumZ0Xj7iRJdU89zs+8l65ZiubZ7wHXgcZKb6SvVZZ6dWWY/h6iB27EVQaDwWAwGNwLu2LaiiuJJTNbsGob05MlJWuLxflVJ1YnS1OWJzN0ac1WbTMjKR9I69z3YaYsM8KTvJ8yzbuGDboWlyTV+fSTcXdhZU0yjreyhCmxSjbIa/Jt2CgkZWrfB4ppM8cgWerMYdB6SPF7geOmDCfFKfw7rodOqMf31xh0vzVPab11cXfGQxMSO3GkuejEJrrMegeZXRe7Tx4Y5rEwnuzHSCJLHY7HY3348GEj6enjp3yovmP73SRJy+YX3TpwRsr5YH4CPXA+ForrdFUyfjyuHb4P0lolk+a7hBnpPLcfV9tSotZBkRiKSvGY/n8JXMm7Sflpv9d8b7Na4qkxTHswGAwGgyvBrph21c+WEWPYqzpWWbi0gJN1xFibGJasryTCz1gL49Wsja7axoW0LZvDu3XH77p6yZStrutgrLmTCqw6WZo6bpcln2rKNX/MNJcHQeNIGedkMT5vjwFdR5KXZdY71xK9DFWne0ivBWOYq9gi46tkWL4vWbKOT49Eaht5jjV/KVwSR2ZGe2qEQvD+MR7p943tGldQTJstc30eqe0gdkeZ4cREyV7ZPGfVnpYeHj57Dkqtds1f/Dxci50EKd8PVdvnXO8wsvMkEdrVfXcNZfy4+kzsmXlH/szrO+pgcK5X1QoT0x4MBoPBYHAv7I5pV22tSLeWKeZPi52KZVUn64oN62mZyor2rG59x9prKjn5+WSFM/ar+GRqZcdGKFRR0/F1XlmZCTo/M+tTnTYzLzmfUkpL6maazy572dmhxkBlpxXLuAuOx2O9f//+kwchMYOuvSYzpZ0ZdDWgZNasZvDjJyZYlVWfmK3NigZ6cfy4n1PBadX0g+ha4FZtmXXHlp1xd81suha4fvxLG4c8e/Zsqb3QKXexlW3Sa+iuQ0g12efu/yqzWd4rNjNRkyBed9U2q7vzZiRQxY7rOt3LLkeEXtDktdEzztr4lFHPmnHNjd7xeg/5fWMOwNRpDwaDwWAwuBd2xbSpPU5GVLW16jrL3RXSqHBD5sm4jVukKSu4alsr6qxS/xfjZVa6rDy3rMWsX79+fet8+knlIGZM+nmpdc2aS78uMfY//OEPt46l82gu3HrtVLPIeDxezdgsM88fCmaPJ+Uw1iJTazzFCzvNacYwE7On+pKOT0v+1atXm326TFnNaVLPYub5YyDpHvDau9agycOQsvrT+VL7SOpWd94h//8lcyHdej7jqbWsnlnmoFDt0Pch26cSGpULNSa/Ns0b3396X1Rt3wk6HzPbky4Aa651fStNAcafWb2Ssq81J3rf8V3MLHZ/fpmnQBXHxIx1fD1jfJ8nvXKBOvx7wTDtwWAwGAyuBPNHezAYDAaDK8Gu3OOHw6GeP3++cSM5OmnEVeMG7svkC57Hf2fClBIklMCVivMpH0iJy5QQIveM9pHbi+Vacuu4JCKT1ZhgJyRRBc2Jmo7IjaSfyUVEARsKfrBBgn+mcT92qVfVz9dNKUVPgmGiChu60M3m+/g50u+ppSRLbOi+Y2MHHwvddWzR6EIcLCFUwqNv00Fjocwj3dg+jyzXoZucSU1p3fH8wiXSrnQdp/ahDElckojWtW2s2jbj0TpWoqZc096il+VTDBvwd39eWbLYJYr5PnyvUao4lUQx/MLQQ5JAFlh2K/gcVN0WguH7m1K7FLjxkAVFY7pkUB8rt2HCIIVgqk7ztjdRFWGY9mAwGAwGV4LdMe2XL19uZEXd0ibzZYJWag5PFkRrn+wmJT/oPEzgYplT+kzMhxa3W3JiRSpHYzkDEyaStax9mOTFRJ6qrWVNti5vQGKDTFoRyNa8LI0Si48NJaKtRGFYcqVr0ppK4jpdYljXfjIlWDGJiK1afX2TtXCtsJTJr4vSk2RWiW3yuJRlTcyXHpyuBWQSe2FSFNloatrD46UkpaosInSJuIrQtV31zzi3YtgpQVTXqp9sDMIWtqvkOx5T++jd4uD66lqB+vG7d6TWO0VY/Dxc3zomz+/HF8is+bl7i8TYmWjLZMmU0EfPGwVofB+W/l3S+OZLYpj2YDAYDAZXgl2ZEDc3N/Xu3bsNI/F4A9kEm4uonMqtZIr9d/KVLCmp2saQZOWxtGwlqqFt3rx5c+vzFEeR5cwxrbwFZFJszsH2kmmfriQrNV6glCPj/SkngeU/j1mWJBwOh1Yekdul35PVz5gX1wyZr7NKslTmVCQhka7RBZuc+PzxXnbtHJP4Csu3OqlQPx8ZL2OmLKdJOQIs7SKbSevjXLmYf94xugSVfFEwyRlpFz/ncdPaoVAIWR/vT9XWS6Jnl004WKaWjkvvRZJa5X3ms5DeO3xHMYae0OWIcO2kxihcv9qGMXSfE42/e+b5HPv+lKjdC4ZpDwaDwWBwJdgV0yZWQguKkVJQQr+7FCnbdpIVMUswZbt2DUnEZt0i7DLYKU2aMmQ72UK2AEyyomzgQXk/j49pfsjgyLw4r74NGx5wrH792taz3h8bx+NxYxVfkoXMBhEpXty1WyV8X7Jwxv5Y8eD/Z0Y+158zB37GOPUqFtxJahL+ObOeOa+dNKV/xhhpJ5Lk26SmHP79Ja1AOxyPx839SuIqzFBm4x2HtiFLFjpZU9+WUqD0ovg1M/4tT5jWA1v4Vm1zgiiqQjEhZ9HMd6HgVbpfrHDhvNGDkdYOf9d1UrbVj9MJQiUPGePrn0MW+CEYpj0YDAaDwZVgl0ybcb1U78s4JC20lLHIDGA2yxDcUiMbEkOlJZgyZMmwKJvpDIUsjFY5a3x9TlhbKzDz3GPatKg7Oc7U3IRyrGwJmmQlmWX9OXA8Hjf32s/X1QjTo+PrgfWc9IgwPun3oGO6ZKJpnsi4yVB9fZB1dfsKfj6yU7LaS3IEKJdJ5pvirrxPXfawgxnnq8YkrOm9BFwHPu50DX78VRyX7yyBmfPu8WOWM+9x8ipwTgW+bzzDnTHtrlXqKpuf59XnlBv1bZkbQI9FkjnmO0r7MG6d7kVXVZK8kMwnmOzxwWAwGAwG98K+TIj/D7LOZFXSUqKCT6or1XdimYxhpjrGjgHQMtWxq7aKYYxDUzms6mQ1phZ/fp2yCFOrRG0jBswYt1uMUnIiC2S2dPJcMK6mbfVT1+c1srrWzxkfcqadVJPIlgWyjZTFm+ZB5/RjJobIY3DN+vpmdcK5BiVV23anXbZ4ioOmxip+PalOm/ewq2FOz5NANs7zrZo0MIdCWGXUX5IBvGLnZPfMPdFPf6apW8DxU1PCvSd6ZvWTWeOpGcs5rwk9fz4Gfad3B9l/iml3a5T30t8DXeMl5hcl7wSrezQneveynXDV9tnTvjr+SjFvxdyfEvsazWAwGAwGgxbzR3swGAwGgyvBLt3jFPxILlW6delKd9eZ3CpKmJK7QyVY2kcJGt7fWMfvSjuSyAJdVyynYnJJ1cltxPIjjiOVKKTSOB8zk0qqTm6o5Jrzz5PLmHPARhX63RujPFbf7A6SMaULOpVvdYlhq8STLiGNzUYSUolfOq9Da0RjZFKP78OQBl3D/JnEVTpxjeQa7NytnPtV2U7nrk7iMTp+J66RyvC6e93h5uamlUfldumnnl93PXPuGBKg69mha9U7iWsnydnqeJRAFrQ+/FiUM2aZ2KqEknPaJUSmUCVFVHQslvB6ghjDFnzfJTEU9kHvknZ9jJSK3RuGaQ8Gg8FgcCXYFdNWa87UDlDoErRYpuFWZieqQZackrwEitOTlSWrjAxYFhwT4Xx//WSZBmVMnb1QvIHlTrJAUxu/JOPn+3h5iNCV3pDxJXnOzwUlobGcKklbshkG15CPm2uRLJMJOqvrZBJOEp/g2qQXKF1Xl6TEJjAJ5+7LJfeNzwvnecVyub7TnPBZY9lQKtUj2z/Hmp49e7a5/6t9OAY906nUlONOSWQcP9cmpZH1uzPRThLWr5HnVUKW3pe6jk6C1yFhFu3D60uNhVjSyKRdnYeCWA6KCK3EsShww/tG4ZmEvTHuYdqDwWAwGFwJdsW0nz9/Xq9evfpkwTGeV7WV/mMTgWTxsvRJx5P1xfiNW3dsq9eVxjhrZqtPWvupFKaLWVM4n2zat+1K11IsS9fDWCxZTWpT2DUZYdmLX9/nFFXR+N6/f7/xSKSmDywr4nyl+8J76ef1Y/ta5XFXzEoga+4aRKRSn3Ox7McGPWFkZ/TE+P85J13jknQ8HivlsXSlbAnKh+C+5/bxMSTmu4p3+7hTXgQZIht3CKl8iyJOLBvztcP4Ld+NLI1K+RDM2WF+TpKkTWJEfvz0bGi+uA9j+GntdF7V1BCHa3SY9mAwGAwGg3thV0xbYHvAZE3Syidj9O+1D7Opk9hE1W1rlgxHPykr6nEVWbSMo7CJu4+RMeXOmuwkEX0bgTEsPwezxYkuTlnVZ5yT3SqbvOrLiO5//PhxE7NyrJofVGWWR5GLjnGvssfJPLpmGX5cyr7S8+LeIGZVMxP3sdGJTfD8qwz0rpHHSpyGGcD0JPh5zq1vntP3Zbb6CiuhHOa7dI1OtK+LgmhbsmVWEfja0futy1OhgFPV1nMjcRW+Z5LoU+dBpLSzP0+q2GH8m5Ko6VnUWPUe7Z5fnxN6Ubv8AveQaG5X+UpPiWHag8FgMBhcCXbFtA+HQ718+fKThfP27duqWsuK0iq6pN3huTaUbsGJLf70009VtY0bJbAZh35/8+ZNVW1Zk2/DfRmHSnFKWt+XxDDJDOgVYM2ntx5lfJ8xxZV85efC8Xis//3vf5t6/eQhINNdtWQ8V7fMus9Uz961YEwMlB6cTsqXz4GfT/dHa3SVPd5hlUHdST9qrhkndYbJLOSuVeeq9Sjrf8/Vfl+CZ8+efTrOJbX3HXwMzJ7umKHYZ/JG6bljlrrWhfJ/qrZxaM5tasAk8NypzaWfw8dPudbVutP+nFt6QynnW3XKKF+xf4L5TF1OkoPviWnNORgMBoPB4F7YFdOuuh1fWjG1LpaUWEBq0+igRZgE7mW9SlWNzDRZhLJWf/jhh1ufJyaqc8q7wNprxld8jGS6zLJUjW+ySHVcxuoZh9V1+zXTotZYv0RzEOLm5qbevXu3zCgmi2VsO7VFFYtgDTpZTFJg4xrt2gOmuB2rIjhmn9uOwQnM4Vi1nuXnSaGsq89n3D81quF18NlM3geuM8Yndf77eBSqfp6vFy9ebI6b7mWH1PbSY9R+DHq3dL6UeU4lPnoiFIOu2sZ8dYyV54NZ/KuWlVW31x11Leid0fvO545VPtpW3ga9Z5I3gAqZjE+nMbJ5UqcZkP5eXKqm96UxTHswGAwGgyvBrpi2FNFoiXrc5lwWL1vNVW3rmMWWqKST4pa07tlmk9nlfnzWWLIGMtUTalvF0snONBe+r6xTKpHp89QikLFrWcVkOqvYKbOfZaFqbElN7XPh5uam/vOf/3y6x0mNqYtnsc7Z55b7kD2yDWmq9ySL5E+/L7oP9LBoLi9V+PJtBcbqHF1NMcfqx2XmMbOWk9a50Cnypcz+NLd+3tV5LoGYNpmVvx/8HZSQ8lTI/PmMadx6Tr3nAeO31AgX/Jq1v45HrYXkhdR31I/n93q2V/FjtlRe3XfNJ3UVmEuTdBY011p/9CT486vnhi1UWVGzar85rTkHg8FgMBjcC/NHezAYDAaDK8Hu3OMvX77cCEykVmurFoxVt5MTmEz1+vXrW9uwXCw1cGACkM4rN2xKVGFyF1uBJklAlsR0blC/Pl0XE8/oxkyJNZ0rjUIwvi/lSjshkC8pSnA8Huvdu3ebxKaUiMYkL7oI073sXI0s9UpymHQTdm1lHXITsqFDSqjppFu7sq20L8v3uladflyet0vYSW1Eu5a6XWmO78Nn/6HrjO5xSgdXnXePCz4WuXgZHtO9pBvZQ2wag7alizY18ODxu3KnJCsq0MVNISjfnglb5xIiHZR65j5pHazCF/57cqlz7XTteR2UQN0LhmkPBoPBYHAl2B3TdouXZSFV2xKYTmAhlRmsEoDSMaq21hvlTJNYANkEJQllEYt5p3OTJemnLP7EIDuZznS9LOXRPmzNRzaV9tFcsOTrS+Lm5qbev3/fjq2qL/1bJc6QtZJlcp/UjpTrgAzB1ypLcCjDmLwAZC1dY5SVJ4lyjpSVdJDpMjmU1508Sl2yGufKv/scoipC8nb4tbME8y5gmabmiyJFzuyZ2KZtmXTl185r4LqgDKyfU+8VllXxfiSPC9/T9JQmueaujeyqcQy9ql1iafJCdB6eVVnxXZrOfEkM0x4MBoPB4EqwK6Z9PB7reDxGi1Agi2SBPVlA1cmKY5ywkyJ1JsQxkCmkMWpMbjn72JJ4A61TlW/QOmdTAAdLITjmVGLGeH4n3J+Yj2LnOr5YyOdqBXkONzc3m5wD90hQgjZJZvL3rnkNY31sf+jHYXyS1r1b8l1jkC425/uTvfK6krhGd69WAkfanwJDZF6pcQXzBujxSc10OjGXxxLvYS4Nn42qrUftkjXOa2WZIGPn//jHPz7tK2EWPufaN71DeF7mo6T8H7bRZdloJ6dc1a9V3tMVO9c7hEx71aBE23KOErMXyL5Zupn22ZuoijBMezAYDAaDK8HumPb79+83zDBZQWSTq3aA/E7WaicskCQiGbcT42Wc2vfh+JmB7AxLzFrH13FpJesY7g2glapYOT0W6bqYYdpl0vt80wKltOdT4XA4LK1ueiK4rlKcizE+ikswMzitO7ZvXWVdU6yHjU/SHHftLZnL0WWzp31X6I4vrKox6BUgc1xdH5/jx4o5StSJIjGpRatY5CV5G13Wsa5ZEpsSUnLPH59/5jgk1sxn+lyOQ9X2Wei8j5Txreob8KRseIJj7fI/0hjo1eKYk7AWPQfd746uouepMUx7MBgMBoMrwa5MCLVXJNwKYlyosybd+tY2so7FkgV9zoYeVdv4jCwzxbjYftOP1wnOMybo+zATk9KDiYnQCtcc6hj//Oc/bx3L/69r5nFp6fv3qu2mPOx9GzY8BtRoRmNKzFeWv7bpLOgUg+O6IytPTR+4NjuGmLJrWafKrOWU08DzdLkNKZu7q1/lsf3/jDt28feU4dzVyaba667a4zFzJ1b3oGp7fylvvEIn+6p7mlp3ksnr2hlz9ncI1yrXWWrnSYbZydmmOH+nM8B77OfgPexq2DUO/3vQvd9WGgaciy6fJeX7PGZ1wmNimPZgMBgMBleCXTHtm5ub+ve//71hsc7gaDXKulpZ4bTIZcXSMk0WNq1jMVNZq6l+VttwzIyVJeF+xqzIMqjA5dsyLqjzSQHO0bWHZFZvaplIpvUUCmiEKg8YE/Z7qXHSUj8Xo/XvujrPFIMjE+hagSZNAeZbkGklL8ElMWuCsUWNmcdyZs9r7mLOKZeiawHascJ0HLLxh+ZSKKbN++Nrh8+D7ilzDxI6PQiuR4fi3WygwcYXzsj5DJPxsmWqXyvHwFhw8goxtqwx85762iFj53l4b329dF4hroOUQ9HFsJlnlI7TxfmfCsO0B4PBYDC4Eswf7cFgMBgMrgS7co9X/ey2YHJKcq8QdKutZBC7xIWUvMREI7lvmLSWkkgo6kJ3i+9DVxKTV3Q+JZW5O65rWtElFfkY6KJlchn7hvt3nNdUMvcl4eIqLHvx/3cCGZTw1DH9p75j6Q/lX6u2c9glovkY03ry46Ze5V1jg+7zJObC62Fp2yXSkLy+lOTDEkOWUq5CR4K2Tcl4Hc6Vsvl7R/Ax6P4m0R4fy32aS6QwiT5T0uc56WXfn658htbcpa7rouuc7uvUR1vvSyX2UlxF8N81Rr5r6aZnQx7/Tu9TSrDqd78HdIvzb8sqzNQ13HlqDNMeDAaDweBKsCumfTgclkkE/llnOaeEEDKCjs3oe7dEJZXHBAlaiMkboMSMt2/fxm3dypMlqH1YAiZrUlat78syECbuJGlXzlMnaiCLOImraAz67qnFVVILyNRYhQlAnLfE4DrGzeS/JHrDJg88f1qzZOHcN0mRkqXwWUlJk7p2JjqRgfuzkuRJ/fgpkY/n4xpNSWsEx3+X9bZi2ioX5HmScAnXAe9dWjvnxpnu/5s3b6rq9D5YSZH6dfg2XcKjl4lxXpj4KCThISYDa62wJbEfqyu3JKNPoifdc7oqzSKj7hr8pPs/JV+DwWAwGAwehN0x7a+++mpj/ST2fR9hhc5S108W+FdtRfdlpTIW5xYchTF+//vfV9WJPSdWy/gnSxHYztGZLyUWWaYlmcRUliaWzn06EZGqvszuKSFhHpaO+DUz7sg4XlpbtLIZt2esz+eJAhwdm/R1oPvKsVDONMWlybR4n9L1kYWzVI6sLV0HvQ7My1hJRFKgZeVd67wPl+DcWl15B3x/PTeUGxZ8PaykZ8+NkaWLnEu+j3xbzYu+I5v2Nco8n660MM01S3LpQUxeoS7vgqVt+tyFsCjeo7XJuLzH0Pk3hAyepZV+rXfJmfiSGKY9GAwGg8GVYFdMu+pnS4jxo8QMVs3LiS5WSTaRmBAZrqy6TvzCP1OGL2VLE3umVUrLmu1Ek2XI1nXaNmVVah99p7F2rS1TvJgW71PieDxGVu33nBKnzHZNzKCLgfH7LhboY2Bm/iWNVrQvGbfnXfBamWNwn5hc52Hw8fPaO6+Qg/klXRvRlBX9kNjiuSYp3jBkFV8nA9R9YCOhqtM6o5eke17S9VGCmc9yqlYQKEWcZEzp0euYcHrW6RXhuyNdL+PgZPh6R6bscXquKGyT5GCFzlORwCqSPXkUq4ZpDwaDwWBwNdgV06acYNdCUdtWXdYijzExWvVd/LDqZHXpJ2sCZVm7hUo5VGZvphZ5jGmTlSuLnZniadyMD6Zs9a59HuORq2z9PcV8XMJUv1flxjGsPSfDdsu6i2Dg3JsAAASLSURBVJFzTSV2ybnTPSUDSuPmeej5SNnc3GcVjzwHsqh0/1eNIXw8vi+fCcb7EwvtsoUfC4fD4eL2i3zGVnKm9GLdB8yp4TPnrFnbMOOf90Xvkqpt0xKtL7UK1u86j0s0d/oDXYMk30djYg6PkO41r4vPZGpuxBh2x7TT3xiu0b1gmPZgMBgMBleCXTFtZQCntmzCQ6wfWZXMWKVajlvLZEW0TFOjd7FvMjl9LpUjj9d4FmhV3zIvNf/Q8dl6kpngSSmINam0hFNjAuEueQVfAsfjccncujpPxpp9n67NIVnkqva+U+tLCmys3SbDSu0umedxl1g256RbF36vU8atfy6sMsEZL6SGQVKl+5yenRcvXrTPXNU214TqY6qn9mzyrrZa13FJK1t6Hjp9Bf+/1hArRHR9ev/wGh3yDtDr6feF+T2CrmsVY+5UHNm8KTXToady1dCja/DD6/YxrvKV9oBh2oPBYDAYXAnmj/ZgMBgMBleC3bnHP3z4sHGhrYQW7oOuKQabg/i2cjGxuQjlR/14LM/Svt9++21V3XZTKTmkCw3Ife6JJwLdUCyr0PeegCL317kkOSZP+XXsodSL6HrtOug6Z1JecotS0KNzmSUXLt2ibIrh7kX2s2Z4huPy/zOhrntGUkkb1w4beqTroajKOREZ31agW3wlQ/y58OzZs1uiTiupUI6JgkYe5qLISfespRDbpfB9GWLTu4KfOzQWbcuEyu4eV53eIexLzxCLv8tYDtslS+oYPp4UqvF9+Z71/5/7mcSDkpTqHrCv0QwGg8FgMGixK6Zd9bPlt2IzD5ExJchI0vnYMi6VFfB3JYB0cpVszuCfsWWmrEcxLiWzJSGRzsJVwogal6QxURhDx6dMo2NvTNsbP6TyrY4BMvnJLXUyQDJvlpKk83XtAJPsIj0plIpMJStkJZ2nKonHEF3CjjPuTgqya6+YxJE4FnoynHmtEsQeA4fDoX7xi18sW9ny3EyYYulX1XZt8FkmA/d9z3l0EugN1HOfEl8F3Ztu7dDTllgzy1Q5Hj9v58WgZ4xysb5P995JiZ26T13JF1uR+hh4jL1gmPZgMBgMBleCXZkQiml3Ig3apupxrG1a9yzJ8XNTBJ9SnilOmFrh+fncApWl2xX/i2EnJtLFZ3Teu4hScNvULJ6x8r0x7qocq+I8dWvJ576bD7L2xIy643Nsvna4zrqYc2Ki57wCaU5Wa98/T8yenh0yylSyybnoGGXydnyu0huJOl3SJpQxWMpwJpbX5YAw98TnmOWbd7l2bSuvzapMtiun072k58ffAyoDpedoJcjE95euU/PI9e/vzu4Z1D5k1T4GeofItFfPRFrHT4lh2oPBYDAYXAkOeyocPxwOP1TV9089jsHu8f+Ox+M3/sGsncGFmLUzuC82a+cpsKs/2oPBYDAYDHqMe3wwGAwGgyvB/NEeDAaDweBKMH+0B4PBYDC4Eswf7cFgMBgMrgTzR3swGAwGgyvB/NEeDAaDweBKMH+0B4PBYDC4Eswf7cFgMBgMrgTzR3swGAwGgyvB/wFeFJihO51QiAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -710,7 +970,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0delV1vu855yvqb4q1QXSEBBsUa8ooHADQSWGxogCgoAQG7ABFGwY9xo0AdHYQXRcxKhcQTpFUEGDBIISDIIKAl4giQRIpdIV1fdVX7vuH2s/58zz23O+a+2vvpARz/uMccY+e+213n6tNZ/ZvW2aJg0MDAwMDPzvjr33dQMGBgYGBgZ+NTBeeAMDAwMDJwLjhTcwMDAwcCIwXngDAwMDAycC44U3MDAwMHAiMF54AwMDAwMnAlf0wmutvay1NrXWPvRqNaS19obW2huuVnnvK7TWXrQZmxe9F+t4WWvtj7+3yh/oo7X2Za21P/Q+qPcFm7WV/X3NVa5rr7X2ymwdt9a+prW2Fc/UWjvdWvuS1tqPtdYeaa2da639cmvt/22t/R/J+W3z+9Ra+5Sr3P7f2xmr+PeNV6m+T92U9zuuUnkvbq19ZXL8wzf1fMbVqOdqoLX2pa21t7bWnm6tvam19rIdrv2i1trPtNYea639Smvt+1trH/3eauvBe6vggfcqXqZ57v7Z+7gdJxVfJulHJf2b91H9r5L073DsnVe5jj1Jr9j8/4alk1trN0h6naTfJuk1kr5G0hOSPkzS50l6vaTbcdkLJX3w5v/Pl/R9z7TRAf9d0u8K358r6bs27Yr13HuV6vvRTX1vvkrlvVjSl2hub8Qvber5hatUzzNCa+3LJf09SV8l6T9L+hRJ39RauzRN07cuXPsXJH2tpL8v6S9JulHSX5b0n1prv32aprdc7faOF97AwPsffnmapv/6vm4E8P9I+u2SPm6apv8ejv+IpG9srf3B5JovkHRB8wv1pa21m6dpevhqNGaapkclHY5R0Eb90pqxa601SQfTNF1YWd/Dsb73FqZpeupXo541aK1dI+mVkl4zTdNXbw6/obX2QZJe1Vr79mmaLneKeJmk10/T9OWhzDdK+hVJny7pb1ztNl81G95GJfmjG1XCT7XWnmyt/Vy20Ftrn91ae8tG5fHzxc2g1trtrbXXtNbetTn3La21L8I5Vq9+XGvte1prj7fWHmit/cPNhMRzr22t/e3W2ttaa+c3ny9vre2Fc6ySfGlr7etba/dv/r6ttXZz0r7vaK092lp7uLX2LZKOnRPO/UOttf+6GZeHW2vf1Vp7Ps65a1PPZ7fW3txae6K19pOttf8zjrOkj5f0sUEt84ZiWmI7v6G19o7NOL6jtfatrbUz4ZyXtNZ+vLX2VJvVUd/TWvt1KMdz/JKNGuKp1tpPt9Y+urV20Fr7m62197TWHmytfXNr7bpwrdVxf7a19nWttXs3Y/Ha1toLUM+pNqvN7trM012b76eS8v5Ua+2rN/U+3Fr796215yZj8EWttf/ZZrXL/W1Wsz0L50ybev7cZm081lr7kdbab4pzJOmDJH1uGP9v3vz2a1tr/3bTt6dba3dv5vlXVbBsrf35zVp7cDMmP9ZaewnOOWit/Y02qxQ9Jj/aWvuYTXv9oH9F6OeWim1T1vM0s7jX4GV3iGma/i2uuVbSZ0r6fklfJ+mspM96Rh1/Btj0/zWttS9urb1Vc/9ftPnt77Qjtdu9rbUfbK19BK7fUmlu7t3XtdY+ZbP2ntx8ftJCW/6epL8o6UwY+8c3v22pNFtr393mZ+PHttb+++a+fFNr7fe0GX9lc8/7uXML6jvdWntFm9WS51pr72ytvSrebwVepJmVfRuOf6uk52gWgHo4LelRHHtM0mWFd9Omz69trd23Watvb619x0LZOaZp2vlP85t5kvSh4dgbJL1H0s9rXvwv0azGuIjzfu+mQ/9eM/19maS7N9e+IZx3o6T/tfntCzfX/V1JlyR9adKWuzVT6xdL+kpJ5yV9czjvQNIbJT2gWSX1eyS9XNLTkr42nPeiTXlv0yy1vljSl0p6StI/xzi8UfOEfYmk36dZxfiOzfUvCuf96c2xfybpkzXf2G/e1HFDOO8uSW+X9BOSPkPSp0r6aUkPS7p5c85vlPRTkv6npN+5+fuNnbm6RdJbN/3+8k2//4ikf+m6N3N1aTNfL5X0OZJ+UdJ9kp6DOb5H0s9K+uxN+96kWSL7p5K+aTMOX6b5gfF3wrUv2IzBO8Lc/7HNvP+CpFPh3O/QvG6+ejP+r9yU9x1JeXdtzv8kzYzhfoV1tDn3b22u/9pNeX9M0rsk/TdJ++E8l/cDm3H4jM0c/aJmaV+aVXbv0ay+8/j/ms1vb9WsSvt0zULJ52h+GJy+kvssmUv3+Ys0r+fDP5z3dZL++GauXyLpH2m+5z4xnPMKzQ+XL9209aWS/rqkT9n8/rGbur4x9PM5m9++RtIUyvr8zbm/e4e+fO7mmk+XtC/p3ZL+y9UYp6K+D93U97Li9/s3a+KnJP1hzc+bD9r89i2b9r5oM07/VvPz4MPC9Z+6Kf93hGM/qVnV/P9pvuc+SbPa72lJz+209fmSvl3SuTD2H7n57cM39XxGOP+7JT2o+dn7+Zt6fmIzv/9Asyr3kyT9KUlPSvpn4dqmWT3+mKT/e9PvvyDpceF5l7TzL23acgOOf8jm+BcsXP/nND+nP1czUXiepG/ezMXzN+fsbcbwjZL+4Gatfp6kb7uidXCFi+dlyl94F7AI7tD8IP0r4dh/0fyQ3AvHfuemvDeEY391szA+DHX/082AHKAtr8F5L9/U/Ws33//o5ryPS847L+mOzfcXbc7jy+3rN+1pm++fuDnvs3He9yu88CRdL+mRuMg2xz94U++XhWN3SXpI0i3h2O/YlPc5GOsfXTlXX70Zh9/WOecnNT+sD9C+C5K+LpnjDwnHXrpp3w+hzH8j6W3h+ws253Hu/WD9E7ihX4nyvnJz/LegvDfgPN+EHxjOuyTpr+E81/tp4di0GYf48v2MzfGPwTx9G8q7bXPeS6/knlo5l+5z9ndQXLOn+aX4nyT963D8dZL+Vaeug2weNr/xhffyzbm/Zoe+/KDmh/Tpzfe/uynjw9aWsePYrXnhPaJw7xXn7WtmJu+U9DfC8eqF95Sk5yVz+OcW6vl7kp5OjlcvvEnSR4RjH7M59tPaPLM2x/+JpMfC90/anPeHUM+fWpoPSX9T0sXk+M2ba798xbx8sebnoNfx3drc4xiv1cJU7+9qhyW8dZqmt/rLNE33ajYKP1+SWmv7kj5S0ndPQbc7zTr1u1DWSzRL4G/bqF8ONqqWH5B0q2amE/Gv8P1far7ZPyqU93ZJP4byflDSKc0v3Qga0H9W0hlJd26+/y7ND9J/ndQb8bs0s9VvR73vkPQWSR+H8398mqaHUK+0GcMrwIsl/cQ0TT+d/dhmteNHSPrOaZou+vg0TW/TLJx8PC75hWmafjl8t2H5B3DeWyQ9t7XWcJxz/180PzzsYODxoJrE39me/4DvHK9P1LwOOP7/TbNUy/F//XTcbrN2/B+Q9MuS/lZr7Qtbax+2cL6k+Z6I7UrGK8PXaL6PDv/i3LXWPrK19n2ttV/RvEYvSPoESVFF/ROSfv9GhfuxrbXTa9p7NdBae45m9vmd0zSd3xz+55vPz1+4tmG89q9i034E957r/OTW2htbaw9q1jyc06yy+3U8N8HPTtP0Dn+ZpukuzezpSu/nCvdO0/RT4bvvyx+cNm+OcPz6dmSeeYlmLdVrk+eiNDsWvVfQWvsjml/sf1/S75b0aZo1Kq8L98+7NLP/V7fW/lhr7UOeSZ1X+4X3YHLsnGb9vDRLwac0q8AIHrtD88PoAv6+a/P7rQvX+/tzQnkflJRnmwPLY1/ObT7dlw+Q9NC0bdTO+iFJP5TU/ZuX6p2mifXuilvV9+C7RbNa4z3Jb/dIehaO8YFwvnP8QLNEHFHNvefJ9bE99+B3Y2mePP6/qO3xv0G7z3uKzUPlEzVL9a+S9Asb+9if6V2n2esutukLFs6XpLdP0/ST8c8/tNlh4Ic0C1lfolmQ+EjN6urYh7+umf1/mmYPw9SuuRJ+oH/QyvP/qOZnz/e21m7ePHzfKennJH3ewkv/T+j4eP2vK2hvha17oM3283+neY1+gaSP1jyeb9W6e3LpmXi1sMt9KR2/P27ctCmOq4Va3h+sc7/NHroRXkNZ3yVJbfYf+EeazU5fMU3TD0/T9L2aGack/TVJ2jxfP0GzuvZrJf1Sa+0X2g6hDxG/2l6a92sezDuT3+7UzMCMBzSzwz9flMWFfqfmQYnfpVlCcHlv06yfz3BXcbzCeyTd0lo7hZce+/bA5vNlaJ/x2I717or7dfQyyfCQZpXBs5Pfnq3Oor1CVHP/M5v/Xd+zNb8MYlvi72vh8X+xtm/++Pszxob5fv7mgf1bNb9wvqG1dtc0Td9fXPb7NWsOjLc9w2Z8suYH2GdO02QhwUw+tvW85hfzq1prz960w84jn7tjnT+s2Ub4+zWrTpfgl3o1Jh+vOhTie3S0VqTZzHC1MCXHPlOzqvOzpmm65IOttd6L4P0JD2i+L15c/N4Tlv08+0067jlq7dubOtc+T9JNmjUNh5im6cnW2s9L+g3h2C9I+pw2Oxf+Ns2+CN/UWvulaZre2KljC7+qmVY2C+YnJH1GO+4Z+dGadbURr5P06yXdTWl288cXBV9kn635JvxvobznSXq8KO/+Hbvz45rZy6cn9Ub8mOaX2ocW9V6JhHpO0jWLZ834QUkf1Vr7rdmP0zQ9Iel/SPrMqB7aMIWP0YoYrB3Buf9YzTFSP7459J83nxxHP4R3bc/rNa+D5xfjfyUvmO74TzN+RrPxX5rtLtW5P4v2PNMX8LWbz0MhrLX2GzQzk6oN90zT9E81v7g+fHPsouZxW1xnG5Xdt0r6M621j8rOaa192ubzozTf19+gWXKPf5+kBZY7TdP9GK+fW2rfM8S1mtWYhy/D1tpLta1puNo4J+nUVVbZZnidZi3PfnF/3NO59g2an20UkD5Psxryf3SuvU+zuv3Yemmz9+6H64ioHGKapsvTNP0PSV+xOVTeVxXeF3F4r9D8EP6e1to/1hyM+lU6UlkZr9bszfjG1tqrNTO66zTfLC+cpukP4PxPbq393U3ZH7Wp51uCTfHbNXvn/cfW2tdq9nI8LenXaHa8+LRpmp5c24lpml7fWvtRSf+4tXabZhXHZwmTME3To621vyzpH7bWbtcs1T6imXV9vGani11dbN8k6c+21j5LMwt6rPPifLVmb8EfanM2jp/VrFr+A5L+9EZw+KuabZavba19g2ZHm6/atPNrd2zbEm7Q8bl/leax+xZJmqbp51pr/0LSKze2hB/TrJb7q5L+xTRNP5sXm2Oapl9qrf1tSV/f5jCLH9HMCp6nWQX5jdM0/fCOfXiTpBe21j5V87q9XzOr+geSvlOz+nRfM6u/qHWs52rh9ZofJN+2uW8+UPNc3h1Paq29VvMD6ac0ewF/hObx+Ppw2ps02/levznnXdM0Zapvafb2/DBJP9xae41mteoTmu+vz5P0WzSzsy/Q/CL929M03c1CWmv/TtKnt9a+eJf78b2I10n6k5L+yWZd/ibN3oy9F8HVwJs0E5K/1Fr7YUkXKjv8M8T3aVbZvra19nWaVfJ7mp3WPkXSn5mmKWV5Gzb21Zrt1vfqKPD8szQ7Bx3a6ltr3ynp903TdPPm2kdaa98q6QvbHHLxA5qfDV+mWc369ZvrPkazl/Z3aVazntbspXxO8728G3b1ctnYP1+m3Etzy3NQs6rwm3Hsj2h+gZ3TTIv/4Ob6N+C8WzQ/sN+mWfd8r2b31C9L2vJxkr5Xs0H4QUn/UNI1KO/sZvDesqn7Qc2M85U68vp80aa831v0+QXh2O2S/oVmKedhzQ/tPyCEJWzO/WTNEvSjml2D36o5TOE3Yqy23G0FbznN6r3/sKl3y1Mxuf4Ozd5Z79mM4zs0OwmcCee8RDPLekrzi+57Jf06lLM1xzryovqTOP5KBe/BcN6f1aw6u28zDt8n6YNx7WnNjhlv1yzxv33z/dSKej1/HP8/qlnt8sRmjbxZ80313HDOJOlriv69LBz79ZrX4ZOb3755M8b/XHOIxZOa19aPaL7Jn7F3Wa/PyXm+v57WbBf7w5qdfn4xnPMVmrUfD27m/H9ptptET92P0+zld25T71dujh/z0sS8felmHT26WWu/rNmz+jdvfn9A0g902m6vwc+7WuO2KXeNl+Zrit++YrMGHfT9Qs0vhteGcyovzdcVdX39QntPaQ4JuV+zgPD45njlpfkWXH/95rz/C8e/ZHP82eHYgeYMJz+3WTMPb+b9VZKuWzG2f16z4H1O87P1jyfnfLf7gPXyFzUL4Y9rfr7/kI6HdD3Pa3cz/g9I+o+SPuFK1oFd7N9vsTFefpNm99lffB83Z6BAm4PL3ybpC6dpuir5CwcGBgZ2wdgtYWBgYGDgRGC88AYGBgYGTgTe71WaAwMDAwMDazAY3sDAwMDAicB44Q0MDAwMnAiMF97AwMDAwInAToHnN91003THHXfo8uU5ntCfGWgbXGMrfF/ZE1nvuvy963G1y8vKzOrwsaXP+P/e3l5aXnac10jSO97xDj3wwANbjdnf359OnTraXisrz8f4mdWzFr015d+qc9ZcW2HNnF/JObuspWyeI3p92KWepbG4dOnSVpnZHD/66KN66qmntio+ffr0dM0112h/f046cnBwcOzaqry18Lkn1Z/haq3VKyljqVy/Y+Lc+JjX1eXLl8u1Q+z0wrvjjjv06le/Wo8//rgk6cKFC8cakDXQn26cv8eO8gWadTJeky3MpYHLrmEbs7ZV9fAclhFvxurl0RMYfHNX9fIznu//XY9fNH5Q8FOSzpyZ0zled911x645ffr0sTKvv/76w2uuvfbaY9dO06RP+IRPSPtz+vRpveAFLzis09fEl6DLvuGGG4795rr9PXvpetw9phcvHm4ekP4e/483TnZNRHWOj/PBG//vzVnWl3gt55TX9B4m1TUuM3uYsP6sXwbHwOW6nkceeWSrbK8dz/n+/r6+4zvyhEPXXnutXvjCF+rmm+cE/zfddJOko7UqSddcM2dA87rieGXjVAnlnIfec6ESmpaEjayeHnrPlyVUbVgjJFfjt0awqNZ7XPfsB8v1O+bpp49Spj755JyAx+vqscceK9cOMVSaAwMDAwMnAjsxvGmaDqVhKWcolFb8xibTW6NOi3VFZFJFpdLoUeKqzWxrVucu6qKK7VLCi9IO+05pnJJR7JPPMSMik8kYhn8zMyL7yCRKs7V4bk+aPHPmzFbdZpDSkZTuYz1WYVArQE1C9T1ek7G/JSxJvLHNZDzVNVk7lpjKGrUr591l+XjWVrLeiiXG3yjB+9NM7IknnijbuKSh2dvb67LNJcaTMTEec1+XtDgR1bOkx4CuRIVatXUNdmF4/K2nuSD4G8eC4xv/r9qSqa+p2t5F3ToY3sDAwMDAicDOuyVcunTpkAVkbK0Cpcrst4odEpkefkkCziQishpKxLQDxXIr3XPPVsg29KQbMqzKvpBJi+wHJXBjDUM3sv5xLPb397vS5KlTpw7H1NeY1UnS2bPznpSR9VXtZHvdV36S+dkmEEEW2GMzS/a3bE4rhlfNx5JzR2yrEb9XmpE191klpZP5x7b7HDJ+znEce7bl1KlTi4yDY5FpFqr2Gz0b7i7Oa2TCxBqHoDXPN5Z3JY5WS2PSawPX6i6Mbw04Fnyu+TP6G/h/a7D29vZWs7zB8AYGBgYGTgTGC29gYGBg4ETgipxWzp8/L+lIRdFT+VQG4Ygll/uK5sbfqB4iMqcOfqdqM3N0qdrUc4RZcl3exTmjUo/1DMFUh7GMqt0RmRGe5/bUUq01HRwcHPbDakurMeP/VllQJdtrr8tlqIx/9/Gopq7CYHoqpyU36uy8aq4qR5e4lri+KlV9tr7ZH6roe85fXCNr1LxsI9WfDhmIiKqqCq01tda2VKWZSrO6t6m+zI7t4giyVh3Zc86rnmuZ2WAphKpSrbI8qQ4dy9pdqd+zZ1blRLImtGXJRBB/dz1+hgynlYGBgYGBAeCKGJ6lZX9mRu+lN3bPUL7kGJBhyYgc66BUzHKzUIYqlIBSYdaOJWa3i4RCI242nhy/iklE6boK5+B49qSzXj+madLFixcPrzebi04rZgBLoR49o/va8ITqWET2O9tGt+lsTmnoXzNebMPS+suY65JzQi+EwmXExABVfR6DpXUenZF8fXwurHVa6bmj857m+o3ttqaqWjM99lQxnjXOS1UygezeqphrFS6SaQeoueox20rLsUazUT1vuN7jc8d1V0w/u1eyhBrDaWVgYGBgYCBgZ4Z37ty5Q2a3RgKmxNgLNL2SfHhr7CBL17IfPX1/FV7Rc39eCp2oysiuqSStjOFVdoasHqbvohTNUJQMa+bL5ZrZRRsepTy2n2xH2h5b2ke8VnuB51U6rZ6EX7lNZ/NRBQ1XYQKxPtoeKfFnY8Jzq35lTMnzz9RyvXuz0lgwTCGy+aeeeurYuZcvX17NSHsMmc8Zjo9ZnbRt783GMiszq7sKvs9sXGTEvXVfrZk14QBVUgavj+yerkJ0luzQsR9k4j0bHkOR1jxDeix6CYPhDQwMDAycCOzE8C5fvqxz584dSkmZhFJJAJWXWfytkkx77HApNVGWILc6d43tY8lLqrJ9SbW+vefBShZQSU+xzZWHnaWorJ+0PTq5L6XP2C+vgyi597C3t3co0bn8yPDWptGK40Sp1XZAS+/0KI42nIrZc81m2oLKDpOxpiXvz55mwe2t1kiPfTIFEz+zQH/+FoN7Y1uz9lffyRKzc5cCtff397usprr/yGIiw2PdLKOXzqtiXLwms1fxecc1tIu3aNWXWA7HgvdETAjA9VaNeZbyi9oB2ud20dz1kgCsTVCSYTC8gYGBgYETgSuy4dHrp8dM6PWXSdr0luqlzcraFOtj/dzeJv7Wk6x5TWUbyGxD/M5YQffLY+HjcUwqm0llK8jAMrythsckxkXZpuJPt/mWW24p++UtO7hNUIbW5tRiPscMIl7Duep5lRKUYjlfmb2CNhyeQ1tHVi7nltvTxHPiWMR+sZ4126e4zJ5na2WP89h7m53I8NgPrqHs/mU/eY6PRzbfi4/MsL+/v8Wes+cC59LPlsw+t8Q4Kk/seO1SfGTPLl/F1PawSz0cC94bmQ9G5cFZae4yT29qFnrPqCqelCkAe/f+SC02MDAwMDAA7Jw8epqmbvYUxu1QT2yJK0p0ZgqUuCtddnzbV1kcKM2wXdK2Xp/1R+ma3n6V1JS1nQmTqy1YYhvpNblk38o8uyr7km1uUbJzG9lPw2wgi/Px/J09e7abqeWaa645ZIPuV5T6vY0Mvfzc3ozV0l5VbR3CeZOkc+fOSTpitf7OdeDj2TlkJrR5ZSA7JBvJxtjweFFqjuPoe8HMzePnT8/Bs571rGPnxXZzfXEsPGbxmNvP79k2RG6DtQ5L3r97e3s72YKq+Nhso2TeL7w20wD5f95j1FJkGUKoBaBtdY39t5fZyajmsmeX57OJ13p9Z1odagMq+28vaT0zSmV+HRyn4aU5MDAwMDAAjBfewMDAwMCJwBWpNA3S3HjMKh86Q1jdkaV4olqDFDzbf69SXZG2Z663VONVaZykbfXMUrLiSNvZLwaeZkZ4U3om6KaqpJceimqXnqsxnRQ8X48++uix41ZlxPKjM0SlhrZK84YbbpB0pCK9/vrrD8+xStPryb/RfT6uN6pNKhWwj2dOK1ar+ZNrN1Np+lyqtLMwGBrgK8eATJ3sMeC9ZvWk11KcF//mMfaYe3w91/7M7t/KKcL9txpbOhonj8nDDz987JzsnvdcevxieRkODg62VIC9VFzVOT1VM9duL7lElYibKs1srfI3f/Ie79WTtUnKE1BUz6be+LGtVUhLDElaMif0VJmVA2GWtm4p7VkPg+ENDAwMDJwI7ByWcPHixS0jdJRCHnroIUnbzin83jPM+ze6XPttnwWAVu65mbNClUqKEnaUzOmgU7mn94zvlJLozJIF8FeBwNWO6PFafvc5TBwQ28BPS++Zi7GPWTo/f/586bSyv7+v66+//rAf/rzxxhsPz7n55pslbTMRjk+Umqt0Vka2DZHh+TU7euKJJ471mewwtsnX0OGKu7XH8qrA4yrUJbaBIQscR49ZbJsZnsc1ssBYT1wvbBPXSial07nI360dICuOiIyocj5wwgKypzjXHrvKUSKby0obQU2Py4jX8hw6nmXrcYl1un9x/jN2HOurNFoR2TZuWf3xf97vdLjh+ovnEnxfZNo9OhWS2WbPldjGEZYwMDAwMDAQsDPDu3DhwhZLi5IbpSEyPCO+kSkVMwB4zXYqTJsV7S68trLv+Lj7k0k+lM6YXDmTGt02SngMvo4uvhxHS+uUHCmJR1SslFJ8/L9irpk7OlnO008/XUrNrTWdPXv2kAXYNmX2IR25yVNSpBQd20DJmvYD2pAzG5776HPM9DKX+Sq1HNdwZFNuE23FZPhZ8DX7XKUny+afY+F5ItOM7ICMgt+z5OlkO1zfWSiF2+Jj1113XWmLaW3ePJhzHMecYSK0dWdhAtXWV1Vge8aEadvvhcEYXN+04cbnAFPl8Z7ubaFWhVdUGq54PRkeQ10yGx7vCdq1s6Bysugs6TZRsfk1GAxvYGBgYOBEYOfk0U899dThG9YScJQyLNlSiqVkmnkvGQyu7HnjUJqobHnZdiaUZugN2pMGKV30gofpDUc7DBlgPMcSlG1dVVqqTPpkElcj0/fT9uB+0DMyMme3zdL6448/3mV4p06d2gqCjhIi28s1RCk3nkPvRTKRjOGRtbhvDJyOEmkl/fc8CN0mejAbZGLZ1lKV5JsxfDKtymbkfmZJGdg2eq5GuByyHNoXMztMTE+3xPAqFiVtM6nKBlWVL21rCartdWLdlV2ul3C6ClrP5pjPwsrTMhs71lOlMss0Z5U9zuvMv2eJxzmevc0BKp+HNTbJqElYy/JQ7dsxAAAgAElEQVQGwxsYGBgYOBHYmeE9+eSTh29l2zqih5hRxa353IzNGJRqGa+SSR/UmWdswKjsPUzIG+t5/PHHj/XHn9FDUdq2HUrbNo3MCzSeF89xvQYTP/e8lwzGhvXsjYzhc7/c9thm9zVKm5XEtre3pzNnzmzFhkUvr8rzjF6MWcyh15U/2f7MlsxYR7LzLNVU5TVn0JYcj1XSONPvZame6LHMNRqv4W+Uyj2uPh4ZHu8JMjyz1YxRVtstGZHNk71P09S10R8cHGxpYuJaJEvyuiLTz7yZ6f3pc5lGLtZXpVfM4jDZZyaN5/MhghodPhvJ2uLzhzY1Phd6nuVsP+3ZvGekbQ9OrtnMK5hatSqxdhbXmj0PljAY3sDAwMDAicAV2fCoL4+SDyVqSxx+6zNmR9q2G/kabvuebaNDiY4edlmGDXraWRJh26K0RAmHDI9ML3rpsX9VNoNMKvS5jz32mKQjb01K6XFMbO8jq4lZTdg/ss1qW50oTVEnf/HixZL5uM2cyyzJdmVjyJIG0z7qefJ40cvRcaJuj1QnD/dnHDevDUr9tKXFzCFut9dmpf3IJGAm2/Z3f/Y28XRfacthovXMBu8+857g7/F6jzntqu5PTxPE9RdhGx6vifAYk2VwPWZbcNG25rlj5h22KZ7LONlMe1J5WBtkbxkqG15m/622cePzKAPPpX3bY+U5j8c8z34OcQ1HLNmZM4bHeVvaWupYuavPHBgYGBgYeD/GTgzPnnaWeDKdc2XjoP49SjEuzxKpy/Dmo3zbR0mBDNLf3/Wud0mSbr31VknHM3pU8SnUH8fzqtgwSiaZxyUlGzKWLMMC7RlmKJas3R6zhrhRK21g9957r6Sjcb799tu32l7ZYeidF6/x+MQ+r814kNkRq3ng+GUS8IMPPihJuuuuu46Vf8cdd0iS7r///mPnxXK5jsnmY5+9jmirq7Z+ko4yjjBWjAwvi4ujRE9p2XkrM/uS66Xdj3Ma58z985jcfffdx+r1eD772c8+vIb3qcePLCFK4lme15524PLly4fXZx581ZZBHL8sZ+eSbZV2K2k7C5Dr8bgx5jG2jQyPGp7smiruryojO4fjltm++ExinCvXbMauKv8Gr6HI9HnfED2GZ/QYMTEY3sDAwMDAicB44Q0MDAwMnAjsvD2QdERVMzUC3XSpTjFiAKspLz8feeQRSdsqp0hhGdRLym31SqyfalUafN0/qwulOtC4ClaN57ONTLmUuQdXapYq0DrbyohqF/cnUy24/Z4Xqko8JlE1vCYNEEGDeVSJ+H+rUxj07s+oWrIa/J3vfKck6Z577pF0pMpm/5y+TDoaH/fNY2tVIB2EIhj4zyTfWWJjj5fV7hy3TN1GNT7nMlM1e2wfeOCBY/2kE4HV41GF5nO8NnwP3nfffcf6FQOOPaZei1RXU4Ub2x0dQyqVppPWV6aIWAed5bj9UBxjj63b7XFa2pKHfYnnMLFG7BNDPnhu5nhSPdfYRoa+xHP4jDLovBf/Z/uroPksOQefb3TkimuH9wsdUnomEs/xWjOKNBjewMDAwMAJwc7Jo8+dO3fMFVU6HmLgNzYlILKp+DtZCsv3m5zptqQjycASr6V/puKKrKBKNM1NKWNSbLq/U9LubThLSZIMMzPGU2pxfZaSLCHTHTq2iW1jOq/IeikJV+EIPWmqSitmWFKXjqS+OMbcmoQGdB+P13it+BhZM0My4rqjC7lZDCXHKMVSKmaSZbOnKGlzO6glbUEEHVrMuFymmVhcb5x3f3cZTtjt+Y/u6R4/M2c6JmXJq6ttrrgBbLa9DplZBq+bXgq0Kn0Vwx6yAGaDzmr83qufzkqZhqZy5Ku0OPEajhOPZ8HrfM5Uzn+ZZokMq2Kjse3UyDD9GJOCZG2qnrOZwxO1UWswGN7AwMDAwInAzoHnUQfuN3W0BdHm4zezU2RZ0o56XErwfrtzC5FsexgGgBqUtDOJm5IPUwpFyaGS7uiGnAWeepwq9/osATClJF7LwPoIpkqiTr3HQsh+aTPMtgeKLKQnbbXWtpILxPLIIujGn6Vt8zW0t7lchyNk4TDVtjl2s2d6qtimKmFyZp9jn9kPakOyUA0mzK1SgMV2247JZAy27WX2XwbuW1PiVHC+f2P/3J8qVR9d6WN/PPbTNC1K6tUWVvEYbUwVq47tZDL8SpuRsVCmxnJfe/4NtH9Vx2N5tHlXYVFZUn6GzrD/EbQVLl3T22KMbSQ7jOdW9sYs5KDaIGANBsMbGBgYGDgRuCIvzZ7OuUqbRCk9eztnWwdlZcX6aBOqbEzZJoeUQFxGFpBr0BvTbTXTyCQv2raod2fQd2wLEwFTas7GpNoShddm26uQMVCaioyMbKZnw9vb29Pp06cP68nGOEtmLB1nAfzd/5uB0FZcBeyy/9K2bdMMNrN1unz3g3a63kaztPcw4DyOCbcwMmiXjWNPJm9W5naY8WW2Y9pNXQaTI2QezFxv3GapF6TcWivvXSe84D2wJkEzxzhLXFytGaN6LsVrq02qs8TMZO20k0ZWQ7sXPWCZNixqificq+zx2bOq8rzubdtDbRpt4Jm2jd78nK/sWZb1Y62n5mB4AwMDAwMnAleUWqzabkLa3oqEtijqy+M1lAwoHWVMqNoGxmBKs1g+62cKqOjx1IsRYvlVfW5rtX1PBCU6SqP+PWMFVVsY8xLrpTcgU/7Qvirl285U49Ra09mzZ7cYUJbAmsy32jg3a2f04I1l9raLsmTtcl1G5sVGG17V5lhPtQWKQTtTxrzJbphMOtrEXTfjn5jqifbHiMqDkOsygjYc12M2mNnE45j01k587mRJtpnii2m1MjZj8P6rtuLJ+spyqw1b47lkeGQ5mf2/t6VXrCdbd1mqxKwPVV/jOT27Ge3LZL/Zs4qoNt3NbO9eQyN59MDAwMDAALAzw9vf39+SROIb2/9X2TIymxOlsZ5nVSyD/8d6Mn14VZ8lX3uSZgmgeYy2HOrws8TMWfLrWGZsK73MKk/FzLOL0ibjYLKxodRVeUtFJlEx8QqO44xYI+2ZccW6DW7txOwyPVQej2QJ0S7CLDxkrJTWpW2WSftr5akW/6eE7/qz+WdmGrNAxr5lG84SVdxhvO+qmDraxDOvyqXYzQhqH7LnA5lVtTVOdX1ET5NV1cvnW+wf283nATUB0jKz69kMaTtjGb3MLlUccG/bnirej+f2PGY5jr31EZnrsOENDAwMDAwEjBfewMDAwMCJwBU5rVhtRNWgtB1cSON3RqPpSsydeDPjqkGXYSZRzVQLpMlMvUR1rFSrLCu35MygTlA9lLmHU+2W7c0Vy+L/sXyqYTN1C/tXpQuKbYpjUKkWpmnShQsXttqQuURTdcU0Q1loAR1yuA6zBN0GnTh6wfGVswpTO2WJjav98KqUU7H9THdmByuXYXV8bAPVvVVqqczdnvshVoHP8VyqNO2YxmTz8ZqeejIi7oeXBTBX6jPWl9XD5wvP6anLKpVv9tyhgxvvsSwNIstZsys6r63mn+3K6smeFVkZvXP4nMuu3UX9yefluXPnVgehD4Y3MDAwMHAisHPg+f7+/qHkaAmuZ7is2E1P2mPQM6+J1/Iag44vmbHakpT7QWeOzEFjyZiaMTzuNM1zyXpiGyrjscvM+lc50mQOB8aS5JiFd3Cuz5w5s2g8Zp8zl+IqmYDHL0u9tJTequdGT6eLyo0/lsu+06EmXkOpmcyucrDo/ea2OgVYxta5hRTZenZvcp1Xji4ZuNM10wv2god3QbZLdhVi0Vv7a9hEdbxy4qE2JXtWVc4q2dY/lRNO5cCT3dtkeFWi66wfnJ9q+7eq7uzcTPtVzUXPwSU69g2GNzAwMDAwELCzDc8poqTcZZYB55QUdpHoKp1vJiFQouq5MDPFks81a8rCEjL7UTzOcIUsfU6VPJqMJraFtq5Kx54xKwZtkllkoQxVyEkvLVBkxEvzy2TbEWT6ZOkZ6/UxJv6tkG0zQjsVwwbiONG+S8mSG4/G8rh2KttGZt9m+xlqENeObY4uhzY9f882Da0YQ2aTMsgKXH9vqxwmFbh06VKXYWXMLGN41fxn4VBLzG7NedX4rGEmFbPrhSVULCqrl3Z/PiM8/5nNkOVW9r9dkKXJW7pfe6ETMVXiYHgDAwMDAwMBz8iGl20ZYwmh8uTMpPRqC4oslRhBiaeSsOJ5ZnZM0OxPbtSatY0eiv7eS3tUpUZyGTEou0qrRfRsE1VgeE8aorRZtTX2K7KdpdRDGWsyKkmUGwCzzIglO0xkXgy8Zp8z6bNi+mSsWXow3gtV+qvI1qp1bNtdtl0Pg9Pt0cmUaZmXJm2Tlcdizw7MdGg9j754j/fWThzvrO6KefQYRMXcKjtSz5uxsm3F+rkFl0H7aGRcTEPGtjDlXMZgKz8Az3tMjl7ZtZmeLGN8S1sJ9Vgin6NVkH5EtqnvEgbDGxgYGBg4EbgiG57ftlni2qhXlWrbVi+mrmIVPU8kg5IXPe+kI8bAZMG0bURGUXnLsW1Gb7sexnCx/7GNZKGV11SGaqx72/m43WYOlEp7Kax6aG3ewoOSYsaiM29MaTtZtbQsjZNJrIlx4rjE9c11zfWeofIYpcdjlly82sKG/cy8Z5lo3LF69Ljted5W8aaZZ3bF3nvxk9FeumTD66WdWlrra1LYLcXUxfZVzwPen9lG11wHtB1na5Trl74DGRPiOHF86SUqHWd70tFzk9qXnkcxWSA9pzMbXvXZ801g8u01GAxvYGBgYOBEYCeGN02TLl68uCUxRAmfb1+ek9nlKBnsst1DFdNEZhelJjM5Mjx/ZrYH6uaXbFyZpx0ZEaWmzA7HDBfVti0RVUxdT3qip+qaetZs9xHbdOnSpS3PwHgtf6skuF4sWKxP2l5vmZemUTGIHpOwd2iP4ZFRMxE476c45l6j3P7I53h9Z0yZDI42y56HL1FlIcnOIVPtset4rCrb2oHeRtC95O3xeObZyfrX2PBYT5U4Obt/uMUUvWrjGq20AmTNWX1c+9WGwxH0KGfMcvW8jaCmbsmuL9WaBXpsS9te1FHruITB8AYGBgYGTgTGC29gYGBg4ERg57CE1lpXBUNVWOU6mqnT6L69JsSgMjBbXeDPaIytdrhe47RShUFQPZKpQyuVYs/F259We1RlZXvbUd1BtUG2/17lVs1rs75a9VQh7luVqVOYYs1zxuM9l3+2qRcIHNslbaslM7Wb14qPeV6olopqfqqjqKauHCBifUxEYKciI4YGUZVdua5npoMq0XhVplQn+Wb5WUB1z+2cqNKeZe3qPW+qcnlf8pp4n1aOGL2kzpx/h41YLZ0l2mBYQrYDeKw/C51g8DrNTFmCDbeBjjZVqFNEFbrQe+5U49fbVzD2eQSeDwwMDAwMBOwclnBwcNCVtBiMTLfZnsRdpc/qpTeiUZVbsGRu2wwwJ8PzZ49JVGPA7Wliv5j4uZJGY/lkXlVy18xN3CDrznZYZ8qsapudjLlm27UQdi2nhBrbUEnubG+23iw1cywzJ6LYpqw+MrI4l1xnDup+5JFHjpUV3dGZ/suSPduYaRGYDozl98I6qvuI0npkYhVz6KGX+i/WlzlUZLt8E147PUcQzi/r7CURqFIYknXEtVWxF9aTOeowubY/s2dVFRqxJsif7JBpH7NED9Uu6UyAn91XlXaoF4xPVMw8C3/gM34NBsMbGBgYGDgRuKINYCvWIR1JABmLkPKwBL7FKwkxSw9FOwvtE1n6HKYSq1ItZTp7Mj1K2NzMMcNS2ED8vwpOpw0h04sz4J3HMztMZV/M2ly5Yld9Pn/+fDeQfUmaZb0RVdhLz5U9S28V+8P1IR2xNNvM3v3ud0uS7rnnnmPtiTY212NJnvZYBu5HVuC23Hjjjcfa6DG44YYbjrU1XsP7pQot6NmbdwnqNaqtZWK91eakGaZp3jy4x9rIOJZYW8SakAuWVWlg+Hv2bGSbeU2WoN0gk10T1G1we6hMS5Ddl9J2KEBWH8evSlqQPUMYQsOwi15qucHwBgYGBgYGgJ29NJd0+tQLU2ru6XGrND2VlxH/j+cYvQS21fYwWcosepxV3otZfS6HG4pym6UoxfS2Y4nX9PpXeYztksS1F9BbeXZmcNIC2pcypk+775qtV4zqnMwLjKzV82GbrhGTejtpsxmdPx966KFjZdJOJx0xO0r6HOveBqDXXXedpCPbYSY1M3lA5Q2ceVCTQVKjkLErlk+G2UsosWYjWDM8Xt+zJxu9ZAtVgPQaO1KlleJYZHZyjimDvLP7iFtM8X7MksyTRTsVpO3BXkvR3sxyqv5lz6zqnut5elfPr57PR+a3Mbw0BwYGBgYGAq4oeTSlvd7mfFVC0QiesxSXl8XzVGmCMqZEOx/ry1JX0fvToOdglranSo3F5LGxbKafquJvssS2bFNlD8yk3SUbTuYt1YsnjNcdHBxs6eSztHRVOZkXY5UglzF1maRIrzVLvra/+fjDDz98eI2ZlRMxZ16ZbGPlNcn1ltlPmDS8Yl6RlVqSpwer1xLbE8eK40nbWJYofMlLMxt72r5PnTq1aC/k/dpjhVXcaLZ++Rs/M+a15v7gd3rceh64mW+WWoxekmR6LjObHx9jQvhsGzRqWSqbXY9Rcsx7MbzEmnRkrG/Y8AYGBgYGBoAryrTC2JnsDctjvXPJsOgRRIk428SzyoDispzkV9q2RzDjAD1NY3mVNyi3P8pi+Mjs/J2ZFqRtL7BeNo7qWraJnk+ZR1cl3fbQ0+PHNp06dWpLSu9J9YyzydYQyyM773l4MtOOJW3bNjz/0QOSMXX2nvT6cnti5pMq7opSOjMASUdemLfddpsk6QM+4AMkSbfccosk6fbbb5d03CuUHqtui/vjtmbJsav7yMhi6tYypYwh+fOaa64pGQBteJzzWM4a+5vRi9FcQnWfrLlfKvtYZuukRonPRmopIsOjjZDxv5UnfSyf6Hm9Vqx3KYPNGvT8NnbBYHgDAwMDAycCVxSHxzi1+JannY0SUOYZlkmaUs2MMoZXxbYxBiq2ieXbxpHlmKNkT5thlnfRqOyZZIvZRpxELyNFVR/tfz3Jvoqd6mWbiJ+V9NbavPkrbXjZ+bRXVXa6eH3lIWYw9kg6YkX+ZJxSZh/zubfeequkI29M2sls65OObIA+5k+vPzM6M8zI1p71rGdJku64445j9focM0DaEKWjNV8xiGw8q625erZdsowqPnPJK7gn+V+6dKl8TmR18B7oeSZzfKrv2bWV/0HPd4D3O9sa73162pK9U0uV2fAqb8le3F8Vx8p+RyxlVLmS2M6e3b7XlgqD4Q0MDAwMnAiMF97AwMDAwInAzk4rUt+xoQpD6Kn8DG7tw2uysIHKuEp1WHS99vVWR1mVZBUQd5mObaE6iGoh7mIdQVffNWmVKqeVXhB2FZxaqTbjsUrtkakh6NQRE/xWoHola8OSejJTu/WCdmMbowMKk4ZTxcRE6JJ00003SZKe85znHCufKk0HqEvSAw88cOwzqjulo/VH55lY38033yzpSIVZBS/HtngsmPCajl4954/KHT2q3+n8ENdDrC9DVJ1VqimmFsvUXAxzWFKvZcjWZCwjgudUoVOZSpNJyflcyAKzK9Ul+5c5E1E9yfs/S/5Q9aP33OmZMyosJQ7J5pqhaL21QwyGNzAwMDBwIrCz08rp06ePOYAQlAz4hs6cLqog8SpAm0HFUi3B+XiUMunowrAABxVHUIIkc2QfMhbCBKmW5HtMr9o6hg4Imcs3wxIYkJ4ZuJdS/WQJp9du8XLx4sWuCzhTLK0JoOdvVfiGWVxkeOw/r83WmVmYwwTsVELpPTI8Mzo7r3grIYOpzSLDc4iEj1UB7nF907GK7CCOQfxd2paeyTCYHiueQ7bJ9Hc9ptdbF147DFPpOa+s/c56etdkmqzqvszYc+VMRmRshg4fVQqwrD8M6+K9km0AW7HDHvutUstVz5Ls3KoPPeef4bQyMDAwMDAA7Mzw9vf3D6U82yuyEIMld9YsWJmsiUmdGXTpNkn1NhlZQl5KsbS70fW3Vw+ltCwQntvN0Ka2JnCfgeiU3rO20iaxJji2SqfUs+Fl2ylVZVcagNi3Khwh0xKQrVc25Iw9kzFwTrMNYH2OA859rcMEXK+ZmXQUJG42SBse+x/rYzgFNRYMZpeO2KU/OS9k5tn9xPsnC+vgNWR6XKNRO8B5W2Jely9f7toelxjCmnqWrukxvEpL1UuDV2lpYhursBuGNmRB5JW9v2Ji2TGywzWhGpU9dRf0xrGnRVvCYHgDAwMDAycCV7Q9EKWK7E1bSfsZw+PbnAHmZANRYmBbqm1Msk0OLRW7HnttZpIPbRrVpqpZQDWZED2ssmvIziglsb5sg0Symt6mm0vpoDKmRNaxv7/fleYy21tcO6yLDCRjqPSspCcv11uWgICJCFhGXDs+RmbtgHDb2iJLY5Jef2fbMu0A7Ylkdk4TFlmjmZ3XMxkE77ds3VW2O3/2vJDZ9oylcIusNaAtP44x12LFwHqorulppXj/ZR6ERsW0jGycqqTu1HbQXsq6pe1nFucr/rbkjZ6x9ipg/5kgG/ssvePw0hwYGBgYGAi4otRimeQbz8nQ89asmB2li4yt2S5WbfyYpeiiXcI2PErRWcolSv+0bfia6Ann/6vUVZl9aYnZ9WxsZIy0sRiZZL/k1RbHmR5ip0+fXi3V9TxuWT7bnUnA1Sax3GYpMjyew22a/D2uN6YHe/DBByUdpf668847JR234WXesPG42+w2xg1nq/bze0yO7v/9SVa6Jk0YNSZMPJwxc0rjFYONfY6soCelRxue+x7vsSrtGBlfxkyrZxMZcZwXeseyjCwNYpWOsLo/Y7mVfbvyps36WsXh9e4n2rkN+jLw//h9jT8A+9tbO1lc6WB4AwMDAwMDATvb8HqeStKy3jbzzqu8FRkn4rIz9lQxn4zpUXo187LE4O1UerEfFetkmdJRDBg3aexlM6lsD1X/smsrj9nMFsp547hl/aJEupQAOPNYi1KvpUlqDnpxPZWtk/aELAMKPRzJ7LJ16f47pu6hhx6SJN17772SpPvvv1/SUYYU6WjefS3XrNedWWPG1rwm/Um2E5krNRWU7P1pFpptKUNm19tKxvA4sd7MnsV1cv78+UUpvSpX2l7bVexmj+FVnr5MHC9tb6bLdvS8C1kvv2f3ZeUTUbG4XvlE7APt5lW9WQabSoNUeZzH3yomnjE8amKGDW9gYGBgYAAYL7yBgYGBgROBZ6TSzNRSFY0mdc1UX0vpazInBgaEL+26Kx2paRg4z5RbmdMK6bTbYnf0zHjMtnGMemrJKgh2KeVP/I1l9gJcCbc9S81VOZVkmKYpTaUUj1kt5/Gv0sVlKs1qzy+ObVSNWL1pxxM6jWRORVZLWrVo1//77rvvWFkOU5CO1obHzt9dLhMfxN3SneaOO6rTWSU6VDBVXnQqivVnc1qFhlRq5ojK7Z73TPwtOnksqaX4vIlrhw5GdL5YsxfbksNEXDt0dKvc9jOVJtco78ssfR+dV6gurEKResieGUyVyPuol1psyUmlF/xfBclTdR+PZYlIljAY3sDAwMDAicAVBZ7TzTpLGWQsve2zc5fSQ2VSBdN39dpo8BwG6MZr6PxAtmJpeW2AduxnL3VR5XBCR4vM+aNyiskceSjRM4Qi21GZ7V6SLqPrOQOqpSO2whRslOAyN3+2gZ9Z+9le7l7ONRWP0XnE5TIwXDpyDvGnA889fpHRSceZkMthuZ5vM8B4TaVB8JwyED46Ivn/Koi8d98upc7qpRPsuZZP07w9EEOC4rOGbvQME6LjTvyN65jXZNuS0V2fZTEhAuvOzsm0Q9WWWb2EEDyHmpjq+VMdy/qVsbQq7KAXjrA2lCVjeGN7oIGBgYGBgQJXZMOjJJIFLq51q4+oXMvX6H5Zf5UaKTt3ia1l11T9yRIAk+ExAXDmelxJx1UaqizMgxIlN+iMfVkKr8jsdb0kxMQ0TTp37tyWVBvbbWZFWx4DZbOUaAyI5hpyP7yRaoR/cyiBbXtuR2Q7VUonw5JoDC3gHNFG6O9ZsDLZJu1h7p9Zm3Q0btzg1gyT69GJr+O1TF3H9RbHhOdUabYy+38MrO+lI8xCAuL5rpupz6rttVh+VW9sf2aD3sV3gGu/Ci3qPeeoyciYpNELXYrf4z1d2Qh31eZkbTayOahsdwyxiefE8KHB8AYGBgYGBgJ2ZnittcO3qSXHaINgupxdPGiMSpoxekyIKX8oRce2VfpjM6DMpkYPzmrrmihx0xaUBW1W9VHiYb8zKYrJqcnaMnsWA4tpy8nsZmTTveBh22EoeWebj1aesC47MqCKXVJ69djfcMMNh+d4u55quyiv62iPs53PDM5tJbOPm7hWCX85/73NVfmdtpTIuFy3GWuW0Dq2J2o/6M1aeQNnHsy9tFrsC7UrS5sHRxuf5yDOJZNH0NO39xzaxebEc8iIiazPXM89H4XMEz6eWyVYz8rjvZnZB5cYXI/ZuQ3VxsrZ9yrQnAkVeqnFsjoqDIY3MDAwMHAisHPy6IODgy2GF9/ojGWjpNjz9jL41uf2LZm3lyUPSwTRs64qvwL12BHUmVe2tkx3T6mQ7cnscPxco4c3KAWSvWWepNUnWWO8fk3CaEvpRpaE2OuJNqFq6xdp21bDcWLsWUzqbBZeJacm05O27Yz+rbeFFdtqsD9es9l2W9QsMJYvMjz3y59MUk0mHUGPxMqGHPvH9mb3KUGbZC959OXLl3X+/PnD9nPspaO1w62DKlYV+8A5y9hSLCOeS60N+5etgypBc/bcIfPh864X90fvTyKbn0r7xDLZvqwNlfdrVh41c57bzF5LDdA0TYPhDQwMDAwMRFxRHJ7fpmQB0tEbmXppSn2ZHa6KwzN63oz06mE8TubZxzIMesCx/xEVc43SM4k6zOcAACAASURBVG1PlY0ji6Xr2eqkXCr0OZXHZcYKqni7yma0K2iH6cXSZQlj4zVx3Cgt0/7CTDHR7nPLLbdIOrJ1VRtkRhseWV+V9SHb4Jhrs2LgcYxpg6RNNZsXSvRkbWRIkSlVjK4XM0rJvopnzWIFeywwnhvtw5knrNksvbI5FtlzYO2ajvdLZZfvMY2lBNDZPV49C9ewwyr7ED97z0Z+r+IOe+ew7RkL5T2SJYg2qH1Y2loqYjC8gYGBgYETgZ1teP6T8kwNS/nU1sTBVG/rbGNWllfp47MMIQal2EyHX0mDjA3bJVdftX1P1i/aMTnOUfqs4m/McrL8iJWnGBlEJkFmNqes75cuXTo815JxtLVWW7oQmS2lOoftz9afz2EmFNvJ4jqotudhXtZYD3NbViw9i3WsGDc/M4ZvKZkZZLiW/HvsF9c1113GCqhVYVai2EbO9VIM58WLFw/P4ZZJ0rbtnvGLmf13KU7N6OXHpW07e0YRS0wvm8tngup53dvyqfLwrDRPWVvXbGnEcpmjtJflZpc8rIf9WnXWwMDAwMDA+znGC29gYGBg4ETgigLPDdP56Or9yCOPlOdLfTXYUqB55u5cJUilM0uk0VVQKtVR0fGkUvWRtq8xHrNfmZMG219t9ZMlgq7SqlXhCfHcShWdGampiu2pNq3SZPhAL00Y66GjRlZntYYy47d3GK/OoYoulk8VKecpcy2vHD+ods8Cz7muqLLN1FIM0GVIhT+ztF10rOG90kvGzn65zOyeiKnKeuYAhybEa6Iq1unRuLs81V8R1drm2slUnjQL9LbNYTlUF/cCtStzS9W2bF7Yr54KnY5UlSkle65m7Y996PWPJgI6r2SJwqsx6WEwvIGBgYGBE4ErYnhMIBsdD7hB5pKbq7QtEZBdVMlo47V0P++9/SmVVRJWZjyupDKWnTlcVA4uPffopfHLpFKmuaLLdm8j3Uqi7xmF4/xU57XWtLe3dyzlWixfqpNss8zMeYAp3tgvIzI8S5NOFm0p0lvuZGE3LJ/px7Jg7qzu2K9qSyZpe2NhOiBlqcVcj/thJsS0aP6MYRcMBeG6yBIQVC7qTF2WjY3bzXqJy5cvbwXMewxiH8gIWHemCalSvfF7xvDWBFcTVZKE7F52PXwGcqwz7QDvd2olemydz7tdwpGWnFeytHQVo8s0M9QsjeTRAwMDAwMDwBVtD9RjMXTXjUmbpb5bMxlQFWzZcy2mnSez6SwxrczmxjQ9FSvLXJiJKiwhMtdq+4/KdT9jeGbetGtkdp9qW5Be6ASl2p6U1VrTmTNnylRMsb2VSzRtedm57hvZlNudJTr3GjUjcvlZ6jwyXkqmGdNbSgDMNRvrMyP23HmMyJQzmyGD5N0/uvVnQfKVjdjtiNdUm5QyVVyWjizWV7EIhyXwWZJtlOtzaFPt3Y/UJFQ2veyZRbf6XkB27E+G3jVLz5us7CXW0+uXUaUJWwOOZ/b85nyR8fU2+12TeJwYDG9gYGBg4ERg58Dz/f39Lb14lkC08h5jKiiXG39bSv21JvXSUnqbWE4W8MnvS16LlQdmrz+VNB2vYX/IxDK7D4O6adPrbfVT6d8pwUZUY8Dyo603C36vNAc9yZfrqfKac7uzbUY4l1zf0VZE+4uZBdliZCNkm1zn/p1JniMo+brebO1Unm9mdLblsYx4beX9l3kFV16AvaBySu57e3tdhnf+/PmttmUp3yrGsIstqtL4ZNfyHubzLrN1rk0xFq9fYlZZ/VU/ekkLqrbye2Yzr55zVdB6/L/a8JUB6dL2+p6mkTx6YGBgYGDgGHZmeNdcc0033qraZLTa3l7aliordpZJMRlTkPrb9VCyJhvNkiuTdSxJa5mUVl2bjUnFNv1ptuTxjZ6E3BaGc5BJrFVS7N5cM3Ht/v5+V4I+ODjYYtNxjCtvXbaxN04GmVhmP6hiiWj/iWPAsaT9KvOArTxIaUPJ7KRVfF9Po0BWXm25Eu2ZbFN1T3D9xbb1PDlje+JvMW620hDYhkeNTM+GR2bQWzu0AfW8pmOb4rVrWKHPXfKazJ4p1TxUDDwe4zOystdnx9ayUtYdr+V9lK1vftJGnqUW89zu7+8PhjcwMDAwMBBxRcmjaS+JHmOMlKd3mY/3smUseQpmDK/aosTIJBRK1Kw304dXeu819j/q93sMz6DUVDG7yPDojVltJZO1kWyD8VFZDI2PnT59upSKW2s6derUljQd58Xeg0yU3ItXJJOr7LFZ+7klCc/pSfqVh2UWm1ptnlqxtWzdLWk9Mgm48iClNB37x2wpFcuOduAlO7OPZ7bjONfVRqWxjKx/Up2hg9sEURMUwfnZxQOy8uiM51V28jU28OoeYH1Z1pTqmbVGs7S07iIqL3tqV3pb/fBe8TxmW6fFdTwY3sDAwMDAQMB44Q0MDAwMnAhcUWoxqjUy9U2VuLanlqQakjtcZy7YVNNVQYm9IHkmt+1dU6kSqDJdsz9dz/2ev1W7lnsco1q5SlW1xg2ZoKE5S+sW298Lqm2tbSX1ja7lTPxNdfWaAOBK5ZIZ6OkSnbU5tkvaDh1gW7PE3GuT2/bWW5VeL0u3R6O+PxlC0UuhV7UpU2nS+YIqzMyxitcuJWq4dOnS1phnKk0mxqaKOUucwO90ZjN6iZKrsKUeqhCnbD4qFXNP3b+L2YXHONaZ0xe/V843XKvxfstUlvHcXmqxXYLsjcHwBgYGBgZOBHZmeHt7e1uMIUpCTnZrl2d/+prMaaUXmBjrybaHoWRTOVtkkl2W8iirP6vHqJIXRwmY0lm1e3UEf6MDiiViS65ReqZkWqV+ylymyRgohWbpz4wlJnNwcLDFxKKUzoTIZFhZgtzMvV2q3fljGzOJM+tHJjVX0nLmjs7x57l0tMnYDueOmpM4jv6fDI+7smcOHBVToTYn09AYTBzPtZr1eSm1WGR4mas8NQbuK5PJZ2nUKmeZ3rY2RHWPZeiFO1S/Z9qtDFmIQbVmeykBK2bHcYxjxDnNkjzzmiyIPCJzULqSlGLGYHgDAwMDAycCV5RarGI50pFEZWnOjM+SF1mOtC1x0i5C6SbbuLRKgUVX2XisksZ2kdK4XUcvPRC/UwLuMVeyG9rpeiyx2gYksxla0qpshrFfDHZds00H7aNZgDbHstfXarsU/t6T8P0bg5SzQHBKl7adVim5IqqwEKa/imC7q81bM7uImRaZLO+ZLMECNQpMpB2vqTQVrt9lRjvzmtRUEWZ5Ui7Zs48eH29Ondmgl9YOExNk9/QaO18F3v+9tH1rbYU9G95SyE4sr7LH9Wx6FQPnvGVJEioNU6axoyZwb29v2PAGBgYGBgYidmZ4BwcHpQehtJ0I15KhP71FSRaQaVboMujVlUn4WTLqiN6bf61UkJ1LKaYXpFoFrVcJeqU6HVCVCDrbyoi6dAYVZ6DEVQU+R5CpVIhbvPTSm1VjnXmkcosbagN8DQOT4zXVZpPZ1iRkWC6Xa7PH8NjPXgICMjwmhGbS6ngOPeCqBA6ZvZGbB1frMYLry/Vnged+HritS2npLl++vJUgIHvu0F7pazLPSz4zKg1I5ltQeVj3khUQa5Ij7FJeVU7PJs3vGQuL39d4bfNerNhhdm5VRny2eE6X7JkZBsMbGBgYGDgR2NlLc39/vyvlMe6FXpq26ZnpxXIoeVT2o8zDs/IM6m1WSzbQi3kh66BtsEpHFI9V3oZZerClWDqmacoYM1laz85E/T4/MztGz35ATNN0jCllbNN9rqS+mMKMdVZb7NADM0qXtNFUKbmc8iyW73kwU8lskgY9basUc1n8J6VjSrxkMPH/SrLvbfVDb0z2N4uFZLLoyqM4uybeR0temuxH7F+1rQy9N9fER9LG2Vv71NZUHrnx/2pds+yIamwqz8vYbv7WsxnyXDKuKg2ftG0vrxhepgmq4qd7dj9jF6Y3GN7AwMDAwInAzja806dPb0lu8Y1NL6+KtcVNNclAyC640WwWP5RlnJByVkhJpMrWESXfXtLj2O8M3KSWLI3JnuNvZAX0XO15u1WbombxRxxbMidLzjGWaikrR8Q0zZs0ks3GdvtY5cWa9dXtiXa92N5eQmKuGTI72qBiW6q4qIy5Vp6PFXvuMe/MphHPy86lJoFML2N4PneXODy3wdfSvhmReVz3kMXRZkyh8sol84ttYLlGpXGI7akYVnYvVFmZKkYUy1+K+8y8kFk+19uaTCvVcyZjh9UzsmKL7GtWXwa2pXePE4PhDQwMDAycCIwX3sDAwMDAicBOKs29vT2dPXt2S6WYOR7QbZ6OKZlqjO6mVVBnpi6gUZ2ppbKE01Tt8dxIq9n+Sv2aqSCqJLpV2rDsN/a5FzRbGcF7qoUlg3ZP3bYUyO9yz5w5s+XkEUFVX+UIlKUWc7lsi8c6CzFwudWuy3a4itcsJdPtBZ4z8TLP7amalgzz2dqh2pDq/SypM9cm12GmgqzCLdjfLIC/UvNF2GmlF6Bf7YtYBTLz/1gunX6yIG8+Z7juMpNOdR+uUeOx3soBpheeVJWVHatU5lWijV77M1MEseTI07tmTcILYzC8gYGBgYETgStyWqEklwWukqUxeDhKV9GBRdqWIvx7zyB72CFIm71gaDqEVEbW+Fsm2cTjWYgFJe0sWJzXVMyOzCIz2JK5UursjQ3DHZa2NJLWSXCtNZ05c+bQuaQax1hH5eSTbU1TpWCig0MWGkFUoS7SUYgCHanY9h7owk6NQ688rp2ewZ7XLiUkj7/x/uU6iNcwvZqRnWtk4UO9sISLFy/utK0RwxIyLQQTFlOjRBaahYuwzby3dgkYz1hKj2XG45lmoXJsqZzCpO15qcJhMma+xCgzVG1aEzKxlPw7w2B4AwMDAwMnAjszvF2SMEu1FBsDGC0BVnYRSviZHn5tYGYE3VqpS4/Xkg1VAaY9hlfZdzIJpUo7xX5VY5aV1QutWBq/HpOM5VXtsHaAIRhZIPgSs4trcCkMxsjCVrwGactikuUsuJYB373xr9gnNQw9htdLUsD6KS0zGQQ1DZHZVEmje8HztL1S+5DdT7wX1mz10rNXsVxe09NC8N7mms9sh9RcGVWKux54bsaaqvufmpI14RAc+54fAOel97ypwoh6WAq+z9YF29t77hCD4Q0MDAwMnAi0tW9GSWqt3Sfp7e+95gz8b4APmqbpdh4ca2dgBcbaGbhSpGuH2OmFNzAwMDAw8P6KodIcGBgYGDgRGC+8gYGBgYETgfHCGxgYGBg4ERgvvIGBgYGBE4Gd4vBuuOGG6bbbbiuzGEjrcwz2YnKuZOv2JayJk+L3XTZivJK618TOrTl3bbvW5KurYhGzOLcsY8h9992nRx99dKsxBwcH06lTp7bia3qZGqqMEL1sEjzeizWq5r06vubaq4FeWVdS79I5a9Zhb+1UWTnWrLPYxnPnzunChQtbjb3uuuumW265pZtpJZYTP3sxsEtrZJd8jmtwJffwruvqare5uuaZ9Dt+r/KJ9mKi/SyKn/fdd58ee+yxxcHa6YV322236RWveIXuv/9+SdIjjzwiSXrssccOz/Ex74XlhXbDDTdIOgp+jcGuDoR1iiLudF4FWUrbi5+7fa+56fjg7i0ypl7ixDAgPf7Gh321h1+8hi+GSqBYc2Mw6D8G3LIep9ByPbfddpuk40m/b7zxRknSzTffLEm65ZZb9PKXvzyt++DgQM9//vMPEzI/9NBDko52oo59YJC114WDoGMqOu6vWKVvy/Z+40uSD0cGW2fnMEg5S0NVpZ/imukljeY9wH5m6KUAjMcj+PKq9pPzPEpHc/j4449LOrr3/ZntdO1rYuKAt7zlLWk/brnlFn3xF3/x4Zph/2LfOC7XXXedpKP1EefS486E2VUy5zVptHop8ypBoCfo95KRZ+glc67qzxJOV8+sXsL4al9HpiWL64Ckian7nnjiiWNlSfN6kKQ777xTknTTTTfpq77qq9LxIIZKc2BgYGDgRGAnhjdNky5cuFC+/aXlncd7WLv1Si+p8xp1Sk/NtfR7JdFRSs+uZb+4ZUmWxJWSFa/tMdeK9WZbpVS7wFtKzyQtS2Fr00NdunTpULLP1gklXM5txp6YqqxieD1Vei+JN1GtSV4bmWQlwa+pl+UxHVjGDqsUT9X4ZuC9yLHKzBhuk9dMrx5K+2fPnu1uL3Pu3LktdpElETeqFGOZOm0pPV9PjUuWtCb5McvtXVOxQaN67sXfqrRqvTHpnZPVf7XgNeRni9d31ARZ2+B1tiYtnTEY3sDAwMDAicDODO/ixYtbeteYCJo6f0oZ2bYZccuWWEalv47f10rcEUyEvMa2QUmqkpozSYw6bI8XmVZmU6uYXi8ZbsWM2I4oGfEa2jMsYUUbiO150b7Tk5IvXbq0ygZQMTrXF+2ItPP5t2oz2Yglpt+zx1WONLQ/ZuWxvz0nDCbO5obK3NKmaneGnoTvtvE+9u+RXZFtrkkMTYb39NNPd1nRpUuXtjQKsX9LW8Rk661ieFly4qXyMnsYy1piQ702cvx3SQBd3XPZ/HAO1iSAJpaeiWt8JIjYLtqIL1y4MJJHDwwMDAwMRIwX3sDAwMDAicDOKs1Lly4dUmC7JmcqzcqtmWo1aXtPs8pNO1PVVCoFfs/UHy7f6hm3Kdvzq6LjlSE4ogoHoKt3T6VJtS/Hd9c2sS9LsUhWaUZVndtkh5ZrrrlmdaxRpj6imob7uNm13K7mknT99dcf1h3PzcIQqj73VIqxXfGcSm1I55nsnMoRIIt15P50dFqh6jb+z93KKzVcBNed12yl2pS2Q5DYDvY7nhvVbj11+IULFw7b0lPZVo4amWPYkiljjTNJ5TS3S0wd2xrPy9pdnVuVWznlrAnZ2kXFWY1nL4SK66BSacZrohrcn2tVr4PhDQwMDAycCOzM8M6fP78VFOiAU2lbIuSbtxdky+BRSqa7uMDS+SLboZlSMl3c4zU8VoU/ZIzLY8FPjxXHTNp2cPFvVbhHHJtewKyUS8geAzMljh/DEyTp2muvPdbGpR3Ps6DvzLXcv5HR+dMB7/F/t4UBxnTu6K2hNa7ldFaiFJ3tyl4FI5NVcz3G/xluwZ3PMw0GM1JkmgT2k8yO689anTiXviZK3PF45hzBYz2nk8uXL+vJJ588pkkiqh3ge05elRNHz9WfWHJaieg531X1LTnSVNoDads5rWJBPYa3tu3xWMUkM1SapSqxh3TcWcWfw2llYGBgYGAg4IrCEizlOaVYTDNU6fwpGfYk7cwu0WtTD64vc2WvPjM7jJlDxbAoQUa2RqnZEgol4ijBMrjSn5basgBgowpZoOSfMQlfwwBQ9zMGFXtO/bmkRz84ONgKoM4CZT1XZnROS+eUQpHhOa2ZGR7T0zFMIfaZrIJu9UacS0qXbn+PfbAcSu1kYu5DbL8/aav092wuq9AFMr0s1RPXndeo5zq20fU4LRRt4r53sjRyvra3dmzD4/jFPvs3plqjDSwLg8nSAcbvGfOqgp2XmFF2LtuWPdOW7MCuJ85lpWXbhcHyml3yHFfsrcfmqRUwsvURk1gMhjcwMDAwMBCwM8N7+umnD5mdE0VnaV98jBJIJU1J296aWf1SHihZMa9Mavb/ZBD00oxShiVq9qdidrE9ZGtkRv6M7ImSts+pbB49exPh/sUkzEwt5v6S4cV6yVhj+ieitaZTp04djn02bx5Te17edNNNkqRbb71V0lECa7M6aduG5/L9SS/O2Gcfq9Yb17J0ZMP0PUB7bCZVL6XZYwJst1naZnJesz7H/c4YHu19HHMmd5a216L77n67jVFjYvBcj0mW4Drz1q7YEL00fW2cS95/lQak5xW85JmYJY/mJ+2jvaQFLL/ndVodp4Yp85hf8j5dk5yjSqweseSVuYZRrkkT5uvjvTcY3sDAwMDAQMBODO/SpUt6/PHHt2x3UQLmViFkDJmEQM+2ysswiz2jRLAm5ohxcAbtP1kbKxtBFXcY/1/a6idjR2YflujJgsnMYhstWZF1ZB6S7I/tMYbLiizU7MJ1P/XUU6Wktbe3p7Nnz25JwHGc2Fezt2c961mSchseGR69NXk8MhMfq2L23NcsjZbH0OPEa7m24rUGvVHJTrN2+zcf91hFezNtgmQf/J55LvJc2rXjNWbcZI60uWWsILLMXpza+fPnD58tmddnFZfKtd6z4Vbemu57Vl+l4clSKBosn9qvzON2Ke4vs8eS7S5tfxT7SkZHu3A2l+wrNWaZt2g15z1bv8v1WhwMb2BgYGBgANiJ4V2+fFmPPfbYIcOzvjiyAf9v9seNOWk3k/JNYSNot4pSTBWnRvtLJkkwfqgX+0EppYq/y7wZXT4zk0RmzH5R2qw2Q828muiFSYaX2SQYs0Ov0MybzusgbtPRi8M7ODjYSq4c55wMzzY899V9jHYKahKYiNt997qMTIjxmIzd82esj16yZDwZa6psJox95Gal8TcyV95XWRwmt2KiV/Cjjz56bGzitbyfep6dPsdtvOOOOyQdjdu999577Hu8xv24cOHCokej25StRc4Z7aFuW8aEeS2ZUOYBySxTvMeY6LrqUwTZVXZOFUNJT3Dp6L6svHWz+GY+1/hs9prlPRn/53Zk1BZknt7UAkT2Fo/HY/FZPxjewMDAwMBAwHjhDQwMDAycCOzstPLII49spRSLqjnuRmzV5e233y7pSMUQ1TZWN1ilw2Bxn5upU0yPrZbhd6q04vVMy0RanBm4K3WHscbllmEB7md0t6eazWPk8fRnT2VSqaPoch7/p9HdoSdZuAWDk9ckAaARPJZXqW29prJk5a7b7aTTkvtBhyRpW03jc+hMEtcqHQuYSJ3jJ22reqpQncy1vFKZuj6v68xZgedahelPBpPH/lT7rfVMAwzktkra5ce0dHSoimujApNWRDUXVb++l/xMyZxWKscmOjNl80LnPI6lj8e0iwzVMqiqz0w7S6nSsoQXmUObtB3+kKVQZFgP1e1MdRevrRx4MmdBP/s8NryWz0Fpew32TCnEYHgDAwMDAycCOzO8Rx999NBZwdJlfLtaIvCb38zOwcOWFKJ7uF3L7XZuCcvf/WnJxNK8dCRBPfzww5K2JV9LCpZq4zlkbXRDzoJU6fZcJUyNTMKSjceGDI+SZjzX42Vp2WPl764/C/5nYLvHhMHT8RyPk5mT2+Zr4tgziXjPPXhvb0+nT5/eYutxjMn0Le3R4aSX7NjXUMJmUHvsm6VZs2YmrfZYS9shH14X7o/HIraRrJDfORZxjVXbp3gsfG1kEp5X3xP33XefJOmBBx6QdDTHGWun4xDZNlO1SXUqO/fH85oFFcfUaD2GN03TViquKPWT2ZGlxXLYPrI/zr/ryZwtfC5DtLKQHzITOl9k6Qur3cr5me2WznGio4nPjdttedz4nCHDy8ISMpYZ+5M5A9KhxvWSFca5rjRyazAY3sDAwMDAicDODO+JJ57YSpQbJQQHCVty+8AP/EBJR9Kzj8fgYbJAS2lkfpaaYv2WZhkMT7vBQw89dHgNXcd5rqWYKNERmQ1KygPrLYl4DNw/j5WPx3H0MTI7j5+Puy+RrfEYt/axhJ8xZY+T2YDLcJkxnIRj/8QTT5SpgVprOn369JZ9IjJ9jjslX9ppY7u5Jul677IyadZz5nnxevMYR/ac2RSkbUk8tpGszJ+06Rq9zYr924MPPijpiMV5vqSjeb7nnnskSXfffbeko/lmWFGWJJ1r0t+9DuP9S42I28wtkyLrodbj4sWLJcObpnnjadp/Y4C+28ntrXrpAqsNhjkfWbiA4bGjBoRhPtLR+vIaIRP3NVnaNtpHK5f/LKSB9liytTiXPuZnk9vM8A7alKWj9eTnKcM++LyVtpMUMHm9r43ar0yzuBaD4Q0MDAwMnAjsxPCk+Y1uCYtSlbQtNVBC5FYv0nZyYHpWcauhCEtYLteSCFNkRWYS+yIdSfDvec97JB1Ja1nwOAPBmdrHx6Mem9veuC1MhhwlOx8zy6AHFIPwIwshQ+I1npvIQplOzdeS4cU54Pw8/PDDXYZ35syZLZ19L8iWtkj3MbM9MhFylYopjjGlSXr0Zlv/0M5DO5yReVpWbI1MI/MOpr3Ndrn7779f0nENhtnfu971rmOftIlm20S5fHof0jM7agd8z1GLY/CekY7my/d6j+G57RVTlo7Gkoyht1US+89EBGRG8Vq3myyKHuZxvVFD5XHyvJilRxtXlVC/suVlCeiZJIGp+zLNErVsfI6TzUl1Qv1ecDw9r+lBzsQXsR+0ga7BYHgDAwMDAycCOzO8/f39bsLSKsbIb2XqhqVtGw03jlyTrseSFD0hmUA3guUwHVmUXpjCyv3xOfQCjLFb3P6FnqpM1Bp/Myxhe4xoz7JUH+tzGe4X+5fFw7CtZBhxTKh3f/rpp7upxfb397c2MI3SrNvlOj3mrscScBZTyTRt9Nqj16G0rUnguGVJxCmlMi0dpWppW/vgNvheYGxT5gHn+jwmTP2WxeG5nuc+97mSju4Fj5/bGMeE2x0xdVYWS0YPWTI6H4+MjPfphQsXuhuD2stX2t5gNms3bXn0AJeOxp3bzVRJljMPz8pLOGPPfCYyMTg9b2P5BL2Bs3XgepiU3Os+S6hO1unnCtcd+xvbTwZmZNuSuW6vSaa/yzyJOT8jDm9gYGBgYADYmeFJR29we8BFCYGbPjIRMLdzkbYzgNCm4t9tY4teRbTNWOKgV2OW+NWwxGEp0Ewik64o2VB3z0wVsXyyG9oX4jVMgs14O7fRNpzI1swcnMSXWwllYAwVbQYeM9uOYnnuz4033riYPNpsh+xT2pa0/Wl7EWMEIzy29vg1s7OdNMtM4zXIbYBom4zMg7YFS77MIhHZjOeDWgh/kulnXqHcnolxppFJkLn6Wo+Ry/c96fZJR4meqW3xvcdto2K7/RsTDtN2GRE1MZUNz9oBZmeJr6LBmwAAIABJREFU69nz4LrpBcp7MLbL68r3ts/1+GWslnZYn0OWsyYzjduYxQzbXs3tj5g03r/HZzG3dGJCbWaaimNgZscE1Pb89VxHFmePfL4f6KUZ7w3Ph/tJu3nGXGm7qzadzjAY3sDAwMDAicBODG+aJp07d25Lz5q9sS1lMlsKt3yRtqVX66ct8VSbX0rb+ly3iVJmzLDh9tJmRLtflr/N9XDjT26nESUterP6N7LTzOuM35lzzoh5Cj22P/MzP3OsH89+9rOPlRXryOIHY1lZHjxLZb722muv7bLI/f39cuylbQZCr8lsqxCP3Qd/8AdLOrJX+RpL6T4vq8/98DyZGZs9R/toldHF6G2u67rJOryeaS+TtrewoheimXecS8aIunyvA1/j9RBZCPPZPu95z5Mk3XnnnZKkn//5n5d0fL15bOlp5/E1244MicyhlxNWmsebtsnILqwF8HOG9lLeey4zXvvud7/7WBlmLGYqWbYP5oL0uvM4Rg9It4Ee1ozddFxePIc5W30u7+U4xq7P7XZbmG8285Sm9ylthoxvlY60A77mzW9+s6SjdcaMWdK21sPexmTq8Z7glkIXL14cNryBgYGBgYGI8cIbGBgYGDgR2Dm12GOPPbYVABypPgMW7UTAwO8sYa2PmT7TEcVlREpsqkvqHdWerI9qKTqI0AVb2naY8DV0Jc6M+gyGrwzQmUqTAZ4MS8gMtr7G80PXXqs6sjGpUiRlqZLoINQzHu/t7emaa645nBeqHKWjsbWakCoXOiJJRypyqzJ9Dl3j6U4d++jfrMo06IgUz/XacBlWTzKJgrQdkM0UVlRxx/uJ887UeUZs49JO2h7XX/mVX9k6n6ptz4/Ve+73O97xjsNrGIxPJwUfj84YTNQQ+09M06SLFy8ezl3m3OK6PP5MekznDuloLq1Gswqb80E1b/yN66yXPJrJmrkmM+cyJq1ncDzDcmL/GH7gT45z7BcT6jM1G3eUzxJBGzYF+B75kA/5EEnH3wVU5zLQnKFPcSziGAyV5sDAwMDAQMBODM/uwVU6p4gqWNgSSzTmRikvA6WlKAFTmjTcNkuVmWGW7sZMcxPLJCuj2zHZQJRm3XczLkv/Nk5n4Q9MMMxwD0qUkdFaQrW7uVkbt4uJ/aMzjs9lcuYs6Ds6CFVS+t7enq699tpV4SI0ZFPKjA5PXkecS0rA7mucFyaN5jY2mRt1TGsW66HkG139qcFwWzkGWfozGui5Nt22OC/8zeXRld3MJq4DMiMGHLsvkQ2TCWVOUayHbHZvb2+R4dGZKTIKrxXe27GMeK10NO5ut+eMjDhL/ee2Mu1dxZClPAxA2k4EHceJW/rwucA5jesg224qHs+c8+h05vHyGPn+5XjHcs2U7aRCFhrrY+gREwj4mkyDUfWvh8HwBgYGBgZOBHZmeGfPnk2lM8P/m9n5jW29bRYmYMmabrQGwwYyvTF16gzYzmwF3KbDEi+3T5G2WSY3a+wluLaUbGnQum0mmo7SEoOHaUNjyrbMtsaxYbB0tqVQTAQtbbvDx6BvstslXL58eYsVZhvKmmUwaUHGvNkubp/kMfU4RttaDKeI/cnsfQbng2zan5FxcwPMTJLP6pC2w0JcLiXxOAdMfs17wIylF7jLAHcypiwUKQuviYj3vMuN/asYnjVLnq8s2J4bsXpdua/ZNjMuj0kJeJ9kjDVL1ixtpzTL7I1uf7VtV5xLagf8G5kPQ0PiWPjT9zRt7tnzm/e22+y2ZskyGCwe77WIrI2+hr4ETF4ez8k0VEsYDG9gYGBg4ERg59Rily9f3rJbRN2237SWsBhMmyUN5vYR3OCRNokoVfAYA8EzacDHLFGZjdq2FVmHQe8l2g7pVdnbcsWfDDyOQcy0L9DDjqwwS+ZLFpBtgsk2MrCZLCfbuiZ6jlVS+uXLl4/ZF5jWK7aL6Zlor8yYKRkqg5SZXim2m4nAq0193cdYrj8dXBttd7yeTIpzl3n2Me0ZmWvG0nyP+VpK69F+TjBtFz8zxlIlbqCGIUtSvTYt1MHBwZbnYAQ1Le47baA9ew81VmQfmZcm21/Z6WLbXK6fP17P/h7XAVOGZYms4/Hs2mpMMpC5keFFG3j8Xaq9zqt2xP+5HrixbWwzn7m9baWIwfAGBgYGBk4EdmJ4ly9f3tLlS8cZQ+VVyC1/MqmZ7KmSFGN9fLtXXlrRO6vyWiQDi/VQCucmh2xb5uHJTTQp1WQslNudMMGxxyYysWrjVzLyaFOhHY52rOwaIzKxHsN7+umnt+LiYp8532wb470iKIXTDkwGIG2nT6pYdLY1icu3jcgMz/MU2SyTQ1fbUmWbyfqY+8wEx9k4VgnVaUPM7iePMbfB4tj0YtIqxDVKDUnPBtNaO/yL9WS2XLJkxs3G+aenNW2etOn11gETwnPrIWk7ptJsiTGvkQkzBR8ZahVzKdXMirbW7FlFVPdGZF589tOvgbbs+NvSprE9T9LB8AYGBgYGBoArisPLEvFuFVxkd+Cmii43lsdyq7gVaXu7FoNSRvTyoSeXdehMWh2lCiaFpm2QXnuxPcwmwCwptJ9J25vikuVws9AoXXPD3Gpjzsye4WO28zAjSubllnlsZbh8+fKW3SrL8pFtCRLryRiewU1CyYQjA+Bv9BSjF2c8Rq9Pf3pNZeyDmUdoY8skYMYT0obINRTL433FBMO0k7CcWB8ZRrxHOY5GxSzj/5FdVSxvmqZjHr6ZPa6yzdEGHeuoxoUelpmtiPblajutqGmiV6a9wv1JD8/YRmrKyKYzj2mPPz1ie/drtfmtwTHK7M6VPwWZdATtftRSZZ6k2TNkCYPhDQwMDAycCIwX3sDAwMDAicDOYQmttS21UeYIQLWDKX7mtkvHC6oLuHNzRmErA20WMM20Y1Y7uI2ZmtDqgEqVyNRWvaDISs0Sx5HBtQwpoMo4c7BhyiIa3zO1K8vnfnKxjUxsG3elJpweiqrfuA48L1anVkH2MQyG6k2qMjlOsT6qEv0bEyBk6kK3wU4rBtNfcQxiP+mQkLn+Z/ucSdtJy+Oaqhy5+HsvwTHryVT1BtV5XH+ZSpP3wJLDy6VLl0pX/NgG1sk0ZLENVPHTpMLnTayf6lU6eXFvwNg2O605HMrrwAHwsY3VHp3VPoKZypbOMkRcq5W5akm1GfvHcxjqku33yDbznozt4dgPlebAwMDAwABwRU4rlfFd2g4+pLupDbaZUd/l0cWXUnqP4bHezDDPhMhuE9lNtjs2f2NbMqMy20039CyA321jctgqZVHGXJbGJErZrM+oWHbsTwzZWJLUGRieOdtUadrI3iLcf0rCHK/M7drlcT6yhLweD4dnMMlyFrDPtlVB3dncZpJ07Efm/k7puGIBayRjOidkziFcbwy3ydYWE0PE84lpmnTp0qWtfkUmxD5xnfl4L1C6Si6RjWMVIkGGl7FCrxWHRTERQOwXk0ezTVxTsX8MoKcDnJFpliq2a/QcTxgCUq131h2/c75i/XTgWnrmRAyGNzAwMDBwIrAzwzs4ODjUOfc2dvSbmhJoZj/ib9xGopIyIirpPEvUy41m/Z1uuzEJLm1ZVeB5JsWQkVCqcRnRFsINFmk76TFYo2dPk/pbbvAzS2HFvl977bWLoQluL+2l8X/PP7e1yRgA54q2R7KmLOi1stlkSRYcouCtT5j6KLNT0H5ESdgaDvchttHlsH9cDzF0ggmNOSdVfzOQ0WX3LxO2k4H15i/eL2ttMUz+EOtgij+GfmTw3FXjVDFltsH9iMczG7Wfl0z8nD0HDNobsw1YWR/Xipmlj2eJFRjoXfkKZFoCrmuuFR6Xtm25ngvX6zGL9TDcZTC8gYGBgYEBYGcvzf39/S2JNabC4du8ktoyTx2mG6psEZmeurLR0JNQ2k43ZKnJUrKlp7gVPe2LZHjcuij2O/Nmje1goHPsI+2ZVTB5lLgpUZPlZJI9y6ENJPMgdBs9Ttdcc02X4e3t7R32OVs7nMNqU9/edibUCvS8WavxqDZZlY5sd9x41ddYQs0837iuaXfpbblSpYljerTYZzL5SguS2Qx5LcvoeSFzDWQbdTIZw97eXpfh7e3tbfU9S9BOL+kq5Vg8l56B2ZjyO9kF16qPRwZjhuU1Q09ltyPeE5wj2lJpO4xtrNadbYdRK8B+8b6ptALZnFb+G9QEZOVQc1HNRTzW2zx465pVZw0MDAwMDLyfY2cb3t7e3pZkHCVgStZVwtrI0sgmqmTHjJeJ9VDyoLTc23qHn9zGXtpmcmQUtPdk8TC09/jabMPZalueKk4lSkBVAtY1oF6fZUX7gtvkLXGWpKwoBVvKjRLd0gbAWYxjJVlz/nuedlX6u2xDU24lxBRS3JiT18d6K5tHBNNDmU1T0o/rjUmR2a8qOXc8hzYozm3mUex66QWdbVdFO2ksj4iJo2Ob4rjyeUO27vHLNub1Oewj7/XMBrl0j8WUhr7P6enrufTzJ44F2ZFReSxnicBdD9cKt/qRtrVs1OaRhfcYHuvLtFGMFVzyO5C27fS7YDC8gYGBgYETgZ0Y3t7enm644YZDCY6Sq7T9Fucbu5cgN9YTP3ltxmZYVpbpwjCDs13OkpU977zJZmwXPbmoUycLyfrHxL+WOjPm4vHzGDOup8qeEs+tvEF72VmqWCh6qUpH40RGkcHbA1naZHab2AbGJdHWGiU7sjCe09sksmJAZJqxX2Tj7ge9yTImaVTxXvw99oexk9xmK/NY9Dn0aqw8cbMxoW0lW1s+l6yXmpsIj1usp2fDi5sLZ1qiav36XHrRusx4Dj8zu9gSyGajpsbs0iydmX38Geur7mGus2z7IJ/jNeT7lYmoY5ypx8RtXcpqkq27aqOAzL+hik0mMua6xsuYGAxvYGBgYOBEYLzwBgYGBgZOBHZWaZ49e/ZQVcIExxGV67URnTwqt+zKLTijsFWwq+n8rbfeengunRVM9W+//XZJ2upfLK8K0KbRPILuxtzTzshcvZdcfDNQzVGpebKwBKoCGeAa1bx04Ljpppu6Rue44zmT7sZjbjfdpnvOHZWacGlNxXOq79G4774ysJlORtl+cVS/MiF5dq1/ozMR1W2ZmoihH9xvLVMD0qGGqrnMeYFJEJhAItuzjyqsSpXuNu3v72+tzbgWl0KasmDuyhGDazgzAXCN0EGHqd+ko0TjlVkkc4BZmgeuu8y0wdAmP+9cn/dwlLadyZb2tMscyPjM6oW0VPPTC/qvwm3WYDC8gYGBgYETgZ0Z3rXXXnvo3GHJIJO0lnavznYTp2RFaSJLE1aVa2nWBmJLNfEaSwh2YqE0HVkot9ZY2oIlM+YyZMOflvyyVFYcEzOMXqhBxVgoIffc4Kvg71g2WW4vefQ0zTtamy1lUpnnxeNAo362pRATFjPwnGMe2VQlXXL+I8OzwxbXNdlptoURE077k0kLssB6pvGjU1jUslSSNcMtuE7iNUxAQOecyCyYnIBrJ0u3xnMyBzjDKQ3pHJUF23Nd9dZvFY5CZM+dKjCfgdIxtKnSUPWSOzOAnmnjei7/drDyfFtjwmdjLylHtS1Q5sRS3ft87vTYfBWqk439mpSTxGB4AwMDAwMnAjsHnp86dSp1UTfIGiiBZm93MqAlxPPcBtopLFlZMo669BgMGkG36niej7HvlNqYHFk6kj4Z2kDdepRyOW4+lxKYpcJYH+073HKj0v/Hcqt0UVnQ/xoduteO2+L2xvXARONV2qRMAl4KdjUyKZ4MxWPssY3snm75DILO0l4ZHq+Mqca+ZPYmj43bwqTIWRLfKk0Yk7NH0IZH2xTHKraF7K9KUxfrMZbW0DRNZcqy2N7K7t8rv7JTcWuuDCy/SgkobYeycL0xnCSWy3mokjs/9NBDh9e6XKYAdKKILJFHTGuW9cvobQKwFI7QC2Xg1kJr7PUjtdjAwMDAwADwjLw0e5scLtmRsm1hLHHQtuLfGSge/7d+mnr+zFOR2wNVQd1RX850ZFUSX0vg0fMpSmzSkYRnFkobVTYGPod2xsw2xW2PKJVnkmtlk2B7snROceuanqQ1TdOW9EybRGwXGUjGZipbWrVBZ+YVmrVTylNi0c5WBbrHa9hGzl1vmxMyF9ubLclnEjBZARk+vaszzUrFzsg04rmsr5LeI3aR0vl7vKfZB7KNzO5XbR1VeW3G9UjGSMbl9sT15mfD/fffL2k7GN7XZHY/j6nvbWq2PLYPPPDA4bVMD+bnDhM8xHFd0kIY2ZqlXbmyjWZp4qiV4FrJUjVmiROWMBjewMDAwMCJwM42vLNnz24lP822e6ANgxtYZkmIzdL8nQzC0kxkeJUHEL3LoqRi7yVLS4xt68W6MR0YY2iYTJj/xzJ8rsfR0ru0LcHR7kdpPTIKj6PrpZRO5pcd42eWsDXblHJJ2rJ01ks7Rfa8RoKrtkCifTjTLPDaKm2cVNspaBfrsWcy7Sq5eCyf69vrIEt/VSV8Zr1M1h6vrdaBGUucN8aeVVvnZGm9qvRqxP7+fsnIIirP7h7Dq7a84Thm11ae13wOSUfPG9o8qYWKie6rODwmK8/qY7oxn+vy3YeogeKa5xhwPWbrjp7zRLymtzmslDNJemmu9f2QBsMbGBgYGDgh2NmGd+bMmS32lul5qQMmQ4kMj/Ypbrbq49m1BqUYfzIjhrQtabk8eglGCbJici6fklhsoyUqbh1TxShKRyzWbfK1lMqy+CUzPHqdUjrPYqkqdpBtTprFulVszGvH7DaLBeQGkZk2ICtXqrN8GB6vLI6wysri3+NGwCyfkukahld5kmZSbpXwm8myM9tkxYjogZnFUlGDUH3Gcirv0F7cVWR6S2vHY75Goq/ixbKx5TXZWicqZtfzCuYzkPduFuO4q100tplbCGXJ1/mdGjOuh17icT4jK5+BLEtP5dGZrYlsc+fhpTkwMDAwMBCwsw0vMjy/uTO7Dr196KUZ9cZkdrRb0X6USQiVF1nmNck4GNvQ2OYsx2Al+WYxbQbHoNpUMcsv6mOUvCi1ZXaYKo9kZhujjYhMNfO+zWKBlmKWmIkigoyADDjzlqNkWHkgZtcueaJxq5R4rueF2oIsQ02VA5L3hNuTxTb1NAix/jgG2TY6WZlZPsQqlmrNFi8V04trg/O1ZnugapujrG+Vl25EFbNHpp3Ziji2VfaiLMaNGh3PO73HpaPnFzVWldd7lofVGgqvY9ooM7u2UdnU/v/2zqW5jWtJwgcAJcoh25IVnvX8/581K4fjOmSHvLBEmeQsbiRZ/Dqz0PCNWWhQuQFB9OP06dNAZT2y3L0iQ06thZxWKNdb5x1wsfZheIPBYDAYFMwP3mAwGAyuAv/Ipclix0pv6X5kcN1JL3HblB7uUmEZgE+pxhWk2Ay6OxrN46UCSefyYVkF3YeuIJdjYxLGnrRuumjlPnLnTbJWXescyijd3t5G14IEgHk/6vG4nhj0dnJdBN2DdLvW60utnbgO6nqTW4jSdR8/foznoRuf692JBwgsAE9FxJ07kIkudMNVdzzdyclFWJESKTifbl+uyTT+m5ub1t3GcgCWeuh6nOA0k6V4ze4ZS+Lx3f3Qfa9lVWs9rwvep/q33JxcB/xOqeOiS9N1Rec+yZXN8iFXGpJCD6kTukNKeHLF8V0yW8IwvMFgMBhcBS4uS/juu++eLIY9gcWUvussYL5SgLULUqciUR2jyvUIlPZRgNgxLpcwU8+T3q+1Zb2JLTpWmAqpGbzek0LdFXKne0nr3FlatWzknLQY2a1jXKkQmGPt9qGV7grneT+YTOCK4mmF//zzzy8+d81rKRml13SP65xwjtmmxyWE6LpSEkn3LHaNZSvqOkleAT6LnXD83d1dPNfhcFivX79uy6G4TlOijrsGXmtis3V9MBmGjNIV2wuUGmR7tLoPZRdTIb1joVzfHKtQ58aJEayVWZpr1cVnm99NLmnlXHJUV/Q/0mKDwWAwGAAXx/COx+OT9eoaO9IqTlaTK2Bm2rZLuU+QNSPW1lmxtDhohXUtRWi1pKJeV1BNYevO8qLcGs/bnY8C05dYQLSsujICyp+dawB7f3+/sfLr9imGy2N2DJUehRpfrP+vYAE2S1rqPpS/07VzTDVOwzHIwmfcqYtNMKamYzDuVP9mfEzH6BrA8r5T9srdk3R/Oq+DawfTMbzj8fi0Ppw3gsdLng9X0pRksziPXVlCink6QQCWw2hbPvP1uCxdSNdd70UqS2Jc08079+1KWbhPipvuyadI32tOwmwY3mAwGAwGAZenuaxta5RqkXz69GmtlX3ZXaZdKsRlUWfNYkpZPbRE6nlTsShjiE40OLEQsinX9oaSQrSeXVG35jZZa85PTgubDMZZaUm6iMeqc8+WTJ202OPj4/r77783x6tshmxyjwXnZIbqq8BmsvWaU/NJeQtqU0zeK4olkIGt9cz2yOASg3BzoueHLMTN0Z5Y5Fp9k9okbO2yHTuPSB1zBS34h4eHs5mmvOY92X4dy+j2d+N3hfMpq1Xn29P+is9CXTuJhQqUTqwMkGOhYEgVKec+SeAgbV+Py3h6er7q/7i+u6xdofMgxH0u3mMwGAwGg28QFzO80+n09MsqC7/+YtNCpChxbXIqJKs/yWnV+IisCH5GWapq+SjTTdtSrJjjqmNIGWiCPq9Mgj56skShWtyUW2O8JzGYtbZxhCS/5to6MaOPrKOy+TS2Dsw2rHNMJpLivi6WksRunYSVwDGkNVPHlbZh/KWuc2Vl0rLXe9ZYumbFjJeTIVVWl9g62/hou8raGZsiC+xEfVN2I1tC1bH9Eyvd1dgyHpmYnXumU55BJxNGpHo1B8rQsbayMjx6BciimAHrmDfHmNh73UbgPPK8LqNdSLJ4XXNk933Na0mi6HswDG8wGAwGV4GLszSriKt+jV0DQf5C8xfcqUoQZFM6T23XQsbIpqfOqmAtE1VaugwkWpesf3FWEy1HZms6pQ22/6ElR4tSTW3r//iezK7GF8hmktpEvdeV7el456wtMkYXR2RMKGVr7gHZjovhnav3c1nImjvNu+bFWZ2MzST24Zr5spGxzqsMUncvWaOXMi9dSxvGzfmcOmZ2rlmo4GrSqhfn3P0lY3ExtcTwuzhjYplJmYTnrufjexczTNmSbm731v26vAPGFRknc0yZz2Xa1t3jxDr57NVnkN87nAsXP9WarBnle1neMLzBYDAYXAXmB28wGAwGV4GLXZqn02nj5qiBbfaSSxTYUX1RXbl+GNR1brUPHz6stZ4TA+jqk+hqTQwQbZbrR+m52lfbOvmk1JOrk09Kvdm0j1Laa/q7EmrosmXXcrnUag+t5M5lDz8XPE5uRRZar/XsWqjdvjvx6Jrw5FzflyS/1OOu1YtoV9Rr1rmZRCA4V5e61wtyLTJZqo5D6+vHH39ca20ln9L519q6o5kGTxd+/Zuv2lf3jWNeKwscUKy8k3oSXOmBsPd+6fg3NzdPY3Ap+DxuSjip67MrtXDvK5LLvzsmvzsYrkjjqMdNyRwuMSg9R13POT736ZlwLlsm/3Eu9nzvMGnOrS2XHLU33DEMbzAYDAZXgX8kHk2GV3+xxQCYCt0FeVmUzkC8GF2XAssieG2r8dQiy9r9vI6VFkq1lmhVJEFml/5O7JFiYlulPaK0AlkgLe3O0hJYIuJYKAW137x5c7ZInEIAjkXTqmTw26Vek4Ekma7KmHnfKSburEutRSaAMCGpXgPnlklLXXF0YnYsG3CCw0nuim2KXMsnjq3reE6k++eEFdwYCMkZkuG5ouc0BqFLdEklGI7Vkglz3bsSmjSW7plJhd/niv3rcXmv+Dy57yom0qUSBycenYQPXAnN3nZU3XW+fv16GN5gMBgMBhUXMbzT6bTevXu3+XWvFgJT32kZdoK1Oo7iEmQQOp/ky+pniq2wpZDOV9O2Fe/SK+V5XNNV17qlHj/52OuYKLbMGFhloYkRM01d113LEjR+Ha+LeQiMrTEtnRJadUzVyu1ieMfjcbMOuljQnnYm3CcJ8gquhEZIDUwVp6uf6TgsNWAReR0LY3Wp7MKVJTAeSwu4rkvtk4QOFO927Co1UtWacoXBZAqpJMDNSWWq3dq5vb19ug6t+XpfUsFyJ1XF+T/XesfJEzLGmUpA1tp+N+o9v+dcvoGOn8q6+N1V54J5AJ1kH1sVsXQllTZUpHIE55VKzYL5zLtSjT0slxiGNxgMBoOrwMUxvLdv324suGqR8NeczMT5thNLEgNjJk9lax8/fnwxBmZAyQKvlohjcGttGVEXZ2S7GVrg1RrU8fQ/Waa6bteuRcfVtuespjonjJ/qOml1VrbD+8PYnTL66nXRYjsn/ntzc9Nms57zw7sYQYoppfZQVZZO+4rx6Fo1585q5j3TPswsdoXZqfUSY2uu1dM5EeFqxZORMK6eGs+utY0nJgmzut40P0lOUKjvKaT+9u3baKkrw1egh2St5zVO6S0yvo6RpPiRE8lIovEpy3WtbWYys2gFJwDdedXcuHju+p5eqnp95yQMXRxO0PXxuenyDtL90T7uu7ETCDmHYXiDwWAwuApcXIf36tWrjV+/Ws20tFLdSGUKyYogqxED+/3335+21f9+++23F2Oir7tawLJitG2q3anSWWwPpH1ogWs8zirU+WhhM9ZSx8LYUMoSdfU+jEnw+l3GGoXBJeMmFuSysly8gjgcDuv169eRSdbjpHokl3WWWCVbPWn8eq0Qs9I16x5qzl0GJD0IegbYiqluy2OkGrc6J/wsyYY5j4nWvMaWnqt6fbwHjNm4LGR+xnXhvDqMgXYxPB2DAubuO4TXxjG6mjMhCae7YzJmmGoRnWybwNo5N0/0UCTB6+55ImPtWrQxnplyMXiOCs5N1zQ2MbwUQ6x/1/s0WZqDwWAwGBT8Rw1gZbFUJiTrOPlZXYYQlSdoUdHSrtlZv/7661prrV9++WWt9ZzBpX0Op6G7AAAQ60lEQVRchhUtbmYmadsqUq3jKH6Q2mS4+AXZn6xaNv50SLVasto1967hKOeamWQVtC7JDphJ5o7TKa2cTqf1ww8/bDJja9anwHgVr8OdI1mKXKNSO6nHJUMRi3IMj3OZWFSNy7CWMq03xrUqNEZm3LpGnfQY6NpTpm9V6UnnZZyuwqluVPBerPV832tWdZelWdeWmyddP+PVQhf7YkyLrM3F/LkNGRi/09Z6nkt6H1hf6rxR9ArQO+Cui2NMgv3umT6nkuLWOWN13NYpu6R4dsq6rtiT4UsMwxsMBoPBVeAihvf4+Lju7u422V+VcVGfT+9Tu4m1tlYR4wZ6L4ZUlVIUu9PrH3/8sdbaZmBWFiULii14mJlYLV9tSz88s5pco0n9jzHI1KaoIsX53r9//+L1p59+2lwrM0mpc9rFpnS+yhzrtdS/qxWaLK3j8fiCXbmaI6cAs1avtpDqH1lH5lgBW/qQ6fH+1G0EHU+xQdceinEItuDhsas3gjEzjtWxXrICKruQ7XRNQ6kg1GXXMt7EekCn0lPnorPSawsY57XR366xcB33JTVbzIh2DWf5nLC20cXUdD+o7ORYYWo7xmfPKaKkDE9mT7psdK15vnJOXFyTdYYcT92n8whVdL8Xw/AGg8FgMADmB28wGAwGV4GLXJoPDw/ry5cvGxdFdS2I2it5hEW1zj2QhJlTimx1MdH9yWC1KyKne4ZtiYR6XakYNclfVbdccg+wdVEnOMzkCLopq7souV+7Qk26Mp17ZS1fFJu2rTidTi9EC1zZCl2MFB53Lji6MtnFvJ5/rZcuJrqL6HZ3rkfdM6aBs8Sluk6TkDCvy6VvJ2k+lse4xKfUjoqvrqg3lRM5cC4YmqDbrW6zxx3++Pi47u/voyhCPV4qMXLHTnJWnHOtqfo80T3JUEZtmSXQ1cyCc+e6T2VITATp5NuSiEBXJqDvJAqqp9ZT9Xice5eswjHyPcfuXPY1TDEuzcFgMBgMCi5OWvn69evTrz6FhtfKFifTZ12xK4+RUv5d0SuTB2T9OTHfJDfFxpgVtC6TxeusJwoxp1Rcx56YEEBW7axFshxam87iSkLDZM71PExddiUGwuFwWG/evHk6LlsYVaRkDqGuLVqASci4K8VgUpHWTJcko2uWJ4Pss3oHKIWVrFGX0MV7RYvfpaV3SSkVrliaZTCpKNo17nWyevW9SzKpz9NeaTk+T+4cicU42TaBc8015MbC5BG2vaqssBNvT0hJS2Sl7jlKknYcj0ta4XcHvWtkgnWfJBXpitdTQlryRtS/pyxhMBgMBoOAixne58+fn36xXSpsssZdKxmCVmyyiOq+TNP/8OHDWuvZIlHJRGWUlBuTBU526HzpzoJPYxNYwCwmoXiQa1Kb0o71qqJ47esaRdLiZoq5k6Ni3IclDK4prkvFJ06n0/r+++83Rd2uQFvzwsJfd/wuxljH7cYv6H8qaaHYdyenlgqz69xSbq5rd0SQlTOGzNT2OiYhFfHSmndjoXXuGs7qf5qDtGa7BqrnUMsSeIx6DjaRTvGk7n8UrRCciDi/11JMuY6NrIVeCHc/+MwmabH6PLDwXGBBeL2uVDROyUa3drhWKAHmPEupsJ7rw62dyqqH4Q0Gg8FgUHBxluZff/319EsuS9i1F6GVyeyb+rmOR+uRVoz2qZYdC37ZokKNUWsRubZVrE7ZgTqW2JPLtBNS81Baz2s9M8kkJUYh4no8xiYYy3MMj7EixhWcNZiEdGkpuxYfbI3joBgeG6iKma+1LYhNc+pieNwntbWpMQetEcXhxPB0DGaN1nO79i/u/VrbrOAUO3JF5Ok52rNP12Jlrec5qRY+m5SmeHO9Bs0jm+GyGbNjoS5uTShLU3DZpeeyVpn5W8eTMgM7MXMyD855d32M5XcNWbmvkOQIXfY7r4Pxc5f1niTFumbSZHD0OnUCEvxOYpzWZVfX2PgwvMFgMBgMCi5meJ8/f376NWWsRdvUV2Z0OgaY6uBSLKJaN2JprJlKLXjqcVPLDZfVRPFk+pw51k7ih8zL1RXxmhkX6SSzyHZ5fY7hJT+/YqBd49Ya5+viUQ8PDxs2WO8LhaVTI9GueTCZCC3Was3KSv306dNa63mtMvPNxUdpibLRsMsk5vsUy9sT1yLTdrV7vKe8h5ybtZ7nh14WjqnOCdtQ6Z5KtLpjMFpfj4+PrZX+8PCwie+42ix+1klU0WNAVsY1lMSX6zZkPvX8KfOV30NOWozfm8kj03kHyOwcw+dnuj/8PxvfumtOsn917SR2Lbi2R/rO2yM8TgzDGwwGg8FV4CKGd39/v/788882FkQmx0xEoTKBLguvHl+/6K4GKLX40D6u1oRKCorluHoiWfCsh6FFT795PX5XT7hW38STdXL6vIsz0dql9eTmm812eax6DI2tWoopjnc4/LsBLO9T3V7zQlUeWaZdjDDF0pjlVtcqM0aT4kYF54Hrj+o2Doz/7LFOXex0LW9F83lK686tw3OtXVgXutaWwbF1VWoeutbzfFXm7a4xXb/AcfE9PTM8/lrb+UiZkO64nK9OIYRj4dp03wOspT2nnrPWdt5TpmWdW3pXmH3ssjMFF0+uY3J1oVw79Cg4lR5m0e+p4Xway66tBoPBYDD4xjE/eIPBYDC4ClxceP7ly5cn+uhS4lOhMgP1Ls2YVJ901lF+JqXofEyWqYHZRPV1fgoEV3CsTGbp3IQMQDO92kklsWSBc8PCzfo33QWdwDULsuXmowvSJf9U13ByOx6Px/XmzZtNZ2qX3syC5eQ2rqCLhz0GnZSZ1kgSSnaSWBwTA+h85d91X7pvXPFycpmltPG1ts9g6uvm5KGSJFsnNsFyBEr0ue7Y7ro6t9T9/f2mFKiuZ94rutudeLiQymBceMKdu56Hxfdum1Ra4pLy+N2RhMh5rArOf3Jx1s+4zlK5WeeeTKU7bm4Ezj0l2+r/6vdClyz3Yry7thoMBoPB4BvHxQyvswbW2gY7UxprtQxYLM5O3RTfrb/mTCJQoTnFo6uFwHY8tM5c53GOVUgBWoeU2q3rdck/fGXJAf9fz8OCcyd7JWgbSn6lItJ6nM4SFg6Hw4v0YZduzEQd3UPt0yU2pGJhXU8VHhCYpMB15xJRUkd4JWi41kyOFdXrooXvShrIxtjZu84958JJSK3l5dZ4D3n/XWKCrlXCDU7cme8p3/bw8NAyvNPptClCrtfDgnjdB7YH65JWzokJdC14+N3hGFcqneGx6hjpSUoF79xure0znBKSnFwgGR2Zv/veIQslnBwjhcc5DsfMUznZHgzDGwwGg8FV4CKGdzgc1vF4fPqFJZtba2thC7Q2Kt69e7fW2oqPJgmm+n9aCMl6clJmKqpkurCT0UrNDWkBu5R2srLEIGrhvdgNGYPed+K7KWWacPEzMQdaTamUop7P7Ufoc1cwzyaqirExXuaKrNO90zGcmAAtd967Loab7iljr/WzFMtLJS7172Sts1C87qNtGc9MseuKJCLuGJ7GL0k+HkPHr+tb/3MsjTgej+v29nYz107MWfOu54elJ91apQekayKbxNVZ4lBZDSUZ+Z3hUv7JIFP8y30/cR2ksgv3TCfGda5Q3IGxSccKGf/l81WfnXNMssMwvMFgMBhcBS5ieGv928LQr3vX4oUyQNy2WhW09pO4KiWL6r4sFmc8plpajHHJ8tQYmXVWx5sKL5NAsxs/i8aVzVaL8/k/vTK+JWuxWk0UhU2st943WqqUiRKcYEC1/vf6052VRpFjMXDdF60L10CSFinFoxXbddYsY6hch27cbLzK9dFJsKUYhMv0PcdgXRyOnhc+e3wGXXE0nxHGwp2Qsovr1LFXdsJn7tWrV63Ffjqd4nzVa+AaoXB7Rcr63RObTpmWKbu1jumc9FtFYqGc0665Kr0DqSGs+yxJfQn1XneiE/XVnY/r6hJBh71F52sNwxsMBoPBleDiGN7hcNhYjK5RKi1vWpe12alAH32qh6qWImVmZDkyBqYMsrWe2ZMYkDL4umxNZjbRqugkjOir11hltTDDr36msXIOmC1Ya6nY2iU1Ra37kLkyzuNYb5I3clCWJhlRnSfNg85BiTHWVtYxCMkidnV4AueL11OZXhKCpmXfSTyda8zphNU1fr2yibDYcP2b8atzrbvW2rIbMn3H4pz8U50Dx2jIolOzZ3e8LpuR8T3Gf+s8pRiqrpExMBc7ZkyXjMutA46Zz1zdjmPjmDu5vVRfyvXnxpgEv7vcgZRByvE47wCPz3vhztfV5SYMwxsMBoPBVeDiOrzHx8eNQkW17JJiB0VIXWZn8uPqmGI7Lj4mdqBMMR1fzK6OS40+mcnH+EgdI5lJp2zAMdIqJsNzTQ7TZ7Qo1drGzee5ppS1ro3WGNl7Z7HWbNAuhqf1U1FZreZSVjgZsGMBqbVTN0bhnCCzawtDZRONkfGyOrdk44wZcux1jng8nUdzpNfqMeG2ZHhJwaiC1rr2cc1+GS8XuloqQWP4+vVrfJYOh8O6ubnZZNHuUU0RXPYsRckTq3HjoieHjMQ1e04el64+lvvyOUwx3gqqTSWh/bptEsHuYvrMY0hz5DwKAs/TtZa6RHz9aZ/dWw4Gg8Fg8A1jfvAGg8FgcBW42KV5d3e36ZnkaHtKm3YFkqkQk6mpOkZNUaU7QG5P0Vy5OKuL4/379y+Ox8QAwUnu8PpSENlRfRbOk85Xd0EqrtQxWFBdx5q6VtPF5WSPdBxto/l0yR5MUugC6AJdZfWak9AvE2ac9JvcnnSddy5WlmKoHyLnybk0WVhMWbzqYqTwN12JdI/XeWSyCl2clBqrY+MzyPXnknJ4f1g07or/WU7CfZ07jGUE9X/E4XBYp9NpU8juXJpc20zUqC70JJTNZ45i7xX8/qHr0X038jxdUXkSnk/X5wQvOF8cYycbmOaE46nbnuuL50rEOCYnQ5aw53vn6Xy7txwMBoPB4BvGxYXnTrqm/pJThJiMSJZvtYD1K68AvAsw1/f1199ZnHUblSdUS19SZizAJcNzlgPlnxhUdYkQtJqThFU9H4PQ+kxJKmQ7lYFpHpmGznvjLDsyPFrBlV2RqTw8PJwVkO6Eep2g9Fq+JEJgIkaSfHJd7Fl6wXlzSSv0UOgzblvXt9YgGV5K33YyeGR2lBar9yUVlmseaT3X90wWSO1p6j3i9TA138EJQnTJBzVpxUmwsWxIx+2KuylOzvWVWvFUkNVwnXVyZEzqcYlhqeymk7/jtgITahyLSuUhrtif49sru+iSVhJzdV6P5IXYg2F4g8FgMLgKXBzD+/r1ayufIzAOol9oFcrWmANTu/XKmIqzSGi10FKg2PJa2XpIVkwF5Xr2pMSmeByttNrChvJgYh8s62AsZ61ndkHGSr98vW9s55SKpOv1MuZ2d3fXzl29ftcWJBW5uniPoGtMBbpMla5Iccsk2OyQGF6NMzMWSEbUlSUk4Qa+OlaYUrwZG69xrcT+OK+V9bj2VvX6nCeI8cPj8RjZigQv9rAZsj+m2dc1z3ZU3Jexu87jk+KxDqnUp4upEcnD1ImACGRc1TuUhMzJ+PewqiS03hXjJzbYPb/nPEsvxrRrq8FgMBgMvnEcLvF/Hg6Hf621/uf/bjiD/wf478fHx//iP2ftDHZg1s7gn8KuHeKiH7zBYDAYDL5VjEtzMBgMBleB+cEbDAaDwVVgfvAGg8FgcBWYH7zBYDAYXAXmB28wGAwGV4H5wRsMBoPBVWB+8AaDwWBwFZgfvMFgMBhcBeYHbzAYDAZXgf8FCau8sOkNX54AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYdetZ1nmvqvqmM8/nhAQSEAyNii3NHCBpGyIQCKNMBogok4KAqFe3gATERmRqr0YbBIEggxFUpEGB0E0UhAYiQ2NHSICMJyc585DzzVWr/1j7rv3Ubz/Pu9au8yUx1ntfV1279tprvfNa67mf6R3GcVRHR0dHR8d/69h5Zzego6Ojo6PjHYH+wuvo6OjoOBHoL7yOjo6OjhOB/sLr6Ojo6DgR6C+8jo6Ojo4Tgf7C6+jo6Og4ETjWC28YhhcPwzAOw/De16ohwzC8YhiGV1yr8t5ZGIbheauxed7bsY4XD8PwBW+v8jvaGIbhK4dh+NR3Qr3PWq2t7O+brnFdO8MwvCRbx8MwfNMwDBvxTMMwnB6G4cuGYfiVYRgeG4bh0jAMfzQMwz8dhuG/T84fVr+PwzC84Bq3/6MbYxX/vu8a1fcJq/I+8BqV9/xhGL42Of4nV/V8+rWo51pgGIYvH4bhNcMwXByG4VXDMLx44XXfVszJD7+92rr39iq44+2KF2uau+9/J7fjpOIrJf2ypH/1Tqr/myX9FI696RrXsSPp61f/v2Lu5GEYbpT0s5L+jKTvlvRNkp6U9D6SXiTp5ZLuxGUfKek9V/9/nqSfeaqNDvh1SR8Wvj9D0o+v2hXruf8a1ffLq/r+yzUq7/mSvkxTeyP+cFXPq69RPU8JwzB8laRvk/QNkv6DpBdI+oFhGPbHcfxnC4q4LOm5OPbAtW3lGv2F19Hxroc/Gsfx/3lnNwL43yX9D5I+ahzHXw/H/72k7xuG4VOSaz5f0hVNL9QXDsNwyziOj16Lxozj+LikwzEK2qg/XDJ2wzAMkvbGcbyysL5HY31vL4zjeOEdUc8SDMNwTtJLJH33OI7fuDr8imEYninpm4dh+JFxHA9mihnfoWt5HMet/zQxjFHSe4djr9Ak5Xy0pN+UdF7Sf5b0Kcn1nyXp9yRdkvT/SfqU1fWvwHl3apIW712d+3uSvqhoy0dJ+klJb5P0kKR/JOkczr1O0rdIeq0myeK1kr5G0k4453mr8l4o6bskPbj6+2FJtyTt+1FJj0t6VNIPSfrk1fXPw7mfqmmhnl+d++OS3gPnvG5Vz2dpkhSflPRKSR+BcR7x9wqOcdLOfyzpjatxfKOkfybpTDjnYyX9qqQLkh5bjeWzUY7n+GMl/fbq3N+S9CGahKf/VdJ9kh6W9IOSrg/XPmvV1r8i6Ts0SdbnJf20pGehnlOaJNvXrebpdavvp5LyvljSN67qfVTS/ynpGckYfJGk35F0cTWf/1TSbThnXNXz11Zr4wlND+w/gTni+P/g6rc/Lulfr/p2UdIbVvO8d5z7LOmD+/yXZ877itVae3g1Jr8i6WNxzp6kvyfpj8KY/LKkD1/9xj6Okr52de03aXpQuax3l3RV0v+2RV+u03Tf/JvVeholffG1GKeivvde1fHi4vcHNT1r/qqk16z68zGr3/7Bar0/sZrbn5f0Abj+E1blf2A49kpNrPcFq7V3fvX5cTNt/bZk7N+2+u1Prr5/ejj/JzQ9G5+jidlekPQqSf+TpEHS39Z0z/u5cyvqO62Jzb9G0/PhTZq0CKdm2vlxq7Z8GI5/4ur4By3o58UFc/cRkn5R0iOrMfwDSd9+rHVwzMXzYuUvvPs0vcBetFrEL18tnHjeR0s60PRgesGqrDesrn1FOO8mSb+/+u0LV9d9q6R9SV+etOUNqwF8vqSv1fSg/EHc4L+k6WX4lavF8DWabvZvD+c9b1XeazVJrc+X9OWrRfRSjMMvabppv0zSn9OkYnyj8MKT9CWrY98v6eMlfaamF9prJd0YznudpNdL+g1Jn67pJvqt1UK9ZXXO+2kSKH5H0oeu/t6vMVe3rhbyQ5K+atXvz5b0z133aq72V/P1Qkmfs1pUD0h6Oub4LZJ+V9NL+RM03VhvlfS9kn5gNQ5fqUly/wfh2metxuCNYe7/4mreX62jL7Mf1bRuvnE1/i9ZlfejSXmvW53/cZoYw4PaFJz+/ur6b1+V9xc1CVG/Jmk3nOfyfm41Dp++mqM/0OqlpUlld5+mB5nH/4+tfnuNpgfOp2lS03yOJgHm9HHus2Qu3ecv0rSeD/9w3ndI+oLVXH+spP9D0z33MeGcr9f0AP/yVVtfKOnvSnrB6vfnrOr6vtDPp69+4wvv81bn/tkt+vIXVtd8mqRdSW+W9B+vxTgV9S154d2r6d76DE3Pm2eufvuhVXuftxqnf63pefA+4frqhfcmSf+vpnvu4zSp/S4qEcrCde8h6Uc0vXw89h+0+q164T2s6dn7eat6fmM1v/9Q00vu4zQJh+clfX+4dtCkHn9C0v+y6vdf10QcXjozpn9j1ZYbcfy9Vsc/f+b6b1uty7doev68VtM9fzqcc4fWgtELJP2Pq7X9XcdaB8dcPC9W/sK7gkVw16ojfzsc+4+aHpKRVX2owFQkfd1qYbwP6v7e1eLcQ1u+G+d9zaruP776/rmr8z4qOe+ypLtW35+3Oo8vt+9atWdYff+Y1XmfhfP+ncILT9INmhjT9+O891zV+5Xh2Os0STG3hmMfuCrvczDWv7xwrr5xNQ5/pnHOKzU9rPfQviuSviOZ4/cKx164at8voMx/Jem14fuzVudx7v1g/Uu4oV+C8r52dfz9Ud4rcJ5vwncL5+1L+js4z/V+cjg2rsYhvnw/fXX8wzFPP4zy7lid98Lj3FML59J9zv5SFqnJFrcn6f+W9C/D8Z+V9C8adZnlvST5jS+8r1md+8e26MvPa3pIn159/9ZVGe+ztIwtx27JC+8xgf0k5+1qYkRvkvT3wvHqhXdB0rsnc/jXZupJ2Y/qF96owDo1MfVRk8A8hOP/RNIT4btZ2qeini+emw9NGp2ryfFbVtd+1Uwf/7Kkr9b0kv1zml7OVyX9ZDjneauy3qtV1tK/ax2W8JpxHF/jL+M43q9JBfAekjQMw66kD5L0E2PQ7Y6TDvd1KOtjNUngrx2GYc9/mqTv2zUxnYh/ge//XNPN/sGhvNdL+hWU9/OaVGgfiutpQP9dSWck3b36/mGaHqT/Mqk34sM0sdUfQb1v1KSG+Cic/6vjOD6CeqXVGB4Dz5f0G+M4/lb24zAM10v6AEkvG8fxqo+P4/haTcLJc3HJq8dx/KPw/fdWnz+H835P0jNWtpAIzv1/1PTwsIOBx4OeWv7O9vxbfOd4fYymdcDx/zVNUi3H/+XjUbvN0vF/SJN68O8Pw/CFwzC8z8z5kqZ7IrYrGa8M36TpPjr8i3M3DMMHDcPwM8MwvFXTGr2iSTJ+dijjNyR94srj8jnDMJxe0t5rgWEYnq6Jfb5sHMfLq8MvXX1+3sy1A8Zr9xo27d/j3nOdHz8Mwy8Nw/CwpgfyJUlP19HxrPC74zi+0V/GcXydJvZ03Pu5wv3jOP5m+O778ufH1ZsjHL9hGIZbVt8/VhOD+unkuShNjkVvF4zj+H3jOH77OI6/MI7jz43j+BWaNA+fNAyDn8ev0mTa+YFhGD57GIZ3eyp1XusX3sPJsUuSzq7+v0PTy+WtyXk8dpemh9EV/P346vfbZ67396eH8p6ZlGcDO8tjXy6tPt2Xp0l6ZNw0amf9kKRfSOr+U3P1juPIerfF7Wp78N2qSa1xX/LbWyTdhmN8IFxuHN/TJBFHVHPveXJ9bM9b8LsxN08e/z/Q5vjfqO3nPcXqofIxmqT6b5b06pXL/Ze2rtPkdRfb9Pkz50vS68dxfGX88w8rh4Ff0CRkfZkmQeKDNKmrYx/+rib2/8mabHcPrsIHOL5L4Af6Mxee/7manj3/ZhiGW1YP3zdpsvm/aOal/5d0dLx+/xjtrbBxDwzD8BGaVH5v1TQ3H6JpPF+jZffk3DPxWmGb+1I6en/ctGpTHFcLtbw/WOfuykM3wmso6/scfmz1+UHSIWn6s5rMOt8r6d5hGH77uGEs72gvzQc1DebdyW93a2JgxkOa2OFXFGVxod+tSYcdv0uTXt7lvVaTfj7D64rjFe6TdOswDKfw0mPfHlp9vhjtM57Yst5t8aDWL5MMj2hSGdyT/HaPjrdoW6jm/rdX/7u+ezS9DGJb4u9L4fF/vjZv/vj7U8aK+X7e6oH9pzW9cP7xMAyvG8fx3xWXfaImzYHx2qfYjI/X9AD78+M4Wkgwk49tvazpxfzNwzDcs2rHd2h6EP6FLev8RU22mE/UpDqdg1/q1Zg8V3UoxE9qvVakycxwrTAmx/68JlXnZ47juO+DwzC0XgTvSnhI033x/OL3lrDs59mf0FHPUWvfXvUU2nU4F+Pk9ftJwzCc0iRwfJ2kfz0Mw/tC2zSLd+gLbxzH/WEYfkPSpw/D8BKrtoZh+BBNuu34wvtZTQb1N6ze8nP4DB292T5L0034a6G8T9Pk7fR7eur4VU3s5dN0VI35WTjvVzS91N57HMeX6trgkiZ2sgQ/L+lrh2H40+M4/g5/HMfxyWEY/pOkP7+ak33pkCl8uCbHnWsJzv1zNMVI/erq9/+w+vwsTV6Ehh/Cr9iyvpdrWgfvMY7jy4/V4k1cknSu+nHF9n57GIa/romR/EkVD/dxHH83O/4UcN3q81AIG4bhv9P0oHhd0Ya3SPreYRg+UVNbNY7j1WEYDtToZ7j+jcMw/DNJXzoMw4+NR8MS3IZPHsfxJ4dh+GBJ76vJa/jHcdpZTWzq81XM8ziO9pp+R+E6TWrMwwfwMAwv1Kam4VrjkqRTwzDsxhft2wE/q8kzdXccx1+bOxl4haZn21/Q0RfeizQ5If2nY7TH9/nGGloRi18ehuEbNL2gn601E12Ed0Yc3tdregj/5DAM36PJZf4btFZZGd+pyZvxl4Zh+E5NjO56TTfLR47j+Ek4/+OHYfjWVdkfvKrnh4JN8Uc0eef9X8MwfLsmL8fTkv6YJseLTx7H8fzSTozj+PJhGH5Z0vcMw3CHJhXHZ2r1wAjnPT4Mw9+U9I+GYbhT04PvMU2s67manC5+dGm9K7xK0l8ZhuEzNbGgJ8ZxrFQ736nJW/AXhikbx+9qUi1/kqQvGcfxCU0S089o0uP/Y02ONt+waue3b9m2Odyoo3P/zZrG7ockaRzH/zwMw49JesnKlvArmtRyXyfpx7Z9QYzj+IfDMHyLpO8ahuHZmsIMLmpypf8YSd83juMvbtmHV0n6yGEYPkHTun1QE6v6h5Jepkl9uquJ1V/VMtZzrfByTXa7H17dN++maS7fEE8ahuGnNT2QflOTuugDNI3Hd4XTXqXJzvfy1Tn3juOYqb6lSTh9H0m/OAzDd2tSqz6p6f56kaT318TOPl+TAPIt4zi+gYUMw/BTkj5tGIa/us39+HbEz2pyrvgnq3X5JzR5M/J5da3xKk1q378xDMMvSrpS2eGfIn5Gk5Dx08MwfIcmlfyOJqe1F0j60nEcU5Y3juP5YRi+UZPd+n6tA88/U5Nz0KGtfhiGl0n6c+M43rL6fr0mzcAPa/LS3tGknfgSTXb+X1+d9xmahN+f0kSIbtLkRfrIqq3b4TieLmrE4SXnvk4hPGB17LM1vcDm4vBu1fTAfq0m3fP9mkIBvjJpy0dpcl19mya1VxaHd1aTi7tjAB/WZLx/idZen89blffRRZ+fFY7dqUnn/ITWcXifpDwO7+M1TfDjmlyDX6MpTOH9MFY/nIzhEW85Teq9f7uqd8NTMbn+Lk3eWfetxvGNmpwEWnF4/0ZFHB6OPUtJbNhqTA+9B7UZh/fAahx+RtJ74trTmhwzXq+JqbxedRwe6/X8cfw/V5MU+uRqjfwXTQ/3Z4RzRknfVPTvxeHY+2pah+dXv/3gaoxfqunmPa9pbf17TTf5U/Yua/U5Oc/310VNdrHP0PRg+YNwzt/SpP14eDXnvy/p7+iop+5HafLyu6RGHB7m7ctX6+jx1Vr7I022lz+1+v0hST/XaLu9Bl90rcZtVe6iOLzit7+1WoMO+v5ITQ/bnw7nlHF4RV1Nt3pNvg7ftzr3QAvi8HD9Davz/mcc/7LV8XvCsT1Jf3O1Vi5qepb9liZh9PpWO1fXf4Umwdux0l+QnPMT7kNYKz++Wh8XVvX+7mqs4xp8/9W1r1+d81ZNL7/S67z1Zxf7d1kMU962H9DkPvsH7+TmdBQYhuFZmgSXLxzH8ZrkL+zo6OjYBn23hI6Ojo6OE4H+wuvo6OjoOBF4l1dpdnR0dHR0LEFneB0dHR0dJwL9hdfR0dHRcSLQX3gdHR0dHScCWwWenz59ejx37px2dqb35O7ulCbR3yXJafD86d+YHi9Ll7csb670zrA7Lm3bf431XosyPOZx7P3/wcHB4edjjz2mCxcubFR47ty58aabbtLe3t5sm1jX/v7+bBuy3+bwjprTbdfrknYdp+28N49TblZGdc/z3o/jcPXq1Y3PJ598UhcvXtxowN7e3njq1Knmc8fH/LnkecN5mft+3HOXlpHhqazRJWNQHX973BvZ2vEY8Dcf9/polTOOo5544on0uUNs9cI7d+6cnvOc5+j666e0fDfeOGW3Ont2nQf1zJkpLeDp01Py9VOnTh35zBYrbxB2zFiyAKtznspNHs+pJqg6b+lvVTtYT/VwWVpevCYTVNg2H/dL7dKlS4e/Xb485aF98sknJUkXL17US1+aZ0+7+eab9aIXvUi33377kbpjfa7rypUrR8p/29vedli+dPQm8P8+19+reWn12X00MmFtbr7jy5/IjrXKlOoHONsWy65ePHwpsI6sXPfLx30fW3CJx1yOnw9+Flx33XVHypKkRx6Z0pq++c1vliQ9+uij+qmf+illOH36tJ797GcfluPnjr9L0i23TMn/b7rppiPt5f0a4THjy9cClj+NTNDiua37kfM/t+6qdkub6yJ7plQCQiWQxP+rcyoCk7XB53it+DMbI5/r94a/P/DAA5LWz4RYjvt19epVvexlL9soM0NXaXZ0dHR0nAhsxfCGYdDOzs6xWAURpZpK8m1JEwSlsSVlbEPxKb24zRUVX8LwWtJnde2c+iirh8czFhIl9qxNLaksqilbY3r27NkNabOa+6z9rbkka3G5rWvmNAqtNlXznjFJtmWuzNZYz30u6Qfry5hLVcYSNZyZkhme+2/pPf5v7dCpU6eaa+f06dMbDCGW53LIECIzqPri9lX3bna/VOr21nrO+hX7w+PZb3PHM41JVd8SFffcfC/RmLSeJWSqnmNrDczYH3/88Y3rXc/u7u7i905neB0dHR0dJwLH2i3Bb1O/nSM7qGwLfNu3HA+q+rLvmQ0jO3cbIzvtFhGVkwTbmNlUqjK2kQrJkDIpcc5RKBsTS+VkSjw3/u52kx1mGIZBe3t7h1K/EZm521D1LetXZgvMjmd9riTrliPMNhLvXFvIEjIssZ3M1XscB4TK3rTEOWhO2yKt2d+5c+cOv7fYzOnTpzfWQbThmeG53MoOt0SjUPU9c6DgNUtsh3Pzkd3LvLYaq9jfyna7hNktRaYl2qZ8Pmv5nLE9OPoO8L7pDK+jo6OjowPoL7yOjo6OjhOBY6k0K/dWqVbfUbUZVSKmppXxuEVXK5VWS31XUX2qCaL6bk4t6d9b6ile6/7S8N3qzxIVRxXmUbmp8//4vVI5xHOWxNbZ8SA6Gkh5iAHV3631RucXtrvloBHblp2TnVup8paoD6kqO46zEvvXKqt1D8QyWup3Xps5cFCdt8RhyE4JVkWePXu2OR57e3uHv8drjOj8EvvGdZ2pAtknjnHmdDQXwrIkXKBa5y21e0u9z+/XQoVZmWpa41iFQ1QhNhl8jefVqm9p7YjkuV7yzD0sd/GZHR0dHR0d78I4FsMzWm9qBmI6MDgzAFOyz1hg/B6PV4yH0kTGCqqgeEqF8Zo5B5NMaq5YbhXwmvWV/eDxjK3NOee439LanTtzIWfbjGqsM+zs7OjcuXOH5boN0W2cAecVs8vmspLKWxJwtXbc120k4pY2opLoW274BoNsqzCIJc4RFTvN1nTlvJSB9zrHMXNuMyzBRwaXYRzHw/VqZxU7NLCcrB/ZM4VhDtUctkJN5pyY4thyXVVOHrH+qk1LGN5SB7slmNMWxDZ5zD1fFUtttd9t9RhFhsf1enBw0J1WOjo6Ojo6Ip4SwzOyHHkVO/PbOUr2VUqfym07k0gpeVAyzlIh0XYYGU/VxzlJgna5eC0ZnZkM02JJ6/GppLOKtcW++hi/ZwyPbt1GZd/M2tZyDx6GQadOnTpkeG5TXCduj8/xuPjcLH3TEptJvCYLT5kra0kwb8tu1bKDSpssJM7LEvvoUrCtbF92rGKUcX1XjI7jF+fNffR6awWeGz73hhtukHQ0LIHrira8TIvCsBr2g2nqljA8ssX4nKvmn/dp9jxt3e8RmW+EsSTEpeoPP7M0YbSj+rN1b3KNuFzPp9dSnGvOZSu5ANEZXkdHR0fHicBTYngtj63KLpe9lauAT0ooZGTxWoN2JUoMGebsQPEc1sN2ZKzAY+E++9PJkB1UGYMryQYJ10/7o7TZZ0qylWdrhkpai+XGPrcY1pkzZ45I9NLRdUDdPwPRjVa7K2/WFsOr7BKZ3baa51Yy36XaAUrPWbkG2W4rWXXlYZkxZnoqztlY4rG5dZXV4zV65syZpnZgb29vI3l0tOu4HNqIWzZ3PqvMUPiM4rMsK5csNnvOUWvD8ee6j+cYc3bZbe6NjC36enrRUmPGzQHiObxmiYcvn+2ux8+L2EaP44ULFzZ+m0NneB0dHR0dJwJbM7xhGDbeqJkHX+WB2Epc7Ld6tf9ZS5duVDruTLdN1tKyB1VSepUmLLMVkOkt9fSK9ZKNWpqKDI+2MI5vC7R5sI3ZVjJL4Dg8S+Uux1JaLI9MtPJqjf9zDCttQStOiVoBj2MWp1Yxvaw9bBs1CZzbTGrmump5IbMNZBu8v1pegbR3t9LI+Rqvu8oWFsuNjKGVWuzs2bOHDM+fkeH5mO+HyvYYMXdfGtnzjfPB+4XH4//+tIbH4PNPqu3XvDey9V15cvMzSw3Je4BaI7PsqDnjmuF9zHFme2M/OAdZHJ4/e2qxjo6Ojo4O4CllWmmhsnGQdcT/Mw+wWEbGniqpjDEgmRcjPRNpr8oSsVJayrKksL4qEwDHJJPSKVn70212LFKUtHhuNb6tGKFK8qr66GvmYvHIqjP7geuyBOwNYM+fP3/kuFR7bFXZP+K64xY17Ds9/SIq5pDZe2iLnMueET1luRY5D5ndzH2kNzAZXouN0mOU3rpxvfHe4GbBmW3KjCzabau1s7OzoxtvvPFwqxjXHePw/Bs9rSsmFI8Z1UapmSam2niYdtPIZrxuaYMie4v1uPwqC1Xm9W5QG2CWRH+GzBZaaYl83BvuxvEmq+Y655jFY5VWgn2Q1uzS4+nnwhJ0htfR0dHRcSLQX3gdHR0dHScCW6s0d3bWO563UnFVlJif/J91RWSqBboOU4WatY1tYFuzBL1zgd9uRyuoszKGZ84KBt1zqYazOiKqJaq+VyEj8VgVzNlyOZ8LhpVqdWdsA1WYjz766JHvWYC+1UJPPvmkpLV6w9+p2sx23baKxGNqdZsDnP0Zr6nWJp0M3Pd4TZVoOFsH3N8tmzvW5988Xh4Lf3qcs7mmartKvxfb6OvpQEV1bKZ2q8JIInZ3d4+oNG+99VZJ63mT1nPGe5jPjGwNVg45dNGPa79yeGHAeXaPeY1aJctnVxwnn0sVJh2BMsc0tp+hBr42qtD9P52AaBbhM1Oq55Cq7lgfHVB8r/PZFceez8Bt0BleR0dHR8eJwFYMz+mh+LbPAmX9FifbYIBodk4lAWfSoKVYS/qtndWNavuKGARLMPm1UTmtRNDBpXJtzxxr3BY62FACy6SduWTVkSlFQ7K0ZowxGD6WFfuxREqXpnEgU4zMxAzksccek1Qb9TNHl8rl2xKyy4hz6zG0dOk+u96MkcQUR9KmBsP1ZokA5rZr4brM+ufyyVii4d7tf+KJJ458+hx/Zgm2GVpgkLXFNpLBWUonC8gCqlsakVj3LbfcspFSLDqt+H8yYq7fWA/ZGZ17yEgyB40q/MllZWECZL7USmXPn8qZw8icylgPHWno3BRRJXHmcyK2lc8x9qs119zh3Gu4SocnHU1l1sMSOjo6Ojo6ArZmeHt7extBiNF+RFdeMrqW7pe6ZkrGGYOwxGtJgzaOLGlslvg01mNE6cW/UcKppPTMzli55Gcppfw/bRMMus1cjemCTfuP25OlMqsCzTMWSumvFZYwDIN2d3c35iUGntMOR9f4lu3RfXF5PNfzltm6vIY8trYVZVL8ww8/fOSY7Ui33XbbkbGI64RszG1j4G+Wlo5luM0M0TCLi8ceeeQRSWvGzPHN2BztI2Q9md2nSj/H8JfIQi3JL5HMd3Z2dP311zcDz5kkwOuAjDiuedoyeZ/43BYzYYo82pnjPT3H6H1t1CJ4HsjCqF3j/MTyPRZ8dvE8aT1+fK74HDLmLKkz7act7QCf/Xzete4nr6EbbrhhcRKMzvA6Ojo6Ok4EtmZ42RYfUYqhVE6GlwWe04Zm6YISI9lBLIeJXw1KqLG+yqZmxO+0v2Spg2J7WlI6GWbm+VcFpVc2glZSZHquZdfQBpZtssh+xdQ+0rwufXd3d0N6jpIbbSaUXlupxbjVUhWomwW90rbhc8wAYqC7f/OYmrV4DO64444jbY9toW2IDNLfoz2WdhZ/0j5n9haPmdnZpuZz/Du1BnGcyD48Bpk2gtvC0K7M9GjSev6XbA9k7QDvm4wpcM5oj40MhfbdyquZAfuxPq471+vvsczK5m0tAb3GpU1bOhlkK2l5dQ9wHWbJnN0Ps6hoL431R/B5Tabn8W4lK3f/rDHx2mzZXm+88cZFaROlzvA6Ojo6Ok4ItmZ4p0+f3mB2rS1eqJPNPO2ox6XEze1zsq2FyJ5oH8mkmCr9VCt5NL2lGH+V2foo8VRJkmN9bBMlLyPbpoPhBiG3AAAgAElEQVT2PbLOzOOJsUaURjPvMI7FnD1mf39/g6lkqb78Ge170tomFW1BXhNMpt1K9cb2V3GQlN7jNfRIZNqoLAE0x8tSM++JKK0ydsufHpss3Rq3TXEaKKahI/OP7SeT5T2RbXtjMEY00+pkiY1bDO/UqVOHXppZOr3qnjYyTY/rY8oyahSMLNG5y+UzKrPHVmkQXZbjC+N80Pu6SurNfsZzyX64HrMx4TOJz1cj87Z3m9x2Ms3YZt8/FZt2O2IsLO2yp0+f7l6aHR0dHR0dEceKw6PHTibNMrkxdc0Zy2DUvaUVS7GWBjJ26GsYj9PyfKPkw+9ZDA0lER7P2BoZULXRaSalsN30PsvGk5K9pSPaVDIbZZboN/YhsxHEeaviEcdx1MHBwWG5mf3Xc0fWRntMZHgu7+abbz5Srs8hU8nAGD3aS7IYJ8aZem16jD320nr8mfSYErG/RzsTY9yYjYbrMNZjxkD79t133y1prX2J9+999913pFyPq5FpMDwvtkUxCXaWnYV22paEbu9w+gdkG/O6j1XC7Ag+K3xN9HiN/XHmn3jMc+Vr/N31mT1KmwyS7JDfs3PpWUov9Hjf8lnkdUB2GuHy3VePsceK8b8PPvjg4bV8xnuefK3XR2Z7pT8AtS7xfqKn6IULFzrD6+jo6OjoiNiK4Y3jqCtXrhxKBq3cj7RT0WMnSiLU59M+Rt131DkzK4HLtVTNHJf8P6LKmhD/p6TtttJOkdkMq5ydWcYLSsWVh6frj/YFX/P4449LWktyzBUZPa+qbWBamVYynXwFe/i6HpcbmZelOEuN3CaIHnAuV1pLj3fddZektYT65je/WdJa0o79oecmvQvNouLY0n7AGDR7QppdSZs2Om6Ca2T2J8YVMqOQ0ZoD3hMeM3+PLPvOO+880oZnP/vZkqS3vvWtktaen3GtUhPDeeMYSesxiGxgbmsperNmGZdcp+e5spfFa7xW3Ee33+zWZT300EMb5Xj9ej14DLLnjtdglXmE97S0nu9qW6DqewS1X4Zt4tH+67qZw9P3BDMYZR7F7/7u7y5JuvfeeyWtx9f3pteYtF6D9K6ubInSevz8HHviiSc6w+vo6Ojo6IjoL7yOjo6OjhOBrVWaly9f3lDJRQpO1QrTXGWu3oeNwbY91W7VmaqR3xl0HVUbLeeU2NbYFwY7Vjv1Zmopbp/C3diNTNU6l4iVAerSphqZjgZZmjCrmKp0Z5ljDQ3OLdjxgG7uWcD8/fffL2mtCrFDQKb69VhaXeTAb6qcrZ7MVH9MP8Z0UREeS6surVJn0uJqy6tYD9NDuYw4L0wHVu3unAXjM/SDa5UOFvE3t80BwB7f17/+9RvtYKpBusxnjilckzs7O7NhCVQfZoHsVgH6kwmZ43PH6+uBBx6QtDYBcPd0r6XMAYWOTa6XTjmxLT5WhdTERAB8fmXhFdVxpoFzvXToiuPILaWYnMBjQFOOtHkvvuENb5C0vn9jKjDDamOmhqRpKPaLyRf29/ebyfsjOsPr6Ojo6DgR2Jrh7e/vb7jCR8mMbtTc4iWTKhisyy1YmMA4c5YhM3E9rY0RWV4rQJIMj276rc1cszQ88dosOS0TDZPhMcA6XmtpiRIzXZxjOqoqgL7auikey1zjM+zu7h62O9syxhKv203Hhmxsybic3JmOT3a2YOC+VDPvzMGKgcUMNcnGyfeA+1wlJXabowTMfhrcNijeT2SX/u4xMtut2KIk3X777ZLWjg1MZh7nmq7jDGznxrBSvf1MhSzpd7Zxrctj8oUstIDPAd5TXitZ2kKG75gd+lpu2Bz7TO0J75t435KdU0NROQfGawyvQ7fdjlXxOeBrmLS6Ck/ItguzhsbzY8Znx7K4cS9DV9i/LCk2f2uFQxGd4XV0dHR0nAhsxfCko5IrWY20uVEl39yZXaRKckq3/UziptREXTeTk2b1VFsJRamCqaNom2QfMhbCczM3ZIJu1Rmji8fjNTyHLCHW6/7Rjspg0szOWNVH7O/vb+j+o02FErUlQUuTmZTrOq3P59oxW7IEnjEJ2hVpY8tCMWi3YnBtZnPgd9pWMjsM7TpmUe5PlgavsqMz0Tp/j+d4/BwiQg1KLIMpxKqtrKJkz3CbqDkinLSAWqM4l0ymTNsqQzOkzZAbMl9/5z0g1eEPnh+m9YttyJKuxzKydGRMXcZnCJ9/sXyGSHCMWkkyWK8ZPzVosX8+18zOY8IUd7EejwGTP2Rs3v/HbcQ6w+vo6Ojo6Ah4SqnFWsyE9hiytMg2aP+Y28Yis3W1bChSHuheeT7Rey5eTw/OagwicyGbYZB6JqW3Ai+z45nnKm1EVTLZCLIR1hvHhAy/tQmj7b+0tbTSm1naYxLa2H4yYNocGOSdeSRyLFvpqGhntpeZpVl/z7zllm4enG1lxTGhfTNiTuvQYnj0JPR4ktlFDUaVGJ629pgkgmuzJaH7uVOxndhnshmORdYezxm9w11+ti0V1zFtUbRVR7DvnMtsY+ZqA1hqNCJicuVYhr9ndkYfs12v2kA3e0bSY5zlMzg/lsPx4zOf6d5if5ayO6kzvI6Ojo6OE4KtGV7cxiOTLulxRj15y9uP2wOx/ExKq8qlpJDFClIqrLw2pU3mUDG71hY83PbIaDGkatPWyg6ZlcdrW9sfUSJuSeC0CR0cHCxO8ZPFAtKLkRIq9f3S5tzRu7VKARWv5VrlNlRZvKJtQWYH/vR8RSnW4+Py2J+WNqKSmqmVaG1HZPB7lsCbMYFkaZmHdLXNlpExV5bTiqXa2dk54rmdaVeYeL5KvZVtJMo20auUm67G8pguMGPARmV357NriR2O92tm22dSdIP2xWxMmEKMPgz0Eo7HeK8x1VycNyaIz9YF+8AxWfrMkTrD6+jo6Og4IdjaS3MYhg1JLPNiIxNq2XcqW0al52+90bMta+JnPIf6ccZhZXF4LSk0ti2LG2K5lbQmbdozK1tli2W3PDmJKoH3kjKy+KoMOzs7Ta/PKtas2pw2tpOsorIFLMmeU7Gq+L89zRzLZA802jxina4nSzAev8drPT5mOIxrzcaE7JbrrMosFM/llkVkH5kdlTGwLeaaJU5urZ1xHDdYQGw3t9bhXMZy2G6jsr8xLji2m4yE7Dqrr7LHZf2n1qGK6WWGF2lz3vlsdFtjH8hy7VnreqlZyJ4HXHdsR5YViHZu2tzjNdn90700Ozo6Ojo6AvoLr6Ojo6PjRGBrlebBwUFzj6k5R5NKVRZB1Uv1Gc+lyorqqiUJjqlmiW7kVZ+XGEypwqzUhJkajCpAHs9ANVTlvNBS7/DcFqxiaKX4ocMT2yptquKoNsoSMzMNVMsNPZYdy+EO3QygzhJz22nFKbisArL7dBbSUqWno0owU9lmiYUj4jhWO7W31gz7V+083UpWTtU81fItR64WnLSeqfEytSrXENuWqcHmkissaT/VdVmijWqeWV+mqs0cZ2IZrTABhsNwT8WYbq/aF5Prgo4w0uZzm8/kzNmoMgUxcUhcb3RWWbIf52F9i8/s6Ojo6Oh4F8bWDC8iCzFoJUKVcsNtFZS+jbtpJU0wTVRsL6Wi1q7sTwWUDOeCyuM11Q7AZMqxf0tCCiq0nItYT+XoUl23u7t7OMaZU0GVXJfhKnFezHhYbpUoIKKaF25zE/vsYzbm21nFgbpZiAl3j6YWgunOMhZiV3I7y7Dt0fGgciEnsvuLged0kiIrZt3Z98zhq0oW3AI1Lx6TiCwVVbw2q28u1Ce7pjqXjCxLOD2XeCK2nU4idPLgZxaelGl0pM0d6uM1ZHKc/2ztVJqkloMVz6VGLtMoZM+d7rTS0dHR0dER8HZneFVoQSuUYY7hZQHTVTJnf1+ypZDB4NX4fyXFbNM/fmZuthUzmQsqj//PsbX4e2W3YL+yxM3G1atXS0lrHMcjv2UbylLqZ+LfVmo5BkpXgfRZ+6qwGDJ+adNdm4GzGQtl3dXWVS1brs81wyM7zOzotH3OaRpiW+ZseJGVkglzaxnWF8uJ98Jc2Aw32c36HO3Jvi4i286GbLBKZt/aoqgKG4gaDI8Tn0VcF9HmxnCLiiVl9jr23W2l/S3a8LhlFO8rhmxkz5DqmZwlm6B9kQH2mZaF6/jy5cud4XV0dHR0dEQcawNYI2NPZCRL0lrF8qX5DVMzhpdJYVI7XRelWLKqJQH17KfRCuYlS8sCQKnTpocXy85YDyV4Bq+3wHNaad2Wbg80jmNzq6cqYJXptDLv0sp7tUoxxXbF+ng8SsTcsoiSt/tjT7isr9XWLpaaYxtpg/a5TmWWbWjLaznmRrYeKlsNxzXbZonXclyze37OqzZDKxE41yDHL7aBdq9qrWTPJdrUqmdWdl+yXN7jkfUwzV3VzyzhOZ9zHGuv4Uz75a2RvA0Vt4BiCrqsvtY9R1Se2Vny7cxPozO8jo6Ojo6OgK1tePv7+xu2tsz7ina47Fyj0pnPfcZrjcrGFSVUSq+VBJ7ZYbJUN7G+jC1k9qqIzA7DBKyW5Jckxa1sUuz3knRvrXOpm59DK91WPMa6meLJHpHSphcX1whZYcvLtGLPccNKbwPkdj/22GOS1pK4JePIvKqtalq2QoPzzlRjZpzx2ipOqdIStLbqqqT2yPC4FVMVRxvBmMQWrBloeQi6T9W9lnlaVuuf938WA8dnRcUK49gyiXJl/8u2lprTEmRzW3naUisQx4obG1tT4XuO9udYFu16lSYte1/wO5/jWSJ/t6l7aXZ0dHR0dADH2gCWnmOZXnzOXrQ0w0L8bElpc96LUSKl1MBYFyPzyiIzYT8ytlB5dhqZ5EpJy9dYGqzsDrFu2i2WxP/NjWdmN4nSbMuzNsvEksUNVbY0xtxJ85I2PRVbtmMyysxOYS82Z1Rx/T5uhhf7RRtJlVmjdc8wKTXjlGIGFv9mCbjaYipbq9Q2VOsg3k88Vtl049iTubbgTCv2EMyYGTfINTOpbF1sT2wL2VQra0pl0888SclePD9eO/RYjNfw/q8S0GfxkT5GOxzXR1aO53SJNqfSILDsuWPS5vMmjr3HK2491xleR0dHR0dHQH/hdXR0dHScCGzttLKzs7PhktyiqpUBewkFrVRvWZqw6pPnxeu5u28rUJYpb6rkzln/qHaz2oUuuFH1RfUAd2GnSrXlbr9E7VqllGJ7MhVkVHfMqTzoXp05rVSOEq1gdQaczwX7x/rmXKGjYf7RRx9N20SVYxaQy7nMwlHYP/9m9U2lfve+fFKdbs1gG7PxbKUS4zUGEze3wnwytW4racGVK1c2EjVkzmsM8aDqL1OH816qVOrZMTqx+Vo6pMTy3Qa7/NvxyWVEFTrXGUNNWo5ndCKp5j0LocqcbuLxlrMR0wbyfRHLrJ7x7GccR85XK2k90RleR0dHR8eJwNYMbxzH0rAdUW3X0Qp6brkxV9dWzK6VnoyJpSv34Mz1mkGiFYuKY0LnGDIKI9vao5Lg6IadSWkGJcus7CqBLtFyGGnBUjrDBGI9HNsqpGWJ4wnPyVIUsU/VVkx2RMna5nrsEODPjM2Q2fH3bCsUBt3bGcNrNduOiJJ95c7fchxj/zjX2RZNlTt6K/3ZksBzrx33PetPlWydwfxZajGDbWHAdiv0x9/dxsxphuNgbcEjjzxy2E/paFJsX+/5jgkNYhuNuO6r9ZYlODAqZ7jK0SkLuK+clZY4KlYOdxHUBPXtgTo6Ojo6OoCtU4vFN3rGoirbzxKb2hwyRkm2VEmZ0eW3SiybsaUKlcu/sYT1tGxHlM7cL0p6mZ2GTKhivZmdqWI7Wb8qe1kLlJbjHFSJf1ssILNDxGtb81SllqK9NtorPEdmXlVy5Wj3c92c02oj2GiPoz3RruRmBVlQNMepCt1wO7KQHdphyLZb9l+G1GRraVvtwKVLlw6Zj8ct24S2ChfItEe8huuY85IF93ue5zZojef48/7775ckPfjgg0fa4+QG0nqcGfZiVHa6+L+TE3j9uQwmgo6gfZNaloo9xrbweyuV3VwoQ8v2vg06w+vo6OjoOBHY2oZ3cHCwsX1LJiHyjU0G1vIuIshIlqRCol0ktpHecexPi0nMJQDO+kWpyJKqJSx/RptetVkk68m89ir9e2XnbJXP/mdYaodxiqiqnmprFbK3TNqrbI5cB1ngPO3NnGPPj7ROM3b77bdL2mR6Lj+mP2OiBpdntm6W4N/vuOOOtC+xfo9NrIf1MfEw0WI9PIcMImMSPLdlh2klTsjOvXz58qFWw/dPZrdmEHzFouP/9Cbl/NPmL20yOyMmAODv/t9emWZa3Cw2sjj3yx6d9AbmmspYND2YPSb0/I7l+blTab3MOON6cT/4XuDzL7Nvt5LKxzbHc7Jk8nPoDK+jo6Oj40TgWBvAtrbgoZSX2Ql4Da+dS4G0RAecJR01qlRP3HA0s4vNJXElk43td/mWAi2pcpPF2C/GxVFa43FpfsPPTJeexWTFenhePHeJF5btv7TLZcmc2W7aDzIba9XOlh2mSghOL904tmZYlqi5ZlzvDTfccHgN2bPLo3cwpetsLHyO7TJGtBlSKue40nYZx45stEJrG5oqvV+WgjCOeUtSt6dm7Gv2DCGbrVh7PNef3GzV1zAGMvbfffY68Lx7Ds3MpLVXpsv1ObbZZfZo11n5JHBT17hWvUb9nOFzh9+l9byTYZldZ1vzGPQn4P3T8lXgmNCTNNtG7Di2vM7wOjo6OjpOBLb20ow2vFa0/1wGlJaXZiUhtrwLK1tNJiEwYwczn9BbL5ZHPThjdjJWQLZriaryxIzlGZVdLruW584laI3XV9JSdryK0cngBMBbxcwUWRha8ZhkDq36qkwgLCtbq2QHbqPXUibFMhaQWxsZrSw9tPdk225VDL8az2zrlep+zea62tKlpQFgUuCDg4PmOt3Z2SljAuP/ZHS+hpk74jG3wSyGaye7lvZ3MzuzJjK++L9/8ya+toe5/MjWbaN1G8nAPKZuR7Qh2tv3tttukyTdddddR84xs8xiKukF7jl1e7L7q/IC5rOz9b6oMiRliM/AxZ7+i87q6Ojo6Oh4F8exvDT5f5TMqtySZDkZSyPmmF92LaXALJaKudjIyiihZG1h3A0ZXpTaKdGb4dE+l/WrytlHZONZSfJLMmxUOTpb3nkt2AZDSTXLfEFbBiXDVqYVxg3RrpAxPkqTXKOxPnpUGrbzWFqPm8ZGG4m06a1Gb7OMhbhc19/KPjOXB5HrILv/aIfh3GT2ZtrYyfhaLLRa174u5mlteVxyPHhufA5UG7yyLPcneut6Tm1LpT3en7fccsvhNXfeeeeRT3tjem652aq0zqTjc30OPYhdf1x3rttev2aUPsfXZNmTbHusPFV5n8Vzq7loxetmfgXZtdn1rexdRGd4HR0dHR0nAv2F19HR0dFxInAsp5VWuimmWJpTd0i108Nc4tKsDVUwacsdvVKpRqpchUZQ3ZaFTlTtbyU0nktz1DIAV+PZSjTLa/lbplpoufxn2N/fXxTSUqnrsqTBc1svVeMXy63SZmVjwe2AmDQ4C3D3NVRls6xM3WrVEXdSrxIsZP2pwgMylTTV+m4Tw21aZoVqvWdrJ85LKywhrp1MNTa3XpcEJ3NM6SqfJeieSwget/rx/Ful6TZ5br0OokrToQwOVue6o5NMdFrx/1a7+jufP1E9zWQFDMmg01RLrVw9M1tOh1W6t1YS6b49UEdHR0dHB7C100rcqHEJu1iSuHjOFb6VtovuxxUTapVbMb6MsVSbhlJCWerIEcvMHA+MjDnE8+LYtOanQsXaOQaZG/ISZ5iDgwNdunRpIzA4c2+fC3doXcO54zhmAdWV+3y1gaW0GfxMphmdMCzBM8C8csHO2GHV30xLwbRQLrfaaDYLIudvVchGvGYuBClLD7UkTMVrx8gckNg3jmkrHIrPA7eTz64s1MjgXMbQAsPz4nABO5GQRbWcVpg8mok9otMKE51XzlhxHJmKzecyIDx7ZvEYg/L9GTVNZMjUDC5JGNEDzzs6Ojo6OoCtbXjjOM4m7OU1GVpSenZO/J4xr8r1dWlyWil3tTUq1kemRxtLhiwtTywromJ6rXo4TtswvTlmmbkHL2F4LoPMKEtvxqTRZAGxnjl7Ee0VWbo4g+zGv8cQEybt5vpiEHO8xpJ8FW6ThWq07FaxXxE8h/NTbfkTz61s1dl9VAWct5JNLAlHMIZh0DAMh2PuNRTDPZjEe0lIUxXCMJemLsJzyrKYuFla99m2NIYHZGkYfa6D1s3+mHiA6zz+Vtl7vVYdFiGtwxFsM6wYfpZgg2CbuF1U1ucqsD5ew9CImJRgDp3hdXR0dHScCBwreTTT90TdvCWtinFljGRpAPMSjx22LUsEPSfJtTY1rIJpqy1FsnooyVNfHUEWVXlCLgnGbyWGrjz4Wt5uGfuoJC1rByjZt9KbMTFAi11UaNmBWT4l4lYiZW4txfUQpeaKcfs4bS3ZPcJ1zLRkrfmf03JkjNmott9qMYnK9pnZqJdoYNwn3uPRrsdtk7iGaJfLwK13yG6iRsbl0muS938cA9qvrQWwFyVZavy/lX4uti3zKGbyDY+bP6Nd0AzStsPKR4LHI9hmeoPG/pHZVV7i8XnKMV/K7qTO8Do6Ojo6Tgi2ZnhOESWtJYYofTD57Fy6mfjbnC2vlR7I0goZBONGeH28hjFIGeOsvMGIzKuoQlYfWUZl62Cb+X+svyXdVnFMLCNjylGSXCptteywBllU5pVFpjgXC5TNy1y8UBbjRkbnT7Y5tpE24sxLLpYdz6mYUMaUKy9X1pfZRyqP1Wqrl3h9tVmxkY39UvuvNQTSWsKPMW58hmTp+vi9Yis8zvRuWXlkg7SxSeuYukceeUTSehNhpwCz92a0TVaxsz7OOM3Mi5obDdMrNNqb3UczPZ9TMf/smcW1woTqcQ1T28F1wVjV2Ofs2TeHzvA6Ojo6Ok4EtmZ4wzBsSNzZG7aKE8psUS0vqIhMl87NGikZcBsS1h3bSmk56t8rdkQJtTUWVT1GbOPSDBHZeXMS/pJyyCwyppnZCObaW8URSvUYkzHENrTsn/F4NgZkTbSttlhH5TVJe6C0yaj4nfalVmJ19iNbS2z/XPaczNOODIVJ0VvbH9FWkzFlall2d3fL8bZnOJ8d0YbnZwJtQUwentlw5+zyZkD2XJTWTIjbQ7WeYWY6ttndf//9R76b8cUthRinxkxCrt+MLDIh/08mR61YvMbn+DeuA3+6jRkbZfxdlY0mu4bvFm7OG4/Fa7qXZkdHR0dHR0B/4XV0dHR0nAgcKyyhUntJm+64VSB4poKaUxtmgcg8lu2GXIGqy1YaIqrVWnumVfVQhdJSmVE1kqkD5sqac0TJHB0qJ6MsWJ6u8nOqhatXr27MT+ZOPxe8nzl1cHwq1VLW52z3bSl3QKGKhwHobkccJ94vnCuObdx3bQ6ZQxIdnKqwjmydV2nC6JgS1aB0UuBcZKE6Wcq6VkhL5rQVj1nFyDa0HLWqUCOq2egsI0kPP/ywJOmhhx6StLl2snGyio8Jod1WqzTtvBLL4Z58TIDgNkY1L5NSe/x9jtWg0WmFO5ob3FHd/YoqzSqciH3I7nmatXhPxPspU3t2lWZHR0dHR0fAsZJH+w2dJXGlQdFSTctdt0odVUng0eBdXVsFwy6pL2NNlF6WOgZEtNrE+qpk21VC5RbmmJ5UMzs6AUXJj7+1WPX+/r6efPLJw3MpqUqb41G5lmcB82SHZGfZWuUxSueZNmIu9VrGKCj9Vw5cWVhOxcpbabvodEEHESNz+KlSdDHkIM4VHVt4L7SSMcSUbC2GFyV81xcZl5mJ22km0nKwq1zt3Q+PW9ZnzqFTcnFLobhdT5Wgne76cZzo+OH7howue/6YuVVb+/j3OI68z9l3srXIYN02rqFKsxDbXWnxGCQvbYbDnT9/fpFGT+oMr6Ojo6PjhGDr5NGZhJwFlFZ2i0zao7RU2Tgy1/i5ZLpZiMGSgN/se9Yvg3aSlrv9nNQey6uC8Vspv6qA3yp9WPyf82NpqpWiLW4p0pLSL1y4cCipORVU3M6EmwdzXDJbFNcKXeLplp4lj+Z4tRI2M5jWUi0DdKMdjmyT9j+DAbqxbTyXbvaRfTCQurLptbZKqoKIW3Y/3must3XPt9bOwcGBzp8/v2GXi20wW6lc4VtJqnmv+VraVG1ji3Wbwd19992SNreCysI3qgTn2XOJPhFVirTMv6FKAsJQlngP+n+32333cW714y2Ost+qhCFZEvFKK5Fp9di/bsPr6Ojo6OgAtrbhHRwcbAR+ttJNUaqZS4Is1brujB0yiLfyymolKa7ObUkilW1tSXB3FczZkoCrsiqWEo+xzdk1lZcm0ytlwcNZwHzW3syrLtoP7PFVebVmbLfa0onj10oeXaUoylKZcVxoW2G7YttoKyTDWrKGGHyfaT3ICrg2aI/LUrWRbZLxtTQKHLeWJmiJl/PBwYEuXLiw4amYjTG3DqpSf8XfeH9wTv150003HV5rRsf+uH4Gfcf//ck15DGPdr/K3s97gmMtbdqiOZdZgmv/73Rn7nuW+Dm2ObahGvPMk5Rjzy2gqNmIbYistjO8jo6Ojo6OgK1teJcvX96IS4lvYUsR1XYmc+VHLN0aJ4L2i8oGll1DtOx+lDKqJKjxWJUINmOc9JKak2Ci5FVtytjydqTdinEwmZRO+14LZng+1151mcctY8FaW/xULJZtbG1YWSUEz1gBmbDLpzdylqS4SoJN+0WclyqxceV5GUGbWhUvl3kj067F7/GaKkaU9piWt+vVq1dnvTRpY4vaAY+/16tZRBUTKNXri0zSnzHmzKm1/MlxyRJOc+NS2x2zmESDKcTimES4jdm9SKbHLdziXPo399Xfq1RfmbbF81J5fGcxstxuibGDEZn9dyk6w+vo6OjoOBHYiuEdHBwcYXOWnjJJq7JbtGKNKl8xHt0AACAASURBVAaSSdoG2VN1TSZdVrFmWZJigm1uZVGpYsRox8hsikvYE0HJqrJrZnYf2oRatqLonen6ltrwssS1ZGOVTSDzZmUSX2bPIQOL5bH8THo1qgTDXHdZ3FAV/0ktSDyvYg5GNsdVfBmzf2T2IbIo2m5aWwpV8XfZ1ka85+bi8Pb39w/HhZuh+vrYLq8rMx9662btY3+8ZuyhGDOg3HPPPZLWtjwzItrJsmTOXPtkwnHtMGaOa6iVmNnH3DbPIec/ovIYZZJqf0YG62O8ls/KbH1XGqVsTWTP+G7D6+jo6OjoCNjahhd1ydS7Spu51ih5ZXExVYaGivG1PC4pXWbXzHk+Lo3aj9e0cvZVoPSeMTwyxyoOMLPHMZNG5U0X/6dXJu102ea7S2KpiKw812mJlHOYSelExW6Y/SGWS6/jLL6waj+ZZMYO57KxkO1kcYasp+VpyT77XI5BK2sKGR7vo3hN5QXc2gqK43Xp0qVZD2faiKLtlXFv1Exk9t8s+048h+wpsih6VNqrkdvmxGcJM5v4k9v2xGvMoLg2qDHLPHLpbcrclhnTc/meF+bjJLuOeThpv3ZbPDe0zcf/qyxELYZ3nOd1Z3gdHR0dHScC/YXX0dHR0XEisHXg+dWrVzeMvZHWmgozISqvae3QbFTfn6pK06C6o3KHj+VVqAJBYxvmkLmHszy2o0X9WypMfq9SirVUmnT6mEsmsLOzs6E+zNy2GZDb6hdVypUKKzPu04jONeSxz/qcBe1KuSMEVZZUOVcJySPojLMkTMBqNSbqbqnqKuerTCXI/vF7y+mMzj1L0kO1UhBW4UFeU5mDDlXjlRNZdo953TppdKZalo6u4Sp1WasejneVxJ51SHXyACZ5zpxXXH58tse2tea0SgZSJVyI4HM0SyzBMdjd3V2cTL8zvI6Ojo6OE4GtnVZiaAKDbqXN9DmUMuj6z/+z7zyesac5h5eIKpShxdKqsAdKG1lasirsoCXRt8qL9RutRNAVWtIZGR7nPJ4bjcjbBMjHcrM6KhYTJcQqRRXPzbQDLpdByqwvk7gZWsIyYxupOSDD8/eM0bJ/1ZZS8XiVsszl+150mVl6qEr7kTkeGExKXKWWir9Fd/Rq7QzDoL29vcN2Zs4mFWuotn6Kfanc6Mlqs23QzPBcvp08zKJifWwLN2C1Y0h2L2ep/WLbXE9Wn8ulw6DrjWPna8xg3R/384knnjjS9kxLZFRrJq5VXsPkCK3kD0uc2IjO8Do6Ojo6TgSOFZbgt38WYuDfLGkwrVCWaqxKO0bmkyWaraTCVlLaKtyBEknGvKog1dbWJZTCeU7mHl7ZL+eSSmf9qlJYRVRMrrVNRxV0XWFnZ2ej/VlYAjUHLdtuxegtYZNFRwm4SunUYte0dWYJpomKnbE/WchJ5epPlhb7xfVE21HLVl1tS9Wy5VWJIehmn2kU4rpq3ctnz57dsH3F8/3bNsHvVVJy9pkhFNL6OUemx41fI3tm6I8Zlj9dZqynSpxfPTuiloBt8HcH0mfaCKaNNJOrmF7G8Kp7gSnOYhtYRhw3XkNNQmd4HR0dHR0dwNYM7+LFixs2iJgKh0GVlir4Vs4SJVd2ESLzZqStgwGzrTLJ8DJ2OOetxuOZDY8SNyWsTDLK7AetPsT/q0/aKqRNCZIB6P4e5zqzpczZYar6Yl1sQ7XNibQeu4ppcewz70lKphVrj/1n4G8WNFyh8qxd4s1bBQ/H7YnmkkWTHS5Zd0s8cSs21bL/xgT0rbUT+8f2xz5WNs4Mvp4244qxRuZlhlMlcb7xxhslHd1clYHYtN1x81hpk71UNmomG4j9oF+Fy28lEWD6M7NP2vDiGJF507N4iQ2+ssVn9lq37cyZM4sTf3SG19HR0dFxInCs5NF++zLVj1RLE5bKWtJkJWkvjbGQlm1DVEmiS9jgXNuoW4/nVAyv8sTMfmPbqlRj2TmthNqVrY5xc1li28j4W+2Ic5NJ0ay78oiNddA7j2ydUma2oSTbZyk9ky45v7RFZmNbbYbMfmWJ1blG6PXMFGDxN8bjUaNAT7hYT+WpmI1JpUmotAbSpiaotT3Qzs6Ozpw5czh3ZKqxXRmLyPoRzyX4DGnZvKl5oZYi3i9zNumsjdX9XcUKxvaw3dXWUpn3LDU6Znj+zkTRsQ1zz7U4N2wjbbHZVlCcnx6H19HR0dHRAWydaSVLOJxtgUGGx6j+zPOtSoxKCbi1gWAlPUWJe2ki5uyayoOv8vzMfuM5S7KkVNkYsn5XsWlkH1G6qrYBoh0gs4Et8bQbhkGnTp3asOtEZO2KbcjYRSxf2mRRVaLmrA1kQD43sif/z0TTtD9nkja36am8RFuehMyawe/xWBV3Rwm5lVCbx7P7qdr2iL/H8bb9aomGYmdnR9ddd12ZTUdaz4dtZtHmV7WNz6Lqvsnsw7RLVgwswufMbdMU13+1VVVmf5Py+M+qHa0tv6qtjPhczxhzlYUoY9/UKFTbK8U1Rq3h9ddfv0izJ3WG19HR0dFxQtBfeB0dHR0dJwJbhyVkBtyoquAeT9VeTFmqmErFs81ec0uMl1QPLHETr1L6tJLqspw5h5dMhTrXxsyRw6CKjCrDaLymw0gVnpCptGPbWirN3d3dMkVSrNvneC1RXdEK0WiNKVGlQvIazVRZVXByS01EVQ8TALQck6i6ohosc8evUjllYRZsa7XOOBbZc4COLhyTbL2xzRV2d3cPnyXcIy5rL5PXt5I7VE5sHPssDZ6fc1WIURxrtonJEPh7q0108MtMKz5WJYhoOY7xOc7d2bP7qnq+VenD+H/8TvNVtkaN7rTS0dHR0dEBbM3wMhfmzKBIhmenleyNXSXtraTnDHOOIUt+a221M+fYUjmZZNfw2lYKq6ptLCMLPKc0XjkHxXPoyJEl+WU9kblU4+21Q6bY2m3ZUqXXUOa0VIUhVMgkU1/jNUrX6IiKQZKdxfXNAGc6tnDdR/ZDJ5zK0SE61lQhBRVTzhxQuDa5XUvGQujs02K9XJM7OzvlPeykBZzbWJ7nrkqrljn3cN7jVkVZPXGc6MzBseW6jOfOMe+WI4hRhSllTJnrr5VMguEi/Kyed/EYn9sMg8m0EdV2QJy/WO6SRA0bbdz6io6Ojo6OjndBbB2WILWZgt/QlIAq21D8v3JjpSScuW1XNq+WjYsSJRlEFlpQSRW0A7TCILYJLTC2sd2RKVQJaLPEr0vDE+Jv7GeGcZzS0nld+NpWKiRqCexyHttQpXirJNEsrGLOxTtja7TzMT1VBgZ6+9zKZhTra9ns4rXx/yoo38jWKlEFNmeskMH9HJvIJJbUTVTu7tImI2ASYqc4jOPk9cU1Qk0DE23E/8kG+ZzL1luVAKJlZ5zbYoxtj7+RyTFdWAwr8zGPDa8xsqTlBhkdwzDi/Lkc+npw66Js66zI9HpqsY6Ojo6OjoCtGZ7Ti0mbwYJSnaKq2txT2rQf0RZAZMyLUlJsr9QOBK3qy7zliCrQfYkNjywts8NV57bsjXMB3K3g6CpIPSvTc1kxCvY9po/Kxsm/Waq0pMttTrJ6OM/Z5rRZm7IyKk1D1u4qifQS+wI1GJkUayzdWkhqpwGLbaa3aKynsp+3xpMeuPQGjgyP7d/f32/af69evbqxLriFTAamgosB6dQoVGnUaFOOx/gs5DVRG0H/Bn/SdpwxoGrjXd7jmZbI489tidie2Ecf8zX89D0Zn5Fuv/vD+5Wfsb1kiln6MMOp8uJm4t1Ls6Ojo6OjI+BYXppVvJy0mXqG7M0SRJRmq7czJa0s9mdJuiRpWYwbf4/6+blEs60EsEvTkmUMj9/nUj/FdvMaSvSxf3N2vlac31L9+TiOG+3O7GMu19I4mV8rNRGl2lYiW9ZHm1O2NVOVlq6yscY2tbwM43lZOXMbzi6Jv2K9ZCVZf+ZS3GXlcs20Yi+jza0lpV+9enWDpWUamEor5N/NDiLIgIyKsUqbqbY4pmZI3k5HWrMiP/u4EWtmnyUroh9DtZVRPMZP99dtzOIL2XeWb0YWWXZls6uSlsdzmRrQxzM7K7d+i9fPoTO8jo6Ojo4TgWPZ8KosDNKml1K13USUDKoI/SXMgR6ctKlQwm+hih/Jzplrc+ZpVzG9JZiLA2xly6jsfq1rMjsf25FJmXNxeJyfzMO32og384zj2D6VjDS+1tKtJUl64mX1xX6ynuqcKoYv89Jzmyz5Ml6ytakm66XNKtZHG3uVtDyi0gKQ/WRsfomXpuM7zc787MjKo82OMZXxnjPjqjYu9VhnW+FU2+dU8XLS5rZTVYxlbGNl/1oyL5VPAvubZazhnFb1x3WXbVUVv2c2eHoqe4y43iM4x8MwdIbX0dHR0dER0V94HR0dHR0nAsdKHk139EjbmSKG6oxMBTendqSqp+V6W+2HlqUUquppucxXRvwlTistJxXWxzZVjieZWqJKwUanggyVKrOlEqQapFU2HV2yJMtWfVSOIdE9nCqWypifBZFzzqr2Z8dZnr+3xqBKJdYKqK4cKRikHl3+qRKu5i5ToS7dKzKqeTmndPrK7kGqzFoqqZ2dHZ07d+5QpelxypzK6NxRfY/HbrzxRkl1CI7VbJkqncmWGYLRcqyo9vvMxoKOLduYQ+bUx1kqM44n1byZ+rJK79YK/q9SwTFcIY6jx/Y4pqHO8Do6Ojo6TgSOxfAqN36fI80nkM2cFYwqfU4WmEk37cqNNnOA2cY5pnIEqFKbtaSOVvA166scTaotP+L/c4x57lirPVndOzs7s04rZEBR6qcbc+U+H8uwswATTG/TP0rAbke2VjmmHOsq2Dv2o3ImaLWRDietLYx4jVHt8B3PqwJ+mS4sc8qZC/fJGF4rMYSxs7OjM2fObKSfiqBzhcfH380ysp3QfaxK+cWkGbE8tpvPuSxYvboHljCWuW3JWtdy/v0ZQzUqZ59qm7fofMhtjsgCqX2L5bL+iqFLmykTt9k+rjO8jo6Ojo4Tga3DEuwiLLWlStpFquTEEZRwaEfwNdFVlYGLbFMWpEjJtwoXyNI1zbWZx5eeI7WZVxXmkbGGObf07Psc+8jmK9sSp5VSK66drK9sL9lFZjdgeqhKQmzZ1qpg6yX2yorRtRjeXCLgViC4QSk33hOVS3m1LrK1yjYxKD/OHxkKmXFWL0M+WlL6MAw6c+bMBnPIElibrZBttNhhFdxPO3Osjwk0slAJXsNEzLwXltiiqlRj2Trhc6diXLFeakpoh/Nni+HZVlfZ5yJbo72+smdmfiLxfuphCR0dHR0dHQFDSyLfOHkYHpD0+rdfczr+G8Azx3G8kwf72ulYgL52Oo6LdO0QW73wOjo6Ojo63lXRVZodHR0dHScC/YXX0dHR0XEi0F94HR0dHR0nAv2F19HR0dFxIrBVHN7NN9883nPPPc3MEFXcEH/f9rf/WlDFeyzJCVjhqVybtauK96s+4/9VjFYWO8aYmXEc9cY3vlEPPfTQRkduuOGG8bbbbtvI5JDF1xhVXswsy0crvq/C3Hhnv7dyiraOz/0Wf38q6yDiWpUTy8rWDtcGY8Oy7Czc6unKlSt64okndPHixY1Gnz59eowZOVpb4sy1O/tt6TVL7rFW2XP1XWssrW+b+ufWf8RcPtal5/B7ll/44sWLunz58mxHtnrh3XPPPfqe7/mew118s52Mq12P+ZLMEkBX+7cZrcGuHtitB2GVnLi1AKrFwj7MBdLO1bt0UfKlI20mVK52Ho5BuAwarXYvvuGGGw6v8Y7NDh4dhkHPfe5z03bedttt+uqv/mrdc889h98l6aabbtooz/BaevzxxyWt9yWLKZ4cxOugXu71Zfh7K1Eyj1cB4hmWvJSrHdUZ+JytHQZvV4HH2TlVgvMM7CuD1xlonf3GIG/Pm3evlqT7779fknTvvfdKku677z79xE/8RNqmM2fO6AM+4AMOx+dtb3ubpKNB3gwor1JTxaQFVWC0j7cS0Fcv+WpfvtY1HPMlqbL4zMiuYfmt+5+g8Lkk7VmVKIT3Rrx/fb/6Pq4SlMS59nqK759XvvKVZbsiukqzo6Ojo+NEYOvUYjFlUkZHq20/jsOalp4fj1VbomTpmirVyJLtbuaksBZtr3a6zrbpqOqrkhjHeqq0WplUSEkq25Gc/SLLqBI3xz60dn2vxqWl3qjYS5UmbMlWOK01W6lgqhRw8VymqKrWV5age249tLahqcacKZqyaysmkak02X5qGGJ/mcJqb2+ved/v7+9vaJSydHpVm7Jky9Vu4mR42f1SjWFr7WTbMcVrl7A0Y24rrqyMJQxvLil1tT7ib5U2Ikt0znvDc8zfY3tcftwSa6k5rDO8jo6Ojo4TgWNtD1RtUVNdI7UZVyU9UAJvSYBz9pbWtjZsv/vFbYuyti5hsJVE39rahf2pEsxmdk3WVzGwll2zQvZ7tFfMsXPaF1sMr2JvGbuItpkMZKNZeZVNN/aZyYG3uaZKzM2ysjGsWAd/z87lmLcY+RzDa7EC2mhs/83myAzPtsA57UBEi+FVdjfapGPd1calSxx15pD1q2JR2Sa1cwy/umfiMfY9q8eYW2cthmdwHbS28fG9UT3rl7xb9vf3O8Pr6Ojo6OiI6C+8jo6Ojo4Tga1Vmvv7+00X8GrPr5bzw1zcy9w+YvE3XmtkTgRGpXLM1ISsbxsVKp0wWqq6yoGDqrnjxPAsccogMnUE+7W7uzvrnOT2cx/DrO7KySKqxqhqiyqrrP2ZyoeOB63YPjqlZGpvXsO2VrGC2bzQ8aNyQGjtHF+p6jJ1W6VaXOKsYNANnfvxxWMORTl16tTWzmotlSzXg1WoMZ4v1i0dDa+J5S+51+ZUwdm5VH9nquZKtce1me1txzHwOTyeOeNwDS2Jb6WqmaYvvy8yZ7m553cWdnOcZ19neB0dHR0dJwLHclphloTs7W/pYS7zijTvRm1QQs2uoeSTuRRX0koVMBn/J+PitS0mVDGYrF9zktWSYGIapVvBqiyvChrNymvNi7Gzs6OzZ89uSNMtZxMa3TPHCUqVc0w8G+Oq7y0HFEurLiO6SGftkOrdvVvOEZTOydoyZwzuUk12yHpabK1Cpv3g88BjxV2yY5uiw0ir7r29vcPylgRMu1yzOCdMcGKFeMysr3LqyByejDl3/ZbDE0OBWv3ntWxLFmpApxyuFTrrSNrQwPA51HK8qpid14WDy2MCAvfZ95M/W+FRSx2GMnSG19HR0dFxIrA1w7t06dLhG5tBglId+EsJIeqpW26rEZm+l1Jqi5HEfmTlUuKKDK+SLqug8iWBoXQXj22upP4lbvAGWS6lpmy8K5flLMVPxVgzDMOgU6dOlS7SsT2U6iyJZjaOlt01a1NWX7Xusrn0/3Opl2K9c+yvslVKNcPzd6bzkjZtNBzryobNdsffWtqPKvja8PMisnkyvJb9dxgG7e3tNe20tD2ZvTl13c0333zkePyfIRKux8c59uyLtLmWsjRaXgf+9L3k71nCi4o9V3btc+fOHV7LftGOabYb08RV9j6jelbGY2Rr7p8Znj9j+5kisHquxza5jdvkz+0Mr6Ojo6PjRGArhndwcKCLFy/q/PnzkjYZg7SWECiJUFKMkg/PraTMLPh6Lii9Ffg5xw5brKnldSpt6tyzNpItZHaRKvCcAaKZFxO/c24yvbjbbemPbCuyektllirn7LSnT58ug3xjGzhnbEMrndFcAHIWeF7Z8ow4l163ZM1Ga33PpTDL2DVtM5S8mag59otrlLaVlhaiYspZ/zh+2U4YrI/p786cOdNkeKdOndoIpI9j7zZ43ZrZMUl5lqx8jgF5fUcmxHHnXDIpsrROeuzk+7Zl0es9jq3/zzyGY5tos8yO0Z7p75Exk+GRTZOVxvaQwXIMMtbofvHcyoM19is+z5banjvD6+jo6Og4Edjahnfx4sUNL81MIo3XSJvebVE6y7YZyspo6WrnWE0mARuMqarSeMXfqu2P2N/421z6pMieKvtSxUoykMlaoqSXVvzN7N39s4TMBLDxGkuKZ8+ebcbxnT17tpSM4zFLgp4Pt4m2gXgO09yRvbTY01y8X5wDMhN/kvm11s4csjg89sttJAOI9fjT2yvRW67lSehjtP9l7NG/kRkxaXTGrv3b2bNnS1vqzs6OrrvuusP2u75seyAyOX5GL00yOtq8Kq/G+D+3FqIHdNZnfuccZ3GfrMfXuh1modGGRxtdxWSzrZ6oVfHYV3bIeKza6id7rroNt9xyy5EyHnroIUVkntl+LnSG19HR0dHRARwr0wo9dSJzmZMMKJFnv1W2tCx+rPLcohdR9KqqPKnI2mI9tNXMMYvMw5MSHaXzbByrLXjmMhNk1/jTUmCUJBkzQzZiL7fMQ9aSVpSeCdthWh6X7JNtHg8++KCkte3DjEXa9O6incrwfERJkYyEm+DSjhnbSJsnpfOMFVbeyFUcaqybayfzkjNoZ/EYeeNUf2ZsnOugYjvRK5SMgWvHYx7rq2IDM3jtVHbs+D/tbi6fzxhpPQ5VvBrtzfEZQw9O2r6opZA218qSeD8+T9l3MrzMzujf2Gay7Pg/t+CxNsf3pMcuxtTRS7PSzGU2eLfFz5nqvor/u6/7+/ud4XV0dHR0dET0F15HR0dHx4nAsVKLUdUYVT50MzXl9WdmZK/21WNqqcxJpnKBprt+VC1UwZOVa3t2Dh1d6ACQqTSrYPxMtVClgaKzRCtlVpVwtkpxFY9ZDWb1oY9Ho7j7ZVXJxYsXS8eMnZ0dnTt3rrkXGwNV3/zmNx/5fOSRRyStVajSWrViVQtVMPFcKU9vZYM5g5XtjHPjjTceXmOVWZUcnfXH/5mOzKiCluP/lanA/YvB7T7msfEcPvroo5LWY5WF9FTJl/3d8x/HxP97bFzfXXfdJWmtpoprZ05FH+HAcyZ/yJxWOIYegxZ43/s+9Jhmzh0eF/eJLv4+HtX8TJju9recsqo0d7zPsiTmVK+6Py7zscce27iW96DH7+GHH5a0ntssiJzPM5pSsuTvBh3W6GATx4RhCfv7+4vTjXWG19HR0dFxIrA1w7t8+fIG24kSAp0IyKKy3Z8rw3XlJpylNZpLtpy5+laprIwsdVoVhkBjb7Y9ENkZk8ZGyYfSULU7M+toHask2KxNrt/shBJ0dk6L4Q3DoHPnzh1KvkwpJElvfetbJa2lSDO7Bx54QNImi5PWrMWflpYtvdrhxXMZA4/J6MxU+N0MMF5DY3uUNqWjY08jPkMmWtsR8X7xWHuM7Mjj/sb/PSZ28fY1nNPIvLjOzFDo4BPnzWN+6623Humv58nzZsYXy1maWizeG9kYk9l5XKo0grF9ZOAev+gcJeVM38fMYqkViGvHY0itDNloayucyvEt6x8dq3ic/Y199prxvedPr6lMK+c5IuOnI1F0eKIWL3vOSLlGKCtnDp3hdXR0dHScCByL4TF43BKcz5E201hREsncwyvbFlMKZRtJWoqoErJmW65U6ZIs8WWsaS4NVWurJDI8swXq/SM8NmYdZH5uIxMUx/54/JgwIJMGK0kps015zC3hX7hwoWnDO3369EbqJTMwSbr33nslraXzt7zlLZLW6yvbXsQSqW0MlkAtLTONU7Tpefx9jb+T6UUJmHPIVFbuVxYGYzBMhRqGeG94rtwf2zHvv//+I22L9yDP9Tm0q/OeiedQY8F0ZPHeqILuW1tY3XHHHZLyTUiJnZ0dnTlzZkNDEe89t8/zzZAp2suk9drxeNEuynGLabu8Rtx+s1snajCzizbEKgE474ksZRoZEDerzZ5zvO/Jfr0+YpC3f7N25U1vepOk9T3iMaP9Xtq071YJvP0Zr6dmgYwuS4Pncnd2djrD6+jo6OjoiNg6efT58+cP3+6WXuLblVIj7VfcYFDa3P6F0iUDNFu6+2pD1NZmp5SiMpZCqZI2NG6ZFKU0ehWRHWSpi3iOJUf3PQtsZVsYCEzPuyg10XOKtld6b8byzf4ef/zxZnq4cRwP14yvseQobQa1Mrif7F3atBfRBmkpkPaTeA7XM4OvszRxTN78tKc9TdKmzUvaZOOcs9bapdczg+/9PbaRdnSD94/ry7aUqbQSWRJxj6OZkZmQJXmmtpPWY+1zowcvYRuey89s/rw/uS5cd2Tr1ALw3m1twUV7K8t3GfF+4VZO9KJkUgFp03+hYnxZsmf/RmZvzYm1K3FMzPbM7GxX5z2SpQb0mLgeBqIzeF1arxEz4mp7svjdbXFfr7/++s7wOjo6Ojo6Io7F8GhXyFJKZcwjnhsZBd/mlKLpiZklEjXmUmTFuqtEqdSPS5sJeH0u41EsxWRMgmAy3MyT1FItmbKlxMzzj3F4/J5dQ3bBcaS0GPscba6tLWda6eRi3dWWP2Q10mZCbNpBXZbtCVESZCwltyjJ0naR6bhNTOMU7wmuX9dD1smY1dgWS8W0Z2Zb/TABONNsuR2WrmNbue64HnivSps2Ydr0sgTuZEh7e3uz6aHosRwZLBke70uzmeh5SZu9y6C3oVlolnia/gXVxqmxPsPMyuXSPhfrsaaCNkPaQDPGRW9Mjwlt+vE3t+Gee+450javC/cz2jWZWJqJ9GkjjedQ80dGmzHXqBnsDK+jo6OjoyPgWBvAcvO/LFKf3l1kdlESt1RCfXvlsZNto+PyKCW7vswOY+mi2j4jStqWrOkpRkkybnfCNpItVZlX4jGf4/rNVGgjiHNgyZ06dEtj2TYdtNUx/ovJuaX1fMVrqu2BnHicnqOxDVGyjX0iu8kS1nIbG3oJ28YWx5gbblry5AbHkVEyjtD1+xyXHyVf2k4rj0ffI3Eu6YXJBNDZ1lquj1s7ue38PYJxVy6/8jSN5XILMGpMvHaztrTi8Fw/7YuxTVwrtBHbIzHa1DjutiOZTdHzMiJjmRHU3kibTIds3f2KsaKu2+PFzVtpS4v3BjU5TCLutsc20q/Av7let91j409JBceLQwAAIABJREFUuu+++yStx9z12y7o+yrzJPVYUEPS2uA4HuvJozs6Ojo6OgK2YnjDMGh3d/fwzR1ZjEGpn3p86malteRjKcwSYrX5ZLT/sT5LMY4jcbxPzJJAux7j/rJ4P7JM2ndod4xtpBeWwU0cI3iu+8kMGJaMYkYHsixLWB5Xj0msgwyFnrKWHOOcc8ud1ga3wzDozJkzhxKiJbnoscWtpJj1gXFlsa+WQN/t3d7tSLsd28eNWrP2UguRxe55nMhQ6L0YbWqWxmmDpkdplgGHXodx00sp1w64fNfrenwPuD73N7JRj+edd94pac027NmXbXDsMaEGwePn+uI6p03qypUr5fqxl2Y8Vzp6jzGm0s8BxmHGe8PlPf3pT5ckPfOZzzxyrsc2e875GDUv/vRajV7IfFb5WnqpR+ZCr0zaFck041rlhr/+jTbrCGY6oW3cc+v1EcfGmiUf87ia+b361a/eaKPro2cxPc3jXNNTfhiGbsPr6Ojo6OiI6C+8jo6Ojo4Tga1UmtKkEjAlzdz3mVqMAZFUd0ibAb7+bnWAr83cmxlETrd4qw2i00W107CvdduiswIdXah+YGhBbIfVNwwpsJogSxpcJZhlyiSXEefA6gG6RnssXH9UZTF4mCpalxkdD5aoMg1vD+RrPCbRTdzt87g76NUqzCzI2vNqla5Vmk415t+ZckraTDzgsaQDVBzHarschonEuWQqO4NJzK1ijG20KpEhBVZteSyy9Ge33377kfqYPi4LHXIb3Zb3fM/3lLQeX6unsl2y/TygQ0UWMsK0dKdOnSodD3Z2dnTddddtOKDFMWYSDDqR0RlDWq/BZzzjGZLWDiJ0uqAqUNrcWsfX0okkCzXyumKbvYZi6i3fb3TioJrY9WbbUnksGFjfWgd0BqTK0GaGzDTF1InPetazjoyFzQyxXK8ZbhDg/sV7nuayOYenI/1adFZHR0dHR8e7OLYOS7h06dKGtBwlN0qzlYNINB77LW4pKUqr0qaRNUrc/t/swJIAt3GJBloa1y0BWVrJDMDcaJZuwJTsMqmJKcbYtmjUZ1JYbulBlh3HhG78DLvI3LqrDUbZngimqGoFnY/jqCtXrmxsCxP7TNZsFuM2ZSEmDMzlVjwuM9sIlM5XdHv3OskM4nS1p2NKbKP/Zzo4Jv5mOrRYPrcs8rme4ywdFVmBpXIy/TjXvrc9Bm6bGZ7HIgsNoeu828rPWLfZ1MHBQRnSYoenqF2I/YjtdrluL9doZHgeHyZV5tZVvOdieVXquszBjsH8TBvGtRzbwtACrqVsg2b2h45Orj/Of5UcnUHq1qBEkKH6nnPbfY9YCxPb5LnlPZgl5ag2FViCzvA6Ojo6Ok4Ett4e6MqVKxssJkpuTEHDwGBLL1Gyp72PdiMmNo7SJYPWDUpcGSvkVj+WxJlqSDpq74q/uR6yxCzAme7HDC6P/aqSxhrV2Eib0hGZnb9nSbgpOdIFPLaRNshKQpem8bhw4cLhWmFKoQgzfY+h00LRBhLb7XLozuxNR70e4zqhzYHzkLWN9ha6o9PdPraJqZ4MruHMfd+Stu1ylZ1WWo9bZECxza2xdz88t0wfR/YY2++2WMJ327kpatb3OVy9evWwDWSs0nqMzew8/m5LltTd19A2TO2Q134Msqatk3OYJXegfYoJADy3cWx5b1UpE5lUXlrPIZN5G0zOLx29tyI4nq173ePoLayY9i0+S/lsov03C2nxGPjY5cuXuw2vo6Ojo6MjYmsvTWmToURpgxIIt5mxxNjaXJU6Zl/b8nzKgigrMHiWdonMO69iZQwMZZmxvZV9LPPss6TIVFYGJdYWg6WUmKWjqrY/qpLyxnLidkMtO0xM8soAV2ktuTswnkH8HpNoj+N6os2DXm1RuqS9j2spm0tKzZb6LZWbHWTMm1sYkZ1m9l//Rjsj76fMU9r98Xh5ntzWLL0bJWV67frazG7vPvMc9jO2P/NqJpzSsNowNdZBmyo1MNHz2gy42oaK9vHI2rmOmeIvY9H0anfbnKDZDC9LvVVtWWRkTJ8aHTNsJjiI6ztL0BD7QfYbwTbS6z5LwEEPfCYI51jF9ldbkbXQGV5HR0dHx4nAsVKLtbxjmDSVdrksDo8Sb8Yc43nxuP+n9GzQu1LalEAsMdhjjOwq1lOlsOHmsVmsIFNJ0YMsgomN6T1FO10Ex5rbaZBRSJtSE+vL0qBVElwGp4di7FscJ3r5sXxL51kCYLIzblmTeQfTTknG5/rjOrBdyrYi2ozMblr1kFlx/uN3xm66/CqpcwbWz3szriHacLl5bZZajOVVLD6zn8XyWonHL1++vLEe4vmsizZHfo/toWbJIOvMmDDXVZYezvAa8Vya0TmxuVlpvJb3VBXLSc1GPMb40paWjW1l/+j9nHl6s23ZuUb1XGU/Mw1etjXWHDrD6+jo6Og4EdjahhftMC1vL8ZZkQ3GtzKliGrzWCNKJrw22xyQ9XGDStspnPUjy+hCHTMlHdpaIshUqw1ao5RDqZixga14HzKHKuluJnFxHCu7ataPOU8pbxEUkbELJq51ndycUlqzPkuAZHhkenHtVHZLznWMi7KXmqVzs1G3yVJ07CdtQ4yD5P2TSd5kv5SMs3iviuX6e2YL4VxWyeAzmyE3Cea5GcPjOs4wjmMzTk/aZDic22xbMvoXcK3ze8a8s+eLtH4OxLXqcXYb7EFsm3UWU0l7O2Mnq/pjGxnnx3jGuP6qe5rMmZ/xGr4f6AUd1yq1TWSS2TuBGsG5tRHRGV5HR0dHx4lAf+F1dHR0dJwIbO20cvr06SNu6PFTqgO+qbLIHE/oHkx3/UztQQM503YxpCErl7uZ01VWqlOLVUHsEfyNBm+mzmrVQzWMkbmyU91BVXGmQjWqsWipIOeSSA/DsDG3rQQEdASxei1TS/oa7v3FNsV+VmphurTHUAa7dttZhapsj1umvqvUeJnKjKBKjus+ttFhCHYMq0KFMhd3jgUDg+mEFq8xGHSduY9TvZWlfuP5XDuxDUzPxnWRqX6rUCLep631XYUHZA5BTMHmkBaqgrPwJKYWo8mGzmCxHLafe9tl9/Sc639LhVg95zITGMeJqs1MVUtHvu600tHR0dHRARwrLMHSRZaGptoyhm/uzMWXn5VTR+YKO7cjeSY9M5B5SaApv2eSFeFyKKEy6XJmPKbESoeObcazkvDjbxXbsCSWsdDo0LLE+UBaS2nRiYDJrpmSzawqtoE7T3tOGabSco4gW2IC27gOzPCyLW+kNbOMY8v0XKzXoOYkXsMUS3QMiOud7ud05680KBEMNeBYtJg5XekzNsBkApcvX54NJGY/4v1S9YX3SwSTR/Mao8W8ef/zM7rTM1GyP71m6NwUr2FSgirUJNOcce1XadGkTbZUhSW05mrOESnW19rlXtp0zom/xfWwNAi9M7yOjo6OjhOBY4UlWLrL9Lx0had0lzGISgebJWCVjkoFLTtBrC+CzI72JCZujuWwTVly6lhm/I394JY/URpkSiyiagfrjt/J7FrpiMj4MnbNY2fPni2l4YODA12+fHkjNVZMlFvZPxjqEfvHYF5KyVyjmaRYfWb2Koa90HaYpcpiMDJZJ6XmLISGYSFkFjFRNF3YmbChJQ1X7uitLVkYxkO7WXYPMrznwoULs+1i8vDYBs4DGbCRJYSowhF4Xnasst2TgUlr5m1NhcHNarOwLJbHcKVsk2E/T8i8uR7iPVhtr8V10WK91fMnY4dVkhFqtCKYWu7ixYs9LKGjo6OjoyNiaxvezs7OhkQXN0ace9O2tlyJ9Ui5Fyix9M0ey6C9x1Iz0zdFvT8lG/cjsw0QlRRICTimFGIqJAaE8ryWJxz7YMQxoaRFOw/7Eq/Jgu2ztly5cmVD2otpwugJWrHmuF6YUowsqZWcmOuM/cq+06ZV2cfiPVGlMKP0nNn6mMjY13iNMsA6lsOtuar+ZcmKK3s6xyFew7Hh/GWaoOhJOncvc46zJAgcUwYuZ3NJv4PKI7uVZNsge4ptZGJx9933vectSy1GVlMF97fWAX0TMt8BBolXSTOWJAzgs6nFYI1qvdEnQzpqo+4Mr6Ojo6OjI+AppRazZJ8lDWYaqyrWZQlaHpBVTJthqSJK3JasLH1xSxHr2qNkTEm6YiFZqh8mYqZ0xmultZTHzQ6rLX8yhlfZMTLmzPgbj0WVBDwei3al1rxevXp1w8YWJTdK8GQOWX/ItFlua9so2gmqsY2emP7f80JtgVOdxbgyl8PNQQ1Kr5mnnfthZue2ZsmqK5ZrVKnt4v8t+xuvMark5Jmd3f1xOr/d3d3m2jk4ONjQhESmQLtvxl6k9rZklZep0fKE5pppebMyVpTfY7+qtUnvzGy+eA/Yw5iepK0YXj5X6Y+Q2cT5TKq2w4p1u9xsbit4vDJfhAqd4XV0dHR0nAhszfCitxSlGanOBMJtR6KkVUkEFTIbTrV9iaWnzAPS0rHZDBMBZ0lOKT1TamlJqZREKPlk0id19vTGyq6pPO2MTBrkXFYZZGL/mAS5hYODA126dOmwz2bZWRsqfXzGqrMto7JrYjuMqt20m8T63G4zOa9nMxUej+WxrZ7TKhtRPMfXeD0zhipLbFxlG+Eajd+zDCFZ2zJv3WpLqcxe63GKcYYtD98LFy4cMhSPSeYJSxuUj2dJ7MnoqMVo2TGrLCKtTW+tDaCtzkyFHpIRlUcpxzjOi/vBja2rbD3Spgcx7fNcQ9k6qJ7nmVaHtsnKkzmzTUb22W14HR0dHR0dAf2F19HR0dFxInAspxWqETOjN9U2VEdl6ZOqYOEWqlQ4VGVGal6pNP2dCbBjudxhncdbVJ/GYhqGMwcLOjy4X61g2bng4czhoHI35rxlQf/sZwaHJTABdOY4Q7UUke39VyUpWOI2zXK5hjOHJ/fD3x977DFJ+U7kTMZgUHXecsphEmG3ydcwxVmsr3IeaTmQcR1QHZ+tId4LVutmzjoMer5w4UI531ZpMuFFVJH6GBM2MA1VlvSaa3yJmYLJryvnEqtu4/8MU+EO5FnoBEOnsv32Yv3xN+4RSfNFK2kF99LjWGSJx3lv837Kko4wrIcJBCLo6LI0rZjUGV5HR0dHxwnB1oHnp06dOnzrZ6EAZAJ8C1cBzRkq9tbaMqJyYogMz9JwxfAsGWUBwJkEH/uTJaslw8q22pGOMglK1pXhNzOoV4ZlOhXE+qttgFpOK0zBNedWfuHChUN3fTsIZbs7V6wiA9dC5aiTOWNUhn+mbXr00UcPr+H6pXu4d0ePbZ8z/JNZxLYz9Ieu63aWyRLycm3MzW38n3NJB6sWc64YUuYwxF3ZM9hRzn3NtETUapCZZPccmUiVzor3TTyH59L54pFHHjn8jTuas74sHMr3iR12/N3PKmpDWqm4vI4rR7hYDtkg0y9ma4eaOd5HdEjJxoLIHBmXJNmo0BleR0dHR8eJwLEYXrXBqLSp2662uYlvbEonfINTymjZ/+gmnG31Q314tcllrMftZz0MUqVOvdUPMrxs80aeS/fk7NoqOL6yIcb/51JKZWmIloRkSNPYVfZaaXPsqhCQiKqdZHpZ26gVYFowBpfHNlZp6Hw8Y3hc+2Tp2WautGn409I600fFsaC0Hm1esV2tbbAqjU22zqstcrLkCFlKtkpKH4ZBe3t7h9fbbpqtHfaddvHYPz6TGNpQBZXHvlT2OGsyog2PLKbajipbOwydolaFCcMjGBZDppltYUTbGhNRZ4y5CjyvNiCO/1ef2fZXrOfUqVOLE5l0htfR0dHRcSJwrOTRraSqVVqjJQGLvMaSThasHtsUy6BdsSXh0zvSOuZWgPOc92JWD7cusS3CUiml3WwsaKPg9yg9t+xusQ9ZW6stejJmmQXBtoKHr1y5ssGq4vnVBrmthARkS1XCWjIlaTONkX+jRBr7bEn7aU97mqQ1w7P9JdsKiknWM1YWy7711lsPjzFo2P3wuV5LkYXS3uxrs0B66eh9xS2FuFYyVmDQ64/3bWvLpLnk0fv7+4dtWZI2jn3L2AVZi+eweoZkDLV63tHzUlqPi+97eoVnm7hW9l0+B8gWY5v822233Za2MUvqTdsqkxi4/1lyjsqWx3tf2rQnUvOTrR22dRt0htfR0dHRcSKwdRze7u5u04ZHCaSSlpZgLtVUrJvsoIrviP9TmqBXUayXsSyV9NfqJ+0K1I9nbaSkxVgusiG2O4KMb0nS4Ooz9jVK/61YqieffPLQBpF5YmZsVarnSdpkZ5QuOcaR4TFtF+vJGNHNN98sSbr77rslbSbkjf1lv6qthfw7k5hLm8mqfQ3tPVE7wL5ybJj8PV7L8hlLlWk/aKuj9J95c5PhPfnkk2U81TiOGsex3CInlsdnBmM7M5ZJtlbFgmVzyvuPayazy7eSN8cysnLp78DPTEtkuD6vL9p44zX0Dvc8URsWn0f0yCc7zDxyKyZZPcdjPdu8S4zO8Do6Ojo6TgSe0gawrSTPlHyqeCmplgh4bqaHp4RQeW3a1sG6pU2JyzaPKMVSGqoYWFaHz2GWDh5v2SgNSumtJNK0/7UYc2X3yxgk0Yqhim1529vepttvv13SWnrOsqaQ+VRJaKVNiZNsmWwgYzNV+7kusjbadsZxytYOtzKq7DJeD/EaeiiSuWbsqWIuVZxULN/Msopjy5JjV57LHIfY7mhnrBjeMAza3d3dmKfM0zv2JYLMJbaXmgoyMWZTif9z7qgpiWydMZtcq9z6Kf7GuaPvQpaguxoDl+85zlivUW1LlNnEK+/W1vOdCbM5J9k7hj4eS2PwpM7wOjo6OjpOCI5lw6M+PLPrVLkNqaON5/JNTRZFqVbazNNXZc2IXmzMh2kpxfaYbCNIenTSzsM2xr5UkjXLitJnZgNgudVxjgXnKbOpVPF+RsbwMgZU4eDgQOfPnz8c88zmQPZEu2yWc5Rrgjkn6amYSZe0ObX6ZU3Bfffdd6Rt9sDkBrrSZv5DS/Lst8uO80ItgOO7aAOLknbFBgxK6y27VhWjFtdqS7sRv2f3RJy/lqR+cHCwcc9lzLzyLs2y9lTaC16TZTEhk6vy1sZrmMGJXrtZvk+zMOYRJQttecxXXujZc4D2RI4Bn6vxWpdfaYmyHMksb0keZfpCDMPQM610dHR0dHRE9BdeR0dHR8eJwNZOK3ZcmUO1hQMps8uV6nQ2PB7LqFSoDILM1KBWIcUtSqTNQNBYfhX+QPVBZlBnm7IgZV5D1UiVHDvOSaViau2w3lLFVGCaqf39/Wbg+cWLFw/VOJlqjOqNbGfreFzaXCt0TuE2PtGpgSoyJsjN0lM5GbA/qZ5y22MAsNcXEwBT5Zw55bhcr1U6PmQu81QBMzi5CgiOoLMA79H4O7ehqZzCMmezOG8tNdbe3t6Gg068P3lPsS1ZwovKSaVS68f7pQpHyNKoGXRaoiOSxzTr11zqrUxly/uIqfN4HvsobYYP8bmQXVulBMyc5tifKpA/olrXS9AZXkdHR0fHicDWDO/MmTPNgMzKQaOVIsaoDOaVY0Ist2IkdAGO11fJVDNnBbpaV4b/LFCSbeHWJdXmillbqiTcmUGdY0MpPWNXc+l6snoiU62uH8dRFy9ePEym62uyjUsrhp+5KjPwnE4cVdhCLI/OKlyrcb0xqNvSOdlHFpBLV3/W9/+3dza7jVzJEj4kJbntNtw2jFnP+z/WrGfVgGE00JY4i0FIqa8isooa3IUvMzYSyWLVOVWnihn5EynU+Wlt6i/3zzVV30uF/IRjXizRoaVfxaPJjJh84bwSLInYK21xwuN1LabSG47FiWSktPkkhl3/T+vd3f+UJRTz5/O0JjXx+jJJjve0E6Dg/U/2XtdfJ/hdx6Hz6ZrwphZwnWeJzx8+51xSSmWwe2v89XiHthoMBoPB4G+Omxne5XJ5te6cbBetY/4yu+Jxfjcxuq5ZJONhTOvvUq8pokpRZ7dfWq+0KOt36bunVUZh1rpNYq5O1otgzKZj2bxOeynbdbyaVyr61f5eXl42hc1uvDyHZHqutIAyWozZdTHk1PLEWe+Mh+h4YmAspK37c62q1spFzG5+HLPYYj2fZAOpvMOVAym+I5bBEh6OuR4vrSGX/s57uhOPvl7/2wC2i+vsxd26Fj+JHZDVuvXAuBuZa/Wi6LnCRtBqGqxxVIbHxsx8HnQi+Xz2kWGmspW1ts8KMmXtozJ9rdFU9uCOkwTuu9cul2PKEgaDwWAwKPhQ4XlqHVOR2IR7n5YAmSOtM9eENBUNk+XUY8sq13EYj3FjpHWWsuVcexh9R1YRs4ucaKyQCtCd5Zosa/r9j/i9k2RSnU+1HLsYYC0eZpGqGxcZiLsujNmxnY4TRyDSOj7SWkr71/HFkKo8WDqewKaxroknzxfjTE6EOwnx8nU9n5ToYsaqWzPpPCWWsJb33uwxvM7q3/NIODab5Pn24oF1TtwXs8LdumNcTgzPxdbF3Pea6rrMVSKN2T0b0z3Y5Uxwf2lduExZ14igHq+C995kaQ4Gg8FgANwcw3t4eNhYKDW+wF/zFD/q4n4pY4tsbq2tdSx0NTWMqckqp9XppJBYD0cfu1B927LSKBNEf3idQ4rr7Mn2rJXFcFOLkSPHE1z2ob7z+PjYZmk+Pz9vsiqPSFRxHk4AmlmYqeVKfV/jpuQSYy3VAk41W6n5Zd0/58eMSzYGrWD8hWN3wszJSk+WvgM9JK6tUzonPG59TjDGulf3+fLysoml1bXGzEOeL75fx8XXPG/Os8BsVoHnthPZ5n3IDMi13j9H6meOdfI1t2FrMxefTRJfjKe77GCBa4Trzl3rvVhe1/ZoL7P83dgObzkYDAaDwd8YN8fw1so+74oUH3K+9D1/Ma3ampGm/5OF6DLjaFGLJcp6YV3eWtnyYV2SY3yy2DVWNu/sVCD4mrEKttKpY+NrHXdPpLfuj5ZctTgTq054fn5+Pcc659W6pIWb1GYc40rxlqTiU99jXSavpVtbqY0KRX7rflMMjRmY9VoyVsxt0j7qZ8my1rmrMcNU/8Rr4BrA8j7lNanXmvHzzjsgpCxDt01q21OxJ8ROIfh6jhkPF7q8Bq1vsvKkwFL3o89S/Z0TradHhOpDTmmHWc0pdsdawjpGjY3Zu+4+Si1+6KFx8dPq8TvK8obhDQaDweAuMD94g8FgMLgL3OzSdJS5EyF226zlU4pTSixdJjVQSjmelGpcjyfXolwU7PwrF49zS1GkWPuVMLCTIUousiQbVOHceHVenVuZckNdGcJeTzDKoNXx11TpLmlFAtJr+dIM1924zs25RFJfMJ4XJyLO0gElLzF5xImIJ5evhKGdDJXceHRLUczgiPuN83SuWr2XXIH6rnNTJ1emK0/he0zschJtdKt1LikJXnAMzo3P5Jq6DyIJI6fEu7o+6Q6ke9KFUiSrx2J1nX89h+q11v2Snm90/TkReV4HJno5l6brPbrW2zrXWOs5YWf4JJ5Rn0NJzq8TLXBzPYpheIPBYDC4C9zM8M7nc5RGciDDcgKitDhTGrVLgaV1KUuIlqqz8Jh0QcvbWZCyuGhZifm4dGimuTPVu7NumRzBFh+03urYkjSSs9LJNtj1XdfcXYM9AW9t8+3bt037nMoYU2o5184RdkGZMpe0koTOeXx3LdN5EmowX3Nk0gLFq9O+6lj2EnvW2rYS4j6YcOVk8LhWyFhcCU0qldF8xXDr2FzRewKLuTsRYu7TPQeSp4Wv9d16XejxYdKQY+tkcGSW7Ihe/09lFryWnZA/x+ZkHveK8FOn9/pZ8q510mICfwNciZp7fh3FMLzBYDAY3AVuZngqPl/LS7okCSy+7uSa9rZ1bIbWKuNLlZUmK4Li0Z10ESWXyDDq8cjwkoxOnX+S06JosSvkT/I8tFydlc7PNPauRUpqc1Px/Pz8zsJnaUh9j/vfE5at0D7ILlzaNtcxWQzPyVprffnyZa31xto4Zhdz0DUU86I4NlmTs1zJiFLpyVrb9caCYzIKV/xPVprKI9baWvRMh6fcmxt3d02v1+trDDiB7JVzdWuTngPeH1xLR0oxKB5e45a3lNvwOykexjXrRPL5nEvzrp+R7Wrbz58/v/vctYnivjgOJ4PI2F2X88HrNGUJg8FgMBgAH2oPxIJVtoxf6+1X2FnW2pdAqyUJ1TopnLStLC3HRpm1mGRz3LFTvIJWlJMwYhaTwKy2+j/FkTk/5+vm/lMcpjIXsgxKtlHiaK1tnKdrD/Ty8rL+/PPPTWagshrrMfeK7OtaotXKZqupKWn9jjJsKdrsshh1zpg1R4uY2W1rvZ1jNqcle3JxC+2fsUgnx0eWTmbBa+0aAWssjE3zWtTvM2aoeSo7sWN4nQDw6fTfxsL0jLhY195r50UReC1TIfVab2tG50Fz5LV114UtnbhWK3ivJobHzHMHsil6q+p7fFZQvKLLlE3Pc5ety3XMNdTFXmvG6NF43jC8wWAwGNwFPiQerV9ySmWttY2hHfHj0voi85K14VrK0EqmdFVX41bntdabdeEkpSjxQ2aXBForOB+ys2o1p3Y3ZD/dfJixyHhmtShp1TLG5s5j1z6HuF6v6/v376/XUPuvcT1msdHCdtmUvA60UMkgavakxv/777+vtY6tGbL1FGfuBKeTIHB3PlkbSrHsrrYpSb652BHjI4wzHan71JjEer5+/brWen/daJH/9ddf7Zq+XC6taHBqdsp9dgyP9zj/Vg8A9//rr7+utbYC9C4DUvvROlBczGWuMobHWB0ze+v8UoPmrpEuj8Ma5fTcq3MXUnNs58FIHgvX9ojx84eHh4nhDQaDwWBQ8aE6PGZ5uTbvtFoTi1srZ3IKXb2UftnFFGQJyDLpMhLT8cSmnGXsLNPu9Vpv5yS1knHfpaKLiwmt5X37jDmk7MN6TlItGNnhLa04iDpfnWNlLq61ZTGMCXRtWlK9kl5r3/Waiu1ijlx7AAAPyklEQVT99ttva63tmmGsox5H2zBGTYHeup+kKpKyk+u2zLhkhmVlrrzHuEZoTdfxMCMxtWZyrXmYmSiG51oY8Xp9+/YtMrzz+bx++umn12Nq7bgWRam1mEOq+yXLEQNT3G6t7TlN17+LxzIezLh9nSNjaAK9Bvy8gpndzHCv+6OiisD2XjVmmDItO2bHbVMjgTovMuRpDzQYDAaDAfCh9kBkCPXXl/EDWtxJL9GBFp8s/LoPWgJkTy4jMcUXU8anmwe37ZgfM/g4RqeIkHTwaIE7FZqkPkIGU9kOt006gxVdiyK37ePj4+scldlbM3zFCFJM1WUI8vzw2tIbIWt9rTeLPWVpOlZNLwOtWJepym0EXlOuR7cPZk+mBsRrZW1LZhK685kajbr1Tuag/f7xxx/v9uFihZW1J4Z3uVzWly9fNmyqnideq3Rfum04N8aNnCqQ1hGZcGpIzPHW73Ld1TXK8TO+3GW/83g8jqvD43v0CjEL1D3nqPTEOHMdI1VY+Gx0vzFJbegIhuENBoPB4C4wP3iDwWAwuAt8yKXJ1OwaMFcKskDK6oqsCRatp869a21pO8sGXJkAXXop0F3dEdw2dV3upJcEjs11HnalCvV4dNlU1wfnx8QTJ7eWUte71kIcy/fv36N74XQ6raenp00hfS1LoJuOYrrunDv3Vh03i6zrnCUTJpcmEwS0rp2rma4dJmy4lit8zYQuJ1rAJAKdI43NlVAwkUWvNWYdX8kfdZ2n1PWuQFzf4bXlvOu8KCLRuTTP5/P6/Pnz63dcIhfd+Ml9XF3/XNN0UydB9fo/hb6TTNlaW4EOV0pQv8v/K1KpjjuHfF5TcKBLeEutfXS8mrDI60I3vBMhYegrtczqQlISJjiCYXiDwWAwuAvcXHh+Op02KbJOeonMrhON7ljBWlu245iQtlVihmM+Ai0EyicJTnLJCQqn7wgpcM6ga5dSTQuVjNkVhLNgNiWm1O/zb1ekynHvFQ+fz+cNY6hWutieriHPj9s32VES5nVit0ztJ+NyhdlMNKDV6spgeGw2DyYbcYkHLCJmAsARVpASURzE0jhGJ9GWUtW1rUuO4Pi7tXM+n23pUwUZT/JMpHNTx5u8BfV+4X3OgvNOtJqtxlIyy1pZtDtJG1aklP8kqcb/3WuB3qP6f/JCdZKN3C/vmeqZoceqExUnhuENBoPB4C5wE8O7Xq/r+fm5bQfjfvnXygyi/t9Z1u61O57iFozlOQZE6z+l5Nb9OP9x/esYV5pHJ5VEKyY183TWU4r7pHm6eTj2xjFzHeylB1+v143FWOfFdHn9TWy6jic1qiQDciLYZC+JLbixMQ2dDLPuh6/p7XDnOFnYLI6va5VxLDItxntczJCC0EkEYK1tLJCMj4ICFTUmtBfD09iUtu+YNwvjk2CDA68Ly0bq+HW9dS4loKDjuaLo1K6Ha6kThOD9mVhc/Q6vs9aKjlfvLz4vk6es8w7w+a19spRqrfw8ZSmIW98fwTC8wWAwGNwFPtQAlgWGTiCVmYK0MpyFkH65k0+47p9C1mwIW7EnMCt08bhkCQlOHqqzYOtc6ntp/7SEnPQOW/x0BZtkNYzzuOJ4fveI5cV14RrXpoJswcUCeD04Tnct9R0xEUotuUw8ZtimRrNdPJYxKLa9cXHuPam3Ot+U/ZkYeddmh54FN78kp9UV42uM+qyLw5zP5/Xp06fXbbSu6/rVscQ2ea+5Jq7CngeGTKy+p8xLMTyuD9eOKp1/eivcsVMM0nmyOC8+U1wmOMfmRCrqd+p3uTbS867eT7r+jKPz3queGWZETwxvMBgMBgPgJoYnS6uT4mKtF/+6+EWyhtMvt2trIwuAzMHtO9UYcazVEkkZgyl+1dXDpPm6WBWtQvrhnbRUEs7m/CqSBddZbfqsxgZTPYxaS6X6pbW2li59/s4613us/TkCWqnpujiLm2Pm5/V9tszimunaArE9E6+3Y3hkZXsx466VFRm/9l3ZTlorvH51XIyxdXV4gpid6ibrGmJzWT5nnBci1cemGF6ds7Zl49eu5izFqyh/6Oo+0xi7LPgk2+XqZ9P+Ba4pxw5ZV5zGWsGxUbTaCd0LzHY+gmF4g8FgMLgL3BzDu16vG/909a/KCmObIDZorb/YtIBp1dBq7upUyKJc7QktnBQ7cW0zUpzqiJVBFnWLWDVFkJmBWRke45hkekcsLlpPsqodc0nz435/+OGH13NNIds6vvTaNYOk1ZyYt+bTZU8mq9nFOAha53XfjGtz2xSfXWt7/9CT0dVUJjbaxYy4DZU1XPujPYbsGKarqU04nU7r06dPN6n+aE6Ksbk4erqXeV4ck2AmKp9h7rmT4vLMjHVKJCkrvHvupGxjfsfd00nBJQlur5XF8JNyTd1W+Pnnn9dab+u8q2NkFuoRDMMbDAaDwV1gfvAGg8FgcBf4kHg0qWl1TzFllH2hWARb90O3E4tJBZe0QleCKxYV+F4KyNYxJsmqvSLLtfaLON37dFnRfcwElNqZmIXzPEfODZLcUUxEqNvtuUoqTqfTulwum3E7txJLP1zAuu63gtffJQ8IHAOLe50LndeSAtdJELi+R7muJBvlxphcms4tSZfsnhDwWtv7lO5KJibw/zrG5B5zn3XX+Hw+rx9//PF1PlVwvG6zVpZeU2++Iy5AjY1yYe48pUQgl/jG9cX7k6GI+h5BN2EnhE8XbScmwRKd5NpkOY47Dr/bCZ1zvhRur89ohjYeHh4OJ64MwxsMBoPBXeBDhedMc6+/0ix6dmK6fE1LlGyKgfuuu3cqlHap5bR8U0ueipRaLDiLlRZJl5ov8BzTCqTF78RVOWbHXDlGit/y83punPj1EXmxuv+u7QdFyjuhAHoDaKXzdf2O/v7yyy/vtnXHY+IPkWTx6rG53rp5Jbm7VEZS95uuBdPsq/XMpJTEmLsu6fQAuZZJXfE7Ie8A7626dvbOpbvXnJRXfV+lDs4zwmeVnnd8JtbjksHp3pV3hglp9TsJqZi8jo0side4srQkd0dPiUs64rP2iIeGzy8+51gAv9Y2IfJ6vQ7DGwwGg8Gg4maGV+MwThKLafKyXtj80LUKIWNITKWWQdDSpe++KwAX6MvuxJBTPCSJLrtted5cQTgZHq1Dxk9vkUHrYlOUMJJQL1nJWluruZPTkvA4t6lzplWnc90xPIoFk+mTiVdmom0VL6CwNIu763hTEbmL3QhJUJ2WeCedRrbhGn8miTYWjTuGR3mwFPdxY+PxBZ1nV4LQlbKk47i2ZGRrOhY9Id0adfGi+n5loXxGufujbrfWlvlSzJ3sxm3LfaXi+TqWJIrO+bm50jPSxf+S9yaVJ9RtVY7AZyO9PPW9eu8PwxsMBoPBoODmBrCPj4+x9cpa24wcWVb0cTufPa0wFoR3MTz68GnxVwuAFjWtZ1eIzm24D1rvLuOSfxOLq58x3kf/vxN3pZUp64yiu67AleeerMp9px6ni+G9vLxsRK/FIOsxk6UtuIaV/MsYg2sXk64/33fCzHui6M6KTeiYHZEyjLsCYFrplOGqr901rft09y3Zh4vz1ffX8pb8XvyXBfwud0Bgdri7T1ILJK59ZYU6AQK2AXLPKIH3PVmpy9rlOktCCxyXm8+RuDbjfFobfN89D5KwBb1Gbn58Fgoug52NlC+XyzC8wWAwGAwqbmZ4l8tl43t21iyzyfQLrpies/aStBc/r9ZTEkalReSkl5Iv21kVndVft3VWOq1LWoFOHowMWX/J/NxckrRU13B2TzjZCTjf0pZDYFysE2ZO9Yv1HPN68Bomqay13tagLPjEcl0jYMZjklxUPWYSD2cmWpclzO+4WAprpGjJK8vNXfPUJJYs1Hk/0rgZT6v7O2KZy7NExupi0DoWvUViKu5aChy/xuhinfyMTF+occYUH0vi3u6zoy3U6niZlakxa93X/Apto/O11/bKtTQTeI+4+HbyfqVM5vr9er8MwxsMBoPBoOBmhvf09BRFfbXNWln412VYuePUv7QQnR+eFikZX+cXJyNy2US0tBLDc6+ZfUWmJ9Zbzxm/k2r3XM0VrfTEfh3D47lhLMxZrMm6daDgq2Mm9Ap0ot4cSxIC7xrYUgCYrKmec55Tpx6RxiikdeayUJNHITGwtbaWPRuxso6pxr8492Q51/kx1kqvQ8dg2GIqodZauRpOjUfHYkwvZVfX7zCmx3Nbx5/aUXX3C7Nk9Zmuh17XurjU4iuhjoeMjkxPzK4ej9+hNyB58Oqxk6KU5texNV5jwXkRndj2HobhDQaDweAuMD94g8FgMLgL/E8uTVFJl4DCAmlS8Ur1uR9+l6iB51TMySBrpcj6Pj9LUmNrbV1K2n8S/q0UPLknUxKLm08qOE4FrxWpdKMG6ZlEsNfZe62cMNKBxeSuTEAu3pSiXCHXlcabSlu6eeg9ujbpHq/jTdenc4cLPMcUnnauZl73tB7rd5LMXld4nKS5koSfG6PmwfIHJ811FKfTKfaPq2NgsbPWg8QFXKmLPqtr0c3Luc7o2qT7sN7TdBNqbCrN0Xw0nrW2ogt0/XK91TFSYIAJKE5ajGUodL9rbG48yZXJMJYrZUglG921HmmxwWAwGAwCbmJ45/N5PT09bayJajWlonQGNOuvPH/5aZVTQNVZ+ikxpCsipwVPq9PJ5ggpAcQFlfcEoI9Ii5EVOCuHY2XyAFvL0KKt+xO6DsuO4aUA8vV6XS8vLxvLzYk5k6ULLnGHKf1MfCHjcwXaXJN6/+vXr2ut9+uPCQdJRqkirRUyL5e4kQrBU2JIHT9fM1Gsu4+YBNJJ55FdpZKZejzea12Sj/bVlTKQXYpF0QPgxpASJJiA0pXkMLmDAhz1O/RyiGFp21omkArbuc+uzIcML5Wt1P+5XzYDcCViSQKwezayxC0lO7q1Wvc3DG8wGAwGg4IPNYClldelhdKv6yyRlHJPJsaU9grHktbaytrUMaS2PbJyqkWcrGYy147hpXT7rhlqarnRnXuynFQq0h2HcMycosRHYni0OrvvaLxks65MIEm9cR/VEmRMg+tBVntnNae4hRMaTjJkLlbI/TA1nmUjrgib64vs2lneFHtIjUAruL55Td1aZdPnvXR7V7Re3+O6JRMRQ6nXPwkvc810LIO5AixIdyVb9LikuHDdht4h7stJffH+TOUq7hyQcXGdu/KyvVZGgms2kOL17vnA5+jDw8Ohkqi1huENBoPB4E5wuqVo73Q6/Xut9a//u+EM/h/gn9fr9R98c9bO4ABm7Qw+Crt2iJt+8AaDwWAw+LtiXJqDwWAwuAvMD95gMBgM7gLzgzcYDAaDu8D84A0Gg8HgLjA/eIPBYDC4C8wP3mAwGAzuAvODNxgMBoO7wPzgDQaDweAuMD94g8FgMLgL/AfIPxVX2uX5LwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -720,7 +980,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmUZFld57+/3Koqs6q6qrp6o2toullEwK2FBgVpVASOoyIgyBkZ6UGlcR0cRwZUBDzgMh5lkBFtN9pWFERFVAZoAdu2FdRmkaWFZumN3qqruiqrMrOqMivzzh/3fSNu/uK+yIjMiMiIuN/POXlevhtvufHivvfu9/f73d+1EAKEEEKIcWdiuysghBBCDAK98IQQQhSBXnhCCCGKQC88IYQQRaAXnhBCiCLQC08IIUQRdPzCM7PvNrMbzeywmZ0yszvM7K/M7Fn9rKDYPszsWjMLZvZlM2tpK2b2murzYGZTSfntZnbtJs73sOpYVyVlr03OEczsbNX2ft/MLt7k93q5mT13k/veYGY3dbjtWN4zZvY095ucMrNbzOznzWyX29bM7PvM7INmdtTMVqr29HYz++aa4/9dddz/3uN6P8zVu+7vhh6d79HV8V7Yo+M9vrof9rryndV5XtmL82wVM3tu9ft+oarX+7rc/xlm9uGqXR0xs7ea2cFe1G1q400AM/sJAG8C8AcAfhXAIoCHA/jPAL4FQFdfSIwUSwAuAvDNAD7oPvt+ACcB7HHlzwFwYhPnuhfANwD4YuazpwBYBTAN4DEAXgfg683s8hDCWpfneTmAmwD85Sbq2BGF3DM/AeDfAMwCeCaA1wB4BGK7gJlNAng7Ynv4QwBvBvAggP8E4PkAPmhm+0MI8zygmR1CvD6ojvOmHtaX7SvlwwCuBXBNUraZtpvj9up8n+/R8R6PeI1/D+vreKY6z509Os9WeR6ArwLwT4hto2PM7FsBvBfAX1fHOQ/AGwD8nZldEUJY2VLNQggb/iFeyHfVfDbRyTF69QdgxyDPV/If4oPgywA+AOBa99lTAKxV2wQAU32qw2tzxwfwg1X5V27imLcD+ONN1ucGADd1sN3Y3jMAnlZd+6e78rdW5Qeq9Z+r1p9Xc5xnAJh1Za+q9nlPtXxcn69NAPD67bqWXdb1ZVV9D21XHTqs50Ty/80A3tfFvjcB+Iw7xlOq7/2SrdatU5PmAQD35T4ISe/azK6qJOxTK9PNQmXG+M2MqeN1ZvYxMztRydYPmdmT3DY0nTzXzH7XzB4AcH/12aPM7F2Vuei0md1pZu90prXzzOy3zexuMztjZp81s5d28oWrfd9iZndV+95lZn9kZjuSbZ6VSO/56jt/hTvODWZ2U7XtJ6ptP25mTzSzKTP7RTO718wetGhCnEv2pQnmR8zs16vvumRmf2tmD+vke/SI6wA8z8zS3tr3A/hHxJfHOsyZNJN28SQze1v1m99jZr9hZjuT7VpMmm1gD3c62f8JZvbnlcnslJl9rrq+u5JtbgdwCYDvS0xYaV2/pmpXR5NjvCrzHZ9etd8lM/u0mT3HbVLcPYOo9gDgEWY2A+CnALwnhPAXNdfh+hDCkit+MeID7+XJ+rZgZh8xsw9U1/LfzewMgJdUn/1k9fkxMztuZv9kZs9w+7eYNK1p6nuCmf1z1X5uNbOXbFCXlwH4rWr1rqTtXmgZk6aZ/bJF8/+jq++wVN2XL6o+f0l13oXq80vc+czMftTMPlW1lcNmdo2ZnbPRdQvdW1wa5wRwBYDr02OEEG5CtJA8J9n24upZcm/VTu8xs782s/3tztGRSRPAvwJ4sZl9CcC7Qwi3brD9HwP4MwBvqb7AzwOYA3BVss3FAN6IqCDmALwIwI1m9vUhhE+5470ZUeb+VwB8QL4HwDEAPwzgSHW8b0fll7Ro574JwC5ElXAbotnlt8xsRwjhzXWVry7aPyM+tF4P4JMAzgfwbAAzAM5Y9MO8B8CHAHwvgN0AfgHATWb2tSGEu5NDPgLRrPUGAAsA/jeiZP9rxN/gKgBfWW1zGMArXJVeBeATAP5bVY9fBHC9mT02bFXid8ZfIP6W3w3gT6qX1PMB/E9E81Sn/BGAPwXwXEQTzGsRf8PXdLDvZLwfGibNn0F8MH462eahiNfpWkRT62MR295lAPjQeQ6A/wfg36vzA8ADAGBmVyAquC8A+EnEtvlIAF/t6vJwRFPbLyG2vZ8C8E4ze3QI4QvVNkXdMxWXVsvjiOa3fYhtvCPM7IkAvgLAK0MInzezDyN2TF4ZQljt9Dg95nGI9+UvIKr2B6rySxDNoHcgPhOeA+B9ZvatIYS/3+CY5yJ2In+tOuZLAfy+mf1HCOHDNfv8JeL1fQWA70rqcRTAZM0+BuCdAH4b8ZnzEwCuM7PHAvhGAD+N+Fu/CfHefGqy7xsB/Ei1/CDiff4GAI8xsys3+1LrgFUAy5nyM4i/BXk74nX8HwDuBnAhgG9Ds63n6VBmPgrxoR+qvyOID65nuO2uqj7/bVf+s9UXeVTN8ScRH/yfA/CmpPxp1fHe5bY/WJV/V5s6vxrAaQCPdOW/W9W/1gSH2LhXAXxdm21uRrTNTyVllwJYAfDrSdkNVdllSdl3VfX/gDvmXwK4LVl/WLXdLVgv8Z9clf/AViX+Br/7tQC+XP1/HSrTBIAXIPr29iJjckRUfddm2sXr3PH/FsCtme97VVLG4/u//wDw8DZ1t6pNvQjR9Hquq1+LSRPAjQDugjOzuW34ez4yKTu/ai8/U8I9k5zjGVUd9gL4HsTO3Merbb632uaZXbS3t1Tf+eJq/erqGM/qYxuvNWkC+EhVn7Zmc8QOw1TVft6RlD+6Ov4Lk7K3V2XfkJTNApgH8BsbnCdr0kR8yAfEjgLLfrkqe4FrpwFR8c8l5a+oyi9I2u4agFe483xrt78HujdpfhLAP7iyR1Xnna/WDfGl+NJuf++OTJoh9k6/DsCViG/5TyD2aN5vZj+X2eXP3PrbERvFFSyoTEJ/b2ZHAZxFfIg8CrGH53mXWz8K4EsAftnMfsjMHpnZ51kA/gXAbRZNh1OV6eb9iD2Dx7T5ys8A8G8hhI/nPrRodrwcsXGfZXkI4TZER+2VbpdbQwhfStY/Wy3f77b7LIBDlbRP+fOwXuL/E2Iv3zvg21KZKaaSv7qeYY7rADzdzC5ENGe+O4TQrXP/PW79U4iqrBOeBOAJAJ6I+MJdRFS5F3ADM9trZr9iZl9E7BGuIPZcDVGp1WLRXPtkAG8LrWY2z+dDCI1AhBDCYURl/tCkrIR75v1VHeYRlcTfI1oBusaiq+CFAD4UmtaRdyD+jm3Nmpl23anlqhM+F0L4j8w5n2hm7zWzw4gvxRUA34T8b+E5FhIlV7W3L6Hze6Eb3puc5zCiwr8phLCYbMPnEa01z0S8Z97mrumNiL9HqgR7zZsAPNXMXm3RvP5YxICnVcSXMEJ8630UwM+Y2Y9V23REx8MSQgirIYQbQwg/F0J4OqKZ6FMAXpOxm95fs34xAJjZ5YhmpQUAP4Dmw+zfkZek97q6BET5ejOiWelWM/uSmf1wstn5iD/Mivt7Z/X5uW2+7rmIL5Q69iM2iHszn92HaApNOebWl9uUT6HVROGvJ8u6Dct/MdZfi1w0ZB0fQvy+P4l4Q1zX5bmBGKGXcgbAjtyGGT4aQrg5hPCvIYR3IkY7Xopo0iBvRewF/wZi+3gCgB+tPmtv6oi/6QTa/+7Efw8gfpd15yjgnvnRqg6PA7A7hPCdIYQ7qs/uqpaXoDO+E/E3eJeZ7TOzfVX5+wE821wovuPKTJ17Rcs9bmaXIQZyzSKa/b4B8Tp8CBu3M6DD9tMDVkMIJ13ZMuqfRzz/+dXyy1h/TZcR79d2z86t8gcAfgUx4Okw4v3yecTrnf4Wz0GMdP5ZAJ+26Ld/VUYsrGPTPaEQwj1m9nuIb+RHIvosyAWI/pV0HYi2ViCGm54F8NyQ+KCqh8Dx3Oky5/8SgO+vvuDXAPgxAG8xs9tDCO9F7NEeBlA3ludzbb4e/Rt1HKvqdGHmswuRb9Bb4YKask90eZy/QbwxyZlOdwwhrJnZ2xDt/ocBXN/luXtKCOF+MzuCyr9W+RWfDeC1IYRGKLuZfVWHhzyG2IPc1Ni+ThjDe+bWEMLNNdveXNXrOwH8Ts02KVRxv1n9eV6AGI6f46NY3657Sct1ROxs7UaMPj3CQjPb3ac6DJqj1fJpiJYUzwOZsp5QdcxeaWavR+zQ3h9COGxmtwH4u2S7+xA7ty8zs8cgxjf8IqLgeGvd8TtSeGZ2Uc1Hj66WPhrtBW79hYgPk3+p1mcRJWqjMZnZt2ATkj5EPoFmT5+OzfdV9buzUgb+z/d8Uq4HcIWZfU3NORcRb7Lnp2ZBi5FO34jo5+kl32PJwG8zezKAQ4hjiDomhHDUXQMf6LARf4D40nx92L4gAgCNNnkQzZtvB6Iy9r37qzK7n0F01jeozEo3AXiRuejILdQvx7jeM/4cy4hBGd9hZs/LbWNm32Zms2Z2PqI59d2I4z39331oY9YMIZz0de20npuE0coNd4aZPQ4xUKefsIO65fa5Adej6SvMtYM7NjrAVgkhLIQQPlW97L4bsZ1fU7PtLSGEn0aMK3hcbhvSqcL7tJl9ANGkchuik/rbEd+wfxZC8AMev93MfhXViwMxCu+6xO/xPsSw42vN7K2IfohXo9mbbYuZfTViL/kdiBF1k4gPtrOIZgUgRhd9L4B/NLM3IvZO5xBv6G8KITy7zSneCOC/APhA1dP4FOLD9dkAXlbd+K9G9En9rZm9BbHH9zpEf8avdfI9umAPgL8ys2sQB2L+EqLMb5gVzez3Abw4hNBL/8U6Kr/Upnw0PeCJZraK2Em7BFFpriJGoCGEMG9mHwHwU2Z2L6JKfwnyiu0WAN9kZt+B+DA9EkK4HTHq9B8AfNjMfg3RpHMZgK8NIfx4l/Ut7Z7J8UuISvIdFod+/A2i9eMQomJ9LqIZ8/sQn0VvDCH8Q6bufwjgFWZ2mfOFbxfXI6qJPzazNyF+n9eh/wO/b6mWP25mf4L423Vr5dmQEMItZvZ/APxO9SL/R8SX7UMR4xveHEL457r9K5Pv5dXqfsQI6++p1j8SQvhytd1LEQOVnhxC+Jeq7ArExAMfR7zXr0TsmL0+hPDRapsLEDtHf4LYRlcRg6Z2IVGBdV+uk8iZlyGGF9+BGMW1WFXoFQBmku2uQuwZPLWq0AJiA/9NALvcMX8c8UFwCnH8ztMRldENyTZPQ36A6/mIjsxbEd/qDyI+qJ7pttuPeBPfhmh/Poz44728g+98PqIp5t5q37uqc+5ItnkWoso6hfiiezeAr3DHuQFuoDKa0Yg/6MpfiyTiMdnuRwD8OqKaWUJ80V7q9r0WlUWgV39IojTbbLOuzlXZ7chHaT4it2/mulyVOT7/1gDcg/jwvCJzXd+LOCThMID/i2h+CgCelmz36KodLFWfpXX9uurYx6vf9bMA/le737PmO4/tPVN3jpr2YYiRsh9CNBuvIHYk/hTxJQrEh/YXAFjNMRil99petu/q2BtFaX6g5rMXVdfyNGKH+HmIgUafde0sF6X5hZpzbRjNiBgAdQ+aav9C1Edpns3sfx+A33Nlz6r2f4orf0nVzpYQ76nPIPrHL9qgjowmzf29MLPdk5Kyr0UcEjZfnfdmAC9yx59DjBy+BfF+ma+u3/M3un5WHaAnWBww/FbEsOYvbLC52ACLg8tvA/BDIYQ6/4UYYXTPCDE4NFuCEEKIItALTwghRBH01KQphBBCDCtSeEIIIYpALzwhhBBFoBeeEEKIIuhqkPLs7GzYt2/fxhu2ganO0pRnvsynQ9uMn5H78FidHKPdNv4z+T7z12B+fh5LS0st+ex60XbEeHP8+HG1HbEp6tqOp6sX3r59+3D11VdvvlYJk5PN/MhTU7EaMzMzAICJiYl126yuxixWa2sbT8FU9yLKlbOMSx7fL3PblMqZM830m6dPn1732dTUFK67Lp9TupdtR4wn11yTzRyltiM2pK7teGTSFEIIUQR9y7u4EVRtQFPRrazEvL9e2RGqq9wMEF55dWLK9KqtTultdJySSH8TXSchxCghhSeEEKIItk3hpXgl5wNONpjTL0s7peEVXZ2yk1ppJVVz/P/s2bONpa7ZYKE1hFaS9H9/38iSIUpHCk8IIUQR6IUnhBCiCIbCpOmDUbj05bmhATTpeFOMD2JJh0HUBav4z0WT3LVikBE/W1lZGfphG6npbyOG6buw3tPT0wCaQ3h27twJANixY0djWw7z4T5cJ/wN6UrI/aY0Uy8vLwNoDkdZXFzsyfcRYjuQwhNCCFEEQ6HwCHucPoilk316tZ3Ikxv8z//Z+9/OoBWvdKhqqIi86gE2zuiT+84soxKiAuKSymgr1yFVa6w/y7jctWsXAGD37t0AgNnZ2cY+VH9+Seq+J9D8Xkwq4JdUeMePH2/sMz8/383X6xnpec8555xtqYMYLaTwhBBCFMFQKTwxvOR8eCyjugkhDEThpWpmbm4OQFPxcEklROVHpcQlsN6vm4NqjaoHaCqdU6dOrVsuLS2t+5zXxO8PtFobWA9f5/S78ntyuXfv3nVLKj2geQ2o7HhcqluePx1OQqjW/fejsuPnPC8A3HPPPQCAo0ePYpAcOXKk8b8UnugEKTwhhBBFIIUnOsJH9qX/D2qgPlVM2ptnGVURl97HlVNPVEA+itEr1zRhNpXciRMn1i2p0ugXzPkKvbLzkZesc1pH1p+Kit+dswewnMovPV6dD4+Kjmo0F41aFyFN9uzZ0/j/vPPOA9C8NlSF/cL7joXoFCk8IYQQRSCFJzqCKij19+RUXz+g4vFqLq1XXZ2oAqjA/JRG6T5+/Ce/axrNyeNQRXHdR4Hm5nv0qewI9/HL9Pg+hZhXjanP0Jfx+7Cc14DXJt2XZVRrrCv9kD46Na0L1We/FR4jRNM6CNEJUnhCCCGKQApPdIQf1wY0VQDVx/Lycl/8eDzmyZMn1y2Bprpg/bwC85MLp/4s7/fjPl6RpWqNZVRCdVGbqZLktnXZgHh81i1V0X6cn1eoucwnXpX5ffm7cd9UkfnsK3U+vHaTI3cyNddWoMq96KKL+nJ8Mb5I4QkhhCgCvfCEEEIUgUyaoitSkyb/pwlubW1tU3MXbgRNgv0OQ6dp0yddzg1W5zY0Fy4sLKxb7wbu8+CDD647B9A6oJ3DIHh+P1A83Zb7+oHvow6HZAjRLVJ4QgghikAKT3SET5oMNIMTqEjW1tZGemql3JCF7SAd5sEEybzuDGzhNmkAjxCiPVJ4QgghikAKT3QEfURpOHrdwOZhwg/27mYC2GGC/jgutwJ/r1G9Fh/72McAAJdffvk210T0i34NbRnNFi+EEEJ0iRSe6IicevNJh2dmZvoSpUlyA8E9rKdP4tzPeo0ao6rsyCc/+UkAUniie0a75QshhBAdIoUnOoKqILWpexW1a9eunqoHju+jrzA39Q7HyDGKkfswmnHU1Yxowolmzz33XADrrQ4bTeYrRou+paXry1GFEEKIIUMKT3QE1VXOF9avqD+Oi2NPPteLZ6aRNOEysD47ihgPGKHK9sDsNsD6SYGFqEMKTwghRBFI4YmOoGJK81lScdF/trq62hPbOxUjfXc8PuuQnoP/+0lixfiwtraGkydPNvKIclqgdEyiFJ7oBCk8IYQQRaAXnhBCiCKQSVN0BKfK4RJohv7T9Dg1NdWTAd48Bk2YNHHStDk3N9fYltvs2LFjy+cVw8nq6irm5+cb0yfRbD0syb7F9jIzM9NxwJwUnhBCiCKQwkMz+GIYkx8PC7xGabg/1R6HBExMTPQkaIUKz6vK3ISsYvxZW1vD4uIijhw5AgA4duwYAODQoUPbWS0xJHRjVZLCE0IIUQRSeJCy2yxUdqnC6yW7du3q6fHEaHL27FkcO3asoez2798PoOk7FmXC58309HTHKk8KTwghRBFI4YmuSNN7+al3lMBX9IPl5WXcfvvtWFxcBND04d57772NbS699FIAmgaqRKTwhBBCCIcUnuiK1E/HqEmOgZucnFQPW/ScM2fO4Lbbbmu0N/rc0zRy9OdpPGY5pFHbUnhCCCFEghSe2DLsafVr0kYh1tbWWnzEe/bs2abaiGFgM1HhUnhCCCGKQC88IYQQRSCTptg0NGFyubKyIrOm6AsTExMtgQlHjx5t/H/ZZZcNukpim+Gzppt5OKXwhBBCFEExCi91eHO6GamR7uG1A1qv36lTp9Z9LkQvmJiYwM6dOxv3MJVeqvBEuSwtLXX83JHCE0IIUQRjr/DYG0xDWJUsevMwUXQKe1dSeKJfTE1NtSi8tC3ynlZ6u3I4c+ZM438pPCGEECKhGIW3srKyzTUZD9JeNXtVLOsmxY8QnWJm69oVrTWnTp1qlLG3Pzs7O9jKiZFCCk8IIUQRjL3Ck0+pN1DFpZGZVM0sk8IT/SCEgLW1tZa2lbbF48ePA5DCE+2RwhNCCFEEeuGJrgghNP7Onj2Ls2fPYmJiAhMTE1J4oi+sra1haWmpsb66uorV1VXMzMw0/o4fP95QeULUoReeEEKIItALTwghRBGMfdCK6A0c2JsGAdF8mQ72lUmze6anpwE0r60SI6wnhIDTp09jZmYGQHP+xRMnTjS24TXUAPT+wOs5jGkZ/bCVdkjhCSGEKAIpPNER7NGlCo897eXl5W2p06jC3jJD6L0aSQf3LywsDK5iQ4qZYXp6GqdPnwYA7Ny5E8B6JXzfffcBAPbt2wcAOO+88wZcy/FmmK0O3cx8LoUnhBCiCKTwREfkFJ4vO3v27FDZ9ocF+peoiOmL2rFjx7ryXFJksri4CGC4fCeDggqP14UJD9Ke/f333w8AOHjwIABgz549AJpqUAhACk8IIUQhSOGJjuhE4Wl6oCZUdUBTyVHB8bpxnQqPiiXdl2VcppGJpTA1NYWDBw82VBzbWOo7pq+T21DhPeQhDwHQnZ9HjBarq6sdWz7UCoQQQhSBFJ5oi/ebpD0pRm6xp728vFykjylHqnS9z8lHZbZLiky1R5XI9ZKmu5qensahQ4dw5MgRAM3rk/o6OT0Qld6dd94JoHnNDxw4AEA+vdKRwhNCCFEEUniiLexF57KA8H8uT58+LR9eRe46EaoMXluOL+O1y11D/zuUxMzMDC666CJ85jOfAZCPVPX+ZC6PHTsGoPkbzM3NNfbh/1TPYvyRwhNCCFEEUngiSzq2Dmj66VK14lWHfHidQUVH3x0VBv1yqX/Oq+gSmZ6exkMe8pDG+EX669LIS5/rkdeL7bHk6yeaSOEJIYQoAr3whBBCFIFMmiILzUbepJYLxqC5U6nFuuPUqVPrliLP5OQkDhw4gL179wIA5ufnAawfzkGTph/y4ae1StvnoNsq7ykFyWwfUnhCCCGKQApPrIO93lS1AfmQeW5T0iBosX0wMXQugIoBLV7pMbDFp3VLy/pJWkcqedaNKeXE4JDCE0IIUQTqYoh1+N6zH56QG5ZAlKBX9JNDhw4BAB588EEA69siB/N7ReeTbw9C1aWk1g+em8NSdu/ePdC6CCk8IYQQhSCFJ9bho9nYi+5E4ZWY9koMjvPOOw9AU82lbbHOH+anYEqjOOn36wd+4DvQVJny3W0fUnhCCCGKQF0NAaDpa6Bq81OweKWXbqOxd2IQ7Nu3DwCwa9cuAE1fWDtodfBKLy3rBzxv6tfmpLRi+5DCE0IIUQRSeAJA67g7r+hyiY39Z/LhiX7CDCUXXHABAODuu+9ufOaTQ+fG3Q0STtQrhgspPCGEEEWgF54QQogikElTAGiaJ71Jk+ZKmjyZADf9n/to4LkYBByecP/997d85tugN20OeuC5GC70hBJCCFEEUngFkxtiUKfouJ5OZeOHMExNTakHLfoOFV6amotTBhGv7HLDBER56NcXQghRBFJ4BUPVBjR7wFR4VHZUdFxvN9hXKZPEIGBqsQMHDjTK2E7rLAzjbnnIfT8lhGhFCk8IIUQRqEteIH7qn7SMSyq5paWldctUFXr6mYxXCA8nhAWaUwbRQkHFwwHgtD6Mq+rJ+SZ5LzNhdt36qDMxMdGxgpfCE0IIUQRSeAVCf1yaJoyKjr4QKjquLy4uAlivCn0qsW56WkJsFaYYA4DDhw8DaEZrUsWwPXI9nR5onMipNfo6eQ28Fcer35Q0GnvYmZ6elsITQgghUqTwCoR+uDTisk7RcZtcdCYVnnx3Yrs5//zzATTbLVWLX5aU1JkWHH53rvvJnVNLDxN0z83NrduX+5w4caLf1e4aKTwhhBDCIYVXEF6tLSwsND7j/+whU/GxnKow7Un5STW76WkJ0Uvoz7v33nsBNCeJpfWB7bKkTCveZ9cJtNowixJ9nrxunMT25MmTPavnZvG/bSeU8+sLIYQoGr3whBBCFIFMmgVB8ySHJdBsmf5PU4XflqaO1HxAkwJNmjt27JBJU2wrD33oQwE02/FmzF4lwwAWb/rldWyXeGLQMMBmcnJSQStCCCFEihReATAQhUv2flOFx8+o7LiNH1yeDlLlZ1J4YljYt28fgKYS4eBrJTbvjrrglXQC6GGhm0AkKTwhhBBFoG7PGMPeGNUaB5X7IQhpGYcssIdMmz4H7KapmTgYtaRQbzHcsC1S2bG9KjnC1kitQcNCOmC+06TgelIJIYQoAim8MYa9Mio9H52ZDh71g9Kp8HyUZuoL4f/8bFymGxGjDwees42Oa9LofjPM93T6bJLCE0IIIRKk8MYQr+y8euPnaUJor+QYncUloy9Tuzl70eT06dMtUZ1CbAccoyXGF6q65eXljp87UnhCCCGKQApvTEh7OBspPKq0nMKj747Kjr0orqf4sU3Ly8sd29KFEGLQSOEJIYQoAr3whBBCFIFMmmNCOsSAZkm/pNmTJs005JjmTZYxSIUmSu6bmiy9SXN1dVUmTSHE0CKFJ4QQogik8Eac3FQ/LKOSY8AJ13MDxVnGff1MxxpcLoQYdaTwhBBCFIEU3ohCxcUE0Om0HT4tmPfl5aDvzfvwSG7aHypG+e2EEKOAFJ4QQogikMIbUXyasDTllx887tPu1JUDTZ+dj87k9EBpZKawICPxAAAUiklEQVT3DZqZ1J4QYmiRwhNCCFEEUngjho/KzPnlqMq8gmu3vpHPjsovneyV/j7WwY/LE0KIYUIKTwghRBGoSz4iUI1RTfloynbTY3TiV+NxUgUHtE6gmR7LJ5ZWphUhxDAjhSeEEKII9MITQghRBDJpjggchuCHFHgTZFrGJc2R3mzJ8txnNE12MgBdZkwhRD9Jn1VbSW8ohSeEEKIIpPCGHJ8IOjdNj8crOq4zAIUqLlVrdcdjOZfpAPcdO3asO46CVoQQ/SBVdX7qsm6QwhNCCFEEUnhDSt0wg5zPrq7cT/Hj04OlA8X9+bivH8ROH2KOycnJrI9PCCF6hRSeEEIIsQHWzVvSzB4AcEf/qiPGgEtCCOf5QrUd0QFqO2KzZNuOp6sXnhBCCDGqyKQphBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUQVfj8GZnZ8O+fftaypkNBADm5+fXfeazfPj1tMzngNSYrtHj+PHjWFpaavnhJicnw/T0dCNjApfM1gIAe/fu5baDqKoYMuraTt1zR7THByT6rEm57eq22ejY3ZB7rvtcvt2+A+rajqerF96+fftw9dVXt5TfdNNNjf9vvPFGAMDMzAwAYP/+/QCA888/v3GMdAk0H3Rc7tq1CwCwc+fObqonhoBrrrkmWz41NYWLL74YR48eBdBMhv34xz++sc2VV14JoDlAXpRFXdupe+6I7mDSCKYH5NyaaTIJn5yeHVO+4HwiijRhhU9e4df9ywxodm55z8/NzQFodoT5LtiIurbjkUlTCCFEEfQktdiJEyca/7PXQIXnp6LxiY1zZTJljh8hBCwvL7ckwWaPDpCyE6Kf0I1E1ZZzHdSZO71a88ov3WYjs2i7pPW54/YSKTwhhBBF0BOFt7S01FLmJxCtU3rpZ35bMT6EELCystLiI5CfVojBwmdv3STPQOszuE5xpdP2eL9f3XnTY/s6+MTQ7Sa63gx6swghhCgCvfCEEEIUwZZMmpSuuTnSvAmz3Tg8H64qk+b4QZOmd2zrtxZisOTmw/Twme6f8bx/OfaaQWjpNn5bbsN9UndWXR369VzQ00YIIUQRbEnhcQhCDr6hvbLLBa14Z6amLBo/Qgg4e/Zso8fIIQi7d+/ezmoJITJ4FZhmRAKAPXv2AFhv3aOSqxu8zvdFmpmL+/hnfr+sfVJ4QgghimBLCo9v3zS0nGGl7BmwJ98uR1ouTY0YP1ZXV1t6clJ4QowuqQ+unU8wJR3GduzYMQCtPsN+vQuk8IQQQhRBTwaep3ZWphTzNmCWU/HlUovlIjjFeMG2wnaggedClMXs7GxLGZVev618UnhCCCGKYEtSiqqNS6AZzcOeu98mF6XJ3r6PBBLjhZk11Dt9d5r7Tohy8WpvcXERQP8mEJDCE0IIUQRbUniMuONknkBzfAanfeE6e/Sc+JWTvQKdT/InRhsza/TcqOrTTA1CiPGDkZd+ajCgdQy2n8Ko10jhCSGEKAK98IQQQhTBlkyaDzzwAADg5MmTjTKaMmmy5JLlfiZ0UQZmhsnJyYbJgu1CgUpCjDd+rrucG4NmTj+srd2cfZtBbx0hhBBFsCWFt7CwAGC9g5FBKlxyeIJPLZY6LtNkorltuPTpysToYGaYmZlp/IYHDx4EkB+EKoQYH/g8pzUnZ9Xx0w3lUlD2pC49PZoQQggxpGxJ4flB5un/7Mn7iWD9BIJA007LfThMgftouqDRx8ywY8eOxu//8Ic/fJtrJIQYFrz6U/JoIYQQYgtsSeF5Px3Q6mejDZaD02mjzQ0s5Nudn/k0ZP1KNyP6D6M0qdYPHTq0zTUSQgwr/Yril8ITQghRBFtSeJyyPY20o7LjeAqqMr6x/UR/QFMV+mhN+vKoIBWdObowcfSFF14IQEmjxdZJLT7y84tOkMITQghRBFtSeFRgaSJoKjg/9oL4iEygqdzY62eCaWXhGB8Ypcnxd0JsFak60S1SeEIIIYpgSwrvzjvvBLB+eh/69ajauPTjKtLITu7PfJti/JicnMSePXv0G4u+QIsSnyuMBu9k+ilaknwMgRg/pPCEEEIUgV54QgghiqAnqcVSMxWnCqKZkiZNDkNgsEoakCIz1/gzMTGBubm5RkCSEFslHZbghzDxOeNNmhwuBTQD7GTKLAcpPCGEEEWwJYXHBMB33XVXo4xKjiHD7GGxN0XSgcc+lZgYPzg90DnnnLPdVRFjQjosgakLqfrqhiwwqE6MBvxd0yBHTy5NZR1SeEIIIYpgSwqPLC0ttfy/e/duAK09Lq6nb+UTJ04AaPr7mKqsXwlExeCZmJjAzp07NeGr6At8ntAf102vXwwv/B1TX+xWUkzqjSKEEKIIeqLwUvsqba6p6gOaUVP00+Vs6VR0fJsrtdj4MDU1hXPPPXe7qyHGnE4GmovRgZbBNJLWK7xuLIFSeEIIIYqgJwpvcXGx8b8fd8eUYlR2VHrpGBr/maYBGj+mp6dx0UUXbXc1hBAjgFfq6Tr/95OMd4IUnhBCiCLoeZQm4VuXCo92Vj8xbPoZld6gojN95KjoLxpnKYToBD/ZQLruP+sGKTwhhBBFoBeeEEKIIuiJSfPAgQON/7/4xS+2lAFN8yHNWmlgCk2Y6Szo/YRDJ3i+QZ1XCCFEPXxP8J3A4Mc0NeVWXCNSeEIIIYqgJ9ImN+ULQ0d9kIoPUAFaB6X3gzSZLP+XshNCiOHBJ/3OBajUJQbvBCk8IYQQRdATiZP646jo/DRBfFP7YQrAYMLV016BUpaJcSMdWrOVHrAQ2wnfC0wllrPG8d2ymQQlUnhCCCGKoCcKj1MBAU315AeP+2ibNOoml26s12iqITHOpO1bU+OIXuMtdVxPrQk+TsM/z3OJPvxx/buAFsP0fbGV94TeAkIIIYqgJwovfePu378fQPONzLe9t7emPQOfYFoI0R2pquN9JKUnegWf8WxbOT+xj6isU3g5Vegj5nkeHjOXinIzSOEJIYQogp4ovIWFhcb/tLkym4mPzvQ9Bf+/EGJrUNn53vhWku6K8YHWt07GIdcl2M/50TZ6jnejzHh87xcEtjZ9nBSeEEKIItALTwghRBH0xKQ5NzfX+P/uu+8G0GrKpJmFKcdo8gSaElVDB4ToHbzndF+JFJoyc0lAPDQpDnruUB94tRUzZoruBCGEEEXQ82EJ55577rrPfIqxHOqJbozvaQnRKQpWETnaDRPwdDKIfDPUqUw/nVyvEv3rDSOEEKIIej4/zjnnnAOg6atbWloC0NoTkJrrDik70Sk+lJvp/hiOvry8vD0V6xH8XlKum4PXje0gVU+56duA1tSQufRh3Qxh8OerK+/1e0JvHSGEEEXQc4XHaBqmGOMbOo3KBNb3ztRTG39WV1cxPz/fsACI/uF76d7/wd76qKYek7Vjc/jE/VR4qYqqU1Q+iQGPsZkB6LnJuHmcTiJH2x1vI6TwhBBCFEHPFR7ZuXPnuiXTj+X8B+qxjT9ra2s4efKkFN4A8ONac+mZRpmcD0/PkI2hKqO1bTPqjNYCLnNWgq2kitxMG+0mUnQ87gAhhBBiA/qm8DzpJLGid4zK+Ly1tTWcOnVq4BkbSiHNROGzUvhrPS7TB6W+SX4XxQO04u85P0k31zfDqCX+l8ITQghRBANTeKK31I2TGVbW1tYaYzLF5vH+OKqcnO+jLnsFfTmjwsTEBGZmZhr+f6q4VMnyu/K7Dfv9MEi8sisZKTwhhBBFoBeeEEKIIpBJs0d4U1O/QqZpyuTM8jnTDc89TIEsIQSsrKwoaGWL1IVt5wbz+rZBc9+oBXaYWaO9A62JhVNo4qX5kykOhwmf6k3m18EhhSeEEKIIpPB6RF2vOsWnemJPm+U+/VoODuT3x0x77ezV+sl3txszw5kzZwAAu3bt2ubajCb+t+R6qoC8wuc6r/2oEULA6upqQxmxfadWAj8UwyvhYVJ6vGe55O8yLPfpOCOFJ4QQogik8AbARiHkXJ+dnW0po53fh5T7Y+V8Oz78fBh8e8eOHQMghddr0pR9oz79Tx3eZ5eu+3Rq/n7gtqnS2y5FxeE5tNaMSyKAUUAKTwghRBFI4Q2Quui4XK/Ub+uVnl/mJnHkkj3HTiIj+6n+zAwnT57s2/HFeGJmmJiYaGnXaXumSmIZfZreupKL9qQPbdDKuF0SZ9EfpPCEEEIUgRTeAGDvs853R1Ibfp2So/KjLyJn92ePkUv2bv2kjbmxW/3CzDA9Pd2o/2YmetwuchGwvKajljx3FGHboTrLWUq8wvNqkL9XqqbqLB+DVnrDNF523Bn+p40QQgjRA6TweoRXcTn/Anty3MaP3Ut7ehuNoatTfEAzYs1nNfFZYNI69jv7Bv0w/D7z8/MAgP379/f1vFvBq2ug6QOS32X7yE1o6+87H8Wca/M+8pnLzSg8f35FXA4nUnhCCCGKQC88IYQQRSCTZo/wZsk01VHOYZ7bJ2duIXUmx9wcZ9w2HaqQHj9ndh2ECSY1aS4uLgIYbpMmr48CU7aXEEIjvRjQHLCd3hNs0/ytfKqxXGox7sNtOTwhlwDe410YTHvGOvJ+HKaUZkIKTwghRCFI4fWYnOLyvc46pZWqLG5LBzoHqdaFMOcCXnxqsVyi6UHBKV74PRYWFgCsT2isGZlFDgY8sT3XDfMBmvdNu23S4wKtFpi6+yQXiObPp6CV4UYKTwghRBFI4fWY3DRBtOP7iSu9nyGn0vwAbe/vyyWE9nXwKcbIIHuhExMTmJmZaSg69tZPnTrV2EYKT+SgdYD3kffXAa1TbXlrCtdzvm6vztLzAvnhKbS81KlO+e6GEyk8IYQQRSCFNwDqpvqh2mmXMslHkvkB6bkB0HUqcDvTeE1MTGB2drbxndkDTpNJ7927t7GtEGRychK7d+9u+H3TcsJ7iGW0FtRFYqb/+zRx3SQV8JYYMdzoySKEEKIIpPAGQNqrBFrt++3s/ZwU1keOsRfqIzGBVoXX6Zi+fkI/DL/PiRMnADQnwwSafhGOsxKCTE5ONtqOH48HtEY8U9F55ZeqQj9m1kdcjutEuiUjhSeEEKIIpPCGnFQBpezatQtAszeaU3pkWBIdT0xMtPS00x43fTRSeE18dK5PDO4jDYHWqOBRJ4SAM2fOtERCpr5e77PjOlVheizCa8exofTl8RqnEcRiPJDCE0IIUQRSeCMKe59UeumYOu/PqPPlDRIzw9TUVEvPO/VfcsqggwcPDr6CQ0AuxynxWUFKigpcXV3FwsIC9uzZA6B1jF1aRusA2xfvj9z4WP5PKwrbJu8tKkplTRkfpPCEEEIUgV54QgghikAmzRHFT1mTrnsTDM1gfnjEIDEzTE9PN+rGZWqao4mKps1zzjlnwLXcXnImZ2+6rAtOGmezWwgBy8vLLYE76bCB3bt3A2g1ZXKZS8HHazY3NwegadpkEAvXx+Xa+qQVdUnm08/4XPHBP6OKFJ4QQogikMIbUXwYdopPKdZuyMIgYQJpoNmLTutPJVpq4t1ckmJPiYOhQwhYWVlpCcLKtWsqErYltrdcAnW2M6oXKj0GrTAAZjstI72E39dbWXIJtdkG+ZzJTVI9ikjhCSGEKAIpvBGDPVbSLtFyLhR7u/HTt6Q+KvbKhUgJIaxrw2zXadv394FPE0alkrY3Kjf6+aj0mMR8cXERQDMhwjDdR5uh7v5KVZtX0bw2o67siBSeEEKIIlCXekTwUZk+tVSOYeyR+ki7tGfufY/0OfiJckVZmBnMrOH3pW8tTUFXdz/4NHVULABaJiOmwmO5j/j00xONGj41W27asHFRcnVI4QkhhCgCKbwRw/fAchF9uTFuw4KfkDP9PvyMyk4KT6RQeXGZtgsfkcy24xNNp34sqj9GvjJKk0rSj88bdYVHeM95q1EJSOEJIYQoAim8ISBnN6dy8+OKfDRabnwMe7nDPD1Mu2mN+Nkw118MjhBCYywe0FRcqVqjKqPfjYqP6o3luSmFfDYW7uOjNLk9MD5j80pDCk8IIUQR6IUnhBCiCGTSHAA0o9BU5+enaxdc4kOJvQmTyzTl1KibAkt0pov2rK2tNdq4N/MDzQAUmjZzabOA9feGnx2d2/pE1JyHj6ZUADh27BiActPgjSpSeEIIIYpACq/HeDWX/u+DU6js2g329Pv6ffwg7VGmbmCsKBumFvNtP71vqMZ4HzABNFUbl+1S8bH9US1yeqrcPcbjnDx5ct351GaHGyk8IYQQRSCF12Nyqs0Pfq3zw+UmQ213XGD0p4vxybCFqIP3Ddt8Lk0YlRaHEnBbP+QAaFV79AnSp8ck0jn8MCGv+MRwIoUnhBCiCKTwekzOh+d7gd7O76M2U3wkp5/IchgTRHdDO/9lO3+LKBev9IBmdOb8/DyApkpjuU81BrRGA1O1+clP6ctLt/f3rG/HUnrDiZ4oQgghikAKr0f43mJOuVCl5Saw7BT2VBUNJkonTe/FyErvy+PYOaYJYzRnykb+ciaRTv3NfnJl74f3ylIMB1J4QgghikAKb4v43iFVW7uE0IS9Qb/M7T8uPjshekV6v1BRccogrlPh0aeW7sMoT+9b96qNvr3UikO/nt/WZ3h58MEHG/vo3t1+pPCEEEIUgV54QgghikAmzS2yFZMm13Pz1/k54WQOEWI96f3C+4NDFbhkEAtNm7n5F+uGCzFIJXcvM0jmwIED6+riXQ/pMY8fP77uMzF4pPCEEEIUgRTeFmHvzw9LSHt2G6k1P1wh/X/Up/oRYhBQuflhAAxeYeBJeu/x3qWS89YZr/zSe9pPLcQ0ZH7bnJqT0ts+pPCEEEIUgRRej/C9tVTx1Sm6nLIjUnZCdI5PzO6TRXOZ+uP8YHHvs+Mx/cSz6T68tzkcgoPUqTjbTczMSWSVRGJwSOEJIYQoAutGSZjZAwDu6F91xBhwSQjhPF+otiM6QG1HbJZs2/F09cITQgghRhWZNIUQQhSBXnhCCCGKQC88IYQQRaAXnhBCiCLQC08IIUQR6IUnhBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUwf8HSZ5JdtCqKCEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYZFlZ5t8vt6rKrKquqq7qtYamuwERGRVkcYNGRehxRARkeUZGegBt1NHRcQaXUWl4wGVcGGREW0HaVhRERURsYKBt21ZcEBAEoWnojaa3qq7KqsysqszKPPPHuW/EyS/OjYzIjIiMiPP+nieeG3HiLidunHvveb/vO9+xEAKEEEKIcWdiuysghBBCDAI98IQQQhSBHnhCCCGKQA88IYQQRaAHnhBCiCLQA08IIUQRdPzAM7PvNLObzewBMztlZnea2Z+Z2ZX9rKDYPszsOjMLZvZFM2tpK2b2qur7YGZTSfkdZnbdJo738GpfVyVl1yTHCGZ2tmp7bzGzizf5u37EzJ67yW1vMrNbOlx3LK8ZM3ua+09OmdmnzexnzWyXW9fM7LvN7ENmdtTMVqr29HYz+6aa/f+/ar//rcf1frird93rph4d79HV/l7Uo/09oboe9rryndVxfqIXx9kKZravquOHzewhMztmZreY2bd3uP0rav6Tv+9F/aY2XgUwsx8G8AYAvwPglwAsArgcwH8E8M0A3teLyoihZAnAhQC+CcCH3HffA+AkgD2u/DkATmziWPcC+DoAn898940AVgFMA3gMgFcD+Boze3wIYa3L4/wIgFsA/Okm6tgRhVwzPwzgnwDMAngmgFcBeARiu4CZTQJ4O2J7+F0AbwTwEIB/B+D5AD5kZvtDCPPcoZkdRjw/qPbzhh7Wl+0r5cMArgNwbVK2mbab447qeJ/r0f6egHiO34z1dTxTHeeuHh1nKzwCwPcCeCviNQoA/xnAe8zs5SGEt3S4n+8A8GDy+WRPahdC2PCFeCLfVfPdRCf76NULwI5BHq/kF+KN4IsAPgjgOvfdNwJYq9YJAKb6VIdrcvsH8PKq/Ms3sc87APz+JutzE4BbOlhvbK8ZAE+rzv3TXflbq/ID1eefrj4/r2Y/zwAw68p+strmvdXysX0+NwHAa7frXHZZ11dU9T28XXXooI67AezMlP8tgFu3+zd2atI8AOC+3Bch6V2b2VWV/HxqZbpZqMwYv54xdbzazD5qZifM7IiZ3WhmX+vWoenkuWb222b2IID7q+8eZWbvqsxFp83sLjN7pzOtHTKz3zSze8zsjJl9xsy+r5MfXG37JjO7u9r2bjP7PTPbkaxzZSXdT5nZfPWbv8zt56ZK0l9pZh+v1v2YmT3ZzKbM7OfM7N5K/l9nZnPJtjTB/ICZ/Wr1W5fM7C/M7OGd/I4ecT2A55nZbFL2PQD+BvHhsQ5zJs2kXXytmb2t+s+/ZGa/ZmY7k/VaTJptYA93Otn+iWb2xxZNZqfM7LPV+d2VrHMHgEsAfHdiLknr+lVVuzqa7OMnM7/x6VX7XTKzfzWz57hVirtmENUeADzCzGYA/BiA94YQ/qTmPHwghLDkil8C4FOIKpyftwUz+3sz+2B1Lv/FzM4AeGn13Y9W3x8zs+Nm9rdm9gy3fYtJ06Ip97aqrf5d1X5uNbOXblCXVwD4jerj3UnbvcAyJk0z+wWL5v9HV79hqbouX1x9/9LquAvV95e445mZ/aCZfbJqKw+Y2bVmdk67eoYQFkIIpzNffQTAplwQOczsMWb252b2YNKW37HRdh2ZNAH8I4CXmNkXALw7hHDrBuv/PoA/AvAmAE8C8LMA5gBclaxzMYDXIyqIOQAvBnCzmX1NCOGTbn9vBHADojTmDfK9AI4B+H4AR6r9fRsqv6RFO/ctAHYhqoTbEc0uv2FmO0IIb6yrvJntB/B3iDet1wL4BIDzADwbwAyAMxb9MO8FcCOAFyL2bF4D4BYz++oQwj3JLh+BaNZ6HYAFAP8bwJ9Xr6nqvHx5tc4DAF7pqvSTAD4O4L9U9fg5AB8ws68IIazU/Y4e8ieI/+V3AviD6iH1fAD/A9E81Sm/B+APATwX0QRzDeJ/+KoOtp00M6Bp0vwpxBvjvybrPAzxPF2HaAL5CsS2dxkA3nSeA+AvAfxLdXygMp2Y2ZMQFdxtAH4UsW0+EsBXurpcjmhq+3nEtvdjAN5pZo8OIdxWrVPUNVNxabU8jmh+24fYxjvCzJ4M4MsA/EQI4XNm9mHEjslPhBBWO91Pj3ks4nX5GkTVTjPbJYhm0DsR7wnPAfA+M/uWEMJfbbDPcxE7kb9S7fP7ALzFzP4thPDhmm3+FPH8vhLrzX1HAUzWbGMA3gngNxHvOT8M4Hoz+woAXw/gfyL+129AvDafmmz7egA/UC0/hHidvw7AY8zsitCFG8HihftUAP/W6TYAPmJmhxA7a+8C8FOhMn1X+7sB8Tq4GvEcHEZ0F7SnQ5n6KMSbfqheRxBvXM9w611Vff+brvx/IfpfHlWz/0nEG/9nAbwhKX9atb93ufUPVuXf0abOPwPgNIBHuvLfrupfa4JDbNyrAB7XZp2PINrmp5KySwGsAPjVpOymquyypOw7qvp/0O3zTwHcnnx+eLXep5GYwQB8Q1X+sn7I/uQ41wH4YvX+egDvq96/ANG3txcZkyOi6rsu0y5e7fb/F0jMHMnvvSop4/79698AXN6m7la1qRcjml7PdfVrMWkCuBnA3XBmNrcO/89HJmXnVe3lp0q4ZpJjPKOqw14A34XYmftYtc4Lq3We2UV7e1P1my+uPl9d7ePKPrbxWpMmgL+v6tPWbI7YYZiq2s87kvJHV/t/UVL29qrs65KyWQDzAH5tg+NkzX2IHZqA2FFg2S9UZS9w7TQgPkTmkvJXVuXnJ213DcAr3XG+ZTP/B+KDtta07dZ9FmJn7z8g+nKvQfR/fxTATLXOYba/bv/vjkyaIfZOHwfgCsSn/McRezTvN7OfzmzyR+7z2xEbxZNYUJmE/srMjgI4i3gTeRRiD8/zLvf5KIAvAPgFM/teM3tkZpsrAfwDgNstmg6nKtPN+xF7WI9p85OfAeCfQggfy31p0ez4eMTGfZblIYTbEW3VV7hNbg0hfCH5/Jlq+X633mcAHK56MCl/HJIeVQjhbxF7N94B35bKTDGVvOp6hjmuB/B0M7sA0Zz57hBCt87997rPn0RUZZ3wtQCeCODJiA/cRUSVez5XMLO9ZvaLZvZ5REf+CmLP1RCVWi0WzbXfAOBtodXM5vlcCKERiBBCeABRmT8sKSvhmnl/VYd5RCXxV4hWgK6x6Cp4EYAbQ9M68g7E/7GtWTPTrju1XHXCZ0MILcrEokviBjN7APGhuALgKcj/F55jIVFyVXv7Ajq/FrrhhuQ4DyAq/FtCCIvJOrwf0VrzTMRr5m3unN6M+H+kSrAtlZn3lwH8VqgxbaeEEN4TQnhNCOGGEMKNIYRrEM3Ij0O87oHoKvgigF82s5eZ2eWd1qfjYQkhhNUQws0hhJ8OITwd0Uz0SQCvqkyAKffXfL4YAMzs8YhmpQUAL0PzZvYvaJpfUu51dQkAvhVRZf08gFvN7Atm9v3Jauch/jEr7vXO6vtz2/zccxFPaB37ERvEvZnv7kM0haYcc5+X25RPodVE4c8ny7q1ib8E689FLhqyjhsRf++PIl4Q13d5bCBG6KWcAbAjt2KGfw4hfCSE8I8hhHcimi8uBfDfk3XeitgL/jXE9vFEAD9YfZdrVyn7Ea+Hdv878b8DiL9l3TEKuGZ+sKrDYwHsDiE8K4RwZ/Xd3dXyEnTGsxD/g3dZDG3fV5W/H8CzzYXiO67I1LlXtFzjZnYZYiDXLKLZ7+sQz8ON2LidAR22nx6wGkLw0Y3LqL8f8fjnVcsvYv05XUa8XtvdOxuY2TcgWq3+EvE8bZY/qY79RACoRMY3I1pQfgnAbRb9oi/baEeb7gmFEL5kZm9GtP8+EtFnQc5H9K+knwGAPbfnIfZQnxsSH1R1EzieO1zm+F8A8D2VGvoqAP8VwJvM7I4Qwg2IPdoHANSN5flsm59H/0Ydx6o6XZD57gLkG/RWOL+m7ONd7uc9qBpNxZlONwwhrJnZ2xDt/g8A+ECXx+4pIYT7zewIKv9a5Vd8NoBrQgiNUHYz+/cd7vIYohmnZ451zxheM7eGED5Ss+5Hqno9C8Bv1ayTQhX369XL8wLEcPwc/4z17bqXtJxHxM7WbkQT3REWmtnuPtVh0Bytlk9DtKR4HsyUraPqoL0X0Sz8wtAbH2zjv6gsLC+2OD74qxGDnN5sZl8IbXyoHSk8M7uw5qtHV0sfjfYC9/lFiDeTf6g+zyKaARo/wMy+GZuQ9CHycTR7+o+tlu+r6ndXpQz8q924jg8AeJKZfVXNMRcRL7Lnp2ZBi5FOX4/o5+kl32XJwO+q53QYcQxRx4QQjrpz4AMdNuJ3EB+ar+1RA940VZs8iObFtwNRGfve/VWZzc8gOusbVGalWxAvol2ZbTZTvxzjes34YywjBmV8u5k9L7eOmX2rmc2a2XmI5tR3I4739K/70MasGUI46evaaT03CaOVG+4MM3ssYqBOP2EHdcvtcwM+gKavMNcO7my3sZk9BlGZfxrAd4YQOu5Y1/B8xMCgf/RfhBDWQggfRQygA5ptOUunCu9fzeyDiNL0dkQn9bchmo/+KITgBzx+m5n9EqoHB2IU3vWJ3+N9iE/k68zsrYh+iJ9BszfbFjP7SsRe8jsQI+omEW9sZxHNCkCMLnohgL8xs9cj9k7nEC/op4QQnt3mEK8H8J8AfNDMXotohjqIqCBeUV34P4PYg/kLM3sTYo/v1Yj+jF/p5Hd0wR4Af2Zm1wI4hGiS+hwSs6KZvQXAS0IIvfRfrKPyS23KR9MDnmxmq4idtEsQleYqYgQaQgjzFrMx/JiZ3Yuo0l+KvGL7NICnWMz+cB+AIyGEOxAvmr8G8GEz+xVEk85lAL46hPBDXda3tGsmx88jKsl3WBz68R5E68dhRMX6XEQz5ncj3oteH0L460zdfxfAK83sMucL3y4+gBgp/ftm9gbE3/Nq9H/g96er5Q+Z2R8g/nfdWnk2JITwaTP7PwB+q3qQ/w3iw/ZhiPENbwwh/F1uWzO7CE3rz2sAPNaFJPwzLRRm9joAP44YpMShMzchtvVPVcd8CmIU9D+hMq1bjKb+OUS/9+cRI7dfjmj2vGmjH9dJlM0rEMOL70SM4loE8DHE6J6ZZL2rEHsGT0XsrS0gNvBfB7DL7fOHEG8Ep6of8/Sqsjcl6zwN+QGu5yFmbrgVMVrwIcQb1TPdevsRL+Lbq5PxAOKf9yMd/ObzEE0x91bb3l0dc0eyzpWIKusU4oPu3QC+zO3nJriBymhGI77clV+DJOIxWe8HAPwqoppZQnzQXuq2vQ6Vq6ZXLyRRmm3WWVfnquwO5KM0H5HbNnNersrsn681AF9CvHk+KXNeb0AckvAAgP+LaH4KAJ6WrPfoqh0sVd+ldX1cte/j1f/6GQA/3u7/rPnNY3vN1B2jpn0YYqTsjYhm4xXEjsQfIj5EgXjTvg2A1ezjUdXxrull+672vVGU5gdrvntxdS5PI3aIn4cYaPQZ185yUZq31RzrfR3U93WI7Z9q/wLUR2mezWx/H4A3u7Irq+2/0ZW/tGpnS4jX1KcQ/eMXtqkf91X3usDV0Ze9CbGjtVC1v89V6+1O1rkYMRjtc1XdjiIGTH3LRufPqh30BIsDht+KGNZ82wariw2wOLj8dgDfG0Ko81+IEUbXjBCDQ7MlCCGEKAI98IQQQhRBT02aQgghxLAihSeEEKII9MATQghRBHrgCSGEKIKuBinPzs6Gffv2bbxiGzgIMR2M6MvcQEVsxs/IbbivTvbRbh3/nXyf+XMwPz+PpaUln/y6J21HjDfHjx9X2xGboq7teLp64O3btw9XX3315muVMDnZzI88NRWrMTMzAwCYmJhYt87qasxitba28RRMdQ+iXDnLuOT+/TK3TqmcOdPMEnT69Pp5HqempnD99fmc0r1sO2I8ufbaa7PlajtiI+rajkcmTSGEEEXQt7yLG0HVBjQV3cpKzPvrlR2huvImz/Q70okp06u2OqW30X5KIv1PdJ6EEKOEFJ4QQogi2DaFl+KVnA84ySm6jWinNLyiq1N2UiutpGqO78+ePdtY6pwNFlpDaCVJ3/vrRpYMUTpSeEIIIYpADzwhhBBFMBQmTR+MwqUvzw0NoEnHm2J8EEs6DKIuWMV/L5rkzhWDjPjdysrK0A/bSE1/GzFMv4X1np6eBtAcwrNz504AwI4dOxrrcpgPt+Fnwv+QroTcf0oz9fLyMoDmcJTFxcWe/B4htgMpPCGEEEUwFAqPsMfpg1g62aZX64k8ucH/fM/e/3YGrXilQ1VDReRVD7BxRp/cb2YZlRAVEJdURls5D6laY/1ZxuWuXbsAALt37wYAzM7ONrah+vNLUvc7gebvYlIBv6TCO378eGOb+fn5bn5ez0iPe84552xLHcRoIYUnhBCiCIZK4YnhJefDYxnVTQhhIAovVTNzc3MAmoqHSyohKj8qJS6B9X7dHFRrVD1AU+mcOnVq3XJpaWnd9zwnfnug1drAevg6p7+Vv5PLvXv3rltS6QHNc0Blx/1S3fL46XASQrXufx+VHb/ncQHgS1/6EgDg6NGjGCRHjhxpvJfCE50ghSeEEKIIpPBER/jIvvT9oAbqU8WkvXmWURVx6X1cOfVEBeSjGL1yTRNmU8mdOHFi3ZIqjX7BnK/QKzsfeck6p3Vk/amo+Ns5ewDLqfzS/dX58KjoqEZz0ah1EdJkz549jfeHDh0C0Dw3VIX9wvuOhegUKTwhhBBFIIUnOoIqKPX35FRfP6Di8WourVddnagCqMD8lEbpNn78J39rGs3J/VBF8bOPAs3N9+hT2RFu45fp/n0KMa8aU5+hL+PvYTnPAc9Nui3LqNZYV/ohfXRqWheqz34rPEaIpnUQohOk8IQQQhSBFJ7oCD+uDWiqAKqP5eXlvvjxuM+TJ0+uWwJNdcH6eQXmJxdO/Vne78dtvCJL1RrLqITqojZTJcl167IBcf+sW6qi/Tg/r1BzmU+8KvPb8n/jtqki89lX6nx47SZH7mRqrq1AlXvhhRf2Zf9ifJHCE0IIUQR64AkhhCgCmTRFV6QmTb6nCW5tbW1TcxduBE2C/Q5Dp2nTJ13ODVbnOjQXLiwsrPvcDdzmoYceWncMoHVAO4dB8Ph+oHi6Lrf1A99HHQ7JEKJbpPCEEEIUgRSe6AifNBloBidQkaytrY301Eq5IQvbQTrMgwmSed4Z2MJ10gAeIUR7pPCEEEIUgRSe6Aj6iNJw9LqBzcOEH+zdzQSwwwT9cVxuBf5fo3ouPvrRjwIAHv/4x29zTUS/6NfQltFs8UIIIUSXSOGJjsipN590eGZmpi9RmiQ3ENzDevokzv2s16gxqsqOfOITnwAghSe6Z7RbvhBCCNEhUniiI6gKUpu6V1G7du3qqXrg+D76CnNT73CMHKMYuQ2jGUddzYgmnGj23HPPBbDe6rDRZL5itOhbWrq+7FUIIYQYMqTwREdQXeV8Yf2K+uO4OPbkc714ZhpJEy4D67OjiPGAEapsD8xuA6yfFFiIOqTwhBBCFIEUnugIKqY0nyUVF/1nq6urPbG9UzHSd8f9sw7pMfjeTxIrxoe1tTWcPHmykUeU0wKlYxKl8EQnSOEJIYQoAj3whBBCFIFMmqIjOFUOl0Az9J+mx6mpqZ4M8OY+aMKkiZOmzbm5uca6XGfHjh1bPq4YTlZXVzE/P9+YPolm62FJ9i22l5mZmY4D5qTwhBBCFIEUHprBF8OY/HhY4DlKw/2p9jgkYGJioidBK1R4XlXmJmQV48/a2hoWFxdx5MgRAMCxY8cAAIcPH97OaokhoRurkhSeEEKIIpDCg5TdZqGySxVeL9m1a1dP9ydGk7Nnz+LYsWMNZbd//34ATd+xKBPeb6anpztWeVJ4QgghikAKT3RFmt7LT72jBL6iHywvL+OOO+7A4uIigKYP9957722sc+mllwLQNFAlIoUnhBBCOKTwRFekfjpGTXIM3OTkpHrYouecOXMGt99+e6O90eeeppGjP0/jMcshjdqWwhNCCCESpPDElmFPq1+TNgqxtrbW4iPes2fPNtVGDAObiQqXwhNCCFEEeuAJIYQoApk0xaahCZPLlZUVmTVFX5iYmGgJTDh69Gjj/WWXXTboKolthveabubhlMITQghRBMUovNThzelmpEa6h+cOaD1/p06dWve9EL1gYmICO3fubFzDVHqpwhPlsrS01PF9RwpPCCFEEYy9wmNvMA1hVbLozcNE0SnsXUnhiX4xNTXVovDStshrWuntyuHMmTON91J4QgghREIxCm9lZWWbazIepL1q9qpY1k2KHyE6xczWtStaa06dOtUoY29/dnZ2sJUTI4UUnhBCiCIYe4Unn1JvoIpLIzOpmlkmhSf6QQgBa2trLW0rbYvHjx8HIIUn2iOFJ4QQogj0wBNdEUJovM6ePYuzZ89iYmICExMTUniiL6ytrWFpaanxeXV1Faurq5iZmWm8jh8/3lB5QtShB54QQogi0ANPCCFEEYx90IroDRzYmwYB0XyZDvaVSbN7pqenATTPrRIjrCeEgNOnT2NmZgZAc/7FEydONNbhOdQA9P7A8zmMaRn9sJV2SOEJIYQoAik80RHs0aUKjz3t5eXlbanTqMLeMkPovRpJB/cvLCwMrmJDiplhenoap0+fBgDs3LkTwHolfN999wEA9u3bBwA4dOjQgGs53gyz1aGbmc+l8IQQQhSBFJ7oiJzC82Vnz54dKtv+sED/EhUxfVE7duxYV55LikwWFxcBDJfvZFBQ4fG8MOFB2rO///77AQAHDx4EAOzZswdAUw0KAUjhCSGEKAQpPNERnSg8TQ/UhKoOaCo5KjieN36mwqNiSbdlGZdpZGIpTE1N4eDBgw0VxzaW+o7p6+Q6VHgXXXQRgO78PGK0WF1d7djyoVYghBCiCKTwRFu83yTtSTFyiz3t5eXlIn1MOVKl631OPiqzXVJkqj2qRH4uabqr6elpHD58GEeOHAHQPD+pr5PTA1Hp3XXXXQCa5/zAgQMA5NMrHSk8IYQQRSCFJ9rCXnQuCwjfc3n69Gn58Cpy54lQZfDccnwZz13uHPr/oSRmZmZw4YUX4lOf+hSAfKSq9ydzeezYMQDN/2Bubq6xDd9TPYvxRwpPCCFEEUjhiSzp2Dqg6adL1YpXHfLhdQYVHX13VBj0y6X+Oa+iS2R6ehoXXXRRY/wi/XVp5KXP9cjzxfZY8vkTTaTwhBBCFIEeeEIIIYpAJk2RhWYjb1LLBWPQ3KnUYt1x6tSpdUuRZ3JyEgcOHMDevXsBAPPz8wDWD+egSdMP+fDTWqXtc9BtldeUgmS2Dyk8IYQQRSCFJ9bBXm+q2oB8yDzXKWkQtNg+mBg6F0DFgBav9BjY4tO6pWX9JK0jlTzrxpRyYnBI4QkhhCgCdTHEOnzv2Q9PyA1LIErQK/rJ4cOHAQAPPfQQgPVtkYP5vaLzybcHoepSUusHj81hKbt37x5oXYQUnhBCiEKQwhPr8NFs7EV3ovBKTHslBsehQ4cANNVc2hbr/GF+CqY0ipN+v37gB74DTZUp3932IYUnhBCiCNTVEACavgaqNj8Fi1d66ToaeycGwb59+wAAu3btAtD0hbWDVgev9NKyfsDjpn5tTkortg8pPCGEEEUghScAtI6784oul9jYfycfnugnzFBy/vnnAwDuueeexnc+OXRu3N0g4US9YriQwhNCCFEEeuAJIYQoApk0BYCmedKbNGmupMmTCXDT99xGA8/FIODwhPvvv7/lO98GvWlz0APPxXChO5QQQogikMIrmNwQgzpFx8/pVDZ+CMPU1JR60KLvUOGlqbk4ZRDxyi43TECUh/59IYQQRSCFVzBUbUCzB0yFR2VHRcfP7Qb7KmWSGARMLXbgwIFGGdtpnYVh3C0Pud+nhBCtSOEJIYQoAnXJC8RP/ZOWcUklt7S0tG6ZqkJPP5PxCuHhhLBAc8ogWiioeDgAnNaHcVU9Od8kr2UmzK77POpMTEx0rOCl8IQQQhSBFF6B0B+XpgmjoqMvhIqOnxcXFwGsV4U+lVg3PS0htgpTjAHAAw88AKAZrUkVw/bIz+n0QONETq3R18lz4K04Xv2mpNHYw8709LQUnhBCCJEihVcg9MOlEZd1io7r5KIzqfDkuxPbzXnnnQeg2W6pWvyypKTOtODwt/Ozn9w5tfQwQffc3Ny6bbnNiRMn+l3trpHCE0IIIRxSeAXh1drCwkLjO75nD5mKj+VUhWlPyk+q2U1PS4heQn/evffeC6A5SSytD2yXJWVa8T67TqDVhlmU6PPkeeMktidPnuxZPTeL/287oZx/XwghRNHogSeEEKIIZNIsCJonOSyBZsv0PU0Vfl2aOlLzAU0KNGnu2LFDJk2xrTzsYQ8D0GzHmzF7lQwDWLzpl+exXeKJQcMAm8nJSQWtCCGEEClSeAXAQBQu2ftNFR6/o7LjOn5weTpIld9J4YlhYd++fQCaSoSDr5XYvDvqglfSCaCHhW4CkaTwhBBCFIG6PWMMe2NUaxxU7ocgpGUcssAeMm36HLCbpmbiYNSSQr3FcMO2SGXH9qrkCFsjtQYNC+mA+U6TgutOJYQQogik8MYY9sqo9Hx0Zjp41A9Kp8LzUZqpL4Tv+d24TDciRh8OPGcbHdek0f1mmK/p9N4khSeEEEIkSOGNIV7ZefXG79OE0F7JMTqLS0ZfpnZz9qLJ6dOnW6I6hdgOOEZLjC9UdcvLyx3fd6TwhBBCFIEU3piQ9nA2UnhUaTmFR98dlR17Ufyc4sc2LS8vd2xLF0KIQSOFJ4QQogj0wBNCCFEEMmmOCekQA5ol/ZJmT5o005BjmjdZxiAVmii5bWqy9CbN1dVVmTSFEEOLFJ4QQogikMIbcXJT/bCMSo4BJ/ycGyjOMm7rZzrW4HIhxKgjhSeEEKIIpPBGFCouJoBOp+3wacG8Ly8HfW/eh0dy0/5QMcpvJ4QYBaTwhBBCFIEU3oji04SlKb+9/NrkAAAUnUlEQVT84HGfdqeuHGj67Hx0JqcHSiMzvW/QzKT2hBBDixSeEEKIIpDCGzF8VGbOL0dV5hVcu88b+eyo/NLJXunvYx38uDwhhBgmpPCEEEIUgbrkIwLVGNWUj6ZsNz1GJ3417idVcEDrBJrpvnxiaWVaEUIMM1J4QgghikAPPCGEEEUgk+aIwGEIfkiBN0GmZVzSHOnNlizPfUfTZCcD0GXGFEL0k/RetZX0hlJ4QgghikAKb8jxiaBz0/R4vKLjZwagUMWlaq1ufyznMh3gvmPHjnX7UdCKEKIfpKrOT13WDVJ4QgghikAKb0ipG2aQ89nVlfspfnx6sHSguD8et/WD2OlDzDE5OZn18QkhRK+QwhNCCCE2wLp5SprZgwDu7F91xBhwSQjhkC9U2xEdoLYjNku27Xi6euAJIYQQo4pMmkIIIYpADzwhhBBFoAeeEEKIItADTwghRBF0NQ5vdnY27Nu3r6Wc2UAAYH5+ft13PsuH/5yW+RyQGtM1ehw/fhxLS0stf9zk5GSYnp5uZEzgktlaAGDv3r1cdxBVFUNGXdupu++I9viARJ81Kbde3Tob7bsbcvd1n8u322dAXdvxdPXA27dvH66++uqW8ltuuaXx/uabbwYAzMzMAAD2798PADjvvPMa+0iXQPNGx+WuXbsAADt37uymemIIuPbaa7PlU1NTuPjii3H06FEAzWTYT3jCExrrXHHFFQCaA+RFWdS1nbr7jugOJo1gekDOrZkmk/DJ6dkx5QPOJ6JIE1b45BX+s3+YAc3OLa/5ubk5AM2OMJ8FG1HXdjwyaQohhCiCnqQWO3HiROM9ew1UeH4qGp/YOFcmU+b4EULA8vJySxJs9ugAKTsh+gndSFRtOddBnbnTqzWv/NJ1NjKLtktan9tvL5HCE0IIUQQ9UXhLS0stZX4C0Tqll37n1xXjQwgBKysrLT4C+WmFGCy899ZN8gy03oPrFFc6bY/3+9UdN923r4NPDN1uouvNoCeLEEKIItADTwghRBFsyaRJ6ZqbI82bMNuNw/PhqjJpjh80aXrHtv5rIQZLbj5MD+/p/h7P65djrxmElq7j1+U63CZ1Z9XVoV/3Bd1thBBCFMGWFB6HIOTgE9oru1zQindmasqi8SOEgLNnzzZ6jByCsHv37u2slhAig1eBaUYkANizZw+A9dY9Krm6wet8XqSZubiNv+f3y9onhSeEEKIItqTw+PRNQ8sZVsqeAXvy7XKk5dLUiPFjdXW1pScnhSfE6JL64Nr5BFPSYWzHjh0D0Ooz7NezQApPCCFEEfRk4HlqZ2VKMW8DZjkVXy61WC6CU4wXbCtsBxp4LkRZzM7OtpRR6fXbyieFJ4QQogi2JKWo2rgEmtE87Ln7dXJRmuzt+0ggMV6YWUO903enue+EKBev9hYXFwH0bwIBKTwhhBBFsCWFx4g7TuYJNMdncNoXfmaPnhO/crJXoPNJ/sRoY2aNnhtVfZqpQQgxfjDy0k8NBrSOwfZTGPUaKTwhhBBFoAeeEEKIItiSSfPBBx8EAJw8ebJRRlMmTZZcstzPhC7KwMwwOTnZMFmwXShQSYjxxs91l3Nj0Mzph7W1m7NvM+ipI4QQogi2pPAWFhYArHcwMkiFSw5P8KnFUsdlmkw0tw6XPl2ZGB3MDDMzM43/8ODBgwDyg1CFEOMD7+e05uSsOn66oVwKyp7Upad7E0IIIYaULSk8P8g8fc+evJ8I1k8gCDTttNyGwxS4jaYLGn3MDDt27Gj8/5dffvk210gIMSx49afk0UIIIcQW2JLC8346oNXPRhssB6fTRpsbWMinO7/zacj6lW5G9B9GaVKtHz58eJtrJIQYVvoVxS+FJ4QQogi2pPA4ZXsaaUdlx/EUVGV8YvuJ/oCmKvTRmvTlUUEqOnN0YeLoCy64AICSRoutk1p85OcXnSCFJ4QQogi2pPCowNJE0FRwfuwF8RGZQFO5sdfPBNPKwjE+MEqT4++E2CpSdaJbpPCEEEIUwZYU3l133QVg/fQ+9OtRtXHpx1WkkZ3cnvk2xfgxOTmJPXv26D8WfYEWJd5XGA3eyfRTtCT5GAIxfkjhCSGEKAI98IQQQhRBT1KLpWYqThVEMyVNmhyGwGCVNCBFZq7xZ2JiAnNzc42AJCG2SjoswQ9h4n3GmzQ5XApoBtjJlFkOUnhCCCGKYEsKjwmA77777kYZlRxDhtnDYm+KpAOPfSoxMX5weqBzzjlnu6sixoR0WAJTF1L11Q1ZYFCdGA34v6ZBjp5cmso6pPCEEEIUwZYUHllaWmp5v3v3bgCtPS5+Tp/KJ06cAND09zFVWb8SiIrBMzExgZ07d2rCV9EXeD+hP66bXr8YXvg/pr7YraSY1BNFCCFEEfRE4aX2VdpcU9UHNKOm6KfL2dKp6Pg0V2qx8WFqagrnnnvudldDjDmdDDQXowMtg2kkrVd43VgCpfCEEEIUQU8U3uLiYuO9H3fHlGJUdlR66Rga/52mARo/pqenceGFF253NYQQI4BX6ulnvveTjHeCFJ4QQogi6HmUJuFTlwqPdlY/MWz6HZXeoKIzfeSo6C8aZymE6AQ/2UD62X/XDVJ4QgghikAPPCGEEEXQE5PmgQMHGu8///nPt5QBTfMhzVppYApNmOks6P2EQyd4vEEdVwghRD18TvCZwODHNDXlVlwjUnhCCCGKoCfSJjflC0NHfZCKD1ABWgel94M0mSzfS9kJIcTw4JN+5wJU6hKDd4IUnhBCiCLoicRJ/XFUdH6aID6p/TAFYDDh6mmvQCnLxLiRDq3ZSg9YiO2EzwWmEstZ4/hs2UyCEik8IYQQRdAThcepgICmevKDx320TRp1k0s31ms01ZAYZ9L2ralxRK/xljp+Tq0JPk7D389ziT78fv2zgBbD9HmxleeEngJCCCGKoCcKL33i7t+/H0Dzicynvbe3pj0Dn2BaCNEdqarjdSSlJ3oF7/FsWzk/sY+orFN4OVXoI+Z5HO4zl4pyM0jhCSGEKIKeKLyFhYXGe9pcmc3ER2f6noJ/L4TYGlR2vje+laS7Ynyg9a2Tcch1CfZzfrSN7uPdKDPu3/sFga1NHyeFJ4QQogj0wBNCCFEEPTFpzs3NNd7fc889AFpNmTSzMOUYTZ5AU6Jq6IAQvYPXnK4rkUJTZi4JiIcmxUHPHeoDr7ZixkzRlSCEEKIIej4s4dxzz133nU8xlkM90Y3xPS0hOkXBKiJHu2ECnk4GkW+GOpXpp5PrVaJ/PWGEEEIUQc/nxznnnHMANH11S0tLAFp7AlJz3SFlJzrFh3Iz3R/D0ZeXl7enYj2Cv0vKdXPwvLEdpOopN30b0JoaMpc+rJshDP54deW9fk7oqSOEEKIIeq7wGE3DFGN8QqdRmcD63pl6auPP6uoq5ufnGxYA0T98L937P9hbH9XUY7J2bA6fuJ8KL1VRdYrKJzHgPjYzAD03GTf300nkaLv9bYQUnhBCiCLoucIjO3fuXLdk+rGc/0A9tvFnbW0NJ0+elMIbAH5cay490yiT8+HpHrIxVGW0tm1GndFawGXOSrCVVJGbaaPdRIqOxxUghBBCbEDfFJ4nnSRW9I5RGZ+3traGU6dODTxjQymkmSh8Vgp/rsdl+qDUN8nfoniAVvw15yfp5ufNMGqJ/6XwhBBCFMHAFJ7oLXXjZIaVtbW1xphMsXm8P44qJ+f7qMteQV/OqDAxMYGZmZmG/58qLlWy/K38bcN+PQwSr+xKRgpPCCFEEeiBJ4QQoghk0uwR3tTUr5BpmjI5s3zOdMNjD1MgSwgBKysrClrZInVh27nBvL5t0Nw3aoEdZtZo70BrYuEUmnhp/mSKw2HCp3qT+XVwSOEJIYQoAim8HlHXq07xqZ7Y02a5T7+WgwP5/T7TXjt7tX7y3e3GzHDmzBkAwK5du7a5NqOJ/y/5OVVAXuHzM8/9qBFCwOrqakMZsX2nVgI/FMMr4WFSerxmueT/MizX6TgjhSeEEKIIpPAGwEYh5Pw8OzvbUkY7vw8p9/vK+XZ8+Pkw+PaOHTsGQAqv16Qp+0Z9+p86vM8u/ezTqfnrgeumSm+7FBWH59BaMy6JAEYBKTwhhBBFIIU3QOqi43K9Ur+uV3p+mZvEkUv2HDuJjOyn+jMznDx5sm/7F+OJmWFiYqKlXaftmSqJZfRpeutKLtqTPrRBK+N2SZxFf5DCE0IIUQRSeAOAvc863x1Jbfh1So7Kj76InN2fPUYu2bv1kzbmxm71CzPD9PR0o/6bmehxu8hFwPKcjlry3FGEbYfqLGcp8QrPq0H+X6maqrN8DFrpDdN42XFn+O82QgghRA+QwusRXsXl/AvsyXEdP3Yv7eltNIauTvEBzYg1n9XEZ4FJ69jv7Bv0w/D3zM/PAwD279/f1+NuBa+ugaYPSH6X7SM3oa2/7nwUc67N+8hnLjej8PzxFXE5nEjhCSGEKAI98IQQQhSBTJo9wpsl01RHOYd5bpucuYXUmRxzc5xx3XSoQrr/nNl1ECaY1KS5uLgIYLhNmjw/CkzZXkIIjfRiQHPAdnpNsE3zv/KpxnKpxbgN1+XwhFwCeI93YTDtGevI63GYUpoJKTwhhBCFIIXXY3KKy/c665RWqrK4Lh3oHKRaF8KcC3jxqcVyiaYHBad44e9YWFgAsD6hsWZkFjkY8MT2XDfMB2heN+3WSfcLtFpg6q6TXCCaP56CVoYbKTwhhBBFIIXXY3LTBNGO7yeu9H6GnErzA7S9vy+XENrXwacYI4PshU5MTGBmZqah6NhbP3XqVGMdKTyRg9YBXkfeXwe0TrXlrSn8nPN1e3WWHhfID0+h5aVOdcp3N5xI4QkhhCgCKbwBUDfVD9VOu5RJPpLMD0jPDYCuU4HbmcZrYmICs7Ozjd/MHnCaTHrv3r2NdYUgk5OT2L17d8Pvm5YTXkMso7WgLhIzfe/TxHWTVMBbYsRwozuLEEKIIpDCGwBprxJote+3s/dzUlgfOcZeqI/EBFoVXqdj+voJ/TD8PSdOnADQnAwTaPpFOM5KCDI5OdloO348HtAa8UxF55Vfqgr9mFkfcTmuE+mWjBSeEEKIIpDCG3JSBZSya9cuAM3eaE7pkWFJdDwxMdHS00573PTRSOE18dG5PjG4jzQEWqOCR50QAs6cOdMSCZn6er3Pjp+pCtN9EZ47jg2lL4/nOI0gFuOBFJ4QQogikMIbUdj7pNJLx9R5f0adL2+QmBmmpqZaet6p/5JTBh08eHDwFRwCcjlOic8KUlJU4OrqKhYWFrBnzx4ArWPs0jJaB9i+eH3kxsfyPa0obJu8tqgolTVlfJDCE0IIUQR64AkhhCgCmTRHFD9lTfrZm2BoBvPDIwaJmWF6erpRNy5T0xxNVDRtnnPOOQOu5faSMzl702VdcNI4m91CCFheXm4J3EmHDezevRtAqymTy1wKPp6zubk5AE3TJoNY+Hlczq1PWlGXZD79jvcVH/wzqkjhCSGEKAIpvBHFh2Gn+JRi7YYsDBImkAaavei0/lSipSbezSUp9pQ4GDqEgJWVlZYgrFy7piJhW2J7yyVQZzujeqHSY9AKA2C20zLSS/h7vZUll1CbbZD3mdwk1aOIFJ4QQogikMIbMdhjJe0SLedCsbcbP31L6qNir1yIlBDCujbMdp22fX8d+DRhVCppe6Nyo5+PSo9JzBcXFwE0EyIM03W0Gequr1S1eRXNczPqyo5I4QkhhCgCdalHBB+V6VNL5RjGHqmPtEt75t73SJ+DnyhXlIWZwcwafl/61tIUdHXXg09TR8UCoGUyYio8lvuITz890ajhU7Plpg0bFyVXhxSeEEKIIpDCGzF8DywX0Zcb4zYs+Ak509/D76jspPBECpUXl2m78BHJbDs+0XTqx6L6Y+QrozSpJP34vFFXeITXnLcalYAUnhBCiCKQwhsCcnZzKjc/rshHo+XGx7CXO8zTw7Sb1ojfDXP9xeAIITTG4gFNxZWqNaoy+t2o+KjeWJ6bUshnY+E2PkqT6wPjMzavNKTwhBBCFIEeeEIIIYpAJs0BQDMKTXV+frp2wSU+lNibMLlMU06NuimwRGe6aM/a2lqjjXszP9AMQKFpM5c2C1h/bfjZ0bmuT0TNefhoSgWAY8eOASg3Dd6oIoUnhBCiCKTweoxXc+l7H5xCZddusKff1m/jB2mPMnUDY0XZMLWYb/vpdUM1xuuACaCp2rhsl4qP7Y9qkdNT5a4x7ufkyZPrjqc2O9xI4QkhhCgCKbwek1NtfvBrnR8uNxlqu/0Coz9djE+GLUQdvG7Y5nNpwqi0OJSA6/ohB0Cr2qNPkD49JpHO4YcJecUnhhMpPCGEEEUghddjcj483wv0dn4ftZniIzn9RJbDmCC6G9r5L9v5W0S5eKUHNKMz5+fnATRVGst9qjGgNRqYqs1PfkpfXrq+v2Z9O5bSG050RxFCCFEEUng9wvcWc8qFKi03gWWnsKeqaDBROml6L0ZWel8ex84xTRijOVM28pcziXTqb/aTK3s/vFeWYjiQwhNCCFEEUnhbxPcOqdraJYQm7A36ZW77cfHZCdEr0uuFiopTBvEzFR59auk2jPL0vnWv2ujbS6049Ov5dX2Gl4ceeqixja7d7UcKTwghRBHogSeEEKIIZNLcIlsxafJzbv46PyeczCFCrCe9Xnh9cKgClwxioWkzN/9i3XAhBqnkrmUGyRw4cGBdXbzrId3n8ePH130nBo8UnhBCiCKQwtsi7P35YQlpz24jteaHK6TvR32qHyEGAZWbHwbA4BUGnqTXHq9dKjlvnfHKL72m/dRCTEPm182pOSm97UMKTwghRBFI4fUI31tLFV+dosspOyJlJ0Tn+MTsPlk0l6k/zg8W9z477tNPPJtuw2ubwyE4SJ2Ks93EzJxEVkkkBocUnhBCiCKwbpSEmT0I4M7+VUeMAZeEEA75QrUd0QFqO2KzZNuOp6sHnhBCCDGqyKQphBCiCPTAE0IIUQR64AkhhCgCPfCEEEIUgR54QgghikAPPCGEEEWgB54QQogi0ANPCCFEEeiBJ4QQogj+P/FzTTodPPgcAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -730,7 +990,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu4XfdZ3/n9naO7LEu2sGTZju3cCiFMMsyQDpShXB6gIQMtdFrKcKshGa5tmU4Z2qZAQwgUaMOthcAQhgy39Al3CgyEQsOlaQqdMCRckhDbUmRJtmVZsmVdLOmcNX+s/d3rPZ/1/tbZW3Fiu+f3fR49R3vvtX7rd1trvZfv+76l6zo1NDQ0NDT8146Vp7sDDQ0NDQ0NHw60F15DQ0NDw5ZAe+E1NDQ0NGwJtBdeQ0NDQ8OWQHvhNTQ0NDRsCbQXXkNDQ0PDlsAz+oVXSrmnlNLN/v2l5PdPDr9/evj+TaWUo9d5zaOllDeFz58SruF/D5ZSfq2U8pev8xqfW0r536/z3NfM+rBtk+PuRp+fnPX7t0op/1spZV9yzoaxL9ife0opX175viul3L1Me89EzPbTA093P5ZBWP97nu6+ZJjNKe+r7N+nPEXX+7ellPc8FW3N2vv6UspfT77/jlLK5afqOk8lwpy/ccHjH6ysycs/1H39UGHyofkMwnlJXyLpm/D93539xof3t0r6vuu81udJejz5/h9I+kNJRdIdkv6xpH9fSnlp13X3L3mNz5X06ZK++zr7uAz+haRfVr/WhyT9VUmvlfR1pZS/1nXd+8KxtbFP4Z5Z2/8Xvv9VSZ8g6dR19Lnhg8cp9fN/79PdkQq+VdIPhc+vkvRKSf+jpLXw/Z89Rdf7Rkl7n6K2JOnrJf2K+nsr4gck/fxTeJ2nBKWUT5P0NyVdWPLUX1b/DIn486ekU08Dni0vvJ+X9MWllG/uZpHypZTdkv6WpJ9T/9Cdo+u6677Ju677o8pPf9513Tv8oZTyR5L+QtLLJb3heq/3YcB9sd+Sfr6U8gOS3i7pZ0op/63ndGLsS6PrutOSTj9V7T2VKKWsSipd1117uvuyKEop2yVd6xbMFNF13ZOS3rHpgU8TZvfo/D4NWsN/XmRdSik7Z2Nc9HrvX76Xy6PruuOSjn84rrUoSik71QsX/1y9oL4MTuP58azGM9qkGfATku5SL/0Zn6e+/z/Hg2nSDOadryylvLaUcqqUcq6U8u9KKXfg3EXNetaEtodzbyml/HAp5X2llIullOOllJ8updwe+6ZeM709mAiOoo0fnJ375OzvT8w2bcRzSym/Wkp5opRyrJTyzaWUhdaz67q/kPQ6SS+R9GlTYy+lPHd2/Qdn/bmvlPJ9s9/eJumTJX1iGMvbZr+NTJqllO2llNfNrnNl9vd1s4e5j1lmrb6glPLbpZTTs3n4o1LK3+V4Z+19Wynln5RS7pd0RdLLZn34uuT418zW76ZF5jOc9xWllD8upVwupTxSSvnRUsrNOObvlVL+Uynl0dm43lFK+Z9wjOfga0op31VKOSnpSUkHwrx+fCnlp0opj5dSTpZSvr+Usitp457w3ZtKKQ+UUj62lPJ7szH+RSnlq5KxfPpsPi+XUt5fSnkV76sPF0opL5+N5XNmfTgj6djst4+azcPRUsqlUsq9pZR/XUq5EW1sMGnOzutKKV9WSvkXs/19tpTyi6WUI5v050FJhyW9Muz7H5r9tsGkWUrZNfv9m2b773gp5UIp5ZdKKTeXUo6UUn5+to7HSin/MLneC2b9f2S2Hv8v98wm+GeSLkn6/iXOWRilN+++Zzb/j5ZS/qCU8tkfimt9sHi2aHjHJP2uerPm782++1JJvyDpiSXa+afqNZsvV2/ee72kn5T0KQucu1J6v5lNmt8u6aKkfxeOuVnS5dl1Tku6TdI/kvQfSykf1XXdZfWmnFskvUySfQBPStLsAfv2WTuvk/SuWT//hqQdPm6GX5D0Y5K+R9LnSPoW9ZLljy0yEZJ+TdL3SvpESb+VHVBKea6kP5iN85vVa7R3SvrM2SFfo37+ViV95ey7KZPo/y3p89XP3e9L+ivqb8bnSfpCHLvIWj1P0s9K+g5J6+rNtW8spezuuu6HtBH3SLpPvSnqwuz/vyjpKxTM36XX/l4p6S1d152dGMsGlFK+Q/1af7+k/0PS7erX8GNKKX+l6zqb6e6W9EZJR9Xff58j6VdKKZ/Vdd2vo9l/pt6M/hXq5zj6hn5C0pvVm6k+QdJrJJ1VL8VP4UZJP61+7V8r6cskvaGU8t6u6/7DbCwfrd4k/QeSvkD93vsmSfvVz/PThR9Sf7/9L5L8cr9d/Vq+RdI5SS9QP2//jRa7r/+5pN9Rvz9ul/SvJL1J0l+bOOcVkn5T/R62ue+hTa7zKkl/pP4+uUP9ffsmSbeqt2D9oPp74LtLKX/cdd1vS1Ip5XmS/rP6e/sfSDoj6Ysl/XIp5RVd1/3G1EVLKS+S9A2SPq3rurVSyibdHOFvlVK+SP1z752Svq3rul8N7b9S/f38Gkn/SdIeSS9V/wx75qHrumfsP/WbsFO/ib9c/Q29S9IRSdckfYb6Td1J+vRw3pskHQ2f754d8za0//Wz728L3x2V9Kbw2e3z3zlJr9ik/6uSnjM7/vPQvweS41+r3n/xsRNtvmbW3pfh+3dLemsy5ldV2tk5+/0NE2P/cfUCxW0T/XmbpN+fWLu7Z58/Zvb5NTjuG2ffv2TZtcLvK+pfID8i6Y/xWyfppKTd+N5r+0nhu78+++7jN1svzPWapG/G9584a+tzN+nzWyX9UrJ271Rves3m9Vvw/a9Iel/Sxj0YRyfpU7EPzkj6P8N3P61eYNsTvjui/oV7tDYPH8y/sK+3Jb+9fPbbmxdoZ5t6/3gn6UXh+38r6T3h80fNjvmNyn68eZPrPCjpjcn33yHpcvi8a9beuyWthO9/cPb914fvdqh/xsV78qdme3c/rvO7kt6xSR/L7Lg3btbvyvlvUP9y/ST1gup/nPX5b4dj3ijp7R+KPfGh+PdsMWlK0s+ovzk/R9IXqV+4VDOZwK/h87tnf+9c4NyvVa+VvUy9hPfr6n1gnxwPKqV89cys9YT6l/IHZj995ALX+ExJf9gt5kv7VXz+Ey02DsOi3pRP6DMl/UrXdSeXaLeGvzr7+5P43p8/Gd9vulallBeWUt5cSjkh6ers36uUz/Wvd113KX7Rdd3b1JMivjJ8/ZWS3tUt57f4DPUvr58qpWzzP/WS+XkNY1cp5b8vpfxKKeUh9fvj6uz8rM+/2M2eKgm4/u/WYut/sZtpctLc1/c+nPvxkn6t67qL4bhT6jXuSZRSVuMclAXN7AviF5Lr7ZqZC987MyVeVa99SYvdc9k8SsvdS4vgrV3XRe3Y5tW5htZ13RVJ96sXko2Xq9dqL2BvvVW9WX6X6nilpI/W8n479+eru677ya7rfq/rureoFxDfpV6jM/5Q0v9QSvmeUsqnlZ5b8YzFs+aF13XdefUmqC9Rb878KWygRfAoPttEOLVpjPd1XfdfZv/+H/VmlfskfZcPKKX8ffWS279Xb2r6y+ofHote46CkRenv2VgWuYbhm2qKRblMfzaDTRy83oP43Zhcq1LKDeofbC+V9E/US6EvU88Wpb8zu67xBvVmm4OllLvUP2BoDt0Mh2Z/36/hxet/+9TPo0opz1EvpN0s6e+rN+m+TL3wlK3d1Npk85ONm8jMtNw7RyQ9nBy3mdlO6scXx//NC5yzKLL5eL16rexNkj5L/T33BbPfFrkfPphnwjLgvF+Z+N57fFX9XvkKjffVt6p/fqd+5lLKAfXPpm+XtFZKOTD7rkjaMfu8lEur67qr6jkTLyiDf/tH1JtaP0n9c+/RUsrPFPjbnyl4tvjwjB9XL5GtqH/hPG3ouq4rpfy5eo3T+AJJv9V13T/yFzM/2KJ4RL0f4cMBO71/f+KYp7I/frDcqo1U+Vvx+6L4BPVEpk/qum4+hombuKYp/bh6P8w96h8eF9WbkZbBmdnfz1T+QvHvL1fvB/v8ruvmgkQpZU+l3aerdtcpDS/xiMMLnPuV2hgm9FRYB4xsPv6OpB/pum5OnS+lfMRTeM2nDV3vc3tM/TPveyqHPVL5/lb1+/n1s38RXzL791nqha3r6t6sj+vqQzF+oJRyUP0ef736e4hWm6cdz7YX3m9q5pzuuu5Pn86OzEw1L9ZG6v0ejUkbX5ac/qSkTPV/q6RvLH1s3x8/JR1NUEp5oXqp+I/U++BqeKukv1lKOTIzaWV4UuM4yAy/O/v7BZK+LXz/RbO/U/3I4JfEVX8xkzr/xjKNdF33eCnlp9Q/qG9Q7ydaNhbxN9WTOe7suu43J47L+vyX1Pv6nkmB7e+Q9IpSyh6bNWfMxU/UJnGVXde998PQP0lS6RkYuxXmc4bsnnuqUbuHn2r8unorxru7JcIw1LtSPjX5/ufVk0v+pXrz5MIopeyQ9Lcl/UXXdef4e9d1Z9Sb9T9RvSDyjMOz6oXX9Uy3p0uze9HMLyf1LMsvVW8f/4ZwzK9L+sellFerZ7h9mvpYQeLPJN1cSvlqSf9FvZP73eqluC9UH9D+OvX+hI9Q/xD/qplZd1k8r5Ty8eoJNLeol7peqV4y/PwJH5HUM9heIentpZRvV2+yu13Sy7uu++Iwlq8ppfwd9Zrb+eyh13Xdn5RS3izpNTMt7O3qtbRvUv+SeTfP2QRvVy9c/EAp5Z+rDyr+xtm49i/Z1g9q8OPVzJm7SynZWr6/67r/r5TynZL+TSnlI9Wz/i6rNxt/hnqSwH9Qb/K5JunHSymvV286/Bb1D6dnknvhder37W+UUv6VelPpN6k3aT6dLM0NmFlZ3irpVaUPOTiq/kH7330YLv9nkj61lPIK9ebfh7uu+8Am51wPXq3eF/y2UsoPqt8rN6kPKbqt67pRSIkkzQSVt/H7UsoVSadm/mt/t1M9c/mHu6772tl396gn//yGemHsiHrT5Ysl/c/h3DepF/rfMfv7UeqF2kn26NOFZ9UL72lGjGE5K+m9kr6w67o3h+9fK+mApH+o3g7/O+rpzfehrTeq9+19++z4Y+rZjOdm0tHr1PulDqp/yPy2Bpv/svins39XZ/3+U/V+lR/d7AXadd3R2cvyderNfjdIOiHpl8Jh36meHPDG2e+/ozod/B71c/Hl6l9OJ2fnf8uyg+q67nQp5fPUm09+dtbW96n3eWxGzWdb7yqlvE/S413XvbNy2M3qiVPED0j6e13XvXpm4v7a2b9OPZX8t9SHc6jruj+dUbxfqz6Dxb3q1/nlWoxC/2FB13V/Novz+pfqLSon1K/Ty9WzP59J+CpJ/0Z9/9bVEzy+VD2j8EOJb1AvHP2sek3vh2d9eUrRdd19pZSPU89i/U71AvAj6oXhRUOQNkNRLxCvhu/uVR8v/Hr1L9gL6oX4T+9mIRMz/L76+b5HvaXnpKQf1XXc0x8OlGkBv6Hhv37MtLI/l/S/dl33o093f56JmJGE3i/pV7uue+XT3Z+GhutBe+E1bFnMmGQvUC+NvkDSCxi6sFVRSvnX6s3GJ9UnUPg6SR8r6WVd1y3l+2loeKagmTQbtjJepd68+z715un2shuwS70J7bB6c7rNWe1l1/CsRdPwGhoaGhq2BJ5JzLCGhoaGhoYPGdoLr6GhoaFhS6C98BoaGhoatgSWIq3s2rWr27t3r7Nka8eOHZKklZXhvbltW97kVFmKzUpW8PfM77jIMTXwWH/O+uXvNms//s5jlynR4XPX19cn+zp1vc2+z/pUm4Os76urq/O/jz76qJ544onRQfv37+8OHz6sa9f62p5XrvRhhR5X1j/vK7fP76fGcR1lUBbaM4uuezyuNoc8dmpv8bencnzL3CvZdTkOr+naWl8RyWser+PnxPbtfSnEqb2zb9++7uDBg/N1d3v+K0lXr17dcE32aWpdrofHsNm5i6zT9axhDZ6b2Cbbn7pviM36lo27NuZ4j292Lj9nbfp54O9WV1f1+OOP69KlS5tO6FIvvN27d+tTP3XIVnPnnX1C8ZtuGvKX3njjjRs645eiB83BS9KePXs2nGPEAUnDZo4vVW90T4yP9WffFLFt3jg81teZerjXHlpu2/2K/3e78QUR/8YNyRvXL4jLl/uSaHyo+G82Do5vkYcy1yl7+Xgd3M6RI0f0Pd+Tp/w7dOiQvvd7v1cnTpyQJB0/3heFPn9+iH33XjFuuOEGSdL+/X3iFD8c/Teew/7Vbtg4Zp/jsfJznFOD3/Gzz43rz5cw9wjnOs4x++T+ew6yBx2vy+tw/8cx8JhFXrQ+5+LFvrjCpUs92fWxxx6TJJ0506cS9d6VpL1790qSnvOcPof54cOH9V3fNc/DvgE333yzXv3qV8+fE0880Sc8+sAHhsQmp06d2nANH0PBKnvp+hiPmS9qznWcB84x52nqQc22fJ24HrzHDPfNfdq5c+eGa8T/875xm75OvO+4v2rPwuyl5Tng2J98ss+Ilt1X/s5r4L55D/n7OK4DBw5sGPu+ffv0cz83qgOeopk0GxoaGhq2BJYtD6ErV66MJISocdWkSGNKIqU0Q+kyM5dSAqYUkUlaPLb2N9MKM6lfGmuWU6Yft+E2+X3WB2oH/t2SXZSepyTGeK6lp9h/ah9cr0xDN86fP1+dn67rdPny5bkW8PjjfX5mS3+xDzVJ2H2J+8DfWUqllmhk/eb887MRx0SNmlIttXhpbGXg+vD6ETTn8lj/PnVvuI/UCgxL01n/eU9GzXVRZPPq/XrhwoWFzvc+j4h98fpSa/UxHk/cB+4D9ywtIGwrombxyVCzWPEei2tOM3G0bmRtx/H52Frfsv3G56bns/Z8i21yn0+9Jwy362cRNUw/H+J14nNL6q0Fi5qlm4bX0NDQ0LAlsLSGd+3atUkNgpLW7t19BQ1KE/FtT6mcUozbyjSv2DdpLIlM2Zop9df8F9mxlOiJzN5PiZF9jedQM+YcUPLL5sTzWvNRxDF5PWrj9Pdx3TL/Ts13tr6+rsuXL8/9OtYq4vpQWyK8L3btGmpz+v/eZ9Saappydiw1kczvbInTfbWWUCNsRFBLNxaRgLkn/deaT6bZ1nyS7GvUnrxX/B3nxBp6HF/NGjBFIPJ17MO9dOlS1XpQStHOnTtH8xatA7y36EvNtBnvwc00e96LsX2jxjOIa0ptvXb/T5GW+JfWr8wvz+cNtbY4FvINalpbZi2gv41zlFk/qK3xeh5PXGvvde/RZcg/TcNraGhoaNgSaC+8hoaGhoYtgaWTR3ddN3KuRrW25oCnKm4TlDQ2vdGEQFNjNKewL7VwgajqU7U3auEK/H/WRs1sGf/Pvni8NBHz/Owzzb6ZqZG0ZH9PB3Fsn8SQqdgnzvna2lrVeWyTZiTXxHNjH2iicF+8ZxyuIPWUZGmguWd7sva9zaE0tdisQ6q5NJj0SLbIKP410LRlcJ3id/zN94yp+vF+4thpaiRNPJIxaGIyPC7PdyS62CzptfUc1Qg28ToOH7h06VJ176ysrGjPnj2j+yXuxZrJn+a1aGarhUp5v9VMgPE7/62Re+KYvN/8l2EC2bOTz77aHGVEL++R7HkWEeeR5m9fl89mPtOyMXucnBOHrkXwublIPG10ESxq1mwaXkNDQ0PDlsDSGl4pZSQpZNkyag5zS6KZtGep0RIopVrSXOMxvq7bt3RjaTOjslOip3QRr1NzDteIABmF2X21s5VSaZwTkkQ8HtKC6USO/2cwJ6XeKWc8aen+GzU0j9Hjunz5cpV4sL6+rosXL04Sg6j5eC0tETrg1H+lQeOwpuN2LV2SfJGFmtQc596HcR9wHTwez4vPyUhLNVIH911G6PL4fD2OO2q9Pp/tUcPzdeOakqxQo/nH63EOMkJSvH6ci0j+qe0da3gMI8gsMNzjnh+uqTTWQEiJp9Umrmkt7Ir3Y5xb3o88J8OimXU8J5GARA2S915mUfBv3Me1EKpsr3J/8dkZ76da9hfeK5GU5Xm0VWeZDDJNw2toaGho2BK4rgKwtcBpqU7XplYVfQD0h9APwjd4Rr2lRmLpLfMfsA8+x9ogpZp4DKWYWrB8Rkem362WH1Ma0mlRI/Z1KfFFjdLjoFTrvpPSHv/vY2sBp9FXlKVtq6GUopWVlZG2ka2LJbeDBw9K6lNLxb/RB2AJnpqc15++vcyHQ0o5x5Vpa1xT7/fsnFq6qVoA+lT6LoYheJxxv/kY/8Z1d1+9Z2KYBzW5muYaNRvPsfcd/Yrnzp2TtFGTpoYctX/CGt7Zs2c39C1LE8Y0hdQ+4/5l0DPviymuArXNWrjQlEWEoN+ccxCvR2tIxgPwOBi07nPpw459pNXLFoWary22z/WhFhz3m/cVtULOVdzfXq/aPE6haXgNDQ0NDVsC16Xh8Q2eaRd++1q6sFRuaTOeQ1svfQ2WyjJ7rqWFGjvPv0fp0lIgpRSfa4k0ShVRKonjqwWgR2m15vfxuCwBRc3FGp4lK7fhwG3ORbyeJWFrsB4PpfRMGrRvxuw5stDidTJtdjNWFaXY2Adqdp4Pf08tLoIpxvyZwcWx/5kPSxpYh7Y8xLVlgmSm7fLvWQJo7jdKqN4fsT/UqMjwy/YfpWXek2TcxTWj/5fWHGr8/L80rBO16yw9lI+5cuVKlUXohAb0dUULBX1KtT7FdeG6Z9pyRMZq5vpPsRiZEJnPOz7LsnZqzywGY0vDc45WL3/P55I07B3f//S/+f6hhSvOhe9bWj88N7GP/I17M9PifH7mg9wMTcNraGhoaNgSWErDsy3dki/f9hF+65pRZ83B3zt5sDS85Zkeye1PpR6zJGLUGJ6ZdOnfKKVxDBFMS5ZJctJGyce/eRzW2vzX/Yn+BcYa0dbtv9aG4vXs66Lfx5oeJf84Lq+XpUFrlDXfQbzOZmyztbW1UfohS5uxn0wTRt9DpnFxLzIlUbZXa2mavL+9R6N1wO3E/ZtdL2OfUlvaLHm5NGZYGtTW4zm+HrVd//Wc+d6JEjc1FPrGvRZx3cg+dt+8vy3xR189/cxT8N6hTy1aXWop2BinmcV9eu9TC6R/Lu59rz99dxkb1PAz0OfWkjkvktTZfaXvMq6L7yMea2QWM84jn5U1BqY09v/RSuX1j9ej9c7zSb9vvOfpe1w0cbTUNLyGhoaGhi2CpTS81dVV7du3by7RZdIZJQS/ja3FkSEmDQVkmeWjFvsWJSBrIP7NUis1ykwScd8oWWeZCehLocRNyS5K3JQcfQwl7Yx9Sh8NJSxLi1Gyo6/Q0hLjo6LE7T64fUvEls6zPlK63bZt26Q9veu6+Zg99zGeK9NWpGG9vNYRLi5ai4ekbyBqtZ4zxuzRTxfhdulLncq04zFSU6A2yjiw2O9a3Kcl5DhnNT+cx+PxnTx5cjQ+g9o2/U0xFpKaBDUw+oziGDO2LuGk9X52+HlgzSGO32P1nLufGQOWvk2fQ3+Y2477gf53X9f3mhG1Kt67vv+4zzJWMJNg15K8x3PJdKwxl7OCs7XsVmTmxwLOtfhs+hCjdYQFbG2d4vMtuxd5ry+CpuE1NDQ0NGwJtBdeQ0NDQ8OWwNImzZtuummutpv+Hk0wDA62Ws0K11H1fvTRR/vOILjbx5DUEs0SbI8B21mgrE0JNMnSgRppyx6j26MpyXNhRFMdza102Nfq88XffC6p1F4Lz7s0NkvQRJuZXQ2vk8dz6623ShrMEdEMytCCqSSupJWTIi+NHfMMxfD50bxB5zZJMUxhFU2aNu1EspA0XX+RpCGaI7NkDB4XQ1toNuL3sd8eu8fnfWCTUkYt91h9jr/3fPq+i/PpY5iyjOEkp06dmp/DdH6+B2lmzBKqZ6nxiK7rdOXKlfk4fJ14j/FZ5OcPCVDRdHrLLbdsuI7braXkeuSRR+bHktTB9HRZeIpRq6XncyLhxePwWD1vNtUePnxY0th8LA17w+Nhqj7vg+heYshZLRm324p7mkne3RffZ9mz0nvPffU5dnNl9QwXSdBeQ9PwGhoaGhq2BJYOS4hvdJJKpEHysBPSjnHSx7Pq3v7O0swiAYZ0qvvYmvQuDZItgxwtTWTB3JZE2J6lDUp4UUqrpZ1icHRWwsjtk6LvOZoqvcLrk8wQUavUbVKIpeEoDTJsZPfu3ZMa3o4dO+ZjdZ+yhLwkW1A7i+QVt0eNjhIoiSnxGM9pTYuO8G9MEu4+Z1XEaymqSEDJEhCQpMDrZBYMVmUnocpjYNVxadDwPTf+7DW2hh/3waFDhza0Z6uA/3qNoibpufY4zp8/X5XcSylaXV2dH+s+xHvMWqXve/8lMS0rLUbt3P1k0oVISOExXJ+p8kC1avIm4cRnjNv1c9XrYA3Ilh2m2Ivfuf98JjK8LM4PSzx573qveJxRo/S57iMTz2cWE2p/JEW5LT+zpfHzbCrxONE0vIaGhoaGLYGlNLxt27bp0KFDI79JpChbEqAUxmSkmTTHhM8MmGRi49guQwtYEDFqoZZwSA9mGpssDRETT1tSZYB2Fgzp8fH69F1Kg7TnuaVET99AvB4T2/qzpSRL7dGfRco0k2Qz/VE8NqbKqml4165d05kzZ1IfrkF/jn0mnuOs34b3iueNEv1UwmyGYNDiELWZ06dPSxprR9Tio0TKBAO1BAtTZU5qhUU9hng/MbE1w4gslXs+Mz8M/ajUtuOcMFzkAx/4wIa2fGzUyOibtpaY4dq1a3rkkUfm/c0SArzoRS/aMHaWs6ImHsfoYz2XPsfPBWq70rDu1ALpY4v3qefyIz7iIzYcy/sy+sn9m+8Fa3ZM3OA9HJ9htUTWbsttR821Fl7jcbpv2V6lP9tzzqD/OI+03ngv+p657bbbNowhHhvvp1YAtqGhoaGhIWApDW/79u06dOiQ3vWud0nKmUGWMPwWr5WX91s//t9SC1MjWVqi/0capEZeL2NlGZYWjh8/vuF7S15ZUmxfkyWE7OMy84g+xTgOsqRqxRZjv90HaxaeAzLiInxtpjDiPMfAYx9LaTwm9yXo81wER44ckTTMV1YgkwWBfWymiXsu7WP0ZzIiI6PPYCFc+lg99kxbt1TsNiwte06ilM52yQKcKvVECwaDotnX2J73KqV0lhg42nh7AAAgAElEQVSKEj6ZvIbP8fxGph21aV/34YcfljROPiGN/Zn79u2rBp9fvXpVp0+fHmkqZihGeEzUwDOLEjVf/iWbOysETBYrj80KMzNQ/6GHHpqPU8r9Vb5XvVZkofpvtH74WPfVe4Rl0eLeITfA+8CsXN4zWYIN+uy8BlkScY+Vvm+WNIrvGF57kfR0RtPwGhoaGhq2BJYuD7SysjLSUKKEYFCispRn6TOTSP3X0oQlH7O9Mk2Cmg5jjCIDzbjjjjskDdKQP1vDswQU424sfVmj82dLupSmp0rmMKaK7LP4f2rMLLfkttz3CM+554KFdq1txfH4WMYk+XOU0j32yMaqMe2clo4sr8z3aHgd2O/oM7aUT79IjfkWfXiM87Q0S/ZuTGHlOWWcqaVXpr+SxhoQkylPpdXyvmIpF1pDstg93wtMqG4p3ufG+XSffK7XwO1nbEDfEywZk/naDPchsmin/DBra2ujFFVRaydHgL6hLOG0/+8xen7I+MyKxzLZutfUx/resGUm/p++Q8+P5ys+s+Lek8YMcq8X49iy6/gczxvZ6dLA+vS5Pvb5z3++pGFfeM3jc5wcCLKEs9SQPt/aqMfrcXhu7LuUhnV78MEH5+NqPryGhoaGhoaApePwdu7cOWIbxrdrjS1JdlnUBHysNTsfa6nCx/otH1lhliqZoHcqZoc+ldtvv13SoCVkviL6hBgrNlUuiLF6LJPhY6N05v+7D5ZCzWbz9awFx/75HGtrlrAoHUZJ0tfLYgKlQfrMEjh7Xc6dOzeZBcFlXmIfo1bneaEPyrA0HTNk+DtLiPZ1eJ48Lx6P50saGGDeG76+pcyMEcuyM5kFQco1PPpSPAdkPmY+cbIlmZg3zjvvNWavMLLYRI/v/e9//4br+3tbPTLWM7PPcK1jfKHnOiaVnyrzsrKyMor9yrL+eExkT/qc6PO2luKx+Tevt+fLz6VYioy+bjKt3Y9oRaG/ynvW43B/YrwiS+F4v5MFmjFhmWGF2aGYXDp+533t+92WFPfV443j89jvvPNOScNeuffeeyUN93PcB0yO7XXy+DyeeA9aez527JikvkTalJUkoml4DQ0NDQ1bAktpeGtra3r88cfnb2r6vHyMNC4VT39CfCNbOrNExWKGDzzwgKRBmogS/tGjRyUNkgKLnNLGLg3SudtjvE3mh2NMCyV9g+yiOGaD+eE8zpgPkyxGS9yWolz41edEf6Ov9773vU/SYOt+8YtfLGmQZDMtm3FdHndWsNNadcyaMpVpZfv27fOxup2oIZG55/l3f70/oi/FY3Xsl5mB3ptkdGXFVcng9F6h5pf10fvL18vKX7l95mOlD9GIn8la83xxjqJfxNo4/eWMIWXGF2ns12FuUmvFJ06cmJ/D+FhK7SywKo19hGtra1UN7+rVq3rooYdGlqW4d+hzdlvMSBKtBj7G681ip+6b2dzxOef73t/Rp89YWGngItDvZt+e927myycrlAziLC6O600fqNcj3rN+1r7zne/c0GfPm/tjje/++++fn+u55jx67rnvpMESw3hZ5oyNYBaYc+fOLczUbBpeQ0NDQ8OWQHvhNTQ0NDRsCSxl0lxfX9eTTz45V6+tokaTHatF2/Rhh63NU9EU+DEf8zGSBpXY5jmr+DbN3X333ZI2mgtZMshqvM2VNufFQFmr6Tbx2WRh86j7Fs2uDCT1+DwumqviuTZDMIE2y6pEsoJNs54Tm5I8J+6Pz4mmGju/fSzLw9jMHAOO3X+aNGlKi6EhNil4bmneJVZXV+emGPc3nuNr+y8TyGYmOJY6YogMk8raFBx/Y4IDXidLduu59X62md17N/bR88RxuC2SPbKEB0zTxD5Gc5uPtbmIJk2vJccS++A9UkvvF9eN+7pmjsrCirx/r169WjVprq2t6cyZM7rrrrs2jDUSteKcScN6kIgS94PJFR6/zXM2cbJSeEZi81h9z913332ShnmLY/KamWzhufT9437E6/j54vvfc+pnSi2JRby2TdweL/dZJKK95z3vkTS4CEg48nVsho3POffRffYxTI4RTbZu1yZSn+v59D6M95PP97jOnTs3chvV0DS8hoaGhoYtgaU0vFKKVlZWRoU5s7evNSFLIpbkHAJgLUsapDG3Q8LBx33cx0kapKaoCVkisNTCwq+WHCIBxdR0ls9gMul4HYZZGDUyS5Q4rDm4r+6TJXA6hOOcuN2XvOQlkgbJKyNHGF6fj/zIj9wwF54/XydKn0yZFhNCx/FEwhADW2+88cZJenDXdaNwkSlNyKglQY79dQgLS65QuozECV+H4RoeQ5ZWzWN1sgKWyIp7xrA2YOc9iUeG1zTS3xl0z8BcjycSeTxmamdeY4ZDZEVDSSBj8eKoKVFTdbsej+copsyKe0bq57xGeFpdXdXBgwfn1/FzJ5If3B/PNbVbEimk4TlgTcRjI7nD8xXXwlqZ19LzZs0kS3TAxAaeJ1sFfP1IXjOo0fkYPyuZYjGOz/cYtbIsGbvH42dULfzCaxDvL1/Pa+Fj/L2vG60DDJmx1cnkGfcxKyfnfj/++OOtPFBDQ0NDQ0PEdaUWs9RiSSXa0klJjpqcNE5rJA0SALU025xZ8iNqBUxqS02L1FiPIbbDcjCk88Z2GAjs61kSyejPlgwZvE7aeCaxMlmwNRnOc7yetTD6G1m8NNPMmUaJvr0svZL7f8MNN1RL3DgsgYV6s/IpvkZNi42fWfanlpg5S+ptsASS97XnNErpvjYDnDmG+D21Mu5n+6YpCUtjaZnjddtZH5naien9uMdiHz2PDFKmlhLBdFBci7jfGL40FZawe/duffRHf/R8P3ieYh9oreEcMOWgNPj3fe/SH8r7Jt5jPpZ+eM9tRpNnQL41O/eN6yONi7b6M9ffY8gKT7P0Du//GJbj8/0c8zHW8HnfxnvRx/g6fqawWG7sIwsY0zpgzTnuDSYGf+KJJyYTXkQ0Da+hoaGhYUtgKQ2v6zpdu3ZtLl0wCFcaSxG2MfszfV7SxlLt0iAR+A1OKSpqGZbomBKLSXajdOY+WSqiRJeVomfpENvwWQjWY8iYpG6X7CyPJ0qFTAtVC8qmJhv7YKmHxSKpNcZzWP7D4/L3Uarmmk6lhnLSAkt9mabP5LYGA/WjD4Bp4mpB/kb05bLEDvuRlR+hJszrZUm2yRBkaimz25j6K/a/VtCUezb+Rl8R19Z9j33lbywi7N/jPmAgPYt4MqlwbDcWpZ0qgLuysjLX7OzHjvvEFh7PP/2V5BZE8B7jPGX7mozbmj84ah5eb9/3Zof7WM9X3FP0Z7svHg8TkMfnHIsT+zcymaMPl/5La581tnZ8hrCsF7W37NnvPnkuyKPw9eJ9HAPOfd2pZ09E0/AaGhoaGrYElmZpbt++fS5VW6qKUhNjqai9MOYoHmtYMqAd3ojn1liTTB6bFY219kIJxFJFxrCiZEpJLitnYYnH7fm6TB4d2XmeY6YW8ng8rx5/1PBiuZ7YPkvyRCmdPhuDfpk49z42pi6qMe3W19d16dKlkZaTxXOxbA3t81EToM+E0jmL1EYNj9I+1zArckmNktpUlpaOmrDbYMFU9zGLw2OqNxY2zdiuNS2N8XJRo6C1hczLTEMiu9XaAf1NWYLrOPba3llbW9PZs2dHcZHxnq6lwuPvUdsk+5esVlqJsmKnPsb3QNQ6OGb77KzheS7NiGRpo9g37jePnYzVzNLjZ4g14xoPQBrWznuRPkKyXbM1q6VoZN/jdbjvPC6vYxZfmD2nN0PT8BoaGhoatgSW9uFdvnx5/uam/TrCkgKlI2pg8TeDvidKEfEzpQlKeiyyKo0zxFhCoPYZr0PfpMfOwq+Zj4MSCCVs+g5iH+jXpM/SfYyaFyWp2txHScu/MfbIfhImLc7GvFkRxvX19Xn7WWkSaq3UGDJtxqDvJMt4UzuXYCaUzJdLX5rnx79HPzOTHnsNfaz7lGmh3pP0nXAPxf1Nfy8TKjOB+1Sic2q0ZCvH/jMG0uO1lSDLhpFpT8S1a9d09uzZebvkEEjDOlgTqTF7Y7/dr1q5M2p8ce+QyWvrDDODRKa3NTufazY1/W/R6sHMVL4fqWGyz9KY4eux219GP500WFXcjo9xzCgZvvE5TuZmFiMcz42gRYZ8h/is4nNzUf+d1DS8hoaGhoYtgvbCa2hoaGjYEliatLJjx46RGSWaYOjwZVLnrC4Zg5Fje9KYCBPNEiQA0MzqvmYkAh/rz1abM7o6HbA0C7GeXExDxHMzEzC/tymBzuqMSBGvEY8hLZgB1nF8rI1Vq5kVzS120NcILxHr6+u6fPnyKDF3ZjbmmEl7z0wYNGFyjFN9q5lQvV7RPE0TI8kXPiea2/gdTY0kPsW9Spq99xVNzlloEM2fNEcxxCWOh2ZX9jWuAUNkGNCehRvw2lNmqfX19Q0klCy4m+mmPA6m+ot9sbnRe9LrTDIZzWuxfQbkM0wkEtF8DIPk/dzx93Gv0uyaJWyI48xMtnTVmLzipCBxHhkK5vvfc8LrxuvxNxKesjVg+rmscru08Xnq/trce/78+ZZarKGhoaGhIWJpDW/btm0j+mxMmUWpiEQDOtDjd5YimILLyKTLWlJnBkHGiud0rloKoyaRBTv6XEoglISj5uL2LY1T08sIFkz4TLIK+xWvVyP5UAqKkhY1VUu97numuZCafO3atU1LvJAYEOfRY2WQv6/JqtaxvzWLAv9mY66VdvL3MSGvJU1rEiyBw7akuhZDa0e271iexamxmAA83jO+Hu8rJrrOyAVeD0rn3P/RokAtmhosyU0RMZF1be/4uWPSB0N24phIJiIBLtPwmFzBbU0ly6iVC2PyhLg/IpFJGrQppnOL68E9z9AVzmn87HZNOGGyfye6jvA43FfvKz6TuR+k8T4ggZBad4Tb8Zqy7Fd87nl94jNyM8LcvI8LHdXQ0NDQ0PAsx9JhCWtra5P0cPpdmHaKaW3isTUfAxPYxrc5/R7+zdITpV1pXKCyFiAZYe2DkhVTLmW2dPp5WELGbWfUckouPDbzidJnQg0p04prEqv7bCkxSykV/aRTgedXrlyZ+/1Mf44SKSVraniZ9szQAe4danyZz6F2rqXN6Iehj4ghBZlfjD5hanxT95PngKWx3A9L6VkSbkrY9MNl6a84b/QDT4EaGu/FTIPL0o4RKysr2rVr16hwbdSeGLrCsI0s8Nz9YyosrhefP9Iw/9T+rNll1zO8r0j9n9J8yFWgXzFbJ3/HBA6+B7PUabzvqX2Sf5CFUvE+MrLnDhMEsAwRte94Ha/tgQMH5onAN0PT8BoaGhoatgSW0vDMlvJbn4mApbHU6s/U+KJNmMHalHT5Ob7tGXzIpKNOFB3BNFk1pmeU0pnOiMUTOYYYAMrCpe4bg7CztEC1hLo1DTpeh+NjwdZ4PQZ4ZsUapY1+EzJiY9o5YnV1Vfv375/7YbJ0U0yjxnXKWJr0h9KHxs9xPimR0sdpn0cccy3tGOc6+muYnLimaXGcsT1qkm7TPr3oj2HyZqZbM7I58bEM7qYlI4I+Fe8lloeJe4MWk6nCwaurq7rxxhvnx2blthhYzkDmLI0Wnx1ZEgcpD7LmXmFAOIOjpbF2xkQLRuQb+Fj6Qw1/77Ziv5jC0KxGplTMgscNamBMWzjl0zeoKcf5tbZeY4VnzH36lQ8ePDi5fzb0ZaGjGhoaGhoanuW4rvJAfmMzYao0jmGi1JppM/4/iyhmqYhimxHWuCyVW7rN7OOUWhn3l/l7qGlZwrbEVSuuGI/luBwP85znPEfSRsmOzCbGCrH0S+b/Y2JWxlZl80u/gpGV6WAs2FQRz5WVFe3YsWPeN2p6cczUMllQNEpz1DzItIvX57nU6Olz8p6KviKmriJr0XMe19LrT02iVuIp+knom6FPz3MS/YwnT56UNFg3yKae8olulnot81FTM6olq860/6xgboZt27bpuc99riTp3e9+t6SNfAD/3+uzSLuM56PWzj2TWRaYzJ3Xi+vCGEpqJdR24jWZzJmlvqbSO9KH6zZOnz4tKU+s7+T3vrc5J0xTl4EM6Yxl7Xnz3zhfUv6+8LFHjhyZ96GVB2poaGhoaAhYSsNbWVnR7t275/4Cv41dmFEa7MQuakk/D+3Y8f9k6Rm1wpXSWPNw9gBK1dEP4//XSsdYgojXoR+GRWkZ0xSlJmpCjP9z2ZDsesx4QNZhlgGBrD9qnWwjjp3sr6myMEy6OxWHZ5YmfWsZe5bX5BxnjK3MHxXHw+OlsV/He4mFM7O9w+S9tRIzETXGI7/Pige7PWqY1Nqy8VCTY8xl1OrIpKv5bOI5TJRMBqs/R20+8yPX0HWdLl26NN9nLm9z4sSJ+THWqP3XVqfa/Rn7l5VliqCfjP+P5/J5Y0tGvA79fGZR8pklDVof7xfuC1p+pGFfua/uo5/RLG0lDT5hxjy6j/SpZQxfMuPJ54j73/uZhZV5j0St15YLz82pU6cWSgovNQ2voaGhoWGLoL3wGhoaGhq2BJYmrVy9enUehGzHZjRp2oxiQgbrODGxrNuN3zEFEhOMZgmH3Seq2ll1ZPfRYIVtq8yRjGMVm8l6GeBqs06WHo1mCZtfMhMjzQE2MTCFUZYcmcH/NG0yAD2Oz+fyOhmRh+EDNPNElFK0uro6CuPIAvRJc6eJNiM80VRKh3lmvvOesGmZJJWsbqD7SGe79473exZwzIrqWR1EaePe8f9tYrbJiWbfaJZi4mKaIUm4ivNZC3eZSkdmcxRNVzSHRtA8vXv37smK5xcuXJiPJwtg9r3q54D/MjH8VHowhoDQ5JmltGM9vKnE+iTuMag7M/kxeJxrSap/DCPwfrYJ1SZAmzTdlvdUbI8EHpMBGcQezdTcz3RvZCna+Ezic9PvmMxkeezYMUn9HDfSSkNDQ0NDQ8BSGt7a2prOnTs3Im6YoCKNAxVrEmPU8Gqpr7IK0PH4CCYzpZM9SiKW/hgs6u8zKZ1EE59LqcVU3yx4mIHmlvAscUUphqVy3IZT6Hies2BZkhSi9M++EZSemXQ308yjplCT0p0A2OOyxB33S63iPMM5IrmHZBGGtjD9WZZGidXKmbg2Xo9WCF/H0rP3RdyjTE1Fhzy1T0vR8VjvFY+TSatjcl1qWu6/rQSkv8c5YVVx7r8sWJnWAPadITYRtVJZESateK099qgNeA0ffvhhSeNnRFY+hmOsrYs12Li3mYKrFsoQr2tthSET7rvJgDH1oNeKqcr8fPMYvMbR2uZnkfvi5zS1qCwshYQt983jzSwY/o4Jp/ksjvuAmjDThmXkJvfNf2Pik83QNLyGhoaGhi2BpVOLPfHEExsK70kb008xZZBBqSKT7KjJ1QI02ad4Xfp9/DkGqbr//s7nWlKwNBElB/oPaiV+jKgVeOxMnUatNNN6/ZdUYmoacb55Hfr5MumTAfqcxyztlZH5IDNYy4vHZsVV6QOYKnbLdmqFMbOwCoaQMCzC14laqPeEJXxe376ObG7p72WfqDFLw77zX4aLZOmaDPqZqO1m91e2LvFYXz/2kfNm0PeewX7sixcvVot4Omk9907sN60nvGbmw6PvkedOBVXXyuZQ24h9tIbn9r2m1p6yYtUMDr/55pslDdYoPwc8Fh+fjcPWIT+vPRd+tsTr1MLJiDhHTDzPBAuZL5ftsMB2ZlnyMbHQ8ZTVKqJpeA0NDQ0NWwJLszTX19dHAcGZv4rSGpl3mVRZSwtFP1WUJGnLtiRi7TOTmuiXcntmNWXMTv+f6acsZdjuzhIjsQ8sE+Q5soQXpUUmlvVnam0+J2oLDCj1OZTOoxScMfbi9TNtgGWVpiR5l3jxHDONWGyH2gulvQgmh2ay3anE0zWGLX0s8br093FNs/Vnmjv2ldJtZBH7N+8RM+rIJI0SOK0P2Thi29EfU0uoTg0p7jcyE41aIHfsG5M9ZzA73JqI+xJZwTVWNhN0T5XgYcpBt5+VGLNmSh8TGbAR1CBZnsyfnYhCGrRCppTzniKjNGqY3N/Hjx+XNPbdOkVXbJ8pE5n8Iws8Z3o/jovvjfh/Mrxrafhie7TqLYKm4TU0NDQ0bAksnVps586dc8mQDLWILKlx9rvbjaAUNpXeir5A981xOZa8bfuWBnu327Mt3fZvSzVRoqMk53FZ4qbmmvnj3J77Yknefc0SKbsdliOivyuLpSKDi+mwIiiFkZ1HjYnzI/WS5FTy6H379o1SwcV94P5RUlwkxqbmn+S6ZezCyHCUNvoGYhvSsN6nTp3a0DemjcqYdv5r6ZyMNPcj84twr9DfF/vovljaz2L14pzEe5TM3pr0nMVwkm3KvRTbinvd16s9K9bX13XhwgXdddddkvK9Yw2BWhO1ingN9sF7h+m8qDHH63FsWcye4ecLY/YWKW3DkkJkI2e8g9r8ew/5HPsDY7+9R3099jXzrzO2lnPA+yy2N+W/jX2N48hiATdD0/AaGhoaGrYElmZpXr58eZTkNGPN+e1OqZLJTqVxXE0tWXQWk0GmHcsEWZvLJFXG7vhcj4/FT+N16LeyhGIpJl7v0KFDksbFaKm5ZEmx6ROgXy4rFEtpif63zIdHP2lWBJfnZBkipjS8Xbt2zefUmmpWQJK+PK5dVsSVUizHTC1KGsf9uW9eL0vRsbgq/SyW1n09FkeO1yRrsZaoO8Lz5PY8DvphMg2PcVBugxaaeP+SpbtItgzG2PKYTINhjNvOnTure8dlyQz78uL9QgtLrehoHCv9VXy+sK3oY6cW6DaY7D2uKTU7npuxnb2fbBVyu74OY25jH5n1yZqc/Y9uK5ayIkOZ16cvMY6P2XPIyXA/4hpsVoSZPkppHDc5ZVkimobX0NDQ0LAlsHSmlccee2xU5maKYZX5edyWwRxyzNDAz9GWTs2Hx1rKiHkx3SdLl9YGs/Gy3/QfkP1lqTPOCX0qvp6PiTZ0Xo9sKGqWGQOvxrjMmFVGrQgpJbB4HWYv2cyWXkoZsVnjWlIjYPHHqXI2NXZhzQIQj/G63HLLLZKkw4cPb+hjxkylps+8iDF2j7F0zMvK9YrzSE2V2sZUBhH6mTLGG/tq0MrCfRD3Fn/jeMgsjsfaklFK2VTDs6ZtDTxyB5iRhjlIFylLxmcVfXjRL1vL3UutMbIPXejZ+8zXZ8mnaB3wNelHZIxdxqcgk/jOO+/ccH3GA0rjcmu8X8nSjPvA/eZeJaJWyNJMfJ55b2bPLGuwLZdmQ0NDQ0MD0F54DQ0NDQ1bAkuTVi5dujQKws6q7NKkWHMix//THMi0YEwQLI1THlnVNgEhU72plts84WOyMjcMGiWd1ufSuRyPdZ9MaXcyX5o8pXGwOEMKSDKJJtRaerAafTybEwY0Z+YJmvWuXr06WfE87p2MbMGx0emdmc65rzhWz1+WWooUbJIIfP3MlMWUdrHqu+fCcB9snqmFSmTp22699VZJgxnv5MmTG8aTlYciWcUgsYEkk9iXmjkqIxHU0k6xvE5230YTcY2aXkrR9u3b5+Y2lreRxgkoPP+8TkajJ0GLoT6+L6PrgWQyt8XwoXg99/tFL3qRpOG5aVOgyXPRpElyTC1Uh0kNImzCdFs0ZcZnFZ/tfL55n0+lEySBzPufgfxZOyRuZWFedglFM+4ioR1S0/AaGhoaGrYIlk4tduXKlbmGYqkzgglXmfopCwCN7Uvj0AZLBBl1lRojy88YUQsl+aVWaDRKG9Q+KBWSABHpwbHcizRIVAxez4gAlJbY1ywNGoNfWe6mJknH8VA7oHYY/+++Xrp0abLt9fX1uZROUkT8jppPLQQkHsux1cI4Iigts+BrRiJh0l46191mXH+vA9NykYjg68RkvpbKfa4p5NTssnk0alp3pjHXUnFxrWObDHfhvZHR+kkImkoe7euR4BDXtJYGjFT5zBLCfcegbq9B1PTZB3+21cZ7KJJIvHZux3vJhLoslMvz5PExbSAtaDHEgHPDkkZZ2kWvqzVVWixIfMrClPis4n7MihUzJSCD2LPCzX7W3nzzzU3Da2hoaGhoiFjah/fkk0/O3/Z+w0apgoHllCIzn5qxWWkPS0sZlZ2aFyW+GHpg6YXlMax9ZKWL3J79Pbaz+6/77rbi+Cz1sa9uy9JJllKq5oehX2tK86r5HbNQhqxQajwnC/aNkukUPbiUMtI+M6mee8jnLBLSQm2jJkHGdqnpUfKPkr3/b+uG19Br7DmJ/h7vEe9j7xW3wfJUUaP0XPhcJy9gyrkIjocSN/chk0PE69a07Kl1rpWSWiYF1FS7vk+jr53pAKmRZMVuOQ/U6KcKlzJMyWvMNuOzhLwCFp5mUHccIxMl2//mvtmK5GTT8TdrdMeOHdvQx0xLYzo9ppirWbiyPho+h6XN4pjp86R1IIIB8/v3728aXkNDQ0NDQ8RSGp4LeNJunfnH/OamJpfZZGtlYegPIZsuXo/XJasx0wrps6mlZIr9pZ/CfbF9nGWJ4vX819extkDtJPaf/staGY2M+URNz32akuzJsuVcRY2MabumWJq+Lll0MX0bmYc1LTb2gdp4zQeZaWtcb/eNPpvoe7IG798sUVPCj0w7S+MsJUTfXWb1cHvW/ngPMOGBVPeh0d84lTBiM/9pds/zM7WBTFqPCa6z8budnTt3zq00ZkJHvzXZfDVfULwGrSVkBbN8WExLRxa155RaYrweLStknZtNmRUcNnwukzvbWhD3veeLzFEmj87Yrt7fLJnFOctKw9UYpdmzn5oyWelZwWHfn1GrnSouG9E0vIaGhoaGLYGlNbzt27dPpuuh1MhExZbKopZGTZE+AL/RLc1EaZZSCjUSSzVRCmXZlBqLKGoPltIp6TKtFsvbx2Nq7MPMHu4xU0r2degDi9Iu++ZzWZ4j82dk/sv4e5S0pvxw2flPPPFENX5RqpceoVadlXixFsZ0Wrxe1NYohVuqdRtsUxoXrPQx3lNM2CsNkrv3lQ2ZodQAACAASURBVK0APjbT0g1qT2QDR4Ysz2F8H8u2eM9k/o/N/L7Z3iETtpaEWRr7T6ewsrKi3bt3zzUT+26iJrTZtalNx/7Q9+S/9M/He8zPIBa/5VrGNWWZJvoZ7Z/N5ikrrRPHl7HT3Uef6/3tY8jejv2ntcPzy/RrGfOWPkq3n5V1IkOWzyz6ZGO7/tuSRzc0NDQ0NABLF4DdtWvXXNIi60wapAja+uk3ipJdTUJ0W2wzShk+hywf+ucyCcGISUhjX+N1LHE4gS21NTJJMw22xnSidBPPr2WuoZQTtV4mpeWcZL4bSqrUNjItzlpOTGxdk9i7rtP6+vpIEsuYopSSye6K16D/je0uEgvG2K1aMnNpmCezMinFZoVTKRXb71eL/4zjq1kU6G/KijB7/a2pUHufSvJLjY5jyCwYPJfZaDKw8HAGcwfor8/2DpM489jIKCej26CVJsue42cgC8x6fzF+UhqeUT7G68JE1zEOk6V1mMTZfX3ggQckbfStun3vVZ/DIrIRXg+WoXJb9IXGfeCk68zAxCTicb/wmc9MKxkz232KGvMiViapaXgNDQ0NDVsE7YXX0NDQ0LAlsDRpZceOHaN6ctGhanWc1W1p+sucuaT00pSZ1XyyiZH0bavCvl5UielwJokkS0NFgkNWzy32LauhRkd2RqQwahTfGi040vttMqCZ122YrhzXgIQhVlTOgmJZm6uUUk067H7QNBbh/jG1F1PMZU5vEltoysrMdzQps7q4Eanh/o2OeX/OiAA05Xi93SeGLcQ+Mi1ULfA7I7zUwm5qNeOkcagKE0BntQ9pwqyFGWVpvZgCMIOfO+4vyR7xmrUEFFlYAn/jfcJ7LbtPa+n6srRaNE/b1EiilZ9p8Vj30cdm4S/Sxvn0fDt1IdMRZsmcvTceeeSRDe0yZaKD5WMtPfeRbhYSa+Ie8zE01XuNbZaP68Z7vJFWGhoaGhoagKVJK7t3755LBqZXZ5T4WrJjY6rUCwPbqXnF61lqsDPany2hMC2VVA+IpbYQac9M3svUQaz2G0Hpjwm2SRuXxuV5POckK2SEn4yoI42JLl6/OA5KrKS2RymXUnUppRo87L3DYN4psgKlvSx5NCVEpmKi1SBaB0jbpkZMwpU0Tu1V2+dxnkjppuZaI+nEvmUJzWOf4z3h/5tY4XEwhRkJFtK4KjvXyX2NAfysul0r9RLXmtr1jh07qnvHx5H4liWTYKgU1yf2IdtP0jj4mlp2NsYa8SkLbWJ4ColoWQozB9vT6uXnzhTByvvA7UY6v7RxfzuY2+OxxY5arvsRSUAkbHkfxueotJEkxIB9//Vcc9/Fdm3Vunz5ctPwGhoaGhoaIpbS8LZv367bb799LgUcPXpU0kYfB9Mm0Q6eJZWuJQum3yJLa0QJnsG0loyilEGNip+Z7FcaJB/329IFAzMpvUmDZGdJ2BIQpaksAbTt77aZW7JiiY84J543SnCkUGehIUz/Q+p+1FwYKD6VWmz79u06cuTISNuJmulDDz204Zxa4uzMH5v5E2N/uV7SWAt0W147fpakBx98UNIg2dL64Lai5Ovf3AfvB6aNYmiINOxFajcMjo5JpN1f+qSoyXCO4niYBo1Wg6i50K/EucjK+dCvOeX77bpug3aVaSaG2/Hccuxxz1NToAZOrS3eY15fWkQYzG4/nTSsu9eKFgbvzWgB4vOM4QH0O8f7z776mqWH/j9pWBf3hWFWTP4QNX0+x2pl3eJaMzEA3w/ZPU8f3traWtPwGhoaGhoaIpZmaa6srMy1DUt2UWr+wAc+IClPTCxtfCvPOwEp2VILfUSZ38dSCplO/p4Jc2M7NamAAaHSIOFYemY5EpYfiVJaLWCW7NDIfPP81RL9Mk1U1IYsQWbtxvHH75lmjYmhLdFmpT28bhcuXKgGgJJpZ8kwSunWZmt7J7ZF1CwKvo4l/ugn5b7yPq4V95QGiZvWB65DXH9Kx95ftGgwga40rD/ZugZ9u9J4L/pcz0Vk9BIsSmuwPFRWpJQ+cEr4GUsz3ou1+3FlZUV79uwZ+Xmi5s1E7Ayy5jhi/5iuj5afqMUYvD9pvcmSV3h+vM/ZFuct9pfz5WPIHYj3Bi0KTHhu3168HtnfTMlG33XcS0zjSJ+4x5f5QvlMrCXckMZB+Itqd1LT8BoaGhoatgiuKw6vVihRGvtSKJFmrMLoA4rtkSnmtk6fPj0/l5pcLfVNFrNDRp2/t98vS71z9913Sxr8b4wnsvRiNp80aA7+jVqQpdDYR/rQLC3R92EJK9NCaB9nwuEsCTPLwXgNplKmRU2oJm2trq5q//79oxi72AfG6FEDZqkSaawNUnufSlJM7ZyFjf3Z+0EapyhjG5mkbcma+85zTutEFqfENF3cS5l/jPuMSdiZzDiOmdoP77MI+nVqqcayPsZ9W9s7fu6QSRx97GSBe94Yc5iVlqJWSwZ2puGRJWl/mcdg7Sn6yTz/3l/sIxnM8f+2qrF8DmPfpubY8+VSQllcHGODyexlnHEWZ2iNkvGNWcJ4stzZFhml8Rxjz549kz7giKbhNTQ0NDRsCVxX8uipuDJLK5S8yfbLYmh4LOM4/NZ/+OGH58eywCOZb74ev4/tkiGUZXKwJsV4K2absWSX+cc8T/ShZMlcOY9uP7K+pHGC6NhHZpugHyCC0i4zr9Cvwf+7jVos1erqqg4cODCXhMlqjddmn+grjMhKBvl60lh7z4oH17LM+PuM2en4JPo6qM3F7+i/ptacxX8yuTJ9Rcz8Es+hP5MaZVZaiKxGWluy+DKfT22UUndcPx4zlfzXGp77bQ0i+thrZZSyQsOG14XxqfSLkpEZ2+Xa+f43smTV1JoZ7xc1V2arIbPY7dviFEHrltfH53h/R4YvszD5WPqQmUErXoc+SbLrMx4AeQ72M/pecL+ksc/4wIEDTcNraGhoaGiIWErDW19f1+XLl0fSUpRILK1QCmPpk0xashZG6dKsJkuSMX+bJQJLS2ZuWSJxX7MYN2Y+oIQVpTWyoWj/pl8hSiQeB2Np6FeI2o6vfezYMUnjDASW1jKNmX4rxvlQK44gG5SxQVGSom1+ypbu4sEec1bQ0ut/8uRJSeMiq4wvi2O0JMi4SP+ejZVxaPa7so9Re6Kvk6WdMr8v85Hye4OFMqVhP9HvSv92piFx33lctGhE7YgsRzLtMq2QcZ8GGZJZ37JyTRlWVlbm82Xpf4rNynI9/pyxw8meJkfB+zJqQgatJcxMkmlrnlv67tzXzJdfyxnL+z/OJ33stPzQ/yyN72lmPPFnarjZnHDfZz5KavpZod7YRpyLVgC2oaGhoaGhgvbCa2hoaGjYEljKpCn16jbLPkRTBs1BVlV9Dqmq0pjAQNq01Xam03J/4nVqzussULZmvmOqodguVXqaRbIQA47r1ltv3dC+j40mVJvvGIZA6jTp8BGkuWfV5g2GftDh7bmaSty8srIyaVroum5kto7rwlRrHjuD1LMQE5pvGJjL46WxScd9I/EknlOrgp1Rrg2aGz1HXmMSobI5ZIJmUuej6cz9ZUV69tXfxwBulhRioLn/xnll2jEGnGfpw7jPpghPXdfp8uXL8/1hs2EcM9ONMTWWEauJ857l84BJJGL/fK+eOnVqwzke84kTJzacG9tjdXavodvMKrkzPaHP8d+sLBXXmwSbjAzG5wBdAgwniqQc3hMkAzGVWmyHJloGwMd18/8Z3rEImobX0NDQ0LAlsHTg+erq6lyyyijFTB9DaSILYKZ0wkBcg0QUaZBwmO6MxI0s4TAp+JQOo0RHaZB9IhEgkhcsuVlzOHz4sKRBEmJwqTRoHZZmSI6g1B5JMoY1Yl/Xx5KqL42lW4+DQbdZSIP3w1RxV4PtRSKA19+kBJJGfG48h6EMDDUgMSk66BlESyd7Ni6SlajxZPNDzY2fswS5httjcmCuVxbAzXRgJn95b3ovx3N9LP+yH1ErJPmlNs5oWWAarz179qSWhwhrCiwJJo33CkMxmIQhtkOthQm6szJox48flzSQyqil+5wYYsI0ZCSvZfel++RzvQ5ME5dZ2/gdtbQsSYLvF/9G4hgJPXHv0OpQS6kYn+sMF2PS6CysjKXgrl69OllaKqJpeA0NDQ0NWwJL+/BWV1fnEkNGiafvyWnAYrG++Ls0pvZTMrSUYdp4lCr825EjRySNS3lkfhEGltL2bJAaK9XtxyxOGyUOp/Jh+h9qbbGP9CO5b6ROZ/4/FhSlL4VSWmyf0i7DLbLkuzE0YLMAYiZZjnvHY/M6xwQD0rCHohTLArksl0IpPWroDM/wfFhbZrooaVgX+mGsdWYUfWobNc1uymLifcZAXbYpjX1qLDFELTtLZUaLgSX/rByRsVmKsajBUavet2/fZEjLrl27RpqpLSXxOxd+ZvLmrJyN++D58lx6jvksi3Ni3x0D/2vWotgXzyW1Eq5X7CNT5tHPne0dpuViUv7sHCZzZlklchYieK7B53vcB0zo4WOYwCNa9Rg435JHNzQ0NDQ0AEtpeC7EWGMZScOb2fbV+++/X9JYI4lSABmAloAoTWQ2br/5LQlQM8k0PB9r6YsJmplAVRoXlGUbDEyP46MkRz+MP2fJcOnXIauJAZvSOKg7S5EVr8/zY7vULKNPgv6zqcDhUopKKfP++3rRD2Pp3BoxNRWfG8dBXzF9KbQoZH4yJgCw9uJ9GNfF/ba0XvMZTzGJyT5mId2oeVOzZvuZ74LaIK/n+aQVJPaBVg+2lWmwHB/vhegLpbY2lbTAKQ0NW1fs643tkUXtY7y3oi+IVg1qCv7e+yCm9fP9Tj8ptei4PmaZ+q/vpVoqxdhHt+/faB3IEoYz2TotCxnruVZmyyAbPlrFvEb0gfOei+vsdvxc9R7xubb2ZOn9rIE3H15DQ0NDQwOwdGqxixcvzt+mTLIrjZP0WjJhyq+MkUVbMxmdmdRBvxjL6LAf0jhOxFKGtQ2yOOO1yWxicc2MFUrJl4mAsxg3akKUzugri9IzGX2McTGyNEuUzunfiNqOWaVnzpyR1EtjU1re6urqKM1QltbI62CpLzICpY3SHlld9FvU4teksfTM9cl8DvzN43CfWShTGu/fWmJuaqnS2HdGzTVjhZItS5812cHcF7FvnJss3ovaBfcA0wtG+L7Zu3fvpA9v586dI40x7gNqdNbG3KesADCZhvSle5081zGlIRNBc+0ySw/jPmlh8hxHX6GfZ0xKbdAXmlmlmISdmm28J1g8mM96tpH5f/kMZKrIOCe1NGfmSnh/xPvJcxLLeDUNr6GhoaGhIeC6kkf7zZqViKDkzjIPltazEhH+S4YdfSAZs4+lfZg4OUqX9JnwcxbrxHgYSu0sF5SVB6KPkNpOlFgZz8fEvGTvxTmh5EpfKCXa2AcWxXWfPUfRB+K5jZrKZpIWY3Wiv4JMLUt5jOuKUiz9BNRisvkx6NOir4vadexbbc9wfNJYSmW8F/dSvB4tJp5zSufxHPoZKWlPsYNr2o3nkTG4WTvUcqglRLi9zRKPb9u2bZRVJGreLIVF31pWHoyxgHyG1NbH/Y2g1kwLUOwjuQi8ZyIj0XvSMZQ1y86UxYR8BlpxstJitGhRC80sTSw8zetkmYvcX7bP8ltZyaxYEm6zGM75+BY6qqGhoaGh4VmO9sJraGhoaNgS+KCSRxtRnaTJx2Y6U70diB7NdzRHkeJv8wFNXfEYqu8GzVVSbqqKbbHmmTSYRmpOXYMBodmxND/QjBT7YjB4k7To2FefS/IN5ygSHmh+orkyM9HYuR7THW1mliIVP47Tv5kcYDMUiSKRxJKZm6Rhbt3HrP9MaM65oAkyjpVmT56TOea572oErnh/0exGs1SWyo5zwb1T+10azEU1UkyWWID7igQo3+smIUnjoG6mSiO6rhuZymL4DUkPWS1DgnXpPC80h7uNaGrknHJuM6IYCU0knGT14nydW265ZcN1eJ9lwdcMXWJ4T0Z4qiWtqJnFI2hqpImbpnapPves7xf3B4lCU4Qnoml4DQ0NDQ1bAksnj44SS0Yz9pv2gQcekDTQaf3mNoXdEotUT2fjcyytMTgxnkupmdJMlIBqNGRqOVkpGTrkGQBsiSVK6SRDsMQMAzVjnzx2kmXoWM9CKAxK5RmJwO35O2rZPE4a1t+U/Km0Yg4ezsgjhiU3BteSMJP1OyNgSPXyQdIwd9Y2uA+9lrFNJtGlJJ8lyDXo8OcxmeTNJOFsI3PWM3k0q2/TChP3HY8hKczjj2nfaBkhoYHEhHhOTDlY2z+lFK2srIy0tUjV9/PkwQcf3HAMae+Z5m0wTMljpAVKGjQQJmbIklbwnFqCa97bHnv8jfc70+NlQeQGE52TqBbHzvuK4V7Zs99gNXtazOK8k8jk94Ph+XSwfoSTCezbt6+RVhoaGhoaGiKW9uGtrKyM0nVFH4D9a35Tm07rz34TZ36YaJOVxkU8fVzUDhlUSXprVvSU0jJp775+lLSYWJY+G4YJRAkoS7wc2/L4op2aPghqdPQdxHMpQVKDtFSd+TeYlox9jZqrpTNrXlNSuq9Hn2uU8Jhw18cwbVw8h2EnNW3WiGtKbdx9s2Sa0d9rJVZqYQrxWKbiqyXijWOgT4W0d65x/I33ArVFz10MqPYeYcFhz8WUBkuNgvsrPiectMB7Z5EEwEy6HpMsuz36Xf2c8XMphgtREyZ93m3RAhDb8VxaA+LzIK4lU7n5PqTPMNMOa1o0/cCxj0xVV0vGkZWW8t6gv5QaXmb9qBWPpe9SGlsfvB+YhD2mIGQihfX19YUTSDcNr6GhoaFhS+C6fHhk6mQFC/1Wt52VUkxkbJGJ47e1JSAyB6NEymSn9Ftkklb0WURwXDHYscas8l8GlUepyRIi0zVN9cdzYemMCbWzsjAcByVWSviZP41+TPfdbcSyMHfffbekjSywmqS1srKiPXv2jNhYUVNgyjcyEClFS+OirfRxUNvJ2GUMVvdc0y8cr002Zi24XxoHv3OfG5Sq43jIYqSEHX9nmitqFp5HFhWNfTUYSE9NTxprJCwenPlubKWJfawlLVhZWdENN9wwSlwcx5ztp3htPpfi2AxqPrz34r7jvcXyZ1npGpYSorWDge7xN96r9ElOpSf0eOjDy5Jy1FI0siCwtaw4PrLqyWvw37hubo/aaC3RQvzNSU1qz/MMTcNraGhoaNgSWFrDW11dHfm8YnwKkw1byrAvz7ZYx+NJ0u233y5pLF1S0yPTUxqnFKJvJfNx1OJSPB6fwyKYWd/oS6O2IA3SUq0AqI/N0hCxWCQ1TBaejP/39aiFZMxOMhN9XWoYMX6S8xalcGJlZUU7duwYSedZkm2D8ZeW6OK6UConK49jjv2nBuTP3IeZRllL6k3Gb/zO12GaOJaHilIz09IxeTTXIB5LFibTg2VpwjhmS9iMpYqsuVocHtl5UROkn7brukkNb9euXSNtLc4jEwo7eTS1gKgNWMv0GGm1oZUli4/zb54PW7Rqfntp2Cu2ltD/G59VteLUtfjMeE9z7/Az93k8hnNMNnpWPJaFlL1XvCb+Pl7Xzxk+443MKpalUWtxeA0NDQ0NDQFLaXhXrlzR8ePHR/6S6Neh/dYF/E6cONFfMEmYyhIutQS9ltaiFOBYHPotfEzGeCITidIBmXBxrAbZjGRNRUmyloWhVhA0jp2fyRLM4rEoAbGki8+JfSQztVacMma58XeWam+66aY0e0PsFxmLsd+MAaREn/ktyYolW9f7MfOpkM1Kjdv7Ou4hSrHus+ciy+JDTYr7nJJ9lrScviFK63He6YPkmlK7zvxxtcTjWRka+q89PvvpfWxk2vna0RJU0/DW19f15JNPjkpUZf4jawpZjFnsWzyfe5EZQmgpyfrgsXnesmKu1LjJIM8YsLZmeA4ZB1rzVcfr1MpgGXGOyELnHvH9RNa6NMy9NTpq9m4zvi9q60M/fmTX+vmQJcHfDE3Da2hoaGjYEmgvvIaGhoaGLYGlTJorKyvavXv3XM22CePYsWNDg6DcPve5z5Ukvec975E0qKHPf/7z5+fcd999kgazgP+aEm9zG53L8Xr+jVXYGSAez7d6TtMma9vF82kupDOXpq74Gx3YJNxkJBKaXWjey8yvDEMgoSIz99AkR+c1A0Ql6Y477tjQTjRZEk4PRXNKXEtSoGnazurh0dTG+ng1wk4cK9eSwcMZjZqmdPfRaxlNjEw3xT1juO/RXE5qOQkoDHmRxiZNmt8yp79BMzL7kSEjMMS2PJ8xFMn3XlzTKcJTrHhuZPX1SCLxXGYVzxkGw3AdP4f8vIvXd3skgPgcukCkcQIIfs4S0tNkz5pzDMuKfeSeIUkvW2vuZ5pMWdsxmhq9HpEYJg37jHs3Hlurw+c5ytwKGWFrMzQNr6GhoaFhS+C6Kp6TmGBiijRIQ3wzv+QlL5E0kFci+cESaa06MbWcqHkxXRPp2zxOGjuHmSjX14v94HjYJ1KY4/VqacL82VJT5nCuSc+UdqNUWEuZxiDiqEnUiAduw2ElGd3ekt25c+eqmkDXdVpfXx8lP45aLatGe19YWs9KyHjvnTp1asO5GQW61gbnklJuPMcaFQNmSUiIki/3aC3VV6YVkDzEOZpKD0WSCsfJMi7SsB4k41ArzUhSDB42SMqQhnsr3gtT1PJt27bN7z2fG/caSRQmUDBZQdTwHN7kZxFTvnms2bpQeyVJLkt27OcWA8xJVsqSVLsvLGlVqzYfwaTUJI5F7YlJCqiJc/yx8jvJPbTMZERCHsPSZhnBzpaCeA+2sISGhoaGhoaApTS8tbU1Pfroo/O3LoM7IyyZkFb6whe+UNJGydsBoO9973slDdKZpSRLcpb4M0nRVFdf17bhLNWTQQmeEnD0+zGAnZRb+mlicmyPg5oWg0djHykl1dJRUSJiv6VBsmSqtkwLrRWPdehBnKOjR49KGhL33nnnndXyP13X6dq1ayP/YhyPpcWTJ0+mY7e0HiVuS3su5ULpvFb6SRqXRPK5pG/HPtKnRv+s1zIL0K/R6pkaKV6vlsybGl6ck2x9pXFSX/pp4pjp56G2E/cBfa+kyLOUljQO+bjxxhs3LfFCanxWKJepr9ym90kW0kJLQq1AauafZoLsKT+p22N4FZPZx3uI2iWfO1kCB/aX1pQpjZzaOMNsfKzXILP40NpFrXTK2kYffFbg2uOJnA8Wca6haXgNDQ0NDVsCZZmgvVLKaUnHNj2wYSvjrq7rbuGXbe80LIC2dxquF+neIZZ64TU0NDQ0NDxb0UyaDQ0NDQ1bAu2F19DQ0NCwJdBeeA0NDQ0NWwLthdfQ0NDQsCWwVBze/v37u8OHD49K1UQ4foJxViyYGkHizGafp1A79qlo44PFU9FubW4WaXvqGP7GGJ4szx+vXUrRY489posXL44Clm666abutttuS4t3Gv6NsUXM/vLBILbBMfLvFBbN7BDbq60VywQtgql7hNep/V3k3Nr1YiwV16cWT5fNveOrtm/frnPnzunChQujyd+1a1d3ww03jNqNfWJsaxZ3mY1j0d8WPTe7T2rHLrLf+Nsy90Dtnl7mmXE9uJ7xMduVkb0vmENz6rlDLPXCO3TokL77u797njTYaZ1iqi8HDjrFmIMOGcyb1fziA4/fTz10eczUTV77jelt4k3NReNNzgWL42NApj+z1lgEA1g5Fw5WzRJBMz1Q1qf4fWyXKdRqSawjYsX2H/uxHxv9LvVV7d/ylrfMU5Q98MADo7F7H50+fVrSEJzM9GAxUJaVzrkOtaS00hCczIclg23jPDGdGh8i2ZoycTUDjf05C8bn+tb2eVxbVnLndWt/47Fsi6nUYp03J1nwuQ4IdqKDWmIHaQjCft7znqc3vOENo9+lPrnEZ3/2Z8+TTLBGnDSkBzt06NCGazN5QXyA8sHJvT713KnVMlwqkTESm2d7h/UvuSc5p1nqPD67ptIu1lID1qqyZ3PC6utTChITg9QSR8R++TnhpAwXL17Um9/85rTfRDNpNjQ0NDRsCSyl4Un925qVtKOESJMmJVN+H8+vmUMpTUWppqYFGqyAHY+tYUqN5jhrkkhWRZhaIcsSZdInJR4mq54yGzANGq+TpaNi1W9KZVnS4NjelJlkZWVlXlaHWkgcW81c6LajxkcJsVbWJOsXr1fTjOMccO0oxXIvS/Vk3tSm3HZmHWDiX+7ruHeY2otaAjWZbG6oIXN8EZ4Ljp1p0TLNPFZsn3JHXLlyZVTdnUmqY395fxqZNuPr1hJkZ/uSVpNlzIPUlvjsiPcYLUjU8Lge8TPve/Y9e2bwt5pliynVYt+m0geyP7Uk/EyOnfXV67WMe6FpeA0NDQ0NWwJLaXilFG3fvn3Sbk0fHf8y6a00+P2YRLcmnU/58GoaVyZVZBpj/ByvS4mRdnBqgPFcaniL2P3p95gij9RAbW3KmUzploleWRwz/t/rtr6+XpV019fXdfHixVHC5Mx/RKsAtebMx+XvqM2QHJGVUaLvpObTie1zv1F7ivuN/lbuIUrxUcOjlE4fTUboqSUpp+YyVaKJ51q7ohQvDT48ar30N2dFke2Pe+yxx6r+r67rS0s5ybORWRtqvtspKwrHzv2Q+a85xprFJSPWcH9lmh37yHWvaYVxTEziTExpRkxon/mza+fwvjJqz05p7Gf2syUjH7GdzSx2EU3Da2hoaGjYEmgvvIaGhoaGLYGlTZqrq6uTZrWaKdMmzEglNWyqYJ0wmgVqjuh4DM0EGR2dRAM692lKm2q/ZmLKzKFW20m+mCI61OJwptagRmGmQz+SMWqhEzXShDQ2lWSU6Ij19fVRBeM4TzV6vuctIwjU6NmkRtO0lfW7FtIQz6Gpj2bxjFpeI06QgOI2oymoVtl+ysxPYgHH7Hl2TbPoSuAc18I64l517T+HkXC8JDHE/7svly9frpqmrl27pjNnzsxNopmJjpXB0Vg2LwAAIABJREFUWfNvyrXhc0zG4/pkc75ZaNFUeEItTnGR8IcaeS5ru0Y8mhoXj6mFdWTPp9ozqRYTKQ3PwFq7UyEt0bS5KGmoaXgNDQ0NDVsCS2l4XddpbW1tpD1FyZ7BrNbo7Jz25xiszsBVUlRrtO4MlvQo1Uap0MewKjIRpSlKunTITxEPeKz/WsvNqlZzzDXpN6MYc344J5R+42/sM4kvEQwF6LquKmmZ8FQjpMT2qAV6XjLtmRWYLaVbW+KYp0JOaoSNTCuIGUJqx8axS2PplZqK1ykSg2iF4Pzx983ay8abhYbwr4/Jqs77/9b0/Nnjy6wDtUD6DF3X6fLly/P2s/3LPV4j6sT1Zzu1KttTCS8Y0kIrRxZCU0uSMJVRqGahmCIgeU5IHmFSiez5R8sFiWOZhsf5I+krS5JheP5IZsvIRhnJcNEMNE3Da2hoaGjYElg68Hx9fX2kxUSpxhqcA4wfeeQRSYNkyFRF8f9MP5aFMPB6Nao9pRprANIgifrYWiqpzHdTC+Kk5jAVPOy5oLabSc01abzmh8zgY6eovpT6ptKsGdTwpiStUop27do1aieO2WO1lOd1z0IKDKexOnDggKRBa/d4OD9TqZfcN4bHZMe6XWsxTDWWpfqqwetCbTFex6jt65hmiynSfI776P3nPsY18F6kT9dz4t/jPelrez/YmuO+u/0YVlDTXDPYckDNO2rI/r/Tjzm1GAO0vV/iOZ6nLEmFlIcN8FnBZxb3sjROg8dQoGxvMjlBzU+WWQ38f6+/P3P+MguGQb9pZpnhuTUfNTkMkuapBpluz8/G7J7ntXft2tU0vIaGhoaGhojr8uExSDBKe/bHmbFlaZI24Clthv6wqfRQfLNT67R0k0mkbH8qUzft/Qw8pa8rS2VWS7OWXc+gnZ0JZy2BRa2glsbNa8FktVm7NfZXlrrIGvO1a9cmfTFra2uT2js1YGsvlEh9PWlIPkyfmiX8qfRZ1IAonVMzl+rJEciwjNK6x+g5tPRKCd9rEK0R9L9xvT3+qLnU0tG5LfqO4z1k7Yz3pNuwhhd98NwzDz30kKThWRCZmIbPd9Ln3bt3T1oHSilVv6k07AlreB6r59Lz5t+ljXMW+19L/ZX58MgipO897h1acvzX+4H3hjSew5oWmiVm9nz5eee/ngNaiWK/6YdjFQr/nqXdoz+VlpPI0Dc4vqm55z24Y8eOhdOLNQ2voaGhoWFLYGkf3tra2khTyHwA9LtNSSSWwmgfpr8ii91i2RIii5PxOfR10F+SaWmUOGqMq2hLt9TicbpP/mwJL0ouZEXSz+k2LK3V0gdJw5q4/Szxq0GNhbFxWWquyKbcLB7Ge8f+nLh36OPwulgLuOWWWyQNWo00jJ9+V8+H289YevRLGNyHUeNyvz0OagWZ5FtLscW+0R8ojcvc8K+1lKi5uB360NxXjyfz4fk7Jmrmno37jcnkmTQ68934WK/x3r17q2xpX5+afpwn94GanEuYec/4M8+XxgxE+qgzeD+4LVpVMk3f88ME2lMa0GbsxUzDoYZFa1umFdbYrrweORnS+BnkvUuLQ9Sso+9ZGrNds8Td1AK3b9/efHgNDQ0NDQ0RS2t40pi1FCU6Szx+C9Pn4DdxlK42K4Hjt7ulCtu143c+h5qlEaU09oVSTaalbBYPV0s8HK9HiYsZNqLfjNJszbaexdLUsrF4nFlZJ0rhZLtm4+acb9u2rSppdV2na9eujeK4Mhab+2kJ8fbbb5c0SIZRQ/U5zJLhPem94nFFbc1g0mOu4ZR/wNedWsuaT8jj8znuW9RCrKn4HGpvBw8eHPWpFkNH6ZlJn6W6dcVWAloWpOFedr+9Jr6+Gdtxb5BNO5UtY2VlRTt37pwf63aiL9dWgCNHjqR9YkxgHBN9aVO+boMWH19/KjOI+894RbKSPV9SPbaN97jHF+fYx7p931d8pkwlumemLCLuHcZ9+rrMYBU1Qd8D5EDQxx/vQfNDYp9bppWGhoaGhoaA9sJraGhoaNgSWDosIdY8s0nAVGZpXIWWJpgscbG/ozPa12FQb1T5bUIlxZpki2g6o3nOfa6l4onf1cgJdO5Hk63PcV9pKvE4ozO35iwmspp+/s7XY2DzVF0q1qszspRtrJU1RYYxSFDKzGk2+Rw6dEiSdPPNN1f77b3gc7gPbLbzXDhAXRpMTLUk1W4jmkFpuuZ4MiIAyT0k5bjv/psl87XJjNd34G62v0mKYFIIz8nZs2fn57odmuaY0DuO09ehecrjyZJUG57zCxcuTKbP27Nnz3ztvG7eF5J06623ShrIKT4mti/l7hB/5+ufOXNmw/Wz5AsMR/K962OZvlAazM9MfEGSTEYMoxvCa+lnpn+Pwf0MJfBfthWf315f95/3CPdBXFOm9eNe8Vxkpmivk/eKCWpei7jf4hpK03U4iabhNTQ0NDRsCVxXajE6d6NUYenV0h4dzdmb2JJGLeUNHahRavIxMRA2tpF9dn8tKVhqsQTJgM3Yf1LI6eRlcKw0ToJMjTajFnMOSCLhuVkC4CzhcxxD7KOlfkpatXIx8Td/d+nSpaqU7ornnMcsuS4135MnT27oYxyX9yId44bbd4q7LPUSUSNeScO8WEolWcB9jBq3CR6WpD1flm4ZPB4JIW7X4/RfagNRSme5rYcffljSEBDue8V9j1o2w0+8FqS0x/H5O1pmvCYmGURtgAH1Uxretm3bdPDgwfn8+DqeP2lYD9/TcT6ksaYnDXuC60Krkcce9wHL2lB7ySwiDJHwXiKRKku3Z5Cu78/W0uP4fG33zZ99P3lcthJI4wQXNc0p67vXh5YSJqiIVhb323ueITxG1HrdTgwfamEJDQ0NDQ0NAdeVWsySW0bB9Vue9nymKMoKZGYpg+Lvmf/Pv5FWz6SxUaKkfd9SIVPvZNdhCEWtaGmUUJgUm2moMvpzzfdZ8yVm/jj6CnwO/V3xepRuef1of6c0NkXfX1tb0+OPPz6X8r0/oj+W0rmlVUuilNpjP5mWjH45nxv9pPYBUSun5SLuA4YQ2M/oObbEGq0evk6tsCil+LgP6Iv0nHgvWXuKfid/9+CDD26YG0vyDAyP0jH3orUS+nLiPc8wBPfNe8pzYo1KGqR835ePPfZYtYCwnzsMxYhr6TXzfiKN3vMX9xv9n/S/Mel19B0xOTTTd2UWLWtW9jfedtttkobnja8fr+NxeA5ZSsz70OfEoHVqWB6X18HjjxplrQiur8O0ZHHvug++Li0J2Tx6fg4fPixpuL+YjCN7Vnlfnzt3rvnwGhoaGhoaIpbS8FZXV7V3796RxBB9IXzTMkAzsw1bqiDLj4wkpuTJUAsQjxqQtQtKIEzBE30O1LCMaP+OY4kaJQti8m9Wroc+PEumlt55bibZ1UquUJKVBn8IEwxbGssKnDKtWxbUbXRdpytXrszn/vTp0xvGE69JLcZ98PUyP0WNOUwtKmMKuk9epyypskH2HfcZNU1p0GasHXsPWTvkWsZ7g8moqdkzBZQ0lqSZnIDp6bIivByH9wdTucV2Da5JFszuPnoOnnjiiaoPzyAjMq6l+2mtlgkpyFzN2nV71KYyFnL0W0vjMj5e08gDYOklWphsCYi+QnIE/Bzgumf3J31pvL+yZxX9v1x/zyetYdJ4blmii2OI1/FvXlsmLYh9ZKLwRx55pGl4DQ0NDQ0NEUtpeKUU7d69e5R6KWp4ZHGR5Zf5/ZgYlew/St5RemZ6HKZ2yorUWopwv+2ncJ+sHUQNiSU8LL2cOHFiw3XdVhYXFdlJsc2M0cWk0LXySpnUxDVgoutaiRFpzJi11pbFInmePK7z589XpfRr167p7NmzI8kt89tE27w0zKXnK/ryvA609bsN+3uccipqoe4396bniwm742+W9u0PsZbovkUfnverY4vcB/stvP6em8g+dLtmWDLO1b9HnzHLKPE+9Xg9N9H/Zz8TmYu1QqTSOGUWNQrviZgGLUuRVovjXFlZ0d69e+fr5XsjzjF9WNZiGBMW15/Wp5r2TL+WNOw3a2PUqj1/1mCzPpo9S/9f1PDM6LTfz9dlIvrMl89nA316Hnfc3+4bS6h5/Rn3miV/5/PHe9P7PT533F/GQjJtZXx2+j7yfXP+/PmFYoClpuE1NDQ0NGwRLK3hbd++fVRWJNpXyUSkj8lv+yzWxG9+27JZkJMaoDRIPJYYrb3RfxC1QktHlhqe85znSBr7CinVSoPkw8wXBsvSxD5Qc2Ay6QjGoVDyYQxh1LJpo6cfIPNnsEwHJWMfG31u7oOTO997771Vpp3j8KgxRB/AAw88IGnsP2B/I1PU51vqYzyef7eGF+eV5UuYZNf+2agB0UfoPt9xxx2S8jg8xpyxnA6Zv3EtbDG47777JA3z5nVwG9YApWHePHbfE9Y23EdrD1GjuPfeeyVJf/InfyJp8GdxD2UJh31dj533ZkyK7Wt7Hvfu3Vtl+W7fvl2HDx8e+e6i35L7jvyCzG/N9XZ71nKZSSjC7Xou/Uxh4u6ohTI+1nPrcXl+vJelYU94LV/wghdIGp5RLP1l33icE/ff+4os3SzO1HPh/vscWp6iZcn3JdfJe8Z9jfcv/dp8Nvo6ZrRKw7PX9+X+/fsnSzhFNA2voaGhoWFLYCkNz1I6JaOozVBaok8lY2laarBmZ0nx6NGjG86l/8R9kgYJxBIKyxBFG7C/s1RAn0BW2JalNrIilBFRc6HfkiVtsjmxduF2PCduy99by4o+Q2ZLoLbt76d8U5S2GasU+2/tYsqOvmfPHr30pS/VqVOnJA1adVYeyH5R5kHNMsSwzIz/eh/QJxn9YyytYg3Ix1iryvJ9cg6sLdqnl+VStVZGDY8MuCg1u13fV96jlOxjHz0eH+N2rY16rX3d6BO96667Nhzje8BzYQ0i7h3vxRqT2X3PMshMlZ8yVldXdeDAgfkYM38c9y2zNvn3OE8c4/Hjxzeca02FGVmkjb65OEavHbNDSYM243XxsXFPSvk8+flFpjL/RkuW94q1aVo/aqWg4njov7Q1h/db7KvnnCzhjNnMzFHezx5PLPZskF1/9uzZTRm+RtPwGhoaGhq2BNoLr6GhoaFhS2Bpk+b58+dHCVIj6YJpmqyC09EczVIkYjARqtX0LLDZarL7YnMHzZQxWNnmCJYdYnqyCJo5Sd8lbT+atEjxpanOKn+Wtstqu80pteTBkYxBExpNt1OlbDyPTH/F9GvSYG7wOKYqnu/cuVMvfOELRymXIgmGv3nObUazaSmapx1ozLRpz3/+8ze0QRq5NOxNz7FNS14PU8Ej0cFmr/vvv1/SsCeZCDpLD+Y+0uzuvzTpS8O9UEtDZ4JDnHeSvXxdj50lgDyWOFYTAjyPL37xiyVJ73rXuyTlIQFce1ZHz4K+o2msRlpZWVnRrl275nORJarg/c6yOlkyCX/n/eX70utg83vsh8EUfCQmeV9HUxtNzQwpifeRwRR8vq7PYTqv2A9fx+4D/7Vp22sc58TXdgiJ94yvw0Qb8V4k+ZAlmXwd31fSOG0k3x98/sTvYjmiljy6oaGhoaEhYOmwhF27ds2lKUsIUcOz1OS3POnTWfkHBhjXnKtMuhzb4RuejvkIBs7zOlOaHjVJFj30+DPKtPvKVFZZOjSWWvF1SFbIynRwvlhCJEvCTS3A7XmOGLQujTWXUkpV0lpZWdHOnTtHiZRjvz0f1uRMlLBUyXCL2B9q8h6Hx3j33XdL2qhReh97Pbi/3MfoOGdgM8lSHl+W/owaNbUC/+7+RNgqYQ3ThArS1qVxyRpSvn2/mRwUJXzPj8/JCqey776O93cthVkkffi+jGnXahqeS5J5Xny9+Nzx3HkstCAwbaA0TibBe9hjZ+ILaXxfUOvw+OKzyn1haSkmBo/X4fPGfSFZy8/iuA9IqGJpM5Kn4m+0OnlfM+F2JFi5faYH8zxzD0mD1ulx8flBS2GciywByWZoGl5DQ0NDw5bAUhreysqK/v/2zmzJjupKw6tKJSEwdjgCMwgcbhzhS7//k/gBaFsy4GYyGISkGvrC8dX568u1s+oQ0Rfus/6bGk7mzj3mWeO/njx5srGvpuSKlOeExb2ipLbtIz1wj8Oesw1/s7v0j8vpZDv8tAbRFSdFanaCNrD0nn1c9cWJodlHS50OxbbGlZKRP7P05PEnXKzWqRPZR65hrHtpCWdnZ3VxcbGRLvcKVlrrNMFs1baYJlrEiiIpfQ6Wjq2hdKHlLgqbftecg/w/82yft303pHdk4jFASucztN8uPcY0TT5z7Cnvy+wb84l/yyQAXd/sm3YqUleGyJaMDmh4aE2dBYa5tdbsPZpaJH4qp0ak5lC11YxyLD7TKyLtbJ9+O8WJ/ZjPQSt0cj8/GS/Wm7zXRXHZO8yjSbPzOS62zJnbSy8zDSJzwxntiDxoz5YyWwcStMPPx48fj4Y3GAwGg0Hi6AKwNzc3u8S1SCQuvGo/WUpCJoB2+aE9Ci4nU69KraTvxkmojiR1v6q2pTb8f56HZptSoiNTaYPnm9w523NBU0uSXSkgR4M6KpDxd5oyP53kC1bUYe5D99kPP/xwq03vrSWSqclm6W9qaUie9qG5JJMLjuZnplNyMncmKzvxGunVWkyXFG1qPCRvaxhJwUV/7f/lHtNTVR2kZVtbXO4G5L5jThzVuFcCyvuLPrMWnZ95VbC5w+XlZX399de31zpKvOqwdi567HbTx+WIV66ln56D3PsrukPva2ucVdvSOqydo8artvR2/G3Kt84fx7Ppv6OCV1ppjoO9Y0KHztJlbZfnMI+Oiq46zB//8zo6Ct9jZHyTeD4YDAaDQeBoDe/nn3/e+CRSIrHPyZJW5/cz4TLtW1Lo7LmWKhzN5PITVQcpxT4a+uH8tWwP2B9jKaojj6Y9R2O5jeyL588a7d7crIruOoKxaiup8rf7lj63VRmiDldXV/X999/f5s11hUQt+aIh2A+XkjZjcn6SpdiuqKv763wh+0/yOewhNDwXyk2J07mS9uEgtdNm5jrhZ2I/oanyHNYj8+Ks/fsna+o5qjqsB/upK42TY8i+mMaLn+5ztsfz9kpL3dzc1Js3b27nGOk/+21aK0dRdpGWLv9kjYcz7jOR99iSZY0kNROupf/MC3uIvicROL40/merFG06x7JqS/+FpuXyQLmWJroH7DOfr1xT5w6v6OO6nFFrf46gz/eOx/zNN9+MD28wGAwGg8TRGt7l5eVSI6vaSvsuWNr541wyyJqJtZmU7Cz127be+QgsHbswpqNQq7ZlLBw5aE0zS8o4z241JymdWUO2Zrfn87BN3lF6e9qg7fyOXEttx+wyb7311rJfLi2VdnyAZkd/KZBpjSGldPvbXMzVBMrpe3BfvT7WlKoO6w7JMs/Dt9b5NmwJcb6fydhzH9h37FwnkH7GruhxPt/aVUrpPgPWCu1nz3YcDcx8mhw7r2Ucn3322dI/fHNzUy9fvtz42nIPeU93Gp3hkmX5vKrDnHYRiawD6+5oXZD7gXtcMNd7J+fB5b+41poP96SflHEx/76G/dbNkbU/n3W/w6q20eGO29h7Z3l/eY5yjeh3ZxG5D6PhDQaDweAkMF94g8FgMDgJHGXSrPq3yukk61TBbdozke1eGD2wScQJm3m9TXGm1XI4d/bNZkqc4nZW5/8waa0ot2x+y8/oq00JtNGFzNv85HF35hYHGPB8h/d3ZmWbvWxm6WoRJlHvKvDg0aNH9etf/3qTxJvtYUJyJW6b0dJswz1ca9Jgz1tHp2YTMH/zvEwxofKyg5a8hzrTqU077htrkA562uF5mHkJ6DFNXdX2LPCZg4wcIJCwKY02me9uHr32nK+u0rZNkJeXl7uBBxcXF5vAseyD59Smty6gyq4LrjUhdBeA4vQnP9+pGjlmp044iCzPpYklbBZlbzolxO3k83EdOHil6rBGTti3udnv97zH72Tf0/UJ+D3EPHfk+MzXt99+u5sSlRgNbzAYDAYngaM1vEePHm2c7CkhWOPoQl/zuvzdAS8r7a2TSP0/SxMpcTvZcaVFdVWkLRU5sMHaaH7mEh5IgUhG6fg2gbHnwkEMXRK5NbCV5pzPAbRrqa1LxndfO1xeXtY333xzO2a0mEwiX5Eps3ZdMjHtWVtbVd/Oe12KxAFIthLk+LmWNaOUzF7qDOfGgVXWAFOj7KqFVx0o1P785z9XVdVf/vKX289cfgaN5SHJ3iaKsMWmC+gCfMa5cbml1NBYt0wBuo943FpGnhcTzzsNxZW181rvbZ+XvXmiXWtgXYAVz3OwkP/OFCoHLVmLZp93gUr0kfWwtk7KS55ppx+YHMPWoRyfgxhXqWkdPBe8F5xuVnXQiJMMfY8QIzEa3mAwGAxOAkeTRz99+vSWXonQ7M5v4/D2vW93ay2rZHWHi+ezLVmvtLaqrY/OEu8eOW3n1+nayP440dzSINJ7F/6+0iCtSXbScUfam//vtB1Likh4pk6r2obb763x69ev6/nz57dh6CSgZ+kdU2KBLv0BONnVpNuW4tPvY+mc9tEcuDZLoDB+tBenQ+ylfJg02v6fbs/y7FUqA9rAn/70p9t7IJY24bn9550W3PmRsk9+ftU23cIpJ+z/bm6SfGHlw7u5uanr6+vNGcj3gPevE+edcpK/ex94/3UJ0147h/zbCpbPcQyBCe/TsgR8Lm2t6XxttOe9yp5Bw3v27NntPZxL2nVpIWt4qbW7DyurV+fXZJ6cdtPtHd6NlMr66quvRsMbDAaDwSDxizQ87O7Q3WRpEkfHWcJekaxWbX10D7EB2/+HxIEG1pGP+tl+bpccvSoZ4whI0xJVHSQ4U0pxDXOU91izWlGJ7WnX7jvoNDxHZa18hl25E/r/9ttvt5FYtPfy5csNYTPFXrk/n23w7PQb2N/mv/np6Laqra+BvqFxswZdYV4XFHWidrcuHpdLo1gT7J6D5GtfVT4Pid2+O0c5miIwr1kRupssPX83oYNpo3Lu0ZT5+fr16911f/LkycbqkOOx9ug17d4h1nStidi32llRTNeH1ubyVAn78Jk3/LKdz3h1Pv0z94HfhfZJ8x6iuHCOGSue/2+SjuzrikJvj2DbPmpHv7J30l/L/tojol9hNLzBYDAYnASO0vCur6/r559/vpVakAKS5shRSo68s6a395k1uk5K438uOIvtmZ+prZk01pKlKYzyOY60dEQp96Rkt6IBQvKiHExqyu4rcHSmn5F9sF3cklCX72PNiHntIvs81j0fHmDPMOaOEmuVr9j5lyxNWtJfEdrmtS5fQ59MzZR9dEFU+1RyTyFJr/w+D9Hw8Luwn5HKycvrihVn7mn20X7HfJ5zNe3fssac99BH79luTthXL1682LRnnJ2d3YnSpH18OFUHrdYald8znb/SWlQXnZvjSDg/lzPeFUzmPencSu7pqM7so/M7y77prvQO62KNshuPI2vpk60DXV6ufdB+H/B550d3Hi17tIt2RRNGw3v69OkucX1iNLzBYDAYnASOzsM7Pz/fSE1E9lRt2QTs2+i0NPvQVjZ10OWCAWzB/Oy0G0fLmTUDSSglLUeBma3CUamp2bpkkOcCiSWlQeZv5W/sIkkNRwN6LN3/uhI82UZKUvZnUSC4w+XlZX377be37eC768a8irzt9oN9dy4kaZ9eagD2F7AOjAc2k5SEkxQ8P3PUbqcVsr9d6NPFaSnuWXWQzk2GTYQdRXL//ve/395j7dNngXG5zRy7NXr7u7qSMmhtjujrcsSIA8jI25WUfnNzU69evbptF+tAagpEs7ro7Crit+r+/N49Kwp7h/9Zu7U/OPtrvyyaShdJ6v9ZK19ZmPIzv4OZ+25/A/Yk/Xc5ou6cryLIV1Gb+fuqXdYgI6XJeeWcPH369EHWparR8AaDwWBwIpgvvMFgMBicBI4yaZ6dndWjR49u1Ucc56jIVQfVE5MVqr7NFV3V6nxO1Ta50XReVQcTlUmbTZjbhV6bjgr1vavz14Vw59+rOoD5u5NSTd6bc+SkYe6xKaMjgl45jffUfodgO8y5a3MVMr8HUlnofxJBYwbk5x/+8Ic77Tt4pepgHnSQlKunc1069ek/pjg+w1xIG2myx/y3CjRgPBkwYvO+wbzxM/toc3iXmpF97frGnPz+97+vqm24eFe12mfPpsFMPO/SN/Le7h5+/+STT6rq3++JlUmTYDna++tf/1pVVZ9++untNSYtYEwmau4Ip+0mcABXZ+Zf0cO5tl0+L03HVYd3JfPXpUPZBeS+2v2T62QzNOB5nMU805wT9jFn0fPrQJ8En5mEuzPZrsijuYa+5tzZrXQf8XhiNLzBYDAYnAR+UVoCUgxSWiYFrkJ80xFf1ZeZAdZiHPaeGt4qOd2J7yk9mm7IWlon1ZrWqtMYclx5LxqwtRq0X+YvtUcnsHOPNT5TaiVWleLtxM7+OvTbmkXOo4lrV6WBeOazZ89uw+itsWY7aCZIoLTLHHQh+NbWLRF3mrCT0U1SgATekfmypg5A4mxksAKBJUjLXMsc8P9Ow3N5rVXwQke3x72poVYdAhK6FCGfX6fweM2r7i/NQ5s5j8w5fXnz5s1u0Mrr1683YfxZ6RqKOmtA1vS7RGkHW1gj6ojTHQzleaJvnVbI+joQhD53dGT8j7OB5rMqg5Xt+R3JXmE9OssD+5i5MBlDZ23zGVuVFuoCFk3Kwb2Mt6NM49ouCG+F0fAGg8FgcBI4Oi3h6upqQySbko+pr5xYCPIe+wcs6TnkP+91esCq5E9KFSaPtsSF5JD2aUs2LktjaTGlRCc026btOcvP6JMLz9JmZ7s3hc+qEGiObyXVdmu8uub6+nppS3/8+HF9+OGHt2P3mmcfrJWjFXY0cdZA7WPd82OuCLNdGqXbbzmu7BuScfom/Zn9zGghaPoZgo0/0RYT+krbuZb0kf67aKsT+3PfeR5tKXEyc9X8VUGBAAAgAElEQVThvPgnfeo0N5fbOj8/X2p4V1dX9d1339VHH310p//pE/RZsraJVpjPcCi/S9HslThjTu2HQyPpiBDQ5G1FAeyZLJnldx7zbwtD9zz2FWvF+JyykWfRCe7MDfO3R5K+oj1bUbblc/y+26PFM6H6Q/13VaPhDQaDweBE8IsKwK4Sxfm8akssbELoO50QfZG1Ckt+ncRtrc3+oEwEdukQJ8oiraUEafJUayH2faREYq0MaYnnd2VaTGXGT9utu0R+fwb2ikna97Uq8ptz76jJPR8e99p/2dEouYCp5zxhCiz65L/3CvO6gC1j7wgB7DszGba1taqt3491se+WyObcd05gdh/t480+cA1zwLzaotHNq892R7cHVsnDjiTu/Fmpudwnqfssd6Vp3Af7cjsKM+5xf20JyXVh/6Jt0De/w1Jbs6WHv1kP9kOuJX2A8MDRwN7f+Q7hObaM8Lcp9Kq2mqSvWZVUy99dBsmfp2Zrf5/3LH8nsYNjL3744Yd73z23fXjQVYPBYDAY/Ifj6Dy81BpW+V5VWx+DSU8fSvaZ9+xFlTknzCUxUnq0FONyJl25CSQq00Ih4a3s8lVbf4glPWteVdv8QkcvrXwtVVsJiL4iSe5J3PTJkbIdRZu1gL18mJubm7q8vLyNRCRqt/M90ge0Gvchx7rKB/Le7ObJ0ir5eOwHnke0aNVB0naEG+uDvzH3N/Puwp4rmrgciyVpR7fukRSvrAG2GuQ+sB/LEYx7PjzmzTRbzqnKPqY/cyWlQx6Nxs35yTnmvNsSY6LuXP9VUVP6bZ9uFj9GW7cVwHmhXYkxLBf0xVG8ecaI9mTMjJNroFnrigfbUsac28LQ0ZFZw/M+7865z6c1vS4vcFX+yH/nHrWffq+0lDEa3mAwGAxOAkdpeEjpoCuM6DIVfIbks2drdTSmpcruXjNdIIFwLc9NTYJ7uBZpDYnHBNQ5LvrGPUizSHpIgekXQaKjL26LOc1cRaQ9k9TuRTyB+3ygnTS4ykFalWiqOkhaOed7RTzffvvtDalzSv08izm0VmYfVIeVb7UrkGlJ3n1nP8DsUVX12WefVdWhzNH7779fVQfGENDNE8xErC3PQ4rnntSe7ANfSeB5Ll3Cij46h87+re45XGuJO30q9ltbM7KWVbXNH90r4gl5NPsMq0r6x+yzpy8rfzbt5s9VriH/54xXHc4/Y6QvrC3EzBk74Ahv3gtE4jrCPPvAWqKlcUac65hzbGuTS7dhrci15DmrPEy/X/c0Smt4foclbKFZEU9Xbc//Q/13VaPhDQaDweBEcHSU5r0NqqgmEpD9R51PDaz4/Fyyvupu5FTVlk3EBTTzfkd2uaBpamm2nVuqsASZ/KJm1LB247ypbM996Zhjsu9d31baYGe7B6t53MuhuS/S7uLiYuNjSb+IeSOZQ/sxu8gwS32sKfPnnLSqrQRvrQPNKyV7fHRoGZZMkdo7Nhju+eMf/1hV25w6fIW5V1cRj9YWcs2ZJz5DKzA7R1cA1tHVgP1gLSjnwP4X5xtmmzybuX316tVSUr++vq6XL19u/IcZCWs2D/rZ5bj6HmsTjhZmj+aZZkxm1uGnI8CrDu8Q/ofvzoVZcyzWmpy/6EKpeTYcfcpz6DvzmCWvrCnbCrAqmu2x5nj8/+7eFRtLF1HO3GaU8RSAHQwGg8EgMF94g8FgMDgJHB20kiGgewETVmNNLZZYJa7a5NAlV2LWcGCLy/Rk+RQH0HgcptHp+mhHLP3A5JBmV6dKrOjXugRQO/Xt3O+c/Q7+sVmgoxazeXJV/TnnxM9+6623dksQsX+y/Y5OzdXXnfye/baTHTOKk4W7lAZX/OYn48KkSUJ41ZoGD7MXP7tALn5SnZxrTTlFQEzVNgjDpiVMaBmqzTwROOHUhb2gJgecrMpedVWrbfZ3AEw+h3aZ29/85jdtUjj9vLq62iTKd+TuK7Nol5ZgE7nTYvicdUpzuAnnuTdNtNmvhAkVVqXHuvF4XzvVpQteAvSV/YV53mWL8jkdWXi2lbAJc3V+u9Jp/k6xWbwj5bA76yEYDW8wGAwGJ4FflJaAVEFJjpQyLBH6m9vf6Pk/S5Emie1CmK35WItBukiHuRMuTRJsKTrhREg7SzuybDvv/X9TXGW7K3omS14pcVmjcGLznvTphG1L6TkGt3uf8/j6+nozFzlm1tkBE5YQuwAEU6xZa+76z7ojlXuOkexTk2DPr4oGIy13ARouJIpGhMTtwJB8tgO4rPll0I6DVBy0wHx2AQiWwk3o3aVwdCWK8u8u4In7MyhrZR24ubm5ExDVreV96TRdWooDsqzd7mlTK2sU2noXYOVgGCwIpKskpRhwQWOfXadMZGCNCwGbcKMjvHAah5Pu/a7KNfe7z9aXzkpkDdY0f51lhnuSXm+CVgaDwWAwCBydlkASaNW2kGrV/QTQXbK6JV+Hi3f2d7CirXG4empcSHZIQKsQ2I6GaEWuag2js3HTl1VSZdrwace+SWsh/J0h2tZyLTV1ZMEeswuqdonp1tL2JC38MPgv3H7CUqYL86aEuErIdtJ6l8DqdBdLz51/zH4Wa0kuDJp9IgzctGScI8aQycpI/fYNWmPJefdZc9oFsIbTtWu/6Z5PxaksJozvkvGz3b29c3l5uSF9z7Vc+bbtc8395jNmnx1aU0d07n1rn56pAasOc4pmx0/SVUz9VbUlJ7cVjDmgj6mFMg7ad8rJXskv4DniOS5Mm31dFZ7e8+/f53vN88S6sF4Zn3EfRsMbDAaDwUngF5UHsk02v+VdVNW+rs5P0SUXVh2kiKT4quoLzq5odDopxqVdgLWpzldoqXlVnDbHshqfo+ZSilmVO3LxWPcv26GPq7notAJLY3u0Pe7/noZ3fX1dP/zwwyZRN6+3tmxpmbGnFLsixHYbnZbhNWXeLK132hoSt314HaE6n7ngqguxWjLOPhqMm3u7vWrf3YqsINfYZAzW9Dpp3VqU9y73ppWFPqWvZs8Pc3V1dfvsLjrPBBer6MUuStdtrCiwOj852jj7gDGaRrDqcB6zrE3VwdKEJpbn1Fqfffg+gx0tGbDv00Wss2+2QjEe+uoCrdl++vSrtvu6I7ywxur3aq4nkb1dya/7MBreYDAYDE4CR5cHOj8/30SOddKepee9skC29dtPsOcXW0U++vPOz7jyU3U+LkuVfs5eFJv9Y9borBXn747kXOU4dX6tVX4jSAnQhVQt3Tris2pbCuX8/HwppZ+dndWTJ09utbUuIg2fwyofCyk684as+XqOXey0659Lu3SRrwCSYHymzsPrcqn8TOek7kW+uQ/Mm6mmko6s07zzWhcPTTj/yvmZ3fh8Pr0nWXPyArt79iJ8oRZjjB1VWefLzD6s8snyHvs0nSfX7X2X3rJm1JUwcoknNLsu2hXNhnttLeIeCKgTq4h1Wy7yveM5YA85V5T93hWRXkWWd9HVflet8vHwd+b/Uuud8kCDwWAwGASO0vCur6/vSIVI2h2Liv0IoCuBYQ3INmBLUR1DiCV8Ryhmv82OsCJkTsnHfgkXQtyTYlY+G5f+SYnVRK/OJ/NY9sqrOO+m84WsfDbAkX/ZDv3eKw9EpJ39B7mW9g9ZU7DfJ5+9sgKw7vYzZXvOS0MjcdRZ1WHPrzRIxtP5GdEOHXVqv3AXHewz5nGnxmzLhSOnraXlfPKZGUN8bjuLgsvtWHPKvUsprCwOe18BWHLMWJ/sA/Ntywht8v/c847ktr/X/vKOxcQWLbO0dP7YVURpkpQbaFS2gu2xjmAR8Tl1YeguP9LRmfy9Kspctd0jtrbsWU5W2r3ft9k+VpYhjx4MBoPBQJgvvMFgMBicBI5OS7i6utpQu2TS88oJuVLFq7ZmuVWAS0eFY5XbxLJdsIXNj5hIHLiR96zCsm067ZKjnf5AG/y/qxuFicqmE5vmukrHnnOPG3SmDJtoPJ9pWnD7e6Hl19fX9eOPP26SupNk29XpHWjQJZjabOLwbJt6OlJn2qAvpE50+8CpOLTHeGjr+fPnt/c4LP++yuPdWtpU7nHnWtL/VQ29h5jfmetcn/w86xjaJYHZl+fTn1wL2s20kpVJ89GjR/Xuu+/WF198cef/OU+0x7npktOr7pqGvRcdnOLk8Tyfq6Ah7uWd2Jn4HSxiqsNcF8ycXisHTTk9JvtvE6LNlV26hc2vPI9rWdOuXe9rBwF2bpHO5ZDjcXBitn9fSsudex501WAwGAwG/+E4mjz6+vr69hsaKS/DjVdJz6sglqqt8/6+UOKUBhy0YmJePyP7YInbkmo6l61J2hFrKSbvxZFtCXavKrP/5wCOFWVbjtXXeC268HeHpVs6zHm1U3+POujNmzf15Zdf3kqikDDnmJ1EDhz0kPc4YAI4JLtzsqNx8NMaVidVmsKJPYRm4dD/qq1myvhMS7ZHjk0frcHaOlF1OJcOdFlZQxLMExK9CbT36KicLOyAl5x779skhzbOz8/rV7/61e14bG2pOmiVBAYBa1NdEImT9/nbmldasjwOVzPnngynf//996vqkExO3zgLXWAaSdZOZUDDMrl0d56AA8YoU5Vn2ulC9JWx25KRwYB+t/vsdRq8A+l89jzuHFdWit979yRGwxsMBoPBSeDoxPOLi4tb6dbfwlV9YmrCmkRVH+pctU1cRJpIqcm+ps6nUXU3TNwFK+3roI8khO6Nw2GzLiKan/GTJE76bG206iCpWkp6COWXNWPPibXivMeSvEsodaVEMhl21a/Xr1/X8+fP65NPPqmqXlpeJY+v1jj765ByJ852fk2kYif3EjIPPvzww9vfkcbpPz9ZWyTinCekcTQU/DKmi+rOBtIsfbW22PnUCN83NZuJCDrqPmsq1ro7rXdlfXC6Tb4nfM/V1dVSwzs7O6tHjx5tUkByD638//aTd/vTVhT2oam39sijnQbRUZk5zYV1YU/x7kj/GFoh12JhcGqTYxZyTmz1oi2ek/PouaA9l/xxYnjVYQ9am16VJ8t2bN2gr8xJR+Ce2uj48AaDwWAwCByt4T1+/HhT7DK1J/sFurLuVXeldNPlrJKg0bgoTV+1LemChG3y6o7qy5FI9hWmJIKEYwnX0ZPMRUqD9tm4rEUnfX799ddVtZWA7A9xiZm8x5qdpbe98kcmdbWfK3/PNVhpeJBHI7mh5XQRW07Itz8xy+eg7XstLZV3kYnMWbaXz6UfFOjM3y1l0j7+7KQ/45mm9EITswTcaUI+E7ThZPkEZ8HWDmt2+bz79oEjWvNaz7mTlPM59i+98847Sz/M+fl5vfvuu7dnkIK52cYqUdp0WrnfrFWY4GDl26vaJnH7rKGJpfbEtY5Ctt8vNRd+//jjj6uq6m9/+9uda122Kd9PvENWGix7NbVV9pNLCDkaFKQ2yruPMa/e4x2xvr8n9qIzM+Gc/o+GNxgMBoNB4OgozTdv3txKDHyDJyWOqX2Av7lTikHys+TjyM6uzI6lSrQ/+xy64pPOS6LdrpyK6YaQ4Pi/NbvUeumTNUgkrD1CbUdAoo3YDp9zYr+PJXDn3OX/gCXGLk+m8+us/DCPHj2q3/72t0tC24TpwCy9p8ZFFBv3sC6ONuto8FgPPmM96BMSZPrwTJ7r/dX5xVxIljny2nV+H+eEmfCZe3MN0Ozoi6MbvQZ57yqCdI+6DnCO2WeMGy0897+jC995550laXjVv+eXcdFeaoy07bJA1qI68mhrcraidFYL9oZz+Li2K6PkHEE0VfrU5abyHPzK7FXvP/ZSjs++NM9551Ojj86JdQRup407788+vK4sm/c+Vg/W0TSTVQcNL60se3snMRreYDAYDE4CR5NHv3z5cmMXT6kKbQ9NpIvGqrorIVjStN3Yml9KCGa+yGi1qq1EXnWQIpCALU3wd8dEwk/GucoZ66Rma3JIcraX57X23dE3F9LNvrrs0MqGnv3xOGifPnYFH/kffXr69OluwdJPP/10kw/X5Q05h8nWgey3CcUtldN/1jzvdc4PUrRZJVILRcL2XkU77Hw3ZtRYFVnt/DAuC+MiuXye5YFo13lkPk9djpPXdOVvStj3bm2DOeqiAVN7Xknp+H/5HE0P7b7qsFfQMuzbAqk9WRM26faKzDyxIoTv1pL5cWkhQBsZHc57y756vxc6phVA/1lvM+Lku8MWBGulXqPUfh2/4eLVoGPZom8ug8a1mV/J/urySO/DaHiDwWAwOAkc7cN79erVJiKpYyThpyPu7EdK+Nvd0vuKb62qZ6eoOkgB6dMxW4b9cfYZVm0lEDNf+PlduQ6XZ0HidT5b1ZZJw3brvQKwq8inzncHrIUyN9yLNJgSnnNlXr16tdTwLi4u6oMPPthoaSnNIrkhzTmfrFsXcpiISGOM3Gv/aY6dOXXxTu7h78zLW0WB8nzGl1oh7a9KWAF/XlWbnNfOp1F114Lx+eefV9Vh7zx79qyqtr68jruR9ViVVer2kLUCW346/lzWmnN5fX29G2l3cXGxOTc5ZlsizNXpnNvsJ3Pr95mjdTse1lUZLUdvVh3eM47OxVrUxQ5YG+cnc+t+5J6yNYBz6kK0uVe5h/VxDqmtcRmNDKzR2aKUn9sa5YhZvxOqDuufe3QvLzkxGt5gMBgMTgLzhTcYDAaDk8DRJs3Ly8sNNVGq4CaWNuVO2wlVJXeiqsPfM0jGzmHT9nSBLpjBeJ6pnUxEXbU1B6wSXO0gzmtNzOsKwTku+oZK7yTeVQmlBO06kIe1cAh3tsc4nZTfkVQ/FFDTVR3GlUEEtPfee+9V1ZYaqwsmgnoJUxxtMGYnaGefWVMnbWN66gJrvO6sg+m7ujItDj/HnGM6ui4wyOHbtGkzZdU2OAWTmQNgutB5Ew3YBeGgluybyy0B5i/NsA5q20seZt+46namQzkgw+ZJ5jTTUlaV2oGJ4XOfOMCKuaaEkYmzu/bt5jGJRn7mSuoOZjHJd/Z/FbTSlfzyO93vKJeGyzV1uzbl730H+J3PPax1uqToo/foQzAa3mAwGAxOAkenJfz0008bMt9MsrVzHWnZ0ltqT6uyEkgKlky7lAaHPqNBmBQ57/dzGIelmq4v1m5MkJufo32Y/NhaWkqQSP0OC/a4O+o00z85/NzlW/IehxJ7zvcCee4LE765udlQFOW4VpqwtaqUFNHW0RicuGpKND7P+WCtvFe759Ge6acIr+8CQUzPZYJmU86RkJz/s4Zty0JKwPyPnyuS9C7k20FmBvsytQLTbJlUwAVws/+rvxNQGgK0mQy2WAWROcCuSzx3KosDwvyOqdqSrDPHnPWuJJjPyar9Tnu2tYt1WBHud+Oz5aqbC+bW7WbaS4LUjqrDWbbmvKJU8+9Vh/EmIUHVXU25o66b8kCDwWAwGASO0vCurq7qX//61yaxNaUBS9RIz0jgneRIe3yrI2XYf+SE0ASSgDWHPX8VWKUJJJzIaslklQpQtQ17t2bnxNequ8SoCUufe2S+9rc46b8Lf/ece5ypuXZ+vRUo8YJE2FGKoQEwZrR0koqtMeTvH3300Z1rV8nq2VfmjP2W2l+23e2d3/3ud1W11RxcliifubJymOqru8YaDG3R565sE+3ZZ+w9lNqTpXITeHfpCqbmAiYDTw2Pe/L9sJLSz87O6smTJ5sw+7QOrPaiSTJSU3AKiTV6p/OkRcSWD/vjGGve45QtYKtAak1OQ1n51vdiJexb9Rq7UHC271QC0xTm3vG70e8bk1nkNat0K5doyr6Ah6YkVI2GNxgMBoMTwdE+vO+//35DvZRSjJOokaKQWvaiCy01dCVd6Iefhx/CEt2eFGuCXNDZuJGwHe3nqEbTRSVWRWrt08t2DWuJpgnK3+2jdNJ053MzeTDwemYfuoTSDhcXF7dSOfdkeRH7Rdy/jrjW0blIhCtCgD0/0ioiDdqw/MxEvC7EmfA6WDtwtCTaY/7OnDBe+31Saja5u8fjvdn542whcQRhV5DTJV185tPXb8vFTz/9tCupZ3S4fWBVh/k34QP7oaN8WyXze++7CHLVtvAwcFv5uckK7IfvYhSs8dgK0tHtuS+m83P0cVdair7Y7ws6a4tLqHXUZVV3ySaYJ0d0rggPqnpf+Iq03hgNbzAYDAYngaM0vMvLy/ruu+82pSLSLo5UZ3u1oyX3cidMlOyItJTiTNpqadl2a8bRtefIqpSa7buwndoSSWoWqyKRgL87ezgwdZCl0JTwnJ9iybnTYFcRYytKo6qDZJiEyispHR+ex5rajIveWiP2vuv+hzbmkjT2A3ftO3qRtU2tkHs6X13VQYPoKKxsdXCbHR2V+2LfOOuSkZbWHHwm2Nedr9q+Iedwdbm39t2tShjl/qb/nNtXr14tpfSbm5s7xYU70mu0R2vT9JMo2q7k16oQq4nZ07phsnJblkDnq3YurfuR7xJbNUyV6Ofl36ui23v0Z36eNcg9Img/x+9X5wMnnNv9kMjVzNsearHBYDAYDAJHM61keSDnR1UdJGyTzKIFdP4qS8C261ryS1+Acz9MpmpNrGotpZhlIiWS+wisu+f4ee6jJfuUBq0FWuJxUcU9ydWRhJ3fx741l6PppGr7Un7++ecH29JdZLXqkH/mqNWVtpv94VokeQifvV659mbu8Jzy3PT72CfsyMcuYtH+RGuJXuuU0lc5qvaX5Vo6n8z3OHcv58Qag9ede7ocVSRuxunozC7K0ZHKHWBaYd5McF11WEOfD947WBI6DcjaoH2rnf/aZ9p7pist5UhOR4Fag034HWFrQXc+wcrqtcfS5P280ob3NH3PG3s0/fZeAxc8Zj4zRsGWmdevX48PbzAYDAaDxHzhDQaDweAk8IvIownxtdpZdTAlEbwCwStmIRLQO5oe2jNxssOeu4rnqwTtLk3AJj47+Z14mu10teuqtmaqNEusTAo2T3SmLAeT2DnbmVo7KqR8Lvd05NiMwxWvu+TrFcFwB8xSNoMnJZZTLWxGow9p3rAJBPPZxx9/XFVbSqQudcImR/Yfz02zq01xPJegkS6x3uk7Nuvb9JMmTpusOtKAvK5q62pwoBV99rnKPjlYhbngHOcaOGWBOaBPnPlcC5/XvaAVqMW69Xe/TQDg1KN8d/B+wXXBPNjl0NGE2T3hxPaObMCJ2av6ex11oqkMV0TU+S520JL76nQFj7GqTz/I6/Id6feOr+lMqE6od19Zo3y/Ofl9Es8Hg8FgMBCOTjzPqtZd0IrJR5Hq+AaH7Ded7CvyYaRJHNI4q1MiQVrdC+11Hy0RWMKylJvPtBTmQAD6k8/nf3a2rqh48nkr+ikTQOd8ghUFTyd9WpNzWZq9aumZ7L1X4uXx48cbjTvnGGkOq4CDKxhjt3fYd04Eh3LsxYsXd8aX7ftvS+sdce0qxQTkHnWwioMGLN3mPvBedLJ0p107Jchllnhul7RsqZ920dq682VNgud4LUg7yTnpaK0M0hI4/2idGfxgzRs4QTstCtzP3H711Vd3riUAz++HqsO7yefewTddMJmtNnvkyt4TXn9TcnXpUF0ZqPy7S3R36pYDbJxaUXXYx1536O+60mku48Z+8Lsy180J7Y8fP94NwLkz5gddNRgMBoPBfziO0vCq/v2NvpIgqw6StsuaIN09e/bszv+zHWseJmLt7MaWmk0B1tFRrXxb1jC7ooMOvbW93wVB815Lf5a8Olu0x2ztoEsit38EicjSYOejdPK3/ZsZCs6Y07e6R4n2+vXrDf1Q+nXwg7GHXCqkS5SlD+4/a0c4Ov3O5zlB1s9z6kFea8ol+zhzPdyONStbJ/Je+6SsBXQh5mguLnfEnOxR6/E/F8fl5z/+8Y87n+fY0Yhs+XGh5fw9tbQVLi8v66uvvrrVwEBnoXBJqZU1p2q7LiYr972ZnuI0gZV/rLMS+Sx15yjHnve6T7Rv4o0cq8+kE96zzc66lW0BF2HNvgK/o2w1ys+Y+1Ux5JwT9kF+P4yGNxgMBoNB4GgN7/r6euMDSDu8izM6Mozk4i4yyBIJNuGHlLEAltZNAZS/31eup4vKWhV+XZHIZrvWrLooKd9vO7sl/r2IUkv/TrBPjdbJvEn5lG12CdWOlOyAZQB/bBchyPqilaFN8Ez6lP32mq18uCSk4x+s2voc7EvtpEaP0T6iLmqWfrsgrxOcO7/mqtSK1zTnxNd6j9ovnGtgyd5z0xE3W5MDJi/oPkvqulW03Zs3b+rFixe375ZuzPaL0S5R41iWOtB/a/YunNu9f7xHHIGdWJVR8l7dO8tOXt8jbLcG7zNiIuqub/YZeh/sFV5lvZxU3vm3PQ7eR46+TrCvurleYTS8wWAwGJwEjtbwqrbfxikVEJGzInPFx5Lfynx7d76lqm20XFfE0VQ/eY2xsrOvcpxyHKtCiw8tMZ/XOuckpUVHnVmjYz476cb0PysJKNfR5Y2sxXd5gN4Hl5eX91L8WKtOMLf4grDVI6V3hUTZb53PJPvLOMjPq6r64osv7oyjy2XyOFdaE3OM1Jlak6PxnO/lfd9F6VmDWa2P+5vtO5LXkn/+vvIvMYak9/PYnZPKGqW/x/vpxx9/XGp4V1dX9f3332/mMTU8+sMY2SPMBb6h7Lev8f87HxdYxQGs1in7uyoI3JGjO67A2qCtQ/m58zBXJX/yee6b3zt7+85zYOtQF9lsujhbV+xLzjFnJsCQRw8Gg8FgEDhKw0PS2gPf3khJ9qkgBWY7SPQuOmlNhUielEisvdj31UU3OYfJfgqXBcnPTE7rHMKuFErn/3Kfsj85LrNYrNhIOh+lJSFLh+lzsY3efiZfl/dntO59ktaeNkN7Jo1mr8DYkeNYzYt9HV2eEn6958+fV9XWStAx1rgo8aqIb66HNQVL7bYsdNqao9bMymLfctVW0rYPxZpYN+YVKTt5eVWH9SEq9L7Cyt049qwDRPjaP5bvAWsc9nHRtw8++GDT/qrEj8vb7L1DHHG7l+NIe4OHzpkAAAPxSURBVOxj+taN36Wc3K4jr/csLI74dMHlvMb+Plu2vB+rtu9vMzF10eq0gybHtY78xcqTY88yQR1pdofR8AaDwWBwEpgvvMFgMBicBI4mj76+vt6YozLsGNWaJE2bCTGNpDmNUHHT5Zg2qgt48D1WubvgFZvBVrW5OjoyBzQwDptFEx6H+24VPZ+9Cgu2OTHNZKtq6DZhdISsHq9DstMU7dpo9yV/np2dbYiSu5B4Jyq7tlneY1OPTcyrRNqqLf3Y559/fuf5DyHzXaXB5Nw6HH2V1O/9kPe4RporkOfzvP42NTnBvqOlY21NMsFY8lyZZII+ca4xRaf7wcQDe0FfkNaDrnaeTbx2qXQpGN4jXMO7y26K7mz7XWK3QZ4rmzL9HnXwVN7vOXZiveuC5mertIcuSND3HJNKZTcIffc8ZwL/l19+2Y4DE2ZHeOH0lCGPHgwGg8FAODpo5Z///OfGkdmFKFtqXJUqqTp8Y7u8iKV3B6JUHSQA7rHTvXOUWmpxeK6d11VbTa4L6c6/uwrrpsFyAm1KYtbG7AxfJZfntdZKHVK85+C2ZN+NyxryXvLw9fV1/fjjj7fWgK4K9nvvvVdV2z3E2nJvasoOqrAk7FDvTjsw2a33W47Jmpa1po4A2tIrcEBKR/J7H0m1tbmEA2ocRNAlAluDYw2cnJ3n21qOtVITAVdtNa49eij2TmoGVT0RuNMQ0FT3SLa5hr7k+yzHkRpqRwOXcEmo7C/PZY6dUrNn9VhZCRzw1fVlRVaRFIqrMmSrVLS0LFk7XBEq5NlgnVbpSqQm5dxjFVhRNu5hNLzBYDAYnASO9uF1IaD5rcy3OVI4Upml5k5TcLFOJC2kCNpMaYP27afqQpfdR0vPDhdP6WxVJmOVmJv3mj7H2llXkNWaHD9NruoxZd8cKm0NuStO6bE7lD7X2oUx94p4UuLFc9BRsDkM3P6Rbp7cP9v+0RJzjVcpBX5uJrrjl1pRIrmtvMah85baO/8YWPn7+H93z6rECs/jvHX+OI+HOaCP6cu1BuGisZ2GZH/V+fn50joALd1eGo+Jinmmy/bkPjc1oong/e7IubHFwNp654/be28m8h5rRzzPBAfWcPPaVXFsjyWfZy3Q76w937j3kN+ZmWLga2z94ryldcRnoNNqVxgNbzAYDAYngbP7qKDuXHx29j9V9d//d90Z/D/Af93c3Lzvf87eGTwAs3cGvxTt3jGO+sIbDAaDweA/FWPSHAwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUlgvvAGg8FgcBKYL7zBYDAYnATmC28wGAwGJ4H5whsMBoPBSeB/AWnjK/GRw+JxAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Xdld3/nd72lWqaQqUVKpZk8BY9puuiENoQnDIsS4IQFWQtwYiMFuIJCETocQcBgMOEwJYzCGxgQHAs5ihhgazBBDiOMAjRubwTauKtUgqapUKqlKpaEkvXf6j3O/9/ze5/z2effKsqsqb3/Xeuu+e+45e977/OZf6bpODQ0NDQ0N/71j5eluQENDQ0NDw4cC7YXX0NDQ0LAl0F54DQ0NDQ1bAu2F19DQ0NCwJdBeeA0NDQ0NWwLthdfQ0NDQsCXwjH7hlVJeWUrpZn9/Jfn9k8Lvnxauv6mUcvQq6zxaSnlT+P7JoQ7/PVRK+bVSyl+9yjo+u5Tyf13ls6+dtWHbJvfdhTY/NWv3b5dS/s9Syr7kmQ19X7A9ryylfEnleldKuWuZ8p6JmK2nB5/udiyDMP+vfLrbkmE2ptxX2d8nX6P6/kMp5T3XoqxZeV9dSvlbyfXvKKVcvFb1XEuEMX/jgvevllK+sZRyfynlYinlnaWUz/pgt/ODiclD8xmEs5K+UNI34Prfn/3Gw/tbJX3/Vdb1OZKeSK7/Y0l/KKlIuk3SP5f0W6WUl3Rdd++SdXy2pE+T9D1X2cZl8O2SfkX9XB+S9NclfYukryql/M2u694X7q31fQqvnJX9b3H9VyV9vKQTV9Hmhg8cJ9SP/91Pd0Mq+FZJPxy+v1rSqyT9r5LWwvU/v0b1fb2kvdeoLEn6aklvUb+3Il4v6ReuYT3XBKWUT5X0uZLOLfHYd0n6CklfJ+lP1J/Bv1RK+fSu63772rfyg49nywvvFyR9QSnlG7uZp3wpZbekvyPp59UfunN0XXfVm7zrundWfvqLruve4S+llHdK+ktJL5X0hqut70OAe2K7Jf1CKeX1kt4u6WdLKf+jx3Si70uj67qTkk5eq/KuJUopq5JK13VXnu62LIpSynZJV7oFI0V0XfeUpHdseuPThNkene/TUspLZ//+t0XmpZSyc9bHRet7//KtXB5d1z0g6YEPRV2LopSyUz1x8U3qCfVFnrlVPZH/jV3Xfd/s8n8qpXy4eiL6qqRbTzee0SLNgJ+UdKd66s/4HPXt/3neTJFmEO98WSnlW0opJ0opZ0op/7GUchueXVSsZ05oe3j2plLKj5RS3ldKOV9KeaCU8tOzxTNvm3rO9NYgtjmKMn5o9uxTs8+fnC3aiOeUUn61lPJkKeW+mehhofnsuu4vJb1O0oslfepU30spz5nV/9CsPfeUUr5/9tvbJH2SpE8IfXnb7LeRSLOUsr2U8rpZPZdmn6+bHea+Z5m5enkp5XdKKSdn4/DOUsrfZ39n5f3LUsrXllLulXRJ0sfO2vBVyf2vnc3fDYuMZ3juS0spfzIT/zxaSvmxUsqNuOcfllL+aynlsVm/3lFK+d9wj8fgK0op31VKOS7pKUkHwrh+XCnlp0opT5RSjpdSfqCUsisp45Xh2ptKKQ+WUj66lPKfZ338y1LKlyd9+bTZeF4spby/lPJq7qsPFUopL5315bNmbTgl6b7Zbx8xG4ejpZQLpZS7Syn/ppRyPcrYINKcPdeVUr64lPLts/V9upTyS6WUI5u05yFJhyW9Kqz7H579tkGkWUrZNfv9G2br74FSyrlSyi+XUm4spRwppfzCbB7vK6X8k6S+58/a/+hsPv5frplN8C8kXZD0A0s88zL1DNG/x/V/r37vzMeo9OLd98zG/7FSyh+UUj5zibo+ZHi2cHj3Sfo99Sz1f55d+yJJvyjpySXK+Tr1nM2XqBfvfbf6CfzkBZ5dKb3ezCLNb5N0XtJ/DPfcKOnirJ6Tkm6R9E8l/ZdSykd0XXdRvSjnJkkfK8k6gKckaXbAvn1WzuskvWvWzr8taYfvm+EXJf24pO+V9FmSvlk9ZfnjiwyEpF+T9H2SPkFSKp4opTxH0h/M+vmN6jnaOyR9+uyWr1A/fquSvmx2bUok+u8kfZ76sft9SX9N/WZ8rqTPx72LzNVzJf2cpO+QtK5eXPvGUsrurut+WBvxSkn3qBdFnZv9/0uSvlRB/F167u9Vkn6m67rTE33ZgFLKd6if6x+Q9M8k3ap+Dj+qlPLXuq6zmO4uSW+UdFT9/vssSW8ppXxG13W/jmL/hXox+peqH+OoG/pJSW9WL6b6eEmvlXRaPRU/hesl/bT6uf8WSV8s6Q2llPd2XfefZn35SPUi6T+Q9HL1a+8bJO1XP85PF35Y/X773yX55X6r+rn8GUlnJD1f/bj9D1psX3+TpN9Vvz5ulfSvJb1J0t+ceOZlkn5T/Rr+9tm1hzep59WS3ql+n9ymft++SdLN6iVYP6R+D3xPKeVPuq77HUkqpTxX0n9Tv7f/saRTkr5A0q+UUl7Wdd1vTFVaSnmhpK+R9Kld162VUjZp5hwvkvTEjGON+LPZ50dKOlFKeZX6/fxaSf9V0h5JL1F/hj3z0HXdM/ZP/SLs1C/iL1G/oXdJOiLpiqS/oX5Rd5I+LTz3JklHw/e7Zve8DeV/9ez6LeHaUUlvCt9dPv/OSHrZJu1flXT77P7PQfseTO7/FvX6i4+eKPO1s/K+GNffLemtSZ9fXSln5+z3N0z0/SfUExS3TLTnbZJ+f2Lu7pp9/6jZ99fivq+fXX/xsnOF31fUv0B+VNKf4LdO0nFJu3Hdc/uJ4drfml37uM3mC2O9pl78E69/wqysz96kzW+V9MvJ3P2xetFrNq7fjOtvkfS+pIxXoh+dpE/BOjgl6f8O135aPcG2J1w7ov6Fe7Q2Dh/IX1jX25LfXjr77c0LlLNNvX68k/TCcP0/SHpP+P4Rs3t+o7Ieb9yknockvTG5/h2SLobvu2blvVvSSrj+Q7PrXx2u7VB/xsU9+VOztbsf9fyepHds0sYyu++Nm7U7efYnsrnWsI//7uz7GyW9/YOxJj4Yf88WkaYk/az6zflZkl6hfuKWVZz+Gr6/e/Z5xwLPfqV6ruxj1VN4v65eB/ZJ8aZSyj+YibWeVP9Svn/204cvUMenS/rDbjFd2q/i+59qsX4YJvWmdEKfLuktXdcdX6LcGv767DMTkUi9aDRi07kqpbyglPLmUsoxSZdnf69WPta/3nXdhXih67q3qTeK+LJw+cskvavbqPfcDH9D/cvrp0op2/ynnjI/q6HvKqX8z6WUt5RSHla/Pi7Pns/a/Evd7FRJwPl/txab//PdjJOT5rq+9+HZj5P0a13XnQ/3nVDPcU+i9JZ928LftTxjfjGpb9dMXPjemSjxsnruS1psz2XjKC23lxbBW7uui9yxxatzDq3rukuS7lVPJBsvVc/VnsPaeqt60eIu1fEq9ZzYQnq7q8QfSvpfSinfW0r51NLbVjxj8ax54XVdd1a9COoL1YszfwoLaBE8hu8WEU4tGuN9Xdf90ezv/1EvVrlHvSWTJKmU8o/UU26/pV7U9FfVHx6L1nFQ0qLm71lfFqnD8KaasqJcpj2bwSIO1vcQfjcm56qUcp36g+0lkr5W0ieqJ0b+rXrCiKj18w2S/k4p5WAp5U71BwzFoZvh0Ozz/RpevP7bp34cVUq5XT2RdqOkf6RepPux6omnbO6m5iYbn6zfRCam5do5IumR5L7NxHZS37/Y/29c4JlFkY3Hd6vnyt4k6TPU77mXz35bZD98IGfCMuC4X5q47jW+qn6tfKnG6+pb1Z/fqZ65lHJA/dn0bZLWSikHZteKpB2z71MqrdOVsr1PPW4/ql7U+onqz73HSik/W6Bvf6bg2aLDM35CPUW2ov6F87Sh67qulPIX6jlO4+WSfrvrun/qCzM92KJ4VL0e4UMBK71/f+Kea9keb5CbtdFU/mb8vig+Xr0h0yd2XTfvw8QmrnFKP6FeD/NK9Rv8vHox0jI4Nfv8dOUvFP/+UvV6sM/rum5OSJRS9lTKfbpyd53Q8BKPOLzAs1+mjW5C10I6YGTj8fck/WjXddalqZTyYdewzqcNXa9ze1z9mfe9ldserVy/Wf16/u7ZX8QXzv4+Qz2xleHPJF1fSrktrlX1HKM0cxeZMR2vl/T6UspB9Wv8u9XvIUptnnY82154v6mZcrrruj/b7OYPJmaimhdpo+n9Ho2NNr44efwpSRnr/1ZJX196374/uSYNTVBKeYF6qvid6nVwNbxV0ueWUo7MRFoZntLYDzLD780+Xy7pX4brr5h9TrUjg18Sl31hZvTzt5cppOu6J0opP6X+oL5OvZ5oWV/E31RvzHFH13W/OXFf1ua/ol7X90xybH+HpJeVUvZYrDmzyvsEbeJX2XXdez8E7ZMkld4CY7fCeM6Q7blrjdoevtb4dfVSjHd3S7hhqFelfEpy/RfUG5f8K/VGcTX8mnq99CskfWe4/gpJf5SdB13XnVIv1v8E9YTIMw7Pqhde11u6PV2c3Qtnejmpt7L8IvXUzteEe35d0j8vpbxGvYXbp6r3FST+XNKNpZR/IOmP1Cu5362eivt89Q7tr1OvT/gw9Yf4l8/EusviuaWUj1NvQHOTeqrrVeopw8+b0BFJvQXbyyS9vZTybepFdrdKemnXdV8Q+vIVpZS/p55zO5sdel3X/Wkp5c2SXjvjwt6unkv7BvUvmXfzmU3wdvXExetLKd+k3qn462f92r9kWT+kQY9XE2fuLqVkc/n+ruv+v1LKd0r6wdL7Kf2uegOP29Xr594405v9lnq93U+UUr5bvejwm9UfTs8k9cLr1K/b3yil/Gv1otJvUC/SfDqtNDdgJmV5q6RXl97l4Kj6g/Z/+hBU/+eSPqWU8jL14t9Huq67f5NnrgavUa8Lflsp5YfUr5Ub1LsU3dJ13cilRJJmhMrbeL2UcknSiZn+2td2qrdc/pGu675y9vyDpZQflPRNpZQL6s+iV6gXw780PPsm9UT/O2afH6GeqJ20Hn268Kx64T3NiD4spyW9V9Lnd1335nD9WyQdkPRP1Mvhf1e9efM9KOuN6nV73za7/z711oxnZtTR69TrpQ6qP2R+R4PMf1l83ezv8qzdf6Zer/Jjm71Au647OntZvk692O86Scck/XK47TvVGwe8cfb776puDv5K9WPxJepfTsdnz3/zsp3quu5kKeVz1ItPfm5W1ver1zFsZprPst5VSnmfejPsP67cdqN6wyni9ZL+Ydd1r5mJuL9y9tepNyX/bfXuHOq67s9KKa9Qv05+RT2B8LXqD5BPXqbNH0x0XffnMz+vf6VeonJM/Ty9VL315zMJXy7pB9W3b129gccXSfovH+R6v0Y9cfRz6jm9H5m15Zqi67p7Sikfo96K9TvVE8CPqn8BLeqCtBmKeoJ4Fde/Wr01+j9TL+L+C0mfCynG76sf71eql/Qcl/Rjuoo9/aFAmSbwGxr++8eMK/sLSf9H13U/9nS355mImZHQ+yX9atd1r3q629PQcDVoL7yGLYuZJdnz1VOjz5f0fLoubFWUUv6NerHxcfUBFL5K0kdL+tiu66Z0Pw0Nz1g0kWbDVsar1Yt336dePN1edgN2qRehHVYvTv8D9cEd2suu4VmLxuE1NDQ0NGwJPJMswxoaGhoaGj5oaC+8hoaGhoYtgfbCa2hoaGjYEljKaGXXrl3d3r17HTVbO3bskCStrAzvzW3b8iKn0lJslrKCv2d6x0XuqYH3+nvWLl/brPz4O+9dIkXH/Nn19fXJtk7Vt9n1rE21Mcjavrq6Ov987LHH9OSTT45u2r9/f3f48GFdudLn9rx0qXcrdL+y9nlduXxen+rHMmNcq/9q7snmozaGvHdqbfG3a9m/ZfZKVi/74TldW+szInnOYz0+J7Zv71MhTq2dffv2dQcPHpzPu8vzpyRdvnx5Q51s09S8XI0dw2bPLjJPVzOHNXhsYpksf2rfEJu1Let3rc9xj2/2LL9nZfo88LXV1VU98cQTunDhwqYDutQLb/fu3fqUTxmi1dxxRx9Q/IYbhhij119//YbG+KXoTrPzkrRnz54NzxixQ9KwmONL1QvdA+N7/d2bIpbNjcN7Xc/U4V47tFy22xX/d7nxBRE/44LkxvUL4uLFPiUaDxV/Zv1g/xY5lDlP2cvH8+Byjhw5ou/93jzk36FDh/R93/d9OnbsmCTpgQf6NFtnzw6+714rxnXXXSdJ2r+/D5ziw9Gf8Rm2r7ZhY5/9jPvK73FMDV7jdz8b558vYa4RjnUcY7bJ7fcYZAcd62U9XP+xD7xnkRetnzl/vk+ucOFCb+z6+OOPS5JOnepDiXrtStLevXslSbff3scwP3z4sL7ru+Zx2Dfgxhtv1Gte85r5OfHkk33Ao/vvHwKbnDhxYkMdvoeEVfbS9T3uM1/UHOs4DhxjjtPUQc2yXE+cD+4xw21zm3bu3Lmhjvg/943LdD1x33F91c7C7KXlMWDfn3qqj4iW7Stf8xy4bV5Dvh77deDAgQ1937dvn37+50d5wFM0kWZDQ0NDw5bAUhxe13W6dOnSiEKIHFeNijSmKFJSM6QuM3EpKWBSERmlxXtrnxlXmFH90piznBL9uAyXyetZG8gd+HdTdpF6nqIY47OmnmL7yX1wvjIO3Th79mx1fLqu08WLF+dcwBNP9PGZTf3FNtQoYbclrgNfM5VKLtHI2s3x53cj9okcNalacvHSWMrA+WH9ERTn8l7/PrU33EZyBYap6az93JORc10U2bh6vZ47d26h573OI2JbPL/kWn2P+xPXgdvANUsJCMuKqEl8MtQkVtxjcc4pJo7Sjazs2D/fW2tbtt54bno8a+dbLJPrfOo9Ybhcn0XkMH0+xHriuSX10oJFxdKNw2toaGho2BJYmsO7cuXKJAdBSmv37j6DBqmJ+LYnVU4qxmVlnFdsmzSmRKZkzaT6a/qL7F5S9EQm7yfFyLbGZ8gZcwxI+WVj4nGt6ShinzwftX76epy3TL9T052tr6/r4sWLc72OuYo4P+SWCK+LXbuG3Jz+3+uMXFONU87uJSeS6Z1Ncbqt5hJqBhsR5NKNRShgrkl/mvPJONuaTpJtjdyT14qvcUzMocf+1aQBUwZErsc63AsXLlSlB6UU7dy5czRuUTrAvUVdasbNeA1uxtlzL8byjZqdQZxTcuu1/T9ltMRPSr8yvTzPG3JtsS+0N6hxbZm0gPo2jlEm/SC3xvrcnzjXXuteo8sY/zQOr6GhoaFhS6C98BoaGhoatgSWDh7ddd1IuRrZ2poCnqy4RVDSWPRGEQJFjVGcwrbU3AUiq0/W3qi5K/D/rIya2DL+z7a4vxQR8/nsO8W+maiRZsm+TgVxLJ+GIVO+TxzztbW1qvLYIs1oXBOfjW2giMJt8Zqxu4LUmyRLg5l7tiZr1y0OpajFYh2amkuDSI/GFpmJfw0UbRmcp3iNv3nP2FQ/7if2naJGmolHYwyKmAz3y+MdDV0slvTceoxqBjaxHrsPXLhwobp2VlZWtGfPntF+iWuxJvKneC2K2WquUl5vNRFgvObPmnFP7JPXmz/pJpCdnTz7amOUGXp5jWTnWUQcR4q/XS/PZp5pWZ/dT46JXdcieG4u4k8bVQSLijUbh9fQ0NDQsCWwNIdXShlRClm0jJrC3JRoRu2ZajQFSqqWZq7xHtfr8k3dmNrMTNlJ0ZO6iPXUlMM1Q4DMhNlttbKVVGkcExqJuD80C6YSOf5PZ05SvVPKeJql+zNyaO6j+3Xx4sWq4cH6+rrOnz8/aRhEzsdzaYrQDqf+lAaOw5yOyzV1SeOLzNWkpjj3OozrgPPg/nhc/ExmtFQz6uC6ywy63D/Xx35HrtfPszxyeK43zimNFWpm/rE+jkFmkBTrj2MRjX9qa8ccHt0IMgkM17jHh3MqjTkQmsRTahPntOZ2xf0Yx5b7kc9kWDSyjsckGiCRg+TeyyQK/o3ruOZCla1Vri+enXE/1aK/cK9EoyyPo6U6y0SQaRxeQ0NDQ8OWwFUlgK05Tkt1c21yVVEHQH0I9SB8g2emt+RITL1l+gO2wc+YGyRVE+8hFVNzls/Mkal3q8XHlIZwWuSIXS8pvshRuh+kat12mrTH/31vzeE06oqysG01lFK0srIy4jayeTHldvDgQUl9aKn4GXUApuDJyXn+qdvLdDg0KWe/Mm6Nc+r1nj1TCzdVc0CfCt9FNwT3M6433+PfOO9uq9dMdPMgJ1fjXCNn4zH2uqNe8cyZM5I2ctLkkCP3T5jDO3369Ia2ZWHCGKaQ3Gdcv3R65r6YslUgt1lzF5qSiBDUm3MMYn2UhmR2AO4Hndb9LHXYsY2UelmiUNO1xfI5P+SC43rzuiJXyLGK69vzVRvHKTQOr6GhoaFhS+CqODy+wTPuwm9fUxemyk1txmco66WuwVRZJs81tVCzzvPvkbo0FUgqxc+aIo1URaRKYv9qDuiRWq3pfdwvU0CRczGHZ8rKZdhxm2MR6zMlbA7W/SGVnlGD1s3Yeo5WaLGejJvdzKqKVGxsAzk7j4evk4uLYIgxf6dzcWx/psOSBqtDSx7i3DJAMsN2+fcsADTXGylUr4/YHnJUtPDL1h+pZe5JWtzFOaP+l9Iccvz8Xxrmidx1Fh7K91y6dKlqReiABtR1RQkFdUq1NsV54bxn3HJEZtXM+Z+yYmRAZJ53PMuycmpnFp2xpeGco9TL13kuScPa8f6n/s37hxKuOBbet5R+eGxiG/kb12bGxfn5TAe5GRqH19DQ0NCwJbAUh2dZuilfvu0j/Na1RZ05B1938GBpeMszPJLLnwo9ZkrEqFl4ZtSlfyOVxj5EMCxZRslJGykf/+Z+mGvzp9sT9Qv0NaKs25/mhmJ91nVR72NOj5R/7Jfny9SgOcqa7iDWs5m12dra2ij8kKnN2E6GCaPuIeO4uBYZkihbq7UwTV7fXqNROuBy4vrN6susT8ktbRa8XBpbWBrk1uMzro/crj89Zt47keImh0LduOcizhutj902r29T/FFXTz3zFLx2qFOLUpdaCDb6aWZ+n1775AKpn4tr3/NP3V1mDWr4DPSztWDOiwR1dlupu4zz4n3Ee41MYsZx5FlZs8CUxvo/Sqk8/7E+Su88ntT7xj1P3eOigaOlxuE1NDQ0NGwRLMXhra6uat++fXOKLqPOSCH4bWwujhZi0pBAllE+ar5vkQIyB+LfTLWSo8woEbeNlHUWmYC6FFLcpOwixU3K0feQ0s6sT6mjIYVlajFSdtQVmlqif1SkuN0Gl2+K2NR51kZSt9u2bZuUp3ddN++zxz76c2XcijTMl+c6wslFa/6Q1A1ErtZjRp896ukiXC51qVORdtxHcgrkRukHFttd8/s0hRzHrKaHc3/cv+PHj4/6Z5Dbpr4p+kKSkyAHRp1R7GNmrUs4aL3PDp8H5hxi/91Xj7nbmVnAUrfpZ6gPc9lxPVD/7nq914zIVXHvev9xnWVWwQyCXQvyHp+lpWPNcjlLOFuLbkXL/JjAueafTR1ilI4wga2lUzzfsr3Ivb4IGofX0NDQ0LAl0F54DQ0NDQ1bAkuLNG+44YY5227z9yiCoXOw2WpmuI6s92OPPdY3Bs7dvodGLVEswfLosJ05ylqUQJEsFajRbNl9dHkUJXksjCiqo7iVCvtafr74m5+lKbXnwuMujcUSFNFmYlfD8+T+3HzzzZIGcUQUg9K1YCqIK83KaSIvjRXzdMXw81G8QeU2jWIYwiqKNC3aicZC0nT+RRoNURyZBWNwv+jaQrERr8d2u+/un9eBRUqZabn76md83ePpfRfH0/cwZBndSU6cODF/huH8vAcpZswCqmeh8Yiu63Tp0qV5P1xP3GM8i3z+0AAqik5vuummDfW43FpIrkcffXR+L406GJ4uc08xarn0/Ew0eHE/3FePm0W1hw8fljQWH0vD2nB/GKrP6yCql+hyVgvG7bLimmaQd7fF+yw7K7323FY/YzVXls9wkQDtNTQOr6GhoaFhS2Bpt4T4RqdRiTRQHlZCWjFO8/Esu7evmZpZxMGQSnXfW6PepYGypZOjqYnMmduUCMsztUEKL1JptbBTdI7OUhi5fJroe4ymUq+wfhozRNQyddsoxNRwpAbpNrJ79+5JDm/Hjh3zvrpNWUBeGluQO4vGKy6PHB0pUBqmxHs8pjUuOsK/MUi425xlEa+FqKIBShaAgEYKrCeTYDArOw2q3AdmHZcGDt9j4++eY3P4cR0cOnRoQ3mWCvjTcxQ5SY+1+3H27Nkq5V5K0erq6vxetyHuMXOV3vf+pGFallqM3LnbyaAL0SCF93B+ptID1bLJ2wgnnjEu1+eq58EckCU7DLEXr7n9PBPpXhbHhymevHa9VtzPyFH6WbeRgecziQm5PxpFuSyf2dL4PJsKPE40Dq+hoaGhYUtgKQ5v27ZtOnTo0EhvEk2UTQmQCmMw0oyaY8BnOkwysHEsl64FTIgYuVBTODQPZhibLAwRA0+bUqWDduYM6f6xfuoupYHa89iSoqduINbHwLb+birJVHvUZ9FkmkGyGf4o3htDZdU4vCtXrujUqVOpDtegPsc6E49x1m7Da8XjRop+KmA2XTAocYjczMmTJyWNuSNy8ZEiZYCBWoCFqTQntcSi7kPcTwxsTTciU+Uez0wPQz0que04JnQXuf/++zeU5XsjR0bdtLnEDFeuXNGjjz46b28WEOCFL3zhhr4znRU58dhH3+ux9DM+F8jtSsO8kwukji3uU4/lh33Yh224l/sy6sn9m/eCOTsGbvAajmdYLZC1y3LZkXOtude4n25btlapz/aY0+k/jiOlN16L3jO33HLLhj7Ee+N+aglgGxoaGhoaApbi8LZv365Dhw7pXe96l6TcMsgUht/itfTyfuvH/021MDSSqSXqf6SBamR9mVWWYWrhgQce2HDdlFcWFNt1MoWQdVy2PKJOMfaDVlK1ZIux3W6DOQuPAS3iIlw3QxhxnKPjse8lNR6D+xLUeS6CI0eOSBrGK0uQyYTAvjfjxD2W1jH6Oy0io0WfwUS41LG67xm3bqrYZZha9phEKp3l0gpwKtV8gXwNAAAgAElEQVQTJRh0imZbY3leq6TSmWIoUvi05DX8jMc3WtqRm3a9jzzyiKRx8AlprM/ct29f1fn88uXLOnny5IhTsYVihPtEDjyTKJHz5SetubNEwLRi5b1ZYmY66j/88MPzfkq5vsp71XNFK1R/RumH73VbvUaYFi2uHdoGeB3YKpd7JguwQZ2d5yALIu6+UvfNlEbxHcO6FwlPZzQOr6GhoaFhS2Dp9EArKysjDiVSCAYpKlN5pj4zitSfpiZM+djaK+MkyOnQxyhaoBm33XabpIEa8ndzeKaAot+NqS9zdP5uSpfU9FTKHPpU0fos/k+OmemWXJbbHuEx91gw0a65rdgf30ufJH+PVLr7Hq2xapZ2DktHK69M92h4HtjuqDM2lU+9SM3yLerw6OdpapbWuzGElceUfqamXhn+ShpzQAymPBVWy+uKqVwoDcl897wXGFDdVLyfjePpNvlZz4HLz6wBvSeYMibTtRluQ7SindLDrK2tjUJURa6dNgLUDWUBp/2/++jxocVnljyWwdY9p77Xe8OSmfg/dYceH49XPLPi2pPGFuSeL/qxZfX4GY8brdOlwerTz/re5z3veZKGdeE5j+c4bSBoJZyFhvTz5kbdX/fDY2PdpTTM20MPPTTvV9PhNTQ0NDQ0BCzth7dz586RtWF8u9asJWldFjkB32vOzveaqvC9fstHqzBTlQzQO+WzQ53KrbfeKmngEjJdEXVC9BWbShdEXz2myfC9kTrz/26DqVBbs7k+c8GxfX7G3JopLFKHkZJ0fZlPoDRQn1kAZ8/LmTNnJqMgOM1LbGPk6jwu1EEZpqZjhAxfM4VoXYfHyePi/ni8pMECzGvD9ZvKzCximXYmkyBIOYdHXYrHgJaPmU6c1pIMzBvHnXuN0SuMzDfR/Xv/+9+/oX5ft9Qjs3pm9BnOdfQv9FjHoPJTaV5WVlZGvl9Z1B/3idaTfibqvM2luG/+zfPt8fK5FFORUddNS2u3I0pRqK/ymnU/3J7or8hUOF7vtALNLGEZYYXRoRhcOl7zuvZ+tyTFbXV/Y//c9zvuuEPSsFbuvvtuScN+juuAwbE9T+6f+xP3oLnn++67T1KfIm1KShLROLyGhoaGhi2BpTi8tbU1PfHEE/M3NXVevkcap4qnPiG+kU2dmaJiMsMHH3xQ0kBNRAr/6NGjkgZKgUlOKWOXBurc5dHfJtPD0aeFlL5B66LYZ4Px4dzPGA+TVoymuE1FOfGrn4n6Rtf3vve9T9Ig637Ri14kaaBkMy6bfl3ud5aw01x1jJoyFWll+/bt8766nMgh0XLP4+/2en1EXYr7at8vWwZ6bdKiK0uuSgtOrxVyflkbvb5cX5b+yuUzHit1iEb8Tqs1jxfHKOpFzI1TX04fUkZ8kcZ6HcYmNVd87Nix+TP0jyXVzgSr0lhHuLa2VuXwLl++rIcffngkWYprhzpnl8WIJFFq4Hs830x26rbZmjuec973vkadPn1hpcEWgXo36/a8djNdPq1CaUGc+cVxvqkD9XzEPeuz9o//+I83tNnj5vaY47v33nvnz3qsOY4ee647aZDE0F+WMWMjGAXmzJkzC1tqNg6voaGhoWFLoL3wGhoaGhq2BJYSaa6vr+upp56as9dmUaPIjtmiLfqwwtbiqSgK/KiP+ihJA0ts8ZxZfIvm7rrrLkkbxYVMGWQ23uJKi/Oio6zZdIv4LLKweNRti2JXOpK6f+4XxVXxWYshGECbaVWisYJFsx4Ti5I8Jm6Pn4miGiu/fS/Tw1jMHB2O3X6KNClKi64hFil4bCneJVZXV+eiGLc3PuO6/ckAspkIjqmO6CLDoLIWBcffGOCA9WTBbj22Xs8Ws3vtxjZ6nNgPl0VjjyzgAcM0sY1R3OZ7LS6iSNNzyb7ENniN1ML7xXnjuq6JozK3Iq/fy5cvV0Waa2trOnXqlO68884NfY2GWnHMpGE+aIgS14ONK9x/i+cs4mSm8MyIzX31nrvnnnskDeMW++Q5s7GFx9L7x+2I9fh88f73mPpMqQWxiHVbxO3+cp1FQ7T3vOc9kgYVAQ2OXI/FsPGccxvdZt/D4BhRZOtyLSL1sx5Pr8O4n/y8+3XmzJmR2qiGxuE1NDQ0NGwJLMXhlVK0srIySsyZvX3NCZkSMSVnFwBzWdJAjbkcGhx8zMd8jKSBaoqckCkCUy1M/GrKIRqg2DSd6TMYTDrWQzcLo2bMEikOcw5uq9tkCpwK4TgmLvfFL36xpIHyyowjDM/Ph3/4h28YC4+f64nUJ0OmxYDQsT/RYIiOrddff/2keXDXdSN3kSlOyKgFQY7ttQsLU66QuoyGE66H7hruQxZWzX11sAKmyIprxjA3YOU9DY8Mz2k0f6fTPR1z3Z9oyOM+kzvzHNMdIksaSgMyJi+OnBI5VZfr/niMYsisuGakfsxrBk+rq6s6ePDgvB6fO9H4we3xWJO7pSGFNJwD5kTcNxp3eLziXJgr81x63MyZZIEOGNjA42SpgOuPxmsGOTrf47OSIRZj/7zHyJVlwdjdH59RNfcLz0HcX67Pc+F7fN31RukAXWYsdbLxjNuYpZNzu5944omWHqihoaGhoSHiqkKLmWoxpRJl6TRJjpycNA5rJA0UALk0y5yZ8iNyBQxqS06LprHuQyyH6WBozhvLoSOw6zMlkpk/mzKk8zrNxjOKlcGCzclwnGN95sKob2Ty0owzZxgl6vay8Epu/3XXXVdNcWO3BCbqzdKnuI4aFxu/M+1PLTBzFtTbYAokr2uPaaTSXTcdnNmHeJ1cGdezddOkhKUxtcz+uuysjQztxPB+XGOxjR5HOimTS4lgOCjORVxvdF+ackvYvXu3PvIjP3K+HjxOsQ2U1nAMGHJQGvT73rvUh3LfxD3me6mH99hmZvJ0yDdn57ZxfqRx0lZ/5/y7D1niaabe4f6Pbjl+3ueY7zGHz30b96LvcT0+U5gsN7aRCYwpHTDnHNcGA4M/+eSTkwEvIhqH19DQ0NCwJbAUh9d1na5cuTKnLuiEK42pCMuY/Z06L2ljqnZpoAj8BicVFbkMU3QMicUgu5E6c5tMFZGiy1LRM3WIZfhMBOs+ZJakLpfWWe5PpAoZFqrmlE1ONrbBVA+TRZJrjM8w/Yf75euRquacToWGctACU30Zp8/gtgYd9aMOgGHiak7+RtTlMsUO25GlHyEnzPqyINu0EGRoKVu3MfRXbH8toSnXbPyNuiLOrdse28rfmETYv8d1QEd6JvFkUOFYbkxKO5UAd2VlZc7ZWY8d14klPB5/6itpWxDBPcZxytY1LW5r+uDIeXi+ve9tHe57PV5xTVGf7ba4PwxAHs85Jif2b7Rkjjpc6i/NfdasteMZwrRe5N6ys99t8ljQjsL1xX0cHc5d79TZE9E4vIaGhoaGLYGlrTS3b98+p6pNVUWqib5U5F7ocxTvNUwZUA5vxGdrVpMMHpsljTX3QgrEVEVmYUXKlJRcls7CFI/Lc70MHh2t8zzGDC3k/nhc3f/I4cV0PbF8puSJVDp1Ngb1MnHsfW8MXVSztFtfX9eFCxdGXE7mz8W0NZTPR06AOhNS50xSGzk8UvucwyzJJTlKclNZWDpywi6DCVPdxswPj6HemNg0s3atcWn0l4scBaUttLzMOCRat5o7oL4pC3Ad+15bO2trazp9+vTILzLu6VooPP4euU1a/9KqlVKiLNmp7/EeiFwH+2ydnTk8j6UtIpnaKLaN6819p8VqJunxGWLOuGYHIA1z57VIHSGtXbM5q4VoZNtjPVx37pfnMfMvzM7pzdA4vIaGhoaGLYGldXgXL16cv7kpv44wpUDqiBxY/M2g7olURPxOaoKUHpOsSuMIMaYQyH3GeqibdN+Z+DXTcZACIYVN3UFsA/Wa1Fm6jZHzIiVVG/tIafk3+h5ZT8KgxVmfN0vCuL6+Pi8/S01CrpUcQ8bNGNSdZBFvas8SjISS6XKpS/P4+PeoZ2bQY8+h73WbMi7Ua5K6E66huL6p72VAZQZwnwp0To6W1sqx/fSBdH8tJciiYWTcE3HlyhWdPn16Xi5tCKRhHsyJ1Cx7Y7vdrlq6M3J8ce3QktfSGUYGiZbe5uz8rK2pqX+LUg9GpvJ+JIfJNktjC1/33foy6umkQaricnyPfUZp4RvPcVpuZj7C8dkISmRo7xDPKp6bi+rvpMbhNTQ0NDRsEbQXXkNDQ0PDlsDSRis7duwYiVGiCIYKXwZ1zvKS0Rk5lieNDWGiWIIGABSzuq2ZEYHv9XezzZm5OhWwFAsxn1wMQ8RnMxEwr1uUQGV1ZkgR64j30CyYDtaxf8yNVcuZFcUtVtDXDF4i1tfXdfHixVFg7kxszD7T7D0TYVCEyT5Ota0mQvV8RfE0RYw0vvAzUdzGaxQ10vAprlWa2XtdUeScuQZR/ElxFF1cYn8odmVb4xzQRYYO7Zm7AeueEkutr69vMELJnLsZbsr9YKi/2BaLG70mPc80JqN4LZZPh3y6iURDNN9DJ3mfO74e1yrFrlnAhtjPTGRLVY2NVxwUJI4jXcG8/z0mrDfWx99o8JTNAcPPZZnbpY3nqdtrce/Zs2dbaLGGhoaGhoaIpTm8bdu2jcxnY8gsUkU0NKACPV4zFcEQXEZGXdaCOtMJMmY8p3LVVBg5iczZ0c+SAiElHDkXl29qnJxeZmDBgM80VmG7Yn01Ix9SQZHSIqdqqtdtzzgXmiZfuXJl0xQvNAyI4+i+0snfdTKrdWxvTaLAz6zPtdROvh4D8prSNCfBFDgsS6pzMZR2ZOuO6VkcGosBwOOecX3cVwx0nRkXeD5InXP9R4kCuWhysDRuioiBrGtrx+eOjT7oshP7RGMiGsBlHB6DK7isqWAZtXRhDJ4Q10c0ZJIGborh3OJ8cM3TdYVjGr+7XBucMNi/A11HuB9uq9cVz2SuB2m8DmhASK47wuV4Tpn2K557np94Rm5mMDdv40J3NTQ0NDQ0PMuxtFvC2trapHk49S4MO8WwNvHemo6BAWzj25x6D/9m6onUrjROUFlzkIww90HKiiGXMlk69TxMIeOyM9NyUi68N9OJUmdCDinjimsUq9tsKjELKRX1pFOO55cuXZrr/Wz+HClSUtbk8DLuma4DXDvk+DKdQ+1ZU5tRD0MdEV0KMr0YdcLk+Kb2k8eAqbHcDlPpWRBuUtjUw2Xhrzhu1ANPgRwa92LGwWVhx4iVlRXt2rVrlLg2ck90XaHbRuZ47vYxFBbni+ePNIw/uT9zdll9htcVTf+nOB/aKlCvmM2TrzGAg/dgFjqN+57cJ+0PMlcq7iMjO3cYIIBpiMh9x3o8twcOHJgHAt8MjcNraGhoaNgSWIrDs7WU3/oMBCyNqVZ/J8cXZcJ01ialy+/xbU/nQwYddaDoCIbJqll6Riqd4YyYPJF9iA6gTFzqttEJOwsLVAuoW+OgYz3sHxO2xvro4Jkla5Q26k1oERvDzhGrq6vav3//XA+ThZtiGDXOU2alSX0odWj8HseTFCl1nNZ5xD7Xwo5xrKO+hsGJa5wW+xnLIyfpMq3Ti/oYBm9muDUjGxPfS+duSjIiqFPxWmJ6mLg2KDGZShy8urqq66+/fn5vlm6LjuV0ZM7CaPHsyII4SLmTNdcKHcLpHC2NuTMGWjCivYHvpT7U8HWXFdvFEIa2amRIxcx53CAHxrCFUzp9g5xyHF9z6zWr8Mxyn3rlgwcPTq6fDW1Z6K6GhoaGhoZnOa4qPZDf2AyYKo19mEi1ZtyM/2cSxSwUUSwzwhyXqXJTt5l8nFQr/f4yfQ85LVPYprhqyRXjveyX/WFuv/12SRspO1o20VeIqV8y/R8Ds9K3Khtf6hWMLE0HfcGmkniurKxox44d87aR04t9JpfJhKKRmiPnQUu7WD+fJUdPnZPXVNQVMXQVrRY95nEuPf/kJGopnqKehLoZ6vQ8JlHPePz4cUmDdIPW1FM60c1Cr2U6anJGtWDVGfefJczNsG3bNj3nOc+RJL373e+WtNEewP97fhYpl/585Nq5ZjLJAoO5s744L/ShJFdCbifWyWDOTPU1Fd6ROlyXcfLkSUl5YH0Hv/fe5pgwTF0GWkhnVtYeN3/G8ZLy94XvPXLkyLwNLT1QQ0NDQ0NDwFIc3srKinbv3j3XF/ht7MSM0iAndlJL6nkox47/00rPqCWulMach6MHkKqOehj/X0sdYwoi1kM9DJPS0qcpUk3khOj/57QhWX2MeECrwywCAq3+yHWyjNh3Wn9NpYVh0N0pPzxbaVK3llnPsk6OcWaxlemjYn94vzTW63gtMXFmtnYYvLeWYiaiZvHI61nyYJdHDpNcW9YfcnL0uYxcHS3pajqb+AwDJdOC1d8jN5/pkWvouk4XLlyYrzOntzl27Nj8HnPU/rTUqbY/Y/uytEwR1JPx//gszxtLMmI91PPZipJnljRwfdwvXBeU/EjDunJb3Uaf0UxtJQ06Yfo8uo3UqWUWvrSMpz1HXP9ez0yszD0SuV5LLjw2J06cWCgovNQ4vIaGhoaGLYL2wmtoaGho2BJY2mjl8uXLcydkKzajSNNiFBtkMI8TA8u63HiNIZAYYDQLOOw2kdXOsiO7jQYzbJtljsY4ZrEZrJcOrhbrZOHRKJaw+CUTMVIcYBEDQxhlwZHp/E/RJh3QY//8LOvJDHnoPkAxT0QpRaurqyM3jsxBn2buFNFmBk8UlVJhnonvvCYsWqaRSpY30G2kst1rx+s9czhmRvUsD6K0ce34f4uYLXKi2DeKpRi4mGJIGlzF8ay5u0yFI7M4iqIrikMjKJ7evXv3ZMbzc+fOzfuTOTB7r/oc8CcDw0+FB6MLCEWeWUg75sObCqxPwz06dWciPzqPcy5p6h/dCLyeLUK1CNAiTZflNRXLowGPjQHpxB7F1FzPVG9kIdp4JvHc9DsmE1ned999kvoxbkYrDQ0NDQ0NAUtxeGtrazpz5szIcMMGKtLYUbFGMUYOrxb6KssAHe+PYDBTKtkjJWLqj86ivp5R6TQ08bOkWmzqmzkP09HcFJ4prkjFMFWOy3AIHY9z5ixLI4VI/bNtBKlnBt3NOPPIKdSodAcAdr9Mccf1Uss4T3eOaNxDYxG6tjD8WRZGidnKGbg21kcphOsx9ex1EdcoQ1NRIU/u01R0vNdrxf1k0OoYXJeclttvKQHN3+OYMKs411/mrExpANtOF5uIWqqsCButeK7d98gNeA4feeQRSeMzIksfwz7W5sUcbFzbDMFVc2WI9ZpbocuE225jwBh60HPFUGU+39wHz3GUtvksclt8TpOLytxSaLDltrm/mQTD1xhwmmdxXAfkhBk2LDNuctv8GQOfbIbG4TU0NDQ0bAksHVrsySef3JB4T9oYfoohgwxSFRllR06u5qDJNsV6qffx9+ik6vb7mp81pWBqIlIO1B/UUvwYkStw3xk6jVxpxvX6k6bE5DTieLMe6vky6pMO+hzHLOyVkekgM5jLi/dmyVWpA5hKdstyaokxM7cKupDQLcL1RC7Ua8IUPuu3riMbW+p72SZyzNKw7vxJd5EsXJNBPRO53Wx/ZfMS73X9sY0cN4O69wzWY58/f76axNNB67l2YrspPWGdmQ6Pukc+O+VUXUubQ24jttEcnsv3nJp7ypJV0zn8xhtvlDRIo3wOuC++P+uHpUM+rz0WPltiPTV3MiKOEQPPM8BCpstlOUywnUmWfE9MdDwltYpoHF5DQ0NDw5bA0laa6+vrI4fgTF9Fao2WdxlVWQsLRT1VpCQpyzYlYu4zo5qol3J5tmrKLDv9P8NPmcqw3J0pRmIbmCbIY2QKL1KLDCzr7+Ta/EzkFuhQ6mdInUcqOLPYi/Vn3ADTKk1R8k7x4jFmGLFYDrkXUnsRDA7NYLtTgadrFrbUscR6qe/jnGbzzzB3bCup22hF7N+8RmxRR0vSSIFT+pD1I5Yd9TG1gOrkkOJ6o2WiUXPkjm1jsOcMtg43J+K2RKvgmlU2A3RPpeBhyEGXn6UYM2dKHRMtYCPIQTI9mb87EIU0cIUMKec1RYvSyGFyfT/wwAOSxrpbh+iK5TNkIoN/ZI7nDO/HfvG9Ef+nhXctDF8sj1K9RdA4vIaGhoaGLYGlQ4vt3LlzThnSQi0iC2qc/e5yI0iFTYW3oi7QbbNfjilvy76lQd7t8ixLt/zbVE2k6EjJuV+muMm5Zvo4l+e2mJJ3W7NAyi6H6Yio78p8qWjBxXBYEaTCaJ1HjonjI/WU5FTw6H379o1CwcV14PaRUlzEx6amn+S8ZdaF0cJR2qgbiGVIw3yfOHFiQ9sYNiqztPOnqXNapLkdmV6Ea4X6vthGt8XUfuarF8ck7lFa9tao58yHk9amXEuxrLjWXV/trFhfX9e5c+d05513SsrXjjkEck3kKmIdbIPXDsN5kWOO9bFvmc+e4fOFPnuLpLZhSiFaI2d2B7Xx9xryM9YHxnZ7jbo+tjXTr9O3lmPAfRbLm9LfxrbGfmS+gJuhcXgNDQ0NDVsCS1tpXrx4cRTkNLOa89udVCWDnUpjv5pasOjMJ4OWdkwTZG4uo1Tpu+Nn3T8mP431UG9lCsVUTKzv0KFDksbJaMm5ZEGxqROgXi5LFEtqifq3TIdHPWmWBJfPZBEipji8Xbt2zcfUnGqWQJK6PM5dlsSVVCz7TC5KGvv9uW2eL1PRMbkq9Sym1l0fkyPHOmm1WAvUHeFxcnnuB/UwGYdHPyiXQQlN3L+00l0kWgZ9bHlPxsHQx23nzp3VteO0ZIZ1eXG/UMJSSzoa+0p9Fc8XlhV17OQCXQaDvcc5JWfHZzNrZ68nS4Vcruuhz21sI6M+mZOz/tFlxVRWtFBm/dQlxv4xeg5tMtyOOAebJWGmjlIa+01OSZaIxuE1NDQ0NGwJLB1p5fHHHx+luZmysMr0PC7LYAw5Rmjg9yhLJ+fDe01lxLiYbpOpS3ODWX/ZbuoPaP1lqjOOCXUqrs/3RBk666M1FDnLzAKvZnGZWVYZtSSkpMBiPYxespksvZQysmaNc0mOgMkfp9LZ1KwLaxKAeI/n5aabbpIkHT58eEMbM8tUcvqMixh99+hLx7isnK84juRUyW1MRRChnimzeGNbDUpZuA7i2uJv7A8ti+O9lmSUUjbl8MxpmwOPtgOMSMMYpIukJeNZRR1e1MvWYveSa4zWh0707HXm+pnyKUoHXCf1iPSxy+wpaEl8xx13bKif/oDSON0a9yutNOM6cLu5VonIFTI1E88zr83szDIH22JpNjQ0NDQ0AO2F19DQ0NCwJbC00cqFCxdGTthZll2KFGtK5Pg/xYEMC8YAwdI45JFZbRsgZKw32XKLJ3xPluaGTqM0p/WzVC7He90mm7Q7mC9FntLYWZwuBTQyiSLUWniwmvl4NiZ0aM7EExTrXb58eTLjeVw7mbEF+0aldyY657piXz1+WWgpmmDTiMD1Z6IshrSLWd89FobbYPFMzVUiC9928803SxrEeMePH9/Qnyw9FI1VDBo20MgktqUmjsqMCGphp5heJ9u3UURcM00vpWj79u1zcRvT20jjABQef9aTmdHTQIuuPt6XUfVAYzKXRfehWJ/b/cIXvlDScG5aFGjjuSjSpHFMzVWHQQ0iLMJ0WRRlxrOKZzvPN6/zqXCCNCDz+qcjf1YODbcyNy+rhKIYdxHXDqlxeA0NDQ0NWwRLhxa7dOnSnEMx1RnBgKsM/ZQ5gMbypbFrgymCzHSVHCPTzxiRC6XxSy3RaKQ2yH2QKqQBRDQPjulepIGiovN6ZghAaoltzcKg0fmV6W5qlHTsD7kDcofxf7f1woULk2Wvr6/PqXQaRcRr5HxqLiDxXvat5sYRQWqZCV8zIxIG7aVy3WXG+fc8MCwXDRFcTwzma6rcz9qEnJxdNo5GjevOOOZaKC7OdSyT7i7cG5lZPw2CpoJHuz4aOMQ5rYUBo6l8JgnhuqNTt+cgcvpsg79bauM1FI1IPHcux2vJBnWZK5fHyf1j2EBK0KKLAceGKY2ysIueV3OqlFjQ8ClzU+JZxfWYJStmSEA6sWeJm33W3njjjY3Da2hoaGhoiFhah/fUU0/N3/Z+w0aqgo7lpCIznZqxWWoPU0uZKTs5L1J80fXA1AvTY5j7yFIXuTzreyxn96fb7rJi/0z1sa0uy9RJFlKqpoehXmuK86rpHTNXhixRanwmc/aNlOmUeXApZcR9ZlQ915CfWcSlhdxGjYKM5ZLTI+UfKXv/b+mG59Bz7DGJ+h6vEa9jrxWXwfRUkaP0WPhZBy9gyLkI9ocUN9chg0PEemtc9tQ811JJLRMCaqpc79Ooa2c4QHIkWbJbjgM5+qnEpXRT8hyzzHiW0K6Aiafp1B37yEDJ1r+5bZYiOdh0/M0c3X333behjRmXxnB6DDFXk3BlbTT8DFObxT5T50npQAQd5vfv3984vIaGhoaGhoilODwn8KTcOtOP+c1NTi6TydbSwlAfQmu6WB/rpVVjxhVSZ1MLyRTbSz2F22L5ONMSxfr86XrMLZA7ie2n/rKWRiOzfCKn5zZNUfa0suVYRY6MYbumrDRdL63oYvg2Wh7WuNjYBnLjNR1kxq1xvt026myi7skcvH8zRU0KP1ramRpnKiHq7jKph8sz98c9wIAHUl2HRn3jVMCIzfSn2Z7nd3IDGbUeA1xn/Xc5O3funEtpbAkd9da05qvpgmIdlJbQKpjpw2JYOlpRe0zJJcb6KFmh1bmtKbOEw4afZXBnSwviuvd40XKUwaMza1evb6bM4phlqeFqFqXZ2U9OmVbpWcJh78/I1U4ll41oHF5DQ0NDw5bA0hze9u3bJ8P1kGpkoGJTZZFLI6dIHYDf6KZmIjVLKoUciamaSIUybUrNiihyD6bSSekyrBbT28d7ataHmTzcfSaV7HqoA4vULtvmZ5meI9NnZPrL+HuktKb0cNnzTz75ZNV/UaqnHiFXnaV4MRfGcFqsL3iDs2EAACAASURBVHJrpMJN1boMlimNE1b6Hq8pBuyVBsrd68pSAN+bcekGuSdaA0cLWT5D/z6mbfGayfQfm+l9s7VDS9haEGZprD+dwsrKinbv3j3nTKy7iZzQZnWTm47toe7Jn9TPxz3mM4jJbzmXcU6Zpol6Rutns3HKUuvE/mXW6W6jn/X69j203o7tp7TD48vwa5nlLXWULj9L60QLWZ5Z1MnGcv3Zgkc3NDQ0NDQASyeA3bVr15zSotWZNFARlPVTbxQpuxqF6LJYZqQy/AytfKifyygEIwYhjW2N9ZjicABbcmu0JM042JqlE6mb+Hwtcg2pnMj1MigtxyTT3ZBSJbeRcXHmcmJg6xrF3nWd1tfXR5RYZilKKpnWXbEO6t9Y7iK+YPTdqgUzl4ZxslUmqdgscSqpYuv9av6fsX81iQL1TVkSZs+/ORVy71NBfsnRsQ+ZBIPPMhpNBiYezmDbAerrs7XDIM68N1qU06LboJQmi57jM5AJZr2+6D8pDWeU7/G8MNB19MNkah0GcXZbH3zwQUkbdasu32vVzzCJbITng2moXBZ1oXEdOOg6IzAxiHhcLzzzGWkls8x2myLHvIiUSWocXkNDQ0PDFkF74TU0NDQ0bAksbbSyY8eOUT65qFA1O87sthT9ZcpcmvRSlJnlfLKIkebbZoVdX2SJqXCmEUkWhooGDlk+t9i2LIcaFdmZIYVRM/GtmQVH836LDCjmdRk2V45zQIMhZlTOnGKZm6uUUg067HZQNBbh9jG0F0PMZUpvGrZQlJWJ7yhSZnZxI5qG+zcq5v09MwSgKMfz7TbRbSG2kWGhao7fmcFLze2mljNOGruqMAB0lvuQIsyam1EW1oshADP43HF7aewR66wFoMjcEvgb9wn3WrZPa+H6srBaFE9b1EhDK59p8V630fdm7i/SxvH0eDt0IcMRZsGcvTYeffTRDeUyZKKd5WMuPbeRahYa1sQ15nsoqvccWywf5417vBmtNDQ0NDQ0AEsbrezevXtOGdi8OjOJrwU7NqZSvdCxnZxXrM9Ug5XR/m4KhWGppLpDLLmFaPbM4L0MHcRsvxGk/hhgm2bj0jg9j8ecxgqZwU9mqCONDV08f7EfpFhp2h6pXFLVpZSq87DXDp15p4wVSO1lwaNJITIUE6UGUTpAs21yxDS4ksahvWrrPI4TTbrJudaMdGLbsoDmsc1xT/h/G1a4HwxhRgMLaZyVnfPktkYHfmbdrqV6iXNN7nrHjh3VteP7aPiWBZOgqxTnJ7YhW0/S2PmaXHbWx5rhU+baRPcUGqJlIczsbE+pl8+dKQMrrwOXG835pY3r287c7o8lduRy3Y5oBESDLa/DeI5KG42E6LDvT481110s11KtixcvNg6voaGhoaEhYikOb/v27br11lvnVMDRo0clbdRxMGwS5eBZUOlasGDqLbKwRqTg6UxryihSGeSo+J3BfqWB8nG7TV3QMZPUmzRQdqaETQGRmsoCQFv+bpm5KSum+Ihj4nEjBUcT6sw1hOF/aLofORc6ik+FFtu+fbuOHDky4nYiZ/rwww9veKYWODvTx2b6xNhezpc05gJdlueO3yXpoYcekjRQtpQ+uKxI+fo3t8HrgWGj6BoiDWuR3A2do2MQabeXOilyMhyj2B+GQaPUIHIu1CtxLLJ0PtRrTul+u67bwF1lnInhcjy27Htc8+QUyIGTa4t7zPNLiQid2a2nk4Z591xRwuC1GSVAPM/oHkC9c9x/1tXXJD3U/0nDvLgtdLNi8IfI6fMcq6V1i3PNwAB8P2R7njq8tbW1xuE1NDQ0NDRELG2lubKyMuc2TNlFqvn++++XlAcmlja+leeNAJVsqoU6okzvYyqFlk6+zoC5sZwaVUCHUGmgcEw9Mx0J049EKq3mMEvr0Gj55vGrBfplmKjIDZmCzMqN/Y/XGWaNgaFN0WapPTxv586dqzqA0tLOlGGk0s3N1tZOLIuoSRRcjyn+qCfluvI6riX3lAaKm9IHzkOcf1LHXl+UaDCArjTMP611Dep2pfFa9LMei2jRSzAprcH0UFmSUurASeFnVppxL9b248rKivbs2TPS80TOm4HY6WTNfsT2MVwfJT+RizG4Pym9yYJXeHy8zlkWxy22l+Ple2g7EPcGJQoMeG7dXqyP1t8MyUbddVxLDONInbj7l+lCeSbWAm5IYyf8Rbk7qXF4DQ0NDQ1bBFflh1dLlCiNdSmkSDOrwqgDiuXRUsxlnTx5cv4sObla6JvMZ4cWdb5uvV8Weueuu+6SNOjf6E9k6sXWfNLAOfg3ckGmQmMbqUMztUTdhymsjAuhfJwBh7MgzEwH4zmYCpkWOaEatbW6uqr9+/ePfOxiG+ijRw6YqUqkMTdI7n0qSDG5cyY29nevB2kcooxlZJS2KWuuO485pROZnxLDdHEtZfoxrjMGYWcw49hncj/cZxHU69RCjWVtjOu2tnZ87tCSOOrYaQXucaPPYZZailwtLbAzDo9WktaXuQ/mnqKezOPv9cU20oI5/m+pGtPn0Pdtaow9Xk4llPnF0TeYlr30M878DM1R0r8xCxhPK3eWRYvS+IyxZ8+eSR1wROPwGhoaGhq2BK4qePSUX5mpFVLetPbLfGh4L/04/NZ/5JFH5vcywSMt31wfr8dyaSGURXIwJ0V/K0abMWWX6cc8TtShZMFcOY4uP1p9SeMA0bGNjDZBPUAEqV1GXqFeg/+7jJov1erqqg4cODCnhGnVGutmm6grjMhSBrk+acy9Z8mDa1FmfD2z7LR/EnUd5ObiNeqvyTVn/p8MrkxdESO/xGeozyRHmaUWolUjpS2Zf5mfJzdKqjvOH++ZCv5rDs/tNgcRdey1NEpZomHD80L/VOpFaZEZy+Xcef8bWbBqcs3094ucK6PV0LLY5VviFEHplufHz3h9RwtfRmHyvdQhM4JWrIc6SVrXZ3YAtHOwntF7we2SxjrjAwcONA6voaGhoaEhYikOb319XRcvXhxRS5EiMbVCKoypTzJqyVwYqUtbNZmSjPHbTBGYWrLllikStzXzcWPkA1JYkVqjNRTl39QrRIrE/aAvDfUKkdtx3ffdd5+kcQQCU2sZx0y9Ff18yBVH0BqUvkGRkqJsfkqW7uTB7nOW0NLzf/z4cUnjJKv0L4t9NCVIv0j/nvWVfmjWu7KNkXuirpOpnTK9L+OR8rrBRJnSsJ6od6V+O+OQuO7cL0o0IndEK0da2mVcIf0+DVpIZm3L0jVlWFlZmY+Xqf8pa1am6/H3zDqc1tO0UfC6jJyQQWkJI5Nk3JrHlro7tzXT5ddixnL/x/Gkjp2SH+qfpfGeZsQTfyeHm40J132moySnnyXqjWXEsWgJYBsaGhoaGipoL7yGhoaGhi2BpUSaUs9uM+1DFGVQHGRW1c/QVFUaGzDQbNpsO8NpuT2xnpryOnOUrYnvGGoolkuWnmKRzMWA/br55ps3lO97owjV4ju6IdB0mubwETRzz7LNG3T9oMLbYzUVuHllZWVStNB13UhsHeeFodbcdzqpZy4mFN/QMZf3S2ORjttGw5P4TC0LdmZybVDc6DHyHNMQKhtDBmim6XwUnbm9zEjPtvp6dOBmSiE6mvszjivDjtHhPAsfxnU2ZfDUdZ0uXrw4Xx8WG8Y+M9wYQ2MZMZs49yzPAwaRiO3zXj1x4sSGZ9znY8eObXg2lsfs7J5Dl5llcmd4Qj/jzywtFeebBjaZMRjPAaoE6E4UjXK4J2gMxFBqsRyKaOkAH+fN/9O9YxE0Dq+hoaGhYUtgacfz1dXVOWWVmRQzfAypicyBmdQJHXENGqJIA4XDcGc03MgCDtMEn9RhpOhIDbJNNASIxgum3Mw5HD58WNJACdG5VBq4DlMzNI4g1R6NZAxzxK7X99JUXxpTt+4HnW4zlwavh6nkrgbLi4YAnn8bJdBoxM/GZ+jKQFcDGiZFBT2daKlkz/pFYyVyPNn4kHPj9yxAruHyGByY85U5cDMcmI2/vDa9luOzvpefbEfkCmn8UutnlCwwjNeePXtSyUOEOQWmBJPGa4WuGAzCEMsh18IA3VkatAceeEDSYFRGLt3PRBcThiGj8Vq2L90mP+t5YJi4TNrGa+TSsiAJ3i/+jYZjNOiJa4dSh1pIxXiu012MQaMztzKmgrt8+fJkaqmIxuE1NDQ0NGwJLK3DW11dnVMMmUk8dU8OAxaT9cXfpbFpPylDUxk2G49UhX87cuSIpHEqj0wvQsdSyp4NmsZKdfkxk9NGisOhfBj+h1xbbCP1SG4bTacz/R8TilKXQiotlk9ql+4WWfDd6BqwmQMxgyzHteO+eZ5jgAFpWEORimWCXKZLIZUeOXS6Z3g8zC0zXJQ0zAv1MOY6MxN9chs1zm5KYuJ1RkddlimNdWpMMUQuOwtlRomBKf8sHZGxWYixyMGRq963b9+kS8uuXbtGnKklJfGaEz8zeHOWzsZt8Hh5LD3GPMvimFh3R8f/mrQotsVjSa6E8xXbyJB51HNna4dhuRiUP3uGwZyZVok2CxF81uD5HtcBA3r4HgbwiFI9Os634NENDQ0NDQ3AUhyeEzHWrIyk4c1s+eq9994racyRRCqAFoCmgEhNZDJuv/lNCZAzyTg832vqiwGaGUBVGieUZRl0TI/9IyVHPYy/Z8FwqdehVRMdNqWxU3cWIivWz+djueQso06C+rMpx+FSikop8/a7vqiHMXVujpicip+N/aCumLoUShQyPRkDAJh78TqM8+J2m1qv6YynLIlpfcxEupHzJmfN8jPdBblB1ufxpBQktoFSD5aVcbDsH/dC1IWSW5sKWuCQhoalK9b1xvJoRe17vLaiLohSDXIKvu51EMP6eb9TT0ouOs6PrUz96b1UC6UY2+jy/RulA1nAcAZbp2Qhs3qupdkyaA0fpWKeI+rAuefiPLscn6teI37W0p4svJ858KbDa2hoaGhoAJYOLXb+/Pn525RBdqVxkF5TJgz5lVlkUdZMi86M6qBejGl02A5p7CdiKsPcBq04Y920bGJyzcwqlJQvAwFnPm7khEidUVcWqWda9NHHxcjCLJE6p34jcju2Kj116pSknhqb4vJWV1dHYYaysEaeB1N90SJQ2kjt0aqLeoua/5o0pp45P5nOgb+5H24zE2VK4/VbC8xNLlUa687IuWZWobSWpc6a1sFcF7FtHJvM34vcBdcAwwtGeN/s3bt3Uoe3c+fOEccY1wE5OnNjblOWAJiWhtSle5481jGkIQNBc+4ySQ/9Pilh8hhHXaHPMwalNqgLzaRSDMJOzjbuCSYP5lnPMjL9L89AhoqMY1ILc2ZbCa+PuJ88JjGNV+PwGhoaGhoaAq4qeLTfrFmKCFLuTPNgaj1LEeFPWthRB5JZ9jG1DwMnR+qSOhN+z3yd6A9Dqp3pgrL0QNQRktuJFCv9+RiYl9Z7cUxIuVIXSoo2toFJcd1mj1HUgXhsI6eyGaVFX52or6Cllqk8+nVFKpZ6AnIx2fgY1GlR10XuOrattmbYP2lMpdLfi2sp1keJicec1Hl8hnpGUtpT1sE17sbjSB/crBxyOeQSIlzeZoHHt23bNooqEjlvpsKibi1LD0ZfQJ4htflxeyPINVMCFNtIWwTumWiR6DVpH8qaZGdKYkJ7BkpxstRilGiRC80kTUw8zXqyyEVuL8tn+q0sZVZMCbeZD+e8fwvd1dDQ0NDQ8CxHe+E1NDQ0NGwJfEDBo43ITlLkYzGdTb3tiB7FdxRH0cTf4gOKuuI9ZN8NiqukXFQVy2LOM2kQjdSUugYdQrN7KX6gGCm2xaDzJs2iY1v9LI1vOEbR4IHiJ4orMxGNlesx3NFmYima4sd++jcbB1gMRUORaMSSiZukYWzdxqz9DGjOsaAIMvaVYk8+kynmue5qBlxxf1HsRrFUFsqOY8G1U/tdGsRFNaOYLLAA1xUNoLzXbYQkjZ26GSqN6LpuJCqL7jc0eshyGRLMS+dxoTjcZURRI8eUY5sZitGgiQYnWb4413PTTTdtqIf7LHO+pusS3Xsyg6da0IqaWDyCokaKuClql+pjz/x+cX3QUGjK4IloHF5DQ0NDw5bA0sGjI8WSmRn7Tfvggw9KGsxp/ea2CbspFqkezsbPmFqjc2J8llQzqZlIAdXMkMnlZKlkqJCnA7Aplkil0xiCKWboqBnb5L7TWIaK9cyFwiBVnhkRuDxfI5fN+6Rh/m2SPxVWzM7DmfGIYcqNzrU0mMnanRlgSPX0QdIwduY2uA49l7FMBtElJZ8FyDWo8Oc9GeXNIOEsI1PWM3g0s29TChPXHe+hUZj7H8O+UTJCgwYaJsRnYsjB2voppWhlZWXErUVTfZ8nDz300IZ7aPaecd4G3ZTcR0qgpIEDYWCGLGgFn6kFuObedt/jb9zvDI+XOZEbDHROQ7XYd+4runtlZ7/BbPaUmMVxpyGT3w+Gx9PO+hEOJrBv375mtNLQ0NDQ0BCxtA5vZWVlFK4r6gCsX/Ob2ua0/u43caaHiTJZaZzE0/dF7pBOlTRvzZKeklqm2bvrj5QWA8tSZ0M3gUgBZYGXY1nuX5RTUwdBjo66g/gsKUhykKaqM/0Gw5KxrZFzNXVmzmuKSnd91LlGCo8Bd30Pw8bFZ+h2UuNmjTin5MbdNlOmmfl7LcVKzU0h3stQfLVAvLEP1KnQ7J1zHH/jXiC36LGLDtVeI0w47LGY4mDJUXB9xXPCQQu8dhYJAMyg6zHIssuj3tXnjM+l6C5ETpjm8y6LEoBYjsfSHBDPgziXDOXmfUidYcYd1rho6oFjGxmqrhaMI0st5bVBfSk5vEz6UUseS92lNJY+eD0wCHsMQchACuvr6wsHkG4cXkNDQ0PDlsBV6fBoqZMlLPRb3XJWUjHRYouWOH5bmwKi5WCkSBnslHqLjNKKOosI9is6O9Ysq/xJp/JINZlCZLimqfZ4LEydMaB2lhaG/SDFSgo/06dRj+m2u4yYFuauu+6StNEKrEZpraysaM+ePSNrrMgpMOQbLRBJRUvjpK3UcZDbyazL6KzusaZeONZNa8yac780dn7nOjdIVcf+0IqRFHb8nWGuyFl4HJlUNLbVoCM9OT1pzJEweXCmu7GUJraxFrRgZWVF11133Shwcexztp5i3TyXYt8Mcj7ce3HdcW8x/VmWuoaphCjtoKN7/I17lTrJqfCE7g91eFlQjlqIRiYENpcV+0ereto1+DPOm8sjN1oLtBB/c1CT2nmeoXF4DQ0NDQ1bAktzeKurqyOdV/RPYbBhUxnW5VkWa388Sbr11lsljalLcnq09JTGIYWoW8l0HDW/FPfHzzAJZtY26tLILUgDtVRLAOp7szBETBZJDpOJJ+P/ro9cSGbZSctE10sOI/pPctwiFU6srKxox44dI+o8C7Jt0P/SFF2cF1LltMpjn2P7yQH5O9dhxlHWgnrT4jdecz0ME8f0UJFqZlg6Bo/mHMR7aYXJ8GBZmDD22RQ2fami1VzND4/WeZETpJ6267pJDm/Xrl0jbi2OIwMKO3g0uYDIDZjLdB8ptaGUJfOP828eD0u0anp7aVgrlpZQ/xvPqlpy6pp/ZtzTXDv8znUe7+EY0xo9Sx7LRMpeK54TX4/1+pzhGW9kUrEsjFrzw2toaGhoaAhYisO7dOmSHnjggZG+JOp1KL91Ar9jx471FSYBU5nCpRag19RapALsi0O9he/JLJ5oiUTqgJZwsa8GrRlpNRUpyVoUhlpC0Nh3fqeVYOaPRQqIKV38TGwjLVNrySljlBtfM1V7ww03pNEbYrtosRjbTR9AUvSZ3pJWsbTW9XrMdCq0ZiXH7XUd1xCpWLfZY5FF8SEnxXVOyj4LWk7dEKn1OO7UQXJOyV1n+rha4PEsDQ311+6f9fS+N1raue4oCapxeOvr63rqqadGKaoy/ZE5hczHLLYtPs+1yAghlJRkbXDfPG5ZMldy3LQgzyxgLc3wGNIPtKarjvXU0mAZcYxohc414v1Eq3VpGHtzdOTsXWZ8X9Tmh3r8aF3r8yELgr8ZGofX0NDQ0LAl0F54DQ0NDQ1bAkuJNFdWVrR79+45m20Rxn333TcUCJPb5zznOZKk97znPZIGNvR5z3ve/Jl77rlH0iAW8KdN4i1uo3I51uffmIWdDuLxebPnFG0yt118nuJCKnMp6oq/UYFNg5vMiIRiF4r3MvEr3RBoUJGJeyiSo/KaDqKSdNttt20oJ4osCYeHojglziVNoCnazvLhUdTG/Hg1g53YV84lnYczM2qK0t1Gz2UUMTLcFNeM4bZHcTlNy2mAQpcXaSzSpPgtU/obFCOzHRkyA4ZYlsczuiJ578U5nTJ4ihnPjSy/Ho1IPJZZxnO6wdBdx+eQz7tYv8ujAYifoQpEGgeA4PcsID1F9sw5R7es2EauGRrpZXPN9UyRKXM7RlGj5yMahknDOuPajffW8vB5jDK1QmawtRkah9fQ0NDQsCVwVRnPaZhgwxRpoIb4Zn7xi18saTBeicYPpkhr2YnJ5UTOi+GaaL7N+6SxcpiBcl1fbAf7wzbRhDnWVwsT5u+mmjKFc416JrUbqcJayDQ6EUdOomZ44DLsVpKZ25uyO3PmTJUT6LpO6+vro+DHkatl1mivC1PrWQoZr70TJ05seDYzga6VwbEklRufMUdFh1kaJETKl2u0Fuor4wpoPMQxmgoPRSMV9pNpXKRhPmiMQ640M5Ki87BBowxp2FtxL0yZlm/btm2+9/xsXGs0orABBYMVRA7P7k0+ixjyzX3N5oXcK43ksmDHPrfoYE5jpSxItdvClFa1bPMRDEpNw7HIPTFIATlx9j9mfqdxDyUzmSEh72Fqs8zAzpKCuAebW0JDQ0NDQ0PAUhze2tqaHnvssflbl86dEaZMaFb6ghe8QNJGytsOoO9973slDdSZqSRTcqb4M0rRpq6u17LhLNSTQQqeFHDU+9GBnSa31NPE4NjuBzktOo/GNpJKqoWjIkXEdksDZclQbRkXWksea9eDOEZHjx6VNATuveOOO6rpf7qu05UrV0b6xdgfU4vHjx9P+25qPVLcpvacyoXUeS31kzROieRnab4d20idGvWznsvMQb9mVs/QSLG+WjBvcnhxTLL5lcZBfamniX2mnofcTlwH1L3SRJ6ptKSxy8f111+/aYoXmsZniXIZ+splep1kLi2UJNQSpGb6aQbIntKTujy6VzGYfdxD5C557mQBHNheSlOmOHJy43Sz8b2eg0ziQ2kXudIpaRt18FmCa/cn2nwwiXMNjcNraGhoaNgSKMs47ZVSTkq6b9MbG7Yy7uy67iZebGunYQG0tdNwtUjXDrHUC6+hoaGhoeHZiibSbGhoaGjYEmgvvIaGhoaGLYH2wmtoaGho2BJoL7yGhoaGhi2Bpfzw9u/f3x0+fHiUqibC/hP0s2LC1Agazmz2fQq1e69FGR8orkW5tbFZpOype/gbfXiyOH+su5Sixx9/XOfPnx85LN1www3dLbfckibvNPwbfYsY/eUDQSyDfeTnFBaN7BDLq80V0wQtgqk9wnpqn4s8W6sv+lJxfmr+dNnY279q+/btOnPmjM6dOzca/F27dnXXXXfdqNzYJvq2Zn6XWT8W/W3RZ7N9Urt3kfXG35bZA7U9vcyZcTW4mv4x2pWRvS8YQ3Pq3CGWeuEdOnRI3/M93zMPGuywTjHUlx0HHWLMTod05s1yfvHA4/WpQ5f3TG3y2m8MbxM3NSeNm5wTFvtHh0x/Z66xCDqwcizsrJoFgmZ4oKxN8XoslyHUakGsI2LG9h//8R8f/S71We1/5md+Zh6i7MEHHxz13evo5MmTkgbnZIYHi46yzHTOeagFpZUG52QelnS2jePEcGo8RLI5ZeBqOhr7e+aMz/mtrfM4t8zkznprn/FelsVQajHPm4Ms+Fk7BDvQQS2wgzQ4YT/3uc/VG97whtHvUh9c4jM/8zPnQSaYI04awoMdOnRoQ90MXhAPUB6cXOtT504tl+FSgYwR2DxbO8x/yTXJMc1C5/Hsmgq7WAsNWMvKno0Js69PMUgMDFILHBHb5XPCQRnOnz+vN7/5zWm7iSbSbGhoaGjYEliKw5P6tzUzaUcKkSJNUqa8Hp+viUNJTUWqpsYFGsyAHe+tYYqNZj9rlEiWRZhcIdMSZdQnKR4Gq54SGzAMGuvJwlEx6zepsixocCxvSkyysrIyT6tDLiT2rSYudNmR4yOFWEtrkrWL9dU44zgGnDtSsVzLUj2YN7kpl51JBxj4l+s6rh2G9iKXQE4mGxtyyOxfhMeCfWdYtIwzjxnbp9QRly5dGmV3Z5Dq2F7uTyPjZlxvLUB2ti4pNVlGPEhuiWdH3GOUIJHD43zE79z3bHt2ZvC3mmSLIdVi26bCB7I9tSD8DI6dtdXztYx6oXF4DQ0NDQ1bAktxeKUUbd++fVJuTR0dPxn0Vhr0fgyiW6POp3R4NY4royoyjjF+j/WSYqQcnBxgfJYc3iJyf+o9poxHaiC3NqVMJnXLQK9Mjhn/97ytr69XKd319XWdP39+FDA50x9RKkCuOdNx+Rq5GRpHZGmUqDup6XRi+Vxv5J7ieqO+lWuIVHzk8EilU0eTGfTUgpSTc5lK0cRnzV2RipcGHR65Xuqbs6TI1sc9/vjjVf1X1/WppRzk2cikDTXd7ZQUhX3nesj01+xjTeKSGdZwfWWcHdvIea9xhbFPDOJMTHFGDGif6bNrz3BfGbWzUxrrmX22ZMZHLGcziV1E4/AaGhoaGrYE2guvoaGhoWFLYGmR5urq6qRYrSbKtAgzmpIaFlUwTxjFAjVFdLyHYoLMHJ2GBlTuU5Q2VX5NxJSJQ8220/hiytCh5oczNQc1E2Yq9KMxRs11omY0IY1FJZlJdMT6+voog3Ecp5p5vsctMxComWfTNJqirazdNZeG+AxFfRSLZ6blNcMJGqC4zCgKqmW2nxLz07CAffY4O6dZXQbu3wAAIABJREFUVCVwjGtuHXGtOvef3UjYXxoxxP/dlosXL1ZFU1euXNGpU6fmItFMRMfM4Mz5N6Xa8DM2xuP8ZGO+mWvRlHtCzU9xEfeHmvFcVnbN8GiqX7yn5taRnU+1M6nmEykNZ2Ct3CmXlijaXNRoqHF4DQ0NDQ1bAktxeF3XaW1tbcQ9Rcqezqzm6Kyc9vforE7HVZqo1sy6M5jSI1UbqULfw6zIRKSmSOlSIT9leMB7/WkuN8tazT7XqN/MxJjjwzEh9Rt/Y5tp+BJBV4Cu66qUlg2eagYpsTxygR6XjHtmBmZT6eaW2Ocpl5OawUbGFcQIIbV7Y9+lMfVKTsXzFA2DKIXg+PH3zcrL+pu5hvDT92RZ5/2/OT1/d/8y6UDNkT5D13W6ePHivPxs/XKN1wx14vyznFqW7amAF3RpoZQjc6GpBUmYiihUk1BMGSB5TGg8wqAS2flHyQUNxzIOj+NHo68sSIbh8aMxW2ZslBkZLhqBpnF4DQ0NDQ1bAks7nq+vr4+4mEjVmIOzg/Gjjz4qaaAMGaoo/s/wY5kLA+urmdqTqjEHIA2UqO+thZLKdDc1J05yDlPOwx4LcrsZ1Vyjxmt6yAy+d8rUl1TfVJg1gxzeFKVVStGuXbtG5cQ+u6+m8jzvmUuB4TBWBw4ckDRw7e4Px2cq9JLbRveY7F6Xay6GocayUF81eF7ILcZ6jNq6jmG2GCLNz7iNXn9uY5wDr0XqdD0m/j3uSdft9WBpjtvu8qNbQY1zzWDJATnvyCH7f4cfc2gxOmh7vcRnPE5ZkAopdxvgWcEzi2tZGofBoytQtjYZnKCmJ8ukBv7f8+/vHL9MgmFQb5pJZvhsTUdNGwZJ81CDDLfnszHb86x7165djcNraGhoaGiIuCodHp0EI7VnfZwttkxNUgY8xc1QHzYVHopvdnKdpm4yipTlT0XqpryfjqfUdWWhzGph1rL6DMrZGXDWFFjkCmph3DwXDFablVuz/spCF5ljvnLlyqQuZm1tbZJ7Jwds7oUUqeuThuDD1KmZwp8Kn0UOiNQ5OXOpHhyBFpaRWncfPYamXknhew6iNIL6N863+x85l1o4OpdF3XHcQ+bOuCddhjm8qIPnmnn44YclDWdBtMQ0/LyDPu/evXtSOlBKqepNpWFNmMNzXz2WHjf/Lm0cs9j+WuivTIdHK0Lq3uPaoSTHn14P3BvSeAxrXGgWmNnj5fPOnx4DSoliu6mHYxYK/56F3aM+lZKTaKFvsH9TY889uGPHjoXDizUOr6GhoaFhS2BpHd7a2tqIU8h0ANS7TVEkpsIoH6a+IvPdYtoSIvOT8TPUdVBfknFppDhqFldRlm6qxf10m/zdFF6kXGgVST2nyzC1VgsfJA1z4vKzwK8GORb6xmWhuaI15Wb+MF471ufEtUMdh+fFXMBNN90kaeBqpKH/1Lt6PFx+ZqVHvYTBdRg5Lrfb/SBXkFG+tRBbbBv1gdI4zQ0/zaVEzsXlUIfmtro/mQ7P1xiomWs2rjcGk2fQ6Ex343s9x3v37q1aS7t+cvpxnNwGcnJOYeY14+98XhpbIFJHncHrwWVRqpJx+h4fBtCe4oA2s17MOBxyWJS2ZVxhzdqV9dEmQxqfQV67lDhEzjrqnqWxtWsWuJtc4Pbt25sOr6GhoaGhIWJpDk8aWy1Fis4Uj9/C1Dn4TRypq81S4PjtbqrCcu14zc+QszQilca2kKrJuJTN/OFqgYdjfaS4GGEj6s1IzdZk65kvTS0ai/uZpXUiFU5r16zfHPNt27ZVKa2u63TlypWRH1dmxeZ2mkK89dZbJQ2UYeRQ/QyjZHhNeq24X5FbMxj0mHM4pR9wvVNzWdMJuX9+xm2LXIg5FT9D7u3gwYOjNtV86Eg9M+izVJeuWEpAyYI07GW323Pi+m2xHdcGrWmnomWsrKxo586d83tdTtTlWgpw5MiRtE30CYx9oi5tStdtUOLj+qcig7j99FekVbLHS6r7tnGPu39xjH2vy/e+4pkyFeiekbKIuHbo9+l6GcEqcoLeA7SBoI4/7kHbh8Q2t0grDQ0NDQ0NAe2F19DQ0NCwJbC0W0LMeWaRgE2ZpXEWWopgssDFvkZltOuhU29k+S1CpYk1jS2i6IziObe5FoonXqsZJ1C5H0W2fsZtpajE/YzK3JqymMhy+vma66Nj81ReKuarM7KQbcyVNWUMY9BAKROnWeRz6NAhSdKNN95YbbfXgp/hOrDYzmNhB3VpEDHVglS7jCgGpeia/ckMAWjcQ6Mct92fWTBfi8xYvx13s/VNowgGhfCYnD59ev6sy6FojgG9Yz9dD8VT7k8WpNrwmJ87d24yfN6ePXvmc+d587qQpJtvvlnSYJzie2L5Uq4O8TXXf+rUqQ31Z8EX6I7kvet7Gb5QGsTPDHxBI5nMMIxqCM+lz0z/Hp376UrgT5YVz2/Pr9vPPcJ1EOeUYf24VjwWmSja8+S1YgM1z0Vcb3EOpek8nETj8BoaGhoatgSuKrQYlbuRqjD1amqPiubsTWxKoxbyhgrUSDX5nugIG8vIvru9phRMtZiCpMNmbD9NyKnkpXOsNA6CTI42My3mGNCIhM9mAYCzgM+xD7GNpvpJadXSxcTffO3ChQtVKt0ZzzmOWXBdcr7Hjx/f0MbYL69FKsYNl+8Qd1noJaJmeCUN42IqlcYCbmPkuG3gYUra42Xqls7j0SDE5bqf/iQ3EKl0ptt65JFHJA0O4d4rbnvksul+4rmgSXvsn69RMuM5sZFB5AboUD/F4W3btk0HDx6cj4/r8fhJw3x4T8fxkMacnjSsCc4LpUbue1wHTGtD7iWTiNBFwmuJhlRZuD2D5vr+bi499s91u23+7v3kfllKII0DXNQ4p6ztnh9KShigIkpZ3G6vebrwGJHrdTnRfai5JTQ0NDQ0NARcVWgxU26ZCa7f8pTnM0RRliAzCxkUf8/0f/6NZvUMGhspSsr3TRUy9E5WD10oaklLI4XCoNgMQ5WZP9d0nzVdYqaPo67Az1DfFesjdcv6o/yd1NiU+f7a2pqeeOKJOZXv9RH1saTOTa2aEiXVHtvJsGTUy/nZqCe1DohcOSUXcR3QhcB6Ro+xKdYo9XA9tcSipOLjOqAu0mPitWTuKeqdfO2hhx7aMDam5OkYHqljrkVzJdTlxD1PNwS3zWvKY2KOShqofO/Lxx9/vJpA2OcOXTHiXHrOvJ5oRu/xi+uN+k/q3xj0OuqOGBya4bsyiZY5K+sbb7nlFknDeeP6Yz3uh8eQqcS8Dv1MdFonh+V+eR7c/8hR1pLguh6GJYtr121wvZQkZOPo8Tl8+LCkYX8xGEd2VnldnzlzpunwGhoaGhoaIpbi8FZXV7V3794RxRB1IXzT0kEzkw2bqqCVHy2SGJInQ81BPHJA5i5IgTAET9Q5kMMyovw79iVylEyIyc8sXQ91eKZMTb3z2Yyyq6VcISUrDfoQBhg2NZYlOGVYt8yp2+i6TpcuXZqP/cmTJzf0J9ZJLsZtcH2ZnqJmOUwuKrMUdJs8T1lQZYPWd1xn5DSlgZsxd+w1ZO6Qcxn3BoNRk7NnCChpTEkzOAHD02VJeNkPrw+GcovlGpyTzJndbfQYPPnkk1UdnkGLyDiXbqe5WgakoOVqVq7LIzeVWSFHvbU0TuPjOY12AEy9RAmTJQFRV0gbAZ8DnPdsf1KXxv2VnVXU/3L+PZ6UhknjsWWKLvYh1uPfPLcMWhDbyEDhjz76aOPwGhoaGhoaIpbi8Eop2r179yj0UuTwaMVFK79M78fAqLT+I+UdqWeGx2FopyxJrakIt9t6CrfJ3EHkkJjCw9TLsWPHNtTrsjK/qGidFMvMLLoYFLqWXimjmjgHDHRdSzEijS1mzbVlvkgeJ/fr7NmzVSr9ypUrOn369Ihyy/Q2UTYvDWPp8Yq6PM8DZf0uw/oeh5yKXKjbzbXp8WLA7vibqX3rQ8wlum1Rh+f1at8it8F6C8+/xyZaH7pcW1jSz9W/R50x0yhxn7q/Hpuo/7OeiZaLtUSk0jhkFjkKr4kYBi0LkVbz41xZWdHevXvn8+W9EceYOixzMfQJi/NP6VONe6ZeSxrWm7kxctUeP3OwWRttPUv9X+TwbNFpvZ/rZSD6TJfPs4E6Pfc7rm+3jSnUPP/0e82Cv/P88dr0eo/njttLX0iGrYxnp/eR983Zs2cX8gGWGofX0NDQ0LBFsDSHt3379lFakShfpSUidUx+22e+Jn7zW5bNhJzkAKWB4jHFaO6N+oPIFZo6MtVw++23SxrrCknVSgPlw8gXBtPSxDaQc2Aw6Qj6oZDyoQ9h5LIpo6ceINNnME0HKWPfG3VuboODO999991VSzv74ZFjiDqABx98UNJYf8D2RktRP2+qj/54/t0cXhxXpi9hkF3rZyMHRB2h23zbbbdJyv3w6HPGdDq0/I1zYYnBPffcI2kYN8+DyzAHKA3j5r57T5jbcBvNPUSO4u6775Yk/emf/qmkQZ/FNZQFHHa97jv3ZgyK7bo9jnv37q1a+W7fvl2HDx8e6e6i3pLrjvYFmd6a8+3yzOUyklCEy/VY+kxh4O7IhdI/1mPrfnl8vJalYU14Lp///OdLGs4opv6ybjyOidvvdUUr3czP1GPh9vsZSp6iZMn7kvPkNeO2xv1LvTbPRtdji1ZpOHu9L/fv3z+ZwimicXgNDQ0NDVsCS3F4ptJJGUVuhtQSdSqZlaapBnN2phSPHj264VnqT9wmaaBATKEwDVGUAfuaqQLqBLLEtky1kSWhjIicC/WWTGmTjYm5C5fjMXFZvm4uK+oMGS2B3LavT+mmSG3TVym239zFlBx9z549eslLXqITJ05IGrjqLD2Q9aKMg5pFiGGaGX96HVAnGfVjTK1iDsj3mKvK4n1yDMwtWqeXxVI1V0YOjxZwkWp2ud5XXqOk7GMb3R/f43LNjXquXW/Uid55550b7vEe8FiYg4hrx2uxZsnstmcRZKbSTxmrq6s6cODAvI+ZPo7rllGb/HscJ/bxgQce2PCsORVGZJE26uZiHz13jA4lDdyM58X3xjUp5ePk84uWyvyMkiyvFXPTlH7UUkHF/lB/aWkO91tsq8ecVsKZZTMjR3k9uz8x2bNB6/rTp09vauFrNA6voaGhoWFLoL3wGhoaGhq2BJYWaZ49e3YUIDUaXTBMk1lwKpqjWIqGGAyEajY9c2w2m+y2WNxBMWV0VrY4gmmHGJ4sgmJOmu/SbD+KtGjiS1GdWf4sbJfZdotTasGDozEGRWgU3U6lsvE4MvwVw69Jg7jB/ZjKeL5z50694AUvGIVcikYw/M1jbjGaRUtRPG1HY4ZNe97znrehDJqRS8Pa9BhbtOT5sCl4NHSw2Ovee++VNKxJBoLOwoO5jRS7+5MifWnYC7UwdDZwiONOYy/X674zBZD7EvtqgwCP44te9CJJ0rve9S5JuUsA557Z0TOn7ygaqxmtrKysaNeuXfOxyAJVcL8zrU4WTMLXvL68Lz0PFr/HdhgMwUfDJK/rKGqjqJkuJXEfGQzB53r9DMN5xXa4HqsP/GnRtuc4jonrtguJ14zrYaCNuBdpfMiUTK7H+0oah43k+4PnT7wW0xG14NENDQ0NDQ0BS7sl7Nq1a05NmUKIHJ6pJr/laT6dpX+gg3FNucqgy7EcvuGpmI+g4zzrmeL0yEky6aH7n5lMu60MZZWFQ2OqFddDY4UsTQfHiylEsiDc5AJcnseITuvSmHMppVQprZWVFe3cuXMUSDm22+NhTs6GEqYq6W4R20NO3v1wH++66y5JGzlKr2PPB9eX2xgV53RsprGU+5eFPyNHTa7Av7s9EZZKmMO0QQXN1qVxyhqafHu/2TgoUvgeHz+TJU5l212P13cthFk0+vC+jGHXahyeU5J5XFxfPHc8du4LJQgMGyiNg0lwD7vvDHwhjfcFuQ73L55VbgtTSzEweKzn/2/vzJbsqK40vKpUEgJjhyMwg8DhxhG+9Ps/iR+AtiUDbiaDQUiqoS8cX52/vlw7qw4RfeE+67+p4WTu3GOeNf7L7xv64mAt3sW5DxxQ5dJmDp7Kz2x1Yl+bcDsDrGjf9GDMs/dQ1UHrZFx+f9hSmHPREZDch9HwBoPBYHASOErDOz8/rydPnmzsqym5IuU5YXGvKKlt+0gP3OOw52zD3+wu/eNyOtkOP61BdMVJkZqdoA0svWcfV31xYmj20VKnQ7GtcaVk5M8sPXn8CRerdepE9pFrGOteWsLZ2VldXFxspMu9gpXWOk0wW7UtpokWsaJISp+DpWNrKF1ouYvCpt815yD/zzzb523fDekdmXgMkNL5DO23S48xTZPPHHvK+zL7xnzi3zIJQNc3+6aditSVIbIlowMaHlpTZ4Fhbq01e4+mFomfyqkRqTlUbTWjHIvP9IpIO9un305xYj/mc9AKndzPT8aL9SbvdVFc9g7zaNLsfI6LLXPm9tLLTIPI3HBGOyIP2rOlzNaBBO3w8/Hjx6PhDQaDwWCQOLoA7M3NzS5xLRKJC6/aT5aSkAmgXX5oj4LLydSrUivpu3ESqiNJ3a+qbakN/5/nodmmlOjIVNrg+SZ3zvZc0NSSZFcKyNGgjgpk/J2mzE8n+YIVdZj70H32ww8/3GrTe2uJZGqyWfqbWhqSp31oLsnkgqP5memUnMydycpOvEZ6tRbTJUWbGg/J2xpGUnDRX/t/ucf0VFUHadnWFpe7AbnvmBNHNe6VgPL+os+sRednXhVs7nB5eVlff/317bWOEq86rJ2LHrvd9HE54pVr6afnIPf+iu7Q+9oaZ9W2tA5r56jxqi29HX+b8q3zx/Fs+u+o4JVWmuNg75jQobN0WdvlOcyjo6KrDvPH/7yOjsL3GBnfJJ4PBoPBYBA4WsP7+eefNz6JlEjsc7Kk1fn9TLhM+5YUOnuupQpHM7n8RNVBSrGPhn44fy3bA/bHWIrqyKNpz9FYbiP74vmzRrs3N6uiu45grNpKqvztvqXPbVWGqMPV1VV9//33t3lzXSFRS75oCPbDpaTNmJyfZCm2K+rq/jpfyP6TfA57CA3PhXJT4nSupH04SO20mblO+JnYT2iqPIf1yLw4a//+yZp6jqoO68F+6krj5BiyL6bx4qf7nO3xvL3SUjc3N/XmzZvbOUb6z36b1spRlF2kpcs/WePhjPtM5D22ZFkjSc2Ea+k/88Ieou9JBI4vjf/ZKkWbzrGs2tJ/oWm5PFCupYnuAfvM5yvX1LnDK/q4LmfU2p8j6PO94zF/880348MbDAaDwSBxtIZ3eXm51MiqttK+C5Z2/jiXDLJmYm0mJTtL/batdz4CS8cujOko1KptGQtHDlrTzJIyzrNbzUlKZ9aQrdnt+Txsk3eU3p42aDu/I9dS2zG7zFtvvbXsl0tLpR0foNnRXwpkWmNIKd3+NhdzNYFy+h7cV6+PNaWqw7pDsszz8K11vg1bQpzvZzL23Af2HTvXCaSfsSt6nM+3dpVSus+AtUL72bMdRwMznybHzmsZx2effbb0D9/c3NTLly83vrbcQ97TnUZnuGRZPq/qMKddRCLrwLo7WhfkfuAeF8z13sl5cPkvrrXmwz3pJ2VczL+vYb91c2Ttz2fd77CqbXS44zb23lneX56jXCP63VlE7sNoeIPBYDA4CcwX3mAwGAxOAkeZNKv+rXI6yTpVcJv2TGS7F0YPbBJxwmZeb1OcabUczp19s5kSp7id1fk/TForyi2b3/Iz+mpTAm10IfM2P3ncnbnFAQY83+H9nVnZZi+bWbpahEnUuwo8ePToUf3617/eJPFme5iQXInbZrQ023AP15o02PPW0anZBMzfPC9TTKi87KAl76HOdGrTjvvGGqSDnnZ4HmZeAnpMU1e1PQt85iAjBwgkbEqjTea7m0evPeerq7RtE+Tl5eVu4MHFxcUmcCz74Dm16a0LqLLrgmtNCN0FoDj9yc93qkaO2akTDiLLc2liCZtF2ZtOCXE7+XxcBw5eqTqskRP2bW72+z3v8TvZ93R9An4PMc8dOT7z9e233+6mRCVGwxsMBoPBSeBoDe/Ro0cbJ3tKCNY4utDXvC5/d8DLSnvrJFL/z9JEStxOdlxpUV0VaUtFDmywNpqfuYQHUiCSUTq+TWDsuXAQQ5dEbg1spTnncwDtWmrrkvHd1w6Xl5f1zTff3I4ZLSaTyFdkyqxdl0xMe9bWVtW3816XInEAkq0EOX6uZc0oJbOXOsO5cWCVNcDUKLtq4VUHCrU///nPVVX1l7/85fYzl59BY3lIsreJImyx6QK6AJ9xblxuKTU01i1TgO4jHreWkefFxPNOQ3Fl7bzWe9vnZW+eaNcaWBdgxfMcLOS/M4XKQUvWotnnXaASfWQ9rK2T8pJn2ukHJsewdSjH5yDGVWpaB88F7wWnm1UdNOIkQ98jxEiMhjcYDAaDk8DR5NFPnz69pVciNLvz2zi8fe/b3VrLKlnd4eL5bEvWK62tauujs8S7R07b+XW6NrI/TjS3NIj03oW/rzRIa5KddNyR9ub/O23HkiISnqnTqrbh9ntr/Pr163r+/PltGDoJ6Fl6x5RYoEt/AE52Nem2pfj0+1g6p300B67NEiiMH+3F6RB7KR8mjbb/p9uzPHuVyoA28Kc//en2HoilTXhu/3mnBXd+pOyTn1+1Tbdwygn7v5ubJF9Y+fBubm7q+vp6cwbyPeD968R5p5zk794H3n9dwrTXziH/toLlcxxDYML7tCwBn0tbazpfG+15r7Jn0PCePXt2ew/nknZdWsgaXmrt7sPK6tX5NZknp910e4d3I6Wyvvrqq9HwBoPBYDBI/CIND7s7dDdZmsTRcZawVySrVVsf3UNswPb/IXGggXXko362n9slR69KxjgC0rREVQcJzpRSXMMc5T3WrFZUYnvatfsOOg3PUVkrn2FX7oT+v/32220kFu29fPlyQ9hMsVfuz2cbPDv9Bva3+W9+OrqtautroG9o3KxBV5jXBUWdqN2ti8fl0ijWBLvnIPnaV5XPQ2K3785RjqYIzGtWhO4mS8/fTehg2qicezRlfr5+/Xp33Z88ebKxOuR4rD16Tbt3iDVdayL2rXZWFNP1obW5PFXCPnzmDb9s5zNenU//zH3gd6F90ryHKC6cY8aK5/+bpCP7uqLQ2yPYto/a0a/snfTXsr/2iOhXGA1vMBgMBieBozS86+vr+vnnn2+lFqSApDlylJIj76zp7X1mja6T0vifC85ie+ZnamsmjbVkaQqjfI4jLR1Ryj0p2a1ogJC8KAeTmrL7Chyd6WdkH2wXtyTU5ftYM2Jeu8g+j3XPhwfYM4y5o8Ra5St2/iVLk5b0V4S2ea3L19AnUzNlH10Q1T6V3FNI0iu/z0M0PPwu7GekcvLyumLFmXuafbTfMZ/nXE37t6wx5z300Xu2mxP21YsXLzbtGWdnZ3eiNGkfH07VQau1RuX3TOevtBbVRefmOBLOz+WMdwWTeU86t5J7Oqoz++j8zrJvuiu9w7pYo+zG48ha+mTrQJeXax+03wd83vnRnUfLHu2iXdGE0fCePn26S1yfGA1vMBgMBieBo/Pwzs/PN1ITkT1VWzYB+zY6Lc0+tJVNHXS5YABbMD877cbRcmbNQBJKSctRYGarcFRqarYuGeS5QGJJaZD5W/kbu0hSw9GAHkv3v64ET7aRkpT9WRQI7nB5eVnffvvtbTv47roxryJvu/1g350LSdqnlxqA/QWsA+OBzSQl4SQFz88ctdtphexvF/p0cVqKe1YdpHOTYRNhR5Hcv//977f3WPv0WWBcbjPHbo3e/q6upAxamyP6uhwx4gAy8nYlpd/c3NSrV69u28U6kJoC0awuOruK+K26P793z4rC3uF/1m7tD87+2i+LptJFkvp/1spXFqb8zO9g5r7b34A9Sf9djqg756sI8lXUZv6+apc1yEhpcl45J0+fPn2QdalqNLzBYDAYnAjmC28wGAwGJ4GjTJpnZ2f16NGjW/URxzkqctVB9cRkhapvc0VXtTqfU7VNbjSdV9XBRGXSZhPmdqHXpqNCfe/q/HUh3Pn3qg5g/u6kVJP35hw5aZh7bMroiKBXTuM9td8h2A5z7tpchczvgVQW+p9E0JgB+fmHP/zhTvsOXqk6mAcdJOXq6VyXTn36jymOzzAX0kaa7DH/rQINGE8GjNi8bzBv/Mw+2hzepWZkX7u+MSe///3vq2obLt5VrfbZs2kwE8+79I28t7uH3z/55JOq+vd7YmXSJFiO9v76179WVdWnn356e41JCxiTiZo7wmm7CRzA1Zn5V/Rwrm2Xz0vTcdXhXcn8delQdgG5r3b/5DrZDA14HmcxzzTnhH3MWfT8OtAnwWcm4e5MtivyaK6hrzl3divdRzyeGA1vMBgMBieBX5SWgBSDlJZJgasQ33TEV/VlZoC1GIe9p4a3Sk534ntKj6YbspbWSbWmteo0hhxX3osGbK0G7Zf5S+3RCezcY43PlFqJVaV4O7Gzvw79tmaR82ji2lVpIJ757Nmz2zB6a6zZDpoJEijtMgddCL61dUvEnSbsZHSTFCCBd2S+rKkDkDgbGaxAYAnSMtcyB/y/0/BcXmsVvNDR7XFvaqhVh4CELkXI59cpPF7zqvtL89BmziNzTl/evHmzG7Ty+vXrTRh/VrqGos4akDX9LlHawRbWiDridAdDeZ7oW6cVsr4OBKHPHR0Z/+NsoPmsymBle35HsldYj87ywD5mLkzG0FnbfMZWpYW6gEWTcnAv4+0o07i2C8JbYTS8wWAwGJwEjk5LuLq62hDJpuRj6isnFoK8x/4BS3oO+c97nR6wKvmTUoXJoy1xITmkfdqSjcvSWFpMKdEJzbZpe87yM/rkwrO02dnuTeGzKgSa41tJtd0ar665vr5e2tIfP35cH3744e3YvebZB2vlaIUdTZw1UPtY9/yYK8Jsl0bp9luOK/uGZJyt7DiCAAAgAElEQVS+SX9mPzNaCJp+hmDjT7TFhL7Sdq4lfaT/LtrqxP7cd55HW0qczFx1OC/+SZ86zc3lts7Pz5ca3tXVVX333Xf10Ucf3el/+gR9lqxtohXmMxzK71I0eyXOmFP74dBIOiIENHlbUQB7Jktm+Z3H/NvC0D2PfcVaMT6nbORZdII7c8P87ZGkr2jPVpRt+Ry/7/Zo8Uyo/lD/XdVoeIPBYDA4EfyiArCrRHE+r9oSC5sQ+k4nRF9krcKSXydxW2uzPygTgV06xImySGspQZo81VqIfR8pkVgrQ1ri+V2ZFlOZ8dN26y6R35+BvWKS9n2tivzm3Dtqcs+Hx732X3Y0Si5g6jlPmAKLPvnvvcK8LmDL2DtCAPvOTIZtba1q6/djXey7JbI5950TmN1H+3izD1zDHDCvtmh08+qz3dHtgVXysCOJO39Wai73Seo+y11pGvfBvtyOwox73F9bQnJd2L9oG/TN77DU1mzp4W/Wg/2Qa0kfIDxwNLD3d75DeI4tI/xtCr2qrSbpa1Yl1fJ3l0Hy56nZ2t/nPcvfSezg2Isffvjh3nfPbR8edNVgMBgMBv/hODoPL7WGVb5X1dbHYNLTh5J95j17UWXOCXNJjJQeLcW4nElXbgKJyrRQSHgru3zV1h9iSc+aV9U2v9DRSytfS9VWAqKvSJJ7Ejd9cqRsR9FmLWAvH+bm5qYuLy9vIxGJ2u18j/QBrcZ9yLGu8oG8N7t5srRKPh77gecRLVp1kLQd4cb64G/M/c28u7DniiYux2JJ2tGteyTFK2uArQa5D+zHcgTjng+PeTPNlnOqso/pz1xJ6ZBHo3FzfnKOOe+2xJioO9d/VdSUftunm8WP0dZtBXBeaFdiDMsFfXEUb54xoj0ZM+PkGmjWuuLBtpQx57YwdHRk1vC8z7tz7vNpTa/LC1yVP/LfuUftp98rLWWMhjcYDAaDk8BRGh5SOugKI7pMBZ8h+ezZWh2Naamyu9dMF0ggXMtzU5PgHq5FWkPiMQF1jou+cQ/SLJIeUmD6RZDo6IvbYk4zVxFpzyS1exFP4D4faCcNrnKQViWaqg6SVs75XhHPt99+e0PqnFI/z2IOrZXZB9Vh5VvtCmRaknff2Q8we1RVffbZZ1V1KHP0/vvvV9WBMQR08wQzEWvL85DiuSe1J/vAVxJ4nkuXsKKPzqGzf6t7Dtda4k6fiv3W1oysZVVt80f3inhCHs0+w6qS/jH77OnLyp9Nu/lzlWvI/znjVYfzzxjpC2sLMXPGDjjCm/cCkbiOMM8+sJZoaZwR5zrmHNva5NJtWCtyLXnOKg/T79c9jdIant9hCVtoVsTTVdvz/1D/XdVoeIPBYDA4ERwdpXlvgyqqiQRk/1HnUwMrPj+XrK+6GzlVtWUTcQHNvN+RXS5omlqabeeWKixBJr+oGTWs3ThvKttzXzrmmOx717eVNtjZ7sFqHvdyaO6LtLu4uNj4WNIvYt5I5tB+zC4yzFIfa8r8OSetaivBW+tA80rJHh8dWoYlU6T2jg2Ge/74xz9W1TanDl9h7tVVxKO1hVxz5onP0ArMztEVgHV0NWA/WAvKObD/xfmG2SbPZm5fvXq1lNSvr6/r5cuXG/9hRsKazYN+djmuvsfahKOF2aN5phmTmXX46QjwqsM7hP/hu3Nh1hyLtSbnL7pQap4NR5/yHPrOPGbJK2vKtgKsimZ7rDke/7+7d8XG0kWUM7cZZTwFYAeDwWAwCMwX3mAwGAxOAkcHrWQI6F7AhNVYU4slVomrNjl0yZWYNRzY4jI9WT7FATQeh2l0uj7aEUs/MDmk2dWpEiv6tS4B1E59O/c7Z7+Df2wW6KjFbJ5cVX/OOfGz33rrrd0SROyfbL+jU3P1dSe/Z7/tZMeM4mThLqXBFb/5ybgwaZIQXrWmwcPsxc8ukIufVCfnWlNOERBTtQ3CsGkJE1qGajNPBE44dWEvqMkBJ6uyV13Vapv9HQCTz6Fd5vY3v/lNmxROP6+urjaJ8h25+8os2qUl2ETutBg+Z53SHG7Cee5NE232K2FChVXpsW483tdOdemClwB9ZX9hnnfZonxORxaebSVswlyd3650mr9TbBbvSDnsznoIRsMbDAaDwUngF6UlIFVQkiOlDEuE/ub2N3r+z1KkSWK7EGZrPtZikC7SYe6ES5MEW4pOOBHSztKOLNvOe//fFFfZ7oqeyZJXSlzWKJzYvCd9OmHbUnqOwe3e5zy+vr7ezEWOmXV2wIQlxC4AwRRr1pq7/rPuSOWeYyT71CTY86uiwUjLXYCGC4miESFxOzAkn+0ALmt+GbTjIBUHLTCfXQCCpXATencpHF2Jovy7C3ji/gzKWlkHbm5u7gREdWt5XzpNl5bigCxrt3va1MoahbbeBVg5GAYLAukqSSkGXNDYZ9cpExlY40LAJtzoCC+cxuGke7+rcs397rP1pbMSWYM1zV9nmeGepNeboJXBYDAYDAJHpyWQBFq1LaRadT8BdJesbsnX4eKd/R2saGscrp4aF5IdEtAqBLajIVqRq1rD6Gzc9GWVVJk2fNqxb9JaCH9niLa1XEtNHVmwx+yCql1iurW0PUkLPwz+C7efsJTpwrwpIa4Ssp203iWwOt3F0nPnH7OfxVqSC4NmnwgDNy0Z54gxZLIyUr99g9ZYct591px2AazhdO3ab7rnU3Eqiwnju2T8bHdv71xeXm5I33MtV75t+1xzv/mM2WeH1tQRnXvf2qdnasCqw5yi2fGTdBVTf1VtycltBWMO6GNqoYyD9p1yslfyC3iOeI4L02ZfV4Wn9/z79/le8zyxLqxXxmfch9HwBoPBYHAS+EXlgWyTzW95F1W1r6vzU3TJhVUHKSIpvqr6grMrGp1OinFpF2BtqvMVWmpeFafNsazG56i5lGJW5Y5cPNb9y3bo42ouOq3A0tgebY/7v6fhXV9f1w8//LBJ1M3rrS1bWmbsKcWuCLHdRqdleE2ZN0vrnbaGxG0fXkeozmcuuOpCrJaMs48G4+bebq/ad7ciK8g1NhmDNb1OWrcW5b3LvWlloU/pq9nzw1xdXd0+u4vOM8HFKnqxi9J1GysKrM5PjjbOPmCMphGsOpzHLGtTdbA0oYnlObXWZx++z2BHSwbs+3QR6+ybrVCMh766QGu2nz79qu2+7ggvrLH6vZrrSWRvV/LrPoyGNxgMBoOTwNHlgc7PzzeRY520Z+l5ryyQbf32E+z5xVaRj/688zOu/FSdj8tSpZ+zF8Vm/5g1OmvF+bsjOVc5Tp1fa5XfCFICdCFVS7eO+KzalkI5Pz9fSulnZ2f15MmTW22ti0jD57DKx0KKzrwha76eYxc77frn0i5d5CuAJBifqfPwulwqP9M5qXuRb+4D82aqqaQj6zTvvNbFQxPOv3J+Zjc+n0/vSdacvMDunr0IX6jFGGNHVdb5MrMPq3yyvMc+TefJdXvfpbesGXUljFziCc2ui3ZFs+FeW4u4BwLqxCpi3ZaLfO94DthDzhVlv3dFpFeR5V10td9Vq3w8/J35v9R6pzzQYDAYDAaBozS86+vrO1IhknbHomI/AuhKYFgDsg3YUlTHEGIJ3xGK2W+zI6wImVPysV/ChRD3pJiVz8alf1JiNdGr88k8lr3yKs676XwhK58NcORftkO/98oDEWln/0Gupf1D1hTs98lnr6wArLv9TNme89LQSBx1VnXY8ysNkvF0fka0Q0ed2i/cRQf7jHncqTHbcuHIaWtpOZ98ZsYQn9vOouByO9accu9SCiuLw95XAJYcM9Yn+8B82zJCm/w/97wjue3vtb+8YzGxRcssLZ0/dhVRmiTlBhqVrWB7rCNYRHxOXRi6y490dCZ/r4oyV233iK0te5aTlXbv9222j5VlyKMHg8FgMBDmC28wGAwGJ4Gj0xKurq421C6Z9LxyQq5U8aqtWW4V4NJR4VjlNrFsF2xh8yMmEgdu5D2rsGybTrvkaKc/0Ab/7+pGYaKy6cSmua7Ssefc4wadKcMmGs9nmhbc/l5o+fX1df3444+bpO4k2XZ1egcadAmmNps4PNumno7UmTboC6kT3T5wKg7tMR7aev78+e09Dsu/r/J4t5Y2lXvcuZb0f1VD7yHmd+Y61yc/zzqGdklg9uX59CfXgnYzrWRl0nz06FG9++679cUXX9z5f84T7XFuuuT0qrumYe9FB6c4eTzP5ypoiHt5J3YmfgeLmOow1wUzp9fKQVNOj8n+24Roc2WXbmHzK8/jWta0a9f72kGAnVukcznkeBycmO3fl9Jy554HXTUYDAaDwX84jiaPvr6+vv2GRsrLcONV0vMqiKVq67y/L5Q4pQEHrZiY18/IPljitqSazmVrknbEWorJe3FkW4Ldq8rs/zmAY0XZlmP1NV6LLvzdYemWDnNe7dTfow568+ZNffnll7eSKCTMOWYnkQMHPeQ9DpgADsnunOxoHPy0htVJlaZwYg+hWTj0v2qrmTI+05LtkWPTR2uwtk5UHc6lA11W1pAE84REbwLtPToqJws74CXn3vs2yaGN8/Pz+tWvfnU7Hltbqg5aJYFBwNpUF0Ti5H3+tuaVliyPw9XMuSfD6d9///2qOiST0zfOQheYRpK1UxnQsEwu3Z0n4IAxylTlmXa6EH1l7LZkZDCg3+0+e50G70A6nz2PO8eVleL33j2J0fAGg8FgcBI4OvH84uLiVrr1t3BVn5iasCZR1Yc6V20TF5EmUmqyr6nzaVTdDRN3wUr7OugjCaF743DYrIuI5mf8JImTPlsbrTpIqpaSHkL5Zc3Yc2KtOO+xJO8SSl0pkUyGXfXr9evX9fz58/rkk0+qqpeWV8njqzXO/jqk3ImznV8TqdjJvYTMgw8//PD2d6Rx+s9P1haJOOcJaRwNBb+M6aK6s4E0S1+tLXY+NcL3Tc1mIoKOus+airXuTutdWR+cbpPvCd9zdXW11PDOzs7q0aNHmxSQ3EMr/7/95N3+tBWFfWjqrT3yaKdBdFRmTnNhXdhTvDvSP4ZWyLVYGJza5JiFnBNbvWiL5+Q8ei5ozyV/nBheddiD1qZX5cmyHVs36Ctz0hG4pzY6PrzBYDAYDAJHa3iPHz/eFLtM7cl+ga6se9VdKd10OaskaDQuStNXbUu6IGGbvLqj+nIkkn2FKYkg4VjCdfQkc5HSoH02LmvRSZ9ff/11VW0lIPtDXGIm77FmZ+ltr/yRSV3t58rfcw1WGh7k0UhuaDldxJYT8u1PzPI5aPteS0vlXWQic5bt5XPpBwU683dLmbSPPzvpz3imKb3QxCwBd5qQzwRtOFk+wVmwtcOaXT7vvn3giNa81nPuJOV8jv1L77zzztIPc35+Xu++++7tGaRgbraxSpQ2nVbuN2sVJjhY+faqtkncPmtoYqk9ca2jkO33S82F3z/++OOqqvrb3/5251qXbcr3E++QlQbLXk1tlf3kEkKOBgWpjfLuY8yr93hHrO/vib3ozEw4p/+j4Q0Gg8FgEDg6SvPNmze3EgPf4EmJY2of4G/ulGKQ/Cz5OLKzK7NjqRLtzz6Hrvik85JotyunYrohJDj+b80utV76ZA0SCWuPUNsRkGgjtsPnnNjvYwncOXf5P2CJscuT6fw6Kz/Mo0eP6re//e2S0DZhOjBL76lxEcXGPayLo806GjzWg89YD/qEBJk+PJPnen91fjEXkmWOvHad38c5YSZ85t5cAzQ7+uLoRq9B3ruKIN2jrgOcY/YZ40YLz/3v6MJ33nlnSRpe9e/5ZVy0lxojbbsskLWojjzampytKJ3Vgr3hHD6u7cooOUcQTZU+dbmpPAe/MnvV+4+9lOOzL81z3vnU6KNzYh2B22njzvuzD68ry+a9j9WDdTTNZNVBw0sry97eSYyGNxgMBoOTwNHk0S9fvtzYxVOqQttDE+misaruSgiWNG03tuaXEoKZLzJarWorkVcdpAgkYEsT/N0xkfCTca5yxjqp2Zockpzt5XmtfXf0zYV0s68uO7SyoWd/PA7ap49dwUf+R5+ePn26W7D0008/3eTDdXlDzmGydSD7bUJxS+X0nzXPe53zgxRtVonUQpGwvVfRDjvfjRk1VkVWOz+My8K4SC6fZ3kg2nUemc9Tl+PkNV35mxL2vVvbYI66aMDUnldSOv5fPkfTQ7uvOuwVtAz7tkBqT9aETbq9IjNPrAjhu7VkflxaCNBGRofz3rKv3u+FjmkF0H/W24w4+e6wBcFaqdcotV/Hb7h4NehYtuiby6BxbeZXsr+6PNL7MBreYDAYDE4CR/vwXr16tYlI6hhJ+OmIO/uREv52t/S+4lur6tkpqg5SQPp0zJZhf5x9hlVbCcTMF35+V67D5VmQeJ3PVrVl0rDdeq8A7CryqfPdAWuhzA33Ig2mhOdcmVevXi01vIuLi/rggw82WlpKs0huSHPOJ+vWhRwmItIYI/faf5pjZ05dvJN7+Dvz8lZRoDyf8aVWSPurElbAn1fVJue182lU3bVgfP7551V12DvPnj2rqq0vr+NuZD1WZZW6PWStwJafjj+XteZcXl9f70baXVxcbM5NjtmWCHN1Ouc2+8nc+n3maN2Oh3VVRsvRm1WH94yjc7EWdbED1sb5ydy6H7mnbA3gnLoQbe5V7mF9nENqa1xGIwNrdLYo5ee2Rjli1u+EqsP65x7dy0tOjIY3GAwGg5PAfOENBoPB4CRwtEnz8vJyQ02UKriJpU2503ZCVcmdqOrw9wySsXPYtD1doAtmMJ5naicTUVdtzQGrBFc7iPNaE/O6QnCOi76h0juJd1VCKUG7DuRhLRzCne0xTifldyTVDwXUdFWHcWUQAe299957VbWlxuqCiaBewhRHG4zZCdrZZ9bUSduYnrrAGq8762D6rq5Mi8PPMeeYjq4LDHL4Nm3aTFm1DU7BZOYAmC503kQDdkE4qCX75nJLgPlLM6yD2vaSh9k3rrqd6VAOyLB5kjnNtJRVpXZgYvjcJw6wYq4pYWTi7K59u3lMopGfuZK6g1lM8p39XwWtdCW//E73O8ql4XJN3a5N+XvfAX7ncw9rnS4p+ug9+hCMhjcYDAaDk8DRaQk//fTThsw3k2ztXEdatvSW2tOqrASSgiXTLqXBoc9oECZFzvv9HMZhqabri7UbE+Tm52gfJj+2lpYSJFK/w4I97o46zfRPDj93+Za8x6HEnvO9QJ77woRvbm42FEU5rpUmbK0qJUW0dTQGJ66aEo3Pcz5YK+/V7nm0Z/opwuu7QBDTc5mg2ZRzJCTn/6xh27KQEjD/4+eKJL0L+XaQmcG+TK3ANFsmFXAB3Oz/6u8ElIYAbSaDLVZBZA6w6xLPncrigDC/Y6q2JOvMMWe9Kwnmc7Jqv9Oebe1iHVaE+934bLnq5oK5dbuZ9pIgtaPqcJatOa8o1fx71WG8SUhQdVdT7qjrpjzQYDAYDAaBozS8q6ur+te//rVJbE1pwBI10jMSeCc50h7f6kgZ9h85ITSBJGDNYc9fBVZpAgknsloyWaUCVG3D3q3ZOfG16i4xasLS5x6Zr/0tTvrvwt895x5naq6dX28FSrwgEXaUYmgAjBktnaRiawz5+0cffXTn2lWyevaVOWO/pfaXbXd753e/+11VbTUHlyXKZ66sHKb66q6xBkNb9Lkr20R79hl7D6X2ZKncBN5duoKpuYDJwFPD4558P6yk9LOzs3ry5MkmzD6tA6u9aJKM1BScQmKN3uk8aRGx5cP+OMaa9zhlC9gqkFqT01BWvvW9WAn7Vr3GLhSc7TuVwDSFuXf8bvT7xmQWec0q3colmrIv4KEpCVWj4Q0Gg8HgRHC0D+/777/fUC+lFOMkaqQopJa96EJLDV1JF/rh5+GHsES3J8WaIBd0Nm4kbEf7OarRdFGJVZFa+/SyXcNaommC8nf7KJ003fncTB4MvJ7Zhy6htMPFxcWtVM49WV7EfhH3ryOudXQuEuGKEGDPj7SKSIM2LD8zEa8LcSa8DtYOHC2J9pi/MyeM136flJpN7u7xeG92/jhbSBxB2BXkdEkXn/n09dty8dNPP+1K6hkdbh9Y1WH+TfjAfugo31bJ/N77LoJctS08DNxWfm6yAvvhuxgFazy2gnR0e+6L6fwcfdyVlqIv9vuCztriEmoddVnVXbIJ5skRnSvCg6reF74irTdGwxsMBoPBSeAoDe/y8rK+++67TamItIsj1dle7WjJvdwJEyU7Ii2lOJO2Wlq23ZpxdO05siqlZvsubKe2RJKaxapIJODvzh4OTB1kKTQlPOenWHLuNNhVxNiK0qjqIBkmofJKSseH57GmNuOit9aIve+6/6GNuSSN/cBd+45eZG1TK+SezldXddAgOgorWx3cZkdH5b7YN866ZKSlNQefCfZ156u2b8g5XF3urX13qxJGub/pP+f21atXSyn95ubmTnHhjvQa7dHaNP0kirYr+bUqxGpi9rRumKzcliXQ+aqdS+t+5LvEVg1TJfp5+feq6PYe/ZmfZw1yjwjaz/H71fnACed2PyRyNfO2h1psMBgMBoPA0UwrWR7I+VFVBwnbJLNoAZ2/yhKw7bqW/NIX4NwPk6laE6taSylmmUiJ5D4C6+45fp77aMk+pUFrgZZ4XFRxT3J1JGHn97FvzeVoOqnavpSff/75wbZ0F1mtOuSfOWp1pe1mf7gWSR7CZ69Xrr2ZOzynPDf9PvYJO/Kxi1i0P9Faotc6pfRVjqr9ZbmWzifzPc7dyzmxxuB1554uRxWJm3E6OrOLcnSkcgeYVpg3E1xXHdbQ54P3DpaETgOyNmjfaue/9pn2nulKSzmS01Gg1mATfkfYWtCdT7Cyeu2xNHk/r7ThPU3f88YeTb+918AFj5nPjFGwZeb169fjwxsMBoPBIDFfeIPBYDA4Cfwi8mhCfK12Vh1MSQSvQPCKWYgE9I6mh/ZMnOyw567i+SpBu0sTsInPTn4nnmY7Xe26qq2ZKs0SK5OCzROdKcvBJHbOdqbWjgopn8s9HTk243DF6y75ekUw3AGzlM3gSYnlVAub0ehDmjdsAsF89vHHH1fVlhKpS52wyZH9x3PT7GpTHM8laKRLrHf6js36Nv2kidMmq440IK+r2roaHGhFn32usk8OVmEuOMe5Bk5ZYA7oE2c+18LndS9oBWqxbv3dbxMAOPUo3x28X3BdMA92OXQ0YXZPOLG9IxtwYvaq/l5HnWgqwxURdb6LHbTkvjpdwWOs6tMP8rp8R/q942s6E6oT6t1X1ijfb05+n8TzwWAwGAyEoxPPs6p1F7Ri8lGkOr7BIftNJ/uKfBhpEoc0zuqUSJBW90J73UdLBJawLOXmMy2FORCA/uTz+Z+drSsqnnzein7KBNA5n2BFwdNJn9bkXJZmr1p6JnvvlXh5/PjxRuPOOUaawyrg4ArG2O0d9p0TwaEce/HixZ3xZfv+29J6R1y7SjEBuUcdrOKgAUu3uQ+8F50s3WnXTglymSWe2yUtW+qnXbS27nxZk+A5XgvSTnJOOlorg7QEzj9aZwY/WPMGTtBOiwL3M7dfffXVnWsJwPP7oerwbvK5d/BNF0xmq80eubL3hNfflFxdOlRXBir/7hLdnbrlABunVlQd9rHXHfq7rnSay7ixH/yuzHVzQvvjx493A3DujPlBVw0Gg8Fg8B+OozS8qn9/o68kyKqDpO2yJkh3z549u/P/bMeah4lYO7uxpWZTgHV0VCvfljXMruigQ29t73dB0LzX0p8lr84W7TFbO+iSyO0fQSKyNNj5KJ38bf9mhoIz5vSt7lGivX79ekM/lH4d/GDsIZcK6RJl6YP7z9oRjk6/83lOkPXznHqQ15pyyT7OXA+3Y83K1om81z4pawFdiDmai8sdMSd71Hr8z8Vx+fmPf/zjzuc5djQiW35caDl/Ty1thcvLy/rqq69uNTDQWShcUmplzanarovJyn1vpqc4TWDlH+usRD5L3TnKsee97hPtm3gjx+oz6YT3bLOzbmVbwEVYs6/A7yhbjfIz5n5VDDnnhH2Q3w+j4Q0Gg8FgEDhaw7u+vt74ANIO7+KMjgwjubiLDLJEgk34IWUsgKV1UwDl7/eV6+mislaFX1ckstmuNasuSsr3285uiX8votTSvxPsU6N1Mm9SPmWbXUK1IyU7YBnAH9tFCLK+aGVoEzyTPmW/vWYrHy4J6fgHq7Y+B/tSO6nRY7SPqIuapd8uyOsE586vuSq14jXNOfG13qP2C+caWLL33HTEzdbkgMkLus+Sum4VbffmzZt68eLF7bulG7P9YrRL1DiWpQ7035q9C+d27x/vEUdgJ1ZllLxX986yk9f3CNutwfuMmIi665t9ht4He4VXWS8nlXf+bY+D95GjrxPsq26uVxgNbzAYDAYngaM1vKrtt3FKBUTkrMhc8bHktzLf3p1vqWobLdcVcTTVT15jrOzsqxynHMeq0OJDS8zntc45SWnRUWfW6JjPTrox/c9KAsp1dHkja/FdHqD3weXl5b0UP9aqE8wtviBs9UjpXSFR9lvnM8n+Mg7y86qqvvjiizvj6HKZPM6V1sQcI3Wm1uRoPOd7ed93UXrWYFbr4/5m+47kteSfv6/8S4wh6f08duekskbp7/F++vHHH5ca3tXVVX3//febeUwNj/4wRvYIc4FvKPvta/z/zscFVnEAq3XK/q4KAnfk6I4rsDZo61B+7jzMVcmffJ775vfO3r7zHNg61EU2my7O1hX7knPMmQkw5NGDwWAwGASO0vCQtPbAtzdSkn0qSIHZDhK9i05aUyGSJyUSay/2fXXRTc5hsp/CZUHyM5PTOoewK4XS+b/cp+xPjsssFis2ks5HaUnI0mH6XGyjt5/J1+X9Ga17n6S1p83Qnkmj2SswduQ4VvNiX0eXp4Rf7/nz51W1tRJ0jDUuSrwq4pvrYU3BUrstC5225qg1s7LYt1y1lbTtQ7Em1o15RcpOXl7VYX2ICr2vsDPX07cAAAQYSURBVHI3jj3rABG+9o/le8Aah31c9O2DDz7YtL8q8ePyNnvvEEfc7uU40h77mL5143cpJ7fryOs9C4sjPl1wOa+xv8+WLe/Hqu3720xMXbQ67aDJca0jf7Hy5NizTFBHmt1hNLzBYDAYnATmC28wGAwGJ4GjyaOvr6835qgMO0a1JknTZkJMI2lOI1TcdDmmjeoCHnyPVe4ueMVmsFVtro6OzAENjMNm0YTH4b5bRc9nr8KCbU5MM9mqGrpNGB0hq8frkOw0Rbs22n3Jn2dnZxui5C4k3onKrm2W99jUYxPzKpG2aks/9vnnn995/kPIfFdpMDm3DkdfJfV7P+Q9rpHmCuT5PK+/TU1OsO9o6Vhbk0wwljxXJpmgT5xrTNHpfjDxwF7QF6T1oKudZxOvXSpdCob3CNfw7rKbojvbfpfYbZDnyqZMv0cdPJX3e46dWO+6oPnZKu2hCxL0PcekUtkNQt89z5nA/+WXX7bjwITZEV44PWXIoweDwWAwEI4OWvnnP/+5cWR2IcqWGlelSqoO39guL2Lp3YEoVQcJgHvsdO8cpZZaHJ5r53XVVpPrQrrz767CummwnECbkpi1MTvDV8nlea21UocU7zm4Ldl347KGvJc8fH19XT/++OOtNaCrgv3ee+9V1XYPsbbcm5qygyosCTvUu9MOTHbr/ZZjsqZlrakjgLb0ChyQ0pH83kdSbW0u4YAaBxF0icDW4FgDJ2fn+baWY63URMBVW41rjx6KvZOaQVVPBO40BDTVPZJtrqEv+T7LcaSG2tHAJVwSKvvLc5ljp9TsWT1WVgIHfHV9WZFVJIXiqgzZKhUtLUvWDleECnk2WKdVuhKpSTn3WAVWlI17GA1vMBgMBieBo314XQhofivzbY4UjlRmqbnTFFysE0kLKYI2U9qgffuputBl99HSs8PFUzpblclYJebmvabPsXbWFWS1JsdPk6t6TNk3h0pbQ+6KU3rsDqXPtXZhzL0inpR48Rx0FGwOA7d/pJsn98+2f7TEXONVSoGfm4nu+KVWlEhuK69x6Lyl9s4/Blb+Pv7f3bMqscLzOG+dP87jYQ7oY/pyrUG4aGynIdlfdX5+vrQOQEu3l8ZjomKe6bI9uc9NjWgieL87cm5sMbC23vnj9t6bibzH2hHPM8GBNdy8dlUc22PJ51kL9DtrzzfuPeR3ZqYY+BpbvzhvaR3xGei02hVGwxsMBoPBSeDsPiqoOxefnf1PVf33/113Bv8P8F83Nzfv+5+zdwYPwOydwS9Fu3eMo77wBoPBYDD4T8WYNAeDwWBwEpgvvMFgMBicBOYLbzAYDAYngfnCGwwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUlgvvAGg8FgcBL4X0UmMIF1NZ2cAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -760,7 +1020,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0betZ1vl8++zT3P7cLrlJIInSiIJDQJFggxYqilEwIBo0kBBSlRpl2YNNgSIS7KIWCjYFCopIE0VDEAWkdVCgNEKKxigQDGlucvt7bpdz7tl71h9zPXu/+7fe95tznXtuAuzvGWOPtddac37z6+Zc7/O2bZomDQwMDAwM/HLH3vu7AwMDAwMDA+8LjB+8gYGBgYFTgfGDNzAwMDBwKjB+8AYGBgYGTgXGD97AwMDAwKnA+MEbGBgYGDgVeNZ/8Fprr2qtTcXf73wWrvfq1tqrrne7K67bWmtv3Yzrpe+ja35ta+1nn4V2X7MZxwdc77YHrh2ttTtaa3+ltfaR74drv6ZzH//25PjP2Xz3g89CX/5zpy/x757rdL0fb6298Tq1dWGzhr8p+e6NrbUfvx7XuR5orX1Qa+1bWmuPtdYeaa19/Zo5ba19aWdN3v2+6HuF/ffhtT5d0jvw2U8/C9d5taSrkv7Zs9B2D79V0q/Y/P9Zkr71fXz964lvlvSTku57f3dk4ATukPSFkv6npPfXg/FTJd2Lz7L7+JWb15e01j50mqb/cR378DmSbgnvv1jSh2l+xkQ8eJ2u95mSLl+nti5oXsPHJf0Avvtzks5fp+s8I7TWbpf0vZLeI+kzNPf7r0v6j621Xz9N05XO6f+3pG/AZ3dJ+hZJb7r+vV2P9+UP3o9P03Td2cj7Aq2189M0LW34V0p6WvMm+eTW2sVpmh551jv3LGCapvsl3f/+7sfAL0r82DRN/7N3QGvtV0r6LZL+vaTfq1kA/ILr1YFpmn4K13tQ0uVpmv7zmvNX3s/xej+xYxevCddZKHim+BOS7pb0G6dpuleSWmv/Q9KbJb1C0ldVJ07T9DZJb4uftdb++Obff/6s9HYtpml6Vv8kvUrSJOmDO8fcIOnvSfopSU9oliDfJOlXJcd+kKR/qVnyuCzprZL+7ua7799cK/59Zzj3JZK+a3ONxyX9R0m/Ae1/rWYJ+jdL+kFJT0n6OwtjvFHSJc3M6Pdsrvva5Ljv1/yD+ImSfkzSk5qZ1CfjuA8N/XhK0s9J+geSLiZ9/dkwhw9Jen1y3ddIOpT0IWEevnNz/JOb9r8Mx0+SPiB89pmaWcUTkh6V9P9Jes2K9f+ozbw8tBnLWyT9+fB9k/RnJf2PzXq+S9KXSbo5HLO/6c9fkfR5kn5h049v0Sw5PlfSv96swS9I+txk/JPmh/CbNmv/wOY6F3DsCzbz+oCk92q+wf9I0d7HSPr6zXXfJelLJZ3HsTdLev1mLa9o3q9/QVILx/zOTXsvlfSPNDOT+yV9jaTbNsd8sLb39iTpFZvvP0nzfn10M763SPr863gfe8wvXnHsX9kc+2sl/Yjmh1+7Xn1JrvcN2twHyXd/atOX37BZ+0uSvnfz3W/d7M13bu6D/ybpL0k6hzZ+XNIbw/s/sGnzd0j6p5Ie1vw8+idx3yZ9uVis4Z/afP9GzcTAx3+k13izt+7f9P8rJJ2T9BGSvlvzvfDfJX1acs2PlfRtm33xpKTvkfQxK+b0RyV9a/L5myV98zWs0Y9I+hl8dj7cG5c34/s+SR/9bO2V96XTypnW2n74OxO+u2Hz91c1S4R/TNJNkn6wtfYcH9Ra+yBJPyTpN2mWGD9pc46P+d80P4h/TNLHbf7++Obcj9L8Y3OrZjb2Ks0qov/UWvsI9PUOSV+n+cH3SZK+cWFsL9OsYvkazT+i92qWajN8qKS/K+lva1YPvUfSN7XWfkU45gWaHxJ/UtLvlvQlm9d/V3VgmqanNKtxX9VaO4evXyvpu6dp+pnW2m2S/oPmh+9naZ7vL5Z0tmp7Y6P555pvrk/WrDr6Kkm3V+dszvs4zWqbF23G8lLNN+4LwmF/U/NcfJuk37/5/9WS/l1rjfvzszU/pP73TXvu1zdL+q+a5/M7JL2+tfaJSZe+TvND7VMl/f1NO18e+nuL5hvuEyX9Rc3r+tOS/mVr7dVJe/9S84PmUyX9P5ql4j8X2ju76c9na1bzfJKkr5b0RZL+RtLel2lel8+Q9DpJf0jzXpGkt+tYZfc6He/vb2utfchmDn5G0h+W9Cma5/nm5BrPFL37WK21pnlf/fg0M6OvkfRCzWv1/sS/1vzD9TLN8yfNJogf0Pzc+L2S/rGkP615b6zBV2gWTv6Q5n37WZrv1QqPSfpdm/+/TMdrSPUf8SWafxz+qGa14ms079s3aH42vUzzj8bXt9Ze6JNaax8v6T9JOqN5D/5hSQeSvre19mEL1/w1moVx4qc2361Ga+3DJf16zXsh4nWbsfwNzffcazSvR/e58ozwbP2Shl/xVymXar6/c84ZzT94T0r64+Hzr9Ms4dzTOff7tZHg8PkbNbOMWyFxPSLpDeGzr93076U7jPE7Nm2f27x//aaND0n6dkXSrwyfPW9z7J/rtL+v+YExSfq16OvPhvcfopnJfUb47KM35/3BzfuXbN7/ms71TjA8zYzkvmtY+x/Q/MN9Q/H93Zv5+CfFnvm9YfyT5h+rM+G4v7/5/C+Ez85qZmdfmYzny3GdL9Rs7/2gzXuzgd+C475XsxCzh/b+Eo77Nkk/Hd5/9ua435Rc97KkOzfvzfD+KY77x5KeCO/N8l6F416++fym63XfdvYE/74Xx3385vM/vXl/12aN/9mz2Lc1DO8LF9pom332f27W5kL4rmJ4fw9tfO3SfaJjlve5yXcVw/s3OO67N5//vvDZCzef/cnw2Y9K+mHcMxc0a0HK9dCssTpxX4XvvlzSgzuuz9/U/Fx6ET7/fklf9Wzti+zvfcnwXqZZBeS/z4lfttZe3lr7odbao5ofQo9rZn2/Khz2iZLeNE3TtXj6fPzm3Ev+YJptbP9O0m/DsZc12x8W0Vp7gWbVxjdOx4Zc66kzlveWaZreGvpwr+YHdJTMzrfWvqC19pbW2lOabYPfs/n6V6nANE0/o1lV+drw8WslvVszA5BmRnJJ0le21v7oSk/MH5Z0d2vta1prL92wxC42bOklkv7FNLPPDB+n+Qfqa/H512u+Qbgu3zFN00F4/5bN67f7g2mantasNvzA5HpvwPtv0Cxcfczm/cdLets0Td+P475W0j3anns6Jv2EwjpqVm//nKQfiqxIs4B0TrO6aam9G1trdyVjifgxzffMN7bWPq21dvfC8ZIkMLW19vxP1sn7+LX4/pWbvnydJE3T9IDme+nTWms3LfSH7LGt7NMa/Nvkene21v5ea+3nNd/zT2tmXuckvXhFm9l63d1au+EZ9pX4D3j/Fs33x3/0B9M0/YJmk8EHStJmD3y05nuphTW+qlmL8fHXuY8pNlqaV2gWjN6Gr39Y0qe31r6wtfaSHfbgNeN9+YP3k9M0/Uj4++/+orX2Ms0L85Oa1Tkfq/lmekizRGLcoW1Pz0Vsbpzbte1dJs0/Bnfgs/dMGxFkBT5T8zx+c2vtYmvt4qaPPynpFclN+1DSxmWdHOffkvSXNasAXirpN+pYnXVBffxDSb+ttfZhmx+dP6JZinpakqZpeljS/6JZlfqPJb29tfYTrbU/UDU4TdN3aVaHvFizFPpAa+07ElVwxB2apebeenneT6zLNDsUPKztdXkY7690Ps/m6T3Fe6tY72BfNnh3+D6Ca8l1fI5mm/PT+LN33p0r2pMW1nxzL/0eHQsP72mt/WBr7bdW57TWPpj9Win8/ETnPr5R8z79PkmXw/3wbzWrVz91oe13ok9/eEV/1iJb1zdovj9er5llf4xmbYa0fJ9J9Xpdb0/LbH8/NW073sR9bzPP39H2/nuFtvfeEaZpelLzWDLV4h3Kn2EVfqek5yt3VvmLmlXBn6HZ/vxAa+0ftdZu3aH9nfC+9NLs4eWamc+RnaS1dkEz/Y94UCftP6swTdPUWntYs5RO3KPtBVz7Yycdu19TCjN+m2aV2C54ueYfqb/mDzYPjjX4Fs32ntdqZnM3SvrKeMA0Tf9V0qduJKqPkfT5kv51a+0jpml6ixJM0/QGSW9ord0s6RM0qyn+Q2vthYVw8JDmeeytl+f9nk1fJUkbG+Tt2u3GWoPnxuts3kvzg9b9+ajkvHvC97vgQUk/q/mGzvDzO7ZXYiOUfNfmvvnNmu2y/7619qJpmrJ+v13HzNagQLArbMv+Hdp+SEvzvfIvOuf/bp20Jf/cM+xPxIk9umHNn6DZZPIPw+elkPBLDA7J+GtK2K1mW14PPy3pw5PPf412Cyd7pWanmm/iF9M0vVezPfuLNpqyP6D5B3BP25qD64JfLD94N2qm2hGfpW0G+h2SPqW19pxpmqoYscvKjfXfJ+n3tdZumqbpCUnaqOZeuml3Z7TWfqPm+J9/KOlf4esLmr3CXqndf/Bu0CyJRXz2mhOnaTporX2FpD+j+UH+7VPhRj5N01XNjkF/WfM8/Godqwmr9h+X9KYNQ/g7Kn6Ypml6rM1Bx5/ZWvuSzeYmflDzOF+ueX2Mz9C89t/b68s14A9pNuIbL9d84//Q5v33SXpZa+1jp2n6L+G4P6KZ5cUfyzWwI86jG3XzM4Ul+lJltpnn79rs7W/S7DCUrc9lzZ5z1xOv1OwN+KmaVW4R/6ukl7fWPnCaprdnJ0/T9Obr3J8erF49us826rfK2ex6YXENrwemaXp3a+3Nmm3+n38NTbxJ0p9vrd1jE1Jr7ddK+nWa1b6L2GiYXibpX22eG73+vlPSP2itfZpm79NnBb9YfvC+TdKXt9b+tmam9DGajceXcNxf0qy6+cHW2l/XLD1/oKTfNU2TN+pPS3pNa+3TNUvQl6Y5vuWvan7Afmdr7fWa1W1/QbP64Yuvsd+v1Hxj/82NDv0EWmtv0my7+GMbNcFafLukV7fWflqzlPvpmtWaa/GVmlWiH6GZvcU+fYpmL8g3avbsulmzYf+SpP+iBK21L9GsAvkezaqhF2penx8p2IPxZzfn/EBr7e9q/gH+IM034Z+cpun+1tqXSvrcja3y2zRLlV+s+cfn24t2rxW/v7X2hGY750s0e/p+dbCpfpVmr943tta+QHOowSs0q4A/Z5omPsSX8DWaHXC+Z7O3f0KzfeiDNdvCfl+ilurhXZqdrD6jtfZTmp263qpZQPg4zfP3ds3OQP+XZnXys5HcYQvBlv0V0zR9d/L9I5oFh1do9jR8f+MXtAlDaK1d0uxB+X/oZED7dcc0TU+11v6nZg3L/6tNKE1HgH8m+BOSvmPzHPoXmhNJPEfzs+TSNE29597f1yykvKm19kU6Djz/KQWW3lr7dZqdY/7MNE30bv10zT/saexda+07Nd/nb9YsKL1Ec+hQz9P1meHZ9orRuji8M5qp97t0HCvy6zTfsPTg+2DNrrgPao6T+jlJfzt8/3zNN/5j2o7D+zgdx608rvnBl8bhrRjXuU0fvr1zzCfpZKxU5UF6YpyaH1hv0Pxwe1jzBvvY2Fboa+Wd9l2aH35n8Pmv3rT985v5u0+z8f03hGPopfnJmlnwvZol1Ldr/lEtvWVDW79+0/6jmo3q/03BQ02z4PG5muPwrmghDg9tp7FhnOdw3G/WrPJ9fLN2vTi8Bzdj7cXh8bqvk3QVnznc5r9v2ntQs2DxhTr2+rSX5m8vrhPjIT9tM4dPez9sxvWmzT66vFmnb5T0odfxPu7G4WkWHid1Yrw0Pxjfcr36FNpd46V5V/Ldh23uk8c3c/Z6zXbDSdJHhuMqL00+O3ytiwv9/V2aw6euaF0c3h/E+V8q6fGk3Ue07Yn8UZL+jWbHuMuaf+i/SdInrJjXD9F87z6u+f79BknPwzEfGceA775PnRhMzUL5D2t+xj2pWTj7874vno2/trnwwC8jtNbu1Lyx/9Y0TV/0/u7P+xuttddo/oH+FdNClpCBgYFfvvjFotIcuA7YuCJ/mObg2Ulz1o6BgYGBAY3yQL/c8CmanTI+WtJnTs+OXWBgYGDglySGSnNgYGBg4FRgMLyBgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBXby0tzf35/Onj2rw8M5/tav0Q7I1JF7e3vd1/i/z43fZW1mOWWXjnm2zlnz/drrXO9ze31agte01z7tv9M06b777tOlS5e2Dr7pppumO+64Y+ucuNa81tLr0ncZrmWO17azK9bYz7M5Xtuf6ly+9o6pPve9H+HPDg4O0ve98bbW9Nhjj+m9733v1kBuvPHG6eLFi0ftXbkyp1B9+unjZERXr15N+7nm3lraQ7vcW9fr2CVwfNfrnGqNdvm82mfZ70X1W8Lfguye93f7+/t66qmndOXKlcXJ2OkH7+zZs3rxi1+sJ554QpKOXuPGO3PmzFEnJOnGG2+UJN16660n3vtVkm64Yc6yc+HChaPrxFe3mQ3e3/mz6r1fYztsw5/zffyfxxi9BeKcsA1+3usLx+dz/Rr/7/WpgjecH1I+99y5c1t99DF+2Fy9elWf93mfl7Z78eJFvfa1rz16WLk9r33sN9ffx/icOFb3x3uHc+nX7Gav1rQnnBluZ82D1ejd+PHz+GPCHw9ep9c3/tB4nfw5X+MxfvV1/d7rd/nycYIY/+/Xxx57TJJ06dKcKOmRRx6RJL33vcfZ5XzNeA9867ey+MCM2267Ta9+9av10ENzUp+3v33OTHbffcdOyL7WU0+dLMzhPZTdJ+fPn0+P8fvePlhah+xzfsbXNWtq8P7c5UeMz8bsB4jPAb7P9iqFDr/3uvs1rpH/92+J95B/U265ZU5843s/jvnmm+cMknfeead+9Ed/tBx/xFBpDgwMDAycCuzE8KZp0tWrV49+fSkFRmRSSvx8jaSdsTO+Z3vPlqqpoueU9DNQ4q4+77VRUf1MxeT/OW9rwOtU490Vh4eHevLJJ4/GSikzuwYl0EzdxnmoGFdP4q7QW49qzdZI2tW5PZVPtf7Zdf2/mQrvT95nvo/juX6t9nnGCqu9acRzzBR9zLlz57rzfXh4eMQQ/PxxG7EPvMeoJco0IWYPZHpGTx1a3WO7qMUzFR3B51z1LOld51rYYMXaMu0A9xP3DNuQjhkd94zX+MknnzzRdvzOn733ve9dZR6QBsMbGBgYGDgl2JnhPf3000e/sNF2Z1SMh/aRKMWssaFVn1f67zVSDe1huzhA9Az/7GPFktYY1Cum3EPFxthW5mzEcfmcjDVybtdK6LGd2Eef7+9sYyF6tk7aanq23Gp+dnEuIAPrOXMYtIPw+nEel4z42TxW4/CcsM9R4l6y3WUMw8+BJSeF7JzYPllLxOHh4ZYTTNZv2gY59syGR9+BNZoR3h+xn9K12fBoQ4yoxlONt3c9fp7tWa6Z59fXzbR71N5QS+Bz433tZ0K2j6VjhhdteBzz5cuX0zFkGAxvYGBgYOBUYPzgDQwMDAycCuys0jw4ODiis1ZLZCqmynkgc/GlOqpy189CApZUmWvi/kijM3pdqbXWxLYsqRbWqD8q9Wuvf5WaLVOTUp1UqWyzPrr9nvp1miZduXLl6JhMHZ65SWfXjutvVYfVUn5PFWamSl+K96zGIW2retbEnFUqP94zvXCYKhwlUzVXYRXcD5laqgpDsBt5PIdOBNwXmQt7ZhbpxXr5L/axp0L3vHhf+DWq0xwaxb2zi3NH5dSTreXSszBTaS71hXuo92zkdXoqdL6nyjhTaXqv+Ds6pPAekY7Xw6pN9jULgzGs7nz66aeH08rAwMDAwEDEzvXwDg4OjqSyzMhM6bEKMcjcgy3ZMMC4CkDPPquChyMoaS05oGTHVm1lklYlcfecdCoJvnJayFgBUbnu98bXe+/reH0ODg66TPjq1atdx5lomI6gm70lcmlbSrfEWO27bO9UzivZfvD+JkOhtiM6VHAcRJUoIH7GYzjOzAmM35F5GVmIgSXryqkgzo3HbvbHPZo9L3ZheK017e3tdUNkyF68l+iYEhNeOHCZiS/WOAZlrDWit3eWHPsyhlc9d8gkswBtaj0qx67eOMywyPCyNfWxZGfsR2yHyQt6iQ7ofHX16tXB8AYGBgYGBiKuKfC8ylsX/6+kiYwBVXYWSwRkfBk75LlkRj2JK9MtZ+/jsZW7eDY+9qWam56UvpT26lrYWjzH7VeSa2YPpOTbs+G11tRaOzqf+n2pts1wviLDo41mac/0wio4p9n+Zrokro/Hle032jLI3noslOnW+Bole7bn78jwLJHHNTVLqxIPePzRFla59ZM5RDbntfZnrbWulH7mzJktbUpcS6YDM2szi7vtttskHac4lI7TVnksPqcKSM/sY9U9loVOMAeo22DIR7b+fOYafN7EVH28FzwOj9evvbSEfDa6r7TXScf3hG1rfu97wn2LffR1fOzjjz9+oh/uY9yjvYQGSxgMb2BgYGDgVOCavDR7nnsVI6G0mdkpKuZTSSrZZ2sYXiWFVR532bHVHOzC1irv1DgnlJKrdFQZdgmkp16c0n9P+o7MaMnTsccUeMxS0LVU2zb9vkoQHD+rAugzxsnAazLi3lxXwcq9lFK0Y1M6z8ZFVsh2uc/jHlry/s1YPG25DILOrsN7rBfs3VrTmTNntu71+BxwOzfddJOkY2Z3xx13nHiNDM/HkuHR7kftQfy/YkJkN9Ix8/Grz2HKtJ4nMbUOZPged+y3x2P7pcfNhOuxPa4HU4l5DPEZaXbm75wQ2snEOZ8RZoxuw+/dn3gPMvh9FwyGNzAwMDBwKrCzl+Y0TUe//kwlI21LorSlrE1DFdunB1yUeiqb0xobV5WCK0v9tJSOZ00qs8qDNbMVkUmwHAgl4156sjVeqZUtgjacTJe+Ng1aa20rpVSU0rIUVBliXy1Bs1aaP7f0TK9GaZvhGWwrzi3Xg95rWWLjyh5KZpfdE2SZVVqweA2mneK5LNcS+0qPS3rLZePzdWh3oadklhTb7UcvTKK1pv39/S0P1agdIOMxi7nrrrskHTO8yIDIdOitWbHp+D/vLY+HLMdjzMbOOcmeVdwj1GBkXqgcn189Bz42Mjx6UlKzRW/KeK+SHbotXifOI5+B9NI0ov2357W/hMHwBgYGBgZOBXZmeBGZh5ilChbt5LHxHOqL+eteeYpJx7/8ll4YH5JJ9ksZNjIWuhRv02MnPZtnr+2IylbFPsf/qziszFa0VFKItr147C6SVlXGJYKs1de0tJwloabdaikzjbSc4Nx9zTyKaVvguLL4MvaB5Xt8T2SesOwTM9Vk1b/Zlyq2KfOe5CvZR8/70H01k7BdJjIyF2yld3CGaZp0eHi4lcA426t+Dly8eFHSMbvI4tnoKcz9y7nOGB7Bc6INryrp04sZJiukVsBzSntk9l1V6DaC6869Yubq4ru2z2Vjpwahp9WxbfWee+45ce4DDzywdQ7te5H9L2EwvIGBgYGBU4HxgzcwMDAwcCpwTSpN0uoYSEgXXr+neipLhUUjO1UWdIiJn1Fl6j6Zzmcpd2JKLKlfzZeqHaonMpWfQbVb5eSRqVCpwqzqbWXBowwIploszomv3VN3sI+ct6WwhEwFFdvjPPk7ujdnDhp0LPCr1R9ZeAXX2/PRSzXHPUh1cZZGqwp/qJIyZOOjK7ePsbowqnmpYvQ46YhiZCnt6DRFtWzcbwxhYYLprA6axxPb7aWly+pwZpXas9Cl2JfMicRqumrd3e/YP4ZXeYxxHaSTe55qW6r+MrVuFuYUr0+TzZrQD8+b5yLuVY+dZgTvM9+Djz76qCTpoYceOjqXKnLumczsQ6crq8HvvvvutB8RMeXgUGkODAwMDAwE7MTwWmupS2mUPugwQSkjc8GOLs4RlAjcZpZaiq6wdKOP7roMsqZjQ5YWiAyhSsTcSynFOajSN8VrV+nPqiB9adtl2iCDyuadxn2uVy+FWeYME4/d29vbcnfuVQi3VFklBoj9rYKs6T4dWW0VBF+xgwjOC9ch7h1K4b0kBTyX7Mhzbhb1yCOPSMoZnsdu6djnGBkbWlv1O55DhycyiGyf0WFnieFdvnx5i5HHdXGaMGt0DF87cyaq7uksbZaUM2FqstwGQzM4Ho859snsKV6HjlPUEvXWi+NjyIavE/eF95H3lRncww8/fOJz35t2PoqotG6Zc47XhdoHn+N1jayQ9+1geAMDAwMDA8DODO/MmTNbev1eCZ4KmX2MacjWpNciS6uSE8c2LH1R4qhcsuM1K/sbJaxM31+5zGfpysg2aRsk88uYZRUMn60NpfM1gfQMfl2TWowMKM6jx2ibChMxV4kCYrvV3Bq98ASuQ2ZTs22Y0rElYJ/b00JkSXtj3zI7MIPJGdic2SZZ4qcqsBzZGvvEOWCbsb9k2T6WNrL4v+dmqbTUwcHBVqKLbI7ZT/efJWtiv8ngGWSdaTBolzUTsXt9FqrD/VU9qyJr8jwzeLyy8UcwNMt9NpP0utgeF+fk3e9+tyTpne98p6Rjpudz3cc4n2R2VcB7DP7nOZz7rCQYmX5MLL6EwfAGBgYGBk4Fdk4ebWlLyhlDJWkzFVNWsr1KQtsrkEmpkqlx6KHmccRXlqCognvjtTm+SjKO7VMaq9L2xP7S84lMMkvGTW9M6sczexftSUvB8lKdXq3C3t7eVoLceB2mvGIZlcyOSHsY7by23TJBcDyHjJ5rG8dJCZvef7ZxxLX0vJsFVB637k/cq2TcZKOZHd1wOz7HY+ccZfY4pnjivR7HR89Et0uvyiwtXbyfqv1j3wGvYS9pMFmy++a5iH2lLZAevWRRWVkbloXiXGRaIiYtoI3TzCtrj/dNZaeLfWO6OO9Vs7QYPO5rv+c975Ek3X///SeOqbQu2Rz4HPfJ7Ddez58xkbX7mtnemXA+K2hQYTC8gYGBgYFTgZ3j8A4ODrZKx/cKVlKazWxOlER8DGP6MimdiV4rr6UsHRmlQXqFZt6AVWwgPT8zUCrqJRy2lERbV1Vapsd6jB5zJQv1HNMDL5uTuKY9SSt6+dK2Ih2vc8UMsthAepxyfugplrHbyr40AAAgAElEQVRao/KizaR02snIOrJUdky7R887sqt4Pe4d2t/iWKqUWYxvzfaO22NqLLKQzMuaHndGlk4uS3NVpaazBydjEuOYzUw8FnsRer78feal6WPJhG1rYnJpaTuxNJ9VPe9JH+M++Rjb0iLDo02Qc8A1jn3knqkKs2axe96rTvXFuLgsybOZm1/pZZ3FG9LWTm/X7L5mGadz586tTiA9GN7AwMDAwKnANZUHqoqtSst2HCOTgP1qu8udd94p6VjKyVjWbbfdJmlb396zL1Uej7RTxDboTVQxOXp8SnXya9qO4jxaiiHbsFTDhLzR84m2OmaUoV1AOpakLJ3TRrEmk0NPytrb29P58+ePJDhK5LHftAX07KPMDOFjY9xl7GNW1oaMslfKijFunC9fN16ftjLa7LzWmW3KUj/ZeZYM2eDa0VuOGoC4BpSsmTTY9p+MuVD675WNor10KZZqb2/vyAZqhhSZsPtLxs1MIVmmIN9DZjG+jksKZZosxtcxw1PmUez9TC2B++hEyTGriPtCO9jtt99+ok9+jc82Zrlyu/SajWvJmFFfnz4Rfu/nr7Ttyem9+/M///OSjtcg88w2Kq/TLPuQceONNw6GNzAwMDAwELEzw4uxVln8mEEvLP5iZ3Y/S8WUrBh3EyUSH2OPI1+X9qAoPdPTqJfJxahimKpSRlk5C46djDJ6H/F6jFtym56zKHFyfXhMxk7JaskoaOOLx8Y8hj0pPX7ncUS2WRUmpU010w5wD1ECZwmeeA4Zqu0XlMAjaMdm7Fnmpcs59jh7NrzKNkmNRtyzZgOeC9pQqEmJiPajCLfvvtkbNV6PmgRmIclyX8YMSUvaIbMnM4e4D6zhiB6AvGZsI/brAz/wAyUda5TcBvdSVijVzx2362dXFuPGGEYzHuYeze5lanLo8dsr9eRjaMPLNDPUmHhc1JC88IUvPPF5PNbz9+Ef/uGSpOc973mSpDe/+c2Sjj0/43XIHLmvM+1H7Ovw0hwYGBgYGAgYP3gDAwMDA6cC11QeiOqILDVRVQono56mrVYH9Iz4Up7slOoAqluzitBUB9DFOKpMOGY6p/QSQfsYqn4y5xiC6lamOaJ7fDyWzgpV4us4HgZ39/qWJUHuBQ/v7+9vuWvHdaEBm2EInouolrLaiWm7fK5VQEy6HMfq/tsRwNWyGfwf22GiA88/1aSxT+wj1eNZSjuG6FSJBzI1mB0cPK/33nvvifFYVRvnmVXFeT95vmMfGSTMc+nCLx3ft3E/9PZOPNd96KWbYqILqwC9ttLx/Pi5Q3MI77G4Pz13Syn/osqeCZf9SrNBVDUzzIFz5D5moUZM1WenEr/P2qRanetvdeU73vEOSSfvJ+9NH+M58n314he/WNLJZ1X1LDa8xp672MfoMLMWg+ENDAwMDJwK7MzwDg8PtyS4LK1R5SaaJWJleh6myaGrceaiWqWYylzwq/RJTFmTjct9oVMEy1pEqZmG5ywQN447/k+GzMTdmWSXOd3Ec3vOOWTgDBSPc0+Gv8Y1mKm54pxXyQKYQNaSuXTsYEKnkSrgPCtNYsZoSdTvPfdRIuXeZFAvnX5ivyt2SFYY9xbDUxha0Ev+QGZldmOHkyxVW5XgnGWWIgvhXqySQcS1phPU4eFh6Xhw5swZ3XrrrUftW7KPx5tp0FGG7CnueR9bFayls1R0XvK13Re3zyQSvQB9Os15L9t5Jju2chTMwqG4N7M0i/HzeE4VjuRjnXosPn+sTfHe8HyZWfp93N+8T5kGLUtWznuwV1qKGAxvYGBgYOBUYCeGd3h4qCtXrmwVH4yuzLQpMLQgCx5n+iJLCJZ4ekyChV8N2v966WyMKmg9fsZjLA2ynEWUZmnnYxoyBnDHz2gzrApzZimzKOEZPVZAV2UGJ2fXibbJXomXq1evbgUNR3scr+1XSo5ZUU1KpAz29nUyuw/7TNtdlpibLvhcp2gr4r6lbZLMOI6PafCIbF9YArbdg4zP85mFefBeZAhNVlLIc8ukyNyHGYPjPZDBxYN9jPvvQO14vm11LMDKIsLSMfPg84zz4zbimnKf0ZbG4PvYPl89f24/W3/eh+wz92H8jDZj7sfsnqhS9LmPTPAubbPQ++67T9JxaEaWjozltqg5ybQe1Mj1kokTg+ENDAwMDJwK7FweKAb5ZeWB6FWWJfyVTtpFKqmZaZSypMiUQKtf+0xPXRWwzexjHAfPpTQbj6d+nWwk8+w0KoZHm1SU7Gh/YZ+z8XEeq2TV2bji+6X0UBxPVuqJJX0stRuZhyADV6uUY+yPtJ16iVijHeB+YJ/jubTLGD2vZ2oYGBSfBeNzn5NNZZoF2kyqUk1Rg2HpO0vfFs/JSteswcHBgR577LGt50EE7aK0j9JjMRsbmQPtp3HMTK/ItnrJHbjP7SVqjVa0sdGTslrbzC7P5NRMRNDT2lSsnIw23gdVSbOMXRuVrwLtq1ETRJvr2qBzaTC8gYGBgYFTgmtKHk2PnUxa4y83WUcWA0bmUyXxzRLAVte3tJnF4WWegvHziIrhVdJF/LxiuVUZH6m2Z3GOyJji/5y3nldolUCb65YxCWPJUyoWasxSzlGSZlmWzG5QSY+0X3gfxLmukqD32AfjvCiB2/4T95RtaUztVsU69ubY4JpmJYUMrgsLD8e5YxoyxkVlLLRKIk4mmTGJNYnHDw4OdOnSpa37JCsxRvDzyIBof6/um8wTurr/mXS75wF51113SZKe85znnDg2ahrIqKpCwJl3cLUP6HnZK8xbjZfPnwg+78go43OIzzVqI9xWZL3UcvQ8fInB8AYGBgYGTgV2Ynj2lqpsQzw2gmxmzTmUfLMYFJatYJ+yLAmUWulJ6mOjZxA9LZmZhIw29rHysKri8eIxBG05mT2oKvRZJa3u9b+y5WXoSVmHh4e6fPnylpQe+1Cx18peyv+lbfYSr0+Q0VVj7CWrptRuO0lPau6VzSFY9qWyGUfQjtTzgGQ/qixKvbWlh6/ZLW2i2XWMpT7G+N/MdlOxMt5bmX2U8YKMRczYTJUdx8w4JlTnGN2O4z4dV/rOd76zO/74Sj+HjOGRCRm0j2WlzLjPqn3fK9vDxNOcs9gu2R9ZdaYRzOKylzAY3sDAwMDAqcD4wRsYGBgYOBV4RvXwMgNnljrsxAWTFE9GVXGclDWryUaQ4kdXaas02ReqJyP1plqgqsLdc5WtwgUyNWilQuK4MvUkVTLsY6YuXXI4yc7NUlP14MQFUr+2YaV6zdRrVHtWITNMTxY/q0I9eiEfvg6rsvucLA1VT+3t+ZFyFXeVWDtzImFAbpWaL3NEorNA5YCSIaugHZEFx0fTQ88BLAsNibB6jq73Bt3ds++YxKJ6hkXwfmc6t8wpy8fawcnrk4XFVCElVHFnz50qhRnVlXGuuHbVemd7h2vqeXS4BcPOsn4zYD9LqG54zel02MNgeAMDAwMDpwI7O61kLvZRiqlcrWmoz5IrU2qoDKbZ9QxKRBnDo5s0HV967rNVn42eE0nl9szjIiiN8/pZ/yqG1DunOpfI5j6ueU9Kv3LlylaZmWwfZAHtUp5GjlJrFU6Rsd4q1GONMwmTKbNMUHSMqlLJVZqSLFyEki7vkawat0HHLQYEZwnBK3aQaT+4BnRS6DHX6KSw5HzAdGdZeIo/q5IrZ88vzmVViie7p+nwRk1CTHrMxPN+jSnSiGo/rwGd/BiqxQTbEdRkGD2mv+To4rnJqrIzbKhXmomFAc6ePTvCEgYGBgYGBiKuyYZHSS7TU1MC6AXDLtlQllhHbL/SdWfus5SEKalmkrZR9S0r08GyKZUrbsaeaIuoUn+tkfxoQ+q5FK9pr9f/7NrRTpMlLma7nPNM8q72SmWHi+ytStvGuY/7oGJHDGnh2KVtNkg2lWkHyExs52Hi37h+WfqvrB9Z4Dnd+avCqlFjwnvMfWTJpowVxDRUPXvR3t7eVvmw2G+P2UH+HnsvsL1iyVUYUQTXpWImcUws8Jppn6o+VtoHhinFfcDSaAy053MpQ2UjZOmk2Ed+lyW2rtr3K+3O8Z5ggutdWO9geAMDAwMDpwI72/DWeANKtSTSCxpdkrizX3Lqp7MATCkvOEsmR2aRSZCUSKp0SnH8LAppCa/HuKogdX6fvadtiGwqm8cqvdWaBK1rPfjiGCx9xkKiVfq2qryStO19x3Xi+2wfcL56thvaFBgE62N7Nmqyz14KKxbI9HXIdqK2omK31b7IkkeT6ZGlZUy5Co4348u8nrMxE6017e/vHyVDzhgj9yfZMgPCpe3nF+eNNv7MW5cskYw4856lDaqyN8b/l8qEZc9iJlZnkdos/Zk9KqkdqOyBcQ2oBaAGgTbkbOxGL8F55puwluUNhjcwMDAwcCqwsw1P6qd6qnTNazzfKD1WcUu72Jey2C1KcpnUKp2UKqoE0JREsnQ+/swSlaWnqvRL/J/SzFKy7Pj/km0tXs/9paS6SxmXpSSukeVZus1KoXBeyGrifuNY2V/uxzXp1HoJeWk/oDdbFmtUpWfjPu+l8cpsJtLxnER7jeO7KlSJgWMfCM5rxrIr1kt7TBxH9Bjs3dd7e3tbzCh6wtKWyZjALJ6rlyYrfs99Gb+rNCFZLB/ZsueL18liU1ks1s8Qz7Xfx7X0sbZrsizRGo9bep1yjuL7itF5vTLWW6WjY3mquHcqL9o1GAxvYGBgYOBUYCeG50wZtCdkHpeVzrfHAJZizXq2vCpepZKMOa54TiaRV+Uwqpi6LBsMJTyyjywDQWXHpES5SzLuntcZ2eaa2D1jbSyMtC3BScdjtWTqfcYsDLEPS9Ie5zFLYEymVSUij+0YtBVlydGreMhqT2VSM++5aPuUTrIdS8lkJrS7ZHaYypu6sv9J256rlTYivve6r/XAPjg42NKMxMwk1hTYBsXxeP5iIVGzFhZ8ZRLpLDtUlQmEsaJxLz300EPpsSw0G6/DPnp89Pg24l6qbNH0Qs3Wv/L+7GkHmPi5Ktgb+8Wk2ywim/3GGPG5OeLwBgYGBgYGAsYP3sDAwMDAqcDOTisHBwdbDg2RElcBinyNrqlLSVort+74P9U2bj9z669UO5Wrcfy/cnevPo//V4G/mbqAKmEGy69RFdMpg/3oqUErNURc6yxAv8I0TWlNwui0UgX+Um3Zc9CpQjGyQPdrUduy/1US7zhPdDyoUlhl4/P8VO77Vm1lKk23d8stt5zoB6/TS7CwS62xSt2bBVgz/diSqvzpp5/uOq3R1d5qQjrHZCnYKpf/KvWc+xSPYbLtLI1WVZfO4/H7qPr1OOyIZJWmP6fDUFazz3BYh4/t1VTk+Kh2NbJaenQyc/t8H/vi9eGrEfcH7/EReD4wMDAwMADsHHh+7ty5LdfszOiZpUmqQLdgunoz4DgLAM36EtvIGF4lZWaJZsn6KueVTBqs0o5VIQ3xOpWDQU+qqZwkqv5k/Sb7yeZxKRiWODw83AqVyFKwUbqjBNxLrmxUYR0ZKm1EJvmacVlarkJZYiA4XdSZPLjnvMTgZL763Bgo7H7TMYTOEr1QlyqxeaUBkLbd0SnpRzbPcezt7ZVr5NRiHk92D3CMDGHJtFEMkalYZnZPV2yQGizvk/gd+8QUh7GPZvBm6WZ4dlryHPie6WltPCfuE4PkI6q9wrJeGVvzq9ebCdWjNoLn8JmYhQZ5vuJzcwSeDwwMDAwMBFxTeaCeJJwVFazaWkKVIiljeLSdkHFF3TPtLizamCXkpVS2FKDbS8jKPmcMiRJUxQ57iafXvo/tkDlUbsr83++X1pUSadwn1dhoC8oKlpLRrSn5Q3svr8NwCElb6a3oHp6tx1JydH4eGW6lMenZ/Tj2ar8ZWQhNZTfP7nlK6bTDMFlxbDdK8pU2qLWmCxcubNmgepol359Z8mGD9zTLD/HzLEC/0sCY3cTQiSrtIW138Tq8dhXCkoUA0CZOW5r72Ct0zTW1LS8rH8T7x8zZ6+brRabv+fExft9jn0ZP21BhMLyBgYGBgVOBnb00W2vdlDzU31e62czTrgrerl4jaG/pJQ2mB1LF8LJAU3raVamsok2l8kKlBJbZwKhLp1dWFfjeQ2bXolTLPvWkqTV2RQcPkylENkNvvl4iAJ5DjzejSu7N/7PxuB/RDsPExVyfTKPANXJ7FVvL0tKx3aVE3RHUaNDzN7NrUVqv7mupttEwpVQ292sSjzt5NNNnxb1Dj2Emd8hSi1XPpCoRdVwXj7FK/eexZ/ubqdfItDLPZQZkG0zflWl6OC4GecdzKsZIdkr7c+x/tR8yD8wq/Vzveea+xGfxsOENDAwMDAwEXJMNj8l1M4ZX2WGycxiPVpWgyKTAnmdXRKbvr5hjxoCqdENVfF4v3otepxmDqc4hC+BY4jGVxNpL01OVROklX94llorJlWNqMUuNVfqiTDvga9M7rup/JjlWduAswbWPcVwU94GReaKRUdFmQ/Yev6NNisylF4dJCbuyKca+Mc6wSgwcj6WNhpJ+loQ77uclLQXjMyNo6+FzKGOz1fOFHsk9T99dUieSxVBbkPkoMAG0vTPZZ2sN4v3ENeMxXpfMo5xavKpMVKaV4n6riibzf6l+7mXJo2N862B4AwMDAwMDATsxvL29PZ0/f34riW8vi0nl+RYloV5y0QyZ7cngdanjjt9R+mN8R5bklCykYnprbF204WQJhyuvLHpJrUlW3MtUUXmM9lhb5sm3tHbsb9Tn00uOErfbzhJOs79Vcc/Me5K2FWolsrg/Sv+UZjMm4b3D4pq97CaZN2O8fsaefA7Z7pr9QImarITXlY4968zsyCCy7Eq0w8RMKsTe3p5uuOGGI4bCuLVsbMQu2YW4/izF0wP3X1xr2jbJfJg0PX7ncy5dunTic4PejtJ2AViyM/cx8wqmN3oVj5t54/OZ39PuVbZb3puZx3zP96HCYHgDAwMDA6cCO3tp7u/vd/NG0lup8njKUMUHUUrvxYKR4WUFMplXj32lRC5tS3lVXsRM2qDuepcChhWT49xkOe24Pr3SP0uZSdYwvR7opUnmIm0zvGpdsnhFSntkYFmsYxUPxz0az/F+evDBB08cW0m18Xzb/ViglZJvz5OQDMuvWRwevZCr2MqehySZK3NWSsf2JbMLv9KWk10nzl8vDm9/f7+0vce2l/Zir3wOtThVrlNp2yZIzUt2DmN0zcr4PMr8G8jSqkxP8XrUJFT5KTPv08pjvTe/ZHKVfTNrg5qRnoc2+71LvtfB8AYGBgYGTgXGD97AwMDAwKnAzmEJ+/v7pbHfx0jbqX6WgjvjMWyrpyaoaHKlApKO1ZtZepyI7HNTfAY692h19d3asjoRPWcVXq8KlcjmsXKS2aWvPXVHa3MC4EpNKW2rXDhWpo2S6pJClboynsvwEBrgM5do7yOr8fzKcWXJbr3v6NpPdXmWPJpu4X5l4HscI0NAmA6P8xr/rxIEZCYCVq+vwhIyx6pe0uN47Pnz57dUtdGRgckKiEylzWPpvEYzRZZM3qju8WgW8bPjjjvukCQ9+uijJ14ztSH7xOvx+RdTGjKExcdUji+8dgTnvJfwogqDytSTVZLy6ro8P3vfw2B4AwMDAwOnAteUWozG/aWUUtI61+veNaV1iYCrZK7xeiwdQvdcG90zadBSLOegCk+IfakYVjYezknliMIktrFP1Tk9Izy/y5JGs49rgz5ba93SOyz/QiM+GVE8pkqBxnWJLJLB3Fw7XjeeT3fxpRIz8bvHHnvsRFtZwDGvx+vw3ovsw+7tZHBr0tFV4UN0msg0JpW7PZ2R4v8xOL5iSX7msDRNZD10GmFb2dxWzxWuBwOdpe37n+vhsWd7lQyc91Fkaf6M6Q8r58A4xyyn5XOYUizOFUOziEp7EK9NpxLu80yzZHBes36sKW9VYTC8gYGBgYFTgZ0ZntRPo1Uxk14KniX7UBVIHc+twhFY+oX9jefSpTxK9pZ8Mrfs2EbmOr8UlM4UXb12l1hbdiyRMculQPMlG4v7unYtM/uRwfANMq0o9VXsqCqyWSXy7iHug/h/1l4v4QD3JqXzLF0TE/5WZVN6YQmUuKsA9NgH2ncYdpElDGApGR4b54rhNL3UYtM06erVq1sMLGN41X2R2fDIFBgsTnt9vB7ZRWVXiuc4LRhDaXw9t2WGnh3LfU67dzaH3LNVkdyISutBjUm2pmaQns9eMo4q6UjPXst9u0vi/MHwBgYGBgZOBa6J4fHXd42HYiXNZufzF5tSZ5QKqpRHLM+RsQJKHvQKjFKu26Humn3PvOYqD1IjKyZLBlQli16jF1/ymoqf9dg03y95ubIPS8m/s8Dr+D7zYqTtkeWZyJ5jX2l3qew+GXvyOZbGqyS48RxK0ty72d4hPC6WMMrmkfbmnqRNcH/TszRqODgOMvLsvq1SD/b6Q9YUbV20E67Z87RHMfUbA/bj+mUFV+N1jGjDc3/9asZ3++23Szqeg/g8qLzBmTIxexZXicBvvfXWE+euGRc9Vnt+APSJoBf0mv23hpln3y1hMLyBgYGBgVOBnePwzpw5syUxZjaAyksyY0aUcKuSQkbmNUe9NBlRZlOrXjN7TyVF0IaU2cKqtDz0KMvsmpSAKyaRscQl1hb7WJU5WmJ8uyDaYbIxE1UapcjwaCeglxnnscdqK4/innchmaXtF3HvMA1dT2ORjTf7rueFWLGBKh4q0w7w3MpOl31XlZKJLC7T6ixpCsyMzKpjezFpcoYslo42NL+yuGnvniZrZzmnaMMjgzTDoxYirqWPof2aGif3J65LVTKJY4hgTCjHR61H3DtVzKtf/WzuaQSrvZ8x8+i1u/a5NBjewMDAwMCpwDXF4a2x4VXek3yVthke2Rkl4SjZWWrhsb1Es1V5CTK8TP9u6ZLSH1lhpnOu3meJtquSGmQumZRGe9Wa+L+K2a1JGtuL6yLY77iWjGnkmLPrMFsKGV2VTDqCffH7zJ5Bm6H3SCUJx/O9R8g2yRrjuVVSYsYqZnZGagV4bhZjWXkQ0x6UaVmYYJrXj+wjs3319tje3t6W7S72gfPAOc3uS35W2cUzhsfnAMdFpidtPyO433uJ53kOM694XXpzSNuar2cWGa9XeW1zD/X2XWX3y9qrnjPZ85tetPv7+4PhDQwMDAwMRIwfvIGBgYGBU4GdnVb29va6Rm+jqoOXpfrK1JxSbdTPar/x3CqpcGyPjhp0LsgS8kYaHc/tJUitVIqVg082rioguEfll2pmZcGclQojGxeP7RmjW2s6d+7cVlB/z1GHe6VXL4yBzFXV8sxBg6o3rmmWuJbBytwXPccTqqncVq9aemVGyEJoeAz3THaOwT5V4QNRncg1pUpzTYDwkmt5a20rMDyGRljFWCWRzlzYeb/znqajSzyXIQtVQoXYD86hHZzcd18/zq3bv+mmm060x9ATznVE7x6O141j9TlMIsD9ndVudBsMmVjjjFU9f3rOP0OlOTAwMDAwAOzstLLE8CoJtAoqzo4l2EaPUVYGZ45B2pbcKrfk7Ngq4LnHenkMWceaSteVM04WcEppsGc8NiqnlV4A6BoJfm9vTzfeeOOWa3KUZqsE41X6Jmmb4TEdGfdbxkK5/9ynnkRKl2szPO+hLEyEoTNkiVlQN5kC907m8MRwAO4R7tnI9KhVqdK6ZSWFGIBOZ7QsSbH7cMMNN5QByXt7ezp//vxWcuVYoogJszmOLHi8SttFR7Re8ugqIJ/hUvEcszUmILfzSBZi4Xbdl5h0O76P+6BKykEHrqyPVZkez0HGFrk3KtbbY6G8P92fmG6NAfyD4Q0MDAwMDADXlFrMWMPwKhtUFjzcSzAd2+4FDxuUbjPXcurh+b4XcJzZhKrrVS7/a4pIVvZFIrOFVfO4JoygYvG9lGlLzPHcuXNb9qqIKliczCvOQc89P3uf2SvYFseR7dVMOpZyJsG5o6s83ezj3slK68T3VTLpeK6xJvE4mVFly+sxPNp9GPhezUGP4d1www1b7C0yLqZcM2uqND9xjFxTnsN1ivB1XMSVJa5cIDi2e9ttt51ol4VzI8NnooFKg+GxxHVhseCK2cVzWDpoSZMVn1l8Rq7RRvT8CqTtpACxDzFMZU26MmkwvIGBgYGBU4KdvTT39/e3pOosoLSy5WXJYqs0ZJTOs/RAZDGZF1nsT9YOX7OSM1kaNc9J1scsFU4vlRhB+w49FKs0WFkbFRPLWKFRMbuel+YaPXqVuFvalkBpt8yCbiuJl1oDo5e0vLL7ZV6aTOlU2S3isQaZHvdfdm8YSynmYn+rvZF5SlfHcJ/RAzP7rEpH1rtvL1y4UO6f1toJGx/ZjrQd1L8mAUVlb6/S6cXr8b6o7MARZH0x4Fs6ZldxXah1ometj/X4s5RvbJfMrqcxYRFZg/eBdNKmGtvv+XFUHsS22WWlmWjD6+0dYjC8gYGBgYFTgevC8OKvPG0Alf42SyRLSaBieJn3HCX7XrLjir1QX51J9pVnpdvIEh4vxepU8THZWJfKBmXjJHbx0lyTQDezH2Tt7u/vlzFo2di4V7L2GS/EskA9sL3Ke7dXfJKecEZ8zzRU1IxUXoKxL1UZql5SbDIit0vPvjgPtLGSsWSpxej9x2MzZs5Y2LNnz5b70jY8zkn8jNfi/dFjeLw/q4Tk8VzGHtIel8WZsl0+Z7LYPZ/vvVIxrcweR0bFNnqJ9emZ2rOFsq+Vxi4bX5UCjra7+BvjdY9lloYNb2BgYGBgIGBnhnfhwoXy11iqM5/0PAcr3TK95igVxu8qHXdmU6kynvD72BYLMRqVDjpjh1UWjqzwJyUWSla0d2WZayjV9mxuVdwdbSC9pNhLXp8XLlw4ksQz+wk97OiJmK0L55t7ifayDPTSJavqeaZWmXay/c1zOIaMwVb9rhh41o6vxxhIrq1Ul6HxmjDOLJ5DdsN4w4xJ2I7VY3hnzpzRLbfcshW3dssttxwdw97NoTUAACAASURBVLi3ypYW78sq4XflGZ0VSq2eTT1tTZWsPvPA5jODLJFrmGWhYpxnFSeZtc/7iM/TLONO5bfBMWVz4evG0j/xvSTdfPPNkk6ywMHwBgYGBgYGAnZieJbSexHzjBsio+uVB6q88ogoCVIqYj66XgxQ5fHUs/9RSqOEl+m4KwmHHl4Z46riUyrvvexc9m2NPY5t9WwgRs/rz5lWKJHGc8jSq5i6OBeVna/KwBJBZme2wXXJpEfaJ8gGsnlaKmHD47PrkbFm3nL05OR4yHp6eW3Npnxfm7XFbCBkfYz7ykooZVlMenF4N954Y1k2TDrOXsKxVbF18X/eH7wfM4/fyv7PWD16Lsb2KptxfA7wWO5nxj72Mp9UhXkzz07uIdvNenF/la2Oz9ksFtbt83nH7DTS8d7x/Rrje5cwGN7AwMDAwKnA+MEbGBgYGDgV2Nlp5fz581t0Nzqt0B2X6s8s8NznmKr6vWlu5d4asVReJKojmBzY9Jxu4pn77Bp1Fz+vgsR74QiZQ0FEz5GHKpmqVFLmWFMhUxlQZXZwcNB1sjh//vyRimdNGZ0q8XOcR7eTOVPE7zP3fe837zPv40rVGK/N+a+SF2TfLakW43WrcJhe+E1lTmA/mAYr/k/VVhV6kH3GkjV2MsgcRqKjUC/w/Ny5cyeeM5L0xBNPHP3PIHc+d9z/XhIBfs73PRNApjJ33w3PC9Wh7DOrmcdzOEe98Biq+flMqVIcStv7oDKprElp2EtHVqlzaSKIqmI6+QyV5sDAwMDAALCz08q5c+e2XMujdGMpLCsuKeVScxUsWr32AoFZgiX2nf9XaZOMzNWbht/K0N2TuMkwd5HSq8S/mbGaTh69tF5VmiUjY6kMG7hy5cpiaALbydI1sfQKNQrZPJGJ+HPPNdkB+5WNsceeuVeqpMtSnsIpHtML2akckHoaAErs1LpwnuP1uM8ZYkD2Fo/h/dtLS0eX/KXUYmfPnt0K4I+Jmekww/ufLDf2Z6lsVo95Z+kV43WysBsmrWDC5th3Ovewr2yjty5L6dDiMdVzdU1ij6WwlMxxiMlMGCIU718yvBGWMDAwMDAwAOxcHujMmTPdxKLWtVLiWVOIkxJ9FSjZc6OuSmH03JGrYNEsXRMlH7KBjAlRCqLE3QvCrmw4PftfFdJQhVL0+t8rYcQ0VFevXu0yvMPDwy2X6GivqApyVgmTpe1gVzIvuoln9iraOuj6nSUE4N7PkioTZFRV2EVExcZok+yxNLIy3iPxXB5ThRxEd3uuKfdqLxl7nONearGbbrrpaC19nG2Dsd/ur13WafftaTW457kvYv+4JzPfhPi9tJ2irEqqnDEuMlSmHMuK7FbaIIa29EKosnFUn3Ou+Zxjgm9p28bu8Xlts7CiKlh9DQbDGxgYGBg4FdjZS3Nvb2/rlzX++tJzsyqqmbE0StwV08vS2TDQnNJ6JonQrlMFaMfvqmPXeAlRoqpYYtZ/oyedLY2jx/Ao5dL+1/PSpJSZYZqm1DYRYQmeHnV8n3kI0ruLUnrGwMgKuC+4t7L2q0TNWfqz3pplbWTnkgVy38f/maqN9m16Xsb/uaaVPT1ebymlXZZSqqepMPb2TiaPdjsupBqvbbsePXCre15avnczJlyVQKItN0vMTcZFb8bsuVPZcHvp/SoNEu/xNd7IRpUyUqqTfZA5x7V0eyyD5EBzJoeI5yx55mcYDG9gYGBg4FRgZxueVJeOiN/5ld5SmS54Kf2Y26DHkrRtR6IEkiWP5nWq9GRrvBh7nmVLx1T9WXNOlcQ4flfpuntsjWyTUlqWaDgypMqGd3h4qMuXL29JbLEv/szrTK/cTOqs0hjF2EBp224V+892OdYs6XHlPWnEPpINVraHzGuy6lvlTSlt2+z8njFpWewibXWct145Kn7GlGJxHplKqmf79biZwD2mm6LtzkyPPgXZfWJUKeCMXtHbyuadsbUqpVmW6LxKs1h5SWZaIn5HJp49kys2Wnmnx+9ox+ScZN66/E3xumVp6YweQ60wGN7AwMDAwKnAzgwv2vD8q5zZbpjdo+eJVJWCp5cUGYVUlwUyeiVe1sTfGZSOKv10D5XUlLEE6t+XbB29LBC8To/hsY3K3ijl9rGetHVwcLAl3WYevpbqmOWB7C2C7MUwu8niQyvbE5l/3B+ZnUXqx5yRpVUetxmqwq/cu/EepH2JknfF4uK5VQaP7P6tMmvwGRDttmT4a2I4e5oKt834LWYv6WlRlrwZszlmn8l8Mu/Cynu1Z1+snm/0cozHVR7e1H5k9zT3ZFXguOeLQU1JL67VfbJ3ptl75kPAe+/y5csj08rAwMDAwEDE+MEbGBgYGDgV2DksIUuKm9Ftum/TQJpRVH5HlZlfM6Mn0Uu9RYpdOc301JRst+dmXVU67tHwSi3J62dhEZX6s6qPFlG5Mq9xme+FJbgNqrgzNZcdGqiay9SgRhXaQsenWMeNYTVUD/G46trSuiDrKmkA1eMRNAVUwb2ZWnLJASVTaVI1xj6tCYehA0LmbMZE2kuJx8+dO7cqEUGVqJuhGfF/3pdU62X7u3LMYGKC7DnHIPJe5XMGmleJ9DOVPpPwVwnA4zzSJMA5p1qeCUbiMdwj2fgqNT/NG3HuOY+Hh4dDpTkwMDAwMBCxs9NKZHmUjPy9tC3VkZ1lbvtVGitKpJlbeuVMkDEgStp0wulJ6XSxrl6zINulVDi9JK6VJJRJU1WQfxV4Gv/fJU1PlW6owt7e3lbAeewDS4EwNRYTzMbzOT+VS342Pruy01klK/myxLSzUAaOr0pWkPWRTlJkG72q1VVaMGpM4rkMO6jShcV1o8Tt9SPTy8oDcewZnPCCx2afMdkw2XpcFzJF9qFi19kx7ovHnq1/tUfoaJOFwfgcrg/XJWowqkT3TOqcJeVg+xwnNSgRDOuonpFSzv7j+2w+M2Y6kkcPDAwMDAwEXFPyaEpYmR2NUh0ZXhYmUOlhmQIqYwV8XRMAujYFV/y/srtUUmI2rqUUU/EYvq4JS2AbRCaVLQXUZ0GeHHsPe3t7unDhwhbDi0mIWQDY7doGYUk1S2VXlZjynunZF5mWzFKl24gJqLn+lXYgjrNyy+a+7wUA01bSYx+V7ZthPb10a5yvHlOqbDVVEHHWTk9Cn6ZJBwcHXfZM9s9nUma3rkKm+D577sS+xbYylsbrce9Ur/FYt1uFGmRhQ5lGLHsf7XZkZ9SQ9Gy81f42ev4GDkegxs7HxnRkZKrZtSoMhjcwMDAwcCqws5fm/v7+lrdfj61ROjd6jKsKyGYZEilPQiwdSyBZcHyV6oa2tsyrjJJWZdvLUhhVXoa99EqU3CqbXgZKS7skXa2uk3lpGj0p3Z52lLzj+nl9aVNjyjEmCmC/Yl9oB868NOkZZmSlSXhudWz8vrINc99lwczuGxPyGlkgeJV8vWe747lZEux4/Uz7QYZCu1ZkeNV+rjBN09YxcR+wcCi9JLMkAkvPDp9rJhHvm6Wk+PQSzfpSPe96z1MWYCUbjfcXWTm9T91W3AfV/b70eew3++o5Z3mkbC6q52i8B7OSQoPhDQwMDAwMBOzM8M6dO3f0i50lWaXESbaUJSGm1M9fe0rrUUqrJERKt/F79qFKQtqL3avi7zJ7TJWWrLKTRfQYVrx+FgtZ2RV7DG+J/WXsI8YvVZKW9w6TikfJjRIgk4ZbW5ClT+IeqlIhxc8pTdKrLLMZ8roVel6ztL9QWs5ixbhHmVIss8PxHmAcVq9YLe1ZlXewtF46zxhSVeYmwp7hGUs3zCLdHu2I3KscQ3zPecliUCuv6Z5tNWMr8fNsbqt0ZLTpk5VmfarS1GXIit5GZDbRyh5bebbH/5fsmxFMPfj0008PhjcwMDAwMBDxjArA9srKW+KgpJV5G1ZSDBlkJmmRwZHxZMlQKZFWHpG9Mh2U8HrnMulxZcuL7yv2SYkyk9KqY3t2PzJWtp9lb6lsrRls/62SLku1FsCf27YX1/+JJ55Iz6Fk2LN10ZOz2o/xfO5JesT1bLiVV2ZmN2N2lKeeeupEX7MCsGR2WUaV2I9sD/W8MonKM5Ge2vH7paw8EfbSpFdpZErUCvg9y8vEOViyi69hQAazTmU2Ls53xcDWeBT3vMINxqRWY8iec5wT2ghpW5b6MajSdtaY2B6fHcxCk8U1V7GWPQyGNzAwMDBwKjB+8AYGBgYGTgWuKfDcyNRHTGPTMz4aNDTTuEm1ZFQTkLbTiJ8lnKbRuKcWIJaCOLM2qRaoUhhF9Kp8L12vUnvSpTmiUqH2knBznZZUC9M0lW7u2WdVuEgMQvU1reqrxpM5LzFlnY91tezMwYpqJzoNZA4CVrNxTav0WlFNRDWnA4HpiBID+P2/X6myXRMKUCVD76XH416tKodn5y+p5g4ODrb6m9VVY3+ZaixLvUXV2FLydf4v1bUVszmmWpCOKJnTSrY34ufZvuO9zLRkWd8qxz2m/WOtynhtPg+qUK74XaX2z547VB+PsISBgYGBgQHgmsoDVUG+0rbjAaW9zFBOSYevVaB2vA5TS5EdZgGZS+ypl1S1QhY+UAULZ9dhO5VDSJXUNaJi1ZnjECWrSsLvJQ1ewjRNXdfoivlWpVekY0cWg4mme2tcGfV75YHoMFE5r2TpyLhGlbNE7A/3tSV8Mr3IXPw/wxA47mxvsY90VmCITfy/cilnEuN4bK9UFftcObVJJxlubM/sLWNcVcjFmkTEZPae8yoZcuwvtU5ZMmSjCpmhc+AahxejYlP8P/aZSQR6TjlGpTXKwhKWHO2y8A7P9eHh4UgePTAwMDAwELGzDS9zt15zfM+GV0m+ld0gYxlLbCYr3lgli8304VWSaNrlenafpSDyLJg3+y6ON7PLLQU699at0qH3Ao7XSldSPV/Sto3BYNquLNi1KkNFhtJjErT/ZuOj/c19pZ0iC47PCldm48rYE/vGUINow2QKPmo9uB96wdiVDT5joZXd3teLyX57pbgq9FK9Vfb+XrhKFfxePUt6tm8+U7J7ogpPYl8zNlOlQ1zzzOLzlH3MGFel2aFNNPNVqAo2Z6ywSorN6/dsoefOnRs2vIGBgYGBgYi2o4fi/ZLe9ux1Z+CXAV40TdPd/HDsnYEVGHtn4FqR7h1ipx+8gYGBgYGBX6oYKs2BgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBcYP3sDAwMDAqcBOcXi33HLLdOedd3ZjqYxrcYZ5X53z/sLaWJE156wZ97NxvSwrR4zduf/++/XYY49tNXLrrbdOd999d1kaKV6b8VGMMcr221KmDl6D/2fvl87vYU3ZlmcLS+1fy77gudk8VplKsrJUjFs7ODjQpUuX9OSTT251rrU2xXYZuyVtlyDqlcIyGI9YHVsViO4duwbVsddrH1bHrInHrY6pYnyfKapSaVlsbvY8uHr1qg4PDxcnZacfvDvvvFNf8AVfoMcee0zScS2yGITKB09VWyoL5uXGqh5iWaLkCr0f46WNfC0Px15i1qWg7l77u2y06tw1AeJV1WIHDcfEzTfffLMk6eLFi5LmtEOf//mfn7Z711136XWve91WTbts7AyqdtomptOStpOEM81VVX05jtXgsb3US+x3tYfjd0s/3EylFlHdP1mqvipYt0pl1kt4wGOy4GwGdbMGHauRS9IjjzwiSXrggQckzQm7v/qrv3pr3Mb+/r5uu+02SfNeknT0XpqfTfFaa9J28R6qUv65jeye474jekm2q/sxS9Be1d+rEpDHc6sE4FmA/VJqQSa6WCNo9urkMXCez/77779f0vFvjaSt358nn3zy6LjFvqw6amBgYGBg4Jc4dk4tJvWZUSUhVmUnpFqlUEnCvVI4RNZ2leqrotVZexV2YXa99GHXcp0KSxK/VKcf86sTtWZ9JKvq9blXGmmJAWXzRqmxYm1ZmjCqv6r5WaMWW1OmpZJie1hidhlLWJMWbgmV6rnXBksZMe2WmZ9UM5QMrTWdPXv26HyfG5OI8zv2KWMkFUvZ5XlQJSA3eutTHZuZDbgeTMmW7aWKlfN9lspsjVqax5GNVnunV2yA+/3WW2+VdDIt3dJzu4fB8AYGBgYGTgV2Znguxij17TCVRJCViFiyT1WJm+NnFbISNpSwLZ0tJXfO+rqGPRGVFJUV1yUqqanHYCvbVI+hkxVkkniWnLg37mmauolyua84xh6rWUo+zPJU8TOe27PxVnuxp2noJQnPkK0L2Sj3UJYAeOl6S2uVocdCeD9Zes/sW2Rp+/v7XeZz4cKFo2P9GktD0X5YPXei/benbZDqpMvx2Or503suLSXLj8y1SjBdJd2OfaStLrZbYclxZ5eE97w3slJtbIe2Q/sMxHJbmbZpLQbDGxgYGBg4FRg/eAMDAwMDpwLX5LTSc9PtVciOn2cqmCVX/4xWr6mULPXVEZVKJvaRKqslY/KaGBcaj3epNUj1QeYksUtcVFXFvncdXm8JrbWyCrJ0Ut2U9SGLv+IaVirZLNyi5y4d2459rOrTVTGE2VgZ09hTE7EGHNe0FybwTJxW1t5XGSoX/cw5Yk1Ns9aazp8/f6TCdDhMVHP5/8oJJqtTRzVn5YS1NsaT7Uu56YaqRt7/8ZyqFijvCSOrFVmFGmV7lWtAR5TqmRmxZI6JDj4cH+9Xq6hjOJRVmv4uhiwsYTC8gYGBgYFTgZ0Ynh1WKjYQ/6/cw/0LHiUTSimVI0gmVVbBomSDWcXzyn2ax2VYCurthSdQKs9ctNcGD2eoGB4/71WBrwKO1zCXDHt7ezp//nzZl+ocaVsK7EmVZNic68zIzrnuBZF7fswKGCSfaQfcLvfTEhuN/Sa7JfOL91DFaqv16WWuWeOyzznhPddzGLK03nN42tvb07lz544Y3i233CLp2GVdOnZgqRycsnuZldq9hgbvk6zSehX43Qvq59j9WmlV2E7sMx044rpU614lA4nfLd0bWR8rDQbv24xl09HJ1zOLu+mmm47OcdKCTDO2hMHwBgYGBgZOBXZmeFFS6gUCR8ktvvKXW6rz4PE6vcBPg7pmpgeK/1uiW8OayAYrrGEsnCOmYpK2Wd+aYPWqLxUDixKe54Tsd4179ZoAbWkeNwNlY/8p3RFr+sL9xr3Vsx2vCSLPbEHZuT37dnVMpv1gQDXH5T0UzyGzqzQlmfaDY67y5u6Ssi+zvdMG1QtAb63pwoULR8zu9ttvl3TM9GI7S8HOsQ+eO3/mPlDbkbXNMWXsXDr53Knuf9sf/T5jzxV78v7oPQfI5Ggrj31m2APXpZcikoyLz64s7IhsM/t9kE6mkTPDc4qxpXCoE/1dddTAwMDAwMAvcezspRl/4TMpwNKQf6EtvVSSqVRLy0bPZkjQ/kI9fXY+pdlecC37uMbOSCmz0uFHr7Ml203vuksSdiZx+zpkehVjjn1YI13ZQ7M3jiVbXZWyqIdeaiyuS8VUM1uH+1p5a2Z9qFhBZW+M/1evPftvZbthwu3M65kMn+PqJWWIweTZuCOiLbLaR2fOnNHFixd19913S5LuuOMOSSdZQMX+3T6fQ/F/jrlCdi7HRq/GyKasUeJ+sAeixxNtiU6YXl2HNrw4hxUrZzqv7DnntYvB/fGcbE6WvIM9vx5T/MzgMzizUZvtmen1PHyJwfAGBgYGBk4FrikOz8g8Mi2lWDKw9NLzlqvsRb0YqiVQL5+xAnrUVXFfEZWUvgaV12RmS6mOWePdWJXc6DGjKl6SbCsetyQRR7TWtL+/37Xh8drsN9ln1odKylwT48R9UNmFYv/j+Krvlzxge/ua7ZJtZrFi1G6Q0TkRr1+zvvLeoH0xYwW9eMnYr6zfvdRi+/v7uvPOO49KANk7M4ufrJhXlkau8rAki6K9LI7R8NwyDVncn5HZxPeMOYsM76mnnjrRDvd15eEex8N7hPbgNXY4tp+l96q8wLkfYyJo+lEYHG9cN5eHevDBByXN7H0wvIGBgYGBgYCdGV70tDtqJEgBllLoPUamECVV/8pTp9yT+GJ/4jkGK+VmnnaUwsiMMv00JXv2eQ2LogQUJR6ispNRasrsMBWzy7whlySkrB8ZE+slnz08POzGK5K9WLq9dOmSpONCsH6VjqXkyruUdrkoEVsL4VfuXdt9sjFzjn1d7+UsxpEswGCZlh5bM+hpnK2/v/McOSPF448/fuI1MoAqowZt89G2w/mLWTGk3PuQ6Hna7e/v6+LFi0fMzu1nzx0mrK5iA+P5VXwstVFZrKPH5Dgx9iPzDmdsILM0xeeBPREZI1jZwjNtARm4+0i2tqZ9v/eax2ekx8eCzR6nxxWZMveb++Jz/AzIvHjvu+8+SXMR4bXav8HwBgYGBgZOBcYP3sDAwMDAqcBOKs3W2gmVZubcQTdpBn6TxsdjKseMyqAZUbWRqZhMrf0d1UOZwZmqMqoLqySo8RiqVXoOCe5jFXhKtWw8t0pv5HXL6lJdS9C/Edd46TiqHqPKx+oLr8PDDz8s6dj92KoSHycdq3z8mV+tvmPCgEylefHiRUnHSYmp6vTn0rY6qHIQiXuHe59zzXN7Lv90oefelY5VSVZZev4effRRScdzRueV2Beq9aiujGpLzx8Dw+0+7vnLnEyqRNMRDktwO1Ztxv3rtaK60HPh10wt6Tm1Cttr6j2UJYag+zxTvfnzGGrk/tMhhPdlTIbs76gepDOOEdWTDH+qQieycAuGvRhVqFAEwxC8v7LnNp/THqfXMwu7cViKnZje9a53DZXmwMDAwMBAxHUJS4i/rv7Fp5HVkmjmWk4puXLbzlywGbxNFpUxvCq4mobuzI2absdLTiXxnKo6cebyz5IlbLdy1ojtUfqrgpalbQeNqqJyxJpSIbHfh4eHW2w3sjUboc1A6KzitYzn+BifUzlm+NxM4jZjMEPxqxlKlqS4Smzt60VU6ZnIRrJEx5aOvQ4MLfA+8DzEuTBDvv/++08c4/nMAvlZidxMzuPONDQGHXeoQYl7iSEfPc3A/v6+nvvc5x5J9HYQifuXbMastio5JR3PofeT59LvPX++J5773OcenVtVX+c9nTFKalg8niwBBQPP+fzpBZ67T2S5Hl/mJFXtVa7pmrJUZHRZ0hEf48/o+JI98z2u5zznOZJmDUPvORUxGN7AwMDAwKnANZUHopQebQCUNCiVZwyPDIeuxD3mYP16tLPE6/aChqtgayNLo1Ylb2bAa69MR5WIuhfUbenIc0OpradLr4JVo/RJSYu2iCzsgraApdCGaZqO1sVMzMGjkvSe97xHUu3WTAk1/l+xQs5TDP5lWEimDeCYbQfz2GnT8rkxdIL2wyoYOguypWu8++h+mFF6/PGzBx54QNJ2sl1Kz3Ef0o5VpT3rlZbxd7QlxuvYDhPPqVje2bNn9dznPvfIVsjEwtLxGnpePHYy5Lj+tA3TnvTQQw+deH/vvfcenctUZQzm9mt8LvH+MLPzuIwXvOAFR//zGUHtE++9LEzAmhOP1+PyXGQhLdQcuB/+3M+JmNTZfeGzmLbwWOrH12M4h18zDZbX1Iz79ttv7yYfjxgMb2BgYGDgVOAZJY+25JOV+vF3DBam3SxrO/tVl3KWRSmdQbdGlnKHOmcGi2ZejAzSpP0qk5qo067SH0V7AwOnKflQ8ovjpdS3xnPVx7oPtLFEu4LBIN+rV6+u9tK05BhtXlxDMuLMs5N2IzM+t8WA80wCrjzPsr3KAFkmDfA8ZfNVJYumVqDnSWhmTEYbmYuPqTz7WGwzs39wXsnwIstmoDlZDu8N6fh5sDYo/bbbbjtaL18vS8HlsdNO5fdmgNLx3mPKLzLwzHZcJT3ms4XJl+OYGUDv52hcD9r3aOvqlQ+jNs3vPW7vnbi/va/MAn2s7dqeK7O1rCyVz/E9wGd/XDf31/eR2a7HTa1f/MzX+4AP+IA0eD7DYHgDAwMDA6cCOzG8w8NDXblyZcurMf7KU5qjxJV59NFOVMUA+Ve8V7aHyVaNTIqtPCAzfTDZYFViKPOuJFtjiqFeWiBKRZYKaUOI13P7nosqLi9LGkxbXRVnFL9b46V5eHioy5cvb3nGRVQld/xqyTHGKVF6JCPmXoqSIL1MOXayEOl4L/p6PobSepynKuE3WWAWF8Xr0PuUtnHp+N7z9WxnsdRML8fYL94/nhN6h8Z7xOeYzVR7J4J7pcfwWms6e/bs0XyZBZiFSMfz736bgbi/tNPFY8xeaB/1/DiuMEvBxnkhe8/S91H7ZW9DxulJ22XWmOKNWhvb6aTjdXFfec+5jXg/meFVmp6ehoOaGXvV8jke7w2mxqNmzns1zqP3t9f8tttuG16aAwMDAwMDETt7aV6+fPlIYvAvbJTWGEdhaYlxKVFqXiqmaOnGv/a9WCd69GVsjVlg6PGUMRZmaqCHoiUdjz/aNRk7Q2bH/sRj6ZlYseA4Tkv0ltwo3WbZU9zvqqSHkRX7jWtbeWraQ5O2hyiZeZ2ZmYHMLnpAuj1Lx/R483xZSo/9rxKB0/7DWC5p2x5HNhg91bjnKY3Slhil3IrhWZLPslf4Op6LzCtXyoui2qPP3rPex+xjZAueU8bskUFneycy4mrv7O3tnWDDvo6ZWfyMrIaZaHre01XmI89jZDNk2LxvfGzso59f9G73vrbXYdxvXnfGydLencU/0zuXpXiyzD5k55wLr609SeO96D3DZ4mfR5l9m/ZMMn0Wx43nr/XMjBgMb2BgYGDgVGDnXJrnzp07kgyYV1DajhNjlgUWO5SOf9UZJ+RfcurjI3wspSdnSbCEwNiQHix9ZjFb7hPLWFDCy/LTkVEwe0aWDYZ2OJbYcB8js6Edg7FjZGbx/yqvY88+lxWDJPb29tL4qSjt+ZruLyVgZk1xu3GsL3rRi04c49i+LP8i7S+05VFbEftQ3QNZSSHumcp2xzWPn3n+fX33mfswXpvXoccgJe8Iz9fzn/98ScfMz/dVltmFxe3iYwAAIABJREFUMbFeN183anWy8jK9/XPmzJkt+1XcT7SPM+9qFsPpY7ku3ju0/8Xnjz9zGyx4TQYYz/ezqrJ9x+dOxZIZN5v5LnhfuS/00jUDjM9vrzvPZUYhz1FmbzT7Y/ahd7/73ZLyjDssVcT7Ou5Rzt+tt946cmkODAwMDAxEjB+8gYGBgYFTgZ1VmmfPnt1Sd2WB4HRrNg3NqhUz7RMDIu+5554T14uqkSoQnKrUqAZjOzy2l3KpUmkydVE0vjJQlkbjXgJouphz3JmjA12jGViblTupEnjTKScGGVehDBlaayfUEkwdlF2TCaF7Dhp33XWXpGMXb6tPPD9Wk2bhIlRHWj3lpMtZ4Lnnm8kKWNYpnsP3dNLK1KFU4/qVqp84N/7Ma8VK2gwriuviOXcfYoJeSXrrW98qKQ9LqBwdsorhWZq1JacVJvXOAs/96pAFJi/ISiF5Lv2Msju9nTAYyB/BFGJ0asvU+EzY4HMz9d3znve8E330fPkZ6c99nTgnXks+fxhOFp+hngPPI8fBMIm45t4T3itMVuDrxzR4d99994m++Fyvse/rLGGE1+Xmm28eYQkDAwMDAwMRO/t1OjRB2k5rI20bVy0R+Bfb0nN0vaUhluUzGGiYXY/lUpgEOSv1YzBcIAMZXlUYlUHLEWSbVcB9Ng66V3uOstRFvjaZMg3rUbIjk2Raqoy5ZBL5EstjKqkoAbvfDEehRBzXyVK/544hK5aILfFnLJGFXxk+kBUC5l5hEHcW1M80SSwAmzEhprSjkwwDdaXtPer1tmRt5tLbd2Z2lqLdD893nBNK/xXLyUrJMClDhmmadPXq1SPp3yEmkSlwfnxsVuzYoNMKNSNMMRbvF6bc4z3lc2NYgvtCxsU9nDloMESHmgZfN5YwYniPWZvnxq9xD3FOqMFiGEHGmFlE2CzO85s5L7k998n7z2sdnxPek3a66WkHiMHwBgYGBgZOBXYOPI8JgrMyO1lhwPg+k5YsYZgFshQF02tl0hpT+7itXskVg4lZGRAubUvWVQJgt5FJTQZtOmxT2rYVUv9Ou1bsK+1wdjVmEGeWEo59YvmhaMdgKZkeQ7ZmIEu9xT5Y4rX+nm77sQ+cH0v9Xhe34fnKgsjplm8pOmOrLNrJpAjed2sK5zIZesZ2yCC8lu5jFfIiHY+ZNkoz2uwcz70lb0vRtM1nLMR98XtfJwsN4tivXLnSTVpw+fLlrTnNngMsIcTySfG5UyWC8Nhdwsh7K2pTuIbUKFWpsqTjPei19GvGCv1cY1Jnsk+fE8dnWyRLZXlfUJsTj+Vcc46yJAqcA8+Xx+f3mVbKe8aMzuPh/o/97aWuqzAY3sDAwMDAqcDONrxY4oWBjBGZPaI6lp+RTdF7L9qRKP3zuiy+KW3bHsnoMjsNpQmeS5YTdc70hqN3YJbGi9ejhEXmlSUr5rn+3Lr8LIVVlfjXn2dp3aK0V9nwpmnS008/vdVullrMUh4ZiKXd2AcGxjMgm0w59q8qm0Sv4XgObUWWXs1e/D7bO9zntOGyX/E7aiG83lkAMO9P7xH32dJzVqyYLCvayaRcQ8NUT5bgLbVn5/C+OTw8XCwRZNCeHcfK+75XeilLZBFhhsdSU9L2M4KB2RnoB+D2yXxiG0zRyCQJTIsWz2WKOQarZ2kQmaKt0vxkySY4x26XDD8WgDV8LG3g2W8Mn1W9pBjEYHgDAwMDA6cCOzO8KEFQgpTqsjyM58pizphGib/kWdFYSgJkdExSG/+viqjSay6eQ7tBlXg2s6kttRVRFcGtipP2pFVKoWYuu5RMytgAi92eO3euy/CuXr26VeQyStyWBBmfxAKccT6ZUomekNX6xHNYsoiesLGP9FIzW3Jfs1Rf7BM9OntxjLR5sqgmxyJt7zfOX+/e4P1KzUImVVeJ4TP7C8+J93a1dxyHR21OHCe1GYyxcx8y5s3nS1aINR4nbduyOHbPeZb02p85xs52X/owxGuSUZIJZXvV59rjkX4G1BLFdnxP8LXyxIx9qxLbZ8+b6vfB85fZ07MY4Z52IGIwvIGBgYGBU4Hd6ysEZFI/JWr+qpOhxM/IGLP2icpriN6imW6d0iAZZlbCyKj6Su+pOFayUB6bsVAyOb8ng8n6RlBKjMeRAVUlmzI7RubVmqG1trUeWckYSsvMIhFtDpRSWVCyWqfYf35HW1RW4sV2RttH/HmmhTBoH93Fhsf41Ww8RmV/oXSe2f8qr0OywXg/0LuUtpwsXteILHcpFo8lmDJ/AO5TPheyPZqxlfh5liTfYJwvPT0jw2MGHNvwbPf1daK2xrY721IrTZZjbmMfyWqZdJnFjKXtZNh8NjPjT7ZXq/s480Y3mPw7K3dk8J5fsv9GDIY3MDAwMHAqMH7wBgYGBgZOBXZWabbWtlSBWU0rqjloIF5Tv6g6JqtanIUfRGQpsajKZDXuzABcqcr4Pgt0d/ucv6zmHFVHlao2U18uuen2VArV+KpUavHY3po68TidC6IaiapROmow+XbsD1PMMcCcYSTSduJxv6c6KgZM01mFrvdWLWV7p6cervrIFFYMv/F8xmBeBhpzLnpqV96vVHFmNf3ool6FCMRx9QLmCTs8OWDacx9V20w8UTmGxXOYso41J7nns/uGa8nnUXwO+Biqwak+9DilY5WmP2NfvA5ZInB+5+vQrJCleeSzyddl3dFMpclnVy+FYuXsRxVqPMdz4c/WqjOlwfAGBgYGBk4Jdi4P1FrbSqrbq+5NhlAZ6uMxNEavcVqhkwX71pNq6eLd6yMlmzWONSwhQ+eBzEBLqZl9YR8z1rumbwaPoYS3lDZMmsdZOR5EzUBsP0uUXLm3u+1YRdoSu6VXzyEdkDJQAqULOwOq4zFkgwwLieOqGFYVUpOFNDA9GD+PDM9OEKzc7X7QiSrbH9Va8DX+z6TfPScmt7sU/G1M07QVLhLDHZhSjumnMuc1zxOZN+cn20NcQ6MK+peO96pZkq9vMI2YdPxsWkqsT3YqbVecJ0ujA1wE560X4G5UjkE97V71XKFDWZxnatGefvrp4bQyMDAwMDAQcU02PDKW+OtLV+Q16ZSq9FxrSocYlZt2JiGQSTIMoec+W9ldjOxcslDa8rLURZT6q5Rmmd2Hfa2YXna9pXFmQbHGmTNnugmAo/tw5m5Mqb8KGo598Fz6mEo6z+wwlEirQNksOTqDk2m3yoKUKfVXBXSzQGAmZub+yNgU55q26p7Ww6hsyVliddoTeyFKPj/b+9k44v40c7Fbv7Rtw2dy9Wz9uac51qoYcjyGLInnxOvZFuyQFl/XjM6JuiPD8ziiXU86nnOys3hcFQbFEkpxXGTRDCnphafwGVWlUIxrXfkIcD0jc+XeefTRR1ftZWkwvIGBgYGBU4KdbXj7+/tb9oT460qmwLRhazx1lpAFulcSYlaQs0o43Ss3UemwK+ml50lYFf7Mkjmz3EjF6HolMij99NJDVZ52lN7iMVEi7q1Da23rnCihVomlzd4yG0AvCJlj5LmcQ3r4ZhoGMrzKGzmOi3uD9gmuT7YuXF9L55boowTs65AVen/1UvVVe5X9yZIkkP317utdk0fH9c2Sn5tV2kuWgcyck/h/FTjP+yR7zlV2MJ8bbatmpLS/uc8PPPCApOMCvdLx+tqWV/k50D4bzzX8vDaDdMoxlxGK59s7lOnoKiYWP6ueUZmnd/U89f2V3SPuoxnxpUuXBsMbGBgYGBiIuKbk0fRuyxJB8xeXMW5sM6LyrOulMluSyrLyErTZ9JL49ryT4vfsV3YMbQS0M0jbunR6wlVJfeP/lXROphHbo82oN27O1y5lOsj8s/MZU2VpOXppknFx3isbcvYZbR1MkRWv5++oucj2f6ZliO9p64jrxphN7lUzvWj38fz0YvXiGDJw3au+xnaqIsnZnJMZ9ey/h4eHunz58lYRYjOjCBY37nlcVrG7ZBVZwnu2S3idvD7SMcPy+rj/7373uyVJ73rXuyQdM5fYPr1O3QbHEFkv43/N6Hys90ws12O25z3jvtD+m+2dXgHt2NfMo7w6J3tWud/veMc7jvo0vDQHBgYGBgYCdmJ4joXpxWSRrdATLWNclb2gynSQ2TiqjCeZbpueRlWC6UwaNKqsGT2PLoOxLVkiVoPf0aa2pvAk+5xJp5U3I20VmQ3E6NnwpmkuAEvdfNaHKj4sy6JT2e6YPLiX4SfzNo3HxnMsWfuVmSGy0lLc35V3aOYVyvln4lwWD43wsUyw3rOtVffimpjOypM4Y1csZNpjeAcHB7p06dJWIdPIhLjOmbesdFKj4D7Qhkdml8XJVrZbFnmNe9Z2OL/aVve2t71NknT//fdLOqnBoJeix1PtneyZxcwxtiWaYUb7r+fR2WzcPsv09GKVqS1i9pYI3tPV74T3snTM7LJi1EsYDG9gYGBg4FRg/OANDAwMDJwK7KzSPDg4KA3o8bN4jlSrK+MxlfNDL+lu5ZxCp4/MlZ3pkyqVTAaqTKuxxGtXoQPuT0xxVtXBqwKOe85AlbNKL/Cc4+x9VyXsjvDeodE7qok4Tzw2c5hggmIe20t6TTVtVZk5rrHXiOmNqGqK88nA7CrQ3cjUoVZzWf1EFVNMs2V1GvtWOSL11K+Vmj8LHq7qLWb3tce8FFbi85544omtey3eL0wsvjTm7NjqWZWpqSvTgoPLfazd++M5Xst77733xGvmhEOHGe5R3stR9eex+rPK/BHvX+8jpkHze+7/bO8QVGn3kvJ7jR1S4XHGtfacWI3/8MMPr3aYGwxvYGBgYOBUYOfA8729va2Er5nURMN/L9kyjcVGldqnF0TuV0pGUQI2KkaXBc5SGqzKZ2SMgsHDleE/jp9p26rksXS/lral9EpizVClkuqtWy/o3XB6KDorxH5XCQB6DhNrnCliW5mUXoV4ZOVaqpAWVpPOnKRYRbxyzsnmM6ZRkmapVtqWuGP7lYaCDgc9TUaPpRl0ZKgcKrIA/h6zi314/PHHdd9990k6GShtMFUdE4Jn61KlHeO8ZBXPK62A+2FWFR1QPHd2q/d4vKYxRIPjoBaAzxQG2sfPDDv5MJFDTGJdObZZaxDDLOLx8Vie6/fZPqs0CTw2S3Dtdp966qnB8AYGBgYGBiKuKfDc6P1yL0mPawIFKW1kaXzI6CxhkcXEwojsP9N4UYqXtiVSS26UULOihO4bbV3Uu8dx0RWaCZVjIcsKlT2VrDtiKdl3Jn2ucS1vrZ04NwtPqVJSVanR4hjW2Irj8fEctsFyOlFKp9u2JV6zDqaNkrZtxXQXp/R62223bfXffaCmwra87J6obJ/UDsR9uWTDyz6vwi56oTJZCMpSSAvXI86F/+ecun3be+I5lWaJn/fSBdJngIm64z5w32JKrHgMQ02qa8f2eVwW5mPtg9eFz5KMPVUJPJhkID5jKjbK51623ww+vxkaIh3PubUbI/B8YGBgYGAAuKbyQEZPb1olxO0VnaTUX9nnor6en1VldWJf6cFJqYW2ljhun0MbYZWKKYLFGg1LKlEapNcSx0dWGvvKwHra8rIAfnq1UcLL1o3tLdnyMgk5glLkUnB/1a94LaYAi4yySiFlBsF9IR1Ly89//vMlHadrMuPzdXvJnClp065JO4m07ZXJQOQYhOuxel9VwcpGXBcGcHNesyByg9qNnt2v9xzIjr1y5crW8yDTwPA1Cxo3eK9WbDbTRjBonXNLzVP8nxokaweytF1ZCr4If59pfph+zJoDepjGZzX7T8bK73uJKNhmdr1Ki8d7I/PItW19MLyBgYGBgQHgmrw013j9VSm/jCzZMW10ZGJZ7BtZGpOpZmytYoPsa1bihQwrSyUm5bYuSnBZLFp1PaOKO8wKJPKVTCzzQmWf6VGYSetr05pduXKlm1qsslfw2tk5nP8qmXNm66IdJtrspJNraRuQ461sG2bfve/i+Zwnr4vnJEugy1hBFsXN4v7oIcj4p8q2G/9fk6TcqGIgyeJ6kv173/verpR+eHi4lRQ77hOvHe1IvNey+EHajdiP7HN6gdJr03a4uA881qoAq1/j/vNaep/5PZ+N3g/RV8F9cMHZu++++0RffU5cF39G3wGmqTOyODzuB7LuTBtVeb+T6cXvsljAJQyGNzAwMDBwKrAzwzt79uzRr3Im+fCXmrrZTNKiRxUlruo1tsMyMbRtRUmL160ya2Rek5T+KjtTFhdV2ceyTCVVrFzlPRXBjBdVgc7Mw4p9XqMbjxJ3r8TLU089tbV3enFYVWmaXtJrgxIwmbl0LLXSs48lf+I+8Dm2mXGuvc+ipE0tQ1V41O+jPc7Xs72CHn7+PMYK2t5B26DRy0LjsVZ9XmJh2fiyNaI25/Lly4uxVJVdKYKanjUJrCubfhWfKx0zfNrOqD2JMYO2/3rt3J7Xi/bA+D8Lo/KZ6f0W19pJou+55x5Jx0zPbXgMUcPkscfE3PFz70c+1+OYqR2gdiLTflT7i9eL/8d1WcvyBsMbGBgYGDgVuCaGl9mAjIqN0S4WmUnlnbmUzUTalqwpmWbeS/5/iX1msR/MMlNltcg8regBV9nN4jn0/qwKMWbz2fNu5PvM2zPra5Ytw8jyecZ2rl69usXoskKptO/0vP4qGydfKc1L26V+yA6MyCRc0oVSP7UF9tqUjiV7xoIxO0bWR7M9S9zOsMKMHpHh0YOwsiH2yt5wD3Ft49pX8Wy05fRseD1Pu2mauufGz9gX3jfxnMpXgPGStHlJ24yO+8xtmEXF83mPuc/uR2RAjLel1zHtYrFt2pl9Hb/P7Izsv/dXZQvvrQH7lq1vVeas8tCP11zrmRkxGN7AwMDAwKnA+MEbGBgYGDgV2DnwPKaPylSaVfJRUtOeiqKXSorvqXbga1aZ19+Z2lOF2kvESiN4Vfk3K4VChw2OIYIG+aVK1Jmr/lIAd0QVRN5zQ16TQiri6tWrW6rY2B7VaHzNnCyWEhz4e6tmslRPbINhHFHlZ9ViVCHGYzwXVmNKx8l5rWJiejCrVJmeKl7H140BuNn1pXq+quQIPScgv1IttkadRJV35ty2JumvQ1qoDs8cJrJrxfdxrXltq/aoXstUckwHxuswfCS2431gdaWdWPjMlOqk2DSTsO/xWDr0MYlGlhCCqka3z/5kJgnOK0NEMkc1f8dnZKbSZPhQLxk+MRjewMDAwMCpwDMKPKckKdWSFSWszEW5kuwpDWYG8+p9JlVYWrA0weDhLNWQj7XkTtdo9jkrilul4PL3sY+VpL2mXEvFjMhGswTAFWPOkgZTCuxJ/XY8qILvY3+rorexLf5fhYXQISRKipUkyjnIApyZ+JdzHZ0VzM7oRMBQCQb7SsdSLF3XjV5S7yrVE9l8JqVXCZTpJJadU6Ujy5yyKocqnv/EE08csd2MzfTYZLxexFL5rCrEIX5X3Y9et6hRsJOIU3zZscn7IdvvdECqtBFmbzEcZsmJiKnnYn+ZBo1tZM+sag17GsFq71QObFJ+T4/UYgMDAwMDAwHXZMOj5Nv7da1sQ1naLmJNUHdlj6B0kyUNpkRPJtZLuWTGR5fmTEojW2LfjXgO7ZmVbr1K3RbHUb1mDKAKGu2xwkp3TxweHm4Famf2I9pUKWX2UotVDK+XEs1zaem4KoIrbZdycrtkepGlea+48Kel8SotWibN8nrcB9EdnUVPOfZqP8RrM6Wc93nGesnw19rlpJNr3XsOXL36/7d3Lr2RG0kQLkkjezyHsY3BGgZ82P//s/bqNQwb8BgzHql7TyGlPkYk2VrswdsZF6kfJKvIIjsjH5EPT4xE16nOOTVzTnOuY+jKJ+p8avwqtRTSGPXdykIVz9P+xPB4jV2cPHk5eD857xefSbxOrlSHQvdJfrEilQgJLtafvE9dzkcSXT+CYXiDwWAwuApcHMNT8fla3red2ANbQ3QZnnuxvC6zj5aw20ZWlywbWkJkfnU/BKWXHDtMfm8WkbpWInt+8U4IOjXzdNdtz0rqtukYo3A+ny1j7t4ja3MFp3sMr4s9CRT85TWt8yJ74jlQnMkJAOuzdG+wmLnuNxXzijXUAmWKIfC+OuKZSc2dXTyOY92LIVYkyT4Htj2q7IlxPY7FZfLxPDBLlmumZsimvANdd8c+xEwlJqCYLkW9nReFr+n1kPfANbhl41ydC10ft1bpsUjPfHcvpsx195xI++sa6er8VRY9MbzBYDAYDAoujuG9efNmI2NTfcCpqeIRdpF8/12WJveXZGfqNmSDdW51H04qK1nL3LcD43y0KCvDc80g6/G6eEliBalGkf87dNZZjSMd3Y/L+kyxJn7exfD4fsc2KMgr69i1lBJkpfMv16FjA/yrMXceE72nsbE2TGN3GYspxtrFYQTev8lLUD9LMlEdG6j3dBIAVna47glZ+DUjkd4axmFdDSql1cTAyc60jWTd6ncYB2PsqTIxjYUSc8raFOPT5xWsh+PzTuutrlk2NmYNp/bpsoL5bKIoP1/XsdELkq5rHSPXKJ+JdewpY/kIhuENBoPB4CpwMcM7n8+teLSQ/PnOsk/WI33NgtuWPu1OnYUWJ7M2j8SkEhwz43lyrVHq67W2LZLSvlyMkt9N8T5XU8c587uVSTD2cH9/366JOl5az268ZIsUaub27ji0+N2caZmS4dU5UxEitVVSTGWt3IZoTyVorW2j1yOtnjqmVP+6OJNridQdv27DjNGu9QszEr/++us4btVwpjjPWtvsUu7fNQAmi6nNaCvEKH/++efNe2yyy6zCOkaNhc1ala2pdj6V4TE2SY9Calq81laMnCopGnNlT2SuHEcacx0TY5+8rp23RcdnLLSOUdfnSP3v5jiHvzkYDAaDwd8Y84M3GAwGg6vAxS7N6lroSguSZJBLIkiyXHuF2m5bujD0t6Zta7+UzyFF7vq7kfIzOO5kwpg0QFdDdbewvILu3ZT663CJSyH9dQXOdHPtuTPrPNwaSp3AuR66jvd7QrJOXFeul5Ts4WTwOGYlHDj3Hc+TrjfXGUXN19omB+y5Dyu4Rpks4xKvUqEzj9tJmfE7LpX+EjeUxsOEtLo/umd5LzsRg9RvkZ/Lvfb7778/ffbLL7+8+MtQhit/0di0P7ku9dqFZ+T+5PqmwIG791giw2ei3O5dQgjlFyWtqLnUvo8URRe60BBDG3wmyn1Zx0jXbB3vHobhDQaDweAqcDHDu729bdOojzK8ClovtJKZdOF+zfday1Qrg8wtSfC4sXJMqbWQ24ZWJgPcjhWmdPtUrlCx1+LHJTqkBApa72v1pSbE+XxeX758iSnsdfu9AunKhGnJ828nQpu6letvEq+uc05rqY6R+6VsFxmg80bwO45xC0zCYEIFE6LqGpMlnwTOHaPkvJL3wZWTHPEKnE6n9fnz56dx6ziO4Wl/bP3VlbTwfue6cNuyQFtJLNoHSw/W2pYdsF2U2FMVHifD53OHSS1OjF2fkemlBJX6HR2P5Qju3nRJXnX/vK/qe0zgY7JKZXi8bp8+fZrC88FgMBgMKi5meKfTqW2fQguEYFq6ey/F8mRBVP84f+2TRedSy4Uko1TnkMRpGZ9w1i3HkNp2uJgh4yCMl7kUfo0lxUDdNil250oPuI1jGQ6n0+nJynRrh2yGqeUsvl1ry1LIMug9cI1SBZ03spy6XvQZi2vJqtw2jI9ofjy3leGxTIAxDxczTsXDjH2QNXRj4rydxyTFdDvR98r0Ets7nU7rzz//3LRmqrFOtrrhmnESZsmjlMqTKvP67rvvXpyPJGVYt1GBuRiexq/3+XqtfI9RllCvaxG5xsAxat6Kv9U4HNnYXulOZbB8Tgu8J+pzjvelriPLElyz3/qMH4Y3GAwGg0HBxQxvra2fvP5iU3h1j+m5/SZRYmYK8dh1my47K7WhEVyWaMo0ShJWrjg++cOd1FPKAnXWDZFiT0dEfXnOUyZjfa9a0XtxvNRupv5PX38nE5birSlDsLIcxV+YUafsNidAIItWVnFi3BUUeqZHgfNyElzcL6WrasyQDI+SZmx47ArCk3SZ80Ikhk92WsfIc9tZ6KfTaf3xxx+buFJlT4nZ6bUTcmCs2MW213peHz/88MPTeyq4dlmrdd+VAdEroG24lmrheZfV7OagWOJa25gt5+XyDjgmJxCRxsOx8TfASTqSqSoTVvPgvejm/ubNm0Ox4LWG4Q0Gg8HgSvAq8Wj9crtGjLIiyKJSdmEHxq0o2LvWVnqJcSBnVaRMTqK+72IOa21rm1wML2UxplY29dj8LEkYOckk+ve7bMqUlUmfvWN4l0iwkeHVa8k4SGqFUpEsXzIHl6WZmHCSV1tr2yCTQupCjaUIKb7Ma+i8AwLb0DjmSmaXmL07d2T0naSYkMSCU8uuup8kZVbx+Pi4Pn78uGEktS6OkmLMvBVcLWASmha75fNurWcv04cPH158t2seLDDPgeegjpH3MudJQequtRTjsy7TUp+x3k6xNTZArteNHrN0H7usfrbQ4n3m1s6ltZxrDcMbDAaDwZXg4gaw9/f3G8uoxkD0i5zYxJGaLX7WWZmpXQWbaXb1N2RtqQbObXsJyDo7ppmsf1r0zmpKGaspE3OtbTbm3t+6jbMqHW5vbzfWXrVmuTZogTJrs4LXkBm/bvyJRTP24c4T1wbjI47hJZC5dMLjrKVy7IljY6w91QWuta8+I3RMgoyCTMbN6+HhoRUC//Tp0yYTV2xgrZeZhvVYHdNKAtk8js5FPcaPP/641lrrp59+evEZPSIVvC70wIhF1XlpGzYPZia2rrGyR9fyzHStLXOta5dxc10nPdfVIomxtrW2z9PkyXB1eKxr1F/n3eE6ueRZPAxvMBgMBleBixne3d3dpsq/ZiLVX/y1tv5W1/JnTzUkxb7WyjqcqRlh3T41gu0Y196YnZVKRrUXn3NjS3WFLksxZbmmzMu1trEonj9Xh0ereS/7s8Z/nQWX4jpIdyy8AAAPEUlEQVS0jJ2WJs8D4wcad83w1dxS807HnthChszRxaIYs0nM1c2P83JxPkLnUZa85kmvh2Mjqf6yuydTJnaqb3XzeXx83I3J8LrUNj5iR2RA3fna013l/VPrI7WOVDMnZkUWXed+NB5X16g++/7771/Mg3qs9E7V75LhU9mlXn/G2FP7IZ07NpWtx9HYtW1Xo5y8A9znWlsWOnV4g8FgMBgA84M3GAwGg6vAq8SjGRCuBaC//fbbWmubMEH3hisepvszST9VuitKzcA4A7NdkJ37Z6mBA11nKWmi/n+0OLLuj3NO7lB3PLoYmWRSXRl0xdAd5rZxae5pjkp4oiumE4ImOrdFEipOBdRrPady6xyzQ7RcP107ErqA3dqhO5/XTvtwiS48n6mLtJPB0/z0l25pJ9WXBMHduhboYnJCCgTb23z58iVeX7nDeZ7q2tF779+/fzEWve9cs8l9lhJeusQXuvZcCVVaByyKd9JbSXCeLtt6PM5D11muTP11SUsak0JUOo8sv+nWA5/9LpTCpBR9xuQwVzrjkqH2MAxvMBgMBleBi5NWqqXlinkpnyRrJQkar7VNZEmWoSuyJsPS2GRxOQkrWgQpHd2lxCb5oS7xZi843jWnJOsgg3BsmGNMaeh1DiwxSQkPTmTgElGBrrkug/mEY+appVOS7XKix0xD1zl3gtMEGdGRUpY90er6OY/NBBh3z7DNEJNTmMRQLW6yntTqxzF5lnEkIeL6WVcCVI/19u3bp3HKi+TkAnnPJnHxtbbXn4XZYsY8b/U7aqIqQWtdaz0Ha0If58yianoNKtg+J5XuVLCpqqBno/bpGreK2WlblUVQ3LkTy9gr3Vlr+zzTfNiGyBW406tyBMPwBoPBYHAVuJjhffXVV0++X+e/llVEX7MshU7WiimqtIQ7+SHXHmOt3JTQgWnPzrJP/nzG8Fw6spCEgF3cJ6XMd/GRxPBSmvJauQxB35XFVVOzyfD2CkBra6n6nkAvAFmas2JTsWsSdT4SrxIcG3Xtf+pxU6F2N2Ye37VCSS1WXEE9mTxjOIzhOe8HmSRR58+x0WPiirBdW6/kIbi7u1vffvvtEyMSu3ByU4x10QvlxMo1PrIMlmjU9cEGpb/++utaayvN5diT81S51xXJy0BvW2WHvN56NmvMTqxaoHSdGJ4Kz8UAnWRjilWzlGqtbQNYzkNzqCUojN1dJFd5+JuDwWAwGPyNcRHDu729Xe/evdtYRNWCEyOQBaRf5k7ElU06hT3pr7W2MTr6p10mGq1wWoHOJ8yx7MXlKhIbZJGnawuTMkeTNVrfS5aqK8ZnPIcNP8XsXBxDeHh4aJmNYsBrbeNknH8HZ6Wn65GK79fashkyFHoc6v+McR2JRQnuetdt3ToQkki6i02lrExmrHbXLBXLu+J4Wt7MxKzeARc377I0a4avWJOTGEwZ1szWrNt3+QV13xViQGI8iiuKLbm2Trzf9+QCK9IYuQ7qOSbD4/nVdXLZwXpPfzVfMTs+Z91+mJnPvA43Fr7m/NZ6fgaJdV7yLB6GNxgMBoOrwKsYHjOeqlWh/2WFsUW7s5rr/rvXXQacIEbJpofVSmNcr4srEfwstW9x494TU+3Eo/m3a2FD5sqYDmsV6/9keozludo9/f3rr7/aWsO7u7uNP7+Ly6VanHoMZtrtWYoVSdg8tbiq7+3F4dx8EtPn8V3GZfqr43Xrm5Y+2UDnWdgT8q6f8dwwDliZC+NYXR2ejssaxHqtUzugVA9c58/znjJT62sxHmaD13thrZesJ7XT6lqopfg/49yd54lzZ6ZnlQ2jpCGzNFkDWfM3yGqTx6SbO587rnGvnkXKkB1pscFgMBgMgFfV4fHXuGb5sDKfWZsuyzBZx7QQnRWfWFNqL1/fc7VlCbQCadV2AtdJgYKWb7VikrLKEdUWZr2m9kqVrTFLk2zAZXa6Br0pDqK1Q4bqmClfp3ZObs4p85JqD3V//C5ZYwWvJTPrnJWeRJQTw6xjZOwx1Va6mkrGbF1WJsdx1FJ2NXB7NYn1XDF+1Vnpt7e365tvvnk6jp4x9Z4WAyGLYtzMZTHuKXY4pi9WRAbWsXidZ7broeJPPbeMPVKNqmOhjNUfYYU6NuvtmJPhYvDpfuJzzj1DmEGubRUbdc8Vxm2PYBjeYDAYDK4C84M3GAwGg6vAqzqeC6LElaJTWoxBcLkjnEskuXhS0kf9Dul5ckHW/+mq4PEdjU4SS13heXLJcT7V5eMSWSroPnDp1qkA2UlKsbA8ucxcSnH9bice7VyadX9JXJfydPWc0LWTXJlOtDx16uYcO4FcrlFXmM4EndQHzZ0T7oNuqq54nNeM11Y40vcxXRu3Dd2Jneus3nudm/729nZTpFyTLTRniUcTzi3JMIvrAF+3rcdjZ266jV3ogdeQ2xzBXhmOK0/idzuRb73HIn/Ol+eu7tclUtV913sjlddQaLr+xjiBiqPC/MPwBoPBYHAVeFXSCq3naiEoAEv2QhFkF6B20jMOdduO/a2V26mslZMVOiRh3K74kZZNKiJ3zIXzIdtgMJv/r7VNQHGswLG++h1X2MoSg702HafTaTMf1wqF+yeLO1I2krapa4fjdS2EeLwUkOf6c2Le/C6ZnWNCZKYpAaVj3iw8FzoLf687u9uG54aMzImjH0mSkQUvtuGk+PTc4ZzIdusYklwXhZo5z7W2nioKGXflVzovbCHEMom1vEB/fZ/eKrctyxLE0lyJyV6ySncN0jNQ83Ism/Jm9Mi4tkcqR7ik3ZowDG8wGAwGV4FXNYDl/5Up0JrT664EgIXsqejVpbLTeknxuApalYytuJYrLjZXt6V17tLSUxF5Z2knS47swM2X55xMz6Wy76W9V4ZHK6xjXufzeT08PEQGVt/bi3UeEc5OrMNZpCmWx1hb3R/ZC6XGXFnK3vi7eTGmwcJzF29Oqez86+LpHDvLMFzcj4LnPG5lTK7kJLG98/m8zufzE6sSnIeCBdFqTq1166Sw0vrl+alF1mI6GgM9V67ZaYqtuzg8kcp9+Oxw7XooXSa2xmLy+h5jdxSLZiulejzGl919REhsm6Lcmk9tMq7PdJx3794dbgI7DG8wGAwGV4GLY3hVAFi/qvWXm2LD+ozSVK6JZ2on4YRYBVo2tCJcrCC1oGfRapelmTKgOoZHC5+FptXSphWeWIiTWWI8LhUtu8zOJNrq4pzaf7WE95g1r6lrCkpWwX3Wc75XrO4Kznk8xhbI9F2GL0E245DYLTNXnZWeGL0rVifr2/NCuMLdFLNzLDQ1eeZ5rfcm19XDw0M8d6fTaX38+PGpyWonCK99iKFo/078XOyFzx/e92JGKoKuc2HeAcdRzxfzGHR8ZbaLuTgxhtS0mmvK5TfQ66bjMl5X/xfTS2xQ575e0xSbFLpcCa5rPiPrvHS+tB7ev38fGTAxDG8wGAwGV4GLY3g3NzcbH3S1SPSrTgtI39Wvs6tT2/u715Syftf5mAVZS2R2srycuHKdv0Nib3VMtI67DNMUZxS6zMjEVMnenBA02QGvsWOSbs4OdVtXz8XzxLF0ElBHhMbrvurxUgumTuqLNagpo7S+50SU19oybzd2ehY6hp8aY/Kcd5mSySvh9u1i0HU+LnbTeW2I0+n0In7mMpMFxg91fcRcFCta6zkzUOyF42cbn9qElM8KSoCRRdXjqaWQXnOs9ZykLNz07Kjbpia4ST6szosNYCkm7bInU0sxtmpzbZ1Yi0zvgMtcrs+fEY8eDAaDwaDgYoZ3d3f39EveZU2y8StbCTlR1RSvooVSj7eXldmJVdPiIaOodTopS5Pz7tga50OrzFkpSXCY7MO1h0l1Uc5qTPvbU7+o+zudTu33b25uNlZ0p/KRstaOsIIj5zhdD7KEIxZ3yqKt73Edc2zdOujifBxjqmdkhp1jWWzHwnm5eq+97FNXr5sEph3O5/P6/PnzJpvRMTwdg/eAa65aRe/XemZ6zLhlrM/tj94iZkSv9ezdEhjj4pjrHOmlSTE8lxvB1xo717t7j+uM1981/+a8UlZq/Z/xX76uY+Sz6ii7W2sY3mAwGAyuBPODNxgMBoOrwKs6nqd007WeKS+pPQtmXQEzaTkTEeRacO4UunwofdMVkdN9k1KBj8C5dTph6Qr3fkoa6USdkxskCbTW/adyBCcyQPfdnqvxfD5vhHqdCDHLHQS6P+p+XFp23ad7TRGEJP3WuTRZpN5twzXK43Cfbn/JldmJse9J2V3inhScTBjXCpNi3HPiCCRakM59/Z9JEEwiqq4xJbDoeZb6VXZJUpTeklvUXS8mmiU3pZPbY6hhL/xT58HrwXVY70G+xzIynTNX5qHicM6nk3dL15RuZZeM04UAEobhDQaDweAqcDHDe/v27SZd3xUCM1DpmB23SQkafF2lcFhcSXkyJ8i7l9LrmNgR+ayjSJ2HLykEJ1vrElA4n67w879JdKnC4sT5fF6Pj48x7djNTWnTLLOoSMkVtC47lsH9cp05CbY6r/qX7/OY7jgdyJrEUMjeOtGC1HHdreW9kga3rcaUmHnn9RC61lJieI7ZcXy8PrxPXJsZfVZLFtbKMon1eLy3tGacYHZKNGGhvmPcAj0afD50bE1I0l9rbUUrNH61XWK7nno+k/B8Ek2v2yQZPCaQ1feO3D/EMLzBYDAYXAUulha7u7uLFvFameGxLMH5cWmlJ9koF0eiXNKRdi1Csl7rcfasiSPWs7AXq6yfpdhaEnl2+92TJTuyX2dd8zrtnaPHx8dNHKla+nspyY7NpqLxFB+p4PhTw1lXMM/PGFc4IgSdxuPOcRIcd8X+eyLI9Cx0MRBa567MZ28bB8baO+FkPXe6Upl0f5DhVTbDe0sQa2GrM/fcUasaijm4MohUytAV9fN5llqaOXELrjPKrDlmy/tG89G5YCujWtqRvE6Kb4r91vPIlkhco3pdvXq8/vf394fZ3jC8wWAwGFwFbi7JcLm5ufn3Wutf/7vhDP4P8M/z+fwPvjlrZ3AAs3YGr4VdO8RFP3iDwWAwGPxdMS7NwWAwGFwF5gdvMBgMBleB+cEbDAaDwVVgfvAGg8FgcBWYH7zBYDAYXAXmB28wGAwGV4H5wRsMBoPBVWB+8AaDwWBwFZgfvMFgMBhcBf4DRb0yzw2u6EMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4betV1vl+++zT3P7cLrlJSIjSiIKPgCJBEWxRjIIE0aBAQkhV6inLHrAhikjAJmIpYFOgoIg0KZsQRCGABIsCRRFSQIwNiSHNTW5/z+1yuj3rj7nevcf+rTG+Ode55ybA/t7n2c/aa605v/l1c67xjrZN06SBgYGBgYFf6tj7YHdgYGBgYGDgA4HxgzcwMDAwcCIwfvAGBgYGBk4Exg/ewMDAwMCJwPjBGxgYGBg4ERg/eAMDAwMDJwLP+A9ea+3lrbWp+Pvtz8D1XtFae/n1bnfFdVtr7W2bcb34A3TNb22t/Y9noN1XbsbxIde77YFrR2vtjtbaX2qtfewH4dqv7NzHvzk5/os23/3YM9CXf9/pS/y75zpd76daa6+/Tm2d26zhb0i+e31r7aeux3WuB1prH9Za++7W2mOttUdaa9++y5y21j62tfaG1trDrbWnWmtvaa190TPZ5yXsfwCv9TmS3oXP3vIMXOcVkq5I+kfPQNs9/CZJv2zz/xdI+p4P8PWvJ75L0s9Iuu+D3ZGBY7hD0pdL+p+SPlgPxpdIuhefZffxyzavL2qtfeQ0Tf/tOvbhiyTdEt5/paSP0vyMiXjwOl3v8yVdvE5tndO8ho9L+lF896WSzl6n6zwttNZul/QmSe+T9Lma+/1XJH1/a+3XTtN0aeH8T5X0vZLeoPl5+ITmNTrzDHZ7ER/IH7yfmqbpurORDwRaa2enaVra8C+TdFnzJvmM1tr5aZoeecY79wxgmqb7Jd3/we7HwC9I/OQ0Tf+zd0Br7ZdL+mRJ/1rS79b8wHv19erANE0/i+s9KOniNE3/fs35K+/neL2f3rGL14TrLBQ8XfwxSXdL+vXTNN0rSa21/ybpzZI+T9I3VSe21s5I+hZJ3zlN08vDV//2GevtWkzT9Iz+SXq5pEnSh3eOuUHS35b0s5olgXs1Swa/Ijn2wyT9U82Sx0VJb5P0Nzff/cjmWvHvB8K5L5L0g5trPC7p+yX9OrT/rZol6N8o6cckPSXpaxbGeKOkC5qZ0e/aXPdVyXE/ovkH8dMk/aSkJzUzqc/AcR8Z+vGUpJ+T9HcknU/6+j/CHD4k6bXJdV8p6UDSR4R5+IHN8U9u2v86HD9J+pDw2edrZhVPSHpU0v8n6ZUr1v/jNvPy0GYsb5X0Z8L3TdKflvTfNuv5HklfJ+nmcMz+pj9/SdKXSPr5TT++W9Jdkp4t6Z9t1uDnJX1xMv5J80P4DZu1f2BznXM49nmbeX1A0vs13+B/qGjvEyR9++a675H0tySdxbE3S3rtZi0vad6vf1ZSC8f89k17L5b09zQzk/s1PzRu2xzz4dre25Okz9t8/+ma9+ujm/G9VdKXXcf72GN+4Ypj/9Lm2F8t6T9Jekcc7zPwjPkObe6D5Ls/senLr9us/QVJb9p895s2e/Pdm/vgv0j6C5LOoI2fkvT68P73bdr8bZL+oaSHNT+P/kHct0lfzhdr+Cc2379eMzHw8R/rNd7srfs3/f8GzUzpYzT/iDwh6b9K+uzkmp+omWk9uhnjD0n6hBVz+hOSvif5/M2Svmvh3Jd4/ReOOxvujYub8f2wpI9/pvbKB9Jp5VRrbT/8nQrf3bD5+8uaJcI/IukmST/WWnuWD2qtfZikH5f0GzRLjJ++OcfH/K+aH8Q/KemTNn9/dHPux2n+sblVMxt7uWYV0b9rrX0M+nqHpG/T/OD7dEnfuTC2z9KsYvkWzT+i92qWajN8pKS/KelvaN4Y75P0z1trvywc8zzND4k/Lul3Svqqzeu/qjowTdNTmtW4L99IWBGvkvRvp2n676212yT9G80P3y/QPN9fKel01fbGRvOPNd9cn6FZdfRNkm6vztmc90ma1TYfuhnLizXfuM8Lh/01zXPxvZJ+7+b/V0j6V6017s8v1PyQ+t827blf3yXpP2uezzdKem1r7dOSLn2b5ofaSyR97aadrw/9vUXzDfdpkv6c5nV9i6R/2lp7RdLeP9X8oHmJpP9Ls1T8paG905v+fKGk/1PzXvpmSV8h6a8m7X2d5nX5XEmvkfQHNO8VSXqnjlR2r9HR/v7e1tpHbObgv0v6g5I+U/M835xc4+midx+rtdY076ufmmZm9C2SXqB5rT6Y+Geaf7g+S/P8SbMJ4kc1Pzd+t6S/L+lPat4ba/ANmoWTP6B5336B5nu1wmOSfsfm/6/T0Rp+x8J1vkrzj8Mf1qxWfKXmffs6zc+mz9L8o/HtrbUX+KTW2qdI+neSTmneg39Q0lVJb2qtfdTCNX+VZmGc+NnNdz18smaz0rNaa/+5tXaltXZva+2v4dn0ms1Y/qrme+6Vmtej+1x5WnimfknDr/jLlUs1P9I555TmH7wnJf3R8Pm3aZZw7umc+yPaSHD4/PWaWcatkLgekfS68Nm3bvr34h3G+MZN22c271+7aeMjkr5dkvTLw2fP2Rz7pZ329zU/MI5JTQoMb/P+IzQzuc8Nn3385rzfv3n/os37X9W53jGGp5mR3HcNa/+jmn+4byi+v3szH/+g2DO/O4x/0vxjdSoc97Wbz/9s+Oy0Znb2jcl4vh7X+XLNN+aHbd6bDXwyjnuTZiFmD+39BRz3vZLeEt5/4ea435Bc96KkOzfvzfD+IY77+5KeCO/N8l6O4166+fym63XfdvYE/96E4z5l8/mf3Ly/a7PG/+gZ7NsahvflC220zT77PzZrcy58VzG8v402vnXpPtERy/vi5LuK4f0LHPdvN5//nvDZCzaf/fHw2U9I+o+4Z85p1oKU66FZY3Xsvgrffb2kB1esx2XNz9Y/r/nZ9erNPvjmcNyPSPqmZ2pfZH8fSIb3WZpVQP475q3TWntpa+3HW2uPan4IPa6Z9f2KcNinSXrDNE3vvYbrf8rm3Av+YJptbP9K0qfi2Iua7Q+LaK09T7Nq4zunI0PuP968ZizvrdM0vS304V7ND+gomZ1trb26tfbW1tpTmjfPD22+/hUqME3Tf9esqnxV+PhVkt6rmQFIMyO5IOkbW2t/eKUn5n+UdHdr7Vtaay/esMQuNmzpRZL+yTSzzwyfpPkH6lvx+bdr/uHmurxxmqar4f1bN6/f5w+mabqsWW34/OR6r8P779AsXH3C5v2nSHrHNE0/guO+VdI92p57Oib9tMI6alZv/5ykH4+sSLOAdEazummpvRtba3clY4n4Sc33zHe21j67tXb3wvGSJDC1tfb8z9Dx+/hV+P5lm758myRN0/SA5nvps1trNy30h+yxrezTGvzL5Hp3ttb+dmvt7Zrv+cuamdcZSS9c0Wa2Xne31m54mn0l/g3ev1Xz/fH9/mCapp/XbDJ4viRt9sDHa76XWljjK5q1GJ9ynfsYsadZePjaaZq+epqmN03T9BpJXyPpZZtnpjQ/Vz6ntfblrbUX7bAHn1bHPlD4mWma/lP4+6/+orX2WZoX5mc0q3M+UfPN9JBmicS4Q9uenovY3Di3a9u7TJp/DO7AZ++bNiLICny+5nn8rtba+dba+U0ff0bS5yU37UNJGxd1fJx/XdJf1KwOerGkX68jddY59fF3JX1qa+2jNj86f0izFHVZkqZpeljSb9GsSv37kt7ZWvvp1trvqxqcpukHNatDXqhZCn2gtfbGRBUccYdmqbm3Xp73Y+syzQ4FD2t7XR7G+0udz7N5el/x3jfgHezLBu8N30dwLbmOz9Jsc76MP3vn3bmiPWlhzTf30u/SkfDwvtbaj7XWflN1Tmvtw9mvlcLPT3fu4xs179MflnQx3A//UrN69SULbb8bffqDK/qzFtm6vk7z/fFazSz7EzRrM6Tl+0yq1+t6e1pm+/upadvxJu57m3m+Rtv77/O0vfcOMU3Tk5rHkqkW71D+DIuwd+z34/M3an4m/JrN+z+nWRX8uZrtzw+01v5ea+3WhfavGR9IL80eXqqZ+RzaSVpr5zTT/4gHddz+swrTNE2ttYc1S+nEPdpewLU/dtKR+zWlMONTNavEdsFLNf9IfbU/2Dw41uC7Ndt7XqWZzd0o6RvjAdM0/WdJL9lIVJ8g6csk/bPW2sdM0/RWJZim6XWSXtdau1nSb9Vse/s3rbUXFMLBQ5rnsbdenvd7Nn2VdOjldbuWb6xd8ex4nc17aX7Quj8fl5x3T/h+Fzwo6X9ovqEzvH3H9kpshJIf3Nw3v1GzXfZft9Y+dJqmrN/v1BGzNSgQ7Arbsn+bth/S0nyv/JPO+b9Tx23JP/c0+xNxbI9uWPNv1Wwy+bvh81JI+EUG/+h8tRJ2q9mW18NbJH108vmv0nI42c8ufH8gSdM0vV+zPfsrNqzv92n+AdzTtubguuAXyg/ejZqpdsQXaJuBvlHSZ7bWnjVNUxUjdlG5sf6HJf2e1tpN0zQ9IUkb1dyLN+3ujNbar9ccW/J3Jf3f+PqcZq+wl2n3H7wbNEtiEV+45sRpmq621r5B0p/S/CD/vqlwI5+m6Ypmx6C/qHkefqWO1IRV+49LesOGIXyNih+maZoea3PQ8ee31r5qs7mJH9M8zpdqXh/jczWv/Zt6fbkG/AHNRnzjpZpv/B/fvP9hSZ/VWvvEaZr+QzjuD2lmefHHcg3siPPoRt38dGGJvlSZbeb5Bzd7+59rdhjK1ueiZg/K64mXafYGfIk2D7WA/0XSS1trz5+m6Z3ZydM0vfk696cHq1cP77ONk1TlbHa9sLiG1wPTNL23tfZmzTb/L7uGJt4g6c+01u6xCam19qs1s7OvWzj3uzU7Tf1OSf9P+Px3ab7ffjLp77sl/Z3W2mdr9j59RvAL5QfveyV9fWvtb2hmSp+g2Xh8Acf9Bc2T9mOttb+iWXp+vqTfMU2TN+pbJL2ytfY5miXoC9Mc3/KXNT9gf6C19lrN1PrPalY/fOU19vtlmm/sv7bRoR9Da+0Nmm0Xf2SjJliL75P0itbaWzRLuZ+jWa25Ft+oWSX6MZrZW+zTZ2r2gny9Zs+umzUb9i9I+g9K0Fr7Ks0qkB/SrBp6geb1+U8FezD+9OacH22t/U3NP8Afpvkm/OPTNN3fWvtbkr54Y6v8Xs1S5Vdq/vH5vqLda8Xvba09odnO+SLNhvRvDjbVb9Ls1fv61tqrNYcafJ5mFfAXTdPEh/gSvkWzA84Pbfb2T2u2D324ZlvY70nUUj28R7MjwOe21n5Ws1PX2zQLCJ+kef7eqdkZ6M9rVic/E8kdthBs2d8wTdNWvFVr7RHNgsPnafY0/GDj57UJQ2itXdDsQfm/63hA+3XHNE1Ptdb+p2YNy/+rTShNR4B/Ovhjkt64eQ79E82JJJ6l+VlyYZqm3nPvazULKW9orX2FjgLPf1aBpbfWfo1m55g/NU3T10rSNE3vaK19naQvba1d0qzC/2TNHrBfP03T+zbn/oDm+/zNmgWlF22O63m6Pj08014xWheHd0oz9X6PjmJFfo3mG5YefB+u2RX3Qc1xUj8n6W+E75+r+cZ/TNtxeJ+ko7iVxzU/+NI4vBXjOrPpw/d1jvl0HY+VqjxIj41T8wPrdZofbg9r3mCfGNsKfa28035Q88PvFD7/lZu2376Zv/s0G99/XTiGXpqfoZkF36tZQn2n5h/V0ls2tPVrN+0/qtmo/l8UPNQ0Cx5frDkO75IW4vDQdhobxnkOx/1GzdLn45u168XhPbgZay8Oj9d9jaQr+MzhNv91096DmgWLL9eR16e9NH9zcZ0YD/nZmzm87P2wGdcbNvvo4madvlPSR17H+7gbh6dZeJzUifHS/GB86/XqU2h3jZfmXcl3H7W5Tx7fzNlrNdsNJ0kfG46rvDT57PC1zi/093doDp+6pHVxeL8f5/8tSY8n7T6ibU/kj5P0LzQ7xl3U/EP/zyX91hXz+hGa793HNd+/3yHpOTjmY+MYwuenNAvbb9fx+NO9cMxf1Oy48rDm5/5bJP2ZeMz1/mubCw/8EkJr7U7NG/uvT9P0FR/s/nyw0Vp7peYf6F82LWQJGRgY+KWLXygqzYHrgI0r8kdpVh1MmrN2DAwMDAxolAf6pYbP1OyU8fGSPn96ZuwCAwMDA78oMVSaAwMDAwMnAoPhDQwMDAycCIwfvIGBgYGBE4HxgzcwMDAwcCKwk5fm/v7+dPr0aR0czPG3fo12QKaO3Nvb677G/31u/C5rM8spu3TMM3XOmu/XXud6n9vr0xK8pr32af+dpkn33XefLly4sHXwTTfdNN1xxx1b58S15rWWXpe+y3Atc7y2nV2xxn6ezfHa/lTn8rV3TPW57/0If3b16tX0fW+8rTU99thjev/73781kBtvvHE6f/78YXuXLs0pVC9fPkpGdOXKlbSfa+6tpT20y711vY5dAsd3vc6p1miXz6t9lv1eVL8l/C3I7nl/t7+/r6eeekqXLl1anIydfvBOnz6tF77whXriiSck6fA1brxTp04ddkKSbrzxRknSrbfeeuy9XyXphhvmLDvnzp07vE58dZvZ4P2dP6ve+zW2wzb8Od/H/3mM0Vsgzgnb4Oe9vnB8Ptev8f9enyp4w/kh5XPPnDmz1Ucf44fNlStX9CVf8iVpu+fPn9erXvWqw4eV2/Pax35z/X2Mz4ljdX+8dziXfs1u9mpNe8KZ4XbWPFiN3o0fP48/Jvzx4HV6feMPjdfJn/M1HuNXX9fvvX4XLx4liPH/fn3sscckSRcuzImSHnnkEUnS+99/lF3O14z3wPd8D4sPzLjtttv0ile8Qg89NCf1eec758xk99135ITsaz311PHCHN5D2X1y9uzZ9Bi/7+2DpXXIPudnfF2zpgbvz11+xPhszH6A+Bzg+2yvUujwe6+7X+Ma+X//lngP+TflllvmxDe+9+OYb755ziB555136id+4ifK8UcMlebAwMDAwInATgxvmiZduXLl8NeXUmBEJqXEz9dI2hk743u290ypmip6Tkk/AyXu6vNeGxXVz1RM/p/ztga8TjXeXXFwcKAnn3zycKyUMrNrUALN1G2ch4px9STuCr31qNZsjaRdndtT+VTrn13X/5up8P7kfeb7OJ7r12qfZ6yw2ptGPMdM0cecOXOmO98HBweHDMHPH7cR+8B7jFqiTBNi9kCmZ/TUodU9totaPFPREXzOVc+S3nWuhQ1WrC3TDnA/cc+wDemI0XHPeI2ffPLJY23H7/zZ+9///lXmAWkwvIGBgYGBE4KdGd7ly5cPf2Gj7c6oGA/tI1GKWWNDqz6v9N9rpBraw3ZxgOgZ/tnHiiWtMahXTLmHio2xrczZiOPyORlr5NyuldBjO7GPPt/f2cZC9GydtNX0bLnV/OziXEAG1nPmMGgH4fXjPC4Z8bN5rMbhOWGfo8S9ZLvLGIafA0tOCtk5sX2yloiDg4MtJ5is37QNcuyZDY++A2s0I7w/Yj+la7Ph0YYYUY2nGm/vevw827NcM8+vr5tp96i9oZbA58b72s+EbB9LRwwv2vA45osXL6ZjyDAY3sDAwMDAicD4wRsYGBgYOBHYWaV59erVQzprtUSmYqqcBzIXX6qjKnf9LCRgSZW5Ju6PNDqj15Vaa01sy5JqYY36o1K/9vpXqdkyNSnVSZXKNuuj2++pX6dp0qVLlw6PydThmZt0du24/lZ1WC3l91RhZqr0pXjPahzStqpnTcxZpfLjPdMLh6nCUTJVcxVWwf2QqaWqMAS7kcdz6ETAfZG5sGdmkV6sl/9iH3sqdM+L94VfozrNoVHcO7s4d1ROPdlaLj0LM5XmUl+4h3rPRl6np0Lne6qMM5Wm94q/o0MK7xHpaD2s2mRfszAYw+rOy5cvD6eVgYGBgYGBiJ3r4V29evVQKsuMzJQeqxCDzD3Ykg0DjKsA9OyzKng4gpLWkgNKdmzVViZpVRJ3z0mnkuArp4WMFRCV635vfL33vo7X5+rVq10mfOXKla7jTDRMR9DN3hK5tC2lW2Ks9l22dyrnlWw/eH+ToVDbER0qOA6iShQQP+MxHGfmBMbvyLyMLMTAknXlVBDnxmM3++MezZ4XuzC81pr29va6ITJkL95LdEyJCS8cuMzEF2scgzLWGtHbO0uOfRnDq547ZJJZgDa1HpVjV28cZlhkeNma+liyM/YjtsPkBb1EB3S+unLlymB4AwMDAwMDEdcUeF7lrYv/V9JExoAqO4slAjK+jB3yXDKjnsSV6Zaz9/HYyl08Gx/7Us1NT0pfSnt1LWwtnuP2K8k1swdS8u3Z8Fpraq0dnk/9vlTbZjhfkeHRRrO0Z3phFZzTbH8zXRLXx+PK9httGWRvPRbKdGt8jZI92/N3ZHiWyOOamqVViQc8/mgLq9z6yRwim/Na+7PWWldKP3Xq1JY2Ja4l04GZtZnF3XbbbZKOUhxKR2mrPBafUwWkZ/ax6h7LQieYA9RtMOQjW38+cw0+b2KqPt4LHofH69deWkI+G91X2uuko3vCtjW/9z3hvsU++jo+9vHHHz/WD/cx7tFeQoMlDIY3MDAwMHAicE1emj3PvYqRUNrM7BQV86kkleyzNQyvksIqj7vs2GoOdmFrlXdqnBNKyVU6qgy7BNJTL07pvyd9R2a05OnYYwo8ZinoWqptm35fJQiOn1UB9BnjZOA1GXFvrqtg5V5KKdqxKZ1n4yIrZLvc53EPLXn/ZiyetlwGQWfX4T3WC/ZurenUqVNb93p8Dridm266SdIRs7vjjjuOvUaG52PJ8Gj3o/Yg/l8xIbIb6Yj5+NXnMGVaz5OYWgcyfI879tvjsf3S42bC9dge14OpxDyG+Iw0O/N3TgjtZOKczwgzRrfh9+5PvAcZ/L4LBsMbGBgYGDgR2NlLc5qmw19/ppKRtiVR2lLWpqGK7dMDLko9lc1pjY2rSsGVpX5aSsezJpVZ5cGa2YrIJFgOhJJxLz3ZGq/UyhZBG06mS1+bBq21tpVSKkppWQqqDLGvlqBZK82fW3qmV6O0zfAMthXnlutB77UssXFlDyWzy+4JsswqLVi8BtNO8VyWa4l9pcclveWy8fk6tLvQUzJLiu32oxcm0VrT/v7+lodq1A6Q8ZjF3HXXXZKOGF5kQGQ69Nas2HT8n/eWx0OW4zFmY+ecZM8q7hFqMDIvVI7Pr54DHxsZHj0pqdmiN2W8V8kO3RavE+eRz0B6aRrR/tvz2l/CYHgDAwMDAycCOzO8iMxDzFIFi3by2HgO9cX8da88xaSjX35LL4wPyST7pQwbGQtdirfpsZOezbPXdkRlq2Kf4/9VHFZmK1oqKUTbXjx2F0mrKuMSQdbqa1pazpJQ0261lJlGWk5w7r5mHsW0LXBcWXwZ+8DyPb4nMk9Y9omZarLq3+xLFduUeU/yleyj533ovppJ2C4TGZkLttI7OMM0TTo4ONhKYJztVT8Hzp8/L+mIXWTxbPQU5v7lXGcMj+A50YZXlfTpxQyTFVIr4DmlPTL7rip0G8F1514xc3XxXdvnsrFTg9DT6ti2es899xw794EHHtg6h/a9yP6XMBjewMDAwMCJwPjBGxgYGBg4EbgmlSZpdQwkpAuv31M9laXCopGdKgs6xMTPqDJ1n0zns5Q7MSWW1K/mS9UO1ROZys+g2q1y8shUqFRhVvW2suBRBgRTLRbnxNfuqTvYR87bUlhCpoKK7XGe/B3dmzMHDToW+NXqjyy8guvt+eilmuMepLo4S6NVhT9USRmy8dGV28dYXRjVvFQxepx0RDGylHZ0mqJaNu43hrAwwXRWB83jie320tJldTizSu1Z6FLsS+ZEYjVdte7ud+wfw6s8xrgO0vE9T7UtVX+ZWjcLc4rXp8lmTeiH581zEfeqx04zgveZ78FHH31UkvTQQw8dnksVOfdMZvah05XV4HfffXfaj4iYcnCoNAcGBgYGBgJ2YnittdSlNEofdJiglJG5YEcX5whKBG4zSy1FV1i60Ud3XQZZ07EhSwtEhlAlYu6llOIcVOmb4rWr9GdVkL607TJtkEFl807jPterl8Isc4aJx+7t7W25O/cqhFuqrBIDxP5WQdZ0n46stgqCr9hBBOeF6xD3DqXwXpICnkt25Dk3i3rkkUck5QzPY7d07HOMjA2trfodz6HDExlEts/osLPE8C5evLjFyOO6OE2YNTqGr505E1X3dJY2S8qZMDVZboOhGRyPxxz7ZPYUr0PHKWqJeuvF8TFkw9eJ+8L7yPvKDO7hhx8+9rnvTTsfRVRat8w5x+tC7YPP8bpGVsj7djC8gYGBgYEBYGeGd+rUqS29fq8ET4XMPsY0ZGvSa5GlVcmJYxuWvihxVC7Z8ZqV/Y0SVqbvr1zms3RlZJu0DZL5ZcyyCobP1obS+ZpAega/rkktRgYU59FjtE2FiZirRAGx3WpujV54Atchs6nZNkzp2BKwz+1pIbKkvbFvmR2YweQMbM5skyzxUxVYjmyNfeIcsM3YX7JsH0sbWfzfc7NUWurq1atbiS6yOWY/3X+WrIn9JoNnkHWmwaBd1kzE7vVZqA73V/WsiqzJ88zg8crGH8HQLPfZTNLrYntcnJP3vve9kqR3v/vdko6Yns91H+N8ktlVAe8x+J/ncO6zkmBk+jGx+BIGwxsYGBgYOBHYOXm0pS0pZwyVpM1UTFnJ9ioJba9AJqVKpsahh5rHEV9ZgqIK7o3X5vgqyTi2T2msStsT+0vPJzLJLBk3vTGpH8/sXbQnLQXLS3V6tQp7e3tbCXLjdZjyimVUMjsi7WG089p2ywTB8Rwyeq5tHCclbHr/2cYR19LzbhZQedy6P3GvknGTjWZ2dMPt+ByPnXOU2eOY4on3ehwfPRPdLr0qs7R08X6q9o99B7yGvaTBZMnum+ci9pW2QHr0kkVlZW1YFopzkWmJmLSANk4zr6w93jeVnS72jenivFfN0mLwuK/9vve9T5J0//33Hzum0rpkc+Bz3Cez33g9f8ZE1u5rZntnwvmsoEGFwfAGBgYGBk4Edo7Du3r16lbp+F7BSkqzmc2JkoiPYUwRe4EnAAAgAElEQVRfJqUz0WvltZSlI6M0SK/QzBuwig2k52cGSkW9hMOWkmjrqkrL9FiP0WOuZKGeY3rgZXMS17QnaUUvX9pWpKN1rphBFhtIj1PODz3FMlZrVF60mZROOxlZR5bKjmn36HlHdhWvx71D+1scS5Uyi/Gt2d5xe0yNRRaSeVnT487I0sllaa6q1HT24GRMYhyzmYnHYi9Cz5e/z7w0fSyZsG1NTC4tbSeW5rOq5z3pY9wnH2NbWmR4tAlyDrjGsY/cM1Vh1ix2z3vVqb4YF5cleTZz8yu9rLN4Q9ra6e2a3dcs43TmzJnVCaQHwxsYGBgYOBG4pvJAVbFVadmOY2QSsF9td7nzzjslHUk5Gcu67bbbJG3r23v2pcrjkXaK2Aa9iSomR49PqU5+TdtRnEdLMWQblmqYkDd6PtFWx4wytAtIR5KUpXPaKNZkcuhJWXt7ezp79uyhBEeJPPabtoCefZSZIXxsjLuMfczK2pBR9kpZMcaN8+XrxuvTVkabndc6s01Z6ic7z5IhG1w7estRAxDXgJI1kwbb/pMxF0r/vbJRtJcuxVLt7e0d2kDNkCITdn/JuJkpJMsU5HvILMbXcUmhTJPF+DpmeMo8ir2fqSVwH50oOWYVcV9oB7v99tuP9cmv8dnGLFdul16zcS0ZM+rr0yfC7/38lbY9Ob133/72t0s6WoPMM9uovE6z7EPGjTfeOBjewMDAwMBAxM4ML8ZaZfFjBr2w+Iud2f0sFVOyYtxNlEh8jD2OfF3ag6L0TE+jXiYXo4phqkoZZeUsOHYyyuh9xOsxbsltes6ixMn14TEZOyWrJaOgjS8eG/MY9qT0+J3HEdlmVZiUNtVMO8A9RAmcJXjiOWSotl9QAo+gHZuxZ5mXLufY4+zZ8CrbJDUacc+aDXguaEOhJiUi2o8i3L77Zm/UeD1qEpiFJMt9GTMkLWmHzJ7MHOI+sIYjegDymrGN2K/nP//5ko40Sm6DeykrlOrnjtv1syuLcWMMoxkPc49m9zI1OfT47ZV68jG04WWaGWpMPC5qSF7wghcc+zwe6/n76I/+aEnSc57zHEnSm9/8ZklHnp/xOmSO3NeZ9iP2dXhpDgwMDAwMBIwfvIGBgYGBE4FrKg9EdUSWmqgqhZNRT9NWqwN6RnwpT3ZKdQDVrVlFaKoD6GIcVSYcM51TeomgfQxVP5lzDEF1K9Mc0T0+HktnhSrxdRwPg7t7fcuSIPeCh/f397fcteO60IDNMATPRVRLWe3EtF0+1yogJl2OY3X/7QjgatkM/o/tMNGB559q0tgn9pHq8SylHUN0qsQDmRrMDg6e13vvvffYeKyqjfPMquK8nzzfsY8MEua5dOGXju7buB96eyee6z700k0x0YVVgF5b6Wh+/NyhOYT3WNyfnrullH9RZc+Ey36l2SCqmhnmwDlyH7NQI6bqs1OJ32dtUq3O9be68l3vepek4/eT96aP8Rz5vnrhC18o6fizqnoWG15jz13sY3SYWYvB8AYGBgYGTgR2ZngHBwdbElyW1qhyE80SsTI9D9Pk0NU4c1GtUkxlLvhV+iSmrMnG5b7QKYJlLaLUTMNzFogbxx3/J0Nm4u5MssucbuK5PeccMnAGise5J8Nf4xrM1FxxzqtkAUwga8lcOnIwodNIFXCelSYxY7Qk6vee+yiRcm8yqJdOP7HfFTskK4x7i+EpDC3oJX8gszK7scNJlqqtSnDOMkuRhXAvVskg4lrTCerg4KB0PDh16pRuvfXWw/Yt2cfjzTToKEP2FPe8j60K1tJZKjov+drui9tnEolegD6d5ryX7TyTHVs5CmbhUNybWZrF+Hk8pwpH8rFOPRafP9ameG94vsws/T7ub96nTIOWJSvnPdgrLUUMhjcwMDAwcCKwE8M7ODjQpUuXtooPRldm2hQYWpAFjzN9kSUESzw9JsHCrwbtf710NkYVtB4/4zGWBlnOIkqztPMxDRkDuONntBlWhTmzlFmU8IweK6CrMoOTs+tE22SvxMuVK1e2goajPY7X9islx6yoJiVSBnv7Opndh32m7S5LzE0XfK5TtBVx39I2SWYcx8c0eES2LywB2+5Bxuf5zMI8eC8yhCYrKeS5ZVJk7sOMwfEeyODiwT7G/XegdjzftjoWYGURYemIefB5xvlxG3FNuc9oS2PwfWyfr54/t5+tP+9D9pn7MH5GmzH3Y3ZPVCn63EcmeJe2Weh9990n6Sg0I0tHxnJb1JxkWg9q5HrJxInB8AYGBgYGTgR2Lg8Ug/yy8kD0KssS/krH7SKV1Mw0SllSZEqg1a99pqeuCthm9jGOg+dSmo3HU79ONpJ5dhoVw6NNKkp2tL+wz9n4OI9VsupsXPH9Unoojicr9cSSPpbajcxDkIGrVcox9kfaTr1ErNEOcD+wz/Fc2mWMntczNQwMis+C8bnPyaYyzQJtJlWppqjBsPSdpW+L52Sla9bg6tWreuyxx7aeBxG0i9I+So/FbGxkDrSfxjEzvSLb6iV34D63l6g1WtHGRk/Kam0zuzyTUzMRQU9rU7FyMtp4H1QlzTJ2bVS+CrSvRk0Qba5rg86lwfAGBgYGBk4Iril5ND12MmmNv9xkHVkMGJlPlcQ3SwBbXd/SZhaHl3kKxs8jKoZXSRfx84rlVmV8pNqexTkiY4r/c956XqFVAm2uW8YkjCVPqVioMUs5R0maZVkyu0ElPdJ+4X0Q57pKgt5jH4zzogRu+0/cU7alMbVbFevYm2ODa5qVFDK4Liw8HOeOacgYF5Wx0CqJOJlkxiTWJB6/evWqLly4sHWfZCXGCH4eGRDt79V9k3lCV/c/k273PCDvuusuSdKznvWsY8dGTQMZVVUIOPMOrvYBPS97hXmr8fL5E8HnHRllfA7xuUZthNuKrJdajp6HLzEY3sDAwMDAicBODM/eUpVtiMdGkM2sOYeSbxaDwrIV7FOWJYFSKz1JfWz0DKKnJTOTkNHGPlYeVlU8XjyGoC0nswdVhT6rpNW9/le2vAw9Kevg4EAXL17cktJjHyr2WtlL+b+0zV7i9QkyumqMvWTVlNptJ+lJzb2yOQTLvlQ24wjakXoekOxHlUWpt7b08DW7pU00u46x1McY/5vZbipWxnsrs48yXpCxiBmbqbLjmBnHhOoco9tx3KfjSt/97nd3xx9f6eeQMTwyIYP2sayUGfdZte97ZXuYeJpzFtsl+yOrzjSCWVz2EgbDGxgYGBg4ERg/eAMDAwMDJwJPqx5eZuDMUocdu2CS4smoKo6TsmY12QhS/OgqbZUm+0L1ZKTeVAtUVbh7rrJVuECmBq1USBxXpp6kSoZ9zNSlSw4n2blZaqoenLhA6tc2rFSvmXqNas8qZIbpyeJnVahHL+TD12FVdp+TpaHqqb09P1Ku4q4Sa2dOJAzIrVLzZY5IdBaoHFAyZBW0I7Lg+Gh66DmAZaEhEVbP0fXeoLt79h2TWFTPsAje70znljll+Vg7OHl9srCYKqSEKu7suVOlMKO6Ms4V165a72zvcE09jw63YNhZ1m8G7GcJ1Q2vOZ0OexgMb2BgYGDgRGBnp5XMxT5KMZWrNQ31WXJlSg2VwTS7nkGJKGN4dJOm40vPfbbqs9FzIqncnnlcBKVxXj/rX8WQeudU5xLZ3Mc170nply5d2iozk+2DLKBdytPIUWqtwiky1luFeqxxJmEyZZYJio5RVSq5SlOShYtQ0uU9klXjNui4xYDgLCF4xQ4y7QfXgE4KPeYanRSWnA+Y7iwLT/FnVXLl7PnFuaxK8WT3NB3eqEmISY+ZeN6vMUUaUe3nNaCTH0O1mGA7gpoMo8f0lxxdPDdZVXaGDfVKM7EwwOnTp0dYwsDAwMDAQMQ12fAoyWV6akoAvWDYJRvKEuuI7Ve67sx9lpIwJdVM0jaqvmVlOlg2pXLFzdgTbRFV6q81kh9tSD2X4jXt9fqfXTvaabLExWyXc55J3tVeqexwkb1Vads493EfVOyIIS0cu7TNBsmmMu0AmYntPEz8G9cvS/+V9SMLPKc7f1VYNWpMeI+5jyzZlLGCmIaqZy/a29vbKh8W++0xO8jfY+8FtlcsuQojiuC6VMwkjokFXjPtU9XHSvvAMKW4D1gajYH2fC5lqGyELJ0U+8jvssTWVft+pd053hNMcL0L6x0Mb2BgYGDgRGBnG94ab0CplkR6QaNLEnf2S079dBaAKeUFZ8nkyCwyCZISSZVOKY6fRSEt4fUYVxWkzu+z97QNkU1l81ilt1qToHWtB18cg6XPWEi0St9WlVeStr3vuE58n+0DzlfPdkObAoNgfWzPRk322UthxQKZvg7ZTtRWVOy22hdZ8mgyPbK0jClXwfFmfJnXczZmorWm/f39w2TIGWPk/iRbZkC4tP384rzRxp9565IlkhFn3rO0QVX2xvj/Upmw7FnMxOosUpulP7NHJbUDlT0wrgG1ANQg0Iacjd3oJTjPfBPWsrzB8AYGBgYGTgR2tuFJ/VRPla55jecbpccqbmkX+1IWu0VJLpNapeNSRZUAmpJIls7Hn1misvRUlX6J/1OaWUqWHf9fsq3F67m/lFR3KeOylMQ1sjxLt1kpFM4LWU3cbxwr+8v9uCadWi8hL+0H9GbLYo2q9Gzc5700XpnNRDqak2ivcXxXhSoxcOwDwXnNWHbFemmPieOIHoO9+3pvb2+LGUVPWNoyGROYxXP10mTF77kv43eVJiSL5SNb9nzxOllsKovF+hniufb7uJY+1nZNliVa43FLr1POUXxfMTqvV8Z6q3R0LE8V907lRbsGg+ENDAwMDJwI7MTwnCmD9oTM47LS+fYYwFKsWc+WV8WrVJIxxxXPySTyqhxGFVOXZYOhhEf2kWUgqOyYlCh3Scbd8zoj21wTu2esjYWRtiU46Wislky9z5iFIfZhSdrjPGYJjMm0qkTksR2DtqIsOXoVD1ntqUxq5j0XbZ/ScbZjKZnMhHaXzA5TeVNX9j9p23O10kbE9173tR7YV69e3dKMxMwk1hTYBsXxeP5iIVGzFhZ8ZRLpLDtUlQmEsaJxLz300EPpsSw0G6/DPnp89Pg24l6qbNH0Qs3Wv/L+7GkHmPi5Ktgb+8Wk2ywim/3GGPG5OeLwBgYGBgYGAsYP3sDAwMDAicDOTitXr17dcmiIlLgKUORrdE1dStJauXXH/6m2cfuZW3+l2qlcjeP/lbt79Xn8vwr8zdQFVAkzWH6NqphOGexHTw1aqSHiWmcB+hWmaUprEkanlSrwl2rLnoNOFYqRBbpfi9qW/a+SeMd5ouNBlcIqG5/np3Lft2orU2m6vVtuueVYP3idXoKFXWqNVereLMCa6ceWVOWXL1/uOq3R1d5qQjrHZCnYKpf/KvWc+xSPYbLtLI1WVZfO4/H7qPr1OOyIZJWmP6fDUFazz3BYh4/t1VTk+Kh2NbJaenQyc/t8H/vi9eGrEfcH7/EReD4wMDAwMADsHHh+5syZLdfszOiZpUmqQLdgunoz4DgLAM36EtvIGF4lZWaJZsn6KueVTBqs0o5VIQ3xOpWDQU+qqZwkqv5k/Sb7yeZxKRiWODg42AqVyFKwUbqjBNxLrmxUYR0ZKm1EJvmacVlarkJZYiA4XdSZPLjnvMTgZL763Bgo7H7TMYTOEr1QlyqxeaUBkLbd0SnpRzbPcezt7ZVr5NRiHk92D3CMDGHJtFEMkalYZnZPV2yQGizvk/gd+8QUh7GPZvBm6WZ4dlryHPie6WltPCfuE4PkI6q9wrJeGVvzq9ebCdWjNoLn8JmYhQZ5vuJzcwSeDwwMDAwMBFxTeaCeJJwVFazaWkKVIiljeLSdkHFF3TPtLizamCXkpVS2FKDbS8jKPmcMiRJUxQ57iafXvo/tkDlUbsr83++X1pUSadwn1dhoC8oKlpLRrSn5Q3svr8NwCElb6a3oHp6tx1JydH4eGW6lMenZ/Tj2ar8ZWQhNZTfP7nlK6bTDMFlxbDdK8pU2qLWmc+fObdmgepol359Z8mGD9zTLD/HzLEC/0sCY3cTQiSrtIW138Tq8dhXCkoUA0CZOW5r72Ct0zTW1LS8rH8T7x8zZ6+brRabv+fExft9jn0ZP21BhMLyBgYGBgROBnb00W2vdlDzU31e62czTrgrerl4jaG/pJQ2mB1LF8LJAU3raVamsok2l8kKlBJbZwKhLp1dWFfjeQ2bXolTLPvWkqTV2RQcPkylENkNvvl4iAJ5DjzejSu7N/7PxuB/RDsPExVyfTKPANXJ7FVvL0tKx3aVE3RHUaNDzN7NrUVqv7mupttEwpVQ292sSjzt5NNNnxb1Dj2Emd8hSi1XPpCoRdVwXj7FK/eexZ/ubqdfItDLPZQZkG0zflWl6OC4GecdzKsZIdkr7c+x/tR8yD8wq/Vzveea+xGfxsOENDAwMDAwEXJMNj8l1M4ZX2WGycxiPVpWgyKTAnmdXRKbvr5hjxoCqdENVfF4v3otepxmDqc4hC+BY4jGVxNpL01OVROklX94llorJlWNqMUuNVfqiTDvga9M7rup/JjlWduAswbWPcVwU94GReaKRUdFmQ/Yev6NNisylF4dJCbuyKca+Mc6wSgwcj6WNhpJ+loQ77uclLQXjMyNo6+FzKGOz1fOFHsk9T99dUieSxVBbkPkoMAG0vTPZZ2sN4v3ENeMxXpfMo5xavKpMVKaV4n6riibzf6l+7mXJo2N862B4AwMDAwMDATsxvL29PZ09e3YriW8vi0nl+RYloV5y0QyZ7cngdanjjt9R+mN8R5bklCykYnprbF204WQJhyuvLHpJrUlW3MtUUXmM9lhb5sm3tHbsb9Tn00uOErfbzhJOs79Vcc/Me5K2FWolsrg/Sv+UZjMm4b3D4pq97CaZN2O8fsaefA7Z7pr9QImarITXlY4868zsyCCy7Eq0w8RMKsTe3p5uuOGGQ4bCuLVsbMQu2YW4/izF0wP3X1xr2jbJfJg0PX7ncy5cuHDsc4PejtJ2AViyM/cx8wqmN3oVj5t54/OZ39PuVbZb3puZx3zP96HCYHgDAwMDAycCO3tp7u/vd/NG0lup8njKUMUHUUrvxYKR4WUFMplXj32lRC5tS3lVXsRM2qDuepcChhWT49xkOe24Pr3SP0uZSdYwvR7opUnmIm0zvGpdsnhFSntkYFmsYxUPxz0az/F+evDBB48dW0m18Xzb/ViglZJvz5OQDMuvWRwevZCr2MqehySZK3NWSkf2JbMLv9KWk10nzl8vDm9/f7+0vce2l/Zir3wOtThVrlNp2yZIzUt2DmN0zcr4PMr8G8jSqkxP8XrUJFT5KTPv08pjvTe/ZHKVfTNrg5qRnoc2+71LvtfB8AYGBgYGTgTGD97AwMDAwInAzmEJ+/v7pbHfx0jbqX6WgjvjMWyrpyaoaHKlApKO1JtZepyI7HNTfAY692h19d3asjoRPWcVXq8KlcjmsXKS2aWvPXVHa3MC4EpNKW2rXDhWpo2S6pJClboynsvwEBrgM5do7yOr8fzKcWXJbr3v6NpPdXmWPJpu4X5l4HscI0NAmA6P8xr/rxIEZCYCVq+vwhIyx6pe0uN47NmzZ7dUtdGRgckKiEylzWPpvEYzRZZM3qju8WgW8bPjjjvukCQ9+uijx14ztSH7xOvx+RdTGjKExcdUji+8dgTnvJfwogqDytSTVZLy6ro8P3vfw2B4AwMDAwMnAteUWozG/aWUUtI61+veNaV1iYCrZK7xeiwdQvdcG90zadBSLOegCk+IfakYVjYezknliMIktrFP1Tk9Izy/y5JGs49rgz5ba93SOyz/QiM+GVE8pkqBxnWJLJLB3Fw7XjeeT3fxpRIz8bvHHnvsWFtZwDGvx+vw3ovsw+7tZHBr0tFV4UN0msg0JpW7PZ2R4v8xOL5iSX7msDRNZD10GmFb2dxWzxWuBwOdpe37n+vhsWd7lQyc91Fkaf6M6Q8r58A4xyyn5XOYUizOFUOziEp7EK9NpxLu80yzZHBes36sKW9VYTC8gYGBgYETgZ0ZntRPo1Uxk14KniX7UBVIHc+twhFY+oX9jefSpTxK9pZ8Mrfs2EbmOr8UlM4UXb12l1hbdiyRMculQPMlG4v7unYtM/uRwfANMq0o9VXsqCqyWSXy7iHug/h/1l4v4QD3JqXzLF0TE/5WZVN6YQmUuKsA9NgH2ncYdpElDGApGR4b54rhNL3UYtM06cqVK1sMLGN41X2R2fDIFBgsTnt9vB7ZRWVXiuc4LRhDaXw9t2WGnh3LfU67dzaH3LNVkdyISutBjUm2pmaQns9eMo4q6UjPXst9u0vi/MHwBgYGBgZOBK6J4fHXd42HYiXNZufzF5tSZ5QKqpRHLM+RsQJKHvQKjFKu26Humn3PvOYqD1IjKyZLBlQli16jF1/ymoqf9dg03y95ubIPS8m/s8Dr+D7zYqTtkeWZyJ5jX2l3qew+GXvyOZbGqyS48RxK0ty72d4hPC6WMMrmkfbmnqRNcH/TszRqODgOMvLsvq1SD/b6Q9YUbV20E67Z87RHMfUbA/bj+mUFV+N1jGjDc3/9asZ3++23Szqag/g8qLzBmTIxexZXicBvvfXWY+euGRc9Vnt+APSJoBf0mv23hpln3y1hMLyBgYGBgROBnePwTp06tSUxZjaAyksyY0aUcKuSQkbmNUe9NBlRZlOrXjN7TyVF0IaU2cKqtDz0KMvsmpSAKyaRscQl1hb7WJU5WmJ8uyDaYbIxE1UapcjwaCeglxnnscdqK4/innchmaXtF3HvMA1dT2ORjTf7rueFWLGBKh4q0w7w3MpOl31XlZKJLC7T6ixpCsyMzKpjezFpcoYslo42NL+yuGnvniZrZzmnaMMjgzTDoxYirqWPof2aGif3J65LVTKJY4hgTCjHR61H3DtVzKtf/WzuaQSrvZ8x8+i1u/a5NBjewMDAwMCJwDXF4a2x4VXek3yVthke2Rkl4SjZWWrhsb1Es1V5CTK8TP9u6ZLSH1lhpnOu3meJtquSGmQumZRGe9Wa+L+K2a1JGtuL6yLY77iWjGnkmLPrMFsKGV2VTDqCffH7zJ5Bm6H3SCUJx/O9R8g2yRrjuVVSYsYqZnZGagV4bhZjWXkQ0x6UaVmYYJrXj+wjs3319tje3t6W7S72gfPAOc3uS35W2cUzhsfnAMdFpidtPyO433uJ53kOM694XXpzSNuar2cWGa9XeW1zD/X2XWX3y9qrnjPZ85tetPv7+4PhDQwMDAwMRIwfvIGBgYGBE4GdnVb29va6Rm+jqoOXpfrK1JxSbdTPar/x3CqpcGyPjhp0LsgS8kYaHc/tJUitVIqVg082rioguEfll2pmZcGclQojGxeP7RmjW2s6c+bMVlB/z1GHe6VXL4yBzFXV8sxBg6o3rmmWuJbBytwXPccTqqncVq9aemVGyEJoeAz3THaOwT5V4QNRncg1pUpzTYDwkmt5a20rMDyGRljFWCWRzlzYeb/znqajSzyXIQtVQoXYD86hHZzcd18/zq3bv+mmm461x9ATznVE7x6O141j9TlMIsD9ndVudBsMmVjjjFU9f3rOP0OlOTAwMDAwAOzstLLE8CoJtAoqzo4l2EaPUVYGZ45B2pbcKrfk7Ngq4LnHenkMWceaSteVM04WcEppsGc8NiqnlV4A6BoJfm9vTzfeeOOWa3KUZqsE41X6Jmmb4TEdGfdbxkK5/9ynnkRKl2szPO+hLEyEoTNkiVlQN5kC907m8MRwAO4R7tnI9KhVqdK6ZSWFGIBOZ7QsSbH7cMMNN5QByXt7ezp79uxWcuVYoogJszmOLHi8SttFR7Re8ugqIJ/hUvEcszUmILfzSBZi4Xbdl5h0O76P+6BKykEHrqyPVZkez0HGFrk3KtbbY6G8P92fmG6NAfyD4Q0MDAwMDADXlFrMWMPwKhtUFjzcSzAd2+4FDxuUbjPXcurh+b4XcJzZhKrrVS7/a4pIVvZFIrOFVfO4JoygYvG9lGlLzPHMmTNb9qqIKliczCvOQc89P3uf2SvYFseR7dVMOpZyJsG5o6s83ezj3slK68T3VTLpeK6xJvE4mVFly+sxPNp9GPhezUGP4d1www1b7C0yLqZcM2uqND9xjFxTnsN1ivB1XMSVJa5cIDi2e9tttx1rl4VzI8NnooFKg+GxxHVhseCK2cVzWDpoSZMVn1l8Rq7RRvT8CqTtpACxDzFMZU26MmkwvIGBgYGBE4KdvTT39/e3pOosoLSy5WXJYqs0ZJTOs/RAZDGZF1nsT9YOX7OSM1kaNc9J1scsFU4vlRhB+w49FKs0WFkbFRPLWKFRMbuel+YaPXqVuFvalkBpt8yCbiuJl1oDo5e0vLL7ZV6aTOlU2S3isQaZHvdfdm8YSynmYn+rvZF5SlfHcJ/RAzP7rEpH1rtvz507V+6f1toxGx/ZjrQd1L8mAUVlb6/S6cXr8b6o7MARZH0x4Fs6YldxXah1ometj/X4s5RvbJfMrqcxYRFZg/eBdNymGtvv+XFUHsS22WWlmWjD6+0dYjC8gYGBgYETgevC8OKvPG0Alf42SyRLSaBieJn3HCX7XrLjir1QX51J9pVnpdvIEh4vxepU8THZWJfKBmXjJHbx0lyTQDezH2Tt7u/vlzFo2di4V7L2GS/EskA9sL3Ke7dXfJKecEZ8zzRU1IxUXoKxL1UZql5SbDIit0vPvjgPtLGSsWSpxej9x2MzZs5Y2NOnT5f70jY8zkn8jNfi/dFjeLw/q4Tk8VzGHtIel8WZsl0+Z7LYPZ/vvVIxrcweR0bFNnqJ9emZ2rOFsq+Vxi4bX5UCjra7+BvjdY9lloYNb2BgYGBgIGBnhnfu3Lny11iqM5/0PAcr3TK95igVxu8qHXdmU6kynvD72BYLMRqVDjpjh1UWjqzwJyUWSla0d2WZayjV9mxuVdwdbSC9pNhLXp/nzp07lMQz+wk97OiJmFkfy7EAACAASURBVK0L55t7ifayDPTSJavqeaZWmXay/c1zOIaMwVb9rhh41o6vxxhIrq1Ul6HxmjDOLJ5DdsN4w4xJ2I7VY3inTp3SLbfcshW3dssttxwew7i3ypYW78sq4XflGZ0VSq2eTT1tTZWsPvPA5jODLJFrmGWhYpxnFSeZtc/7iM/TLONO5bfBMWVz4evG0j/xvSTdfPPNko6zwMHwBgYGBgYGAnZieJbSexHzjBsio+uVB6q88ogoCVIqYj66XgxQ5fHUs/9RSqOEl+m4KwmHHl4Z46riUyrvvexc9m2NPY5t9WwgRs/rz5lWKJHGc8jSq5i6OBeVna/KwBJBZme2wXXJpEfaJ8gGsnlaKmHD47PrkbFm3nL05OR4yHp6eW3Npnxfm7XFbCBkfYz7ykooZVlMenF4N954Y1k2TDrKXsKxVbF18X/eH7wfM4/fyv7PWD16Lsb2KptxfA7wWO5nxj72Mp9UhXkzz07uIdvNenF/la2Oz9ksFtbt83nH7DTS0d7x/Rrje5cwGN7AwMDAwInA+MEbGBgYGDgR2Nlp5ezZs1t0Nzqt0B2X6s8s8NznmKr6vWlu5d4asVReJKojmBzY9Jxu4pn77Bp1Fz+vgsR74QiZQ0FEz5GHKpmqVFLmWFMhUxlQZXb16tWuk8XZs2cPVTxryuhUiZ/jPLqdzJkifp+573u/eZ95H1eqxnhtzn+VvCD7bkm1GK9bhcP0wm8qcwL7wTRY8X+qtqrQg+wzlqyxk0HmMBIdhXqB52fOnDn2nJGkJ5544vB/BrnzueP+95II8HO+75kAMpW5+254XqgOZZ9ZzTyewznqhcdQzc9nSpXiUNreB5VJZU1Kw146skqdSxNBVBXTyWeoNAcGBgYGBoCdnVbOnDmz5VoepRtLYVlxSSmXmqtg0eq1FwjMEiyx7/y/SptkZK7eNPxWhu6exE2GuYuUXiX+zYzVdPLopfWq0iwZGUtl2MClS5cWQxPYTpauiaVXqFHI5olMxJ97rskO2K9sjD32zL1SJV2W8hRO8ZheyE7lgNTTAFBip9aF8xyvx33OEAOyt3gM799eWjq65C+lFjt9+vRWAH9MzEyHGd7/ZLmxP0tls3rMO0uvGK+Thd0waQUTNse+07mHfWUbvXVZSocWj6meq2sSeyyFpWSOQ0xmwhCheP+S4Y2whIGBgYGBAWDn8kCnTp3qJha1rpUSz5pCnJToq0DJnht1VQqj545cBYtm6Zoo+ZANZEyIUhAl7l4QdmXD6dn/qpCGKpSi1/9eCSOmobpy5UqX4R0cHGy5REd7RVWQs0qYLG0Hu5J50U08s1fR1kHX7ywhAPd+llSZIKOqwi4iKjZGm2SPpZGV8R6J5/KYKuQguttzTblXe8nY4xz3UovddNNNh2vp42wbjP12f+2yTrtvT6vBPc99EfvHPZn5JsTvpe0UZVVS5YxxkaEy5VhWZLfSBjG0pRdClY2j+pxzzeccE3xL2zZ2j89rm4UVVcHqazAY3sDAwMDAicDOXpp7e3tbv6zx15eem1VRzYylUeKumF6WzoaB5pTWM0mEdp0qQDt+Vx27xkuIElXFErP+Gz3pbGkcPYZHKZf2v56XJqXMDNM0pbaJCEvw9Kjj+8xDkN5dlNIzBkZWwH3BvZW1XyVqztKf9dYsayM7lyyQ+z7+z1RttG/T8zL+zzWt7Onxeksp7bKUUj1NhbG3dzx5tNtxIdV4bdv16IFb3fPS8r2bMeGqBBJtuVlibjIuejNmz53KhttL71dpkHiPr/FGNqqUkVKd7IPMOa6l22MZJAeaMzlEPGfJMz/DYHgDAwMDAycCO9vwpLp0RPzOr/SWynTBS+nH3AY9lqRtOxIlkCx5NK9TpSdb48XY8yxbOqbqz5pzqiTG8btK191ja2SblNKyRMORIVU2vIODA128eHFLYot98WdeZ3rlZlJnlcYoxgZK23ar2H+2y7FmSY8r70kj9pFssLI9ZF6TVd8qb0pp22bn94xJy2IXaavjvPXKUfEzphSL88hUUj3br8fNBO4x3RRtd2Z69CnI7hOjSgFn9IreVjbvjK1VKc2yROdVmsXKSzLTEvE7MvHsmVyx0co7PX5HOybnJPPW5W+K1y1LS2f0GGqFwfAGBgYGBk4EdmZ40YbnX+XMdsPsHj1PpKoUPL2kyCikuiyQ0Svxsib+zqB0VOmne6ikpowlUP++ZOvoZYHgdXoMj21U9kYpt4/1pK2rV69uSbeZh6+lOmZ5IHuLIHsxzG6y+NDK9kTmH/dHZmeR+jFnZGmVx22GqvAr9268B2lfouRdsbh4bpXBI7t/q8wafAZEuy0Z/poYzp6mwm0zfovZS3palCVvxmyO2Wcyn8y7sPJe7dkXq+cbvRzjcZWHN7Uf2T3NPVkVOO75YlBT0otrdZ/snWn2nvkQ8N67ePHiyLQyMDAwMDAQMX7wBgYGBgZOBHYOS8iS4mZ0m+7bNJBmFJXfUWXm18zoSfRSb5FiV04zPTUl2+25WVeVjns0vFJL8vpZWESl/qzqo0VUrsxrXOZ7YQlugyruTM1lhwaq5jI1qFGFttDxKdZxY1gN1UM8rrq2tC7IukoaQPV4BE0BVXBvppZcckDJVJpUjbFPa8Jh6ICQOZsxkfZS4vEzZ86sSkRQJepmaEb8n/cl1XrZ/q4cM5iYIHvOMYi8V/mcgeZVIv1Mpc8k/FUC8DiPNAlwzqmWZ4KReAz3SDa+Ss1P80ace87jwcHBUGkODAwMDAxE7Oy0ElkeJSN/L21LdWRnmdt+lcaKEmnmll45E2QMiJI2nXB6UjpdrKvXLMh2KRVOL4lrJQll0lQV5F8Fnsb/d0nTU6UbqrC3t7cVcB77wFIgTI3FBLPxfM5P5ZKfjc+u7HRWyUq+LDHtLJSB46uSFWR9pJMU2UavanWVFowak3guww6qdGFx3Shxe/3I9LLyQBx7Bie84LHZZ0w2TLYe14VMkX2o2HV2jPvisWfrX+0ROtpkYTA+h+vDdYkajCrRPZM6Z0k52D7HSQ1KBMM6qmeklLP/+D6bz4yZjuTRAwMDAwMDAdeUPJoSVmZHo1RHhpeFCVR6WKaAylgBX9cEgK5NwRX/r+wulZSYjWspxVQ8hq9rwhLYBpFJZUsB9VmQJ8few97ens6dO7fF8GISYhYAdru2QVhSzVLZVSWmvGd69kWmJbNU6TZiAmquf6UdiOOs3LK573sBwLSV9NhHZftmWE8v3Rrnq8eUKltNFUSctdOT0Kdp0tWrV7vsmeyfz6TMbl2FTPF99tyJfYttZSyN1+PeqV7jsW63CjXIwoYyjVj2PtrtyM6oIenZeKv9bfT8DRyOQI2dj43pyMhUs2tVGAxvYGBgYOBEYGcvzf39/S1vvx5bo3Ru9BhXFZDNMiRSnoRYOpJAsuD4KtUNbW2ZVxklrcq2l6UwqrwMe+mVKLlVNr0MlJZ2SbpaXSfz0jR6Uro97Sh5x/Xz+tKmxpRjTBTAfsW+0A6ceWnSM8zISpPw3OrY+H1lG+a+y4KZ3Tcm5DWyQPAq+XrPdsdzsyTY8fqZ9oMMhXatyPCq/VxhmqatY+I+YOFQeklmSQSWnh0+10wi3jdLSfHpJZr1pXre9Z6nLMBKNhrvL7Jyep+6rbgPqvt96fPYb/bVc87ySNlcVM/ReA9mJYUGwxsYGBgYGAjYmeGdOXPm8Bc7S7JKiZNsKUtCTKmfv/aU1qOUVkmIlG7j9+xDlYS0F7tXxd9l9pgqLVllJ4voMax4/SwWsrIr9hjeEvvL2EeMX6okLe8dJhWPkhslQCYNt7YgS5/EPVSlQoqfU5qkV1lmM+R1K/S8Zml/obScxYpxjzKlWGaH4z3AOKxesVrasyrvYGm9dJ4xpKrMTYQ9wzOWbphFuj3aEblXOYb4nvOSxaBWXtM922rGVuLn2dxW6cho0ycrzfpUpanLkBW9jchsopU9tvJsj/8v2TcjmHrw8uXLg+ENDAwMDAxEPK0CsL2y8pY4KGll3oaVFEMGmUlaZHBkPFkyVEqklUdkr0wHJbzeuUx6XNny4vuKfVKizKS06tie3Y+Mle1n2VsqW2sG23+rpMtSrQXw57btxfV/4okn0nMoGfZsXfTkrPZjPJ97kh5xPRtu5ZWZ2c2YHeWpp5461tesACyZXZZRJfYj20M9r0yi8kykp3b8fikrT4S9NOlVGpkStQJ+z/IycQ6W7OJrGJDBrFOZjYvzXTGwNR7FPa9wgzGp1Riy5xznhDZC2palfgyqtJ01JrbHZwez0GRxzVWsZQ+D4Q0MDAwMnAiMH7yBgYGBgROBawo8NzL1EdPY9IyPBg3NNG5SLRnVBKTtNOJnCadpNO6pBYilIM6sTaoFqhRGEb0q30vXq9SedGmOqFSovSTcXKcl1cI0TaWbe/ZZFS4Sg1B9Tav6qvFkzktMWedjXS07c7Ci2olOA5mDgNVsXNMqvVZUE1HN6UBgOqLEAH7/71eqbNeEAlTJ0Hvp8bhXq8rh2flLqrmrV69u9Terq8b+MtVYlnqLqrGl5Ov8X6prK2ZzTLUgHVEyp5Vsb8TPs33He5lpybK+VY57TPvHWpXx2nweVKFc8btK7Z89d6g+HmEJAwMDAwMDwDWVB6qCfKVtxwNKe5mhnJIOX6tA7XgdppYiO8wCMpfYUy+paoUsfKAKFs6uw3Yqh5AqqWtExaozxyFKVpWE30savIRpmrqu0RXzrUqvSEeOLAYTTffWuDLq98oD0WGicl7J0pFxjSpnidgf7mtL+GR6kbn4f4YhcNzZ3mIf6azAEJv4f+VSziTG8dheqSr2uXJqk44z3Nie2VvGuKqQizWJiMnsPedVMuTYX2qdsmTIRhUyQ+fANQ4vRsWm+H/sM5MI9JxyjEprlIUlLDnaZeEdnuuDg4ORPHpgYGBgYCBiZxte5m695vieDa+SfCu7QcYylthMVryxShab6cOrJNG0y/XsPktB5Fkwb/ZdHG9ml1sKdO6tW6VD7wUcr5WupHq+pG0bg8G0XVmwa1WGigylxyRo/83GR/ub+0o7RRYcnxWuzMaVsSf2jaEG0YbJFHzUenA/9IKxKxt8xkIru72vF5P99kpxVeileqvs/b1wlSr4vXqW9GzffKZk90QVnsS+ZmymSoe45pnF5yn7mDGuSrNDm2jmq1AVbM5YYZUUm9fv2ULPnDkzbHgDAwMDAwMRbUcPxfslveOZ687ALwF86DRNd/PDsXcGVmDsnYFrRbp3iJ1+8AYGBgYGBn6xYqg0BwYGBgZOBMYP3sDAwMDAicD4wRsYGBgYOBEYP3gDAwMDAycCO8Xh3XLLLdOdd97ZjaUyrsUZ5gN1zgcLa2NF1pyzZtzPxPWyrBwxduf+++/XY489ttXIrbfeOt19991laaR4bcZHMcYo229LmTp4Df6fvV86v4c1ZVueKSy1fy37gudm81hlKsnKUjFu7erVq7pw4YKefPLJrc611qbYLmO3pO0SRL1SWAbjEatjqwLRvWPXoDr2eu3D6pg18bjVMVWM79NFVSoti83NngdXrlzRwcHB4qTs9IN355136tWvfrUee+wxSUe1yGIQKh88VW2pLJiXG6t6iGWJkiv0foyXNvK1PBx7iVmXgrp77e+y0apz1wSIV1WLHTQcEzfffPPNkqTz589LmtMOfdmXfVna7l133aXXvOY1WzXtsrEzqNppm5hOS9pOEs40V1X15ThWg8f2Ui+x39Uejt8t/XAzlVpEdf9kqfqqYN0qlVkv4QGPyYKzGdTNGnSsRi5JjzzyiCTpgQcekDQn7P7mb/7mrXEb+/v7uu222yTNe0nS4XtpfjbFa61J28V7qEr55zaye477jugl2a7uxyxBe1V/r0pAHs+tEoBnAfZLqQWZ6GKNoNmrk8fAeT7777//fklHvzWStn5/nnzyycPjFvuy6qiBgYGBgYFf5Ng5tZjUZ0aVhFiVnZBqlUIlCfdK4RBZ21Wqr4pWZ+1V2IXZ9dKHXct1KixJ/FKdfsyvTtSa9ZGsqtfnXmmkJQaUzRulxoq1ZWnCqP6q5meNWmxNmZZKiu1hidllLGFNWrglVKrnXhssZcS0W2Z+Us1QMrTWdPr06cPzfW5MIs7v2KeMkVQsZZfnQZWA3OitT3VsZjbgejAlW7aXKlbO91kqszVqaR5HNlrtnV6xAe73W2+9VdLxtHRLz+0eBsMbGBgYGDgR2JnhuRij1LfDVBJBViJiyT5VJW6On1XISthQwrZ0tpTcOevrGvZEVFJUVlyXqKSmHoOtbFM9hk5WkEniWXLi3rinaeomyuW+4hh7rGYp+TDLU8XPeG7PxlvtxZ6moZckPEO2LmSj3ENZAuCl6y2tVYYeC+H9ZOk9s2+Rpe3v73eZz7lz5w6P9WssDUX7YfXcifbfnrZBqpMux2Or50/vubSULD8y1yrBdJV0O/aRtrrYboUlx51dEt7z3shKtbEd2g7tMxDLbWXaprUYDG9gYGBg4ERg/OANDAwMDJwIXJPTSs9Nt1chO36eqWCWXP0zWr2mUrLUV0dUKpnYR6qslozJa2JcaDzepdYg1QeZk8QucVFVFfvedXi9JbTWyirI0nF1U9aHLP6Ka1ipZLNwi567dGw79rGqT1fFEGZjZUxjT03EGnBc016YwNNxWll7X2WoXPQz54g1Nc1aazp79uyhCtPhMFHN5f8rJ5isTh3VnJUT1toYT7Yv5aYbqhp5/8dzqlqgvCeMrFZkFWqU7VWuAR1RqmdmxJI5Jjr4cHy8X62ijuFQVmn6uxiysITB8AYGBgYGTgR2Ynh2WKnYQPy/cg/3L3iUTCilVI4gmVRZBYuSDWYVzyv3aR6XYSmotxeeQKk8c9FeGzycoWJ4/LxXBb4KOF7DXDLs7e3p7NmzZV+qc6RtKbAnVZJhc64zIzvnuhdE7vkxK2CQfKYdcLvcT0tsNPab7JbML95DFaut1qeXuWaNyz7nhPdcz2HI0nrP4Wlvb09nzpw5ZHi33HKLpCOXdenIgaVycMruZVZq9xoavE+ySutV4HcvqJ9j92ulVWE7sc904IjrUq17lQwkfrd0b2R9rDQYvG8zlk1HJ1/PLO6mm246PMdJCzLN2BIGwxsYGBgYOBHYmeFFSakXCBwlt/jKX26pzoPH6/QCPw3qmpkeKP5viW4NayIbrLCGsXCOmIpJ2mZ9a4LVq75UDCxKeJ4Tst817tVrArSledwMlI39p3RHrOkL9xv3Vs92vCaIPLMFZef27NvVMZn2gwHVHJf3UDyHzK7SlGTaD465ypu7S8q+zPZOG1QvAL21pnPnzh0yu9tvv13SEdOL7SwFO8c+eO78mftAbUfWNseUsXPp+HOnuv9tf/T7jD1X7Mn7o/ccIJOjrTz2mWEPXJdeikgyLj67srAjss3s90E6nkbODM8pxpbCoY71d9VRAwMDAwMDv8ixs5dm/IXPpABLQ/6FtvRSSaZSLS0bPZshQfsL9fTZ+ZRme8G17OMaOyOlzEqHH73Olmw3vesuSdiZxO3rkOlVjDn2YY10ZQ/N3jiWbHVVyqIeeqmxuC4VU81sHe5r5a2Z9aFiBZW9Mf5fvfbsv5Xthgm3M69nMnyOq5eUIQaTZ+OOiLbIah+dOnVK58+f19133y1JuuOOOyQdZwEV+3f7fA7F/znmCtm5HBu9GiObskaJ+8EeiB5PtCU6YXp1Hdrw4hxWrJzpvLLnnNcuBvfHc7I5WfIO9vx6TPEzg8/gzEZttmem1/PwJQbDGxgYGBg4EbimODwj88i0lGLJwNJLz1uushf1YqiWQL18xgroUVfFfUVUUvoaVF6TmS2lOmaNd2NVcqPHjKp4SbKteNySRBzRWtP+/n7Xhsdrs99kn1kfKilzTYwT90FlF4r9j+Orvl/ygO3ta7ZLtpnFilG7QUbnRLx+zfrKe4P2xYwV9OIlY7+yfvdSi+3v7+vOO+88LAFk78wsfrJiXlkaucrDkiyK9rI4RsNzyzRkcX9GZhPfM+YsMrynnnrqWDvc15WHexwP7xHag9fY4dh+lt6r8gLnfoyJoOlHYXC8cd1cHurBBx+UNLP3wfAGBgYGBgYCdmZ40dPusJEgBVhKofcYmUKUVP0rT51yT+KL/YnnGKyUm3naUQojM8r005Ts2ec1LIoSUJR4iMpORqkps8NUzC7zhlySkLJ+ZEysl3z24OCgG69I9mLp9sKFC5KOCsH6VTqSkivvUtrlokRsLYRfuXdt98nGzDn2db2XsxhHsgCDZVp6bM2gp3G2/v7Oc+SMFI8//vix18gAqowatM1H2w7nL2bFkHLvQ6Lnabe/v6/z588fMju3nz13mLC6ig2M51fxsdRGZbGOHpPjxNiPzDucsYHM0hSfB/ZEZIxgZQvPtAVk4O4j2dqa9v3eax6fkR4fCzZ7nB5XZMrcb+6Lz/EzIPPive+++yTNRYTXav8GwxsYGBgYOBEYP3gDAwMDAycCO6k0W2vHVJqZcwfdpBn4TRofj6kcMyqDZkTVRqZiMrX2d1QPZQZnqsqoLqySoMZjqFbpOSS4j1XgKdWy8dwqvZHXLatLdS1B/0Zc46XjqHqMKh+rL7wODz/8sKQj92OrSnycdKTy8Wd+tfqOCQMyleb58+clHSUlpqrTn0vb6qDKQSTuHe59zjXP7bn804Wee1c6UiVZZen5e/TRRyUdzRmdV2JfqNajujKqLT1/DAy3+7jnL3MyqRJNRzgswe1YtRn3r9eK6kLPhV8ztaTn1Cpsr6n3UJYYgu7zTPXmz2OokftPhxDelzEZsr+jepDOOEZUTzL8qQqdyMItGPZiVKFCEQxD8P7Kntt8TnucXs8s7MZhKXZies973jNUmgMDAwMDAxHXJSwh/rr6F59GVkuimWs5peTKbTtzwWbwNllUxvCq4GoaujM3arodLzmVxHOq6sSZyz9LlrDdylkjtkfprwpalrYdNKqKyhFrSoXEfh8cHGyx3cjWbIQ2A6GzitcynuNjfE7lmOFzM4nbjMEMxa9mKFmS4iqxta8XUaVnIhvJEh1bOvY6MLTA+8DzEOfCDPn+++8/doznMwvkZyVyMzmPO9PQGHTcoQYl7iWGfPQ0A/v7+3r2s599KNHbQSTuX7IZs9qq5JR0NIfeT55Lv/f8+Z549rOffXhuVX2d93TGKKlh8XiyBBQMPOfzpxd47j6R5Xp8mZNUtVe5pmvKUpHRZUlHfIw/o+NL9sz3uJ71rGdJmjUMvedUxGB4AwMDAwMnAtdUHohSerQBUNKgVJ4xPDIcuhL3mIP169HOEq/bCxqugq2NLI1albyZAa+9Mh1VIupeULelI88NpbaeLr0KVo3SJyUt2iKysAvaApZCG6ZpOlwXMzEHj0rS+973Pkm1WzMl1Ph/xQo5TzH4l2EhmTaAY7YdzGOnTcvnxtAJ2g+rYOgsyJau8e6j+2FG6fHHzx544AFJ28l2KT3HfUg7VpX2rFdaxt/RlhivYztMPKdieadPn9azn/3sQ1shEwtLR2voefHYyZDj+tM2THvSQw89dOz9vffee3guU5UxmNuv8bnE+8PMzuMynve85x3+z2cEtU+897IwAWtOPF6Py3ORhbRQc+B++HM/J2JSZ/eFz2LawmOpH1+P4Rx+zTRYXlMz7ttvv72bfDxiMLyBgYGBgROBp5U82pJPVurH3zFYmHazrO3sV13KWRaldAbdGlnKHeqcGSyaeTEySJP2q0xqok67Sn8U7Q0MnKbkQ8kvjpdS3xrPVR/rPtDGEu0KBoN8r1y5stpL05JjtHlxDcmIM89O2o3M+NwWA84zCbjyPMv2KgNkmTTA85TNV5UsmlqBniehmTEZbWQuPqby7GOxzcz+wXklw4ssm4HmZDm8N6Sj58HaoPTbbrvtcL18vSwFl8dOO5XfmwFKR3uPKb/IwDPbcZX0mM8WJl+OY2YAvZ+jcT1o36Otq1c+jNo0v/e4vXfi/va+Mgv0sbZre67M1rKyVD7H9wCf/XHd3F/fR2a7Hje1fvEzX+9DPuRD0uD5DIPhDQwMDAycCOzE8A4ODnTp0qUtr8b4K09pjhJX5tFHO1EVA+Rf8V7ZHiZbNTIptvKAzPTBZINViaHMu5JsjSmGemmBKBVZKqQNIV7P7Xsuqri8LGkwbXVVnFH8bo2X5sHBgS5evLjlGRdRldzxqyXHGKdE6ZGMmHspSoL0MuXYyUKko73o6/kYSutxnqqE32SBWVwUr0PvU9rGpaN7z9ezncVSM70cY794/3hO6B0a7xGfYzZT7Z0I7pUew2ut6fTp04fzZRZgFiIdzb/7bQbi/tJOF48xe6F91PPjuMIsBRvnhew9S99H7Ze9DRmnJ22XWWOKN2ptbKeTjtbFfeU95zbi/WSGV2l6ehoOambsVcvneLw3mBqPmjnv1TiP3t9e89tuu214aQ4MDAwMDETs7KV58eLFQ4nBv7BRWmMchaUlxqVEqXmpmKKlG//a92Kd6NGXsTVmgaHHU8ZYmKmBHoqWdDz+aNdk7AyZHfsTj6VnYsWC4zgt0Vtyo3SbZU9xv6uSHkZW7DeubeWpaQ9N2h6iZOZ1ZmYGMrvoAen2LB3T483zZSk99r9KBE77D2O5pG17HNlg9FTjnqc0SltilHIrhmdJPste4et4LjKvXCkvimqPPnvPeh+zj5EteE4Zs0cGne2dyIirvbO3t3eMDfs6ZmbxM7IaZqLpeU9XmY88j5HNkGHzvvGxsY9+ftG73fvaXodxv3ndGSdLe3cW/0zvXJbiyTL7kJ1zLry29iSN96L3DJ8lfh5l9m3aM8n0WRw3nr/WMzNiMLyBgYGBgROBnXNpnjlz5lAyYF5BaTtOjFkWWOxQOvpVZ5yQf8mpj4/wsZSenCXBEgJjQ3qw9JnFbLlPLGNBCS/LT0dGwewZWTYY2uFYYsN9jMyGdgzGjpGZxf+rvI49+1xWDJLY29tL46einxxF5AAAIABJREFUtOdrur+UgJk1xe3GsX7oh37osWMc25flX6T9hbY8aitiH6p7ICspxD1T2e645vEzz7+v7z5zH8Zr8zr0GKTkHeH5eu5znyvpiPn5vsoyuzAm1uvm60atTlZeprd/Tp06tWW/ivuJ9nHmXc1iOH0s18V7h/a/+PzxZ26DBa/JAOP5flZVtu/43KlYMuNmM98F7yv3hV66ZoDx+e1157nMKOQ5yuyNZn/MPvTe975XUp5xh6WKeF/HPcr5u/XWW0cuzYGBgYGBgYjxgzcwMDAwcCKws0rz9OnTW+quLBCcbs2moVm1YqZ9YkDkPffcc+x6UTVSBYJTlRrVYGyHx/ZSLlUqTaYuisZXBsrSaNxLAE0Xc447c3SgazQDa7NyJ1UCbzrlxCDjKpQhQ2vtmFqCqYOyazIhdM9B46677pJ05OJt9Ynnx2rSLFyE6kirp5x0OQs893wzWQHLOsVz+J5OWpk6lGpcv1L1E+fGn3mtWEmbYUVxXTzn7kNM0CtJb3vb2yTlYQmVo0NWMTxLs7bktMKk3lnguV8dssDkBVkpJM+ln1F2p7cTBgP5I5hCjE5tmRqfCRt8bqa+e85znnOsj54vPyP9ua8T58RryecPw8niM9Rz4HnkOBgmEdfce8J7hckKfP2YBu/uu+8+1hef6zX2fZ0ljPC63HzzzSMsYWBgYGBgIGJnv06HJkjbaW2kbeOqJQL/Ylt6jq63NMSyfAYDDbPrsVwKkyBnpX4MhgtkIMOrCqMyaDmCbLMKuM/GQfdqz1GWusjXJlOmYT1KdmSSTEuVMZdMIl9ieUwlFSVg95vhKJSI4zpZ6vfcMWTFErEl/owlsvArwweyQsDcKwzizoL6mSaJBWAzJsSUdnSSYaCutL1Hvd6WrM1cevvOzM5StPvh+Y5zQum/YjlZKRkmZcgwTZOuXLlyKP07xCQyBc6Pj82KHRt0WqFmhCnG4v3ClHu8p3xuDEtwX8i4uIczBw2G6FDT4OvGEkYM7zFr89z4Ne4hzgk1WAwjyBgziwibxXl+M+clt+c+ef95reNzwnvSTjc97QAxGN7AwMDAwInAzoHnMUFwVmYnKwwY32fSkiUMs0CWomB6rUxaY2oft9UruWIwMSsDwqVtybpKAOw2MqnJoE2HbUrbtkLq32nXin2lHc6uxgzizFLCsU8sPxTtGCwl02PI1gxkqbfYB0u81t/TbT/2gfNjqd/r4jY8X1kQOd3yLUVnbJVFO5kUwftuTeFcJkPP2A4ZhNfSfaxCXqSjMdNGaUabneO5t+RtKZq2+YyFuC9+7+tkoUEc+6VLl7pJCy5evLg1p9lzgCWEWD4pPneqRBAeu0sYeW9FbQrXkBqlKlWWdLQHvZZ+zVihn2tM6kz26XPi+GyLZKks7wtqc+KxnGvOUZZEgXPg+fL4/D7TSnnPmNF5PNz/sb+91HUVBsMbGBgYGDgR2NmGF0u8MJAxIrNHVMfyM7Ipeu9FOxKlf16XxTelbdsjGV1mp6E0wXPJcqLOmd5w9A7M0njxepSwyLyyZMU8159bl5+lsKoS//rzLK1blPYqG940Tbp8+fJWu1lqMUt5ZCCWdmMfGBjPgGwy5di/qmwSvYbjObQVWXo1e/H7bO9wn9OGy37F76iF8HpnAcC8P71H3GdLz1mxYrKsaCeTcg0NUz1ZgrfUnp3D++bg4GCxRJBBe3YcK+/7XumlLJFFhBkeS01J288IBmZnoB+A2yfziW0wRSOTJDAtWjyXKeYYrJ6lQWSKtkrzkyWb4By7XTL8WADW8LG0gWe/MXxW9ZJiEIPhDQwMDAycCOzM8KIEQQlSqsvyMJ4rizljGiX+kmdFYykJkNExSW38vyqiSq+5eA7tBlXi2cymttRWRFUEtypO2pNWKYWauexSMiljAyx2e+bMmS7Du3LlylaRyyhxWxJkfBILcMb5ZEolekJW6xPPYckiesLGPtJLzWzJfc1SfbFP9OjsxTHS5smimhyLtL3fOH+9e4P3KzULmVRdJYbP7C88J97b1d5xHB61OXGc1GYwxs59yJg3ny9ZIdZ4nLRty+LYPedZ0mt/5hg7233pwxCvSUZJJpTtVZ9rj0f6GVBLFNvxPcHXyhMz9q1KbJ89b6rfB89fZk/PYoR72oGIwfAGBgYGBk4Edq+vEJBJ/ZSo+atOhhI/I2PM2icqryF6i2a6dUqDZJhZCSOj6iu9p+JYyUJ5bMZCyeT8ngwm6xtBKTEeRwZUlWzK7BiZV2uG1trWemQlYygtM4tEtDlQSmVByWqdYv/5HW1RWYkX2xltH/HnmRbCoH10Fxse41ez8RiV/YXSeWb/q7wOyQbj/UDvUtpysnhdI7LcpVg8lmDK/AG4T/lcyPZoxlbi51mSfINxvvT0jAyPGXBsw7Pd19eJ2hrb7mxLrTRZjrmNfSSrZdJlFjOWtpNh89nMjD/ZXq3u48wb3WDy76zckcF7fsn+GzEY3sDAwMDAicD4wRsYGBgYOBHYWaXZWttSBWY1rajmoIF4Tf2i6pisanEWfhCRpcSiKpPVuDMDcKUq4/ss0N3tc/6ymnNUHVWq2kx9ueSm21MpVOOrUqnFY3tr6sTjdC6IaiSqRumoweTbsT9MMccAc4aRSNuJx/2e6qgYME1nFbreW7WU7Z2eerjqI1NYMfzG8xmDeRlozLnoqV15v1LFmdX0o4t6FSIQx9ULmCfs8OSAac99VG0z8UTlGBbPYco61pzkns/uG64ln0fxOeBjqAan+tDjlI5Umv6MffE6ZInA+Z2vQ7NCluaRzyZfl3VHM5Umn129FIqVsx9VqPEcz4U/W6vOlAbDGxgYGBg4Idi5PFBrbSupbq+6NxlCZaiPx9AYvcZphU4W7FtPqqWLd6+PlGzWONawhAydBzIDLaVm9oV9zFjvmr4ZPIYS3lLaMGkeZ+V4EDUDsf0sUXLl3u62YxVpS+yWXj2HdEDKQAmULuwMqI7HkA0yLCSOq2JYVUhNFtLA9GD8PDI8O0Gwcrf7QSeqbH9Ua8HX+D+TfvecmNzuUvC3MU3TVrhIDHdgSjmmn8qc1zxPZN6cn2wPcQ2NKuhfOtqrZkm+vsE0YtLRs2kpsT7ZqbRdcZ4sjQ5wEZy3XoC7UTkG9bR71XOFDmVxnqlFu3z58nBaGRgYGBgYiLgmGx4ZS/z1pSvymnRKVXquNaVDjMpNO5MQyCQZhtBzn63sLkZ2LlkobXlZ6iJK/VVKs8zuw75WTC+73tI4s6BY49SpU90EwNF9OHM3ptRfBQ3HPngufUwlnWd2GEqkVaBslhydwcm0W2VBypT6qwK6WSAwEzNzf2RsinNNW3VP62FUtuQssTrtib0QJZ+f7f1sHHF/mrnYrV/atuEzuXq2/tzTHGtVDDkeQ5bEc+L1bAt2SIuva0bnRN2R4Xkc0a4nHc052Vk8rgqDYgmlOC6yaIaU9MJT+IyqUijGta58BLiekbly7zz66KOr9rI0GN7AwMDAwAnBzja8/f39LXtC/HUlU2DasDWeOkvIAt0rCTEryFklnO6Vm6h02JX00vMkrAp/ZsmcWW6kYnS9EhmUfnrpoSpPO0pv8ZgoEffWobW2dU6UUKvE0mZvmQ2gF4TMMfJcziE9fDMNAxle5Y0cx8W9QfsE1ydbF66vpXNL9FEC9nXICr2/eqn6qr3K/mRJEsj+evf1rsmj4/pmyc/NKu0ly0Bmzkn8vwqc532SPecqO5jPjbZVM1La39znBx54QNJRgV7paH1ty6v8HGifjecafl6bQTrlmMsIxfPtHcp0dBUTi59Vz6jM07t6nvr+yu4R99GM+MKFC4PhDQwMDAwMRFxT8mh6t2WJoPmLyxg3thlRedb1UpktSWVZeQnabHpJfHveSfF79is7hjYC2hmkbV06PeGqpL7x/0o6J9OI7dFm1Bs352uXMh1k/tn5jKmytBy9NMm4OO+VDTn7jLYOpsiK1/N31Fxk+z/TMsT3tHXEdWPMJveqmV60+3h+erF6cQwZuO5VX2M7VZHkbM7JjHr234ODA128eHGrCLGZUQSLG/c8LqvYXbKKLOE92yW8Tl4f6YhheX3c//e+972SpPe85z2SjphLbJ9ep26DY4isl/G/ZnQ+1nsmlusx2/OecV9o/832Tq+Aduxr5lFenZM9q9zvd73rXYd9Gl6aAwMDAwMDATsxPMfC9GKyyFboiZYxrspeUGU6yGwcVcaTTLdNT6MqwXQmDRpV1oyeR5fB2JYsEavB72hTW1N4kn3OpNPKm5G2iswGYvRseNM0F4Clbj7rQxUflmXRqWx3TB7cy/CTeZvGY+M5lqz9yswQWWkp7u/KOzTzCuX8M3Eui4dG+FgmWO/Z1qp7cU1MZ+VJnLErFjLtMbyrV6/qwoULW4VMIxPiOmfestJxjYL7QBsemV0WJ1vZblnkNe5Z2+H8alvdO97xDknS/fffL+m4BoNeih5PtXeyZxYzx9iWaIYZ7b+eR2ezcfss09OLVaa2iNlbInhPV78T3svSEbPLilEvYTC8gYGBgYETgfGDNzAwMDBwIrCzSvPq1aulAT1+Fs+RanVlPKZyfugl3a2cU+j0kbmyM31SpZLJQJVpNZZ47Sp0wP2JKc6qOnhVwHHPGahyVukFnnOcve+qhN0R3js0ekc1EeeJx2YOE0xQzGN7Sa+ppq0qM8c19hoxvRFVTXE+GZhdBbobmTrUai6rn6hiimm2rE5j3ypHpJ76tVLzZ8HDVb3F7L72mJfCSnzeE088sXWvxfuFicWXxpwdWz2rMjV1ZVpwcLmPtXt/PMdree+99x57zZxw6DDDPcp7Oar+PFZ/Vpk/4v3rfcQ0aH7P/Z/tHYIq7V5Sfq+xQyo8zrjWnhOr8R9++OHVDnOD4Q0MDAwMnAjsHHi+t7e3lfA1k5po+O8lW6ax2KhS+/SCyP1KyShKwEbF6LLAWUqDVfmMjFEweLgy/MfxM21blTyW7tfStpReSawZqlRSvXXrBb0bTg9FZ4XY7yoBQM9hYo0zRWwrk9KrEI+sXEsV0sJq0pmTFKuIV8452XzGNErSLNVK2xJ3bL/SUNDhoKfJ6LE0g44MlUNFFsDfY3axD48//rjuu+8+SccDpQ2mqmNC8GxdqrRjnJes4nmlFXA/zKqiA4rnzm71Ho/XNIZocBzUAvCZwkD7+JlhJx8mcohJrCvHNmsNYphFPD4ey3P9PttnlSaBx2YJrt3uU089NRjewMDAwMBAxDUFnhu9X+4l6XFNoCCljSyNDxmdJSyymFgYkf1nGi9K8dK2RGrJjRJqVpTQfaOti3r3OC66QjOhcixkWaGyp5J1Rywl+86kzzWu5a21Y+dm4SlVSqoqNVocwxpbcTw+nsM2WE4nSul027bEa9bBtFHStq2Y7uKUXm+77bat/rsP1FTYlpfdE5Xtk9qBuC+XbHjZ51XYRS9UJgtBWQpp4XrEufD/nFO3b3tPPKfSLPHzXrpA+gwwUXfcB+5bTIkVj2GoSXXt2D6Py8J8rH3wuvBZkrGnKoEHkwzEZ0zFRvncy/abwec3Q0Okozm3dmMEng8MDAwMDADXVB7I6OlNq4S4vaKTlPor+1zU1/OzqqxO7Cs9OCm10NYSx+1zaCOsUjFFsFijYUklSoP0WuL4yEpjXxlYT1teFsBPrzZKeNm6sb0lW14mIUdQilwK7q/6Fa/FFGCRUVYppMwguC+kI2n5uc99rqSjdE1mfL5uL5kzJW3aNWknkba9MhmIHINwPVbvqypY2YjrwgBuzmsWRG5Qu9Gz+/WeA9mxly5d2noeZBoYvmZB4wbv1YrNZtoIBq1zbql5iv9Tg2TtQJa2K0vBF+HvM80P049Zc0AP0/isZv/JWPl9LxEF28yuV2nxeG9kHrm2rQ+GNzAwMDAwAFyTl+Yar78q5ZeRJTumjY5MLIt9I0tjMtWMrVVskH3NSryQYWWpxKTc1kUJLotFq65nVHGHWYFEvpKJZV6o7DM9CjNpfW1as0uXLnVTi1X2Cl47O4fzXyVzzmxdtMNEm510fC1tA3K8lW3D7Lv3XTyf8+R18ZxkCXQZK8iiuFncHz0EGf9U2Xbj/2uSlBtVDCRZXE+yf//739+V0g8ODraSYsd94rWjHYn3WhY/SLsR+5F9Ti9Qem3aDhf3gcdaFWD1a9x/XkvvM7/ns9H7IfoquA8uOHv33Xcf66vPieviz+g7wDR1RhaHx/1A1p1poyrvdzK9+F0WC7iEwfAGBgYGBk4EdmZ4p0+fPvxVziQf/lJTN5tJWvSoosRVvcZ2WCaGtq0oafG6VWaNzGuS0l9lZ8rioir7WJappIqVq7ynIpjxoirQmXlYsc9rdONR4u6VeHnqqae29k4vDqsqTdNLem1QAiYzl46kVnr2seRP3Ac+xzYzzrX3WZS0qWWoCo/6fbTH+Xq2V9DDz5/HWEHbO2gbNHpZaDzWqs9LLCwbX7ZG1OZcvHhxMZaqsitFUNOzJoF1ZdOv4nOlI4ZP2xm1JzFm0PZfr53b83rRHhj/Z2FUPjO93+JaO0n0PffcI+mI6bkNjyFqmDz2mJg7fu79yOd6HDO1A9ROZNqPan/xevH/uC5rWd5geAMDAwMDJwLXxPAyG5BRsTHaxSIzqbwzl7KZSNuSNSXTzHvJ/y+xzyz2g1lmqqwWmacVPeAqu1k8h96fVSHGbD573o18n3l7Zn3NsmUYWT7P2M6VK1e2GF1WKJX2nZ7XX2Xj5CuleWm71A/ZgRGZhEu6UOqntsBem9KRZM9YMGbHyPpotmeJ2xlWmNEjMjx6EFY2xF7ZG+4hrm1c+yqejbacng2v52k3TVP33PgZ+8L7Jp5T+QowXpI2L2mb0XGfuQ2zqHg+7zH32f2IDIjxtvQ6pl0stk07s6/j95mdkf33/qps4b01YN+y9a3KnFUe+vGaaz0zIwbDGxgYGBg4ERg/eAMDAwMDJwI7B57H9FGZSrNKPkpq2lNR9FJJ8T3VDnzNKvP6O1N7qlB7iVhpBK8q/2alUOiwwTFE0CC/VIk6c9VfCuCOqILIe27Ia1JIRVy5cmVLFRvboxqNr5mTxVKCA39v1UyW6oltMIwjqvysWowqxHiM58JqTOkoOa9VTEwPZpUq01PF6/i6MQA3u75Uz1eVHKHnBORXqsXWqJOo8s6c29Yk/XVIC9XhmcNEdq34Pq41r23VHtVrmUqO6cB4HYaPxHa8D6yutBMLn5lSnRSbZhL2PR5Lhz4m0cgSQlDV6PbZn8wkwXlliEjmqObv+IzMVJoMH+olwycGwxsYGBgYOBF4WoHnlCSlWrKihJW5KFeSPaXBzGBevc+kCksLliYYPJylGvKxltzpGs0+Z0VxqxRc/j72sZK015RrqZgR2WiWALhizFnSYEqBPanfjgdV8H3sb1X0NrbF/6uwEDqEREmxkkQ5B1mAMxP/cq6js4LZGZ0IGCrBYF/pSIql67rRS+pdpXoim8+k9CqBMp3EsnOqdGSZU1blUMXzn3jiiUO2m7GZHpuM14tYKp9VhTjE76r70esWNQp2EnGKLzs2eT9k+50OSJU2wuwthsMsOREx9VzsL9OgsY3smVWtYU8jWO2dyoFNyu/pkVpsYGBgYGAg4JpseJR8e7+ulW0oS9v1/7d3Pr1xW0kQf5KsxPHBSWBsECCH/f4fa6/ZIEiAOLBjaWZPJbV+rGpytNhDdrouI80MyffIR05X/6kmjhR1p3gErRsnGkyLnkysk1wS42NKs7PSyJY4dqFuw3hm8q0n6bY6j/TqGEAqGu1YYfLdE6fTaVOo7eJHjKnSyuykxRLD6yTRdC5lHacmuGttWzlpv2R6laVprajxp6zxJIvmrFkej+ugpqOz6SnnntZDPTYl5bTOHeslwz8al1vr5bXungMPDw9PjETXqc45NXNOc65j6Mon6nxq/Cq1FNIY9d3KQhXP0/7E8HiNXZw8eTl4PznvF59JvE6uVIdC90l+sSKVCAku1p+8T13ORxJdP4JheIPBYDC4Clwcw1Px+Vret53YA1tDdBmee7G8LrOPlrDbRlaXLBtaQmR+dT8EpZccO0x+bxaRulYie37xTgg6NfN0123PSuq26RijcD6fLWPu3iNrcwWnewyviz0JFPzlNa3zInviOVCcyQkA67N0b7CYue43FfOKNdQCZYoh8L464plJzZ1dPI5j3YshViTJPge2ParsiXE9jsVl8vE8MEuWa6ZmyKa8A113xz7ETCUmoJguRb2dF4X/0+sh74FrcMvGuToXuj5urdJjkZ757l5MmevuOZH21zXS1fmrLHpieIPBYDAYFFwcw3vz5s1Gxqb6gFNTxSPsIvn+uyxN7i/JztRtyAbr3Oo+nFRWspa5bwfG+WhRVobnmkHW43XxksQKUo0i/3borLMaRzq6H5f1mWJN/LyL4fH9jm1QkFfWsWspJchK5yvXoWMDfNWYO4+J3tPYWBumsbuMxRRj7eIwAu/f5CWonyWZqI4N1Hs6CQArO1z3hCz8mpFIbw3jsK4GldJqYuBkZ9pGsm71O4yDMfZUmZjGQok5ZW2K8enzCtbD8Xmn9VbXLBsbs4ZT+3RZwXw2UZSf/9ex0QuSrmsdI9con4l17Clj+QiG4Q0Gg8HgKnAxwzufz614tJD8+c6yT9Yjfc2C25Y+7U6dhRYnszaPxKQSHDPjeXKtUer/a21bJKV9uRglv5vifa6mjnPmdyuTYOzh/v6+XRN1vLSe3XjJFinUzO3dcWjxuznTMiXDq3OmIkRqq6SYylq5DdGeStBa20avR1o9dUypvro4k2uJ1B2/bsOM0a71CzMSv/766zhu1XCmOM9a2+xS7t81ACaLqc1oK8Qof/755817bLLLrMI6Ro2FzVqVral2PpXhMTZJj0JqWrzWVoycKikac2VPZK4cRxpzHRNjn7yunbdFx2cstI5R1+dI/e/mOIe/ORgMBoPB3xjzgzcYDAaDq8DFLs3qWuhKC5JkkEsiSLJce4Xablu6MPRa07a1X8rnkCJ3/d1I+RkcdzJhTBqgq6G6W1heQfduSv11uMSlkF5dgTPdXHvuzDoPt4ZSJ3Cuh67j/Z6QrBPXleslJXs4GTyOWQkHzn3H86TrzXVGUfO1tskBe+7DCq5RJsu4xKtU6MzjdlJm/I5Lpb/EDaXxMCGt7o/uWd7LTsQg9Vvk53Kv/f7770+f/fLLLy9eGcpw5S8am/Yn16X+d+EZuT+5vilw4O49lsjwmSi3e5cQQvlFSStqLrXvI0XRhS40xNAGn4lyX9Yx0jVbx7uHYXiDwWAwuApczPBub2/bNOqjDK+C1gutZCZduF/zvdYy1cogc0sSPG6sHFNqLeS2oZXJALdjhSndPpUrVOy1+HGJDimBgtb7Wn2pCXE+n9eXL19iCnvdfq9AujJhWvJ87URoU7dyvSbx6jrntJbqGLlfynaRATpvBL/jGLfAJAwmVDAhqq4xWfJJ4NwxSs4reR9cOckRr8DpdFqfP39+GreO4xie9sfWX11JC+93rgu3LQu0lcSifbD0YK1t2QHbRYk9VeFxMnw+d5jU4sTY9RmZXkpQqd/R8ViO4O5Nl+RV98/7qr7HBD4mq1SGx+v26dOnKTwfDAaDwaDiYoZ3Op3a9im0QAimpbv3UixPFkT1j/PXPll0LrVcSDJKdQ5JnJbxCWfdcgypbYeLGTIOwniZS+HXWFIM1G2TYneu9IDbOJbhcDqdnqxMt3bIZphazuLbtbYshSyD3gPXKFXQeSPLqetFn7G4lqzKbcP4iObHc1sZHssEGPNwMeNUPMzYB1lDNybO23lMUky3E32vTC+xvdPptP78889Na6Ya62SrG64ZJ2GWPEqpPKkyr+++++7F+UhShnUbFZiL4Wn8ep//r5XvMcoS6v9aRK4xcIyat+JvNQ5HNrZXulMZLJ/TAu+J+pzjfanryLIE1+y3PuOH4Q0Gg8FgUHAxw1tr6yevv9gUXt1jem6/SZSYmUI8dt2my85KbWgElyWaMo2ShJUrjk/+cCf1lLJAnXVDpNjTEVFfnvOUyVjfq1b0XhwvtZupf9PX38mEpXhryhCsLEfxF2bUKbvNCRDIopVVnBh3BYWe6VHgvJwEF/dL6aoaMyTDo6QZGx67gvAkXea8EInhk53WMfLcdhb66XRaf/zxxyauVNlTYnb63wk5MFbsYttrPa+PH3744ek9FVy7rNW678qA6BXQNlxLtfC8y2p2c1Asca1tzJbzcnkHHJMTiEjj4dj4G+AkHclUlQmrefBedHN/8+bNoVjwWsPwBoPBYHAleJV4tH65XSNGWRFkUSm7sAPjVhTsXWsrvcQ4kLMqUiYnUd93MYe1trVNLoaXshhTK5t6bH6WJIycZBL9+102ZcrKpM/eMbxLJNjI8Oq1ZBwktUKpSJYvmYPL0kxMOMmrrbVtkEkhdaHGUoQUX+Y1dN4BgW1oHHMls0vM3p07MvpOUkxIYsGpZVfdT5Iyq3h8fFwfP37cMJJaF0dJMWbeCq4WMAlNi93yebfWs5fpw4cPL77bNQ8WmOfAc1DHyHuZ86QgdddaivFZl2mpz1hvp9gaGyDX60aPWbqPXVY/W2jxPnNr59JazrWG4Q0Gg8HgSnBxA9j7+/uNZVRjIPpFTmziSM0WP+uszNSugs00u/obsrZUA+e2vQRknR3TTNY/LXpnNaWM1ZSJudY2G3PvtW7jrEqH29vbjbVXrVmuDVqgzNqs4DVkxq8bf2LRjH2488S1wfiIY3gJZC6d8DhrqRx74tgYa091gWvtq88IHZMgoyCTcfN6eHhohcA/ffq0ycQVG1jrZaZhPVbHtJJANo+jc1GP8eOPP6611vrpp59efEaPSAWvCz0wYlF1XtqGzYOZia1rrOzRtTwzXWvLXOvaZdxc10nPdbVIYqxtre3zNHkyXB0e6xr16rw7XCeXPIuH4Q0Gg8HgKnAxw7u7u9sYw6h6AAAPXklEQVRU+ddMpPqLv9bW3+pa/uyphqTY11pZhzM1I6zbp0awHePaG7OzUsmo9uJzbmyprtBlKaYs15R5udY2FsXz5+rwaDXvZX/W+K+z4FJch5ax09LkeWD8QOOuGb6aW2re6dgTW8iQObpYFGM2ibm6+XFeLs5H6DzKktc86fVwbCTVX3b3ZMrETvWtbj6Pj4+7MRlel9rGR+yIDKg7X3u6q7x/an2k1pFq5sSsyKLr3I/G4+oa1Wfff//9i3lQj5XeqfpdMnwqu9Trzxh7aj+kc8emsvU4Gru27WqUk3eA+1xry0KnDm8wGAwGA2B+8AaDwWBwFXiVeDQDwrUA9LfffltrbRMm6N5wxcN0fybpp0p3RakZGGdgtguyc/8sNXCg6ywlTdS/jxZH1v1xzskd6o5HFyOTTKorg64YusPcNi7NPc1RCU90xXRC0ETntkhCxamAeq3nVG6dY3aIluuna0dCF7BbO3Tn89ppHy7RheczdZF2Mnian17plnZSfUkQ3K1rgS4mJ6RAsL3Nly9f4vWVO5znqa4dvff+/fsXY9H7zjWb3Gcp4aVLfKFrz5VQpXXAongnvZUE5+myrcfjPHSd5crUq0ta0pgUotJ5ZPlNtx747HehFCal6DMmh7nSGZcMtYdheIPBYDC4ClyctFItLVfMS/kkWStJ0HitbSJLsgxdkTUZlsYmi8tJWNEiSOnoLiU2yQ91iTd7wfGuOSVZBxmEY8McY0pDr3NgiUlKeHAiA5eICnTNdRnMJxwzTy2dkmyXEz1mGrrOuROcJsiIjpSy7IlW1895bCbAuHuGbYaYnMIkhmpxk/WkVj+OybOMIwkR18+6EqB6rLdv3z6NU14kJxfIezaJi6+1vf4szBYz5nmr31ETVQla61rrOVgT+jhnFlXTa1DB9jmpdKeCTVUFPRu1T9e4VcxO26osguLOnVjGXunOWtvnmebDNkSuwJ1elSMYhjcYDAaDq8DFDO+rr7568v06/7WsIvqaZSl0slZMUaUl3MkPufYYa+WmhA5Me3aWffLnM4bn0pGFJATs4j4pZb6LjySGl9KU18plCPquLK6amk2Gt1cAWltL1fcEegHI0pwVm4pdk6jzkXiV4Nioa/9Tj5sKtbsx8/iuFUpqseIK6snkGcNhDM95P8gkiTp/jo0eE1eE7dp6JQ/B3d3d+vbbb58YkdiFk5tirIteKCdWrvGRZbBEo64PNij99ddf11pbaS7Hnpynyv1fkbwM9LZVdsjrrWezxuzEqgVK14nhqfBcDNBJNqZYNUup1to2gOU8NIdagsLY3UVylYe/ORgMBoPB3xgXMbzb29v17t27jUVULTgxAllA+mXuRFzZpFPYk/5aaxujo3/aZaLRCqcV6HzCHMteXK4isUEWebq2MClzNFmj9b1kqbpifMZz2PBTzM7FMYSHh4eW2SgGvNY2Tsb5d3BWeroeqfh+rS2bIUOhx6H+zRjXkViU4K533datAyGJpLvYVMrKZMZqd81SsbwrjqflzUzM6h1wcfMuS7Nm+Io1OYnBlGHNbM26fZdfUPddIQYkxqO4otiSa+vE+31PLrAijZHroJ5jMjyeX10nlx2s9/Sq+YrZ8Tnr9sPMfOZ1uLHwf85vrednkFjnJc/iYXiDwWAwuAq8iuEx46laFfpbVhhbtDurue6/+7/LgBPEKNn0sFppjOt1cSWCn6X2LW7ce2KqnXg0X7sWNmSujOmwVrH+TabHWJ6r3dPrX3/91dYa3t3dbfz5XVwu1eLUYzDTbs9SrEjC5qnFVX1vLw7n5pOYPo/vMi7Tq47XrW9a+mQDnWdhT8i7fsZzwzhgZS6MY3V1eDouaxDrtU7tgFI9cJ0/z3vKTK3/i/EwG7zeC2u9ZD2pnVbXQi3F/xnn7jxPnDszPatsGCUNmaXJGsiav0FWmzwm3dz53HGNe/UsUobsSIsNBoPBYAC8qg6Pv8Y1y4eV+czadFmGyTqmheis+MSaUnv5+p6rLUugFUirthO4TgoUtHyrFZOUVY6otjDrNbVXqmyNWZpkAy6z0zXoTXEQrR0yVMdM+X9q5+TmnDIvqfZQ98fvkjVW8Foys85Z6UlEOTHMOkbGHlNtpaupZMzWZWVyHEctZVcDt1eTWM8V41edlX57e7u++eabp+PoGVPvaTEQsijGzVwW455ih2P6YkVkYB2L13lmux4q/tRzy9gj1ag6FspY/RFWqGOz3o45GS4Gn+4nPufcM4QZ5NpWsVH3XGHc9giG4Q0Gg8HgKjA/eIPBYDC4Cryq47kgSlwpOqXFGASXO8K5RJKLJyV91O+QnicXZP2brgoe39HoJLHUFZ4nlxznU10+LpGlgu4Dl26dCpCdpBQLy5PLzKUU1+924tHOpVn3l8R1KU9XzwldO8mV6UTLU6duzrETyOUadYXpTNBJfdDcOeE+6Kbqisd5zXhthSN9H9O1cdvQndi5zuq917npb29vN0XKNdlCc5Z4NOHckgyzuA7wddt6PHbmptvYhR54DbnNEeyV4bjyJH63E/nWeyzy53x57up+XSJV3Xe9N1J5DYWm62+ME6g4Ksw/DG8wGAwGV4FXJa3Qeq4WggKwZC8UQXYBaic941C37djfWrmdylo5WaFDEsbtih9p2aQicsdcOB+yDQaz+fda2wQUxwoc66vfcYWtLDHYa9NxOp0283GtULh/srgjZSNpm7p2OF7XQojHSwF5rj8n5s3vktk5JkRmmhJQOubNwnOhs/D3urO7bXhuyMicOPqRJBlZ8GIbTopPzx3OiWy3jiHJdVGomfNca+upopBxV36l88IWQiyTWMsL9Nf36a1y27IsQSzNlZjsJat01yA9AzUvx7Ipb0aPjGt7pHKES9qtCcPwBoPBYHAVeFUDWP5dmQKtOf3flQCwkD0VvbpUdlovKR5XQauSsRXXcsXF5uq2tM5dWnoqIu8s7WTJkR24+fKck+m5VPa9tPfK8GiFdczrfD6vh4eHyMDqe3uxziPC2Yl1OIs0xfIYa6v7I3uh1JgrS9kbfzcvxjRYeO7izSmVna8uns6xswzDxf0oeM7jVsbkSk4S2zufz+t8Pj+xKsF5KFgQrebUWrdOCiutX56fWmQtpqMx0HPlmp2m2LqLwxOp3IfPDteuh9JlYmssJq/vMXZHsWi2UqrHY3zZ3UeExLYpyq351Cbj+kzHeffu3eEmsMPwBoPBYHAVuDiGVwWA9ataf7kpNqzPKE3lmnimdhJOiFWgZUMrwsUKUgt6Fq12WZopA6pjeLTwWWhaLW1a4YmFOJklxuNS0bLL7EyirS7Oqf1XS3iPWfOauqagZBXcZz3ne8XqruCcx2NsgUzfZfgSZDMOid0yc9VZ6YnRu2J1sr49L4Qr3E0xO8dCU5Nnntd6b3JdPTw8xHN3Op3Wx48fn5qsdoLw2ocYivbvxM/FXvj84X0vZqQi6DoX5h1wHPV8MY9Bx1dmu5iLE2NITau5plx+A71uOi7jdfVvMb3EBnXu6zVNsUmhy5XguuYzss5L50vr4f3795EBE8PwBoPBYHAVuDiGd3Nzs/FBV4tEv+q0gPRd/Tq7OrW9172mlPW7zscsyFois5Pl5cSV6/wdEnurY6J13GWYpjij0GVGJqZK9uaEoMkOeI0dk3RzdqjbunounieOpZOAOiI0XvdVj5daMHVSX6xBTRml9T0norzWlnm7sdOz0DH81BiT57zLlExeCbdvF4Ou83Gxm85rQ5xOpxfxM5eZLDB+qOsj5qJY0VrPmYFiLxw/2/jUJqR8VlACjCyqHk8thfQ/x1rPScrCTc+Oum1qgpvkw+q82ACWYtIuezK1FGOrNtfWibXI9A64zOX6/Bnx6MFgMBgMCi5meHd3d0+/5F3WJBu/spWQE1VN8SpaKPV4e1mZnVg1LR4yilqnk7I0Oe+OrXE+tMqclZIEh8k+XHuYVBflrMa0vz31i7q/0+nUfv/m5mZjRXcqHylr7QgrOHKO0/UgSzhicacs2voe1zHH1q2DLs7HMaZ6RmbYOZbFdiycl6v32ss+dfW6SWDa4Xw+r8+fP2+yGR3D0zF4D7jmqlX0fq1npseMW8b63P7oLWJG9FrP3i2BMS6Ouc6RXpoUw3O5EfxfY+d6d+9xnfH6u+bfnFfKSq1/M/7L/+sY+aw6yu7WGoY3GAwGgyvB/OANBoPB4Crwqo7nKd10rWfKS2rPgllXwExazkQEuRacO4UuH0rfdEXkdN+kVOAjcG6dTli6wr2fkkY6UefkBkkCrXX/qRzBiQzQfbfnajyfzxuhXidCzHIHge6Puh+Xll336f6nCEKSfutcmixS77bhGuVxuE+3v+TK7MTY96TsLnFPCk4mjGuFSTHuOXEEEi1I577+zSQIJhFV15gSWPQ8S/0quyQpSm/JLequFxPNkpvSye0x1LAX/qnz4PXgOqz3IN9jGZnOmSvzUHE459PJu6VrSreyS8bpQgAJw/AGg8FgcBW4mOG9fft2k67vCoEZqHTMjtukBA3+X6VwWFxJeTInyLuX0uuY2BH5rKNInYcvKQQnW+sSUDifrvDzv0l0qcLixPl8Xo+PjzHt2M1NadMss6hIyRW0LjuWwf1ynTkJtjqv+sr3eUx3nA5kTWIoZG+daEHquO7W8l5Jg9tWY0rMvPN6CF1rKTE8x+w4Pl4f3ieuzYw+qyULa2WZxHo83ltaM04wOyWasFDfMW6BHg0+Hzq2JiTpr7W2ohUav9ousV1PPZ9JeD6JptdtkgweE8jqe0fuH2IY3mAwGAyuAhdLi93d3UWLeK3M8FiW4Py4tNKTbJSLI1Eu6Ui7FiFZr/U4e9bEEetZ2ItV1s9SbC2JPLv97smSHdmvs655nfbO0ePj4yaOVC39vZRkx2ZT0XiKj1Rw/KnhrCuY52eMKxwRgk7jcec4CY67Yv89EWR6FroYCK1zV+azt40DY+2dcLKeO12pTLo/yPAqm+G9JYi1sNWZe+6oVQ3FHFwZRCpl6Ir6+TxLLc2cuAXXGWXWHLPlfaP56FywlVEt7UheJ8U3xX7reWRLJK5R/V+9erz+9/f3h9neMLzBYDAYXAVuLslwubm5+fda61//u+EM/g/wz/P5/A++OWtncACzdgavhV07xEU/eIPBYDAY/F0xLs3BYDAYXAXmB28wGAwGV4H5wRsMBoPBVWB+8AaDwWBwFZgfvMFgMBhcBeYHbzAYDAZXgfnBGwwGg8FVYH7wBoPBYHAVmB+8wWAwGFwF/gPTHy3NM8coRgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -845,14 +1105,12 @@ " ('Non-negative components - NMF (Sklearn)',\n", " decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),\n", " False),\n", - " \n", + "\n", " ('Non-negative components - NMF (Gensim)',\n", " NmfWrapper(\n", - " chunksize=1,\n", - " use_r=True,\n", - " lambda_=0.5,\n", + " chunksize=10,\n", " eval_every=1000,\n", - " passes=1,\n", + " passes=5,\n", " sparse_coef=0,\n", " id2word={idx:idx for idx in range(faces.shape[1])},\n", " num_topics=n_components,\n", @@ -924,218 +1182,17 @@ "\n", "plt.show()" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Image of stars\n", - "### (For the sake of visualization of performance on sparse trainset)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAAByGUlEQVR4nHz92bOlV3YfiK1h7/0NZ7pTzokEkCgAVaiRLIqkOFPsdtOtnjTY3VY4osP2g8MRfrD/APvZDjv84AjLIbXdjrbUpuhWayBlkRpaLFKsIllVrAGowowEkPOd7xm+ae+91vLDd24CVUX7RAYiD/Lcc789reG3fuu38ev/p29cdM6UYPviRC4BikMlZvUv3/31//m9v/vN91YD54xO4Udfhgj26feABoaAl++VABg4mSEAfvJ7AMEQkMAMiSghIiIgogbC537qzQcdmB9qRK1Ri5g5hcx7Vf8zP/1bh6eOlNpY3H4J+v/8W/+gi2qW1RTIlMlQRVnQoxvEIbpKWichRica0iQNVc+T8iKB+N3s/mk7XyKIvxyYkLM82TAogCFxPZTu45MJEEEED5ngx18GYM/GCwiAgICXk4JVEg8pE9CnPgUwThKCGQDg+HcAMDJQsJPXX5u8MxSbnQFEM1kGCqSgm6X7w2+f0mxdwPGun78UP7hzwXUTdE1g5GMOSh5iAkfAyQYuNSBgIHKb7BxlnSktzsN19xQyeDox9zve+x4+ebQyS7n/8rdaFiXQ7JZ49OePhnM/ZGD98eXfDsR+9C3Ap0faQRDaGwZT/NF/eDZ9iKZoOP5kRlSATVe8mN/pds7mBqbEBGIEXs0gn/LgmdY7/Y3PXrzXD3+na3Fj1eAlu6pLkzyYAqoJMjtgZyUO5YEcWkFIkCYDdYu9ax8n9kgJ5u4+zT2Zk8sH6olIByUzQMxovnj6uIZ6Om1zoAhsPz4CBNg++/jWAD49JcaU8Nd+/vXfGz/16Q8ibP+HgYEZjd+FTrMje2/4ivtoPXdgGUMAKQGy66wUhg6kbLy/9urm7Y71qRoVMXr1ORGjT9kITR1zyonq2f5EhfNpUQCBZFfsrKpw+0Es0zSvw4Jcjil4kU8G5LQb1p1TRFRjnqRH/TT73b1NkxzbXzB+vBz3j6zr5UhJlYsiX/z4z11+EJ/tAwAwQw9EYkbp+AdfLd+OZWKX0RmzOCDnvbTZQlc5mrzavRGdnZfUWIFgQ/Brm/JGHZoAgRhVIGzXrk3c4w/TQW55FmNdr/bw8/p0r+/LGBZyiBAiTKV7ZgMIE7jsFMHMqCyqdWQ2yHuxGxLTT9oAhB85BmgGBKDPllqgJA0NjUfAPn0GaJwoRLycSEMP4FkMgcvnfvrhu5sJQSwKnvk1XXgIGXK2fuPCtbvr7zcuB68poeQ6JdQ09+dxnH3CbOTVX5/e+fd+9f1//M4pzjBNSpEiFrtu59uuSd4Xm3utAyJNis9Od0ZyZj4pmZJjOBuc6wn7J2VpSfAnzvA4pE/GZWaEaHQ5IVJJjxbLaONCP5s3+/RPbY0gGqg3cS6z7+DsBz9VvENAgd3spc9/6zS5HDBbMprhzqvpSYC03ysn4Aqy44zzet17gixIYs7lHF7+pTfLW5/ry9Jp2GVa0EXY8U+frvb9tbak9dPGOd9zMUAx8PZRyg5AA/dggIiQhoK5oORC7ox/bAUvx2+fGhoCEhFY2r7njhlIhtEL/sQJ2tp+QIPRDVKd+0xcWantk+rV6dvqCW3n7q89XE1CP6H+ggYXr3z54nXZaZMGYaxirl0U25seHVXdziQuU8Zp15NLT995OvnasWQ3l7PylWo6bQO/0cD+dF6uiydPcdE6IcjOPtnZic1AdaezRG7SRczB9YlckQcCdWBbE0cUncmkYfixQRERQX62o4wRTAkpGZIYKUN2mApBM0QEEiM0RaDxW3FDDoSjL7Ppk8lXZm8RmR/euzjZVdrxgl0Z0nOfh2+tbXHl3F37iCV7A1ecHhx8fL5YQ724ABZISJBx+a1bR937TjXRgfafu1Jx90MswJ7b38/vtJOf/wdrNy7AJ9bZAAEs47xNNWYNBqBIZbhIylXOSGAGgJCd9wM0Rf6JNVXATxv77RJnp2Js4gU95Uk2NgPE7YfHEMgMwBGRgam5AJROPvqp+XuIcT8tPR3000DxoKvLX13//kWA1l2LJ1NVUXB8ceP5o02I5bDsukgKlqEQdRM4PqyChkn2V/YXX3z17N9am2b1zi+/+OBNkvccu594fkNEzequHkOplmGKQ1VKn31OCSDkrbXyFAFD/Ik9bQCmIM92ACIYGIA6j2JIEUkwADkEJQeWDGzcC+PcKwCiIog6H3R4eu9nrr4DZLUvh8Uwd0OOiX99+a2VebIM8+mSWWLg/tb8vPWbWkLfGpKyEAI658+FYWClrCefb40OIi42jtyOD8Gfv9OY+0mrBgCguqleuOh2j2ssBXfCsofsXfYmBkBopuoxG3P6ca9gYGBon0SCYABohkKl9OYcEpnfTFTMO0KNiGCIQOPus0xIiMTOxIXA+v7eVxbvqaNpWMF04lbXG/y55uuHlVd0eVPeJCig5xAX90/WNOmqRGRo6GKARAVtVtVETKQruTy9e7HaTKrrq644/forRyFMJj24Tz3m9m/juuWL+jNn3c123uc6rPrdnfcjqmkOZgYAhAJsUnU/PnVooJ+KhMEuYwJBHzCaaOGTvdRdEAeN5onQAAh1DIfRTIWRXMmIypWfP6q+MH/P6rKsO6ba9Yu79ufNdGAxJh6Or/X1pIulv98AS2nRiJOiKSogUxpcWhdgZZ2GPJxujpuwM3Nrf3j6A5V+s+z8TxwBG0N7hvDkyqtt282j5lWj/tXV2pqMZcg5ASG6iKaQfnIDoeFoB54diXGCKXf1NDYUqlTd+lvf+CMqoBsMEQAQCRBHR8CGMFrHAiVOqlk4fvfLX353Og+5qYwdXiv/lVwR7sECQ9osDm7M8tCctwXNls3klEDEHGafLfichcl6CmTgwsEbrljs/pXF136wXILrNlAwd+4v8ExgQFTZ5OMbX/14v+hO7neM3ev9FOu88YijQ++JYX7zno9/wQz8aMhvOCaIKLGoy3Xh1dWMc7JBvQoRGDIqISqAARsiIqEasBoS8m7z8Req412PU0dptqj+ZKdp9g4r1kDKZXf3lRt0+sP79Xm9wWpViAABEYIhSDYXvcsAsfe3bry7DLtdsXfjID1d0aQ794P6yyPwyZ7dbliUmc4e3fw1u/XuBtBDe7a7GOriUTwXJQOzYHHnl3/j77zzk9OHqPhJvLD9YkNAzM3e1aqja/35b61207qziXQewciBZATS8ccZEJFFDVGy7cFMjl7e7XbKrvF5H75XrCeb5bx3WZ2HfCXsvla8bm5dX1Boy8GASVVDDiQRCRftEKh1k73FxUeFfnCl/N2D4xQxXT20te2tsjNhSnzzuW+6SDytz6DXIFZDqUVRp+rXd4eHe6eCgKu9r0zn779uc90YJhRkCx92PjoPEoE+2UgGdDnuZ0ESoYB5hn7zmRPgvSYf1B92QdGzt4G5y4yEhoaIhECMoEFlMimrSZosqvb4c8KwH1PI72BRLCcHZ+ZVGLSWwbE5Py1aNyRUq4ZsgE4nnUvM+dpX/rVlZLbnHrUS+xAetUVuMcH3ZGam++iQVMPBczeq1jTPy1LqruGQfa7zMJsTxRpTWLca53L9f3xyWC+sFyIWUN//i9k6c+FF6Mejoe3ZtzEDRjRgEHOMfXer4mK5mT3QQpSqEtOiWyIFQUBF2O4dRGLnQ1FP3aQm5+3iwKFWk7hEBC4zhty5KlMpGZ+E6oKa2YB5QCviGJkhfPn1EgRJD04Tmbtz9HGYtDN6sPd4EE/aLU7XEz+0lRPGJMu33u6zZ2n99cVhdoTiZsThYn3yLb1gjX6Sa5zUB/288r2quCIrxwKOPJLnLKj6aXe4zXtHc7r9uzChKx2vrnxJKTXfwXrogKpri72PH/ZOFOzZZ8dJI/bsi7qeTqsquDSeakzs0JcdMgVn4Fwu+f4jtIGbRBNqzIxU1IBe+Jmjs1jQ0beWbhFnu3oomj0KrXLf8zQUF3Ny7uBs40wRQdpkJLmyg//0c3/n2xidcz1UcHH0zjvCfvdBZInWf+9vN4/7qEEHraougPO9K7Nqth/fAHaZ2jxLFkGR0cxV1SJ8/vPf/4Pp0lzlTfE/e+n/8hH0rvNmiDRmDEiAxM45ZjfxXFTsCwJgALe7rrLmjaLznbicpjfune9O1uTrvmkjBHemBiYI9w4v3ARMN2Gyv3Kbh3VwVGhfnwIOzWa/YprulgpXXTAxMQUmNaBqf1EoEOcGi2U5PT0Dbg/2rq430E83b9038C77sklQ7vZzv5mHGGICzsg/ChaNpnQ0BAaAiGTqUKLnunj5dvdt0pg0i7ez/R4ppowG4AxxDDSZnQtFcN4BEgKCCiOCkCvKrIN3LnQDQ+/Lt4+G80KHojIQzcuoCiCAgIeTkjoT4osibJqQxIootgqtGFpvC5pevw0ILgEHVIWs3id7/A+KB6QOok5xMulPpYLuwa0re6vMXZ+D5nnZ54lbKe3kMN3kC+pzJPyJHPFT6aEZoCE4US7IhvXJ8x/7e8WUJesg/fq/unI2GVzvMiAIMCEAEiMSEXsESOw0e+izAwOStWZTpJBydHmYVsv702sXqynnwSSLqYAJmAGlWpZKLC5DoxvTEKT1PRaUu6LgZHhlUn/uNfi+86o9ABBZYsHlt/PEIAIGCRM866ohcvth46t1fYQuqfZXQIf6QL3eun313ceb2UZMEO0vQgsv94LBZbbnzPqzs3/1b/PuKoojluF+8XACQ84OwMgMQAmJiB0jIJiKSfZoCiiGgOBj0/YDhjaSZSrkqGg6F3oqB576vFnSNgpX620OMZVZZzy4chUmMWeZ1MdJQIGDrYfp4jY8cIkZjcC0arNPinTCVU5+KHbiKYZBow/p4c5i8hA4eyV3PqNhchWH3Zt/5Wf/22/HD9SZIP1FaPHoAXS0gQYBcm+OivDH3llYTJedUM1tD+e+dIUCbSFiw9EHEI2g1NAXmCWkVkrTotZ+GDIxkHS8iCeDTFKictemsemGjRSdZCA0qLq6DfNe5wZDtW5mVeOKi9nB8SpYJlQoMeaTixAdKgAYKAzOBE2BpAXIbncZRROZDoh2EaeFDAAI4tazclO+tNNcWbSeN156/XTk+2OH4BI9QHDCHONk5+BeU2Lr9vYXXaKNookmZJfAkABNEZAsgZEjBQcxDQtufX1wrw/AzQt07eLsuNf1AJ2v4tocb4LGeuf24p0fbIoUBJHNDCgWWTmwA4rO9wVRzbG8e/woQMhtFbrZZmjfO96/cDbGMIioCoSkxCbo/UaSArFCNkd6sdwZkFjMxSrxJJ0uXtl/6wcP19ERs8L/zwPwyUsSEWCYPt10PVs66mAqHZEFEh2MXQalERcCAxPKgo4MnLlOZjs331y7OEy6e/Ny576mo6EdGIemM5TJEGe9/80X/x/fyc2kvdDxNCqh1UP/7+K9Y5k5JCygsy+fvLu3KrL5jbvWTa6ffHzdrd3l2imQA1MwBjUy63SM5SwDMSTxBXfiMQZvAkaTF77s/vy4ufIhEqvZX4AVfrIPEMxAvXV+4TYXXKTEnI8mPsSEGAUIDYwVAQ2VzMxAxTSbxpTTRqbh9v1jLFIvtup098bhMq1U2bpWUTGqbKb2xK8XDZzLbHUZzCeE+vqvLn6v89e0ksAb/uJ7R/PeD0jCfj25fX4kTyvnaHtYL1EcMlVi62g8umaEmJV4OQs5IrGDAvudnbD31e67IafJ0hRs9N//f1+IQGUxnEkdKGVHunGusoTkyNQkF4QINuYZAAYqKTKnNpU8ff79VTNRw7WTI3nw/ItPIncYYzSiRMugm/rot64+ZRnq6JySARqQuaFu/tu9OJ1XutsDVvtPVuiSa4glcLyr7y2ny51r7hIJYFEAIM4GRKhKYEYmhoAqBoxNCpCoQEAP0nfLd3u8dq9zjGD0aVD0J2MiAADjiPO660XBCHNiH4fgC8ix5JSRwBDRjGiLkprkNHgdVG9Pbr23lKqunmAjxbobTl748jdOLTfJTFDFJS3bD9xH0Lvwmx/9CbOYGWA05jq8s2dXD1zYO+352rune4dmvUvgerpTvKFwVll4lg0mQwLNpsBoEVkNQC+jWTQp0qBMIJVPNInH+28+pOawlZaQCOzTCPePzsAYEgMqBeh7MZe7OtiQELXL3okMiQJJIgMyRBqdAalKRMrO7R+8em+Zy/lL8/OzbuXp2B+fv/bF9kRTxpyIjAGoX5e9j9Mdp2ZAZobAZH6TaxKqb+y5HeA38u794swyoUixU71/UVRJ8czZWOBFL0CGAEUWNjNG3Q4GDQlNhTXlAjMYiAZ78nhf5Mqtty6cIKrZp7zgCBj8BHxeuCEDCpmaYxcjgyZAnkRlwlCpyBgLj582TGpCk/2rL7x/MgRetzgs45J8f798cPzF1765ATA1yZgLagxWZMNm9jsdJkVGAFIuPeaQF6o7d0vo7ieI5cdlZCGjnfL+0awFiuW5G6NVov2uzQpFEdbZeAQxlAwMCDUBkQB5i67cuKlLe/6xHYfhyd7O6kIBTOEnQuEfeYMAnBKBYsgBep5Wrk3oIZLPhhiLW3e/PSgggSkQACBaZFbeu/6ZexcXNZ53/1216btWI6YVn/YvffY7IGCUEkbknKwasobTQFGQAAHIu6pdgJUwW9TXXq2/9+6sa/qDE84u+T1+uik3szzMV2syb+aEX/pf/6xTZ72dJ7asliITEogzh+DIGJDAAASgDAfhabJhpe29ocqSEzozcWjqBXWLqQGiGqJuk7wxJiLMSNGKbjmtFCgr9AyE4l/7T64gh6KIIKDgHPuE3Nt099qH9w/R1pvl+cMnF03XNowrvfjozf417tkiGpmemteshjlYJp9MtApcVtFhRWhYQJgilLMYKnBKudyRkyYk7iKt1+DADAFlc7iOBiGueJvCFeq557J3QTt0koBAKFhXw/ql+fG8uAjdmrsYDh75soNyqFsoh35MAMdqmQHYeKy2e2KcloZcTmFZ7G66UgdKKILdn32w0qKsn1TApuBIsrlU+f3nng5JDArd+Nxz7sw809K194/vvvLhQ8ahSGWrOZediiEJILoMPuXSKaD6ylBOb8SHBbqOph1UOZP1JpjBAMwMHAmgop7/7ZQpG9IliKnRT6nFQsXQkAATVzRkSmW1gf0Kdo+azuUmwqTLJXVeCZKFxbEfhw60xTt/7FCYcNULQEs7fDoEr9F7QDo9qqrw/K/8iwcdIRqg5qKt4erto6FHDw4kudT73CN/0Opymvv88e3n+kP2MRa9FklZTYlAQRE4hwXYkmfWk/XLG/H7c+olxewn2DiCXgjEbR/JgREqQAuuEINPYvrI0S+48ZgFUcknF6ohWZFCeSGvfH7+6A8AerZ1XZXng5FGTylcuT50AHhpO8cIaRy6AhAAALlkzpLrLxYHx30FDoA0koe0+NIvf+tdnz2CJQUJdvPm6VqYmPqVORf7pC26Yy0GEh2OVndfTqc4FE0JSl0FBAAOhTBYV1056cyy6mDu1t7hD+ehKTSfmw5OUbIBGdq4KR0aYiaQEA3AI18+MIbhwh2UqwrIFAmgxq5jpxN3vjexn/nq/3vnHJKYrGuaTeAkeUqgj5o1bVEwGRGRn/AGGKvrumoAlrC/cx4rNwijqWZOf/je+9PIjIZA6P3NW6sTRgs4dL2rhjQ4aQn8RqwtdT05//C5O3IKfTdz5342AJNggGgu6bxo10MFrVfAvdcePEDavbAabbNOBUgmA+Mx4AJwNvo6SuwwZaPLB/YR8dzv1Wtf5Byw3ZduUEfgG2mn+vBKX0MXclv2RTf7zPKpM9HgpC+SbUkfSGqXUQAgoKERGCCV2CWn5luY4bIpmAxLUmgpZ0QHqORAyF25szzCOMtlblumPml0miAX1mECtI4O2zsvuof+84+7QsyIzIjAa4j+YDhWlsTWFldfevpRPBh66M5ctU7SS1YiMbw0Tg7QgMEQcgZmuCQKoAlX/Xl1zWughMCT80hBJPSxOOHlP/+T4WIseFWbKb89ODUg7Skaj2UmdA4GpRHrH+lf4xcz9emlk3PqJ8MFzm2lBSYVACm6wR9sVmbovHA1vXt2lnE6uEGbHNDUYgbRXgjR1oqbEs/whaub+YurtmoaT+ArR0wdXGGK2esGvEh1kN7EcpCLMjdaTvK6t7G2+wzAQCQjysYAYNusFgEBFSV4rW++dE6TYY3Fg67pAYgEsl9MXL2h8Phcg4AVVWkXfRio7ApRRDAzwInTTWISHCcABcfUGNG99r/81/8kojqQ+TSukBybGSt4vba7bsAx5LDz2ZPVBe3BZjp0mYgAYQASaa3uyLVGnXrOk5s7H9lpGjyyQrUoINSr/vrwboOS1GnevT17Z15uHMFAvLa97mlUNERUubTPjoBAyQzVkMCMhE09DVCrYqknB5/PCz2iD9LgysRRzMneZuWrZGWdVwPbtd/41xcv8HHIXr0P0h2slVI6qM8GhpF7ZIYAhGgGSAC8/PqH7LKJow3u5dbM22pCaFj0zY7f1MF0+vJFz/Rcf1KsYzRkxxJjKb2g9YSDSZKcHa6f9DffjqDUe/bDZn5tETY53cdqJep7nN2Mr5tFimBDaDtp2VtvOJajtzvgWW1QAQkAjECdi1BFwaICrs6Hz+/QxfebQhTUVC3uNu2sGVwegvmsXh4mbfavTh6eKziBnX6Rer5anvaYFSxk2PoVRSAw5YQP/3EPwAhiNJzthhaN510wV2IehturVVnV+8O6uPiMfjwfelEwEwLBBl1OoAgiqh5E0dY53P2oQy3Jhl1J12/vDkff7LkJHYDMdpsjEyTMhkNDJoLsVUXxU9m7e8ZwQgAj8gM7NSIslUunzAu391fhn9F+C2BiCnrjbAhLDyP67gY8/ibpx/q55x8fiExPatnvmfX5dwZjYXdJlDFAMCIDQUB37t0Q2IxJ22IWuq7euxD2xJ7j5sV22J3m5XT9yztfu7JZoSGaGkFEIkkK+EndjUCW3QvXl+fOMpSpnpQ//zMP/54UFxlZ+8le23UeNFpCiMaQsjnnxfKna5fPdgCBqZF3KsS5LIYgoUDyyHueXLH3nmiWBMb+lKYdu65A0gxEiXtg19yr7zypvb545opJUy8+aMQl8ECRL6MgHEvl4Ack6gMCASLARTEN0k2utzlhqBxu7OW+cIfz7s6elstV1QGAman6Hsn8YApgaJQMAShr++7dq6/SN3eogbpgLp1MgzoBQz8cgzcSswQkLKIGOVeArJ/KVRx8KnMxVZt3vZ9oDNkH1lC6eH7/D6abDAAIpEjl5GFQNBrIgSCRhZyxaOWdL5cnzgXdvbC7Ox+d1kN1DiiFPSPgjEVzpwDRDeayEam5ki5wpz5azhct+sC+4kf7t1LYacLyzxzEogFAEwHmaK/gO0K9jYQLJZSMZrx5/NxfppP/3te/V59R/MbT00URS3MNl/3GfCKnZBlQwTIgqg2EZPZJLfMTG4AIqDEXB2fdVNpaC6/sEVbLH7xbEu89FjGijC996R9upuvemWZCMgktIQx20H/05b2zapilG4svu/evnpeTfhAJIW4ZogaoZoyWPIHHiApE4IvibOVv7D4631/sdliX5H2jBzevPnx8f//oYSI3GIAomHZhh7B3YuMpAADN6kgXzT036U9W1YCTh29+uAnGBkJBODRGmdRG1o8hmAJlZoNPZe/IzyaAQA2gvEprCmY2xRQ84ExX1+3xnes/ONwk4wSuXkWok1FGMkQFxt5Vk4rCS1+WZicNq3nXf3e9jr7tHYhzZjqyJhUMEHkwtKqIZsDsvMee/dUX9EPam2SrC6Nbxe4XvzL96L9bPn7UbtohmyGIQWbynIfGqQKhGYKpKPm+Hly1X8mT6XDz6ofdAZ5eXx53XbBmMnkMZQJlVCAFM1QFVgLUT4Wn7hKyGgN4wOH4xd2ntNtgKVixUnoaPkD6wfnBpokA2fJgIbchmzKq+qBZy2IA9eXj6z+HUl00D+9tDC11wS3qw9KriJih6ciKFiderC0IsqHDznHJx/PPFo+G6qrv3I6T4P0OljtHx11ShWxAaKJhVUbGphhRfDDOCghiFSRYpd3ZYrmw723mHxb2KEwbBz022dnAaoaAZiDGhACsoPgpwMahAYEajjksObCnL792XM6NWlwsvdymI7UEh0texA4o+0QCdecEITlIGIyYpqGqaHf1+FcmVx78aWfrAarke/752e/r4vrDYWgddmAICkBGApkGmlCc6sVuVwaiR/qF+QOBa5Z90evQv3lwYRt3p3/YOm9qKSt3bA4GZ6aAlrho3cDIXZGgAOkv0j6HRw1uAsHVB1JvWkDrAQgMVXFMxMkEXGZDZ0K6TdnceEIRjEYEo3T+8OCnVzMXl2F5cNQfrgVU1LoCK82CkdCo9QLk1UxFKxLzHvrruNidfdbbXqzrWJ0jlutvlPH5av3L839zvI4jzdzMgRo6BB72/MbfuNgVAefjw1eqVeKrUajG+vTEdYeVPSVXr0jBTEEBNZmAGmmiAgZqC46pFiEwhS7Xs27lij7y37z5XzwNhKZihGhblh4AgwGbBMwSAYxNAcHU2SXRdTwBKiHy2bXPhhBb98ETjk9TgpxE+r5wZadEAoi7uTdJ6gNTcszoQlUsD+rYqpu4G7GcnC3WKxc2LS7xyr979fsbqdfb2r8SGCIoTP1e3U6mvFHgipeHd68drg8WPBtAzwu4t755+4ebVbNYgelYohA1AmFTIJKMJXW1wQCGxsi6MbdzoSTpe4+yX7oibr3FM6qOswhskggdAJIAgKGBIxuniIwIgMgRTOPmyivX3374K/f/ToRBNSUBpSGFMY5ytPuXv/8AjTGbInVaOwbPBR36J5Xv59b7ancVGMtefesP/uAzVXEyMsPRDIAYFIDDKhwcTDd9hwxcV31367ljLG5fnb//3qR9sm4+vLn/oeMLyFkVABREiAwhq+eUSfsQzIgFBFzhdHWys5tWwJtvldpnAk8gaIqXBTomRTFmM0Q1SDRODzkDAGQCVEQidkFLnezgT812/sSeBhHVFFXBHCQJ5JNi1sEFF83BkBEpp+zQku0sa3v9jJdVxUt1ypOkqJr7D8Jnza4fgykgKrKgs8ylF7Cd//CFf/hDAALlyWT19ItXTuzKXdc8yScb5vNUPX+/gCFnHQFFQzQwMceWjP2AIfxS+P3OFLJPqrp2+/WpSj3EXA5YoAMVRAMDNAMFcqbiMQoqEzxLhhQBzCEYmAGxQzbqDVZ7Tz7+7sM4iGYxQxVFksEjZSJe/6Pi+nDUMxZgmbTnAvvi6Mbu0/PD+WN8+fmj4wE7yeI4p7R54/xRlKJXVKOx5o3kS9FQzV7+wnfeYkNPouXcjl+6qVe5qXc/wisPU3m/nF2/9d2HYxhtggCgZrnklJCEJtrPn0+oAATRNGN13OzUJ34JIWn26VnAP0ZhmZynwRSMOTNfUnLMAZoREGTdQiOFun558q/nR3T/caqSqQiamTCiJcKyV4/y1f/R/7NZCmo2RJQYyfWTW0f3Z48f9bJ66c5FvADhGH2YR4tvpRoGJwA6wsriCpcjp+H09773PhYE5SS4FKqj6oVrRVd0S/RrmfXzi+aXf+2dsQNLFQzIFMBBjuJABTJu/nFMCgiQAYv5V9567Ba2TlOsOakQjgDnlrCkKOQwKQGxUOklCnnQ5DyBAvPI2B+B79MD/s5uvdy/9vg0OQIDU3CqCqiGyohWvP+NZYchJQig4GSdZ/ULZ/eKfKG5uHhj//q75dCXHoMl4iFWvTeHIwSlDpRLG5wBXPzb0PuCcjGpprf6yYx27yrkrgSA2cV6yPbHj5S2u2Y0nci+j4gZmQevwxMWzggi6Gx+/X5xOlyHPMjPdD9gMSAE1S1lzwjEyoJ6J0zV3nPVd1XIU0yuQowya2Imtgw0pOBx9lY+I3jr1u3lBQ4mmSmDONKRwAEZ89k/EoYMjNmxifnoXj06005cFMWL86svvANlwipbGDLQQAI9OB8TUUJy3hSaA8hnDS64oJDa2iXm2gMY+mqyswIXu5j6fDoNCZ2kXEQDy+aCKhibVdBn1wPmYIIIB+fx5J+3g5Pjna5zr1MZXUIU8pK9qMekiKADlVVXFTZz/7Oj8w9ool2v7kq5FOy6SQtqrBHKzdV6eeaHerd5upyfLKuc1Uf1CMmQxkYXy4IkY8VHzFn0OHliaTPRxkvEtNHp3Q8gQ/JXlusAqRzMkIFLTOZjmGKnYU+wbctp68gRFyGs9yBVydi6ZtNP8qOha1Ju8+BKbhP5BGSJCxg68Jrd/BZ/vDIvCl2NTXntZnHYibENg+y1p4pC2bEZGmB2PhqzCnqMbjpZ1TXlf1QWExcOGyzc3cnp+unAnc9GoIoyKWSZfecO5Ux2b8QVORmQhRWBSZWBScVQCICA0FjRFy/kjyeh7sV3AzmIR/naC+9M2unuSisbZhG9JcgSCspSlZo95YEMAvcpc1H4ggVxWBy+cN6Vm/X5Q3J1OYUlBY2eVYXB0ASLkBIDI+T1Ia8TiHiGmDmfwSoLeM6Cja8WS3UJ2MZSZInCkh0CMIjolVtnHOJHRndX73ZVTO5X7/7wG4+p3gAAghLCPK5zkXLvEOH+bBHb4BosWkICMHSq6nBLhDUiAmOdTsp3YnNjf9kY+hR9OWz8wcuHs52LmCFNf/F75zl5nzMFlrLCjU3LzV7qIWw0UKI6sPR73d7DVy6+93y30cXqnvgy9qjkHfQD+6SkGasiR1A1dtBmw9IGUOUOJtpGFM/kQA1P5ntulQlAjFW43lk1hevRGJUC9fnKtbPd2DQ78TyWJsF98Vf1T+uhLaKAGqArY5OxJ6m6+QtvWp8PjnpiHcCIQIB8lrHawQZKyE5vLFf1dFn0+cRfwWUdiqg8ZVhfK2HTkbNw5dbHa/ME3tngZ5NNZz7DVbDCt6nMjD5Qjy5Oz2/wHxYtHPFn75x8FEOfDdRPl232LgMqF4UOCQxZ1dirJWPGLIUkDU4AUqKCo7k2HPCJV0bEAcPcyIn5IgEC+8Llwy/RteKkTN9J++sBxT185zCUKKAIgMiULxIoLuLGrd4d8tqVtbXORzbwZALg2NSAAczADNxP/w/+X++2rcTC2kO+Up1BVfZSV6jtnc0pZJfg5GubnivXEPU4u7LBhBBlevvaDx5nUrJQ8jAwDe3nq+9BaoJs3r52e3h7gw7DzGKnmsihaBXSYCg89lQkS1o4FdRgIkUW53PqkKsV68ZNry4zgoqbTrvl9PpyKMwLBqJips3x1c/dPH36XVefdY4H90dvnEIVqoEQhIh0rVZNNilXDW8A5yLZOSWvBDopUXJ02vaKSIgGqpEJsMulChbxaX3Nt3Wd+7JM9c6t464v2xrxbHGVKECyYr6Ha19EYg5/7fP/10OzVPuALfrYyS1903KpceHPu6v78xOmogjrtQJmYrKaYswEpobgSTIHYkuJLVoQzoVQMO1CWSnqZrKLg6RMdaGNiNsfZJhm8855SFN56ZfvPPqdQbshpBzcm65ZEAwkaGaowoDX7nzvoorU1QO3t699RxcXse5C0nJn4eCs0PPzYSx3qET93vvdUtxqkUvn3FP/5ftQwuB5c/POX/5n1/XjKUOlqSIOMPTlDXo3TUoOhuXpumXw1M859n6W1nfn78dUdmAnUz5aX7trx7bnzlfqo6Fl9JNNZ6roQFEBHQ1BB+dZkHMSB+A1k5MoBzJYnbqDVc5W1s1DO2jOn/enxQSSTSbxIuR5sTc/rXYeCSe27J74vKwnfQNDhcaDszSPLXLPQglTPQyoHfvkJFgLN36l+ePJf/5/POXkFNGQQNYtIcSQWJJzobv/5Sc8yU1/B3PdXbyQT0vFuo276HxfXnff7a2ZVqvBHf6Df3bS0lDNsc0a0vBi8cEGuWUfoTnQ9vG1l7LMnwxOIxBoDtUQ1bc1toRIZD47w6AZWTMAJxZBUEOCzXW4KKtCbgyr+Z23Hnlrgzy4fn19UJyUB2fLQpuLzR+/9vGmDUVvRsmhtyYGKnoagqUAisPjpiFNhRuE8/lxyX1NmzKGYequ/8fDWw/+6SNWy2M3GEJkGnMpYu8wNmdf5CIN6ycPmrcv5N5rF+8tJkMFevP608Paf1fZtC/qGg4dmy8z1UuNu4O95N5LEhyw41V4vCO7XH128yhGo4yYqHbaKQ4uIqGMDRXZ9FmJa+xXRkBkZipn0f2l4o16v/vwuOYhZbJVeeXWwbpbbtwG/fTw6N7j4uqDjaEwucJSHCISVWu1yZcWv8+mF1AIZvVOolmPIMbohgKGR7830NnvL1HHLj9CADH0hGaOCZ3z4ax4zu8/uf+w/pjF2eFz/sJNnPHBf/jnH/Xfskmbc6+Tslt5Y5rsp2Urk1Tf0gfn6LJHQhC18sXPlHp2eC9h6DgmCD71xiT1gC4z+oI1i43p9ZaAYpnRCMiFfphND16ZP8nT5WlZnwEKeyte/KmXjv/0oXKVb8KfyvMX6c7Bkyc+DN5NzjfIgwSlEFJOA2YssySkBFgqpmIgF9lZ0UmS9w8dxU1GYUUYJwAAgRiMPLMLZbk3LF7emz7dXTrADBf1i/P1Lqc6f63Y+/OduCFgk8humpP1RTGsnA+4Mz1cFg41OQYwX9je3bvt753P4kDgBqiK2A9s6A1NALkoKYpt+1MvayQydpsxZtffvbPsX21Xea7naEEolNXeL37xnW9juVnM8d2z6n5eNruzQzUA50QYRFNIliV+3zgJKyJpob1NGLoaExOiLppCHu/xyk2zKH+CtAAiIFPiqnRkGjxchXnpdXIiVFftycsoLNJWiz8hLAYxAejyZH6eQu1ONo7LfJXvYTZi9IGhaFl9hweqJyG4pUqoCknChlWxQjAAFZE8svrMgMAMx0YzMGYXqAiz51689ejdp3mG6/nGZbSc9ej0BOu8c6X8+KjgY7Anj8PVY3HqjLwM6AwiZMUeGW0ARjFBJ0Oxs0lYZSsGiBNYwrpJYWpEagajSAABqmqA4MCAmY7vtu8XT3c77nY2UJlr2y9AKjdN+kGCgIsNCZgo49yhy5s0KfIMT4YgjMyAYsAy9HD4fprWJ+1009ms6JrBkNykWo2RaASUscJvgGQKOCYpZIwk4G8U9pnn9PXnbv1pu3gKET2qbn737Ycbpy/XR2GnW0HDugn1pLPsHIMBsnRQUFKCxJgZ1DBT0B6rm4dDwVpZtXEt7J273I0Qy5idAjoANMxWgERvoLL66PHe0Xx+L+FUZepm5+lFXnQPX/fzdFE+3D1XA9A+X5mtV8kKJQinw6yTiSnKQGCTDGn44ZMhLQ6Hem/pvMRBiUDaNmdmpwqCYgxb/sUlIcMMmR1NFbMWVRWuPh+/ezJZrAcAN4F7w4Nl4XcKWpQpDbmtctEPddmaq0y8JLGQewbDhErG0bw6yMpyTrfPhqnalG8uy6priHgIaWS2jgQzIiICVVTEvOkWj987QLSD6x9aDGUItuiKu1Wzmp0MfnY2OzMyI7Dh/Ha9UatY9866YhmqrAiKnt1qnmYfDdOh2asPj2dud73KHilAt4o1O5+AEdHAyYj6jmVHAzIkx871wZ0erL5x6zS+ewb+pAbKQHX/Tn2a5TPXL6rp3cMskQcbENbOq1tXTY5OQdAZoJCBUiYTMAJExPX+rTNnJaZmUZx3hQhAZjAvWxpcpuvzKvZnGveLjU1uxvfjMqxx78r+fefVwYx3aw9+b7Y3DDKsypUAQeJy8mi6fzEQFKcJE0M0smQhSxXz9bNDnfJwWE7jZpc2LuViMjRgdWJJjsh5C9gLECqwSgqc2YQCe+wcYT/feffDm49df3jc0op3z9J0dVS2bnP1rJnH9s1NbkASkYIlJPfhbcqh83rZ+keXALkBABDXqztX1nB1c7prZ9Fp9pIVgEYCEBHvQb76Gx98LXeziwm6A7xX0AUpHQ+7e2eE3cGmeHr9ILTHbR+nazx4YqTRfFmuh2H3YD1MVgk8CKEpmmXG5WTWHS4DhWHoQuHyav8U58BRo1kACTaQv/LK/ePOlAFMh+BBkBTRf6X7fpWc052nH81OuuPZnNsUJzCz5WrQ8mS3uKiLiPIkAV99uF1AcMNhwJ5/pONlhJK39YRoJ7df8VM53zwaHBgKohlsBTGQ+HNnmxf+xg/vrbB3q8VBbntBY0S/Wc2vRfGJD3c+Plwk2H+338jV492l9MAlpyGGgWfFhWQk8DQ4I1TNPCtys1HrhqpqaT8fab9ouXhM4KsWbUCaIr/8v/rab5+NmL86zY6oCkMsbjRViLy8C9+dbJqhaWhnfQwn5U6QyAGoO0GcRmBFCvNijWAIim5Stin6+Izr++kWWGZyzi2nr92Y1g/ejcCKLhkimuolcfZbtP/oH95fkRvQT4uTpoxImpzjj27upsqt7Xl6fXixwc+8eHRiQxJK4AsXG/Q+tZPqPJnH7MZOQzHvZvkkmifStlpAtKnP8Pz5CSU/re8TCw59XZx9955wJtMtlC2TX/yFv/fR4e/BAF7urh4PIWlf9h8fTFZr75qeqjbrdBlvvfzXz//JKbRNOSzJDMEM3Gtf+Z2TkCm6T0aO2z+E3rOTnVl+7ufgd0MZllk70zEEkBGsNj+0bx8LFMsw7LjH5Nbem2Yh8BfDtdkS7lz74Xr37dSudq8eHjaa+4zBaVJ24soLu/54EKI4NgoY+qKLvREoh3O6hkt//VSyNwBr0QYHGaqNwnt/t1NkkWe7FcBaV62Ksi1uDcdx3xqnA2zWu/O2kBamJWXtiOPi88chek+6cgKIBgjuo3CakDDop0e/1UNDQs5WFji9lQ4CMsqWT2OIMv5ei9a1R1aj86WdLafPL5tN8DKITUzyBV6/8t7DxXJdh/f8wcFFswwJPQ9JC0Iqhguu7xxdYGHGRgTomFakSpTF5pNm/tLEZnlzr5u1AYbsS3M+cj7nle9KG20VQRZa//G3Wokkm7AHb88KK7s+RZJ4Wu8tV0brnZ1VbqocP/7tZpPXGga7VDIDd/5vXdGRjGIqCKBjMQUUUEgBXejObn/8bzAjiPMpJETaItw0lqyaoHrGC6qWCdfNNHYJxKzskR7NXrn2weGuXriuLTeHV2+e+4Y9p0GIAri8SvTklZvVismYGJACDkxCjETFbj7jz73o1qffMWp2lpi7MKgAEjE0DqIqGirmwoNY24CmwmBKD+q1q44GyZiB1u3CWK1fiQEl5HsfScgjVeSysdcpWOey33J5ntVSt2UVQoWWz9/6iEDKlDllBSYUHZt7DAw1YipV0uK8Ccgf7E13LvrCWRZLYW/26LheNbt95/s+pmt3f1gIahRPmObdxmGq3//pG/fO0DEzmAu5n5tlSeXel+8/Kqfx2q+//jscWpUiFugbZCOyhh24CGZmAMEyU1bQWAjuwUOL83yG8dr50mHr6dG06LLv48506P1ps9i4uuiFh2eMWGekKKTOtoMmBBt5rubAtSXlqvrgsQun1/YvHg095bJb3H1jrHYTmAn4bD27eIpBKcEZ7edNBeYk8PWdB6tpG+nQd7HA7vD0hc/9ELBNhaaqanpUCpne/tKX3jutcwVF5sbvlK7t2Nud9aO8yHnuJmVA9KdV1engDDypeTOI9CwO9CaQgEKW/aFhpx0mwXYDGVDMR/GcFNdlWaw72pisEUnpGUPCGSBtuxs/rfdnzgxlEE5TOu1LZ7i+MfGtS5T47DwXOsqvjcAgIUEmNETL86f55eOzW223v77y3OPTm/0KcpZ+GJzm47z/2fdPtEg84ZUCCDhP+ubLX7r/4bwobC6+LXeBkPrXJt/p3HIu75zGSCn5MiqHXh1m2nZkjEwvs7xdS3OeNXLCnMFpUhFARVNEBDaNmT0BgCggmH3S7ex+xPfZJ+XEgUEAdbNXS9ObAdLj6axplHvnh1ISP/ukIeCYmDErt1X3+Pndo9mc9nYeXswvms2cV5jWBeWYs+5V5WDoIHbEhIAE3D+5+lJ5XizAp1jOi24xP/lZ9+bFlTNn8euLXo0lISXHLgOgmhkaGD7rLgJANBNwvNKZGZAKWcc64gRjM6oarAs/aaMTGGPcS3kb9KoAQD/R62UIKIVN9vNKHGYPVe+LtmvEmDLJpYLUthEEkA0oOFQrCrn9fCMLV55s6rbtFqu+w0GNohQoOKflunJtdELMiOTqSa6/eO3weLYj2rjCWd++Yt858qbu6jrXqzm1p+fCKQNbVB43gCnBJfkBDcyA1XEXSuwopERiKEQKKIQjAZx7moWuN7WRuG1jGjWyJX6s9RUBAEIC1uR2hmaDk6REbU4X0/2UnCaPoXOXjRCMoLZFZcAxoS0upj+L2UW42pzYT93555tCG2+eFGQQWNSCKdllp2YBOIcn1SsuT2vbBJt1Z3d2vtXutb27/h7nC91o4VxOJobssj7TZbCxGWFsXCdAoFT6FIpkmi8bGRFAkcwAKTvd1BVvEA0R7JncnVNgD1F/tLEBzXqnqdyJ607JsmJK3nQwq+PApUkRwcwIDEAZEIgMEDSBR886kYsvuEKbd+6X6/eXR7oO0wYUKKXMw9licdY4SIQg4ChpdjWulrfP8gwX5kA/M/+W7p2kunxErU+mOZrxIKTJHPRkl7TT0WSpgo3paB5Ctbs4Phqyoeol/e/yhAiZdMZVr2Pv0pa+aQ50rB7jJ5Zg/BdGK/fOjzMU2bRIApAonu6SCzOHzZVzVQREIwRkJVRgBkALeQ4Q2v7VLzR/DhrxySOoTlOdiowkioapDehIwQwICLLDbHuTw9s7wLNpwm4x+a6bnQBPTpfk+iKbjx0iJ+YscClVYp9shDEzRyZ0xe5ffe63LjpkZHfZpYBgimjGgkGbotYsapdHBwAcqSDIVu7Fnu0ACFm5e7iBqlO07NS3gWOAzWwSd7565Z89pPEgAY+opAKyQ0CS3eR9V83uPDd83125H+cbO/XDeqIBY+dKM7+BebU2JwoBQaZBrSDYXb66G1+s2s0de91VK70z3JcC+knDA5kRJDYKeaAij2QJIyBDRDQyJETLASs/+aUXfjcwqLmRIYJgXpIRoZK3JAy9R8VL+wcG5sCbABMmnwGVBSkH5OSFkLUl6DEDUISBVSmjqu5e/4/816ZxSBkci+ukdENmyv3eZq7gsq8K7przVQsBfNlApg4p17FLRIIsKcO0piGgSkWp5LJ2BjTt7ry4t1hG+26sVnjwle/mDAkiJmfGig5NU1ZVf2n9FRAUkHTs8UbBPDR/e+8xWnSecHdFhXSwc0EEIOqdKpANYK7sM1JGBAU2czmQgQNRE/AMQETo7MopqSl8wjJ7tjnOrvnlf8N25VCRSBV7LjAmgFQPy9lX+zfThCDYEF//iNZlXFspwMweekEGBOsNWDpfcYbSo7m4vz+ti7pa1Fxfk+vrN1NYTv3hvzlNLqJJIUkcDoKsQASqhiRqtGV8GwiOMakxQ3x0jHkALylQv9/OqS+ehKzogIONQi6awBUk4CMzigA5tjG2DS4ZJSXNDvxXfv0ffZBF4dPiqNsXrdzso+q5ByVmF0BASooJUDQm7M5zCkNBFxP7cL3fhDs3H64acYWU1xbfQvJoairmYICiIEE0JPGTqqzKMI30fPJxNgeoaD2PS0z9jAbtA4rw2OOECCbEmHVsxwdDFCQQG9WHUdaCMPGbQbXoX7glTx+BYDBDRgUjNIOs4Ckmc2iASuTqqAUPyjmbFysBUjXY/s0dRDACJdvahjFdRURcnb/01577uythKqDL+zJkdJZdxqr/vvMlS4PTzSP/GPHw2p0/80MGiCenmcCjWh7bq1JbBotDGYC0D+AY+4ouagzJ1XVKkJtSu7gRctOktUtWnYls6XLILKK01emhcWKAQQwB2bCsRDCFnVf/pxf/xZEH1IQVdqiGZIqcIwWiGJKQNzPHJWI2ABanOtk9a7kT/PqHT7eI0Xji7JmFNFZsxA258qVytlS2cSR/IipECFi1+RY9HBYRh4en06uPevDe1j2BCZsKISqgdlg4pwY+2JABKEB9+PRuNIN0YUPqO7+SmqiEmpVjvT5VVTNAA1Hn0fLIbzYkkO3DoakZuNioMAlwNVPvp6kRVxR5dH7kSFETBzRFIiQAVxeyjsDJADG8dPDx4wFKOj2tc94yaLeh9ngWEDFW8PC3Z8tSJ8MQFnKegDUDJbIBnbe1FQs7aur1fNXunB5eWUy6GEUYzMQAoHeswmh9LgvNyGAGoOCoe17+7MZyR7GJm8Q3jtqsPV3fOd69Vj6IbQ9IAmZIOSsQbJmOiKBjv3lGIwAmgiYqEWp777+0BstM83roEgqgIjvoGCQiV1lThFAX7jOb00xoSJhN7h8el4IpO7ceYe+xk/7TQFkq/Cbbtesb47z0tDJkNABgAsCMvpfbs6NlSXKuRQ/6aC+1jXcKhqYK4HVUDCNJ5ByA6NjBrO3k+vefPufemvLevWOzs45Dj7tf/eJ/XXz5q1/7V+ezJeJWk4ksMbqROWq41axCUhUzdhwkEwLl8v3zneF2y7NSN+0YNCiRc5INlUMlnWARyH3+hw/Na+JMWHOzxJY4sbAhIKqOMpfj2o//JbAqnEv9ilRyEc8e+iwRnRmYGWuO6NMSSooFxkym1s12U+xzmQk1W2BSRQYzZkiuwmygmQqfyhv/sp18XOUn057CoW5EWqiab3zX9j//Ux8dPFmaGagRCrGpMG9RXTMc+1GzAaMRRc8ZibC+UA0Lvn3et09a7zZjrxXyTtsjGXGRjYPvL9zL7wRqhDNiaa2SESgbJHT2fHzENhahET8JvEqI4KmrD3bnb91bBgumruVMGc2VKc79RTrYbRxUtAm5olXvZxeR1UdD4N2bj5ZAKXDPQTXvYsNokvLP04ffX2GGjdEZyBDbvvV+EHgaJs23Tz8qmUgRKSuhGaCJOFLd8rzB0BKTmaFlLrhhhBKHeX80v/4z+mdvrMt2YFUjMeb1wbDxUIDsXexPnsTozuqd46JK2bmQTZ4BJSC6TuIMt5rvoASISOTAisrYHb/2Czvp4RAG86nLQIpsRIy4Vj2f3QK/KlyeFOdODLyJdOQl7f/Kv/+/BWMTqnpNVf3L/Z9sJtFLhOnRqmNCEZeWsazPGlgxNxyW86M/+mZLfhj7UUcgE8xMkVANAXhMh8apQHTNZGKVdThraVZ+6W8cvYvFModMioSIujj9wkOddXWU5/zTLlbuQQ5QGEwWbReF8BkoorpMY8I4NrxtpVKQmD1BOfHlVbeeXn1y/cMk5ATNDDQLrF1APKl+Ch7peSozujQAOhVLVkyGP30QVcUUeULK8ahr97vJ2fHs9bOmN0KTPki3pHp3NWDkYFLLwwE5yGwJW7misQ8bhHjkuxOpjcbBAAzFGZZ1DF007rJbL9lDSDqaC9Ccbp3cLqTgc5q3NMHs3tVqt2/9DncxImO+1Lsgi4KUaOsGjQxBUSA5JmBr8PzrHKvwC1d/58OBnJAAWAYhAC2KeHw6OzjYrJ8+EWdZlQCRpC/82REoCXhKrDjIH7pppKX7yo0PGlIEodyvfG6W+/XBR66HWqE8boKzp8Vkq1RjYKhgCLIlRmzFKnCr1m4xRLj11fVbQ1d2nL71sDmaH/fOIpgxgKa+30mfhTrv1h+fmy/WruEFn2NdPB0oJCWyrSaykgHbOLcAZhlpVP6N6MnafP27r9fk/HAefWmSlIXMVMlJwf20fPhzL33mwzeeTqeHRFkyYQokURgiIaEDEMYMRripmi8cfH9jBTvLmJtUtU1+VF65corUhnIdE/WY+WIEwAwQ1ACRDJSQVAVM7fIIIEIYpvM7/+nF/0E56nTz3fdS3t85zZOIDETElNa704u/NJucPEniCjb3XC5CuNGumAjY7Fnoq4QOFS8lplDH9EmcinRQhQ/TnC/u0rtPTgMlcYoKgIaoZWWWcYe/8Jdmj26Vj6MhZ1Gb9z06COUmGrmMwVSrYQ8uoP/srQ8/2HGtKzhramWTJHfdMJ+s1fs4EENGRz3BVpFlZAUhAxgiwRgfwdZYEzh1QZ6sQpD+Kt3jVYodzFJbRAREcsy8LBdnv/zq2/8g7K8Jrrkr80Cb/r2himl7iuwZJqBCl2qZo6dDsxyoh2ll7086Xp/uX30a8jCkOsRL5URsaQGNyemD/JkQBzAzETCA4DSplJSZAViyOdSY+Nr83c3eaZ05UlbprGdtCZ/0gYViTyrGmtSExojcxhYQpVGlkAHM8BNRYBx42Lz1f99EHyd8fD5fZ4qwW63CNm6ksk6S63WJxf4m5rDj2s89X73/7oqWEiRlpGc3TSiQwhYtQwATRefQcmlpupc/nMRMWfB8v73QyWqIhYzwA0tNufSHt/7wg1/6D/7lG9MYkwGgZgdJGWNd58QFGHpJe8seF/PDs/pzhx8oJsomKUFU3/dhPdlJ5+ITMYkyqSDhZcw7mmMzQSYbpRCMxhOiqGgnbesnU3kcZwkZsLFqZzMuI7G5RWxx+Y9P5wN0fv+am4Zfn/Jb1VpElLM9uyTGEJXIUOuWOZaY2ImA9751073hiAYIuSuGXv1ivSHCXGOXQqESej9Jdv3e7uzsHBb3swEA2diaaoADzKhgRex5t+tDeeUR6vTxWlvvQSWLgKZEIdsqzaYXbWlEyqkaWCJ6EDEY+xxtRPOTAxQzAGEyRBBw3NrakuOhsBgGMAe4rr2AMYNBMUx3Jw/P9thdKfK18gdO7QzyfH7OlOL4jJf5/2hlyxZRJ+3YbWtioZRpPOOBDVE2AQ9rcmyQXOcnMiSPueRNOVn3qVr/YStFm2Cr72XERCgmgWe7w/Gcj1KAKw/7Kj7pc1JQExVVGO0acrzw9dBR9gdZsG4BTMC27swAEhYQhQHI1JDzGIyqJ5Jo3sdG9urzSCaxjNJRPXg35IJkcqM6XV11L5ZFc0N+sHKr03++08hmIK/y6bbyy3no5xtOrSs6A0TIoJOrcsqEWsCAJcVuKAOuM1vGusBevCZ1hR6G/qMPWKfT6VHHroMQAc0hAUzz5DM7s37RP3LC184GTQLrRGBZVNWEwdTUWJJWlSNfN/1nb399UDQY84ixPqtGQB4tAzOoEcMoCelQsiBSHHIzm/dNEag+DUpUSy4cS/VLe9+/8OunL9y8rh/9sCmcf93tNXTz4iyDU/mkrXyEnA0oh/mF5sRjOISG4SIV6hWz+BCj79KcvaBiaqsKGheUptTmSXPq6hXuXm02gqiZDMGQKLNU1+881z38JgQ/b07KJFhYRGeoamqKtm2PFZaWZxeDm/2VX3ry52yfTk4BckmZguszsuOsMBJ62IUhgieIkXGjOzvlyjnmkE0nSSrVnf3hwRk69Hbtef/0kMXd25Dvw62989gTkpF8evkBIMDf0r9PUPSIakTo/ZPJQVeC72DOm5YlyLooqEUnHVIJwnXBvc6k1aIT/OC5WTodSmoKRGNiF2K5J9d/c/itCRTl+jT0CJhS8mpoZtu8e3SpJENR7F2Uzf/nvcdBZCxnbXMSBEBV50pSBKYRLEHni5SFGXM28zgs9597MuR+yhaZK+iG3VvhdSzMQj7t0Ey9c/cXXbNztLmxk5vk6dOXaW3tYXoCBjhsaTNE/UA7+wLoMw1CaEg5GjgxsgjT3SGRG7SENphEFfl4Uk3i4P3Wm1KA0lWeZ9Mrj1177MYefEHVsTilYlsZGqeikNfTSYvvfQTdJTRz6fI4ZYQ+lJRVzJMJKbBj7IVIRYETOZRNeftkLTODQFoN8eC2rZMn46HTh9QNd951eD17S0g4a9cd0CfXzVzS76AQl/N4DYYRMUiZr74aKl2en6/AOspKkimIgQFNJjuDEBOmOLtAa9vZmmtatxQyErBjDju0/7krN93Z908eH2NvlBAzuEyEBqQmsFUVJEuGKHaj7zQ7UIVR0cps5EYLMGio2CRhhQog5nzsoyKZoMPMEkqhF/2wLhmAEFu+yQ+6EmYT48/fzsVm7t9/w6EA5rqFtihS/AlBTAQ1HDzlUm3E3ylI1Z/+1OL2Ox/knAETpSSMyakYc17durFczXFTzJTTyldNiI0PnBIDIKFq5WfT5uyDtubNcebQCzD25kkBFM0MR/KGmZITQbblNK/qgTOQ2RidAxiakQky9hPvCQsSp9ECD00JqkhIQIUSon/yxfqpTglSsa6vpY97Nc6b2c7kz2Qv9zsHMzeooa4RMriKB2FAVAMaxV2RgKOxosvgMPONVUPgqzr73/zq339arQ7gifRo3iA5gsyE4fHk2nxvGDQeWjfr+kJYYgB0iICKwfv0l37xtz4K3Qz6ajkQEIqwRUJDAkMeiEAMyZRYAI07m/oGBBgAPVlEBGQAMwIkxK6+EQ4rMqVir3lAYeywBXJT1nJDbE9efO087ue8vjVvHiyDCLTh2uK7j6+vfT5+vO9IEUzQLCkhj3VuBNOx/GxoZKaE429sE5OHZFVoW5hd3P2V89+XllFJ62STDjgE/fjW56qrF0/eS8aIKOJUemYnCgAm2N26tbPTtPMnktUldcnAdKzXX1IVzBCRY3RMoAC9hoobIyQd8b/L0giAGQa3+cKtw9qth8Xm1GmVSREVwF37D978Djs42DzdfdUbt/3OxXt69dT60m5O3z0ruhjq9cW5UzXLimaaHTOZjaf98lq5UV/CCCwjyyZ7JyjN7tnXf/DRsHnh33v4h4zorBx8GTlgoFyGxeKXb3/nsXfR+kzmFEizL1swQ0EsT//p154CrC7EvFFOGUc5na0PMEQzM7ToOUXmhA5EC0xpi4Dgs0wFEBFJZHl2+9qNckP3T8qsSkgIZBbu/s3vnbzh5zLFJ1de89jq40OAlYFtbtb3n4jbYK88WTpOGYTQzCyP4d6ICm0RMAQjVjVmA7ABVTCD27zxFvobBx//n4dePYAoKVRNCYYFl4V/7c7p3hPHVU9ojCjofR7hK1JpznE67R4TQg9EkWDLZNgW+hHADBUwKwQPEgPHTsJ8nca+thH32c4AM3vmx/Wdz119cHy+ZmJRRDRCDO/+79puUoWK6wrwzvPttxtwaDn7evb0fhF6V2DvJjNX5qxmoApoYmBGBLptpQYAQ8WgvSI7UTQWmw087Z7MJ+unt/RbqSghQ4pl+I3mXymxK26d9cWfHH7QisHEdQnUq/qpnToduRqwsaI5Jx7YsjGgjnk8KqAZjKo2CKAcLeSWHGkGayWUEC91buFTEC1CqifV7Z/73J/9k7I4d4ICZGDMS/3jgAypWWQd+PbedMYcQEMqrh4fU/IZdFruzRZuyCoKaISmZiN7QBUvBY5HNMiPu4SFU2gn9UUs4qo6ahzKZg84RXH83IlHRM2nZ7v33p9S8mXLzrOFDS5UEskonQwrqeqhJ7CIZAlcslFNdkvbszxevgrJUeY5Nr6XSd2068qb6KVtsq0aoBlKaUUodsr5bhGComy74A0uKOheKKZoZZWVLnj/UV/MTxfToydU6OBS2dT//evfc5tso6oHIBqCOjMzMOUxFjAgTRxCTgDOK7FLHldcrjhhzt483v38Gx+2nfx9b75NBZ0s+u9OYVbv+cF8UCgyTLoL8VGBCC1KRcsmezAlMwW5JCzSswt5thgkiL95c/2+srkiWg/oKV4qVCKgAoIxWDFN3ebsD/78iaAUPTsSAURLIc7QOq36fVguNz98ZzVxQ9kNe9A/1GI1TRZDs+ApOoECYxpBJUIDVrVLsgQaoDqNYYJdRud8Cj5dSWdTXBu0TttQzKtf/Ft/72QTXdPXQ6qxmdRP+km13H/JrzP6lPI+ty1xN5YCRLxvTZ0oEgzgLLlxAmz0P4D0DN2a7YTDlWQHqyFZsak9kOAWn6Ct8COiNUXG/g9mQ/H8+WmZizReYpfUdbZDGCdtmE3PH9VxipN329KtD2tZl5pV2sL/9uIVDONW2uoTIG7ltIFGLMRAGYHqetMVFRE4GnoXUs+SjQh9uPqVv/zNN89XazIwoyIUbXYFhWJxrVyl3Y10i0fH1LSiCkAIOknJwLYUoa2o18jiQFNAdKpMSUtRIAeagXFMg9UXOORLgAqV2ZS99zC5Xp3Gg9bfPn9wbflxnqy8P6+Xvs5Wl35WB/oSvrWo8vLO3tsfxCamiIDgnPkpDle/iOHS3xlsNyNsJ2CkIKAhmvnyIHVWh2r/cIiW+8iajRA57E6e/4Xl7z8+L7KCd1VoxVzhgtf9K9XutLuoHz9YN731eWzh95rz1rte+prR7W6vG0RFQzYlr4YEkpEQVBEM2JGNKfvWFSI6xyHs8XkKSX05Lexh0vOd3ImhSeWTnweav7b52GOZM1zZefRuGnoNOvAUoMK0vxvdZUFhXJVnHSiXFyKTjLL3qa+YivrVX/qH7XmbAFVHlpFspou//vSHrTWqzB41AoMCarkMn3+hWK8PE3r2mZUAAInHhrfLm6gQPgk4tjvPmQCNEidqOj4IgQFqdH6MFgBHZITRcprl4yEkcd35ziLUPVawchmBJJOxrPevt4+bmgYQiQ3OPkxMURAjlTEt+OjUPdsASAg2Gj/YRkJIBGrmAZFXuwvJV16+eeNomTK64dIbd/3qjx8tY2fgvLMBwBEigaW9m9Xzn+3/6GNiCdaxiaFj60VHcpltIQfc3j5sl8wlVTFEf4n0shmMYYqBIDGo2hhWMyICTnG58Tn6BrnL+1dvwPv3W8ccMeRU5c3Ojr6Ok001SJ7Fd3Z3bjxGEWQSjFZXqxNzl8NFJpBLrU20kX04roCgI+qP917jfPK7GpNdavIqqPLqh4/6nkLHzCZZCwRAx4B5Wr1wnd6dBUYdvwgJJeFllnnJzN9uaFLDMVIyIiimyxH5uszOkDMCZg6XRTAgNgVXlKfCkUM/1D5Suv6/SP8bo6FMbEYudzs38e3ok/Vu4Mb6jxfX9KT3lLCE9d5sdWrktqS4sdZgQHp5KTgAKKA5UkMjuLp8euf2rfL7h635HA1GmJ5MNs2Smh0fEU2yYlYiAAL2PT3YSW4SZQq0u26RQVXRPhkUPANgt78MbNR3RUW+ZGaMpSA0NGMTQWZQHWXAzIj5OJMjNp5kB908t/08DBIBUXxKu9eGk1XduKqpyVaC7Sbtd1EUIKfaL5c98qgpiggEqgq0vU4QDRB1rOSzERNtdmdt/e8cxENT00t5JkT0SWJlS3aqKoKUGdhEeNofbv78401xrpnYuCMyU0VSwzHsgssq5MhaU0NCEzRQQ+jsGUMFL4uigAQSPdJ4d49ldKRxmOZc5MFTh65L7/zvrbfIfSBliWHX7q+qtVWSW0tZwesJuOkqBeq5bFdqQm67/AimaojoTXVsiQJCBMuOiJiQiSd7lQv7T/KQ8ijQCIzYuMkyls0umIqCjpclJqKLYvJG8NYXtZ1QVilkXDcc27xRtqHmJd8QkT2aAbKJI9A8yhGPp8AAgQ2djzGxIwNAUXSOUuc2ngfjiEXjynz4mOqdNpedB0rhIB719WruGvIqKRMkcCdTV3dqtLNOmsgnZ0SD832pqmiZwxev/BvNzBkyAagZDVSAQBFSe/zR1+hhEzVkwm4s1IoAdmBa95CZwImGDlz0RZbp6hTq4sJm0/WFgoY+GgEoY0aPSuYzUSSvmgHQlICFjCMw5VRgHCuSsMXpTUiwfP5JJsG0s+EugAFJDx73Jg+s7BkSU+wNsVs6bFEx+noYEgyhI8KcIqQgd/uHeOEr31mxydkcKjikoc7tTlJVBiR42KoCR7SREWBKJOAcw3p/+t77Vfvc1SebMAxOzIwA0asgmCAoYZ2rbEWUufV10bW9a6njSK5YSZWN1ABIC5eMmQiN/Gh2ti06phbJQcSCkoyXH9knmr9x8vKDD1LPQWa7HZQDB8xGECe/sf/3Ljo3niIBEhBBh5q8lyEZigGgqgizlJ/To2jSg4NIOlJuHFkxuD2VkQ4D8PRcDUm9bPMBIBBEi/1e9dHpbGe9Lneb7hKSQEAT8GQKGdnYf2H/a71xHHiR2gE1WaLI7J1KViRVQjN0ROR8vzdpk1va6OGAYaTnirGzLN5+zEaWfh7OawOV2AzOQTITQEL3+p5WEZQQVAQho4gnEnSUo420EdMklMVv/ih1zrJiiT2OkRc6FoB5/TSNrTKapA2jtB4YjBK+hmhJp9XxOeUV3LsdZoepTNtYFgSZwQA8DkZ7n3vtG2uHm6pomkFtzN46cRXEPPp8cwqhMApQsJ9ttIhjdRvRxE+0UyldTsb2zDvB2MXV968P2Bcbc5teIU8pKqFZ2LxVmDhBMgUdswhLDFjYIMDbJm8xyCEbr2MliCaZth4GAadJb+KhZDJA01GBDRWNzQzHjxCi83txaZPUe+WyWF+MAewojIiSlDlTqkGfq++3ou5qfYoIkJ2lwP3gCumiIaMqlKbFrCRX0orro/Myqug2gXWLdUcuQJcdCY66kzh2aasxxjI00zT4AZmk9ENCNOQ0jclLu1C5JMowijqPMY2FPiITA6IElDzEQhgiOAAb66Au2JXZ/a4kG9NBAMoOhcYiPKApEWQsJ21L3FHVE5yV0+lqXDQzVPAoKurEUPWxKEgxl5NMJkFFrSNFabFUGSlmOZDYZBoWeS+fDD6NqrsGRihNB76Mg7pnOnjPqhNmhp1hU5YDU/JFbxQSBIxhYzbpJ2qqRGY6qqMiATlTJadgIkAQhYkTTQYEDin77ckyN+e9x+tStlwIsOzBjIm38rWAZIaBJLWB+lxaX0FrVPXPYLlMVDgl4QoxxcQWJryOUzEwdQiZGSSy86iAwGSAJLpz+2p7/rjFuhU1QFRlZI1YBEnCNJb8n2GfAEAArOJSdmRiajgUDOAUM5SpcdNzBiI0QEYV9JCRIBsSsIkCmFIx9AWlFp26+dAojDA70s6Ly7MpiNLlbSCIqt4KQjQwVUemrtSL8wI3WGn0jdBqmAYadStcqc2Afr4/C2UUJSYs5EyrZWJn0XJvpCKWO8cEBuyDUsWxfPE/+uvXz6f1hRGR845HMD4U1Fig0SpcZqimY3AIlXUkMitgwh2hYunjgFZ0RcDzCsgxAaB3JMbYZZVkjpLDUcUUW6xjKhyg0nTuQLb3BtErq6424/FQjMIsHNKdvzFzasTsrr7qnOuyuhiJTCEzZE5rX5IaMnNSiml+7fnndjRL2bPUKCyNs9xMQ28KlIXLQntlBwBonnKxt3vjyy8v9p2GYEoMIiQexErbIIxp2ch4GSUSDF1dEgqXCNJhrebMXJSq9Eq+NC+oAQuxUivudeKoKTUJkwr3yYgQQdkGYgHOJqsuWCBQYAT3uAEPkHKRBRFAPaK6gs4VEBGAcs+sKZozBUAbb6GwlJ2DjAWKILDnV//9D//xhW+ZsxcxKYfo/Su/9ruPtMa+SFS0pAgAJjihHHILy9/hXLWwd+ZJQZEhJC04yRYRhGf7f6SBqWxTCFRBcpiVgWNZ5qAKZsFSCDHsrg7onIlEncgWQFckAFUbd7QBAiRlId0mGm7gikaHb0ZoqsFJtvvHKRuDmR2vB29ILo5F68sCvSIhMZmiy26++8KvTv74CSCF7MC7XrDutb56db3OmvLiNyb/7BzHrFZaz9Tt8w++RYDlGbAxJQC0bK6wVt2lFuqPdHGC5m1xFkAzM0OuLvZpc212boZexAFCMf9rH39jZQXkFKoeDYhAxBBQ1Ea0a6yqqYx94AAA4EpEG9QwbcszrJrBy9IbKpqBdk4ExbZ9WuhMBRBAhUtIggg5dZsf/DdPe+gddUW/46srhymG/P1H5+Yhe8nSp/EeTARUhzq1t06nItX8ZOOEwQRAhkmQCHxZI3g29q0vkC1mgKRZjZk6N5TT7J8/a5M5gQrEs0rvMBESpFyIAYEog+mIP41dFoJIhuMlmYgA+AvtkNebrTAVmpEQKLPINgRzGgZxIM4MEAg9QhZTBfReBmM00LoOsxSXa2exJjf59S/+9r1uqHOaU2wZECu/QVVgJiSZDNVzm6eT0rV2Y7WMxJiiqXJJ7XAZXRmAPJsAtLHVfwRNyAzYMafQuls/v/uHkk5sqplBdeGfFg1vCpQcebSiCqRiSDjKDRCAgjKBZthe/OQgDzmq8TYtBQVyOWd1Wx6mqAgyJxtxKMDS5T6ZUcAhE5vm2qN2bQSsE9Zstv9zP/+nDzqfoOgYyoGy6zufEMwUGHFTuwspXes5nYXZiglNBemgb5U+deHepeL15ZttxwwojuhtEF/t/ebd7x8tXMcE2lchHFtWm2ILWEr2TnvxIW8LL9tEHNzYCfVMdNixc8mIlFQV0cxLygDeD2OHDAAquMFvq2cEwAFTRoeQI4wJY06qjqIvSHDQ2ZP/2798DwkTUQJ0XHTgYhyRRQMopbTDyc6SYj2L5qZkQGzkIUbkbb/jSCwbUTlDuITpx4thYfwmKiKc/tbeaU+TvQSh7/fyIUyW9aaUW9UHJgWBAoGJ0cisomK04A5M5RnTxvBnNXbrlHsWUd7SAkkE/JZ6KgBYbApKiCZA5GdF3CQAHjKRIit4BcsuMxY+p2iFR6YhDpVrmbL6TEGJumAGhsS020CwHYzkCqmGVKqKWFG9l8XGMuGoUuV0xF1tbG9TgBEQHBthEWnKkMNM3eb6q87cyaR44xEyn0+T/s2d/3JV8TAIkIoSgSkAhwJEEYfgZIjPSh/gLG6SG4bQliFFcyiAIMA4wqTjfkwVKmNmIWBtBlBk3yCbEajXbEQuA/gcGcyJALFaldnlXIrWlJxNWHsH6BKUGygtLHevP504D1WqsuauKh56yogZMCLreKXIthdkRAOcwqV7HAvpEGeujRvHdT7/Ur17cvZGOxs699r6nL6tUpUaY4FiQGaEgJRVd9SqTst1g5Q5IaEponvu/d4GqNrCYyZSeaang4CIaCMAThjJY6xyF5xkCyNmZSOh0hTIg/SOxEImAs1EBAOVmrPLHt0rv/Ffn7vCkoUyKoOn54b+pTXf7LEN03x0hd8vB9cN6GVgUEEPcpkGbFNF3bIDcbwuAgA5lVfOhxncpFpe/He+808JMtbeZjRsutlic6iMQGCs23t1tYtfurVW+ahxEMEYVYFBnU3PLwgymYz3rFzujTEUM3SigMTgOWIVhypnM0c5Xt4sKkSmitTVKJKxMBU0QAelqoKfqhM3rfyiUUB0DhRt4Nmv5j/q91V2Xabi7E5+XPfTTkOQvqCszDS2En1y+D+5t+8SQQMYsLq6jlV75+qtV3dvT3c3wqF5VL4YTNLFOpMzocCG47QF0Zku/mr6Fw/YegwD4XjViPu43un7nH2UTzqQtmYI0QAiAJipK65shotcGiYKFCON95IZCiKBiU61w4Krm4ebHj2gKpM3yj3kFNp7J+sZGAJpC55Bcyc7m9kO7FY6nD8/PKinQ1fWMWcIoN5Z/4mw08gZumyH2NZUDJEydBc3p8dc0C/evXfysGKaVRoj8a1XT//kJJZZVABYRYDYAKGYxPLXhj8oKAm7pEhoQuSOy/nBYw2RPnU5IsD2GqRtOqjm/E//zX/ze4EEjAOnQemTraKIDIoYtMPXfvO/GiICZCurGYukAZuK1XVlVQ25z5onkgj6P8fyZnPjsyXY8ubmnttrVUo+PAsBhpqk/1Qz/yiX96wh4hlNEMUX+Xz/uaHcu83v9O3OdDf3y6Gcx8/9T775ttMyZVVDRspjyTPw6TX4mkwqzc6kkpSZwNDlVax2L/qx9Uq3ZZrR5wAAQAGgAL7ee35uxJGxcHEwMkQENQAGBWa2wbEL6Z3DjQYEQYzBX7l19vAkOxzK4fa8tvPTKDxDBHNlsy+e0+QuTB53345luubzRy1VFWRXyHnyFnFrA2hbK1a4FDoxRETIQfJ0WO+Grvtaf6jt09mV06XbFS1Pv/9O2s2tGSGAevaChkyhq90b72UHdVRUrmwQRyouw0U3rweOCggIW7r8iAUZAKgaGuTh3368mh3xzrKmlGxkodgz7iYCAXOEwk4IGZQIfSi/+J+9/dtHWifwUn7+SyffPGfHrvU1Fj4EZ9dn3dW9yfzr9WJdvfArp799Qrs7KKk/l2flIgB4dinUdlnMEJkMM1iCoOefmW3ud3Cwqia+mVawpIM3P1x1ZVgZoyEkdD5nZCdQXNuc7Q6rSRkawugqF428OE0wnFU7y9FmbmteaKOFGK0QkVqMbw5lnZY7YdMBqfL2EsXtPANUPVc2gCfc5gpFMXvxIeyeC9RwZX77f/i999SrDiVAKv6/VZ1ZryVZdtfXtHcMZ7pTzjV1u5uuok23RSNcbiMhgyzLDC9+8Qvikc/AJ+AL8GYskJAYBBZCqI1lMbkFFG43rnLbVdVdU1ZmVmbezHtv3nvumSJi773W4iFOVhef4MTZJ07s2P/ht2iCTQtHtU3L9M6S+uuTt54eN0P7+hE+fji4FGUdqxvu+0PMVw4JSOQuQ1PlENNydrNvaH1w7+K8mW79EOJF3x1wLoAKwQrGit0lGhxcd7PLFXUxcCbYHk43GwwiyUyhC3XZcCFb4MoYFVDJdRR8DCFQ7rnFVK/nR/naxJE9Fh11ewABNWiHSNpomayy14lA1/W7/zhtk2cG3dL23ft4ULpdSCGJu7Nhv81ecl24ePvZv9ahKe03/l7/uwnQICZzGyckuERLFhzRUDGCApEZkrgFt0Yf/rVvXrXrLM86f+NO7DefXmB7vaqjZqRs4gMe4QueDDXazW5p7gMxqIfV0Um8nLpkcAIvBQSronnH44HX9660AaIXYoJVLd0r/cWOPDVDmRU1RHIPCKjGTN8sKzeqtyVGyYpuq88emoETKqbT9z7qM6w3VRgUOIoqbw4vXn3yZNLZxZOSLp6l5Yt5TYeXh/OrnSRFYFYDcnQtocmZAZyDKwqSAaOJAMa2HerLb752/ODxn7cBlr/6Sy/+3aqar19sCCKm4oCN4sWdb11MZ+d48kVXJBsQOFIom+Zea1MZoVrFJzJoFnUAQwdzg300AcHVgySJKqQroklOVXS1MdPgSO4k9Xd++98m3r0YZMiFU6wAthtAIdYCYmeXJBMXLik6gBa1POvb8kftwXWytMRTtFztZp/9TrVDKBTdyuCVZGUnNwgEHjE5IgO7F0ISIcJgOzyZ9N89mX62uCqLg1tfbxa318O6sJKQKpL1nGl7+6+iH9tTs3pANENitoltJ6/KXGSvyy/bCE29rAuM8TOjUUnB/Zm0iqX5zk9LzY5usboaIxU8rg8x37obv/H2wx88cFQDghxLIcJBF8VC1FVe0Auo2w0gY0nMUq7uHPzPFut1kWn6vNBVXB/6zx7Q9cZQvM81ZzNnyYhQIMx2iIFckdkyjHWCpomUW8dkSSZRZkj3w8N4K595lYjcOAKCRQ+r5bffmD67/xFGH8bNjaRA6E9vv35DRm8UYJ6H6XeP/ug6ICEiWyFyHZvpwGhl6vHm95YPEEMvB74mJzMlFlRzt5J++IAOf/39H51dBxmQxRKKu3NQqGroCmveuIGEjA6RbcjH4cdxM79U7A4Pjh6Veg32aLtYpnreyOUQNlWVVGAQQ7SMMnGtQumNwMzBHJ0qNqPq6tnr705X95bXyPjJo3zIZgah2aTC9Uje7qZN+uVf+r2fTC6tk2zu4ISyo0hl8R3Zl65gLU3/5HpdF7dRGKG9bWw4Pozaw/Pf39GklKaFpfGY9AFXdQf0fP3e3R/l6ytVYnNAUUR0FumJSyrVQddH7DhmKwiQt+nk1gfe1k+aovKs3Ll+3O8WS+cXZdt70Otd+9rVhuuiDAZMJcMtVlOoqJg6GFqNFaTc1N0BP/piCrOTsptQ3t7ZbGO9Coe95lwTKqlpG8PU+/rwcdy5JABwU4QANPPpmzImBMEa9+FxAAIY62dk/vIdnJAI+8M5nE4PMfWtXKUwoAMyQyk+AujWN4Zn/yEG1NK0cWtZHJjRepHSw6SGdS8BQLM4eF9mk5P3Ua5LV7aN8qPprc3p7FrmF9FCvxQxCW9+tC5UqN0hOghoXkzI02azcicDp0EKQcUsN/nDSdN+fvNO43me4OEWZwNuLtAhgwCg0Gwz7H7wJ6sKg8cC4/QhtDkWA36Bsz2PA1NFXibrStEcycamnhk7IrLIySb9gufJ9OmkO+u1lAKAwpYKjbtSrG2Iam1YWjUbHBCJ3cw4pF19MjxXKV5ZqQCYge594xFoXqwr7EpVepq/+vGZhva6rzVJnnjOrMWARmMChchee/Xmcfn4p9ti4AWZAknVVPCXjz8uU6pn7Suvv3L0yekHF8sN4tUT7cASxgDqtcIv+/LmxZTe3UgZBVIJE62Yb/3KVOpeGQxExQxoGIsRgGKogZASYUHiOO139Re/cOtrw63dJw4mhoQWU1HYH099a1AIt+Fo47mOJXZNjWchkKfpne6UpbgASUYm9ZPw6QZZrlyp7zvKubc76xelI+4wdnHnbcql4h3GbRgPAthQ/Rtv/+Cn8x2DjjGMQt6He/BOmPdV6uYevraYPkXgSlFwQHWGZCxaJpMHQ3+hNrn77EIUyRHRtat1cnx/LaWOfcaXrXFwC1g8oIHN3AePbhMb5vPd6mh1GN/4G4fvvL8r6lbiMKnWoGzoAES4F5XB9VBz3RQ4ONh0txRx4KPNs8kuVQGyO5aqh5PqRS/AmQCwK6zqep7vpaX0VTDkgrphodpmw3qeRnA6wuz2wc2DFkIyIEfIqcXNfGYfQCgNugBGEp1UxAfbp9sGNm6OBIbA3G1KdUVl14ZpN2rbrnle+MbxF0tJRFx8P5YLDLmhXUFUcR4oYOVgcFL3fbOZVsfH3z85/bSqejeGqcN0xSPXjxALACCB+6Y9CBTqMrVJYKCuuX1+LoUkcFFAl97nzWZJwYkFHJJZAhn6s3uTpE3CxGiB+gOc/8qzd0nS/giMurr4z//3QQhoRmSASGWoZv5FbobQ1g1d491PcHs8nRx3VxhL3Y31M+zaJm8TJWXd9a2QjkqXDcx3dr/5+b+UkElg0FD2mR0DZnVV5ZSRORtrM+nXJL3aFbx/o3Nx5kEswq+++c9f7JVLe9m5R8fd4naoKIezhRQeFotlF3OdjnM/ODngMGsut0LZXQq4G7gSulZnB+01xkEEzJS7+tW/e/+DVbWNhohGxmV5nuwkuhkhKgIPvIBn27abhd3s2+17k9Pl7a2cDMPpRixZADUDdGDtEgcQReqziOmYmQjlhi7/KWVpeqXgaU+IdEy7ylGdSl3arG58dNy/6IP1h2l568Hj2fZs2HnIAlCUWMr4C9leRSHCWrvw7Te/+AxvT2PcbO+sH/vBKs+rbnB2w76tVqsoGQwN3B2UzExZy/nBPb0ASyqDLFb28HdXOcIkjYYcxeEvtNVnh8zkY56JFnI2LKL1JTRvvHaVPj2czBrJP7mkvqdExOCGXPcFCVxADTx54PE6HRfdo+oaQApCDq3sXjLFxRXQnCYlszgIvTr5bEegdaGa/qzGTiD2Sdq+6//b/x5Y93wVZwcEYiFr5pOv//37/+bytWnVnkE+l3poaPZ8gICDc6z7bSUDIIwQFFBQQydg5rcPf3+zchOf3QmX8B6EoY+jOOOw67p2p91qIlaKIxWf8ItSF2wc5OkfHtOTvl399Tfef9bU17ukpmPSlV2TV5GdJRUI3lVIBk5UD7vmsnGRLSMYVNKNUgPEfXSC8PYVo5Otnj2OYYg6hNv3tbLdNCyok9JvIiw5yzjpAdAI0YVZeNLUu2e5ouruK+3Z2Z9Vq+nOb533TmjAUqcdBRsqdRrBHg4IYBZ6keu73//oZ711BXAd8gBVEzvEURqnoaWNNANRgORgIrTuJrwNQVZDM2w/b2s6PPJmEydgOgxgTugIO+FcalJlN8biZWynSMm6nHSSRDWId1U77AmVYKbABOXk7R937vH21bVgD2TV7efrdtvJWX37UMq5Rd9Wg4C7uxuiAo25vpvVev3hxdC1evTWwdV/nCyrdBDOrhhTdhbWTnDDcXSKHFD3YLxtjX/lWfuP/v3HFEuAKyAPlm1EOQE4aCIMg4ZNW3lxN5Gu1HlopZuL1fljvlpsnv24vph+6vdKqUtRRwJTT1zbOjSJFCBZnZgRAHANDsm9SMDiMt3KrauelMXQQBwQEny45ppu7S5smin0i/Z5j9YjxnJ1WD8vYoCZxutjdhgP+UbhJmh69qyiV47Kgc8PN6vrI3ywqtch9BipJHZlBmYwJQZHz4iGBVk+VP8X9w9WayA1dGCXgmQCKlSUQkFkSM2Qqtir2OCeQkjl+Pb336GHBDENz66QGj4Ph9uOBwR0Qy5MQzOoUXEswBnNSVwLOJCxsyCSKuxQD7bXgYsUN0cEanaXdZabw1UFqsITHDKCGg+zAJtOq2FMSeFL4cr2JYD+L45uXOJMJxcL/NPD1GT6en/K2KacKVIpbkSAZsGAAqN1e+UbeJto9XhZU7tLQO5kxYgKFyQbLNg+z9obOqFgYkJQILmcP9QnUHGp7eMyg+3t2x/K4swlZ2LUHHurNhH6Cr7UfH/uOjqCDEHYIFDuWtmqFBMDUiBPmefHyw3zYBVYnXIWV2CsZLdJELL/vFozxrrdDZG9iedwkpGUvng+V2gOYV2qKkuGGFI29LH82DsICIC9JCJ0hXDofJjEmJUYwGszDUqjKqV7nVbRnZkdCjG6GmD34bavh+ktfLiGSxwujg/u168/GByhGEqHMdeJozE7FgAA8z0uygAARdDdFVK4pgUvdRQFCch11h7EdTdjL0HQVVmKBZ7TsNk5eVAsNk53Qcc9rBgQY1mXie4O6EZ6eoea6kb82Xn29toZuQwawBQAkXtCt8HL6IEShl2FgxOUXeHYO7MWMyRW4lyEy36dYXSwDSUVDKDOs361nZdyYqenVb0Du7q4Pbv0eQfgZgR1klgAAYkBwPa36kvLCUCimSMGzbGniS2ZxpI8G01udg/nYTeZphJDL8Lm0lC92gxgbhUAG36FTwsEHAjiympi6ebhszK5+63D53+eKa0VgNGLoeOexlszWB6LuqPOTZgyIUnRShqFlTBUwVIcOwsvOcCOBuQJmUfTlyvt0To8jJ+vuWxdLaeHi+npbNb1RlL6IK+99YeVJVFAQFfZ5y/3YFUXByLOQamydZnxtZmgEgzhxtF63dczznqo2YQY+ylXuN0mRAQvDuJmX2beAYlCZOibAKT1AX7eHYG/sah+3C4uyzqRq5q4OSCxK9RkpSDRnv9DeWrDBLqgokPdaHfUMwY9PFie5+jZyfejFGgEklDiAAVCBZ1aLMiPt1ZrKuRm/W5+cF3RCBkbpg3Xa5Uxd0UvMUH+UmiXMRTbBMsB1zLTTSaBqu6nR/gcpqvDk03h2XaIBIUXnvr1AGwMRUf3dF+xhvE1iFRLwLntpkeXlwdCetpfEebYrp1K2Z+XiMEMCo4u/csrkVAEChRA0szAFmYrmP3Nt//ZctiLFOMd4IQvudruhJYA+hj87GoK2+hJ+tmLEtK83mIsg1Kk9OHH+09ydxT7Sv4GAFwQDML0rcn/sZ7qVblTXymEm3fAtp+L5qZvbu22PGtik3s72m6vC4AZY0a3fYlvXFRzICs51VDp1evHn1Ck/vRr/+s4T/oXEqbN0pC0jHRTtz2qw3QkOiMAbzn2MNuiUbRNqP0Xv/aT5zwNIj44c3rpWzpDMQZjUEeBwdEDhd2mXVWyktjhRfCBzmfkBuyWHA0HKQWJXGF8EIwG6PhfEDYA0M9bVkkRdnRUXRaa/J2zH154risLqZwA8uGiqVd62u/c2ZwUo8I+S20jm5xZC3rwEofySvwE2rg+uPf585MdkTxtZ6djQ8o8YsyDcKZCsQuZohqxOQyhtTeeb5EIihHkxXf/4T857/7TH6x9kpIrjs0pQip7upk2UfBagVB803PCVCAlMsoKiuvJoCTuzg6FFMTBgAA0DkTkKbgFz8RZkICwbLbqknd893sflpMrSH/cn3VC5NJw194cFndf/Tr/6SkWHEdc7bu2AIBKY6CTMqA4fxc/LIfluU/zerb46Grx1HbznPrAGWCwEEp76/KCtcggjpPMMQHC2Pivf3P2rzZcFSMww/wn/cel7LQyHV3rUboboXpOrrXf/lv/JV1hEEzFbTQPX3IPwLfCxQXT6HD83GxNjaxKAwZkTugkbBRYS4FkwnD1o53eWQw3dj+DqnYQmWzC5uTO0eKVX0+np30H4eUs71EuJ2AYLYQU4jCEe7/1/FGuz32eMx8+vYzbUtJS5utz4T4zKU2af/DT33MdOAxW6sP2oSOjEZaJdNfbNBP1QujG+f4TRSs6hrjBaZ8c1PHDCcrBd37tj5+LAbgCKxgi6n6LQfAMZE4c9nn/LxfAtDnoklYGDuxGwsjMRNaHkC3khy0+efOt0y+iG2KI6E1rNHvt9t3zHqo6GloBJwPfZ8rIEYAEPUgpCI/+oPZwnZrBmtcun4XaMlrnC9YuKKKb4/Z/rGhDzSD5MG//9vd+57wgISEV8v9OwikVA0Swjvto6lBg7LPi2LYaCwSA4Db88OkXickyQsTOYSzgK42JQslAWKgaxtLVlytAQ1jUy8Fc3DlZkADIWJAbBSx1az23E6raXePioVLo86GUm7/WvPP40dW6dGnc9GxMUBhwcWAiUyuZpzS8M5mm8wNf3r3ZXXtZOWDf6pPZ8eVWsPcI6/q/SqidAkzWsHjveahAMbgJWOhkPlhGHtGHwFuMXvYBly/fXglgzC5FOn86LYBgAE68D7LCyJbEETXjrl/98gAAiD3O7m7PYkXgmIIIISubT9Y51tBBxd8aPvhL937axKpXVK1kKsdt3bbXy60G0bRvvrrvsdxGjMWBQOgKGrfOm26Y1P2VgMJmUkoZeqjr3iG6q3YT3UToYq4Zt7vr3HCiiAXrnCZNj9WAYE5kkkbwUt4TpHy/Z46RePVKL5G3MBkQtXgUczTCl1aGg7I5RN0FpP9v5zPxHuob0tXRLWeXAIRgBC5e6SDNfKH3y2L6i31bX2+1+HCwUz995/j0xfkuFE3qTqBO7iTiSKgUNRtaDigAcdMfHL6wRffkxhKorzuQ613cXi4mK2tgnaOvPaI1xqXUobtoY8spEjFFk8navC46cvMwsw0QyPZzBV/mA2yUYLdRQQTWQuBYoP7KgITxIYB7IgOSf4URD+gg/XLx6pNYgULZ/T9YgveKSuxBmAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from PIL import Image\n", - "img = Image.open('stars_scaled.jpg').convert('L')\n", - "img" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(183, 256)" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "img_matrix = np.uint8(img.getdata()).reshape(img.size[::-1])\n", - "img_matrix.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sklearn NMF" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 527 ms, sys: 476 ms, total: 1 s\n", - "Wall time: 279 ms\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "sklearn_nmf = SklearnNmf(n_components=10, tol=1e-5, max_iter=int(1e9))\n", - "\n", - "W = sklearn_nmf.fit_transform(img_matrix)\n", - "H = sklearn_nmf.components_" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAC3CAAAAADYod/DAABS30lEQVR4nGX9YZMcx64sCLoDEZlV3SQlnfvujO3Y/v+ftmaz7917JJLdVZkRgO8HRBb5dmh2dCSRqq6MjAAc7g4Ev+EU4AwBoG02STbOpLHftr3f7l/+uO/x73//zx+P598pJEAa3RgzRHR2TTElgnscECR2pLXWOiMnTRkSIMHuijYjQgDZw2ymEgTQbBIkjYL3/S72+33OmQKNkChkCFM8RwhtP0K+YyqzfYZS8G5zzpECmLBGc5ml5iTMvd/yVGaSRomgsgEUcP1VSgAgCYKQUpkS6pdS9feikEJK9WcBkABhpIkCiP/nL0GCQlOxPpIAVD+cAEkS9XGSQhYxzzkyAWP9aAU4YXOmmJmJfH0FQQT/Hz+aZhRBmHtrGbIJmjEjBalN1LtXAiAn00AwlRRMOc/j+bn1+Pnjn+cxpFoeM6sHqC+lhCTACNq1UsoJJVMBpqKWAJpKhCIFkRHGXJ9JASKNBGGIKZNlRCYAmSSBgiSkICnGTNmpgIDMzGCIkSMEAlZflK0RuQmgmVS/YWZUCkRL1ReoBVQig0hI9S4V4zwe3fP5+TlCDoEw80YoAQRIMCVAoBBwc9cMZda7NBipzJQkCUHUTxShfG0FAYqETDTC3JkElHAaQPeMAKhMUFQigaxNQwIeIwRoUmKjmUiJ1tz65sZ6Q95jKEaQboF5LQDEpCEBaCIJBASH06P+O7Ocx5RECqR5b8wUDQKJVMokSJTRvJEImKAQCdAqAAhCipDa2p+JOi5GkbQECWgdPiMyjQbIWp8TMlMGEpKCIkhjcxpI8dSEggJIM6Ap4Zv7/d7NJaXYepw5j2HW2vn5TJENdEi4TlEAIgSSMHerSAekThihBGnNt83mZDRHmkeGQCbBeqG0jAgKsz4U11Hn+l24VFv/+veEGV11gpiZYdYEpDeS4HY7T5ObMpSZtIhabdu7O00wYoCpRIiEOQX63rYvX3d3zZlmvc1D83l6u/fn3z+UtFavhroWvvYjYQZaY7PUCCl5ems0CjRrvRuUaGEwVwjrCKg2iKcrCSHX8/8WmAQJ9tu/IEgzmdMlOkQRZqS33n3fnCa7vR3Ph1rLmMqcc8bMivP3vTstpjII6Vpwmgtse7t9+ePuLeeAt32bD50fD9/ebx8xHpPenJASpvU21rckDa3v5g0xQhmeZuZJQRlg2oyZyExGam3mZB1yxkwZpaSup16PuuLcTnHmb0sjVBQkKQI0M/PWt36/OZ12//p47tpazpEZ5zEG0xKt8e1tY+TIkAJKiPVRmiLntDEHkhnY71/++BIfOv/57Ldvb//E/IxU60bEFKMS4fUXo8G8WWvD7Up0Zm4JZEYOz1QwUpWIsDY/jUZlimbIoCRe8R9GAqTT3pzCrKgAAEGQiZSBJJ3upLuZ997Qze9vdGjrMVrmZGYYjGyNbdtTc46ZSqiCvUNmmeQY1PE8zkx12v71L+04bd/v/3rffz6/n2c2c0Imzv+/LQDC+269x2izEqw3T4OYkDITyohkoQGkKg+nJYAEzYDk9Y4JoQ44SFoPl9ViY/0Z0gJAraC501rf9tv7W2N3f//z89nz1vM8c84HSaaBbcPb1z0eooDKS/UTBKSglFLK5wyCtz/+x/+Jf/D0j9v7//jW/vv7Zoo2k4iArQd4LQEJb923fjazCtZmboAygQwDIIRISVpxRJXbYsUDZer1iVLtkiSonAOFqq7fJggyzYyOJOnmrW+3+3tH9/b1z75Tty2OM+JkZCoc7Bvv7/vQJLTSK4AkRYUMkclUnOe0pv72x3/A9HjM/fb2fm+I88gWQSm54rdhfUphMvPW3M0WpmhtuuX6vlZwQSlIBCkQ4oK1YBLI/BXmpUqJNDdYJZnaGrnygECrrG40M2+tb/v9vlu37dsf/Wjat/l8xmg65pQ5bNu43+5T83bLqZskwbNWO0BAyoyYMxQREamp8zjgn/3zCHmLNlAQrkoBM86swEyCdG99u9nw0dB7NzNDEjA3d0RACq4dnKCAfL1R0XSdJsKUlVvp3hIQDGaEYUSKJmUto1D5rbXe+36/3W/ebf/ypZ0NvY/WxoHRW09zWG/WW+e23d5y4D0zQ5YZkilZgXjOiEjM4+P7v2/6d3z819/9Pr7/r39/qm3ZvDBv5SV6M8wVk81orfd9Zh/bMLe+43AnJHP3zTnG1ML9JAEqyV9xhIU8JbrDkulGuve+zXtEIt0NjuOMpOcCRPVZNG/btu33t7f3W+t++/p1P3e1drqfjrGPqXCz3n2/3VJxHnlYZMRMaiLw2lHIQqE5z+PxyI/4fDwDH3yG7W89mmXlnbXv3ScvbF5HoHlXhpmbN7gblIWFOpmWvE6EiVzo9xWKCh5X8RiAmbH1fdvnbY6EvBmdwAx6poR12Eh3b733bb/d397a7rdvf8zxhPlo7WiYn+eUu3nv7XZ7E2Ic0yw0piWEfB03q+pBIJQRUzPGmJxjBH3XmM3WIa2l995G5K8jYK31Xe7eSPQud6cAa72/bWb5tLxiOEnTL8RDiJZGSjJ3OAQ3s36772/n7dym0Jqx25gp2gswqY5J3/Z932/v7+/v297uX//IeVJ+0Drz3LahcPPu7kaY99szFTJDQLmKSpqTGTMiwHl8fn/b9O/4/PGznTw/T7v1eTantDI0zHzrR6Fso5Fsvd+45TlGHLPv4e5MwPu23e+G4blgB81MXDUd1qIYZVSmtwaH6G6+3d/vX562PwW17tj9GAmYclXHRQl42+777fb+9cuX9/3W71+/cgaTT9E1j/3ZZd7MrbmBYN+3CYiGqbSqKAFzo2LOCGAcP3u3/Hc8//5ofd7OEzeLZ7vefb06a80XF0AuWOFIAJZo3VprEZSZt223c2EkrkB/LTxIOtA2iIgMN4OJNJp53/a71FpA7g3d3U0gUSfxVXC7u7mvs9BbM5cNZO/NzNYJNZJViHvvnSY4GDZtfZoRyjkiAsDx2bvnP/H88fAWz4jWtlCr91fVKWnebD0CoMxUgsYwlwctaSZLmre+7XY04yI0uDiUXzGAIgsYADSYDCx4u99ytDYhbw2bNzfJVNli1cwkzc1oXumwN2+CUdH8CtgVdpERSLE1lyHkDtnraxiUc8wxSR0fUOaPef48rB0b/e12S7VdmZEgq4wwpxIBY3CO577lmBrPZ0REXuyUvN/evn61/NgiQ9K1gdZWuDayZhCppBlNEs17v73/+df+RDKymdF7M4csiZSlAibQFq+SkbC23fbuO9weqa37WnVkMDWeLfh8CJAIzcgg3SAjaE5EIo7pqRmPz5/5yHzKZxy3r+/fvuT39mbM85wcVQybQwlBliF/7t7G1PPjoRBvIwS6pLbdvvzxrc2ftxQjsXaLUsk6Qt5as8IhqYAYERC99f3925/9R5zHHMMM2I9zZiIjE1x1mZmRgmLOSLDfulvDtvWM5kZlZmYgAuGPT8/j2bePz+n4eDxncC2i6M2UkfOcZmkPazvCXJ1Gta//8R9fTjTrnsq8CAulMpGE0jLG2ed5xs8fnxI3nKrCBzTvrbfmzT2ApCnx4ueKS2jdAorKwQnPtKx6w9yM1DwEwPN5TkTBYsUVAQhl2BzniASdINFXdgHqM1NNQZ6M47nfH48wfTyOuDLzSmVQZoS06FzQsO298e397X6DtSHXnFFHr5Z2VfeiMqaNcz6fD8Gwzwo4pPetNyPdCJq0GIU67kZnIsMyIjKuQkFZnz7nPM/n83kcZwrYeY7JKlqgxMVrUimhPiKDmanGgViItpaLmkQizhCU0zTHjAQsAHga3bW1pltYrXEQDMaAOM4xZqIFpMh81eWqd5HKhaEyX+VeQinCrG/71hrNnUaXpDQlE5IJ5pbiVSGvT61PliLmOJ6Px+N5ngHgbDPSQNGNSdDNuL5G8QdCTPiccfBT5xhzRiQgKacCiMwZkjJCY8wI0FUwvrWmHZspqXPOkQlmcBLJ8zzOGWpPo+YMShKZEQvMq+qIaTPmIq8yGCkJ1pobJuLFnhUlZnUIvFmEppSL0b2QpjKmH48P+/n9+8/HGVUvqeh0iR4EmpPSql1inMejcfY9z+l44Pjn+4+fn89zzIiYpiAoGV+hkQAUMqLBzZo2u3cD8/F8pjKZieluyN5MOtpBKTO9CnbFVCWkIrwzkfUVAShZ54NmhhgxQhLMUoAxzFC4112RMaGZWoeGZEIZ087nJ35+fDzOEK0kAYKGhPkqB6SwjDm9dovr3IbOYXjq/PHz4/NxjBmRmYu6Mthb620m3NOkYumNBhq37f3WzeLnh2PYFJWaRvrP3szPllAqxbae8dJBqpzPyIjFeSkDmQKs7/e3t63JenfPrpRUXIeFWes3ZxHAhQcgJIkKMTHOg4+Pz8czEiQOmykzB+nboGj2C98QGXMMz5DNEzhwfnx+Po8zsupcBAk12wzIGZgz5oLy1uh9u7Hfvn25d563rjGjCAyQHMdxDKAtul6XLhC/H9yMaRGZWgeCmaoawYDM1KoCFhOCi0pYWOXXR9Xfp1IR8+TzOM5TAVKnzwBMKrWFVRBeaz/nOI8u74l+QAfPz8/H4zjHnDNiSkkom2P4mHNwVOlLmmQ00uDe2taJ5gblxIVdxziPU6MFlqpx7fkVumpZVhDEYpz4SyZDqE7ARXYTLImrIKoSod/++NpfgTlOneeYuYSe1Kteq1NYPygsZpvjPJ7dJrcpf0InxsfH5+N5jBkREVIaJNEMv4KuWDmpdBn1vt83+vOzu5tpSUCIcRxPzLaIKi1pKhetdH1WMvNib5UssFLhPMcsOe0CwUumoblV1oN+yYrXnmLMiXGlXSAjEiohxUalUaNotJhzHO3ZOG0G7SkNzM/H8zgqE2QKuWCJYUXbKih/45u9bft+o33u23b2tdoknZpz5iXRVPalghelo5UFKgZQkIJZ7EFF2nPoKkkuDm1xXq1i6v/2+lG4EOM8xjGvZIOsnbDI4/pTKFmimR+gaXa222GP1OR4fjyez8dxzhExFwBpMAvpUnbXhxgAmLW+3d7u9M/b1nuLrAUwmuZ5WDQuJrTKOMXFLEoJxgDnjKgjHhMzrN6xW85zymiqktCu12/eemut+NNfLGudbEbyMB7nLExJIGEwb6C1FhU0kZhMGYnIOB9NbbvjEZqM43Ec45gzRuQppJsoukf9uMUxE4QDZu7b7f7lj3c+zsdt6261gWlEno+HoZlWsL62/Ardr7gX+ToWwWJyzQuq5gv5XoxS/ZXm3hoi8eLaV7krIebAiFguA5Aus605vd2WslzCZ0ZE8HTK0rahz1Awzuc5xojIGRkJydNWGaK09SgFSSscmbt7Y3M3W7ILYCQyxhhs1zG9Dr2qMn4dAwgwATJekVE557QYc1bM/D3Y40qgkUswWOJ/oWtJlnnR5Qt8S5qYTPl4/UxSzIgpOmBpYh6hYIwxxpwZGZmZEJiIzIjIJXRXKKggk4GImHNyrmx2qWeUMue0ZpcyuMLUK3mvKFC0/zqvFcYyczwj5jlyZGpGCip2PZWIceaEdzCJXKzwL54gY2qmLsLCDDTvfdL73gBlZImNGTGdcxgZNqeekckc5xgxMnNmzoRMynF82vk8x2RkXlJUhiHnCH10yw8+//v75zmLHCSMUGAcxuaqALRSAYrJsF9Reym2aQsewwTkyAKrgq7SZIGJjDiV1gnmXKsN2qKaKVR2EAhzkzextb0HfdsDyDkiZhIFNGqLTEToCCVjnnPOmZmROSWUSm8cz3NGpWnCIChI5GSYadxw/v3Pz8dxznqZSQny09hqg+KSqcwsKXsRZWYFVzVncddA5hyHNZTgkGFri68lUM6hOSuc0rAIHlznyowFgddSZMnIQcucQEaEpsgFtTIGFJAwpaINIpWhUCIlQ4oynyNygfglVAdo4ywUfuD88fPj8/MxsBJetmIfWqk2v8UxGrDYaTN3A91AnecsFCnFPA86NcYYEcpyF1TJQ5MyFLGCrVC5+uLeBSjtt7izirBS6GIpjaw1q4qPyEQmhhBYMkeEclWESE1Ym+eMLDq33Dg5RRsOApoN4+fH84wFuFBYM6epcTF6EovZMgDNfHGzzYytgXI7A6VkzRMYTsQxjpHJLApLdIIIajIKYAovghVXqicAuijQmqf7qimVGS9obaAZMmMiwiW4cQKBmDMjMiJTpCutAc0bBGtGU7aIkKAcYcY0jHF8OuLxPJKdUWcRMCgG1Hj5XLj0bxmse8V9b91b2ze3fDx/nikKyAlpmjPPcUYqRTc20JrBY5CpCKZgJqsnZ6U3AHSnK2mCeW9hNrKcJZkpGOp/ojeQQGaYRDMmEcoZEaHMTNBZJWQ3o+gAxZgxx0wpR8msaqM1g47jOBOr1ik9NDOy2YvQBox0E+m7ExJh3tu2vb21Fj8/kiNY0i5yulFjjtAK5o3u3a3PZ0JBLLjgEDVISWVCIldJKZh7Xyeh5FVDMyCLIvYWYum7K3waIzNCM1Ho9EIgqt1jNLOYU1GkQBgQhpjmJoxzTJmW/qBEZoxUA00sk1Lh8GbW7t2VaYL1vt++fOl9mh2BcIqZqTnNiJgzQdBJ30xt776dPgvcC9abuVQRr3xUqkwiGCDv246SE1XmKmxOqtxR3s4AFHNqiXzOmRnCECNThJFJB5vBwJburc9zlkFJkiHNYAlj2pwhtkL6tASVMVOtMSE4oxagmblv970pp4esbfe3P/7Ytun2mEi3rPWTmSEjytBh1jZHv+399uA5R5Vc/dbcEMaAUokSGRxhMpJq2+1ukTZF642232zroNLBEdbaqc45r2rUaBkZorTsFk0Z3sBu6A7P1rd9PMec07TI7QCUItMj4rcDWXYeSe0l7eDCtd7adtsUw+eku7u7FVG7SApdACGvgofeN+f+dt92TxsILTwIAOaUQXgph6TBzND2+xtGwGS2ddrt7vcNzGjAedKl8HJcwvIFMev/K6PCpjttc7XOlq3vO2W9lTIkXHW8Xg9or6J1+bpaLAvmIsaTi9cjw0OFMtJ8/vj4PMZUOR5ehV/BpTDQG7f9tm2xJ/KEIkWLyqeRJmQu4nepkIS31lvKBfO+0fre7zsZsxmcCUhzjhmVoC69VrrgqqKhaHaXuZzutt7iBcALGBNGL81UrxRbki7a8AghmZXlAzTRfPczez4ncjyOH4F4PH8+Y15o8fVLpCiYmbfb29e3vrfH8bBnJirqkf3+MXgdf+QgkGnNMhL6ec4Eu8v6dnvfbm/dY/bGz5/HiJlxnDMgI0RdmLNwewpH4skh2xztUA/f5nZGnsHOTCvfn7KYds+SXQAaXZSUIbVARu1rGMGEi972L/2hPRmZxGnnzHM8R8YUPQIWogyxNihlrfX9/etfX/3Rfz7tODWneJqZb+goxFds5WkIJeUJznkck+bmbb/db19ut6/3lufW7ee/f36c7YznMyZAN4qpKnjqAE4GqENHoje1wG1yzBHgCNFXXVOGYIZVgZsCaGYeQAZEtSpx195ISwowb9uWR3fklHLqMXLGzFVICcXFlXZRUM/M+3Z7e3eLwNmaYYUhJBsSxS5LIpKptGRYRswxrRlovu2329vty3uPY98MxzicinOURdgBEjOvp6KSGB0zGYqWXezTIjxosWD9pUcQMDfLXAae4iyLP1HTiyVcqrC5t77fN537s3maYBfKBZGwtKVXFOimwWju3rft/u4cI/d97oeDbgb2bSuJpbztEsRMldijnLMlSLa+397e7u9fevR94/i5792NyEzAyveFIrxfkbzwTKhoFU/r220IkNJSl0ONV1WnsrTx8n8IQrZfng5caMi9b7c9n3t3W5I/6lW/fL9XdX/xcN76tu33t3fHcYzmpJK1UUB7kQ24PgF0h7dt702ttda3bb/d729vX79ss+8bz/ujNycyYgrmgkjMWBVnOYB++VjkMk9vvUl8yce13IuqXW/5UikgKA1qlV64nqW4CHPv2+nlHslgjKM0w6ppfgWiF99l5q1t+/3N8zjj2LoV2jKAbetNhY7zF/9MS1sSwHLE1Rq8b9Nuu50/Pj+7G1MZV60eiKgtrV/vIIulkC5Ow8zMzSNWFK7/2txUSozsojGlhNpLz8daAZDmvffWWrs4+oi46BZSZCtr39Jbs4KAuXujKcZ5nEVpJEQ9Hj9/QMsXebExvES0Mpvc3t6/fPvy19f3f31tp289eS2vQGb9ZwWlaj8XKqmiGr89f1lCzulKleiUqAqWc4oBoXLlIuvUuqe9vH2FDgpw5MUFXtxAseKVtSGRyEWlQ1rrMXk+n8/HcYZK4JPh8fk8jcYXX0cD27bn7e3bl+Gjbbev71//+PLl69c/vvx5NxyunGPOFMwN4NVt8jqJucp1Zzem37b0sA2+bT3FPhBBqZku3wdWBfJrA+KqPppHPXz9Tua0cTw+/3l+/Jwfz3NEhs3jDFgdAYjed8ukYcYKRDHHYfy47cnv//z8eA61mzAxlNA8BDMTEjAWe2BGo7fm/eZ9u92/fLnv29b75hrH88zx/cfPj8cZ8paNI8FExbEX9SJASZCt9aZ6HigmaOaeJLolLJH566hetTlfak5rl6FmnayMeT4/dm6PH8fP5zkswyJVMm75fX2/tZhuGIMFNuN8MgYVH/z45+Pj48xO6kxmgOOob1DFRn1EYBj8OHwEzfu277213hyB8fGR8/nff3//eE75njJ7DiHyIu9XYIcQJyOpxBQFHx7RD+C4OuB80gOBpDIg4aKNXySl0C4V77JbC7TzeHJ7fsZzjMmcnMeZSzeAkuYNSBKwhbZyniY198Dj5+N5TrkZFJOA4ryazQBQIYKG2RAxy//R2ra11nprTs1xzuPz5+fn53MEaHI3JDJSaxsLaWmCNMviXKaWc85UnLJYFV9rYmOSAZDw8tGjefPuwVQm0HYj52X7F8oEP07GeXKkCjJWhFlss5m7JHMFJWISyhhC8yYexzlDdGvAGSPFjFwl76Wjkc2IGPbIz2G+LReGcrjzOI7xfDyPc8yUtYZmm6bqMfzSLSp0ByOpCEsmMdDGNmBHlEvS3NmvTh7R3JsDttnW9rw/xjwj1F4w4BUXM2MO6hyc8aLwf7VTaEGpZSeswJ4RnGd/kudxnjMNtKJZhIyLF3+5yVY4w5WUyUq4GRPncZy1ABECDXahEaoaAH/5UYsUYRkTqkjNq0BdYlURPteq2ev4XwmyNcaFBVZiZc555hynzhnB1Zz4K4SSpNHL+5fr6MQU3F0Yz3OMBL2xZcnE87X/QdLSaI1uUuZlPlHGHON8Zurx8Xk8Pj8ez/OMWJUstUrJBaS0CLa8CvREMkKcnLAXuCVZZmYJadeKmXlr6hMUItuXNo7nc8zg1cKmzHHGnGfWAggv7boqCUPKSOc0iGkGAiGe5mBZdKxtN4fPM5NGly1HrrcwurebmT3JjCx+djwThvPom57//DiPx/M8zxGhCCCTioj4hSOFZGKlBghIJCORwYRo3U/S7eo/qPBpZtZo7dbebjc+n+N8PM/RvvQ4mj2JKz8CUExpBpfMYjSgupFAmCOjKmyjkvSgEUhlRjjcvA1u297B80Si7+c0Q6ZkzRu49f7uBILVi5sxT4aYx9E7jp+fo4T3giMIiUswK0RYwQhaciN4wSBlpkhr9+wJt6v/AmAphH0z2+79y/vdzud5/vx4PNttz5Yxy862TrRiZsZExYCS8C8epAy4gMPMoKUKA4mIOYck0Jzufc9o7oUslzJkZg7ftv29KR9LiBNS0+CHZraO4/M54hwRMzOq8YfVWlJC9iXjXGdyRSKtHp0kaW35pK4AUzvAW+vu+71/+fLu4zieFLJte+JobdZpvviuECIX8K6TU+xvg8yVURi5Epq50xdza27mpjNb33blbXhyu/ekOM5MuAm+bftb09y0EEpmTIiYNlrn+TwTbR/nKZRIVzZreS60YsaQXm0NIGkX6SWY+/2rjyPMY6kxJHvf3fv+1my79/evb21s3cc5zxZjES0F87ES+0IMtlDzqpP7roE2FUlClsg0sDVUSy3Nm2+92Sna/W3b29sR2G63VORhsUycysxQqlwkiJiDkcB0+PAxAtYRx5BE1EOYG69ETTNjBkEzmMoar2QX3Fu44/bW43GSx2rgS1rb7ub99u7svTpgFTEjs333MR+P54wX0EoEQqZc6EvLAdt6v7/nx/TqT4RhKFJgb6kQyu1p237vUxnb7rf785zq+yPizM92jlG0wBgy4jnTENQ0e8ozs7vMfMbkZn1rfYYAFxS61KtKhO7LRVnOKpORyW5ozScd99sb24PIGZFgo/nt7V1yd8/4xDwa8vF4/nw+H+0nnnOMEcsBuPiGYpMzQ0xJKoe+2RZGTaYsBQUyYWx7DMFb32/3/f7n29f9+fz584np2Df5l/eR8zP++fvz+ThCIY4pb5yXiSozT2u9W2vmm4jevmxvExDrKIZGqHwQQMLYM0pTZCpLwYmFjdi6f/vjX/t/f+ccZ8QUW7fb+9dvz4faZiOPOA7NfD7HM+ZoZ/yIiFCxiECCKDPptDmjdGQYAU34mHP6hNx8ZqQpnPR9Zljv++1+v339H3/86/b9vx7j+Tnc+7a//edftPlz/q/bPz+Zk5Km4LtJyAQQNgyMecLd2xs2b29/fX2eAZznGNXzokjGFAxJY4+xCuspgs3MERNhhvbut29//V9/vP23P54Dh5lt+/btzz///Pt/HbiT5xjnPB95HBEk2pxHZEpNv20rWrNIo3KFRpqQwjnmTEvCN+cIGCdprXPSt+3+/uXr7du//vrPe3/a+OTh/WZ7f//TPLY5HmP0ZZ7KqHq6QmnmJAkpwynzvn/546/n3x8ZyLk888pUnIBZsKnA4aIdk83aPhgRaSK87fdv/3qO3vaewdbvX77861//+rafP8JBzQk8fsY4E71by3mG9JrQULiW0yymRXn4LiAJ8waLwm1Z2yOTRCteXcqE9dv7/XHftwZv2+3t/duff21tbvP4OM9HMy62djbhKuzLP5CCMEMSbbvb3ltrbRs5M9Mk8hIJ2fpYeb/S4nJVFpFB3+7vf/7r47Nrc2SQc4yR7M2b7cyJFM9nnIcsZY2rXl5mn/VFUlQw4lUCY6XShBRSTIsMpWZD7ov6OA/vdsyYcwbNUQ0y27bd+zznbevNrcCJXU6BKC+KEkwk3LKZ5XbOrOklMPeW4SnBilAAmzvLXldsD+LMMyMZojxkre/3rRHKeQzD8/HzOZM/noNu7qsXJRMZJ6scJi7QvQq+GAtzF+nL3RLKZkbUbpzLO5QJJpAR8gdC0T7eH3qMpMtba703Y9/9NrbemhvNCGPZRGR0hxslhDJkdibnnu/f3+dxjhHLgyeVJvgqR64GExAGGEKZ6QsuemutmQnKOAd0np/T+tvHczZzqx2TygRnstnq71w1JhftGSrZt9r4/c6R56RFZoaUmKiMAWU1MQwZ8pyBr9Lt739/ztqQMY+fPW/zx/x8HucocWwZ5kC6G6s/RplKYB7g1L93y38+HueU10pJKebiLJEZRSkmSC8gOiWDjFTE8fl9+/4jP485IhQ8bdK3Hx9SItY0ERqlCDbRtLobDCRdBByRMFkzt63vt+0Nz/FxpueVkYkLgMIKgiun4ej9b/L245+PcygBxfn5Txy3+WP89/ePxzFCxaHkBa4r3wrVipCkGPi+uX4c55k0ZZY1fPUiV+1QCk+borWCaRIa5N5N58f+v+b/+jufjxFXsXk+vv/8yH6zj8fHM/155EiSRANNgCFrAbyJQCsUaL11v93evtzf8fPTPgd1Wb6uuqkAZG2FmLDx/GG2f348RxSsiPMj5j5/ju8fj2PMlFUBF1CtX3npgUwiTVMD/Ng7nxGiVfO6yQwGV812QLmvvCNpvRB5CE54b5bzs//3/PePOM+ZKPt5jufH48h88PN5jswo55ZRjTSJxnL60Foa0CGYq+3b1t7ev/71/jX//p6y+O3FVeDmdRSIDMrG8UFuz8djTCkyY4Ln3OfH+fPzec6o7ildXebUS+5PGROINPDxs9sp0PqteoAyHaaqANyauzeg3ZDwHQnRp2CEd6fGw/8e33/GOFKwEpbjfJxTnqjMBmM5LNRoluA1bAkAjXDOEvC3fXv/8sdf374F9eNx5jHP+fJaYomKSl3begwwsx3HETM1Y8TWDj9u8Tk+nsc5ItMyTFaUDYxWse3iGyAF+WzenjkFb2VOqPyDy8hDmoFti2S7U0zwjEW6KefBfn7/mfOcq4tYphxpdrtr4oZwNhzPiCCamZnoa34AzdWIzilztG2/71/+/I//119/zo7vn08dc8Zlrb8q0ToBLIvTlBTtPKbNEIimORgjnuPxPMcMwXKR2kQdvyXU09zCQEFxPlqbFK3vTy8ZB9VTt9YdMNH7Ida8CbGkVxcUA+nnj0dGSDTRJMQ4InxGjpkL8pGQ2BYOqQBTcIdovDg/Wt/evv7x5/x5744cEUla0fvI+gHF00cd4ZxKnwMN1XJjOTLnfJ6fz3NVHKlM0kFyyl1mIGHYbJTvXPNoPdsaolbmyZnK8lZQY0RmOTYZfZ5IbJ/VyeAArE0cH09U2y+QwsSDMe3w/BjPIYvIMTIBtaqFwy6/KxTEtEhQc5jjc/vxN2b89/fPY4Qq+jpTZogZhLLas5OAbBqHeQRBi4xxBJWa8zyfx7lKTjNcjsA1O6oEoM2MwARBBYSJGZGw1lWpsARMy9IokDMCOsahpEIiEJOQpZ0ac+2s1ZLiNoea8jlHkDEjZE6orS6p1TzqkVHFVQriIMNp+Pnv/J//9c/nWSKSWWPKDZUUcoF1Q5oCJpUfn1AMC0JUnGPMCInFJZSuRyvF1b074LsHhSlUD2EkMmayW8LDcLkRLH1hyVCtghKjVieGCLdS9cyqhFFZIyTlLIWiOCIzk1qEUgxW1Z9RXQA5kgIO5cjz/Lzf9M+Pvz9HmEzG3pnZvHYMM0ZElmciRrq7RHdLo+WYlOaZcx7nOUMvnwuB1U/P3tvegHZzAHnOTDFzYhJnmzJ68da2rAFWRIVyJKBIAFShGUMC9R8HnaAnoJSYM1KLwUD55GhlLK3KWgnIsoyEsxBnDoWN5/Nn73o8P8+QIVTK0NKXCChX9xRIk5QBursLZE4gNCwjz2PMiPJKFQFJmqlm021d1u6NVPg5I6AYmgzTc1IxZ06U1bKqk1HLmBLnOhmEEeYQMmPEOUstKBQpVsPtUGSu6q4OVSvS55L98xqH5iKAnGkxxtMc5zhjyRjmrYZ0cIXAiGrzqekDCljNXaAyqhFPmfOckUJg6UAGmnsarfX9tsG2t96o+Xwec6QyMpAnjjDOOWMWVkAKyJjLnlQemEolRpp5ChlDnOHtpWalmCMDPNfAp8seALXL57XEizWLy3yJcMqc86QpI2qqH+itRYHWRRSXEcnMvXmNg2v71r0zj3MqNVPKGFW/FGyuI+Belpxtv8Fv73ujRncbnLMeb3KkW8xRtOmrETVfvohLcTO6mXsbkdVUrDX4oh7VgpkF2ur8XzRye9HGWuZCiEDZgFBa9mIu6G3bkyfbtg+lmarTUYaLVF1+j759/bLf+un5+fk8MaNq22q0zCudk9Y8zPt+u7/f6fdvt41xbsYDS6lGDeuKMWKgsEa5iq+dClHVeA1vzXtvz2OGGVKC0eSiVdFciWMVfaZiRsshwl9j1C7e/RqMmasAVc3RspYt4L0rsrjIsmD85rBAMhy+3962zUNjIOcxspq7UYPWUMZMmjtqA9zf0d7/uO+cT4vUHLVgyGV9jzkBWmS+vuFSAK9/pLXWt95iZmTGTC4zjCWgXGk+wRIZFvKUGmF8tXMsSc2sBYEsU0Q1I7Vm1rZbzlTvW84wk5uBNKTI8ua0khF8f7t/uc0WHjmocURxxgSXzVOGcjeZ1cAs9i/f3u8cD5uhea5Oq4rJpRDB16Ynkk4RKgRPmTe2vW+3rStyZowThnQsFffy6ut3hbQeuTXEy8X12u/ViXkdjloX89b3e56R/XZTypo41/ARXrVhmQZ8e//2/u1t9PCZ8zFstbWS5r/UaJr3Dtv229uXb1/Z//gfX+92fLRIzvN0Z9A2T+xte9a4HrOixXV9t2pvYZq79b7d7ns/jzlgSIKtBzY0xXrdq+qoSmINhUXrOFccXQTwqrlRvc66FEllnHTm8yR8V8q61KJej8rKuloXGeOcUjzP4+9/fj6PUdMVFTL31yzJGkxJu93fv/7xrz+0/fGfX99s/GgjcB6jh9zarQH39ugzqVwulfUQ1NXQxsyJarM7+8cxUjSj9X0PbjiDlyOkkLSZe5vraKuRNTbkcvNeu8GUvNjAoi0GlDOP0VaD+nqQC1rQvBoqyTw/fhoeP/L5778fxzGTNChU4sZ6/79+mZkZ3Ela6733vm3bNqfB7BL4QCnWj6ofXvmvDGSBZOhsZ2+fx0wUl+Wr92ttmFeyXEmwcES70HIJzVqCnzklGriirKDEyAyNYMTiD3W5xEijuffWCZkxx/E0/z4///3znLO2frLG4GL5ta0e/Jqcx9aat9bmfrudt/v8nBLNzVYLaPF0Lwx5HaSqy4tL4JytP2cWdrTmVozrKkCUVerVhAKUCIJmhstlUB+YtIyYzOTMvCoQLHpDqQbvnrKWLSLW0qYpMwyE3GXnmGN+nj//+Zg6MPNl6vzl7bjKoeat9/2mvm3b5iqzfyVNc+8NvTc3syvnYw0p4nU6C4RIE8O9nbmICnprDbs2oW1pRMzUS+OuzyHYStmvg1/VIKVxPqlkxvKQAiswTAGbwNane7aYqviWhFK1At0dx3O3/Pn8/s8zeZYwjuRy92GlIFQzx9qSGXMcTcfzeTyfz3PMIae3DXvf98CSymsbg7aOLFYMFqod2YPo1X3vzc28eUvLNGpiShfsQYUDsuWac7Iecx2urN4+gtXarusglXAyGUmDlFeHsLIeg2BAHOM0zbkURy1ALgIwWUEQZQTSYp7H47NnY5+n6/PHx+N5FGwuA6Z528IYLS+NggJfEVD6dSJ4vUYJyolQzIiZkXYZjQllkqki59HM3EEsMw0NCcUcx4K5dr19IZfruUZft9azT8+l6kDArJC2tWaZV6iTMq/XRZLezJmZMiqn5PXqn2Hs87T8+Pff/3z//uN4jiDMN9m9vw0bPUdA5YhD1XyiVMYLmCOSQiKBX93ANZOtyfLXgnGN7N3MzZmt4a4xqTVau1JmzOU0q4+5TsiCSQTY1Fq2PlK2TLBL7LOqDKS1TVMzzUirrUZzbyZkNLC8nzHHOB7h1uO0+Pjx8fn5PI4xo2pTgq1PIOFIIFZyrm1Vf0O6AzVM9ddhVibM3Fv5HYJAJs2731oL293oinZL2nGeQdgKd3w5p7FmMiSWnRxCdbDR4S2stVTz8t3Wua4a0Uia92FQKsIomEJwkI7uNIVNK8UDkmKGxkkxj+McY4xzzOnTRzu9YeQcI0fWDlje5JdrSCVnWLxMe6qxDCmwBnRDrGYoyvve37ZNt2EQNNobWg0S/dXcu3xVFdwvDlys1SiLu8Pp9L6lmnuNRb4Ojbe+9da3dpvNr2C9XhtpYGveEXxeY++WHqeIYTnnjHJqJzPmGOEa8zxGHhecT5Yz4LUDwDIHY313epYAad7UzUkwz0Faqm33/uW+8zmYM8Na9+ZUQhm6jHLLWFY/ribOFogiSXfmdJoytZysrzhELC2tN/PtLR/3OIdJylnj9C4AeOfMGQqljXb03kf6OXpjPP755+Pn4/msXugWw/J4nsdz5lmDyteM42Xfe6FKeBZoySxjETQRkdXYTMYKdn3b9/e3u58T8xgDrbfOGCPn5Sm8gl4JpgKgudg/ulNuGs80l2vocjDzdQKsBkGatT3y8TmBzrzUowoN7v1mM56pVMZo57PbmX4ezRnPHz8ej+c55gwqOAbPNubjETnzhVRJ2lqAIvKCGStkT5g3OpBDk+c4cwBchIizbft+f3/rY+o0Jlvf2eY5ItbdGAW6XqNEXlNyVx8JJ10nT25yHJjJGleAEAW6t33fb7f7bb996ZvUPx9eI2MyKn/QvW9vPsfHzIAm3czD5Vsz5zw+f57Ps4r3ERgDp6Uej+VVWEceL2WiisPVXuvG06Jvt1QAMxOczxiRMIhkN+/3t/3Lt7c9RhzKodb3vo3jmMNMWeNCViCwCwisKVne237joYY4Tkt0Rl2gsGxaVg2ORtJ6396+vt0hGsJOZA1KAGnW+35/b+fRDCmZzdN8Eu1wOMb5fMxzjBmJFJmTqvGSBqwZLsvMV6WnaEwlYNasudlBr2p+wJSIcxznkNH65t7bdn+7ffn25a4xH8rhzdpuW29Oe9ULWsMEfiMJrpNmNAEheEeYLlpmeesAmA3C2piRMHej5jieNQHQHH7ZJhpmmRxK4CfU3bJpnMcR5xxnpGVSM+HWer6axVcRx9Ly8BuyM/PmNoiMMZ8BjmZpERlzCDAZM1OrrkcMfu7dG62hBpW+QvLrIy+iq0y316QgSvFqRVln5mJYcFXPWMPBqrcno+5wubhgay28eIrMoA1I0ZCuMc4z5hwjhUggK+jHTBgtS9a6gm7Vc2A5aMrHvDoCswpWKy5OAiLCSPjVeK/WWnNr3jqbX/b3Ggp3MWM1atbcSRcJZZhQTKHWe7hYpItTKyIn5pyTc/w+vGatrtWgXJ22nj/AlsEYCtOYY6quIapO04RoyKziXCvu4dKoF7cpIS1zjUVcy7MGUb5yBVb49Nb6xozce2ttXWzz+vT1PW091FV7KpGKGBauCPhaANXIIFnNga05z4pDOZX8+F///v7z4znPcn+UZkRvvfUWTigzKUZgTjTOSURmsoi/KpYEVT5flxit2oKXabqORCmF5sZ5htnS+8SyXZQG+xpGbO7uhjl7b95+7fi1eFoLcDGEMK/XL3HS2BkhY2mallrcsbuxPEhEnjMSws//+ffH4zn1SmCVBXvfegu3xT9EJMdg0znqkHgltKp6QbJvu0CAV4vgKgR97SwnCUXQgIz0rKaZgAOEra/fml2/3NxosW/7tvoGX+9/DYq5pqTzdVdDdW/I3JVBmKO5e7na11isVzxSTvnW8f2f74/jFNftOaQZzft22/eWvbWWqZrulUHkcaLCPb3eNdNIo93eRl0XJS2moDTFawa0gcU2l7BlRrN8xTCYg4SaFUDhxcb0bd/3ljGilB0uqpR1KHCZEXoHyJkhLJq8gE9dmKXSh1j3enDRn8qYg3mRYGQl7DqsERHMpDWljFwu8Iu4TROZr2iczDlGKYBr/OU6qzQCbqzXOUPFOacbrjGgJN0s5dRsTkI55ziPZzPX8xiJdh4e55zLX1HOO17ES/0vD9ECL02NpLuHoKIjagaIJS84bibkGKyZP8VacfEMmDHPPjRDoK2LvVZqX4kimSwSPWvxxjmGVVmqV6gqbw1Iem/OaTNBBdLKdLJKMjQ0WrMspj0zxjie3dx0PEeg/dSZPz6Ps2TyLKUhq8FhRdo8RUuUBCQIZn1rqEujICNTZUqvqareDTmeDY9zzuJblt8yg3Z6p7Z2fjzOMSUTk6q2taq7uZhpYbVgs6a3ruEZkq4YvVopRettFM0pSVl3Q7WsMX3ufdstPsc4MwLHQzvOh7nO759HtB/zmT8+j1NKrVZcvL5GzQ2qN/gqlkFr+/12zLpKR95Syo4ws9LP3uxxxNPwHAk6arZ8jf+MpLWY9PF4HGdIVpfoLRvgBT3olmmEJgEiBGqB/xTKHrAwh5Tw23YoM1YHlwJm3Jmtb2y3/e39zef3j+8/z5EwC5+fN3OcnzOyPTXi83lGXbj1+tAXAOTFPF0hwei+v3999/OYnSb2GUqVkqIUfX9zaOREguaswQNVrUiKOQX3+TxnrLmigLFGor80KjOgGeUg2K2Z5a/2a1pbwZqEyfrt/f4slmu55tnk9zba7c229y9//PW1nf/13wwN5TzgeTysYZxmrU1GnjOiXcACvzyphW5UEygTurJo396+vpPRdv8A+swU3Mwbla3fv/zROHOmsujwugstplasy+RYw3q1TN+Lh0yiimZrPuluZcyEsOyYEFOkOXnlX1Pb3/748oEpeIQFzN0N9n6Y3+7+/sef//l//qsd//dbjjxFxByW0xvP2Ju3x0kdx5g7IMMvnfOKM4AlFmVIcy75YuuOEA1i6zGTTm/dMvf7+7d/eT6OmJD1JrkZkRglXKdOzynTnL/mG6KazspnRNDa7ozmNqlMwE4oziooEuxahaooWlq/ffmG8xFyi6Sxtw3iu4N9a29f//V//r//j+3Y8/v3Zw9lSqebN576Yt6eDq02tV9qz8LB6+8KhBjg1uF+Qe5csKSSZikci3RsvRlhxpbx29iZOsYxZ5bNpXqdBNQEVLpf+j306/8Tmfly10myXCWxjHC3vu33t/G8p7W0GFPMvEA96X2/vX3Z2n1vhoyE5mxGbxzcprUxeb2MSzNdGICXf1yXuFbW5lX6SDXuD4s3MtIIxTifh+acg+ZQZggik3MULYqMzKTEVpE8M0GzAGvMQ+1Cn7RyAZCEWUMzZYIUDTW6mTB65/sff/75Nc4nek8bZGKm6OeYpuIoWmvOip1SSmH04LCZaPkia3CxDL/Kh0U8XPVO3YKDi3Mtsh9akr+UmJPaH488Z2SU3DEyRcpiZl5xptj1GqgVUwWSasZKpJiw8DQ4ryqY5qomAV5zL0EAjW3z+/1+27feO7YMjFCk0tp5xjW1JTPrRspljZH8Itda0CCU7nbF5Nr2a/bIaqpmFdIClPP83I6fj2dYzokRqeSYE2BE2DgPprVtb13zPG1GSjUDCAAQMzCmVD7WtQNi1OD35UauSV2M1FXwrPKkgArrWr0EKMbjh/fnPz8ex4QiavqaMs8x8rlN37fGR3v+f/7n9+dlniZJZOr4GC0XSk2w7gpZr1xmqtZrSOakzPvWNTMzzk/rn59PKUdwJiQNritBc55Pyje/9c2i5mnE6lAAROQoaWb52xbcC6FKGQFCJkHEi/yvtgxep3LJTNXfaDDZ4+fnc2bWKUwgieeYcXw2NMb5jz//5//8++djzHURXE0FfNrRakB/sQ9YJBj0e1PAijygt33Xc2TO0GzP48TIM+2swMqUDAqex4Pmvb/ttza7q5pT8pVfEplVSlxgRiCDq7avExKgojw6uvLkkuYAZDDW9xR8fNKfz3MItD6WfAc9ZhqzzTh+/Pud459//vn5OCORRDoYOfUUW5ZjpEK9ftsBXDMAgKyxM61v+1tGRgZitnNMUkNe4wsngjKDkDGjbbT3+9sWe4MA1ITNgjmpcm5d5sKKNmm2XsUqT8tGWvuhCo6ibQliTSkrT0fmCN1GTVRk44LoeWaS8sjx8/vO+fn5+DxrDg8sLRE1UFHQVQSuyFTyY1YZTdZFsjT2++3rtxAFxVSMmK5qITXi6l9a8uAXndu3L1/v8++7g9CwlVZrBX6b/XPRz8Dy5r2Iecu0OgOshF8FSQ2cXJxNRerMlNxaf9vgZ87JTCnKAUvnOTbE8awuJAiwMnRmIlvNWjOUq9xIS4BMo1np2XV1lXO7vX37a46cGRphEYlQ3ZqH152jpSa0N5u3f/3x1/t86zHm6bwi4Iva/U3XWXgTZl7hFhBkhtVcVP9Ma661hll7BKzBtwGIvu23LzficxwJLUs6a5Dls5XVbtZ90kjYSuOzJdMI1EVxerlpqGsSN5f+Zt5vb1/mj6dbaoKZsrIHrApCKqusMrn1ePv25398nXH8+N4cUmBpTJdNrPTiV5QXYLZKcAmiQ2EXUAaSNI9r4DOu6QEEzKYyYW2/v9/tuTe7qFCzmZmMWdMvGbGCCmXrqqLZVAahFRt/oeAXL1DxB9dLKz4mACkzQP6aE44FIqQIv8Z9F2NyqQxYsCnWu7+Y5aUP4iIiftl41r8lWZlESiuYmCYhreyUU7aGjV80bSETAVOT5QqoS48gwZWpUNNsQAZXgq3PldbgtkX4YJHN8/zcLH58HsccU5QwA8YcHr+4cEg5nx9/93jG8/kl/vu/vj/OhHmrT38tcvmLfs1x51InF8Bj3d3Ha1SC8OuSm/V4iWv218Tn1Jhxjpv9/XnU9X3Jy7jio36EqXhZLedh5tBsXCPfLkS4PC8qkzkAkHUzVJz8ofh4nCOiNnAJWDFSF49QnMfzZ2v5HI/Pt/z+/Z+P5xnX1PJfW+wFuX9fAS3sBZLIugZhZU9KubpdLkevJDEZDAwpIs6x+Y/HMePXfoQy6uJ3VsNfYjF6kBTKhnUB1XpqW0duiRkXO1NLOfPMH89j5npRoKqLb0U4SokAn5Srfexvux6fPz+e58jXm14YU78txPXXjLoqEUS1sRmN8IutrSy1nr2uYF8td4kzNOfZn80eH0cZCV7e36XgAq/bMV6nQ0LjogBqRF/h40skuAxMFaYDiZGPc8xc3XPFkeasfVJEvZQxkJQ/tp+bzuN5nCFzZlwxnKCvCMZfJx/rBu/6MF4e9DooRapUjBbFsGRNP2VrljTMDGS6HbN87BTWbSELQ9RFvphabU8xo2xyuKJfxasVcWpXBJMsZg5CWLjOWY3MxdjmAtHr9dAMZtQEZPM8XHMsdeh637TLi65rAa7dYFZtZGVuKEp+KSNQEDWJpnKCJCagZE6CZomMJuO5Kluso1J/kBR1Ao7XMRPNDNkcVadfrwGvL6BKVQvCSJJNw8zIfEWKRZCXQFyOT9CUQ7Lwk8oZ0lQunKT1n9XGBXn1bF/7vr7A8rJDa8xIUeuGFyGuy8sjKklT1vhox1rtwu+vR7oCbxWEvAaoCeXwydedzWsrlDhVPyNt9VPXWQpdZ+qyVhYvTiENJREUtqrLdi57b4U5FmtuTiiq//AaEbVYjl8yMNYY8PLfXPMWrk9a+6kUWLBI16ucxOJOLoQCriE51VO0OhEhiK0RCiB/K4TrfPOKPK8z+ipM1jouMPJbxBVUFvYq8yptqYwRqL1MM3PbKM2C/Uu/ZEgyuya2rOlr63teP+S1mOtglCWr2a/5tkrBVL7fa70kQAauJycuy3am2LpBE/gle/zaL6+/W9unyvSVGi8JtuqXy31+feUKCnXPAnHdR8vqK/DWdlOunsE6UkWulTL3SlNQPXMZES9V4np3WNvZvAGxyjeAsN86OF6nGgBpDsLYmhkARWa07vVM9kv4uVLVxZLXm6DWESJS1fj5WgAZwaTVH6ntaW6a9WbSHMuSXcbPdveMkgyVFol1IY/79WjXMV59uViH4dcurcNE0lvvwEBRZUJdPl7aOl+PcOFLis6tuxPIGRGtuWVGCahXZqrscx0C9wQhW77h9W8Jq6Ee6zWQpEGvi6pQPXG1GXHZ5FlNUn3zjAyaSUEGVs+Gt3Jl1u00v2aimwk0Y7524/qkUmI6RVqyLviWYQmoRSBcJoZaAdU0Oa+K39hKhrtSx7UFFh2iX/6vy929qtoVZf+3zE1b2HTR/S8g8XuNsSwFLB7olyGPZKVQXFuPC5PgNwB97f/f/mmZlJY5Cfbb2X0FNFzF+GKZgwCYEZntNOac+fsKCFgXl+qaw0/Q6Q4iVi0fTBYax7J/L2BuJVfTu9teyrPo8hgrPwUnzsC6o+k6pSu0XnC4nGfri78m+l4upnqfVajUmC2JsGaWR6RZAHX9zWuxbCELQJMKLy+clO2kFNd1WpdGC/6+iqv+yGuGYSy38tqRIqi0BRWShqjM4zavSQ0G17rpDgJlDgVBrutWRWUmL6DD5SZZG5KoKRcstqLiUWVmru7JmgVF5iiEallOQly15NLSoBRilP9DhFqi2nkvBLB+pF2w4SLq+LprsHa2AbDrFQKkZdXzL8AiWdQVJBKXtL3kVq6r0QwlLqxPoC3Wy9ZSrc+viFzo7FekvhIRyo+Vr7d1TUQmC0WDaM0Lv7+c1vXbhrb6qi8d6PU4/1smSMAKGCFX0DOhxjqukGEObxCTNCri6rMV3GCtet5WIFqIka0ZcgKssQpp3lHeQYMimaqzWGFs2S8WjyaS5oa6BR3TR8LJgGRRgS+vyG/s3XNOXfcjgyj2y9B+yywVq2tXv2LbWm/Rcsn1KwJijfSstyOU/ICSZ1NJqs0JYZbPTnnhetKaA7DejTGMM2ElkTtGpLie9IqBtn4GVSTk2gSkOVq7vd0MBxl0w0ylS5c7rZYvCGhGFkSqkXQL+FmzFwpe/7Ie7hWY1x5D3dlznapcRNlvf9okxaiuCaxDExMA0a3ZbsLMBYT7rYFs++Y2j+fzDNgcQwkrBec32yFAxLUV89XfUjWlb+zb+1/vpp+P57RGnkxtRzXzX6BpMQE0tg7M6yQLEK1BefEZKL7g2hC1068nNZe90hxXZ8Kv4qFcpAQq+UIXw7AShXlepgYJMIdZv93cpkkcbOc5adumxa68cjAXviTc/PVIql7t3m3b3799ZRIc1qovY4u1gfiyPrk3UN5vKeMUK/rCxFaq67JJ13e/uCradQs0AGtQj6pI81eOeMF7b9M7Ar7mQgmge93Yddu/2NuT5BSM3vp23+C+v9+bj093MzY+KFnLmiFshsxXnKvd2N3DrkscBbfW95vvb3/9H38wuvXTN9iTqXub9DPOlV5oUrLB0G/vspMMgiWsmTdPuyINSxX4df7N3FyZSsoasjOAGnb/v/2qbT19k3O6GZVMwVpUl95+f/MvHplIGFvfbl92tbZ/fe/t2Eg6OruR3rOuMy+j13p9KwV0b5NRKTYT7m27vfn9y7/+z784jf1oG+0TqXc/YBVMVmSDtW7i9v5NOsAgjDMlb72tK4KvEkd8Pf9aAQESZZ5mlouve20ALE6fVoM9lNRVINEWmI8ln1/Hylvf1Nv9/WtvG8ZMsnPf4Ld7Pqbq7rHVwVkRhWZo3pfuIMrg7m3b2n7/8sdfHI9nWtvhOjL3w4oWX5mQTJorrfUt22wjDVb6j7e2KQSxhhoV7Z7g+kttRgqW/esDTQHLiy6p/xmqNWvdyGTuy6YGbHsmjeTt/tbedMwJge7eWu/Y+v3tfetdZ8Btbx9n8/cv+QxU60NIXPP76jSoax6zyr4U0oo8Nmsb7bY/s+3membezv3IQEOsuwwh0KgY56nzeJ5BgHM1F+5MBHBdWXCtRQl+KYnejE12nwcyKZi7V8d8SLBqVeYKb1ytruamdsuo+svd3GpkU10tcCEuo3nfw9ruD0X79i0HHyMlS6RgzUfWmOPk3ts4IkixCQQ8xhnt+Px583geYyAvyqnKRPNIKJRQzDlGnFP5/fmYIDKzbtAqo/jlvxKyHClexG9hEqSIfR7DfedMmrUahRiZMk6sKbzlkfHWzNrubvbWLaSsxuLqf61BBjRn69t+37rlYJ/7/YFd259/TL/9OGYE5lnn12g8MJdBa4XExfUESMJaN2t907ZbU2O0beujSU1nMspcZjRLW/3KJHN9IpuXy/Z32AO86CEU4k6qo3rFMEXfNLFaYF/1s9cXLLluu7VGe5vnTAW89b6P5rao3Rqes9/ev+79sPQe9y8fp3H7jz/HmfAxQggkrTXAGXXlIH0WK3xxAWV8v7198fj5Gba9u/NjxH305h7eFcbF9Jhn2FWhyxQxBBOtLc5AWhf5vNiW32B31cAZ8wymssqSxZdDqTRHSYmJkWFmfW4OjL//nWISdiAiMxftb947e99v91u3OGbO3rvbMsKU1nLOKS9b1evbrNLmRW+YubfWb28+t+4kK95ScR7nHK6LFQSAiFyKaDJ/VZ3tnPnrMYtoWEKsaHAaf2udWvy3kjVvnbb8W/DWWtti6KyxPcd0eBtzSglE2/n58XiGeaXlTEZN4DqP5+MxAh8fn4qPPZ5jzsyYI6TQyYBzzHyRxwCELL833YuHcLvtW/TmvnflOD5//BgRadNI9w5++XLPlOKsy8toJTp46+1xlp33GqxBI+TesEa5GvWbSdwMyBxo7jOmaCFukd7a7X7s793lSTrmeCRuOEKSGxRzjDFjMsxLmbOc43iAH//8/c/P098e/9+/4/7jh/7v758n0rwzJY2ZlfVhy8Ne1OIr7VRNt/m3jxPWWzu7pJgJwaYAt977tv/1x/bvHz9mtenkqrho/XZvV5+21WzZi/FykKb4RUWvi85y8aq7jVNyRbJzcs1Q6Vtsad70PM5BtLOmryknnueoLgpKMc/GmNz8yY9//v7n4+Dj+fc/cUbin8/nrEuzqVTRKdX66Kv1UQLb6k1Jzfn8+MROIvPMOMZ55vOcCVqI3my739+//Me31pseqUhl+aHMyNZ7jdICyhiy0DtfcGedPBGaobzC3Xa7+2HMphlsSFxVOKuhFjhH0HiNnIqRz2NEJpPMGMen2Fowdzx+fP/4PA3HSCEGaqIA6BJMcBSptxyKtjhaczcy56nWfv77/Xx7nueR0e3j+Tz5OGukeHLb/fb+5dsf/+OLnefnqbqdmBdHQrMWv5TNQv0SZJn11MXtRYmJpBurVc/cvU16LBdNjMOOtPmMEx3drHX5vhGRARGhMeptln/gJLwlc+Px8fHxGIzj85EI6Z/nKF+EyCKfZRTNydakWRNY3UhKc3CM4+N7xvM4jszg83gePCLXqITqlG/Ny0+Tc16G0/ptqi0Kv0JrsiiFLAcDrwb6QqZtIxA5pXmyzQDmjGAIyjjtlM8jB8Gjs++t377M2xhjCkzMYoeqt40KZaLx5Hge5zmIY0xNO+MYIwtX1UwurlHMbtbbecTMUGoBeCVzjuNnHMePxwFzKmOynnKEbNBScT4eb/yvv388ZlaBUEMovDHO5VsAX9BXNaK6fIK0MuQIgNu9uZ7nVMYzXArNGTWInfPAmYpD01Jm7d6wv3/T8/n8PE4YFSUO04wgciYdT5s2xxhjQOcYGDzPxxl5TQ3Nor5tpfytH32Ourt9vbQqNR45js8z3Ru3djXtaCbMkuc4fmz/vvv3j8dRV+amQBlEYqJl9Uddvjs3xdoPlFkJCFX0tO3ttscPTklD5iRiZq6xXIMhxEQgU3ZHtLevf/H58+f3nx66Rv0vXcASgZTRTcd5jgGNmSZFjdyjgeypovDdq2953x7HPObIMQJaXZmQ5mOe5zHhfTdsXhcQSkOGmRxzyH7c/HHMgMclr5LWmiOatEZp/RJ4q4ryNs3NSzYUAN/uX94i8kzNgNPAMjt6EoiZSBHm5n3/4rF//fM/2vPvv408Q4r4ZciGIkORRifGOeYkZsnVKg+xkd5nVuXUrMDlbaOfHFajNBYUk3IwYoSs7ze3+0+7REdRCkqaGKefQ2lL2cWLmYy22quM9pL9TDWbUKu6vS6b6dv923yMPjNR0wMSgHnLiTWtzWGt7fcvf7Z5++uv/7w9by0iccyIiCDWsD80hgqdaj6OczJn0ptb9eaV8oRkSMrprFtC9TzO2gGzksGAg8/Po++a4bTWuTkjXoqNluhedPAa2L5egzImol1Kw+8FnWgsaqeyorVkM7PixdYAJCgdhFlz55VVQLS27beb277f7nf/uO1bN0PWKE1mBgQGE2yUM+c5ZgIJenPSqgW9yAmklLN+5MwYj+c458QY1S3FyQSPh4dxysp2jyvc2AIQvTfr3XjG1O+dtIo5GW3dOf9rQ13mOK7JOAa6gb27mzn86oi+RtvR3K5mpaLy2Lbdbb/d3+/t/efe/febO5OKtP6axpuXdS0lKSPm0jQ1x1gcCkFav922R43ljIDBXJxwywiUqdfMO7tflwut/9Bbs7Z1pqj43WKQkwNad0fiojJLSDc3eau+vYsxlZlvb7F1NyKCyqwLLszdRLJ5a062dr+/fW3n21//8R9fn3H8/DzPAc3llAhBw6aTTGXLuiuesM63e6MsMgkovU/8Ei2JPub2OMbMrL6YQm4hmXOqDTfQe9ua/XrHNU41Zio4RglgQmkMSOGIbOsE/Fb84uUvkZJSDAnWZ9LaPru7ua+pPNJF2yojmWvUkLVb71++ffvj6/79bS8TSq5BaEopvbY5S5YDaS7z291xxozLLlDNsFhNXJzTo2YzxTLT0yjaPMWeEwLpMOCycNV0aGX1b50zsy4O5UVrZ85srksH/aXilhy9/p7mAOhWgx3nTOFyZBR6yksrCNatBuMcjVbXu+cFva6dJ4UVrYXqiwedrQnt7a0hbY6pzLgutollHkHE9Bnr80p6zoCBh0Wi5Ya27cZjjDVxVUXpT8wnzNfVjEvnLAcGBqNp+R+WBAhc71aY1CUOkM0NGWPOiDnOMwXApsC87kMXBLiZlDEs++Px6ccImG+3WX7GS0SpnRYcIWVIGC6YhuvnM+Jlj1Ih9NQqxJd9qCpUSUoyM2OeLSK975+051lbtVojEoQ4ZOYQ6a65yNJ1M/RsUPLyGC1jeoWmprFiiTUzNuZ8fv6Yn8/zHOfqT0+kKWpWbIoW0ZyWcX6cOS31Mf798znS+xac/MU9lc8xc9Y8MomUOB+WH+caVoScceXzlKCYhppOXftIyVxXO8wpzzMyxof9++djBNYNgqpAXlrMkmAlYbWZMxBtDaBaTrhl0AeKtCjjhpk7qTj9o8Xn85yz8sxyrdedZLr2DkmNxxmDMz/y7x+PKVhrqfRcWlpS1TRdGXrtPBtiniXbmLNC+4po1OUVrm+UK0YwIzXCZ8s+Yxw3//vjcYSqyFv3S6xjDQB2GYhqv9YC/C6Pvkwp65+XtuqNBJExoyZR43/7xQUgrmG3UiBijqMvm9Qrnlw+Dbx05dePr8mWsTrLKvXBTNVPulZaC02uF1y/M0dTV8JI+XGOWTXqb+3s6wv8xmxdGzHb+u0lihVnJ+OLdGJz23tnJtvK51yq6eoocdOlqGmBqroUw72htSWvrcCk0hyW9l7u2uLcDFJGSbhpumZ2penVvbTMGyuMkUQyLTDVWhbdZ1TONF4jnszoBIzmdbvhqxZYAaYtapMVCAqwyNYXcLr11u7bhpi53HX6bcfg4q4X21n0fxVzJA3evLk3N5fpAvCvNpkFdOp5zJ2oayJrFFVzeo3G+22gUylWCHI1t9j1Oq9NtoD0qm7Wm79y6fXoi/0VWiuHdn2vcumLvmxHbt32fftyu+k4DjDPOebV8s1rJXU5T5EpRcxxHg1+Hs8N5aw2d/OUTDJH8OJhYTVfDCV2O9BSi/oz92a9m1nMlF5DjIqwU3WQgCRTipwc7k7NhXa1jhGxJg9U6xWo1Qmv8l/WJGRe1hhUm0IjzBzWvfv99v7t7a6PnxpxzHieY1bn929eCTNjEmytO6H5bI5jnPO04+NZLFQx+iAseRnXgJetUCz7GEui8+be2ma9Z0Suexi0UBzMVbqZlY9YGTFBIrN6VlW3ESxX3eVT0/K1vrg/CWoOALDaZcXGkZv1SQ9r1tvt7euf729peczIXLR1UfMrqaXRGpK0tt0ZzAGS/Tzj9PH8eJ7PqFXLNRIDlw2MbV6h0Nxbg6yGv5lZ6zPMDYq4ZpPbzOpmqe4prDk0IWVOGCGzmZqTxIhQ2mUSwbpZR2skFbAEWLQOlHJ0yfF0WvdRtLFv2/vXf/3nt/fofJwxn/kY82r7hgm0NdNhGViUB+1oh/d2nOPpeXx8Po48jkNZQyqMtLQVAozFx8PMvPerSSAjzUH3vc/hq7nhqsGrh9TAsrcQqYwciZhTmOcYJ6RQopyH5cVSAKBnXGbshU5bd891h5VAONHcbq01WFrv+/b1r//8v/78Gk3fH5wfOnPG5du7BHx6GEF42/Y4NXMM35qPORrH8zxPjTkvxrlptgwDJkCfa3cKlBQ16ZwErPVgTTm7Usb1Y1fOMu+eSatp9YGZKd+zGjayWL0ldpTxkTBAMHOrQVCJQPPr9OOK7UqEzpMmd5WOtd/nvjk0D1VN/RsI0KIQlcoInw+AdFcwMrrFeZ5h5k2J5EWKXhCrmrEBIRU2x4K7AXY/Z5Q17CpWFt7Cr/qVNG+QaN3XeFKklsr/K99fQR70Swh8waPmVsT1pQK8YEbVG2Vu3nfvTsQcWmrrdc/ry85UTQfL+o56mQey5SzodPU+4UpSUiLHKLdRkobkrGQqrf5VXnMC6idcs4TXU6Bcj/MUzE4azeQcY8RaqbVMupJkhQM3dydUQ8Fbd8QM6iIGy8/umSTcvfW+3d7e3udta0SO1yKx/gMzGE0mkjBvna2qWQgZ87K/40rSMHN3ycR4mawWG+mX1McAe2+ZrWgYyfIK2681XDu6qimLSQet1yjaEjRrBXG93GU+YrPe3ATlDKjR/DUMA1oTwHPdOhfz5OPj+3/lMf/r75+PYwRWZwANRJbZiLGmi1vrDa3Mr0nmREyNGTNLFatnWF35GcgXGUW4m3tbKCohNynjRN3B/jvW0XLHZk4t8LiOERTTcgEnLmi/uvsWvq6Jlr2ZoLQB/f8AXg0YeSY64ssAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image.fromarray(np.uint8(W.dot(H)), 'L')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Gensim NMF" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "np.random.seed(42)\n", - "\n", - "img_corpus = matutils.Dense2Corpus(img_matrix[np.random.choice(img_matrix.shape[0], img_matrix.shape[0], replace=False)].T)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 00:56:44,027 : INFO : Loss (no outliers): 2009.7411222788025\tLoss (with outliers): 2009.7411222788025\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 413 ms, sys: 0 ns, total: 413 ms\n", - "Wall time: 415 ms\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "import itertools\n", - "\n", - "gensim_nmf = GensimNmf(\n", - " img_corpus,\n", - " chunksize=40,\n", - " num_topics=10,\n", - " passes=1,\n", - " id2word={k: k for k in range(img_matrix.shape[1])},\n", - " lambda_=1000,\n", - " kappa=1,\n", - " normalize=False\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "setting an array element with a sequence.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmatutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDense2Corpus\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg_matrix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproba\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgensim_nmf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbow\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mH\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mValueError\u001b[0m: setting an array element with a sequence." - ] - } - ], - "source": [ - "W = gensim_nmf.get_topics().T\n", - "H = np.zeros((W.shape[1], len(matutils.Dense2Corpus(img_matrix.T))))\n", - "for bow_id, bow in enumerate(matutils.Dense2Corpus(img_matrix.T)):\n", - " for topic_id, proba in gensim_nmf[bow]:\n", - " H[topic_id, bow_id] = proba" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Reconstructed matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Image.fromarray(np.uint8(W.dot(H).T), 'L')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { + "jupytext": { + "text_representation": { + "extension": ".py", + "format_name": "percent", + "format_version": "1.1", + "jupytext_version": "0.8.3" + } + }, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -1151,7 +1208,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.7" } }, "nbformat": 4, From 7927b6b5c9c2d4edd18de1f44acd976356d97a30 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 9 Jan 2019 16:47:52 +0300 Subject: [PATCH 114/144] Change the sign of log perplexity --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 6497dc32e5..910fa177a4 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -296,7 +296,7 @@ def log_perplexity(self, corpus): pred_factors = W.dot(H) - return -(np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum() + return (np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum() def get_term_topics(self, word_id, minimum_probability=None): """Get the most relevant topics to the given word. From 1c6517e64183bd38c0400ca85c0ba4a8a0755cb1 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Wed, 9 Jan 2019 17:49:24 +0300 Subject: [PATCH 115/144] Add Sklearn NMF comparison --- docs/notebooks/nmf_benchmark.ipynb | 701 +++++++++++++++++------------ 1 file changed, 409 insertions(+), 292 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index cb4277a8e2..51372edab8 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -166,7 +166,7 @@ }, { "cell_type": "code", - "execution_count": 183, + "execution_count": 197, "metadata": {}, "outputs": [], "source": [ @@ -177,7 +177,7 @@ " \n", " return (time.time() - start), result\n", "\n", - "def tm_metrics(model, test_corpus):\n", + "def get_tm_metrics(model, test_corpus):\n", " perplexity = get_perplexity(model, test_corpus)\n", " \n", " coherence = CoherenceModel(\n", @@ -211,7 +211,7 @@ }, { "cell_type": "code", - "execution_count": 184, + "execution_count": 214, "metadata": { "scrolled": true }, @@ -220,244 +220,244 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-09 16:19:45,034 : INFO : using symmetric alpha at 0.2\n", - "2019-01-09 16:19:45,035 : INFO : using symmetric eta at 0.2\n", - "2019-01-09 16:19:45,038 : INFO : using serial LDA version on this node\n", - "2019-01-09 16:19:45,046 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2019-01-09 16:19:45,047 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2019-01-09 16:19:45,921 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:45,928 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", - "2019-01-09 16:19:45,931 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", - "2019-01-09 16:19:45,933 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", - "2019-01-09 16:19:45,934 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", - "2019-01-09 16:19:45,936 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", - "2019-01-09 16:19:45,937 : INFO : topic diff=1.652264, rho=1.000000\n", - "2019-01-09 16:19:45,938 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2019-01-09 16:19:46,892 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:46,898 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", - "2019-01-09 16:19:46,900 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-09 16:19:46,901 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", - "2019-01-09 16:19:46,902 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", - "2019-01-09 16:19:46,903 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", - "2019-01-09 16:19:46,904 : INFO : topic diff=0.879875, rho=0.707107\n", - "2019-01-09 16:19:47,842 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 16:19:47,844 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2019-01-09 16:19:48,478 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 16:19:48,483 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", - "2019-01-09 16:19:48,484 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", - "2019-01-09 16:19:48,485 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", - "2019-01-09 16:19:48,487 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", - "2019-01-09 16:19:48,489 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2019-01-09 16:19:48,490 : INFO : topic diff=0.673042, rho=0.577350\n", - "2019-01-09 16:19:48,492 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2019-01-09 16:19:49,125 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:49,132 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", - "2019-01-09 16:19:49,133 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", - "2019-01-09 16:19:49,136 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", - "2019-01-09 16:19:49,138 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-09 16:19:49,140 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", - "2019-01-09 16:19:49,142 : INFO : topic diff=0.462191, rho=0.455535\n", - "2019-01-09 16:19:49,144 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2019-01-09 16:19:49,828 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:49,836 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", - "2019-01-09 16:19:49,838 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-09 16:19:49,839 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", - "2019-01-09 16:19:49,841 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", - "2019-01-09 16:19:49,844 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", - "2019-01-09 16:19:49,845 : INFO : topic diff=0.434057, rho=0.455535\n", - "2019-01-09 16:19:50,801 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 16:19:50,802 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2019-01-09 16:19:51,409 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 16:19:51,422 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", - "2019-01-09 16:19:51,427 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-09 16:19:51,433 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", - "2019-01-09 16:19:51,437 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-09 16:19:51,440 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" + "2019-01-09 17:32:11,770 : INFO : using symmetric alpha at 0.2\n", + "2019-01-09 17:32:11,786 : INFO : using symmetric eta at 0.2\n", + "2019-01-09 17:32:11,790 : INFO : using serial LDA version on this node\n", + "2019-01-09 17:32:11,802 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-09 17:32:11,803 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2019-01-09 17:32:13,085 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:13,098 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", + "2019-01-09 17:32:13,100 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", + "2019-01-09 17:32:13,103 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", + "2019-01-09 17:32:13,105 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", + "2019-01-09 17:32:13,107 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", + "2019-01-09 17:32:13,108 : INFO : topic diff=1.652264, rho=1.000000\n", + "2019-01-09 17:32:13,109 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2019-01-09 17:32:14,154 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:14,160 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", + "2019-01-09 17:32:14,162 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-09 17:32:14,165 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", + "2019-01-09 17:32:14,167 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", + "2019-01-09 17:32:14,175 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", + "2019-01-09 17:32:14,177 : INFO : topic diff=0.879875, rho=0.707107\n", + "2019-01-09 17:32:15,363 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 17:32:15,364 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2019-01-09 17:32:16,305 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 17:32:16,312 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", + "2019-01-09 17:32:16,313 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", + "2019-01-09 17:32:16,314 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", + "2019-01-09 17:32:16,317 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", + "2019-01-09 17:32:16,318 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2019-01-09 17:32:16,319 : INFO : topic diff=0.673042, rho=0.577350\n", + "2019-01-09 17:32:16,320 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2019-01-09 17:32:17,147 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:17,153 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", + "2019-01-09 17:32:17,154 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", + "2019-01-09 17:32:17,156 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", + "2019-01-09 17:32:17,158 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-09 17:32:17,160 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", + "2019-01-09 17:32:17,161 : INFO : topic diff=0.462191, rho=0.455535\n", + "2019-01-09 17:32:17,172 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2019-01-09 17:32:18,040 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:18,048 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", + "2019-01-09 17:32:18,050 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-09 17:32:18,056 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", + "2019-01-09 17:32:18,058 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", + "2019-01-09 17:32:18,060 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", + "2019-01-09 17:32:18,062 : INFO : topic diff=0.434057, rho=0.455535\n", + "2019-01-09 17:32:19,082 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 17:32:19,083 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2019-01-09 17:32:19,726 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 17:32:19,735 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", + "2019-01-09 17:32:19,737 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-09 17:32:19,740 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", + "2019-01-09 17:32:19,741 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-09 17:32:19,743 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-09 16:19:51,443 : INFO : topic diff=0.444120, rho=0.455535\n", - "2019-01-09 16:19:51,445 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2019-01-09 16:19:52,377 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:52,388 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-09 16:19:52,389 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", - "2019-01-09 16:19:52,391 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", - "2019-01-09 16:19:52,398 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-09 16:19:52,400 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", - "2019-01-09 16:19:52,415 : INFO : topic diff=0.359704, rho=0.414549\n", - "2019-01-09 16:19:52,420 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2019-01-09 16:19:53,135 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:53,143 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", - "2019-01-09 16:19:53,145 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", - "2019-01-09 16:19:53,146 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", - "2019-01-09 16:19:53,149 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-09 16:19:53,153 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-09 16:19:53,154 : INFO : topic diff=0.325561, rho=0.414549\n", - "2019-01-09 16:19:54,075 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 16:19:54,076 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2019-01-09 16:19:54,492 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 16:19:54,498 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", - "2019-01-09 16:19:54,500 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-09 16:19:54,501 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", - "2019-01-09 16:19:54,502 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-09 16:19:54,504 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-09 16:19:54,505 : INFO : topic diff=0.327590, rho=0.414549\n", - "2019-01-09 16:19:54,506 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2019-01-09 16:19:55,122 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:55,130 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", - "2019-01-09 16:19:55,132 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-09 16:19:55,134 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", - "2019-01-09 16:19:55,136 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-09 16:19:55,138 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", - "2019-01-09 16:19:55,139 : INFO : topic diff=0.265043, rho=0.382948\n", - "2019-01-09 16:19:55,141 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2019-01-09 16:19:55,775 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:55,782 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-09 16:19:55,784 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", - "2019-01-09 16:19:55,786 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", - "2019-01-09 16:19:55,787 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-09 16:19:55,788 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-09 16:19:55,789 : INFO : topic diff=0.244061, rho=0.382948\n", - "2019-01-09 16:19:56,770 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 16:19:56,771 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2019-01-09 16:19:57,224 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 16:19:57,231 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-09 16:19:57,232 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-09 16:19:57,234 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-09 16:19:57,235 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-09 16:19:57,236 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-09 16:19:57,237 : INFO : topic diff=0.247579, rho=0.382948\n", - "2019-01-09 16:19:57,238 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2019-01-09 16:19:57,878 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:57,884 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" + "2019-01-09 17:32:19,744 : INFO : topic diff=0.444120, rho=0.455535\n", + "2019-01-09 17:32:19,745 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2019-01-09 17:32:20,632 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:20,638 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-09 17:32:20,640 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", + "2019-01-09 17:32:20,641 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", + "2019-01-09 17:32:20,643 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-09 17:32:20,644 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", + "2019-01-09 17:32:20,646 : INFO : topic diff=0.359704, rho=0.414549\n", + "2019-01-09 17:32:20,650 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2019-01-09 17:32:21,375 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:21,383 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", + "2019-01-09 17:32:21,385 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", + "2019-01-09 17:32:21,386 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", + "2019-01-09 17:32:21,388 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-09 17:32:21,389 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-09 17:32:21,394 : INFO : topic diff=0.325561, rho=0.414549\n", + "2019-01-09 17:32:22,422 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 17:32:22,422 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2019-01-09 17:32:23,257 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 17:32:23,265 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", + "2019-01-09 17:32:23,267 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-09 17:32:23,269 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", + "2019-01-09 17:32:23,270 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-09 17:32:23,271 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-09 17:32:23,272 : INFO : topic diff=0.327590, rho=0.414549\n", + "2019-01-09 17:32:23,274 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2019-01-09 17:32:24,206 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:24,217 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", + "2019-01-09 17:32:24,219 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-09 17:32:24,220 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", + "2019-01-09 17:32:24,222 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-09 17:32:24,224 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", + "2019-01-09 17:32:24,225 : INFO : topic diff=0.265043, rho=0.382948\n", + "2019-01-09 17:32:24,226 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2019-01-09 17:32:24,989 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:24,996 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-09 17:32:24,998 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", + "2019-01-09 17:32:24,999 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", + "2019-01-09 17:32:25,001 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-09 17:32:25,002 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-09 17:32:25,003 : INFO : topic diff=0.244061, rho=0.382948\n", + "2019-01-09 17:32:26,300 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 17:32:26,301 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2019-01-09 17:32:27,030 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 17:32:27,037 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-09 17:32:27,039 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-09 17:32:27,040 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-09 17:32:27,042 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-09 17:32:27,046 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-09 17:32:27,048 : INFO : topic diff=0.247579, rho=0.382948\n", + "2019-01-09 17:32:27,055 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2019-01-09 17:32:27,798 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:27,805 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-09 16:19:57,886 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-09 16:19:57,888 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", - "2019-01-09 16:19:57,890 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-09 16:19:57,893 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", - "2019-01-09 16:19:57,895 : INFO : topic diff=0.204190, rho=0.357622\n", - "2019-01-09 16:19:57,899 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2019-01-09 16:19:58,468 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 16:19:58,475 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", - "2019-01-09 16:19:58,479 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", - "2019-01-09 16:19:58,483 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", - "2019-01-09 16:19:58,484 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-09 16:19:58,486 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-09 16:19:58,488 : INFO : topic diff=0.197424, rho=0.357622\n", - "2019-01-09 16:19:59,267 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 16:19:59,268 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2019-01-09 16:19:59,686 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 16:19:59,692 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-09 16:19:59,694 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-09 16:19:59,695 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-09 16:19:59,696 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-09 16:19:59,698 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", - "2019-01-09 16:19:59,699 : INFO : topic diff=0.200393, rho=0.357622\n", - "2019-01-09 16:20:01,830 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:20:04,317 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-09 16:20:05,648 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-09 16:20:17,575 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:20:44,326 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", - "2019-01-09 16:20:57,853 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", - "2019-01-09 16:21:17,324 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:21:18,532 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-09 16:21:18,947 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-09 16:21:26,994 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:21:32,132 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", - "2019-01-09 16:21:33,095 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", - "2019-01-09 16:21:46,550 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:21:50,406 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-09 16:21:52,405 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-09 16:22:07,202 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:22:40,709 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", - "2019-01-09 16:22:55,224 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", - "2019-01-09 16:23:18,976 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:23:20,588 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-09 16:23:21,162 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-09 16:23:35,658 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:23:42,355 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", - "2019-01-09 16:23:43,766 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", - "2019-01-09 16:23:57,722 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:24:00,322 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-09 16:24:01,749 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-09 16:24:14,150 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:24:53,658 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", - "2019-01-09 16:25:09,406 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", - "2019-01-09 16:25:28,665 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:25:30,196 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-09 16:25:30,682 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-09 16:25:39,822 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 16:25:52,381 : INFO : Loss (no outliers): 605.4685741189369\tLoss (with outliers): 605.4685741189369\n", - "2019-01-09 16:25:54,547 : INFO : Loss (no outliers): 578.3308322441371\tLoss (with outliers): 578.1246508315406\n", - "2019-01-09 16:26:09,202 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-09 17:32:27,814 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-09 17:32:27,815 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", + "2019-01-09 17:32:27,817 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-09 17:32:27,818 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", + "2019-01-09 17:32:27,819 : INFO : topic diff=0.204190, rho=0.357622\n", + "2019-01-09 17:32:27,820 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2019-01-09 17:32:28,957 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-09 17:32:28,964 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", + "2019-01-09 17:32:28,966 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", + "2019-01-09 17:32:28,968 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", + "2019-01-09 17:32:28,971 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-09 17:32:28,974 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-09 17:32:28,975 : INFO : topic diff=0.197424, rho=0.357622\n", + "2019-01-09 17:32:30,318 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-09 17:32:30,319 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2019-01-09 17:32:31,117 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-09 17:32:31,124 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-09 17:32:31,125 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-09 17:32:31,129 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-09 17:32:31,133 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-09 17:32:31,134 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", + "2019-01-09 17:32:31,135 : INFO : topic diff=0.200393, rho=0.357622\n", + "2019-01-09 17:32:34,798 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:32:55,814 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-09 17:32:57,374 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-09 17:33:12,838 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:34:07,663 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", + "2019-01-09 17:34:20,795 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", + "2019-01-09 17:34:46,299 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:35:21,890 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-09 17:35:22,481 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-09 17:35:35,270 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:36:00,169 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", + "2019-01-09 17:36:01,469 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", + "2019-01-09 17:36:17,989 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:37:01,693 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-09 17:37:03,646 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-09 17:37:22,248 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:38:15,162 : INFO : Loss (no outliers): 605.9468876785337\tLoss (with outliers): 528.6068473846761\n", + "2019-01-09 17:38:28,184 : INFO : Loss (no outliers): 649.6265035924179\tLoss (with outliers): 506.41785404379146\n", + "2019-01-09 17:38:49,413 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:39:20,459 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-09 17:39:20,909 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-09 17:39:30,010 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:39:50,293 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", + "2019-01-09 17:39:51,860 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", + "2019-01-09 17:40:06,554 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:40:30,673 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-09 17:40:31,956 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-09 17:40:43,468 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:41:34,248 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", + "2019-01-09 17:41:49,262 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", + "2019-01-09 17:42:06,740 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:42:35,418 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-09 17:42:35,900 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-09 17:42:44,500 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-09 17:43:14,041 : INFO : Loss (no outliers): 605.4685741189123\tLoss (with outliers): 605.4685741189123\n", + "2019-01-09 17:43:16,064 : INFO : Loss (no outliers): 578.3308322440777\tLoss (with outliers): 578.1246508315178\n", + "2019-01-09 17:43:29,594 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] } ], "source": [ - "metrics = pd.DataFrame()\n", + "tm_metrics = pd.DataFrame()\n", + "nmf_metrics = pd.DataFrame()\n", "\n", + "# LDA metrics\n", "row = dict()\n", "row['model'] = 'lda'\n", "row['train_time'], lda = get_execution_time(\n", " lambda: LdaModel(**fixed_params)\n", ")\n", - "row.update(tm_metrics(lda, test_corpus))\n", - "metrics = metrics.append(pd.Series(row), ignore_index=True)\n", + "row.update(get_tm_metrics(lda, test_corpus))\n", + "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", + "\n", + "# Sklearn NMF metrics\n", + "row = dict()\n", + "row['model'] = 'sklearn_nmf'\n", + "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", + "row['train_time'], H = get_execution_time(\n", + " lambda: sklearn_nmf.fit_transform(proba_bow_matrix.T)\n", + ")\n", + "W = sklearn_nmf.components_\n", + "row['l2_norm'] = np.linalg.norm(proba_bow_matrix - W.T.dot(H.T))\n", + "nmf_metrics = nmf_metrics.append(pd.Series(row), ignore_index=True)\n", "\n", "for variable_params in variable_params_grid:\n", " row = dict()\n", - " row['model'] = 'gensim_nmf'\n", + " model_name = 'gensim_nmf'\n", + " row['model'] = model_name\n", " row.update(variable_params)\n", - " row['train_time'], nmf = get_execution_time(\n", + " train_time, gensim_nmf = get_execution_time(\n", " lambda: GensimNmf(\n", " **fixed_params,\n", " **variable_params,\n", " )\n", " )\n", - " row.update(tm_metrics(nmf, test_corpus))\n", - " metrics = metrics.append(pd.Series(row), ignore_index=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 172, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "defaultdict(dict,\n", - " {'lda': {'train_time': 14.333540916442871,\n", - " 'perplexity': 1975.257099667886,\n", - " 'coherence': -1.789218457133242},\n", - " 'gensim_nmf': {'lambda_': 100,\n", - " 'sparse_coef': 3,\n", - " 'use_r': True,\n", - " 'train_time': 15.977479219436646,\n", - " 'perplexity': 55.94837976162525,\n", - " 'coherence': -1.6674878449174666}})" - ] - }, - "execution_count": 172, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "metrics" + " row['train_time'] = train_time\n", + " row.update(get_tm_metrics(gensim_nmf, test_corpus))\n", + " tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", + " \n", + " row = dict()\n", + " row['model'] = model_name\n", + " row.update(variable_params)\n", + " row['train_time'] = train_time\n", + " \n", + " W = gensim_nmf.get_topics().T\n", + " H = np.zeros((W.shape[1], len(train_corpus)))\n", + " for bow_id, bow in enumerate(train_corpus):\n", + " for topic_id, proba in gensim_nmf[bow]:\n", + " H[topic_id, bow_id] = proba\n", + "\n", + " row['l2_norm'] = np.linalg.norm(proba_bow_matrix - W.dot(H))\n", + " nmf_metrics = nmf_metrics.append(pd.Series(row), ignore_index=True)" ] }, { "cell_type": "code", - "execution_count": 191, + "execution_count": 210, "metadata": {}, "outputs": [ { @@ -496,9 +496,9 @@ " 4\n", " -1.572423\n", " gensim_nmf\n", - " 21.205827\n", + " 21.206249\n", " [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...\n", - " 6.053080\n", + " 7.948737\n", " 1.0\n", " 3.0\n", " 1.0\n", @@ -507,9 +507,9 @@ " 8\n", " -1.794092\n", " gensim_nmf\n", - " 49.031566\n", + " 49.031547\n", " [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli...\n", - " 8.053626\n", + " 11.298958\n", " 10.0\n", " 3.0\n", " 1.0\n", @@ -518,9 +518,9 @@ " 12\n", " -1.667488\n", " gensim_nmf\n", - " 55.947987\n", + " 55.947980\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 14.675460\n", + " 18.124607\n", " 100.0\n", " 3.0\n", " 1.0\n", @@ -531,7 +531,7 @@ " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.567775\n", + " 2.519675\n", " 1.0\n", " 3.0\n", " 0.0\n", @@ -542,7 +542,7 @@ " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 2.115638\n", + " 2.603668\n", " 10.0\n", " 3.0\n", " 0.0\n", @@ -553,7 +553,7 @@ " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.946583\n", + " 2.529626\n", " 100.0\n", " 3.0\n", " 0.0\n", @@ -564,7 +564,7 @@ " lda\n", " 1975.257100\n", " [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...\n", - " 14.666002\n", + " 22.873011\n", " NaN\n", " NaN\n", " NaN\n", @@ -575,7 +575,7 @@ " gensim_nmf\n", " 2314.832335\n", " [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...\n", - " 47.974756\n", + " 89.363431\n", " 10.0\n", " 0.0\n", " 1.0\n", @@ -586,7 +586,7 @@ " gensim_nmf\n", " 2335.171593\n", " [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...\n", - " 40.227744\n", + " 48.057754\n", " 1.0\n", " 0.0\n", " 1.0\n", @@ -597,7 +597,7 @@ " gensim_nmf\n", " 2526.410174\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 55.212322\n", + " 66.026338\n", " 100.0\n", " 0.0\n", " 1.0\n", @@ -608,7 +608,7 @@ " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 3.773897\n", + " 5.881618\n", " 1.0\n", " 0.0\n", " 0.0\n", @@ -619,7 +619,7 @@ " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 5.728403\n", + " 5.131663\n", " 10.0\n", " 0.0\n", " 0.0\n", @@ -630,7 +630,7 @@ " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 3.983498\n", + " 6.476429\n", " 100.0\n", " 0.0\n", " 0.0\n", @@ -641,9 +641,9 @@ ], "text/plain": [ " coherence model perplexity \\\n", - "4 -1.572423 gensim_nmf 21.205827 \n", - "8 -1.794092 gensim_nmf 49.031566 \n", - "12 -1.667488 gensim_nmf 55.947987 \n", + "4 -1.572423 gensim_nmf 21.206249 \n", + "8 -1.794092 gensim_nmf 49.031547 \n", + "12 -1.667488 gensim_nmf 55.947980 \n", "3 -1.669871 gensim_nmf 56.999925 \n", "7 -1.669871 gensim_nmf 56.999925 \n", "11 -1.669871 gensim_nmf 56.999925 \n", @@ -656,19 +656,19 @@ "9 -1.651645 gensim_nmf 2534.426980 \n", "\n", " topics train_time lambda_ \\\n", - "4 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 6.053080 1.0 \n", - "8 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 8.053626 10.0 \n", - "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 14.675460 100.0 \n", - "3 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.567775 1.0 \n", - "7 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.115638 10.0 \n", - "11 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.946583 100.0 \n", - "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 14.666002 NaN \n", - "6 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 47.974756 10.0 \n", - "2 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 40.227744 1.0 \n", - "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 55.212322 100.0 \n", - "1 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.773897 1.0 \n", - "5 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 5.728403 10.0 \n", - "9 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.983498 100.0 \n", + "4 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 7.948737 1.0 \n", + "8 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 11.298958 10.0 \n", + "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 18.124607 100.0 \n", + "3 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.519675 1.0 \n", + "7 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.603668 10.0 \n", + "11 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.529626 100.0 \n", + "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 22.873011 NaN \n", + "6 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 89.363431 10.0 \n", + "2 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 48.057754 1.0 \n", + "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 66.026338 100.0 \n", + "1 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 5.881618 1.0 \n", + "5 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 5.131663 10.0 \n", + "9 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 6.476429 100.0 \n", "\n", " sparse_coef use_r \n", "4 3.0 1.0 \n", @@ -686,18 +686,18 @@ "9 0.0 0.0 " ] }, - "execution_count": 191, + "execution_count": 210, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "metrics.sort_values('perplexity')" + "tm_metrics.sort_values('perplexity')" ] }, { "cell_type": "code", - "execution_count": 195, + "execution_count": 211, "metadata": {}, "outputs": [ { @@ -715,78 +715,195 @@ " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" ] }, - "execution_count": 195, + "execution_count": 211, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "metrics.iloc[3].topics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Gensim NMF vs Sklearn NMF" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "W = gensim_nmf.get_topics().T\n", - "H = np.zeros((W.shape[1], len(train_corpus)))\n", - "for bow_id, bow in enumerate(train_corpus):\n", - " for topic_id, proba in gensim_nmf[bow]:\n", - " H[topic_id, bow_id] = proba\n", - "\n", - "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" + "tm_metrics.iloc[3].topics" ] }, { "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 34.4 s, sys: 7.03 s, total: 41.4 s\n", - "Wall time: 12 s\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", - "\n", - "W = sklearn_nmf.fit_transform(proba_bow_matrix)\n", - "H = sklearn_nmf.components_" - ] - }, - { - "cell_type": "code", - "execution_count": 46, + "execution_count": 215, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
l2_normmodeltrain_timelambda_sparse_coefuse_r
08.300987sklearn_nmf16.847008NaNNaNNaN
28.492622gensim_nmf47.1553091.00.01.0
68.508134gensim_nmf44.24005210.00.01.0
108.530118gensim_nmf49.057657100.00.01.0
18.532657gensim_nmf5.1559941.00.00.0
58.532657gensim_nmf5.63216910.00.00.0
98.532657gensim_nmf4.049617100.00.00.0
128.668168gensim_nmf13.821872100.03.01.0
38.668387gensim_nmf2.1446001.03.00.0
78.668387gensim_nmf1.85759110.03.00.0
118.668387gensim_nmf2.008923100.03.00.0
48.721642gensim_nmf7.6078081.03.01.0
88.762972gensim_nmf8.41272910.03.01.0
\n", + "
" + ], "text/plain": [ - "8.30098721069945" + " l2_norm model train_time lambda_ sparse_coef use_r\n", + "0 8.300987 sklearn_nmf 16.847008 NaN NaN NaN\n", + "2 8.492622 gensim_nmf 47.155309 1.0 0.0 1.0\n", + "6 8.508134 gensim_nmf 44.240052 10.0 0.0 1.0\n", + "10 8.530118 gensim_nmf 49.057657 100.0 0.0 1.0\n", + "1 8.532657 gensim_nmf 5.155994 1.0 0.0 0.0\n", + "5 8.532657 gensim_nmf 5.632169 10.0 0.0 0.0\n", + "9 8.532657 gensim_nmf 4.049617 100.0 0.0 0.0\n", + "12 8.668168 gensim_nmf 13.821872 100.0 3.0 1.0\n", + "3 8.668387 gensim_nmf 2.144600 1.0 3.0 0.0\n", + "7 8.668387 gensim_nmf 1.857591 10.0 3.0 0.0\n", + "11 8.668387 gensim_nmf 2.008923 100.0 3.0 0.0\n", + "4 8.721642 gensim_nmf 7.607808 1.0 3.0 1.0\n", + "8 8.762972 gensim_nmf 8.412729 10.0 3.0 1.0" ] }, - "execution_count": 46, + "execution_count": 215, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "np.linalg.norm(proba_bow_matrix - W.dot(H), 'fro')" + "nmf_metrics.sort_values('l2_norm')" ] }, { From 278fb056c1f1e5b1021ec620de2a319270478f9b Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 01:43:40 +0300 Subject: [PATCH 116/144] Merge sklearn and tm tables --- docs/notebooks/nmf_benchmark.ipynb | 818 ++++++++++++----------------- 1 file changed, 332 insertions(+), 486 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index 51372edab8..c14d7c4ab6 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 174, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -21,14 +21,6 @@ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", - " return f(*args, **kwds)\n" - ] } ], "source": [ @@ -65,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -83,7 +75,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -95,18 +87,18 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-09 12:16:54,680 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2019-01-09 12:16:55,350 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", - "2019-01-09 12:16:55,407 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2019-01-09 12:16:55,408 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2019-01-09 12:16:55,438 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2019-01-10 01:25:28,593 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2019-01-10 01:25:29,650 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", + "2019-01-10 01:25:29,701 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2019-01-10 01:25:29,702 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2019-01-10 01:25:29,718 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], @@ -120,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -134,15 +126,12 @@ " dictionary.doc2bow(document)\n", " for document\n", " in test_documents\n", - "]\n", - "\n", - "bow_matrix = matutils.corpus2dense(train_corpus, len(dictionary), len(train_documents))\n", - "proba_bow_matrix = bow_matrix / bow_matrix.sum(axis=0)" + "]" ] }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -166,35 +155,38 @@ }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "def get_execution_time(func):\n", " start = time.time()\n", - " \n", + "\n", " result = func()\n", - " \n", + "\n", " return (time.time() - start), result\n", "\n", - "def get_tm_metrics(model, test_corpus):\n", - " perplexity = get_perplexity(model, test_corpus)\n", - " \n", + "def get_tm_metrics(model, corpus, dense_corpus):\n", + " perplexity = get_tm_perplexity(model, corpus, dense_corpus)\n", + "\n", " coherence = CoherenceModel(\n", " model=model,\n", - " corpus=test_corpus,\n", + " corpus=corpus,\n", " coherence='u_mass'\n", " ).get_coherence()\n", - " \n", + "\n", + " l2_norm = get_tm_l2_norm(model, corpus, dense_corpus)\n", + "\n", " topics = model.show_topics()\n", - " \n", + "\n", " return dict(\n", " perplexity=perplexity,\n", " coherence=coherence,\n", - " topics=topics\n", + " topics=topics,\n", + " l2_norm=l2_norm,\n", " )\n", "\n", - "def get_perplexity(model, corpus):\n", + "def get_tm_perplexity(model, corpus, dense_corpus):\n", " W = model.get_topics().T\n", "\n", " H = np.zeros((W.shape[1], len(corpus)))\n", @@ -202,16 +194,38 @@ " for topic_id, proba in model[bow]:\n", " H[topic_id, bow_id] = proba\n", "\n", - " dense_corpus = matutils.corpus2dense(corpus, W.shape[0])\n", + " pred_factors = W.dot(H)\n", + "\n", + " return np.exp(-(np.log(pred_factors, where=pred_factors>0) * dense_corpus).sum() / dense_corpus.sum())\n", "\n", + "def get_tm_l2_norm(model, corpus, dense_corpus):\n", + " W = model.get_topics().T\n", + " H = np.zeros((W.shape[1], len(corpus)))\n", + " for bow_id, bow in enumerate(corpus):\n", + " for topic_id, proba in model[bow]:\n", + " H[topic_id, bow_id] = proba\n", + "\n", + " return np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - W.dot(H))\n", + "\n", + "def get_sklearn_metrics(model, dense_corpus):\n", + " W = model.components_.T\n", + " H = model.transform((dense_corpus / dense_corpus.sum(axis=0)).T).T\n", " pred_factors = W.dot(H)\n", + " perplexity = np.exp(\n", + " -(np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum()\n", + " / dense_corpus.sum()\n", + " )\n", + " l2_norm = np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - pred_factors)\n", "\n", - " return np.exp(-(np.log(pred_factors, where=pred_factors>0) * dense_corpus).sum() / dense_corpus.sum())" + " return dict(\n", + " perplexity=perplexity,\n", + " l2_norm=l2_norm,\n", + " )" ] }, { "cell_type": "code", - "execution_count": 214, + "execution_count": 43, "metadata": { "scrolled": true }, @@ -220,190 +234,192 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-09 17:32:11,770 : INFO : using symmetric alpha at 0.2\n", - "2019-01-09 17:32:11,786 : INFO : using symmetric eta at 0.2\n", - "2019-01-09 17:32:11,790 : INFO : using serial LDA version on this node\n", - "2019-01-09 17:32:11,802 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2019-01-09 17:32:11,803 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2019-01-09 17:32:13,085 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:13,098 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", - "2019-01-09 17:32:13,100 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", - "2019-01-09 17:32:13,103 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", - "2019-01-09 17:32:13,105 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", - "2019-01-09 17:32:13,107 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", - "2019-01-09 17:32:13,108 : INFO : topic diff=1.652264, rho=1.000000\n", - "2019-01-09 17:32:13,109 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2019-01-09 17:32:14,154 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:14,160 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", - "2019-01-09 17:32:14,162 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-09 17:32:14,165 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", - "2019-01-09 17:32:14,167 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", - "2019-01-09 17:32:14,175 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", - "2019-01-09 17:32:14,177 : INFO : topic diff=0.879875, rho=0.707107\n", - "2019-01-09 17:32:15,363 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 17:32:15,364 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2019-01-09 17:32:16,305 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 17:32:16,312 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", - "2019-01-09 17:32:16,313 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", - "2019-01-09 17:32:16,314 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", - "2019-01-09 17:32:16,317 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", - "2019-01-09 17:32:16,318 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2019-01-09 17:32:16,319 : INFO : topic diff=0.673042, rho=0.577350\n", - "2019-01-09 17:32:16,320 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2019-01-09 17:32:17,147 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:17,153 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", - "2019-01-09 17:32:17,154 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", - "2019-01-09 17:32:17,156 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", - "2019-01-09 17:32:17,158 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-09 17:32:17,160 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", - "2019-01-09 17:32:17,161 : INFO : topic diff=0.462191, rho=0.455535\n", - "2019-01-09 17:32:17,172 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2019-01-09 17:32:18,040 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:18,048 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", - "2019-01-09 17:32:18,050 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-09 17:32:18,056 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", - "2019-01-09 17:32:18,058 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", - "2019-01-09 17:32:18,060 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", - "2019-01-09 17:32:18,062 : INFO : topic diff=0.434057, rho=0.455535\n", - "2019-01-09 17:32:19,082 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 17:32:19,083 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2019-01-09 17:32:19,726 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 17:32:19,735 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", - "2019-01-09 17:32:19,737 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-09 17:32:19,740 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", - "2019-01-09 17:32:19,741 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-09 17:32:19,743 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" + "2019-01-10 01:25:32,001 : INFO : using symmetric alpha at 0.2\n", + "2019-01-10 01:25:32,002 : INFO : using symmetric eta at 0.2\n", + "2019-01-10 01:25:32,012 : INFO : using serial LDA version on this node\n", + "2019-01-10 01:25:32,031 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-10 01:25:32,035 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2019-01-10 01:25:34,092 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:34,103 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", + "2019-01-10 01:25:34,106 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", + "2019-01-10 01:25:34,108 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", + "2019-01-10 01:25:34,110 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", + "2019-01-10 01:25:34,112 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", + "2019-01-10 01:25:34,119 : INFO : topic diff=1.652264, rho=1.000000\n", + "2019-01-10 01:25:34,120 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2019-01-10 01:25:35,450 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:35,460 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", + "2019-01-10 01:25:35,462 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-10 01:25:35,464 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", + "2019-01-10 01:25:35,468 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", + "2019-01-10 01:25:35,470 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", + "2019-01-10 01:25:35,478 : INFO : topic diff=0.879875, rho=0.707107\n", + "2019-01-10 01:25:36,897 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 01:25:36,898 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2019-01-10 01:25:37,497 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 01:25:37,504 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", + "2019-01-10 01:25:37,505 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", + "2019-01-10 01:25:37,507 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", + "2019-01-10 01:25:37,508 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", + "2019-01-10 01:25:37,509 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2019-01-10 01:25:37,511 : INFO : topic diff=0.673042, rho=0.577350\n", + "2019-01-10 01:25:37,513 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2019-01-10 01:25:38,240 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:38,247 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", + "2019-01-10 01:25:38,249 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", + "2019-01-10 01:25:38,250 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", + "2019-01-10 01:25:38,251 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 01:25:38,252 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", + "2019-01-10 01:25:38,253 : INFO : topic diff=0.462191, rho=0.455535\n", + "2019-01-10 01:25:38,254 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2019-01-10 01:25:38,946 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:38,952 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", + "2019-01-10 01:25:38,957 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-10 01:25:38,959 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", + "2019-01-10 01:25:38,960 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", + "2019-01-10 01:25:38,963 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", + "2019-01-10 01:25:38,971 : INFO : topic diff=0.434057, rho=0.455535\n", + "2019-01-10 01:25:39,826 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 01:25:39,826 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2019-01-10 01:25:40,338 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 01:25:40,344 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", + "2019-01-10 01:25:40,346 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-10 01:25:40,350 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", + "2019-01-10 01:25:40,353 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-10 01:25:40,355 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-09 17:32:19,744 : INFO : topic diff=0.444120, rho=0.455535\n", - "2019-01-09 17:32:19,745 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2019-01-09 17:32:20,632 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:20,638 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-09 17:32:20,640 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", - "2019-01-09 17:32:20,641 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", - "2019-01-09 17:32:20,643 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-09 17:32:20,644 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", - "2019-01-09 17:32:20,646 : INFO : topic diff=0.359704, rho=0.414549\n", - "2019-01-09 17:32:20,650 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2019-01-09 17:32:21,375 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:21,383 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", - "2019-01-09 17:32:21,385 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", - "2019-01-09 17:32:21,386 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", - "2019-01-09 17:32:21,388 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-09 17:32:21,389 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-09 17:32:21,394 : INFO : topic diff=0.325561, rho=0.414549\n", - "2019-01-09 17:32:22,422 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 17:32:22,422 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2019-01-09 17:32:23,257 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 17:32:23,265 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", - "2019-01-09 17:32:23,267 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-09 17:32:23,269 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", - "2019-01-09 17:32:23,270 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-09 17:32:23,271 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-09 17:32:23,272 : INFO : topic diff=0.327590, rho=0.414549\n", - "2019-01-09 17:32:23,274 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2019-01-09 17:32:24,206 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:24,217 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", - "2019-01-09 17:32:24,219 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-09 17:32:24,220 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", - "2019-01-09 17:32:24,222 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-09 17:32:24,224 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", - "2019-01-09 17:32:24,225 : INFO : topic diff=0.265043, rho=0.382948\n", - "2019-01-09 17:32:24,226 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2019-01-09 17:32:24,989 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:24,996 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-09 17:32:24,998 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", - "2019-01-09 17:32:24,999 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", - "2019-01-09 17:32:25,001 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-09 17:32:25,002 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-09 17:32:25,003 : INFO : topic diff=0.244061, rho=0.382948\n", - "2019-01-09 17:32:26,300 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 17:32:26,301 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2019-01-09 17:32:27,030 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 17:32:27,037 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-09 17:32:27,039 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-09 17:32:27,040 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-09 17:32:27,042 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-09 17:32:27,046 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-09 17:32:27,048 : INFO : topic diff=0.247579, rho=0.382948\n", - "2019-01-09 17:32:27,055 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2019-01-09 17:32:27,798 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:27,805 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" + "2019-01-10 01:25:40,356 : INFO : topic diff=0.444120, rho=0.455535\n", + "2019-01-10 01:25:40,358 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2019-01-10 01:25:40,984 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:40,990 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-10 01:25:40,992 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", + "2019-01-10 01:25:40,997 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", + "2019-01-10 01:25:40,998 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 01:25:41,005 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", + "2019-01-10 01:25:41,006 : INFO : topic diff=0.359704, rho=0.414549\n", + "2019-01-10 01:25:41,009 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2019-01-10 01:25:41,633 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:41,640 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", + "2019-01-10 01:25:41,642 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", + "2019-01-10 01:25:41,645 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", + "2019-01-10 01:25:41,647 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 01:25:41,649 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 01:25:41,651 : INFO : topic diff=0.325561, rho=0.414549\n", + "2019-01-10 01:25:42,639 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 01:25:42,640 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2019-01-10 01:25:43,526 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 01:25:43,535 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", + "2019-01-10 01:25:43,538 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-10 01:25:43,540 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", + "2019-01-10 01:25:43,542 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-10 01:25:43,545 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-10 01:25:43,547 : INFO : topic diff=0.327590, rho=0.414549\n", + "2019-01-10 01:25:43,554 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2019-01-10 01:25:44,239 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:44,247 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", + "2019-01-10 01:25:44,249 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-10 01:25:44,250 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", + "2019-01-10 01:25:44,251 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 01:25:44,254 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", + "2019-01-10 01:25:44,255 : INFO : topic diff=0.265043, rho=0.382948\n", + "2019-01-10 01:25:44,257 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2019-01-10 01:25:44,846 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:44,852 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-10 01:25:44,854 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", + "2019-01-10 01:25:44,855 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", + "2019-01-10 01:25:44,858 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 01:25:44,860 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 01:25:44,861 : INFO : topic diff=0.244061, rho=0.382948\n", + "2019-01-10 01:25:45,672 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 01:25:45,673 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2019-01-10 01:25:46,164 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 01:25:46,172 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-10 01:25:46,175 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-10 01:25:46,177 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-10 01:25:46,178 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 01:25:46,179 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-10 01:25:46,180 : INFO : topic diff=0.247579, rho=0.382948\n", + "2019-01-10 01:25:46,181 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2019-01-10 01:25:46,810 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:46,817 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-09 17:32:27,814 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-09 17:32:27,815 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", - "2019-01-09 17:32:27,817 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-09 17:32:27,818 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", - "2019-01-09 17:32:27,819 : INFO : topic diff=0.204190, rho=0.357622\n", - "2019-01-09 17:32:27,820 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2019-01-09 17:32:28,957 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-09 17:32:28,964 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", - "2019-01-09 17:32:28,966 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", - "2019-01-09 17:32:28,968 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", - "2019-01-09 17:32:28,971 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-09 17:32:28,974 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-09 17:32:28,975 : INFO : topic diff=0.197424, rho=0.357622\n", - "2019-01-09 17:32:30,318 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-09 17:32:30,319 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2019-01-09 17:32:31,117 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-09 17:32:31,124 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-09 17:32:31,125 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-09 17:32:31,129 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-09 17:32:31,133 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-09 17:32:31,134 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", - "2019-01-09 17:32:31,135 : INFO : topic diff=0.200393, rho=0.357622\n", - "2019-01-09 17:32:34,798 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:32:55,814 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-09 17:32:57,374 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-09 17:33:12,838 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:34:07,663 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", - "2019-01-09 17:34:20,795 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", - "2019-01-09 17:34:46,299 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:35:21,890 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-09 17:35:22,481 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-09 17:35:35,270 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:36:00,169 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", - "2019-01-09 17:36:01,469 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", - "2019-01-09 17:36:17,989 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:37:01,693 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-09 17:37:03,646 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-09 17:37:22,248 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:38:15,162 : INFO : Loss (no outliers): 605.9468876785337\tLoss (with outliers): 528.6068473846761\n", - "2019-01-09 17:38:28,184 : INFO : Loss (no outliers): 649.6265035924179\tLoss (with outliers): 506.41785404379146\n", - "2019-01-09 17:38:49,413 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:39:20,459 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-09 17:39:20,909 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-09 17:39:30,010 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:39:50,293 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", - "2019-01-09 17:39:51,860 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", - "2019-01-09 17:40:06,554 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:40:30,673 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-09 17:40:31,956 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-09 17:40:43,468 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:41:34,248 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", - "2019-01-09 17:41:49,262 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", - "2019-01-09 17:42:06,740 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:42:35,418 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-09 17:42:35,900 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-09 17:42:44,500 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-09 17:43:14,041 : INFO : Loss (no outliers): 605.4685741189123\tLoss (with outliers): 605.4685741189123\n", - "2019-01-09 17:43:16,064 : INFO : Loss (no outliers): 578.3308322440777\tLoss (with outliers): 578.1246508315178\n", - "2019-01-09 17:43:29,594 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-10 01:25:46,821 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-10 01:25:46,822 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", + "2019-01-10 01:25:46,829 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 01:25:46,831 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", + "2019-01-10 01:25:46,831 : INFO : topic diff=0.204190, rho=0.357622\n", + "2019-01-10 01:25:46,833 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2019-01-10 01:25:47,430 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 01:25:47,437 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", + "2019-01-10 01:25:47,438 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", + "2019-01-10 01:25:47,440 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", + "2019-01-10 01:25:47,441 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 01:25:47,442 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 01:25:47,444 : INFO : topic diff=0.197424, rho=0.357622\n", + "2019-01-10 01:25:48,238 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 01:25:48,239 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2019-01-10 01:25:48,637 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 01:25:48,643 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-10 01:25:48,645 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-10 01:25:48,646 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-10 01:25:48,648 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 01:25:48,650 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", + "2019-01-10 01:25:48,651 : INFO : topic diff=0.200393, rho=0.357622\n", + "2019-01-10 01:25:50,944 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:26:09,034 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 01:26:10,207 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 01:26:19,791 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:26:51,547 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", + "2019-01-10 01:27:02,483 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", + "2019-01-10 01:27:18,951 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:27:36,576 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 01:27:37,028 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 01:27:44,145 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:27:55,814 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", + "2019-01-10 01:27:56,819 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", + "2019-01-10 01:28:12,776 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:28:28,610 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 01:28:29,789 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 01:28:39,580 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:29:12,885 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", + "2019-01-10 01:29:24,621 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", + "2019-01-10 01:29:43,470 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:30:01,076 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 01:30:01,506 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 01:30:10,592 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:30:26,663 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", + "2019-01-10 01:30:28,126 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", + "2019-01-10 01:30:45,782 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:31:05,698 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 01:31:06,982 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 01:31:18,736 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:32:04,312 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", + "2019-01-10 01:32:19,104 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", + "2019-01-10 01:32:36,190 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:32:55,605 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 01:32:56,051 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 01:33:03,754 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 01:33:21,837 : INFO : Loss (no outliers): 605.4685741189123\tLoss (with outliers): 605.4685741189123\n", + "2019-01-10 01:33:23,965 : INFO : Loss (no outliers): 578.3308322440762\tLoss (with outliers): 578.12465083152\n", + "2019-01-10 01:33:41,177 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] } ], "source": [ "tm_metrics = pd.DataFrame()\n", - "nmf_metrics = pd.DataFrame()\n", + "\n", + "train_dense_corpus = matutils.corpus2dense(train_corpus, len(dictionary))\n", + "test_dense_corpus = matutils.corpus2dense(test_corpus, len(dictionary))\n", "\n", "# LDA metrics\n", "row = dict()\n", @@ -411,53 +427,36 @@ "row['train_time'], lda = get_execution_time(\n", " lambda: LdaModel(**fixed_params)\n", ")\n", - "row.update(get_tm_metrics(lda, test_corpus))\n", + "row.update(get_tm_metrics(lda, test_corpus, test_dense_corpus))\n", "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", "\n", "# Sklearn NMF metrics\n", "row = dict()\n", "row['model'] = 'sklearn_nmf'\n", "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", - "row['train_time'], H = get_execution_time(\n", - " lambda: sklearn_nmf.fit_transform(proba_bow_matrix.T)\n", + "row['train_time'], sklearn_nmf = get_execution_time(\n", + " lambda: sklearn_nmf.fit((train_dense_corpus / train_dense_corpus.sum(axis=0)).T)\n", ")\n", - "W = sklearn_nmf.components_\n", - "row['l2_norm'] = np.linalg.norm(proba_bow_matrix - W.T.dot(H.T))\n", - "nmf_metrics = nmf_metrics.append(pd.Series(row), ignore_index=True)\n", + "row.update(get_sklearn_metrics(sklearn_nmf, test_dense_corpus))\n", + "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", "\n", "for variable_params in variable_params_grid:\n", " row = dict()\n", - " model_name = 'gensim_nmf'\n", - " row['model'] = model_name\n", + " row['model'] = 'gensim_nmf'\n", " row.update(variable_params)\n", - " train_time, gensim_nmf = get_execution_time(\n", + " row['train_time'], model = get_execution_time(\n", " lambda: GensimNmf(\n", " **fixed_params,\n", " **variable_params,\n", " )\n", " )\n", - " row['train_time'] = train_time\n", - " row.update(get_tm_metrics(gensim_nmf, test_corpus))\n", - " tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", - " \n", - " row = dict()\n", - " row['model'] = model_name\n", - " row.update(variable_params)\n", - " row['train_time'] = train_time\n", - " \n", - " W = gensim_nmf.get_topics().T\n", - " H = np.zeros((W.shape[1], len(train_corpus)))\n", - " for bow_id, bow in enumerate(train_corpus):\n", - " for topic_id, proba in gensim_nmf[bow]:\n", - " H[topic_id, bow_id] = proba\n", - "\n", - " row['l2_norm'] = np.linalg.norm(proba_bow_matrix - W.dot(H))\n", - " nmf_metrics = nmf_metrics.append(pd.Series(row), ignore_index=True)" + " row.update(get_tm_metrics(model, test_corpus, test_dense_corpus))\n", + " tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)" ] }, { "cell_type": "code", - "execution_count": 210, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -482,6 +481,7 @@ " \n", " \n", " coherence\n", + " l2_norm\n", " model\n", " perplexity\n", " topics\n", @@ -493,67 +493,73 @@ " \n", " \n", " \n", - " 4\n", + " 5\n", " -1.572423\n", + " 7.210594\n", " gensim_nmf\n", - " 21.206249\n", + " 21.188463\n", " [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...\n", - " 7.948737\n", + " 5.795739\n", " 1.0\n", " 3.0\n", " 1.0\n", " \n", " \n", - " 8\n", + " 9\n", " -1.794092\n", + " 7.247929\n", " gensim_nmf\n", - " 49.031547\n", + " 49.031969\n", " [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli...\n", - " 11.298958\n", + " 7.518142\n", " 10.0\n", " 3.0\n", " 1.0\n", " \n", " \n", - " 12\n", + " 13\n", " -1.667488\n", + " 7.167254\n", " gensim_nmf\n", - " 55.947980\n", + " 55.950629\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 18.124607\n", + " 12.587500\n", " 100.0\n", " 3.0\n", " 1.0\n", " \n", " \n", - " 3\n", + " 4\n", " -1.669871\n", + " 7.168078\n", " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 2.519675\n", + " 1.991910\n", " 1.0\n", " 3.0\n", " 0.0\n", " \n", " \n", - " 7\n", + " 8\n", " -1.669871\n", + " 7.168078\n", " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 2.603668\n", + " 1.651974\n", " 10.0\n", " 3.0\n", " 0.0\n", " \n", " \n", - " 11\n", + " 12\n", " -1.669871\n", + " 7.168078\n", " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 2.529626\n", + " 1.875159\n", " 100.0\n", " 3.0\n", " 0.0\n", @@ -561,132 +567,154 @@ " \n", " 0\n", " -1.789218\n", + " 7.007863\n", " lda\n", " 1975.257100\n", " [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...\n", - " 22.873011\n", + " 16.666993\n", " NaN\n", " NaN\n", " NaN\n", " \n", " \n", - " 6\n", + " 7\n", " -1.414224\n", + " 7.053716\n", " gensim_nmf\n", " 2314.832335\n", " [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...\n", - " 89.363431\n", + " 35.576529\n", " 10.0\n", " 0.0\n", " 1.0\n", " \n", " \n", - " 2\n", + " 3\n", " -1.344381\n", + " 7.034086\n", " gensim_nmf\n", - " 2335.171593\n", + " 2335.279220\n", " [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...\n", - " 48.057754\n", + " 33.397666\n", " 1.0\n", " 0.0\n", " 1.0\n", " \n", " \n", - " 10\n", + " 11\n", " -1.713672\n", + " 7.058523\n", " gensim_nmf\n", - " 2526.410174\n", + " 2526.410171\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 66.026338\n", + " 48.276129\n", " 100.0\n", " 0.0\n", " 1.0\n", " \n", " \n", - " 1\n", + " 2\n", " -1.651645\n", + " 7.060985\n", " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 5.881618\n", + " 3.563626\n", " 1.0\n", " 0.0\n", " 0.0\n", " \n", " \n", - " 5\n", + " 6\n", " -1.651645\n", + " 7.060985\n", " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 5.131663\n", + " 3.598333\n", " 10.0\n", " 0.0\n", " 0.0\n", " \n", " \n", - " 9\n", + " 10\n", " -1.651645\n", + " 7.060985\n", " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 6.476429\n", + " 4.063196\n", " 100.0\n", " 0.0\n", " 0.0\n", " \n", + " \n", + " 1\n", + " NaN\n", + " 6.905912\n", + " sklearn_nmf\n", + " 2852.226778\n", + " NaN\n", + " 12.985593\n", + " NaN\n", + " NaN\n", + " NaN\n", + " \n", " \n", "\n", "" ], "text/plain": [ - " coherence model perplexity \\\n", - "4 -1.572423 gensim_nmf 21.206249 \n", - "8 -1.794092 gensim_nmf 49.031547 \n", - "12 -1.667488 gensim_nmf 55.947980 \n", - "3 -1.669871 gensim_nmf 56.999925 \n", - "7 -1.669871 gensim_nmf 56.999925 \n", - "11 -1.669871 gensim_nmf 56.999925 \n", - "0 -1.789218 lda 1975.257100 \n", - "6 -1.414224 gensim_nmf 2314.832335 \n", - "2 -1.344381 gensim_nmf 2335.171593 \n", - "10 -1.713672 gensim_nmf 2526.410174 \n", - "1 -1.651645 gensim_nmf 2534.426980 \n", - "5 -1.651645 gensim_nmf 2534.426980 \n", - "9 -1.651645 gensim_nmf 2534.426980 \n", + " coherence l2_norm model perplexity \\\n", + "5 -1.572423 7.210594 gensim_nmf 21.188463 \n", + "9 -1.794092 7.247929 gensim_nmf 49.031969 \n", + "13 -1.667488 7.167254 gensim_nmf 55.950629 \n", + "4 -1.669871 7.168078 gensim_nmf 56.999925 \n", + "8 -1.669871 7.168078 gensim_nmf 56.999925 \n", + "12 -1.669871 7.168078 gensim_nmf 56.999925 \n", + "0 -1.789218 7.007863 lda 1975.257100 \n", + "7 -1.414224 7.053716 gensim_nmf 2314.832335 \n", + "3 -1.344381 7.034086 gensim_nmf 2335.279220 \n", + "11 -1.713672 7.058523 gensim_nmf 2526.410171 \n", + "2 -1.651645 7.060985 gensim_nmf 2534.426980 \n", + "6 -1.651645 7.060985 gensim_nmf 2534.426980 \n", + "10 -1.651645 7.060985 gensim_nmf 2534.426980 \n", + "1 NaN 6.905912 sklearn_nmf 2852.226778 \n", "\n", " topics train_time lambda_ \\\n", - "4 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 7.948737 1.0 \n", - "8 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 11.298958 10.0 \n", - "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 18.124607 100.0 \n", - "3 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.519675 1.0 \n", - "7 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.603668 10.0 \n", - "11 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.529626 100.0 \n", - "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 22.873011 NaN \n", - "6 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 89.363431 10.0 \n", - "2 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 48.057754 1.0 \n", - "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 66.026338 100.0 \n", - "1 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 5.881618 1.0 \n", - "5 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 5.131663 10.0 \n", - "9 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 6.476429 100.0 \n", + "5 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 5.795739 1.0 \n", + "9 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 7.518142 10.0 \n", + "13 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 12.587500 100.0 \n", + "4 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.991910 1.0 \n", + "8 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.651974 10.0 \n", + "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.875159 100.0 \n", + "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 16.666993 NaN \n", + "7 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 35.576529 10.0 \n", + "3 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 33.397666 1.0 \n", + "11 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 48.276129 100.0 \n", + "2 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.563626 1.0 \n", + "6 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.598333 10.0 \n", + "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.063196 100.0 \n", + "1 NaN 12.985593 NaN \n", "\n", " sparse_coef use_r \n", - "4 3.0 1.0 \n", - "8 3.0 1.0 \n", - "12 3.0 1.0 \n", - "3 3.0 0.0 \n", - "7 3.0 0.0 \n", - "11 3.0 0.0 \n", + "5 3.0 1.0 \n", + "9 3.0 1.0 \n", + "13 3.0 1.0 \n", + "4 3.0 0.0 \n", + "8 3.0 0.0 \n", + "12 3.0 0.0 \n", "0 NaN NaN \n", - "6 0.0 1.0 \n", - "2 0.0 1.0 \n", - "10 0.0 1.0 \n", - "1 0.0 0.0 \n", - "5 0.0 0.0 \n", - "9 0.0 0.0 " + "7 0.0 1.0 \n", + "3 0.0 1.0 \n", + "11 0.0 1.0 \n", + "2 0.0 0.0 \n", + "6 0.0 0.0 \n", + "10 0.0 0.0 \n", + "1 NaN NaN " ] }, - "execution_count": 210, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -697,7 +725,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -715,195 +743,13 @@ " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" ] }, - "execution_count": 211, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tm_metrics.iloc[3].topics" - ] - }, - { - "cell_type": "code", - "execution_count": 215, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
l2_normmodeltrain_timelambda_sparse_coefuse_r
08.300987sklearn_nmf16.847008NaNNaNNaN
28.492622gensim_nmf47.1553091.00.01.0
68.508134gensim_nmf44.24005210.00.01.0
108.530118gensim_nmf49.057657100.00.01.0
18.532657gensim_nmf5.1559941.00.00.0
58.532657gensim_nmf5.63216910.00.00.0
98.532657gensim_nmf4.049617100.00.00.0
128.668168gensim_nmf13.821872100.03.01.0
38.668387gensim_nmf2.1446001.03.00.0
78.668387gensim_nmf1.85759110.03.00.0
118.668387gensim_nmf2.008923100.03.00.0
48.721642gensim_nmf7.6078081.03.01.0
88.762972gensim_nmf8.41272910.03.01.0
\n", - "
" - ], - "text/plain": [ - " l2_norm model train_time lambda_ sparse_coef use_r\n", - "0 8.300987 sklearn_nmf 16.847008 NaN NaN NaN\n", - "2 8.492622 gensim_nmf 47.155309 1.0 0.0 1.0\n", - "6 8.508134 gensim_nmf 44.240052 10.0 0.0 1.0\n", - "10 8.530118 gensim_nmf 49.057657 100.0 0.0 1.0\n", - "1 8.532657 gensim_nmf 5.155994 1.0 0.0 0.0\n", - "5 8.532657 gensim_nmf 5.632169 10.0 0.0 0.0\n", - "9 8.532657 gensim_nmf 4.049617 100.0 0.0 0.0\n", - "12 8.668168 gensim_nmf 13.821872 100.0 3.0 1.0\n", - "3 8.668387 gensim_nmf 2.144600 1.0 3.0 0.0\n", - "7 8.668387 gensim_nmf 1.857591 10.0 3.0 0.0\n", - "11 8.668387 gensim_nmf 2.008923 100.0 3.0 0.0\n", - "4 8.721642 gensim_nmf 7.607808 1.0 3.0 1.0\n", - "8 8.762972 gensim_nmf 8.412729 10.0 3.0 1.0" - ] - }, - "execution_count": 215, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "nmf_metrics.sort_values('l2_norm')" + "tm_metrics.iloc[8].topics" ] }, { From a3303271931918fc1c96eddd625d1b77f3d830ea Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 03:15:25 +0300 Subject: [PATCH 117/144] Add F1 --- docs/notebooks/nmf_benchmark.ipynb | 678 +++++++++++++++-------------- 1 file changed, 360 insertions(+), 318 deletions(-) diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb index c14d7c4ab6..0012be3c8b 100644 --- a/docs/notebooks/nmf_benchmark.ipynb +++ b/docs/notebooks/nmf_benchmark.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -31,18 +31,15 @@ "\n", "from gensim.models.nmf import Nmf as GensimNmf\n", "from gensim.models import CoherenceModel, LdaModel\n", - "from gensim.parsing.preprocessing import preprocess_documents\n", "from gensim import matutils\n", "from sklearn.decomposition.nmf import NMF as SklearnNmf\n", - "import sklearn.decomposition.nmf\n", "from sklearn.datasets import fetch_20newsgroups\n", - "from sklearn.feature_extraction.text import CountVectorizer\n", "from sklearn.model_selection import ParameterGrid\n", + "from sklearn.linear_model import LogisticRegressionCV\n", + "from sklearn.metrics import f1_score\n", + "import pandas as pd\n", "import numpy as np\n", "import time\n", - "import pandas as pd\n", - "from collections import defaultdict\n", - "from matplotlib import pyplot as plt\n", "\n", "import logging\n", "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)" @@ -57,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -75,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -87,18 +84,18 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 01:25:28,593 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2019-01-10 01:25:29,650 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", - "2019-01-10 01:25:29,701 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2019-01-10 01:25:29,702 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2019-01-10 01:25:29,718 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2019-01-10 03:00:57,116 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2019-01-10 03:00:58,223 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", + "2019-01-10 03:00:58,295 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2019-01-10 03:00:58,296 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2019-01-10 03:00:58,319 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], @@ -112,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -131,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -155,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -166,16 +163,47 @@ "\n", " return (time.time() - start), result\n", "\n", - "def get_tm_metrics(model, corpus, dense_corpus):\n", - " perplexity = get_tm_perplexity(model, corpus, dense_corpus)\n", + "def get_tm_f1(model, train_corpus, X_test, y_train, y_test):\n", + " X_train = np.zeros((len(train_corpus), model.num_topics))\n", + " for bow_id, bow in enumerate(train_corpus):\n", + " for topic_id, proba in model[bow]:\n", + " X_train[bow_id, topic_id] = proba\n", + "\n", + " log_reg = LogisticRegressionCV(multi_class='multinomial')\n", + " log_reg.fit(X_train, y_train)\n", + "\n", + " pred_labels = log_reg.predict(X_test)\n", + "\n", + " return f1_score(y_test, pred_labels, average='micro')\n", + "\n", + "def get_sklearn_f1(model, train_corpus, X_test, y_train, y_test):\n", + " X_train = model.transform((train_corpus / train_corpus.sum(axis=0)).T)\n", + "\n", + " log_reg = LogisticRegressionCV(multi_class='multinomial')\n", + " log_reg.fit(X_train, y_train)\n", + "\n", + " pred_labels = log_reg.predict(X_test)\n", + "\n", + " return f1_score(y_test, pred_labels, average='micro')\n", + "\n", + "def get_tm_metrics(model, train_corpus, test_corpus, dense_corpus, y_train, y_test):\n", + " W = model.get_topics().T\n", + " H = np.zeros((model.num_topics, len(test_corpus)))\n", + " for bow_id, bow in enumerate(test_corpus):\n", + " for topic_id, proba in model[bow]:\n", + " H[topic_id, bow_id] = proba\n", + "\n", + " perplexity = get_tm_perplexity(W, H, dense_corpus)\n", "\n", " coherence = CoherenceModel(\n", " model=model,\n", - " corpus=corpus,\n", + " corpus=test_corpus,\n", " coherence='u_mass'\n", " ).get_coherence()\n", "\n", - " l2_norm = get_tm_l2_norm(model, corpus, dense_corpus)\n", + " l2_norm = get_tm_l2_norm(W, H, dense_corpus)\n", + "\n", + " f1 = get_tm_f1(model, train_corpus, H.T, y_train, y_test)\n", "\n", " topics = model.show_topics()\n", "\n", @@ -184,48 +212,41 @@ " coherence=coherence,\n", " topics=topics,\n", " l2_norm=l2_norm,\n", + " f1=f1,\n", " )\n", "\n", - "def get_tm_perplexity(model, corpus, dense_corpus):\n", - " W = model.get_topics().T\n", - "\n", - " H = np.zeros((W.shape[1], len(corpus)))\n", - " for bow_id, bow in enumerate(corpus):\n", - " for topic_id, proba in model[bow]:\n", - " H[topic_id, bow_id] = proba\n", - "\n", + "def get_tm_perplexity(W, H, dense_corpus):\n", " pred_factors = W.dot(H)\n", "\n", " return np.exp(-(np.log(pred_factors, where=pred_factors>0) * dense_corpus).sum() / dense_corpus.sum())\n", "\n", - "def get_tm_l2_norm(model, corpus, dense_corpus):\n", - " W = model.get_topics().T\n", - " H = np.zeros((W.shape[1], len(corpus)))\n", - " for bow_id, bow in enumerate(corpus):\n", - " for topic_id, proba in model[bow]:\n", - " H[topic_id, bow_id] = proba\n", - "\n", + "def get_tm_l2_norm(W, H, dense_corpus):\n", " return np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - W.dot(H))\n", "\n", - "def get_sklearn_metrics(model, dense_corpus):\n", + "def get_sklearn_metrics(model, train_corpus, test_corpus, y_train, y_test):\n", " W = model.components_.T\n", - " H = model.transform((dense_corpus / dense_corpus.sum(axis=0)).T).T\n", + " H = model.transform((test_corpus / test_corpus.sum(axis=0)).T).T\n", " pred_factors = W.dot(H)\n", + "\n", " perplexity = np.exp(\n", - " -(np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum()\n", - " / dense_corpus.sum()\n", + " -(np.log(pred_factors, where=pred_factors > 0) * test_corpus).sum()\n", + " / test_corpus.sum()\n", " )\n", - " l2_norm = np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - pred_factors)\n", + "\n", + " l2_norm = np.linalg.norm(test_corpus / test_corpus.sum(axis=0) - pred_factors)\n", + "\n", + " f1 = get_sklearn_f1(model, train_corpus, H.T, y_train, y_test)\n", "\n", " return dict(\n", " perplexity=perplexity,\n", " l2_norm=l2_norm,\n", + " f1=f1,\n", " )" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 41, "metadata": { "scrolled": true }, @@ -234,184 +255,184 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 01:25:32,001 : INFO : using symmetric alpha at 0.2\n", - "2019-01-10 01:25:32,002 : INFO : using symmetric eta at 0.2\n", - "2019-01-10 01:25:32,012 : INFO : using serial LDA version on this node\n", - "2019-01-10 01:25:32,031 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2019-01-10 01:25:32,035 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2019-01-10 01:25:34,092 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:34,103 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", - "2019-01-10 01:25:34,106 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", - "2019-01-10 01:25:34,108 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", - "2019-01-10 01:25:34,110 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", - "2019-01-10 01:25:34,112 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", - "2019-01-10 01:25:34,119 : INFO : topic diff=1.652264, rho=1.000000\n", - "2019-01-10 01:25:34,120 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2019-01-10 01:25:35,450 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:35,460 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", - "2019-01-10 01:25:35,462 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-10 01:25:35,464 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", - "2019-01-10 01:25:35,468 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", - "2019-01-10 01:25:35,470 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", - "2019-01-10 01:25:35,478 : INFO : topic diff=0.879875, rho=0.707107\n", - "2019-01-10 01:25:36,897 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 01:25:36,898 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2019-01-10 01:25:37,497 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 01:25:37,504 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", - "2019-01-10 01:25:37,505 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", - "2019-01-10 01:25:37,507 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", - "2019-01-10 01:25:37,508 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", - "2019-01-10 01:25:37,509 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2019-01-10 01:25:37,511 : INFO : topic diff=0.673042, rho=0.577350\n", - "2019-01-10 01:25:37,513 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2019-01-10 01:25:38,240 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:38,247 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", - "2019-01-10 01:25:38,249 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", - "2019-01-10 01:25:38,250 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", - "2019-01-10 01:25:38,251 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 01:25:38,252 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", - "2019-01-10 01:25:38,253 : INFO : topic diff=0.462191, rho=0.455535\n", - "2019-01-10 01:25:38,254 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2019-01-10 01:25:38,946 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:38,952 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", - "2019-01-10 01:25:38,957 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-10 01:25:38,959 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", - "2019-01-10 01:25:38,960 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", - "2019-01-10 01:25:38,963 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", - "2019-01-10 01:25:38,971 : INFO : topic diff=0.434057, rho=0.455535\n", - "2019-01-10 01:25:39,826 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 01:25:39,826 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2019-01-10 01:25:40,338 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 01:25:40,344 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", - "2019-01-10 01:25:40,346 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-10 01:25:40,350 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", - "2019-01-10 01:25:40,353 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-10 01:25:40,355 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" + "2019-01-10 03:00:59,990 : INFO : using symmetric alpha at 0.2\n", + "2019-01-10 03:00:59,991 : INFO : using symmetric eta at 0.2\n", + "2019-01-10 03:00:59,993 : INFO : using serial LDA version on this node\n", + "2019-01-10 03:01:00,001 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-10 03:01:00,003 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2019-01-10 03:01:01,213 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:01,226 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", + "2019-01-10 03:01:01,230 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", + "2019-01-10 03:01:01,235 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", + "2019-01-10 03:01:01,237 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", + "2019-01-10 03:01:01,239 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", + "2019-01-10 03:01:01,240 : INFO : topic diff=1.652264, rho=1.000000\n", + "2019-01-10 03:01:01,242 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2019-01-10 03:01:02,977 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:02,991 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", + "2019-01-10 03:01:02,993 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-10 03:01:02,997 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", + "2019-01-10 03:01:03,000 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", + "2019-01-10 03:01:03,004 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", + "2019-01-10 03:01:03,008 : INFO : topic diff=0.879875, rho=0.707107\n", + "2019-01-10 03:01:04,977 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 03:01:04,978 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2019-01-10 03:01:05,642 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 03:01:05,648 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", + "2019-01-10 03:01:05,649 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", + "2019-01-10 03:01:05,651 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", + "2019-01-10 03:01:05,652 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", + "2019-01-10 03:01:05,656 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2019-01-10 03:01:05,658 : INFO : topic diff=0.673042, rho=0.577350\n", + "2019-01-10 03:01:05,660 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2019-01-10 03:01:06,445 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:06,453 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", + "2019-01-10 03:01:06,454 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", + "2019-01-10 03:01:06,456 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", + "2019-01-10 03:01:06,460 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 03:01:06,462 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", + "2019-01-10 03:01:06,464 : INFO : topic diff=0.462191, rho=0.455535\n", + "2019-01-10 03:01:06,466 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2019-01-10 03:01:07,136 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:07,142 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", + "2019-01-10 03:01:07,144 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-10 03:01:07,145 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", + "2019-01-10 03:01:07,147 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", + "2019-01-10 03:01:07,148 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", + "2019-01-10 03:01:07,150 : INFO : topic diff=0.434057, rho=0.455535\n", + "2019-01-10 03:01:08,103 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 03:01:08,104 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2019-01-10 03:01:08,671 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 03:01:08,678 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", + "2019-01-10 03:01:08,680 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-10 03:01:08,682 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", + "2019-01-10 03:01:08,684 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-10 03:01:08,685 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 01:25:40,356 : INFO : topic diff=0.444120, rho=0.455535\n", - "2019-01-10 01:25:40,358 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2019-01-10 01:25:40,984 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:40,990 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-10 01:25:40,992 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", - "2019-01-10 01:25:40,997 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", - "2019-01-10 01:25:40,998 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 01:25:41,005 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", - "2019-01-10 01:25:41,006 : INFO : topic diff=0.359704, rho=0.414549\n", - "2019-01-10 01:25:41,009 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2019-01-10 01:25:41,633 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:41,640 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", - "2019-01-10 01:25:41,642 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", - "2019-01-10 01:25:41,645 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", - "2019-01-10 01:25:41,647 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 01:25:41,649 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 01:25:41,651 : INFO : topic diff=0.325561, rho=0.414549\n", - "2019-01-10 01:25:42,639 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 01:25:42,640 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2019-01-10 01:25:43,526 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 01:25:43,535 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", - "2019-01-10 01:25:43,538 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-10 01:25:43,540 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", - "2019-01-10 01:25:43,542 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-10 01:25:43,545 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-10 01:25:43,547 : INFO : topic diff=0.327590, rho=0.414549\n", - "2019-01-10 01:25:43,554 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2019-01-10 01:25:44,239 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:44,247 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", - "2019-01-10 01:25:44,249 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-10 01:25:44,250 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", - "2019-01-10 01:25:44,251 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 01:25:44,254 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", - "2019-01-10 01:25:44,255 : INFO : topic diff=0.265043, rho=0.382948\n", - "2019-01-10 01:25:44,257 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2019-01-10 01:25:44,846 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:44,852 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-10 01:25:44,854 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", - "2019-01-10 01:25:44,855 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", - "2019-01-10 01:25:44,858 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 01:25:44,860 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 01:25:44,861 : INFO : topic diff=0.244061, rho=0.382948\n", - "2019-01-10 01:25:45,672 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 01:25:45,673 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2019-01-10 01:25:46,164 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 01:25:46,172 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-10 01:25:46,175 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-10 01:25:46,177 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-10 01:25:46,178 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 01:25:46,179 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-10 01:25:46,180 : INFO : topic diff=0.247579, rho=0.382948\n", - "2019-01-10 01:25:46,181 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2019-01-10 01:25:46,810 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:46,817 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" + "2019-01-10 03:01:08,687 : INFO : topic diff=0.444120, rho=0.455535\n", + "2019-01-10 03:01:08,688 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2019-01-10 03:01:09,434 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:09,444 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-10 03:01:09,446 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", + "2019-01-10 03:01:09,449 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", + "2019-01-10 03:01:09,451 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 03:01:09,453 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", + "2019-01-10 03:01:09,454 : INFO : topic diff=0.359704, rho=0.414549\n", + "2019-01-10 03:01:09,456 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2019-01-10 03:01:10,134 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:10,141 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", + "2019-01-10 03:01:10,142 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", + "2019-01-10 03:01:10,144 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", + "2019-01-10 03:01:10,148 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 03:01:10,150 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 03:01:10,151 : INFO : topic diff=0.325561, rho=0.414549\n", + "2019-01-10 03:01:11,074 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 03:01:11,075 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2019-01-10 03:01:11,538 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 03:01:11,544 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", + "2019-01-10 03:01:11,545 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-10 03:01:11,548 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", + "2019-01-10 03:01:11,550 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-10 03:01:11,551 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-10 03:01:11,554 : INFO : topic diff=0.327590, rho=0.414549\n", + "2019-01-10 03:01:11,559 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2019-01-10 03:01:12,252 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:12,258 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", + "2019-01-10 03:01:12,260 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-10 03:01:12,261 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", + "2019-01-10 03:01:12,263 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 03:01:12,265 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", + "2019-01-10 03:01:12,266 : INFO : topic diff=0.265043, rho=0.382948\n", + "2019-01-10 03:01:12,268 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2019-01-10 03:01:12,910 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:12,916 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-10 03:01:12,918 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", + "2019-01-10 03:01:12,919 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", + "2019-01-10 03:01:12,920 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 03:01:12,922 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 03:01:12,923 : INFO : topic diff=0.244061, rho=0.382948\n", + "2019-01-10 03:01:14,118 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 03:01:14,119 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2019-01-10 03:01:14,741 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 03:01:14,749 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-10 03:01:14,750 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-10 03:01:14,752 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-10 03:01:14,755 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 03:01:14,761 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-10 03:01:14,763 : INFO : topic diff=0.247579, rho=0.382948\n", + "2019-01-10 03:01:14,764 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2019-01-10 03:01:15,488 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:15,494 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 01:25:46,821 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-10 01:25:46,822 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", - "2019-01-10 01:25:46,829 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 01:25:46,831 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", - "2019-01-10 01:25:46,831 : INFO : topic diff=0.204190, rho=0.357622\n", - "2019-01-10 01:25:46,833 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2019-01-10 01:25:47,430 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 01:25:47,437 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", - "2019-01-10 01:25:47,438 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", - "2019-01-10 01:25:47,440 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", - "2019-01-10 01:25:47,441 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 01:25:47,442 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 01:25:47,444 : INFO : topic diff=0.197424, rho=0.357622\n", - "2019-01-10 01:25:48,238 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 01:25:48,239 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2019-01-10 01:25:48,637 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 01:25:48,643 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-10 01:25:48,645 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-10 01:25:48,646 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-10 01:25:48,648 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 01:25:48,650 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", - "2019-01-10 01:25:48,651 : INFO : topic diff=0.200393, rho=0.357622\n", - "2019-01-10 01:25:50,944 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:26:09,034 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 01:26:10,207 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 01:26:19,791 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:26:51,547 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", - "2019-01-10 01:27:02,483 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", - "2019-01-10 01:27:18,951 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:27:36,576 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 01:27:37,028 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 01:27:44,145 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:27:55,814 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", - "2019-01-10 01:27:56,819 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", - "2019-01-10 01:28:12,776 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:28:28,610 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 01:28:29,789 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 01:28:39,580 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:29:12,885 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", - "2019-01-10 01:29:24,621 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", - "2019-01-10 01:29:43,470 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:30:01,076 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 01:30:01,506 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 01:30:10,592 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:30:26,663 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", - "2019-01-10 01:30:28,126 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", - "2019-01-10 01:30:45,782 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:31:05,698 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 01:31:06,982 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 01:31:18,736 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:32:04,312 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", - "2019-01-10 01:32:19,104 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", - "2019-01-10 01:32:36,190 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:32:55,605 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 01:32:56,051 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 01:33:03,754 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 01:33:21,837 : INFO : Loss (no outliers): 605.4685741189123\tLoss (with outliers): 605.4685741189123\n", - "2019-01-10 01:33:23,965 : INFO : Loss (no outliers): 578.3308322440762\tLoss (with outliers): 578.12465083152\n", - "2019-01-10 01:33:41,177 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-10 03:01:15,496 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-10 03:01:15,500 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", + "2019-01-10 03:01:15,502 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 03:01:15,503 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", + "2019-01-10 03:01:15,504 : INFO : topic diff=0.204190, rho=0.357622\n", + "2019-01-10 03:01:15,505 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2019-01-10 03:01:16,194 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 03:01:16,201 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", + "2019-01-10 03:01:16,203 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", + "2019-01-10 03:01:16,205 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", + "2019-01-10 03:01:16,206 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 03:01:16,208 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 03:01:16,210 : INFO : topic diff=0.197424, rho=0.357622\n", + "2019-01-10 03:01:17,152 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 03:01:17,153 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2019-01-10 03:01:17,662 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 03:01:17,668 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-10 03:01:17,670 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-10 03:01:17,671 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-10 03:01:17,673 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 03:01:17,674 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", + "2019-01-10 03:01:17,675 : INFO : topic diff=0.200393, rho=0.357622\n", + "2019-01-10 03:01:19,588 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:01:47,367 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 03:01:48,775 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 03:02:00,351 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:02:52,570 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", + "2019-01-10 03:03:04,356 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", + "2019-01-10 03:03:22,955 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:03:52,447 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 03:03:52,853 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 03:04:00,076 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:04:17,667 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", + "2019-01-10 03:04:18,681 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", + "2019-01-10 03:04:43,076 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:05:35,805 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 03:05:38,235 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 03:06:02,556 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:07:28,660 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", + "2019-01-10 03:07:45,400 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", + "2019-01-10 03:08:05,550 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:08:41,564 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 03:08:42,027 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 03:08:54,116 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:09:20,354 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", + "2019-01-10 03:09:22,103 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", + "2019-01-10 03:09:39,830 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:10:07,060 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 03:10:08,631 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 03:10:24,299 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:11:16,847 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", + "2019-01-10 03:11:32,737 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", + "2019-01-10 03:12:01,326 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:12:37,050 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 03:12:37,481 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 03:12:45,317 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 03:13:09,208 : INFO : Loss (no outliers): 605.4685741189123\tLoss (with outliers): 605.4685741189123\n", + "2019-01-10 03:13:11,196 : INFO : Loss (no outliers): 578.3308322440762\tLoss (with outliers): 578.12465083152\n", + "2019-01-10 03:13:28,522 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] } ], @@ -427,7 +448,9 @@ "row['train_time'], lda = get_execution_time(\n", " lambda: LdaModel(**fixed_params)\n", ")\n", - "row.update(get_tm_metrics(lda, test_corpus, test_dense_corpus))\n", + "row.update(get_tm_metrics(\n", + " lda, train_corpus, test_corpus, test_dense_corpus, trainset.target, testset.target,\n", + "))\n", "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", "\n", "# Sklearn NMF metrics\n", @@ -437,7 +460,9 @@ "row['train_time'], sklearn_nmf = get_execution_time(\n", " lambda: sklearn_nmf.fit((train_dense_corpus / train_dense_corpus.sum(axis=0)).T)\n", ")\n", - "row.update(get_sklearn_metrics(sklearn_nmf, test_dense_corpus))\n", + "row.update(get_sklearn_metrics(\n", + " sklearn_nmf, train_dense_corpus, test_dense_corpus, trainset.target, testset.target,\n", + "))\n", "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", "\n", "for variable_params in variable_params_grid:\n", @@ -450,7 +475,9 @@ " **variable_params,\n", " )\n", " )\n", - " row.update(get_tm_metrics(model, test_corpus, test_dense_corpus))\n", + " row.update(get_tm_metrics(\n", + " model, train_corpus, test_corpus, test_dense_corpus, trainset.target, testset.target,\n", + " ))\n", " tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)" ] }, @@ -481,6 +508,7 @@ " \n", " \n", " coherence\n", + " f1\n", " l2_norm\n", " model\n", " perplexity\n", @@ -495,11 +523,12 @@ " \n", " 5\n", " -1.572423\n", - " 7.210594\n", + " 0.550107\n", + " 7.210671\n", " gensim_nmf\n", - " 21.188463\n", + " 21.192597\n", " [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...\n", - " 5.795739\n", + " 6.278609\n", " 1.0\n", " 3.0\n", " 1.0\n", @@ -507,35 +536,25 @@ " \n", " 9\n", " -1.794092\n", - " 7.247929\n", + " 0.643923\n", + " 7.247914\n", " gensim_nmf\n", - " 49.031969\n", + " 49.029785\n", " [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli...\n", - " 7.518142\n", + " 10.521165\n", " 10.0\n", " 3.0\n", " 1.0\n", " \n", " \n", - " 13\n", - " -1.667488\n", - " 7.167254\n", - " gensim_nmf\n", - " 55.950629\n", - " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 12.587500\n", - " 100.0\n", - " 3.0\n", - " 1.0\n", - " \n", - " \n", " 4\n", " -1.669871\n", + " 0.665245\n", " 7.168078\n", " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.991910\n", + " 1.657317\n", " 1.0\n", " 3.0\n", " 0.0\n", @@ -543,11 +562,12 @@ " \n", " 8\n", " -1.669871\n", + " 0.665245\n", " 7.168078\n", " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.651974\n", + " 2.128817\n", " 10.0\n", " 3.0\n", " 0.0\n", @@ -555,71 +575,38 @@ " \n", " 12\n", " -1.669871\n", + " 0.665245\n", " 7.168078\n", " gensim_nmf\n", " 56.999925\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.875159\n", + " 1.850517\n", " 100.0\n", " 3.0\n", " 0.0\n", " \n", " \n", - " 0\n", - " -1.789218\n", - " 7.007863\n", - " lda\n", - " 1975.257100\n", - " [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...\n", - " 16.666993\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", - " 7\n", - " -1.414224\n", - " 7.053716\n", - " gensim_nmf\n", - " 2314.832335\n", - " [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...\n", - " 35.576529\n", - " 10.0\n", - " 0.0\n", - " 1.0\n", - " \n", - " \n", - " 3\n", - " -1.344381\n", - " 7.034086\n", - " gensim_nmf\n", - " 2335.279220\n", - " [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...\n", - " 33.397666\n", - " 1.0\n", - " 0.0\n", - " 1.0\n", - " \n", - " \n", - " 11\n", - " -1.713672\n", - " 7.058523\n", + " 13\n", + " -1.667488\n", + " 0.671109\n", + " 7.167265\n", " gensim_nmf\n", - " 2526.410171\n", - " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 48.276129\n", + " 55.941498\n", + " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", + " 12.981406\n", " 100.0\n", - " 0.0\n", + " 3.0\n", " 1.0\n", " \n", " \n", " 2\n", " -1.651645\n", + " 0.671642\n", " 7.060985\n", " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 3.563626\n", + " 4.045405\n", " 1.0\n", " 0.0\n", " 0.0\n", @@ -627,11 +614,12 @@ " \n", " 6\n", " -1.651645\n", + " 0.671642\n", " 7.060985\n", " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 3.598333\n", + " 7.654450\n", " 10.0\n", " 0.0\n", " 0.0\n", @@ -639,23 +627,77 @@ " \n", " 10\n", " -1.651645\n", + " 0.671642\n", " 7.060985\n", " gensim_nmf\n", " 2534.426980\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 4.063196\n", + " 4.660070\n", + " 100.0\n", + " 0.0\n", + " 0.0\n", + " \n", + " \n", + " 11\n", + " -1.713672\n", + " 0.676972\n", + " 7.058523\n", + " gensim_nmf\n", + " 2526.410171\n", + " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", + " 50.553119\n", " 100.0\n", " 0.0\n", + " 1.0\n", + " \n", + " \n", + " 7\n", + " -1.414224\n", + " 0.683369\n", + " 7.053716\n", + " gensim_nmf\n", + " 2314.832335\n", + " [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...\n", + " 63.710854\n", + " 10.0\n", " 0.0\n", + " 1.0\n", " \n", " \n", " 1\n", " NaN\n", + " 0.698294\n", " 6.905912\n", " sklearn_nmf\n", " 2852.226778\n", " NaN\n", - " 12.985593\n", + " 16.457335\n", + " NaN\n", + " NaN\n", + " NaN\n", + " \n", + " \n", + " 3\n", + " -1.344381\n", + " 0.711087\n", + " 7.034086\n", + " gensim_nmf\n", + " 2335.161635\n", + " [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...\n", + " 45.713585\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " \n", + " \n", + " 0\n", + " -1.789218\n", + " 0.757996\n", + " 7.007877\n", + " lda\n", + " 1975.257100\n", + " [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...\n", + " 17.686532\n", " NaN\n", " NaN\n", " NaN\n", @@ -665,53 +707,53 @@ "" ], "text/plain": [ - " coherence l2_norm model perplexity \\\n", - "5 -1.572423 7.210594 gensim_nmf 21.188463 \n", - "9 -1.794092 7.247929 gensim_nmf 49.031969 \n", - "13 -1.667488 7.167254 gensim_nmf 55.950629 \n", - "4 -1.669871 7.168078 gensim_nmf 56.999925 \n", - "8 -1.669871 7.168078 gensim_nmf 56.999925 \n", - "12 -1.669871 7.168078 gensim_nmf 56.999925 \n", - "0 -1.789218 7.007863 lda 1975.257100 \n", - "7 -1.414224 7.053716 gensim_nmf 2314.832335 \n", - "3 -1.344381 7.034086 gensim_nmf 2335.279220 \n", - "11 -1.713672 7.058523 gensim_nmf 2526.410171 \n", - "2 -1.651645 7.060985 gensim_nmf 2534.426980 \n", - "6 -1.651645 7.060985 gensim_nmf 2534.426980 \n", - "10 -1.651645 7.060985 gensim_nmf 2534.426980 \n", - "1 NaN 6.905912 sklearn_nmf 2852.226778 \n", + " coherence f1 l2_norm model perplexity \\\n", + "5 -1.572423 0.550107 7.210671 gensim_nmf 21.192597 \n", + "9 -1.794092 0.643923 7.247914 gensim_nmf 49.029785 \n", + "4 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", + "8 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", + "12 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", + "13 -1.667488 0.671109 7.167265 gensim_nmf 55.941498 \n", + "2 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", + "6 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", + "10 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", + "11 -1.713672 0.676972 7.058523 gensim_nmf 2526.410171 \n", + "7 -1.414224 0.683369 7.053716 gensim_nmf 2314.832335 \n", + "1 NaN 0.698294 6.905912 sklearn_nmf 2852.226778 \n", + "3 -1.344381 0.711087 7.034086 gensim_nmf 2335.161635 \n", + "0 -1.789218 0.757996 7.007877 lda 1975.257100 \n", "\n", " topics train_time lambda_ \\\n", - "5 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 5.795739 1.0 \n", - "9 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 7.518142 10.0 \n", - "13 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 12.587500 100.0 \n", - "4 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.991910 1.0 \n", - "8 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.651974 10.0 \n", - "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.875159 100.0 \n", - "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 16.666993 NaN \n", - "7 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 35.576529 10.0 \n", - "3 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 33.397666 1.0 \n", - "11 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 48.276129 100.0 \n", - "2 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.563626 1.0 \n", - "6 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.598333 10.0 \n", - "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.063196 100.0 \n", - "1 NaN 12.985593 NaN \n", + "5 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 6.278609 1.0 \n", + "9 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 10.521165 10.0 \n", + "4 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.657317 1.0 \n", + "8 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.128817 10.0 \n", + "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.850517 100.0 \n", + "13 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 12.981406 100.0 \n", + "2 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.045405 1.0 \n", + "6 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 7.654450 10.0 \n", + "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.660070 100.0 \n", + "11 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 50.553119 100.0 \n", + "7 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 63.710854 10.0 \n", + "1 NaN 16.457335 NaN \n", + "3 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 45.713585 1.0 \n", + "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 17.686532 NaN \n", "\n", " sparse_coef use_r \n", "5 3.0 1.0 \n", "9 3.0 1.0 \n", - "13 3.0 1.0 \n", "4 3.0 0.0 \n", "8 3.0 0.0 \n", "12 3.0 0.0 \n", - "0 NaN NaN \n", - "7 0.0 1.0 \n", - "3 0.0 1.0 \n", - "11 0.0 1.0 \n", + "13 3.0 1.0 \n", "2 0.0 0.0 \n", "6 0.0 0.0 \n", "10 0.0 0.0 \n", - "1 NaN NaN " + "11 0.0 1.0 \n", + "7 0.0 1.0 \n", + "1 NaN NaN \n", + "3 0.0 1.0 \n", + "0 NaN NaN " ] }, "execution_count": 44, @@ -720,12 +762,12 @@ } ], "source": [ - "tm_metrics.sort_values('perplexity')" + "tm_metrics.sort_values('f1')" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -743,7 +785,7 @@ " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" ] }, - "execution_count": 47, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } From 7ba9b849023649e351e49ac6af6c9817c4a6f905 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 03:52:28 +0300 Subject: [PATCH 118/144] Remove _solve_r --- gensim/models/nmf.py | 37 ------------------------------------- 1 file changed, 37 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 910fa177a4..a89adba340 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -515,43 +515,6 @@ def _apply(self, corpus, chunksize=None, **kwargs): """ return TransformedCorpus(self, corpus, chunksize, **kwargs) - @staticmethod - def _solve_r(r, r_actual, lambda_, v_max): - """Update residuals matrix. - - Parameters - ---------- - r : scipy.sparse.csr_matrix - Previous residuals. - r_actual : scipy.sparse.csr_matrix(rshape) - Actual residuals (v - Wh) - lambda_ : float - Regularization coefficient. - v_max : float - Residuals max and min boundary. - - Returns - ------- - float - Error between previous and current residuals. - - """ - r_actual.data *= np.abs(r_actual.data) > lambda_ - r_actual.eliminate_zeros() - - r_actual.data -= (r_actual.data > 0) * lambda_ - r_actual.data += (r_actual.data < 0) * lambda_ - - np.clip(r_actual.data, -v_max, v_max, out=r_actual.data) - - violation = scipy.sparse.linalg.norm(r - r_actual) - - r.indices = r_actual.indices - r.indptr = r_actual.indptr - r.data = r_actual.data - - return violation - def _transform(self): """Apply boundaries on W.""" np.clip(self._W.data, 0, self.v_max, out=self._W.data) From a14bfd38b2065d39794d773d859922f23f753d46 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 14:23:25 +0300 Subject: [PATCH 119/144] Merge tutorial and benchmark --- docs/notebooks/nmf_benchmark.ipynb | 1221 ----------------------- docs/notebooks/nmf_tutorial.ipynb | 1435 +++++++++++++++++++++++++++- 2 files changed, 1401 insertions(+), 1255 deletions(-) delete mode 100644 docs/notebooks/nmf_benchmark.ipynb diff --git a/docs/notebooks/nmf_benchmark.ipynb b/docs/notebooks/nmf_benchmark.ipynb deleted file mode 100644 index 0012be3c8b..0000000000 --- a/docs/notebooks/nmf_benchmark.ipynb +++ /dev/null @@ -1,1221 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Gensim NMF vs other models" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The line_profiler extension is already loaded. To reload it, use:\n", - " %reload_ext line_profiler\n", - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], - "source": [ - "%load_ext line_profiler\n", - "%load_ext autoreload\n", - "\n", - "%autoreload 2\n", - "\n", - "from gensim.models.nmf import Nmf as GensimNmf\n", - "from gensim.models import CoherenceModel, LdaModel\n", - "from gensim import matutils\n", - "from sklearn.decomposition.nmf import NMF as SklearnNmf\n", - "from sklearn.datasets import fetch_20newsgroups\n", - "from sklearn.model_selection import ParameterGrid\n", - "from sklearn.linear_model import LogisticRegressionCV\n", - "from sklearn.metrics import f1_score\n", - "import pandas as pd\n", - "import numpy as np\n", - "import time\n", - "\n", - "import logging\n", - "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 20newsgroups" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "categories = [\n", - " 'alt.atheism',\n", - " 'comp.graphics',\n", - " 'rec.motorcycles',\n", - " 'talk.politics.mideast',\n", - " 'sci.space'\n", - "]\n", - "\n", - "trainset = fetch_20newsgroups(subset='train', categories=categories, random_state=42)\n", - "testset = fetch_20newsgroups(subset='test', categories=categories, random_state=42)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "from gensim.parsing.preprocessing import preprocess_documents\n", - "\n", - "train_documents = preprocess_documents(trainset.data)\n", - "test_documents = preprocess_documents(testset.data)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-10 03:00:57,116 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2019-01-10 03:00:58,223 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", - "2019-01-10 03:00:58,295 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2019-01-10 03:00:58,296 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2019-01-10 03:00:58,319 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" - ] - } - ], - "source": [ - "from gensim.corpora import Dictionary\n", - "\n", - "dictionary = Dictionary(train_documents)\n", - "\n", - "dictionary.filter_extremes()" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "train_corpus = [\n", - " dictionary.doc2bow(document)\n", - " for document\n", - " in train_documents\n", - "]\n", - "\n", - "test_corpus = [\n", - " dictionary.doc2bow(document)\n", - " for document\n", - " in test_documents\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "variable_params_grid = list(ParameterGrid(dict(\n", - " use_r=[False, True],\n", - " sparse_coef=[0, 3],\n", - " lambda_=[1, 10, 100]\n", - ")))\n", - "\n", - "fixed_params = dict(\n", - " corpus=train_corpus,\n", - " chunksize=1000,\n", - " num_topics=5,\n", - " id2word=dictionary,\n", - " passes=5,\n", - " eval_every=10,\n", - " minimum_probability=0,\n", - " random_state=42,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "def get_execution_time(func):\n", - " start = time.time()\n", - "\n", - " result = func()\n", - "\n", - " return (time.time() - start), result\n", - "\n", - "def get_tm_f1(model, train_corpus, X_test, y_train, y_test):\n", - " X_train = np.zeros((len(train_corpus), model.num_topics))\n", - " for bow_id, bow in enumerate(train_corpus):\n", - " for topic_id, proba in model[bow]:\n", - " X_train[bow_id, topic_id] = proba\n", - "\n", - " log_reg = LogisticRegressionCV(multi_class='multinomial')\n", - " log_reg.fit(X_train, y_train)\n", - "\n", - " pred_labels = log_reg.predict(X_test)\n", - "\n", - " return f1_score(y_test, pred_labels, average='micro')\n", - "\n", - "def get_sklearn_f1(model, train_corpus, X_test, y_train, y_test):\n", - " X_train = model.transform((train_corpus / train_corpus.sum(axis=0)).T)\n", - "\n", - " log_reg = LogisticRegressionCV(multi_class='multinomial')\n", - " log_reg.fit(X_train, y_train)\n", - "\n", - " pred_labels = log_reg.predict(X_test)\n", - "\n", - " return f1_score(y_test, pred_labels, average='micro')\n", - "\n", - "def get_tm_metrics(model, train_corpus, test_corpus, dense_corpus, y_train, y_test):\n", - " W = model.get_topics().T\n", - " H = np.zeros((model.num_topics, len(test_corpus)))\n", - " for bow_id, bow in enumerate(test_corpus):\n", - " for topic_id, proba in model[bow]:\n", - " H[topic_id, bow_id] = proba\n", - "\n", - " perplexity = get_tm_perplexity(W, H, dense_corpus)\n", - "\n", - " coherence = CoherenceModel(\n", - " model=model,\n", - " corpus=test_corpus,\n", - " coherence='u_mass'\n", - " ).get_coherence()\n", - "\n", - " l2_norm = get_tm_l2_norm(W, H, dense_corpus)\n", - "\n", - " f1 = get_tm_f1(model, train_corpus, H.T, y_train, y_test)\n", - "\n", - " topics = model.show_topics()\n", - "\n", - " return dict(\n", - " perplexity=perplexity,\n", - " coherence=coherence,\n", - " topics=topics,\n", - " l2_norm=l2_norm,\n", - " f1=f1,\n", - " )\n", - "\n", - "def get_tm_perplexity(W, H, dense_corpus):\n", - " pred_factors = W.dot(H)\n", - "\n", - " return np.exp(-(np.log(pred_factors, where=pred_factors>0) * dense_corpus).sum() / dense_corpus.sum())\n", - "\n", - "def get_tm_l2_norm(W, H, dense_corpus):\n", - " return np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - W.dot(H))\n", - "\n", - "def get_sklearn_metrics(model, train_corpus, test_corpus, y_train, y_test):\n", - " W = model.components_.T\n", - " H = model.transform((test_corpus / test_corpus.sum(axis=0)).T).T\n", - " pred_factors = W.dot(H)\n", - "\n", - " perplexity = np.exp(\n", - " -(np.log(pred_factors, where=pred_factors > 0) * test_corpus).sum()\n", - " / test_corpus.sum()\n", - " )\n", - "\n", - " l2_norm = np.linalg.norm(test_corpus / test_corpus.sum(axis=0) - pred_factors)\n", - "\n", - " f1 = get_sklearn_f1(model, train_corpus, H.T, y_train, y_test)\n", - "\n", - " return dict(\n", - " perplexity=perplexity,\n", - " l2_norm=l2_norm,\n", - " f1=f1,\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-10 03:00:59,990 : INFO : using symmetric alpha at 0.2\n", - "2019-01-10 03:00:59,991 : INFO : using symmetric eta at 0.2\n", - "2019-01-10 03:00:59,993 : INFO : using serial LDA version on this node\n", - "2019-01-10 03:01:00,001 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2019-01-10 03:01:00,003 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2019-01-10 03:01:01,213 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:01,226 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", - "2019-01-10 03:01:01,230 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", - "2019-01-10 03:01:01,235 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", - "2019-01-10 03:01:01,237 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", - "2019-01-10 03:01:01,239 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", - "2019-01-10 03:01:01,240 : INFO : topic diff=1.652264, rho=1.000000\n", - "2019-01-10 03:01:01,242 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2019-01-10 03:01:02,977 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:02,991 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", - "2019-01-10 03:01:02,993 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-10 03:01:02,997 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", - "2019-01-10 03:01:03,000 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", - "2019-01-10 03:01:03,004 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", - "2019-01-10 03:01:03,008 : INFO : topic diff=0.879875, rho=0.707107\n", - "2019-01-10 03:01:04,977 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 03:01:04,978 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2019-01-10 03:01:05,642 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 03:01:05,648 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", - "2019-01-10 03:01:05,649 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", - "2019-01-10 03:01:05,651 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", - "2019-01-10 03:01:05,652 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", - "2019-01-10 03:01:05,656 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2019-01-10 03:01:05,658 : INFO : topic diff=0.673042, rho=0.577350\n", - "2019-01-10 03:01:05,660 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2019-01-10 03:01:06,445 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:06,453 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", - "2019-01-10 03:01:06,454 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", - "2019-01-10 03:01:06,456 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", - "2019-01-10 03:01:06,460 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 03:01:06,462 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", - "2019-01-10 03:01:06,464 : INFO : topic diff=0.462191, rho=0.455535\n", - "2019-01-10 03:01:06,466 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2019-01-10 03:01:07,136 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:07,142 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", - "2019-01-10 03:01:07,144 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-10 03:01:07,145 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", - "2019-01-10 03:01:07,147 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", - "2019-01-10 03:01:07,148 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", - "2019-01-10 03:01:07,150 : INFO : topic diff=0.434057, rho=0.455535\n", - "2019-01-10 03:01:08,103 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 03:01:08,104 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2019-01-10 03:01:08,671 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 03:01:08,678 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", - "2019-01-10 03:01:08,680 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-10 03:01:08,682 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", - "2019-01-10 03:01:08,684 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-10 03:01:08,685 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-10 03:01:08,687 : INFO : topic diff=0.444120, rho=0.455535\n", - "2019-01-10 03:01:08,688 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2019-01-10 03:01:09,434 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:09,444 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-10 03:01:09,446 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", - "2019-01-10 03:01:09,449 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", - "2019-01-10 03:01:09,451 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 03:01:09,453 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", - "2019-01-10 03:01:09,454 : INFO : topic diff=0.359704, rho=0.414549\n", - "2019-01-10 03:01:09,456 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2019-01-10 03:01:10,134 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:10,141 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", - "2019-01-10 03:01:10,142 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", - "2019-01-10 03:01:10,144 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", - "2019-01-10 03:01:10,148 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 03:01:10,150 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 03:01:10,151 : INFO : topic diff=0.325561, rho=0.414549\n", - "2019-01-10 03:01:11,074 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 03:01:11,075 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2019-01-10 03:01:11,538 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 03:01:11,544 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", - "2019-01-10 03:01:11,545 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-10 03:01:11,548 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", - "2019-01-10 03:01:11,550 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-10 03:01:11,551 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-10 03:01:11,554 : INFO : topic diff=0.327590, rho=0.414549\n", - "2019-01-10 03:01:11,559 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2019-01-10 03:01:12,252 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:12,258 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", - "2019-01-10 03:01:12,260 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-10 03:01:12,261 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", - "2019-01-10 03:01:12,263 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 03:01:12,265 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", - "2019-01-10 03:01:12,266 : INFO : topic diff=0.265043, rho=0.382948\n", - "2019-01-10 03:01:12,268 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2019-01-10 03:01:12,910 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:12,916 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-10 03:01:12,918 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", - "2019-01-10 03:01:12,919 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", - "2019-01-10 03:01:12,920 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 03:01:12,922 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 03:01:12,923 : INFO : topic diff=0.244061, rho=0.382948\n", - "2019-01-10 03:01:14,118 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 03:01:14,119 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2019-01-10 03:01:14,741 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 03:01:14,749 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-10 03:01:14,750 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-10 03:01:14,752 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-10 03:01:14,755 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 03:01:14,761 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-10 03:01:14,763 : INFO : topic diff=0.247579, rho=0.382948\n", - "2019-01-10 03:01:14,764 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2019-01-10 03:01:15,488 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:15,494 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-10 03:01:15,496 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-10 03:01:15,500 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", - "2019-01-10 03:01:15,502 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 03:01:15,503 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", - "2019-01-10 03:01:15,504 : INFO : topic diff=0.204190, rho=0.357622\n", - "2019-01-10 03:01:15,505 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2019-01-10 03:01:16,194 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 03:01:16,201 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", - "2019-01-10 03:01:16,203 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", - "2019-01-10 03:01:16,205 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", - "2019-01-10 03:01:16,206 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 03:01:16,208 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 03:01:16,210 : INFO : topic diff=0.197424, rho=0.357622\n", - "2019-01-10 03:01:17,152 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 03:01:17,153 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2019-01-10 03:01:17,662 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 03:01:17,668 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-10 03:01:17,670 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-10 03:01:17,671 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-10 03:01:17,673 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 03:01:17,674 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", - "2019-01-10 03:01:17,675 : INFO : topic diff=0.200393, rho=0.357622\n", - "2019-01-10 03:01:19,588 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:01:47,367 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 03:01:48,775 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 03:02:00,351 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:02:52,570 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", - "2019-01-10 03:03:04,356 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", - "2019-01-10 03:03:22,955 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:03:52,447 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 03:03:52,853 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 03:04:00,076 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:04:17,667 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", - "2019-01-10 03:04:18,681 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", - "2019-01-10 03:04:43,076 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:05:35,805 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 03:05:38,235 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 03:06:02,556 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:07:28,660 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", - "2019-01-10 03:07:45,400 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", - "2019-01-10 03:08:05,550 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:08:41,564 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 03:08:42,027 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 03:08:54,116 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:09:20,354 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", - "2019-01-10 03:09:22,103 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", - "2019-01-10 03:09:39,830 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:10:07,060 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 03:10:08,631 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 03:10:24,299 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:11:16,847 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", - "2019-01-10 03:11:32,737 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", - "2019-01-10 03:12:01,326 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:12:37,050 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 03:12:37,481 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 03:12:45,317 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 03:13:09,208 : INFO : Loss (no outliers): 605.4685741189123\tLoss (with outliers): 605.4685741189123\n", - "2019-01-10 03:13:11,196 : INFO : Loss (no outliers): 578.3308322440762\tLoss (with outliers): 578.12465083152\n", - "2019-01-10 03:13:28,522 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" - ] - } - ], - "source": [ - "tm_metrics = pd.DataFrame()\n", - "\n", - "train_dense_corpus = matutils.corpus2dense(train_corpus, len(dictionary))\n", - "test_dense_corpus = matutils.corpus2dense(test_corpus, len(dictionary))\n", - "\n", - "# LDA metrics\n", - "row = dict()\n", - "row['model'] = 'lda'\n", - "row['train_time'], lda = get_execution_time(\n", - " lambda: LdaModel(**fixed_params)\n", - ")\n", - "row.update(get_tm_metrics(\n", - " lda, train_corpus, test_corpus, test_dense_corpus, trainset.target, testset.target,\n", - "))\n", - "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", - "\n", - "# Sklearn NMF metrics\n", - "row = dict()\n", - "row['model'] = 'sklearn_nmf'\n", - "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", - "row['train_time'], sklearn_nmf = get_execution_time(\n", - " lambda: sklearn_nmf.fit((train_dense_corpus / train_dense_corpus.sum(axis=0)).T)\n", - ")\n", - "row.update(get_sklearn_metrics(\n", - " sklearn_nmf, train_dense_corpus, test_dense_corpus, trainset.target, testset.target,\n", - "))\n", - "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", - "\n", - "for variable_params in variable_params_grid:\n", - " row = dict()\n", - " row['model'] = 'gensim_nmf'\n", - " row.update(variable_params)\n", - " row['train_time'], model = get_execution_time(\n", - " lambda: GensimNmf(\n", - " **fixed_params,\n", - " **variable_params,\n", - " )\n", - " )\n", - " row.update(get_tm_metrics(\n", - " model, train_corpus, test_corpus, test_dense_corpus, trainset.target, testset.target,\n", - " ))\n", - " tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coherencef1l2_normmodelperplexitytopicstrain_timelambda_sparse_coefuse_r
5-1.5724230.5501077.210671gensim_nmf21.192597[(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...6.2786091.03.01.0
9-1.7940920.6439237.247914gensim_nmf49.029785[(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli...10.52116510.03.01.0
4-1.6698710.6652457.168078gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...1.6573171.03.00.0
8-1.6698710.6652457.168078gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...2.12881710.03.00.0
12-1.6698710.6652457.168078gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...1.850517100.03.00.0
13-1.6674880.6711097.167265gensim_nmf55.941498[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...12.981406100.03.01.0
2-1.6516450.6716427.060985gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...4.0454051.00.00.0
6-1.6516450.6716427.060985gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...7.65445010.00.00.0
10-1.6516450.6716427.060985gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...4.660070100.00.00.0
11-1.7136720.6769727.058523gensim_nmf2526.410171[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...50.553119100.00.01.0
7-1.4142240.6833697.053716gensim_nmf2314.832335[(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...63.71085410.00.01.0
1NaN0.6982946.905912sklearn_nmf2852.226778NaN16.457335NaNNaNNaN
3-1.3443810.7110877.034086gensim_nmf2335.161635[(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...45.7135851.00.01.0
0-1.7892180.7579967.007877lda1975.257100[(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...17.686532NaNNaNNaN
\n", - "
" - ], - "text/plain": [ - " coherence f1 l2_norm model perplexity \\\n", - "5 -1.572423 0.550107 7.210671 gensim_nmf 21.192597 \n", - "9 -1.794092 0.643923 7.247914 gensim_nmf 49.029785 \n", - "4 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", - "8 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", - "12 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", - "13 -1.667488 0.671109 7.167265 gensim_nmf 55.941498 \n", - "2 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", - "6 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", - "10 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", - "11 -1.713672 0.676972 7.058523 gensim_nmf 2526.410171 \n", - "7 -1.414224 0.683369 7.053716 gensim_nmf 2314.832335 \n", - "1 NaN 0.698294 6.905912 sklearn_nmf 2852.226778 \n", - "3 -1.344381 0.711087 7.034086 gensim_nmf 2335.161635 \n", - "0 -1.789218 0.757996 7.007877 lda 1975.257100 \n", - "\n", - " topics train_time lambda_ \\\n", - "5 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 6.278609 1.0 \n", - "9 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 10.521165 10.0 \n", - "4 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.657317 1.0 \n", - "8 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.128817 10.0 \n", - "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.850517 100.0 \n", - "13 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 12.981406 100.0 \n", - "2 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.045405 1.0 \n", - "6 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 7.654450 10.0 \n", - "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.660070 100.0 \n", - "11 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 50.553119 100.0 \n", - "7 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 63.710854 10.0 \n", - "1 NaN 16.457335 NaN \n", - "3 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 45.713585 1.0 \n", - "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 17.686532 NaN \n", - "\n", - " sparse_coef use_r \n", - "5 3.0 1.0 \n", - "9 3.0 1.0 \n", - "4 3.0 0.0 \n", - "8 3.0 0.0 \n", - "12 3.0 0.0 \n", - "13 3.0 1.0 \n", - "2 0.0 0.0 \n", - "6 0.0 0.0 \n", - "10 0.0 0.0 \n", - "11 0.0 1.0 \n", - "7 0.0 1.0 \n", - "1 NaN NaN \n", - "3 0.0 1.0 \n", - "0 NaN NaN " - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tm_metrics.sort_values('f1')" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(0,\n", - " '0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"believ\" + 0.020*\"exist\" + 0.019*\"atheism\" + 0.016*\"religion\" + 0.013*\"christian\" + 0.013*\"religi\" + 0.013*\"peopl\" + 0.012*\"argument\"'),\n", - " (1,\n", - " '0.055*\"imag\" + 0.054*\"jpeg\" + 0.033*\"file\" + 0.024*\"gif\" + 0.021*\"color\" + 0.019*\"format\" + 0.015*\"program\" + 0.014*\"version\" + 0.013*\"bit\" + 0.012*\"us\"'),\n", - " (2,\n", - " '0.053*\"space\" + 0.034*\"launch\" + 0.024*\"satellit\" + 0.017*\"nasa\" + 0.016*\"orbit\" + 0.013*\"year\" + 0.012*\"mission\" + 0.011*\"data\" + 0.010*\"commerci\" + 0.010*\"market\"'),\n", - " (3,\n", - " '0.022*\"armenian\" + 0.021*\"peopl\" + 0.020*\"said\" + 0.018*\"know\" + 0.011*\"sai\" + 0.011*\"went\" + 0.010*\"come\" + 0.010*\"like\" + 0.010*\"apart\" + 0.009*\"azerbaijani\"'),\n", - " (4,\n", - " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tm_metrics.iloc[8].topics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sklearn wrapper" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.base import BaseEstimator, TransformerMixin\n", - "\n", - "class NmfWrapper(BaseEstimator, TransformerMixin):\n", - " def __init__(self, **kwargs):\n", - " self.nmf = GensimNmf(**kwargs)\n", - " self.corpus = None\n", - "\n", - " def fit_transform(self, X):\n", - " self.fit(X)\n", - " return self.transform(X)\n", - "\n", - " def fit(self, X):\n", - " self.corpus = [\n", - " [\n", - " (feature_idx, value)\n", - " for feature_idx, value\n", - " in enumerate(sample)\n", - " ]\n", - " for sample\n", - " in X\n", - " ]\n", - "\n", - " self.nmf.update(self.corpus)\n", - "\n", - " def transform(self, X):\n", - " H = np.zeros((len(self.corpus), self.nmf.num_topics))\n", - " for bow_id, bow in enumerate(self.corpus):\n", - " for topic_id, proba in self.nmf[bow]:\n", - " H[bow_id, topic_id] = proba\n", - "\n", - " return H\n", - "\n", - " @property\n", - " def components_(self):\n", - " return self.nmf.get_topics()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Olivietti faces + Gensim NMF" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "============================\n", - "Faces dataset decompositions\n", - "============================\n", - "\n", - "This example applies to :ref:`olivetti_faces` different unsupervised\n", - "matrix decomposition (dimension reduction) methods from the module\n", - ":py:mod:`sklearn.decomposition` (see the documentation chapter\n", - ":ref:`decompositions`) .\n", - "\n", - "\n", - "Dataset consists of 400 faces\n", - "Extracting the top 6 Eigenfaces - PCA using randomized SVD...\n", - "done in 0.565s\n", - "Extracting the top 6 Non-negative components - NMF (Sklearn)...\n", - "done in 1.230s\n", - "Extracting the top 6 Non-negative components - NMF (Gensim)...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-12-30 20:44:12,244 : INFO : Loss (no outliers): 21.546971809778427\tLoss (with outliers): 21.546971809778427\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "done in 9.589s\n", - "Extracting the top 6 Independent components - FastICA...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/sklearn/decomposition/fastica_.py:118: UserWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n", - " warnings.warn('FastICA did not converge. Consider increasing '\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "done in 0.525s\n", - "Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...\n", - "done in 2.518s\n", - "Extracting the top 6 MiniBatchDictionaryLearning...\n", - "done in 4.005s\n", - "Extracting the top 6 Cluster centers - MiniBatchKMeans...\n", - "done in 0.386s\n", - "Extracting the top 6 Factor Analysis components - FA...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/sklearn/decomposition/factor_analysis.py:228: ConvergenceWarning: FactorAnalysis did not converge. You might want to increase the number of iterations.\n", - " ConvergenceWarning)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "done in 0.555s\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZedZ3vl8994aNJRUVbIsCY3WPFqyPGFjmiGy8KIbG4LdKybExtixF2lYnbBWEnqFNIGETndD0gFCHBoamnYIBNoYMG4zxRM22EjYmqzJKs1SabAkV5VcquHee/qPc35nv+fZ77fvuSWBsc/3rFXr1D1n729/0977fd6xjEYjNTQ0NDQ0fK1j6SvdgYaGhoaGhr8OtBdeQ0NDQ8NCoL3wGhoaGhoWAu2F19DQ0NCwEGgvvIaGhoaGhUB74TU0NDQ0LATaC++rHKWU7yuljCr/rpscc93k79e9QNf84VLKd74Qbf1VoJTyt0sp//Ar3Q9HKWVlsg4/Oufxry6l/HYp5YlSyuFSyn2llJ8vpXxdcuzDpZRfCn+/a3Kts17IMYT20zkupVxbSvkXpZSd9v3cYy+lvKmUclsp5dDknBNfyL43LC7aC+9rB2+R9Br79xeT3/5i8vfNL9C1fljS39gXnqS/Lelv3AtvMyilfJ+kT0naKemHJF0v6X+T9O2SPldKuXKDJn5X4zV/4q+oi7U5vlbSj2nc7ylGo9HqpD+/MtRoKWWrpF+T9IDGY36NpIMvQH8bGrTyle5AwwuGm0aj0T3ZD6PRaL+kT2/UQCll22g0OvyC9+xrAH+dc1NKuVzSL0h6v6S/M+qyQ3y8lPL/aizA/FYp5arJi6SH0Wj0pKQn/zr6Oy9Go9GGe1DS2ZJOkPRfRqPRJ/6Ku9SwYGgMbwGQqTRLKZ8spXyslPKdpZSbSimHJb178tsPl1LuKKU8V0p5ppRyQynljZPfHpZ0pqS3B9XpL6UX7q51QSnl10opj09Uc/eWUv6tHfMtpZSPlFKenfz78OTBH4+hz9eXUj5XSjk4UX29MRzznyT9XUnnhv7dE35/cSnlF0opj5ZSjkzG+U67DurAbyilvL+Usk9jtrWZvi6XUv6XUspjk35+VNJlgwvV4R9JKpJ+aGSpkEaj0Rcl/aikSyW9qdaAqzRLKX9YSvmL5LizSilrpZQfCt+dX0r59VLKkxO14mfnmeNSyrsk/eLksPvCb2fNo9IspfwrSazVr06O/5PJb2+YzDPzeVsp5R+WUpaTdt4z2R/PlVKenuyZrw+/n1hK+alSyv2TPXBvKeVHSiklHHNSKeXfl1IemuzZx0spf1xKubjW/4a/+WgM72sHy6WUuJ6j0Wi0tsE5l0n6t5J+QtL9kp4qpbxdY9XZj2v8kD9O0tWSTpmc8x2S/lDSDZL+5eS7qtqslHKBxoxkv8YP6j2SzpF0XTjmTZJ+W2M13PdoLIj9iKQ/LaW8dDQaPRKavHjS538t6SlJ/1jS+0spF49Go/s0Vqe9aNLn75qcc2hynZ2TMW2R9D9Pxvztkn6xlLJ1NBq917r/65L+s6T3SlreZF//laR/KumnJP1XSa+anDMP/pakz4xGo9q8flDSSNK3aswC58H7JL1vMk93h+//rqQ1jceqUsp5kj4jaa/GKssvajzO3ymlfMdoNPqQ6nP8iKTzJf1PGqs8905+m1et+h8l3SrpNyT9C4332b7Jb+dL+iNJPzu51is1nuMXabyvNOn/v5P0P2r84v3nk6+/XmPm+OlSypZJOxdrvH9vk/Rajff7Lo3XTJJ+RtIbJP0zjV/Cp0j6RkknzzmWhr+JGI1G7d9X8T9J36fxw8//fTIcc93ku9eF7z4paV3SVdbef5T0Fxtc82FJ//ec/fvPGr/sTq/8XjR+8fyhfb9T0tOSftr6fETS+eG7MyZj+yfhu/8k6f7kWj8u6TlJF9j3vyLpcUnLk7/fNWnzp46lrxo/HA9K+vd23D+btPujG8zZUUnv2+CYL0r6PVuTXwp/M4azJn+fIOmApH9p7dxm7fyqpMck7bLjPirpxjnmmOueZ9+vzDn2SyfHfe/AMWXS3o9N5qFMvr9ksqf/94Fz3zFp/7X2/Y9JOizplMnfdw610/59df5rKs2vHXyXxlIv/945fLgk6Z7RaHSrfXeDpJeXUn6mlPK3SinHP89+Xa/xA/Wxyu+XSjpX0q9N1F4rE6b6rMZM47+x4+8cjUb38sdoNNqr8UPvnDn68gZJfybpAbvWH0p6scYPzIgPHGNfr9aYGf+mnf8bc/TxrwSj0ejLGjPT70V1V0p5maQrNGZ/4A2SPiTpQDJH15ZSTvhr7rokqZTydaWUXyylPKixQHBUYxZ4ijrtw+s1fhn+nwNNvUFjLcNf2Pj+SNJWSa+eHHeDpHdOVJ0vL6W0Z+XXAJpK82sHt40qTisD2Jt898sa3/jfr7F34OFSyv8n6R+NRqMHj6FfuzVmHzW8ePL5q5N/jnvt76eTYw5L2j5HX16ssWrxaOX3U+xvn595+3rG5PNx+93/ruFhSefVfiyl7NB4Xh+asz3wPklvk/Q6SX8q6e9J+pKk3wvHnKrx2n9/pY3dkr68yes+L0zsdL+vcd9+XGP2dUjSd2usTmbtWb+N9tsF2ngP/AONGfnf10R9Xkr5VY0Z6nPHNpKGrzTaC2+x0asNNRrrc94r6b2llN2Svk3Sv9HYxvMNx3CNpzR2chn6XZL+icZqM8cL6Rn5lMYviR+u/H6X/e3zM29feVGeZm2eNl839V8lva2U8uJRbsf7Do2ZzEfmbA98RGM72/eWUv5M0lsl/dZo1vv0aUl/IumnK23M+9J+IXGxpJdJeutoNJqy5FLKd9lxX5x8nqkxi8vwlMY2ubdWfr9Pkkaj0QGNX6Y/MrFrvkXjF98hjV+EDV+FaC+8hipGo9HTkn69lPIaSW8PPx3WWGU3D/5I0psGHt63a/wSunw0Gv3U8+rwxv37A0nv0dj29MXk940wb19v1thW+N9Liq71f2fO6/w7jZnYz5ZS3joRQiRJpZQXaeyscZfmd4KRJI1Go/VSyq9p7I37IUmna1adKY3n6OUaawwODTRXm2NenvPuj3mAWn3Kyso4Xu977Lg/1lhIebc65xPHH2gsMOwbjUZfmOfio9Hofkk/VUr5e5I2in9s+BuM9sJrmEEp5f+S9IykP9c4jusSjR8sfxQOu13SN5VS/luNJf4nR6PRA5Um/7nGdpM/L6X8a42l67MlvX40Gr1t8hD+QUm/XUrZLum3NJbCT9fYe+7e0Wj0M5scxu2Svr+U8m5Jn5P03Gg0uk1j1vIWjT0q/w9Jd0vaobFt7rWj0cgZwwzm7etoNHqqlPIzkv5pKeXLGjOmV6uuJvTr3FZK+Qcax+KdWkr5BY0dSS7T+EF+oqTrRpUYvA3wPo0Z6n/QmM180n7/UY29aj9eSvl5jQPAd0m6StI5o9Ho70+Oq83x7ZPff3ASvnBUYwHg+VSa/rzGasr/tZQy0tgx5Yc19i6dYjQa3V1K+VlJ/7iUcrLG3qzrGntp3jYajX5L0v+jsaPXR0spP62xV+hWSRdKeqOk/240Gh0upXxGY5vnbRqrcL9FY3vnLzyPcTR8pfGV9ppp/57fP3VemhcOHFPz0vxYcuw7JH1c45fdIY3tUv9G0o5wzOWT8w9O2v2lDfp4oaT/ovHL4ZDG6qaftmO+QWPW8czkmPs0VqN+/Rx9dg/FHZPrPTPp3z3ht90au5zfr7HH5xMas7AfCseknoab7OuKxiqwxzVmex/VmB1s6KkY2niNpN+ZrMWRSZ//g6Qz55iDGS9NO/Zzk99+onLdczS25T4yue6jGgs83zPnHP/E5Jw1+qDn6aWpcQaXT0323EMaO6y8x8eosar3f9D4RXZYYxXtRyW9Ohxz3KSPd02OeUpjp6Mfk7Q0OeanJ/O0T2OnpFsk/eBX+n5v/57fP9x5GxoaGhoavqbRXG0bGhoaGhYC7YXX0NDQ0LAQaC+8hoaGhoaFQHvhNTQ0NDQsBNoLr6GhoaFhIdBeeA0NDQ0NC4FNBZ7v3LlzdMYZZ2htbRzvub6+3juGMAdKS3nYQxYGwXe1EImh30MJq7n7wXf039vwc7PrbTSu7Ho1ZP3wua3NwdCc1MaXwdv3dmljdbWLdT56dJz4Yvv2cSrDlZUV7d+/XwcPHuxdcPfu3aMzzzxz2if/jNf039hv3pehY2I/s3HOg6G9utGcZutfu3Zt/x1rH+fF0P723/z7+Pvy8mxJuqWlpZlPjuXveM7KyvgRtLa2pscee0z79u3rdeqEE04Y7dy5c7rGQ88D/47r8Bn7sBE2Wrfs2Fo/Xujr1Z4D89zrG7U1z7GbeY7799l7A/h9DOK4fD+VUnTgwAEdOnRow8Fv6oV3xhln6Jd/+Zf1xS/OZmWKA/CHLQ/FoYcY3zEh/Obn8jc3idS/qfz6PPjiRqcd3/z+UI/j4liu7X3mb26sQ4e6rEwc430desnQR747cuTITN8OHz4883t8wDN/W7dunbmuvwDjJuIcn/vnnhvnyT3++HF2p3379k3P2bt378x1rr76ar3vfZ6paoyzzz5bH/7wh/Xss89Kkg4ePChJ07+lbs4OHDgw80lfmIMtW7b0zqGfHPvMM88Mjiuiti6cE+eJeY57UOrv7zgu2tu2bVt6XfaMr3V2HcA46GN86fB/75M/KPg+9ovrMcf+YuITIUfq1v+4446bOeeEE06YuR6/S9KuXbskSaeeeqqk8X5417velY51586d+oEf+IHpnmet4/3J/+n3SSedNNNPxh7nk3M2eglmD3c/h7/9Xo7POd8789yX/ht7w/dx9mzMXgwR2cvFn2ecy9z7cy7uVX/m+n7mc+iFxzj2798/8/fOnTunx5x88skz3+3YsUM///M/X20zoqk0GxoaGhoWAptieOvr6zp48OBUouMt7JKr1L3dkbiQxF0tQbvxt0yyjm1FadYlK/8bZJJdNr6IKEUhKXofXeLh+yjNIu3X1EWZhIk05HPLdYbUlvSbOad9WBrHRgmvNo9cn/7s2LGjNy7Y1Be/+MVBVeLq6mqPMcTxIUUy11yTfkb1l/ebPUn/aePLX/7yzJjjPqCvzogBxw4xLj+Gv+PeYZ5gNb6GXD/bu66q8vspk959f7FH6Jvfmxkr4Bhnds5KYv9ranAfbzzfxz4EZ01xvbjf2OOMbUjF58y69uwYMt3430NmhBoLnMeE4hof75uPJZ7r2qhanyPYzzVtQdamayx8j/o+9P/HccLQWU/+lrq1Zv1XVlbmVuU2htfQ0NDQsBA4JoaHbj6T7Gr2kJoR3M+Pv7nxOzu3ZixGwsskYCQDl1YyvXTtOs70arZEqWMxNYYH4jhdD06f6Zvb5zLQhtu3ODfawpyx+hpkNoIXvehFkjqG9+yzzw7q52O77uggdfNEf2t7J9MOuAbB+z+0Vzday8hC3Z44j7Qe51nq5tDH5QxX6u8Dt9ll+9u1DVzfWRuIc+I2YuD3YmwDiZvr8HxwFh+ldI6NdsTaXi6laHl5uXftOK/0gblzVuFrTbtx/P7p9vp5njuZ9sSPYY79HhhyQPNznCHPY/9zTUnmT+F98HvCfSKyZ5Zfn2P8mRzHA/wY2kBTE/sE+8v6XUNjeA0NDQ0NC4H2wmtoaGhoWAhsSqUZ6wpJfVVJhprBPNLfzKEgazdzZqnF/NA+6pToROB9ceOtO0Bk13G3cFc9uhorgxuaM7Wrq6eAq+Hi9WgnGnUjsvXimBhOkR0b59Fdy/ft21d1WpHGczdPDE7NuE/b8RqELuAYwrH0E9WcO6hI9VAZV7dFFSNwVSPrxHVR60nd3LrzRm39s/WpOUdljjyoW/2e4BjWOAvZ8ZAc5pW9xFyceOKJ03NQQdMX1E++/+I8+v0x5HRw9OhRPfHEE9OQGA85iO25E5HPdVShuSMI/eV7n4t4bi3er/Z7NlZXOWZOJLXQrFqcbkRNRezP0bh3MlNDvJ7v4XhdN7u489k86nc3/7D/4j3vppqtW7cOPnciGsNraGhoaFgIbIrhSbNv2lpAY/zNz8uMnc5A3IGiJiHH79wRwCWgzEED1FykYx+d/Xn7PoboMu0u3TVjeYSzHJiKS6FI69kacA7GXWc0Q8H4NXfxOHeM68ILL5Qk/emf/umGTis+13He6INL5Xz/pS99SVIn2UndvmIeNvqMc8137A2C4d0VP+4dWK2Pc4hx19h+bb9FFu3OKX7dIckWyboWEuSON/EYpHOX7LkecxWPhW37vYJDSdw7p5xyiqSODR49erTKilZXV/X4449Pr717925JsyEyzhT8HsuSFriDhDtXDN3zfp/4/Zeds1H41ZATSS3Rhe+L+NzxdmuML55T08g5AxvSQjizA64Vkfpr4IkjfA9L3fMshqJs9NwBjeE1NDQ0NCwENm3DW1tb6+nsh972NcknSlr+FvccjW7Pitdzhuduu+7GH3/zfsOI+IzswwPBa9Joxg6RRGqphLL+1ALnGQfSkgfES938Pf300zO/uYSXBWH7/PF9lg+R3+LcDNliov0XRCnQbQq0jx6ffRfTdvncuQTsbUX25HY+1yywR6OLPizT18NZQWaj9vl3yXtIU1LTWAzZtZkvZyOe4ioLMWCfMz5PWlBLeSZ18wULdBtO7ANrkCWvAOwb7IYeBhH/7/thKJyCa3raOQ9az+4fT3iwUThP7JP32fddlqrRr1tLSJCx0FoatCHm50zP5yKziXraM9fIZXPimiXfq4wr88Hgty1btrTA84aGhoaGhohNMTwCQF1iy6Q9D+L2YPUo2bvUgOTF37AYZx/xO5fSYIuZFOOeQC41ZQl5PQjZvfNqjCgbe83jzoN943g8iSvAjpFVMfC/mXPsJtmc+Hi9r3GtXYLfSNJaX1/vrQe6es6PY3QbAGON6+LzTfv0zT07I9PH6w/W5mPnelEy9/mvJQTO2nPW6ew804pkezEiYx+cz76jXRiS25Di2runnXs983v00vTvfA9k7Jo+RW3RkGfj2tpaL91UTN9X83x0Jp4xSfrAnvH+Z4kC/H6g/aG0gTV731B6MLfRegKImvYg+86f11lwfC2hQa3aROyfJ4Fwb+As+YMHwTtDzzQAQ/faRmgMr6GhoaFhIbBphrd169ZeaZqhOA6PxeGtnyXkdSnMvaaw3USWAUNAWndvLKTB6NmH5M4xnow08/jxmByXoj3eK0ofHiPk+mn3oov/53p4wLmkzblZQm2XhNzuENkKv9Eex9Q8ZiOQjOfRpTvDp9SHNJs+KP7GfqBv0YbHtRmL959+n3vuuZKkiy66aHrurbfeKkm6//77Z9pCqnzxi1/cu56zFfYV+5CE6meeeWZv7M5cv+7rvk6SdO+990rq4hmj1Myx/MY+gE1RqiuW7CLlG3s/1iuMfw+lv3K7uUv4ca3oE2PnnvAkwvF6rCn33lAC4NFopPX19el9y9gzL2rfn37vZUm9XRvgc5ExT+a2Fsvntnapz/Cc3WTaIe+Lj3coxaA/BzK7m8OfLxnrjMfFZ4iX/PJ5dc2G1O2jWqxtNi7X3kXN0UZoDK+hoaGhYSFwTF6aQ8l8nUV41gJ+j295Z3QunXscVpSakGzd3kNxQNqI+n7vq0tnrj+Wcgkx9t1Zb3Yd93SiLT5jbJPb9bx9L50TJRwkYbd51WwT8druueZzksXQxKTU83pLDXmIIcEj/cGeHn30UUkdo5D6Hnv039k7DOmlL33p9NwrrrhCknTnnXdKkm6++WZJfVtOTHrsjJ4+sjcff/zx3rjoE/NNn5CE+T2bE1gujIJP1tbL4kjS5ZdfLqm7x1w74Tb4rNSPZ1FiLlgbWGS8ttvGYXyZjfpjH/uYpI55X3XVVYNJ1bdu3TqNgYxjBZ48mU8YOB7L2bPK94rHf2b3J3vQGRBj9GTL8Tv3fK0lMZc6NuPM1VlaxnBr5Zlq/gdxDoCP3RlZ1H7U4gsZp7PG2I57TPv6xXM8hrd5aTY0NDQ0NBjaC6+hoaGhYSGwaZXm6urqICWeNjyhm1BhVDNDVas90NiNyLSVpZZy921PghypfnSpjm3UAiXj+X6sqyuh5H6NCPqKWoTPrOYTc+EqTFedZG7p9LGWvieuG8dwHVdBZ2vtqr+lpaVBx4MsLVmm8nnwwQcldepB+nb++edLmlUxulqavcE4mD9UgKS0iqBfX/jCF2b+9kQIEajvUHF6QuOHHnpoeixqO3dWoM/cG1lQt9eW8/llXGefffb0Ow/jcRU6yJzOPDFvLS1aTOvF9diTqI9JAcYaxD3K3vnLv/zL6TFRPRaxvLys3bt3T80Ubi7xtuPY3IQSj+MedceWWg3C2D93UvMK4cwfznSxPcDa8smeivcE57hzWq3GXZwT3ytDiZ8B13FVPePw52zcq7SHWpTrePL1GBrkTjLuYJU52Hi9zMz5qobG8BoaGhoaFgKbTh6Ni7A07ArrhnFnEJEpuEu5BxsiiSEJR4nBww5qQY9ZsLJLE7XUQrG/tWTV7vIbJWM3SiM9YUhHioqONx6Y61KNXyeWo3GW6+wsSzjt7s3urJBJWkjpcd2GgoezgNPIaj/5yU9Kkk477TRJ0mWXXTZttzZW5oV2PEyB7++77z5J0iOPPDI9FybipZ6QZt1AL/W1DjAdxuPOUpJ0zz33SJJe/epXz4zDg7pdGyL1HUFYBxx5YKyxX3fddZck6frrr5/p04033iip7/w1lASCOXAnlujA4Vob9hCOLWecccZMn6Xuvn3yyScljZNy1xJhr6ysaNeuXT03+8zZxpmBO6Jk1bYZv6fG8jCS2D93pvD14X6KTBhNDvcLf7M+GQsFzlg9IUU2J/6bO6Bl2hjGijOga9U8cD+yKw+V8mQAQ1odf+6w3/z+iu279mkeNIbX0NDQ0LAQ2HTg+ZYtW3quo5n9iLcwb2jYzFCpDaQxl3SQKggEjuzJXV3dLX3Pnj0z/Yn/dzuP26SirdCv50mDOZa5ifp+tzlgm0K6dQlT6gdi0gYSPSwoC8J96qmnJPXd3D38IkrpjJk18ITKmQ3PGcKhQ4eqAaCllFRK+9znPjf9jjAB9gz9QxJ2phz7AHtgbmPoQrze7/zO70y/I0SBtfLg8aFkvqwlx7okCquRurmkHbf7cX2OixoMZyh+PQ9xkDp73lve8hZJHaODaRLeATKm5H/7XETblDMg1s3LLcW2GSPzuW/fvqotZnl5Wbt27eoxhPgccI2IF0HOAqXdNufrALsdStDtwdQ+rriW9M0D870sVqYlqSUAAJkmC/izxMMHot2PMfPJXHjaP7fpxT55KSlPMhBZoocsuG+CFxCQOg1IPGbeNGON4TU0NDQ0LASOKXl0rdii1E+1g3SJ9Jylt4GluJcS7dMGklGUSGCOXibD7TFRikUi5TckO097FRme25FqJe/5HpYldUzOwXg98Dhezz2RkJppM0uu6ozR53zI88ltrs5ysxIpGRNyHD16VE888cT0749//OOSZgOY6RfHwdJYJ6S92CeOce9MwDhc6pS6gHNnwO5hHMflzN73GRJr9CTFFnneeefNnAOjfeyxx2b6E7URMHr3JHTWlCVUR7vh2gcPhI/wQGc/1gvDSv1gb67DfUvqtJik20u8bN++verhu7y8rJNPPnlQivcEEMyL2/ajVoP7nrXjnnWmmd1j3tdaQoDI8DyJvBdKzQrAAi8x5mAeIxPyZ5MnPs+KIgP3vPVE8Vm6ONrBJslvaCXQvkS7ptsvgZejyn7L/EE2QmN4DQ0NDQ0LgWPy0gSZDQ+JgLc6Ul18q0uz6YGQXnhjw154+/OJhBzZE153NXsB39MfqWMV6ILpG+Pg+sSDSZ3nG8fASt2ukMUIIdkxZv52thBtEhyD3dJjt1xizWxrziy99EuW9NvLDXlS6Sjl0kdY9vr6etVLc//+/frwhz88jU8juXLcF9iY2EOsLf3mepmnHUwIqb1WkDOOmWOdBfp1omTszJ75cEYemSR7hXRa7D/2JPYSxhm9NJkf90L0gsQR7IkPfvCDM+NhDWmfPhIvF8fKeLg3PXFzJlU7i+a62JtJDSbNesvW2gNLS0szzwufi3hNT5/mnpFRy8CzKSY/53pSt5asV3aPuWbHYx0jc4H1uzdobQxS3+vTfRRA5k3tfazFrWX3rB/DnEQP6fi91GfTjJP2uUcjy0bzx95wbVdWUNm90Lds2TLoHT7T37mOamhoaGho+CrHphleKaVnL4tvV8+O4SVPkFSijcOlcmwetEub2H3i257fkEyRXvnk+rDEeKz3CSkD9kESXkl6//vfPx2/JL3hDW+Q1E9sjUSM/UTqmKJ7SSKhIL3G0jX011mnM2Yk1qi7Z27POeecmT67HTLaVJhHvvNsHVlCbTBPxoP19XUdOnRoaq96+9vfLmk2Do85Y11OP/30mTayTCRua4zSo9S36cX+uz0WeImSLF6ReWHPsIeZtyiBu/cln8wF+yCWygFIvIzLM+24diT2+4EHHpDU7RW35XisbDyG/VdjbfEcjw11ezB9jPZaNBdkWllbW6tK6aPRSIcPH+6VGotwj27G6DG2Wayf20Xdc5AyTllpIY7hby9PlXlrewyvJ4SP46Mv7ufgMXUenyf1i6kCt+Vl5/gna+cJ1TObPnPMvc2zCzYXNRjAY6Nr8c5SP96zJY9uaGhoaGgwPC8bHv+PGRSQCNwW5KUiouSDDQhGgp0n2oakLvr/6quvnp7rsW0eC3T33XdL6piepF6ZEVgNEglSRrQbXHDBBZI6Wx7FQ+kTtgLir6LuHhvG3r17JXVeYRxLrsUo2SElI9khWSMFvuY1r5HUxZUxV9K41IokfeITn5DUSYVIVrQR7Wcek+TxOEh0kbk4m3r22WerLG/Xrl1685vfPJ0LZxCxP6wh8+9epbGECfMEi6afSOUPP/xw2p8IxuRxhey7mBfVCwxzD3hR4biW7A1nh35vZHFYnl2Gda71VepnwOF6Ucsh9VlRPNelcPKMOvuROhsgfXIvV/ZUnEfaZ/1OOumkasYMsjvV7LIZ3JbOZ7wv6Sd9gMWwR91DMbIIj/NzuyznxGcIvzmjdA/YCPczyErsxP5QoVbyAAAgAElEQVRED19ntR53l2Vc8QxV3E+e8QfEvVPLUcwcsHezeEz3c/B9Fs9hz0f7abPhNTQ0NDQ0BLQXXkNDQ0PDQuCYnFY86WpM44TaxB0Z3Nge3ZKh7ahNMHKiRkQV6OmjpM7w7ymYcAD59Kc/LWnWMAtNJgUTVJzrMp5Ikz3sgXZdtYW6MqqPvCQNf3MM14sG9UsuuURSp1657bbbJHWqO1zcUZNEBw/mB3UDaj1Ut6gpokqT/3vYgycDiOfUys1kWF9f18GDB3upy6KzBXPsKhcv4xJVmqjTGP+f/dmfSerWAVV2FlYB+I39xbkeeiJ16nAPC+FYN7pL3Xq4s4WXYskqkLO/ua47NmQu7vSB9lEleVhMlqaK/zMXrMG1114rqZvnaJLwcjqeDJ224j3BOfTttNNOq5YiksbPj1rasziWWrJoDwmQ+inQXLXMXvHnXWzX73/mmPXA5BHboy8cw/OP7+P6s1Zcx/evq3WzBPQeOB/TwsXxx/M5x0MAuN+ytXJHF55NtMVzL6p5GTP3gIddsM+jqtbfKUNJCxyN4TU0NDQ0LAQ2XQB2bW1tKkHC0rJSOJ6sFVZF0HhWBBCJAEmAtpAqKfFy//33T8/l2kgpMCLOxXkhuuAjgcCsPPEvUmeUltywTdLj17/+9ZI6SYXxRYnEEzMzHiQfjo0SsIclwEZJ04TTDH2PEv7tt98uSbr00ktnxoG0yZpERlZzGPDA+jiP7IOYJHaoAOzhw4d7KcCitOmlflxq9j5l/YZpsYZRwpZm14X2mQ/2gycvz8rCcK6n3qLvL3/5y6fnfOpTn5LUSfIe3O0u9PF+gh15wU/AvotrSR9oj/YJYWE+vTxWbAcGF4PFY5/jvLuGInNmkmbvJ9aHfT60d6TxWngqw8hu+I3192QSmfMDGiX2IM8f5jSGTkmz+9BDmzxonOtHRxQvbI3TmhcPzpKjb1TMNQtBqKUq8xSNkVF6IgV/fns6suio4s8InoXsZ/Z/DF5nf7EP/PmQJbimv4S2nHjiiWmoSobG8BoaGhoaFgKbYnirq6t68skney7fV1555fQYL+LqrsRZAmOOhZ1xjgdZw4w8mJi+SZ2EQJoql3YjkF74hA1wTpTo+P/5558/0z7w1F/xeownJsqN46LPkUnAZj1oGIYZ06tJs0yJeaLPSJK0zzjj9ZDS+WSOIxOXZgPFGU9M3zRkxyulTKVo5jyOw93pAf11G0i8thfkdLtLZgvwtGl+rkvPUj8MgXM9eB1bYhyrhyN44ueM4TBmD50BSM0xPZi3w98ewjCUYo5juJ4nVo4s1F3xfT6z8ldu6z548OCGSYDdRpSFSHk6Kw85iedwbcaIBsYL87omI47NtSV870kGMsCOYDlZKjvg7Jbr8Zml4PJgdNcgcP0sGJ9z3L7syR/i3uH/7Fm392WJAzzBPXD7Y7yOB/cvLS01G15DQ0NDQ0PEphje4cOHde+9904lOi/TIPWlCt7UnhopSohIQX4Okg4FK72sfWwPSYe+4XHpSZBjXxxcNwuuRcIlXRPB8QSiwzo8BZPU6Zo9HRjHuD1A6iRglzbpu+v2owSEVMa8MR7mnL9jmR23K7mdxNlQbB/WuWfPnkGGt7S01CscmZVtcqnVWVzsN2OhPaR0PxYmFKVLt20gmXrqorgPkIq5jl8Pdv3nf/7n03NgqCQ/d6nWtQ+ZbZX1YP/xN2nw4v72RLyeJLmW6NivLXXr7cw/rhv7zTUZgL0V9w59YhwPPfRQqrmhTxkLyUoUeeJiX9M4Zo5hD3niYo71orL0SeoXTHYWFdeW//Mc8CTyvu/iNWsMxu+j7Nno7MztznF/u0akZhvLtBIeyO6JpjMG73NbSzydleiaN9g8ojG8hoaGhoaFwKZteE8//fTUu4kEylFS9hLtHsfhCZvj+Z6CiWORzpFMMimG35AY8CB1XbTUsSf6itSObdKlQqlLbEwCa9KgIcXQd5hljJfh2i95yUtmrus2lHg9pEAkG/fg8oTQMT7Oi2C6tMR44/V87j3uhzFEr0cYAwzvhBNOqKZ7Wl5e1s6dO3sesFFKc7uAp8/yPkrdetdSLoFMAq7FEdKGx9ZJ/YTTXqQYDUNMtwez87mpeRBm0jzXZZ29lNbQOGqelrG8CvBE137/uKYmHuN7x9lpZHisLZqSp556KrVdgZi0nnmLjNBttLUi1XHNfR583/kaR7bjCfRhic5y4znYtDy+z+//yGbdXul7iHPc9hrhMYn0CXbqdnqp7yfh9yL3XeZRyjr6HGT2TN8b7qXpyb/jOUP3Sw2N4TU0NDQ0LAQ2HYd35MiR6dsX21R8+yKF85ZHMiQGxaUqqe8l5BIIkkEmkURPHamTQJ2ZREmYYz1xKZ9IDvEcWOGrXvUqSdJb3/pWSf0SL4zvk5/8ZG88njzW7SNRUnFJ0ZPV+hzFc5Ho3GtuKFMFa4qtklhIzyAT2QDMIWauiWWRIpDQ3SM1rqVnKeFYZ2JZglzX67udgvmM9j+3OWTJlONxUp8BeVYWGHD08MUbMGaGiH0a8tZ0Ox9aCGx5vofiOZ4w2ec3i8d09uTef9m6+Vw7y86K73IszwWPtXSsra31mEjmCQ3op2cZyUovcQ95jJm3EeeJsbhmwZN9ZzY8b2PII9Hv2VrC8WzvuFbDbXZ8xrl3LYv7ENQSUkv97FpeDi2La2XOaywtm3vPSHT06NGWPLqhoaGhoSGivfAaGhoaGhYCm1Jpbt++XZdeeqluuukmSX3jtNRXT6Ky8JRF8ThPveUJWVFLOhWPx/LpbvQgc/VGDeW03QPR4//f8Y53SOrX8/KgaMIVpC55sCfQ5hxX2Upd0uMsGXEcnzsFxet4LTAfX6ZaQKXpKhNUNNHwzLVxRNm/f/9g1fN4PnMSHSpQrfh6u6okqjj5zhMAe+C8q6mkbr7dISCmSpNmg/q5HuvPuaz7zTffLKlT90vdPHkYioeAuPo1/p/r0AYOEJ7kOY7DVWWu9smSVdeCuz3YN57jjmOuQsvqS7I+nsYtAykNvd/xHA8LqAXzR5W8J4ugf/48yMI4PNzJ79MsXKi23u6sMpQejPY98DxTCXoaOFfdZwmgPZSBc11164lEpG5NXf05tA9dZe5z5H/HvsRA/abSbGhoaGhoCDgmpxWYURYU6Cl++M3TRWVMAYnbXfKRhHijZ8ZjgEQQy5f49byEiEtYOJd8/vOfn56DRE3JIs5BKmR8tB2Tqt5yyy2SOqnfpRmvaix1TiO11ETuRBClNZesmAtYkJftiHCJlfFkqbmQ6GnvyJEj1fRQa2trOnDgwNTp58Ybb5QkvelNb5oeA3upSbWZodylYt9/noopC0uosQskybiX3PmFdSaZt5fgkbq5dIcjmKxL51mJFw+sJ8CdcIjYR3eVd6cld3TI7t/sN2l4vznbYLyZBsPTrb3qVa+altxylFK0ZcuWQSm+VlooqyK/0TGu3ciccWopvlzDld0PtFfbm1l6MHcE8fG4FiReB3iokScJif316vWANY1rCVwL5eWiQPy75ujiDlUZg0XrtnXr1g01S6AxvIaGhoaGhcCmGV7Ul2bBw0gL7hLvabsim3EG50GdHuwbA1Q94a+XlskkklpRWqRkbFIkcJak7/zO75zpay3okX5EewX2Ksr1IGF56Y1oz4L1eQJeZ3aZZFMLzHRJPEpk7rrOJ8dmLtN+nTPPPHNamsixvr6uZ599Vt/0Td8kqUuufOedd06PoQQS7MnTNmXSntslPFB/SLJ3adkl7SydGmsFA8eG5raOyMy94Kon83VNRmQFHgZAn5zpER4jdSEKhEN4YnUfb9wHWRKE2IYXnpX6iRroP98z/hjuwf+vueYaSWPNSVacN0PG1n0vujbI93E8xu9ht19me6hWeqfWRryOn5ul2fOxArdp+T0R55A9w37wUCee0TFUx4PU3QbuCa7j9bxPnjSc+yg+v13bBZzxRdAOe56E/vOgMbyGhoaGhoXAMRWAdW+/LNWX2+ywgWXlgWoJSmvl6zN9vafpcu+vKJHWJCukDJgd0qckvfKVr5w5p5aWirkhQDj+Hw/ICy+8cObYWsBzRM2OlRXkdBsB7XrS2ji/fm23J2ReZ27nOe2006q2FAB7fs973iNJ+s3f/M3pb+wnyhnx91BguHvjeUoktytkyW6dRXki8qyIJ1Ixv3lgc2T4rqHwIOVaKaYIZyN8nnXWWZJmU5mxRpTvwnbs+929K6W+tyNw78Csb84KYKHZfqO9K664QtLYrlNjS6UULS0t9eYvKw9UsyF7CjrazfrvGGJePqdug4psxp9NzI+3n91j/tx0W+HQGDyBg6chiyW60JCxN9E6uR2TNuP97kzZ2ZunD4tjHUoc7m2Tjo7EIF/+8pdn2hxCY3gNDQ0NDQuBTTG8lZUV7d69e+q96MUopX5peOwILvln3kS8xV3KrMWTxHZcWh1Kn+RSKu2RcJq/SY4tdVIqUoXHtnEOHkgkVJakb//2b5ckfexjH5vpq6dTypiy23uAxypmdlQ8CN2DFMQ2ndE5C8gYXsZQhxK5Li0t9ebr+uuvn/5+ww03SOo8OF/2spdJ6uaU8URpzmMNa5Iu142Mz5l9LYYrSy2GVHzJJZdI6jzGvJin1K1VLTGzM42sOLLbbj1WjLhNqWN7SM14kJLw3PdOxmBq91xWrob22F/EJLqtOjIJmDLnbqQdWFpa6rGn2IcsfVkcoz9bpH55oFqcYmZjc5sgbWEXY3yxj2i5PA7OyxBl8BRzvmaZBzvgWNgt/gEgSyLPs9DtwUNemrV7z/dwZHOZb0D8PmPzvHdiqsbmpdnQ0NDQ0BCwKYa3tLSkE044YZp5whNCS92bGikvemNGRGnGJQP3uPMEylFK84h/PxeJJJ7j0hEM4v7775fUsY7oNYlU4RknXC/PnMQ4PGL37rnnHkmdBI5XopdOiuNAGqrZSUDmuerxX7V5juewLl4kN9OlezHfHTt2VMvzcD1nFZFlvuIVr5DUFU/lEy8s5jSuH/11CbcmAWf9d68yt7nFTCvsFUo9wey8MGy8JzzuE9QSXWexgjVPUi+hFdvhWGzSeMRiI0Vqz5hLraSMx6bFc5C4+fR9GLPPwDZhPUPsppSi5eXlXtaXzLvUbV5D9jEAi/G4XPeqzZKt02/GzP7g98suu2x6Dloi9oMzPfeNiP33bDDsGdcSZGzdGVctw0zsG33wcl787kWlpXpGF5+/7H3B9fy54PdmPCY+x+YtEdQYXkNDQ0PDQqC98BoaGhoaFgKbUmmWUrSysjKlkk888YSkWfUaVBRVJn97CqhMnQbcyM/fWYVmV9d5YDjUP0tYihris5/9rKROTYXKJ57jCYXdOOyOCFEtgRoA9cYnPvEJSeNAbalT/0b3d3dVdxWTp86KlJ523JXY05RlCYe9ArGrzuK6oc5BNVYLL8mu6W7VETir3HvvvZKkRx99VJJ07rnnSppNTeThL0OVn73/rnJxt+ksaTDrihoMtTdOI64Siqi5+ruTR1Sh+vi4r1ApMY9xbdnX3CfMH9/jeMVnDEuoVeF2NXi8Z+kL+4CgfNSWqDL5Xeonod66dWs1LGBtbU3PPvtsNSWgVA8TGHJm8N88yYOr0+I+8Dqf/rc7Bkl9VR/w+zSraccnpoZamFLcd+7IxTg8nCyaL9wZp6aOzEJpas/i7Jno1+Oe8/ALfx7F/8d3TFNpNjQ0NDQ0BGyK4ZEAGCcMnDxgRlInLW6UzipKOW6YraXayYJ6hyRPKa8IDjPFiI+0cuWVV86MIUrNjAPDM9IMUrOnCYvSI78RgI6Dw969eyV1wbcx4bAn6XU3dGcykT04u6059kRk0pePI/ZH6lerrrEqMBqNes4XWWka+odTD+vgzCv2Adbne8mdWeI8eQiG9yML+aAvMZ2a1JemM7Z72mmnSer2DA4BjAHWGOfcHWhYU+452Fs06rvGwEvXuJNEHL8zSl+nGEYAWH/YrrNe+pNJ4UPJgeMxR48erZaLimOppcIbKoVUS8zMnMLe4j3iCQg8uJv1j2wdRuKJwP1ZGfvoTmvOvDx9V0wizlp6G+w7EPvIWNkztOHXzZzT/B5wJj7kbOQhQF5RPmqEmB9Cv0opjeE1NDQ0NDREbIrhra+v6+DBg1Omcscdd0ialSpwj3b9rUuVEV6eZ9o5k5K9YKvU1/ny6QHoMfXSAw88IKlL6kzJGmx3XiJH6gcNw8boC1IS+vAY0sBvSC/YqAiwRjrMglRdZ89c+dxktgp30fag5ayIp0v0tYTKsT0kt0OHDlVZHvbfIRboyQI87IEQgMhCYviH1LEnTzSehRg4G/eCxr7W8RhYi5e/4jPaRVgrvvM0eJ7AIUrALi2zZ7mvGG/GQhmfJ41mDB5MLPVt1TUNTdSysAZ+f9aSv8d2XYORYWlpSccdd9xgkuVaEuKsBBZwm1aNkbA+cU09EbLPG+wjakTQLHmKPLfHZunIPHm3B62jHYj3htsivVhyltbLCz67jW2I4QFn7UNr4nvS94H3OQKGfMUVV0yTK2yExvAaGhoaGhYCm2J40lg64e2O11xkT0g2zhTc2yZKPu4B6JL2kPTndilPweP2uvgd5XoIePZg0thHD4SslaxBasvGBy666CJJ3dzs2bNH0mw6Msq+uGTn3nNZMKd7s7ke3PX+sd8A1u6eVxH8hvR18ODBQYa3ZcuWqk0ituOep7SZJTFwXb9Lvu5lOk/CYY6FsWRewZ4ui/niXoiB1Kwddq/MszaOJfbH2SafMFX2cmbDo094Y+I96QHcsR+e0ICxu20ySvhub/bCs17QObYXvRlr9/loNNLq6mpvLaNWo5bE2VlM5mXsDMSZHwwvrmmtUCpjRUMTtQNe1gZ2znxl+4J2fV38uQPDyzRojMPtmuyTuL/5vxd85m/XdMV9V9MOuf/BkB3d93tm1/Zxffd3f7d+93d/t/d7hsbwGhoaGhoWApuOw1teXu6lQIpSDG9k3up4armdZKYTk/bcq9Bj+DIvw1pJCjwgP/3pT0vqPP6kLj7oda97naROwnKdd9SHuz4aTye34SBVY2uROkkOiYrrXXXVVZI6ZkNRVKlLp4VN1G0pLq1FCdDtmZ6OLJN2acc9uHyNo5TrUtj+/fs3tOHVEjVL3d6gD7WEwJGNuleh21/dxpLBbZwuVUeJ1Nkz3qHMAfsusgbO51juCVgAyDQLrrFw79ws3RrryzzWkoZn+4B9XvOIzLwq3YuWPet7NUs4vVHcZITHRcY5dhseY3MmFveBeyA6G/Tfs7I2zCXsmecMaxz9ANxmd/fdd0vqtAKuPZK6+4519nRnPv44x7VYXfYdz6MIv9dgrLBc9gp/Z8WYPd6wVkw4u66XdWPOoxbRtQ733ntv1cvc0RheQ0NDQ8NC4JgYHpKIv42lTiKA4SBlIqEgCUXPTpeskUyQiIZi7XizIz0Tl4RthSwP2M2kLn4QyRcG5iXvY2aIWqJhPhkD/aDN+BvzhXTE+Ij/u+mmm6bnfOADH5Akvf71r5fUSWMuqbokHvtai8fL7AJuP/NYxMxWiKTFsUM2PIfbBiJo12N0XGqX+vPh/XTpMrMjAWc3WaJu+ouUzLzDavg+SrG0y71AAUsvMJtJqV4k1jNSZDZj1vK8886bmQOX+LPiyLUitEPlgdy+7cVxaT+ynSxB/EaxVM42s6witfV3L9p4jLNCn69sLzH/PCPw8OaTZ0ucT9ga57BnSCqfeYPSB/aKZ3pyppnZYznHk1e7vTsbM2yU53qWdcbBb6y3xwpnrNC1UhwLs4tzz3gozbV///5WHqihoaGhoSHimLw0PWtFZFyeQ5O3PW9qmFfGLmAxnuPNJd8YS1XzlsQjjjbjORQ3vOuuu2b6Rnwenm/vfve7p+fQPsyV9pBeXAKPYH6Q0jgGSSuz6dx8882SunlEmsEz1m2hUeLCnuT5Cn294jm1PH8w1iwfJ+MYso9FlFI2LOMz9JvPtbedteGI48sydkh9lhP3N5oKZ1Yeg5ZJwF4MGW89j6HK8mLSntsVPQNK7IszOC9e7DZyqZ7r1PdFli2De83nPtMOwDbcHpMB+2+Nzce2na0xp1k8l+8jj0/ztjNvXTRIfHp8WtyXzprwJYDp8dwh3lTqnjOwP18X/vaSQ1K3j2i/ZpfNngMO1sv3aBZT5yWy/LkT55H967Gjfv9EPxH6zfP6+OOPbza8hoaGhoaGiPbCa2hoaGhYCGy64vnxxx/fcwWPNNsN1tBY0pE5zZU6VUKNanvYQlT5cA6UH7UAqkfURagxpU61g0oDtQHB6Zwb1R9ve9vbZn5D1edqlixtF+pJ5o0Acz49MXVsh/EwJ1SvJjAdNVlcAw/k52/G4wmv43g8DMFLDUV1FXPO2u7cuXOwRND6+novlVBUH7k60NUrqEri3LoqoxbUnRnoXY3r4TaMPabRcrUMbXCsp1uLv+GwhdqG8Tz88MMzcxHnxFPLsd6c69XSpX4ldfYZ84bzTBYIXCsH5MhUw8D75AkQ4nfzJP1dW1vTvn37pun6slAGf3a4k8pQNfGNEqd7UgOpUxN64nQ3w2RhPN4u36PijM5y3P+YXRiPq/39eSvNPk8iPOA+e377b6wTJivGF/cO//dPkKmv/RjGwbiz4+gLjo833XRTmnosQ2N4DQ0NDQ0LgU2HJWzbtq2XbDVzD0bycSeFrHyOB/O66z/sAykHhib1GReMzsupRFZ4zTXXSOqMw0gKngIqXuejH/3ozG9IyS7pMD6CSqXOOYFxeRJhmFIMZWBOkNI4xxPaZpK4ux/TV2cQUeLGccbXx93gY6JjvjvrrLMkjaXemls7cAearOwHThdcyxlEFijte8eZScZUfO48MS97JjOyO5P0FElxf7s7NnvSg5Nx6Ir7gHM8MNedPmIwvhf49H3tZWKGXLq971nCAJ8nZ3jOnOP/Y8hOje2Rls7TT2XaBA9p8iQSWUgLcO1DLc1aBHu0FvAe4UzXQxe8QHPsk6e581AJZ5hSt488VZo/B7LiqhzLc5y+eUhaXDPXOnjSB0+wHc/3feXrFc+h33EftPJADQ0NDQ0NAZtieMvLyzr++ON77CJKWs5aPMA0KyvvJTCQXjgGfS7SRQwxcLdjJAGkJoJvSdUVv8N2csstt8yMw91rGbvUMUj65vYmfo9la3BZdomSucK9Ns4Jx6LXZ94efPBBSZ30xvexHBHu4YQ5OPvJ7Fxue3QW78HfUjdfztCHgITqduDYP2deQwVsfWwu9Xs6qsgWvX3GgQ3FE1DH67lk7RJwtPs5C3TGynpx/agxcXssYJ970u/YJ+8La4fNFcS0Tb6fPRjfS/9kffJ73YPkIzyhQ4aVlRXt3r27V0A0rrUnCfC19aB4/3/sd7yulNv/eHZwvzM2L/KalZbiN54RziRjknTXdvn96Enlo3bAbWauyeJYEiFIfeaIVoA+sUfZU5lds8a2soQXvp/oozPM+GzxBO7HH398Y3gNDQ0NDQ0Rm7bhbd26dfqWR0KKb2wkBN7UrkPnTT1UqNB126QFGwpWdrsYUjPejFFqov2XvOQlkjopDLubFxGVupRBNS9Nxu0JoqVOwvJ0WkiFWYJUpD+YG3ayM888U1JnX0TCzLylYNm1cktxTmoMr1bCJvY/Sp9DknoppSdxxxRz3j9ndJkU5zYzZ4dZGSIfM+vvxYszj1sPfncW6OOT+kVoPUkw1/cUdLFd1tCT9mYJer3/7EW3kyC9R80Ddm1v3z0j4/i8XWdZQx6fsd3a3lldXdWXvvSlHquOzx3uLeaS9XFWERMmezo97kNPZsEejXPM/c+xaKHQ5vCMwTNX6ntUY8MF9DWWCfProd1ir/KcoK/Ru5F9xNz4veD+DvEc+sZzB7gvRuZ56+NxLUXGzD3Jt3tkx3tiqOTTRmgMr6GhoaFhIbAphre2tqb9+/dPpc0sFqPmNZR5BAGXvrA9ubecSwNSX1rhrY+kR5tREkFKcSkNaQymBauTOqaFBEKSanT5LtXSdryeS9xIcsxJTC2GhAND9dg9ypB4wuvYHl54HsuVSVrOqpn7LFUaGGJCDop4uqdatAE4C3NvLJdUYzvO8NwG5bY3qdsjzLvbqTK7oEuttUTMmdbD40trjCazM7pUO5Q83GMEAYycc9mH0abnyYo9vivbO5ltVer2g0vvsY/x3Jod5tChQ/r85z8/vR+zQsB+bfd4zEo98WzwZxVjh02zT6I9Dj8A9iQetmheGGv0N3D7HuvB37DDqB3yNIS1+yfzZnR/CS+myjlx/ekjDM9Tlg3d427n38gmH+Gp05iD7B50lrm8vNxseA0NDQ0NDRGbZngHDhyYkUCkXAfscUkemxHf2Oih+XSpMssIAdzLB6mt5vkZ/3/vvfdK6tspkPAuu+yy6TlIR7TvUh9ShyfPljrpjz56nI/HLEqdrQ5G59dB8so8+5wZwfQ8i0JkBUiBsB2XxrKsFJ5IeSMpa2lpqeepGpmQsxdHxiTdxuUZFzxuLl6PfZbFP8W2o9Tstiz3wPTMHlI3Z7VitG7bjZ6w7g1MG5yTMUofj3v0sWeyc5Hs0VB4bFrmuepr4LGCQ5I97Q15+K6uruqpp56a9uWCCy6Y6Vu8hq+Ls91MO+CsyZl3VjCVOcSWhp2P5wTMLnpNOtP350KWzcgzxnicnydwj5qlWtForucemHEOvFhtbb/H+fTyU35OpmWhL7THeDL/AEB/4/07lOEpojG8hoaGhoaFQHvhNTQ0NDQsBI4pLMFr3UWVCFQU+u+qQA9ojudnhmWuK/Wr+0odbXa1ICoFT20mSXv27JHUuWC72zafUXVLcCbfocqAkvM944zJqmtqAq8EHVVRMeg9jtNr3GUqJvpPH93Q7Kl+pE6V4MZ/d0zJ1i2qjYbSQy0tLfXSGmVGcP/OqyFn/XPVh6fLygLCUY14VXHG4OmcYt/cASVLFkc8/3wAACAASURBVAxcre7GfAz2HkQc++QOIH69uF/cJED7uMXz6WExUrd/3enHHQ+GQjVcZeuOFXGMUfVY2zvLy8s6+eSTp+ejtsucVzZyVorXcFOJJw3nk+tkyZi9FqCfE/cO8+xqaneEi9fhHNbQU2+5qjmq3xkXfWLdvbJ7vOe5PzzdmSdN8GdyRK22JsieITgB8dz053p8NjK3MaHBPEkvpMbwGhoaGhoWBJtieKPRSEeOHOlVd45ptDzBK29jN2zHt78nFXVjJ1JFVlLE3aSRfJEUcGWOxlyYnRvkaQvDPaV44rEwVo7BWO2lS6Kk5UH4WSJm/xuHGlyGGR+hE264jQzWr+PM0gNupU5SY3zu6JC50NMexx4+fLjqau9Vq0GUzGqJpd1RJEqV7mjgqcs8IXRkBUjS7BlPNO4JjqXOAYg1dYadVc2uSePA91/UmLgR3x1faDu6v3tpJ/YV+x5nBZfepW4t2c9eoitj+r7fnNFm94Q7shx//PFVRrCysqJTTjll2i57NLLaGlvzcWUaBQ8x8fAUnm9RO8C12QeeZN3XS+o0LoQa+Z5xDUOEawX8PspStDFW1t+TVDCGLDzJHdH8ulmCBcBc1NL8xXsQZsx37M3bbrtt5jqR9fozb96QBKkxvIaGhoaGBcGmGB7w1DtRivGkn7zt3caW2QD8jU1b7mYdz3V3XS/eyu8xhZVL/Z7Elc/7779/eg5hAkg4uCp7W874Yl+chXhQZZT86QOuy0iOnjLJQx2kfkJbt88565Y66Z/5cvtsnD/g7tV33nlnj7UCSrxkKb7iMRG1xM9x/d1m43PqqYqyxLwutXph4Dh2dwN3u1IWHO92JE+8PJTUu5aWK6ahi/2Q+loA5o8yVXwiTUdJHEmaveOB7x4wHs/PyinFNrJk5bE0Ui0cZWlpSccdd1zP7gvbjv1mrG4Dz1Kw1QKja1qNyLwZI3PNXnENSWS1XgaMsbtGK6KWTpHvPeQg0yzw6SkFM40Cz+kak+NYfo8hNG4n9STisLn4bGSd+I55pYQbmq54jmt6WuB5Q0NDQ0ODYVMMb2lpaYZtZTYJZ1yehiw7B6nBPdJcUuDaSKhSJ+UhccA2kKyQhKMEgITDJ8HdLonG1GLY7DgHaYXxIvm7LSyOuVa4Eokv2ghgFbBP1/N7ctoocTO3XqTRy5DEtfRikR7I6jZYqWOFMOEnnniiyuBGo5FGo9FgORjfK5nNVpqdP/rpDNtZdGZzQCpH8nYmxvekfJI6+wt9ZF24HuWbotYjSqdSv0gpc5bZKOkvx9LHIbsf+/bcc8+d+Y2962w9svIhVhMR95uPg73pLDhjrozjs5/9bC9pAKDwtNv6Y7+99I0nk3Dv5vh/Z6Sc4zauoSTFzC1jdK1O/K2WFMOTjMe+ANrzPer7IoJnld8T7s0bUQvkdw/vjJX7sexH0iFmacK4x1hbT7QRz8mSPcybQLoxvIaGhoaGhcAxMTyXaodicpB87rrrLkmdhBx1vw4kj1oKM/S69Cl+unTm5TSkTtpzLz2PA4zJnL0oradRcs/H6FXkXnpZ/Is0q++HcbluHkkWL1TGG9MeedFIt5E6S4xj97/pB8dGVkii3GiTqOnS19bW9Mwzz0wZa2RADmf2Lr3Gvvq6u/ckc+oMUOqn1oIt00fGFUu8sDfQHLhnJ2wulmlBO8Ce4Ldrr71WUqex8LmWOpu0F8JkX7MvYqkZ9jrHcl0v+cJ+uOOOO6bnunere8E6Y8qOdSaW2SY5h+vt2bNncE9E7QB9iHvRPTfpg8d9Rgbk2gZn017kNLIZruN2eZ53ntRc6qeYc3u8e7lG+Bwyb8TWZWy1ptlx+3/Gjrw8mNsQ+T1qdJwVenJq+pppd9yzmE8v2ST1k25v3749LS6coTG8hoaGhoaFwKYY3vr6uo4ePdqLeYklf1yaQPLCFoRkFPXvSJ5ezNDZGxJwjDly70/3HspiW/j/3r17Z/rCeNzjLrbLdTwLB5KOJ1uN50a7XmwLaQZpPrZDH2EZtMtcYLOMsZC+Lm4zYE7i+Jwpue2L8SGlSbNecly3xvBWV1f19NNPV7ObxGt5uRn3zhsqPprFJcbvo0SKVAkrYw6Zaxh+5uFLe9432ozaCbeL0q5nSfH9EOfE4UwrahTc9uk2G7QBXixZ6tu8azawyCRqhV59D2XetVzv8ccfH0wavrKy0lv/rNyQszT64rGwUrd2bjN2VusMLJ7jdnLWMss2wt73kl6Z7db76GNnzfy5F9fF579WxDeOq6Z582TVbnfO+uyZpPzZEvtf8zr3wttSN4/RT6R5aTY0NDQ0NARsOtPKc889N2VAxPHEt6u/8T0uy+O84jmuS3ePJPcYlDoJEQnB4+9gVbEf2XdSxxyxscTfuaZnj/BPj8+T+mzQJW+kwjgnsCeOgckhySOFkn8vMgq8TpFqazE8keHRLtd1Cdbz/sU5qcWKRRw9elSPPvrolD25bc3bztpzKTCOze07znI8U4jUScnMHWNkXjwvotTPpOJ2MrfpxD6yHoyLfehliDLm4uvg8VLR7ueem5yDbc/zgEb7n9t9vU2PrZL6XnOZp6Cfw3z98R//cXqsI8vTmnkXcv+5RoL15z6K/fEYM9af9RgqsusMzPdfZjP00mLuHRzX372e/Z7wOYjPHddyeT5MEJ8DPh7P1uKet/H6XvyafeUexpFF1ryA3SYatWOcEzUjLZdmQ0NDQ0NDQHvhNTQ0NDQsBDYdlnDiiSdO3dGhz9FhAurrSWfdzT2eA7IqurEtDJfRRZXfaBcVp6seI42++uqrJUmXXnqppL4RH9VJrFYc50DqjLeuwvKEylJHx93wy3juvPPOmb+lbt4IyPSyIFB9+hjd4FHr0CdP5kqfY1kYNxYzDi/vlBnFo3tzzXh86NAh3XHHHVMV0yWXXCIpr3jO2mXu7FwHeAokr5TsqrjYf3d04Lq1hMBSX5UJ2PdusI9j9PJTWTC0t+3qKMbjezWqvtxZwZNI+70R1aGo2TxFms9fts4cQ189rCj+TbKCL3zhC9Pr1lTi7rSSOXm4kwOhS4wDNX88B/Wmt+fqOg+vkPpJwz2VXbZ3acdVfD7uof1dK6+VlQnzPepr5qptqZ+cnHvAE2v4mOL1eCbxnHUnxLgPPFG3O6HxezyHvrFXh547jsbwGhoaGhoWAsdUHsiDuqMbNZInkjxSFG93mEg0nGJMR7rwwo4eBBmlZ/qAJHfBBRdIkl7xilfMfB+vR9+QGjx4l+vjECJ1jNSZgzvWZEGVLr0gCcHezj//fEnSAw88MD3nc5/7nKR+SQ/6gWEY5hWlNCR5Zy7OFiKz8GB05hXJOXMy8cDtIaeV1dVVPfPMM9NxEfycubf73+7UFI9zxx8v9eOStqd1k/rSshdxjVItx7j7ee0z9smlcQ/yzkrvuLNQbU4ivESSr3+WABowLi+27Aw6WwNAu4zbg8El6YYbbpg5djOu5SCyC+6Hc845R1I/GTpjjmE19C+GOcXvAXMdk1fQb0/j56w2S6dWS5LugftS/fnijm+ZI5onrXDHOzQZ0TnPnf5qYQieZFzqJ2Pg+ebao7jvsmQSUn/fxXllrSNDbgyvoaGhoaEhYNPlgUopvbQvkeHxpn744Ycl9VmA/y11UoVLQEg6bnuI0iVSCuV7rrjiCkkd84ERRanJ9dQuHTCe2EeXtDiXY+hjVvjRbWa04X+TgkfqmCrSDDYJtzfS12hvdDuSlwfKEjzzHZKb25nchiB1knuUoocCpU844YRpGi3CHwhtidf0MAdnPnEtPfyAv92W6oH1Ut/12stdZUzY59YDf13ijsdwrmsd3GaUBfN6ELTbjuK6eGknv46Xo4rXYz95sndAm5kt1xn6ULJyTzKxkYS+tLTUk/pjsmnm//LLL5fUaZIoJOq2aal/L9GeJ3dwLVI8159rntIus8e5jdrZe8aendHV7I5xH3hYEud6maL4rEKj5M8oxse6sZZRYwLD4xnsqcuyROfA73W/X2NiBQ8nmzdxtNQYXkNDQ0PDgmDTNrwsgWqUzpwBeVFA91iT+l6MSGFIIJ5aLEoxSFKUnvDisW6/iH3z/rtEFKVYL/eB5OHlkJA+MsmuZusAkXkxVuwGJN2mLU+DFO0L9NXbp69ZGRIkVk+z5p6MMM445lqgccTKyopOP/103X777ZL6Xq4RWeLd2Kcokbpk6JK1M8C4Li7FOsPL0izV0p3xvc9xPNZLujjDdC9HqZ+g3dfFEx3HMTtTdE9CkKXbcjbF9bIAfm/HA+mz67zjHe+QJP3cz/2cpLG9PGO2XGvr1q1piSeAhoeSSHhler/j+sNWnAG5TY/voye0J292/4JMs+TB6Nzvfv9kGoXamrqdLj5DvFgxnzzn/NkV/8997mzMvetjf7i2p1D0EkPx2e/3uJeNymx47m3ebHgNDQ0NDQ2GTTG8Q4cO6c4775yyqZh0Frh9yKUnJIQsMTPMBLbCm9yZWIxXc+8oJCFPzBolEdfJuxSLh1eUPrz8D5II3yMJcd2oc3advdt9smKKtBftHlK/NIbb3qSOXfCdsxH3eo3fMedeZDNLFJ6lF6ph69atOuuss6YMDykw9sHtYp6mycupxLG5BO8xbllJpqzESfw+S+Y7lBw7+8zarc2be+tlxzrLyeLwWLta8mYvlRPnxG1QwO+viFrSb48DpDiuJF122WWSpHe+852SpPe+972pBy3jOHTo0LRvbqOUOg9rbMOxtJfU7Z14n3h6Nrfpu1YnPkNgQBzDs5D7n+/jPDrbjOVtauPyfeQMzwtOR/brSeK9tBB9zGyhHqvp57o3qtR5t3taRN8zQx6+Nc1MljDetYfzoDG8hoaGhoaFwKYY3pEjR/TQQw9N4ysyKcbtVW5Tc8+k+H+Xyt2byPW78diaPSzzSHRJ13XOSCjRXuWZJ5AUORddPl6I2BRiezBXznVbYWQUzIlne3GvMI8Zi3115uqephkLdQmPNc68AWtlYDKsrKzoRS960bQdWDrZGCJc5+82j7h3nNm5ncRjD6NtzefO7SGZx6VL2M6mXIqPffPkzX4v0Ha8nzLbTPw7Y0W+LjUpOivb46yP67stJ57jNjs0MnhqX3PNNZI6Lz6py7Ry5ZVXShozvd///d/vjYX2d+zYMV1bz1gTQX9j9hipe5ZErRTMyu2jgL+z0kLsK/d0ZA74Pl7PPWvd8zlLjg7cQ92TmEfNCxgqOxTbjKgl7nfPXh+T1DE8z2BT87qO7frfmc0dMMeMuWb7zdAYXkNDQ0PDQqC98BoaGhoaFgKbDjxfX1/XQw89JKlzlY/pelxNh4MIx9RUJBGk9EId4Mlvo0EadYO7fNN+po7whKioB9xtN6rOnJ5Dq6HvtUTAsU/ugOLql8zxxNVr7sjhaYLisR5A7SEhmfuzX3+okrtXVK85HUhdAmDWFJVWVCezZzwA2IPgs6B+dzioJebN0oR5QP5QYDZwxyOvnRZV7B5CgqqcOfXwh8yo76p7D6WI+9sN/X59bzuqmFz9XVvTLDyJT8ZDsoSLL75Y0qyaHweW8847b/pbLbxl27ZtOv/88wdDTPg/fcA5jnuKOY994FifQ851NXncq67y8+cPv8f7kvX2+nu1GpvxWI6pqalrDiLxN1dhZ+YgT0rOOvs9kakaubdrCfyzdas5tLj6N96DzKObbuZBY3gNDQ0NDQuBTTG8Uoq2bNnSM5hG438tiBZpCgeOLLWYB8YimZB+6pFHHun1icTLLgnw9ncpKvbbAyW9JEbsI5Ib7SIFcl13XonXIwgWqaXG3qLUnDkUxD65wZ2STVJnPPYkwi5ZZpWVkbhog3HT5yixOpuqGce59tra2nS9brzxRkkdC5C6tFBI4x7I7GEqsT8eoFtzWorSZa2kizugZKETtbRZfMZzvP1aCMU8bM2Dbp1hRNSCxocq1Xv6tlry4jh+2kXyJjE0mhruedLlSV1ZoD179kiSLrrool7/wZYtW3T66acPJtn2McI2eHZwnSzxgDse1aq9xzV1xyp3eMruX7+XPJGCO8TFY9h39NUdUrKkAjWnMmd2mVOW77taYve4Bux9r3yOJjDTKPh+riVhj9dnn/lzYh40htfQ0NDQsBDYtA1vNBr1iq3GN7azNaQX3sLOTOL5Lj17WjBYVHzbIw15QmvXNUcJ2O0gziBoK5YpQoLEZudJlilLgm0iSj4exO12zEzf7ymLaumP+D26fAOkvb1790rq2zei7cglRHdzZu7j9+7CPqRLp7QUNhTKBGEPlrr0cPQT1uou5plUSbKAWh+GWLSnMnNbXuaCXyuE6kkG4jWdYTkr87R8caxuU6kFrcffPNjepXIvNZT1zUNCsuTRsClCcj7zmc9I6pKhs//iuLgnuF9OPfXUNFifa5122mmDJZh8ntgzlKEi4cFQuR7G5ImtMzumh05l4VaxDanP5Dz9YhaCUkuMXNOmZGnpvM/O2rLwBN8HtXs8s6MyX/MwMN+rzjCz8TuTXF9fn5vlNYbX0NDQ0LAQOCaGx9sYiSUrTePpeZDWd+3aNfO91A+8RYqETbk3W5RuYUVIdDWbTWQmHpzsxU05JzIuPEO9AKJLyQQXZ+makAY96TJ9j16c7hXlbNBTc8VzCeqGJXrqJA+SjX0BjN3TEw0lil5bWxuUtNbW1qbrTyqouHeQ9mHLjMnTusVrsJasD+3Vgnjj3qnZNFy6jdejT860nBVG9uyStTM5byOCvrj3nLOOoWKurLPvu8xm5fYr92R1NiR1mpA/+ZM/mTmW/YcNj/tZ6p4DPBceeeSRdPyM7aSTTurtrYzluP2VZNL0G7YpdfY997x2j8+h8jPOSDyZQcZa6VuWNMLP8bVyz+Fa2jipzuR9D8V59+dMjVVnqfo8wUJM3OHH+nc1++lQyax4bzSG19DQ0NDQELDp8kD8k/KEpUgI/MbbHskbqSmW4PCUQe4J5sVPI/NCSsKG5TFBXiwwXs+LQnrqpxjvRd9Iq+Zs1L00I3vyooqAc+lrlNI5x70BnaVlkp17KNIX9yjLYiGRyjxJdeZh5Xr3IaytrengwYPTNcRe98ADD0yPwQ7nMVSMNYu7cV0/TM9TitW8zeJ3PpecE9fSE3D790Op82r2WLcvZuviEqx7BWbnDEnj8fvIFr1P7knKsdGTkHsZBnfKKadI6pgfezmyefqPB/MzzzxTtUvhHe7zlhXzdS0AfYDp4TkqdVoG99IEHqc3VCiXY9h3QzGONTtYVnC45mHpv2faCO93LYVahKc59L66zS2LN+U5Gj3H4zgjap7eQ16ivuejtnAjNIbX0NDQ0LAQOKZMK5mNC3hRRbd5uFeT1EmAHmflCZIzrym3Lbndyr3MpE4C8RIogGOjlyZ9cG9Qt4dxvSj5MCecg1RLW1kSVJe0a4lSM8ZRK6rodp4sGa7HCHkB0iFd+UZMb3V1dXo+TDnG4TFGpHC8/NyWl3kk1rQDLnHHufF5cmk28wZ0m5bDs/ZkcEbnUnW07TAuz8Lhca5xTtwO47GjQ/Gffh23c/N9LA9z6623zlyHuCvOQdKPbJ7sKzDyWPIrQ5Z9ZIjNsGaM+dJLL5UkffjDH56ewzz72GrZbaLdkv+7h6979g55wLp2ImNxvt9qWY0y1uv7NyuC621tlLXEvbmz66HFgfHzzOd5mj1DfN7myZ7Cc+HAgQPNhtfQ0NDQ0BDRXngNDQ0NDQuBTas0pb6BNjqGQJfdYO1Vq6OK0dWd/IZ6DfWB/x2PdRWWU/9oZHfVhddZQ8URVZ7Q8zPOOENSR71dLZKpFlD1QMFRBXsAJU4b8TtcumnPA8IzQ38trduQ2sBVpozX0zkNpS4aCksYjUZaXV3tuYDHdWHt+CSQGfdx1j0G2TMvrpaK143fx/lzhwNXT2Xu4+5EwN8ck6l+mUNPWecJF9zJROrm26tigyw9mKsqa3snu54nUHY1GN/HfXDLLbfMjJ01ZVysX0y+jNqL651++umDIS/r6+tVh434f1cB0ibXi/PkSbtdxejq5Kj6c5WmOxwNhUx43UNXS2dOWf5ZS+eXOSAN1aOLfY6/ZU4psf3MTFJLyoAjHM/ObN08NMfvo0zF6c5486AxvIaGhoaGhcCmwxJWV1enEkkW1M3bFqM2Uq2Xl4lSsxtrn3jiCUldcKqngMrcm2kfZoLLMedGtgZzwMHApYhLLrlEknTTTTdNz0FCrAX+4pqNET7+7iEGzmBoO5ZZ4jcvLQQLHCpHxG+wQ1yyPUF0dHTxAHZPdJtJhy4NRqcUB67l7jDBGkud4wIsAibMXPJ9lszZJWyXMjPmzZjcKcrDNzIJ0sdOP7K0Ye5k4e3WpOn4m6edcueVeG6t3AzMmDXmnskSQdecgPie1HBZu846SBodnxPsL9jgrl270vHTh7W1tUGGlzmJxLGjccJhLPbH96zPrQd/S/2SVaw/c+D7IbZXqyKe3TseFuLJAxzxueMMv8bwhs5xrVDt+9gnZ3o8k4cSHTij87nK7kHmZGlpaW6W1xheQ0NDQ8NCYNMM78iRIz3WFKUNGI7b1mAmsJgs8Bx4KiRYBtJgVtYGVuhMEpdoXNxjX1wP7YHUUeJijKQmch0+Ugz2iocffnh6LmyT8kbOXJCQo2Ts5Y1go7AR1oDjYHGxL8yNn5O5WXsYidsMMl26S6SllKqktbS0NOPKzhrGYr4wPE8h5+WoYjJp9oanbfOCrLEfwBmJ2zE9IXGEJzYHWfozZ3C1EI/se/7PODO7m5QHEzPHrslwFpwFDzuzB+zrGE7itjtAcgEC0eNccQ8SInTw4MHBsJaY8CILS4jHxU/mib7RF6l/39Xc9z00Jx7jZYnYU5lGoZYIwhMcZOnB3O7rv2c2NU+z5jZ3t1VKfX8D4LZRD5bPxgWrxoaXJUmo2ercjp6Fd2wmhGF67txHNjQ0NDQ0fBWjbKZ4XinlSUkPbHhgwyLj3NFodKp/2fZOwxxoe6fhWJHuHcemXngNDQ0NDQ1frWgqzYaGhoaGhUB74TU0NDQ0LATaC6+hoaGhYSHQXngNDQ0NDQuBTcXhbdu2bXTCCScMlrz3DA2gVvQwO6ZWXn4or9pGmOecY2n3hWjr+Vz3r+o6NWemGHfjWUaee+45HT58WKurq70Lbd++fbRjx47BGLChTBq1/mdxb/HvoTEP5f3c6NyNkJ07FD82T7+y346lj8cyvqxUkv/m8V3ztB/jsJ566ikdOHCgd9LKyspo69atvZizOBfE84F55tozPNWeN0Oo5Vb1awydO098obc/T99qeTjnOedYft+ovFbWD4/r4/1B7CixuVm5rZhN6ejRo+lzx7GpF96OHTv0xje+sVfXKL68PFjTU+6waWOQqm+8WgLYoUDD2mbNkuvWUKsb93zh1/Yktf59/H9tsw797fPpD6Da9eN3noQ7S6RMfbMHH3xQ0nhzfuYzn+m1KY3X+9u+7dt04YUXSuoC9D1YWerXOPSag1kQqj8IPIDVg1XjbyALFo5t+f+zY4ZedF59fZ5K8X5P+OfQWvr6e+B71mf66KnavP34wCURgNfh84dYllCZJAzLy8v6yZ/8yf4EaLzul1122bSGIgkMYr3KV77ylZL6yQM8lV2cc0+IXquans1xbb9tJlED4Pr0Pc5TFuAd4XsonuvB8bVnYAw8r6Uhq1Wbj2162jH/m37ExBGcT0ISngec8yu/8iuSpA9+8IPTczifvu3evVtf+MIX0rE5mkqzoaGhoWEhsCmGV0rR0tJSNbmq1E+55Il4s/Q5nrDWUZOipL4kshk1xEa/D0nrG1H/LLFtDRn7AF7KyM/JWAnfoRbwNFtZ1W7vg7ORLGm2S26ZBB/7dPTo0V5pqaw9319gqIo0qKWHy5i+S8+eUiybp9paDjFyzvHSPjUGFpN6DyXjrsGTu9MG8+vsPV7D2UyNFcR58JIu7Adni3GtOTbug9pYV1ZWdMopp0wrqT/66KOSpIsuumh6jK9lTUuTrV8txZvPT7Z3/L4ZUudupELP7nXacS2XJyn3hOHZeGosPZsT2nMTlc9F3NM+dn+GZOfA1vy5Q0L96667TpJ0ww039MbDsS21WENDQ0NDg2FTDG9tbU379++fvn2Hkix7guRamYn4W01qcukiSiS1gp81J4bsO2eHWR83whDzOxYJayNHgJqtKv4/k6giol0gJnaO7Tr7iWWWmJ+YMHeIPUftAGwzYzPOklzKjPPl7KFm0/NrxP8POUNI+dw6Wx5yXvA5rNmia3aaeKzvlUzKdabsNkR+Z+7jdZG4fU7YQ9zfMbkwc8ExtXI3MXm0l9wZsrEvLy9r165dvSTLMSF8jeE4W8u0EJ482hNPz5OkeihpuvfFzxkqAFvT7PhezcoF1bQOPgeZzdDH5/egP+fjd76mPp/Z89vnnr358pe/XJJ09dVXT8/Zs2fPTHvHHXfc3M/qxvAaGhoaGhYC7YXX0NDQ0LAQ2JRKUxpTUNxnMycTVwO4s4pXYZb67stOwWsOCPG7jdz454nHGVJTDLllb7b9jeJV4v9r6rYhd2TWB1UJoQSuyohjohJ0dPWO18vGx7FUVn/22Wc3rGnmDi6xXXdkQW1GP70mXISrRlwdmlVO9vmoqbaz63l7Q84StTgrbz9TT/qxtXPnifvz+wc1dgw1qd2nvhaZ0wr9Z53cjBH3m6s/vf5axNLSko477rhpzcNdu3ZJkk488cTpMdRcA1FVHvuWPTv4rVaxO7sH3MQwj5NM7Rni90Q0QdRUiiALD/Br155VHnIUz6k5r3nYUgTPHZ8/H1+cE98rqNR9vb7lW75les5DDz0kqatteN999w06zEU0htfQ0NDQsBDYFMNbWlrStm3bqq7yUl8icPfWzG3XpYmag8aQO/1GoQZDGT1AzT0568uxZCTYyLCauSM7y41ZTeI5UcJF0gJUl3ZJPEp2VEnH9RvpmetlQfkEicZA0hqQKkLt0AAAIABJREFU0l0SjdJsrcoyYA/Fc2AkXqndA6czRwp37fbruiQc/+9Sa62tiBpbGwpwdkeDWpiFV3aXZh2MYlvucBPPZY494NzZWmRQtMt3zLXv4bhuhMx4GxlKKdqyZct0L15zzTWS8rXc6DkQmQn9OXDggKRuzDBfZzPRuSdm+YjH0kYtxCoeWwtlyJ47YCNnrNjHWqgR42YNsucOqDkdDiUtYP74ZB/i7BjB+awBzx2uh1MMziuS9Hu/93uSxgHnkvTII4/MHZrQGF5DQ0NDw0Jg04HnKysr07evu9PWvpP6DCFKsUgasBakJD49RU2UomvpyFyqifBjaynM4rm1oOiNUk3Fc12CYxxcJ47Lg4Oxk+3fv3+mr/z+zDPPTM9FKkJyQ3pCAs+kYHIRPvLII5K6OeH78847b2YssQ9IZTGw3LG0tKTt27dXGYvUzYunoXOWEZkpx/o5tM/3ngjB/x+v73s3shlnqG47zNayZjt1yR6mnDEX3zN+T0SWjUTt81ZzF4+s3dt19sk9GtkjtjX2nbNp2owMz+/1Ukr1XhqNRlpdXZ3ajLE3R7bG/13b4H1D2xHBfHCfPPHEE5L6Nr19+/b1znWGf+qp46LbsJu49mhEPEWeaw2yRB5u36uFOjFeqVsz5obnLM8QNEFxf7ttjvvH++a23dhH1oD1oo/07Zxzzpmew2++ZwHjPPvss6ffXXLJJZK6BAQ7duxoYQkNDQ0NDQ0Rx+SlCTLPN0+jxFseySGTtLAfudTCWx8GgQ44k+yQHlzCz6QywHWQGPH+QuKJ0hkSW4191Lwq42/OAmBlSLtkBpc6acy9zZwZcW6029EHl9a4LnPFuKVuvfCA4hjG/dhjj0ma9ZYi4StsYNu2bYOMd/v27YNp1NxrzW0pjCtKwC6Fu4TIHkK6jnPijKrm+ZrZDPkuejjG68fvXSNS8yT1NFIRHvhPn2Hg0WPRg/sZu+8/Z1lSnxGzr3ycUftR85R2xhzn3gOMN8L6+rrOPffcmT4+/PDD09+d/dM/7n+OHWJcgH7yXKKP8R5zezLt8lzLkqKzn7GTM+/uARux0d70dYqB4G47hcFyjj+T43U8VZv7VzDP0avb7ZZu08s0Z2eeeaakLpm8Pz/cHixJL33pSyV1Wq/NoDG8hoaGhoaFwKYZntTX0UcJGMkDiRB9Md/DHKK05Lpf9+gckoC4jpeQQSLgeplXGUAKRPJCQo6ej57OCMmG792LKfOWArQLa+Iz6t+dQbhNxXX5mWcXY0bCQurMmAtMgb6yFhyDFHjrrbdOz/nmb/5mSbN6/iGGt7y8PJ2vIVsXY6W/tO823ThGjz10r8nMs9i91hizS/xxbumLrwuM3NclXpNjOddtbCBLBO42ZD6JRYr14DwFl4PfWdNs73gqLrfDxXMYO1I/mhLXPsR7gu+Yz8OHD1e9p5eWlnT88cdP70/6ENPhuV0MW/T9998/07fIhLmHOYff0FzQ/t69eyXlnpfOwBgj93hk6+7xjIaFOcjsWLVEzF5KiO+j96t7lzJv7sUd7XC+zq5d4VjmhrWOv/l4OJb5jXsVFg37ZE3Q5jHnvEck6YorrpAk/cEf/MFM3+ZBY3gNDQ0NDQuBY2J4IIs5gqU8+eSTkjopD4knKxUCPEEt0kW0bUm5HdG95dwzKNog3AMRSRemhaQfGR7tcw4SFSwk88oCLv0hMTJHWTwUkhrSmNsmnWVndi36iiTpiYEjw+McGCzrg8ca+vLoDerlh0466aSqtEUcnvc3Mm/G5pKhFxaN59Af1qrmZcb3sX/OGLk+Er73g3HEc92Gm9mkXKIGbnfKYqyc2TEeL4LpcW3S7FrFfjAXaDaQrqXuXqA9rof3IXMT9w7t0D6FWjk3y3LCmGNml5p2YNu2bbrgggt6NtfITPg/9xb79iUveYmk7l7IvIyJ52KOWW/mALtc9AfgeeJjr3moRngZKC+SHZk5//fCtv68ybJfsa7uqe73U9Y3167BuJwFR7bmsbDMr8frxnVmr1DAlcTQrInbZCVNbbkcc999981VTFlqDK+hoaGhYUHQXngNDQ0NDQuBTak0R6ORjhw5Uq1hJPWpvasyOTaq7zwdT83FPAsidyrvbrQgU5egUoByo6ZArRPVYxhnXdXoNcX4O/YdKu8OO25wjqoMVBb0oVZLjb7jvCB1Lr78hjrCnYKi+oPf3FUalQPq3mg8pm+oOZaWlgbrgu3YsaNnBI/7APWFq7uZLwzcUT3tLtZumPc0XpmDFXNN33F4cLWbVHekydKQAXeYcZU93zOGeD/RNw9VYL8RfBtdy1kjPrm+7zv2alRpMreuymLfc2xUJ7oa1FVZWZJid2QZSg21detWnXXWWdUQnXhtzATs5zPOOENS5/4eVYxcm376HLvaGrVu7D/X9QD37B6rqd1q6up4vocYeHgAwLFH6quuUfeiovVkz7EPqCwxcfD8o298xnPd6cyf9VlqMb/X77vvPknSPffcI6kLQYjXob1LL71UkvSBD3wgTWadoTG8hoaGhoaFwKYZ3uHDh3uG9EyqdddbpBvcTrOEtZ482F1VM+O3M6xaYtYh47E7DTCe6MLshmzgQbweNB+P8XM9aDgGqyIp8ukOBxzLuZkB2h1enJVk5Y/caI1hmDWIjjzuVj/kHuyJxz2dVvw/v+F4wPxlqZCcNbPuzDWfzgDjd+545GnI4jk+T7BpJGCviC7VQ0lq5YIiE2BfueMTc8D4o0MFLIe1gum5tiALqGYN2JuMx9NSxb3j9yBMgns/q7Q9FGrkWF5e1sknn9xzXov3C6yc/Ur6KtYlCwHxvehgXBkz82dHDK+QuvnKyqD5Oey7oWeUJwd3pxieA/EZyrqyD/hkzzCuLLG+X3ee5NHuQOjB6Z40Qermib3C9ZydxrVmXNdee+20TxslDQeN4TU0NDQ0LAQ2zfCyxM3xLY+kwXG8mXmDoxOODMj1uEhJDz744MzfSAxRF+wBsh48nOnSa2VakCpgljEQ3OFJdvnbbTzxN+8zkt1FF10kaVaKow8wPOxXuJp7qZcszIP2kbDoG+O94447pse6RMr8uW0P3b7ULweTlf8BpZSZ34eKqqK/dwbkkmnsQ43JOSuMNkjG6uvMWL3EUISndHLbVky5VCufVJNKsxI29J8+M172RVYeilASnxNYoycXjmDvMC4+a3bWCBgm12f+Yioo7C9nnXWWpLp9S+qSR7sNOq4lv5Fk2IP8mb+oHfDwBg97YW49qUCEJ4D3zzi3Xm7Iy3Vl97KnLGT+fc28XJHUT6vGs8O1EPEc9g4snfmDOXtwedzbnirPGayHWMQ5YDwcy/WyFH6sD/a9iy++eMaGPYTG8BoaGhoaFgKbLg+0vLw8lUgynTNvfJgAb3kYXpbU2W0ASFpeSBCJDo9BqS/1E2iKxIN0FiUA905yVoKECtOIx8CS/NPtj1FqYp6QUpC0sJMgaUXp0wO9XT/ukmuU+CiQSUkfJCvm/POf/7ykWYZBX2KQdYQH2Er9kiEbBZ5v3bq1F2Qf+8264kXmczoEZ7xoAZzlRrbG3uF67BGX2uM53n8POOfvaP/NPJPjse5hnKUW8yTp2LMyLQTtujSOPQtvQ9hVvB7ry5y496Gz+niOs15PkpAl+0XjM2TLI2mBe2RHJsTYPFGxe3ZmbJaxeh/cfh7vafa8sz7XDmQe7MxL7f7PUsK5v0St/FrsI6yfeadPtD+UysyTR3uasqFC2DwTOZbnKeOMnqXOev3ZD+Jzh3mivW/8xm/U3Xff3etHhsbwGhoaGhoWAptieOvr6zpy5EgvUWuUxN1biDe3xzbFt7x7w8EmiKFBevPip/GYCy+8UJL0zne+c6YtpLSPfOQj03M+8YlPSOpLL55yLMa0oAcn3g0pmb9hEPQ1Sp/0AUkLFsxcYSuIUoxLzTBX4oluv/12SR1bi+wBhnfZZZfNtMF1b7vtNkmzTJljmE+kNOYCRnHjjTdOzyHFD+tx2mmnpaVtQJQGPe2UVC99xFwSExjtiF6YFEmYY1gf5icyIsYEi3b7CxJyZm9mvV3azNKReQoztx3zd1bg2OcCz1VnO1Hi9xgx/n7ggQdmzrn++uslzXrAuU3cWWKW3o3reGo+t/PFPepscGVlZTAWDy/f2G7cB64B8XvavXZjf/hkDtkP3K/EOkYmjBcoyalhqtwvzGmcJ9aQPcizwllhXEv3OndPcvf8zbw0ma/4PPO+AfdJoH32Hc9g7qt4b9AHngt4MPNM4XqxNBzHsF6ecJxnZNwbPE+Zr2uvvVa/8Ru/0RtLhsbwGhoaGhoWAptieGtra9q/f3+v3ExMIEoBUWx2XhKev6N3Ty0RMizq8ssvl9SPx5I6by/ac8kOCSGWiPfMF14OCCkwetpxPlIZ0qV7rXmGijhPjJPPmoen1C9oC7uB6dF3vKmuu+666bmeDLtWMiljlIzdmQN9I8mrJN11112SpJe97GWSpDe/+c1VGyDX9/idaD+oFULl2nhuxawyzANjZT5uvvlmSd06IBFjT4jtu03o/PPPl9R5JsZz+D+SLnufv7OiorUYKme07okp9TOI+N50b0qpm1NsuPQRxoIU/cpXvlJSx/gl6aabbpo5lvvJGR8MR+rmmHu+lvg82rM8gfJQLBXe4e6JmCWE9799bjMPX2dW7Gs0JVwvFpyF0ZEZJO5JqWOJkXHx7GCPsC94dnk8cOyjZ6txrVhm/2PdeXY4280KXXv2JPcSBTwrYW9SPfk+n8xnhGe7Yh97gds4LvrEHn3ta1+bFtzN0BheQ0NDQ8NCYNNxeEePHp2+7WFgUfLh/14ixGPPoq3H40KQtJAM8MBBiop2H76D1XzoQx+SJF155ZWSOgkhMhOXklz/jwQUWSgSLe2h1/c8e7EYKkAax/6GjdKz0UQmwDx6gUSkKL5Hirvzzjun58JUsO/Rvn/G2C366OvlGWuihMw63HLLLZKkb/3Wb03znYLRaNRj/BHOuJh/pDfmHluU1NmGP/vZz0rqmBCMnHNYn6iNYC9yLNdxFk08qNTZMN3jDYYHw8SmHK/jnm7unQmixA2LYb1ZO2I3hzK7MA6kcPYsoJhvlI6vuuoqSZ2mBjsnn+wp5j2ez/7mb1/jaIdxm+c8mTKcFcb2PK8v+9QZUNRqoOmArbkmiblnXNETkD3BOvC88wLYUeNB36IHr9TXDmUeiTWmxZ7imRX3AQyfNlh/+uEsOF7HM67QN/YSz6HIsjmX+4l7jXn71Kc+JUm64IILenPCPvAMU+4vEsE8XXjhhYO+AxGN4TU0NDQ0LATaC6+hoaGhYSGwKZXm0tKStm/fPnU7hWZGoz4U1x1Q3DU7UlBXo7ljiyc0jqpGaDpqCNSFToFRCcXreXkQ1B+oOqLKrxYUynXcwSEGumPU9wTTtWBZqV8NG5WSVw9GPRDnhPZRs9EX5hHnj0suuWR6DmP3YGhAP6JzhAcy33TTTWnlbTAajXpB8DEQ2J2I6Pf/39659Vh2XWV7dFV3px2jlkOwiALGMXbbHBILKVIUzhJccYmEQIH/RX4Bf4DLSJFAlhzhBJzEJORkIDgxhLSIEnfittPd+7uInr3fevaYq6r86bvgq/HeVNWudZhrrrnWHu84vIN5Y32kixHXG9twPNwqzA9zkslETubhGrmHXQdy5gyXHtdusYJ09bCNxaFdAgByTkh+YKy4iSgaZ13m/eK+kzLPOsftxr0mTT3XOWPDjQc4L/c3hZxxLTEHuFL9/GYSGPeBZ3Gr4zmw+HLOE9e4cmG6zCfHkOOqOqyZl156qaoOzwsuz6rjpDVLzHWiz6wjxopr0+100sVt+UaLZVhCL92hhHtwu7qlFM9vns/tjpxQx5zh2szzMSesVe4tyVEcu2s2wPWxL8+P2yFVHcvGXVQ4umoY3mAwGAyuCC7F8G7evFlPPfXU3rokESS/5d2CxAKtXQsUgMXj9iwuzMUyqTpYWBYPdRuTZEAE/m3FYOlgpeV5ODfBWhfkWhA2rVUKLWFyFFtaLigtLa6LOcHSJykCC4tjZhEuVhJWOOzWLZSSrbrNEP+zoG1KKbno/969e0sR4N1uV48ePTpKgumCzZyLa3a5SBbMMpdYni5xcTJOlxrP+VhDTnhIYDWzL3PLPWTNJJPwnLg0gzFxfVmYyxqFYbl4l/u+lZZtEWfWzJalDVIYvOrAcJMpMxaX97Avc5aFz4x7JaztMV2/fr2V6wJY+2YRzD0sLZM+LA/H88KYaD/D/GXpgd8ZPJeWo+uEwF2WwPnd4qrquNzC0mhmevls8Dtrh+eUz3mX5fn8zrXXi+eJ+cznd9W6imfUiVYJNwR2S7UuyZGfW+8dYxjeYDAYDK4ELsXwHnvssXrxxReP0mq3LEVLLzlel9sAF6o6TtG13LB4sOMkaSlZNJV4EhYJFnBadFgcWPCWPeNYXdkFsRTHNCxw21kp7OM2GlhnnK9r4gnLXbUw6URjHQsxU0/LHqaMBbnb7TZFgGkgnMgWL9w75pQxwKKYt2QKbEt8qhPezX1z3XG/+YyxwBZgKjlmF5a7rRJzkkzCRcJmUWa9eS+dys5YiF2ybwozIwPFdTn13+IJeX0cj32IP/r68j7zWQrCVx3uJ//P5wmmwHPy4MGDzVjMw4cPl41081otPMG4/ezlNhZKdmyIn3lf2MZSWKuGrVWHZ5VnyM+ci/yrjuXm2NbvXIuMVx23VYOV0VaHe8x6yTG54bAFEMwe8zyWObOMXOfV4XpchtEVx9sz8tZbb7XfQR2G4Q0Gg8HgSuBSDO/09PQMu+ObO62ZlZ/d2Uv5fywCrAi+wbGm+btrxLiylj2OtADsayZWRAwH6zOzt/DRu6EtlqMzSDOm5iakji90zSLZJ7PY8trNGjJ70ozRWa5dpqwLy93wE0sWP3zVcVuTLXmohw8f1g9/+MP9vNlnX3WwZl3IbMmxvP+Wm2P++clcd2zN8Ql+mhlnLNeFv9wf5qLLJHammb0ejul12YrcF7elgdkls4XtYo3DkO0x4R5nhqdjqzwDzB/PSO7j++a4OYwmx+j46XkNYHNtdTFvF5w7u7HLHeDcjoNx/K2sUYvgM0++h/kecDa2pQY7b9Qq58FegU6qz+859uEdDtNLEXnec2475dZGILORuQ63MMss4Kqzcmt+B67aH3UMjvX14x//eGJ4g8FgMBgkLsXwfvzjH9crr7xSv/d7v1dVxy0cqo6z+ZxRw7d+ZpW5Oadjdraa8tvcFrf98vxMi5TjwKjMgLqMLsZETMN1avYrJwuBIWBxu12P5XvyOJzHbKCTBfJYHLMzch5tEXO/sP74G7miqoO178zcFXa73VGMJb0DfGZrjiwv5iJr/czSLT5rVtDFGBk36xCGtCWE7exjy4QlO7C3wU0vHb/o2gO5RtGNZruGw9TDEVtjbrC4WY/J9N1Q2JmqnKdrf2QGzjYZ5wFeMw8ePNhcPw8fPjxax+kRcQNRx6k7z5PPZ9bptdI9a6v741ZGOUbHIH1dHbP0e2XVaDnB8T03Xoe806oO72V7RLrGuTmePB5gjKw712bnNma7zt7tzsNzcv/+/WF4g8FgMBgkLt0e6N69e0dMLGMczrBjm616G6wgZ9i5fY5ZW/4POKbTffNbTYRjuO1RZmVZLLjLdKzq1RI4HtlQjlly3rSaHVOz1ee5yHlYxS+A2U9ua+aaKjpVB/ZbdbACncnZYbfb1YMHD47iI7mPLd0Vq0Hst+qwzmBnVtrxPHUKP5zX2WOdpW9W5jVL7CPnvKvny23MjLZiU4wZds0aynY9zJcbgJJZ7Lq/ZJRY4z4+6Bies0B55lf75pgyI3K1fmg87f93bM3P40rdpup4nrzO/Mx1z4vF0P0+yhiXY2l+DvmZXg97XFbxxa1M+c7rlGPvPD38z8+N3yXdWJ2n4XZOub4dg+Re8M7cqtvO2PhF1VaG4Q0Gg8HgSmC+8AaDwWBwJXApl+ajR4/q3r17R4kTSZWRHev6QSWSgpqOuzDbFDkp8coNtiUPtSplsCxUFmT6Ojiv3a0dBberwkKzlr/K/R1sd8C5c/N6Pp0WvxItzvNZsJnrdHFxjvW8ovOHDx8euTC65I7cp+rY1ZgBdMbFvbMQ8FbigV2xTgTy51XHQr+WmLJbLH9fuZYtmp7zsEpOsKRe3hdKPzqRh9yXZIX8P2sTcWwLOrAu8lpWCQ2+zi4Z4zzB6KpDH85VT7jueE7c6mCXssMUW4lvPp+TY5wwkr+nmzOP2z0/fp+dVzKR63s1Jt4H3NPch/tvUQbPeSfwsCqd8Pu8K0VyeYfnOsfYCQKMS3MwGAwGg8Clk1beeuutvVVJAsOrr76634ZO4xQwOnBpizi3sXXs9O0ty87WuRMAkiXY0iGhBusCZpdBd+SsVskjWwFul2+QQk8QG+u8kyMyQz0vmSX3Oc/KzX0tc8acWyotu42bcd++fXvJ8na73Zn0YSzE7p66sNhF+JlMZCk5j81p3Gk58j+urWN0+Xn+z0kKzJdLaRJdok6OvbNSfR632QJZKGw5LcC8WqauK4Mwo3Ch9VaauEtqfIzuWs9LK3/48OGSXecYDM95t9787rDXxgkqVes59HXlPOHRMZN0wliXRAK8rr3ecvuV+AbPTyfKwbuId9/Kc8E++TytSkL8XHWye557z2O3T17nMLzBYDAYDAKXYnhVP/tmpy0Q6eGf+9zn9v+35bFiF10cbtXkcD/YxnpeWeWOK6UF4CJHjod1g7RUFsev/PmrdOSuxQf7ILVEyj+sKf3ibnfj61hZflXHMj2rwufO4vb9A118yUz5wx/+cMtSOf6DBw/2DLKTN7OVam9AJxq8sgRtkbJPssNVrMbrsWsp5JT2VVw4j9tJo3X/zzlxoT7zB/PuJKXYZlVu4XF0DJZi/1Xblo6RrUoAzKDzPBcppEawYBVjzf23YsT5/xzfKi6+xdY8DyuG2rVO4zn3fTGb8u85hvSq5LE6AQLfZ3uJsrUaLZL8nFryC2+YGwnkPn5ndN6J8+5X9/1xWe9AYhjeYDAYDK4ELsXwrl+/Xr/wC79Q//AP/1BVVZ/61Keq6pCZWVX1ne98p6qOMx4t/JwMwplA/K/Lisrtq45jhCu/+FYWI751RHaJFSXD85jM8GyZdFl6AKklrD8zvaqq559/vqqOrSSzts7CXInSehzJKM1mbJV3bUnYhnn6xV/8xeU9u3btWt28efNo/DnHZnS+T9212kq3XJst384atBW9JeK8ap+C9Yp3INseWWDc1+N72Vn4PD9Y1ith8KrjZst+RnwPkpWvCpxXx6g6Lih2bKiLwXPfM3az1Tw4pcc8lvzd98wZgltYFYJ3x7Y0mrfpMjJZB85w9DrIewmTZyzEav0eZZ1nprdZtEW9mZtsLcX7G4bH8ez9sCB+1XELuJX4Q+cFWjHxLs5otnmRTN/9cS+85WAwGAwG/4txKYZ37dq1unXr1j7LEGHh3//9399v89JLL1XVwbLBmnCriK6Og20tmAy2WguZkdjySThbiTFhCeGXTrayagNzkaxNW4ocl4aYnPcb3/jGfh9887TIWfnSu9ZC/O76qC05slUsjDmy4HXVofUJbUbu3r27mRF6enp6JFHUxePMajqLfgVLfpk9dZ6F82Ti8nPGz77Mh5lwJ0u3klwym8q4CPEV35/VmPM8Zje2mp1FmWMwK1jFjnN/Mzxi4p3HxLG7d95559xMO1/zSrKtu9aO4a9E6b2GO+FxnofVeu9qE1krrCHYEdfBmsnscNfz4Y3yPh1rck2tY4fcj5xH3oV+f/vZ60SlWbeO4XKMznPDuC1l5jXbZQVn5vBFWd4wvMFgMBhcCVxaaeUnP/nJvn3Kyy+/XFVVf/qnf7rf5nd/93erquq1116rqnX7ns46W2VLuQlqJ0LLt70ZGP/POiUY6t27d6vqYK3YyugaY9p6XjG9zuLwMZgDlDEYV1XVG2+8cWZMbOPs1y6jbBWHwWoiLtAprYBVa6FsD/Tss8+eGdvnP//5Mz79LWBddlYzcNygyy61Jbiqi7PlmNuujrElVu77wPm4rmyJY0ULsw6ux/WGeXx+YuFjrbuuMY+3ElY30+yEx50Zu1XH5jjpqiVYNkPdalxqoLSylQltVnERtr6qEfb4u2xW7tUq43brfMwHcV6YcOfJ8LnZ10LU3bPBtrzn2BYRcZ7lVOlxVq69RX6+8vrN2j12t5GqOvbqreJyyXr93D722GOb6ycxDG8wGAwGVwLzhTcYDAaDK4FLuTRxLeByIY3/s5/97H6bO3fuVNWhKN2SVSRjdIkndiVAUy1DlfQVmmwJLCg3Y8ziSn6HvjuYvCV75YSaVVf2bp9VWQDXm+Ud//Iv/1JVVV/72teq6lAITLkH19sJwNo159IGu8Py99UYO/ce5ybZZqunGanlq9T1HJ/LVJzs00k8+VrtcmGseb7zEo+2EpBWa9Xu9xw3WCVHbLnscWUCC5DnfbEYubtv2+3c3TMnQWz1QXNxPNviwuwSXnytW4kHu92uHj16dOSiz2teCY9vFZOfF4ZweU+eg3eI3cTMucsTqg4uTMoAEPDgc5I+sgO5SzFw7WVSVNXxus/jfvGLXzzzN+9ojo3LM6/D72S71jsBeicQ8o5yMmCuA0IAdnd6fWTpBNuyzi/S/R0MwxsMBoPBlcClpcVgeVWHb1iEoqsOpQoIS8PogBlZ1cEq4qetMwc000LA0nGwNTsp53mrjhMPYE1OcMiArFmaE1zMPrfkgSy82kkNPf3001V1KEanIJSfWEvdvra0Mwmiqm/x4rR9J2V07U64juzcvgoeP3r0qO7fv3+UgJJW80qAm2s028xtzLxWQs2dnJqZnEsxkhG5ZMXlGqzrrqXQqkv1qo1PgoQmkq8sPZed6TkfiTNY0WaanWXs+70qAM45WSXjmC1slR2cnp5uppY/evToQpIWQrHeAAAgAElEQVRSHstKTqsbj5m3f+b7wIXnwMXVneQbTAvvE/eFtZP3xYyKY7AO7HHK+wIrcnkPx8xEPuC1aHa+JUjPue2N4Jh8nnPGXDjpxn/n2lgJBFwEw/AGg8FgcCVw6cLz69evH0kGZUo03/Kk1TvVHGszi1C7uEce19Z6l4JvtoS1RCwxLS03XsUStp88435YNGxrpmepsY7p2NJ1qncWdZM6zNy4cB+LPpvUgpWUj4u+c4wraTFbcsnYV+nHKzx8+HB/PZ0IMddoZr8See6wsri7diaMwUW0WJ1YwLlWM76S+zBfnWjBqrCZtcR5HGPNfS0dRXyM64It5Hm4LsbEMVhnXWulLATfmqNOjH0l39XFQt0ya0v6a7fbtex3S6B7S8x7hfMYXrInx5X9jHWNr+05eOGFF6rqcE95tvJaHYPmuMTdWCtdgThz+7GPfezMeSgro5wovQOwQpdkdB6Zqv6ZZz37/dPFQnnXWijCMbxs7HwR4YEVhuENBoPB4Erg0gzv5s2bR1lenYir40Z861PkmOwJ+Fvdcl6O9eXvWADEDrGesXLSAmb8jt1ZricFgLHcsMKwsFdtgjqfM+d1hlPn77clTwNagIVHbCfn05akLSEzPZ+76lhg1sKzeVzO94EPfGApHs053FIorVnWCOfk2m1pd80gzWpWjUvTuoRRcl7uN3FSruXjH//4fh/uv1ko64wxJ0vrxA9yDuyVSMFhzsO6ZvzPPffcmeuG+VcdLHbOZ9bJWuratawY3lZ80dfHejCj7OJZ/Hzf+953boYv6Ji+77cl+Lpj29PiHIHVzzzPSry5k040C+W+2NuRGZiODYN8n+Wx0hvBO9EskPceY86ibot6r1padevC2/o95ByNhPMK7N3pGDO4iCwdGIY3GAwGgyuB9xTDc4PMLf+6sxbN1qrW1pEtE//d/c+ySlgOKZ/j7DuLR8OaUurLNYFY8q4f6eYEyxcW5lgVbDT3cazE2Uvsw5wl63brDrOermWKs6LMXLnnyeCcqfahD31ok+HlWLp5cgyXbbeahfraLMi71WoKy5a1wTrgp7NEq44ZHvefdQgTy/XNeLG4XUNlCa5kgp7/ZNNVh7lPy56sacckHQ9mDWd8ZJWdCzj/Vjsq7gHn4Zhdw9ZVTWKC947ZfOdZWrGyLrbnmtBVU2X2yUzvVexuJeuWx3eNo9+n3XPJ+mL+WWer1mr5mT1m9r51gvAem71C3fvAbNfenK4RML+7ltPxvq5+km1/9KMfbXogEsPwBoPBYHAlcOk6vKpja3nLSjez42e2QOF3LA+zDGdr5jnM7BzLwVrO2hCOC+PCAsaaIPMx6wsd48IqxvLgGhhjWulkPhF3++53v3tmn2eeeaaqzlpXrtFa1ZNZEaHqOBPWVtmWKszKkrO1lmO6iNLByclJvf/9719adHk838M8hq+1E+nN47s5aY7f7N8Wfteux+eBaRNjgAHaiq46fm4szAvjzH1tueJ1cIwqrXTG6+NarBi2kDFDZyz7HneMjPvEeWyV85wls3FbpS1cu3atbty4cRSPy3vhOjsr4GzV+K2aSLv+N2s4zejs6dlioY6TrpqtJuy5OC/zNo+zyh0Aud7I3HRWpmvfung6Y/DaN0PuYsaee6+LTn2IMX3/+9+/cMbmMLzBYDAYXAm8J4bn+EWnp2a9RmtPZszB1omzFt3EtfNT28LDesWazXpAqxJg+bIN7CytBiwa2BqZfFw7PnWQcRq3EmGssE5qFpOFOuvKlpWtxZwTW0erBqoXbamR23ZxGNjNG2+8sbS0drtd3b9//8jPn2Myw1plmaYVy++OJ7puDGaUrJG1wWewG366FUpev+uwYHadvp/jbLbwk2FVnX2erOvKsb73ve+duf6co2SkVQfmZV1Z1nl6FqjRMsvxs94prfh/nJdjpOXvDNWLwHO/1YLL22y1h1q1g+K+d+dxo+FVE9y8Ps7tFj/Acec8t9sB8c70eyKZvq8TuDY6nyd7B1wj6nnNa3D7MTO6LpPUrJZ97Q3p2DX7bDWeNobhDQaDweBKYL7wBoPBYHAlcOmO5/fv3z9yOSYlhpbb5ebyhK7lCpTYrga3fumEoP3Taf1d12rcDYw5i3er+iQS9sX9aJcaLoVM9f7gBz9YVcdBcNyjuKeyANTp7Z0cWHctec0OTls+rAuo23W66p7eXc+Wa4EWL6BLI/baAbiEmetOmsjp8i4FsZBuno8Uf1yZdnkj4J3bWmg673dVn4zjBKCVlFW6iRgj643rslssC5GZW5e7MEaSp1jvWX7jJCwnkHVF2Oxj1/N5IgQXxaNHj+qtt946cgl3LbFWIu8dVqLuzPWqnCO3XaXDO3yRY7KYM248C6vn9XjeXeriUq6q4xIgwPl5Z7lMojufXY6sj7x+kv3Yx2GerojeiXV24XehD9/bBw8eTOH5YDAYDAaJSzG8hw8f1v/8z//UL/3SL1XVsVXFNlUH68UW15Zl5ICzA+Z8+2fwe3V8t7PpAsGMkYQDJw90ac8uLHVxNGPFuq46NG91Wj3WDVZazgnssitGzevxPFf1KcN5/hUDzP+5mBjkMZ32nMXBxsnJSRvA78bnYlczrmRpbubr4m3YC2wmrVnuu5OmuHdY+K+//vp+Hxdts68bgqZ1azboFivMMcdImThKWL71rW9V1aFUhrng+jrvgAWFnWDDMUjAynMjP0aaepcMYVgYwKn6mcjFHHfttIx333233nzzzX2D5E6g3W3A/Ixvte1iW+4tbNnJHfl+WMmRsWadNFV1XLoE+JvnI9mKvRpOAHJZVh7b8n1mQayZTsrObdfMFi1TlmNE2o415Gcl31VmeGbkXbNqy8jdu3fvQuLgVcPwBoPBYHBFcOkY3ttvv30Uz0pLy5Iwti63YMbhwnOsmjzWquDTBagdu7DVhLXRCRub2a2at2LNpJ/azNWpy5aJ6uZkxfS6mOiKyTk1e+u+rYq+u5KQVdmDkdZ11/TUxc5YoGZ+yRSwTolL8ZM4jIt6u/iB1x0MiHFk+5QvfOELZ7blGLShIlZ4586d/TYweK9Ns2lYaTKuV155paqqvvzlL1fVganCPmENHaO0eMGqiWfOJwySuWc+YXpuj1R1LAzRyU5V9U2f83larZ8HDx7U3bt39y2zthp/8hwy52ad3Tksfs0cM7fMddcw2XPNXHZlPPYSuTSD8215lszSed90whCW8nLuBWs3y6HsIXOs2F6JjF1zf2gCztrhc8dg89o5rwXUYYU59/Zu/fCHPxxpscFgMBgMEv9X4tGdX9zSVPZ121LpjmM2sZIaY0weY3eMtJpsDXWZjlVn4z1ml84q8hiz+Nd+aMcrusaIzFvX2DHRtUpZzYkZ35aQLlhlweb1XBSPHj06KhpNqx/rmLnO7MEcb8YciLfAimBjxIhgPmTKdhlpnJc54PhdFhtzBwvAOv7mN79ZVVX//u//XlVVn/jEJ/b7wIoszOz7QJbb1772tf2+r7322pnr67LxDJgKxyeWAitgXrsGzs8++2xVHVgNP7/yla9UVdXzzz9/5pqqDvcLC95ZdC6SznN2GZfGbrert99++yjzu8v09jNt78pWpjDxSwQJXNRvr0duY5Fvr/O8Zj+PzlHIOBbnXolzWGghY7l+B3tsFu2vOhbJ4Bg8V9xj1kUnWmCRdOcU5PV5DrhOe+a61kwps3bRrN9heIPBYDC4Erg0w7t169b+G7sTyPW3uDOEOkvOLMV+a3/eZYU67rYllGxG6UwuW6xVx409V/Vm/L8TcbXf31mOnSyXfeq2VDtrd5XRueXntnSVY5Vbck4pMLxiojTxtJXezZOBpdi1cYHhEXvinn3kIx+pquM1mgzVEnLE32xd5riwYhm35bNgZLC1qkMMw3VJXrtIzL355pv7bRj/b/3Wb50Zk2u6MrOTsbhJKKzMVnMnacd65+//+I//qKoDk82sTdcmWiB+S9g4PUKrtXP9+vV68skn99fI2LpGwH7feL4ya9JxNo7vmDeMJQXhXTPqNkH8P993rs3zmLmX+Zyu3mds6/devkNWtXQrCbWqA7u1gD4/Wf/evuoQ53X2sxl/9/7ms2wInGPvPIJs+/M///MXyhGpGoY3GAwGgyuCSzG8k5OTunXr1t6KcKZV/m4fsP24HdPbatZZte2HX1k6rtnIz2zpOKO0U2fBanG9iBlfXh8WlGsQ3VQ2sWqeaLbYZVyuVFmcuZpj5DPG6ho4j7nq2EK9efPmuW1YrEjTsU7HSy1gu9WIEyuTY6QF6vOxDfu4XRCZlxlnBLAX9oHlMG/J8IjrEUtzzDYVI6rOzvFTTz1VVQd26Fgqc0O9XtVx7MTi0ezr7M3cxlnHsFTmJpkzY3MmM393sSl7DLbWzc2bN+sjH/nI/hqZk+4d4qy/lZB6gvsBMzGLBzl+5p2MROb8V3/1V8+MI6/LXg17T7rmumafzoh2i6kOKyFtN8muOsSKUX9yXJ3r6t7RrnnmufL9z3ldKXI5Vtll5nfzdR6G4Q0Gg8HgSmC+8AaDwWBwJXBpl+Zjjz22p9ddEonTg1ddirtec8aqA3W6pZzosZL86Y6zSo6xqyGPsxKltdRYXpPpugPRdgVVnU0vzm0Zm4tWcx6cTt9dT15T7uN+W1vuNruvz+ttlu4k34P8zKK6FgSnxKDq4GrDhcjaJMnC7rW8ZlxxuBotqtsl0XA83DVO23aKedUh4I/rCHcRc4pkFokpKWLO/9iWBBPuD3OR95+x4Iby9ZCcsyVLxxicoIY7kfKEnAtS1UkccrLUViLXO++8syxNoOM58/ibv/mbZ46R53CYYOueOmnFrm3muitbsuQX84/L1z0V83hOhmKMduNx7Xl81jfvGReTJ+x+tIBH1++R33HZ233o0pq8Psbo9w7Psd2XCZetcYxObITPeOZff/31tmSkwzC8wWAwGFwJvKfCc2DWk7/zLb5K1OjSdV2I63261GLv48Jw/u5SmG1pYTl0cmhYKQ7A+nq2AukrptexULcMWYlkm0lXHSxUszUz2C44bitwldJcdbAy87rOkxfDms2CVWBvgFkm++QcYzVzTTATs9wuvRkmwnxxzeyD6DfMImHZJq7biQ9VVb/xG79RVYdyA+4pY3zmmWeq6lCsTup/1YGFwspIKmHMnVg51jhzw7a+jk4Q2u2BvGYobYBZ5/9I5GANsT62RMr5ucXw7t27Vy+99NK+bIPr6oSLVx3OmRPuT47Lxc+sMxfwJ8ODWfOZJQX9zsrzrFoWrTwxuY89Ltwn1m4mE6261puB5bvx6aefrqrDvWPtwN7dOinvLet5JQTuAvgcA1iJfndeQBKGvvnNb56Rx9vCMLzBYDAYXAlciuFV/ezb2+wmfc5Oa7d1Z3aTv5u1uKi623eVduwyggT78z/LNXWi2Ja+sWi1mW0n4mqLyiy4kxazGK3Tj7tGk+yLdWZW2rVoshWLpWipobzX9ptvCQADxmk2UHVcdmLxaM6XbIaiYGInzI/jV8Q+UkwA1uT4FNdMLCxZARa1YygWVMdSzuPDAhwvfeGFF6rqUAaRYtWrJp0rkfSqw33mOhgzYr6ANl85n8wjx4XJMTddQb/Zrdd1l8Lu53RLWuztt9+u11577aig3oX8Ccfsttal2SDPOGuFeexEj/ECcO+YA86f7wF7A1ZNXXMuLAdojw73wSUg3fV15VZVZ8tuYPBcM6Ug9oJ1jIv3Dc+kY7idR8vs2szfZVlVBy8Oguo/+MEPRjx6MBgMBoPEpRnetWvXjuS10npyzMSNWEFaGc50sj+W/3cxQ8fwbCF02YCOR1k4uRN+9TYukncm11ZDS2dJdfE/GIT/x5iwpjq25jYt/hx0BfxmrM567TJXu/iecXJyUrdv394zLcafkliObXRxN/+NRUrMbNW806yj6rDObI1z3o4V8pkz6ziWW0xVHcubwUxcUM/Yc3uyTf08OTs558Ss3yLRWMj87ETELS5BVmZmyAKvN+I8jsV2VjjneffddzdZXtVhjinkp8i76jgu7bXTeXpWa93SaH72qg5MDgYMq+Fntw9rxs9N92z5mr2vvTj8zPP5HWVPFnOyld9gLxvrgevM58y5CGZpINeBM3sd5+N8ef9effXVqjo0Rb5x48a5niUwDG8wGAwGVwLvKUtzS6jTIsRmfHksw9s4m43zplXhOhU3/mQ8yRotUeXr6RiLY1z47rs4SI6j6sAKVvVdbqOS29o6ct1dx/As2mrf+VbDVu+zyqLK41yE4V27dq1OTk728QIsu66+xkyPv9k31wmxpd/5nd+pqqrPfe5zZ47PT1hVxsI8h8TOsF45Xza5/Nd//deqOtxftrEEU943mBTMJGN0VQdmx+d5fRzXGYN8Tlwu1x/sI9lT1eH+sC33Mlk288Tz45q6TjydsRD/g40wb107Ku4p8/juu+8uJaJOT0/riSee2M8985nto2BjHt95coVVB3bkbV3jlkzIa8QxKB8jr9nSctwfxpFrh/vOOrbQvFtNJbh3/LQAfucJ8vuE8dtz4czvvI5VnaHr8aqO2xu5+TLHSolAWlVlzHUY3mAwGAwGgUszvBs3bhyxjq71DpaBazOczZZwXYzjf1jP6et3K3pqnajRcMwo97F/2OKuOUZne33961+vqoM6A758jplWs0VOzYS6TDJbbK63MgvKTKtVnU/XXsf7uM4HYGl1otiZdbqytN566636+7//+/qDP/iDqjpYwFaUyXOsBLo7hRgal1rUF1ZFrC/jcY7DOabbqQJZUcdtTNgnm51aYBhL26zDccAcG7V5/E0sjXWdHgwrXJzHcjJmyDxxzWRlOmMxvSywD3tijE59iH3u3r27VFwib8Bix53XhmfZ3iBnruYYVq2wVk2Rq46ZEPvae9LF1l0P5+ax+Uwwt7DaVTYi6y/fA/zOWvQYHa+tOqxnC95bWYY1k+9VzyfHZe102ehWg3HWMZ/zHFcd3r1se/v27c2cicQwvMFgMBhcCVw6S7PqWJewa72z0jDsKuKdzYP17JqPrp2O281gPX/729+uqoNuYcbUXAPkpq32W+c+jIHzcVxULFwvlXALHjPltJp9PqxDzksMAUu/q/ty3Z3rcdI6M7t2zWPXaNZaoFt+9J/85Cf16quv1p/8yZ+c2SebnVonlHXAPe10AxkD1ixMj32YJ6uoVB0z1C7GUHV27XBc3xdnB3Zs/Vd+5Veqquq555478znZZpwnGRfZp6iMYP0T6+haF60yhbH07TlJxuw6U9RMzGyThfBMW2eW56dTy+DcMNfvfe97yxY3p6en9fjjj++vFcbMPFZVvfzyy1V1uD88F6xnjp3vH67NjYAdX+TznOuuNVrVMfNPrJpSOy7XMUq2tZIL+3aeBcfSrPO7pTPMu8Hre6WmU3X8fnP+BteVa8fxZBgt94bj//M///N+H+5hNt2dGN5gMBgMBoH5whsMBoPBlcClk1ZOT0+PqHC6/lwQbfrujsTdtqv0ZLfzyX35DLcRLgfKB3CDVJ1NKKk6uAncpifdFXYHmEJD9aHbWWJg0Wu7gOx6yG0tTm3JNEuQVR3uQVdsm+ftWmqsOqxvpTBnwsvKtbDb7er+/ftHMlSk5Fcd7gtuGQL1pCSTUJGuJXfvJomIa+d6+JmCwxaN5qdlnHIenW7O3+4IjWum6jjl2q5s5o/rzbIFzmNRX+aok16ydJ5djMBlGd312bXNnOXacZmP10pXrsI1fvGLX6yqn7metxIy7t+/v08M+7d/+7eqOluKwXPA/yyR1707nOpvMBdsl65mv6NchmV5xKrj9xzn9Ti6ZBy343GIqJNS5H92AbrMIl2oq0QdxubSilxTLs1xuMHPVX7mInx+/tM//dOZv3Pc6b69KIbhDQaDweBK4D2JR9tCTYvbckZO4ugEoJ3+bdFgrPIuIcBBY6wLmnqStECBeNWxRWUL362Acmxc10rUFaQl6bZDZm9uqphjM7CoSGbYEua1Zef057S8XQKwanuU1qctxYu0B4IJY51lmyASjRgL8+bWJF1Q38kCbvXCuHOtOoXdLZFcSJvnduKRyywyAYM1yDr2enfKf66DTL3Ofczich1YLLxrA1PVF56vkpS4Lu5BjtHMzkkqXodVh2Qlisdv3LixKS326NGj/bV2TIhkpVdeeaWqDkwfDw/3o3vGmH/mwSnxrAvWbh7Hz7BZU9cc2+8BJ3XkGJ0I5PcMc9IVrbsMyfff5839s21TjtUejE4I2mO1iH3Oib16nA/PDx6ATow/3z+TtDIYDAaDQeA9xfAstppWswsXVwKtaW3Y0nCsy40kuwaCfObmp5alyvNY1Ndt5bESqw5W4Mpasq89LY5V81aui5+Z/r6KoTEOWMNWTNTFqBwTS7WzilbX5aLf/GxLtsnHxrJH+Ddb78DGiGWZ6TmOmmMw43L8qitpcXsoH9Nxizw3cwwr4HPmNmMpLgewSLWZTV6fJZxWxcsZS3GsziIQLpJP5rUSJ95a31sNmvN6k5HB7LpYV4fT09OjmDHC2lUHiblvfOMbVXWI5cHwOjFnt3Yyq2G8sJlkwqxb4stuz+MygoRl2sz8Mm2fbd2s2ELX3VpyjgDr0Iw84fvA3PBMWlg731kuaXDxv9lqgrlmXfDMc95kkl5vF33/VA3DGwwGg8EVwaUY3m63qwcPHhyxtq5w1ZYIVkZXeG5LwP5iLJ6uEaOFkrHCusaoYJWJ5JhDWnTOXuOnGZat0Kq+SWeO0Qw29+GnhWC3rJoutpbX2wnOrhplOnaXsUVbs7vdbhmHQZbOTVeTZcPwHAfz2HLclkDibxfkYmnn+TyXZk9d+xSLiLOtM3/zPF4jZnj2RnTxOI9/JZqQ2zpebuHxrZihs+bM7JIVW6jZz2knHwdryhZCK/Hxk5OTunXr1p5NcN9ef/31/TY00SVW/4//+I9VdSjqh+nlORgfa9JM2MXXubb5H3NtuTPmJ9m2n0Mz7C7j1uIIK49ZF6f18S1I4PuWv1t2jHXQNUX2+djHbYi4f7kv18FxYXhk5DJWmF7unzHjieENBoPBYBC4dAzv5OSklZkC1MbY92oLsas5A47HuZ4kLRLLWvl8tt4TjmU5XpItKfjMbTLchgh0bM3sA1bAdXWi2BZ1dsZlJ8ZtSTEL6HbSQqsWP8wN1lnXHghcv359aWnB8FgXnCezNLnfyEJ997vfPTNe7mWOkblbjXsrzsh9WDXK3JJTcx2eYzjd/QCu93McrmviyTGc8ZbySsCMwXFNGFe3DszwvM68thLOynNMPmsgGUMyxq21c/369b1l/9///d9VdVZQmGvh/fPrv/7rVXWI6TFftD/KczvTlnXh68h76rVoxsq6To+IPQjMpXMK0jvAcZlvYverjOVcB16LXg9+RqqOmR33iWNx3qwzBfZkrTJ+c054B5OhTXY944DxbXn1zmscnBiGNxgMBoMrgUvH8Ha73d5i+/CHP1xVvUWKJfWd73ynqo6zifIb21a4RUZhBVjAXQakazwcN0grwLFBrBUsOqyotHxdT2g1Fmd8ZqzSWWCOFXZNXIEzFW1xY4l1MSPHUlxTk9dnBskcY4FZNDavJy3jlbVF81dbjGmROmuS+AgWvducVB1nJDrj0vVXnVqGW8vkmL2PW9hYJN3i0vk/szVnNTojMuE6UNekdrVUzmrODNsVXIPm+GnHmB3n4XyujczYDXGzrHVbxfB2u92ZtUr2dMZ1OBdrhqxNrpn6PNpTcdy8ZsYNi2HceGJS2YXzOduU+li3LcuxWaXFOQw5t9l8uOq4ptdz3L0bPa9eH7mPn3sLTzumn8+br4u1YhHu3O7LX/7ymfMSg2Vemb9cO/4OGfHowWAwGAyE+cIbDAaDwZXAe+qHB/XHPfDaa6/t/wflNRV377R0wdhNYuoLJXZRYtW6FxdUvEt0cf8zC+MiNJ374E6DWjsJgmNx7ExT7zqD53l9jPydeVzt08mS2T2JOwI3RVdQDewiI10Y18Mv//Iv77clwNy5RozT09O6ffv23qXJWLriflxV7khPElG6N/gf23K/7TbsSlq8VjgG95qx5lq1YO3KTZkucN93FwA7ASrdYCmuneex9Fy60FcJVS414L51YsUWgGbMnYi4k69W0oAJwgiEPp544okLFZ9XHZc+VR3myeUouMjoi0n/vapjKTmug+My1zyDuQ7Y1vJdrGsnJlUdz4sFrblvnfBAN+9Vh/Xn+5O/+13lJLpu7VhCsZNKW43V5RVOVOvejYj+IxBPwhpj7Vyn6SK+aOLKMLzBYDAYXAlciuE9fPiwfvCDH9QnP/nJqqr66Ec/WlVVX/3qV/fbuLAcC/7u3btV1af4Om3VQUkYHj+7di3AyStuV1R1XIyMJeLWPp1YrNPgGauTMdLyWZVkuIi9K4q2/NEqaaIrHnaSjBlLN48OUlO4C7tKhgMTvnPnTlUdins7nJ6e1hNPPLFfB1h5uQ/3w0XW7kyd98UF2CuRZf5OKSQXaLsgvyvmZQ6976p9U9Ux+7PlvWLteR4nQXismZhgYWnPG/eWe5rlN5bQcwd0LPKcR45rYWnuBYk8rKXchvfD7du3lwyPkhYnlSX7Zf5JGrEX49d+7deOxgDbYwwrEQmuvUsMcrG1xTNyra6k/ix00bEVe70shNGJgLgkiznpvBDAknk8gy5p4PNcB5zPjNnvnxSCJvHR3iYLq2fpGmvyIp4lYxjeYDAYDK4ELl14fvPmzfrjP/7jqjpOkU1gpWCd/+d//ueZbTsJHFs+trTsJ899zGrchLBrt2Nm6UaZaaWvrC9feyeQ6rR0fjL2rsUL4/f5XBDssoyq47lYCVDn9VnAmuJvrGnGk/539kfE90c/+tGyrdGtW7fqzp07+3R01sNzzz2334b5YHz8jQUMU8C/n9dqa3Ul55Xjc1zC7NmWZO7PZ7ADp7hvFfVbkNctX/Kem0EAi4aAHxkAAAjaSURBVBh0bN2C2hYi4F5kCQ+szN4Hr/8cj5sfu1SHa8hCcVL8uaePP/74siwBWFou59ixetigmwpnzJiSKYuS23vDOuxa/bhQ3yVBuXbMnl0mYi9S1eHd4XIUtzDjWHkvVyU6Xqv57DiG7+a3LibP9xxzzVwwFnshMr+DdWtPgj2FWX5kb8qqYXiHYXiDwWAwuBK4FMP74Ac/WH/1V3+1j7vwjZ7+VWcT8e2OGOgbb7xRVWetj1XLE8sZwT66olcsBMfYtvzUwEyvi8NgibpNiuWZOsvHxeO+Tkv/5FiAhVjZ1zGkHAtwK5FO3s3F6ViMf/7nf15VVX/zN39TVWetdGcs3rt3ry2e59xPP/10vfrqq1V1YIXJuBiDY5pYs51ElWPDMAdb5dynXKsWJXfMjvNsSUqtWFTeD1vpbj+zKvbObd1+yMIKybwtIed2VDBLrPdOds2MwvOX51tJ9HEfWUtZKI4Hgay884qHd7vd0XOS4+bYHJf3jGOtGTMmfsR7xcXUjpt3rX787rJsW2YUM/+sUTO6TnoLWPaM8ziLsZPds1i+BSgyd8CyZ47p+R2ZzIssep4bzsu9Yb7zHhBz5b5ZLLqTsnNW661bt6bwfDAYDAaDxKUY3vve9766c+fO3tL5+te/XlVns6UcA8AywG/LvmntuU7H7Ixv906ax/5iW96d/93ZcY4duLaq6thKsuXrfTu/+EqeydlNCSw3rLBVFmpa3DAvx3+cHZhWEUwJSSasdGJtf/Znf1ZVVZ/+9Kf3+3jOLa+WeOyxx+rFF1+sL3zhC1V1EPVNEVq367HEWCdNhBVroV9n6bm2ruowZ85IW/3M43kN2ZrONWUBbjMKrqebPzfVJKOS9e06rbx2njHmBCZGTRrHTIvbLYRcO9WxNbewcm1kbgtgOcnIt6TF3n333SPPRLJ1syLG4izmZAp4nSxOb2+Hs53zOG547Zh7jtGMdxXDS0+PPVQWdeb4zGN6XRijWafl9jJexvvbMmd+3zkeXHV4hzD3PCu8311bnL/7XeyGAh27zuzqqcMbDAaDwSBw6SzN69ev7y034jFpIaTAatVxrQk++zfffHO/jVtNuE0PVgDbpYVvH73hNjtcR+7j+FsnyNv5yLtjgGSU/M+Zdlbg6DLtbC078wor1CLK3ZhWYsWJF198saoObADrHFbwl3/5l/tt//qv/7qqztY6rWqpbt68WU899dS+Zu/zn/98VZ3NuHz22Werap3xxlyk9YdSB14Gt1oym+6sdK8/ewWSFThG6xqtrl7SLVUcQ2NfzptWvesiuWfcH9ZUWsAc16yTukksceImGWdyVqtjhq7HqjpWqGEtcqxOuYj3APf08ccfX64dxKO9nvOaYb6MhdiQG0LnGDg3ikGuoeP/FrOvOlb0IfvTTX0zo9zKLmaUrumtOtxv5paxuMbN3rDuM9ah2Vm+s12ry7yxDfNsBaDclvNwPdwLx+SrDpmybON6PP7OOTHbOy+798y2F95yMBgMBoP/xZgvvMFgMBhcCbwnlybUFUHhBPQcKr5y9eHSqDoIFENbLTBtt1S6CZxwsBLm7VLLu2A011l1liq7eBhavSrD6Hqa2S266jmWv6+2cYF9ujKc7s4cWAiW1O2qqr/4i7+oqkPSyt/93d9VVdXHPvaxqqr6zGc+U1Vn79tv//ZvV1XVSy+9VFU/c6WtyhIQj37hhReq6uDmIvGp6iD0C1y+0blv+Qy3HO5CF2TjZunKRTg++yI5xTxll2xLmTmJxULNVYd+fhR6O/GJsVpOKbfxPXVPx0zasPuRa8d9zNg4T65Vy485acbrLo/j8AIuM9LV812AG5FwxZNPPtmWRzCGrit3wm5crtku4M49DSxtZxm1dOM6EcgJV10YY1Xq4SSy7llmHycF8v+tEhML23sNdW5Xxsrat8QXz0pKi5EE1PW6zPNmqIh9eG+vkr+6Up0sT7ho8fkwvMFgMBhcCVya4d24cWOfqk4iQ1oVzz//fFUdp/Y6PTi//bFaLHVkaSIneWzB58vEGorIsXy6lGWjY2Hd+VzcXXXcjsX7dFaZmcJKpJjP00pzYSZWLveCn3neZ555pqoOc8K94Hr+8A//sKqq/vZv/3a/D0kmL7/88n6fzvpmDu7du7dvAwLTS4YHAyFNnmP5fue4M+EirxmL14XbuS+BeCxSAvEwMrObPN+K4XdCw8wlVrHl51ibLirOa3fxuAUPcm2ZpcGmAUwaq70TRbaEmkWLM7XcDIJtuC6uG2u+6sDwsgRp9Wztdrt65513ls9C1YFpMP9ORCOpJN87zJP3YQ6cMt8lIvm+ONkjmbCfO7cdYp11rczMMi3x1bVBW3mwfC+7//kYTl7q3sUWjOB6mXv+TwF61bHcnss8QCfRlt8lU3g+GAwGg0HgUgzv5OSkfu7nfq6+9KUvVdXBIuliT26Jk8c4GoQKjYnL8a1O+rStmqqDxWOfNpYcx8x9XOhrS2eL6QFbsxaR7SwOizpvtfZwc9KV/BmWV+7rmJ1jEexLvC7Pwz5YZTT3RTD8j/7oj/b7YLnTJgq5sA4//elP67/+67/2x4VRZnkKDI+4m2NCWJfJuJgP7qXLYpgfF9vmcTgGBbLMEx6MZFzEMLHOWV/cS9hUsg/HUvmb2JYZRJZJ+L473telzHNcx4xgWIydee6KyF1C40ajnRyVnyMXPMPuq469K+fh9PR0f78Y9xbjYix4c0AKNDhGyzxQtuF3VQpkrFqadWsUcM38z8XqjK0Tked/Lr9gjNzzjP9abpF7x/kt0Oxz53HxbHgt55ywDWsUTw3vMn4yvzl+5pHnt2t7Bsz+Tk5OhuENBoPBYJC4dlFJlqqqa9eufb+qvv3/bjiD/w/w9G63e9IfztoZXACzdgbvFe3aMS71hTcYDAaDwf9WjEtzMBgMBlcC84U3GAwGgyuB+cIbDAaDwZXAfOENBoPB4EpgvvAGg8FgcCUwX3iDwWAwuBKYL7zBYDAYXAnMF95gMBgMrgTmC28wGAwGVwL/BxfldYutiQgNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZXlVJvr9IiIjx8qaGKoKCqpAxAGH10uWgILajstuB+xWaEQBm3ZoXerDdsLXWk9t5YmNgrO2WioI2ipKQysoWt3iDE4PpRiUUimqqClrysrKzIg4749zvogd39l7nxOVcW++xP2tFevGvfec3/lN59z97bF1XYdCoVAoFAqLwcr57kChUCgUCh/MqB/aQqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIyR/a1trzW2td8He3c9w1i+zwXLTWvqy19u7W2hnbzw82yHpstNbe21r72dbao51jn9pa++XW2vuHebmztfbbrbXntdZWneO/bWj3tcsZzej6N7TWbjgf1z7fGOb9uiVf85rhus9f4jWvb63dNOO4R7bWXtFae1dr7VRr7Y7W2ttaay9vrR1srT182NM/mrTx74fxffLw/gZz72y21k601v6ytfZDrbWP3L9Rju7T6O+mfbrWoaG9b9mn9j6ktXZda+0xzne3ttZ+fD+usx9orX1Ka+2Phz3y/tba97XWDu7h/M9rrb2ltXZ/a+3e1tqfttaefq79WtvDsV8I4H3y2Yb5/w0AngrglnPt1LmitXYVgJ8E8CoALwDw4Pnt0cJxPYCfQL+eHwvg/wbwtNbax3ZddwoAWmtfD+BlAH4XwDcD+AcAlwL4DAA/BuBuAL8h7X7p8PrZrbXLu667c8HjUPzHJV/vnztuQX8P/9357ohFa+04gD8BsAXgpQBuBHAZ+r3+xQC+o+u621trvwngWa21r++67ozT1Jei3/f/y3z21wC+Yvj/OIAnAfgyAF/ZWvu6ruvCH+494qny/rUA/grAdeaz0/t0rdPD9f5xn9r7EADfAeB3nDY/G8CJfbrOOaG19nEAfgv9c+zb0Pf7pQAeCeB5M87/WgD/FcAPol+XNQD/AsCRc+5c13XpH4DnA+gAfMjUsf9/+QPwSUOf/+X57ssSxtoB+G757HnD518wvH8G+ofUK4I2Hg/go+Wzpw5tvGF4/ZrzPdbzPM8Hz8O6Xne+x72EcV4P4KaJY75smI+Pcb5rANrw/xcMxz3TOe6a4R74LvPZDQDe4hx7AMCvANgE8OQFjfsmAK/cw/FL3X9y7c8a5vUTz/d+mejnbwL4GwCr5rMvH/r+kRPnPgHAGQBfuYi+7ZuN1lMdt9aOtNZ+bFBR3t9ae21r7Wmeeqq19kmttTe31u5rrZ1srb2xtfYkOeaGgdZ/Wmvtz1trD7TW3t5ae6Y55nr0NxAAvHm41vXDd89urf1ua+32oT9/0VobSTqttbXW2je31v62tfbgcPxvtdY+zBzz8Nbaj7fWbm6tnW6t3dha+3Jp54rW2s8NKozTrbVbWmuvb6094qHN8mz82fD6IcPrNwO4C8A3eQd3Xfd3Xdf9tXz8PPQPmv8A4J8wQyIEYhPCoHrq5LOva629Y1DznGitvVXWcpfquLX2yUPbn9ta++HWqw/vaK29srV2ibT98Nbaqwf1z4nWq9M/txnVYTKG61tr72u9qv0PW2unAHzf8N3cPdS11r67tfa1rVfn39da+19NVJKttdXhuFuG/XyDHmOO/azW2h8N83VPa+3XW2tPlGN4j3xW69Wgp4Y+fvywr79nuNZdwziPmnN3qY5bbja6TuY6vReG4z51uG8fbK39XWvtK/SYAJcNr7fqF92A4e3r0e/zL3Ha+BL0P8o/P3WxruvOotembAD42pl93De01l7TWntPa+0ZbVCDAvjO4bsvHfbR7cOeeltr7Tly/kh13Fp7SetNS09o/bP15LAvv7W11pK+fBb6HzAA+H2z/k8Zvt+lOm6tfeXw/ZNba7863CO3tta+Yfj+c1prfzVc/09aax/jXPNZrVfZPjDcu69prT1qYs6OAPg0AK/pum7TfPVq9M+xz83OR/+cewDAT09c51GttVcN99Dp1j/bX9dauzQ7by+q49XWmh6/1XXdVnLOT6JXOV8H4K0APhW9Olc7/6/Q0/03AHju8PE3o1/Yj+667p/M4Y8H8HIA3wvgDgDfAOC/t9Y+rOu69wD4LgBvA/AKAF8N4M8B3D6c+zj0kupL0Eu3zwDw31prh7uus3aG1wD4fPQqhN8BcGg49koAN7ZelfUWAIeHsb0XwGcC+LHW2sGu635oaOcXADwWwDei/7F65DAH566KyHHt8Hp3622vnwLg17uum6VCb71N41kAfrvruve31l4J4Ftbax/edd079qODrbUvRq+m+U4Av49+Lj8aOw/VDC9H/1B9DoAnov8R3MRuYeDXAHwUgG8F8B4A/wbAD2E+Lka/D74fwIsBnBo+n7uHgH4vvxPA1wFYR6/G+o1hr9Lsct3Q/ssAvAnAxwF4nXZmeOC9Ab3q/1kAjqGfu7e03kRwszmcKrP/AuB+9PPzuuFvDb2W6sOHY25DIIBhxxxk8cUAvgbAO4Z+zboXWmsfDuB/on8OPBvAweH4Y+jXLsOfDq+vaa29BD0LPakHdV13prX2agD/obV2Wdd1d5mvnwvgD7uue/fEtdjWba21twL4hDnHLwAPQ//8+H8A/C0Ajvda9PvyPcP7TwHwC6219a7rrp9os6G/L34a/dp/AYDvQc+uXx2c80cA/k8AP4BexU6B/O0T13olem3Fj6HfM9/fWnsYelXzf0Fvzvt+AK9trT2BP45tx8T1U+jV1Zeg3+e/N+zzB4LrfSj6vb2rX13X3dda+0cAHzHR309Ez4af31p7MYCrAfw9gJd2XfdT5rjXALgcwIsA3AzgCgCfjv43IsYMOv589NTb+3u9c9w1w/snon8QfZO094rhuOebz94D4M1y3HH0P6Q/aD67AcBZAE8wnz0C/Y36YvPZpw3X+ORkXCvoF+anAPyV+fxfDud+bXLuf0a/UZ4gn//U0Oe14f39WTv7pC7p0G/ctWGxn4L+IXgSwFXof9w7AN+7hza/aDjn35m17AC8ZA/75Rr5/Lp+u22//2EAfz7R1g0AbjDvP3lo++fkuB8e1oMqxM8YjvsiOe51U/tiOO764bjPmzjO3UNmXd4N4ID57N8Onz9teH/psEd+XM79ZojqGP0P1Lu5t4bPrh3uh5c598jjzGefO7T3O3KdXwPwXvP+Gsi9Kcd/wjDP9npz74VXDe+PmmOuRq+uu2nGvvr24dgOPdN867CnLpHjnjwc81Xms6cMn32Fs79GqmPz/asBnDqX+zNp+yYEqmP0D/MOwGfO3H+/AOBPzOeHhvO/xXz2Eph7evisAXgXgNdNXCdUHaPXMvy4ef+Vw7HfZD5bR2/HfRDAo83nfM58/PD+EvTPrR+Va3zosOahWhc7z+3RvT3slTfMWI97AXwAvaniUwH8N7tvhvk6A+DL97ree1EdPxP9JrZ/X58c//FDx/67fP4r9k1r7QnoWeqrBtXW2sCcH0AvTT1Dzn93Z6TSrutuQy+VjzziFIPa5NWttZvRP4zOAngh+h8Sgg/pn3KaID4LvXPGe6XPb0Qv7VB6+jMA39h6FelHZSoa08dV22Zrbc4avXgYyyn0c3YWwGd3Xff+Ged6eB76TffrANB13TvRj/e5M/szB38G4GNb7+H5aYPqZy7eIO//X/QM6ZHD+6egF77UW/pXMB9n0bPmXZi5h4jf7no1pO0nsLNXPwrAUQC/LOe9Rq55FL1Txi91O0wYXde9F8AfoPdJsHhX13V/b97fOLy+UY67EcCjZ+7La9DP5xsB/Cfz1dx74akA/mdnmGjXa6r+YOraw7HfiX7eXoj+h+Vy9Izn7a21R5rj/gy9oGnVx1+K3kHol+Zcy6ChfxbEB+y+V/eiIZzCA13X6XqhtfZhbYgcQP/jcxY9W/f2n4fte6frfz3+BjOenQ8BVDej6x3T3gvgb7qusw613JdXD69PR6/t09+Cvx/+9LdgP7EC4CIAL+i67me6rntz13UvRC+MvXgYR4deW/ri1trXtD14pu/lofn2ruveKn/vSY6/cni9TT7/gLynvfKnsfPg4t+/Rn9DWdyFMU5jgrq31o4B+G0AHwPgW9Av6pMB/Az6hzRxOYC7usFbN8Aj0C+69pdCBfv8LPQs6pvQq1xubq19+8SP1ZulzW/PxjXgZ4ax/B8AHtZ13Ud3XUfPyjvR/wA/dkY7aK1dgV719wYAB1trl7Te/vmrAB6FXtLbD/w8gK9CL5C9EcBdrbVfa/PCw3QP0FuTe+BKACfkRw4Y770Mt3e7bT172UN76afXL31/KfqHvufRfyvG6nb1Aj2TfL4GYBTaZTGoh1+PPurgOd1uc9Hce+FK+PM/e026rru167qf7rruBV3XXYtehf0o9KYZi58D8NTWh6Wso78Pf6Prur2G+V2NJIpi2Ku7xj1z/87ByB493Ie/A+DD0I/5E9Hvv1dhSnXZY7Prunvls8ln50OEt9eifcnr87fgLRjvpydg/FvgXc+zlV4G/3fD4k70Gtg3y+dvAvCY1hrvsWei92z+NvRC3vum7NzA3my0ewU36CPQSzPEI+U4hox8K/pNpPDc9B8Knor+x+bpXde9hR86UugdAC4bbG7Rj+2d6AWIrwu+fyewzba/GsBXt95p5XnoQ29uR2+78PAV6CUrYg4rvaXrurd6X3Rdt9F6h6JPH2xmUyEEX4z+wfvvhj/F89D/2ESgHXhdPt91kwzS4U8A+InBkeAz0Ntsfwn9j++54BYAl7bWDsiPre69DB6TmbuH5oL3yCPRMwuY9xYnhv5c4bRxBaYfIg8Zg43/l9Cr9T6+G9tGZ90L6Mfqzf9e1mQXuq77kdbad2Fsf3sletvjlwD4S/QP2kknKIvWOyx+HES7IHg/+h86/Ww/4O2/p6MXLD7f3u+ttQP7dM3zDf4WPAe9mUShQoLFO9Ez/I+E0WQNwvFjkGsogf7+++jk+y2gF/bQq8e/srX2EejDR78HvWD0s9HJi8wM9afoN8sXyuf6/p3o9eMf6TDmt3Zjb9iHCqomtx+8wwP+8+S4N6FnDy9M2vot9FLlPwZ9vk9P6LrunV3XvRj9Q/NJ+r0cZ9vajxv3Jeh/6L7P+7K1dm1rjZvseehjDT/F+fstAM9srV3ktTPgH4bX7TEOP0SfEZ3Qdd2Jrut+Cb0KNZybPeCP0QsLz5TPde/tFXP30Fz8NXqb1BfJ58+2b4Yft7cB+MJmEou01h4L4GnY8bJfBF6G/gH/Od1uhyti7r3wR+jjsa2X89WY4WzU+mQVo2dVa+1K9E5ru1jn0M/fQa9S/VL0rHmkhk2udwDAj6InIq+Ijuu67owz3v0iBh68/fcI9A5GiwSF88MLvs7/Rq99e1ywl94Vndj1TlJvBvDstjv5zrPRPwv+x8S1X4v+9/DT5fPPBPAeTxvSdd3fdl33jejNnOlzay+S+McOXmOKt1q7kenEja21XwTwXcNN8jb0BuvPGQ6hhNC11r4avTfmOvqH7R3oJd2nob+BX7aHfkb4Q/QS0Y+01r4DvW3s/xqudbHp9++11n4VwMuGB8Hvoo+rewZ6g/oN6D3wnoXeK/oH0AsLR9E/cJ7edd3ntdYuRn+zvwq9LeIs+gfypeh/zJeGruv+d2vtRcOYPgK9s88/Dn35VPRCxXOGDfpR6J1wbtB2WmuH0Nvk/i1i6e3P0Cc8eOmw7qfRh0rsUq221n4SwH3oH8C3oXd4+BLsw9x0Xfem1tofAPjJYc++Z+gzQwkyT/kMs/bQHvp597B/vq21dh/6sT8ZwL93Dv/P6NX5r2999qNj6LUj96DXBOw7WmvPRh/e8r3ozQhPMV+/b7C3Td4Lw/HfjV7QeVNr7aXoNR7XYZ7q+EsAfHlr7VXoBfgH0O+Xb0Cv8foR55yfQ3/vXQvgB7xn1ICLzLguQr//X4De5vkfu65724z+LQu/j14w+4nW2neidxj9dvRzOMoEt4+4Ef0988LW2kn0c/4OR7txTui67q7WhyT919YnHXoj+mfEo9AL+r/ZdV3mZ/Ht6NXOv9ha+wnseN+/suu6bW/k1oee/SiAT+i67k+Gj1+L/v7+2dZ7Hf8Demb9ScMrBl+A3wDwi+j3+Sb658ph5Fq+c/Y67tDbBO1x15hzj6BXkd6F3rvydQD+FRyPTvRquddjxzvtJvRqm6eaY26AH2B+E4DrzXvX6xj9D/1foJea/g79Q+Q6GG/Y4bg19Dr4d6HfVLejD014ojnmUvQPmfcOx9yG/kb4+uH7g+hVo38zjP1e9D9Cz5ma8738wUlYkRz7NPS2s1vQ//Dfhf7h/lz00twPDpvnscH5K+h/oG+YuM5HDmt1/3D8i3Se0TPnG4Z5Oz3M4w8AOC7rfYN5/8nDeD8t2KN27z182D/3oc969fPYSeQxSnwg7V2P/ofE+27uHhqtCxyvXvTS9nejVz2dGsb8EXASVqAXcv5oOO4e9Df9E+WYGyD3iLnuC+Xz64bP17z+me+9v+tMO+m9IPflXwzr/ffozSTXYzphxYcP7f8FevXiWfR7+FcA/IvgnMPDHIXrPcwVx7M1HP+X6MPA0gQH+3Df3oTc6/g9wXefiT6j1Cn06tWvQq+xetAcE3kdbwTXunFGf79m6PPG0PZThs8jr+NHy/l/jLHX+4cNxz5XPv889Nm77kMvVL0bvQfwE2f081PRO+c9OOyR7wdwSI5hH58in1+C/pl9+7BH/wLAF5rvj6JXQf8t+mfbPcO4vnCqXwyHWBpaa/8JvQrzmq7r9itFWKEwidbaD6NnK5d107bqQqFQ2Bcs0hkKrbV/jV53/ZfoJcanow8N+OX6kS0sEq3PbnQxeo3COno2+FXoA9DrR7ZQKCwNC/2hRU/9Px99KMRR9Jk0XoE+/q1QWCROoo/zfjx6Nf570cfDvfR8dqpQKPzzw9JVx4VCoVAo/HNCFX4vFAqFQmGBqB/aQqFQKBQWiPqhLRQKhUJhgVi0M9TOhdbWugMHDmBrq88VwFfPRryy0v/+M33k6urqrs/5ao/RczT1ZJaKcurYOeeeS/tTx++1j3sdz5zrZeCxupbZ3OixXdfhtttuw7333js6+OjRo90ll1yyfY7Xrn6mr3bPTJ0TYb/WeC9zG2GOb8V++F946xS1HX2nn9vv+T+fB5ubm7veb2xshNcjWmu4//77cfr06dHEHjt2rLvsssu222V7bH+qf9k19/L5uR67n+eeL+xlP0Z7yPssWjfvvuZzwP6m3HPPPXjggQcWOqHL/KHFYx/7WNx///0AgJMn+6Qi3Pg8BgDW1/s0uUeO9BnHjh8/vuv90aPbWdxw+HCfFezgwT7x0IEDB3a1xVfvgaufRT/wfLXf6bkqDNjF1e9se1mb3jnRqz0nEkyizzln2TFzfjj0oclzuZ523PogPXv2LL7xGzU3fI/jx4/jBS94Ac6cObOrPa65HQPXm++5P3gOv7f9O3To0K7vvB9l/TzaO9GcW+zlR5ntqGAaPYj4g2LP4WdRn72+TP0A8r29nv6Y6TFcv9Ond6Kr+P+DD/Ypsu+9t09ny+fE3Xffves90O8VYPde/b3f+73RWADg0ksvxYte9KLtdk6c6HPP8/lj+8V2dW69eYqeK7qW2f1zLqQgEzoV2geuR7TPs/ayc6YErIxcWcHHHqOCEdcKGO8v3X/cH/b5xmcGf1OOHTuGn//5PaXBfkgo1XGhUCgUCgvE0hht13U4e/bsttToqXBUrUxEjMz+HzE/ZaeeunEOa4sw55xIsouk0+w6c9Wc3nUjadvOd9S+tpGpcqLrT6n/ImxtbeHkyZPhvvDa5npnTHCKibMNfu8x2miesjHrOLzx6LHKWOeodCMGMWcdIo0G2+TcWI2UHqvvPdbN8/UcnSP7nqyGn1mTlIfNzc3R88Z77kSqR08DEGmUonva23e63tm9NZf1ZlqXqXPnsO69PCOje0G1IsD4XuMr2Sh/Nyw71fYUbN9qsfgZNSiHDh3aFxPLFIrRFgqFQqGwQJx3RjvHUSayndrvpuyQmf0zuo7HdOey4Dm2jGicHivR75QVe1Jd1oeoH5GUGEmcWXvKTqxkqfOYSZVd1+2y63lzr9e09lsLz3bOV7XrR3ZXbce+j7QGto/Re28NdU7VVqrXzdhQdK94ziK6dyLNgGejVfs7GajaCIEdpqJQ5mnnhufw9cyZMymjtedrH/V/20+dN7t/yawiDVq21qoVOBfovveeRxHbJuaw1MwHRduZss1644/WW5mt16foXlBfAQu2N7Vv9gvFaAuFQqFQWCDqh7ZQKBQKhQViaapjYLdTAtU+Vh0zV2Vs1Raq5lM1YBZuEamIMieIqXjdTN2smOMEFV1vTkhQpCLci4NDpKq2iNQvmYpKVcaZGq3rOpw5c2Z7TT2zw5Qajsfa/aZhQpE60Ns72v9Iheupt1WNmTl1RHskUhl65gI9JlKRe2PVeZ1yOgLGql06nqj5wR4TOV1lql7ug42NjbRfXdelqmhC15D7QV+BcciahvtE62X/n3Iw3EsYjI7BQ6RC9p6r2l4U8jhH7ayqW28NNF46MkNkzx8NW4oc64CxQ92iUYy2UCgUCoUFYqnOUJubm9sSrBc0rawpcnDyEixQwuR3KnF6rCRynJoT0B+FhmROKVNteWx4bkIEb1yUsiNHBu/cuaFOc5htFuqirGFzczNl/jaMxOtD5NCi+4PJKYCdZBb8TPdMlpEsYtD8PNvfGlivoSeWAUwlNVBW6mlSOMd8r8k7vL2jCUB0DJ4THsdBBkvWoPPoMdrofvUYrc7bxsbG5P2WhbrpfR49U+ze4f86T7pOHvPLWLX93I5JtR9ewhDF3KQWnrNXpNXT8WYhb57DnB3fHEarWhKbsEL3U+Rs5WkT9rJ39gPFaAuFQqFQWCCWymg3NjZcZqLQ1H2aVi8L74nsKl46LpXoo3CPLPxFbQiEl0tVJdWIyXqMPWKp3pxMpWnM0ivOtSd7jC5KpkBkIUhra2spi26tjdKweWwxat9jJRGj1VSgc5i/MkyPxXthKQBGfgt2L2n6RLXN6j7wWHd0Tyhjs/3XOdDQHG/fMwRryr7rheowxaKek4URRSkT58DTVul8cV/oq/1f5zTSNM0J99M59cKgdI/w/RRLttchIpu97a8+e7kfvJSmUylMde94+8DTVthXy2j1XtPnD4+dCh1cBorRFgqFQqGwQCzd65jwvCQjj+GM0apEGUnknvSun2XemMSUnW1OsnVCWWLGTtUGFLFW2+/I3prZkSMv18xTWa+jkmuW5GJuarfWWuiRaKHXjJJRAPH6k62wiIVnr1QGo/33qs5QwqYNk4iSkXhj1D2p+9/2g5/Rq1pfM1YS2WiVWVlwXZQZctzefcXP2Kfo3rP3k8dyp5hJ5tOgY9b153tqQIDY6zjSknlaKrVz89WzR2rxBR7DNtR72yJiu5G2zJsTro8WceE82GMjFp8xdo5VXzluHmvnMfJQV3ifz/GW3k8Uoy0UCoVCYYFYKqPtum5kg7FSj3qGUmqaSm/mfafSkye1RZ6IWYo6laKs1Bn1UdlVxFKyWMjMky5CxPy0rSx+TtmWZ4eN4vMi27T9314nkjJba1hdXd2Wbj3bXOT9nTH/KK6VrIGf6z60nykj5znsq11L9bhXG62+2mOj9JZ7kcyj/eV5txIab8i5UWZl/+d3alfjq8cwlEV6XuLaX01PGsGLt/Y8bLmmvCbLcZLFZfbISLOW2c51PJE93o5VbbJZXP+UL0h2byiTVe2PF1usn0Xx4R4DjUreEZ5vCPvGPRPVLrZ7dE7ugkWgGG2hUCgUCgvEUhlta23k6WaTv6sEqTYl9Xxjm8COpKJsR+0Tnl2A7fNcva5n/9TrZ8nxI/Y5p49Tds8sY1MUC5fZW1VyjGzDFlNJ0jV2zbY75alooRKrF5er7SoTs32IWMicBOoK9SdQTYr9XzUbymStDTdaX7WdZn3ksWTZKtV7DDryhGYbql2w5+q4olJ/Xjtci0suuQQA8MADDwDYfc8TcwpSEFGMvv0/shcrm7T/R2s5hy0qlK3a66ldMyr7l+0DLe6h4/ZiYiMP8ihG1uuTanDoYX7q1KnROZF2J2P56luhc2XnRAtcLIvZFqMtFAqFQmGBqB/aQqFQKBQWiKWqjoFxMgoasoHcdRwYq7Ms1IiuqjUN8wFiwz77QVW2PUdVqqrK8Yz5UwmzOSdeMo+oOII6YWWORpET2RwniCgQ386JqrE9BxC9vs7bVFEA73vbXhQCRvUUVZB2XaLwl0jVaq+nqrs59W/1eqqaVOcoO44oMUak4rfXoypa9wHnxKrwVJXLvvAYvfc8RyNN5q4qPLuW6iDGvrKP3nPivvvuA7D7HsgSrWxtbc0KMdP9qg5t1qlHzQp2Dr2x2rZVdaz3v6eOVVWqOp55quO5yWcIL6xMn2f6/PFSIqrqW80Nek/acU0l9cmgvy3e78SynaCIYrSFQqFQKCwQS2O0rTUcOHBglJzBcwyIQkqURbJdYOwEpZKeGsyBOOWeGvOtNK3MSSUkj9FGyfUjKdsz+Ot4syQHU04oWTB9FPSt0mom3WsIih7nHZulYGytYWVlZZQAIQsxOnnyJIAxE7DnRMkGeAwlb55r945K/BqS5mkRIocyXQ+P0apGIdqHdl34HZkD2+C9cffdd+96b//nKx1X2AbHo6wcGCdx0DnwUozqnuR7rp/HStTppeu6lPF4qV+9vcPPvNAs7Ut07+r947HhKI1hVgQgcjBSZmvPYftTKRG9+05DEqOELN5zR5Nr8D7imvJzy2iJSFPjaQa08ESUntT2MSv6sUgUoy0UCoVCYYFYqo12dXU11MEDsXSR2RLUXXsqXCRL9k8phxKZJ1lSklebaRZwrVJvFDjuzUlUHEFDM7x0hFHqRyJLQK7z6oVXTJ2jc2Wh7U5Jlqurq6OxWzbFsVJKVtabhT+o1MxjtA3vXE1QkSUW0eQLKukrWwTG9m50lDycAAAgAElEQVS2wT5rUXVP26OaIM4R2aoX3sPx0B6qrDsL94qYmbIvex0NseLce6yHfaQvhforaF82NzfThCsafjbFHr1jotSsnnZnKhWmly40Klqi4S92bqMShBoyOCckKHq+2blnX7if9VX3u51PZaxR4QuvsEPUZ++e0HshS5SznyhGWygUCoXCArH0FIyRDcP+r1Ky2mk8JhaVC1NJyUsMHyVSV09IjsGCUmkk0VpELEBtNJ70q+NQD0UrWVJyVC9WlWhV0s36r7Y0bx51LrJEAnOOIWijZZ80xRuww3yipOu2LUIlXvWo1qICNqm8egxr0nNlDcCOBK5+A3x/7733AtjNaHnNY8eO7RqH+i2w716SA2XbmoDejkvvLU3ioszasgotTxbd65lNmNeJysDZ61hb75RGhPPk2Xz1XPZfCyh4NtqsxCHge+lH3tmR/d0bh8JL36n7bCrZv5e+UX1fdE/ZOVEtBI9R1s1x2f0RFVZgG5pUyB6r91yUrtQea8ezjFJ5xWgLhUKhUFggll4mj1KVZ79TVqpsxJNu1UbK77SYtyYM947xytTZtoFYoovSKdo+qt1Or5exPJUolclaSU8lyYeSSlD7msUw61qqRiCLkbUSbCZZrqysjGxXHCewM5c6dsLrAz9TL1MyPH5PZutpXyKvcC/+T+NlyeI0cb9Xwo0x3erty/demsu55dHsvlD/hMhDOkvbp2xEGbRd56k4Ws9bXDUx6+vrk4XVld14ceC8FhmZ9s3zyFdtgWo/+GqvpwxzqsiI952yUM9XIyp8oBo0npOlto0KYHjaRb3uRRddtOt7LX0HjD2U7b1t4Z0TFW3J/DGIqfj9/UIx2kKhUCgUFoilZ4aKErgDcdwd4encVSIh+7j00ksB7EhTnvR+8cUXAxjHVGVZZNTDUbM7eVJ7FNel1/FiIVViVEardhjAL+sF7Eismqjd2v/YvsYWe/ZqgnOi2XGUPXjS7xxbbWsN6+vr2xoI9sHug4jh65x752hCe7WleuUGtTj3HPauTJbel4RXGk49UpWdcK29Paueqbp3vSxqysRV60N4tkLdI5oJiK/e9VRTRHi2Z71fI7slsOMXkrFIZeC8P5S1eaxZ/RP4/Dl+/DiAnfXxYjk1y5J6AXt7NSr6oGOw50eFQiKNhx2X+hqovTXzseF7Pl90nawvAtullztf77nnnl3jyzREkSY0+704ePDgUmJpi9EWCoVCobBALJXRWskhKtLrfaYSh1e2jpIjy2upty4lcy9zCqUnSm3K4qzdSyVutatZD07tr75GrMtK78qUo1J3mQ1I4w7ZvuaWtuCYeYzn6auIymJ5c68sfn19Pc0M1VrbPkeZLTDORqOSd8Y02R61H8rePK2BerGyfe4/9oexqrYvyvQjb1Bg7HmqLEu/t/tTmX/EYLy4XfUgJ/vmGDhXdq9q9ihlxewbM1LZ6+g9EGlU7LH2mCwGf21tbfs67IPnaR/Fxmpf7fmqcSAiDYTXvvo0qMev/U61MHP2OdvX+92LD1boMymKybft8b5nX1STQtZv50zvbc4rfRPuuOMOAH5ctf6WZPeVzpPNg71IFKMtFAqFQmGBqB/aQqFQKBQWiKU7Qyl1tyqVKHTAKyZAUNVw2WWXARirRxXWYUdd1lVNpc4k9jN1PtAAfs8AH6VAI7xE9KpeyhIiKCInLw0Y9xwoOA7PmUOhTlxzwog0PWBWVID90tJ9dl10vVVtzrWmKsr+z7FqWUS+sl80MViw/1QZ85UqY3UQs9fRdIOeo5mqVjW8JwrVAHbmh9fTPeMV9uD605mHx9588827xkUnFav+073Ktri/uJfsunHsahpRFbadmyjhvAc60hHq+MZjgB21pDpsek5qqipW9aiX/o+Yqzr29rfes7Yoh/YxSmMYFXSx1+M6aLiNrpeFp/L2xkMzhN2r6hSn4+J95e1vfa+/MXYNtAjIslCMtlAoFAqFBWJpjJZu9pkTgZfEn+faz60EqwZ3dRLRoHkvwXRUTNsrxxa52UdF1S08adq2lc2JOjBEScbt/+p8Ezl9WERpFNXpKysyoNKox1SzxAcRbLlCYLdUGhWdVnbKkC5gJ+xA5zZybLPj4LHs0+WXX76rT+yHDdaPUj2qhG/3UpQMRIsLsG3rsMO+RYlgvHAIbZ/XpcYoC3lSBqWpP8lKvbSNbEcT7Suztf974XAKMlrey6qlsP+rRotj90oCsl/qJBQla/ESMKiDYXSfemPUUCAvNapq0nS8+tyzfYy0enpdL42iOiFpQQcvAYhq86JkOzYUUZ/5+oyP0rDaz6qoQKFQKBQKHwRYKqM9e/bsSBKyQfvq2h2FtlgJTRkrpU/apTLm5KVjs30jskQLKh1m5eqiJOLKnK30HjFltc3NkSwjW5aX8o9Qu6HHulUS1+t5we1eIYdMsuy6bnteNGzItq3MmKwuSrzgnaNs0UsAooyF60Abpmdv1T2obEQD/O05UyUVvTASHWuUHtKOn+3SHq12SjJ0r3B2lB5UE2N4yVWiZA1zwskyRqtteMUF1C9B59pLdqPXVKasjGyOTVA1XZ7tXP1JVIuQpbTVfabPP8to9RkS7VUvTGpq3xHe/RQVF/DSUqomSlOAeklkpp6Fi0Ix2kKhUCgUFoileh3bkkSZbU4ZRebhp7arqCCyl64tKqJOeBJzlDZRWZ2VmFVSVWlRg/W98lhRWTSvj1PSZyTZ2mtHdnLPs1Cl+Uhq9DzMiSlbCUvleecCO/OiDJbvPU9Osk6VfHUNveupTUnTKaot056jGhNlh1oSzzs2stF5/guRvVBtqLa9KE2oMkw7Fk1LSY9VtZV57M5L1gL4Wift41RBgTNnzoTJYez/+kzSdr3iIrqWkdYiS8yje0Vtp/YzvceoEVA25/Ulu++B3eui/iRemTp7Xf0/OsbCSzGp+y5K/WjP95JQ2HMyLaO91iJRjLZQKBQKhQVi6XG0Kql40k7EFr3SZJFEH7FhCy9O1l7fSzumUpJ66Xptah+8mEfve2BcyJ5QqdfOo9qHIptpVthBJfHICxkYM7KIUXv28aiAhAU91jPPbvUQVZusV5orK38GjBO3e4xcYy4zW73a9fVcr5g6mXLETqNYbPu/7p1sfxPRfou87u1nypgjDY7tS+TH4JUO5JqSOU/tnTNnzoRaBA/R82ZOutgpW6NtN2rLuye0T7pXvKiKqCAFEZV49PowJwWrzmn07PCur33RufDWa65XtZeXINNWLQLFaAuFQqFQWCCWymiZHH7OcfZV7aueVKXtqkTpSUSRHUXPsdKoZoBRDzv1CvSurfZchZe83vO6895741GpUO3Zdj4jFhoxHNuOXjcqgBD1OwJZSeTNaMcUxfB5MdiqaVBpN2MYUSGArCCGF+sIjBOoe9oC1WzMsQFqGTZl0F6flcUro8zGp8dqnzPthWqIyOQ99hf5D0Toum6S9Ub9iq4bMaFsz8+Fp2lSBjbl5az/A7EtONvfem+rJsVL2B89DyI7rP5v2/U8vvUY/Z2Ys9ZWE1M22kKhUCgULnDUD22hUCgUCgvEUlXHq6urqbqCn0VqmcyxaUoNvBdVjqoQreqYISFRGIynqo7Ui9rnOaE6Og4vBaTObaTCydQ/2udMLTOlsvG+1z5OqW82Nze3nWwYsmP7qAH7OnbPmWPKEUJDS7Kav5Hjnpekg9C0gDzW1rCN9rF+T3iJSzQ0IkrFaM/nOZrmLjIP2P/VMUxVx5lTUXSPew5UxNmzZyf3T5YAQ00q2bX1MzVnzUklGplhMgdHQu8bXS8vNDByvszWJXJ+0/mz76PngJ6TPUNUrZytmz43oz7acbM96+D4UNT7e0Ux2kKhUCgUFoilMdrWGg4cOJA6mGRs18JLTTbFKOZImoRKcdYBSoPb1TnAC++I3N6nQmnsuV4ydNuPOeEkijlOSnOC0OdqC7LrdF0XspKtrS2cOXNmW2pnQgdPetd1Vqcly0o14UGkPcjSd0bJAKJxArFDHRm7Td+ojClycIuclew42X6UuAQYJ0BQ5yh1krL7Tp3I9BhP26P3k7732Ja2f+bMmck0jHptL2FBFHLolfSMnmN7YUfRs4tjz8KueF2uaaSJmoO9OJdmiT+mwskiDYd3DKHX8UJ1pp6n3nU8bd4iUYy2UCgUCoUFYqmMdmVlZaSL90I0sgBxPSeSziOX78zuEYX1eKXAorSKatuwn6ndIWI/GRuO7CCWqSkL0fajEBHv2EjSzGxiWdIGHUcWfmWvZVkgx+eVWyP02p5NfSo1XaYVmdKYeOPJUsIB4/Wyx0b7IAqdsOB9xcLmmvTAS0salUFUm6CXgjEqh+YludCCGuxjlmiEa8hzT548OVkqL7rH7ZgzrRSwN18GPc77LNpDnmZL71W1R3phMJF2KnoeeWwxCufx0ndG49T3mY0+0u5NhURaZL8f+pwuRlsoFAqFwgcBlup1vLKykzheSzfpcRaZhKJ2tSmmkUlTUbqvrJiySlxeG1Pp7DK2SKmdr1r83LPRRp7Je7G3Rt7ae2HdczClvbDX4LWZrN7ORaRhmJOoXQuJR4w/S3YRMWovzZwyJfUcz5LJR4kDvL3EOdG5yJKuaOrSSPL3Uo3y/+jVSwDDcfAYtSNnaVDnpGBsrWFtbW17z3hrED0jIi9W27+pRP0Z04yiDry1VIYX3dPZdSLm7D2Do0QVulftWs7xmo4wxVwzG63OSebjo2NeRrIKoBhtoVAoFAoLxVIZrRdz5bHFh5LGbE4atqm25iTSjuyamY0oSn4dJeP32DAlfY3p9EqFRVKu58UI+FLi1Nzbz6Pk5FnScs8WE61h13XY2tranheyE9rzAOD48eMAdtZMbZZkP16spNqjIsbhpRvMNBnRdZRZqL0r8+iOYhK99KQqtev+5pzYgt9MAxmlvou83rNj5twbmnJRS+55jJb9noqFbK2NGHLmxazIPFQjxh89y+z/uqZZikJl19G6e+lb+aopMb2CDYSya30Wev4GmgYy0lpmtlo9ZsqvwSLKE5DZuue0ux8oRlsoFAqFwgKxNEZLz1HawzwPRLXpzLXfAbEtay9xblEheC9jChGxUs8zOrJd7kWypESusZ12HiOGpt970lzkRZh560UxnnO0B9H7DIwzJbO1/abdViVwMqMsm5RCGeheYgY9T05lf+ql69mNon0deUxnBQm4RzRW1jJazqmWWNN7cYoF2vazWEi130YxkFZTwP7qHHjoug4bGxujuHfvuTPH2zga45Q91LO3ZszLHmf7GJUD9fqqjFZj8bOMTdEzQ22oXo4B3c9Tseb2M91XyqDtuTp/ej95ntFedMAy7LTFaAuFQqFQWCDqh7ZQKBQKhQViqarjjY2NUTozqy6J1EXqvu2pAqKUbXNUuqqyUzVWlkhA62iqusa2P8exKDpO54CvXnpAdXrSJASRGtBeey9pzfTcKBG454AyB9w7quq0quPI8UITVcxxgolCADI18FTiAns++63JGrLr6Cv3WxSyYa+j+4FzwYQVVnWsTkkXXXQRAN8xEHhoziSeilLXTfe5VVF6qsno3uq6DpubmyMntcyZL0q2P2fPRs6EWerACFlYEddfny32HK6ZPpuipBDes1GfgeqE5dV11WdVFO7jXW9qru06ToWTZednyXoWgWK0hUKhUCgsEEtNwbi+vj6ScryA/ihQPJM+ImcdlcA8Nuw5ktj3ltGqcT4K7LcJFKKSagrPuSPqY5RQ215b5zFiH5kTRPTeMrap4H2dM2DMCKcky62trXB9AL+koW03C+tRtjOVztP7LEqcb/tItshXQueHDMT+zz6RhWr6RM8pjkw10mBoKkZ7LB3OIgalfbeI1tJLRE9o2lB1cLGFFvTaU6E9Kysr2+d7156racpS+kUhQDrX9jPdd+oE6jEzvdc0ZMfThvCYqAygx7D1HvbConQMmrJWtSARC7fH6H2jjk2e02e0D7x59kKNlsFqi9EWCoVCobBAnLcyeV7ojIYhKOYEOKsklrnDR2nlMnaqtgraPSmtMXTCS9eXhWLY4yzDiMIHovFaqOQ4FU5gEYWVeIjGMceea8MGpiRLZW12n+iYlBVkKRGjMIQo0YjFFJO1dmQyWQ2hyVLiKStRdqIhG54/gULHaSV+3atTSWQyhjilMQJi+5om0/CeCXOSnfC5QyhjtojsdntJq+r1LYLuTWVvtk2uS1To3bvXVCsQ2Y29PupnbIvr4SU7idZQ2bAX5hMl79AUnHYfaFIT9kXH62nf9LqLRjHaQqFQKBQWiKWmYKS9hP8Dvo4/Y70RVE8/VVzAnhPZgj1GqzYXZbRko5lnpUp0mj7N2ugiW6baZqykpmxjL0XJdZzRsZm9Usc5hxVP9WVzc3Mk1Vv2pp8p+/US0EdJyCPpOtuHytpoE7T2WErcej1dS5vkX72p2W6U/N8iYr0a/O+VoNM9pIlSPJav9230atdNbbDKmOYUas+8TDlOtQ9n52QaDEITOMz1w7DnRt7HHtuOWG9UmMT2Ta83Z3/rMZr2lK9e4g/Vqug4p2zGtk9R6UX73UNJcJQVtVkEitEWCoVCobBALN1GG9nSgPmFo700c1EcVubJPFc/79kwIsaceQ5H9mLtRxaDqyw7s0OotOuln9PrZ7Y3r6/2M2VZWWJ17etUGr2zZ8+OtCDWPqRp+aI0c55XZuRJnrEUnVNlD+yP5y3LAghqf/XuCTIHtcWRYWR2ULavKRdVM2Ch86Ul9SIWbttT25yyE8t4lMFyXPq5x5zsdaf8N/Rey2zLkee6t3+juOIsjjazJwN+jKrOA7UU3B+epiEqpaj7zStFSPAz7mP2w/Piju411SLoM9uOndDndqbZUERtWdjnTnkdFwqFQqFwgWNpjHZlZQXr6+ujbDgWUUJpZaOZ9Dqlp9+LLYOSnmVOyqq14HgUI2ePjbL9ePbkiJlF17fnKEuMkuR7cxVld/IwJ5H6nHOn7Fq6Dyzz8IoGWHAuvLXUjGNkCxob6SVs12NUaveYjJ5DFpedQ7t9FM/qMTXdO8rcyUo8JqO2bm3TziMR2cXVRutlouIcKHPy7LC6j8+cORPuUz53VAMw5xmi8LJJqVZE9/4cG2Ck+cmKjKhd0mO0UUEI7m++Vw2EPSe6XhYTHfnJRPvQtqe/AVE/vHFFsOu2Fz+V/UQx2kKhUCgUFoil22iVTXkSRWSTzSSYKW9jz/M2iqNVG6C1s6lnXTQOj2mqbVZjIz0JVucg8qLOmLqOT9vw2Hdkl/I+n/Iqzuy6c6Bex5nHuldqzsLavyObrK6pF4MdZcFSdmjXgPvpzjvv3NX/KCsOsLM3mHP42LFju/qm4/Rii5UVqp0t81uIGLRnT9ZzNQbW0xDRxqjMVm20Xvzz3BzE1g7n2duj50qkgbD/qwd3tJc8n43IW19ZMrCzDrp22jd7TpTNSeGtJRHZtL37N3q+eONRRFnsPPYbXVe9+b2sXNHzbNEoRlsoFAqFwgJRP7SFQqFQKCwQS01Ysba2NnI599QxkfpgjvE7SqzgqVyjZNSqQraqY6puptQhNo2iOu9EicDnpELTY/cScB05HHjtE5Fa2Fu3KDGGhyi1ZAYNV7J90rRrqmrSYHlgrN7T1HdZSccsEYq9npfk//777wewoybN0iby2pFjkTr5WHW6lsljG+polKUL1ZAQ3Qf2eqo61LAezxTD//mqc+KpjgmbACRzflxfX0/3m5pOovsjczQjdD94+yS6XzJnKK7L0aNHAeyo3DlvXn+ilLKRk1/mWMlXvZ7tY5SIJTI7eMljFKr+zcKJpvpu27HvK7ynUCgUCoULHEt1hlpZWRmxiMyZYspJwTtHkYWcTCXX9q6vbICu8pTIKGl6/dL0eZFrfpbYYY4xPwrr0O89pqZOCZGTmb2uV3w+u27WVw/cOxqGY9vT9IZ6jLff1Fkocn7ScC9vzFFqUZvwQRM4aEiLN7dR+bU5qRi1fe5N3Rc25aOW4YvYfubEGIVxeInoldFq8gRNmGH7ZDVFGaO1KRgJ+15TcWaFAIjoenPCCqeYbHY+z6VTnI7L7hPVekXansxhS/edsn+PLSoLjYrTe6k/PcdMe050bXsd3R9eMh977JwQxnNFMdpCoVAoFBaIpdpogdwOETGiyFZrP9P3UfiL59avSQYie5ieb79T261lP2SOaqvS8XjMUO25kdSbJXmP3N+zNiPJ1bNxaTva3hxpNGMRXde5TNQ737PF2nO8FIzaf7UtMbTCS4IeBe57e1VtollBAB0X947aXfV6to/KnKNkGnZOopKBGj6V3U9RQXOPpSqDjRitx9Ts/brXFIyZbwgRsSsPU+GEni0/Cg3MwlI0ZEb9LrzrRNqWLBn/lOYsK7QRPWe0r3P2fdYPbV99BFS7Zb+bo0nbTxSjLRQKhUJhgThvjNbzIlNECSuy4PUouYUnnUaStpbsslKPSmeE2gK99IBRSjS1EXpSqbKPTBpU21hUDi7zEp5aH882M5XcIrPnTGFrayv1TI5StWXJIJTlRGW7MvuuIgqaB8benfQg1b3r2ZTUns69qX3zxqC22KikoG2He1b3yJy9qnOtxQQso9U9GiW692yqlpll+6jrutE82vsz86jn+YrIvjqVvAWImVfWD9WCaEpOPc5rL3ouZP4yEcvn93Yeo7mItIv2c9232leP4U5FRGT3k12/8jouFAqFQuECx1IZrfU69tKDTbFRz6YUlV6aw2zVC5QsQfvm2XM0jaJKnJntWT1Jo1J49v9I6vLsK2rDUqkwGouHyCaXSYmRDXjK6zjz5NzY2EgZuLbNteT6ZOkNVTsRpdGzdtHIo1uZpeedreB4aEu1/dFCFLq2mW2OUE/LyJ5oP9P7R9v3/AmUoUX2Vut1rP4QyrY9trXXQt+MpQV2GKCncZoT5aBjnaMdis7V0oeRTdNrX/eSd04U4RFpKTxGG6WYzDx6pyIVspSvOo45axzdA14JTi8NbjHaQqFQKBQucCw1jnZ1dXUk6VtpQlmCslCVer3PolJq6j1pz43sep7tLiptpww3i03Uc5W1eFIiEXk9W0zZtiOWYq8XSXmZt/hcG413zF68/7xzVKMRrb/XDhEVYFd7pW1/KvbSY7T8jHski4XksWRivJ72ybPRZusc9TmKwY40Qx6DIqI42qygudpxvYLfWRL8CHqPZSw+isG2mNJGRTHZ9v+pLFLePiDUdj2H+UUarTle/DoXnpd7dO3II98i8iCeU45P92ymGdDnc6bN208Uoy0UCoVCYYGoH9pCoVAoFBaIpTpDMR0akKstVF2lKl1PZajtRAnOvdAgPVeN6F5YiqoB56h/tbZnpJ71HEy0rTkB4zrmyKnM60ekxvLUwVFow5wkF0SmBqQzS2RayMacJX3XerS6l9RZzlOT6XVV9WXP0XnQ/aDmB9s+z9E+E959EKXCIzwnL71OlBjDU99GoU1RmI/tb5SwQtfCth+9V9BsBfgOMurgE6UO9Z4DkblE19Tb+5GjYXZf6nxpYhYv6YQ6XU09X+3/uq+iWuFe/zV9ps7ZnEQ2mflJ29X2NKTL/m8dIcsZqlAoFAqFCxxLT1gxJ4lBVLYqk7zmOGvo9QgvqbZ97wVJR2n6vJCRKAQoMtp7fYxCNDyXeXVciEJBPGcPDQyPwlWyUJ0oDZ3nZj8HKysrOHTo0IhheuE2yrR0H2SJSzQUSCXlLJEIwT4qSwbiNHrcO+os5/VRk0xoAgbLInSsUYiQBc/XMWs6O2W+tr2I2XjXnUp76jFr3YuHDh1KnfcOHDiwfW3VPNn/la3tJfFBFH7jXU/3ojpleoUktB19JnqsTp8NOp7oOevNRZS+09NoqHYqer56jrCKzNlQxxwVB7GOqV4YZjHaQqFQKBQucCw9YQUxJ1VZZEPL7HmRK7kyAHvtKN2g52avDJbfqbt4FsivUAksS2/ohdd4fbfnTpXh8/qlUmiWWlDHEdl3s/Rw2T5ore1KNeddW6VZldaz4upTiQq85OReiUHvXNsP7pEohEHbtuOJjiEL1kLwwA5LjGzlXrgckaXns7DrxjnWtVRboGWnURpUZege27KagMiG11pfUIDnexon3h86H8pks/R/UzZarpMHtUt7Nk6mhdU9pOFrdp6iggMRc84SAWXsNzonS+KjiNKQzinsED131B5r+2Cf18VoC4VCoVC4wLHUhBVra2sjluqVoIu8/9ROBYyZReRRq4kmgB2pRtmHsh8v6YDaTFRSzrwaI086j71E0qC2ZfsYpRSM7NmezTtjCNE5xJTdyn6WBeUreD6le3t85B2riSssMyMjUjtUtF5ZutBI2+J5HWvpw4wt6PorS1GpPUsTqalFszR66mk9h+FGGoGoUAAwts1GhT0yDdEUo7Vp9o4cOQIAOHny5GjMe0mjOOUNq/eyZVWq9dLkD6qdAcbzrj4UmZYvsqtGxQ2y8Sg8fwItKxk9q7wiHVOJa7x7kFDtIrUI9nnI72yymGK0hUKhUChc4Fg6o1VmaSWiyIMu8mKzx0RsjYiScdtj9xKzFXkXemkbp0rqZV7VUVo7ta94zDBiwVks3FxG633m9cWOIfPanIqjXV1dHUn+1oaldi1t12tf03JqmsMMkR0v87TW+VemyXm04zp8+PCu9rQoh6dBIXStprxObTs6FzxXYyOzFKARS7UaI/5P5spj+MpzrY1T91uWGJ4x2NZDWdvjtSNP2yyuVVlalJrV0+boXKst29OGEKrp8BhhxNQjJuhpqdTuqhpEe09HPg1R/LsX8z0nJlrHpzZhZa1Wm8B1rzjaQqFQKBQ+iLBURru+vj6y/dgYJ0IlfGV+WXaniMFknq8qTSmz1nHYV/1c+2XbibIhqXeod25kq/U8VyMmE43Bi2uMWKrH+qcYrTf3GguZMVrG0Xq2We23Mj2VvC0DY3tRObHIV8BCk5RHUraF2tmy9WB/I/tWlkvA3owAACAASURBVAlrym9BbcbeWNl/9f61pe70eupLofZWe64yWD2H4zt69Oj2OVwv2lszb9aVlRUcOXJk5KnMc71rKdP3bKZT93+WGSrSOOn4vJhYQvedt/7RfRgxOO+5qmvpxbArogxQUa4Diyl26WmIVJugntl2f2u+g/I6LhQKhULhgwBLY7QrKys4ePBgWM4OGDM7QiUgrwh01G4mear9MyqInPVF28rKOkXxpRFr9K6jtuA5+UKnPJYzRLZHzwtUJeg55xCbm5shcyQrmRNjp/l0I3uxhcZy6rkeK1FvX9p+omw8wHhPqN3LKxavczgnnpmI7Pk6j1bij/a12uw025P9jq/KZPnexvoqo9Vz1EPb9sna4KK9rM8dwvaBLIdj0vzBHqLyeIRqDbJ1irRVXlYxzz5tP/f6EPU58tkAYvap7N57zkXHattZX+ewcZ1TZfl8tTH4eq8Voy0UCoVC4YMA9UNbKBQKhcICsXRnKFX1WqO6OkZFTkpeCrdIdTzHAD8VoO45p6gaRlVdXvuRc0CmNolc47M+R8UDImeYzJFKwxOy8KUpNZqFOnFlqda4d7JQFm03S0au0LR/mmTAC2XQoHh1SvFU1Gr60OtoGk/7/1RBAM8ZRtcjKv/oOalpG6o69lSH6tzHV94b6uhk21N1M99reJM3JzZ8R8GEFeogc+zYse1jmLxCHX400Ya3plPPjjnJ9z1nQW07cq7T5DrePEXq6zlhfpFDoHev6970yktGiEx8XmpJIgqTUtWxV1TAnluq40KhUCgULnAsldEePHhwlFDAShtRKaZM4ogKR0fB514QuLLdqGCxd45XPBvYLXkqC46SKniSpzpXKevywo2iPur3WRlAIgrA95JPzA19sn2y85c5jNj59FijJrOISo95oVPq4BMlsvDmyQvFsG3bfuv11HEqc6CKQoGyEKQpzUKWcjBydtGQIC+cSO8jdXSy94o6r0X3nldikety8ODBNMHK2traSFtgWTVZsybPYD+VDduxRo6MkSOaRfSc8+6j6NgsfaeGGCmzzO4NfXZE1/EcqCLtYlYGNMJU6JY9RrVMynCBuGTpolGMtlAoFAqFBeK8pWD0yoxpyS9liVm6PmVImsA8KwmmyQ40YYZnj5wKe8lCWSIWkiX5J6K0cJ7EHDFmlb49G62OXZmsx9S0zyrBZmzy7Nmzk6EqmjQhK3lIZDZ6lbw1vCwK2bHt6r6aw/zVVq/7zuu/njO1hyyi9fHe6/5SDZH21TtXE1OozdaG1mj6Q93XHgvaSxEAatLIWtkHG/JBe62me8ySMhCR1iBKfmGPiQpTzAllIbLnmobB6Rzre+8aUUIUr0hHlPBFn9ceS43Gl2lQNCyKx3Cts/Aeu4fKRlsoFAqFwgWOpRZ+pwcg4JePouSj5evUizbzjosKSXtlxNRLUu16WbJt9ZCOPDztZ9ExU6nRvHFqH72SU1HB98gm5PVt6tVrl33JgukJaw+LpNqu63al7fPsKspC1M7qpWCMvIy1XFnG3jR1oHofW6YReU0rw7HMVtnBuUjfkXbEzknE8tkPTT7hzad6Get1vHMiHwfVENjP7H2TJaw4fPjwaE29FIwPPPAAAN9bFcjTG0brkyW9iTziveeB3pfZePU6mjgiepZkNtooWiR7Fus4Int/dq566Hv+MmSskW3WrrWneSxGWygUCoXCBY6lMlpgnD7NSjma1i5KyWihNgR9n0nTRPSdF8MV2SGyJOKRTSmyLXlSW+TROydOVJF5BavkrOPx+jwVa+fFoaqXaWaf3drawunTp7f7RMnVeqiqV6muS2bXV62Hei6rndJ+F9mwlFnb8c/xyiaUwUTp+jK7VxS/7cWycy74Hdkpz9UUiXYNNB5ZGa6XttHzeAXGRRrs3tESfltbW5Me6zyf59KOZ/+PbHtejHJkU46YbmbLjAqgeHZpPWYv92WUPtFLhxvtEdV4ZIx9qj8e+1boc8i7n3jfKpPlelob7V7Kc+4nitEWCoVCobBALNXreGVlZeR1bO1RGgsZFT33JK8pW63a4+z/kXehF6+pklBUxsyeo5JklplJEbEflXo9e0fkXZxJ4ZGkPEdy1jYy9u1pGqZYre4HK03bmErbrtrmMmZL5qXZvsig7V6N1kwLBdi9pdoC9TKd60Vr+5ztg8j7M2O06tug/guRR7H9X23butYZu1ObrOfLQcZi1ynzWrWJ49muLfyue0fX24uvV3vnnD0fjVmjAjwNkDcu++rtxyjWNmrD9lXP1WeF9yzW52j03PM0BFHfVBto94GyXWW0WhLPO6frusnsXvuBYrSFQqFQKCwQ9UNbKBQKhcICsfSEFYQ6PlloCBBB1USWElGPVTWWl8ovcuLJ0htGrvKeE8yU+ncvtV6jWpmeQ01UzGBOkou9JDmI2shUU1GIQYTW2mg/eMn3qTZSdaUXqhU5CeneoZqU4R8WUaJ+r2BENIdqovDMG6pKm3Kos+dEhTbUrGI/iwoD6PdegQBVuep1vXA59tXWmPVe7f/2nstUxwcOHBiZfOzeUQcpvupY56RgVGT1Wono+ZM5RUYqds9ZSNuPVNdW9avrEq2pbTsKH9Q2PWeoyMyl770CAeqwqakYvTmxRToqvKdQKBQKhQscS09YMSf9HyUrdSjxzomSPkwl4QfGZaSicm+eZKmSkUqW3jlRX6MkEd51IunLkyyjYzNHisiZIwuTIaaC6e3nnmScsZKVlZXt/eAln4jCxsjEMgcT7S/b9RgswfbIfiIHPm8fEFE6Ty+1ZLR3tE17PS2tpukVNZ0eMA7RUWarn1tGG4WTRAkTbN84n2QhymS9NKhzQE2a7hmvNKAyWu6dLLnOFHuLkjV4bWRJKfRZFIW9eGGFUR8iRzRgWhvhseVoT2obmeNWFE7ohU1yPZS56rPAsuAs+dEiUYy2UCgUCoUFYqmM1iZwVqkDGJel4jHKSrOE9gq1s3ihQRr2EqVXtNebYqOZXZfIUqApIlt0Zl+IQkAUc9zbta/enEz1ybPNZbZe254theb1N2K0lHaZyN5L3xjZ2XXPWNua9tsGxdvrWBYUsRL1SbBtRZK97j9vXdRmymM1IbwXdhUxWS15Z+dEw3l0Xj32F917UciGxdyya1aTxnZsv5UZKav2SiF66TI9eGOO/BLm2AqnfCW860TPnygJBhCHnuk94p0fhVxO2XCBaUbraSJsqJY9RhPcWFhtS9loC4VCoVC4wLH0hBXbF5Y0d/Yz9RqzdiB7HBB7/akU55V10gQZmrZvDuuKJC/LZKZKzWVs+KEEU0cS5JzxqD1HkytkhZIjb20vwb6Xdi6z7dqkA7pu9n/uGS1s4DGPKCUhoQkWPCk+0jRYr0Y7RouI2XrjUvuT2m69NHr6nc6vd06UbEIZrpdOUc/x2td+aGpEnSNNFK/XBGJPfF7LJsrx+sDzNdGB2vi8dLGE7p2I1en/9tgosYT9zvNPiDDXCzjzBt9LtIEiY676ecRcdZ97z9XoXC9Sg9/R/p49d/YTxWgLhUKhUFgglspoDx48mHryqQSsyaLV1gSMGVbkpenFDEZQSSiLa53DFqMYuCie1bMF6fUj6dR+F0nOEbPxjp1KMWehNp9Moo1sP1nbPJYaDs/7nK9aKIDM6OTJk5P9j+JNPdui7oPIG91C2VBme472W7TvPXtrNB7vnoiYbFT6zoPa8XTfZVEDuoe8mHplgJmWheeyfe8cehnzO2WyfP7Y+yTSoCnzzNINRl7a+r39bi/3tu6J6JnlpcbU9JxREQ0vnWZ0L0dRHcD4WTvlzwDEMcS6Z7zfCy0osmgUoy0UCoVCYYE4b4XfvZiqSOpUBjAnc04Uz+hJbZr5RT0KPSZDRGXzPHuHSp1RFiHPjqzXU4aZFRhXKVvHac9ViTmSgj3JWaV8jePM4pGnbLT2XK8PWjxApVuPNdATWfsUxRLbdeGeiez7hMdSo33gnaMMItJ+eN6gWhBAi7VrOTt7jjJZLZenMe8WUx6rdg2iwiFqr/a8aef6HHh71fMGV02JMlpPG6ZMTBm/3oO2v6qtUmbpxcSqr0m07+z5c/e17WNUDi8qCzkHuh+88UXaPk+zEfm4RG3Zz+zzomy0hUKhUChc4Kgf2kKhUCgUFojzVlTAc71WVa06lHjOFISqFiK1aRY4riqUOc5Xijnu/FPwjlc1U5ZAImpnTj+iFGU65546Jgrj8FTLmXrH69Pm5maqKowSlquqyAava5pGnVMdl5cMgupGPcdbF35GlaQ66nkqRXUeJCKVq1XlqmmEfWWbmnzC+0yLCWSOfLpXojA2LzGLqqA5R95aR/stwtra2iic0DNFqHONFjiwcx6p/3VePNV6tFcIr49R+kRVx9vjolSVaqLy9t2U89OcAhGR+pfwwm50baPnuneOp5LW99GeXDSK0RYKhUKhsEAsndFmyd1VsswSStt2gTjJdoZIGlQW7CVaiCRMbdt+NyWBe5LlVJiAN586rmguMkeKKIxAv7fXjtJSZmErc9B1HTY2NkIpHhjPvzrUeePQtIlkfnPSXWp4QJTUwnNsihwC2ZZl3VHYi86559CijjPKbPm9DXliIQUeo+EPUbiZ/m/7EjkZan/tOPXes+eotsJqOxR87uj8eQ6AUXIE75miaxj1ja92HvU71WhERQC8Y7NzsiQdXvteqM6Us6c9R9tXjeQcRhvde14IXKRli0I8vXa6rntISYH2imK0hUKhUCgsEEsN7wFiV3PvGJXmPWlnyi18qrycPSaSir2QIM8mYt97IToZI7Pfe7YZHbt+7oX3RNdRCTOT6ObYwaJEHNGrd+wcZCnjojSDuoe80BJlg5FGwJP4I7ZGZmilbmXZmiZSy9l5/Vdo3zw7m75q8glro9VCClNp9Cxr0nVWdu8xNJ1j1Uxp4gxgbOM+cODA5PNEbX8ZE4sSIHj+GZEmS5OcZD4UOtbMByFL06jn6tpFWhBvTiLNnbaZhRXpszd6b89RLY8++72QPu1DZn9VH46y0RYKhUKh8EGAtleP2Id8odZuB/APS7lY4ULFY7uue7h+WHunMAO1dwoPFe7e2U8s7Ye2UCgUCoV/jijVcaFQKBQKC0T90BYKhUKhsEDUD22hUCgUCgtE/dAWCoVCobBALC2Odn19vTty5EhYdg2Isx9lsWhzYjajc6O25mCq/UU5mUVzs9/Xi0qRZeum66fxe1k8cmsNGxsb2NzcHC3CJZdc0l111VWjsXpjjnKzaoxsNqasXN/UZ3Piw6eQreW5rPN+7pGHUlrMuzejvLj63vZd8/Bubm7ixIkTOHny5KhTq6ur3YEDB0axsHPybmfZ3rIMSeeKhxJbvt+Y2tfnei881P5kbWo+AC8u2Stkf/r0aWxsbCy0Vt7SfmiPHDmCZzzjGdtp77Tepf1MU+HxHC+lFm+gKAF4lgR9Cl7aL21Pr5MFmxN6I3tpwfTcKGDd+xGL0jRGyH40NWGAvgI7iQ/uv/9+AONE9BdffDGA3YkR7rnnHgDAvffeu/3ZHXfc4fbvyiuvxPXXX7+9D/Rmsddke3zP9IJMIGHP0XaiWr9z0r9NpYPzPouSkHgCSZasw7739rfumSwV35waudH1pu4tTWQA7Nyv0evx48dHbZ84cQIAcPvttwPo993LX/5y95rr6+u45ppr8KhHPWpXe8eOHds+5rLLLgMAHD58eNfYNA2llwxEk39EwptXi1nXe86zStdF94f3QxStf1Y0Y6owhJe8I0qZq6+aUAeIn1FzkoawnSNHjuy6DvcJ7337GZ81d911F97+9re7195PlOq4UCgUCoUFYqkpGFtrYaJxYKxOJDJpRjGlDrRSVKTunaOOiVTgHvuJ+qjHeGxC+5KVGiP0O203ShDuIWJ1nuQcqW6sREnYJPF8P6Uyzdg9mYXuoUzS1/JdU2W+vBJdETvNVPqR2jErlhCly4v6nB1DPBRVru7dOSn/slKOmjpT54us0jJQTSE6pU48cuRIysioDYvurUxbNTVWb+4jrUGkpbD/R2lOtW0LZZDRfM1ZS017aM+J+hal0rX3k85flJrTO0fnjetJhmvvJ90zKysr+6rijlCMtlAoFAqFBWLpjFYTaHt2D7KdSML0dPuRZJzZPSKJKJLm7P+RAwVfKVV57UYOOpmDwZTEPMc2rAzHKzCtx0bORRnr1j6dOnUKwO6ydLqmZ86cCVl61/WF37WflhWrXTgqzJ3ZFCOW4CUvj5KSZ04yut4R+81s5lOOOh6jnWKyHlPXce6F0eq5GQuLykBq6UCvoPkcRttaw/r6+siHg2wH2FlfHsN9pSzOK1+pWrapZPy2v1MJ7TNfjWhN91p+cqqPajOfU/oysslm52phlzn3ZmSv5rm0udvnBEtQcq3X19eL0RYKhUKhcKGjfmgLhUKhUFgglqY6bq2vCUn1oVd7lVBDOOGpFlVVqOoybd+2GTksaBtezc2olmvm9j7lZDXHKUnrqmYONNqeqoG9mro8h+oWvmo4Q+aaH4UIeSoa7YuH1tr2/rHXtqE6VDFG18pqU06ptjwHmkh1HDkv2c84p5HZw5uLSGWs95Gn/tM9qapc7mX7nc5BpMrzrpc5P+kYolAj3TtW/ad9zOrRUnXMMR49ehTAbtWx1rdV1bT3rOIasV96L2UhW4op04v9PwqzylSrU88db2+pOl2fd979NBUClKm3tVbtlOOW1y7B9vlbY01WVB1fdNFFAPrQsFIdFwqFQqFwgWOpjPbAgQOzKtqrNKihIJ6Epkwv+j5D5Lxh21THGErcWfvqABYlqPCYQNSXKIGFbSdiB5pZx5OcOedkivzcY7TarjqKsA2bsEL7OuXQYqVSb+zeWCw0tMCC/YwC7bNsQhEj8yRy1dRokgOP9ejeIaLkF7aPURiMjstjtNH4lHF4fY6YOuHtt6mQs8wRaXV1NWW0Bw8eHDEZJq4Adlgbr6nr7WldlMFyj0fhi5nTWOQM5znSRfPvjT96RkytLTAOqYycoTwHQW9f2f542hftk96D3nOOn9nkOcDOnHBdqcUAdhLY8HmytrZWjLZQKBQKhQsdS2O0KysrOHToUCrdRmEvmd1L21PX/Cgcx56rtjpeJ0v3xT5SUlZ4rNRL0uGNwUqC7INKdHPysCrTVLurlyAkktCVFXvSvdpJM/thZEf2YMPCon5HYVD6vad5iPaISvF2XSJWkDHrKORI970da+TLEKXts32k1K6MVsfj7bcoTET7atcg8pcg5qw1wXY9Gy2ZimoiPNAvhAkvmG6RzJbHAOPnAe9tT7OmzyZqeqIxZzZa3UuqPQLGeXujUCp7Hd6Pkc9B5l+imjtluFnIWxQSlPnlqJ1c7ysv7ar6Y0Q+FwzzAXZs8/xsL+FQ54JitIVCoVAoLBBLt9FGUjwQJ3mntOOxBZWwVIJU6ddKSlFw/hxMJR3woF6gHKemALTJLtQWrNfJPFQj+xeR2dci1uVB140pF1WC9aTfLKWjjknH7DFaHUfE7rVtYJyKj+2r96k9JmIj3n6YSiDhsZ+p1IuRp6z9PyqwoYzDHjM1f5pMHxhrNtRemdnHlQ3xvRa1sLD3U7R/mILxkksuAYDtV6uJUtusfp7ZWZXtRvbXTMOln3PerE8D51sLHei5GQuOrs/1t88dtbdSO6JeyJ6GiOdokn/d/5l9N0pOY8et/jEcu/bZjp9Mlq+HDh1aCqstRlsoFAqFwgKx1BSMq6urofQIjL1TIxZnpXZKppE9KmNO2gc9dw5bJFRqs5Jl1BeV3jzJMoovU/Zlod6tGvPHeWVqRMug2G7kuZzZ5rQ9ls3zGIHacU6fPj2L1dp2bB+UUfA9+0SWbRmY2vOjQgFeXKBK9OppqTYn215k71a7pP1/yivX2wc6X+oV7tnwIg913pN85dp686n3rWoMvHhk3r/0ELVFBPQ6eq9lcbSrq6u4+OKLcemllwLYKdlo+6D3nc7BnFj1SNOQsTdCz1E/CdsXLf+oe8i2rfdCVNpR18D7TuNq9b2FPj81btxjmrp39Pnmra9qbDRHA9u3Xsecv7vuugtAMdpCoVAoFD4osDRG23XdLgmNEoqVVCkl87iIcVr7Cu0AlGaUPapUPSdhe+QtZz+zSantq7btIZIWvXKA2hdl9R7bIuvQxOxqB/Mk9ciLluPxYmGn7CtklZlUmrGSrutw9uzZkcRvmR/7xTGxADwlVy0AD4y9sNW2qLBrTCmZ3qu0+fAY7lHPZhp5EHMMXvm/yHauGg/bNq8XMQse67FSZU733XcfgJ17lPPq2Wi1ffaRc2LZqs6fesRznu24VHvBzGEeVlZWcOzYsW0myz7YZ4jeQ1qgwosDjwqC6Lp4nraRzZz94PzYuWUf+Jxj/6O+Ajvrr5qbyAPfzok+X7g+vD7bsvdE5H+j9nyPpXq/B/Y6WcSJPpNVQ2Tnnjb622+/ffuciqMtFAqFQuECR/3QFgqFQqGwQCxVdWwdhKhO5CuwozYglde0aVQjeYHVhNavjAoU2O+0LV7fS0qtajB1evFqZFLtoqFIPDdylrLHELyu9t0ep+osTfkXucXbdjX4O0vEoE4jTG/HNdAQJfuZrR15zz33jNpmuxsbG9t9oPrX7h2qNqnqvO222wCMVcf2HH5GlSDb5auOy+4DrimdbHSP8r1Vk9LMoXtGVeFeeI+qwXT+VA3u9V8datSJzc7J3XffDWBn/k6cOAFgR3XMObN7R9Wk6vDGObNzQlUe5+uKK67Y1Zan5lSHsMyZhc5QbJ8qZK9AgI6DzxKvJi7nWZ2SOB989RzAVB2r5gbOrS18oKp1nVten/2x44qSueizxdvfau7Q0ERPna4hT+yT7VsEVeNHZjb7v6rt2Xc1t9nvuAczk9V+ohhtoVAoFAoLxFIZrReOYUFpUyU+fq7MEIhLL1EKVecKe5w6EKiRnhKmTeEVsVANDfDCl5RdK/P0GK2yUHWRJzznK2U56sikjhvAOBG4agLUsQbYYTlkRuwrmS3HYyVadZxYX18PmUnXdbv6zvUiiwWAm2++GcCYgbFPGvAPjBmsMmUdl2UAlIh5HY6Vr0z1x70LjB17NCTNk/h1vynD08QOdl3Ybw3n4Tj53moS+D+dRe64445dn6tzlt13yrJ0P3tJQ3TMUXk8u0c17WnXdWGimLW1NVx++eXb62BZIqFhaJFmwz6/OB9k/jxW9x/Xi8wd2HmekGWrgxPXnNoS2+/ICUuTq3DsQFzwJHoOAeMEGOooyFe7fqql5LzyPqWDImHXkX21iSTsuDXRhO0/j9F0tXp/WfD+PXz4cIX3FAqFQqFwoWOpCStsGj1KH1bS0zALfkfJzpPQIltlVFbOSm2UVCmd8lxKv17SAWWOyoopKVmpPUrPRqhdwh6nkiqlNJ0ry9Q4RvaBkqSmbfPsXzrHul5eEQX2iVI9r8f3Gkhu+x+VgbNgeA/ngu3TDgsA73//+3ddk/MRJRKw11abktqws3AETTKhNlU756o5UeldGZXto5Zyi8qV2bXU/cvxkWnwOh4r4XcamhGVerTXU98GZWp2D/F+4WdsT9m4ZSUPf/jDAewO2YvC6VZXV3H8+PGRzdELaeK8kI3q2C0j+8AHPrDrWGVtZLpcc6sNUVu92g35PbUidh6UxfEZqSzOfqZaAi/ZPuAnkOA4lMFzvFarxH2kc8B7ke+9Zz8/I8vnOlFDxN8AW96QY9XSh5xH7g8v5InXPn78eDHaQqFQKBQudCy9TB6lC0ohVpqgfUMlFGWpVnqNbBVRujvPe1ElS0rXWUk1hXoZeokdCLU/0Xan6fvseCKPPi/JgkronFdNiODZvHWuNXCdc+N5/6k0qing7DnsNyXzruvShBUbGxvbLIfStbUtKltXtuol7NfEAapxUFujl0ZPNRpqz/W8WyMWr4nbvf7r9ZXJeX3kuep5rQligHFSi6gMpTJQex2+auIZL12fakrUruZ50/J+sZ64kbaIZfJU02DnXr2LI2/ZO++8c/sc2rD5mbZBeOkU2VdNZ6maNbu/1VOYY3/0ox8NYIf92jnmXGrf1AfF86on1NOf4yY7Zd+BHXbP71QrQabLPlp2qvZVrj/niNor6+XOOdD7ihpJTWLkHfuwhz0sLbO4XyhGWygUCoXCArFURnv48OGR96SN4VO9vNp41AsQGCfxVyamzM9K4Or9yeuSmXkpGNXmq/ZXSr9W8oq836I4QyuVst/qnamMxjJaTab9yEc+EsCOREm7SpaCj33W0lN8b+1sardVj0Er9Wr/7blZsfFTp05tS8wchx2zzi37yWPU+xgYlxzTuFNlYtampTGjyta4Vy3DVMag1/UKmUfFuz3GDOyeB42TVRu6V1SCa8VzuYbqI6BxncDYszsqk2f7zHa4V71yf3odtm9TTGblKVdXV0d70iuXGRXqIGvl/rN9YL/ZLudYvZvtM0vvO41rJrwcAwr1YLZ7h7ZKTfGpc+2xcX1uclxZAQyN8dW0jfr+YQ972Pa5eu9palueY9cmKkKjz3V736mPw7Fjx0Kv7P1EMdpCoVAoFBaIpRZ+P3jw4LaEQlZlGQ0lIko+9AxTu5G1f6oURSmJUgqP5fWsp5u2cfnll+96VYkTGLMz7RPZgpX0rrrqql1jpbRLTzq1OVlJluC8KTPThOF27LRVXHnllQCAW265BcCOncWzndEWot6glOo5j3YNOKdTJbS8dbMl1TIb7enTp0c2JjtmzZilxbO9TEbKjMj81Tar62T7HzFptcMBO2unmgu179vrqCeqZh5TG63HMHld2s6srdG2Zdu/9tprd/VJWZhn/9JsXNwHGs/Nfth2taC4skurvVCt0srKSrh3WmtYW1vbPpb7xN6fXA8tpaiexPbeZ781VlzZEe8N653LvqqNnOvEPeOVyyR4LO9l9c4FxvZItckqA/QKzavWJSocYa+juQT0/nrEIx4BYDfrv/XWW3fNsDJQHwAAIABJREFUifrWeD4B0ZxrTK713iasN3hlhioUCoVC4QLH0svkUdqglGglFM0Xq3ZClaaAHano8Y9/PIAd9kjpmq9eiT1ehzFxvN7jHvc4ADtZcShtAWO7hmZK4ude1hP15NT8nV5RdZUcvew6dny2fS2mrVIhma6NR+UakHU86UlPArATu3jjjTfuGqcdu/ZF2YqV0NWzs7UWxkK21nDgwIGRhOzZXijpq7ek5jW2oBbkQz/0Q3ed+0//9E8AdvLvWhutSvyEFrW2Y1Lbstrx1EcBiLMHqRTuaXs0ixOvz7nndax9U+M0eS73EPuunp22/5wn3kfcX7zPyHjt/2oH597RvWv/t17jU4xWvem9uFbGYpN9qmet1TSpj4HaPdXD27J4zhP3jmo4NP7dnsP51ueAl4858jLWmGuvLCn3kWZ7I7z7STUNune4H724dM7BYx7zmF3n8NmrmhSvHR2P99zhHPCYo0ePVhxtoVAoFAoXOuqHtlAoFAqFBWKpquOzZ8+O0o9ZQzbVBzxGy7hRFWFVeDT+U71HwzdVHVQ9UJ1h1TGamlBT5HnJGTSMR9W9tuwboSoTqjPVkcYLGGcfeV11oNAQIXssoY4FVGPxetZRg+1ouBRV8gxxYBJ/264Nt7DXpRrIqgzVjX9rayt1SlhbWxupNe0cc42optRkA56DGdWfVFddffXVAID3ve99u47TlIXAWJXFdafzEp1UsrAOzoGqua06WhOtaBiEqgUtNAWdOhtq6kzbRy11qI5C7LNVy2nKPZomeG++4x3vALD7fuL+1sQcWoDDrrU6hmWq45WVFRw9enTbKckrtal7hXtIzVt2rOpIpEn/+eqFthFq4uEce2knNY2pPm+4/tbswP/VlKOFSTQFKLDzTNBnh17X7m9NQ6qhT2oWsGugZQzVaZVrY38veKy+qonJPg/ZN44vc8LcTxSjLRQKhUJhgVhqwoqjR49uS1me9K4B1fxOA+xt+AMlEzquqORFaY3HWemdx6q0q4mzPQcDlWgjByRgRxpTJwEN5yFbsE4yWuKO16WkzPFZxqZhNZTstGAAmZuVSul6T0cWMls6hjE0xErqKiFrAn9lusC4RN+UQ0trbZRY384T94iGh2gIgGV+1H5wHSyzt+dqOAwwLgVIZzF1VvKSq2hCfnVSsfuN8+8lwwfGDMMrMM65INtWBm2vR2ah76nJINvjGljWxfY4F9yTGm6hyextH3XPsM92T6sTzNra2iQrYTt89Zz5eG0NB+EcWG0Y72mey7FqIht1kgTGCUo0fNHTTug5fL5EiR1sexrqpslnNHUhsLPOGjbHtaMm0d7TUWF5dbbiWtlnsYY8Ebw+181LyMG+aDlVb054PvuUlVjcTxSjLRQKhUJhgVh6wgpKD5RGbGhJlJBAk7BbWx+/0xJNKpWqhGzbJyvhdWlf0wBy2wdlLHxPaSpjJWr3UNudV0xbQ1/0c6+gvX7Hc8g4vOQTmgjhpptuArAz52R39hwNadA+8ntrd+E6cT3Onj0bspKtra1doWFewXqCkj6vpUkitKyi7YvajWlb9LQvPJbtsk9qc7TgfGiCErWZeoUBVHOiZfLUpmnbI/OnxM8+qnRv26FWR9N5kj14KQHJPjj33DOakMEyDE18oSFC7Lu9b7Xc3ubmZprs5OzZs6N7y7Ip7mX2O0ohavutxUPUj0QLOti9qnsjSudp10WfGWTZyubsPGhSf/ZVGbNXYo/tcw6YxIfz5t17LIKgCTdsOUM7Lq/sJM+1KRJtn+0zhH1jX/nM1+Icdu9oGFSmSdtPFKMtFAqFQmGBWLrXserDvdJZasuk9ETJxKbRI7SIO6GJpa1dj1KSsh2VUi17U1upenJS8rcSv7IOTYGmNiJ7rnqbqkedx+6UlbI9fq6Sux1fVLhc7UdeELiWKlRGa5OIE1aKnmIlanO052pCBQ2w5+eWdaukHxW7t7Yr2yf7qqxNbXjA2PtTmSz3t9VORFoQtbfrnrLtaKJ+1UDYPmoiBGU7nAv93psb3ot6z1v/BfW8V5avWgA7drvPMztba21kK7V7XtMzcn7sNXkdPYd7UZ8dWvrSSyGpiRLURm+1E/qs4j1Mnwq+97QT+tzR5yvX1vZRPfzVRsp97iWdoKZMtSx6/3rpFHWPqne9vZ5qeQhNEGTXzUslWTbaQqFQKBQucCyN0W5tbeGBBx7YlvTUPgnsLgIOjL3iKFV5DEPtuZoSjbAStEpPKvV68ZNaAkzT5mkcKjBmelHMoKYRBMZ2DmXBmjjc9kFjlXWOtIyWbV+T4iv7tcxJJVaVnD3Jk9e2Ev9cRquSMTDeOxqrqjHS9jMttah2dy9lnJag417h/HjF7rVcomoHNBWn/V9TB2q5L08qVwat9lAtIWjBdvld1GevmIXaHJWN2HM0Dpj3rXoJZ3HiWZk8Lfyu/gu2P7p3lBHZvaOJ+vV+zKAaLJ0XTdUKjAtOUDtERmt9HQjNQ2A9/G1fPX8CHkP7J7Ufqkmx68I+8BzuHU1Xq/Z4ez3Op6c5s2OxfYi893l91XICcSrbRaEYbaFQKBQKC8TSGC2hpcG8AsxqH1SbmbXNqW6fUo16cCq7slC7TZQFx7bDflPCJMumfcKzeynTI1SitHYWlSC1PBuPtZKezpNmgFGPwczLOYqN8yRBHqvr5rEu1Sasrq5OxtEqI7PSrtqW1VauLM7+r+xUtQee/VM1C7q/lJnZz+gdSclfWZGFeh178+b12faJtjNl9x4L5D2gRQr03tB9af/XbGUax+3dg9qe7l0vO5vVOGTaEBY0sePy7K3qk6FravugbFSZV1Qq0l5bn3e61l7BBmpuuIfIbL39rWumGhWNZ/UYpj471O7vFQrhPleNnZbGtGug6x7tFS+ngZZe1WI0FuoBXTbaQqFQKBQ+CFA/tIVCoVAoLBBLVR1vbW2NQnasyodUP3Iw8JxqooB+dSjw6oNqLUdVm3kJ+1VVx4BxNcBnqffUOSRSKds+qapYE4FbhxZ+FtXMVQcrC50/z9lK3+tcqypcVXEWVpUXqXCoNs76oKpVTWrgOd/Z9oGd/afOMF7SAU3pOCfRAj+L6gPTacOq43SNVG0a7Sl7rDqKUe2oSQGAcREGVZ9HoSn2GN0PuiZ2fKrGJDiPnopanXmmEg5sbGxs70EtxmHb0XFo2Iu9jpod9Jmhc2H3djSXHKu+2mPodMnnDueJ62afO1QJa6pNffaqU5Hto6aWzRDd/9kzWI/Rvun+9tTbUdpLLwQpUtsvGsVoC4VCoVBYIJbuDOWFPUTfabiAJzFFDCySrjxnGGVtaoj3rqcpwTRI20u27Unntk3CXk/DKzQdpRf+oI5myhSts5UiChfxQjMInSdNQuCxfMWZM2dSpwTvuvY6kQOYluayDkcaSqAFI7z0ltqfKKxMS7nZ/7X0mw0fs323fYiSDcyR0JV9K1ux+02LWGi4krJ9j01GiUX43ls3nRMvfEjP8ZiRgs5QGq7mOSkROiYthWj7oAkQNGzE2/O6lp42QqGaEj539Hljr6fhNURUwMHrozJJ3Xde4g/CC4uz1/XWT5+9+tyxfY32CJ9/nlOZd+ycfXSuKEZbKBQKhcICsXRGq67mVsKgZEF7g0rgehwwZm2a9kvPte+jlGAaSmNZAiVLLUSgrM0LiFf7g7ITZbr22lpqSoutW6mNEl2UIEOlUi/UIUoPp9e336m7PZM4eOn6VFuRJR3g98rWrKSsCfK1ULamsrTHaimwKGWdx2g0Jaa+egxT2bCmOfRC3jR8R8N7vOQDmlRFy+R5zELL5Gmomyb18DBlc7TzqPeepj0kvDmx32VscHNzc5RuM0vpuBcfiiiBg66Htw8iOy9h54l7lPZ1LabCdfGS6+iaqR3ZS8HIY1UboeO2GiJNuanhfXpveCkYIy1cluwkKkbv+fRoEo/777+/GG2hUCgUChc6lspou67blrK0KDQwls7VPpClOVNJX5mMJxGpNKpebB7T1KTn6tnrSadeEnTvnMzDUhNVUMLUxOD2f/U2jpialR6npDvPAzeCji9jtAcOHJj0HlWbqdeeMnEtMu7ZeCLPw4xhRCX7dI09jY1eN0qNZ9vTpBlqp5xT6ovts+QZGYiXIIV7iAxXU296DDryiNbvPS9+1ZiotsXTRM0Zc9d12NzcHCUW8co8qqaB8OZY2ZT2RfvozVN0r3n3GDVoXBcyV/qGsPQhyxsCO6yN66vj41pqQXhg55lBm7Am4PC0jWyPfeIzPrKH289Vm5g9owhlslGCFO/+tiVCi9EWCoVCoXCBY6ll8jY3N0e2BU9S1ZRxGsNlz4niDBUqOQNjCU+lUPWABHakJfXK9NLCRX2M0ud56dyUIWssnCfdq/07S31m+26/m7Lv2vFxDrRMltr17HWyeExF13W74my1/J/9LIq/Y99sWjYttG2v57Xpran3nW3Dfq6sVG2zWjzctj8VP5vZ97Wv3MOMxeR6AWMNjdp3dQze/Rbdk96a8zMtlpC1qQxlSrtij9d7AYjjPrVPXkJ79djVAhWeFk7nLiomYO3lem+dOHFi1+udd94JYHcC/chPgNennVqff/YYtkcvZ+5VakW8wh4En/H67PIiM/Q5FmmoPA0R5yaK5rBrzWcV52vKN2S/UIy2UCgUCoUFYmmMluWqVNq19iHNEqMSmcZI2mNVwoxYqpV6ouLpGhNpJWZKeB77sH3zGIbGM1ICzMq/Eeo5qDGJXjYhnS+VrrMyWVlhbwWvp7GW6gHuwWoVMpvb1tZWyO5tfzXOU+03nkSc2YHs+LyMZHpMljifEj6latXUeMnrde50D6n2wtP2cB3UG53nWg9cZQFqV9b7yGPfhM6rlw1Ox54VltB27TxF521ubuLkyZPb7N3zAlYGa+239vO9+DLovvMKaug+5vPAixklc1Wb7K233goAuOuuuwDs1vJoRjAiyrhn51P9K7h3WDxF7aD2f76SkUfX8fwl9Jk899kBjDUC+iwAduZNswAuGsVoC4VCoVBYIOqHtlAoFAqFBWKp4T2ttTBpA7CjRqZbuKo+vDqaWmOVKggNF5hTP1Nd12lkt6okqiPUaURVHZ6hX2tKqjMC4amONXG2phmzieGj2p7q5KPJMOwxGgqk4RFe7dSo+IOnBtLatVPY2toaqbysc4o6CUVOXB44X1MJRLzk5JrmTfvhpcRTNTPBfWH3jiYMiPa3pzrlsQwFoepaHRG5320fdH0jhyoLdQCbk0yen2XOVQpV9Wbmja2tLZw6dWp7n/FcTXtpv9OxqardG0uU3MRbFzXZ6B7iXNBhBxibZW6//XYAwC233AJgJzmMl/xf96Tee57TkBYr0ZSSPMc6QKlzoT7XomelPTZ6ZniOdPq7QHBtvTrSmtDmvvvuK2eoQqFQKBQudCw9YUUUoA74DAsYG9E9V3mVEtU93EtVyPaUwfI9JTNbgo5QiVZT/Hklrij98TrKaL3gdw0MV8nWC21QFj/FaK2UqBJr9N5LRK8hDVmaPkILIGTIEqgTU8lH5kivuraeI5Uyy4jBWG3I3AIElk3qHtXyiBr245UvpIRPhnTbbbeN+qbXUyeeOeFEeuwcbYJCnRi963hpQCNsbW3h5MmT285EdNCxfZpybCTs9aJSilFCF6ulUqcdDR/ien3gAx8YjYd7n85PZLKE3aNRGKH2Q7VYwLgAhpYS5V6y91MUiqMM19PCaB+i542d12hvRiVT7f82mU8x2kKhUCgULnAs3UarEl+WsEDthIQXoqE2BJXI1F4J7LADMgu1h3nMTO1QmpCe47Jsgd+RuTDUwNrGgHFJPG8cKsV79lxNNqAMQOfMMii1QesceGwyCgVSW7GXYGKuNLm2tjay49k+TKX9y9iVskIi25sRo1SNg7Ujc70ZInHVVVcBAK644ortMQK7WYqyAk1uwevw+kzVZ89le7Tj83OyPLsuUYlFvW8zxqnXn/N5pCEgPI2HF+al6LoOZ86c2d7PGuJkr61rx9csOf3cfeylKtSShLz/9dW7nmrOvFAtfTbo/ansUdOVAjt7NUr2b7WPqplTrRv7rtoZIH5e633thXRFIXAeU9dSmMtCMdpCoVAoFBaIpTLa1dXVMO0hMPY4i3T6nm6fiApye+We+FnEGj3bLKUwTWCtibstS1BvY76ql6FnhyAoqbKPTJyhTMceQ+j8ZYHjymj01UuwPpVswPPEVttvxkpaa1hZWRmtj7cP1DM9S0oxtXeyxPYKXlc9Hi3DINu89tprAQBXX301gJ3SZ7yu9YhlOxrQrwyNc8FUebY92vM0+QDbtonotbSaanCUlWQsL/IAt/tgys6mY7HtzbHrb21t4cEHHxwlCcmS/KsviHrc2+8ir3n1qbAaLj5XNAmN2rbts8rzaQF2azBsG/ZYXkfXh6/UdNi9w/5ynXkd9j0rLsLxcG702aisHBinUYxKK2Zl8iIma9dICylsbGyUjbZQKBQKhQsd583rOGO0UVFtT9rld+rJS+9C9SS2cV/8TGMeVfLPyrGp5KqJrr0+RLG9HJ+VwLTge9R3j6lpfKiyBi8WkhK/2ppVcvfYhNqENdWcZxex+yBiKLSzeens7DHee/08s9HqPGksqVdUXSVk2kO1LWBnzbg3+V5LPFrblUr0eoxqQ7zE8JEGwxunxtwSUYo8r3RcxEY9zYDa2aIiChbqfZ6VOuPesYW+Ad87O/Kw93w1omeEskUtPmLHpnuEc8znhZeKU5+R1gdA+8hjda/ofUhGa/ed2lGpddE2vDkhNC+CrqmdEx6rtnrdq3ZOVKsYPdc8rYNd02K0hUKhUChc4FgqowXGnmieZKmSiiZOtxKzFmKnLUFtl2SyVmpTSVuLW6utARhLsJqtyLNdqW1WoV55ni1T+6YSn2UgaqvQuY4K3nufRRmIsiTveq63bvrZVEGB06dPjxitFx+n7c9hSMrEvDJe+p5SOhmgx1yA3dI1baVMBM9ztfiDtesqs1BpXT2wbck77gnGPDIuk+/ZD5uBiH1STYqyUc9zWD3vo8gCu1a6V3VcHgtW29upU6cmGa3aCe1zQJmrMk61pdpr67n6PPDizjUCQp9RXGNrM9W+cp34OscPIsp8pnkDgJ09yOdplMXO+hOof4KunZbNs2yc/2uxDPWu9mzrUaGLrPjInGIp+4litIVCoVAoLBBLZbRbW1thMWpgbOPTV8/Dlv+T0arNlq/Kiu3/Uf5i9ZoDxjYR9XDz4gvZf+0Lwet7xaQp4VFaVCaozNr2ST1GowLJXiyklgbTcXqZoSIJ04NXDDqylXRdh7Nnz/5/7Z1Pb+NWEsRb8jjBHIIgmATIbb//pwr2vAgwmUmAGdiy97Aoq/xj9ZMSRFx4t+siW6LI98hHqqv/VG9qRleZo3xdZTcze5FzZoZv1TnWJwbZ1Xx7I+5ffvmlqs5smHWOjIdVnVmNmIVeGedKsVVlE4vJSh9Xx9cc/Dsd8+sycVcN5+npSCyiY6IrFiy4x2m1djxGy5pZHxdZKNe8f4feLmqPC2xZ6WPgK59lzrrJ/LWuVAut46cYJr1SXSZ7eq4yS5vx45Rjw3wVnj8+Q30breeu6iF5QJktvtI5p8dh2uQNBoPBYPA/gPmhHQwGg8HghvivCVYIKRGHyVBycShZwF1uFKSgcH9XUlPVCxHQlZTKiboWTXKLuBuGrjS6K1iG4aD7p3MZJyk0jYWuylViEJNt6ApfSe91wuApGeoaF6Tv9/HxcXldOpH3lbjByt3ox2HiSdX5nFIgg+45T47S33LhEvquJ8F8+PDh1atcx9q/3L9Mzqo6uxeV7CQ3d5cE6J8xjNM1pEjlJHTTa92la9GJXLCcxe+Za4QqBLqO+TzwuQldMhz36+NKpXIdONdUolf1+p7gs0//ax6p7V8XzqIrmS7sNFZty5I3HyNd0Cz34XPQXcidmAXHlMoYu5aFKbmUAiJfv37dxX08jHYwGAwGgxtiV0b7+Pi4Ea5OSUNdEJ9WdlXfGJvB/MRomdDQyUMmoW5ZRLTOyLD9OGy4zeLsJNzNlmqyyLQvWq3827ch60vsVMfWuSbb/jNC+6tEpFWrvg5MzU8lH3wle09iCbRoaVUn0Y5u3Eza8OOJdShJSQyTSWsScq/ayuNJ7IJCKVwX/reOy2SylNCSZDkTOo9O1TbJkCwoJex0zSBYMuSfOTPsWO7pdKrPnz9vZE99fmTVfwUcL9edj78re6IXxK8LmSzLbZhEVLWV0eQ662Rq03x4r6xkKfkcSEIsHGvnXepKBX3cnRckSX6me3oEKwaDwWAweOPYjdGqRIMWpfvgyZo6lpOsQ8pvsZl7spzpryeDlmXGcpyqc2yMAhKCs2AydM6XY3dLrxPfX0nhcbyMK3eF6/4ZmexKnJ9x42vE+K+JoXJ7Htv327VL7OI3fkzG4rivFKvr2sUxv8Ch43HtKL6q43ibPN0fYra+rjifqtfsMZUl+dgTk9H+yT6EledBx+N6I6P143X743pI1014enpaspKnp6eXc5pK7DRnjZvrOJWrdc8oejpS7gHlG7Vt15rS98PnJ8tvUrlk2p/vMzFs3jddgwX3aLBsjPcg4/9+DRKLT2Nd5fSwBCrlojBvxZ8rt8Qw2sFgMBgMbohdGe3j4+OmMXvKAr4Et1D0fUp3MWabLCKy0SRq4e87aHkpriYLL8VXuqbWzOxLFhYtVlnmybLuMoMZwxBSyzta9dxXYpOdDOKlxtyXtuHnKxlIxpCEFNftGC2PmYREOhm7tK4FMj0dX1nByhL2OKviq4rnai12HpzUGJteHzY3EFuu2jI+xruuiaUzFnwNY2CG+ioLnQ0vVhBjYWzOW2B2LdoEygBWbXMMLjUU97HSK9U1BnC2SJbGmGxa35oPRRquEaHRZ5QYZT6Lj52NNboWgul5wWcSWW/yFPFe47OL3rmq873l3oRhtIPBYDAYvHHsymifnp42zMytxEsWaoqV8L1OOD+JUjOecqmNnR9PLLWz+P04jNd1rFEZhW4JMk7cNUJO2XhdFt5K9L2TPhNSfLSTXuwYQsKfyf5bZUsLXYOAxJy5Jrt2jWkdUPKTAu3OlhUL1KuYpL6r73hjADIlNrWgJyflL9DyZ8tI99hwf51Q+yrzu4u7dx4d/6xriZkYrnuCVjH+x8fHl23FaLzBR9eoo8ve93Exd4I5FWKTLsXJ2nF6HFJt7qdPn169Mq7Mtpm+Pz7nLmVI+zzE/PVKxp5a3bExRbcOUn6OQEbL9ejfuZRt7DkPmoeuQaodvgWG0Q4Gg8FgcEPsxmgPh0NsZJwUlDqFmVWLM4HWGevwUo2qrFuyolWNYCdan0TLr60VTDFUvdc1M0issWvwzbEmNnyJSaxqYgVazqmejWN5eHhYMtrD4bCJi6a4NBlF1wLPwaxIfjc1s2DGbqdEltSw2LJR/0v1SULxVWcG5ko2PmaNTfFWZ2rMIGb+wirznyyeTJbNvNM2Atf1qlm8xrLyuvAav3//vo0dPz8/1+l02rTn9PtJnzEu3YnUp7nwHqNIvlokVp09FlQ/6jxCVedrSC+IrqHWzqoVJefDJiqp0QKbt3c15v43s5w5H61RV0DjfcN7Tp8nr5K2oUdlVVu+N4bRDgaDwWBwQ8wP7WAwGAwGN8SuruPj8dgKWldtg/N0EaZEHN+/vwqdlFjV2YXRfSel2dPNJJcK3SMsL/G50h2r5AEd112Uyb3n29Lllo6j+XXp9qv9dp+vkqG6Upt0Tv5M2UjXrKBq67LvypE8maM7dieM4ckpOp5cdnQdJ6H4LjlE61DuXxeloIwixePpBvZSHbqOWYqUSoK6UAHFXVJZFtcbr1dKaGKIohMAWYU3ViEHuo6T4D0bgTB5Lz1beN/RTUoXq183lXO5O9n3yUQn3y9dxxrrDz/8sPkO17WuN2Vj072n5xqT73QemSRVdV6rXOcr96/AhL1OQjcJwTAsyHPu557lSf69W2IY7WAwGAwGN8Tu5T2dgH/V2UpjsgOxKg/w4zmYDJG+S0aWJOS6pAAm6niSAMW9OfdLbfR8204QfsVoKYih91OrM+HaFoK+bfeakEpmOki+k54Ot247kXueN58rGReZOZmZ71vjZyIby1N87ZAFicFybfr6VlmIrHKuPxb0u3QiGQRLJMSk/RpQ3IBJPWxQ4OugkxjtEpx8m07SMt3rSXCle1ZIflH3oMbi11Jz4/lZ3Y9kUWRiXSu8qvM505h0jTUHJstVndcK1zGZYCpXYUIlk6GSUE/HZIUkT0r5U5bAdQ04fM7dOkjPiy7ZkqVJngBFj9fDw8O0yRsMBoPB4K1jN0Z7PB7r22+/XQp1k62xTCCx0U7OkEwjxVs7xsIYkBc805JjuYsswSS+0ckZduVM6bsUSEjxhW5sel/7oGVbtW3w3LW+S2UyHEtXTuSfefOClejA8/Pzy7lNpWEsB+D42PbP0ZVXkfn7OiDj09jEPDQePyeMVSkWJ5aYRFUoYsHjUWrUWRDj1oxvpetPiUL+z2vq5/lSWVQSVehENVaN31PrtG7tnE6n+u23316+o7F4GZTmRrGRdD04VzJZrjudW8Xyq87XQ2MQ46IohD/vdL9TIpNiJ379u7afWpP0eKS8C60zlgKlFqKdAIfGqG11j3g7yE54pWtq4n+znIilcOlZ7Ex9YrSDwWAwGLxx7Nr4/e7u7sXqkYWUshY7sYQkzrCyZKu2/npnNPxMjIUWTjqGvkNBckmkpQxfMotORjF9l2yb7MTZHZkFmRkL5FdgLC4xwi6Oy6xQPx6Z0f39/XI8HodLcoqdXGI6DscpdNeDknJV5+vcFdqvWtCJ3fAapnPMTGGNgfFqwc8JvRL6n7E6j79prmRZFH5hCzYfC8UUVq0Ddb54z5NN+nG6eyDhdDq98kRQHKTqfG7FfMj0kheHa1rj1TUmI/exSqiBbfl0fJ37JPnIeCoTuHOFAAASYUlEQVSz3R2MI3dVHboGzvz0HjOymdmb7lkxVp5HZkrr/zQWNuBIsWI+X5jHwHZ9vu0eLNYxjHYwGAwGgxtiV0ZbdbYOZXW4n57WEX39KfOsk3eTtUNG5lab4l4fP36sqrMFJIsyiXtzDIzrXFMrSrbD2LMzJ7LurimDZxty/2SwXRwkza+L0aY6tM7KXcWRhUvs+ng8bqzaJN9JRpSuR3dMegDIppwZMV7c1YOmWkjWt5KZJSm8TtRfYBaqj4nbah6JLbJ+kte7i0U6yHoZf/XzTobWZYmnNaT9da3p9L0vX768zENz98YNYmD0UvH+SJ4melL4Hc3vw4cPL9/R/ahnH2OkjI9Xbb1hFMXnc9Xfo2eD3gmxfMq8+ti0j64hio+FTTPIItP16uqQee5TG0DWzeracp1X5cYDE6MdDAaDweCNY1dG65ZFqsNiViLZaordsqVVpxCVstYYE5EFJMWWlK1GK/1S+7o0brIdWpiJ0cha6+pbncl02a3MTGQ8xL/LrFkyGD/+ilH4mP8qDofDq2vO2mX/u4vvd6pMjk7hKlnincg/46xJTYqxK9bertSrutjlyipnNmZXG+n75ZjJPDXWlOXMdcXKgFQb29WWp4Yiqc65m7/q98l6Uus0XQ/9zyYDKcfAs+ar+vp2z3L+8ccfq6rq559/frUNr78zTOa0kF3rf2fqVHHiOaJXLtVEi91rLPS+JO8i506mzmby/l7XGCB5clirTiWo1XPJK02G0Q4Gg8Fg8Maxe4x2pb+rWEkXJ1zVta2UZNI+q7bslMxFFpiPsbNUu7iOb0uG1OnIJm1lfXaJPfrxNCadL695c7il3p1jMqdVmzxus2qT58frLEu1WGR9tZ+Lrk1ZpxCWcCk707MkyWjYTiy14+r0XLu6cT92io37fJJiF9nWJcU1/0wsp/MQsYm8/00mu1L/ujTG1N6S+Rcrj4k01rWN2I6zRbFA3cuM1aaM3q42vWuf6C3hfvrpp6o6M1vFMrmGfa3q/u+8EpqPNI99Hl2LzVX9PrOatY2eIazf9e8IvEekgKVXaT5zrv5danunWnyugy6fxefuz5BhtIPBYDAYvHHMD+1gMBgMBjfE7q5juk89KcFT4B3JfUSs5AursvtHRet0FbO5gbsrkpi6H5fyc1Vbdzmh+bH5QNU26aZz+ySx7c6NvhL3ZhkJk9Y68X7fL13HTC5yJAlO4nA41P39/cZtnorXu2SxFXguef5SsgjbF2odM3lo1ZqwC10kF3LXqGEl4iFQQERIx2OCVpdIx9Z+vg2Te1brke4/ruf0HcpQroThD4dDffPNN5sEIy+D0T3Gfej9NBZuq/0zHMDExKq+XabAhETflteb6973Sfc2pVm5zvy7TGjTmFSSxCYA/jdFiSgWxCYOVVtRmEtyrlV9olRXtudYlafdAsNoB4PBYDC4IXZvk7dqxC5rk+U8K0bbySUymUL78vR0WWWyomilU4aMf/v+aM2lVmAsXehKZlJBP4uzmUzkx2MyFAW7mbSSSic6MfGO0fuYyH5T8hJZ7zXt8tjiKskNEqvEH7LEbgxs95Y+o3BIEkghO+PaWY1RIDvUvHWdUgkSj8+G334MjYkyemK2ukeY7FO1PT9dsk0q1aK3gvftiqmthOHlDdG45XlIojBdQk4SruG567ZlG0Ofm8bAeypJS/I+1Dx0LcUIk5CMvssSN64lv1dSa0g/rua5SobSPphUyvu4apuESc9Gujc5r0ulcD4mL6WaZKjBYDAYDN44do3RSg6taitRVnW2wCnhlixv36e/ylpSyjylvdwCo5QfW2ilgnu34NM8Ugs3lm8kGTA/3qqZMiXpVg3UGVcjw2WzgaotW2D8KpVUMC7K+THe6/tPQu3E8/PzK1GCFK+8JOGWhES6uCebd+vVRQcoMkJGq/F4bI5rtfOCpKYZXRNysgRnZWwfRhENen38b42bjJbv+3fJxLo4W2qCTrGGrszHwfklHI/Hev/+/aZN4qoVZeeRcaTciKq+0YGfC0osshSMjUqqzsxVr/oORRp8Xhw/Ge0qhs7yHTZj0Nj1nPX9daITYsMUp/DvdvkqqYlFd734DPZ58fdnLwyjHQwGg8Hghtg1Rvv169cXSyVlAVOcgdmLjEv6e11jcsYfPA7BTD4KPKRYQtdajVl6KWOQwvdkesmCpoXfNRVIFhozYBkTZJZwmjsbQK+aJjAm1GUwp20uxUqen5832YyJIXcMMFntXYH9Nee4k8/U+xqjr1XOmdnGzE2o2grOM2bGOFRqjM1Wbav4VycxyubdiS3wfHJd0+vkICthPoN7kjR+F3jpso7FaPnc8Tl364D/p+uiuXRxdsbSq84CGWznpn0oPu4eFEpIUhhFbRsT40v3n89BcDbOLGp6YVLeRdcIgrHa1HaSmcnMQu8yiqu2cXzem35PJK/hHhhGOxgMBoPBDbEboz2dTvXp06cXi5LSdVVb61BWjr6T4lC0+Dswa7dqyyAYl9C2blkyQ5CsITF1WlyMOa/ayrEdVieFl5iFvqM4SsqaJcgWO2vYLULGbTvZQ98H5dLevXt3UUqPbdauqavm/0lmjrEdMs6VDGDXsJyxJt+GjI7eliQZx+NcI1XIe6Nbh6l+sovV6h7RPZGYQTc/ekf8OIzrreLIrMe8JutYn7MpvR+T8cBVVm6KGXKcvm9f+5o/M4dZX5vWG70TzMNw6N7ic47nNDH2zlPWebp8v5fyCKgN4J91nrvUsL1rgCGvS/IQpufnpRadfweG0Q4Gg8FgcEPsGqN9eHh4sbxkzbi1IUuETIPMwq1IfcYavc7ycwbNmK/G1mUD+7E1fjKLlHXI+ZBBrWJEZFlkPakWk/FCZkqvxP5pUXZ1s26hd7WQAs+VQ2P4+PHjxbgJz5vPOWVQO66JYXbXI8WHOBa+JhbEdUA21DVC8Llymy4b2Y/N9SCwxWTVVpWItddkvCmLm9eZY/R58/5hHF7/J/bjjHYVo/3uu+82azDFIzVOtsdLbCrVoKf/U5Y+Y5W6pjq3KTeEbLfLCvbnGzNseQ/w2ZKOR/2BruGL/81nhl8nn3+qg+/yO1IOCj0OvG7UZag6X2v3ju2RgTyMdjAYDAaDG2J+aAeDwWAwuCF2dR2fTqeNAIKLe8t1TJetXlNqPiURmU5P0YnkJuA2dHW5i5LJAEx+SIkMTKPvki9SskwnyE7XsbvCmObO/dKV5OeQaft0A7F8yt9j0gNdoJfKd1YJLXd3dxvpQLrEq7Z9e3k90rjp5u0EUpIoCK//ypWoMdBdynObErY6NzORXNVdwhZL0vwziriw33JCJ1jCeafyHrqiGcLwtdE1ukg4Ho9RJpDPDd+fQPdpSpphAhBd3imkoWeeJwI6khQrt0niJj6O1XvdGNMzi27lVRiA7nnNrxNOSSEEXnfeo0kgpZNITaEg7meSoQaDwWAw+B/Aroz28fFxE+x2qOha1l8SLq/KrJSB745FOli83CVducWv8a8s46rX1iEtpq61VUqwoFXWJfC45COZGYv/9TkZaNU2kYXsI0nY8dzqeLzWqSTIhUU6y1LeECaE+ZxX5Uf+f0qGopXO85eSYYiu/MrPHz/rmFkqQevkIrmWfN5dIT+bSqwYLYUryLBTuQWvBdle8ioITNhKwgj87BKOx2Mr/l/VM0omUibBfj4rKCjCuVedk6D07JBABZ8taX5d2VXyNPA+5NhXZYVktEzgSwI2LL/stl09d7r1naAx6hzQA8l17/u7tiz078Iw2sFgMBgMbohdGW1qgr0SBGdLqFVRPlPZmcafLHDGrBjTpHSYb9OJyF9TbtHJOKaSiVWbKN82Scpdis1yzL4NW0+RgSZLtmNsyfrV9dLrKk4ib8iKWdJC7SQ5E0ughc8WYN11c9CKTnKKvL46x/TGJHbCOC5j90n8hF4Ptktcxfe5TVdmtmouQTaaSvq4P7E9NnZIIhep7SKhtcOGJamNpaBjSehFHjXfTuPk8RmP1HF9e655CrEk4RJto7HwPkzPiU5Eh89Ibu/zYexUx9U58laMmiPvbb1Pppu8ISwn4jpL61vnhIw5lVwmecYp7xkMBoPB4I1j1zZ5p9NpI/HnVhWL1cksZLn4d/SerCZZfrKmLgkZVPWxq2RFcUxdpq1b+p3QPS2pVATOWBAt95VcG2M914gcCGTB12Qdd9uk2B2t25U8pIrKKRmXGoin7GL/jntVyG669oWrVoSdJGYnflF1ZmvylHC9pThyOu+OzuPhY+rirasYLdF5LXxsZD2r+CjFBboqAWdO9DR8/fq1XcvypJHlOMvjGifzTlnuOp6eO2RebAIhr1zV+brzuPQiJXEdxj11LtRcIF1LnkvmaKRnC70RHUP3Fn8U4mADBK53Xzudl4XPYJ8fn40898nLQUZ7d3c3jHYwGAwGg7eOXRlt1dkCSg14Gf+UBSnL6+PHj1X1utmw9scMM0qWpfgnLWPGXVcWuN7TPGhFpYbmXbbfqgEzrTJZgcyI9eOR5ZLtsI7Ox8P5kCkka7tj8x0rTvu9BJ/DiiFfqjv243ZtC8lkBGfdnei5kOQNGeul1Z6kHjtmwbVEq97H38lEJmnGLl7IeyFVD5CZreLiAq9bkh/0z31/q5pe/97j42PL7vxv5pDwejmjZf5DF4/2Vn6CnlmMP1Ns36/L999/X1XbSowupl7Ve2w670g6x7zXNA+yVR832+DxlZnT/l63VoWUTyDQQ5M8h4lN74FhtIPBYDAY3BC7Mdqnp6f68uXLS6xClqDHgpiFSWYp6ynVqHZxCP0v0e3kj+8E4SlWnfZLS7mrd3RcapPnYyRLEMgAUgYfGS0ZXGJ5VC3iPlMWKJlsxwwSPLtxpQx1PB43Au2excxjdrXDiS1e2zTecUkRKrGtrk0iX9MYOybJ9Z6yMrUtMzlTxnrndeHxU8Y68xVYc0tPiu+H14uviTlfowyl77IZQvIACWygkPYvRqkaWEFslZm9yfvSNW9PCnj6jHH2rj2jf9Zljq9A9SadA933qRaW7/F+1T7FzlMDls7zsMqq1tg6D6U/G7jfVf3+34lhtIPBYDAY3BDzQzsYDAaDwQ2xq+v4999/f3Edp2A03R9df0ZPKRfohujcsslNRhcDk0Tcldv1gaV7NhWbM1GHyQgpsYblL3SlpR69nUuUbpPOTZj2wdKHNO7O3ZfS7Sn0scLz8396GbOpQJJw03XoJN2SRCHHwH2kpDGWgjHhJJX3JIGI1Tg0dx833XBMrEqlaHR9cj0kkX8et2s2kVy6vPe6teT7YSIL95/ct6v163j37t1GeD4JYLDsiW5Zn6uuvxIzKSDBtZOS1PS88dIlP57j119/fXVc7YPyg6lMjpKlneiJr9XO7cs1mkRDumRChe+SNKJc8VzH7Iuc3MB0K/NcrPof71HaUzWMdjAYDAaDm2I3Rns6neqPP/54sd5kZXiKd1ccLUuJ//u2ZAmybpREIMiq8m00FhZ9p2QRptF37ffcyu4YjLASI2A5Dc8Bk0l8WyY/dYknKTmCDILlTClhq2utx5KHqrVARRrLw8PD5tg+bjJIyhqmciUmFHXNBZKFzsYXZLKas8+TZQ1kFFon1zQ+4L2SEkvI+OgRuKbRQtfyMLFTHq8TSnEWpGuqc8Jznca4YrnE4XCIrQO5TdV2TXYC/n5sbaPnChlfkiqkBCO9LyqPSc8DJoj688z3yb99rFxLyfvCZ1JXVriSftWrEsboKfTzrXl0HqLksWECIO/FlMxK78Hd3d0kQw0Gg8Fg8Naxa1OBh4eHjYW6aiBOOcUkwyWL+/Pnz6++05WwpLR+pvezFMCR5P/ScVMbro790qJNzKlrjJ0E72l9dudgJcXYNd5O5UuXJBgZr/KxXROrlehAigsKFDchi1uVzvB8sS1aWifdXFcNCHg9uhaI17R/45hSe8hOSrIr3Ujz4j25kuLk8RivpKfDv0Om3nkZfK6MTyccDoe6v7/fnJ9VIwUyo8Roef+R2VKi1eesNdnJdKaWe939IRGfJDXbiT0kjxDB608Gq/ddPEjnTXOnaBDjrS4Aor/ZwIE5IX6utC09JpxfEinqhFFuhWG0g8FgMBjcEIe9Gt8eDod/VdU/dznY4K3iH8/Pzz/xzVk7gyswa2fwVxHXzt+J3X5oB4PBYDD4f8S4jgeDwWAwuCHmh3YwGAwGgxtifmgHg8FgMLgh5od2MBgMBoMbYn5oB4PBYDC4IeaHdjAYDAaDG2J+aAeDwWAwuCHmh3YwGAwGgxtifmgHg8FgMLgh/g2aDDqO6y5uegAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWmYZdlVHbhORGapKrOyRoQm3My2bDcgMwobhEyDoAViMBiBACHjbhfgBgEGIYZ2FQJhaH0MbguaUZZBTLIYDLSFhGQKSciAxNQMEmKokjWUpFKVasjMmjLj9o97d8aO9fba97yIyIz7xF7fF9+Ld8dzzj33vLP2XnufNgwDCoVCoVAoLB9bR12AQqFQKBQKfagf7UKhUCgUNgT1o10oFAqFwoagfrQLhUKhUNgQ1I92oVAoFAobgvrRLhQKhUJhQzD7o91ae0ZrbWit3dVau5b2HZv23XTRSrihaK09sbV2U2tti7Z/wNRmzziiohUOAdN78eVHdO9h+lu5f2vtRa21W2nbrdPxPyOu95vT/teI+/DfizrKuNVa+6PW2jfQ9s9prb2qtfau1tp9rbU3t9Z+ubX26e4YG3M+pKMdbpory1FiqtsPHfI11XPxf7ce0r0un6737EO63odM4+L/FOx7R2vthw/jPgfFNH7/p9ban7XWzrfW3rjGuZ/eWvuZ1trfTH38r1pr/6G1dv1hlO3YGsdeDeCbABzKw/tbgCcCuBHAdwLYcdtvA/DxAP76CMpUODw8A+P784IjLMONrbUXDcPwYMex9wL4nNbaqWEY7rWNrbX3B/BJ0/4ILwTwI7Tt9o77fQmARwG48IPVWvsaAP8eY5s9D8AZAB8M4DMAfDKAX++47qbh2wH8XmvtB4ZheNMhXfPj6fsvAfhjADe5bQ8c0r0emO73Pw7peh+CcVx8RXDNJwN4zyHd56B4EoB/DOD1GMltW+Pcr5rO+XYAtwJ47PT/k1prjxuG4b6DFGydH+2XA/jq1tr3D8PwzoPc9G8zhmF4AMDvHHU5ChuPl2McWG4A8B86jv8NAJ8K4PMw/hAbvhTjwPIWANvBeW8bhmE//fUbAPzkMAxnadsvD8PwL922/wbgx9gitVS01h42vcNdGIbhD1trfwjgazEO5gcGP4/W2gMA3t37nNapwzBm37ok49UwDH9wKe7TiW8bhuFbAKC19hIA//Ma5/7LYRj8xPa3Wmu3AHgZgM8FEFq8erHOi/Kd0+e3zR3YWvvY1torWmunW2tnWmuvbK19LB3zwtbaW1tr/6i19urW2tnW2l+21r6ipzDrnN9a+8DW2k+31m5vrT0wme0+Nzjui1prb2yt3d9a+5PW2me11m5urd3sjrm8tfb9rbU/ner3jtbar7bWHuuOuQnjbBIAHjKT1bRvj3m8tfaNrbUHI9NJa+3PW2v/xX0/0Vr7ntbaLdM5t7TWvrVnwGutnWytfXdr7a+nNnhHa+0XWmuPcMes89w+urX22sn88xettc+Y9n99G82x97TW/ktr7eF0/tBae+5U7rdO57+qtfY4Oq611r5uuvaDrbXbWmvPb61dFVzvO1trXzO1x72ttd9qrf3DoA3+WWvtd6a+cldr7T83MtNNZX9Ra+0LW2tvmNrh9a21T3DH3IyRnf6TtmuOvHna98g2mtXePrXzba21X2utve/cM1oTrwPwywC+tbV2ouP4+wC8BOOPtMeXAvgpAIeWGrG19nEAPgyrg9N1AN4RnTMMw0603V3zo1tr72yt/WJr7fLkuI9orf1Ka+09U9/67dbaJ9IxH9Nae4nrf3/RWvuu1toVdNzNrbXXtNae0lr7wzb+OH7VtK+73wH4OQBfzNe/FGit/VwbzbNPmPr+fQCeM+17+lTm26fy/35r7Wl0/op5fBpHzrXWPrS19rLpHbmltfbNrTXJSNvoAnnp9PXV7t15/LR/j3m8tfYV0/6PaeNYZePtv5n2P6W19sfT/X+3tfYRwT2f2lr7vemdf8/UHo+Za7e5/jhzbmSJet30eeHerbWrW2s/1Fp7yzRWvLO19vI24xbCMAzpH0Yz4IDRrPE9GM0l7z/tOzbtu8kd/+EYB4jfB/D5GGf2r5u2fYQ77oUA7gHwBoxs4VMxvuQDgH/aUa6u8wH8HQDvAvCnGE12n4bRPLcD4LPccZ86bftljGaaLwPwNwDeDuBmd9zVAH4cwBdiHLg/FyOLeQ+AR07HvN90zADgnwB4PIDHT/s+YNr+jOn7YwCcB/BVVL+Pmo77PNfWrwZwB8ZZ+/8C4FsB3A/ge2fa6jIAr8Vojvw/p7p+PoAfA/DYfT63Pwfw5QA+fSrX/QC+F8CvYjR3fvl03IupLANGVvfbAD4HwFMB/MVUr+vccd81Hfv86Zl9HYDT07226Hq3YpzFftZU9lsA/BWAY+64r5iOfcH0fJ+Kse/cAuCUO+5WAG+e6v75AD4TwB8CuAvANdMx/wDAH2A0ST5++vsH077fAPAmAF8M4AkA/jmAHwbwAXN9uvdvqsd3AviHU995ttv3IgC30vG3TtufOB3/ftP2x0/X+mAANwN4TXCf52Lsexf+Osp34/Tst2j7fwNwFsA3Avi7PWPO9P1JGM33Pwxgm8rnx56PxNjHXzM9uycD+BWMY9ZHueM+DyP5+EyM7/BXYZxM/ByV42aMY8ctGPvzEwF8+Dr9bjr2o6fjP/mw+kD0fMW+n5v67punej4RwMe45/SVGMeDT8X4zp3HNDZNx1w+ld33se+ejvsTjGPRp2B0gwwAvigp59XT8QOAf4Xdd+fKaf87APxw8M7+BYBvnu7zH6dt/w7j+/cFU/u/CeN47fvH12Ic038EwP8K4IsA/OV07Ik12vclAN54wGf0OVO5P9Nt+ykAbwPwLzCOFf8MwA8A+Mj0Wh03ewZ2f7SvmzrAC6Z90Y/2S+AGuGnbVQDuBPCLbtsLsfoD+zCMg/ePdpSr63wAP4HRB3c9nf8bAP7IfX8txh/25rbZD+fNSTm2AZzAOKh8ndt+03Quv8AfAPej7cry3+m4H8A4EXjY9P1Lp/OeQMd9K4AHAbxvUsYvn879rOSYdZ/bE9y2D8fuy+Vfmu8D8BBWB9p3AzhJbfIQgO+Yvl+HcaB9IZXxS7ge0/e/BHDcbfv8afs/nr5fCeBuTP3WHfeBU9t9rdt269Tu17ptNug+zW27GfQjN20/DeBrDvKCd/T9AcB3Tv//1PSMrp6+Zz/abfr/2dP2HwLw26o+032ivw+ZKd9L7bq0/e8C+P/cdd4N4GcBPImOewZ2x5wvnp7Rt4t28GPPKzFOxC6j9/MNGM3yUVkbxnHsSzAO8Ne7fTdP2x4n7p32O7f9OMYfuW+5SP3hVuQ/2gOAT5u5xtbUDj8F4HfddvWjvecHemrHNwH4lZn7fPp07icE+9SP9rPctsswvp/3Y5p8Ttu/YDr246bv12CcwP1Q0AfPAfiKNdr3QD/aU1n+GsAfYS/h+CsA37Xu9dbyIw3DcCdGNvX01trfE4c9AcCvDcNwlzvvHowz3k+iY88Ow/Cb7rgHMD74CybLNirUL/ytez7GTvJfAdxN13kZgI9orV3VWtvGODD/wjC15nS938c4e96D1toXTOaYuzB2gDMYfxhUm8zhJwE83swiU/m+CCNLNd/Tp2OcLb+W6vFyjIPC45PrPwnAO4Zh+JXkmHWe25lhGF7lvpuy8hXDMJyn7ccwCpI8/uswDGfcfW7F6Dczgc3jMb6crFL+OYztzeX5jWEYHnLf/2T6tH7w8RgnID9NbfeWqYxPoOv992EYvCCGr5fhdQC+sbX2zNbah2XmQkNrbZv6+Trv5Y0Y+943zh049e0XAfjS1tplGK0NPzlz2gsAfAz9vWXmnEcjEKsNoxDrH2F8fs/FOIh9LoCXtdYit9vXYpwkPnMYhhuzG06m508C8J8B7Lhn3DCKnp7gjr2qjW6mv8Y4OXwI449VA/ChdOlbh2H4I3HbuX5n9X4I46Tx0TN1yMa6g+DsMAwvC+732Nbai1trb8f4Xj2EcfLSO479v/bP1Lf+DH3vyLowkzqGUXR5C4A/G4bhre4YG4P+zvT5iRjJFL/zfzP98Tt/UTC9Zy8GcD3GSY43u78OwL9qrX1Ta+0je9/7/Yg/vh/jzP45Yv91GBXSjHcAuJa2RUrBBzDO7tBa+wCMHenC37St6/wJ7wvg6XwdjOpVYGzM98H4w/eu4Hp7RHettacA+HmMs/enAfg4jAPZ7XTfdfCLGH/4zd/4pKncfkB9XwDvH9Tj91w9FK7HaIbJsM5zu8t/GXbVy/w8bDu3SyRkfCd2/T3XTZ97yjMMwzlMZnQ69076bhMdu6/5k1+B1fb7MKy23Z7ruYlTz/N9KsaJzrMwssq3tdb+7cwL+Uoq07/tuI+V7W8wWpOe2Ug/IPCTGM37NwI4ibEvZ7htGIbX09+ciOlyCPXyMAznh2F41TAM3zYMw6cA+CCMP3Y3NgopxeiCehuAX5i5HzD2iW2M7h9+xv8HgGvdM/iPGFnc/43RLPwxAP61K7tH9E4Y5vqdx30ApE+7Y6w7CFZ0BK21azC+D4/FOOH7BIzt8NPo6+fnp0m9B4+9h4VoXJkba+ydfw1W+8OHIh8vDwUTGfwZjG37lGEY3kCH3IBxUnwDRrfkO1trz2uJZgNYTz0OABiG4XRr7d9hZNzPCw65E8Ajg+2PxPpy/rdj7Ei8bR3cgdEP+j3JPWyWGYmFHoG9oQlfCOCvhmF4hm1orR3H6g9JN4ZhONNa+yWMpsAbMc52/2YYht92h92BcYb5BeIytya3eDfm1Y+H+dzm8AixzSYWNhg+EuPsHcAFC8T1WB0s53DH9PkMfz0HFe60NoZheBfGH4B/PVmjvgxjuMftAP4fcdoNAE657+v28e+Y7vMtHeV7U2vtdzGGbv6it6wcIu7A6kRPleftrbUfxxgK9qHYnYQCo+/5RwHc3Fr75GEYQhHbhLswmrJ/EMJ6MAzDzjQgfjZGs/q/t32ttQ9TReypRweuw/geKhzGWKcQ1eETMU6SP2cYhtfbxmkse2+AvfNPw+jGYPCE41AxWdhegNHf/tnDMLyaj5kmPc8C8KzW2gdiHNufi1H3IS1L+zXB/BCAr8euotzjtwA8ubl40NbaKQBPwegj6sbE4F4/e2COX8doHv2zIYmPa629HsDntdZuMhN5a+2jMPo9/Y/2CYw/8h5fitVwGZt1X4G+H4WfBPAlrbVPwyha4AnRr2McxE4Pw9Ad6D/h5QC+sLX2lGEYflUcc2jPrQNPbq2dNBP5xCgej9FXBoym8gcxTpBe6c57KsY+u255XovxGXzIMAz/ad+l3osHsPeHdgXDMPwFgG9pY0SDnDRNx+0b0w/fDwL4avSF5/xfGK1Pzz/IfRNELge01h41DEPEXC3ygn+U34ZROPWbAH5z+uEOme808X01gI8A8AeDVv8+DOO7+hBtf4Y4/sBorT0SIwOUz/mQxrp1YBEHF9qhjREOT77I9/Xj4sXEqzBaNz5oGIafvcj3ivB8jCTsacMwvHTu4GEYbgHwPa21L8MMwdrXj/YwDA+01p6DcRbM+A6MqsxXtta+B+Ms75swdhJlUr+Y+LcYZ++vaq09HyMjvRZjw3zQMAyWVepGjD9uv9Ra+1GMJvObMA4kfgD4dYxJKr4fwK9h9IV/NchkjFFdDQD/prX2UozmpOylfCXGmfVPYOzQP0X7fxqjyvCVrbXvxaicvAyj8vezMM6YzyLGiwD87wB+drKS/C7GH5xPA/AD0yTgUj63+wC8vLX2PIyD6LdjnPl+PzBqJ6Y6fnNr7QxGTcLfxzhJfA2cL60HwzDc01r7RgA/OJmQX4rRx/gYjH7Qm4dhWDd28s8BfFVr7akYRSb3Yuwrr8D4rN6IcUD8bIz97eVrXn9dfDdGRe4nYdQ+SAzD8IsYXTIXC68C8C9aa9cPw3CH2/6nrbVXYHyet2DUGTwZo6n6xcMwrCTwGIbhttbaEzEqz+2HWzHQr5/u/bLW2k9gNG2/D0ZV+fYwDM8ehuHu1trvYHwvb8PIfr8cLhTnIuDjps9XpUddWrwao0vuR6ax/CqMY+U7MUa/XCy8EeN4+r9N7/aDAN7gNS6HgWkMeTaA722tPRqjhulejM/5nwJ46TAML1HntzEU1kIFHwPgVGvt86fvf2IT7dbakzD256cNw/DiaduNGJX6Pwzgf7QppG3CO6cfaCOKL8Zo/TuDUR3/WIxWp7Ryc8q3ZyBQjGL8wX8TSME57fs4jIPX6akwrwTwsXTMCwG8NbjfzUjU2vs5H7shWG/D2Eluw6jY/hI67mkYZ8MPTA35uRjDfX7JHbOF8cfj7RjNGL+FUVxzK5zaGeNs/gcx+sl3cEGrsaoed+c8b9r3WlHnyzFOJN44lfFOjGKGmzATioNRrPQ8jAO6tcFL4FTnB3xuFxTNWd/BbhjRtwB4K0YV6KtBCl2MoqCvm56HlfcHAVzVcd+wjTH+QPwmxgnCWYxmsxdgCteajrkVgRIXq0rlR2J8We+d9t2McQLyI1PfOT3d53VwqvPD+IvqPG2/cdp3K20P6xS8N5F6fOU+HeW7FuPE7Mto+1dg9Pe/eXruZzC+X8/CXsV31G/eF6Pv+00AHhM9k2nb38coWHwXxnfkrdM9n0z946XTs3sXRlb0GdP1npi1yT773Y8BeP1h9oHe5zu1xV+JfZ+GcfJ/3/QufCXGyd/97hilHj8n7jWrssaoMbgVo8VywG44rFKPvx+d/zsYRa9+22OnY3lM/2yMY/S92H3nfxzA35spo6nco79nB8d9IZVPnevr930YxZh3Yxwv/hjAV861X5tOLgRorb0fRln+c4dh+I6jLs97A9qYZOa5wzDMJukpbC5aay/EONh+ylGX5Sgx+dBvA/ANwzD8xFGXp7D5OMywgo3GFDLyfRiZ5rsxqlqfhXF29uNHWLRCYRPx7QDe0Fr76CF3C7234waMbP6wtBSFv+WoH+1dnMdo8nw+RoXyGYxm238+CPFLoVCIMQzDLW1M1XvY6Vs3DQ9gNJezeLVQ2BfKPF4oFAqFwoZgI1bWKRQKhUKhUD/ahUKhUChsDOpHu1AoFAqFDcGihGgnTpwYrrnmmkO5ll+ngddsmPvee92DlOmgx0b793POQY692G3Bx5j+4k1vetO7h2HYk2f72muvHR71qEdha2vrwGXzOg/7nz97zu3dt845+9GgrHNOz/16y5S12TptcZi6m9tuu22l75w8eXLPuGN9x/oSAGxvb+/5tH28PRp3+PMgWMo1LhbW6e/r9NWdnZ09n+fPn9/z2dPHbrnllpW+cxRY1I/2NddcgxtuuOFA17CX6bLLLruw7dixsZr8Ms5991D7el5INUnIXvCoDOpcHki4Pj33m/v05VHttk5bqDaxZxXdx16wJzzhCSsZvx796Efj53/+5y88d/vMnqW9qOfOndtzffvu/3/ooYf2HGOfPBh48EDAx/AA4s9Rg419ZhMLdf/ouLn7+bYwqLrzdjvX15u38X35uz/nMH68b7rpppW+Y+OOXf9hD3sYAODkyZMXjrnyyisBAFdddRUA4NSpUxfOBYATJ8asoFdcsZud0/ry8eNjOm/+Yed+GEG9hz3vml03ez/VODN3zej6XObsHvwuqMmxPy56X/yx0fv74IPjOiL2/p45MyZeO3t2TB55++237/nu78PlfvrTn55mGrxUKPN4oVAoFAobgkUx7cNAxAyZgSoTamZaXWeG22uO348p7bBMW+uyFj/jNcagZtrrIGvXddv8+PHjF9hNZK7kcvOMPcKcGVex5+jYddp8jmH5ss+1f4+Jn+tj17drR/Waey7W3tk2vg9fG9itu2rzg8Klldxzfb9tzhLlr8Vg5rbOu83vGF9/nXcvK5u6H9836zvqGfp78Bhs++YscNEx/Jyiclh/s35m4wNbZI2B+2ONsUf9+ChRTLtQKBQKhQ3Bex3TZv9utC1iYXOYm2GvI3zLtveKViIf8zpY9xw/w7aZqPLvZ35ktZ1n4H6ffZpvUF3n+PHjUjDkr6OYdg8jViwvOpdZhGI1+0GPL1KxQF+O/VgB9nOOKhvrFQy+fszGmT0dNqLr9vhp+bjed2wdv/JBxG3Rc1Ps9TBFdNl4wCy2x79v5ygft/dpzz031jv566rrHzWKaRcKhUKhsCGoH+1CoVAoFDYE7zXmcTaverOLbWMRwmGYpdYRpPVcfw6RmKXXdJ+dY1DCF38cm1n3E36i6pMJ0TJBSGsN29vbK886KhOXW+335WbRC5vMotAvJZTha/eEb/H+CKof9Jix93NfFSaWhe0o0VDWd+xZZuF1h4n9iO4icL9V4kI+3v/P7ZSJ2eaEWoYsbKtXRKvKMFfWubEpE95x31Fma+9G42PU/aOxxe5j4WJLQTHtQqFQKBQ2BO81TDsTIHEYkMpiFM02exliJEBi7CdbVg/mQi7WYdq9M26gP6lLT9kjceA6TNuOz/rBHOONmAknU+HkIFlmJZWEJAvBUsynxyqkjslYtErekiVZ4W2cnIaZUGR9MChxWcZ2L3YImCqrL8M6glRlBexh2uq+ETiMiq8fWSrU2DEX+pWhJyvhXPhtZiFTljIrW5bJjs+JrpUlMloCimkXCoVCobAheK9h2sam2W8NrM54eabLs/3sXN4ehfPMpYY09CTiUDPDzAfDM85oNjvH3PaT9ET58KIy8rWykC/FTBittQv+rCyUQ5UlS53I+xTL9D40lfKUv2chOIop9IT8MfOKfIFcflXGrF7m81MWi6x+XFbbHqWSZRwkDGldcJ0U81xHczC3PdqXaTW4bCo0M7LsqPtmYJa6TopnZYXIoKxPmeXKymh9VI030f3XyUt+KVFMu1AoFAqFDcHGM21LQ8cMyysI1/W5RqxSMZ0ept2zokyvHzzzLfE+xWo9lJ84m/nOKcwj35KaFXPZI9V/TzKc1hqOHTu2ck7EKpQeQVk3AJ1wwRYkiBYrsNk9+8H5GhETZRW81SeyJHFdOWGJ8r9H5ea2YCburzf3DLPIA277jLWp+vB9LwUjyvQPviyAtugxazb0LMqT+cHnfLFseYnqxddV7N3v43dbXTND1o5zx2RtxJYqZfWMntthJBG6GCimXSgUCoXChmBjmTYnfGdGEjEsVlVmzEpB+cej2ZiKI4zUnUq12wNmbNlsnLf1zrAjKNYUMTpm9EoTEFk5ev1dW1tbXSpUxdii+2Xx//76USwnt48dw3XN1Opqtu+Xnp27L/f/yKfN5yp/fFQWe/fm/L0R2O+6Dqu52PHaHsraoywi0bEqvjiqe8Rso2tlERX8bLPnonz2VjZeotafw22QsdhIs+DrYffnPhVBaYciq5CV0Sywmd5nP4r5S4li2oVCoVAobAg2jmmzP4gZ0DoKcMUMMh8jM8NoBq7UjFn2IWbJcz7uaAZus1cVnxn5ixWbVYtpROXvScLfy6i8n4+PnYvT9hnRonIbS1CMN6oP+x1tps4q8sinzX5v+7z//vv3fPfPmlXpygLTY5FQ6v6e+Fluc68RUepddd2M2bEvPWpHlU+B2+iw4fvbwx72MAC77WCWDrb0eSg/PbPoLMZfZfSK3gkeA/m67Nf1/0f7PFjjAOy+R3w/1iBEam6Diuixdo3eeTW+Re8B38+ud/nllwPYfRcj65odq6IXjgrFtAuFQqFQ2BDUj3ahUCgUChuCjTCPZ6ZANldHIi8217BoiE3u3iSjUiWyiaZHVKaSHfj7sClRiZYyk2CPqX0uFWCP+IIT2mShEkrgwvujtXB7zLq2n68bJelg0Y2dYyZQ314sxFLiFNtvJu9o2wMPPAAAOHv2LADgvvvuWzmHk0AYWOwThbWo0CI293lTN4uHlAsnu5+hR3jFgiY2K2ftqNxYh50Ew+pn/cH/f+LECQDAyZMn95Q/W4Obxxd2sUQhWvY/J64xZOGCbCbvwdz4ErktlIvQrmGm5yxMzMzg3Eetvc2MDayG9aqyRuFbagzma/pzOMxyKSimXSgUCoXChmBZUwiBLNC+Z4EDm61m6SOBeGZqMz4OsbFjjRFEITg8e+TZXlSvOaHWQcLTImEYQ4X6+PLwLNUzEn+svwfPjpmlc5n9sVYGzxAVVNpRYPU5cFtn4XaKxWYhf9bvPFsAtNgsus5cQomojIqlZwtGqOfNzxrQC+8YWPCXJWZR/TwKnVJWtjkR1bqI2Jf18SuuuGLPPfl9iZKdsHVBhTD67VnIHbA77vhxTgk2rR5W9p4FQ/h+UcgX77Pym0XpzJkzK8carI2tHmyN4D7k9ykhmiF6BszsrWxRUicr28UWOu4XxbQLhUKhUNgQbATT9jOdzJfsj41moMovxLNkP1NTs2SeGXo2wQybWWWUYEAxKPYXRX7xnpk7308tp8jhUBEj5zrbp5U1C4NhhhKxGj42mg1HGIZBpir192BmzalIfZ2ZgajwD7umsQxglZUw84xYjkoO0+PTVr5/5X/3/zNzyyw+Vn5uTxX+FiXk4H09bEYx68iqoixJ6rrb29sr/Tfyp1oZ7Dnz++j7sdWRtRIqVM4/Uw6Fs3bi8EFfZ2PSrOExVmlaiiuvvPLCOWwpYr0C99Wo73C6Xg51jDRC/H5aW6uQugx2TdaO+G08BrOFKQqHjSwTS0Ax7UKhUCgUNgQbwbQ9c7CZGPs3mdX0LHCgVKcRO1PKb/bj+HN4xp75b5kdqbSJEdNTfm72nfoyMlNQfkGlMvdg5mXf/SyZ/ZHsq4uY8ZzvysOU49wv/Aya66L8qxEz4D7CTNHqE83ymQmYqjbql8wmud9FVoe5pUuZ3fo+ZOVllXKmxOY2VgmOooiAzP+o7quYvEqj6dHLuKOEOlHfMcW/0sNEynyuI1uXIuuJvTtz759vWztHHWtM29fL1PCczERZBXx7Wt9hq4Ddn5Xhfh+PkabG5/Hd62W4H89F9AC775zVXSn3s2RcrNk5ahTTLhQKhUJhQ7ARTNvPdHhWrWbfESOdU6r2xKSquHAfV6rU4Tzz9DPFuQT5mfJcpXe0z8zXw8psFXsb+ZOZmbLf3d+Pr2fPlH1c0Ww5auMI3i8Z+aqUz1WlivT35r6hYrCNRft97I/NhF0IAAAgAElEQVRUiyVE92HWlymluc7sW2RG5P9X8ec9EQ5Wd47bjRgR+0FZnR7dL0sV68/ZL9M2n7a9n5EvM1OJ+3pEOhUur9KARNod5cOOxjmzAhjsGN8n/bX9/4pps089ak9+JzLLD48N/MnROn7sZ//2nMLel5/vmy0fa33R6tzjV7+UKKZdKBQKhcKGYNFMO/OJKLaUxUAza1Sxwp7RMQPl2VymrrWycVkyVs1lUWwpsgZkS9RxOVSMLfuceSbu78NKT76/rx+zfmYZzLj9/z1L5LXW0Fpb8a9HFhfOjKf8+NE9jc285z3vAQDce++9e67lWU20GAGQq+LZ58YMNFLxGnvgGHjly4784Qalu8gWQmEWY37SqE2sPuw7Z/9h5GNWmgbbHi02E1l7GK01HDt2LFXMW135War6ALvtcs899+z5rrQa/n3lOGY7xqwAmXWBr8fvmve787NU+g77HvmYmWHbfSJLi22z94i1FFYvK6NvE+tXPG4rjYU/RuUOsPr494B99UtDMe1CoVAoFDYEi2TazKajbExKhRrNQNWMKfJ7AvFyjnyMzcZYOeuh4oojHxbPVlmJzTPgSHHM9Yz8bHyOgWfWrI72M2w+NssKxmCLCN8nynqmVNFc/mEYVhS7kZXGkOV+Nli5LNb1jjvuALCqvr/77rv31AfYZRNXX301gN0oArtmFFetMscZoogHzuPNLJ2tT9nSoyqvt2es7Oe067Hv9PTp0wD2ton1I4sVtjbK8vMrzYmVnVnifhApt/311PuuchYAu4pl+7RymlKa2y0rA1tlokgAKwvHhTMz9eMOa3RYf8EWq0gXY1Bx4n4c5BwOdl+zXKnslf5+p06dAgDcfvvtAHb7OWer821hn+zTZquAbxPbt07M/6VAMe1CoVAoFDYE9aNdKBQKhcKGYJHmcQMLngCd5pED4L25Yy75BJsR/f3UIgVsPsxCVdRSoNF9OPTCwOayyCymltOLxEts4mQTmn1Gy+vxAgRsno9CJFSaVrXgiy9jj3nckqvYfaKFDRhsio7cCWbavPPOOwHsmslNFGPnmpnXtgPAVVddBWA1YQQvVhD1AyU0igSRKmyO+1TUnmxunVtUx5/PplvrD1ZmdgdwXQEt+olEkyz6YtNulH64B9Z32PTtr8duIn5PIhMqm8zt+tYuvJBMdA17duZisftH4W/seuB2id4NVR9+TlFyFYPdz8z+Pc9SLXdp75H1C99Gds51110HYNdcbq4pK6OVw9fV6sNm8Syp0zrjz6XEskpTKBQKhUJBYpFMmxl2lmKOZ25RWIgKy1AB9lGgPZ/Ly7d5MOtWoVfRbHMurWMkjrA62z6VTMHfj0NY2IJgxxpzjGaivCyptafNjiPxGosMVbKaqCwZWms4fvz4SgiJh0p3mT0vq5OJX6xO3FeyZUM5yQUvkhAtAcmWFg71iyw7SrzEYS+RFYr7KLdRlKSGLVTWV6wO9t0LlthSxGLGKBxSWbdYjOXHiXUWeTARo0ol7OvK4w4ztijkyywQVk77bowwSpPJbN/OMUQWF06brJZdzVKf8jvCfckL0fh95/vb84+S1HD5r7/++j1lY7GmL5NtY+sDL/Thr8/jNvdvbx1UqU6XgmLahUKhUChsCBbJtBlZshNmHlkyELUEJ3/6GTbP7tSiEx7M8jj5fTQrV+Fhdn8OOcmYnQrBylJS8rkq+Yo/R1k7IqatGHWURtDAKTyzRUuMafN1o0UfVD+Iws6MYVudzOdmvm61sILfx7oBtTiC/z+y+kR18Oeo5CAqBWsElYoyWgjDtnFyF/YFRuGXts/aN1tGVlnG+DNaArQXwzCs+Pe9PoHfN/vOC274ejDD5RA5fl8ii6LyS0flUovlMHv1fmK1QIhKVuWfpdKj9IwhrLdhn3OUZMdg9bG+Y9qRCJzghZ9JtpRzZrU7ShTTLhQKhUJhQ7Boph0lqZ9b4CJTijPj4Nlr5i9UfsIesGrUyuiZAS/Pp5ayjPy8PEtWSvQofaWyMnA9o0XimTFkvmH1nLIFKzIFc4Stra00LSf7UblNo3aKlk3053DSCV9npUcwRMsP8v3UIhwRlDI/q4taVtUQvU/8njAr46Qb2QIlc2mCgX7G4/2tmVWGYWlMs3S5bFViBXg27qgkRBzVkVkH+P7R+Md9n69r7WgM1ZeB218ldfLvk0o6wtaBSJ/AloSepXr5Gmrc8eB6RUlpuC5qXFgKimkXCoVCobAhWDTTjlJ2KtUpz3SjVH1qNqz8Rf7e2TG8Xfn0siUL1RKg6v496mhOxxcl7leze+W3jvYxolSbc5aE7DpW1l4VuUek5uW26/GvK/2DIfInc+wr90OOkfX72M/Oi5tky3ly/bI+zD5L1if0aBsMbG2ILCVZG3tEsb1qQZweXcncvba3t9N33O7Beg1O8xktrMLjGN8nWliI2SSn48zeBeWvtXO971ulwOVrRaxTpXDm7dE7yOA2j9pTaRlUBIIvi3oWWdvzNZaCZZWmUCgUCoWCxKKZtiGbqSsWHTFfxZaymZRiBj2MTinNs8xhfI6aIWY+RsXS/QxUxZ/3+JGVOln5ybNrKKvHumXicyKLxNz1enyK1oasFo7i57ksKttZpDVgtmR+4ijCQfmylVXGn6v8qqzyjvz8zHCsDXjJzszaMfduRvXKFvjZD4ZhwM7Ozkq+g8yaxW0eLQXLlg/VvyKGaGVgdszXzPo3Z7njhUqyMqnxLfKhKwtWlm1MWYdYs+ShIk/U+BeVn3MWROP7OuPCUaCYdqFQKBQKG4L60S4UCoVCYUOwEeZxDzb9KcGUN+MoU5wydXnzyJzpOQrX4CQKhiyUQJnQ1PfIpMrHZNeaMymtE34yF0IXHaNMaZFJsle8FJkKoxAyVbfoHAPXiQVBWZIGvoYhEnmp0BsWjHnzoVpbvqccnJK2Z8EQVX7uF9E11MIkkSBIgfvQYSS/OH/+/Er/8GVhVxb350h0pUR8yrWXuSD4/YjW7zZw2lx24ViCIA8l8lKiRl82FiByqtJIaKlCsTJXpRrPeHsUYsZ9k0O+ojDInmRER4Fi2oVCoVAobAgWxbQt9IJnjxHz7U2h58+fYz58D3+MYthRQglOWMHhBVFaTsW0e1iECv7Plubk+6iwjex+KpVsxN5VW3PZ/KycrzMX8hXVL2PuKqVhtGjJXLhRJMZRoriMTfL1eInRqO8oK4VKgRlZabie3K8jiwWHsimxZpZcQzHV7LnNscF1MQzDHqZtiMYBHn/43lH6ZLVATWbxm0vmEyWcUWGCJkCL+hRbilRbRn2X+50xbhblRYuaKAsplyMT2inRZnSOWuCJQ8IiZPuOAsW0C4VCoVDYECyOaR87duzCDIrTIQKaVWb+qJ4QJLVfhQlx4o9oOUcVnpGlxZvzJUVlZGbPrIXZWlYvZkdZCB1fI0tKoEJ71AIVEdZJJ8jPKSrn3CICPcdkzED5mjP/PjMq7jM9baDaOgvfsn3MRLgcwG5bcJrcOWuK/1+1W8SWuK3ZqpElHOrFMKwuzRnVRyVTidKKZuGM0X4P5a9VGgd/LC9ryWFO0fUM6llG7zj3Jxuvo6VGDXYMLxDCVpvsfVrHUsZaCbu/Stsb1Tn6HTpKFNMuFAqFQmFDsCimDYyzN2ZfGVtiZhIxw56lHT0iZsD3Vwnuo+uoY3y9VLKBHj8osyO16Iefac/5P/n+Uf1Ucn9ODBOdz2XMnlGP38nOXWemblAzd/8/M865a/n/FYPL/ODZwiBAHh2hfH09qVbNL6msEvy/P3eddI9zDDu6n7Km9faPrCw7Ozv7SlfJzymy8GWREX57pFLmvqneW18WTvurxofoesoaFDFtZsl2n9OnTwMArrzyypX7GVSUwjqWJEbUzkoBzj7uaJzg1MFLQTHtQqFQKBQ2BItj2sBqfF/kJ2I/riGatc75ljLwTFP5nKP7KTUqxwFG11Pbo/qxapTvFzE+xRCUSjYqA9cna1eus/KdR+Xna2RQz8v/r1hz5tPmayhLSI/q2ZDN8udir6O4Uj52LjbeH6MWtYmgohKUmjxLEcnIWKehV6OyDoxt+3tH7xjX1drJYp9Nqe2PnWOGWV2VFSiyyKjUs8y8I8W5QaWZ5f3+PmwtY8bt73HixImwfrwMc9ZnlZ4kOsfqbM9HLdoUvfORBmAJKKZdKBQKhcKGYFFMexgGPPjgg+FCGv4YD5sN8TkRe+ldkjNTu86pOf05Ko55nfjSnrht5X8yZMxExfL2MOA5lpnVL/OZ8n1YR6Dg62c+q8iPP8cmo+1zDGSdGO/s+ffGPPu2UO2iWFl0vF3f3iOOB45iltnnx+170KVUVT1Uux4E/r7RspBWV+tXrLvJIl3UQjrrvC+Kkfpnac+OF24xRMxesf258c6XiccffveMcftjlMK851nO9YPoGorBc7sCq7kJDtOicxgopl0oFAqFwoagfrQLhUKhUNgQLM48fv78+ZUA+CxRikov6jGX1CAzUylzTZZcZU6QE6UtVMkMspSufK4y46yT0lMlOYjOUUlVeoQ1bJbLksZwCJOCD/mKEomwm0R9erMui8XWCVXiPjIn/vP35nSPWQIYvi6bw9WnB7eB3Z9D3oBVc69KBMNpe6O6K6FVJLDi9jzMUJydnZ2VEFNfBtX+Vv7MFaCee2YO5zZjszgnUPFlsPHTwvfU2t9RWVToZ1Rmvn70/vjjgF1TubWJ9bMeN8mcGTwzZ6v01+wGAvqEtUeJYtqFQqFQKGwIFsW0W2t7kqtkoReGdRKnzAlXsmsw82XW4q+pmLbN9jiFX1S2rA0Y3AZK5BUtG8nXt1k6z5qjMBH1maU8VOI8Lpe/Ti/TPn/+/MqMOgoXVIsUcP2ibdxezHz8tWwb9xFmBF5EyalB+fpZqI9K/MNsNhJNzSWNiYRvc2lLs+em2GYksFIiwHUEnT3IhIKqbQ38jmdQ70sUdsRCKf68/PLLL5xjYU3c79hi5c9h4SEfy++pZ6Rnz57dU0YTl1lYV2R94HGG3/FsDJ5r28iiw/2a3xX7Hi34tFQU0y4UCoVCYUOwKKYNjLMlZi3RzIdnZtksbN3QpCwhB3/yzNT/3xsuFt1bBf9zWEV0DN83S8/JLIxZACdmAPpYMn/vtSRkPvu5hVbOnTsnw2s8VPlVPaJ9zICZ3fj/59iZr5cda6zp/vvv3/OZLeDBZVJ+PLuW38Z9lq8VWWn4mXLIkSHTbqi+Gr0bPcfsB6al4UUkIrbfE7bHUGl+GdH7yWVhH7q//5kzZwDsskbl27766qsvnGOs2461+9j4wguh+PAtu5+V9YorrthzrF3bP3+2QqrwwB6//1z4pf9faQJ4e3Sdpfm2i2kXCoVCobAhWBTT9upfIA+SV6nmMn+kYpNZsgZmS2rGG6mUs1kcQ7Ew9r1E9ZvzzfYsP8ezVU6JGN2PLRgqIUh0/UhBz1DnZMf3+P65z2QKcKVlUH7DHnbGzMufYwzbmI+xGWNL6/ijlf/d7uHLzymDud9FbNm2sb+dr53pCrgOmVXoYqnHjWlz0qBIUcyfrJCPIl3YQqSeT2Q9YW0GWwO81cSeq7Fh9hsba/bn2D2tf5mf2vzTxpatDrbfX5/HQrt+FP1jVhgVpZL5+ZXFNLPwKSsUWxaiiIos+uEoUUy7UCgUCoUNwaKYNjDOanr8GYo1Z4ubz6UtjVJE8j6+RjTDZobNcasZi1U++oyJ8EyQlZ+GjKmqVKsZ82EVtlLLR9vmGFeEzLfELDtrW77XOmkx5xTMPXH0vBymhzEeY0vMtCNW26tpUL51v08hih4wMENVegkPpRaOzmHWr5apPCgUKwN2mVkU+eHLEvXB3jwGEavkd4x92b6dWMtg53AsdMTOWe/AlqTIh87WGW4TZvj+WO4zPZqBdd5Tg5Wf3x/292dpgQ+7nx0UxbQLhUKhUNgQLIppt9Zw2WWXrfhiopnO3Gzesxi1LKShZ+amFKAZs1K+q4xpRwu5+3Mz9qIW8sgyy3E8sLpf5CdS94/qoFg4+7A85jLZMXZ2dlbu3eMzz56/8mHOZcjy4IUjWJnr+6ptU/kAsgVqVFz4OlCWpCingIqJz6I1lOWKsU6M9GGB+4Fn2szQ1PufWXu4newz8qdyRjylI/HPxfoOx/+z39oz7Ugj4a/BTNT3VfN72335O2f3i8qorEJZH1bvXPRMlEqcv0fRET0W36NAMe1CoVAoFDYEi2Pax44d68qApZhNpDpUy8+pRdwzhsizr2iWzH4vO5aZlodSQCoFasaa2Wca3U/5IVV+6sjfNjcDzTKircuie44ZhqErVlw9U0Pkv1dx82q2D6yyVGYeFtfqlyk8deoUgN2sUldeeSUA4N577wWwGr8N7Pq9o6xsc7DyWhmU9iCK6piLHuB7+HNUpEPUp9bxYR4GorGFowZUnb0FJIum8Ndni5i/Duse2J/vWaxiqz2RGgzrs9Yvonhq+5+V5txnougB9R6pKA0PjrrgeGr/DFTe+ixOm/tgxWkXCoVCoVDYF+pHu1AoFAqFDcHizONbW1tdZpy5UJvILGpQyfCj45W5sEcYFqXxA1bFGP58lVCkJy0nC0A4IUN0LrefEslk5iODaiv/fyRsUvVTIWURLOQrW85zP6FC6/QzhjKPs5ncTOF+21VXXQVg11zOIWA+nSQv0MDpLDMzLZs2s/5smAsxm0tvG23L2vGohECRmZWFWyykjMKb5pKBcKpQf++5xVIyASePO5GJW403KrlKNjazOT4SuaqQUjZbZ8mKuAzcRj3mcb5fJkIt83ihUCgUCoV9YVFMG9ibynSdsKrDkOlnbE+xlWgWxrO2OZFPdN058Y2/LzM3ZvK2PxKTMWtiVh6FpfCMVi15GYlWmH32WBB6BTQ+5Cualc8lyomgjlXMJ7rWnLgrSvPIiTGM8Zh4zT4B4OTJkwB2+9k999wDYDdch5+xv58STSqhEBCLg6K6Z+8tCyGz9/VSCdAyFsuJS7geURnnwhr5+fv9LB5VSVX8exktXuTPyfqbEoYy24zeRbM+WFk4bDFKyKIEvVnYokody88tY9oqhDMbG5eGYtqFQqFQKGwIFsm0s5CBubCdjJXt5xzlp1PJNqJz7ZNntX5GrNhXFlJk4NALZrGRb0klL+C2yCwJKpFJ5tNWzzZ6Fj3MjcuaJbuYK2dU7rmkMFkZ51hkxgzYWuH93gz2N/LCDT1pTBmcYMQzOrUAimKD/n5zYVCGTJNysZNeRP5UDv3j1MTR+zmXRIXf8SiBjUGFHEaLf9g4o8Ji/X3U82ALAi8O4o/h79wWvh3VOMBJTzgEzF+X20Axbn/+XEhZ9t5WcpVCoVAoFAr7wuKYNtDnw5ybIUbJR9TiFDyDy2b5Bp6x+eNYuazYU3YfVoQzfF3YX6xmiH6mzzP3OTaY+Zz5e7SAgFKf9jy3Ht+zlXUdbQOXKWLac8ueZlD9LkvQwyl8+dyMeSsGwizG+6S5r3C/iBbPUGmB+X6Zv1e9v5E/MUupezEQPRf202bvv0GlMTVwG0TWjLl0udGz5PsovYr/X2lMMt8vjzsq4iSyKKr3VLHp6Fiut8G3iWpHVqlHiXRUSumjRjHtQqFQKBQ2BIti2q01bG9vr8QbR2rVjAFm2/25hsiHNXdsNBPke6uFQqJF1dUscm62Hu1TMbYR055T3/ewG55pR6xaKcEzfUHG3BnGsrOYYXUvpWz3+5i9Rulr+X7KusCz/WyWP7fAgt+mLAYq1tfvs09j+vx9nTS2/JzWybsQfb/Ual5+X6N7czrTqIxzKm51bX9vfoaq3/nrc9nsGrbdpz7lnA5KM5SVkT+5LSIfeqYF8Ij0JUrZbohiu1W8dhYPno03R4li2oVCoVAobAgWxbSNKfX4C/fjZ+DZYrRACB/HPqTMh2VQikieVUbL6rFfSMUHR8pWVeaIgfcu39ijqFZxyJlPW6mwI189swGFSKXqocrNDDsqt8qix37b6L7s42V/WrQ8ovI1RizXzud4WYvTtu2mNPZsbW7Jwsyi1Bur7ttERR7wNZcQIxvFabMehd/tSAGuYuCtnaKsXNxH+ZjIMtfTn/kctsqpBT2icYcZPSPqqzw2qv4QvfM8HihtSBanbe8CR0VEeSiW5ss2FNMuFAqFQmFDUD/ahUKhUChsCBZlHgfy9Wgj7MeEoUKVItGFMnGzKTAyAarQh0joYOZxNpNz+sQsNEqtTRslueBtqj7ZWtwGdW4U6qE+o9SnbJLOnvUwDDh37lx6rDo/Cy2bM4tnIjn1PJTYx/+vXDZRHdg8bsewKTAK+WKTugr5iu7LbWPHcmrUKOEI1zMz/y8B1k5zwi2PudAkQ2SiVQJBldDG/2/P18ICswRKylzNx/J45M/hY9lcHYnn2M3I7RqJ2BjsqojcgDwWq3SpURnnRHJHhWLahUKhUChsCBbHtIE8lSbPBHtCk+ZmSj1pTeeYhz+H2akqm59FMpPyM+joPtEMVM04s4QVPMO2NlChThkyxqoYKn/6eveExnj4kK+ozZml8POI+olKAqKEYlHaRftkIVgkXmNrDDMFroPfx2zB2MR9992351qRmIhDvXrAfYMT0fSkpuV2W5IQzYPTefL7kaX7nUu3mfVVlX7TwraypC78Lhv8+NQ7zkTvzNyzNGQWPj4mW4Z3znIV9W+2lKpQr4hps/BtKSimXSgUCoXChmBRU4hhGGZ92uzzYP9wxgxVyJBigdG5zGqiJSDV7DtL/JGl7/Pfe2Z9PIuMZvKKWauwisw/PcdGo33MrKNZ7dyCCx7cdyLMPRcu49y2aH/WD1TCCl9uY8VZmkV1H64P+7CjRR+icKNecN9RYXz+mc756qP3KXvulxocnmfvhYXXRfsMynJk2235VWDVL2yLAfEzzFizPVu2/GXjqkpRm73T+7HK8X3nwjEB3XeyRCnsw2adR5Q8iK0KS9NXFNMuFAqFQmFDsCim3dq4LCezSj+7VSyJP6OZk0qAwUppP7vjZe7YBxIF9CvGF/lt5+qljotSA3Iyh0z5a5hbNKOHNatkGtl92WcWtT37SqN0th47OztdPkZlcelJJMPHqIQ90X3su7EmZgHALmPjaAXuU1EfUws2qGQ7Ufl7wPXgtMPMsCM1PrPn7P1dGtMBdsekLHGJtY9SZDNbjlgzK5h703/6Y/hdi9L0zqX4jcYsZWnjNvFpU/kcPpb1HpE1UlmqIm0HazXsvTJ9SZY0iKMhloJi2oVCoVAobAgWxbSBcSam/KyA9vUqv57/X/lemWlnCmZmAj1p8Him2xP3p2bwPfHMhiw+M4szjxD5ww08a85SiCqGzfHp/pjeeP1z586taByyeG1lKch8fj36By4/sxSljwB2/Zr2yT64iHlzfdiXqRTp/vrKYpAp3FWseqZ5mFNOZ/HoSwRbPLzVhNkqM2xuN2Pm/n91DUOk5mZNA/upfX+0+3C/tnOyxXR4TFIq+WgRFbZUcW6BKM2ySrVrx/K5wCqjNktWpn9Zet8rpl0oFAqFwoZgkUybfdrep6AS5xt6FH/MHrKsXOzPUBnEIh8c34fZc+ZP7FW6+zKqzG7rZPZRGbkiRaYqU+SvYisGt3WWPatn5mtMm1lmtAiDUotn2ebUMZlewo5h1sT1itiE8sVFTJRZuJ3LcbOR/oKvy8sdRv072xe1URZ/rPztS2c7CpHSnd8Hq6P5eiOVPVtc7Fj7jDQVcxkRo/7NViDuM1zGyOIWWcmi7x7cZ1gjwIvdAHopUJX5z9cj2qfQa308KiyzVIVCoVAoFFawKKbdWsP29racmQK7MyX2m6hcxn5blE2Kj83KBuzOKjO1t2ILip1FUP7caBao8mNnrGUuZjTL1mSzc/YfczmivMjWfjaDZ/VqxFR72NcwDHjwwQdXfOU9s2WlnPd1UkulMrJnyv06UuTa+caweJnNqC3YT6e0DdGyshwPzD5AZZ3wYP9gpgRXGpR1MrEtGb6dODqA35OebI7WR6644goA+r3x92OLCvuePRSrZKadZWDk953rEWmSVGY0ZVmK6sU+bI69nrveHJQ6/qhRTLtQKBQKhQ1B/WgXCoVCobAhWJR5HBhNElm4DpsCe8wdKqkGm/6itJLKBJSJynoXNYkSwHAZuS0is7lKAdgj5FKm5yxtJoPNvRxC549RyVSi+nN4U/asd3Z2cP/9918w52XpZedEfv7Z8nWUKyKCme34fiyS8/vZZM5m+ciUqsqgzK7RudyvsjA4Ky8vwqDSP2YiTSVI21QhmgcLA9W7HC3W0ruwRZauWbktfH/LEj75czK3kArxy95pO4bTwvI77+urzP9sHo+Eneukws2S0SwBxbQLhUKhUNgQLIppmxAtY3XGpNQMLRJWKKbBn1m4BodCZMk1FCNkxhiF0ahkCizKiph9Jqjy9fT/q6U5uVwRs1dJaaIkNWphkDmG58s6N1s+d+6cXFQggkoSE7FKxbCVoM+XW7VtZNnhc5lVcGKJaJ9is1HCCmbwKk2rb9doYQb/PWPLaoGQLP3spsPqphYb4eQ3wCp7NIEgiz+9NUslVeG2jYSWLCLjMSWyGrEYjkN1s+evUo+qUEd/DJdRJVvx/x8kXe/SQr+WVZpCoVAoFAoSi2Pax48fX/H5+RmohcJkfjO/3a7rt/H3LNxELcZhWGc21uOjVcv5ZUxbWRk4ZC5rk7nUpBH7VH7+iGmrBDBqYQSPHj/nMAypJcHfW1laeqwKGTsC4mc6pzFYJ6zFvmdJJ1RfyRaQUdaorK+qeqiwLn+OKlPGtJUVaD8s6ihg5bTlV7nvR6ySQ/DYUuVTnxr4mbEFxoNDWRkqnDPaxwv7RGMH19XqZ21i/dq0S5GFh5m18m37fesg09ksAcsqTaFQKBQKBYnFMe3LLrtshZFE6TCVKjBKBjGnruXUjZnvdC5loy/vnBI3W+B9TrUZJXPhfeukMVVJNKLZuWKdym+dnZP5iNdhUJx0v0wAACAASURBVK2Ny7oyU40Wf1kncQhjbinTCHMLuURQjDRisWoJTmUFyO4/x4QBzXDnEmf0XD/TNrAPddMSsigNAKvwgV3GyQp0Xg41siRx+/Dz8OfwmMf92bZHUTMqBW2m8+CyMMM+c+YMgF2m7duE20m9E75+vWNItKSuSj991CimXSgUCoXChmBxTPvYsWMrDNsvom5gNtfjr1PMipl2hLnZZMYM1EIaka+nJ23pXFlZ+RnNNueulzHg3qUZ/QyV69zTJvxc5nxLnmkzQwC0D5vRY5GYi00FVp8DM+CoHCo+Xj0f//8c84y0AUobkmlE5hamyBj9nN87iiU2cL/i/hG9+0tjSR7GHK38ptcBVpdMVcw3043ws+3Jd6DyJxgiLQ23O1tisvhzY9rWFsawbXum9+DPnsVAesAWnaVFNBTTLhQKhUJhQ7A4pr29vZ0yIRWn2KOu9vfhY4Dcl60U2pF/OqpXdE6kUlbfs2XveGatzo0YFn9XZYx8PrxPffpj51h5lllOKVw9OCY5imdmNsHwbaNYi/JpZ9YAjvHP+nmvZcLvYwaq4sAjawAfw+9I9G6opRJ5fwTF9qxNIj0EtxM/v8jvzsuiLgnGKplFA6vvAy9cw5n//P8974lBxeP36D4ya4wvjz+Ol9E09Tgv9pFlN1P9u8diqhC9T6peR43l9eRCoVAoFAoh6ke7UCgUCoUNwaLM40C8WIM3T3CqTDaJmMkpEvewyWcu3Shfx18rMxspU2kmWpoz/bG5Okp2wlCJUyKoMmdlVWKVTLzWI+Dj8vccC4z15PSfPgmJCjfrEV3xPuWCiEzuc2ZEDyV0Y1FmJtTicEh+HpFgTYVv9aQxVaFmmdCO3Qx8bGauVGk5M8HlkgVp1kfNVAzounG/i9KYzrVpdI5yV/WYmpUbxEzcUbITG6c5mQqHdUXm8TnR5DrIRLM9ybeOAsW0C4VCoVDYECyKabMQLRIWMOPg2VfEQOZSnaowm+hcxZazkBgO/fL15Xr1hl5FIra5BC09ULPzqKwK2f3UYgLRc8vqrMDPy2bwwC7D4BBCFv1kSUEUU4zaRCXrWSdtroHZbCSWU4l/FIuOrqcESR6K6fQsGKKsDFZvDrfx9TBwe2bPYKmpKD04/MmDk5oo0aGHSiPK45FH72JDkYiRv7Mw0VsQ5pg2LwqSWYW43x0kWVIkmjWUEK1QKBQKhcK+sCimbeCFKDxs1mOsyWZqPFP3yBKvAH1MRLGwjPmqmWDmg2O2wOf2hItx2Xt82zxLzfzvXNbM6sDXn2PN0YIEfA2FYRhSRqqSf7APK0t2ohD5YrktlQ84ClVSs/2ehBXKKhDVif3T6twoFE8dO3d/QPeviOmpvtPjB1e6iyXC6y+sbhyyxla7zEKl2jiyYvT6srOEOezDjkIB2X+vzol8+Cotb+b3V7oYDi3MtAFLwzJLVSgUCoVCYQWLY9pbW1tr+S7NP8nB+D1pPvkYlWjC78vYA5dNbY98cOss7uGvEW1T94/qxSxQsU4/w1Zp/vicqA4qSU00g49mwQrDMISJJiIwM83YhXoeXN4oOYxKCpItxjF3P2bG0Tbl88uWLmSGky3+odJIch0yzCWPyfq/OiZSAF8sn/Z+/KfrgJefjBbsAGLLFI9vWd9VvmtWlUfvk13X2DOnE43U4+zDVkvQRkl2VMKXddTjKmlU5qtfWuRBMe1CoVAoFDYEi2Laph7336NjgFWFpM3I2M/h//c+Iw+VqtJfb863HTFR5Ye0OngVMzNaxV75+GhbzwxbXZ8ZT48SWDHsHr9kVk+OK83Y8zAMe3xnmb+Y2WXmJ5xjaNzfMh8jly1i2qp/KTbt66FU6lzfiKXPLQISlVFpRTIWympdxaij7dG77e+T+Wp7kC2OYWBL1MVWFlsZbOzKIlCiRUT8NaL3iMdPZqA9PmY+hpXgftw1XzYza14gpSd/g4oGypgxW/Yi9filerb7RTHtQqFQKBQ2BIti2sA4E+pZUIFnSjaLzGb3fC6rHiP/6lz8auZ7YUaSZeLK4qI9ehh2Nhs3qNhWLns08+3N8NVT1p54bcUgGJHCOZp1zymkM/U7X0N99+coq0WkoVALdDBL9vt72XLkg1aZz7KMaKpv9EQE2Htqz9Lqkfm0uUw9eohsIRpGaw1bW1tdx/pzPCLf6GEtFelhZYtiunlpTh53zLLn3yNm2KxSV/kC/PXtXGPR3Ic90+YlONl3z+Xy9+Pnw+9I9K5zPZRPO8rEaViainxZpSkUCoVCoSBRP9qFQqFQKGwIFmUe39rawmWXXbYigojk+GxeM9NQlorSzEPK9McLLPh9KqwlSmzPJhkO24jMerym7twiHJlQQ4UaReEhytSo0rdG25TpKRNyqPplyUnmzFTb29upe0GJ7LhemehOmWjXCQXkT9+3OEyGj4nM4yxEU0I33h/VuUd8Mxfax2bMHnNs1o4q4Y+hx30213fMRO7PzRIYcXnZBO3PUQLYw4A3k/NiSWw+tkQtUQglm5bVWBWNqywO5tAvfw6bx5UpOnpHuW9ymTMBmjK/Z+Pp0szihmWWqlAoFAqFwgoWxbRba7jssstS0Y8K17HtNotUy8X5Y1UiET8rY9bCs/BoBqoWNPD15PvMJZvgczMWoARpUTgdz0B7Qr0UsvSVSmjEQhDPytYRhLTW9oQMqkVafLl6WPLcQgrc9pHIS4nWIjbBySbmRGX+fxarKVFhJLScS90Yhe/xsfyMo8U/VIhf1iYMFWIWpTFVZWX4pE49yTSYgVpdPdPmMtgzvVihRMyCT58+vee7sVv/js2NFTxGRn2Hr8X1jFLuqjbIBLCGubCtaGnlLLGVun5mzTxKFNMuFAqFQmFDsCimDYwzoCxNnZoxsR8tSqoxlyJU+YL8uSrdY+QntGN5thrN5FSSjh6mrfZlrJ1n5covuQ7WYax83yzJQS+8X7Jn4QlVfg/1XJQGINJDRFoJdT9uQ/ZXZ2Fb7FNUSSgytjSXbAdYtQqpcMWoTRTz4XaMnpvqsz3MKOtLZqHJmDZb9uxYY9ZZuBGXgfUKlwpRWlEFqx8nZMn6rHpO+0GUKEWNjaxbiBLAqKQ+c6mfl4hi2oVCoVAobAjakmYYrbXbAbz5qMtRWDzefxiGh/sN1XcKnai+U9gvVvrOUWBRP9qFQqFQKBQ0yjxeKBQKhcKGoH60C4VCoVDYENSPdqFQKBQKG4L60S4UCoVCYUOwqDjtU6dODddff32a1WoujjmCih/uWV5xbt9BzjnsjDvrxB/P3TvbPxc7nmVtm8vZHeUa5qxgb3zjG9/NKs4TJ04M11xzTVqn/aCnbtH37Frr3Hc/5x411omXVt+zfqAycWV5qg233XbbSt+59tprh0c/+tGyzBEuxvNY5527WNiPMHk/WRMP8xrr5Muf+wR0Do63vOUtK33nKLCoH+2HP/zheM5zngMbfO3z5MmTF445ceIEgN3k9yoJiH8IlhiBkwtwukdDluZRLbAQpT7tPTcDJ2bJ0k3yD2HP+tAqQUWWuIInTjzJsmdjn8BuEorLL798z3dL3sBr8QK7z+3ee+/d8/m4xz1uJTznmmuuwQ033LBSz4PCysdrEfOEMkoHOTfQ9iSAUQugZAu4qAQmPYkk1GIgPT+IXIfs+vzecBKZaEEUWxyDF5uwZ9OzMMdNN9200nce9ahH4UUvepFst6hOvO501k4975S63zqLpPRO2rPxrZfg+G2cblhdW5XBHxOtMa+OUevHZz/ANvZbX4kSzpw9e3bPp/W/Zz7zmYsICyzzeKFQKBQKG4JFMe3WGo4fP36BoTEbA3ZntoqBZOYOZtY8M+sxzWX38fVQ9Zs7l6ES50fnqvSVPfdRjDFig3Oz8ugcXq7UYM/RGLixKF+WK664YmXfpcac9YQtIj3IFkVQfSha8ICtTXOLbvTcbz/myrl0oxnmUsxm+3rScmYYhgHnzp1beQeyZSjVAiQ9LqE5q1a0bz/oYc29TJvL5Y/pHe882OrD6Ubt3MiCqdpejdV+n/qM6pAtR3qUKKZdKBQKhcKGYFFMGxgZGSd398vdMdNmNhktqMB+C7Wwwjo+GEbm85vz30Tg2T4vrJCVQfl6Ij+oQbGAiDVzgn61RKPfbs9Qld+sKZG/zbb5fnCpoNrQ/Fz8XCLRpKpztJ+Z9NySpn6bYY5N+P7Zu4hKxs54uyFqE96nlhHNrrvu/h6cP39+pS0iv6pa8CZqP2WtWueZKp1CNkbNWQejbepZHkRgmVl0lHVO6TP8PrZQ9Wgo1IIn2XK1fMxSUEy7UCgUCoUNQf1oFwqFQqGwIViUebxN6yGbacRMpn5dWhbdsPkjkvCbvN+ETPZdxeNlAhQVxrHOOZEJX53LZqNIXDZnFu9ZC9c+1Xqz3gTFYU/2nPj6/hzlkjBwCI2vRyRIvFTgZ6TCqCJTHYttVNhOJCrjc9gtFF2Hy9hjtpwzf0bvhLWJMtnyOZnIh9enj9ayz96Tw8AwDHvql4UdzeUoiNwj7Orgd4z3R9dT5utoHODnw/XInr8yqWembi5j9k4wVL2icY7DA9fpZ6osUf/eT2jupUQx7UKhUCgUNgSLYtqGLCOagWfDzKYtWQewm5TBjlFMO2OkCpkAheuj6hBBhTVEjIQTB/CMNEoio2aTc6wA2H0uxoD5k8vhr8fJSjhpSSaw8iz8UkNZR+ZCgPw+xc4jFmthjyyAi2b/c1agdcIT+VjuS7686tieUBllBYrewR7h5kHQWkNrrSv0UyETbLJlqiesco4ZRgyYWaVipB49SVuiMmdlzESsPUzXb/fvGwuUeXyLMNd3srC0YtqFQqFQKBQOhEUy7cjXZ2BWbKzO2LSlnjtz5syFc2ybsXBOg8gztohVKCYVzSaNTdqn7TNWGc1m2R/Eded6e0sCp2m1+tl2syxEqSHVLFKxBGCXBVpCFE5NGukKrM52LJc5sqpkM/alIGIEDE4ckVkxmCWxXiBjS8y0VKiX71tKM6GsUP5/TjmqtBWZ31X5MKN6XkzfdhQOmYXGZZYPBrcH93X1zvt9c8/Wg8eSnj6qrDO83d9vLsVu9N7O+ejZkujPVcmx1Pee+q0TfrsULG8ULBQKhUKhEGJxTDubOQKr7NEY5+nTpwHsMmz7DuyycE4Wr1Tl66RFtNmmVzYbm7T0m5wIRqmtAe23VfX2/6v67Afsc/QpRM1yYYu32D77bu3nmT1bG1gRHiVOydTom4i5ZCR+GzMAFTXh/5/zR7JP0O9TZbM+ZM/cb2OLDrPBzM87V19V14sF82ur+7IOgVlrpDXh+rNuw/p+ZnFZp88rS0embelNJJL5fg1sCcu0DXOWnchfzdZV7neRVcjKa8cqxh3hMFLJXgwU0y4UCoVCYUOwOKY9DIP05/r/bebETNs+jV0Dqz5WZtqRD7YXUYpQntHaPtvOvm5AMw77zNTxts3qfLHjWtUMNIqx5XNYRc5+XrNO+HOWpt6MsE5Z52Jw/TZm0dwf/D4VW98TS8x+3Gz5WmY0Kt440kMoS1IWn6uWVTxMZDG+wGo7WRmyPA187Z6FQlR5lP87i7bgevTkh1C+bOW/9mWa0zZEZVFLskY6HO6b3FeicYmfi3onskiBYtqFQqFQKBT2hcUx7dZa18LyNtsyxmkzMjvX/KvROezzVbM9YHVWyuwiytrGviulpvSzZGblPFvleHQ/g+yJV9wvTp06BWBve7JPjuO2M1+mtf2999675xpRVihj3UtI2K8WUumZsbNqmPu3h2pbbtPML6nKGPU7tgJxP7RnGvl3rYzKihJZEFQkgB1r/SNi2szSD5NxD8OQag6UH9XKkPmLmeFG1gQGR2+o/uDbhKNWmB33xM/PxZBHVho7h9uIxyx/zJzV0zQUEdNW5c8sO2yZyLK2Zcx9CSimXSgUCoXChqB+tAuFQqFQ2BAsyjzeWsP29vaKWScSFrDoycKsInGHWpyAzSC83//P5jAzu2QmGzY1WlKSaOELrs9c0pPo3Ch96Bzsepwo5eTJkwB2zeL23Z+jTE2c3MH/b5+cFMdM4T60LHOTXCqwEEf1oSzVLn+3a0QLofAa8ixajEzrbDpl1w3XJTJ127nWR3nhEusXvh5qMRX+Hr0b0UI0/r7+fWCX0JVXXglg18WyHwEpYxiGlefjr6tMvmzW9eXm91F9RgJOfob2XFQKYf8/jzM8Zvg2n1vbWz0nv43DA9n0HYWnchIse+/ZfL6OKT8yj/N7ZP1YtU1UV5WG+qhQTLtQKBQKhQ3B4pj28ePHZbpHYG8oF7DKsKMUqGrGzzMzDsT359ismMOqohm2r4+/rs3ujL36GZ3NNFU4TbaYAbM8nulyClFgdwZqQjP7NBZjzJdnqB4quUHExFhgpUJo/H04IUIWUnYYYJbrt/FsWy144Z8pszPu1xFbYgbAQiRDlhpSLeCQiW64v3nLCrCXdSq2yeGPmXhJWQ44vAvYZWfMvqyv2jvpGd268EI0e24+oQyXgevMoUp+n/rsYZMGZs/8fvr/MzYO7O3LSjyqGHi0uI2Bw3Ct/fyYbf8bwz7oM/PlyBZ6sbLZOMsLFUXJnZaKYtqFQqFQKGwIFsW0gXGGl0ntbZZoM08O7I+YkQp9ULN971e12TD762ymGC0lyOW2WRwzbB9GZfXhGWFPgnsut13DZuPGXv39rM7XXnstAOD666/fc4yVh1Ox+uszY2CfVjSLZkZn5YgYFjPUi+XTtjpH4XsGtehLtlQiMzbWD0SLpKiQKGsfOzdbZtXKqPq5h7WxXZfvGy0sw2XkUElO2+vvqxZLYUuMZz52vvUnDvO0vuoRhUYqDMOAc+fOXTjWru8ZIr/vmVXJwOMAn5OFEqmUqtk5SsvC71zUR1WYKr9z/h7cthyuFaVTPkgiKwP7+7nPRqGm3N/YSuTLyCGLS0vuVEy7UCgUCoUNweKYdpRUIUqkz74/VglGCm2DSt0YJVexWTf7XjP/6lwSA2OvUQIYm9HbTFT5lKIEMMwGmS1HSlPzXZp/kGfcGYOw69u1jK3ZDNv7p5mF87NldubvfbFmuqzIjRKXMBT7ZzbjweyRdRjZEpAGXsI0Yyp2PVaER4pZlfBDKZ/9//ZusIqb+0eUAETpViL2ZP/b+8IaFCuHvw+XpacP8fvv25gtbipqIFJmqygC5T/211eJWbJ0r5zshLdnSnDex/06Gnfs+mrhpcgqmI0vc7BrqDS60TPgfsbP2peDn8cSkjt5FNMuFAqFQmFDsDim7WdJmb+YfduGiE2wP9DAy3nyJ6B9H1lMNPuDrExWDlYuAqvLa7JfmBm+97srVbzyi/qymf/p3e9+955jWL3snwv7yI2ls3UjSpfJM12VEtPXmX3nBwVbJOzePYtjcMSBWkACWLUCWXsx046iFZTP3Pys3gfH/UlZMaJ3w9rC+hnHvkZMm/v1VVddBWC3L7HP2T83K7dfGMbfz/p1pHC2srElKVMg27FZytNhGHD+/PmVSBD/XJS6ndl0ZCnid5j3s77D72NfNl/T348V0MoK4I9jiwGPHWxR8mOxGhtZW+Oxn1wSDB7v2NLYE3utLAr+/Cj3whKwzFIVCoVCoVBYwSKZNsdiRxmjWOmrYq79OTbLu+uuuwAAd955JwDgjjvuALCanQdYjRVmnx/fA9hlEVwmZgjeSmAsxWar1gbmL2Sm7Web7DsyJmfX51m6r6Nts/vYDJ59Tt76YDHdxrBMgf7IRz4SwGqML7DbbvwsmMl7tsFt7p+LgvWLSPVssOdgFgKlgvfbOMaeF0CxdvM6BS6LPRdrt2hBBXvubJFQeQKA1f7GegX2afv7McNSiz5EPma7zzXXXANg9X0yeAuXWbfYT81L6kZKdxXDzopgX+5sSUmPYRhkdIm/l9LBRNnN+B1jK4ZdK9LhcLureP0oc5waC7O8ANxXGJFmw54Vx2fb9kxHYGMI14Pr7cc5trwxImsHv3tsSYj81j1RF0eJYtqFQqFQKGwIljWFwDjLsdm+zfoyZV/E0IC9rMxmgLfffjsA4D3veQ+A3Vk458G1Wb+/t7FJK5sxU5u1Gnvy1+U4aZ75RjHJSqXOPtMsfzmrulnd6cEMixnJu971LgCxf8dmy29+85sB7DKsD/7gDwawy8D8dXmmy2wzyqm9DnqWPbTnYe3DPlE/67a2fMQjHgEAuO666wDsPn9rc471Bnbbx/qb1dmuZRYf3w9YRc/RAuxbB+YV0iqe2p/L4GtFsdashvfvDbDbVnfffffKdazuj3nMYwDsvitvf/vbV8rI1i61PGXUR3uW77Q1D1hfEWko2CfLccfROfZM3+d93mdPPex9sT4WZQPkOHpjxNYvfJvzO6wiHDw4soQzpGWRNWppTtbuRGCmbfWIsjcaWDNh44sxe5/BzsARBpx7PMqLwBE0S0Mx7UKhUCgUNgT1o10oFAqFwoZgUebxYRjw0EMPXTBlmHnFm+oiYYz/buYwb5K75557AOwKZVgUZTCziDfrsqhDLYrgBRycPMU+rT6RKU0lvVdpMn392bTFploWl/nr8PV4gZAsFaWZ6qwe1s7veMc7Vs7hZ8kmTXtu0RKgkdlLgZ+Th9WJU7OyuM+buK085h5hs571Mw6d8nXisClOPhItbsMiJpVAB9BJNJTILxL3sFgxSwus+ianAWURpa8zh/yZe8n6kH36Mtm5fD9riywRUOYuaa3h2LFjK245/35yqmA2G2dmcRtPLFUwt4/B9x0Wldo7bdey9olCWzkcVrlafD24fVigFfUDFUbFJmh/P3tW1hZsvrb2NVelH+fY1WFtYX3ntttu23MtDzWORvVis36lMS0UCoVCobAvLI5p+9lUJEawGadK2B+xWF5AgxmWzaw4lMRv4/SinCIymqmpcJMoQQrfj1kSX8PPQDnZBYf+ROIlg0oewjP8KOmJtYUdayw0Cvni58UiomjGq9LNZmCWFJVbLcHIy/YBuyIXTj7DbDlKh2jbrD2s/xnDip4/918W+1h7+eQkUcIVXw9m/L4fKKEWh15FYWJshWErjYmLfJtYHzGWZG1kzDEKu5zrByy0i/bNpaLc3t5eeT98P2BLlAot9FYaCym0OvOzu/rqqwHsMsMoJan1L2OT1rZR6lYuI1smoneCLW1qwZAsDM7O4fc+OsfqbvdlqySHvvpz7XrWd1iobPf3fZWfO487XB5fn6WlLzUU0y4UCoVCYUOwKKbNiBae4H02e7Tv7IMBdmdm7NOxWb3NtoxdRAyIw07snGjpSuXz49SDnhkw+2c2wT7G6Fy1wAYnNAF0In32qUbhD7zNno8xCw5x82UzcBhKxJa43NnM18J27HoqnMvfk1kz+2T9/9Ye1keM+bAfPFvowqAS5kRgdsQpV/0xzBBUCkz/XJhdMjuKNCTcftyH7H0z1hSFCVnZLAzTWLl9+mdtdeb3kq0Qvp3tOUX+6Qg7Ozsr1i1/PbVgSOb/5KQ2Bns/Hv7wh++5drTsJTN7HkP8ta09VIgpW9F8+TkVLvt8I+bLIX8G1m5EWgNOwGIs2b6zVcxfz56LXdf6RfS+8TvO7RmFpbH1IXs/jwLFtAuFQqFQ2BAsimm31nDFFVespCv0/gZOFMIJ7yN1LS9GwT5ZXgg+SuxgYGYdLf6hEoiwNSBKBqGW/mM2HS0/Z7D6ZQkE+FyecfLs2DMfTk7CaVOjRUaUP5rTTXo2xc8/S+DPiz5E92NGzW0ZsVguvzEE9h9yf/D7WImfpb5UyTuYtfkyqgQprCOIUjZyu7O2IGt7dX1jTdYWEVNRbJ39sL7OKs2ofZqPONqXWWmGYcDOzs7KM40sRcxMOfIg8qdyf+M2zsY5vi6PXdE4wP2ZWblnovyusnXGEPUx1t+wdSuykHGft/qw1c7KGvn52XLJ7ep96yrKiBl31PYHWdTkYqKYdqFQKBQKG4JFMe2tra09qtiIsUULZvjvmR+F/XcczxgxUhWHmanH+Xo2IzR/Hac59fdRszuOKfdlVEyL/VK+/jyT51ksz1CjWHlWOnPMb7bMKpctYkLMJuYWffDX5/4ArKZ1ZT+dzfKjWFQVx87tFEUesF6AF4Xx7Ewta8iLgmSpSNlaw35p35f5neC48CingVrqk602kbWDn7OVhaMzImuAev7MMIHVpT/nWNP58+fT5WhZIc/PgXUFwKpmQWkzonqpOHCuR9Tf1IIh0TjA91Px2tH92KLI2oMsfTKXObM6cFmU1SRKZ6tU8WwdiBZgiqyaS0Ax7UKhUCgUNgSLYtqmAFZKTT4WiGfZwN4ZKTMO9qcptbXfxzM19oX4a/As2VgEK4+jGRzXh2eGkY+R2bEdo+LQ/fVU22QZ2Pi+zLQjtq5m8Dzrz3xnPTNetkj4GTTP1FUmNO+XVn47btPIF8hWH26naBEGtrhwlAIvh+iP5fqpjGX+XI4E4CiFSOHO1hG2Oik/aQR+XpHFiS0tKgNctByv8tEyLCsaEI8p3LbRcqBcBm5/jpfP8g8obQszfZ+JkTMisj8/slgxE+VxzpBlGuR249wO/hkzi+VPLlfGuFUETJTrga0P/F5nWTeLaRcKhUKhUNgX6ke7UCgUCoUNwaLM48BoisgEBxz6xGacSK6vQn3YFJfdj00yfK0oNMHAYQ1sRozOYdOSCl3IzlGpQ7m8/hw2K0ZtwmY2FnZxCEZUbr5PZoridJwZuGz+ehw+xYlsovIqEZxqn6gfcGghmwIjM6xKDRkJktgErMx5kRmW0/JyAhY27fp6sXvBzmXXUWSOVebfSEzE9VOi08g03ZMC19xybG7156j+qerh/2dT7Dr9gNuFXTjePM6iWB7nInEm12sdsR+XTaUojkRe7HbJxmAFJbzLhKQsoozWTufnVObxQqFQKBQK+8LimDawmhTAg2dMhkxsw7NtNbvrmeUxa+LELL6MSlQUsQnFCBRzjBLcKzFJlnCEZ8dKeJYl1+C2j0JL1HNj351hOAAAIABJREFUdhaFFjFz6EEkTmJGqJK1+PtwghxOrarq4+/N7cQsNmJ0LCriMJpIYLcf4YwxHmYrvGBFJCZSrJP3Z0l9GFH/5mfJ1q/I6sECy7nkKvanyqDKzYJE//xZtDgnQOth2nYtZor+HH7f2aqVLa85hyitKH+q8cgfY22hEl1FbcSWAhXO1WOFtHaM+ij3q1qas1AoFAqFwr6wOKa9tbW1kiIwSoeplmCMZtbKl80+zWx2p/zgURo8nj2qMLGoXlyWyA/FZWQ2aGBGEvmElU8u86krVs7nRGVUjCe7j2LpEVg/EMHCpniRAkMW/mHPX6U8jWblEePw14oSwFjZmD1FITIqVEk926x/c+hXxOjmnmXGgPlcpXGILEkcjmbPcT/+UIZPgRu90wzV56Nxx8YqxbB7/OHq019L+a6zd7k3cVHUrxXT5X4dJZ5Sfnfu51F7KutgFmKo2mBpLLoHxbQLhUKhUNgQLI5p7+zsrCQQiJiB8l9EikVm1iqwP1Keq2N4lhctq2dQM/foPiq9KB8XsVj75KXqIlYYJekAdCKTzNesZq89vkwue8boe5gUPy9fbuUT53JnWgrFFDOltIpwiHzQrApWCm0PxTTmUtP6Y1ibwctJen2C7ZtT/vYkV1F1yBKAcNmz5xaVn2ELhmRKc5Vul7crX726LxD7VbmuSsOT+XxVYqhMPc7347b1ZeTxmY/JtDTWh0zno8bkaFxVERvR81dWDWXRjFDq8UKhUCgUCvvC4pi2V3FGKmtWGfJMN5q1zsUiMtvwszv2exvY1+jj/DgWkJkiLz4S1Yv94ioW2oPZGZc1YgHMktQiHRELYCZvLDFamILLwirOKNWq4SB+p6ydDGydiVS8XBZVpixGlL/z0qn+fPb1ZX5p5ftXrM+XcS4CILMG2Cf7IbPn1cOKuezsX7cFeNRiPh6cjjUrF6ebzVTIinFn/tS57+vkCciiCPbjv83e9+j+EdTzjzQinA+AratR/ZQFKVri1sDX4TL2WO+KaRcKhUKhUNgXFse0t7e3V/xrUQJ489syA4kWYbBjeSF55ev25yqGrRZxB4BTp07tOYdnd3ZuxCZ42Ub75HOzRSa4LQxRO/J11QILkeUiWqjeI1rAga0QbE3xzDhbtvMwwOyIY2F9uVTGriy+nfUBzIAiS9LZs2cBrD5TOzfL+sTHcOx7xuiUZkMp34HVmGGl/M3yA/C+iNmzbkRFSXhkbI/RWsPW1tZKnLn367Mimt+fSEOxbpaxSNWtyp8p+O1YtuRkVgCVeY2vmVkfbKwyRPoibi/u31nOAZUZj9/f6H5c1gxc14s1/uwXxbQLhUKhUNgQ1I92oVAoFAobgkWZx1sb17TNkgEY1CISWeo8FiWo1Kc96RBZGHb55ZevnGNQpiBfRjPhm4nJzKT2ySIpL77hEA8rC4tworAXO8bEPbwmdlRWFpqxKY1NbR4qBSHv5/+BPjNVj0nL2tqbwYE82QmbtFW4W9Tv1Dm2PRJJKVFPllqTy8DCwMw8bmB3iZ3j+7dyGdj9spTC/D4Z+HllZl8lkvLb7Vh71j1QriJg1dXArqgojakKn5y7P6CFtdwuvs5qn0r7CmghmAr58u8018vGA2vzyD3AY7FyO0Rtpn4X2LWWLRZlYEGpbxPlIlwKimkXCoVCobAhWBTTNrCAIhIj2D5Oecps1h/Lyw8qNpYlV1EJOqLFMXiWx2XzbNlmp2fOnNnzuQ5TMFbOITnRDNu2WVtzGBQnRojOVTP56Lkxy+xJschso4dp94jX7DmYVYPZRpb0RjFfXnDDl4VZDLO2LFRFWW2id0JZA/j5R0xEhelFbJEFdCqla/SuzDHqqL/NLaWbsaWobRkWZpqJ1eYS5fBxvpyGOXFZdqxqJ/+8eGy058SpQyOBqB3D4tLsefH7z9bHLEnRXBKpdZLUMKJ3Q1lZe9j50lKdFtMuFAqFQmFDsCimPQwDHnzwwQuzPvY52jH+08CzyGh5xbmkE6pMHswiraze58fsxMpifuNo1s6z1HUYtoEZiGKzWRkVIp82s0t7XlHoFKfn5GMjRrdOIoTW2to+KA69i5bsZCsJh/bwPb1/n60Yyi/qodgSM8YovaMda31RsbWoHzADyhIc8bmcRIh9wpHlgvUjGfNS5yifJp8ftQXv29raSpn73AI+EStjCwe/hyqEyWNOHxNZEux52KIzV155JYC4nXhBGGbN2bjAeg9OdmOWLG8NUMviqv6WPTeVbCVaZISfKY8tkZVmnQQslxLFtAuFQqFQ2BAsimkD46yG/WreT6hYJKfF85hLAdizUADPzNgnHC1Gr6wCPWkeDwJuv2y2yr5m9oNHSlq2XMwpqv31VHrMrN69Sy9ubW11XXcuyUmmXFXK6cg6xNoCXmAhYh1Kic8K80ilrNLJzi2yE5WRIwOihDPcZ5Q63r+TnESImWOWQpRT7GbPq2fJVIaKMomu15Nch+/N+zIWqxi2WeAixm8WlhMnTuz5tO1R2bgfcxtwn410KpwMi3VGfjxiy4Aai7kPR2VTkT1R4im2HKi0pn7fUlFMu1AoFAqFDcHimDawyu78TF2lMGT/QxQbyLNjpX6M/BsqnjhiE+w74mMy3wszG7XQgS8PM0VWgme+/Cj9okfkB2OmquImIwU/Mwhu86iMUfy8Aj/riM2wipv9ef5ZMpM21mJLCjLD9toGtlowm4gWqGELkrIG+TIqn3mU1hHYy3w4SkDFz0dMldkZf4/S3DIr47S80XOz/6092Tcf6Qu4D7IFg+v20EMPpcpp7r+q32Y+bbZ4ROXgOnNfMaZt+329rO/xc1CLAPljuczKWuhZLC9ypBbnyPobp761+jDjBrTuQjHuqEzc3yLfvVpEaSkopl0oFAqFwoZgUUzbZry85J/5Zg7zPsAqM8ziWNlvptSP0T5W8/LsEtid1dmxvKgJM3HPpnnhBo7LZKV7VG7lZ42U5+zfUhaMbPEMdf/It7SOT5vLHzFtZqIcRx2xWHsupshllm77I2bALCVjIsakIhbuyxNt44xkzDKZcfmy2H1VNjuLfPD7+NiM+fK5nA2OfdmRhWlusZaebHERbNxRmoPofLZEZBa+OfYa9X1uF/YPR353y9Ng9eBnGlkdVA4BlWPCPxe7vt333nvv3fP99OnTe47z9VAWEBVX7euhECnqVeRBFuHAbHxuWddLjWLahUKhUChsCBbHtHd2dtKMNOzXmJvNRlD+qQjKD6VmosDubJhVvcxEonpxnnD242U5rtX9OEbaX59VvIyIvSgFeMZ4+FzlQ/flYD1BljMbiGflkZ+Tr5e1k/1vn0otHqldme0rv1rk85vr3/4+dm/zsyvfLCvE/f+cL5qZdhRrq9qP2VNP9Ichem+j7F9AzrxUpq0IbOHjawA6V3qmGjfw+6LYpGeIvIywGs88C7z77rsBrC6RyWX19TQLEX9y343yR5j1xRg1Z3HMxhbuXz1+/rnY7Si7GVs1e5aPZfbdk1XvUqKYdqFQKBQKG4L60S4UCoVCYUOwOPP4Aw88IMVRwKqJqSfdHUOlpsxS2ikzeRTqwWZPE9Kx+c3XS6UEVWKVHpGXmUtZZOLPt20stmCzUZaEvydxhRKpcZkj87gKF/NorWF7e1uK5IBVARqbgtnU7fdxKB5/ZzFWVCcVAuTBYVoqRWN0H5W2ls+JFjUxqAUxorJa/1YhjdzOWf3Y1L6fBBeRwC5aYEUhS3YSJRny1436s0pPyu8yi838/2yaZbOy32/m6jvuuENeF9g7DtgYYZ/KPG7X8uOECc7MHM+pl6PxlPvInHjRt92c+y0yj7OJOxIBcxn3M75dShTTLhQKhUJhQ7Aopg2MsxolzwdWZ++KcUfM0KDEL1n6QpVsIlr8gctmM1BO7+fDaDjERyV1iaCYmxLA+PuppBo804/YEgvq+DNLcMNlzwRIPW0xDAPOnz+fLuvK5Z4LXQJ0SIxKURolAmK2x9YGn5CF08dyggcWfXlw2NTcUp3RMcz+OJ0l/++PUYmP/DNX4ZZZaNZcqFTEaPez2MM6C4Zw2aL+rRghly1ixFwWldwpWtzGmO9dd9215/oG//y4H5vAUlmFovBEFbbHwli/j6/PoZpRn5oLnctSkqrxNQrVy/rBElBMu1AoFAqFDcHimHZrLQ2FiMKl+Hy1Tc3u2N/h7xeljYzuEwXnGzj1oNUrYtp2LC8MwEzIg2eLfK0onSUzhmjG6e8XMRZm8D1+Q+Uz5ftF++auv7Ozk/pv2Uqjrhf5wZmNMzOJ0mTaOcxAmCV5pm3X830DWNUcmA/S31sxbNYvRMx3ztLj24pDyuZCKKPEPJy21JC9v+swoMzqEx27s7Ozcr3I4jY37vS8A8qyF6VAVWF1ke+f0yZzMieD/26sPLPg+LJl6T4NWXgqa0JU6GymY1HjeBa+xf2b7xtZZvdjrbkUKKZdKBQKhcKGYHFMG1j1n3iWodLeZQk+lO9DJY/3Myvlt+UZm5+9qhSE99xzz55r+npx2tJIJR6Vwx9jZWEVJ7NDf46yavAM139XM9tMO9Cr7o9mtb3MyvzaQMwq9wP2y/GnSq0JrLLjuQVrrB7AbsQB+zKz5TzZr85tHm1Xfmi2METJfBiZ8pePUUynR9ug9mfb5vySEdPm/f7zIH1epUT2bayWP2VtRZT4g8c3K6Ox6qiedg4nZuEyZ5YQpfvwViFO96ssLVH72j7ll86SoCgleNZ31knQcylRTLtQKBQKhQ3BIpk2+5ijNIiGnrSlfG4vU4zKxCyJ/cf+f2Na5p/kWWW0YMjc/aN4cbW0KC8yEsW7KwaRxa5z+VVMd6ak5etF/rHMV6WQqW5VbCZfN1Kpz8WZc3sC+pmxxiBTTPP1WVvhj1Es2fabvzwqo9In9Cz+olT+PexMWZIiJThfZ53UxdnyimahYT1EFoHSM3YoRq0sLd4SxhYexbR9OymLi32amtyPVRwloBD1P96mrFC+XqwBUb7r6J3nsUqN5z2RQ5nmQVlTl4Ji2oVCoVAobAgWx7SHYVjxZUexr2rWHc181WxY+dP8cexrjuKy+bsxa86+k2VcmkN2P+Xj4RmjZxvZ0qL+exTvrNSVPWrvudhVjyyOVUFlBVP38PfJjpuLDVaxysAqq8iyp3E9+H6Rulcto6oyv0V6CNW2EdNmP77yT0csSlkoGNn7q2KIM7Y413e8HiIq9xybXyeWl+sRZSzkZXb5mOi95H2KCdvCHsDuWKUiaLLFYDjGmxcqinIXKA0Ij1nRcphzmSx7lOC8Pfo+FyN/1CimXSgUCoXChqB+tAuFQqFQ2BAsyjw+DGMKUzNPmNklCqdiM0smCGHziTKxRyIYNh/xsZG5XJlXDmIe74FaizkT1syZbKPQs3XEf73nRG3Pprp12q/HrLvO4hhK9JSdw4IcJRCM1qqO9kX39/VQaUtZqJOJiQyqf/jrcvtZWXvCL/fjJuFjVIpKf0yPyNTKo4ROwKoZV7kv5sISo+/RO6bM0nOpfP05Bu6HPpmPjW/8yeWw+kUmfJXKNzKPq/KzK4xde37bXPhd5FoxKHFgZB6fc+EcFZZVmkKhUCgUChKLYto7Ozu4//77V5aLNDEGsBuuoGbzWciImrGzoMGzG5XshEUffnZrx1pZ7bvNYqNQn8MI4FepVe3+fsarZq28JF80w1ahPD2LP6iyRgsSsAgwEqcwVEpFYFWYpRYviNJ8zoWsRQurKGQiGLbosCDI6uPbwp4VL+eqnm3U1+aW6Iz2MUtRDDyykCi2lFku+H3NQgHXSSvaWkNrTY4T/jpc5566zpWBk6EAq1YS1bZRamJ+Z7nv+HHAkqnYGGssXImwMssVs/KIVav3xN57Fu9GoXrKupFZO+be34ydF9MuFAqFQqGwLyySaXPie++D4dAENevPfNsGFbYTLZFns1ZLycfpTb01gGepPLuMksZYnY1BreMvVgvJq0VAfH14FslMO4KaSa/DtFVylSg0x9pLpVi0Mm1tbaWzZLY49CRI4XOVLiI6h/sTW22itLN2jLFmxR6yBBkquUrEPpWVgRd0iJiISurD70a0tC4nnulh2iqUMerfWQheBM+0o+tGIVZz35XPWlmZOP2w38cWvWjhJGVJ4jEsCmVjdp4lmjEoP78hS5jEn+zLNkSLN2VpgPkcxbDV+BPtq5CvQqFQKBQK+8KimPYwDHjggQcuzLqipPjMyLIlK/11M/SkW1RM2xD5pzltZLQovIHZ0lwaUX8/VviqZBvR+ew76/Hh8vV5hh/539TCAMxCIz2BMZCMads1eVGBaPEXlfazRy2qmHakYLb/ufyZL5aTS/DCCqaLiBiklYHTSWY+VbsuK7/5mUaLzSg/r/K/+nIr/3SWvpLZeI9lhH3CPYjOUWMIs8wshaYqY5QK+ezZs3vKoJIGRcteeqtfVFb/jkV6F1+mzE/MliN+PpECnBNnqVS/0bOde28NUb+b01BE1lW+71JQTLtQKBQKhQ3Bopi2+bR56Uo/AzX/NvvG1JKd/L+HmvX7mZXNWplhMwOKFMB2DLOiyLfEzNfqbmWx7+zv9+dwPKbycfttmWLWlyvz780xr2ifSkno28qeu83OI5+fgp3jWQf7YLk+WV0VuB5+xm7M+vTp03u+M+OOLBLMcLNFRlgVzH2UmUnkJ2TGw+dEqSi5bMriEymOlZ4k8o8qP/c6/u8ejYhi8sDqWKHOifax9UpFAmRRK4ZMN8J9RrH0aBzgMjPTjiw7c0tkRiyWcy+wnzrqb1x3tfRsBB7nuKzKl957/aNAMe1CoVAoFDYEi2Pap0+fvsCObAZq/h1gl2lnifOB3Cc2l5koYsBKnR6xShVjacjiVlVZlMrb/8+zVJWRy9+PZ8Wq3r4OSpWczYCVYjZbKICzNPXEafP1ozIoBhT5JecU2BmDY1+l1cMWbOA4fn8/ZT0xRFnNmB2r7FZRDgO1oAY/W18mY3T8TrIVKsoPoLLE8XGA1ndkinPlu1SIWHX0nip1c/SequxpKhLBM21e3pfvz4ub+P+VpSNTgPMxikVnSnCly8nanvssH+v7zpzmJLO4cH/gePDomkuLzzYss1SFQqFQKBRWsCimPQzj8njGrCM1pLEHm92zUrUnNlgppLO4TxVrbch8MMy0oyw/7LNmBpwps1UOYOXbAlZn0JG/U9VBsc5sRm9g9sIzX++3tjaxZz7n097Z2Vl5/r4+HPs8xyr8trmMSlHdVbQAWzk8m2Jma2XjJRp9vTi2lq0/GfNZJ9ucgfMn2PVM98G5C6JMX8yKVL/g/6P6RNaiHvWzwWL8uV/4cnP+gjk1sodSufdEhMxFWUQWPn4fo7GJz+Ey8WdkfVBWuoOA/e5RPnaVhyKzuHD5eZyLokx4bFwKimkXCoVCobAhqB/tQqFQKBQ2BIsyjzMsNCYSJ5mpVCWByEIw5kRFkdhCCXX42sCqudJgZePEAureHmw2jYRBannNzGRnUCkpM1GZEp5lohxOP2vbI7EZLyIQuRX8Pc294uvjr3fy5Mk95eVyRibAOTOugUOygF3zsJXb6shJg3zfYTGPr190P19XFXrHbR2ZkecSSmQiJpXKNTJJz5mTM2Gcek+z1Lu9YTs+jWlUHy5XJl41qDSf7IaLXFDs/lPm8aidWOyXCUTVgieHafKOwEmruKyRAFOFCxqiZC487vA7nrn01gkXvJQopl0oFAqFwoZg0Uzb2LQP+TK2aiycRT5RIv059pqlMWUhA4eqROkrlcCEZ8+eOTIzVMyHl9vj/1U9fDn89dV9eMYdXZNDzDJ2zuxCCdA8c2B2sY5YKksGoVKq8rP2/7MohVk6Px9/jjFuDpGyc73QkuvILDpKX6nCErkNovdALd9oyEK+rB5WL/7M0pky8/n/2zt3JTeWI4g2aNKXrf//LNnyaZCxgKyKWzrIrB4Au0tMRB6HS2DQ8+oBOus5BcvtggDVfXuE2+22rtfrnSWn73dXslOVX3XBsS5YdkrjPBpQ1d9zZY1VQKpLaeUz2K8xv6v4TE/nWHOeiprzUc1zZ6WZguVcY5Lpmky/C3+TKO0QQgjhJLy10i56kYhSZCxYcSTlq3ikpSRXWfS9KCVKv+SujGH/myk9XHGrAgNTAYS+rUprqPdqf66BSMf54txqvY9PGKOgfNqf5Wej0laNW7gfrt5dSUiqmv435wyLj/RUNh4Tj1Ud+1TidHd+hVMvSi1TfTPlkOc3Fb2gT13NO+c/nvzKfPZ21+Tj4+OudDDf7/B6TemCzlrlGu+obTimin3Y7U+pV2dBcml1/Tpw3vE7pFDFilzJXReX03HXfmra41L11LyI0g4hhBDCp3AKpd192uULqUjgWh1T6agVaOFU+VSsnj4YKlLlL94pRNUOzvnv+H7fbufDpsLn8fbx3cpbFQ1xFgvVKED58de6V9hdadOf9kwUp7ovLmJa3SdX0pL3/cixsb0r22H2cXifJ6XNe+WyB1ShEadanBVFnQ/VkfOx9/3weiqV5D5Dq80U7c0xFLfbbf3+/fsuFkB9Dzifttov7yWtNVR7Kk6Fz7DLeFjr3jrnipB0dpkmU9wPP8vvxum7ipHgnEtHorld4Rd1TfjMH7nX3O+7EKUdQgghnIRTKO2+0mF7w4pgLYWm/JQ7FXtEkVLpHPGVuZKaLhe3f8ap2CP5skfed9ty5auU9tR6cS2ttJ3SYYxCV+L0dz8THdzHo9KpOVP+tEId9y4Sm2pqLe+z/Pnz5/+N0aPHnRWA/uPpXrroeBUPwfPitkpp85koy8GkVgqqZKdYp1xyKp9X82lvt9v68+fP+CzvItjVMbi8b6q7ScVStU7nSPXI/e9qQUxjKHbfO5PS5ncHrTW0ZPbj5nlwfvRnnq+5a6Ki/tV470CUdgghhHASTqG0O1Rm9HPVqki1AySu6lNfce8ark+RsW5/SjHsqkm5iPC17v2rLhJXnRdxUZtTM4Ndjuda98q9VC4VtmpPOFkmHsG1OaxjU5XsXPR4/d/FOPRx6vqUoqea6de8XqtjdZkHHedXd/m5KpqX+3GR7/0YGDXO81bKjvfQ+bKne0CYZfAoladN+mt1jjvF9kxkvmvh28fns63qUbjnj69PMRQu73yKjnfzS32fOgvOkewfN6+ORI/zM65RitrfrhrmdxOlHUIIIZyE/GiHEEIIJ+F05nEGB9S/UwpWQVO6M81MZmRXOk+Zqdx+VYDDo2lNPeCO5kOaNFUzC4e7jirAz7kMJnNSfaa2mQLR2GP81dSL2gdToxjc1e+/MzFOgY8F3RJsZqN6Y0+9vR00RzqzJcvN9vecy0MVu+C8YvoRTe4qsM+ZNFUJ1l2q3quBaNyPCrCi64TbuiC5Pg4DYo+kDTIQzb2vjskd2+QKcGlV0/nxPKdGKO49l3qmXCvO/afcKK4cswskVPt51S332URphxBCCCfhdEq7oEJjoJMq7OFWiVSTKvy/YBnBI2UXXdF6lY7EgCeizq8UD4+F/05NJoqjK+G1vGriWGvdB1bVubOoSi/p6ZqnvEqNyyYtKuiKxRlcsJ+ylLjgsSkAierrSLqJshCo/Sml7e4vVVMPNuPc2VlcVAvaguenChLxM7ugqWe4Xq9j6lyNTavVtG+nxtX4fP9oUKGC82FKmXNKepcm2/921hk1P5xFxzUDUUrbFTo60lrXPSN9O2exeheitEMIIYSTcFqlTWVWBR7UCtH5WKmEmJKzli+3qFRE4XwvrpE996n+T9Rq0vmlClXSs6DvngpMqQ5aBTiGuo70U/Pf3hzmq4sa1D5rDlWRk54aVtaXOhb6b+v1KvYzpcbxmtI/vtZ9SgrV8ZHCGLu51O+Tsi70Y1bWAvpZnW9WpWAxpsH5I5UVimPQavMKP378GFWlU5PPNLNxvlL1TD/SZpOqta7xVEhklx7G45lwRZceKQjlvjv735wzrlSpgvEkHLsf02fFSnw2UdohhBDCSTit0q7VdSkzrrq6MnCR2a4pg/L5sW3fpHyciqTC/qwVHBWHi+ZVPrOd32Yq4kDVNPmCdqvi+r9qGLJrq/gqtU+1P1oIOFcm/3Qpdzabcap2La88pwhg55fkPVXtQ1lYxhVzUXEeqlGHO0a+x+s5Rc27spyfFd17uVxGC4natysScqQQBy1UqqhPjUPr3xRr4vzR9MOrSGnVLlgxRce7Ykvq+XXfo/xemtpsPtO6l/ubCioViR4PIYQQwlOcVmkXjEKuFWrPn3WrORfJqKASmbblKpFq8qt9JLvGCn0bV8aS2/XXXT7rpHzqNZYSZc66ylkuvkpx1zGUX1pFvVPhuJgG5WNkzMTk+6cCcQ02VDzELjuC/th+bFMr1h205HB+dJhF4PKBlU+b49My8mwZ0xrD+ej78e0aXvT57SwO7pyV2mMdClf+U437SO7z1Bq170dFWe9QFoudwlb+aWeFeqbM6PTMuLn5LkRphxBCCCfh9EqbvlDVMITKhop38sEwUpYr31JPU25g8V0rNqd4p1UlfVv0I6oGLByfPu5+Hdn0g9tOKum7fEpU1f1vFwHuIufX+ifeosYo3zabjfTPcj8uP1xZkpxKdpHP6vz42SMV/zgfqLD7vXVRyhxjyu120eSvcLlcDlWjc9eW0f5r+eYixRRzwuhp972jmnGQyRJBK8YuEn+yCnEbdR2dFdBVvVMZKEei4o9yJNI8edohhBBCeIr8aIcQQggn4fTmcVcatIqtdI6U5iOTaVGN1Y/JmdK+2kzuSq8ewZnjVMpPUdvQBN5NnC4Ijya7Iyb8r6YXeGFaThVicWU+lbmyxuM2qqECS+oy8Ehdi908m/obu7nCZ2UKCHLP0xT4xG0479R82/XVfoWPjw/bM70fp+s3X/Rr4VxNOzN53x//dYFp6jXeW9U4iKle/L8LWFXsgsrUNs4cPs2d4hWzuJvn/PsdidIOIYQQTsLplTZXoEdW91OZxf5+p1aYuYpKAAAB0ElEQVRfFUw0BUGw9CBTML4rlcClVXSopKh4pqIRu0AUVRjBHRvHnM7nq1DzodLASvm6Rit1HqqxRl3LX79+jWOsdR/g5varrA6uNCTv06S0+RwxIK7/7QK3qKL6dXVz36UE9vc4R6d5/Qi3221dr9e7AKepRa9L9VOBWq6QiGs+08dnudQaS12nyaIyvd7fc2Op53KXJjqVInXFg6bP7vb/yDyYrHevWCq/gyjtEEII4SScXmkXU5GAnd/uCLsygspP5PxDxVc1xDji++H1cqvlOka10mYJQO538ke517ui+Qrf5aOwkQmVb6GuAZVNjaHSg9xnXFvPnvLFzzprhSq64RTWVMDCxSWw5OtUbIdKlduqubpTZ69wvV7v1Gw/BvqDXeMTVQKXuJgDVVzF+fEnqwnvj7vHalt3rEcsYC5OQVkQ3DZTSdLJ3/0q6jocjWP4bqK0QwghhJNweSd7/eVy+e9a6z9/+zjC2/Pv2+32r/5C5k44SOZOeJa7ufM3eKsf7RBCCCF4Yh4PIYQQTkJ+tEMIIYSTkB/tEEII4STkRzuEEEI4CfnRDiGEEE5CfrRDCCGEk5Af7RBCCOEk5Ec7hBBCOAn50Q4hhBBOwv8AKlmd3AD7J3MAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bldV5vvOvU8SyAkhDST0SWhiQqellKC3LjZXECm1FLWwo0Tq2lcJllIiNqDYoD6KXJFrSwGCBXaUZYc01wh2FBRIMAkJ6WhCIwlJDmlPztnr/rHWb693v2uub++zzznZ36fzfZ7z7PN9a63Zjrm+8Y455hil6zo1NDQ0NDQ0LD/W9roBDQ0NDQ0NDTtD+9FuaGhoaGhYEbQf7YaGhoaGhhVB+9FuaGhoaGhYEbQf7YaGhoaGhhVB+9FuaGhoaGhYEWz7o11KeWYppSul3FRKOT2u7RuuvfC4tXBFUUr5wlLKC0spa/H9ucOYPXOPmtZwDDCsi2ftUd3d8G9SfynlNaWUa+O7a4f7f2emvL8crv/1TD357zU7aONaKeUfSik/ULn2eaWU15VSPlJKOVhKOVBKeWcp5UWllPtvOwDHEaWUi0opFx3D8n6plPJnx6q8ocxrF8zN5r9jWN/HSym/eozKus/wXnxs5drfl1LeeCzqORYopXxDKeW9pZQ7SykfK6W8pJSy/wie/zellDeXUm4updwylPU1R9uufUdw770l/aCk5x1tpf9C8IWSXiDpJyVt2Pcfk/R5kq7agzY1HDs8U/36ecUetuEFpZTXdF13cAf3flrSV5VS7tV13af5spRyjqQvGK7X8EpJvxbffXIH9X2zpPtLerl/WUr5fkk/L+kvJf2IpKslnSLp8yV9u6THSfqyHZR/vPDdx7i8n5V0dSnli7qu+8tjVOZXSzrJPr9c0rqk7zhG5SeeKunGY1TWfdS/F6+UdHFc+4+SDh+jeo4KpZRvVb+2f1PScyU9QtJPDX+/fAfPP03S69Wvn1+UdJekR0u6x9G27Uh+tN8k6T+XUl7Sdd0njrbif6nouu5OSX+/1+1oWHm8SdKT1b+of3kH979Z0pMkfY36Fwl4hqRrJX1Y/Ys/cV3XdbuR1x+Q9Oqu627ji1LKF6n/wX5p13XfF/f/WSnlZyR93S7qOmbouu7SY1zex0opf6z+xX9MfrS7rnuPfy6lHJC0b6fzVEo5aXgP7bS+dx9hE3eFrusuuTvq2SF+QtJfdF33bcPnN5VSbpb026WUL+667v+be3CwSP+mpF/ous5J7luOScu6rlv4Tz2j6CT9n5JulfTLdm3fcO2F8cznDg28ZXjmrZI+N+55paSPSPpXkt4u6TZJH5D0ndu16Uifl3SepNeqZwh3SvoHSV9due8bJL1f0h2S3ifpKyVdJOkiu+cekl4i6R+H/n1c0h9LusDueeEwLlv+DdfOHT4/c/j8XEkHJZ1Zac+lkv7IPp+sXnO/ZnjmGkk/LGltB+O1X9KL1TP8O4d2/4Gks3c5b4+T9LeSbpd0uaR/O1z/L+p/BA5I+iNJ943nO/Ua6w8P5dwu6W2SPivuK5K+byj7oHoLxcsknVop7yclfe8wHp+W9FeSHlUZg6epV5huk3STpN+T9JC451pJr5H09ZIuG8bhXZL+jd1zUWV+Lxqu3U/SqyR9dBjnj0n6E0ln7USudyj79PkNwzyebNdeI+namT69QtJb49rlkn586NNf1+rZRfsePzz7r+L7N0r6J0knHkFZ28q8eqtWp369vkzS9cO/10g6Lcp79jCvt6tnj++SvQs0Xe+U/VXqLQ6fGmTnl9QrOf9a0l8PcnKJpC+dkbvDkh58rGQgyp/MnV17saRD6lneW9Wv7dcP1546zMnHh/a/T/06WosyPi7pV+3zdw5j8jmSflf9mrtO0i8smltJF1TWTSfp64frfy/pjXb/U4brT5X0W8N8fUrSz6nf2v18SX+nfj2/T9IXV+r8kmF8bhn+/amkC7cZzwcN9T47vr/P8P0vb/P8dw/3LVzz6q3XL1evMN8p6RPqlfGHL3xuBwLxzKEBD1e/eO6UdM5wbfKjLemxw4L435K+Vr1m/87hu8+0+16p/sV+mXq28CRJvzOU90U7aNeOnpf0YPUvin9Ub7L7UvUvrw1JX2n3PWn47n8MQvIt6k13H9XWRXxv9VrU16s3K361ehZzo6T72aT/5tCW/0PSEyQ9Ybh2rrb+aD9Q/YL+7ujf5wz3fY2N9dsl3SDpOZL+L/UvrzvUa3SLxupE9T+wt0r60aGvXyvpNzQoG7uYt0slPUv9wno77VCvwPzb4doBSb8bbenUC+nfqH8RPl39D8cNks6w+356uPdlw5x9n/pF93ZtfWF36n+U/kL9S/tr1b/Yr1TPPvJF84phfp+uXnaukXQvu+9aSR8c+v616k1h71H/oj5tuOeRkt4t6b3MraRHDtfeLOkKSd8k6YnqmeOvSjr3aF7MlTH8SUmPGmTneXZt0Y/2Fw73P2j4/glDWQ/T/I/2T6mXvc1/O2jfC4a593naN8jSa4+gnzuSeY0/rNeotzo8WdJ/Hup7ld33Tep/wH5M0hcNcvA8Sf/R7rlI9R/ta9WbOZ8k6UXDd788yNCz1Mvo29WvsftEP+473P+sYyUDUf5k7uzai4c5v0r99uYXSXricO0/DeP6FElfPIzFbZqSsLkf7cuHsfwS9YpfJ+mHFrTzHurXXTfICGvnzOH63I/2Nep/e540/O3UK02XqX9PP2V49maZkqZRWfp99e+Gr5b0v9STt/svaOf9hzq+K76/1/D9X24zH7+jXon5KvXvyUOSPiTp+dq6Jn57uO9b1b8rnjb067MXlr8DgXimxh/tM9S/vF5hiyp/tH9f9oIbvjtVvYb0h/bdKzX9gT1J/QL99R20a0fPq9fQPqlgsupfrv9gn/9W/Q97se/44bxoQTvW1bOBT0v6Pvv+hcOz++L+c2U/2taWv4v7fkm9InDS8PkZw3NPjPt+WD0DmdXq1L9UOpmSUrnnSOftifbdYzUu4nX7nr0c/65Tz4L2x5jcJelFw+cz1CuHr4w2fnP2Y/j8AUkn2HdfO3z/+cPnU9Qv6FdEeecNY/cc++7aYdxPt+8eN5T3jfbdRaq8KNUrFt+7nfwezT8ZA1a/8D8l6d7D50U/2mX4//OG718u6W/m+qM6K+q0HROQ/pxy7buzh2d/pnJ/VSnYqcxr/GF9Vdz3MvU/8MU+v3ubtl+k+o92ys67h+/dAsM6+JZKuR/WDt5ru5SHqiwO1148tOk7timjDOP/IkmfiGtzP9o/FPe9RdLF29QD2/7myrW5H+2Xx32XDt8/zr773OG7pw+f14Yx/7N4lt+wF2/Tzpsr8vTkoY737mA+bh3qebZ6Reln1SsQP2P3XSnpp490vo/oyFfXdZ9Sz6b+QynlM2Zue6KkP+m67iZ77oCk/6memTpu68w5o+v3Wa6Q9BC+GzzUN/8d6fPqJ/7PJN0c5fyFpM8spZxaSllX/2L+g24YzaG8/61ey9uCUsq/L6W8o5Ryk3ot6lb1PwxzY7IdXi3pCaWUh9Nn9ab63+3GvaenqGeAfxv9eJOkE9RrrHN4sqSPd133PxfccyTzdmvXdW+zz+8f/r6l67rD8f0+9Zqr48+6rrvV6rlW/YL9vOGrJ6i3DqSX8uvUj3e2581d191ln983/EUOPk+9AvLaGLsPD218YpT3d13XueNNlrcI75T03FLKs0spjymllO0eKKWsh5wfybp8gXrZe+52Nw6y/RpJzyilnKie9bx6m8deod4E7P8+vM0zD9DOnNVUSrmfeoVt85+t8yOV+T+Nz+9Tr8ifPXx+p6TPKqX8cinlS0opJ++kjQP+PD6/X/06+Ov4Tuqte4lPqh+XWeS7bieycwR4Q6W+B5VSfquU8iGN4/8jks4qpZy2gzJr472TNXKkqI39p7que1d8J41j/yj1Fs/XhOwcUC8HueYT/4+kbyylfHsp5YxSyuPVW1YOa6tjcQ1r6onc87uue2nXdX/Zdd0Pql9rzzG5e6ekby+l/GAp5bN3uu53c077Jeo1+5+YuX6G+n28xMclnR7f1TwS79TgYVdKOVfTBX3uTp8fcJak/5DlqHeIkaQz1e9VnKDejJ7Y4nRXSvkK9V6Bl0n6RvX7d/9a/aLcrWfgH6r/4X/G8PnJQ7v9hXqWpHMq/fhf1o85nKneDLMIRzJvN/mHbvRezvng+xyXmiPjJ9RvFdAWZXu6rjukwYwez34qPqPoUO9Zw9+3aDp+j9F07LaUZ4rTTub36eoVnf+q3jv2ulLKj22zIN8abfqxHdRD265Wb016dinlvjt45NXqzfsvUO/n8Ppt7v9Y13Xvin/bOTHdQ+McgBvUs958qV+vURn4jbh2pDK/nRy8WtJ3qV+zfyHpU6WUP4x3yhxqsj23Dmpycruke25TR/YzldPdYqPrui3vtuEH7E81mra/UP0c8F7ciazXxvuovaMrqI39du8a1vxrNR3XL9Hi96XUbwv9tqT/V73svl391un7VX9POm4Y/r45vn/T0L4Lhs/foV4p/g7125KfKKX8fCll4Rgeife4JKnrulsGL89f0DjBjk+pd8ZJ3E9Hfmzgo+oFKb87EjDgP7ugjkPqJ/OsyvWz1e9HgK+XdGXXdc/ki1LKCZr+kOwYXdfdWkp5g/o9txeoNwNf3XXd39htN6hn/f9+pphrF1RxvXpHlEU4lvO2Hc6e+Q7FgpfB/dQ790jafNGcqenLYjuwiJ7p5RnmjjsdMYaX4/dI+p7BGvUt6l+Kn1T/AqjhO9Tvl4EjlfEXDfU8fwftu6KU8g71+5d/6JaVY4gbFIpe13WHSilvk/SkUsqJ/MANiti7JKmUkkdpjkbmJxgsDb8m6dcGD98nq3+PvV79D/nxxBmaHnFK5Lvu8mNUd1f57kL15vyv67ru9/mylLKn3vvHEKz571fv6Jq4Y9HDXdfdIelZwxHFB6u3Lt2u3lGvGu/AcIn6/ew5bAx1HFCv3P/XUsp56uX8p9T7Fbxg7uEj/tEe8HL1XsI/Wbn2V5Ke6udBSyn3kvQV6m39O8awsN+17Y2L8Ub15tFLuq67fe6mUsq7JH1NKeWFmMhLKZ+jft/Tf7RPVv8j73iGpsdl0PLvqZ39KLxa0jeXUr5U/YSnQvRG9c5ht3Rd9/58eBu8SdLXl1K+ouu6P56555jN2w7w1FLKfkzkA9N5gvr9N6k3lR9UryC91Z57unqZPdL2/K36OXh413Wv2nWrt+JObf2hnaDrusslPb+U8p1aoDQN9+0aXdd9tJTyK+qdr3Zy7Ofn1FufXnY09S5AbcuBet+sXoHOI181HI3ML8Sw/fH6wex5vM43S+q3P9RbGH5vmzYd7bvuSICJdnNbqZRykvptueMJfy8eT7xPvfJ7Ydd1v7jbQgY5uVGSSinPUf+Du9075H+o97v4UvX+NuAp6n1eJrLcdd01kn62lPIt2oZg7epHu+u6O0spPyHp1yuXX6Te4/atpRQ8/X5QvZDMmdSPJ35MvTntbaWUl6nXzk9XPzAP7bqOqFIvUP/j9oZSyq+rN5m/UL152Pcw3qg+SMVL1B/leZz6l2UyFs57fn8p5c8lHd5mUb5VvZD9lnqB/u24/lr1XoZvLaX8gnrP5RPVe/5+paSv6uxMbOA1kr5N0n8frCTvUP+D86WSfml4Id6d83a7+nOPP69+z/HH1e81vUTqfSeGPv5QKeVW9T4JF6pXEv9a0720hei67kAp5bmSfmUwIf+5ekeTB6o3QV7Udd122nPiUknfXUp5unrP3E+rl5W3qJ+r96t/If479fL2piMs/0jxYvXBSb5A/T7wLLqu+0P1WzLHC2+T9K2llDO7roPxqOu6t5ZSnifpxaWPiPVq9Uz6HpLOV6+k3aqRGR6NzE8wrOtPqz8m9E9Dnc/Q8Z+bR6tfRzXGt1e4WP375uds6+b7NZqZjxc+on6tf1Mp5XL1rPKq8CE5anRdd7iU8p8k/d6wh/wH6tn3/dSf6Lmi67pZpbWU8lT1gVQuUb+N9GXq36Hf1nXddXbfk9W/n76x67rfHep+Vynlderl/CT1cvsU9bL2/IHFQxR/d6jjVvVm+wskvXRR33bLtCXpv2mMFLOJrusuLqV8oXqa/yr1Xol/L+kLuq5771HUtyt0XfehUsrj1P8A/7T64xc3qPcUf5Xd9+ZSCubpN6j37Pt+9T/6N1uRv6HeXPIs9Rr6O9Wz0XT0+BP1FonvHsoow7+5dm6UPszkD6h3hLoyrt81sPDnqX85n6d+oq9S/yM2u9iGZ5889O3bh783qD929anhnrtz3l49tP1l6pWjd6o/q+lm7x9Wb1L+TvVjeMPw3A91XbedI8gEXdf9Winlw+pl9hvVy/516rdO/mEXffhZ9Y6Hv6neEeyv1CtB71a/uM9Rr+xdLumbuq77o13UsWN0XXdDKeUX1cv5XuOP1Jsfv1zBSrqu+7lSyt+o96plPd6hfpxer95L+fBw765lfgZ/o14JeIb6o5sfVa/QzpoijxG+XL1Cd9FxrmfH6Lru9lLKv1PvXPVaDaduhr+/chzrvauU8n+rJwlvVb8Ov0G9k+mxrusNpQ/o83yNZOhj6pW27ULx3qXeGoVz8bslfXnXdekUt6beypo+K9+qnoz8F/UyfrWk7+m6zrfI3qb+XXTeUMZVwz0ZgXALOArRUEEp5UHqf7x/quu6F+11e/45oPQxkX+q67of2eu2NBw/lFJeqf48+JfsdVv2GqWUS9WfTPnRvW5Lw+rjaJj2PyuUUu6p/lzxW9Q7bj1UvZPAberZVENDw87x45IuK6U87m7eq10qDGz2bPUObw0NR432oz3isPr9jpep91C+Vb3p9Ou6rtvOxb+hocHQdd01pc9kVzuR8S8J91QfSOR4eOk3/AtEM483NDQ0NDSsCHYTXKWhoaGhoaFhD9B+tBsaGhoaGlYE7Ue7oaGhoaFhRbBUjminnHJKd8YZYzRQ9ts3NsZjuWtrW/UM7uEv19fXxwBlPJ/x97mX6zzj9eWeP8/w9/Dhw5Oy+f+hQ4eqz/B9DXkvbaEdlE293u4cg+yX9yXHjXLnnvFxp27u8bZ4WT4mlHPiiSduqSfny8ce8N1dd/XBmz74wQ9e33Xdljjb+/fv704//fTN8vbt60X7hBNOmLQBcM/cWNfGIccp5cDlLseBeacs6vfxmxsn/vKMI2Ui5yzb7GWk/Ga/UoZr/eIZxppn8rqPD/XOtbGGO+64Y8szlJH1eTnZ52uuuWYiO6eeemp31llnbT5fW6e0m3sYY9pQm5fsy3br0+Ug31UuV3P1Uu7Bgwe3lJHyURunlPN8Z+aY+3f5mTKyzX4t+8lY05+ar1W2dU7+ajLEeso1mPNYA++dq6++eiI7e4Gl+tE+44wz9NznPndzIO+8s494d9JJJ23ek4swXzI5gZJ000294+a97nWvLfeeeuqpkqR73KOPz44Q3HbbGGQpFw8LgrI++clPbqnXy6dcBAZ8+tN9VNNbb91MdKUHP/jBW8rhnnves4/2d/PNfXyXk08+ectn7wdtvc997iNJuvHGG7fUX1MsaAP9ovz8QfFFxHyweHiZzv2Ie/n0h3se+MA+RwgLw8eKey+5pA8XfvrpfTjrpz3taZOIX2eccYae/exnb97DX3/x0jfmJ/vKZ5/Ls8/uw6Qz3vTxhhtu2NLulClp+kOPTH7qU30MmYc85CGTPtNe5oXyKePMM/s8B8ifJH3gAx/Ycg99v+WWWzbHRhrnyRVj1gZtve66PtjTWWf1Tt+33377lrIdtAE5R2bpA/PnoF/Uhyyl0oO8SOO8HDhwYMs9V1xxhSTplFNOkTTKuyR9/OMflyQ9/OEPlyRdddVVkqTnPOc5E9k5++yz9dKXvnQit/e+9703/z+n2POX9voPFTKDTDA+rHXeb8yx9znHARllbX/iE5/YUoePA/OCvFEPcsecStKDHvQgSeN8IDP5bPZTkvbv37/lXmQGmaI99M/Bd4w59yJLzLUrJaeddtqWZ2vKmjSOkTTKG2uMOaAs5N3nHpm88so+vhXr6cu+7MsWRhq8u9DM4w0NDQ0NDSuCpWLapRSdcMIJm9ocWpczHzQv2DCf+VszHyfDRnOHLXE9GZFfQ7tDc0NrzXqlUVtNUzfaI0zHLQiwIDRnnkHTReun7a7Rcw+skLalJopm7P1A4/zIRz4iaWRHySj8Wb778If7tMr3u1+fHAwNm7YyDt7uZG4f/GCvvJ577rmStjJVNN373re3SP3TP9Uyp45tOnjw4Ga51O3lIRO0L814zLFr98gI5aKp02fmlOvMo19LJkJ/GAt/BtlICwfs4WMf60MGuDWIsc1nmUv6QNuRF3+WuaRtuXXgViFYEW152MMetqVeyk9rjpd7/vnnS5I+9KE+Fw8WBObY541xTEvIhRdeKEm6/PI+34oz7Uc96lGSRiZ1//tnSvcRa2trOvnkkzfrQda93fkeYE6ZH2Sq9gzrEMbGWDOOlEH//FnGlHKZS8aR+fJryDPvl+uvv37Lvb4u6TPfpUWBdiBb3j/kl/cO45/vHX+fUj5to81+jzQy45q1g3cG/WEtYLXjPSSNY4pMMp7IXf42SNJll1225VmsGsuCxrQbGhoaGhpWBEvFtKVe40lHLWc+sIXUUtP5wlks12CVyTxhOmj3Xj97Y2iaaGRo3M4IvA/SqImizSV7rTmTobWiaabzDVozVggvh3u5lszR96VpA8yeemEB7HWhobr2CsuEHed8sc/PeHv/0iEk9zTdqoImXXOCmQPlO2sBMB36zL3IEtq+s1i+gxEwhvSR9jM+zhhgd7A95oMyYCau5TOHjB3lpn+H74MzLtQDa0K+qZd58/4BWHlaB1g7vi9JfYwxe+qPecxjtnymDGRJGi06F1988ZZ7mIO0Fnnd/EW+6UcyS2lkR4wF7405bGxsbI4xc4C8SONaRiZ5h/B+oB5nhpSDFYFxy/cB4+jWOuQN9kj7mVPGy600KavICHKILDlbZixpE3JHfynzox/96Jb7vb30PS2j9NefoR+8k5CNSy/tkyLig8BcYM2RRksVFpb0J6F/LgeMAfcgM36PtPUdxrzTD8Z6WdCYdkNDQ0NDw4qg/Wg3NDQ0NDSsCJbOPO7IM4LSaMZL0xhmozTdOXBywaknzdiYwGvnM9OkCtLMLI0mJp5NBy1MkH5sJ01kmMFpCyYazPFursacg6mMMeIzbXRzdZ4rxdTEGOSRHL8/y+VZysfs6yaoPEOKyYx7GAs33bnDlN9TQylFpZTNMWfc3FxN2YxhmtXyWIg0ylU6gtHHBzzgAZLqWwKMIWVg8k0ZxmwtjbKBTCIXPJv1+TPUh8kRWeJZTMaYGaVxTeSxrUVbBtSXZ2txHGSckROXA9YnY83fPGrm/QPMP2uN8jEH+1ZVOjax7VND13W66667NuWYvru5mvHJLQ3mlrHw+ad9PMM65cgXssR8uaMlfWXcKZf1wzrFbC2NckX5+WxtnLhG+xkn1hGymfIvjVsZeUyMz8y7zz/ynFuRODMy9mmml8Y58GNn3jbkgjUiTc/yM67MDZ99HBk3nk1T+l6jMe2GhoaGhoYVwVIx7a7rtmhRtYAFaF5olWjD3FtjBiCPfaS2j6bmWjrlwJJpC3+57mWjjeKAQpvRuGmzM0k0wTlLQTpdeIAM2k95jAVaazoX+TOwIto4V5ZrvNkvGB6fGZsaO4dNoEnD1mGDblVJx7FakAZQStkSzIO+u/Ma36XVhDozSIw0sgaOiIAMWMF8uQUkg6nkUSzagxOOJD30oQ/d8gxtwQEqI6ZJoyxwL1aabAdjjTOYNI5pRq/CwQomUnMMo/2sDeYW+aaNPi+wfZ5hHOkXbNCPJcFmGQPaksGE3NGStjAvfmQxsbGxscWhizXh64V1gCWAsUz25/JGnTiT5bp0By1pXFfSOId5b44TAXqk6ZzRJ+a7dhwWeeU9Butnjpkf/rqVhnWTzqSsbZ7xdxn94H2XVs6EvyPpF/KUTpLIVC0KIu/eDFqT711pfO9g7an9luwlGtNuaGhoaGhYESwV0ybIQYYqrbGljFmbjNu1u2R5aHVomWjwaFjO9tnTyWNNtCMDGEjT0IC5D517TNJ0D44+8yzsAlbh+670nX7lkYvcS6/dg0abMa95xsckYyjnHjrz5vv8lM+1PEKXx0ekcYz569cSGxsbuuWWWzb7mnuO0jhHuSeWMZR9XugbWj5lMC+wmAzTKo37tACWkWN+3nnnbd4D62acGH/kkDFwhkU5sAhkibZiBcJa4GOS4UsB7AW24cyeuYIlsTaoj7bXjpjRNtgs15hjyvKjf3msjn7k8UvfT6bdud9fw9ramvbv3z+Jt+3vHeQV+aLdeXzU20B7mTPGENbHWqZ/7s/Bviz1spaQr3POOUeSdPXVV28+wzxTXso58+L70rQ/Q8XC+vPIq1tkmCvWQvowZPATaRrXHXlInx7GyOct+8NY5xFHf/dzLffKWeOsHR97xphyFr139gKNaTc0NDQ0NKwIloppS72GnXtijjmtB+2Ivx56Do0PrQ5tEW0yk3T43mmG9QSwCrQ7v55emmi43LMoEANt5DP34qkJg+CztzH3sNDkYUTOXpJpo8VijchsWT4Xua/KuKWns3vf0l4Ya3pH00/fMwOZ1KSGUor27ds3YYG1PUbaTXnUDTNy/wTGMoPdMP/ICmX7Pj4Mg7GmTZTPGLtFApnMxBrp/epsKRMp0Jb0jE3G7XVjBYAdw/iRYfdp8P1faWRWyC5jTr0+B7mmaTsyQxv9PqwAmRGO/iJDhLeUplau7diSr41agJ58R1Auf7nXLRYeYjTr8P4wB249y4RElM+8I6v+3qH/uaedIZH9tALrHfnibwYhoR2ejCMTobCeHvGIR2wpu5ZsJi2XvK9ZPxn61fuKPPGehUVnX6TRn4C5oK3MMePo7x1kJZP2LAsa025oaGhoaFgRLBXTxns8g7z7PmGGDc3ECjAC31ua8zjP84U1ho/GmQwh2ZrXl2E3aRv186x75NIGWBL38jnPmPuz6Vmc58NreZQz1V7uqef3fvyNAAAgAElEQVRZbEeG0qRc2Br9d2/YTDE5d77ewfzk2c4a2JdMxu7sBc0594AzHoCf6U0rRoZmzJSGtSQpuZ9PmxhHn0tYF3uI+QwsgrO40ji27Edmcgn2v9MCI41rAzmn/Xku2PclM10kbWJMMiVtLWFEnjzIM/k+B+n9zjPst2a4Vmm0YrEGuLeGrut05513Ts7P+5pmPtI6l1Ygt54xr7Q/GW+eXvF3DMyWsaSejAvhITbxjcAKlHnbWT8kWJHGNcA1+s6YsrfMdff3SGsGbSbhRqbwlUZZWXQ6xZ9JfxNpmvI105W6haN2ckaaxuTw+hlrxt7ndBnQmHZDQ0NDQ8OKYKmYttRrVnPaH9elUeNEk160d4XGDEvKoPXJ6GrsMr3VAW31fb5k7Bktic/uxZtJESiDz5Rf29POvVk0xIxQ5GeI2ffKNIrpQct4184+wv7RbNH+a+NY05ilcd8zz35L0/OfixKGdF2nQ4cObc5ppl2VxnnPtIMwE/b6vK1o3fQpz+Uyx2j03uf0WKY/aZFwRpesjHoZW9rsaSiRI8rn2Tzjy/6en9Om/DzDnvXxrD/PfiP9TGtRLbUu39HnPNGR+9SOPFPLKY30WpfGd0YmJKmBlMCMG8yqthePfDL/yC1+ArX5r7E5v54nNqTpqYr00aBfXib73ZSXa4ux9rFICwttpaz08ndrF+8iLAp5sof6/d3InOV6od58/7kc8Az38A7MvfuadY1253pNa5E0jQ6Y87bXaEy7oaGhoaFhRdB+tBsaGhoaGlYES2Ue59hOhgp1RwbMUpg/01yZSRqk0ZSIaWnOhd8P2APqTnMr9xIEwevD5My9afoGbrrlGqaYPEaDKah2PIR7MTmmuSiPZkjjOGUIQBx2cPagPYuOPWAmSxO4h2mkfExp9B3zVwb29/5kW2vAmQhg9vJn+A5zIeOBaZY59O0YglikYwxtoo/pbCaNMsP8IIdsJ2QuZmk032VQCP6mmdZBPzKhR4YOreWJxnSaWxCMkT9DOTj7MafkQqbtrA13HMrjPxzxYv1iLvUxYZxoA/1LE6fPNVtBXKtteYEM6gR8S4ixTAcwjlkxft7XDOZD+ZTLM8ijb3kwdswdckafcb5yecstLd4DzE8mePE2UQ/1Zj5131rLZzNh0aLjdtSTJnWCxCBbfgwywTOMV+YndwdY/p8BbigjEyf5tdo7aRnQmHZDQ0NDQ8OKYKmY9sbGhm6//faJA5JrOmjTXIPxwpLQ9jIAxG4xxzzQxvjsLA/tLpkWrIa2OrPPZBs4ReXxDTRgZwGLnGy8bGcBmT4vj8Tk+Lm1Y84hLI9v+X04tmQwCu6hn7A1aWQOaN3usJXYt2+fzjrrrM12144bZRrQDL/ImLuFIB3xKHeO/TuTzKAnsCP6ilOOj1Me+QIwEGTGA2QwlqwT2B+sCUaUAXWkkfFkGFbuQZbdikK5sJRHP/rRW9rK+PK3luKScUSuMmGM959xg5mmsxpM7+KLL958JlngtddeqzkcPnxYt9xyy0QmfQ3QvkwZyphz3eUhj4Vl4gnGpZaGNBNcIG9Y3Ah+42ui5vgnjX1H3v29k0lMKI/3QTqG1eQgnWSZdxwWa+9ixs3TkUqLGTZIZ+MMieohpfmO43C0mfmiLHe0ZP5rznfLgMa0GxoaGhoaVgRLxbRLKTrppJM2Nac8IiNtDUQhjZoo2mOm/PN7Mm3norCYc8iwm9TnbWTfiXrpD4yhxlRpG/udBChILS/3q/w72kabCFCRoVGlUXP3fW5pGjSGOajt66B9UxafabOzc5g2TIHP2WZPagKTy+A3NRCYh3mAIfieFXUnC+d75MKfyaQUGS43j/X4Ma88xgIDOPfcc7f01fcyYZj0lfGHgdTCpVIPjOrxj3+8pNHSg7zBwFymkvEgIwRkqQUNYdz4Lo82Uj59cEsQ93KNspg39k5dVrEqwP7wM+BdwPh5KErGOvteQylFJ5544mb7MziSNA3JivUq/UecTfNOyhDIYFESk3w3ZahWxs/lgHcSbaGNMF+u+1ggTzDR9773vZKmc1hrFzLDHPLOTVk63qCftIM1I03DvV5yySWSxndxjZ3zfG2tLQMa025oaGhoaFgRLJcKoV4LRHNmP809F5PxoRXBZvKAvzRNiYfmlAkkaoFZcs8STRpGTNu8XWjFsLH0bkXz9X6xl/SBD3xgyz2ZnpS2+v402mIGRpgLp+rPJANJDT/DSzooL+cg03pKo2abgT9ga9Tr7AbtN71TayilaH19feIL4EFoUhPPMI+03+eSdjHftJ/vM9GLjx/lIouZHIO+uybPeMOS5wJHeNAJPHI/8zM/c0v5GS41k0H4/5En9vZyn7DG7PO0QAYaqgVIAWn9yRCovqedIT0ZI/pH211WYd3I4HZ+HxsbG5O0q2mFkqbrAzZds2ZlgKSjQe6HZ4AjB+uFtYSVprbmCYd75ZVXShrXKeOViWt8fTLuvMdoS1reFlkUjiX8fQNoI3NJ31kTmWLVv0sv8mVBY9oNDQ0NDQ0rgqVi2uxpoxHWkttnWj4YaZ6jdBaQSR5g1GiAtfPZ24F9FMr0c9qwkvRkhj2kF7nfm6H5YCswLxhfzQMUrZJ7YNyMiWu8NQ19t0g2Tnt8Ly/3LHPvueYbQHtrXs8JTh7kOXDvJ2PJ+FAe8gDLcKade/9+Xlka5Yz5qPkagPT8R6N3RkfdmaCGflC/94sxI5RmJhnhGeTBrTS0EfmiXJgq9zpbTN+MDEXJX8bCWWKuF59vaeoJL43rBSsKnzO2gI9jxm1YtC+5trame9zjHpsMu/beoa9Y6/LMtSfS2C12ckJjJ3AfCWkcN9iljwVj5mebpVH+6FftLDwynwljMhnMXoJxxN8jrbesDV8TmVhqkS/NXqAx7YaGhoaGhhXBUjFtolqlFl6L/oRWjAaY7NX3N7iWEYHQ6nO/w5H7gdQLQ0nvYi8PzZmzgbnH5BHR0ObSYzGjC8Faah6p9BMtMlMDuud9Mhw0TrT0I/H8zLO9mdRAGueDfsDOH/rQh0oa9y2dQXJme27/3bG+vq7TTz99EuHJ91UZU1gYbUnvWh8b5j/PjDNOzHsmFpGm6U0z6QjPOiNPr908P5/j5/fCipKlM/a1iG+MBW3LM9bIsnuPpwWJsciz65n0wv+P1QnZySQqLn95YoMxIIoWsuts8R3veIek7aMgcs+BAwc25YO9TG9D+tKwlmr7qDsFfc4TAttd2ynyHZXs0pEnKDI5SybZ8e+OZ2KNWlS6ZPCZRMrlLc+hMwacQGCO3UrD6Y5lY9igMe2GhoaGhoYVwVIxbVLkoeGg9TnDyhjMID0Z3csTbY09Ks6goi2nB6Gf80OLQ8ujHjRTNG33PE8v14yWhPbq3uPsO+VZSp6BRWTKPB+L3AdDE6Z/fj2tAHxm3PKctj+bjJoy6C/MyzVVxg82yPilP4EnsGcsaNt2qTnvuOOO6vlVkOc5M/IR8+YMi/9nHO+0uFCWWwqQFcaQ8ckoU97W9NVgnGDJyVSlkY3DSGEitA2ZecQjHiFp6xgjv+n9TD01X4P0cKfv6S3N31rMhPRGzvP6Lju55rDK8C5grVx33XWbz2Q0uu1Y0/r6+uYY0EafF+YQmdzNnnPG809LjCNPJ+wGlMt65D3hrBI5Sjln3GCkxHzwvXvmLCO6HY3XeK71Radk8rRKxj53MG/IRabsdCsN5aRlblnQmHZDQ0NDQ8OKoP1oNzQ0NDQ0rAiWyjwu9aYNzHqY1dxRB/MGJhLCC6Zp250iMHcQOALTI6bBNLX7s+lEhHk0j0i4SZ22YeqhHuqlfC8jA7tkuEdMoJiI3JmEtmGazaMYNRN3gnrySMtOnEvS2QNzmR+ZyZCH9BcTFHPtptTP+IzP2NIfH+NE13XVwA9uKqNvmJrz+Fw67nk5PIuZOOcSeBCPDKKDgwvmyVpiFTcHSuPxKmSY8t0Bivln7KiPOcSszJi7UxPmToJsMGe5BmthbJHRTPJBmTXHoXRaZC54hrK8jcxTyn6al93sj5Ma5S8yca6vr2v//v2bbaptrWQ7c1tnJybhlJVM9+rvIdrL1hPvuUWYawNjznx4uNesD3njM2uC72shcNMB9miOeuV2kzsQIvOEXM1tIeDviXTgy+0/+uDvX5xjM53nsqAx7YaGhoaGhhXBUjLtTP7hTATGlok00O7SkUYa2QmsAQ0NLSsDJdQcQ3BWIp1ipttzjTDDPKIJ8gzMx7VA2pgJKNIhJUOj+ndomGi8i1L/0TY0aawQjHkGaFgE+ocmTJuxSkjTJBO0DQYB03NGB6uB5Sw6tkMYU9gedTtr9vR70rzMOFNwZ0FpZHN5bJB+OIuBgcCWGB/mK5mWf5dOizAd6vHwrMwhckvbarLidUijDNIv2o81AAfJWjhbZJ81yT0Z/tH7xzVklfSNrGe+97liLDIcJ451JLnwo2zIEzK0KKQqR754nqOGPm7IE2MK+6LcDAjl/c6jnl6vNL5TnE1jhWMd5rGmGpDbdKjMI47OKuljhkvmnjz65XNJG7mXtYIs1d47iVxztTDNgPXEOFFPpi32/s2FlCZkLXJSO55aC027DGhMu6GhoaGhYUWwdEybUKbSNBGFNGrqydzQhtD2nZ1nWD20LfbG0MYX7d+yPwmrgZGgxXobqYe2ZLIJtHYPY5oJ7LNctHHa6nt0ud+KRo3GyDi6NgmrQBPlM/fSVspKxilNgytgSailNkzLAZpvBslxC0oewVkE9rST7Xsb8qgQGjvzlAFupHE8MgkKfX3Ywx4maWSGPsa0m/Jhy8hQ7fgissO8wAgoK8Pc+j15LJF5uPTSSyWNx3fcH+L+97+/pJEFZkIS6nH5pr2Z9pC2M341q0CmWaUsxpl5q1kfeCaPnGUyFW/3TvaaSynat2/f5hqnDT4v7PXD4tj3RC5qPg55jIp7aC8WP+bPxzgD2BxJ4BKexcKTTNEDpCCTzFmu8wsvvFDSOJd+PX1zuMYYUWYtTHTKQa5X3q+ZilmaBvFB3pFrX795dDXT/eZ7zsG8LVuQlca0GxoaGhoaVgRLxbQ3NjZ0xx13TNIdOtNKL9r0lEb7cs0pNT0+ZyAL9kM9ITqaaO41poe4Aw00w6SiCcLKfN84A6BQPiydMrjPw0qmZy+aYXqCuiafmiwsnWfRnmE1vsfI+DFe9CO9mF2jT8aaIT3Tv6DWFp+XxPr6uk455ZTJfqqzDNrAWMI80dzTU1wax4l25d4bzJu/sBtpZIIZKCetKs6iuAbzTVbLHrDXk3v+PENQFVhirX/cm2k1uQdPXQ+ugsVibr+bMpBdnzdkJstArlkjzppzLGByybRqCT4YL+qpYWNjQ3feeeckOYy/Q7hGHbQ/g66w5qQx3SXP+nqQpglsmC9pGngnw8ouCsxDuxkv5g6Z8QBAeUIng+rQL+bHxyRPK2QoXJJ0OGjTnDc/3zMWXh/l54mKTNrjc5BhpmlbtsPbw1qg7p3szd+daEy7oaGhoaFhRbBUTJswpmivtcTraD/piQ1jzOQC0qg1JiNBC8vkGbVUoLm3lPtVzrjzmQzJl3ua3p/cO4eNoenSBx8T30f1cvMMuzNt9tMyaUamo6udY4T5ouUzXnzmXvfYpR+MQXq8U5/3JS0Vi9Irbmxs6ODBg5M0pH5mkzGmvTABPqcPgjSOM9cYL76nTObFLQUZtjI9WbNdPg6ZdIZ72IOuJX9JxgOQB9pRs2Ykw+ZMeXoeS6OFgrGmXOaH8hlXX0/IHd8xjun57J7gGdoSmcywsLUTHPiCLIpRsG/fPp155pmb5TE/bqVhfpkXvI75TN2cD5emMo3lJa01jGMtJWz6nKRlz/dv03eCe1kD+NK4T0O+v/KsOmWmNcr7THncA0vmneJe88hT7ilTT1p8fA6wejGOyErKhVtpGL+5dVwLXU0bWE+ZYnevsVytaWhoaGhoaJjF0jHtffv2Tfb+XLtLBoiWn9GnPKFC7kfCvDPdJgzRvV3R6tD4qA8tmbY6u0EzqyU8kabMx9ub+3UwKtpIH3yfEA00I/jAiDMhhrcpz5mjCaNtshfoEbi4l/rSMsJceL/pXzKGZLnOptPr1vfiaui6bmKpqCVWoY6MWAeL9aQIuS+IFs8c8pmx9lSalAfyvD5so+aRm+eWc2/bLRIkc8jkHsnK6bf7J1Beek6TfCPP4Hv5zGlaEpB/LD2+FmFl3JssPU81eDmMCXKR1jVn2rwzmEtvwxzy7K6zWNZ/ekbzt8ZieYY+0SbqgRHDTH3fPSMIspYyzoH7tlAezBY5y7Sa7hVPe/O9w3znfPn+brJi+oclhjZ75Ef6PhezgPozIZOPCcj3KmPlzzA/lE99jBv11SxyyLm/D5YBjWk3NDQ0NDSsCNqPdkNDQ0NDw4pgqczjUm9aw4yTJgxpNIlgHsqQfZjB/EB8Ho/AFJvhNtORRpqaljPoRCYvkEaTH6YZnHoykIA7OKTTA2Yc2pomfg+XSbl5xGaRYxjALET7MfeSrANTkzsGYV7NZBIZIKUWcjEd6eg34+tjkg5GtQAIjq7rNueSMag9Q90ZRAOTsG/H0G/GHfmineno5KbAdILJMJyY0n1LIPOMv+9975M0mja51+WbNjHezDd9Z25ph4fLZNwxNdP+DObi2zGUj6xQP1sd73nPeySN8ujj+cEPflDSNLAMspSJc7wtmQ8dOeQZX4MZDnMnJk62E9LM7HXm1g/fY1L3cULWeY8x36w57q0FUEmzeL7XaKOvF+aV8lnDjA8y7LKTW3jIbAZxQi78OBVrLbcm6Vc67UmjPBGUiK0d5v/Rj370lrL9HcLxw3SopH7G299zvL8YJ95VOKGyRny7KY/Q+jbJMqAx7YaGhoaGhhXBUjHt9fV1nXrqqZvaHZqbs6UMSIHml0dJ3NkCbYtrlAtbTccgZ/YZBjGZKUzFnyGIAfemw0amNJRGBgXj4R7anOkc/RgNmmGmkOMe2uhBNegXmjbMJx2EaqyZ8ct+0Ac+e+jIDDCTjjyMjTuOuZONt62GQ4cO6cYbb9xkS7U+5zEaZAYmwL2uacMW0yEQhkB/8riQNA3ckMEfGGOfy2uuuWZLv5DJZGMeDIJrtIW5wnLA99xXk4NMgJEhXmtBNZCZdHxiTnFactmBsWUyiwwA5GsDOWAOWM+5Bl1eqDudDWtYW1vTKaecsukQxhy4Yxjtou8wxrQcOCuDrSabIzQobURmagmEYJGUQRvTYUwaQ6syD8h7WgXcKS+PofEs70beDxmEyfvK2kaukG/qc1nNI2zIfqZLZt253KUTYDqv1oJx0V7km3HNRCk1h9V0iF4WNKbd0NDQ0NCwIlgqpg3QmGqBFjIYB1okmmFel0YtMkMRZrANNEIPy4hWlxobWj33upafCTPyL9qks3P+T7vRqNn7yeNKrv2hoef+OpovmrWzQNgyWjGfsz8wCQ/BiCbLPPEM9cBgnXWg4TJfjD1jggbu1oJMGLMoccja2ppOPPHECWN3FpshbxnDTC3p85LWg9zHyxSgvj8Nk4IdU3+GwPRjNNSTVhrkIkNh+j3IN5aD97///Vv6k34L0sho2OOjfCwWjI2vQcY0rQ3MMXua559/vqR6cA3kgGcoK1PferuRDWQW5sV6ckbPM8jVItnZ2NjQgQMHNmWeufQ+59E/6mYsmB8PmMR8UA5jzWfYOm3zNubeOdeYW8bHrQGZJCUDDSFbNUsL6xBGnfXXkunwziCVKeuH+a/5FzFXlJ9HTVPuXN5ZW/SHdZXHL2u+NIwN5WLx4Vm37GQCmhZcpaGhoaGhoWFXWCqmfejQId1www2T4CPuKY1GmKnwMsiBM1/2RXKfNhlvhhuVRq0uE1Hkvq5ryWhm6c2IBsgz7u2aAT8yeMxcQBBp1GSvuuoqSVPtP1OSSuOYoo1nsH+0TNhSLRE8GnXupVK/e2Sm9zugP1gW3NMUNrHIGx0QihJkKFeviz5nWle8kT3YCf/PkKT0ORMtOKvkO9gL9WdQktpJh2TFeWrBZZR5zQQK+X1amqRR9h/5yEdKmnrLI6veRiwDGVKYsWIeSAnq1hPahN8HY0P5lOH7oGmFyiQQBPO45JJLNp+hj3mSoobDhw/r5ptvnlg3/L2T1p4Mnclcugc48pWsEmQSnZoVJYP6UH4yfmkaHpfyaCsWilqqTNYL4878p58P71dpHNPLLrtsy73IN8/4mqANvL+QId6V6QfgfYLJ8yzjm2lda0Gk0u+HtmMVxFogTQPbpDf5XqMx7YaGhoaGhhXBUjHttbU1nXTSSZtacobalEZNE403GWgGy5embAVNKtlzLWwqWinaHPeyl4RmWEssD3tMdkS6QGeOsIdk43mmO8OoSiPrc43W68sE89I0UQD94xnu5XotyYCH/vO2ZzIXfwZmkGfi83yw9zk16xoOHz6sAwcObI5PWmSkkX0lw8mwmM6WMswjbJyxzoQetb3fTIYA+2f/1pN/IJuwR7R96nvIQx6ype3S9GQDbc39cD57G6mPtgBkJq020pSVId9pfap5OKefSvoMpJe0NM4l8kS9PIuXvI8J92T62BrW1tZ08sknb7K9WghNnmcuM1Qwc+h7vswD40UZjAFyxppzyxSMln1wyuVefE3cE5y2MKdpHeCZ2qmVPPHBX/qQvhbS+A7EH4H6aCtjUjtLnv4w6TOU7x//f8YlAMihzwH9Yy7pF231kL4AWefdviit616gMe2GhoaGhoYVwVIxbVJzogWhFTmDRBNHe0VjTwbue2J5jhP2BTtC20NTc3aG9so+HmXBztDKXQOFJbAnxr3JGGsp5NCw0RYzdV0tAhv7Mum1nmcgff+L8UNz51oy/dyHk6baeUZ8Yky8Psql/cxXMu9awhDakvvhjq7rtlgSmA9nIsgRjJB2Mk6ZUMb7D2vI5A/8Zb58P5y5hMUyZxkRy5k9e2ukeGTeaSMsyttInbCG3JdknrjPPZyJ1pdeyqyNjHEgTVkn8sXfTOPo80I9/GVdYUGAibl/AjJB3ymXe2opR2FyNb+BRNd1uuuuuyZ+Cc60sZ4hD8g6a50xdplnHtJ3Ivep+d730NOLOqPC1fboL7/8ckmjHLDWMuJjzZKUvgR+gkaqJ7eh3NxTzjP3XhZ9pA2McaZozRSe0vTdlHPMWnfLFeWx1nNfPNvu1xjzRb40e4HGtBsaGhoaGlYE7Ue7oaGhoaFhRbBU5nGpN0VgpsJ85GbRDFSCyQeTCU4RBJeXpgfrMYlk4JSaiTbNupix+YtZpZZvOs1FII+uSKOJJ3MiZ8AEnvFnM59wJkbhXjdxYppNc2UeYWMO3CyGqTDDL+I0Q5troS8xL2P6pk05nz4Gi8KXOkopk6AdLjsZnIE2ZZIUzIxeN/KU5jXazfx5felEhhzgiIj8+TjxDPOdiWMYN3e24Z4MhIK5ME2OfoSFezMnOn+ZS0+4gWNO5m9Pcy/mcnf2waycAUcyH7XLW+ZARp49OUf2i/HC/F47sgi6rlPXdZuyU3vvZNKVdJxjTumP30OQm7kAL7ldJ00dTulPOrnihFe7hy0WZKUWVpS+Zn77PPbEenJTd5bHZ8aoloyD+c9tzJR75pJxlabzj/whj5jFffuHdyLyy3pmjHgn+BYOY15r/zKgMe2GhoaGhoYVwdIx7X379k2SZriTF9o1Gh+ODTyDpuvOa2hXBHTgGtos5eeBf0mT42dod7CYmvbKNdgEWlweF3Enr2SGtAEtHE2RstzBirphKZSBtor2Wgv8QN8ZNzRvxjmD/3s/0lklgxB4fckcKC//+lG2DHqzHVs6dOjQZnAWxt6PNzH/2UccxbDS+PzDfmCCyFs6QqLtO0PM9IaZ8rFmiYFBYWXI44i10IrUiYxSPvMD02WMPWwqjAfGloljYLl+5I8xod0cJeJenH6oxxlkJoqh/kzK4GyJNcBYZ1hW+l0LPwsWpXUtpWjfvn2b858hkaVxXmg3cwkjdYYN0mGO8ch0tLBJl33KT/afR7N8TfCuYq1lQBT65Y5VmeqV8hl/3qvp1Ojjk4FsMnwrY+R9ZN55D/HuoAzGzOWOMUgrAJ/zyKmPhTs2ej9q72/GjbbW0sXuJRrTbmhoaGhoWBEsHdN2tpapJqVR607mkccr/Fm0LY6TsD8Ji0FDQ1t2BglrQVPPEKgZhs+fz0DzMB766No/32WwGPaAYIO02Y+wUHcGTAGU4fv8Ga6SfuYeF8/6vnLuoaOVw9bot1sDYB0cF6LvtIP5ci0ZDX4nwVVKKVpbW5tYGRz0Mfdc85hTLS0kiVvYn6Q/tBtt3+eU+aaPyCjHm2Dirskj1xlGEjabfZGmPgyUwbEhGGTNlyKtF7nvTbpHDwebAT/oT6Z1Rd7c+pBhS5EH/AmA71czPvQHxprWIWfXyC1MLcfPgZUmj/g4c2eemXdkkvmh7743ikyQ6hNLD/KQvh/uN5BBTZgP/C3St8aRgYyQQ9ajt5E+pxwjM1hNMv2lt5+55FoGgPEgS8wrckYbkZlMDevWurSUIX+8d2ijH51j/qmXtlA+9/o7n/dCJlxaFjSm3dDQ0NDQsCJYKqa9tram/fv3b2o4mdhBmqZSyxSMGRpQGvdeCFyBBo1Wh7ZHWbn/IY3aMZobmiIanNeH5oxGmHtJsA3XkmlTJqYg+AVaLAzMmXYmqM89LTTQRXt+GbaSttJGvx8NO4OqoNFnMgVv7wUXXCBp1GLZb6OfvpdJf2p78onDhw/rpptu2twLZMydsTEflJfzlDLkfYVhI0uZOIR6PVwm7CX3eBnLZI7SOA+wiGSIjLkz7Qz+wJzBlpDrWnCaTIUJe6UM5M7XIOVkghjkMNm6+xVQDt8x7/STMasxyPe85z2SxrnF+oEM+VxngJTcM3cQPpnnkV/mx5/P0Lf5HvJ98LTOZXpL2sZYeBvT74L3AmOPnPmJkLQQIJPUS1k+l4x3jiFtpj9plZJGVnIgF70AACAASURBVI48Y1HJPWa3tKT1MU8gUBb99fccfgWZAhaLTlowvBwS4mTQINi7jz19Zo7Td2ev0Zh2Q0NDQ0PDimCpmPbGxoZuvfXWSYB91+7QvNDI0BozdKc/g+aVKQozSD3syRlieh+mxy+anLMdNF3+ojVTBm137S4TaKDpZqIQ+u97v4wBbclwmfTPGQ/gmTz/nR7iPia0MRPXZ/hM7x/Pw/5yPy89gr0tjI37DSTW19d1+umnb7I9ynULQZ6xpS5YHezM2QB94C9yBTNhTJNVSeNeGJYI5iNDQjqbYD5gNowtLKMWvpL5TTmmv6ynjDkgTZOkpN8FcuZjnykLmW/GhjFgzHxMuDeTSqS8u1WI+h772MduGQPeD5TlHsCZ2nQRWzp06JCuv/76CQP2PWbGljGkvExm4qGJM4xnJsfJhDj+zsKjHDlgrDNZTy2hRiZqYcxp66LTOIw1bWUMMj6BNL5ref8gz6ynbLM/n/5KczEt/H2QHvPpS0O/vH+0iTXIHKe/jI8j5fLdovDJe4HGtBsaGhoaGlYES8W0Sym65z3vuandZ8QtadynQfNLhgprqUWmQstCQ09mCFxTY48PjYx60cZomz+T0b7SU5syc3/Hv8u0h2h9qRFL0+D7jEnu4Xp9aN1oxVyjnkxi4Bpv7oPBHBjXmidtnolnDNLL1/eT0ZLzTGUNhw8f1s0337zZXsbCPT/RyPku+0y/fJxyzxJP6UwPWUs8cMUVV0ga5YCy2MNOnwpp6s2f6WN9fxCkVYS2UD5rA0bkViHWE6yYMpiftNb4/z0xgzQyPPpLP93fg7UAo6c/tI1xduZDecgg+9/MBXuotXPOGa2tBlJz0vdMouN1uf+BI2VVmr4r8PzO9JDIqjNSUrNSLrLPPCFnNR+QPA2RvhsuQ3nWmmuZGAdLj1tNYOnIKu9X6qmdgc7ok+kfkUzb383Ic0b8y7XiyPcOPhy0nfeF/8ZwLc+wLwsa025oaGhoaFgRLBXTBrk3656kaKWZfD7PxNa0rtxTSk0w9w+lKQtHe859wyuvvHLzHva3aAP1sE9Ff3yfEO0UjZ560PbzDGktQlnG8/UUo9JWDRstkvGD6WT6Q5iDa5uUnyydZ7jurJkxgZ3TFsaglnLQGZqXWwOpORlHxt734GgDFgG8TjNutLebMaU8mBZyQXuRGSKySVP2kCcf+B7PVmlkY7QBBoCXK+zM5xLZ/9CHPiRpum+XPg4+jrn/mClGecY9qWlDnrVPq0wyV2mUybQYpde8W644UwtLYh5pI2X6mPD/3Huew/r6+mY7YVr+3kFG6DNtyrjXLr+Zg4D3DuPD2k7Z8jbQN+SB8co4CtIoz7Qh44izFvwcM+8t2kab0pKJfPg45hzC7GHTyIW/OxhT2k+5GS8g42F4+YC2Un7tVA7jx3uBMc6z2P4+TevWovfOXqAx7YaGhoaGhhVB+9FuaGhoaGhYESydefzQoUOT1Gh+/COdHTJhCGZEN6tgLplz0MmAGe68hGkpgz3QJkw2borGNIdpCZMMJhja5s/QBsxwmSgizda1tIEZWpUxye0GB23M9J15tMVNnPQds1SaUmtpMTNZCvdi4qKfnniBa5jU09zvKKVofX19knjAA0mkGRfTIiZtTNxuCmZ+M1BIJhOgHg/wkeZ4ysjkKP4MDnmZdhDk8SppnA/MxxlkJ7eO3Fkq015yD2UhM272pd2ZJhc5Z41moCBvG2C+M+iFzxvl0bYcc57xNI60N8NW1rCxsaHbbrttUyZZP24K5v+UQ9/YksC87HOZAVnyuCaf0zFRmjrO8U5irTH/fnyPa5nuFPnI5CPS9J1E22gLa4Q5rx39pP2MX651RzqeUQ9rm/p2YpJmXWXaZDejM8aUz7spj6d5qFXqzmNiy4LGtBsaGhoaGlYES8e0pVGby9B2jjl2nMeqpFFzQruCTWaAlHTkkqZOFWiIqZl6OEG+gx1none0Ow95ibZIPWiG1EN/6Z+zF5gH16gv04k6MigNz6KFJ5ty5xUYDRoozCSPi/mRIDRc+pEhMNGInRHlsbTtghxsbGxMjm05M8j20f484sHRMGkcJ/qP4w5zCatgzmvhXucSrNBGZ4iMB0yXNmbaQY40SaOcZYpZ1gTtoD63WGQwIuQ9nQvdmSiPOeZc5tEvjr5JYwIS5Jw1kJYlX78ZACYD3FA/x6SkcV5oaybRSRAGV5rOlz+fgWUyhaq/B1hLtAE2l8dSF1mQMt0qz1Kfs0Dan+FkM2xzzTkTtpzHqPJIowdoynShjBFtrB2/TWfIPFKZjmPuUJzvsbRk5DvZ68tQyLyzkBNfg3OOtcuCxrQbGhoaGhpWBEvFtDc2NnTHHXdMjvo4W0rtNENcolHVgoHkPl0yr9SwpFFTQ6sjrB/1ZdADbxvXMt1ljZWhJaMB5h46WmZaCaSRpdMPtMncP6wFKsjEBxlIH43egw9QXx71gDXRL0+8knvk3JOMwect96hqwWhAKUUnnHDCJqugbbUjZHlcL1P9eQAJxpn0isxtpiMEPk48myyCe2rBYjL0Le2vBdMAj3nMYyRpkmgnA+Rk8Btperwpj8LQT6830+EiV8x3Hm109sn6oW3IEgyP/vuxS9ZNhpsFefRHmgZ2WRQgo5Siffv2TfacXXZYJ9yDPOfRQreAcY1xoe95vDEtMI58F6YvhYdnZX0gv5muONm6JF111VWSpnOVYUxpm7NdvktGn8GLfA89E9FQD/KAhWVRil1kBhnN93kt5TFtSCtKLVRp+k3V2rCXaEy7oaGhoaFhRbBUTBsP4NyTdY039+vQnNCK2Otzz08YJ1oi98CiM+yeh3mk/Lmwlblv6G2kDbBW6qcM33thbwnNGc9FtFU0bDRCZ52ZjD6Zfo2hJmPMfS+0zQy16G3hb3ov00/XUDMsYiabyMQbfg/l17xRwcbGhg4ePLip/TPnrkGjobPnl9o91g6vJ1NwwuCYJ2QpPeqlqaae4UZrwSBoP+NEyM7c+/dxuvrqq7c8y74xSEuS79XS10yqkx7PziBpP/1jrJFnGB31uIcz6yj3P2F8aTGTRllNRp179HhyS1Mv++32JdfW1jb7xRi4HCD/nDTgGkw094YdyBXjxNzybG2/PVPxpvc2gVRqaV2ZK9YjjLS2L01/mDPGkDbB0hkTtw6ltYH54HvK8D37OSsn1gjGJoNLOXI/nNMevG99PGkL1qZMnpLWKGmavGiRhW8vsFytaWhoaGhoaJjFUjFtkEHxXbvLNHyZ7CGD8fv/0RozZVympXSvbu5J7/RM8+jMgHOxuTeWZzl9ry/36dKjlPJrY8IYZKIQPiczrj0DG2Lvln6infv+dO6V4cVLv3Lfz+vJ1KqMI/3xcci53S4UpTRq5hkuUxqZTVpLMjyih9BEduhb7hvmWWWfU76DveReH2V7nzP5AWOIhzhhbt3bNVM9wuAz5GUtjCnl0xYsB8h9LV1tWmcYmwsuuGBLffTf96czJSdsELaUFhivJ9ct96S/hzTdY1508qDrOh06dGiSwMXljfnItLuZmrcWHyJPP2Q6yEWnPOgTckHf09Pd/59tzDP4/m5BrvKUSJ7tpl63etJ+/lJ+pgD1ccx3LvKAZTFlx/f00xeFtuXZefeo57v0H0nLgZ90yXdVS83Z0NDQ0NDQsCssJdMGmWpOGrWoueDxsEw/swmzSAaYEdJqEdHQitMbNZ9xbQxNFm2Sa2h1mdhemp6XRQOmLZkIxVlspq7MfWO0SvcmT8sE5RGBC1ZK/V5fpg1lTziTHHz4wx/efCZZH9oyDCtT6HnbdhO4P/0HpHEuGWvqZEyZ02uvvXbzmUwzmvEBmBfk0hkw97LfSZv4yxw4m2DcU8vPuXSrCW1gfGDjOR+16GbJyjICHvPlyThoE22kLZxvTx8Bry+tP4wXYwSj9H15+pcR5T7wgQ9saaOz3EyHux0OHz48sZ75eycjh6XVAuucs33Gh3bTN2SKsaBMZ4PMFf4K6RnN+889s1m7+W6k3GSq/v+MgDZ3Rrk2nvSTfqQXvstqlpdR+tKa5r4UIK1/jEF6yUvj2mYOMnlLWiW9/bSleY83NDQ0NDQ07ArtR7uhoaGhoWFFsFTm8a7rNvMiS9PEHtLUcSmdEjCRuFOHO6VRjzQ146RZWRpNO5gY02RbC7GKUwOmMj6nicvbiGkJEzbObJiH6Fft+AFtyfCRGQDEneVyayBz41IfbXaHrqw3zb04HnnSB8YAEx7lYp6qBcHAvFtzaNkOlOvHjRi7udzEbEm4o07mFc+ANZmAwE2cuWWTx/WQHT+CgyMYJr40NaeJ39vLHGGmzrZlDnBvL/cy5hme00E9tDu3EPLIYwYKkqZbA6xBjiB5nmhM5/QL0zH9ZuvKzcI1U+l2yCNkPi8ZtAczK/ewjeTrBDlj6yQdRUEtcEmCsXQn2QQOjxkmmf7UnOUy53cmm8ljXG4ez+BBtfea37eoX0eCbFsmSHnYwx62eS/yzBzwN0Px+ppgi6qWnGkZ0Jh2Q0NDQ0PDimDpmPbBgwcngRGcvaARZcD+TJ/mbJlraHUZLD6PbXl96byRR6XQYl2bzKMptDHDctaOiVFOBuxPZyzXDHGq4Jlk3lx3p448qoLGmQwcbd0ZJu1OByBYRwaGkKZMjnFjbjJspiOPVe0EyZClqTWB9iZL9nCS6XhEO1OGmJeaRSI19Uz+UUO2MVmtyzfH9JijPLaVDmPeHqwLMHfqzVSxHswFJpXJHug7ckY7PPBQOmdhCckQsz5vzA9WGmSIv3nkTdpqndsOWPdoWy1EKONBu5GRPJboa4w1SjnIOp8zmcVu259AVjJEZ03e6EcGlplrR80BtsbgjyfoF+87+oeMeh/4DhaeVg9YdW3s0zFxWbBcrWloaGhoaGiYxVIxbWlk29KoJTnLgz2iXaVmmC7+0qgpZfrLDKqC5uZ7salB58F7nvX9L1gLGjsBC/jMHozvT3Et971hGeyZ1awPfkxKGseGccvUk9I0xGYGPakl3ACUm4ESMkWn9w8m5YxNGrV/xtxZIJp7BtfYCZgvZ0uezlIate4M5uN95rs8gpfBJ2g/YUcd6SuRmrwf+UIOGCeYAJYJGIMfS8xALzyTcpYhSqVxfOb2PelXLaxoLeGJtyPXqjRl0pnkhnVE6F9p9IdISxJWB8bEmWQm2liEw4cP68CBA5vyUEthyngwPrQpk2K4vPEuyv313BdnnHxtJIvcCfI4ZTJ7LBL+rspkPJkak3mv+ftkGOjjjbSIZrpf3rOe3hc5Sr+YtFy5fDMmeRx2WdCYdkNDQ0NDw4pgqZh213Xa2NiYpGtzbTPZXIbDQ/uCbUij5pR7opQB00LL9EASMJ8MQZqM1Nkunq/J4OgH3tXuVevewNJ0r5GxSG9babqHlYEfGBPfb2OvMhkW4zkXetHbBIPLpCa57+ftTaaagWg8AUKmIdyNp6n7OmRqQsaJsYWRuKUlA6/kPh7PULazJZ5B84f5Zn3uD4GndIbp5S9Bg3w+kBX6RXAV2GCmPfUxyb35TFNKv9wLH0aTYXozvGmuTW+3h8X1eplzlwNkJEPJ0m/a4fK2yBO7ho2NjUmgGWek6bsy5xnvwXUoB+tLBpahvcyB18e6I/jQ3BpwFpjJOHg38T3vNR8nl3VptFrkqZKahzv/z3Sb6TtSY+JzIUIzIJVf5xnK5xrvI+rx5B98lymN0xLjYUwz+FXb025oaGhoaGjYFZaKaUtb90wyzKQ0aqPJDDO8o+9RoHmhdfFs7sllekC/Fw2aZ9Du+QuLkkZtle+SNcHwnNGnNkcbsBjwTM0TFEZP/2DAlE//fa8Wts81NHiYHtfpg4d0pNxkrLn346wAjR72QZt5tuZ1PZco4kjgWj59oW7Gg7+p5UtjKFYYT56tpo8ky/DkGIxHpixFRrE6+B4cso4MZVIT+uNMNdM3cp6ZEwnJfFy+aRPzA2vK/UGfy7SWwFqoF6bPZwcsJlMj5qkBD30J62YsYP/JpndjiZH68bvrrrs25asWZph1mGknaX96l0ujvDF3vM9g1sgS7xZnvYwxssq6pAzkwN87hN/Fd4N7YZnMu6+JjFWBzOS7I62S3l7ki/5QL7LkrDZ9Q5hD1hdWCdrhFtP0v8mYCVz3/tHGWjhUaeoTJU3Dl875buwVGtNuaGhoaGhYESwV097Y2NDBgwc3GU96V0rTvVa0u9x7JbKSNLIW7s2z3WiV1OP7aWjF6fnp+0/SmLzAnyFCUUZGy71faXoWOfeJ0R6p3/fS8pxx7m2hyTt74V6YFEwBpgg7ZCxqc0D5aMs8U2PN1JPMPvenXHvOdIRHG7ifcZpLD8i+LRYXSTrvvPO2tC/3sNHkkS0YgzT2mflPzT0TfEijlQQGxXzAPJgHn0vazdjlfjusnGd9PxxmD9PK8+iwNreiMI5co9zP/uzPljRaJ2CHzuzzjDLjd+WVV0oaWZnLG+OTnvmMI/fOsamdYH19fXN+al7v6Z/C+PMZRshZckm64oorJnVIU6tZpuiUxvcXbWIsk2G7P8T5558vaXzPEBkMi0ctIl76H1BesnXG2uWbe2lbnkfPM/mSdO65527pB/XgB0T5rC8fE+YAWeUexpx63OKCLLIGMypiesd7ORn9clnQmHZDQ0NDQ8OKYKmYNme00zPc9x0yihCaIuwv0y5KI5vI2L/JtNACfY8Rj1W0LTTCZIiuvcIIYJ6k16NtaOW11H+w1owBnHG+3Us192gzzWJGc/P/oyXDnhhHLAnJ0rxctFO0fhgclgZnKmj9mR41tVmvh//n/udukXWm5g5DcbbPHhzMCmbInlyeIfbzxcw/9T7ykY/c0g/G0f0TLrzwQknj/iRMP30MnIEwV7Q7P6e/x8Mf/vDJs7Am9nNZM3zO+P0+NmlhQS4YE2cxGZUt03li2XEGST3p43Cszs+WUrasjRw/aVyH1JnnfGtpMVnvyRrzRAqs2q139J/3XcYVz4iM0vheQQapFxniXeZWOvqdJw2oP0/HYLX0/uWazvgQbmmhPvqccQfoT54YkMb3APVRP2ODDPkJjvT6Zy0s8kXI90QtSuNeojHthoaGhoaGFUH70W5oaGhoaFgRLJV5XOpNIJgnMEu4qRvzJGaNDHaRaeKkaerATLOZQTfcyQczIabfNDVmQgcvH5MzbcbMl05m0jR9ZiYtyDCffkSMurmWRxQyvKE/TxszQEYG2/D6GHvaz5gzzoxV7egcz/A5kyq4WTTTrh5tirxMHZnBZzKEozSazTLBCu3OlIxuRs6Ur9STyWD8+FbKDA5h6RDnayJN3Mg+/aGMdNqUxvnAmY0y8iiQm1TpI05EmZgiQ9W6GTvDvzIm9IFn3RmUdrP2dpNAZju4CTTXgiMT6zDvta0VwDwwZ4xTps70LTbGhfIynHEmTpJGZ0W+Y37Yaqk5XWUCmjQfZ1hof2dlsp90jqM9vq3FM4wf5edRWvrt40k5rI10CqzJar5D0gGt5myW11pwlYaGhoaGhoZdYamYNiny/LO0VVPL9I9oQXmcwrXWdMhK7R6Hhky44OUDNF20y0weL40aXzqtoBHitOJsCWbBkajUdDPwh49THgPKpPO1dI7cA8NKDTdTgjo7yyMqmWYTVuDzRtvQ8jMRC+3xNuYRnKM98pVWGcpLJxVny4x/avN5jI8yPSlJOrwhV7DJPM4njWwFOeYIDG3lCIuHFcURjGu0hXmg3zUHLsqhz7CYPNro849lAKfMDCLCvbWkHRlyl3WE9SOPr/kzu0misVNsbGxsynoeyZPGsasl0JGmYW6lcV4zgAzjz7skU/ZKU8tTvrMYAw/IwlrCSocTF/UhS+7EmuGS6SefqSeTc0jTtLW0Oa1TPpfIJCw8nWS5t3ZsNBOg0KZM6+rjmIFYaGs6+NbYNM82R7SGhoaGhoaGXWGpmTb/d40XRpDaK9px7mFIo0aY2iraF5ouTMUDs3DUJjXRDOTv9aH9cpwB9pz7Kf4M7IX2oxGigSaj9zHh2dzTznSfrjFSDuPJnmnuNaHdulWAcqiXI3Joq5mKtFZOBnPIv9KUCdeOHR0JMgRl7l3x2WUwj4xkwhb+clwQGZKmgSIYUxgqcudykOUxtrAy5NBTc7IWYKn0g+8zdKgzYOpDZrAGYDHAGuAMK/1GCEaTaT1hmr7HzdjTL46fMb7XXHPN5JkM5Xu0R/9qWF9fnzArn5e0YnEtrTY+ThmAiXIzCQzWGrfSUF4m7mDe07fCy4NJcy/sFrnz5Bjpm5OBc5Bd6vc1jcywfngfePAeaeuapj9YAXhXUH/6KrlvA22ApXOUlnZg8fH+ZRjgTIub4bD9u0W+DXuJxrQbGhoaGhpWBEvFtOfgDCtTVCZLWrQXwjNoi6mZEWjE905hpGhisGi0f67XQpKiEWZ6RzRD15JpYzLQDCiAZuwekpnGLoMcZKhNryeTSGTwi6zf70U7Jswkc5ParNed7DlDlDqLYi5re81Hg/Q6Ti9U976HeaQPAPOPzMCw3buWZzKRQiZ/cMCWsPDMWUucGeS8037Yau7ReiCRZBMwLJ6BNfk+YfaPeaJ+2E0tHCj9wWJw2WWXSRplqnZSIH00jjUIrsIYLKpvzm+EuXR2zRgmK8+TAQRDqbE9ZJ9rsMtMKCKN88DYMs/MMXPo6yj3dhkD3onp0wLz9rHgXYSXOt9Tr1sf0q+I/jGeaY10UC7jRsCmTObi/fP16PeAmn9ErrHmPd7Q0NDQ0NCwK6wE03b2nNo9mmaeqXM2xTPpCYlWh5afoUKlaag+tFdnutLWvRfuydSFaNjJUL1tGaw+k7fnPrw01f4zkQL9cw002T5jAdOaSzQvTdOR8pl+UV8tNCTIferaOW3alGzgWCF9Jvjs2nmGukXLZ04zVKOHlcxENOm3wFyzrydNmTXAyxcZ8r1zkAlxYEXISo3FMO65v54nAWqe4CkbhJNM2WLMpHF82F/FGpDluxWiFmfgWGNtbW3CqGr+NbSF8cn9dV9jmcAifU0yPaVbwhintOTxl/FBLqRpyGHqzaRHtbCiIMMZ50kAl2/eo2lhQaZqcQ8yuQt9TwsP7wuXC8aa/sCwM6Ssy3eejc95TL8WaZyHHJtlQWPaDQ0NDQ0NK4KVYNqu8c4FfEdDS89Macp4c88i93X9WTRP9njQ8vLMr7NmtLu5vT40VMr2e/K8J/VlZDJng4xPJpLPaEN+pjOtAZmkJb2Gfe8sPS9T464xo7QGUO8ipp33HK+9zYyw5Wwpo1llxLBMCetthElxGgEZSr8L9gKlUUbzXD711xKTpD8H92SkP+BtZF7ZQ3/Uox4laZRN5tJlFaRnc3rfZ6Q27wf9gy0xzpTlrPN4p0ZcX1/X/v37J/EcfC8200zSvmRl3u48F8/cJgPPWBPSOGZY8LBmMF/c66kyeUekRzTrPk/J+L30Ly0fefaate6gbSR/Sb8PH8dM0JG+LBk5sZbIg3Gj3rnkQ14OazrXQm3fOn8flo1xN6bd0NDQ0NCwImg/2g0NDQ0NDSuClTCPO/IQfjq9pGONNHU6mEsugvnSzTmYBTFxpokW842bjzGzE0CCa5icMpSfNJrBMC153lppNHHVcgjTV+ojUArmsjy+423CASQd7dLUWcsTzFxgBjvnnHO21OPjmKbuPPq1yDye5sTjhZrpr5bTXZqGnsQJyB3uGNsrr7xS0jRgTh7v8/I4Fsa4UC7fX3755ZvPYCpHZtiqoVwPNiFtNRFyz/nnny9J+sd//EdJo5MhY0690jgv1Ic8p7Mh8HHlGcaPEKzUy1qsmeOPNzK4SibekebDJmdAEQdrDacrzLiZWMidvCjPt0GkUT5ym1Aax4570ukKp0neD143azodHnmHIN+1MK44IF5wwQVbnkFOPCd2bgOm2T+3jtwhETlKuWaLgHeoO6/lscOdmLpz6+tY5W0/VmhMu6GhoaGhYUWwckwbLQttMjXedKiQpowmnQ8yBKE7ecFAcNTJAPQ861p5hlhNhx3YtLMJns/jWtnm/CyN2ihaK+VmMhB/BiepDLiR2n8tQEJqw37N66kdu8vjVfzNQCq1e4+3xssY1AJIpHNdMu9MpSpJF198saStYXH92VpAIOafemGmsAecfTyMaVopasF7pJE9OdPmXtgQrKUWWhNwXIs2MSawNFg54+hHvjLZDNcymMheIBm2j1NaoDJgTR4NlMa++BFSB9+z1v0dwlwxD5m4hntrFkXGnXcXbcQS5u8d3mNzaXDTqczXYAbxQVZpK+8ddybDgkMb08ENGeIYpCfGSae1TIOasuX/T0siqCUFYS5rx8GWAY1pNzQ0NDQ0rAhWjmkD9s9gE2j9aH+usSfTzTRwyZb92VowE6+XZ33fEC2RNqFVLtrLzL0xtDw0brTWWpCLDA0JW+YZWJlrvJST45eMK4+eeJsAbWVPnXbUGEbuU/OXufG987zneGu8Na07g9qkhQDQ/ppFImU12YWzCfYH2QfPsaYMl0fkNY/A5H4l8+EWF1gxLImyYNhYmJzVcE8mBsFHgwQijKPvh1MPcpApSKnPGdHx9mUgUVFa3hww3LmkIjUmR98Y93wWueAzfZemc5n+Kfx1KwZMGj8BLCIZTMrHc26PPt8hWBBcDngn8AxyzPfMqfs6pFWQZzmmStuZA+8f7zGYPXLIe4d+uuVq7ohXfvbvGYsMQ7ssaEy7oaGhoaFhRbCyTBvtJwP1s2dSC++HVpeJFVLD9r3ADPZ/v/vdT9LIntEm/ZkMm0r97AuhCVKWNE2GgdZMGWiZtSABGUCAfsGe0ZJ9z4x7eRbWxFjAiDLdojSyMDR2WF8GUHHGksEp+JvMuxYG8u7SdGGmzgzT8sGY1pJ9SPWENTmmyAMpFL2+DDKCzCDXMBT3yM2kH7AWGEN6BDsbTLYEe4HZwbR8HxRGw/zQHz7DluiD+5eQ8AK55p6Uv71EzY9jPWhy+gAAIABJREFULq0r3zMvzgwpJ98vyf4y6VGWI01PK/De8fXCPGca17SMOFvOhBq8kzLpEXLoa5p5Zb1TL2uDtnl9XEO+6CdjwJqgXR4ClXVCfWn9XJSAp5Zoxz/XgqvULG/LgL1fIQ0NDQ0NDQ07wsoybTC3J+raPSwBLRLGmecYMw2dA20RzS81N997TK9g7oGlsfeDVimNHsZ5zvyKK67YUj7apjMttFLqgSHkvrVr5fQHrTX3g7gX5ueaKHXns8ksHHNnrjO5QS1Jw92t8foZ+bSS7AbIjJ/Dlcbxcm91kGF5GTfK8rO2nNlOtvxZn/VZkkb5R9485G6GvARYrvJcrTQyGuqj/DxFwB6tMyDYGH3HFwQ52Iv9Q1JzMta19Z/jlClsgXvbIzMZPjnPDteYdiLPwLMG/T1HObBXnsnELh7GFA/zfAfiU8F7gnenv3cy1C5MP9e6+6mkhQW5Sn8P2urji6wg33N+RjVL6XZpNmvfL5vXOGhMu6GhoaGhYUWw8kw7GRramO/f5lng9OLOc3m1vdhMDJBannt1c08mBsmzlr6nnQk8MmVdsmZPlZlnqukvjB7N1DVH7oHlUR7tgB2xD+b7oOnByhilh6uz5mTUybgXMaxk3McLtVSCNU/iI0UmQ8hxchaFLMJOaFNGjnOfDdgQLJZ5Z+4yuY4zXyw31IdcU34mMJFG+aWePD/LM8iUMy3kOuMRbOcrcDxRStGJJ564uX6Yp/Qz4V5Jk3vT+iCN45Rn/ZlL5v1I4hBkGb7GYNhY5ZLVMh++j42HeUZ0o1z6idXET4TwjLN9aZpsxN87vKsoh3ci45ZRFv3ceyZcQSYpK89t+z1zjHsnVo5l8LNwLFdrGhoaGhoaGmbRfrQbGhoaGhpWBCtvHgeYczCR1EyOmO/S3JH5bh1pHs0D92k2l6a5r/M4CGV4IgXMQ5jDMSPlkQza4/VxHCgd3zAbpcOYf0cgmAwOkvW4s1Q6q20XgtUxZx6vYe5ozPEC43W8AnvkeNTMr5jD6Svjjhkb+fYAQLSRvNw4z7FVhIymc5s0msFzuweZZU24WZR5waEJmUHuM9SwyzCmVNrEvXOhPu8uuCMa/fP5yi20DKbCvLmJe24LjfliXGrbV3NIeaw5SDIPbJfwmb8ezIfnM9kIbeVIYB45k8YxyBCnzC3v4Np6SrnCDJ7OgDXzf76TWRO1ZCYZljXfKTvZcmvm8YaGhoaGhoZd4Z8d004nBb+WjgypZdUYdzoywI5SK3dkEAu0SQIi0B53eEqntURqz7X0c5mIBM0T9u7MAdaVKesYG8pHu3W2hAZNm9OJrsYg80gPfzOAirON1Lb3IshB1gmrrAVRORbI+YfhZKpWt5pketA8egVrhhG53DGvhIJEhjKtojt24nTFnOX80AcYkLMz2p3pQvcSpRTt27dvoSMYMs6aynVTSy6RoU8zgEyy9mNlSaIc5hsZoq0+9ly75pprFpaZwV68nnQiXJT+Mh33kB3GhvZkYiavj3dgvksy4I00fdfXkor4da+ndm0Z0Jh2Q0NDQ0PDiuCfDdOGRcIynFXm0Yc5ba+2BwvQJpMh1gJ/JNtnv4h2wFpci0xWnEdKMkWi7/VQXtabbNq1S+5hTGBAWAUYG9rhbIm6Ydx5xGPRsZ08opd/a1r63RV4I+enVufdHXAhg2qAGtOfCwCT39f2GPMoUSZpcXlL1pK+APxlr9atNJmuNvuXlq27A6UUnXDCCZMx9T3SuUA/eQTMy8gALBlulu8ztK90bPvPGNfG1tf1ItTknvJyvee+e80vJEMgs+YYP96NtXcJ8pbBimoW1No+t2MRi97JcbC9QGPaDQ0NDQ0NK4KyTKHaSimflPTBvW5Hw9LjnK7r7utfNNlp2CGa7DTsFhPZ2Qss1Y92Q0NDQ0NDwzyaebyhoaGhoWFF0H60GxoaGhoaVgTtR7uhoaGhoWFF0H60GxoaGhoaVgRLdU77lFNO6c4888xJpJta7Nc8J5n3+Oe5s5V5vfZ5zlFvLn75onsWRT7ark08s8hxMK/lOcPas1lu3ruT+vIcZu28ZC3i2W7xsY997Pr04jzttNO6BzzgAZPUe4uS28/9rc3ldue1d9Kv3czh0ZS/k/Ol25W7k/PCO5Gz7Z7ZCXYjo4Bnrrvuuons7N+/vzvttNMWlpPvmbm0vt6fufWfn2tjsV3c/Z2kktzJM9vN2W5idS/q15GUs125czHBa33J90+u9Z1ERLvssssmsrMXWKof7dNPP13f+73fW80VCzJHLX85pM9nP1SfwUY4lJ/hODNEof+foC2ZF5qyPe9rBqjItmfSEWk+pCrlZ5KBWnCNueAwtcVDubSRfvGZsjKxgzRNBJDJPwiq4UE9dpIgZKd44QtfODme88AHPlCve93rNuc2ExBIY/8z5C39yZzV0jh2BHnIuWXcamM8p9RkQBOXk3yZZKjQ7Iu3N0NrzslQLbgKz9K/zC3v9ddedP79IiVoLoFDvoi9jXM5kTPRRi04CeuFaz/6oz86kZ3TTjtN3/Vd37VQNlmzlId8EQQk3z/SNPnL3HjxvQf1SVBuJkZyZBjPnId8/0jT0KOZMGhRvZlUKANc1ZSqDEaTQaQStWBL2/1o1whbvt88lK9/7/fyu8D74fGPf/xSHAts5vGGhoaGhoYVwVIx7Y2NDd16660TjdG1uzk2iXaH5ugJFdDm0Bopl3vSnFQzr8BmUgNNrd+vgdQMa+k1MyUdn9Fw6QNaYM2UllprphisjWNqxbQtNXnXRDOFaaYYZA5yHLw/xxqlFJ100kmb/ckED9zj3+3ERJuWlRzb/Ov9y74ma1gUGjLvYSyZN2cm9CflmO/nEuR4m+hnrpGatSDlOENFppWgxqLSgpOy62NV+06ahrr08eQa7V7EYufaWENa8ig3maPXnUlFkNGUJW9/PpshUUEtZGeOO22svTvz3cjcpmWRstwKRbmse94LKYf+7si2ZL8yFLMnH0qrJvWmdcDnIOULYAUhUYnLN78L+Y5cFjSm3dDQ0NDQsCJYKqbddd3mP2kaRJ57pK3MVhq1sEw8XwP3ouWhzdUcOJLhUn7uI7o2htbGd/QjE77XHLVSe83rNfZKWzJxCKDNziYysQoaPWnvsn5va6bgTFbGmHlA/7lkFscKJH3Ifbsa0859aLBoDzb3sDOBRC0dKZhj6bX94mTatVSzXkbtXsCc8mwyb7+W1q1FLDnbgPzVys+2Mk7J+jIJSW1M5qxQ2YdaGxbB3zlzSAtEWm0yWYo0n/42rSeMictqMt0564nPT9bDvCxyzsxkSiCZaVrkvJ70mQBzvg/SaAnhPcPnlHcfT9oIO54bz3x3eVsSNZnN99vxsg7uFo1pNzQ0NDQ0rAjaj3ZDQ0NDQ8OKYKnM46DmhJDAFIJZZe4Mtn+HuYq/OLCkqdjNunNHUTBxY6pxcxJtmjOl1s6WpwmV8ikjj7e4o1iaFtPcv8i8M+fkk8eR3Cw/5+iWx0MYG79WO6p2LFBK0fr6+ma7mePaEayUkTwC5qbbzMGexxEzL/kic3LKQa09OT55nKaWEzkdKOl7zn/NZJyObZlHm+99LeYxNJ6h7SnLi0Dfke9suzR/PCj7XTveB442PgB1ptPfou0E2pBOcen8VTvClM9m+3nW+5xbDvkOqR0xzDnCmSxlNI+cen1zjp1p/q/Vl++QrM/fXTnP/OU9XhurfL/lPNXeb7kVteh3aC/QmHZDQ0NDQ8OKYCmZ9k409LwntS13DMtgJqkJLgoGwLW5wBz3uc99tnzv9WTAgjz64eAa7cdpDa2P72vaZGrUaRWosYxkimjLGTilxsTpO21MJ5k8NlJr206P2OwUOKLNsRj/fwZaSDbpjAUGyLjAJuesKDU2W3Ma8mdck8/jQMkys74a8ohXHqdxWc32zjkZunPPsXTMSdmssZqadUmaWtC8L2mZqAXpOBLkWsp3SAZw8nvS2TMD2cBua8f4cn7S8c0tMzicZoCcXAtuFczxn7MK1hzW5pxj86iU9yGtgukAmfX6vCEb6eAHavKd79U5i2XNEe1oZeZ4oTHthoaGhoaGFcFSMu2dIJkOWiYak2u8aHzJWnMPMEOj+r0333yzpJHVUi+ap4cxpVzYWWrSNQac+3XUm9osf7Es+HepVTJGtKMW+IG+ZzjLneyDZ2CZZBbU623bTczhnaLrusnxIN+fSvZIH2lv+g9I4zjnWPIs12tafrLG2j6dVNfomZecU+BWjLm42Mnsa0dh6Hv+XaZjLnPHxFKmXL7TujEX8nIRaj4nye7nAhv5/3NPO/d6mZeaNStZcvoLuBxQTvpZZCAbfzemxS2tMpSfR7P8WX8XeX2LkBaEPOrFO9Pfkcmwc27z6Je3JS1hyex9HHeS+2IvsVytaWhoaGhoaJjFyjJttK7UVtNDXJpqZmiIGXYPbcs1Nco/9dRTt9SDBlfbt4H15z3JYpzNZHjE3HcltB6f733ve28+m+1Hw7711lu3fF9jTxmognYkI3bWDNJXIMOXMmbSaKk4nlhfX59o3TVfgzmmzXj5XOZeNvekNeFomGnt2bkkIxnkQ5p6XCfTSSbkn9PjexnBXOJDkSdGaqdN5vZOd1OvNLXGJdNGZjzE71zQJvqRJx1qXs/JntMC57Kafg+J2t5/tj/3zEmswTsN+a/1j3dUJiGpMdX02ci9c+rxeUs/m9yPZuxrHvUZ1jiDWfn7LdfRsfa/OVo0pt3Q0NDQ0LAiWFmmnQkOOFtd867OfagMfp8alXtI5rVkZzWP85tuuknSdP8boD17UpP0YM6EBHMB9qVRM0Q75VmYbu1sdHpt1hIeeFsdc5aDZA41NsiY0NZjxfBKKVpbW5vsxTn7oi/UDSPg+zxvLNWTHkhTbfx4M9Xcz3VGl/4ItXCs0pGFd1xG5FzUvKFBrpvdnLWtnTwAuReca9C/S0aa6UJrCV2Snc7t2/qcJmsFuY9bS8aSp2IyFDP9qu2H85d7FiVCqZ2p98/UV+tLyjl9z/o87WYm+0i/m1rMjLm0xcuCxrQbGhoaGhpWBCvLtNMD+8Ybb/z/2zvXHjmy4uln+7ICCdmwsCyLQA/f/1uteIV28YKFwBh7+v9in3DH/CrydM/FnmopQ7LG012XU6dO1WTkJbKqqn7zm99U1W1mQouctbxUKlrFYNjiL7V+o+Ia66j1vVuEXeMGZoKnelBa8LRAU2yGDU9oYTNj19knmQJrewVnp8yYZdb6Y4OtVKtO9+NcrbXnNJClsEWmGC+P6cd9jIzsVUtGrsmOpXFd+nEeqhh2VzzkvHxe6enx4z4k89fnlbkeXUtOfw906n96Pvkc+b5k8J1OhIPrq2PyqekQj09Wyxi3b0OPAt8DKc7f5SXwWfRrYqY3K4WSx4L1+gJzh1LWf3rX7gHDtAeDwWAwuBLMH+3BYDAYDK4EV+seZwIFRUfc7UY3Csuc5G5RKYa7c3Q8iriwpMT30bn1WdfnOpUz6Pgai87PntjuppKriaIacv0oQcSTViimQVcxXexJGpCuJbkD2QTC90/35zFwPB7r5uZmKUlKNzWT/hTG8H3oiuN8rJJWuI/KSvS77ktyo7JUhZK77uJkOQtDLBqH1pAn5+h+MImIcp0Ud/ExaB8dP/VtFuiy5Xl4b/z4nOtVwlPX2/kucLeo5tafcz8ur8v36da67nsKFVHOU8+S1ijfS+k4TEzU/KXwSDf/uh6WW1Vt3x18//A94cejm78rPfM1xPK97vckqMSy11Wv7MeWwH1sDNMeDAaDweBKcLVMm4089JMJVlVbST6KGThr9WNUnSyyLhFI7OLvf//7p+8o3C+GpbK0JIYvq04Mmx4Eyo76GH/88ceqOpWQiRXpunT9znzVNlPH0fjJgJg44t+xtISlXr4PRSJS+dFDcDgc6nA4LJkBQXnbSyQNCd4fZzEd09Y9pkBQVZbF9evRPj63ZNhM9mPSpl8LhSl4/3UeZ/Zk+/QoCamtJ5kOPRdJNITPNhn2qpXvJe1pO6TSKK6DTpTE0cnXrprnpLVRdXqmU5IUWw3zvqeEPa4dlsHyGlLCFkFPi99Lsm+9KwV6idJ9Izun4JUzba1ftqDls+7iKky++9JJmucwTHswGAwGgyvB1TJtit+z+N+tSZY4UESD8clL2h6SVSSrvCtLY9lIOj5lS8menNFp3PQYsHWmS4nKOtVnZH9dOYWfj/PEkjPfh1Z5kkV8CI7HY338+LFtdl+1jf0KLP9IpUO0/Lu4Wmp7yO/ETOkl8v/TY8B9UwtIjU1rR9fD7/36OkbH8yRmr21SvNvPm4SA6BVIwh8cY+cVYAmYf9aVXV0Cz21gLLvzfPn4GVsmEyQD9nXAODHvXWqVyRbDwiWNLzSXX3/99a3j8jx+fbyHfHcxZ8Svg2WobJDC6/fzCWTyiZXreGLS8mBx7Om60vO5BwzTHgwGg8HgSnC1TJsZy2y44RYarUVaULK+Ums3WnGyrMUUKadadZIPJYOn4IezGzFnxb0pVMBGBc5uxJY1fsWr9buO7ayTwhRdbC5lAvN6NBb9LlYi9u7nZkzpsUEWlqz8c9mgaR+BrIKtO1fNOFLrT46na+dJeccUd9caIUtaZczyfIzzJ68KPQcUnCE7TB4XZuaS+aQcCmZHkyX5+iZjuwT0DPgzzaYsjP1rzlM7T10Ln0O+U3zf9FnVtsLF1yrXIqtKNEZfO2yIREEmSob62qX3jM9ees9pf46/8wKspGTpSdL3HieXJ0/fUQ44nZ/reW8Ypj0YDAaDwZXgapk2QUac4htsEMF4Bxmjb0NmzwzNFMtkPTjjyJ4hzFphthglw3IWKzDOqvMlKb83b97cui7GmMhGU9aorlMNUgSyNf9/yn5/LByPx00jF2d5zOYWVrXInA/9lAXPWnjPQtV643k5xpQPwYYxZLUpc5f5AWR2KTOY8VVeb5KTpGaA1hkrLVKzDh6fFR1seclz+3VwPh33qctmDkLKsu+kbzWnvt7YSIPXxpyW1TXT88XKFB8DtSTYitjvh9Y8WxszpyJVe+g73Q9mr5Olp+Mxe50eOF+r3FbPAr0fbEVbdYqz876ld8Jj1Ph/TgzTHgwGg8HgSrArpq32inexbMiAZEG5BZpYadVWXYhx5aqTlcXveF63zhhjZnwt1XTSUpcFrJ/K6lSGeIrLkg2w5tstbDZAeP36dVWdLGDGq1fxHVnWGlti9qxdTw0PHgpvzcnM3aremmcMNu3DWve//e1vVXXyMmi9+RyzVSrjhKnenV4KsolUd8zGJAKZsJBizFReI7PzOdF1aRsyHF2DzuvMR0yO7V21zphZ7yCrZUzbn4nHjkfSe8B4tK4xKdUJ9FCtavy5DhjPTWunU1FjG1m//111hD7nvfZ55T1iDJ1qZL4/PVadaqTP5yVs3Mfu/6eypMam9557PfTe/Nz5N/fFMO3BYDAYDK4Eu2PaX3311b3UsmQhslbZIYvvt7/9bVVt28PJynOmTQtX7PzPf/5zVZ0sRY/r0nolw07qQlSeYvyGrDldOy1pxhgTs//jH/9YVSfr+Pvvv6+qrWdBGelVW0b93XffVdXJWmW83Mf/uVSGjsdjffjwYePFSIx+pUTFfei1kPoctdvprak6eStkzWtsZC+pravG6CylaluRwHNWbeuCeWxnL/TCpLVSdZutd/OnedP3eiZSPgS9M5oTtdb1sXesnx4s93I8RC+aeQRV21wZzkHK9tZ4WEXAfJikW85sasaHV1UEPD69NL6PxqT3mo7Llrx6P/mc8P7zPCulN9Zlk81Sl8LHyv4LzP/wfeiFSa2U/XxVvdrmXjBMezAYDAaDK8H80R4MBoPB4EqwK/e4pCgvKW6n64duY3dpaBu5xeXOZamKfvfmH4LcOb/73e+q6uQ2ZqJa1bYsjMkdFJLw71guQeEA7eOJdnSzsWFHcknLhfTNN9/cOs9f//rXqjrNvRKuUmtOCpgwiSi5wO/TuOESKImRggupBEegKEcq9dE8yy2u+8zyMK0xucL9MyZJ0sV5SVkL3fx+LRSuoQQky/kcXZgihXC6bZg0p/NpLvw57hq56JmRmzyJXTCcxbnyeUyNgy7FqoyT4kZMRPXzaX+KOnUtglNIQNBcKvTEcaXP6KZOiWiUq+WYJLqSwj8MU+jdxfepv4u7BkhKEON5fB50fIVQdB66yVN5Yic3zEY8VadQmO7xXQR6vgSGaQ8Gg8FgcCXYFdN+/vx5/epXv/pkDcnqTq3dzsGTbdiyUpYY28JRdKXqZGV9++23VVX1l7/8paq2LMktNVnFtM5lESYRFyWCkB11jM6ZNr/j+VJzeDJRjVmJado3CRXI+tbP1MTkqZGYFi1xegRS6RRlcrmGtLYSa+ZxlZjVNZDw/5ORsqXpqkENWR8FOZw5MGmRJWarZBwmsXHNpmYkZNgs+UpMnCVlnZfN5+QhCY8p2a+TOu4aX/i2bMlLj1RK3OqSZPXOSmPkvWL7S82fizpxH3oZKJHr61v3jmWCgt4pqTyRxxD0PLHJk3/GtfnrX//61nX6viyzo3R18vx17HwvGKY9GAwGg8GVYFdMWzFtWZls8eagdJ22VTzCrSPKOIqtKEYiy+pPf/pTVd1mzSx5YBOEJCRCkQEW9otxJYuXzFdgWUvyODCWreNzjvw4uj4xa1mtivsnRi+mwNI2ynN+SRwOh3r58uVGHjVJdvLerQRfNGe6Zq0deYG6kqyqrZQqmYL2TYIcLElhuVDyanDeuaaSJGmXM5EaxQgsveK+qVEEz6djULZXWInvMN6+yhF5CNP249E7Q49BKolimRiFf/Q+SPK5zIdh+93kAaEHgh4YL2UVyCKZS6F3FT1Nfh6uId3L5H3geqKHhSzXny96NblNt5Z8DJ2EsTN+Hn9kTAeDwWAwGNwLu2LaApvdu/VKmU8KCZBxV52sN1l5bNembERmWVadmKcsXsZKU4N5Wmhkx8yudcjyY5tLil4kBqRrp4WbJAgp9MHYkuaEsTU/rsZINq574qyXnoEuk/u+2eVi2ozfkrFWndhyah3JsTLblUyLGbI+TxQsYXtV/u7/72LbbAnp25BVMv6dWEXXGpEZzT4nGgMbYPAZSRn8vB7Gd1MckfPIuaBs5kPB5zadW+8UNjxxVkZhD8ZpyeD8ez5TXcw57d/F3elh9P+T8bJKgudP52POSGK8et+I9XNfzq/PEVuzcptV1QqP3zVKcrDKYy8Ypj0YDAaDwZVgVybEzc1N/etf//rEbmXpeJY328+Raet3WfBVJ2ZB64pWZar5Zi03mZyPXegE87t6Vj+exk02oWMpbqOmJH48baNjsDWggxm3zBIlo3O2pLF2sSWOtWqbhU15Vt6Lu+JwONTz5883tePO2HjPyLh5fxLo6SCL8nnqYsqsDXX20sV2yQQS09b1MW7MForOqnmfu8x2H5fuM8fWxQt93679JZm+3zeyoS5G7HNyCfvqkLxYmjtmHfOdkTKNuSaFLifEv2OcmO+7NO6OvdJrlD7j2tfvei5TdQRj6PL46XN/F2v+NJ+UeO2eq6rtWmUOTVqHvB6OOWXhd/drLximPRgMBoPBlWB3psTxeNxY8m4ly4pjizUyoKSIRutbFqDiR4qzpMYDjLOTCTub0PFYr0qW4U0YuixOMhFvTMIxks3S+vfr0thYS9w1n/DxaZ7oCWEc2e9bqk334z5GK0WpolVlRa8u65gszOeJ94UsRvefSnZV2/gj47WrOCjHzPuUspS5Lz0wKSOcXqbE+ghel+4tnwnmVPh1dDWwqR0is6A774MjseVLwbn2c2pczPju1nfVdtyc6+S9Y+0zPVRaO74P54l5ItrWs8hZJy/o3vJ94KyZKo6d8qPfS30nxt3pbujd4uNiZnuXLZ/YOT1vfDemvxfaJmX3PyWGaQ8Gg8FgcCWYP9qDwWAwGFwJducer9oKV7jrma4kip4IngTFspzOFZR61Hbb0LXlblE14RDkLmfiUZKTFOjq4T4pUYeCKWpuQkEQP77EGlhaltz+AgVl2INX8+fufzaPoNuNfat9jPdBmiehEyFJLmGGKSiLyLl3dx8Tws41ckjH6xIhU290Jlzy2lPpn8CEHEqTJnlOukF13ynyk5IBeQ/okk7uce6zKhOk+/0uiWgpoam7d3w+UiiA4QuK7KTzMXxFl3cKPXTCT0JKRFNoiwI5vAbBn2muJ71DKG/q52P4km7yt2/f3hqXu7p13C6Rkwlpfh6+r1c9v7syy71gmPZgMBgMBleCXTHt4/H4Scq06jZbFmgxyTKU1aWfzl5cvpPnq9pam55s4Zaln1/HTCUYshZp7TPBwQUUxIr13ddff33r+sSek7wfz8dGDRprYgEUniFjTK1A2bKOCXdM2qnaNmNhKUba5y44Ho/14cOHzRhSGQ2ZLxlDEgMh09X1kKGk0j8yKVr/vlYpV5u24e9MtiGbZSKkMx8yaSbqMKkyna+b15Q0t2KXvm+S59R1kVHyPvpxH9LsITFEsjoKjDjzZmtOig6Rdfo8JQ+Xg16Vql4kaNU8hU1EWILFUkZ/nnQ9ZPTaV16zleeSXhImtfmcnGtmk9aO3uW6LpYJ6vipSdR9vDRfAsO0B4PBYDC4EuyKaUsgQ7FXlndpm6ptEwZZk7Ssqk4sgTGXLk7koEBAJzPp59M2iaVUbctsqk5Wqa6V10dhDo/98nyMRyb5Ql6P9mF5COPxPm56EChv6uej9co4MoUzHopkHXdlHmx04WPgdytBjO58XdkWY8Cr8TN/IMXOVw00uvNwjVBalW0x0z6dnKmORW+Vj4UeHu2TSvUYd6fnyueMTOqS/AjGyJ3ldfkJej7o5fJt6JGgCFFq78vr4Npclb1R7lNjpkesaht31ntB3jshnS95bvwYWjN+/3Xu9E7yY6a2ntyGXi95C3yMlJ3m2knsnDkIDykf/BzY12gGg8FzfuXDAAAgAElEQVRgMBi02BXTVjybTTPcGmP8R0xHVhbjuDpu1dYiI0NkXLzqZJ3KIqWVnCQ7JYDCzHY2VEgtGTlmskNazQ4yLnksNDbFzf34bCOqY4jxK7auLHMHBfXZDMDj4GQ8K+nY++BwOMSYoHtAyOYZrya79P/TAyGQEbuVz/NRGCM11CBLTkwgndfPR5ENnj8Js7D1KGPoztrJEDkm3VN5g5ypUCCD10kp1nR8XqeeybTekkwl8ezZs/rlL3+58YD4NdOzoudD86UGO35f6C2j/C+9aKllKj1gnaCIgwIv9F4k8SBW5XRtKf3dyLXDuWZM37ehsBC9M5JpTh4+elP1OVm1H5fXqd/1d8K9AXdZO0+BfY1mMBgMBoNBi10xbUGWkhirs1BZWZRO1LZqNuKMqLNOu7rsFPtlbFMQi3VLjQye7OLVq1e3rtPHQmlIMnmxiZSR61nvvq0sUK/TFjNgjJRSn6l5RteKj1mq7g3Q/dBYGOe7b6OQNC7/f2IGzEIWUj0w8x2YA0D2t4rBJUbF83EumcGa4mzddXAdpvN135EVOuOil4nn79ogpuvpGFDyPvDak1wukeQ+E25ubjYeBPeeUaaW9yk11KAcM98lXA9+zV28XudJuTS6RrFHPp+pDWsnqcv3Qcr7YR4CkZrNdN4Snle/+/V1zVmYm+TvEtbT8zx8jh1Jo2APGKY9GAwGg8GVYFdMW9njtNw9BvPTTz992rbqtvh9Vc4kFeOjYpeYKOv/nDV3WYdUV0uxJZ1PmZiytGUJJ/YiyDJko3fFmJ05iBGISVORitdSdfJMfPfdd7fOx7gXY49+7bKCNUZZuFTMqjpZrZ717ud7jJpIb83Je1rVM23eW/fsMLud3hOuB1+7XYtExkc9fsv4J8fEevH0GceqcaSYH9mLxqpngzFIHwuVBtmUYdUwQmDDlZS53aFjg+m7FW5ubuq///3vxlPk10zmR+/W6vnn/e4UGVP7Wz5/mkvlmPh7QM+hxkgPH+PVVdv55rOhY+jZTkqMnQ5FUrdjvTcz5qkx4OucnjCtP71P9f5LMWhmq7NdcqrGSNUke8Aw7cFgMBgMrgTzR3swGAwGgyvBrtzjLmHq8GQEClLQZSJ3hwuyUJ6U5QWd+IFvI9AFlZJW6D5WchwTd5Lcns7N0iu5aigdWrVNAJNrk2Uc7jbS/1mmxSYtLIfyfZlYw+SpJCHK0MRj9NHWOV+8eLFJwnJ0SXd0qScxEK6RTjgliYIkeVSNuer2eqNLnYk5KVmObrxOLCa5+7pSMs6Rh0eYuKl1rp+dtLCPgQlBdN2mpCzeU74r/Hsm1F0irrJyzdPVzzCSnn9PgtI8seSqW/N+PdyWQiV8/1RtBUO60J7PE0MdXCNc1yl8xXck15Q/Twxb8Tx8T/ja4TrTd3Td+9phgi/FfFLJKdf8yJgOBoPBYDC4F3bFtDskS4cJIUzucKEFsnMyHB2DAipV21IfNgpIiTqyjpn4pjFq7G79U1aUEq60eD1x4scff7x1PooP6Lzpusj+O5aUmkxQRIMCN0nyUKIJK1GS+0BeGrJ/HzdFM9j4IpXtkC13TQqScAWTejqZzLS+WS4kpDIqjVvH7dp5pqYPTAQi40lSlRTvoHeDSXOJNfP3Too1oVsrqWHIJTgcDp/+VeUSLJZR8R2ShKAoJEQxla78yM/Nuea99bXDRDeOVfB5YotPjZWJYqu1w7mmZ8HHqPHrO8ok6/lNwjwaI5+brmWrH5deCD6vqcSQJWV7wTDtwWAwGAyuBFfBtJPVzXIWxjU8ztI1+WC5FuMfvm1nYWtfL2WiNUlhhiS1ypaiYtgUTNG+fj5tKxYraI70fYpLdu0ByXjc2tS5yTZXMUeWeqlk5TElAj9+/Niyvqq+XIuWdIr5aq3oOmihJ++J0AlyJKbAseg8LOdzxqP/a1t6BRijT6yZ65vlcL52OsldoWsnmsCSr5Wk56rEi0jlTR0Oh0O9fPlyIzOcSuO0DuRVYrmWM7aOPQpkt/6eY15IJ8iS5pjrjZ4wf09wLTI/RdumZ0Xj7iRJdU89zs+8l65ZiubZ7wHXgcZKb6SvVZZ6dWWY/h6iB27EVQaDwWAwGNwLu2LaiiuJJTNbsGob05MlJWuLxflVJ1YnS1OWJzN0ac1WbTMjKR9I69z3YaYsM8KTvJ8yzbuGDboWlyTV+fSTcXdhZU0yjreyhCmxSjbIa/Jt2CgkZWrfB4ppM8cgWerMYdB6SPF7geOmDCfFKfw7rodOqMf31xh0vzVPab11cXfGQxMSO3GkuejEJrrMegeZXRe7Tx4Y5rEwnuzHSCJLHY7HY3348GEj6enjp3yovmP73SRJy+YX3TpwRsr5YH4CPXA+ForrdFUyfjyuHb4P0lolk+a7hBnpPLcfV9tSotZBkRiKSvGY/n8JXMm7Sflpv9d8b7Na4qkxTHswGAwGgyvBrph21c+WEWPYqzpWWbi0gJN1xFibGJasryTCz1gL49Wsja7axoW0LZvDu3XH77p6yZStrutgrLmTCqw6WZo6bpcln2rKNX/MNJcHQeNIGedkMT5vjwFdR5KXZdY71xK9DFWne0ivBWOYq9gi46tkWL4vWbKOT49Eaht5jjV/KVwSR2ZGe2qEQvD+MR7p943tGldQTJstc30eqe0gdkeZ4cREyV7ZPGfVnpYeHj57Dkqtds1f/Dxci50EKd8PVdvnXO8wsvMkEdrVfXcNZfy4+kzsmXlH/szrO+pgcK5X1QoT0x4MBoPBYHAv7I5pV22tSLeWKeZPi52KZVUn64oN62mZyor2rG59x9prKjn5+WSFM/ar+GRqZcdGKFRR0/F1XlmZCTo/M+tTnTYzLzmfUkpL6maazy572dmhxkBlpxXLuAuOx2O9f//+kwchMYOuvSYzpZ0ZdDWgZNasZvDjJyZYlVWfmK3NigZ6cfy4n1PBadX0g+ha4FZtmXXHlp1xd81suha4fvxLG4c8e/Zsqb3QKXexlW3Sa+iuQ0g12efu/yqzWd4rNjNRkyBed9U2q7vzZiRQxY7rOt3LLkeEXtDktdEzztr4lFHPmnHNjd7xeg/5fWMOwNRpDwaDwWAwuBd2xbSpPU5GVLW16jrL3RXSqHBD5sm4jVukKSu4alsr6qxS/xfjZVa6rDy3rMWsX79+fet8+knlIGZM+nmpdc2aS78uMfY//OEPt46l82gu3HrtVLPIeDxezdgsM88fCmaPJ+Uw1iJTazzFCzvNacYwE7On+pKOT0v+1atXm326TFnNaVLPYub5YyDpHvDau9agycOQsvrT+VL7SOpWd94h//8lcyHdej7jqbWsnlnmoFDt0Pch26cSGpULNSa/Ns0b3396X1Rt3wk6HzPbky4Aa651fStNAcafWb2Ssq81J3rf8V3MLHZ/fpmnQBXHxIx1fD1jfJ8nvXKBOvx7wTDtwWAwGAyuBPNHezAYDAaDK8Gu3OOHw6GeP3++cSM5OmnEVeMG7svkC57Hf2fClBIklMCVivMpH0iJy5QQIveM9pHbi+Vacuu4JCKT1ZhgJyRRBc2Jmo7IjaSfyUVEARsKfrBBgn+mcT92qVfVz9dNKUVPgmGiChu60M3m+/g50u+ppSRLbOi+Y2MHHwvddWzR6EIcLCFUwqNv00Fjocwj3dg+jyzXoZucSU1p3fH8wiXSrnQdp/ahDElckojWtW2s2jbj0TpWoqZc096il+VTDBvwd39eWbLYJYr5PnyvUao4lUQx/MLQQ5JAFlh2K/gcVN0WguH7m1K7FLjxkAVFY7pkUB8rt2HCIIVgqk7ztjdRFWGY9mAwGAwGV4LdMe2XL19uZEXd0ibzZYJWag5PFkRrn+wmJT/oPEzgYplT+kzMhxa3W3JiRSpHYzkDEyaStax9mOTFRJ6qrWVNti5vQGKDTFoRyNa8LI0Si48NJaKtRGFYcqVr0ppK4jpdYljXfjIlWDGJiK1afX2TtXCtsJTJr4vSk2RWiW3yuJRlTcyXHpyuBWQSe2FSFNloatrD46UkpaosInSJuIrQtV31zzi3YtgpQVTXqp9sDMIWtqvkOx5T++jd4uD66lqB+vG7d6TWO0VY/Dxc3zomz+/HF8is+bl7i8TYmWjLZMmU0EfPGwVofB+W/l3S+OZLYpj2YDAYDAZXgl2ZEDc3N/Xu3bsNI/F4A9kEm4uonMqtZIr9d/KVLCmp2saQZOWxtGwlqqFt3rx5c+vzFEeR5cwxrbwFZFJszsH2kmmfriQrNV6glCPj/SkngeU/j1mWJBwOh1Yekdul35PVz5gX1wyZr7NKslTmVCQhka7RBZuc+PzxXnbtHJP4Csu3OqlQPx8ZL2OmLKdJOQIs7SKbSevjXLmYf94xugSVfFEwyRlpFz/ncdPaoVAIWR/vT9XWS6Jnl004WKaWjkvvRZJa5X3ms5DeO3xHMYae0OWIcO2kxihcv9qGMXSfE42/e+b5HPv+lKjdC4ZpDwaDwWBwJdgV0yZWQguKkVJQQr+7FCnbdpIVMUswZbt2DUnEZt0i7DLYKU2aMmQ72UK2AEyyomzgQXk/j49pfsjgyLw4r74NGx5wrH792taz3h8bx+NxYxVfkoXMBhEpXty1WyV8X7Jwxv5Y8eD/Z0Y+158zB37GOPUqFtxJahL+ObOeOa+dNKV/xhhpJ5Lk26SmHP79Ja1AOxyPx839SuIqzFBm4x2HtiFLFjpZU9+WUqD0ovg1M/4tT5jWA1v4Vm1zgiiqQjEhZ9HMd6HgVbpfrHDhvNGDkdYOf9d1UrbVj9MJQiUPGePrn0MW+CEYpj0YDAaDwZVgl0ybcb1U78s4JC20lLHIDGA2yxDcUiMbEkOlJZgyZMmwKJvpDIUsjFY5a3x9TlhbKzDz3GPatKg7Oc7U3IRyrGwJmmQlmWX9OXA8Hjf32s/X1QjTo+PrgfWc9IgwPun3oGO6ZKJpnsi4yVB9fZB1dfsKfj6yU7LaS3IEKJdJ5pvirrxPXfawgxnnq8YkrOm9BFwHPu50DX78VRyX7yyBmfPu8WOWM+9x8ipwTgW+bzzDnTHtrlXqKpuf59XnlBv1bZkbQI9FkjnmO0r7MG6d7kVXVZK8kMwnmOzxwWAwGAwG98K+TIj/D7LOZFXSUqKCT6or1XdimYxhpjrGjgHQMtWxq7aKYYxDUzms6mQ1phZ/fp2yCFOrRG0jBswYt1uMUnIiC2S2dPJcMK6mbfVT1+c1srrWzxkfcqadVJPIlgWyjZTFm+ZB5/RjJobIY3DN+vpmdcK5BiVV23anXbZ4ioOmxip+PalOm/ewq2FOz5NANs7zrZo0MIdCWGXUX5IBvGLnZPfMPdFPf6apW8DxU1PCvSd6ZvWTWeOpGcs5rwk9fz4Gfad3B9l/iml3a5T30t8DXeMl5hcl7wSrezQneveynXDV9tnTvjr+SjFvxdyfEvsazWAwGAwGgxbzR3swGAwGgyvBLt3jFPxILlW6delKd9eZ3CpKmJK7QyVY2kcJGt7fWMfvSjuSyAJdVyynYnJJ1cltxPIjjiOVKKTSOB8zk0qqTm6o5Jrzz5PLmHPARhX63RujPFbf7A6SMaULOpVvdYlhq8STLiGNzUYSUolfOq9Da0RjZFKP78OQBl3D/JnEVTpxjeQa7NytnPtV2U7nrk7iMTp+J66RyvC6e93h5uamlUfldumnnl93PXPuGBKg69mha9U7iWsnydnqeJRAFrQ+/FiUM2aZ2KqEknPaJUSmUCVFVHQslvB6ghjDFnzfJTEU9kHvknZ9jJSK3RuGaQ8Gg8FgcCXYFdNWa87UDlDoErRYpuFWZieqQZackrwEitOTlSWrjAxYFhwT4Xx//WSZBmVMnb1QvIHlTrJAUxu/JOPn+3h5iNCV3pDxJXnOzwUlobGcKklbshkG15CPm2uRLJMJOqvrZBJOEp/g2qQXKF1Xl6TEJjAJ5+7LJfeNzwvnecVyub7TnPBZY9lQKtUj2z/Hmp49e7a5/6t9OAY906nUlONOSWQcP9cmpZH1uzPRThLWr5HnVUKW3pe6jk6C1yFhFu3D60uNhVjSyKRdnYeCWA6KCK3EsShww/tG4ZmEvTHuYdqDwWAwGFwJdsW0nz9/Xq9evfpkwTGeV7WV/mMTgWTxsvRJx5P1xfiNW3dsq9eVxjhrZqtPWvupFKaLWVM4n2zat+1K11IsS9fDWCxZTWpT2DUZYdmLX9/nFFXR+N6/f7/xSKSmDywr4nyl+8J76ef1Y/ta5XFXzEoga+4aRKRSn3Ox7McGPWFkZ/TE+P85J13jknQ8HivlsXSlbAnKh+C+5/bxMSTmu4p3+7hTXgQZIht3CKl8iyJOLBvztcP4Ld+NLI1K+RDM2WF+TpKkTWJEfvz0bGi+uA9j+GntdF7V1BCHa3SY9mAwGAwGg3thV0xbYHvAZE3Syidj9O+1D7Opk9hE1W1rlgxHPykr6nEVWbSMo7CJu4+RMeXOmuwkEX0bgTEsPwezxYkuTlnVZ5yT3SqbvOrLiO5//PhxE7NyrJofVGWWR5GLjnGvssfJPLpmGX5cyr7S8+LeIGZVMxP3sdGJTfD8qwz0rpHHSpyGGcD0JPh5zq1vntP3Zbb6CiuhHOa7dI1OtK+LgmhbsmVWEfja0futy1OhgFPV1nMjcRW+Z5LoU+dBpLSzP0+q2GH8m5Ko6VnUWPUe7Z5fnxN6Ubv8AveQaG5X+UpPiWHag8FgMBhcCXbFtA+HQ718+fKThfP27duqWsuK0iq6pN3huTaUbsGJLf70009VtY0bJbAZh35/8+ZNVW1Zk2/DfRmHSnFKWt+XxDDJDOgVYM2ntx5lfJ8xxZV85efC8Xis//3vf5t6/eQhINNdtWQ8V7fMus9Uz961YEwMlB6cTsqXz4GfT/dHa3SVPd5hlUHdST9qrhkndYbJLOSuVeeq9Sjrf8/Vfl+CZ8+efTrOJbX3HXwMzJ7umKHYZ/JG6bljlrrWhfJ/qrZxaM5tasAk8NypzaWfw8dPudbVutP+nFt6QynnW3XKKF+xf4L5TF1OkoPviWnNORgMBoPB4F7YFdOuuh1fWjG1LpaUWEBq0+igRZgE7mW9SlWNzDRZhLJWf/jhh1ufJyaqc8q7wNprxld8jGS6zLJUjW+ySHVcxuoZh9V1+zXTotZYv0RzEOLm5qbevXu3zCgmi2VsO7VFFYtgDTpZTFJg4xrt2gOmuB2rIjhmn9uOwQnM4Vi1nuXnSaGsq89n3D81quF18NlM3geuM8Yndf77eBSqfp6vFy9ebI6b7mWH1PbSY9R+DHq3dL6UeU4lPnoiFIOu2sZ8dYyV54NZ/KuWlVW31x11Leid0fvO545VPtpW3ga9Z5I3gAqZjE+nMbJ5UqcZkP5eXKqm96UxTHswGAwGgyvBrpi2FNFoiXrc5lwWL1vNVW3rmMWWqKST4pa07tlmk9nlfnzWWLIGMtUTalvF0snONBe+r6xTKpHp89QikLFrWcVkOqvYKbOfZaFqbElN7XPh5uam/vOf/3y6x0mNqYtnsc7Z55b7kD2yDWmq9ySL5E+/L7oP9LBoLi9V+PJtBcbqHF1NMcfqx2XmMbOWk9a50Cnypcz+NLd+3tV5LoGYNpmVvx/8HZSQ8lTI/PmMadx6Tr3nAeO31AgX/Jq1v45HrYXkhdR31I/n93q2V/FjtlRe3XfNJ3UVmEuTdBY011p/9CT486vnhi1UWVGzar85rTkHg8FgMBjcC/NHezAYDAaDK8Hu3OMvX77cCEykVmurFoxVt5MTmEz1+vXrW9uwXCw1cGACkM4rN2xKVGFyF1uBJklAlsR0blC/Pl0XE8/oxkyJNZ0rjUIwvi/lSjshkC8pSnA8Huvdu3ebxKaUiMYkL7oI073sXI0s9UpymHQTdm1lHXITsqFDSqjppFu7sq20L8v3uladflyet0vYSW1Eu5a6XWmO78Nn/6HrjO5xSgdXnXePCz4WuXgZHtO9pBvZQ2wag7alizY18ODxu3KnJCsq0MVNISjfnglb5xIiHZR65j5pHazCF/57cqlz7XTteR2UQN0LhmkPBoPBYHAl2B3TdouXZSFV2xKYTmAhlRmsEoDSMaq21hvlTJNYANkEJQllEYt5p3OTJemnLP7EIDuZznS9LOXRPmzNRzaV9tFcsOTrS+Lm5qbev3/fjq2qL/1bJc6QtZJlcp/UjpTrgAzB1ypLcCjDmLwAZC1dY5SVJ4lyjpSVdJDpMjmU1508Sl2yGufKv/scoipC8nb4tbME8y5gmabmiyJFzuyZ2KZtmXTl185r4LqgDKyfU+8VllXxfiSPC9/T9JQmueaujeyqcQy9ql1iafJCdB6eVVnxXZrOfEkM0x4MBoPB4EqwK6Z9PB7reDxGi1Agi2SBPVlA1cmKY5ywkyJ1JsQxkCmkMWpMbjn72JJ4A61TlW/QOmdTAAdLITjmVGLGeH4n3J+Yj2LnOr5YyOdqBXkONzc3m5wD90hQgjZJZvL3rnkNY31sf+jHYXyS1r1b8l1jkC425/uTvfK6krhGd69WAkfanwJDZF6pcQXzBujxSc10OjGXxxLvYS4Nn42qrUftkjXOa2WZIGPn//jHPz7tK2EWPufaN71DeF7mo6T8H7bRZdloJ6dc1a9V3tMVO9c7hEx71aBE23KOErMXyL5Zupn22ZuoijBMezAYDAaDK8HumPb79+83zDBZQWSTq3aA/E7WaicskCQiGbcT42Wc2vfh+JmB7AxLzFrH13FpJesY7g2glapYOT0W6bqYYdpl0vt80wKltOdT4XA4LK1ueiK4rlKcizE+ikswMzitO7ZvXWVdU6yHjU/SHHftLZnL0WWzp31X6I4vrKox6BUgc1xdH5/jx4o5StSJIjGpRatY5CV5G13Wsa5ZEpsSUnLPH59/5jgk1sxn+lyOQ9X2Wei8j5Txreob8KRseIJj7fI/0hjo1eKYk7AWPQfd746uouepMUx7MBgMBoMrwa5MCLVXJNwKYlyosybd+tY2so7FkgV9zoYeVdv4jCwzxbjYftOP1wnOMybo+zATk9KDiYnQCtcc6hj//Oc/bx3L/69r5nFp6fv3qu2mPOx9GzY8BtRoRmNKzFeWv7bpLOgUg+O6IytPTR+4NjuGmLJrWafKrOWU08DzdLkNKZu7q1/lsf3/jDt28feU4dzVyaba667a4zFzJ1b3oGp7fylvvEIn+6p7mlp3ksnr2hlz9ncI1yrXWWrnSYbZydmmOH+nM8B77OfgPexq2DUO/3vQvd9WGgaciy6fJeX7PGZ1wmNimPZgMBgMBleCXTHtm5ub+ve//71hsc7gaDXKulpZ4bTIZcXSMk0WNq1jMVNZq6l+VttwzIyVJeF+xqzIMqjA5dsyLqjzSQHO0bWHZFZvaplIpvUUCmiEKg8YE/Z7qXHSUj8Xo/XvujrPFIMjE+hagSZNAeZbkGklL8ElMWuCsUWNmcdyZs9r7mLOKZeiawHascJ0HLLxh+ZSKKbN++Nrh8+D7ilzDxI6PQiuR4fi3WygwcYXzsj5DJPxsmWqXyvHwFhw8goxtqwx85762iFj53l4b329dF4hroOUQ9HFsJlnlI7TxfmfCsO0B4PBYDC4Eswf7cFgMBgMrgS7co9X/ey2YHJKcq8QdKutZBC7xIWUvMREI7lvmLSWkkgo6kJ3i+9DVxKTV3Q+JZW5O65rWtElFfkY6KJlchn7hvt3nNdUMvcl4eIqLHvx/3cCGZTw1DH9p75j6Q/lX6u2c9glovkY03ry46Ze5V1jg+7zJObC62Fp2yXSkLy+lOTDEkOWUq5CR4K2Tcl4Hc6Vsvl7R/Ax6P4m0R4fy32aS6QwiT5T0uc56WXfn658htbcpa7rouuc7uvUR1vvSyX2UlxF8N81Rr5r6aZnQx7/Tu9TSrDqd78HdIvzb8sqzNQ13HlqDNMeDAaDweBKsCumfTgclkkE/llnOaeEEDKCjs3oe7dEJZXHBAlaiMkboMSMt2/fxm3dypMlqH1YAiZrUlat78syECbuJGlXzlMnaiCLOImraAz67qnFVVILyNRYhQlAnLfE4DrGzeS/JHrDJg88f1qzZOHcN0mRkqXwWUlJk7p2JjqRgfuzkuRJ/fgpkY/n4xpNSWsEx3+X9bZi2ioX5HmScAnXAe9dWjvnxpnu/5s3b6rq9D5YSZH6dfg2XcKjl4lxXpj4KCThISYDa62wJbEfqyu3JKNPoifdc7oqzSKj7hr8pPs/JV+DwWAwGAwehN0x7a+++mpj/ST2fR9hhc5S108W+FdtRfdlpTIW5xYchTF+//vfV9WJPSdWy/gnSxHYztGZLyUWWaYlmcRUliaWzn06EZGqvszuKSFhHpaO+DUz7sg4XlpbtLIZt2esz+eJAhwdm/R1oPvKsVDONMWlybR4n9L1kYWzVI6sLV0HvQ7My1hJRFKgZeVd67wPl+DcWl15B3x/PTeUGxZ8PaykZ8+NkaWLnEu+j3xbzYu+I5v2Nco8n660MM01S3LpQUxeoS7vgqVt+tyFsCjeo7XJuLzH0Pk3hAyepZV+rXfJmfiSGKY9GAwGg8GVYFdMu+pnS4jxo8QMVs3LiS5WSTaRmBAZrqy6TvzCP1OGL2VLE3umVUrLmu1Ek2XI1nXaNmVVah99p7F2rS1TvJgW71PieDxGVu33nBKnzHZNzKCLgfH7LhboY2Bm/iWNVrQvGbfnXfBamWNwn5hc52Hw8fPaO6+Qg/klXRvRlBX9kNjiuSYp3jBkFV8nA9R9YCOhqtM6o5eke17S9VGCmc9yqlYQKEWcZEzp0euYcHrW6RXhuyNdL+PgZPh6R6bscXquKGyT5GCFzlORwCqSPXkUq4ZpDwaDwWBwNdgV06acYNdCUdtWXdYijzExWvVd/LDqZHXpJ2sCZVm7hUo5VGZvphZ5jGmTlSuLnZniadyMD6Zs9a59HuORq2z9PcV8XMJUv1flxjGsPSfDdsu6i2Dg3JsAAASLSURBVJFzTSV2ybnTPSUDSuPmeej5SNnc3GcVjzwHsqh0/1eNIXw8vi+fCcb7EwvtsoUfC4fD4eL2i3zGVnKm9GLdB8yp4TPnrFnbMOOf90Xvkqpt0xKtL7UK1u86j0s0d/oDXYMk30djYg6PkO41r4vPZGpuxBh2x7TT3xiu0b1gmPZgMBgMBleCXTFtZQCntmzCQ6wfWZXMWKVajlvLZEW0TFOjd7FvMjl9LpUjj9d4FmhV3zIvNf/Q8dl6kpngSSmINam0hFNjAuEueQVfAsfjccncujpPxpp9n67NIVnkqva+U+tLCmys3SbDSu0umedxl1g256RbF36vU8atfy6sMsEZL6SGQVKl+5yenRcvXrTPXNU214TqY6qn9mzyrrZa13FJK1t6Hjp9Bf+/1hArRHR9ev/wGh3yDtDr6feF+T2CrmsVY+5UHNm8KTXToady1dCja/DD6/YxrvKV9oBh2oPBYDAYXAnmj/ZgMBgMBleC3bnHP3z4sHGhrYQW7oOuKQabg/i2cjGxuQjlR/14LM/Svt9++21V3XZTKTmkCw3Ife6JJwLdUCyr0PeegCL317kkOSZP+XXsodSL6HrtOug6Z1JecotS0KNzmSUXLt2ibIrh7kX2s2Z4huPy/zOhrntGUkkb1w4beqTroajKOREZ31agW3wlQ/y58OzZs1uiTiupUI6JgkYe5qLISfespRDbpfB9GWLTu4KfOzQWbcuEyu4eV53eIexLzxCLv8tYDtslS+oYPp4UqvF9+Z71/5/7mcSDkpTqHrCv0QwGg8FgMGixK6Zd9bPlt2IzD5ExJchI0vnYMi6VFfB3JYB0cpVszuCfsWWmrEcxLiWzJSGRzsJVwogal6QxURhDx6dMo2NvTNsbP6TyrY4BMvnJLXUyQDJvlpKk83XtAJPsIj0plIpMJStkJZ2nKonHEF3CjjPuTgqya6+YxJE4FnoynHmtEsQeA4fDoX7xi18sW9ny3EyYYulX1XZt8FkmA/d9z3l0EugN1HOfEl8F3Ztu7dDTllgzy1Q5Hj9v58WgZ4xysb5P995JiZ26T13JF1uR+hh4jL1gmPZgMBgMBleCXZkQiml3Ig3apupxrG1a9yzJ8XNTBJ9SnilOmFrh+fncApWl2xX/i2EnJtLFZ3Teu4hScNvULJ6x8r0x7qocq+I8dWvJ576bD7L2xIy643Nsvna4zrqYc2Ki57wCaU5Wa98/T8yenh0yylSyybnoGGXydnyu0huJOl3SJpQxWMpwJpbX5YAw98TnmOWbd7l2bSuvzapMtiun072k58ffAyoDpedoJcjE95euU/PI9e/vzu4Z1D5k1T4GeofItFfPRFrHT4lh2oPBYDAYXAkOeyocPxwOP1TV9089jsHu8f+Ox+M3/sGsncGFmLUzuC82a+cpsKs/2oPBYDAYDHqMe3wwGAwGgyvB/NEeDAaDweBKMH+0B4PBYDC4Eswf7cFgMBgMrgTzR3swGAwGgyvB/NEeDAaDweBKMH+0B4PBYDC4Eswf7cFgMBgMrgTzR3swGAwGgyvB/wFeFJihO51QiAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYdetZ1nmvqvqmM8/nhAQSEAyNii3NHCBpGyIQCKNMBogok4KAqFe3gATERmRqr0YbBIEggxFUpEGB0E0UhAYiQ2NHSICMJyc585DzzVWr/1j7rv3Ubz/Pu9au8yUx1ntfV1279tprvfNa67mf6R3GcVRHR0dHR8d/69h5Zzego6Ojo6PjHYH+wuvo6OjoOBHoL7yOjo6OjhOB/sLr6Ojo6DgR6C+8jo6Ojo4Tgf7C6+jo6Og4ETjWC28YhhcPwzAOw/De16ohwzC8YhiGV1yr8t5ZGIbheauxed7bsY4XD8PwBW+v8jvaGIbhK4dh+NR3Qr3PWq2t7O+brnFdO8MwvCRbx8MwfNMwDBvxTMMwnB6G4cuGYfiVYRgeG4bh0jAMfzQMwz8dhuG/T84fVr+PwzC84Bq3/6MbYxX/vu8a1fcJq/I+8BqV9/xhGL42Of4nV/V8+rWo51pgGIYvH4bhNcMwXByG4VXDMLx44XXfVszJD7+92rr39iq44+2KF2uau+9/J7fjpOIrJf2ypH/1Tqr/myX9FI696RrXsSPp61f/v2Lu5GEYbpT0s5L+jKTvlvRNkp6U9D6SXiTp5ZLuxGUfKek9V/9/nqSfeaqNDvh1SR8Wvj9D0o+v2hXruf8a1ffLq/r+yzUq7/mSvkxTeyP+cFXPq69RPU8JwzB8laRvk/QNkv6DpBdI+oFhGPbHcfxnC4q4LOm5OPbAtW3lGv2F19Hxroc/Gsfx/3lnNwL43yX9D5I+ahzHXw/H/72k7xuG4VOSaz5f0hVNL9QXDsNwyziOj16Lxozj+LikwzEK2qg/XDJ2wzAMkvbGcbyysL5HY31vL4zjeOEdUc8SDMNwTtJLJH33OI7fuDr8imEYninpm4dh+JFxHA9mihnfoWt5HMet/zQxjFHSe4djr9Ak5Xy0pN+UdF7Sf5b0Kcn1nyXp9yRdkvT/SfqU1fWvwHl3apIW712d+3uSvqhoy0dJ+klJb5P0kKR/JOkczr1O0rdIeq0myeK1kr5G0k4453mr8l4o6bskPbj6+2FJtyTt+1FJj0t6VNIPSfrk1fXPw7mfqmmhnl+d++OS3gPnvG5Vz2dpkhSflPRKSR+BcR7x9wqOcdLOfyzpjatxfKOkfybpTDjnYyX9qqQLkh5bjeWzUY7n+GMl/fbq3N+S9CGahKf/VdJ9kh6W9IOSrg/XPmvV1r8i6Ts0SdbnJf20pGehnlOaJNvXrebpdavvp5LyvljSN67qfVTS/ynpGckYfJGk35F0cTWf/1TSbThnXNXz11Zr4wlND+w/gTni+P/g6rc/Lulfr/p2UdIbVvO8d5z7LOmD+/yXZ877itVae3g1Jr8i6WNxzp6kvyfpj8KY/LKkD1/9xj6Okr52de03aXpQuax3l3RV0v+2RV+u03Tf/JvVeholffG1GKeivvde1fHi4vcHNT1r/qqk16z68zGr3/7Bar0/sZrbn5f0Abj+E1blf2A49kpNrPcFq7V3fvX5cTNt/bZk7N+2+u1Prr5/ejj/JzQ9G5+jidlekPQqSf+TpEHS39Z0z/u5cyvqO62Jzb9G0/PhTZq0CKdm2vlxq7Z8GI5/4ur4By3o58UFc/cRkn5R0iOrMfwDSd9+rHVwzMXzYuUvvPs0vcBetFrEL18tnHjeR0s60PRgesGqrDesrn1FOO8mSb+/+u0LV9d9q6R9SV+etOUNqwF8vqSv1fSg/EHc4L+k6WX4lavF8DWabvZvD+c9b1XeazVJrc+X9OWrRfRSjMMvabppv0zSn9OkYnyj8MKT9CWrY98v6eMlfaamF9prJd0YznudpNdL+g1Jn67pJvqt1UK9ZXXO+2kSKH5H0oeu/t6vMVe3rhbyQ5K+atXvz5b0z133aq72V/P1Qkmfs1pUD0h6Oub4LZJ+V9NL+RM03VhvlfS9kn5gNQ5fqUly/wfh2metxuCNYe7/4mreX62jL7Mf1bRuvnE1/i9ZlfejSXmvW53/cZoYw4PaFJz+/ur6b1+V9xc1CVG/Jmk3nOfyfm41Dp++mqM/0OqlpUlld5+mB5nH/4+tfnuNpgfOp2lS03yOJgHm9HHus2Qu3ecv0rSeD/9w3ndI+oLVXH+spP9D0z33MeGcr9f0AP/yVVtfKOnvSnrB6vfnrOr6vtDPp69+4wvv81bn/tkt+vIXVtd8mqRdSW+W9B+vxTgV9S154d2r6d76DE3Pm2eufvuhVXuftxqnf63pefA+4frqhfcmSf+vpnvu4zSp/S4qEcrCde8h6Uc0vXw89h+0+q164T2s6dn7eat6fmM1v/9Q00vu4zQJh+clfX+4dtCkHn9C0v+y6vdf10QcXjozpn9j1ZYbcfy9Vsc/f+b6b1uty7doev68VtM9fzqcc4fWgtELJP2Pq7X9XcdaB8dcPC9W/sK7gkVw16ojfzsc+4+aHpKRVX2owFQkfd1qYbwP6v7e1eLcQ1u+G+d9zaruP776/rmr8z4qOe+ypLtW35+3Oo8vt+9atWdYff+Y1XmfhfP+ncILT9INmhjT9+O891zV+5Xh2Os0STG3hmMfuCrvczDWv7xwrr5xNQ5/pnHOKzU9rPfQviuSviOZ4/cKx164at8voMx/Jem14fuzVudx7v1g/Uu4oV+C8r52dfz9Ud4rcJ5vwncL5+1L+js4z/V+cjg2rsYhvnw/fXX8wzFPP4zy7lid98Lj3FML59J9zv5SFqnJFrcn6f+W9C/D8Z+V9C8adZnlvST5jS+8r1md+8e26MvPa3pIn159/9ZVGe+ztIwtx27JC+8xgf0k5+1qYkRvkvT3wvHqhXdB0rsnc/jXZupJ2Y/qF96owDo1MfVRk8A8hOP/RNIT4btZ2qeini+emw9NGp2ryfFbVtd+1Uwf/7Kkr9b0kv1zml7OVyX9ZDjneauy3qtV1tK/ax2W8JpxHF/jL+M43q9JBfAekjQMw66kD5L0E2PQ7Y6TDvd1KOtjNUngrx2GYc9/mqTv2zUxnYh/ge//XNPN/sGhvNdL+hWU9/OaVGgfiutpQP9dSWck3b36/mGaHqT/Mqk34sM0sdUfQb1v1KSG+Cic/6vjOD6CeqXVGB4Dz5f0G+M4/lb24zAM10v6AEkvG8fxqo+P4/haTcLJc3HJq8dx/KPw/fdWnz+H835P0jNWtpAIzv1/1PTwsIOBx4OeWv7O9vxbfOd4fYymdcDx/zVNUi3H/+XjUbvN0vF/SJN68O8Pw/CFwzC8z8z5kqZ7IrYrGa8M36TpPjr8i3M3DMMHDcPwM8MwvFXTGr2iSTJ+dijjNyR94srj8jnDMJxe0t5rgWEYnq6Jfb5sHMfLq8MvXX1+3sy1A8Zr9xo27d/j3nOdHz8Mwy8Nw/CwpgfyJUlP19HxrPC74zi+0V/GcXydJvZ03Pu5wv3jOP5m+O778ufH1ZsjHL9hGIZbVt8/VhOD+unkuShNjkVvF4zj+H3jOH77OI6/MI7jz43j+BWaNA+fNAyDn8ev0mTa+YFhGD57GIZ3eyp1XusX3sPJsUuSzq7+v0PTy+WtyXk8dpemh9EV/P346vfbZ67396eH8p6ZlGcDO8tjXy6tPt2Xp0l6ZNw0amf9kKRfSOr+U3P1juPIerfF7Wp78N2qSa1xX/LbWyTdhmN8IFxuHN/TJBFHVHPveXJ9bM9b8LsxN08e/z/Q5vjfqO3nPcXqofIxmqT6b5b06pXL/Ze2rtPkdRfb9Pkz50vS68dxfGX88w8rh4Ff0CRkfZkmQeKDNKmrYx/+rib2/8mabHcPrsIHOL5L4Af6Mxee/7manj3/ZhiGW1YP3zdpsvm/aOal/5d0dLx+/xjtrbBxDwzD8BGaVH5v1TQ3H6JpPF+jZffk3DPxWmGb+1I6en/ctGpTHFcLtbw/WOfuykM3wmso6/scfmz1+UHSIWn6s5rMOt8r6d5hGH77uGEs72gvzQc1DebdyW93a2JgxkOa2OFXFGVxod+tSYcdv0uTXt7lvVaTfj7D64rjFe6TdOswDKfw0mPfHlp9vhjtM57Yst5t8aDWL5MMj2hSGdyT/HaPjrdoW6jm/rdX/7u+ezS9DGJb4u9L4fF/vjZv/vj7U8aK+X7e6oH9pzW9cP7xMAyvG8fx3xWXfaImzYHx2qfYjI/X9AD78+M4Wkgwk49tvazpxfzNwzDcs2rHd2h6EP6FLev8RU22mE/UpDqdg1/q1Zg8V3UoxE9qvVakycxwrTAmx/68JlXnZ47juO+DwzC0XgTvSnhI033x/OL3lrDs59mf0FHPUWvfXvUU2nU4F+Pk9ftJwzCc0iRwfJ2kfz0Mw/tC2zSLd+gLbxzH/WEYfkPSpw/D8BKrtoZh+BBNuu34wvtZTQb1N6ze8nP4DB292T5L0034a6G8T9Pk7fR7eur4VU3s5dN0VI35WTjvVzS91N57HMeX6trgkiZ2sgQ/L+lrh2H40+M4/g5/HMfxyWEY/pOkP7+ak33pkCl8uCbHnWsJzv1zNMVI/erq9/+w+vwsTV6Ehh/Cr9iyvpdrWgfvMY7jy4/V4k1cknSu+nHF9n57GIa/romR/EkVD/dxHH83O/4UcN3q81AIG4bhv9P0oHhd0Ya3SPreYRg+UVNbNY7j1WEYDtToZ7j+jcMw/DNJXzoMw4+NR8MS3IZPHsfxJ4dh+GBJ76vJa/jHcdpZTWzq81XM8ziO9pp+R+E6TWrMwwfwMAwv1Kam4VrjkqRTwzDsxhft2wE/q8kzdXccx1+bOxl4haZn21/Q0RfeizQ5If2nY7TH9/nGGloRi18ehuEbNL2gn601E12Ed0Yc3tdregj/5DAM36PJZf4btFZZGd+pyZvxl4Zh+E5NjO56TTfLR47j+Ek4/+OHYfjWVdkfvKrnh4JN8Uc0eef9X8MwfLsmL8fTkv6YJseLTx7H8fzSTozj+PJhGH5Z0vcMw3CHJhXHZ2r1wAjnPT4Mw9+U9I+GYbhT04PvMU2s67manC5+dGm9K7xK0l8ZhuEzNbGgJ8ZxrFQ736nJW/AXhikbx+9qUi1/kqQvGcfxCU0S089o0uP/Y02ONt+waue3b9m2Odyoo3P/zZrG7ockaRzH/zwMw49JesnKlvArmtRyXyfpx7Z9QYzj+IfDMHyLpO8ahuHZmsIMLmpypf8YSd83juMvbtmHV0n6yGEYPkHTun1QE6v6h5Jepkl9uquJ1V/VMtZzrfByTXa7H17dN++maS7fEE8ahuGnNT2QflOTuugDNI3Hd4XTXqXJzvfy1Tn3juOYqb6lSTh9H0m/OAzDd2tSqz6p6f56kaT318TOPl+TAPIt4zi+gYUMw/BTkj5tGIa/us39+HbEz2pyrvgnq3X5JzR5M/J5da3xKk1q378xDMMvSrpS2eGfIn5Gk5Dx08MwfIcmlfyOJqe1F0j60nEcU5Y3juP5YRi+UZPd+n6tA88/U5Nz0KGtfhiGl0n6c+M43rL6fr0mzcAPa/LS3tGknfgSTXb+X1+d9xmahN+f0kSIbtLkRfrIqq3b4TieLmrE4SXnvk4hPGB17LM1vcDm4vBu1fTAfq0m3fP9mkIBvjJpy0dpcl19mya1VxaHd1aTi7tjAB/WZLx/idZen89blffRRZ+fFY7dqUnn/ITWcXifpDwO7+M1TfDjmlyDX6MpTOH9MFY/nIzhEW85Teq9f7uqd8NTMbn+Lk3eWfetxvGNmpwEWnF4/0ZFHB6OPUtJbNhqTA+9B7UZh/fAahx+RtJ74trTmhwzXq+JqbxedRwe6/X8cfw/V5MU+uRqjfwXTQ/3Z4RzRknfVPTvxeHY+2pah+dXv/3gaoxfqunmPa9pbf17TTf5U/Yua/U5Oc/310VNdrHP0PRg+YNwzt/SpP14eDXnvy/p7+iop+5HafLyu6RGHB7m7ctX6+jx1Vr7I022lz+1+v0hST/XaLu9Bl90rcZtVe6iOLzit7+1WoMO+v5ITQ/bnw7nlHF4RV1Nt3pNvg7ftzr3QAvi8HD9Davz/mcc/7LV8XvCsT1Jf3O1Vi5qepb9liZh9PpWO1fXf4Umwdux0l+QnPMT7kNYKz++Wh8XVvX+7mqs4xp8/9W1r1+d81ZNL7/S67z1Zxf7d1kMU962H9DkPvsH7+TmdBQYhuFZmgSXLxzH8ZrkL+zo6OjYBn23hI6Ojo6OE4H+wuvo6OjoOBF4l1dpdnR0dHR0LEFneB0dHR0dJwL9hdfR0dHRcSLQX3gdHR0dHScCWwWenz59ejx37px2dqb35O7ulCbR3yXJafD86d+YHi9Ll7csb670zrA7Lm3bf431XosyPOZx7P3/wcHB4edjjz2mCxcubFR47ty58aabbtLe3t5sm1jX/v7+bBuy3+bwjprTbdfrknYdp+28N49TblZGdc/z3o/jcPXq1Y3PJ598UhcvXtxowN7e3njq1Knmc8fH/LnkecN5mft+3HOXlpHhqazRJWNQHX973BvZ2vEY8Dcf9/polTOOo5544on0uUNs9cI7d+6cnvOc5+j666e0fDfeOGW3Ont2nQf1zJkpLeDp01Py9VOnTh35zBYrbxB2zFiyAKtznspNHs+pJqg6b+lvVTtYT/VwWVpevCYTVNg2H/dL7dKlS4e/Xb485aF98sknJUkXL17US1+aZ0+7+eab9aIXvUi33377kbpjfa7rypUrR8p/29vedli+dPQm8P8+19+reWn12X00MmFtbr7jy5/IjrXKlOoHONsWy65ePHwpsI6sXPfLx30fW3CJx1yOnw9+Flx33XVHypKkRx6Z0pq++c1vliQ9+uij+qmf+illOH36tJ797GcfluPnjr9L0i23TMn/b7rppiPt5f0a4THjy9cClj+NTNDiua37kfM/t+6qdkub6yJ7plQCQiWQxP+rcyoCk7XB53it+DMbI5/r94a/P/DAA5LWz4RYjvt19epVvexlL9soM0NXaXZ0dHR0nAhsxfCGYdDOzs6xWAURpZpK8m1JEwSlsSVlbEPxKb24zRUVX8LwWtJnde2c+iirh8czFhIl9qxNLaksqilbY3r27NkNabOa+6z9rbkka3G5rWvmNAqtNlXznjFJtmWuzNZYz30u6Qfry5hLVcYSNZyZkhme+2/pPf5v7dCpU6eaa+f06dMbDCGW53LIECIzqPri9lX3bna/VOr21nrO+hX7w+PZb3PHM41JVd8SFffcfC/RmLSeJWSqnmNrDczYH3/88Y3rXc/u7u7i905neB0dHR0dJwLH2i3Bb1O/nSM7qGwLfNu3HA+q+rLvmQ0jO3cbIzvtFhGVkwTbmNlUqjK2kQrJkDIpcc5RKBsTS+VkSjw3/u52kx1mGIZBe3t7h1K/EZm521D1LetXZgvMjmd9riTrliPMNhLvXFvIEjIssZ3M1XscB4TK3rTEOWhO2yKt2d+5c+cOv7fYzOnTpzfWQbThmeG53MoOt0SjUPU9c6DgNUtsh3Pzkd3LvLYaq9jfyna7hNktRaYl2qZ8Pmv5nLE9OPoO8L7pDK+jo6OjowPoL7yOjo6OjhOBY6k0K/dWqVbfUbUZVSKmppXxuEVXK5VWS31XUX2qCaL6bk4t6d9b6ile6/7S8N3qzxIVRxXmUbmp8//4vVI5xHOWxNbZ8SA6Gkh5iAHV3631RucXtrvloBHblp2TnVup8paoD6kqO46zEvvXKqt1D8QyWup3Xps5cFCdt8RhyE4JVkWePXu2OR57e3uHv8drjOj8EvvGdZ2pAtknjnHmdDQXwrIkXKBa5y21e0u9z+/XQoVZmWpa41iFQ1QhNhl8jefVqm9p7YjkuV7yzD0sd/GZHR0dHR0d78I4FsMzWm9qBmI6MDgzAFOyz1hg/B6PV4yH0kTGCqqgeEqF8Zo5B5NMaq5YbhXwmvWV/eDxjK3NOee439LanTtzIWfbjGqsM+zs7OjcuXOH5boN0W2cAecVs8vmspLKWxJwtXbc120k4pY2opLoW274BoNsqzCIJc4RFTvN1nTlvJSB9zrHMXNuMyzBRwaXYRzHw/VqZxU7NLCcrB/ZM4VhDtUctkJN5pyY4thyXVVOHrH+qk1LGN5SB7slmNMWxDZ5zD1fFUtttd9t9RhFhsf1enBw0J1WOjo6Ojo6Ip4SwzOyHHkVO/PbOUr2VUqfym07k0gpeVAyzlIh0XYYGU/VxzlJgna5eC0ZnZkM02JJ6/GppLOKtcW++hi/ZwyPbt1GZd/M2tZyDx6GQadOnTpkeG5TXCduj8/xuPjcLH3TEptJvCYLT5kra0kwb8tu1bKDSpssJM7LEvvoUrCtbF92rGKUcX1XjI7jF+fNffR6awWeGz73hhtukHQ0LIHrira8TIvCsBr2g2nqljA8ssX4nKvmn/dp9jxt3e8RmW+EsSTEpeoPP7M0YbSj+rN1b3KNuFzPp9dSnGvOZSu5ANEZXkdHR0fHicBTYngtj63KLpe9lauAT0ooZGTxWoN2JUoMGebsQPEc1sN2ZKzAY+E++9PJkB1UGYMryQYJ10/7o7TZZ0qylWdrhkpai+XGPrcY1pkzZ45I9NLRdUDdPwPRjVa7K2/WFsOr7BKZ3baa51Yy36XaAUrPWbkG2W4rWXXlYZkxZnoqztlY4rG5dZXV4zV65syZpnZgb29vI3l0tOu4HNqIWzZ3PqvMUPiM4rMsK5csNnvOUWvD8ee6j+cYc3bZbe6NjC36enrRUmPGzQHiObxmiYcvn+2ux8+L2EaP44ULFzZ+m0NneB0dHR0dJwJbM7xhGDbeqJkHX+WB2Epc7Ld6tf9ZS5duVDruTLdN1tKyB1VSepUmLLMVkOkt9fSK9ZKNWpqKDI+2MI5vC7R5sI3ZVjJL4Dg8S+Uux1JaLI9MtPJqjf9zDCttQStOiVoBj2MWp1Yxvaw9bBs1CZzbTGrmump5IbMNZBu8v1pegbR3t9LI+Rqvu8oWFsuNjKGVWuzs2bOHDM+fkeH5mO+HyvYYMXdfGtnzjfPB+4XH4//+tIbH4PNPqu3XvDey9V15cvMzSw3Je4BaI7PsqDnjmuF9zHFme2M/OAdZHJ4/e2qxjo6Ojo4O4CllWmmhsnGQdcT/Mw+wWEbGniqpjDEgmRcjPRNpr8oSsVJayrKksL4qEwDHJJPSKVn70212LFKUtHhuNb6tGKFK8qr66GvmYvHIqjP7geuyBOwNYM+fP3/kuFR7bFXZP+K64xY17Ds9/SIq5pDZe2iLnMueET1luRY5D5ndzH2kNzAZXouN0mOU3rpxvfHe4GbBmW3KjCzabau1s7OzoxtvvPFwqxjXHePw/Bs9rSsmFI8Z1UapmSam2niYdtPIZrxuaYMie4v1uPwqC1Xm9W5QG2CWRH+GzBZaaYl83BvuxvEmq+Y655jFY5VWgn2Q1uzS4+nnwhJ0htfR0dHRcSLQX3gdHR0dHScCW6s0d3bWO563UnFVlJif/J91RWSqBboOU4WatY1tYFuzBL1zgd9uRyuoszKGZ84KBt1zqYazOiKqJaq+VyEj8VgVzNlyOZ8LhpVqdWdsA1WYjz766JHvWYC+1UJPPvmkpLV6w9+p2sx23baKxGNqdZsDnP0Zr6nWJp0M3Pd4TZVoOFsH3N8tmzvW5988Xh4Lf3qcs7mmartKvxfb6OvpQEV1bKZ2q8JIInZ3d4+oNG+99VZJ63mT1nPGe5jPjGwNVg45dNGPa79yeGHAeXaPeY1aJctnVxwnn0sVJh2BMsc0tp+hBr42qtD9P52AaBbhM1Oq55Cq7lgfHVB8r/PZFceez8Bt0BleR0dHR8eJwFYMz+mh+LbPAmX9FifbYIBodk4lAWfSoKVYS/qtndWNavuKGARLMPm1UTmtRNDBpXJtzxxr3BY62FACy6SduWTVkSlFQ7K0ZowxGD6WFfuxREqXpnEgU4zMxAzksccek1Qb9TNHl8rl2xKyy4hz6zG0dOk+u96MkcQUR9KmBsP1ZokA5rZr4brM+ufyyVii4d7tf+KJJ458+hx/Zgm2GVpgkLXFNpLBWUonC8gCqlsakVj3LbfcspFSLDqt+H8yYq7fWA/ZGZ17yEgyB40q/MllZWECZL7USmXPn8qZw8icylgPHWno3BRRJXHmcyK2lc8x9qs119zh3Gu4SocnHU1l1sMSOjo6Ojo6ArZmeHt7extBiNF+RFdeMrqW7pe6ZkrGGYOwxGtJgzaOLGlslvg01mNE6cW/UcKppPTMzli55Gcppfw/bRMMus1cjemCTfuP25OlMqsCzTMWSumvFZYwDIN2d3c35iUGntMOR9f4lu3RfXF5PNfzltm6vIY8trYVZVL8ww8/fOSY7Ui33XbbkbGI64RszG1j4G+Wlo5luM0M0TCLi8ceeeQRSWvGzPHN2BztI2Q9md2nSj/H8JfIQi3JL5HMd3Z2dP311zcDz5kkwOuAjDiuedoyeZ/43BYzYYo82pnjPT3H6H1t1CJ4HsjCqF3j/MTyPRZ8dvE8aT1+fK74HDLmLKkz7act7QCf/Xzete4nr6EbbrhhcRKMzvA6Ojo6Ok4EtmZ42RYfUYqhVE6GlwWe04Zm6YISI9lBLIeJXw1KqLG+yqZmxO+0v2Spg2J7WlI6GWbm+VcFpVc2glZSZHquZdfQBpZtssh+xdQ+0rwufXd3d0N6jpIbbSaUXlupxbjVUhWomwW90rbhc8wAYqC7f/OYmrV4DO64444jbY9toW2IDNLfoz2WdhZ/0j5n9haPmdnZpuZz/Du1BnGcyD48Bpk2gtvC0K7M9GjSev6XbA9k7QDvm4wpcM5oj40MhfbdyquZAfuxPq471+vvsczK5m0tAb3GpU1bOhlkK2l5dQ9wHWbJnN0Ps6hoL431R/B5Tabn8W4lK3f/rDHx2mzZXm+88cZFaROlzvA6Ojo6Ok4ItmZ4p0+f3mB2rS1eqJPNPO2ox6XEze1zsq2FyJ5oH8mkmCr9VCt5NL2lGH+V2foo8VRJkmN9bBMlLyPbpoPhBiG3AAAgAElEQVT2PbLOzOOJsUaURjPvMI7FnD1mf39/g6lkqb78Ge170tomFW1BXhNMpt1K9cb2V3GQlN7jNfRIZNqoLAE0x8tSM++JKK0ydsufHpss3Rq3TXEaKKahI/OP7SeT5T2RbXtjMEY00+pkiY1bDO/UqVOHXppZOr3qnjYyTY/rY8oyahSMLNG5y+UzKrPHVmkQXZbjC+N80Pu6SurNfsZzyX64HrMx4TOJz1cj87Z3m9x2Ms3YZt8/FZt2O2IsLO2yp0+f7l6aHR0dHR0dEceKw6PHTibNMrkxdc0Zy2DUvaUVS7GWBjJ26GsYj9PyfKPkw+9ZDA0lER7P2BoZULXRaSalsN30PsvGk5K9pSPaVDIbZZboN/YhsxHEeaviEcdx1MHBwWG5mf3Xc0fWRntMZHgu7+abbz5Srs8hU8nAGD3aS7IYJ8aZem16jD320nr8mfSYErG/RzsTY9yYjYbrMNZjxkD79t133y1prX2J9+999913pFyPq5FpMDwvtkUxCXaWnYV22paEbu9w+gdkG/O6j1XC7Ag+K3xN9HiN/XHmn3jMc+Vr/N31mT1KmwyS7JDfs3PpWUov9Hjf8lnkdUB2GuHy3VePsceK8b8PPvjg4bV8xnuefK3XR2Z7pT8AtS7xfqKn6IULFzrD6+jo6OjoiNiK4Y3jqCtXrhxKBq3cj7RT0WMnSiLU59M+Rt131DkzK4HLtVTNHJf8P6LKmhD/p6TtttJOkdkMq5ydWcYLSsWVh6frj/YFX/P4449LWktyzBUZPa+qbWBamVYynXwFe/i6HpcbmZelOEuN3CaIHnAuV1pLj3fddZektYT65je/WdJa0o79oecmvQvNouLY0n7AGDR7QppdSZs2Om6Ca2T2J8YVMqOQ0ZoD3hMeM3+PLPvOO+880oZnP/vZkqS3vvWtktaen3GtUhPDeeMYSesxiGxgbmsperNmGZdcp+e5spfFa7xW3Ee33+zWZT300EMb5Xj9ej14DLLnjtdglXmE97S0nu9qW6DqewS1X4Zt4tH+67qZw9P3BDMYZR7F7/7u7y5JuvfeeyWtx9f3pteYtF6D9K6ubInSevz8HHviiSc6w+vo6Ojo6IjoL7yOjo6OjhOBrVWaly9f3lDJRQpO1QrTXGWu3oeNwbY91W7VmaqR3xl0HVUbLeeU2NbYFwY7Vjv1Zmopbp/C3diNTNU6l4iVAerSphqZjgZZmjCrmKp0Z5ljDQ3OLdjxgG7uWcD8/fffL2mtCrFDQKb69VhaXeTAb6qcrZ7MVH9MP8Z0UREeS6surVJn0uJqy6tYD9NDuYw4L0wHVu3unAXjM/SDa5UOFvE3t80BwB7f17/+9RvtYKpBusxnjilckzs7O7NhCVQfZoHsVgH6kwmZ43PH6+uBBx6QtDYBcPd0r6XMAYWOTa6XTjmxLT5WhdTERAB8fmXhFdVxpoFzvXToiuPILaWYnMBjQFOOtHkvvuENb5C0vn9jKjDDamOmhqRpKPaLyRf29/ebyfsjOsPr6Ojo6DgR2Jrh7e/vb7jCR8mMbtTc4iWTKhisyy1YmMA4c5YhM3E9rY0RWV4rQJIMj276rc1cszQ88dosOS0TDZPhMcA6XmtpiRIzXZxjOqoqgL7auikey1zjM+zu7h62O9syxhKv203Hhmxsybic3JmOT3a2YOC+VDPvzMGKgcUMNcnGyfeA+1wlJXabowTMfhrcNijeT2SX/u4xMtut2KIk3X777ZLWjg1MZh7nmq7jDGznxrBSvf1MhSzpd7Zxrctj8oUstIDPAd5TXitZ2kKG75gd+lpu2Bz7TO0J75t435KdU0NROQfGawyvQ7fdjlXxOeBrmLS6Ck/ItguzhsbzY8Znx7K4cS9DV9i/LCk2f2uFQxGd4XV0dHR0nAhsxfCko5IrWY20uVEl39yZXaRKckq3/UziptREXTeTk2b1VFsJRamCqaNom2QfMhbCczM3ZIJu1Rmji8fjNTyHLCHW6/7Rjspg0szOWNVH7O/vb+j+o02FErUlQUuTmZTrOq3P59oxW7IEnjEJ2hVpY8tCMWi3YnBtZnPgd9pWMjsM7TpmUe5PlgavsqMz0Tp/j+d4/BwiQg1KLIMpxKqtrKJkz3CbqDkinLSAWqM4l0ymTNsqQzOkzZAbMl9/5z0g1eEPnh+m9YttyJKuxzKydGRMXcZnCJ9/sXyGSHCMWkkyWK8ZPzVosX8+18zOY8IUd7EejwGTP2Rs3v/HbcQ6w+vo6Ojo6Ah4SqnFWsyE9hiytMg2aP+Y28Yis3W1bChSHuheeT7Rey5eTw/OagwicyGbYZB6JqW3Ai+z45nnKm1EVTLZCLIR1hvHhAy/tQmj7b+0tbTSm1naYxLa2H4yYNocGOSdeSRyLFvpqGhntpeZpVl/z7zllm4enG1lxTGhfTNiTuvQYnj0JPR4ktlFDUaVGJ629pgkgmuzJaH7uVOxndhnshmORdYezxm9w11+ti0V1zFtUbRVR7DvnMtsY+ZqA1hqNCJicuVYhr9ndkYfs12v2kA3e0bSY5zlMzg/lsPx4zOf6d5if5ayO6kzvI6Ojo6OE4KtGV7cxiOTLulxRj15y9uP2wOx/ExKq8qlpJDFClIqrLw2pU3mUDG71hY83PbIaDGkatPWyg6ZlcdrW9sfUSJuSeC0CR0cHCxO8ZPFAtKLkRIq9f3S5tzRu7VKARWv5VrlNlRZvKJtQWYH/vR8RSnW4+Py2J+WNqKSmqmVaG1HZPB7lsCbMYFkaZmHdLXNlpExV5bTiqXa2dk54rmdaVeYeL5KvZVtJMo20auUm67G8pguMGPARmV357NriR2O92tm22dSdIP2xWxMmEKMPgz0Eo7HeK8x1VycNyaIz9YF+8AxWfrMkTrD6+jo6Og4IdjaS3MYhg1JLPNiIxNq2XcqW0al52+90bMta+JnPIf6ccZhZXF4LSk0ti2LG2K5lbQmbdozK1tli2W3PDmJKoH3kjKy+KoMOzs7Ta/PKtas2pw2tpOsorIFLMmeU7Gq+L89zRzLZA802jxina4nSzAev8drPT5mOIxrzcaE7JbrrMosFM/llkVkH5kdlTGwLeaaJU5urZ1xHDdYQGw3t9bhXMZy2G6jsr8xLji2m4yE7Dqrr7LHZf2n1qGK6WWGF2lz3vlsdFtjH8hy7VnreqlZyJ4HXHdsR5YViHZu2tzjNdn90700Ozo6Ojo6AvoLr6Ojo6PjRGBrlebBwUFzj6k5R5NKVRZB1Uv1Gc+lyorqqiUJjqlmiW7kVZ+XGEypwqzUhJkajCpAHs9ANVTlvNBS7/DcFqxiaKX4ocMT2yptquKoNsoSMzMNVMsNPZYdy+EO3QygzhJz22nFKbisArL7dBbSUqWno0owU9lmiYUj4jhWO7W31gz7V+083UpWTtU81fItR64WnLSeqfEytSrXENuWqcHmkissaT/VdVmijWqeWV+mqs0cZ2IZrTABhsNwT8WYbq/aF5Prgo4w0uZzm8/kzNmoMgUxcUhcb3RWWbIf52F9i8/s6Ojo6Oh4F8bWDC8iCzFoJUKVcsNtFZS+jbtpJU0wTVRsL6Wi1q7sTwWUDOeCyuM11Q7AZMqxf0tCCiq0nItYT+XoUl23u7t7OMaZU0GVXJfhKnFezHhYbpUoIKKaF25zE/vsYzbm21nFgbpZiAl3j6YWgunOMhZiV3I7y7Dt0fGgciEnsvuLged0kiIrZt3Z98zhq0oW3AI1Lx6TiCwVVbw2q28u1Ce7pjqXjCxLOD2XeCK2nU4idPLgZxaelGl0pM0d6uM1ZHKc/2ztVJqkloMVz6VGLtMoZM+d7rTS0dHR0dER8HZneFVoQSuUYY7hZQHTVTJnf1+ypZDB4NX4fyXFbNM/fmZuthUzmQsqj//PsbX4e2W3YL+yxM3G1atXS0lrHMcjv2UbylLqZ+LfVmo5BkpXgfRZ+6qwGDJ+adNdm4GzGQtl3dXWVS1brs81wyM7zOzotH3OaRpiW+ZseJGVkglzaxnWF8uJ98Jc2Aw32c36HO3Jvi4i286GbLBKZt/aoqgKG4gaDI8Tn0VcF9HmxnCLiiVl9jr23W2l/S3a8LhlFO8rhmxkz5DqmZwlm6B9kQH2mZaF6/jy5cud4XV0dHR0dEQcawNYI2NPZCRL0lrF8qX5DVMzhpdJYVI7XRelWLKqJQH17KfRCuYlS8sCQKnTpocXy85YDyV4Bq+3wHNaad2Wbg80jmNzq6cqYJXptDLv0sp7tUoxxXbF+ng8SsTcsoiSt/tjT7isr9XWLpaaYxtpg/a5TmWWbWjLaznmRrYeKlsNxzXbZonXclyze37OqzZDKxE41yDHL7aBdq9qrWTPJdrUqmdWdl+yXN7jkfUwzV3VzyzhOZ9zHGuv4Uz75a2RvA0Vt4BiCrqsvtY9R1Se2Vny7cxPozO8jo6Ojo6OgK1tePv7+xu2tsz7ina47Fyj0pnPfcZrjcrGFSVUSq+VBJ7ZYbJUN7G+jC1k9qqIzA7DBKyW5Jckxa1sUuz3knRvrXOpm59DK91WPMa6meLJHpHSphcX1whZYcvLtGLPccNKbwPkdj/22GOS1pK4JePIvKqtalq2QoPzzlRjZpzx2ipOqdIStLbqqqT2yPC4FVMVRxvBmMQWrBloeQi6T9W9lnlaVuuf938WA8dnRcUK49gyiXJl/8u2lprTEmRzW3naUisQx4obG1tT4XuO9udYFu16lSYte1/wO5/jWSJ/t6l7aXZ0dHR0dADH2gCWnmOZXnzOXrQ0w0L8bElpc96LUSKl1MBYFyPzyiIzYT8ytlB5dhqZ5EpJy9dYGqzsDrFu2i2WxP/NjWdmN4nSbMuzNsvEksUNVbY0xtxJ85I2PRVbtmMyysxOYS82Z1Rx/T5uhhf7RRtJlVmjdc8wKTXjlGIGFv9mCbjaYipbq9Q2VOsg3k88Vtl049iTubbgTCv2EMyYGTfINTOpbF1sT2wL2VQra0pl0888SclePD9eO/RYjNfw/q8S0GfxkT5GOxzXR1aO53SJNqfSILDsuWPS5vMmjr3HK2491xleR0dHR0dHQH/hdXR0dHScCGzttLKzs7PhktyiqpUBewkFrVRvWZqw6pPnxeu5u28rUJYpb6rkzln/qHaz2oUuuFH1RfUAd2GnSrXlbr9E7VqllGJ7MhVkVHfMqTzoXp05rVSOEq1gdQaczwX7x/rmXKGjYf7RRx9N20SVYxaQy7nMwlHYP/9m9U2lfve+fFKdbs1gG7PxbKUS4zUGEze3wnwytW4racGVK1c2EjVkzmsM8aDqL1OH816qVOrZMTqx+Vo6pMTy3Qa7/NvxyWVEFTrXGUNNWo5ndCKp5j0LocqcbuLxlrMR0wbyfRHLrJ7x7GccR85XK2k90RleR0dHR8eJwNYMbxzH0rAdUW3X0Qp6brkxV9dWzK6VnoyJpSv34Mz1mkGiFYuKY0LnGDIKI9vao5Lg6IadSWkGJcus7CqBLtFyGGnBUjrDBGI9HNsqpGWJ4wnPyVIUsU/VVkx2RMna5nrsEODPjM2Q2fH3bCsUBt3bGcNrNduOiJJ95c7fchxj/zjX2RZNlTt6K/3ZksBzrx33PetPlWydwfxZajGDbWHAdiv0x9/dxsxphuNgbcEjjzxy2E/paFJsX+/5jgkNYhuNuO6r9ZYlODAqZ7jK0SkLuK+clZY4KlYOdxHUBPXtgTo6Ojo6OoCtU4vFN3rGoirbzxKb2hwyRkm2VEmZ0eW3SiybsaUKlcu/sYT1tGxHlM7cL0p6mZ2GTKhivZmdqWI7Wb8qe1kLlJbjHFSJf1ssILNDxGtb81SllqK9NtorPEdmXlVy5Wj3c92c02oj2GiPoz3RruRmBVlQNMepCt1wO7KQHdphyLZb9l+G1GRraVvtwKVLlw6Zj8ct24S2ChfItEe8huuY85IF93ue5zZojef48/7775ckPfjgg0fa4+QG0nqcGfZiVHa6+L+TE3j9uQwmgo6gfZNaloo9xrbweyuV3VwoQ8v2vg06w+vo6OjoOBHY2oZ3cHCwsX1LJiHyjU0G1vIuIshIlqRCol0ktpHecexPi0nMJQDO+kWpyJKqJSx/RptetVkk68m89ir9e2XnbJXP/mdYaodxiqiqnmprFbK3TNqrbI5cB1ngPO3NnGPPj7ROM3b77bdL2mR6Lj+mP2OiBpdntm6W4N/vuOOOtC+xfo9NrIf1MfEw0WI9PIcMImMSPLdlh2klTsjOvXz58qFWw/dPZrdmEHzFouP/9Cbl/NPmL20yOyMmAODv/t9emWZa3Cw2sjj3yx6d9AbmmspYND2YPSb0/I7l+blTab3MOON6cT/4XuDzL7Nvt5LKxzbHc7Jk8nPoDK+jo6Oj40TgWBvAtrbgoZSX2Ql4Da+dS4G0RAecJR01qlRP3HA0s4vNJXElk43td/mWAi2pcpPF2C/GxVFa43FpfsPPTJeexWTFenhePHeJF5btv7TLZcmc2W7aDzIba9XOlh2mSghOL904tmZYlqi5ZlzvDTfccHgN2bPLo3cwpetsLHyO7TJGtBlSKue40nYZx45stEJrG5oqvV+WgjCOeUtSt6dm7Gv2DCGbrVh7PNef3GzV1zAGMvbfffY68Lx7Ds3MpLVXpsv1ObbZZfZo11n5JHBT17hWvUb9nOFzh9+l9byTYZldZ1vzGPQn4P3T8lXgmNCTNNtG7Di2vM7wOjo6OjpOBLb20ow2vFa0/1wGlJaXZiUhtrwLK1tNJiEwYwczn9BbL5ZHPThjdjJWQLZriaryxIzlGZVdLruW584laI3XV9JSdryK0cngBMBbxcwUWRha8ZhkDq36qkwgLCtbq2QHbqPXUibFMhaQWxsZrSw9tPdk225VDL8az2zrlep+zea62tKlpQFgUuCDg4PmOt3Z2SljAuP/ZHS+hpk74jG3wSyGaye7lvZ3MzuzJjK++L9/8ya+toe5/MjWbaN1G8nAPKZuR7Qh2tv3tttukyTdddddR84xs8xiKukF7jl1e7L7q/IC5rOz9b6oMiRliM/AxZ7+i87q6Ojo6Oh4F8exvDT5f5TMqtySZDkZSyPmmF92LaXALJaKudjIyiihZG1h3A0ZXpTaKdGb4dE+l/WrytlHZONZSfJLMmxUOTpb3nkt2AZDSTXLfEFbBiXDVqYVxg3RrpAxPkqTXKOxPnpUGrbzWFqPm8ZGG4m06a1Gb7OMhbhc19/KPjOXB5HrILv/aIfh3GT2ZtrYyfhaLLRa174u5mlteVxyPHhufA5UG7yyLPcneut6Tm1LpT3en7fccsvhNXfeeeeRT3tjem652aq0zqTjc30OPYhdf1x3rttev2aUPsfXZNmTbHusPFV5n8Vzq7loxetmfgXZtdn1rexdRGd4HR0dHR0nAv2F19HR0dFxInAsp5VWuimmWJpTd0i108Nc4tKsDVUwacsdvVKpRqpchUZQ3ZaFTlTtbyU0nktz1DIAV+PZSjTLa/lbplpoufxn2N/fXxTSUqnrsqTBc1svVeMXy63SZmVjwe2AmDQ4C3D3NVRls6xM3WrVEXdSrxIsZP2pwgMylTTV+m4Tw21aZoVqvWdrJ85LKywhrp1MNTa3XpcEJ3NM6SqfJeieSwget/rx/Ful6TZ5br0OokrToQwOVue6o5NMdFrx/1a7+jufP1E9zWQFDMmg01RLrVw9M1tOh1W6t1YS6b49UEdHR0dHB7C100rcqHEJu1iSuHjOFb6VtovuxxUTapVbMb6MsVSbhlJCWerIEcvMHA+MjDnE8+LYtOanQsXaOQaZG/ISZ5iDgwNdunRpIzA4c2+fC3doXcO54zhmAdWV+3y1gaW0GfxMphmdMCzBM8C8csHO2GHV30xLwbRQLrfaaDYLIudvVchGvGYuBClLD7UkTMVrx8gckNg3jmkrHIrPA7eTz64s1MjgXMbQAsPz4nABO5GQRbWcVpg8mok9otMKE51XzlhxHJmKzecyIDx7ZvEYg/L9GTVNZMjUDC5JGNEDzzs6Ojo6OoCtbXjjOM4m7OU1GVpSenZO/J4xr8r1dWlyWil3tTUq1kemRxtLhiwtTywromJ6rXo4TtswvTlmmbkHL2F4LoPMKEtvxqTRZAGxnjl7Ee0VWbo4g+zGv8cQEybt5vpiEHO8xpJ8FW6ThWq07FaxXxE8h/NTbfkTz61s1dl9VAWct5JNLAlHMIZh0DAMh2PuNRTDPZjEe0lIUxXCMJemLsJzyrKYuFla99m2NIYHZGkYfa6D1s3+mHiA6zz+Vtl7vVYdFiGtwxFsM6wYfpZgg2CbuF1U1ucqsD5ew9CImJRgDp3hdXR0dHScCBwreTTT90TdvCWtinFljGRpAPMSjx22LUsEPSfJtTY1rIJpqy1FsnooyVNfHUEWVXlCLgnGbyWGrjz4Wt5uGfuoJC1rByjZt9KbMTFAi11UaNmBWT4l4lYiZW4txfUQpeaKcfs4bS3ZPcJ1zLRkrfmf03JkjNmott9qMYnK9pnZqJdoYNwn3uPRrsdtk7iGaJfLwK13yG6iRsbl0muS938cA9qvrQWwFyVZavy/lX4uti3zKGbyDY+bP6Nd0AzStsPKR4LHI9hmeoPG/pHZVV7i8XnKMV/K7qTO8Do6Ojo6Tgi2ZnhOESWtJYYofTD57Fy6mfjbnC2vlR7I0goZBONGeH28hjFIGeOsvMGIzKuoQlYfWUZl62Cb+X+svyXdVnFMLCNjylGSXCptteywBllU5pVFpjgXC5TNy1y8UBbjRkbnT7Y5tpE24sxLLpYdz6mYUMaUKy9X1pfZRyqP1Wqrl3h9tVmxkY39UvuvNQTSWsKPMW58hmTp+vi9Yis8zvRuWXlkg7SxSeuYukceeUTSehNhpwCz92a0TVaxsz7OOM3Mi5obDdMrNNqb3UczPZ9TMf/smcW1woTqcQ1T28F1wVjV2Ofs2TeHzvA6Ojo6Ok4EtmZ4wzBsSNzZG7aKE8psUS0vqIhMl87NGikZcBsS1h3bSmk56t8rdkQJtTUWVT1GbOPSDBHZeXMS/pJyyCwyppnZCObaW8URSvUYkzHENrTsn/F4NgZkTbSttlhH5TVJe6C0yaj4nfalVmJ19iNbS2z/XPaczNOODIVJ0VvbH9FWkzFlall2d3fL8bZnOJ8d0YbnZwJtQUwentlw5+zyZkD2XJTWTIjbQ7WeYWY6ttndf//9R76b8cUthRinxkxCrt+MLDIh/08mR61YvMbn+DeuA3+6jRkbZfxdlY0mu4bvFm7OG4/Fa7qXZkdHR0dHR0B/4XV0dHR0nAgcKyyhUntJm+64VSB4poKaUxtmgcg8lu2GXIGqy1YaIqrVWnumVfVQhdJSmVE1kqkD5sqac0TJHB0qJ6MsWJ6u8nOqhatXr27MT+ZOPxe8nzl1cHwq1VLW52z3bSl3QKGKhwHobkccJ94vnCuObdx3bQ6ZQxIdnKqwjmydV2nC6JgS1aB0UuBcZKE6Wcq6VkhL5rQVj1nFyDa0HLWqUCOq2egsI0kPP/ywJOmhhx6StLl2snGyio8Jod1WqzTtvBLL4Z58TIDgNkY1L5NSe/x9jtWg0WmFO5ob3FHd/YoqzSqciH3I7nmatXhPxPspU3t2lWZHR0dHR0fAsZJH+w2dJXGlQdFSTctdt0odVUng0eBdXVsFwy6pL2NNlF6WOgZEtNrE+qpk21VC5RbmmJ5UMzs6AUXJj7+1WPX+/r6efPLJw3MpqUqb41G5lmcB82SHZGfZWuUxSueZNmIu9VrGKCj9Vw5cWVhOxcpbabvodEEHESNz+KlSdDHkIM4VHVt4L7SSMcSUbC2GFyV81xcZl5mJ22km0nKwq1zt3Q+PW9ZnzqFTcnFLobhdT5Wgne76cZzo+OH7howue/6YuVVb+/j3OI68z9l3srXIYN02rqFKsxDbXWnxGCQvbYbDnT9/fpFGT+oMr6Ojo6PjhGDr5NGZhJwFlFZ2i0zao7RU2Tgy1/i5ZLpZiMGSgN/se9Yvg3aSlrv9nNQey6uC8Vspv6qA3yp9WPyf82NpqpWiLW4p0pLSL1y4cCipORVU3M6EmwdzXDJbFNcKXeLplp4lj+Z4tRI2M5jWUi0DdKMdjmyT9j+DAbqxbTyXbvaRfTCQurLptbZKqoKIW3Y/3must3XPt9bOwcGBzp8/v2GXi20wW6lc4VtJqnmv+VraVG1ji3Wbwd19992SNreCysI3qgTn2XOJPhFVirTMv6FKAsJQlngP+n+32333cW714y2Ost+qhCFZEvFKK5Fp9di/bsPr6Ojo6OgAtrbhHRwcbAR+ttJNUaqZS4Is1brujB0yiLfyymolKa7ObUkilW1tSXB3FczZkoCrsiqWEo+xzdk1lZcm0ytlwcNZwHzW3syrLtoP7PFVebVmbLfa0onj10oeXaUoylKZcVxoW2G7YttoKyTDWrKGGHyfaT3ICrg2aI/LUrWRbZLxtTQKHLeWJmiJl/PBwYEuXLiw4amYjTG3DqpSf8XfeH9wTv150003HV5rRsf+uH4Gfcf//ck15DGPdr/K3s97gmMtbdqiOZdZgmv/73Rn7nuW+Dm2ObahGvPMk5Rjzy2gqNmIbYistjO8jo6Ojo6OgK1teJcvX96IS4lvYUsR1XYmc+VHLN0aJ4L2i8oGll1DtOx+lDKqJKjxWJUINmOc9JKak2Ci5FVtytjydqTdinEwmZRO+14LZng+1151mcctY8FaW/xULJZtbG1YWSUEz1gBmbDLpzdylqS4SoJN+0WclyqxceV5GUGbWhUvl3kj067F7/GaKkaU9piWt+vVq1dnvTRpY4vaAY+/16tZRBUTKNXri0zSnzHmzKm1/MlxyRJOc+NS2x2zmESDKcTimES4jdm9SKbHLdziXPo399Xfq1RfmbbF81J5fGcxstxuibGDEZn9dyk6w+vo6OjoOBHYiuEdHBwcYXOWnjJJq7JbtGKNKl8xHt0AACAASURBVAaSSdoG2VN1TSZdVrFmWZJigm1uZVGpYsRox8hsikvYE0HJqrJrZnYf2oRatqLonen6ltrwssS1ZGOVTSDzZmUSX2bPIQOL5bH8THo1qgTDXHdZ3FAV/0ktSDyvYg5GNsdVfBmzf2T2IbIo2m5aWwpV8XfZ1ka85+bi8Pb39w/HhZuh+vrYLq8rMx9662btY3+8ZuyhGDOg3HPPPZLWtjwzItrJsmTOXPtkwnHtMGaOa6iVmNnH3DbPIec/ovIYZZJqf0YG62O8ls/KbH1XGqVsTWTP+G7D6+jo6OjoCNjahhd1ydS7Spu51ih5ZXExVYaGivG1PC4pXWbXzHk+Lo3aj9e0cvZVoPSeMTwyxyoOMLPHMZNG5U0X/6dXJu102ea7S2KpiKw812mJlHOYSelExW6Y/SGWS6/jLL6waj+ZZMYO57KxkO1kcYasp+VpyT77XI5BK2sKGR7vo3hN5QXc2gqK43Xp0qVZD2faiKLtlXFv1Exk9t8s+048h+wpsih6VNqrkdvmxGcJM5v4k9v2xGvMoLg2qDHLPHLpbcrclhnTc/meF+bjJLuOeThpv3ZbPDe0zcf/qyxELYZ3nOd1Z3gdHR0dHScC/YXX0dHR0XEisHXg+dWrVzeMvZHWmgozISqvae3QbFTfn6pK06C6o3KHj+VVqAJBYxvmkLmHszy2o0X9WypMfq9SirVUmnT6mEsmsLOzs6E+zNy2GZDb6hdVypUKKzPu04jONeSxz/qcBe1KuSMEVZZUOVcJySPojLMkTMBqNSbqbqnqKuerTCXI/vF7y+mMzj1L0kO1UhBW4UFeU5mDDlXjlRNZdo953TppdKZalo6u4Sp1WasejneVxJ51SHXyACZ5zpxXXH58tse2tea0SgZSJVyI4HM0SyzBMdjd3V2cTL8zvI6Ojo6OE4GtnVZiaAKDbqXN9DmUMuj6z/+z7zyesac5h5eIKpShxdKqsAdKG1lasirsoCXRt8qL9RutRNAVWtIZGR7nPJ4bjcjbBMjHcrM6KhYTJcQqRRXPzbQDLpdByqwvk7gZWsIyYxupOSDD8/eM0bJ/1ZZS8XiVsszl+150mVl6qEr7kTkeGExKXKWWir9Fd/Rq7QzDoL29vcN2Zs4mFWuotn6Kfanc6Mlqs23QzPBcvp08zKJifWwLN2C1Y0h2L2ep/WLbXE9Wn8ulw6DrjWPna8xg3R/384knnjjS9kxLZFRrJq5VXsPkCK3kD0uc2IjO8Do6Ojo6TgSOFZbgt38WYuDfLGkwrVCWaqxKO0bmkyWaraTCVlLaKtyBEknGvKog1dbWJZTCeU7mHl7ZL+eSSmf9qlJYRVRMrrVNRxV0XWFnZ2ej/VlYAjUHLdtuxegtYZNFRwm4SunUYte0dWYJpomKnbE/WchJ5epPlhb7xfVE21HLVl1tS9Wy5VWJIehmn2kU4rpq3ctnz57dsH3F8/3bNsHvVVJy9pkhFNL6OUemx41fI3tm6I8Zlj9dZqynSpxfPTuiloBt8HcH0mfaCKaNNJOrmF7G8Kp7gSnOYhtYRhw3XkNNQmd4HR0dHR0dwNYM7+LFixs2iJgKh0GVlir4Vs4SJVd2ESLzZqStgwGzrTLJ8DJ2OOetxuOZDY8SNyWsTDLK7AetPsT/q0/aKqRNCZIB6P4e5zqzpczZYar6Yl1sQ7XNibQeu4ppcewz70lKphVrj/1n4G8WNFyh8qxd4s1bBQ/H7YnmkkWTHS5Zd0s8cSs21bL/xgT0rbUT+8f2xz5WNs4Mvp4244qxRuZlhlMlcb7xxhslHd1clYHYtN1x81hpk71UNmomG4j9oF+Fy28lEWD6M7NP2vDiGJF507N4iQ2+ssVn9lq37cyZM4sTf3SG19HR0dFxInCs5NF++zLVj1RLE5bKWtJkJWkvjbGQlm1DVEmiS9jgXNuoW4/nVAyv8sTMfmPbqlRj2TmthNqVrY5xc1li28j4W+2Ic5NJ0ay78oiNddA7j2ydUma2oSTbZyk9ky45v7RFZmNbbYbMfmWJ1blG6PXMFGDxN8bjUaNAT7hYT+WpmI1JpUmotAbSpiaotT3Qzs6Ozpw5czh3ZKqxXRmLyPoRzyX4DGnZvKl5oZYi3i9zNumsjdX9XcUKxvaw3dXWUpn3LDU6Znj+zkTRsQ1zz7U4N2wjbbHZVlCcnx6H19HR0dHRAWydaSVLOJxtgUGGx6j+zPOtSoxKCbi1gWAlPUWJe2ki5uyayoOv8vzMfuM5S7KkVNkYsn5XsWlkH1G6qrYBoh0gs4Et8bQbhkGnTp3asOtEZO2KbcjYRSxf2mRRVaLmrA1kQD43sif/z0TTtD9nkja36am8RFuehMyawe/xWBV3Rwm5lVCbx7P7qdr2iL/H8bb9aomGYmdnR9ddd12ZTUdaz4dtZtHmV7WNz6Lqvsnsw7RLVgwswufMbdMU13+1VVVmf5Py+M+qHa0tv6qtjPhczxhzlYUoY9/UKFTbK8U1Rq3h9ddfv0izJ3WG19HR0dFxQtBfeB0dHR0dJwJbhyVkBtyoquAeT9VeTFmqmErFs81ec0uMl1QPLHETr1L6tJLqspw5h5dMhTrXxsyRw6CKjCrDaLymw0gVnpCptGPbWirN3d3dMkVSrNvneC1RXdEK0WiNKVGlQvIazVRZVXByS01EVQ8TALQck6i6ohosc8evUjllYRZsa7XOOBbZc4COLhyTbL2xzRV2d3cPnyXcIy5rL5PXt5I7VE5sHPssDZ6fc1WIURxrtonJEPh7q0108MtMKz5WJYhoOY7xOc7d2bP7qnq+VenD+H/8TvNVtkaN7rTS0dHR0dEBbM3wMhfmzKBIhmenleyNXSXtraTnDHOOIUt+a221M+fYUjmZZNfw2lYKq6ptLCMLPKc0XjkHxXPoyJEl+WU9kblU4+21Q6bY2m3ZUqXXUOa0VIUhVMgkU1/jNUrX6IiKQZKdxfXNAGc6tnDdR/ZDJ5zK0SE61lQhBRVTzhxQuDa5XUvGQujs02K9XJM7OzvlPeykBZzbWJ7nrkqrljn3cN7jVkVZPXGc6MzBseW6jOfOMe+WI4hRhSllTJnrr5VMguEi/Kyed/EYn9sMg8m0EdV2QJy/WO6SRA0bbdz6io6Ojo6OjndBbB2WILWZgt/QlIAq21D8v3JjpSScuW1XNq+WjYsSJRlEFlpQSRW0A7TCILYJLTC2sd2RKVQJaLPEr0vDE+Jv7GeGcZzS0nld+NpWKiRqCexyHttQpXirJNEsrGLOxTtja7TzMT1VBgZ6+9zKZhTra9ns4rXx/yoo38jWKlEFNmeskMH9HJvIJJbUTVTu7tImI2ASYqc4jOPk9cU1Qk0DE23E/8kG+ZzL1luVAKJlZ5zbYoxtj7+RyTFdWAwr8zGPDa8xsqTlBhkdwzDi/Lkc+npw66Js66zI9HpqsY6Ojo6OjoCtGZ7Ti0mbwYJSnaKq2txT2rQf0RZAZMyLUlJsr9QOBK3qy7zliCrQfYkNjywts8NV57bsjXMB3K3g6CpIPSvTc1kxCvY9po/Kxsm/Waq0pMttTrJ6OM/Z5rRZm7IyKk1D1u4qifQS+wI1GJkUayzdWkhqpwGLbaa3aKynsp+3xpMeuPQGjgyP7d/f32/af69evbqxLriFTAamgosB6dQoVGnUaFOOx/gs5DVRG0H/Bn/SdpwxoGrjXd7jmZbI489tidie2Ecf8zX89D0Zn5Fuv/vD+5Wfsb1kiln6MMOp8uJm4t1Ls6Ojo6OjI+BYXppVvJy0mXqG7M0SRJRmq7czJa0s9mdJuiRpWYwbf4/6+blEs60EsEvTkmUMj9/nUj/FdvMaSvSxf3N2vlac31L9+TiOG+3O7GMu19I4mV8rNRGl2lYiW9ZHm1O2NVOVlq6yscY2tbwM43lZOXMbzi6Jv2K9ZCVZf+ZS3GXlcs20Yi+jza0lpV+9enWDpWUamEor5N/NDiLIgIyKsUqbqbY4pmZI3k5HWrMiP/u4EWtmnyUroh9DtZVRPMZP99dtzOIL2XeWb0YWWXZls6uSlsdzmRrQxzM7K7d+i9fPoTO8jo6Ojo4TgWPZ8KosDNKml1K13USUDKoI/SXMgR6ctKlQwm+hih/Jzplrc+ZpVzG9JZiLA2xly6jsfq1rMjsf25FJmXNxeJyfzMO32og384zj2D6VjDS+1tKtJUl64mX1xX6ynuqcKoYv89Jzmyz5Ml6ytakm66XNKtZHG3uVtDyi0gKQ/WRsfomXpuM7zc787MjKo82OMZXxnjPjqjYu9VhnW+FU2+dU8XLS5rZTVYxlbGNl/1oyL5VPAvubZazhnFb1x3WXbVUVv2c2eHoqe4y43iM4x8MwdIbX0dHR0dER0V94HR0dHR0nAsdKHk139EjbmSKG6oxMBTendqSqp+V6W+2HlqUUquppucxXRvwlTistJxXWxzZVjieZWqJKwUanggyVKrOlEqQapFU2HV2yJMtWfVSOIdE9nCqWypifBZFzzqr2Z8dZnr+3xqBKJdYKqK4cKRikHl3+qRKu5i5ToS7dKzKqeTmndPrK7kGqzFoqqZ2dHZ07d+5QpelxypzK6NxRfY/HbrzxRkl1CI7VbJkqncmWGYLRcqyo9vvMxoKOLduYQ+bUx1kqM44n1byZ+rJK79YK/q9SwTFcIY6jx/Y4pqHO8Do6Ojo6TgSOxfAqN36fI80nkM2cFYwqfU4WmEk37cqNNnOA2cY5pnIEqFKbtaSOVvA166scTaotP+L/c4x57lirPVndOzs7s04rZEBR6qcbc+U+H8uwswATTG/TP0rAbke2VjmmHOsq2Dv2o3ImaLWRDietLYx4jVHt8B3PqwJ+mS4sc8qZC/fJGF4rMYSxs7OjM2fObKSfiqBzhcfH380ysp3QfaxK+cWkGbE8tpvPuSxYvboHljCWuW3JWtdy/v0ZQzUqZ59qm7fofMhtjsgCqX2L5bL+iqFLmykTt9k+rjO8jo6Ojo4Tga3DEuwiLLWlStpFquTEEZRwaEfwNdFVlYGLbFMWpEjJtwoXyNI1zbWZx5eeI7WZVxXmkbGGObf07Psc+8jmK9sSp5VSK66drK9sL9lFZjdgeqhKQmzZ1qpg6yX2yorRtRjeXCLgViC4QSk33hOVS3m1LrK1yjYxKD/OHxkKmXFWL0M+WlL6MAw6c+bMBnPIElibrZBttNhhFdxPO3Osjwk0slAJXsNEzLwXltiiqlRj2Trhc6diXLFeakpoh/Nni+HZVlfZ5yJbo72+smdmfiLxfuphCR0dHR0dHQFDSyLfOHkYHpD0+rdfczr+G8Azx3G8kwf72ulYgL52Oo6LdO0QW73wOjo6Ojo63lXRVZodHR0dHScC/YXX0dHR0XEi0F94HR0dHR0nAv2F19HR0dFxIrBVHN7NN9883nPPPc3MEFXcEH/f9rf/WlDFeyzJCVjhqVybtauK96s+4/9VjFYWO8aYmXEc9cY3vlEPPfTQRkduuOGG8bbbbtvI5JDF1xhVXswsy0crvq/C3Hhnv7dyiraOz/0Wf38q6yDiWpUTy8rWDtcGY8Oy7Czc6unKlSt64okndPHixY1Gnz59eowZOVpb4sy1O/tt6TVL7rFW2XP1XWssrW+b+ufWf8RcPtal5/B7ll/44sWLunz58mxHtnrh3XPPPfqe7/mew118s52Mq12P+ZLMEkBX+7cZrcGuHtitB2GVnLi1AKrFwj7MBdLO1bt0UfKlI20mVK52Ho5BuAwarXYvvuGGGw6v8Y7NDh4dhkHPfe5z03bedttt+uqv/mrdc889h98l6aabbtooz/BaevzxxyWt9yWLKZ4cxOugXu71Zfh7K1Eyj1cB4hmWvJSrHdUZ+JytHQZvV4HH2TlVgvMM7CuD1xlonf3GIG/Pm3evlqT7779fknTvvfdKku677z79xE/8RNqmM2fO6AM+4AMOx+dtb3ubpKNB3gwor1JTxaQFVWC0j7cS0Fcv+WpfvtY1HPMlqbL4zMiuYfmt+5+g8Lkk7VmVKIT3Rrx/fb/6Pq4SlMS59nqK759XvvKVZbsiukqzo6Ojo+NEYOvUYjFlUkZHq20/jsOalp4fj1VbomTpmirVyJLtbuaksBZtr3a6zrbpqOqrkhjHeqq0WplUSEkq25Gc/SLLqBI3xz60dn2vxqWl3qjYS5UmbMlWOK01W6lgqhRw8VymqKrWV5age249tLahqcacKZqyaysmkak02X5qGGJ/mcJqb2+ved/v7+9vaJSydHpVm7Jky9Vu4mR42f1SjWFr7WTbMcVrl7A0Y24rrqyMJQxvLil1tT7ib5U2Ikt0znvDc8zfY3tcftwSa6k5rDO8jo6Ojo4TgWNtD1RtUVNdI7UZVyU9UAJvSYBz9pbWtjZsv/vFbYuyti5hsJVE39rahf2pEsxmdk3WVzGwll2zQvZ7tFfMsXPaF1sMr2JvGbuItpkMZKNZeZVNN/aZyYG3uaZKzM2ysjGsWAd/z87lmLcY+RzDa7EC2mhs/83myAzPtsA57UBEi+FVdjfapGPd1calSxx15pD1q2JR2Sa1cwy/umfiMfY9q8eYW2cthmdwHbS28fG9UT3rl7xb9vf3O8Pr6Ojo6OiI6C+8jo6Ojo4Tga1Vmvv7+00X8GrPr5bzw1zcy9w+YvE3XmtkTgRGpXLM1ISsbxsVKp0wWqq6yoGDqrnjxPAsccogMnUE+7W7uzvrnOT2cx/DrO7KySKqxqhqiyqrrP2ZyoeOB63YPjqlZGpvXsO2VrGC2bzQ8aNyQGjtHF+p6jJ1W6VaXOKsYNANnfvxxWMORTl16tTWzmotlSzXg1WoMZ4v1i0dDa+J5S+51+ZUwdm5VH9nquZKtce1me1txzHwOTyeOeNwDS2Jb6WqmaYvvy8yZ7m553cWdnOcZ19neB0dHR0dJwLHclphloTs7W/pYS7zijTvRm1QQs2uoeSTuRRX0koVMBn/J+PitS0mVDGYrF9zktWSYGIapVvBqiyvChrNymvNi7Gzs6OzZ89uSNMtZxMa3TPHCUqVc0w8G+Oq7y0HFEurLiO6SGftkOrdvVvOEZTOydoyZwzuUk12yHpabK1Cpv3g88BjxV2yY5uiw0ir7r29vcPylgRMu1yzOCdMcGKFeMysr3LqyByejDl3/ZbDE0OBWv3ntWxLFmpApxyuFTrrSNrQwPA51HK8qpid14WDy2MCAvfZ95M/W+FRSx2GMnSG19HR0dFxIrA1w7t06dLhG5tBglId+EsJIeqpW26rEZm+l1Jqi5HEfmTlUuKKDK+SLqug8iWBoXQXj22upP4lbvAGWS6lpmy8K5flLMVPxVgzDMOgU6dOlS7SsT2U6iyJZjaOlt01a1NWX7Xusrn0/3Opl2K9c+yvslVKNcPzd6bzkjZtNBzryobNdsffWtqPKvja8PMisnkyvJb9dxgG7e3tNe20tD2ZvTl13c0333zkePyfIRKux8c59uyLtLmWsjRaXgf+9L3k71nCi4o9V3btc+fOHV7LftGOabYb08RV9j6jelbGY2Rr7p8Znj9j+5kisHquxza5jdvkz+0Mr6Ojo6PjRGArhndwcKCLFy/q/PnzkjYZg7SWECiJUFKMkg/PraTMLPh6Lii9Ffg5xw5brKnldSpt6tyzNpItZHaRKvCcAaKZFxO/c24yvbjbbemPbCuyektllirn7LSnT58ug3xjGzhnbEMrndFcAHIWeF7Z8ow4l163ZM1Ga33PpTDL2DVtM5S8mag59otrlLaVlhaiYspZ/zh+2U4YrI/p786cOdNkeKdOndoIpI9j7zZ43ZrZMUl5lqx8jgF5fUcmxHHnXDIpsrROeuzk+7Zl0es9jq3/zzyGY5tos8yO0Z7p75Exk+GRTZOVxvaQwXIMMtbofvHcyoM19is+z5banjvD6+jo6Og4Edjahnfx4sUNL81MIo3XSJvebVE6y7YZyspo6WrnWE0mARuMqarSeMXfqu2P2N/421z6pMieKvtSxUoykMlaoqSXVvzN7N39s4TMBLDxGkuKZ8+ebcbxnT17tpSM4zFLgp4Pt4m2gXgO09yRvbTY01y8X5wDMhN/kvm11s4csjg89sttJAOI9fjT2yvRW67lSehjtP9l7NG/kRkxaXTGrv3b2bNnS1vqzs6OrrvuusP2u75seyAyOX5GL00yOtq8Kq/G+D+3FqIHdNZnfuccZ3GfrMfXuh1modGGRxtdxWSzrZ6oVfHYV3bIeKza6id7rroNt9xyy5EyHnroIUVkntl+LnSG19HR0dHRARwr0wo9dSJzmZMMKJFnv1W2tCx+rPLcohdR9KqqPKnI2mI9tNXMMYvMw5MSHaXzbByrLXjmMhNk1/jTUmCUJBkzQzZiL7fMQ9aSVpSeCdthWh6X7JNtHg8++KCkte3DjEXa9O6incrwfERJkYyEm+DSjhnbSJsnpfOMFVbeyFUcaqybayfzkjNoZ/EYeeNUf2ZsnOugYjvRK5SMgWvHYx7rq2IDM3jtVHbs+D/tbi6fzxhpPQ5VvBrtzfEZQw9O2r6opZA218qSeD8+T9l3MrzMzujf2Gay7Pg/t+CxNsf3pMcuxtTRS7PSzGU2eLfFz5nqvor/u6/7+/ud4XV0dHR0dET0F15HR0dHx4nAsVKLUdUYVT50MzXl9WdmZK/21WNqqcxJpnKBprt+VC1UwZOVa3t2Dh1d6ACQqTSrYPxMtVClgaKzRCtlVpVwtkpxFY9ZDWb1oY9Ho7j7ZVXJxYsXS8eMnZ0dnTt3rrkXGwNV3/zmNx/5fOSRRyStVajSWrViVQtVMPFcKU9vZYM5g5XtjHPjjTceXmOVWZUcnfXH/5mOzKiCluP/lanA/YvB7T7msfEcPvroo5LWY5WF9FTJl/3d8x/HxP97bFzfXXfdJWmtpoprZ05FH+HAcyZ/yJxWOIYegxZ43/s+9Jhmzh0eF/eJLv4+HtX8TJju9recsqo0d7zPsiTmVK+6Py7zscce27iW96DH7+GHH5a0ntssiJzPM5pSsuTvBh3W6GATx4RhCfv7+4vTjXWG19HR0dFxIrA1w7t8+fIG24kSAp0IyKKy3Z8rw3XlJpylNZpLtpy5+laprIwsdVoVhkBjb7Y9ENkZk8ZGyYfSULU7M+toHask2KxNrt/shBJ0dk6L4Q3DoHPnzh1KvkwpJElvfetbJa2lSDO7Bx54QNImi5PWrMWflpYtvdrhxXMZA4/J6MxU+N0MMF5DY3uUNqWjY08jPkMmWtsR8X7xWHuM7Mjj/sb/PSZ28fY1nNPIvLjOzFDo4BPnzWN+6623Humv58nzZsYXy1maWizeG9kYk9l5XKo0grF9ZOAev+gcJeVM38fMYqkViGvHY0itDNloayucyvEt6x8dq3ic/Y199prxvedPr6lMK+c5IuOnI1F0eKIWL3vOSLlGKCtnDp3hdXR0dHScCByL4TF43BKcz5E201hREsncwyvbFlMKZRtJWoqoErJmW65U6ZIs8WWsaS4NVWurJDI8swXq/SM8NmYdZH5uIxMUx/54/JgwIJMGK0kps015zC3hX7hwoWnDO3369EbqJTMwSbr33nslraXzt7zlLZLW6yvbXsQSqW0MlkAtLTONU7Tpefx9jb+T6UUJmHPIVFbuVxYGYzBMhRqGeG94rtwf2zHvv//+I22L9yDP9Tm0q/OeiedQY8F0ZPHeqILuW1tY3XHHHZLyTUiJnZ0dnTlzZkNDEe89t8/zzZAp2suk9drxeNEuynGLabu8Rtx+s1snajCzizbEKgE474ksZRoZEDerzZ5zvO/Jfr0+YpC3f7N25U1vepOk9T3iMaP9Xtq071YJvP0Zr6dmgYwuS4Pncnd2djrD6+jo6OjoiNg6efT58+cP3+6WXuLblVIj7VfcYFDa3P6F0iUDNFu6+2pD1NZmp5SiMpZCqZI2NG6ZFKU0ehWRHWSpi3iOJUf3PQtsZVsYCEzPuyg10XOKtld6b8byzf4ef/zxZnq4cRwP14yvseQobQa1Mrif7F3atBfRBmkpkPaTeA7XM4OvszRxTN78tKc9TdKmzUvaZOOcs9bapdczg+/9PbaRdnSD94/ry7aUqbQSWRJxj6OZkZmQJXmmtpPWY+1zowcvYRuey89s/rw/uS5cd2Tr1ALw3m1twUV7K8t3GfF+4VZO9KJkUgFp03+hYnxZsmf/RmZvzYm1K3FMzPbM7GxX5z2SpQb0mLgeBqIzeF1arxEz4mp7svjdbXFfr7/++s7wOjo6Ojo6Io7F8GhXyFJKZcwjnhsZBd/mlKLpiZklEjXmUmTFuqtEqdSPS5sJeH0u41EsxWRMgmAy3MyT1FItmbKlxMzzj3F4/J5dQ3bBcaS0GPscba6tLWda6eRi3dWWP2Q10mZCbNpBXZbtCVESZCwltyjJ0naR6bhNTOMU7wmuX9dD1smY1dgWS8W0Z2Zb/TABONNsuR2WrmNbue64HnivSps2Ydr0sgTuZEh7e3uz6aHosRwZLBke70uzmeh5SZu9y6C3oVlolnia/gXVxqmxPsPMyuXSPhfrsaaCNkPaQDPGRW9Mjwlt+vE3t+Gee+450javC/cz2jWZWJqJ9GkjjedQ80dGmzHXqBnsDK+jo6OjoyPgWBvAcvO/LFKf3l1kdlESt1RCfXvlsZNto+PyKCW7vswOY+mi2j4jStqWrOkpRkkybnfCNpItVZlX4jGf4/rNVGgjiHNgyZ06dEtj2TYdtNUx/ovJuaX1fMVrqu2BnHicnqOxDVGyjX0iu8kS1nIbG3oJ28YWx5gbblry5AbHkVEyjtD1+xyXHyVf2k4rj0ffI3Eu6YXJBNDZ1lquj1s7ue38PYJxVy6/8jSN5XILMGpMvHaztrTi8Fw/7YuxTVwrtBHbIzHa1DjutiOZTdHzMiJjmRHU3kibTIds3f2KsaKu2+PFzVtpS4v3BjU5TCLutsc20q/Av7let91j409JBceLQwAAIABJREFUuu+++yStx9z12y7o+yrzJPVYUEPS2uA4HuvJozs6Ojo6OgK2YnjDMGh3d/fwzR1ZjEGpn3p86malteRjKcwSYrX5ZLT/sT5LMY4jcbxPzJJAux7j/rJ4P7JM2ndod4xtpBeWwU0cI3iu+8kMGJaMYkYHsixLWB5Xj0msgwyFnrKWHOOcc8ud1ga3wzDozJkzhxKiJbnoscWtpJj1gXFlsa+WQN/t3d7tSLsd28eNWrP2UguRxe55nMhQ6L0YbWqWxmmDpkdplgGHXodx00sp1w64fNfrenwPuD73N7JRj+edd94pac027NmXbXDsMaEGwePn+uI6p03qypUr5fqxl2Y8Vzp6jzGm0s8BxmHGe8PlPf3pT5ckPfOZzzxyrsc2e875GDUv/vRajV7IfFb5WnqpR+ZCr0zaFck041rlhr/+jTbrCGY6oW3cc+v1EcfGmiUf87ia+b361a/eaKPro2cxPc3jXNNTfhiGbsPr6Ojo6OiI6C+8jo6Ojo4Tga1UmtKkEjAlzdz3mVqMAZFUd0ibAb7+bnWAr83cmxlETrd4qw2i00W107CvdduiswIdXah+YGhBbIfVNwwpsJogSxpcJZhlyiSXEefA6gG6RnssXH9UZTF4mCpalxkdD5aoMg1vD+RrPCbRTdzt87g76NUqzCzI2vNqla5Vmk415t+ZckraTDzgsaQDVBzHarschonEuWQqO4NJzK1ijG20KpEhBVZteSyy9Ge33377kfqYPi4LHXIb3Zb3fM/3lLQeX6unsl2y/TygQ0UWMsK0dKdOnSodD3Z2dnTddddtOKDFMWYSDDqR0RlDWq/BZzzjGZLWDiJ0uqAqUNrcWsfX0okkCzXyumKbvYZi6i3fb3TioJrY9WbbUnksGFjfWgd0BqTK0GaGzDTF1InPetazjoyFzQyxXK8ZbhDg/sV7nuayOYenI/1adFZHR0dHR8e7OLYOS7h06dKGtBwlN0qzlYNINB77LW4pKUqr0qaRNUrc/t/swJIAt3GJBloa1y0BWVrJDMDcaJZuwJTsMqmJKcbYtmjUZ1JYbulBlh3HhG78DLvI3LqrDUbZngimqGoFnY/jqCtXrmxsCxP7TNZsFuM2ZSEmDMzlVjwuM9sIlM5XdHv3OskM4nS1p2NKbKP/Zzo4Jv5mOrRYPrcs8rme4ywdFVmBpXIy/TjXvrc9Bm6bGZ7HIgsNoeu828rPWLfZ1MHBQRnSYoenqF2I/YjtdrluL9doZHgeHyZV5tZVvOdieVXquszBjsH8TBvGtRzbwtACrqVsg2b2h45Orj/Of5UcnUHq1qBEkKH6nnPbfY9YCxPb5LnlPZgl5ag2FViCzvA6Ojo6Ok4Ett4e6MqVKxssJkpuTEHDwGBLL1Gyp72PdiMmNo7SJYPWDUpcGSvkVj+WxJlqSDpq74q/uR6yxCzAme7HDC6P/aqSxhrV2Eib0hGZnb9nSbgpOdIFPLaRNshKQpem8bhw4cLhWmFKoQgzfY+h00LRBhLb7XLozuxNR70e4zqhzYHzkLWN9ha6o9PdPraJqZ4MruHMfd+Stu1ylZ1WWo9bZECxza2xdz88t0wfR/YY2++2WMJ327kpatb3OVy9evWwDWSs0nqMzew8/m5LltTd19A2TO2Q134Msqatk3OYJXegfYoJADy3cWx5b1UpE5lUXlrPIZN5G0zOLx29tyI4nq173ePoLayY9i0+S/lsov03C2nxGPjY5cuXuw2vo6Ojo6MjYmsvTWmToURpgxIIt5mxxNjaXJU6Zl/b8nzKgigrMHiWdonMO69iZQwMZZmxvZV9LPPss6TIVFYGJdYWg6WUmKWjqrY/qpLyxnLidkMtO0xM8soAV2ktuTswnkH8HpNoj+N6os2DXm1RuqS9j2spm0tKzZb6LZWbHWTMm1sYkZ1m9l//Rjsj76fMU9r98Xh5ntzWLL0bJWV67frazG7vPvMc9jO2P/NqJpzSsNowNdZBmyo1MNHz2gy42oaK9vHI2rmOmeIvY9H0anfbnKDZDC9LvVVtWWRkTJ8aHTNsJjiI6ztL0BD7QfYbwTbS6z5LwEEPfCYI51jF9ldbkbXQGV5HR0dHx4nAsVKLtbxjmDSVdrksDo8Sb8Yc43nxuP+n9GzQu1LalEAsMdhjjOwq1lOlsOHmsVmsIFNJ0YMsgomN6T1FO10Ex5rbaZBRSJtSE+vL0qBVElwGp4di7FscJ3r5sXxL51kCYLIzblmTeQfTTknG5/rjOrBdyrYi2ozMblr1kFlx/uN3xm66/CqpcwbWz3szriHacLl5bZZajOVVLD6zn8XyWonHL1++vLEe4vmsizZHfo/toWbJIOvMmDDXVZYezvAa8Vya0TmxuVlpvJb3VBXLSc1GPMb40paWjW1l/+j9nHl6s23ZuUb1XGU/Mw1etjXWHDrD6+jo6Og4EdjahhftMC1vL8ZZkQ3GtzKliGrzWCNKJrw22xyQ9XGDStspnPUjy+hCHTMlHdpaIshUqw1ao5RDqZixga14HzKHKuluJnFxHCu7ataPOU8pbxEUkbELJq51ndycUlqzPkuAZHhkenHtVHZLznWMi7KXmqVzs1G3yVJ07CdtQ4yD5P2TSd5kv5SMs3iviuX6e2YL4VxWyeAzmyE3Cea5GcPjOs4wjmMzTk/aZDic22xbMvoXcK3ze8a8s+eLtH4OxLXqcXYb7EFsm3UWU0l7O2Mnq/pjGxnnx3jGuP6qe5rMmZ/xGr4f6AUd1yq1TWSS2TuBGsG5tRHRGV5HR0dHx4lAf+F1dHR0dJwIbO20cvr06SNu6PFTqgO+qbLIHE/oHkx3/UztQQM503YxpCErl7uZ01VWqlOLVUHsEfyNBm+mzmrVQzWMkbmyU91BVXGmQjWqsWipIOeSSA/DsDG3rQQEdASxei1TS/oa7v3FNsV+VmphurTHUAa7dttZhapsj1umvqvUeJnKjKBKjus+ttFhCHYMq0KFMhd3jgUDg+mEFq8xGHSduY9TvZWlfuP5XDuxDUzPxnWRqX6rUCLep631XYUHZA5BTMHmkBaqgrPwJKYWo8mGzmCxHLafe9tl9/Sc639LhVg95zITGMeJqs1MVUtHvu600tHR0dHRARwrLMHSRZaGptoyhm/uzMWXn5VTR+YKO7cjeSY9M5B5SaApv2eSFeFyKKEy6XJmPKbESoeObcazkvDjbxXbsCSWsdDo0LLE+UBaS2nRiYDJrpmSzawqtoE7T3tOGabSco4gW2IC27gOzPCyLW+kNbOMY8v0XKzXoOYkXsMUS3QMiOud7ud05680KBEMNeBYtJg5XekzNsBkApcvX54NJGY/4v1S9YX3SwSTR/Mao8W8ef/zM7rTM1GyP71m6NwUr2FSgirUJNOcce1XadGkTbZUhSW05mrOESnW19rlXtp0zom/xfWwNAi9M7yOjo6OjhOBY4UlWLrL9Lx0had0lzGISgebJWCVjkoFLTtBrC+CzI72JCZujuWwTVly6lhm/I394JY/URpkSiyiagfrjt/J7FrpiMj4MnbNY2fPni2l4YODA12+fHkjNVZMlFvZPxjqEfvHYF5KyVyjmaRYfWb2Koa90HaYpcpiMDJZJ6XmLISGYSFkFjFRNF3YmbChJQ1X7uitLVkYxkO7WXYPMrznwoULs+1i8vDYBs4DGbCRJYSowhF4Xnasst2TgUlr5m1NhcHNarOwLJbHcKVsk2E/T8i8uR7iPVhtr8V10WK91fMnY4dVkhFqtCKYWu7ixYs9LKGjo6OjoyNiaxvezs7OhkQXN0ace9O2tlyJ9Ui5Fyix9M0ey6C9x1Iz0zdFvT8lG/cjsw0QlRRICTimFGIqJAaE8ryWJxz7YMQxoaRFOw/7Eq/Jgu2ztly5cmVD2otpwugJWrHmuF6YUowsqZWcmOuM/cq+06ZV2cfiPVGlMKP0nNn6mMjY13iNMsA6lsOtuar+ZcmKK3s6xyFew7Hh/GWaoOhJOncvc46zJAgcUwYuZ3NJv4PKI7uVZNsge4ptZGJx9933vectSy1GVlMF97fWAX0TMt8BBolXSTOWJAzgs6nFYI1qvdEnQzpqo+4Mr6Ojo6OjI+AppRazZJ8lDWYaqyrWZQlaHpBVTJthqSJK3JasLH1xSxHr2qNkTEm6YiFZqh8mYqZ0xmultZTHzQ6rLX8yhlfZMTLmzPgbj0WVBDwei3al1rxevXp1w8YWJTdK8GQOWX/ItFlua9so2gmqsY2emP7f80JtgVOdxbgyl8PNQQ1Kr5mnnfthZue2ZsmqK5ZrVKnt4v8t+xuvMark5Jmd3f1xOr/d3d3m2jk4ONjQhESmQLtvxl6k9rZklZep0fKE5pppebMyVpTfY7+qtUnvzGy+eA/Yw5iepK0YXj5X6Y+Q2cT5TKq2w4p1u9xsbit4vDJfhAqd4XV0dHR0nAhszfCitxSlGanOBMJtR6KkVUkEFTIbTrV9iaWnzAPS0rHZDBMBZ0lOKT1TamlJqZREKPlk0id19vTGyq6pPO2MTBrkXFYZZGL/mAS5hYODA126dOmwz2bZWRsqfXzGqrMto7JrYjuMqt20m8T63G4zOa9nMxUej+WxrZ7TKhtRPMfXeD0zhipLbFxlG+Eajd+zDCFZ2zJv3WpLqcxe63GKcYYtD98LFy4cMhSPSeYJSxuUj2dJ7MnoqMVo2TGrLCKtTW+tDaCtzkyFHpIRlUcpxzjOi/vBja2rbD3Spgcx7fNcQ9k6qJ7nmVaHtsnKkzmzTUb22W14HR0dHR0dAf2F19HR0dFxInAspxWqETOjN9U2VEdl6ZOqYOEWqlQ4VGVGal6pNP2dCbBjudxhncdbVJ/GYhqGMwcLOjy4X61g2bng4czhoHI35rxlQf/sZwaHJTABdOY4Q7UUke39VyUpWOI2zXK5hjOHJ/fD3x977DFJ+U7kTMZgUHXecsphEmG3ydcwxVmsr3IeaTmQcR1QHZ+tId4LVutmzjoMer5w4UI531ZpMuFFVJH6GBM2MA1VlvSaa3yJmYLJryvnEqtu4/8MU+EO5FnoBEOnsv32Yv3xN+4RSfNFK2kF99LjWGSJx3lv837Kko4wrIcJBCLo6LI0rZjUGV5HR0dHxwnB1oHnp06dOnzrZ6EAZAJ8C1cBzRkq9tbaMqJyYogMz9JwxfAsGWUBwJkEH/uTJaslw8q22pGOMglK1pXhNzOoV4ZlOhXE+qttgFpOK0zBNedWfuHChUN3fTsIZbs7V6wiA9dC5aiTOWNUhn+mbXr00UcPr+H6pXu4d0ePbZ8z/JNZxLYz9Ieu63aWyRLycm3MzW38n3NJB6sWc64YUuYwxF3ZM9hRzn3NtETUapCZZPccmUiVzor3TTyH59L54pFHHjn8jTuas74sHMr3iR12/N3PKmpDWqm4vI4rR7hYDtkg0y9ma4eaOd5HdEjJxoLIHBmXJNmo0BleR0dHR8eJwLEYXrXBqLSp2662uYlvbEonfINTymjZ/+gmnG31Q314tcllrMftZz0MUqVOvdUPMrxs80aeS/fk7NoqOL6yIcb/51JKZWmIloRkSNPYVfZaaXPsqhCQiKqdZHpZ26gVYFowBpfHNlZp6Hw8Y3hc+2Tp2WautGn409I600fFsaC0Hm1esV2tbbAqjU22zqstcrLkCFlKtkpKH4ZBe3t7h9fbbpqtHfaddvHYPz6TGNpQBZXHvlT2OGsyog2PLKbajipbOwydolaFCcMjGBZDppltYUTbGhNRZ4y5CjyvNiCO/1ef2fZXrOfUqVOLE5l0htfR0dHRcSJwrOTRraSqVVqjJQGLvMaSThasHtsUy6BdsSXh0zvSOuZWgPOc92JWD7cusS3CUiml3WwsaKPg9yg9t+xusQ9ZW6stejJmmQXBtoKHr1y5ssGq4vnVBrmthARkS1XCWjIlaTONkX+jRBr7bEn7aU97mqQ1w7P9JdsKiknWM1YWy7711lsPjzFo2P3wuV5LkYXS3uxrs0B66eh9xS2FuFYyVmDQ64/3bWvLpLnk0fv7+4dtWZI2jn3L2AVZi+eweoZkDLV63tHzUlqPi+97eoVnm7hW9l0+B8gWY5v822233Za2MUvqTdsqkxi4/1lyjsqWx3tf2rQnUvOTrR22dRt0htfR0dHRcSKwdRze7u5u04ZHCaSSlpZgLtVUrJvsoIrviP9TmqBXUayXsSyV9NfqJ+0K1I9nbaSkxVgusiG2O4KMb0nS4Ooz9jVK/61YqieffPLQBpF5YmZsVarnSdpkZ5QuOcaR4TFtF+vJGNHNN98sSbr77rslbSbkjf1lv6qthfw7k5hLm8mqfQ3tPVE7wL5ybJj8PV7L8hlLlWk/aKuj9J95c5PhPfnkk2U81TiOGsex3CInlsdnBmM7M5ZJtlbFgmVzyvuPayazy7eSN8cysnLp78DPTEtkuD6vL9p44zX0Dvc8URsWn0f0yCc7zDxyKyZZPcdjPdu8S4zO8Do6Ojo6TgSe0gawrSTPlHyqeCmplgh4bqaHp4RQeW3a1sG6pU2JyzaPKMVSGqoYWFaHz2GWDh5v2SgNSumtJNK0/7UYc2X3yxgk0Yqhim1529vepttvv13SWnrOsqaQ+VRJaKVNiZNsmWwgYzNV+7kusjbadsZxytYOtzKq7DJeD/EaeiiSuWbsqWIuVZxULN/Msopjy5JjV57LHIfY7mhnrBjeMAza3d3dmKfM0zv2JYLMJbaXmgoyMWZTif9z7qgpiWydMZtcq9z6Kf7GuaPvQpaguxoDl+85zlivUW1LlNnEK+/W1vOdCbM5J9k7hj4eS2PwpM7wOjo6OjpOCI5lw6M+PLPrVLkNqaON5/JNTRZFqVbazNNXZc2IXmzMh2kpxfaYbCNIenTSzsM2xr5UkjXLitJnZgNgudVxjgXnKbOpVPF+RsbwMgZU4eDgQOfPnz8c88zmQPZEu2yWc5Rrgjkn6amYSZe0ObX6ZU3Bfffdd6Rt9sDkBrrSZv5DS/Lst8uO80ItgOO7aAOLknbFBgxK6y27VhWjFtdqS7sRv2f3RJy/lqR+cHCwcc9lzLzyLs2y9lTaC16TZTEhk6vy1sZrmMGJXrtZvk+zMOYRJQttecxXXujZc4D2RI4Bn6vxWpdfaYmyHMksb0keZfpCDMPQM610dHR0dHRE9BdeR0dHR8eJwNZOK3ZcmUO1hQMps8uV6nQ2PB7LqFSoDILM1KBWIcUtSqTNQNBYfhX+QPVBZlBnm7IgZV5D1UiVHDvOSaViau2w3lLFVGCaqf39/Wbg+cWLFw/VOJlqjOqNbGfreFzaXCt0TuE2PtGpgSoyJsjN0lM5GbA/qZ5y22MAsNcXEwBT5Zw55bhcr1U6PmQu81QBMzi5CgiOoLMA79H4O7ehqZzCMmezOG8tNdbe3t6Gg068P3lPsS1ZwovKSaVS68f7pQpHyNKoGXRaoiOSxzTr11zqrUxly/uIqfN4HvsobYYP8bmQXVulBMyc5tifKpA/olrXS9AZXkdHR0fHicDWDO/MmTPNgMzKQaOVIsaoDOaVY0Ist2IkdAGO11fJVDNnBbpaV4b/LFCSbeHWJdXmillbqiTcmUGdY0MpPWNXc+l6snoiU62uH8dRFy9ePEym62uyjUsrhp+5KjPwnE4cVdhCLI/OKlyrcb0xqNvSOdlHFpBLV3/W9/+3dza7jVzJEj4kJbntNtw2jFnP+z/WrGfVgGE00JY4i0FIqa8isooa3IUvMzYSyWLVOVWnihn5EynU+Wlt6i/3zzVV30uF/IRjXizRoaVfxaPJjJh84bwSLInYK21xwuN1LabSG47FiWSktPkkhl3/T+vd3f+UJRTz5/O0JjXx+jJJjve0E6Dg/U/2XtdfJ/hdx6Hz6ZrwphZwnWeJzx8+51xSSmWwe2v89XiHthoMBoPB4G+Omxne5XJ5te6cbBetY/4yu+Jxfjcxuq5ZJONhTOvvUq8pokpRZ7dfWq+0KOt36bunVUZh1rpNYq5O1otgzKZj2bxOeynbdbyaVyr61f5eXl42hc1uvDyHZHqutIAyWozZdTHk1PLEWe+Mh+h4YmAspK37c62q1spFzG5+HLPYYj2fZAOpvMOVAym+I5bBEh6OuR4vrSGX/s57uhOPvl7/2wC2i+vsxd26Fj+JHZDVuvXAuBuZa/Wi6LnCRtBqGqxxVIbHxsx8HnQi+Xz2kWGmspW1ts8KMmXtozJ9rdFU9uCOkwTuu9cul2PKEgaDwWAwKPhQ4XlqHVOR2IR7n5YAmSOtM9eENBUNk+XUY8sq13EYj3FjpHWWsuVcexh9R1YRs4ucaKyQCtCd5Zosa/r9j/i9k2RSnU+1HLsYYC0eZpGqGxcZiLsujNmxnY4TRyDSOj7SWkr71/HFkKo8WDqewKaxroknzxfjTE6EOwnx8nU9n5ToYsaqWzPpPCWWsJb33uwxvM7q3/NIODab5Pn24oF1TtwXs8LdumNcTgzPxdbF3Pea6rrMVSKN2T0b0z3Y5Uxwf2lduExZ14igHq+C995kaQ4Gg8FgANwcw3t4eNhYKDW+wF/zFD/q4n4pY4tsbq2tdSx0NTWMqckqp9XppJBYD0cfu1B927LSKBNEf3idQ4rr7Mn2rJXFcFOLkSPHE1z2ob7z+PjYZmk+Pz9vsiqPSFRxHk4AmlmYqeVKfV/jpuQSYy3VAk41W6n5Zd0/58eMSzYGrWD8hWN3wszJSk+WvgM9JK6tUzonPG59TjDGulf3+fLysoml1bXGzEOeL75fx8XXPG/Os8BsVoHnthPZ5n3IDMi13j9H6meOdfI1t2FrMxefTRJfjKe77GCBa4Trzl3rvVhe1/ZoL7P83dgObzkYDAaDwd8YN8fw1so+74oUH3K+9D1/Ma3ampGm/5OF6DLjaFGLJcp6YV3eWtnyYV2SY3yy2DVWNu/sVCD4mrEKttKpY+NrHXdPpLfuj5ZctTgTq054fn5+Pcc659W6pIWb1GYc40rxlqTiU99jXSavpVtbqY0KRX7rflMMjRmY9VoyVsxt0j7qZ8my1rmrMcNU/8Rr4BrA8j7lNanXmvHzzjsgpCxDt01q21OxJ8ROIfh6jhkPF7q8Bq1vsvKkwFL3o89S/Z0TradHhOpDTmmHWc0pdsdawjpGjY3Zu+4+Si1+6KFx8dPq8TvK8obhDQaDweAuMD94g8FgMLgL3OzSdJS5EyF226zlU4pTSixdJjVQSjmelGpcjyfXolwU7PwrF49zS1GkWPuVMLCTIUousiQbVOHceHVenVuZckNdGcJeTzDKoNXx11TpLmlFAtJr+dIM1924zs25RFJfMJ4XJyLO0gElLzF5xImIJ5evhKGdDJXceHRLUczgiPuN83SuWr2XXIH6rnNTJ1emK0/he0zschJtdKt1LikJXnAMzo3P5Jq6DyIJI6fEu7o+6Q6ke9KFUiSrx2J1nX89h+q11v2Snm90/TkReV4HJno5l6brPbrW2zrXWOs5YWf4JJ5Rn0NJzq8TLXBzPYpheIPBYDC4C9zM8M7nc5RGciDDcgKitDhTGrVLgaV1KUuIlqqz8Jh0QcvbWZCyuGhZifm4dGimuTPVu7NumRzBFh+03urYkjSSs9LJNtj1XdfcXYM9AW9t8+3bt037nMoYU2o5184RdkGZMpe0koTOeXx3LdN5EmowX3Nk0gLFq9O+6lj2EnvW2rYS4j6YcOVk8LhWyFhcCU0qldF8xXDr2FzRewKLuTsRYu7TPQeSp4Wv9d16XejxYdKQY+tkcGSW7Ihe/09lFryWnZA/x+ZkHveK8FOn9/pZ8q510mICfwNciZp7fh3FMLzBYDAY3AVuZngqPl/LS7okCSy+7uSa9rZ1bIbWKuNLlZUmK4Li0Z10ESWXyDDq8cjwkoxOnX+S06JosSvkT/I8tFydlc7PNPauRUpqc1Px/Pz8zsJnaUh9j/vfE5at0D7ILlzaNtcxWQzPyVprffnyZa31xto4Zhdz0DUU86I4NlmTs1zJiFLpyVrb9caCYzIKV/xPVprKI9baWvRMh6fcmxt3d02v1+trDDiB7JVzdWuTngPeH1xLR0oxKB5e45a3lNvwOykexjXrRPL5nEvzrp+R7Wrbz58/v/vctYnivjgOJ4PI2F2X88HrNGUJg8FgMBgAH2oPxIJVtoxf6+1X2FnW2pdAqyUJ1TopnLStLC3HRpm1mGRz3LFTvIJWlJMwYhaTwKy2+j/FkTk/5+vm/lMcpjIXsgxKtlHiaK1tnKdrD/Ty8rL+/PPPTWagshrrMfeK7OtaotXKZqupKWn9jjJsKdrsshh1zpg1R4uY2W1rvZ1jNqcle3JxC+2fsUgnx0eWTmbBa+0aAWssjE3zWtTvM2aoeSo7sWN4nQDw6fTfxsL0jLhY195r50UReC1TIfVab2tG50Fz5LV114UtnbhWK3ivJobHzHMHsil6q+p7fFZQvKLLlE3Pc5ety3XMNdTFXmvG6NF43jC8wWAwGNwFPiQerV9ySmWttY2hHfHj0voi85K14VrK0EqmdFVX41bntdabdeEkpSjxQ2aXBForOB+ys2o1p3Y3ZD/dfJixyHhmtShp1TLG5s5j1z6HuF6v6/v376/XUPuvcT1msdHCdtmUvA60UMkgavakxv/777+vtY6tGbL1FGfuBKeTIHB3PlkbSrHsrrYpSb652BHjI4wzHan71JjEer5+/brWen/daJH/9ddf7Zq+XC6taHBqdsp9dgyP9zj/Vg8A9//rr7+utbYC9C4DUvvROlBczGWuMobHWB0ze+v8UoPmrpEuj8Ma5fTcq3MXUnNs58FIHgvX9ojx84eHh4nhDQaDwWBQ8aE6PGZ5uTbvtFoTi1srZ3IKXb2UftnFFGQJyDLpMhLT8cSmnGXsLNPu9Vpv5yS1knHfpaKLiwmt5X37jDmk7MN6TlItGNnhLa04iDpfnWNlLq61ZTGMCXRtWlK9kl5r3/Waiu1ijlx7AAAPyklEQVT99ttva63tmmGsox5H2zBGTYHeup+kKpKyk+u2zLhkhmVlrrzHuEZoTdfxMCMxtWZyrXmYmSiG51oY8Xp9+/YtMrzz+bx++umn12Nq7bgWRam1mEOq+yXLEQNT3G6t7TlN17+LxzIezLh9nSNjaAK9Bvy8gpndzHCv+6OiisD2XjVmmDItO2bHbVMjgTovMuRpDzQYDAaDAfCh9kBkCPXXl/EDWtxJL9GBFp8s/LoPWgJkTy4jMcUXU8anmwe37ZgfM/g4RqeIkHTwaIE7FZqkPkIGU9kOt006gxVdiyK37ePj4+scldlbM3zFCFJM1WUI8vzw2tIbIWt9rTeLPWVpOlZNLwOtWJepym0EXlOuR7cPZk+mBsRrZW1LZhK685kajbr1Tuag/f7xxx/v9uFihZW1J4Z3uVzWly9fNmyqnideq3Rfum04N8aNnCqQ1hGZcGpIzPHW73Ld1TXK8TO+3GW/83g8jqvD43v0CjEL1D3nqPTEOHMdI1VY+Gx0vzFJbegIhuENBoPB4C4wP3iDwWAwuAt8yKXJ1OwaMFcKskDK6oqsCRatp869a21pO8sGXJkAXXop0F3dEdw2dV3upJcEjs11HnalCvV4dNlU1wfnx8QTJ7eWUte71kIcy/fv36N74XQ6raenp00hfS1LoJuOYrrunDv3Vh03i6zrnCUTJpcmEwS0rp2rma4dJmy4lit8zYQuJ1rAJAKdI43NlVAwkUWvNWYdX8kfdZ2n1PWuQFzf4bXlvOu8KCLRuTTP5/P6/Pnz63dcIhfd+Ml9XF3/XNN0UydB9fo/hb6TTNlaW4EOV0pQv8v/K1KpjjuHfF5TcKBLeEutfXS8mrDI60I3vBMhYegrtczqQlISJjiCYXiDwWAwuAvcXHh+Op02KbJOeonMrhON7ljBWlu245iQtlVihmM+Ai0EyicJTnLJCQqn7wgpcM6ga5dSTQuVjNkVhLNgNiWm1O/zb1ekynHvFQ+fz+cNY6hWutieriHPj9s32VES5nVit0ztJ+NyhdlMNKDV6spgeGw2DyYbcYkHLCJmAsARVpASURzE0jhGJ9GWUtW1rUuO4Pi7tXM+n23pUwUZT/JMpHNTx5u8BfV+4X3OgvNOtJqtxlIyy1pZtDtJG1aklP8kqcb/3WuB3qP6f/JCdZKN3C/vmeqZoceqExUnhuENBoPB4C5wE8O7Xq/r+fm5bQfjfvnXygyi/t9Z1u61O57iFozlOQZE6z+l5Nb9OP9x/esYV5pHJ5VEKyY183TWU4r7pHm6eTj2xjFzHeylB1+v143FWOfFdHn9TWy6jic1qiQDciLYZC+JLbixMQ2dDLPuh6/p7XDnOFnYLI6va5VxLDItxntczJCC0EkEYK1tLJCMj4ICFTUmtBfD09iUtu+YNwvjk2CDA68Ly0bq+HW9dS4loKDjuaLo1K6Ha6kThOD9mVhc/Q6vs9aKjlfvLz4vk6es8w7w+a19spRqrfw8ZSmIW98fwTC8wWAwGNwFPtQAlgWGTiCVmYK0MpyFkH65k0+47p9C1mwIW7EnMCt08bhkCQlOHqqzYOtc6ntp/7SEnPQOW/x0BZtkNYzzuOJ4fveI5cV14RrXpoJswcUCeD04Tnct9R0xEUotuUw8ZtimRrNdPJYxKLa9cXHuPam3Ot+U/ZkYeddmh54FN78kp9UV42uM+qyLw5zP5/Xp06fXbbSu6/rVscQ2ea+5Jq7CngeGTKy+p8xLMTyuD9eOKp1/eivcsVMM0nmyOC8+U1wmOMfmRCrqd+p3uTbS867eT7r+jKPz3queGWZETwxvMBgMBgPgJoYnS6uT4mKtF/+6+EWyhtMvt2trIwuAzMHtO9UYcazVEkkZgyl+1dXDpPm6WBWtQvrhnbRUEs7m/CqSBddZbfqsxgZTPYxaS6X6pbW2li59/s4613us/TkCWqnpujiLm2Pm5/V9tszimunaArE9E6+3Y3hkZXsx466VFRm/9l3ZTlorvH51XIyxdXV4gpid6ibrGmJzWT5nnBci1cemGF6ds7Zl49eu5izFqyh/6Oo+0xi7LPgk2+XqZ9P+Ba4pxw5ZV5zGWsGxUbTaCd0LzHY+gmF4g8FgMLgL3BzDu16vG/909a/KCmObIDZorb/YtIBp1dBq7upUyKJc7QktnBQ7cW0zUpzqiJVBFnWLWDVFkJmBWRke45hkekcsLlpPsqodc0nz435/+OGH13NNIds6vvTaNYOk1ZyYt+bTZU8mq9nFOAha53XfjGtz2xSfXWt7/9CT0dVUJjbaxYy4DZU1XPujPYbsGKarqU04nU7r06dPN6n+aE6Ksbk4erqXeV4ck2AmKp9h7rmT4vLMjHVKJCkrvHvupGxjfsfd00nBJQlur5XF8JNyTd1W+Pnnn9dab+u8q2NkFuoRDMMbDAaDwV1gfvAGg8FgcBf4kHg0qWl1TzFllH2hWARb90O3E4tJBZe0QleCKxYV+F4KyNYxJsmqvSLLtfaLON37dFnRfcwElNqZmIXzPEfODZLcUUxEqNvtuUoqTqfTulwum3E7txJLP1zAuu63gtffJQ8IHAOLe50LndeSAtdJELi+R7muJBvlxphcms4tSZfsnhDwWtv7lO5KJibw/zrG5B5zn3XX+Hw+rx9//PF1PlVwvG6zVpZeU2++Iy5AjY1yYe48pUQgl/jG9cX7k6GI+h5BN2EnhE8XbScmwRKd5NpkOY47Dr/bCZ1zvhRur89ohjYeHh4OJ64MwxsMBoPBXeBDhedMc6+/0ix6dmK6fE1LlGyKgfuuu3cqlHap5bR8U0ueipRaLDiLlRZJl5ov8BzTCqTF78RVOWbHXDlGit/y83punPj1EXmxuv+u7QdFyjuhAHoDaKXzdf2O/v7yyy/vtnXHY+IPkWTx6rG53rp5Jbm7VEZS95uuBdPsq/XMpJTEmLsu6fQAuZZJXfE7Ie8A7626dvbOpbvXnJRXfV+lDs4zwmeVnnd8JtbjksHp3pV3hglp9TsJqZi8jo0side4srQkd0dPiUs64rP2iIeGzy8+51gAv9Y2IfJ6vQ7DGwwGg8Gg4maGV+MwThKLafKyXtj80LUKIWNITKWWQdDSpe++KwAX6MvuxJBTPCSJLrtted5cQTgZHq1Dxk9vkUHrYlOUMJJQL1nJWluruZPTkvA4t6lzplWnc90xPIoFk+mTiVdmom0VL6CwNIu763hTEbmL3QhJUJ2WeCedRrbhGn8miTYWjTuGR3mwFPdxY+PxBZ1nV4LQlbKk47i2ZGRrOhY9Id0adfGi+n5loXxGufujbrfWlvlSzJ3sxm3LfaXi+TqWJIrO+bm50jPSxf+S9yaVJ9RtVY7AZyO9PPW9eu8PwxsMBoPBoODmBrCPj4+x9cpa24wcWVb0cTufPa0wFoR3MTz68GnxVwuAFjWtZ1eIzm24D1rvLuOSfxOLq58x3kf/vxN3pZUp64yiu67AleeerMp9px6ni+G9vLxsRK/FIOsxk6UtuIaV/MsYg2sXk64/33fCzHui6M6KTeiYHZEyjLsCYFrplOGqr901rft09y3Zh4vz1ffX8pb8XvyXBfwud0Bgdri7T1ILJK59ZYU6AQK2AXLPKIH3PVmpy9rlOktCCxyXm8+RuDbjfFobfN89D5KwBb1Gbn58Fgoug52NlC+XyzC8wWAwGAwqbmZ4l8tl43t21iyzyfQLrpies/aStBc/r9ZTEkalReSkl5Iv21kVndVft3VWOq1LWoFOHowMWX/J/NxckrRU13B2TzjZCTjf0pZDYFysE2ZO9Yv1HPN68Bomqay13tagLPjEcl0jYMZjklxUPWYSD2cmWpclzO+4WAprpGjJK8vNXfPUJJYs1Hk/0rgZT6v7O2KZy7NExupi0DoWvUViKu5aChy/xuhinfyMTF+occYUH0vi3u6zoy3U6niZlakxa93X/Apto/O11/bKtTQTeI+4+HbyfqVM5vr9er8MwxsMBoPBoOBmhvf09BRFfbXNWln412VYuePUv7QQnR+eFikZX+cXJyNy2US0tBLDc6+ZfUWmJ9Zbzxm/k2r3XM0VrfTEfh3D47lhLMxZrMm6daDgq2Mm9Ap0ot4cSxIC7xrYUgCYrKmec55Tpx6RxiikdeayUJNHITGwtbaWPRuxso6pxr8492Q51/kx1kqvQ8dg2GIqodZauRpOjUfHYkwvZVfX7zCmx3Nbx5/aUXX3C7Nk9Zmuh17XurjU4iuhjoeMjkxPzK4ej9+hNyB58Oqxk6KU5texNV5jwXkRndj2HobhDQaDweAuMD94g8FgMLgL/E8uTVFJl4DCAmlS8Ur1uR9+l6iB51TMySBrpcj6Pj9LUmNrbV1K2n8S/q0UPLknUxKLm08qOE4FrxWpdKMG6ZlEsNfZe62cMNKBxeSuTEAu3pSiXCHXlcabSlu6eeg9ujbpHq/jTdenc4cLPMcUnnauZl73tB7rd5LMXld4nKS5koSfG6PmwfIHJ811FKfTKfaPq2NgsbPWg8QFXKmLPqtr0c3Luc7o2qT7sN7TdBNqbCrN0Xw0nrW2ogt0/XK91TFSYIAJKE5ajGUodL9rbG48yZXJMJYrZUglG921HmmxwWAwGAwCbmJ45/N5PT09bayJajWlonQGNOuvPH/5aZVTQNVZ+ikxpCsipwVPq9PJ5ggpAcQFlfcEoI9Ii5EVOCuHY2XyAFvL0KKt+xO6DsuO4aUA8vV6XS8vLxvLzYk5k6ULLnGHKf1MfCHjcwXaXJN6/+vXr2ut9+uPCQdJRqkirRUyL5e4kQrBU2JIHT9fM1Gsu4+YBNJJ55FdpZKZejzea12Sj/bVlTKQXYpF0QPgxpASJJiA0pXkMLmDAhz1O/RyiGFp21omkArbuc+uzIcML5Wt1P+5XzYDcCViSQKwezayxC0lO7q1Wvc3DG8wGAwGg4IPNYClldelhdKv6yyRlHJPJsaU9grHktbaytrUMaS2PbJyqkWcrGYy147hpXT7rhlqarnRnXuynFQq0h2HcMycosRHYni0OrvvaLxks65MIEm9cR/VEmRMg+tBVntnNae4hRMaTjJkLlbI/TA1nmUjrgib64vs2lneFHtIjUAruL55Td1aZdPnvXR7V7Re3+O6JRMRQ6nXPwkvc810LIO5AixIdyVb9LikuHDdht4h7stJffH+TOUq7hyQcXGdu/KyvVZGgms2kOL17vnA5+jDw8Ohkqi1huENBoPB4E5wuqVo73Q6/Xut9a//u+EM/h/gn9fr9R98c9bO4ABm7Qw+Crt2iJt+8AaDwWAw+LtiXJqDwWAwuAvMD95gMBgM7gLzgzcYDAaDu8D84A0Gg8HgLjA/eIPBYDC4C8wP3mAwGAzuAvODNxgMBoO7wPzgDQaDweAuMD94g8FgMLgL/AfIPxVX2uX5LwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYZFlZ5t8vt6rKrKquqq7qtYamuwERGRVkcYNGRehxRARkeUZGegBt1NHRcQaXUWl4wGVcGGREW0HaVhRERURsYKBt21ZcEBAEoWnojaa3qq7KqsysqszKPPPHuW/EyS/OjYzIjIiMiPP+nieeG3HiLidunHvveb/vO9+xEAKEEEKIcWdiuysghBBCDAI98IQQQhSBHnhCCCGKQA88IYQQRaAHnhBCiCLQA08IIUQRdPzAM7PvNLObzewBMztlZnea2Z+Z2ZX9rKDYPszsOjMLZvZFM2tpK2b2qur7YGZTSfkdZnbdJo738GpfVyVl1yTHCGZ2tmp7bzGzizf5u37EzJ67yW1vMrNbOlx3LK8ZM3ua+09OmdmnzexnzWyXW9fM7LvN7ENmdtTMVqr29HYz+6aa/f+/ar//rcf1frird93rph4d79HV/l7Uo/09oboe9rryndVxfqIXx9kKZravquOHzewhMztmZreY2bd3uP0rav6Tv+9F/aY2XgUwsx8G8AYAvwPglwAsArgcwH8E8M0A3teLyoihZAnAhQC+CcCH3HffA+AkgD2u/DkATmziWPcC+DoAn898940AVgFMA3gMgFcD+Boze3wIYa3L4/wIgFsA/Okm6tgRhVwzPwzgnwDMAngmgFcBeARiu4CZTQJ4O2J7+F0AbwTwEIB/B+D5AD5kZvtDCPPcoZkdRjw/qPbzhh7Wl+0r5cMArgNwbVK2mbab447qeJ/r0f6egHiO34z1dTxTHeeuHh1nKzwCwPcCeCviNQoA/xnAe8zs5SGEt3S4n+8A8GDy+WRPahdC2PCFeCLfVfPdRCf76NULwI5BHq/kF+KN4IsAPgjgOvfdNwJYq9YJAKb6VIdrcvsH8PKq/Ms3sc87APz+JutzE4BbOlhvbK8ZAE+rzv3TXflbq/ID1eefrj4/r2Y/zwAw68p+strmvdXysX0+NwHAa7frXHZZ11dU9T28XXXooI67AezMlP8tgFu3+zd2atI8AOC+3Bch6V2b2VWV/HxqZbpZqMwYv54xdbzazD5qZifM7IiZ3WhmX+vWoenkuWb222b2IID7q+8eZWbvqsxFp83sLjN7pzOtHTKz3zSze8zsjJl9xsy+r5MfXG37JjO7u9r2bjP7PTPbkaxzZSXdT5nZfPWbv8zt56ZK0l9pZh+v1v2YmT3ZzKbM7OfM7N5K/l9nZnPJtjTB/ICZ/Wr1W5fM7C/M7OGd/I4ecT2A55nZbFL2PQD+BvHhsQ5zJs2kXXytmb2t+s+/ZGa/ZmY7k/VaTJptYA93Otn+iWb2xxZNZqfM7LPV+d2VrHMHgEsAfHdiLknr+lVVuzqa7OMnM7/x6VX7XTKzfzWz57hVirtmENUeADzCzGYA/BiA94YQ/qTmPHwghLDkil8C4FOIKpyftwUz+3sz+2B1Lv/FzM4AeGn13Y9W3x8zs+Nm9rdm9gy3fYtJ06Ip97aqrf5d1X5uNbOXblCXVwD4jerj3UnbvcAyJk0z+wWL5v9HV79hqbouX1x9/9LquAvV95e445mZ/aCZfbJqKw+Y2bVmdk67eoYQFkIIpzNffQTAplwQOczsMWb252b2YNKW37HRdh2ZNAH8I4CXmNkXALw7hHDrBuv/PoA/AvAmAE8C8LMA5gBclaxzMYDXIyqIOQAvBnCzmX1NCOGTbn9vBHADojTmDfK9AI4B+H4AR6r9fRsqv6RFO/ctAHYhqoTbEc0uv2FmO0IIb6yrvJntB/B3iDet1wL4BIDzADwbwAyAMxb9MO8FcCOAFyL2bF4D4BYz++oQwj3JLh+BaNZ6HYAFAP8bwJ9Xr6nqvHx5tc4DAF7pqvSTAD4O4L9U9fg5AB8ws68IIazU/Y4e8ieI/+V3AviD6iH1fAD/A9E81Sm/B+APATwX0QRzDeJ/+KoOtp00M6Bp0vwpxBvjvybrPAzxPF2HaAL5CsS2dxkA3nSeA+AvAfxLdXygMp2Y2ZMQFdxtAH4UsW0+EsBXurpcjmhq+3nEtvdjAN5pZo8OIdxWrVPUNVNxabU8jmh+24fYxjvCzJ4M4MsA/EQI4XNm9mHEjslPhBBWO91Pj3ks4nX5GkTVTjPbJYhm0DsR7wnPAfA+M/uWEMJfbbDPcxE7kb9S7fP7ALzFzP4thPDhmm3+FPH8vhLrzX1HAUzWbGMA3gngNxHvOT8M4Hoz+woAXw/gfyL+129AvDafmmz7egA/UC0/hHidvw7AY8zsitCFG8HihftUAP/W6TYAPmJmhxA7a+8C8FOhMn1X+7sB8Tq4GvEcHEZ0F7SnQ5n6KMSbfqheRxBvXM9w611Vff+brvx/IfpfHlWz/0nEG/9nAbwhKX9atb93ufUPVuXf0abOPwPgNIBHuvLfrupfa4JDbNyrAB7XZp2PINrmp5KySwGsAPjVpOymquyypOw7qvp/0O3zTwHcnnx+eLXep5GYwQB8Q1X+sn7I/uQ41wH4YvX+egDvq96/ANG3txcZkyOi6rsu0y5e7fb/F0jMHMnvvSop4/79698AXN6m7la1qRcjml7PdfVrMWkCuBnA3XBmNrcO/89HJmXnVe3lp0q4ZpJjPKOqw14A34XYmftYtc4Lq3We2UV7e1P1my+uPl9d7ePKPrbxWpMmgL+v6tPWbI7YYZiq2s87kvJHV/t/UVL29qrs65KyWQDzAH5tg+NkzX2IHZqA2FFg2S9UZS9w7TQgPkTmkvJXVuXnJ213DcAr3XG+ZTP/B+KDtta07dZ9FmJn7z8g+nKvQfR/fxTATLXOYba/bv/vjkyaIfZOHwfgCsSn/McRezTvN7OfzmzyR+7z2xEbxZNYUJmE/srMjgI4i3gTeRRiD8/zLvf5KIAvAPgFM/teM3tkZpsrAfwDgNstmg6nKtPN+xF7WI9p85OfAeCfQggfy31p0ez4eMTGfZblIYTbEW3VV7hNbg0hfCH5/Jlq+X633mcAHK56MCl/HJIeVQjhbxF7N94B35bKTDGVvOp6hjmuB/B0M7sA0Zz57hBCt87997rPn0RUZZ3wtQCeCODJiA/cRUSVez5XMLO9ZvaLZvZ5REf+CmLP1RCVWi0WzbXfAOBtodXM5vlcCKERiBBCeABRmT8sKSvhmnl/VYd5RCXxV4hWgK6x6Cp4EYAbQ9M68g7E/7GtWTPTrju1XHXCZ0MILcrEokviBjN7APGhuALgKcj/F55jIVFyVXv7Ajq/FrrhhuQ4DyAq/FtCCIvJOrwf0VrzTMRr5m3unN6M+H+kSrAtlZn3lwH8VqgxbaeEEN4TQnhNCOGGEMKNIYRrEM3Ij0O87oHoKvgigF82s5eZ2eWd1qfjYQkhhNUQws0hhJ8OITwd0Uz0SQCvqkyAKffXfL4YAMzs8YhmpQUAL0PzZvYvaJpfUu51dQkAvhVRZf08gFvN7Atm9v3Jauch/jEr7vXO6vtz2/zccxFPaB37ERvEvZnv7kM0haYcc5+X25RPodVE4c8ny7q1ib8E689FLhqyjhsRf++PIl4Q13d5bCBG6KWcAbAjt2KGfw4hfCSE8I8hhHcimi8uBfDfk3XeitgL/jXE9vFEAD9YfZdrVyn7Ea+Hdv878b8DiL9l3TEKuGZ+sKrDYwHsDiE8K4RwZ/Xd3dXyEnTGsxD/g3dZDG3fV5W/H8CzzYXiO67I1LlXtFzjZnYZYiDXLKLZ7+sQz8ON2LidAR22nx6wGkLw0Y3LqL8f8fjnVcsvYv05XUa8XtvdOxuY2TcgWq3+EvE8bZY/qY79RACoRMY3I1pQfgnAbRb9oi/baEeb7gmFEL5kZm9GtP8+EtFnQc5H9K+knwGAPbfnIfZQnxsSH1R1EzieO1zm+F8A8D2VGvoqAP8VwJvM7I4Qwg2IPdoHANSN5flsm59H/0Ydx6o6XZD57gLkG/RWOL+m7ONd7uc9qBpNxZlONwwhrJnZ2xDt/g8A+ECXx+4pIYT7zewIKv9a5Vd8NoBrQgiNUHYz+/cd7vIYohmnZ451zxheM7eGED5Ss+5Hqno9C8Bv1ayTQhX369XL8wLEcPwc/4z17bqXtJxHxM7WbkQT3REWmtnuPtVh0Bytlk9DtKR4HsyUraPqoL0X0Sz8wtAbH2zjv6gsLC+2OD74qxGDnN5sZl8IbXyoHSk8M7uw5qtHV0sfjfYC9/lFiDeTf6g+zyKaARo/wMy+GZuQ9CHycTR7+o+tlu+r6ndXpQz8q924jg8AeJKZfVXNMRcRL7Lnp2ZBi5FOX4/o5+kl32XJwO+q53QYcQxRx4QQjrpz4AMdNuJ3EB+ar+1RA940VZs8iObFtwNRGfve/VWZzc8gOusbVGalWxAvol2ZbTZTvxzjes34YywjBmV8u5k9L7eOmX2rmc2a2XmI5tR3I4739K/70MasGUI46evaaT03CaOVG+4MM3ssYqBOP2EHdcvtcwM+gKavMNcO7my3sZk9BlGZfxrAd4YQOu5Y1/B8xMCgf/RfhBDWQggfRQygA5ptOUunCu9fzeyDiNL0dkQn9bchmo/+KITgBzx+m5n9EqoHB2IU3vWJ3+N9iE/k68zsrYh+iJ9BszfbFjP7SsRe8jsQI+omEW9sZxHNCkCMLnohgL8xs9cj9k7nEC/op4QQnt3mEK8H8J8AfNDMXotohjqIqCBeUV34P4PYg/kLM3sTYo/v1Yj+jF/p5Hd0wR4Af2Zm1wI4hGiS+hwSs6KZvQXAS0IIvfRfrKPyS23KR9MDnmxmq4idtEsQleYqYgQaQgjzFrMx/JiZ3Yuo0l+KvGL7NICnWMz+cB+AIyGEOxAvmr8G8GEz+xVEk85lAL46hPBDXda3tGsmx88jKsl3WBz68R5E68dhRMX6XEQz5ncj3oteH0L460zdfxfAK83sMucL3y4+gBgp/ftm9gbE3/Nq9H/g96er5Q+Z2R8g/nfdWnk2JITwaTP7PwB+q3qQ/w3iw/ZhiPENbwwh/F1uWzO7CE3rz2sAPNaFJPwzLRRm9joAP44YpMShMzchtvVPVcd8CmIU9D+hMq1bjKb+OUS/9+cRI7dfjmj2vGmjH9dJlM0rEMOL70SM4loE8DHE6J6ZZL2rEHsGT0XsrS0gNvBfB7DL7fOHEG8Ep6of8/Sqsjcl6zwN+QGu5yFmbrgVMVrwIcQb1TPdevsRL+Lbq5PxAOKf9yMd/ObzEE0x91bb3l0dc0eyzpWIKusU4oPu3QC+zO3nJriBymhGI77clV+DJOIxWe8HAPwqoppZQnzQXuq2vQ6Vq6ZXLyRRmm3WWVfnquwO5KM0H5HbNnNersrsn681AF9CvHk+KXNeb0AckvAAgP+LaH4KAJ6WrPfoqh0sVd+ldX1cte/j1f/6GQA/3u7/rPnNY3vN1B2jpn0YYqTsjYhm4xXEjsQfIj5EgXjTvg2A1ezjUdXxrull+672vVGU5gdrvntxdS5PI3aIn4cYaPQZ185yUZq31RzrfR3U93WI7Z9q/wLUR2mezWx/H4A3u7Irq+2/0ZW/tGpnS4jX1KcQ/eMXtqkf91X3usDV0Ze9CbGjtVC1v89V6+1O1rkYMRjtc1XdjiIGTH3LRufPqh30BIsDht+KGNZ82wariw2wOLj8dgDfG0Ko81+IEUbXjBCDQ7MlCCGEKAI98IQQQhRBT02aQgghxLAihSeEEKII9MATQghRBHrgCSGEKIKuBinPzs6Gffv2bbxiGzgIMR2M6MvcQEVsxs/IbbivTvbRbh3/nXyf+XMwPz+PpaUln/y6J21HjDfHjx9X2xGboq7teLp64O3btw9XX3315muVMDnZzI88NRWrMTMzAwCYmJhYt87qasxitba28RRMdQ+iXDnLuOT+/TK3TqmcOdPMEnT69Pp5HqempnD99fmc0r1sO2I8ufbaa7PlajtiI+rajkcmTSGEEEXQt7yLG0HVBjQV3cpKzPvrlR2huvImz/Q70okp06u2OqW30X5KIv1PdJ6EEKOEFJ4QQogi2DaFl+KVnA84ySm6jWinNLyiq1N2UiutpGqO78+ePdtY6pwNFlpDaCVJ3/vrRpYMUTpSeEIIIYpADzwhhBBFMBQmTR+MwqUvzw0NoEnHm2J8EEs6DKIuWMV/L5rkzhWDjPjdysrK0A/bSE1/GzFMv4X1np6eBtAcwrNz504AwI4dOxrrcpgPt+Fnwv+QroTcf0oz9fLyMoDmcJTFxcWe/B4htgMpPCGEEEUwFAqPsMfpg1g62aZX64k8ucH/fM/e/3YGrXilQ1VDReRVD7BxRp/cb2YZlRAVEJdURls5D6laY/1ZxuWuXbsAALt37wYAzM7ONrah+vNLUvc7gebvYlIBv6TCO378eGOb+fn5bn5ez0iPe84552xLHcRoIYUnhBCiCIZK4YnhJefDYxnVTQhhIAovVTNzc3MAmoqHSyohKj8qJS6B9X7dHFRrVD1AU+mcOnVq3XJpaWnd9zwnfnug1drAevg6p7+Vv5PLvXv3rltS6QHNc0Blx/1S3fL46XASQrXufx+VHb/ncQHgS1/6EgDg6NGjGCRHjhxpvJfCE50ghSeEEKIIpPBER/jIvvT9oAbqU8WkvXmWURVx6X1cOfVEBeSjGL1yTRNmU8mdOHFi3ZIqjX7BnK/QKzsfeck6p3Vk/amo+Ns5ewDLqfzS/dX58KjoqEZz0ah1EdJkz549jfeHDh0C0Dw3VIX9wvuOhegUKTwhhBBFIIUnOoIqKPX35FRfP6Di8WourVddnagCqMD8lEbpNn78J39rGs3J/VBF8bOPAs3N9+hT2RFu45fp/n0KMa8aU5+hL+PvYTnPAc9Nui3LqNZYV/ohfXRqWheqz34rPEaIpnUQohOk8IQQQhSBFJ7oCD+uDWiqAKqP5eXlvvjxuM+TJ0+uWwJNdcH6eQXmJxdO/Vne78dtvCJL1RrLqITqojZTJcl167IBcf+sW6qi/Tg/r1BzmU+8KvPb8n/jtqki89lX6nx47SZH7mRqrq1AlXvhhRf2Zf9ifJHCE0IIUQR64AkhhCgCmTRFV6QmTb6nCW5tbW1TcxduBE2C/Q5Dp2nTJ13ODVbnOjQXLiwsrPvcDdzmoYceWncMoHVAO4dB8Ph+oHi6Lrf1A99HHQ7JEKJbpPCEEEIUgRSe6AifNBloBidQkaytrY301Eq5IQvbQTrMgwmSed4Z2MJ10gAeIUR7pPCEEEIUgRSe6Aj6iNJw9LqBzcOEH+zdzQSwwwT9cVxuBf5fo3ouPvrRjwIAHv/4x29zTUS/6NfQltFs8UIIIUSXSOGJjsipN590eGZmpi9RmiQ3ENzDevokzv2s16gxqsqOfOITnwAghSe6Z7RbvhBCCNEhUniiI6gKUpu6V1G7du3qqXrg+D76CnNT73CMHKMYuQ2jGUddzYgmnGj23HPPBbDe6rDRZL5itOhbWrq+7FUIIYQYMqTwREdQXeV8Yf2K+uO4OPbkc714ZhpJEy4D67OjiPGAEapsD8xuA6yfFFiIOqTwhBBCFIEUnugIKqY0nyUVF/1nq6urPbG9UzHSd8f9sw7pMfjeTxIrxoe1tTWcPHmykUeU0wKlYxKl8EQnSOEJIYQoAj3whBBCFIFMmqIjOFUOl0Az9J+mx6mpqZ4M8OY+aMKkiZOmzbm5uca6XGfHjh1bPq4YTlZXVzE/P9+YPolm62FJ9i22l5mZmY4D5qTwhBBCFIEUHprBF8OY/HhY4DlKw/2p9jgkYGJioidBK1R4XlXmJmQV48/a2hoWFxdx5MgRAMCxY8cAAIcPH97OaokhoRurkhSeEEKIIpDCg5TdZqGySxVeL9m1a1dP9ydGk7Nnz+LYsWMNZbd//34ATd+xKBPeb6anpztWeVJ4QgghikAKT3RFmt7LT72jBL6iHywvL+OOO+7A4uIigKYP9957722sc+mllwLQNFAlIoUnhBBCOKTwRFekfjpGTXIM3OTkpHrYouecOXMGt99+e6O90eeeppGjP0/jMcshjdqWwhNCCCESpPDElmFPq1+TNgqxtrbW4iPes2fPNtVGDAObiQqXwhNCCFEEeuAJIYQoApk0xaahCZPLlZUVmTVFX5iYmGgJTDh69Gjj/WWXXTboKolthveabubhlMITQghRBMUovNThzelmpEa6h+cOaD1/p06dWve9EL1gYmICO3fubFzDVHqpwhPlsrS01PF9RwpPCCFEEYy9wmNvMA1hVbLozcNE0SnsXUnhiX4xNTXVovDStshrWuntyuHMmTON91J4QgghREIxCm9lZWWbazIepL1q9qpY1k2KHyE6xczWtStaa06dOtUoY29/dnZ2sJUTI4UUnhBCiCIYe4Unn1JvoIpLIzOpmlkmhSf6QQgBa2trLW0rbYvHjx8HIIUn2iOFJ4QQogj0wBNdEUJovM6ePYuzZ89iYmICExMTUniiL6ytrWFpaanxeXV1Faurq5iZmWm8jh8/3lB5QtShB54QQogi0ANPCCFEEYx90IroDRzYmwYB0XyZDvaVSbN7pqenATTPrRIjrCeEgNOnT2NmZgZAc/7FEydONNbhOdQA9P7A8zmMaRn9sJV2SOEJIYQoAik80RHs0aUKjz3t5eXlbanTqMLeMkPovRpJB/cvLCwMrmJDiplhenoap0+fBgDs3LkTwHolfN999wEA9u3bBwA4dOjQgGs53gyz1aGbmc+l8IQQQhSBFJ7oiJzC82Vnz54dKtv+sED/EhUxfVE7duxYV55LikwWFxcBDJfvZFBQ4fG8MOFB2rO///77AQAHDx4EAOzZswdAUw0KAUjhCSGEKAQpPNERnSg8TQ/UhKoOaCo5KjieN36mwqNiSbdlGZdpZGIpTE1N4eDBgw0VxzaW+o7p6+Q6VHgXXXQRgO78PGK0WF1d7djyoVYghBCiCKTwRFu83yTtSTFyiz3t5eXlIn1MOVKl631OPiqzXVJkqj2qRH4uabqr6elpHD58GEeOHAHQPD+pr5PTA1Hp3XXXXQCa5/zAgQMA5NMrHSk8IYQQRSCFJ9rCXnQuCwjfc3n69Gn58Cpy54lQZfDccnwZz13uHPr/oSRmZmZw4YUX4lOf+hSAfKSq9ydzeezYMQDN/2Bubq6xDd9TPYvxRwpPCCFEEUjhiSzp2Dqg6adL1YpXHfLhdQYVHX13VBj0y6X+Oa+iS2R6ehoXXXRRY/wi/XVp5KXP9cjzxfZY8vkTTaTwhBBCFIEeeEIIIYpAJk2RhWYjb1LLBWPQ3KnUYt1x6tSpdUuRZ3JyEgcOHMDevXsBAPPz8wDWD+egSdMP+fDTWqXtc9BtldeUgmS2Dyk8IYQQRSCFJ9bBXm+q2oB8yDzXKWkQtNg+mBg6F0DFgBav9BjY4tO6pWX9JK0jlTzrxpRyYnBI4QkhhCgCdTHEOnzv2Q9PyA1LIErQK/rJ4cOHAQAPPfQQgPVtkYP5vaLzybcHoepSUusHj81hKbt37x5oXYQUnhBCiEKQwhPr8NFs7EV3ovBKTHslBsehQ4cANNVc2hbr/GF+CqY0ipN+v37gB74DTZUp3932IYUnhBCiCNTVEACavgaqNj8Fi1d66ToaeycGwb59+wAAu3btAtD0hbWDVgev9NKyfsDjpn5tTkortg8pPCGEEEUghScAtI6784oul9jYfycfnugnzFBy/vnnAwDuueeexnc+OXRu3N0g4US9YriQwhNCCFEEeuAJIYQoApk0BYCmedKbNGmupMmTCXDT99xGA8/FIODwhPvvv7/lO98GvWlz0APPxXChO5QQQogikMIrmNwQgzpFx8/pVDZ+CMPU1JR60KLvUOGlqbk4ZRDxyi43TECUh/59IYQQRSCFVzBUbUCzB0yFR2VHRcfP7Qb7KmWSGARMLXbgwIFGGdtpnYVh3C0Pud+nhBCtSOEJIYQoAnXJC8RP/ZOWcUklt7S0tG6ZqkJPP5PxCuHhhLBAc8ogWiioeDgAnNaHcVU9Od8kr2UmzK77POpMTEx0rOCl8IQQQhSBFF6B0B+XpgmjoqMvhIqOnxcXFwGsV4U+lVg3PS0htgpTjAHAAw88AKAZrUkVw/bIz+n0QONETq3R18lz4K04Xv2mpNHYw8709LQUnhBCCJEihVcg9MOlEZd1io7r5KIzqfDkuxPbzXnnnQeg2W6pWvyypKTOtODwt/Ozn9w5tfQwQffc3Ny6bbnNiRMn+l3trpHCE0IIIRxSeAXh1drCwkLjO75nD5mKj+VUhWlPyk+q2U1PS4heQn/evffeC6A5SSytD2yXJWVa8T67TqDVhlmU6PPkeeMktidPnuxZPTeL/287oZx/XwghRNHogSeEEKIIZNIsCJonOSyBZsv0PU0Vfl2aOlLzAU0KNGnu2LFDJk2xrTzsYQ8D0GzHmzF7lQwDWLzpl+exXeKJQcMAm8nJSQWtCCGEEClSeAXAQBQu2ftNFR6/o7LjOn5weTpIld9J4YlhYd++fQCaSoSDr5XYvDvqglfSCaCHhW4CkaTwhBBCFIG6PWMMe2NUaxxU7ocgpGUcssAeMm36HLCbpmbiYNSSQr3FcMO2SGXH9qrkCFsjtQYNC+mA+U6TgutOJYQQogik8MYY9sqo9Hx0Zjp41A9Kp8LzUZqpL4Tv+d24TDciRh8OPGcbHdek0f1mmK/p9N4khSeEEEIkSOGNIV7ZefXG79OE0F7JMTqLS0ZfpnZz9qLJ6dOnW6I6hdgOOEZLjC9UdcvLyx3fd6TwhBBCFIEU3piQ9nA2UnhUaTmFR98dlR17Ufyc4sc2LS8vd2xLF0KIQSOFJ4QQogj0wBNCCFEEMmmOCekQA5ol/ZJmT5o005BjmjdZxiAVmii5bWqy9CbN1dVVmTSFEEOLFJ4QQogikMIbcXJT/bCMSo4BJ/ycGyjOMm7rZzrW4HIhxKgjhSeEEKIIpPBGFCouJoBOp+3wacG8Ly8HfW/eh0dy0/5QMcpvJ4QYBaTwhBBCFIEU3oji04SlKb+9/NrkAAAUnUlEQVT84HGfdqeuHGj67Hx0JqcHSiMzvW/QzKT2hBBDixSeEEKIIpDCGzF8VGbOL0dV5hVcu88b+eyo/NLJXunvYx38uDwhhBgmpPCEEEIUgbrkIwLVGNWUj6ZsNz1GJ3417idVcEDrBJrpvnxiaWVaEUIMM1J4QgghikAPPCGEEEUgk+aIwGEIfkiBN0GmZVzSHOnNlizPfUfTZCcD0GXGFEL0k/RetZX0hlJ4QgghikAKb8jxiaBz0/R4vKLjZwagUMWlaq1ufyznMh3gvmPHjnX7UdCKEKIfpKrOT13WDVJ4QgghikAKb0ipG2aQ89nVlfspfnx6sHSguD8et/WD2OlDzDE5OZn18QkhRK+QwhNCCCE2wLp5SprZgwDu7F91xBhwSQjhkC9U2xEdoLYjNku27Xi6euAJIYQQo4pMmkIIIYpADzwhhBBFoAeeEEKIItADTwghRBF0NQ5vdnY27Nu3r6Wc2UAAYH5+ft13PsuH/5yW+RyQGtM1ehw/fhxLS0stf9zk5GSYnp5uZEzgktlaAGDv3r1cdxBVFUNGXdupu++I9viARJ81Kbde3Tob7bsbcvd1n8u322dAXdvxdPXA27dvH66++uqW8ltuuaXx/uabbwYAzMzMAAD2798PADjvvPMa+0iXQPNGx+WuXbsAADt37uymemIIuPbaa7PlU1NTuPjii3H06FEAzWTYT3jCExrrXHHFFQCaA+RFWdS1nbr7jugOJo1gekDOrZkmk/DJ6dkx5QPOJ6JIE1b45BX+s3+YAc3OLa/5ubk5AM2OMJ8FG1HXdjwyaQohhCiCnqQWO3HiROM9ew1UeH4qGp/YOFcmU+b4EULA8vJySxJs9ugAKTsh+gndSFRtOddBnbnTqzWv/NJ1NjKLtktan9tvL5HCE0IIUQQ9UXhLS0stZX4C0Tqll37n1xXjQwgBKysrLT4C+WmFGCy899ZN8gy03oPrFFc6bY/3+9UdN923r4NPDN1uouvNoCeLEEKIItADTwghRBFsyaRJ6ZqbI82bMNuNw/PhqjJpjh80aXrHtv5rIQZLbj5MD+/p/h7P65djrxmElq7j1+U63CZ1Z9XVoV/3Bd1thBBCFMGWFB6HIOTgE9oru1zQindmasqi8SOEgLNnzzZ6jByCsHv37u2slhAig1eBaUYkANizZw+A9dY9Krm6wet8XqSZubiNv+f3y9onhSeEEKIItqTw+PRNQ8sZVsqeAXvy7XKk5dLUiPFjdXW1pScnhSfE6JL64Nr5BFPSYWzHjh0D0Ooz7NezQApPCCFEEfRk4HlqZ2VKMW8DZjkVXy61WC6CU4wXbCtsBxp4LkRZzM7OtpRR6fXbyieFJ4QQogi2JKWo2rgEmtE87Ln7dXJRmuzt+0ggMV6YWUO903enue+EKBev9hYXFwH0bwIBKTwhhBBFsCWFx4g7TuYJNMdncNoXfmaPnhO/crJXoPNJ/sRoY2aNnhtVfZqpQQgxfjDy0k8NBrSOwfZTGPUaKTwhhBBFoAeeEEKIItiSSfPBBx8EAJw8ebJRRlMmTZZcstzPhC7KwMwwOTnZMFmwXShQSYjxxs91l3Nj0Mzph7W1m7NvM+ipI4QQogi2pPAWFhYArHcwMkiFSw5P8KnFUsdlmkw0tw6XPl2ZGB3MDDMzM43/8ODBgwDyg1CFEOMD7+e05uSsOn66oVwKyp7Upad7E0IIIYaULSk8P8g8fc+evJ8I1k8gCDTttNyGwxS4jaYLGn3MDDt27Gj8/5dffvk210gIMSx49afk0UIIIcQW2JLC8346oNXPRhssB6fTRpsbWMinO7/zacj6lW5G9B9GaVKtHz58eJtrJIQYVvoVxS+FJ4QQogi2pPA4ZXsaaUdlx/EUVGV8YvuJ/oCmKvTRmvTlUUEqOnN0YeLoCy64AICSRoutk1p85OcXnSCFJ4QQogi2pPCowNJE0FRwfuwF8RGZQFO5sdfPBNPKwjE+MEqT4++E2CpSdaJbpPCEEEIUwZYU3l133QVg/fQ+9OtRtXHpx1WkkZ3cnvk2xfgxOTmJPXv26D8WfYEWJd5XGA3eyfRTtCT5GAIxfkjhCSGEKAI98IQQQhRBT1KLpWYqThVEMyVNmhyGwGCVNCBFZq7xZ2JiAnNzc42AJCG2SjoswQ9h4n3GmzQ5XApoBtjJlFkOUnhCCCGKYEsKjwmA77777kYZlRxDhtnDYm+KpAOPfSoxMX5weqBzzjlnu6sixoR0WAJTF1L11Q1ZYFCdGA34v6ZBjp5cmso6pPCEEEIUwZYUHllaWmp5v3v3bgCtPS5+Tp/KJ06cAND09zFVWb8SiIrBMzExgZ07d2rCV9EXeD+hP66bXr8YXvg/pr7YraSY1BNFCCFEEfRE4aX2VdpcU9UHNKOm6KfL2dKp6Pg0V2qx8WFqagrnnnvudldDjDmdDDQXowMtg2kkrVd43VgCpfCEEEIUQU8U3uLiYuO9H3fHlGJUdlR66Rga/52mARo/pqenceGFF253NYQQI4BX6ulnvveTjHeCFJ4QQogi6HmUJuFTlwqPdlY/MWz6HZXeoKIzfeSo6C8aZymE6AQ/2UD62X/XDVJ4QgghikAPPCGEEEXQE5PmgQMHGu8///nPt5QBTfMhzVppYApNmOks6P2EQyd4vEEdVwghRD18TvCZwODHNDXlVlwjUnhCCCGKoCfSJjflC0NHfZCKD1ABWgel94M0mSzfS9kJIcTw4JN+5wJU6hKDd4IUnhBCiCLoicRJ/XFUdH6aID6p/TAFYDDh6mmvQCnLxLiRDq3ZSg9YiO2EzwWmEstZ4/hs2UyCEik8IYQQRdAThcepgICmevKDx320TRp1k0s31ms01ZAYZ9L2ralxRK/xljp+Tq0JPk7D389ziT78fv2zgBbD9HmxleeEngJCCCGKoCcKL33i7t+/H0Dzicynvbe3pj0Dn2BaCNEdqarjdSSlJ3oF7/FsWzk/sY+orFN4OVXoI+Z5HO4zl4pyM0jhCSGEKIKeKLyFhYXGe9pcmc3ER2f6noJ/L4TYGlR2vje+laS7Ynyg9a2Tcch1CfZzfrSN7uPdKDPu3/sFga1NHyeFJ4QQogj0wBNCCFEEPTFpzs3NNd7fc889AFpNmTSzMOUYTZ5AU6Jq6IAQvYPXnK4rkUJTZi4JiIcmxUHPHeoDr7ZixkzRlSCEEKIIej4s4dxzz133nU8xlkM90Y3xPS0hOkXBKiJHu2ECnk4GkW+GOpXpp5PrVaJ/PWGEEEIUQc/nxznnnHMANH11S0tLAFp7AlJz3SFlJzrFh3Iz3R/D0ZeXl7enYj2Cv0vKdXPwvLEdpOopN30b0JoaMpc+rJshDP54deW9fk7oqSOEEKIIeq7wGE3DFGN8QqdRmcD63pl6auPP6uoq5ufnGxYA0T98L937P9hbH9XUY7J2bA6fuJ8KL1VRdYrKJzHgPjYzAD03GTf300nkaLv9bYQUnhBCiCLoucIjO3fuXLdk+rGc/0A9tvFnbW0NJ0+elMIbAH5cay490yiT8+HpHrIxVGW0tm1GndFawGXOSrCVVJGbaaPdRIqOxxUghBBCbEDfFJ4nnSRW9I5RGZ+3traGU6dODTxjQymkmSh8Vgp/rsdl+qDUN8nfoniAVvw15yfp5ufNMGqJ/6XwhBBCFMHAFJ7oLXXjZIaVtbW1xphMsXm8P44qJ+f7qMteQV/OqDAxMYGZmZmG/58qLlWy/K38bcN+PQwSr+xKRgpPCCFEEeiBJ4QQoghk0uwR3tTUr5BpmjI5s3zOdMNjD1MgSwgBKysrClrZInVh27nBvL5t0Nw3aoEdZtZo70BrYuEUmnhp/mSKw2HCp3qT+XVwSOEJIYQoAim8HlHXq07xqZ7Y02a5T7+WgwP5/T7TXjt7tX7y3e3GzHDmzBkAwK5du7a5NqOJ/y/5OVVAXuHzM8/9qBFCwOrqakMZsX2nVgI/FMMr4WFSerxmueT/MizX6TgjhSeEEKIIpPAGwEYh5Pw8OzvbUkY7vw8p9/vK+XZ8+Pkw+PaOHTsGQAqv16Qp+0Z9+p86vM8u/ezTqfnrgeumSm+7FBWH59BaMy6JAEYBKTwhhBBFIIU3QOqi43K9Ur+uV3p+mZvEkUv2HDuJjOyn+jMznDx5sm/7F+OJmWFiYqKlXaftmSqJZfRpeutKLtqTPrRBK+N2SZxFf5DCE0IIUQRSeAOAvc863x1Jbfh1So7Kj76InN2fPUYu2bv1kzbmxm71CzPD9PR0o/6bmehxu8hFwPKcjlry3FGEbYfqLGcp8QrPq0H+X6maqrN8DFrpDdN42XFn+O82QgghRA+QwusRXsXl/AvsyXEdP3Yv7eltNIauTvEBzYg1n9XEZ4FJ69jv7Bv0w/D3zM/PAwD279/f1+NuBa+ugaYPSH6X7SM3oa2/7nwUc67N+8hnLjej8PzxFXE5nEjhCSGEKAI98IQQQhSBTJo9wpsl01RHOYd5bpucuYXUmRxzc5xx3XSoQrr/nNl1ECaY1KS5uLgIYLhNmjw/CkzZXkIIjfRiQHPAdnpNsE3zv/KpxnKpxbgN1+XwhFwCeI93YTDtGevI63GYUpoJKTwhhBCFIIXXY3KKy/c665RWqrK4Lh3oHKRaF8KcC3jxqcVyiaYHBad44e9YWFgAsD6hsWZkFjkY8MT2XDfMB2heN+3WSfcLtFpg6q6TXCCaP56CVoYbKTwhhBBFIIXXY3LTBNGO7yeu9H6GnErzA7S9vy+XENrXwacYI4PshU5MTGBmZqah6NhbP3XqVGMdKTyRg9YBXkfeXwe0TrXlrSn8nPN1e3WWHhfID0+h5aVOdcp3N5xI4QkhhCgCKbwBUDfVD9VOu5RJPpLMD0jPDYCuU4HbmcZrYmICs7Ozjd/MHnCaTHrv3r2NdYUgk5OT2L17d8Pvm5YTXkMso7WgLhIzfe/TxHWTVMBbYsRwozuLEEKIIpDCGwBprxJote+3s/dzUlgfOcZeqI/EBFoVXqdj+voJ/TD8PSdOnADQnAwTaPpFOM5KCDI5OdloO348HtAa8UxF55Vfqgr9mFkfcTmuE+mWjBSeEEKIIpDCG3JSBZSya9cuAM3eaE7pkWFJdDwxMdHS00573PTRSOE18dG5PjG4jzQEWqOCR50QAs6cOdMSCZn6er3Pjp+pCtN9EZ47jg2lL4/nOI0gFuOBFJ4QQogikMIbUdj7pNJLx9R5f0adL2+QmBmmpqZaet6p/5JTBh08eHDwFRwCcjlOic8KUlJU4OrqKhYWFrBnzx4ArWPs0jJaB9i+eH3kxsfyPa0obJu8tqgolTVlfJDCE0IIUQR64AkhhCgCmTRHFD9lTfrZm2BoBvPDIwaJmWF6erpRNy5T0xxNVDRtnnPOOQOu5faSMzl702VdcNI4m91CCFheXm4J3EmHDezevRtAqymTy1wKPp6zubk5AE3TJoNY+Hlczq1PWlGXZD79jvcVH/wzqkjhCSGEKAIpvBHFh2Gn+JRi7YYsDBImkAaavei0/lSipSbezSUp9pQ4GDqEgJWVlZYgrFy7piJhW2J7yyVQZzujeqHSY9AKA2C20zLSS/h7vZUll1CbbZD3mdwk1aOIFJ4QQogikMIbMdhjJe0SLedCsbcbP31L6qNir1yIlBDCujbMdp22fX8d+DRhVCppe6Nyo5+PSo9JzBcXFwE0EyIM03W0Gequr1S1eRXNczPqyo5I4QkhhCgCdalHBB+V6VNL5RjGHqmPtEt75t73SJ+DnyhXlIWZwcwafl/61tIUdHXXg09TR8UCoGUyYio8lvuITz890ajhU7Plpg0bFyVXhxSeEEKIIpDCGzF8DywX0Zcb4zYs+Ak509/D76jspPBECpUXl2m78BHJbDs+0XTqx6L6Y+QrozSpJP34vFFXeITXnLcalYAUnhBCiCKQwhsCcnZzKjc/rshHo+XGx7CXO8zTw7Sb1ojfDXP9xeAIITTG4gFNxZWqNaoy+t2o+KjeWJ6bUshnY+E2PkqT6wPjMzavNKTwhBBCFIEeeEIIIYpAJs0BQDMKTXV+frp2wSU+lNibMLlMU06NuimwRGe6aM/a2lqjjXszP9AMQKFpM5c2C1h/bfjZ0bmuT0TNefhoSgWAY8eOASg3Dd6oIoUnhBCiCKTweoxXc+l7H5xCZddusKff1m/jB2mPMnUDY0XZMLWYb/vpdUM1xuuACaCp2rhsl4qP7Y9qkdNT5a4x7ufkyZPrjqc2O9xI4QkhhCgCKbwek1NtfvBrnR8uNxlqu/0Coz9djE+GLUQdvG7Y5nNpwqi0OJSA6/ohB0Cr2qNPkD49JpHO4YcJecUnhhMpPCGEEEUghddjcj483wv0dn4ftZniIzn9RJbDmCC6G9r5L9v5W0S5eKUHNKMz5+fnATRVGst9qjGgNRqYqs1PfkpfXrq+v2Z9O5bSG050RxFCCFEEUng9wvcWc8qFKi03gWWnsKeqaDBROml6L0ZWel8ex84xTRijOVM28pcziXTqb/aTK3s/vFeWYjiQwhNCCFEEUnhbxPcOqdraJYQm7A36ZW77cfHZCdEr0uuFiopTBvEzFR59auk2jPL0vnWv2ujbS6049Ov5dX2Gl4ceeqixja7d7UcKTwghRBHogSeEEKIIZNLcIlsxafJzbv46PyeczCFCrCe9Xnh9cKgClwxioWkzN/9i3XAhBqnkrmUGyRw4cGBdXbzrId3n8ePH130nBo8UnhBCiCKQwtsi7P35YQlpz24jteaHK6TvR32qHyEGAZWbHwbA4BUGnqTXHq9dKjlvnfHKL72m/dRCTEPm182pOSm97UMKTwghRBFI4fUI31tLFV+dosspOyJlJ0Tn+MTsPlk0l6k/zg8W9z477tNPPJtuw2ubwyE4SJ2Ks93EzJxEVkkkBocUnhBCiCKwbpSEmT0I4M7+VUeMAZeEEA75QrUd0QFqO2KzZNuOp6sHnhBCCDGqyKQphBCiCPTAE0IIUQR64AkhhCgCPfCEEEIUgR54QgghikAPPCGEEEWgB54QQogi0ANPCCFEEeiBJ4QQogj+P/FzTTodPPgcAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Xdld3/nd72lWqaQqUVKpZk8BY9puuiENoQnDIsS4IQFWQtwYiMFuIJCETocQcBgMOEwJYzCGxgQHAs5ihhgazBBDiOMAjRubwTauKtUgqapUKqlKpaEkvXf6j3O/9/ze5/z2effKsqsqb3/Xeuu+e+45e977/OZf6bpODQ0NDQ0N/71j5eluQENDQ0NDw4cC7YXX0NDQ0LAl0F54DQ0NDQ1bAu2F19DQ0NCwJdBeeA0NDQ0NWwLthdfQ0NDQsCXwjH7hlVJeWUrpZn9/Jfn9k8Lvnxauv6mUcvQq6zxaSnlT+P7JoQ7/PVRK+bVSyl+9yjo+u5Tyf13ls6+dtWHbJvfdhTY/NWv3b5dS/s9Syr7kmQ19X7A9ryylfEnleldKuWuZ8p6JmK2nB5/udiyDMP+vfLrbkmE2ptxX2d8nX6P6/kMp5T3XoqxZeV9dSvlbyfXvKKVcvFb1XEuEMX/jgvevllK+sZRyfynlYinlnaWUz/pgt/ODiclD8xmEs5K+UNI34Prfn/3Gw/tbJX3/Vdb1OZKeSK7/Y0l/KKlIuk3SP5f0W6WUl3Rdd++SdXy2pE+T9D1X2cZl8O2SfkX9XB+S9NclfYukryql/M2u694X7q31fQqvnJX9b3H9VyV9vKQTV9Hmhg8cJ9SP/91Pd0Mq+FZJPxy+v1rSqyT9r5LWwvU/v0b1fb2kvdeoLEn6aklvUb+3Il4v6ReuYT3XBKWUT5X0uZLOLfHYd0n6CklfJ+lP1J/Bv1RK+fSu63772rfyg49nywvvFyR9QSnlG7uZp3wpZbekvyPp59UfunN0XXfVm7zrundWfvqLruve4S+llHdK+ktJL5X0hqut70OAe2K7Jf1CKeX1kt4u6WdLKf+jx3Si70uj67qTkk5eq/KuJUopq5JK13VXnu62LIpSynZJV7oFI0V0XfeUpHdseuPThNkene/TUspLZ//+t0XmpZSyc9bHRet7//KtXB5d1z0g6YEPRV2LopSyUz1x8U3qCfVFnrlVPZH/jV3Xfd/s8n8qpXy4eiL6qqRbTzee0SLNgJ+UdKd66s/4HPXt/3neTJFmEO98WSnlW0opJ0opZ0op/7GUchueXVSsZ05oe3j2plLKj5RS3ldKOV9KeaCU8tOzxTNvm3rO9NYgtjmKMn5o9uxTs8+fnC3aiOeUUn61lPJkKeW+mehhofnsuu4vJb1O0oslfepU30spz5nV/9CsPfeUUr5/9tvbJH2SpE8IfXnb7LeRSLOUsr2U8rpZPZdmn6+bHea+Z5m5enkp5XdKKSdn4/DOUsrfZ39n5f3LUsrXllLulXRJ0sfO2vBVyf2vnc3fDYuMZ3juS0spfzIT/zxaSvmxUsqNuOcfllL+aynlsVm/3lFK+d9wj8fgK0op31VKOS7pKUkHwrh+XCnlp0opT5RSjpdSfqCUsisp45Xh2ptKKQ+WUj66lPKfZ338y1LKlyd9+bTZeF4spby/lPJq7qsPFUopL5315bNmbTgl6b7Zbx8xG4ejpZQLpZS7Syn/ppRyPcrYINKcPdeVUr64lPLts/V9upTyS6WUI5u05yFJhyW9Kqz7H579tkGkWUrZNfv9G2br74FSyrlSyi+XUm4spRwppfzCbB7vK6X8k6S+58/a/+hsPv5frplN8C8kXZD0A0s88zL1DNG/x/V/r37vzMeo9OLd98zG/7FSyh+UUj5zibo+ZHi2cHj3Sfo99Sz1f55d+yJJvyjpySXK+Tr1nM2XqBfvfbf6CfzkBZ5dKb3ezCLNb5N0XtJ/DPfcKOnirJ6Tkm6R9E8l/ZdSykd0XXdRvSjnJkkfK8k6gKckaXbAvn1WzuskvWvWzr8taYfvm+EXJf24pO+V9FmSvlk9ZfnjiwyEpF+T9H2SPkFSKp4opTxH0h/M+vmN6jnaOyR9+uyWr1A/fquSvmx2bUok+u8kfZ76sft9SX9N/WZ8rqTPx72LzNVzJf2cpO+QtK5eXPvGUsrurut+WBvxSkn3qBdFnZv9/0uSvlRB/F167u9Vkn6m67rTE33ZgFLKd6if6x+Q9M8k3ap+Dj+qlPLXuq6zmO4uSW+UdFT9/vssSW8ppXxG13W/jmL/hXox+peqH+OoG/pJSW9WL6b6eEmvlXRaPRU/hesl/bT6uf8WSV8s6Q2llPd2XfefZn35SPUi6T+Q9HL1a+8bJO1XP85PF35Y/X773yX55X6r+rn8GUlnJD1f/bj9D1psX3+TpN9Vvz5ulfSvJb1J0t+ceOZlkn5T/Rr+9tm1hzep59WS3ql+n9ymft++SdLN6iVYP6R+D3xPKeVPuq77HUkqpTxX0n9Tv7f/saRTkr5A0q+UUl7Wdd1vTFVaSnmhpK+R9Kld162VUjZp5hwvkvTEjGON+LPZ50dKOlFKeZX6/fxaSf9V0h5JL1F/hj3z0HXdM/ZP/SLs1C/iL1G/oXdJOiLpiqS/oX5Rd5I+LTz3JklHw/e7Zve8DeV/9ez6LeHaUUlvCt9dPv/OSHrZJu1flXT77P7PQfseTO7/FvX6i4+eKPO1s/K+GNffLemtSZ9fXSln5+z3N0z0/SfUExS3TLTnbZJ+f2Lu7pp9/6jZ99fivq+fXX/xsnOF31fUv0B+VNKf4LdO0nFJu3Hdc/uJ4drfml37uM3mC2O9pl78E69/wqysz96kzW+V9MvJ3P2xetFrNq7fjOtvkfS+pIxXoh+dpE/BOjgl6f8O135aPcG2J1w7ov6Fe7Q2Dh/IX1jX25LfXjr77c0LlLNNvX68k/TCcP0/SHpP+P4Rs3t+o7Ieb9yknockvTG5/h2SLobvu2blvVvSSrj+Q7PrXx2u7VB/xsU9+VOztbsf9fyepHds0sYyu++Nm7U7efYnsrnWsI//7uz7GyW9/YOxJj4Yf88WkaYk/az6zflZkl6hfuKWVZz+Gr6/e/Z5xwLPfqV6ruxj1VN4v65eB/ZJ8aZSyj+YibWeVP9Svn/204cvUMenS/rDbjFd2q/i+59qsX4YJvWmdEKfLuktXdcdX6LcGv767DMTkUi9aDRi07kqpbyglPLmUsoxSZdnf69WPta/3nXdhXih67q3qTeK+LJw+cskvavbqPfcDH9D/cvrp0op2/ynnjI/q6HvKqX8z6WUt5RSHla/Pi7Pns/a/Evd7FRJwPl/txab//PdjJOT5rq+9+HZj5P0a13XnQ/3nVDPcU+i9JZ928LftTxjfjGpb9dMXPjemSjxsnruS1psz2XjKC23lxbBW7uui9yxxatzDq3rukuS7lVPJBsvVc/VnsPaeqt60eIu1fEq9ZzYQnq7q8QfSvpfSinfW0r51NLbVjxj8ax54XVdd1a9COoL1YszfwoLaBE8hu8WEU4tGuN9Xdf90ezv/1EvVrlHvSWTJKmU8o/UU26/pV7U9FfVHx6L1nFQ0qLm71lfFqnD8KaasqJcpj2bwSIO1vcQfjcm56qUcp36g+0lkr5W0ieqJ0b+rXrCiKj18w2S/k4p5WAp5U71BwzFoZvh0Ozz/RpevP7bp34cVUq5XT2RdqOkf6RepPux6omnbO6m5iYbn6zfRCam5do5IumR5L7NxHZS37/Y/29c4JlFkY3Hd6vnyt4k6TPU77mXz35bZD98IGfCMuC4X5q47jW+qn6tfKnG6+pb1Z/fqZ65lHJA/dn0bZLWSikHZteKpB2z71MqrdOVsr1PPW4/ql7U+onqz73HSik/W6Bvf6bg2aLDM35CPUW2ov6F87Sh67qulPIX6jlO4+WSfrvrun/qCzM92KJ4VL0e4UMBK71/f+Kea9keb5CbtdFU/mb8vig+Xr0h0yd2XTfvw8QmrnFKP6FeD/NK9Rv8vHox0jI4Nfv8dOUvFP/+UvV6sM/rum5OSJRS9lTKfbpyd53Q8BKPOLzAs1+mjW5C10I6YGTj8fck/WjXddalqZTyYdewzqcNXa9ze1z9mfe9ldserVy/Wf16/u7ZX8QXzv4+Qz2xleHPJF1fSrktrlX1HKM0cxeZMR2vl/T6UspB9Wv8u9XvIUptnnY82154v6mZcrrruj/b7OYPJmaimhdpo+n9Ho2NNr44efwpSRnr/1ZJX196374/uSYNTVBKeYF6qvid6nVwNbxV0ueWUo7MRFoZntLYDzLD780+Xy7pX4brr5h9TrUjg18Sl31hZvTzt5cppOu6J0opP6X+oL5OvZ5oWV/E31RvzHFH13W/OXFf1ua/ol7X90xybH+HpJeVUvZYrDmzyvsEbeJX2XXdez8E7ZMkld4CY7fCeM6Q7blrjdoevtb4dfVSjHd3S7hhqFelfEpy/RfUG5f8K/VGcTX8mnq99CskfWe4/gpJf5SdB13XnVIv1v8E9YTIMw7Pqhde11u6PV2c3Qtnejmpt7L8IvXUzteEe35d0j8vpbxGvYXbp6r3FST+XNKNpZR/IOmP1Cu5362eivt89Q7tr1OvT/gw9Yf4l8/EusviuaWUj1NvQHOTeqrrVeopw8+b0BFJvQXbyyS9vZTybepFdrdKemnXdV8Q+vIVpZS/p55zO5sdel3X/Wkp5c2SXjvjwt6unkv7BvUvmXfzmU3wdvXExetLKd+k3qn462f92r9kWT+kQY9XE2fuLqVkc/n+ruv+v1LKd0r6wdL7Kf2uegOP29Xr594405v9lnq93U+UUr5bvejwm9UfTs8k9cLr1K/b3yil/Gv1otJvUC/SfDqtNDdgJmV5q6RXl97l4Kj6g/Z/+hBU/+eSPqWU8jL14t9Huq67f5NnrgavUa8Lflsp5YfUr5Ub1LsU3dJ13cilRJJmhMrbeL2UcknSiZn+2td2qrdc/pGu675y9vyDpZQflPRNpZQL6s+iV6gXw780PPsm9UT/O2afH6GeqJ20Hn268Kx64T3NiD4spyW9V9Lnd1335nD9WyQdkPRP1Mvhf1e9efM9KOuN6nV73za7/z711oxnZtTR69TrpQ6qP2R+R4PMf1l83ezv8qzdf6Zer/Jjm71Au647OntZvk692O86Scck/XK47TvVGwe8cfb776puDv5K9WPxJepfTsdnz3/zsp3quu5kKeVz1ItPfm5W1ver1zFsZprPst5VSnmfejPsP67cdqN6wyni9ZL+Ydd1r5mJuL9y9tepNyX/bfXuHOq67s9KKa9Qv05+RT2B8LXqD5BPXqbNH0x0XffnMz+vf6VeonJM/Ty9VL315zMJXy7pB9W3b129gccXSfovH+R6v0Y9cfRz6jm9H5m15Zqi67p7Sikfo96K9TvVE8CPqn8BLeqCtBmKeoJ4Fde/Wr01+j9TL+L+C0mfCynG76sf71eql/Qcl/Rjuoo9/aFAmSbwGxr++8eMK/sLSf9H13U/9nS355mImZHQ+yX9atd1r3q629PQcDVoL7yGLYuZJdnz1VOjz5f0fLoubFWUUv6NerHxcfUBFL5K0kdL+tiu66Z0Pw0Nz1g0kWbDVsar1Yt336dePN1edgN2qRehHVYvTv8D9cEd2suu4VmLxuE1NDQ0NGwJPJMswxoaGhoaGj5oaC+8hoaGhoYtgfbCa2hoaGjYEljKaGXXrl3d3r17HTVbO3bskCStrAzvzW3b8iKn0lJslrKCv2d6x0XuqYH3+nvWLl/brPz4O+9dIkXH/Nn19fXJtk7Vt9n1rE21Mcjavrq6Ov987LHH9OSTT45u2r9/f3f48GFdudLn9rx0qXcrdL+y9nlduXxen+rHMmNcq/9q7snmozaGvHdqbfG3a9m/ZfZKVi/74TldW+szInnOYz0+J7Zv71MhTq2dffv2dQcPHpzPu8vzpyRdvnx5Q51s09S8XI0dw2bPLjJPVzOHNXhsYpksf2rfEJu1Let3rc9xj2/2LL9nZfo88LXV1VU98cQTunDhwqYDutQLb/fu3fqUTxmi1dxxRx9Q/IYbhhij119//YbG+KXoTrPzkrRnz54NzxixQ9KwmONL1QvdA+N7/d2bIpbNjcN7Xc/U4V47tFy22xX/d7nxBRE/44LkxvUL4uLFPiUaDxV/Zv1g/xY5lDlP2cvH8+Byjhw5ou/93jzk36FDh/R93/d9OnbsmCTpgQf6NFtnzw6+714rxnXXXSdJ2r+/D5ziw9Gf8Rm2r7ZhY5/9jPvK73FMDV7jdz8b558vYa4RjnUcY7bJ7fcYZAcd62U9XP+xD7xnkRetnzl/vk+ucOFCb+z6+OOPS5JOnepDiXrtStLevXslSbff3scwP3z4sL7ru+Zx2Dfgxhtv1Gte85r5OfHkk33Ao/vvHwKbnDhxYkMdvoeEVfbS9T3uM1/UHOs4DhxjjtPUQc2yXE+cD+4xw21zm3bu3Lmhjvg/943LdD1x33F91c7C7KXlMWDfn3qqj4iW7Stf8xy4bV5Dvh77deDAgQ1937dvn37+50d5wFM0kWZDQ0NDw5bAUhxe13W6dOnSiEKIHFeNijSmKFJSM6QuM3EpKWBSERmlxXtrnxlXmFH90piznBL9uAyXyetZG8gd+HdTdpF6nqIY47OmnmL7yX1wvjIO3Th79mx1fLqu08WLF+dcwBNP9PGZTf3FNtQoYbclrgNfM5VKLtHI2s3x53cj9okcNalacvHSWMrA+WH9ERTn8l7/PrU33EZyBYap6az93JORc10U2bh6vZ47d26h573OI2JbPL/kWn2P+xPXgdvANUsJCMuKqEl8MtQkVtxjcc4pJo7Sjazs2D/fW2tbtt54bno8a+dbLJPrfOo9Ybhcn0XkMH0+xHriuSX10oJFxdKNw2toaGho2BJYmsO7cuXKJAdBSmv37j6DBqmJ+LYnVU4qxmVlnFdsmzSmRKZkzaT6a/qL7F5S9EQm7yfFyLbGZ8gZcwxI+WVj4nGt6ShinzwftX76epy3TL9T052tr6/r4sWLc72OuYo4P+SWCK+LXbuG3Jz+3+uMXFONU87uJSeS6Z1Ncbqt5hJqBhsR5NKNRShgrkl/mvPJONuaTpJtjdyT14qvcUzMocf+1aQBUwZErsc63AsXLlSlB6UU7dy5czRuUTrAvUVdasbNeA1uxtlzL8byjZqdQZxTcuu1/T9ltMRPSr8yvTzPG3JtsS+0N6hxbZm0gPo2jlEm/SC3xvrcnzjXXuteo8sY/zQOr6GhoaFhS6C98BoaGhoatgSWDh7ddd1IuRrZ2poCnqy4RVDSWPRGEQJFjVGcwrbU3AUiq0/W3qi5K/D/rIya2DL+z7a4vxQR8/nsO8W+maiRZsm+TgVxLJ+GIVO+TxzztbW1qvLYIs1oXBOfjW2giMJt8Zqxu4LUmyRLg5l7tiZr1y0OpajFYh2amkuDSI/GFpmJfw0UbRmcp3iNv3nP2FQ/7if2naJGmolHYwyKmAz3y+MdDV0slvTceoxqBjaxHrsPXLhwobp2VlZWtGfPntF+iWuxJvKneC2K2WquUl5vNRFgvObPmnFP7JPXmz/pJpCdnTz7amOUGXp5jWTnWUQcR4q/XS/PZp5pWZ/dT46JXdcieG4u4k8bVQSLijUbh9fQ0NDQsCWwNIdXShlRClm0jJrC3JRoRu2ZajQFSqqWZq7xHtfr8k3dmNrMTNlJ0ZO6iPXUlMM1Q4DMhNlttbKVVGkcExqJuD80C6YSOf5PZ05SvVPKeJql+zNyaO6j+3Xx4sWq4cH6+rrOnz8/aRhEzsdzaYrQDqf+lAaOw5yOyzV1SeOLzNWkpjj3OozrgPPg/nhc/ExmtFQz6uC6ywy63D/Xx35HrtfPszxyeK43zimNFWpm/rE+jkFmkBTrj2MRjX9qa8ccHt0IMgkM17jHh3MqjTkQmsRTahPntOZ2xf0Yx5b7kc9kWDSyjsckGiCRg+TeyyQK/o3ruOZCla1Vri+enXE/1aK/cK9EoyyPo6U6y0SQaRxeQ0NDQ8OWwFUlgK05Tkt1c21yVVEHQH0I9SB8g2emt+RITL1l+gO2wc+YGyRVE+8hFVNzls/Mkal3q8XHlIZwWuSIXS8pvshRuh+kat12mrTH/31vzeE06oqysG01lFK0srIy4jayeTHldvDgQUl9aKn4GXUApuDJyXn+qdvLdDg0KWe/Mm6Nc+r1nj1TCzdVc0CfCt9FNwT3M6433+PfOO9uq9dMdPMgJ1fjXCNn4zH2uqNe8cyZM5I2ctLkkCP3T5jDO3369Ia2ZWHCGKaQ3Gdcv3R65r6YslUgt1lzF5qSiBDUm3MMYn2UhmR2AO4Hndb9LHXYsY2UelmiUNO1xfI5P+SC43rzuiJXyLGK69vzVRvHKTQOr6GhoaFhS+CqODy+wTPuwm9fUxemyk1txmco66WuwVRZJs81tVCzzvPvkbo0FUgqxc+aIo1URaRKYv9qDuiRWq3pfdwvU0CRczGHZ8rKZdhxm2MR6zMlbA7W/SGVnlGD1s3Yeo5WaLGejJvdzKqKVGxsAzk7j4evk4uLYIgxf6dzcWx/psOSBqtDSx7i3DJAMsN2+fcsADTXGylUr4/YHnJUtPDL1h+pZe5JWtzFOaP+l9Iccvz8Xxrmidx1Fh7K91y6dKlqReiABtR1RQkFdUq1NsV54bxn3HJEZtXM+Z+yYmRAZJ53PMuycmpnFp2xpeGco9TL13kuScPa8f6n/s37hxKuOBbet5R+eGxiG/kb12bGxfn5TAe5GRqH19DQ0NCwJbAUh2dZuilfvu0j/Na1RZ05B1938GBpeMszPJLLnwo9ZkrEqFl4ZtSlfyOVxj5EMCxZRslJGykf/+Z+mGvzp9sT9Qv0NaKs25/mhmJ91nVR72NOj5R/7Jfny9SgOcqa7iDWs5m12dra2ij8kKnN2E6GCaPuIeO4uBYZkihbq7UwTV7fXqNROuBy4vrN6susT8ktbRa8XBpbWBrk1uMzro/crj89Zt47keImh0LduOcizhutj902r29T/FFXTz3zFLx2qFOLUpdaCDb6aWZ+n1775AKpn4tr3/NP3V1mDWr4DPSztWDOiwR1dlupu4zz4n3Ee41MYsZx5FlZs8CUxvo/Sqk8/7E+Su88ntT7xj1P3eOigaOlxuE1NDQ0NGwRLMXhra6uat++fXOKLqPOSCH4bWwujhZi0pBAllE+ar5vkQIyB+LfTLWSo8woEbeNlHUWmYC6FFLcpOwixU3K0feQ0s6sT6mjIYVlajFSdtQVmlqif1SkuN0Gl2+K2NR51kZSt9u2bZuUp3ddN++zxz76c2XcijTMl+c6wslFa/6Q1A1ErtZjRp896ukiXC51qVORdtxHcgrkRukHFttd8/s0hRzHrKaHc3/cv+PHj4/6Z5Dbpr4p+kKSkyAHRp1R7GNmrUs4aL3PDp8H5hxi/91Xj7nbmVnAUrfpZ6gPc9lxPVD/7nq914zIVXHvev9xnWVWwQyCXQvyHp+lpWPNcjlLOFuLbkXL/JjAueafTR1ilI4wga2lUzzfsr3Ivb4IGofX0NDQ0LAl0F54DQ0NDQ1bAkuLNG+44YY5227z9yiCoXOw2WpmuI6s92OPPdY3Bs7dvodGLVEswfLosJ05ylqUQJEsFajRbNl9dHkUJXksjCiqo7iVCvtafr74m5+lKbXnwuMujcUSFNFmYlfD8+T+3HzzzZIGcUQUg9K1YCqIK83KaSIvjRXzdMXw81G8QeU2jWIYwiqKNC3aicZC0nT+RRoNURyZBWNwv+jaQrERr8d2u+/un9eBRUqZabn76md83ePpfRfH0/cwZBndSU6cODF/huH8vAcpZswCqmeh8Yiu63Tp0qV5P1xP3GM8i3z+0AAqik5vuummDfW43FpIrkcffXR+L406GJ4uc08xarn0/Ew0eHE/3FePm0W1hw8fljQWH0vD2nB/GKrP6yCql+hyVgvG7bLimmaQd7fF+yw7K7323FY/YzVXls9wkQDtNTQOr6GhoaFhS2Bpt4T4RqdRiTRQHlZCWjFO8/Esu7evmZpZxMGQSnXfW6PepYGypZOjqYnMmduUCMsztUEKL1JptbBTdI7OUhi5fJroe4ymUq+wfhozRNQyddsoxNRwpAbpNrJ79+5JDm/Hjh3zvrpNWUBeGluQO4vGKy6PHB0pUBqmxHs8pjUuOsK/MUi425xlEa+FqKIBShaAgEYKrCeTYDArOw2q3AdmHZcGDt9j4++eY3P4cR0cOnRoQ3mWCvjTcxQ5SY+1+3H27Nkq5V5K0erq6vxetyHuMXOV3vf+pGFallqM3LnbyaAL0SCF93B+ptID1bLJ2wgnnjEu1+eq58EckCU7DLEXr7n9PBPpXhbHhymevHa9VtzPyFH6WbeRgecziQm5PxpFuSyf2dL4PJsKPE40Dq+hoaGhYUtgKQ5v27ZtOnTo0EhvEk2UTQmQCmMw0oyaY8BnOkwysHEsl64FTIgYuVBTODQPZhibLAwRA0+bUqWDduYM6f6xfuoupYHa89iSoqduINbHwLb+birJVHvUZ9FkmkGyGf4o3htDZdU4vCtXrujUqVOpDtegPsc6E49x1m7Da8XjRop+KmA2XTAocYjczMmTJyWNuSNy8ZEiZYCBWoCFqTQntcSi7kPcTwxsTTciU+Uez0wPQz0que04JnQXuf/++zeU5XsjR0bdtLnEDFeuXNGjjz46b28WEOCFL3zhhr4znRU58dhH3+ux9DM+F8jtSsO8kwukji3uU4/lh33Yh224l/sy6sn9m/eCOTsGbvAajmdYLZC1y3LZkXOtude4n25btlapz/aY0+k/jiOlN16L3jO33HLLhj7Ee+N+aglgGxoaGhoaApbi8LZv365Dhw7pXe96l6TcMsgUht/itfTyfuvH/021MDSSqSXqf6SBamR9mVWWYWrhgQce2HDdlFcWFNt1MoWQdVy2PKJOMfaDVlK1ZIux3W6DOQuPAS3iIlw3QxhxnKPjse8lNR6D+xLUeS6CI0eOSBrGK0uQyYTAvjfjxD2W1jH6Oy0io0WfwUS41LG67xm3bqrYZZha9phEKp3l0gpwKtV8gXwNAAAgAElEQVQTJRh0imZbY3leq6TSmWIoUvi05DX8jMc3WtqRm3a9jzzyiKRx8AlprM/ct29f1fn88uXLOnny5IhTsYVihPtEDjyTKJHz5SetubNEwLRi5b1ZYmY66j/88MPzfkq5vsp71XNFK1R/RumH73VbvUaYFi2uHdoGeB3YKpd7JguwQZ2d5yALIu6+UvfNlEbxHcO6FwlPZzQOr6GhoaFhS2Dp9EArKysjDiVSCAYpKlN5pj4zitSfpiZM+djaK+MkyOnQxyhaoBm33XabpIEa8ndzeKaAot+NqS9zdP5uSpfU9FTKHPpU0fos/k+OmemWXJbbHuEx91gw0a65rdgf30ufJH+PVLr7Hq2xapZ2DktHK69M92h4HtjuqDM2lU+9SM3yLerw6OdpapbWuzGElceUfqamXhn+ShpzQAymPBVWy+uKqVwoDcl897wXGFDdVLyfjePpNvlZz4HLz6wBvSeYMibTtRluQ7SindLDrK2tjUJURa6dNgLUDWUBp/2/++jxocVnljyWwdY9p77Xe8OSmfg/dYceH49XPLPi2pPGFuSeL/qxZfX4GY8brdOlwerTz/re5z3veZKGdeE5j+c4bSBoJZyFhvTz5kbdX/fDY2PdpTTM20MPPTTvV9PhNTQ0NDQ0BCzth7dz586RtWF8u9asJWldFjkB32vOzveaqvC9fstHqzBTlQzQO+WzQ53KrbfeKmngEjJdEXVC9BWbShdEXz2myfC9kTrz/26DqVBbs7k+c8GxfX7G3JopLFKHkZJ0fZlPoDRQn1kAZ8/LmTNnJqMgOM1LbGPk6jwu1EEZpqZjhAxfM4VoXYfHyePi/ni8pMECzGvD9ZvKzCximXYmkyBIOYdHXYrHgJaPmU6c1pIMzBvHnXuN0SuMzDfR/Xv/+9+/oX5ft9Qjs3pm9BnOdfQv9FjHoPJTaV5WVlZGvl9Z1B/3idaTfibqvM2luG/+zfPt8fK5FFORUddNS2u3I0pRqK/ymnU/3J7or8hUOF7vtALNLGEZYYXRoRhcOl7zuvZ+tyTFbXV/Y//c9zvuuEPSsFbuvvtuScN+juuAwbE9T+6f+xP3oLnn++67T1KfIm1KShLROLyGhoaGhi2BpTi8tbU1PfHEE/M3NXVevkcap4qnPiG+kU2dmaJiMsMHH3xQ0kBNRAr/6NGjkgZKgUlOKWOXBurc5dHfJtPD0aeFlL5B66LYZ4Px4dzPGA+TVoymuE1FOfGrn4n6Rtf3vve9T9Ig637Ri14kaaBkMy6bfl3ud5aw01x1jJoyFWll+/bt8766nMgh0XLP4+/2en1EXYr7at8vWwZ6bdKiK0uuSgtOrxVyflkbvb5cX5b+yuUzHit1iEb8Tqs1jxfHKOpFzI1TX04fUkZ8kcZ6HcYmNVd87Nix+TP0jyXVzgSr0lhHuLa2VuXwLl++rIcffngkWYprhzpnl8WIJFFq4Hs830x26rbZmjuec973vkadPn1hpcEWgXo36/a8djNdPq1CaUGc+cVxvqkD9XzEPeuz9o//+I83tNnj5vaY47v33nvnz3qsOY4ee647aZDE0F+WMWMjGAXmzJkzC1tqNg6voaGhoWFLoL3wGhoaGhq2BJYSaa6vr+upp56as9dmUaPIjtmiLfqwwtbiqSgK/KiP+ihJA0ts8ZxZfIvm7rrrLkkbxYVMGWQ23uJKi/Oio6zZdIv4LLKweNRti2JXOpK6f+4XxVXxWYshGECbaVWisYJFsx4Ti5I8Jm6Pn4miGiu/fS/Tw1jMHB2O3X6KNClKi64hFil4bCneJVZXV+eiGLc3PuO6/ckAspkIjqmO6CLDoLIWBcffGOCA9WTBbj22Xs8Ws3vtxjZ6nNgPl0VjjyzgAcM0sY1R3OZ7LS6iSNNzyb7ENniN1ML7xXnjuq6JozK3Iq/fy5cvV0Waa2trOnXqlO68884NfY2GWnHMpGE+aIgS14ONK9x/i+cs4mSm8MyIzX31nrvnnnskDeMW++Q5s7GFx9L7x+2I9fh88f73mPpMqQWxiHVbxO3+cp1FQ7T3vOc9kgYVAQ2OXI/FsPGccxvdZt/D4BhRZOtyLSL1sx5Pr8O4n/y8+3XmzJmR2qiGxuE1NDQ0NGwJLMXhlVK0srIySsyZvX3NCZkSMSVnFwBzWdJAjbkcGhx8zMd8jKSBaoqckCkCUy1M/GrKIRqg2DSd6TMYTDrWQzcLo2bMEikOcw5uq9tkCpwK4TgmLvfFL36xpIHyyowjDM/Ph3/4h28YC4+f64nUJ0OmxYDQsT/RYIiOrddff/2keXDXdSN3kSlOyKgFQY7ttQsLU66QuoyGE66H7hruQxZWzX11sAKmyIprxjA3YOU9DY8Mz2k0f6fTPR1z3Z9oyOM+kzvzHNMdIksaSgMyJi+OnBI5VZfr/niMYsisuGakfsxrBk+rq6s6ePDgvB6fO9H4we3xWJO7pSGFNJwD5kTcNxp3eLziXJgr81x63MyZZIEOGNjA42SpgOuPxmsGOTrf47OSIRZj/7zHyJVlwdjdH59RNfcLz0HcX67Pc+F7fN31RukAXWYsdbLxjNuYpZNzu5944omWHqihoaGhoSHiqkKLmWoxpRJl6TRJjpycNA5rJA0UALk0y5yZ8iNyBQxqS06LprHuQyyH6WBozhvLoSOw6zMlkpk/mzKk8zrNxjOKlcGCzclwnGN95sKob2Ty0owzZxgl6vay8Epu/3XXXVdNcWO3BCbqzdKnuI4aFxu/M+1PLTBzFtTbYAokr2uPaaTSXTcdnNmHeJ1cGdezddOkhKUxtcz+uuysjQztxPB+XGOxjR5HOimTS4lgOCjORVxvdF+ackvYvXu3PvIjP3K+HjxOsQ2U1nAMGHJQGvT73rvUh3LfxD3me6mH99hmZvJ0yDdn57ZxfqRx0lZ/5/y7D1niaabe4f6Pbjl+3ueY7zGHz30b96LvcT0+U5gsN7aRCYwpHTDnHNcGA4M/+eSTkwEvIhqH19DQ0NCwJbAUh9d1na5cuTKnLuiEK42pCMuY/Z06L2ljqnZpoAj8BicVFbkMU3QMicUgu5E6c5tMFZGiy1LRM3WIZfhMBOs+ZJakLpfWWe5PpAoZFqrmlE1ONrbBVA+TRZJrjM8w/Yf75euRquacToWGctACU30Zp8/gtgYd9aMOgGHiak7+RtTlMsUO25GlHyEnzPqyINu0EGRoKVu3MfRXbH8toSnXbPyNuiLOrdse28rfmETYv8d1QEd6JvFkUOFYbkxKO5UAd2VlZc7ZWY8d14klPB5/6itpWxDBPcZxytY1LW5r+uDIeXi+ve9tHe57PV5xTVGf7ba4PwxAHs85Jif2b7Rkjjpc6i/NfdasteMZwrRe5N6ys99t8ljQjsL1xX0cHc5d79TZE9E4vIaGhoaGLYGlrTS3b98+p6pNVUWqib5U5F7ocxTvNUwZUA5vxGdrVpMMHpsljTX3QgrEVEVmYUXKlJRcls7CFI/Lc70MHh2t8zzGDC3k/nhc3f/I4cV0PbF8puSJVDp1Ngb1MnHsfW8MXVSztFtfX9eFCxdGXE7mz8W0NZTPR06AOhNS50xSGzk8UvucwyzJJTlKclNZWDpywi6DCVPdxswPj6HemNg0s3atcWn0l4scBaUttLzMOCRat5o7oL4pC3Ad+15bO2trazp9+vTILzLu6VooPP4euU1a/9KqlVKiLNmp7/EeiFwH+2ydnTk8j6UtIpnaKLaN6819p8VqJunxGWLOuGYHIA1z57VIHSGtXbM5q4VoZNtjPVx37pfnMfMvzM7pzdA4vIaGhoaGLYGldXgXL16cv7kpv44wpUDqiBxY/M2g7olURPxOaoKUHpOsSuMIMaYQyH3GeqibdN+Z+DXTcZACIYVN3UFsA/Wa1Fm6jZHzIiVVG/tIafk3+h5ZT8KgxVmfN0vCuL6+Pi8/S01CrpUcQ8bNGNSdZBFvas8SjISS6XKpS/P4+PeoZ2bQY8+h73WbMi7Ua5K6E66huL6p72VAZQZwnwp0To6W1sqx/fSBdH8tJciiYWTcE3HlyhWdPn16Xi5tCKRhHsyJ1Cx7Y7vdrlq6M3J8ce3QktfSGUYGiZbe5uz8rK2pqX+LUg9GpvJ+JIfJNktjC1/33foy6umkQaricnyPfUZp4RvPcVpuZj7C8dkISmRo7xDPKp6bi+rvpMbhNTQ0NDRsEbQXXkNDQ0PDlsDSRis7duwYiVGiCIYKXwZ1zvKS0Rk5lieNDWGiWIIGABSzuq2ZEYHv9XezzZm5OhWwFAsxn1wMQ8RnMxEwr1uUQGV1ZkgR64j30CyYDtaxf8yNVcuZFcUtVtDXDF4i1tfXdfHixVFg7kxszD7T7D0TYVCEyT5Ota0mQvV8RfE0RYw0vvAzUdzGaxQ10vAprlWa2XtdUeScuQZR/ElxFF1cYn8odmVb4xzQRYYO7Zm7AeueEkutr69vMELJnLsZbsr9YKi/2BaLG70mPc80JqN4LZZPh3y6iURDNN9DJ3mfO74e1yrFrlnAhtjPTGRLVY2NVxwUJI4jXcG8/z0mrDfWx99o8JTNAcPPZZnbpY3nqdtrce/Zs2dbaLGGhoaGhoaIpTm8bdu2jcxnY8gsUkU0NKACPV4zFcEQXEZGXdaCOtMJMmY8p3LVVBg5iczZ0c+SAiElHDkXl29qnJxeZmDBgM80VmG7Yn01Ix9SQZHSIqdqqtdtzzgXmiZfuXJl0xQvNAyI4+i+0snfdTKrdWxvTaLAz6zPtdROvh4D8prSNCfBFDgsS6pzMZR2ZOuO6VkcGosBwOOecX3cVwx0nRkXeD5InXP9R4kCuWhysDRuioiBrGtrx+eOjT7oshP7RGMiGsBlHB6DK7isqWAZtXRhDJ4Q10c0ZJIGborh3OJ8cM3TdYVjGr+7XBucMNi/A11HuB9uq9cVz2SuB2m8DmhASK47wuV4Tpn2K557np94Rm5mMDdv40J3NTQ0NDQ0PMuxtFvC2trapHk49S4MO8WwNvHemo6BAWzj25x6D/9m6onUrjROUFlzkIww90HKiiGXMlk69TxMIeOyM9NyUi68N9OJUmdCDinjimsUq9tsKjELKRX1pFOO55cuXZrr/Wz+HClSUtbk8DLuma4DXDvk+DKdQ+1ZU5tRD0MdEV0KMr0YdcLk+Kb2k8eAqbHcDlPpWRBuUtjUw2Xhrzhu1ANPgRwa92LGwWVhx4iVlRXt2rVrlLg2ck90XaHbRuZ47vYxFBbni+ePNIw/uT9zdll9htcVTf+nOB/aKlCvmM2TrzGAg/dgFjqN+57cJ+0PMlcq7iMjO3cYIIBpiMh9x3o8twcOHJgHAt8MjcNraGhoaNgSWIrDs7WU3/oMBCyNqVZ/J8cXZcJ01ialy+/xbU/nQwYddaDoCIbJqll6Riqd4YyYPJF9iA6gTFzqttEJOwsLVAuoW+OgYz3sHxO2xvro4Jkla5Q26k1oERvDzhGrq6vav3//XA+ThZtiGDXOU2alSX0odWj8HseTFCl1nNZ5xD7Xwo5xrKO+hsGJa5wW+xnLIyfpMq3Ti/oYBm9muDUjGxPfS+duSjIiqFPxWmJ6mLg2KDGZShy8urqq66+/fn5vlm6LjuV0ZM7CaPHsyII4SLmTNdcKHcLpHC2NuTMGWjCivYHvpT7U8HWXFdvFEIa2amRIxcx53CAHxrCFUzp9g5xyHF9z6zWr8Mxyn3rlgwcPTq6fDW1Z6K6GhoaGhoZnOa4qPZDf2AyYKo19mEi1ZtyM/2cSxSwUUSwzwhyXqXJTt5l8nFQr/f4yfQ85LVPYprhqyRXjveyX/WFuv/12SRspO1o20VeIqV8y/R8Ds9K3Khtf6hWMLE0HfcGmkniurKxox44d87aR04t9JpfJhKKRmiPnQUu7WD+fJUdPnZPXVNQVMXQVrRY95nEuPf/kJGopnqKehLoZ6vQ8JlHPePz4cUmDdIPW1FM60c1Cr2U6anJGtWDVGfefJczNsG3bNj3nOc+RJL373e+WtNEewP97fhYpl/585Nq5ZjLJAoO5s744L/ShJFdCbifWyWDOTPU1Fd6ROlyXcfLkSUl5YH0Hv/fe5pgwTF0GWkhnVtYeN3/G8ZLy94XvPXLkyLwNLT1QQ0NDQ0NDwFIc3srKinbv3j3XF/ht7MSM0iAndlJL6nkox47/00rPqCWulMach6MHkKqOehj/X0sdYwoi1kM9DJPS0qcpUk3khOj/57QhWX2MeECrwywCAq3+yHWyjNh3Wn9NpYVh0N0pPzxbaVK3llnPsk6OcWaxlemjYn94vzTW63gtMXFmtnYYvLeWYiaiZvHI61nyYJdHDpNcW9YfcnL0uYxcHS3pajqb+AwDJdOC1d8jN5/pkWvouk4XLlyYrzOntzl27Nj8HnPU/rTUqbY/Y/uytEwR1JPx//gszxtLMmI91PPZipJnljRwfdwvXBeU/EjDunJb3Uaf0UxtJQ06Yfo8uo3UqWUWvrSMpz1HXP9ez0yszD0SuV5LLjw2J06cWCgovNQ4vIaGhoaGLYL2wmtoaGho2BJY2mjl8uXLcydkKzajSNNiFBtkMI8TA8u63HiNIZAYYDQLOOw2kdXOsiO7jQYzbJtljsY4ZrEZrJcOrhbrZOHRKJaw+CUTMVIcYBEDQxhlwZHp/E/RJh3QY//8LOvJDHnoPkAxT0QpRaurqyM3jsxBn2buFNFmBk8UlVJhnonvvCYsWqaRSpY30G2kst1rx+s9czhmRvUsD6K0ce34f4uYLXKi2DeKpRi4mGJIGlzF8ay5u0yFI7M4iqIrikMjKJ7evXv3ZMbzc+fOzfuTOTB7r/oc8CcDw0+FB6MLCEWeWUg75sObCqxPwz06dWciPzqPcy5p6h/dCLyeLUK1CNAiTZflNRXLowGPjQHpxB7F1FzPVG9kIdp4JvHc9DsmE1ned999kvoxbkYrDQ0NDQ0NAUtxeGtrazpz5szIcMMGKtLYUbFGMUYOrxb6KssAHe+PYDBTKtkjJWLqj86ivp5R6TQ08bOkWmzqmzkP09HcFJ4prkjFMFWOy3AIHY9z5ixLI4VI/bNtBKlnBt3NOPPIKdSodAcAdr9Mccf1Uss4T3eOaNxDYxG6tjD8WRZGidnKGbg21kcphOsx9ex1EdcoQ1NRIU/u01R0vNdrxf1k0OoYXJeclttvKQHN3+OYMKs411/mrExpANtOF5uIWqqsCButeK7d98gNeA4feeQRSeMzIksfwz7W5sUcbFzbDMFVc2WI9ZpbocuE225jwBh60HPFUGU+39wHz3GUtvksclt8TpOLytxSaLDltrm/mQTD1xhwmmdxXAfkhBk2LDNuctv8GQOfbIbG4TU0NDQ0bAksHVrsySef3JB4T9oYfoohgwxSFRllR06u5qDJNsV6qffx9+ik6vb7mp81pWBqIlIO1B/UUvwYkStw3xk6jVxpxvX6k6bE5DTieLMe6vky6pMO+hzHLOyVkekgM5jLi/dmyVWpA5hKdstyaokxM7cKupDQLcL1RC7Ua8IUPuu3riMbW+p72SZyzNKw7vxJd5EsXJNBPRO53Wx/ZfMS73X9sY0cN4O69wzWY58/f76axNNB67l2YrspPWGdmQ6Pukc+O+VUXUubQ24jttEcnsv3nJp7ypJV0zn8xhtvlDRIo3wOuC++P+uHpUM+rz0WPltiPTV3MiKOEQPPM8BCpstlOUywnUmWfE9MdDwltYpoHF5DQ0NDw5bA0laa6+vrI4fgTF9Fao2WdxlVWQsLRT1VpCQpyzYlYu4zo5qol3J5tmrKLDv9P8NPmcqw3J0pRmIbmCbIY2QKL1KLDCzr7+Ta/EzkFuhQ6mdInUcqOLPYi/Vn3ADTKk1R8k7x4jFmGLFYDrkXUnsRDA7NYLtTgadrFrbUscR6qe/jnGbzzzB3bCup22hF7N+8RmxRR0vSSIFT+pD1I5Yd9TG1gOrkkOJ6o2WiUXPkjm1jsOcMtg43J+K2RKvgmlU2A3RPpeBhyEGXn6UYM2dKHRMtYCPIQTI9mb87EIU0cIUMKec1RYvSyGFyfT/wwAOSxrpbh+iK5TNkIoN/ZI7nDO/HfvG9Ef+nhXctDF8sj1K9RdA4vIaGhoaGLYGlQ4vt3LlzThnSQi0iC2qc/e5yI0iFTYW3oi7QbbNfjilvy76lQd7t8ixLt/zbVE2k6EjJuV+muMm5Zvo4l+e2mJJ3W7NAyi6H6Yio78p8qWjBxXBYEaTCaJ1HjonjI/WU5FTw6H379o1CwcV14PaRUlzEx6amn+S8ZdaF0cJR2qgbiGVIw3yfOHFiQ9sYNiqztPOnqXNapLkdmV6Ea4X6vthGt8XUfuarF8ck7lFa9tao58yHk9amXEuxrLjWXV/trFhfX9e5c+d05513SsrXjjkEck3kKmIdbIPXDsN5kWOO9bFvmc+e4fOFPnuLpLZhSiFaI2d2B7Xx9xryM9YHxnZ7jbo+tjXTr9O3lmPAfRbLm9LfxrbGfmS+gJuhcXgNDQ0NDVsCS1tpXrx4cRTkNLOa89udVCWDnUpjv5pasOjMJ4OWdkwTZG4uo1Tpu+Nn3T8mP431UG9lCsVUTKzv0KFDksbJaMm5ZEGxqROgXi5LFEtqifq3TIdHPWmWBJfPZBEipji8Xbt2zcfUnGqWQJK6PM5dlsSVVCz7TC5KGvv9uW2eL1PRMbkq9Sym1l0fkyPHOmm1WAvUHeFxcnnuB/UwGYdHPyiXQQlN3L+00l0kWgZ9bHlPxsHQx23nzp3VteO0ZIZ1eXG/UMJSSzoa+0p9Fc8XlhV17OQCXQaDvcc5JWfHZzNrZ68nS4Vcruuhz21sI6M+mZOz/tFlxVRWtFBm/dQlxv4xeg5tMtyOOAebJWGmjlIa+01OSZaIxuE1NDQ0NGwJLB1p5fHHHx+luZmysMr0PC7LYAw5Rmjg9yhLJ+fDe01lxLiYbpOpS3ODWX/ZbuoPaP1lqjOOCXUqrs/3RBk666M1FDnLzAKvZnGZWVYZtSSkpMBiPYxespksvZQysmaNc0mOgMkfp9LZ1KwLaxKAeI/n5aabbpIkHT58eEMbM8tUcvqMixh99+hLx7isnK84juRUyW1MRRChnimzeGNbDUpZuA7i2uJv7A8ti+O9lmSUUjbl8MxpmwOPtgOMSMMYpIukJeNZRR1e1MvWYveSa4zWh0707HXm+pnyKUoHXCf1iPSxy+wpaEl8xx13bKif/oDSON0a9yutNOM6cLu5VonIFTI1E88zr83szDIH22JpNjQ0NDQ0AO2F19DQ0NCwJbC00cqFCxdGTthZll2KFGtK5Pg/xYEMC8YAwdI45JFZbRsgZKw32XKLJ3xPluaGTqM0p/WzVC7He90mm7Q7mC9FntLYWZwuBTQyiSLUWniwmvl4NiZ0aM7EExTrXb58eTLjeVw7mbEF+0aldyY657piXz1+WWgpmmDTiMD1Z6IshrSLWd89FobbYPFMzVUiC9928803SxrEeMePH9/Qnyw9FI1VDBo20MgktqUmjsqMCGphp5heJ9u3UURcM00vpWj79u1zcRvT20jjABQef9aTmdHTQIuuPt6XUfVAYzKXRfehWJ/b/cIXvlDScG5aFGjjuSjSpHFMzVWHQQ0iLMJ0WRRlxrOKZzvPN6/zqXCCNCDz+qcjf1YODbcyNy+rhKIYdxHXDqlxeA0NDQ0NWwRLhxa7dOnSnEMx1RnBgKsM/ZQ5gMbypbFrgymCzHSVHCPTzxiRC6XxSy3RaKQ2yH2QKqQBRDQPjulepIGiovN6ZghAaoltzcKg0fmV6W5qlHTsD7kDcofxf7f1woULk2Wvr6/PqXQaRcRr5HxqLiDxXvat5sYRQWqZCV8zIxIG7aVy3WXG+fc8MCwXDRFcTwzma6rcz9qEnJxdNo5GjevOOOZaKC7OdSyT7i7cG5lZPw2CpoJHuz4aOMQ5rYUBo6l8JgnhuqNTt+cgcvpsg79bauM1FI1IPHcux2vJBnWZK5fHyf1j2EBK0KKLAceGKY2ysIueV3OqlFjQ8ClzU+JZxfWYJStmSEA6sWeJm33W3njjjY3Da2hoaGhoiFhah/fUU0/N3/Z+w0aqgo7lpCIznZqxWWoPU0uZKTs5L1J80fXA1AvTY5j7yFIXuTzreyxn96fb7rJi/0z1sa0uy9RJFlKqpoehXmuK86rpHTNXhixRanwmc/aNlOmUeXApZcR9ZlQ915CfWcSlhdxGjYKM5ZLTI+UfKXv/b+mG59Bz7DGJ+h6vEa9jrxWXwfRUkaP0WPhZBy9gyLkI9ocUN9chg0PEemtc9tQ811JJLRMCaqpc79Ooa2c4QHIkWbJbjgM5+qnEpXRT8hyzzHiW0K6Aiafp1B37yEDJ1r+5bZYiOdh0/M0c3X333behjRmXxnB6DDFXk3BlbTT8DFObxT5T50npQAQd5vfv3984vIaGhoaGhoilODwn8KTcOtOP+c1NTi6TydbSwlAfQmu6WB/rpVVjxhVSZ1MLyRTbSz2F22L5ONMSxfr86XrMLZA7ie2n/rKWRiOzfCKn5zZNUfa0suVYRY6MYbumrDRdL63oYvg2Wh7WuNjYBnLjNR1kxq1xvt026myi7skcvH8zRU0KP1ramRpnKiHq7jKph8sz98c9wIAHUl2HRn3jVMCIzfSn2Z7nd3IDGbUeA1xn/Xc5O3funEtpbAkd9da05qvpgmIdlJbQKpjpw2JYOlpRe0zJJcb6KFmh1bmtKbOEw4afZXBnSwviuvd40XKUwaMza1evb6bM4phlqeFqFqXZ2U9OmVbpWcJh78/I1U4ll41oHF5DQ0NDw5bA0hze9u3bJ8P1kGpkoGJTZZFLI6dIHYDf6KZmIjVLKoUciamaSIUybUrNiihyD6bSSekyrBbT28d7ataHmTzcfSaV7HqoA4vULtvmZ5meI9NnZPrL+HuktKb0cNnzTz75ZNV/UaqnHiFXnaV4MRfGcFqsL3iDs2EAACAASURBVHJrpMJN1boMlimNE1b6Hq8pBuyVBsrd68pSAN+bcekGuSdaA0cLWT5D/z6mbfGayfQfm+l9s7VDS9haEGZprD+dwsrKinbv3j3nTKy7iZzQZnWTm47toe7Jn9TPxz3mM4jJbzmXcU6Zpol6Rutns3HKUuvE/mXW6W6jn/X69j203o7tp7TD48vwa5nlLXWULj9L60QLWZ5Z1MnGcv3Zgkc3NDQ0NDQASyeA3bVr15zSotWZNFARlPVTbxQpuxqF6LJYZqQy/AytfKifyygEIwYhjW2N9ZjicABbcmu0JM042JqlE6mb+Hwtcg2pnMj1MigtxyTT3ZBSJbeRcXHmcmJg6xrF3nWd1tfXR5RYZilKKpnWXbEO6t9Y7iK+YPTdqgUzl4ZxslUmqdgscSqpYuv9av6fsX81iQL1TVkSZs+/ORVy71NBfsnRsQ+ZBIPPMhpNBiYezmDbAerrs7XDIM68N1qU06LboJQmi57jM5AJZr2+6D8pDWeU7/G8MNB19MNkah0GcXZbH3zwQUkbdasu32vVzzCJbITng2moXBZ1oXEdOOg6IzAxiHhcLzzzGWkls8x2myLHvIiUSWocXkNDQ0PDFkF74TU0NDQ0bAksbbSyY8eOUT65qFA1O87sthT9ZcpcmvRSlJnlfLKIkebbZoVdX2SJqXCmEUkWhooGDlk+t9i2LIcaFdmZIYVRM/GtmQVH836LDCjmdRk2V45zQIMhZlTOnGKZm6uUUg067HZQNBbh9jG0F0PMZUpvGrZQlJWJ7yhSZnZxI5qG+zcq5v09MwSgKMfz7TbRbSG2kWGhao7fmcFLze2mljNOGruqMAB0lvuQIsyam1EW1oshADP43HF7aewR66wFoMjcEvgb9wn3WrZPa+H6srBaFE9b1EhDK59p8V630fdm7i/SxvH0eDt0IcMRZsGcvTYeffTRDeUyZKKd5WMuPbeRahYa1sQ15nsoqvccWywf5417vBmtNDQ0NDQ0AEsbrezevXtOGdi8OjOJrwU7NqZSvdCxnZxXrM9Ug5XR/m4KhWGppLpDLLmFaPbM4L0MHcRsvxGk/hhgm2bj0jg9j8ecxgqZwU9mqCONDV08f7EfpFhp2h6pXFLVpZSq87DXDp15p4wVSO1lwaNJITIUE6UGUTpAs21yxDS4ksahvWrrPI4TTbrJudaMdGLbsoDmsc1xT/h/G1a4HwxhRgMLaZyVnfPktkYHfmbdrqV6iXNN7nrHjh3VteP7aPiWBZOgqxTnJ7YhW0/S2PmaXHbWx5rhU+baRPcUGqJlIczsbE+pl8+dKQMrrwOXG835pY3r287c7o8lduRy3Y5oBESDLa/DeI5KG42E6LDvT481110s11KtixcvNg6voaGhoaEhYikOb/v27br11lvnVMDRo0clbdRxMGwS5eBZUOlasGDqLbKwRqTg6UxryihSGeSo+J3BfqWB8nG7TV3QMZPUmzRQdqaETQGRmsoCQFv+bpm5KSum+Ihj4nEjBUcT6sw1hOF/aLofORc6ik+FFtu+fbuOHDky4nYiZ/rwww9veKYWODvTx2b6xNhezpc05gJdlueO3yXpoYcekjRQtpQ+uKxI+fo3t8HrgWGj6BoiDWuR3A2do2MQabeXOilyMhyj2B+GQaPUIHIu1CtxLLJ0PtRrTul+u67bwF1lnInhcjy27Htc8+QUyIGTa4t7zPNLiQid2a2nk4Z591xRwuC1GSVAPM/oHkC9c9x/1tXXJD3U/0nDvLgtdLNi8IfI6fMcq6V1i3PNwAB8P2R7njq8tbW1xuE1NDQ0NDRELG2lubKyMuc2TNlFqvn++++XlAcmlja+leeNAJVsqoU6okzvYyqFlk6+zoC5sZwaVUCHUGmgcEw9Mx0J049EKq3mMEvr0Gj55vGrBfplmKjIDZmCzMqN/Y/XGWaNgaFN0WapPTxv586dqzqA0tLOlGGk0s3N1tZOLIuoSRRcjyn+qCfluvI6riX3lAaKm9IHzkOcf1LHXl+UaDCArjTMP611Dep2pfFa9LMei2jRSzAprcH0UFmSUurASeFnVppxL9b248rKivbs2TPS80TOm4HY6WTNfsT2MVwfJT+RizG4Pym9yYJXeHy8zlkWxy22l+Ple2g7EPcGJQoMeG7dXqyP1t8MyUbddVxLDONInbj7l+lCeSbWAm5IYyf8Rbk7qXF4DQ0NDQ1bBFflh1dLlCiNdSmkSDOrwqgDiuXRUsxlnTx5cv4sObla6JvMZ4cWdb5uvV8Weueuu+6SNOjf6E9k6sXWfNLAOfg3ckGmQmMbqUMztUTdhymsjAuhfJwBh7MgzEwH4zmYCpkWOaEatbW6uqr9+/ePfOxiG+ijRw6YqUqkMTdI7n0qSDG5cyY29nevB2kcooxlZJS2KWuuO485pROZnxLDdHEtZfoxrjMGYWcw49hncj/cZxHU69RCjWVtjOu2tnZ87tCSOOrYaQXucaPPYZZailwtLbAzDo9WktaXuQ/mnqKezOPv9cU20oI5/m+pGtPn0Pdtaow9Xk4llPnF0TeYlr30M878DM1R0r8xCxhPK3eWRYvS+IyxZ8+eSR1wROPwGhoaGhq2BK4qePSUX5mpFVLetPbLfGh4L/04/NZ/5JFH5vcywSMt31wfr8dyaSGURXIwJ0V/K0abMWWX6cc8TtShZMFcOY4uP1p9SeMA0bGNjDZBPUAEqV1GXqFeg/+7jJov1erqqg4cODCnhGnVGutmm6grjMhSBrk+acy9Z8mDa1FmfD2z7LR/EnUd5ObiNeqvyTVn/p8MrkxdESO/xGeozyRHmaUWolUjpS2Zf5mfJzdKqjvOH++ZCv5rDs/tNgcRdey1NEpZomHD80L/VOpFaZEZy+Xcef8bWbBqcs3094ucK6PV0LLY5VviFEHplufHz3h9RwtfRmHyvdQhM4JWrIc6SVrXZ3YAtHOwntF7we2SxjrjAwcONA6voaGhoaEhYikOb319XRcvXhxRS5EiMbVCKoypTzJqyVwYqUtbNZmSjPHbTBGYWrLllikStzXzcWPkA1JYkVqjNRTl39QrRIrE/aAvDfUKkdtx3ffdd5+kcQQCU2sZx0y9Ff18yBVH0BqUvkGRkqJsfkqW7uTB7nOW0NLzf/z4cUnjJKv0L4t9NCVIv0j/nvWVfmjWu7KNkXuirpOpnTK9L+OR8rrBRJnSsJ6od6V+O+OQuO7cL0o0IndEK0da2mVcIf0+DVpIZm3L0jVlWFlZmY+Xqf8pa1am6/H3zDqc1tO0UfC6jJyQQWkJI5Nk3JrHlro7tzXT5ddixnL/x/Gkjp2SH+qfpfGeZsQTfyeHm40J132moySnnyXqjWXEsWgJYBsaGhoaGipoL7yGhoaGhi2BpUSaUs9uM+1DFGVQHGRW1c/QVFUaGzDQbNpsO8NpuT2xnpryOnOUrYnvGGoolkuWnmKRzMWA/br55ps3lO97owjV4ju6IdB0mubwETRzz7LNG3T9oMLbYzUVuHllZWVStNB13UhsHeeFodbcdzqpZy4mFN/QMZf3S2ORjttGw5P4TC0LdmZybVDc6DHyHNMQKhtDBmim6XwUnbm9zEjPtvp6dOBmSiE6mvszjivDjtHhPAsfxnU2ZfDUdZ0uXrw4Xx8WG8Y+M9wYQ2MZMZs49yzPAwaRiO3zXj1x4sSGZ9znY8eObXg2lsfs7J5Dl5llcmd4Qj/jzywtFeebBjaZMRjPAaoE6E4UjXK4J2gMxFBqsRyKaOkAH+fN/9O9YxE0Dq+hoaGhYUtgacfz1dXVOWWVmRQzfAypicyBmdQJHXENGqJIA4XDcGc03MgCDtMEn9RhpOhIDbJNNASIxgum3Mw5HD58WNJACdG5VBq4DlMzNI4g1R6NZAxzxK7X99JUXxpTt+4HnW4zlwavh6nkrgbLi4YAnn8bJdBoxM/GZ+jKQFcDGiZFBT2daKlkz/pFYyVyPNn4kHPj9yxAruHyGByY85U5cDMcmI2/vDa9luOzvpefbEfkCmn8UutnlCwwjNeePXtSyUOEOQWmBJPGa4WuGAzCEMsh18IA3VkatAceeEDSYFRGLt3PRBcThiGj8Vq2L90mP+t5YJi4TNrGa+TSsiAJ3i/+jYZjNOiJa4dSh1pIxXiu012MQaMztzKmgrt8+fJkaqmIxuE1NDQ0NGwJLK3DW11dnVMMmUk8dU8OAxaT9cXfpbFpPylDUxk2G49UhX87cuSIpHEqj0wvQsdSyp4NmsZKdfkxk9NGisOhfBj+h1xbbCP1SG4bTacz/R8TilKXQiotlk9ql+4WWfDd6BqwmQMxgyzHteO+eZ5jgAFpWEORimWCXKZLIZUeOXS6Z3g8zC0zXJQ0zAv1MOY6MxN9chs1zm5KYuJ1RkddlimNdWpMMUQuOwtlRomBKf8sHZGxWYixyMGRq963b9+kS8uuXbtGnKklJfGaEz8zeHOWzsZt8Hh5LD3GPMvimFh3R8f/mrQotsVjSa6E8xXbyJB51HNna4dhuRiUP3uGwZyZVok2CxF81uD5HtcBA3r4HgbwiFI9Os634NENDQ0NDQ3AUhyeEzHWrIyk4c1s+eq9994racyRRCqAFoCmgEhNZDJuv/lNCZAzyTg832vqiwGaGUBVGieUZRl0TI/9IyVHPYy/Z8FwqdehVRMdNqWxU3cWIivWz+djueQso06C+rMpx+FSikop8/a7vqiHMXVujpicip+N/aCumLoUShQyPRkDAJh78TqM8+J2m1qv6YynLIlpfcxEupHzJmfN8jPdBblB1ufxpBQktoFSD5aVcbDsH/dC1IWSW5sKWuCQhoalK9b1xvJoRe17vLaiLohSDXIKvu51EMP6eb9TT0ouOs6PrUz96b1UC6UY2+jy/RulA1nAcAZbp2Qhs3qupdkyaA0fpWKeI+rAuefiPLscn6teI37W0p4svJ858KbDa2hoaGhoAJYOLXb+/Pn525RBdqVxkF5TJgz5lVlkUdZMi86M6qBejGl02A5p7CdiKsPcBq04Y920bGJyzcwqlJQvAwFnPm7khEidUVcWqWda9NHHxcjCLJE6p34jcju2Kj116pSknhqb4vJWV1dHYYaysEaeB1N90SJQ2kjt0aqLeoua/5o0pp45P5nOgb+5H24zE2VK4/VbC8xNLlUa687IuWZWobSWpc6a1sFcF7FtHJvM34vcBdcAwwtGeN/s3bt3Uoe3c+fOEccY1wE5OnNjblOWAJiWhtSle5481jGkIQNBc+4ySQ/9Pilh8hhHXaHPMwalNqgLzaRSDMJOzjbuCSYP5lnPMjL9L89AhoqMY1ILc2ZbCa+PuJ88JjGNV+PwGhoaGhoaAq4qeLTfrFmKCFLuTPNgaj1LEeFPWthRB5JZ9jG1DwMnR+qSOhN+z3yd6A9Dqp3pgrL0QNQRktuJFCv9+RiYl9Z7cUxIuVIXSoo2toFJcd1mj1HUgXhsI6eyGaVFX52or6Cllqk8+nVFKpZ6AnIx2fgY1GlR10XuOrattmbYP2lMpdLfi2sp1keJicec1Hl8hnpGUtpT1sE17sbjSB/crBxyOeQSIlzeZoHHt23bNooqEjlvpsKibi1LD0ZfQJ4htflxeyPINVMCFNtIWwTumWiR6DVpH8qaZGdKYkJ7BkpxstRilGiRC80kTUw8zXqyyEVuL8tn+q0sZVZMCbeZD+e8fwvd1dDQ0NDQ8CxHe+E1NDQ0NGwJfEDBo43ITlLkYzGdTb3tiB7FdxRH0cTf4gOKuuI9ZN8NiqukXFQVy2LOM2kQjdSUugYdQrN7KX6gGCm2xaDzJs2iY1v9LI1vOEbR4IHiJ4orMxGNlesx3NFmYima4sd++jcbB1gMRUORaMSSiZukYWzdxqz9DGjOsaAIMvaVYk8+kynmue5qBlxxf1HsRrFUFsqOY8G1U/tdGsRFNaOYLLAA1xUNoLzXbYQkjZ26GSqN6LpuJCqL7jc0eshyGRLMS+dxoTjcZURRI8eUY5sZitGgiQYnWb4413PTTTdtqIf7LHO+pusS3Xsyg6da0IqaWDyCokaKuClql+pjz/x+cX3QUGjK4IloHF5DQ0NDw5bA0sGjI8WSmRn7Tfvggw9KGsxp/ea2CbspFqkezsbPmFqjc2J8llQzqZlIAdXMkMnlZKlkqJCnA7Aplkil0xiCKWboqBnb5L7TWIaK9cyFwiBVnhkRuDxfI5fN+6Rh/m2SPxVWzM7DmfGIYcqNzrU0mMnanRlgSPX0QdIwduY2uA49l7FMBtElJZ8FyDWo8Oc9GeXNIOEsI1PWM3g0s29TChPXHe+hUZj7H8O+UTJCgwYaJsRnYsjB2voppWhlZWXErUVTfZ8nDz300IZ7aPaecd4G3ZTcR0qgpIEDYWCGLGgFn6kFuObedt/jb9zvDI+XOZEbDHROQ7XYd+4runtlZ7/BbPaUmMVxpyGT3w+Gx9PO+hEOJrBv375mtNLQ0NDQ0BCxtA5vZWVlFK4r6gCsX/Ob2ua0/u43caaHiTJZaZzE0/dF7pBOlTRvzZKeklqm2bvrj5QWA8tSZ0M3gUgBZYGXY1nuX5RTUwdBjo66g/gsKUhykKaqM/0Gw5KxrZFzNXVmzmuKSnd91LlGCo8Bd30Pw8bFZ+h2UuNmjTin5MbdNlOmmfl7LcVKzU0h3stQfLVAvLEP1KnQ7J1zHH/jXiC36LGLDtVeI0w47LGY4mDJUXB9xXPCQQu8dhYJAMyg6zHIssuj3tXnjM+l6C5ETpjm8y6LEoBYjsfSHBDPgziXDOXmfUidYcYd1rho6oFjGxmqrhaMI0st5bVBfSk5vEz6UUseS92lNJY+eD0wCHsMQchACuvr6wsHkG4cXkNDQ0PDlsBV6fBoqZMlLPRb3XJWUjHRYouWOH5bmwKi5WCkSBnslHqLjNKKOosI9is6O9Ysq/xJp/JINZlCZLimqfZ4LEydMaB2lhaG/SDFSgo/06dRj+m2u4yYFuauu+6StNEKrEZpraysaM+ePSNrrMgpMOQbLRBJRUvjpK3UcZDbyazL6KzusaZeONZNa8yac780dn7nOjdIVcf+0IqRFHb8nWGuyFl4HJlUNLbVoCM9OT1pzJEweXCmu7GUJraxFrRgZWVF11133Shwcexztp5i3TyXYt8Mcj7ce3HdcW8x/VmWuoaphCjtoKN7/I17lTrJqfCE7g91eFlQjlqIRiYENpcV+0ereto1+DPOm8sjN1oLtBB/c1CT2nmeoXF4DQ0NDQ1bAktzeKurqyOdV/RPYbBhUxnW5VkWa388Sbr11lsljalLcnq09JTGIYWoW8l0HDW/FPfHzzAJZtY26tLILUgDtVRLAOp7szBETBZJDpOJJ+P/ro9cSGbZSctE10sOI/pPctwiFU6srKxox44dI+o8C7Jt0P/SFF2cF1LltMpjn2P7yQH5O9dhxlHWgnrT4jdecz0ME8f0UJFqZlg6Bo/mHMR7aYXJ8GBZmDD22RQ2fami1VzND4/WeZETpJ6267pJDm/Xrl0jbi2OIwMKO3g0uYDIDZjLdB8ptaGUJfOP828eD0u0anp7aVgrlpZQ/xvPqlpy6pp/ZtzTXDv8znUe7+EY0xo9Sx7LRMpeK54TX4/1+pzhGW9kUrEsjFrzw2toaGhoaAhYisO7dOmSHnjggZG+JOp1KL91Ar9jx471FSYBU5nCpRag19RapALsi0O9he/JLJ5oiUTqgJZwsa8GrRlpNRUpyVoUhlpC0Nh3fqeVYOaPRQqIKV38TGwjLVNrySljlBtfM1V7ww03pNEbYrtosRjbTR9AUvSZ3pJWsbTW9XrMdCq0ZiXH7XUd1xCpWLfZY5FF8SEnxXVOyj4LWk7dEKn1OO7UQXJOyV1n+rha4PEsDQ311+6f9fS+N1raue4oCapxeOvr63rqqadGKaoy/ZE5hczHLLYtPs+1yAghlJRkbXDfPG5ZMldy3LQgzyxgLc3wGNIPtKarjvXU0mAZcYxohc414v1Eq3VpGHtzdOTsXWZ8X9Tmh3r8aF3r8yELgr8ZGofX0NDQ0LAl0F54DQ0NDQ1bAkuJNFdWVrR79+45m20Rxn333TcUCJPb5zznOZKk97znPZIGNvR5z3ve/Jl77rlH0iAW8KdN4i1uo3I51uffmIWdDuLxebPnFG0yt118nuJCKnMp6oq/UYFNg5vMiIRiF4r3MvEr3RBoUJGJeyiSo/KaDqKSdNttt20oJ4osCYeHojglziVNoCnazvLhUdTG/Hg1g53YV84lnYczM2qK0t1Gz2UUMTLcFNeM4bZHcTlNy2mAQpcXaSzSpPgtU/obFCOzHRkyA4ZYlsczuiJ578U5nTJ4ihnPjSy/Ho1IPJZZxnO6wdBdx+eQz7tYv8ujAYifoQpEGgeA4PcsID1F9sw5R7es2EauGRrpZXPN9UyRKXM7RlGj5yMahknDOuPajffW8vB5jDK1QmawtRkah9fQ0NDQsCVwVRnPaZhgwxRpoIb4Zn7xi18saTBeicYPpkhr2YnJ5UTOi+GaaL7N+6SxcpiBcl1fbAf7wzbRhDnWVwsT5u+mmjKFc416JrUbqcJayDQ6EUdOomZ44DLsVpKZ25uyO3PmTJUT6LpO6+vro+DHkatl1mivC1PrWQoZr70TJ05seDYzga6VwbEklRufMUdFh1kaJETKl2u0Fuor4wpoPMQxmgoPRSMV9pNpXKRhPmiMQ640M5Ki87BBowxp2FtxL0yZlm/btm2+9/xsXGs0orABBYMVRA7P7k0+ixjyzX3N5oXcK43ksmDHPrfoYE5jpSxItdvClFa1bPMRDEpNw7HIPTFIATlx9j9mfqdxDyUzmSEh72Fqs8zAzpKCuAebW0JDQ0NDQ0PAUhze2tqaHnvssflbl86dEaZMaFb6ghe8QNJGytsOoO9973slDdSZqSRTcqb4M0rRpq6u17LhLNSTQQqeFHDU+9GBnSa31NPE4NjuBzktOo/GNpJKqoWjIkXEdksDZclQbRkXWksea9eDOEZHjx6VNATuveOOO6rpf7qu05UrV0b6xdgfU4vHjx9P+25qPVLcpvacyoXUeS31kzROieRnab4d20idGvWznsvMQb9mVs/QSLG+WjBvcnhxTLL5lcZBfamniX2mnofcTlwH1L3SRJ6ptKSxy8f111+/aYoXmsZniXIZ+splep1kLi2UJNQSpGb6aQbIntKTujy6VzGYfdxD5C557mQBHNheSlOmOHJy43Sz8b2eg0ziQ2kXudIpaRt18FmCa/cn2nwwiXMNjcNraGhoaNgSKMs47ZVSTkq6b9MbG7Yy7uy67iZebGunYQG0tdNwtUjXDrHUC6+hoaGhoeHZiibSbGhoaGjYEmgvvIaGhoaGLYH2wmtoaGho2BJoL7yGhoaGhi2Bpfzw9u/f3x0+fHiUqibC/hP0s2LC1Agazmz2fQq1e69FGR8orkW5tbFZpOype/gbfXiyOH+su5Sixx9/XOfPnx85LN1www3dLbfckibvNPwbfYsY/eUDQSyDfeTnFBaN7BDLq80V0wQtgqk9wnpqn4s8W6sv+lJxfmr+dNnY279q+/btOnPmjM6dOzca/F27dnXXXXfdqNzYJvq2Zn6XWT8W/W3RZ7N9Urt3kfXG35bZA7U9vcyZcTW4mv4x2pWRvS8YQ3Pq3CGWeuEdOnRI3/M93zMPGuywTjHUlx0HHWLMTod05s1yfvHA4/WpQ5f3TG3y2m8MbxM3NSeNm5wTFvtHh0x/Z66xCDqwcizsrJoFgmZ4oKxN8XoslyHUakGsI2LG9h//8R8f/S71We1/5md+Zh6i7MEHHxz13evo5MmTkgbnZIYHi46yzHTOeagFpZUG52QelnS2jePEcGo8RLI5ZeBqOhr7e+aMz/mtrfM4t8zkznprn/FelsVQajHPm4Ms+Fk7BDvQQS2wgzQ4YT/3uc/VG97whtHvUh9c4jM/8zPnQSaYI04awoMdOnRoQ90MXhAPUB6cXOtT504tl+FSgYwR2DxbO8x/yTXJMc1C5/Hsmgq7WAsNWMvKno0Js69PMUgMDFILHBHb5XPCQRnOnz+vN7/5zWm7iSbSbGhoaGjYEliKw5P6tzUzaUcKkSJNUqa8Hp+viUNJTUWqpsYFGsyAHe+tYYqNZj9rlEiWRZhcIdMSZdQnKR4Gq54SGzAMGuvJwlEx6zepsixocCxvSkyysrIyT6tDLiT2rSYudNmR4yOFWEtrkrWL9dU44zgGnDtSsVzLUj2YN7kpl51JBxj4l+s6rh2G9iKXQE4mGxtyyOxfhMeCfWdYtIwzjxnbp9QRly5dGmV3Z5Dq2F7uTyPjZlxvLUB2ti4pNVlGPEhuiWdH3GOUIJHD43zE79z3bHt2ZvC3mmSLIdVi26bCB7I9tSD8DI6dtdXztYx6oXF4DQ0NDQ1bAktxeKUUbd++fVJuTR0dPxn0Vhr0fgyiW6POp3R4NY4royoyjjF+j/WSYqQcnBxgfJYc3iJyf+o9poxHaiC3NqVMJnXLQK9Mjhn/97ytr69XKd319XWdP39+FDA50x9RKkCuOdNx+Rq5GRpHZGmUqDup6XRi+Vxv5J7ieqO+lWuIVHzk8EilU0eTGfTUgpSTc5lK0cRnzV2RipcGHR65Xuqbs6TI1sc9/vjjVf1X1/WppRzk2cikDTXd7ZQUhX3nesj01+xjTeKSGdZwfWWcHdvIea9xhbFPDOJMTHFGDGif6bNrz3BfGbWzUxrrmX22ZMZHLGcziV1E4/AaGhoaGrYE2guvoaGhoWFLYGmR5urq6qRYrSbKtAgzmpIaFlUwTxjFAjVFdLyHYoLMHJ2GBlTuU5Q2VX5NxJSJQ8220/hiytCh5oczNQc1E2Yq9KMxRs11omY0IY1FJZlJdMT6+voog3Ecp5p5vsctMxComWfTNJqirazdNZeG+AxFfRSLZ6blNcMJGqC4zCgKqmW2nxLz07CAffY4O6dZXQbu3wAAIABJREFUVCVwjGtuHXGtOvef3UjYXxoxxP/dlosXL1ZFU1euXNGpU6fmItFMRMfM4Mz5N6Xa8DM2xuP8ZGO+mWvRlHtCzU9xEfeHmvFcVnbN8GiqX7yn5taRnU+1M6nmEykNZ2Ct3CmXlijaXNRoqHF4DQ0NDQ1bAktxeF3XaW1tbcQ9Rcqezqzm6Kyc9vforE7HVZqo1sy6M5jSI1UbqULfw6zIRKSmSOlSIT9leMB7/WkuN8tazT7XqN/MxJjjwzEh9Rt/Y5tp+BJBV4Cu66qUlg2eagYpsTxygR6XjHtmBmZT6eaW2Ocpl5OawUbGFcQIIbV7Y9+lMfVKTsXzFA2DKIXg+PH3zcrL+pu5hvDT92RZ5/2/OT1/d/8y6UDNkT5D13W6ePHivPxs/XKN1wx14vyznFqW7amAF3RpoZQjc6GpBUmYiihUk1BMGSB5TGg8wqAS2flHyQUNxzIOj+NHo68sSIbh8aMxW2ZslBkZLhqBpnF4DQ0NDQ1bAks7nq+vr4+4mEjVmIOzg/Gjjz4qaaAMGaoo/s/wY5kLA+urmdqTqjEHIA2UqO+thZLKdDc1J05yDlPOwx4LcrsZ1Vyjxmt6yAy+d8rUl1TfVJg1gxzeFKVVStGuXbtG5cQ+u6+m8jzvmUuB4TBWBw4ckDRw7e4Px2cq9JLbRveY7F6Xay6GocayUF81eF7ILcZ6jNq6jmG2GCLNz7iNXn9uY5wDr0XqdD0m/j3uSdft9WBpjtvu8qNbQY1zzWDJATnvyCH7f4cfc2gxOmh7vcRnPE5ZkAopdxvgWcEzi2tZGofBoytQtjYZnKCmJ8ukBv7f8+/vHL9MgmFQb5pJZvhsTUdNGwZJ81CDDLfnszHb86x7165djcNraGhoaGiIuCodHp0EI7VnfZwttkxNUgY8xc1QHzYVHopvdnKdpm4yipTlT0XqpryfjqfUdWWhzGph1rL6DMrZGXDWFFjkCmph3DwXDFablVuz/spCF5ljvnLlyqQuZm1tbZJ7Jwds7oUUqeuThuDD1KmZwp8Kn0UOiNQ5OXOpHhyBFpaRWncfPYamXknhew6iNIL6N863+x85l1o4OpdF3XHcQ+bOuCddhjm8qIPnmnn44YclDWdBtMQ0/LyDPu/evXtSOlBKqepNpWFNmMNzXz2WHjf/Lm0cs9j+WuivTIdHK0Lq3uPaoSTHn14P3BvSeAxrXGgWmNnj5fPOnx4DSoliu6mHYxYK/56F3aM+lZKTaKFvsH9TY889uGPHjoXDizUOr6GhoaFhS2BpHd7a2tqIU8h0ANS7TVEkpsIoH6a+IvPdYtoSIvOT8TPUdVBfknFppDhqFldRlm6qxf10m/zdFF6kXGgVST2nyzC1VgsfJA1z4vKzwK8GORb6xmWhuaI15Wb+MF471ufEtUMdh+fFXMBNN90kaeBqpKH/1Lt6PFx+ZqVHvYTBdRg5Lrfb/SBXkFG+tRBbbBv1gdI4zQ0/zaVEzsXlUIfmtro/mQ7P1xiomWs2rjcGk2fQ6Ex343s9x3v37q1aS7t+cvpxnNwGcnJOYeY14+98XhpbIFJHncHrwWVRqpJx+h4fBtCe4oA2s17MOBxyWJS2ZVxhzdqV9dEmQxqfQV67lDhEzjrqnqWxtWsWuJtc4Pbt25sOr6GhoaGhIWJpDk8aWy1Fis4Uj9/C1Dn4TRypq81S4PjtbqrCcu14zc+QszQilca2kKrJuJTN/OFqgYdjfaS4GGEj6s1IzdZk65kvTS0ai/uZpXUiFU5r16zfHPNt27ZVKa2u63TlypWRH1dmxeZ2mkK89dZbJQ2UYeRQ/QyjZHhNeq24X5FbMxj0mHM4pR9wvVNzWdMJuX9+xm2LXIg5FT9D7u3gwYOjNtV86Eg9M+izVJeuWEpAyYI07GW323Pi+m2xHdcGrWmnomWsrKxo586d83tdTtTlWgpw5MiRtE30CYx9oi5tStdtUOLj+qcig7j99FekVbLHS6r7tnGPu39xjH2vy/e+4pkyFeiekbKIuHbo9+l6GcEqcoLeA7SBoI4/7kHbh8Q2t0grDQ0NDQ0NAe2F19DQ0NCwJbC0W0LMeWaRgE2ZpXEWWopgssDFvkZltOuhU29k+S1CpYk1jS2i6IziObe5FoonXqsZJ1C5H0W2fsZtpajE/YzK3JqymMhy+vma66Nj81ReKuarM7KQbcyVNWUMY9BAKROnWeRz6NAhSdKNN95YbbfXgp/hOrDYzmNhB3VpEDHVglS7jCgGpeia/ckMAWjcQ6Mct92fWTBfi8xYvx13s/VNowgGhfCYnD59ev6sy6FojgG9Yz9dD8VT7k8WpNrwmJ87d24yfN6ePXvmc+d587qQpJtvvlnSYJzie2L5Uq4O8TXXf+rUqQ31Z8EX6I7kvet7Gb5QGsTPDHxBI5nMMIxqCM+lz0z/Hp376UrgT5YVz2/Pr9vPPcJ1EOeUYf24VjwWmSja8+S1YgM1z0Vcb3EOpek8nETj8BoaGhoatgSuKrQYlbuRqjD1amqPiubsTWxKoxbyhgrUSDX5nugIG8vIvru9phRMtZiCpMNmbD9NyKnkpXOsNA6CTI42My3mGNCIhM9mAYCzgM+xD7GNpvpJadXSxcTffO3ChQtVKt0ZzzmOWXBdcr7Hjx/f0MbYL69FKsYNl+8Qd1noJaJmeCUN42IqlcYCbmPkuG3gYUra42Xqls7j0SDE5bqf/iQ3EKl0ptt65JFHJA0O4d4rbnvksul+4rmgSXvsn69RMuM5sZFB5AboUD/F4W3btk0HDx6cj4/r8fhJw3x4T8fxkMacnjSsCc4LpUbue1wHTGtD7iWTiNBFwmuJhlRZuD2D5vr+bi499s91u23+7v3kfllKII0DXNQ4p6ztnh9KShigIkpZ3G6vebrwGJHrdTnRfai5JTQ0NDQ0NARcVWgxU26ZCa7f8pTnM0RRliAzCxkUf8/0f/6NZvUMGhspSsr3TRUy9E5WD10oaklLI4XCoNgMQ5WZP9d0nzVdYqaPo67Az1DfFesjdcv6o/yd1NiU+f7a2pqeeOKJOZXv9RH1saTOTa2aEiXVHtvJsGTUy/nZqCe1DohcOSUXcR3QhcB6Ro+xKdYo9XA9tcSipOLjOqAu0mPitWTuKeqdfO2hhx7aMDam5OkYHqljrkVzJdTlxD1PNwS3zWvKY2KOShqofO/Lxx9/vJpA2OcOXTHiXHrOvJ5oRu/xi+uN+k/q3xj0OuqOGBya4bsyiZY5K+sbb7nlFknDeeP6Yz3uh8eQqcS8Dv1MdFonh+V+eR7c/8hR1pLguh6GJYtr121wvZQkZOPo8Tl8+LCkYX8xGEd2VnldnzlzpunwGhoaGhoaIpbi8FZXV7V3794RxRB1IXzT0kEzkw2bqqCVHy2SGJInQ81BPHJA5i5IgTAET9Q5kMMyovw79iVylEyIyc8sXQ91eKZMTb3z2Yyyq6VcISUrDfoQBhg2NZYlOGVYt8yp2+i6TpcuXZqP/cmTJzf0J9ZJLsZtcH2ZnqJmOUwuKrMUdJs8T1lQZYPWd1xn5DSlgZsxd+w1ZO6Qcxn3BoNRk7NnCChpTEkzOAHD02VJeNkPrw+GcovlGpyTzJndbfQYPPnkk1UdnkGLyDiXbqe5WgakoOVqVq7LIzeVWSFHvbU0TuPjOY12AEy9RAmTJQFRV0gbAZ8DnPdsf1KXxv2VnVXU/3L+PZ6UhknjsWWKLvYh1uPfPLcMWhDbyEDhjz76aOPwGhoaGhoaIpbi8Eop2r179yj0UuTwaMVFK79M78fAqLT+I+UdqWeGx2FopyxJrakIt9t6CrfJ3EHkkJjCw9TLsWPHNtTrsjK/qGidFMvMLLoYFLqWXimjmjgHDHRdSzEijS1mzbVlvkgeJ/fr7NmzVSr9ypUrOn369Ihyy/Q2UTYvDWPp8Yq6PM8DZf0uw/oeh5yKXKjbzbXp8WLA7vibqX3rQ8wlum1Rh+f1at8it8F6C8+/xyZaH7pcW1jSz9W/R50x0yhxn7q/Hpuo/7OeiZaLtUSk0jhkFjkKr4kYBi0LkVbz41xZWdHevXvn8+W9EceYOixzMfQJi/NP6VONe6ZeSxrWm7kxctUeP3OwWRttPUv9X+TwbNFpvZ/rZSD6TJfPs4E6Pfc7rm+3jSnUPP/0e82Cv/P88dr0eo/njttLX0iGrYxnp/eR983Zs2cX8gGWGofX0NDQ0LBFsDSHt3379lFakShfpSUidUx+22e+Jn7zW5bNhJzkAKWB4jHFaO6N+oPIFZo6MtVw++23SxrrCknVSgPlw8gXBtPSxDaQc2Aw6Qj6oZDyoQ9h5LIpo6ceINNnME0HKWPfG3VuboODO999991VSzv74ZFjiDqABx98UNJYf8D2RktRP2+qj/54/t0cXhxXpi9hkF3rZyMHRB2h23zbbbdJyv3w6HPGdDq0/I1zYYnBPffcI2kYN8+DyzAHKA3j5r57T5jbcBvNPUSO4u6775Yk/emf/qmkQZ/FNZQFHHa97jv3ZgyK7bo9jnv37q1a+W7fvl2HDx8e6e6i3pLrjvYFmd6a8+3yzOUyklCEy/VY+kxh4O7IhdI/1mPrfnl8vJalYU14Lp///OdLGs4opv6ybjyOidvvdUUr3czP1GPh9vsZSp6iZMn7kvPkNeO2xv1LvTbPRtdji1ZpOHu9L/fv3z+ZwimicXgNDQ0NDVsCS3F4ptJJGUVuhtQSdSqZlaapBnN2phSPHj264VnqT9wmaaBATKEwDVGUAfuaqQLqBLLEtky1kSWhjIicC/WWTGmTjYm5C5fjMXFZvm4uK+oMGS2B3LavT+mmSG3TVym239zFlBx9z549eslLXqITJ05IGrjqLD2Q9aKMg5pFiGGaGX96HVAnGfVjTK1iDsj3mKvK4n1yDMwtWqeXxVI1V0YOjxZwkWp2ud5XXqOk7GMb3R/f43LNjXquXW/Uid55550b7vEe8FiYg4hrx2uxZsnstmcRZKbSTxmrq6s6cODAvI+ZPo7rllGb/HscJ/bxgQce2PCsORVGZJE26uZiHz13jA4lDdyM58X3xjUp5ePk84uWyvyMkiyvFXPTlH7UUkHF/lB/aWkO91tsq8ecVsKZZTMjR3k9uz8x2bNB6/rTp09vauFrNA6voaGhoWFLoL3wGhoaGhq2BJYWaZ49e3YUIDUaXTBMk1lwKpqjWIqGGAyEajY9c2w2m+y2WNxBMWV0VrY4gmmHGJ4sgmJOmu/SbD+KtGjiS1GdWf4sbJfZdotTasGDozEGRWgU3U6lsvE4MvwVw69Jg7jB/ZjKeL5z50694AUvGIVcikYw/M1jbjGaRUtRPG1HY4ZNe97znrehDJqRS8Pa9BhbtOT5sCl4NHSw2Ovee++VNKxJBoLOwoO5jRS7+5MifWnYC7UwdDZwiONOYy/X674zBZD7EvtqgwCP44te9CJJ0rve9S5JuUsA557Z0TOn7ygaqxmtrKysaNeuXfOxyAJVcL8zrU4WTMLXvL68Lz0PFr/HdhgMwUfDJK/rKGqjqJkuJXEfGQzB53r9DMN5xXa4HqsP/GnRtuc4jonrtguJ14zrYaCNuBdpfMiUTK7H+0oah43k+4PnT7wW0xG14NENDQ0NDQ0BS7sl7Nq1a05NmUKIHJ6pJr/laT6dpX+gg3FNucqgy7EcvuGpmI+g4zzrmeL0yEky6aH7n5lMu60MZZWFQ2OqFddDY4UsTQfHiylEsiDc5AJcnseITuvSmHMppVQprZWVFe3cuXMUSDm22+NhTs6GEqYq6W4R20NO3v1wH++66y5JGzlKr2PPB9eX2xgV53RsprGU+5eFPyNHTa7Av7s9EZZKmMO0QQXN1qVxyhqafHu/2TgoUvgeHz+TJU5l212P13cthFk0+vC+jGHXahyeU5J5XFxfPHc8du4LJQgMGyiNg0lwD7vvDHwhjfcFuQ73L55VbgtTSzEweKzn/2/vzJbsqK40vKpUEgJjhyMwg8DhxhG+9Ps/iR+AtiUDbiaDQUiqoS8cX52/vlw7qw4RfeE+67+p4WTu3GOeNf7L7xv64mAt3sW5DxxQ5dJmDp7Kz2x1Yl+bcDsDrGjf9GDMs/dQ1UHrZFx+f9hSmHPREZDch9HwBoPBYHASOErDOz8/rydPnmzsqym5IuU5YXGvKKlt+0gP3OOw52zD3+wu/eNyOtkOP61BdMVJkZqdoA0svWcfV31xYmj20VKnQ7GtcaVk5M8sPXn8CRerdepE9pFrGOteWsLZ2VldXFxspMu9gpXWOk0wW7UtpokWsaJISp+DpWNrKF1ouYvCpt815yD/zzzb523fDekdmXgMkNL5DO23S48xTZPPHHvK+zL7xnzi3zIJQNc3+6aditSVIbIlowMaHlpTZ4Fhbq01e4+mFomfyqkRqTlUbTWjHIvP9IpIO9un305xYj/mc9AKndzPT8aL9SbvdVFc9g7zaNLsfI6LLXPm9tLLTIPI3HBGOyIP2rOlzNaBBO3w8/Hjx6PhDQaDwWCQOLoA7M3NzS5xLRKJC6/aT5aSkAmgXX5oj4LLydSrUivpu3ESqiNJ3a+qbakN/5/nodmmlOjIVNrg+SZ3zvZc0NSSZFcKyNGgjgpk/J2mzE8n+YIVdZj70H32ww8/3GrTe2uJZGqyWfqbWhqSp31oLsnkgqP5memUnMydycpOvEZ6tRbTJUWbGg/J2xpGUnDRX/t/ucf0VFUHadnWFpe7AbnvmBNHNe6VgPL+os+sRednXhVs7nB5eVlff/317bWOEq86rJ2LHrvd9HE54pVr6afnIPf+iu7Q+9oaZ9W2tA5r56jxqi29HX+b8q3zx/Fs+u+o4JVWmuNg75jQobN0WdvlOcyjo6KrDvPH/7yOjsL3GBnfJJ4PBoPBYBA4WsP7+eefNz6JlEjsc7Kk1fn9TLhM+5YUOnuupQpHM7n8RNVBSrGPhn44fy3bA/bHWIrqyKNpz9FYbiP74vmzRrs3N6uiu45grNpKqvztvqXPbVWGqMPV1VV9//33t3lzXSFRS75oCPbDpaTNmJyfZCm2K+rq/jpfyP6TfA57CA3PhXJT4nSupH04SO20mblO+JnYT2iqPIf1yLw4a//+yZp6jqoO68F+6krj5BiyL6bx4qf7nO3xvL3SUjc3N/XmzZvbOUb6z36b1spRlF2kpcs/WePhjPtM5D22ZFkjSc2Ea+k/88Ieou9JBI4vjf/ZKkWbzrGs2tJ/oWm5PFCupYnuAfvM5yvX1LnDK/q4LmfU2p8j6PO94zF/880348MbDAaDwSBxtIZ3eXm51MiqttK+C5Z2/jiXDLJmYm0mJTtL/batdz4CS8cujOko1KptGQtHDlrTzJIyzrNbzUlKZ9aQrdnt+Txsk3eU3p42aDu/I9dS2zG7zFtvvbXsl0tLpR0foNnRXwpkWmNIKd3+NhdzNYFy+h7cV6+PNaWqw7pDsszz8K11vg1bQpzvZzL23Af2HTvXCaSfsSt6nM+3dpVSus+AtUL72bMdRwMznybHzmsZx2effbb0D9/c3NTLly83vrbcQ97TnUZnuGRZPq/qMKddRCLrwLo7WhfkfuAeF8z13sl5cPkvrrXmwz3pJ2VczL+vYb91c2Ttz2fd77CqbXS44zb23lneX56jXCP63VlE7sNoeIPBYDA4CcwX3mAwGAxOAkeZNKv+rXI6yTpVcJv2TGS7F0YPbBJxwmZeb1OcabUczp19s5kSp7id1fk/TForyi2b3/Iz+mpTAm10IfM2P3ncnbnFAQY83+H9nVnZZi+bWbpahEnUuwo8ePToUf3617/eJPFme5iQXInbZrQ023AP15o02PPW0anZBMzfPC9TTKi87KAl76HOdGrTjvvGGqSDnnZ4HmZeAnpMU1e1PQt85iAjBwgkbEqjTea7m0evPeerq7RtE+Tl5eVu4MHFxcUmcCz74Dm16a0LqLLrgmtNCN0FoDj9yc93qkaO2akTDiLLc2liCZtF2ZtOCXE7+XxcBw5eqTqskRP2bW72+z3v8TvZ93R9An4PMc8dOT7z9e233+6mRCVGwxsMBoPBSeBoDe/Ro0cbJ3tKCNY4utDXvC5/d8DLSnvrJFL/z9JEStxOdlxpUV0VaUtFDmywNpqfuYQHUiCSUTq+TWDsuXAQQ5dEbg1spTnncwDtWmrrkvHd1w6Xl5f1zTff3I4ZLSaTyFdkyqxdl0xMe9bWVtW3816XInEAkq0EOX6uZc0oJbOXOsO5cWCVNcDUKLtq4VUHCrU///nPVVX1l7/85fYzl59BY3lIsreJImyx6QK6AJ9xblxuKTU01i1TgO4jHreWkefFxPNOQ3Fl7bzWe9vnZW+eaNcaWBdgxfMcLOS/M4XKQUvWotnnXaASfWQ9rK2T8pJn2ukHJsewdSjH5yDGVWpaB88F7wWnm1UdNOIkQ98jxEiMhjcYDAaDk8DR5NFPnz69pVciNLvz2zi8fe/b3VrLKlnd4eL5bEvWK62tauujs8S7R07b+XW6NrI/TjS3NIj03oW/rzRIa5KddNyR9ub/O23HkiISnqnTqrbh9ntr/Pr163r+/PltGDoJ6Fl6x5RYoEt/AE52Nem2pfj0+1g6p300B67NEiiMH+3F6RB7KR8mjbb/p9uzPHuVyoA28Kc//en2HoilTXhu/3mnBXd+pOyTn1+1Tbdwygn7v5ubJF9Y+fBubm7q+vp6cwbyPeD968R5p5zk794H3n9dwrTXziH/toLlcxxDYML7tCwBn0tbazpfG+15r7Jn0PCePXt2ew/nknZdWsgaXmrt7sPK6tX5NZknp910e4d3I6Wyvvrqq9HwBoPBYDBI/CIND7s7dDdZmsTRcZawVySrVVsf3UNswPb/IXGggXXko362n9slR69KxjgC0rREVQcJzpRSXMMc5T3WrFZUYnvatfsOOg3PUVkrn2FX7oT+v/32220kFu29fPlyQ9hMsVfuz2cbPDv9Bva3+W9+OrqtautroG9o3KxBV5jXBUWdqN2ti8fl0ijWBLvnIPnaV5XPQ2K3785RjqYIzGtWhO4mS8/fTehg2qicezRlfr5+/Xp33Z88ebKxOuR4rD16Tbt3iDVdayL2rXZWFNP1obW5PFXCPnzmDb9s5zNenU//zH3gd6F90ryHKC6cY8aK5/+bpCP7uqLQ2yPYto/a0a/snfTXsr/2iOhXGA1vMBgMBieBozS86+vr+vnnn2+lFqSApDlylJIj76zp7X1mja6T0vifC85ie+ZnamsmjbVkaQqjfI4jLR1Ryj0p2a1ogJC8KAeTmrL7Chyd6WdkH2wXtyTU5ftYM2Jeu8g+j3XPhwfYM4y5o8Ra5St2/iVLk5b0V4S2ea3L19AnUzNlH10Q1T6V3FNI0iu/z0M0PPwu7GekcvLyumLFmXuafbTfMZ/nXE37t6wx5z300Xu2mxP21YsXLzbtGWdnZ3eiNGkfH07VQau1RuX3TOevtBbVRefmOBLOz+WMdwWTeU86t5J7Oqoz++j8zrJvuiu9w7pYo+zG48ha+mTrQJeXax+03wd83vnRnUfLHu2iXdGE0fCePn26S1yfGA1vMBgMBieBo/Pwzs/PN1ITkT1VWzYB+zY6Lc0+tJVNHXS5YABbMD877cbRcmbNQBJKSctRYGarcFRqarYuGeS5QGJJaZD5W/kbu0hSw9GAHkv3v64ET7aRkpT9WRQI7nB5eVnffvvtbTv47roxryJvu/1g350LSdqnlxqA/QWsA+OBzSQl4SQFz88ctdtphexvF/p0cVqKe1YdpHOTYRNhR5Hcv//977f3WPv0WWBcbjPHbo3e/q6upAxamyP6uhwx4gAy8nYlpd/c3NSrV69u28U6kJoC0awuOruK+K26P793z4rC3uF/1m7tD87+2i+LptJFkvp/1spXFqb8zO9g5r7b34A9Sf9djqg756sI8lXUZv6+apc1yEhpcl45J0+fPn2QdalqNLzBYDAYnAjmC28wGAwGJ4GjTJpnZ2f16NGjW/URxzkqctVB9cRkhapvc0VXtTqfU7VNbjSdV9XBRGXSZhPmdqHXpqNCfe/q/HUh3Pn3qg5g/u6kVJP35hw5aZh7bMroiKBXTuM9td8h2A5z7tpchczvgVQW+p9E0JgB+fmHP/zhTvsOXqk6mAcdJOXq6VyXTn36jymOzzAX0kaa7DH/rQINGE8GjNi8bzBv/Mw+2hzepWZkX7u+MSe///3vq2obLt5VrfbZs2kwE8+79I28t7uH3z/55JOq+vd7YmXSJFiO9v76179WVdWnn356e41JCxiTiZo7wmm7CRzA1Zn5V/Rwrm2Xz0vTcdXhXcn8delQdgG5r3b/5DrZDA14HmcxzzTnhH3MWfT8OtAnwWcm4e5MtivyaK6hrzl3divdRzyeGA1vMBgMBieBX5SWgBSDlJZJgasQ33TEV/VlZoC1GIe9p4a3Sk534ntKj6YbspbWSbWmteo0hhxX3osGbK0G7Zf5S+3RCezcY43PlFqJVaV4O7Gzvw79tmaR82ji2lVpIJ757Nmz2zB6a6zZDpoJEijtMgddCL61dUvEnSbsZHSTFCCBd2S+rKkDkDgbGaxAYAnSMtcyB/y/0/BcXmsVvNDR7XFvaqhVh4CELkXI59cpPF7zqvtL89BmziNzTl/evHmzG7Ty+vXrTRh/VrqGos4akDX9LlHawRbWiDridAdDeZ7oW6cVsr4OBKHPHR0Z/+NsoPmsymBle35HsldYj87ywD5mLkzG0FnbfMZWpYW6gEWTcnAv4+0o07i2C8JbYTS8wWAwGJwEjk5LuLq62hDJpuRj6isnFoK8x/4BS3oO+c97nR6wKvmTUoXJoy1xITmkfdqSjcvSWFpMKdEJzbZpe87yM/rkwrO02dnuTeGzKgSa41tJtd0ar665vr5e2tIfP35cH3744e3YvebZB2vlaIUdTZw1UPtY9/yYK8Jsl0bp9luOK/uGZJyt7DiCAAAgAElEQVS+SX9mPzNaCJp+hmDjT7TFhL7Sdq4lfaT/LtrqxP7cd55HW0qczFx1OC/+SZ86zc3lts7Pz5ca3tXVVX333Xf10Ucf3el/+gR9lqxtohXmMxzK71I0eyXOmFP74dBIOiIENHlbUQB7Jktm+Z3H/NvC0D2PfcVaMT6nbORZdII7c8P87ZGkr2jPVpRt+Ry/7/Zo8Uyo/lD/XdVoeIPBYDA4EfyiArCrRHE+r9oSC5sQ+k4nRF9krcKSXydxW2uzPygTgV06xImySGspQZo81VqIfR8pkVgrQ1ri+V2ZFlOZ8dN26y6R35+BvWKS9n2tivzm3Dtqcs+Hx732X3Y0Si5g6jlPmAKLPvnvvcK8LmDL2DtCAPvOTIZtba1q6/djXey7JbI5950TmN1H+3izD1zDHDCvtmh08+qz3dHtgVXysCOJO39Wai73Seo+y11pGvfBvtyOwox73F9bQnJd2L9oG/TN77DU1mzp4W/Wg/2Qa0kfIDxwNLD3d75DeI4tI/xtCr2qrSbpa1Yl1fJ3l0Hy56nZ2t/nPcvfSezg2Isffvjh3nfPbR8edNVgMBgMBv/hODoPL7WGVb5X1dbHYNLTh5J95j17UWXOCXNJjJQeLcW4nElXbgKJyrRQSHgru3zV1h9iSc+aV9U2v9DRSytfS9VWAqKvSJJ7Ejd9cqRsR9FmLWAvH+bm5qYuLy9vIxGJ2u18j/QBrcZ9yLGu8oG8N7t5srRKPh77gecRLVp1kLQd4cb64G/M/c28u7DniiYux2JJ2tGteyTFK2uArQa5D+zHcgTjng+PeTPNlnOqso/pz1xJ6ZBHo3FzfnKOOe+2xJioO9d/VdSUftunm8WP0dZtBXBeaFdiDMsFfXEUb54xoj0ZM+PkGmjWuuLBtpQx57YwdHRk1vC8z7tz7vNpTa/LC1yVP/LfuUftp98rLWWMhjcYDAaDk8BRGh5SOugKI7pMBZ8h+ezZWh2Naamyu9dMF0ggXMtzU5PgHq5FWkPiMQF1jou+cQ/SLJIeUmD6RZDo6IvbYk4zVxFpzyS1exFP4D4faCcNrnKQViWaqg6SVs75XhHPt99+e0PqnFI/z2IOrZXZB9Vh5VvtCmRaknff2Q8we1RVffbZZ1V1KHP0/vvvV9WBMQR08wQzEWvL85DiuSe1J/vAVxJ4nkuXsKKPzqGzf6t7Dtda4k6fiv3W1oysZVVt80f3inhCHs0+w6qS/jH77OnLyp9Nu/lzlWvI/znjVYfzzxjpC2sLMXPGDjjCm/cCkbiOMM8+sJZoaZwR5zrmHNva5NJtWCtyLXnOKg/T79c9jdIant9hCVtoVsTTVdvz/1D/XdVoeIPBYDA4ERwdpXlvgyqqiQRk/1HnUwMrPj+XrK+6GzlVtWUTcQHNvN+RXS5omlqabeeWKixBJr+oGTWs3ThvKttzXzrmmOx717eVNtjZ7sFqHvdyaO6LtLu4uNj4WNIvYt5I5tB+zC4yzFIfa8r8OSetaivBW+tA80rJHh8dWoYlU6T2jg2Ge/74xz9W1TanDl9h7tVVxKO1hVxz5onP0ArMztEVgHV0NWA/WAvKObD/xfmG2SbPZm5fvXq1lNSvr6/r5cuXG/9hRsKazYN+djmuvsfahKOF2aN5phmTmXX46QjwqsM7hP/hu3Nh1hyLtSbnL7pQap4NR5/yHPrOPGbJK2vKtgKsimZ7rDke/7+7d8XG0kWUM7cZZTwFYAeDwWAwCMwX3mAwGAxOAkcHrWQI6F7AhNVYU4slVomrNjl0yZWYNRzY4jI9WT7FATQeh2l0uj7aEUs/MDmk2dWpEiv6tS4B1E59O/c7Z7+Df2wW6KjFbJ5cVX/OOfGz33rrrd0SROyfbL+jU3P1dSe/Z7/tZMeM4mThLqXBFb/5ybgwaZIQXrWmwcPsxc8ukIufVCfnWlNOERBTtQ3CsGkJE1qGajNPBE44dWEvqMkBJ6uyV13Vapv9HQCTz6Fd5vY3v/lNmxROP6+urjaJ8h25+8os2qUl2ETutBg+Z53SHG7Cee5NE232K2FChVXpsW483tdOdemClwB9ZX9hnnfZonxORxaebSVswlyd3650mr9TbBbvSDnsznoIRsMbDAaDwUngF6UlIFVQkiOlDEuE/ub2N3r+z1KkSWK7EGZrPtZikC7SYe6ES5MEW4pOOBHSztKOLNvOe//fFFfZ7oqeyZJXSlzWKJzYvCd9OmHbUnqOwe3e5zy+vr7ezEWOmXV2wIQlxC4AwRRr1pq7/rPuSOWeYyT71CTY86uiwUjLXYCGC4miESFxOzAkn+0ALmt+GbTjIBUHLTCfXQCCpXATencpHF2Jovy7C3ji/gzKWlkHbm5u7gREdWt5XzpNl5bigCxrt3va1MoahbbeBVg5GAYLAukqSSkGXNDYZ9cpExlY40LAJtzoCC+cxuGke7+rcs397rP1pbMSWYM1zV9nmeGepNeboJXBYDAYDAJHpyWQBFq1LaRadT8BdJesbsnX4eKd/R2saGscrp4aF5IdEtAqBLajIVqRq1rD6Gzc9GWVVJk2fNqxb9JaCH9niLa1XEtNHVmwx+yCql1iurW0PUkLPwz+C7efsJTpwrwpIa4Ssp203iWwOt3F0nPnH7OfxVqSC4NmnwgDNy0Z54gxZLIyUr99g9ZYct591px2AazhdO3ab7rnU3Eqiwnju2T8bHdv71xeXm5I33MtV75t+1xzv/mM2WeH1tQRnXvf2qdnasCqw5yi2fGTdBVTf1VtycltBWMO6GNqoYyD9p1yslfyC3iOeI4L02ZfV4Wn9/z79/le8zyxLqxXxmfch9HwBoPBYHAS+EXlgWyTzW95F1W1r6vzU3TJhVUHKSIpvqr6grMrGp1OinFpF2BtqvMVWmpeFafNsazG56i5lGJW5Y5cPNb9y3bo42ouOq3A0tgebY/7v6fhXV9f1w8//LBJ1M3rrS1bWmbsKcWuCLHdRqdleE2ZN0vrnbaGxG0fXkeozmcuuOpCrJaMs48G4+bebq/ad7ciK8g1NhmDNb1OWrcW5b3LvWlloU/pq9nzw1xdXd0+u4vOM8HFKnqxi9J1GysKrM5PjjbOPmCMphGsOpzHLGtTdbA0oYnlObXWZx++z2BHSwbs+3QR6+ybrVCMh766QGu2nz79qu2+7ggvrLH6vZrrSWRvV/LrPoyGNxgMBoOTwNHlgc7PzzeRY520Z+l5ryyQbf32E+z5xVaRj/688zOu/FSdj8tSpZ+zF8Vm/5g1OmvF+bsjOVc5Tp1fa5XfCFICdCFVS7eO+KzalkI5Pz9fSulnZ2f15MmTW22ti0jD57DKx0KKzrwha76eYxc77frn0i5d5CuAJBifqfPwulwqP9M5qXuRb+4D82aqqaQj6zTvvNbFQxPOv3J+Zjc+n0/vSdacvMDunr0IX6jFGGNHVdb5MrMPq3yyvMc+TefJdXvfpbesGXUljFziCc2ui3ZFs+FeW4u4BwLqxCpi3ZaLfO94DthDzhVlv3dFpFeR5V10td9Vq3w8/J35v9R6pzzQYDAYDAaBozS86+vrO1IhknbHomI/AuhKYFgDsg3YUlTHEGIJ3xGK2W+zI6wImVPysV/ChRD3pJiVz8alf1JiNdGr88k8lr3yKs676XwhK58NcORftkO/98oDEWln/0Gupf1D1hTs98lnr6wArLv9TNme89LQSBx1VnXY8ysNkvF0fka0Q0ed2i/cRQf7jHncqTHbcuHIaWtpOZ98ZsYQn9vOouByO9accu9SCiuLw95XAJYcM9Yn+8B82zJCm/w/97wjue3vtb+8YzGxRcssLZ0/dhVRmiTlBhqVrWB7rCNYRHxOXRi6y490dCZ/r4oyV233iK0te5aTlXbv9222j5VlyKMHg8FgMBDmC28wGAwGJ4Gj0xKurq421C6Z9LxyQq5U8aqtWW4V4NJR4VjlNrFsF2xh8yMmEgdu5D2rsGybTrvkaKc/0Ab/7+pGYaKy6cSmua7Ssefc4wadKcMmGs9nmhbc/l5o+fX1df3444+bpO4k2XZ1egcadAmmNps4PNumno7UmTboC6kT3T5wKg7tMR7aev78+e09Dsu/r/J4t5Y2lXvcuZb0f1VD7yHmd+Y61yc/zzqGdklg9uX59CfXgnYzrWRl0nz06FG9++679cUXX9z5f84T7XFuuuT0qrumYe9FB6c4eTzP5ypoiHt5J3YmfgeLmOow1wUzp9fKQVNOj8n+24Roc2WXbmHzK8/jWta0a9f72kGAnVukcznkeBycmO3fl9Jy554HXTUYDAaDwX84jiaPvr6+vv2GRsrLcONV0vMqiKVq67y/L5Q4pQEHrZiY18/IPljitqSazmVrknbEWorJe3FkW4Ldq8rs/zmAY0XZlmP1NV6LLvzdYemWDnNe7dTfow568+ZNffnll7eSKCTMOWYnkQMHPeQ9DpgADsnunOxoHPy0htVJlaZwYg+hWTj0v2qrmTI+05LtkWPTR2uwtk5UHc6lA11W1pAE84REbwLtPToqJws74CXn3vs2yaGN8/Pz+tWvfnU7Hltbqg5aJYFBwNpUF0Ti5H3+tuaVliyPw9XMuSfD6d9///2qOiST0zfOQheYRpK1UxnQsEwu3Z0n4IAxylTlmXa6EH1l7LZkZDCg3+0+e50G70A6nz2PO8eVleL33j2J0fAGg8FgcBI4OvH84uLiVrr1t3BVn5iasCZR1Yc6V20TF5EmUmqyr6nzaVTdDRN3wUr7OugjCaF743DYrIuI5mf8JImTPlsbrTpIqpaSHkL5Zc3Yc2KtOO+xJO8SSl0pkUyGXfXr9evX9fz58/rkk0+qqpeWV8njqzXO/jqk3ImznV8TqdjJvYTMgw8//PD2d6Rx+s9P1haJOOcJaRwNBb+M6aK6s4E0S1+tLXY+NcL3Tc1mIoKOus+airXuTutdWR+cbpPvCd9zdXW11PDOzs7q0aNHmxSQ3EMr/7/95N3+tBWFfWjqrT3yaKdBdFRmTnNhXdhTvDvSP4ZWyLVYGJza5JiFnBNbvWiL5+Q8ei5ozyV/nBheddiD1qZX5cmyHVs36Ctz0hG4pzY6PrzBYDAYDAJHa3iPHz/eFLtM7cl+ga6se9VdKd10OaskaDQuStNXbUu6IGGbvLqj+nIkkn2FKYkg4VjCdfQkc5HSoH02LmvRSZ9ff/11VW0lIPtDXGIm77FmZ+ltr/yRSV3t58rfcw1WGh7k0UhuaDldxJYT8u1PzPI5aPteS0vlXWQic5bt5XPpBwU683dLmbSPPzvpz3imKb3QxCwBd5qQzwRtOFk+wVmwtcOaXT7vvn3giNa81nPuJOV8jv1L77zzztIPc35+Xu++++7tGaRgbraxSpQ2nVbuN2sVJjhY+faqtkncPmtoYqk9ca2jkO33S82F3z/++OOqqvrb3/5251qXbcr3E++QlQbLXk1tlf3kEkKOBgWpjfLuY8yr93hHrO/vib3ozEw4p/+j4Q0Gg8FgEDg6SvPNmze3EgPf4EmJY2of4G/ulGKQ/Cz5OLKzK7NjqRLtzz6Hrvik85JotyunYrohJDj+b80utV76ZA0SCWuPUNsRkGgjtsPnnNjvYwncOXf5P2CJscuT6fw6Kz/Mo0eP6re//e2S0DZhOjBL76lxEcXGPayLo806GjzWg89YD/qEBJk+PJPnen91fjEXkmWOvHad38c5YSZ85t5cAzQ7+uLoRq9B3ruKIN2jrgOcY/YZ40YLz/3v6MJ33nlnSRpe9e/5ZVy0lxojbbsskLWojjzampytKJ3Vgr3hHD6u7cooOUcQTZU+dbmpPAe/MnvV+4+9lOOzL81z3vnU6KNzYh2B22njzvuzD68ry+a9j9WDdTTNZNVBw0sry97eSYyGNxgMBoOTwNHk0S9fvtzYxVOqQttDE+misaruSgiWNG03tuaXEoKZLzJarWorkVcdpAgkYEsT/N0xkfCTca5yxjqp2Zockpzt5XmtfXf0zYV0s68uO7SyoWd/PA7ap49dwUf+R5+ePn26W7D0008/3eTDdXlDzmGydSD7bUJxS+X0nzXPe53zgxRtVonUQpGwvVfRDjvfjRk1VkVWOz+My8K4SC6fZ3kg2nUemc9Tl+PkNV35mxL2vVvbYI66aMDUnldSOv5fPkfTQ7uvOuwVtAz7tkBqT9aETbq9IjNPrAjhu7VkflxaCNBGRofz3rKv3u+FjmkF0H/W24w4+e6wBcFaqdcotV/Hb7h4NehYtuiby6BxbeZXsr+6PNL7MBreYDAYDE4CR/vwXr16tYlI6hhJ+OmIO/uREv52t/S+4lur6tkpqg5SQPp0zJZhf5x9hlVbCcTMF35+V67D5VmQeJ3PVrVl0rDdeq8A7CryqfPdAWuhzA33Ig2mhOdcmVevXi01vIuLi/rggw82WlpKs0huSHPOJ+vWhRwmItIYI/faf5pjZ05dvJN7+Dvz8lZRoDyf8aVWSPurElbAn1fVJue182lU3bVgfP7551V12DvPnj2rqq0vr+NuZD1WZZW6PWStwJafjj+XteZcXl9f70baXVxcbM5NjtmWCHN1Ouc2+8nc+n3maN2Oh3VVRsvRm1WH94yjc7EWdbED1sb5ydy6H7mnbA3gnLoQbe5V7mF9nENqa1xGIwNrdLYo5ee2Rjli1u+EqsP65x7dy0tOjIY3GAwGg5PAfOENBoPB4CRwtEnz8vJyQ02UKriJpU2503ZCVcmdqOrw9wySsXPYtD1doAtmMJ5naicTUVdtzQGrBFc7iPNaE/O6QnCOi76h0juJd1VCKUG7DuRhLRzCne0xTifldyTVDwXUdFWHcWUQAe299957VbWlxuqCiaBewhRHG4zZCdrZZ9bUSduYnrrAGq8762D6rq5Mi8PPMeeYjq4LDHL4Nm3aTFm1DU7BZOYAmC503kQDdkE4qCX75nJLgPlLM6yD2vaSh9k3rrqd6VAOyLB5kjnNtJRVpXZgYvjcJw6wYq4pYWTi7K59u3lMopGfuZK6g1lM8p39XwWtdCW//E73O8ql4XJN3a5N+XvfAX7ncw9rnS4p+ug9+hCMhjcYDAaDk8DRaQk//fTThsw3k2ztXEdatvSW2tOqrASSgiXTLqXBoc9oECZFzvv9HMZhqabri7UbE+Tm52gfJj+2lpYSJFK/w4I97o46zfRPDj93+Za8x6HEnvO9QJ77woRvbm42FEU5rpUmbK0qJUW0dTQGJ66aEo3Pcz5YK+/V7nm0Z/opwuu7QBDTc5mg2ZRzJCTn/6xh27KQEjD/4+eKJL0L+XaQmcG+TK3ANFsmFXAB3Oz/6u8ElIYAbSaDLVZBZA6w6xLPncrigDC/Y6q2JOvMMWe9Kwnmc7Jqv9Oebe1iHVaE+934bLnq5oK5dbuZ9pIgtaPqcJatOa8o1fx71WG8SUhQdVdT7qjrpjzQYDAYDAaBozS8q6ur+te//rVJbE1pwBI10jMSeCc50h7f6kgZ9h85ITSBJGDNYc9fBVZpAgknsloyWaUCVG3D3q3ZOfG16i4xasLS5x6Zr/0tTvrvwt895x5naq6dX28FSrwgEXaUYmgAjBktnaRiawz5+0cffXTn2lWyevaVOWO/pfaXbXd753e/+11VbTUHlyXKZ66sHKb66q6xBkNb9Lkr20R79hl7D6X2ZKncBN5duoKpuYDJwFPD4558P6yk9LOzs3ry5MkmzD6tA6u9aJKM1BScQmKN3uk8aRGx5cP+OMaa9zhlC9gqkFqT01BWvvW9WAn7Vr3GLhSc7TuVwDSFuXf8bvT7xmQWec0q3colmrIv4KEpCVWj4Q0Gg8HgRHC0D+/777/fUC+lFOMkaqQopJa96EJLDV1JF/rh5+GHsES3J8WaIBd0Nm4kbEf7OarRdFGJVZFa+/SyXcNaommC8nf7KJ003fncTB4MvJ7Zhy6htMPFxcWtVM49WV7EfhH3ryOudXQuEuGKEGDPj7SKSIM2LD8zEa8LcSa8DtYOHC2J9pi/MyeM136flJpN7u7xeG92/jhbSBxB2BXkdEkXn/n09dty8dNPP+1K6hkdbh9Y1WH+TfjAfugo31bJ/N77LoJctS08DNxWfm6yAvvhuxgFazy2gnR0e+6L6fwcfdyVlqIv9vuCztriEmoddVnVXbIJ5skRnSvCg6reF74irTdGwxsMBoPBSeAoDe/y8rK+++67TamItIsj1dle7WjJvdwJEyU7Ii2lOJO2Wlq23ZpxdO05siqlZvsubKe2RJKaxapIJODvzh4OTB1kKTQlPOenWHLuNNhVxNiK0qjqIBkmofJKSseH57GmNuOit9aIve+6/6GNuSSN/cBd+45eZG1TK+SezldXddAgOgorWx3cZkdH5b7YN866ZKSlNQefCfZ156u2b8g5XF3urX13qxJGub/pP+f21atXSyn95ubmTnHhjvQa7dHaNP0kirYr+bUqxGpi9rRumKzcliXQ+aqdS+t+5LvEVg1TJfp5+feq6PYe/ZmfZw1yjwjaz/H71fnACed2PyRyNfO2h1psMBgMBoPA0UwrWR7I+VFVBwnbJLNoAZ2/yhKw7bqW/NIX4NwPk6laE6taSylmmUiJ5D4C6+45fp77aMk+pUFrgZZ4XFRxT3J1JGHn97FvzeVoOqnavpSff/75wbZ0F1mtOuSfOWp1pe1mf7gWSR7CZ69Xrr2ZOzynPDf9PvYJO/Kxi1i0P9Faotc6pfRVjqr9ZbmWzifzPc7dyzmxxuB1554uRxWJm3E6OrOLcnSkcgeYVpg3E1xXHdbQ54P3DpaETgOyNmjfaue/9pn2nulKSzmS01Gg1mATfkfYWtCdT7Cyeu2xNHk/r7ThPU3f88YeTb+918AFj5nPjFGwZeb169fjwxsMBoPBIDFfeIPBYDA4Cfwi8mhCfK12Vh1MSQSvQPCKWYgE9I6mh/ZMnOyw567i+SpBu0sTsInPTn4nnmY7Xe26qq2ZKs0SK5OCzROdKcvBJHbOdqbWjgopn8s9HTk243DF6y75ekUw3AGzlM3gSYnlVAub0ehDmjdsAsF89vHHH1fVlhKpS52wyZH9x3PT7GpTHM8laKRLrHf6js36Nv2kidMmq440IK+r2roaHGhFn32usk8OVmEuOMe5Bk5ZYA7oE2c+18LndS9oBWqxbv3dbxMAOPUo3x28X3BdMA92OXQ0YXZPOLG9IxtwYvaq/l5HnWgqwxURdb6LHbTkvjpdwWOs6tMP8rp8R/q942s6E6oT6t1X1ijfb05+n8TzwWAwGAyEoxPPs6p1F7Ri8lGkOr7BIftNJ/uKfBhpEoc0zuqUSJBW90J73UdLBJawLOXmMy2FORCA/uTz+Z+drSsqnnzein7KBNA5n2BFwdNJn9bkXJZmr1p6JnvvlXh5/PjxRuPOOUaawyrg4ArG2O0d9p0TwaEce/HixZ3xZfv+29J6R1y7SjEBuUcdrOKgAUu3uQ+8F50s3WnXTglymSWe2yUtW+qnXbS27nxZk+A5XgvSTnJOOlorg7QEzj9aZwY/WPMGTtBOiwL3M7dfffXVnWsJwPP7oerwbvK5d/BNF0xmq80eubL3hNfflFxdOlRXBir/7hLdnbrlABunVlQd9rHXHfq7rnSay7ixH/yuzHVzQvvjx493A3DujPlBVw0Gg8Fg8B+OozS8qn9/o68kyKqDpO2yJkh3z549u/P/bMeah4lYO7uxpWZTgHV0VCvfljXMruigQ29t73dB0LzX0p8lr84W7TFbO+iSyO0fQSKyNNj5KJ38bf9mhoIz5vSt7lGivX79ekM/lH4d/GDsIZcK6RJl6YP7z9oRjk6/83lOkPXznHqQ15pyyT7OXA+3Y83K1om81z4pawFdiDmai8sdMSd71Hr8z8Vx+fmPf/zjzuc5djQiW35caDl/Ty1thcvLy/rqq69uNTDQWShcUmplzanarovJyn1vpqc4TWDlH+usRD5L3TnKsee97hPtm3gjx+oz6YT3bLOzbmVbwEVYs6/A7yhbjfIz5n5VDDnnhH2Q3w+j4Q0Gg8FgEDhaw7u+vt74ANIO7+KMjgwjubiLDLJEgk34IWUsgKV1UwDl7/eV6+mislaFX1ckstmuNasuSsr3285uiX8votTSvxPsU6N1Mm9SPmWbXUK1IyU7YBnAH9tFCLK+aGVoEzyTPmW/vWYrHy4J6fgHq7Y+B/tSO6nRY7SPqIuapd8uyOsE586vuSq14jXNOfG13qP2C+caWLL33HTEzdbkgMkLus+Sum4VbffmzZt68eLF7bulG7P9YrRL1DiWpQ7035q9C+d27x/vEUdgJ1ZllLxX986yk9f3CNutwfuMmIi665t9ht4He4VXWS8nlXf+bY+D95GjrxPsq26uVxgNbzAYDAYngaM1vKrtt3FKBUTkrMhc8bHktzLf3p1vqWobLdcVcTTVT15jrOzsqxynHMeq0OJDS8zntc45SWnRUWfW6JjPTrox/c9KAsp1dHkja/FdHqD3weXl5b0UP9aqE8wtviBs9UjpXSFR9lvnM8n+Mg7y86qqvvjiizvj6HKZPM6V1sQcI3Wm1uRoPOd7ed93UXrWYFbr4/5m+47kteSfv6/8S4wh6f08duekskbp7/F++vHHH5ca3tXVVX3//febeUwNj/4wRvYIc4FvKPvta/z/zscFVnEAq3XK/q4KAnfk6I4rsDZo61B+7jzMVcmffJ775vfO3r7zHNg61EU2my7O1hX7knPMmQkw5NGDwWAwGASO0vCQtPbAtzdSkn0qSIHZDhK9i05aUyGSJyUSay/2fXXRTc5hsp/CZUHyM5PTOoewK4XS+b/cp+xPjsssFis2ks5HaUnI0mH6XGyjt5/J1+X9Ga17n6S1p83Qnkmj2SswduQ4VvNiX0eXp4Rf7/nz51W1tRJ0jDUuSrwq4pvrYU3BUrstC5225qg1s7LYt1y1lbTtQ7Em1o15RcpOXl7VYX2ICr2vsDPX07cAAAQYSURBVHI3jj3rABG+9o/le8Aah31c9O2DDz7YtL8q8ePyNnvvEEfc7uU40h77mL5143cpJ7fryOs9C4sjPl1wOa+xv8+WLe/Hqu3720xMXbQ67aDJca0jf7Hy5NizTFBHmt1hNLzBYDAYnATmC28wGAwGJ4GjyaOvr6835qgMO0a1JknTZkJMI2lOI1TcdDmmjeoCHnyPVe4ueMVmsFVtro6OzAENjMNm0YTH4b5bRc9nr8KCbU5MM9mqGrpNGB0hq8frkOw0Rbs22n3Jn2dnZxui5C4k3onKrm2W99jUYxPzKpG2aks/9vnnn995/kPIfFdpMDm3DkdfJfV7P+Q9rpHmCuT5PK+/TU1OsO9o6Vhbk0wwljxXJpmgT5xrTNHpfjDxwF7QF6T1oKudZxOvXSpdCob3CNfw7rKbojvbfpfYbZDnyqZMv0cdPJX3e46dWO+6oPnZKu2hCxL0PcekUtkNQt89z5nA/+WXX7bjwITZEV44PWXIoweDwWAwEI4OWvnnP/+5cWR2IcqWGlelSqoO39guL2Lp3YEoVQcJgHvsdO8cpZZaHJ5r53XVVpPrQrrz767CummwnECbkpi1MTvDV8nlea21UocU7zm4Ldl347KGvJc8fH19XT/++OOtNaCrgv3ee+9V1XYPsbbcm5qygyosCTvUu9MOTHbr/ZZjsqZlrakjgLb0ChyQ0pH83kdSbW0u4YAaBxF0icDW4FgDJ2fn+baWY63URMBVW41rjx6KvZOaQVVPBO40BDTVPZJtrqEv+T7LcaSG2tHAJVwSKvvLc5ljp9TsWT1WVgIHfHV9WZFVJIXiqgzZKhUtLUvWDleECnk2WKdVuhKpSTn3WAVWlI17GA1vMBgMBieBo314XQhofivzbY4UjlRmqbnTFFysE0kLKYI2U9qgffuputBl99HSs8PFUzpblclYJebmvabPsXbWFWS1JsdPk6t6TNk3h0pbQ+6KU3rsDqXPtXZhzL0inpR48Rx0FGwOA7d/pJsn98+2f7TEXONVSoGfm4nu+KVWlEhuK69x6Lyl9s4/Blb+Pv7f3bMqscLzOG+dP87jYQ7oY/pyrUG4aGynIdlfdX5+vrQOQEu3l8ZjomKe6bI9uc9NjWgieL87cm5sMbC23vnj9t6bibzH2hHPM8GBNdy8dlUc22PJ51kL9DtrzzfuPeR3ZqYY+BpbvzhvaR3xGei02hVGwxsMBoPBSeDsPiqoOxefnf1PVf33/113Bv8P8F83Nzfv+5+zdwYPwOydwS9Fu3eMo77wBoPBYDD4T8WYNAeDwWBwEpgvvMFgMBicBOYLbzAYDAYngfnCGwwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUlgvvAGg8FgcBL4X0UmMIF1NZ2cAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bWlV3vt+e+/TVJ1zqupUCxStQG4Rc9U/RMUodggaFTsexQZFr9dwjV2u1ygBtWJQ1Cia5Go0qJeIDWLUqNgHAfUqEs21QwGlrw6qzqn2nKrT7Xn/mGvsNfZvjvHNtfapkqfY432e/ay9ZvP1c67Rvl8bhkGFQqFQKHywY+MD3YBCoVAoFP4hUD94hUKhUNgXqB+8QqFQKOwL1A9eoVAoFPYF6gevUCgUCvsC9YNXKBQKhX2BB+UHr7X2tNbaq1trt7TWzrbWTrTWfre19uWttc3FNc9vrQ2ttcc/GHWi/k9srd3YWvug/QFvrX1Oa+3//EC3Yy9YzM+w+HtmcP7xrbXtxfmvcsdvbK3tKW+mtfb61trrUceAvztaa29orT3rIvq1p3XnnocnrXDt0Fp7CY5d0lr77dbaA621z1gcu3Fx7f2ttcuDcr7c9X223oczgrmO/t71INV1eFHetz5I5T1pMZePDc7d1lr70QejngcDrbVPaq29cbHmbmmtfV9r7dAeynndYgxf/FC003DRPxCttW+U9P9KulLSt0h6hqSvlPQ2Sf9J0mdebB0r4BMlfYc+uDXWz5H0sPzBc7hX0vOC418m6b7g+I9Letoe6/qaxR/x0kWZT5P0v0k6K+k1rbWP3kMdn6gPwLprrR2V9BuSPk7SZw3D8Ou45Jyk5wS3frnGOdgPeBr+bpP02zj2uQ9SXWcW5f3Ug1TekzSuq8kPnqR/Jul7H6R6LgqttY+U9FuS3qPxPf9vJL1A0n9es5yvkHTDg97AAFsXc3Nr7emSXibp/x6G4etx+ldaay+TdORi6vhAobV2aBiGMx/odjyU+AD08ZckPae1dmQYhlPu+PMk/aKk5/uLh2G4SdJNe6loGIa/SU69YxiGN9qX1trvSrpL0udJ+pO91PUPidbaZZJ+U9KHSfr0YRh+P7jslzSO6U+4+x6j8Qf6vwjj/MEIP8eS1Fo7I+kOHs+wzrMxjOwdK5V7sRiG4X/+Q9SzIv6tpL+X9EXDMFyQ9NqFRebHWmvfNwzDm+cKaK1dLenfSfo6ST/7kLZWFy+Zfoukk5L+VXRyGIa3D8Pwl9nNCxX2Rhwz09Pz3bGnLkykJxaq8ztaaz+yOHejRmlIks6ZucLde2lr7Xtba+9cmFvf2Vp7kTdDOZPb57XWXt5au13S+3odb609obX2yoWJ4cyiTf8e13xCa+21rbV7W2unFiaof4JrXt9a+8PW2jNaa/+ztXa6tfbXrbXPdde8QqN0fn1kjmmtXdNa+9HW2s2LtryltfbVqMdMaE9vrf1Ca+0uLV7wvfF9kPFLkgaNPy7Wro+V9ERJr+TFLTBpLvrwktba1y/m8t42miU/FNftMml28IBGLe+Au/dwa+0HF/Nw32KOf621doO75kb1192R1tr3tNbevpiT21prv9hauw71X91a+5nW2j0Lk9B/aK0djhraWjsu6b9L+lBJz0x+7KRR03h6a+1x7tjzJL1bUnjPYu2/cbH+7lqskcfimue21n6vtXb7Ylz+v9balwdlrTpHz2qt/VFr7e5FeW9trX170qeHDK21V7XW/n7xbLyxtXa/pO9cnPuyRdtvX/Tjz1prX4z7JybNxdyfb609efHcn1qMxQtba63Tlk/TKNBI0h+45/1jFud3mTRbay9YnH/qYn3Zev2mxfnPaq39xaL+P2mtfXhQ5xe21t60mPs7F+Nx/cyYXarRmveqxY+d4eckXZD07N79Di/TKCz8clLP9Yvn49bFc3RLa+1XF8/C2tizhtdG39wnSfpvwzA8sNdyVqjnqEZTxJs0Sqb3Snq8pI9dXPLjkh6t0Tz1cRoH2+7dWtz7jzVKI38l6WMkfZtGE+w3obr/qHGxPU9S+NJZlPuERXtOS/p2SX+n0fzwTHfNZ0j6FUm/LulLF4e/ReMi/rBhGN7rinyipH+v0dx2x6Jdv9Bau2EYhr9ftP0aSU/VciGdWdRzmaQ/lHSJpBslvVPSsyT9pzZKqf8Rzf8ZjYvyOZK2VhjfBxOnNWpyz9PyB+7LNJrE37FGOV8q6a2SvkHSQY0S4q8sxuv8zL0bi3UhSddK+maNc/2L7ppDko5JeomkWzWula+R9MettacMw3Cb+uvuoKTflfThkr5H4wN9ucZ5Oa7dwtQrNc7H52k0i90o6U4tf0wNV0v6PY3r7FOGYfizTh//QNK7JH2JpO9eHHuepJ/WKHDsQmvtBRrdD/+Pxhf9sUU73rBYq2YG/RBJ/3XRp21JT5f04621S4ZhoF+pO0ettQ+R9KuL8r5To9Dx5EUdHwhcrXEuvlfS30gyC8QTJL1KoyYjje+8V7bWDg7D8IqZMptGIe8nNPb/8zTOx7s0znmEP5b0LyX9oKR/LskUhr+eqeunJb1C4zx+iaTvb6P29M8kfZdGwe77Jf1ya+3J9iPVRpfUyyS9XOOau0LjfLyutfYRwzCcTur7Rxp/P3a1axiGe1tr79H4zu2itfYpGt9D/6Rz2askXaXRnXOzpEdI+lR13s9dDMOwpz9J12l8eF664vXPX1z/eHdskHQjrnv84vjzF98/cvH9wzpl37i4ZgvHn7c4/nQcf5HGB+zaxfdPXFz3yyv25ac0+pwe1bnm7yW9Fscu0/iD9kPu2Os1+lye7I5dq/EF+q/dsVdIuimo59s0LuYn4/jLF3VtYfx/ENfNju/F/rnxfYakT1707VEaf1hOSvrf3bx/FecVZQ0aBYwD7thzFsc/FuP6+mBd8e8BSV850/5NSZdqFAb+5Qrr7isXx5+9wvPwb3D8NZLeFvTZ/j55ledA40vrbxfHP2px/Mmu3ictzh2VdLekn0RZT9D4jHxjUtfGop6XS/qLdefIfb/soVp3aNO7JP10cu5Vi7Y8a6YM6/MrJf2JO354cf+3umPfszj2Re5Y0xjb8Ksz9Xza4t6PC87dJulH3fcXLK79V+7YQY1C0wOSHu2Of8Hi2o9efL9C4w/7j6COfyTpvKQXdNr4yYuyPjE496eSfn2mj4cXa+TFGMMXY7zOSvrqB2sdPByCPP5Oo4/lx1prX9pGX8Sq+DSNZpw/aq1t2Z+k39FowvoYXB+q1QGeKek1wzDcEp1srT1Zo9b2M6j3tEYJ7um45e+GYfg7+zIMw/slvV+x05r4NI2myXeirt/WKBlR0mIf9zS+vq7FX2qmAV6nUVL7EkmfpVEzffWK9xp+dxiGc+77Xy0+Vxmvl2jUlJ+qUeN6uaT/3Fp7rr+otfYFCxPQXRof/lMafxz+lxXqeKak24Zh+NUVrmXAyV8p7sfrJN2vUXK/YoVyf0rSDa21p2rUot/o15jD0zQKYlyr75X0Frm1ujDP/Vxr7WaNQto5SV+leEzm5ujPF/e/qrX2nNbatSv0abLuVrlnRZwehuG3g/puaIsIdI3r4JxG7XWVdSC5+R3Gt/ibtdo6XRdmBtUwDGc1WnrePIx+cMNbFp/2jH+8RkGOc/+OxR/fUw8mXqzRSvB92QWL8fozSf+6tfa1DSbxveBifvBOaHwAHzd34cVgGIa7NZoRbpH0I5Le00bfyuevcPu1i/adw9+bFuevwvW3rtisq9QPprCH9yeCuj8zqPdkUMYZraa2X6txYbKeX3Bt9djVx4sYX9b3CSu01RbxT2vUvr9co7R79yr3OnC8LLhglfF69zAMf7r4+51hGL5Oo3DwQ/aj3Vr7LEk/L+lvJX2xpI/W+AN5+4p1XKXxR30VRH2Jwrr/SNJnaxRgfnthyk4xjKbwP9Zocn2u8ghCW6v/XdM5/V+1WD8L07eZab9V48vyqZJ+Mmlvd44W7XuWxnfQKyXd1kb/WbqO2pjStKuN7cFLc7otqO8KjeNyg0bT98dp7PPPaLV1cGEYhntwbNXnel3cie9nk2Ny9dvc/6Gmc/9kTd8dUX2RL+1Kxe80SWPahca4jxdJunQxzpZGc7i1dkVbxlh8rsZI0BdJ+uvW2k1zftAe9iwhDaMd/vWSPrXtPdrvjEb122MyyMMw/Lmkz19IHx8p6YWSXt1a+/BhGHq27RMaJZ0vSM6/i1Wt0miNpsKeU/fE4vOFGh8Y4mxwbK84oVEb/Ibk/FvxfdLHPY7vU2fq6eGnFnV8qFZ3bj+UeLNGX8e1Gv1rz5X098MwPN8uaK0d0Pggr4I71PdL7AnDMPxua+05Gv1Cv9Fae9awO9qV+ClJP6xRM3lVco2t1edrHAfC/HdP0yg8fvwwDH9oJy9GyxqG4XUafUWHJP1TjWbYX2+tPX4YhjuCW27RdN2FVpa9NCc49vEan/PPGYbhT+3gYi18MMDm/os1WnoI/lh7vFXjuvpQOavRQjB6rEbLSYYnabSw/UJw7kWLv6dIessw+stfIOkFrbV/LOkrNPpBb9Poc14LF2sS+B6NvpLvU/DCXQR3HBvySM13a/pi+IyssmEMSHhja+3bNL4on6LRaWo/tpdod57Rb0n6fEn3DcPwFj14+B1Jn9dae+QwDJFW+FaNP6YfOgzD9zxIdZ7R2D/itzSG9L5nYQrdMzrjG137p9HxFet5S2vthzUG4kzMSB8AfJhGIcQ0zUs1Pswez9Poy/PI1t3vSHpua+2zhmH4tQezocMwvGZhfv15Sb/WWvuMYRjuTy7/eY1a1F8Ow0Bp3/BHGtv+pGEY/kun6ksXnztmykWk3Gev1YEAC2H59xYvy1/R6D+c/OAtTHV7Xnd7QNTnazUKRw8l/Lp6KPH7Gq10HzIMQxZEE2IYhtOttddqXOcvHZaRms/V+Jz01v2bNFqVPA5qfBf8pEaN/z1BnX8j6Ztba1+jPQqUF/WDNwzD77eR/eNli1/fVywaelzSp2i073+xlpFGxKskvbi19iKNkWwfL+mL/AWttc+U9NWS/ptGbe2IpK/X+JD+8eIyy7n6ptbab2o0JfypRtPDV2jMD/kBSX+hcWCfqPGF/jlDHoXUw3doXPR/1Fr7bo0BKtdL+rRhGL50GIahtfYvNEalHdToo7pDY6DPx2r8cXrZmnX+jaQrW2v/h8aH/oFhGP5KYzTXF2qM/vxBjT+2RzSaYT5+GIbuC2nF8X3QMQzD1z5UZc/gQ9oixFvjOn22xh+FHxmW0ca/JelzFuP5Go1a79dp9HV6ZOvupzUG4vxca+2lGn2sxxb1/NDFCl/DMPxSa82iLn+5tfbZkYVl8SPXTa4ehuGe1to3S/rh1to1Gn1Bd2tcz5+gMfDnZzX+MN6zuO47NK6TF2tc1xNWlzm0MTL06RoT6N+rMUryhRo1trmIxH8o/IFG3+2Ptda+U6Ov89s1WgEe/RDW+xaN/q2vaq2d0iiM/e2MNr82hmE42cZUih9orT1K4w/OvRrn/pMk/eYwDP+1U8S3azSH/mxr7cc0am7/TmNw0M4ctjFF6kck/dNhGP5kGIaTGhUluWvMzPrOYRhevzh2nUYB6Gc1vtcuaAx2ukSjeX1tXLTTdxiGH2qtvUljKO33a1y492p8Kf9z9X/pX6oxUuhrNfoFfkOjJO0TgP9OoxTybZIeuSj7f0j6VOeQfY3GAf0ajZPQJLVhGM61kTbqWzW+1J+gcQG/XaMzeU+mxWEY3rV4ab5k0YejGn02v+Ku+Y02Jua/SGMI+yUa1fA3apS818WPawyy+W6NY/ZujRGvd7cxl+3bNaY9XK/xxfxW7Q61z7DK+H4w4YWLP2l8gb9d0r/QbnaIl2t07H+lxjX8PzQG2DDgp7funqlRMPrqxecJjekXqW9jHQzD8KqFMPUKjSksq/i0s7J+rLX2Xo1+qi/W+F64WeML/88X19zextzQH9CYSnCLxlSaKzVNoVgFfyHp0zU+P9dqHJc/lPQlHY31HxTDMNyyGNfv0/gs3aQxhP9xkr7xIaz31tbaN0j6vzRqYZsaTcoPenL7MAz/obX2bo1h/1+2qOtmSW/QMtAou/dNrbVP1/hO+g2Nfr2XaxSEPDYW5a7rd7tv0YYXaDSTXtDoV//CYRh+a82yJI0P517uKxQKhULhYYWHQ1pCoVAoFAoXjfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvUD94hUKhUNgXqB+8QqFQKOwLrJWHd/z48eH666+X0ZjZ58bG8nfTjlm6g31ub2/vKsunQzA1gvfuJXVinXsezGuj8xeT+rHq2PTqzT79nGT1nD9/ftdnBE9rd//99+vs2bOTfJtjx44NV1111aTuaB2s027eO0ex91Cti4u556HCqm3pjdmq4xpdw/eDP7+5uTn5PHHihO69995JRYcOHRouvfTSSX+i8uaei956i66ZQ69NRHZulXs4D6vU69/L0TXRPdk1WRujd3+vfB7nGrFPrg+PCxdGUpdz50YCnGEYdPLkSd13332zi3StH7zrr79er371q3cacemll+769B2wRj3wwEhecebMmV3H7VOSzp4d87/tpcoORS9HYu7lGC10a2v2Y+zvsTbZMWsbEdVn9/JHI3oRZP1iWSzTl23/WxvtO+fAvkvjD5U/Z/fefffItnXixIldx/21th4OHDigN74xzo29+uqrdeONN+rUqZEswubcl2ftsTG08u1aO+/7ymsNHDcb6+hHnuNv11g96/woWzv8i4Dry8aL19p1/l6+tNgO9ruH7Nnwddg5O7bKDx7PHTgwUk0ePHgw/C5Jl18+krMcPz5yDx85ckTf9V3fFZZ/5MgRPeMZz9hpi62Dw4eXHMz2DuJ7x78UCTtnn9lYRs9pT/jy98yV449z7D3m5mFra2tyr/1v42732vpjvf6YXcNyWabNrb/HjvHH0o77Nlr5Nn/Hjh2TtFwfl1122a76pOW76tZbR1bH06dP66UvfWk4LkSZNAuFQqGwL7CWhjcMg86fPx9KBgZqOJSEqEH4Y5Gq6hFJN6xvFW1tro1sl7+GbV3F7EpNgddGarshk7TteCTZsT/2afXwu/8/M51Ec87yo76xL5QU/Zxm2oxdY331sHng2lhF82EbWH9PK8zGOFqjlKgp8a7SRgPXaM9KwLngMxj1j/dmJq1Ig43MlFEffPk9rcbQWtPBgwd3NLtovux/swbw+TREzzTLWGWM7RqbQ75T+Dz5+7PnPepXpkES0TNtoCUmem55rb2DqellJlV/L9vCe/xzzDHPLFdewzPN/ujRozv39taPR2l4hUKhUNgXWFvDu3DhwkTq81JTJgFkErG/nxLHnMM0qo9+uag9PSnF3xv5iiiJZNJgD3PO5N45Ss09/6ZJUpEWyLKz4JSeJhvdk41pa02bm5uptrNqn6J+SFPplXMc+dYojWe+qEhbzHyH0ZrNtNp1/GSZBtlbb1yb9NlFEj7Hnm2NxsrWF3049snzUT1bW1vdIIetra2JdaU3XtZeW5vRMx35kXvw45XNXfYZwcalF5BCTZH9IqL3HMvNLFxRW2xsOKfUtqO2WVmmkUXPs92TWfkiP7qNm2l43uo4h9LwCoVCobAvUD94hUKhUNgXWHs/vGEYUme4lJulVskBo1pKM1Qv1yQzNZpK7O+dM4n0gnGy42xHFBBC0LwXmdsy00jPZMu0BDNDsD4L75WWZgcL586CjaL0B//ZM2lubW1NxsJ/t/bSzGHomUGzAKdVgm6ytRnN21yQUhSYwHXNoI7I3Jq1Mauvt2ajVCBpau6LrsnKj9Y311mUjsByVw3K2NjYmMxH714+//bdzJjScr3ZMT7LveC8LMirF9zBkH6u895cch1nqSyROZTPDd+JUV5c9p3PiB/PLOiLwSp+jVlbuGYuueSSXecjU+2hQ4ckje+uVfJEpdLwCoVCobBPsHbQinfw2q+ul/rtF5rnMknIH6P0HIX2EpReMkk00kIp/THAIZJ8Micynfle2snCs5mIGUn4mYbHNvo5yOrLtG3/v2l6dEpHWgITds+dO7dyWoLNv5+XbL7t2kjaM8xpJtE4cr6zwKRIe2YZRE+TzKTmKDgmSuPx6IWYU4PJyo7GpJc+4q/z5zi39mmSeKTteI2ht3YiRO3OtHWSF/B/KSZSYD2GzGpDLS4K6GO5HOModSLTvLJUEP9/FkgT9SGzwGQWk2gOeC2fGf/uJ7lERqzhx4Tv3I2NjdLwCoVCoVDwuCgfHn1Edl7KUwyiEOUs9H3VBPGoHn6PQqJpQ6e0HNWT2e5Zj28HQ3p5fJUEXUpe1E57/qYs5SAKLSdlUM9vQulrc3OzK6UPwzDRHKLk4UzCjkLLs3SXbA359mc+Lq6HnrZGRBaMSJvxx1dJBObcsR1RmHrWj0xa9+eydITeWp3TOlYhR4gwDIPOnj27owVEGvEc4YS9q6jV+WtIbGDlR4QHBr7P7Pk5cuSIpDi1yTReGw8meXttPps7+vCZIO7Lz9q8SmoQ0UuLYdv47oqo7Eh7NheL4cv1lp9VrQOl4RUKhUJhX2BtDU+aSpVeC8hs6b2IJ/pzMoqvnu8pk84jyZfSJTWVKKk4o5DKIqEiKcb6Sd9d5M/KNJNMEupFdln5pGyL6qPGyAi7yL9g5W5tbXUlre3t7Z3yrU29KK8e1ZuBtn/ON7XbOR+k71eWXO7bmiUgmxQvTbVkjlGPeo7tzpKIVyEv4BrtJclTq8mSy6NyaC2gX8u32/vTe/7QM2fOTMYnmpe5JOvIEkLfWjZOEfic2KfNv18H1gZaemgV8mOfrV9aP7LnNWp/Ro/or7X6uA4yv6Avh/PNtRNZlow8OqM/izRlTwxRGl6hUCgUCg5ra3gbGxsTCcFLARl5a0+qZCTVHM1MJKVH5/z3XkSXgdJUpAExh2UVDY8SL23o7IMHfQ/WZm5/EmmjWV5bjxKMfhdrq0Vv3nvvvTv3ZFpVhGEYdkXiRb5VajrsB79H/aeGyrGOor04p/weRSZnuZzMrfP1ZP62zD/HuqOyesTjGXUV7+n5mzmekYY3t61O5MNm7mGP7HsYhjDa0cM0KTt38uTJXeft2fPPPCPKMw0v8nVyvXGt9HydnJeeZcnWBrdQo4UhWnfZNkA9y1Jm5bBPe+/YWEXPvuXQGexae4dEcQC0FvZySO1//z6tKM1CoVAoFBzW0vBaa9rY2OiymGS2ZLJ/+Ggpanj0U9lxYwbxfh8rhxFcGROBL5+2ZWoLka+QfrGMkDnKM6QPr2entv9Pnz69q5/cUJfX+/bP+UQ904r1izlb1tbIJ3HPPffsunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN64orrpA0bngs7R4/q4fjFVku2C8+C3wPRdr7lVdeKUk7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3iEY+QtNwzjYEi0vKdcccdd+xqJ03B1r9o/THg5bGPfaykpWnTj8V99923qx5rv7XDxseeA48o4EOarn+rV5KOHTu2655rrrlmV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bftddd+1cS3O3mamtbdYvGztpOQ+XXXbZThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2tM2fO7JTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT33XdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbr0svvXTlQLbS8AqFQqGwL7C2hnf+/Pkw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+8847JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzpw5k4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+PLLLy8fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych+u4J89AAAgAElEQVQ5WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6SKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67/PLLd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aX22+/XdKUYcVgWqOfZ3s32rW0ekXWNr6vL1yoDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7hCU+QJF177bWSpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95www2Slu/6973vfZKWjC9Szt1p7aCFw7fFcO7cudLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg6uuukpSvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zdve9jZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy5cmES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV55syZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/LKKyXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi3LlzK6cmlIZXKBQKhX2BtTW88+fP70hEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75JHPvKRkqT3vve9u8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz5kzZypopVAoFAoFj7UTz8+fPz+xW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zpw5MyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3muvvVbSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHr/+98vKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPs111yzc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8Y999wjKWZayZgoDCaZRNrMHLltZAPONtE0KYKbr0blZAwhXtLKpH76DBiR5Ntm4+W31JCmvkMPSstzW7FE5XA7lV6eF3P4elv1WLu9P64XaXfgwIFJdF409vQR9yItOQ6ZZhf5WqgdUnvqbSVEX3HPR20g8wjXbkSoTX8vmTyoMUvLsSWbDUnToy2tsq2keljFz8fvnP8eAfAwDHrggQd09dVXS5qyKPm+Zc9JjymI80yWFLKP+PI4D7ZptD3jfr3xecmYcHoMSMwNpRbttzCiL5eWK+uPMbH4+sjCkj1X3jqXRVkz/iCKwchyrSONzyxk5r+c25bMozS8QqFQKOwL1A9eoVAoFPYF9rTjuamoFqzgTQI0m62SmGuml2x/uB4JLq+haZGku/5+M5llZMtReDBNJdyPjqSrknZMwAYzO2TJ3Rwf30a2JzvvkYXQR8mcmdO4lxRLE22EjY0NHTx4cGfNREErNBubCZhUT72+ZYFNUb8YAJAR8kZ7KZLQgCa1XiAIqazoBvB9ojmI10QuAo6tXcM0koiUnWujZ2Yk5qgBI4KKLPWI2NjYmLgGPJkzg3uy+eiZtNkmkjp7F4cFi9jYmXnNAtMMZn6TlvNg82JpFjQfRsTM2XvV3lEnTpzYVZa0fC65nx/b6PvJpHhrC9eq1ROtHb4L+U72zyZ3m88S0CMKQhvHSjwvFAqFQgFYO/H89OnTE2nDS3t0ckbbsvjj/v85qTIqK3Ke+msiaiFrIwmFqcV4yYF9ptTC5PIo8IDBKdnu8P5YFhqd0Td5ZJRFUYg+t/2ItnHy90rTgKC5wINhGCbURV6ii3Z89sejpP5Muotoz/z3qM++rb5s3x6ThjPpNUrCpuZobck0Sz/GDL5if62flsoRtZvabU+bz3YrN0QJyFmgTqZ9e0TWBoIBTxkdlS+HgToRGNTBgCC20a8TS5Gw9WAans0TU3Z8OZzvnoXB1hXXXZTCIu3Weq1NrCfSuA2mFdpYUJumNSxClkZmbfUaJZ+fjMLMk5tEW79V0EqhUCgUCg5r+/AuXLgw+cWObPOZZM1fcP9/lobQk+h4jtKmtceTFJv9ndKFlWFt9lqj9zX5crME1EjDo+TI7UCi5MqMssw+o/B+SmGZVuBBTTWTkHuS1FwyqtcAOdZR2etotVlod08ize7hGPt1kM0zQ/EjDY+WBfrjIpKE3jZQWb+4xQvL5fYtUf8y0uoodH6OqDtKio62+uqtrcja4tcb7+X2OazXn+M64Dq2e0yrk5ZailkseqH3vIfzHVGKGUyziUjwozZ6TYjWhiyFyq83vs+yNkbWNq5nriGmR/l2GxjrYf7GaO14P2JpeIVCoVAoOKy9Aey5c+cmElYUxUYNgZRcETIaqB4xcKaB2D1mQ/fRUoZMKovooeibM5+J2bZpV44orKz8jPrJI5O0SdPTk2zos6M/07eRWkdEc+Tr92009Oz6dn1Gwu1B3xIl4l493LYl2krGkPlBKGX6e+mHY0RvNB/0PRnmNrr1ddMaQKqxCBllGed0FTJfItLM+PxkScQevU2dCWsTowyl6RhHWmBWD68xbSojL/DXRMTY/nxk/aLVhhp4ZB3K/G6MXPVk1SSTYBut7T5Zndu6MbKX2wJFUc98Frg+oujwzCce+fW5vjY3N0vDKxQKhULBY+0ozfvvv3/n19gkhEib6UnWvMdAiWduK5YItDnTnyEtJRqzd1MCYX6eNPW/mOaYUZlFOXVekmL5vmxpKp0zl4q+sEjSyqI0mcPj/7e+W32raObWvx4BsJFH90jEmdtD30NUduZvyST7yOfAfjBCLaKHstxKRvZF0Y30I9IPQz+3bxd9UZlVIPLDUNth3tIqm6JmPpao7sxS0tOqvMWiR0u3ubk5aZOP9uN8r2IBMWQWg160LvPGMqL7XhwAn+GI3Dvzu1KjtXdLlBPL9UXNy/eLPsnsGemB77mMpF3S5LeE74Aod4/XRP7SDKXhFQqFQmFfYG0N79SpUxPJN9rqJ/N1RHlxc6S90fYcBiuP+WPUJLzd3/5nFBu1Qp93Q42HeWS0cUfSICV78wPaZyRpsj8cR2rD/hr2q+c/Y55NFuXW8y+dOnVqVsOj7ymyzfOzpxX2cgs9VmEGIRG0WQBWyVPrbZ+SEePOtUeaPhtWBiXxaOsdtpF+rYgVaNVtX/y8MWq7p9kRts6OHj2aXm8bwNKvFOUrZhHk0TuEa4eaD4mU/bxQA8n8c35sI9+jtNRu7NO/J1gPx8DKjO6lxSDy3fN7FgVq6Fl6WK8hi8nw9bH97HdkwfDrrXx4hUKhUCg4rB2lef78+R1thxuNSlNfSeYDivxHGZdmZnuWpr4tStyRVM1cQCvjrrvukiTdeeedkzaSBYF+OfYhkvBtvExKMz/Q7bffLoL2fNrbLZcwiiTM8l/su7XVszJwnqjhRSwg1EgOHTo0m0vV2zIm0xSYE+SlvYxFhGVGuY5ZBJzNqX1G/ljmP3L8/DNBjTpaI/54lHNm9dk9UYSdIdoyKPoeRdqxbZzPyIdITT+L1ow0ZS/RZ2tna2tLV1111c5zErWNPnRq1b3NdQ0sl76iyGpDqwPXg2dasQhKajVkafJzSjajTNM3Dswoh9Peb7QKcbNnD2rMnNPoeVqV0cevA2p2/B7FRDAytrg0C4VCoVAA6gevUCgUCvsCa1OLSUsV2JvEDNGuzf54FBLP4Aorl87VKGyXJtQsfNsHoFjd/GSSum9jlBQa1Rs5qy0oxfrOnahPnjw5KdtMFdGu8tLUnByFC2emNLunNybRVjVsB8e+t/OwhZbTBOTNbNxtPQtiiQIrsiT7njmcSa4Mge4FhNjO1hy3aGspBjwxXaQX6k1yYiaeM0lamgZQZKlBUdpP5k6geTIKLV/HpGn1eHNe1s6NjQ1dcsklO2MQmeAys3QPWbrLXACMP0bXjX2ay8FTGppJ9jGPeYyk5dzSHOtTGTJyDJr1rCx/LwP5+Gz2gsCyIDn2P3JxZIjm19pLE2Yv8Tx7xldBaXiFQqFQ2BfY0wawBtOIogCNLJmzl3CekflmCdTSVBOh1BIFHpj0YJqXbcTY2+KH5VJLojTlpVA7Z/UxwIVJzL69mdOdjudomx0DtQ6bN6+F0IHN+YuCVlj+XOL5gQMHJhpkjzIoc5z7ttExnmkJUZItpchMM+kltlLriCwcJuXbPGf0V9EzQ5IEBkdEWgrnci54ICKOIO0Zxy9abxk1X2/7K27rFeHChQu65557Vkow5tj2gpYMXLPZOoy0DI61PVvR+rZ1YJ/XXHPNrvrtHt9Pa7cFvERWLn9dtIaYRJ5pfNLUCsX3UDbX/pqMrCA6z/IYbBRti8W1WEErhUKhUCgAa2l4pPiJCHOzkOvMNuyPMVzeNKNsuwkp1wZ65K4kB2ayfCQxUCtjv+h/jGjJooR2aSkV+qRPUu3MkQZ7qZB9pobnNTL2L2q/vydKPLW6z54927Wnb25uTiQ4no/6yH54rYCSNLWJnr8s0+h6PrVMi2HagF+jvMd8xKSHisLts21Semk+vQRuqZ94zLZw26NojDIJPvLzsF+raHjnzp3TzTffPLknIpPwaQC+DdGccjzY7p7VgNYm+vB6KSbZxq8nTpyQtJse7LrrrpM03SYo2tCY4Ga0pFns9SuzuvXSijLNuOe351hTg+21dR3Nbqe9a99RKBQKhcLDEGsnnkc0RN5fRemR10TRf9ToaD/ONuaUphIckzfts7fpqUXcUfOKkjhp485Ilr0ETts5/TD0x/hrTXK3tmZbJs1pVr4e+tGiNrLfPQ3Pj0lG7WVJ5z3pP6PC6m0llEWPMVo2ktZ5rKcNGOYSsqPIMUq21i9q3BEYlce2c035tjCSN/N9RBuPciNg1hv5VDKJvrfdFiM8I2xvb+9aW+YLNY1IWvrDSMSQkTuzD732G/y9GdFERnjvrzUN36KzDfYM3nTTTTvHLNrTzl111VW77rG2RhtBWxssdsDGy/plfkH/zPco8nitL8v/nz1HfK6lXKPrRQWz773ocKI0vEKhUCjsC6wdpXnhwoWJ9BL51AymCVFjibQLag9zvgFpGo2VUQv1KIUoRZMIWpr6NLKoxl59zOuycWTOnbS02WfSUi/Sim3OtM8epRTrod82quf8+fOzOTHUxP06yAh/ud78GovIs/09meTo68k+mYPm/8/8ffS5+r7ynlU2tOX8ZmTiPe13jn7N94HXkNop0n4i+j5/3D69lkrfXWut63v0eXVRbu3NN98saakBkSCe1gKPrG9sT5RHmEV/RvNic2e+tNtuu03S1E/r3wPmk7T+WRmM2mWUuDT1y1M7z6w6vk2ZxS7qH8cg0956EeV8R/Z8/ZkW2kNpeIVCoVDYF1jbhxdtPx/ZjbNtMqIozezXnIwKEatIJtmzjEjjyrSaSGLIbNeZnd9LsDxmbTRJztphUpu0lPYoSTHPKNL0eC0JbSPy6GyDWY6Vl6opwc1t0zEMQ5on58ub2wA4qiPTAinVRv4D+ryYHxf5/ShdMlov8nVnEY8cE/88MSozIwSPfGrUVGlBiTSZTFqmVO3vidZB1D8/9mTN2d7e7uZwHj58eEKcHD3T9P+zr5GWNsdEE907lzNKn6u/x8bJfGu0nnjLkr0jrK3mh7PnkNtEmc9Pmm5kbeXaPdE4ZhaMLHrTIxuLHmPNqhGdfu1yHFexLO3Ut9JVhUKhUCg8zFE/eIVCoVDYF1g7aCVywnowwZcBGlE5NKPRBNfbT4lO3IygOaLtYjoATTJRG0klRhJcmgB93VlgTbT7d0RvFpUR7b9mYFBEltjvzxmyYInIdLCKSdP2UszK933LTCFMvvfX0FRO83EU/GNzRpMb64tMXqSQ4/hFtHQGmsqy0PaoLdm+e1EAUka23TNPZYEANGX20jtonopoqBjs0zNLbW9v7zLVReZprvU5mkL2oXdPRGnHObS2MJjE15elZtnaiVw2V199taTpXppcD3aPdwOZSZPmXqZ/+SAZklDT/MlgvchEzHd/tu+kL5froRdoxV3ZIzLxDKXhFQqFQmFfYO2gFU8f1SNk7SUMSvGO0JRas7BtL9mZREUqrh6yRFxDtIs4E3GtzXattYOapTSV7Exqsnrtu++nXZttl0F6NE+plGmFvV25mbJA7YM0SL79XuvsBa201nba35PKKK1Sy4n6xn7YGs3ow/z/pFrLKKekqQZvmgeDJSKNm5pQlswfhW33ys2QPUecf18fNbkoSIXfo3Bzf40d95J5tK1WpuGdPXtWN910004gl1FvRXOZpThxh3VpqsVm6TvRNmi0KJB4PttOzNebBfR5kOqPKQUM44/eIayHWmJkyWIwTEb2HQU8ZaQP0fuWAXYZOUL0TFj5p06d6pI3eJSGVygUCoV9gbU1vPPnz09Io3tJ1hnlUkS9lSXTUkPyNmeT+igJUAqIwrYpNTF9wN/jCV2lqf/HJKKIZNq0LzvGRGRKbf4cNbss4dzPASW4LMw/Siehb6q3KW+UKjFH8cMNOr0mTO2SmlDkC8q2kGLSeLSVSJYq06OHoqZr7Td/SSRpZz4uStx2XZRkzeeHvo1oXujDy1IaIv9IRiLd05SpbXNjXY/IX5ZpeGZZorZjlIC+Dlok7LnNNFW2wZeREcZHfcwSqP365lZlNqb2fuglgPM9QwsPt5Hy57hJMefSrx369+w7k+Kje7NUHSJ6F2c0ZCRn9//7tpaGVygUCoWCw54Sz00iiX59o0gjjygybM5nR3ipyYhYmbydUY5JUxJfRtpFkq+VS8Jdu5Yan4+ANOmLW5dkEYa+nsyvQGk6iiCLaNyisjyodTDSqxcZN+fD297envggI8LsjNYqkhyprdu9XEMRTRjPMWo3IlagdE5J28a8F4XMfmRkDVEbs4jliBAiS+Zl5HJExp4hirTL/C22VqIkbParp6biXQYAACAASURBVEW11nTw4MGd54dJ174OG0sSwUe+/WwesijNqLyMpi1679AnzLVriLZ6IjkCzxv8WDM2gJ/Rs5KRfZiv2u4xTS+Kfu9F1Uu7n1+OLZ9Tkoz7fq0TnWkoDa9QKBQK+wJrbwC7sbExkbAiPwwlIPoPPOg3yiRTg5cYMrohSlORVsBIKqP6ibRU+vWy6Dn77iUSRsNRAiLBtm9vlqPI8fXSDvPuqI1mm7x62D2kHIv65fNs5nx4lJp9edR0KeX1NJ+MHDiLjPT3chz43a83aiv0X3HM/bksRyzb+sffOxctGUWxZWTsmQbo2zRHzRZpeJlUbscj4nGvXfWoxTY3NyfrIPKTsi5qHb7djMplXyNt1kD6uSznMBonfuf7IHqfZpSCPX8Z/bF8Z1hZXhvmO5BaKNdu5I9j7vUq/jU+pz0Njz7hVf13Uml4hUKhUNgnWFvDO3To0MSW7n9x6cPKJAQvfWaaBiXHSEpnjgylMUak+Tbwk9Fyvh76vTIC6oipwvxgjHSkNLhKBGGmKfvv9N3Zp81blCuYRXSuQhbrmWN6Gt7m5uakz94Pw7GM/GFSrJH0iH49IuaLbMudKB+Tfc58NhEDBecuk1R7DEZZzlYvRzHLEcwsKNE55tr5tlPryyJje9adOdi7x/ent9VT5g/1a8fKY75nRgDtx4kWHvpyuT6iNmTvjCjvM/Mv9nLq2CZGATPHNxoTe3ex/CjOgZaMLPIy0goNXF+Rhkc/ZpFHFwqFQqEArM2lKS1/5e3X30vpjEikL633S5yxstA+H+VhmURyzz33SJryVXrNj5I8/VU9mzAlK0qbUc4R+TcNzFX0kgtt2ZQG6ff0YF6P9c+O26fNn7QcH/KXGiLNtcdiQpgfhpqQl8DZpx63IkE/Ka+JImGp6XIblch3k0mtWa5br92ZRhdFsVm9EeuHb7u/3zNRRH2Inieuu4wHNlqrph3wWYgiSTluvRxOWzvUHKL1QY5Ze+Yuu+yynbJ8uVLOztR7Z9FHR78zI7D9/yyPliv/TM9FOnJsfX183xCMGvdtsX5Z/h3H1RDNGa0DfAdHFkH6Fcnl6X9jInal0vAKhUKhUHCoH7xCoVAo7AusbdK8cOHCxGzjVeMsTJaqrz9PZydptKgaR2Y1mqzoqPfmO5oQrG2WTBmZpRi8kW19ESV1Rw5eaRo0ETmc+Z1mIkOPqs1MWmbiiHY8p2mE5qMoHJ1BHYcOHVo5LYHmr6jdnPeIJo4BIEzb4Fx6c1EUvOPLp5lKmpJSk4Yq2vGc9zIdhmsq2nonSzTvbQ/VOydNTeq+PkNmaopM9wySsDGKTGscn42NjVnicZKKR/2imZaUb1GidBSc5BERnlvd1jea4SOTJlOouEaZNuSPkeSDwTm83te3CllBBqYy8B0cmcOZnkAzebTesi2EovXGZ/nMmTNl0iwUCoVCweOiglaiREluw5FtzOgRhdSuUr8HpQhKCJHUbGCwQpTEzAAXK8OTtfrzXuu1e73j1dcbke9GKR9R2w1e+qRkb+esTGtbNI7UlClxmRNbmkryq5BHZwEOvjxuwWSIEtCZmMuAhl76RkZjROk8SpuhNNvTJFlPRqcUabB8fkhEHgVCMBWIY9AL+mCbaFlgiLsvL0qvib77/kRE7Vl7sq2gpGlwHLUnauYsO2oL33N+rVrdNh9GccgUBz/GXKt8R0bpGww8s2eYa4lbjvmxMI0x22IsSoOgtS0LJuklnrON0frPkvyZ1hGR4/s0qyKPLhQKhULBYU/bA9F/EP36mtRgNvTepppzW6BQMohsz/RHsMxIqqAWwxD/SOpkeaQyo8TV6x/v8RKr1Z2FoTOZ3PtJMvLoHqUY/YzUuiN/D6X+ucTzjY2NULNjeRzjXroD10K2VU3Pb2H1kIA48hVl9VHTiiTObMsdzkeUajJHBN4j5M2+94iiM2k9SkHhPGU0aN5awXJ6bbH3Ti/kn35Yapv2HvJbCmUbC/M9QwuQr8/uNQ3PPlmHbzetYFnqka+b2hi/W/+iZPzoOWU9BhKD0OrFLY58fXYu0zqjeql19lIYDBxzvyn5HErDKxQKhcK+wNoaXkSKGyWCkxDZ7mOEmjSVCDMSV5bhz5Fupic18Rr2J5K8eX+mMUS0RBndWY80lvUxCszGl5GNHiQypnYQ2e4NjAaNbOkGLwVmGp5pd9RyIx9AJvVHEjnblW2f1Nu4lFImI3x7SeSrbHLJsWX5rKe3bVO27VEUuWrIno2eBk1Ju+eny85lWyj5cg3nzp1L18729rYeeOCBHe0sog0jaQTfHZHfmtpSpLX463qEB/TdR32mBpSRFfSsX4YseT0iEWd/snujYz36Od92j8y6FvnwqHXae7NHzWaa3R133LHThtLwCoVCoVBwWEvD297e1tmzZ9OIOA/696hdeNssJZ3MJxD5ZzIJJJMyfX3ZBpy9/mQkxaQH81I6xykjSfaSD9tGrdNy6yINjxF89EX18svYd+uPSad+3kg71ENrbZcGGOUm0m5PX2s013ME41xDkcRIbYNWiCh3K4tIjMYxI06ndhZFXGZaQJYP6o9lfh9qtJH0ntGPRVGOmWbOiMXI/2uf9913X9f/u729PaG9iwjTTcOy6GkbJ/qxpWXeLcvL1l8vEtCej+PHj0uKo1lNe6Efu6dxZe83jvUq6yDzk/Y0ymybt0jzZCQs57jn/83e8ZG/9sSJE5Kku+66a+feuSjfnb6udFWhUCgUCg9zrO3DO3PmTNefQ6mFGlEknfEeaoOZtO7vpdZCSTzariVD73zGisF+RZF9c59R3h+vIbNDFElIDY9jE+U9UoLLojMjn4S3t89FaXJM/PUZaTPXQ5QPRe0lqpNlZz6cVSMH/bXZ+EXlG1bx/82ReEfPRHYuy1X197I/WS5Vb54z/3lkOfE++DmmFdPOmM8qTTdxvvzyy3e1pUe+zb6SeYWR5/5aO2baYhYZ6f+n1kTNKPIzc2w4H9mWPL58RkFHGldGik3rhCGKvOU4ciyi+uizY399XvOdd965q23roDS8QqFQKOwL1A9eoVAoFPYF1jZpRiGgkSPbVFSaEMxhG6Ul0EGZJaJHjtJ1CFHphGZQRC/hnPXye2RizHac7u1ibf9n6R1MT4j6x7bTXBCFstPB3TN/8NpVyH95rW9rRkxMqjc/TnPh2Uw9iMyqmbmm16+54JXILMkxnks1iPqXpTJEAUg8l+1fGJl5M7q1Xpg6TZlZOg7/t2uz9WMBT2bOj2itSL1G0yapAaXls3P06NFuH5ny4s8xyZpmYp+eRFMszfrR2NIczPLtk/VHbbS29NJ/MrM7j0cm1Iy6zNBLaeG1dBGYGVNapiV4Iu0eOcWucle6qlAoFAqFhznWJo82LU+aJnd6zFETRdLenGYX7YRNh2gWtp31xddriHbNpjSehSxHSeuZJsGAlFVSC6jZRdRS2XYcJv1G2g41x2wbkl7i7hw2NvpbwBhIX8T1wDL9JwOcGCgQjTEJwYkoACVLR4jGaS51pmel4LlMw4vKzQKrqL1FWkGmKffWQW8bJ2m3hsN1u6qELi3Xsdee+AyfPHlS0jR1JtLwTAucGzffn0xrYt+joJVM847ep9mO6lkyd7QTPdvSS/PJiMazwMFewFNmLfD94zPNoBujTLv99tt3jpmGZ9d6Qos5lIZXKBQKhX2BtTS81pq2trYmYeK9jUTpQ4ns+/Rh9MKYpZiCy6SXTALuJZ5TaultB5OlJVAy8n2ya8wHkW3MGW2zxGvn6MI8rI3clDTaSLdHnyTF4c6r+D55Pe/xUjqp47h2DD0tk/3obVjJJPiMkKAX/kxNJfJNck1yfdGn69cFLRarWC7mJG2Ggkc+FUrlGQG6P8bUEPph/DO/CvWfR0Qj5tcOLSB33323pKWGd911103abffYurPUAq71qG0cn+xZWGWeetujsZxsg+YodoHvRt4bPfOcl+z5iqx6BlpV1kmON1j9pqlbsnnU/nVQGl6hUCgU9gX2tD1Qj+yWkrW/15/34DFqWpQMvDTDBGxKLT0fQbYpbSTZs9wswT66N5PO+Bm1gZoepVJDRGVlMA2c2kckpbM8+re8JEbN8dy5c10SV08BFEWI2f8mwdMPZz4gs+v7ujMfXs/nwDIMXHfRhpy892Kig7OoXX+O89MjY8ik8Yy6LZoD0554LbU2j8xfb4i2esm2v/IYhkHDMKTzJC3Hgxsn33bbbZKWmp7XCml5MQ0vi4j0/SHNWaZNR9o6+0EtNyKtyOaf89V7Z5Hu0c77d4k9Y+yPoUc8niXwcx1EW7Wxv/ZpGp5F3Ub12PpYBaXhFQqFQmFfYG0N74EHHtiRArxkb7BjpJFhBGYUxch8F2pthkhby3KoIo0zI+81RNoA/YpZtKbBf2ff7ZMaUtQvO9fbvJVtpa+I/oVsXP29Wc6gH0cS8s6RSLfWJhJrFLFFaZUbZkaS/Vy0ZiSlUyuf8+16sG29PNBsbWR5mJHUPNffSEtjXmOm6UX38loiGhPW0/MvWbttrj11VATv/2UEs6+DNGCmvd18882Sllqc70OmYfc20s38okREaZhZlnrjlZG70xrm22jzwefHxry3vlkftcLo+c0Ix3mP7x+faavPrDg+/459NsxtPO1RGl6hUCgU9gXW1vDOnTs3+VWOfA5mF2aeSiTFMh8qixikDdqXb7AyqGFGkUhZ9F2Uh8dzlNJ67BWUvvg9IrimJpyx20SSX5ZLk5Fy+/rou+NYRL5J7wPIxnRjY0OHDx+eENn6+bN77RwZahgF6PuU+fJ4T8TOkTGCRD5Wrl9q+qvMR5ZX2FurbGvGiOOvoYbH3Mpog9DM19kjKZ6L4IvWCbfKuXDhQldK397eTqNb/f/0cVv5tpWMbRoqSY95zGMk5ZaJHpsOtSe+3yItLrMosA89rTBb13Y+2ng6W8+RhkftNmNAiXIGmROd5RlGeX+cv3vuuUfSUkOP8hn57K+C0vAKhUKhsC9QP3iFQqFQ2BdY26Q5DEO4P5Qhc+LT1OlVVFN5LfSUajPNaVGABuu3emznY/Yj+t4LbaU5MCP87YX8Z0EkUcK7tZ8O+iwxNEpLoHmC5oEehRXNHlE6hJXrzUeZWaq1titgwPrh6aY479zNnakYvg1ZP6KgDraB4fJZ0Iy/NgstXyUtZS5JOQoUmUstiOioSH/lx1+KTVpZIMMqQQFZsEoUrBARXPeo3SJKuCi5n88/zWo+vN3oqh7/+MdLWq63jM4reqa5rnoUczSRZmuoR0uXmRSZwuPr4SfXY0QCkqWYZJR9Uk40ntXvx8Dm69SpU5KWJs3eM+GJEypopVAoFAoFh7XJo72kZdJ5RC0WJaVn5RiiREhpKs16STELjsmSLf39pCPKAh/8NavST0XJ8ZnWxO/SNCGXEiMDBPx4UmPJdmH2CdyZ9MmE3kiT8OugF7RyySWXpImsvl02DqadM/ndS8BRAmx0be9ezilp8KLgnmy7plW0mbk0hUjjYjI0AwH8nDNYJUsX6CWtZ22PruM48pmL0kk4L3M7nntQK/B9IXmBlXnZZZdN7rn11lslScePH5e03CaIz3oUxJYRQdtnZI3IUqcMvWA5Pu9ZyL9/Djjvc3RhUfm0PvSIHLI0LwY6RdYoe99lCf1+rGhFu/TSS4s8ulAoFAoFj7V9eNvb25PQ9WhjRPruKG36RFP6/ehLo4QfJR5Te6K26CXgjNKr54cj3RT9CD2fmiELo7XjJpX6+zPS3kzC9KDdmzZ2PybUVAz0P0ba/FyaR9SGKGGXGha/RyH42TiRxKCneUWSpxRbFLLEdloNIp9D5iPOyKs95iT8nu+GYeI9aTgbg54WOpecTuuLlKdzZNjc3OxajbgpLDeENQ3Pz6VtM2P+IhJM0wcekRZQK6PFwT/TfIb5zEbzQj8YNXxqVVEbqZWx/lX8cLQkRPdm1iH2xY9JlnbVS3WhBaHSEgqFQqFQANqqpJuS1Fq7XdK7H7rmFD4I8LhhGK7hwVo7hRVQa6ewV4Rrh1jrB69QKBQKhYcryqRZKBQKhX2B+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC+wVh7e5ubmcODAgUm+XC/wJeNi8/kiGVvAOhuzZtua8Lq5Yxnmru2dn+MlvJi2rXLd3NhEyJhlete21nT77bfrnnvumVR04MCBwW9dEuVCzuXiRHlkq3I/9tboxQRuZYwUEbJr1pkXQ8ZqsU5966yL3jpgLio5Q3vMRX4uT506pTNnzkwac+jQoeHo0aM7uVgRjyPz4pjj1mt31o+Mczc6lz0f0T2rlJ+VMzdXvTZmbV6l3oyxKLo3K2+V91zE/pLd68f89OnTOnv27OxCXusH78CBA3r0ox+9k8wZJVIzMdUSPq+66ipJ0rFjx3Z9StKRI0ckLcltbUFzYfeSHXmutz9dtscTy4x+WLMXXJawHd2b7Zbs78mSUjOqn6i+7IeiRwvEfliSJ6mapCm58+bmpl74whcqwsGDB/WUpzxlZx5OnjwpaZn0K02Tka29tj4uv/xySbsJwe1/klFnO4VHa9Xan1HARTtdG6w+ayNp3TyiPQBZvtR/Sa5CmZb9oGVJ/xEtGeu3sTI6Op88bONlx4wA2K61/nriZu7ftrm5qde+9rWKcOzYMT372c/e2b/usY997KStNv5XXnnlrnNGlGBt8cQJfI9lhO1c59KUgILJ8Pzxl6brLdvxPiLy4A9qRmLeo7Tj+o6IQ9gG7u/Hvng6xKw/XH/Rnn3sF2kQPZjAvr29rTe84Q2T6yKUSbNQKBQK+wJ72vHcftUjDS8yVUi5luPP9er1nx5zpoSIriej2sloo/w1PLeK+s5ySWUVmSuyeiIKMbZjHbMHj7HenvmLbfO0c1H5586dm8xXZJbKzGe9rX4Mc+uhZ/LhuEXbA2VbnrCsqF8slzROc32I+tFbO5kZjBI4pXffJtazypZgWRm+HpPOvaaSrZ2NjQ1deumlOxq+Sf1+ayk7Z1Yi9s0+oy24TOuzNpFUnpqRPxdpOlJMSzfnAopo4gyco+wd5svOtiVjG3vH2M9oHAlqenz/+b5ktHc9GjwrxzTFs2fP1vZAhUKhUCh4PCgaXk+7yEhPIz9cFoCQle3RI1H25305c47giOyW0soqUlN2D6Un3/ZVg3B6fZgL6Ig084wMO5K0uJ3PnPP7/Pnzky2R/DqgBBhpHqxnbqudbJ6ie+izieqL/Lu+jGi8KLVmmmxvrDOy5WiMso2GVwk247Y2JOiN/FkcN/Yn0gZI7ryxsZGun83NTR07dmzHX2vrzvx20lLbi7bL8n31/TPNznyL9sn5j9ZFT2uJ+unB9dB7r2WaNt8PPR81x5VE5725tPHitT0Nz2D1cj369W3nbE6zzWN76G0eTJSGVygUCoV9gfrBKxQKhcK+wNomzQsXLkzU3ch8Q9WU+0RFIfgMk85SDHo5fDQTRPuurZLjIa2WcxTtD5aVmQUnrGLSyNIhIrMI+5wFnkQmW7aNpkd/nR1bxXls5nCaK/28mMnK75Xor4mCWSzQIDN90OQTmVMyRPXNBbpEznauY857z8TFucr2D/OmumxnbTPh+dB83sswcY59FLTAcjPTcAS/12Vmdm6t6fDhwzvvBTNl2g7l0u70Bg8Gnvi+WqqC7Ytnn1l6AtelL3+VHbf5XFqbe6ksfO5YT5b76P9nAI/1w9JHIpMmA3qyFA1/79xeetYXvy6yvS9Zhq+Hz0lmTo5QGl6hUCgU9gXW0vCkZfCBNN151iPT7KLdkSnhklEhO++PUSukJNRL6s4CANZhEVgFmfYTaaHWD/Yr0yiidIF12sOdu7Mk2UhTtjb2JK3t7W3df//93QANajwMz2YSvD/GXbU5TlEwQ5b2YKHtveAOanLUMHzIPMvnnGVEBP4c+2NSci/xnP2k5hcFL/U08Kh+f20WFMPAB9YpjWuoF6C1ubm5My9GWuHH2P5nHxmYYlqNtNTw7JhdY+vL+kUtxx+j5tUjteC7yvrB3dI9aBWIUoF8O7wGa+esP3aO/fbPE6+1TyuLYxFpXlnyeBTEZOPFVJPMKhKNwarvO6k0vEKhUCjsE6ztwzt//nzqR/BYJT3AQL8ANceMa1NaSgaUKkzijn79s0RgajNR+Ds/KaVHXHBZ+3s0OtRm7ZpMglxFG2XyepQGwRSDVfj2rN3b29uz4cFWfsZ5KOVSOsuQptql3UsarUjzz7RBzk+0huiHsU+TUP1cZqHlBrbN+3Qyny011sgfm63VLFm+19aMpszXl2kjdm2kmfs12SNxOHDgwI6P1zQ9T1Fl7aIWY9R1dtxbIaiZcryYfuW1p0wDorXIrx0bB2s/5z16d9BqkqUhRAnw9D2aj9LG5u6779713f9PX15mJYj6x3N2j333dIKGjCeVlkJ/zKfqVFpCoVAoFAoOe4rSXIdd27BOsiWlJJOI6M+SprZfStw9aZYapZUbSUtzktYqiZLUbjNfoq87I2LNomH9PXMRrFE0YObLi+qh/b3nh7EyMzJcX2fmN4x8e5T67TslRlsP/t5sjdA34CVXrhn6pumD8OUz6d7qsTbZ2EWaS0bqHdFGZYnmnEsmmftrss9o/qzPph1kPhbfL9M6vC8si9Lc2NjQkSNHJn5a//wwijAjuI98QVwrfP6jOZgjZub68MeojdraZbv8tTyXJZP741afjbH57EzDMg3PR5+aFp4lgGfE/tLUukafpJXpLTakc7PvjGDt0a2VD69QKBQKBWDtKE2pTwprv8QmaVuujEkxvYhOAylpTHKMopmoaVHijXw3bEPkB2G/6MvIotlIAeWPURuk9Nkbmzk/YM/uT4LWaBxJE5Zplr18vx7Fj/l/aZv3bWW+kJVrW0xdccUVknZvD2SRbiQPpg8v0ry4Njj+lGr9uNianKOn8+Xzu91Ly0W0fcoqpOEsP/PlGaJ1n1FmZZqtv5Z5bXfddZekmMLK5inSMqP+HD58uEtPaJpBRmMV5WHaOGf+eCvf+uXXAX1c3CIpI2yWcv8y4xH8NdxOycr1eYz+MzvmQV+iP8b3i9WbWVKiezJ6N3/c1gZjFDi+fuyZm7hKvudOG1e+slAoFAqFhzHW0vAsGqYXsWXSuEkAJllTmvE5NNz4NYui7G1HZOUy56fnU6Et3SSGjIBWyu3FGbmvtLRZU5Kk/dqDY0wtzdoYbczKfhqySE/f/oxpw0dy8Zy38/c0vLNnz+6MAf0W0nTbD9PerrnmGkl9De/48eOSpuuNUV6+f4zoJBhF6++3NlB7ilhGslwtSs/0Q/trOC+UcqNNQ7P8OPbfa9n0Z2Zkwt4PY/WR3NnKtfy2iJXDru2x3rTWdOjQoW4EdpYDmK1rX3cWadvbADbzN9u4mF8s0mCZh2fvTLOGRW3lWuU7w+qJ1rJda89cj0jd5t/mMouMpS/Pg9ouv/s22jz5zVx9OyIrIn3vpeEVCoVCoQDUD16hUCgU9gXWDlrZ2tqamIe8icnMAfyk+TBylJtaa2aBLPDAq8RZqDLVd29Ci+hqpGmwhzcJMjiBznDS+Hg1OwshNjD8OWoDTSM0i/kxycxgWSK6L5/hxnRAR+YDO3bo0KHZBFCSPXvznZEC29hee+21uz4tMMU+pdzkEu1/5vsh5SH3NPVFtF0Z7VmUBpNRR9GEFgURMGiF8xKZzGhm65EyZ/ca5nbnlqY7hts8mqkuojCza5kKlLXTU4sxcMPXQYotmuiiPe1oarN6aA6NAtForrZ6+S7z7WWwko2Tffr3TmRO9eXa8ejdyPVr30mO4Em47X/7tLmMglR8n3zfSV1mx62syIRuY273ZBSRHhndYg+l4RUKhUJhX2AtDW9jY0OHDh2aBGh4KZ1SA6XmSKKjc5OhqQx79vWZ5BHRZfmyImJmnuP2NF5yyHYAz6h+vOSdkStTE1sl8dzQc+pSC2Mbe2TPvIbBMz0tdG534tbaxNnvNW8GPVx55ZWSlmuJTn5/bUY2G9FCEUxo720fxeAEk5a5DY1f36RroxbK8YuCFqjZZYFX/n9aG5iGEG0pk5GWZ3Rovh6DSel8F/g1bM/YKmTsGxsbOnr06I6GYOMXaQoMDON4+fVmc5itW2oZ/r1j4LqysWbwir/WznF82L+oHM4lLQ0RdRoDBa0eCwKzgC9paT2hZkeCDxuTiJbM0lJs7K3t0fuGCfw2F1yrkcXEv5OKWqxQKBQKBYe1NbxLLrlkonFFBKJ2jHRKlJClpQTA7VmypOvIt5aF/PdswCbFUJKztnnpLUtONlCL8vUyBD/boNVL2tTCOI7UnCNJmTQ97J+XuDLKIlL8RD4807zOnz/fTUvwG8BG6SnULugHpr/Wt5c+FUrC1Fx9Odzwk35RXx9TTOiTjsLrI61Pyv3AURlMt6CfxJK8pekWL3PbXkXh/ZS0mRTvy6R/hxupRgn19MsPw5Cuna2tLV199dU7mr3dE22Fw02pOZerbDND8oLo2cqIpTM/nT/H9wstTNG2RxnxMt9Lfl64rmwe7Hk1Dc8+paX1hGlQGXmC7x+PcZutKEWE1g/77FkAIg1vVZSGVygUCoV9gT1FaVKK6dF2UQLq/RozSo2JppT8pWlkH9tE6V2aSmGk04nIoyntRRtY+v55KYaRqnObOEpTKZCSNqMcI2oxO2YSd5a87MuhRGnobXtk7T969OgskSvnpxcJa58cvwiUuE3LWcVHRC2AY9DbJorackQTx2vnqL+iMaEGy81JIzIGg11DP2O03RZprvhpY+Pr45YyVp6RE1tboy2TVom029ra0hVXXDGh3vIaHunoGNHZ8z0zmdrKJ+lytFEq/aS0LETrj3O4CgE9n92M3D0iqzbY3JkmGY2N9cf7HqXleNLqEkXKMrHejtOS589lzyk1Z9+vTPvsoTS8QqFQKOwL7IlajFFLEWFptr1IRFibUfmY9kbpohelyS0+TBLyEgvt5ta3DgAAIABJREFUw8xPsXsjwlJrEzclZd6Xlwap/WWapJfIKNlkNvTIP8I2s209HxE1VEaBRZqklevzMTOQUiqifGNemvUt8nFYX0wKt09Sy1EC9/+bD8OiQq1MWhakqa+BBOcR2S3batdw3RsiadbWLK0TmcVBmpJvWxtPnDghaappStOIQQOtBtEWTbTiUAvyzzzXV4+WzqI0e9R41i5rN7V2aoC+3eyr+UNNQ7XxsrUlLenSsvzYSHPNyKIZHRxt4ppplPRZRlYi+ghJ4ejfjbZGqGX6vmewNUhNks+xX++0kLBtEc2jWayyuIMeSsMrFAqFwr7AnrYHiiLesmuynB8vpZPE1SRuIw2mZud/7U0iJfNAL9LOpDNqadSmoq0vqKXRH2Jt9GXTTk1pnPlZ0lLCItOJtcn60IseZaSYlX/y5Mld7fJtop2dmnMkQdqx06dPp4wZ29vbOnXq1I62EbHBUIumBByR31rUmvXJrrHcIvMjvP3tb5ckPeIRj9i51+6xOXzMYx6za1xuvvnmSRuZe8qoUJuXyDqQ5d1ROvfWgYwdh5K/1zS4sexVV10lSbrpppt2nTcJ3Ef+3XHHHZKkJz7xiZKWc/H+979/V/+j3L2MVD7y3ZCtqce0YtHhPZYPq8veB/TD0u/j77HxME3uHe94hyTp1ltv3XXc55xZuaYNkjWFPnFpGhVu3xmBG1l6SIrP7z0Scfom+U70z7SVS+vXnXfeuautkeXM+/L9WNizaBaUKNKbFjk+E75ffAaLPLpQKBQKBWAtDc828TTQfizlXHa0yXq7uf1vWf4mCVCiM0klsifTHs1tgaKcM256ys1re7yR9L9RyvUaHvORrHxGa3lpkJqkSfImNXHso9w0k+SYk2jj7bUHaxt9XdaPaCPSyAfai5gahqHLJmLtzXy3VrZJm/5/0+SMd9Okyttuu21Xu/04mUb31re+VdJy7XzER3yEpOUYmyYoxVvq+OMRo4vnGvV9p/812iAz2zTY2moahh9PahI2Nqzvoz7qoyRJr3vd63butbVp5d5www272vG+971vV1t9fRnLURTNzfn3W0dF2NjYmFhV/PPJiEv/LPlrozw103zf/OY3S1rOt1mazGfk1x23qKGmb31mO/y9GcNKpHGRm5Mb8jICWJrm/3LMozw2jq29azk3kZXMxsIsBnavfbfn2/v6aeVgHjffP/4a/5tSTCuFQqFQKDjUD16hUCgU9gX2FLRCU6BXnaMESP+dSZ7S0uRiJk2aJ6+++updZXkzgTmSuW0LndVe9aZph2Su0W7cmcM3o7fx/eMWHqbSm1kgCmZhQBBNnGZusTGyMZSWJhhSPtm1NN36+mw8M4oub25h6P2cWcG2eZHiZHImDdPMamYdC6yQliafRz7ykZKWgU5m0nzb2962q8z3vOc9O/faGFq5Nm42ThHpsZn6zFyzColAtlaYYhBt58OUksyUHlG0WbvNpGT3Wri9jY3HddddJ2n6TNpYmUnTm/cMJIynuSpKh2GKTgRzpTCAKwrUIYl0byd6C0r5y7/8S0nLObO+23vB3hOeZJlmaJoUo/pobrVPG7eI3IHzbWuVu8gzqM2XnxEyR89rRoJgz7qNjbXDvytJNWnP0+233y5p+Vw97nGP27mHATV0X9CE6//vrZkMpeEVCoVCYV9g7aCV7e3tSdCHly4Z0k8HIxOPPUwCyBJzo6RX+5/SC8mOo2AKShUsy4P0UAzYIC2Q38KG/THtgGPRo9yx73Qi2zhHzmPWw4Ru30arm9onncgRjdwq1F+tNR08eHCSjtCjFrOxNa0q2lTT5sqCU0wCZZCUjYVJndIyOMGCpGxcTHuJto+xNWrjY9J5j6CZVgbrB9cbg5h83XYPSZIjjZKk4dYW01AsTeG9733vrrL8GNjauOWWWyQtpXQbP9MSffuz+Y82xWWASy952IjHqbn6dnOMGUxixy3VRJLe9a537brXtFmSbjOVRppqprZGmU7kLS8236RDpKbvtUKmJdjc0hLTo/7juylK+jeQBszWOYMNSS7g2890Lxtfsw749+v1118vafne4fuBGqA/FhEazKE0vEKhUCjsC6yt4fnwYZMMovB9hl6TcsdLdCY1mtRCP5n5IBhu7cvJtoSPfv3tHpNSSUbbI/Hld2ojkRbK/lDyjrQ0tj8jfs7Inj2odZsU7+3v3CqHqQtWRrR1iQ83ztphGl6WbO2PUbs1SY5kxP5/pgOYL4/r0PuDrf9cV5ZkTR+rb6N9cnPLiDSYa4QJ+9RYvARMaixSZEXzH23bJS2l6Ec96lGSpr4V3wbzk5qfy8q0OfDbEbFNVg/Xe5Q87K0Pva2lzp49O/HpRuuAz6G129prWoZvp2m+1FpoHYqIGphqRKuXf8ZIQ0cNP9o8msQCTBsghV6U0mDjT2sA6el8m6gxZuk4UXoKtweir9zfY+uJ7xm7h+vcl+M3CFiVXqw0vEKhUCjsC6yt4T3wwAMTDSiyATOChhqKt/0ywpLJ4qbhUWKUplvd007taa8MJLm1e0zSZWRSVH7WX/bF30MphP5NLwFTkspIaSPfWiSRRsd79FCZpubHnpueHjhwIJXSLUKTFGVRlCZps/zcsW0shxtkmv+Fyb3+HMmP7ZMRwPxfWvoG6ffx19GfnFHLGSIfMrVB+n+9j4PWDtL62bWm2Zgf0l/D6LheVKhda5YaPj/UGqRpEv7Ro0fTzZXNhxf5Kw1sp42prQf6XKVpNLDB+sF6/Herx/pkvrqIMs/ASG9GYkcbT1Oz4juLa8rXy8hNvisi61EWwZnVH5G/k9DfwOfKl2vHGG1riEgyojGeQ2l4hUKhUNgX2BO1WEarZNdIU0mBvrtIaqZWkREoR9FSLCvLI5OmUXLZFhW+7Gj7Hd9GSu0RSS2jzFifL8PaxPHrRU0a5siqDT3SVc5J5HvN/JpZeVtbWxPN248rx8e0J0qqvVwjRtxyvXnNhPmeVh/Xjocd43ZAGVm6tJyzKM/O968XHcx8vFUorKwt3PLFjpvW69vDNUmfWGTVyTQhrgdfDwnjDx06NBttx/GLNubNttMh9Zj/nxGd3FKKVIDS6s+nb6NplxzDjBDa3891zOefWjzrjtoaEc9n88yNhq2fUZwD/fQce//+5nOUbSkV5bVmlrMeSsMrFAqFwr7AnphWeppJtNGiNI3K6m3iyBwtfo9IaOmX4lYrPhLNpBVK8JS4fB8yloI5f4xvIyMdvR/TX+eRaQOM3vPjSRs9pc6o7XNbbFAK9vd7KawnbW1tbaUMMr599FdRovPzkpEGR1o666N2lrGl+D4zV5TtiPpPnzGj8qjhRfmYzNmi39lH+LLvmVQekTrbOFJDidpmyCwJPTYiauQ9/y/vZb2+bhtraiQRo0sU7Rkh0mbof+caiqxRmb+fkca+jdnaJKJoZWqH1AK5/nwfMzJn1hO9D9gmwo8JLRPZxsaRhpfV20NpeIVCoVDYF6gfvEKhUCjsC6xt0oyclJEZJ3LaSnHgAU1WJJjumTSjkH5pum+YN2laqHK2k7apz1715v5+GSIzmIHtJwl3lODMfjJ4ITJLRSYY/z0as2i/uF79/v9oz0GitRaaL327s7B9tmmuHN+WnpksM+0wedybiRiQQTNlZNLnesrM8FFfOBY0CUfJygzyYT9ZxiqmewZCReQP0Vr090Yh835MenN14cKFSQCNR0bATZOgX79cI3z+e+4K0oBl5nePKCjJlxGB/eI7hGPm20hKQ14TkSSQAjIj946C9WiinSNJ96CJ2DBnbrZ7KvG8UCgUCgWHPQWtrBJ4QKmVAQe9pG5qQAz5jUDNisEqPiGZkg/pc7izctR3arCUeKJdqw1ZWK2vj8EKUXhuBkpSdDhHaSDUWCgRR0549r1H8dNa2xUSHkmoGT1URt8WnWNAQCTFGjLSZkrikURKCd4Sm6MEYAZjRSkevv5oTDhnTNKPwtGZXpFt2RWB4xilArCcbM1GWg8DquaCVnwbovZngQtWZvQsZ1R2c5p/dM5AS0lEIk5thsEqkdbE8uaIoX25rJfvhahfDLRaRaPMCBRYhn+H8Z7s98NjFetNhtLwCoVCobAvsJaGZ/RQ1G68tpb5nnwZvI4+J372yqRkzy1YLJnYS3jUIKnFRKTYPR+Gb4dpMVGSqp1bJXGSPjoDNYuelE5ps0cblkluPSmdvjtPLB615YorrphIy1HCdETe7evpaab0F1ETitbOXMh3lJhLIuhoA05DNu7sT+RbnUt74RqOymdbM+tL1P5Ms/PrhT5JtjWSxHlszofny4usHJn2mlkspOmayML4IyICXkvSBFoY/DXUrLLto6I2kGg8W/8e1NYya4E/l/nTo/SkDGxbdA8tCbQocJNuX272vYfS8AqFQqGwL7AnajEDbcIe/MXO6Ib8NdT0VpHSaAePNgmVdkuuc+SjUdQkNYbMjmz1eonTjhmNjt941ZcZaRKmodJ2T60g8qPOoecryBKeo8hOEulG2NjY0OHDh3d8qlnEmjQvtXpJ2+aFUuxc1F4P1Iz9vNj9NpfWFhIqRKS6/GREZxQRl42FXRNpeCR6zrYWMvj1wnnJ/DAeHKcsqtYf53vgkksuSdftMAy7tINo7WSR3Kw7okGklSiLtI62I6K/v0ewwfHJNEgfcUutj+85kudHieD0y5E4xCNbZ1k0fE+7yny7kQ+PmnIWaR7ds4q2udOmla8sFAqFQuFhjLU1vHPnzk2k2J5GkUWiRfkiGX1SFPFkoOZBwulI6+B2JT1SWqInhfp2eA2Tm1Fyk8jIh+S3TZGW0aakQ4qk6p6N3iOSuLPcyigKjOM1Ry22sbEx0QojaT2LDOtpF/bJtdST/jK/j31yCxtpuo0J/VeRNpNRelGzIJ2TlOd5cZ68L9RvjCnFkrwvK6JtovZBLS6KkMz6F8H6Zc/JnA9ve3u7q21Qs7K+Z4Ttvt1872TbEEWUX7QYkNYt0vRJz2XPtmltvsyMVDnLGY0sWYzktTE3UuwoJ5qWg8yXGD2T9MsZeuuBkfqMZI2sev63pPLwCoVCoVBw2JMPj5GI3qfCbev9vf7T/9pnTB0ZY0Pkr2JuUy+yMyNRpl1+FfYSameRNpJt8cLtSaINYO2cbeVCCS/SSjP/RZZbFSGLIPVjH/kIepJWa20ytj2i3CzHKNJMM39vdp2/lvWQiDrydRqyjYE9bO4MmZ8i2sKG2kzGYOS1OG4OmxFd9yTuLD+qp21nz0+0znjt3AawFy5cmPii/PNCDZjxBZG/vkfa7cuK8jM5drZWOLe+Xvro7Fm+6667JC03nvXaOjclZs6etcnyQP36pAXJNDprR3QPrV+93Gciy8OjfzXya3J+GMnqy2bfizy6UCgUCgWgfvAKhUKhsC+wNrWYNy1Epkju2ku1045njnSPzHwSJcoyGKLXRt5joMPZmxYySrHMLNZLxudYRAE2HD9rM+nWIgc7y+dY0PwT9cNAU2CUuOtNV5lJc2NjQwcPHtxpJ9vPcnxbaE6LiIszkgKaZqO99JimYqafKPCF97C+iGSca8fm0Oqh6cmDlFhm7mQQhm8HzWq8h6a6yGTbMy8SXFeGHhUYTX49k7AFy/G5jFIVstSCXjoU11m21120djinfD6jZHUG7JhpM0rvMTOnffKZXoXonPNsbbOUJ29C57zw2WMbIyIHgsFBkUuC6zjrX3TPuXPnKmilUCgUCgWPtanFDhw4MAm68KCTnWH00S7pc/RFGfmuP8fE0izx2P/vQ6Kl3US2rKdHihwhouth6DwDbaJgHGprvS1SWDel5t42NDyWBR542iNqXD3n8cbGxo5G4/sTaetZ36LjlLQZ2JLt4OyvtTXJeY+kdAsh55ZSJi33Ag8uv/zyXfceO3ZsVxttbk+ePLlz7913372rLdzRPSI64LpiiLndE0npXIt8fqL1zvQXzkX0fNtY+yT57FkahkFnzpyZpJz455PvoiwALqIY5Heuw0gTZlBZdk9EE8d54DNuQSzSMg2GGh7bEVl6qAnZ+NpzaG3zQVVMxckS+qPUED7TGWl+BK6hzGrgy101HWpXPStdVSgUCoXCwxxr+/BaaxNtKtp6w6SGLIw/Ojan4UWayRyFVBSOTomKiMJns40xiV7qBP1Jpi1REvf/zyXxZmPn68229vCgr4MSXLRBY0SUPSdp0ZfmNa4eEbIU+1KyPtKXase9JsBrqOHTpytN/UemgZlWZm007U2aUn1dccUVu8q1/lKaZ1+lpbaYaaP+HmohVg9D9v14Z9RsvbSEjODArjVNxq+TzCceYXt7W6dPn97RkKP13HtHRG2LrqVWxjZG2lr2vonIJPi+oQ/PNLtoK7OMhoyaXRS+T+sA3yWeJIMUfYZsXUTIrCs9yxI15N5Gt+xr+fAKhUKhUAD2tAFstkGiNPVTcWucCJSKehFbvt6oDZR8ogRK0vAwYpQ2dmkq5TEqi9d5iTuLfKJtPUrIpJROiS7S2ubIgiPMRZ/2JHGTUHuRt8Mw7Iri7PljswTg7LyUS5NRO3gP10EvmdykZJPCSTXGpHVJuvrqqyUtrR7UHKnpRz418/tlRM2RdcDKpU+PmrLvZ7ZlkaFHFN/z87Eeg6fM6lkxtre3d55t+k99e/n8UWuL7sm02VWSnzlnWcSnNPW70vrEqFp/DeMN6NOPNDy7x+gJbdyy7Zx8OdRGaSVYhYyd2lo0/2wLn9uIyJtRxnOEF7vatNJVhUKhUCg8zLF2lKbPper58JhrYp/0k0jT3KUoT4ztMDC3hVv7RNFEBko+vW1aqJEweon3RtGH9BX1JOO5zU/XiYAiej69LKqxJw2uKl3N5Xsx6jOLgIu0NEMmgUZSLdciPyNyZYMdM03OtDf7tLXl/7drMyozf4/Bnhv6X6jJ+OeJ/tZMeuaz46/JInwNPXoojltET2XXmL+yt34tbsDGIvKtZu3r+R6j6Oio/aQg8/dGYygtx8LeLVIevWjXXHfddZJ2WwfMr8eIV7MsMB/Tz5utJ/MZ///tnd2O5NaRhLN7WoMZwDAsyQNY0MW+/2MtYBgQJEEeeSRZM11Ve7GI7uyPEYesWeyFXBk31V1VJA8PD1kZ+ROpV7FqZWv265M8Ry6rup//Coz/rTJ9nTA0tyHbXGWsb45z+JuDwWAwGPyB8Vl1ePQfu2r71MpjlRmW6mIIp/bB/et/CrX27WnNyrJycSCOkcyOcR+XicR9MYPQqcHsZUU5Cys14jxiYXGMghPYTQLNCXd3d5sYXrcuE6NbNVel5Zvq8Jh52d/jKy3Irl5Bb4SsZNbWdcueMVyOjZ6NzvQYdyGTEKN07YGStZ4yWPsYyIySwHr/e28NOUbW1VNW9/vj4+PGo9TnOMXDOTYXh+N40zPMfZf1qZpT5/XSeDUWNkOmyHPV8/VlBiczml0trNadslv7fque10x/P3nteL7XsCphlUvA/fO557x6/T466uEahjcYDAaDm8DVDO/h4WGTveSsPbLA1FQxHae/Mm7lsjT5P5sryufdP6PuJ5UwukWiOIte9R1ZSd3CrvJxJm3LbMYVK2S25l6NWlXO5NuLk7jxU8ljVe+3t/+Hh4dNPGcVU+P4XbZXYivMznXXyTV47efIRp1VLzN3+7a0XrXu+v5krbuaxj62Pkdat2wLc6QtEZkxa6xcCyjGW1b3Ho+Tsh7JQqqe56fvL61taWmy/revnb2YnTvXvXW72jY9zzhvjpno2fHtt99W1fOa4vOoH1vvad7ojeLzqG/75ZdfvvhMY3L3BJ+bTt+zyqsi8d5zSj59XP07K1Ub7sNl3h/FMLzBYDAY3ATmB28wGAwGN4GrXZqvXr16orNOhoYukL3O59y+70NY0dvUAoPpwt0VxYBskpTqlLkH1/sr3WIuMSQF0Fdd0gUmcqRCU1eszP9XSQUcN+dPc9JdOHtyTjzWF198EVuVVG3nVvtz10NI5SFMilldU8F1cOc5052m+ZHrkcIHVVtXNpNY0j1S9Zy2r/3THc5i5qqta5SSYikxpe9vT7TciU3wHuC17nMvsW199pe//CW6Z0+nU3348KHevXv3Yhs3hiRc7coteP+l59DK9UnJOv3PMpV+/pSfU7mAOpB3aTltr8SSP//5zy/2QVH+fjy2n6J73z13WHbV3fkdq9Kt5MoU3DymZBXB/V50N+/RrufD8AaDwWBwE7haWuz+/n4TNHS/rkl+bJVmzxKGPWZUtbUi2TjVSdOwPYqsGFmdDML3v1PTVjZqdeyJSIXAHTw/MhhXWJ/kjo4UgCbr/IhYrAqEEy6XyyY47RJQZIGmIngXKCfTI/N2sk0pUYclLc66TIyHbKp/VyzNyY9Vbdli3y8ln1iE7eSoOOZUVO7WefIKuLIESgJy/TlRcCZDffXVV5Hhnc/n+vDhw0bWr7MPro3kGTmS6JIKxN08UTKRTYSdAAXZmRPj4HG0P80hhQh471RlOTqWwawS3vSaxEFWpSZ83jhvFLfl/46F6jOVahwVvqgahjcYDAaDG8FnxfBoBbhfX1rLK8alz8i89iyFDlpNKgTlcft+yQopg9bjJdqmW9/8TpUvqE6xs1XZAGNoqQ3Iqn0GWSHnz1l2Ai0ux8i4zaoRo4qHV8W8qREv4zJOcDoJAaS4WT9HvrIcobPnvbZNjJtUPbOAVMzN69TXlIrQWaqR2tL0/e+lkrt2SwLXF8/ziAeDY5UHpWrbMunt27fLwvNPnz493dO99RLHkFgaPSL93OhBoDwhWU5/j3NKT0NfO6m0aCXKQY+F9sFSGnd/7gla6/9+XnxG8Bm1ErxPnjn3nBBS7kPyUlQ9P9u1nl6/fj2F54PBYDAYdHxWeyBXiCnQiiHDY3ykamslkZXR8nNt5VlMTuu8WwC0wngeYnHOZ3+khQzfp5XEuXExtSTQzYw+x7JTY9sjVlBiLqvs077Nyp9+d3e3Gf8q9sg4yYrhpWzN1JrJnRvP3RXB6py7rFX/jhhZZyHKnGMchCyEcmV9vGKMLOJ2RbhpXXOOVmybc7HyACTmQibZvSMuFp7Wp0QLVAytVzdPidW4uFxiS2mfHXviCEIXIEjyhyleVrVtJcSYNe/Tfu+TRafnTd8H1wTXV3q2dCRZsCMSbRyH0MeoddTnfhjeYDAYDAYNVzO8h4eHpYWYMgLJxLpVRX94ypJywqby58oS0v9kRI6ZiKXRwnNWR4qZpIw3x/Bo8dIS6lYMWYbOjxYdGU7fX5KQchbXKnOzw9VcHmkwKyt9dTzGXxnTcnE4ITG7IzWCvA6pEWjfPzPsNCYn1Ks6K2a2pVhrZ0LMWBVotbusSa4DtjRaCfNynTEW5lgB1xWZDGXZ+nn9/PPPuw1gVZ8mdt1jnTon3u+rlmMrTxW/y+PJ66DnGWseVVPXz1nXVeubzwHXQJk5A0l6i/kPVc/PQK5jzR9rB91+hWtkvPj8XLXz4TWnt8A1pKXXozcG2MMwvMFgMBjcBD6rPdDKn5v8tWR43WKQdULrXEhxwf4Z1TE4tj6elA1I9RSXaafXFdvo51KVlVR4Xt3fT6vFNbDt43DMLFlLLu63p3bjsrKOiEZ3XC6XTd2iGy/Ximtjk8aQ1F9W409qHK7RKMevbVNtXT8PZmtq7Wj9u9YrZJT0SqTYUVVm9FQH6Va9yy7sx3dMeU8Yntez719j+fXXX5ctsD59+rSZJ8fMyJ6TCHt/L9VQ8lr35xLvKc3ljz/+WFXP93K/j9Xah/e2xuGyT3Vs7Y/Zmqzd7OfHZyAZHp97/b0Uw+N95tRu+J0UV3XbUNnHxYfT8/QIhuENBoPB4CYwP3iDwWAwuAlc5dK8v7+vN2/ebFwULtlCYCKAS6+Xq4IuFrrgXME0959cjB10aSZB6B5E1jZ0c60SHISU2JL2UbWl+CyGXR2PbgKmlifZqBVcggrHsOp1eLlcXrg0ndxUmpfkzq3K0mLJjefmmC5TzstKRiuJ9zo3YSploJu/u5iY8MEO6IJLCKJoAe891w+Qa4Nr112LvQQR9nur8i6rlWjBx48fl2LPdGGm7x6RwqJbz91rPCe5Kb/77rsX+37//v1mmyQpJ7gSEyXsyO3JsiX2zevjlzs0hTaUYFP1LE5N1zld6EcF4/u2PKeOlMjnhEN43abwfDAYDAYD4LMYHrvi9l95FpZTYJpByaqtvMxKYJrb0uJkCvuq6JHMTtaTrOi+TSp+ZkH6KqBKaR9akt0S0mdMS2YA3RXH0qpNIrjOKkrFys6qvqYYVWUJmqeV5BvHzQQRx0j6cVbn6MpTyA5TF/P+mdYDC6hVeN5BAWCej9abXt39lESDtQ+X0k5JLybLuDnak3haiYjTk0DvhNt2Vdzdv/P27Vv77BB4X1Co2a1frhVuw/H2e1GMTq8SMman8F6WkMTitQ/XAioViXNuKcbd50Jzo4QazqOT7fr666+raitAzbXTxbN5T5P5r547q3ZnfcxuLB8+fDgsID0MbzAYDAY3gc8qS2A8q//68j3K9zhBXsbukrwN02r7d5MUlvs/yU7REnHp4bT6uI0TqSWOFGSy3UeSB1pZzcSKQSdBYY5xJR69wv39/QvL1bFPrY3exLJqazG6+FhqJ7Ji+AJZO9PTHXtmejhjXi5WRMaa5q+v5cRQNTZXLkCJqjQ2trRyYyVWwuNcQ0kswe1nT5Lu9evXG1ZzpGCa596fO1zbLOLnGupsLTE7CkWwfVA/Dlm7k79jvJVF65zzPg+UP9N3NVYxyn6/UcBD567v0OPjcia4ZukpcR4F/s/nultvLodkD8PwBoPBYHAT+CxpMWak9bYf/PWl5c3MtKqt1FHy47pml7JiKBpNhumEoMnKaBG5bKm9bCKN0YnUCmwsuor7kYWmgsxuRSUfOtlOn1/ujzFC10rGxfsSa7m/v68//elPT9lmjuXI4pQUl0BrzzU7ZSyImWjOE8C4F61Wfe6ykMkG2LLEsY+fUGtBAAAScklEQVS0vii55eIVOq6scxfvEyjUnmK6jvWQfaTYyoqRpViba4baM0pXWZqPj49P942T7VL8PUnkMT5blb01jqXzfPi8ITPSWu7F5Iy/6X89Rx0jZmyORetJrKFqG09MrYw69F3NMT1zlKfrcHHSjlXMmP8z56N/j2NZZfhuxnDoW4PBYDAY/MHxWQ1gmWnXLW5m71AOyEn8pBgHLTDGL/p7ZCL8vL+/J5ArC8JldDHrlELHzgImwxJ4nD6PKc4o0Irv4BgJlxmXao7IIFfyXns4n89Rdqj/LctUli8bsrq2MOncXGNMIV1/xmFcbZOgz7QOWJfX36PgdGr505lLknyTSDWFgPuYeM+RLXJ8/e9krTsGle4n3guuKfIq61M4n8/166+/Ph1T60Pxs6rnudQxyN5XzW6ZPa35SzJr/XiqW+P+HZvRNsqAZPasu8f4XpJMdN4I1+asf9cJj3P8Op7mPNW79s9SLaR7TjBGx7l2sUk9BzR/K+8AMQxvMBgMBjeB/5PSihPX1a9uqt9hdln/m0oEKQ7Y2U6yKmgprOrixCQoWt33wZhDskQEl81IUWJam91KZ1yRc03VDBdfcGy6j8dlaZKpOsbCbY7UUj0+PtaPP/64iam5th9iS7ou6Tz6NkkJIrVKcu+xLopxmT4GfVdWNGO7LmacsmQ1dir9VG2vu8as+8xlAzJWy9ihsPISCByrU9VZ1XX1ffQ5oULJV199FdfP4+Nj/fDDD081jmK1P/zww9N39J6YL+dtFesU0np28WbW3ypWx7Xq2BrHzHjZ6llFhSKy9n4MPmvTenNx+TQHzBbvSM1wuXZXMXHmXLisYIlw6/Xu7m4Y3mAwGAwGHVfH8N68ebOx9roCQfLbU9+vWxWy8pgRxLobewLwKdM/7Vp7MD7B7E9XS0emxSxG7quzUB5PzIXWlItxkNXyf6fokOoY+flKdeJIbcte/LTjdDrV+/fvn8Yta91Zl0mvz9XUpRrKVL/mLFOuM7Za6eu7Z8H1c2brn1WNYvqOa3ZJy5UZzYJjH0nnNbGD/h7HSA+Ay0LWd5iF7BiL5lSvj4+PkWmeTqf66aefNhmkHWK8YnhJH9M9S5I3gHPct2XMLjG8fk5idLpXFYvmvHVvCueOSjurOjyysSNeL4F6wnyuubgtVYcS0+/zyPg8t6GiTdWzrmivxxyGNxgMBoNBw/zgDQaDweAmcHXSyuvXr5/oo6i5ExQWXWeKtAsA0y1HlyaLPLu7kEkLLB51xZVJUHZV+J6EZhmIdok8TDvnq0vxZTkAj5Nam/DY/bOULOE+23PvuDHuJT9cLpena6x0bhfUp5tmFSjnNdwrU+jnwZICrkMna8TkACY6rdzTHDNdP07KzEnxVW1d6+76pBRzYuXaTufQXUx0c6ZwQheo4Pp9fHyMbqnz+Vy//PLLZq57ok6SMWMCRZ8DloEkN7R7hjDxgwkibl8aA0u12PLJJS2l8hc+s1b3dHqWOMFptxb7vlxLM7q9KV69Snji+mVSW187vBeukjg8/M3BYDAYDP7AuDpp5fXr108WirPIUqE0i3r7trQMtX8yPrYccuC+XFoy3yMLkFXhWNpK8sb93/eThIzdNpw/JhpwX32slCEjA3OsMBVoJ1GAfpz+2Sp4fLlcNuzdBeiPFpP38aaklST63b+jVyVQUL7JiRaQvdDCdok1aR9M1nJCubwuZDROrJrNaFPauCseJlM6IjFHa51rtq8droPL5RKTnk6nU/38889Pa4VlK1VbGa1VoTmR7il6MLqcVpIjZNKKe+4oYUtp9akUoI+JjM7tn/+TabGVlHt2cA54fIqC9Ps3CYEngf+q7XOU9wbLV9y5vnnz5rD4xTC8wWAwGNwErmZ4XSCYqflVz1YQ20vQoncpvvT9ax+y3rRv1yCRhYupyLKPm6xgZQ3ST5xiKq4UgDG7ZAGvhJmTDJaLudBaOpLCTBZI629VctCv24rhnU6nTdykX8sU4+Q5uzR6WqZs3+OuLQumuXac0DnXisaoOAxjIH2bFN9J8Qv3HmPgrlVOSt/XnKRmxn0/nOtVK6vE8JKUXtW2zc3q3lNJC+PnigNXbdk5x+1i+vQY8fpwflZrVeB67M8JXlfeny5HgfkSR55VHGMSi3axfCI99zSufk31Xd0LjBk77x69aWwtRWmz/t2jrK5jGN5gMBgMbgJXtwd69erVJruwW7P6haYw7srySbEMvZLhubbyKXvIWdVJwJgWcbei0v4ZM0pxuv4ZLS+XZURLnvG3VREux7qKEQjcr+ZN2bYpNlv10hpbMbxXr1497VeWeG/mq2PoPcZQVtmzydIm03NyanrVuTIOs7JI6ZWgQEAHr3eSwXPx7VUcpI+5/02pvpRR2o+3V6ROL0UfP70tGofYlwqG+3u6Pqt1cz6f67fffns65rt376rqOQZW9fys0Ht//etfq2orqrwSOkheDMfwVmLq/X0XJ6fMIkU6nPAA7+F0Xo6tu7Xft3FMiXOTvEYdqShd+3Axas6B1o7Wh8vSZJswZYAfwTC8wWAwGNwErmZ4VVtr2gnyMqOKlmHfB4WQWXskhsfao6rnX3layYwvUhKqj0X7WLWxSJZOymJ0NXV723ZwP0kmzLEQ7j/VGfbrRma31ybGbbOXodmvEQXDq7b1SGnOnXcgZWMyhtO3Zc1cqofrlr1bRw495kALl/vXPUJL350P9+mEyHmfUBaP7GSVpcdYkWthREk0rl0xu55pdyRu2cf08PCwaQDbnyFidjrW+/fvX3yHXoJ+3ql+dK9Fl4Nbo/zM1SD291f1pqsaur6PqnxfpvvLfXd17yUw9p2aZ3fwHmF2ZvcOCFpvb9++Xa6fjmF4g8FgMLgJXM3wzufzxtpYNVVMMQGX+Zay49g2xik2JOURFyfj/mnpuFY4ZEm0kmhBuphh8m07i4fWGS25xOLcGDhHjg1R/UFIMcuqrTV2Op0iy7u7u7MxvB6PFVgLxvly42Y8gmLOrvVKatfEjNu+vulRSLEVlwGrz7hmmLnsMny57niermUWY6KK5ZG1HxG6ThmMHYwVaV04hucEm1dr54svvniaL7HnPsf/+Mc/qupZPFoMT3Mgcec+7tR2ijE7jatnepOVpUxf5424xouSvDQp49MxvKQoRe9IP3fuLzX37fcTvTZ76k39bzI6vS/m3uOaro3bxPAGg8FgMGiYH7zBYDAY3AQ+K2lFoEumahuopAtG1HQl6szkFQbKV73mKDTsUm/ppktyZK6LdHLV0h3hKHYKCB9J+mAiQOoM7PaT3L498YASP0z6ce4Iuj/2yhLu7u42Ls2+dlJ6e7pO/Ry0P8k2pevVx6/rm9zhfdwcIwWHV8kRdCHTpdldZdw2lVswocIljukz7Z/u3VVJC8dC95hL72cBNYvBXUnIEVcUE56cCPHf//73qnq+/nJtUnjCudO4X746tzsL/3k+TrCBbtBUssVz72BqP8Miq+SNlctYYHIX97caK/tHpr54/VqysJ7PfrmmO1J5zxEMwxsMBoPBTeBqhne5XDbpzk7Ml0F8MhRnNQmJ4a0KJVOpxCrln+yTFomzBvda/Air0oYk+Ork1gSywFSU7c6TbNe15EjJKcniX51Pwul02rC4Xjz87bff2nNcMVOtL1mVEhTmWnFp1UdlmpxM2CrFumpdcMx9cRx9PplQQwaxaoPFNcux0lvQ3+N5cqyuxYtA0Xc3R9xmdQ1UeJ7utarnUgUlr/ztb3+rqueEHTeWJBpxhAkneauVQDvnlMkrTlghlQPwuvD9/pn2n8oqVs+qdBxXeJ68UKtyDpayCEpMctctJfIdwTC8wWAwGNwErmZ4Si+v8hYQGRyLyFfCn7SkyPQcUimBxsg4TTqnPiYnAJwYXWIS/VwY/+BcuG2SZJpAVuhilGneVjJbZC6poN999urVq5jirjgMLbbO1pJ1nNhuP0dZ+JRCW5WLCBS7TTHPvh8nA9XH5so3WPDN+XOCxIltkOF11rMXi+R6cyyE159ssZcYiF0TtN7793rct+p/7990j55Op/rXv/71dI9rDLrWHd9///2L16+//rqqnhmDa2+VRJa5/tw8Ea4shdskZr+K5Sd2ztKqfm/wvBJb6+A9mFjuSpSdzC6VNFRtY3csNHdCB6sY+x6G4Q0Gg8HgJvBZ7YH0C+2Ecmk1sZlralVR9fwrT7bGzMsu2yTQAlmJxiZwbH0byjNR2illfHXQd58kv6q2bIPMYeVjJ3vi/LkYZSo4X1lP3M8ew/v48eOGdfbjprgOLUTXcoVMjzFiF9NlMfc1TTzd+a0+r9qypJTh6dg610xiI/29lAmZskW5n74tPQn9HuzCA30bFtSv5LZWhedaOxxDHzfH8N1331VV1TfffFNVVT/99FNVPWdv9nGxkJmxfMeE+TzRcbUtn3cdXHepCWo/ryQ7lmJ7HG8H1+qKUe7FOR2j5PE5dpe5qvliobljibyXj0i+CcPwBoPBYHATuDqG9/DwEGMPVVvGkRolruTIuA+2O3GyZPxf33GWVrIk9zLvqvYzE1exSc4bxWOduHKKqR2pY+LxWJ/l6ss4ppU0FxnQit2cz+f697//vdlvt9woTUTLm3VeVdt6PsnOUVpM8R6XpZdqp1wLmBQfSwzMbUMPBmsenWXOOV6xwtROiefnJPTI/mily/LuMTzKBeoa87ycPJTmzY2l7//333/f5A70uA6FuP/5z39W1TNjEMNzItupxjB5VfrxeI70UvX1nZpU8x7v80TmKqQMzw4y4tS6yrGn1IYq1ef1/XL90Uvh6n8Vs9Mr2VsfDxn3/f394TjeMLzBYDAY3ASujuHd39/HbKP+d6rfYSueDloGFM51rJBxH1lcbEvUxyjVBfqW6VNfnRezsVL9kkOqM3NWDK1BZkA5pkdrPDGwVW1LsiD7NeD+V1aWrPQVI9W4de1SnVy/5r35bNVLYfE+Jmb4VWXGzfNxLJSMhFY62WkH44vMDu6gNcs4I1sN9f1xrtN9288vWdaMB7sM4JQV7MbIe2AlAHy5XOrTp0+bte9iuZonrSExPDH8vka//PLLF+fIsfEedx4M3u8U7nYx4z3FJXc90nMgXeOOlMfgmmPzuGmtuGcy45iKp3OO+nVj7J211ymjue+v55XsYRjeYDAYDG4C84M3GAwGg5vA1Ukr9/f3SxpNNx2D3nInOvHZVBjL4kpHo1PXdFFll8LMkoJUENpB90xKE+8UnC4DBqtdIXhye9L96gqPk6uO26zSxOnWOVKesIKSVlZBcY1H17IXJfdxO9cvEyY4T3IjrgTBkzuyzy3dUsl92PfBdUSx6PS9vt9UeEy3fx9Tup+OSDJxHtkvkaGEqq1Li9fRlT/0xKC0js7n84ukFa2HnjjDtc1xquh91RmeCW8UMXAhjj1XWt+G58c51fn0uU199pi2v5IlE5Kgwur+5XpPBejuvJi8pDH3khZ+N5WPuQQl5yrfwzC8wWAwGNwEPitpRXCFuQK73qZi26ptcJiWAVlityqYpOISTqpeJjMwlZsBbVrGfRuyDoGscCVDlALQqwA3mR7lz5xlt8dgnTg2k1O4jSts5dgcLpfLi47orrt3KrKnQHTHniSakhZ0PpKaqtoyOV7DI6K3KXnFMQnul/eEYw2ppYygbTtrTOn0qdTFrR2dH/eldP/OQhyD43eqXrJr3uMrK12F5/RMOOYtJDbV5ciUAp+eAxqTpOf6fZyK0+nZcglP/J9z7QrPOZf83xVh7zH5VVE8weeBK08gU+V60PuuVIPeJp3fqhTNJV3tYRjeYDAYDG4CVzG8y+VS5/M5xueqtv7uVTxMkOWXrMpUgKwxdSSLofuNk8+a/vJ+HJ6PLOokwdPPN4kGp0LUvl9ajoxRuHlN7CwVE3dw/Imd9u27NZssdcVoGNdZeQy0f62P3koonTPnlqLBfXxKS9f+abW7An1+loSY+3EYt2bqurAqMUnp6C7umOI7tISdx0SWNAuetX/NZ4+pMI7MbfV/Z6FkCHts5HQ6xbno50rWTKbgxB0o30Vmr8/F9Pp3BbINN+d7JQYc12qbJESxuqeTXOBKWoxzwevkchX4TGTp0MqTpfPkfbzy7nz8+HHpXXqxzaFvDQaDwWDwB8fdNRkud3d331fVf///DWfwH4D/ulwu7/jmrJ3BAczaGXwu7NohrvrBGwwGg8Hgj4pxaQ4Gg8HgJjA/eIPBYDC4CcwP3mAwGAxuAvODNxgMBoObwPzgDQaDweAmMD94g8FgMLgJzA/eYDAYDG4C84M3GAwGg5vA/OANBoPB4CbwPximwMjo/OuiAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKIAAACoCAYAAABjaTV9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHytJREFUeJztXWuMXVd1/tadscceex72xDaxTZzEHtmloU4BC5M25aHgJiLghBQiObyShrpAEESEiigKTaugJpS2gBVUSuOSigRkobjI1A40DkncBGgrKAq26gSFlDi2Er8mtgePPY/TH/esO2u+WXvfc66Ncm61P2l07z1nP8+c/e21115rbcmyDAkJrzRqr3QDEhKA9CImVATpRUyoBNKLmFAJpBcxoRJIL2JCJdD0RRSRD4lIZv6Oi8jPROQmEek06Z4Tka//phqa133HGZahfTn/rDSqIhCRO0SkrfVwnc2TNPAeAPsA9ObfNwFYCOCz+f2rARw7q607+/hXAG8CcOCVbshZxj8CeOiVbsSZoMyL+N9Zlv0i//59EVkB4BPIX8Qsy356tht3tpFl2UEAB1/pdpwtiEhXlmWnsizbhzpJtC3OREb8TwC9IrIQmDo1i0hNRB7Nr/VpBhF5rYicFJG/tgWJyJ/k0/2IiBwSkXtFZH6oYhF5fT7F/r659vH82p3m2mB+7R3572lTs4hsEJGfisgJETkmIk+JyEaq780isjMXS4ZF5HsiclHs4YjIp0XktIgMOPf2iMh3zO+/EJGf5PUfEpFHRGQt5XlL3vZ3i8jXROQggBfze9Om5lx0+qGIHBGRIRH5kT4Hk+b8vMyNIvKXInIgT7tNRJY67f5w3s6TInJURB4TkUvM/W4RuVtEfpn3/ZcicpuINH3PzuRFvADAOIATfCPLsgkA7wPQA+CreSNnA/gWgN0AbjONvwvAPQAeBvAuAJ8GcDmAHSLSEaj7pwCGALzNXHsbgJPOtTEAj3uF5C/yNwA8BuAqAH8E4GsA+k2adwDYmffzfQA25P3aJSKvDrQPAB4A0AHgWqrz9QB+C8A/m8tLAPwdgPUAPgTgJQCPi8hrnXI3ARAA78/ThnA+6lP2e/I2/BeA74rI5U7aWwGsAHAD6rPcm1B/LrbdXwDwDwB+AuC9qD+LxwGcl9/vBPA9ADcC+BKAK/L6bwcwhXhcZFkW/cs7mwFYifpUPg/ARtRfwn8x6Z4D8HXKe3We9/q8E8cBDJr75+flfJby/V6e7ypzLQNwh/n9HQA/yL/XABwB8DcARgHMza9/C8CPnL6cn/++BcCRJv3/BYCddK0XwCEAX2yS998A/JCufRHAUQBdgTwd+XPeC+BL5vpb8rZvdfLcUf9XBttRy8v8PoDv0PPPADxK6W/Jry/Of6/I/09/G6nj/XmeP6DrtwE4DWBh9FmVeBHt3zjqI3p+7EXMr/89gBF9Ieneh/Pry/MHZf+O2Y47L+In8nJnAXgdgAkAi1BnrivyNC8C+KvIi/jm/Pc3AFwJoJ/aN5jfv8Fp3zYAP2ny7PSfsyL/3Zm36auU7jIAPwBwmJ7zQ86L+IEiLyKA1wP4bl7fhCnzf5wX8c8o7x/m19fmv/80/70q0tf783eAn9OaPO+7Ys+qzNR8dV7oKgBzsiz7QJZlRwrkuw9AF+rTzQN0b2H++QvUmcz+9QCYJl8Z/CAv9xIAbwXwsyzLXgTw7wDeKiK/nZf/SKiALMseQ33qejWArQAOisjDIvI71L57nfZd2aR9APAggGHUX0gAWJeX2ZiWReR1ALajPoD+GMBa1J/zz1AfZIymK/5cZNgJYD6Aj6P+jNagvrL2yuT/46n8U9NqP2MLooUAlmH6c/oPKsNFmVXzz7PJVXMhiEg3gM0Afo46u9wF4GaT5HD+uQ716Ypx2LmmeAr16fFtAH4Xky/cI6jLMM+jPiU8EWtjlmXfBvBtEZmLOuvcDeChXFjX+m9FXYZlnG5S9rCIbAVwHYA/R12uejbLMtuma1CXY9+dZdmoXhSReajLwdOKjdWZ43IAfQDem9VX1Fpmd4G8Hg7ln0tQFxk8HAbwS9SfvYfnYhVITqvhBCIfAvBPAAb7+/ufWbx4ceOezfvMM8+gu7sbCxfWSWR8fBwHDx7E8PAwzj33XJw8eRJHjx7FggULMHv2bADA6OgoDhw4gHnz5mHu3LlT6uV27du3Dz09PejrayzCcfjwYYyNjWFsbAzz58/H7Nmzcfr0abz00kvo6upClmVYtGhRI/3w8DCOHDmCc889F52d/hg8fvw4hoaGsHjxYtRqNRw4cABdXV0YGJg6oEPPja+PjIzg8OHDGBgYwJEjRzB37twpfRgaGsLw8DAWL14MEWnkOXToELq6uhrPc2RkBAcPHsSCBQswa1adqDT90NAQjh07hvPOOw8AcOzYMQwNDWHJkiXo6Kiv98bGxrB//350dHRg6dKljWsvvPAC5s+fj56eniltfvHFF7Fo0SLMnj0b4+PjeP7559HX14cFCxYAQKNcbcPLL7+MAwcO4MILL0RXV1fj3v79+3H06FFxH5ZBGUbEkiVLsGXLFoyPjwMAfv3rXzfurV+/HhdffDE+8pGPAAB27tyJTZs24frrr8fatXVNxJe//GX86le/wic/+Un09PQgyzJs27YNjz32GC6++GJceOGF6OzsxNDQEJ5++mm88Y1vxIoVKwAAt9xyC9auXYt169Y16nzyySexdetW1Go13HzzzZg9ezYmJiZw++23Y2RkBOvWrcMVV1zReCg//vGP8c1vfhM33ngjBgYGsH37dpw4cQKDg4Po7e3F0NAQduzYgSVLluBTn/oUAGDPnj3YvHkzBgYGsHr1asyZMwfHjx/Hc889h/7+flx66aUAJl9A/pyYmMDdd9+N0dFRZFmGjRs3Nv6ZIoK9e/fi3nvvxcKFC/GGN7wBhw4dws6dO9HX14eBgQF87GMfAwA8++yzuOeee3DNNddg1apVACZfhu3bt2PHjh34zGc+AwA4cOAAPve5z6G3txdvf/vb8fLLL2Pbtm0455xzMDExgVtvvRUigkOHDuG2227DlVdeiUsvvRS1Wl1S27t3Lz7/+c/jgx/8IFatWoUZM2bggQcewEMPPYQ1a9ZgzZo16O7uxt69ezE4OIjLLrsMtVoNH/3oR7Fv3z5cddVVGBwcxNjYGO68806IyPdRX3hOvjBn8iIWxcGDB7F582ZccskljZcQAK677jrcdddduP/++7FxY11V9853vhMLFy7EE088gSeeqM9Y/f39WLFiBc4555xoPcuXLwcALF26tMEStVoNy5cvx+7duzE4OBjNv2zZMuzatQtbt27F8PAwenp6sHLlSlx++aSG4zWveQ1uuukmPPzww9iyZQtGR0fR09ODZcuWYfXq1U2fRa1Ww+rVq7Fr1y6cd9550/q0cuVKrF+/Ho8//jieeuopvOpVr8K1116LnTt3Ni07hMWLF+OGG27Atm3b8JWvfAULFizA1Vdfjd27d+Ppp59uqcwNGzZg0aJFeOSRR/Doo49i1qxZuOCCCxoDsbOzE5s2bcJ9992HBx98EC+88EJjhgLwJJqIMU2nZouLLroo27JlC06dqsuyw8PDjXsjIyMA6hQN1Kc4ex2oT8VAnSWAqaxhP+29RkPzKUCv628vTexeCLY+245m6bkv3vPkNsfawmmUpWwevqa/9dPCy8+/Q+Vou60Y091dFzNnzJgBAJg3bx4ANKZjAJg5cyaAOmNv2LABe/bsaTo1J+ubhEogvYgJlUBpGVFEGtORLlqA5tOu/c6fsWlNEbvXbNqN5ffq5nZ55fP0HeuDpvWmTgbXFWtDqG6bVuvmVW6sHO5/LucBmJx29Z6KabZcratIfxWJERMqgdKMWKvVGkw4NjbWuK6jhu9Z5rAMasHCskWIETzhvQhCLOwxdwxlFnnKEKEFmP3OCwbv2YQWJ/pb6+M6vLQW3D7v2SgD6uJE/++2Ti27q6ur0GwFJEZMqAhKMaKIoKOjo8F2Khfa78yEHguGRrQ3es6EET1m07TcLssGrCoqwn5lVDIxllNm4U+bVtUpoXK9umNyJOfXZ6Npbd084zFD2nvj4+OFZ47EiAmVQGkZMcuyKCPyitjKDvpdR3RIdvIQkp34uy3Pk0/1U/NoGm+lGVrde2ilDx7L6acqjPm6vVfm+Wka7b83W2h5PFvY3/q/17T8f7ffy8jRiRETKoH0IiZUAqWm5izLMDEx0aBeq+hkyi8ypeh0aKdvRWhx4gnmnNZbKFkB2n7yde+aV17I2saDto9FEttvnopVcayfet/LzwsQO+WziORNzSyesALe/p81DT8jq8orIzIoEiMmVAJnZAbmMYSOIjXL0hFtvzMzxkZQSC3iKVCZuWz7WCWhI1itg+yoVwGc89g0rKaKKcG1fcx2drZgBlR1CC/wbHms2tE89jlqHzQN981C82kaj2E5v/4ObQMm9U1CW6E0I05MTLhvOY9Ob9QrS1p5x+bxEJKvbLmchtkOmC7L6EjWPFYVpWmY9axFujIAq0W8Z6P95f5bVmcGjNkj8rOIPT9Ny3KfLY/7UETNxDKnZdgiW6SMxIgJlUDpVfP4+HiDKbyR4uVpBi3PptURF1pp27o5DW+BAVMZD5hkNE3jrUr1GjMkMF02jG3xKduFZGObn8spskWqbfCUy7ylyXm8fDHjDJaxPUMLmy8ZPSS0FUobPXR2dkY32Xl7zTKXspBulCss0yh0hGk5Kl95bMzyqLeSDbEHt5v7G6qTGSDmP2J9OELQ9qhcy3rFmNzFK1fuGzDZP68NLN/qp7bb6zc/Y1tnyE8mhsSICZVAehETKoGWLLSVulkNA0zfQrKKTlV/FLHOYOoPCegWOn0rbPmsTLb94b6weOGpeFgJz4sWO53xtOhtK3J7FKxcBiafqX6ySspbXPCztotLnq61XSpCef9ndjm1z0bzJXvEhLZDaUa0o9gb9awctelVEGdG9ViOmSW2feexr63H1qWfGn+HVTW2bL3m2TcyQ7MQb8vzbDO5fTwDsALeshzHvpkzZw6ASSay7MTqFu6jh5CHIn+3v72+jI2NJUZMaC+UVmiPjo66IzzEhHZ0cj5mE2/kscWywo5oZQJmRI81WVVhY+YouC5mIAA4cWJqxGaVPT0Zka95aixmrph6SdOwwl3rsXIwG6Ow3GuvsdznmXixD0xMOV9mqy8xYkIl0JLPijKEBlzS60BYYQxMjhrNr1tfygyefwszLBsbANNlTy3XG/Walg0l7IpbmYa3/zwZkbcTtd0qg9r8bERhGVHv8YrYW9Xrs9XPmDldKMKD5wXJjBiLWqH5tZ+WhS0zpy2+hLZCaRnRevF55vV8z44UlgmVEdiYFphkGh1x+/fvn1K+HWlah7KI/tbVpK1Lw+UxvNgtvKr3GJtZKOZlWCS0HrOTPhPbF73Hof96e3sBTDVX03v9/f1TPi00fWirz1sLaNvZeITvpVVzQlshvYgJlUBLFto6XdqIsbwQ4YWDvcYCuOaxAj5vHbHQ7fmjsFrITgs6tbFi17NyZrWD53jOCw79rX3w/FHYZtNT8Whd+tw0QqsX9oOnvZMnT4Khz5j9WbRc23beMoyFbGExwz5X7e+pU6fS1JzQXmjJQttT2ioTKEPocRWeCiUUTsOOaP3OCxrP34OV1ayiAaYruzlolB3RyhaaR9vn+cBoO9kwwmN3ZSX2qLNpeOtNFeeeUYbmZ3WThT6nY8fqJxgzc9v8RXxgONSI5g35fCdGTGgrtGT0oKPBUyorQ3jWvcoazAiqGLcyp6cWsGV4I42V6pZhWTHOSmrLdrztp2oSz88j5gvCdWt7YqGQOb/H2FxXLApGSO7z+qssyYzonfbAfkae6Vna4ktoO7QU+0ZHtlWc6rWQv68HZRXNG/ON5dWyp2QtYr7EK2qWQe01Ds9r28dbcGziZeU/u4r0+hRqs4VneMDPxGOgUIhmW48+f73HxsO231wnG2DYa8kwNqHtkF7EhEqgJXtE65OgYGHbU6EwTVtLXr4f2o+NKVm99oausULWK5enrFid3H87lfKU7PnPsL+J90ya9cVT5Iec5b1ATSpuxEQchdbludqmkCMJbYvS6puxsTH3jVdhlW3lLEILEIXHbLz1xYsOL79nocPl8Sj3FgPM6lYd5C1ggElViGVBDhvnKY65n6yk92aWUF+8/nJe71rIit3zJbJbt1xukeCljMSICZVAaRnRYw69F8qjCMkO3shmxmPFcWxkx9oRksHsCFe1FCvuvS05VodoGi+4JYfN87wMub+eorsZ48TYyZO9Q2exlGHaWMCrIkiMmFAJtLRq9pTUocBM3ugMMaPnJx1aNcfY2BvRzKTcXquQVllQr3l+MgxW9HrW6yxzerJXmZM9Q8+x7GzBbSgig7LPj4VVdieFdkJboSUvPg/s8WY31TmNInYeXihPLCReEbAfhtdeXn3HAraHjpiwYM9G7zxAroOjTFgzNpZLi+j9GJ4XX0jn6M1UMZndM5ZthsSICZVAehETKoGW3Ek9ZS5PLSrE2iklZgFir1vE1AShtN4ChKfkmGsn2/vFbA1DTulFDvq2dbKYwuFZvNBw3PbY1lpMdOD/S8j91baHRQYv6FToBAoPiRETKoHSMbRrtZqrkA0dNu0JsTyqYqMmtC0Yc2D3GILVDMwM1gCBFc+eiqKZvaQXAIBVHnYbkL0CuS+xExxCR/8CYSaMqXjYCt4LtRKyc7T9jdmiMhIjJlQCLVlo64ixodl4VHqGByEjhxgjslxVRNZRWObgYEm8eW8ZUa9xiDhvBghZS3syIp/a5CnlQwece6cBhGREy04hH+iYqVjs7BiP8W0fm7U5hMSICZXAWdvi8wxCAT9CAQeU9EZtSH6Mne3M/iOxs+7Yl9caPWi7WAPg+WWwrMjsZ9vHsp0NOsWMyLJ2TCaOhTkOndNcxECE+8TfbVqbR1fS3d3dKSxdQnshvYgJlUBL6pvY4YOKMk7WnqVJaOrwlMOhg7S9KYoPaGTraWDS0Zytrb026R41u1VasYB9VLxFGgevUnhTHy92WBSx4lFoUeXVoWBRJ7ZoUbTip2KRGDGhEmjpUEjvXBNWIXhL+JC1Tcy3RMGsacsNhUrzIryG7Py8gFKxNoTUVV4AAA614oVN4Qi7RQ545IVHbLsyth3YbBsuxnax2Sw52Ce0HUrbI3Z2djZGrQ05ElI7eFbIoc11D6GAQ14YND443DtvjhmriFeghqmzLKeyoTJWTP7jEB5FjDuYPb3twBgThtJ66pvQ/8WTT4swXBkrc0VixIRKoLSM2NHRET2VVOEpV0NK6iLMyCZZnhzETOgZK3AeXiEDkytfZUK9Z+U1DhPMltUxMzDtv7UK98LFcTmclp+n5y/DTOixcRkL72YW+sBURkwK7YS2QmlG7OrqclfEnmEAI+Q3W2S1x/AYJ8as3GbVG2qQ956enkZa/c4BO71tNo7MEAPLqbZvHJqPP2NmW0W27UJ5i9wr4r3oPZsZM2YkRkxoL6QXMaESKDU112o1zJw501UYK0ILEe9aEfUD5/EitLLCWGG3ungR4S24FDwVx2wr2bKGTyuw4OnWS8Oqj1hAqTJTcquhWoqW26p7b6OcM8qdkHCWUFqhrYYPgG+VGwrpUQSxw7ZDG/xeHbHAn1qeKoiVyaxynlnJO9bWC1bqtcHWHYvsr9/ZwKJIEKYiBib8PGPxtlnB7Sm/YzOU3VhIi5WEtkJpRrRKypjlrsLb4mPEVAAhhi3ixWeh5agMx6cC2PbrKU3sUef5cbMc6bExm81xUCZ7LeSR5ymp+RkVUX4XkRWLyPm8iWBlbtuuZPSQ0FZoyQxMFb32EO4irNSM5bxgP6HtO88MTMEGDfY7r1g9XxtNw4wYM3niE55s3cxqMSV1yP/YO+uE5edYkKgydcaMHkLPwtuMSH7NCW2H9CImVAItxUdUwdQKqCHFZpl9Sm8BErK+9pzIOa+FN11b2DJ4/9hTebCimRcrsQBV3pTHyu2Yk3vI3dNrJwdzOtNTCkILI+9/VwaJERMqgZYWK8qE1vKYneVjI88rl+83U4jHVCmKmII8pGS2fdE8bIUNTA/UxPD8UWJbe8xK3C7vOTITxhgtZjlfhhFDC0xvsVIGiRETKoGWtvg83132tfUYjWWkkNrAuxZjSPaK82SwkLznHTHLchX30dYZUmcUCYRkmZHbx+3yWCa0FemprZqd+uWhzOaBt+WagjAltB1KB2EaHx93GZHNrLyRGJJBioxOVuzGfJZjMlLIQMI7XZPZzlMq89ahx7AhIwJPJubVuGfiFlJke/JkSIsR8yTkcmP+N57Rg72XjB4S2gothaXzttl48zumB4ttISnKGFxyfs8zj0cuM5ddETPDeqHmWCa2ZmS2fNs+9oWO6RFjswYzl5ZXZGszJj+HzowpwoixZ1MEiRETKoH0IiZUAqXVN8AkddtQbjrtsO9GkbM/YlOzwnNcV3AcbHYVBaZO08B0JXNMCRs7+DCmKFboVKUigxc+jhclIXWOzafXNK+ndgoFvooFYYpZRfGU7P1fmm2nekiMmFAJtKTQ9gT8kL2gDdPRih9LaGFjDS40NEhvb++Ue5bJlCVZsPds+VjN4oXyYMbStLposWzACyU7kyj4EMiQj41FSM3iLURiCKnVYgFP9Rq32+ZLQZgS2g4tqW+8JXsoGGXM6KEIM4ZGlx3pHNTSM0gIhTXmo2ttWvZriYEV0J6cpvc4fLKtI2QYYWVc7m/IhMy2i3/HlN78jLxnEzK4sPWnLb6EtkNpRjx9+vS0VRowfZSzLAY038j3ZJtmnn82H8tRlkX0XiiKg8dOMWbgtNo3lVdt+1iD4G0DKtiHuohin9sX8+fhPDZNM4Nbmy9m9GH/v2mLL6GtUHrVPD4+3njL7apZR5PqylSvaJkm5NXlrdp4Iz9mmh4yQfNWcmzk4BlRFGFCBjO4dzIqr75tMPzQcREea3qegl5eW25IP2nbrAht4wHTT+7yjDLsNm/ya05oK6QXMaESOGtBmPh0pZgdXWgh4i1A2PfFmyb5gG9PAa35eVrU617Ufk3DJwbYNLxlxvUA061ttL12alaELFc8dQuremIh8RSxIAGeWo5/swent/3pPYNmSIyYUAmUZsSOjo7oYkBHiqpzbKAhT+1j4S31WeURq5s32z2bwJB/h2UKZSpeMHgLGi9Ikvc71HZuH7O790yYCdkIwrP8VngGCaEtQo/1eCs35kudtvgS2g6lQxd3dXW5MoiOgrlz5wIAhoeHAfgqnhCLeAipRWJWyJ6MqO3QtDFTJTZzi4V7Y3aPhRNmBvNOd+VnpNet8QgbRsQU5EW8IJX5eCuST/Ky19gSP+bzUwSJERMqgZZi3yi7xAw7NY1lRJZ/FDEWCclVntEDK6vtKNV7bKTqbW+xQUQRP11mpVhYOv1tWS7k8+0ZcLA8yTOAZ/RQxASPA9x7/WUfcvYBsnUkhXZC2yG9iAmVQEvH5PK0AUzfu2X/EWBSlcPWvaxc9hByJgemW7d4FitaB9saeor30HQS88vgyLOx9nmLKc7HbYgd9Miwebl/XqABz2rHpvHUNxy6z6aJRacNITFiQiVQOixdrVZzPd/4Giu47TUWeL1tIh71sdBpITtHb7Gi+ZkhYw7ioa0viyK+IdxOTwms4FAmHliN4z2bkKekZx0UsmLytmn5t5cmy7Jkj5jQXihtoW2X5N5GvI4GlQ2t2kEtpnmUxtQ3IQtlj01iNoyhIEyeysMLzVwUMR+OIornUJoy1uueAp7Z0mMw9kdR2OcQCnhl25tCjiS0LUrLiNYMzGMMlqPsqFCf39B5IzHfYh7RsdM/Q+wHTGcsllft95jsVUR25bRlUGTFGeunIiTveSZ8vMJm7Ya9p6yn5nN2xe2F+muGxIgJlUBpRpwxY8a0zXFg+ipZR4oXkYENTz1GbOaXEfOXjgXCZDnS0wCEjDJinm+xUHshA4kYC8fkZgbLfTEZMaYl4E/NY3XB3L5YXCARSVt8Ce2F9CImVAItWWh7h3eraiYUhxkAenp6AIRDZHjWPDE3TUWRCLSKkI9JkSBMdmpudtpVTL0UC+oUCsviiRkhlYw3XYaso2w5rJrRPDZQgS44OY+nINfFbREkRkyoBEoxYkdHB/r6+twQaTpqYgEmNXAmb7cpbLmcJhYI07avWRpFEUYMtcFeY0V0kS1Ij7nLGAiEHOI9hXRI1eadi1LEplT/RyHbUtuXFIQpoe1QWn0zc+ZM19eEt/Y4mBAwuYHf19c3JU1M5cGjKhQwyEvjWTVz+d7vMmGJQ/Kpx3axMCIhxKzWFayQtvd5u9LbHmSZkMPn2bRch8d+to4kIya0FUp78c2aNcsN1K7sw6PIyhcKHUUaatgzpGTWYDnLkz9YRvRWuTxCY158MRZl2ZIZwjNkjRm0hur0GCW0ui1j0ub5aPMq2WNYZk3PTM0LVtoMiRETKoH0IiZUAi052PNxXxas6PQUp7qA0WlIFy+eRTU7mHtWN6HIs56NXGhf2rOtLILQYiUWsMmrJ7QAiU3NPEV7Z540W9jYfFoen0ljVT+hhZYXr9z6NzVDYsSESqC0+mbWrFmu5xsreHlUAdMtc5iNvNHDkf0969/QiQPWaiRkq1hksRIL5RYqJ6Z28foZCkPnWXyzlY23SAmVyyFDgOmhVTiAguehxwscDTHD7UqMmNBWkJJbSwcB/O9vrjkJ/w+xLMuyBc0SlXoRExJ+U0hTc0IlkF7EhEogvYgJlUB6ERMqgfQiJlQC6UVMqATSi5hQCaQXMaESSC9iQiXwf/I5AehCCRTaAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4betV1vl+++zT3P7cLrlJSIjSiIKPgCJBEWxRjIIE0aBAQkhV6inLHrAhikjAJmIpYFOgoIg0KZsQRCGABIsCRRFSQIwNiSHNTW5/z+1yuj3rj7nevcf+rTG+Ode55ybA/t7n2c/aa605v/l1c67xjrZN06SBgYGBgYFf6tj7YHdgYGBgYGDgA4HxgzcwMDAwcCIwfvAGBgYGBk4Exg/ewMDAwMCJwPjBGxgYGBg4ERg/eAMDAwMDJwLP+A9ea+3lrbWp+Pvtz8D1XtFae/n1bnfFdVtr7W2bcb34A3TNb22t/Y9noN1XbsbxIde77YFrR2vtjtbaX2qtfewH4dqv7NzHvzk5/os23/3YM9CXf9/pS/y75zpd76daa6+/Tm2d26zhb0i+e31r7aeux3WuB1prH9Za++7W2mOttUdaa9++y5y21j62tfaG1trDrbWnWmtvaa190TPZ5yXsfwCv9TmS3oXP3vIMXOcVkq5I+kfPQNs9/CZJv2zz/xdI+p4P8PWvJ75L0s9Iuu+D3ZGBY7hD0pdL+p+SPlgPxpdIuhefZffxyzavL2qtfeQ0Tf/tOvbhiyTdEt5/paSP0vyMiXjwOl3v8yVdvE5tndO8ho9L+lF896WSzl6n6zwttNZul/QmSe+T9Lma+/1XJH1/a+3XTtN0aeH8T5X0vZLeoPl5+ITmNTrzDHZ7ER/IH7yfmqbpurORDwRaa2enaVra8C+TdFnzJvmM1tr5aZoeecY79wxgmqb7Jd3/we7HwC9I/OQ0Tf+zd0Br7ZdL+mRJ/1rS79b8wHv19erANE0/i+s9KOniNE3/fs35K+/neL2f3rGL14TrLBQ8XfwxSXdL+vXTNN0rSa21/ybpzZI+T9I3VSe21s5I+hZJ3zlN08vDV//2GevtWkzT9Iz+SXq5pEnSh3eOuUHS35b0s5olgXs1Swa/Ijn2wyT9U82Sx0VJb5P0Nzff/cjmWvHvB8K5L5L0g5trPC7p+yX9OrT/rZol6N8o6cckPSXpaxbGeKOkC5qZ0e/aXPdVyXE/ovkH8dMk/aSkJzUzqc/AcR8Z+vGUpJ+T9HcknU/6+j/CHD4k6bXJdV8p6UDSR4R5+IHN8U9u2v86HD9J+pDw2edrZhVPSHpU0v8n6ZUr1v/jNvPy0GYsb5X0Z8L3TdKflvTfNuv5HklfJ+nmcMz+pj9/SdKXSPr5TT++W9Jdkp4t6Z9t1uDnJX1xMv5J80P4DZu1f2BznXM49nmbeX1A0vs13+B/qGjvEyR9++a675H0tySdxbE3S3rtZi0vad6vf1ZSC8f89k17L5b09zQzk/s1PzRu2xzz4dre25Okz9t8/+ma9+ujm/G9VdKXXcf72GN+4Ypj/9Lm2F8t6T9Jekcc7zPwjPkObe6D5Ls/senLr9us/QVJb9p895s2e/Pdm/vgv0j6C5LOoI2fkvT68P73bdr8bZL+oaSHNT+P/kHct0lfzhdr+Cc2379eMzHw8R/rNd7srfs3/f8GzUzpYzT/iDwh6b9K+uzkmp+omWk9uhnjD0n6hBVz+hOSvif5/M2Svmvh3Jd4/ReOOxvujYub8f2wpI9/pvbKB9Jp5VRrbT/8nQrf3bD5+8uaJcI/IukmST/WWnuWD2qtfZikH5f0GzRLjJ++OcfH/K+aH8Q/KemTNn9/dHPux2n+sblVMxt7uWYV0b9rrX0M+nqHpG/T/OD7dEnfuTC2z9KsYvkWzT+i92qWajN8pKS/KelvaN4Y75P0z1trvywc8zzND4k/Lul3Svqqzeu/qjowTdNTmtW4L99IWBGvkvRvp2n676212yT9G80P3y/QPN9fKel01fbGRvOPNd9cn6FZdfRNkm6vztmc90ma1TYfuhnLizXfuM8Lh/01zXPxvZJ+7+b/V0j6V6017s8v1PyQ+t827blf3yXpP2uezzdKem1r7dOSLn2b5ofaSyR97aadrw/9vUXzDfdpkv6c5nV9i6R/2lp7RdLeP9X8oHmJpP9Ls1T8paG905v+fKGk/1PzXvpmSV8h6a8m7X2d5nX5XEmvkfQHNO8VSXqnjlR2r9HR/v7e1tpHbObgv0v6g5I+U/M835xc4+midx+rtdY076ufmmZm9C2SXqB5rT6Y+Geaf7g+S/P8SbMJ4kc1Pzd+t6S/L+lPat4ba/ANmoWTP6B5336B5nu1wmOSfsfm/6/T0Rp+x8J1vkrzj8Mf1qxWfKXmffs6zc+mz9L8o/HtrbUX+KTW2qdI+neSTmneg39Q0lVJb2qtfdTCNX+VZmGc+NnNdz18smaz0rNaa/+5tXaltXZva+2v4dn0ms1Y/qrme+6Vmtej+1x5WnimfknDr/jLlUs1P9I555TmH7wnJf3R8Pm3aZZw7umc+yPaSHD4/PWaWcatkLgekfS68Nm3bvr34h3G+MZN22c271+7aeMjkr5dkvTLw2fP2Rz7pZ329zU/MI5JTQoMb/P+IzQzuc8Nn3385rzfv3n/os37X9W53jGGp5mR3HcNa/+jmn+4byi+v3szH/+g2DO/O4x/0vxjdSoc97Wbz/9s+Oy0Znb2jcl4vh7X+XLNN+aHbd6bDXwyjnuTZiFmD+39BRz3vZLeEt5/4ea435Bc96KkOzfvzfD+IY77+5KeCO/N8l6O4166+fym63XfdvYE/96E4z5l8/mf3Ly/a7PG/+gZ7NsahvflC220zT77PzZrcy58VzG8v402vnXpPtERy/vi5LuK4f0LHPdvN5//nvDZCzaf/fHw2U9I+o+4Z85p1oKU66FZY3Xsvgrffb2kB1esx2XNz9Y/r/nZ9erNPvjmcNyPSPqmZ2pfZH8fSIb3WZpVQP475q3TWntpa+3HW2uPan4IPa6Z9f2KcNinSXrDNE3vvYbrf8rm3Av+YJptbP9K0qfi2Iua7Q+LaK09T7Nq4zunI0PuP968ZizvrdM0vS304V7ND+gomZ1trb26tfbW1tpTmjfPD22+/hUqME3Tf9esqnxV+PhVkt6rmQFIMyO5IOkbW2t/eKUn5n+UdHdr7Vtaay/esMQuNmzpRZL+yTSzzwyfpPkH6lvx+bdr/uHmurxxmqar4f1bN6/f5w+mabqsWW34/OR6r8P779AsXH3C5v2nSHrHNE0/guO+VdI92p57Oib9tMI6alZv/5ykH4+sSLOAdEazummpvRtba3clY4n4Sc33zHe21j67tXb3wvGSJDC1tfb8z9Dx+/hV+P5lm758myRN0/SA5nvps1trNy30h+yxrezTGvzL5Hp3ttb+dmvt7Zrv+cuamdcZSS9c0Wa2Xne31m54mn0l/g3ev1Xz/fH9/mCapp/XbDJ4viRt9sDHa76XWljjK5q1GJ9ynfsYsadZePjaaZq+epqmN03T9BpJXyPpZZtnpjQ/Vz6ntfblrbUX7bAHn1bHPlD4mWma/lP4+6/+orX2WZoX5mc0q3M+UfPN9JBmicS4Q9uenovY3Di3a9u7TJp/DO7AZ++bNiLICny+5nn8rtba+dba+U0ff0bS5yU37UNJGxd1fJx/XdJf1KwOerGkX68jddY59fF3JX1qa+2jNj86f0izFHVZkqZpeljSb9GsSv37kt7ZWvvp1trvqxqcpukHNatDXqhZCn2gtfbGRBUccYdmqbm3Xp73Y+syzQ4FD2t7XR7G+0udz7N5el/x3jfgHezLBu8N30dwLbmOz9Jsc76MP3vn3bmiPWlhzTf30u/SkfDwvtbaj7XWflN1Tmvtw9mvlcLPT3fu4xs179MflnQx3A//UrN69SULbb8bffqDK/qzFtm6vk7z/fFazSz7EzRrM6Tl+0yq1+t6e1pm+/upadvxJu57m3m+Rtv77/O0vfcOMU3Tk5rHkqkW71D+DIuwd+z34/M3an4m/JrN+z+nWRX8uZrtzw+01v5ea+3WhfavGR9IL80eXqqZ+RzaSVpr5zTT/4gHddz+swrTNE2ttYc1S+nEPdpewLU/dtKR+zWlMONTNavEdsFLNf9IfbU/2Dw41uC7Ndt7XqWZzd0o6RvjAdM0/WdJL9lIVJ8g6csk/bPW2sdM0/RWJZim6XWSXtdau1nSb9Vse/s3rbUXFMLBQ5rnsbdenvd7Nn2VdOjldbuWb6xd8ex4nc17aX7Quj8fl5x3T/h+Fzwo6X9ovqEzvH3H9kpshJIf3Nw3v1GzXfZft9Y+dJqmrN/v1BGzNSgQ7Arbsn+bth/S0nyv/JPO+b9Tx23JP/c0+xNxbI9uWPNv1Wwy+bvh81JI+EUG/+h8tRJ2q9mW18NbJH108vmv0nI42c8ufH8gSdM0vV+zPfsrNqzv92n+AdzTtubguuAXyg/ejZqpdsQXaJuBvlHSZ7bWnjVNUxUjdlG5sf6HJf2e1tpN0zQ9IUkb1dyLN+3ujNbar9ccW/J3Jf3f+PqcZq+wl2n3H7wbNEtiEV+45sRpmq621r5B0p/S/CD/vqlwI5+m6Ypmx6C/qHkefqWO1IRV+49LesOGIXyNih+maZoea3PQ8ee31r5qs7mJH9M8zpdqXh/jczWv/Zt6fbkG/AHNRnzjpZpv/B/fvP9hSZ/VWvvEaZr+QzjuD2lmefHHcg3siPPoRt38dGGJvlSZbeb5Bzd7+59rdhjK1ueiZg/K64mXafYGfIk2D7WA/0XSS1trz5+m6Z3ZydM0vfk696cHq1cP77ONk1TlbHa9sLiG1wPTNL23tfZmzTb/L7uGJt4g6c+01u6xCam19qs1s7OvWzj3uzU7Tf1OSf9P+Px3ab7ffjLp77sl/Z3W2mdr9j59RvAL5QfveyV9fWvtb2hmSp+g2Xh8Acf9Bc2T9mOttb+iWXp+vqTfMU2TN+pbJL2ytfY5miXoC9Mc3/KXNT9gf6C19lrN1PrPalY/fOU19vtlmm/sv7bRoR9Da+0Nmm0Xf2SjJliL75P0itbaWzRLuZ+jWa25Ft+oWSX6MZrZW+zTZ2r2gny9Zs+umzUb9i9I+g9K0Fr7Ks0qkB/SrBp6geb1+U8FezD+9OacH22t/U3NP8Afpvkm/OPTNN3fWvtbkr54Y6v8Xs1S5Vdq/vH5vqLda8Xvba09odnO+SLNhvRvDjbVb9Ls1fv61tqrNYcafJ5mFfAXTdPEh/gSvkWzA84Pbfb2T2u2D324ZlvY70nUUj28R7MjwOe21n5Ws1PX2zQLCJ+kef7eqdkZ6M9rVic/E8kdthBs2d8wTdNWvFVr7RHNgsPnafY0/GDj57UJQ2itXdDsQfm/63hA+3XHNE1Ptdb+p2YNy/+rTShNR4B/Ovhjkt64eQ79E82JJJ6l+VlyYZqm3nPvazULKW9orX2FjgLPf1aBpbfWfo1m55g/NU3T10rSNE3vaK19naQvba1d0qzC/2TNHrBfP03T+zbn/oDm+/zNmgWlF22O63m6Pj08014xWheHd0oz9X6PjmJFfo3mG5YefB+u2RX3Qc1xUj8n6W+E75+r+cZ/TNtxeJ+ko7iVxzU/+NI4vBXjOrPpw/d1jvl0HY+VqjxIj41T8wPrdZofbg9r3mCfGNsKfa28035Q88PvFD7/lZu2376Zv/s0G99/XTiGXpqfoZkF36tZQn2n5h/V0ls2tPVrN+0/qtmo/l8UPNQ0Cx5frDkO75IW4vDQdhobxnkOx/1GzdLn45u168XhPbgZay8Oj9d9jaQr+MzhNv91096DmgWLL9eR16e9NH9zcZ0YD/nZmzm87P2wGdcbNvvo4madvlPSR17H+7gbh6dZeJzUifHS/GB86/XqU2h3jZfmXcl3H7W5Tx7fzNlrNdsNJ0kfG46rvDT57PC1zi/093doDp+6pHVxeL8f5/8tSY8n7T6ibU/kj5P0LzQ7xl3U/EP/zyX91hXz+hGa793HNd+/3yHpOTjmY+MYwuenNAvbb9fx+NO9cMxf1Oy48rDm5/5bJP2ZeMz1/mubCw/8EkJr7U7NG/uvT9P0FR/s/nyw0Vp7peYf6F82LWQJGRgY+KWLXygqzYHrgI0r8kdpVh1MmrN2DAwMDAxolAf6pYbP1OyU8fGSPn96ZuwCAwMDA78oMVSaAwMDAwMnAoPhDQwMDAycCIwfvIGBgYGBE4HxgzcwMDAwcCKwk5fm/v7+dPr0aR0czPG3fo12QKaO3Nvb677G/31u/C5rM8spu3TMM3XOmu/XXud6n9vr0xK8pr32af+dpkn33XefLly4sHXwTTfdNN1xxx1b58S15rWWXpe+y3Atc7y2nV2xxn6ezfHa/lTn8rV3TPW57/0If3b16tX0fW+8rTU99thjev/73781kBtvvHE6f/78YXuXLs0pVC9fPkpGdOXKlbSfa+6tpT20y711vY5dAsd3vc6p1miXz6t9lv1eVL8l/C3I7nl/t7+/r6eeekqXLl1anIydfvBOnz6tF77whXriiSck6fA1brxTp04ddkKSbrzxRknSrbfeeuy9XyXphhvmLDvnzp07vE58dZvZ4P2dP6ve+zW2wzb8Od/H/3mM0Vsgzgnb4Oe9vnB8Ptev8f9enyp4w/kh5XPPnDmz1Ucf44fNlStX9CVf8iVpu+fPn9erXvWqw4eV2/Pax35z/X2Mz4ljdX+8dziXfs1u9mpNe8KZ4XbWPFiN3o0fP48/Jvzx4HV6feMPjdfJn/M1HuNXX9fvvX4XLx4liPH/fn3sscckSRcuzImSHnnkEUnS+99/lF3O14z3wPd8D4sPzLjtttv0ile8Qg89NCf1eec758xk99135ITsaz311PHCHN5D2X1y9uzZ9Bi/7+2DpXXIPudnfF2zpgbvz11+xPhszH6A+Bzg+2yvUujwe6+7X+Ma+X//lngP+TflllvmxDe+9+OYb755ziB555136id+4ifK8UcMlebAwMDAwInATgxvmiZduXLl8NeXUmBEJqXEz9dI2hk743u290ypmip6Tkk/AyXu6vNeGxXVz1RM/p/ztga8TjXeXXFwcKAnn3zycKyUMrNrUALN1G2ch4px9STuCr31qNZsjaRdndtT+VTrn13X/5up8P7kfeb7OJ7r12qfZ6yw2ptGPMdM0cecOXOmO98HBweHDMHPH7cR+8B7jFqiTBNi9kCmZ/TUodU9totaPFPREXzOVc+S3nWuhQ1WrC3TDnA/cc+wDemI0XHPeI2ffPLJY23H7/zZ+9///lXmAWkwvIGBgYGBE4KdGd7ly5cPf2Gj7c6oGA/tI1GKWWNDqz6v9N9rpBraw3ZxgOgZ/tnHiiWtMahXTLmHio2xrczZiOPyORlr5NyuldBjO7GPPt/f2cZC9GydtNX0bLnV/OziXEAG1nPmMGgH4fXjPC4Z8bN5rMbhOWGfo8S9ZLvLGIafA0tOCtk5sX2yloiDg4MtJ5is37QNcuyZDY++A2s0I7w/Yj+la7Ph0YYYUY2nGm/vevw827NcM8+vr5tp96i9oZbA58b72s+EbB9LRwwv2vA45osXL6ZjyDAY3sDAwMDAicD4wRsYGBgYOBHYWaV59erVQzprtUSmYqqcBzIXX6qjKnf9LCRgSZW5Ju6PNDqj15Vaa01sy5JqYY36o1K/9vpXqdkyNSnVSZXKNuuj2++pX6dp0qVLlw6PydThmZt0du24/lZ1WC3l91RhZqr0pXjPahzStqpnTcxZpfLjPdMLh6nCUTJVcxVWwf2QqaWqMAS7kcdz6ETAfZG5sGdmkV6sl/9iH3sqdM+L94VfozrNoVHcO7s4d1ROPdlaLj0LM5XmUl+4h3rPRl6np0Lne6qMM5Wm94q/o0MK7xHpaD2s2mRfszAYw+rOy5cvD6eVgYGBgYGBiJ3r4V29evVQKsuMzJQeqxCDzD3Ykg0DjKsA9OyzKng4gpLWkgNKdmzVViZpVRJ3z0mnkuArp4WMFRCV635vfL33vo7X5+rVq10mfOXKla7jTDRMR9DN3hK5tC2lW2Ks9l22dyrnlWw/eH+ToVDbER0qOA6iShQQP+MxHGfmBMbvyLyMLMTAknXlVBDnxmM3++MezZ4XuzC81pr29va6ITJkL95LdEyJCS8cuMzEF2scgzLWGtHbO0uOfRnDq547ZJJZgDa1HpVjV28cZlhkeNma+liyM/YjtsPkBb1EB3S+unLlymB4AwMDAwMDEdcUeF7lrYv/V9JExoAqO4slAjK+jB3yXDKjnsSV6Zaz9/HYyl08Gx/7Us1NT0pfSnt1LWwtnuP2K8k1swdS8u3Z8Fpraq0dnk/9vlTbZjhfkeHRRrO0Z3phFZzTbH8zXRLXx+PK9httGWRvPRbKdGt8jZI92/N3ZHiWyOOamqVViQc8/mgLq9z6yRwim/Na+7PWWldKP3Xq1JY2Ja4l04GZtZnF3XbbbZKOUhxKR2mrPBafUwWkZ/ax6h7LQieYA9RtMOQjW38+cw0+b2KqPt4LHofH69deWkI+G91X2uuko3vCtjW/9z3hvsU++jo+9vHHHz/WD/cx7tFeQoMlDIY3MDAwMHAicE1emj3PvYqRUNrM7BQV86kkleyzNQyvksIqj7vs2GoOdmFrlXdqnBNKyVU6qgy7BNJTL07pvyd9R2a05OnYYwo8ZinoWqptm35fJQiOn1UB9BnjZOA1GXFvrqtg5V5KKdqxKZ1n4yIrZLvc53EPLXn/ZiyetlwGQWfX4T3WC/ZurenUqVNb93p8Dridm266SdIRs7vjjjuOvUaG52PJ8Gj3o/Yg/l8xIbIb6Yj5+NXnMGVaz5OYWgcyfI879tvjsf3S42bC9dge14OpxDyG+Iw0O/N3TgjtZOKczwgzRrfh9+5PvAcZ/L4LBsMbGBgYGDgR2NlLc5qmw19/ppKRtiVR2lLWpqGK7dMDLko9lc1pjY2rSsGVpX5aSsezJpVZ5cGa2YrIJFgOhJJxLz3ZGq/UyhZBG06mS1+bBq21tpVSKkppWQqqDLGvlqBZK82fW3qmV6O0zfAMthXnlutB77UssXFlDyWzy+4JsswqLVi8BtNO8VyWa4l9pcclveWy8fk6tLvQUzJLiu32oxcm0VrT/v7+lodq1A6Q8ZjF3HXXXZKOGF5kQGQ69Nas2HT8n/eWx0OW4zFmY+ecZM8q7hFqMDIvVI7Pr54DHxsZHj0pqdmiN2W8V8kO3RavE+eRz0B6aRrR/tvz2l/CYHgDAwMDAycCOzO8iMxDzFIFi3by2HgO9cX8da88xaSjX35LL4wPyST7pQwbGQtdirfpsZOezbPXdkRlq2Kf4/9VHFZmK1oqKUTbXjx2F0mrKuMSQdbqa1pazpJQ0261lJlGWk5w7r5mHsW0LXBcWXwZ+8DyPb4nMk9Y9omZarLq3+xLFduUeU/yleyj533ovppJ2C4TGZkLttI7OMM0TTo4ONhKYJztVT8Hzp8/L+mIXWTxbPQU5v7lXGcMj+A50YZXlfTpxQyTFVIr4DmlPTL7rip0G8F1514xc3XxXdvnsrFTg9DT6ti2es899xw794EHHtg6h/a9yP6XMBjewMDAwMCJwPjBGxgYGBg4EbgmlSZpdQwkpAuv31M9laXCopGdKgs6xMTPqDJ1n0zns5Q7MSWW1K/mS9UO1ROZys+g2q1y8shUqFRhVvW2suBRBgRTLRbnxNfuqTvYR87bUlhCpoKK7XGe/B3dmzMHDToW+NXqjyy8guvt+eilmuMepLo4S6NVhT9USRmy8dGV28dYXRjVvFQxepx0RDGylHZ0mqJaNu43hrAwwXRWB83jie320tJldTizSu1Z6FLsS+ZEYjVdte7ud+wfw6s8xrgO0vE9T7UtVX+ZWjcLc4rXp8lmTeiH581zEfeqx04zgveZ78FHH31UkvTQQw8dnksVOfdMZvah05XV4HfffXfaj4iYcnCoNAcGBgYGBgJ2YnittdSlNEofdJiglJG5YEcX5whKBG4zSy1FV1i60Ud3XQZZ07EhSwtEhlAlYu6llOIcVOmb4rWr9GdVkL607TJtkEFl807jPterl8Isc4aJx+7t7W25O/cqhFuqrBIDxP5WQdZ0n46stgqCr9hBBOeF6xD3DqXwXpICnkt25Dk3i3rkkUck5QzPY7d07HOMjA2trfodz6HDExlEts/osLPE8C5evLjFyOO6OE2YNTqGr505E1X3dJY2S8qZMDVZboOhGRyPxxz7ZPYUr0PHKWqJeuvF8TFkw9eJ+8L7yPvKDO7hhx8+9rnvTTsfRVRat8w5x+tC7YPP8bpGVsj7djC8gYGBgYEBYGeGd+rUqS29fq8ET4XMPsY0ZGvSa5GlVcmJYxuWvihxVC7Z8ZqV/Y0SVqbvr1zms3RlZJu0DZL5ZcyyCobP1obS+ZpAega/rkktRgYU59FjtE2FiZirRAGx3WpujV54Atchs6nZNkzp2BKwz+1pIbKkvbFvmR2YweQMbM5skyzxUxVYjmyNfeIcsM3YX7JsH0sbWfzfc7NUWurq1atbiS6yOWY/3X+WrIn9JoNnkHWmwaBd1kzE7vVZqA73V/WsiqzJ88zg8crGH8HQLPfZTNLrYntcnJP3vve9kqR3v/vdko6Yns91H+N8ktlVAe8x+J/ncO6zkmBk+jGx+BIGwxsYGBgYOBHYOXm0pS0pZwyVpM1UTFnJ9ioJba9AJqVKpsahh5rHEV9ZgqIK7o3X5vgqyTi2T2msStsT+0vPJzLJLBk3vTGpH8/sXbQnLQXLS3V6tQp7e3tbCXLjdZjyimVUMjsi7WG089p2ywTB8Rwyeq5tHCclbHr/2cYR19LzbhZQedy6P3GvknGTjWZ2dMPt+ByPnXOU2eOY4on3ehwfPRPdLr0qs7R08X6q9o99B7yGvaTBZMnum+ci9pW2QHr0kkVlZW1YFopzkWmJmLSANk4zr6w93jeVnS72jenivFfN0mLwuK/9vve9T5J0//33Hzum0rpkc+Bz3Cez33g9f8ZE1u5rZntnwvmsoEGFwfAGBgYGBk4Edo7Du3r16lbp+F7BSkqzmc2JkoiPYUwRe4EnAAAgAElEQVRfJqUz0WvltZSlI6M0SK/QzBuwig2k52cGSkW9hMOWkmjrqkrL9FiP0WOuZKGeY3rgZXMS17QnaUUvX9pWpKN1rphBFhtIj1PODz3FMlZrVF60mZROOxlZR5bKjmn36HlHdhWvx71D+1scS5Uyi/Gt2d5xe0yNRRaSeVnT487I0sllaa6q1HT24GRMYhyzmYnHYi9Cz5e/z7w0fSyZsG1NTC4tbSeW5rOq5z3pY9wnH2NbWmR4tAlyDrjGsY/cM1Vh1ix2z3vVqb4YF5cleTZz8yu9rLN4Q9ra6e2a3dcs43TmzJnVCaQHwxsYGBgYOBG4pvJAVbFVadmOY2QSsF9td7nzzjslHUk5Gcu67bbbJG3r23v2pcrjkXaK2Aa9iSomR49PqU5+TdtRnEdLMWQblmqYkDd6PtFWx4wytAtIR5KUpXPaKNZkcuhJWXt7ezp79uyhBEeJPPabtoCefZSZIXxsjLuMfczK2pBR9kpZMcaN8+XrxuvTVkabndc6s01Z6ic7z5IhG1w7estRAxDXgJI1kwbb/pMxF0r/vbJRtJcuxVLt7e0d2kDNkCITdn/JuJkpJMsU5HvILMbXcUmhTJPF+DpmeMo8ir2fqSVwH50oOWYVcV9oB7v99tuP9cmv8dnGLFdul16zcS0ZM+rr0yfC7/38lbY9Ob133/72t0s6WoPMM9uovE6z7EPGjTfeOBjewMDAwMBAxM4ML8ZaZfFjBr2w+Iud2f0sFVOyYtxNlEh8jD2OfF3ag6L0TE+jXiYXo4phqkoZZeUsOHYyyuh9xOsxbsltes6ixMn14TEZOyWrJaOgjS8eG/MY9qT0+J3HEdlmVZiUNtVMO8A9RAmcJXjiOWSotl9QAo+gHZuxZ5mXLufY4+zZ8CrbJDUacc+aDXguaEOhJiUi2o8i3L77Zm/UeD1qEpiFJMt9GTMkLWmHzJ7MHOI+sIYjegDymrGN2K/nP//5ko40Sm6DeykrlOrnjtv1syuLcWMMoxkPc49m9zI1OfT47ZV68jG04WWaGWpMPC5qSF7wghcc+zwe6/n76I/+aEnSc57zHEnSm9/8ZklHnp/xOmSO3NeZ9iP2dXhpDgwMDAwMBIwfvIGBgYGBE4FrKg9EdUSWmqgqhZNRT9NWqwN6RnwpT3ZKdQDVrVlFaKoD6GIcVSYcM51TeomgfQxVP5lzDEF1K9Mc0T0+HktnhSrxdRwPg7t7fcuSIPeCh/f397fcteO60IDNMATPRVRLWe3EtF0+1yogJl2OY3X/7QjgatkM/o/tMNGB559q0tgn9pHq8SylHUN0qsQDmRrMDg6e13vvvffYeKyqjfPMquK8nzzfsY8MEua5dOGXju7buB96eyee6z700k0x0YVVgF5b6Wh+/NyhOYT3WNyfnrullH9RZc+Ey36l2SCqmhnmwDlyH7NQI6bqs1OJ32dtUq3O9be68l3vepek4/eT96aP8Rz5vnrhC18o6fizqnoWG15jz13sY3SYWYvB8AYGBgYGTgR2ZngHBwdbElyW1qhyE80SsTI9D9Pk0NU4c1GtUkxlLvhV+iSmrMnG5b7QKYJlLaLUTMNzFogbxx3/J0Nm4u5MssucbuK5PeccMnAGise5J8Nf4xrM1FxxzqtkAUwga8lcOnIwodNIFXCelSYxY7Qk6vee+yiRcm8yqJdOP7HfFTskK4x7i+EpDC3oJX8gszK7scNJlqqtSnDOMkuRhXAvVskg4lrTCerg4KB0PDh16pRuvfXWw/Yt2cfjzTToKEP2FPe8j60K1tJZKjov+drui9tnEolegD6d5ryX7TyTHVs5CmbhUNybWZrF+Hk8pwpH8rFOPRafP9ameG94vsws/T7ub96nTIOWJSvnPdgrLUUMhjcwMDAwcCKwE8M7ODjQpUuXtooPRldm2hQYWpAFjzN9kSUESzw9JsHCrwbtf710NkYVtB4/4zGWBlnOIkqztPMxDRkDuONntBlWhTmzlFmU8IweK6CrMoOTs+tE22SvxMuVK1e2goajPY7X9islx6yoJiVSBnv7Opndh32m7S5LzE0XfK5TtBVx39I2SWYcx8c0eES2LywB2+5Bxuf5zMI8eC8yhCYrKeS5ZVJk7sOMwfEeyODiwT7G/XegdjzftjoWYGURYemIefB5xvlxG3FNuc9oS2PwfWyfr54/t5+tP+9D9pn7MH5GmzH3Y3ZPVCn63EcmeJe2Weh9990n6Sg0I0tHxnJb1JxkWg9q5HrJxInB8AYGBgYGTgR2Lg8Ug/yy8kD0KssS/krH7SKV1Mw0SllSZEqg1a99pqeuCthm9jGOg+dSmo3HU79ONpJ5dhoVw6NNKkp2tL+wz9n4OI9VsupsXPH9Unoojicr9cSSPpbajcxDkIGrVcox9kfaTr1ErNEOcD+wz/Fc2mWMntczNQwMis+C8bnPyaYyzQJtJlWppqjBsPSdpW+L52Sla9bg6tWreuyxx7aeBxG0i9I+So/FbGxkDrSfxjEzvSLb6iV34D63l6g1WtHGRk/Kam0zuzyTUzMRQU9rU7FyMtp4H1QlzTJ2bVS+CrSvRk0Qba5rg86lwfAGBgYGBk4Iril5ND12MmmNv9xkHVkMGJlPlcQ3SwBbXd/SZhaHl3kKxs8jKoZXSRfx84rlVmV8pNqexTkiY4r/c956XqFVAm2uW8YkjCVPqVioMUs5R0maZVkyu0ElPdJ+4X0Q57pKgt5jH4zzogRu+0/cU7alMbVbFevYm2ODa5qVFDK4Liw8HOeOacgYF5Wx0CqJOJlkxiTWJB6/evWqLly4sHWfZCXGCH4eGRDt79V9k3lCV/c/k273PCDvuusuSdKznvWsY8dGTQMZVVUIOPMOrvYBPS97hXmr8fL5E8HnHRllfA7xuUZthNuKrJdajp6HLzEY3sDAwMDAicBODM/eUpVtiMdGkM2sOYeSbxaDwrIV7FOWJYFSKz1JfWz0DKKnJTOTkNHGPlYeVlU8XjyGoC0nswdVhT6rpNW9/le2vAw9Kevg4EAXL17cktJjHyr2WtlL+b+0zV7i9QkyumqMvWTVlNptJ+lJzb2yOQTLvlQ24wjakXoekOxHlUWpt7b08DW7pU00u46x1McY/5vZbipWxnsrs48yXpCxiBmbqbLjmBnHhOoco9tx3KfjSt/97nd3xx9f6eeQMTwyIYP2sayUGfdZte97ZXuYeJpzFtsl+yOrzjSCWVz2EgbDGxgYGBg4ERg/eAMDAwMDJwJPqx5eZuDMUocdu2CS4smoKo6TsmY12QhS/OgqbZUm+0L1ZKTeVAtUVbh7rrJVuECmBq1USBxXpp6kSoZ9zNSlSw4n2blZaqoenLhA6tc2rFSvmXqNas8qZIbpyeJnVahHL+TD12FVdp+TpaHqqb09P1Ku4q4Sa2dOJAzIrVLzZY5IdBaoHFAyZBW0I7Lg+Gh66DmAZaEhEVbP0fXeoLt79h2TWFTPsAje70znljll+Vg7OHl9srCYKqSEKu7suVOlMKO6Ms4V165a72zvcE09jw63YNhZ1m8G7GcJ1Q2vOZ0OexgMb2BgYGDgRGBnp5XMxT5KMZWrNQ31WXJlSg2VwTS7nkGJKGN4dJOm40vPfbbqs9FzIqncnnlcBKVxXj/rX8WQeudU5xLZ3Mc170nply5d2iozk+2DLKBdytPIUWqtwiky1luFeqxxJmEyZZYJio5RVSq5SlOShYtQ0uU9klXjNui4xYDgLCF4xQ4y7QfXgE4KPeYanRSWnA+Y7iwLT/FnVXLl7PnFuaxK8WT3NB3eqEmISY+ZeN6vMUUaUe3nNaCTH0O1mGA7gpoMo8f0lxxdPDdZVXaGDfVKM7EwwOnTp0dYwsDAwMDAQMQ12fAoyWV6akoAvWDYJRvKEuuI7Ve67sx9lpIwJdVM0jaqvmVlOlg2pXLFzdgTbRFV6q81kh9tSD2X4jXt9fqfXTvaabLExWyXc55J3tVeqexwkb1Vads493EfVOyIIS0cu7TNBsmmMu0AmYntPEz8G9cvS/+V9SMLPKc7f1VYNWpMeI+5jyzZlLGCmIaqZy/a29vbKh8W++0xO8jfY+8FtlcsuQojiuC6VMwkjokFXjPtU9XHSvvAMKW4D1gajYH2fC5lqGyELJ0U+8jvssTWVft+pd053hNMcL0L6x0Mb2BgYGDgRGBnG94ab0CplkR6QaNLEnf2S079dBaAKeUFZ8nkyCwyCZISSZVOKY6fRSEt4fUYVxWkzu+z97QNkU1l81ilt1qToHWtB18cg6XPWEi0St9WlVeStr3vuE58n+0DzlfPdkObAoNgfWzPRk322UthxQKZvg7ZTtRWVOy22hdZ8mgyPbK0jClXwfFmfJnXczZmorWm/f39w2TIGWPk/iRbZkC4tP384rzRxp9565IlkhFn3rO0QVX2xvj/Upmw7FnMxOosUpulP7NHJbUDlT0wrgG1ANQg0Iacjd3oJTjPfBPWsrzB8AYGBgYGTgR2tuFJ/VRPla55jecbpccqbmkX+1IWu0VJLpNapeNSRZUAmpJIls7Hn1misvRUlX6J/1OaWUqWHf9fsq3F67m/lFR3KeOylMQ1sjxLt1kpFM4LWU3cbxwr+8v9uCadWi8hL+0H9GbLYo2q9Gzc5700XpnNRDqak2ivcXxXhSoxcOwDwXnNWHbFemmPieOIHoO9+3pvb2+LGUVPWNoyGROYxXP10mTF77kv43eVJiSL5SNb9nzxOllsKovF+hniufb7uJY+1nZNliVa43FLr1POUXxfMTqvV8Z6q3R0LE8V907lRbsGg+ENDAwMDJwI7MTwnCmD9oTM47LS+fYYwFKsWc+WV8WrVJIxxxXPySTyqhxGFVOXZYOhhEf2kWUgqOyYlCh3Scbd8zoj21wTu2esjYWRtiU46Wislky9z5iFIfZhSdrjPGYJjMm0qkTksR2DtqIsOXoVD1ntqUxq5j0XbZ/ScbZjKZnMhHaXzA5TeVNX9j9p23O10kbE9173tR7YV69e3dKMxMwk1hTYBsXxeP5iIVGzFhZ8ZRLpLDtUlQmEsaJxLz300EPpsSw0G6/DPnp89Pg24l6qbNH0Qs3Wv/L+7GkHmPi5Ktgb+8Wk2ywim/3GGPG5OeLwBgYGBgYGAsYP3sDAwMDAicDOTitXr17dcmiIlLgKUORrdE1dStJauXXH/6m2cfuZW3+l2qlcjeP/lbt79Xn8vwr8zdQFVAkzWH6NqphOGexHTw1aqSHiWmcB+hWmaUprEkanlSrwl2rLnoNOFYqRBbpfi9qW/a+SeMd5ouNBlcIqG5/np3Lft2orU2m6vVtuueVYP3idXoKFXWqNVereLMCa6ceWVOWXL1/uOq3R1d5qQjrHZCnYKpf/KvWc+xSPYbLtLI1WVZfO4/H7qPr1OOyIZJWmP6fDUFazz3BYh4/t1VTk+Kh2NbJaenQyc/t8H/vi9eGrEfcH7/EReD4wMDAwMADsHHh+5syZLdfszOiZpUmqQLdgunoz4DgLAM36EtvIGF4lZWaJZsn6KueVTBqs0o5VIQ3xOpWDQU+qqZwkqv5k/Sb7yeZxKRiWODg42AqVyFKwUbqjBNxLrmxUYR0ZKm1EJvmacVlarkJZYiA4XdSZPLjnvMTgZL763Bgo7H7TMYTOEr1QlyqxeaUBkLbd0SnpRzbPcezt7ZVr5NRiHk92D3CMDGHJtFEMkalYZnZPV2yQGizvk/gd+8QUh7GPZvBm6WZ4dlryHPie6WltPCfuE4PkI6q9wrJeGVvzq9ebCdWjNoLn8JmYhQZ5vuJzcwSeDwwMDAwMBFxTeaCeJJwVFazaWkKVIiljeLSdkHFF3TPtLizamCXkpVS2FKDbS8jKPmcMiRJUxQ57iafXvo/tkDlUbsr83++X1pUSadwn1dhoC8oKlpLRrSn5Q3svr8NwCElb6a3oHp6tx1JydH4eGW6lMenZ/Tj2ar8ZWQhNZTfP7nlK6bTDMFlxbDdK8pU2qLWmc+fObdmgepol359Z8mGD9zTLD/HzLEC/0sCY3cTQiSrtIW138Tq8dhXCkoUA0CZOW5r72Ct0zTW1LS8rH8T7x8zZ6+brRabv+fExft9jn0ZP21BhMLyBgYGBgROBnb00W2vdlDzU31e62czTrgrerl4jaG/pJQ2mB1LF8LJAU3raVamsok2l8kKlBJbZwKhLp1dWFfjeQ2bXolTLPvWkqTV2RQcPkylENkNvvl4iAJ5DjzejSu7N/7PxuB/RDsPExVyfTKPANXJ7FVvL0tKx3aVE3RHUaNDzN7NrUVqv7mupttEwpVQ292sSjzt5NNNnxb1Dj2Emd8hSi1XPpCoRdVwXj7FK/eexZ/ubqdfItDLPZQZkG0zflWl6OC4GecdzKsZIdkr7c+x/tR8yD8wq/Vzveea+xGfxsOENDAwMDAwEXJMNj8l1M4ZX2WGycxiPVpWgyKTAnmdXRKbvr5hjxoCqdENVfF4v3otepxmDqc4hC+BY4jGVxNpL01OVROklX94llorJlWNqMUuNVfqiTDvga9M7rup/JjlWduAswbWPcVwU94GReaKRUdFmQ/Yev6NNisylF4dJCbuyKca+Mc6wSgwcj6WNhpJ+loQ77uclLQXjMyNo6+FzKGOz1fOFHsk9T99dUieSxVBbkPkoMAG0vTPZZ2sN4v3ENeMxXpfMo5xavKpMVKaV4n6riibzf6l+7mXJo2N862B4AwMDAwMDATsxvL29PZ09e3YriW8vi0nl+RYloV5y0QyZ7cngdanjjt9R+mN8R5bklCykYnprbF204WQJhyuvLHpJrUlW3MtUUXmM9lhb5sm3tHbsb9Tn00uOErfbzhJOs79Vcc/Me5K2FWolsrg/Sv+UZjMm4b3D4pq97CaZN2O8fsaefA7Z7pr9QImarITXlY4868zsyCCy7Eq0w8RMKsTe3p5uuOGGQ4bCuLVsbMQu2YW4/izF0wP3X1xr2jbJfJg0PX7ncy5cuHDsc4PejtJ2AViyM/cx8wqmN3oVj5t54/OZ39PuVbZb3puZx3zP96HCYHgDAwMDAycCO3tp7u/vd/NG0lup8njKUMUHUUrvxYKR4WUFMplXj32lRC5tS3lVXsRM2qDuepcChhWT49xkOe24Pr3SP0uZSdYwvR7opUnmIm0zvGpdsnhFSntkYFmsYxUPxz0az/F+evDBB48dW0m18Xzb/ViglZJvz5OQDMuvWRwevZCr2MqehySZK3NWSkf2JbMLv9KWk10nzl8vDm9/f7+0vce2l/Zir3wOtThVrlNp2yZIzUt2DmN0zcr4PMr8G8jSqkxP8XrUJFT5KTPv08pjvTe/ZHKVfTNrg5qRnoc2+71LvtfB8AYGBgYGTgTGD97AwMDAwInAzmEJ+/v7pbHfx0jbqX6WgjvjMWyrpyaoaHKlApKO1JtZepyI7HNTfAY692h19d3asjoRPWcVXq8KlcjmsXKS2aWvPXVHa3MC4EpNKW2rXDhWpo2S6pJClboynsvwEBrgM5do7yOr8fzKcWXJbr3v6NpPdXmWPJpu4X5l4HscI0NAmA6P8xr/rxIEZCYCVq+vwhIyx6pe0uN47NmzZ7dUtdGRgckKiEylzWPpvEYzRZZM3qju8WgW8bPjjjvukCQ9+uijx14ztSH7xOvx+RdTGjKExcdUji+8dgTnvJfwogqDytSTVZLy6ro8P3vfw2B4AwMDAwMnAteUWozG/aWUUtI61+veNaV1iYCrZK7xeiwdQvdcG90zadBSLOegCk+IfakYVjYezknliMIktrFP1Tk9Izy/y5JGs49rgz5ba93SOyz/QiM+GVE8pkqBxnWJLJLB3Fw7XjeeT3fxpRIz8bvHHnvsWFtZwDGvx+vw3ovsw+7tZHBr0tFV4UN0msg0JpW7PZ2R4v8xOL5iSX7msDRNZD10GmFb2dxWzxWuBwOdpe37n+vhsWd7lQyc91Fkaf6M6Q8r58A4xyyn5XOYUizOFUOziEp7EK9NpxLu80yzZHBes36sKW9VYTC8gYGBgYETgZ0ZntRPo1Uxk14KniX7UBVIHc+twhFY+oX9jefSpTxK9pZ8Mrfs2EbmOr8UlM4UXb12l1hbdiyRMculQPMlG4v7unYtM/uRwfANMq0o9VXsqCqyWSXy7iHug/h/1l4v4QD3JqXzLF0TE/5WZVN6YQmUuKsA9NgH2ncYdpElDGApGR4b54rhNL3UYtM06cqVK1sMLGN41X2R2fDIFBgsTnt9vB7ZRWVXiuc4LRhDaXw9t2WGnh3LfU67dzaH3LNVkdyISutBjUm2pmaQns9eMo4q6UjPXst9u0vi/MHwBgYGBgZOBK6J4fHXd42HYiXNZufzF5tSZ5QKqpRHLM+RsQJKHvQKjFKu26Humn3PvOYqD1IjKyZLBlQli16jF1/ymoqf9dg03y95ubIPS8m/s8Dr+D7zYqTtkeWZyJ5jX2l3qew+GXvyOZbGqyS48RxK0ty72d4hPC6WMMrmkfbmnqRNcH/TszRqODgOMvLsvq1SD/b6Q9YUbV20E67Z87RHMfUbA/bj+mUFV+N1jGjDc3/9asZ3++23Szqag/g8qLzBmTIxexZXicBvvfXWY+euGRc9Vnt+APSJoBf0mv23hpln3y1hMLyBgYGBgROBnePwTp06tSUxZjaAyksyY0aUcKuSQkbmNUe9NBlRZlOrXjN7TyVF0IaU2cKqtDz0KMvsmpSAKyaRscQl1hb7WJU5WmJ8uyDaYbIxE1UapcjwaCeglxnnscdqK4/innchmaXtF3HvMA1dT2ORjTf7rueFWLGBKh4q0w7w3MpOl31XlZKJLC7T6ixpCsyMzKpjezFpcoYslo42NL+yuGnvniZrZzmnaMMjgzTDoxYirqWPof2aGif3J65LVTKJY4hgTCjHR61H3DtVzKtf/WzuaQSrvZ8x8+i1u/a5NBjewMDAwMCJwDXF4a2x4VXek3yVthke2Rkl4SjZWWrhsb1Es1V5CTK8TP9u6ZLSH1lhpnOu3meJtquSGmQumZRGe9Wa+L+K2a1JGtuL6yLY77iWjGnkmLPrMFsKGV2VTDqCffH7zJ5Bm6H3SCUJx/O9R8g2yRrjuVVSYsYqZnZGagV4bhZjWXkQ0x6UaVmYYJrXj+wjs3319tje3t6W7S72gfPAOc3uS35W2cUzhsfnAMdFpidtPyO433uJ53kOM694XXpzSNuar2cWGa9XeW1zD/X2XWX3y9qrnjPZ85tetPv7+4PhDQwMDAwMRIwfvIGBgYGBE4GdnVb29va6Rm+jqoOXpfrK1JxSbdTPar/x3CqpcGyPjhp0LsgS8kYaHc/tJUitVIqVg082rioguEfll2pmZcGclQojGxeP7RmjW2s6c+bMVlB/z1GHe6VXL4yBzFXV8sxBg6o3rmmWuJbBytwXPccTqqncVq9aemVGyEJoeAz3THaOwT5V4QNRncg1pUpzTYDwkmt5a20rMDyGRljFWCWRzlzYeb/znqajSzyXIQtVQoXYD86hHZzcd18/zq3bv+mmm461x9ATznVE7x6O141j9TlMIsD9ndVudBsMmVjjjFU9f3rOP0OlOTAwMDAwAOzstLLE8CoJtAoqzo4l2EaPUVYGZ45B2pbcKrfk7Ngq4LnHenkMWceaSteVM04WcEppsGc8NiqnlV4A6BoJfm9vTzfeeOOWa3KUZqsE41X6Jmmb4TEdGfdbxkK5/9ynnkRKl2szPO+hLEyEoTNkiVlQN5kC907m8MRwAO4R7tnI9KhVqdK6ZSWFGIBOZ7QsSbH7cMMNN5QByXt7ezp79uxWcuVYoogJszmOLHi8SttFR7Re8ugqIJ/hUvEcszUmILfzSBZi4Xbdl5h0O76P+6BKykEHrqyPVZkez0HGFrk3KtbbY6G8P92fmG6NAfyD4Q0MDAwMDADXlFrMWMPwKhtUFjzcSzAd2+4FDxuUbjPXcurh+b4XcJzZhKrrVS7/a4pIVvZFIrOFVfO4JoygYvG9lGlLzPHMmTNb9qqIKliczCvOQc89P3uf2SvYFseR7dVMOpZyJsG5o6s83ezj3slK68T3VTLpeK6xJvE4mVFly+sxPNp9GPhezUGP4d1www1b7C0yLqZcM2uqND9xjFxTnsN1ivB1XMSVJa5cIDi2e9tttx1rl4VzI8NnooFKg+GxxHVhseCK2cVzWDpoSZMVn1l8Rq7RRvT8CqTtpACxDzFMZU26MmkwvIGBgYGBE4KdvTT39/e3pOosoLSy5WXJYqs0ZJTOs/RAZDGZF1nsT9YOX7OSM1kaNc9J1scsFU4vlRhB+w49FKs0WFkbFRPLWKFRMbuel+YaPXqVuFvalkBpt8yCbiuJl1oDo5e0vLL7ZV6aTOlU2S3isQaZHvdfdm8YSynmYn+rvZF5SlfHcJ/RAzP7rEpH1rtvz507V+6f1toxGx/ZjrQd1L8mAUVlb6/S6cXr8b6o7MARZH0x4Fs6YldxXah1ometj/X4s5RvbJfMrqcxYRFZg/eBdNymGtvv+XFUHsS22WWlmWjD6+0dYjC8gYGBgYETgevC8OKvPG0Alf42SyRLSaBieJn3HCX7XrLjir1QX51J9pVnpdvIEh4vxepU8THZWJfKBmXjJHbx0lyTQDezH2Tt7u/vlzFo2di4V7L2GS/EskA9sL3Ke7dXfJKecEZ8zzRU1IxUXoKxL1UZql5SbDIit0vPvjgPtLGSsWSpxej9x2MzZs5Y2NOnT5f70jY8zkn8jNfi/dFjeLw/q4Tk8VzGHtIel8WZsl0+Z7LYPZ/vvVIxrcweR0bFNnqJ9emZ2rOFsq+Vxi4bX5UCjra7+BvjdY9lloYNb2BgYGBgIGBnhnfu3Lny11iqM5/0PAcr3TK95igVxu8qHXdmU6kynvD72BYLMRqVDjpjh1UWjqzwJyUWSla0d2WZayjV9mxuVdwdbSC9pNhLXp/nzp07lMQz+wk97OiJmFkfy7EAACAASURBVK0L55t7ifayDPTSJavqeaZWmXay/c1zOIaMwVb9rhh41o6vxxhIrq1Ul6HxmjDOLJ5DdsN4w4xJ2I7VY3inTp3SLbfcshW3dssttxwew7i3ypYW78sq4XflGZ0VSq2eTT1tTZWsPvPA5jODLJFrmGWhYpxnFSeZtc/7iM/TLONO5bfBMWVz4evG0j/xvSTdfPPNko6zwMHwBgYGBgYGAnZieJbSexHzjBsio+uVB6q88ogoCVIqYj66XgxQ5fHUs/9RSqOEl+m4KwmHHl4Z46riUyrvvexc9m2NPY5t9WwgRs/rz5lWKJHGc8jSq5i6OBeVna/KwBJBZme2wXXJpEfaJ8gGsnlaKmHD47PrkbFm3nL05OR4yHp6eW3Npnxfm7XFbCBkfYz7ykooZVlMenF4N954Y1k2TDrKXsKxVbF18X/eH7wfM4/fyv7PWD16Lsb2KptxfA7wWO5nxj72Mp9UhXkzz07uIdvNenF/la2Oz9ksFtbt83nH7DTS0d7x/Rrje5cwGN7AwMDAwInA+MEbGBgYGDgR2Nlp5ezZs1t0Nzqt0B2X6s8s8NznmKr6vWlu5d4asVReJKojmBzY9Jxu4pn77Bp1Fz+vgsR74QiZQ0FEz5GHKpmqVFLmWFMhUxlQZXb16tWuk8XZs2cPVTxryuhUiZ/jPLqdzJkifp+573u/eZ95H1eqxnhtzn+VvCD7bkm1GK9bhcP0wm8qcwL7wTRY8X+qtqrQg+wzlqyxk0HmMBIdhXqB52fOnDn2nJGkJ5544vB/BrnzueP+95II8HO+75kAMpW5+254XqgOZZ9ZzTyewznqhcdQzc9nSpXiUNreB5VJZU1Kw146skqdSxNBVBXTyWeoNAcGBgYGBoCdnVbOnDmz5VoepRtLYVlxSSmXmqtg0eq1FwjMEiyx7/y/SptkZK7eNPxWhu6exE2GuYuUXiX+zYzVdPLopfWq0iwZGUtl2MClS5cWQxPYTpauiaVXqFHI5olMxJ97rskO2K9sjD32zL1SJV2W8hRO8ZheyE7lgNTTAFBip9aF8xyvx33OEAOyt3gM799eWjq65C+lFjt9+vRWAH9MzEyHGd7/ZLmxP0tls3rMO0uvGK+Thd0waQUTNse+07mHfWUbvXVZSocWj6meq2sSeyyFpWSOQ0xmwhCheP+S4Y2whIGBgYGBAWDn8kCnTp3qJha1rpUSz5pCnJToq0DJnht1VQqj545cBYtm6Zoo+ZANZEyIUhAl7l4QdmXD6dn/qpCGKpSi1/9eCSOmobpy5UqX4R0cHGy5REd7RVWQs0qYLG0Hu5J50U08s1fR1kHX7ywhAPd+llSZIKOqwi4iKjZGm2SPpZGV8R6J5/KYKuQguttzTblXe8nY4xz3UovddNNNh2vp42wbjP12f+2yTrtvT6vBPc99EfvHPZn5JsTvpe0UZVVS5YxxkaEy5VhWZLfSBjG0pRdClY2j+pxzzeccE3xL2zZ2j89rm4UVVcHqazAY3sDAwMDAicDOXpp7e3tbv6zx15eem1VRzYylUeKumF6WzoaB5pTWM0mEdp0qQDt+Vx27xkuIElXFErP+Gz3pbGkcPYZHKZf2v56XJqXMDNM0pbaJCEvw9Kjj+8xDkN5dlNIzBkZWwH3BvZW1XyVqztKf9dYsayM7lyyQ+z7+z1RttG/T8zL+zzWt7Onxeksp7bKUUj1NhbG3dzx5tNtxIdV4bdv16IFb3fPS8r2bMeGqBBJtuVlibjIuejNmz53KhttL71dpkHiPr/FGNqqUkVKd7IPMOa6l22MZJAeaMzlEPGfJMz/DYHgDAwMDAycCO9vwpLp0RPzOr/SWynTBS+nH3AY9lqRtOxIlkCx5NK9TpSdb48XY8yxbOqbqz5pzqiTG8btK191ja2SblNKyRMORIVU2vIODA128eHFLYot98WdeZ3rlZlJnlcYoxgZK23ar2H+2y7FmSY8r70kj9pFssLI9ZF6TVd8qb0pp22bn94xJy2IXaavjvPXKUfEzphSL88hUUj3br8fNBO4x3RRtd2Z69CnI7hOjSgFn9IreVjbvjK1VKc2yROdVmsXKSzLTEvE7MvHsmVyx0co7PX5HOybnJPPW5W+K1y1LS2f0GGqFwfAGBgYGBk4EdmZ40YbnX+XMdsPsHj1PpKoUPL2kyCikuiyQ0Svxsib+zqB0VOmne6ikpowlUP++ZOvoZYHgdXoMj21U9kYpt4/1pK2rV69uSbeZh6+lOmZ5IHuLIHsxzG6y+NDK9kTmH/dHZmeR+jFnZGmVx22GqvAr9268B2lfouRdsbh4bpXBI7t/q8wafAZEuy0Z/poYzp6mwm0zfovZS3palCVvxmyO2Wcyn8y7sPJe7dkXq+cbvRzjcZWHN7Uf2T3NPVkVOO75YlBT0otrdZ/snWn2nvkQ8N67ePHiyLQyMDAwMDAQMX7wBgYGBgZOBHYOS8iS4mZ0m+7bNJBmFJXfUWXm18zoSfRSb5FiV04zPTUl2+25WVeVjns0vFJL8vpZWESl/qzqo0VUrsxrXOZ7YQlugyruTM1lhwaq5jI1qFGFttDxKdZxY1gN1UM8rrq2tC7IukoaQPV4BE0BVXBvppZcckDJVJpUjbFPa8Jh6ICQOZsxkfZS4vEzZ86sSkRQJepmaEb8n/cl1XrZ/q4cM5iYIHvOMYi8V/mcgeZVIv1Mpc8k/FUC8DiPNAlwzqmWZ4KReAz3SDa+Ss1P80ace87jwcHBUGkODAwMDAxE7Oy0ElkeJSN/L21LdWRnmdt+lcaKEmnmll45E2QMiJI2nXB6UjpdrKvXLMh2KRVOL4lrJQll0lQV5F8Fnsb/d0nTU6UbqrC3t7cVcB77wFIgTI3FBLPxfM5P5ZKfjc+u7HRWyUq+LDHtLJSB46uSFWR9pJMU2UavanWVFowak3guww6qdGFx3Shxe/3I9LLyQBx7Bie84LHZZ0w2TLYe14VMkX2o2HV2jPvisWfrX+0ROtpkYTA+h+vDdYkajCrRPZM6Z0k52D7HSQ1KBMM6qmeklLP/+D6bz4yZjuTRAwMDAwMDAdeUPJoSVmZHo1RHhpeFCVR6WKaAylgBX9cEgK5NwRX/r+wulZSYjWspxVQ8hq9rwhLYBpFJZUsB9VmQJ8few97ens6dO7fF8GISYhYAdru2QVhSzVLZVSWmvGd69kWmJbNU6TZiAmquf6UdiOOs3LK573sBwLSV9NhHZftmWE8v3Rrnq8eUKltNFUSctdOT0Kdp0tWrV7vsmeyfz6TMbl2FTPF99tyJfYttZSyN1+PeqV7jsW63CjXIwoYyjVj2PtrtyM6oIenZeKv9bfT8DRyOQI2dj43pyMhUs2tVGAxvYGBgYOBEYGcvzf39/S1vvx5bo3Ru9BhXFZDNMiRSnoRYOpJAsuD4KtUNbW2ZVxklrcq2l6UwqrwMe+mVKLlVNr0MlJZ2SbpaXSfz0jR6Uro97Sh5x/Xz+tKmxpRjTBTAfsW+0A6ceWnSM8zISpPw3OrY+H1lG+a+y4KZ3Tcm5DWyQPAq+XrPdsdzsyTY8fqZ9oMMhXatyPCq/VxhmqatY+I+YOFQeklmSQSWnh0+10wi3jdLSfHpJZr1pXre9Z6nLMBKNhrvL7Jyep+6rbgPqvt96fPYb/bVc87ySNlcVM/ReA9mJYUGwxsYGBgYGAjYmeGdOXPm8Bc7S7JKiZNsKUtCTKmfv/aU1qOUVkmIlG7j9+xDlYS0F7tXxd9l9pgqLVllJ4voMax4/SwWsrIr9hjeEvvL2EeMX6okLe8dJhWPkhslQCYNt7YgS5/EPVSlQoqfU5qkV1lmM+R1K/S8Zml/obScxYpxjzKlWGaH4z3AOKxesVrasyrvYGm9dJ4xpKrMTYQ9wzOWbphFuj3aEblXOYb4nvOSxaBWXtM922rGVuLn2dxW6cho0ycrzfpUpanLkBW9jchsopU9tvJsj/8v2TcjmHrw8uXLg+ENDAwMDAxEPK0CsL2y8pY4KGll3oaVFEMGmUlaZHBkPFkyVEqklUdkr0wHJbzeuUx6XNny4vuKfVKizKS06tie3Y+Mle1n2VsqW2sG23+rpMtSrQXw57btxfV/4okn0nMoGfZsXfTkrPZjPJ97kh5xPRtu5ZWZ2c2YHeWpp5461tesACyZXZZRJfYj20M9r0yi8kykp3b8fikrT4S9NOlVGpkStQJ+z/IycQ6W7OJrGJDBrFOZjYvzXTGwNR7FPa9wgzGp1Riy5xznhDZC2palfgyqtJ01JrbHZwez0GRxzVWsZQ+D4Q0MDAwMnAiMH7yBgYGBgROBawo8NzL1EdPY9IyPBg3NNG5SLRnVBKTtNOJnCadpNO6pBYilIM6sTaoFqhRGEb0q30vXq9SedGmOqFSovSTcXKcl1cI0TaWbe/ZZFS4Sg1B9Tav6qvFkzktMWedjXS07c7Ci2olOA5mDgNVsXNMqvVZUE1HN6UBgOqLEAH7/71eqbNeEAlTJ0Hvp8bhXq8rh2flLqrmrV69u9Terq8b+MtVYlnqLqrGl5Ov8X6prK2ZzTLUgHVEyp5Vsb8TPs33He5lpybK+VY57TPvHWpXx2nweVKFc8btK7Z89d6g+HmEJAwMDAwMDwDWVB6qCfKVtxwNKe5mhnJIOX6tA7XgdppYiO8wCMpfYUy+paoUsfKAKFs6uw3Yqh5AqqWtExaozxyFKVpWE30savIRpmrqu0RXzrUqvSEeOLAYTTffWuDLq98oD0WGicl7J0pFxjSpnidgf7mtL+GR6kbn4f4YhcNzZ3mIf6azAEJv4f+VSziTG8dheqSr2uXJqk44z3Nie2VvGuKqQizWJiMnsPedVMuTYX2qdsmTIRhUyQ+fANQ4vRsWm+H/sM5MI9JxyjEprlIUlLDnaZeEdnuuDg4ORPHpgYGBgYCBiZxte5m695vieDa+SfCu7QcYylthMVryxShab6cOrJNG0y/XsPktB5Fkwb/ZdHG9ml1sKdO6tW6VD7wUcr5WupHq+pG0bg8G0XVmwa1WGigylxyRo/83GR/ub+0o7RRYcnxWuzMaVsSf2jaEG0YbJFHzUenA/9IKxKxt8xkIru72vF5P99kpxVeileqvs/b1wlSr4vXqW9GzffKZk90QVnsS+ZmymSoe45pnF5yn7mDGuSrNDm2jmq1AVbM5YYZUUm9fv2ULPnDkzbHgDAwMDAwMRbUcPxfslveOZ687ALwF86DRNd/PDsXcGVmDsnYFrRbp3iJ1+8AYGBgYGBn6xYqg0BwYGBgZOBMYP3sDAwMDAicD4wRsYGBgYOBEYP3gDAwMDAycCO8Xh3XLLLdOdd97ZjaUyrsUZ5gN1zgcLa2NF1pyzZtzPxPWyrBwxduf+++/XY489ttXIrbfeOt19991laaR4bcZHMcYo229LmTp4Df6fvV86v4c1ZVueKSy1fy37gudm81hlKsnKUjFu7erVq7pw4YKefPLJrc611qbYLmO3pO0SRL1SWAbjEatjqwLRvWPXoDr2eu3D6pg18bjVMVWM79NFVSoti83NngdXrlzRwcHB4qTs9IN355136tWvfrUee+wxSUe1yGIQKh88VW2pLJiXG6t6iGWJkiv0foyXNvK1PBx7iVmXgrp77e+y0apz1wSIV1WLHTQcEzfffPPNkqTz589LmtMOfdmXfVna7l133aXXvOY1WzXtsrEzqNppm5hOS9pOEs40V1X15ThWg8f2Ui+x39Uejt8t/XAzlVpEdf9kqfqqYN0qlVkv4QGPyYKzGdTNGnSsRi5JjzzyiCTpgQcekDQn7P7mb/7mrXEb+/v7uu222yTNe0nS4XtpfjbFa61J28V7qEr55zaye477jugl2a7uxyxBe1V/r0pAHs+tEoBnAfZLqQWZ6GKNoNmrk8fAeT7777//fklHvzWStn5/nnzyycPjFvuy6qiBgYGBgYFf5Ng5tZjUZ0aVhFiVnZBqlUIlCfdK4RBZ21Wqr4pWZ+1V2IXZ9dKHXct1KixJ/FKdfsyvTtSa9ZGsqtfnXmmkJQaUzRulxoq1ZWnCqP6q5meNWmxNmZZKiu1hidllLGFNWrglVKrnXhssZcS0W2Z+Us1QMrTWdPr06cPzfW5MIs7v2KeMkVQsZZfnQZWA3OitT3VsZjbgejAlW7aXKlbO91kqszVqaR5HNlrtnV6xAe73W2+9VdLxtHRLz+0eBsMbGBgYGDgR2JnhuRij1LfDVBJBViJiyT5VJW6On1XISthQwrZ0tpTcOevrGvZEVFJUVlyXqKSmHoOtbFM9hk5WkEniWXLi3rinaeomyuW+4hh7rGYp+TDLU8XPeG7PxlvtxZ6moZckPEO2LmSj3ENZAuCl6y2tVYYeC+H9ZOk9s2+Rpe3v73eZz7lz5w6P9WssDUX7YfXcifbfnrZBqpMux2Or50/vubSULD8y1yrBdJV0O/aRtrrYboUlx51dEt7z3shKtbEd2g7tMxDLbWXaprUYDG9gYGBg4ERg/OANDAwMDJwIXJPTSs9Nt1chO36eqWCWXP0zWr2mUrLUV0dUKpnYR6qslozJa2JcaDzepdYg1QeZk8QucVFVFfvedXi9JbTWyirI0nF1U9aHLP6Ka1ipZLNwi567dGw79rGqT1fFEGZjZUxjT03EGnBc016YwNNxWll7X2WoXPQz54g1Nc1aazp79uyhCtPhMFHN5f8rJ5isTh3VnJUT1toYT7Yv5aYbqhp5/8dzqlqgvCeMrFZkFWqU7VWuAR1RqmdmxJI5Jjr4cHy8X62ijuFQVmn6uxiysITB8AYGBgYGTgR2Ynh2WKnYQPy/cg/3L3iUTCilVI4gmVRZBYuSDWYVzyv3aR6XYSmotxeeQKk8c9FeGzycoWJ4/LxXBb4KOF7DXDLs7e3p7NmzZV+qc6RtKbAnVZJhc64zIzvnuhdE7vkxK2CQfKYdcLvcT0tsNPab7JbML95DFaut1qeXuWaNyz7nhPdcz2HI0nrP4Wlvb09nzpw5ZHi33HKLpCOXdenIgaVycMruZVZq9xoavE+ySutV4HcvqJ9j92ulVWE7sc904IjrUq17lQwkfrd0b2R9rDQYvG8zlk1HJ1/PLO6mm246PMdJCzLN2BIGwxsYGBgYOBHYmeFFSakXCBwlt/jKX26pzoPH6/QCPw3qmpkeKP5viW4NayIbrLCGsXCOmIpJ2mZ9a4LVq75UDCxKeJ4Tst817tVrArSledwMlI39p3RHrOkL9xv3Vs92vCaIPLMFZef27NvVMZn2gwHVHJf3UDyHzK7SlGTaD465ypu7S8q+zPZOG1QvAL21pnPnzh0yu9tvv13SEdOL7SwFO8c+eO78mftAbUfWNseUsXPp+HOnuv9tf/T7jD1X7Mn7o/ccIJOjrTz2mWEPXJdeikgyLj67srAjss3s90E6nkbODM8pxpbCoY71d9VRAwMDAwMDv8ixs5dm/IXPpABLQ/6FtvRSSaZSLS0bPZshQfsL9fTZ+ZRme8G17OMaOyOlzEqHH73Olmw3vesuSdiZxO3rkOlVjDn2YY10ZQ/N3jiWbHVVyqIeeqmxuC4VU81sHe5r5a2Z9aFiBZW9Mf5fvfbsv5Xthgm3M69nMnyOq5eUIQaTZ+OOiLbIah+dOnVK58+f19133y1JuuOOOyQdZwEV+3f7fA7F/znmCtm5HBu9GiObskaJ+8EeiB5PtCU6YXp1Hdrw4hxWrJzpvLLnnNcuBvfHc7I5WfIO9vx6TPEzg8/gzEZttmem1/PwJQbDGxgYGBg4EbimODwj88i0lGLJwNJLz1uushf1YqiWQL18xgroUVfFfUVUUvoaVF6TmS2lOmaNd2NVcqPHjKp4SbKteNySRBzRWtP+/n7Xhsdrs99kn1kfKilzTYwT90FlF4r9j+Orvl/ygO3ta7ZLtpnFilG7QUbnRLx+zfrKe4P2xYwV9OIlY7+yfvdSi+3v7+vOO+88LAFk78wsfrJiXlkaucrDkiyK9rI4RsNzyzRkcX9GZhPfM+YsMrynnnrqWDvc15WHexwP7xHag9fY4dh+lt6r8gLnfoyJoOlHYXC8cd1cHurBBx+UNLP3wfAGBgYGBgYCdmZ40dPusJEgBVhKofcYmUKUVP0rT51yT+KL/YnnGKyUm3naUQojM8r005Ts2ec1LIoSUJR4iMpORqkps8NUzC7zhlySkLJ+ZEysl3z24OCgG69I9mLp9sKFC5KOCsH6VTqSkivvUtrlokRsLYRfuXdt98nGzDn2db2XsxhHsgCDZVp6bM2gp3G2/v7Oc+SMFI8//vix18gAqowatM1H2w7nL2bFkHLvQ6Lnabe/v6/z588fMju3nz13mLC6ig2M51fxsdRGZbGOHpPjxNiPzDucsYHM0hSfB/ZEZIxgZQvPtAVk4O4j2dqa9v3eax6fkR4fCzZ7nB5XZMrcb+6Lz/EzIPPive+++yTNRYTXav8GwxsYGBgYOBEYP3gDAwMDAycCO6k0W2vHVJqZcwfdpBn4TRofj6kcMyqDZkTVRqZiMrX2d1QPZQZnqsqoLqySoMZjqFbpOSS4j1XgKdWy8dwqvZHXLatLdS1B/0Zc46XjqHqMKh+rL7wODz/8sKQj92OrSnycdKTy8Wd+tfqOCQMyleb58+clHSUlpqrTn0vb6qDKQSTuHe59zjXP7bn804Wee1c6UiVZZen5e/TRRyUdzRmdV2JfqNajujKqLT1/DAy3+7jnL3MyqRJNRzgswe1YtRn3r9eK6kLPhV8ztaTn1Cpsr6n3UJYYgu7zTPXmz2OokftPhxDelzEZsr+jepDOOEZUTzL8qQqdyMItGPZiVKFCEQxD8P7Kntt8TnucXs8s7MZhKXZies973jNUmgMDAwMDAxHXJSwh/rr6F59GVkuimWs5peTKbTtzwWbwNllUxvCq4GoaujM3arodLzmVxHOq6sSZyz9LlrDdylkjtkfprwpalrYdNKqKyhFrSoXEfh8cHGyx3cjWbIQ2A6GzitcynuNjfE7lmOFzM4nbjMEMxa9mKFmS4iqxta8XUaVnIhvJEh1bOvY6MLTA+8DzEOfCDPn+++8/doznMwvkZyVyMzmPO9PQGHTcoQYl7iWGfPQ0A/v7+3r2s599KNHbQSTuX7IZs9qq5JR0NIfeT55Lv/f8+Z549rOffXhuVX2d93TGKKlh8XiyBBQMPOfzpxd47j6R5Xp8mZNUtVe5pmvKUpHRZUlHfIw/o+NL9sz3uJ71rGdJmjUMvedUxGB4AwMDAwMnAtdUHohSerQBUNKgVJ4xPDIcuhL3mIP169HOEq/bCxqugq2NLI1albyZAa+9Mh1VIupeULelI88NpbaeLr0KVo3SJyUt2iKysAvaApZCG6ZpOlwXMzEHj0rS+973Pkm1WzMl1Ph/xQo5TzH4l2EhmTaAY7YdzGOnTcvnxtAJ2g+rYOgsyJau8e6j+2FG6fHHzx544AFJ28l2KT3HfUg7VpX2rFdaxt/RlhivYztMPKdieadPn9azn/3sQ1shEwtLR2voefHYyZDj+tM2THvSQw89dOz9vffee3guU5UxmNuv8bnE+8PMzuMynve85x3+z2cEtU+897IwAWtOPF6Py3ORhbRQc+B++HM/J2JSZ/eFz2LawmOpH1+P4Rx+zTRYXlMz7ttvv72bfDxiMLyBgYGBgROBp5U82pJPVurH3zFYmHazrO3sV13KWRaldAbdGlnKHeqcGSyaeTEySJP2q0xqok67Sn8U7Q0MnKbkQ8kvjpdS3xrPVR/rPtDGEu0KBoN8r1y5stpL05JjtHlxDcmIM89O2o3M+NwWA84zCbjyPMv2KgNkmTTA85TNV5UsmlqBniehmTEZbWQuPqby7GOxzcz+wXklw4ssm4HmZDm8N6Sj58HaoPTbbrvtcL18vSwFl8dOO5XfmwFKR3uPKb/IwDPbcZX0mM8WJl+OY2YAvZ+jcT1o36Otq1c+jNo0v/e4vXfi/va+Mgv0sbZre67M1rKyVD7H9wCf/XHd3F/fR2a7Hje1fvEzX+9DPuRD0uD5DIPhDQwMDAycCOzE8A4ODnTp0qUtr8b4K09pjhJX5tFHO1EVA+Rf8V7ZHiZbNTIptvKAzPTBZINViaHMu5JsjSmGemmBKBVZKqQNIV7P7Xsuqri8LGkwbXVVnFH8bo2X5sHBgS5evLjlGRdRldzxqyXHGKdE6ZGMmHspSoL0MuXYyUKko73o6/kYSutxnqqE32SBWVwUr0PvU9rGpaN7z9ezncVSM70cY794/3hO6B0a7xGfYzZT7Z0I7pUew2ut6fTp04fzZRZgFiIdzb/7bQbi/tJOF48xe6F91PPjuMIsBRvnhew9S99H7Ze9DRmnJ22XWWOKN2ptbKeTjtbFfeU95zbi/WSGV2l6ehoOambsVcvneLw3mBqPmjnv1TiP3t9e89tuu214aQ4MDAwMDETs7KV58eLFQ4nBv7BRWmMchaUlxqVEqXmpmKKlG//a92Kd6NGXsTVmgaHHU8ZYmKmBHoqWdDz+aNdk7AyZHfsTj6VnYsWC4zgt0Vtyo3SbZU9xv6uSHkZW7DeubeWpaQ9N2h6iZOZ1ZmYGMrvoAen2LB3T483zZSk99r9KBE77D2O5pG17HNlg9FTjnqc0SltilHIrhmdJPste4et4LjKvXCkvimqPPnvPeh+zj5EteE4Zs0cGne2dyIirvbO3t3eMDfs6ZmbxM7IaZqLpeU9XmY88j5HNkGHzvvGxsY9+ftG73fvaXodxv3ndGSdLe3cW/0zvXJbiyTL7kJ1zLry29iSN96L3DJ8lfh5l9m3aM8n0WRw3nr/WMzNiMLyBgYGBgROBnXNpnjlz5lAyYF5BaTtOjFkWWOxQOvpVZ5yQf8mpj4/wsZSenCXBEgJjQ3qw9JnFbLlPLGNBCS/LT0dGwewZWTYY2uFYYsN9jMyGdgzGjpGZxf+rvI49+1xWDJLY29tL46einxxF5AAAIABJREFUtOdrur+UgJk1xe3GsX7oh37osWMc25flX6T9hbY8aitiH6p7ICspxD1T2e645vEzz7+v7z5zH8Zr8zr0GKTkHeH5eu5znyvpiPn5vsoyuzAm1uvm60atTlZeprd/Tp06tWW/ivuJ9nHmXc1iOH0s18V7h/a/+PzxZ26DBa/JAOP5flZVtu/43KlYMuNmM98F7yv3hV66ZoDx+e1157nMKOQ5yuyNZn/MPvTe975XUp5xh6WKeF/HPcr5u/XWW0cuzYGBgYGBgYjxgzcwMDAwcCKws0rz9OnTW+quLBCcbs2moVm1YqZ9YkDkPffcc+x6UTVSBYJTlRrVYGyHx/ZSLlUqTaYuisZXBsrSaNxLAE0Xc447c3SgazQDa7NyJ1UCbzrlxCDjKpQhQ2vtmFqCqYOyazIhdM9B46677pJ05OJt9Ynnx2rSLFyE6kirp5x0OQs893wzWQHLOsVz+J5OWpk6lGpcv1L1E+fGn3mtWEmbYUVxXTzn7kNM0CtJb3vb2yTlYQmVo0NWMTxLs7bktMKk3lnguV8dssDkBVkpJM+ln1F2p7cTBgP5I5hCjE5tmRqfCRt8bqa+e85znnOsj54vPyP9ua8T58RryecPw8niM9Rz4HnkOBgmEdfce8J7hckKfP2YBu/uu+8+1hef6zX2fZ0ljPC63HzzzSMsYWBgYGBgIGJnv06HJkjbaW2kbeOqJQL/Ylt6jq63NMSyfAYDDbPrsVwKkyBnpX4MhgtkIMOrCqMyaDmCbLMKuM/GQfdqz1GWusjXJlOmYT1KdmSSTEuVMZdMIl9ieUwlFSVg95vhKJSI4zpZ6vfcMWTFErEl/owlsvArwweyQsDcKwzizoL6mSaJBWAzJsSUdnSSYaCutL1Hvd6WrM1cevvOzM5StPvh+Y5zQum/YjlZKRkmZcgwTZOuXLlyKP07xCQyBc6Pj82KHRt0WqFmhCnG4v3ClHu8p3xuDEtwX8i4uIczBw2G6FDT4OvGEkYM7zFr89z4Ne4hzgk1WAwjyBgziwibxXl+M+clt+c+ef95reNzwnvSTjc97QAxGN7AwMDAwInAzoHnMUFwVmYnKwwY32fSkiUMs0CWomB6rUxaY2oft9UruWIwMSsDwqVtybpKAOw2MqnJoE2HbUrbtkLq32nXin2lHc6uxgzizFLCsU8sPxTtGCwl02PI1gxkqbfYB0u81t/TbT/2gfNjqd/r4jY8X1kQOd3yLUVnbJVFO5kUwftuTeFcJkPP2A4ZhNfSfaxCXqSjMdNGaUabneO5t+RtKZq2+YyFuC9+7+tkoUEc+6VLl7pJCy5evLg1p9lzgCWEWD4pPneqRBAeu0sYeW9FbQrXkBqlKlWWdLQHvZZ+zVihn2tM6kz26XPi+GyLZKks7wtqc+KxnGvOUZZEgXPg+fL4/D7TSnnPmNF5PNz/sb+91HUVBsMbGBgYGDgR2NmGF0u8MJAxIrNHVMfyM7Ipeu9FOxKlf16XxTelbdsjGV1mp6E0wXPJcqLOmd5w9A7M0njxepSwyLyyZMU8159bl5+lsKoS//rzLK1blPYqG940Tbp8+fJWu1lqMUt5ZCCWdmMfGBjPgGwy5di/qmwSvYbjObQVWXo1e/H7bO9wn9OGy37F76iF8HpnAcC8P71H3GdLz1mxYrKsaCeTcg0NUz1ZgrfUnp3D++bg4GCxRJBBe3YcK+/7XumlLJFFhBkeS01J288IBmZnoB+A2yfziW0wRSOTJDAtWjyXKeYYrJ6lQWSKtkrzkyWb4By7XTL8WADW8LG0gWe/MXxW9ZJiEIPhDQwMDAycCOzM8KIEQQlSqsvyMJ4rizljGiX+kmdFYykJkNExSW38vyqiSq+5eA7tBlXi2cymttRWRFUEtypO2pNWKYWauexSMiljAyx2e+bMmS7Du3LlylaRyyhxWxJkfBILcMb5ZEolekJW6xPPYckiesLGPtJLzWzJfc1SfbFP9OjsxTHS5smimhyLtL3fOH+9e4P3KzULmVRdJYbP7C88J97b1d5xHB61OXGc1GYwxs59yJg3ny9ZIdZ4nLRty+LYPedZ0mt/5hg7233pwxCvSUZJJpTtVZ9rj0f6GVBLFNvxPcHXyhMz9q1KbJ89b6rfB89fZk/PYoR72oGIwfAGBgYGBk4Edq+vEJBJ/ZSo+atOhhI/I2PM2icqryF6i2a6dUqDZJhZCSOj6iu9p+JYyUJ5bMZCyeT8ngwm6xtBKTEeRwZUlWzK7BiZV2uG1trWemQlYygtM4tEtDlQSmVByWqdYv/5HW1RWYkX2xltH/HnmRbCoH10Fxse41ez8RiV/YXSeWb/q7wOyQbj/UDvUtpysnhdI7LcpVg8lmDK/AG4T/lcyPZoxlbi51mSfINxvvT0jAyPGXBsw7Pd19eJ2hrb7mxLrTRZjrmNfSSrZdJlFjOWtpNh89nMjD/ZXq3u48wb3WDy76zckcF7fsn+GzEY3sDAwMDAicD4wRsYGBgYOBHYWaXZWttSBWY1rajmoIF4Tf2i6pisanEWfhCRpcSiKpPVuDMDcKUq4/ss0N3tc/6ymnNUHVWq2kx9ueSm21MpVOOrUqnFY3tr6sTjdC6IaiSqRumoweTbsT9MMccAc4aRSNuJx/2e6qgYME1nFbreW7WU7Z2eerjqI1NYMfzG8xmDeRlozLnoqV15v1LFmdX0o4t6FSIQx9ULmCfs8OSAac99VG0z8UTlGBbPYco61pzkns/uG64ln0fxOeBjqAan+tDjlI5Umv6MffE6ZInA+Z2vQ7NCluaRzyZfl3VHM5Umn129FIqVsx9VqPEcz4U/W6vOlAbDGxgYGBg4Idi5PFBrbSupbq+6NxlCZaiPx9AYvcZphU4W7FtPqqWLd6+PlGzWONawhAydBzIDLaVm9oV9zFjvmr4ZPIYS3lLaMGkeZ+V4EDUDsf0sUXLl3u62YxVpS+yWXj2HdEDKQAmULuwMqI7HkA0yLCSOq2JYVUhNFtLA9GD8PDI8O0Gwcrf7QSeqbH9Ua8HX+D+TfvecmNzuUvC3MU3TVrhIDHdgSjmmn8qc1zxPZN6cn2wPcQ2NKuhfOtqrZkm+vsE0YtLRs2kpsT7ZqbRdcZ4sjQ5wEZy3XoC7UTkG9bR71XOFDmVxnqlFu3z58nBaGRgYGBgYiLgmGx4ZS/z1pSvymnRKVXquNaVDjMpNO5MQyCQZhtBzn63sLkZ2LlkobXlZ6iJK/VVKs8zuw75WTC+73tI4s6BY49SpU90EwNF9OHM3ptRfBQ3HPngufUwlnWd2GEqkVaBslhydwcm0W2VBypT6qwK6WSAwEzNzf2RsinNNW3VP62FUtuQssTrtib0QJZ+f7f1sHHF/mrnYrV/atuEzuXq2/tzTHGtVDDkeQ5bEc+L1bAt2SIuva0bnRN2R4Xkc0a4nHc052Vk8rgqDYgmlOC6yaIaU9MJT+IyqUijGta58BLiekbly7zz66KOr9rI0GN7AwMDAwAnBzja8/f39LXtC/HUlU2DasDWeOkvIAt0rCTEryFklnO6Vm6h02JX00vMkrAp/ZsmcWW6kYnS9EhmUfnrpoSpPO0pv8ZgoEffWobW2dU6UUKvE0mZvmQ2gF4TMMfJcziE9fDMNAxle5Y0cx8W9QfsE1ydbF66vpXNL9FEC9nXICr2/eqn6qr3K/mRJEsj+evf1rsmj4/pmyc/NKu0ly0Bmzkn8vwqc532SPecqO5jPjbZVM1La39znBx54QNJRgV7paH1ty6v8HGifjecafl6bQTrlmMsIxfPtHcp0dBUTi59Vz6jM07t6nvr+yu4R99GM+MKFC4PhDQwMDAwMRFxT8mh6t2WJoPmLyxg3thlRedb1UpktSWVZeQnabHpJfHveSfF79is7hjYC2hmkbV06PeGqpL7x/0o6J9OI7dFm1Bs352uXMh1k/tn5jKmytBy9NMm4OO+VDTn7jLYOpsiK1/N31Fxk+z/TMsT3tHXEdWPMJveqmV60+3h+erF6cQwZuO5VX2M7VZHkbM7JjHr234ODA128eHGrCLGZUQSLG/c8LqvYXbKKLOE92yW8Tl4f6YhheX3c//e+972SpPe85z2SjphLbJ9ep26DY4isl/G/ZnQ+1nsmlusx2/OecV9o/832Tq+Aduxr5lFenZM9q9zvd73rXYd9Gl6aAwMDAwMDATsxPMfC9GKyyFboiZYxrspeUGU6yGwcVcaTTLdNT6MqwXQmDRpV1oyeR5fB2JYsEavB72hTW1N4kn3OpNPKm5G2iswGYvRseNM0F4Clbj7rQxUflmXRqWx3TB7cy/CTeZvGY+M5lqz9yswQWWkp7u/KOzTzCuX8M3Eui4dG+FgmWO/Z1qp7cU1MZ+VJnLErFjLtMbyrV6/qwoULW4VMIxPiOmfestJxjYL7QBsemV0WJ1vZblnkNe5Z2+H8alvdO97xDknS/fffL+m4BoNeih5PtXeyZxYzx9iWaIYZ7b+eR2ezcfss09OLVaa2iNlbInhPV78T3svSEbPLilEvYTC8gYGBgYETgfGDNzAwMDBwIrCzSvPq1aulAT1+Fs+RanVlPKZyfugl3a2cU+j0kbmyM31SpZLJQJVpNZZ47Sp0wP2JKc6qOnhVwHHPGahyVukFnnOcve+qhN0R3js0ekc1EeeJx2YOE0xQzGN7Sa+ppq0qM8c19hoxvRFVTXE+GZhdBbobmTrUai6rn6hiimm2rE5j3ypHpJ76tVLzZ8HDVb3F7L72mJfCSnzeE088sXWvxfuFicWXxpwdWz2rMjV1ZVpwcLmPtXt/PMdree+99x57zZxw6DDDPcp7Oar+PFZ/Vpk/4v3rfcQ0aH7P/Z/tHYIq7V5Sfq+xQyo8zrjWnhOr8R9++OHVDnOD4Q0MDAwMnAjsHHi+t7e3lfA1k5po+O8lW6ax2KhS+/SCyP1KyShKwEbF6LLAWUqDVfmMjFEweLgy/MfxM21blTyW7tfStpReSawZqlRSvXXrBb0bTg9FZ4XY7yoBQM9hYo0zRWwrk9KrEI+sXEsV0sJq0pmTFKuIV8452XzGNErSLNVK2xJ3bL/SUNDhoKfJ6LE0g44MlUNFFsDfY3axD48//rjuu+8+SccDpQ2mqmNC8GxdqrRjnJes4nmlFXA/zKqiA4rnzm71Ho/XNIZocBzUAvCZwkD7+JlhJx8mcohJrCvHNmsNYphFPD4ey3P9PttnlSaBx2YJrt3uU089NRjewMDAwMBAxDUFnhu9X+4l6XFNoCCljSyNDxmdJSyymFgYkf1nGi9K8dK2RGrJjRJqVpTQfaOti3r3OC66QjOhcixkWaGyp5J1Rywl+86kzzWu5a21Y+dm4SlVSqoqNVocwxpbcTw+nsM2WE4nSul027bEa9bBtFHStq2Y7uKUXm+77bat/rsP1FTYlpfdE5Xtk9qBuC+XbHjZ51XYRS9UJgtBWQpp4XrEufD/nFO3b3tPPKfSLPHzXrpA+gwwUXfcB+5bTIkVj2GoSXXt2D6Py8J8rH3wuvBZkrGnKoEHkwzEZ0zFRvncy/abwec3Q0Okozm3dmMEng8MDAwMDADXVB7I6OlNq4S4vaKTlPor+1zU1/OzqqxO7Cs9OCm10NYSx+1zaCOsUjFFsFijYUklSoP0WuL4yEpjXxlYT1teFsBPrzZKeNm6sb0lW14mIUdQilwK7q/6Fa/FFGCRUVYppMwguC+kI2n5uc99rqSjdE1mfL5uL5kzJW3aNWknkba9MhmIHINwPVbvqypY2YjrwgBuzmsWRG5Qu9Gz+/WeA9mxly5d2noeZBoYvmZB4wbv1YrNZtoIBq1zbql5iv9Tg2TtQJa2K0vBF+HvM80P049Zc0AP0/isZv/JWPl9LxEF28yuV2nxeG9kHrm2rQ+GNzAwMDAwAFyTl+Yar78q5ZeRJTumjY5MLIt9I0tjMtWMrVVskH3NSryQYWWpxKTc1kUJLotFq65nVHGHWYFEvpKJZV6o7DM9CjNpfW1as0uXLnVTi1X2Cl47O4fzXyVzzmxdtMNEm510fC1tA3K8lW3D7Lv3XTyf8+R18ZxkCXQZK8iiuFncHz0EGf9U2Xbj/2uSlBtVDCRZXE+yf//739+V0g8ODraSYsd94rWjHYn3WhY/SLsR+5F9Ti9Qem3aDhf3gcdaFWD1a9x/XkvvM7/ns9H7IfoquA8uOHv33Xcf66vPieviz+g7wDR1RhaHx/1A1p1poyrvdzK9+F0WC7iEwfAGBgYGBk4EdmZ4p0+fPvxVziQf/lJTN5tJWvSoosRVvcZ2WCaGtq0oafG6VWaNzGuS0l9lZ8rioir7WJappIqVq7ynIpjxoirQmXlYsc9rdONR4u6VeHnqqae29k4vDqsqTdNLem1QAiYzl46kVnr2seRP3Ac+xzYzzrX3WZS0qWWoCo/6fbTH+Xq2V9DDz5/HWEHbO2gbNHpZaDzWqs9LLCwbX7ZG1OZcvHhxMZaqsitFUNOzJoF1ZdOv4nOlI4ZP2xm1JzFm0PZfr53b83rRHhj/Z2FUPjO93+JaO0n0PffcI+mI6bkNjyFqmDz2mJg7fu79yOd6HDO1A9ROZNqPan/xevH/uC5rWd5geAMDAwMDJwLXxPAyG5BRsTHaxSIzqbwzl7KZSNuSNSXTzHvJ/y+xzyz2g1lmqqwWmacVPeAqu1k8h96fVSHGbD573o18n3l7Zn3NsmUYWT7P2M6VK1e2GF1WKJX2nZ7XX2Xj5CuleWm71A/ZgRGZhEu6UOqntsBem9KRZM9YMGbHyPpotmeJ2xlWmNEjMjx6EFY2xF7ZG+4hrm1c+yqejbacng2v52k3TVP33PgZ+8L7Jp5T+QowXpI2L2mb0XGfuQ2zqHg+7zH32f2IDIjxtvQ6pl0stk07s6/j95mdkf33/qps4b01YN+y9a3KnFUe+vGaaz0zIwbDGxgYGBg4ERg/eAMDAwMDJwI7B57H9FGZSrNKPkpq2lNR9FJJ8T3VDnzNKvP6O1N7qlB7iVhpBK8q/2alUOiwwTFE0CC/VIk6c9VfCuCOqILIe27Ia1JIRVy5cmVLFRvboxqNr5mTxVKCA39v1UyW6oltMIwjqvysWowqxHiM58JqTOkoOa9VTEwPZpUq01PF6/i6MQA3u75Uz1eVHKHnBORXqsXWqJOo8s6c29Yk/XVIC9XhmcNEdq34Pq41r23VHtVrmUqO6cB4HYaPxHa8D6yutBMLn5lSnRSbZhL2PR5Lhz4m0cgSQlDV6PbZn8wkwXlliEjmqObv+IzMVJoMH+olwycGwxsYGBgYOBF4WoHnlCSlWrKihJW5KFeSPaXBzGBevc+kCksLliYYPJylGvKxltzpGs0+Z0VxqxRc/j72sZK015RrqZgR2WiWALhizFnSYEqBPanfjgdV8H3sb1X0NrbF/6uwEDqEREmxkkQ5B1mAMxP/cq6js4LZGZ0IGCrBYF/pSIql67rRS+pdpXoim8+k9CqBMp3EsnOqdGSZU1blUMXzn3jiiUO2m7GZHpuM14tYKp9VhTjE76r70esWNQp2EnGKLzs2eT9k+50OSJU2wuwthsMsOREx9VzsL9OgsY3smVWtYU8jWO2dyoFNyu/pkVpsYGBgYGAg4JpseJR8e7+ulW0oS9v1/7d3Pr1xW0kQf5KsxPHBSWBsECCH/f4fa6/ZIEiAOLBjaWZPJbV+rGpytNhDdrouI80MyffIR05X/6kmjhR1p3gErRsnGkyLnkysk1wS42NKs7PSyJY4dqFuw3hm8q0n6bY6j/TqGEAqGu1YYfLdE6fTaVOo7eJHjKnSyuykxRLD6yTRdC5lHacmuGttWzlpv2R6laVprajxp6zxJIvmrFkej+ugpqOz6SnnntZDPTYl5bTOHeslwz8al1vr5bXungMPDw9PjETXqc45NXNOc65j6Mon6nxq/Cq1FNIY9d3KQhXP0/7E8HiNXZw8eTl4PznvF59JvE6uVIdC90l+sSKVCAku1p+8T13ORxJdP4JheIPBYDC4Clwcw1Px+Vret53YA1tDdBmee7G8LrOPlrDbRlaXLBtaQmR+dT8EpZccO0x+bxaRulYie37xTgg6NfN0123PSuq26RijcD6fLWPu3iNrcwWnewyviz0JFPzlNa3zInviOVCcyQkA67N0b7CYue43FfOKNdQCZYoh8L464plJzZ1dPI5j3YshViTJPge2ParsiXE9jsVl8vE8MEuWa6ZmyKa8A113xz7ETCUmoJguRb2dF4X/0+sh74FrcMvGuToXuj5urdJjkZ757l5MmevuOZH21zXS1fmrLHpieIPBYDAYFFwcw3vz5s1Gxqb6gFNTxSPsIvn+uyxN7i/JztRtyAbr3Oo+nFRWspa5bwfG+WhRVobnmkHW43XxksQKUo0i/3borLMaRzq6H5f1mWJN/LyL4fH9jm1QkFfWsWspJchK5yvXoWMDfNWYO4+J3tPYWBumsbuMxRRj7eIwAu/f5CWonyWZqI4N1Hs6CQArO1z3hCz8mpFIbw3jsK4GldJqYuBkZ9pGsm71O4yDMfZUmZjGQok5ZW2K8enzCtbD8Xmn9VbXLBsbs4ZT+3RZwXw2UZSf/9ex0QuSrmsdI9con4l17Clj+QiG4Q0Gg8HgKnAxwzufz614tJD8+c6yT9Yjfc2C25Y+7U6dhRYnszaPxKQSHDPjeXKtUer/a21bJKV9uRglv5vifa6mjnPmdyuTYOzh/v6+XRN1vLSe3XjJFinUzO3dcWjxuznTMiXDq3OmIkRqq6SYylq5DdGeStBa20avR1o9dUypvro4k2uJ1B2/bsOM0a71CzMSv/766zhu1XCmOM9a2+xS7t81ACaLqc1oK8Qof/755817bLLLrMI6Ro2FzVqVral2PpXhMTZJj0JqWrzWVoycKikac2VPZK4cRxpzHRNjn7yunbdFx2cstI5R1+dI/e/mOIe/ORgMBoPB3xjzgzcYDAaDq8DFLs3qWuhKC5JkkEsiSLJce4Xablu6MPRa07a1X8rnkCJ3/d1I+RkcdzJhTBqgq6G6W1heQfduSv11uMSlkF5dgTPdXHvuzDoPt4ZSJ3Cuh67j/Z6QrBPXleslJXs4GTyOWQkHzn3H86TrzXVGUfO1tskBe+7DCq5RJsu4xKtU6MzjdlJm/I5Lpb/EDaXxMCGt7o/uWd7LTsQg9Vvk53Kv/f7770+f/fLLLy9eGcpw5S8am/Yn16X+d+EZuT+5vilw4O49lsjwmSi3e5cQQvlFSStqLrXvI0XRhS40xNAGn4lyX9Yx0jVbx7uHYXiDwWAwuApczPBub2/bNOqjDK+C1gutZCZduF/zvdYy1cogc0sSPG6sHFNqLeS2oZXJALdjhSndPpUrVOy1+HGJDimBgtb7Wn2pCXE+n9eXL19iCnvdfq9AujJhWvJ87URoU7dyvSbx6jrntJbqGLlfynaRATpvBL/jGLfAJAwmVDAhqq4xWfJJ4NwxSs4reR9cOckRr8DpdFqfP39+GreO4xie9sfWX11JC+93rgu3LQu0lcSifbD0YK1t2QHbRYk9VeFxMnw+d5jU4sTY9RmZXkpQqd/R8ViO4O5Nl+RV98/7qr7HBD4mq1SGx+v26dOnKTwfDAaDwaDiYoZ3Op3a9im0QAimpbv3UixPFkT1j/PXPll0LrVcSDJKdQ5JnJbxCWfdcgypbYeLGTIOwniZS+HXWFIM1G2TYneu9IDbOJbhcDqdnqxMt3bIZphazuLbtbYshSyD3gPXKFXQeSPLqetFn7G4lqzKbcP4iObHc1sZHssEGPNwMeNUPMzYB1lDNybO23lMUky3E32vTC+xvdPptP78889Na6Ya62SrG64ZJ2GWPEqpPKkyr+++++7F+UhShnUbFZiL4Wn8ep//r5XvMcoS6v9aRK4xcIyat+JvNQ5HNrZXulMZLJ/TAu+J+pzjfanryLIE1+y3PuOH4Q0Gg8FgUHAxw1tr6yevv9gUXt1jem6/SZSYmUI8dt2my85KbWgElyWaMo2ShJUrjk/+cCf1lLJAnXVDpNjTEVFfnvOUyVjfq1b0XhwvtZupf9PX38mEpXhryhCsLEfxF2bUKbvNCRDIopVVnBh3BYWe6VHgvJwEF/dL6aoaMyTDo6QZGx67gvAkXea8EInhk53WMfLcdhb66XRaf/zxxyauVNlTYnb63wk5MFbsYttrPa+PH3744ek9FVy7rNW678qA6BXQNlxLtfC8y2p2c1Asca1tzJbzcnkHHJMTiEjj4dj4G+AkHclUlQmrefBedHN/8+bNoVjwWsPwBoPBYHAleJV4tH65XSNGWRFkUSm7sAPjVhTsXWsrvcQ4kLMqUiYnUd93MYe1trVNLoaXshhTK5t6bH6WJIycZBL9+102ZcrKpM/eMbxLJNjI8Oq1ZBwktUKpSJYvmYPL0kxMOMmrrbVtkEkhdaHGUoQUX+Y1dN4BgW1oHHMls0vM3p07MvpOUkxIYsGpZVfdT5Iyq3h8fFwfP37cMJJaF0dJMWbeCq4WMAlNi93yebfWs5fpw4cPL77bNQ8WmOfAc1DHyHuZ86QgdddaivFZl2mpz1hvp9gaGyDX60aPWbqPXVY/W2jxPnNr59JazrWG4Q0Gg8HgSnBxA9j7+/uNZVRjIPpFTmziSM0WP+uszNSugs00u/obsrZUA+e2vQRknR3TTNY/LXpnNaWM1ZSJudY2G3PvtW7jrEqH29vbjbVXrVmuDVqgzNqs4DVkxq8bf2LRjH2488S1wfiIY3gJZC6d8DhrqRx74tgYa091gWvtq88IHZMgoyCTcfN6eHhohcA/ffq0ycQVG1jrZaZhPVbHtJJANo+jc1GP8eOPP6611vrpp59efEaPSAWvCz0wYlF1XtqGzYOZia1rrOzRtTwzXWvLXOvaZdxc10nPdbVIYqxtre3zNHkyXB0e6xr16rw7XCeXPIuH4Q0Gg8HgKnAxw7u7u9sYw6h6AAAPXklEQVRU+ddMpPqLv9bW3+pa/uyphqTY11pZhzM1I6zbp0awHePaG7OzUsmo9uJzbmyprtBlKaYs15R5udY2FsXz5+rwaDXvZX/W+K+z4FJch5ax09LkeWD8QOOuGb6aW2re6dgTW8iQObpYFGM2ibm6+XFeLs5H6DzKktc86fVwbCTVX3b3ZMrETvWtbj6Pj4+7MRlel9rGR+yIDKg7X3u6q7x/an2k1pFq5sSsyKLr3I/G4+oa1Wfff//9i3lQj5XeqfpdMnwqu9Trzxh7aj+kc8emsvU4Gru27WqUk3eA+1xry0KnDm8wGAwGA2B+8AaDwWBwFXiVeDQDwrUA9LfffltrbRMm6N5wxcN0fybpp0p3RakZGGdgtguyc/8sNXCg6ywlTdS/jxZH1v1xzskd6o5HFyOTTKorg64YusPcNi7NPc1RCU90xXRC0ETntkhCxamAeq3nVG6dY3aIluuna0dCF7BbO3Tn89ppHy7RheczdZF2Mnian17plnZSfUkQ3K1rgS4mJ6RAsL3Nly9f4vWVO5znqa4dvff+/fsXY9H7zjWb3Gcp4aVLfKFrz5VQpXXAongnvZUE5+myrcfjPHSd5crUq0ta0pgUotJ5ZPlNtx747HehFCal6DMmh7nSGZcMtYdheIPBYDC4ClyctFItLVfMS/kkWStJ0HitbSJLsgxdkTUZlsYmi8tJWNEiSOnoLiU2yQ91iTd7wfGuOSVZBxmEY8McY0pDr3NgiUlKeHAiA5eICnTNdRnMJxwzTy2dkmyXEz1mGrrOuROcJsiIjpSy7IlW1895bCbAuHuGbYaYnMIkhmpxk/WkVj+OybOMIwkR18+6EqB6rLdv3z6NU14kJxfIezaJi6+1vf4szBYz5nmr31ETVQla61rrOVgT+jhnFlXTa1DB9jmpdKeCTVUFPRu1T9e4VcxO26osguLOnVjGXunOWtvnmebDNkSuwJ1elSMYhjcYDAaDq8DFDO+rr7568v06/7WsIvqaZSl0slZMUaUl3MkPufYYa+WmhA5Me3aWffLnM4bn0pGFJATs4j4pZb6LjySGl9KU18plCPquLK6amk2Gt1cAWltL1fcEegHI0pwVm4pdk6jzkXiV4Nioa/9Tj5sKtbsx8/iuFUpqseIK6snkGcNhDM95P8gkiTp/jo0eE1eE7dp6JQ/B3d3d+vbbb58YkdiFk5tirIteKCdWrvGRZbBEo64PNij99ddf11pbaS7Hnpynyv1fkbwM9LZVdsjrrWezxuzEqgVK14nhqfBcDNBJNqZYNUup1to2gOU8NIdagsLY3UVylYe/ORgMBoPB3xgXMbzb29v17t27jUVULTgxAllA+mXuRFzZpFPYk/5aaxujo3/aZaLRCqcV6HzCHMteXK4isUEWebq2MClzNFmj9b1kqbpifMZz2PBTzM7FMYSHh4eW2SgGvNY2Tsb5d3BWeroeqfh+rS2bIUOhx6H+zRjXkViU4K533datAyGJpLvYVMrKZMZqd81SsbwrjqflzUzM6h1wcfMuS7Nm+Io1OYnBlGHNbM26fZdfUPddIQYkxqO4otiSa+vE+31PLrAijZHroJ5jMjyeX10nlx2s9/Sq+YrZ8Tnr9sPMfOZ1uLHwf85vrednkFjnJc/iYXiDwWAwuAq8iuEx46laFfpbVhhbtDurue6/+7/LgBPEKNn0sFppjOt1cSWCn6X2LW7ce2KqnXg0X7sWNmSujOmwVrH+TabHWJ6r3dPrX3/91dYa3t3dbfz5XVwu1eLUYzDTbs9SrEjC5qnFVX1vLw7n5pOYPo/vMi7Tq47XrW9a+mQDnWdhT8i7fsZzwzhgZS6MY3V1eDouaxDrtU7tgFI9cJ0/z3vKTK3/i/EwG7zeC2u9ZD2pnVbXQi3F/xnn7jxPnDszPatsGCUNmaXJGsiav0FWmzwm3dz53HGNe/UsUobsSIsNBoPBYAC8qg6Pv8Y1y4eV+czadFmGyTqmheis+MSaUnv5+p6rLUugFUirthO4TgoUtHyrFZOUVY6otjDrNbVXqmyNWZpkAy6z0zXoTXEQrR0yVMdM+X9q5+TmnDIvqfZQ98fvkjVW8Foys85Z6UlEOTHMOkbGHlNtpaupZMzWZWVyHEctZVcDt1eTWM8V41edlX57e7u++eabp+PoGVPvaTEQsijGzVwW455ih2P6YkVkYB2L13lmux4q/tRzy9gj1ag6FspY/RFWqGOz3o45GS4Gn+4nPufcM4QZ5NpWsVH3XGHc9giG4Q0Gg8HgKjA/eIPBYDC4Cryq47kgSlwpOqXFGASXO8K5RJKLJyV91O+QnicXZP2brgoe39HoJLHUFZ4nlxznU10+LpGlgu4Dl26dCpCdpBQLy5PLzKUU1+924tHOpVn3l8R1KU9XzwldO8mV6UTLU6duzrETyOUadYXpTNBJfdDcOeE+6Kbqisd5zXhthSN9H9O1cdvQndi5zuq917npb29vN0XKNdlCc5Z4NOHckgyzuA7wddt6PHbmptvYhR54DbnNEeyV4bjyJH63E/nWeyzy53x57up+XSJV3Xe9N1J5DYWm62+ME6g4Ksw/DG8wGAwGV4FXJa3Qeq4WggKwZC8UQXYBaic941C37djfWrmdylo5WaFDEsbtih9p2aQicsdcOB+yDQaz+fda2wQUxwoc66vfcYWtLDHYa9NxOp0283GtULh/srgjZSNpm7p2OF7XQojHSwF5rj8n5s3vktk5JkRmmhJQOubNwnOhs/D3urO7bXhuyMicOPqRJBlZ8GIbTopPzx3OiWy3jiHJdVGomfNca+upopBxV36l88IWQiyTWMsL9Nf36a1y27IsQSzNlZjsJat01yA9AzUvx7Ipb0aPjGt7pHKES9qtCcPwBoPBYHAVeFUDWP5dmQKtOf3flQCwkD0VvbpUdlovKR5XQauSsRXXcsXF5uq2tM5dWnoqIu8s7WTJkR24+fKck+m5VPa9tPfK8GiFdczrfD6vh4eHyMDqe3uxziPC2Yl1OIs0xfIYa6v7I3uh1JgrS9kbfzcvxjRYeO7izSmVna8uns6xswzDxf0oeM7jVsbkSk4S2zufz+t8Pj+xKsF5KFgQrebUWrdOCiutX56fWmQtpqMx0HPlmp2m2LqLwxOp3IfPDteuh9JlYmssJq/vMXZHsWi2UqrHY3zZ3UeExLYpyq351Cbj+kzHeffu3eEmsMPwBoPBYHAVuDiGVwWA9ataf7kpNqzPKE3lmnimdhJOiFWgZUMrwsUKUgt6Fq12WZopA6pjeLTwWWhaLW1a4YmFOJklxuNS0bLL7EyirS7Oqf1XS3iPWfOauqagZBXcZz3ne8XqruCcx2NsgUzfZfgSZDMOid0yc9VZ6YnRu2J1sr49L4Qr3E0xO8dCU5Nnntd6b3JdPTw8xHN3Op3Wx48fn5qsdoLw2ocYivbvxM/FXvj84X0vZqQi6DoX5h1wHPV8MY9Bx1dmu5iLE2NITau5plx+A71uOi7jdfVvMb3EBnXu6zVNsUmhy5XguuYzss5L50vr4f3795EBE8PwBoPBYHAVuDiGd3Nzs/FBV4tEv+q0gPRd/Tq7OrW9172mlPW7zscsyFois5Pl5cSV6/wdEnurY6J13GWYpjij0GVGJqZK9uaEoMkOeI0dk3RzdqjbunounieOpZOAOiI0XvdVj5daMHVSX6xBTRml9T0norzWlnm7sdOz0DH81BiT57zLlExeCbdvF4Ou83Gxm85rQ5xOpxfxM5eZLDB+qOsj5qJY0VrPmYFiLxw/2/jUJqR8VlACjCyqHk8thfQ/x1rPScrCTc+Oum1qgpvkw+q82ACWYtIuezK1FGOrNtfWibXI9A64zOX6/Bnx6MFgMBgMCi5meHd3d0+/5F3WJBu/spWQE1VN8SpaKPV4e1mZnVg1LR4yilqnk7I0Oe+OrXE+tMqclZIEh8k+XHuYVBflrMa0vz31i7q/0+nUfv/m5mZjRXcqHylr7QgrOHKO0/UgSzhicacs2voe1zHH1q2DLs7HMaZ6RmbYOZbFdiycl6v32ss+dfW6SWDa4Xw+r8+fP2+yGR3D0zF4D7jmqlX0fq1npseMW8b63P7oLWJG9FrP3i2BMS6Ouc6RXpoUw3O5EfxfY+d6d+9xnfH6u+bfnFfKSq1/M/7L/+sY+aw6yu7WGoY3GAwGgyvB/OANBoPB4Crwqo7nKd10rWfKS2rPgllXwExazkQEuRacO4UuH0rfdEXkdN+kVOAjcG6dTli6wr2fkkY6UefkBkkCrXX/qRzBiQzQfbfnajyfzxuhXidCzHIHge6Puh+Xll336f6nCEKSfutcmixS77bhGuVxuE+3v+TK7MTY96TsLnFPCk4mjGuFSTHuOXEEEi1I577+zSQIJhFV15gSWPQ8S/0quyQpSm/JLequFxPNkpvSye0x1LAX/qnz4PXgOqz3IN9jGZnOmSvzUHE459PJu6VrSreyS8bpQgAJw/AGg8FgcBW4mOG9fft2k67vCoEZqHTMjtukBA3+X6VwWFxJeTInyLuX0uuY2BH5rKNInYcvKQQnW+sSUDifrvDzv0l0qcLixPl8Xo+PjzHt2M1NadMss6hIyRW0LjuWwf1ynTkJtjqv+sr3eUx3nA5kTWIoZG+daEHquO7W8l5Jg9tWY0rMvPN6CF1rKTE8x+w4Pl4f3ieuzYw+qyULa2WZxHo83ltaM04wOyWasFDfMW6BHg0+Hzq2JiTpr7W2ohUav9ousV1PPZ9JeD6JptdtkgweE8jqe0fuH2IY3mAwGAyuAhdLi93d3UWLeK3M8FiW4Py4tNKTbJSLI1Eu6Ui7FiFZr/U4e9bEEetZ2ItV1s9SbC2JPLv97smSHdmvs655nfbO0ePj4yaOVC39vZRkx2ZT0XiKj1Rw/KnhrCuY52eMKxwRgk7jcec4CY67Yv89EWR6FroYCK1zV+azt40DY+2dcLKeO12pTLo/yPAqm+G9JYi1sNWZe+6oVQ3FHFwZRCpl6Ir6+TxLLc2cuAXXGWXWHLPlfaP56FywlVEt7UheJ8U3xX7reWRLJK5R/V+9erz+9/f3h9neMLzBYDAYXAVuLslwubm5+fda61//u+EM/g/wz/P5/A++OWtncACzdgavhV07xEU/eIPBYDAY/F0xLs3BYDAYXAXmB28wGAwGV4H5wRsMBoPBVWB+8AaDwWBwFZgfvMFgMBhcBeYHbzAYDAZXgfnBGwwGg8FVYH7wBoPBYHAVmB+8wWAwGFwF/gPTHy3NM8coRgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\"\"\"\n", - "============================\n", - "Faces dataset decompositions\n", - "============================\n", - "\n", - "This example applies to :ref:`olivetti_faces` different unsupervised\n", - "matrix decomposition (dimension reduction) methods from the module\n", - ":py:mod:`sklearn.decomposition` (see the documentation chapter\n", - ":ref:`decompositions`) .\n", - "\n", - "\"\"\"\n", - "print(__doc__)\n", - "\n", - "# Authors: Vlad Niculae, Alexandre Gramfort\n", - "# License: BSD 3 clause\n", - "\n", - "import logging\n", - "from time import time\n", - "\n", - "from numpy.random import RandomState\n", - "import matplotlib.pyplot as plt\n", - "\n", - "from sklearn.datasets import fetch_olivetti_faces\n", - "from sklearn.cluster import MiniBatchKMeans\n", - "from sklearn import decomposition\n", - "\n", - "# Display progress logs on stdout\n", - "logging.basicConfig(level=logging.INFO,\n", - " format='%(asctime)s %(levelname)s %(message)s')\n", - "n_row, n_col = 2, 3\n", - "n_components = n_row * n_col\n", - "image_shape = (64, 64)\n", - "rng = RandomState(0)\n", - "\n", - "# #############################################################################\n", - "# Load faces data\n", - "dataset = fetch_olivetti_faces(shuffle=True, random_state=rng)\n", - "faces = dataset.data\n", - "\n", - "n_samples, n_features = faces.shape\n", - "\n", - "# global centering\n", - "faces_centered = faces - faces.mean(axis=0)\n", - "\n", - "# local centering\n", - "faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)\n", - "\n", - "print(\"Dataset consists of %d faces\" % n_samples)\n", - "\n", - "\n", - "def plot_gallery(title, images, n_col=n_col, n_row=n_row):\n", - " plt.figure(figsize=(2. * n_col, 2.26 * n_row))\n", - " plt.suptitle(title, size=16)\n", - " for i, comp in enumerate(images):\n", - " plt.subplot(n_row, n_col, i + 1)\n", - " vmax = max(comp.max(), -comp.min())\n", - " plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,\n", - " interpolation='nearest',\n", - " vmin=-vmax, vmax=vmax)\n", - " plt.xticks(())\n", - " plt.yticks(())\n", - " plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.)\n", - "\n", - "# #############################################################################\n", - "# List of the different estimators, whether to center and transpose the\n", - "# problem, and whether the transformer uses the clustering API.\n", - "estimators = [\n", - " ('Eigenfaces - PCA using randomized SVD',\n", - " decomposition.PCA(n_components=n_components, svd_solver='randomized',\n", - " whiten=True),\n", - " True),\n", - "\n", - " ('Non-negative components - NMF (Sklearn)',\n", - " decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),\n", - " False),\n", - "\n", - " ('Non-negative components - NMF (Gensim)',\n", - " NmfWrapper(\n", - " chunksize=10,\n", - " eval_every=1000,\n", - " passes=5,\n", - " sparse_coef=0,\n", - " id2word={idx:idx for idx in range(faces.shape[1])},\n", - " num_topics=n_components,\n", - " minimum_probability=0\n", - " ),\n", - " False),\n", - "\n", - " ('Independent components - FastICA',\n", - " decomposition.FastICA(n_components=n_components, whiten=True),\n", - " True),\n", - "\n", - " ('Sparse comp. - MiniBatchSparsePCA',\n", - " decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,\n", - " n_iter=100, batch_size=3,\n", - " random_state=rng),\n", - " True),\n", - "\n", - " ('MiniBatchDictionaryLearning',\n", - " decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,\n", - " n_iter=50, batch_size=3,\n", - " random_state=rng),\n", - " True),\n", - "\n", - " ('Cluster centers - MiniBatchKMeans',\n", - " MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,\n", - " max_iter=50, random_state=rng),\n", - " True),\n", - "\n", - " ('Factor Analysis components - FA',\n", - " decomposition.FactorAnalysis(n_components=n_components, max_iter=2),\n", - " True),\n", - "]\n", - "\n", - "\n", - "# #############################################################################\n", - "# Plot a sample of the input data\n", - "\n", - "plot_gallery(\"First centered Olivetti faces\", faces_centered[:n_components])\n", - "\n", - "# #############################################################################\n", - "# Do the estimation and plot it\n", - "\n", - "for name, estimator, center in estimators:\n", - " print(\"Extracting the top %d %s...\" % (n_components, name))\n", - " t0 = time()\n", - " data = faces\n", - " if center:\n", - " data = faces_centered\n", - " estimator.fit(data)\n", - " train_time = (time() - t0)\n", - " print(\"done in %0.3fs\" % train_time)\n", - " if hasattr(estimator, 'cluster_centers_'):\n", - " components_ = estimator.cluster_centers_\n", - " else:\n", - " components_ = estimator.components_\n", - "\n", - " # Plot an image representing the pixelwise variance provided by the\n", - " # estimator e.g its noise_variance_ attribute. The Eigenfaces estimator,\n", - " # via the PCA decomposition, also provides a scalar noise_variance_\n", - " # (the mean of pixelwise variance) that cannot be displayed as an image\n", - " # so we skip it.\n", - " if (hasattr(estimator, 'noise_variance_') and\n", - " estimator.noise_variance_.ndim > 0): # Skip the Eigenfaces case\n", - " plot_gallery(\"Pixelwise variance\",\n", - " estimator.noise_variance_.reshape(1, -1), n_col=1,\n", - " n_row=1)\n", - " plot_gallery('%s - Train time %.1fs' % (name, train_time),\n", - " components_[:n_components])\n", - "\n", - "plt.show()" - ] - } - ], - "metadata": { - "jupytext": { - "text_representation": { - "extension": ".py", - "format_name": "percent", - "format_version": "1.1", - "jupytext_version": "0.8.3" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/notebooks/nmf_tutorial.ipynb b/docs/notebooks/nmf_tutorial.ipynb index 7a9de1ee86..7a5b3da889 100644 --- a/docs/notebooks/nmf_tutorial.ipynb +++ b/docs/notebooks/nmf_tutorial.ipynb @@ -38,17 +38,44 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", + " return f(*args, **kwds)\n", + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", + " return f(*args, **kwds)\n" + ] + } + ], "source": [ + "%load_ext line_profiler\n", + "%load_ext autoreload\n", + "\n", + "%autoreload 2\n", + "\n", + "import time\n", + "\n", + "import logging\n", "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.datasets import fetch_20newsgroups\n", + "from sklearn.decomposition.nmf import NMF as SklearnNmf\n", + "from sklearn.linear_model import LogisticRegressionCV\n", + "from sklearn.metrics import f1_score\n", + "from sklearn.model_selection import ParameterGrid\n", "\n", "from gensim import matutils\n", - "from gensim.models.nmf import Nmf\n", - "from gensim.models import CoherenceModel\n", + "from gensim.corpora import Dictionary\n", + "from gensim.models import CoherenceModel, LdaModel\n", + "from gensim.models.nmf import Nmf as GensimNmf\n", "from gensim.parsing.preprocessing import preprocess_string\n", - "from sklearn.datasets import fetch_20newsgroups" + "\n", + "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)" ] }, { @@ -60,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -88,14 +115,23 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-10 14:00:40,291 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2019-01-10 14:00:40,933 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", + "2019-01-10 14:00:40,983 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2019-01-10 14:00:40,984 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2019-01-10 14:00:41,000 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + ] + } + ], "source": [ - "from gensim.corpora import Dictionary\n", - "\n", "dictionary = Dictionary(train_documents)\n", - "\n", "dictionary.filter_extremes()" ] }, @@ -108,7 +144,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -143,22 +179,30 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 8, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-10 14:01:06,440 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 14:01:06,829 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 12.4 s, sys: 1.08 s, total: 13.5 s\n", - "Wall time: 13.7 s\n" + "CPU times: user 1.44 s, sys: 0 ns, total: 1.44 s\n", + "Wall time: 1.43 s\n" ] } ], "source": [ "%%time\n", "\n", - "nmf = Nmf(\n", + "nmf = GensimNmf(\n", " corpus=train_corpus,\n", " chunksize=1000,\n", " num_topics=5,\n", @@ -167,7 +211,7 @@ " eval_every=10,\n", " minimum_probability=0,\n", " random_state=42,\n", - " use_r=True,\n", + " use_r=False,\n", " lambda_=1000,\n", " kappa=1,\n", " sparse_coef=3\n", @@ -183,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -201,7 +245,7 @@ " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" ] }, - "execution_count": 31, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -219,16 +263,23 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 10, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-10 14:01:20,890 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + ] + }, { "data": { "text/plain": [ "-1.6698708891486376" ] }, - "execution_count": 32, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -250,24 +301,1340 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "56.99992543062592" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.exp(-nmf.log_perplexity(test_corpus))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "lines_to_next_cell": 2 + }, + "source": [ + "### Document topics inference" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "From: aa229@Freenet.carleton.ca (Steve Birnbaum)\n", + "Subject: Re: rejoinder. Questions to Israelis\n", + "Reply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\n", + "Organization: The National Capital Freenet\n", + "Lines: 27\n", + "\n", + "\n", + "In a previous article, ohayon@jcpltyo.JCPL.CO.JP (Tsiel Ohayon) says:\n", + "\n", + ">I agree with all you write except that Terrorist orgs. were not shelling\n", + ">Israel from the Golan Heights in 1982, but rather from Lebanon. The Golan\n", + ">Heights have been held by Israel since 1967, and therefore the PLO could\n", + ">not have been shelling Israel from there, unless there is something I am\n", + ">not aware of.\n", + "\n", + "Oops...small mistake. Thanks for mentioning it. I just read on\n", + "the.Israel.line that a village just got shelled by terrorists last week \n", + "and some children were killed. I guess the terrorists must have gotten by\n", + "the security zone. Just think at how much more shelling would be \n", + "happening if the security zone weren't there.\n", + "L8r...\n", + "\n", + " Steve\n", + "-- \n", + "------------------------------------------------------------------------------\n", + "| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\n", + "| Mossad@qube.ocunix.on.ca |\n", + "| <> |\n", + "\n", + "Topics: [(0, 0.23671633439138084), (3, 0.3195468735417666), (4, 0.44373679206685274)]\n" + ] + } + ], + "source": [ + "print(testset.data[0])\n", + "print(\"Topics: {}\".format(nmf[test_corpus[0]]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Word topic inference" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Word: low\n", + "Topics: [(1, 0.27833206789570997), (2, 0.7216679321042901)]\n" + ] + } + ], + "source": [ + "word = dictionary[11]\n", + "print(\"Word: {}\".format(word))\n", + "print(\"Topics: {}\".format(nmf.get_term_topics(word)))" + ] + }, + { + "cell_type": "markdown", "metadata": {}, + "source": [ + "### Internal state" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "lines_to_next_cell": 2 + }, "outputs": [], "source": [ - "def perplexity(model, corpus):\n", - " W = model.get_topics().T\n", - "\n", - " H = np.zeros((W.shape[1], len(corpus)))\n", - " for bow_id, bow in enumerate(corpus):\n", - " for topic_id, proba in model[bow]:\n", - " H[topic_id, bow_id] = proba\n", - " \n", - " dense_corpus = matutils.corpus2dense(corpus, W.shape[0])\n", - " \n", - " return np.exp(-(np.log(W.dot(H), where=W.dot(H)>0) * dense_corpus).sum() / dense_corpus.sum())\n", + "def density(sparse_matrix):\n", + " return sparse_matrix.nnz / np.multiply(*sparse_matrix.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Term-topic matrix of shape `(words, topics)`." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<7081x5 sparse matrix of type ''\n", + "\twith 1839 stored elements in Compressed Sparse Column format>" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nmf._W" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Density: 0.05194181612766558\n" + ] + } + ], + "source": [ + "print(\"Density: {}\".format(density(nmf._W)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Topic-document matrix for the last batch of shape `(topics, batch)`" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<5x819 sparse matrix of type ''\n", + "\twith 3489 stored elements in Compressed Sparse Row format>" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nmf._h" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Density: 0.852014652014652\n" + ] + } + ], + "source": [ + "print(\"Density: {}\".format(density(nmf._h)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Residuals matrix of the last batch of shape `(words, batch)`" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<7081x819 sparse matrix of type ''\n", + "\twith 0 stored elements in Compressed Sparse Row format>" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nmf._r" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Density: 0.0\n" + ] + } + ], + "source": [ + "print(\"Density: {}\".format(density(nmf._r)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Benchmarks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gensim NMF vs Sklearn NMF vs Gensim LDA" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [], + "source": [ + "variable_params_grid = list(ParameterGrid(dict(\n", + " use_r=[False, True],\n", + " sparse_coef=[0, 3],\n", + " lambda_=[1, 10, 100]\n", + ")))\n", "\n", - "perplexity(nmf, test_corpus)" + "fixed_params = dict(\n", + " corpus=train_corpus,\n", + " chunksize=1000,\n", + " num_topics=5,\n", + " id2word=dictionary,\n", + " passes=5,\n", + " eval_every=10,\n", + " minimum_probability=0,\n", + " random_state=42,\n", + ")" ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [], + "source": [ + "def get_execution_time(func):\n", + " start = time.time()\n", + "\n", + " result = func()\n", + "\n", + " return (time.time() - start), result\n", + "\n", + "\n", + "def get_tm_f1(model, train_corpus, X_test, y_train, y_test):\n", + " X_train = np.zeros((len(train_corpus), model.num_topics))\n", + " for bow_id, bow in enumerate(train_corpus):\n", + " for topic_id, proba in model[bow]:\n", + " X_train[bow_id, topic_id] = proba\n", + "\n", + " log_reg = LogisticRegressionCV(multi_class='multinomial')\n", + " log_reg.fit(X_train, y_train)\n", + "\n", + " pred_labels = log_reg.predict(X_test)\n", + "\n", + " return f1_score(y_test, pred_labels, average='micro')\n", + "\n", + "\n", + "def get_sklearn_f1(model, train_corpus, X_test, y_train, y_test):\n", + " X_train = model.transform((train_corpus / train_corpus.sum(axis=0)).T)\n", + "\n", + " log_reg = LogisticRegressionCV(multi_class='multinomial')\n", + " log_reg.fit(X_train, y_train)\n", + "\n", + " pred_labels = log_reg.predict(X_test)\n", + "\n", + " return f1_score(y_test, pred_labels, average='micro')\n", + "\n", + "\n", + "def get_tm_metrics(model, train_corpus, test_corpus, dense_corpus, y_train, y_test):\n", + " W = model.get_topics().T\n", + " H = np.zeros((model.num_topics, len(test_corpus)))\n", + " for bow_id, bow in enumerate(test_corpus):\n", + " for topic_id, proba in model[bow]:\n", + " H[topic_id, bow_id] = proba\n", + "\n", + " perplexity = get_tm_perplexity(W, H, dense_corpus)\n", + "\n", + " coherence = CoherenceModel(\n", + " model=model,\n", + " corpus=test_corpus,\n", + " coherence='u_mass'\n", + " ).get_coherence()\n", + "\n", + " l2_norm = get_tm_l2_norm(W, H, dense_corpus)\n", + "\n", + " f1 = get_tm_f1(model, train_corpus, H.T, y_train, y_test)\n", + "\n", + " topics = model.show_topics()\n", + "\n", + " return dict(\n", + " perplexity=perplexity,\n", + " coherence=coherence,\n", + " topics=topics,\n", + " l2_norm=l2_norm,\n", + " f1=f1,\n", + " )\n", + "\n", + "\n", + "def get_tm_perplexity(W, H, dense_corpus):\n", + " pred_factors = W.dot(H)\n", + "\n", + " return np.exp(-(np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum())\n", + "\n", + "\n", + "def get_tm_l2_norm(W, H, dense_corpus):\n", + " return np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - W.dot(H))\n", + "\n", + "\n", + "def get_sklearn_metrics(model, train_corpus, test_corpus, y_train, y_test):\n", + " W = model.components_.T\n", + " H = model.transform((test_corpus / test_corpus.sum(axis=0)).T).T\n", + " pred_factors = W.dot(H)\n", + "\n", + " perplexity = np.exp(\n", + " -(np.log(pred_factors, where=pred_factors > 0) * test_corpus).sum()\n", + " / test_corpus.sum()\n", + " )\n", + "\n", + " l2_norm = np.linalg.norm(test_corpus / test_corpus.sum(axis=0) - pred_factors)\n", + "\n", + " f1 = get_sklearn_f1(model, train_corpus, H.T, y_train, y_test)\n", + "\n", + " return dict(\n", + " perplexity=perplexity,\n", + " l2_norm=l2_norm,\n", + " f1=f1,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-10 14:02:28,228 : INFO : using symmetric alpha at 0.2\n", + "2019-01-10 14:02:28,229 : INFO : using symmetric eta at 0.2\n", + "2019-01-10 14:02:28,231 : INFO : using serial LDA version on this node\n", + "2019-01-10 14:02:28,237 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-10 14:02:28,238 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2019-01-10 14:02:29,464 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:29,471 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", + "2019-01-10 14:02:29,473 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", + "2019-01-10 14:02:29,474 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", + "2019-01-10 14:02:29,475 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", + "2019-01-10 14:02:29,477 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", + "2019-01-10 14:02:29,478 : INFO : topic diff=1.652264, rho=1.000000\n", + "2019-01-10 14:02:29,479 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2019-01-10 14:02:30,286 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:30,291 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", + "2019-01-10 14:02:30,293 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-10 14:02:30,295 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", + "2019-01-10 14:02:30,297 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", + "2019-01-10 14:02:30,299 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", + "2019-01-10 14:02:30,304 : INFO : topic diff=0.879875, rho=0.707107\n", + "2019-01-10 14:02:31,512 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 14:02:31,513 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2019-01-10 14:02:32,236 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 14:02:32,246 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", + "2019-01-10 14:02:32,249 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", + "2019-01-10 14:02:32,253 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", + "2019-01-10 14:02:32,265 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", + "2019-01-10 14:02:32,272 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2019-01-10 14:02:32,278 : INFO : topic diff=0.673042, rho=0.577350\n", + "2019-01-10 14:02:32,285 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2019-01-10 14:02:33,018 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:33,024 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", + "2019-01-10 14:02:33,025 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", + "2019-01-10 14:02:33,027 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", + "2019-01-10 14:02:33,030 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 14:02:33,031 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", + "2019-01-10 14:02:33,033 : INFO : topic diff=0.462191, rho=0.455535\n", + "2019-01-10 14:02:33,034 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2019-01-10 14:02:33,754 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:33,760 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", + "2019-01-10 14:02:33,761 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-10 14:02:33,763 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", + "2019-01-10 14:02:33,764 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", + "2019-01-10 14:02:33,765 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", + "2019-01-10 14:02:33,766 : INFO : topic diff=0.434057, rho=0.455535\n", + "2019-01-10 14:02:35,193 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 14:02:35,194 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2019-01-10 14:02:35,667 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 14:02:35,673 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", + "2019-01-10 14:02:35,674 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-10 14:02:35,675 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", + "2019-01-10 14:02:35,676 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-10 14:02:35,677 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-10 14:02:35,678 : INFO : topic diff=0.444120, rho=0.455535\n", + "2019-01-10 14:02:35,679 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2019-01-10 14:02:36,369 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:36,375 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-10 14:02:36,377 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", + "2019-01-10 14:02:36,378 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", + "2019-01-10 14:02:36,381 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 14:02:36,382 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", + "2019-01-10 14:02:36,383 : INFO : topic diff=0.359704, rho=0.414549\n", + "2019-01-10 14:02:36,384 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2019-01-10 14:02:37,004 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:37,010 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", + "2019-01-10 14:02:37,012 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", + "2019-01-10 14:02:37,013 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", + "2019-01-10 14:02:37,022 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 14:02:37,024 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 14:02:37,025 : INFO : topic diff=0.325561, rho=0.414549\n", + "2019-01-10 14:02:37,948 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 14:02:37,949 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2019-01-10 14:02:38,611 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 14:02:38,618 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", + "2019-01-10 14:02:38,620 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-10 14:02:38,621 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", + "2019-01-10 14:02:38,623 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-10 14:02:38,625 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-10 14:02:38,626 : INFO : topic diff=0.327590, rho=0.414549\n", + "2019-01-10 14:02:38,628 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2019-01-10 14:02:39,441 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:39,453 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", + "2019-01-10 14:02:39,455 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-10 14:02:39,457 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", + "2019-01-10 14:02:39,459 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 14:02:39,465 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", + "2019-01-10 14:02:39,476 : INFO : topic diff=0.265043, rho=0.382948\n", + "2019-01-10 14:02:39,477 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2019-01-10 14:02:40,101 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:40,106 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-10 14:02:40,107 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", + "2019-01-10 14:02:40,112 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", + "2019-01-10 14:02:40,113 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 14:02:40,115 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 14:02:40,118 : INFO : topic diff=0.244061, rho=0.382948\n", + "2019-01-10 14:02:41,057 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 14:02:41,058 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2019-01-10 14:02:41,518 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 14:02:41,524 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-10 14:02:41,526 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-10 14:02:41,527 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-10 14:02:41,528 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-10 14:02:41,530 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-10 14:02:41,532 : INFO : topic diff=0.247579, rho=0.382948\n", + "2019-01-10 14:02:41,533 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2019-01-10 14:02:42,137 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:42,144 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-10 14:02:42,146 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-10 14:02:42,148 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", + "2019-01-10 14:02:42,149 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 14:02:42,150 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", + "2019-01-10 14:02:42,151 : INFO : topic diff=0.204190, rho=0.357622\n", + "2019-01-10 14:02:42,152 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2019-01-10 14:02:42,715 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-10 14:02:42,722 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", + "2019-01-10 14:02:42,723 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", + "2019-01-10 14:02:42,726 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", + "2019-01-10 14:02:42,728 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-10 14:02:42,730 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-10 14:02:42,731 : INFO : topic diff=0.197424, rho=0.357622\n", + "2019-01-10 14:02:43,475 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-10 14:02:43,476 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2019-01-10 14:02:44,155 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-10 14:02:44,163 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-10 14:02:44,164 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-10 14:02:44,166 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-10 14:02:44,167 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-10 14:02:44,170 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", + "2019-01-10 14:02:44,171 : INFO : topic diff=0.200393, rho=0.357622\n", + "2019-01-10 14:02:46,099 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:03:11,165 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 14:03:12,437 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 14:03:24,821 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:04:22,755 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", + "2019-01-10 14:04:40,977 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", + "2019-01-10 14:05:06,121 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:05:58,199 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 14:05:58,688 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 14:06:08,280 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:06:33,083 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", + "2019-01-10 14:06:34,377 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", + "2019-01-10 14:06:52,141 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:07:23,166 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 14:07:24,539 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 14:07:40,646 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:08:37,634 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", + "2019-01-10 14:08:53,670 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", + "2019-01-10 14:09:20,382 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:10:03,798 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 14:10:04,295 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 14:10:13,815 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:10:37,755 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", + "2019-01-10 14:10:39,440 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", + "2019-01-10 14:11:04,226 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:11:45,358 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-10 14:11:46,844 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-10 14:12:01,904 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:13:12,023 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", + "2019-01-10 14:13:28,091 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", + "2019-01-10 14:13:48,348 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:14:18,028 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-10 14:14:18,514 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-10 14:14:27,603 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-10 14:14:55,310 : INFO : Loss (no outliers): 605.4685741189073\tLoss (with outliers): 605.4685741189073\n", + "2019-01-10 14:14:57,392 : INFO : Loss (no outliers): 578.3308322441275\tLoss (with outliers): 578.124650831533\n", + "2019-01-10 14:15:14,872 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + ] + } + ], + "source": [ + "tm_metrics = pd.DataFrame()\n", + "\n", + "train_dense_corpus = matutils.corpus2dense(train_corpus, len(dictionary))\n", + "test_dense_corpus = matutils.corpus2dense(test_corpus, len(dictionary))\n", + "\n", + "# LDA metrics\n", + "row = dict()\n", + "row['model'] = 'lda'\n", + "row['train_time'], lda = get_execution_time(\n", + " lambda: LdaModel(**fixed_params)\n", + ")\n", + "row.update(get_tm_metrics(\n", + " lda, train_corpus, test_corpus, test_dense_corpus, trainset.target, testset.target,\n", + "))\n", + "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", + "\n", + "# Sklearn NMF metrics\n", + "row = dict()\n", + "row['model'] = 'sklearn_nmf'\n", + "sklearn_nmf = SklearnNmf(n_components=5, tol=1e-5, max_iter=int(1e9), random_state=42)\n", + "row['train_time'], sklearn_nmf = get_execution_time(\n", + " lambda: sklearn_nmf.fit((train_dense_corpus / train_dense_corpus.sum(axis=0)).T)\n", + ")\n", + "row.update(get_sklearn_metrics(\n", + " sklearn_nmf, train_dense_corpus, test_dense_corpus, trainset.target, testset.target,\n", + "))\n", + "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", + "\n", + "for variable_params in variable_params_grid:\n", + " row = dict()\n", + " row['model'] = 'gensim_nmf'\n", + " row.update(variable_params)\n", + " row['train_time'], model = get_execution_time(\n", + " lambda: GensimNmf(\n", + " **fixed_params,\n", + " **variable_params,\n", + " )\n", + " )\n", + " row.update(get_tm_metrics(\n", + " model, train_corpus, test_corpus, test_dense_corpus, trainset.target, testset.target,\n", + " ))\n", + " tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
coherencef1l2_normmodelperplexitytopicstrain_timelambda_sparse_coefuse_r
5-1.5724230.5485077.210668gensim_nmf21.189874[(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...7.9347761.03.01.0
9-1.7940920.6439237.247913gensim_nmf49.029435[(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli...9.61006610.03.01.0
4-1.6698710.6652457.168078gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...1.8905661.03.00.0
8-1.6698710.6652457.168078gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...1.81999710.03.00.0
12-1.6698710.6652457.168078gensim_nmf56.999925[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...1.803650100.03.00.0
13-1.6674880.6711097.167259gensim_nmf55.940074[(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...13.839733100.03.01.0
2-1.6516450.6716427.060985gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...4.4030161.00.00.0
6-1.6516450.6716427.060985gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...4.79522110.00.00.0
10-1.6516450.6716427.060985gensim_nmf2534.426980[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...6.848814100.00.00.0
11-1.7136720.6769727.058523gensim_nmf2526.410173[(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...56.289639100.00.01.0
7-1.4142240.6833697.053716gensim_nmf2314.832335[(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...51.15170110.00.01.0
1NaN0.6982946.905912sklearn_nmf2852.226778NaN14.650259NaNNaNNaN
3-1.3443810.7110877.034081gensim_nmf2335.251975[(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...53.1619061.00.01.0
0-1.7892180.7579967.007877lda1975.257100[(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...15.944864NaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " coherence f1 l2_norm model perplexity \\\n", + "5 -1.572423 0.548507 7.210668 gensim_nmf 21.189874 \n", + "9 -1.794092 0.643923 7.247913 gensim_nmf 49.029435 \n", + "4 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", + "8 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", + "12 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", + "13 -1.667488 0.671109 7.167259 gensim_nmf 55.940074 \n", + "2 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", + "6 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", + "10 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", + "11 -1.713672 0.676972 7.058523 gensim_nmf 2526.410173 \n", + "7 -1.414224 0.683369 7.053716 gensim_nmf 2314.832335 \n", + "1 NaN 0.698294 6.905912 sklearn_nmf 2852.226778 \n", + "3 -1.344381 0.711087 7.034081 gensim_nmf 2335.251975 \n", + "0 -1.789218 0.757996 7.007877 lda 1975.257100 \n", + "\n", + " topics train_time lambda_ \\\n", + "5 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 7.934776 1.0 \n", + "9 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 9.610066 10.0 \n", + "4 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.890566 1.0 \n", + "8 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.819997 10.0 \n", + "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.803650 100.0 \n", + "13 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 13.839733 100.0 \n", + "2 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.403016 1.0 \n", + "6 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.795221 10.0 \n", + "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 6.848814 100.0 \n", + "11 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 56.289639 100.0 \n", + "7 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 51.151701 10.0 \n", + "1 NaN 14.650259 NaN \n", + "3 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 53.161906 1.0 \n", + "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 15.944864 NaN \n", + "\n", + " sparse_coef use_r \n", + "5 3.0 1.0 \n", + "9 3.0 1.0 \n", + "4 3.0 0.0 \n", + "8 3.0 0.0 \n", + "12 3.0 0.0 \n", + "13 3.0 1.0 \n", + "2 0.0 0.0 \n", + "6 0.0 0.0 \n", + "10 0.0 0.0 \n", + "11 0.0 1.0 \n", + "7 0.0 1.0 \n", + "1 NaN NaN \n", + "3 0.0 1.0 \n", + "0 NaN NaN " + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tm_metrics.sort_values('f1')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"believ\" + 0.020*\"exist\" + 0.019*\"atheism\" + 0.016*\"religion\" + 0.013*\"christian\" + 0.013*\"religi\" + 0.013*\"peopl\" + 0.012*\"argument\"'),\n", + " (1,\n", + " '0.055*\"imag\" + 0.054*\"jpeg\" + 0.033*\"file\" + 0.024*\"gif\" + 0.021*\"color\" + 0.019*\"format\" + 0.015*\"program\" + 0.014*\"version\" + 0.013*\"bit\" + 0.012*\"us\"'),\n", + " (2,\n", + " '0.053*\"space\" + 0.034*\"launch\" + 0.024*\"satellit\" + 0.017*\"nasa\" + 0.016*\"orbit\" + 0.013*\"year\" + 0.012*\"mission\" + 0.011*\"data\" + 0.010*\"commerci\" + 0.010*\"market\"'),\n", + " (3,\n", + " '0.022*\"armenian\" + 0.021*\"peopl\" + 0.020*\"said\" + 0.018*\"know\" + 0.011*\"sai\" + 0.011*\"went\" + 0.010*\"come\" + 0.010*\"like\" + 0.010*\"apart\" + 0.009*\"azerbaijani\"'),\n", + " (4,\n", + " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tm_metrics.iloc[12].topics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sklearn wrapper" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [], + "source": [ + "from sklearn.base import BaseEstimator, TransformerMixin\n", + "\n", + "\n", + "class NmfWrapper(BaseEstimator, TransformerMixin):\n", + " def __init__(self, **kwargs):\n", + " self.nmf = GensimNmf(**kwargs)\n", + " self.corpus = None\n", + "\n", + " def fit_transform(self, X):\n", + " self.fit(X)\n", + " return self.transform(X)\n", + "\n", + " def fit(self, X):\n", + " self.corpus = [\n", + " [\n", + " (feature_idx, value)\n", + " for feature_idx, value\n", + " in enumerate(sample)\n", + " ]\n", + " for sample\n", + " in X\n", + " ]\n", + "\n", + " self.nmf.update(self.corpus)\n", + "\n", + " def transform(self, X):\n", + " H = np.zeros((len(self.corpus), self.nmf.num_topics))\n", + " for bow_id, bow in enumerate(self.corpus):\n", + " for topic_id, proba in self.nmf[bow]:\n", + " H[bow_id, topic_id] = proba\n", + "\n", + " return H\n", + "\n", + " @property\n", + " def components_(self):\n", + " return self.nmf.get_topics()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Olivietti faces + Gensim NMF" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "============================\n", + "Faces dataset decompositions\n", + "============================\n", + "\n", + "This example applies to :ref:`olivetti_faces` different unsupervised\n", + "matrix decomposition (dimension reduction) methods from the module\n", + ":py:mod:`sklearn.decomposition` (see the documentation chapter\n", + ":ref:`decompositions`) .\n", + "\n", + "\n", + "Dataset consists of 400 faces\n", + "Extracting the top 6 Eigenfaces - PCA using randomized SVD...\n", + "done in 0.444s\n", + "Extracting the top 6 Non-negative components - NMF (Sklearn)...\n", + "done in 0.975s\n", + "Extracting the top 6 Non-negative components - NMF (Gensim)...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-10 14:22:11,954 : INFO : Loss (no outliers): 48.906180800150054\tLoss (with outliers): 48.906180800150054\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done in 6.401s\n", + "Extracting the top 6 Independent components - FastICA...\n", + "done in 0.548s\n", + "Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...\n", + "done in 2.318s\n", + "Extracting the top 6 MiniBatchDictionaryLearning...\n", + "done in 2.200s\n", + "Extracting the top 6 Cluster centers - MiniBatchKMeans...\n", + "done in 0.191s\n", + "Extracting the top 6 Factor Analysis components - FA...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/sklearn/decomposition/factor_analysis.py:228: ConvergenceWarning: FactorAnalysis did not converge. You might want to increase the number of iterations.\n", + " ConvergenceWarning)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done in 0.373s\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZedZ3vl8994aNJRUVbIsCY3WPFqyPGFjmiGy8KIbG4LdKybExtixF2lYnbBWEnqFNIGETndD0gFCHBoamnYIBNoYMG4zxRM22EjYmqzJKs1SabAkV5VcquHee/qPc35nv+fZ77fvuSWBsc/3rFXr1D1n729/0977fd6xjEYjNTQ0NDQ0fK1j6SvdgYaGhoaGhr8OtBdeQ0NDQ8NCoL3wGhoaGhoWAu2F19DQ0NCwEGgvvIaGhoaGhUB74TU0NDQ0LATaC++rHKWU7yuljCr/rpscc93k79e9QNf84VLKd74Qbf1VoJTyt0sp//Ar3Q9HKWVlsg4/Oufxry6l/HYp5YlSyuFSyn2llJ8vpXxdcuzDpZRfCn+/a3Kts17IMYT20zkupVxbSvkXpZSd9v3cYy+lvKmUclsp5dDknBNfyL43LC7aC+9rB2+R9Br79xeT3/5i8vfNL9C1fljS39gXnqS/Lelv3AtvMyilfJ+kT0naKemHJF0v6X+T9O2SPldKuXKDJn5X4zV/4q+oi7U5vlbSj2nc7ylGo9HqpD+/MtRoKWWrpF+T9IDGY36NpIMvQH8bGrTyle5AwwuGm0aj0T3ZD6PRaL+kT2/UQCll22g0OvyC9+xrAH+dc1NKuVzSL0h6v6S/M+qyQ3y8lPL/aizA/FYp5arJi6SH0Wj0pKQn/zr6Oy9Go9GGe1DS2ZJOkPRfRqPRJ/6Ku9SwYGgMbwGQqTRLKZ8spXyslPKdpZSbSimHJb178tsPl1LuKKU8V0p5ppRyQynljZPfHpZ0pqS3B9XpL6UX7q51QSnl10opj09Uc/eWUv6tHfMtpZSPlFKenfz78OTBH4+hz9eXUj5XSjk4UX29MRzznyT9XUnnhv7dE35/cSnlF0opj5ZSjkzG+U67DurAbyilvL+Usk9jtrWZvi6XUv6XUspjk35+VNJlgwvV4R9JKpJ+aGSpkEaj0Rcl/aikSyW9qdaAqzRLKX9YSvmL5LizSilrpZQfCt+dX0r59VLKkxO14mfnmeNSyrsk/eLksPvCb2fNo9IspfwrSazVr06O/5PJb2+YzDPzeVsp5R+WUpaTdt4z2R/PlVKenuyZrw+/n1hK+alSyv2TPXBvKeVHSiklHHNSKeXfl1IemuzZx0spf1xKubjW/4a/+WgM72sHy6WUuJ6j0Wi0tsE5l0n6t5J+QtL9kp4qpbxdY9XZj2v8kD9O0tWSTpmc8x2S/lDSDZL+5eS7qtqslHKBxoxkv8YP6j2SzpF0XTjmTZJ+W2M13PdoLIj9iKQ/LaW8dDQaPRKavHjS538t6SlJ/1jS+0spF49Go/s0Vqe9aNLn75qcc2hynZ2TMW2R9D9Pxvztkn6xlLJ1NBq917r/65L+s6T3SlreZF//laR/KumnJP1XSa+anDMP/pakz4xGo9q8flDSSNK3aswC58H7JL1vMk93h+//rqQ1jceqUsp5kj4jaa/GKssvajzO3ymlfMdoNPqQ6nP8iKTzJf1PGqs8905+m1et+h8l3SrpNyT9C4332b7Jb+dL+iNJPzu51is1nuMXabyvNOn/v5P0P2r84v3nk6+/XmPm+OlSypZJOxdrvH9vk/Rajff7Lo3XTJJ+RtIbJP0zjV/Cp0j6RkknzzmWhr+JGI1G7d9X8T9J36fxw8//fTIcc93ku9eF7z4paV3SVdbef5T0Fxtc82FJ//ec/fvPGr/sTq/8XjR+8fyhfb9T0tOSftr6fETS+eG7MyZj+yfhu/8k6f7kWj8u6TlJF9j3vyLpcUnLk7/fNWnzp46lrxo/HA9K+vd23D+btPujG8zZUUnv2+CYL0r6PVuTXwp/M4azJn+fIOmApH9p7dxm7fyqpMck7bLjPirpxjnmmOueZ9+vzDn2SyfHfe/AMWXS3o9N5qFMvr9ksqf/94Fz3zFp/7X2/Y9JOizplMnfdw610/59df5rKs2vHXyXxlIv/945fLgk6Z7RaHSrfXeDpJeXUn6mlPK3SinHP89+Xa/xA/Wxyu+XSjpX0q9N1F4rE6b6rMZM47+x4+8cjUb38sdoNNqr8UPvnDn68gZJfybpAbvWH0p6scYPzIgPHGNfr9aYGf+mnf8bc/TxrwSj0ejLGjPT70V1V0p5maQrNGZ/4A2SPiTpQDJH15ZSTvhr7rokqZTydaWUXyylPKixQHBUYxZ4ijrtw+s1fhn+nwNNvUFjLcNf2Pj+SNJWSa+eHHeDpHdOVJ0vL6W0Z+XXAJpK82sHt40qTisD2Jt898sa3/jfr7F34OFSyv8n6R+NRqMHj6FfuzVmHzW8ePL5q5N/jnvt76eTYw5L2j5HX16ssWrxaOX3U+xvn595+3rG5PNx+93/ruFhSefVfiyl7NB4Xh+asz3wPklvk/Q6SX8q6e9J+pKk3wvHnKrx2n9/pY3dkr68yes+L0zsdL+vcd9+XGP2dUjSd2usTmbtWb+N9tsF2ngP/AONGfnf10R9Xkr5VY0Z6nPHNpKGrzTaC2+x0asNNRrrc94r6b2llN2Svk3Sv9HYxvMNx3CNpzR2chn6XZL+icZqM8cL6Rn5lMYviR+u/H6X/e3zM29feVGeZm2eNl839V8lva2U8uJRbsf7Do2ZzEfmbA98RGM72/eWUv5M0lsl/dZo1vv0aUl/IumnK23M+9J+IXGxpJdJeutoNJqy5FLKd9lxX5x8nqkxi8vwlMY2ubdWfr9Pkkaj0QGNX6Y/MrFrvkXjF98hjV+EDV+FaC+8hipGo9HTkn69lPIaSW8PPx3WWGU3D/5I0psGHt63a/wSunw0Gv3U8+rwxv37A0nv0dj29MXk940wb19v1thW+N9Liq71f2fO6/w7jZnYz5ZS3joRQiRJpZQXaeyscZfmd4KRJI1Go/VSyq9p7I37IUmna1adKY3n6OUaawwODTRXm2NenvPuj3mAWn3Kyso4Xu977Lg/1lhIebc65xPHH2gsMOwbjUZfmOfio9Hofkk/VUr5e5I2in9s+BuM9sJrmEEp5f+S9IykP9c4jusSjR8sfxQOu13SN5VS/luNJf4nR6PRA5Um/7nGdpM/L6X8a42l67MlvX40Gr1t8hD+QUm/XUrZLum3NJbCT9fYe+7e0Wj0M5scxu2Svr+U8m5Jn5P03Gg0uk1j1vIWjT0q/w9Jd0vaobFt7rWj0cgZwwzm7etoNHqqlPIzkv5pKeXLGjOmV6uuJvTr3FZK+Qcax+KdWkr5BY0dSS7T+EF+oqTrRpUYvA3wPo0Z6n/QmM180n7/UY29aj9eSvl5jQPAd0m6StI5o9Ho70+Oq83x7ZPff3ASvnBUYwHg+VSa/rzGasr/tZQy0tgx5Yc19i6dYjQa3V1K+VlJ/7iUcrLG3qzrGntp3jYajX5L0v+jsaPXR0spP62xV+hWSRdKeqOk/240Gh0upXxGY5vnbRqrcL9FY3vnLzyPcTR8pfGV9ppp/57fP3VemhcOHFPz0vxYcuw7JH1c45fdIY3tUv9G0o5wzOWT8w9O2v2lDfp4oaT/ovHL4ZDG6qaftmO+QWPW8czkmPs0VqN+/Rx9dg/FHZPrPTPp3z3ht90au5zfr7HH5xMas7AfCseknoab7OuKxiqwxzVmex/VmB1s6KkY2niNpN+ZrMWRSZ//g6Qz55iDGS9NO/Zzk99+onLdczS25T4yue6jGgs83zPnHP/E5Jw1+qDn6aWpcQaXT0323EMaO6y8x8eosar3f9D4RXZYYxXtRyW9Ohxz3KSPd02OeUpjp6Mfk7Q0OeanJ/O0T2OnpFsk/eBX+n5v/57fP9x5GxoaGhoavqbRXG0bGhoaGhYC7YXX0NDQ0LAQaC+8hoaGhoaFQHvhNTQ0NDQsBNoLr6GhoaFhIdBeeA0NDQ0NC4FNBZ7v3LlzdMYZZ2htbRzvub6+3juGMAdKS3nYQxYGwXe1EImh30MJq7n7wXf039vwc7PrbTSu7Ho1ZP3wua3NwdCc1MaXwdv3dmljdbWLdT56dJz4Yvv2cSrDlZUV7d+/XwcPHuxdcPfu3aMzzzxz2if/jNf039hv3pehY2I/s3HOg6G9utGcZutfu3Zt/x1rH+fF0P723/z7+Pvy8mxJuqWlpZlPjuXveM7KyvgRtLa2pscee0z79u3rdeqEE04Y7dy5c7rGQ88D/47r8Bn7sBE2Wrfs2Fo/Xujr1Z4D89zrG7U1z7GbeY7799l7A/h9DOK4fD+VUnTgwAEdOnRow8Fv6oV3xhln6Jd/+Zf1xS/OZmWKA/CHLQ/FoYcY3zEh/Obn8jc3idS/qfz6PPjiRqcd3/z+UI/j4liu7X3mb26sQ4e6rEwc430desnQR747cuTITN8OHz4883t8wDN/W7dunbmuvwDjJuIcn/vnnhvnyT3++HF2p3379k3P2bt378x1rr76ar3vfZ6paoyzzz5bH/7wh/Xss89Kkg4ePChJ07+lbs4OHDgw80lfmIMtW7b0zqGfHPvMM88Mjiuiti6cE+eJeY57UOrv7zgu2tu2bVt6XfaMr3V2HcA46GN86fB/75M/KPg+9ovrMcf+YuITIUfq1v+4446bOeeEE06YuR6/S9KuXbskSaeeeqqk8X5417velY51586d+oEf+IHpnmet4/3J/+n3SSedNNNPxh7nk3M2eglmD3c/h7/9Xo7POd8789yX/ht7w/dx9mzMXgwR2cvFn2ecy9z7cy7uVX/m+n7mc+iFxzj2798/8/fOnTunx5x88skz3+3YsUM///M/X20zoqk0GxoaGhoWAptieOvr6zp48OBUouMt7JKr1L3dkbiQxF0tQbvxt0yyjm1FadYlK/8bZJJdNr6IKEUhKXofXeLh+yjNIu3X1EWZhIk05HPLdYbUlvSbOad9WBrHRgmvNo9cn/7s2LGjNy7Y1Be/+MVBVeLq6mqPMcTxIUUy11yTfkb1l/ebPUn/aePLX/7yzJjjPqCvzogBxw4xLj+Gv+PeYZ5gNb6GXD/bu66q8vspk959f7FH6Jvfmxkr4Bhnds5KYv9ranAfbzzfxz4EZ01xvbjf2OOMbUjF58y69uwYMt3430NmhBoLnMeE4hof75uPJZ7r2qhanyPYzzVtQdamayx8j/o+9P/HccLQWU/+lrq1Zv1XVlbmVuU2htfQ0NDQsBA4JoaHbj6T7Gr2kJoR3M+Pv7nxOzu3ZixGwsskYCQDl1YyvXTtOs70arZEqWMxNYYH4jhdD06f6Zvb5zLQhtu3ODfawpyx+hpkNoIXvehFkjqG9+yzzw7q52O77uggdfNEf2t7J9MOuAbB+z+0Vzday8hC3Z44j7Qe51nq5tDH5QxX6u8Dt9ll+9u1DVzfWRuIc+I2YuD3YmwDiZvr8HxwFh+ldI6NdsTaXi6laHl5uXftOK/0gblzVuFrTbtx/P7p9vp5njuZ9sSPYY79HhhyQPNznCHPY/9zTUnmT+F98HvCfSKyZ5Zfn2P8mRzHA/wY2kBTE/sE+8v6XUNjeA0NDQ0NC4H2wmtoaGhoWAhsSqUZ6wpJfVVJhprBPNLfzKEgazdzZqnF/NA+6pToROB9ceOtO0Bk13G3cFc9uhorgxuaM7Wrq6eAq+Hi9WgnGnUjsvXimBhOkR0b59Fdy/ft21d1WpHGczdPDE7NuE/b8RqELuAYwrH0E9WcO6hI9VAZV7dFFSNwVSPrxHVR60nd3LrzRm39s/WpOUdljjyoW/2e4BjWOAvZ8ZAc5pW9xFyceOKJ03NQQdMX1E++/+I8+v0x5HRw9OhRPfHEE9OQGA85iO25E5HPdVShuSMI/eV7n4t4bi3er/Z7NlZXOWZOJLXQrFqcbkRNRezP0bh3MlNDvJ7v4XhdN7u489k86nc3/7D/4j3vppqtW7cOPnciGsNraGhoaFgIbIrhSbNv2lpAY/zNz8uMnc5A3IGiJiHH79wRwCWgzEED1FykYx+d/Xn7PoboMu0u3TVjeYSzHJiKS6FI69kacA7GXWc0Q8H4NXfxOHeM68ILL5Qk/emf/umGTis+13He6INL5Xz/pS99SVIn2UndvmIeNvqMc8137A2C4d0VP+4dWK2Pc4hx19h+bb9FFu3OKX7dIckWyboWEuSON/EYpHOX7LkecxWPhW37vYJDSdw7p5xyiqSODR49erTKilZXV/X4449Pr717925JsyEyzhT8HsuSFriDhDtXDN3zfp/4/Zeds1H41ZATSS3Rhe+L+NzxdmuML55T08g5AxvSQjizA64Vkfpr4IkjfA9L3fMshqJs9NwBjeE1NDQ0NCwENm3DW1tb6+nsh972NcknSlr+FvccjW7Pitdzhuduu+7GH3/zfsOI+IzswwPBa9Joxg6RRGqphLL+1ALnGQfSkgfES938Pf300zO/uYSXBWH7/PF9lg+R3+LcDNliov0XRCnQbQq0jx6ffRfTdvncuQTsbUX25HY+1yywR6OLPizT18NZQWaj9vl3yXtIU1LTWAzZtZkvZyOe4ioLMWCfMz5PWlBLeSZ18wULdBtO7ANrkCWvAOwb7IYeBhH/7/thKJyCa3raOQ9az+4fT3iwUThP7JP32fddlqrRr1tLSJCx0FoatCHm50zP5yKziXraM9fIZXPimiXfq4wr88Hgty1btrTA84aGhoaGhohNMTwCQF1iy6Q9D+L2YPUo2bvUgOTF37AYZx/xO5fSYIuZFOOeQC41ZQl5PQjZvfNqjCgbe83jzoN943g8iSvAjpFVMfC/mXPsJtmc+Hi9r3GtXYLfSNJaX1/vrQe6es6PY3QbAGON6+LzTfv0zT07I9PH6w/W5mPnelEy9/mvJQTO2nPW6ew804pkezEiYx+cz76jXRiS25Di2runnXs983v00vTvfA9k7Jo+RW3RkGfj2tpaL91UTN9X83x0Jp4xSfrAnvH+Z4kC/H6g/aG0gTV731B6MLfRegKImvYg+86f11lwfC2hQa3aROyfJ4Fwb+As+YMHwTtDzzQAQ/faRmgMr6GhoaFhIbBphrd169ZeaZqhOA6PxeGtnyXkdSnMvaaw3USWAUNAWndvLKTB6NmH5M4xnow08/jxmByXoj3eK0ofHiPk+mn3oov/53p4wLmkzblZQm2XhNzuENkKv9Eex9Q8ZiOQjOfRpTvDp9SHNJs+KP7GfqBv0YbHtRmL959+n3vuuZKkiy66aHrurbfeKkm6//77Z9pCqnzxi1/cu56zFfYV+5CE6meeeWZv7M5cv+7rvk6SdO+990rq4hmj1Myx/MY+gE1RqiuW7CLlG3s/1iuMfw+lv3K7uUv4ca3oE2PnnvAkwvF6rCn33lAC4NFopPX19el9y9gzL2rfn37vZUm9XRvgc5ExT+a2Fsvntnapz/Cc3WTaIe+Lj3coxaA/BzK7m8OfLxnrjMfFZ4iX/PJ5dc2G1O2jWqxtNi7X3kXN0UZoDK+hoaGhYSFwTF6aQ8l8nUV41gJ+j295Z3QunXscVpSakGzd3kNxQNqI+n7vq0tnrj+Wcgkx9t1Zb3Yd93SiLT5jbJPb9bx9L50TJRwkYbd51WwT8druueZzksXQxKTU83pLDXmIIcEj/cGeHn30UUkdo5D6Hnv039k7DOmlL33p9NwrrrhCknTnnXdKkm6++WZJfVtOTHrsjJ4+sjcff/zx3rjoE/NNn5CE+T2bE1gujIJP1tbL4kjS5ZdfLqm7x1w74Tb4rNSPZ1FiLlgbWGS8ttvGYXyZjfpjH/uYpI55X3XVVYNJ1bdu3TqNgYxjBZ48mU8YOB7L2bPK94rHf2b3J3vQGRBj9GTL8Tv3fK0lMZc6NuPM1VlaxnBr5Zlq/gdxDoCP3RlZ1H7U4gsZp7PG2I57TPv6xXM8hrd5aTY0NDQ0NBjaC6+hoaGhYSGwaZXm6urqICWeNjyhm1BhVDNDVas90NiNyLSVpZZy921PghypfnSpjm3UAiXj+X6sqyuh5H6NCPqKWoTPrOYTc+EqTFedZG7p9LGWvieuG8dwHVdBZ2vtqr+lpaVBx4MsLVmm8nnwwQcldepB+nb++edLmlUxulqavcE4mD9UgKS0iqBfX/jCF2b+9kQIEajvUHF6QuOHHnpoeixqO3dWoM/cG1lQt9eW8/llXGefffb0Ow/jcRU6yJzOPDFvLS1aTOvF9diTqI9JAcYaxD3K3vnLv/zL6TFRPRaxvLys3bt3T80Ubi7xtuPY3IQSj+MedceWWg3C2D93UvMK4cwfznSxPcDa8smeivcE57hzWq3GXZwT3ytDiZ8B13FVPePw52zcq7SHWpTrePL1GBrkTjLuYJU52Hi9zMz5qobG8BoaGhoaFgKbTh6Ni7A07ArrhnFnEJEpuEu5BxsiiSEJR4nBww5qQY9ZsLJLE7XUQrG/tWTV7vIbJWM3SiM9YUhHioqONx6Y61KNXyeWo3GW6+wsSzjt7s3urJBJWkjpcd2GgoezgNPIaj/5yU9Kkk477TRJ0mWXXTZttzZW5oV2PEyB7++77z5J0iOPPDI9FybipZ6QZt1AL/W1DjAdxuPOUpJ0zz33SJJe/epXz4zDg7pdGyL1HUFYBxx5YKyxX3fddZck6frrr5/p04033iip7/w1lASCOXAnlujA4Vob9hCOLWecccZMn6Xuvn3yyScljZNy1xJhr6ysaNeuXT03+8zZxpmBO6Jk1bYZv6fG8jCS2D93pvD14X6KTBhNDvcLf7M+GQsFzlg9IUU2J/6bO6Bl2hjGijOga9U8cD+yKw+V8mQAQ1odf+6w3/z+iu279mkeNIbX0NDQ0LAQ2HTg+ZYtW3quo5n9iLcwb2jYzFCpDaQxl3SQKggEjuzJXV3dLX3Pnj0z/Yn/dzuP26SirdCv50mDOZa5ifp+tzlgm0K6dQlT6gdi0gYSPSwoC8J96qmnJPXd3D38IkrpjJk18ITKmQ3PGcKhQ4eqAaCllFRK+9znPjf9jjAB9gz9QxJ2phz7AHtgbmPoQrze7/zO70y/I0SBtfLg8aFkvqwlx7okCquRurmkHbf7cX2OixoMZyh+PQ9xkDp73lve8hZJHaODaRLeATKm5H/7XETblDMg1s3LLcW2GSPzuW/fvqotZnl5Wbt27eoxhPgccI2IF0HOAqXdNufrALsdStDtwdQ+rriW9M0D870sVqYlqSUAAJkmC/izxMMHot2PMfPJXHjaP7fpxT55KSlPMhBZoocsuG+CFxCQOg1IPGbeNGON4TU0NDQ0LASOKXl0rdii1E+1g3SJ9Jylt4GluJcS7dMGklGUSGCOXibD7TFRikUi5TckO097FRme25FqJe/5HpYldUzOwXg98Dhezz2RkJppM0uu6ozR53zI88ltrs5ysxIpGRNyHD16VE888cT0749//OOSZgOY6RfHwdJYJ6S92CeOce9MwDhc6pS6gHNnwO5hHMflzN73GRJr9CTFFnneeefNnAOjfeyxx2b6E7URMHr3JHTWlCVUR7vh2gcPhI/wQGc/1gvDSv1gb67DfUvqtJik20u8bN++verhu7y8rJNPPnlQivcEEMyL2/ajVoP7nrXjnnWmmd1j3tdaQoDI8DyJvBdKzQrAAi8x5mAeIxPyZ5MnPs+KIgP3vPVE8Vm6ONrBJslvaCXQvkS7ptsvgZejyn7L/EE2QmN4DQ0NDQ0LgWPy0gSZDQ+JgLc6Ul18q0uz6YGQXnhjw154+/OJhBzZE153NXsB39MfqWMV6ILpG+Pg+sSDSZ3nG8fASt2ukMUIIdkxZv52thBtEhyD3dJjt1xizWxrziy99EuW9NvLDXlS6Sjl0kdY9vr6etVLc//+/frwhz88jU8juXLcF9iY2EOsLf3mepmnHUwIqb1WkDOOmWOdBfp1omTszJ75cEYemSR7hXRa7D/2JPYSxhm9NJkf90L0gsQR7IkPfvCDM+NhDWmfPhIvF8fKeLg3PXFzJlU7i+a62JtJDSbNesvW2gNLS0szzwufi3hNT5/mnpFRy8CzKSY/53pSt5asV3aPuWbHYx0jc4H1uzdobQxS3+vTfRRA5k3tfazFrWX3rB/DnEQP6fi91GfTjJP2uUcjy0bzx95wbVdWUNm90Lds2TLoHT7T37mOamhoaGho+CrHphleKaVnL4tvV8+O4SVPkFSijcOlcmwetEub2H3i257fkEyRXvnk+rDEeKz3CSkD9kESXkl6//vfPx2/JL3hDW+Q1E9sjUSM/UTqmKJ7SSKhIL3G0jX011mnM2Yk1qi7Z27POeecmT67HTLaVJhHvvNsHVlCbTBPxoP19XUdOnRoaq96+9vfLmk2Do85Y11OP/30mTayTCRua4zSo9S36cX+uz0WeImSLF6ReWHPsIeZtyiBu/cln8wF+yCWygFIvIzLM+24diT2+4EHHpDU7RW35XisbDyG/VdjbfEcjw11ezB9jPZaNBdkWllbW6tK6aPRSIcPH+6VGotwj27G6DG2Wayf20Xdc5AyTllpIY7hby9PlXlrewyvJ4SP46Mv7ufgMXUenyf1i6kCt+Vl5/gna+cJ1TObPnPMvc2zCzYXNRjAY6Nr8c5SP96zJY9uaGhoaGgwPC8bHv+PGRSQCNwW5KUiouSDDQhGgp0n2oakLvr/6quvnp7rsW0eC3T33XdL6piepF6ZEVgNEglSRrQbXHDBBZI6Wx7FQ+kTtgLir6LuHhvG3r17JXVeYRxLrsUo2SElI9khWSMFvuY1r5HUxZUxV9K41IokfeITn5DUSYVIVrQR7Wcek+TxOEh0kbk4m3r22WerLG/Xrl1685vfPJ0LZxCxP6wh8+9epbGECfMEi6afSOUPP/xw2p8IxuRxhey7mBfVCwxzD3hR4biW7A1nh35vZHFYnl2Gda71VepnwOF6Ucsh9VlRPNelcPKMOvuROhsgfXIvV/ZUnEfaZ/1OOumkasYMsjvV7LIZ3JbOZ7wv6Sd9gMWwR91DMbIIj/NzuyznxGcIvzmjdA/YCPczyErsxP5QoVbyAAAgAElEQVRED19ntR53l2Vc8QxV3E+e8QfEvVPLUcwcsHezeEz3c/B9Fs9hz0f7abPhNTQ0NDQ0BLQXXkNDQ0PDQuCYnFY86WpM44TaxB0Z3Nge3ZKh7ahNMHKiRkQV6OmjpM7w7ymYcAD59Kc/LWnWMAtNJgUTVJzrMp5Ikz3sgXZdtYW6MqqPvCQNf3MM14sG9UsuuURSp1657bbbJHWqO1zcUZNEBw/mB3UDaj1Ut6gpokqT/3vYgycDiOfUys1kWF9f18GDB3upy6KzBXPsKhcv4xJVmqjTGP+f/dmfSerWAVV2FlYB+I39xbkeeiJ16nAPC+FYN7pL3Xq4s4WXYskqkLO/ua47NmQu7vSB9lEleVhMlqaK/zMXrMG1114rqZvnaJLwcjqeDJ224j3BOfTttNNOq5YiksbPj1rasziWWrJoDwmQ+inQXLXMXvHnXWzX73/mmPXA5BHboy8cw/OP7+P6s1Zcx/evq3WzBPQeOB/TwsXxx/M5x0MAuN+ytXJHF55NtMVzL6p5GTP3gIddsM+jqtbfKUNJCxyN4TU0NDQ0LAQ2XQB2bW1tKkHC0rJSOJ6sFVZF0HhWBBCJAEmAtpAqKfFy//33T8/l2kgpMCLOxXkhuuAjgcCsPPEvUmeUltywTdLj17/+9ZI6SYXxRYnEEzMzHiQfjo0SsIclwEZJ04TTDH2PEv7tt98uSbr00ktnxoG0yZpERlZzGPDA+jiP7IOYJHaoAOzhw4d7KcCitOmlflxq9j5l/YZpsYZRwpZm14X2mQ/2gycvz8rCcK6n3qLvL3/5y6fnfOpTn5LUSfIe3O0u9PF+gh15wU/AvotrSR9oj/YJYWE+vTxWbAcGF4PFY5/jvLuGInNmkmbvJ9aHfT60d6TxWngqw8hu+I3192QSmfMDGiX2IM8f5jSGTkmz+9BDmzxonOtHRxQvbI3TmhcPzpKjb1TMNQtBqKUq8xSNkVF6IgV/fns6suio4s8InoXsZ/Z/DF5nf7EP/PmQJbimv4S2nHjiiWmoSobG8BoaGhoaFgKbYnirq6t68skney7fV1555fQYL+LqrsRZAmOOhZ1xjgdZw4w8mJi+SZ2EQJoql3YjkF74hA1wTpTo+P/5558/0z7w1F/xeownJsqN46LPkUnAZj1oGIYZ06tJs0yJeaLPSJK0zzjj9ZDS+WSOIxOXZgPFGU9M3zRkxyulTKVo5jyOw93pAf11G0i8thfkdLtLZgvwtGl+rkvPUj8MgXM9eB1bYhyrhyN44ueM4TBmD50BSM0xPZi3w98ewjCUYo5juJ4nVo4s1F3xfT6z8ldu6z548OCGSYDdRpSFSHk6Kw85iedwbcaIBsYL87omI47NtSV870kGMsCOYDlZKjvg7Jbr8Zml4PJgdNcgcP0sGJ9z3L7syR/i3uH/7Fm392WJAzzBPXD7Y7yOB/cvLS01G15DQ0NDQ0PEphje4cOHde+9904lOi/TIPWlCt7UnhopSohIQX4Okg4FK72sfWwPSYe+4XHpSZBjXxxcNwuuRcIlXRPB8QSiwzo8BZPU6Zo9HRjHuD1A6iRglzbpu+v2owSEVMa8MR7mnL9jmR23K7mdxNlQbB/WuWfPnkGGt7S01CscmZVtcqnVWVzsN2OhPaR0PxYmFKVLt20gmXrqorgPkIq5jl8Pdv3nf/7n03NgqCQ/d6nWtQ+ZbZX1YP/xN2nw4v72RLyeJLmW6NivLXXr7cw/rhv7zTUZgL0V9w59YhwPPfRQqrmhTxkLyUoUeeJiX9M4Zo5hD3niYo71orL0SeoXTHYWFdeW//Mc8CTyvu/iNWsMxu+j7Nno7MztznF/u0akZhvLtBIeyO6JpjMG73NbSzydleiaN9g8ojG8hoaGhoaFwKZteE8//fTUu4kEylFS9hLtHsfhCZvj+Z6CiWORzpFMMimG35AY8CB1XbTUsSf6itSObdKlQqlLbEwCa9KgIcXQd5hljJfh2i95yUtmrus2lHg9pEAkG/fg8oTQMT7Oi2C6tMR44/V87j3uhzFEr0cYAwzvhBNOqKZ7Wl5e1s6dO3sesFFKc7uAp8/yPkrdetdSLoFMAq7FEdKGx9ZJ/YTTXqQYDUNMtwez87mpeRBm0jzXZZ29lNbQOGqelrG8CvBE137/uKYmHuN7x9lpZHisLZqSp556KrVdgZi0nnmLjNBttLUi1XHNfR583/kaR7bjCfRhic5y4znYtDy+z+//yGbdXul7iHPc9hrhMYn0CXbqdnqp7yfh9yL3XeZRyjr6HGT2TN8b7qXpyb/jOUP3Sw2N4TU0NDQ0LAQ2HYd35MiR6dsX21R8+yKF85ZHMiQGxaUqqe8l5BIIkkEmkURPHamTQJ2ZREmYYz1xKZ9IDvEcWOGrXvUqSdJb3/pWSf0SL4zvk5/8ZG88njzW7SNRUnFJ0ZPV+hzFc5Ho3GtuKFMFa4qtklhIzyAT2QDMIWauiWWRIpDQ3SM1rqVnKeFYZ2JZglzX67udgvmM9j+3OWTJlONxUp8BeVYWGHD08MUbMGaGiH0a8tZ0Ox9aCGx5vofiOZ4w2ec3i8d09uTef9m6+Vw7y86K73IszwWPtXSsra31mEjmCQ3op2cZyUovcQ95jJm3EeeJsbhmwZN9ZzY8b2PII9Hv2VrC8WzvuFbDbXZ8xrl3LYv7ENQSUkv97FpeDi2La2XOaywtm3vPSHT06NGWPLqhoaGhoSGivfAaGhoaGhYCm1Jpbt++XZdeeqluuukmSX3jtNRXT6Ky8JRF8ThPveUJWVFLOhWPx/LpbvQgc/VGDeW03QPR4//f8Y53SOrX8/KgaMIVpC55sCfQ5hxX2Upd0uMsGXEcnzsFxet4LTAfX6ZaQKXpKhNUNNHwzLVxRNm/f/9g1fN4PnMSHSpQrfh6u6okqjj5zhMAe+C8q6mkbr7dISCmSpNmg/q5HuvPuaz7zTffLKlT90vdPHkYioeAuPo1/p/r0AYOEJ7kOY7DVWWu9smSVdeCuz3YN57jjmOuQsvqS7I+nsYtAykNvd/xHA8LqAXzR5W8J4ugf/48yMI4PNzJ79MsXKi23u6sMpQejPY98DxTCXoaOFfdZwmgPZSBc11164lEpG5NXf05tA9dZe5z5H/HvsRA/abSbGhoaGhoCDgmpxWYURYU6Cl++M3TRWVMAYnbXfKRhHijZ8ZjgEQQy5f49byEiEtYOJd8/vOfn56DRE3JIs5BKmR8tB2Tqt5yyy2SOqnfpRmvaix1TiO11ETuRBClNZesmAtYkJftiHCJlfFkqbmQ6GnvyJEj1fRQa2trOnDgwNTp58Ybb5QkvelNb5oeA3upSbWZodylYt9/noopC0uosQskybiX3PmFdSaZt5fgkbq5dIcjmKxL51mJFw+sJ8CdcIjYR3eVd6cld3TI7t/sN2l4vznbYLyZBsPTrb3qVa+altxylFK0ZcuWQSm+VlooqyK/0TGu3ciccWopvlzDld0PtFfbm1l6MHcE8fG4FiReB3iokScJif316vWANY1rCVwL5eWiQPy75ujiDlUZg0XrtnXr1g01S6AxvIaGhoaGhcCmGV7Ul2bBw0gL7hLvabsim3EG50GdHuwbA1Q94a+XlskkklpRWqRkbFIkcJak7/zO75zpay3okX5EewX2Ksr1IGF56Y1oz4L1eQJeZ3aZZFMLzHRJPEpk7rrOJ8dmLtN+nTPPPHNamsixvr6uZ599Vt/0Td8kqUuufOedd06PoQQS7MnTNmXSntslPFB/SLJ3adkl7SydGmsFA8eG5raOyMy94Kon83VNRmQFHgZAn5zpER4jdSEKhEN4YnUfb9wHWRKE2IYXnpX6iRroP98z/hjuwf+vueYaSWPNSVacN0PG1n0vujbI93E8xu9ht19me6hWeqfWRryOn5ul2fOxArdp+T0R55A9w37wUCee0TFUx4PU3QbuCa7j9bxPnjSc+yg+v13bBZzxRdAOe56E/vOgMbyGhoaGhoXAMRWAdW+/LNWX2+ywgWXlgWoJSmvl6zN9vafpcu+vKJHWJCukDJgd0qckvfKVr5w5p5aWirkhQDj+Hw/ICy+8cObYWsBzRM2OlRXkdBsB7XrS2ji/fm23J2ReZ27nOe2006q2FAB7fs973iNJ+s3f/M3pb+wnyhnx91BguHvjeUoktytkyW6dRXki8qyIJ1Ixv3lgc2T4rqHwIOVaKaYIZyN8nnXWWZJmU5mxRpTvwnbs+929K6W+tyNw78Csb84KYKHZfqO9K664QtLYrlNjS6UULS0t9eYvKw9UsyF7CjrazfrvGGJePqdug4psxp9NzI+3n91j/tx0W+HQGDyBg6chiyW60JCxN9E6uR2TNuP97kzZ2ZunD4tjHUoc7m2Tjo7EIF/+8pdn2hxCY3gNDQ0NDQuBTTG8lZUV7d69e+q96MUopX5peOwILvln3kS8xV3KrMWTxHZcWh1Kn+RSKu2RcJq/SY4tdVIqUoXHtnEOHkgkVJakb//2b5ckfexjH5vpq6dTypiy23uAxypmdlQ8CN2DFMQ2ndE5C8gYXsZQhxK5Li0t9ebr+uuvn/5+ww03SOo8OF/2spdJ6uaU8URpzmMNa5Iu142Mz5l9LYYrSy2GVHzJJZdI6jzGvJin1K1VLTGzM42sOLLbbj1WjLhNqWN7SM14kJLw3PdOxmBq91xWrob22F/EJLqtOjIJmDLnbqQdWFpa6rGn2IcsfVkcoz9bpH55oFqcYmZjc5sgbWEXY3yxj2i5PA7OyxBl8BRzvmaZBzvgWNgt/gEgSyLPs9DtwUNemrV7z/dwZHOZb0D8PmPzvHdiqsbmpdnQ0NDQ0BCwKYa3tLSkE044YZp5whNCS92bGikvemNGRGnGJQP3uPMEylFK84h/PxeJJJ7j0hEM4v7775fUsY7oNYlU4RknXC/PnMQ4PGL37rnnHkmdBI5XopdOiuNAGqrZSUDmuerxX7V5juewLl4kN9OlezHfHTt2VMvzcD1nFZFlvuIVr5DUFU/lEy8s5jSuH/11CbcmAWf9d68yt7nFTCvsFUo9wey8MGy8JzzuE9QSXWexgjVPUi+hFdvhWGzSeMRiI0Vqz5hLraSMx6bFc5C4+fR9GLPPwDZhPUPsppSi5eXlXtaXzLvUbV5D9jEAi/G4XPeqzZKt02/GzP7g98suu2x6Dloi9oMzPfeNiP33bDDsGdcSZGzdGVctw0zsG33wcl787kWlpXpGF5+/7H3B9fy54PdmPCY+x+YtEdQYXkNDQ0PDQqC98BoaGhoaFgKbUmmWUrSysjKlkk888YSkWfUaVBRVJn97CqhMnQbcyM/fWYVmV9d5YDjUP0tYihris5/9rKROTYXKJ57jCYXdOOyOCFEtgRoA9cYnPvEJSeNAbalT/0b3d3dVdxWTp86KlJ523JXY05RlCYe9ArGrzuK6oc5BNVYLL8mu6W7VETir3HvvvZKkRx99VJJ07rnnSppNTeThL0OVn73/rnJxt+ksaTDrihoMtTdOI64Siqi5+ruTR1Sh+vi4r1ApMY9xbdnX3CfMH9/jeMVnDEuoVeF2NXi8Z+kL+4CgfNSWqDL5Xeonod66dWs1LGBtbU3PPvtsNSWgVA8TGHJm8N88yYOr0+I+8Dqf/rc7Bkl9VR/w+zSraccnpoZamFLcd+7IxTg8nCyaL9wZp6aOzEJpas/i7Jno1+Oe8/ALfx7F/8d3TFNpNjQ0NDQ0BGyK4ZEAGCcMnDxgRlInLW6UzipKOW6YraXayYJ6hyRPKa8IDjPFiI+0cuWVV86MIUrNjAPDM9IMUrOnCYvSI78RgI6Dw969eyV1wbcx4bAn6XU3dGcykT04u6059kRk0pePI/ZH6lerrrEqMBqNes4XWWka+odTD+vgzCv2Adbne8mdWeI8eQiG9yML+aAvMZ2a1JemM7Z72mmnSer2DA4BjAHWGOfcHWhYU+452Fs06rvGwEvXuJNEHL8zSl+nGEYAWH/YrrNe+pNJ4UPJgeMxR48erZaLimOppcIbKoVUS8zMnMLe4j3iCQg8uJv1j2wdRuKJwP1ZGfvoTmvOvDx9V0wizlp6G+w7EPvIWNkztOHXzZzT/B5wJj7kbOQhQF5RPmqEmB9Cv0opjeE1NDQ0NDREbIrhra+v6+DBg1Omcscdd0ialSpwj3b9rUuVEV6eZ9o5k5K9YKvU1/ny6QHoMfXSAw88IKlL6kzJGmx3XiJH6gcNw8boC1IS+vAY0sBvSC/YqAiwRjrMglRdZ89c+dxktgp30fag5ayIp0v0tYTKsT0kt0OHDlVZHvbfIRboyQI87IEQgMhCYviH1LEnTzSehRg4G/eCxr7W8RhYi5e/4jPaRVgrvvM0eJ7AIUrALi2zZ7mvGG/GQhmfJ41mDB5MLPVt1TUNTdSysAZ+f9aSv8d2XYORYWlpSccdd9xgkuVaEuKsBBZwm1aNkbA+cU09EbLPG+wjakTQLHmKPLfHZunIPHm3B62jHYj3htsivVhyltbLCz67jW2I4QFn7UNr4nvS94H3OQKGfMUVV0yTK2yExvAaGhoaGhYCm2J40lg64e2O11xkT0g2zhTc2yZKPu4B6JL2kPTndilPweP2uvgd5XoIePZg0thHD4SslaxBasvGBy666CJJ3dzs2bNH0mw6Msq+uGTn3nNZMKd7s7ke3PX+sd8A1u6eVxH8hvR18ODBQYa3ZcuWqk0ituOep7SZJTFwXb9Lvu5lOk/CYY6FsWRewZ4ui/niXoiB1Kwddq/MszaOJfbH2SafMFX2cmbDo094Y+I96QHcsR+e0ICxu20ySvhub/bCs17QObYXvRlr9/loNNLq6mpvLaNWo5bE2VlM5mXsDMSZHwwvrmmtUCpjRUMTtQNe1gZ2znxl+4J2fV38uQPDyzRojMPtmuyTuL/5vxd85m/XdMV9V9MOuf/BkB3d93tm1/Zxffd3f7d+93d/t/d7hsbwGhoaGhoWApuOw1teXu6lQIpSDG9k3up4armdZKYTk/bcq9Bj+DIvw1pJCjwgP/3pT0vqPP6kLj7oda97naROwnKdd9SHuz4aTye34SBVY2uROkkOiYrrXXXVVZI6ZkNRVKlLp4VN1G0pLq1FCdDtmZ6OLJN2acc9uHyNo5TrUtj+/fs3tOHVEjVL3d6gD7WEwJGNuleh21/dxpLBbZwuVUeJ1Nkz3qHMAfsusgbO51juCVgAyDQLrrFw79ws3RrryzzWkoZn+4B9XvOIzLwq3YuWPet7NUs4vVHcZITHRcY5dhseY3MmFveBeyA6G/Tfs7I2zCXsmecMaxz9ANxmd/fdd0vqtAKuPZK6+4519nRnPv44x7VYXfYdz6MIv9dgrLBc9gp/Z8WYPd6wVkw4u66XdWPOoxbRtQ733ntv1cvc0RheQ0NDQ8NC4JgYHpKIv42lTiKA4SBlIqEgCUXPTpeskUyQiIZi7XizIz0Tl4RthSwP2M2kLn4QyRcG5iXvY2aIWqJhPhkD/aDN+BvzhXTE+Ij/u+mmm6bnfOADH5Akvf71r5fUSWMuqbokHvtai8fL7AJuP/NYxMxWiKTFsUM2PIfbBiJo12N0XGqX+vPh/XTpMrMjAWc3WaJu+ouUzLzDavg+SrG0y71AAUsvMJtJqV4k1jNSZDZj1vK8886bmQOX+LPiyLUitEPlgdy+7cVxaT+ynSxB/EaxVM42s6witfV3L9p4jLNCn69sLzH/PCPw8OaTZ0ucT9ga57BnSCqfeYPSB/aKZ3pyppnZYznHk1e7vTsbM2yU53qWdcbBb6y3xwpnrNC1UhwLs4tzz3gozbV///5WHqihoaGhoSHimLw0PWtFZFyeQ5O3PW9qmFfGLmAxnuPNJd8YS1XzlsQjjjbjORQ3vOuuu2b6Rnwenm/vfve7p+fQPsyV9pBeXAKPYH6Q0jgGSSuz6dx8882SunlEmsEz1m2hUeLCnuT5Cn294jm1PH8w1iwfJ+MYso9FlFI2LOMz9JvPtbedteGI48sydkh9lhP3N5oKZ1Yeg5ZJwF4MGW89j6HK8mLSntsVPQNK7IszOC9e7DZyqZ7r1PdFli2De83nPtMOwDbcHpMB+2+Nzce2na0xp1k8l+8jj0/ztjNvXTRIfHp8WtyXzprwJYDp8dwh3lTqnjOwP18X/vaSQ1K3j2i/ZpfNngMO1sv3aBZT5yWy/LkT55H967Gjfv9EPxH6zfP6+OOPbza8hoaGhoaGiPbCa2hoaGhYCGy64vnxxx/fcwWPNNsN1tBY0pE5zZU6VUKNanvYQlT5cA6UH7UAqkfURagxpU61g0oDtQHB6Zwb1R9ve9vbZn5D1edqlixtF+pJ5o0Acz49MXVsh/EwJ1SvJjAdNVlcAw/k52/G4wmv43g8DMFLDUV1FXPO2u7cuXOwRND6+novlVBUH7k60NUrqEri3LoqoxbUnRnoXY3r4TaMPabRcrUMbXCsp1uLv+GwhdqG8Tz88MMzcxHnxFPLsd6c69XSpX4ldfYZ84bzTBYIXCsH5MhUw8D75AkQ4nfzJP1dW1vTvn37pun6slAGf3a4k8pQNfGNEqd7UgOpUxN64nQ3w2RhPN4u36PijM5y3P+YXRiPq/39eSvNPk8iPOA+e377b6wTJivGF/cO//dPkKmv/RjGwbiz4+gLjo833XRTmnosQ2N4DQ0NDQ0LgU2HJWzbtq2XbDVzD0bycSeFrHyOB/O66z/sAykHhib1GReMzsupRFZ4zTXXSOqMw0gKngIqXuejH/3ozG9IyS7pMD6CSqXOOYFxeRJhmFIMZWBOkNI4xxPaZpK4ux/TV2cQUeLGccbXx93gY6JjvjvrrLMkjaXemls7cAearOwHThdcyxlEFijte8eZScZUfO48MS97JjOyO5P0FElxf7s7NnvSg5Nx6Ir7gHM8MNedPmIwvhf49H3tZWKGXLq971nCAJ8nZ3jOnOP/Y8hOje2Rls7TT2XaBA9p8iQSWUgLcO1DLc1aBHu0FvAe4UzXQxe8QHPsk6e581AJZ5hSt488VZo/B7LiqhzLc5y+eUhaXDPXOnjSB0+wHc/3feXrFc+h33EftPJADQ0NDQ0NAZtieMvLyzr++ON77CJKWs5aPMA0KyvvJTCQXjgGfS7SRQwxcLdjJAGkJoJvSdUVv8N2csstt8yMw91rGbvUMUj65vYmfo9la3BZdomSucK9Ns4Jx6LXZ94efPBBSZ30xvexHBHu4YQ5OPvJ7Fxue3QW78HfUjdfztCHgITqduDYP2deQwVsfWwu9Xs6qsgWvX3GgQ3FE1DH67lk7RJwtPs5C3TGynpx/agxcXssYJ970u/YJ+8La4fNFcS0Tb6fPRjfS/9kffJ73YPkIzyhQ4aVlRXt3r27V0A0rrUnCfC19aB4/3/sd7yulNv/eHZwvzM2L/KalZbiN54RziRjknTXdvn96Enlo3bAbWauyeJYEiFIfeaIVoA+sUfZU5lds8a2soQXvp/oozPM+GzxBO7HH398Y3gNDQ0NDQ0Rm7bhbd26dfqWR0KKb2wkBN7UrkPnTT1UqNB126QFGwpWdrsYUjPejFFqov2XvOQlkjopDLubFxGVupRBNS9Nxu0JoqVOwvJ0WkiFWYJUpD+YG3ayM888U1JnX0TCzLylYNm1cktxTmoMr1bCJvY/Sp9DknoppSdxxxRz3j9ndJkU5zYzZ4dZGSIfM+vvxYszj1sPfncW6OOT+kVoPUkw1/cUdLFd1tCT9mYJer3/7EW3kyC9R80Ddm1v3z0j4/i8XWdZQx6fsd3a3lldXdWXvvSlHquOzx3uLeaS9XFWERMmezo97kNPZsEejXPM/c+xaKHQ5vCMwTNX6ntUY8MF9DWWCfProd1ir/KcoK/Ru5F9xNz4veD+DvEc+sZzB7gvRuZ56+NxLUXGzD3Jt3tkx3tiqOTTRmgMr6GhoaFhIbAphre2tqb9+/dPpc0sFqPmNZR5BAGXvrA9ubecSwNSX1rhrY+kR5tREkFKcSkNaQymBauTOqaFBEKSanT5LtXSdryeS9xIcsxJTC2GhAND9dg9ypB4wuvYHl54HsuVSVrOqpn7LFUaGGJCDop4uqdatAE4C3NvLJdUYzvO8NwG5bY3qdsjzLvbqTK7oEuttUTMmdbD40trjCazM7pUO5Q83GMEAYycc9mH0abnyYo9vivbO5ltVer2g0vvsY/x3Jod5tChQ/r85z8/vR+zQsB+bfd4zEo98WzwZxVjh02zT6I9Dj8A9iQetmheGGv0N3D7HuvB37DDqB3yNIS1+yfzZnR/CS+myjlx/ekjDM9Tlg3d427n38gmH+Gp05iD7B50lrm8vNxseA0NDQ0NDRGbZngHDhyYkUCkXAfscUkemxHf2Oih+XSpMssIAdzLB6mt5vkZ/3/vvfdK6tspkPAuu+yy6TlIR7TvUh9ShyfPljrpjz56nI/HLEqdrQ5G59dB8so8+5wZwfQ8i0JkBUiBsB2XxrKsFJ5IeSMpa2lpqeepGpmQsxdHxiTdxuUZFzxuLl6PfZbFP8W2o9Tstiz3wPTMHlI3Z7VitG7bjZ6w7g1MG5yTMUofj3v0sWeyc5Hs0VB4bFrmuepr4LGCQ5I97Q15+K6uruqpp56a9uWCCy6Y6Vu8hq+Ls91MO+CsyZl3VjCVOcSWhp2P5wTMLnpNOtP350KWzcgzxnicnydwj5qlWtForucemHEOvFhtbb/H+fTyU35OpmWhL7THeDL/AEB/4/07lOEpojG8hoaGhoaFQHvhNTQ0NDQsBI4pLMFr3UWVCFQU+u+qQA9ojudnhmWuK/Wr+0odbXa1ICoFT20mSXv27JHUuWC72zafUXVLcCbfocqAkvM944zJqmtqAq8EHVVRMeg9jtNr3GUqJvpPH93Q7Kl+pE6V4MZ/d0zJ1i2qjYbSQy0tLfXSGmVGcP/OqyFn/XPVh6fLygLCUY14VXHG4OmcYt/cASVLFkc8/3wAACAASURBVAxcre7GfAz2HkQc++QOIH69uF/cJED7uMXz6WExUrd/3enHHQ+GQjVcZeuOFXGMUfVY2zvLy8s6+eSTp+ejtsucVzZyVorXcFOJJw3nk+tkyZi9FqCfE/cO8+xqaneEi9fhHNbQU2+5qjmq3xkXfWLdvbJ7vOe5PzzdmSdN8GdyRK22JsieITgB8dz053p8NjK3MaHBPEkvpMbwGhoaGhoWBJtieKPRSEeOHOlVd45ptDzBK29jN2zHt78nFXVjJ1JFVlLE3aSRfJEUcGWOxlyYnRvkaQvDPaV44rEwVo7BWO2lS6Kk5UH4WSJm/xuHGlyGGR+hE264jQzWr+PM0gNupU5SY3zu6JC50NMexx4+fLjqau9Vq0GUzGqJpd1RJEqV7mjgqcs8IXRkBUjS7BlPNO4JjqXOAYg1dYadVc2uSePA91/UmLgR3x1faDu6v3tpJ/YV+x5nBZfepW4t2c9eoitj+r7fnNFm94Q7shx//PFVRrCysqJTTjll2i57NLLaGlvzcWUaBQ8x8fAUnm9RO8C12QeeZN3XS+o0LoQa+Z5xDUOEawX8PspStDFW1t+TVDCGLDzJHdH8ulmCBcBc1NL8xXsQZsx37M3bbrtt5jqR9fozb96QBKkxvIaGhoaGBcGmGB7w1DtRivGkn7zt3caW2QD8jU1b7mYdz3V3XS/eyu8xhZVL/Z7Elc/7779/eg5hAkg4uCp7W874Yl+chXhQZZT86QOuy0iOnjLJQx2kfkJbt88565Y66Z/5cvtsnD/g7tV33nlnj7UCSrxkKb7iMRG1xM9x/d1m43PqqYqyxLwutXph4Dh2dwN3u1IWHO92JE+8PJTUu5aWK6ahi/2Q+loA5o8yVXwiTUdJHEmaveOB7x4wHs/PyinFNrJk5bE0Ui0cZWlpSccdd1zP7gvbjv1mrG4Dz1Kw1QKja1qNyLwZI3PNXnENSWS1XgaMsbtGK6KWTpHvPeQg0yzw6SkFM40Cz+kak+NYfo8hNG4n9STisLn4bGSd+I55pYQbmq54jmt6WuB5Q0NDQ0ODYVMMb2lpaYZtZTYJZ1yehiw7B6nBPdJcUuDaSKhSJ+UhccA2kKyQhKMEgITDJ8HdLonG1GLY7DgHaYXxIvm7LSyOuVa4Eokv2ghgFbBP1/N7ctoocTO3XqTRy5DEtfRikR7I6jZYqWOFMOEnnniiyuBGo5FGo9FgORjfK5nNVpqdP/rpDNtZdGZzQCpH8nYmxvekfJI6+wt9ZF24HuWbotYjSqdSv0gpc5bZKOkvx9LHIbsf+/bcc8+d+Y2962w9svIhVhMR95uPg73pLDhjrozjs5/9bC9pAKDwtNv6Y7+99I0nk3Dv5vh/Z6Sc4zauoSTFzC1jdK1O/K2WFMOTjMe+ANrzPer7IoJnld8T7s0bUQvkdw/vjJX7sexH0iFmacK4x1hbT7QRz8mSPcybQLoxvIaGhoaGhcAxMTyXaodicpB87rrrLkmdhBx1vw4kj1oKM/S69Cl+unTm5TSkTtpzLz2PA4zJnL0oradRcs/H6FXkXnpZ/Is0q++HcbluHkkWL1TGG9MeedFIt5E6S4xj97/pB8dGVkii3GiTqOnS19bW9Mwzz0wZa2RADmf2Lr3Gvvq6u/ckc+oMUOqn1oIt00fGFUu8sDfQHLhnJ2wulmlBO8Ce4Ldrr71WUqex8LmWOpu0F8JkX7MvYqkZ9jrHcl0v+cJ+uOOOO6bnunere8E6Y8qOdSaW2SY5h+vt2bNncE9E7QB9iHvRPTfpg8d9Rgbk2gZn017kNLIZruN2eZ53ntRc6qeYc3u8e7lG+Bwyb8TWZWy1ptlx+3/Gjrw8mNsQ+T1qdJwVenJq+pppd9yzmE8v2ST1k25v3749LS6coTG8hoaGhoaFwKYY3vr6uo4ePdqLeYklf1yaQPLCFoRkFPXvSJ5ezNDZGxJwjDly70/3HspiW/j/3r17Z/rCeNzjLrbLdTwLB5KOJ1uN50a7XmwLaQZpPrZDH2EZtMtcYLOMsZC+Lm4zYE7i+Jwpue2L8SGlSbNecly3xvBWV1f19NNPV7ObxGt5uRn3zhsqPprFJcbvo0SKVAkrYw6Zaxh+5uFLe9432ozaCbeL0q5nSfH9EOfE4UwrahTc9uk2G7QBXixZ6tu8azawyCRqhV59D2XetVzv8ccfH0wavrKy0lv/rNyQszT64rGwUrd2bjN2VusMLJ7jdnLWMss2wt73kl6Z7db76GNnzfy5F9fF579WxDeOq6Z582TVbnfO+uyZpPzZEvtf8zr3wttSN4/RT6R5aTY0NDQ0NARsOtPKc889N2VAxPHEt6u/8T0uy+O84jmuS3ePJPcYlDoJEQnB4+9gVbEf2XdSxxyxscTfuaZnj/BPj8+T+mzQJW+kwjgnsCeOgckhySOFkn8vMgq8TpFqazE8keHRLtd1Cdbz/sU5qcWKRRw9elSPPvrolD25bc3bztpzKTCOze07znI8U4jUScnMHWNkXjwvotTPpOJ2MrfpxD6yHoyLfehliDLm4uvg8VLR7ueem5yDbc/zgEb7n9t9vU2PrZL6XnOZp6Cfw3z98R//cXqsI8vTmnkXcv+5RoL15z6K/fEYM9af9RgqsusMzPdfZjP00mLuHRzX372e/Z7wOYjPHddyeT5MEJ8DPh7P1uKet/H6XvyafeUexpFF1ryA3SYatWOcEzUjLZdmQ0NDQ0NDQHvhNTQ0NDQsBDYdlnDiiSdO3dGhz9FhAurrSWfdzT2eA7IqurEtDJfRRZXfaBcVp6seI42++uqrJUmXXnqppL4RH9VJrFYc50DqjLeuwvKEylJHx93wy3juvPPOmb+lbt4IyPSyIFB9+hjd4FHr0CdP5kqfY1kYNxYzDi/vlBnFo3tzzXh86NAh3XHHHVMV0yWXXCIpr3jO2mXu7FwHeAokr5TsqrjYf3d04Lq1hMBSX5UJ2PdusI9j9PJTWTC0t+3qKMbjezWqvtxZwZNI+70R1aGo2TxFms9fts4cQ189rCj+TbKCL3zhC9Pr1lTi7rSSOXm4kwOhS4wDNX88B/Wmt+fqOg+vkPpJwz2VXbZ3acdVfD7uof1dK6+VlQnzPepr5qptqZ+cnHvAE2v4mOL1eCbxnHUnxLgPPFG3O6HxezyHvrFXh547jsbwGhoaGhoWAsdUHsiDuqMbNZInkjxSFG93mEg0nGJMR7rwwo4eBBmlZ/qAJHfBBRdIkl7xilfMfB+vR9+QGjx4l+vjECJ1jNSZgzvWZEGVLr0gCcHezj//fEnSAw88MD3nc5/7nKR+SQ/6gWEY5hWlNCR5Zy7OFiKz8GB05hXJOXMy8cDtIaeV1dVVPfPMM9NxEfycubf73+7UFI9zxx8v9eOStqd1k/rSshdxjVItx7j7ee0z9smlcQ/yzkrvuLNQbU4ivESSr3+WABowLi+27Aw6WwNAu4zbg8El6YYbbpg5djOu5SCyC+6Hc845R1I/GTpjjmE19C+GOcXvAXMdk1fQb0/j56w2S6dWS5LugftS/fnijm+ZI5onrXDHOzQZ0TnPnf5qYQieZFzqJ2Pg+ebao7jvsmQSUn/fxXllrSNDbgyvoaGhoaEhYNPlgUopvbQvkeHxpn744Ycl9VmA/y11UoVLQEg6bnuI0iVSCuV7rrjiCkkd84ERRanJ9dQuHTCe2EeXtDiXY+hjVvjRbWa04X+TgkfqmCrSDDYJtzfS12hvdDuSlwfKEjzzHZKb25nchiB1knuUoocCpU844YRpGi3CHwhtidf0MAdnPnEtPfyAv92W6oH1Ut/12stdZUzY59YDf13ijsdwrmsd3GaUBfN6ELTbjuK6eGknv46Xo4rXYz95sndAm5kt1xn6ULJyTzKxkYS+tLTUk/pjsmnm//LLL5fUaZIoJOq2aal/L9GeJ3dwLVI8159rntIus8e5jdrZe8aendHV7I5xH3hYEud6maL4rEKj5M8oxse6sZZRYwLD4xnsqcuyROfA73W/X2NiBQ8nmzdxtNQYXkNDQ0PDgmDTNrwsgWqUzpwBeVFA91iT+l6MSGFIIJ5aLEoxSFKUnvDisW6/iH3z/rtEFKVYL/eB5OHlkJA+MsmuZusAkXkxVuwGJN2mLU+DFO0L9NXbp69ZGRIkVk+z5p6MMM445lqgccTKyopOP/103X777ZL6Xq4RWeLd2Kcokbpk6JK1M8C4Li7FOsPL0izV0p3xvc9xPNZLujjDdC9HqZ+g3dfFEx3HMTtTdE9CkKXbcjbF9bIAfm/HA+mz67zjHe+QJP3cz/2cpLG9PGO2XGvr1q1piSeAhoeSSHhler/j+sNWnAG5TY/voye0J292/4JMs+TB6Nzvfv9kGoXamrqdLj5DvFgxnzzn/NkV/8997mzMvetjf7i2p1D0EkPx2e/3uJeNymx47m3ebHgNDQ0NDQ2GTTG8Q4cO6c4775yyqZh0Frh9yKUnJIQsMTPMBLbCm9yZWIxXc+8oJCFPzBolEdfJuxSLh1eUPrz8D5II3yMJcd2oc3advdt9smKKtBftHlK/NIbb3qSOXfCdsxH3eo3fMedeZDNLFJ6lF6ph69atOuuss6YMDykw9sHtYp6mycupxLG5BO8xbllJpqzESfw+S+Y7lBw7+8zarc2be+tlxzrLyeLwWLta8mYvlRPnxG1QwO+viFrSb48DpDiuJF122WWSpHe+852SpPe+972pBy3jOHTo0LRvbqOUOg9rbMOxtJfU7Z14n3h6Nrfpu1YnPkNgQBzDs5D7n+/jPDrbjOVtauPyfeQMzwtOR/brSeK9tBB9zGyhHqvp57o3qtR5t3taRN8zQx6+Nc1MljDetYfzoDG8hoaGhoaFwKYY3pEjR/TQQw9N4ysyKcbtVW5Tc8+k+H+Xyt2byPW78diaPSzzSHRJ13XOSCjRXuWZJ5AUORddPl6I2BRiezBXznVbYWQUzIlne3GvMI8Zi3115uqephkLdQmPNc68AWtlYDKsrKzoRS960bQdWDrZGCJc5+82j7h3nNm5ncRjD6NtzefO7SGZx6VL2M6mXIqPffPkzX4v0Ha8nzLbTPw7Y0W+LjUpOivb46yP67stJ57jNjs0MnhqX3PNNZI6Lz6py7Ry5ZVXShozvd///d/vjYX2d+zYMV1bz1gTQX9j9hipe5ZErRTMyu2jgL+z0kLsK/d0ZA74Pl7PPWvd8zlLjg7cQ92TmEfNCxgqOxTbjKgl7nfPXh+T1DE8z2BT87qO7frfmc0dMMeMuWb7zdAYXkNDQ0PDQqC98BoaGhoaFgKbDjxfX1/XQw89JKlzlY/pelxNh4MIx9RUJBGk9EId4Mlvo0EadYO7fNN+po7whKioB9xtN6rOnJ5Dq6HvtUTAsU/ugOLql8zxxNVr7sjhaYLisR5A7SEhmfuzX3+okrtXVK85HUhdAmDWFJVWVCezZzwA2IPgs6B+dzioJebN0oR5QP5QYDZwxyOvnRZV7B5CgqqcOfXwh8yo76p7D6WI+9sN/X59bzuqmFz9XVvTLDyJT8ZDsoSLL75Y0qyaHweW8847b/pbLbxl27ZtOv/88wdDTPg/fcA5jnuKOY994FifQ851NXncq67y8+cPv8f7kvX2+nu1GpvxWI6pqalrDiLxN1dhZ+YgT0rOOvs9kakaubdrCfyzdas5tLj6N96DzKObbuZBY3gNDQ0NDQuBTTG8Uoq2bNnSM5hG438tiBZpCgeOLLWYB8YimZB+6pFHHun1icTLLgnw9ncpKvbbAyW9JEbsI5Ib7SIFcl13XonXIwgWqaXG3qLUnDkUxD65wZ2STVJnPPYkwi5ZZpWVkbhog3HT5yixOpuqGce59tra2nS9brzxRkkdC5C6tFBI4x7I7GEqsT8eoFtzWorSZa2kizugZKETtbRZfMZzvP1aCMU8bM2Dbp1hRNSCxocq1Xv6tlry4jh+2kXyJjE0mhruedLlSV1ZoD179kiSLrrool7/wZYtW3T66acPJtn2McI2eHZwnSzxgDse1aq9xzV1xyp3eMruX7+XPJGCO8TFY9h39NUdUrKkAjWnMmd2mVOW77taYve4Bux9r3yOJjDTKPh+riVhj9dnn/lzYh40htfQ0NDQsBDYtA1vNBr1iq3GN7azNaQX3sLOTOL5Lj17WjBYVHzbIw15QmvXNUcJ2O0gziBoK5YpQoLEZudJlilLgm0iSj4exO12zEzf7ymLaumP+D26fAOkvb1790rq2zei7cglRHdzZu7j9+7CPqRLp7QUNhTKBGEPlrr0cPQT1uou5plUSbKAWh+GWLSnMnNbXuaCXyuE6kkG4jWdYTkr87R8caxuU6kFrcffPNjepXIvNZT1zUNCsuTRsClCcj7zmc9I6pKhs//iuLgnuF9OPfXUNFifa5122mmDJZh8ntgzlKEi4cFQuR7G5ImtMzumh05l4VaxDanP5Dz9YhaCUkuMXNOmZGnpvM/O2rLwBN8HtXs8s6MyX/MwMN+rzjCz8TuTXF9fn5vlNYbX0NDQ0LAQOCaGx9sYiSUrTePpeZDWd+3aNfO91A+8RYqETbk3W5RuYUVIdDWbTWQmHpzsxU05JzIuPEO9AKJLyQQXZ+makAY96TJ9j16c7hXlbNBTc8VzCeqGJXrqJA+SjX0BjN3TEw0lil5bWxuUtNbW1qbrTyqouHeQ9mHLjMnTusVrsJasD+3Vgnjj3qnZNFy6jdejT860nBVG9uyStTM5byOCvrj3nLOOoWKurLPvu8xm5fYr92R1NiR1mpA/+ZM/mTmW/YcNj/tZ6p4DPBceeeSRdPyM7aSTTurtrYzluP2VZNL0G7YpdfY997x2j8+h8jPOSDyZQcZa6VuWNMLP8bVyz+Fa2jipzuR9D8V59+dMjVVnqfo8wUJM3OHH+nc1++lQyax4bzSG19DQ0NDQELDp8kD8k/KEpUgI/MbbHskbqSmW4PCUQe4J5sVPI/NCSsKG5TFBXiwwXs+LQnrqpxjvRd9Iq+Zs1L00I3vyooqAc+lrlNI5x70BnaVlkp17KNIX9yjLYiGRyjxJdeZh5Xr3IaytrengwYPTNcRe98ADD0yPwQ7nMVSMNYu7cV0/TM9TitW8zeJ3PpecE9fSE3D790Op82r2WLcvZuviEqx7BWbnDEnj8fvIFr1P7knKsdGTkHsZBnfKKadI6pgfezmyefqPB/MzzzxTtUvhHe7zlhXzdS0AfYDp4TkqdVoG99IEHqc3VCiXY9h3QzGONTtYVnC45mHpv2faCO93LYVahKc59L66zS2LN+U5Gj3H4zgjap7eQ16ivuejtnAjNIbX0NDQ0LAQOKZMK5mNC3hRRbd5uFeT1EmAHmflCZIzrym3Lbndyr3MpE4C8RIogGOjlyZ9cG9Qt4dxvSj5MCecg1RLW1kSVJe0a4lSM8ZRK6rodp4sGa7HCHkB0iFd+UZMb3V1dXo+TDnG4TFGpHC8/NyWl3kk1rQDLnHHufF5cmk28wZ0m5bDs/ZkcEbnUnW07TAuz8Lhca5xTtwO47GjQ/Gffh23c/N9LA9z6623zlyHuCvOQdKPbJ7sKzDyWPIrQ5Z9ZIjNsGaM+dJLL5UkffjDH56ewzz72GrZbaLdkv+7h6979g55wLp2ImNxvt9qWY0y1uv7NyuC621tlLXEvbmz66HFgfHzzOd5mj1DfN7myZ7Cc+HAgQPNhtfQ0NDQ0BDRXngNDQ0NDQuBTas0pb6BNjqGQJfdYO1Vq6OK0dWd/IZ6DfWB/x2PdRWWU/9oZHfVhddZQ8URVZ7Q8zPOOENSR71dLZKpFlD1QMFRBXsAJU4b8TtcumnPA8IzQ38trduQ2sBVpozX0zkNpS4aCksYjUZaXV3tuYDHdWHt+CSQGfdx1j0G2TMvrpaK143fx/lzhwNXT2Xu4+5EwN8ck6l+mUNPWecJF9zJROrm26tigyw9mKsqa3snu54nUHY1GN/HfXDLLbfMjJ01ZVysX0y+jNqL651++umDIS/r6+tVh434f1cB0ibXi/PkSbtdxejq5Kj6c5WmOxwNhUx43UNXS2dOWf5ZS+eXOSAN1aOLfY6/ZU4psf3MTFJLyoAjHM/ObN08NMfvo0zF6c5486AxvIaGhoaGhcCmwxJWV1enEkkW1M3bFqM2Uq2Xl4lSsxtrn3jiCUldcKqngMrcm2kfZoLLMedGtgZzwMHApYhLLrlEknTTTTdNz0FCrAX+4pqNET7+7iEGzmBoO5ZZ4jcvLQQLHCpHxG+wQ1yyPUF0dHTxAHZPdJtJhy4NRqcUB67l7jDBGkud4wIsAibMXPJ9lszZJWyXMjPmzZjcKcrDNzIJ0sdOP7K0Ye5k4e3WpOn4m6edcueVeG6t3AzMmDXmnskSQdecgPie1HBZu846SBodnxPsL9jgrl270vHTh7W1tUGGlzmJxLGjccJhLPbH96zPrQd/S/2SVaw/c+D7IbZXqyKe3TseFuLJAxzxueMMv8bwhs5xrVDt+9gnZ3o8k4cSHTij87nK7kHmZGlpaW6W1xheQ0NDQ8NCYNMM78iRIz3WFKUNGI7b1mAmsJgs8Bx4KiRYBtJgVtYGVuhMEpdoXNxjX1wP7YHUUeJijKQmch0+Ugz2iocffnh6LmyT8kbOXJCQo2Ts5Y1go7AR1oDjYHGxL8yNn5O5WXsYidsMMl26S6SllKqktbS0NOPKzhrGYr4wPE8h5+WoYjJp9oanbfOCrLEfwBmJ2zE9IXGEJzYHWfozZ3C1EI/se/7PODO7m5QHEzPHrslwFpwFDzuzB+zrGE7itjtAcgEC0eNccQ8SInTw4MHBsJaY8CILS4jHxU/mib7RF6l/39Xc9z00Jx7jZYnYU5lGoZYIwhMcZOnB3O7rv2c2NU+z5jZ3t1VKfX8D4LZRD5bPxgWrxoaXJUmo2ercjp6Fd2wmhGF67txHNjQ0NDQ0fBWjbKZ4XinlSUkPbHhgwyLj3NFodKp/2fZOwxxoe6fhWJHuHcemXngNDQ0NDQ1frWgqzYaGhoaGhUB74TU0NDQ0LATaC6+hoaGhYSHQXngNDQ0NDQuBTcXhbdu2bXTCCScMlrz3DA2gVvQwO6ZWXn4or9pGmOecY2n3hWjr+Vz3r+o6NWemGHfjWUaee+45HT58WKurq70Lbd++fbRjx47BGLChTBq1/mdxb/HvoTEP5f3c6NyNkJ07FD82T7+y346lj8cyvqxUkv/m8V3ztB/jsJ566ikdOHCgd9LKyspo69atvZizOBfE84F55tozPNWeN0Oo5Vb1awydO098obc/T99qeTjnOedYft+ovFbWD4/r4/1B7CixuVm5rZhN6ejRo+lzx7GpF96OHTv0xje+sVfXKL68PFjTU+6waWOQqm+8WgLYoUDD2mbNkuvWUKsb93zh1/Yktf59/H9tsw797fPpD6Da9eN3noQ7S6RMfbMHH3xQ0nhzfuYzn+m1KY3X+9u+7dt04YUXSuoC9D1YWerXOPSag1kQqj8IPIDVg1XjbyALFo5t+f+zY4ZedF59fZ5K8X5P+OfQWvr6e+B71mf66KnavP34wCURgNfh84dYllCZJAzLy8v6yZ/8yf4EaLzul1122bSGIgkMYr3KV77ylZL6yQM8lV2cc0+IXquans1xbb9tJlED4Pr0Pc5TFuAd4XsonuvB8bVnYAw8r6Uhq1Wbj2162jH/m37ExBGcT0ISngec8yu/8iuSpA9+8IPTczifvu3evVtf+MIX0rE5mkqzoaGhoWEhsCmGV0rR0tJSNbmq1E+55Il4s/Q5nrDWUZOipL4kshk1xEa/D0nrG1H/LLFtDRn7AF7KyM/JWAnfoRbwNFtZ1W7vg7ORLGm2S26ZBB/7dPTo0V5pqaw9319gqIo0qKWHy5i+S8+eUiybp9paDjFyzvHSPjUGFpN6DyXjrsGTu9MG8+vsPV7D2UyNFcR58JIu7Adni3GtOTbug9pYV1ZWdMopp0wrqT/66KOSpIsuumh6jK9lTUuTrV8txZvPT7Z3/L4ZUudupELP7nXacS2XJyn3hOHZeGosPZsT2nMTlc9F3NM+dn+GZOfA1vy5Q0L96667TpJ0ww039MbDsS21WENDQ0NDg2FTDG9tbU379++fvn2Hkix7guRamYn4W01qcukiSiS1gp81J4bsO2eHWR83whDzOxYJayNHgJqtKv4/k6giol0gJnaO7Tr7iWWWmJ+YMHeIPUftAGwzYzPOklzKjPPl7KFm0/NrxP8POUNI+dw6Wx5yXvA5rNmia3aaeKzvlUzKdabsNkR+Z+7jdZG4fU7YQ9zfMbkwc8ExtXI3MXm0l9wZsrEvLy9r165dvSTLMSF8jeE4W8u0EJ482hNPz5OkeihpuvfFzxkqAFvT7PhezcoF1bQOPgeZzdDH5/egP+fjd76mPp/Z89vnnr358pe/XJJ09dVXT8/Zs2fPTHvHHXfc3M/qxvAaGhoaGhYC7YXX0NDQ0LAQ2JRKUxpTUNxnMycTVwO4s4pXYZb67stOwWsOCPG7jdz454nHGVJTDLllb7b9jeJV4v9r6rYhd2TWB1UJoQSuyohjohJ0dPWO18vGx7FUVn/22Wc3rGnmDi6xXXdkQW1GP70mXISrRlwdmlVO9vmoqbaz63l7Q84StTgrbz9TT/qxtXPnifvz+wc1dgw1qd2nvhaZ0wr9Z53cjBH3m6s/vf5axNLSko477rhpzcNdu3ZJkk488cTpMdRcA1FVHvuWPTv4rVaxO7sH3MQwj5NM7Rni90Q0QdRUiiALD/Br155VHnIUz6k5r3nYUgTPHZ8/H1+cE98rqNR9vb7lW75les5DDz0kqatteN999w06zEU0htfQ0NDQsBDYFMNbWlrStm3bqq7yUl8icPfWzG3XpYmag8aQO/1GoQZDGT1AzT0568uxZCTYyLCauSM7y41ZTeI5UcJF0gJUl3ZJPEp2VEnH9RvpmetlQfkEicZA0hqQKkLt0AAAIABJREFU0l0SjdJsrcoyYA/Fc2AkXqndA6czRwp37fbruiQc/+9Sa62tiBpbGwpwdkeDWpiFV3aXZh2MYlvucBPPZY494NzZWmRQtMt3zLXv4bhuhMx4GxlKKdqyZct0L15zzTWS8rXc6DkQmQn9OXDggKRuzDBfZzPRuSdm+YjH0kYtxCoeWwtlyJ47YCNnrNjHWqgR42YNsucOqDkdDiUtYP74ZB/i7BjB+awBzx2uh1MMziuS9Hu/93uSxgHnkvTII4/MHZrQGF5DQ0NDw0Jg04HnKysr07evu9PWvpP6DCFKsUgasBakJD49RU2UomvpyFyqifBjaynM4rm1oOiNUk3Fc12CYxxcJ47Lg4Oxk+3fv3+mr/z+zDPPTM9FKkJyQ3pCAs+kYHIRPvLII5K6OeH78847b2YssQ9IZTGw3LG0tKTt27dXGYvUzYunoXOWEZkpx/o5tM/3ngjB/x+v73s3shlnqG47zNayZjt1yR6mnDEX3zN+T0SWjUTt81ZzF4+s3dt19sk9GtkjtjX2nbNp2owMz+/1Ukr1XhqNRlpdXZ3ajLE3R7bG/13b4H1D2xHBfHCfPPHEE5L6Nr19+/b1znWGf+qp46LbsJu49mhEPEWeaw2yRB5u36uFOjFeqVsz5obnLM8QNEFxf7ttjvvH++a23dhH1oD1oo/07Zxzzpmew2++ZwHjPPvss6ffXXLJJZK6BAQ7duxoYQkNDQ0NDQ0Rx+SlCTLPN0+jxFseySGTtLAfudTCWx8GgQ44k+yQHlzCz6QywHWQGPH+QuKJ0hkSW4191Lwq42/OAmBlSLtkBpc6acy9zZwZcW6029EHl9a4LnPFuKVuvfCA4hjG/dhjj0ma9ZYi4StsYNu2bYOMd/v27YNp1NxrzW0pjCtKwC6Fu4TIHkK6jnPijKrm+ZrZDPkuejjG68fvXSNS8yT1NFIRHvhPn2Hg0WPRg/sZu+8/Z1lSnxGzr3ycUftR85R2xhzn3gOMN8L6+rrOPffcmT4+/PDD09+d/dM/7n+OHWJcgH7yXKKP8R5zezLt8lzLkqKzn7GTM+/uARux0d70dYqB4G47hcFyjj+T43U8VZv7VzDP0avb7ZZu08s0Z2eeeaakLpm8Pz/cHixJL33pSyV1Wq/NoDG8hoaGhoaFwKYZntTX0UcJGMkDiRB9Md/DHKK05Lpf9+gckoC4jpeQQSLgeplXGUAKRPJCQo6ej57OCMmG792LKfOWArQLa+Iz6t+dQbhNxXX5mWcXY0bCQurMmAtMgb6yFhyDFHjrrbdOz/nmb/5mSbN6/iGGt7y8PJ2vIVsXY6W/tO823ThGjz10r8nMs9i91hizS/xxbumLrwuM3NclXpNjOddtbCBLBO42ZD6JRYr14DwFl4PfWdNs73gqLrfDxXMYO1I/mhLXPsR7gu+Yz8OHD1e9p5eWlnT88cdP70/6ENPhuV0MW/T9998/07fIhLmHOYff0FzQ/t69eyXlnpfOwBgj93hk6+7xjIaFOcjsWLVEzF5KiO+j96t7lzJv7sUd7XC+zq5d4VjmhrWOv/l4OJb5jXsVFg37ZE3Q5jHnvEck6YorrpAk/cEf/MFM3+ZBY3gNDQ0NDQuBY2J4IIs5gqU8+eSTkjopD4knKxUCPEEt0kW0bUm5HdG95dwzKNog3AMRSRemhaQfGR7tcw4SFSwk88oCLv0hMTJHWTwUkhrSmNsmnWVndi36iiTpiYEjw+McGCzrg8ca+vLoDerlh0466aSqtEUcnvc3Mm/G5pKhFxaN59Af1qrmZcb3sX/OGLk+Er73g3HEc92Gm9mkXKIGbnfKYqyc2TEeL4LpcW3S7FrFfjAXaDaQrqXuXqA9rof3IXMT9w7t0D6FWjk3y3LCmGNml5p2YNu2bbrgggt6NtfITPg/9xb79iUveYmk7l7IvIyJ52KOWW/mALtc9AfgeeJjr3moRngZKC+SHZk5//fCtv68ybJfsa7uqe73U9Y3167BuJwFR7bmsbDMr8frxnVmr1DAlcTQrInbZCVNbbkcc999981VTFlqDK+hoaGhYUHQXngNDQ0NDQuBTak0R6ORjhw5Uq1hJPWpvasyOTaq7zwdT83FPAsidyrvbrQgU5egUoByo6ZArRPVYxhnXdXoNcX4O/YdKu8OO25wjqoMVBb0oVZLjb7jvCB1Lr78hjrCnYKi+oPf3FUalQPq3mg8pm+oOZaWlgbrgu3YsaNnBI/7APWFq7uZLwzcUT3tLtZumPc0XpmDFXNN33F4cLWbVHekydKQAXeYcZU93zOGeD/RNw9VYL8RfBtdy1kjPrm+7zv2alRpMreuymLfc2xUJ7oa1FVZWZJid2QZSg21detWnXXWWdUQnXhtzATs5zPOOENS5/4eVYxcm376HLvaGrVu7D/X9QD37B6rqd1q6up4vocYeHgAwLFH6quuUfeiovVkz7EPqCwxcfD8o298xnPd6cyf9VlqMb/X77vvPknSPffcI6kLQYjXob1LL71UkvSBD3wgTWadoTG8hoaGhoaFwKYZ3uHDh3uG9EyqdddbpBvcTrOEtZ482F1VM+O3M6xaYtYh47E7DTCe6MLshmzgQbweNB+P8XM9aDgGqyIp8ukOBxzLuZkB2h1enJVk5Y/caI1hmDWIjjzuVj/kHuyJxz2dVvw/v+F4wPxlqZCcNbPuzDWfzgDjd+545GnI4jk+T7BpJGCviC7VQ0lq5YIiE2BfueMTc8D4o0MFLIe1gum5tiALqGYN2JuMx9NSxb3j9yBMgns/q7Q9FGrkWF5e1sknn9xzXov3C6yc/Ur6KtYlCwHxvehgXBkz82dHDK+QuvnKyqD5Oey7oWeUJwd3pxieA/EZyrqyD/hkzzCuLLG+X3ee5NHuQOjB6Z40Qermib3C9ZydxrVmXNdee+20TxslDQeN4TU0NDQ0LAQ2zfCyxM3xLY+kwXG8mXmDoxOODMj1uEhJDz744MzfSAxRF+wBsh48nOnSa2VakCpgljEQ3OFJdvnbbTzxN+8zkt1FF10kaVaKow8wPOxXuJp7qZcszIP2kbDoG+O94447pse6RMr8uW0P3b7ULweTlf8BpZSZ34eKqqK/dwbkkmnsQ43JOSuMNkjG6uvMWL3EUISndHLbVky5VCufVJNKsxI29J8+M172RVYeilASnxNYoycXjmDvMC4+a3bWCBgm12f+Yioo7C9nnXWWpLp9S+qSR7sNOq4lv5Fk2IP8mb+oHfDwBg97YW49qUCEJ4D3zzi3Xm7Iy3Vl97KnLGT+fc28XJHUT6vGs8O1EPEc9g4snfmDOXtwedzbnirPGayHWMQ5YDwcy/WyFH6sD/a9iy++eMaGPYTG8BoaGhoaFgKbLg+0vLw8lUgynTNvfJgAb3kYXpbU2W0ASFpeSBCJDo9BqS/1E2iKxIN0FiUA905yVoKECtOIx8CS/NPtj1FqYp6QUpC0sJMgaUXp0wO9XT/ukmuU+CiQSUkfJCvm/POf/7ykWYZBX2KQdYQH2Er9kiEbBZ5v3bq1F2Qf+8264kXmczoEZ7xoAZzlRrbG3uF67BGX2uM53n8POOfvaP/NPJPjse5hnKUW8yTp2LMyLQTtujSOPQtvQ9hVvB7ry5y496Gz+niOs15PkpAl+0XjM2TLI2mBe2RHJsTYPFGxe3ZmbJaxeh/cfh7vafa8sz7XDmQe7MxL7f7PUsK5v0St/FrsI6yfeadPtD+UysyTR3uasqFC2DwTOZbnKeOMnqXOev3ZD+Jzh3mivW/8xm/U3Xff3etHhsbwGhoaGhoWAptieOvr6zpy5EgvUWuUxN1biDe3xzbFt7x7w8EmiKFBevPip/GYCy+8UJL0zne+c6YtpLSPfOQj03M+8YlPSOpLL55yLMa0oAcn3g0pmb9hEPQ1Sp/0AUkLFsxcYSuIUoxLzTBX4oluv/12SR1bi+wBhnfZZZfNtMF1b7vtNkmzTJljmE+kNOYCRnHjjTdOzyHFD+tx2mmnpaVtQJQGPe2UVC99xFwSExjtiF6YFEmYY1gf5icyIsYEi3b7CxJyZm9mvV3azNKReQoztx3zd1bg2OcCz1VnO1Hi9xgx/n7ggQdmzrn++uslzXrAuU3cWWKW3o3reGo+t/PFPepscGVlZTAWDy/f2G7cB64B8XvavXZjf/hkDtkP3K/EOkYmjBcoyalhqtwvzGmcJ9aQPcizwllhXEv3OndPcvf8zbw0ma/4PPO+AfdJoH32Hc9g7qt4b9AHngt4MPNM4XqxNBzHsF6ecJxnZNwbPE+Zr2uvvVa/8Ru/0RtLhsbwGhoaGhoWAptieGtra9q/f3+v3ExMIEoBUWx2XhKev6N3Ty0RMizq8ssvl9SPx5I6by/ac8kOCSGWiPfMF14OCCkwetpxPlIZ0qV7rXmGijhPjJPPmoen1C9oC7uB6dF3vKmuu+666bmeDLtWMiljlIzdmQN9I8mrJN11112SpJe97GWSpDe/+c1VGyDX9/idaD+oFULl2nhuxawyzANjZT5uvvlmSd06IBFjT4jtu03o/PPPl9R5JsZz+D+SLnufv7OiorUYKme07okp9TOI+N50b0qpm1NsuPQRxoIU/cpXvlJSx/gl6aabbpo5lvvJGR8MR+rmmHu+lvg82rM8gfJQLBXe4e6JmCWE9799bjMPX2dW7Gs0JVwvFpyF0ZEZJO5JqWOJkXHx7GCPsC94dnk8cOyjZ6txrVhm/2PdeXY4280KXXv2JPcSBTwrYW9SPfk+n8xnhGe7Yh97gds4LvrEHn3ta1+bFtzN0BheQ0NDQ8NCYNNxeEePHp2+7WFgUfLh/14ixGPPoq3H40KQtJAM8MBBiop2H76D1XzoQx+SJF155ZWSOgkhMhOXklz/jwQUWSgSLe2h1/c8e7EYKkAax/6GjdKz0UQmwDx6gUSkKL5Hirvzzjun58JUsO/Rvn/G2C366OvlGWuihMw63HLLLZKkb/3Wb03znYLRaNRj/BHOuJh/pDfmHluU1NmGP/vZz0rqmBCMnHNYn6iNYC9yLNdxFk08qNTZMN3jDYYHw8SmHK/jnm7unQmixA2LYb1ZO2I3hzK7MA6kcPYsoJhvlI6vuuoqSZ2mBjsnn+wp5j2ez/7mb1/jaIdxm+c8mTKcFcb2PK8v+9QZUNRqoOmArbkmiblnXNETkD3BOvC88wLYUeNB36IHr9TXDmUeiTWmxZ7imRX3AQyfNlh/+uEsOF7HM67QN/YSz6HIsjmX+4l7jXn71Kc+JUm64IILenPCPvAMU+4vEsE8XXjhhYO+AxGN4TU0NDQ0LATaC6+hoaGhYSGwKZXm0tKStm/fPnU7hWZGoz4U1x1Q3DU7UlBXo7ljiyc0jqpGaDpqCNSFToFRCcXreXkQ1B+oOqLKrxYUynXcwSEGumPU9wTTtWBZqV8NG5WSVw9GPRDnhPZRs9EX5hHnj0suuWR6DmP3YGhAP6JzhAcy33TTTWnlbTAajXpB8DEQ2J2I6Pf/39659Vh2XWV7dFV3px2jlkOwiALGMXbbHBILKVIUzhJccYmEQIH/RX4Bf4DLSJFAlhzhBJzEJORkIDgxhLSIEnfittPd+7uInr3fevaYq6r86bvgq/HeVNWudZhrrrnWHu84vIN5Y32kixHXG9twPNwqzA9zkslETubhGrmHXQdy5gyXHtdusYJ09bCNxaFdAgByTkh+YKy4iSgaZ13m/eK+kzLPOsftxr0mTT3XOWPDjQc4L/c3hZxxLTEHuFL9/GYSGPeBZ3Gr4zmw+HLOE9e4cmG6zCfHkOOqOqyZl156qaoOzwsuz6rjpDVLzHWiz6wjxopr0+100sVt+UaLZVhCL92hhHtwu7qlFM9vns/tjpxQx5zh2szzMSesVe4tyVEcu2s2wPWxL8+P2yFVHcvGXVQ4umoY3mAwGAyuCC7F8G7evFlPPfXU3rokESS/5d2CxAKtXQsUgMXj9iwuzMUyqTpYWBYPdRuTZEAE/m3FYOlgpeV5ODfBWhfkWhA2rVUKLWFyFFtaLigtLa6LOcHSJykCC4tjZhEuVhJWOOzWLZSSrbrNEP+zoG1KKbno/969e0sR4N1uV48ePTpKgumCzZyLa3a5SBbMMpdYni5xcTJOlxrP+VhDTnhIYDWzL3PLPWTNJJPwnLg0gzFxfVmYyxqFYbl4l/u+lZZtEWfWzJalDVIYvOrAcJMpMxaX97Avc5aFz4x7JaztMV2/fr2V6wJY+2YRzD0sLZM+LA/H88KYaD/D/GXpgd8ZPJeWo+uEwF2WwPnd4qrquNzC0mhmevls8Dtrh+eUz3mX5fn8zrXXi+eJ+cznd9W6imfUiVYJNwR2S7UuyZGfW+8dYxjeYDAYDK4ELsXwHnvssXrxxReP0mq3LEVLLzlel9sAF6o6TtG13LB4sOMkaSlZNJV4EhYJFnBadFgcWPCWPeNYXdkFsRTHNCxw21kp7OM2GlhnnK9r4gnLXbUw6URjHQsxU0/LHqaMBbnb7TZFgGkgnMgWL9w75pQxwKKYt2QKbEt8qhPezX1z3XG/+YyxwBZgKjlmF5a7rRJzkkzCRcJmUWa9eS+dys5YiF2ybwozIwPFdTn13+IJeX0cj32IP/r68j7zWQrCVx3uJ//P5wmmwHPy4MGDzVjMw4cPl41081otPMG4/ezlNhZKdmyIn3lf2MZSWKuGrVWHZ5VnyM+ci/yrjuXm2NbvXIuMVx23VYOV0VaHe8x6yTG54bAFEMwe8zyWObOMXOfV4XpchtEVx9sz8tZbb7XfQR2G4Q0Gg8HgSuBSDO/09PQMu+ObO62ZlZ/d2Uv5fywCrAi+wbGm+btrxLiylj2OtADsayZWRAwH6zOzt/DRu6EtlqMzSDOm5iakji90zSLZJ7PY8trNGjJ70ozRWa5dpqwLy93wE0sWP3zVcVuTLXmohw8f1g9/+MP9vNlnX3WwZl3IbMmxvP+Wm2P++clcd2zN8Ql+mhlnLNeFv9wf5qLLJHammb0ejul12YrcF7elgdkls4XtYo3DkO0x4R5nhqdjqzwDzB/PSO7j++a4OYwmx+j46XkNYHNtdTFvF5w7u7HLHeDcjoNx/K2sUYvgM0++h/kecDa2pQY7b9Qq58FegU6qz+859uEdDtNLEXnec2475dZGILORuQ63MMss4Kqzcmt+B67aH3UMjvX14x//eGJ4g8FgMBgkLsXwfvzjH9crr7xSv/d7v1dVxy0cqo6z+ZxRw7d+ZpW5Oadjdraa8tvcFrf98vxMi5TjwKjMgLqMLsZETMN1avYrJwuBIWBxu12P5XvyOJzHbKCTBfJYHLMzch5tEXO/sP74G7miqoO178zcFXa73VGMJb0DfGZrjiwv5iJr/czSLT5rVtDFGBk36xCGtCWE7exjy4QlO7C3wU0vHb/o2gO5RtGNZruGw9TDEVtjbrC4WY/J9N1Q2JmqnKdrf2QGzjYZ5wFeMw8ePNhcPw8fPjxax+kRcQNRx6k7z5PPZ9bptdI9a6v741ZGOUbHIH1dHbP0e2XVaDnB8T03Xoe806oO72V7RLrGuTmePB5gjKw712bnNma7zt7tzsNzcv/+/WF4g8FgMBgkLt0e6N69e0dMLGMczrBjm616G6wgZ9i5fY5ZW/4POKbTffNbTYRjuO1RZmVZLLjLdKzq1RI4HtlQjlly3rSaHVOz1ee5yHlYxS+A2U9ua+aaKjpVB/ZbdbACncnZYbfb1YMHD47iI7mPLd0Vq0Hst+qwzmBnVtrxPHUKP5zX2WOdpW9W5jVL7CPnvKvny23MjLZiU4wZds0aynY9zJcbgJJZ7Lq/ZJRY4z4+6Bies0B55lf75pgyI3K1fmg87f93bM3P40rdpup4nrzO/Mx1z4vF0P0+yhiXY2l+DvmZXg97XFbxxa1M+c7rlGPvPD38z8+N3yXdWJ2n4XZOub4dg+Re8M7cqtvO2PhF1VaG4Q0Gg8HgSmC+8AaDwWBwJXApl+ajR4/q3r17R4kTSZWRHev6QSWSgpqOuzDbFDkp8coNtiUPtSplsCxUFmT6Ojiv3a0dBberwkKzlr/K/R1sd8C5c/N6Pp0WvxItzvNZsJnrdHFxjvW8ovOHDx8euTC65I7cp+rY1ZgBdMbFvbMQ8FbigV2xTgTy51XHQr+WmLJbLH9fuZYtmp7zsEpOsKRe3hdKPzqRh9yXZIX8P2sTcWwLOrAu8lpWCQ2+zi4Z4zzB6KpDH85VT7jueE7c6mCXssMUW4lvPp+TY5wwkr+nmzOP2z0/fp+dVzKR63s1Jt4H3NPch/tvUQbPeSfwsCqd8Pu8K0VyeYfnOsfYCQKMS3MwGAwGg8Clk1beeuutvVVJAsOrr76634ZO4xQwOnBpizi3sXXs9O0ty87WuRMAkiXY0iGhBusCZpdBd+SsVskjWwFul2+QQk8QG+u8kyMyQz0vmSX3Oc/KzX0tc8acWyotu42bcd++fXvJ8na73Zn0YSzE7p66sNhF+JlMZCk5j81p3Gk58j+urWN0+Xn+z0kKzJdLaRJdok6OvbNSfR632QJZKGw5LcC8WqauK4Mwo3Ch9VaauEtqfIzuWs9LK3/48OGSXecYDM95t9787rDXxgkqVes59HXlPOHRMZN0wliXRAK8rr3ecvuV+AbPTyfKwbuId9/Kc8E++TytSkL8XHWye557z2O3T17nMLzBYDAYDAKXYnhVP/tmpy0Q6eGf+9zn9v+35bFiF10cbtXkcD/YxnpeWeWOK6UF4CJHjod1g7RUFsev/PmrdOSuxQf7ILVEyj+sKf3ibnfj61hZflXHMj2rwufO4vb9A118yUz5wx/+cMtSOf6DBw/2DLKTN7OVam9AJxq8sgRtkbJPssNVrMbrsWsp5JT2VVw4j9tJo3X/zzlxoT7zB/PuJKXYZlVu4XF0DJZi/1Xblo6RrUoAzKDzPBcppEawYBVjzf23YsT5/xzfKi6+xdY8DyuG2rVO4zn3fTGb8u85hvSq5LE6AQLfZ3uJsrUaLZL8nFryC2+YGwnkPn5ndN6J8+5X9/1xWe9AYhjeYDAYDK4ELsXwrl+/Xr/wC79Q//AP/1BVVZ/61Keq6pCZWVX1ne98p6qOMx4t/JwMwplA/K/Lisrtq45jhCu/+FYWI751RHaJFSXD85jM8GyZdFl6AKklrD8zvaqq559/vqqOrSSzts7CXInSehzJKM1mbJV3bUnYhnn6xV/8xeU9u3btWt28efNo/DnHZnS+T9212kq3XJst384atBW9JeK8ap+C9Yp3INseWWDc1+N72Vn4PD9Y1ith8KrjZst+RnwPkpWvCpxXx6g6Lih2bKiLwXPfM3az1Tw4pcc8lvzd98wZgltYFYJ3x7Y0mrfpMjJZB85w9DrIewmTZyzEav0eZZ1nprdZtEW9mZtsLcX7G4bH8ez9sCB+1XELuJX4Q+cFWjHxLs5otnmRTN/9cS+85WAwGAwG/4txKYZ37dq1unXr1j7LEGHh3//9399v89JLL1XVwbLBmnCriK6Og20tmAy2WguZkdjySThbiTFhCeGXTrayagNzkaxNW4ocl4aYnPcb3/jGfh9887TIWfnSu9ZC/O76qC05slUsjDmy4HXVofUJbUbu3r27mRF6enp6JFHUxePMajqLfgVLfpk9dZ6F82Ti8nPGz77Mh5lwJ0u3klwym8q4CPEV35/VmPM8Zje2mp1FmWMwK1jFjnN/Mzxi4p3HxLG7d95559xMO1/zSrKtu9aO4a9E6b2GO+FxnofVeu9qE1krrCHYEdfBmsnscNfz4Y3yPh1rck2tY4fcj5xH3oV+f/vZ60SlWbeO4XKMznPDuC1l5jXbZQVn5vBFWd4wvMFgMBhcCVxaaeUnP/nJvn3Kyy+/XFVVf/qnf7rf5nd/93erquq1116rqnX7ns46W2VLuQlqJ0LLt70ZGP/POiUY6t27d6vqYK3YyugaY9p6XjG9zuLwMZgDlDEYV1XVG2+8cWZMbOPs1y6jbBWHwWoiLtAprYBVa6FsD/Tss8+eGdvnP//5Mz79LWBddlYzcNygyy61Jbiqi7PlmNuujrElVu77wPm4rmyJY0ULsw6ux/WGeXx+YuFjrbuuMY+3ElY30+yEx50Zu1XH5jjpqiVYNkPdalxqoLSylQltVnERtr6qEfb4u2xW7tUq43brfMwHcV6YcOfJ8LnZ10LU3bPBtrzn2BYRcZ7lVOlxVq69RX6+8vrN2j12t5GqOvbqreJyyXr93D722GOb6ycxDG8wGAwGVwLzhTcYDAaDK4FLuTRxLeByIY3/s5/97H6bO3fuVNWhKN2SVSRjdIkndiVAUy1DlfQVmmwJLCg3Y8ziSn6HvjuYvCV75YSaVVf2bp9VWQDXm+Ud//Iv/1JVVV/72teq6lAITLkH19sJwNo159IGu8Py99UYO/ce5ybZZqunGanlq9T1HJ/LVJzs00k8+VrtcmGseb7zEo+2EpBWa9Xu9xw3WCVHbLnscWUCC5DnfbEYubtv2+3c3TMnQWz1QXNxPNviwuwSXnytW4kHu92uHj16dOSiz2teCY9vFZOfF4ZweU+eg3eI3cTMucsTqg4uTMoAEPDgc5I+sgO5SzFw7WVSVNXxus/jfvGLXzzzN+9ojo3LM6/D72S71jsBeicQ8o5yMmCuA0IAdnd6fWTpBNuyzi/S/R0MwxsMBoPBlcClpcVgeVWHb1iEoqsOpQoIS8PogBlZ1cEq4qetMwc000LA0nGwNTsp53mrjhMPYE1OcMiArFmaE1zMPrfkgSy82kkNPf3001V1KEanIJSfWEvdvra0Mwmiqm/x4rR9J2V07U64juzcvgoeP3r0qO7fv3+UgJJW80qAm2s028xtzLxWQs2dnJqZnEsxkhG5ZMXlGqzrrqXQqkv1qo1PgoQmkq8sPZed6TkfiTNY0WaanWXs+70qAM45WSXjmC1slR2cnp5uppY/evToQpIWQrHeAAAgAElEQVRSHstKTqsbj5m3f+b7wIXnwMXVneQbTAvvE/eFtZP3xYyKY7AO7HHK+wIrcnkPx8xEPuC1aHa+JUjPue2N4Jh8nnPGXDjpxn/n2lgJBFwEw/AGg8FgcCVw6cLz69evH0kGZUo03/Kk1TvVHGszi1C7uEce19Z6l4JvtoS1RCwxLS03XsUStp88435YNGxrpmepsY7p2NJ1qncWdZM6zNy4cB+LPpvUgpWUj4u+c4wraTFbcsnYV+nHKzx8+HB/PZ0IMddoZr8See6wsri7diaMwUW0WJ1YwLlWM76S+zBfnWjBqrCZtcR5HGPNfS0dRXyM64It5Hm4LsbEMVhnXWulLATfmqNOjH0l39XFQt0ya0v6a7fbtex3S6B7S8x7hfMYXrInx5X9jHWNr+05eOGFF6rqcE95tvJaHYPmuMTdWCtdgThz+7GPfezMeSgro5wovQOwQpdkdB6Zqv6ZZz37/dPFQnnXWijCMbxs7HwR4YEVhuENBoPB4Erg0gzv5s2bR1lenYir40Z861PkmOwJ+Fvdcl6O9eXvWADEDrGesXLSAmb8jt1ZricFgLHcsMKwsFdtgjqfM+d1hlPn77clTwNagIVHbCfn05akLSEzPZ+76lhg1sKzeVzO94EPfGApHs053FIorVnWCOfk2m1pd80gzWpWjUvTuoRRcl7uN3FSruXjH//4fh/uv1ko64wxJ0vrxA9yDuyVSMFhzsO6ZvzPPffcmeuG+VcdLHbOZ9bJWuratawY3lZ80dfHejCj7OJZ/Hzf+953boYv6Ji+77cl+Lpj29PiHIHVzzzPSry5k040C+W+2NuRGZiODYN8n+Wx0hvBO9EskPceY86ibot6r1padevC2/o95ByNhPMK7N3pGDO4iCwdGIY3GAwGgyuB9xTDc4PMLf+6sxbN1qrW1pEtE//d/c+ySlgOKZ/j7DuLR8OaUurLNYFY8q4f6eYEyxcW5lgVbDT3cazE2Uvsw5wl63brDrOermWKs6LMXLnnyeCcqfahD31ok+HlWLp5cgyXbbeahfraLMi71WoKy5a1wTrgp7NEq44ZHvefdQgTy/XNeLG4XUNlCa5kgp7/ZNNVh7lPy56sacckHQ9mDWd8ZJWdCzj/Vjsq7gHn4Zhdw9ZVTWKC947ZfOdZWrGyLrbnmtBVU2X2yUzvVexuJeuWx3eNo9+n3XPJ+mL+WWer1mr5mT1m9r51gvAem71C3fvAbNfenK4RML+7ltPxvq5+km1/9KMfbXogEsPwBoPBYHAlcOk6vKpja3nLSjez42e2QOF3LA+zDGdr5jnM7BzLwVrO2hCOC+PCAsaaIPMx6wsd48IqxvLgGhhjWulkPhF3++53v3tmn2eeeaaqzlpXrtFa1ZNZEaHqOBPWVtmWKszKkrO1lmO6iNLByclJvf/9719adHk838M8hq+1E+nN47s5aY7f7N8Wfteux+eBaRNjgAHaiq46fm4szAvjzH1tueJ1cIwqrXTG6+NarBi2kDFDZyz7HneMjPvEeWyV85wls3FbpS1cu3atbty4cRSPy3vhOjsr4GzV+K2aSLv+N2s4zejs6dlioY6TrpqtJuy5OC/zNo+zyh0Aud7I3HRWpmvfung6Y/DaN0PuYsaee6+LTn2IMX3/+9+/cMbmMLzBYDAYXAm8J4bn+EWnp2a9RmtPZszB1omzFt3EtfNT28LDesWazXpAqxJg+bIN7CytBiwa2BqZfFw7PnWQcRq3EmGssE5qFpOFOuvKlpWtxZwTW0erBqoXbamR23ZxGNjNG2+8sbS0drtd3b9//8jPn2Myw1plmaYVy++OJ7puDGaUrJG1wWewG366FUpev+uwYHadvp/jbLbwk2FVnX2erOvKsb73ve+duf6co2SkVQfmZV1Z1nl6FqjRMsvxs94prfh/nJdjpOXvDNWLwHO/1YLL22y1h1q1g+K+d+dxo+FVE9y8Ps7tFj/Acec8t9sB8c70eyKZvq8TuDY6nyd7B1wj6nnNa3D7MTO6LpPUrJZ97Q3p2DX7bDWeNobhDQaDweBKYL7wBoPBYHAlcOmO5/fv3z9yOSYlhpbb5ebyhK7lCpTYrga3fumEoP3Taf1d12rcDYw5i3er+iQS9sX9aJcaLoVM9f7gBz9YVcdBcNyjuKeyANTp7Z0cWHctec0OTls+rAuo23W66p7eXc+Wa4EWL6BLI/baAbiEmetOmsjp8i4FsZBuno8Uf1yZdnkj4J3bWmg673dVn4zjBKCVlFW6iRgj643rslssC5GZW5e7MEaSp1jvWX7jJCwnkHVF2Oxj1/N5IgQXxaNHj+qtt946cgl3LbFWIu8dVqLuzPWqnCO3XaXDO3yRY7KYM248C6vn9XjeXeriUq6q4xIgwPl5Z7lMojufXY6sj7x+kv3Yx2GerojeiXV24XehD9/bBw8eTOH5YDAYDAaJSzG8hw8f1v/8z//UL/3SL1XVsVXFNlUH68UW15Zl5ICzA+Z8+2fwe3V8t7PpAsGMkYQDJw90ac8uLHVxNGPFuq46NG91Wj3WDVZazgnssitGzevxPFf1KcN5/hUDzP+5mBjkMZ32nMXBxsnJSRvA78bnYlczrmRpbubr4m3YC2wmrVnuu5OmuHdY+K+//vp+Hxdts68bgqZ1azboFivMMcdImThKWL71rW9V1aFUhrng+jrvgAWFnWDDMUjAynMjP0aaepcMYVgYwKn6mcjFHHfttIx333233nzzzX2D5E6g3W3A/Ixvte1iW+4tbNnJHfl+WMmRsWadNFV1XLoE+JvnI9mKvRpOAHJZVh7b8n1mQayZTsrObdfMFi1TlmNE2o415Gcl31VmeGbkXbNqy8jdu3fvQuLgVcPwBoPBYHBFcOkY3ttvv30Uz0pLy5Iwti63YMbhwnOsmjzWquDTBagdu7DVhLXRCRub2a2at2LNpJ/azNWpy5aJ6uZkxfS6mOiKyTk1e+u+rYq+u5KQVdmDkdZ11/TUxc5YoGZ+yRSwTolL8ZM4jIt6u/iB1x0MiHFk+5QvfOELZ7blGLShIlZ4586d/TYweK9Ns2lYaTKuV155paqqvvzlL1fVganCPmENHaO0eMGqiWfOJwySuWc+YXpuj1R1LAzRyU5V9U2f83larZ8HDx7U3bt39y2zthp/8hwy52ad3Tksfs0cM7fMddcw2XPNXHZlPPYSuTSD8215lszSed90whCW8nLuBWs3y6HsIXOs2F6JjF1zf2gCztrhc8dg89o5rwXUYYU59/Zu/fCHPxxpscFgMBgMEv9X4tGdX9zSVPZ121LpjmM2sZIaY0weY3eMtJpsDXWZjlVn4z1ml84q8hiz+Nd+aMcrusaIzFvX2DHRtUpZzYkZ35aQLlhlweb1XBSPHj06KhpNqx/rmLnO7MEcb8YciLfAimBjxIhgPmTKdhlpnJc54PhdFhtzBwvAOv7mN79ZVVX//u//XlVVn/jEJ/b7wIoszOz7QJbb1772tf2+r7322pnr67LxDJgKxyeWAitgXrsGzs8++2xVHVgNP7/yla9UVdXzzz9/5pqqDvcLC95ZdC6SznN2GZfGbrert99++yjzu8v09jNt78pWpjDxSwQJXNRvr0duY5Fvr/O8Zj+PzlHIOBbnXolzWGghY7l+B3tsFu2vOhbJ4Bg8V9xj1kUnWmCRdOcU5PV5DrhOe+a61kwps3bRrN9heIPBYDC4Erg0w7t169b+G7sTyPW3uDOEOkvOLMV+a3/eZYU67rYllGxG6UwuW6xVx409V/Vm/L8TcbXf31mOnSyXfeq2VDtrd5XRueXntnSVY5Vbck4pMLxiojTxtJXezZOBpdi1cYHhEXvinn3kIx+pquM1mgzVEnLE32xd5riwYhm35bNgZLC1qkMMw3VJXrtIzL355pv7bRj/b/3Wb50Zk2u6MrOTsbhJKKzMVnMnacd65+//+I//qKoDk82sTdcmWiB+S9g4PUKrtXP9+vV68skn99fI2LpGwH7feL4ya9JxNo7vmDeMJQXhXTPqNkH8P993rs3zmLmX+Zyu3mds6/devkNWtXQrCbWqA7u1gD4/Wf/evuoQ53X2sxl/9/7ms2wInGPvPIJs+/M///MXyhGpGoY3GAwGgyuCSzG8k5OTunXr1t6KcKZV/m4fsP24HdPbatZZte2HX1k6rtnIz2zpOKO0U2fBanG9iBlfXh8WlGsQ3VQ2sWqeaLbYZVyuVFmcuZpj5DPG6ho4j7nq2EK9efPmuW1YrEjTsU7HSy1gu9WIEyuTY6QF6vOxDfu4XRCZlxlnBLAX9oHlMG/J8IjrEUtzzDYVI6rOzvFTTz1VVQd26Fgqc0O9XtVx7MTi0ezr7M3cxlnHsFTmJpkzY3MmM393sSl7DLbWzc2bN+sjH/nI/hqZk+4d4qy/lZB6gvsBMzGLBzl+5p2MROb8V3/1V8+MI6/LXg17T7rmumafzoh2i6kOKyFtN8muOsSKUX9yXJ3r6t7RrnnmufL9z3ldKXI5Vtll5nfzdR6G4Q0Gg8HgSmC+8AaDwWBwJXBpl+Zjjz22p9ddEonTg1ddirtec8aqA3W6pZzosZL86Y6zSo6xqyGPsxKltdRYXpPpugPRdgVVnU0vzm0Zm4tWcx6cTt9dT15T7uN+W1vuNruvz+ttlu4k34P8zKK6FgSnxKDq4GrDhcjaJMnC7rW8ZlxxuBotqtsl0XA83DVO23aKedUh4I/rCHcRc4pkFokpKWLO/9iWBBPuD3OR95+x4Iby9ZCcsyVLxxicoIY7kfKEnAtS1UkccrLUViLXO++8syxNoOM58/ibv/mbZ46R53CYYOueOmnFrm3muitbsuQX84/L1z0V83hOhmKMduNx7Xl81jfvGReTJ+x+tIBH1++R33HZ233o0pq8Psbo9w7Psd2XCZetcYxObITPeOZff/31tmSkwzC8wWAwGFwJvKfCc2DWk7/zLb5K1OjSdV2I63261GLv48Jw/u5SmG1pYTl0cmhYKQ7A+nq2AukrptexULcMWYlkm0lXHSxUszUz2C44bitwldJcdbAy87rOkxfDms2CVWBvgFkm++QcYzVzTTATs9wuvRkmwnxxzeyD6DfMImHZJq7biQ9VVb/xG79RVYdyA+4pY3zmmWeq6lCsTup/1YGFwspIKmHMnVg51jhzw7a+jk4Q2u2BvGYobYBZ5/9I5GANsT62RMr5ucXw7t27Vy+99NK+bIPr6oSLVx3OmRPuT47Lxc+sMxfwJ8ODWfOZJQX9zsrzrFoWrTwxuY89Ltwn1m4mE6261puB5bvx6aefrqrDvWPtwN7dOinvLet5JQTuAvgcA1iJfndeQBKGvvnNb56Rx9vCMLzBYDAYXAlciuFV/ezb2+wmfc5Oa7d1Z3aTv5u1uKi623eVduwyggT78z/LNXWi2Ja+sWi1mW0n4mqLyiy4kxazGK3Tj7tGk+yLdWZW2rVoshWLpWipobzX9ptvCQADxmk2UHVcdmLxaM6XbIaiYGInzI/jV8Q+UkwA1uT4FNdMLCxZARa1YygWVMdSzuPDAhwvfeGFF6rqUAaRYtWrJp0rkfSqw33mOhgzYr6ANl85n8wjx4XJMTddQb/Zrdd1l8Lu53RLWuztt9+u11577aig3oX8Ccfsttal2SDPOGuFeexEj/ECcO+YA86f7wF7A1ZNXXMuLAdojw73wSUg3fV15VZVZ8tuYPBcM6Ug9oJ1jIv3Dc+kY7idR8vs2szfZVlVBy8Oguo/+MEPRjx6MBgMBoPEpRnetWvXjuS10npyzMSNWEFaGc50sj+W/3cxQ8fwbCF02YCOR1k4uRN+9TYukncm11ZDS2dJdfE/GIT/x5iwpjq25jYt/hx0BfxmrM567TJXu/iecXJyUrdv394zLcafkliObXRxN/+NRUrMbNW806yj6rDObI1z3o4V8pkz6ziWW0xVHcubwUxcUM/Yc3uyTf08OTs558Ss3yLRWMj87ETELS5BVmZmyAKvN+I8jsV2VjjneffddzdZXtVhjinkp8i76jgu7bXTeXpWa93SaH72qg5MDgYMq+Fntw9rxs9N92z5mr2vvTj8zPP5HWVPFnOyld9gLxvrgevM58y5CGZpINeBM3sd5+N8ef9effXVqjo0Rb5x48a5niUwDG8wGAwGVwLvKUtzS6jTIsRmfHksw9s4m43zplXhOhU3/mQ8yRotUeXr6RiLY1z47rs4SI6j6sAKVvVdbqOS29o6ct1dx/As2mrf+VbDVu+zyqLK41yE4V27dq1OTk728QIsu66+xkyPv9k31wmxpd/5nd+pqqrPfe5zZ47PT1hVxsI8h8TOsF45Xza5/Nd//deqOtxftrEEU943mBTMJGN0VQdmx+d5fRzXGYN8Tlwu1x/sI9lT1eH+sC33Mlk288Tz45q6TjydsRD/g40wb107Ku4p8/juu+8uJaJOT0/riSee2M8985nto2BjHt95coVVB3bkbV3jlkzIa8QxKB8jr9nSctwfxpFrh/vOOrbQvFtNJbh3/LQAfucJ8vuE8dtz4czvvI5VnaHr8aqO2xu5+TLHSolAWlVlzHUY3mAwGAwGgUszvBs3bhyxjq71DpaBazOczZZwXYzjf1jP6et3K3pqnajRcMwo97F/2OKuOUZne33961+vqoM6A758jplWs0VOzYS6TDJbbK63MgvKTKtVnU/XXsf7uM4HYGl1otiZdbqytN566636+7//+/qDP/iDqjpYwFaUyXOsBLo7hRgal1rUF1ZFrC/jcY7DOabbqQJZUcdtTNgnm51aYBhL26zDccAcG7V5/E0sjXWdHgwrXJzHcjJmyDxxzWRlOmMxvSywD3tijE59iH3u3r27VFwib8Bix53XhmfZ3iBnruYYVq2wVk2Rq46ZEPvae9LF1l0P5+ax+Uwwt7DaVTYi6y/fA/zOWvQYHa+tOqxnC95bWYY1k+9VzyfHZe102ehWg3HWMZ/zHFcd3r1se/v27c2cicQwvMFgMBhcCVw6S7PqWJewa72z0jDsKuKdzYP17JqPrp2O281gPX/729+uqoNuYcbUXAPkpq32W+c+jIHzcVxULFwvlXALHjPltJp9PqxDzksMAUu/q/ty3Z3rcdI6M7t2zWPXaNZaoFt+9J/85Cf16quv1p/8yZ+c2SebnVonlHXAPe10AxkD1ixMj32YJ6uoVB0z1C7GUHV27XBc3xdnB3Zs/Vd+5Veqquq555478znZZpwnGRfZp6iMYP0T6+haF60yhbH07TlJxuw6U9RMzGyThfBMW2eW56dTy+DcMNfvfe97yxY3p6en9fjjj++vFcbMPFZVvfzyy1V1uD88F6xnjp3vH67NjYAdX+TznOuuNVrVMfNPrJpSOy7XMUq2tZIL+3aeBcfSrPO7pTPMu8Hre6WmU3X8fnP+BteVa8fxZBgt94bj//M///N+H+5hNt2dGN5gMBgMBoH5whsMBoPBlcClk1ZOT0+PqHC6/lwQbfrujsTdtqv0ZLfzyX35DLcRLgfKB3CDVJ1NKKk6uAncpifdFXYHmEJD9aHbWWJg0Wu7gOx6yG0tTm3JNEuQVR3uQVdsm+ftWmqsOqxvpTBnwsvKtbDb7er+/ftHMlSk5Fcd7gtuGQL1pCSTUJGuJXfvJomIa+d6+JmCwxaN5qdlnHIenW7O3+4IjWum6jjl2q5s5o/rzbIFzmNRX+aok16ydJ5djMBlGd312bXNnOXacZmP10pXrsI1fvGLX6yqn7metxIy7t+/v08M+7d/+7eqOluKwXPA/yyR1707nOpvMBdsl65mv6NchmV5xKrj9xzn9Ti6ZBy343GIqJNS5H92AbrMIl2oq0QdxubSilxTLs1xuMHPVX7mInx+/tM//dOZv3Pc6b69KIbhDQaDweBK4D2JR9tCTYvbckZO4ugEoJ3+bdFgrPIuIcBBY6wLmnqStECBeNWxRWUL362Acmxc10rUFaQl6bZDZm9uqphjM7CoSGbYEua1Zef057S8XQKwanuU1qctxYu0B4IJY51lmyASjRgL8+bWJF1Q38kCbvXCuHOtOoXdLZFcSJvnduKRyywyAYM1yDr2enfKf66DTL3Ofczich1YLLxrA1PVF56vkpS4Lu5BjtHMzkkqXodVh2Qlisdv3LixKS326NGj/bV2TIhkpVdeeaWqDkwfDw/3o3vGmH/mwSnxrAvWbh7Hz7BZU9cc2+8BJ3XkGJ0I5PcMc9IVrbsMyfff5839s21TjtUejE4I2mO1iH3Oib16nA/PDx6ATow/3z+TtDIYDAaDQeA9xfAstppWswsXVwKtaW3Y0nCsy40kuwaCfObmp5alyvNY1Ndt5bESqw5W4Mpasq89LY5V81aui5+Z/r6KoTEOWMNWTNTFqBwTS7WzilbX5aLf/GxLtsnHxrJH+Ddb78DGiGWZ6TmOmmMw43L8qitpcXsoH9Nxizw3cwwr4HPmNmMpLgewSLWZTV6fJZxWxcsZS3GsziIQLpJP5rUSJ95a31sNmvN6k5HB7LpYV4fT09OjmDHC2lUHiblvfOMbVXWI5cHwOjFnt3Yyq2G8sJlkwqxb4stuz+MygoRl2sz8Mm2fbd2s2ELX3VpyjgDr0Iw84fvA3PBMWlg731kuaXDxv9lqgrlmXfDMc95kkl5vF33/VA3DGwwGg8EVwaUY3m63qwcPHhyxtq5w1ZYIVkZXeG5LwP5iLJ6uEaOFkrHCusaoYJWJ5JhDWnTOXuOnGZat0Kq+SWeO0Qw29+GnhWC3rJoutpbX2wnOrhplOnaXsUVbs7vdbhmHQZbOTVeTZcPwHAfz2HLclkDibxfkYmnn+TyXZk9d+xSLiLOtM3/zPF4jZnj2RnTxOI9/JZqQ2zpebuHxrZihs+bM7JIVW6jZz2knHwdryhZCK/Hxk5OTunXr1p5NcN9ef/31/TY00SVW/4//+I9VdSjqh+nlORgfa9JM2MXXubb5H3NtuTPmJ9m2n0Mz7C7j1uIIK49ZF6f18S1I4PuWv1t2jHXQNUX2+djHbYi4f7kv18FxYXhk5DJWmF7unzHjieENBoPBYBC4dAzv5OSklZkC1MbY92oLsas5A47HuZ4kLRLLWvl8tt4TjmU5XpItKfjMbTLchgh0bM3sA1bAdXWi2BZ1dsZlJ8ZtSTEL6HbSQqsWP8wN1lnXHghcv359aWnB8FgXnCezNLnfyEJ997vfPTNe7mWOkblbjXsrzsh9WDXK3JJTcx2eYzjd/QCu93McrmviyTGc8ZbySsCMwXFNGFe3DszwvM68thLOynNMPmsgGUMyxq21c/369b1l/9///d9VdVZQmGvh/fPrv/7rVXWI6TFftD/KczvTlnXh68h76rVoxsq6To+IPQjMpXMK0jvAcZlvYverjOVcB16LXg9+RqqOmR33iWNx3qwzBfZkrTJ+c054B5OhTXY944DxbXn1zmscnBiGNxgMBoMrgUvH8Ha73d5i+/CHP1xVvUWKJfWd73ynqo6zifIb21a4RUZhBVjAXQakazwcN0grwLFBrBUsOqyotHxdT2g1Fmd8ZqzSWWCOFXZNXIEzFW1xY4l1MSPHUlxTk9dnBskcY4FZNDavJy3jlbVF81dbjGmROmuS+AgWvducVB1nJDrj0vVXnVqGW8vkmL2PW9hYJN3i0vk/szVnNTojMuE6UNekdrVUzmrODNsVXIPm+GnHmB3n4XyujczYDXGzrHVbxfB2u92ZtUr2dMZ1OBdrhqxNrpn6PNpTcdy8ZsYNi2HceGJS2YXzOduU+li3LcuxWaXFOQw5t9l8uOq4ptdz3L0bPa9eH7mPn3sLTzumn8+br4u1YhHu3O7LX/7ymfMSg2Vemb9cO/4OGfHowWAwGAyE+cIbDAaDwZXAe+qHB/XHPfDaa6/t/wflNRV377R0wdhNYuoLJXZRYtW6FxdUvEt0cf8zC+MiNJ374E6DWjsJgmNx7ExT7zqD53l9jPydeVzt08mS2T2JOwI3RVdQDewiI10Y18Mv//Iv77clwNy5RozT09O6ffv23qXJWLriflxV7khPElG6N/gf23K/7TbsSlq8VjgG95qx5lq1YO3KTZkucN93FwA7ASrdYCmuneex9Fy60FcJVS414L51YsUWgGbMnYi4k69W0oAJwgiEPp544okLFZ9XHZc+VR3myeUouMjoi0n/vapjKTmug+My1zyDuQ7Y1vJdrGsnJlUdz4sFrblvnfBAN+9Vh/Xn+5O/+13lJLpu7VhCsZNKW43V5RVOVOvejYj+IxBPwhpj7Vyn6SK+aOLKMLzBYDAYXAlciuE9fPiwfvCDH9QnP/nJqqr66Ec/WlVVX/3qV/fbuLAcC/7u3btV1af4Om3VQUkYHj+7di3AyStuV1R1XIyMJeLWPp1YrNPgGauTMdLyWZVkuIi9K4q2/NEqaaIrHnaSjBlLN48OUlO4C7tKhgMTvnPnTlUdins7nJ6e1hNPPLFfB1h5uQ/3w0XW7kyd98UF2CuRZf5OKSQXaLsgvyvmZQ6976p9U9Ux+7PlvWLteR4nQXismZhgYWnPG/eWe5rlN5bQcwd0LPKcR45rYWnuBYk8rKXchvfD7du3lwyPkhYnlSX7Zf5JGrEX49d+7deOxgDbYwwrEQmuvUsMcrG1xTNyra6k/ix00bEVe70shNGJgLgkiznpvBDAknk8gy5p4PNcB5zPjNnvnxSCJvHR3iYLq2fpGmvyIp4lYxjeYDAYDK4ELl14fvPmzfrjP/7jqjpOkU1gpWCd/+d//ueZbTsJHFs+trTsJ899zGrchLBrt2Nm6UaZaaWvrC9feyeQ6rR0fjL2rsUL4/f5XBDssoyq47lYCVDn9VnAmuJvrGnGk/539kfE90c/+tGyrdGtW7fqzp07+3R01sNzzz2334b5YHz8jQUMU8C/n9dqa3Ul55Xjc1zC7NmWZO7PZ7ADp7hvFfVbkNctX/Kem0EAi4aAHxkAAAjaSURBVBh0bN2C2hYi4F5kCQ+szN4Hr/8cj5sfu1SHa8hCcVL8uaePP/74siwBWFou59ixetigmwpnzJiSKYuS23vDOuxa/bhQ3yVBuXbMnl0mYi9S1eHd4XIUtzDjWHkvVyU6Xqv57DiG7+a3LibP9xxzzVwwFnshMr+DdWtPgj2FWX5kb8qqYXiHYXiDwWAwuBK4FMP74Ac/WH/1V3+1j7vwjZ7+VWcT8e2OGOgbb7xRVWetj1XLE8sZwT66olcsBMfYtvzUwEyvi8NgibpNiuWZOsvHxeO+Tkv/5FiAhVjZ1zGkHAtwK5FO3s3F6ViMf/7nf15VVX/zN39TVWetdGcs3rt3ry2e59xPP/10vfrqq1V1YIXJuBiDY5pYs51ElWPDMAdb5dynXKsWJXfMjvNsSUqtWFTeD1vpbj+zKvbObd1+yMIKybwtIed2VDBLrPdOds2MwvOX51tJ9HEfWUtZKI4Hgay884qHd7vd0XOS4+bYHJf3jGOtGTMmfsR7xcXUjpt3rX787rJsW2YUM/+sUTO6TnoLWPaM8ziLsZPds1i+BSgyd8CyZ47p+R2ZzIssep4bzsu9Yb7zHhBz5b5ZLLqTsnNW661bt6bwfDAYDAaDxKUY3vve9766c+fO3tL5+te/XlVns6UcA8AywG/LvmntuU7H7Ixv906ax/5iW96d/93ZcY4duLaq6thKsuXrfTu/+EqeydlNCSw3rLBVFmpa3DAvx3+cHZhWEUwJSSasdGJtf/Znf1ZVVZ/+9Kf3+3jOLa+WeOyxx+rFF1+sL3zhC1V1EPVNEVq367HEWCdNhBVroV9n6bm2ruowZ85IW/3M43kN2ZrONWUBbjMKrqebPzfVJKOS9e06rbx2njHmBCZGTRrHTIvbLYRcO9WxNbewcm1kbgtgOcnIt6TF3n333SPPRLJ1syLG4izmZAp4nSxOb2+Hs53zOG547Zh7jtGMdxXDS0+PPVQWdeb4zGN6XRijWafl9jJexvvbMmd+3zkeXHV4hzD3PCu8311bnL/7XeyGAh27zuzqqcMbDAaDwSBw6SzN69ev7y034jFpIaTAatVxrQk++zfffHO/jVtNuE0PVgDbpYVvH73hNjtcR+7j+FsnyNv5yLtjgGSU/M+Zdlbg6DLtbC078wor1CLK3ZhWYsWJF198saoObADrHFbwl3/5l/tt//qv/7qqztY6rWqpbt68WU899dS+Zu/zn/98VZ3NuHz22Werap3xxlyk9YdSB14Gt1oym+6sdK8/ewWSFThG6xqtrl7SLVUcQ2NfzptWvesiuWfcH9ZUWsAc16yTukksceImGWdyVqtjhq7HqjpWqGEtcqxOuYj3APf08ccfX64dxKO9nvOaYb6MhdiQG0LnGDg3ikGuoeP/FrOvOlb0IfvTTX0zo9zKLmaUrumtOtxv5paxuMbN3rDuM9ah2Vm+s12ry7yxDfNsBaDclvNwPdwLx+SrDpmybON6PP7OOTHbOy+798y2F95yMBgMBoP/xZgvvMFgMBhcCbwnlybUFUHhBPQcKr5y9eHSqDoIFENbLTBtt1S6CZxwsBLm7VLLu2A011l1liq7eBhavSrD6Hqa2S266jmWv6+2cYF9ujKc7s4cWAiW1O2qqr/4i7+oqkPSyt/93d9VVdXHPvaxqqr6zGc+U1Vn79tv//ZvV1XVSy+9VFU/c6WtyhIQj37hhReq6uDmIvGp6iD0C1y+0blv+Qy3HO5CF2TjZunKRTg++yI5xTxll2xLmTmJxULNVYd+fhR6O/GJsVpOKbfxPXVPx0zasPuRa8d9zNg4T65Vy485acbrLo/j8AIuM9LV812AG5FwxZNPPtmWRzCGrit3wm5crtku4M49DSxtZxm1dOM6EcgJV10YY1Xq4SSy7llmHycF8v+tEhML23sNdW5Xxsrat8QXz0pKi5EE1PW6zPNmqIh9eG+vkr+6Up0sT7ho8fkwvMFgMBhcCVya4d24cWOfqk4iQ1oVzz//fFUdp/Y6PTi//bFaLHVkaSIneWzB58vEGorIsXy6lGWjY2Hd+VzcXXXcjsX7dFaZmcJKpJjP00pzYSZWLveCn3neZ555pqoOc8K94Hr+8A//sKqq/vZv/3a/D0kmL7/88n6fzvpmDu7du7dvAwLTS4YHAyFNnmP5fue4M+EirxmL14XbuS+BeCxSAvEwMrObPN+K4XdCw8wlVrHl51ibLirOa3fxuAUPcm2ZpcGmAUwaq70TRbaEmkWLM7XcDIJtuC6uG2u+6sDwsgRp9Wztdrt65513ls9C1YFpMP9ORCOpJN87zJP3YQ6cMt8lIvm+ONkjmbCfO7cdYp11rczMMi3x1bVBW3mwfC+7//kYTl7q3sUWjOB6mXv+TwF61bHcnss8QCfRlt8lU3g+GAwGg0HgUgzv5OSkfu7nfq6+9KUvVdXBIuliT26Jk8c4GoQKjYnL8a1O+rStmqqDxWOfNpYcx8x9XOhrS2eL6QFbsxaR7SwOizpvtfZwc9KV/BmWV+7rmJ1jEexLvC7Pwz5YZTT3RTD8j/7oj/b7YLnTJgq5sA4//elP67/+67/2x4VRZnkKDI+4m2NCWJfJuJgP7qXLYpgfF9vmcTgGBbLMEx6MZFzEMLHOWV/cS9hUsg/HUvmb2JYZRJZJ+L473telzHNcx4xgWIydee6KyF1C40ajnRyVnyMXPMPuq469K+fh9PR0f78Y9xbjYix4c0AKNDhGyzxQtuF3VQpkrFqadWsUcM38z8XqjK0Tked/Lr9gjNzzjP9abpF7x/kt0Oxz53HxbHgt55ywDWsUTw3vMn4yvzl+5pHnt2t7Bsz+Tk5OhuENBoPBYJC4dlFJlqqqa9eufb+qvv3/bjiD/w/w9G63e9IfztoZXACzdgbvFe3aMS71hTcYDAaDwf9WjEtzMBgMBlcC84U3GAwGgyuB+cIbDAaDwZXAfOENBoPB4EpgvvAGg8FgcCUwX3iDwWAwuBKYL7zBYDAYXAnMF95gMBgMrgTmC28wGAwGVwL/BxfldYutiQgNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZXlVJvr9IiIjx8qagBoAqQLBCYfXS5eADa2trS67W8WngjgAtq04PPVhKyq01lNbeWKj4Ii2WioI2o48aMWJ6hZncHoopaBVKkUVNWVNWVmZGRHn/XHOF7HjO3vvc6Iy7s2X5f7WinXj3nvO7/ymc+7+9ti6rkOhUCgUCoXFYOV8d6BQKBQKhUcy6oe2UCgUCoUFon5oC4VCoVBYIOqHtlAoFAqFBaJ+aAuFQqFQWCDqh7ZQKBQKhQVi8oe2tfaC1loX/N3jHHfNIjs8F621L26tvbu1dsb285EGWY+N1tpNrbWfbK09zjn26a21n2+tvW+Yl7taa7/ZWnt+a23VOf6lQ7u/vJzRjK5/Q2vthvNx7fONYd6vW/I1rxmu+4IlXvP61trNM467orX26tba37bWTrXW7mytvaO19qrW2sHW2qOHPf1DSRv/YRjfxw/vbzD3zmZr7URr7c9ba9/fWvuw/Rvl6D6N/m7ep2sdGtr7xn1q7wNba9e11j7A+e621tqP7Md19gOttU9orf3hsEfe11r77tbawYfRzluHOXzZfvRrbQ/Hfg6A98pnG+b/NwN4OoBbz7VT54rW2tUAfhTA6wC8EMBD57dHC8f1AF6Dfj0/CsD/BeAZrbWP6rruFAC01r4WwCsB/A6AlwD4BwCXAvhkAD8M4B4AvyrtftHw+mmttcu7rrtrweNQfMWSr/fPHbeiv4f/7nx3xKK1dhzAHwHYAvAKADcCuAz9Xv98AN/add0drbVfA/Cc1trXdl13xmnqi9Dv+/9pPvtLAF82/H8cwFMBfDGAF7XWvqbruvCHe494urz/ZQB/AeA689npfbrW6eF6/7hP7X0ggG8F8FtOm58G4MQ+Xeec0Fr7aAC/jv459lL0/X4FgCsAPH8P7bwQwAfva+e6rkv/ALwAQAfgA6eO/f/LH4B/NfT5X5/vvixhrB2A75DPnj98/lnD+2ehf0i9OmjjSQA+Qj57+tDGm4fXrzrfYz3P83zwPKzrded73EsY5/UAbp445ouH+fhI57sGoA3/f9Zw3LOd464Z7oFvN5/dAOBtzrEHAPwCgE0AH7Ogcd8M4LV7OH6p+0+u/anDvP7L871fJvr5awD+CsCq+exLh75/2Mw2HgXgTgCfN5z3sv3o277ZaD3VcWvtSGvthwcV5QOttV9urT3DU0+11v5Va+23W2v3t9ZOttbe0lp7qhxzQ2vtba21T2qt/Wlr7cHW2jtba882x1yP/gYCgN8ernX98N1zW2u/01q7Y+jPn7XWRpJOa22ttfaS1tpft9YeGo7/9dbaB5tjHt1a+5HW2i2ttdOttRtba18q7VzZWvupQYVxurV2a2vtTa21xzy8WZ6NPxleP3B4fQmAuwF8g3dw13V/13XdX8rHz0f/oPmPAP4JMyVCbx8Mn1/XWuvks69prb1rUPOcaK29XdZyl+q4tfbxQ9uf3lr7gUF9eGdr7bWttUuk7Ue31l7fWrtvaPsnh/O2VYfJGK5vrb239ar232+tnQLw3cN3c/dQ11r7jtbaV7denX9/a+1/NlFJttZWh+NuHfbzDXqMOfZTW2t/MMzXva21X2mtfZAcw3vkU1uvBj019PFjh339ncO17h7GedScu0t13HKz0XUy1+m9MBz3icN9+1Br7e9aa1+mxwS4bHi9Tb/oBgxv34R+n3+h08YXov9R/umpi3Vddxa9NmUDwFfP7OO+obX2htbae1prz2qDGhTAtw3ffdGwj+4Y9tQ7WmvPk/NHquPW2stbb1p6cuufrSeHfflNrbWW9OVT0f+AAcDvmvV/2vD9LtVxa+1Fw/cf01r7xeEeua219nXD9/++tfYXw/X/qLX2kc41n9Na++PhfjgxzMdjJ+bsCIBPAvCGrus2zVevR/8c+/TsfINXAvhD9BoH7zqPba29briHTrf+2f7G1tqlWaN7UR2vttb0+K2u67aSc34Uvcr5OgBvB/CJ6NW52vl/i57uvxnAFwwfvwT9wn5E13X/ZA5/EoBXAfgu9JLH1wH47621D+667j0Avh3AOwC8GsBXAvhTAHcM5z4RvaT6cvTS7bMA/LfW2uGu66yd4Q0APhPA96FXlxwajr0KwI2tV2W9DcDhYWw3AfgUAD/cWjvYdd33D+38DIAnAPh69D9WVwxzcCSZs/3AtcPrPa23vX4CgF/pum6WCr31No3nAPjNruve11p7LYBvaq19SNd179qPDrbWPh/Af0X/APld9HP5Edh5qGZ4FfqH6vMAfBD6H8FN7BYGfgnAhwP4JgDvAfC/A/h+zMfF6PfB9wD4ZgCnhs/n7iGg38t/A+BrAKyjV2P96rBXaXa5bmj/lQB+A8BHA3ijdmZ44L0Zver/OQCOoZ+7t7XeRHCLOZwqs/8C4AH08/PG4W8NvZbqQ4ZjbkcggGHHHGTx+QC+CsC7hn7Nuhdaax8C4H+gfw48F8DB4fhj6Ncuwx8Pr29orb0cPQs9qQd1XXemtfZ6AP+xtXZZ13V3m6+/AMDvd1337olrsa3bW2tvB/Bxc45fAB6F/vnxfwP4awAc77Xo9+V7hvefAOBnWmvrXdddP9FmQ39f/Dj6tf8sAN+Jnl2/PjjnDwD8nwC+F72KnQL5Oyeu9Vr02oofRr9nvqe19ij0qub/gt6c9z0Afrm19mT+OLYdE9ePoVdXX4J+n7912OcPBtd7Cvq9vatfXdfd31r7RwAfOtFftNY+EcBnozcfRHgDgMsBvBjALQCuBPBv0P9GxJhBpV+AnkJ7f29yjrtmeP9B6B9E3yDtvXo47gXms/cA+G057jj6H9LvM5/dAOAsgCebzx6D/kb9ZvPZJw3X+PhkXCvoF+bHAPyF+fxfD+d+dXLuf0a/UZ4sn//Y0Oe14f0DWTv7pC7p0G/ctWGxn4b+IXgSwNXof9w7AN+1hzY/dzjn88xadgBevof9co18fl2/3bbf/wCAP51o6wYAN5j3Hz+0/VNy3A8M60EV4icPx32uHPfGqX0xHHf9cNxnTBzn7iGzLu8GcMB89tnD588Y3l867JEfkXNfAlEdo/+Bejf31vDZtcP98ErnHnmi+ezTh/Z+S67zSwBuMu+vgdybcvzHDfNsrzf3Xnjd8P6oOebxAM5gQnU8HPstw7Edeqb59mFPXSLHfcxwzJebz542fPZlzv4aqY7N968HcOpc7s+k7ZsRqI7RP8w7AJ8yc//9DIA/Mp8fGs7/RvPZy2Hu6eGzBuBvAbxx4jqh6hi9luFHzPsXDcd+g/lsHb0d9yEAjzOf8znzscP7S9A/t35IrvGUYc1flPSRz+3RvT3slTdPjPEQ+vvrZTKHLzPHtGEPfule13svquNnD5vY/n1tcvzHDh377/L5L9g3rbUno2eprxtUW2sDc34QvTT1LDn/3Z2RSruuux29VD7yiFMMapPXt9ZuQf8wOgvgS9D/kBB8SP9Y0tSnonfOuEn6/Bb00g6lpz8B8PWtV5F+eKaiMX1ctW221uas0TcPYzmFfs7OAvi0ruveN+NcD88HcB+AXwGAruv+Bv14v2Bmf+bgTwB8VOs9PD9pUP3MxZvl/f+LniFdMbx/GnrhS9U/v4D5OIueNe/CzD1E/GbXqyFtP4GdvfrhAI4C+Hk57w1yzaMA/gWAn+t2mDC6rrsJwO+h90mw+Nuu6/7evL9xeH2LHHcjgMfN3JfXoJ/PtwD4T+aruffC0wH8j84w0a7XVP3e1LWHY78N/bx9CfoflsvRM553ttauMMf9CXpB06qPvwi9g9DPzbmWQUP/LIgP2H2v7kVDOIUHu67T9UJr7YPbEDmA/sfnLHq27u0/D9v3Ttf/evwVZjw7HwaobkbXO6bdBOCvuq6zDrXcl48fXp+JXtunvwV/P/zpb8F+4mXoieF3RwcM8/UOAN/cWvuqtgfP9L08NN/Zdd3b5e89yfFXDa+3y+fvl/e0V/44dh5c/Pt36G8oi7sxxmlMUPfW2jEAvwngIwF8I/pF/RgAP4H+IU1cDuDubvDWDfAY9Iuu/aVQwT4/Bz2L+gb0KpdbWmvfMvFj9dvS5rdk4xrwE8NY/jcAj+q67iO6rqNn5V3of4CfMKMdtNauRK/6ezOAg621S1pv//xFAI9Fr/reD/w0gC9HL5C9BcDdrbVfavPCw3QP0FuTe+AqACfkRw4Y770Md3S7bT172UN76afXL31/KfqHvufRfxvG6nb1Aj2TfL4GYBTaZTGoh9+EPurged1uc9Hce+Eq+PM/e026rrut67of77ruhV3XXYtehf1Y9KYZi58C8PTWh6Wso78Pf7Xrur2G+T0eSRTFsFd3jXvm/p2DkT16uA9/C71H7NcD+Jfo99/rMKW67LHZdd198tnks/Nhwttr0b7k9flb8DaM99OTMf4t8K7n2Uovg/+7AaAPX0L/jH4pgCPDPF/Mvg3PQD6zn43es/ml6IW897YJOzewNxvtXsEN+hj00gxxhRzHkJFvQr+JFJ6b/sPB09H/2Dyz67q38UNHCr0TwGWDzS36sb0LvQDxNcH3fwNss+2vBPCVrXdaeT760Js70NsuPHwZgIvM+zms9Nau697ufdF13UbrHYr+zWAzmwoh+Hz0D97PG/4Uz0f/YxOBduB1+XzXTTJIh68B8JrBkeCT0dtsfw79j++54FYAl7bWDsiPre69DB6TmbuH5oL3yBXomQXMe4sTQ3+udNq4EslD5Fwx2Ph/Dr1a72O7sW101r2Afqze/O9lTXah67ofbK19O8b2t9eitz1+IYA/R/+gnXSCsmi9w+JHQ7QLgveh/6HTz/YD3v57JnrB4jPt/d5aO7BP1zzf4G/B89CrcRUqJFj8DXqG/2EwmqxBOP4A5BrKD0Tvaa7aV6D/QX0pep+GG7uuuw29evxFrbUPRR8++p3oBaOfjC6wyB/aP0a/WT4Hu+n458hxf4PeXvFhXde9fIH9oWpy+8E7POA/Q477DfRs5UsQO8/8OoD/A8A/Dj+mkxjUr9/cWnsREmP7cNx+4+Xo7VHfDeeB2Fq7FsBFXe95/Hz0sYYvcNp5CYBnt9Yu6rru/uBa/zC8PhW9/Yc/RJ8cda7ruhMAfq619rHYiWk8F/whemHh2ditltW9t1fM3UNz8ZfobVKfi97JiXiuPajrupOttXcA+JzW2nXdjuPIEwA8A3tz8torXon+Af/MbrfDFTH3XvgD9PHYR/lj3Vp7PHq7b/rjNKiG7xAmjdbaVeiZxy7W2XXdLa2130KvUv0I9Kx5pIZNrncAwA+hfz6+OjpuUIm6Au6C4O2/x6B3MFokKJwfXvB1/hd67dsTu66LnLNcdF33YGvttwE8t7X2XUYb9Vz0z4L/Jzn9j9E7lVmso98zP4HeVDGKSe667q/Rmwa/ArkD1Z5+aD9q8BpTvN3ajUwnbmyt/SyAbx9o9zvQG6z//XDI1nBc11r7SvTemOvoH4x3opd0n4H+Bn7lHvoZ4ffRS0Q/2Fr7VvS2sZcN16KaAF3XvbW19osAXjk8CH4HvbTzLPQG9RvQe+A9B71X9PeiFxaOolfpPLPrus9orV2MnqG/Dr0t4iz6B/Kl6H/Ml4au6/5Xa+3Fw5g+FL2zzz8OfflE9ELF8wb28uHonXBu0HZaa4fQ2+Q+G7H09ifoEx68Ylj30+hDJXapVltrPwrgfvQP4NvROzx8IfZhbrqu+43W2u8B+NFhz75n6DNDCTJP+Qyz9tAe+nnPsH9e2lq7H/3YPwbAf3AO/8/o1flvan32o2PotSP3otcE7Dtaa89FH97yXejNCE8zX793sLdN3gvD8d+BXtD5jdbaK9A/yK7DPNXxFwL40tba69A/FB9Ev1++Dr3G6wedc34K/b13LYDv9Z5RAy4y47oI/f5/IXqb51d0XfeOGf1bFn4XvWD2mtbat6F3GP0W9HM4ygS3j7gR/T3zJa21k+jn/F2OduOc0HXd3a0PSfqvrU869Bb0z4jHov8h/LWu6zI/i29Br3b+2dbaa7Djff/aruu2vZFbH3r2QwA+ruu6P+p67/QbbEPDsw7onQVvGD67An10zM+i3+eb6J8rh5Fr+c7Z67hDbxO0x11jzj2CXkV6N3rvyjcC+LdwPDrRq+XehB3vtJvRq22ebo65AX6A+c0ArjfvXa9j9D/0f4Zeavo79A+R62C8YYfj1tCrC/4W/aa6A31owgeZYy5F/5C5aTjmdvQ3wtcO3x9Erxr9q2Hs96H/EXre1Jzv5Q9Owork2GegV4/civ6H/270D/cvQG+v/75h8zwhOH8F/Q/0DRPX+bBhrR4Yjn+xzjN65nzDMG+nh3n8XgDHZb1vMO8/fhjvJwV71O69Rw/75370Wa9+GjuJPEaJD6S969H/kHjfzd1Do3WB49WLXtr+DvSqp1PDmD8UTsIK9ELOHwzH3Yv+pv8gOeYGyD1irvsl8vl1w+drXv/M997fdaad9F6Q+/LPhvX+e/Tai+sxnbDiQ4b2/wy9evEs+j38CwD+RXDO4WGOwvUe5orj2RqO/3P0GoJZCQ7O4b69GbnX8XuC7z4FfUapU+jVq1+OXmP1kDkm8jreCK5144z+ftXQ542h7acNn0dex4+T8/8QY6/3Dx6O/QL5/DPQZ++6H71Q9W4A/033etDPT0TvnPfQsEe+B8AhOYZ9fFrSjud1fBS9Cvqv0T/b7h3G9TlT/WI4xNLQWvtP6FWY13Rdt18pwgqFSbTWfgA9W7msm7ZVFwqFwr5gkTZatNb+HXrd9Z+jlxifiT404OfrR7awSLQ+u9HF6DUK6+jZ4JcDeEX9yBYKhWVioT+06Kn/Z6J3LjqKPpPGq9HHvxUKi8RJ9HHeT0Kvxr8JfbzxK85npwqFwj8/LF11XCgUCoXCPydU4fdCoVAoFBaI+qEtFAqFQmGBqB/aQqFQKBQWiEU7Q+1caG2tO3DgALa2+lwBfPVsxCsr/e8/00eurq7u+pyv9hg9R1NPZqkop46dc+65tD91/F77uNfxzLleBh6ra5nNjR7bdR1uv/123HfffaODjx492l1yySXb53jt6mf6avfM1DkR9muN9zK3Eeb4VuyH/4W3TlHb0Xf6uf2e//N5sLm5uev9xsZGeD2itYYHHngAp0+fHk3ssWPHussuu2y7XbbH9qf6l11zL5+f67H7ee75wl72Y7SHvM+idfPuaz4H7G/KvffeiwcffHChE7rMH1o84QlPwAMPPAAAOHmyTyrCjc9jAGB9vU+Te+RIn3Hs+PHju94fPbpdqxqHD/dZwQ4e7BMPHThwYFdbfPUeuPpZ9APPV/udnqvCgF1c/c62l7XpnRO92nMiwST6nHOWHTPnh0MfmjyX62nHrQ/Ss2fP4uu/XnPD9zh+/Dhe+MIX4syZM7va45rbMXC9+Z77g+fwe9u/Q4cO7frO+1HWz6O9E825xV5+lNmOCqbRg4g/KPYcfhb12evL1A8g39vr6Y+ZHsP1O316J7qK/z/0UJ8i+777+nS2fE7cc889u94D/V4Bdu/Vt771raOxAMCll16KF7/4xdvtnDjR557n88f2i+3q3HrzFD1XdC2z++dcSEEmdCq0D1yPaJ9n7WXnTAlYGbmygo89RgUjrhUw3l+6/7g/7PONzwz+phw7dgw//dN7SoP9sFCq40KhUCgUFoilMdqu63D27NltqdFT4ahamYgYmf0/Yn7KTj114xzWFmHOOZFkF0mn2XXmqjm960bStp3vqH1tI1PlRNefUv9F2NrawsmTJ8N94bXN9c6Y4BQTZxv83mO00TxlY9ZxeOPRY5WxzlHpRgxizjpEGg22ybmxGik9Vt97rJvn6zk6R/Y9WQ0/syYpD5ubm6PnjffciVSPngYg0ihF97S373S9s3trLuvNtC5T585h3Xt5Rkb3gmpFgPG9xleyUf5uWHaq7SnYvtVi8TNqUA4dOrQvJpYpFKMtFAqFQmGBOO+Mdo6jTGQ7td9N2SEz+2d0HY/pzmXBc2wZ0Tg9VqLfKSv2pLqsD1E/Iikxkjiz9pSdWMlS5zGTKruu22XX8+Zer2nttxae7ZyvateP7K7ajn0faQ1sH6P33hrqnKqtVK+bsaHoXvGcRXTvRJoBz0ar9ncyULURAjtMRaHM084Nz+HrmTNnUkZrz9c+6v+2nzpvdv+SWUUatGytVStwLtB97z2PIrZNzGGpmQ+KtjNlm/XGH623MluvT9G9oL4CFmxvat/sF4rRFgqFQqGwQNQPbaFQKBQKC8TSVMfAbqcEqn2sOmauytiqLVTNp2rALNwiUhFlThBT8bqZulkxxwkqut6ckKBIRbgXB4dIVW0RqV8yFZWqjDM1Wtd1OHPmzPaaemaHKTUcj7X7TcOEInWgt3e0/5EK11Nvqxozc+qI9kikMvTMBXpMpCL3xqrzOuV0BIxVu3Q8UfODPSZyuspUvdwHGxsbab+6rktV0YSuIfeDvgLjkDUN94nWy/4/5WC4lzAYHYOHSIXsPVe1vSjkcY7aWVW33hpovHRkhsiePxq2FDnWAWOHukWjGG2hUCgUCgvEUp2hNjc3tyVYL2haWVPk4OQlWKCEye9U4vRYSeQ4NSegPwoNyZxSptry2PDchAjeuChlR44M3rlzQ53mMNss1EVZw+bmZsr8bRiJ14fIoUX3B5NTADvJLPiZ7pksI1nEoPl5tr81sF5DTywDmEpqoKzU06Rwjvlek3d4e0cTgOgYPCc8joMMlqxB59FjtNH96jFanbeNjY3J+y0LddP7PHqm2L3D/3WedJ085pexavu5HZNqP7yEIYq5SS08Z69Iq6fjzULePIc5O745jFa1JDZhhe6nyNnK0ybsZe/sB4rRFgqFQqGwQCyV0W5sbLjMRKGp+zStXhbeE9lVvHRcKtFH4R5Z+IvaEAgvl6pKqhGT9Rh7xFK9OZlK05ilV5xrT/YYXZRMgchCkNbW1lIW3VobpWHz2GLUvsdKIkarqUDnMH9lmB6L98JSAIz8Fuxe0vSJapvVfeCx7uieUMZm+69zoKE53r5nCNaUfdcL1WGKRT0nCyOKUibOgaet0vnivtBX+7/OaaRpmhPup3PqhUHpHuH7KZZsr0NENnvbX332cj94KU2nUpjq3vH2gaetsK+W0eq9ps8fHjsVOrgMFKMtFAqFQmGBWLrXMeF5SUYewxmjVYkyksg96V0/y7wxiSk725xk64SyxIydqg0oYq2235G9NbMjR16umaeyXkcl1yzJxdzUbq210CPRQq8ZJaMA4vUnW2ERC89eqQxG++9VnaGETRsmESUj8caoe1L3v+0HP6NXtb5mrCSy0SqzsuC6KDPkuL37ip+xT9G9Z+8nj+VOMZPMp0HHrOvP99SAALHXcaQl87RUaufmq2eP1OILPIZtqPe2RcR2I22ZNydcHy3iwnmwx0YsPmPsHKu+ctw81s5j5KGu8D6f4y29nyhGWygUCoXCArFURtt13cgGY6Ue9Qyl1DSV3sz7TqUnT2qLPBGzFHUqRVmpM+qjsquIpWSxkJknXYSI+WlbWfycsi3PDhvF50W2afu/vU4kZbbWsLq6ui3dera5yPs7Y/5RXCtZAz/XfWg/U0bOc9hXu5bqca82Wn21x0bpLfcimUf7y/NuJTTekHOjzMr+z+/UrsZXj2Eoi/S8xLW/mp40ghdv7XnYck15TZbjJIvL7JGRZi2znet4Inu8HavaZLO4/ilfkOzeUCar2h8vtlg/i+LDPQYalbwjPN8Q9o17JqpdbPfonNwFi0Ax2kKhUCgUFoilMtrW2sjTzSZ/VwlSbUrq+cY2gR1JRdmO2ic8uwDb57l6Xc/+qdfPkuNH7HNOH6fsnlnGpigWLrO3quQY2YYtppKka+yabXfKU9FCJVYvLlfbVSZm+xCxkDkJ1BXqT6CaFPu/ajaUyVobbrS+ajvN+shjybJVqvcYdOQJzTZUu2DP1XFFpf68drgWl1xyCQDgwQcfBLD7nifmFKQgohh9+39kL1Y2af+P1nIOW1QoW7XXU7tmVPYv2wda3EPH7cXERh7kUYys1yfV4NDD/NSpU6NzIu1OxvLVt0Lnys6JFrhYFrMtRlsoFAqFwgJRP7SFQqFQKCwQS1UdA+NkFDRkA7nrODBWZ1moEV1VaxrmA8SGffaDqmx7jqpUVZXjGfOnEmZzTrxkHlFxBHXCyhyNIieyOU4QUSC+nRNVY3sOIHp9nbepogDe97a9KASM6imqIO26ROEvkarVXk9Vd3Pq3+r1VDWpzlF2HFFijEjFb69HVbTuA86JVeGpKpd94TF673mORprMXVV4di3VQYx9ZR+958T9998PYPc9kCVa2dramhVipvtVHdqsU4+aFewcemO1bavqWO9/Tx2rqlR1PPNUx3OTzxBeWJk+z/T546VEVNW3mhv0nrTjmkrqk0F/W7zfiWU7QRHFaAuFQqFQWCCWxmhbazhw4MAoOYPnGBCFlCiLZLvA2AlKJT01mANxyj015ltpWpmTSkgeo42S60dStmfw1/FmSQ6mnFCyYPoo6Ful1Uy61xAUPc47NkvB2FrDysrKKAFCFmJ08uRJAGMmYM+Jkg3wGErePNfuHZX4NSTN0yJEDmW6Hh6jVY1CtA/tuvA7Mge2wXvjnnvu2fXe/s9XOq6wDY5HWTkwTuKgc+ClGNU9yfdcP4+VqNNL13Up4/FSv3p7h595oVnal+je1fvHY8NRGsOsCEDkYKTM1p7D9qdSInr3nYYkRglZvOeOJtfgfcQ15eeW0RKRpsbTDGjhiSg9qe1jVvRjkShGWygUCoXCArFUG+3q6mqogwdi6SKzJai79lS4SJbsn1IOJTJPsqQkrzbTLOBapd4ocNybk6g4goZmeOkIo9SPRJaAXOfVC6+YOkfnykLbnZIsV1dXR2O3bIpjpZSsrDcLf1CpmcdoG965mqAiSyyiyRdU0le2CIzt3WyDfdai6p62RzVBnCOyVS+8h+OhPVQEpyfLAAAgAElEQVRZdxbuFTEzZV/2Ohpixbn3WA/7SF8K9VfQvmxubqYJVzT8bIo9esdEqVk97c5UKkwvXWhUtETDX+zcRiUINWRwTkhQ9Hyzc8++cD/rq+53O5/KWKPCF15hh6jP3j2h90KWKGc/UYy2UCgUCoUFYukpGCMbhv1fpWS103hMLCoXppKSlxg+SqSunpAcgwWl0kiitYhYgNpoPOlXx6EeilaypOSoXqwq0aqkm/VfbWnePOpcZIkE5hxD0EbLPmmKN2CH+URJ121bhEq86lGtRQVsUnn1GNak58oagB0JXP0G+P6+++4DsJvR8prHjh3bNQ71W2DfvSQHyrY1Ab0dl95bmsRFmbVlFVqeLLrXM5swrxOVgbPXsbbeKY0I58mz+eq57L8WUPBstFmJQ8D30o+8syP7uzcOhZe+U/fZVLJ/L32j+r7onrJzoloIHqOsm+Oy+yMqrMA2NKmQPVbvuShdqT3WjmcZpfKK0RYKhUKhsEAsvUwepSrPfqesVNmIJ92qjZTfaTFvTRjuHeOVqbNtA7FEF6VTtH1Uu51eL2N5KlEqk7WSnkqSDyeVoPY1i2HWtVSNQBYjayXYTLJcWVkZ2a44TmBnLnXshNcHfqZepmR4/J7M1tO+RF7hXvyfxsuSxWnifq+EG2O61duX7700l3PLo9l9of4JkYd0lrZP2YgyaLvOU3G0nre4amLW19cnC6sru/HiwHktMjLtm+eRr9oC1X7w1V5PGeZUkRHvO2Whnq9GVPhANWg8J0ttGxXA8LSLet2LLrpo1/da+g4Yeyjbe9vCOycq2pL5YxBT8fv7hWK0hUKhUCgsEEvPDBUlcAfiuDvC07mrREL2cemllwLYkaY86f3iiy8GMI6pyrLIqIejZnfypPYorkuv48VCqsSojFbtMIBf1gvYkVg1Ubu1/7F9jS327NUE50Sz4yh78KTfObba1hrW19e3NRDsg90HEcPXOffO0YT2akv1yg1qce457F2ZLL0vCa80nHqkKjvhWnt7Vj1Tde96WdSUiavWh/BshbpHNBMQX73rqaaI8GzPer9Gdktgxy8kY5HKwHl/KGvzWLP6J/D5c/z4cQA76+PFcmqWJfUC9vZqVPRBx2DPjwqFRBoPOy71NVB7a+Zjw/d8vug6WV8Etksvd77ee++9u8aXaYgiTWj2e3Hw4MGlxNIWoy0UCoVCYYFYKqO1kkNUpNf7TCUOr2wdJUeW11JvXUrmXuYUSk+U2pTFWbuXStxqV7MenNpffY1Yl5XelSlHpe4yG5DGHbJ9zS1twTHzGM/TVxGVxfLmXln8+vp6mhmqtbZ9jjJbYJyNRiXvjGmyPWo/lL15WgP1YmX73H/sD2NVbV+U6UfeoMDY81RZln5v96cy/4jBeHG76kFO9s0xcK7sXtXsUcqK2TdmpLLX0Xsg0qjYY+0xWQz+2tra9nXYB8/TPoqN1b7a81XjQEQaCK999WlQj1/7nWph5uxztq/3uxcfrNBnUhSTb9vjfc++qCaFrN/Omd7bnFf6Jtx5550A/Lhq/S3J7iudJ5sHe5EoRlsoFAqFwgJRP7SFQqFQKCwQS3eGUupuVSpR6IBXTICgquGyyy4DMFaPKqzDjrqsq5pKnUnsZ+p8oAH8ngE+SoFGeInoVb2UJURQRE5eGjDuOVBwHJ4zh0KduOaEEWl6wKyoAPulpfvsuuh6q9qca01VlP2fY9WyiHxlv2hisGD/qTLmK1XG6iBmr6PpBj1HM1WtanhPFKoB7MwPr6d7xivswfWnMw+PveWWW3aNi04qVv2ne5VtcX9xL9l149jVNKIqbDs3UcJ5D3SkI9TxjccAO2pJddj0nNRUVazqUS/9HzFXdeztb71nbVEO7WOUxjAq6GKvx3XQcBtdLwtP5e2Nh2YIu1fVKU7HxfvK29/6Xn9j7BpoEZBloRhtoVAoFAoLxNIYLd3sMycCL4k/z7WfWwlWDe7qJKJB816C6aiYtleOLXKzj4qqW3jStG0rmxN1YIiSjNv/1fkmcvqwiNIoqtNXVmRApVGPqWaJDyLYcoXAbqk0Kjqt7JQhXcBO2IHObeTYZsfBY9mnyy+/fFef2A8brB+lelQJ3+6lKBmIFhdg29Zhh32LEsF44RDaPq9LjVEW8qQMSlN/kpV6aRvZjibaV2Zr//fC4RRktLyXVUth/1eNFsfulQRkv9RJKErW4iVgUAfD6D71xqihQF5qVNWk6Xj1uWf7GGn19LpeGkV1QtKCDl4CENXmRcl2bCiiPvP1GR+lYbWfVVGBQqFQKBQeAVgqoz179uxIErJB++raHYW2WAlNGSulT9qlMubkpWOzfSOyRAsqHWbl6qIk4sqcrfQeMWW1zc2RLCNblpfyj1C7oce6VRLX63nB7V4hh0yy7Lpue140bMi2rcyYrC5KvOCdo2zRSwCijIXrQBumZ2/VPahsRAP87TlTJRW9MBIda5Qe0o6f7dIerXZKMnSvcHaUHlQTY3jJVaJkDXPCyTJGq214xQXUL0Hn2kt2o9dUpqyMbI5NUDVdnu1c/UlUi5CltNV9ps8/y2j1GRLtVS9MamrfEd79FBUX8NJSqiZKU4B6SWSmnoWLQjHaQqFQKBQWiKV6HduSRJltThlF5uGntquoILKXri0qok54EnOUNlFZnZWYVVJVaVGD9b3yWFFZNK+PU9JnJNnaa0d2cs+zUKX5SGr0PMyJKVsJS+V55wI786IMlu89T06yTpV8dQ2966lNSdMpqi3TnqMaE2WHWhLPOzay0Xn+C5G9UG2otr0oTagyTDsWTUtJj1W1lXnszkvWAvhaJ+3jVEGBM2fOhMlh7P/6TNJ2veIiupaR1iJLzKN7RW2n9jO9x6gRUDbn9SW774Hd66L+JF6ZOntd/T86xsJLMan7Lkr9aM/3klDYczIto73WIlGMtlAoFAqFBWLpcbQqqXjSTsQWvdJkkUQfsWELL07WXt9LO6ZSknrpem1qH7yYR+97YFzInlCp186j2ocim2lW2EEl8cgLGRgzsohRe/bxqICEBT3WM89u9RBVm6xXmisrfwaME7d7jFxjLjNbvdr19VyvmDqZcsROo1hs+7/unWx/E9F+i7zu7WfKmCMNju1L5MfglQ7kmpI5T+2dM2fOhFoED9HzZk662Clbo203asu7J7RPule8qIqoIAURlXj0+jAnBavOafTs8K6vfdG58NZrrle1l5cg01YtAsVoC4VCoVBYIJbKaJkcfs5x9lXtq55Upe2qROlJRJEdRc+x0qhmgFEPO/UK9K6t9lyFl7ze87rz3nvjUalQ7dl2PiMWGjEc245eNyqAEPU7AllJ5M1oxxTF8Hkx2KppUGk3YxhRIYCsIIYX6wiME6h72gLVbMyxAWoZNmXQXp+VxSujzManx2qfM+2FaojI5D32F/kPROi6bpL1Rv2KrhsxoWzPz4WnaVIGNuXlrP8DsS042996b6smxUvYHz0PIjus/m/b9Ty+9Rj9nZiz1lYTUzbaQqFQKBQucNQPbaFQKBQKC8RSVcerq6upuoKfRWqZzLFpSg28F1WOqhCt6pghIVEYjKeqjtSL2uc5oTo6Di8FpM5tpMLJ1D/a50wtM6Wy8b7XPk6pbzY3N7edbBiyY/uoAfs6ds+ZY8oRQkNLspq/keOel6SD0LSAPNbWsI32sX5PeIlLNDQiSsVoz+c5muYuMg/Y/9UxTFXHmVNRdI97DlTE2bNnJ/dPlgBDTSrZtfUzNWfNSSUamWEyB0dC7xtdLy80MHK+zNYlcn7T+bPvo+eAnpM9Q1StnK2bPjejPtpxsz3r4Phw1Pt7RTHaQqFQKBQWiKUx2tYaDhw4kDqYZGzXwktNNsUo5kiahEpx1gFKg9vVOcAL74jc3qdCaey5XjJ024854SSKOU5Kc4LQ52oLsut0XReykq2tLZw5c2ZbamdCB09613VWpyXLSjXhQaQ9yNJ3RskAonECsUMdGbtN36iMKXJwi5yV7DjZfpS4BBgnQFDnKHWSsvtOncj0GE/bo/eTvvfYlrZ/5syZyTSMem0vYUEUcuiV9IyeY3thR9Gzi2PPwq54Xa5ppImag704l2aJP6bCySINh3cModfxQnWmnqfedTxt3iJRjLZQKBQKhQViqYx2ZWVlpIv3QjSyAHE9J5LOI5fvzO4RhfV4pcCitIpq27Cfqd0hYj8ZG47sIJapKQvR9qMQEe/YSNLMbGJZ0gYdRxZ+Za9lWSDH55VbI/Tank19KjVdphWZ0ph448lSwgHj9bLHRvsgCp2w4H3Fwuaa9MBLSxqVQVSboJeCMSqH5iW50IIa7GOWaIRryHNPnjw5WSovusftmDOtFLA3XwY9zvss2kOeZkvvVbVHemEwkXYqeh55bDEK5/HSd0bj1PeZjT7S7k2FRFpkvx/6nC5GWygUCoXCIwBL9TpeWdlJHK+lm/Q4i0xCUbvaFNPIpKko3VdWTFklLq+NqXR2GVuk1M5XLX7u2Wgjz+S92Fsjb+29sO45mNJe2Gvw2kxWb+ci0jDMSdSuhcQjxp8lu4gYtZdmTpmSeo5nyeSjxAHeXuKc6FxkSVc0dWkk+XupRvl/9OolgOE4eIzakbM0qHNSMLbWsLa2tr1nvDWInhGRF6vt31Si/oxpRlEH3loqw4vu6ew6EXP2nsFRogrdq3Yt53hNR5hirpmNVuck8/HRMS8jWQVQjLZQKBQKhYViqYzWi7ny2OLDSWM2Jw3bVFtzEmlHds3MRhQlv46S8XtsmJK+xnR6pcIiKdfzYgR8KXFq7u3nUXLyLGm5Z4uJ1rDrOmxtbW3PC9kJ7XkAcPz4cQA7a6Y2S7IfL1ZS7VER4/DSDWaajOg6yizU3pV5dEcxiV56UpXadX9zTmzBb6aBjFLfRV7v2TFz7g1Nuagl9zxGy35PxUK21kYMOfNiVmQeqhHjj55l9n9d0yxFobLraN299K181ZSYXsEGQtm1Pgs9fwNNAxlpLTNbrR4z5ddgEeUJyGzdc9rdDxSjLRQKhUJhgVgao6XnKO1hngei2nTm2u+A2Ja1lzi3qBC8lzGFiFip5xkd2S73IllSItfYTjuPEUPT7z1pLvIizLz1ohjPOdqD6H0GxpmS2dp+026rEjiZUZZNSqEMdC8xg54np7I/9dL17EbRvo48prOCBNwjGitrGS3nVEus6b04xQJt+1kspNpvoxhIqylgf3UOPHRdh42NjVHcu/fcmeNtHI1xyh7q2Vsz5mWPs32MyoF6fVVGq7H4Wcam6JmhNlQvx4Du56lYc/uZ7itl0PZcnT+9nzzPaC86YBl22mK0hUKhUCgsEPVDWygUCoXCArFU1fHGxsYonZlVl0TqInXf9lQBUcq2OSpdVdmpGitLJKB1NFVdY9uf41gUHadzwFcvPaA6PWkSgkgNaK+9l7Rmem6UCNxzQJkD7h1VdVrVceR4oYkq5jjBRCEAmRp4KnGBPZ/91mQN2XX0lfstCtmw19H9wLlgwgqrOlanpIsuugiA7xgIPDxnEk9Fqeum+9yqKD3VZHRvdV2Hzc3NkZNa5swXJdufs2cjZ8IsdWCELKyI66/PFnsO10yfTVFSCO/ZqM9AdcLy6rrqsyoK9/GuNzXXdh2nwsmy87NkPYtAMdpCoVAoFBaIpaZgXF9fH0k5XkB/FCieSR+Rs45KYB4b9hxJ7HvLaNU4HwX22wQKUUk1hefcEfUxSqhtr63zGLGPzAkiem8Z21Twvs4ZMGaEU5Ll1tZWuD6AX9LQtpuF9SjbmUrn6X0WJc63fSRb5Cuh80MGYv9nn8hCNX2i5xRHphppMDQVoz2WDmcRg9K+W0Rr6SWiJzRtqDq42EILeu2p0J6VlZXt871rz9U0ZSn9ohAgnWv7me47dQL1mJneaxqy42lDeExUBtBj2HoPe2FROgZNWatakIiF22P0vlHHJs/pM9oH3jx7oUbLYLXFaAuFQqFQWCDOW5k8L3RGwxAUcwKcVRLL3OGjtHIZO1VbBe2elNYYOuGl68tCMexxlmFE4QPReC1UcpwKJ7CIwko8ROOYY8+1YQNTkqWyNrtPdEzKCrKUiFEYQpRoxGKKyVo7MpmshtBkKfGUlSg70ZANz59AoeO0Er/u1akkMhlDnNIYAbF9TZNpeM+EOclO+NwhlDFbRHa7vaRV9foWQfemsjfbJtclKvTu3WuqFYjsxl4f9TO2xfXwkp1Ea6hs2AvziZJ3aApOuw80qQn7ouP1tG963UWjGG2hUCgUCgvEUlMw0l7C/wFfx5+x3giqp58qLmDPiWzBHqNVm4syWrLRzLNSJTpNn2ZtdJEtU20zVlJTtrGXouQ6zujYzF6p45zDiqf6srm5OZLqLXvTz5T9egnooyTkkXSd7UNlbbQJWnssJW69nq6lTfKv3tRsN0r+bxGxXg3+90rQ6R7SRCkey9f7Nnq166Y2WGVMcwq1Z16mHKfah7NzMg0GoQkc5vph2HMj72OPbUesNypMYvum15uzv/UYTXvKVy/xh2pVdJxTNmPbp6j0ov3u4SQ4yoraLALFaAuFQqFQWCCWbqONbGnA/MLRXpq5KA4r82Seq5/3bBgRY848hyN7sfYji8FVlp3ZIVTa9dLP6fUz25vXV/uZsqwssbr2dSqN3tmzZ0daEGsf0rR8UZo5zysz8iTPWIrOqbIH9sfzlmUBBLW/evcEmYPa4sgwMjso29eUi6oZsND50pJ6EQu37altTtmJZTzKYDku/dxjTva6U/4beq9ltuXIc93bv1FccRZHm9mTAT9GVeeBWgruD0/TEJVS1P3mlSIk+Bn3MfvheXFH95pqEfSZbcdO6HM702woorYs7HOnvI4LhUKhULjAsTRGu7KygvX19VE2HIsoobSy0Ux6ndLT78WWQUnPMidl1VpwPIqRs8dG2X48e3LEzKLr23OUJUZJ8r25irI7eZiTSH3OuVN2Ld0Hlnl4RQMsOBfeWmrGMbIFjY30ErbrMSq1e0xGzyGLy86h3T6KZ/WYmu4dZe5kJR6TUVu3tmnnkYjs4mqj9TJRcQ6UOXl2WN3HZ86cCfcpnzuqAZjzDFF42aRUK6J7f44NMNL8ZEVG1C7pMdqoIAT3N9+rBsKeE10vi4mO/GSifWjb09+AqB/euCLYdduLn8p+ohhtoVAoFAoLxNJttMqmPIkisslmEsyUt7HneRvF0aoN0NrZ1LMuGofHNNU2q7GRngSrcxB5UWdMXcenbXjsO7JLeZ9PeRVndt05UK/jzGPdKzVnYe3fkU1W19SLwY6yYCk7tGvA/XTXXXft6n+UFQfY2RvMOXzs2LFdfdNxerHFygrVzpb5LUQM2rMn67kaA+tpiGhjVGarNlov/nluDmJrh/Ps7dFzJdJA2P/VgzvaS57PRuStrywZ2FkHXTvtmz0nyuak8NaSiGza3v0bPV+88SiiLHYe+42uq978Xlau6Hm2aBSjLRQKhUJhgagf2kKhUCgUFoilJqxYW1sbuZx76phIfTDH+B0lVvBUrlEyalUhW9UxVTdT6hCbRlGdd6JE4HNSoemxewm4jhwOvPaJSC3srVuUGMNDlFoyg4Yr2T5p2jVVNWmwPDBW72nqu6ykY5YIxV7PS/L/wAMPANhRk2ZpE3ntyLFInXysOl3L5LENdTTK0oVqSIjuA3s9VR1qWI9niuH/fNU58VTHhE0Akjk/rq+vp/tNTSfR/ZE5mhG6H7x9Et0vmTMU1+Xo0aMAdlTunDevP1FK2cjJL3Os5Ktez/YxSsQSmR285DEKVf9m4URTfbft2PcV3lMoFAqFwgWOpTpDraysjFhE5kwx5aTgnaPIQk6mkmt711c2QFd5SmSUNL1+afq8yDU/S+wwx5gfhXXo9x5TU6eEyMnMXtcrPp9dN+urB+4dDcOx7Wl6Qz3G22/qLBQ5P2m4lzfmKLWoTfigCRw0pMWb26j82pxUjNo+96buC5vyUcvwRWw/c2KMwji8RPTKaDV5gibMsH2ymqKM0doUjIR9r6k4s0IARHS9OWGFU0w2O5/n0ilOx2X3iWq9Im1P5rCl+07Zv8cWlYVGxem91J+eY6Y9J7q2vY7uDy+Zjz12TgjjuaIYbaFQKBQKC8RSbbRAboeIGFFkq7Wf6fso/MVz69ckA5E9TM+336nt1rIfMke1Vel4PGao9txI6s2SvEfu71mbkeTq2bi0HW1vjjSasYiu61wm6p3v2WLtOV4KRu2/2pYYWuElQY8C9729qjbRrCCAjot7R+2uej3bR2XOUTINOydRyUANn8rup6igucdSlcFGjNZjavZ+3WsKxsw3hIjYlYepcELPlh+FBmZhKRoyo34X3nUibUuWjH9Kc5YV2oieM9rXOfs+64e2rz4Cqt2y383RpO0nitEWCoVCobBAnDdG63mRKaKEFVnwepTcwpNOI0lbS3ZZqUelM0JtgV56wCglmtoIPalU2UcmDaptLCoHl3kJT62PZ5uZSm6R2XOmsLW1lXomR6nasmQQynKisl2ZfVcRBc0DY+9OepDq3vVsSmpP597UvnljUFtsVFLQtsM9q3tkzl7VudZiApbR6h6NEt17NlXLzLJ91HXdaB7t/Zl51PN8RWRfnUreAsTMK+uHakE0Jace57UXPRcyf5mI5fN7O4/RXETaRfu57lvtq8dwpyIisvvJrl95HRcKhUKhcIFjqYzWeh176cGm2KhnU4pKL81htuoFSpagffPsOZpGUSXOzPasnqRRKTz7fyR1efYVtWGpVBiNxUNkk8ukxMgGPOV1nHlybmxspAxc2+Zacn2y9IaqnYjS6Fm7aOTRrczS885WcDy0pdr+aCEKXdvMNkeop2VkT7Sf6f2j7Xv+BMrQInur9TpWfwhl2x7b2muhb8bSAjsM0NM4zYly0LHO0Q5F52rpw8im6bWve8k7J4rwiLQUHqONUkxmHr1TkQpZylcdx5w1ju4BrwSnlwa3GG2hUCgUChc4lhpHu7q6OpL0rTShLEFZqEq93mdRKTX1nrTnRnY9z3YXlbZThpvFJuq5ylo8KZGIvJ4tpmzbEUux14ukvMxbfK6NxjtmL95/3jmq0YjW32uHiAqwq73Stj8Ve+kxWn7GPZLFQvJYMjFeT/vk2WizdY76HMVgR5ohj0ERURxtVtBc7bhewe8sCX4EvccyFh/FYFtMaaOimGz7/1QWKW8fEGq7nsP8Io3WHC9+nQvPyz26duSRbxF5EM8px6d7NtMM6PM50+btJ4rRFgqFQqGwQNQPbaFQKBQKC8RSnaGYDg3I1RaqrlKVrqcy1HaiBOdeaJCeq0Z0LyxF1YBz1L9a2zNSz3oOJtrWnIBxHXPkVOb1I1JjeergKLRhTpILIlMD0pklMi1kY86Svms9Wt1L6iznqcn0uqr6sufoPOh+UPODbZ/naJ8J7z6IUuERnpOXXidKjOGpb6PQpijMx/Y3Sliha2Hbj94raLYCfAcZdfCJUod6z4HIXKJr6u39yNEwuy91vjQxi5d0Qp2upp6v9n/dV1GtcK//mj5T52xOIpvM/KTtansa0mX/t46Q5QxVKBQKhcIFjqUnrJiTxCAqW5VJXnOcNfR6hJdU2773gqSjNH1eyEgUAhQZ7b0+RiEansu8Oi5EoSCes4cGhkfhKlmoTpSGznOzn4OVlRUcOnRoxDC9cBtlWroPssQlGgqkknKWSIRgH5UlA3EaPe4ddZbz+qhJJjQBg2UROtYoRMiC5+uYNZ2dMl/bXsRsvOtOpT31mLXuxUOHDqXOewcOHNi+tmqe7P/K1vaS+CAKv/Gup3tRnTK9QhLajj4TPVanzwYdT/Sc9eYiSt/paTRUOxU9Xz1HWEXmbKhjjoqDWMdULwyzGG2hUCgUChc4lp6wgpiTqiyyoWX2vMiVXBmAvXaUbtBzs1cGy+/UXTwL5FeoBJalN/TCa7y+23OnyvB5/VIpNEstqOOI7LtZerhsH7TWdqWa866t0qxK61lx9alEBV5ycq/EoHeu7Qf3SBTCoG3b8UTHkAVrIXhghyVGtnIvXI7I0vNZ2HXjHOtaqi3QstMoDaoydI9tWU1AZMNrrS8owPM9jRPvD50PZbJZ+r8pGy3XyYPapT0bJ9PC6h7S8DU7T1HBgYg5Z4mAMvYbnZMl8VFEaUjnFHaInjtqj7V9sM/rYrSFQqFQKFzgWGrCirW1tRFL9UrQRd5/aqcCxswi8qjVRBPAjlSj7EPZj5d0QG0mKilnXo2RJ53HXiJpUNuyfYxSCkb2bM/mnTGE6Bxiym5lP8uC8hU8n9K9PT7yjtXEFZaZkRGpHSparyxdaKRt8byOtfRhxhZ0/ZWlqNSepYnU1KJZGj31tJ7DcCONQFQoABjbZqPCHpmGaIrR2jR7R44cAQCcPHlyNOa9pFGc8obVe9myKtV6afIH1c4A43lXH4pMyxfZVaPiBtl4FJ4/gZaVjJ5VXpGOqcQ13j1IqHaRWgT7POR3NllMMdpCoVAoFC5wLJ3RKrO0ElHkQRd5sdljIrZGRMm47bF7idmKvAu9tI1TJfUyr+oorZ3aVzxmGLHgLBZuLqP1PvP6YseQeW1OxdGurq6OJH9rw1K7lrbrta9pOTXNYYbIjpd5Wuv8K9PkPNpxHT58eFd7WpTD06AQulZTXqe2HZ0LnquxkVkK0IilWo0R/ydz5TF85bnWxqn7LUsMzxhs66Gs7fHakadtFteqLC1Kzeppc3Su1ZbtaUMI1XR4jDBi6hET9LRUandVDaK9pyOfhij+3Yv5nhMTreNTm7CyVqtN4LpXHG2hUCgUCo8gLJXRrq+vj2w/NsaJUAlfmV+W3SliMJnnq0pTyqx1HPZVP9d+2XaibEjqHeqdG9lqPc/ViMlEY/DiGiOW6rH+KUbrzb3GQmaMlnG0nm1W+61MTyVvy8DYXlROLPIVsNAk5ZGUbaF2tmw92N/IvpVlwpryW1CbsTdW9l+9f22pO72e+lKovZfodKUAACAASURBVNWeqwxWz+H4jh49un0O14v21sybdWVlBUeOHBl5KvNc71rK9D2b6dT9n2WGijROOj4vJpbQfeetf3QfRgzOe67qWnox7IooA1SU68Biil16GiLVJqhntt3fmu+gvI4LhUKhUHgEYGmMdmVlBQcPHgzL2QFjZkeoBOQVgY7azSRPtX9GBZGzvmhbWVmnKL40Yo3eddQWPCdf6JTHcobI9uh5gaoEPeccYnNzM2SOZCVzYuw0n25kL7bQWE4912Ml6u1L20+UjQcY7wm1e3nF4nUO58QzE5E9X+fRSvzRvlabnWZ7st/xVZks39tYX2W0eo56aNs+WRtctJf1uUPYPpDlcEyaP9hDVB6PUK1Btk6RtsrLKubZp+3nXh+iPkc+G0DMPpXde8+56FhtO+vrHDauc6osn682Bl/vtWK0hUKhUCg8AlA/tIVCoVAoLBBLd4ZSVa81qqtjVOSk5KVwi1THcwzwUwHqnnOKqmFU1eW1HzkHZGqTyDU+63NUPCByhskcqTQ8IQtfmlKjWagTV5ZqjXsnC2XRdrNk5ApN+6dJBrxQBg2KV6cUT0Wtpg+9jqbxtP9PFQTwnGF0PaLyj56TmrahqmNPdajOfXzlvaGOTrY9VTfzvYY3eXNiw3cUTFihDjLHjh3bPobJK9ThRxNteGs69eyYk3zfcxbUtiPnOk2u481TpL6eE+YXOQR697ruTa+8ZITIxOelliSiMClVHXtFBey5pTouFAqFQuECx1IZ7cGDB0cJBay0EZViyiSOqHB0FHzuBYEr240KFnvneMWzgd2Sp7LgKKmCJ3mqc5WyLi/cKOqjfp+VASSiAHwv+cTc0CfbJzt/mcOInU+PNWoyi6j0mBc6pQ4+USILb568UAzbtu23Xk8dpzIHqigUKAtBmtIsZCkHI2cXDQnywon0PlJHJ3uvqPNadO95JRa5LgcPHkwTrKytrY20BZZVkzVr8gz2U9mwHWvkyBg5ollEzznvPoqOzdJ3aoiRMsvs3tBnR3Qdz4Eq0i5mZUAjTIVu2WNUy6QMF4hLli4axWgLhUKhUFggzlsKRq/MmJb8UpaYpetThqQJzLOSYJrsQBNmePbIqbCXLJQlYiFZkn8iSgvnScwRY1bp27PR6tiVyXpMTfusEmzGJs+ePTsZqqJJE7KSh0Rmo1fJW8PLopAd267uqznMX231uu+8/us5U3vIIlof773uL9UQaV+9czUxhdpsbWiNpj/Ufe2xoL0UAaAmjayVfbAhH7TXarrHLCkDEWkNouQX9pioMMWcUBYie65pGJzOsb73rhElRPGKdEQJX/R57bHUaHyZBkXDongM1zoL77F7qGy0hUKhUChc4Fhq4Xd6AAJ++ShKPlq+Tr1oM++4qJC0V0ZMvSTVrpcl21YP6cjD034WHTOVGs0bp/bRKzkVFXyPbEJe36ZevXbZlyyYnrD2sEiq7bpuV9o+z66iLETtrF4KxsjLWMuVZexNUweq97FlGpHXtDIcy2yVHZyL9B1pR+ycRCyf/dDkE958qpexXsc7J/JxUA2B/czeN1nCisOHD4/W1EvB+OCDDwLwvVWBPL1htD5Z0pvII957Huh9mY1Xr6OJI6JnSWajjaJFsmexjiOy92fnqoe+5y9DxhrZZu1ae5rHYrSFQqFQKFzgWCqjBcbp06yUo2ntopSMFmpD0PeZNE1E33kxXJEdIksiHtmUItuSJ7VFHr1z4kQVmVewSs46Hq/PU7F2Xhyqeplm9tmtrS2cPn16u0+UXK2HqnqV6rpkdn3Veqjnstop7XeRDUuZtR3/HK9sQhlMlK4vs3tF8dteLDvngt+RnfJcTZFo10DjkZXhemkbPY9XYFykwe4dLeG3tbU16bHO83ku7Xj2/8i258UoRzbliOlmtsyoAIpnl9Zj9nJfRukTvXS40R5RjUfG2Kf647FvhT6HvPuJ960yWa6ntdHupTznfqIYbaFQKBQKC8RSvY5XVlZGXsfWHqWxkFHRc0/ymrLVqj3O/h95F3rxmioJRWXM7DkqSWaZmRQR+1Gp17N3RN7FmRQeScpzJGdtI2PfnqZhitXqfrDStI2ptO2qbS5jtmRemu2LDNru1WjNtFCA3VuqLVAv07letLbP2T6IvD8zRqu+Deq/EHkU2//Vtq1rnbE7tcl6vhxkLHadMq9Vmzie7drC77p3dL29+Hq1d87Z89GYNSrA0wB547Kv3n6MYm2jNmxf9Vx9VnjPYn2ORs89T0MQ9U21gXYfKNtVRqsl8bxzuq6bzO61HyhGWygUCoXCAlE/tIVCoVAoLBBLT1hBqOOThYYAEVRNZCkR9VhVY3mp/CInniy9YeQq7znBTKl/91LrNaqV6TnURMUM5iS52EuSg6iNTDUVhRhEaK2N9oOXfJ9qI1VXeqFakZOQ7h2qSRn+YREl6vcKRkRzqCYKz7yhqrQphzp7TlRoQ80q9rOoMIB+7xUIUJWrXtcLl2NfbY1Z79X+b++5THV84MCBkcnH7h11kOKrjnVOCkZFVq+ViJ4/mVNkpGL3nIW0/Uh1bVW/ui7Rmtq2o/BBbdNzhorMXPreKxCgDpuaitGbE1uko8J7CoVCoVC4wLH0hBVz0v9RslKHEu+cKOnDVBJ+YFxGKir35kmWKhmpZOmdE/U1ShLhXSeSvjzJMjo2c6SInDmyMBliKpjefu5JxhkrWVlZ2d4PXvKJKGyMTCxzMNH+sl2PwRJsj+wncuDz9gERpfP0UktGe0fbtNfT0mqaXlHT6QHjEB1ltvq5ZbRROEmUMMH2jfNJFqJM1kuDOgfUpOme8UoDKqPl3smS60yxtyhZg9dGlpRCn0VR2IsXVhj1IXJEA6a1ER5bjvaktpE5bkXhhF7YJNdDmas+CywLzpIfLRLFaAuFQqFQWCCWymhtAmeVOoBxWSoeo6w0S2ivUDuLFxqkYS9RekV7vSk2mtl1iSwFmiKyRWf2hSgERDHHvV376s3JVJ8821xm67Xt2VJoXn8jRktpl4nsvfSNkZ1d94y1rWm/bVC8vY5lQRErUZ8E21Yk2ev+89ZFbaY8VhPCe2FXEZPVknd2TjScR+fVY3/RvReFbFjMLbtmNWlsx/ZbmZGyaq8Uopcu04M35sgvYY6tcMpXwrtO9PyJkmAAceiZ3iPe+VHI5ZQNF5hmtJ4mwoZq2WM0wY2F1baUjbZQKBQKhQscS09YsX1hSXNnP1OvMWsHsscBsdefSnFeWSdNkKFp++awrkjyskxmqtRcxoYfTjB1JEHOGY/aczS5QlYoOfLW9hLse2nnMtuuTTqg62b/557RwgYe84hSEhKaYMGT4iNNg/VqtGO0iJitNy61P6nt1kujp9/p/HrnRMkmlOF66RT1HK997YemRtQ50kTxek0g9sTntWyiHK8PPF8THaiNz0sXS+jeiVid/m+PjRJL2O88/4QIc72AM2/wvUQbKDLmqp9HzFX3ufdcjc71IjX4He3v2XNnP1GMtlAoFAqFBWKpjPbgwYOpJ59KwJosWm1NwJhhRV6aXsxgBJWEsrjWOWwxioGL4lk9W5BeP5JO7XeR5BwxG+/YqRRzFmrzySTayPaTtc1jqeHwvM/5qoUCyIxOnjw52f8o3tSzLeo+iLzRLZQNZbbnaL9F+96zt0bj8e6JiMlGpe88qB1P910WNaB7yIupVwaYaVl4Ltv3zqGXMb9TJsvnj71PIg2aMs8s3WDkpa3f2+/2cm/rnoieWV5qTE3PGRXR8NJpRvdyFNUBjJ+1U/4MQBxDrHvG+73QgiKLRjHaQqFQKBQWiPNW+N2LqYqkTmUAczLnRPGMntSmmV/Uo9BjMkRUNs+zd6jUGWUR8uzIej1lmFmBcZWydZz2XJWYIynYk5xVytc4ziweecpGa8/1+qDFA1S69VgDPZG1T1EssV0X7pnIvk94LDXaB945yiAi7YfnDaoFAbRYu5azs+cok9VyeRrzbjHlsWrXICocovZqz5t2rs+Bt1c9b3DVlCij9bRhysSU8es9aPur2iplll5MrPqaRPvOnj93X9s+RuXworKQc6D7wRtfpO3zNBuRj0vUlv3MPi/KRlsoFAqFwgWO+qEtFAqFQmGBOG9FBTzXa1XVqkOJ50xBqGohUptmgeOqQpnjfKWY484/Be94VTNlCSSidub0I0pRpnPuqWOiMA5PtZypd7w+bW5upqrCKGG5qops8LqmadQ51XF5ySCobtRzvHXhZ1RJqqOep1JU50EiUrlaVa6aRthXtqnJJ7zPtJhA5sineyUKY/MSs6gKmnPkrXW03yKsra2Nwgk9U4Q612iBAzvnkfpf58VTrUd7hfD6GKVPVHW8PS5KVakmKm/fTTk/zSkQEal/CS/sRtc2eq5753gqaX0f7clFoxhtoVAoFAoLxNIZbZbcXSXLLKG0bReIk2xniKRBZcFeooVIwtS27XdTErgnWU6FCXjzqeOK5iJzpIjCCPR7e+0oLWUWtjIHXddhY2MjlOKB8fyrQ503Dk2bSOY3J92lhgdESS08x6bIIZBtWdYdhb3onHsOLeo4o8yW39uQJxZS4DEa/hCFm+n/ti+Rk6H2145T7z17jmorrLZDweeOzp/nABglR/CeKbqGUd/4audRv1ONRlQEwDs2OydL0uG174XqTDl72nO0fdVIzmG00b3nhcBFWrYoxNNrp+u6h5UUaK8oRlsoFAqFwgKx1PAeIHY1945Rad6TdqbcwqfKy9ljIqnYCwnybCL2vReikzEy+71nm9Gx6+deeE90HZUwM4lujh0sSsQRvXrHzkGWMi5KM6h7yAstUTYYaQQ8iT9ia2SGVupWlq1pIrWcndd/hfbNs7PpqyafsDZaLaQwlUbPsiZdZ2X3HkPTOVbNlCbOAMY27gMHDkw+T9T2lzGxKAGC558RabI0yUnmQ6FjzXwQsjSNeq6uXaQF8eYk0txpm1lYkT57o/f2HNXy6LPfC+nTPmT2V/XhKBttoVAoFAqPALS9esQ+7Au1dgeAf1jKxQoXKp7Qdd2j9cPaO4UZqL1TeLhw985+Ymk/tIVCoVAo/HNEqY4LhUKhUFgg6oe2UCgUCoUFon5oC4VCoVBYIOqHtlAoFAqFBWJpcbTr6+vdkSNHwrJrQJz9KItFmxOzGZ0btTUHU+0vysksmpv9vl5UiixbN10/jd/L4pFba9jY2MDm5uZoES655JLu6quvHo3VG3OUm1VjZLMxZeX6pj6bEx8+hWwtz2Wd93OPPJzSYt69GeXF1fe275qHd3NzEydOnMDJkydHnVpdXe0OHDgwioWdk3c7y/aWZUg6Vzyc2PL9xtS+Ptd74eH2J2tT8wF4ccleIfvTp09jY2NjobXylvZDe+TIETzrWc/aTnun9S7tZ5oKj+d4KbV4A0UJwLMk6FPw0n5pe3qdLNic0BvZSwum50YB696PWJSmMUL2o6kJA/QV2El88MADDwAYJ6K/+OKLAexOjHDvvfcCAO67777tz+688063f1dddRWuv/767X2gN4u9Jtvje6YXZAIJe462E9X6nZP+bSodnPdZlITEE0iyZB32vbe/dc9kqfjm1MiNrjd1b2kiA2Dnfo1ejx8/Pmr7xIkTAIA77rgDQL/vXvWqV7nXXF9fxzXXXIPHPvaxu9o7duzY9jGXXXYZAODw4cO7xqZpKL1kIJr8IxLevFrMut5znlW6Lro/vB+iaP2zohlThSG85B1Rylx91YQ6QPyMmpM0hO0cOXJk13W4T3jv28/4rLn77rvxzne+0732fqJUx4VCoVAoLBBLTcHYWgsTjQNjdSKRSTOKKXWglaIide8cdUykAvfYT9RHPcZjE9qXrNQYod9pu1GCcA8Rq/Mk50h1YyVKwiaJ5/splWnG7sksdA9lkr6W75oq8+WV6IrYaabSj9SOWbGEKF1e1OfsGOLhqHJ1785J+ZeVctTUmTpfZJWWgWoK0Sl14pEjR1JGRm1YdG9l2qqpsXpzH2kNIi2F/T9Kc6ptWyiDjOZrzlpq2kN7TtS3KJWuvZ90/qLUnN45Om9cTzJcez/pnllZWdlXFXeEYrSFQqFQKCwQS2e0mkDbs3uQ7UQSpqfbjyTjzO4RSUSRNGf/jxwo+Eqpyms3ctDJHAymJOY5tmFlOF6BaT02ci7KWLf26dSpUwB2l6XTNT1z5kzI0ruuL/yu/bSsWO3CUWHuzKYYsQQveXmUlDxzktH1jthvZjOfctTxGO0Uk/WYuo5zL4xWz81YWFQGUksHegXN5zDa1hrW19dHPhxkO8DO+vIY7itlcV75StWyTSXjt/2dSmif+WpEa7rX8pNTfVSb+ZzSl5FNNjtXC7vMuTcjezXPpc3dPidYgpJrvb6+Xoy2UCgUCoULHfVDWygUCoXCArE01XFrfU1Iqg+92quEGsIJT7WoqkJVl2n7ts3IYUHb8GpuRrVcM7f3KSerOU5JWlc1c6DR9lQN7NXU5TlUt/BVwxky1/woRMhT0WhfPLTWtvePvbYN1aGKMbpWVptySrXlOdBEquNIdQjsjJFzGpk9vLmIVMZ6H3nqP92TqsrlXrbf6RxEqjzvepnzk44hCjXSvWPVf9rHrB4tVccc49GjRwHsVh1rfVtVTXvPKl1LvZeykC3FlOnF/h+FWWWq1annjre3VJ2uzzvvfpoKAcrU21qrdspxy2uXYPv8rbEmK6qOL7roIgB9aFipjguFQqFQuMCxVEZ74MCBWRXtVRrUUBBPQlOmF32fIXLesG2qYwwl7qx9dQCLElR4TCDqS5TAwrYTsQPNrONJzpxzMkV+7jFabVcdRdiGTVihfZ1yaLFSqTd2bywWGlpgwX5GgfZZNqGIkXkSuWpqNMmBx3p07xBR8gvbxygMRsflMdpofMo4vD5HTJ3w9ttUyFnmiLS6upoy2oMHD46YDBNXADusjdfU9fa0Lspgucej8MXMaSxyhvMc6aL598YfPSOm1hYYh1RGzlCeg6C3r2x/PO2L9knvQe85x89s8hxgZ064rtRiADsJbPg8WVtbK0ZbKBQKhcKFjqUx2pWVFRw6dCiVbqOwlyhoHxhLZeqaH4Xj2HPVVsfrZOm+2EdKygqPlXpJOrwxWEmQfVCJbk4eVmWaanf1EoREErqyYk+6VztpZj+M7MgebFhY1O8oDEq/9zQP0R5RKd6uS8QKMmYdhRzpvrdjjXwZorR9to+U2pXR6ni8/RaFiWhf7RpE/hLEnLUm2K5noyVTUU2EB/qFMOEF0y2S2fIYYPw84L3tadb02URNTzTmzEare0m1R8A4b28USmWvw/sx8jnI/EtUc6cMNwt5i0KCMr8ctZPrfeWlXVV/jMjngmE+wI5tnp/tJRzqXFCMtlAoFAqFBWLpNtpIigfiJO+Udjy2oBKWSpAq/VpJKQrOn4OppAMe1AuU49QUgDbZhdqC9TqZh2pk/yIy+1rEujzoujHlokqwnvSbpXTUMemYPUar44jYvbYNjFPxsX31PrXHRGzE2w9TCSQ89jOVejHylLX/RwU2lHHYY6bmT5PpA2PNhtorM/u4siG+16IWFvZ+ivYPUzBecsklALD9ajVRapvVzzM7q7LdyP6aabj0c86b9WngfGuhAz03Y8HR9bn+9rmj9lZqR9QL2dMQ8RxN8q/7P7PvRslp7LjVP4Zj1z7b8ZPJ8vXQoUNLYbXFaAuFQqFQWCCWmoJxdXU1lB6BsXdqxOKs1E7JNLJHZcxJ+6DnzmGLhEptVrKM+qLSmydZRvFlyr4s1LtVY/44r0yNaBkU2408lzPbnLbHsnkeI1A7zunTp2exWtuO7YMyCr5nn8iyLQNTe35UKMCLC1SJXj0t1eZk24vs3WqXtP9PeeV6+0DnS73CPRte5KHOe5KvXFtvPvW+VY2BF4/M+5ceoraIgF5H77UsjnZ1dRUXX3wxLr30UgA7JRttH/S+0zmYE6seaRoy9qZtqS3TY29a/lH3kG1b74WotKOugfedxtXqewt9fmrcuMc0de/o881bX9XYaI4Gtm+9jjl/d999N4BitIVCoVAoPCKwNEbbdd0uCY0SipVUKSXzuIhxWvsK7QCUZpQ9qlQ9J2F75C1nP7NJqe2rtu0hkha9coDaF2X1Htsi69DE7GoH8yT1yIuW4/FiYafsK2SVmVSasZKu63D27NkRk7HMj/3imFgAnpKrFoAHxl7YaltU2DWmlEzvVdp8eAz3qGczjRgNx+CV/4ts56rxsG3zehGz4LEeK1XmdP/99wPYuUc5r56NVttnHzknlq3q/KlHPOfZjku1F8wc5mFlZQXHjh3bZrLsg32G6D2kBSq8OPCoIIiui+dpG9nM+Tnnx84t+8DnHPsf9RXYWX9+lpWp0znR5wvXh9dn3+09EfnfqD3fY6ne74G9ThZxos9k1RDZuaeN/o477tg+p+JoC4VCoVC4wFE/tIVCoVAoLBBLVR1bByGqE/kK7KgNSOU1bRrVSF5gNaH1K6MCBfY7bYvX95JSqxpMnV68GplUu2goEs+NnKXsMQSvq323x6k6S1P+RW7xtl0N/s4SMajTCNPbqZOHVfWq+vzw4cO49957R22z3Y2Nje0+UP1r9w5Vm1R13n777QDGqmN7Dj+jSpDt8lXHZfcB15RONrpH+d6qSWnm0D2jqnAvvEfVYDp/qgb3+q8ONerEZufknnvuAbAzfydOnACwozrmnNm9o2pSdXjjnNk5oSqP83XllVfuastTc6pDWObMQmcotk8VslcgQMfBZ4lXE5fzrE5JnA++eg5gqo5VcwPn1hY+UNW6zi2vz/7YcUXJXPTZ4u1vNXdoaKJVp+te1TmyfYugavzIzGb/V7U9+67mNvsd92BmstpPFKMtFAqFQmGBWCqj9cIxLChtqsTHz5UZAnHpJUqh6lxhj1MHAjXSU8K0KbwiFqqhAV74krJrZZ4eo1UWqi7yhOd8pSxHHZnUCQMYJwJXTYBKq8AOyyEzYl/JbDkeK9Gq48T6+nrITLqu29V3rhdZLADccsstAMYMjH3SgH9gzGCVKeu4LAOgRMzrcKx8Zao/7l1g7NijIWmexK/7TRmeJnaw68J+azgPx8n3VpPA/+kscuedd+76XJ2z7L5TlqX72UsaomOOyuPZPappT7uuCxPFrK2t4fLLL99eB8sSCQ1DizQb9vnF+SDz57G6/7heZO7AzvOELFsdnLjm1JbYfkdOWJpchWMH4oIn0XMIGCfAUEdBvtr1Uy0l55X3KR0UCbuO7KtNJGHHrYkmbP95jKar1fvLwjrhVXhPoVAoFAoXOJaasMKm0aP0YSU9DbPgd5TsPAktslVGZeWs1EZJldIpz6X06yUdUOaorJhMx0rtUXo2Qu0S9jiVVCml6VxZpsYxsg+UJDVtm2f/0jnW9fKKKLBPlOp5Pb7XQHLb/6gMnAXDezgXbJ92WAB43/vet+uanI8okYC9tqbRUxt2Fo6gSSbUTmXnXDUnKr0ro7J91FJuUbkyu5a6fzk+Mg1ex2Ml/E5DM6JSj/Z66tugTM3uId4v/IztKRu3rOTRj340gN0he1E43erqKo4fPz6yOXohTZwXslEdu2Vk73//+3cdq6yNTJdrbrUhaqtXuyG/p1bEzoOyOD4jlcXZz1RL4CXbB/wEEhyHMniO12qVuI90Dngv8r337OdnZJpcJ2qI+BtgyxtyrFr6kPPI/eGFPPEZf/z48WK0hUKhUChc6Fh6mTxKF5RCrDRB+4ZKKMpSrfQa2SqidHee96JKlpSus5JqCvUy9BI7EGp/ou1O0/fZ8ah0miVZUAmd86oJETybt861Bq5zbjzvP5VGNQWcPYf9pmTedV2asGJjY2Ob5VC6trZFZevKVr2E/Zo4QDUOamv00uipRkPtuZ53a8TiNXG713+9vjI5r488Vz2vNUEMME5qEZWhVAZqr8NXTTzjpetTTYna1TxvWt4v1hM30haxTJ5qGuzcq3dx5C171113bZ9DGzY/0zYIL50i+6rpLFWzZve3egpz7I973OMA7LBfO8ecS+2b+qB4XvWEevpz3GSn7Duww+75nWolyHTZR8tO1b7K9eccUXtlvdw5B3pfka1qEiPv2Ec96lFpmcX9QjHaQqFQKBQWiKUy2sOHD4+8J20Mn+rl1cajXoDAOIm/MjFlflYCV+9PXpfMzEvBqDZftb9S+rWSV+T9FsUZWqmU/VbvTGU0ltFqMu0rrrgCwI5ESbtKloKPfdbSU3xv7Wxqt1WPQSv1av/tuVmx8VOnTm1LzByHHbPOLfvJY9T7GBiXHNO4U2Vi1qalMaPK1rhXLcNUxqDX9QqZR8W7PcYM7J4HjZNVG7pXVIJrxXO5huojoHGdwNizOyqTZ/vMdrhXvXJ/eh22b1NMZuUpV1dXR3vSK5cZFeoga+X+s31gv9ku51i9m+0zS+87jWsmvBwDCvVgtnuHtkpN8alz7bFxfW5yXFkBDI3x1bSN+v5Rj3rU9rl672lqW55j1yYqQqPPdXvfqY/DsWPHQq/s/UQx2kKhUCgUFoilFn4/ePDgtoRCVmUZDSUiSj70SlO7kbV/qhRFKYlSCo/l9aynm7Zx+eWX73pViRMYszPtE9mClfSuvvrqXWOltEtPOrU5WUmW4LwpM9NSb3bstFVcddVVAIBbb70VwI6dxbOd0Rai3qCU6jmPdg04p1MltLx1syXVMhvt6dOnRzYmO2bNmKXFs71MRsqMyPzVNqvrZPsfMWm1wwE7a6eaC7Xv2+uoJ6pmHlMbrccweV3azqyt0bZl27/22mt39UlZmGf/0mxc3Acaz81+2Ha1oLiyS6u9UK3SyspKuHdaa1hbW9s+lvvE3p9cDy2lqJ7E9t5nvzVWXNkR7w3rscxj1UbOdeKe8cplEjyW97J65wJje6TaZJUBeoXmVesSFY6w19FcAnp/PeYxjwGwm/Xfdtttu+ZEfWs8n4BozjUm13pvE9YbvDJDFQqFQqFwm4/wjgAAIABJREFUgWPpZfIobVDCsxKK5otVO6FKU8COVPSkJz0JwA57pHTNV6/EHq/DmDhe74lPfCKAnaw4lLaAsV1DMyXxcy/riXpyav5Or6i6So5edh07Ptu+FtNWqZBM18ajcg3IOp761KcC2IldvPHGG3eN045d+6JsxUro6tnZWgtjIVtrOHDgwEhC9mwvlPTVW1LzGltQC/KUpzxl17n/9E//BGAn/6610arET2hRazsmtS2rHU99FIA4e5BK4Z62R7M48fqce17H2jc1TpPncg+x7+rZafvPeeJ9xP3F+4yM1/6vdnDuHd279n/rNT7FaNWb3otrZSw2max61lpNk/oYqN1TPbytB7GWr1MNh8a/23M43/oc8PIxR17GGnPtlSXlPtJsb4R3P6mmQfcO96MXl845+IAP+IBd5/DZq5oUrx0dj/fc4RzwmKNHj1YcbaFQKBQKFzrqh7ZQKBQKhQViqarjs2fPjtKPWUM21Qc8Rsu4URVhVXg0/lO9R8M3VR1UPVCdYdUxmppQU+R5yRk0jEfVvbbsG6EqE6oz1ZHGCxhnH3lddaDQECF7LKGOBVSJ8Xo2jRrb0XApquQZ4sAk/rZdG25hr0s1kFUZqhv/1tZW6pSwtrY2UmvaOeYaUU2pyQY8BzOqP6muevzjHw8AeO9737vrOE1ZCIxVWVx3Oi/RSSUL6+AcqJrbqqM10YqGQaha0EJT0KmzoabOtH3UUofqKMQ+W7WcptyjaYL35rve9S4Au+8n7m9NzKEFOOxaq2NYpjpeWVnB0aNHt52SvFKbule4h9S8ZceqjkSa9J+vXmgboSYezrGXdlLTmOrzhutvzQ78X005WphEnaSAnWeCPjv0unZ/axpSDX1Ss4BdAy1jqE6rXBv7e8Fj9VVNTHZc7JsNcSxnqEKhUCgULnAsNWHF0aNHt6UsT3rXgGp+pwH2NvyBkgkdV1TyorTG46z0zmNV2tXE2Z6DgUq0kQMSsCONqZOAhvOQLVgnGS1xx+tSUub4LGPTsBpKdlowgMzNSqV0vacjC5ktHcMYGmIldZWQNYG/Ml1gXKJvyqGltTZKrG/niXtEw0M0BMAyP2o/uA6W2dtzNRwGGJcCpLOYOit5yVU0Ib86qdj9xvn3kuEDY4bhFRjnXJBtK4O21yOz0PfUZJDtcQ0s62J7nAvuSQ230GT2to+6Z9hnu6fVCWZtbW2SlbAdvnrOfLy2hoNwDqw2jPc0z+VYNZGNOkkC4wQlGr7oaSf0HD5fosQOtj0NddPkM3zvJezXsDmuHTWJ9p6OCsursxXXyj6L+ZlqAHh9rpuXkIN90XKq3pzwfOs8liU72S8Uoy0UCoVCYYFYesIKSg+URmxoSZSQQJOwW1sfv9MSTSqVqoRs26ckx+vSvqYB5LYPylj4ntJUxkrU7qG2O6+Ytoa+6OdeQXv9jueQcXjJJzQRws033wxgZ87J7uw5GtKgfeT31u7CdeJ6nD17NmQlW1tbu0LDvIL1BCV9XkuTRGhZRdsXtRvTtuhpX3gs22Wf1OZowfnQBCVqM/UKA6jmRMvkqU3TtkfmT4mffVTp3rZDrY6m8yR78FICkn1w7rlnNCGDZRia+EJDhNh3e99qub3Nzc002cnZs2dH95ZlU9zL7HeUQtT2W4uHqB+JFnSwe1X3RpTO066LPjPIspXN2XnQpP7sqzJmr8Qen4mcAybx4bx59x5DmDThhi1naMfllZ3kuTZFou2zfYawb5wLPvO1OIfdOxoGVTbaQqFQKBQeAVi617Hqw73SWWrLpPREycSm0SO0iDuhiaWtXY9SkrIdlVIte1NbqXpyUvK3Er+yDk2BpjYie656m6pHncfulJWyPX6ukrsdX1S4XO1HXhC4lipURmuTiBNWip5iJWpztOdqQgUNsOfnlnWrpB8Vuydb0D7ZV2VtasMDxt6fymS5v612ItKCqL1d95RtRxP1qwbC9lETISjb4Vzo997c8F7Ue976L6jnvbJ81QLYsdt9ntnZWmsjW6nd85qekfNjr8nr6Dnci/rs0NKXXgpJTZSgNnqrndBnFe9h+lTwvaed0OeOPl+5tp69VTUKnHvucy/pBDVlqmXR+9dLp6h7VL3r7fVUy0NogiC7bl4qybLRFgqFQqFwgWNpjHZrawsPPvjgtqSn9klgdxFwYOwVR6nKYxhqz9WUaISVoFV6UqnXi5/UEmCaNk/jUIEx04tiBjWNIDC2cygL1sThtg8aq6xzpGW0bPuaFF/Zr2VOKrGq5OxJnry2lfjnMlqVjIHx3tFYVY2Rtp9pqUW1u3sp47QEHfcK58crdq/lElU7oKk47f+aOlDLfXlSuTJotYdqCUELtsvvoj57xSzU5qhsxJ6jccC8b9VLOIsTz8rkaeF3j4mrPVXtuR7D1ET9nn9FBNVg6bxoqlZgXHCC2iEyWuvrQGgeAuvhb+fA6zOPof2T2g/VpNh1YR94DveOpqtVe7y9HufT05zZsdg+RN77XvpLIkpluygUoy0UCoVCYYFYGqMltDSYV4BZ7YNqM7O2OdXtU6pRD05lVxZqt4my4Nh22G9KmGTZtE94di9leoRKlNbOohKklmfjsVbS03nSmDj1GMy8nKPYOE8S5LG6bh7rUm3C6urqZBytMjIr7aptWW3lyuLs/8pOVXugbdvvlDlrMnzr8cjP6B1JyV9ZkYV6HXvz5vXZ9om2M2X3HgvkPaBFCvTe0H1p/9dsZRrH7d2D2p7uXS87m9U4ZNoQFjSx47JjVw0ax6pravugbFSZl6d1IZQhq81WNRDAzhxSc8M9RGbr7W9dM9WoaDyrxzD12aF2f69QCPe5auy0NKZ97ui6R3vFy2mgpVe1GI2FekCXjbZQKBQKhUcA6oe2UCgUCoUFYqmq462trVHIjlX5kOqrKk1VK56Lt36nDgVefVCt5ahqMy9hv6rqGDCuBvgs9Z46h0QqZdsnVRVzjti2dWjhZ1HNXHWwstD585yt9L3OtarCVRVnYR1OIhUO1cZZH1S1qkkNPOc72z6ws//UscVLOqApHeckWuBnUX1gOm1YdZyukapNoz1lj1VHMaodNSkAMC7CoGaPKDTFHqP7QdfEjk/VmATn0VNRqzPPVMKBjY2N7T2oxThsOzoODXux11Gzgz4zdC48VXWUPlNf7TF0uuRzh/PEdbPPHaqENdWmPnvVqcj2UVPLZoju/+wZrMdo33R/e+rtKO2lF4IUqe0XjWK0hUKhUCgsEEt3hvLCHqLvNFzAk5giBhZJV54zjLI2NcR719OUYBqk7YUPeNK5bZOw19PwCk1H6YU/qKOZMkXrbKWIwkW80AxC50mTEHgsX3HmzJnUKcG7rr1O5ACmpbmsw5GGEmjBCC+9pfYnCivTUm72fy39ZsPHbN9tH6JkA3MkdGXfylbsftMiFhqupGzfY5NRYhG+99ZN58QLH9Jz5oTS0BlKw9U8JyVCx6SlEG0fNFxIw0a8Pa9r6WkjFKop4XNHnzf2ehpeQ0QFHLw+KpPUfecl/iC8sDh7XW/99Nmrzx3b12iP8PnnOZV5x87ZR+eKYrSFQqFQKCwQS2e06mpuJQxKFrQ3eAWJ7XHAmLVp2i89176PUoJpKI1lCZQstRCBsjbbR2U9kc1Cma69tpaa0mLrVmqjRBclyFCp1EstF6WH0+vb79TdnkkcvCQBqq3Ikg7we2VrVlLWBPlaKFtTWdpjtRRYlLLOYzSaElNfPYapbFjTHHohbxq+o+E9XvIBTaqiZfI8ZqFl8jTUTZN6eJiyOdp51HtP0x4S3pzY7zI2uLm5OUq3maV03IsPRZTAQdfD2weRnZew88Q9Svu6FlPhunjJdXTNlMF6Wjgeq9oIHbfVEGnKTQ3v03vDS8EYaeGyZCdRMXrPp0eTeDzwwAPFaAuFQqFQuNCxVEbbdd22lKVFoYGxdK72AY9hEirpK5PxJCKVRtWLzWOamvRcPXs96dRLgu6dk3lYaqIKSpiaGNz+r97GEVOz0uOUdOd54EbQ8WWM9sCBA5Peo2oz9dpTJq5Fxj0bT+R5mDGMqGSfrrGnsdHrRqnxbHtaNEDtlHNKfbF9ljwjA/ESpHAPkeFq6k2PQUce0fq958WvGhPVtniaqDlj7roOm5ubo8QiXplH1TQQ3hwrm9K+aB+9eYruNe8eowaN60LmSt8Qlj5keUNgh7VxfXV8upfs9ThftAnzO/Xmt+vC9tgnPuMje7j9XLWJ2TOKUCYbJUjx7m9bIrQYbaFQKBQKFziWWiZvc3NzZFvwJFVNGacxXPacKM5QoZIzMJbwVApVD0hgR1pSr0wvLVzUxyh9npfOTRmyxsJ50r3av7PUZ7bv9rsp+64dH+dAy2SpXc9eJ4vHVHRdtyvOVsv/2c+i+Dv2zaZl00Lb9npem96aet/ZNuznykrVNqvFw237U/GzmX1f+8o9zFhMrhcw1tCofVfH4N1v0T3prTk/02IJWZvKUKa0K/Z4vReAOO5T++QltFd7pxao8LRwOndRMQFrL9d768SJE7te77rrLgC7E+hHfgK8Pu3U+vyzx7A9ejlzr1Ir4hX2IPiM12eXZxPW51ikofI0RJybKJrDrjWfVZyvKd+Q/UIx2kKhUCgUFoilMVqWq1Jp19qHNEuMSmQaI2mPVQkzYqlW6omKp2tMpJWYKeF57MP2zWMYGs9ICTAr/0ao56DGJHrZhHS+VLrOymRlhb0VvJ7GWqoHuAerVchsbltbWyG7t/3VOE+133gScWYHsuPzMpLpMVnifEr4lKpVU+Mlr9e50z2k2gtP28N1UG90nms9cKOCCppNTG3s9jtC59XLBqdjzwpLaLt2nqLzNjc3cfLkyW327nkBK4O19lv7+V58GXTfeQU1dB/zeeDFjJK5qk32tttuAwDcfffdAHZreTQjGBFl3LPzqf4V3DssnqJ2UPs/X8nIo+t4/hL6TJ777ADGGgGvdCHnTbMALhrFaAuFQqFQWCDqh7ZQKBQKhQViqeE9rbUwaQOwo0amW7iqPrw6mlpjlSoIDReYUz9TXddpZLeqJKoj1GlEVR2eoV9rSqozAuGpjjVxtqYZs4nho9qe6uSjyTDsMRoKpOERXu3UqPiDpwbS2rVT2NraGqm8rHOKOglFTlweOF9TCUS85OSa5k374aXEUzUzwX1h944mDIj2t6c65bEMBaHqWh0Rud9tH3R9I4cqC3UAm5NMnp9lzlUKVfVm5o2trS2cOnVqe5/xXE17ab+LEjp4qTGJKLmJty5qstE9xLmgww4wNsvccccdAIBbb70VwE5yGC/5v+5JTe7iOQ1psRJNKclzrAOUOhfqcy16Vtpjo2eG50invwsE11Yd9+yxnKf777+/nKEKhUKhULjQsfSEFVGAOuAzLGAsiXmu8iolqnu4l6qQ7SmD5XtKZrYEHaESrab480pcUfrjdZTResHvGhiukq0X2qAsforRWilRJdbovZeIXkMasjR9hBZAyJAlUCemko/MkV51bT1HKmWWEYOx2pC5BQgsm9Q9quURNezHK19ICZ8M6fbbbx/1Ta+nTjxzwon02DnaBIU6MXrX8dKARtja2sLJkye3nYnooGP7NOXYSNjrRaUUo4QuVkulTjsaPsT1ev/73z8aD/c+nZ/IZAm7R6MwwigZiH2uagEMLSXKvWTvpygURxmup4XRPkTPGzuv0d6MSqba/20yn2K0hUKhUChc4Fi6jVYlvixhgdoJCS9EQ20IKpGpvRLYYQdkFmoP85iZ2qE0IT3HZdkCvyNzYaiBtY0B45J43jhUivfsuZpsQBmAzpllUGqD1jnw2GQUCqS2Yi/BxFxpcm1tbWTHs32YSvuXsStlhUS2NyNGqRoHa0fmejNE4uqrrwYAXHnlldtjBHazFGUFmtyC1+H1marPnsv2aMfn52R5dl2iEot632aMU68/5/NIQ0B4Gg8vzEvRdR3OnDmzvZ81xMleW9eOr1ly+rn72EtVqCUJef/rq3c91Zx5oVr6bND7U9mjpisFdvZqlOzfah9VM6daN/ZdtTNA/LyO7Mv2uygEzmPqWgpzWShGWygUCoXCArFURru6uhqmPQTGHmeRTt/T7RNRQW6v3BM/i1ijZ5ulFKYJrDVxt2UJ6m3MV/Uy9OwQBCVV9pGJM5Tp2GMInb8scFwZjb56Cdankg14nthq+81YSWsNKysro/Xx9oF6pmdJKab2TpbYXsHrqsejZRhkm9deey0A4PGPfzyAndJnvK71iGU7GtCvDI1zwVR5tj3a8zT5ANu2iei1tJpqcJSVZCwv8gC3+2DKzqZjse3NsetvbW3hoYceGiUJyZL8qy+Ietzb7yKvefWpsBouPlc0CY3atu2zyvNpAXZrMGwb9lheR9eHr9R02L3D/nKdeR32PSsuwvFwbvTZqKwcGKdRjEorZmXyIiZr14jXtEUyykZbKBQKhcIFjvPmdZwx2qiotift8jv15KV3oXoS27gvfqYxjyr5Z+XYVHLVRNdeH6LYXo7PSmBa8D3qu8fUND5UWYMXC0mJX23NKrl7bEJtwppqzrOL2H0QMRTa2bLE8/pZlFYxs9HqPGksqVdUXSVk2kO1LWBnzbg3+V5LPFrblUr0eoxqQ7zE8JEGwxunxtwSUYo8r3RcxEY9zYDa2aIiChbqfZ6VOuPesYW+Ad87O/Kw93w1omeEskUtPmLHpnuEc8znhZeKU5+R1gdA+8hjda/ofUhGa/ed2lGpddE2vDkhNC+CrqmdEx6rtnrdq3ZOVKsYPdc8rYNd02K0hUKhUChc4FgqowXGnmieZKmSiiZOtxKzFmKnLUFtl2SyVmpTSVuLW6utARhLsJqtyLNdqW1WoV55ni1T+6YSn2UgaqvQuY4K3nufRRmIsiTveq63bvrZVEGB06dPj2I7vfg4bX8OQ1Im5pXx0veU0skAPeYC7JauaStlInieq8UfrF1XmYVK6+qBbUvecU8w5pFxmXzPftgMROyTalKUjXqew+p5H0UW2LXSvarj8liw2t5OnTo1yWjVTmifA8pclXGqLdVeW8/V54EXd64REPqM4hpbm6n2levE1zl+EFHmM80bAOzsQT5Poyx21p9A/RN07bRsnmXj/F+LZah3tWdbjwpdZMVH5hRL2U8Uoy0UCoVCYYFYKqPd2toKi1EDYxufvnoetvyfjFZttnxVVmz/j/IXq9ccMLaJqIebF1/I/mtfCF7fKyZNCY/SojJBZda2T+oxGhVI9mIh1R6q4/QyQ0USpgevGHRkK+m6DmfPnh3FjHrSrUrT6qHqMR/1XtS21MMX2LH1kUFGMd+2EPdNN90EYIcNa5yj2sP+v/bOpTeOY0vC2ZR1DS0Mw5ANeDf//2fNemBAtmzAAknxLgbBDn0Vkd023D3QnRMbkt31yKzKKp44jzhrnVmNmIV+Ms6VYqvKJhaTlT6uzq85+D6N+bVM3F3DeXo6EotoTHTHggX3OO3WjsdoWTPr4yIL5Zr3fejtova4wJaVPgb+5LvMWTeZv9aVaqF1/hTDpFeqZbKn9yqztBk/Tjk2zFfh9WNGu2+j9dyqHpIHlNniO51zehymTd5gMBgMBv8BmH+0g8FgMBjcEP9nghVCSsRhMpRcHEoWcJcbBSko3N9KatbqQgR0JaVyotaiSW4Rd8PQlUZ3BcswHHT/NJdxkkLTWOiq3CUGMdmGrvCd9F4TBk/JUNe4IP24T09P2/vSRN534gY7d6Ofh4kna52vKQUy6J7z5Cj9LhcuoX09Ceb9+/df/JTrWMeX+5fJWWud3YtKdpKbuyUB+ncM47SGFKmchG56rbt0L5rIRRPC5/6XQNcx3wc+N6Elw/G4Pq5UKtfAuaYSvbW+fCb47tPfmkdq+9fCWXQl04WdxqptWfLmY6QLmuU+LTSzVhez4JhSGWNrWZiSSykg8unTp7u4j4fRDgaDwWBwQ9yV0T49PR2Eq1PSUAvi08peqzfGZjA/MVomNDR5yCTULYuIJQBk2H4eNtxmcXYS7mZLNVlkOhatVv7u25D1JXaqc+tak23/FaH9XSLSrlVfA1PzUzIFf5K9J7EEWrS0qpNoRxs3kzb8fGIdSlISw2TSmoTc1zrK40nsgkIpXBf+u87LZLKU0JJkOROaR2etY5IhWVBK2GnNIFgy5N85M2ws9/n5eX38+PEge+rzI6v+O+B4ue58/K3siV4Qvy9ksiy3YZKmf9aSI5tMbZoPn5WdLCXfA0mIxY/J4zhaqaCPu3lBkuRneqZHsGIwGAwGg68cd2O0KtGgRek+eLKmxnKSdUj5LTZzT5Yz/fVk0LLMWI6z1jk2RgEJwVkwGTrny7G7pdfE93dSeBwv48qtcN2/I5PdifMzbnyNGP81MVRuz3P7cVu7xBa/8XMyFsdjpVhdaxfH/AKHzse1o/iqzuNt8vR8iNn6uuJ81vqSPaayJB97YjI6PtmHsPM86Hxcb2S0fr52PK6HdN+Ez58/b1nJ58+fX69pKrHTnDVuruNUrtbeUfR0pNwDyjdq29aa0o/D9yfLb/zaaO201nB836XGDZwXmax7NFg2xmeQ8X+/B4nFp7HucnpYApVyUZi34u+VW2IY7WAwGAwGN8RdGe3T09OhMXvKAr4Et1C0P6W7GLNNFhHZaBK18M8dtLwUV5OFl+Irrak1M/uShUWLVZZ5sqxbZjBjGEJqeUernsdKbLLJIF5qzH1pG36/k4FkDElIcd3GaHnOJCTSZOzSuhbI9HR+ZQUrS9jjrIqvKp6rtdg8OKkxNr0+bG4gtrzWkfEx3nVNLJ2x4GsYAzPUd1nobHixgxgLY3PeArO1aBMoA7jWMcfgUkNxHyu9Uq0xgLNFsjQKO6T1rflQpOEaERp9R4lR5rP42NlYo7UQTO8LvpPIepOniM8a3130zq11frbcmzCMdjAYDAaDrxx3ZbSfP38+MDO3Ei9ZqClWws+acH4SpWY85VIbOz+fWGqz+P08jNc11qiMQrcEGSdujZBTNl7LwtuJvjfpMyHFR5v0YmMICX8l+2+XLS20BgGJOXNNtnaNaR3o3jKrVevD2bJigfopJskaSW8MQKbEphb05KT8BVr+bBnpHhserwm17zK/W9y9eXT8u9YSMzFc9wTtYvxPT0+v24rReIOP1qijZe/7uJg7wZwKsUmX4mTtOD0OqTb3t99+++In48psm+nH43vuUoa0z0PMXz/J2FOrOzamaOsg5ecIZLRcj77PpWxjz3nQPHQPUu3wLTCMdjAYDAaDG+JujPZ0OsVGxklBqSnM7FqcCbTOWIeXalRl3ZIV7WoEm2h9Ei2/tlYwxVD1WWtmkFhja/DNsSY2fIlJ7GpiBVrOqZ6NY3l8fNwy2tPpdIiLprg0GUVrgedgViT3Tc0smLHblMiSGhZbNupvxUwlFL/WmYG5ko2PWWPTvs7UmEFMtr3L/CeLJ5NlM++0jcB1vWsWr7HsvC68x+/evaux45eXl/X8/Hxoz+nPk75jXLqJ1Ke58BmjSL5aJK519lhQ/ah5hNY630N5QVhNIcWwXStKzodNVFKjBTZvbzXm/juzpjkfrVFXQONzw2dO3yevkrahR2VXW35vDKMdDAaDweCGmH+0g8FgMBjcEHd1HT88PFRB67WOwXm6CFMijh/ffwpNSmytswuj7ZPS7OlmkkuF7hGWl/hc6Y5V8oDO6y7K5N7zbelyS+fR/Fq6/e647ftdMlQrtUnX5K+UjbRmBWsdXfatHMmTOdq5mzCGJ6fofHLZ0XWchOJbcghdxy5KQRlFisfTDeylOnQdsxQplQS1UAHFXVJZFtcb71dKaGKIogmA7MIbu5ADXcdJ8J6NQJi8l94tfO7oJqWL1e+byrncnezHZKKTH5euY431hx9+OOzDda37TdnY9OzpvcbkO11HJkmtdV6rXOc796/AhL0moZuEYBgW5DX3a8/yJN/vlhhGOxgMBoPBDXH38p4m4L/W2UpjsgOxKw/w8zmYDJH2JSNLEnItKYCJOp4kQHFvzv1SGz3ftgnC7xgtBTH0eWp1JlzbQtC3bT8TUslMg+Q76elw67aJ3PO6+VzJuMjMycz82Bo/E9lYnuJrhyxIDJZr09e3ykJklXP9saDfpRPJIJhoJCbt94DiBkzqYYMCXwdNYrQlOPk2TdIyPetJcKW9KyS/qGeQsoQ+N5aQ7J5HsigysdYKb63zNdOYdI81BybLrXVeK1zHZIKpXIUJlUyGSkI9jckKSZ6U8qcsgWsNOHzObR2k90VLtmRpkidA0eP1+Pg4bfIGg8FgMPjacTdG+/DwsL799tutUDfZGssEEhttcoZkGine2hgLY0Be8ExLjuUusgST+EaTM2zlTGlfWYdi/ym+0Mamz3UMWrZrHRs8t9Z3qUyGY2nlRP6dNy/YiQ68vLy8XttUGsZyAI6Pbf8crbyKzN/XARmfxibmofH4NWGsSrE4scQkqkIRC56PUqPOghi3Znwr3X9KFPJv3lO/zpfKopKoQhPV2DV+T63T2tp5fn5ev/766+s+GouXQWluGh8ZeHoe+a5q607XVrH8tc73Q2MQ46IohL/v9LxTIlN/p/vfvGBak/R4pLwLrTOWAqUWok2AQ2PUtnpGvB1kE15pTU38d5YTsRQuvYudqU+MdjAYDAaDrxx3bfz+5s2bV6tHFlLKWmxiCUmcYWfJrnX01zuj4XdiLLRw0jm0DwXJJZGWMnzJLJqMYtqXbJvsxNkdmQWZGQvkd2AsLjHCFsdlVqifj8zo7du32/F4HC7JKTa5xHQejlNo94OScmud73MrtN+1oBO7YZMBsnyfh86jMTBeLfg1oVdCfzNW5/E3zZUsi8IvGrvvq7FQTGHXOlDXi8882aSfpz0DCc/Pz194IsQinWHq2or5kOklLw7XtMare0xG7mOVUAPb8un8uvZJ8pHxVGa7O8hgW1WH7oEzP33GjGxm9qZnVoyV15GZ0vo7jYXPRoqCVAS/AAASO0lEQVQV8/3CPAa26/Nt78FiHcNoB4PBYDC4Ie7KaNc6W4eyOtxPT+uIvv6Uedbk3WTtkJG51aa414cPH9ZaZwtIFmUS9+YYGNe5plaUbIexZ2dOZN2tKYNnG/L4ZLAtDpLm12K0qQ6tWbm7OLJwiV0/PDwcrNok30lGlO5HOyc9AGRTzowYL271oKkWkvWtZGZJCq+J+gvMQvUxcVvNI7FF1k/yfrdYpIOsl/FXv+5kaC1LPK0hHa+1ptN+f/755+s8NHdv3CAGRi8Vn4/kaaInhftofu/fv3/dR8+j3n2MkTI+vtbRG0ZRfL5X/TN6NuidEMt3WUpmU+sYrSGKj4VNM8gi0/1qdci89qkNIOtmdW+5ztfKjQcmRjsYDAaDwVeOuzJatyxSHRazEslWU+yWLa2aQlTKWmNMRBaQFFtSthqt9Evt69K4yXZoYSZGI2ut1bc6k2nZrcxMZDzE92XWLBmMn3/HKHzMfxen0+mLe87aZf+9xfebKpOjKVwlS7yJ/DOWndSkGLti7e1OvarFLndWObMxW22kf9cyh8k4U5Yz1xUrA1JtbKstTw1FUp1zm7/q98l6Uus03Q/9zSYDKcfAs+bX6vXtnuX8448/rrXW+vnnn7/YhvffGSZzWsiu9bczdao48RrRK5dqosXuNRZ6X5J3kXMnU2czef+sNQZInhzWqlMJavde8kqTYbSDwWAwGHzluHuMdqe/q1hJixPu6tp2SjLpmGsd2SmZiywwH2OzVFtcx7clQ2o6sklbWd9dYo9+Po1J18tr3hxuqbdrTOa0a5PHbXZt8vx8zbJUi0XWV/u1aG3KmkJYwqXsTM+SJKNhO7HUjqvpuba6cT93io37fJJiF9nWJcU1/04sp3mI2ETefyeT3al/XRpjam/J/Iudx0Qa69pGbMfZolignmXGalNGb6tNb+0TvSXcTz/9tNY6M1vFMrmGfa3q+W9eCc1Hmsc+j9Zic1e/z6xmbaN3COt3fR+Bz4gUsPRTms+cq+9Lbe9Ui8910PJZfO7+DhlGOxgMBoPBV475RzsYDAaDwQ1xd9cx3aeelOAp8I7kPiJ28oVrZfePitbpKmZzA3dXJDF1Py+TSNY6ussJzY/NB9Y6Jt00t08S225u9J24N8tImLTWxPv9uHQdM7nIkSQ4idPptN6+fXtwm6fi9ZYstgOvJa9fShZh+0KtYyYP7VoTttBFciG3Rg07EQ+BAiJCOh8TtFoiHVv7+TZM7tmtR7r/uJ7TPpSh3AnDn06n9a9//euQYORlMHrGeAx9nsbCbXV8hgOYmLhWb5cpMCHRt+X95rr3Y9K9zUQ3rjPflwltGpNKkihK4nOmKBHFgtjEYa2jKMwlOde1eqJUK9tz7MrTboFhtIPBYDAY3BB3b5O3a8Qua5PlPDtG2+QSmUyhY7kFJqtcVhStdMqQ8Xc/Hq251AqMpQutZCYV9LM4m8lEfj4mQ1Gwm0krqXSiiYk3Ru9jIvtNyUtkvde0y2OLqyQ3SOwSf8gS2xjY7i19R+GQJJBCdsa1sxujQHaoees+pRIknp8Nv/0cGhNl9MRs9Yww2Wet4/VpyTapVIveCj63O6a2E4aXN0TjluchicK0hJwkXMNr17ZlG0Ofm8bAZypJS/I51Dx0L8UIk5CM9mWJG9eSPyupNaSfV/PcJUPpGEwq5XO81jEJk56N9GxyXpdK4XxMXko1yVCDwWAwGHzluGuMVnJoax0lytY6W+CUcEuWtx/Tf8paUso8pb3cAqOUH1topYJ7t+DTPFILN5ZvJBkwP9+umTIl6XYN1BlXI8Nls4G1jmyB8atUUsG4KOeXxPITq9+JDrgoQYpXXpJwS0IiLe7J5t366aIDFBkho9V4PDbHtdq8IKlpRmtCTpbgrIztwyiiQa+P/65xk9Hyc9+XTKzF2VITdIo1tDIfB+eX8PDwsN69e3dok7hrRdk8Mo6UG7FWb3Tg14ISiywFY6OStc7MVT+1D0UafF4cPxntLobO8h02Y9DY9Z714zXRCbFhilP4vi1fJTWxaPeL72CfF///3AvDaAeDwWAwuCHuGqP99OnTq6WSsoApzsDsRcYl/bPWmJzxB49DMJOPAg8pltBaqzFLL2UMUvieTC9Z0LTwW1OBZKExA5YxQWYJp7mzAfSuaQJjQi2DOW1zKVby8vJyyGZMDLkxwGS1twL7a65xk8/U5xqjr1XOmdnGzE1Y6yg4z5gZ41CpMTZbte3iX01ilM27E1vg9eS6ptfJQVbCfAb3JGn8LvDSso7FaPne8Tm3dcC/033RXFqcnbH0tc4CGWznpmMoPu4eFEpIUhhFbRsT40vPn89BcDaubSm2sxONaY0gGKtNbSeZmcws9JZRvNYxjs9n05+J5DW8B4bRDgaDwWBwQ9yN0T4/P6/ffvvt1aKkdN1aR+tQVo72SXEoWvwNzNpd68ggGJfQtm5ZMkOQrCExdVpcjDnv2sqxHVaTwkvMQvsojpKyZgmyxWYNu0XIuG2TPfRjUC7tm2++uSilxzZr19RV8+8kM8fYDhnnTgawNSxnrMm3IaOjtyVJxvE810gV8tlo6zDVT7ZYrZ4RPROJGbT50Tvi52FcbxdHZj3mNVnH+j7Vf3Ld0tOQsnJTzJDj9GP72tf8mTnM+tq03uidYB6GQ88W33P0aCRvT8v9aJ4uP+6lPAJqA/h3zXNHr0g6D9v0JQ9hen9eatH5T2AY7WAwGAwGN8RdY7SPj4+vlpesGbc2ZImQaZBZuBWp71ij1yw/Z9CM+WpsLRvYz63xk1mkrEPOhwxqFyMiyyLrSbWYjBcyU3on9k+LstXNuoXeaiEFXiuHxvDhw4eLcRNeN59zyqB2XBPDbPcjxYc4Fv5MLIjrgGyoNULwuXKblo3s5+Z6ENhicq2jKhFrr8l4UxY37zPH6PPm88M4vP5O7McZ7S5G+9133x3WYIpHapxsj5fYVKpBT3+nLH3GKnVPdW1TbgjZbssK9vcbM2z5DPDdks5H/YHW8MV/5zvD75PPP9XBt/yOlINCJs77Rl2Gtc732r1j98hAHkY7GAwGg8ENMf9oB4PBYDC4Ie7qOn5+fj4IILi4t1zHdNnqZ0rNpyQi0+kpOpHcBNyGri53UTIZgMkPKZGBCQUt+SIlyzRBdrqO3RXGNHcel64kv4ZM26cbiOVT/hmTHugCvVS+s0toefPmzUE6kC7xtY59e3k/0rjp5m0CKUkUhPd/50rUGOgu5bVNCVvNzUwkV3VL2GJJmn9HERf2W05ogiWcdyrvoSuaIQxfG63RRcLDw0OUCeR7w48n0H2akmaYAESXdwpp6J3niYCOJMXKbZK4iY9j91kbY3pn0a28CwPQPa/5NeGUFELgfeczmgRSmkRqCgXxOJMMNRgMBoPBfwDuymifnp4OwW6Hiq5l/SXh8rUyK2Xgu7FIB4uXW9KVW/wa/84yXutL65AWU2ttlRIsaJW1BB6XfCQzY/G/vicDXeuYyEL2kSTseG11Pt7rVBLkwiLNspQ3hAlhPudd+ZH/nZKhaKXz+qVkGKKVX/n143eNmaUStCYXybXk826F/GwqsWO0FK4gw07lFrwXZHvJqyAwYSsJI/C7S3h4eKji/2t1RslEyiTYz3cFBUU497XOSVB6d0iggu+WNL9WdpU8DXwOOfZdWSEZLRP4UoIjyy+5La9Reu+09Z2gMeoa0APJde/Hu7Ys9J/CMNrBYDAYDG6IuzLa1AR7JwjOllC7onymsjONP1ngjFkxpknpMN+michfU27RZBxTycSuTZRvmyTlLsVmOWbfhq2nyECTeH1jbEm+UfdLP3dxEnlDdsySFmqT5EwsoYnfk6XuGBSt6CSnyPura0xvTGInjOMydp/ET+j1YLvEXXyf27Qys11zCbLRVNLH44ntsbFDErlIbRcJrR02LEltLAWdS0Iv8qj5dhonz894pM7r23PNU4hlt3Y0Fj6H6T3RRHT4juT2Ph/GTnVeXSN/N2qOfLb1OZlu8oawnIjrLK1vXRMy5lRymSQYp7xnMBgMBoOvHHdtk/f8/HyQ+HOrisXqZBayXHwffSarSZafrKlLQgZr9dhVsqI4ppZp65Z+E7qnJZWKwBkLouW+k2tjrOcakQOBLPiarOO2TYrd0brdyUOqqJwC+qmBeMou9n3cq0J2w5gsGwYkr0KTxGziF2ud2ZrYANdbiiOn6+5oHg8fU4u37mK0RPNa+NjIenbxUYoLtCoBb2JPT8OnT5/qWpYnjSzHWR7XOJl3ynLX+fTeIfNiEwh55dY633eel14kX6tksJRtVHOBdC95LZmjkd4t9EY0hu4t/ijEwQYIXO++dpqXhe9gnx/fjbz2yctBRvvmzZthtIPBYDAYfO24K6Nd62wBpQa8jH/KgpTl9eHDh7XWl82GdTxmmFGyLMU/aRkz7rqzwPWZ5kErKjU0b9l+uwbMtMpkBTb25XOm1JrAOjofD+dDppCs7cbmGytOx70En8OOIV+qO/bztraFZDKCs+4mei4keUPGemm1J6nHxiy4lmjV+/ibTGSSZmzxQj4LqXqAzGwXFxd435L8oH/vx9vV9Pp+T09Pld3578wh4f1yRsv8hxaP9lZ+gt5ZjD9TbN/vy/fff7/WOlZitJj6WkePDe8l70u6xnzWNA+yVR832+DxJzOn/bO2VoWUTyDQQ5M8h4lN3wPDaAeDwWAwuCHuxmg/f/68/vzzz9dYhSxBjwUxC5PMUtZTqlFtcQj9LdHt5I9vgvAUq07HpaXc6h0dl9rk+RjJEgQygJTBR0ZLBpdYHlWLeMyUBUom25hBgmc37pShHh4eDgLtnsXMc7ba4cQWr20a7+O7pAiV2FZjn/yZxtiYJNd7ysrUtszkTBnrzevC86eMdeYrsOaWnhQ/Du8XfybmfI0ylPZlM4TkARLYQCEdX4xSNbCC2Coze5P3pTVvTwp4+o5x9tae0b9rmeM7UL1J10DPfaqF5Wd8XnVMsfPUgKV5HnZZ1Rpb81D6u4HH3dXv/5MYRjsYDAaDwQ0x/2gHg8FgMLgh7uo6/v33319dxykYTfdH68/oKeUC3RDNLZvcZHQxMEnEXbmtDyzds0kQnIk6TEZIiTUsf6ErLfXobS5Ruk2amzAdg6UPadzN3ZdcrxT62OHl5X97GbOpQJJw031okm6pUJ1j4DFS0hjdckw4SeU9SSBiNw7N3cdNNxwTq1IpGl2fXA9J5J/nbc0mkkuXz15bS34cJrLw+Ml9u1u/jm+++eYgPJ8EMFj2RLesz1XuXSVmsvyGayclqel946VLfj7HL7/88sV5dQzKD6YyOUqWNtETX6vN7cs1mkRDWjKhwndJGlGueK5j9kVObmC6lXktdv2P71Has9Yw2sFgMBgMboq7Mdrn5+f1xx9/vFpvsjI8xbsVR8tS4t++LVmCrBslEQiyqnwbjYVF3ylZhGn0rf2eW9mNwQg7MQKW0/AaMJnEt2XyU0s8SckRTZYwlWVdaq3Hkoe19gIVaSyPj4+Hc/u4ySApa5jKlZhQ1JoLJAudjS/IZDVnnyfLGsgotE6uaXzAZyUllpDx0SNwTaOF1vIwsVOerwmlOAvSPdU14bVOY9yxXOJ0OsXWgdxmreOabAL+fm5to/cKGR9Ld/x3nZfeF5XHpPcBE0T9febH5O8+Vq6l5H3hO6mVFe6kX/VTCWP0FPr11jyahyh5bJgAyGcxJbPSe/DmzZtJhhoMBoPB4GvHXZsKPD4+HizUXQNxyikmGS5Z3B8/fvxin1bCktL6md7PUgBHkv9L501tuBr7pUWbmFNrjJ0E72l9tmuwk2JsjbdT+dIlCUbGq3xs18RqJTqQ4oICxU3I4nalM7xebIuW1kmb664BAe9Ha4F4Tfs3jim1h2xSkq10I82Lz+ROipPnaw2/U1yPTL15GXyujE8nnE6n9fbt28P12TVSIDNKjJbPH5ktJVr9OmlNNpnO1HKvPR8S8UlSs03sIXmECN5/Mlh97uJBum6aO0WDGG91ARD9zgYOzAnxa6Vt6THh/JJIURNGuRWG0Q4Gg8FgcEOc7tX49nQ6/c9a67/vcrLB14r/enl5+YkfztoZXIFZO4O/i7h2/knc7R/tYDAYDAb/HzGu48FgMBgMboj5RzsYDAaDwQ0x/2gHg8FgMLgh5h/tYDAYDAY3xPyjHQwGg8Hghph/tIPBYDAY3BDzj3YwGAwGgxti/tEOBoPBYHBDzD/awWAwGAxuiH8Dc3XW/JjCu44AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm8ZllZHvqsc6qa7qquHkEmc50TNXEGQaNAjKKiOAQi4oDEe28wGsURUbzSohi5/hyDRBwRMaLibFQQtIM44xQnxKGboHRD000PVdVT1dn5Y++3znue733evb5Tp+rsD9/n9zu/73x7WNNee33recc2DAMKhUKhUCgsH1uH3YBCoVAoFAp9qB/tQqFQKBQ2BPWjXSgUCoXChqB+tAuFQqFQ2BDUj3ahUCgUChuC+tEuFAqFQmFDMPuj3Vp7emttaK3d3lq7ms4dmc5dd8FauKForT2utXZda22Ljr/7NGZPP6SmFQ4A03vx+YdU9zD9rdTfWntZa+1GOnbjdP1/F+X9xnT+daIe/ntZRxu3Wmt/0lr7Sjr+aa2117bW3tZau7u19qbW2s+11j7BXWNrznt3jMN1c205TEx9e9EBl6mei/+78YDqunQq79kHVN57T+vi/xWcu7m19r0HUc/5Ylq/f6S19hettbOttTesef8DW2svaa3d1lo72Vp7ZWvt/Q6ibUfWuPZKAF8N4EAe3j8BPA7AcwF8E4Add/wmAB8B4O8OoU2Fg8PTMb4/P3SIbXhua+1lwzDc13HtXQA+rbV2YhiGu+xga+3dADx2Oh/hJQBeTMdu6ajvcwA8FMC5H6zW2pcA+C6MY/atAE4BeC8AnwTgYwD8ake5m4ZvAPD7rbXvHIbhjQdU5kfQ958F8KcArnPH7j2guu6d6vvfB1Tee2NcF18dlPkEAO84oHrOF48H8JEAXo+R3LbeG1tr2wB+GcC7APhPGN+trwNwfWvtA4dheOv5NGydH+1XAfji1tp3nG+l/5QxDMO9AH73sNtR2Hi8CuPC8gwA/7Xj+l8D8HEAnoTxh9jwuQBuBPBmANvBff84DMN+5utXAnjpMAyn6djPDcPwf7tjvw7g+1kitVS01h4wvcNdGIbhj1trfwzgSwF84UG0gZ9Ha+1eAG/vfU7r9GEYo29dlPVqGIY/uhj1dOLrhmH4WgBorb0CwL9a494nA3gkgI8chuF3pjJ+D+N79hUAnnU+DVvnRfmm6fPr5i5srX14a+3Vk1jgVGvtNa21D6drXtJa+4fW2oe01n6ztXa6tfY3rbUv6GnMOve31t6jtfZjrbVbWmv3TmK7Tw+ue2pr7Q2ttXtaa3/WWvuU1tr1rbXr3TWXtta+o7X251P/bm6t/WJr7X3dNddh3E0CwP0msprO7RGPt9a+qrV2X2vt2qA9f9la+3n3/Vhr7QWttRume25orT2nZ8FrrR1vrX1La+3vpjG4ubX20621B7tr1nluj2it/XYbRZx/3Vr7pOn8l7dRHHtna+3nW2sPovuH1trzp3b/w3T/a1trH0zXtdbal01l39dau6m19sLW2hVBed/UWvuSaTzuaq39z9bavwzG4N+11n53miu3t9Z+qpGYbmr7y1prn9la+6tpHF7fWvsod831GNnpv2674sjrp3MPaaNY7S3TON/UWvul1tq7zD2jNfEHAH4OwHNaa8c6rr8bwCsw/kh7fC6AHwVwYKERW2uPAvABAFgcfw2Am6N7hmHYiY67Mh/RWntra+1nWmuXJtd9UGvtF1pr75jm1m+11j6arnlka+0Vbv79dWvtm1trl9F117fWXtdae2Jr7Y/b+OP4hdO57nkH4OUAPpvLvxhorb28tfa3rbXHTHP/bgDPm849bWrzLVP7/7C19ll0/4p4fFpHzrTW3qeNYt9T0xh8TWtNMtI2qkB+Zfr6m+7defR0fo94vLX2BdP5R7ZxrbL19ium809srf3pVP/vtdY+KKjzKa2135/e+XdM4/HwuXGbm48z+BQAf28/2FN5t2Jk35/q2nZla+1FrbU3T2vFW1trr2ozaiEMw5D+YRQDDhjFGi/AKC55t+nckencde76D8S4QPwhxh3HkzAuMHcD+CB33UsA3AngrzCyhY/D+JIPAP5NR7u67gfwzwC8DcCfYxTZfTxG8dwOgE9x133cdOznMIppPg/A3wN4C4Dr3XVXAvgBAJ+JceH+dIws5h0AHjJd867TNQOAfw3g0QAePZ179+n406fvDwdwFsAXUv8+bLruSW6sfxPArRh37f8WwHMA3APg22bG6hIAv41RHPn/TX19MoDvB/C++3xufwng8wF8wtSuewB8G4BfxCju/Pzpup+ktgwYWd1vAfg0AE8B8NdTv65x133zdO0Lp2f2ZQBOTnVtUXk3AnglxpflyQBuAPC3AI64675guvaHpuf7FIxz5wYAJ9x1NwJ409T3JwP4ZAB/DOB2AFdN17w/gD/CKJJ89PT3/tO5XwPwRgCfDeAxAP49gO8F8O5zc7r3b+rHNwH4l9PcebY79zIAN9L1N07HHzdd/67T8UdPZb0XgOsBvC6o5/kY5965v472PXd69lt0/NcBnAbwVQD+ec+aM31/PEYR4/cC2Kb2+bXnQzHO8ddNz+4JAH4B45r1Ye66J2EkH5+M8R3+QoybiZdTO67HuHbcgHE+Pw7AB64z76ZrHzFd/zEHNQei5yvOvXyau2+a+vk4AI90z+k/YVwPPg7jO3cW09o0XXPp1HY/x75luu7PMK5FH4tRDTIAeGrSziun6wcA/xG7787l0/mbAXxv8M7+NYCvmer54enYf8H4/n3GNP5vxLhe+/nxpRjX9BcD+EQATwXwN9O1x9YY31cAeMMa1/8JgJ8Pjn/9NG6XTN9/FMA/AvgPGNeKfwfgOwF8aFp+RwOejt0f7WumCfBD07noR/sVcAvcdOwKALcB+Bl37CVY/YF9AMbF+/s62tV1P4AfxKiDu5bu/zUAf+K+/zbGH/bmjtkP5/VJO7YBHMO4qHyZO37ddC+/wO8O96Pt2vI7dN13YtwIPGD6/rnTfY+h654D4D4A75K08fOnez8luWbd5/YYd+wDsfty+Zfm2wHcj9WF9u0AjtOY3A/gG6fv12BcaF9Cbfwc7sf0/W8AHHXHnjwd/8jp++UA7sA0b9117zGN3Ze6YzdO4361O2aL7me5Y9eDfuSm4ycBfEnvC76fv6kt3zT9/6PTM7py+p79aLfp/2dPx18E4LdUf6Z6or/3nmnfr1i5dPyfA/hfrpy3A/hxAI+n656O3TXns6dn9A1iHPza8xqMG7FL6P38K4xi+aitDeM69jkYF/hr3bnrp2MfLOpO5507fhTjYv21F2g+3Ij8R3sA8PEzZWxN4/CjAH7PHVc/2nt+oKdxfCOAX5ip5xOmez8qOKd+tJ/ljl2C8f28B9Pmczr+GdO1j5q+X4VxA/eiYA6eAfAFa4zvuj/a/xu0dk3H//PUxgdN3/8WwDev+7zX0iMNw3AbRjb1tNbavxCXPQbALw3DcLu7706MO97H0rWnh2H4DXfdvRgf/DmRZRst1M/9rXs/xknyywDuoHJeCeCDWmtXtNFw4BEAfnqYRnMq7w8x7p73oLX2GZM45naME+AUxh8GNSZzeCmAR5tYZGrfUzGyVNM9fQLG3fJvUz9ehXFReHRS/uMB3DwMwy8k16zz3E4Nw/Ba990sK189DMNZOn4Eo0GSxy8Pw3DK1XMjRr2ZGdg8GuPLyVbKL8c43tyeXxuG4X73/c+mT5sHH4FxA/JjNHZvntr4GCrvd4Zh8AYxXF6GPwDwVa21Z7bWPiATFxpaa9s0z9d5L5+Lce591dyF09x+GYDPba1dglHa8NKZ234Io37O/7155p6HITBWG0ZDrA/B+Pyej5GRfDqAV7bWIrXbl2LcJD5zGIbnZhVOoufHAvgpADvuGTeMRk+Pcdde0UY1099h3Bzej/HHqgF4Hyr6xmEY/kRUOzfvrN/3Y9w0PmymD9ladz44PQzDK4P63re19pOttbdgfK/ux7h56V3H/of9M82tv0DfO7IuTKSOYTS6vAHAXwzD8A/uGluD/tn0+dEYyRS/838//fE7fxj4AwD/sbX21a21D+197/dj/PEdGHf2zxPnr8FoIc24GcDVdCyyFLwX4+4OrbV3xziRzv1Nx7run/AuAJ7G5WC0XgWAawE8EOMP39uC8vYY3bXWngjgJzDu3j8LwKMwLmS3UL3r4Gcw/vCbvvHxU7v9gvouAN4t6Mfvu34oXItRDJNhned2u/8y7Fov8/Ow4zwukSHjWzGqCqwt4PYMw3AGkxid7r2NvttGx+o1ffKrsTp+H4DVsdtTnts49Tzfp2Dc6DwLI6v8x9ba18+8kK+hNn19Rz3Wtr/HKE16ZiP7AYGXYhTvPxfAcYxzOcNNwzC8nv7mjJguhbBeHobh7DAMrx2G4euGYfhYAO+J8cfuuY1cSjGqoP4RwE/P1AeMc2Ibo/qHn/F/BnC1ewY/jJHFfTdGsfAjAXyRa7tH9E4Y5uadx90ApE67Y607H6zYEbTWrsL4Prwvxg3fR2Echx9D3zw/O23qPXjtPShE68rcWmPv/OuwOh/eB/l6eb54B1bXTGCcozsYN3DAqNb9oenzDwG8tbX2rS2x2QDWsx4HAAzDcLK19l8wMu5vDS65DcBDguMPwfrm/G/BOJH42Dq4FaMe9AVJHbbLjIyFHoy9rgmfCeBvh2F4uh1orR3F6g9JN4ZhONVa+1mMosDnYtzt/v0wDL/lLrsV4w7zM0QxNyZVvB3z1o8H+dzm8GBxzDYWthg+BOPuHcA5CcS1WF0s53Dr9Pl0X56DcndaG8MwvA3jD8AXTdKoz8Po9nMLgP8mbnsGgBPu+7pz/Buner62o31vbKMl67Mxqj1un7tnH7gV8aIVtectrbUfwOgK9j7Y3YQCo+75+zC6ynzMMAyhEduE2zEuiN8DIT0YhmFnWhA/FaNY/bvsXGvtA1QTe/rRgWswvocKB7HWKUR9+GiMm+RPG4bh9XZwWsveGWDv/GdhVGMweMNxkPgLAB8eHH9/jL8d9wHnJJnPAvCs1tp7YFzbn4/R7kNKlvYrgnkRgC/HrkW5x/8E8ITm/EFbaycAPBGjjqgbU+deP3thjl/FKB79i2EY7lYXtdZeD+BJrbXrTETeWvswjHpP/6N9DOOPvMfnYtVdxnbdl6HvR+GlAD6ntfbxGA20eEP0qxgXsZPDMKzl6I9RhP6ZrbUnDsPwi+KaA3tuHXhCa+24icgnRvFojLoyYBSV34dxg/Qad99TMM7Zddvz2xifwXsPw/Aj+271XtyLvT+0KxiG4a8BfG0bPRrkpmm6bt+Yfvi+B8AXo8895//HKH164fnUmyBSOaC19tBhGCLmap4X/KP8jxgNp34DwG9MP9wh8502vr8J4IMA/NGgrX8fgPFdvZ+OP11cf95orT0EIwOUz/mA1rp1YB4H58ahjR4OT7jA9fp18ULitRilG+85DMOPX+C6GL8A4KmttUcNw/B7ADBJkZ6A1ZgHAIBhGG4A8ILW2udhhmDt60d7GIZ7W2vPw7gLZnwjRqvM17TWXoBxl/fVGCeJEqlfSHw9xt37a1trL8TISK/GODDvOQyDRZV6LsYft59trX0fRpH5dRgXEr8A/CrGIBXfAeCXMOrCvxgkMsZoXQ0AX9Fa+xWM4qTspXwNxp31D2Kc0D9K538Mo5Xha1pr34bRcvISjJa/n4Jxx3waMV4G4P8F8OOTlOT3MP7gfDyA75w2ARfzud0N4FWttW/FuIh+A8ad73cAo+3E1Mevaa2dwmiT8H4YN4mvg9Ol9WAYhjtba18F4HsmEfKvYBRRPRyjHvT6YRjCaGEJ/hLAF7bWnoIxUM5dGOfKqzE+qzdgXBA/FeN8e9Wa5a+Lb8FokftYjLYPEsMw/AxGlcyFwmsB/IfW2rXD6Opi+PPW2qsxPs8bMNoZPAGjqPonh2FYCeAxDMNNrbXHYbQ8tx9uxUC/fKr7la21H8Qo2n4gRqvy7WEYnj0Mwx2ttd/F+F7ehJH9fj52VTMXAo+aPl+bXnVx8ZsYVXIvntbyKzCulW/F6P1yofAGjOvp/zO92/cB+Ctv43IQmNaQZwP4ttbawzDaMN2F8Tn/GwC/MgzDK9T9bXSFNVfBhwM40Vp78vT9z2yj3Vp7PMb5/FnDMPzkdP6nMMYkeHlr7aunes95+rg6Xg/gJzEy81MYrePfF6PUSeJ8Ahr8MAKxwzAM/wvj7vhOAD+C8cfnJIDHDsPwp+dR374wLQSPwPgj980YLbX/G8bF7dfddb+GUTz9fhgjDH01Rkf4m7GrgwBGN6nnY2R9v4hx0XkiXQOMP+gvwuhm8TsYjQ6ydu5gdFl7OEZDqL+l8/dj/JH9foyL8y9j/HH4PIxMUkbFmu59/NRvu/dFGBe026ZrLuZzeynGH94XTnXdAuDfToaOhudgXIQ/EeNYPnu675MSFiUxDMOLMW5u/gXGvv0yxk3ZEYwGUeviBRg3Wj+A8dm+GONL+UcYN0ivwDiPPgLAZw/D8POinAPB9OP47ReyjjXw8xjH4pPp+HMwbkifh3ET8xMYx+fZWPUfP4dJLP44jJug65vwsx3G4ByPxCga/e6pju/CaLfgfzCfilGH+D0YDd1uBvDM/u6tjU8G8If8Th8mpo3PkzA+j5/GuGn/rxjn7YWs9yaMY/0ojM/kDzA+nwtR13djtOj/VxjXyv+BkZwN2DUaVPgQjD++P4VRCvgw993H+NjCKLk591s6GeN+IsaN0YsxjulpAI8jFc9rMYrv/zvGNe6JAL5oWqskmjOWLhBaa++K0Sz/+cMwfONht+edAW0MMvP8YRhmg/QUNhettZdgdMn52MNuy2Fi0qHfBOArh2H4wcNuT2HzcZBuBRuNyWXk2zGKN9+O0ar1WRh3SD9wiE0rFDYR3wDgr1prj5hRC72z4xkYvVIOypai8E8c9aO9i7MYrZVfiNFC+RRG8ca/V8YvhUIhxjAMN7QxVO9Bh2/dNNyLMZASG68WCvtCiccLhUKhUNgQbERmnUKhUCgUCvWjXSgUCoXCxqB+tAuFQqFQ2BAsyhDt2LFjw1VXXXUgZfk8DZyzYe57b7nn06bzvTY6v597zufaCz0WfI3ZX7zxjW98+zAMe+JsX3311cNDH/pQbG1tnXfbvJ2H/c+fPff2nlvnnv3YoKxzT099vW3KxmydsThIu5ubbrppZe4cP358z7pjc8fmEgBsb2/v+bRzfDxad/jzfLCUMi4U1pnv68zVnZ2dPZ9nz57d89kzx2644YaVuXMYWNSP9lVXXYVnPOMZ51WGvUyXXHLJuWNHjozd5Jdx7ruHOtfzQqpNQvaCR21Q9/JCwv3pqW/u07dHjds6Y6HGxJ5VVI+9YI95zGNWIn497GEPw0/8xE+ce+72mT1Le1HPnDmzp3z77v+///7791xjn7wYePBCwNfwAuLvUYuNfWYbC1V/dN1cfX4sDKrvfNzu9f3mY1wvf/f3HMSP93XXXbcyd2zdsfIf8IAHAACOHz9+7prLL78cAHDFFVcAAE6cOHHuXgA4dmyMCnrZZbvROW0uHz06hvPmH3aehxHUe9jzrlm52fup1pm5MqPyuc1ZHfwuqM2xvy56X/y10ft7331jzCl7f0+dGgOvnT49Bo+85ZZb9nz39XC7n/a0p6WRBi8WSjxeKBQKhcKGYFFM+yAQMUNmoEqEmolW19nh9orj9yNKOyjR1rqsxe94jTGonfY6yMZ13TE/evToOXYTiSu53bxjjzAnxlXsObp2nTGfY1i+7XPj3yPi5/5Y+VZ21K+552LjnR3jerhsYLfvaszPF8Mw7BmTSJoxJ4nyZTGYua3zbvM7xuWv8+5lbVP1cb3Z3FHP0NfBa7Cdm5PARdfwc4raYfPN5pmtDyyRNQburzXGHs3jw0Qx7UKhUCgUNgTvdEyb9bvRsYiFzWFuh72O4Vt2vNdoJdIxr4N17/E7bNuJKv1+pkdWx3kH7s/Zp+kGVTlHjx6VBkO+HMW0exixYnnRvcwiFKvZD3p0kYoF+nbsRwqwn3tU29heweD7x2yc2dNBIyq3R0/L1/W+Y+volc/HuC16boq9HqQRXbYeMIvt0e/bPUrH7XXac8+N7Z18uar8w0Yx7UKhUCgUNgT1o10oFAqFwobgnUY8zuJVL3axY2yEcBBiqXUM0nrKn0NkzNIrus/uMSjDF38di1n3436i+pMZomUGIa01bG9vrzzrqE3cbnXet5uNXlhkFrl+KUMZLrvHfYvPR1DzoEeMvZ96lZtY5rajjIayuWPPMnOvO0jsx+guAs9bZVzI1/v/eZwyY7Y5Qy1D5rbVa0Sr2jDX1jlxdWZ4x3NHia29Go2vUf2J1harx9zFloJi2oVCoVAobAjeaZh2ZoDEbkAqilG02+xliJEBEmM/0bJ6MOdysQ7T7t1xA/1BXXraHhkHrsO07fpsHswx3oiZcDAVDg6SRVZSQUgyFyzFfHqkQuqajEWr4C1ZkBU+xsFpmAlF0geDMi7L2O6FdgFTbfVtWMcgVUkBe5i2qjcCu1Fx+ZGkQq0dc65fGXqiEs6532YSMiUps7Zlkez4nqisLJDRElBMu1AoFAqFDcE7DdM2Ns16a2B1x8s7Xd7tZ/fy8cidZy40pKEnEIfaGWY6GN5xRrvZOea2n6AnSocXtZHLyly+FDNhmNsXkLtyqLZkoRP5nGKZXoemQp7y98wFRzGFHpc/Zl6RLpDbr9qY9ct0fkpikfWP22rHo1CyjPNxQ1oX3CfFPNexOZg7Hp3LbDW4bco1M5LsqHozMEtdJ8SzkkJkUNKnTHJlbbQ5qtabqP514pJfTBTTLhQKhUJhQ7DxTNvC0DHD8haE6+pcI1apmE4P0+7JKNOrB+/ZYSsdZrSbVHribOc7Z2Ee6ZbUrtgQ6a3XCYbTWsORI0dW7olYhbJHUNINQAdcsIQEUbIC292zHpzLiJgoW8FbfyJJEveVA5Yo/XvUbh4LZuK+vLlnmHke8NhnrE31h+u9GIwos3/wbQG0RI9Zs6EnKU+mB5/TxbLkJeoXl6vYuz/H77YqM8M66xxfk40RS6qU1DN6bgcRROhCoJh2oVAoFAobgo1l2hzwnRlJxLDYqjJjVgpKPx7txpQfYWTdqax2FSK9TcRwfZujY7077KwNfE/E6JjRK5uASMrRq+/a2trqskJVjC2qL/P/9+VHvpw8PnYN9zWzVle7fZ96dq5env+RTpvvVfr4qC327s3peyOw3nUdVnOh/bU9lLRHSUSia5V/cdT3iNlGZWUeFfxss+eidPbWNk5R6+/hMchYbGSz4Pth9fOciqBshyKpkLXRJLCZvc9+LOYvJoppFwqFQqGwIdg4ps36IGZA61iA9+iC53TY0Q5cWTMq30d/LtM7+euiHbjtXpV/ZqQvVmxWJdOI2t8ThL+XUXk9H18756ftI6JF7TaWoBhv1B/WO9pOna3II502673t85577tnz3T9rtkpXEpgeiYSy7u/xn+Ux9zYiynpXlZsxO9alR+Oo4inwGB00/Hx7wAMeAGB3HEzSwZI+D6WnZxad+firiF7RO8FrIJfLel3/f3TOg20cgN33iOtjG4RIKmhQHj02rtE7r9a36D3g+qy8Sy+9FMDuuxhJ1+xa5b1wWCimXSgUCoXChqB+tAuFQqFQ2BBshHg8EwWyuDoy8mJxDRsNscjdi2RUqEQW0fQYlalgB74eFiUqo6VMJNgjap8LBdhjfMEBbTJXCWXgwuejXLg9Yl07z+VGQTqU4Z6JQP14sSGWMk6x8ybyjo7de++9AIDTp08DAO6+++6VezgIhIGNfSK3FuVaxOI+L+pm4yGlwsnqM/QYXrFBE4uVs3FUaqyDDoJh/bP54P8/duwYAOD48eN72p/l4Ob1hVUskYuW/c+BawyZuyCLyXswt75EagulIrQyTPScuYmZGJznqI23ibGBVbde1dbIfUutwVymv4fdLJeCYtqFQqFQKGwIlrWFEMgc7XsSHNhuNQsfCcQ7U9vxsYuNXWuMIHLB4d0j7/aifs0Zap2Pe1pkGMZQrj6+PbxL9YzEX+vr4N0xs3Rus7/W2uAZooIKOwqsPgce68zdTrHYzOXP5p1nC4A2NovKmQsoEbVRsfQsYYR63vysAZ14x8AGf1lgFjXPI9cpJWWbM6JaFxH7sjl+2WWX7amT35co2AlLF5QLoz+eudwBu+uOX+eUwab1w9rekzCE64tcvvictd8kSqdOnVq51mBjbP1gaQTPIX9OGaIZomfAzN7aFgV1srZdaEPH/aKYdqFQKBQKG4KNYNp+p5Ppkv210Q5U6YV4l+x3amqXzDtDzyaYYTOrjAIMKAbF+qJIL96zc+f6VDpFdoeKGDn32T6trZkbDDOUiNXwtdFuOMIwDDJUqa+DmTWHIvV9Zgai3D+sTGMZwCorYeYZsRwVHKZHp610/0r/7v9n5pZJfKz9PJ7K/S0KyMHnetiMYtaRVEVJklS529vbK/M30qdaG+w58/vo57H1kW0llKucf6bsCmfjxO6Dvs/GpNmGx1il2VJcfvnl5+5hSRHbK/BcjeYOh+tlV8fIRojfTxtr5VKXwcpk2xF/jNdgljBF7rCRZGIJKKZdKBQKhcKGYCOYtmcOthNj/Sazmp4EB8rqNGJnyvKb9Tj+Ht6xZ/pbZkcqbGLE9JSem3Wnvo3MFJReUFmZezDzsu9+l8z6SNbVRcx4TnflYZbjPC/8Dpr7ovSrETNQc4dZerTLZyZgVrXRvGQ2yfMukjrMpS5lduvnkLWXrZQzS2weYxXgKPIIyPSPql7F5FUYTY9exh0F1Inmjln8K3uYyDKf+8jSpUh6Yu/O3Pvnx9buUdca0/b9Mmt4DmaipAJ+PG3usFTA6mfLcH+O10izxuf13dvL8Dye8+gBdt8567uy3M+CcbHNzmGjmHahUCgUChuCjWDafqfDu2q1+44Y6Zylao9PqvIL936lyjqcd55+pzgXID+zPFfhHe0z0/WwZbbyvY30ycxMWe/u6+Py7JmyjivaLUdjHMHrJSNdldK5qlCRvm6eG6xbtL4ai/bnWB+pkiVE9TBBZL0OAAAgAElEQVTryyyluc8sDWBG5P9X/uc9Hg7Wd/bbjRgR60HZOj2qLwsV6+/ZL9M2nba9n5EuM7MS9/2I7FS4vcoGJLLdUTrsaJ0zKYDBrvFz0pft/1dMm3Xq0XjyepZJfnht4E/21vFrP+u35yzsffu53ix9rM1F63OPXv1ioph2oVAoFAobgkUz7UwnothS5gPNrFH5CntGxwyUd3OZda21jduSsWpui2JLkTQgS1HH7VA+tqxz5p24r4ctPbl+3z9m/cwymHH7/3tS5LXW0Fpb0a9HEheOjKf0+FGdxmbe8Y53AADuuuuuPWV5VhMlIwByq3jWuTEDjax4jT2wD7zSZUf6cIOyu8gSoTCLMT1pNCbWH9ads/4w0jErmwY7HiWbiaQ9jNYajhw5klrMW1/5War+ALvjcuedd+75rmw1/PvKfsx2jUkBMukCl8fvmte787NU9h32PdIxM8O2eiJJix2z94htKaxf1kY/JjaveN1WNhb+GhU7wPrj3wPW1S8NxbQLhUKhUNgQLJJpM5uOojEpK9RoB6p2TJHeE4jTOfI1thtjy1kP5Vcc6bB4t8qW2LwDjiyOuZ+Rno3vMfDOmv1o/Q6br82igjFYIsL1RFHPlFU0t38YhhWL3UhKY8hiPxusXebreuuttwJYtb6/44479vQH2GUTV155JYBdLwIrM/KrVpHjDJHHA8fxZpbO0qcs9aiK6+0ZK+s5rTzWnZ48eRLA3jGxeWS+wjZGWXx+ZXNibWeWuB9Eltu+PPW+q5gFwK7Fsn1aO81SmsctawNLZSJPAGsL+4UzM/XrDtvosP0FS6wiuxiD8hP36yDHcLB6TXKlolf6+k6cOAEAuOWWWwDsznOOVufHwj5Zp81SAT8mdm4dn/+LgWLahUKhUChsCOpHu1AoFAqFDcEixeMGNngCdJhHdoD34o654BMsRvT1qSQFLD7MXFVUKtCoHna9MLC4LBKLqXR6kfESizhZhGafUXo9TkDA4vnIRUKFaVUJX3wbe8TjFlzF6okSGzBYFB2pE0y0edtttwHYFZObUYzda2JeOw4AV1xxBYDVgBGcrCCaB8rQKDKIVG5zPKei8WRx61xSHX8/i25tPlibWR3AfQW00U9kNMlGXyzajcIP98DmDou+fXmsJuL3JBKhssjcyrdx4UQyURn27EzFYvVH7m+seuBxid4N1R9+TlFwFYPVZ2L/nmep0l3ae2Tzwo+R3XPNNdcA2BWXm2rK2mjt8H21/rBYPAvqtM76czGxrNYUCoVCoVCQWCTTZoadhZjjnVvkFqLcMpSDfeRoz/dy+jYPZt3K9Srabc6FdYyMI6zPdk4FU/D1sQsLSxDsWmOO0U6U05LaeNruODJeYyNDFawmakuG1hqOHj264kLiocJdZs/L+mTGL9YnnitZ2lAOcsFJEqIUkCxpYVe/SLKjjJfY7SWSQvEc5TGKgtSwhMrmivXBvnuDJZYUsTFj5A6ppFtsjOXXiXWSPJgRowol7PvK6w4ztsjlyyQQ1k77bowwCpPJbN/uMUQSFw6brNKuZqFP+R3hueQN0fh95/rt+UdBarj911577Z62sbGmb5MdY+kDJ/rw5fO6zfPbSwdVqNOloJh2oVAoFAobgkUybUYW7ISZRxYMRKXg5E+/w+bdnUo64cEsj4PfR7ty5R5m9bPLScbslAtWFpKS71XBV/w9StoRMW3FqKMwggYO4ZklLTGmzeVGSR/UPIjczoxhW59M52a6bpVYwZ9juwGVHMH/H0l9oj74e1RwEH43MuagQlFGiTDsGAd3YV1g5H5p52x8szSySjLGn1EK0F4Mw7Ci3/f2Cfy+2XdOuOH7wQyXXeT4fYkkikovHbVLJcth9ur1xCpBiApW5Z+lskfpWUPY3oZ1zlGQHYP1x+aO2Y5E4AAv/EyyVM6Z1O4wUUy7UCgUCoUNwaKZdhSkfi7BRWYpzoyDd6+ZvlDpCXvAVqPWRs8MOD2fSmUZ6Xl5l6ws0aPwlUrKwP2MksQzY8h0w+o5ZQkrMgvmCFtbW2lYTtaj8phG4xSlTfT3cNAJ32dlj2CI0g9yfSoJRwRlmZ/1RaVVNUTvE78nzMo46EaWoGQuTDDQz3i8vjWTyjAsjGkWLpelSmwBnq07KggRe3Vk0gGuP1r/eO5zuTaOxlB9G3j8VVAn/z6poCMsHYjsE1iS0JOql8tQ644H9ysKSsN9UevCUlBMu1AoFAqFDcGimXYUslNZnfJONwrVp3bDSl/k686u4eNKp5elLFQpQFX9PdbRHI4vCtyvdvdKbx2dY0ShNuckCVk51tZeK3KPyJqXx65Hv67sHwyRPpl9X3keso+sP8d6dk5ukqXz5P5lc5h1lmyf0GPbYGBpQyQpycbYI/LtVQlxeuxK5ura3t5O33Grg+01OMxnlFiF1zGuJ0osxGySw3Fm74LS19q9XvetQuByWRHrVCGc+Xj0DjJ4zKPxVLYMygPBt0U9i2zsuYylYFmtKRQKhUKhILFopm3IduqKRUfMV7GlbCelmEEPo1OW5lnkML5H7RAzHaNi6X4HqvzPe/TIyjpZ6cmzMpTUY9028T2RRGKuvB6doo0hWwtH/vPcFhXtLLI1YLZkeuLIw0HpspVUxt+r9Kps5R3p+Znh2Bhwys5M2jH3bkb9yhL87AfDMGBnZ2cl3kEmzeIxj1LBsuRDza+IIVobmB1zmdn85ih3nKgka5Na3yIdupJgZdHGlHSIbZY8lOeJWv+i9nPMgmh9X2ddOAwU0y4UCoVCYUNQP9qFQqFQKGwINkI87sGiP2Uw5cU4ShSnRF1ePDIneo7cNTiIgiFzJVAiNPU9EqnyNVlZcyKlddxP5lzoomuUKC0SSfYaL0WiwsiFTPUtusfAfWKDoCxIA5dhiIy8lOsNG4x58aHKLd/TDg5J25MwRLWf50VUhkpMEhkEKfAcOojgF2fPnl2ZH74trMri+RwZXSkjPqXay1QQ/H5E+bsNHDaXVTgWIMhDGXkpo0bfNjZA5FClkaGlcsXKVJVqPePjkYsZz012+YrcIHuCER0GimkXCoVCobAhWBTTNtcL3j1GzLc3hJ6/f475cB3+GsWwo4ASHLCC3QuisJyKafewCOX8n6Xm5HqU20ZWnwolG7F3NdbcNr8r53LmXL6i/mXMXYU0jJKWzLkbRcY4yiguY5NcHqcYjeaOklKoEJiRlIb7yfM6kliwK5sy1syCayimmj23OTa4LoZh2MO0DdE6wOsP1x2FT1YJajKJ31wwnyjgjHITNAO0aE6xpEiNZTR3ed4Z42ajvCipiZKQcjsyQztltBndoxI8sUtYhOzcYaCYdqFQKBQKG4LFMe0jR46c20FxOERAs8pMH9XjgqTOKzchDvwRpXNU7hlZWLw5XVLURmb2zFqYrWX9YnaUudBxGVlQAuXaoxJURFgnnCA/p6idc0kEeq7JmIHSNWf6fWZUPGd6xkCNdea+ZeeYiXA7gN2x4DC5c9IU/78at4gt8VizVCMLONSLYVhNzRn1RwVTicKKZu6M0XkPpa9VNg7+Wk5ryW5OUXkG9Syjd5znk63XUapRg13DCUJYapO9T+tIythWwupXYXujPke/Q4eJYtqFQqFQKGwIFsW0gXH3xuwrY0vMTCJm2JPa0SNiBly/CnAflaOu8f1SwQZ69KDMjlTSD7/TntN/cv1R/1Rwfw4ME93PbcyeUY/eye5dZ6duUDt3/z8zzrmy/P+KwWV68CwxCJB7RyhdX0+oVdNLKqkE/+/vXSfc4xzDjupT0rTe+ZG1ZWdnZ1/hKvk5RRK+zDPCH4+slHluqvfWt4XD/qr1ISpPSYMips0s2eo5efIkAODyyy9fqc+gvBTWkSQxonFWFuCs447WCQ4dvBQU0y4UCoVCYUOwOKYNrPr3RXoi1uMaol3rnG4pA+80lc45qk9Zo7IfYFSeOh71j61Gub6I8SmGoKxkozZwf7Jx5T4r3XnUfi4jg3pe/n/FmjOdNpehJCE9Vs+GbJc/53sd+ZXytXO+8f4aldQmgvJKUNbkWYhIRsY6Db02KuvA2LavO3rHuK82Tub7bJba/to5Zpj1VUmBIomMCj3LzDuyODeoMLN83tfD0jJm3L6OY8eOhf3jNMzZnFX2JNE91md7PippU/TORzYAS0Ax7UKhUCgUNgSLYtrDMOC+++4LE2n4azxsN8T3ROylNyVnZu06Z83p71F+zOv4l/b4bSv9kyFjJsqXt4cBz7HMrH+ZzpTrYTsCBd8/01lFevw5Nhkdn2Mg6/h4Z8+/1+fZj4UaF8XKouutfHuP2B848llmnR+P7/mmUlX9UON6PvD1Rmkhra82r9juJvN0UYl01nlfFCP1z9KeHSduMUTMXrH9ufXOt4nXH373jHH7a5SFec+znJsHURmKwfO4AquxCQ5SonMQKKZdKBQKhcKGoH60C4VCoVDYECxOPH727NkVB/gsUIoKL+oxF9QgE1MpcU0WXGXOICcKW6iCGWQhXfleJcZZJ6SnCnIQ3aOCqvQY1rBYLgsawy5MCt7lKwokwmoS9enFumwsto6rEs+ROeM/XzeHe8wCwHC5LA5Xnx48BlY/u7wBq+JeFQiGw/ZGfVeGVpGBFY/nQbri7OzsrLiY+jao8bf2Z6oA9dwzcTiPGYvFOYCKb4Otn+a+p3J/R21Rrp9Rm7n86P3x1wG7onIbE5tnPWqSOTF4Js5W4a9ZDQT0GdYeJoppFwqFQqGwIVgU026t7QmukrleGNYJnDJnuJKVwcyXWYsvUzFt2+1xCL+obdkYMHgMlJFXlDaSy7ddOu+aIzcR9ZmFPFTGedwuX04v0z579uzKjjpyF1RJCrh/0TEeL2Y+viw7xnOEGYE3ouTQoFx+5uqjAv8wm42MpuaCxkSGb3NhS7PnpthmZGCljADXMejsQWYoqMbWwO94BvW+RG5HbCjFn5deeum5e8ytiecdS6z8PWx4yNfye+oZ6enTp/e00YzLzK0rkj7wOsPveLYGz41tJNHhec3vin2PEj4tFcW0C4VCoVDYECyKaQPjbolZS7Tz4Z1Ztgtb1zUpC8jBn7wz9f/3uotFdSvnf3ariK7herPwnMzCmAVwYAagjyXz915JQqazn0u0cubMGele46Har/oRnWMGzOzG/z/Hzny/7FpjTffcc8+ezyyBB7dJ6fGsLH+M5yyXFUlp+Jmyy5Ehs91QczV6N3qu2Q/MloaTSERsv8dtj6HC/DKi95Pbwjp0X/+pU6cA7LJGpdu+8sorz91jrNuutXpsfeFEKN59y+qztl522WV7rrWy/fNnKaRyD+zR+8+5X/r/lU0AH4/KWZpuu5h2oVAoFAobgkUxbW/9C+RO8irUXKaPVGwyC9bAbEnteCMr5WwXx1AsjHUvUf/mdLM96ed4t8ohEaP6WIKhAoJE5UcW9Ax1T3Z9j+6f50xmAa5sGZTesIedMfPy9xjDNuZjbMbY0jr6aKV/tzp8+zlkMM+7iC3bMda3c9mZXQH3IZMKXSjrcWPaHDQosijmT7aQjzxdWEKknk8kPWHbDJYGeKmJPVdjw6w3Ntbs77E6bX6Zntr008aWrQ923pfPa6GVH3n/mBRGealken4lMc0kfEoKxZKFyKMi8344TBTTLhQKhUJhQ7Aopg2Mu5oefYZizVly87mwpVGISD7HZUQ7bGbY7LeasVilo8+YCO8E2fLTkDFVFWo1Yz5sha2s5aNjc4wrQqZbYpadjS3XtU5YzDkL5h4/ek6H6WGMx9gSM+2I1fbaNCjduj+nEHkPGJihKnsJD2UtHN3DrF+lqTxfKFYG7DKzyPPDtyWag71xDCJWye8Y67L9OLEtg93DvtARO2d7B5YkRTp0ls7wmDDD99fynOmxGVjnPTVY+/n9YX1/Fhb4oOfZ+aKYdqFQKBQKG4JFMe3WGi655JIVXUy005nbzXsWo9JCGnp2bsoCNGNWSneVMe0okbu/N2MvKpFHFlmO/YFVfZGeSNUf9UGxcNZhecxFsmPs7Oys1N2jM8+ev9JhzkXI8uDEEWyZ6+eqHVPxALIENcovfB0oSVIUU0D5xGfeGkpyxVjHR/qgwPPAM21maOr9z6Q9PE72GelTOSKesiPxz8XmDvv/s97aM+3IRsKXwUzUz1XTe1u9/J2j+0VtVFKhbA6rdy56JspKnL9H3hE9Et/DQDHtQqFQKBQ2BItj2keOHOmKgKWYTWR1qNLPqSTuGUPk3Ve0S2a9l13LTMtDWUAqC9SMNbPONKpP6SFVfOpI3za3A80ioq3LonuuGYahy1dcPVNDpL9XfvNqtw+sslRmHubX6tMUnjhxAsBuVKnLL78cAHDXXXcBWPXfBnb13lFUtjlYe60NyvYg8uqY8x7gOvw9ytMhmlPr6DAPAtHawl4Dqs9eApJ5U/jyWSLmy2G7B9bnexar2GqPpwbD5qzNi8if2v5nS3OeM5H3gHqPlJeGB3tdsD+1fwYqbn3mp81zsPy0C4VCoVAo7Av1o10oFAqFwoZgceLxra2tLjHOnKtNJBY1qGD40fVKXNhjGBaF8QNWjTH8/SqgSE9YTjYA4YAM0b08fspIJhMfGdRY+f8jwybVP+VSFsFcvrJ0nvtxFVpnnjGUeJzF5CYK98euuOIKALvicnYB8+EkOUEDh7PMxLQs2szms2HOxWwuvG10LBvHwzIEisSsbLjFhpSRe9NcMBAOFerrnkuWkhlw8roTibjVeqOCq2RrM4vjIyNX5VLKYussWBG3gceoRzzO9WVGqCUeLxQKhUKhsC8simkDe0OZruNWdRBm+hnbU2wl2oXxrm3OyCcqd874xtfLzI2ZvJ2PjMmYNTErj9xSeEerUl5GRivMPnskCL0GNN7lK9qVzwXKiaCuVcwnKmvOuCsK88iBMYzxmPGafQLA8ePHAezOszvvvBPArrsOP2NfnzKaVIZCQGwcFPU9e2/ZEDJ7Xy+WAVrGYjlwCfcjauOcWyM/f3+ejUdVUBX/XkbJi/w92XxThqHMNqN30aQP1hZ2W4wCsiiD3sxtUYWO5eeWMW3lwpmtjUtDMe1CoVAoFDYEi2TamcvAnNtOxsr2c4/S06lgG9G99sm7Wr8jVuwrcykysOsFs9hIt6SCF/BYZJIEFcgk02mrZxs9ix7mxm3Ngl3MtTNq91xQmKyNcywyYwYsrfB6bwbrGzlxQ08YUwYHGPGMTiVAUWzQ1zfnBmXIbFIudNCLSJ/Krn8cmjh6P+eCqPA7HgWwMSiXwyj5h60zyi3W16OeB0sQODmIv4a/81j4cVTrAAc9YRcwXy6PgWLc/v45l7Lsva3gKoVCoVAoFPaFxTFtoE+HObdD7DmndFjZLt/AOzZ/HVsuK/aU1cMW4QzfF9YXqx2i3+nzzn2ODWY6Z/4eJRBQ1qeKwfr/e3TP1tZ1bBu4TRHTnkt7mkHNuyxAD4fw5Xsz5q0YCLMYr5PmucLzIkqeocICc32Zvle9v5E+MQupeyEQPRfW02bvv0GFMTXwGETSjLlwudGz5HqUvYr/X9mYZLpfXneUx0kkUVTvqWLT0bXcb4MfEzWObKUeBdJRIaUPG8W0C4VCoVDYECyKabfWsL29veJvHFmrZgwQ6EsUYYh0WHPXRjtB34/omiyputpFzu3Wo3PKxzZi2nPW9z3shnfaEatWluCZfUHG3BnGsjOfYVWXsmz355i9RuFruT4lXeDdfrbLn0uw4I8piYHy9fXn7NOYPn9fJ4wtP6d14i5E3y+2NS+/r1HdHM40auOcFbcq29fNz1DNO18+t83KsOM+9CnHdFA2Q1kb+ZPHItKhZ7YAHpF9ibJsN0S+3cpfO/MHz9abw0Qx7UKhUCgUNgSLYtrGlHr0hfvRM/BuMUoQwtexDinTYRmURSTvKqO0eqwXUv7BkWWranPEwHvTN/ZYVCs/5EynraywI109swGFyErVQ7WbGXbUbhVFj/W2Ub2s42V9WpQeUekaI5Zr97O/rPlp23GzNPZsbS5lYSZR6vVVz7w/FMNego9s5KfN9ij8bkcW4MoH3sYgisrFc5SvicavZz7zPSyVUwk9onWHGT0jmqu8NipPlOid5/VA2YZkftr2LrBXRCTBWJou21BMu1AoFAqFDUH9aBcKhUKhsCFYlHgcyPPRRtiPCEO5KkVGF0rEzWI+XyYbsrBhQ2ToYOJxFpNz+MTMNUrlpo2CXPAx1Z8sF7dB3Ru5eqjPKPQpi6SzZz0MA86cOZNeq+7PXMvmxOKZkZx6HsrYx/+vVDZRH1g8btewKDBy+WKRunL5iurlsbFrOTRq9B5zPzPx/xJg4zRnuOUx55pkiES0ykBQBbTx/9vzNbfALICSElfztbwe+Xv4WhZXR6JnVjPyuEZGbAxWVURqQF6LVbjUqI3RWrsEFNMuFAqFQmFDsDimDeShNHkn2OOaNLdT6glrOsc8/D3MTlXb/C6SmZTfQUf1RDtQtePMAlbwDtvGQLk6ZcgYq2Ko/On73eMa4+FdvqIxZ5bCzyNjhPxdGYpFYRftkw3BIuM1lsYwU+A++HPMFoxN3H333XvKioyJ2NWrBzw3OBBNT2haHrclGaJ5cDhPfj+ycL9z4TazuarCb5rbVhbUhd9lg1+feteZ6J2Ze5aGTMLH12TSmTnJVTS/WVKqXL0ips2Gb0tBMe1CoVAoFDYEi9pCDMMwq9NmnQfrhzNmqFyGFAuM7mVWE6WAVLvvLPBHFr7Pf+/Z9fEuMtrJK2at3Coy/fQcG43OMbOOdrVzCRc8eO5EmHsu3Ma5Y9H5bB6ogBW+3caKszCLqh7uD+uwo6QPkbtRL3juKDc+/0zndPXR+5Q994sNds+z98Lc66JzBiU5suOWfhVY1QtbMiB+hhlrtmfLkr9sXVUharN3ej9SOa53zh0T0HMnC5TCOmy284iCB7FUYWn2FcW0C4VCoVDYECyKabc2puVkVul3t4ol8We0c1IBMNhS2u/uOM0d60Aih37F+CK97Vy/1HVRaEAO5pBZ/hrmkmb0sGYVTCOrl3Vm0dizrjQKZ+uxs7PTpWNUEpeeQDJ8jQrYE9Vj3401MQsAdhkbeyvwnIrmmErYoILtRO3vAfeDww4zw46s8Zk9Z+/v0pgOsLsmZYFLbHyURTaz5Yg1s3V6b/hPfw2/a1GY3rkQv9GapSRtPCY+bCrfw9eyvUckjVSSqsi2g2017L0y+5IsaBB7QywFxbQLhUKhUNgQLIppA+NOTOlZAa3rVXo9/7/SvTLTziyYmQlEuztmDbzT7fH7Uzv4Hn9mQ+afmfmZR4j04QbeNWchRBXDZv90f02vv/6ZM2dWbBwyf20lKch0fj32D9x+ZinKPgLY1WvaJ+vgIubN/WFdprJI9+UriUFm4a581TObhznL6cwffYlgiYeXmjBbZYbN42bM3P+vyjBE1txs08B6aj8frR6e13ZPlkyH1yRlJR8lUWFJFccWiMIsq1C7di3fC6wyapNkZfYvS597xbQLhUKhUNgQLJJps07b6xRU4HxDj8Ufs4csKhfrM1QEsUgHx/Uwe870ib2W7r6NKrJbj/6Ly+fxiywyVZsifRVLMXisI1bdoxs3GNNmlhklEVHW4lm0OXVNZi9h1zBr4nZEbELp4iImyizc7mW/2cj+gsvldIfR/M7ORWOU+R8rffvS2Y5CZOnO74P10XS9kZU9S1zsWvuMbCrmIiJG85ulQDxnuI2RxC2SkkXfPXjOsI0AJ7sBdCpQFfnP9yM6p9ArfTwsLLNVhUKhUCgUVrAopt1aw/b2ttyZArs7JdabqFjG/lgUTYqvzdoG7O4qM2tvxRYUO4ug9LnRLlDFx85Yy5zPaBatyXbnrD/mdkRxkW38bAfP1qsRU+1hX8Mw4L777lvRlUd6fIaynPd9UqlSGdkz5XkdWeTa/cawOM1mNBasp1O2DVFaWfYHZh2gkrx4sH4wswRXNijrRGJbMvw4sXcAvyc90Rxtjlx22WUA9Hvj62OJCuuePRSrZKadRWDk9537EdkkqchoSrIU9Yt12Ox7PVfeHCr2eKFQKBQKhfNC/WgXCoVCobAhWJR4HBhFEpm7DosCe8QdKqgGi/6isJJKBJQZlfUmNYkCwHAbeSwisbkKAdhjyKVEz1nYTAaLe9mFzl+jgqlE/Wf3puxZ7+zs4J577jknzsvCy84Z+flny+UoVUQEE9txfdb3qD0sMmexfCRKVW1QYtfoXp5XmRuctZeTMKjwj5mRpjJI21RDNA82DFTvcpSspTexRRauWakt/HzLAj75ezK1kHLxy95pu4bDwvI77/urxP8sHo8MO9cJhZsFo1kCimkXCoVCobAhWBTTNkO0jNUZk1I7tMiwQjEN/szcNdgVIguuoRghM8bIjUYFU2CjrIjZZwZVvp/+f5Wak9sVMXsVlCYKUqMSg8wxPN/Wud3ymTNnZFKBCCpITMQqFcNWBn2+3WpsI8kO38usggNLROcUm40CVjCDV2Fa/bhGiRn894wtqwQhWfjZTYf1TSUb4eA3wCp7NANBNv700iwVVIXHNjK0ZCMyXlMiqREbw7Grbvb8VehR5eror+E2qmAr/v/zCde7NNevZbWmUCgUCoWCxOKY9tGjR1d0fn4Haq4wmd7MH7dy/TH+nrmbqGQchnV2Yz06WpXOL2PaSsrALnPZmMyFJo3Yp9LzR0xbBYBRiRE8evScwzCkkgRft5K09EgVMnYExM90zsZgHbcW+54FnVBzJUsgo6RR2VxV/VBuXf4e1aaMaSsp0H5Y1GHA2mnpV3nuR6ySXfBYUuVDnxr4mbEExoNdWRnKnTM6x4l9orWD+2r9szGxeW22S5GEh5m10m37c+sgs7NZApbVmkKhUCgUChKLY9qXXHLJCiOJwmEqq8AoGMScdS2Hbsx0p3MhG3175yxxswTvc1abUTAXPrdOGFMVRCPanSvWqfTW2T2ZjngdBtXamNaVmWqU/GWdwEJNQMcAACAASURBVCGMuVSmEeYSuURQjDRisSoFp5ICZPXPMWFAM9y5wBk95We2DaxD3bSALMoGgK3wgV3GyRbonA41kiTx+PDz8Pfwmsfz2Y5HXjMqBG1m58FtYYZ96tQpALtM248Jj5N6J3z/eteQKKWuCj992CimXSgUCoXChmBxTPvIkSMrDNsnUTcwm+vR1ylmxUw7wtxuMmMGKpFGpOvpCVs611a2/Ix2m3PlZQy4NzWj36Fyn3vGhJ/LnG7JM21mCIDWYTN6JBJzvqnA6nNgBhy1Q/nHq+fj/59jnpFtgLINyWxE5hJTZIx+Tu8d+RIbeF7x/Ije/aWxJA9jjtZ+s9cBVlOmKuab2Y3ws+2Jd6DiJxgiWxoed5bEZP7nxrRtLIxh2/HM3oM/e5KB9IAlOkvzaCimXSgUCoXChmBxTHt7eztlQspPsce62tfD1wC5LltZaEf66ahf0T2RlbL6nqW94521ujdiWPxdtTHS+fA59emvnWPlWWQ5ZeHqwT7JkT8zswmGHxvFWpROO5MGsI9/Ns97JRP+HDNQ5QceSQP4Gn5HondDpUrk8xEU27MxiewheJz4+UV6d06LuiQYq2QWDay+D5y4hiP/+f973hOD8sfvsfvIpDG+Pf46TqNp1uOc7COLbqbmd4/EVCF6n1S/DhvLm8mFQqFQKBRC1I92oVAoFAobgkWJx4E4WYMXT3CoTBaJmMgpMu5hkc9cuFEux5eViY2UqDQzWpoT/bG4Ogp2wlCBUyKoNmdtVcYqmfFajwEft7/nWmDsJ4f/9EFIlLtZj9EVn1MqiEjkPidG9FCGbmyUmRlqsTskP4/IYE25b/WEMVWuZpmhHasZ+NpMXKnCcmYGl0s2SLM5aqJiQPeN510UxnRuTKN7lLqqR9Ss1CAm4o6Cndg6zcFU2K0rEo/PGU2ug8xotif41mGgmHahUCgUChuCRTFtNkSLDAuYcfDuK2Igc6FOlZtNdK9iy5lLDLt++f5yv3pdryIjtrkALT1Qu/OorQpZfSqZQPTcsj4r8POyHTywyzDYhZCNfrKgIHMGaVEwF2Yi64TNNTCbjYzlVOAfxaKj8pRBkodiOj0JQ5SUwfrN7ja+HwYez4xNLzUUpQe7P3lwUBNldOihwojyeuTRm2woMmLk72yY6CUIc0ybk4JkUiGed+cTLCkymjWUIVqhUCgUCoV9YVFM2xCxFoPteow12U6Nd+oeWeAVoI+JKBaWMV+1E8x0cMwW+N4edzFue49um3epmf6d25pJHbj8OdYcJSTgMhSGYUgZqQr+wTqsLNiJQuSWxGOpdMCRq5La7fcErFBSgahPrJ9W90aueOraufoBPb8ipqfmTo8eXNldLBHe/sL6xi5rLLXLJFRqjCMpRq8uOwuYwzrsyBWQ9ffqnkiHr8LyZnp/ZRfDroWZbcDSsMxWFQqFQqFQWMHimPbW1tZaukvTT7Izfk+YT75GBZrw5zL2wG1TxyMd3DrJPXwZ0TFVf9QvZoGKdfodtgrzx/dEfVBBaqIdfLQLVhiGIQw0EYGZacYu1PPg9kbBYVRQkCwZx1x9zIyjY0rnl6UuZIaTJf9QYSS5Dxnmgsdk819dE1kAXyid9n70p+uA009GCTuAWDLF61s2d5Xumq3Ko/fJyjX2zOFEI+tx1mGrFLRRkB0V8GUd63EVNCrT1S/N86CYdqFQKBQKG4JFMW2zHvffo2uAVQtJ25GxnsP/73VGHipUpS9vTrcdMVGlh7Q+eCtmZrSKvfL10bGeHbYqnxlPjyWwYtg9esmsn+xXmrHnYRj26M4yfTGzy0xPOMfQeL5lOkZuW8S01fxSbNr3Q1mpc38jlj6XBCRqo7IVyVgoW+sqRh0dj95tX0+mq+1BlhzDwJKoC21ZbG2wtSvzQImSiPgyoveI109moD06Zr6GLcH9umu6bGbWnCClJ36D8gbKmDFL9iLr8Yv1bPeLYtqFQqFQKGwIFsW0gXEn1JNQgXdKtovMdvd8L1s9RvrVOf/VTPfCjCSLxJX5RXv0MOxsN25Qvq3c9mjn2xvhq6etPf7aikEwIgvnaNc9ZyGdWb9zGeq7v0dJLSIbCpWgg1myP9/LliMdtIp8lkVEU3OjxyPA3lN7ltaPTKfNbeqxh8gS0TBaa9ja2uq61t/jEelGDypVpIe1LfLp5tScvO6YZM+/R8yw2UpdxQvw5du9xqJ5DnumzSk4WXfP7fL18fPhdyR617kfSqcdReI0LM2KfFmtKRQKhUKhIFE/2oVCoVAobAgWJR7f2trCJZdcsmIEEZnjs3jNRENZKEoTDynRHydY8OeUW0sU2J5FMuy2EYn1OKfuXBKOzFBDuRpF7iFK1KjCt0bHlOgpM+RQ/YsMQnqNira3t1P1gjKy435lRndKRLuOKyB/+rnFbjJ8TSQeZ0M0ZejG56M+9xjfzLn2sRizRxybjaMK+GPoUZ/NzR0Tkft7swBG3F4WQft7lAHsQcCLyTlZEouPLVBL5ELJomW1VkXrKhsHs+uXv4fF40oUHb2jPDe5zZkBmhK/Z+vp0sTihmW2qlAoFAqFwgoWxbRba7jkkktSox/lrmPHbRep0sX5a1UgEb8rY9bCu/BoB6oSGvh+cj1zwSb43owFKIO0yJ2Od6A9rl4KWfhKZWjEhiCela1jENJa2+MyqJK0+Hb1sOS5RAo89pGRlzJai9gEB5uYMyrz/7OxmjIqjAwt50I3Ru57fC0/4yj5h3Lxy8aEoVzMojCmqq0MH9SpJ5gGM1Drq2fa3AZ7phfKlYhZ8MmTJ/d8N3YbJbVRawWvkdHc4bK4n1HIXTUGmQGsYc5tK0qtnAW2UuVn0szDRDHtQqFQKBQ2BIti2sC4A8rC1KkdE+vRoqAacyFClS7I36vCPUZ6QruWd6vRTk4F6ehh2upcxtp5V670kutgHcbK9WZBDnrh9ZI9iSdU+z3Uc1E2AJE9RGQroerjMWR9dea2xTpFFYQiY0tzwXaAVamQcleMxkQxHx7H6LmpOdvDjLK5ZBKajGmzZM+uNWaduRtxG9he4WIhCiuqYP3jgCzZnFXPaT+IAqWotZHtFqIAMCqoz1zo5yWimHahUCgUChuCtqQdRmvtFgBvOux2FBaPdxuG4UH+QM2dQidq7hT2i5W5cxhY1I92oVAoFAoFjRKPFwqFQqGwIagf7UKhUCgUNgT1o10oFAqFwoagfrQLhUKhUNgQLMpP+8SJE8O1116bRrWa82OOoPyHe9Irzp07n3sOOuLOOv7Hc3Vn5+d8x7OobXMxu6NYwxwV7A1veMPb2Yrz2LFjw1VXXZX2aT/o6Vv0PStrnXr3c+9hYx1/afU9mwcqElcWp9pw0003rcydq6++enjYwx4m2xzhQjyPdd65C4X9GCbvJ2riQZaxTrz8uU9Ax+B485vfvDJ3DgOL+tF+0IMehOc973mwxdc+jx8/fu6aY8eOAdgNfq+CgPiHYIEROLgAh3s0ZGEeVYKFKPRp770ZODBLFm6Sfwh78kOrABVZ4AreOPEmy56NfQK7QSguvfTSPd8teAPn4gV2n9tdd9215/ODP/iDV9xzrrrqKjzjGc9Y6ef5wtrHuYh5QxmFg5xbaHsCwKgEKFkCFxXApCeQhEoG0vODyH3Iyuf3hoPIRAlRLDkGJ5uwZ9OTmOO6665bmTsPfehD8bKXvUyOW9QnzjudjVPPO6XqWydJSu+mPVvfegmOP8bhhlXZqg3+mijHvLpG5Y/PfoBt7be5EgWcOX369J5Pm3/PfOYzF+EWWOLxQqFQKBQ2BIti2q01HD169BxDYzYG7O5sFQPJxB3MrHln1iOay+rx/VD9m7uXoQLnR/eq8JU99SjGGLHBuV15dA+nKzXYczQGbizKt+Wyyy5bOXexMSc9YYlID7KkCGoORQkPWNo0l3Sjp779iCvnwo1mmAsxm53rCcuZYRgGnDlzZuUdyNJQqgQkPSqhOalWdG4/6GHNvUyb2+Wv6V3vPFjqw+FG7d5IgqnGXq3V/pz6jPqQpSM9TBTTLhQKhUJhQ7Aopg2MjIyDu/t0d8y0mU1GCRVYb6ESK6yjg2FkOr85/U0E3u1zYoWsDUrXE+lBDYoFRKyZA/SrFI3+uD1D1X6TpkT6Njvm58HFghpD03Pxc4mMJlWfo/PMpOdSmvpjhjk24ednbxKVjJ3xcUM0JnxOpRHNyl33fA/Onj27MhaRXlUlvInGT0mr1nmmyk4hW6PmpIPRMfUsz8fAMpPoKOmcss/w51hC1WNDoRKeZOlq+ZqloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8Xib8iGbaMREpj4vLRvdsPgjMuE3834zZLLvyh8vM0BRbhzr3BOJ8NW9LDaKjMvmxOI9uXDtU+Wb9SIodnuy58Tl+3uUSsLALjS+H5FB4sUCPyPlRhWJ6tjYRrntREZlfA+rhaJyuI09Yss58Wf0TtiYKJEt35MZ+XB++iiXffaeHASGYdjTv8ztaC5GQaQeYVUHv2N8PipPia+jdYCfD/cje/5KpJ6JurmN2TvBUP2K1jl2D1xnnqm2RPN7P665FxPFtAuFQqFQ2BAsimkbsohoBt4NM5u2YB3AblAGu0Yx7YyRKmQGKNwf1YcIyq0hYiQcOIB3pFEQGbWbnGMFwO5zMQbMn9wOXx4HK+GgJZmBlWfhFxtKOjLnAuTPKXYesVhze2QDuGj3PycFWsc9ka/lueTbq67tcZVRUqDoHewx3DwftNbQWuty/VTIDDZZMtXjVjnHDCMGzKxSMVKPnqAtUZuzNmZGrD1M1x/37xsbKPP6FmFu7mRuacW0C4VCoVAonBcWybQjXZ+BWbGxOmPTFnru1KlT5+6xY8bCOQwi79giVqGYVLSbNDZpn3bOWGW0m2V9EPed++0lCRym1fpnx02yEIWGVLtIxRKAXRZoAVE4NGlkV2B9tmu5zZFUJduxLwURI2Bw4IhMisEsie0FMrbETEu5evm5pWwmlBTK/88hR5VtRaZ3VTrMqJ8XUrcduUNmrnGZ5IPB48FzXb3z/tzcs/XgtaRnjirpDB/39c2F2I3e2zkdPUsS/b0qOJb63tO/ddxvl4LlrYKFQqFQKBRCLI5pZztHYJU9GuM8efIkgF2Gbd+BXRbOweKVVfk6YRFtt+ktm41NWvhNDgSjrK0BrbdV/fb/q/7sB6xz9CFETXJhyVvsnH238fPMnqUNbBEeBU7JrNE3EXPBSPwxZgDKa8L/P6ePZJ2gP6faZnPInrk/xhIdZoOZnneuv6qvFwqm11b1sh0Cs9bI1oT7z3YbNvczics6c15JOjLblt5AIpnu18CSsMy2YU6yE+mrWbrK8y6SCll77VrFuCMcRCjZC4Fi2oVCoVAobAgWx7SHYZD6XP+/7ZyYadunsWtgVcfKTDvSwfYiChHKO1o7Z8dZ1w1oxmGfmXW8HbM+X2i/VrUDjXxs+R62Imc9r0kn/D1Ls96MsE5b53xw/TFm0Twf/DnlW9/jS8x63Cx9LTMa5W8c2UMoSVLmn6vSKh4kMh9fYHWcrA1ZnAYuuydRiGqP0n9n3hbcj574EEqXrfTXvk1ztg1RW1RK1sgOh+cmz5VoXeLnot6JzFOgmHahUCgUCoV9YXFMu7XWlVjedlvGOG1HZveafjW6h3W+arcHrO5KmV1EUdtYd6WsKf0umVk571bZH93vIHv8FfeLEydOANg7nqyTY7/tTJdpY3/XXXftKSOKCmWsewkB+1UilZ4dO1sN8/z2UGPLY5rpJVUbo3nHUiCeh/ZMI/2utVFJUSIJgvIEsGttfkRMm1n6QTLuYRhSmwOlR7U2ZPpiZriRNIHB3htqPvgxYa8VZsc9/vNzPuSRlMbu4THiNctfMyf1NBuKiGmr9meSHZZMZFHbMua+BBTTLhQKhUJhQ1A/2oVCoVAobAgWJR5vrWF7e3tFrBMZFrDRk7lZRcYdKjkBi0H4vP+fxWEmdslENixqtKAkUeIL7s9c0JPo3ih86BysPA6Ucvz4cQC7YnH77u9RoiYO7uD/t08OimOicO9alqlJLhbYEEfNoSzULn+3MqJEKJxDno0WI9E6i05ZdcN9iUTddq/NUU5cYvPC90MlU+Hv0bsRJaLx9fr3gVVCl19+OYBdFct+DEgZwzCsPB9frhL5sljXt5vfR/UZGXDyM7TnokII+/95neE1w4/5XG5v9Zz8MXYPZNF35J7KQbDsvWfx+Tqi/Eg8zu+RzWM1NlFfVRjqw0Ix7UKhUCgUNgSLY9pHjx6V4R6Bva5cwCrDjkKgqh0/78zYEd/fY7tidquKdti+P75c290Ze/U7OttpKneaLJkBszze6XIIUWB3B2qGZvZpLMaYL+9QPVRwg4iJsYGVcqHx9XBAhMyl7CDALNcf4922SnjhnymzM57XEVtiBsCGSIYsNKRK4JAZ3fB885IVYC/rVGyT3R8z4yUlOWD3LmCXnTH7srlq76RndOvCG6LZc/MBZbgN3Gd2VfLn1GcPmzQwe+b30/+fsXFg71xWxqOKgUfJbQzshmvj59ds+98Y9vk+M9+OLNGLtc3WWU5UFAV3WiqKaRcKhUKhsCFYFNMGxh1eZmpvu0TbebJjf8SMlOuD2u17varthllfZzvFKJUgt9t2ccywvRuV9Yd3hD0B7rndVobtxo29+vqsz1dffTUA4Nprr91zjbWHQ7H68pkxsE4r2kUzo7N2RAyLGeqF0mlbnyP3PYNK+pKlSmTGxvYDUZIU5RJl42P3ZmlWrY1qnnvYGFu5XG+UWIbbyK6SHLbX16uSpbAkxjMfu9/mE7t52lz1iFwjFYZhwJkzZ85da+V7hsjveyZVMvA6wPdkrkQqpGp2j7Jl4XcumqPKTZXfOV8Hjy27a0XhlM8nkJWB9f08ZyNXU55vLCXybWSXxaUFdyqmXSgUCoXChmBxTDsKqhAF0mfdH1sJRhbaBhW6MQquYrtu1r1m+tW5IAbGXqMAMLajt52o0ilFAWCYDTJbjixNTXdp+kHecWcMwsq3soyt2Q7b66eZhfOzZXbm675QO122yI0ClzAU+2c248Hske0wshSQBk5hmjEVK48twiOLWRXwQ1k++//t3WArbp4fUQAQZbcSsSf7394XtkGxdvh6uC09c4jffz/GLHFTXgORZbbyIlD6Y1++CsyShXvlYCd8PLME53M8r6N1x8pXiZciqWC2vszBylBhdKNnwPOMn7VvBz+PJQR38iimXSgUCoXChmBxTNvvkjJ9Meu2DRGbYH2ggdN58iegdR+ZTzTrg6xN1g62XARW02uyXpgZvte7K6t4pRf1bTP909vf/vY917D1sn8urCM3ls7SjShcJu90VUhM32fWnZ8vWCJhdfckx2CPA5VAAliVAtl4MdOOvBWUztz0rF4Hx/NJSTGid8PGwuYZ+75GTJvn9RVXXAFgdy6xztk/N2u3Twzj67N5HVk4W9tYkpRZINu1WcjTYRhw9uzZFU8Q/1yUdTuz6UhSxO8wn2f7Dn+Oddlcpq+PLaCVFMBfxxIDXjtYouTXYrU2sm2Nx35iSTB4vWNJY4/vtZIo+Puj2AtLwDJbVSgUCoVCYQWLZNrsix1FjGJLX+Vz7e+xXd7tt98OALjtttsAALfeeiuA1eg8wKqvMOv8uA5gl0Vwm5gheCmBsRTbrdoYmL6QmbbfbbLuyJiclc+7dN9HO2b12A6edU5e+mA+3cawzAL9IQ95CIBVH19gd9z4WTCT92yDx9w/FwWbF5HVs8Geg0kIlBW8P8Y+9pwAxcbN2ylwW+y52LhFCRXsubNEQsUJAFbnG9srsE7b18cMSyV9iHTMVs9VV10FYPV9MngJl0m3WE/NKXUjS3flw84Wwb7dWUpJj2EYpHeJr0vZwUTRzfgdYymGlRXZ4fC4K3/9KHKcWguzuAA8VxiRzYY9K/bPtuOZHYGtIdwP7rdf51jyxoikHfzusSQh0lv3eF0cJoppFwqFQqGwIVjWFgLjLsd2+7bryyz7IoYG7GVltgO85ZZbAADveMc7AOzuwjkOru36fd3GJq1txkxt12rsyZfLftK88418kpWVOutMs/jlbNXN1p0ezLCYkbztbW8DEOt3bLf8pje9CcAuw3qv93ovALsMzJfLO11mm1FM7XXQk/bQnoeND+tE/a7bxvLBD34wAOCaa64BsPv8bczZ1xvYHR+bb9ZnK8skPn4esBU9ewuwbh2Yt5BW/tT+XgaXFflaszW8f2+A3bG64447Vsqxvj/84Q8HsPuuvOUtb1lpI0u7VHrKaI72pO+0nAdsXxHZULBOlv2Oo3vsmT7wgQ/c0w97X2yORdEA2Y/eGLHNCz/m/A4rDwcP9izhCGmZZ41Kzcm2OxGYaVs/ouiNBraZsPXFmL2PYGdgDwOOPR7FRWAPmqWhmHahUCgUChuC+tEuFAqFQmFDsCjx+DAMuP/++8+JMky84kV1kWGM/27iMC+Su/POOwHsGsqwUZTBxCJerMtGHSopgjfg4OAp9mn9iURpKui9CpPp+8+iLRbVsnGZL4fL4wQhWShKE9VZP2ycb7755pV7+FmySNOeW5QCNBJ7KfBz8rA+cWhWNu7zIm5rj6lHWKxn84xdp3yf2G2Kg49EyW3YiEkF0AF0EA1l5BcZ97CxYhYWWM1NDgPKRpS+z+zyZ+olm0P26dtk93J9NhZZIKBMXdJaw5EjR1bUcv795FDBLDbOxOK2nlioYB4fg587bFRq77SVZeMTubayO6xStfh+8PiwgVY0D5QbFYugfX32rGwsWHxt42uqSr/OsarDxsLmzk033bSnLA+1jkb9YrF+hTEtFAqFQqGwLyyOafvdVGSMYDtOFbA/YrGcQIMZlu2s2JXEH+PwohwiMtqpKXeTKEAK18csicvwO1AOdsGuP5HxkkEFD+EdfhT0xMbCrjUWGrl88fNiI6Jox6vCzWZglhS1W6Vg5LR9wK6RCwefYbYchUO0YzYeNv+MYUXPn+cvG/vYePngJFHAFd8PZvx+HihDLXa9itzEWArDUhozLvJjYnPEWJKNkTHHyO1ybh6woV10bi4U5fb29sr74ecBS6KUa6GX0phLofWZn92VV14JYJcZRiFJbX4Zm7SxjUK3chtZMhG9EyxpUwlDMjc4u4ff++ge67vVy1JJdn3191p5NnfYUNnq93OVnzuvO9we35+lhS81FNMuFAqFQmFDsCimzYgST/A52z3ad9bBALs7M9bp2K7edlvGLiIGxG4ndk+UulLp/Dj0oGcGzP6ZTbCOMbpXJdjggCaADqTPOtXI/YGP2fMxZsEubr5tBnZDidgStzvb+ZrbjpWn3Ll8ncyaWSfr/7fxsDlizIf14FmiC4MKmBOB2RGHXPXXMENQITD9c2F2yewosiHh8eM5ZO+bsabITcjaZm6Yxsrt0z9r6zO/lyyF8ONszynST0fY2dlZkW758lTCkEz/yUFtDPZ+POhBD9pTdpT2kpk9ryG+bBsP5WLKUjTffg6FyzrfiPmyy5+BbTciWwMOwGIs2b6zVMyXZ8/FyrV5Eb1v/I7zeEZuaSx9yN7Pw0Ax7UKhUCgUNgSLYtqtNVx22WUr4Qq9voEDhXDA+8i6lpNRsE6WE8FHgR0MzKyj5B8qgAhLA6JgECr1H7PpKP2cwfqXBRDge3nHybtjz3w4OAmHTY2SjCh9NIeb9GyKn38WwJ+TPkT1MaPmsYxYLLffGALrD3k++HNsiZ+FvlTBO5i1+TaqAClsRxCFbORxZ9uCbOxV+caabCwipqLYOuthfZ9VmFH7NB1xdC6T0gzDgJ2dnZVnGkmKmJmy50GkT+X5xmOcrXNcLq9d0TrA85lZuWei/K6ydMYQzTG2v2HpViQh4zlv/WGpnbU10vOz5JLH1evWlZcRM+5o7M8nqcmFRDHtQqFQKBQ2BIti2ltbW3usYiPGFiXM8N8zPQrr79ifMWKkyg8zsx7n8mxHaPo6DnPq61G7O/Yp921UTIv1Ur7/vJPnXSzvUCNfebZ0Zp/fLM0qty1iQswm5pI++PJ5PgCrYV1ZT2e7/MgXVfmx8zhFngdsL8BJYTw7U2kNOSlIFoqUpTWsl/Zzmd8J9guPYhqoVJ8stYmkHfycrS3snRFJA9TzZ4YJrKb+nGNNZ8+eTdPRsoU8Pwe2KwBWbRaUbUbUL+UHzv2I5ptKGBKtA1yf8teO6mOJItseZOGTuc2Z1IHboqQmUThbZRXP0oEoAVMk1VwCimkXCoVCobAhWBTTNgtgZanJ1wLxLhvYuyNlxsH6NGVt7c/xTo11Ib4M3iUbi2DL42gHx/3hnWGkY2R2bNcoP3RfnhqbLAIb18tMO2LragfPu/5Md9az42WJhN9B805dRULzemmlt+MxjXSBLPXhcYqSMLDEhb0UOB2iv5b7pyKW+XvZE4C9FCILd5aOsNRJ6Ukj8POKJE4saVER4KJ0vEpHy7CoaEC8pvDYRulAuQ08/uwvn8UfULYtzPR9JEaOiMj6/EhixUyU1zlDFmmQx41jO/hnzCyWP7ldGeNWHjBRrAeWPvB7nUXdLKZdKBQKhUJhX6gf7UKhUCgUNgSLEo8DoygiMzhg1ycW40Tm+srVh0VxWX0skuGyItcEA7s1sBgxuodFS8p1IbtHhQ7l9vp7WKwYjQmL2diwi10wonZzPZkoisNxZuC2+fLYfYoD2UTtVUZwanyiecCuhSwKjMSwKjRkZJDEImAlzovEsByWlwOwsGjX94vVC3Yvq44icawS/0bGRNw/ZXQaiaZ7QuCaWo7Frf4eNT9VP/z/LIpdZx7wuLAKx4vH2SiW17nIOJP7tY6xH7dNhSiOjLxY7ZKtwQrK8C4zJGUjyih3Oj+nEo8XCoVCoVDYFxbHtIHVoAAevGMyZMY2vNtWu7ueXR6zJg7M4tuojIoiNqEYgWKOUYB7ZUySBRzh3bEyPMuCa/DYR64l6rkxO4tci5g59CAyTmJGBR4FXgAAIABJREFUqIK1+Ho4QA6HVlX98XXzODGLjRgdGxWxG01kYLcfwxljPMxWOGFFZEykWCefz4L6MKL5zc+SpV+R1IMNLOeCq9ifaoNqNxsk+ufPRotzBmg9TNvKYqbo7+H3naVaWXrNOURhRflTrUf+GhsLFegqGiOWFCh3rh4ppI1jNEd5XlVqzkKhUCgUCvvC4pj21tbWSojAKBymSsEY7ayVLpt1mtnuTunBozB4vHtUbmJRv7gtkR6K28hs0MCMJNIJK51cplNXrJzvidqoGE9Wj2LpEdh+IIK5TXGSAkPm/mHPX4U8jXblEePwZUUBYKxtzJ4iFxnlqqSebTa/2fUrYnRzzzJjwHyvsnGIJEnsjmbPcT/6UIYPgRu90ww156N1x9YqxbB79OHq05eldNfZu9wbuCia14rp8ryOAk8pvTvP82g8lXQwczFUY7A0Ft2DYtqFQqFQKGwIFse0d3Z2VgIIRMxA6S8ii0Vm1sqxP7I8V9fwLi9Kq2dQO/eoHhVelK+LWKx9cqq6iBVGQToAHcgk0zWr3WuPLpPbnjH6HibFz8u3W+nEud2ZLYViipmltPJwiHTQbBWsLLQ9FNOYC03rr2HbDE4n6e0T7Nyc5W9PcBXVhywACLc9e25R+xmWMCSzNFfhdvm40tWreoFYr8p9VTY8mc5XBYbKrMe5Ph5b30Zen/mazJbG5pDZ+ag1OVpXlcdG9PyVVENJNCOU9XihUCgUCoV9YXFM21txRlbWbGXIO91o1zrni8hsw+/uWO9tYF2j9/NjX0Bmipx8JOoX68WVL7QHszNua8QCmCWpJB0RC2AmbywxSkzBbWErzijUquF89E7ZOBlYOhNZ8XJbVJsyH1H+zqlT/f2s68v00kr3r1ifb+OcB0AmDbBP1kNmz6uHFXPbWb9uCXhUMh8PDseatYvDzWZWyIpxZ/rUue/rxAnIvAj2o7/N3veo/gjq+Uc2IhwPgKWrUf+UBClKcWvgcriNPdK7YtqFQqFQKBT2hcUx7e3t7RX9WhQA3vS2zECiJAx2LSeSV7puf69i2CqJOwCcOHFizz28u7N7IzbBaRvtk+/NkkzwWBiiceRyVYKFSHIRJar3iBI4sBSCpSmeGWdpOw8CzI7YF9a3S0Xsyvzb2T6AGVAkSTp9+jSA1Wdq92ZRn/ga9n3PGJ2y2VCW78Cqz7Cy/M3iA/C5iNmz3YjykvDI2B6jtYatra0VP3Ov12eLaH5/IhuKdaOMRVbdqv2ZBb9dy5KcTAqgIq9xmZn0wdYqQ2RfxOPF8zuLOaAi4/H7G9XHbc3Afb1Q689+UUy7UCgUCoUNQf1oFwqFQqGwIViUeLy1MadtFgzAoJJIZKHz2ChBhT7tCYfIhmGXXnrpyj0GJQrybTQRvomYTExqn2wk5Y1v2MXD2sJGOJHbi11jxj2cEztqKxuasSiNRW0eKgQhn+f/gT4xVY9Iy8bai8GBPNgJi7SVu1s079Q9djwyklJGPVloTW4DGwZm4nEDq0vsHj+/lcrA6stCCvP7ZODnlYl9lZGUP27X2rPugVIVAauqBlZFRWFMlfvkXP2ANqzlcfF9VudU2FdAG4Iply//TnO/bD2wMY/UA7wWK7VDNGbqd4FVa1myKAMblPoxUSrCpaCYdqFQKBQKG4JFMW0DG1BExgh2jkOeMpv113L6QcXGsuAqKkBHlByDd3ncNs+WbXd66tSpPZ/rMAVj5eySE+2w7ZiNNbtBcWCE6F61k4+eG7PMnhCLzDZ6mHaP8Zo9B5NqMNvIgt4o5ssJN3xbmMUwa8tcVZTUJnonlDSAn3/ERJSbXsQW2YBOhXSN3pU5Rh3Nt7lUuhlbisaWYW6mmbHaXKAcvs630zBnXJZdq8bJPy9eG+05cejQyEDUrmHj0ux58fvP0scsSNFcEKl1gtQwondDSVl72PnSQp0W0y4UCoVCYUOwKKY9DAPuu+++c7s+1jnaNf7TwLvIKL2i2i3PtcmDWaS11ev8mJ1YW0xvHLWDd6nrMGwDMxDFZrM2KkQ6bWaX9rwi1ykOz8nXRoxunUAIrbW1dVDsehel7GQpCbv2cJ1ev89SDKUX9VBsiRljFN7RrrW5qNhaNA+YAWUBjvheDiLEOuFIcsH2IxnzUvconSbfH40Fn9va2kqZ+1wCn4iVsYSD30PlwuQxZx8TSRLseVjSmcsvvxxAPE6cEIZZc7YusL0HB7sxSZaXBqi0uGq+Zc9NBVuJkozwM+W1JZLSrBOA5WKimHahUCgUChuCRTFtYNzVsF7N6wkVi+SweB5Kl6T0HB7Minh3nCWjV1KBnjCP5wMev2y3yrpm1oNHlrSsy5qzqPblqfCYWb97Uy9ubW11lTsX5CSzXFWW05F0iG0LOMFCxDqUJT5bmEdWyiqc7FySnaiN7BkQBZzhOaOs4/07yUGEmDlmIUQ5xG72vHpSpjKUl0lUXk9wHa6bz2UsVjFsk8BFjN8kLMeOHdvzacejtvE85jHgORvZqXAwLLYz8usRSwaUhIXncNQ25dkTBZ5iyYEKa+rPLRXFtAuFQqFQ2BAsjmkDq+wu8n01KH/CyDdQ6bZZjxPpN5Q/ccQmWHfE12S6F2Y2KtGBbw8zRbYEz/zdo/CLHpEejJmq8puMLPiZQfCYR22M/OcV+FlHbIatuFmf558lM2ljLZZSkBm2t21gqQWziShBDUuQlDTIt1HpzKOwjsBe5sNeAsp/PmKqzM74exTmllkZh+WNnpv9b+PJuvnIvoDnIEswuG/3339/ajnN81fN20ynzRKPqB3cZ54rxrTtvO+XzT1+DioJkL+W26ykhZ7FcpIjlZwjm28c+tb6w4wb0HYXinFHbeL5FunuVRKlpaCYdqFQKBQKG4JFMW3b8XLKP9PNAAejb+DdsQr+D+ig/8r6MTrH1ry8uwR2+2XXclITZuKeTXPiBvbLZEv3qN1KzxpZnrN+S0kwsuQZqv5It7SOTpvbHzFtZqLsRx2xWHsuZpHLLN3OR8yAWUrGRIxJRSzctyc6xhHJmGUy4/JtsXpVNDvzfPDn+NqM+fK9HA2OddmRhGkuWUtPtLgItu4om4PofpZEZBK+OfYazX0eF9YPR3p3i9Ng/eBnGkkdVAwBFWPCPxcr3+q966679nw/efLknut8P5QERNkb+X4oRBb1yvMg83BgNj6X1vVio5h2oVAoFAobgsUx7Z2dnTQiDes15nazEZR+KoLSQ6mdKLC7G2arXmYiUb84Tjjr8bIY16o+9pH25bMVLyNiL8oCPGM8fK/Soft2sD1BFjMbiHflkZ6Ty8vGyf63T2UtHlm7MttXerVI5zc3v309Vrfp2ZVuli3E/f8cL5qZduRrq8aP2VOP94chem+j6F9AzrxUpK0ILOHjMgAdKz2zGjfw+6LYpGeInEZYrWeeBd5xxx0AVlNkclt9P01CxJ88d6P4ESZ9MUbNURyztYXnV4+ef853O4puxlLNnvSxzL57oupdTBTTLhQKhUJhQ1A/2oVCoVAobAgWJx6/9957pXEUsCpi6gl3x1ChKbOQdkpMHrl6sNjTDOlY/Ob7pUKCKmOVHiMvE5eykYm/346xsQWLjbIg/D2BK5SRGrc5Eo8rdzGP1hq2t7elkRywaoDGomAWdftz7IrH39kYK+qTcgHyYDctFaIxqkeFreV7oqQmBpUQI2qrzW/l0sjjnPWPRe37MTiNDOyiBCsKWbCTKMiQLzeazyo8Kb/LbGzm/2fRLIuV/XkTV996662yXGDvOmBrhH0q8biV5dcJMzgzcTyHXo7WU54jc8aLfuzm1G+ReJxF3JERMLdxP+vbxUQx7UKhUCgUNgSLYtrAuKtR5vnA6u5dMe6IGRp6w5oCOvgI7xQjNzG7xnagHN7Pu9Gwi48K6hJBMTdlAOPrU0E1eKcfsSU2qOPPLMANtz0zQOoZi2EYcPbs2TStK7d7znUJ0C4xKkSpZ0K881cucj4gC4eP5QAPbPTlwW5Tc6k6o2uY/XE4S/7fX8PsJQrqo9wtM9esOVepiNHuJ9nDOglDuG3R/FaMkNsWMWJuiwruFCW3MeZ7++237ynf4J8fz2MzsFRSocg9UbntsWGsP8fls6tmNKfmXOeykKRqfY1c9bJ5sAQU0y4UCoVCYUOwOKbdWktdISJ3Kb5fHVO7O9Z3+PqisJFRPZFzvoFDD1q/IqZt13JiAGZCHrxb5LKicJbMGKIdp68vYizM4Hv0hkpnyvVF5+bK39nZSfW3LKVR5UV6cGbjzEyiMJl2DzMQZkmeaVt5fm4AqzYHpoP0dSuGzfYLEfOdk/T4sWKXsjkXyigwD4ctNWTv7zoMKJP6RNfu7OyslBdJ3ObWnZ53QEn2ohCoyq0u0v1z2GQO5mTw342VZxIc37Ys3Kchc09lmxDlOpvZsah1PHPf4vnN9UaS2f1Iay4GimkXCoVCobAhWBzTBlb1J55lqLB3WYAPpftQweP9zkrpbXnH5nevKgThnXfeuadM3y8OWxpZiUft8NdYW9iKk9mhv0dJNXiH67+rnW1mO9Br3R/tanuZlem1gZhV7gesl+NPFVoTWGXHcwlrrB/ArscB6zKzdJ6sV+cxj44rPTRLGLKkPep49CxVQpQsKNLc88/uya7htmbXKFa8nzmvQiL7MVbpT9m2Igr8weubtdFYddRPu4cDs3CbM0mIsvvwUiEO96skLdH42jmll86CoChL8GzurBOg52KimHahUCgUChuCRTJt1jFHYRANPWFL+d5ephi1iVkS64/9/8a0TD/Ju8ooYchc/ZG/uEotyklGIn93xSAy33Vuv/LpzixpubxIP5bpqhQyq1vlm8nlRlbqc37mPJ6AfmZsY5BZTHP5bFvhr1Es2c6bvjxqo7JP6En+oqz8e9iZkiRFluBczjqhi7P0iiahYXuIzAOlZ+1QjFpJWrwkjCU8imn7cVISF/s0a3K/VrGXgEI0//iYkkL5frENiNJdR+88r1VqPe/xHMpsHpQ0dSkopl0oFAqFwoZgcUx7GIYVXXbk+6p23dHOV+2GlT7NX8e65sgvm78bs+boO1nEpTlk9SkdD+8YPdvIUov675G/s7Ku7LH2nvNd9cj8WBVUVDBVh68nu27ON1j5KgOrrCKLnsb94Poi616VRlVFfovsIdTYRkyb9fhKPx2xKCWhYGTvr/Ihztji3Nzx9hBRu+fY/Dq+vNyPKGIhp9nla6L3ks8pJmyJPYDdtUp50GTJYNjHmxMVRbELlA0Ir1lROsy5SJY9luB8PPo+5yN/2CimXSgUCoXChqB+tAuFQqFQ2BAsSjw+DGMIUxNPmNglcqdiMUtmEMLiEyVij4xgWHzE10biciVeOR/xeA9ULubMsGZOZBu5nq1j/Nd7TzT2LKpbZ/x6xLrrJMdQRk/ZPWyQowwEo1zV0bmoft8PFbaUDXUyYyKDmh++XB4/a2uP++V+1CR8jQpR6a/pMTK19ihDJ2BVjKvUF3NuidH36B1TYum5UL7+HgPPQx/Mx9Y3/uR2WP8iEb4K5RuJx1X7WRXGqj1/bM79LlKtGJRxYCQen1PhHBaW1ZpCoVAoFAoSi2LaOzs7uOeee1bSRZoxBrDrrqB285nLiNqxs0GDZzcq2AkbffjdrV1rbbXvtouNXH0OwoFfhVa1+v2OV+1aOSVftMNWrjw9yR9UW6OEBGwEGBmnMFRIRWDVMEslL4jCfM65rEWJVRQyIxiW6LBBkPXHj4U9K07nqp5tNNfmUnRG55ilKAYeSUgUW8okF/y+Zq6A64QVba2htSbXCV8O97mnr3Nt4GAowKqURI1tFJqY31meO34dsGAqtsYaC1dGWJnkill5xKrVe2LvPRvvRq56SrqRSTvm3t+MnRfTLhQKhUKhsC8skmlz4Huvg2HXBLXrz3TbBuW2E6XIs12rheTj8KZeGsC7VN5dRkFjrM/GoNbRF6tE8ioJiO8P7yKZaUdQO+l1mLYKrhK55th4qRCL1qatra10l8wSh54AKXyvsouI7uH5xFKbKOysXWOsWbGHLECGCq4SsU8lZeCEDhETUUF9+N2IUuty4Jkepq1cGaP5nbngRfBMOyo3crGa+6501krKxOGH/TmW6EWJk5QkidewyJWN2XkWaMag9PyGLGASf7Iu2xAlb8rCAPM9imGr9Sc6Vy5fhUKhUCgU9oVFMe1hGHDvvfee23VFQfGZkWUpK325GXrCLSqmbYj00xw2MkoKb2C2NBdG1NfHFr4q2EZ0P+vOenS4XD7v8CP9m0oMwCw0sicwBpIxbSuTkwpEyV9U2M8ea1HFtCMLZvuf25/pYjm4BCdWMLuIiEFaGzicZKZTtXLZ8pufaZRsRul5lf7Vt1vpp7PwlczGeyQjrBPuQXSPWkOYZWYhNFUbo1DIp0+f3tMGFTQoSnvppX5RW/07Ftm7+DZlemKWHPHziSzAOXCWCvUbPdu599YQzbs5G4pIusr1LgXFtAuFQqFQ2BAsimmbTptTV/odqOm3WTemUnby/x5q1+93VrZrZYbNDCiyALZrmBVFuiVmvtZ3a4t9Z32/v4f9MZWO2x/LLGZ9uzL93hzzis6pkIR+rOy52+480vkp2D2edbAOlvuT9VWB++F37MasT548uec7M+5IIsEMN0sywlbBPEeZmUR6QmY8fE8UipLbpiQ+kcWxsieJ9KNKz72O/rvHRkQxeWB1rVD3ROdYeqU8ATKvFUNmN8JzRrH0aB3gNjPTjiQ7cykyIxbLsRdYTx3NN+67Sj0bgdc5bqvSpfeWfxgopl0oFAqFwoZgcUz75MmT59iR7UBNvwPsMu0scD6Q68TmIhNFDFhZp0esUvlYGjK/VdUWZeXt/+ddqorI5evjXbHqt++DskrOdsDKYjZLFMBRmnr8tLn8qA2KAUV6yTkL7IzBsa7S+mEJG9iP39enpCeGKKoZs2MV3SqKYaASavCz9W0yRsfvJEuhovgAKkocXwdo+47M4lzpLhUiVh29p8q6OXpPVfQ05YngmTan9+X6ObmJ/19JOjILcL5GsejMElzZ5WRjz3OWr/VzZ87mJJO48Hxgf/CozKX5ZxuW2apCoVAoFAorWBTTHoYxPZ4x68ga0tiD7e7ZUrXHN1hZSGd+n8rX2pDpYJhpR1F+WGfNDDizzFYxgJVuC1jdQUf6TtUHxTqzHb2B2QvvfL3e2sbEnvmcTntnZ2fl+fv+sO/zHKvwx+YiKkV9V94CLOXwbIqZrbWNUzT6frFvLUt/MuazTrQ5A8dPsPLM7oNjF0SRvpgVqXnB/0f9iaRFPdbPBvPx53nh283xC+askT2UlXuPR8icl0Uk4eP3MVqb+B5uE39G0gclpTsfsN49iseu4lBkEhduP69zkZcJr41LQTHtQqFQKBQ2BPWjXSgUCoXChmBR4nGGucZExkkmKlVBIDIXjDmjosjYQhnqcNnAqrjSYG3jwAKqbg8Wm0aGQSq9ZiayM6iQlJlRmTI8y4xyOPysHY+MzTiJQKRW8HWaesX3x5d3/PjxPe3ldkYiwDkxroFdsoBd8bC12/rIQYP83GFjHt+/qD7fV+V6x2MdiZHnAkpkRkwqlGskkp4TJ2eGceo9zULv9rrt+DCmUX+4XZnxqkGF+WQ1XKSCYvWfEo9H48TGfpmBqEp4cpAi7wgctIrbGhlgKndBQxTMhdcdfsczld467oIXE8W0C4VCoVDYECyaaRub/j/tnbuSG8sRRBs06cvW/3+WbPk0yFhAVsUtHWRWD4DdJSYij8MlMOh59QCd9ewpX6VWS4UzyEcV0t+p16mMKQMZmKqiyle6ABOunrtypDJ0yoft9vi3O49+HH18tx+uuNWYTDGb1DnVhQtA68qB6uKRYKmpGIQrqcp73f9mUApVOu9P/0wpbqZI1Wd7oCXPkSpala90aYm8Buo5cO0biynlq86jzov/TuVMqXymYLldEKC6b49wu93W9Xq9s+T0/e5Kdqryqy441gXLTmmcRwOq+nuurLEKSHUprXwG+zXmdxWf6ekca85TUXM+qnnurDRTsJxrTDJdk+l34W8SpR1CCCGchLdW2kUvElGKjAUrjqR8FY+0lOQqi74XpUTpl9yVMex/M6WHK25VYGAqgNC3VWkN9V7tzzUQ6ThfnFut9/EJYxSUT/uz/GxU2qpxC/fD1bsrCUlV0//mnGHxkZ7KxmPisapjn0qc7s6vcOpFqWWqb6Yc8vymohf0qat55/zHk1+Zz97umnx8fNyVDub7HV6vKV3QWatc4x21DcdUsQ+7/Sn16ixILq2uXwfOO36HFKpYkSu56+JyOu7aT017XKqemhdR2iGEEEL4FE6htLtPu3whFQlcq2MqHbUCLZwqn4rV0wdDRar8xTuFqNrBOf8d3+/b7XzYVPg83j6+W3mroiHOYqEaBSg//lr3CrsrbfrTnoniVPfFRUyr++RKWvK+Hzk2tndlO8w+Du/zpLR5r1z2gCo04lSLs6Ko86E6cj72vh9eT6WS3GdotZmivTmG4na7rd+/f9/FAqjvAefTVvvlvaS1hmpPxanwGXYZD2vdW+dcEZLOLtNkivvhZ/ndOH1XMRKcc+lINLcr/KKuCZ/5I/ea+30XorRDCCGEk3AKpd1XOmxvWBGspdCUn3KnYo8oUiqdI74yV1LT5eL2zzgVeyRf9sj7bluufJXSnlovrqWVtlM6jFHoSpz+7meig/t4VDo1Z8qfVqjj3kViU02t5X2WP3/+/L8xevS4swLQfzzdSxcdr+IheF7cViltPhNlOZjUSkGV7BTrlEtO5fNqPu3tdlt//vwZn+VdBLs6Bpf3TXU3qViq1ukcqR65/10tiGkMxe57Z1La/O6gtYaWzH7cPA/Oj/7M8zV3TVTUvxrvHYjSDiGEEE7CKZR2h8qMfq5aFal2gMRVfeor7l3D9Sky1u1PKYZdNSkXEb7WvX/VReKq8yIuanNqZrDL8VzrXrmXyqXCVu0JJ8vEI7g2h3VsqpKdix6v/7sYhz5OXZ9S9FQz/ZrXa3WsLvOg4/zqLj9XRfNyPy7yvR8Do8Z53krZ8R46X/Z0DwizDB6l8rRJf63OcafYnonMdy18+/h8tlU9Cvf88fUphsLlnU/R8W5+qe9TZ8E5kv3j5tWR6HF+xjVKUfvbVcP8bqK0QwghhJOQH+0QQgjhJJzOPM7ggPp3SsEqaEp3ppnJjOxK5ykzlduvCnB4NK2pB9zRfEiTpmpm4XDXUQX4OZfBZE6qz9Q2UyAae4y/mnpR+2BqFIO7+v13JsYp8LGgW4LNbFRv7Km3t4PmSGe2ZLnZ/p5zeahiF5xXTD+iyV0F9jmTpirBukvVezUQjftRAVZ0nXBbFyTXx2FA7JG0QQaiuffVMbljm1wBLq1qOj+e59QIxb3nUs+Ua8W5/5QbxZVjdoGEaj+vuuU+myjtEEII4SScTmkXVGgMdFKFPdwqkWpShf8XLCN4pOyiK1qv0pEY8ETU+ZXi4bHw36nJRHF0JbyWV00ca637wKo6dxZV6SU9XfOUV6lx2aRFBV2xOIML9lOWEhc8NgUgUX0dSTdRFgK1P6W03f2laurBZpw7O4uLakFb8PxUQSJ+Zhc09QzX63VMnauxabWa9u3UuBqf7x8NKlRwPkwpc05J79Jk+9/OOqPmh7PouGYgSmm7QkdHWuu6Z6Rv5yxW70KUdgghhHASTqu0qcyqwINaITofK5UQU3LW8uUWlYoonO/FNbLnPtX/iVpNOr9UoUp6FvTdU4Ep1UGrAMdQ15F+av7bm8N8dVGD2mfNoSpy0lPDyvpSx0L/bb1exX6m1DheU/rH17pPSaE6PlIYYzeX+n1S1oV+zMpaQD+r882qFCzGNDh/pLJCcQxabV7hx48fo6p0avKZZjbOV6qe6UfabFK11jWeCons0sN4PBOu6NIjBaHcd2f/m3PGlSpVMJ6EY/dj+qxYic8mSjuEEEI4CadV2rW6LmXGVVdXBi4y2zVlUD4/tu2blI9TkVTYn7WCo+Jw0bzKZ7bz20xFHKiaJl/QblVc/1cNQ3ZtFV+l9qn2RwsB58rkny7lzmYzTtWu5ZXnFAHs/JK8p6p9KAvLuGIuKs5DNepwx8j3eD2nqHlXlvOzonsvl8toIVH7dkVCjhTioIVKFfWpcWj9m2JNnD+afngVKa3aBSum6HhXbEk9v+57lN9LU5vNZ1r3cn9TQaUi0eMhhBBCeIrTKu2CUci1Qu35s2415yIZFVQi07ZcJVJNfrWPZNdYoW/jylhyu/66y2edlE+9xlKizFlXOcvFVynuOobyS6uodyocF9OgfIyMmZh8/1QgrsGGiofYZUfQH9uPbWrFuoOWHM6PDrMIXD6w8mlzfFpGni1jWmM4H30/vl3Diz6/ncXBnbNSe6xD4cp/qnEfyX2eWqP2/ago6x3KYrFT2Mo/7axQz5QZnZ4ZNzffhSjtEEII4SScXmnTF6oahlDZUPFOPhhGynLlW+ppyg0svmvF5hTvtKqkb4t+RNWAhePTx92vI5t+cNtJJX2XT4mquv/tIsBd5Pxa/8Rb1Bjl22azkf5Z7sflhytLklPJLvJZnR8/e6TiH+cDFXa/ty5KmWNMud0umvwVLpfLoWp07toy2n8t31ykmGJOGD3tvndUMw4yWSJoxdhF4k9WIW6jrqOzArqqdyoD5UhU/FGORJonTzuEEEIIT5Ef7RBCCOEknN487kqDVrGVzpHSfGQyLaqx+jE5U9pXm8ld6dUjOHOcSvkpahuawLuJ0wXh0WR3xIT/1fQCL0zLqUIsrsynMlfWeNxGNVRgSV0GHqlrsZtnU39jN1f4rEwBQe55mgKfuA3nnZpvu77ar/Dx8WF7pvfjdP3mi34tnKtpZybv++O/LjBNvcZ7qxoHMdWL/3cBq4pdUJnaxpnDp7lTvGIWd/Ocf78jUdohhBDCSTi90uYK9Mjqfiqz2N/v1OqrgommIAiWHmQKxnf81ZTBAAABw0lEQVSlEri0ig6VFBXPVDRiF4iiCiO4Y+OY0/l8FWo+VBpYKV/XaKXOQzXWqGv569evcYy17gPc3H6V1cGVhuR9mpQ2nyMGxPW/XeAWVVS/rm7uu5TA/h7n6DSvH+F2u63r9XoX4DS16HWpfipQyxUScc1n+vgsl1pjqes0WVSm1/t7biz1XO7SRKdSpK540PTZ3f4fmQeT9e4VS+V3EKUdQgghnITTK+1iKhKw89sdYVdGUPmJnH+o+KqGGEd8P7xebrVcx6hW2iwByP1O/ij3elc0X+G7fBQ2MqHyLdQ1oLKpMVR6kPuMa+vZU774WWetUEU3nMKaCli4uASWfJ2K7VCpcls1V3fq7BWu1+udmu3HQH+wa3yiSuASF3Ogiqs4P/5kNeH9cfdYbeuO9YgFzMUpKAuC22YqSTr5u19FXYejcQzfTZR2CCGEcBIu72Svv1wu/11r/edvH0d4e/59u93+1V/I3AkHydwJz3I3d/4Gb/WjHUIIIQRPzOMhhBDCSciPdgghhHAS8qMdQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEvKjHUIIIZyE/GiHEEIIJyE/2iGEEMJJ+B9BWL5XQJy4NQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xm4r1lRH/rve86hm6ZpaJrRoAJOEXFAQGiQWWiGABIi0ago0XvFaxITYxzjFRM1cbgOeSReTcSrBGMYRBnSDN0NzSQgiAOKojIEkEFohoYGejjnvX+8v89+a9f+naGbbs/ecdXznGef/fu971q1atVau75VtWpN8zxn0KBBgwYNGrT/6dDpZmDQoEGDBg0adGo0/mgPGjRo0KBBB4TGH+1BgwYNGjTogND4oz1o0KBBgwYdEBp/tAcNGjRo0KADQuOP9qBBgwYNGnRA6KR/tKdpeuI0TfM0TR+ZpukW7bsjm+9+5Abj8IDSNE0PnKbpR6ZpOtQ+v+NGZk88TawNuh5osy6+5TT1PW/+7el/mqanT9P0jvbZOzbP//fjtPeyzfevOk4//d/TT4HHQ9M0/eE0Tf9my3f3nqbpf0zT9O5pmq6apunyaZpeP03Tj07T9BknFcANSNM0XTpN06XXY3s/P03ThddXe5s233GCudn5dz32975pmn7pemrrVpt98Uu3fPfaaZpedH30c33RNE3fMk3TG6dp+uQ0TR+epukV0zR94bVs49c2c/Ir1wdPR67FszdP8n1Jvv/66PjvAD0wyZOT/FiSY+Xz9ya5d5K3ngaeBl1/9MQs6+dXTyMPT56m6enzPF91Cs9+LMljp2k6Z57nj/lwmqY7JHnA5vtt9GtJfrl99oFT6O8bk3xGkl+sH07T9N1JfjrJy5L8UJK3Jblpkvsk+bYk90jyiFNo/4ai77ie2/vJJG+bpulB8zy/7Hpq8x8mObP8/otJDid50vXUfqdHJvnw9dTWrbLsi3+V5I/bd9+a5Oj11M+nTdM0/WwWnfzJJP86i56en+Qm16KNByd5XJIrri++rs0f7Zck+RfTNP3cPM/vv74Y+LtG8zxfmeS1p5uPQQeeXpLkgiwb9S+cwvMXJXlokn+U5Q8xekKSdyR5V5aNv9Nfz/N8XfT13yR52jzPn/DBNE0PyvIH+z/N8/xd7fkLp2n6j0kefx36ut5onuc3X8/tvXeapucn+Z4shsr10eYf1N+nabo8yZFTnadpms7c7EOn2t8bryWL14nmef7Tv41+ToWmaXpgku9K8oh5niv6f8G1aOPMJL+UxUj5vuuNuXmeT/gvC6KYk9wvi7XwC+W7I5vvfqS9c88kFyf5+OadS5Lcsz3za0neneTLk7wyySeS/GWSbz8ZT9f2/SR3SvIbWRDClUn+MMk/3PLcP0ny50k+leRNSR6T5NIkl5Znbpzk55L8yWZ870vy/CRfWJ75kY1cdv3bfHfHze9P3Pz+PUmuSnLLLfy8Oclzy+83yWL1vX3zztuT/Nskh05BXmcn+YksCP/KDd+/leS213He7pHkd5N8MslbkvyDzff/OssfgcuTPDfJrdv7c5If3/D97s37r0hy1/bclGXRvGUz1vcmeUqSm21p78eSfOdGHh9L8vIkd9kig8dlMZg+keQjSZ6V5LPbM+9I8vQkX5fkzzZyeEOS+5ZnLt0yv5duvrtdkl9P8p6NnN+bZaHf5lT0+hR135h/ezOPNynfPT3JO44zpl9Nckn77i1J/t1mTK/a1s914O9em3e/vH3+oiR/k+SMa9HWSXU+i1drzrJen5Lkg5t/T09ybmvvX27m9ZNZ0OMbUvaC7F3v2n5sFo/Dhza68/NZjJyvSPKqjZ78aZKHHUfvjib5rOtLB1r7e+aufPcTSa5J8sVZ1vPHkzxj890jN3Pyvg3/b8qyjg61Nt6X5JfK79++kcndkzwzy5r76yQ/c6K5TfKFW9bNnOTrNt+/NsmLyvMP33z/yCRP3czXh5L8VJbQ7n2SvCbLen5Tkgdv6fMhG/l8fPPvfya58ynI9JlJ/vTTnJd/n+SPNnryviS/0r6/eRYvybuy7BXvz2KMf94J2z2Fjp+4EdznZVk8Vya5w+a7PX+0k3zpZkH8fpKvyWLZv37z2ZeV534ty8b+Z1nQwkOT/PdNew86Bb5O6f0kn5Vlo/iTLC67h2XZvI4leUx57qGbz35noyTfnMV1957sXsQ3T/IrWTb1B2RxVV20UajbbZ75zM0zc5KvzOJSOX/z3R2z+4/27bMs6O9o47v75rl/VGT9yiSXJflXSb4qy+b1qSQ/cxJZnZHlD+wVSf7vzVi/Jsl/zcbYuA7z9uYk35JlYb0SH1kMmH+w+e7yJM9svMxZlPTVWTbCr83yh+OyJOeV5/7D5tmnbObsu7Isuldm94Y9Z/mj9OIsm/bXZNnY/yoL+ugbza9u5vdrs+jO25OcU557R5L/tRn71yR5VJI/yLJRn7t55ouSvDHLgjx/8++LNt9dlOQvknxDkvtnQY6/lOSOn84GsEWGP5bkLhvd+f7y3Yn+aD9w8/xnbj4/f9PW5+b4f7R/PIvu7fw7Bf6evJn7Ok9HNrr0G9dinKek81n/sL49i9fhgiT/YtPfr5fnviHLH7AfTvKgjR58f5JvLc9cmu1/tN+R5GezrJ0f3Xz2Cxsd+pYsOvrKLGvsVm0ct948/y3Xlw609vfMXfnuJzZz/tYsaO9BSe6/+e6fb+T68CQP3sjiE9kLwo73R/stG1k+JIvhNyf5gRPweeMs627e6Ii1c8vN98f7o/32LH97Hrr5OWcxmv4syz798M27H00x0rIaS8/Osjf8wyS/lwW8fcZJZPqeJL+50bf3bvTmj5I89hTn5M4bPb1PkWH/o/3fshg7/zTLXvG4zbjudsK2T6HzJ2b9o31els3rV8ui6n+0n52ywW0+u1kWC+k55bNfy94/sGdmWaD/5RT4OqX3s1hoH0hDslk21z8sv/9ulj/sU/nMH85LT8DH4Sxo4GNJvqt8/iObd4+05++Y8ke78PKa9tzPZzEEztz8/oTNe/dvz/3bLAjkuEguy6YypxgpW565tvN2//LZl2ZdxIfL5z+b5Or22ZwFBZ3dZHJ1kh/d/H5eFuPw1xqP39jHsfn9L5PcqHz2NZvPLZibZlnQv9rau9NGdv+qfPaOjdxvUT67x6a9ry+fXZotG2UWw+I7T2VhX9d/KQg4y8L/UJKbb34/0R/tafP/7998/otJXn288WQ7KppzMiSQvFC75bPbbt79j1ue32oUnKrOZ/3D+uvtuadk2Tin8vsbT8L7pdn+R7vrzhs3n1cPjHXwzVvafVdOYV+7jvqwVRc33/3EhqcnnaSNaSP/H03y/vbd8f5o/0B77uIkf3ySfqDtb9zy3fH+aP9ie+7Nm8/vUT675+azr938fmgj8wvbu/6G/cQJeDyUBcBdnsX4/9oshuDvbD5/+CnI8hUpf6Sz/Y/2XyX5D9d2vq/Vka95nj+UBU190zRNf/84j90/yQvmef5Iee/yJM/LgkwrfWIuyRnzEmf5iySf7bNNhvrOv2v7fpaJvzDJR1s7L07yZdM03WyapsNZNubfmjfS3LT3+1msvF00TdM/nqbpddM0fSSLBXZFlj8Mx5PJyehpSc6fpunzjDmLq/6Z8xp7engWBPi7bRwvSXKjLBbr8eiCJO+b5/l5J3jm2szbFfM8v6L8/uebnxfP83y0fX4kS0JSpQvned5JzJjn+R1ZFuy9Nx+dn8U70LOU/0cWeXd+Lprn+ery+5s2P+nBvbMYIL/RZPeuDY/3b+29Zp7nmnjT2zsRvT7J90zT9C+nafqSaZqmk70wTdPhpufXZl0+OYvufc/JHtzo9tOTPGGapjOybEZPO8lrv5rFBVz/vesk7/y9nFqyWqZpul0Wg23nX1nn11bn/2f7/U1ZDPnbbn5/fZK7TtP0C9M0PWSaplNOKMpiiFT68yzr4FXts2Tx7nX6QBa5HJf6XncqunMt6Le39PeZ0zQ9dZqmd2aV/w8luc00TeeeQpvb5H0qa+Ta0jbZf2ie5ze0z5JV9nfJ4vF8etOdy7PoQV/znaYs6+qr53l+xjzPL8kCBv4qyQ+c5N1vzeKNO1kc+/VJvm2apu+bpulup7rur8s57Z/LYtn/++N8f14Wd0Kn9yW5RftsW0bilVncKJmm6Y7Zu6DveKrvb+g2Sb6pt5MlISZJbpklo/FGWdzonXYl3U3T9Ogkz8jimvn6LPG7r8iyKG+85+1To+dk+cP/hM3vF2z4rhvqbZLcYcs4fq+M43h0yyxumBPRtZm3j9Rf5jV7uc+Hz7tctiUyvj9LqAAv6fzM83xNNm709u6H2u8MHf3eZvPz4uyV35dkr+x2tVcMp1OZ36/NYuh8b5bs2L+epumHT7IgL2k8/fAp9IO3t2XxJv3LaZpufQqvPC3LhvLkLHkOzzjJ8++d5/kN7d/JkphunHUO0GVZUG/f1D+Y1Rj4r+27a6vzJ9ODpyX5v7Ks2Rcn+dA0Tc9pe8rxaJtuH28dbNOTTyY56yR99HF24/S60rF5nnftbZs/YP8zq2v7gVnmwL54Krq+Td7XdQ88EW2T/cn2Gmv+N7JXrg/JCfbLeZ6PZZnb984lOW6z/7wsSx7VVtoYOz+VJbx3dJqmczefTUnO2PzOKH1SFqP4SVnCku+fpumnp2k6oQyvTfY4xj++yfL8mawTXOlDWZJxOt0u1/7YwHuyKFL/7NrQZVliTT95gj6uyTKZt9ny/W2TvLP8/nVJ/mqe5yf6YJqmG2XvH5JTpnmer5im6bezxNyenMUN/LZ5nl9dHrssC+r/x8dp5h0n6OKDWRJRTkTX57ydjG57nM8YFjaD22VJ7kmys9HcMns3i5PRZZufT6ztFTrecadrTZvN8Z8l+Wcbb9Q3Z9kUP5Dk/z3Oa09Kck75/drq+I9u+vnBU+DvL6Zpel2W+OVzqmfleqTL0gy9eZ6vmabpFUkeOk3TGf7AbTbCNyTJNE2P2tLOddX5PbTxNPxykl+elpoTF2TZx56R5Q/5DUnnZe8Rp059r3vL9dT3vOWzO2dx5z9+nudn+3CaptOavX89kjX/3Vlc1Z0+dZL3/zRL+GwbHTvO58myZ90ii179TPvuCZt/j8gSBrg8i3H/vdM03SmLnv94lryCJx+vg2v9R3tDv5glS/jHtnz38iSPrOdBp2k6J8mjs8ReTpk2C/sNJ33wxPSiLO7RP53n+ZPHe2iapjck+UfTNP0IF/k0TXfPMnH1j/ZNsvyRr/SE7D0uw8o/K6f2R+FpSb5xmqaHZUnQ6gbRi7Ikh318nuc/7y+fhF6S5OumaXr0PM/PP84z19u8nQI9cpqms7nIN0jn/Czxt2RxlV+VxUC6pLz3tVl09try87tZ5uDz5nn+9evM9W66Mrv/0O6heZ7fkuQHp2n69pzAaNo8d51pnuf3TNP0n7MkX53KsZ+fyuJ9esqn0+8JaFvIQb8XZTGg+5GvbfTp6PwJaRP+eMY0TffKDXe+OckS/sjiYXjWSXj6dPe6a0NCAzthpc0RpX9yA/db98Ubkt6Uxfi98zzPP3sd3v/tJD89TdOXzPP8pmQHNHxVFrf28eidWZL9Oj0nS6b7T2eL8TbP89uT/OQ0Td+ckwCs6/RHe57nK6dp+vdJ/suWr380S8btJdM0yfT7vixKcjyX+g1JP5zFnfaKaZqeksU6v0UWwXzOPM+qSj05yx+3356m6b9kcZn/SBb3cLWsXpSlSMXPZTnKc48sm2VHLM57fvc0TS9McvQki/KSLEr21CwK/d/a97+RJcvwkmmafiZLJuMZWTJ/H5Mlq/ET2U5PT/J/JvnNjZfkdVn+4Dwsyc9vNsS/zXn7ZJKXTNP001lijv8uS6zp55Ild2Izxh+YpumKLDkJd85iJL4qe2NpJ6R5ni+fpul7kvznjQv5hVkS026fxQV56TzPW6uFnYDenOQ7pmn62iyZuR/LoisXZ5mrP8+yIX51Fn17ybVs/9rST2QpBPGALHHg49I8z8/JsoncUPSKJP90mqZbzvMM8WSe50umafr+JD8xLRWxnpYFSd84yRdkMdKuyIoMPx2d30Obdf2xLJvn32z6fEJu+Ln54izraBviO130x1n2m58qoZvvzupmvqHo3VnW+jdM0/SWLKjyrS2H5NOmeZ6PTtP0z5M8a5O78FtZ0Pftspzo+Yt5nk9ktP5SloS7507T9ENZ9vfvyBKu+acemqbpgiz709fP8/zMjT5e2hubpumqLO72S8tnb8jmaFkWvX9IlkS9/3SisV1XpJ0k/1+W5JfPrx/O8/zH03Iw/ceznFedslj/D5jn+Y8+jf6uE83z/M5pmu6R5Q/wf8hy/OKyLJniv16eu2iaJu7p386ScPDdWf7of7Q0+V+zJDt8SxYL/fVZ0GhP9HhBFo/Ed2zamDb/jsfnsWkpM/lvsiRC/VX7/uoNCv/+LJvznbJM9Fuz/BE77mLbvHvBZmzftvl5WZZjVx/aPPO3OW9P2/D+lCzG0euznNWsbu9/m8Wl/O1ZZHjZ5r0f2MScrhXN8/zL0zS9K4vOfn0W3f/rLKGTP7wOY/jJLImHv5IlYeXlWYygN2YxkO6Qxdh7S5JvmOf5udehj1OmeZ4vm5YKTj9yQ/ZzivTcLO7HR6WssSSZ5/mnpml6dZbz0tbjp7LI6RlZspSPbp69zjp/HHp1lg33CVmObr4ni0F7XFfk9USPymLQXXoD93PKNM/zJ6dp+uosx9Z+I5tTN5uf//kG7PfqaZr+jywg4ZIs6/CfZEkyvb77+u1pKejzg1nB0HuzGG0nLMW7CVk+KMn/k2UfPzPL2r5gnudXlkcPZfGyXpf8sFdk2YvutGnjrUn+2TzPvQLhLnIUYtAWmqbpM7P88f7xeZ5/9HTz878DTUtN5B+f5/mHTjcvg244mqbp17KcB3/I6ebldNM0TW/OcjLl/z7dvAw6+PTpIO3/rWiaprOynCu+OEvi1udkSRL4RBY0NWjQoFOnf5fkz6Zpusffcqx2X9EGzd42e5OSBg26TjT+aK90NEu84ylZMpSvyOI6ffw8z9uOQg0aNOg4NM/z26flJrttJzL+LtFZWQqJ3BBZ+oP+DtJwjw8aNGjQoEEHhK5L8HzQoEGDBg0adBpo/NEeNGjQoEGDDgiNP9qDBg0aNGjQAaF9lYh2k5vcZD733FOpU5/c5CZLQZ9PfWqpRnfo0GJ/3OhGN0qSXH31en+E71B/5ujR5Y6Lw4d7UbPk2LHlSLDa/XIAjhw5suv72od2b3rTm+5q9/LLL9/1bM0n6O1655prrtn1u+fqXQLeMQ483fjGSwnbK69cihCdccYZO+9cddXuI6766bIyljPPPHMPr36Sp/63kfevuOKKXb/r13jquIwZT3h+61vf+sF5nnfV2T7nnHPmW97ylju8dF4rn3SGPPTzyU9+cs84fOcn/sil54Rsk5Mxdr3TpvmpPHVZ6tecarN+94lP7K4zoj9yoyeVZ7LVRpc1HulUbafrkDWJd9/XOdE+Gei3j9c4Kw90x+9kZT6r7vR14vd3vetdW3XnVre61Z7xbMv36bpe5ZIkN7vZzXb+T5+6TuqnjrGOo47Ru12X+n6wjV8yPuuss3Z9X+VkHJ41h8bl+213l+BFu8bjd21UXTX/1klfk8jc1n2878Xa6ntW5fXjH/94kuTmN7/5rvbMQV/P9TP94WXbvnM6aF/90T733HPzpCftrShYld6Gcd555+28k6yT8N73LoneFkyS3Pa2t93Vzq1udatdz9o0zzlnqUpZ/3ibOIpvAt/1ruWio9vcZkmO/V//ay1C9Xmf93lJVoWhzBYApf7gBz+4886HPrTUFbn97W+/6xnj1NYd73jHJMlf//V6/4e+v+zLvixJ8r73vS9J8pmf+ZlJVuPhne9cq7FaSOSmP8p7y1su9fQ/9rGlAuvZZ5+9h9c73Wkpzfvud7971+/I5/V9C8L8XHDBBUmSN77xjUmSW996XRN//MdLtT/yJPNv+IZv2FPx63a3u11+9md/Np/1WcslP+aUviTJF3/xUh3wWc9aqkl+wRd8QZLkwx9eijHZsP78z9eKmfghf/PvczLVxud+7ufuvGte7nnPe+56xk/zXzf6/gfeZkOW+mcAJquO6ofcyOBLvuRLkiSvfe1S4ZQOJatemw+bp3eNpxoEH/jAcoHX3//7y6V25pQu/cmf/EmSvRtzsntzTJLP/uzl/hD67Nn6x7BvuOaCXv+9v7dcnnXZZTvF13bGRdaeechDHrJHd84555w88YlP7B+fkKwPfVqnZJ2s+wtjAy/k3//Y1T9c2idLe9hHP7rUeSJrayNZZWd9+v0Wt1jKwP/VXy31mm53u/WKgbvd7W5Jkte85jVJ1jnrhmw3NOs43vGOdyRZddK6estbluq8n/EZ6yV/5uH971/uDHr725dLFO1d+rfWybU+88IXvnDXd9a4NvWfrOvlD/9wqZ/k74V+yaL+vcCj9Uue3/u933vCSoN/WzTc44MGDRo0aNABoX2FtDtBiiyoJLnDHe6QZEVDkCCEwvquyBBK6GjyXvdaLvZhIbIMqzuHZcmi1gZrDEKo6AVK8Q70510Wd+URsR6hZUiOF8B4q0v1gQ98YJLVOsWb/rRVrUmWPItd+35+5CPLsVKoplr0f/M3yy1/kKL+jIcca6jDmFn90NNzn/vcrZ8n6/yzlqGNbXTGGWfkTne6046uQFrVu8CKN1eepVN/+Zd/mWQ3MoCC6BBXHM+Aflj7FUlCBm9603Id9z3ucY9dz9CzGrbwGdlB/9AsNIbnZNV584Jnc8kb9EVf9EVJdnt4ursXkiOrP/uzP0uy2/WKX4jenGmDHuCjup3poLklV3LUL32p7XtWu3QTIqqhCWuaV6C7sU+FyLX2hXjErBNyI69kXRfdO+Mdc43X6mXyTEeCdMda+KM/WisMm+fuOvcuVP0Hf/AHO+9Yf+TPW2Zu6TXZVl21r/iMV4aHwTriTUlWVK5d+m28dMW43/zmN++82/fvHmqzrquHT/uepQcPf/jDk6xr8wu/8At33vG3xdqwjvYLDaQ9aNCgQYMGHRDa10j7Pe9ZrhVmBSarFQUpsrKgJvHqigwgC+1Aqa9//XLDGiuMZV0tXtYyi0w/d7nLXZKslnxNfmA5szSh455AU613aMKzEN2d73znJKuF+La3vS3JauknK9pnrYrBsDL9rOiF9Y0n8UmWe0+E+dM/Xa+h7klliIUNaZmj2g6kqH0y6nkFSfIXf/EXez47Hl1zzTX5wAc+sCNT71TUzIKG2MyhsW1LnOK9MCaIqvNv7DXXoCddXXTRRUlWRKQtsehkRRbQI12BTH1fvU/m3ZxCEeZSv6giSPxaN/oxxzwVNdkHSvIOfacPkLB1Vz0k0FmfWzxZt3XOa75IHSc+eBDsF8nquSE/a+JE1PNHtqFzcweJ3vWud93Ft/WZrGvU3kHHe96KcdChyq896xGPeESS5KUvfWmSdR2Zr2Tdq7pnkZ6RsdyOZJ0HCBsKN/+8J1Cs2HCyxu+tG7I5UUJq986RCX3WBl3yXLI3r8N3nqVbVVeNA3L3Ll0xx7xUyd5Ey1PRnb9NGkh70KBBgwYNOiA0/mgPGjRo0KBBB4T2pXucK4O7o7qeuUL6WWjuG+6W6tqSCOEd7imubQkU3q2JDNzV3FTdrVOTuxDXFR4c6eFS5a6q4+KS1Z7ECEcTetLFNve/9smEm4z7sibLSY4j40suuSTJmgCF956AU3n90i/90iRr4pnPzz///CS75djd4z0xDW9cvUnyOZ/zObt42SZrdPTo0Xz4wx/ekRuXVk260hf3F/6484QIqquM+9tn3Gv9mEk/o5ys+uUdbmNjFBLhgk9W3SQn7lbj6UfQktWleJ/73CdJ8spXLtf9SoTzLl2uyX69Dcl4XIxc4NVFaFx+9gQrR27oVk0Qe8hDlps6hSS4KekzeVdXN7lJvrMWPEvm9chUP3Ndjzl1mqYp0zTtcYOa0/o+Vz+9osf4raGHl73sZUnW9d+P+NEp67bOiz3LmH7/938/yZq8Zm3U0EE/0mX9mx97WB2XvvFSE1xrP/aQmlwqdKI9rnbr35p/3etet/OOsEcPc9I/64mMqp4bu1BVP/4r1KOtZE0Gpvv2EG35aW9IVvkZMxnsFxpIe9CgQYMGDTogtC+RNgsdbUMV/egIS5TFVJPJWJEsWRYvBKCAASuyJiKxPP2EkntBBEcZkr1HXvAKWX/FV3zFnne0w8JmtVZ0nKyWfT1aVI+o1bFDTZAPSzzZ68UgG5Y3fli8NZmILCStsETJE/KGxJLVypdYxyo2DqiAfCsv+jtRtbxDhw7lpje96Y7lbg6rbOgRNEuW+pa4VRNZ+rz4HS/a76g6WWVHDyBqnh38fNVXfdXOO8973vOSrPNCbtCEZKWaiEifJUeZD3qNd8fUqgfEs91jgGef1zVIv601aAaKqvOe7D4GReb0rycD0llorX4noUsilaQ8OlXRNRQGlUNa24ju9GcqOpfEWBPNktULZOzbKnjRae1Zh8ZuLuvxLe/043S9EmNNLu1V++w75M8LUNcEnswhTxXdoVPWfy2gRN68DNac/vBYj1PZ83oFRm315MbqXbO/WOO8kGRvTdZCQD7rBafwpg1zUZ+lDyfy0pwOGkh70KBBgwYNOiC0r5D24cOHc/bZZ+85SlRjv90ahvZYaKz8ekxM7EvcTBtQhPb1W607VhzLjOXbyyNWgnQ7imSJspYrKvMMSx6yUtTk4osvTrKit22oQnsQUC9ruC2WZazkBUkag3HX4yj64fXo8aEqe0ROLHfor8u+xoRZ92RyIqQ9z3OuuuqqHQQPTdY4IR0hQ/ogNkdPalzdvLDIez4C/fBctfI924vo0B39P/WpTz3uuFCvU13XgfwEaFhJSh4KaIYsarELsiUT46I75rIibe9Dn3S1lhGtVL1FkBb9q0cJkxUJ8dZU4hWAVPEsrluPGPKuPeABD0iSvOpVr9rKW7LoeJ03PNRytogMrTEy5s2CUOt35p9MIU86z1NSS6AaYz8e2mPCtQQuHbHv0Hd67Z3qNbNDViv+AAAgAElEQVRferYf9ez7X51j+t1RM57pTl1P9hvHHMnLs2Tei+/UZyBhcvW776se2Lcg6X6Ukpejricy0Xed0/1AA2kPGjRo0KBBB4T2FdKe53nrzTo1Pt2zAFm4LFFIoRa2h94800v2scp7ZmayWn6sSBmsrDEWafUOiOn0koPaELerhRFYgOJOrGbItMdmahlLMutZnPpnbdbs2l7SEnJnSfvZM9KTvQjOnNz73vdOshaAqO9AWCxc7UPg2qo8ipUZa82y7nTo0KGcffbZO9YxC7pmBEOkr371q3eNg6dCHK0WSOkeCUTm9eKOTv02NHQqxRq+6Zu+KUnytKc9Lck6//Su9tt1hF5D0WQPNYkNJ+u8kxudgazqHKIao07WuYR8uqes5m6g4xXg2IYge3lcOQHWq/6r58rJhloG83g0z3OOHj26g55rzL9Tv6GL3KDJulf1G6boUD8JYL1WT5h+7G/GSi7mqXoxyNT+okyzz8WE64kKstRfz4Mxhl5Gtfb91re+Ncmqf70k7rZTMvqBirX7+Z//+UlW70AtQ2yd0km82TvIpp486HuiNuxZ+qmeHTFs46j5I/uBBtIeNGjQoEGDDgjtK6TdY0uonpsVm4C6WLg9m7ta8p5l2bKkPcuSZwHX6xxZ36y3fh8rFAu5Jiuy6BnR/Xo9Fmrth1XO8oMyWce9nGayxpaVGPROv++6Wsnikt6BTPpd3NqoZ215CCoirTJicdcsbJYttEfWrGPorCJtKACS2nanb6V5nvdkd9f4Vo/t0wfxanNYeYBozU/PZeD56HKr7RgbnqCWbVnxdObZz352ktXqN3dkWnWU5wga4x2iSxDRNk8F+fc7n/G47Zz+8agj7OtC+KmeBDFzXo9eOwFaqiiXl8G89PFto7qmjkfQPBnTA/tArQ9h7qyTxz72sUnWOL75/8qv/Moku70CxmQejNmaoAf1RIj+IOx+6QfZ1usu+2kEJ1vIj0x4qaoXgq5bT/qx5uxvNfva9bAPfvCDk6xeH7pKVsZXyxAjMunxfjKq2erWp72XB8H1njxXdX+T64Sn63LZzA1JA2kPGjRo0KBBB4T2FdJGrB7IocZ6WIDiGixyaJxltq2SDpTEwu2X0LMya5Uh7fcL16EjbVZUKabIioXS+tnUekUeqxGvrLx+3aL+KrKHFKEJ1jfk4WeN9Yjx9Ipf/VIDlnb1XEAK+jNftf1kd4a7Z7vs9Uu+Nd7rWZXKnMXfRkeOHMmtb33rHX6hvoqeeowN8pC127NvkxUtQ6v0Af/9nG7NQvWZcXjXO6x+c1Gpx5rJgNehIhB90g05GXTJGLqXKFnnlSzqud+TkXnX3rZ8lGS3h+Qxj3lMkuTCCy9MssrcGLTlutkkufTSS5Os64p3DXqid/V8eM+Yd7HHiagjquqlIXc61D0ePr/73e++8w5ZmmeV6nqFPBcX1TXGq2AuedrsKbxpVXesMdnOfa/iAaxxcPK2h2gXWv293/u9JKsca4yZvHplMnv0tjXBS8fr06/b5Um0h5Fdsu47vUaCcRtL9VjYa3kd8Gxu+75b+aVnJ8pbOR00kPagQYMGDRp0QGj80R40aNCgQYMOCO1L9zh3Wj9CkKxuvH75ATcSF3QtAC/Rg3ulJytxf0icqO48riRuFO4hrjpuq3qshete+9qVOMPlVN2UPanDOIzd98ZVk9jwRjbcltxW3JbbXJ/9bmwuLkcyFHepbuueGOTdfh91TZYiE25F7ijz2I+RJatsla2s7spOV111Vd797nfvyMuztdBLP7ZljBJPuOJqP2QnZOJIivm53/3ul2S9FEGiULLqmeSangzVL3pJ1vnoCZnchRIG633T9JdrsRcR8pNu1WNc3LrmlI7c7W53S7KW1qxy5GL0s4eOyHOb69ElGsdLDCMzc1P55q6UFMVVTGYKhNRxWRM1YavTkSNHct555+05ine8YjHJOnb7gfmo95xL2rJm8U0f9EenagEjcyrhjfzND3f2wx72sJ13HGWU+MU1bF1aG1W3hFnoM53sF/wYi720jtXaIHP9ma+qb2TRQyo9lLDtLnYude9YN+adjOo8atflOfZebnpyrHuVPiUDb0uGO500kPagQYMGDRp0QGhfIm3WHYunIl9We78QgOUGsdVkIokeLCbvsKRZlfqpaK9fFKJd1h4kXo+7sGihYYjjEY94RJLkBS94QZI18S1ZE7Ik1XTLWr+9IEjtjwzwjycWcb2yzlEV3od+cQD0ZC5quVYooCdF4Vl/21CnxBmJbi7LcPSsX35S34FUttFZZ52VL/7iL97pm/VdERa5sMSNg1wg0qpvEJSx+aktqAkyrUdizDt0bD4kTEEiFTXzqEDNUFEveVkLZEiy6gVfoBZ6AV1UGb/iFa9IsuoxGbhcpB4PQuTTkzAhxn7RSyV65KhPP5rXL8SoMvAdXbImlcSsyJiukEW/qrPSNddcc9KCN8YI1XdvIARZ25HgyAuHv3418LYyvfi3L9hL8OGKUwlWyd5CLHTmuc99bpLkcY97XJI1sa/yBJWbs36UFsqtciRb+2cvxNN1qo6HbKB0/dmryagmt5r/XhjKGvdO1W86ag/RrwJBeKzeLmvaGjzRZTOngwbSHjRo0KBBgw4I7SukfeTIkdzylrfcsdhYffWqTpZ6j9P0WGm1CHvclLXMQhc3YjHWcoiQlc96WTwItSIfcXboixUpRgLxVCuyF3YQo++F81mqNc7PGmb5irfjGT81Dk6mvbiJ8RonedaYfUeDkA/kALnWGJ3+vvzLvzzJGl9+wxvekGQviqrP8LjU4yadrrnmmrz//e/f4YF8qoeAdW2Myq66jOXxj398khVlJus88I7weLiIwrPmsqI9ngZool8h6Che1dVe5rUWfajjqqjG0cEHPehBu34nC6jQUaBtF8eINT/qUY/aNV5HJ2vRGDpjHPRAHBp6gXKqJ6FfzkKfoSdrpV4ycf/733/Xu1AfNGotVmSPX3K8NkfZUPVM4dOc4cVY8VC9dPRXO+YWOrYWUD0yR5b9Wkj6LDZLh5PVy8NL4egT2Zr/mk+Af89af/YM+4JiTJVH3gX73G/91m8lWY+N0Z16/Nbag2Z5GS644IIkq8zMf0W5+O4XlRgf3moRITrSr+Ht+Te1gJc13z0J+4UG0h40aNCgQYMOCO0rpH3NNdfksssu27GYoYpqqfuOlQfhsuZkGtcCKWKKMgWhpR5XY91Vywo6YyX7jgXMcqslFFl8rFa8QjiszHptZM96Zk1CCixe/dQMZwgaAqoIN1ktxhoz07fPIEUICALDsyzyZG+RBlY6mZB39R6QG3lB3qzlWkQBGSPEeKKrOZMFUUKm4lsVNUMp+IeWoFaov2bXivlCCMYG6fACsNxrbIy+QVqsfbpETypCxIv55oGAdOh5fce4yBtq0Bbd0lZdG941PmUmoVu/VwTpWTpj3umI+cJrRfZQGJ31HT3XZu2v5zl4p6PCqqPQFtnXC0hOlbqXI1l1hr5WPpPdHhD7lvVIbuQlM9+arm35zFzZQ+gbXarXh5p/PFjL9JlHpBZXIUN93+c+90myrs96jWuyu5iLTHJeGh6+Xtimrol+eQx9cMlQv8a0Inu8yluRb0Hf/C2o8wbJe9d31o93ag5FLxLVT52cbhpIe9CgQYMGDTogtK+QNmINbYvrsSJ7SUbn8LYhEQjKO6w7z0BEkNy2c4ziRSy/Xm60Zg1DNv18LF6NoY4L+pL1zCKFNqEnv1drkBXpJyu9X7BRkT20TxZQGKuSxcsSredPWf1QrPFB9GJnNfPY+CCgRz/60UnWTFbjFR9L1sx2c3CiDF/Z486qignWrP7jnQ019m3xWzGx+973vklW5ElOUJSxV1TYPSsQBwRGD6qceHbIWEY2WZjDqjs8RlCXDFk6QmfIuJ65Jh+yIAP5F3SoyrEip2RFRdAzORtnRVe9hGe/3tWJiuoh6Vd/8ojhFe81Dm4N0++qv6dKNTZK7tCsvqA8Y61nesnZGjIOuQ7iuFBt9ZCRobmkbz2npSJRZ7Z/93d/N8mqu2oI0M0aY6YbPJR9/zTv9s7q4eNhI2Pj4w2Aymueihg8PTcv5pY8rYma7yG/x7N41R+9rHpAtmRtrfRLdmoek/3AM7Xmx36ggbQHDRo0aNCgA0L7EmmzInt2crJacyx0z0DLEE+NYbGSWWCsxl49rWc2Jqvlr1/xIDyxxmvsB2+9ohJrlnVZ0QvkhAffsdzFwXxeEZ24HYseIu1ni7ddKN8rRbGw8Q4R3fnOd955RnaycfbKclBTtV7xBJVdcsklSfbGJ1ngyRojg6RqNm+nD3/4w3nOc56zI0fP1mv6IFGoqF8cArVUS501f9FFF+0ak1gwdGlcFaX3+e9XCfaz2MmKGjwDPUA45r9eqNErrvkd0oZWjBd6q89Aeebf79BNHYv12S97wKvvybEilZ6NXD1UyYooa44Dvepnh1HPb6m80YN6cqLTTW9609zrXvfaQaSoxuKtIfKBBLtnipcpWddFn0v5FrwnvXJdfYZ8yM2aM66aN8ILZG3LUqff9N5eWT/reSr68T3eqx6IA3vWiQreM3rAq5YkL3nJS3a9oz9yNJfkXPWj76vehZ63VeBTw4CHQhvWAj2pHgt5BJ6pnqn9QANpDxo0aNCgQQeE9iXSZlGzXmtWKHTM+oEiWJMsqYoCWHwsJ22wHsV+emZjssZloHWxvp4BXLM4O9pjaYsBebdmLOKtZ5TiVT/GUs9vQqesYu1Dr9qusVPPsmQhejElli8UqGJZslq4vtO/8YpLV9TBctYumePVXNcsfJmfeNs2P+jw4cO56U1vuifW7ErLOmYE2UDN3YuTrPMOkRoHL0DPbK7X+NFJCLjHFOnu+eefv/MO3TfPvaIXvX/+85+/8448CB4kv5Ob+TcGCC9Zz2VDR8ZuXvRbY+ie6ZXJ9Md7YwxVRt6h51AzT4LxbztZcY973CPJqlf9Gt6KjM01hF09RZ0+/vGP53Wve93OmjKe6gHxf3zaO473eR0Lbw+PEU+VeSKfuj57jolTC/2sdUWIeDFX9pdeN6HGpavMkjUXRLv697OerPEZeZG1/s3Py1/+8p13zGu/F4GOmgM6al9I1v2TPH2nTR7Mujd2rwyZ8/zhtV7n2a8c7pXeTjcNpD1o0KBBgwYdEBp/tAcNGjRo0KADQvvSPY64NmpikOMSXDFcQN01sq0IgHckhPmdq4YbpLqcuGC4U3ryBXdlPV7FvcLd1RMZuFir68Y7XJz64VLDWx9vsibLKfjBHYbH7sZKVpcceXHD64dMJNNUF6dEJ+PjLseTfqprS4iDWxSPkkgkR9Vygv0yiZog2ElhFe5JFyBIzvFMbY/MucnxVIu4cBtLDOqJj+aDG7m6dcmS+5YM+rWO1V3Npc7VydXMjdmPEdb2rRP61RPsJPlUV/fznve8JKvbUFhJ2ISs6rWX+qMzZIJXrnV6t+16VO7rXvDGuOuxJG5W+iWEIsRCflW/tau9ftXpNqrlkpPtSYz9GtyeyFVd3PYM7n38a5cOOdZXk+XooHm2HntimETBZNVne593hH0kZXHPJ6su2kMuvPDCXePsZaPrUVP6Ta/JgD7YM6rs8W+d90tF7A/mtiaikQm5Wq9CB7//+7+/i/dkva5UqVP92nvJql7e5DPr6UQJsKeDBtIeNGjQoEGDDgjtK6R95MiR3OIWt9ix6lhD9SiHow/QAmuyJ87UqytZa1BlL0Ih2QeqrWXrWIssQu+yHll/FWGx+CWtQTi9YEA9yqY9li2LsFutxlWLx0Bs/YL5ngjXLx+o7UrU6SVRWcAV+UBj5oLFLTlLAllN6IJy9eNYhaM9kmRqoos5Nb6eVNLp2LFjO9Zxv9Cl8gB59qM4+la6NFkRJh3xLhnTC/yTQbKiczpDv8ytkpE1CYau6wcygbi2JSDRBfqsPbLoBYJqIhLPFR7pjPbpbC38wRtEdyBJ6Mh8QcR1LZIb9Gf96BeSq54da8O61C5kZ+3VwiZQrTnoKHob9XLGNbm0X3vpqCcdp0PVuwQRGlP3EnqHrKv3hHysLfrnKtvf+Z3f2fMOuTzmMY9Jss6DsZPJgx/84J13eCl4pBzbMt8uz1CwpXqhfGefo1fWlfHX+aer5oqsrTO6ZI2Yv2RdG96lh3hD1StEJmRuDnphpboGzbH2qx7sBxpIe9CgQYMGDTogtK+Q9jXXXLPrCj1Irh6jYAVBe5Cg98Srq2XNQmflsd7E4FiGUK5jT8lepAX5aAt6qzFt37HOxfTw5Nka61FsopdoFC+CkliGrMBk7zEKP8XM+vGR2rd2lIHtl95DWvV4Gh4hK54FcjOWesRKqUM89aIdEJjYU7LKUdxbTG4bTdOUG93oRjsegn4kJ1mRgCNpjk3hxdG1euzMWKF+OtkLv/i+6qpn6SjvEFmIwVVU2WPafu/HxCrhkV7341Pe1U89lub/+KejdMX3NS4N3fX2ezEKqKnGmh/5yEcmWXMFenES+lY9JD3ODWFD5/jYVnAISjqRl2aaphw6dGhXsaNk91zWHJlk3X94Poy1lj7tXgtrzdjoGb2ra0zfjizyXuFRG1UfyEfMuq/xbUWf6G/PH/Lzla98ZZJVd8WPk9VTaA6N3Vzy/NXyw+Z3W75SsnoW8FqLZGmXDMhcToDPa/EYumdPot/k15F+7Vucu7a3H2gg7UGDBg0aNOiA0L5C2sejavGyWqE6aI/l5HKQWlaU5Q+tQnDiGyx3lmKN23TUwLpkMbLkavyWVcoCZd31uB2vQO27Z3h6x3hZxtXCFqvCN2SnGAWZbSvlSLasVKUc+6UqtRQlRABliOuKofW4VOWbTCAIv/eiCskqR8iuo51KR48ezeWXX74T14WwKkLEl4zp45WirGNliZtfvPAiyGiHEGqGO9l5l9wgQm1UfevXAkLPcgAglOo16SgZj/qDvM3BV3/1V++8+6pXvSrJioZ4EHo8tpYVhej6CQqoXKxz2+U9spOtPetJf71QRrKuZfMF+Ri3NbJt3nhRTnat6+HDh/dcE1u9Z+K2yJqi49ZCv6Sn8gI1Qs3WjctoKgJW5ARahuzJ2LqtemDutOMZumn+69WsZKYfc2VcvfhRRcb+b++w9qzTvk8kq9evn475tm/7tiRrbNk463q63/3ulyR5wQtekGSVn/FaT7yGlZd+zSrZmK/qpaEr5rx7YE43DaQ9aNCgQYMGHRDaV0hbKUoWes/MTVarTQYhS/01r3nNrrZqHAUavvvd755ktSJZs2KcYozVWmZNagPSYZGy0Ko1pm+Z0tro13pWy1p7riTEg6L/rOVt15WylqET59JZ1GRWM1vxy/KF7MlCvB/irpcZ1GzQOl4IpZeJrdSvHu1nSWscnPXfr9HbRocPH8655567g9Qh1Jqh3y9bMC/0S/5ARSLigT22rC0ej565n6wy7tec4ume97xnktU7lKyZvS4ooaO935oBDk1qF3qRHwDV0N2KYnlw8M8bpT+f18tmfAeR+Kl9c4jXujY8S+b9ZAUZ1Rgj7w/PFPQvvsqDUs/09stKakndbXTs2LGd2OiJPDp02h5yr3vda1ff9fQAtEiHPMMTYW7Jra4X+ltPbSTrvG87bcFb5zseF+fC9Vsv5ek5FHW9JOueZQ3WC4Z4RezTvDZyg+wDvk/WeVUWGY/PeMYzdvFI32oZYns8DyJ5mn881hwKe74aFk960pOSJM9+9rOTrPKrnlLeW+PjGdkvNJD2oEGDBg0adEBoXyHteZ53IZVtF0T0KjtiHv0S94piexYjq8o5WW2JnVXrlrXcq2j5HFKs2a4sNM9CGniVNVqtWuivegjqeP1kldf4Xb/eUlwIqoG0an94YxVD0p6FfHxes9VZv7K68UJuZFKRfb8IAxrjMcBblaOYks+qx6XTNE075/yT1crfdq4UIqAj+IV0Klrq+QmQIIRK9vS2ZgDLPvUOGeIJYqxnbaFuOom3L//yL981rpoB7hmICoIjP7rFe1PfpVdkC2Xw/PA+VKRKZ8imX6WrfYineoX0xzvQ1zP9rmjJvPWqh72fGsuE5OjdQx7ykCTJD/7gD6bTmWeemc/93M/dk/NR4/jQt7FbP5AnXaqnVno9A+/2vAVrvuqB/1tT9ib99jyFZJUhL6T8GNfg6r/m+8gP6BX9xKf7Wet6eQbPhHVjr+ixdPqRrAjaWtCf9W/P13Zd8+abR8F4rDnrrHofrHVeJwibjMxX1TdV2fBfvYz7gQbSHjRo0KBBgw4IjT/agwYNGjRo0AGhfeUeP3bsWK666qo9x6lqAXhuSm61hz/84UnWJAWukpr80Esncn9ybXHVclvXhCduKjxxPUoU2VZ8gouHy6cXSMFjdTVxA0lO4trs99ritSb3+D+3l3FpUzJGPT7BRdvd4NrnapM4Ul16kjrIS1JOL0VYCyNwmXEZ+p0rivuqlgzk1pUYJgFlG83znKuvvnpHXtyH1e3FVdbdXsahHGK99EF7XM9kTaf63bvVvS+p0Nz1MrbkVEMd2u9HlOhdv2gjWd3eL33pS5OsyYTaqAU/kt2XqJgPrm1tCSFxGdf76fud6+TYZU4WNcHKmugX45AzOdYCR+REvyVnStoTUqjjJFOhnBMVyPjUpz61K/mMjOtn5G0N49cYhUJqeIQr2N5gbul6D2NVN3IvI2xPsi/QoRq28pn9UvhKeGFbyU7ETW0tm1v6oO1aeEi5X7KWtIp6gZ5k74Un2rc3OwporeI9WefbHOBZ8indqYljkhW5zs1PLxPdj4RVqnO6H2gg7UGDBg0aNOiA0L5C2kpRskhZONUKYqlJWGFlQQYSaKp1z6pimUnukMTBCuuJNcmaEAE1sSZZhj35IlmPXLF0PcPilhxTjzexrKF0PEP60CH0XC+MYKlDJ9oiE8kkFb2wmFmlLE5It5dErbz2oxWSivqVnBXdmBff4Q16guwr6jQfxleR+zY6dOjQjl5AxvUyAcmKEpqgFCgKMpKMlexNMDLPeOJdgPJq2VRj9U7/6dnq2YFouoy1hefqpaFPkG5H5ZAdHut6opvkbs7oHXnWoz7mwZFG3/XiPv0inspTTy6z1smkXpVIR3l7rMGeaFcvFurXk1b+O03TlMOHD+/wRp4VOfL2QILmxzrFvwS4ZJWdhLbuJaN31kIttWqPkhBGLvSAB6Fes4noKm8gWfAK1KRC3h9eOAVMrAWeEfrh+F2yehDpImTtHfuo/TBZdYIM7GcuQiELel4LUOFRG561F5prl57UsZI1fetXHdd12z2IFe3vBxpIe9CgQYMGDTogtK+QtrgkK0i8o5ZBZMX1ozb96FVFZSw+7bH8+/WakEo9tgG19Fic9vVbj2qxUvs1jixDiH/b0Rs89AtR+lWG1TJkLfejbd1LUHMD8CaGLk4NDUASrOcaO9OPz4wP7+YLAq/vQPLQJvlB3NVjgV8egmrlb6N5nncseIin6kGPB/ajdz0mX8cCtUB9LHfjMb56rA5ygtj6xRCQatUDukl2+oeO8VjLSUKY9BuvfhcDtGZqIQnt0C9ITj/ercVOzJF+IeBeWpPsa/wdeiEL4yMrMchacMY47AtQuAtffF71m2zxVr0nneZ5ztGjR/dcAlTnUh+1yEyyt5Rm1R3rwTtkS++6562u6V5kRny9H4XaVn5TwRfrni7xFtS5NK5e6lhb9hJjga6TvUevyM071nTdO6wfsqWreNWvd+o1udaA/Q7P8kqs67o2zGkvN20t9CuR6/v2Xp6c/UIDaQ8aNGjQoEEHhPYV0j7jjDPyWZ/1WTsWO2usZgCzVmvxlGS1GCGel7/85TvfQd8sM9awz1m1Pas32VtcRf8sQnHrmnGsPTyyJqEo46sWL3TfY76sSLyzAmshBu1CRXjzey8HWvsTQ4fsWe4dgdUr+YxPe/2CCrzW7FuFbFj93pGTABHVgiwdbdQxb6N5nnfaf/3rX59kN9KGxMjDT0U5eBtqcRVWNlShjV7oA681LkkekAfd7Jc01AISZMfKN3Zt8TrUy1jIBRIRD6W7eMJ7LUNLN3koFJ3As3dqHBxig6zucpe7JFl1SQwXmq7rqRfc6Nd59qtQ67P4vvjii3e9Q55VJvrmSXJKYRuJafMQmP96YgJiw9f555+fZO/VlQ960IN23umXoHjXT3sKHa0eF94ZbRircZmnbfkXUKp5IRff171KjN7eJwZsPHJD6DnPY7LqDh7pGe+Dfa5mc9sHXM2qPXyYY+Oq+3zPs7EmrJUu1/oMouf2CXHy+pwYvItJtpVjPp00kPagQYMGDRp0QGhfIe1jx47liiuu2LHcWF81+xQCdfaY5dmtOrGfZLUAZcZCk6x+5f5Y1tXqcjYYimDVsdB6WdNktWQhBO320oAVTbC2+/nV/lOcqGbKQmwQAhlB3Cz9iniUxYQgIBExKxYpBF4zwXlAWLzdgyBmV9G5LG5I2ng6+qzIuF9wUa8h7HSjG91oV1xKP7WkofbMIWteBi5UUfMTIN9+oQUZ9zPQ9V3tQ3vPec5zkqz6Zy7rGWj/h3jEZqFxSNucJqsedc+EeYCIxInrhTgd9YvR4w3Cq3FJKIVek6tx4d27NQ7Ka9ZrFmi/e0GSVc+gS3kX2oAk6zv4p9+V/05i2oiub7tmEyLVN321JuplHL0eAw/EC1/4wl1t2qvqfiB/w5iRuSXHqju+6+ejrUsItF4YQ0f6Fbni8D0mXN/tHhzzzMsF6Vfvk3oavENONiB7WN87qyyc0zc/YvierRfHaN949Nuz7uvfGHsGxH0iL83poIG0Bw0aNGjQoANC+wppHz16NB/5yEd2xTWT3dnjLCWZwH5nCfazt8kaW+3ZrCx0KIaVWa2ufmUk3vQnflhjfiw1Fia0BpX1c4CVb5amWDnr2efbsrmh4or2kzU+SH61ipqqSNo3Ls9AZ3iu8WQoT7vivlBIz0St7aynTmMAACAASURBVJMjhCA+6veasQsRG/PJYtrHjh3bQaLmslaBg/zMFflA0eayZp9qp35WeYJevFsRMF6e+cxn7mqLfJwdrvouxtcztKFI8qsokNyNw/g8+7KXvSzJivyrl6aev09W+evPs3Vc5GjezTPExQvG62WtJqu+QevGbi3wYNTz+mTbdRGiMu56nhb/UF8979vp0KFDOeuss3bkZm3XMZv/fiWrZ+0t1UtHTrxaYqR46ajdGelkRfs9E9+6JK+ap2Lf4u2hQz2zvcbB7RnG1z0s/SrgeimLfBT7HaRr7uhO9ZDR2+NVIIPEofbqMXV1Mv7JgFdCHkBt2z6Jx+4F3XapDTnK+6mnLfYD7S9uBg0aNGjQoEHHpfFHe9CgQYMGDTogtK/c4/M87ySjJbtdpYjLlIub640ryOc1eaAnZnEfdZcwd14vfJ+srsCXvOQlSVZXYC9Ckqyu5+7O9Sy3aU3Q4AbCNxc6N47kHskYNWlFP9xR/cgKl1Dtz/u9xKH+uOy4Mesd4/2ecK487fcyjck6l/qT0NJLX1aXZC8DWvnvdOWVV+Ztb3vbnssZaglFlxBw0UlS4abshSSS1b3OPcn1Zw4928MMyVrgRX9kS/bGXO835o7kQufeIzeuwVpUwzPGzu3e7yj3XJWj0JB3zQuetFHL5tJNawIvxqNN66i6F7n/uT8lCHHTa6OWacWDeephGXNRj+bQUc/Ui2g6HTt2LJ/85Cd33OtcxTXc1MNTeEF4qscFucq5fOl6T5yjMxdddNHOu9y11p+fXMSSG+txKom79gHrnruXLITeat/uG5esSP7Ki0qwq0leZGzvEuoyD/1YVbKub8mF5s76oavaqoWueoEjYQf9mZOq38bRC6/QM8my9SibdWLPq7q/H2gg7UGDBg0aNOiA0L5C2keOHMl55523g3j8rMcaWEEsXogAQmC9OsSfrMUYWMPQESsPcmCZbrvGz2csReji/ve/f5LdyTasw5pMU9/ZdpECVOoiANZyP7JQETZiWbJ4oQrjYb1WC5vc+tV4UBGZkGdNBuyooicFsqKrhWp8/QKKfpUmazpZEwh5DOp1q9vo8OHDO7zhvybD0SNy174xs8JrP+QNNbHqHRPkATG31TukP+1CNZBHv/ii9gNR0xWyNp7HPe5xO+8861nPSrK3iA5kDzH4WT0J1pF3zY/+tx2d0y6+oRbPaIu+1WtGIZ5e2hOypIcV5dJVn5ErPrqHJ1nnVPv1OFinaZpy6NChncQqVJPKrMfu/aOv9KJexiFpy1FPaE7yE+TLy+DIYbLqCM+aJDz9SS6s3gVruV8B29usXgy6AuU7PuVIFM/itkRR+msddY+Ofage/SRj+4E9y/yYN+urFh4y3xC2NWdvtuarV9CYtQv980rgvXoQ7NuOrDlitl9oIO1BgwYNGjTogNC+Qtq9yAFLqhas6BcmsCpZxdBeRZWsK9YyS4y1BylAYDWuih8IoBen/53f+Z0kuy+HZ93jX7t+7+U/k9WiZAGyyh1Z6ReKbCv3CR0ZTy+JWS1v42LhQpTaEDdilde4FCQNpfU48rZYFk8IFNuvQcVHtWp7wZVaznYbHT16dAd50Id+fDDZe/0f2UI+FfE84xnPSJI88IEPTLJa9fTLfECBVcb0jHygFHFC1n2NaUOv9JwMeWDMD76Muz4jpwIqM7fkSR+qLCApOqOkq/mqR29c4tCvvzSnvSRt1XPoU+6G8VnHZFXnjZcBuuQhe/CDH5xkRUv1KBNPDj2o3oVOcml4tew31RNGZtAXPehFlurRIbpAN/rx0V46thYuIVNjpUv0W9GnGtOmz9rteoHXGr+1B+qPrvCO0BljqXNJBni0d5nbfnVrbc98G482IGxzWuPTZGxc/QIU63hbUZyeo4En469eQfkWvRjXfqGBtAcNGjRo0KADQvsKaXdiOda4DUTas3Z7IYFth+VZdyxR1jPLrFuXyWqVQhwQIesYUqnlN/sVkpB7vwauxl58BiX1Ahni5NvKMuLbJSksazGlPr5kjUfpD7LRD3TDMq1FFcQjWbwQN5n4vsYEoW9oGYJXaEKZ2BozM0/G02OO24i8yK9m9bOczRkeyB5qqf2QCw9Az2CGoqD0qnfQK9RAtq997Wt38Vwv8NBO9xyRD95rURT6TXbQKpTip3HV9dQLAEEV5hYfUG6y98pCbZj3Gv9OdseTX/3qVyfZnSNR++tlO5PkpS99aZL1Sk5yFD/uJyCSVa8qWj4eTdOUaZp21oL1Xz1u5E1/e4wcb7K7kzX/wPyKxWoXIvVc1VWeDXNFV+lb9yT0/yd7ixzZM6rXhD4bD++P/sivexiTdW1YP3j6uq/7uiTJi170oiS7i8YoZ0yf8ciDQYfsjbU/ez1vAI+V9dRlVf9v7fOY2Vt6Rn+y7gPkdiIvzemggbQHDRo0aNCgA0L7CmkfPnw4Z5999o5FxdKpFiRriuUHebBAt5Xs7FmVHcFrnxVdz1pCESwx1iWLURs1nuadjvqhdUhB5nmSvPjFL06yuyzhtvGKU0IFyRo7wiMZsCK1Uc/L8lhAAdBTL/PX4/H1nX4e3Lj1V+NErHCxuH7+HG+VR8jReecHPOABOR5N05Qb3/jGe66jrNno5GFe+vWkkGO9DpAHRQ4FlMID43M6W7NQ6aAYObTezwNXDwid9y5Z4lHuRI1LI/LCs9hsz3iu/RlrPz3Qs+ZrrgkdgQzpHcSFR3oh1lllYFzOG/NO9fKwySovPFrP4pT0DEpL1oxla/1E+RDzPO/SVTxUlG6uID884E08utYmMGfOQIvB4lP75FPXGOSLLx6X6p2r/CSrd8H88FCYb3Hjevb5ggsuSLKezzbPdAhSNZf18hf89r1Yv/bKOi/GQV6Pf/zjk6x6YV+jQzVXyDt0k2y6t7X2x0Nov+MxskfiuZbA5aEkzxOd8T8dNJD2oEGDBg0adEBoXyHtq666Ku95z3t2LMVtV0qyNFn3Yk0Qao+dJqu1LTO3W2qehZZr5rk4GauZFQ5l4qfGmPvF9bK7oUCWb41t4kX8VryLFXvf+943yRqXrFmc4mg+kyXKgocS6hlvMu6XpkCo3mGV1xgqtIlnHgSoWSy3ZnGSBcud9WpuyaRezAEle1dlqW00z3OuvvrqnfmALmt+Qj/HDAlArduyRMnUd9Ber+xkXOeff/7Ou3RGPI2eORFAVyGwZJUzvatXEyYrAq2yJTO6ibd+cQ1PQj37isgEAvE7XaqIrl9xKrYILXdEVPszLxC288CQMX2siNK86e/Rj350khXRmSMx42RvVbiKEDsdPnw4N7vZzXbWJxlXRGr85rmfEbcuq8dNfJ5u88L0c9lkUL1sxox/a5nOmuPqDbAPmEO8Wp/9REiyrg/tGJfx8vjQ/6qr/XSMi2J6LLh6nzqyNd88OvY/urMtn8l8d96Mq3pNIHgeEJXd7FH2wZpj0b0pvIP7hQbSHjRo0KBBgw4I7SukjTpS3UYsMdYwa5aVX5EBS1DsF3pgJbPQoKiKuPqZSvET6LlnWSYromFhio2oamRcNWuYBcrCZnmKLUHl0GdFvixLqKz3bzyqHSWrFcnS9nuP84sb1rPykKNnnG/FR6+xXseBJ3F+70AONd4KWbH+q9Xd6Ywzzsjtb3/7nXiWKlQ1K5T8WdesbUgEMq4ZzGRHDmJ/su9Z/zwt+kh251XUds0PXqs3AG8QAsQtuxZaqnH3fr2mcfS67lBaRVq+s560u+3kBuqZ02q6m1P6AO3W6mY1czlZdYjcOoJNVrnRHWseUoXKjbsSb0Mdc6d5nnPllVfurAHjqx4+1Gs8GBsea/6AubzkkkuSrGtXnNaaglD71brJum7oGXnRrbrGzBUkCj06c2+tVVSp4hle6Uxf//bVuif7v7XQ61w85jGPSbK7pgDe8OKdntNC/+o1snTHd9owT/bTesaffOim8WnjjW98Y5Ldet7X9rY7ME4nDaQ9aNCgQYMGHRAaf7QHDRo0aNCgA0L7yj1+6NCh3OQmN9lxT0mskbCTrG4b7g2uRe4iLiZu7PoOdyTX+d3udrckq9uNi7AWyOAW6kcQ9M/FxeVZeeF25WL1U0JSdTVx43Dnaq+7gLgGqwvI/7l+9KN/ySNcQckqN7L2O5eQUEIvQFPHZ14cf1JggkuyJqBw83GdcfOaG66t6s7GG9fVtvKE6FOf+lTe8pa37Li2JAZtu8KSXhmr+e5hhdqnMXNXewZv2qwu8e76U9hB4lHVM2R+uVK5BHtCGvd/pX7JhAS1WiQk2R3q6GEJbXDZbjtCyV1o7L0gh2Iy9LK6usmCftEd7lnrt4aOyFY4Q7/CNP36xWR1X5NnLVzS6ciRI7nNbW6z46I357VgEr70TQbWMv6rG95+0gvYSNQy/2Sijfos97BxmFv9Vvd4n2c80yU/6/x3OfVrcK1xsq0JgvYkfAtPWP+Kq1Syf/ayqcbjp/mvR0AlqQnH9P3N+OsFJda4JFn7AxnQ7xo6lKzm70MNee0HGkh70KBBgwYNOiC0r5D24cOHc/Ob33wHgUIqNfGFFSyhoSNuFtq2i0dYwawrB/n70YV6gQPLllXPwpb8g59tx0N6shqkBV1UKxn/LNxeGIP1CC1X9MKa1Ab59SNz9ZgYHln0rHLIzpGz7/zO70yS/OZv/ubOu51H1rmEF/KrCVKO2znqYU4d02HdVjKOUykjeOjQoZx11lk784HHipZ8Rl6QB37pQ0U8/ViY+TCnkEf/vvLfESiCSGoBCclbkK150q53anEVY6YjkJz5h2Z4n8xtbR8P5hKvPq+Jb+RD512Dy3sCvXUknKxrTXEiaBOioxf18gxj5Q2QpEffu7cmWfWJvm27bhcdO3ZslyehX2laqSdF1uNFyW5PEXSPL3rGA2Jc+K8eHnIyp72cLXJpSrKuMe3QFd6TL/iCL0iyW7/pinH0y46URraOqpzw5jPv9kI0kiiTVWes6X49rqNtz33uc5MkX/mVX7nzrqO4PUGZB6Yj7mT1auEf0ja33/qt35pkd5lesvZZ9druBxpIe9CgQYMGDTogtK+Q9jzPueqqq/ag52rpsMRZ/lAEtMFCrBYvK4uFpgBCR88sUxZr/Yw1B6VBkRURIP0owMK6vPDCC5OslmdFvixdaAVCYIVDF70wTLIiRv10ZNev+6wy4A3QHvn6/ulPf3qS3UVPFKoQ6yEjMSAWcY1HsX47j/oXU9p2hMWcspK30aFDh3LOOefsic1V9NXjkvRMoRf8VtmaI7E2cW9jJyeooh7fYvl3FOkdMq2xbXE63iDyedSjHpVknY/qaSFbyM44rJHuYahxfu8qjIIXqJCsarGiHgfsx+KgN2uyFvWhK2RMFuYASq+Xf5ATz461aN16p+Y8aL9ftLONrrnmml1x3n4cMVl1x14CrZpTn9c1Tbbe5V3o5Tfx/dCHPnTnXfoE7UGGZG2uq8eF7lhD/bhbP4KYrIjXMT1HS/1ObjwudR8gs3vf+95JVh3SJv2r/dJN+yZZm2/eLl7JehSLHplvXgf9mYPq4bP32UeVROZ1eOpTn5pk91HTLrcT5UOcDhpIe9CgQYMGDTogtK+QtnKCEDCLZ1sGMGLpeoZFWLO5WXyKMYj5sNR7BmO94ABi12+1yJLVuqvXEeKFdcz6ZrFBYHUsYsnegbj79Yos1Zo9bqw9oxQiYb1WHlmerP1u+ZIry7rGJcVdZQCbL+/gh7WerCVIoQ/zJN6Gtxp7hFpZ1q513EaHDh3KGWecsae8aEU+5GLOoJle+KUiAyUMFVWBLiHDHpesukr+UDmeIC1jrl4h7fSMY/J70IMelGRFDJUHfdMR4+vx/RoTJH963a+CxU/NyIUc8Q1x6dccQNE1J8VapFc9Rswb8LCHPWznnVe84hW72tWfNWA9Vc8OvdZfjat2OnLkSM4999w9F6BUD4G2e06B9cK7UC+osb/0i3WscW36XqGTZPW0Ha8Usj2qXo5B3uTC86Ef+g2R18/6hTTaoMN4tubreGRzm8tePKpedWsOzTeEbf/pJ0/qZVHd06ZksOI19Pziiy/eecYpC2vBuOR1QNy1BK7veBlqDsB+oIG0Bw0aNGjQoANC+wppHz16NB/96Ed3LBtWUT0nxzKDBKAHiIRFWOPgLECZhKw3sRDWvXOANUOT5ceilk0uXrwN0bESWZx4ZWXircYyWepQKiudpcv69049k8qS9R1U4Z1+OUiyorK73vWuSVaUblyQl/FVaxMaI3vyZHlvK+nZy7T27Fvf11gmHvVXs/o7XXPNNfngBz+447FgdVdU6XRAzzWAxljlNfbPaoe46Zf4Iyt/W6YsBKg/6AxqItOKJsjOmHtWOi/AthgtGZJtL8HbL6FI9l6y0GO0kJ2cimTViX5+2u+uQ4SmKwK2FumidWOc1iT0Vnkzt3jp55tryUtjpgcnOms7z3OOHj26My6yrWsMHe+63X5qob7fPYfQHdny2tQ51Y+5oleetcfUq0DJgSyh5n6agHclWfMtzBWdsQcqwdzPYCfrPqZfPNEDnrLqpSMfMrHW5MNYM96tp4B4DO3TTtL0y3V4VJN1/fPOWPPkiWdZ8lUW1kLV3/1A+4ubQYMGDRo0aNBxaV8h7WmacuTIkR0rvF9qkaxWPoutI11WUrWsWXqsrp4RzvpiqbHkKrFAoXWIQJy0xrKgZQi4X8IB2de4O8tdbKdXnYKIvVvPzZIPi9AZVe+Kj9U4uGchReTcJzmqJFRRDJnjlWxYxRBy7Y+HAtolR+iZdV4teTLWz4nO2hov3uQEVBmbI2PTF1l0r0ayohVxfJnz0F6//rRm15IDlGKsfheTg56SvWf7e0U6KLaea6c7ZAt5QKj9nHPNrqVHnvWT/hlPvUTFPEOZUJLYs9MXvd9k9SQYH5lYg9BnPSNNv8XxfYcnCLJeRiIL2r6wDTXX8dQs7FMhqNhYoc1aF6CfEaZn9MI7YrWeT1b9Imuolg5bC3VdQq32in6ZEn2v67LuI8kas3bNpzbpTM2o1671AsHX+HDvQ9zdusK/fcY+QKeqV4huiOOTjf6Mq57o6SeRvuZrviZJ8spXvjLJ+jfB+k7WNe5vDHnuFxpIe9CgQYMGDTogNP5oDxo0aNCgQQeE9pV7XHEVxK1Sjxlwq3Flc69xzXDj1OQeyRrcxdwnXDLc4RI2Kg/a8V0vssIlo6BIsvdYVk/qQTXhTXJKv0yA64mbkkuqJljhlyuwJ8VILtNHsrrO+t3O3Eb9zunq9u3tS/rhrpLQVe8YJ3MuVS4oiSDcjdW9iG/zUwuldDpy5EhucYtb7HEvV9cc+RtTL4foqEc9osQV2wuVeNd86a+61umbsUqkud/97re1zdpOP1LEbahUbE1AEgrgJuZG5ko3l8Zi/MnqPqTndNcc0+FthTkkDeG5X56ijTpv5KNdbmDuUv1Ulzp+a5nPZNVJY6guda5zelcTHI9HvShIJWPrd2ybh34ZSB0jl3Y/Psr1bBw1mZUr25xyV9MViaP1oot+fAvPPTxYZWHd0VFud8fdOs9VV9HxyrTai2vCbS+OZW+3//Tk3Spvc0pO1rpQKH2sctSOC3AcG+0XJdUQrHCFZEhrbr/QQNqDBg0aNGjQAaF9hbSTxdLvSLWWGGQJ9qNI/ShRTUSDRFnx0ByLk7Xp+ENFYBIUoAaWtH6ggHrwv1t8eJYwIfGoFnGBKlnOPAmsZ0jEOOsxil6woidHsYDrsR3HkLxrHCx4PPu8WrzGjseeREb2NeGJfKBd8iTrbck4HcnXkoadrrnmmlx22WU7OoPfigxY2728onfIul4FC+nQEWNTZpFu0Ys65o6KFCiBhP1ePS70GmqEUiQv4W0bouuFcHg1nv/85+8aCw9TlQmdJWOykQBVk5f6pTl+h8okPvajR8mKfOlML+7TkX+yIirPatc6pof1HUlp9gclRE9E2xA26ggbWY+QdtVRfdMDPPVLOsxtvX6VV8zYea/MC1nXBCo84sk8mB/f170RTzUZsr7bL9ioHhA6Y3+xZ0g2e+lLX7qL92T1vtFrbdAR+8K2Y3fWZ7/8gwzoe/doVt56IaI+f8neI7QSRvcLDaQ9aNCgQYMGHRDaV0j70KFDOfvss/dce1mPNYi1sGihRzEZllQ9dlBRSbJacZAhJC++W2NneGEhsoBZumIx9UIFPLBsH/CAByRJXv/61ydZY2fVg2BcrESIg8ULifi9kmfFMBUd6JdbVATZ0TB5ijEp22kOapxXjI51zsI1HtZ4jYP3o0ssaG1B2LUoDpTP8j1RTPvYsWO58sord9AkdFFjVSxyiIynheVuTmvMV/lQz5o7PIlpQqI1fseL4FggHeKBcVyoojjfQQLGAa3hscaY6Yx5EDu/9NJLd/Fm3LU/sdJ+fWuP99dLE+igWJ/+e5zf77VQSr+Mg4cJGnOUrR67PN4lMHRKAZDqpRHnN188S9eVemlOyJOOQ4r1whuIs8ZYk3UtVT3rPFrT0Do9JCfelKpv5NHnwbqnO45TJev+STf6kTJeO+9WPdAP3oyXTtmPKvLt+w3Z4FWZXhel1KOG8oj0ay/xc9v1uPi1v9IHOmVt1JK19jFruxZb2g80kPagQYMGDRp0QGhfIe2rr74673vf+3YQMKu2XqzB8oTUWIiQKMRbY75QCYuTlcU6ZlmxtioCZm31QvesO+imospemhEah+hYf7VsIQsU8mDx9ss/eB3qRe9kID4EpXkWKqhXF+IFgutlE+UV9Isr6ri00eOfkERHa8lqOZvTnhVbL9zQD2v4RBnAx44dy8c//vGd+Jr2KzKASsgBejBW39f4HvTT0Yu5M3byqcjH3NEhyNpYtVGRb0fNPB70w9qoHom+Bvq1p3TF2qhxV3FBn+G5lxutSKTH1+kBPaerYvW8YMnqbYDKeAXMF1lVdGYOIR4lZcWA8Vz1redB9JhtpUOHDuWss87acwVjLfRjXZhn+1C/KrfGfHvZ2l4wideOHkCsyV5vEJ2FgI21rhfv0EH7p/7puf2v8mKsPWdGf/2Sm8qT+e5I375TT4T03AWesH6FpsuG6mmMflmPOda//a8WVLKO6AodtQ8Zb123eLOP90uqTjcNpD1o0KBBgwYdENpXSPvw4cM555xzdpBuRyTJioJZV6y4nmFa0bLi8Cxy7Yl7sfZY9/UMLOtNlqXfWbHarHEUFrSz42Ix4im9v2S1qKETFmYv1dhRbrKiZFYqK5mFCC3WuHu3Jr3L8vQ5OVZkx2rVj3f146x3zThmobPC9Q9xmZNt5Vn1wwuxjaZpyuHDh3cQ4raYn+94aaBMMoVmq3WPLwjB7z3j19zWTHCeHMiG98Q8kCm0Wd8RazTPPAgyv+sFLv0stXPgsnf1bw4qsocM+1Ws1p61UM9A44GO6JdcITq80/9kRefWDyRkbsXLa16J7F1yMk89w7jG+aFA+lTXS6djx47lk5/85I5uQtxVf3ueinVhPD3emqx7hfXxuMc9Lsla0wFipKv3vve9d96FcHuJXXpHbhVVymHwTq9ZQVdrnNj+ZS77/qk/HoWaH0Sf6Io8Ivky3YNZqV9IZDzGIHZvj07WueynFsjeuOuFKGSLF/PjBId1W/N9tEeHap7CfqCBtAcNGjRo0KADQvsKaR89ejQf/vCHdyw3P+v5S+iLRShTmpXHQq0WKMvJO6xKVjPkw8Ku1jJrsp8FZM2Jr1XrjkULCfRzrMZV4+DQkKxZ7eFJLJD1V4viG0+/wAMa65ZoshdhaYNVDFlpq3oF8O8zVqr4q9/rGWnP8ogYJ1mR0baYIBnUPIVOhw8fzrnnnrvTJ3nVOKW+8UfG+uxXtVZ5QJzmCaqjm/Skxr+8AzX7nS5po+obZEM+UJl+tFHRMm+FeN2LX/ziXbIhN6jGOJM1W9s885Z0D0M9PeDZfhXn6173ul3vmouK0nkS+pWsMprNUa1hwHthrTmFoR/XpNbKVf06zOpx6XT48OGcffbZe6q+1fVJhsbi+kdoeduFGjwrEPtFF12UZJ07XgWegpql3L1C+hXrpVM1t4XOdE8SuZApfUnW/YTOW488f71iYd1DtAOJOlEB1YqXV8+VPalfG8sr0T079ZpNKJ/XBPLuHsy6N5of7/QaHXQL78mag2EPqXH8/UADaQ8aNGjQoEEHhPYV0p7nOfM871imLKma9dyRDmIpsXSrtcWqEmuBWnq2OIutIkQWO3TGcmMxssa3IV/ohHWsn35pfLI3e5KVDm0aL+u2opceu2J9Q23aqufdWeP9WkfWsbiX8VVvh++6rKG0bfWJ+9lustA/+da5FjvtGbTb6NixY7niiit2kGM9n43uf//7J1lrjEN9kDZvQH23e0f6mXg6Cm1U5AOddARPFmRd8yG8T7bWAgTUs/qT1cNR56g+Ix4OqdS4JORBBrwP3oX4tJGsqKifcIAce01yld+S9bSAcXTe6Hk9swzRkzVdsX552+q4ekW841U0813dT8xLnUv6Svd7Nro1uK02ge/kuthTemZ+RenWJ++Ifu1/5rrqav9ODoBx9Oz+ZPUy0lFjN15zaFxVJv20Ch3SJp4rsifnfkrFyQr7IH2vuQiyx3vNB2vS+Ku3y/oh2x6fplv1XgY6KZu/ehf2A+0vbgYNGjRo0KBBx6XxR3vQoEGDBg06ILSv3OOHDh3KTW5ykx3XCfdHvYSBq6IfTfGTa7qm8HPJSU7jtua+5IrTZj2iICmhJ05w0XBTV9eW/3MLccFwZXGL14Qg7XmGK5tbTzKEz2tRBXLidvdOP65RXU1cw9xSSPJKL5dZXWo9mYxrvSeK1KQy7jZyNI+9cEadt361Y3U9djp69Gguv/zyPcd1akEW4REy5prnzpNkWI+ZXHDBBbvk4aiII0r9Yo/q1u0ubW5L+r3tggNuUbpBl+iq+alH43oCpTbIX+Kbz+uRRu5C4+mhKa5CrtBKXOn0i1uSrhpXdSX33q5YGQAAIABJREFUyyX6RRTmv8qkJxjRIfNJP+o+wXVP7+pxx05nnnlm7nCHO+yMGU/12Gh9tv40L/WyD2QdclNbc3SEXPrFOMm6hvBibZMBedUEu36ZUk++I0eJfEly3/veN8makOVd4yJTOlNDOdYWtzR3uD1TyLK6q60tezE9t1cZQ09UTXaH96oM6B/dqscu/d+6sZ64+elJDVX6v78TNSSwH2gg7UGDBg0aNOiA0L5C2vM85+qrr96xUFndNckLWmD9QNasZFa+hKRktXj7T8iHZdWTcfCUrKiZJYoPP2siQy+v2K+UhKrrpQisbFZrLwVpXKzKmtzRy4lCTaxZ1jqrMlmTUhCLV5KWZ6HdetwK/xLFelEFyLIWxSGnnkxmLoynllh0EQQZnAhpHz58OOedd94OUjS+epzKGHgGjJGeObJUC8lAfHQFKjIeF6xANZB4siIO6MHceRf62+ZJopPQkZ94NwfJmmBHb3k8tN/LTVaUDgWRG5lbP+TIK1Blol3rBoqyRiCxilQ8Q2e0b26hm6qr/frGfkUj/aiIDoqFvk6EtK+66qq8+93v3tHFbVfA+q6iuErVa4b6VZ/4dbGJOYVe67E6yNaa5k1RaMb81GtW+3EqP+lKL+ObrHKCdMlQPx0Z10Qu+0ov82m/doxPsaVknUO8QM/WkfVv/NXb0Y9mSsDsSbO1KM4973nPXe121LztSCNZW+u1GM1+oIG0Bw0aNGjQoANC+wppJ4vFBxGxqLcd9WHdOUYDRbCcKjJAUAqL1/GCXoihXgHJAlVezzOQF6RfY9oQZi8CoDQfpFKtZJYn65Wly0LUD9nUuGuPQ7NI+6Uq9UiQdyBrPLJw8bMt3qZdR3ygD892RFvlA22yhsmIlVzj7rW8Z7I7jt/pqquuyjvf+c6ddr/iK74iyW5LncVMxuahH2eBBpLVa9E9BcZKd8i2Ii5yMZd+9w6ZVhSofWMlD0jA9/UYFT0i417CVRs9H6R+hxRz0d+2a1b9v6MxHgpI1c8anzYvjmlBg73gTfUkWMv0u19qYV1VFIgnCLkiqU7zPO86ErbteJixHO/oGN3atqah/V5uuMfv6zE+yFZ/PS+ieh87D3jVn5+9MFWy7nXa5S3Tvv55O+pe7F1r2r5nX5UvU/uj+7xDnoFujUEeUl1P/h6QBU8O+Xm2In/61D2j/m7YB+vewkPGa7Ytt+F00kDagwYNGjRo0AGhfYW0p2nKjW50ox2ruF+Dl6wWUY9RVcs82W1tsQTFN3shEVbetuIarDqWLyTKUmMZ1tKX0Dir1DPiN8ZTLVDWHGTD4hXvYvH6vcZtyKR+VseLtxovZqVCAdAT61+ssReRqePrcvV5v0ig8o/Hbumag4roIRWfVQ9IJ7rD2oYYa2z0Va96VZLkMY95TJLVewJt9izyOhb69FVf9VVJ1pKU5hYiryUPyYcsWf1KM/YSosk6H96BXrRr/qsXgkzpG72i58alyE/10vTYKS8E/YBua06DtUBHe6y+XytZy1jiiZfG+LrHrOqyMZsDSIiMeiGQyqO+e+GZSocOHcqZZ565KwejU493d8Rds48Rzw2k26+aNQ9kUQsm9Wx+c8gzZl3WDHHZ2mLJd7/73ZOsZUztLds8btZG98rQpX7pUbLuZzxT5IdHMqo8ylanB/YOsuFR1Pa2Ne80hH3auHgD6qkVeyPdIDd7PZlX2dNrF00dL4/hdNFA2oMGDRo0aNABoX2FtFG30GoWJkuvx+1Y+1B6PWvNWu1l7sQsWOWs5WrdsdRZhOJmLDVnLrdZd/hmnbNit8XoOxrvVxXqr5+FTVbrVAY2VMx6ZQnXmJ928IYnMuHl2BbzYa2KO/UC+9qqyIX8tGMe8er3OtcQVL+sYxtBS9qD3Gv5TX1DFZCQZ11pydKuY6BnL3vZy5Ks8jFWPNaShxC0DF0InlUPKdSz6WKidBIqkl3bzxIn62kFMqbHeDQvkP228px46Mje/FcUa31Auj2WSresHSVfk/W6UM+Kbcqopud1DsiJbHtpYf37PFnXUT1XfDw6duxYrrzyyp11xEO0LZZ5vJj2tpMNxm//sW561jVZbDun7Rn7WUeV1SOhzKc4cY9DQ8sV+dbTDsm6lrUhBwFv9WSNNUu/yI9++Fk9btaEugzWRK8xgeopF/uYHAZrpecZ1f3bWLXLA0en6FmVo2d5LraVRD6dNJD2oEGDBg0adEBo3yHtI0eO7CmWvy3WxOrql8Wjat1BOv06QBYaS5GFVa9zZE2y4li+eGRN14pRvmNFQkesVT9rvNU4oCDIhmULRfXKbMmKCCBp4+xZqrWiEI8ET0GP98sehWKqxatdaEAb4qx4rvEvMod88CyGue1qQ6iLFXyiwv3O+GsfuqvXHZI31OJZSNWZznrxBG+FTGlj6ueYIdKKziBec8mq92yvvFT/TzfpkM/pX60UJVbddcjv5GcsVe/oas/Uh87MR43Zag+K6fFXP8miemmgysc+9rFJVrRE/7S57aw0XaHn2sd73Se0c6JYdid7irVceTjRhSOVKort+1bP+DaebTkpvWqjOTZfd73rXZPs3qtcXQpR2z/puXfrtcW9EqO9ktfOWrbWK4oln35dMU+Cd2qthH6Bh/2Tpwq6tWbqFa3WxIUXXrir/+7Fq6cV7F88BzwVnvVu9cjVUy91PPuFBtIeNGjQoEGDDgiNP9qDBg0aNGjQAaF95x6f53nHNVOTURBXc3eVdpdnLWPKDcXVxMXo8+62ri4Z/XHFcb1wl3Gl1ksYuKH0I0GDe4yLiVsxWV1JPeGMO4eLhuumuqmUUJUYxrXGhdaLK1T+9cflyC1FNtxY9Xgal5zkkZ40149z1GeMk0y4pRx/IbvKrwS0mgy1jaZp2pFbd60nq1tQH+SET2URHZlJ1jt1udd6gRzzQHdqmISM8S2ZDI9c7bXACR65p7kP8SQRrsqCS5GO9Pvbe5nHGurgSuey78e4ejGZ+n96QDeMh8tV2KSGZcz7xRdfnGRdk5//+Z+fZHX7VzczXsxBLybUC9Eku12kye6QwPGoX4pyIpd4dTFXXraFcKyhfoFHvw+6rmn7iuQyv+vXXlJdt/7vSCGehDa4sWtojR7hxXr0DNkLsdVkP/Osn3vf+95J1r23XwaSrOEq+4u12Es7C5tUXTXvwhj0T/v9eFqyrjnhN2sdH3S5vkMW/bjdfqGBtAcNGjRo0KADQvsKaR8+fDg3u9nNdixPFk9FbBJLoCTWEIuJdVcTNKBICNphedYWa4zVX5EBdOI7yKSX46yWmmchT/3gzc+KtKHWXqIR75AIy7MiUkeYvNMTn1j4jnMk61EPVis0xlNh3KzMiiyMtR/t+v/bu7df3a+qDvhjH1tAaFHOSCSQaIIaNXJsaQvlDMGgF154YTzExL/AW/0zTEw0xgsTExIC4VBKgba0chIiJpBojFEJoKJYatns3b3Wei/M55nfNdZvL3Z5X+mz8o5xs/bzPL/DnGOOOff4jiPtHH+znSctGL/wTyEGz0pEpIhCR3ZbdOnSpXrxi1+8GzckkujG83oRFeiIRSJ529tpem7/vqe95HN6uomAmq3WfwqSfPaznz32HmtsrBBY1QrEImc9wI0Vwxpnu1LFLgT3QFrW1Bpmup0AIMiHjBobpK8BS5aFJSPWFIIjM3iWQVyQlOfYn/jIGpXouqcQ9uJL/28pC8YkpYx26xmZJyN4QfYT2bOe2Q/2T2+ek8GezgjPxTeWy62UqG6V6+1OWR8g1bTw2AvGJhCNfOFFlnaVVvnII48cGyOekCFnfgYSstwYk33T55vpt1A/eSMzxriVIkyeyXe3kDzdNEh7aGhoaGjojNBeIe3r16/Xv//7v+98QL3MaNXxlKCqpYlC5xBBaluIhk6ro2XREGnymU5Dk6XFQqj8R708Z14LNdC4IZ1eDKNqaY8QLe2cNgkp8FdBYlWrnSKNnZbcUWeWdlWiD/rk/4RwPIOmmj7tXlbSmGmmHXlXLQ3X+vU2qeaZxRto3dbpB5WivPXWW3fjztK3iGzgIQQq/ainaCVBGjR26+97/vcsEQotQeHkAiLuRSHyfgiYVQOf3MO3XbV42kv8GhM5MPZMMePHNwYya8/xI2dKjOeT494oBhq0f3N+1tl+wRvvNZd8H37ZI93KRZYh+/wN0r7ZlK2qk+luVScbp/TSrVtkD5NjY3Cm4E9a6RD+mzO5Zh1ypqRF4itf+UpVrXOlp/p5f1qzWFJYgayl+XkfObj33nt395IDfLLuULvPeXaIuyHfxswqicwhffY/yMpljbIssPk531gSnJliVnLPm/tWbM4+0CDtoaGhoaGhM0J7hbRvueWWesUrXrHTPLtPqGppnL6DLmhdUPRW9Clk6DfaHS2SVpn30tT5OWjHtEt+cppq1dJA/aW9QvqekX4UGjst0b3maV582vyGeW0vsg9puTYjMfnTIVLP6C0AaaCJloyxF4foPuMs1wohQt+ey7qx1QIUUsBjWvoWXblypb72ta/teMpCAN0mQXF4+7GPfayqFjI2j6rFS3Ps6Jis0MoTnZkTNERGae6QQxZkYQWAgHuxnY5iqxbP7Befte/sbU/TGmCtRP5CeMYMTaevHmIzP7zg5yV35pcoBuqzr6Cw3tYxy49Chgp/kFmoyXsT9fpuy5rxg6hb86pOlik9DWEjsuFa+0UkuAJAW/52ewd67D5f94jHqVr8YEmxtr/0S79UVVWPPvpoVW0XH/F8e7sXkcLztPDYu4lsq9bZ0i1xVWvvicPo7XFZMlntUg66pai3BCX3aVVhpeEPJ9+sMv08r1ryS/Z7sZWnmwZpDw0NDQ0NnRHaK6R97ty5unz58k6T8jfzi3uzjX4tzTQ1NNq2XGrImnZH2+JfyTztHoVMe6X9i4wUoVl1MpqWFsc/A3lsNTOAunpDCsgE4ssIdxG4UKF7erH8jA0QPek5XSvukc+pbfJrmSctnYb9jne8o6qOI/vu//Q+awBRJoLpDTe2EBA6ODg4hiCg2fTfQpr8WPgD7eFFWlpYY6Aj6/1rv/ZrVVX1oQ99qKqWjKX/i48couKvZ0kyP6iiaskRX6YxkYutPGByBHHceeedx+ZJvvEnawpAbNC3eUCq/K/JezLRo8fli+MzFGhfVS2561kgkJz1z9iGjqzIjGwIqC3PCfJKrp6OXNtextRYrD9Z0kIzLUnOF7JozmQKb61x1bIUyun3m7MD2sxofmcRuXVGWCdniv2aViHvMU9nJbkwv4xPkOfd/e5k0/lt3vfcc8/u3j/7sz+rqpU54VxA3p/WNTLi2n4u9LbCVcua5axijdgXGqQ9NDQ0NDR0RmivkHbV/2r0tPuO9qqWRgYBQSK0+62KaZBFjz6lcdKyaGqJYmmYnteRF8oxusd3tFXaMxSR0dwQLuTjnt6i0RgTVfDlQLy0cAiI9pwICy/MC3rmA6IB98j6qtVGkfbPV9erXaXf1b9p9qwDPVI7LSndn3Ya0j5//nxdvnz5ROWjbNJgfJB1r84GsaaPsWvk/kLY3kemUnaMly8RQsAvloitBh4984DWbz3SR+s9YhfsEXLdW0Lm3ujP9Rkq20JYfvN8yERMAOQF7WZeuPXoFjGfWWQS+UB0/J3k3V435rQGkbcfNcJWMa9qxblYQ/sFiuztcNP3a46Qtb3bW3VmZLb5ky98gW49X+R0VdXDDz9cVUsmyIj3W3djzpoCzgFjYgVkSegV8qqWf51Vjqz2+AjoPC0J5IBsuKdXMMuzkRWGFcK57dwhq1nxz1x7bYZ9oUHaQ0NDQ0NDZ4TmP+2hoaGhoaEzQntlHr927Vp94xvfOGGeyNQopkymMeYV5jB/s2Qncw0TEHNkL9XJjJwmWmYUYxCgw9TEBJ59m5mFvI95UrCPsWUZU2Ypc2fqYZ41b+b5NPv1UoDShXqZxwyo6EU0mDh7D2QF/P2eY+iNSNxrDZjCqqq+9KUvVdXiY+/9bP5ZTMHcb6ac4I/92I/VPffcsxsDk2O6LfzbO4xfahS5EFBVddLUh1/MadYWj9M8zqTpGcyl0rqsTxYFYV7Fp16Uhqk1zaJcKT31iQuCybmnyOT4ySRTIHeI9Lc0x0stIoPM5V0eev/wqpMFP8iseZKHLJvae30zt7vGuqYZPu+vOt5M5P+C7PVM/URkpp9V1sP4ubOq1nqTITy1Hs6OrZQvY3CO6RMvGEsJ0bzGniBXxmyMW3uDnJE/54u9YKy5p/u6kFH7i7tJ8GIG63r3b/7mb1bV2jfex6SfKZueZw8YS39fulbIivXIhif7QIO0h4aGhoaGzgjtFdK+ePFi/fiP//hO26dlZqoSzbAXKqGt0twSTfRiDzQn2nHX8rOQBE3P+2hoNEaIK4O8eoBMb7Dh3iz2DyUJwBAYZEwQpLlk2VTXmjNESkvuDTFyPlAzrdI9EJixpvWhr09vnuAZW2Ule6ERKM2aZHCetYXKE0l1evzxx+uTn/zkTg5YQjJ4DdKBKiETWj1EmIU0zJsm3hsaCGwRhJXpLa6xHj5ne8PkSc5f4Iw1w2PpY5lO1wvi9GCvXvYzG7lAy+7p7RS3CgHZj70kLZ4bm7XNQCT39rKV5G+rpar1woOOsLusJhl/or0bEetCIt4bUW9Iclrxll5C1Xt6wZYM9jRXcvWFL3zh2Ge/CwarWuVDWZl6ASC8zfPUeUmGyIGzC+pkScx7eypjT0+E2jOI0R42Ru83Nmli0HumULpX8FwvL2rMec6RIwF9rGrQuPck7+1pcjXFVYaGhoaGhoZ+KNorpH1wcFCPPfbYTjPtaLqqTjSE6I0HaH1Z7KRr0HwvtD3J+Hw+mYLDl9ubL0BCPSWiaqESPllj5j+hVWa6E18mpEWr7P52z0pfTy9UQMPu5S0zrYE/qlsMoDMoyntTE8U/iMqYIUYoJNNDjNG4+crxwvolUu1NS04r3H/rrbfWT//0T+/Wv6fQVS20ZU3x6bQiCtC4Ig8K89Dmrbu5u75qIXf86evRm9Hk/Xxw+NQLWCTi8fzXv/71VbVKTeKfYjf8oIn0jQnfya74i56SVbVk1XPIUm+MQbYylckewAPIyh6HwNN6Yw2tF0uYeeNRImTPd81pbV1RR76nUaK5H0QdhfeGRfiWc2bhkS5oP0KICrKkf9pc8dCe0tZVW8xslWkN+15wNrG4QM1p7XINXrMoZiniquOxO+TMeeIcvf/++zd5k+T57iFn5I8MpQWT7JBZPIbw7bet1rPkIVuZ7gMN0h4aGhoaGjojdO60ghU/ajp37tx/VNU/P93jGNp7+qmjo6Pn5xcjO0M3SSM7Qz8snZCdp4P26j/toaGhoaGhoRvTmMeHhoaGhobOCM1/2kNDQ0NDQ2eE5j/toaGhoaGhM0Lzn/bQ0NDQ0NAZob1KQHvmM595dPvtt+9y9eThZZ62vFF5hVmpqWrl1G21LkRyD+XYek+vILR1r8/9b7YSRPIHUa/elvcYU8/lNh95m67byh3EC/nIxtYro+W/e3UrYzJGeZtZqaxXlOstSLfm77c+fp+3crCttecb4ze/+c1v9yjO5zznOUcveMELTswjx9TH6d3W3foknzyv11m2Hl3ekk+u6RWxukylDHuP726m7rF3em5vO9jXP5/Zc1z9de/W+rjHnP3W70HJTzxxb+djVodDN9oD5ntaNTJy4Jqvf/3rN5SdXLv+XHM0995K0t+cez+beltNcmFeKRe+63vM2eTarNfgN3va3Pu657zUdjA2z+t82+JJXzOf+97LvO3eVrPv8Z6Dn+/rMmotXNt5U7Xyvb2v74m+d3LcfW9syc7TQXv1n/YLX/jC+sM//MMTSfOZaO8/pJ/92Z+tqlVEXmlGif75H6L7fafYg0IFioBYyCzEkOUUq1YxFb1d/eeaB5PiHQSwb0DvzyIukvx7wwbl9wiOwyM3AsF3WCuyoeezwhj5n6jiEIomaDzgGoUq8CxL+blGQxBFcBSCwbNcA4URzEsxA8UOek/rqrWRe3GY3/3d3z2RnvPSl760/vRP/3RXTKH/55PvsLkVU1FEoSs7VUuJMi4Hn3v8rthP/gdtLK5V9KE33MiGGor44AvZ9H4FbbJhiPXAb3Jsj2gg0QvBVC35UmzCIUZmyGMW/iC/ZN+YPeuVr3zlMV6kHJA766MYjjU2l1ScO8/JgUIfvbf9afRHf/RHJ2Tn2c9+dv3Wb/3W7p2em+Veyas9ph+9wjj2diqJ1te644/iJ9bJ93nOkStnhzNJcRIyk4VSemlixaKsj6IkCgTlfDoIsi54YL2yyI7nKbHqTLLPrFv27/ad80QRn65IK5GcjZHw2P7pzZOMPYvseJ6x4uunP/3pY7xJ5YAc9PLMW7LzdNCYx4eGhoaGhs4I7RXSfvLJJ+tb3/rWDunQgqCAqqU9ZnnKqoWSFNSnwVWdNEPRkqEVWrSC+9najYZLQ6PtKf8HdSilmPf0BiW0VGPbagEKTfTWleYA6WdTE8/Hr7/5m7859rmjwqqlQUPFveg/RAx5JRrUPKA3/zBvY80yrd10C31ZL2NTtrFqoVe/5Zp2un79en3nO9/ZzUP7y2zJaK6QjzEos2jcaV2hxeN3N1ubF76ledS/IU9yhbd4mm1PoS0yae7eu1UiFvLwHWvMhz/84ao6uY8SaXsupOF9nmHer3nNa068DyJ17xvf+MaqWnLvb1ou7FNNQCAuY+8NgapOmlAhul5KNBF9N3WfRhcuXKjbb7+93vSmN1VV1Qc/+MFj761a6+K55Jj8Wq9uEs85kcXeote5kKWC8QVve9lk6DzX0jXWyjp1E3sSWXdGWKvf/u3frqpVXtT8ksfK5ULheOOv5hzKRVctSwF+mrvzzplsrHnOv/rVr66qdVY5b+xRCDmbN5l7LymNjDUbyqQFtOp4Gd59oEHaQ0NDQ0NDZ4T2CmlfunSpXvSiF+20TD6z9PXcfffdVVX10EMPVdVxxFG1kHj6b2mTtDcognbFR8aHkVoXzZkW/pGPfKSqliYMmXz0ox/d3WNMtDjNS2jFxpENCvzmOxq2sfTGHelDdy0EDB0ZG1SNn1XL3wkNea9GBBpW4KPYgaqqt7/97cfeC6nSdKGQXDeok/ZPG/YevyfKhVC/+MUvVtWyhGzRuXPn6sKFCzttnPadaN/8X/WqV1VV1ec///mqqrrjjjuOzSMbDkAW1oc/0HvIm7lDtVULDUHY5ozXxpj+NGumwYExeT+kkr4+8mWu3XfKd28uf/3Xf7271zyMH6IiF2TJ55yz1pv2yN/+7d9W1UlrgDXO37o/n+waRyI6PGWRsH9yD1Rto2t7/bSGIYeHh3XlypWdn5OfOtG+53intWQZYhXKgD2IEHLDa2dXb+yTlrAexGUfWg9rntYG17IUQLHG7CzJPeEe19h/zjkok8xqx1lV9cADD1TVWh/Pt4bkPq2Q3Q+OnDu9RfCb3/zm3TVa/doD+HfnnXdW1ZL7bNrDCmAMED053GpMYt2Mofu2n24apD00NDQ0NHRGaP7THhoaGhoaOiO0V+bxg4OD+p//+Z+dqZT5LUP4mVV6egszCPNO5nYzc3UTF5Mj8w5TU/biZpb67Gc/W1XLnMeM6J4MeGL6E4AioMVfppk0v/WgHiZt5htjYuYTkFK1zGA94M38mHcywIK5m7kqUzmqljmsB1NVVX3pS1869nxrwSyGJxnIgxfm2QP7mOmS99JZ8CQDWjqdP3++nvWsZ+14yoSaYzBHJm4mM64OvM5gMnwWIGO81rjniKYZ1r1MqYJqfDaOrdQ//PEbOZQ6l+4fci3AUsCZa5iVXWfNqxaPya/9xDxrH6Wsvu9976uqxS9mcc+w/oIB0wRJrsiMsZonvua6CY4ylp422NPiqpZsWo9uSk+6cOFC3Xbbbbs5OkO2AilRmmDz9zTRC8zDD+Zb4zc2Ju90lzlnmGrxpfeMznu4Drl98MD+wfMM1CIzeNhT8uwN+zZTzLgMyZe9a554kul7H/jAB6pquSSlmn7ta1+rqhXYZ6+Qraq1LuZFrpwLxsr1l8T94rnWoM83x+vvVnDh00mDtIeGhoaGhs4I7RXSPjw8rCeeeGKnUUHYiSoFEUGPtFVoGUJJxAOx00pp1AJOaM3uSc2KRkiro3EaG+0ukagxCqASzEHLo5m6rmpp0hCBOUPcUAWtOVM9zId2Do25hiafaVu92ABNl+YJlUEbGfhEg8YbgUb4BsFm6lxPIYIyIVjXJqITcGJdzGuLrl+/Xv/5n/+5e77xZhESa9iRb09zy+Aec4LioFcIoFsoMmDLupMV8tfXFpqqWmgVWrHeLAdvfetbq2ql25h7zsu6W1uBY3fdddex+VZt86lqyYO9k+mJLC14Ym2hc3Jhnom0zA8vrDuEZY0TNdvb5EBAIbTZU7+2KMff6eLFi3Xbbbft9rJ1yXNHkFW34CiyhKc5V+vguZCosUC+9nauATkyR7JJZruFsWohTlYLY/aMBx98cDdfBGG7lryRc2cGGU4rlH3fgxff8pa3VNWyimYxF8/zPjwiM95jnhmch+eKtZAd+4f85/nttyxGVXWyOE6epwoY2b+ZkrkPNEh7aGhoaGjojNBeIW1pO91PnEUHEI2P1k1jpG1mQjzNlnbfC4f00pdbJRtpajRRiA56S23f82jdvdgJjTpTYXwnTQfSotnTOL1/y1cLNXm/NBRjS0TXERxUgSd40Wv35vNotsbmM/7lGviOv818rVcvfVm1NHjrlmUlO91yyy318pe/fMc/404N2xikfRgvyw45yRgKPOzoBZEl8pjrAq2wTHRkuFUgA8+MDfJk8YByIeCq5WfE016cSPoYxJMpZpCGdef764g/0QseQIrkzvrgnzkkP/ELb6SjKbWKj7nnyTcE1P381iiRMUQHUW0VFkFXr16tf/mXf9mtHSsKq1rVyZgZMt/jZfCzalnwvJulANL1t8dL5L8fBoiGAAAgAElEQVTN3bqYO3m49957d/dIJYNwpUKRDzxNixU5cmaIMfAM8zLGlP/kd9WSNzJqXbZ6R/iOnHku66OiLom0rYc1xXsWOedEFmFyDvCd+42s4uuWfPTa+vtCg7SHhoaGhobOCO0d0r711ltPaKJZyg76gsxoe707UKJl6AvR/KFzv/fC/lVLyzIGSJEWyb9CY6taGmfvBNSjHlMD9R3/l3uNhcZJW4ZQcq7eC63hETRLI83vzA9q8vxeKjI1XvdAEu6hxbIwbEU4v+51r6uqZX3ofl1+1+QF7T/XpdPR0VEdHR3VV7/61araLrRhDuZKu3ct/mV0LQ38K1/5SlUtGXEvf9dWqVjzh7D4NEW3KhaREfP40tEzWWHhyT3RYya2SoEmpR8eSu7NOHokfZbNNUcy4p4vf/nLx36H7DPyGlq2Bvhnnn5PZM8i1TtAOR8y3gJBYzdDh4eH9b3vfW+3tviZc7aWvQtfjzDesuxAs3hJ1p0/zpKMBLcvuu8aioW4E507i24UA+I9Ge9jHZRUNS/FTjx/q9CIMXquc84zxCmkT5ilgsz3ZjrW31mVsmo9yJu1IHdve9vbqup4LI2x4LlzyHtYZNLq2ZvzpFVrH2iQ9tDQ0NDQ0BmhvULayphCbPwd6VOgBUFhUBF0kQi039ObY4iQpeXRzrOUJs2W5ue9NDNR2OkTgTwffvjhqlql/6DW3r+5ammU2gzSKvHAX1pr5trS7s0TAmGVgBzSGkDLh4IgK1YI/PRsz6pa2rcxuZYGbC55D43W2kJLNH1Ii2+zaq2L9TotAvj73/9+fe1rX9uh8m7lqFpWGRo6tIxfNPTMm+4+7J4rCuXRxjNuAKKBTiDh7h9M1AzR+Astmw+5SH8i2cN3n8mqNebXS+RjLXv/9t5rPluz9ngIFh28MA4ILNGg9Td38/S9eSY6N1fjh+A9t/etf6p0+fLletnLXrZbd3sway/gS2+GY435W3OP4WFvoMLv3cvOppUGjz3DHr5Rv/Oq5YfWMhePe1/3jA2xrq51ztmfeMuClX5+KFlGAyskvplvxraYa2/e9IY3vKGqlhy6N9uukhVnifO0Z+v0SPF8nvPBfvU+slq1znZ8eirNZ34UNEh7aGhoaGjojNBeIe1r167Vv/7rv57w/WZELhTbW8r5C8Wkn6s3Nef74D+kZdIqM3KVRkbTpFl7j9xH+ZpVy/+pNV2PLFYpKv1DNHS+JD5nfuPM6U7eVC3UDdl6D820V46qWhombR+qpdlCPHxP6R+lSXtGb2zP2pF+Sf416Mh7IRjaLT9Y3mM+vSpVkvaKLC/WKbVkKKHnZ/fc1Jxrz5OHxnu0q/GnNaC39XQP2SHDOcbuy3QPFAZ1pmWH7Js7XxxZIltkKSt9QbjWsFuUoKSUN/NhVdDUhFx3P3/mHxt/b6LT93xaH3rFN+83RnzcQliQ6WnR4wh/WH/SSmNdezMW+4R8pJWu15AwJ/tQVULzS/mW4WAPsDL0aOe0gPSGMD12w95LpC2n+o//+I+raiFO83QuQKhZCY6sOMfwmuzyNee50ys64qtaAtbQGNPPj8iqe43Nvs1YBGNxppOzbnXLPejMtwZpXdgHGqQ9NDQ0NDR0Rmj+0x4aGhoaGjojtFfmccVVBCUwSWfAVhb5qFpmFCkLzJdZTpDZhLn6E5/4RFWtgCOmJmaV7DstMIsJqxfIYBYXdFa1zCtMZsw5zK/M8ml2YQIWTGFsgnoErzC9p2mdGYypWUoRM6lnZCoTMxfTWe/ba74CONL0yGzYCyMwizOPpqmQqZg5T8EP31ubLbeGMfW13yIyY/wZTMS8aj2Y7fCJaTBNZVkYpGqZMMkdsx5T4VbKVy9c4f1Mf5mS2E3Ygry4LZj7MgCp95smK1ws5kO+sxAQHthjmfpStdYwA4K6udc6MZN7D1Nkyo4St9bCb3jgWWmGZUrPVJ6qk8GSW7/djFn83LlzdenSpZ3sMaWmedxc7CXjx4utxire7V68tIfda09kuU9niOdqWITs5dwvArTwjlw7D+yfDK7k3hO8JtWQ3FnjnvpVteTIe6w7OWAKzyCvG5219imebzUbQdabW9Acts4JLpye2uWsMsZMg0vXTNV2z+2nkwZpDw0NDQ0NnRHaK6R9cHBQ3/3ud3fBF7QwSLJqoQkotZfb3CpyAYFKJ+qowvM9I1N+jIF2KtiGNv7oo49W1fG0NM/treoELdGst4pf0Ba9l+YpYAgizzQamjQtGQowRmPPdCrPh3wgKQUa8JnGm++DzoyNltqbT2QxFDz+lV/5laqq+uQnP1lVS2vGs+QjJAKh/KBAtNtuu21nGYBEM+gG4jReyIZmTvtOSwt5ggTwoae3mUdq7K4lB6wA+ANNQSpVC5X1JiYQf39fjgV6kaYIrePfVrCUuUJQ/Vnem2jJfiIHrFyPPPJIVS0ZZllIxAr5sLRAZSxH5CTlDU+sn9+gaTKTBZZcczPpOprNWH8IMhFpb4Vpn1hTY8m5oh44h5f4SLa2ikg5qyBrwVH45TyqWvsPqrSm0K3fM11UQJbfpKc6C93bC/hUHT+Xq9ae69ag5KP54Bt+kTsI3++Z2ohfzqpu4euNn6pOpkF6v7G5Jy1y5v5UGtL8KGmQ9tDQ0NDQ0BmhvULaly5dqhe/+MU7NElLSp8Cjch3fB69HGf6iyF3JTSlRKRfsGohEwih6qRPm6bdiyqkL5CGRhvmL+r+USi3ammWtGAaYS+84G+mevCr4gUUBq31UoFVCw15jvSgT3/601W1NGBabLb19LzeCAMPIJ60WEDAEDbev+Y1rzk2z7xHsQjI9DTf0vXr1+s//uM/dsiaZp3rgnfdPwyV9eI3VQup9YIhEGJvh5ptD3sDFZYDCIFMZRlTfIDCe2GRTH9E7icH1qw3krFOidITdVct5OGZ3YpStfZJR00Qd5ePtFzYg5py4EmPv8g0IWlOfjMP1iDrmPJxM77spOvXr+947wzJ1KG+H8QL+N66J8ozTkWceqtHY7TWeT7gLXmzT50P5BofqxYvrQcekk1jl2pWdbLlJ1klm8ZhfTIdFr/9te+7Hzx9zL3cdG+ApLQvSh86HnQ5Jhfem2uPJz1mx1rb3+k7l3ZqP+W5uQ80SHtoaGhoaOiM0F4h7aOjozo4ODhR3nGrvJ9oUz4eGhPtsvtbqpZ2SnvLBhpVS5OjGVctlAdF0KRp/7/4i79YVQtJVi2tkVbqWmOkcWc0LPRC0+3+Gtoq5JW+WvMyVgjB97TI1HJpp1AR7ZzWD3XSommdyYveNMF8oYNEPuZsXXrxDtp/+o8g1a3xd7p06VK95CUvOVY4pOo4MqVdd+sMlAQZZllMfPJu8iZCW/wABJTvg6jILNmEbsl3tnPk88WHXrwjrUCol4vsBUUgLfNNHhmvsfaSvsae1oC+Dvy55IH8sSTxsVctmeS79N5ebCfRkudBbnjkmm4Fe6p0dHRU169fP4HYEn2x8GVUe76bVSt5a1347+1pPCAHGWuC+KrtS2PpcTApb2SwW6Tca155NrJ4OZvsXWvss7VNy5U9zNrEUoAHrEO5/p4LAVtv5x7LJWSf5xxZtDfM1ziMMZF9t1Q6I3tmQ/IxLUP9t32gQdpDQ0NDQ0NnhPYKaT/55JP1zW9+c4fYaNJZ2hLSoX3TtmhqNMZshN5bxkErkG5HDlngnlZPm+uNFKDo9MHRqHtzk3e9611VtaKW0/8l3/u+++6rqqXZdw0eqkntj9WBBup9HfGnht0RA20ZT0SR8v+m/x3qxrfuG7ZGGaVqDHxWtGGa/nve856qqvrABz6wuwevrWW26et0dHRUTz755A5N4G36o2j1+GINaffek35p7+TDhsI9t1t60h+O31BDRqhWLXlMy076UavWmnovVJ7Pskb2ib0A+ZBHv6dVyNzJufkaO9Se6KW3zjVG95AL1oHcX64xZ9Yu8+m53lULDUGmxmIdWZ9SPjrqTmvdFh0dHe3WTnyHegpVa33JjLlbW5aDXH/rYL+bo3E7Z6xPWhcgRPULnAPkoEfQV51cQ3wRJ9KtJ0m9VDA5I+f2Rp4h3XLlHMB748kYil5+1XtZ+Hp73/Rpk0V1PLyftcYaZ4R7bzplv+YZn+PIsfS6DvtCg7SHhoaGhobOCO0V0ka0SOg1/Sg0Xn4gGi8tHIrO6HH5y/wZEAgE0BsEpBYGRfCt0NRo1j0KMYn2Rlv9zGc+U1VLO85Kb7Ry127l41ad9EFVLY2w+8Huuuuuqlraa1ZR83xIB489t+dCpt+ta+XmAaFA6+lbc79rIGFrIFI85+V+2vZpSPvy5cv10pe+dKfBW5fkH2uFcdPIRQKbR6KXnkfKF/fAAw9U1dLgzTnjFIwXArB2HSVtoQnyiweeYZ2yvSafqTn3JjC9UlX6antlL/f2GIrkY8+XNf5u8WGRSX56jnXq0fnkIVuc+o1lAnIU0e6ebKpjD/SI5i06PDysa9eu7daSzOc54CzybuMTc4KP6Q/NXPOqde6I1ejykJYp6ys6nCWM9YLlK/OY8bRHWRubvZ7WJ7+RN3Mnd8YhywNfq1YmgHgUctCtkskH53OvN0F2e1MT46taMtnbI6Ot/WQM/SzBezxP+WY96fKwLzRIe2hoaGho6IzQXiHtW2+9tX7mZ35mp31vVSaC1GigUJN7+I+2ohxpULRlWrLoWr6M9PnQ/PiuaaTupaFltS6oxZhow7RLz8h2niIse84jhEXrk/MNmVYtDbP7v2nAEEnm5LIu4Ff31UMMPcozeYKfvWpbj1pP/nRU21sBvvrVr97dA83QurNyWCdtXY1tK6ofCoY4rIN3m2Ouv3dabzy2TtaYjG75VSEb68AvSdtnvcn7XYtv1m6rvrJ9Yu08z5iN1T25LtYMkut+Tz7BbK/Z27dC+mQYKiXv6U+G3CBF8of3xpZWKPPCa/KON1s+aOTajnqTWGm8ByJOv7j9B7GTK2eL56dfGk+tpZgCfMmKgVXrHKpaCBC/yB1fs/XIuJheA1zEf6+umO8hI3hobD1WA8LOWApnA95A0cZILjPHH29f//rXV1XV/fffX1Una4N7T1ppzNW5xpLoTNmqoIn6vrL3zSutD/iGnyn7+0CDtIeGhoaGhs4IzX/aQ0NDQ0NDZ4T2yjx+eHhYjz/++AlTRprzmG2YOJlQmdeYqdIsyowjsKQXUehBZlmqj3mIuc49UqZ8TnOlgB+mJ89j4mSmyqCOHhTHfOR7QT2eoUlI1TKz9fH73tjTTMkMJpikl4rET+bLDMphohXU4S9XAV6kiRMvmJH99R5BTBnwhhfmvNWmD124cKFuv/323XpYgzTnMckyezIF+yxAKIOWyI51YGoWiOgzM17yuJtM8cV8FJ/IYCLmUG4DZjs8Zz5Md4x/M1NzHXV3yVYjF6ZMz/VevDevdE10EzZzK7kTLMXEm+mFeIGv7uEq6KV4kz/m2YMzmfgzLdG5sJVO1eno6KiuXbt2Yn2Sx4I4Pcc1XGpM89lYpQd3GjeZtKaelfMyfqZaZniymsWOkDPRuWlP9zG/9rWv3d3D5PyhD33o2DPs1552mS4DcuYsksaHJ56dBYHsI64q54/5utY5kA2EyPfnP//5qlrNmjLdtur4ucMcL0ixuwq4ElI+7Bu/5ZruAw3SHhoaGhoaOiO0V0j74OCgnnjiiZ2mQ+vLwAJoErqjsdOUIMgsu0iDptn2QgmQSG/IXrW0xa4V06Khs60mDMbq+cZEE05rAC2SBv3QQw9V1UJjNNG3vOUtVbWCL3KMgjkgBLzZKlRA06TRdusG7RJyzEAeQRye34OZekpd1VpDPMA/f2nYnlm1kCF+soj8wR/8QXU6Ojqqq1ev7oIMe7BX1eK3sVg7f41lK+UP76C+3pbU+KHMqqWp0/zJF/SqOUumJ/o3mYU0WA58TkQPrZIRBTncY35f+cpXquo4j42/By1ZS8/IQETzwgufzctffMzAJ3LuXvx1D0S5Va7VPO3fHqyVAU8ZwPSD6Ny5c3XLLbfs1gmaTD55lz3tGgGhxrvVutJz8LinO7kuZbU3WxGA6t6tFFP7rZfJdZ45BzJd0DvJiOezUPQAuDwHNF5KS1HVQvhkKHliXtJToWbP7XPIADHWDOvEsmLf3nPPPVVV9cUvfnF3j3OMVdNn6+e8SKTtt95EZV9okPbQ0NDQ0NAZob1C2oh2xfeWCPHd7353VS0kCiHSDGn9ynBWLTRJa6Wldg2XnzIbRtAMaYI0M9rYVrvI3u7OvbQ82mwien4/SAsqhB7uvPPOqlqIPt/rPcbv+bRn801/VG9a0tGSZ7ISZCMPmifki3/GvNXohSZLc+8lHSGVBx98cHePudOss9BCp8PDw7p69eruHjKTrT4TiVUti4DnW/fUrCFMc3UtREj+oIq81/N6sRPrgQfpO5VOxaJifcgOPqb1yW+u7cV28BhaTNRsXXszCYiHXOSe8Bv56lYICIgfPH2M/J6QFBSKn/ZOtqlkXbB+ZAVyNOZES92HfRryvnjxYj3/+c/f7S1nR1rCrAvLBOTpM1lP6xK/cE9h7QWUrBsrhDFVrX3eG4WQ60z5sqdZ4bq88f2mD7gXeiLHrEDWaaskrfdZF2tpPcw3rZ4siXjtTMKrvq+SJ3hsTP6aT095yzH83M/9XFUtaxR5xue8x15gscqGJ/tAg7SHhoaGhobOCO0V0lbkoBd4yGLuopkl1kNm0Ky2kZ/61Kd29/CNQhp8LrRUv/ONpJau6IB7+LQgLygqC3Lwn/T2jSwHtLpEZQovuKZHmtNwe8GMqhWtaSxQAY3X30RY3mMeUJ/54Q1NnKaa84O0aKK09K3SkeZDg7aO0ADfoPlVrXXomQJbdOHChXr2s5+906wVV8lo9I48EgHmGBP5Gq91wEvo1rMeeeSRYzzI+VurnqXg/emfFE1rDa1Zb4qRGQ6ugb56dDXU6hkpO9a9N1vohYCsV767F8LwXGNn2doqTgHF9naS0HO2ZISg7PFsBpSUrXZ7IZ5c005PPvlkff3rX9/Js6jkzNDojYlY9szR87dKhFozf3uRGI2EsiCUf3eZtSfwImUHGoZ4+/vESaTVDN97YSHPd6Zs+dC7NYPFhbzhSZ7f5IyMQsn2EwSM3+Iw8vmuMV8y2uOOqpbskWv7i3WAFcf+rVoWBPEcvYXz002DtIeGhoaGhs4I7RXSvnLlSn31q1/dIRBaZvpgaFWf/exnq2r5z2i+vWRo1dLi/CZnTyMRWh//SfqJemMAGjBfTPq9EE2PxskHJ4rW/GixVUsrhVr4iY2NBgylZcQxLdlzRZzjifckUu1Rw94D4ZgfzTj9yfzr/FP42XPZ+dir1hrSjrtW7D3pezTXrfKUnQ4PD+vKlSs7tMSSkAiLTPScfpaPjm6qFsKELvEU4qK591zcqmU98QxrRsv3vrvvvnt3j6YyZIaPr+eiZs46yweUD3GzXuDxVi45ObM3zNP69/iFquXz5Tt1LT6Se8gu77WWxtp9i+adueTQEB5APuTD+5L3vXlEb7+bdPny5Xr5y1++44FrM5obH6BYckBWoLO0uFlv5wwrDV+p3GjykHEK5uK59hY+OasyMt/Y7G1ryWe+VeazZyt4L/QvBqGjz6olg/jlLHQmW9u07PDNWxe8cJZ4j/MmrXXkiKUAT8ihe7dagdoDLLB4A4knT/DR2SFyf19okPbQ0NDQ0NAZob1C2oimRrP+3Oc+t/uNP4tW5S/UQitKFNsjs2lxPXq3+zjzOVAa7bI34cjow57b7Vrzogmmluy5tH1oqEfv0oh7W7p8HvRMq6WdZ9tASIT/0dwhVf4wOZ2ZswrhQBXdf5h+XdT9oDRcvODDykjN973vfVVV9f73v7+qjlsXOl28eLGe97zn7bTwzr+q1WjAOnher1iWvIVaoQX38JlDwtYnUaX3uZcc4qX3Zd4sP2qvEAfNuCej4iFCcRfuVVWvN3BJSxL+kxW/kQPIKvPPyYoxiKkwVhYMMR2Zx6shTG/eg294kY1XevOc3vLT99Yi54pfpyHtK1eu1N/93d+dqAuQ9N73vreqloWvWyCg6Te84Q27e8zFGFgk/vzP//zYvVsR+hC8v+ZmzmQpLUnWjjWDpatHaqc1wFxlGlhvsUKsHOQjmzeRO5a9jo6N561vfevuHnNmffryl798bBzOW2PNKncsShotkTc8wcetRi94cO+99x6717VpyeJHJ9cf//jHa59okPbQ0NDQ0NAZoflPe2hoaGho6IzQXpnHL168WM997nN3Jgvm3jQFMp8w0Slaz/zl3jQ59jKPniGAhRmPeTFNaUzoTMs9vUpARQakMcEw5TOPe19PNauqeuMb31hVq6hBb9zQ+1tnIX2mWiatXvjF2DKdirnT+JmYmCWZzZmisukD8xdzHheFYCx/831KHrqHSdN8vC/NVNIwmGpzDJ2uXr1a//iP/7gzs+NPuiCYC/HSuPFHWluago2P7PQSsUyCUg3TFGwszO9+6+a8dMuYY+dld91kQBDTpTFwEZBj7ycXmcLSzdG9tG8vJlS19oT3cL/4K7COGTtdBtxMZNNncoE3aYY1d/wjkw8//PCxsabZl0na3jutn/azn/3suvvuu3dmZfPI/SnYqZtxmYaZy7M3un3eG6fgtT3eG6xULXNub85ifXqhoHwuFwvZsX/IbqZ+encvOOVagYFkLF1sxmKd8byno2XalnGTIcGazkpuE/dmACye29vOLmcJHqW84bGzV6CntSVv3ANVi/fGkq6afaBB2kNDQ0NDQ2eE9gppK0VJE6TxbBXSp4nTtmjZW60kaVECg3o5RFreHXfcUVXHtTsaNM3MeyFCSC5RpeIMb3vb26pqpU1AJrTZHCMtHwrqrSBpnpBJtte7//77q2pp9oJX8I3mm0UV8NhzoUy8oF1KvclCMNBGT2HyXlq5ZgBVVW9/+9urquqTn/zkMR641nwz4M1vvstAnU7PfOYz65d/+Zd32jE5yeA1KKGnt3gPhJIoFhLAW/dCD5Cqtcwx4mEvlwqhQBsZ+OQafIcuEz108m7PMx9ra+zkgTxWrfStXuIXsjSHRJ3mbM2gQaiF9WurtKf52D/ma92gzbRcGb9UQ3vF/oWmBDVVHbcMVG0Hl6EnnniivvCFL+zOEmPK9pe9nDG58tm+zZKdgp16Qw3Xmo9Ap0TA9gfekpnO662gwp5y2S08GbDHktIbBZEp1/o+UzI9F1onX/ZRb92b/DHX3pzF9+aZKV/GZG9A3Pao1La0SpE9Vg5BmnglSDPXzTXmlSV194EGaQ8NDQ0NDZ0R2iukrRRlL52X6AUi4KeBfPiSaMSZCgFh0kppUrS83kIwU5Z6mhi/ISQCTWTzD9rrBz7wgapaaWi0Olp0ary95aLfaIo0QVqmhilVy8cH4eBNjwnIIgcsA93P3ptA0Hz58nNsUEb3YW35zqTEQEfdUkI7TkTvOTR3fu8tunbtWv3zP//zDjGwSCRCxX/yZNxQGISdhUto29bMPb6HVKGORAbWw/PNFe878q9acgDZ4JN5QAgpO5Ab/hgjnhojJJJFdsgEOYBw3WM9Er1ART0Vi5xBqO7JuALvIc9pWalaezW/dx6QeesnVsXezwIZ3k0OMvWv06VLl+pFL3rR7rn4mamMb3rTm6pqrbt1tu6sTLnHWK/sLfeYG2uNsSUiVXSkt5A0RrKT62Kt+l5mPbMfxcBUnUwd9XzP8Du5E/9TtVKwrA/+i8vh708Ln7myBjkPyB25sPdz/zp7nbXOZPJlflk8yHwUixG3ZA+yHGRDFvzyntOsXE8HDdIeGhoaGho6I7RXSPv69ev17W9/e6dd0nQyeg8SodHS6qEjifwZseiaHvXaywfys6UPA3qkIboXmtnyd9BGab58iMYOvWepVYiqN2v3PaRKG08fHV/9m9/85qpaVgDzMfZEyxA73tJOe3lWY0105lpxBOnPz3knCujtG2nnkIv5pMXCtRDraWjp6Oiorl+/vhtvb5ZStRCUcVl/2jhe57q43/iMSZyE8ZOHROnWu0d19+Yp2QADL6FYWj7+QdOJlnzH7wyF+wuJWC9NcKoWkurFM+wZnzP+wtrxYXpPb0Vr/imr5Nr8jM04oND0aXs35MoiAm16b8phovuq4xacTkrgusdzE7FBj6xw5NS6QHBK+lYt/lh362Mv4QU+pcUFf6yta/DaXs5sC/E80GsvjMTH/cUvfnF3j+IlPapbbAEekI9srOE9/O2sDdbf5/TpGwuZwPMseZyUZ4hzrce4GCueZRS+dVOgy29ZfKvqeNlc60QO0gKyDzRIe2hoaGho6IzQXiHtCxcu1O23377zTWxp+VAQfwa/VuYtVx3XknuLRznDfMH92ekPp6Hz6UBYNF3ICkKuWqU4e4MA76XNJjKgNfJDmR8fD15A/ulbogWLzMY/2iSrRPpt8IdW7Pk9h5gfNPMY8URpR6jM/Hpb0aqF2GmtHX1Yx0Qb7seL/K3TwcFB/fd///durrTuRKS0addYh94Cli+uavG7IzdzNlfykVGoZML4xVJ4X/d5Vy0U1svm8jFCcn08VWvtIBw8Zj3RZEJ2Q9XaW7IRIN7eGjR9tdaQn9U8zM+1rBDZRrRbt8g7Mu+Ub1HhUJfnQ6rGkfL2VOjw8LC+973v7dAeNJaIFKqE8uwLVhRrmBY+11oXe8BZ1f3VmbVgX1h/Z5J7WRcSMdrL1rRnNvSWvVVr3+MdJG/s5Myzcj+xhji7WPzwr/utq5ZVqTfjsJ/Irr2ZzYJYOVgU8Nxeh4yz7LV7yFWfFwtJWtfIN37mebAPNEh7aGhoaGjojNBeIe2Dg4P6zne+s9NMadbpi4US+OVobq6hyacvhLYKAfONQYy0SyiJxli1omj5p2jYtDAacaJmWqR58OnQQLeK1PeccQiHNsu3Kfcz28/RDHtlKOgM0k+tnCbb526sUBpNNSs98TU2C3cAACAASURBVMX+5V/+5bFnsVzw4WeLS8+FJI0R+qNRp08bqvDcrTao6OjoqK5evbrjKZ7kuJHf8Bwi7qg5x20utHpj8wzvyYpRfoOKyFuvCpdR9jR+6JSckT+oPdG5a/DWc8kbnkJV8lqrFrrLOVctVEiWs3ZBr7gGveAV9Nyrn+VcvQ9Kh5q9L6vS4aMx4TEeiPfo1rabpVtuuaVe+cpX7vhjLVnoqk5mqZira3rbyKolM3KE8Zrskwv8SeugyHXnCtTqPeaeFj73ew9ekyXrlPd4N4uBsUHWPluD9E87G1kXIHrrgBdZ0dK5TFahf5a9XoUsG4a4F9r3fNYhz8gYqB5zZKzWWoMXcli1zmXyxoK4LzRIe2hoaGho6IzQ/Kc9NDQ0NDR0RmivzOPPeMYz6ud//udPBLZkcAdzDjMx0w9zB7ObAKKqZe4QgMFMzMymxy9TTabEMLkwWzNBCQhiCs5SjUzm3sPcLtClm1irlpmaeZ9JyfuZq7YKMTChCeZwDXOYYIsM6GMiY3IyL6Y8pn1jzfKFTFv6NVsfKRlbJT2ZPZkMmU7Nm5kxyzK6x7qd1k+b7Jir92SqmrKRvhPQ0gN4cl24VrpcMRsy63tfBohxOfRGCtauN7WoWmZw5lCmZuZjfMugQu/mIuIGsn+YCPEx5+ff9gIZZXI05gwmMl5rZZ24OpjSyU7KKtMlMyizrDnY+znGHryI98ziTKhpUn8q9MQTT9TnPve53Tlg/FlkSRCjdehFiKxHztVZZW7G14sdkbGUA3LGHI1v9jj+pIvNHrLO3uvsch5ksKQzz3Pf/e53V9U6X50lTO15zjlDehEX7j+yrAd51cn+5uZORhVSsgZZwtpZ5cwwT3uCHKR7k6x4j3PbZ2POs8U99kD+X7IPNEh7aGhoaGjojNBeIe0nn3yyvvWtb+00QeguERutBzKEEKBb2mYG1tDQaMO0LEEdAg08M9HZjZ5LQ6UxJjoXcETjowlCYTTg1AhpzoLGBJPQpKVcCcbK9BZasTGyPkDn5pU86YUReiMUmjWeZYAYzbq3zuzlMzNFy7g9lwYNrXl+3uO5NOtcl04HBwf12GOP7TR2a5yNLnqQXw8uE7gFgVctGcQnqJLc+bzVbhU66+gVeiEXGYhm/uSBFYU1o7egzeezkvjc21HiY95r3PYVy1FaVqqOt8o0R6jS/sR7ssnSlOk00CRUbszmTc5zjL19pwAuPPLerXaVN0MXLlyo5z73uTtkTVYTVeIpPpEv6HkrSLK3u8Qv6yDNjrUmZce1LBJk1d6CRHPOeGrfs0wIPPQ30SsEz8okzY2sdqthyoVgOH+l1FrT3rK1agXy9nK95utM9L6UYethH7MkucY5mGeVe8gQ2XQW9hLMVYtvLCEZCL0PNEh7aGhoaGjojNBeIe1z587VxYsXd+iOVpTpW7RWmjhfBI2QVpcFJGipngd59had0BM/W9VCx1AYbb9rz/yIVUurM+677767qqoefvjhY+///d///d09f/EXf1FVq51lH1NPc0ntFQ96sf/f+73fq6qqj3zkI1V13JcFTfYCLBBPb0maaUL8xooO9BagvUBDjtG13WcOyWVhG1q3a7JEZCelKBVr8J5MwTIua0bLh6K9L1NG8Kc3G+nWBb7HRJWuYZXpZS2NI/230BJ+GJP34E+OsTePgAzsI/5KcpdNTciKeXafM3lIJNKbLCiE0kus+py+ZpYD/tBePtdaJMrFN2PENwjbnkjZeSp0/vz5euYzn7krTuR5Kb899Y7Vxz71ffq0XeN5LHtkyXnQW07m+3ojEggb3zL1Tzqa9SXfvf1tWgVY9tyLpz3lKq1PyP7XyKWnmrJGZNol2eyphHjjXmPPdEFy5CxypvTmSrkG9oZr8Br/etvSvN9ezCI7+0CDtIeGhoaGhs4I7RXSvnbt2qbfMsvu0fhpYj5DBl0bq1rRmjQzSLH7XKCK1ET5PvzlR4HAIYP0wfHtuAdqVSTE9x/84Ad39xgDP5d59PKpW/ODaLqmq/hJ96lWnWw31307/EI00tS0IR5z7/482mzyhJ+dht1RLasH/iaxEKR1oZP2itaWRp+y0/1YCL8Ui8hCC9AWtGJtoRl/+amzQAYtH7ok295jPGkN4FPuJVshoK3mBYmcq1bZz249gfCTJ5AaZO+v+ZCZnFf/TvxF9633pidVC5lad/OCVHsZ2qq11+1xstmbPqQvE09uFn2fO3duZxGTBZER+vfcc09VrbPDc1le7L2ca4/X6NYEFj38Sl8zlOqcsR7OEvPLErH4IS4FL3tzDvysWjw1H4WnzP0LX/hCVVW95jWvqarjkeCf+cxnqmrJl/GzHLE0sfRUrX1OdsQRGEcv05p7vsdOINZAY07LrD3m7HdNR/TZhhX/WD1/WAvO/xUN0h4aGhoaGjojtFdI++LFi/Xc5z53h/b4FLKQPp8hzYnmxjdBg0ttDNKmQbuGVsdfDbFm+UKIoJfF5OuBktLnRyOkodHc+FU6aq5aaJWGSTt3jffSZtP/1XNeoSWo0HxSa6Vpauf58Y9/vKpOWhSg0mxtCEn7zjyhAXPI3Ecow/Np7taNtp6Wlp5LeRqx0kA6EFG2yjRusoEfLCDyftO/BZ3gpbXFl97ONVEMrd6aGVv31WcrwS4H3uc9/fuqhbAgaetADoy1R4RXnUTavTGJOSQ6NxZjsI9ci2f2XVpiWB3IAVSEN8ZqL1Yt2e/lMcmXPZLWiaeCjo6OjurKlSv14IMPVtVCzZmnLUbGXoJie2vJLGdsjqLDrRNkCGE7WzIegnUJ2jN3FiRjI7M5NtYhso9feJL7yT7nO8dre8W62OtpDbB3yRs51rDDfDJmwzlgfckS3hize7O2RG+lKxKd7HpGyioZtNfIGzmzRllq1bvFZmw153k6aZD20NDQ0NDQGaG9QtoXLlyo5zznOTuNUW5q+iBpWZAUREqDghxS2+KP7ZWCaHUiGGmiWz4RSIvWChFCPlmZCDqHrCErWi10nlor7c58aNI9x5xPMFHTO9/5zqpa2j8NGPrHk6xqhX/3339/VS0t3bXGRrNPv6uxeQ+kCqVtNW3hg/c+aABfWUHyHuvkuZkr3InsuN/z0wIC8Vkrz8M3cpbIoEe1mltv5EBOEuHhHWTT2556dvKWFYicucdfFpZsXdn54l57hUyZQ1pcum8eWhHdDRVmIwzP7U1tyAX+kqmMdO+xIMi8zD/vIYtiAUR5Q9g9wjrJnj+tqtX169frv/7rv3ZzJTu5LhpLdL8p5IgHaT3rVhJz6xUKIe1cFwjaOvNd23Osj2nN6k2MyN9f/dVfVdXyMW+dO71BCHlzdpHVjKh3rXF3Pzv+5T3O3HvvvbeqlrXB2P3u+7Qo9XOlV1n0e1osPJfcdRl1jqd8Wyc8yfiKfaBB2kNDQ0NDQ2eE9gppHxwc1He/+90dQkUZucofTFuksYtopYWlL5OvhSbG9wVN0OohkYzIpE3Sjrt2SZPLCmWiJdXm5uPpPqxEyzRqaIEmbX406h4tX7W0SDyheeKbymWJIGmaNE9z763zeu3jqmUBMQ8V5Wj2rk3tFcmjtl54sNXakB8NIkked7p69Wr9wz/8w24e0H9GVkNJ1p+cmXPOEfVIVdp9j4zG64w1gHC7fw4a875EgdZfDixe93GkRaJXDoRsyIUxm3dGXfdKeJ5lHORcZHXV8tF2JO9ZYivIUGYtqC3tO/KnzgEZzTF6j6j+nju8FVeCbqZutNacb3vb26qq6k/+5E+qap01VYsf1qFHZjsHsnZ+R/72i/XwLLzI+hCsf+TYmdLr12cMBT5Bx84DZ8vW/rHfXEtGe1YES0Keq4i1Aa89w2eItWqdTc63ni9tj4pnyniP++6779g9ZEXNeNHseX7jLRnFV+OwFqwQVWsN8XrLgvN00iDtoaGhoaGhM0Lzn/bQ0NDQ0NAZob0yj1+/fr2+853v7EyDzMlp4mQSYYrzuQdDpTlRIBBzJJMJ0x/zJXNImmiZUXrDECY5JqcMlmOKYaZyTy9UksFyxiAFqxcfYRqUhqAIQtUyNTG7MvUo1MEEmeYxpjS88H5mt+4GyNQLZijvYUbEc2btDAiRSsIEaE2ZF5nd0vzGZGtep5mpLl++XD/1Uz+1463nZMENJuWe5sE0Z92zNCQzHfeIa5nV3GPOac7rJkfzYNIkw2mW760QBS8y6zF1+ly1TMnMkUyZ5IuZ3DhSVskxfpELn41DSmDVcglwL+CR4CnrztSegUi9Jav39zam0nlyzlwPvQWneee8TnOldDo8PKwnnniiPvWpT1XVMq9m+iETryAvYxCQaAxZ/MY69CAu93oWOVEUJ5/j2p6+Ry7yrCIHzkD73xiZsZ1pVWs97An3eq5iT0p5puvSOd1TF7nuPOutb33r7h5z7Omcb3zjG6tquV6c/Zlqan72IB58+MMfPjaODLh1v71v75E3cpZpXfa/8ad7dh9okPbQ0NDQ0NAZob1C2qiX1kv0BfH21oiQEPSUgTrQC02MpgbJSTuixSYyUNyA1uW3jiKkLFUtTf2uu+6qqpWiAim4N9N2jAWKpZ33NAoIIgMnoHK/QaRQLcRFe81rad/mQev3XigwyxdCCFARNGBeCnOklix4qBdKgc4FoOS8aNa9WMQWHRwc1He+851dkQvIIdOhvIt1Bqo0btp3IvpeGANKwafefjELAUFLZNL7emnFTCnpqJwcC7ZRlCLRubXqKTH2CvmHntIK1YM0jdU8fJ/oDIIkv6wb9pHguZ4mmWP1HvxL2aw6HkxkLNbJ/Po6ZhqZ9TotTRAdHR3V4eHhzupkL2axFvukF4HpSDUtOwIzzRkfevlf87BOVavVLwuVsUDNLG8ZiAYR+g6/yLC1TksFeSOLzgXfC6LdKtBjf5s7ZA+p9nafVQuds2KQAwj8jjvuqKrV5OhXf/VXd/daSwHExkoOnS1ZcAYfyZezRGAf2cniKhlMWnWyTPDTTYO0h4aGhoaGzgjtFdI+d+5cnT9/fueT6GlWVUurh/agZhoUbVZqUdXSzGhVNE7owfdQTPqyaNa0YRo3jZM2DeFVLWQAYUOZSiHS5LPIQUerNFvaPx82rTaLDkCGEIhnsQ5slRNELBWuMXcaPa09/bz8e70Fn7HS2lNjpSVbJ1o43yykaj2rlv+st2PdIgUyjMkaJ9o3V+ODdHqjmERseIofZAQvrYd7smEEpM0qZG4sIJBBWhBYGqwH/kDH0GsiHv82ph6jgY+Q3FaJz96S1WfPTrRsb0GBPe3RevGH5/wgH3vB8/EKvzNVS/tICB7yIUtdDvM7lPEjnS5fvlwvfvGLd3Mkq+nLZOkwht4K2FmSMt+tWZ5LljrKyxgQljsWlfe85z1VVfXRj360qtZ5kz5mFjd8sM58v/Z28skYrLv1wC9j3UKbzh3PI/t9LaHrqqoHHnigqhb/kPWyj8hfNipyjiuB7NqeephnIysD6x8e9xK8uW7mY7/0FOSnmwZpDw0NDQ0NnRHaK6TNt0QjhbizkAgtiNZIu6MZiiLP6FpIh3YF4dCkacQ0t0TNtGQaNa0f8XmnL5bG57m0RRpo9xtXLa3OWDuqZHXgqxMxWbVQJdRnrF2TT+QAjUN//Lm0Y+PoJQOrVrTw3/3d3x27ltXBvNNCQmOH0s0DCvCsvIfW75qOnpLOnTtXly9f3vER/9I3Sq7M3Zz4baGatEi4hiZO/shI941l6UvrAB336GEWGOuWv/USoMZB6897zNm1/JD2gr1hnom0ICzP6IVmtlrlWqNeetd62QvmkpkHonXJUI+dsG65f1k38MtzXbsVL9HLpJ5WZOX73/9+/f3f//1uf+BXxhr4NysJXtrTEHhapFzDskOuRCo73/Azo567Bef9739/VS0ZgnIzWh3atw7WjiXEvLaa2niOdYFQyV0/03KMvbiO97zpTW+qqnV2VS0+kglrS+74nslD+t/xT7tQFsu+FrnWvZAWsn9745KqtW/3DWGjQdpDQ0NDQ0NnhPYKaaOuISZBqbRXGiet6NOf/nRVHfdreA5fCK1OpLbi9e5JbRkCgSq07/ud3/mdY+NRyrNqaZ49sph2J8pyqzmG50ERvcSq+aaPzvygQRonLZOGmgjLPdBxjwiHGGniWYoSaqZZWwufIeOMpO4IkY+eFUIEaKIbaBwvTosev3z5cv3kT/7kznKAX6nly3GHjlkoennJ1NR7bijZ4JPtZVP5easWiuylYHseM39b1UIEeEkevIfVJK005BZKYTWxjyAHcpnZEb2FaS/TSv4zot58IDbI0XM9w9+UVUjNM4xRLQFykvnu/Pl4AVmxspGhRJAZG3EzdOHChR3Prcudd965+120tjlCwGTHWHJPm5NYCTy0192Dfzl+6+yssAc8Hw/SogCp47vP1rLHy1SdjF0gQ+SerJLdlDvjtyfEBOCJjJNcSwibZUKNB+dLr3uR/DQGY7Zv8I/VaGt+GS9Qdbz1a9XiZ77zqeT6/yhpkPbQ0NDQ0NAZob1C2qLH+RegvYzIpbV2fxGtli8soxNFu0KNNE/oQo4grSxzYGn+tEf30tS6H6dqaZYQnd+6Jp9aMg23+0rN3bxpqomWjFH7QH5cFZ4gcL6/qpPF8D0DasNPaDnnZ9zabbqXFu5z+sH9Zn7yMHtOaebGZr7lD6Kjo6N68skndzxOlIRo4tYdou7jT582P6lGFyJ0RcTyuVmftPCQA3yAePlO+eYyMtt6kFXyDSX7PgnPoJXeqhLiMv+MlO0tJqELKGYL0ZmjOSP8hGpYZNLvip89OrnHjqQ/0bt7LnfnRaJr8rQVKd/p3LlzdfHixR0fof+0nuEpK0ZvHGKOaZFgdcHTXrnOWeKevLfXoejtL3uee9XiE787q5azyrWJKs3LmWt9eu678aTv17zIk996Nktau8iGaHz7qcuZcaVPW6yEsdg/zjv3iiGpWnuCxcieNGbzTCTu/CejHaU/3TRIe2hoaGho6IzQ/Kc9NDQ0NDR0RmivzONV/2uqYhrrvWqTmGKY6JjDmIDSzCoggtmzp28xpUtHydQiZhXfCdxicmK+ziAp41eSr6cFeWaatoyfCZOpm3laKob5Zo/a173udVW1TEGe0csjpnkRT/GpB+4wxzJfZlAG02Dvm8us5NkZ0McsJbDGmDx/q/c2Yqo/rZzg0dFRXb9+fbcODz/8cFUdXxcmN3M2TqZupvUMfmEWx3fmUcFP+CQtMcshMt/2gKw0MVYdTxPDy+5C8ZmJdasAkL/dXIm35D5dR92kbixMu9Y0+eg7fBM8Ry7wpBcMqlp7jhnW2Pr+TfdPT8EyVvf2ojJVN2cWR4eHh/X444/vxm3fZgMPsuGdxmSOOV7UUxQ9nwwxG7/rXe+qqpX2WHWycQ+Z9cze77pqmYmZnK03mcHjdP95nvPEnvY9d6O9ku4fJm1jJG94QZbStWJ9BQFbu94oiWk/+SrgjCtFoR6yZMxp/u9lbPEcP8lU7nn3+G1rbZ9OGqQ9NDQ0NDR0RmjvkHbV0jJpplmK0m80fxqga2iRGfxCYxKIBQl3dEfLzCIkUDrNmlYnxYeG2tFT1ULjAiNo0jS31O6MqWuGtErzo6km8lUIQfqEZ7n2F37hF6rqePs51wgEg+jNvZf8TJQusKkXNYC8oLQsbGLuHWH3QidZYAKazEIbN6Lr16/Xt7/97V2gG607ZQcS9K5+LWuAILmcI36xtEAc/hp3BlDhbUdJ1tj8sswjOTNu97C0SJXJ4Ez8sVYsHOTL+nhWBtr1oCjk3pQZBAWxzvTiID1ALVE62eiFMfCkp9hVrfWCFPHYc08rutPns0WXL1+ul73sZTuesz4ItKw6ud69uBOrinOhaskbC4DnWmNzfeSRR6rqeFljaZP2C55bL8FmCulULf5IbXT+OLPIbu5lZ4bgsS530HpvGVu10ja/9KUvVdXJksi9hWbVOp+7NchYyWov+lK1ziZyzmrn/4meNlu19rixWD9j9cycF3m2J/reeLppkPbQ0NDQ0NAZob1C2kdHR3VwcLDzgfSiFFVL86Kt0q56OcQscgHpQCSeq8E7tEeLhWbyXugEaqVdKtiSCJnGC/EYCw0RQkgfLR+2RgGQLx+gsRtPtgCkBdPkaf80Rhpppm2ZK43WZwjYPSwZW6VdaftSLxSgYFlIBMTX29EH6g1Zqp5ae0VI2zy22h32Bh54bJ16Gc6q5dNWTIXFwHx6adQsc2uutHlyoJAMVJO8gIKgb7+511i3yklaS/yHZrp1Zqt4DKtIR7Hdt1p1Mr7DuhsrOefnTxRDZlioWL/sha3CSsboGs97KgiolzVNOn/+fD3nOc/ZPd/eytQ4CM1aQpl8pMaSaYrWhTy9/vWvr6q1x/F2qymHvWzcrIA91iGtgva9AlO9qFNvdpTkXMFr1pJuQUo5sI+8h1w5X8lQWl56sR7WDDIkfkVKWFoF+jna0xS3YlLICl67xj0Qt3nnvPq5sC80SHtoaGhoaOiM0F4h7cuXL9dLXvKSnR9tK2o8fZRVS0PqPszUtmilNLPeolLUuHuyrSd/EM0XkqcJavCepfpopTQ0WnkvbpARru5xLY2d1tdbAKY/nkbPl8NnLqqXpp+lSM2DNklbFumOF70FZdVCUDRq/IIgaLEZ4e47KKYjn960I+eMTitjeuHChbrttttOZBykHIiahorIDn55fqJ9c4JorCnk5VnQDAtM1UIN5Nn7WDFEESdvIR5RtJAohAIRZ4lYPOtyZ0y9aExaLvzbunT04lnJe7LC6tCtUcZBVnN+0Cs/p3iM7ltMn31vlZnRwTei3i70NLp+/Xr927/9227/GEPey4rAigEp9gYYac1yLbRI/vDDmWE/scBUrX3vXHMPOfDezAQgxxC94krOHc/M9zj7yGKPunfO9CJTOYaesXP33XcfuzctSXzXxup8JQ9k9aGHHqqq4wiYPDnjoXTnmr2ea2CMvQGTtTH202I39o0GaQ8NDQ0NDZ0R2iukfXh4WFeuXNmhJVrmVs4ljY/WTcsSDZkRx7R22twnPvGJqlo+QCUvRYrL8a1aWmlvs8mfB4Gk9g9xQEkQKe2cvzLfA1mJPnWPedEIIdT0aaf2W7XKL0Jg0HNGVfKjQeN8jZ7V26KmT5s1gP+RJt3Xje+pavl3e369HHNaeVoDeqOQROGdlKKEJmjyqXX3CHk8NA9aeUZz86NB1iLC3UP776Uqcy4sHf2a3tqwaq03RC1XGN/Ida5HbyYCzfKzdxSdPrreLtKa9Xxgvv2qkyV8yZXPZFQeLTRdtRCwZ/QSq/i8haahTPJwmk/7qTR7ODw8rKtXr57IFc+yoqL3rTt5hlB7ucy81pry29rjrDIsMimr5Nc6+IwvPRalalmFXAPx+h66TNTZ4y3ssV4bgZzkuuC/36x7jwRPq5DnsjKQUTJE7s0v5Q7Pvc9z7S/3pvXhgQceqC3Kds/5jKq1DiwkmQWzDzRIe2hoaGho6IzQXiHt69evbzYez9zd3qYPaqHBd/9R1dKCoWTNECBDPkbaFv9U1dLI3va2t1VV1cc//vGqWv4hWl9WCvJbj36n/UP6qckbPw1TFHJvXQkNpPZKk4eSvMfY+JyzAQJ/s7HxbUEKkDA+p+WCBaFHZtJQae1b1Zo8h/WE76o/u2ohAhp9z/9NOjg4qMcee2yHKj0/o0/lr8oOgF7xzxqKU6ha/DGGHlHarSiZ24un0JC/HWWkJak3UIGeyQVknxaJbukwBnuAb3PLR8diZM3w2JjIZaIzzyGTIqh70x73pCUBGvf8juRYw/g6k7ba0v5/QZcuXarnP//5u/UgD3hdtdCq7/p5s9UcxZzIjmvNnSXC75///Od39/YaAq7p9SjSsoOXnm8+3mON82zkh/a3N8BxDuEJi1zVimmA4J0HrGb+2ndV6zzpbTt9b21ZU9JiQp5YTu0N83WOJzImk8ZC/lhIrEnuJ2vs/52bqQPwo6RB2kNDQ0NDQ2eE9gppnz9/vp7xjGfsNBv+lkRYPb/XNV2TyrrXNEB+IWi9+xx9n7VmoQS5yNBFrzqWSLsjKoiz57Fm/WiaLnRG26M18hN1v1vV0u5p/8ZPy+Q7S95BtPhGs/U9JN5bEVatKkw03e5T7zmlVcv6YAw06+6fZFnYotOqWpEdfjXvyUp1tHtzJFc9SyHHjZeQVK+EJV4AiU2oWijc+vfobs9M2TH/Hq3ea3bnGI3F3CEOKMX35iLzoWr5WfHJtdaD/CfagIbsH2gPwrb3yGzuxRu1zMSDnjGwRXjT6+WfRl1Gk7R1tefITqI8vlW+f4iTTJLjXMtek6C3lrR/7PHM0xY34n29Xj7eZyYMC6IzhGWi917Ivgz2PxnyW5+Xdcn9aZ+LobDO/N5kKltzdmTvPb0FqHM2LXy9EiN+WTe8z8wa56Qz1/8PEPaWXFj3reftAw3SHhoaGhoaOiM0/2kPDQ0NDQ2dEdor87iUL8S8k4U4mFME7PTUDmaeLGPKLMgkK9iFmYV5yrOzjKmgDSZBQTjdvJNFX6R0MI8xqXqWazPoSqCL97iXyYtZkdk6g3GMoRf999m9aUozd7w1Fs/tzUcyeIVpULoY86+gPSYnASpVy7zLVM9s1YsebJVa7fPcosPDw7p27drODCZwK8dNVpjGejEG8pFpJmSB6c+YPJfJjlxkoA7zMBMj2WRW9HvOmUmReZqcMdExK2eQFOLKEPjzyU9+8thYPdP3Vcu07T29ZCNTdAb0KeWLrGm/VzBV7kVroPwvtxM5tG6n0Y3M4vn+G5nft+jg4KCeeOKJHQ+sT5Yk7Q1DyC0XRy/CU7X4blxM20y0+OZ9WeDDHvK+bsbl+kp3AlcNGRWAxl0ieC3XsrvfyHkvqkSurVvVOoucr671HjKb6Yk9eK03QrFuzr+Uc99Zf+4G+7U3ZKlarokM+q062YI0f+/m/WnNOTQ0NDQ05WRvZgAAFHNJREFUNPRD0V4h7U5bRf59R+vKdJKqk4EbVQsJ0swEIEEMCux7dmqGNDCaNQ2XxgiRZqEHwUK96IC/PXCnamnjNFDvkWKmNKGxpzbpeZCi+dL0e+nIqoX+8NFzISHjwM8sbNIDBXtqj/dnWppUko4czQNvMmVKUBc+npZ6cXh4WI8//viJFp+ZOmTOUIPf8E3TFqij6mTgHAsPuRA449n333//7l6ovzdUsO74lYFwkEcvUMNaQza9t2ohj57yI5gHcjBmc8h5sahAdqwC0HuWpBVYBKX14jdkidwl6oVMs9xrkn2U6YIdJd2I8j09wOk0unTpUr3oRS/arY+5CgZzTdVCc/jWEXyeR5AaxN4teuQNn3791399d+/HPvaxqlrIF1+k6JGhtC54vvWFsMmUvZ68tQ+tnWvs017EJRF/b1Bjn9rr1i0tI+TZWvW2rq71rLQKQMc9wNKaGHNaH5x55uVcNXb3pIxZH3tsq+3y00mDtIeGhoaGhs4I7TXS3qIbpYx06qlhVQsh9PJ6nilFa6uIR0et0jVof5nWwodHG6dF0uYg/tQiaY20OmlV0BJUSEtORAr1Q+PSeCC4N73pTcfmX7V85TRQaUAQHf80hJE+ewibb86YoAzoIzV6/MF7ForTUqYQn9JpZUwvX75cL3vZy3Zj69p31UKi+E4j7+gv0QRkwLcGhZlbT4mDnqoWeoWSoFfvhaazsAOrib9SbHwm15l6o+xqb3xjj/S2qykH3d+N1+7l00/fYkf2yHvsJ8/MZiMsN5CU53ZUvoWue1vH0+hmEDY6d+5cnT9/fjcvMpMomrUCDz2fL9vZkRYQKNa4yZK9BIHj14c+9KHdvcbgvfhkb9tPWQjKe8gilNkRt71Xtfjdi1WRXc8nW2l9gOgha3vP+pDDtJB5X2+v6ix2/jn3sniM+fU2vs4h781iXD0VmMz2Ij5pITEP65Tln/eBBmkPDQ0NDQ2dETpzSLsjbBoTjbeXUsx7aFC0YdqdZgC0sIwA7U3hoSVoxbOyOUaPEucjpaV7VrZIpLn3MpY9eh1qSe2VdqokKI20N3hPa0BvKgJ9QnJ40aP183l8S73lqM/pd4f6XUMD7q1GU0uGyvw9zbpy7dq1+sY3vnEiEjzRvihTsuHdrjXXjGj3PL/1xg142n2NyYccY9WSHdaS5K11wAeowhjJyTvf+c7dPcqu9tgJ8zAHqJmVpWqhLzLEytBRTFos7A9jcy85t5+8b6tVIvmFsO2fjtqqlix2hH1arIN1uZn2iufPn69nPvOZuzHYp1BtkjOjt+S01mlV6PsBP8Ql4BcZTd+p/Y8P0PMb3/jGqlrWtZwftOjaniUB3W6VS7XeZNH8rB25TwsP/pNVZ0ePdUjZsT9Yl5whvTyvMac/3HPtI2eXc5b1cytzqJdchrBZDlgSqpa/mwxljNM+0CDtoaGhoaGhM0JnDmnTPGnftGEaVGroCPJwD58yLYtmRrtNdAZp8BvS0PhcaJPZ6g0q0qjDZy0Koc7UQGnstHMWBBpwj+pMX1ZHFTRD2iXf2VY5SWP8yEc+UlXLN9cbVSTK7U0FaNwQuGuzxSW/Gs2953Ki9JNat5vxZd5yyy31ile8YreWtPKMGzAX7+6lVF0LKVadLGUITUB31tL65HxSjvLeXno3kSgUbCyu7Qg4/eDeQybJrPdBYFBNxg1Ad9Bg9236PWNE8MQ9PZrX83szkqqVr5+1EKpOrm33l1edjAg/LZvAXjCPtGp1unr1av3TP/3TbrwQcGZb2PcsX1vxCDcia2rceAxd2j8pL70Vr31vH21Fgru2lzUm9+aXBMmSK3w3T7/LuMgzSzwKWSUHzjBnVFoDrKFxQ/ZkCk+cLTk/ciRGRyOcnk+dZ7H1Nz+R7s4wZ2P+v9GzS55KfMSPggZpDw0NDQ0NnRE6c0i7+1pplbTirCqE/PbII49U1dLqabyeITKY37pqaas0Ttf6DFWmFisKmZ+kN1/Y0gihPRomNAgd0/ZEdWZuL+1XBDgER9PtTUHyN/OAsKFzGm/P8c1397Z30AHtmb+yaq0bBIwXvSJavqdH22bEfKcnn3yyvvnNb+40816FLsfZWyayvFjbRJU0cBYd0eLuJYf4lLJDvvAUIsALa5tRytbSehu/50NNWZWMHJENfFcRyz09MjzHbz7dL8i/m/eYh7UjS9auV7lKyipjVYvnGXV9I/phEE9vBrNF8rR7Q5fM94XYyCL+Q9p4ku/zPDIDmZozOSR/eR6QfbJiDckX2ck93a0kHQGT5VwDe9X7jPXLX/5yVS35g+yzdXK3tNjb5KxHoFctfuGBOeMFS4wYJfJYtdZDZg1yjfFka87ezrU3zzG2zBjyfwh+pqVoH2iQ9tDQ0NDQ0Bmh+U97aGhoaGjojNBemccvXrxYP/ETP3Fq/9IbBaNIo2FqzOYSTDBMS0whTD7MSUxBaa58+9vfXlVVjz76aFUtsw6zkqAFASL5WzedMcl4f6YS3CiNofd2ZZLMxhTM8MxfzDpMusxUgi+qlgmp99hl2uyFZ9773vfu7n344YePjbGnSnV3QBIzVZbFrFrpWPl9jjfHtEUHBwf12GOPHTOHVx1PGeklSPGWudDcM3Cmm+2Y38kSGSIXacLF017YAQ+Y8LMhARMfdwtTNxnWsCEDoIy3F/jwvfUnFxlMRA7IEP6T2W7CrVoBlch6k1HXbgVp9QY/9t5T6Y3dqac05Zh6mdktOjw8PFaG2NpmEJS1s1bOHc1ZFCy57777dvd452c+85mqOpl+Rh7JUJ47zMOCOclfLzua1INWnRE9GCvTKo1R8J0x9CI/Pci0ap1jXGnkqvepzz2tmZLzkpyblzML76W2Va3zsqdqMl/3fuhVa192d4OxGWueVc4Qf7eKbT2dNEh7aGhoaGjojNBeIe3r16+firKrljYHrQjQ6Qg1EQ/tkPYmgKq3h6RFZ2oUTa8X5OjNMjL9BGrwHgFiAlFo9amBmpd7BUgIBOqBb/k+yAai6i1Nb9R2sWoVWqCVQ7c0UikSDz744O4eCJGm6y90Zk3SGkBb7cUToBq8yXXrZRFPo6Ojo2PyA3UmWrKG0txo5BDQa1/72qo63rqy8wyP8Ud6GLnL4Ct8gSbIrECXrXK2+CAgCFL0DAFJGRyjrSrZwEMo2VihjeSnYhkQHaRF3vzNxivkCf96WdZeeGYrfQvfEkn9IOqNV5D5ZuocgqgSSXc6Ojqqa9eu7XhOhrLgBtSFD+aIB5DxPffcs7uHdcRf+wNidM9WgJ3gKudLLz5kn0LgVUvWran1YOkhy1IDq5aVyfnpDISEXdubgFQteSIj9oBn2VeZQol/5A0PnDOsBD2otWrtJ1YBPCKPUPyHP/zh3T0sIdoIk2/3CG7N/URWzPVmghl/lLRfoxkaGhoaGhq6Ie0V0kanaeE3KkuYDS060a74byCd7udyXaZvQWe9zCOkSDNMogFCldo1ej5NO7V/39G6oRfaHi25N4PI31xL04Xk3/Wud1XV8bKMNGoaKPTcyzOafyJW6KIjhK6R5vr1AimsEIngbkQ3217xhS984W49zMd7qpbfik/+jjvuqKrFJ+uesQZQElnprUshIPNKnzo05l6oAu8hlCz8Ye28BxLg27b+mfIFyZJr1oteTKanNFWtNYPoPKP7/zNGpLdT7L5rCG/LsoPIBkuS91qjrRSwrRSypK0mQcaafvyta65cubJDk8aw1d737rvvrqqVdtRjQZSUrVoWEDLkGZCis8T6Jb/sb8993eteV1XLYsUqkGNMi03VySYn5CHPLDJBzqwdKw25I8MpB8ZtXhmbkfPJtE5jYlGSlugcMG//B2yVJCXPvcws3mehFEV8eotbcmEtWOZyjFKFb6aAzo+SBmkPDQ0NDQ2dEdorpH3+/Pl6xjOe8ZT8XIh2RRNM1Nf93DRyGqLPWwULfNf9czRSmm6+zxggNihdeUd+qCwcwA9FwzUf2jE0BoFniUUap2tFBHsvv1X6FnthESjTs4yxtxHMe2jhNGAoc8sHLfqU37EjbDxL3ndfaLYU7HRwcFCPP/747vn86VsNB6wdBMBvZw0S2XefnnHyr3m+9c82fmTGd9a0F51IHyOtHiIgX5ABmc0iQp7fI/Pdm201c95Va+0ycjnnhbbk21h7Y5resjV9zVAM5GMe7v2/8h9uoXB0/vz5unz58s4qA30lisUPc7ZPzc36bBVXsc/NFcK2X3yfctdL3vbyvFtFpJwN73jHO6pqWTN6tkxG8Cvl7Bo8gPDtwd5ApGrJrTPCvko/dNXxPdGbGbE+sW44Oz772c9W1fEmKjKEutXEmUGuM7KerPb2y/hoX6fV0/NYA9K6sA80SHtoaGhoaOiM0F4hbb4lfo6eD7pFvbUjrSi1I5qtayCg3lwE+ksE7DuaLz8enyKtPEv1QToQB62O30gkdkap0/Q6AjEWCKVrjnkvtELjpllDU/hQtRABTROCMFZaOu02feg0dd8ZGw14K1KXNk6j7vEExrwVs2DONN8tunDhQj3rWc/a+UKVksWTfAf0AAGwWnRUW7X8kdaXHFh3vm2oKltz8pkbd29zCVUkqjV/aIFVg2+OvCf/RMhCag888MCOJ1VrbfkJsxQlhN3bnkIkxpNjxLeec82Xbp7dZ5vUY1B6Q4+U1W4F6GRPsjRVnbSmnZaBcO7cubp8+fJu377lLW+pquO1FyDRu+66q6pWLAj+OEuSJ/aBa8iQPeczvqWF0f62T1ntlBd1dqR/mqx7DuQJPed5g8gVlEzeeqli/vLM18cDyJrlwB7s0eR5Dd54PmTd91me0eaDn84Se5A1MM9Gz+sWHPLc4xiqFq/tiUT7+0CDtIeGhoaGhs4I7RXSRjeDsFGihqqlWad2zw9DA6OpuZbWp9oUf2LVQrpyeOUAyuWl5aePlmbZq0x5D5Sehe9f//rXV9VCtrRH2j4Ezq+bzTho0J7rNxGmeS2CZGjYeORZkEVHYFVLC/Z8WnjPKc7ITxrvjaL8T0NTEOQWUuhkHiJm/a06mZOKug84I+X5LvGJ1QJC6FXGMnoc4iF3eElWrPGWz0zksRgD2j/52IppICNQRfd/ui4bKkAYZN7c8QQ6T8TT4xFYkFSs69avLYJIrSn++n6LJ3hvLHh+WqW8nn2xRUdHR3VwcLBDvPZlyr6ocZkH3g3dQpt5dtgPvfKZe5wPzqq0njh3WHRYjt73vvdV1cpISasW2SMjLAZiaSDGrbaurFA9w6A3+sl7e5xPj0+wpslHe9kZAWH3LAbyvVW3AU+6nNmTaVUxXvvU87yvNxvJf/c2rPtCg7SHhoaGhobOCM1/2kNDQ0NDQ2eE9tI8jm4miERqEhPtVkF993dTby8N6t40uTNZMYv3QCHmljTvMh9Lp/C5l/tL0y2XAHOk9COBH97DXJ6BOsxEzGBMxEzcTFGeWbVMPj0AjElbcNlW4BOzkSCWnq7V3RE5524qRltmePSDTOtV/8v/b3zjGycCEdOM3OfMjMhEhqdbjSfIRi/R6R4yk3LHpMgUZ/y+N8YMoGKutla9NCfeZ9pWL+/YC//0MrcZvNT3QA8uY+LPcpnM4UzoPf0In7v7pGrxgqkTPzttmSSNv7vEUPKqF2I5rWHIuXPn6vz587s9QB6yUIpgwu5CEXiIf+mWI3tkvvfpxntm6zwPegroG97whqpagWjW+N57793d88gjj1TVkiHnAV5Yr3T/9L1lbEz75N8Zxk1YdbLvNDkTVMj9k33CkTGZHxeCwDD89oyq40GeOVZjJ1uZEuYMtl+8B++NI90xZPNGKWZPNw3SHhoaGhoaOiO010j7ZhpFCK6RivHQQw9V1XENvqM4QT29nCDtPjV52i/NE/KkrfosCKhqabjSZqBkiIr2muNyLVTyG7/xG1VV9YUvfKGqlkYI8WXJQGOj5QsEoTHSdDP9yRhootI38ID2bw2yOEUv3drLjPr9zjvv3H2nPaEWnIJwevpTWizwpLfx3KKLFy/W8573vB26Y2WAPvJd1lvgXk9HS826WxF6CVdBfuQhkSpLBBnqWr5108CkaqEJa9kLAwmsyff01BTjJyPes1VghGWgB41Bread6Uh9P1kzfLWWW/u3pz31VrvGk5aETjey1pxW5vS04ioXL16sF7zgBbt1IW+J8rwTisQv47YeuS/tJesPPbOWaHABPWeKmTOKHLgXf6zLBz/4wd095AvitNd62mIW2zGP3grTujgzWA3IdNVad1YAVjq8wvMsC2zNyLnGIfaR8wif03rS0189377tKXY5H9YA93jGVglWZ7DiMROINjQ0NDQ0NPRD0V4j7Zshmpu0D77GGzUWqVoIG3W/9Kte9ardb7RUqI/mS1ODhKSLVC2tmzYMVUpJoJGmvxUypKV2fxEt3HsSxfSmFr0sq2dn28D77ruvqlb6Tvcx0VqhgkTXN/IX0tohva3UvSyHmmPdoo6wTysneHh4WN/73vd29/Ab5zOk50EiNGhWEpaQ9EtCEXxsPV2MzOB1+t176ovYArJELjIlz/MgDe/zWcpfptNBhL3soj3QS2wmHyGNXpyot0bM1KL+m71g7N5DLrKMJYSNupVmC2F7TrdQdZT+w5K2rnz10FnuT/sNv+xTa2utM52OlazH1OCP92ydVZ7Xy4faP1t7wd71PvLAAgKt57ysXS+Fa09YU8g4Eanf+H7JGbTMKpRFkexBcu0sJkvdipIpdL05i/UiH48++uixZ1et9XENK6o1IDtptfF812w1r3k6aZD20NDQ0NDQGaFzp0Xt/qjp3Llz/1FV//wDLxz6/zv91NHR0fPzi5GdoZukkZ2hH5ZOyM7TQXv1n/bQ0NDQ0NDQjWnM40NDQ0NDQ2eE5j/toaGhoaGhM0Lzn/bQ0NDQ0NAZoflPe2hoaGho6IzQ/Kc9NDQ0NDR0Rmj+0x4aGhoaGjojNP9pDw0NDQ0NnRGa/7SHhoaGhobOCM1/2kNDQ0NDQ2eE/h88fkvQ8om/2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bulZ1nmvvfeZquqcGlJVqQxmQBDbAVtbVERI2oYIBAIKAipDnKcgaKtXtyAmERuRqb0aaRRkDhFxQBsUCN1EQWgEBYkdhiCppJJUJTWfU1XnnKpz9uo/1nfv/ezfep53rW/XCbnCfu/r2te3v/Wt9c5rred+pncYx1EdHR0dHR2/1rHzgW5AR0dHR0fHrwb6C6+jo6Oj40Sgv/A6Ojo6Ok4E+guvo6Ojo+NEoL/wOjo6OjpOBPoLr6Ojo6PjROBYL7xhGF49DMM4DMOH3qiGDMPw5mEY3nyjyvtAYRiGl2/G5uXvxzpePQzDn3h/ld/RxjAMXzQMwx/6ANT7ks3ayv6+7AbXtTMMw2uzdTwMw5cNwzCLZxqG4fQwDK8ZhuHHh2F4fBiGq8Mw/MowDP94GIb/Pjl/2Pw+DsPwyhvc/o9rjFX8+6YbVN8nb8r7nTeovFcMw/AlyfHfsqnnM25EPTcCwzB8wTAMbxuG4cowDG8dhuHVK6/7qmJOvvP91da991fBHe9XvFrT3H3zB7gdJxVfJOnHJP2LD1D9Xy7pX+PYu25wHTuS/tbm/zcvnTwMw3lJPyDpt0v6BklfJulJSR8m6XMkvUnSXbjsYyS9dPP/50n6/mfb6ID/KOmjwvcXSvqeTbtiPe+7QfX92Ka+n79B5b1C0ms0tTfiv23q+aUbVM+zwjAMf1nSV0l6naR/L+mVkr5lGIbr4zh+x4oinpb0Mhx78Ma28hD9hdfR8cGHXxnH8f/9QDcC+D8k/Q+SPnYcx/8Yjv87Sd80DMMfTK75fEnPaHqhvmoYhtvGcXzsRjRmHMeLkg7GKGij/tuasRuGYZC0N47jMyvreyzW9/7COI6XfzXqWYNhGM5Jeq2kbxjH8fWbw28ehuHFkr58GIY3jOO4v1DM+Ku6lsdx3PpPE8MYJX1oOPZmTVLOx0n6z5KekvRfJf3B5PrPlvQLkq5K+v8k/cHN9W/GeXdpkhbfvTn3FyT9maItHyvpeyU9IelhSf9A0jmce5Okr5D0dk2SxdslfbGknXDOyzflvUrS10l6aPP3nZJuS9r3XZIuSnpM0rdL+rTN9S/HuX9I00J9anPu90h6Ec65d1PPZ2uSFJ+U9NOSfh/GecTfmznGSTu/XtJ9m3G8T9J3SDoTzvkEST8h6bKkxzdj+eEox3P8CZJ+dnPuz0j63ZqEp/9N0v2SHpH0rZJuDte+ZNPWvyDpazRJ1k9J+j5JL0E9pzRJtvdu5unezfdTSXl/VtLrN/U+Jun/kvTCZAz+jKT/IunKZj7/saQ7cM64qecvbdbGJU0P7N+MOeL4f+vmt98g6V9u+nZF0js387x3nPss6YP7/KcWzvvCzVp7ZDMmPy7pE3DOnqS/I+lXwpj8mKTfu/mNfRwlfcnm2i/T9KByWb9O0jVJ//sWfblJ033zrzbraZT0Z2/EOBX1feimjlcXvz+k6VnzFyW9bdOfj9/89vc26/3SZm5/SNLvwPWfvCn/d4ZjP62J9b5ys/ae2nx+4kJbvyoZ+yc2v/2WzffPCOf/M03Pxo/WxGwvS3qrpP9J0iDpb2i65/3cuR31ndbE5t+m6fnwLk1ahFML7fzETVs+Csc/ZXP8I1f088qKuft9kn5E0qObMfxlSV99rHVwzMXzauUvvPs1vcA+Z7OI37RZOPG8j5O0r+nB9MpNWe/cXPvmcN4FSb+4+e1Pb677SknXJX1B0pZ3bgbwFZK+RNOD8ltxg/+oppfhF20Wwxdrutm/Opz38k15b9cktb5C0hdsFtG3YRx+VNNN+xpJf0CTivE+4YUn6c9tjn2zpE+S9FmaXmhvl3Q+nHevpHdI+ilJn6HpJvqZzUK9bXPOb9IkUPwXSb9n8/ebGnN1+2YhPyzpL2/6/Uck/RPXvZmr65v5epWkP7pZVA9KegHm+AFJb9H0Uv5kTTfWeyV9o6Rv2YzDF2mS3P9euPYlmzG4L8z9H9/M+y/p6MvsuzStm9dvxv+1m/K+Kynv3s35n6iJMTykueD0dzfXf/WmvD+uSYj6SUm74TyX94ObcfiMzRz9sjYvLU0qu/s1Pcg8/r9+89vbND1wPl2TmuaPahJgTh/nPkvm0n3+M5rW88EfzvsaSX9iM9efIOn/1HTPfXw4529peoB/waatr5L0tyW9cvP7R2/q+qbQzxdsfuML7/M25/7+LfryxzbXfLqkXUnvkfQfbsQ4FfWteeG9W9O99Zmanjcv3vz27Zv2vnwzTv9S0/Pgw8L11QvvXZJ+TtM994ma1H5XlAhl4boXSXqDppePx/4jN79VL7xHND17P29Tz09t5vfva3rJfaIm4fApSd8crh00qccvSfpfN/3+K5qIw7ctjOlf3bTlPI5/yOb45y9c/1WbdfmApufP2zXd86fDOXfqUDB6paT/cbO2v+5Y6+CYi+fVyl94z2AR3L3pyN8Ix/6DpodkZFW/R2Aqkv7mZmF8GOr+xs3i3ENbvgHnffGm7t+w+f65m/M+NjnvaUl3b76/fHMeX25ft2nPsPn+8ZvzPhvn/VuFF56kWzQxpm/GeS/d1PtF4di9mqSY28Ox37kp749irH9s5Vy9fjMOv71xzk9reljvoX3PSPqaZI4/JBx71aZ9P4wy/4Wkt4fvL9mcx7n3g/VP4oZ+Lcr7ks3xj0B5b8Z5vgmfH867LulLcZ7r/bRwbNyMQ3z5fsbm+O/FPH0nyrtzc96rjnNPrZxL9zn7S1mkJlvcnqT/R9I/D8d/QNI/bdRllvfa5De+8L54c+6v36IvP6TpIX168/0rN2V82Noythy7NS+8xwX2k5y3q4kRvUvS3wnHqxfeZUm/LpnDv7RQT8p+VL/wRgXWqYmpj5oE5iEc/0eSLoXvZml/CPX82aX50KTRuZYcv21z7V9e6OOfkvQ/a3rJ/gFNL+drkr43nPPyTVkf0ipr7d+NDkt42ziOb/OXcRzfp0kF8CJJGoZhV9JHSvpnY9DtjpMO916U9QmaJPC3D8Ow5z9N0vdzNDGdiH+K7/9E083+u0J575D04yjvhzSp0H4PrqcB/S2Szkh67ub7R2l6kP7zpN6Ij9LEVt+Aeu/TpIb4WJz/E+M4Pop6pc0YHgOvkPRT4zj+TPbjMAw3S/odkr57HMdrPj6O49s1CScvwyW/NI7jr4Tvv7D5/EGc9wuSXrixhURw7v+DpoeHHQw8HvTU8ne259/gO8fr4zWtA47/T2qSajn+bxqP2m3Wjv/DmtSDf3cYhj89DMOHLZwvabonYruS8crwZZruo4O/OHfDMHzkMAzfPwzDezWt0Wc0ScYfHsr4KUmfsvG4/OhhGE6vae+NwDAML9DEPr97HMenN4e/bfP5eQvXDhiv3RvYtH+He891ftIwDD86DMMjmh7IVyW9QEfHs8JbxnG8z1/GcbxXE3s67v1c4X3jOP7n8N335Q+NmzdHOH7LMAy3bb5/giYG9X3Jc1GaHIveLxjH8ZvGcfzqcRx/eBzHHxzH8Qs1aR4+dRgGP4/fqsm08y3DMPyRYRie/2zqvNEvvEeSY1clnd38f6eml8t7k/N47G5ND6Nn8Pc9m9+fs3C9v78glPfipDwb2Fke+3J18+m+PE/So+PcqJ31Q5J+OKn7ty7VO44j690Wz1Hbg+92TWqN+5PfHpB0B47xgfB04/ieJok4opp7z5PrY3sewO/G0jx5/H9Z8/E/r+3nPcXmofLxmqT6L5f0SxuX+z/fuk6T111s0+cvnC9J7xjH8afjn3/YOAz8sCYh6zWaBImP1KSujn3425rY/6dpst09tAkf4PiugR/oL155/udqevb8q2EYbts8fN+lyeb/OQsv/T+po+P1i8dob4XZPTAMw+/TpPJ7r6a5+d2axvNtWndPLj0TbxS2uS+lo/fHhU2b4rhaqOX9wTp3Nx66EV5DWd+X8MbN50dKB6Tp92sy63yjpHcPw/Czxw1j+dX20nxI02A+N/ntuZoYmPGwJnb4hUVZXOjP1aTDjt+lSS/v8t6uST+f4d7ieIX7Jd0+DMMpvPTYt4c3n69G+4xLW9a7LR7S4cskw6OaVAb3JL/do+Mt2haquf/Zzf+u7x5NL4PYlvj7Wnj8X6H5zR9/f9bYMN/P2zywf5umF87XD8Nw7ziO/7a47FM0aQ6Mtz/LZnySpgfYHx7H0UKCmXxs69OaXsxfPgzDPZt2fI2mB+Ef27LOH9Fki/kUTarTJfilXo3Jy1SHQnyvDteKNJkZbhTG5Ngf1qTq/KxxHK/74DAMrRfBBxMe1nRfvKL4vSUs+3n2m3XUc9Tat7c+i3YdzMU4ef1+6jAMpzQJHH9T0r8chuE3Qtu0iF/VF944jteHYfgpSZ8xDMNrrdoahuF3a9JtxxfeD2gyqL9z85Zfwmfq6M322Zpuwp8M5X26Jm+nX9Czx09oYi+frqNqzM/GeT+u6aX2oeM4fptuDK5qYidr8EOSvmQYht82juN/4Y/jOD45DMN/kvSHN3NyXTpgCr9Xk+POjQTn/qM1xUj9xOb3f7/5/GxNXoSGH8Jv3rK+N2laBy8ax/FNx2rxHFclnat+3LC9nx2G4a9oYiS/RcXDfRzHt2THnwVu2nweCGHDMPx3mh4U9xZteEDSNw7D8Cma2qpxHK8Nw7CvRj/D9fcNw/Adkv78MAxvHI+GJbgNnzaO4/cOw/C7JP1GTV7D34PTzmpiU5+vYp7HcbTX9K8WbtKkxjx4AA/D8CrNNQ03GlclnRqGYTe+aN8P+AFNnqm74zj+5NLJwJs1Pdv+mI6+8D5HkxPSfzpGe3yfz9bQhlj82DAMr9P0gv5wHTLRVfhAxOH9LU0P4e8dhuEfanKZf50OVVbG12ryZvzRYRi+VhOju1nTzfIx4zh+Ks7/pGEYvnJT9u/a1PPtwab4Bk3eef/3MAxfrcnL8bSkX6/J8eLTxnF8am0nxnF80zAMPybpHw7DcKcmFcdnafPACOddHIbhr0n6B8Mw3KXpwfe4Jtb1Mk1OF9+1tt4N3irpLwzD8FmaWNClcRwr1c7XavIW/OFhysbxFk2q5U+V9OfGcbykSWL6fk16/K/X5Gjzuk07v3rLti3hvI7O/ZdrGrtvl6RxHP/rMAxvlPTajS3hxzWp5f6mpDdu+4IYx/G/DcPwFZK+bhiGD9cUZnBFkyv9x0v6pnEcf2TLPrxV0scMw/DJmtbtQ5pY1d+X9N2a1Ke7mlj9Na1jPTcKb9Jkt/vOzX3zfE1z+c540jAM36fpgfSfNamLfoem8fi6cNpbNdn53rQ5593jOGaqb2kSTj9M0o8Mw/ANmtSqT2q6vz5H0kdoYmefr0kA+YpxHN/JQoZh+NeSPn0Yhr+4zf34fsQPaHKu+EebdfmbNXkz8nl1o/FWTWrfvzoMw49Ieqaywz9LfL8mIeP7hmH4Gk0q+R1NTmuvlPTnx3FMWd44jk8Nw/B6TXbr9+kw8PyzNDkHHdjqh2H4bkl/YBzH2zbfb9akGfhOTV7aO5q0E39Ok53/P27O+0xNwu+/1kSILmjyIn1009btcBxPFzXi8JJz71UID9gc+yOaXmBLcXi3a3pgv12T7vl9mkIBvihpy8dqcl19QpPaK4vDO6vJxd0xgI9oMt6/Vodeny/flPdxRZ9fEo7dpUnnfEmHcXifqjwO75M0TfBFTa7Bb9MUpvCbMFbfmYzhEW85Teq9f7Opd+apmFx/tybvrPs343ifJieBVhzev1IRh4djL1ESG7YZ0wPvQc3j8B7cjMP3S3oprj2tyTHjHZqYyjtUx+GxXs8fx/9zNUmhT27WyM9reri/MJwzSvqyon+vDsd+o6Z1+NTmt2/djPG3abp5n9K0tv6dppv8WXuXtfqcnOf764omu9hnanqw/HI4569r0n48spnzX5T0pTrqqfuxmrz8rqoRh4d5+4LNOrq4WWu/osn28ls3vz8s6QcbbbfX4OfcqHHblLsqDq/47a9v1qCDvj9G08P2+8I5ZRxeUVfTrV6Tr8M3bc7d14o4PFx/y+a8/wXHX7M5fk84tifpr23WyhVNz7Kf0SSM3txq5+b6L9QkeDtW+k8k5/wz9yGsle/ZrI/Lm3rfshnruAY/YnPtOzbnvFfTy6/0Om/92cX+gxbDlLftWzS5z/7yB7g5HQWGYXiJJsHlT4/jeEPyF3Z0dHRsg75bQkdHR0fHiUB/4XV0dHR0nAh80Ks0Ozo6Ojo61qAzvI6Ojo6OE4H+wuvo6OjoOBHoL7yOjo6OjhOBrQLPT58+Pd50003a3Z3SI/JTknZ2pneo0+ExLd663LgTfq3aF7cZg2dzzdK1rTL52/7+FEMa5+T69etHPvf393Xx4kVdvnx5VvDe3t54+vTpg+uvXbt2pNxWG/zJtZX9Vl2b9bVam601+2zWM6/xWGwzD2vq3bZNrfvMv/EzzhuPVXMa62GdwzDo6tWreuaZZ2aNP3/+/HjXXXcdrLNs7fg3lluti/jbmrWyLdY8u7ap5zhtYhuqNmXHj/Ps5bquymytA8+py9rb2zvyXTqcN3/u7e3pwQcf1MWLFxcHaasX3k033aSXvexluu22KdH2rbfeKkm6+eabj5wjSadPn04bnE1cNTEcwNYDIhvMqt6lxbPNA4A3VAtLD6+sjdUnJ31NPbxmjaDi4888M2WqunLlMHXhk08+KUl67LFpk+qLFy/qjW98ozKcOnVKH/IhH3JwzaOPTmktn3pqnkzDdZ86dUrS4Zo6d27KcuW1JUlnz5498unf/Ok+Zn2uxpKfbkc85msp9PF41i+X4Yc0r43g/Ppct8n3VwZfW9032Tr3AycKMZL09NNTzuFsHVy+fFmS9MQTTxz57erVq4rwiyqeE8f453/+59N+3HXXXXr9619/sGYef/xxSYfrLx5juX428XkUj3HtVC/J7EFdzWn1PMrKbc2/kQl70uH8ZM8BCiAUUP0ZwXmvPtmH1jHPu9dOXAceH9frteR67rrrLknSmTOH6WY9p+fPT9kVL1y4oC/90i+dtSNDV2l2dHR0dJwIbJ1LcxiGmQTcYiZLbC07VrE0nh9/y1RuWXvW/LYNw1ujvllSg61RT3GsWX/GKAiqC2LbK6ZKZhTP8zFLzUts9/r16wdSv6W8TMqsJN+owjD8P5kdpfVM9Vmx5NZ8cD1Xc5kxySXVWate97P6zOA2VPegEdcBGavnh22L8+a5pDaH0nuEr/Hn2bNnm/fStWvXZr/Hcs0eWiry2KasfW4L76VsXngvHUeFuUalvlRu656r1hMZX+u3Sl2djTO1Xq6/xSwj24vwfEYWb/jejs+xtSrYzvA6Ojo6Ok4EtmJ4wzAc/Em5xL2ka87YRaU3Xioz/kaGt0Z63kbirljoWsNwbOsa/T7bQDbSsiG2xkvK2XDFhHwO2Zx0aEfy587OTlnnOI7a398vbURr+kz2Jh3aX6zj93e3aY1DQjVeGSusbHcGGWdWnsH1nrF0Mjn3K5uPpf4QLW2L22RJu6WhsX2vYsoZcyLDu3LlStPZ4dq1awfn+rxoI/R6cls8TmRvETxW2cNa47lky8+cLfhb67mw1o+h1TaPAW1omaNPxcbWOCbxGV8x/TjuvIZjYRt/tKNTS3Tt2rXO8Do6Ojo6OiL6C6+jo6Oj40TgWE4rVLNkBnqDVDNTZTGuZsnw3FITtM7lsZZDQ3VtpdKkqjZzCKnUn0v9leZOI63whMrNuXK7j+fyWrrOx7n2/FuduKRCy2K3IqgKYflWVzpMQZpckqXDkAWfQ3V7K/RjKR6uFQPENUM1b3ZONd9ZzJHHm271WT1sL+/PNS7zVDtZRejPzCTBEInqfmo5SbQcD6zSpOu62xTL5nrlsyWq03w91cNrnYxayJy8eO+6Pre5FTqz5BzTCjFxP6lGtoozcyLheFUOQ3FMOL+Vc9Sa5w7bHtXXfh5Y3XnmzJmu0uzo6Ojo6IjYmuFJc+l2jdsumU+UtChpZJKglEsxlYGZ31tSeuW+vYbhEZlDSBUyQba7JrB1Tf/WssHo8OA2tNzcWQ8Ds3d3d5tScMspI+uTJTmzNzM7JzyQDhmeg1F9LtnNmtCJKvQjglIq13UrM0TF7DgfWXA0GZ7HJguWdt0MvqezQit7Dpkd3cQzBxQzL9fraxiUHUF2k8EMz21xG6LLuhkAwxPWJIjgOuZ8bZNcomJx8X9+cm7j2GZMMfar5UxCJudPzm18FnP+fU1VX2wXx5zz3dISWTPDZxXnPJ7r39ZoyIzO8Do6Ojo6TgS2DkuIUnzGLvh2r9LbWHKQ5rplXrMm2LtibZmkRanf5WYSFvsVx2It2G7aSTJmS+loye4Y20M2UzG+OCZmDGTmLZAJLwXB7u3tldJ0hCVeMzqzuNtvv12SDlLbSYdsjyywClPIwioMjpPnLUrAZBI+xymtqC1w36W5RMp58Ge0UTLtlftZ9S+ey/XsNlXu6fE394efrs/tiDDDszTuNrk90eZWhXVkMMPz2F+6dEnS0bR0la3RbcmYN+/pary2udcNryGPlzQfD8+hx5xp4+I51IRUIRXxOJ+rHj9/ZingqnP5PMoYHsNGDI9fdg96LFy+f6vur/g/05CtQWd4HR0dHR0nAlvb8GJwcSadk9lVbCYyPDK5KvVNi+HRO4sB0/EaeiBWQZytrN7bSH3VWFS69XhuZUdoBf9XQcqVjSLrX3U89rtKEJBhGAadOnXqgBlkiWRdtu1xZm9mdnfccceR79JhAtlbbrlF0jzRtMvyZ5S4ae9j+z0fWcJsJ0r2OS43k3Kr4F2DbM19icf86X6wv5nUTE9OMlb3K95nlpot2ft79IiLdUS4PDMwl5GdS0YSE1oQ4zjqypUrB+VevHjxSJtiOZT6qYXIngNkIFn9vJZaKD4zmLxaOlxv/vTa5f0Zx2FJ88JxbNnjPDb8zAL4yaKqtGuVv4U0Z8i018VyXQ7voywpg9sWPTjXsrzO8Do6Ojo6TgSOZcOjJNRKhVNtDdGStIht4tWWvOikZc+9pZiX7JxWyrFKCmul16ItlN5slJoydrV0TiulED37jMgksji/ag53dnZ09uzZA+nMUm5ktS6b23+Y0fnTx6X5FlVkeGR6Ubr0uZU9yZJvZv91P80yfNzf47hlLDyWwbZG+5jbSNuZj7tfcfuUyhbFe6+V6ok2FMYDRsnec0DmSI/JbG1Eu2YrFd6TTz45Y3aRefuYGbjrJGuK9wA1IFHrFPue3aeVByKfP1kKNm6b5LnNxonamsorc41vRPXciX0ho/J64z0S71u21e3nGqL3cITblm0XxvrcJrf16tWrPQ6vo6Ojo6Mj4lg2vMrrj/9LcymCkfX8PzunZdur7Ej0CMpiP6pz/H1NktNKl9/yBqsk/iwrQ5U1hWwoSk30WKXtrhVLWG0Dktk7K8ZSYWdnZ5YIOssQQ4YX2Yt0VIq1La1KlGtp2pJjHCe2odo0NtZHL0AmKeb3WA7vF5/r/pHNxf/5G21pcS7Z92osMlsYx48xsplnp/+35H333XcfGSu3LUrpPhZtNtX6uX79ui5dujSzm8bYLP/mvrhcr1G3LdpHPYaV7ZlalSx2uGLNHuvWdkS2j/H3LEuT28p7l2wtrlXOu8fL37Nr2GevUa67LBk3vY1bTJL1sS1kmrE+23Jt0+/Jozs6Ojo6OoD+wuvo6OjoOBHY2mllb2+vmTyaKsZqF+RMjcDfaGzPAjNJk6meyoIdqwS8rUTDdC2vVJsZ2G4ac40sPdjSJ13aYz+qsW85EVBVUqmX429xHbQSMEenliylGN2WaczPkgb72OOPP57W67G2SiuuHQYCuz6ObXQiqRIyW5XWCrfguubYUh0W20YXc8NqqnicjmJum8fIKiGGHMR6qrSBrVAkOrg4YQAdSiLc7r29vaZK8+LFiwdqyyzwnIHLVgHb0cmqzKjSpgMQnx1U32UqTc47HXaiYw3V3gbNB61E8BwjrqVMPel2U03pz+gERlNKFQ6TOfYx3KtKRB7XNwPbPQaeY6ani9fEsV2LzvA6Ojo6Ok4EtmZ4Z8+enRl7W9sDGa1UX5VLPyUEH49SWpVwmo4amdNKtT0M2aGUG6GlOjF0RCZ9LV1TpQWrmF1kIZV0XjHo2A+6cXN8M2ecKsEtsbe31wxpYWiB22RJLgvqprHb7WSAOIPapfnYWdL1cX+PEjC3QmJiZNfHfsdrGCbCXcXjWuYxhgd4TCwRx/8fffRRSdKDDz4oSXrooYckHTqrZGzU88O5YIqzOI+V4xaDrzMtSFy3VZqx69ev67HHHpsxu9huJhF4znOeI+nQsYFOF9IhA3WqOp/j7zGFnXQ4btLh+vIxBmp7vuK8+BlCpsV1kTkBVkkyqjR1sR6G39DhKaayY1gPEzt4zFxfxmCZjs7z5c94jzBZgVmg2+bxjNeQXfewhI6Ojo6ODmArhrezs6PTp083N6GkjaFidpEN0AbQCpCOZUlz/XC1UWEmAdAu5bYxXZR0KBXR1dqo7DOxTUvMNWPHZE9MFkx7V1ZexZwz13KyNiILVm8lgjacWsxjTEYp5UmG47m0TUmHkh/ZMyVHtzUyPNpuHEBtdsCExNLchkeGl9nheL/QNtSy05Ct+9zHHntMkvTII48c+ZQO2cf9998vSXrnO9955BqPWRZY7zGxRO/xsmTvz+jeXwV3064W59p9N4O4fv16uX729/f11FNPzdZFZCaeO98Hz33uc4+U7+NuvzRngf7N15jheV3GOfUY+pNpumg3jX2m5oKhFLGfvIc9hlU4VrZdj/tDRus5jCybWg1uu+VxzjQa7l8VPsLUcPE3rmeXkd231N48+eSTzRRnEZ3hdXR0dHScCBwr8Jz65Cj1MyCx8i6MICNhyp8WM6kkH0qZGTOhhE0WFSVtl8/AW7LSTEplEOWaDWfJtMjSLD3RpiPNWXTl9ZqxbIPSetYvbmty7ty5Ukrf2dnRmTNnZt6ttMJzAAAgAElEQVRfrQB9l0/pOUqV9NzkvHCMGcQe+1YFBEf26HVgidflUnrPPC2ZBozrjtv6xPq4bYvtcv60hCwd2u7e9a53Hflk/5hoIZ5DFkj7S5S4yQKjtiGOUaYJioH61doZx1H7+/tlEHT8n8zU38naJOnOO++UdMjwzBiZPCAmuGZ9PuZ6yPAjo6Qt3wzvve9975HvmRcj/Qt4L2cJD7jmPQZmtmZrmV3Tn9VmuPScjv3ic9rry/XF9cYEAS7XLI6aG2mexu3ixYs9eXRHR0dHR0fEs4rDy5KuVt6ElISz+A2mdqJ9LtuSvootq5hRPJeSW4vh0QbpMqpNY6OURumDkn2W4LpKmE0PNY5RbD8l4corNesXpfKMzbc8ODPs7u7OvOmiROoxYyJmry+zmBjPxTg4g1sMZfYKH6vsoVn6M3qFWsJ137Okuq6HW/qYWbhNXP+xXMayMX4pG0eX+8IXvvBIudwUNTIy3muMncq22aEUXt0rkeGRTV27dq1keN46qNLMSHNNi+v22vdYez3E3zy2tN273T6erQMyS89hlvIt9ifC/Xn3u98t6ajnI1PnuVyfQ+/jzO+A3pj+nmmW2G5u6kvmFW3HvI/4vGaqu1gfvc75DohMktqoK1eudIbX0dHR0dERcSyGZ2TSLO0RlJaMjBUyySgzQbSYhNvCJKvZm7+KUyMye2OVtYRlZtuCVN6mWRuz7UxiWVXGDelQKrJER4+rbKPLKgNKK9MK56vlKeVMK7YNVFuyxGP+tFeXGV627rzOnLjYdgrbaSyBxzn1+HCjUsa4xTng5pP0AvXvcYzdFpdLuxJtelE7QA9O2tRoR43lekyoufC1nguPkSQ98MADafnvec97JOXZUly+f2MsX8bcskxIS3GcvsbrIXsWuTzGjXlMIsPndkbUOrjvtrFFdmhwjF2f64naKGYG8bXOBmPbawQ1YzEzjVRveB3Lp2d3K26WGU/ItOx1+vDDD0s6ulZtH/V6pl/Fmm3e+PzxmDmGNF4f76ceh9fR0dHR0RGwFcOzt1SW3+ygwIX8jZSE4zn0YqT3XLadBTcT9DmWLmnriG3jtfT+yeyMrrvyCmwxoSrGLdtqY2lbEEpJWRkcL0tnZjYxjinzpIvImGsVI1Zdf+rUqYMxNxvIGBeZHD0xMyn2pS99qSTpRS96kaT5dkBZLk2vEdtJzALuueceSYcekJZmpfl6cj8oYcZ6OLZkG/7k2pIOx5j5Azk2cUw4hy7fZXlsnv/85x9pnzTPlfjiF79YkvS85z1PkvRzP/dzko56yvKepg0xxtoZnMtWHtb9/X1duXJlxm7j84c5H802uGlw5qXL+E/Ppc91mdEzlZ7PtE+RacZ6PE583mUxyj5GmzHvNbc19s9to43Y45x5u1KjwPVH+39keB6/t7zlLUfKv+uuu46U1WLytFVmeUy99uIWaT0Or6Ojo6OjI6C/8Do6Ojo6TgS2Vmleu3ZtZmSPdJMUlAGSpuRRpUmjulUHVNNlKo8qxY7pLoPW42+k2FRxZrtWU6XI0IbM2YQBmJXqLwtLoJsw63VZUT1Jo65/o4t5VH0xAJSq2dbu9jEpbqWW2tnZ0dmzZ2f1ZAm6GWLgMu0QEPtq1ZVVb3Ys4DrIgtbtJODfrHoxsjROTIxrNbHvCavQ7KgizcMReP9Q1RQN93QL93cGx2eOAEyZx7Xj1GOZ6p73xAte8IIj9b7jHe84uIbJBLhDuPsbU0r5N1/TUknt7+/riSeemCUhzraYoiMOE1dnibINzykTdUe1pMGE356fqPaM9Urz9Idsk3+Pz0avLx9jiEcVliMdrrdq5/FsuyI+03lPup9ZQg+3Mab8ivB8xTmo0o+xjdn69livdViROsPr6Ojo6Dgh2Dq12LVr11LJyiCjMywpZM4VDOz0uXT597Wxfr756cbb2nDUIOPLtmmhqzIlHDryZBuy0hmnFXheJaPm1iLstzR3r6+2lMmYOQ3obHsW9G+pf39/v5S2dnZ2dNNNNx1Iyx6f6IDkchjMy7ZlyW59LVPNUUKMLMNwUDLTQ7ltrfVGxwO3LTI8Oh5YEqYEnjlTsV90luI2KtlvnHfXY2ec2Ce68TPFmNdfDGUwPH68j1rhN2s2D3aZdNjJyvMYu29mDK3toSpnNa8hMuXYRz6jXH/cFshg2jkyOj5b4jVZ8H6s122Myaqt/fAcep37HsjuVTr10AnHY8B7VTpcZ67H/bMTGvsZ28BtgBgWExksNQctZzmiM7yOjo6OjhOBrRleRCsxcytgmSB7oNuxf2dqoawMSsKZC2wVBsHjUaKjy7i/MxWXEa+15EPbAO1jUWIly6C7sJFt5mrQRkC7VpYqicloGawa66cbt1NAZXBIi/tl6TpKpC7PLINJiTPJnomlzZq4eaf7HJmJ+8QAaUqXcWxph2DqKtvwop2R9qnWllXSUYbncWIygSpJuzS37xm0MzLhdSzHfWcgeitNGNNEEZFduY3RhtdKPH727NlS+xDb7VRXXg+uM7qwG0w3V7EnMvRYX5UYomJk0uG8mwWaAfl7rIfp3zy2vF+zJAlmS2ZWrocB9tkmzHxmsT9uR2Z79Tlksu5fZL98zpl9MswjjsmaMKgKneF1dHR0dJwIbM3wYgqgbRKjVraPCEpLvLayX8XyKiaUBZ7T/mZk0gs3H6UXKllatomjy6tsHLH/HNtWYDNBGyElIjLnrC1VgHuUqqvk2xm8iaeRbXZZbXLLgN0sebQ/mXqNnpHRtkoWy8Tc2YbElLiZ0sxML6JKZF7ZjCLoUWsvVHrcxXliIDXnnV6HWSJoMofKGzmWTzsP643saonlRozjqHEcZ+XSq1o6ZA9MXNxK5sxE8F4zrQTx3PSYWqhMG0X7nr2EaW+MqLZXqza6zrzDzfR4L3gssiQCZr1VvzJUz8ZWKjMmx8g2eY5tjuXE9HRLaSIPrl11VkdHR0dHxwc5tmJ4Ozs7On36dPNtWm3aSskq29qDnpSVVBPLqrwYW55hRuXh2doChRvAku1mzIgSIhlriymTCWf2PoL1Vd+zeWTfq+2XYnnRC7CVHury5cuz7YZiPyg18zhZTQS9ybgOs22UKnbO2KYopXNTTdsKnXqLCZqleZxdpcmgN3I85vrM+PydXpuxHrKaKqYytodaFbJOsp54/VLy58wGFtdZxfbGcdSVK1dm92f2DKENmkmQs8112X5qiVr3CZ9ztGvHPntN2E5leyO33on1cR7otdl6ZrkNLJ9rJttaytoUpiXz+DEdXqy7Yna+N7LYPW6vxTjNLBYyJqnuDK+jo6OjoyPgWF6a2QaiBiUNvvVbW/NU5VJyjL9Xtq4qabU0z8JCKYp6a6m2RVZSYLyWkg7b3GJt7Ds9xzJU8X6cm8xLk33n/MV+UZJb2oSxlQ0ktqeyF1C6jNcwMw23n6GdKf5PZsWNaFuJoB1v5097nWYZNvidsW3Z5sgVO6edKa4/2tt4Lecy00ZQ60JPxbh2KP0bVXagWPfapL/DMDTjrhhvy3sq07xUzI73Z9ZW2ujI6LL4MWbNYUaSbGNbbuJKz2F6C2eMi4mn2faY2cWMils90Z6e+UrQf6HaTDq2kZl2mPTf12SJ7uO8dYbX0dHR0dER0F94HR0dHR0nAsfaD4+G4TVG3Ww/taz8eO5a9WG8dsmdPx6j6s9qAX+PVH9JBdOi1EweXY1JVGW0kqYu1UtVAh2H1jj0VEb5LM0WEzRnYOC5EfvMXasZqE91pXQ4Z1SbMDl1y7GC40KX7Ky9bgMD3K02ypIjGB4nqk4zJ5LKEcT1WyUUx57XUK1XqTrjOQyV4JxEsP2ZCpPfqRodhqF8NgzDkDqbZGnu2GfuQB/Hxu2m2jDbd7EC+8qA6ajOZgA2HUQyNSH3ueMzi+rDbB9O7uXJZ0bmnEfVJdW+LQelpWTVsT620fPMJAZxrivnvzXoDK+jo6Oj40TgWTmtGNGoz7f4mgSyVdBzxQqzsARKOGQmUaqhtG8pgil3onGVkm3lHJO1udoeiE4aWfkVC1vDlHltFcLB/9fWY8R0VEvnk8VFZOMuzaW+7FpKoJToWwyc48KwjZiqiztZ+5NpoWIfmDCBTgMMcclcy6t7JDrwGFkQctbfKi1eVi9TTWXORuwPkyVnjCwLE6nAbYgiq21teSPl6dZcNxketQSttVMlAMjuW7eBTiRGlhDC85ulA4zfM/ZWheawnozh09Gquo9ieyqHRY5RvDcYhlAxvej8kyVs6E4rHR0dHR0dAVszvHEcU7dQI3Nbjsi23qFkVzG7lls7pYgq5CCWXwWEZyEIlF6rQPqWqzfZJoOYo1S15K7NMlp21DXfKxsXr4n9Zp+ffvrpRZtjlSBcOhwn2zTostzaXoZSeRXsnTGTKh1dtOEado92AmbairLUSGR27I/nPUuVxd+yRMaxXfEag/2ibarFrKqwlCwYn+CGqlk9MVC7ZcM7ffr0gau810W2oazHJaaQi8ieO/40Y+RzYU2ijcqOmWl6vPa5jRNtivG3Klkzn7dZQm0+c2n3i9cwOJzPQqaaWxNKVfkDxN+qBP5M0p/Vc9NNN62243WG19HR0dFxIrC1l+a1a9ea9qXqTU1kAYuUuJY+4/9Vyp1M90xWYFBKzII4Kymdbcv6V+m/3Z5sWxUGi7K/GTNrBZhX11RtWqMbZzqlDMMwbR3ETSCzIPKK0TFQO+vLUgLj7Fr2kRJwZF4OjHU9nh8Gk2c2PK4hBhpnGhMGNrN/2RwzpVi1ZVemHahs4Pxck96PiKyQ7HZ3d7e5fnZ2dmbzFFkc21VpjVrMlEykmp/4P6+pGIp0yHi5rszOszRatC/y3mAy88ieskDv2C8zzbjeaCd1GbwnsmQTtNFV6y2iSthBZpc93zxu586d6wyvo6Ojo6MjYmsb3vXr15vppirb0po4PKNiTVlsU8WsKG1msVuGpQl6k7W8wLgxaxXrFn9jmw23LUop3MKD0iHLjser7WjI2lo2vDUJgcmIlzwhY7/JjKRD9sS+sz+ZF6NR2ZczNsc+cmwp5UrzmENuQJslcyaWmGyE++d6soTd8bzY3mptrmF4jIFsbddCO2MVZ5aNCZNhZ7B2gBtFx3u62syZ/ck8yismx7jcyIR4L/Ee8zXRu9DnmJmYyfF7to0StVHuO2NfMxu1QdthtuEsk6xTo0BtQcb0q5Ry2T3IlGy0DZJRSofz4nR+az00pc7wOjo6OjpOCLZmeMMwNCPnK3tRVs5atOLwqCeuEia3Yk38WSVXjdeQ1VBaz6SYalNI6uGjlMvMIYbrbdksqvFqsWtKyOxHllA70+tX8zqOo65evXpgs6MtL+L8+fNH6nadZlwZW19KGt1KOMxxaWVa4Qajmc1OyjN6MO6pSrocv9M7j9umZPGt9P7zuVVsbNZurlm3yf3O7Nu+fzi3LWYXGVi1Pnd2dnT+/PkDhtJKnM54rlamoKqcyuMy246ouj+y+F+va8+H15k9fv17rIfb55DhM3tTHEPasV2v5ykbb84VGSTXYZY9hwmu/dlieJWWgzZKSbpw4YKk9ibYFTrD6+jo6Og4EegvvI6Ojo6OE4FjpRZrJYml0bZyJslS4FANsBTAGM9ZcoHNAk6tnvG+VHQMyfaLq4I2W04r3JeKTjlUPcT/6XTD8rNURlU4Asc1C1KtnD2y5Nksr+V8sb8/7XhOFUyWWirbA0uaG7YjKrVhy+Wf7a/U4THA2WuEqj0a5iPcH6snrZ5x/6iaifNCd3quw5bjia+J7tsRmTqJamT2K0sPVQUlt5xVmKB5KSTh3LlzswQN0QRQBcZz/mMyAT6rlsJ31gToU51sdWWGW2+9VZJ05513SjpcF/GeqO4pptDL2uZ20/mK662l2lzaYT2uuyrJQyt1Hu9Lf3qt8hkpHY6t5/LChQs9LKGjo6OjoyPiWNsDGa1EyTRUttzdl9zPWxJWxex4TZRIGYZgicoSQyZVsK1sI8ciY4c0fjPlVCugmiBbzOalCr5fChDO0GJxkbEuhZ3Y6cOI5zMcxHVa2su2o6rCRPjJHZvjb3Qxp0NKbLMdJ6qUR5kDkttvYzvdz1vrwG00S3vsscckzVlulNrJNhgkbIm/5WBF93RuaRSdGSqXckr48R6sgrsz7Ozs6OzZswdsybvKtzQUVchMVg/vc2pPMue8Kpjf82QHFH/GtvharwfPB8dcmjuN8BnJezprI8fYn2aYsb4qjMyOLhyTrG28loncs2urxB4sO0PLiYnoDK+jo6Oj40Rga4YXt4DJWAjfxJYu1gQ9U1pmWS136qVEr1FioAt55bre2oaGzK61iSf7xYSwTB6bHSP7qFKoSXMmXOnJM5uh54n2jRazayUHNoZh0KlTp2ZsOpZLF3zaqzLbY0sKd71LbaPk7e+27TppcWyLz6F9LttyxW1gmECVxDmzMxpMaZb1r9rw1f2rNp6N13DsGX4RGWYVhE839SzdWvU9wmvHfWeC49gePmda0n8ruJn1S0efB55vs3d/MnlCZPrUDjCo3+MX15uPcZ1xvDi3sXwmE+c9HrUe7KvrY1IOhqDEeqpE+y0bPI/xuRrnhpoeJyZYg87wOjo6OjpOBLb20rx27dosuDNL7FklIW6leKIUXiVdbgXM8pxMemNQMu07maclGVY1BkzFI81tKdbzW3ri93j9EnOlNJWhYngZM68SKrcC3KPtYcmGR49c2ijiOZTksnPpGVjZNjJbbgWf6/ri2HI9ka2TTcVrqg1SWwyZdj3bhCgtZ2u1CgT2NbStRPBaJmmIrIHnVumhMk/puO6qNT4Mg86ePTvz0szs1mR0rY2AyXB4DzDoOab88v+VfTnTjHB7HtsiDY61NGeuVdJ4M65ob2aKPp/jNmeJHAx6S7p/XDsZg62S8GfPHdbH51iWGpLPh5Z9j+gMr6Ojo6PjROBYXpqUVFspXipvw8xuUF3bOq9iJK3vtKHQ4y5jTa7bkgbtPty8MRsTbgdCj75WjFh1PJNyMoYaz2npu6t4mxZzW9qsNoJedFF3b3tAFpeYtSn+T9sgx60V61h5r2ZbJHEcuKln6xp6zXHtUBKP51BjwWTLsT6yDTI7SuBxTNx3MrnKszn+ViVyb6WPqtKrRezs7OjMmTMH55pdZV6fvO+occlSizEekp9mOTEutPI8pAYo1uc14jXq75mHpeHfuBkxx5rxofF/t822QdfLpNXSXGNh+Fy30WMS58DnMLUcn5XxnudarDapzZ6nUTPXbXgdHR0dHR0Bx/LS5Fs529qj2ralZX9bk+SYqOJQ1pSV6YfjNVESqTyOKKUzeXH8rWJ09IjMUEnP7EtElRUhO7cql9J55g3IczNYSuemk7GMioHQfpBl6aHdiMm9szisKtMKPdWiZF95Hnod+NxYT7W1VLWZZpSaq62laA+ODIBrhUyWUnSWuaiaCzKYbAwqW3wEWfSSDe/06dPNjZINxhhWyZbjucyAQ5u+f88S0DOrDLe9inNJT8csMbL7azBGk0yu2oJHmjM6akH8GefS7Nl9pzcwPcvjvcG16E967WY2Srfb5zIjUysZeytpPdEZXkdHR0fHicCxNoClJJdtPmpUXkURla6frC17i1eZT6pPaa7brrYDifVZoqH0zywGlkxaMXxrMp3Qy4uefdVY8f+svm0yrbSkdbKP/f39RZbH9ZDl1SO7IEOKY8v5p9ahlUsz806L8FzGHJS0qXBTzWxLHN4TVQxaFp/HcjO7m3R0nhhnV+WEzO6NKodiS3NCtlNdE9cl2WxreyAyvGwDWDJGel5mtinGRZId0u6Xxf0xTtHfza6i1yTtcLadrfGWNGgv5TZLWYwbx4RrNNqMyeS4dmgLz+JNK4/v7HnDe34p21ZW91YZo1af2dHR0dHR8UGM/sLr6Ojo6DgReFapxTKVSCuFWPY9w5rtZoxKxddSaVIdQfVHpoKheoOG0zUOIUxku2bbkWp3+ZaKqQrVqNrV+q0a39gmqrIyWC1FZGnCDKo21+xwTJfyar6yNlRrJgtpsYHefXIQMYNiW22p0mDFNlYpl7hrdTb2XMcMYaE6SaodT1pOZ1Xi39Y4GlUSbtZ9+vTp2c7t0fmhSpflT4bxxP8ZYpA51FTIkiFI7SQC/nTqOgaIZ88dg05EVTKD2G5us+X6MvVnlVKuSl4R28fxq9T82T3vY9z2qpUkI6qp+/ZAHR0dHR0dAVsxvP39/SNhCfH4EtYwvaVwhDWJcqt0RrGNlaNDSxKlS/w26W3YJrriZtsRVZsoVttnZMmqKwbZCuBnfVUfsrYszd/+/n4ZEM6yIyrXfKkOo+DvWaJcSs9cS1kaMiaCvuOOO45c43UQg3l9zGnB7ARTbaeSBYL7GF2+M1ZAV3aOH93us2DlKjUfNzyObeT3VuIIlh81R8TOzrQBbNxqh+WxbjKD7D6lg1n1mQWGV88KOiBlzyoGoHuDYbKprA3baG0yR62I7HiVbo5sLUvwUI3FGu1A9fzO1lLG4ntYQkdHR0dHR8DWYQm240lt9pRdF89tMSIysJZrfMVeWja8yubAYOWIii1RGsxsRUvsMyu7CsavtsFpgQxiTbowY40tdA3DG8fxiOt5xmZaya3Xogryb6WwYgC2v9tOlgUrc6sazldkIwxsZhm0Y2TB8dRCtOww1XpjwHMrDRrvU67VLPk70dLqcD0vJR4fhuHAFpVtM8NAbJfLpN4RVdgG7X6ZazxZstkZj0ebIdcIQwoyJkS7V5VIgQkY4rlc8+xXtu0R0x8yOUKWfpGaBWKNr8Ka5xrDSU6dOtUZXkdHR0dHR8TWDE+aezlGCWGNdCTlb/sqiJzI2FrF2jI7RrU9SwtVECXLz/Tm7NeSt178bSmYdw0LWkpE3QLnIkspFaW9FsN/5plnZpJpZuOoUn5lZVdBqNW4ZGmNOIf0UMvGiamV/Ok2xnRRTtdEb00GC2eeb5WtiGsm3hP0Bq40GGvTNmVtbtlulo7HNh1HU+GxzdaiQTtsxuwrL1Y+w9zWaP/NUu1lx7PNVZnwvPUcMKoNoZlcPEuoTY9Vahbi89ttsA268kJvbS1VaSWyhPF8hnBOMpbKLYv29vY6w+vo6Ojo6IjYmuHt7+/PJOCYrqfysml5QBqV7YFSbCalV56j2e+0OdFrsuVBSsm36m+WHsqgPamVXLeyk/mzlcKsiqVr9a+yHbYYXvxcsgsyKW1sf7W1TysBtFF5a1aeuLE+o4orbHn40gs0SxNlex6ZhEEm2Yqpq7QRmdaDc8F7JEvRZdALeY02pErCndmXttVQ7OzszDwgI5thijd6VbcSTpNF0DMyS5RM9mRGRG1B7LPPcfwdPWIznwWOYZUQnmnXIphWjWXF+ee5Hovq2dHymK/S4mXroNJccQsn6XD+o8fwGn8EqTO8jo6Ojo4Tgmdlw8vsY9VbnjrZlhRb2au4RYY033KDUnLGTCq9O5NJZ6hiSpjYOGMF1N2zv1nC4SUPyMw+t9Yrc5vtiGjfiv+vYXiW0pklIc4Lx7baAHabuE+OdWQFtPtUXroZe3K7zSy4hUxcH26DJdPK4zFLPO16zIj9G7dcybahqbydadeKbWXS4IrhZeuN/eE8ZexwTTaTYRh06tSp0gMztrPS3rSy9VSeqW6T68k8bw0mpOd36XBePJdV4ucsWwrbWiW4juC80A6YbbdEDQXjLqllM1uNx7jOuJlwfIaQBRrUpEWbuG148V7sDK+jo6OjoyOgv/A6Ojo6Ok4EjqXSbLn809W2UjFmQaiV8ZYG4Ex9Q6cEOplkalc6mLQcT9g2Gui3cQypjmehE+zHGhfwKuB3m/RuVPN4fGOyXKrTllSNu7u7aRJfI9t3LEOmTstc+iOoNortpYqe4xXnxeoot8HfHXqQqfw8ZrfeeuuRNlLtmqn8qvRtnJesX1Qp+bjVVVYNZeuOzkvVHmfxN/fL/a2SScdzW674ETs7O7Nzs4Dp6j7MHHk4TpXaNlOrOaWcHVG4vrwfXna/+JjV4Uw5FueDfWXbOE9ZijmOm/tjR5C436OPcRd2m5HcB6dDcz/jb7yfeDw+vysnI6phY3u4F2kPS+jo6Ojo6AC23h7o6aefPnj7ZgZzSnV+Q1MyjRJwZVznNXSSkGoXckpnLQmAzCJLbVU521ACy9hUlQaoFcy7xJYoaWeuzJXzSiu1GJkEpbS4O/I2gefDMGh3d3cW7BqlWa+VKll0Nk7VtiV0q8/c0y1pW3p13yhtxrnkFjWsz33IkmyT3bpcBp5nTisV+8jGcWl7KDoktLQDRuU+3jqHiOybDG9nZ6es28mj3W7PV+wzHRno8p+t+Sq1IK9lUHT8zeNvpuf6zZTM2qRDVmRUGobICqt1zedapmWpwkPIoqImi6n4qrCkLBkEtW1cu5lTVuXUSFadMTyXe/bs2b49UEdHR0dHR8SxNoA1qKuXDt/ilHRpJ2uhkspawbcun+7CWXAlmVXlVp1JnEsBkkaUfKpy+ZltgbEUYrDkzp21KQtw5TmV7S4L74iSW4vh7e3tHZybJdmuXLBb7V4KzCWbyiRFl5e5Tce+x/57nfmT26Zk40BmUgVqx2spFVdJEuI4uv0+x2zD5zLVWbbuWE+Vui/+z3u7tUbJwM+ePVsyvN3dXZ0/f36WZDu2gSEflc9A5jtAZmWmT21RZGi+9tKlS5LqJOVx7djeZdbHBB6sn2MQ62XIDpmSNH8Wc9NiXxNZKPtHxuw17L64/7H9Poe26VZSfoanMAA+3rfZc7vb8Do6Ojo6OgKOxfDoiRQ3u6TEWwWWZkxv7Vs6Q5WuK9NTZ+winptJIlVwKG0RmY2jxRhjfS39e3VNBva9YsrZHFCSp9TWSi0WyybM8NakmquSG2dJBCqbUmXziGvV1zBVkSVs9zl6sdH+ykBdMqPYxyxVWSwzC8ZfCqjmOoztZRtpP80SLNCeSA9PJo6X5iyUyauze9BtiGpWvnkAACAASURBVNvRVGt6Z2dHN99882yOWx7D9AjMArTJmtx+B1MzaD0mvHjooYeOtIGpxjzmsc+Zp3Ms18fj+uCWTvS85JhHTZbL47rmesuSh/vZzucBWVvsC9kgx4ap4WL/yPS8hs1Ko0cu19c4jj3wvKOjo6OjI2Irhre/v68rV64cvE0pCUuHb29uHbTNpp6VF2Fmr2hJKxHZdj2UvGlfiuyDkg4l7arMrN3sX8ZSqlRIS3a5DFUS7paNkl6Zmb3WcxzHoMXwzpw5c1BOZvt0XynBGa1tgngON+a13cqfsRzak7iu41xyvVkSNXOk9B77yHFfs74NxkX52mzTWNqzLSVX9q2MMVextlnMIO2La/rl/kTbVyvG9NSpUwdz6zbEhMKeK9ryjGy98VlRjU8WH2cG9MgjjxxpE73T47wxiXZmi5SOahQMzjN9JNz/LL7V9xPt2bxHYltok/Y1mXetQe9JarZaGw77mOfU95Pv18yDPd6/3YbX0dHR0dERcCwbnt+s9NiRDqUTSs2tDBvG0uadRiyDCV7XJE6uGE+VtDqi+q3yuIv/8xzal1oJoCsPxjVsjW1seWdSkudnlnw52pMq9mVPO8YNRWm2si22snywrxwPrxXXExMA+xz/xkTNWbxXVS4zrWR2OMNSP8vi9i0RTJjMerIYNzI8g7akluc0PXHXnEtkHrJuU9yGpiWlj+M4u9fjWiQrqrypIypPaI6txyk+59773vdKku6//35Jh3Y/rxk+/2K7DWql/D1qIWiH5bOEjCzblswMlRvnrvHwpoclGVhro2M+57JsMGTeLo926CwZv9EzrXR0dHR0dABbM7xr167NYj5i3IglHEsrjAla8j6U8mws2fdYDzexpBdbVh+ll9bmlku2sspukR2z1ELP0ix3p8EsHBUrbaGKrYr/k+VUeRHjuWu26djZ2dGFCxdm/YoxQFWGhhaq2EzGf3JDS6nOKWkplmMQy6XGgpqNCEq83KallUmGnm6U0rmdTyyX9pYqv228f10Os82Q4a2JreN2W5ENUKJvxVJZsxRj9qSjvgNmF2435zSLU+McVjkgXc/jjz9+cK1td/587LHHJB2OZTaXzBpCG5qPx3i/bENhac58uN5jP9gmel5HplzlsvQ6u3DhgqTDXKK33377wbU+t9JcZDZjzkG2VuK1WV/XZlmROsPr6Ojo6Dgh6C+8jo6Ojo4Tga23B7p+/fpM5RR3vbVTQBWQm6kWKkcTIgtgpdqG4QIt1QvVb1QbZIlms7CDWE/L8Ybu2VQ1ZWm2qkTD/IxtZb+qlE+ZmqDapbiVKLyV8s3Y3d09YozPyqMagym+MvU066xc47Ptg5gOjnObBQ/bcYHqaW6LFR0UqkTmrI/3SOwH55CqzEyVSqeMKoVeHAe2qXL6yEI1mKrN/aBqS5qrdVuu5U5aT2ec2CY6gDBZOAPos3GhiozOK1EV11rrsb4s1IjJAqJaNx6Px/hbpdaLbWRAu+81P69bISaG1fsMAGfZsXw657TU4Aykr57N2T2xdmupiM7wOjo6OjpOBI61ASwN2NF47P8ZCFolpY3/r0mqzO8MgIwSjtQOUqYjyJpkzpnbebym5YBSBbq2QhmqMlhWJuWw7y3mx1RMFbPLpNxoOG+5pp89e/ZgXCh1tvpCqTPb5JUMmOyz5RLNlEh2pGmxdAYlU+KO2gJqO6qUbxlrqMItWF+Wyo5lcJ1nmgWOo+enCqWJ5VfpobIA51YAczYGTz/99Owey54hVZJlf7bS4FUML2OHTCVmzZaZUJZEnFoGbraaBZzzGoa4ZA5oRnUuGRKfZbFeJm6go12WapDrjefGtrJf7E+mCaJGpNr0OUNneB0dHR0dJwLHCktg+qRoa7ELrKUX/2a9LpPTSnkCXNcn1Tr2+BslgjXJRNcmHI2omBdtKNuUnbG2Kv3YNuVXjI7sR5rb7Bh0S4k/lpOFLBC7u7u65ZZbDspz4Gosj/ZKbtuT9blizQyYztpvuPxHH31U0jxNU5ZijvXRzhOla/eZ0nEribdR2TTIcuK9QzZYhSVkoTashzZRl5XNG5lCtWUO/3ebWja8y5cvlymypPm8835sbQ9UbcBL+2W8lnY3u+m7jWb+cZyqLW98L2ShLVzfVeKOLMEGww78bLYdmuEJ0jzBOFPAsa0Zu6o0V7Rzx3Oq+ziznzIofqtn7eozOzo6Ojo6PoixdfLoq1evziTIyPAqzyAmBM5sKZS0KvbUCiKvvMoyya6SrMkO4vVLgeet/lUeV1my6qqttPdkgeeVF2DLG7BKKUZmFNk9A3SXbHhnzpw5KM+S46233npwDrcgqoKfMy+2KhCffY7SrPtirzUzPPeL6Zykeq6yeTfIkpZsqxFLa5RjE6/xOZbO6dWWBQJnKeTiub422ih9DTcWrQKsY3lRO1CNg5PW00Mw3uPcoojjlt2/9CKt7PJkPdIh06E3tdvmjVFjOjKfa3bk8bH9z2Vmtk6j8oSl7VWae6hy/jPbIW2TnDtr7mifjfVxTDLPfIJsm1odemzHNi55zEZ0htfR0dHRcSJwrDg8g3YzqWZ4VYoxqfbKo1dRiwEteVpm+n5K62SJmXTN8pYSQmfHMk/OWG8sn6xgSeLPsLTli1Tb6ujBGCUtbgK5s7PTZMDXr1+fbd+S6fNdHtdMxt6r9FwG2WJsv49ZGne9VeLc+H/l6WjJt5XsdikheOaxWNljWzGVXJNL7FfKt3yq2mRUm5Tas6+VAsp2pZYdc39/X5cvXz5oi1lTtmUM1yQ9BLPtrRj/ucablcmvyXwzb12uec4LGWdsf6VBYlvjmFQ+EG5zllycdl+mQWTqr9g/Pt/4DFuTAowesS3NWtQwrbXjdYbX0dHR0XEisDXDyzIHRKl5KUMHJQeWGVFlE2h5lVXMK55XbZNDe1AmQVYeo61MK5S010g6ZLMV02tJPuwn7RuRmVcZXMjwsuTRrdgmY2dnR6dOnZpls4mSvcthkl1uY5OxgYpF0R4bx9XlMkE2N9fMWGiVoJlsgXXGMraJpcy8S+PvcUxo76DHW/U9HqviGbPsLNSUmNmZObTYm8uPttXsnEuXLpUbi0rzbZPMAj0fmQZgKcE8s7VkMXX0GLU9mPVKc62J63dbs0wlTLzM5xvt3Fl91OhU229J862lqq2ryGzjb1WGHyNbD1wHra3TfH9Gv4K1drzO8Do6Ojo6TgT6C6+jo6Oj40Rg68Dz69evz9RpUYVCNZE/TY1NR1tqSargaNzNQDXkUhhBC1m6niX1U5UWbem37Hs8VjkatNKEVSEMVGW1di+nUbwVytBy0Ij9OXfu3IG6Y81u4txfK0uBRFUbHV+qVGnxHPaZbtXRiYAqSzoAZMZ8JtOtnHCy9Hh0167mMFPpVGppI1Mncu1UiaDj/UB1InfuzlTobGNr1+pxHHX16tWZO30WbM/5plo6S0JsMFyI6y9zRPN4UGWeOaZRNV85aGTjUAWgt0wbfCZWKeCyECoGntMhKesf13HVnyw9IfcepOo0M4F1p5WOjo6Ojo4Cz4rhZcZeBvgyiTTPi9czyJLuui1UTh5rrqmubTkRLDmeZFLTUn0RZE/8XrG3eA6ZEY3lkZlR0qKEnzkorUkpZgzDcESKpyQZ6yBbMrKgb84Vx8XrLwYAG3QiqIJtYzt4Dl27WwyvCrOhI0zG8NifGAoi5YG5BufWyObUoIah5YhABwfuls3zYj8im2oxvGeeeWbmwJE521TOcll4ktvrsaz6kaXzIsOxswqTR8ex5fwyfV/GgD3/bEPlCJWBDJVp6TKHEGouyGhbCby5hVHrWewxcHgKNRlZaj3eRz21WEdHR0dHB3CssARK9llQtyUbv7mpz4/SWaX7pXSbuWBTqqgC0SOq7YaqdETsf/ytkqwyG55BXXoW4Mxz2fdWIujK7lexRmkuWVXB6jG1WBYmsFbaIlOKZVepsDL7b7UJrfvD7XsiyNarrWXi/FUBuZR8I5vJjsVyue4zOykDwVvhIuwfWQ/tXZltlPbUynVfOhwnp8Yio2C6qqz9Vdk+vru7O0tcnV1LWxrHJ95jTH1FNsU0XrH93C7M4Fy2bOvVnGYMn/Y/tqM1L2SsDKGJGgwnTqhs02R2sT20k1bJCzI7qhkx07i1NBfR9t5teB0dHR0dHQFbM7z9/f2ZnSfa3qhL9yc94rJEstwclm/tzCtwaRuQVsJSglJLluprqbxWWqjKy7TlUVp5y9EOl9nwKvazxruSc0KpNP5fBVJn/awC96U5A7LdzSyNAeHSXAo3aANw+rBsjJkkmtJtZvehnYJzm9kcjKUEBLE+llvNbTYvTPhNRkfv1Ngvg0mRs615aOuqEkXEsj22sdzW+tnd3T2ok0nGpTn7J8PKvFnJ5LiNERlSTMFFz9QqQLu16a3XnftjdpV5MVZB41Xqsfgb54XbEsV++X+mTiPTow1ZmttNq+ddtsUYba0tuO64zloe/BGd4XV0dHR0nAgcy0uzkqKkub2gsgHRg8vlS3MJseWtWcXSrIndI3tqxbat9crMbB3HYZtLcXiVN6VUb0dTeV7GY5W9LxtHbufUGqOdnR2dPn16xi4iQ6eESxuDmV62PZDXXWX/zeLwGPdG+0EmpRuVl1wWs8U2VXaXTIpnu20T931kFuzj8Td6dLKfGdutYkRb3nlV3For+Tttny1P32EYtLOzM2Oq2XqjHZTjl6UwY1vIWLN0iF6r3PLH8+A1G+fFWoYLFy5IOlzPlVYs/kY765LdObaX96fbRs9iae51TBbMMYn9Y1xhtUFrvIbPKs6b25Ntf3UsLd7qMzs6Ojo6Oj6I8aySR2dMwVh6c2eSduUl2bKtUXrkZofUcUe07C78vsaDM16TeRJWLLAloWzjnWlk89EqK/utsju26qM9ldft7+/PyotM3/Ns1kJpM4sfbLEwqe2ZyqwOtEUyc0g8RhZKu1lmX6oyyHDNxP6RrZHpeayyjW1pP/e1ZLAZqm2vGAsXj9H+x/L5u3Q0EXDrnhrH8YARZfPC5wDj4DIvY5ZDL0aPlz3Ms5gzboFE7/T4nLt48eKRYz6HdqzMxsW1n8UV8ntlU2W8Ybx3PBa0Z1ZJq7PE8bzn6AEeGWyVtcuMOfOuzTzIu5dmR0dHR0dHQH/hdXR0dHScCGzttHLt2rWZCitz7qhobaZOq4JaqZ6M7SBaSXRZdqW6XAofiKjCITKV5pLqco3xvQpOzRyHjJZzEdtYOey0VAXZuLXO39/fn41FVKdUO0JbbdhyPKDDC0MmWmpj7nROd/4YLsF1TBd5OorE9ld7qBGZSpOqTd8bTOEXz60CgFl/vL8qhxO6p2cqTd4THPusnhhOsJQ8muaQeN9Uz5tqD7r4m1WNXHdUU8Z1wKTUVrufP38+rVeSbr/99iPlVes5S7tY3fctcw9DdqjizOalCjFy+XS0iSpNqt2ppozOKiyXY9EyY1AFvXYvPKkzvI6Ojo6OE4KtnVauX79e7oKcoUpZFSUR7obe2k5Cyg2Y1e7eWbLnJTfWloNLFSRepYmK//Pa1jWst0pL1Ep/ViGbt6pNrdCNLBi+VffOzs7MgScLsqajkdlblkaLrNBgYHh2HqVLSq9Z0uXK6YYOEJHhWVplUuVKOs8cnhiOwMTDsb5q2xk6JDAMQ2qnjsrK4vWxjJZmg0HR1XnSoWaJ88VzpHkKLjKHyDJcn+edThzsa+bcwfHxOV6zsU+33XbbkTb5Wre5pWGixqeVjo7XVKFarVRfDCczCyaziw4oHlsf47OKTmLxHM4T3xexHo79kmYpojO8jo6Ojo4Tga1teP7zd+koe+Kxyj6WSbEso9JTZxsxVqyzCiqP51THtwlLWBN4voSMhVb66UrSa7VxDZZSjGXtbYVIsD3coiTbADYLopVyqdqSX+VG3wqcN8iWyA4yGzVdvFsMz20kw+K6zu6NSqKmC3trY9NqO5hWoutKg8Fx4PXZOdk94fmJIRpV4oJxnLYHqlLlxbJp66TtKc6L+8owDgeItzRPbnelDcg2qa0SasR+xs8MVdA9WVv8f2k7nbh11lI6Ooa6RMbs/2mTrNZ5Vn42twTTU/YNYDs6Ojo6OoBh7ZtRkoZheFDSO95/zen4NYAXj+N4Fw/2tdOxAn3tdBwX6dohtnrhdXR0dHR0fLCiqzQ7Ojo6Ok4E+guvo6Ojo+NEoL/wOjo6OjpOBPoLr6Ojo6PjRGCrOLybb755vP3221dlWmGWBcaEtDKRsLw1jjXbON9U57bi1raNabvRba6ueTb9zrKmVFsIZXPNLZj29vb04IMP6tKlS7PB2t3dHU+dOjWL04zlcY1Ua+ZGxBfGY2sz02zz241aS63tX57tNa1+bdPGqhyupdZcD8Ogixcv6vLly7OKb7311vHuu+9uxiuubdOzPfdGYk2mqm1xI8taU/6aZ3/rmurert4f1bH77rtPDz/88GLnt3rh3X777XrNa16jRx99tOyAwSBb7q4b0/QwCJW7+DJAM9vHbSkQPKJKl7VNerAlZMmxq3NaAfw8hwmBeX52DcciS5nFJK0M1PX32H8nw73nnnskSbfeeqte97rXpX09ffq0XvKSl8x2k47rwHuLOQFvtdtyazfxpRd2Ni9V4Pw2a4ftyQKAK+Gv6ks8p0q711qXSw8e3mfSvM+V8NFab+yXA7lj2Z7rW2655aB/b3jDG2Z9kKS7775bX/u1X6snnnhC0jx1Wvy/ela0BJ6lF2mVTjD+VgWCbyNoZfUsvTRaCTGqZAGtJAxVUvyq/myHda5ZfmYp2rjDOvfj8zqJ58ad2l/+8peXfYroKs2Ojo6OjhOBrRje/v6+rl69OkvsmW0v0SojfsZrmF6GyCSjSsJpSWVL2DIYf7GNlMbWpBSq1I+UoqutlbJrt+kHtxDx9yxlFhMaV8jSLMUkxE64aymPEmM2p2sZXbbj+dLu7i1U6zyT+DmWmXQckd0bFVtbo9bjGmFKuKytvMfJ7DLVNtemy/K6sJYg6+vOzk5T9ZppdbK+GksJ2yOq9ZWl68ranZWRsalqfVVrtdWf6vesXIOJ2zNGzpReS+svttXzzLSBLfUkNVbcCi5b5z4npmpbnb5x1VkdHR0dHR0f5DjW9kBM2Bvf8pXUaqzRpVMaa9njqmsq+wj/z9q0RsKqnC9aklbFKLJE0Wva1OpD1ZalthqVpJUlbo4bP1aMY2dnR2fOnJklv42Jh62TjwmFl0DmRmbSsltWknVrTpdsaBl725bhRTDhMNtuxHlZ2hCz2qg1q8fghrqZEwETg/scbuC7pk1Z/dzcN85FxeBabLZiyVXy8qy+aq20tAaVHT5L1L7kX1D1t9WG1v3P8lssN9YRz6227Mqu4TH+ltmMib29vc7wOjo6Ojo6IvoLr6Ojo6PjRGDr/fCefvrpmUozgrsFGy3ngVh+vHZJ9ZiVv8ZIveRo0qqncj9uUeol9/dWvdVvS/vzZWWsuYaqk9ZYcB+5K1euLLo8+xqrLaNrMfcQq1RzLTUK94fzuVSHxXMqV/yqD9m5rWsqVSbLaqmlK4eD7H6qwm2qtZqpbNk2tjmqvCt1G9XWcdfqbdS6dlrhXoDZ+qX6uHouZO1l21oxo1UIRvXc4/+xjGo/0NY1zyYMayk8poU1+29WbWtdy3PX1Gd0lWZHR0dHRwewdVjC5cuXj0hqRHQz9zXxMzNoLjkCrGFeldt+hpaEW9XDcivX5Za7buXqvU2Q6pI7fPx/GyZZOUXQ6H9cpxVpGge3zVJ/ZHiVs0prHXAeONb+PdsZnGEwZFOZUxbLtUaj5Uzg69ewGYL94fri7/G3pXCLTMInk3P/Wo4wZntVPSxrqTxiHEddu3Zttjt2BEMhiMyZjWt+KSFAy8ljyeEuO5frOrvHKvbHsc76vRSqsSa0hddWiQjiOQwbMLI5qjRmVXhEbG+VjKGFzvA6Ojo6Ok4EjmXDYxqqqM+3FEa3dro1t1z/s3rjNS0dt0EpfY2Ni+wtk3yydExZfdEF2/9Xdrg1NrzKJrFGuqnObTGOirnGNnpOzfSuX7/eTBqwv79/sC7M7CLDW0prlEl/S/YBrtXIDqpAea6DWF9lp6qC5CMqZm/Q3iipZDUthle5/1MqzyRksjEzcUrimYaGfSf7dWIB6VAr0LI9GeM46urVqwf9YmhLq68GGbLLjeeueVYQS8+sVtvI6BhaE/+vmGTLtl9phZgoINOYLIVBrAnZqTRMEUw1SBtstr6JzvA6Ojo6OjqArRneM888c+CVZ2ki2u0oefqN3fIQ5Fu9kl4y/fVSmq5MyqkkuZa33pK+m9J5lLJp96EU1fIoJaNk28mks3rYhzU2wwrZ7+7r1atXy+uHYdDu7u7MdpcxvMzekvVDqlMTkX36M7MjLQX1x98p2XI+skDxlrdfLD9jsJWE29J6GJVnJdlbvH/JwGlXzdZqtZ5p51yjZcnglIZ87sS1H+c1qytjkmTwFYvOvFuXPMozTVDV/zUp7TjftDe3vHUr/4IW62VaODKuTDtUaT+8hrK1ylR2TirO8uPc+F5eSkWZoTO8jo6Ojo4TgWMxPOvfjcxDjPFWlZQp1XaiSnpqeaRRWmulIaq8tDLppaX3jt/dnmzrnWqLlUzCq9gOt81YI0lW7CdjLpUOP2OS9Hx8+umnm9LW7u7uLP4usgv/X3mCZTYnSrq0l7akeLKnyt7X8ko23DbOT0QVY8S2Z9qIikVlLJhsk4zOtrQLFy4c+T3+T5sKbdOZTcXjFm26sa2RzRvZWiRow2vFvnLN0O6XMYWlpM7GNnF4HutMk2XQZpeVWT3fqhi+7NlYpafj+ovtre7BKoY0K9dl+X3BdSgdJhT3Oe6Xtx5jX+K5ZoOd4XV0dHR0dABbM7z9/f2ZJJplL7AEYKnOG/hZuoxvebIVftK7LUppfttbv08pMNNTG1XsTCbFMPaj2oA1sh3DbcuyVMR2ZLFbBrfM4Qa7mb2R40V9f2wjt27xOHqeMvZBCXUpefS5c+dmzC5K/d7Y0fA51bZBsT3VGqrYrnS4drjZbcZcDW6FRAmbGo2sDWSftItkXqE+t/KajONYMTqPrz8tRcdrq1g0rxluCByPMS7Tx7N70G1wOUssen9/v6kRoZ2QWVlaDI/PjOq5sLS9Vbz28uXLR9oV6+G6IsuNY0+NBcto2X+5NqtnV+wXN2uttgnL7Oy0//Fd4HUYnxHMqsS5vfXWW9O+SIdjfO7cudUsrzO8jo6Ojo4Tgf7C6+jo6Og4Edh6P7xxHEtXbOlQPWKD4m233XbkO43i2TVWd5gCk/ZGhxCrTS5evHjk+5NPPnnk84knnphdU4UhUE3A/mfn8DNzWiHtrozI0uH4eAw8Nv6kmi+OJx1ZqM7JQiesmrE6iv1oJQ2OY9JSaZ49e1bnz5+XpIPPqMa02ttt4TmZGz1VunQaYWBrVI1YpeS1YRVJTIYdP+NvPpdzmzkRUaVX7d2XJSig+sn98D3j73Ec/b+dUqwW8trxtdl4ZnMaP7MxsVrS99pjjz125LjHqtWPlkrTphSuLYYiSIdj6DrdTpefzUsVMsU1E+9Pri+aPHjvSXM1OJ17MtNGpcKkGjZT99JhrwpxytZbpcqk41jmYEVnGZfv/rbCrzxvly5dOlJmTFrgsfD6vemmm1aFdkid4XV0dHR0nBBszfD29/dnb/DI8CylW7q0tElHjSz4kGzF11oydRlRurRE4Le9v5MVZElcDTIgX5MZgKvUPq1AYDpWWKqlNO1+xvZ7HP1Jhpe5B1MKtKRdGbpj28iuyAazcJJWarR47i233DILODf7kA6dKOjgxFCW2IaKydE9PDOYW+J0fWR6ljKjgxWvoaNLlgDb5XGNkB1mmgCXw5R9Hj/3y+2RDteI18xznvMcSYdrivOWOSKRobQSR9Bxw3NgrYvHj45RsT+tLV7GcUoezTZE9mtWyXuZ31vhO5VjUCsdIq/lvZVtR0XWRIeMyArJ+pY0S1kb6YjCMKnMCcxzSi3ANlsJGWR42bO/CmXg/R2PReeo7rTS0dHR0dERcKywBDKyqF+l6zMDQJlQVjp8Y1MaJyv091ifJQJLILYjUCqLUpTtipYKLMlbSvS5lFzjNZTOKEG2Ukv5kzYVs6rYR7Met9mSvMc3sxVYkrJETQnP15idxP9pR6J7chx7l79GutrZ2dHp06dnjCQGmN55551H6qwYZNZuzxXH2v3JgozpNk9blL9nyZg5Ppzb6Orvc8iWKGlnLKSyMzMwPK5vzqWZK/uRbVtE+za/M8VULJdMhSEo8X4263XdN910U8kenPCC4xc1PT5G7Qxtg7EOsvFqg2YjS3jg+rI2sT6uEYbZ0H6eXcP6yWSzrXe4VvzsyEKDyHKtJaA2L7sXjSr9WWajXkrk4fKjVsftj/bkbsPr6Ojo6OgIOJYNj0HlmV2HAbo+h5Jx/H8prRG9p+I5ZF5kjdEO4+st/Zl1WEp4+OGHj3yPdVOir2x6UfKh55Prp8ditOH5mJkdz/F3srkISqxku1H6tcTtY/RUzDzV3I9oJ2lJx5HhURMgzVka25tt50PbBYNdfS3XY7ymkpaz1GKVPYf1xnFyn2mP471AiTg7p9pwNrI3X0NtB21HmfRMkJ1mHs5eI2SoTByQSfa+9ty5c00b3uXLlw/Gxf3KfAe4Vtj3LFF2tV2PkY3Pkkd3lmSbno18VmUB+vS05PxzjcZ2+FwmQ1jj4c30cywz03owhSGTfFPDFMtjwgBqliJz9nvHxy5dutQZXkdHR0dHR8TWDC8mAOabXJqn8qF0a5tNlOzNvmiPogdi5gFJqZiSTibFkK1VcV6ZtxTLMLNqsREyYsYZ+jPq0sk6H330UUmH9himc4rto4cV7Rj09IvXkKGT+cV6KH0tbdJ45syZA69MM9TYBrJIMp+MPfocM19L+rRBZWyNW6CQoWQSKZPcVu2JYxG1CxHU97RFnQAAIABJREFUBmQbgHKuuJYyGx5/Y2ya7wX3JWPtlLCZai5qMCpPSN4z0f7L54RUb59z/fp1PfnkkzNba9SIGFyn/vS6aG0pZFRe41mqQYPagTXpz6q0cbEe9sdjwHhIbqiblV/Fw2W2U2qMaO9reYMaVYLp7DlBxlx5MMf2R61O69lzpJ5VZ3V0dHR0dHyQYyuG5008DXrASYf6dUpHlujJaqRDScDekrahkXGt8WKi115r80lKEbSLPf744wfnmllVyVoZJ5Mlx6YXKjOLxDa6H4888siR7x6rBx54QFKefPf5z3/+kXIdD0VGk3k+uZ9LWVpinRnzJmzDo/0iy3xhkGVkyXUtcfpcrz+vJV/DLCDxGma8MHxtZBKeu4rVZGUx60/FQoy4Dly31w4z7mRZc3zs/vvvP9IWeu3R7h3LNROvtBNxTFwuvUG5vVfG5ls2aGMcR125cqUc6/g/mTw9vqNmiXYjP194P9LjNxsXevZmmX3ItPiMclmRPbtcao7cVrN2ty3rX6Uxy5gd2+j7iN6aHG/pcM1wTXIbn5Z2oPLwzBJqR9t7j8Pr6Ojo6OgI2DoO7/r16zP7XJbx4I477pgqgA2Cn9LhW9yM6j3veY+kQ3ufGYuZSpYZwBIwt3yhbSfWTQ806scjG6B9hcyq2tw1jhM9oFoZLwz+Zina/bIEFufgfe97n6RDCegXf/EXJUnPfe5zJR2Oa2QSZBBmlrQDRimXGURa2wNJ09hRJ9/ymsy8cqV8c1XbOO+9994j5d59992SpAcffPDIebFcbkxKm1qcF2sBaHMgc4398hzRbsUtpfw99pf2MOak9T2TebAyHyG9M7Mcl5bkPe++F33/eDz9KR1mcnE9ZiX0VMxi96KHZMvDd29v7+AaZiqKfarybWZ2OLfHa8L3vZ9drXXo+ugx+O53v/vImEQvRzJ5rh2v68h2q01jDa6Zlo2y2ky6lTOYm626PX4OxThaxnVaw+Cxuuuuu47UL82ZHTVmXqPZ1mnRl6Sy/xKd4XV0dHR0nAj0F15HR0dHx4nA1mEJ165dm7m1ZqmQTF9N6a0SyQJ3XZ5VC3ZaoeqCtDr+RrVDK6jWddvA6/r9mamlSJmpKmkF5nLbI3+yzNgvpvKhowlVua1gfKsnrf566UtfKuloKrMqQJtu79n2I9FAv2Q8ZnLYTKXJrUmqsZYO1c733XefpEM1itOUGb7W6iqpdobyOFldk7lXM1jZ52QhCAyCZn+ZWiobQ8671YZM0SUdjo/vI/fznnvukTTfjivOKZO+e3ytEqbji3Q4TlbV06Ehc6yh6SFTyRJUb2VJrxlMzvmIAcy87/3pPlPVnYU20VnNc+d+Zc5rXN80pUSVJtWNDJlgaFg8n6YThj+1Ek7T3OI2MrF/nAOPH0OcvFZ9TTQvuf2eW5o1PCZRNZwld1iLzvA6Ojo6Ok4EjuW04rdu5u7K9FCUWlsbpFripGTtN7nTbGVSdNwqIl6bbWHELYPoSJEFANNl2JIOA9zd1iilZSmj4vFsc1VKvHTxtZTkz4wVWML3uLnMFiuwYxBDTlrB5bF/LYbnbV5i+XGcqhRLlGYtMUqHbMzlUHrldj6x/ZzDhx56SNKcpcd5qbaD8vhkwcNkiByjbJsWg8Z8z4+vsdScOcnQ0ckwy/W9Gt37zQLMcqrNPGMfmGaKruvZeuM91nIt39/f19WrV2f9iC74TNSQhVzE36XDufLzxmNrUOMTy/LaYagJNVnZJstMikDNRVzfZEt8ZlCDFV3+fS5TiVFrlDkBsgw6OmVpJZl8nU5h2TXun8ulo1jG/DNnqB6W0NHR0dHREXCswPNqyx9pvhGrJXCzDG5R4XKlQ5sS3ZiZBDfT3dItmSww267H5ftaSyhuc5bgmhIvmQ/tQnEs/Gnp2XrpbJuWKtEsmVGmz2YwJ+1ZRpTsGWbBgGC3PUrZDKAehqEpae3u7pZBvtKcRVMCZhq3+BvDBVy+bU/ZtlQ81233Ws3c35mmi/Y5bg8Tr2FoR5ZgOB6X5gHaDHg24trxb3aN95z5PrJNl2XEfpklOpiYAe/ZBre0TZFlR3AclzQDWZB5DH7n/eh5MWvzvRbXG23DTLnGhAcxjIPMx99p24rzUm0lRRteHAtuUcZtibhRauYbwTJon4tjS20KNXa+B7Ot05jkg8yOaSalw/FxeQyw9/GoCSKb3wad4XV0dHR0nAgcK3l0peeV5pv9UY9Prx9eL80lIabPadk6qm18WlK6pUB+RubKYMcqnVbGMGm3bAX+GkycTJ02JcvMY42skxJ31PfTs67atDEyGNpJhmEoA0AdPMzUSJnd0m2hVGlkW7yY4VUsg8HkGSiRmkHE+txGbjRKBp6lYCOjoz0sW6tc10xsnW29w2BopiHjxrZxDnj/0P5jRKZfJdt2/dQaxHrYvxboGZltepvZBqW5jSjWTRu6x4/sPV6bJSPP+pFtD8Q+8xkZ72Xa7Kqk+FyH8VxqtLiWYr/cFo8Bn/VMnRfXObcBYjt4H2RtypKvS0efO57reG634XV0dHR0dARszfCGYZhJolGXyrdvtQVKlAyo+60kXrIPae6txITT1EFLh9KCbRq22fmTqdPiNUw4TCk98w6rmBXbmkmfBCXIbJsV2n2YbJWprOJv1UaWjHOS5h5U1XYg0jSXZ8+encVmZRvl0pZRbWAZ28Pf2Femj4vneB4qb7JMAq7SwWXxiq1YqdjvzDZNyZ2eo7YZRRZK2wxtooy1jPVSk8H1lqWEc32MpfI8mg3GcaTWobV2rB0g24ltY4o/MhTXHbUqTG9W3QP0lI3Hso2FpcM1lWmj+Ey0RonsKp5b2Xk5bvE7+06W3krgzk12q7jTiGqTb6ZyzNZbxfS48bE03yQ2G+MKneF1dHR0dJwIbM3w9vf3Z0wrSkRVrFnmqWVUW8YwuWrmpUkmR2na9oosw4IlT3tN+pMZCmLbLGlUUnnWRnp5VV5tUdIiQ66Yl5FllOG4VvageIw2AtYbpSnaCJY87cZxnHleZnYdjilZTGbjoDRZbe4ZUcW/kdVGVkDWUiUPj2DsIT2KK8+02D/Gurn+bMx8PTcapjTNxL2xTfykViBjO9Q2cAubuD6ydd1aP5mXdQZuVMq5jUyMfVrK9hLbWt0XVYxvLJ9ZROwRy+2C4v8uv2JC2fpjfzgWWTYaakS4Vvjsyhil2+b+MCNT5o1OVkiv6nhPZAn616IzvI6Ojo6OE4H+wuvo6OjoOBE4VmoxGuwzJxIa6JmGjCoaaZ6WqUrJlKkJ6ArNsIjMOcJqIafg8rVODxTbSOeIKhEs2xrPsTqAbvZZACj30DPW7C5OVTPngE4t8RjbTLVIa8++ViDoOI565plnFtUsrTZwHGOd0ZElnlslwY3X0vHA36mSi8eYQJ0B4dka5ecadTUDnN0fO1jRySCOBROL062/us9iG6jaysIu2A8GUmfmDD5DWut5GAadPn16ljYuC9CmmppmkszUkDl+xd8z0MRBJ5/MQYn3mJ8/dBTKwm5433HuOLdZm4wqHCYrj85q7EM2RnwHUA0br6EalE46dFiT5ut5d3e374fX0dHR0dERcSynFSb4zNgaJUQGMEfJ3oyHLq9V8HiWHor1Mtg1SoM+xrCEmKpIOirF0t2dDIJG5cwwy+0/2PbMoF5J4VXwsjSXtOlklIV3UArnnHJ3+FjPNtt1UHJsJYdluXRHlg6ZD1NvrQkXqBKa07koW99kplW4SCy/cghpOf1ULNDjZoeHTMti6dhrl04R2XxRCq+cGDLJnuEITL+W7TZesRC2aXd3d5a2MAv9aCU+4O88xq3LuJYyJkQG2Uobx3P8/KFmK9uGiOPNtmf9c7mVwyDDldjH1vcqXCL2o1pLmfNSxfSzxPp0xjtz5kxneB0dHR0dHRFbMzxp7hIbQWZCG1omidD+VtkastRLlXRMSTRKKm4LpWNLRNm2MOw73Z8pgcX6qP+27p6sMErp1J1XbDezZ1CiqphdrK9KIVa57PP62KYMTljAtFfVubFNRsbeuB3TEsvMxpjhArS1ZUnEGWRrMEVb/J9hIZy7bPy4rly+WVu2uSrDADzmXLNZmEdl86R0nknpPocam+yeX2MLitjZ2Tm4P2kDjWXzHibbiHNZpZlbYlMRDF7n8ya20ef6/mcawixYnX4SXN98hkRkLv3S4ZgwEUFsQxZWEb+37vVqXKtg+Vgv75FMw0VG3hleR0dHR0cHcCyGRx1qFozMT24H00riSqmipafmOZV0FvXYlrAsiVq6YL+i5x8lRNqimD4sSmKUXnyNA92zbVoMBrgvBUln9SyltMrKIbtq2SQi+1xieUYm5VVpi7ipb8vmUK0deozF/8l8aVeI13AujZbNuGJJnCfaKuO5le3THsXZvHidO3UVg7GzQOdWMoTYxkyK5xpq2XazYO/KU9M2PCaXiN7OHKdWqr9YbobM3ktU6cfYh3gekxWQ2VWJuqW5HZHnZPcnryH7JNOT5gnnq5RvWX9byb15LttIbQD7kwW4e9y2CUDvDK+jo6Oj40Rga4aXeSpFHTFZWuWZRI9IaR7bVLGqFouotsCIcUpM5WMp2VKTv2db/LANVRxOBG0llI7cnszuR6kss1/E86Q5oyCzYDJuaR7j1oorZBvXJm+1pB7b29rqiXXTE1OajymvqdJ3xWMZS47IEtdS8s083gweYxwkGXhmM6w833ieNGcB3LyX8xb7UnkmVl6J8RjXamWzzMbCqecq2AYszW2QER5T971KEF3VET+rtRVRedoyEXr83+1n6jcy2KzuKg1jdj41cNUajd/p9UwP0jUxt9VYZxoTavz87KUWIttId5uk0Qdt2PqKjo6Ojo6OD0Js9YochkGnTp0qJSGplgB8brYRY+WFSftbywOP0hi95aJdxJKVNw31tZa0suTRS1kYqGuO/fOYWOq8cOGCpLmHVbRJcPsXMjt+ZoltK5tRpn8nE6/i/iIy6a+S0sdx1LVr12ZsN4sbYlxcK8ZtyZuMfW5l/eC5mTcr16rXM8ttrVVmAaLNKF7LjDtmB/5eedPGc7ilFbUg26AVK0gmR/tMxq6z+yRDjP/1ednGvGTpvMdacZhZnFjsV0TltUqP32gf89zxOUPbXUuDQW9MPncyb+0qmXN279BDmp7KrXVN2zffD9n7wmuSTK6VgacVR7qEzvA6Ojo6Ok4E+guvo6Ojo+NEYGuVptWa/i4dVadQpUf1RitYnWq7NXvN8Rzu8p2pP2677ba0PBrBW44gTJnG+rK0XdzhnK7FDlOQ5sG77Gcr8Jxjz7ZnxnjOD+egtc9fTB21pCaj0T2C6hqrgFo7q1cJalup1wiqo4xM7UYVs1WaVl1ljifVfniVWixzIqAqkzuGR+cIji3nlirjTA1GdTKdZjK1G1VNVYhSHBOWUWEYhpm6MtsDkPfnmnnn86cKOciuZRlMmB0d35ZUmgyPiuVXbapMK/H/yhGJydOz+uhIWDkzZW2o6s0crFh+lV4yq2cb1XxneB0dHR0dJwLHclqhJLcmqeoaSaT6brQS11bBw26HHVTiMZbDpMFZMK+lIUqQZLKRLTDw1yzB3922KPXSoaEax4zBVMGblQSeoUpD1toOZEnSGsdxxoCihMg+ZoHt7OtScGvl1JL1rZL4M+cIJm/2HLeu8ZzG7YayfsU+MSjZ6ypzcGB9lTNOKwFBxQ7XJhSIqIKxpcM+uh/7+/vNwPNTp07NtEfxucPxOM62WpXWhJqSeGxp66e4Dsjw+BxobS1VpWKrEu7HY9Rgte7litFz7WT3YsX6OCexjdwSiedkLI7PM2se16AzvI6Ojo6OE4FjpRZruaxTAqh0v9kbeSmNTXYNmRw/uQmmdChpW99OCdwSUEz5xRAJBriShTzyyCOz+vybgyvvuOOOI22M/bcUSFsabaCULOM1S+EImY2Skis3jY1obSBKjOOoq1evljbC2LeKta3R2bMfawJlWQ8DW7O1Yxvre97zHknSAw88cKQMS+/xmNebP6s0UTHEwX299dZbJc3dxB3iEplENT4Vs89s4sexj1TajtZ9G9tc1TUMg/b29krWJs3DaXiftFjaUvKCLCSAtkKew4QU0tyGz3VGG2tsG+uhBq2V+IL3AtlZNv+Z9i62sWXL5bOwSoAf/+d7otLUxf/XaB+IzvA6Ojo6Ok4EnlXy6Jb9qNKHt5hdq9x4bZZSiB6jtFdlyaMffvhhSfONKl1GTH/mNlrSsoTveizRWzJ56KGHZm10Wyzhu39mfBFuQ8b+IjIGUwXJr2FKlb0nOzeTzippy/Y7ty1LwkzdfJXyq7XeeE5lk8jgdRXZmXTUA9K2OjO6+++/X9Iho3e9XmPxGDUKbBu31IrXkjm6HS27CNcsx5Eajdg2SvK0uUYpvbIZV4H8EZUXMrGzs1OyjqwceplmbIAsqUoescbux3OyceJ6ZgKCTKOwFGjeCup2OdwOjdssZVtmVfbeJVa8Btk9WLHdrF+tjXmX0BleR0dHR8eJwNYML0vimUnpVcLcLHavAqW27I1OiafSh0ep2eyM6X9chiWfKKXTo49SmaV3xjHF9lrCYzJf9yHaDKnnpyRX2Uvi/1UyZJ4XUXmzZVJuJf1nsB2G4xil2SptWvV71l4m763aHOu2xEuvWffr0UcfPbjGsZKeO8+z5ytjpfQuruL+MjtMyyM6tjFuZeX/mVbLa5QexjEOq2Xfi9dEVKy5SnAc22a0NvF00vEqjiy2oVpD2dqszq1YThZHWMVSZjGctIsz1VeW9o4pvmh3W6NB4zyzvmzLrFZcaTyvtc1XxbwytlYx8TW25G1YZmd4HR0dHR0nAlsxvJ2dHZ05c2bmZdZCZQPKYqmqTAot5lAxOyKz+zDjiY9TEo7/V1u6VDaDWE9r401+rzIMVHbNTHdfeWlmZS3FbLVseNEG1ZLST58+PdsgNba7ijXi9yxOqbL3sa2xfYx/sn3Mtlv3K86LJV+vEdtfaZ+LicDpnclMK7RdRqZvtnnnnXdKkp73vOdJkm6//XZJ0t133y3p0FszlkPbIbeAyhhzNX6M98rioipNTCal85xz5841nydeP1LO3iutQCv+t9LaVGwtY0KVfdllxW3JOE708KbWKLafdlh6Z2e2xMr7nOsxglobeocSmbaFa6XSwmT1ro3JZrktO2tEZ3gdHR0dHScCW9vw9vb2jmRHkNr6cUptmaRQSYKUGFq2InrurNlypcrdaAk/SmeW2BmPRxaQxabZRuRy6dHZimlZiiPLfmc8WbVp7JrNUFl+5uUWWfZaO0xmc8jGIZ6b9ZV218pGnG1WbHbGDYC5zmI+RK8dx1B6XdD2YS9K6dDu52PMykKGGb12yeTM9HyOGWBso8fg/2/v3HkjOZIgXHwLkCEBwloy7v//rLNXjgTIEEhxzspl7NcRWT08nKGbDIec6Vd1d3VPRj4iayz1OTUGdvWYyWJ2Xpedl6WLw5ydO09PT4c6TaeElPRinXdgpzzDmJvz+KQYYe2Tqjo6RnqNOP90DGRpde6uDpdj4HNDtugaDqd9dVmaZJm7e6FIz7yDy1QdpZXBYDAYDATzgzcYDAaDm8DV4tFO4kcDt3Q70KVZ1NtJSqXU4i79PblMu3Tdch1oYflaH64lV+Be/5cLi1JGta1z+dTxyv2UClu7IlWmsneyOrzGvCfOvZNcCNe4NM+4FZIorS7jPeNnnW+8/2ks5fJz7sn6jqUstW/dppJDfv311+/2T/dUFfmu9SFwUMXp5dJkMXmNR+dlHa9cmzWHeG81sYYJVHTJdfMgtZIqOLcb3fquXEnHo8fU53WXeNClqicXPJ8bJ9u1a/nlklZSAhjdd+oGZblT3efUAsqNLSV2OREBl9C21vE92rmaU0jFuSXpbqXr0bk0GYpKZQpu/FoKNC7NwWAwGAwEVzO85+fnQzq9gimpu2LitfqWE3VchVpatGJTgNQFdctyJ6PjPtc6ivQyScKl6BdY9pDEdV1KcQqGd81yU3pwur66bipLcAWoZ8pGCpfLZf3999+tvBkD5mS5rq1Tt0zHyBKEtT7uZZK0c4XAxcIqeaSSV2jRK8Or/5m8UschM9KkFZZKsMDdMQmygSTi6xqOclvOHffsp/YvnMNJDEDPw6HeOy6NvrBLlHDJOFyWBNNrHmiBfiHNfdcmjCyTZRAqdFFIItjc1rFQ7qP+1pzqmqumJBIWq7tSE3qYeE/cHEqJTS7pkB6FncCGYhjeYDAYDG4CVzO8h4eHaGXq/0lUteAsLVoEtNrJ4vQ4TnhX4drYk9GxAFhFhGtMZRXvGjI6yyf5pVPZgJ4XWUgqI9B1OcbOL55iH528EmOr1wgROKuMsYXkHXASTymm0rUwStvS0lcru85ZC73X+mBldVxlab/88sta64Pp1V/O+/qrsWO2maEVXWnvyn6KKSjLVKSCYLdOKpLu9pvKB5zIQCdsUKjcgboGLNzX/ZBVnpGc47YsBaDYhDunJOrcFatzv66wPuUvUJaui1EyNtjlNyQPDL057jlOZWXct/sulSu5OGPNRZbHncEwvMFgMBjcBP6r9kBOHDbJ8hTcrz+LKBOcNZhidbQUaBHpMsYcnCAvj02rgn7+rmEqfc+uOJVsZtfs0F1PLksxC/2Olne6f/r/GWZX3gGyKmfN7mKOLtbJzym7tYsDUajXST0xdlHnUSyuvALK0lIMhc+Is9JT7KTOo7KGf//992/bFMNjUXyhY3aM99Hr0VnVZ+IvBbaJ2jG8h4eHw3Xs3hdJ8svFf+lBSnPIxZvJann99L1Tc4IydCVwwbZhug7Pnc+IezfynjF25p5xMrjE8JxoQbrf9NgpUuZtYtB6HjqmydIcDAaDwUDwKYbHX2G1SNKvO2MqLsaVjkOL1MVUyCxZi6SgRcexUZJJj8kaI1oiTm6NY6C1WfvsfNyJ6TnGSb842ZuTSmL8IrW0cfHTXbyW66/1wViUCXH7TnyY66RYDdmaMjxauHXfGbvR+VZxscq0rMzLL1++rLU+xJ21lo5ZumRNdVzHQjm28gbwfNRLUIyhvmPsu2ucyXnOWkSXfUik+LZuw+dnl2n3+PjYCsSnd0iXrc25kmTVeL/WOtZuFhgz1qxg1kyyXY/LAuU85j4oFK41o6w9ZWNgNw9SDTTXdZm3fJ6c/Jhuq+vw2eZnfU/wN+T5+XkY3mAwGAwGiv8qhldwWT4Efb4dA0rH6+IGiWV04spJPYDC0O54ZBYUJ3aZhPzcCbGmBo9pPE4tg/74lH2my5LKhItjuKanHctz/n617HcWtmN6jCmk+VDWs9Y6sU1KXY/UdHOtD4u6Ymb19+vXr2utj2axP/3007dtKhZc14uqPKzd09ZCZGtsXeVqxMgcyA7qmhULVebC+V3sIMWMFJxnjBV3Cjl//fVXm22nahpdTa+ur3AMcqfO0rE1Xhcej9dLj8c6SGYD677ohaKnhdmzyoRq3jFLk7E89/7diYe7Z5GsPWXMdt49xvF5rXT8OpZheIPBYDAYCOYHbzAYDAY3gU+JRycJqLVyEXnBUX26QrpU225sax2DyE6ii4knLOp1abR0p6Tu7LVvTTzYFd93rpl0LTgel27NZUxacUWxbpkez10TdYOle1XSYtxGr2O54thbsAto74LqdMGoG7fcmyXqzKQVF9Sv+8skkt9++22t9ZHEUmUKa324DtlvscZUc6Xukyag1Bjru1SWoOdVY+O8KrdQubrqr7tndCnRLeUSHdKcTHNK13l7ezvtonTPYFe6ouiS2JLb0JXf0KWYSnTce44F53wPubIEhiNqv5QJU7h3rVveIYk+dKGWlLR05j3O96gTfT8jlRj3f3rNwWAwGAz+wbiK4d3f368ff/zxYOUqm2GAPFkCnZwNC7NTQbJ+l9iAEzhmMXpKe9cx7/a/K5zV/SXmpSwtFbKmdkj6vZNCWutcu5Mkc9alshd26cEucUhT1YutMH2aY9HAPMsyUsGqC+rzXMiWXDp6sTSm/LMYWp+Jkhljx/vavyaprPW9hZyYXa1TDNBJPPE869yL2bmEAD5PnawbkTqqJwk3/W7H8O7v77+7dzpGPVZKq+8ErJOcHueOK8mhfBcTT9x7h+IHnG+6TY2FXoACE6B0jPRcdaVThZ3EIJOmnJeI78pUvO6+Y9lFnYMTnHZJMDsMwxsMBoPBTeDqGN7Ly8u3X91Kma6/a2Vx4y5elQRXaWnRCtDvyHRYkOkYUFkpxVTpQ1dLrNYl++Q2jAPp2JKF6orHGRug1BPZWpdavIvP6X7I9GhZqXXGa9uxv8vlsl5fX+P9WutYTM2U604om+UJRF17LRco1P5rWZUH1L3UMTKmUteUzE+vG69tnR89JS59n9Y/5aec4DSZHGOHjJGqSDrZTGqZ49gVx8+/7tnX2NQuFtPNs8RICx0bIGtKXgO3v50nhM+8IsXa3fl15SBrefmwxPAoROBEuClzl+KPisQcWbLlGB5FBbhut82IRw8Gg8FgAHyqPVCBBbVrHWMMhWRFKXYyWhpr4H52YqeOPTFrka2FXBYYLcUkYOuy2NI6rpFhXdPE4Gg9K5JkVdckMsVL67q5ZqE7q1NRDI/31hXM131goS4Zqy5LqPOo8WvbnmreyuMxNq1Mv7wZFTtjZnFdexUepyWdCuldnEKLnfV8ed76bNSxq4VRMTh6PZLnQc+LXgEXj0vMjvNMx+wk4LrMSp13ZNMKXmsylA47puUyoXnudb1c/JnvKo7R3YckP5jyADhfdL+JIbtrQ48V13XXNcmskbXpPKcXh7FQtnBz59HJ3BHD8AaDwWBwE/gUw6Pv3wl7pvYyzjJITIEZn85yZKyhaytRYIsTikZ39VepLon7drEujo0WUVdfRt95Z8EyA5LXzcUfkoRYl6lGdG06LpeLvW86PxKTo4XqmECSPKp9MkNyrQ8mxP0yXqEMr76j1Fcc+3VlAAAQFklEQVQnwabXQJfxuGT1Cs6VOg83l1hnx/2ypkvHymVpnjn5q0KSEXStoHbSeYWHh4dv51rnpTJxjDkzBnWNHFmSyHLSeDwfiko79pHGkDLB9bwYx+Y91W1dGx0de+3Ltb/i35T5250H35Ucj35H9lefHes9kzOQMAxvMBgMBjeBq8Wj1Ypn24lavlZuwOgse8aNkq+7GJiypxQn6OrzaNnsWqKs5a0THWOXMcRrQavFZWkmizQ1qXStV2ilkYWciVF2ag20HJ+enrYMr8bW1dW4c9Jt3NxJzKqutYvh/fzzz2utj1gXz9Wp5lBhJWUxOjbAe8fjuLqoVJfE7902BY6R56BxmnQeZD16ful5TUxW/981fa796Pxz753knUnZhvp/yiTnebh4FcW7KwblYt6cm8mj5Z4hPn8pC17zEOjpSY1z9XlKovFkvy5jvpBid26b1KSWz4Tzfn0Gw/AGg8FgcBP4VHug7leebewLtJKcZZCUThhTcQooVI0gI3MZYvT302p2mUGpASzZocvSZA1T14aGTSEZTyJrcG12aNGTXXfqHIWkmqD/K/voGJ4yNmelc16luJxTr6C17Op31vI1R4wN8a/eFypN8P44Zl7rpHhVinmslS3edH66/xpTKblw3ToHraNlrDhlQeu+GKPjM+Lq2dgkdKe0oi1gnEJMxfNSnPQMkyxwH2zRo+N3mrBrLevJSCytizMmjU5eP+eB4XuO7yH33tnlXNCj4ppx8zMzL10dNc+D71P33rnmnhaG4Q0Gg8HgJjA/eIPBYDC4CVzt0nx/fz+4sjTVu2SZUoC0C3rT5cfAdrlb1JWRaDtpr0usSYKyzo2Q0nJJ+TtXLQPpKXVarwXbwNBd6RI8UkJAV4S7E8V2rhNKBu1cmm9vbwd3l3PJ0Y3KALoT1+VxuV8mbqy11h9//PHdOuwEX3917iSXT0pI0XGnxJpOoi25LpMLSPfH82BBvUtaocwZ739335yrca2jSDvPsXBGgF2PU6Uma310nk/7cq7NJAvGd5STfEvHqbnitqnrsnODauIJ7zOTApMbUf+nG/JMwlvnonf7XusYRmKCFd8Xui73y/mmx+F77PX1dVvW8u14p9YaDAaDweAfjk8lrfBXX3+xGWRPxc5OADilB59pL0Kmx+JyBRlkspLUamAhLi2trv0ICz45Jieum86ZMmgUJFbQeqJl51g2t0kJJPqdJvskK71SyyuA7a4FLeBCKpVw63ZCxbp8rdympZI4ag4pY6FVTvmxLpCeSnVSavZaH4kzZL1dW5g6TnlbyjvAvyyeX+uYoMFr7sogCmR9ZJrumeeYHSphhYkgel8oTtAxH2I3V1jeo8soicX3m54n2QrLkxybIftnYh2/d88nk7Oc3CLB91m6nk7UmeLlPK57flMLI3dvHFMdhjcYDAaDgeAqhne5XL77Ne3KEujL3vmE3XdleZIBqo87SXwlFrVWtioSw9T/E/OiT9tZ3FyH+9JYClnYrgVLlzJNxurOj5Yi047dedE3//j42DK85+fngyWuoNXK+1LnpSyDrCJJOtV1VMFhlqUU86njltWulngq9GWczMVFOGeS1e4YHlkNRX1dyj9jdpW6n2TR9P8UV3Sek8QYupIAV+DcxX8vl4stFyrw2qWyKMe4eK5nPDBkKyyH4j71Oz6XLLdw8VjehxSz7uS2+Bw5hsf9p1hhJ79IsYeu1Q89FyxF23lsdsuIYXiDwWAwuAlcHcNTa9D9YtOCT80AlaV1LGKtLFmk6+6KOtWaoQXCOJyzIGmB7GIFrng0ZZ2SHeg6XJcF6c7XTRbCe+AyrLiM14IZV7pOsZCXl5ctwyu4IuskUM3Pjpl2QsW6jX6f4lWMP2usiELmdR9Ssb/uh/ObVnQXt+D+2QjWMTxmAxeDrRhljdF5B1JBsHuumbVNYQVXwF/Qd0g3dx4eHr7t3zUh5RiYLe0kDbmMSFmc+n95ARjbdPE4ClynrHTHCpMnK70reWxd1nnZuD82uOb7wLX6oYA2ZfHc8TiWM8/EZ0Skh+ENBoPB4CZwdQzv/f39YHW4Gpkda3OWD63nJK7aZYqlmhknOJ1EfB17o4VFRpEEZ3Vdxn0SO9D/a4xlnfN7NpxUpBhYwckCJebq4gtlyalF11npj4+PB0vNxSs4Jrev3TpkaU5GiXWQ3NZdNzakTPVxrj0UrX5ea66n406CzAUnisw5wrq7+uw8Jum8al1lvXUcxvR5b9hgmeecLPXK7u0yYJMQPO+lY8Ipxk3vkKuPZMyOc8q1xGLNbhIt12Vd/F3hPEuF1OKpqzfmfCOz03cx28WRbXeZ3gXmKrg4I6UgO+8AMQxvMBgMBjeBqxne6+vrKUUE+tBpaXWit6lFRUGtAvqFaRF3bI0sjYoQLgOJ9Tcp49NlaZLhpdYyug7r7hL77eoN+dmpgaRsKZ6PXm/WiN3f328ZHq1MPedisdWuJ8XynIXYZZ6589J1yTxSfaaCcQpa6652L2UxptpHN+6UvaZMIsWIWSvo5gHjisyMZLamnnuKb9eYde4wjqyNpR3u7u4Oz17Nv7WOGamM09c1cM1OOaYCr7V776T4fBeHTTkJnSBzyi+4RmmFSCpFbluyNif+ntgf35VujHyOU5b1Wsdr29X/EsPwBoPBYHATmB+8wWAwGNwEPlWWcKZ4uNaptN0qeu065aYUVCZfOErMBINyYTg3CWk0XVqu3CL1aktBZZdanIrHmYiix0vyRnSPub5byaXR3YNCKop1rqzCGYkfpmRrITjdxqkXn3PBpYSDTqqIws+EOx4Lr+miL1ePO84OzmVLF2NKinDlFnRlMknqTMEun3E3DzhGSqZ13dnPuqLWOiaKOLfxLhTgwhR0bSbxAiejxeJ612syIYm7d8LaKamsc4dek76fkn5YPM6yjLWyRF5X7pXmIF3DzqWZErg6DMMbDAaDwU3gaoanBaAUUF7rWABaVlhXKNsVFuvnLo22/pYVW39dsWO3P4VLmWeKLRNgXFIOg9VMUnGBWgb8k5RY1509XVdnae/aOTlWyGvRMYZKWil0rVB2x3YMKLWUSp2adVknUsDj7axJZ3UmD0X63lnCPC4ZjF5HFqezDCbJxil4PZNosVtWyUfcl2vrlT678fDZ0jGwSz1FvesauLmfvCZklE7SLjHwTjoxeR+6JBIyu+S56Lw2Z8oEuH8+e/W5mJ3eU16TVCzvSrZSsqFLbnMlOWflxYbhDQaDweAmcBXDqwJQ+nMVbPJXlgCLXZ0gbyG14CmcieEVnGVHdkHrpfO/kxWWRUeLxDVkTTG8NHb3XWIBXfFogbFJF5Ngw1xaeGrRfUbaJ8lsrXW0cGkJ17HdNrvjuVgALeuaD7Tanbgy7yFbG7lrkgSAUwsWBdtApWa1ax3lzVJzWscoOMaUhu6Ko2ubYlkan13r+3iPY9NdScv9/f3Bm6HvkNpPjbOOVWyTnqe1jqyI7YcKriQneRT4LLu52nkddLluT4EJegXc/N7F/dx7nO8XssIU09NtUtkX19P/WUzO/Tvhbj6nZzAMbzAYDAY3gatjeK642FnZ9QvNtiyuyDq1s+kKUXU8epwUT9IxdoxR9+GQJH5YOOmsVcYKnFXG4yQrKVniOgaiixExvkeZIycAm4rUHS6Xy3p7e/vGRLpMNF4P7l8LjimPxTgPxcqVee9aMLkMSMaG6UFwGWm7eX3GQuXYmH3oxKrZQogMw4l108IuppRi1wpmsKbWTWt9MDGVFUzz5+7ubj09PR2YipMLrDHUHGGWuMs34Fh4P1wM7yy76Fh7ijt1Hgx6hcimXOyYn1Osba2cpUnPHee7jimJF3Rxtl0xvntHqodkYniDwWAwGAiuYnjlS6fl0GX9MS5S1hQzudY6sjOyja6WioyHNV1O6otIorFrHa1Vsg765V0mUhL8dT52CmrTUqTF3fnuk5Xo4n68fvTlO8ve7Y8ohkeZKR0bGUJiws7SZp0n5eIKrl6NsTpmNeq1TzHNjvlwTMyk6ySs0jXoajh3WYedDF5qRstzcNukmk13HNdItoNmh7t5xkzQYv5kfPrsp+cyNZrtGrOSeXWx3BR/OyPmnLxhLhud94zxODat7ZalTGkXb+QYO5nH9N5MLHGtc/WjCcPwBoPBYHAT+FQMr/Mbcxl/wZ3qwm7dQhd7okVFK61r18JxdLHD1J4jZZrqMrLeZOnreSTBYbJq18Im+fu7uqtk1Xbbns3SfH9/P8QA9LrRSk1MVa8JRYK7LDkiKd6wxq27L0mg22WV0dImdnWMelwyP9eYOQmAk406UWReT8b23DNPz0xXC+syH1O86/7+fj0/Px8Em5W9J89EgXE6XYeNfuv7pMDktiWrYZxU193V4bkaXjcG3YcD2VpSqtF9JmbvVJX0fPV/inyf8WBw/y5+XuiaCewwDG8wGAwGN4H5wRsMBoPBTeDqpBXtW9XJ2VSBbHJTaBEqXUqpYJLFiYpOdihtw07NtX/nckpBao7xTMIL3XmdKyPJbRWc67NLoNFt1J2U3CtMLnEdlVMBLcf9/Pz83X3n+TnXl67TlVVUUkKNge405yLhvWQSCwu3dRndxWdKM+hSoovR9afjWAu8Bk72KiXSdKUmTIZK5Snu2Kk0hILh+v9ZWboffvjh8AzrNhxfks/q5M24L67nQh28TnSD632ifB9dfq7UIYU9zpRS7frTsdRAl6VQRtd1ficJ6dzvfG66cjJ+l5oNdBiGNxgMBoObwNVJK4+Pj620C4O4KX3eCb+mYs4zhehMXiFbc/JJ/NxJ4jjRa/e9S0fmOmVRUS5IkVgTi6WdZcfr1xUaF1J5BS1Yx1x1WbK27u7u1svLyzeGl5JydBlT/h1j4bnU/nn9HMOr+/Dnn39+t4/O4q50dwox63ny+2SNMyHAMbxUqtOVCSQPSSqP6NhhYkq6TT2/lNdi8pmyFTePu6SVl5eXw7V15SIp4a2W6/2nt4GJGLW8E4ZIJRhOLo7bJMF2l9DHfaSEJAUTjVIin7uO6R1PtutYOz2AnFMucYjonvlCEnvvMAxvMBgMBjeBq2N4VXyuUGuW1hdjQZRIWuvo6+e2tHy7OFIn5ePOR4/D8zrD8FLxeCctVaD17OJL9HvTsjrjv6aVxPRuPY80tiT7pWPoLK2K4TEVWsdPVs5Yoys85txJXgAnG8UmwbUPxlgUu4a8bv4lZnJGtJyWbq3De9g9E8nSd8yLjCUV1rvC8x37cF6Wz0h0nYnddELpBcYW+SxzXjh5wiRI0c2DdBw3h3hdUtz/THwxeW3cWHfsqYs3p7Hye/6vIAt1YiP6eaTFBoPBYDAQ3F2T4XJ3d/d1rfXv/91wBv8H+NflcvnCL2fuDE5g5s7gs7Bzh7jqB28wGAwGg38qxqU5GAwGg5vA/OANBoPB4CYwP3iDwWAwuAnMD95gMBgMbgLzgzcYDAaDm8D84A0Gg8HgJjA/eIPBYDC4CcwP3mAwGAxuAvODNxgMBoObwH8A7xx8d9zezGcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYZFlZ5t8vt1qyqrq2rt5Kmm62FhhRRBAFGhWhH5VdgVEGWlwadXRknMFlUIFBccYBBhnRdhnaVlRERQYRaBHbtgUXZJWtWXqj6e7qqq7KqsysqszKPPPHuW/EyS/OjYzIjIiMiPP+nieeG3HuEidunHvveb/vO9+xEAKEEEKIcWdiqysghBBCDAI98IQQQhSBHnhCCCGKQA88IYQQRaAHnhBCiCLQA08IIUQRdPzAM7NnmdlNZnbEzE6b2e1m9hdmdlU/Kyi2DjO7zsyCmX3ZzFraipn9YrU+mNlUUn6bmV23ge97YHWsq5OyVybfEczsXNX2ftfMLtng7/pJM3vOBve90cxu7nDbsbxmzOzJ7j85bWafNrNfMLMdblszs+8zs78xs2Nmtly1pz82s2+pOf5fV8f9Tz2u9wNdveteN/bo+66ojveCHh3vMdX1sMeVb6++52d68T2bwcz2VnX8kJndb2bHzexmM/uuDvf/fjP7oJkdNbOzZnarmV270Wvd09EDz8x+AsA7AHwewA8A+E4Ar6lWf2svKiKGlkUAFwHI3ZxeBOBUpvzZAP77Br7rbgCPB/DuzLonVOu+BcAvI7bBd+cexB3wkwA29MDrlEKumZ9A/E++E8C7APwigGu50swmAfwJgN8DcBviefg2AD8NYDuAvzGz89IDmtlhNM/Pi3pcX7av9AUA17myH+3R991WHe+ve3S8xyCe4z2u/Gz1Pdf36Hs2w4MB/BCAvwHwvQD+PYDbAbzLzH6gg/0PALgBsa08FcD/BPB0ADeb2c5N1y6EsO4LwB0A3lGzbqKTY/TqBWDbIL+v5BfijeDLAN4P4Dq37gkAVqttAoCpPtXhlbnjA/jBqvyrN3DM2wD8wQbrcyOAmzvYbmyvGQBPrs79U1z5W6ry/dXnV1Sfn1tznKcC2OnKfrba593V8pF9PjcBwGu26lx2WdeXVvU9vFV16KCOuwBsz5T/A4BbNnjMZ1a/+zs3W79Oe8f7AdyTWxFCWOV7M7u6ktZPqkw385UZ49czpo5XmdlHzOxkJV8/YGbf6Lah6eQ5ZvbbZnYfgHurdQ81s3dU5qIzZnaHmb3dmdbON7PfNLO7Knn8WTP74U5+cLXvm83szmrfO83s981sW7LNVZV0P21mc9Vvfpg7zo2VpL/KzD5WbftRM3ucmU2Z2S+b2d2V/L/OzGaTfWmC+VEze331WxfN7C/N7IGd/I4ecT2A57oe1osA/D3iw2MN5kyaSbv4RjN7a/Wff8XMfs3MtifbtZg023CyWk4n+3+Dmf2pRZPZaTP7XHV+dyTb3AbgUgDfl5iw0ro+qmpXx5Jj/GzmNz6lar+LZvZvZvZst0lx1wyAf6mWDzazGQA/BeDdIYQ/qzkPN4QQFl3xiwF8ClGF8/OWYGb/aGbvr87lx83sLICXVOteVq0/bmYnzOwfzOypbv8Wk6ZFU+4Xqrb6war93GJmL1mnLi8F8BvVxzuTtnuhZUyaZvYrFs3/V1S/YbG6Ll9YrX9J9b3z1fpL3feZmf2YmX2yaitHLJoW1yhyTwhhPoRwJrPqwwA2apY8Vi3PJfX7pqr931/9ti+a2f9e70BT621Q8c8AXmxmXwLwzhDCLets/weIpow3A3gsgF8AMAvg6mSbSwC8AVFBzAJ4IYCbzOzrQwifdMd7E4D3APgPiKYQIPYAjwP4EQBHq+N9ByozrUU7980AdiCqhFsBPA3Ab5jZthDCm+oqb2b7AHwQ8ab1GgCfAHAIsacxA+CsRT/MuwF8AMDzEXs2r0aU3l8bQrgrOeSDAfwqgF8CMI8o0/9f9ZqqzstXV9scAfByV6WfBfAxAN9f1eOXAdxgZo8IISzX/Y4e8meI/+WzAPxh9ZD6HgD/BcBXdXGc3wfwR4jmxMcj/i/HEc006zFpZkB8wD0cwM8h3hj/LdnmAYjn6TpEU+sjENve5QB403k2gL8C8PHq+wHgPgAws8ciKrgvAHgZYtt8CICvcXV5EIA3AngtYtv7KQBvN7MrQghfqLYp6pqpuKxankA0v+1FbOMdYWaPA/AwAD8TQvi8mX0IsWPyMyGElU6P02MeiXhdvhpRtd9XlV+KaL69HfGe8GwA7zWzbwsh/O06xzyA2Il8XXXMHwbwu2b2mRDCh2r2+XPE8/tyAM9I6nEMwGTNPgbg7QB+E/Ge8xMArjezRwD4JgD/FfG/fiPitfmkZN83IJp234BonvwqxPvXw83syrTTth4WL9wnAfhMF/tMIl7rVyCe/48j3mt5f34PgJsQO94LAB4I4BvWPXCHkvKhiDf9UL2OIt64nuq2u7pa/5uu/L8BWAHw0JrjTyLe+D8H4I1J+ZOr473DbX+wKn9Gmzr/PIAzAB7iyn+7qn+tCQ6xca8A+Lo223wY0T8zlZRdBmAZwOuTshurssuTsmdU9X+/O+afA7g1+fzAartPIzGDAfjmqvwHNivx1/nfrwPw5er99QDeW71/HqJvbw8yJkdE1Xddpl28yh3/L5GYOZLfe3VSxuP712cAPKhN3a1qUy9ENL0ecPVrMWkiXkB3wpnZ3Db8Px+SlB2q2svPlXDNJN/x1KoOewB8N2Jn7qPVNs+vtnlaF+3tzdVvvqT6fE11jKv62MZrTZoA/rGqT1uzOWKHYapqP29Lyq+ojv+CpOyPq7LHJ2U7AcwB+LV1vidr0kTs0ATEjgLLfqUqe55rpwFR8c8m5S+vyi9I2u4qgJe77/m2jfwfiA/aWtN2zT7zybXzQQCHknVPqMqz10a7V0cmzRB7p18H4ErEp/zHEHs07zOzV2R2+RP3+Y8RG8VjWVCZhP7WzI4hStXl6kQ/DK28w30+BuBLAH7FzH7IzB6S2ecqAP8E4FaLpsOpynTzPsQe1sPb/OSnAviXEMJHcystmh0fjdi4GzI7hHAroq36SrfLLSGELyWfP1st3+e2+yyAw1WPKOVPQ9KjCiH8A2Iv//HogspMMZW86nqGOa4H8BQzuxCxV/XOEMLJdfbx+GCUTyKqsk74RsQe3OMQH7gLiCr3Am5gZnvM7H+Y2RcRHfnLiD1XQ1RqtVg0134zgLeGVjOb5/MhhM/zQwjhCKIyf0BSVsI1876qDnOISuJvEa0AXWPRVfACAB8ITevI2xD/x7ZmzUy77tRy1QmfCyG0KBOLLon3mNkRxIfiMoAnIv9feI6HRMlV7e1L6Pxa6Ib3JN9zBFHh3xxCWEi24f2I1pqnIV4zb3Xn9CbE/yNVgm2pzLz/C8BvhRrTdg1PRLwefxgxaO4GM9uV1PcUoir+XusigrPjCLcQwkoI4aYQwitCCE9BNBN9EsAvVhIz5d6az5cAgJk9GtGsNI8YjcOb2cfRNL+k3O3qEgB8O6LKei2AW8zsS2b2I8lmhxD/mGX3enu1/kCbn3sA8YFSxz7EBnF3Zt09iKbQlOPu81Kb8im0mij8+WRZtzbxF2PtufhiF/t+APH3vgzxgthIRNj97vNZANtyG2b41xDCh0MI/xxCeDtiZOBlAP5zss1bEHvBv4bYPr4BwI9V63LtKmUf4vXQ7n8n/ncA8bes+Y4Crpkfq+rwSAC7QghPDyHcXq27s1peis54OuJ/8A6Loe17q/L3AXimuVB8x5WZOveKlmvczC5HDOTaiWj2ezziefgA1m9nQIftpweshBB8FPUS6u9H/P5D1fLLWHtOlxCv13b3zgZm9s2IVqu/QpeRryGEj4YQPhhC+G1Es/ujEAPVEEI4ihjJewzRrPxliz7WZ6x33A33hEIIXzGz30G0/z4E0WdBLkD0r6SfAYA9t+ci9lCfExIfVHUTOJH7usz3fwnAiyo19CgA/xHAm83sthDCexBPxhEAdWN5Ptfm59G/Ucfxqk4XZtZdiHyD3gwX1JR9rMvjvAtr7dxnO90xhLBqZm9FtPsfQQwd3jJCCPea2VFU/rXKr/hMAK8MIbyR25nZv+vwkMcRzTg9Ge+TYwyvmVtCCB+u2fbDVb2eDuC3arZJoYr79erleR6A36nZ91/Rif9mY7ScR8TO1i5EE91RFiYKZNRhkMiTES0pnvsyZWuoOmjvRjQLPz9swgcbQviMmS0gxkKw7MMAnmVm04j//SsA/JmZPTy1vng6HYd3Uc2qK6qlj0Z7nvv8AsSbyT9Vn3cimgEajcnMvhUbkPQh8jE0e/qPrJbvrep3R6UM/Cs3fozcAOCxZvaomu9cQLzIvic1C1qMdPomRD9PL/luS8abVT2nwwDqHNxZQgjH3DnwgQ7r8X8RH5qv2UwD7gVVmzyI5sW3DVEZ+9791ZndzyI66xtUZqWbAbzQXHTkJuqXY1yvGf8dS4hBGd9lZs/NbWNm325mO83sEKI59Z2I4yz96x60MWuGEE75unZazw3CaOU0avCRiIE6/YQd1E23z3W4AU1fYa4d3N5uZzN7OKIy/zSAZ4UQOu5Y1xzv6xGDtFosUiGE5RDCBxF9/VNoXl9ZOlV4/2Zm70eUprciOqm/A9F89CchhDvc9t9hZr+K6sGBGIV3ffLkfS9i2PF1ZvYWRD/Ez6PZm22LmX0NYi/5bYgRdZOIN7ZzqCJ5EKOLng/g783sDYi901nEE/LEEMIz23zFGxAHTb7fzF6DaIY6iKggXlpd+D+P2IP5SzN7M2KP71WI/ozXdfI7umA3gL8ws2sBnI9okvo8ErOimf0ugBeHEHrpv1hD5ZfakI+mBzzOzFYQO2mXIirNFcQINIQQ5szsHwH8lJndjajSX4K8Yvs0gCdazP5wD4CjIYTbEKNO/w7Ah8zsdYgmncsBfG0I4ce7rG9p10yO1yIqybdZHPrxLkTrx2FExfocRDPm9yHei94QQvi7TN1/D8DLzexy5wvfKm5AjJT+AzN7I+LveRVixGU/+XS1/HEz+0PE/65bK8+6hBA+bTHE/7eqB/nfIz5sH4AY3/Cm6iHTgpldjKb159UAHulCEv6VFgoz+yXEJASXhBA4dOafEP3Xn0M0oT4K8bq8DdFlgaoD9ULEDtLtiPfHlyFaFFKrSfbHdRIx81LE8OLbEaO4FgB8FDG6ZybZ7mrEnsGTqsrMIzbwXwewwx3zxxFvBKcRx+88BVEZ3Zhs82TkB7geQszecAtitOD9iDeqp7nt9iFexLdWJ+8I4p/3kx385kOIppi7q33vrL5zW7LNVYgq6zTig+6dAB7mjnMj3EBlNKMRf9CVvxJJxGOy3Y8CeD2imllEfNBe5va9DpWrplcvJFGabbZZU+eq7DbkozQfnNs3c16uzhyfr1UAX0G8eT42c17fg+jQPgLg/yCanwKAJyfbXVG1g8VqXVrXr6uOfaL6Xz8L4Kfb/Z81v3lsr5m676hpH4Z4c/oAotl4GbEj8UeID1Eg3rS/AMBqjvHQ6vte2cv2XR17vSjN99ese2F1Ls8gdoifi3ij/qxrZ7kozS/UfNd7O6jvLyG2f6r9C1EfpXkus/89AH7HlV1V7f8EV/6Sqp0tIl5Tn0L0j1/Upn48Vt3rQldHX/am6ntOJd/5WqyNsn4Eol/5tur8H0GM+H70eufPqgP0BIsDht+CGNb8hXU2F+tgcXD5rQB+KIRQ578QI4yuGSEGh2ZLEEIIUQR64AkhhCiCnpo0hRBCiGFFCk8IIUQR6IEnhBCiCPTAE0IIUQRdDVLeuXNn2Lt37/obtoGDENPBiL7MDVTERvyM3IfH6uQY7bbx6+T7zJ+Dubk5LC4u+uTXPWk7Yrw5ceKE2o7YEHVtx9PVA2/v3r245pprNl6rhMnJZn7kqalYjZmZGQDAxMTEmm1WVmIWq9XV9adgqnsQ5cpZxiWP75e5bUrl7NlmlqAzZ9bO8zg1NYXrr8/nlO5l2xHjybXXXpstV9sR61HXdjwyaQohhCiCvuVdXA+qNqCp6JaXY95fr+wI1ZU3eabrSCemTK/a6pTeescpifQ/0XkSQowSUnhCCCGKYMsUXopXcj7gJKfo1qOd0vCKrk7ZSa20kqo5vj937lxjqXM2WGgNoZUkfe+vG1kyROlI4QkhhCgCPfCEEEIUwVCYNH0wCpe+PDc0gCYdb4rxQSzpMIi6YBW/XjTJnSsGGXHd8vLy0A/bSE1/6zFMv4X1np6eBtAcwrN9+3YAwLZt2xrbcpgP9+Fnwv+QroTcf0oz9dLSEoDmcJSFhYWe/B4htgIpPCGEEEUwFAqPsMfpg1g62adX24k8ucH/fM/e/1YGrXilQ1VDReRVD7B+Rp/cb2YZlRAVEJdURps5D6laY/1ZxuWOHTsAALt27QIA7Ny5s7EP1Z9fkrrfCTR/F5MK+CUV3okTJxr7zM3NdfPzekb6veedd96W1EGMFlJ4QgghimCoFJ4YXnI+PJZR3YQQBqLwUjUzOzsLoKl4uKQSovKjUuISWOvXzUG1RtUDNJXO6dOn1ywXFxfXrOc58fsDrdYG1sPXOf2t/J1c7tmzZ82SSg9ongMqOx6X6pbfnw4nIVTr/vdR2XE9vxcAvvKVrwAAjh07hkFy9OjRxnspPNEJUnhCCCGKQApPdISP7EvfD2qgPlVM2ptnGVURl97HlVNPVEA+itEr1zRhNpXcyZMn1yyp0ugXzPkKvbLzkZesc1pH1p+Kir+dswewnMovPV6dD4+Kjmo0F41aFyFNdu/e3Xh//vnnA2ieG6rCfuF9x0J0ihSeEEKIIpDCEx1BFZT6e3Kqrx9Q8Xg1l9arrk5UAVRgfkqjdB8//pO/NY3m5HGoovjZR4Hm5nv0qewI9/HL9Pg+hZhXjanP0Jfx97Cc54DnJt2XZVRrrCv9kD46Na0L1We/FR4jRNM6CNEJUnhCCCGKQApPdIQf1wY0VQDVx9LSUl/8eDzmqVOn1iyBprpg/bwC85MLp/4s7/fjPl6RpWqNZVRCdVGbqZLktnXZgHh81i1V0X6cn1eoucwnXpX5ffm/cd9UkfnsK3U+vHaTI3cyNddmoMq96KKL+nJ8Mb5I4QkhhCgCPfCEEEIUgUyaoitSkybf0wS3urq6obkL14MmwX6HodO06ZMu5warcxuaC+fn59d87gbuc//996/5DqB1QDuHQfD7/UDxdFvu6we+jzockiFEt0jhCSGEKAIpPNERPmky0AxOoCJZXV0d6amVckMWtoJ0mAcTJPO8M7CF26QBPEKI9kjhCSGEKAIpPNER9BGl4eh1A5uHCT/Yu5sJYIcJ+uO43Az8v0b1XHzkIx8BADz60Y/e4pqIftGvoS2j2eKFEEKILpHCEx2RU28+6fDMzExfojRJbiC4h/X0SZz7Wa9RY1SVHfnEJz4BQApPdM9ot3whhBCiQ6TwREdQFaQ2da+iduzY0VP1wPF99BXmpt7hGDlGMXIfRjOOupoRTTjR7IEDBwCstTqsN5mvGC36lpauL0cVQgghhgwpPNERVFc5X1i/ov44Lo49+VwvnplG0oTLwNrsKGI8YIQq2wOz2wBrJwUWog4pPCGEEEUghSc6goopzWdJxUX/2crKSk9s71SM9N3x+KxD+h187yeJFePD6uoqTp061cgjymmB0jGJUniiE6TwhBBCFIEeeEIIIYpAJk3REZwqh0ugGfpP0+PU1FRPBnjzGDRh0sRJ0+bs7GxjW26zbdu2TX+vGE5WVlYwNzfXmD6JZuthSfYttpaZmZmOA+ak8IQQQhSBFB6awRfDmPx4WOA5SsP9qfY4JGBiYqInQStUeF5V5iZkFePP6uoqFhYWcPToUQDA8ePHAQCHDx/eymqJIaEbq5IUnhBCiCKQwoOU3UahsksVXi/ZsWNHT48nRpNz587h+PHjDWW3b98+AE3fsSgT3m+mp6c7VnlSeEIIIYpACk90RZrey0+9owS+oh8sLS3htttuw8LCAoCmD/fuu+9ubHPZZZcB0DRQJSKFJ4QQQjik8ERXpH46Rk1yDNzk5KR62KLnnD17FrfeemujvdHnnqaRoz9P4zHLIY3alsITQgghEqTwxKZhT6tfkzYKsbq62uIj3r179xbVRgwDG4kKl8ITQghRBHrgCSGEKAKZNMWGoQmTy+XlZZk1RV+YmJhoCUw4duxY4/3ll18+6CqJLYb3mm7m4ZTCE0IIUQTFKLzU4c3pZqRGuofnDmg9f6dPn16zXoheMDExge3btzeuYSq9VOGJcllcXOz4viOFJ4QQogjGXuGxN5iGsCpZ9MZhougU9q6k8ES/mJqaalF4aVvkNa30duVw9uzZxnspPCGEECKhGIW3vLy8xTUZD9JeNXtVLOsmxY8QnWJma9oVrTWnT59ulLG3v3PnzsFWTowUUnhCCCGKYOwVnnxKvYEqLo3MpGpmmRSe6AchBKyurra0rbQtnjhxAoAUnmiPFJ4QQogi0ANPdEUIofE6d+4czp07h4mJCUxMTEjhib6wurqKxcXFxueVlRWsrKxgZmam8Tpx4kRD5QlRhx54QgghikAPPCGEEEUw9kErojdwYG8aBETzZTrYVybN7pmengbQPLdKjLCWEALOnDmDmZkZAM35F0+ePNnYhudQA9D7A8/nMKZl9MNW2iGFJ4QQogik8ERHsEeXKjz2tJeWlrakTqMKe8sMofdqJB3cPz8/P7iKDSlmhunpaZw5cwYAsH37dgBrlfA999wDANi7dy8A4Pzzzx9wLcebYbY6dDPzuRSeEEKIIpDCEx2RU3i+7Ny5c0Nl2x8W6F+iIqYvatu2bWvKc0mRycLCAoDh8p0MCio8nhcmPEh79vfeey8A4ODBgwCA3bt3A2iqQSEAKTwhhBCFIIUnOqIThafpgZpQ1QFNJUcFx/PGz1R4VCzpvizjMo1MLIWpqSkcPHiwoeLYxlLfMX2d3IYK7+KLLwbQnZ9HjBYrKysdWz7UCoQQQhSBFJ5oi/ebpD0pRm6xp720tFSkjylHqnS9z8lHZbZLiky1R5XIzyVNdzU9PY3Dhw/j6NGjAJrnJ/V1cnogKr077rgDQPOc79+/H4B8eqUjhSeEEKIIpPBEW9iLzmUB4Xsuz5w5Ix9eRe48EaoMnluOL+O5y51D/z+UxMzMDC666CJ86lOfApCPVPX+ZC6PHz8OoPkfzM7ONvbhe6pnMf5I4QkhhCgCKTyRJR1bBzT9dKla8apDPrzOoKKj744Kg3651D/nVXSJTE9P4+KLL26MX6S/Lo289Lkeeb7YHks+f6KJFJ4QQogi0ANPCCFEEcikKbLQbORNarlgDJo7lVqsO06fPr1mKfJMTk5i//792LNnDwBgbm4OwNrhHDRp+iEfflqrtH0Ouq3ymlKQzNYhhSeEEKIIpPDEGtjrTVUbkA+Z5zYlDYIWWwcTQ+cCqBjQ4pUeA1t8Wre0rJ+kdaSSZ92YUk4MDik8IYQQRaAuhliD7z374Qm5YQlECXpFPzl8+DAA4P777wewti1yML9XdD759iBUXUpq/eB3c1jKrl27BloXIYUnhBCiEKTwxBp8NBt70Z0ovBLTXonBcf755wNoqrm0Ldb5w/wUTGkUJ/1+/cAPfAeaKlO+u61DCk8IIUQRqKshADR9DVRtfgoWr/TSbTT2TgyCvXv3AgB27NgBoOkLawetDl7ppWX9gN+b+rU5Ka3YOqTwhBBCFIEUngDQOu7OK7pcYmO/Tj480U+YoeSCCy4AANx1112NdT45dG7c3SDhRL1iuJDCE0IIUQR64AkhhCgCmTQFgKZ50ps0aa6kyZMJcNP33EcDz8Ug4PCEe++9t2Wdb4PetDnogediuNAdSgghRBFI4RVMbohBnaLj53QqGz+EYWpqSj1o0Xeo8NLUXJwyiHhllxsmIMpD/74QQogikMIrGKo2oNkDpsKjsqOi4+d2g32VMkkMAqYW279/f6OM7bTOwjDulofc71NCiFak8IQQQhSBuuQF4qf+Scu4pJJbXFxcs0xVoaefyXiF8HBCWKA5ZRAtFFQ8HABO68O4qp6cb5LXMhNm130edSYmJjpW8FJ4QgghikAKr0Doj0vThFHR0RdCRcfPCwsLANaqQp9KrJuelhCbhSnGAODIkSMAmtGaVDFsj/ycTg80TuTUGn2dPAfeiuPVb0oajT3sTE9PS+EJIYQQKVJ4BUI/XBpxWafouE0uOpMKT747sdUcOnQIQLPdUrX4ZUlJnWnB4W/nZz+5c2rpYYLu2dnZNftyn5MnT/a72l0jhSeEEEI4pPAKwqu1+fn5xjq+Zw+Zio/lVIVpT8pPqtlNT0uIXkJ/3t133w2gOUksrQ9slyVlWvE+u06g1YZZlOjz5HnjJLanTp3qWT03iv9vO6Gcf18IIUTR6IEnhBCiCGTSLAiaJzksgWbL9D1NFX5bmjpS8wFNCjRpbtu2TSZNsaU84AEPANBsxxsxe5UMA1i86ZfnsV3iiUHDAJvJyUkFrQghhBApUngFwEAULtn7TRUe11HZcRs/uDwdpMp1UnhiWNi7dy+AphLh4GslNu+OuuCVdALoYaGbQCQpPCGEEEWgbs8Yw94Y1RoHlfshCGkZhyywh0ybPgfspqmZOBi1pFBvMdywLVLZsb0qOcLmSK1Bw0I6YL7TpOC6UwkhhCgCKbwxhr0yKj0fnZkOHvWD0qnwfJRm6gvhe64bl+lGxOjDgedso+OaNLrfDPM1nd6bpPCEEEKIBCm8McQrO6/euD5NCO2VHKOzuGT0ZWo3Zy+anDlzpiWqU4itgGO0xPhCVbe0tNTxfUcKTwghRBFI4Y0JaQ9nPYVHlZZTePTdUdmxF8XPKX5s09LSUse2dCGEGDRSeEIIIYpADzwhhBBFIJPmmJAOMaBZ0i9p9qRJMw05pnmTZQxSoYmS+6YmS2/SXFlZkUlTCDG0SOEJIYQoAim8ESc31Q/LqOQYcMLPuYHiLOO+fqZjDS4XQow6UnhCCCGKQApvRKHiYgLodNoOnxbM+/Jy0PfmfXgkN+0PFaP8dkKIUUAKTwghRBFI4Y0oPk1YmvLLDx73aXfqyoGmz85HZ3Lyigo1AAAUkElEQVR6oDQy0/sGzUxqTwgxtEjhCSGEKAIpvBHDR2Xm/HJUZV7Btfu8ns+Oyi+d7JX+PtbBj8sTQohhQgpPCCFEEahLPiJQjVFN+WjKdtNjdOJX43FSBQe0TqCZHssnllamFSHEMCOFJ4QQogj0wBNCCFEEMmmOCByG4IcUeBNkWsYlzZHebMny3DqaJjsZgC4zphCin6T3qs2kN5TCE0IIUQRSeEOOTwSdm6bH4xUdPzMAhSouVWt1x2M5l+kA923btq05joJWhBD9IFV1fuqybpDCE0IIUQRSeENK3TCDnM+urtxP8ePTg6UDxf33cV8/iJ0+xByTk5NZH58QQvQKKTwhhBBiHaybp6SZ3Qfg9v5VR4wBl4YQzveFajuiA9R2xEbJth1PVw88IYQQYlSRSVMIIUQR6IEnhBCiCPTAE0IIUQR64AkhhCiCrsbh7dy5M+zdu7elnNlAAGBubm7NOp/lw39Oy3wOSI3pGj1OnDiBxcXFlj9ucnIyTE9PNzImcMlsLQCwZ88ebjuIqooho67t1N13RHt8QKLPmpTbrm6b9Y7dDbn7us/l2+0zoK7teLp64O3duxfXXHNNS/nNN9/ceH/TTTcBAGZmZgAA+/btAwAcOnSocYx0CTRvdFzu2LEDALB9+/ZuqieGgGuvvTZbPjU1hUsuuQTHjh0D0EyG/ZjHPKaxzZVXXgmgOUBelEVd26m774juYNIIpgfk3JppMgmfnJ4dUz7gfCKKNGGFT17hP/uHGdDs3PKan52dBdDsCPNZsB51bccjk6YQQogi6ElqsZMnTzbes9dAheenovGJjXNlMmWOHyEELC0ttSTBZo8OkLITop/QjUTVlnMd1Jk7vVrzyi/dZj2zaLuk9bnj9hIpPCGEEEXQE4W3uLjYUuYnEK1Teuk6v60YH0IIWF5ebvERyE8rxGDhvbdukmeg9R5cp7jSaXu836/ue9Nj+zr4xNDtJrreCHqyCCGEKAI98IQQQhTBpkyalK65OdK8CbPdODwfriqT5vhBk6Z3bOu/FmKw5ObD9PCe7u/xvH459ppBaOk2fltuw31Sd1ZdHfp1X9DdRgghRBFsSuFxCEIOPqG9sssFrXhnpqYsGj9CCDh37lyjx8ghCLt27drKagkhMngVmGZEAoDdu3cDWGvdo5KrG7zO50WamYv7+Ht+v6x9UnhCCCGKYFMKj0/fNLScYaXsGbAn3y5HWi5NjRg/VlZWWnpyUnhCjC6pD66dTzAlHcZ2/PhxAK0+w349C6TwhBBCFEFPBp6ndlamFPM2YJZT8eVSi+UiOMV4wbbCdqCB50KUxc6dO1vKqPT6beWTwhNCCFEEm5JSVG1cAs1oHvbc/Ta5KE329n0kkBgvzKyh3um709x3QpSLV3sLCwsA+jeBgBSeEEKIItiUwmPEHSfzBJrjMzjtCz+zR8+JXznZK9D5JH9itDGzRs+Nqj7N1CCEGD8YeemnBgNax2D7KYx6jRSeEEKIItADTwghRBFsyqR53333AQBOnTrVKKMpkyZLLlnuZ0IXZWBmmJycbJgs2C4UqCTEeOPnusu5MWjm9MPa2s3ZtxH01BFCCFEEm1J48/PzANY6GBmkwiWHJ/jUYqnjMk0mmtuGS5+uTIwOZoaZmZnGf3jw4EEA+UGoQojxgfdzWnNyVh0/3VAuBWVP6tLTowkhhBBDyqYUnh9knr5nT95PBOsnEASadlruw2EK3EfTBY0+ZoZt27Y1/v8HPehBW1wjIcSw4NWfkkcLIYQQm2BTCs/76YBWPxttsBycThttbmAhn+5c59OQ9SvdjOg/jNKkWj98+PAW10gIMaz0K4pfCk8IIUQRbErhccr2NNKOyo7jKajK+MT2E/0BTVXoozXpy6OCVHTm6MLE0RdeeCEAJY0Wmye1+MjPLzpBCk8IIUQRbErhUYGliaCp4PzYC+IjMoGmcmOvnwmmlYVjfGCUJsffCbFZpOpEt0jhCSGEKIJNKbw77rgDwNrpfejXo2rj0o+rSCM7uT/zbYrxY3JyErt379Z/LPoCLUq8rzAavJPpp2hJ8jEEYvyQwhNCCFEEeuAJIYQogp6kFkvNVJwqiGZKmjQ5DIHBKmlAisxc48/ExARmZ2cbAUlCbJZ0WIIfwsT7jDdpcrgU0AywkymzHKTwhBBCFMGmFB4TAN95552NMio5hgyzh8XeFEkHHvtUYmL84PRA55133lZXRYwJ6bAEpi6k6qsbssCgOjEa8H9Ngxw9uTSVdUjhCSGEKIJNKTyyuLjY8n7Xrl0AWntc/Jw+lU+ePAmg6e9jqrJ+JRAVg2diYgLbt2/XhK+iL/B+Qn9cN71+Mbzwf0x9sZtJMaknihBCiCLoicJL7au0uaaqD2hGTdFPl7OlU9Hxaa7UYuPD1NQUDhw4sNXVEGNOJwPNxehAy2AaSesVXjeWQCk8IYQQRdAThbewsNB478fdMaUYlR2VXjqGxq/TNEDjx/T0NC666KKtroYQYgTwSj39zPd+kvFOkMITQghRBD2P0iR86lLh0c7qJ4ZN11HpDSo600eOiv6icZZCiE7wkw2kn/26bpDCE0IIUQR64AkhhCiCnpg09+/f33j/xS9+saUMaJoPadZKA1NowkxnQe8nHDrB7xvU9wohhKiHzwk+Exj8mKam3IxrRApPCCFEEfRE2uSmfGHoqA9S8QEqQOug9H6QJpPleyk7IYQYHnzS71yASl1i8E6QwhNCCFEEPZE4qT+Ois5PE8QntR+mAAwmXD3tFShlmRg30qE1m+kBC7GV8LnAVGI5axyfLRtJUCKFJ4QQogh6ovA4FRDQVE9+8LiPtkmjbnLpxnqNphoS40zavjU1jug13lLHz6k1wcdp+Pt5LtGHP65/FtBimD4vNvOc0FNACCFEEfRE4aVP3H379gFoPpH5tPf21rRn4BNMCyG6I1V1vI6k9ESv4D2ebSvnJ/YRlXUKL6cKfcQ8v4fHzKWi3AhSeEIIIYqgJwpvfn6+8Z42V2Yz8dGZvqfg3wshNgeVne+NbybprhgfaH3rZBxyXYL9nB9tvft4N8qMx/d+QWBz08dJ4QkhhCgCPfCEEEIUQU9MmrOzs433d911F4BWUybNLEw5RpMn0JSoGjogRO/gNafrSqTQlJlLAuKhSXHQc4f6wKvNmDFTdCUIIYQogp4PSzhw4MCadT7FWA71RNfH97SE6BQFq4gc7YYJeDoZRL4R6lSmn06uV4n+9YQRQghRBD2fH+e8884D0PTVLS4uAmjtCUjNdYeUnegUH8rNdH8MR19aWtqaivUI/i4p143B88Z2kKqn3PRtQGtqyFz6sG6GMPjvqyvv9XNCTx0hhBBF0HOFx2gaphjjEzqNygTW9s7UUxt/VlZWMDc317AAiP7he+ne/8He+qimHpO1Y2P4xP1UeKmKqlNUPokBj7GRAei5ybh5nE4iR9sdbz2k8IQQQhRBzxUe2b59+5ol04/l/AfqsY0/q6urOHXqlBTeAPDjWnPpmUaZnA9P95D1oSqjtW0j6ozWAi5zVoLNpIrcSBvtJlJ0PK4AIYQQYh36pvA86SSxoneMyvi81dVVnD59euAZG0ohzUThs1L4cz0u0welvkn+FsUDtOKvOT9JNz9vhFFL/C+FJ4QQoggGpvBEb6kbJzOsrK6uNsZkio3j/XFUOTnfR132CvpyRoWJiQnMzMw0/P9UcamS5W/lbxv262GQeGVXMlJ4QgghikAPPCGEEEUgk2aP8KamfoVM05TJmeVzpht+9zAFsoQQsLy8rKCVTVIXtp0bzOvbBs19oxbYYWaN9g60JhZOoYmX5k+mOBwmfKo3mV8HhxSeEEKIIpDC6xF1veoUn+qJPW2W+/RrOTiQ3x8z7bWzV+sn391qzAxnz54FAOzYsWOLazOa+P+Sn1MF5BU+P/PcjxohBKysrDSUEdt3aiXwQzG8Eh4mpcdrlkv+L8NynY4zUnhCCCGKQApvAKwXQs7PO3fubCmjnd+HlPtj5Xw7Pvx8GHx7x48fByCF12vSlH2jPv1PHd5nl3726dT89cBtU6W3VYqKw3NorRmXRACjgBSeEEKIIpDCGyB10XG5Xqnf1is9v8xN4sgle46dREb2U/2ZGU6dOtW344vxxMwwMTHR0q7T9kyVxDL6NL11JRftSR/aoJVxuyTOoj9I4QkhhCgCKbwBwN5nne+OpDb8OiVH5UdfRM7uzx4jl+zd+kkbc2O3+oWZYXp6ulH/jUz0uFXkImB5Tkctee4owrZDdZazlHiF59Ug/69UTdVZPgat9IZpvOy4M/x3GyGEEKIHSOH1CK/icv4F9uS4jR+7l/b01htDV6f4gGbEms9q4rPApHXsd/YN+mH4e+bm5gAA+/bt6+v3bgavroGmD0h+l60jN6Gtv+58FHOuzfvIZy43ovD89yvicjiRwhNCCFEEeuAJIYQoApk0e4Q3S6apjnIO89w+OXMLqTM55uY447bpUIX0+Dmz6yBMMKlJc2FhAcBwmzR5fhSYsrWEEBrpxYDmgO30mmCb5n/lU43lUotxH27L4Qm5BPAe78Jg2jPWkdfjMKU0E1J4QgghCkEKr8fkFJfvddYprVRlcVs60DlItS6EORfw4lOL5RJNDwpO8cLfMT8/D2BtQmPNyCxyMOCJ7blumA/QvG7abZMeF2i1wNRdJ7lANP99CloZbqTwhBBCFIEUXo/JTRNEO76fuNL7GXIqzQ/Q9v6+XEJoXwefYowMshc6MTGBmZmZhqJjb/306dONbaTwRA5aB3gdeX8d0DrVlrem8HPO1+3VWfq9QH54Ci0vdapTvrvhRApPCCFEEUjhDYC6qX6odtqlTPKRZH5Aem4AdJ0K3Mo0XhMTE9i5c2fjN7MHnCaT3rNnT2NbIcjk5CR27drV8Pum5YTXEMtoLaiLxEzf+zRx3SQV8JYYMdzoziKEEKIIpPAGQNqrBFrt++3s/ZwU1keOsRfqIzGBVoXX6Zi+fkI/DH/PyZMnATQnwwSafhGOsxKCTE5ONtqOH48HtEY8U9F55ZeqQj9m1kdcjutEuiUjhSeEEKIIpPCGnFQBpezYsQNAszeaU3pkWBIdT0xMtPS00x43fTRSeE18dK5PDO4jDYHWqOBRJ4SAs2fPtkRCpr5e77PjZ6rC9FiE545jQ+nL4zlOI4jFeCCFJ4QQogik8EYU9j6p9NIxdd6fUefLGyRmhqmpqZaed+q/5JRBBw8eHHwFh4BcjlPis4KUFBW4srKC+fl57N69G0DrGLu0jNYBti9eH7nxsXxPKwrbJq8tKkplTRkfpPCEEEIUgR54QgghikAmzRHFT1mTfvYmGJrB/PCIQWJmmJ6ebtSNy9Q0RxMVTZvnnXfegGu5teRMzt50WRecNM5mtxAClpaWWgJ30mEDu3btAtBqyuQyl4KP52x2dhZA07TJIBZ+Hpdz65NW1CWZT9fxvuKDf0YVKTwhhBBFIIU3ovgw7BSfUqzdkIVBwgTSQLMXndafSrTUxLu5JMWeEgdDhxCwvLzcEoSVa9dUJGxLbG+5BOpsZ1QvVHoMWmEAzFZaRnoJf6+3suQSarMN8j6Tm6R6FJHCE0IIUQRSeCMGe6ykXaLlXCj2VuOnb0l9VOyVC5ESQljThtmu07bvrwOfJoxKJW1vVG7081HpMYn5wsICgGZChGG6jjZC3fWVqjavonluRl3ZESk8IYQQRaAu9YjgozJ9aqkcw9gj9ZF2ac/c+x7pc/AT5YqyMDOYWcPvS99amoKu7nrwaeqoWAC0TEZMhcdyH/HppycaNXxqtty0YeOi5OqQwhNCCFEEUngjhu+B5SL6cmPchgU/IWf6e7iOyk4KT6RQeXGZtgsfkcy24xNNp34sqj9GvjJKk0rSj88bdYVHeM15q1EJSOEJIYQoAim8ISBnN6dy8+OKfDRabnwMe7nDPD1Mu2mNuG6Y6y8GRwihMRYPaCquVK1RldHvRsVH9cby3JRCPhsL9/FRmtweGJ+xeaUhhSeEEKII9MATQghRBDJpDgCaUWiq8/PTtQsu8aHE3oTJZZpyatRNgSU600V7VldXG23cm/mBZgAKTZu5tFnA2mvDz47ObX0ias7DR1MqABw/fhxAuWnwRhUpPCGEEEUghddjvJpL3/vgFCq7doM9/b5+Hz9Ie5SpGxgryoapxXzbT68bqjFeB0wATdXGZbtUfGx/VIucnip3jfE4p06dWvN9arPDjRSeEEKIIpDC6zE51eYHv9b54XKTobY7LjD608X4ZNhC1MHrhm0+lyaMSotDCbitH3IAtKo9+gTp02MS6Rx+mJBXfGI4kcITQghRBFJ4PSbnw/O9QG/n91GbKT6S009kOYwJoruhnf+ynb9FlItXekAzOnNubg5AU6Wx3KcaA1qjgana/OSn9OWl2/tr1rdjKb3hRHcUIYQQRSCF1yN8bzGnXKjSchNYdgp7qooGE6WTpvdiZKX35XHsHNOEMZozZT1/OZNIp/5mP7my98N7ZSmGAyk8IYQQRSCFt0l875CqrV1CaMLeoF/m9h8Xn50QvSK9XqioOGUQP1Ph0aeW7sMoT+9b96qNvr3UikO/nt/WZ3i5//77G/vo2t16pPCEEEIUgR54QgghikAmzU2yGZMmP+fmr/NzwskcIsRa0uuF1weHKnDJIBaaNnPzL9YNF2KQSu5aZpDM/v3719TFux7SY544cWLNOjF4pPCEEEIUgRTeJmHvzw9LSHt266k1P1whfT/qU/0IMQio3PwwAAavMPAkvfZ47VLJeeuMV37pNe2nFmIaMr9tTs1J6W0dUnhCCCGKQAqvR/jeWqr46hRdTtkRKTshOscnZvfJorlM/XF+sLj32fGYfuLZdB9e2xwOwUHqVJztJmbmJLJKIjE4pPCEEEIUgXWjJMzsPgC39686Ygy4NIRwvi9U2xEdoLYjNkq27Xi6euAJIYQQo4pMmkIIIYpADzwhhBBFoAeeEEKIItADTwghRBHogSeEEKII9MATQghRBHrgCSGEKAI98IQQQhSBHnhCCCGK4P8D0zI8wt5uyekAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Zddd3/nd79VcKpWkQlUqSZbkKWCbtptuSAg0MbAMMW7GrCziACEGuzGBJCQdd0IcBgNmDIOBGENjghtinMU8tzGBmCEOgTSDbcA2llSlkqoklUpVUqkGVdV7p/8493vP733Ob593b1m2pLz9Xeut++655+x57/Obf6XrOjU0NDQ0NPyPjpUnuwENDQ0NDQ0fCbQXXkNDQ0PDlkB74TU0NDQ0bAm0F15DQ0NDw5ZAe+E1NDQ0NGwJtBdeQ0NDQ8OWwFP6hVdKeUUppZv9/bXk9xeH318Srr+llHLkKus8Ukp5S/j+qaEO/91fSvn1Uspfv8o6Pr+U8n9e5bOvm7Vh2yb33YE2Pz5r92+VUv5ZKWVf8syGvi/YnleUUr68cr0rpdyxTHlPRczW071PdjuWQZj/VzzZbckwG1Puq+zvU5+g+v5jKeV9T0RZs/JeU0r53OT6d5RSLj5R9XwoKKW8tJTyU6WUu0opF0opHyyl/GAp5cACzz5/du97SymPlVKOl1J+oZTygo9E2z9cmDw0n0I4K+kfSPp6XP+Hs994eH+LpO+/yrq+QNKjyfV/KumPJBVJt0r6V5L+UynlRV3X3b1kHZ8v6SWSvvcq27gMvl3SL6uf64OS/pakb5b0NaWUv9113QfCvbW+T+EVs7L/Pa7/mqS/KenEVbS54UPHCfXjf+eT3ZAKvkXSD4fvr5L0Skn/m6S1cP0vnqD6vk7S3ieoLEl6jaRfVb+3It4o6eefwHo+FHyVeqbmmyQdkfQxs/8/s5TyP3ddd2Hi2Zepn4sfk/Snkg6oP/P+sJTyiV3XvefD2fAPF54uL7yfl/QlpZRv6Gae8qWU3ZL+rqSfU3/oztF13VVv8q7r/qTy0192XfcH/lJK+RNJfyXppZLedLX1fQRwV2y3pJ8vpbxR0rsk/cxs4XfSZN+XRtd1JyWdfKLKeyJRSlmVVLquu/Jkt2VRlFK2S7rSLRgpouu6xyX9waY3PkmY7dH5Pi2lvHT2739bZF5KKTtnfVy0vg8u38rl0XXdMUnHPhJ1LYBXzvah8TullLsl/YZ64vanJp59S9d13x0vlFJ+W9JRSf9E0lc80Y39SOApLdIM+ElJt6unOIwvUN/+n+PNFGkG8c6rSynfXEo5UUo5U0r5lVLKrXh2UbGeOaHt4dkbSyk/Ukr5QCnlfCnl2EykcEtsm3rO9JYgtjmCMn5o9uzjs8+fLKXsRP3PLKX82kzccLSU8g2llIXms+u6v5L0ekkvlPTpU30vpTxzVv/9s/bcVUr5/tlv75T0YkmfHPryztlvI5FmKWV7KeX1s3ouzT5fPzvMfc8yc/XyUspvl1JOzsbhT0op/5D9nZX3raWUr51t+EuSPmHWhq9J7n/dbP6uX2Q8w3NfUUr5s1LKxVLKQ6WUHyul3IB7/nEp5b+WUh6e9esPSin/O+7xGHxVKeW7SinHJT0u6bowrp9YSnlrKeXRmbjpB0opu5IyXhGuvaWUcm8p5eNKKb836+NflVK+MunLS2bjebH0orBXcV99pFB60VxXSvmcWRtOqT94VUr5mNk4HCm92O7O0ovirkUZG0Sas+e6UsqXlVK+fba+T5dSfrGUcniT9twv6ZCkV4Z1/8Oz3zaINEspu2a/f/1s/R0rpZwrpfxSKeWGUsrhUsrPz+bxaCnlnyf1PWfW/odm8/H/cc1kwMvO+KPZ5y3Jb/HZh5JrD0u6i8+WXrz7vtn4P1xK+cNSymdv1r4nA08XDu+opN9VL9b8vdm1L5X0C5IeW6Kcf62es/ly9eK975H0HyR96gLPrpReb2aR5rdJOi/pV8I9N0i6OKvnpKSbJf0LSf+llPIxXdddVC/KuVHSJ0iyDuBxSZodsO+alfN6Se+etfPzJO3wfTP8gqQfl/R9kj5Hvaji2OzaIvh1SW+Q9MmSfiu7oZTyTEl/OOvnN6jnaG+T9JmzW75K/fitSnr17NqUSPT/kfSF6sfu9yV9kqR/I+lZkr4I9y4yV8+S9LOSvkPSunpx7ZtLKbu7rvthbcQr1G/W10g6N/v/F9VTqnPxd+m5v1dK+umu605P9GUDSinfoX6uf0DS/6X+UHi9pI8tpXxS13UW090h6c3qRUzb1M/dr5ZSPqvrurej2H+j/oD6CvVjHHVDPynpbZL+jnrR5esknZb0jZs09Vr1lP0b1Iu2v0zSm0op7++67j/P+vJ89SLpP5T0cvVr7+sl7Vc/zk8Wflj9fvv7kvxyv0X9XP60pDOSnqN+3P4nLbavv1HS76hfH7dI+m5Jb5H0tyeeeZmk31S/hr99du2BTep5laQ/Ub9PblW/b98i6Sb1EqwfUr8HvreU8mdd1/22JJVSniXpv6nf2/9U0ilJXyLpl0spL+u67jcW6GPEi2eff7nkcyqlHFIvFv3NcO2V6vfz6yT9V0l7JL1I/Rn21EPXdU/ZP/WLsFO/iL9c/YbeJemwpCuSPkP9ou4kvSQ89xZJR8L3O2b3vBPlv2Z2/eZw7Yh6dt7fXT7/zkh62SbtX5X0jNn9X4D23Zvc/83q9RcfN1Hm62blfRmuv0fSO5I+v6pSzs7Z72+a6PtPqCcobp5ozzsl/f7E3N0x+/6xs++vw31fN7v+wmXnCr+vqH+B/KikP8NvnaTjknbjuuf2U8K1z51d+8TN5gtjvSbpG3D9k2dlff4mbX6HpF9K5u6P1Ytes3H9Jlz/VUkfSMp4BfrRSfo0rINTkv7vcO2n1BNse8K1w+pfuEdq4/Ch/IV1vS357aWz3962QDnb1OvHO0nPC9f/o6T3he8fM7vnNyrr8YZN6rlf0puT698h6WL4vmtW3nskrYTrPzS7/ppwbYf6My7uybfO1u5+1PO7kv5gyTG+Tr0Y+U9jW5Z4/ufUnwe3h2tvlvSuD8ea+HD8PV1EmpL0M+o35+dI+mL1Cy7lTCbw6/huxettCzz71eq5sk9QT+G9Xb0O7MXxplLKP5qJtR5T/1K+Z/bTRy9Qx2dK+qNuMV3ar+H7e7VYP4wy+5zSCX2mpF/tuu74EuXW8Ldmn/8B1/39xbi+6VyVUp5bSnlbKeU+SZdnf69SPtZv76Ck77runeqNIl4dLr9a0ru7jXrPzfAZ6l9eby2lbPOfesr8rIa+q5Tyv5ZSfrWU8oD69XF59nzW5l/sZqdKAs7/e7TY/J/vZpycNNf1fQDPfqKkX++67ny474R6jnsSpZTVOAZlQTH7gviFpL5dM3Hh+2eixMsaOJBF9lw2jtJye2kRvKPrusgdW7w659C6rrsk6W71RLLxUvVc7TmsrXeoF8vv0gIopexQzwUfkPT30ZZFnv8m9dKEV3dddzT89EeS/kYp5ftKKZ9eetuKpyyeNi+8ruvOqhdB/QP14sy3Ljtpkh7Gd4sIF1k0H+i67r/P/v5f9WKVuyR9l28opfwT9ZTbf1K/OP66+sNj0ToOSFrU/D3ry0KLfwZvqikrymXasxks4mB99+N3Y3KuSinXqD/YXiTpayV9inpi5N+rJ4yIWj/fJOnvllIOlFJuV3/AUBy6GQ7OPj+o4cXrv33qx1GllGeoJ9JuUK/4/6RZm9+ufO6m5iYbn6zfRCam5do5LOnB5L7NxHZS37/Y/29Y4JlFkY3H96jnyt4i6bPU77mXz35bZD98KGfCMuC4X5q47jW+qn6tfIXG6+pb1J/fm+qZZ+X8lHobiM/pum4pcWYp5Z+pn8fXdF33Vvz8o+pFrZ+i/tx7uJTyMwX69qcKni46POMn1FNkK+pfOE8auq7rSil/qZ7jNF4u6be6rvsXvjDTgy2Kh7SJMvkJhJXevz9xzxPZHh8sN2mjqfxN+H1R/E31hkyf0nXdvA+l7p9Y45R+Qr0e5hXqD4/z6sVIy+DU7PMzlb9Q/PtL1evBvrDrujkhUUrZUyn3ycrddULDSzzi0ALPvlob3YSeCOmAkY3H35P0o13XWZemUspHPYF1Pmnoum6tlPKI+jPv+yq3jYxLIkopRT0R+LmSPq/rut+buj95/lWzur+167rvSdq4rt4V442l9+97qXoi5K0aS22edDzdXni/qZlyuuu6P38yGzIT1bxAG03v92hstPFlyeOPS8pY/3dI+rrS+/b92RPS0ASllOeqp4r/RL0OroZ3SPo7pZTDM5FWhsc19oPM8Luzz5dL+tZw/Ytnn1PtyOCXxGVfmBn9fN4yhXRd92gp5a3qD+pr1OuJlvVF/E31xhy3dV33mxP3ZW3+a+p1fU8lx/Y/kPSyUsoeizVnloufrE38Kruue/9HoH2S5of5boXxnCHbc080anv4icbb1Usx3tMt4YYR8O/U77EvmkmmFkYp5eWSfkTSD3Zd93Wb3d913Sn1Yv1PVk+IPOXwtHrhdb2l25PF2T1vppeTeivLL5X0fEn/Mtzzdkn/qpTyWvUWbp+u3leQ+AtJN5RS/pGk/65eyf0e9ZTUF6l3aH+9en3CR6k/xL9yJtZdFs8qpXyiegOaG9VTXa9UTxl+4YSOSOot2F4m6V2llG9TL7K7RdJLu677ktCXryql/D31nNvZ7NDruu69pZS3SXrdjAt7l3ou7evVv2SWdWR9l3ri4o2llG9U71T8dbN+7V+yrB/SoMeriTN3l1Kyufxg13V/Wkr5Tkn/rpTy0eqt/i6qFxt/hnrjhv+sXuRzRdJPlFK+R73o8JvU63mfSuqF16tft79RSvlu9aLSr1cv0nwyrTQ3YCZleYekV5Xe5eCI+oP2f/kIVP8Xkj6tlPIy9eLfB7uuu2eTZ64Gr1WvC35nKeWH1K+V69W7FN3cdd3IpcSY7YuvUr+m75mdA8YD3SxgRuldns5J+pGu6756du0l6qUffyTpbXj2ggny0rsxnVRPJJ1Ubwz0cgXd5FMJT6sX3pOMHwj/n5b0fvVU09vC9W9Wbwn1z9XL4X9HvXnzXSjrzep1e982u/+oemvGMzPq6PXq9VIH1B8yv61B5r8s/vXs7/Ks3X+uXh7/Y5u9QLuuOzJb6K9XL/a7RtJ9kn4p3Pad6o0D3jz7/XdUNwd/hfqx+HL1L6fjs+e/adlOdV13spTyBerFJz87K+v71es8NjPNZ1nvLqV8QNKjXdf9ceW2G9QbThFvlPSPu6577UzE/dWzv069KflvqXfnUNd1f15K+WL16+SX1RMIX6teDPSpy7T5w4mu6/5i5uf1b9VLVO5TP08vVW/9+VTCV6rnYr5T/cv4V9QTo//lw1zvv1T/IvlZ9Zzej8za8oSi67q7Sikfr96K9TvVE8APqSeGN3NB+qzZ51cmbYvtLeoJ4tXw+0vU+xj/DY2Nld6v/sUm9SqRL1W/t/ep34c/pqvY0x8JlGkCv6Hhf3zMuLK/lPR/dF33Y092e56KmBkJfVDSr3Vd98onuz0NDVeD9sJr2LKYWZI9Rz01+hxJz6HrwlZFKeUH1VP2x9UHUPgaSR8n6RO6rnv3k9m2hoarRRNpNmxlvEq9ePcD6sXT7WU3YJd6Edoh9eL0P1Qf3KG97BqetmgcXkNDQ0PDlsBTyTKsoaGhoaHhw4b2wmtoaGho2BJoL7yGhoaGhi2BpYxWdu3a1e3du9dRsrVjxw5J0srK8N7cti0vsg+KkGPqt+z3TO+4yD018F5/z9rla5uVH3/nvZv1NytnfX19sq1T9W12PWtTbQyytq+urs4/H374YT322GOjm/bv398dOnRIV670uT0vXerdCt2vrH1eVy6f16f6scwY1+q/mnuy+aiNIe+dWlv87Yns3zJ7JauX/fCcrq31GZE857EenxPbt/epEKfWzr59+7oDBw7M593l+VOSLl++vKFOtmlqXq7GjmGzZxeZp6uZwxo8NrFMlj+1b4jN2pb1u9bnuMc3e5bfszJ9Hvja6uqqHn30UV24cGHTAV3qhbd792592qd92vz7bbf1AcWvv36IX3rttdduaIxfiu40Oy9Je/bs2fCMETskDYs5vlS90D0wvtffvSli2dw4vNf1TB3utUPLZbtd8X+XG18Q8TMuSG5cvyAuXuxTovFQ8WfWD/ZvkUOZ85S9fDwPLufw4cP6vu/LQ/4dPHhQb3jDG3TfffdJko4d65NCnz07+L57rRjXXHONJGn//j5wig9Hf8Zn2L7aho199jPuK7/HMTV4jd/9bJx/voS5RjjWcYzZJrffY5AddKyX9XD9xz7wnkVetH7m/Pk+ucKFC72x6yOPPCJJOnWqDyXqtStJe/fulSQ94xl9DPNDhw7pu75rHod9A2644Qa99rWvnZ8Tjz3WBzy6554hsMmJEyc21OF7SFhlL13f4z7zRc2xjuPAMeY4TR3ULMv1xPngHjPcNrdp586dG+qI/3PfuEzXE/cd11ftLMxeWh4D9v3xx/uIaNm+8jXPgdvmNeTrsV/XXXfdhr7v27dPP/dzozzgKZpIs6GhoaFhS2ApDq/rOl26dGlEIUSOq0ZFGlMUKakZUpeZuJQUMKmIjNLivbXPjCvMqH5pzFlOiX5chsvk9awN5A78uym7SD1PUYzxWVNPsf3kPjhfGYdunD17tjo+Xdfp4sWLcy7g0Uf7+Mym/mIbapSw2xLXga+ZSiWXaGTt5vjzuxH7RI6aVC25eGksZeD8sP4IinN5r3+f2htuI7kCw9R01n7uyci5LopsXL1ez507t9DzXucRsS2eX3Ktvsf9ievAbeCapQSEZUXUJD4ZahIr7rE45xQTR+lGVnbsn++ttS1bbzw3PZ618y2WyXU+9Z4wXK7PInKYPh9iPfHcknppwaJi6cbhNTQ0NDRsCSzN4V25cmWSgyCltXt3n0GD1ER825MqJxXjsjLOK7ZNGlMiU7JmUv01/UV2Lyl6IpP3k2JkW+Mz5Iw5BqT8sjHxuNZ0FLFPno9aP309zlum36npztbX13Xx4sW5XsdcRZwfckuE18WuXUNuTv/vdUauqcYpZ/eSE8n0zqY43VZzCTWDjQhy6cYiFDDXpD/N+WScbU0nybZG7slrxdc4JubQY/9q0oApAyLXYx3uhQsXqtKDUop27tw5GrcoHeDeoi4142a8Bjfj7LkXY/lGzc4gzim59dr+nzJa4ielX5lenucNubbYF9ob1Li2TFpAfRvHKJN+kFtjfe5PnGuvda/RZYx/GofX0NDQ0LAl0F54DQ0NDQ1bAksHj+66bqRcjWxtTQFPVtwiKGkseqMIgaLGKE5hW2ruApHVJ2tv1NwV+H9WRk1sGf9nW9xfioj5fPadYt9M1EizZF+ngjiWT8OQKd8njvna2lpVeWyRZjSuic/GNlBE4bZ4zdhdQepNkqXBzD1bk7XrFodS1GKxDk3NpUGkR2OLzMS/Boq2DM5TvMbfvGdsqh/3E/tOUSPNxKMxBkVMhvvl8Y6GLhZLem49RjUDm1iP3QcuXLhQXTsrKyvas2fPaL/EtVgT+VO8FsVsNVcpr7eaCDBe82fNuCf2yevNn3QTyM5Onn21McoMvbxGsvMsIo4jxd+ul2czz7Ssz+4nx8SuaxE8Nxfxp40qgkXFmo3Da2hoaGjYEliawyuljCiFLFpGTWFuSjSj9kw1mgIlVUsz13iP63X5pm5MbWam7KToSV3EemrK4ZohQGbC7LZa2UqqNI4JjUTcH5oFU4kc/6czJ6neKWU8zdL9GTk099H9unjxYtXwYH19XefPn580DCLn47k0RWiHU39KA8dhTsflmrqk8UXmalJTnHsdxnXAeXB/PC5+JjNaqhl1cN1lBl3un+tjvyPX6+dZHjk81xvnlMYKNTP/WB/HIDNIivXHsYjGP7W1Yw6PbgSZBIZr3OPDOZXGHAhN4im1iXNac7vifoxjy/3IZzIsGlnHYxINkMhBcu9lEgX/xnVcc6HK1irXF8/OuJ9q0V+4V6JRlsfRUp1lIsg0Dq+hoaGhYUvgqhLA1hynpbq5NrmqqAOgPoR6EL7BM9NbciSm3jL9AdvgZ8wNkqqJ95CKqTnLZ+bI1LvV4mNKQzgtcsSulxRf5CjdD1K1bjtN2uP/vrfmcBp1RVnYthpKKVpZWRlxG9m8mHI7cOCApD60VPyMOgBT8OTkPP/U7WU6HJqUs18Zt8Y59XrPnqmFm6o5oE+F76IbgvsZ15vv8W+cd7fVaya6eZCTq3GukbPxGHvdUa945swZSRs5aXLIkfsnzOGdPn16Q9uyMGEMU0juM65fOj1zX0zZKpDbrLkLTUlECOrNOQaxPkpDMjsA94NO636WOuzYRkq9LFGo6dpi+ZwfcsFxvXldkSvkWMX17fmqjeMUGofX0NDQ0LAlcFUcHt/gGXfht6+pC1PlpjbjM5T1UtdgqiyT55paqFnn+fdIXZoKJJXiZ02RRqoiUiWxfzUH9Eit1vQ+7pcpoMi5mMMzZeUy7LjNsYj1mRI2B+v+kErPqEHrZmw9Ryu0WE/GzW5mVUUqNraBnJ3Hw9fJxUUwxJi/07k4tj/TYUmD1aElD3FuGSCZYbv8exYAmuuNFKrXR2wPOSpa+GXrj9Qy9yQt7uKcUf9LaQ45fv4vDfNE7joLD+V7Ll26VLUidEAD6rqihII6pVqb4rxw3jNuOSKzaub8T1kxMiAyzzueZVk5tTOLztjScM5R6uXrPJekYe14/1P/5v1DCVccC+9bSj88NrGN/I1rM+Pi/Hymg9wMjcNraGhoaNgSWIrDsyzdlC/f9hF+69qizpyDrzt4sDS85RkeyeVPhR4zJWLULDwz6tK/kUpjHyIYliyj5KSNlI9/cz/MtfnT7Yn6BfoaUdbtT3NDsT7ruqj3MadHyj/2y/NlatAcZU13EOvZzNpsbW1tFH7I1GZsJ8OEUfeQcVxciwxJlK3VWpgmr2+v0SgdcDlx/Wb1Zdan5JY2C14ujS0sDXLr8RnXR27Xnx4z751IcZNDoW7ccxHnjdbHbpvXtyn+qKunnnkKXjvUqUWpSy0EG/00M79Pr31ygdTPxbXv+afuLrMGNXwG+tlaMOdFgjq7rdRdxnnxPuK9RiYx4zjyrKxZYEpj/R+lVJ7/WB+ldx5P6n3jnqfucdHA0VLj8BoaGhoatgiW4vBWV1e1b9++OUWXUWekEPw2NhdHCzFpSCDLKB8137dIAZkD8W+mWslRZpSI20bKOotMQF0KKW5SdpHiJuXoe0hpZ9an1NGQwjK1GCk76gpNLdE/KlLcboPLN0Vs6jxrI6nbbdu2TcrTu66b99ljH/25Mm5FGubLcx3h5KI1f0jqBiJX6zGjzx71dBEul7rUqUg77iM5BXKj9AOL7a75fZpCjmNW08O5P+7f8ePHR/0zyG1T3xR9IclJkAOjzij2MbPWJRy03meHzwNzDrH/7qvH3O3MLGCp2/Qz1Ie57LgeqH93vd5rRuSquHe9/7jOMqtgBsGuBXmPz9LSsWa5nCWcrUW3omV+TOBc88+mDjFKR5jA1tIpnm/ZXuReXwSNw2toaGho2BJoL7yGhoaGhi2BpUWa119//Zxtt/l7FMHQOdhsNTNcR9b74Ycf7hsD527fQ6OWKJZgeXTYzhxlLUqgSJYK1Gi27D66PIqSPBZGFNVR3EqFfS0/X/zNz9KU2nPhcZfGYgmKaDOxq+F5cn9uuukmSYM4IopB6VowFcSVZuU0kZfGinm6Yvj5KN6gcptGMQxhFUWaFu1EYyFpOv8ijYYojsyCMbhfdG2h2IjXY7vdd/fP68Aipcy03H31M77u8fS+i+PpexiyjO4kJ06cmD/DcH7egxQzZgHVs9B4RNd1unTp0rwfrifuMZ5FPn9oABVFpzfeeOOGelxuLSTXQw89NL+XRh0MT5e5pxi1XHp+Jhq8uB/uq8fNotpDhw5JGouPpWFtuD8M1ed1ENVLdDmrBeN2WXFNM8i72+J9lp2VXntuq5+xmivLZ7hIgPYaGofX0NDQ0LAlsLRbQnyj06hEGigPKyGtGKf5eJbd29dMzSziYEiluu+tUe/SQNnSydHURObMbUqE5ZnaIIUXqbRa2Ck6R2cpjFw+TfQ9RlOpV1g/jRkiapm6bRRiajhSg3Qb2b179ySHt2PHjnlf3aYsIC+NLcidReMVl0eOjhQoDVPiPR7TGhcd4d8YJNxtzrKI10JU0QAlC0BAIwXWk0kwmJWdBlXuA7OOSwOH77Hxd8+xOfy4Dg4ePLihPEsF/Ok5ipykx9r9OHv2bJVyL6VodXV1fq/bEPeYuUrve3/SMC1LLUbu3O1k0IVokMJ7OD9T6YFq2eRthBPPGJfrc9XzYA7Ikh2G2IvX3H6eiXQvi+PDFE9eu14r7mfkKP2s28jA85nEhNwfjaJcls9saXyeTQUeJxqH19DQ0NCwJbAUh7dt2zYdPHhwpDeJJsqmBEiFMRhpRs0x4DMdJhnYOJZL1wImRIxcqCkcmgczjE0WhoiBp02p0kE7c4Z0/1g/dZfSQO15bEnRUzcQ62NgW383lWSqPeqzaDLNINkMfxTvjaGyahzelStXdOrUqVSHa1CfY52Jxzhrt+G14nEjRT8VMJsuGJQ4RG7m5MmTksbcEbn4SJEywEAtwMJUmpNaYlH3Ie4nBramG5Gpco9npoehHpXcdhwTuovcc889G8ryvZEjo27aXGKGK1eu6KGHHpq3NwsI8LznPW9D35nOipx47KPv9Vj6GZ8L5HalYd7JBVLHFvepx/KjPuqjNtzLfRn15P7Ne8GcHQM3eA3HM6wWyNpluezIudbca9xPty1bq9Rne8zp9B/HkdIbr0XvmZtvvnlDH+K9cT+1BLANDQ0NDQ0BS3F427dv18GDB/Xud79bUm4ZZArDb/Faenm/9eP/ploYGsnUEvU/0kA1sr7MKsswtXDs2LEN1015ZUGxXSdTCFnHZcsj6hRjP2glVUu2GNvtNpiz8BjQIi7CdTOEEcc5Oh77XlLjMbgvQZ3nIjh8+LCkYbyyBJlMCOx7M07cY2kdo7/TIjJa9BlMhEsdq/ueceumil2GqWXlfdRhAAAgAElEQVSPSaTSWS6tAKdSPVGCQadotjWW57VKKp0phiKFT0tew894fKOlHblp1/vggw9KGgefkMb6zH379lWdzy9fvqyTJ0+OOBVbKEa4T+TAM4kSOV9+0po7SwRMK1bemyVmpqP+Aw88MO+nlOurvFc9V7RC9WeUfvhet9VrhGnR4tqhbYDXga1yuWeyABvU2XkOsiDi7it130xpFN8xrHuR8HRG4/AaGhoaGrYElk4PtLKyMuJQIoVgkKIylWfqM6NI/WlqwpSPrb0yToKcDn2MogWaceutt0oaqCF/N4dnCij63Zj6Mkfn76Z0SU1PpcyhTxWtz+L/5JiZbsllue0RHnOPBRPtmtuK/fG99Eny90ilu+/RGqtmaeewdLTyynSPhueB7Y46Y1P51IvULN+iDo9+nqZmab0bQ1h5TOlnauqV4a+kMQfEYMpTYbW8rpjKhdKQzHfPe4EB1U3F+9k4nm6Tn/UcuPzMGtB7giljMl2b4TZEK9opPcza2tooRFXk2mkjQN1QFnDa/7uPHh9afGbJYxls3XPqe703LJmJ/1N36PHxeMUzK649aWxB7vmiH1tWj5/xuNE6XRqsPv2s7332s58taVgXnvN4jtMGglbCWWhIP29u1P11Pzw21l1Kw7zdf//98341HV5DQ0NDQ0PA0n54O3fuHFkbxrdrzVqS1mWRE/C95ux8r6kK3+u3fLQKM1XJAL1TPjvUqdxyyy2SBi4h0xVRJ0Rfsal0QfTVY5oM3xupM//vNpgKtTWb6zMXHNvnZ8ytmcIidRgpSdeX+QRKA/WZBXD2vJw5c2YyCoLTvMQ2Rq7O40IdlGFqOkbI8DVTiNZ1eJw8Lu6Px0saLMC8Nly/qczMIpZpZzIJgpRzeNSleAxo+ZjpxGktycC8cdy51xi9wsh8E92/D37wgxvq93VLPTKrZ0af4VxH/0KPdQwqP5XmZWVlZeT7lUX9cZ9oPelnos7bXIr75t883x4vn0sxFRl13bS0djuiFIX6Kq9Z98Ptif6KTIXj9U4r0MwSlhFWGB2KwaXjNa9r73dLUtxW9zf2z32/7bbbJA1r5c4775Q07Oe4Dhgc2/Pk/rk/cQ+aez569KikPkXalJQkonF4DQ0NDQ1bAktxeGtra3r00Ufnb2rqvHyPNE4VT31CfCObOjNFxWSG9957r6SBmogU/pEjRyQNlAKTnFLGLg3Uucujv02mh6NPCyl9g9ZFsc8G48O5nzEeJq0YTXGbinLiVz8T9Y2u7wMf+ICkQdb9ghe8QNJAyWZcNv263O8sYae56hg1ZSrSyvbt2+d9dTmRQ6Llnsff7fX6iLoU99W+X7YM9NqkRVeWXJUWnF4r5PyyNnp9ub4s/ZXLZzxW6hCN+J1Wax4vjlHUi5gbp76cPqSM+CKN9TqMTWqu+L777ps/Q/9YUu1MsCqNdYRra2tVDu/y5ct64IEHRpKluHaoc3ZZjEgSpQa+x/PNZKdum6254znnfe9r1OnTF1YabBGod7Nuz2s30+XTKpQWxJlfHOebOlDPR9yzPmv/+I//eEObPW5ujzm+u+++e/6sx5rj6LHnupMGSQz9ZRkzNoJRYM6cObOwpWbj8BoaGhoatgTaC6+hoaGhYUtgKZHm+vq6Hn/88Tl7bRY1iuyYLdqiDytsLZ6KosCP/diPlTSwxBbPmcW3aO6OO+6QtFFcyJRBZuMtrrQ4LzrKmk23iM8iC4tH3bYodqUjqfvnflFcFZ+1GIIBtJlWJRorWDTrMbEoyWPi9viZKKqx8tv3Mj2MxczR4djtp0iTorToGmKRgseW4l1idXV1Lopxe+MzrtufDCCbieCY6oguMgwqa1Fw/I0BDlhPFuzWY+v1bDG7125so8eJ/XBZNPbIAh4wTBPbGMVtvtfiIoo0PZfsS2yD10gtvF+cN67rmjgqcyvy+r18+XJVpLm2tqZTp07p9ttv39DXaKgVx0wa5oOGKHE92LjC/bd4ziJOZgrPjNjcV++5u+66S9IwbrFPnjMbW3gsvX/cjliPzxfvf4+pz5RaEItYt0Xc7i/XWTREe9/73idpUBHQ4Mj1WAwbzzm30W32PQyOEUW2LtciUj/r8fQ6jPvJz7tfZ86cGamNamgcXkNDQ0PDlsBSHF4pRSsrK6PEnNnb15yQKRFTcnYBMJclDdSYy6HBwcd//MdLGqimyAmZIjDVwsSvphyiAYpN05k+g8GkYz10szBqxiyR4jDn4La6TabAqRCOY+JyX/jCF0oaKK/MOMLw/Hz0R3/0hrHw+LmeSH0yZFoMCB37Ew2G6Nh67bXXTpoHd103cheZ4oSMWhDk2F67sDDlCqnLaDjheuiu4T5kYdXcVwcrYIqsuGYMcwNW3tPwyPCcRvN3Ot3TMdf9iYY87jO5M88x3SGypKE0IGPy4sgpkVN1ue6PxyiGzIprRurHvGbwtLq6qgMHDszr8bkTjR/cHo81uVsaUkjDOWBOxH2jcYfHK86FuTLPpcfNnEkW6ICBDTxOlgq4/mi8ZpCj8z0+KxliMfbPe4xcWRaM3f3xGVVzv/AcxP3l+jwXvsfXXW+UDtBlxlInG8+4jVk6Obf70UcfbemBGhoaGhoaIq4qtJipFlMqUZZOk+TIyUnjsEbSQAGQS7PMmSk/IlfAoLbktGga6z7EcpgOhua8sRw6Ars+UyKZ+bMpQzqv02w8o1gZLNicDMc51mcujPpGJi/NOHOGUaJuLwuv5PZfc8011RQ3dktgot4sfYrrqHGx8TvT/tQCM2dBvQ2mQPK69phGKt1108GZfYjXyZVxPVs3TUpYGlPL7K/LztrI0E4M78c1FtvocaSTMrmUCIaD4lzE9Ub3pSm3hN27d+v5z3/+fD14nGIbKK3hGDDkoDTo9713qQ/lvol7zPdSD++xzczk6ZBvzs5t4/xI46St/s75dx+yxNNMvcP9H91y/LzPMd9jDp/7Nu5F3+N6fKYwWW5sIxMYUzpgzjmuDQYGf+yxxyYDXkQ0Dq+hoaGhYUtgKQ6v6zpduXJlTl3QCVcaUxGWMfs7dV7SxlTt0kAR+A1OKipyGaboGBKLQXYjdeY2mSoiRZelomfqEMvwmQjWfcgsSV0urbPcn0gVMixUzSmbnGxsg6keJosk1xifYfoP98vXI1XNOZ0KDeWgBab6Mk6fwW0NOupHHQDDxNWc/I2oy2WKHbYjSz9CTpj1ZUG2aSHI0FK2bmPor9j+WkJTrtn4G3VFnFu3PbaVvzGJsH+P64CO9EziyaDCsdyYlHYqAe7Kysqcs7MeO64TS3g8/tRX0rYggnuM45Sta1rc1vTBkfPwfHvf2zrc93q84pqiPtttcX8YgDyec0xO7N9oyRx1uNRfmvusWWvHM4Rpvci9ZWe/2+SxoB2F64v7ODqcu96psyeicXgNDQ0NDVsCS1tpbt++fU5Vm6qKVBN9qci90Oco3muYMqAc3ojP1qwmGTw2Sxpr7oUUiKmKzMKKlCkpuSydhSkel+d6GTw6Wud5jBlayP3xuLr/kcOL6Xpi+UzJE6l06mwM6mXi2PveGLqoZmm3vr6uCxcujLiczJ+LaWson4+cAHUmpM6ZpDZyeKT2OYdZkktylOSmsrB05IRdBhOmuo2ZHx5DvTGxaWbtWuPS6C8XOQpKW2h5mXFItG41d0B9UxbgOva9tnbW1tZ0+vTpkV9k3NO1UHj8PXKbtP6lVSulRFmyU9/jPRC5DvbZOjtzeB5LW0QytVFsG9eb+06L1UzS4zPEnHHNDkAa5s5rkTpCWrtmc1YL0ci2x3q47twvz2PmX5id05uhcXgNDQ0NDVsCS+vwLl68OH9zU34dYUqB1BE5sPibQd0TqYj4ndQEKT0mWZXGEWJMIZD7jPVQN+m+M/FrpuMgBUIKm7qD2AbqNamzdBsj50VKqjb2kdLyb/Q9sp6EQYuzPm+WhHF9fX1efpaahFwrOYaMmzGoO8ki3tSeJRgJJdPlUpfm8fHvUc/MoMeeQ9/rNmVcqNckdSdcQ3F9U9/LgMoM4D4V6JwcLa2VY/vpA+n+WkqQRcPIuCfiypUrOn369Lxc2hBIwzyYE6lZ9sZ2u121dGfk+OLaoSWvpTOMDBItvc3Z+VlbU1P/FqUejEzl/UgOk22Wxha+7rv1ZdTTSYNUxeX4HvuM0sI3nuO03Mx8hOOzEZTI0N4hnlU8NxfV30mNw2toaGho2CJoL7yGhoaGhi2BpY1WduzYMRKjRBEMFb4M6pzlJaMzcixPGhvCRLEEDQAoZnVbMyMC3+vvZpszc3UqYCkWYj65GIaIz2YiYF63KIHK6syQItYR76FZMB2sY/+YG6uWMyuKW6ygrxm8RKyvr+vixYujwNyZ2Jh9ptl7JsKgCJN9nGpbTYTq+YriaYoYaXzhZ6K4jdcoaqThU1yrNLP3uqLIOXMNoviT4ii6uMT+UOzKtsY5oIsMHdozdwPWPSWWWl9f32CEkjl3M9yU+8FQf7EtFjd6TXqeaUxG8Vosnw75dBOJhmi+h07yPnd8Pa5Vil2zgA2xn5nIlqoaG684KEgcR7qCef97TFhvrI+/0eApmwOGn8syt0sbz1O31+Les2fPttBiDQ0NDQ0NEUtzeNu2bRuZz8aQWaSKaGhABXq8ZiqCIbiMjLqsBXWmE2TMeE7lqqkwchKZs6OfJQVCSjhyLi7f1Dg5vczAggGfaazCdsX6akY+pIIipUVO1VSv255xLjRNvnLlyqYpXmgYEMfRfaWTv+tkVuvY3ppEgZ9Zn2upnXw9BuQ1pWlOgilwWJZU52Io7cjWHdOzODQWA4DHPeP6uK8Y6DozLvB8kDrn+o8SBXLR5GBp3BQRA1nX1o7PHRt90GUn9onGRDSAyzg8BldwWVPBMmrpwhg8Ia6PaMgkDdwUw7nF+eCap+sKxzR+d7k2OGGwfwe6jnA/3FavK57JXA/SeB3QgJBcd4TL8Zwy7Vc89zw/8YzczGBu3saF7mpoaGhoaHiaY2m3hLW1tUnzcOpdGHaKYW3ivTUdAwPYxrc59R7+zdQTqV1pnKCy5iAZYe6DlBVDLmWydOp5mELGZWem5aRceG+mE6XOhBxSxhXXKFa32VRiFlIq6kmnHM8vXbo01/vZ/DlSpKSsyeFl3DNdB7h2yPFlOofas6Y2ox6GOiK6FGR6MeqEyfFN7SePAVNjuR2m0rMg3KSwqYfLwl9x3KgHngI5NO7FjIPLwo4RKysr2rVr1yhxbeSe6LpCt43M8dztYygszhfPH2kYf3J/5uyy+gyvK5r+T3E+tFWgXjGbJ19jAAfvwSx0Gvc9uU/aH2SuVNxHRnbuMEAA0xCR+471eG6vu+66eSDwzdA4vIaGhoaGLYGlODxbS/mtz0DA0phq9XdyfFEmTGdtUrr8Ht/2dD5k0FEHio5gmKyapWek0hnOiMkT2YfoAMrEpW4bnbCzsEC1gLo1DjrWw/4xYWusjw6eWbJGaaPehBaxMewcsbq6qv3798/1MFm4KYZR4zxlVprUh1KHxu9xPEmRUsdpnUfscy3sGMc66msYnLjGabGfsTxyki7TOr2oj2HwZoZbM7Ix8b107qYkI4I6Fa8lpoeJa4MSk6nEwaurq7r22mvn92bptuhYTkfmLIwWz44siIOUO1lzrdAhnM7R0pg7Y6AFI9ob+F7qQw1fd1mxXQxhaKtGhlTMnMcNcmAMWzil0zfIKcfxNbdeswrPLPepVz5w4MDk+tnQloXuamhoaGhoeJrjqtID+Y3NgKnS2IeJVGvGzfh/JlHMQhHFMiPMcZkqN3WbycdJtdLvL9P3kNMyhW2Kq5ZcMd7Lftkf5hnPeIakjZQdLZvoK8TUL5n+j4FZ6VuVjS/1CkaWpoO+YFNJPFdWVrRjx45528jpxT6Ty2RC0UjNkfOgpV2sn8+So6fOyWsq6ooYuopWix7zOJeef3IStRRPUU9C3Qx1eh6TqGc8fvy4pEG6QWvqKZ3oZqHXMh01OaNasOqM+88S5mbYtm2bnvnMZ0qS3vOe90jaaA/g/z0/i5RLfz5y7VwzmWSBwdxZX5wX+lCSKyG3E+tkMGem+poK70gdrss4efKkpDywvoPfe29zTBimLgMtpDMra4+bP+N4Sfn7wvcePnx43oaWHqihoaGhoSFgKQ5vZWVFu3fvnusL/DZ2YkZpkBM7qSX1PJRjx/9ppWfUEldKY87D0QNIVUc9jP+vpY4xBRHroR6GSWnp0xSpJnJC9P9z2pCsPkY8oNVhFgGBVn/kOllG7Dutv6bSwjDo7pQfnq00qVvLrGdZJ8c4s9jK9FGxP7xfGut1vJaYODNbOwzeW0sxE1GzeOT1LHmwyyOHSa4t6w85OfpcRq6OlnQ1nU18hoGSacHq75Gbz/TINXRdpwsXLszXmdPb3HffffN7zFH701Kn2v6M7cvSMkVQT8b/47M8byzJiPVQz2crSp5Z0sD1cb9wXVDyIw3rym11G31GM7WVNOiE6fPoNlKnlln40jKe9hxx/Xs9M7Ey90jkei258NicOHFioaDwUuPwGhoaGhq2CNoLr6GhoaFhS2Bpo5XLly/PnZCt2IwiTYtRbJDBPE4MLOty4zWGQGKA0SzgsNtEVjvLjuw2GsywbZY5GuOYxWawXjq4WqyThUejWMLil0zESHGARQwMYZQFR6bzP0WbdECP/fOzrCcz5KH7AMU8EaUUra6ujtw4Mgd9mrlTRJsZPFFUSoV5Jr7zmrBomUYqWd5At5HKdq8dr/fM4ZgZ1bM8iNLGteP/LWK2yIli3yiWYuBiiiFpcBXHs+buMhWOzOIoiq4oDo2geHr37t2TGc/PnTs370/mwOy96nPAnwwMPxUejC4gFHlmIe2YD28qsD4N9+jUnYn86DzOuaSpf3Qj8Hq2CNUiQIs0XZbXVCyPBjw2BqQTexRTcz1TvZGFaOOZxHPT75hMZHn06FFJ/Rg3o5WGhoaGhoaApTi8tbU1nTlzZmS4YQMVaeyoWKMYI4dXC32VZYCO90cwmCmV7JESMfVHZ1Ffz6h0Gpr4WVItNvXNnIfpaG4KzxRXpGKYKsdlOISOxzlzlqWRQqT+2TaC1DOD7maceeQUalS6AwC7X6a443qpZZynO0c07qGxCF1bGP4sC6PEbOUMXBvroxTC9Zh69rqIa5ShqaiQJ/dpKjre67XifjJodQyuS07L7beUgObvcUyYVZzrL3NWpjSAbaeLTUQtVVaEjVY81+575AY8hw8++KCk8RmRpY9hH2vzYg42rm2G4Kq5MsR6za3QZcJttzFgDD3ouWKoMp9v7oPnOErbfBa5LT6nyUVlbik02HLb3N9MguFrDDjNsziuA3LCDBuWGTe5bf6MgU82Q+PwGhoaGhq2BJYOLfbYY49tSLwnbQw/xZBBBqmKjLIjJ1dz0GSbYr3U+/h7dFJ1+33Nz5pSMDURKQfqD2opfozIFbjvDJ1GrjTjev1JU2JyGnG8WQ/1fBn1SQd9jmMW9srIdJAZzOXFe7PkqtQBTCW7ZTm1xJiZWwVdSOgW4XoiF+o1YQqf9VvXkY0t9b1sEzlmaVh3/qS7SBauyaCeidxutr+yeYn3uv7YRo6bQd17Buuxz58/X03i6aD1XDux3ZSesM5Mh0fdI5+dcqqupc0htxHbaA7P5XtOzT1lyarpHH7DDTdIGqRRPgfcF9+f9cPSIZ/XHgufLbGemjsZEceIgecZYCHT5bIcJtjOJEu+JyY6npJaRTQOr6GhoaFhS2BpK8319fWRQ3CmryK1Rsu7jKqshYWinipSkpRlmxIx95lRTdRLuTxbNWWWnf6f4adMZVjuzhQjsQ1ME+QxMoUXqUUGlvV3cm1+JnILdCj1M6TOIxWcWezF+jNugGmVpih5p3jxGDOMWCyH3AupvQgGh2aw3anA0zULW+pYYr3U93FOs/lnmDu2ldRttCL2b14jtqijJWmkwCl9yPoRy476mFpAdXJIcb3RMtGoOXLHtjHYcwZbh5sTcVuiVXDNKpsBuqdS8DDkoMvPUoyZM6WOiRawEeQgmZ7M3x2IQhq4QoaU85qiRWnkMLm+jx07Jmmsu3WIrlg+QyYy+EfmeM7wfuwX3xvxf1p418LwxfIo1VsEjcNraGhoaNgSWDq02M6dO+eUIS3UIrKgxtnvLjeCVNhUeCvqAt02++WY8rbsWxrk3S7PsnTLv03VRIqOlJz7ZYqbnGumj3N5bospebc1C6TscpiOiPquzJeKFlwMhxVBKozWeeSYOD5ST0lOBY/et2/fKBRcXAduHynFRXxsavpJzltmXRgtHKWNuoFYhjTM94kTJza0jWGjMks7f5o6p0Wa25HpRbhWqO+LbXRbTO1nvnpxTOIepWVvjXrOfDhpbcq1FMuKa9311c6K9fV1nTt3TrfffrukfO2YQyDXRK4i1sE2eO0wnBc55lgf+5b57Bk+X+izt0hqG6YUojVyZndQG3+vIT9jfWBst9eo62NbM/06fWs5Btxnsbwp/W1sa+xH5gu4GRqH19DQ0NCwJbC0lebFixdHQU4zqzm/3UlVMtipNParqQWLznwyaGnHNEHm5jJKlb47ftb9Y/LTWA/1VqZQTMXE+g4ePChpnIyWnEsWFJs6AerlskSxpJaof8t0eNSTZklw+UwWIWKKw9u1a9d8TM2pZgkkqcvj3GVJXEnFss/koqSx35/b5vkyFR2Tq1LPYmrd9TE5cqyTVou1QN0RHieX535QD5NxePSDchmU0MT9SyvdRaJl0MeW92QcDH3cdu7cWV07TktmWJcX9wslLLWko7Gv1FfxfGFZUcdOLtBlMNh7nFNydnw2s3b2erJUyOW6HvrcxjYy6pM5OesfXVZMZUULZdZPXWLsH6Pn0CbD7YhzsFkSZuoopbHf5JRkiWgcXkNDQ0PDlsDSkVYeeeSRUZqbKQurTM/jsgzGkGOEBn6PsnRyPrzXVEaMi+k2mbo0N5j1l+2m/oDWX6Y645hQp+L6fE+UobM+WkORs8ws8GoWl5lllVFLQkoKLNbD6CWbydJLKSNr1jiX5AiY/HEqnU3NurAmAYj3eF5uvPFGSdKhQ4c2tDGzTCWnz7iI0XePvnSMy8r5iuNITpXcxlQEEeqZMos3ttWglIXrIK4t/sb+0LI43mtJRillUw7PnLY58Gg7wIg0jEG6SFoynlXU4UW9bC12L7nGaH3oRM9eZ66fKZ+idMB1Uo9IH7vMnoKWxLfddtuG+ukPKI3TrXG/0kozrgO3m2uViFwhUzPxPPPazM4sc7AtlmZDQ0NDQwPQXngNDQ0NDVsCSxutXLhwYeSEnWXZpUixpkSO/1McyLBgDBAsjUMemdW2AULGepMtt3jC92Rpbug0SnNaP0vlcrzXbbJJu4P5UuQpjZ3F6VJAI5MoQq2FB6uZj2djQofmTDxBsd7ly5cnM57HtZMZW7BvVHpnonOuK/bV45eFlqIJNo0IXH8mymJIu5j13WNhuA0Wz9RcJbLwbTfddJOkQYx3/PjxDf3J0kPRWMWgYQONTGJbauKozIigFnaK6XWyfRtFxDXT9FKKtm/fPhe3Mb2NNA5A4fFnPZkZPQ206OrjfRlVDzQmc1l0H4r1ud3Pe97zJA3npkWBNp6LIk0ax9RcdRjUIMIiTJdFUWY8q3i283zzOp8KJ0gDMq9/OvJn5dBwK3PzskooinEXce2QGofX0NDQ0LBFsHRosUuXLs05FFOdEQy4ytBPmQNoLF8auzaYIshMV8kxMv2MEblQGr/UEo1GaoPcB6lCGkBE8+CY7kUaKCo6r2eGAKSW2NYsDBqdX5nupkZJx/6QOyB3GP93Wy9cuDBZ9vr6+pxKp1FEvEbOp+YCEu9l32puHBGklpnwNTMiYdBeKtddZpx/zwPDctEQwfXEYL6myv2sTcjJ2WXjaNS47oxjroXi4lzHMunuwr2RmfXTIGgqeLTro4FDnNNaGDCaymeSEK47OnV7DiKnzzb4u6U2XkPRiMRz53K8lmxQl7lyeZzcP4YNpAQtuhhwbJjSKAu76Hk1p0qJBQ2fMjclnlVcj1myYoYEpBN7lrjZZ+0NN9zQOLyGhoaGhoaIpXV4jz/++Pxt7zdspCroWE4qMtOpGZul9jC1lJmyk/MixRddD0y9MD2GuY8sdZHLs77HcnZ/uu0uK/bPVB/b6rJMnWQhpWp6GOq1pjivmt4xc2XIEqXGZzJn30iZTpkHl1JG3GdG1XMN+ZlFXFrIbdQoyFguOT1S/pGy9/+WbngOPccek6jv8RrxOvZacRlMTxU5So+Fn3XwAoaci2B/SHFzHTI4RKy3xmVPzXMtldQyIaCmyvU+jbp2hgMkR5Ilu+U4kKOfSlxKNyXPMcuMZwntCph4mk7dsY8MlGz9m9tmKZKDTcffzNEdPXp0QxszLo3h9Bhiribhytpo+BmmNot9ps6T0oEIOszv37+/cXgNDQ0NDQ0RS3F4TuBJuXWmH/Obm5xcJpOtpYWhPoTWdLE+1kurxowrpM6mFpIptpd6CrfF8nGmJYr1+dP1mFsgdxLbT/1lLY1GZvlETs9tmqLsaWXLsYocGcN2TVlpul5a0cXwbbQ8rHGxsQ3kxms6yIxb43y7bdTZRN2TOXj/ZoqaFH60tDM1zlRC1N1lUg+XZ+6Pe4ABD6S6Do36xqmAEZvpT7M9z+/kBjJqPQa4zvrvcnbu3DmX0tgSOuqtac1X0wXFOigtoVUw04fFsHS0ovaYkkuM9VGyQqtzW1NmCYcNP8vgzpYWxHXv8aLlKINHZ9auXt9MmcUxy1LD1SxKs7OfnDKt0rOEw96fkaudSi4b0Ti8hoaGhoYtgaU5vO3bt0+G6yHVyEDFpsoil0ZOkToAv9FNzURqllQKORJTNZEKZdqUmhVR5B5MpZPSZVgtpreP99SsDzN5uPtMKtn1UAcWqV22zc8yPUemz8j0l/H3SGlN6eGy5x977LGq/6JUTz1CrvsrOocAACAASURBVDpL8WIujOG0WF/k1kiFm6p1GSxTGies9D1eUwzYKw2Uu9eVpQC+N+PSDXJPtAaOFrJ8hv59TNviNZPpPzbT+2Zrh5awtSDM0lh/OoWVlRXt3r17zplYdxM5oc3qJjcd20Pdkz+pn497zGcQk99yLuOcMk0T9YzWz2bjlKXWif3LrNPdRj/r9e17aL0d209ph8eX4dcyy1vqKF1+ltaJFrI8s6iTjeX6swWPbmhoaGhoAJZOALtr1645pUWrM2mgIijrp94oUnY1CtFlscxIZfgZWvlQP5dRCEYMQhrbGusxxeEAtuTWaEmacbA1SydSN/H5WuQaUjmR62VQWo5JprshpUpuI+PizOXEwNY1ir3rOq2vr48oscxSlFQyrbtiHdS/sdxFfMHou1ULZi4N42SrTFKxWeJUUsXW+9X8P2P/ahIF6puyJMyef3Mq5N6ngvySo2MfMgkGn2U0mgxMPJzBtgPU12drh0GceW+0KKdFt0EpTRY9x2cgE8x6fdF/UhrOKN/jeWGg6+iHydQ6DOLstt57772SNupWXb7Xqp9hEtkIzwfTULks6kLjOnDQdUZgYhDxuF545jPSSmaZ7TZFjnkRKZPUOLyGhoaGhi2C9sJraGhoaNgSWNpoZceOHaN8clGhanac2W0p+suUuTTppSgzy/lkESPNt80Ku77IElPhTCOSLAwVDRyyfG6xbVkONSqyM0MKo2biWzMLjub9FhlQzOsybK4c54AGQ8yonDnFMjdXKaUadNjtoGgswu1jaC+GmMuU3jRsoSgrE99RpMzs4kY0DfdvVMz7e2YIQFGO59ttottCbCPDQtUcvzODl5rbTS1nnDR2VWEA6Cz3IUWYNTejLKwXQwBm8Lnj9tLYI9ZZC0CRuSXwN+4T7rVsn9bC9WVhtSietqiRhlY+0+K9bqPvzdxfpI3j6fF26EKGI8yCOXttPPTQQxvKZchEO8vHXHpuI9UsNKyJa8z3UFTvObZYPs4b93gzWmloaGhoaACWNlrZvXv3nDKweXVmEl8LdmxMpXqhYzs5r1ifqQYro/3dFArDUkl1h1hyC9HsmcF7GTqI2X4jSP0xwDbNxqVxeh6POY0VMoOfzFBHGhu6eP5iP0ix0rQ9UrmkqkspVedhrx06804ZK5Day4JHk0JkKCZKDaJ0gGbb5IhpcCWNQ3vV1nkcJ5p0k3OtGenEtmUBzWOb457w/zascD8YwowGFtI4KzvnyW2NDvzMul1L9RLnmtz1jh07qmvH99HwLQsmQVcpzk9sQ7aepLHzNbnsrI81w6fMtYnuKTREy0KY2dmeUi+fO1MGVl4HLjea80sb17edud0fS+zI5bod0QiIBlteh/EclTYaCdFh358ea667WK6lWhcvXmwcXkNDQ0NDQ8RSHN727dt1yy23zKmAI0eOSNqo42DYJMrBs6DStWDB1FtkYY1IwdOZ1pRRpDLIUfE7g/1KA+Xjdpu6oGMmqTdpoOxMCZsCIjWVBYC2/N0yc1NWTPERx8TjRgqOJtSZawjD/9B0P3IudBSfCi22fft2HT58eMTtRM70gQce2PBMLXB2po/N9ImxvZwvacwFuizPHb9L0v333y9poGwpfXBZkfL1b26D1wPDRtE1RBrWIrkbOkfHINJuL3VS5GQ4RrE/DINGqUHkXKhX4lhk6Xyo15zS/XZdt4G7yjgTw+V4bNn3uObJKZADJ9cW95jnlxIROrNbTycN8+65ooTBazNKgHie0T2Aeue4/6yrr0l6qP+ThnlxW+hmxeAPkdPnOVZL6xbnmoEB+H7I9jx1eGtra43Da2hoaGhoiFjaSnNlZWXObZiyi1TzPffcIykPTCxtfCvPGwEq2VQLdUSZ3sdUCi2dfJ0Bc2M5NaqADqHSQOGYemY6EqYfiVRazWGW1qHR8s3jVwv0yzBRkRsyBZmVG/sfrzPMGgNDm6LNUnt43s6dO1d1AKWlnSnDSKWbm62tnVgWUZMouB5T/FFPynXldVxL7ikNFDelD5yHOP+kjr2+KNFgAF1pmH9a6xrU7UrjtehnPRbRopdgUlqD6aGyJKXUgZPCz6w0416s7ceVlRXt2bNnpOeJnDcDsdPJmv2I7WO4Pkp+IhdjcH9SepMFr/D4eJ2zLI5bbC/Hy/fQdiDuDUoUGPDcur1YH62/GZKNuuu4lhjGkTpx9y/ThfJMrAXckMZO+Ityd1Lj8BoaGhoatgiuyg+vlihRGutSSJFmVoVRBxTLo6WYyzp58uT8WXJytdA3mc8OLep83Xq/LPTOHXfcIWnQv9GfyNSLrfmkgXPwb+SCTIXGNlKHZmqJug9TWBkXQvk4Aw5nQZiZDsZzMBUyLXJCNWprdXVV+/fvH/nYxTbQR48cMFOVSGNukNz7VJBicudMbOzvXg/SOEQZy8gobVPWXHcec0onMj8lhuniWsr0Y1xnDMLOYMaxz+R+uM8iqNephRrL2hjXbW3t+NyhJXHUsdMK3ONGn8MstRS5WlpgZxwerSStL3MfzD1FPZnH3+uLbaQFc/zfUjWmz6Hv29QYe7ycSijzi6NvMC176Wec+Rmao6R/YxYwnlbuLIsWpfEZY8+ePZM64IjG4TU0NDQ0bAlcVfDoKb8yUyukvGntl/nQ8F76cfit/+CDD87vZYJHWr65Pl6P5dJCKIvkYE6K/laMNmPKLtOPeZyoQ8mCuXIcXX60+pLGAaJjGxltgnqACFK7jLxCvQb/dxk1X6rV1VVdd911c0qYVq2xbraJusKILGWQ65PG3HuWPLgWZcbXM8tO+ydR10FuLl6j/ppcc+b/yeDK1BUx8kt8hvpMcpRZaiFaNVLakvmX+Xlyo6S64/zxnqngv+bw3G5zEFHHXkujlCUaNjwv9E+lXpQWmbFczp33v5EFqybXTH+/yLkyWg0ti12+JU4RlG55fvyM13e08GUUJt9LHTIjaMV6qJOkdX1mB0A7B+sZvRfcLmmsM77uuusah9fQ0NDQ0BCxFIe3vr6uixcvjqilSJGYWiEVxtQnGbVkLozUpa2aTEnG+G2mCEwt2XLLFInbmvm4MfIBKaxIrdEaivJv6hUiReJ+0JeGeoXI7bjuo0ePShpHIDC1lnHM1FvRz4dccQStQekbFCkpyuanZOlOHuw+ZwktPf/Hjx+XNE6ySv+y2EdTgvSL9O9ZX+mHZr0r2xi5J+o6mdop0/syHimvG0yUKQ3riXpX6rczDonrzv2iRCNyR7RypKVdxhXS79OghWTWtixdU4aVlZX5eJn6n7JmZboef8+sw2k9TRsFr8vICRmUljAyScateWypu3NbM11+LWYs938cT+rYKfmh/lka72lGPPF3crjZmHDdZzpKcvpZot5YRhyLlgC2oaGhoaGhgvbCa2hoaGjYElhKpCn17DbTPkRRBsVBZlX9DE1VpbEBA82mzbYznJbbE+upKa8zR9ma+I6hhmK5ZOkpFslcDNivm266aUP5vjeKUC2+oxsCTadpDh9BM/cs27xB1w8qvD1WU4GbV1ZWJkULXdeNxNZxXhhqzX2nk3rmYkLxDR1zeb80Fum4bTQ8ic/UsmBnJtcGxY0eI88xDaGyMWSAZprOR9GZ28uM9Gyrr0cHbqYUoqO5P+O4MuwYHc6z8GFcZ1MGT13X6eLFi/P1YbFh7DPDjTE0lhGziXPP8jxgEInYPu/VEydObHjGfb7vvvs2PBvLY3Z2z6HLzDK5Mzyhn/FnlpaK800Dm8wYjOcAVQJ0J4pGOdwTNAZiKLVYDkW0dICP8+b/6d6xCBqH19DQ0NCwJbC04/nq6uqcsspMihk+htRE5sBM6oSOuAYNUaSBwmG4MxpuZAGHaYJP6jBSdKQG2SYaAkTjBVNu5hwOHTokaaCE6FwqDVyHqRkaR5Bqj0Yyhjli1+t7aaovjalb94NOt5lLg9fDVHJXg+VFQwDPv40SaDTiZ+MzdGWgqwENk6KCnk60VLJn/aKxEjmebHzIufF7FiDXcHkMDsz5yhy4GQ7Mxl9em17L8Vnfy0+2I3KFNH6p9TNKFhjGa8+ePankIcKcAlOCSeO1QlcMBmGI5ZBrYYDuLA3asWPHJA1GZeTS/Ux0MWEYMhqvZfvSbfKzngeGicukbbxGLi0LkuD94t9oOEaDnrh2KHWohVSM5zrdxRg0OnMrYyq4y5cvT6aWimgcXkNDQ0PDlsDSOrzV1dU5xZCZxFP35DBgMVlf/F0am/aTMjSVYbPxSFX4t8OHD0sap/LI9CJ0LKXs2aBprFSXHzM5baQ4HMqH4X/ItcU2Uo/kttF0OtP/MaEodSmk0mL5pHbpbpEF342uAZs5EDPIclw77pvnOQYYkIY1FKlYJshluhRS6ZFDp3uGx8PcMsNFScO8UA9jrjMz0Se3UePspiQmXmd01GWZ0linxhRD5LKzUGaUGJjyz9IRGZuFGIscHLnqffv2Tbq07Nq1a8SZWlISrznxM4M3Z+ls3AaPl8fSY8yzLI6JdXd0/K9Ji2JbPJbkSjhfsY0MmUc9d7Z2GJaLQfmzZxjMmWmVaLMQwWcNnu9xHTCgh+9hAI8o1aPjfAse3dDQ0NDQACzF4TkRY83KSBrezJav3n333ZLGHEmkAmgBaAqI1EQm4/ab35QAOZOMw/O9pr4YoJkBVKVxQlmWQcf02D9SctTD+HsWDJd6HVo10WFTGjt1ZyGyYv18PpZLzjLqJKg/m3IcLqWolDJvv+uLehhT5+aIyan42dgP6oqpS6FEIdOTMQCAuRevwzgvbrep9ZrOeMqSmNbHTKQbOW9y1iw/012QG2R9Hk9KQWIbKPVgWRkHy/5xL0RdKLm1qaAFDmloWLpiXW8sj1bUvsdrK+qCKNUgp+DrXgcxrJ/3O/Wk5KLj/NjK1J/eS7VQirGNLt+/UTqQBQxnsHVKFjKr51qaLYPW8FEq5jmiDpx7Ls6zy/G56jXiZy3tycL7mQNvOryGhoaGhgZg6dBi58+fn79NGWRXGgfpNWXCkF+ZRRZlzbTozKgO6sWYRoftkMZ+IqYyzG3QijPWTcsmJtfMrEJJ+TIQcObjRk6I1Bl1ZZF6pkUffVyMLMwSqXPqNyK3Y6vSU6dOSeqpsSkub3V1dRRmKAtr5Hkw1RctAqWN1B6tuqi3qPmvSWPqmfOT6Rz4m/vhNjNRpjRev7XA3ORSpbHujJxrZhVKa1nqrGkdzHUR28axyfy9yF1wDTC8YIT3zd69eyd1eDt37hxxjHEdkKMzN+Y2ZQmAaWlIXbrnyWMdQxoyEDTnLpP00O+TEiaPcdQV+jxjUGqDutBMKsUg7ORs455g8mCe9Swj0//yDGSoyDgmtTBntpXw+oj7yWMS03g1Dq+hoaGhoSHgqoJH+82apYgg5c40D6bWsxQR/qSFHXUgmWUfU/swcHKkLqkz4ffM14n+MKTamS4oSw9EHSG5nUix0p+PgXlpvRfHhJQrdaGkaGMbmBTXbfYYRR2IxzZyKptRWvTVifoKWmqZyqNfV6RiqScgF5ONj0GdFnVd5K5j22prhv2TxlQq/b24lmJ9lJh4zEmdx2eoZySlPWUdXONuPI70wc3KIZdDLiHC5W0WeHzbtm2jqCKR82YqLOrWsvRg9AXkGVKbH7c3glwzJUCxjbRF4J6JFolek/ahrEl2piQmtGegFCdLLUaJFrnQTNLExNOsJ4tc5PayfKbfylJmxZRwm/lwzvu30F0NDQ0NDQ1Pc7QXXkNDQ0PDlsCHFDzaiOwkRT4W09nU247oUXxHcRRN/C0+oKgr3kP23aC4SspFVbEs5jyTBtFITalr0CE0u5fiB4qRYlsMOm/SLDq21c/S+IZjFA0eKH6iuDIT0Vi5HsMdbSaWoil+7Kd/s3GAxVA0FIlGLJm4SRrG1m3M2s+A5hwLiiBjXyn25DOZYp7rrmbAFfcXxW4US2Wh7DgWXDu136VBXFQziskCC3Bd0QDKe91GSNLYqZuh0oiu60aisuh+Q6OHLJchwbx0HheKw11GFDVyTDm2maEYDZpocJLli3M9N95444Z6uM8y52u6LtG9JzN4qgWtqInFIyhqpIibonapPvbM7xfXBw2FpgyeiMbhNTQ0NDRsCSwdPDpSLJmZsd+09957r6TBnNZvbpuwm2KR6uFs/IypNTonxmdJNZOaiRRQzQyZXE6WSoYKeToAm2KJVDqNIZhiho6asU3uO41lqFjPXCgMUuWZEYHL8zVy2bxPGubfJvlTYcXsPJwZjxim3OhcS4OZrN2ZAYZUTx8kDWNnboPr0HMZy2QQXVLyWYBcgwp/3pNR3gwSzjIyZT2DRzP7NqUwcd3xHhqFuf8x7BslIzRooGFCfCaGHKytn1KKVlZWRtxaNNX3eXL//fdvuIdm7xnnbdBNyX2kBEoaOBAGZsiCVvCZWoBr7m33Pf7G/c7weJkTucFA5zRUi33nvqK7V3b2G8xmT4lZHHcaMvn9YHg87awf4WAC+/bta0YrDQ0NDQ0NEUvr8FZWVkbhuqIOwPo1v6ltTuvvfhNnepgok5XGSTx9X+QO6VRJ89Ys6SmpZZq9u/5IaTGwLHU2dBOIFFAWeDmW5f5FOTV1EOToqDuIz5KCJAdpqjrTbzAsGdsaOVdTZ+a8pqh010eda6TwGHDX9zBsXHyGbic1btaIc0pu3G0zZZqZv9dSrNTcFOK9DMVXC8Qb+0CdCs3eOcfxN+4Fcoseu+hQ7TXChMMeiykOlhwF11c8Jxy0wGtnkQDADLoegyy7POpdfc74XIruQuSEaT7vsigBiOV4LM0B8TyIc8lQbt6H1Blm3GGNi6YeOLaRoepqwTiy1FJeG9SXksPLpB+15LHUXUpj6YPXA4OwxxCEDKSwvr6+cADpxuE1NDQ0NGwJXJUOj5Y6WcJCv9UtZyUVEy22aInjt7UpIFoORoqUwU6pt8goraiziGC/orNjzbLKn3Qqj1STKUSGa5pqj8fC1BkDamdpYdgPUqyk8DN9GvWYbrvLiGlh7rjjDkkbrcBqlNbKyor27NkzssaKnAJDvtECkVS0NE7aSh0HuZ3MuozO6h5r6oVj3bTGrDn3S2Pnd65zg1R17A+tGElhx98Z5oqchceRSUVjWw060pPTk8YcCZMHZ7obS2liG2tBC1ZWVnTNNdeMAhfHPmfrKdbNcyn2zSDnw70X1x33FtOfZalrmEqI0g46usffuFepk5wKT+j+UIeXBeWohWhkQmBzWbF/tKqnXYM/47y5PHKjtUAL8TcHNamd5xkah9fQ0NDQsCWwNIe3uro60nlF/xQGGzaVYV2eZbH2x5OkW265RdKYuiSnR0tPaRxSiLqVTMdR80txf/wMk2BmbaMujdyCNFBLtQSgvjcLQ8RkkeQwmXgy/u/6yIVklp20THS95DCi/yTHLVLhxMrKinbs2DGizrMg2wb9L03RxXkhVU6rPPY5tp8ckL9zHWYcZS2oNy1+4zXXwzBxTA8VqWaGpWPwaM5BvJdWmAwPloUJY59NYdOXKlrN1fzwaJ0XOUHqabuum+Twdu3aNeLW4jgyoLCDR5MLiNyAuUz3kVIbSlky/zj/5vGwRKumt5eGtWJpCfW/8ayqJaeu+WfGPc21w+9c5/EejjGt0bPksUyk7LXiOfH1WK/PGZ7xRiYVy8KoNT+8hoaGhoaGgKU4vEuXLunYsWMjfUnU61B+6wR+9913X19hEjCVKVxqAXpNrUUqwL441Fv4nsziiZZIpA5oCRf7atCakVZTkZKsRWGoJQSNfed3Wglm/likgJjSxc/ENtIytZacMka58TVTtddff30avSG2ixaLsd30ASRFn+ktaRVLa12vx0ynQmtWctxe13ENkYp1mz0WWRQfclJc56Tss6Dl1A2RWo/jTh0k55TcdaaPqwUez9LQUH/t/llP73ujpZ3rjpKgGoe3vr6uxx9/fJSiKtMfmVPIfMxi2+LzXIuMEEJJSdYG983jliVzJcdNC/LMAtbSDI8h/UBruupYTy0NlhHHiFboXCPeT7Ral4axN0dHzt5lxvdFbX6ox4/WtT4fsiD4m6FxeA0NDQ0NWwLthdfQ0NDQsCWwlEhzZWVFu3fvnrPZFmEcPXp0KBAmt8985jMlSe973/skDWzos5/97Pkzd911l6RBLOBPm8Rb3EblcqzPvzELOx3E4/NmzynaZG67+DzFhVTmUtQVf6MCmwY3mREJxS4U72XiV7oh0KAiE/dQJEflNR1EJenWW2/dUE4UWRIOD0VxSpxLmkBTtJ3lw6OojfnxagY7sa+cSzoPZ2bUFKW7jZ7LKGJkuCmuGcNtj+JympbTAIUuL9JYpEnxW6b0NyhGZjsyZAYMsSyPZ3RF8t6Lczpl8BQznhtZfj0akXgss4zndIOhu47PIZ93sX6XRwMQP0MViDQOAMHvWUB6iuyZc45uWbGNXDM00svmmuuZIlPmdoyiRs9HNAyThnXGtRvvreXh8xhlaoXMYGszNA6voaGhoWFL4KoyntMwwYYp0kAN8c38whe+UNJgvBKNH0yR1rITk8uJnBfDNdF8m/dJY+UwA+W6vtgO9odtoglzrK8WJszfTTVlCuca9UxqN1KFtZBpdCKOnETN8MBl2K0kM7c3ZXfmzJkqJ9B1ndbX10fBjyNXy6zRXhem1rMUMl57J06c2PBsZgJdK4NjSSo3PmOOig6zNEiIlC/XaC3UV8YV0HiIYzQVHopGKuwn07hIw3zQGIdcaWYkRedhg0YZ0rC34l6YMi3ftm3bfO/52bjWaERhAwoGK4gcnt2bfBYx5Jv7ms0LuVcayWXBjn1u0cGcxkpZkGq3hSmtatnmIxiUmoZjkXtikAJy4ux/zPxO4x5KZjJDQt7D1GaZgZ0lBXEPNreEhoaGhoaGgKU4vLW1NT388MPzty6dOyNMmdCs9LnPfa6kjZS3HUDf//73SxqoM1NJpuRM8WeUok1dXa9lw1moJ4MUPCngqPejAztNbqmnicGx3Q9yWnQejW0klVQLR0WKiO2WBsqSodoyLrSWPNauB3GMjhw5ImkI3HvbbbdV0/90XacrV66M9IuxP6YWjx8/nvbd1HqkuE3tOZULqfNa6idpnBLJz9J8O7aROjXqZz2XmYN+zayeoZFifbVg3uTw4phk8yuNg/pSTxP7TD0PuZ24Dqh7pYk8U2lJY5ePa6+9dtMULzSNzxLlMvSVy/Q6yVxaKEmoJUjN9NMMkD2lJ3V5dK9iMPu4h8hd8tzJAjiwvZSmTHHk5MbpZuN7PQeZxIfSLnKlU9I26uCzBNfuT7T5YBLnGhqH19DQ0NCwJVCWcdorpZyUdHTTGxu2Mm7vuu5GXmxrp2EBtLXTcLVI1w6x1AuvoaGhoaHh6Yom0mxoaGho2BJoL7yGhoaGhi2B9sJraGhoaNgSaC+8hoaGhoYtgaX88Pbv398dOnRolKomwv4T9LNiwtQIGs5s9n0KtXufiDI+VDwR5dbGZpGyp+7hb/ThyeL8se5Sih555BGdP39+5LB0/fXXdzfffHOavNPwb/QtYvSXDwWxDPaRn1NYNLJDLK82V0wTtAim9gjrqX0u8mytvuhLxfmp+dNlY2//qu3bt+vMmTM6d+7caPB37drVXXPNNaNyY5vo25r5XWb9WPS3RZ/N9knt3kXWG39bZg/U9vQyZ8bV4Gr6x2hXRva+YAzNqXOHWOqFd/DgQX3v937vPGiwwzrFUF92HHSIMTsd0pk3y/nFA4/Xpw5d3jO1yWu/MbxN3NScNG5yTljsHx0y/Z25xiLowMqxsLNqFgia4YGyNsXrsVyGUKsFsY6IGdt//Md/fPS71Ge1/+mf/ul5iLJ777131Hevo5MnT0oanJMZHiw6yjLTOeehFpRWGpyTeVjS2TaOE8Op8RDJ5pSBq+lo7O+ZMz7nt7bO49wykzvrrX3Ge1kWQ6nFPG8OsuBn7RDsQAe1wA7S4IT9rGc9S29605tGv0t9cInP/uzPngeZYI44aQgPdvDgwQ11M3hBPEB5cHKtT507tVyGSwUyRmDzbO0w/yXXJMc0C53Hs2sq7GItNGAtK3s2Jsy+PsUgMTBILXBEbJfPCQdlOH/+vN72trel7SaaSLOhoaGhYUtgKQ5P6t/WzKQdKUSKNEmZ8np8viYOJTUVqZoaF2gwA3a8t4YpNpr9rFEiWRZhcoVMS5RRn6R4GKx6SmzAMGisJwtHxazfpMqyoMGxvCkxycrKyjytDrmQ2LeauNBlR46PFGItrUnWLtZX44zjGHDuSMVyLUv1YN7kplx2Jh1g4F+u67h2GNqLXAI5mWxsyCGzfxEeC/adYdEyzjxmbJ9SR1y6dGmU3Z1BqmN7uT+NjJtxvbUA2dm6pNRkGfEguSWeHXGPUYJEDo/zEb9z37Pt2ZnB32qSLYZUi22bCh/I9tSC8DM4dtZWz9cy6oXG4TU0NDQ0bAksxeGVUrR9+/ZJuTV1dPxk0Ftp0PsxiG6NOp/S4dU4royqyDjG+D3WS4qRcnBygPFZcniLyP2p95gyHqmB3NqUMpnULQO9Mjlm/N/ztr6+XqV019fXdf78+VHA5Ex/RKkAueZMx+Vr5GZoHJGlUaLupKbTieVzvZF7iuuN+lauIVLxkcMjlU4dTWbQUwtSTs5lKkUTnzV3RSpeGnR45Hqpb86SIlsf98gjj1T1X13Xp5ZykGcjkzbUdLdTUhT2nesh01+zjzWJS2ZYw/WVcXZsI+e9xhXGPjGIMzHFGTGgfabPrj3DfWXUzk5prGf22ZIZH7GczSR2EY3Da2hoaGjYEmgvvIaGhoaGLYGlRZqrq6uTYrWaKNMizGhKalhUwTxhFAvUFNHxHooJMnN0GhpQuU9R2lT5NRFTJg41207jiylDh5ofztQc1EyYqdCPxhg114ma0YQ0FpVkJtER6+vrowzGcZxq5vket8xAoGaeTdNoiraydtdcGuIzFPVRLJ6ZltcMJ2iA4jKjKKiW2X5K5PnVkgAAIABJREFUzE/DAvbZ4+ycZlGVwDGuuXXEtercf3YjYX9pxBD/d1suXrxYFU1duXJFp06dmotEMxEdM4Mz59+UasPP2BiP85ON+WauRVPuCTU/xUXcH2rGc1nZNcOjqX7xnppbR3Y+1c6kmk+kNJyBtXKnXFqiaHNRo6HG4TU0NDQ0bAksxeF1Xae1tbUR9xQpezqzmqOzctrfo7M6HVdpoloz685gSo9UbaQKfQ+zIhORmiKlS4X8lOEB7/WnudwsazX7XKN+MxNjjg/HhNRv/I1tpuFLBF0Buq6rUlo2eKoZpMTyyAV6XDLumRmYTaWbW2Kfp1xOagYbGVcQI4TU7o19l8bUKzkVz1M0DKIUguPH3zcrL+tv5hrCT9+TZZ33/+b0/N39y6QDNUf6DF3X6eLFi/Pys/XLNV4z1Inzz3JqWbanAl7QpYVSjsyFphYkYSqiUE1CMWWA5DGh8QiDSmTnHyUXNBzLODyOH42+siAZhsePxmyZsVFmZLhoBJrG4TU0NDQ0bAks7Xi+vr4+4mIiVWMOzg7GDz30kKSBMmSoovg/w49lLgysr2ZqT6rGHIA0UKK+txZKKtPd1Jw4yTlMOQ97LMjtZlRzjRqv6SEz+N4pU19SfVNh1gxyeFOUVilFu3btGpUT++y+msrzvGcuBYbDWF133XWSBq7d/eH4TIVectvoHpPd63LNxTDUWBbqqwbPC7nFWI9RW9cxzBZDpPkZt9Hrz22Mc+C1SJ2ux8S/xz3pur0eLM1x211+dCuoca4ZLDkg5x05ZP/v8GMOLUYHba+X+IzHKQtSIeVuAzwreGZxLUvjMHh0BcrWJoMT1PRkmdTA/3v+/Z3jl0kwDOpNM8kMn63pqGnDIGkeapDh9nw2Znuede/atatxeA0NDQ0NDRFXpcOjk2Ck9qyPs8WWqUnKgKe4GerDpsJD8c1OrtPUTUaRsvypSN2U99PxlLquLJRZLcxaVp9BOTsDzpoCi1xBLYyb54LBarNya9ZfWegic8xXrlyZ1MWsra1Ncu/kgM29kCJ1fdIQfJg6NVP4U+GzyAGROidnLtWDI9DCMlLr7qPH0NQrKXzPQZRGUP/G+Xb/I+dSC0fnsqg7jnvI3Bn3pMswhxd18FwzDzzwgKThLIiWmIafd9Dn3bt3T0oHSilVvak0rAlzeO6rx9Lj5t+ljWMW218L/ZXp8GhFSN17XDuU5PjT64F7QxqPYY0LzQIze7x83vnTY0ApUWw39XDMQuHfs7B71KdSchIt9A32b2rsuQd37NixcHixxuE1NDQ0NGwJLK3DW1tbG3EKmQ6AercpisRUGOXD1FdkvltMW0JkfjJ+hroO6ksyLo0UR83iKsrSTbW4n26Tv5vCi5QLrSKp53QZptZq4YOkYU5cfhb41SDHQt+4LDRXtKbczB/Ga8f6nLh2qOPwvJgLuPHGGyUNXI009J96V4+Hy8+s9KiXMLgOI8fldrsf5AoyyrcWYottoz5QGqe54ae5lMi5uBzq0NxW9yfT4fkaAzVzzcb1xmDyDBqd6W58r+d47969VWtp109OP46T20BOzinMvGb8nc9LYwtE6qgzeD24LEpVMk7f48MA2lMc0GbWixmHQw6L0raMK6xZu7I+2mRI4zPIa5cSh8hZR92zNLZ2zQJ3kwvcvn170+E1NDQ0NDRELM3hSWOrpUjRmeLxW5g6B7+JI3W1WQocv91NVViuHa/5GXKWRqTS2BZSNRmXspk/XC3wcKyPFBcjbES9GanZmmw986WpRWNxP7O0TqTCae2a9Ztjvm3btiql1XWdrly5MvLjyqzY3E5TiLfccoukgTKMHKqfYZQMr0mvFfcrcmsGgx5zDqf0A653ai5rOiH3z8+4bZELMafiZ8i9HThwYNSmmg8dqWcGfZbq0hVLCShZkIa97HZ7Tly/Lbbj2qA17VS0jJWVFe3cuXN+r8uJulxLAQ4fPpy2iT6BsU/UpU3pug1KfFz/VGQQt5/+irRK9nhJdd827nH3L46x73X53lc8U6YC3TNSFhHXDv0+XS8jWEVO0HuANhDU8cc9aPuQ2OYWaaWhoaGhoSGgvfAaGhoaGrYElnZLiDnPLBKwKbM0zkJLEUwWuNjXqIx2PXTqjSy/Rag0saaxRRSdUTznNtdC8cRrNeMEKvejyNbPuK0UlbifUZlbUxYTWU4/X3N9dGyeykvFfHVGFrKNubKmjGEMGihl4jSLfA4ePChJuuGGG6rt9lrwM1wHFtt5LOygLg0iplqQapcRxaAUXbM/mSEAjXtolOO2+zML5muRGeu34262vmkUwaAQHpPTp0/Pn3U5FM0xoHfsp+uheMr9yYJUGx7zc+fOTYbP27Nnz3zuPG9eF5J00003SRqMU3xPLF/K1SG+5vpPnTq1of4s+ALdkbx3fS/DF0qD+JmBL2gkkxmGUQ3hufSZ6d+jcz9dCfzJsuL57fl1+7lHuA7inDKsH9eKxyITRXuevFZsoOa5iOstzqE0nYeTaBxeQ0NDQ8OWwFWFFqNyN1IVpl5N7VHRnL2JTWnUQt5QgRqpJt8THWFjGdl3t9eUgqkWU5B02Iztpwk5lbx0jpXGQZDJ0WamxRwDGpHw2SwAcBbwOfYhttFUPymtWrqY+JuvXbhwoUqlO+M5xzELrkvO9/jx4xvaGPvltUjFuOHyHeIuC71E1AyvpGFcTKXSWMBtjBy3DTxMSXu8TN3SeTwahLhc99Of5AYilc50Ww8++KCkwSHce8Vtj1w23U88FzRpj/3zNUpmPCc2MojcAB3qpzi8bdu26cCBA/PxcT0eP2mYD+/pOB7SmNOThjXBeaHUyH2P64Bpbci9ZBIRukh4LdGQKgu3Z9Bc39/Npcf+uW63zd+9n9wvSwmkcYCLGueUtd3zQ0kJA1REKYvb7TVPFx4jcr0uJ7oPNbeEhoaGhoaGgKsKLWbKLTPB9Vue8nyGKMoSZGYhg+Lvmf7Pv9GsnkFjI0VJ+b6pQobeyeqhC0UtaWmkUBgUm2GoMvPnmu6zpkvM9HHUFfgZ6rtifaRuWX+Uv5MamzLfX1tb06OPPjqn8r0+oj6W1LmpVVOipNpjOxmWjHo5Pxv1pNYBkSun5CKuA7oQWM/oMTbFGqUerqeWWJRUfFwH1EV6TLyWzD1FvZOv3X///RvGxpQ8HcMjdcy1aK6Eupy45+mG4LZ5TXlMzFFJA5XvffnII49UEwj73KErRpxLz5nXE83oPX5xvVH/Sf0bg15H3RGDQzN8VybRMmdlfePNN98saThvXH+sx/3wGDKVmNehn4lO6+Sw3C/Pg/sfOcpaElzXw7Bkce26Da6XkoRsHD0+hw4dkjTsLwbjyM4qr+szZ840HV5DQ0NDQ0PEUhze6uqq9u7dO6IYoi6Eb1o6aGayYVMVtPKjRRJD8mSoOYhHDsjcBSkQhuCJOgdyWEaUf8e+RI6SCTH5maXroQ7PlKmpdz6bUXa1lCukZKVBH8IAw6bGsgSnDOuWOXUbXdfp0qVL87E/efLkhv7EOsnFuA2uL9NT1CyHyUVlloJuk+cpC6ps0PqO64ycpjRwM+aOvYbMHXIu495gMGpy9gwBJY0paQYnYHi6LAkv++H1wVBusVyDc5I5s7uNHoPHHnusqsMzaBEZ59LtNFfLgBS0XM3KdXnkpjIr5Ki3lsZpfDyn0Q6AqZcoYbIkIOoKaSPgc4Dznu1P6tK4v7Kzivpfzr/Hk9IwaTy2TNHFPsR6/JvnlkELYhsZKPyhhx5qHF5DQ0NDQ0PEUhxeKUW7d+8ehV6KHB6tuGjll+n9GBiV1n+kvCP1zPA4DO2UJak1FeF2W0/hNpk7iBwSU3iYernvvvs21OuyMr+oaJ0Uy8wsuhgUupZeKaOaOAcMdF1LMSKNLWbNtWW+SB4n9+vs2bNVKv3KlSs6ffr0iHLL9DZRNi8NY+nxiro8zwNl/S7D+h6HnIpcqNvNtenxYsDu+JupfetDzCW6bVGH5/Vq3yK3wXoLz7/HJlofulxbWNLP1b9HnTHTKHGfur8em6j/s56Jlou1RKTSOGQWOQqviRgGLQuRVvPjXFlZ0d69e+fz5b0Rx5g6LHMx9AmL80/pU417pl5LGtabuTFy1R4/c7BZG209S/1f5PBs0Wm9n+tlIPpMl8+zgTo99zuub7eNKdQ8//R7zYK/8/zx2vR6j+eO20tfSIatjGen95H3zdmzZxfyAZYah9fQ0NDQsEWwNIe3ffv2UVqRKF+lJSJ1TH7bZ74mfvNbls2EnOQApYHiMcVo7o36g8gVmjoy1fCMZzxD0lhXSKpWGigfRr4wmJYmtoGcA4NJR9APhZQPfQgjl00ZPfUAmT6DaTpIGfveqHNzGxzc+c4776xa2tkPjxxD1AHce++9ksb6A7Y3Wor6eVN99Mfz7+bw4rgyfQmD7Fo/Gzkg6gjd5ltvvVVS7odHnzOm06Hlb5wLSwzuuusuScO4eR5chjlAaRg39917wtyG22juIXIUd955pyTpve99r6RBn8U1lAUcdr3uO/dmDIrtuj2Oe/furVr5bt++XYcOHRrp7qLekuuO9gWZ3prz7fLM5TKSUITL9Vj6TGHg7siF0j/WY+t+eXy8lqVhTXgun/Oc50gaziim/rJuPI6J2+91RSvdzM/UY+H2+xlKnqJkyfuS8+Q147bG/Uu9Ns9G12OLVmk4e70v9+/fP5nCKaJxeA0NDQ0NWwJLcXim0kkZRW6G1BJ1KpmVpqkGc3amFI8cObLhWepP3CZpoEBMoTANUZQB+5qpAuoEssS2TLWRJaGMiJwL9ZZMaZONibkLl+MxcVm+bi4r6gwZLYHctq9P6aZIbdNXKbbf3MWUHH3Pnj160YtepBMnTkgauOosPZD1ooyDmkWIYZoZf3odUCcZ9WNMrWIOyPeYq8rifXIMzC1ap5fFUjVXRg6PFnCRana53ldeo6TsYxvdH9/jcs2Neq5db9SJ3n777Rvu8R7wWJiDiGvHa7Fmyey2ZxFkptJPGaurq7ruuuvmfcz0cVy3jNrk3+M4sY/Hjh3b8Kw5FUZkkTbq5mIfPXeMDiUN3IznxffGNSnl4+Tzi5bK/IySLK8Vc9OUftRSQcX+UH9paQ73W2yrx5xWwpllMyNHeT27PzHZs0Hr+tOnT29q4Ws0Dq+hoaGhYUugvfAaGhoaGrYElhZpnj17dhQgNRpdMEyTWXAqmqNYioYYDIRqNj1zbDab7LZY3EExZXRWtjiCaYcYniyCYk6a79JsP4q0aOJLUZ1Z/ixsl9l2i1NqwYOjMQZFaBTdTqWy8Tgy/BXDr0mDuMH9mMp4vnPnTj33uc8dhVyKRjD8zWNuMZpFS1E8bUdjhk179rOfvaEMmpFLw9r0GFu05PmwKXg0dLDY6+6775Y0rEkGgs7Cg7mNFLv7kyJ9adgLtTB0NnCI405jL9frvjMFkPsS+2qDAI/jC17wAknSu9/9bkm5SwDnntnRM6fvKBqrGa2srKxo165d87HIAlVwvzOtThZMwte8vrwvPQ8Wv8d2GAzBR8Mkr+soaqOomS4lcR8ZDMHnev0Mw3nFdrgeqw/8adG25ziOieu2C4nXjOthoI24F2l8yJRMrsf7ShqHjeT7g+dPvBbTEbXg0Q0NDQ0NDQFLuyXs2rVrTk2ZQogcnqkmv+VpPp2lf6CDcU25yqDLsRy+4amYj6DjPOuZ4vTISTLpofufmUy7rQxllYVDY6oV10NjhSxNB8eLKUSyINzkAlyex4hO69KYcymlVCmtlZUV7dy5cxRIObbb42FOzoYSpirpbhHbQ07e/XAf77jjDkkbOUqvY88H15fbGBXndGymsZT7l4U/I0dNrsC/uz0RlkqYw7RBBc3WpXHKGpp8e7/ZOChS+B4fP5MlTmXbXY/Xdy2EWTT68L6MYddqHJ5TknlcXF88dzx27gslCAwbKI2DSXAPu+8MfCGN9wW5DvcvnlVuC1NLMTB4rIfnjdtCYy2fxXEd0KCKqc1oPBV/o9TJ65oBt6OBlctneDCP8//f3pkt2VFdaXhVqSQExg5HYAaBw40jfOn3fxI/AG1LBtxMBoOQVENfOL46f325dlYdIvrCfdZ/U8PJ3LnHPGv8l/dQ1UHrZFx+f9hSmHPREZDch9HwBoPBYHASOErDOz8/rydPnmzsqym5IuU5YXGvKKlt+0gP3OOw52zD3+wu/eNyOtkOP61BdMVJkZqdoA0svWcfV31xYmj20VKnQ7GtcaVk5M8sPXn8CRerdepE9pFrGOteWsLZ2VldXFxspMu9gpXWOk0wW7UtpokWsaJISp+DpWNrKF1ouYvCpt815yD/zzzb523fDekdmXgMkNL5DO23S48xTZPPHHvK+zL7xnzi3zIJQNc3+6aditSVIbIlowMaHlpTZ4Fhbq01e4+mFomfyqkRqTlUbTWjHIvP9IpIO9un305xYj/mc9AKndzPT8aL9SbvdVFc9g7zaNLsfI6LLXPm9tLLTIPI3HBGOyIP2rOlzNaBBO3w8/Hjx6PhDQaDwWCQOLoA7M3NzS5xLRKJC6/aT5aSkAmgXX5oj4LLydSrUivpu3ESqiNJ3a+qbakN/5/nodmmlOjIVNrg+SZ3zvZc0NSSZFcKyNGgjgpk/J2mzE8n+YIVdZj70H32ww8/3GrTe2uJZGqyWfqbWhqSp31oLsnkgqP5memUnMydycpOvEZ6tRbTJUWbGg/J2xpGUnDRX/t/ucf0VFUHadnWFpe7AbnvmBNHNe6VgPL+os+sRednXhVs7nB5eVlff/317bWOEq86rJ2LHrvd9HE54pVr6afnIPf+iu7Q+9oaZ9W2tA5r56jxqi29HX+b8q3zx/Fs+u+o4JVWmuNg75jQobN0WdvlOcyjo6KrDvPH/7yOjsL3GBnfJJ4PBoPBYBA4WsP7+eefNz6JlEjsc7Kk1fn9TLhM+5YUOnuupQpHM7n8RNVBSrGPhn44fy3bA/bHWIrqyKNpz9FYbiP74vmzRrs3N6uiu45grNpKqvztvqXPbVWGqMPV1VV9//33t3lzXSFRS75oCPbDpaTNmJyfZCm2K+rq/jpfyP6TfA57CA3PhXJT4nSupH04SO20mblO+JnYT2iqPIf1yLw4a//+yZp6jqoO68F+6krj5BiyL6bx4qf7nO3xvL3SUjc3N/XmzZvbOUb6z36b1spRlF2kpcs/WePhjPtM5D22ZFkjSc2Ea+k/88Ieou9JBI4vjf/ZKkWbzrGs2tJ/oWm5PFCupYnuAfvM5yvX1LnDK/q4LmfU2p8j6PO94zF/880348MbDAaDwSBxtIZ3eXm51MiqttK+C5Z2/jiXDLJmYm0mJTtL/batdz4CS8cujOko1KptGQtHDlrTzJIyzrNbzUlKZ9aQrdnt+Txsk3eU3p42aDu/I9dS2zG7zFtvvbXsl0tLpR0foNnRXwpkWmNIKd3+NhdzNYFy+h7cV6+PNaWqw7pDsszz8K11vg1bQpzvZzL23Af2HTvXCaSfsSt6nM+3dpVSus+AtUL72bMdRwMznybHzmsZx2effbb0D9/c3NTLly83vrbcQ97TnUZnuGRZPq/qMKddRCLrwLo7WhfkfuAeF8z13sl5cPkvrrXmwz3pJ2VczL+vYb91c2Ttz2fd77CqbXS44zb23lneX56jXCP63VlE7sNoeIPBYDA4CcwX3mAwGAxOAkeZNKv+rXI6yTpVcJv2TGS7F0YPbBJxwmZeb1OcabUczp19s5kSp7id1fk/TForyi2b3/Iz+mpTAm10IfM2P3ncnbnFAQY83+H9nVnZZi+bWbpahEnUuwo8ePToUf3617/eJPFme5iQXInbZrQ023AP15o02PPW0anZBMzfPC9TTKi87KAl76HOdGrTjvvGGqSDnnZ4HmZeAnpMU1e1PQt85iAjBwgkbEqjTea7m0evPeerq7RtE+Tl5eVu4MHFxcUmcCz74Dm16a0LqLLrgmtNCN0FoDj9yc93qkaO2akTDiLLc2liCZtF2ZtOCXE7+XxcBw5eqTqskRP2bW72+z3v8TvZ93R9An4PMc8dOT7z9e233+6mRCVGwxsMBoPBSeBoDe/Ro0cbJ3tKCNY4utDXvC5/d8DLSnvrJFL/z9JEStxOdlxpUV0VaUtFDmywNpqfuYQHUiCSUTq+TWDsuXAQQ5dEbg1spTnncwDtWmrrkvHd1w6Xl5f1zTff3I4ZLSaTyFdkyqxdl0xMe9bWVtW3816XInEAkq0EOX6uZc0oJbOXOsO5cWCVNcDUKLtq4VUHCrU///nPVVX1l7/85fYzl59BY3lIsreJImyx6QK6AJ9xblxuKTU01i1TgO4jHreWkefFxPNOQ3Fl7bzWe9vnZW+eaNcaWBdgxfMcLOS/M4XKQUvWotnnXaASfWQ9rK2T8pJn2ukHJsewdSjH5yDGVWpaB88F7wWnm1UdNOIkQ98jxEiMhjcYDAaDk8DR5NFPnz69pVciNLvz2zi8fe/b3VrLKlnd4eL5bEvWK62tauujs8S7R07b+XW6NrI/TjS3NIj03oW/rzRIa5KddNyR9ub/O23HkiISnqnTqrbh9ntr/Pr163r+/PltGDoJ6Fl6x5RYoEt/AE52Nem2pfj0+1g6p300B67NEiiMH+3F6RB7KR8mjbb/p9uzPHuVyoA28Kc//en2HoilTXhu/3mnBXd+pOyTn1+1Tbdwygn7v5ubJF9Y+fBubm7q+vp6cwbyPeD968R5p5zk794H3n9dwrTXziH/toLlcxxDYML7tCwBn0tbazpfG+15r7Jn0PCePXt2ew/nknZdWsgaXmrt7sPK6tX5NZknp910e4d3I6Wyvvrqq9HwBoPBYDBI/CIND7s7dDdZmsTRcZawVySrVVsf3UNswPb/IXGggXXko362n9slR69KxjgC0rREVQcJzpRSXMMc5T3WrFZUYnvatfsOOg3PUVkrn2FX7oT+v/32220kFu29fPlyQ9hMsVfuz2cbPDv9Bva3+W9+OrqtautroG9o3KxBV5jXBUWdqN2ti8fl0ijWBLvnIPnaV5XPQ2K3785RjqYIzGtWhO4mS8/fTehg2qicezRlfr5+/Xp33Z88ebKxOuR4rD16Tbt3iDVdayL2rXZWFNP1obW5PFXCPnzmDb9s5zNenU//zH3gd6F90ryHKC6cY8aK5/+bpCP7uqLQ2yPYto/a0a/snfTXsr/2iOhXGA1vMBgMBieBozS86+vr+vnnn2+lFqSApDlylJIj76zp7X1mja6T0vifC85ie+ZnamsmjbVkaQqjfI4jLR1Ryj0p2a1ogJC8KAeTmrL7Chyd6WdkH2wXtyTU5ftYM2Jeu8g+j3XPhwfYM4y5o8Ra5St2/iVLk5b0V4S2ea3L19AnUzNlH10Q1T6V3FNI0iu/z0M0PPwu7GekcvLyumLFmXuafbTfMZ/nXE37t6wx5z300Xu2mxP21YsXLzbtGWdnZ3eiNGkfH07VQau1RuX3TOevtBbVRefmOBLOz+WMdwWTeU86t5J7Oqoz++j8zrJvuiu9w7pYo+zG48ha+mTrQJeXax+03wd83vnRnUfLHu2iXdGE0fCePn26S1yfGA1vMBgMBieBo/Pwzs/PN1ITkT1VWzYB+zY6Lc0+tJVNHXS5YABbMD877cbRcmbNQBJKSctRYGarcFRqarYuGeS5QGJJaZD5W/kbu0hSw9GAHkv3v64ET7aRkpT9WRQI7nB5eVnffvvtbTv47roxryJvu/1g350LSdqnlxqA/QWsA+OBzSQl4SQFz88ctdtphexvF/p0cVqKe1YdpHOTYRNhR5Hcv//977f3WPv0WWBcbjPHbo3e/q6upAxamyP6uhwx4gAy8nYlpd/c3NSrV69u28U6kJoC0awuOruK+K26P793z4rC3uF/1m7tD87+2i+LptJFkvp/1spXFqb8zO9g5r7b34A9Sf9djqg756sI8lXUZv6+apc1yEhpcl45J0+fPn2QdalqNLzBYDAYnAjmC28wGAwGJ4GjTJpnZ2f16NGjW/URxzkqctVB9cRkhapvc0VXtTqfU7VNbjSdV9XBRGXSZhPmdqHXpqNCfe/q/HUh3Pn3qg5g/u6kVJP35hw5aZh7bMroiKBXTuM9td8h2A5z7tpchczvgVQW+p9E0JgB+fmHP/zhTvsOXqk6mAcdJOXq6VyXTn36jymOzzAX0kaa7DH/rQINGE8GjNi8bzBv/Mw+2hzepWZkX7u+MSe///3vq2obLt5VrfbZs2kwE8+79I28t7uH3z/55JOq+vd7YmXSJFiO9v76179WVdWnn356e41JCxiTiZo7wmm7CRzA1Zn5V/Rwrm2Xz0vTcdXhXcn8delQdgG5r3b/5DrZDA14HmcxzzTnhH3MWfT8OtAnwWcm4e5MtivyaK6hrzl3divdRzyeGA1vMBgMBieBX5SWgBSDlJZJgasQ33TEV/VlZoC1GIe9p4a3Sk534ntKj6YbspbWSbWmteo0hhxX3osGbK0G7Zf5S+3RCezcY43PlFqJVaV4O7Gzvw79tmaR82ji2lVpIJ757Nmz2zB6a6zZDpoJEijtMgddCL61dUvEnSbsZHSTFCCBd2S+rKkDkDgbGaxAYAnSMtcyB/y/0/BcXmsVvNDR7XFvaqhVh4CELkXI59cpPF7zqvtL89BmziNzTl/evHmzG7Ty+vXrTRh/VrqGos4akDX9LlHawRbWiDridAdDeZ7oW6cVsr4OBKHPHR0Z/+NsoPmsymBle35HsldYj87ywD5mLkzG0FnbfMZWpYW6gEWTcnAv4+0o07i2C8JbYTS8wWAwGJwEjk5LuLq62hDJpuRj6isnFoK8x/4BS3oO+c97nR6wKvmTUoXJoy1xITmkfdqSjcvSWFpMKdEJzbZpe87yM/rkwrO02dnuTeGzKgSa41tJtd0ar665vr5e2tIfP35cH3744e3YvebZB2vlaIUdTZw1UPtY9/yYK8InaHp1AAAgAElEQVRsl0bp9luOK/uGZJy+SX9mPzNaCJp+hmDjT7TFhL7Sdq4lfaT/LtrqxP7cd55HW0qczFx1OC/+SZ86zc3lts7Pz5ca3tXVVX333Xf10Ucf3el/+gR9lqxtohXmMxzK71I0eyXOmFP74dBIOiIENHlbUQB7Jktm+Z3H/NvC0D2PfcVaMT6nbORZdII7c8P87ZGkr2jPVpRt+Ry/7/Zo8Uyo/lD/XdVoeIPBYDA4EfyiArCrRHE+r9oSC5sQ+k4nRF9krcKSXydxW2uzPygTgV06xImySGspQZo81VqIfR8pkVgrQ1ri+V2ZFlOZ8dN26y6R35+BvWKS9n2tivzm3Dtqcs+Hx732X3Y0Si5g6jlPmAKLPvnvvcK8LmDL2DtCAPvOTIZtba1q6/djXey7JbI5950TmN1H+3izD1zDHDCvtmh08+qz3dHtgVXysCOJO39Wai73Seo+y11pGvfBvtyOwox73F9bQnJd2L9oG/TN77DU1mzp4W/Wg/2Qa0kfIDxwNLD3d75DeI4tI/xtCr2qrSbpa1Yl1fJ3l0Hy56nZ2t/nPcvfSezg2Isffvjh3nfPbR8edNVgMBgMBv/hODoPL7WGVb5X1dbHYNLTh5J95j17UWXOCXNJjJQeLcW4nElXbgKJyrRQSHgru3zV1h9iSc+aV9U2v9DRSytfS9VWAqKvSJJ7Ejd9cqRsR9FmLWAvH+bm5qYuLy9vIxGJ2u18j/QBrcZ9yLGu8oG8N7t5srRKPh77gecRLVp1kLQd4cb64G/M/c28u7DniiYux2JJ2tGteyTFK2uArQa5D+zHcgTjng+PeTPNlnOqso/pz1xJ6ZBHo3FzfnKOOe+2xJioO9d/VdSUftunm8WP0dZtBXBeaFdiDMsFfXEUb54xoj0ZM+PkGmjWuuLBtpQx57YwdHRk1vC8z7tz7vNpTa/LC1yVP/LfuUftp98rLWWMhjcYDAaDk8BRGh5SOugKI7pMBZ8h+ezZWh2Naamyu9dMF0ggXMtzU5PgHq5FWkPiMQF1jou+cQ/SLJIeUmD6RZDo6IvbYk4zVxFpzyS1exFP4D4faCcNrnKQViWaqg6SVs75XhHPt99+e0PqnFI/z2IOrZXZB9Vh5VvtCmRaknff2Q8we1RVffbZZ1V1KHP0/vvvV9WBMQR08wQzEWvL85DiuSe1J/vAVxJ4nkuXsKKPzqGzf6t7Dtda4k6fiv3W1oysZVVt80f3inhCHs0+w6qS/jH77OnLyp9Nu/lzlWvI/znjVYfzzxjpC2sLMXPGDjjCm/cCkbiOMM8+sJZoaZwR5zrmHNva5NJtWCtyLXnOKg/T79c9jdIant9hCVtoVsTTVdvz/1D/XdVoeIPBYDA4ERwdpXlvgyqqiQRk/1HnUwMrPj+XrK+6GzlVtWUTcQHNvN+RXS5omlqabeeWKixBJr+oGTWs3ThvKttzXzrmmOx717eVNtjZ7sFqHvdyaO6LtLu4uNj4WNIvYt5I5tB+zC4yzFIfa8r8OSetaivBW+tA80rJHh8dWoYlU6T2jg2Ge/74xz9W1TanDl9h7tVVxKO1hVxz5onP0ArMztEVgHV0NWA/WAvKObD/xfmG2SbPZm5fvXq1lNSvr6/r5cuXG/9hRsKazYN+djmuvsfahKOF2aN5phmTmXX46QjwqsM7hP/hu3Nh1hyLtSbnL7pQap4NR5/yHPrOPGbJK2vKtgKsimZ7rDke/7+7d8XG0kWUM7cZZTwFYAeDwWAwCMwX3mAwGAxOAkcHrWQI6F7AhNVYU4slVomrNjl0yZWYNRzY4jI9WT7FATQeh2l0uj7aEUs/MDmk2dWpEiv6tS4B1E59O/c7Z7+Df2wW6KjFbJ5cVX/OOfGz33rrrd0SROyfbL+jU3P1dSe/Z7/tZMeM4mThLqXBFb/5ybgwaZIQXrWmwcPsxc8ukIufVCfnWlNOERBTtQ3CsGkJE1qGajNPBE44dWEvqMkBJ6uyV13Vapv9HQCTz6Fd5vY3v/lNmxROP6+urjaJ8h25+8os2qUl2ETutBg+Z53SHG7Cee5NE232K2FChVXpsW483tdOdemClwB9ZX9hnnfZonxORxaebSVswlyd3650mr9TbBbvSDnsznoIRsMbDAaDwUngF6UlIFVQkiOlDEuE/ub2N3r+z1KkSWK7EGZrPtZikC7SYe6ES5MEW4pOOBHSztKOLNvOe//fFFfZ7oqeyZJXSlzWKJzYvCd9OmHbUnqOwe3e5zy+vr7ezEWOmXV2wIQlxC4AwRRr1pq7/rPuSOWeYyT71CTY86uiwUjLXYCGC4miESFxOzAkn+0ALmt+GbTjIBUHLTCfXQCCpXATencpHF2Jovy7C3ji/gzKWlkHbm5u7gREdWt5XzpNl5bigCxrt3va1MoahbbeBVg5GAYLAukqSSkGXNDYZ9cpExlY40LAJtzoCC+cxuGke7+rcs397rP1pbMSWYM1zV9nmeGepNeboJXBYDAYDAJHpyWQBFq1LaRadT8BdJesbsnX4eKd/R2saGscrp4aF5IdEtAqBLajIVqRq1rD6Gzc9GWVVJk2fNqxb9JaCH9niLa1XEtNHVmwx+yCql1iurW0PUkLPwz+C7efsJTpwrwpIa4Ssp203iWwOt3F0nPnH7OfxVqSC4NmnwgDNy0Z54gxZLIyUr99g9ZYct591px2AazhdO3ab7rnU3Eqiwnju2T8bHdv71xeXm5I33MtV75t+1xzv/mM2WeH1tQRnXvf2qdnasCqw5yi2fGTdBVTf1VtycltBWMO6GNqoYyD9p1yslfyC3iOeI4L02ZfV4Wn9/z79/le8zyxLqxXxmfch9HwBoPBYHAS+EXlgWyTzW95F1W1r6vzU3TJhVUHKSIpvqr6grMrGp1OinFpF2BtqvMVWmpeFafNsazG56i5lGJW5Y5cPNb9y3bo42ouOq3A0tgebY/7v6fhXV9f1w8//LBJ1M3rrS1bWmbsKcWuCLHdRqdleE2ZN0vrnbaGxG0fXkeozmcuuOpCrJaMs48G4+bebq/ad7ciK8g1NhmDNb1OWrcW5b3LvWlloU/pq9nzw1xdXd0+u4vOM8HFKnqxi9J1GysKrM5PjjbOPmCMphGsOpzHLGtTdbA0oYnlObXWZx++z2BHSwbs+3QR6+ybrVCMh766QGu2nz79qu2+7ggvrLH6vZrrSWRvV/LrPoyGNxgMBoOTwNHlgc7PzzeRY520Z+l5ryyQbf32E+z5xVaRj/688zOu/FSdj8tSpZ+zF8Vm/5g1OmvF+bsjOVc5Tp1fa5XfCFICdCFVS7eO+KzalkI5Pz9fSulnZ2f15MmTW22ti0jD57DKx0KKzrwha76eYxc77frn0i5d5CuAJBifqfPwulwqP9M5qXuRb+4D82aqqaQj6zTvvNbFQxPOv3J+Zjc+n0/vSdacvMDunr0IX6jFGGNHVdb5MrMPq3yyvMc+TefJdXvfpbesGXUljFziCc2ui3ZFs+FeW4u4BwLqxCpi3ZaLfO94DthDzhVlv3dFpFeR5V10td9Vq3w8/J35v9R6pzzQYDAYDAaBozS86+vrO1IhknbHomI/AuhKYFgDsg3YUlTHEGIJ3xGK2W+zI6wImVPysV/ChRD3pJiVz8alf1JiNdGr88k8lr3yKs676XwhK58NcORftkO/98oDEWln/0Gupf1D1hTs98lnr6wArLv9TNme89LQSBx1VnXY8ysNkvF0fka0Q0ed2i/cRQf7jHncqTHbcuHIaWtpOZ98ZsYQn9vOouByO9accu9SCiuLw95XAJYcM9Yn+8B82zJCm/w/97wjue3vtb+8YzGxRcssLZ0/dhVRmiTlBhqVrWB7rCNYRHxOXRi6y490dCZ/r4oyV233iK0te5aTlXbv9222j5VlyKMHg8FgMBDmC28wGAwGJ4Gj0xKurq421C6Z9LxyQq5U8aqtWW4V4NJR4VjlNrFsF2xh8yMmEgdu5D2rsGybTrvkaKc/0Ab/7+pGYaKy6cSmua7Ssefc4wadKcMmGs9nmhbc/l5o+fX1df3444+bpO4k2XZ1egcadAmmNps4PNumno7UmTboC6kT3T5wKg7tMR7aev78+e09Dsu/r/J4t5Y2lXvcuZb0f1VD7yHmd+Y61yc/zzqGdklg9uX59CfXgnYzrWRl0nz06FG9++679cUXX9z5f84T7XFuuuT0qrumYe9FB6c4eTzP5ypoiHt5J3YmfgeLmOow1wUzp9fKQVNOj8n+24Roc2WXbmHzK8/jWta0a9f72kGAnVukcznkeBycmO3fl9Jy554HXTUYDAaDwX84jiaPvr6+vv2GRsrLcONV0vMqiKVq67y/L5Q4pQEHrZiY18/IPljitqSazmVrknbEWorJe3FkW4Ldq8rs/zmAY0XZlmP1NV6LLvzdYemWDnNe7dTfow568+ZNffnll7eSKCTMOWYnkQMHPeQ9DpgADsnunOxoHPy0htVJlaZwYg+hWTj0v2qrmTI+05LtkWPTR2uwtk5UHc6lA11W1pAE84REbwLtPToqJws74CXn3vs2yaGN8/Pz+tWvfnU7Hltbqg5aJYFBwNpUF0Ti5H3+tuaVliyPw9XMuSfD6d9///2qOiST0zfOQheYRpK1UxnQsEwu3Z0n4IAxylTlmXa6EH1l7LZkZDCg3+0+e50G70A6nz2PO8eVleL33j2J0fAGg8FgcBI4OvH84uLiVrr1t3BVn5iasCZR1Yc6V20TF5EmUmqyr6nzaVTdDRN3wUr7OugjCaF743DYrIuI5mf8JImTPlsbrTpIqpaSHkL5Zc3Yc2KtOO+xJO8SSl0pkUyGXfXr9evX9fz58/rkk0+qqpeWV8njqzXO/jqk3ImznV8TqdjJvYTMgw8//PD2d6Rx+s9P1haJOOcJaRwNBb+M6aK6s4E0S1+tLXY+NcL3Tc1mIoKOus+airXuTutdWR+cbpPvCd9zdXW11PDOzs7q0aNHmxSQ3EMr/7/95N3+tBWFfWjqrT3yaKdBdFRmTnNhXdhTvDvSP4ZWyLVYGJza5JiFnBNbvWiL5+Q8ei5ozyV/nBheddiD1qZX5cmyHVs36Ctz0hG4pzY6PrzBYDAYDAJHa3iPHz/eFLtM7cl+ga6se9VdKd10OaskaDQuStNXbUu6IGGbvLqj+nIkkn2FKYkg4VjCdfQkc5HSoH02LmvRSZ9ff/11VW0lIPtDXGIm77FmZ+ltr/yRSV3t58rfcw1WGh7k0UhuaDldxJYT8u1PzPI5aPteS0vlXWQic5bt5XPpBwU683dLmbSPPzvpz3imKb3QxCwBd5qQzwRtOFk+wVmwtcOaXT7vvn3giNa81nPuJOV8jv1L77zzztIPc35+Xu++++7tGaRgbraxSpQ2nVbuN2sVJjhY+faqtkncPmtoYqk9ca2jkO33S82F3z/++OOqqvrb3/5251qXbcr3E++QlQbLXk1tlf3kEkKOBgWpjfLuY8yr93hHrO/vib3ozEw4p/+j4Q0Gg8FgEDg6SvPNmze3EgPf4EmJY2of4G/ulGKQ/Cz5OLKzK7NjqRLtzz6Hrvik85JotyunYrohJDj+b80utV76ZA0SCWuPUNsRkGgjtsPnnNjvYwncOXf5P2CJscuT6fw6Kz/Mo0eP6re//e2S0DZhOjBL76lxEcXGPayLo806GjzWg89YD/qEBJk+PJPnen91fjEXkmWOvHad38c5YSZ85t5cAzQ7+uLoRq9B3ruKIN2jrgOcY/YZ40YLz/3v6MJ33nlnSRpe9e/5ZVy0lxojbbsskLWojjzampytKJ3Vgr3hHD6u7cooOUcQTZU+dbmpPAe/MnvV+4+9lOOzL81z3vnU6KNzYh2B22njzvuzD68ry+a9j9WDdTTNZNVBw0sry97eSYyGNxgMBoOTwNHk0S9fvtzYxVOqQttDE+misaruSgiWNG03tuaXEoKZLzJarWorkVcdpAgkYEsT/N0xkfCTca5yxjqp2Zockpzt5XmtfXf0zYV0s68uO7SyoWd/PA7ap49dwUf+R5+ePn26W7D0008/3eTDdXlDzmGydSD7bUJxS+X0nzXPe53zgxRtVonUQpGwvVfRDjvfjRk1VkVWOz+My8K4SC6fZ3kg2nUemc9Tl+PkNV35mxL2vVvbYI66aMDUnldSOv5fPkfTQ7uvOuwVtAz7tkBqT9aETbq9IjNPrAjhu7VkflxaCNBGRofz3rKv3u+FjmkF0H/W24w4+e6wBcFaqdcotV/Hb7h4NehYtuiby6BxbeZXsr+6PNL7MBreYDAYDE4CR/vwXr16tYlI6hhJ+OmIO/uREv52t/S+4lur6tkpqg5SQPp0zJZhf5x9hlVbCcTMF35+V67D5VmQeJ3PVrVl0rDdeq8A7CryqfPdAWuhzA33Ig2mhOdcmVevXi01vIuLi/rggw82WlpKs0huSHPOJ+vWhRwmItIYI/faf5pjZ05dvJN7+Dvz8lZRoDyf8aVWSPurElbAn1fVJue182lU3bVgfP7551V12DvPnj2rqq0vr+NuZD1WZZW6PWStwJafjj+XteZcXl9f70baXVxcbM5NjtmWCHN1Ouc2+8nc+n3maN2Oh3VVRsvRm1WH94yjc7EWdbED1sb5ydy6H7mnbA3gnLoQbe5V7mF9nENqa1xGIwNrdLYo5ee2Rjli1u+EqsP65x7dy0tOjIY3GAwGg5PAfOENBoPB4CRwtEnz8vJyQ02UKriJpU2503ZCVcmdqOrw9wySsXPYtD1doAtmMJ5naicTUVdtzQGrBFc7iPNaE/O6QnCOi76h0juJd1VCKUG7DuRhLRzCne0xTifldyTVDwXUdFWHcWUQAe299957VbWlxuqCiaBewhRHG4zZCdrZZ9bUSduYnrrAGq8762D6rq5Mi8PPMeeYjq4LDHL4Nm3aTFm1DU7BZOYAmC503kQDdkE4qCX75nJLgPlLM6yD2vaSh9k3rrqd6VAOyLB5kjnNtJRVpXZgYvjcJw6wYq4pYWTi7K59u3lMopGfuZK6g1lM8p39XwWtdCW//E73O8ql4XJN3a5N+XvfAX7ncw9rnS4p+ug9+hCMhjcYDAaDk8DRaQk//fTThsw3k2ztXEdatvSW2tOqrASSgiXTLqXBoc9oECZFzvv9HMZhqabri7UbE+Tm52gfJj+2lpYSJFK/w4I97o46zfRPDj93+Za8x6HEnvO9QJ77woRvbm42FEU5rpUmbK0qJUW0dTQGJ66aEo3Pcz5YK+/V7nm0Z/opwuu7QBDTc5mg2ZRzJCTn/6xh27KQEjD/4+eKJL0L+XaQmcG+TK3ANFsmFXAB3Oz/6u8ElIYAbSaDLVZBZA6w6xLPncrigDC/Y6q2JOvMMWe9Kwnmc7Jqv9Oebe1iHVaE+934bLnq5oK5dbuZ9pIgtaPqcJatOa8o1fx71WG8SUhQdVdT7qjrpjzQYDAYDAaBozS8q6ur+te//rVJbE1pwBI10jMSeCc50h7f6kgZ9h85ITSBJGDNYc9fBVZpAgknsloyWaUCVG3D3q3ZOfG16i4xasLS5x6Zr/0tTvrvwt895x5naq6dX28FSrwgEXaUYmgAjBktnaRiawz5+0cffXTn2lWyevaVOWO/pfaXbXd753e/+11VbTUHlyXKZ66sHKb66q6xBkNb9Lkr20R79hl7D6X2ZKncBN5duoKpuYDJwFPD4558P6yk9LOzs3ry5MkmzD6tA6u9aJKM1BScQmKN3uk8aRGx5cP+OMaa9zhlC9gqkFqT01BWvvW9WAn7Vr3GLhSc7TuVwDSFuXf8bvT7xmQWec0q3colmrIv4KEpCVWj4Q0Gg8HgRHC0D+/777/fUC+lFOMkaqQopJa96EJLDV1JF/rh5+GHsES3J8WaIBd0Nm4kbEf7OarRdFGJVZFa+/SyXcNaommC8nf7KJ003fncTB4MvJ7Zhy6htMPFxcWtVM49WV7EfhH3ryOudXQuEuGKEGDPj7SKSIM2LD8zEa8LcSa8DtYOHC2J9pi/MyeM136flJpN7u7xeG92/jhbSBxB2BXkdEkXn/n09dty8dNPP+1K6hkdbh9Y1WH+TfjAfugo31bJ/N77LoJctS08DNxWfm6yAvvhuxgFazy2gnR0e+6L6fwcfdyVlqIv9vuCztriEmoddVnVXbIJ5skRnSvCg6reF74irTdGwxsMBoPBSeAoDe/y8rK+++67TamItIsj1dle7WjJvdwJEyU7Ii2lOJO2Wlq23ZpxdO05siqlZvsubKe2RJKaxapIJODvzh4OTB1kKTQlPOenWHLuNNhVxNiK0qjqIBkmofJKSseH57GmNuOit9aIve+6/6GNuSSN/cBd+45eZG1TK+SezldXddAgOgorWx3cZkdH5b7YN866ZKSlNQefCfZ156u2b8g5XF3urX13qxJGub/pP+f21atXSyn95ubmTnHhjvQa7dHaNP0kirYr+bUqxGpi9rRumKzcliXQ+aqdS+t+5LvEVg1TJfp5+feq6PYe/ZmfZw1yjwjaz/H71fnACed2PyRyNfO2h1psMBgMBoPA0UwrWR7I+VFVBwnbJLNoAZ2/yhKw7bqW/NIX4NwPk6laE6taSylmmUiJ5D4C6+45fp77aMk+pUFrgZZ4XFRxT3J1JGHn97FvzeVoOqnavpSff/75wbZ0F1mtOuSfOWp1pe1mf7gWSR7CZ69Xrr2ZOzynPDf9PvYJO/Kxi1i0P9Faotc6pfRVjqr9ZbmWzifzPc7dyzmxxuB1554uRxWJm3E6OrOLcnSkcgeYVpg3E1xXHdbQ54P3DpaETgOyNmjfaue/9pn2nulKSzmS01Gg1mATfkfYWtCdT7Cyeu2xNHk/r7ThPU3f88YeTb+918AFj5nPjFGwZeb169fjwxsMBoPBIDFfeIPBYDA4Cfwi8mhCfK12Vh1MSQSvQPCKWYgE9I6mh/ZMnOyw567i+SpBu0sTsInPTn4nnmY7Xe26qq2ZKs0SK5OCzROdKcvBJHbOdqbWjgopn8s9HTk243DF6y75ekUw3AGzlM3gSYnlVAub0ehDmjdsAsF89vHHH1fVlhKpS52wyZH9x3PT7GpTHM8laKRLrHf6js36Nv2kidMmq440IK+r2roaHGhFn32usk8OVmEuOMe5Bk5ZYA7oE2c+18LndS9oBWqxbv3dbxMAOPUo3x28X3BdMA92OXQ0YXZPOLG9IxtwYvaq/l5HnWgqwxURdb6LHbTkvjpdwWOs6tMP8rp8R/q942s6E6oT6t1X1ijfb05+n8TzwWAwGAyEoxPPs6p1F7Ri8lGkOr7BIftNJ/uKfBhpEoc0zuqUSJBW90J73UdLBJawLOXmMy2FORCA/uTz+Z+drSsqnnzein7KBNA5n2BFwdNJn9bkXJZmr1p6JnvvlXh5/PjxRuPOOUaawyrg4ArG2O0d9p0TwaEce/HixZ3xZfv+29J6R1y7SjEBuUcdrOKgAUu3uQ+8F50s3WnXTglymSWe2yUtW+qnXbS27nxZk+A5XgvSTnJOOlorg7QEzj9aZwY/WPMGTtBOiwL3M7dfffXVnWsJwPP7oerwbvK5d/BNF0xmq80eubL3hNfflFxdOlRXBir/7hLdnbrlABunVlQd9rHXHfq7rnSay7ixH/yuzHVzQvvjx493A3DujPlBVw0Gg8Fg8B+OozS8qn9/o68kyKqDpO2yJkh3z549u/P/bMeah4lYO7uxpWZTgHV0VCvfljXMruigQ29t73dB0LzX0p8lr84W7TFbO+iSyO0fQSKyNNj5KJ38bf9mhoIz5vSt7lGivX79ekM/lH4d/GDsIZcK6RJl6YP7z9oRjk6/83lOkPXznHqQ15pyyT7OXA+3Y83K1om81z4pawFdiDmai8sdMSd71Hr8z8Vx+fmPf/zjzuc5djQiW35caDl/Ty1thcvLy/rqq69uNTDQWShcUmplzanarovJyn1vpqc4TWDlH+usRD5L3TnKsee97hPtm3gjx+oz6YT3bLOzbmVbwEVYs6/A7yhbjfIz5n5VDDnnhH2Q3w+j4Q0Gg8FgEDhaw7u+vt74ANIO7+KMjgwjubiLDLJEgk34IWUsgKV1UwDl7/eV6+mislaFX1ckstmuNasuSsr3285uiX8votTSvxPsU6N1Mm9SPmWbXUK1IyU7YBnAH9tFCLK+aGVoEzyTPmW/vWYrHy4J6fgHq7Y+B/tSO6nRY7SPqIuapd8uyOsE586vuSq14jXNOfG13qP2C+caWLL33HTEzdbkgMkLus+Sum4VbffmzZt68eLF7bulG7P9YrRL1DiWpQ7035q9C+d27x/vEUdgJ1ZllLxX986yk9f3CNutwfuMmIi665t9ht4He4VXWS8nlXf+bY+D95GjrxPsq26uVxgNbzAYDAYngaM1vKrtt3FKBUTkrMhc8bHktzLf3p1vqWobLdcVcTTVT15jrOzsqxynHMeq0OJDS8zntc45SWnRUWfW6JjPTrox/c9KAsp1dHkja/FdHqD3weXl5b0UP9aqE8wtviBs9UjpXSFR9lvnM8n+Mg7y86qqvvjiizvj6HKZPM6V1sQcI3Wm1uRoPOd7ed93UXrWYFbr4/5m+47kteSfv6/8S4wh6f08duekskbp7/F++vHHH5ca3tXVVX3//febeUwNj/4wRvYIc4FvKPvta/z/zscFVnEAq3XK/q4KAnfk6I4rsDZo61B+7jzMVcmffJ775vfO3r7zHNg61EU2my7O1hX7knPMmQkw5NGDwWAwGASO0vCQtPbAtzdSkn0qSIHZDhK9i05aUyGSJyUSay/2fXXRTc5hsp/CZUHyM5PTOoewK4XS+b/cp+xPjsssFis2ks5HaUnI0mH6XGyjt5/J1+X9Ga17n6S1p83Qnkmj2SswduQ4VvNiX0eXp4Rf7/nz51W1tRJ0jDUuSrwq4pvrYU3BUrstC5225qg1s7LYt1y1lbTtQ7Em1o15RWK73LoAAAQkSURBVMpOXl7VYX2ICr2vsHI3jj3rABG+9o/le8Aah31c9O2DDz7YtL8q8ePyNnvvEEfc7uU40h77mL5143cpJ7fryOs9C4sjPl1wOa+xv8+WLe/Hqu3720xMXbQ67aDJca0jf7Hy5NizTFBHmt1hNLzBYDAYnATmC28wGAwGJ4GjyaOvr6835qgMO0a1JknTZkJMI2lOI1TcdDmmjeoCHnyPVe4ueMVmsFVtro6OzAENjMNm0YTH4b5bRc9nr8KCbU5MM9mqGrpNGB0hq8frkOw0Rbs22n3Jn2dnZxui5C4k3onKrm2W99jUYxPzKpG2aks/9vnnn995/kPIfFdpMDm3DkdfJfV7P+Q9rpHmCuT5PK+/TU1OsO9o6Vhbk0wwljxXJpmgT5xrTNHpfjDxwF7QF6T1oKudZxOvXSpdCob3CNfw7rKbojvbfpfYbZDnyqZMv0cdPJX3e46dWO+6oPnZKu2hCxL0PcekUtkNQt89z5nA/+WXX7bjwITZEV44PWXIoweDwWAwEI4OWvnnP/+5cWR2IcqWGlelSqoO39guL2Lp3YEoVQcJgHvsdO8cpZZaHJ5r53XVVpPrQrrz767CummwnECbkpi1MTvDV8nlea21UocU7zm4Ldl347KGvJc8fH19XT/++OOtNaCrgv3ee+9V1XYPsbbcm5qygyosCTvUu9MOTHbr/ZZjsqZlrakjgLb0ChyQ0pH83kdSbW0u4YAaBxF0icDW4FgDJ2fn+baWY63URMBVW41rjx6KvZOaQVVPBO40BDTVPZJtrqEv+T7LcaSG2tHAJVwSKvvLc5ljp9TsWT1WVgIHfHV9WZFVJIXiqgzZKhUtLUvWDleECnk2WKdVuhKpSTn3WAVWlI17GA1vMBgMBieBo314XQhofivzbY4UjlRmqbnTFFysE0kLKYI2U9qgffuputBl99HSs8PFUzpblclYJebmvabPsXbWFWS1JsdPk6t6TNk3h0pbQ+6KU3rsDqXPtXZhzL0inpR48Rx0FGwOA7d/pJsn98+2f7TEXONVSoGfm4nu+KVWlEhuK69x6Lyl9s4/Blb+Pv7f3bMqscLzOG+dP87jYQ7oY/pyrUG4aGynIdlfdX5+vrQOQEu3l8ZjomKe6bI9uc9NjWgieL87cm5sMbC23vnj9t6bibzH2hHPM8GBNdy8dlUc22PJ51kL9DtrzzfuPeR3ZqYY+BpbvzhvaR3xGei02hVGwxsMBoPBSeDsPiqoOxefnf1PVf33/113Bv8P8F83Nzfv+5+zdwYPwOydwS9Fu3eMo77wBoPBYDD4T8WYNAeDwWBwEpgvvMFgMBicBOYLbzAYDAYngfnCGwwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUlgvvAGg8FgcBL4XytoTnoBJksQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0bnlZ3/n9nXPuUHXvrapbI1CMArHUtNpriYpRREPARMWJNqigxLZtYqsx7TJKjFqxMahJ0HRao0HTRBwQowacBwTURjRq4oACMgk1QdW9VXWr7q2609n9x36f8z7ns5/nt9/33CpZxXm+a531nncPv3nv9xm/vzYMgwqFQqFQ+HDHxoe6AYVCoVAo/E2gfvAKhUKhsC9QP3iFQqFQ2BeoH7xCoVAo7AvUD16hUCgU9gXqB69QKBQK+wIPyQ9ea+3prbXXtNZua62da62daK39RmvtK1prm4trXtRaG1prT3wo6kT9z2yt3dxa+7D9AW+tfX5r7f/8ULdjL1jMz7D4e3Zw/omtte3F+a9yx29ure0pb6a19sbW2htRx4C/u1prb2qtPecS+rWndeeeh6escO3QWnspjl3WWvu11tqDrbXPXhy7eXHtA621K4NyvsL1fbbeRzKCuY7+3vsQ1XV4Ud63PETlPWUxl48Pzt3RWvuhh6KehwKttc9orb1lseZua619b2vt0Ar3Pb+19vOttfct7n1ba+07W2tHHs72XvIPRGvtGyT9f5KulvTNkp4l6SslvUPSf5D0OZdaxwp4pqTv0Ie3xvr5kh6RP3gO90l6YXD8yyXdHxz/EUlP32NdX7P4I162KPPpkv5XSeck/WJr7ZP2UMcz9SFYd621o5J+WdKnSvrcYRh+CZecl/S84Nav0DgH+wFPx98dkn4Nx77gIarr7KK8H3uIynuKxnU1+cGT9A8kfc9DVM8lobX2CZJ+VdL7NL7n/6WkF0v6jyvc/s2SHlx8/n1Jr5D0DZJ+ubXWHpYGS9q6lJtba8+Q9HJJ/88wDF+P069trb1c0sP6i/1wobV2aBiGsx/qdjyc+BD08eckPa+1dmQYhtPu+Asl/aykF/mLh2G4RdIte6loGIa/SE69exiGt9iX1tpvSLpH0hdK+v291PU3idbaFZJ+RdLHSvr7wzD8dnDZz2kc0x919z1O4w/0fxbG+cMRfo4lqbV2VtJdPJ5hnWdjGNk7Vir3UjEMwx//TdSzIv4vSe+U9CXDMFyU9PqFReaHW2vfOwzDWzv3PnsYhjvd9ze21u6T9MMahYc3PxwNvlTJ9JslnZT0z6KTwzC8axiGP81uXpgBbsYxMz29yB172sJEemKh/r67tfaDi3M3a5SGJOm8mSvcvZe31r6ntfaehbn1Pa21b/VmKGdy+8LW2itaa3dK+kCv4621J7XWXrUwMZxdtOnf4ZpPb629vrV2X2vt9MIE9bdxzRtba7/bWntWa+2PW2tnWmt/3lr7AnfNKzVK5zdG5pjW2nWttR9qrd26aMvbWmtfjXrMhPaM1trPtNbu0eIF3xvfhxg/J2nQ+ONi7foUSU+W9Cpe3AKT5qIPL22tff1iLu9ro1nyY3DdLpNmBw9q1PIOuHsPt9a+bzEP9y/m+Bdaazf5tqm/7o601r67tfauxZzc0Vr72dbaDaj/2tbaT7TWTi1MQv93a+1w1NDW2nFJvynpYzS+MKIfO2nUNJ7RWnuCO/ZCSX8tKbxnsfbfslh/9yzWyONxzfNba7/VWrtzMS7/vbX2FUFZq87Rc1prb26t3bso7+2ttW9P+vSwobX26tbaOxfPxltaaw9I+s7FuS9ftP3ORT/+qLX2pbh/YtJczP2F1tpTF8/96cVYvKS1XINprX2WRoFGkn7HPe+fvDi/y6TZWnvx4vzTFuvL1us3Ls5/bmvtTxb1/35r7eOCOv9ha+0PFnN/92I8bpwZs8s1WvNevfixM/yUpIuSntu7Hz92hv+2+Nypu7V24+L5uH3xHN3WWnvd4llYG3vW8Nrom/sMSf91GIYH91rOCvUc1WiK+AONkul9kp4o6VMWl/yIpMdqNE99qsbBtnu3Fvd+tEZp5M8kfbKkb9Nogv1GVPfvNS62F0oKXzqLcp+0aM8ZSd8u6a80mh+e7a75bEmvlfRLkl6wOPzNGhfxxw7D8H5X5JMl/TuN5ra7Fu36mdbaTcMwvHPR9uskPU3LhXR2Uc8Vkn5X0mWSbpb0HknPkfQf2iil/ns0/yc0LsrnSdpaYXwfSpzRqMm9UMsfuC/XaBJ/9xrlvEDS2yX9E0kHJf1rjRaFm4ZhuDBz78ZiXUjS9ZK+SeNc/6y75pCkY5JeKul2jWvlayT9Xmvto4ZhuEP9dXdQ0m9I+jhJ361R+r9S47wc125h6lUa5+MLNUq2N0u6W8sfU8O1kn5L4zr7u8Mw/FGnj78j6b2SvkzSv1oce6GkH9cocOxCa+3FGt0P/6/GF/2xRTvetFirZgb9CEn/ZdGnbUnPkPQjrbXLhmGgX6k7R621j5D0ukV536lR6Hjqoo4PBa7VOBffI+kvJJkF4kmSXq1Rk5HGd96rWmsHh2F45UyZTaOQ96Ma+/+FGufjvRrnPMLvSfqnkr5P0v8uyRSGP5+p68clvVLjPH6ZpH/TWrtWown0uzQKdv9G0s+31p5qP1JtdEm9XKNJ8TskXaVxPt7QWvv4YRjOJPX9LY2/H7vaNQzDfa2192l8566LT198/qU79mpJ12h059wq6VGS/p467+cuhmHY05+kGzQ+PC9b8foXLa5/ojs2SLoZ1z1xcfxFi++fsPj+sZ2yb15cs4XjL1wcfwaOf6vGB+z6xfdnLq77+RX78mMafU6P6VzzTkmvx7ErNP6gfb879kaNPpenumPXa3yB/nN37JWSbgnq+TaNi/mpOP6KRV1bGP/vw3Wz43upf258nyXpMxd9e4zGH5aTkv43N+9fxXlFWYNGAeOAO/a8xfFPwbi+MVhX/HtQ0lfOtH9T0uUahYF/usK6+8rF8eeu8Dz8Sxz/RUnvCPpsf5+5ynOg8aX1l4vjn7g4/lRX71MW545KulfSf0JZT9L4jHxDUtfGop5XSPqTdefIfb/i4Vp3aNN7Jf14cu7Vi7Y8Z6YM6/OrJP2+O354cf+3uGPfvTj2Je5Y0xjb8LqZej5rce+nBufukPRD7vuLF9f+M3fsoEah6UFJj3XHv3hx7Sctvl+l8Yf9B1HH35J0QdKLO238zEVZzwzO/aGkX1pzfp6g8V3wCxivc5K++qFaB4+EII+/0uhj+eHW2gva6ItYFZ+l0Yzz5tbalv1J+nWNJqxPxvU/v2K5z5b0i8Mw3BadbK09VaPW9hOo94xGCe4ZuOWvhmH4K/syDMMHJX1QsdOa+CyNpsn3oK5f0ygZUdJiH/c0vr6uxd+qjuY3aJTUvkzS52rUTF+z4r2G3xiG4bz7/meLz1XG66UaNeWnadS4XiHpP7bWnu8vaq198cIEdI/Gh/+0xh+Hj1yhjmdLumMYhtetcC0DTv5McT/eIOkBjZL7VSuU+2OSbmqtPU2jFv0Wv8Ycnq5REONafb+kt8mt1YV57qdaa7dqFNLOS/oqxWMyN0f/Y3H/q1trz2utXb9CnybrbpV7VsSZYRh+LajvpraIQNe4Ds5r1F5XWQeSm99hfIu/Vaut03VhZlANw3BOo6XnrcPoBze8bfFpz/inaRTkOPfvXvzxPfWwoI0Rxa/TqETsRGkvxuuPJP3z1trXNpjE94JL+cE7ofEBfMLchZeCYRju1WhGuE3SD0p6Xxt9K1+0wu3XL9p3Hn9/sDh/Da6/fcVmXaN+MIU9vD8a1P05Qb0ngzLOajW1/XqNC5P1/Ixrq8euPl7C+LK+T+9fvlPfoNH88kKNfsnXLdqwDjheFlywynj99TAMf7j4+/VhGL5Oo3Dw/faj3Vr7XEk/rdG08qWSPknjD+SdK9ZxjcYf9VUQ9SUK636zpM/TKMD82sKUnWIYTeG/p9Hk+nzlEYS2Vn9T0zn9n7RYPwvTt5lpv0Xjy/Jpkv5T0t7uHC3a9xyN76BXSbqjjf6zdB21MaVpVxvbQ5fmdEdQ31Uax+UmjabvT9XY55/Qauvg4jAMp3Bs1ed6XdyN7+eSY3L129z/rqZz/1RN3x1RfZEv7WrF77QJ2piG8EsaLT7PHoaBsRNfoDES9Fsl/Xlr7ZY5P2gPe5aQhtEO/0ZJf6/tPdrvrEb122MyyMMw/A9JX7SQPj5B0kskvaa19nHDMPRs2yc0SjpfnJx/L6tapdEaTYU9p+6JxedLND4wxLng2F5xQqM2+E+S82/H90kf9zi+T5upp4cfW9TxMZpxbv8N4a0afR3Xa/SvPV/SO4dheJFd0Fo7oPFBXgV3Sfrbs1etiWEYfqO19jyNfqFfbq09Z9gd7Ur8mKQf0KiZvDq5xtbqizSOA2H+u6drFB4/bRiG37WTl6JlDcPwBo2+okOS/o5GM+wvtdaeOAzDXcEtt2m67kIry16aExz7NI3P+ecPw/CHdnCxFj4cYHP/pRotPQR/rD3ernFdfYyc1WghGD1eo+Wki8W8v1ajYPUZwzC8jdcMo7/8xZJe3Fr7aEn/SKMf9A6NPue1cKkmge/W6Cv5XgUv3EVwx7Ehj9T8a01fDJ+dVTaMAQlvaa19m8YX5UdpdJraj+1l2p1n9KuSvkjS/dFgXgJ+XdIXttYePQxDpBW+XeOP6ccMw/DdD1GdZzX2j/hVSV8n6X0LU+ie0Rnf6No/jI6vWM/bWms/oDEQZ2JG+hDgYzUKIaZpXq7xYfZ4oUZfnke27n5d0vNba587DMMvPJQNHYbhFxfm15+W9Auttc8ehuGB5PKf1qhF/ekwDJT2DW/W2PanDMPwnztVX7743DFTLiLlPm+tDgRYCMu/tXhZvlaj/3Dyg7cw1e153e0BUZ+v1ygcPZzw6+rhxG9rtNJ9xDAMWRBNiGEYzrTWXq9xnb9sWEZqPl/jc9Jd9wtB6TUaBanPGlZItxjGVKNvaq19jfYoUF7SD94wDL/dRvaPly9+fV+pMQnxuKS/q9Ee+6VaRhoRr5b0L1pr36oxku3TJH2Jv6C19jmSvlrSf9WorR2R9PUaH9LfW1xmOVff2Fr7FY2mhD/UaHr4RxrzQ/6tpD/RqFE+WeML/fOHPAqph+/QuOjf3Fr7VxoDVG7UOHEvGIZhaK39Hxqj0g5qnNi7NAb6fIrGH6eXr1nnX0i6urX2jzU+9A8Ow/BnGqO5/qHG6M/v0/hje0SjGebThmHovpBWHN+HHMMwfO3DVfYMPqItQrw1rtPnavxR+MFhGW38q5I+fzGev6hR6/06jb5Oj2zd/bjGQJyfaq29TKOP9diinu+/VOFrGIafa61Z1OXPt9Y+L7KwLH7kusnVwzCcaq19k6QfaK1dp9EXdK/G9fzpGgN/flLjD+OpxXXfoXGd/AuN63rC6jKHNkaGPkNjAv37NUZJvkSjxjYXkfg3hd/R6Lv94dbad2r0dX67RivAYx/Get+mMQr2q1prpzUKY385o82vjWEYTrYxleLfttYeo1H4vE/j3H+GpF8ZhuG/dIr4do3m0J9srf2wxoT5f60xOGhnDtuYIvWDkv7OMAyW6/oKjc/ed2g0Tft4ivcNw3BbG1N4XivpJzW+1y5qDHa6TKN5fU+dfigioD5Fo8/odo3S0EmNUu4LJG0srnmRplGahzWG49+ucaB/WsuIshctrvnIxfH3aIw6ulPjQ/JJrpxNjaabD2pcKAPquFnjIjq7aNt/WxyzCMZnLup81hp9frLG0OK7Fu16l6SX45qna3xhWsTUezX+yD/dXfNGSb8blP9eSa90348s6rt70db3unPHNf7wvUfjw/FBjQ/rN7hrbPyfgnpmx/chWB+z46v1ojRfmtz7IozrG4Nr/N+9kv5YY8rBlrt2Q2Nwy20aA43eJOl/Duakt+6Oanz4/3oxJ7drDMG3yOBsPlbq8+L4ly/qfZ3GIKybFUSN4p6s3n+gMTDm1KLPf6XRP/fR7prPlPTfNWoF79IoGO1pjjQ+G6/V+GN3djE+PyPpIx+qdRc8T70ozXcm556jUVB+YDEm/1ijZetBd00WpXkhqettK7T3axdtvrAo+5MXx7Mozcfi/rdI+k0cu2lx7Qtw/PMWa/w+N/c/sspcaFRsfl/ju+N2jakPh3GNtfGT3bE7FEdN74yjxnfeKzQKlvdrfF7fIul/2es6aIuCC4VCoVD4sMYjIS2hUCgUCoVLRv3gFQqFQmFfoH7wCoVCobAvUD94hUKhUNgXqB+8QqFQKOwL1A9eoVAoFPYF1ko8P378+HDjjTfKaMzsc2Nj+btpxyzdwT63t7d3leXTIZgawXv3kjqxzj0P5bXR+UtJ/Vh1bHr1Zp9+TrJ6Lly4sOszgqe1e+CBB3Tu3LkJz92xY8eGa665ZlJ3tA7WaTfvnaPYe7jWxaXc83Bh1bb0xmzVcY2u4fvBn9/c3Jx8njhxQvfdd9+kokOHDg2XX375pD9ReXPPRW+9RdfModcmIju3yj2ch1Xq9e/l6JronuyarI3Ru79XPo9zjdgn14fHxYsjqcv58yMBzjAMOnnypO6///7ZRbrWD96NN96o17zmNTuNuPzyy3d9+g5Yox58cCSvOHv27K7j9ilJ586N1JL2UmWHopcjMfdyjBa6tTX7Mfb3WJvsmLWNiOqze/mjEb0Isn6xLJbpy7b/rY32nXNg36Xxh8qfs3vvvXdk2zpx4sSu4/5aWw8HDhzQW94Sb/x87bXX6uabb9bp0yNZhM25L8/aY2No5du1dt73ldcaOG421tGPPMffrrF61vlRtnb4FwHXl40Xr7Xr/L18abEd7HcP2bPh67BzdmyVHzyeO3BgpJo8ePBg+F2SrrxyJGc5fnzkHj5y5Ii+67u+Kyz/yJEjetaznrXTFlsHhw8vOZjtHcT3jn8pEnbOPrOxjJ7TnvDl75krxx/n2HvMzcPW1tbkXvvfxt3utfXHev0xu4blskybW3+PHeOPpR33bbTybf6OHTsmabk+rrjiil31Sct31e23j6yOZ86c0cte9rJwXIgyaRYKhUJhX2AtDW8YBl24cCGUDAzUcCgJUYPwxyJV1SOSbljfKtraXBvZLn8N27qK2ZWaAq+N1HZDJmnb8UiyY3/s0+rhd/9/ZjqJ5pzlR31jXygp+jnNtBm7xvrqYfPAtbGK5sM2sP6eVpiNcbRGKVFT4l2ljQau0Z6VgHPBZzDqH+/NTFqRBhuZKaM++PJ7Wo2htaaDBw/uaHbRfNn/Zg3g82mInmmWscoY2zU2h3yn8Hny92fPe9SvTIMkomfaQEtM9NzyWnsHU9PLTKr+XraF9/jnmGOeWa68hmea/dGjR3fu7a0fj9LwCoVCobAvsLaGd/HixYnU56WmTALIJGJ/PyWOOYdpVB/9clF7elKKvzfyFVESyaTBHuacyb1zlJp7/k2TpCItkGVnwSk9TTa6JxvT1po2NzdTbWfVPkX9kKbSK+c48q1RGs98UZG2mPkOozWbabXr+MkyDbK33rg26bOLJHyOPdsajZWtL/pw7JPno3q2tra6QQ5bW1sT60pvvKy9tjajZzryI/fgxyubu+wzgo1LLyCFmiL7RUTvOZabWbiittjYcE6pbUdts7JMI4ueZ7sns/JFfnQbN9PwvNVxDqXhFQqFQmFfoH7wCoVCobAvsPYGsMMwTFTTSNXP1OZeDhjVUpqherkmmanRVGJ/75xJpBeMkx1nO6KAEILmvcjclplGeiZbpiWYGYL1WXivtDQ7WDh3FmwUpT/4z55Jc2trazIW/ru1l2YOQ88MmgU4rRJ0k63NaN7mgpSiwASuawZ1RObWrI1Zfb01G6UCSVNzX3RNVn60vrnOonQElrtqUMbGxsZkPnr38vm372bGlJbrzY7xWe4F52VBXr3gDob0c5335pLrOEtlicyhfG74Tozy4rLvfEb8eGZBXwxW8WvM2sI1c9lll+06H5lqDx06JGl8d62SJyqVhlcoFAqFfYK1g1a8g9d+db3Ub7/QPJdJQv4YpecotJeg9JJJopEWSumPAQ6R5JM5kenM99JOFp7NRMxIws80PLbRz0FWX6Zt+/9N06NTOtISmLB7/vz5ldMSbP79vGTzbddG0p5hTjOJxpHznQUmRdozyyB6mmQmNUfBMVEaj0cvxJwaTFZ2NCa99BF/nT/HubVPk8QjbcdrDL21EyFqd6atk7yA/0sxkQLrMWRWG2pxUUAfy+UYR6kTmeaVpYL4/7NAmqgPmQUms5hEc8Br+cz4dz/JJTJiDT8mfOdubGyUhlcoFAqFgscl+fDoI7LzUp5iEIUoZ6HvqyaIR/XwexQSTRs6peWonsx2z3p8OxjSy+OrJOhS8qJ22vM3ZSkHUWg5KYN6fhNKX5ubm10pfRiGieYQJQ9nEnYUWp6lu2RryLc/83FxPfS0NSKyYETajD++SiIw547tiMLUs35k0ro/l6Uj9NbqnNaxCjlChGEYdO7cuR0tINKI5wgn7F1Frc5fQ2IDKz8iPDDwfWbPz5EjRyTFqU2m8dp4MMnba/PZ3NGHzwRxX37W5lVSg4heWgzbxndXRGVH2rO5WAxfrrf8rGodKA2vUCgUCvsCa2t40lSq9FpAZkvvRTzRn5NRfPV8T5l0Hkm+lC6pqURJxRmFVBYJFUkx1k/67iJ/VqaZZJJQL7LLyidlW1QfNUZG2EX+BSt3a2urK2ltb2/vlG9t6kV59ajeDLT9c76p3c75IH2/suRy39YsAdmkeGmqJXOMetRzbHeWRLwKeQHXaC9JnlpNllwelUNrAf1avt3en97zh549e3YyPtG8zCVZR5YQ+taycYrA58Q+bf79OrA20NJDq5Af+2z90vqRPa9R+zN6RH+t1cd1kPkFfTmcb66dyLJk5NEZ/VmkKXtiiNLwCoVCoVBwWFvD29jYmEgIXgrIyFt7UiUjqeZoZiIpPTrnv/ciugyUpiINiDksq2h4lHhpQ2cfPOh7sDZz+5NIG83y2nqUYPS7WFstevO+++7buSfTqiIMw7ArEi/yrVLTYT/4Peo/NVSOdRTtxTnl9ygyOcvlZG6dryfzt2X+OdYdldUjHs+oq3hPz9/M8Yw0vLltdSIfNnMPe2TfwzCE0Y4epknZuZMnT+46b8+ef+YZUZ5peJGvk+uNa6Xn6+S89CxLtja4hRotDNG6y7YB6lmWMiuHfdp7x8YqevYth85g19o7JIoDoLWwl0Nq//v3aUVpFgqFQqHgsJaG11rTxsZGl8UksyWT/cNHS1HDo5/KjhsziPf7WDmM4MqYCHz5tC1TW4h8hfSLZYTMUZ4hfXg9O7X9f+bMmV395Ia6vN63f84n6plWrF/M2bK2Rj6JU6dO7bp2jjXDE49Hfhgbf+sjpf6e1JyhF+Gb5d1xTUVsMNysNov49f9nEXZso5/LTGPIJHwpj7TNIi4jn4phLhrV30Np3MYo2viTOWdzeXgbGxsTy4tFQkrTdWt1mW+oF33onwPfXs5XlD9Gjeuqq66SNG54LO0eP6uH4xVZLtgvPgt8D0Xa+9VXXy1JO5suc81E5Ohzm+JSA/RttnXHjcGZl+nnytrNdz8tZV5rZJsOHjxYGl6hUCgUCh71g1coFAqFfYG1g1Zaa5Mgiyh5mJQx9mnmKm9GoCpvZrNsnzKv0prZxNR2A4NYvJmIYbPmTLV6zIzozRFZEAcDdxiY4q+hmcDGwj69qm//W5AIx82+RyYt1ttLXeC1do3V41MOfL+lqXO6Z2q0wAOasvzcR+Pg+xaFXDNYwcxDNPlGJg8eY4AAAwV8uTR7sq1+/ufM3wye8GPCezkPNBf5c/bJ8aNJLUp0Zr96zyBN9hkJfER/5+drbn1am+gSkJbr1c496lGPkrTcM42BItLynXHXXXftaidNwda/aP0x4OXxj3+8pKVp04/F/fffv6sea7+1w8bHngOPKOBDmq5/q1eSjh07tuue6667bldb7fn19dm6pmmTLo/M5CktTZnHjx8P237PPffsXEtzt5mprW3WLxs7aTkPV1xxxU4ZZdIsFAqFQsFhTzue90KIGdptkpdJDvZL7aVKSohz9GRe0jKJw45RKjfpxbQ2Xz7LZYBGRGzMZFoGBFCz9eXQQWuh0zYm/h4Grdgn+8dE16gtHMcokIfHrFyTxkisK02d3pubm6mktb29rbNnz+6Uz7QKKQ8m4rrw92Tkxpwnkxj9vUyuZeBTFI5u15I6Kgti8f3ISMIZwBNR9bEt1OK85s2gASb1cm311kGWFuHBkHxrq81BRApOra+11k0895SGNpdRW6wu025sXCKqPKvbrmWqB9eUn5dsyydq4v5dZeWZ1Yaaqr0r/VwasjQYXmuBKpJ07733SlpqdqZ9so2m4a5SX28X+4xSzuYrsh7wmbdPu8c+o2R8G6/LL7985UC20vAKhUKhsC+wtoZ34cKFMPTeQOnRpAz7Ne5tvUPfViRhS3EicC8815ft/2fSo2laJomYjVhaSjYME6dG20vGvvvuuyUtx8S0J699so30s2S+xIi2ycA20g/lyyexLVMY/LiuGsJu586ePZuG5vu+sHxqzdHaYeIt29KzShiYVB0lRVPj4SanVkakrUdScdTGiOjcwNBv+rujYzZGfAZt3Xl/OsP37RytK37uKfWzv5HPjXR3kVbjsb29nRI3sD3SNCWCz6801UQzykGmVHkwCZp+OdMePez9llFuRb5Oji21NOtftBWUvcdoYTBN06cX2TG+tw2k9fLvHVt39EnbGEXWiEzDo6Uh2lDZxvjKK68sH16hUCgUCh5rR2l6Dc9+0b1EYlqS/fqaxECKop6dOtvqJZIqaHdndJ5Jwt7+zs0gPV2Wb7uXGukHyeivbEy8NMgIVSufPhvfRvpboq2YpKWN2/vwqJXRt2JlRBoe+86orWj7Ea8VzGl5No6Rv4KJ2BnptZfmSEeWacaR5peRQ/Me3+c5Iugomi6jSONcRsfpo6Rvkhqzb3dGPMDE6kijMGRk5VHiOZOGaaGJaK8Mc1u8DMMwieyMrA0ZbRdJDfwxkjqY5psl0Efttz5aVCjJMqSp5m39YERiRORB7ZJWMYsBXKA9AAAgAElEQVTO9BqePWt8H/C95314FleQWeSorUU0f3y/2Kf5vb3lzMqxMbD+cqwisnIfOVrk0YVCoVAoOOxpeyBKN2bvlZYSgGkKJD1m/po0v+kf64ukisgv5b97yYfRfpnkHUX+WPtNAuH3iD6H/aPGwsg/Xzc1K0abRdFn9GtlkXZeu+I4Mmcoi/j05bXWurb0SArzbaC/INPOonnh5ppzuWf+GHOM6JOK+kSNgnMabWdiGgQjiqmx+PxGSv1zFGPSNEePGizb7iVu+q1MYyGi6Dxq4D2S+d5cZuhtiRStaV9nlHNILczO2XH6yamRS/kmt1G0LrVyq49Rp76NfK9Qw2LUs3/v2LxaeSdOnJA0tcL5GAJrm/ke6S/1+XDsnyEjore2e58hLX5R1DlBf+Y6KA2vUCgUCvsCa5NH+6x20+yiXCqyVlAK9PeYhEXp0rQN+05pR1pKC/R5MbrH7NnSNBqUkUF2j89pyfyItEFH2wOZJEXbMyM7vXZqbWLEqoE5LV5KszYyh49k317yz/w6Nk9RvyIfa6bh2fZA2QaWvrwsbzDa1olEyYZMI/LjRAmU6ywiHM7YN7htk/cVZVudsPyIwJuSPNdf5DPmuuLaoXXC98/KtbVo45X5EH35nFuuUe97jxhisrXTWtOhQ4cma7BHCE/fY8QKZXNk42GEz/Zeu/LKK3d991qt9dU0YKuHecYRwxP9XySI9paOjA2KVijGCfixMJjPjuxN/jpGG9vY2HHmA3tmlzvvvFPSlGHFYFqjn2d7N9q1tHpF1ja+ry9erA1gC4VCoVDYhT1xaZr0Z1qTl0hNOrFPkwhoo/V2XGp41M4oLXmpgpIA7e0R8wmZFeiHMQnISw20u5skl0kkUUQXc2U4jpHUTJgd3jRKu9dfz6gz+orIl+nbaONnkhc1Wz+OUcRtT0rf3Nyc+AJ8nhL9FNlGvb4+ajjenywtx4ksHb7/NobMVyMXpTTN56IlI/JX0TfIrZa4fYvXhOjvo++Lc+3bljFfMFqvx1FKn020LtkW+tztuB8Taka9KM2NjQ0dPHhwkvPmQesAN/e1sr2Gb9c+6UlPkiRdf/31kqT3vOc9kpbzYuvDa8JcB7R60fLj22RtYN5vlJ/JfLvsfORLY+4s3118H0j5ZsTMB7Q58D5e8vvedNNNkpbv+g984AOSlowvUs7dae2ghcO3xXD+/PnS8AqFQqFQ8KgfvEKhUCjsC+wpaIVbcXiHuamoDDHPQqSlpdrKlAIS/5I01F9D1ddCck3N9qYZa7ddY+SqlnTJNAV/D6l7aA5lwIM0VcFpCjQTrTcnmInE2kbTbES+a2AQARNdeZ20HCc6xe0758afW4UA2OojZZUPic+Suply4M3FVreZksxxbmPK+nzwkpllMqLxyKTJHegNVn6PmDsL3++RfdM0R9KCqD5bi0ZlZ/XYWJNSK5pbjglNw96EmiUnMxgrIn2PgqEyMHAmCkuniZFbPXmSCb5fmFJk74NrrrlGUrxFja0HBq3Yd5/UbUEwnEurjwEiETLawIjwmu9ppttEpPXWHxtH22aJZmvSx/l223hyq6YoGd/WJNdxjwowI5tYBaXhFQqFQmFfYO2glWEYdn65o1BfSifUwLj9g7SUBExqNCcnAwC44ag0TWxnmHoUREFp0hyvDCLxkgMDCpjuQPJYX4cllJvEbdpHRnDry7egDgYc+KAfKd4+w+pleDglS98WBkUwWTbausZrCFFiuu+TzTFTQ/wxSm5ZQrM01caplbEfvs9M2rVxsTE2rdGvaY4HA0CidZdte5RJ614CZpJtRrPm1xsJ3EngEG1/ZbAxsDGxfkUk1QZSpzHcnltZ+XZnwRgRmGLgxykLdKLFyWuFds073vEOSUtrirXJnle7x6wH0nRdsR829pF1gOkApuVE20MxCd7A92z0fBo5vfWTAV5cu/4cv1vbrczI8mMarI2jvaNsTVlZnmCDJAJMJ2Famz/ng5iKPLpQKBQKBYe1twcahmHnFzryw/gtG6QpQap9egmFmhwpdii9ecmUW85bGSStjvwiTJClhOUlEUpY1CDYnigBNCPFNikpCmFm0npPYzFYP0yio78vC/f39TBJ3uDHkZKb36QzKndra2sS5u4lbvpQKN1FIf8G6yuTt00ijWjCIhowaUpk29uGhpqKreso5YOh3dQOojBxphjMpWz4cs36wNBvW5vRs5GRldNf26PMyogCvPbAROOe77e1poMHD07SbGxupal/lz48aqG+L9RmzeJj7zXT9L3/j3NJH6fBp8nQV2fPj9XDuANfD8c4I+yO6M8yrd0+7byHrWN7Xkn1RV+etLRG2byQNIPE2tJ0rfB7byNdv4lBaXiFQqFQKDispeFtbm7qyJEj6bYm/n9G35Bk2f8ik44p8+X0otgYPWYSCCUjKd+gkBFXPimatmxqB6zHS2mMKqMWwsgofw+1T+sXx8T7tbKtUWifjzRK3sv+RdqAoee/s7JJq7UKMp+eR7RRpG9jRN/GOeSYm3TppVv6zkj43KMwyzaLZTt8/5gwT59OtL4p7WZaWkTCzPmhFWKdqGAmEfsxMWl/VcncLAS+nmguSYXG8v0a5TlGLZKA3BNe0OKSberrNX2rm4T2JB7wVgRaaTLNmBqRb7dpXFwHZgFYZVNcWr+ibcnMIpbRnxkiDdbANUlCD39N9E6aQ2l4hUKhUNgXWDtKc2NjYyL5egmBW2pQYoykWPpsmGu2jt+CEklE20MKJEqx0dYU3FLDwO1nIs3F7uGWO4yW8v4tbjibbWiabWLqjzFPivlMvtxMw6N2GGFra6srsW9sbHQlbvYtuobfSflmyCTgaJzoN6D25sH281lg/qk0jRymXyajVJOmGjZzqXpEytk4RlqaIfKT+2uZ55a1Ibo3skJE74OoTRcvXpxEt0b+qixPlj43X6fND+fJ2mvWqmg7LT4nPB/l1vJajo/vF60zfI/yGY82gCXJP9ddFP1O0ups2y1PLWbHbLxIixe9SzJtjZG+UaxC5jftoTS8QqFQKOwLrB2lefbs2YmU6RFtSCpN8yo8KHFS8lxF4qb0xzKjDStNarHoK9rqvY/A+mUSDW33lNq9FMcNJpkTFGlp5ouIpFiPaC6ybYAylhZpquUyRy2K6CO7Qy+nqrW2S8OL+pxFhva+Z7lt1Oy4LqI+UQtgW315mcQdRbyxPJYxp91IUy09YrrIQOk5ixaO2pLlmUU+PAN9eZGfkfdub2/PjgMtMlGkN7X07J0SnaP2Ql975L/O5rJncbHn394zZHrx7ypqkrQGZFtP+XItYt5YX7Lt0KTpfPM9ZxofNwOQlu9GRr9nffDlc4xoAfB+P5sva0OPeJwoDa9QKBQK+wL1g1coFAqFfYG1TZrb29s7Kjl3+fbHfAiy1A+jp/qfhZb3zHtU003VjhIyGRJt6rKZGCKiaDN/0lGaheD20gSyNAtvHsj6moVBR4EOLD8LePH3GBhCnSXa+7ojMl8PSyD25foxZmh1lpQa1c1Pjk/UZzrMGfgUmacYPMQE3YhGi+X2gnCkOCCE6QjZ7vD+GppQM3NlVrf/3jNLsg18XqOgFbZtc3OzG/Dkiccj+j4Gx2Xm1Mj0RTdLZlbzLg4m8zO4KArusWNmirv66qslxUEjBvbZ6uGnIZpTI7/mHqW2Try5kObirH5/D+umuZdjE5l7+T7l8Z4r4vz58yunJpSGVygUCoV9gbU1vAsXLuxIRFHyKCUs/pr3NKCMZLeXZMty+UmSZ2lK7WPl2zUmrXstgY5t9iuTUHxbDJk04u8l2XYWYh5J+gyoYGBN1A6WT4m5F8Cx6vZAUu7Q9ucyiTvqKyX3LIUlCpYi2PZomyimP5i0zGRlr6FzTXA9MOAmWh+ZpE3t0Z9jfasEdLBtHMeeFpa1KSIbYLk9AmBLS+AajNrN4Jre+uUx7h5PS0xES8Y+Wv2RZmLzbJqdT2T39/a0dgbJrELkYO+SRz/60ZKk97///bvK8mlYtp6z4JWeNceOcYs06zdJzH15BpJiR+8Tjs/Zs2craKVQKBQKBY+1E88vXLgwsVt7qYrJkyY1ZekD0jyBLDWTnkTK0OIofDYjnO75gejLYFuZmNsLnc8274z8S5nEQ80lCi3PUia42atvExNdGQoeJY36c3Oh5ZQcIwouSvoZ+bX/fy4doYfMpxZZI1gPU0BIG+bLybZAyfrr68ksJZGkzRSGzDdp6NGSZZsXR/dw3bFtEdGBJ33ONLzW2i7rQeTDy9Z6b5wyHzE/ozQersWs7X7eqNmR4rCX+pMRQjC1INKi7dzx48clLd/Jtv2RXw/2vuR7heudqRvSlMCd1o4osT5LaeqlInFOV6Wnk0rDKxQKhcI+wVoa3vb2ts6ePTshyPX+MUotWRRjjwqJGlBG5yTlyc/UjKIoH0oRpvlEUizbZPdSeqd0LU23LqEEzERdXz4j3qghk1zWn8siOqOE04wCjtvdRFGV3Pw0wjAMO3/+Wn+PrSdG/9Lf17PrZxpmL+k58u/471GCPq+lhtGzDmRb/djxaPsUkgdwrKNIu8x327OozGmhkc8o82tzjUZj4n3VmaS+sbGho0eP7lBkcQ15ZEQEkRVlzj+ZRQxG12TPmN86zTQsWgFoXfHzn2n/9jzauzcaC1rirN7rr79e0nJMLCFdWj7LPqnbl0VEPtFsHHtxAJnVoTfm9r6oDWALhUKhUADW9uFtb29PaML8rzB9aCQOpbQrzeecUQKLIpKyaKxIe5ojo47omijpUPPKiIClpYRr22cYlRk1Wq9J8FhPg2AfbOypbbLfXmozrYr5RZw/30bTKjxVUo9AeGtra5JrF229Y1GytBZE/ixqXFkEYiThZ9GTHPtIw2MZlNojGjzrc0Zd1tO87R5ri81LJNkydzKjTGMfov7xmkiTzvLwaCnx9dDH3ou0s+hwo8j64Ac/KCnWMrOtl6ItsuZ8mxldmTSdS+ZLWgT7ddddt3OP9TWL2o7amGmo9uz1thbK+m7tME0vih0gtSHHYNWoSH9ttl2QR1Z+NPY21qXhFQqFQqEArKXhGVPGqVOnJMVMKxkThcEkk0ibmSO3jWzA2SaaJkVw89WonIwhxEtamdRPnwEjknzbbLz8lhrS1HfoQWl5biuWqBxup9LL82IOX2+rHmu398f1Iu0OHDgwic6Lxp4+4l6kJcch0+wiXwu1Q2pPva2E6Cvu+agNZB7h2o0ItenvJZMHNWZpObZksyFperSlVbaVVA+r+Pn4nfPfIwAehkEPPvigrr32WklTFiXft+w56TEFcZ7JkkL2EV8e58E2jbZn3K83Pi8ZE06PAYm5odSi/RZG9OXScmX9MSYWXx9ZWLLnylvnsihrxh9EMRhZrnWk8ZmFzPyXc9uSeZSGVygUCoV9gfrBKxQKhcK+wJ52PDcV1YIVvEmAZrNVEnPN9JLtD9cjweU1NC2SdNffbyazjGw5Cg+mqYT70ZF0VdKOCdhgZocsuZvj49vI9mTnPbIQ+iiZM3Ma95JiaaKNsLGxoYMHD+6smShohWZjMwGT6qnXtyywKeoXAwAyQt5oL0USGtCk1gsEIZUV3QC+TzQH8ZrIRcCxtWuYRhKRsnNt9MyMxBw1YERQkaUeERsbGxPXgCdzZnBPNh89kzbbRFJn7+KwYBEbOzOvWWCawcxv0nIebF4szYLmw4iYOXuv2jvqxIkTu8qSls8l9/NjG30/mRRvbeFatXqitcN3Id/J/tnkbvNZAnpEQWjjWInnhUKhUCgAayeenzlzZiJteGmPTs5oWxZ/3P8/J1VGZUXOU39NRC1kbSShMLUYLzmwz5RamFweBR4wOCXbHd4fy0KjM/omj4yyKArR57Yf0TZO/l5pGhA0F3gwDMOEushLdNGOz/54lNSfSXcR7Zn/HvXZt9WX7dtj0nAmvUZJ2NQcrS2ZZunHmMFX7K/101I5onZTu+1p89lu5YYoATkL1Mm0b4/I2kAw4Cmjo/LlMFAnAoM6GBDENvp1YikSth5Mw7N5YsqOL4fz3bMw2LriuotSWKTdWq+1ifVEGrfBtEIbC2rTtIZFyNLIrK1eo+Tzk1GYeXKTaOu3ClopFAqFQsFhbR/exYsXJ7/YkW0+k6z5C+7/z9IQehIdz1HatPZ4kmKzv1O6sDKszV5r9L4mX26WgBppeJQcuR1IlFyZUZbZZxTeTyks0wo8qKlmEnJPkppLRvUaIMc6KnsdrTYL7e5JpNk9HGO/DrJ5Zih+pOHRskB/XESS0NsGKusXt3hhudy+JepfRlodhc7PEXVHSdHRVl+9tRVZW/x6473cPof1+nNcB1zHdo9pddJSSzGLRS/0nvdwviNKMYNpNhEJftRGrwnR2pClUPn1xvdZ1sbI2sb1zDXE9CjfbgNjPczfGK0d70csDa9QKBQKBYe1N4A9f/78RMKKotioIZCSK0JGA9UjBs40ELvHbOg+WsqQSWURPRR9c+YzMds27coRhZWVn1E/eWSSNml6epINfXb0Z/o2UuuIaI58/b6Nhp5d367PSLg96FuiRNyrh9u2RFvJGDI/CKVMfy/9cIzojeaDvifD3Ea3vm5aA0g1FiGjLOOcrkLmS0SaGZ+fLInYo7epM2FtYpShNB3jSAvM6uE1pk1l5AX+mogY25+PrF+02lADj6xDmd+NkauerJpkEmyjtd0nq3NbN0b2clugKOqZzwLXRxQdnvnEI78+19fm5mZpeIVCoVAoeKwdpfnAAw/s/BqbhBBpMz3JmvcYKPHMbcUSgTZn+jOkpURj9m5KIMzPk6b+F9McMyqzKKfOS1Is35ctTaVz5lLRFxZJWlmUJnN4/P/Wd6tvFc3c+tcjADby6B6JOHN76HuIys78LZlkH/kc2A9GqEX0UJZbyci+KLqRfkT6Yejn9u2iLyqzCkR+GGo7zFtaZVPUzMcS1Z1ZSnpalbdY9GjpNjc3J23y0X6c71UsIIbMYtCL1mXeWEZ034sD4DMckXtnfldqtPZuiXJiub6oefl+0SeZPSM98D2XkbRLmvyW8B0Q5e7xmshfmqE0vEKhUCjsC6yt4Z0+fXoi+UZb/WS+jigvbo60N9qew2DlMX+MmoS3+9v/jGKjVujzbqjxMI+MNu5IGqRkb35A+4wkTfaH40ht2F/DfvX8Z8yzyaLcev6l06dPz2p49D1Ftnl+9rTCXm6hxyrMICSCNgvAKnlqve1TMmLcufZI02fDyqAkHm29wzbSrxWxAq267YufN0Zt9zQ7wtbZ0aNH0+ttA1j6laJ8xSyCPHqHcO1Q8yGRsp8XaiCZf86PbeR7lJbajX369wTr4RhYmdG9tBhEvnt+z6JADT1LD+s1ZDEZvj62n/2OLBh+vZUPr1AoFAoFh7WjNC9cuLCj7XCjUWnqK8l8QJH/KOPSzGzP0tS3RYk7kqqZC2hl3HPPPZKku+++e9JGsiDQL8c+RBK+jZdJaeYHuvPOO0XQnk97u+USRpGEWf6Lfbe2elYGzhM1vIgFhBrJoUOHZnOpelvGZJoCc4K8tJexiLDMKNcxi4CzObXPyB/L/EeOn38mqFFHa8Qfj3LOrD67J4qwM0RbBkXfo0g7to3zGfkQqeln0ZqRpuwl+mztbG1t6Zprrtl5TqK20YdOrbq3ua6B5dJXFFltaHXgevBMKxZBSa2GLE1+TslmlGn6xoEZ5XDa+41WIW727EGNmXMaPU+rMvr4dUDNjt+jmAhGxhaXZqFQKBQKQP3gFQqFQmFfYG1qMWmpAnuTmCHatdkfj0LiGVxh5dK5GoXt0oSahW/7ABSrm59MUvdtjJJCo3ojZ7UFpVjfuRP1yZMnJ2WbqSLaVV6ampOjcOHMlGb39MYk2qqG7eDY93YettBymoC8mY27rWdBLFFgRZZk3zOHM8mVIdC9gBDb2ZrjFm0txYAnpov0Qr1JTszEcyZJS9MAiiw1KEr7ydwJNE9GoeXrmDStHm/Oy9q5sbGhyy67bGcMIhNcZpbuIUt3mQuA8cfourFPczl4SkMzyT7ucY+TtJxbmmN9KkNGjkGznpXl72UgH5/NXhBYFiTH/kcujgzR/Fp7acLsJZ5nz/gqKA2vUCgUCvsCe9oA1mAaURSgkSVz9hLOMzLfLIFammoilFqiwAOTHkzzso0Ye1v8sFxqSZSmvBRq56w+Brgwidm3N3O60/EcbbNjoNZh8+a1EDqwOX9R0ArLn0s8P3DgwESD7FEGZY5z3zY6xjMtIUqypRSZaSa9xFZqHZGFw6R8m+eM/ip6ZkiSwOCISEvhXM4FD0TEEaQ94/hF6y2j5uttf8VtvSJcvHhRp06dWinBmGPbC1oycM1m6zDSMjjW9mxF69vWgX1ed911u+q3e3w/rd0W8BJZufx10RpiEnmm8UlTKxTfQ9lc+2sysoLoPMtjsFG0LRbXYgWtFAqFQqEArKXhkeInIszNQq4z27A/xnB504yy7SakXBvokbuSHJjJ8pHEQK2M/aL/MaIlixLapaVU6JM+SbUzRxrspUL2mRqe18jYv6j9/p4o8dTqPnfuXNeevrm5OZHgeD7qI/vhtQJK0tQmev6yTKPr+dQyLYZpA36N8h7zEZMeKgq3z7ZJ6aX59BK4pX7iMdvCbY+iMcok+MjPw36touGdP39et9566+SeiEzCpwH4NkRzyvFgu3tWA1qb6MPrpZhkG7+eOHFC0m56sBtuuEHSdJugaENjgpvRkmax16/M6tZLK8o0457fnmNNDbbX1nU0u532rn1HoVAoFAqPQKydeB7REHl/FaVHXhNF/1Gjo/0425hTmkpwTN60z96mpxZxR80rSuKkjTsjWfYSOG3n9MPQH+OvNcnd2pptmTSnWfl66EeL2sh+9zQ8PyYZtZclnfek/4wKq7eVUBY9xmjZSFrnsZ42YJhLyI4ixyjZWr+ocUdgVB7bzjXl28JI3sz3EW08yo2AWW/kU8kk+t52W4zwjLC9vb1rbZkv1DQiaekPIxFDRu7MPvTab/D3ZkQTGeG9v9Y0fIvONtgzeMstt+wcs2hPO3fNNdfsusfaGm0EbW2w2AEbL+uX+QX9M9+jyOO1viz/f/Yc8bmWco2uFxXMvveiw4nS8AqFQqGwL7B2lObFixcn0kvkUzOYJkSNJdIuqD3M+QakaTRWRi3UoxSiFE0iaGnq08iiGnv1Ma/LxpE5d9LSZp9JS71IK7Y50z57lFKsh37bqJ4LFy7M5sRQE/frICP85Xrzaywiz/b3ZJKjryf7ZA6a/z/z99Hn6vvKe1bZ0Jbzm5GJ97TfOfo13wdeQ2qnSPuJ6Pv8cfv0Wip9d621ru/R59VFubW33nqrpKUGRIJ4Wgs8sr6xPVEeYRb9Gc2LzZ350u644w5JUz+tfw+YT9L6Z2UwapdR4tLUL0/tPLPq+DZlFruofxyDTHvrRZTzHdnz9WdaaA+l4RUKhUJhX2BtH160/XxkN862yYiiNLNfczIqRKwimWTPMiKNK9NqIokhs11ndn4vwfKYtdEkOWuHSW3SUtqjJMU8o0jT47UktI3Io7MNZjlWXqqmBDe3TccwDGmenC9vbgPgqI5MC6RUG/kP6PNiflzk96N0yWi9yNedRTxyTPzzxKjMjBA88qlRU6UFJdJkMmmZUrW/J1oHUf/82JM1Z3t7u5vDefjw4QlxcvRM0//PvkZa2hwTTXTvXM4ofa7+Hhsn863ReuItS/aOsLaaH86eQ24TZT4/abqRtZVr90TjmFkwsuhNj2wseow1q0Z0+rXLcVzFsrRT30pXFQqFQqHwCEf94BUKhUJhX2DtoJXICevBBF8GaETl0IxGE1xvPyU6cTOC5oi2i+kANMlEbSSVGElwaQL0dWeBNdHu3xG9WVRGtP+agUERWWK/P2fIgiUi08EqJk3bSzEr3/ctM4Uw+d5fQ1M5zcdR8I/NGU1urC8yeZFCjuMX0dIZaCrLQtujtmT77kUBSBnZds88lQUC0JTZS++geSqioWKwT88stb29vctUF5mnudbnaArZh949EaUd59DawmASX1+WmmVrJ3LZXHvttZKme2lyPdg93g1kJk2ae5n+5YNkSEJN8yeD9SITMd/92b6Tvlyuh16gFXdlj8jEM5SGVygUCoV9gbWDVjx9VI+QtZcwKMU7QlNqzcK2vWRnEhWpuHrIEnEN0S7iTMS1Ntu11g5qltJUsjOpyeq1776fdm22XQbp0TylUqYV9nblZsoCtQ/SIPn2e62zF7TSWttpf08qo7RKLSfqG/thazSjD/P/k2oto5ySphq8aR4Mlog0bmpCWTJ/FLbdKzdD9hxx/n191OSiIBV+j8LN/TV23Evm0bZamYZ37tw53XLLLTuBXEa9Fc1lluLEHdalqRabpe9E26DRokDi+Ww7MV9vFtDnQao/phQwjD96h7AeaomRJYvBMBnZdxTwlJE+RO9bBthl5AjRM2Hlnz59ukve4FEaXqFQKBT2BdbW8C5cuDAhje4lWWeUSxH1VpZMSw3J25xN6qMkQCkgCtum1MT0AX+PJ3SVpv4fk4gikmnTvuwYE5Eptflz1OyyhHM/B5TgsjD/KJ2EvqneprxRqsQcxQ836PSaMLVLakKRLyjbQopJ49FWIlmqTI8eipqutd/8JZGknfm4KHHbdVGSNZ8f+jaieaEPL0tpiPwjGYl0T1Omts2NdT0if1mm4ZllidqOUQL6OmiRsOc201TZBl9GRhgf9TFLoPbrm1uV2Zja+6GXAM73DC083EbKn+MmxZxLv3bo37PvTIqP7s1SdYjoXZzRkJGc3f/v21oaXqFQKBQKDntKPDeJJPr1jSKNPKLIsDmfHeGlJiNiZfJ2RjkmTUl8GWkXSb5WLgl37VpqfD4C0qQvbl2SRRj6ejK/AqXpKIIsonGLyvKg1sFIr15k3JwPb3t7e+KDjAizM1qrSHKktm73cg1FNGE8x6jdiFiB0sdTh8EAACAASURBVDklbRvzXhQy+5GRNURtzCKWI0KILJmXkcsRGXuGKNIu87fYWomSsNmvnhbVWtPBgwd3nh8mXfs6bCxJBB/59rN5yKI0o/IymrbovUOfMNeuIdrqieQIPG/wY83YAH5Gz0pG9mG+arvHNL0o+r0XVS/tfn45tnxOSTLu+7VOdKahNLxCoVAo7AusvQHsxsbGRMKK/DCUgOg/8KDfKJNMDV5iyOiGKE1FWgEjqYzqJ9JS6dfLoufsu5dIGA1HCYgE2769WY4ix9dLO8y7ozaabfLqYfeQcizql8+zmfPhUWr25VHTpZTX03wycuAsMtLfy3Hgd7/eqK3Qf8Ux9+eyHLFs6x9/71y0ZBTFlpGxZxqgb9McNVuk4WVSuR2PiMe9dtWjFtvc3Jysg8hPyrqodfh2MyqXfY20WQPp57Kcw2ic+J3vg+h9mlEK9vxl9MfynWFleW2Y70BqoVy7kT+Ouder+Nf4nPY0PPqEV/XfSaXhFQqFQmGfYG0N79ChQxNbuv/FpQ8rkxC89JlpGpQcIymdOTKUxhiR5tvAT0bL+Xro98oIqCOmCvODMdKR0uAqEYSZpuy/03dnnzZvUa5gFtG5ClmsZ47paXibm5uTPns/DMcy8odJsUbSI/r1iJgvsi13onxM9jnz2UQMFJy7TFLtMRhlOVu9HMUsRzCzoETnmGvn206tL4uM7Vl35mDvHt+f3lZPmT/Urx0rj/meGQG0HydaeOjL5fqI2pC9M6K8z8y/2MupY5sYBcwc32hM7N3F8qM4B1oyssjLSCs0cH1FGh79mEUeXSgUCoUCsDaXprT8lbdffy+lMyKRvrTeL3HGykL7fJSHZRLJqVOnJE35Kr3mR0me/qqeTZiSFaXNKOeI/JsG5ip6yYW2bEqD9Ht6MK/H+mfH7dPmT1qOD/lLDZHm2mMxIcwPQ03IS+DsU49bkaCflNdEkbDUdLmNSuS7yaTWLNet1+5Mo4ui2KzeiPXDt93f75kooj5EzxPXXcYDG61V0w74LESRpBy3Xg6nrR1qDtH6IMesPXNXXHHFTlm+XClnZ+q9s+ijo9+ZEdj+f5ZHy5V/puciHTm2vj6+bwhGjfu2WL8s/47jaojmjNYBvoMjiyD9iuTy9L8xEbtSaXiFQqFQKDjUD16hUCgU9gXWNmlevHhxYrbxqnEWJkvV15+ns5M0WlSNI7MaTVZ01HvzHU0I1jZLpozMUgzeyLa+iJK6IwevNA2aiBzO/E4zkaFH1WYmLTNxRDue0zRC81EUjs6gjkOHDq2clkDzV9RuzntEE8cAEKZtcC69uSgK3vHl00wlTUmpSUMV7XjOe5kOwzUVbb2TJZr3tofqnZOmJnVfnyEzNUWmewZJ2BhFpjWOz8bGxizxOEnFo37RTEvKtyhROgpO8ogIz61u6xvN8JFJkylUXKNMG/LHSPLB4Bxe7+tbhawgA1MZ+A6OzOFMT6CZPFpv2RZC0Xrjs3z27NkyaRYKhUKh4HFJQStRoiS34cg2ZvSIQmpXqd+DUgQlhEhqNjBYIUpiZoCLleHJWv15r/Xavd7x6uuNyHejlI+o7QYvfVKyt3NWprUtGkdqypS4zIktTSX5VcijswAHXx63YDJECehMzGVAQy99I6MxonQepc1Qmu1pkqwno1OKNFg+PyQijwIhmArEMegFfbBNtCwwxN2XF6XXRN99fyKi9qw92VZQ0jQ4jtoTNXOWHbWF7zm/Vq1umw+jOGSKgx9jrlW+I6P0DQae2TPMtcQtx/xYmMaYbTEWpUHQ2pYFk/QSz9nGaP1nSf5M64jI8X2aVZFHFwqFQqHgsKftgeg/iH59TWowG3pvU825LVAoGUS2Z/ojWGYkVVCLYYh/JHWyPFKZUeLq9Y/3eInV6s7C0JlM7v0kGXl0j1KMfkZq3ZG/h1L/XOL5xsZGqNmxPI5xL92BayHbqqbnt7B6SEAc+Yqy+qhpRRJntuUO5yNKNZkjAu8R8mbfe0TRmbQepaBwnjIaNG+tYDm9tth7pxfyTz8stU17D/kthbKNhfmeoQXI12f3moZnn6zDt5tWsCz1yNdNbYzfrX9RMn70nLIeA4lBaPXiFke+PjuXaZ1RvdQ6eykMBo6535R8DqXhFQqFQmFfYG0NLyLFjRLBSYhs9zFCTZpKhBmJK8vw50g305OaeA37E0nevD/TGCJaoozurEcay/oYBWbjy8hGDxIZUzuIbPcGRoNGtnSDlwIzDc+0O2q5kQ8gk/ojiZztyrZP6m1cSimTEb69JPJVNrnk2LJ81tPbtinb9iiKXDVkz0ZPg6ak3fPTZeeyLZR8uYbz58+na2d7e1sPPvjgjnYW0YaRNILvjshvTW0p0lr8dT3CA/ruoz5TA8rICnrWL0OWvB6RiLM/2b3RsR79nG+7R2Zdi3x41DrtvdmjZjPN7q677tppQ2l4hUKhUCg4rKXhbW9v69y5c2lEnAf9e9QuvG2Wkk7mE4j8M5kEkkmZvr5sA85efzKSYtKDeSmd45SRJHvJh22j1mm5dZGGxwg++qJ6+WXsu/XHpFM/b6Qd6qG1tksDjHITabenrzWa6zmCca6hSGKktkErRJS7lUUkRuOYEadTO4siLjMtIMsH9ccyvw812kh6z+jHoijHTDNnxGLk/7XP+++/v+v/3d7entDeRYTppmFZ9LSNE/3Y0jLvluVl668XCWjPx/HjxyXF0aymvdCP3dO4svcbx3qVdZD5SXsaZbbNW6R5MhKWc9zz/2bv+Mhfe+LECUnSPffcs3PvXJTvTl9XuqpQKBQKhUc41vbhnT17tuvPodRCjSiSzngPtcFMWvf3UmuhJB5t15Khdz5jxWC/osi+uc8o74/XkNkhiiSkhsexifIeKcFl0ZmRT8Lb2+eiNDkm/vqMtJnrIcqHovYS1cmyMx/OqpGD/tps/KLyDav4/+ZIvKNnIjuX5ar6e9mfLJeqN8+Z/zyynHgf/BzTimlnzGeVpps4X3nllbva0iPfZl/JvMLIc3+tHTNtMYuM9P9Ta6JmFPmZOTacj2xLHl8+o6AjjSsjxaZ1whBF3nIcORZRffTZsb8+r/nuu+/e1bZ1UBpeoVAoFPYF6gevUCgUCvsCa5s0oxDQyJFtKipNCOawjdIS6KDMEtEjR+k6hKh0QjMoopdwznr5PTIxZjtO93axtv+z9A6mJ0T9Y9tpLohC2eng7pk/eO0q5L+81rc1IyYm1Zsfp7nwbKYeRGbVzFzT69dc8EpkluQYz6UaRP3LUhmiACSey/YvjMy8Gd1aL0ydpswsHYf/27XZ+rGAJzPnR7RWpF6jaZPUgNLy2Tl69Gi3j0x58eeYZE0zsU9PoimWZv1obGkOZvn2yfqjNlpbeuk/mdmdxyMTakZdZuiltPBaugjMjCkt0xI8kXaPnGJXuStdVSgUCoXCIxxrk0eblidNkzs95qiJImlvTrOLdsKmQzQL28764us1RLtmUxrPQpajpPVMk2BAyiqpBdTsImqpbDsOk34jbYeaY7YNSS9xdw4bG/0tYAykL+J6YJn+kwFODBSIxpiE4EQUgJKlI0TjNJc607NS8Fym4UXlZoFV1N4irSDTlHvroLeNk7Rbw+G6XVVCl5br2GtPfIZPnjwpaZo6E2l4pgXOjZvvT6Y1se9R0EqmeUfv02xH9SyZO9qJnm3ppflkRONZ4GAv4CmzFvj+8Zlm0I1Rpt155507x0zDs2s9ocUcSsMrFAqFwr7AWhpea01bW1uTMPHeRqL0oUT2ffowemHMUkzBZdJLJgH3Es8ptfS2g8nSEigZ+T7ZNeaDyDbmjLZZ4rVzdGEe1kZuShptpNujT5LicOdVfJ+8nvd4KZ3UcVw7hp6WyX70NqxkEnxGSNALf6amEvkmuSa5vujT9euCFotVLBdzkjZDwSOfCqXyjADdH2NqCP0w/plfhfrPI6IR82uHFpB7771X0lLDu+GGGybttnts3VlqAdd61DaOT/YsrDJPve3RWE62QXMUu8B3I++NnnnOS/Z8RVY9A60q6yTHG6x+09Qt2Txq/zooDa9QKBQK+wJ72h6oR3ZLydrf68978Bg1LUoGXpphAjallp6PINuUNpLsWW6WYB/dm0ln/IzaQE2PUqkhorIymAZO7SOS0lke/VteEqPmeP78+S6Jq6cAiiLE7H+T4OmHMx+Q2fV93ZkPr+dzYBkGrrtoQ07eeynRwVnUrj/H+emRMWTSeEbdFs2BaU+8llqbR+avN0RbvWTbX3kMw6BhGNJ5kpbjwY2T77jjDklLTc9rhbS8mIaXRUT6/pDmLNOmI22d/aCWG5FWZPPP+eq9s0j3aOf9u8SeMfbH0CMezxL4uQ6irdrYX/s0Dc+ibqN6bH2sgtLwCoVCobAvsLaG9+CDD+5IAV6yN9gx0sgwAjOKYmS+C7U2Q6StZTlUkcaZkfcaIm2AfsUsWtPgv7Pv9kkNKeqXnett3sq20ldE/0I2rv7eLGfQjyMJeedIpFtrE4k1itiitMoNMyPJfi5aM5LSqZXP+XY92LZeHmi2NrI8zEhqnutvpKUxrzHT9KJ7eS0RjQnr6fmXrN021546KoL3/zKC2ddBGjDT3m699VZJSy3O9yHTsHsb6WZ+USKiNMwsS73xysjdaQ3zbbT54PNjY95b36yPWmH0/GaE47zH94/PtNVnVhyff8c+G+Y2nvYoDa9QKBQK+wJra3jnz5+f/CpHPgezCzNPJZJimQ+VRQzSBu3LN1gZ1DCjSKQs+i7Kw+M5Smk99gpKX/weEVxTE87YbSLJL8ulyUi5fX303XEsIt+k9wFkY7qxsaHDhw9PiGz9/Nm9do4MNYwC9H3KfHm8J2LnyBhBIh8r1y81/VXmI8sr7K1VtjVjxPHXUMNjbmW0QWjm6+yRFM9F8EXrhFvlXLx4sSulb29vp9Gt/n/6uK1820rGNg2VpMc97nGScstEj02H2hPfb5EWl1kU2IeeVpitazsfbTydredIw6N2mzGgRDmDzInO8gyjvD/O36lTpyQtNfQon5HP/iooDa9QKBQK+wL1g1coFAqFfYG1TZrDMIT7QxkyJz5NnV5FNZXXQk+pNtOcFgVosH6rx3Y+Zj+i773QVpoDM8LfXsh/FkQSJbxb++mgzxJDo7QEmidoHuhRWNHsEaVDWLnefJSZpVpruwIGrB+eborzzt3cmYrh25D1IwrqYBsYLp8Fzfhrs9DyVdJS5pKUo0CRudSCiI6K9Fd+/KXYpJUFMqwSFJAFq0TBChHBdY/aLaKEi5L7+fzTrObD242u6olPfKKk5XrL6LyiZ5rrqkcxRxNptoZ6tHSZSZEpPL4efnI9RiQgWYpJRtkn5UTjWf1+DGy+Tp8+LWlp0uw9E544oYJWCoVCoVBwWJs82ktaJp1H1GJRUnpWjiFKhJSm0qyXFLPgmCzZ0t9POqIs8MFfsyr9VJQcn2lN/C5NE3IpMTJAwI8nNZZsF2afwJ1Jn0zojTQJvw56QSuXXXZZmsjq22XjYNo5k9+9BBwlwEbX9u7lnJIGLwruybZrWkWbmUtTiDQuJkMzEMDPOYNVsnSBXtJ61vboOo4jn7konYTzMrfjuQe1At8XkhdYmVdcccXknttvv12SdPz4cUnLbYL4rEdBbBkRtH1G1ogsdcrQC5bj856F/PvngPM+RxcWlU/rQ4/IIUvzYqBTZI2y912W0O/Hila0yy+/vMijC4VCoVDwWNuHt729PQldjzZGpO+O0qZPNKXfj740SvhR4jG1J2qLXgLOKL16fjjSTdGP0POpGbIwWjtuUqm/PyPtzSRMD9q9aWP3Y0JNxUD/Y6TNz6V5RG2IEnapYfF7FIKfjRNJDHqaVyR5SrFFIUtsp9Ug8jlkPuKMvNpjTsLv+W4YJt6ThrMx6Gmhc8nptL5IeTpHhs3Nza7ViJvCckNY0/D8XNo2M+YvIsE0feARaQG1Mloc/DPNZ5jPbDQv9INRw6dWFbWRWhnrX8UPR0tCdG9mHWJf/JhkaVe9VBdaECotoVAoFAoFoK1KuilJrbU7Jf31w9ecwocBnjAMw3U8WGunsAJq7RT2inDtEGv94BUKhUKh8EhFmTQLhUKhsC9QP3iFQqFQ2BeoH7xCoVAo7AvUD16hUCgU9gXWysPb3NwcDhw4MMmX6wW+ZFxsPl8kYwtYZ2PWbFsTXjd3LMPctb3zc7yEl9K2Va6bG5sIGbNM79rWmu68806dOnVqUtGBAwcGv3VJlAs5l4sT5ZGtyv3YW6OXEriVMVJEyK5ZZ14MGavFOvWtsy5664C5qOQM7TEX+bk8ffq0zp49O2nMoUOHhqNHj+7kYkU8jsyLY45br91ZPzLO3ehc9nxE96xSflbO3Fz12pi1eZV6M8ai6N6svFXecxH7S3avH/MzZ87o3Llzswt5rR+8AwcO6LGPfexOMmeUSM3EVEv4vOaaayRJx44d2/UpSUeOHJG0JLe1Bc2F3Ut25Lne/nTZHk8sM/phzV5wWcJ2dG+2W7K/J0tKzah+ovqyH4oeLRD7YUmepGqSpuTOm5ubeslLXqIIBw8e1Ed91EftzMPJkyclLZN+pWkysrXX1seVV14paTchuP1PMupsp/BorVr7Mwq4aKdrg9VnbSStm0e0ByDLl/ovyVUo07IftCzpP6IlY/02VkZH55OHbbzsmBEA27XWX0/czP3bNjc39frXv14Rjh07puc+97k7+9c9/vGPn7TVxv/qq6/edc6IEqwtnjiB77GMsJ3rXJoSUDAZnj/+0nS9ZTveR0Qe/EHNSMx7lHZc3xFxCNvA/f3YF0+HmPWH6y/as4/9Ig2iBxPYt7e39aY3vWlyXYQyaRYKhUJhX2BPO57br3qk4UWmCinXcvy5Xr3+02POlBDR9WRUOxltlL+G51ZR31kuqawic0VWT0QhxnasY/bgMdbbM3+xbZ52Lir//Pnzk/mKzFKZ+ay31Y9hbj30TD4ct2h7oGzLE5YV9YvlksZprg9RP3prJzODUQKn9O7bxHpW2RIsK8PXY9K511SytbOxsaHLL798R8M3qd9vLWXnzErEvtlntAWXaX3WJpLKUzPy5yJNR4pp6eZcQBFNnIFzlL3DfNnZtmRsY+8Y+xmNI0FNj+8/35eM9q5Hg2flmKZ47ty52h6oUCgUCgWPh0TD62kXGelp5IfLAhCysj16JMr+vC9nzhEckd1SWllFasruofTk275qEE6vD3MBHZFmnpFhR5IWt/OZc35fuHBhsiWSXweUACPNg/XMbbWTzVN0D302UX2Rf9eXEY0XpdZMk+2NdUa2HI1RttHwKsFm3NaGBL2RP4vjxv5E2gDJnTc2NtL1s7m5qWPHju34a23dmd9OWmp70XZZvq++f6bZmW/RPjn/0broaS1RPz24HnrvtUzT5vuh56PmuJLovDeXNl68tqfhGaxerke/vu2czWm2eWwPvc2DidLwCoVCobAvUD94hUKhUNgXWNukefHixYm6G5lvqJpyn6goBJ9h0lmKQS+Hj2aCaN+1VXI8pNVyjqL9wbIys+CEVUwaWTpEZBZhn7PAk8hky7bR9Oivs2OrOI/NHE5zpZ8XM1n5vRL9NVEwiwUaZKYPmnwic0qGqL65QJfI2c51zHnvmbg4V9n+Yd5Ul+2sbSY8H5rPexkmzrGPghZYbmYajuD3uszMzq01HT58eOe9YKZM26Fc2p3e4MHAE99XS1WwffHsM0tP4Lr05a+y4zafS2tzL5WFzx3ryXIf/f8M4LF+WPpIZNJkQE+WouHvndtLz/ri10W29yXL8PXwOcnMyRFKwysUCoXCvsBaGp60DD6QpjvPemSaXbQ7MiVcMipk5/0xaoWUhHpJ3VkAwDosAqsg034iLdT6wX5lGkWULrBOe7hzd5YkG2nK1saepLW9va0HHnigG6BBjYfh2UyC98e4qzbHKQpmyNIeLLS9F9xBTY4ahg+ZZ/mcs4yIwJ9jf0xK7iWes5/U/KLgpZ4GHtXvr82CYhj4wDqlcQ31ArQ2Nzd35sVIK/wY2//sIwNTTKuRlhqeHbNrbH1Zv6jl+GPUvHqkFnxXWT+4W7oHrQJRKpBvh9dg7Zz1x86x3/554rX2aWVxLCLNK0sej4KYbLyYapJZRaIxWPV9J5WGVygUCoV9grV9eBcuXEj9CB6rpAcY6Beg5phxbUpLyYBShUnc0a9/lghMbSYKf+cnpfSICy5rf49Gh9qsXZNJkKtoo0xej9IgmGKwCt+etXt7e3s2PNjKzzgPpVxKZxnSVLu0e0mjFWn+mTbI+YnWEP0w9mkSqp/LLLTcwLZ5n07ms6XGGvljs7WaJcv32prRlPn6Mm3Ero00c78meyQOBw4c2PHxmqbnKaqsXdRijLrOjnsrBDVTjhfTr7z2lGlAtBb5tWPjYO3nvEfvDlpNsjSEKAGevkfzUdrY3Hvvvbu++//py8usBFH/eM7use+eTtCQ8aTSUuiP+VSdSksoFAqFQsFhT1Ga67BrG9ZJtqSUZBIR/VnS1PZLibsnzVKjtHIjaWlO0lolUZLabeZL9HVnRKxZNKy/Zy6CNYoGzHx5UT20v/f8MFZmRobr68z8hpFvj1K/fafEaOvB35utEfoGvOTKNUPfNH0Qvnwm3Vs91iYbu0hzyUi9I9qoLNGcc8kkc39N9hnNn/XZtIPMx+L7ZVqH94VlUZobGxs6cuTIxE/rnx9GEWYE95EviGuFz380B3PEzFwf/hi1UVu7bJe/lueyZHJ/3OqzMTafnWlYpuH56FPTwrME8IzYX5pa1+iTtDK9xYZ0bvadEaw9urXy4RUKhUKhAKwdpSn1SWHtl9gkbcuVMSmmF9FpICWNSY5RNBM1LUq8ke+GbYj8IOwXfRlZNBspoPwxaoOUPntjM+cH7Nn9SdAajSNpwjLNspfv16P4Mf8vbfO+rcwXsnJti6mrrrpK0u7tgSzSjeTB9OFFmhfXBsefUq0fF1uTc/R0vnx+t3tpuYi2T1mFNJzlZ748Q7TuM8qsTLP11zKv7Z577pEUU1jZPEVaZtSfw4cPd+kJTTPIaKyiPEwb58wfb+Vbv/w6oI+LWyRlhM1S7l9mPIK/htspWbk+j9F/Zsc86Ev0x/h+sXozS0p0T0bv5o/b2mCMAsfXjz1zE1fJ99xp48pXFgqFQqHwCMZaGp5Fw/QitkwaNwnAJGtKMz6Hhhu/ZlGUve2IrFzm/PR8KrSlm8SQEdBKub04I/eVljZrSpK0X3twjKmlWRujjVnZT0MW6enbnzFt+EgunvN2/p6Gd+7cuZ0xoN9Cmm77YdrbddddJ6mv4R0/flzSdL0xysv3jxGdBKNo/f3WBmpPEctIlqtF6Zl+aH8N54VSbrRpaJYfx/57LZv+zIxM2PthrD6SO1u5lt8WsXLYtT3Wm9aaDh061I3AznIAs3Xt684ibXsbwGb+ZhsX84tFGizz8OydadawqK1cq3xnWD3RWrZr7ZnrEanb/NtcZpGx9OV5UNvld99Gmye/matvR2RFpO+9NLxCoVAoFID6wSsUCoXCvsDaQStbW1sT85A3MZk5gJ80H0aOclNrzSyQBR54lTgLVab67k1oEV2NNA328CZBBifQGU4aH69mZyHEBoY/R22gaYRmMT8mmRksS0T35TPcmA7oyHxgxw4dOjSbAEqyZ2++M1JgG9vrr79+16cFptinlJtcov3PfD+kPOSepr6ItiujPYvSYDLqKJrQoiACBq1wXiKTGc1sPVLm7F7D3O7c0nTHcJtHM9VFFGZ2LVOBsnZ6ajEGbvg6SLFFE120px1NbVYPzaFRIBrN1VYv32W+vQxWsnGyT//eicypvlw7Hr0buX7tO8kRPAm3/W+fNpdRkIrvk+87qcvsuJUVmdBtzO2ejCLSI6Nb7KE0vEKhUCjsC6yl4W1sbOjQoUOTAA0vpVNqoNQcSXR0bjI0lWHPvj6TPCK6LF9WRMzMc9yexksO2Q7gGdWPl7wzcmVqYqsknht6Tl1qYWxjj+yZ1zB4pqeFzu1O3FqbOPu95s2gh6uvvlrSci3Rye+vzchmI1ooggntve2jGJxg0jK3ofHrm3Rt1EI5flHQAjW7LPDK/09rA9MQoi1lMtLyjA7N12MwKZ3vAr+G7RlbhYx9Y2NDR48e3dEQbPwiTYGBYRwvv95sDrN1Sy3Dv3cMXFc21gxe8dfaOY4P+xeVw7mkpSGiTmOgoNVjQWAW8CUtrSfU7EjwYWMS0ZJZWoqNvbU9et8wgd/mgms1spj4d1JRixUKhUKh4LC2hnfZZZdNNK6IQNSOkU6JErK0lAC4PUuWdB351rKQ/54N2KQYSnLWNi+9ZcnJBmpRvl6G4GcbtHpJm1oYx5GacyQpk6aH/fMSV0ZZRIqfyIdnmteFCxe6aQl+A9goPYXaBf3A9Nf69tKnQkmYmqsvhxt+0i/q62OKCX3SUXh9pPVJuR84KoPpFvSTWJK3NN3iZW7bqyi8n5I2k+J9mfTvcCPVKKGefvlhGNK1s7W1pWuvvXZHs7d7oq1wuCk153KVbWZIXhA9WxmxdOan8+f4fqGFKdr2KCNe5nvJzwvXlc2DPa+m4dmntLSeMA0qI0/w/eMxbrMVpYjQ+mGfPQtApOGtitLwCoVCobAvsKcoTUoxPdouSkC9X2NGqTHRlJK/NI3sY5sovUtTKYx0OhF5NKW9aANL3z8vxTBSdW4TR2kqBVLSZpRjRC1mx0zizpKXfTmUKA29bY+s/UePHp0lcuX89CJh7ZPjF4ESt2k5q/iIqAVwDHrbRFFbjmjieO0c9Vc0JtRguTlpRMZgsGvoZ4y22yLNFT9tbHx93FLGyjNyYmtrtGXSKpF2W1tbuuqqqybUW17DIx0dIzp7vmcmU1v5JF2ONkqln5SWhWj9cQ5XIaDns5uRu0dk1QabO9Mko7Gx/njfo7QcT1pdokhZJtbbcVry/LnsOaXm7PuVaZ892Ocn7QAAIABJREFUlIZXKBQKhX2BPVGLMWopIizNtheJCGszKh/T3ihd9KI0ucWHSUJeYqF9mPkpdm9EWGpt4qakzPvy0iC1v0yT9BIZJZvMhh75R9hmtq3nI6KGyiiwSJO0cn0+ZgZSSkWUb8xLs75FPg7ri0nh9klqOUrg/n/zYVhUqJVJy4I09TWQ4Dwiu2Vb7Rque0MkzdqapXUiszhIU/Jta+OJEyckTTVNaRoxaKDVINqiiVYcakH+mef66tHSWZRmjxrP2mXtptZODdC3m301f6hpqDZetrakJV1alh8baa4ZWTSjg6NNXDONkj7LyEpEHyEpHP270dYItUzf9wy2BqlJ8jn2650WErYtonk0i1UWd9BDaXiFQqFQ2BfY0/ZAUcRbdk2W8+OldJK4msRtpMHU7PyvvUmkZB7oRdqZdEYtjdpUtPUFtTT6Q6yNvmzaqSmNMz9LWkpYZDqxNlkfetGjjBSz8k+ePLmrXb5NtLNTc44kSDt25syZlDFje3tbp0+f3tE2IjYYatGUgCPyW4tasz7ZNZZbZH6Ed73rXZKkRz3qUTv32j02h4973ON2jcutt946aSNzTxkVavMSWQeyvDtK5946kLHjUPL3mgY3lr3mmmskSbfccsuu8yaB+8i/u+66S5L05Cc/WdJyLj74wQ/u6n+Uu5eRyke+G7I19ZhWLDq8x/Jhddn7gH5Y+n38PTYepsm9+93vliTdfvvtu477nDMr17RBsqbQJy5No8LtOyNwI0sPSfH5vUciTt8k34n+mbZyaf26++67d7U1spx5X74fC3sWzYISRXrTIsdnwveLz2CRRxcKhUKhAKyl4dkmngbaj6Wcy442WW83t/8ty98kAUp0JqlE9mTao7ktUJRzxk1PuXltjzeS/jdKuV7DYz6Slc9oLS8NUpM0Sd6kJo59lJtmkhxzEm28vfZgbaOvy/oRbUQa+UB7EVPDMHTZRKy9me/WyjZp0/9vmpzxbppUeccdd+xqtx8n0+je/va3S1qunY//+I+XtBxj0wSleEsdfzxidPFco77v9L9GG2RmmwZbW03D8ONJTcLGhvV94id+oiTpDW94w869tjat3JtuumlXOz7wgQ/saquvL2M5iqK5Of9+66gIGxsbE6uKfz4ZcemfJX9tlKdmmu9b3/pWScv5NkuT+Yz8uuMWNdT0rc9sh783Y1iJNC5yc3JDXkYAS9P8X455lMfGsbV3LecmspLZWJjFwO617/Z8e18/rRzM4+b7x1/jf1OKaaVQKBQKBYf6wSsUCoXCvsCeglZoCvSqc5QA6b8zyVNamlzMpEnz5LXXXrurLG8mMEcyt22hs9qr3jTtkMw12o07c/hm9Da+f9zCw1R6MwtEwSwMCKKJ08wtNkY2htLSBEPKJ7uWpltfn41nRtHlzS0MvZ8zK9g2L1KcTM6kYZpZzaxjgRXS0uTz6Ec/WtIy0MlMmu94xzt2lfm+971v514bQyvXxs3GKSI9NlOfmWtWIRHI1gpTDKLtfJhSkpnSI4o2a7eZlOxeC7e3sfG44YYbJE2fSRsrM2l6856BhPE0V0XpMEzRiWCuFAZwRYE6JJHu7URvQSl/+qd/Kmk5Z9Z3ey/Ye8KTLNMMTZNiVB/NrfZp4xaRO3C+ba1yF3kGtfnyM0Lm6HnNSBDsWbexsXb4dyWpJu15uvPOOyUtn6snPOEJO/cwoIbuC5pw/f+9NZOhNLxCoVAo7AusHbSyvb09Cfrw0iVD+ulgZOKxh0kAWWJulPRq/1N6IdlxFExBqYJleZAeigEbpAXyW9iwP6YdcCx6lDv2nU5kG+fIecx6mNDt22h1U/ukEzmikVuF+qu1poMHD07SEXrUYja2plVFm2raXFlwikmgDJKysTCpU1oGJ1iQlI2LaS/R9jG2Rm18TDrvETTTymD94HpjEJOv2+4hSXKkUZI03NpiGoqlKbz//e/fVZYfA1sbt912m6SllG7jZ1qib382/9GmuAxw6SUPG/E4NVffbo4xg0nsuKWaSNJ73/veXfeaNkvSbabSSFPN1NYo04m85cXmm3SI1PS9Vsi0BJtbWmJ61H98N0VJ/wbSgNk6Z7AhyQV8+5nuZeNr1gH/fr3xxhslLd87fD9QA/THIkKDOZSGVygUCoV9gbU1PB8+bJJBFL7P0GtS7niJzqRGk1roJzMfBMOtfTnZlvDRr7/dY1IqyWh7JL78Tm0k0kLZH0rekZbG9mfEzxnZswe1bpPivf2dW+UwdcHKiLYu8eHGWTtMw8uSrf0xarcmyZGM2P/PdADz5XEden+w9Z/rypKs6WP1bbRPbm4ZkQZzjTBhnxqLl4BJjUWKrGj+o227pKUU/ZjHPEbS1Lfi22B+UvNzWZk2B347IrbJ6uF6j5KHvfWht7XUuXPnJj7daB3wObR2W3tNy/DtNM2XWgutQxFRA1ONaPXyzxhp6KjhR5tHk1iAaQOk0ItSGmz8aQ0gPZ1vEzXGLB0nSk/h9kD0lft7bD3xPWP3cJ37cvwGAavSi5WGVygUCoV9gbU1vAcffHCiAUU2YEbQUEPxtl9GWDJZ3DQ8SozSdKt72qk97ZWBJLd2j0m6jEyKys/6y774eyiF0L/pJWBKUhkpbeRbiyTS6HiPHirT1PzYc9PTAwcOpFK6RWiSoiyK0iRtlp87to3lcINM878wudefI/mxfTICmP9LS98g/T7+OvqTM2o5Q+RDpjZI/6/3cdDaQVo/u9Y0G/ND+msYHdeLCrVrzVLD54dagzRNwj969Gi6ubL58CJ/pYHttDG19UCfqzSNBjZYP1iP/271WJ/MVxdR5hkY6c1I7GjjaWpWfGdxTfl6GbnJd0VkPcoiOLP6I/J3Evob+Fz5cu0Yo20NEUlGNMZzKA2vUCgUCvsCe6IWy2iV7BppKinQdxdJzdQqMgLlKFqKZWV5ZNI0Si7bosKXHW2/49tIqT0iqWWUGevzZVibOH69qEnDHFm1oUe6yjmJfK+ZXzMrb2tra6J5+3Hl+Jj2REm1l2vEiFuuN6+ZMN/T6uPa8bBj3A4oI0uXlnMW5dn5/vWig5mPtwqFlbWFW77YcdN6fXu4JukTi6w6mSbE9eDrIWH8oUOHZqPtOH7RxrzZdjqkHvP/M6KTW0qRClBa/fn0bTTtkmOYEUL7+7mO+fxTi2fdUVsj4vlsnrnRsPUzinOgn55j79/ffI6yLaWivNbMctZDaXiFQqFQ2BfYE9NKTzOJNlqUplFZvU0cmaPF7xEJLf1S3GrFR6KZtEIJnhKX70PGUjDnj/FtZKSj92P66zwybYDRe348aaOn1Bm1fW6LDUrB/n4vhfWkra2trZRBxreP/ipKdH5eMtLgSEtnfdTOMrYU32fmirIdUf/pM2ZUHjW8KB+TOVv0O/sIX/Y9k8ojUmcbR2ooUdsMmSWhx0ZEjbzn/+W9rNfXbWNNjSRidImiPSNE2gz971xDkTUq8/cz0ti3MVubRBStTO2QWiDXn+9jRubMeqL3AdtE+DGhZSLb2DjS8LJ6eygNr1AoFAr7AvWDVygUCoV9gbVNmpGTMjLjRE5bKQ48oMmKBNM9k2YU0i9N9w3zJk0LVc520jb12ave3N8vQ2QGM7D9JOGOEpzZTwYvRGapyATjv0djFu0X16vf/x/tOUi01kLzpW93FrbPNs2V49vSM5Nlph0mj3szEQMyaKaMTPpcT5kZPuoLx4Im4ShZmUE+7CfLWMV0z0CoiPwhWov+3ihk3o9Jb64uXrw4CaDxyAi4aRL065drhM9/z11BGrDM/O4RBSX5MiKwX3yHcMx8G0lpyGsikgRSQGbk3lGwHk20cyTpHjQRG+bMzXZPJZ4XCoVCoeCwp6CVVQIPKLUy4KCX1E0NiCG/EahZMVjFJyRT8iF9DndWjvpODZYST7RrtSELq/X1MVghCs/NQEmKDucoDYQaCyXiyAnPvvcoflpru0LCIwk1o4fK6NuicwwIiKRYQ0baTEk8kkgpwVtic5QAzGCsKMXD1x+NCeeMSfpRODrTK7ItuyJwHKNUAJaTrdlI62FA1VzQim9D1P4scMHKjJ7ljMpuTvOPzhloKYlIxKnNMFgl0ppY3hwxtC+X9fK9EPWLgVaraJQZgQLL8O8w3pP9fnisYr3JUBpeoVAoFPYF1tLwjB6K2o3X1jLfky+D19HnxM9emZTsuQWLJRN7CY8aJLWYiBS758Pw7TAtJkpStXOrJE7SR2egZtGT0ilt9mjDMsmtJ6XTd+eJxaO2XHXVVRNpOUqYjsi7fT09zZT+ImpC0dqZC/mOEnNJBB1twGnIxp39iXyrc2kvXMNR+WxrZn2J2p9pdn690CfJtkaSOI/N+fB8eZGVI9NeM4uFNF0TWRh/RETAa0maQAuDv4aaVbZ9VNQGEo1n69+D2lpmLfDnMn96lJ6UgW2L7qElgRYFbtLty82+91AaXqFQKBT2BfZELWagTdiDv9gZ3ZC/hpreKlIa7eDRJqHSbsl1jnw0ipqkxpDZka1eL3HaMaPR8Ruv+jIjTcI0VNruqRVEftQ59HwFWcJzFNlJIt0IGxsbOnz48I5PNYtYk+alVi9p27xQip2L2uuBmrGfF7vf5tLaQkKFiFSXn4zojCLisrGwayINj0TP2dZCBr9eOC+ZH8aD45RF1frjfA9cdtll6bodhmGXdhCtnSySm3VHNIi0EmWR1tF2RPT39wg2OD6ZBukjbqn18T1H8vwoEZx+ORKHeGTrLIuG72lXmW838uFRU84izaN7VtE2d9q08pWFQqFQKDyCsbaGd/78+YkU29Moski0KF8ko0+KIp4M1DxIOB1pHdyupEdKS/SkUN8Or2FyM0puEhn5kPy2KdIy2pR0SJFU3bPRe0QSd5ZbGUWBcbzmqMU2NjYmWmEkrWeRYT3twj65lnrSX+b3sU9uYSNNtzGh/yrSZjJKL2oWpHOS8jwvzpP3hfqNMaVYkvdlRbRN1D6oxUURkln/Ili/7DmZ8+Ftb293tQ1qVtb3jLDdt5vvnWwboojyixYD0rpFmj7puezZNq3Nl5mRKmc5o5Eli5G8NuZGih3lRNNykPkSo2eSfjlDbz0wUp+RrJFVz/+WVB5eoVAoFAoOe/LhMRLR+1S4bb2/13/6X/uMqSNjbIj8Vcxt6kV2ZiTKtMuvwl5C7SzSRrItXrg9SbQBrJ2zrVwo4UVaaea/yHKrImQRpH7sIx9BT9JqrU3GtkeUm+UYRZpp5u/NrvPXsh4SUUe+TkO2MbCHzZ0h81NEW9hQm8kYjLwWx81hM6LrnsSd5Uf1tO3s+YnWGa+d2wD24sWLE1+Uf16oATO+IPLX90i7fVlRfibHztYK59bXSx+dPcv33HOPpOXGs15b56bEzNmzNlkeqF+ftCCZRmftiO6h9auX+0xkeXj0r0Z+Tc4PI1l92ex7kUcXCoVCoQDUD16hUCgU9gXWphbzpoXIFMlde6l22vHMke6RmU+iRFkGQ/TayHsMdDh700JGKZaZxXrJ+ByLKMCG42dtJt1a5GBn+RwLmn+ifhhoCowSd73pKjNpbmxs6ODBgzvtZPtZjm8LzWkRcXFGUkDTbLSXHtNUzPQTBb7wHtYXkYxz7dgcWj00PXmQEsvMnQzC8O2gWY330FQXmWx75kWC68rQowKjya9nErZgOT6XUapCllrQS4fiOsv2uovWDueUz2eUrM6AHTNtRuk9Zua0Tz7TqxCdc56tbZby5E3onBc+e2xjRORAMDgocklwHWf9i+45f/58Ba0UCoVCoeCxNrXYgQMHJkEXHnSyM4w+2iV9jr4oI9/155hYmiUe+/99SLS0m8iW9fRIkSNEdD0MnWegTRSMQ22tt0UK66bU3NuGhseywANPe0SNq+c83tjY2NFofH8ibT3rW3SckjYDW7IdnP21tiY575GUbiHk3FLKpOVe4MGVV165695jx47taqPN7cmTJ3fuvffee3e1hTu6R0QHXFcMMbd7Iimda5HPT7Temf7CuYiebxtrnySfPUvDMOjs2bOTlBP/fPJdlAXARRSD/M51GGnCDCrL7olo4jgPfMYtiEVapsFQw2M7IksPNSEbX3sOrW0+qIqpOFlCf5Qawmc6I82PwDWUWQ18uaumQ+2qZ6WrCoVCoVB4hGNtH15rbaJNRVtvmNSQhfFHx+Y0vEgzmaOQisLRKVERUfhstjEm0UudoD/JtCVK4v7/uSTebOx8vdnWHh70dVCCizZojIiy5yQt+tK8xtUjQpZiX0rWR/pS7bjXBHgNNXz6dKWp/8g0MNPKrI2mvUlTqq+rrrpqV7nWX0rz7Ku01BYzbdTfQy3E6mHIvh/vjJqtl5aQERzYtabJ+HWS+cQjbG9v68yZMzsacrSee++IqG3RtdTK2MZIW8veNxGZBN839OGZZhdtZZbRkFGzi8L3aR3gu8STZJCiz5CtiwiZdaVnWaKG3Nvoln0tH16hUCgUCsCeNoDNNkiUpn4qbo0TgVJRL2LL1xu1gZJPlEBJGh5GjNLGLk2lPEZl8TovcWeRT7StRwmZlNIp0UVa2xxZcIS56NOeJG4Sai/ydhiGXVGcPX9slgCcnZdyaTJqB+/hOuglk5uUbFI4qcaYtC5J1157raSl1YOaIzX9yKdmfr+MqDmyDli59OlRU/b9zLYsMvSI4nt+PtZj8JRZPSvG9vb2zrNN/6lvL58/am3RPZk2u0ryM+csi/iUpn5XWp8YVeuvYbwBffqRhmf3GD2hjVu2nZMvh9oorQSrkLFTW4vmn23hcxsReTPKeI7wYlebVrqqUCgUCoVHONaO0vS5VD0fHnNN7JN+EmmauxTlibEdBua2cGufKJrIQMmnt00LNRJGL/HeKPqQvqKeZDy3+ek6EVBEz6eXRTX2pMFVpau5fC9GfWYRcJGWZsgk0Eiq5VrkZ0SubLBjpsmZ9maftrb8/3ZtRmXm7zHYc0P/CzUZ/zzR35pJz3x2/DVZhK+hRw/FcYvoqewa81f21q/FDdhYRL7VrH0932MUHR21nxRk/t5oDKXlWNi7RcqjF+2aG264QdJu64D59RjxapYF5mP6ebP1ZD5j+zSt2qI1/fxklqMoqvr/b+/8eiM5jiSe5FKLXcAwLMkLWNDDff+PdYBhQJAEeeWVZO1yZu7hEGTy1xHVPXu4B3kyXkgOp2uqq6t7MvJPZD//FRj/W2X6OmFoHkO2ucpY33zO4XcOBoPBYPAHxmfV4dF/7KrtUyuPVWZYqoshnNoHx9ffFGrtx9OalWXl4kCcI5kd4z4uE4ljMYPQqcHsZUU5Cys14jxiYXGOghPYTQLNCXd3d5sYXrcuE6NbNVel5Zvq8Jh52V/jT1qQXb2C3ghZyayt65Y9Y7icGz0bnekx7kImIUbp2gMlaz1lsPY5kBklgfX++94ecoysq6es7vfHx8eNR6mvcYqHc24uDsf5pmeYey/rU7Wmzuul+WoubIZMkeeq5+vLDE5mNLtaWO07Zbf2caue90x/PXnteL7XsCphlUvA8fncc169fh8d9XANwxsMBoPBTeBqhvfw8LDJXnLWHllgaqqYPqf/ZNzKZWnybzZXlM+7/4+6n1TC6BaJ4iz6qffISuoWdpWPM+lYZjOuWCGzNfdq1KpyJt9enMTNn0oeq3q/vfEfHh428ZxVTI3zd9leia0wO9ddJ9fgtZ8jG3VWvczc7cfSetW+6+PJWnc1jX1ufY20b9kW5khbIjJj1li5FlCMt6zuPX5OynokC6l6Xp8+Xtrb0tJk/W/fO3sxO3eue/t2dWx6nnHdHDPRs+Pbb7+tquc9xedR/2y9pnWjN4rPo37sl19++eJ/mpO7J/jcdPqeVV4VifeeU/Lp8+rvWanacAyXeX8Uw/AGg8FgcBOYL7zBYDAY3ASudmm+evXqic46GRq6QPY6n/P4PoaworepBQbThbsrigHZJCnVKXMPrvefdIu5xJAUQF91SReYyJEKTV2xMv9eJRVw3lw/rUl34ezJOfGzvvjii9iqpGq7thrPXQ8hlYcwKWZ1TQXXwZ3nTHea1keuRwofVG1d2UxiSfdI1XPavsanO5zFzFVb1yglxVJiSh9vT7TciU3wHuC17msvsW397y9/+Ut0z55Op/rw4UO9e/fuxTFuDkm42pVb8P5Lz6GV65OSdfqbZSr9/Ck/p3IBdSDv0nI6Xoklf/7zn1+MQVH+/nlsP0X3vnvusOyqu/M7VqVbyZUpuHVMySqC+77obt6jXc+H4Q0Gg8HgJnC1tNj9/f0maOi+XZP82CrNniUMe8yoamtFsnGqk6ZhexRZMbI6GYTvv6emrWzU6tgTkQqBO3h+ZDCusD7JHR0pAE3W+RGxWBUIJ1wul01w2iWgyAJNRfAuUE6mR+btZJtSog5LWpx1mRgP2VR/r1iakx+r2rLFPi4ln1iE7eSoOOdUVO72efIKuLIESgJy/zlRcCZDffXVV5Hhnc/n+vDhw0bWr7MP7o3kGTmS6JIKxN06UTKRTYSdAAXZmRPj4OdoPK0hhQh471RlOTqWwawS3vQziYOsSk34vHHeKB7Lvx0L1f9UqnFU+KJqGN5gMBgMbgSfFcOjFeC+fWktrxiX/kfmtWcpdNBqUiEoP7ePS1ZIGbQeL9Ex3frme6p8QXWKna3KBhhDS21AVu0zyAq5fs6yE2hxOUbGY1aNGFU8vCrmTY14GZdxgtNJCCDFzfo58ifLETp73mvbxLhJ1TMLSMXcvE59T6kInaUaqS1NH38vldy1WxK4v3ieRzwYnKs8KFXblklv375dFp5/+vTp6Z7urZc4h8TS6BHp50YPAuUJyXL6a1xTehr63kmlRStRDnosNAZLadz9uSdorb/7efEZwWfUSvA+eebcc0JIuQ/JS1H1/GzXfnr9+vUUng8Gg8Fg0PFZ7YFcIaZAK4YMj/GRqq2VRFZGy8+1lWcxOa3zbgHQCuN5iMU5n/2RFjJ8nVYS18bF1JJANzP6HMtOjW2PWEGJuayyT/sxK3/63d3dZv6r2CPjJCuGl7I1U2smd248d1cEq3Puslb9PWJknYUoc45xELIQypX1+YoxsojbFeGmfc01WrFtrsXKA5CYC5lk9464WHjanxItUDG0frp1SqzGxeUSW0pjduyJIwhdgCDJH6Z4WdW2lRBj1rxP+71PFp2eN30M7gnur/Rs6UiyYEck2jgPoc9R+6iv/TC8wWAwGAwarmZ4Dw8PSwsxZQSSiXWriv7wlCXlhE3lz5UlpL/JiBwzEUujheesjhQzSRlvjuHR4qUl1K0YsgydHy06Mpw+XpKQchbXKnOzw9VcHmkwKyt99XmMvzKm5eJwQmJ2R2oEeR1SI9A+PjPsNCcn1Ks6K2a2pVhrZ0LMWBVotbusSe4DtjRaCfNynzEW5lgB9xWZDGXZ+nn9/PPPuw1gVZ8mdt1jnTon3u+rlmMrTxXfy8+T10HPM9Y8qqaun7Ouq/Y3nwOugTJzBpL0FvMfqp6fgdzHWj/WDrpxhWtkvPj8XLXz4TWnt8A1pKXXozcG2MMwvMFgMBjcBD6rPdDKn5v8tWR43WKQdULrXEhxwf4/qmNwbn0+KRuQ6iku004/V2yjn0tVVlLheXV/P60W18C2z8Mxs2QtubjfntqNy8o6IhrdcblcNnWLbr7cK66NTZpDUn9ZzT+pcbhGo5y/jk21df08mK2pvaP971qvkFHSK5FiR1WZ0VMdpFv1Lruwf75jynvC8LyefXzN5ddff122wPr06dNmnRwzI3tOIuz9tVRDyWvdn0u8p7SWP/74Y1U938v9PlZrH97bmofLPtVnazxma7J2s58fn4FkeHzu9ddSDI/3mVO74XtSXNUdQ2UfFx9Oz9MjGIY3GAwGg5vAfOENBoPB4CZwlUvz/v6+3rx5s3FRuGQLgYkALr1ergq6WOiCcwXTHD+5GDvo0kyC0D2IrGPo5lolOAgpsSWNUbWl+CyGXX0e3QRMLU+yUSu4BBXOYdXr8HK5vHBpOrmptC7JnVuVpcWSG8+tMV2mXJeVjFYS73VuwlTKQDd/dzEx4YMd0AWXEETRAt57rh8g9wb3rrsWewki7PdW5V1WK9GCjx8/LsWe6cJM7z0ihUW3nrvXeE5yU3733Xcvxn7//v3mmCQpJ7gSEyXsyO3JsiX2zevzlzs0hTaUYFP1LE5N1zld6EcF4/uxPKeOlMjnhEN43abwfDAYDAYD4LMYHrvi9m95FpZTYJpByaqtvMxKYJrH0uJkCvuq6JHMTtaTrOh+TCp+ZkH6KqBKaR9akt0S0v+YlswAuiuOpVWbRHCdVZSKlZ1VfU0xqsoStE4ryTfOmwkijpH0z1mdoytPITtMXcz7/7QfWECtwvMOCgDzfLTf9NPdT0k0WGO4lHZKejFZxq3RnsTTSkScngR6J9yxq+Lu/p63b9/aZ4fA+4JCzW7/cq/wGM6334tidPopIWN2Cu9lCUksXmO4FlCpSJxrSzHuvhZaGyXUcB2dbNfXX39dVVsBau6dLp7Ne5rMf/XcWbU763N2c/nw4cNhAelheIPBYDC4CXxWWQLjWf3bl69RvscJ8jJ2l+RtmFbb35uksNzfSXaKlohLD6fVx2OcSC1xpCCT7T6SPNDKaiZWDDoJCnOOK/HoFe7v719Yro59am/0JpZVW4vRxcdSO5EVwxfI2pme7tgz08MZ83KxIjLWtH59LyeGqrm5cgFKVKW5saWVmyuxEh7nHkpiCW6cPUm6169fb1jNkYJpnnt/7nBvs4ife6iztcTsKBTB9kH9c8janfwd460sWuea93Wg/Jneq7mKUfb7jQIeOne9hx4flzPBPUtPifMo8G8+191+czkkexiGNxgMBoObwGdJizEjrbf94LcvLW9mplVtpY6SH9c1u5QVQ9FoMkwnBE1WRovIZUvtZRNpjk6kVmBj0VXcjyw0FWR2Kyr50Ml2+vpyPMYIXSsZF+9LrOX+/r4MW1cfAAASnElEQVT+9Kc/PWWbOZYji1NSXAKtPdfslLEgZqI5TwDjXrRa9X+XhUw2wJYljn2k/UXJLRev0OfKOnfxPoFC7Smm61gP2UeKrawYWYq1uWaoPaN0laX5+Pj4dN842S7F35NEHuOzVdlb41g6z4fPGzIj7eVeTM74m/7Wc9QxYsbmWLSexBqqtvHE1MqoQ+/VGtMzR3m6Dhcn7VjFjPk3cz76+ziXVYbvZg6H3jUYDAaDwR8cn9UAlpl23eJm9g7lgJzET4px0AJj/KK/RibC//fX9wRyZUG4jC5mnVLo2FnAZFgCP6evY4ozCrTiOzhHwmXGpZojMsiVvNcezudzlB3qv8syleXLhqyuLUw6N9cYU0jXn3EYV9sk6H/aB6zL669RcDq1/OnMJUm+SaSaQsB9TrznyBY5v/57stYdg0r3E+8F1xR5lfUpnM/n+vXXX58+U/tD8bOq57XUZ5C9r5rdMnta65dk1vrnqW6N4zs2o2OUAcnsWXeP8bUkmei8Ea7NWX+vEx7n/PV5WvNU79r/l2oh3XOCMTqutYtN6jmg9Vt5B4hheIPBYDC4CfyflFacuK6+dVP9DrPL+u9UIkhxwM52klVBS2FVFycmQdHqPgZjDskSEVw2I0WJaW12K51xRa41VTNcfMGx6T4fl6VJpuoYC485Ukv1+PhYP/744yam5tp+iC3puqTz6MckJYjUKsm9xrooxmX6HPReWdGM7bqYccqS1dyp9FO1ve6as+4zlw3IWC1jh8LKSyBwrk5VZ1XX1cfoa0KFkq+++irun8fHx/rhhx+eahzFan/44Yen9+g1MV+u2yrWKaT97OLNrL9VrI571bE1zpnxstWzigpFZO39M/isTfvNxeXTGjBbvCM1w+XeXcXEmXPhsoIlwq2fd3d3w/AGg8FgMOi4Oob35s2bjbXXFQiS3576ft2qkJXHjCDW3dgTgE+Z/mnX2oPxCWZ/ulo6Mi1mMXKszkL5eWIutKZcjIOsln87RYdUx8j/r1QnjtS27MVPO06nU71///5p3rLWnXWZ9PpcTV2qoUz1a84y5T5jq5W+v3sWXD9ntv5Z1Sim97hml7RcmdEsOPaRdF4TO+ivcY70ALgsZL2HWciOsWhN9fPx8TEyzdPpVD/99NMmg7RDjFcML+ljumdJ8gZwjfuxjNklhtfPSYxO96pi0Vy37k3h2lFpZ1WHRzZ2xOslUE+YzzUXt6XqUGL6fR0Zn+cxVLSpetYV7fWYw/AGg8FgMGiYL7zBYDAY3ASuTlp5/fr1E30UNXeCwqLrTJF2AWC65ejSZJFndxcyaYHFo664MgnKrgrfk9AsA9EukYdp5/zpUnxZDsDPSa1N+Nn9fylZwv1vz73j5riX/HC5XJ6usdK5XVCfbppVoJzXcK9MoZ8HSwq4D52sEZMDmOi0ck9zznT9OCkzJ8VXtXWtu+uTUsyJlWs7nUN3MdHNmcIJXaCC+/fx8TG6pc7nc/3yyy+bte6JOknGjAkUfQ1YBpLc0O4ZwsQPJoi4sTQHlmqx5ZNLWkrlL3xmre7p9CxxgtNuL/axXEszur0pXr1KeOL+ZVJb3zu8F66SODz8zsFgMBgM/sC4Omnl9evXTxaKs8hSoTSLevuxtAw1PhkfWw45cCyXlszXyAJkVTiWtpK8cX/3cZKQsTuG68dEA47V50oZMjIwxwpTgXYSBeif0/+3Ch5fLpcNe3cB+qPF5H2+KWkliX739+inEigo3+REC8heaGG7xJo0BpO1nFAurwsZjROrZjPalDbuiofJlI5IzNFa557te4f74HK5xKSn0+lUP//889NeYdlK1VZGa1VoTqR7ih6MLqeV5AiZtOKeO0rYUlp9KgXocyKjc+PzbzIttpJyzw6uAT+foiD9/k1C4Engv2r7HOW9wfIVd65v3rw5LH4xDG8wGAwGN4GrGV4XCGZqftWzFcT2ErToXYovff8aQ9abxnYNElm4mIos+7zJClbWIP3EKabiSgEYs0sW8EqYOclguZgLraUjKcxkgbT+ViUH/bqtGN7pdNrETfq1TDFOnrNLo6dlyvY97tqyYJp7xwmdc69ojorDMAbSj0nxnRS/cK8xBu5a5aT0fa1Jambcx+Far1pZJYaXpPSqtm1uVveeSloYP1ccuGrLzjlvF9Onx4jXh+uz2qsC92N/TvC68v50OQrMlzjyrOIck1i0i+UT6bmnefVrqvfqXmDM2Hn36E1jaylKm/X3HmV1HcPwBoPBYHATuLo90KtXrzbZhd2a1Tc0hXFXlk+KZegnGZ5rK5+yh5xVnQSMaRF3KyqNz5hRitP1/9HycllGtOQZf1sV4XKuqxiBwHG1bsq2TbHZqpfW2IrhvXr16mlcWeK9ma8+Q68xhrLKnk2WNpmek1PTT50r4zAri5ReCQoEdPB6Jxk8F99exUH6nPvvlOpLGaX98/aK1Oml6POnt0XzEPtSwXB/TddntW/O53P99ttvT5/57t27qnqOgVU9Pyv02l//+teq2ooqr4QOkhfDMbyVmHp/3cXJKbNIkQ4nPMB7OJ2XY+tu7/djHFPi2iSvUUcqStcYLkbNNdDe0f5wWZpsE6YM8CMYhjcYDAaDm8DVDK9qa007QV5mVNEy7GNQCJm1R2J4rD2qev6Wp5XM+CIlofpcNMaqjUWydFIWo6up2zu2g+MkmTDHQjh+qjPs143Mbq9NjDtmL0OzXyMKhldt65HSmjvvQMrGZAynH8uauVQP1y17t48cesyBFi7H1z1CS9+dD8d0QuS8TyiLR3ayytJjrMi1MKIkGveumF3PtDsSt+xzenh42DSA7c8QMTt91vv371+8h16Cft6pfnSvRZeD26P8n6tB7K+v6k1XNXR9jKp8X6b7y713de8lMPadmmd38B5hdmb3Dgjab2/fvl3un45heIPBYDC4CVzN8M7n88baWDVVTDEBl/mWsuPYNsYpNiTlERcn4/i0dFwrHLIkWkm0IF3MMPm2ncVD64yWXGJxbg5cI8eGqP4gpJhl1dYaO51OkeXd3d3ZGF6PxwqsBeN6uXkzHkExZ9d6JbVrYsZt39/0KKTYisuA1f+4Z5i57DJ8ue94nq5lFmOiiuWRtR8Ruk4ZjB2MFWlfOIbnBJtXe+eLL754Wi+x577G//jHP6rqWTxaDE9rIHHnPu/UdooxO82rZ3qTlaVMX+eNuMaLkrw0KePTMbykKEXvSD93jpea+/b7iV6bPfWm/jsZnV4Xc+9xTdfGbWJ4g8FgMBg0zBfeYDAYDG4Cn5W0ItAlU7UNVNIFI2q6EnVm8goD5atecxQadqm3dNMlOTLXRTq5aumOcBQ7BYSPJH0wESB1BnbjJLdvTzygxA+Tfpw7gu6PvbKEu7u7jUuz752U3p6uUz8HjSfZpnS9+vx1fZM7vM+bc6Tg8Co5gi5kujS7q4zHpnILJlS4xDH9T+PTvbsqaeFc6B5z6f0soGYxuCsJOeKKYsKTEyH++9//XlXP11+uTQpPOHcax+VP53Zn4T/Pxwk20A2aSrZ47h1M7WdYZJW8sXIZC0zu4nirubJ/ZOqL168lC+v57JdruiOV9xzBMLzBYDAY3ASuZniXy2WT7uzEfBnEJ0NxVpOQGN6qUDKVSqxS/sk+aZE4a3CvxY+wKm1Igq9Obk0gC0xF2e48yXZdS46UnJIs/tX5JJxOpw2L68XD3377rT3HFTPV/pJVKUFh7hWXVn1UpsnJhK1SrKvWBccci/Po68mEGjKIVRss7lnOld6C/hrPk3N1LV4Eir67NeIxq2ugwvN0r1U9lyooeeVvf/tbVT0n7Li5JNGII0w4yVutBNq5pkxeccIKqRyA14Wv9/9p/FRWsXpWpc9xhefJC7Uq52Api6DEJHfdUiLfEQzDGwwGg8FN4GqGp/TyKm8BkcGxiHwl/ElLikzPIZUSaI6M06Rz6nNyAsCJ0SUm0c+F8Q+uhTsmSaYJZIUuRpnWbSWzReaSCvrd/169ehVT3BWHocXW2VqyjhPb7ecoC59SaKtyEYFitynm2cdxMlB9bq58gwXfXD8nSJzYBhleZz17sUjuN8dCeP3JFnuJgdg1Qeu9v6/Hfav+9/5N9+jpdKp//etfT/e45qBr3fH999+/+Pn1119X1TNjcO2tksgy959bJ8KVpfCYxOxXsfzEzlla1e8Nnldiax28BxPLXYmyk9mlkoaqbeyOheZO6GAVY9/DMLzBYDAY3AQ+qz2QvqGdUC6tJjZzTa0qqp6/5cnWmHnZZZsEWiAr0dgEzq0fQ3kmSjuljK8O+u6T5FfVlm2QOax87GRPXD8Xo0wF5yvriePsMbyPHz9uWGf/3BTXoYXoWq6Q6TFG7GK6LOa+pomnO7/V/6u2LClleDq2zj2T2Eh/LWVCpmxRjtOPpSeh34NdeKAfw4L6ldzWqvBce4dz6PPmHL777ruqqvrmm2+qquqnn36qqufszT4vFjIzlu+YMJ8n+lwdy+ddB/ddaoLazyvJjqXYHufbwb26YpR7cU7HKPn5nLvLXNV6sdDcsUTey0ck34RheIPBYDC4CVwdw3t4eIixh6ot40iNEldyZByD7U6cLBn/1nucpZUsyb3Mu6r9zMRVbJLrRvFYJ66cYmpH6pj4eazPcvVlnNNKmosMaMVuzudz/fvf/96M2y03ShPR8madV9W2nk+yc5QWU7zHZeml2inXAibFxxIDc8fQg8GaR2eZc41XrDC1U+L5OQk9sj9a6bK8ewyPcoG6xjwvJw+ldXNz6eP//vvvm9yBHtehEPc///nPqnpmDGJ4TmQ71Rgmr0r/PJ4jvVR9f6cm1bzH+zqRuQopw7ODjDi1rnLsKbWhSvV5fVzuP3opXP2vYnb6SfbW50PGfX9/fziONwxvMBgMBjeBq2N49/f3Mduo/57qd9iKp4OWAYVzHStk3EcWF9sS9TlKdYG+ZfrUV+fFbKxUv+SQ6sycFUNrkBlQjunRGk8MbFXbkizIfg04/srKkpW+YqSat65dqpPr17w3n616KSze58QMv6rMuHk+joWSkdBKJzvtYHyR2cEdtGYZZ2SroT4e1zrdt/38kmXNeLDLAE5ZwW6OvAdWAsCXy6U+ffq02fsulqt10h4SwxPD73v0yy+/fHGOnBvvcefB4P1O4W4XM95TXHLXIz0H0jXuSHkMrjk2PzftFfdMZhxT8XSuUb9ujL2z9jplNPfxel7JHobhDQaDweAmMF94g8FgMLgJXJ20cn9/v6TRdNMx6C13ohOfTYWxLK50NDp1TRdVdinMLClIBaEddM+kNPFOwekyYLDaFYIntyfdr67wOLnqeMwqTZxunSPlCSsoaWUVFNd8dC17UXKft3P9MmGC6yQ34koQPLkj+9rSLZXch30M7iOKRaf39XFT4THd/n1O6X46IsnEdWS/RIYSqrYuLV5HV/7QE4PSPjqfzy+SVrQfeuIM9zbnqaL3VWd4JrxRxMCFOPZcaf0Ynh/XVOfT1zb12WPa/kqWTEiCCqv7l/s9FaC782LykubcS1r43lQ+5hKUnKt8D8PwBoPBYHAT+KykFcEV5grsepuKbau2wWFaBmSJ3apgkopLOKl6mczAVG4GtGkZ92PIOgSywpUMUQpArwLcZHqUP3OW3R6DdeLYTE7hMa6wlXNzuFwuLzqiu+7eqcieAtEde5JoSlrQ+UhqqmrL5HgNj4jepuQVxyQ4Lu8JxxpSSxlBx3bWmNLpU6mL2zs6P46ldP/OQhyD43uqXrJr3uMrK12F5/RMOOYtJDbV5ciUAp+eA5qTpOf6fZyK0+nZcglP/Jtr7QrPuZb82xVh7zH5VVE8weeBK08gU+V+0OuuVIPeJp3fqhTNJV3tYRjeYDAYDG4CVzG8y+VS5/M5xueqtv7uVTxMkOWXrMpUgKw5dSSLofuNk8+a/vL+OTwfWdRJgqefbxINToWofVxajoxRuHVN7CwVE3dw/omd9uO7NZssdcVoGNdZeQw0vvZHbyWUzplrS9HgPj+lpWt8Wu2uQJ//S0LM/XMYt2bqurAqMUnp6C7umOI7tISdx0SWNAueNb7Ws8dUGEfmsfq7s1AyhD02cjqd4lr0cyVrJlNw4g6U7yKz1//F9Pp7BbINt+Z7JQac1+qYJESxuqeTXOBKWoxrwevkchX4TGTp0MqTpfPkfbzy7nz8+HHpXXpxzKF3DQaDwWDwB8fdNRkud3d331fVf///TWfwH4D/ulwu7/ji7J3BAczeGXwu7N4hrvrCGwwGg8Hgj4pxaQ4Gg8HgJjBfeIPBYDC4CcwX3mAwGAxuAvOFNxgMBoObwHzhDQaDweAmMF94g8FgMLgJzBfeYDAYDG4C84U3GAwGg5vAfOENBoPB4CbwP3JjV74CzsbWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKIAAACoCAYAAABjaTV9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHytJREFUeJztXWuMXVd1/tadscceex72xDaxTZzEHtmloU4BC5M25aHgJiLghBQiObyShrpAEESEiigKTaugJpS2gBVUSuOSigRkobjI1A40DkncBGgrKAq26gSFlDi2Er8mtgePPY/TH/esO2u+WXvfc66Ncm61P2l07z1nP8+c/e21115rbcmyDAkJrzRqr3QDEhKA9CImVATpRUyoBNKLmFAJpBcxoRJIL2JCJdD0RRSRD4lIZv6Oi8jPROQmEek06Z4Tka//phqa133HGZahfTn/rDSqIhCRO0SkrfVwnc2TNPAeAPsA9ObfNwFYCOCz+f2rARw7q607+/hXAG8CcOCVbshZxj8CeOiVbsSZoMyL+N9Zlv0i//59EVkB4BPIX8Qsy356tht3tpFl2UEAB1/pdpwtiEhXlmWnsizbhzpJtC3OREb8TwC9IrIQmDo1i0hNRB7Nr/VpBhF5rYicFJG/tgWJyJ/k0/2IiBwSkXtFZH6oYhF5fT7F/r659vH82p3m2mB+7R3572lTs4hsEJGfisgJETkmIk+JyEaq780isjMXS4ZF5HsiclHs4YjIp0XktIgMOPf2iMh3zO+/EJGf5PUfEpFHRGQt5XlL3vZ3i8jXROQggBfze9Om5lx0+qGIHBGRIRH5kT4Hk+b8vMyNIvKXInIgT7tNRJY67f5w3s6TInJURB4TkUvM/W4RuVtEfpn3/ZcicpuINH3PzuRFvADAOIATfCPLsgkA7wPQA+CreSNnA/gWgN0AbjONvwvAPQAeBvAuAJ8GcDmAHSLSEaj7pwCGALzNXHsbgJPOtTEAj3uF5C/yNwA8BuAqAH8E4GsA+k2adwDYmffzfQA25P3aJSKvDrQPAB4A0AHgWqrz9QB+C8A/m8tLAPwdgPUAPgTgJQCPi8hrnXI3ARAA78/ThnA+6lP2e/I2/BeA74rI5U7aWwGsAHAD6rPcm1B/LrbdXwDwDwB+AuC9qD+LxwGcl9/vBPA9ADcC+BKAK/L6bwcwhXhcZFkW/cs7mwFYifpUPg/ARtRfwn8x6Z4D8HXKe3We9/q8E8cBDJr75+flfJby/V6e7ypzLQNwh/n9HQA/yL/XABwB8DcARgHMza9/C8CPnL6cn/++BcCRJv3/BYCddK0XwCEAX2yS998A/JCufRHAUQBdgTwd+XPeC+BL5vpb8rZvdfLcUf9XBttRy8v8PoDv0PPPADxK6W/Jry/Of6/I/09/G6nj/XmeP6DrtwE4DWBh9FmVeBHt3zjqI3p+7EXMr/89gBF9Ieneh/Pry/MHZf+O2Y47L+In8nJnAXgdgAkAi1BnrivyNC8C+KvIi/jm/Pc3AFwJoJ/aN5jfv8Fp3zYAP2ny7PSfsyL/3Zm36auU7jIAPwBwmJ7zQ86L+IEiLyKA1wP4bl7fhCnzf5wX8c8o7x/m19fmv/80/70q0tf783eAn9OaPO+7Ys+qzNR8dV7oKgBzsiz7QJZlRwrkuw9AF+rTzQN0b2H++QvUmcz+9QCYJl8Z/CAv9xIAbwXwsyzLXgTw7wDeKiK/nZf/SKiALMseQ33qejWArQAOisjDIvI71L57nfZd2aR9APAggGHUX0gAWJeX2ZiWReR1ALajPoD+GMBa1J/zz1AfZIymK/5cZNgJYD6Aj6P+jNagvrL2yuT/46n8U9NqP2MLooUAlmH6c/oPKsNFmVXzz7PJVXMhiEg3gM0Afo46u9wF4GaT5HD+uQ716Ypx2LmmeAr16fFtAH4Xky/cI6jLMM+jPiU8EWtjlmXfBvBtEZmLOuvcDeChXFjX+m9FXYZlnG5S9rCIbAVwHYA/R12uejbLMtuma1CXY9+dZdmoXhSReajLwdOKjdWZ43IAfQDem9VX1Fpmd4G8Hg7ln0tQFxk8HAbwS9SfvYfnYhVITqvhBCIfAvBPAAb7+/ufWbx4ceOezfvMM8+gu7sbCxfWSWR8fBwHDx7E8PAwzj33XJw8eRJHjx7FggULMHv2bADA6OgoDhw4gHnz5mHu3LlT6uV27du3Dz09PejrayzCcfjwYYyNjWFsbAzz58/H7Nmzcfr0abz00kvo6upClmVYtGhRI/3w8DCOHDmCc889F52d/hg8fvw4hoaGsHjxYtRqNRw4cABdXV0YGJg6oEPPja+PjIzg8OHDGBgYwJEjRzB37twpfRgaGsLw8DAWL14MEWnkOXToELq6uhrPc2RkBAcPHsSCBQswa1adqDT90NAQjh07hvPOOw8AcOzYMQwNDWHJkiXo6Kiv98bGxrB//350dHRg6dKljWsvvPAC5s+fj56eniltfvHFF7Fo0SLMnj0b4+PjeP7559HX14cFCxYAQKNcbcPLL7+MAwcO4MILL0RXV1fj3v79+3H06FFxH5ZBGUbEkiVLsGXLFoyPjwMAfv3rXzfurV+/HhdffDE+8pGPAAB27tyJTZs24frrr8fatXVNxJe//GX86le/wic/+Un09PQgyzJs27YNjz32GC6++GJceOGF6OzsxNDQEJ5++mm88Y1vxIoVKwAAt9xyC9auXYt169Y16nzyySexdetW1Go13HzzzZg9ezYmJiZw++23Y2RkBOvWrcMVV1zReCg//vGP8c1vfhM33ngjBgYGsH37dpw4cQKDg4Po7e3F0NAQduzYgSVLluBTn/oUAGDPnj3YvHkzBgYGsHr1asyZMwfHjx/Hc889h/7+flx66aUAJl9A/pyYmMDdd9+N0dFRZFmGjRs3Nv6ZIoK9e/fi3nvvxcKFC/GGN7wBhw4dws6dO9HX14eBgQF87GMfAwA8++yzuOeee3DNNddg1apVACZfhu3bt2PHjh34zGc+AwA4cOAAPve5z6G3txdvf/vb8fLLL2Pbtm0455xzMDExgVtvvRUigkOHDuG2227DlVdeiUsvvRS1Wl1S27t3Lz7/+c/jgx/8IFatWoUZM2bggQcewEMPPYQ1a9ZgzZo16O7uxt69ezE4OIjLLrsMtVoNH/3oR7Fv3z5cddVVGBwcxNjYGO68806IyPdRX3hOvjBn8iIWxcGDB7F582ZccskljZcQAK677jrcdddduP/++7FxY11V9853vhMLFy7EE088gSeeqM9Y/f39WLFiBc4555xoPcuXLwcALF26tMEStVoNy5cvx+7duzE4OBjNv2zZMuzatQtbt27F8PAwenp6sHLlSlx++aSG4zWveQ1uuukmPPzww9iyZQtGR0fR09ODZcuWYfXq1U2fRa1Ww+rVq7Fr1y6cd9550/q0cuVKrF+/Ho8//jieeuopvOpVr8K1116LnTt3Ni07hMWLF+OGG27Atm3b8JWvfAULFizA1Vdfjd27d+Ppp59uqcwNGzZg0aJFeOSRR/Doo49i1qxZuOCCCxoDsbOzE5s2bcJ9992HBx98EC+88EJjhgLwJJqIMU2nZouLLroo27JlC06dqsuyw8PDjXsjIyMA6hQN1Kc4ex2oT8VAnSWAqaxhP+29RkPzKUCv628vTexeCLY+245m6bkv3vPkNsfawmmUpWwevqa/9dPCy8+/Q+Vou60Y091dFzNnzJgBAJg3bx4ANKZjAJg5cyaAOmNv2LABe/bsaTo1J+ubhEogvYgJlUBpGVFEGtORLlqA5tOu/c6fsWlNEbvXbNqN5ffq5nZ55fP0HeuDpvWmTgbXFWtDqG6bVuvmVW6sHO5/LucBmJx29Z6KabZcratIfxWJERMqgdKMWKvVGkw4NjbWuK6jhu9Z5rAMasHCskWIETzhvQhCLOwxdwxlFnnKEKEFmP3OCwbv2YQWJ/pb6+M6vLQW3D7v2SgD6uJE/++2Ti27q6ur0GwFJEZMqAhKMaKIoKOjo8F2Khfa78yEHguGRrQ3es6EET1m07TcLssGrCoqwn5lVDIxllNm4U+bVtUpoXK9umNyJOfXZ6Npbd084zFD2nvj4+OFZ47EiAmVQGkZMcuyKCPyitjKDvpdR3RIdvIQkp34uy3Pk0/1U/NoGm+lGVrde2ilDx7L6acqjPm6vVfm+Wka7b83W2h5PFvY3/q/17T8f7ffy8jRiRETKoH0IiZUAqWm5izLMDEx0aBeq+hkyi8ypeh0aKdvRWhx4gnmnNZbKFkB2n7yde+aV17I2saDto9FEttvnopVcayfet/LzwsQO+WziORNzSyesALe/p81DT8jq8orIzIoEiMmVAJnZAbmMYSOIjXL0hFtvzMzxkZQSC3iKVCZuWz7WCWhI1itg+yoVwGc89g0rKaKKcG1fcx2drZgBlR1CC/wbHms2tE89jlqHzQN981C82kaj2E5v/4ObQMm9U1CW6E0I05MTLhvOY9Ob9QrS1p5x+bxEJKvbLmchtkOmC7L6EjWPFYVpWmY9axFujIAq0W8Z6P95f5bVmcGjNkj8rOIPT9Ny3KfLY/7UETNxDKnZdgiW6SMxIgJlUDpVfP4+HiDKbyR4uVpBi3PptURF1pp27o5DW+BAVMZD5hkNE3jrUr1GjMkMF02jG3xKduFZGObn8spskWqbfCUy7ylyXm8fDHjDJaxPUMLmy8ZPSS0FUobPXR2dkY32Xl7zTKXspBulCss0yh0hGk5Kl95bMzyqLeSDbEHt5v7G6qTGSDmP2J9OELQ9qhcy3rFmNzFK1fuGzDZP68NLN/qp7bb6zc/Y1tnyE8mhsSICZVAehETKoGWLLSVulkNA0zfQrKKTlV/FLHOYOoPCegWOn0rbPmsTLb94b6weOGpeFgJz4sWO53xtOhtK3J7FKxcBiafqX6ySspbXPCztotLnq61XSpCef9ndjm1z0bzJXvEhLZDaUa0o9gb9awctelVEGdG9ViOmSW2feexr63H1qWfGn+HVTW2bL3m2TcyQ7MQb8vzbDO5fTwDsALeshzHvpkzZw6ASSay7MTqFu6jh5CHIn+3v72+jI2NJUZMaC+UVmiPjo66IzzEhHZ0cj5mE2/kscWywo5oZQJmRI81WVVhY+YouC5mIAA4cWJqxGaVPT0Zka95aixmrph6SdOwwl3rsXIwG6Ow3GuvsdznmXixD0xMOV9mqy8xYkIl0JLPijKEBlzS60BYYQxMjhrNr1tfygyefwszLBsbANNlTy3XG/Walg0l7IpbmYa3/zwZkbcTtd0qg9r8bERhGVHv8YrYW9Xrs9XPmDldKMKD5wXJjBiLWqH5tZ+WhS0zpy2+hLZCaRnRevF55vV8z44UlgmVEdiYFphkGh1x+/fvn1K+HWlah7KI/tbVpK1Lw+UxvNgtvKr3GJtZKOZlWCS0HrOTPhPbF73Hof96e3sBTDVX03v9/f1TPi00fWirz1sLaNvZeITvpVVzQlshvYgJlUBLFto6XdqIsbwQ4YWDvcYCuOaxAj5vHbHQ7fmjsFrITgs6tbFi17NyZrWD53jOCw79rX3w/FHYZtNT8Whd+tw0QqsX9oOnvZMnT4Khz5j9WbRc23beMoyFbGExwz5X7e+pU6fS1JzQXmjJQttT2ioTKEPocRWeCiUUTsOOaP3OCxrP34OV1ayiAaYruzlolB3RyhaaR9vn+cBoO9kwwmN3ZSX2qLNpeOtNFeeeUYbmZ3WThT6nY8fqJxgzc9v8RXxgONSI5g35fCdGTGgrtGT0oKPBUyorQ3jWvcoazAiqGLcyp6cWsGV4I42V6pZhWTHOSmrLdrztp2oSz88j5gvCdWt7YqGQOb/H2FxXLApGSO7z+qssyYzonfbAfkae6Vna4ktoO7QU+0ZHtlWc6rWQv68HZRXNG/ON5dWyp2QtYr7EK2qWQe01Ds9r28dbcGziZeU/u4r0+hRqs4VneMDPxGOgUIhmW48+f73HxsO231wnG2DYa8kwNqHtkF7EhEqgJXtE65OgYGHbU6EwTVtLXr4f2o+NKVm99oausULWK5enrFid3H87lfKU7PnPsL+J90ya9cVT5Iec5b1ATSpuxEQchdbludqmkCMJbYvS6puxsTH3jVdhlW3lLEILEIXHbLz1xYsOL79nocPl8Sj3FgPM6lYd5C1ggElViGVBDhvnKY65n6yk92aWUF+8/nJe71rIit3zJbJbt1xukeCljMSICZVAaRnRYw69F8qjCMkO3shmxmPFcWxkx9oRksHsCFe1FCvuvS05VodoGi+4JYfN87wMub+eorsZ48TYyZO9Q2exlGHaWMCrIkiMmFAJtLRq9pTUocBM3ugMMaPnJx1aNcfY2BvRzKTcXquQVllQr3l+MgxW9HrW6yxzerJXmZM9Q8+x7GzBbSgig7LPj4VVdieFdkJboSUvPg/s8WY31TmNInYeXihPLCReEbAfhtdeXn3HAraHjpiwYM9G7zxAroOjTFgzNpZLi+j9GJ4XX0jn6M1UMZndM5ZthsSICZVAehETKoGW3Ek9ZS5PLSrE2iklZgFir1vE1AShtN4ChKfkmGsn2/vFbA1DTulFDvq2dbKYwuFZvNBw3PbY1lpMdOD/S8j91baHRQYv6FToBAoPiRETKoHSMbRrtZqrkA0dNu0JsTyqYqMmtC0Yc2D3GILVDMwM1gCBFc+eiqKZvaQXAIBVHnYbkL0CuS+xExxCR/8CYSaMqXjYCt4LtRKyc7T9jdmiMhIjJlQCLVlo64ixodl4VHqGByEjhxgjslxVRNZRWObgYEm8eW8ZUa9xiDhvBghZS3syIp/a5CnlQwece6cBhGREy04hH+iYqVjs7BiP8W0fm7U5hMSICZXAWdvi8wxCAT9CAQeU9EZtSH6Mne3M/iOxs+7Yl9caPWi7WAPg+WWwrMjsZ9vHsp0NOsWMyLJ2TCaOhTkOndNcxECE+8TfbVqbR1fS3d3dKSxdQnshvYgJlUBL6pvY4YOKMk7WnqVJaOrwlMOhg7S9KYoPaGTraWDS0Zytrb026R41u1VasYB9VLxFGgevUnhTHy92WBSx4lFoUeXVoWBRJ7ZoUbTip2KRGDGhEmjpUEjvXBNWIXhL+JC1Tcy3RMGsacsNhUrzIryG7Py8gFKxNoTUVV4AAA614oVN4Qi7RQ545IVHbLsyth3YbBsuxnax2Sw52Ce0HUrbI3Z2djZGrQ05ElI7eFbIoc11D6GAQ14YND443DtvjhmriFeghqmzLKeyoTJWTP7jEB5FjDuYPb3twBgThtJ66pvQ/8WTT4swXBkrc0VixIRKoLSM2NHRET2VVOEpV0NK6iLMyCZZnhzETOgZK3AeXiEDkytfZUK9Z+U1DhPMltUxMzDtv7UK98LFcTmclp+n5y/DTOixcRkL72YW+sBURkwK7YS2QmlG7OrqclfEnmEAI+Q3W2S1x/AYJ8as3GbVG2qQ956enkZa/c4BO71tNo7MEAPLqbZvHJqPP2NmW0W27UJ5i9wr4r3oPZsZM2YkRkxoL6QXMaESKDU112o1zJw501UYK0ILEe9aEfUD5/EitLLCWGG3ungR4S24FDwVx2wr2bKGTyuw4OnWS8Oqj1hAqTJTcquhWoqW26p7b6OcM8qdkHCWUFqhrYYPgG+VGwrpUQSxw7ZDG/xeHbHAn1qeKoiVyaxynlnJO9bWC1bqtcHWHYvsr9/ZwKJIEKYiBib8PGPxtlnB7Sm/YzOU3VhIi5WEtkJpRrRKypjlrsLb4mPEVAAhhi3ixWeh5agMx6cC2PbrKU3sUef5cbMc6bExm81xUCZ7LeSR5ymp+RkVUX4XkRWLyPm8iWBlbtuuZPSQ0FZoyQxMFb32EO4irNSM5bxgP6HtO88MTMEGDfY7r1g9XxtNw4wYM3niE55s3cxqMSV1yP/YO+uE5edYkKgydcaMHkLPwtuMSH7NCW2H9CImVAItxUdUwdQKqCHFZpl9Sm8BErK+9pzIOa+FN11b2DJ4/9hTebCimRcrsQBV3pTHyu2Yk3vI3dNrJwdzOtNTCkILI+9/VwaJERMqgZYWK8qE1vKYneVjI88rl+83U4jHVCmKmII8pGS2fdE8bIUNTA/UxPD8UWJbe8xK3C7vOTITxhgtZjlfhhFDC0xvsVIGiRETKoGWtvg83132tfUYjWWkkNrAuxZjSPaK82SwkLznHTHLchX30dYZUmcUCYRkmZHbx+3yWCa0FemprZqd+uWhzOaBt+WagjAltB1KB2EaHx93GZHNrLyRGJJBioxOVuzGfJZjMlLIQMI7XZPZzlMq89ahx7AhIwJPJubVuGfiFlJke/JkSIsR8yTkcmP+N57Rg72XjB4S2gothaXzttl48zumB4ttISnKGFxyfs8zj0cuM5ddETPDeqHmWCa2ZmS2fNs+9oWO6RFjswYzl5ZXZGszJj+HzowpwoixZ1MEiRETKoH0IiZUAqXVN8AkddtQbjrtsO9GkbM/YlOzwnNcV3AcbHYVBaZO08B0JXNMCRs7+DCmKFboVKUigxc+jhclIXWOzafXNK+ndgoFvooFYYpZRfGU7P1fmm2nekiMmFAJtKTQ9gT8kL2gDdPRih9LaGFjDS40NEhvb++Ue5bJlCVZsPds+VjN4oXyYMbStLposWzACyU7kyj4EMiQj41FSM3iLURiCKnVYgFP9Rq32+ZLQZgS2g4tqW+8JXsoGGXM6KEIM4ZGlx3pHNTSM0gIhTXmo2ttWvZriYEV0J6cpvc4fLKtI2QYYWVc7m/IhMy2i3/HlN78jLxnEzK4sPWnLb6EtkNpRjx9+vS0VRowfZSzLAY038j3ZJtmnn82H8tRlkX0XiiKg8dOMWbgtNo3lVdt+1iD4G0DKtiHuohin9sX8+fhPDZNM4Nbmy9m9GH/v2mLL6GtUHrVPD4+3njL7apZR5PqylSvaJkm5NXlrdp4Iz9mmh4yQfNWcmzk4BlRFGFCBjO4dzIqr75tMPzQcREea3qegl5eW25IP2nbrAht4wHTT+7yjDLsNm/ya05oK6QXMaESOGtBmPh0pZgdXWgh4i1A2PfFmyb5gG9PAa35eVrU617Ufk3DJwbYNLxlxvUA061ttL12alaELFc8dQuremIh8RSxIAGeWo5/swent/3pPYNmSIyYUAmUZsSOjo7oYkBHiqpzbKAhT+1j4S31WeURq5s32z2bwJB/h2UKZSpeMHgLGi9Ikvc71HZuH7O790yYCdkIwrP8VngGCaEtQo/1eCs35kudtvgS2g6lQxd3dXW5MoiOgrlz5wIAhoeHAfgqnhCLeAipRWJWyJ6MqO3QtDFTJTZzi4V7Y3aPhRNmBvNOd+VnpNet8QgbRsQU5EW8IJX5eCuST/Ky19gSP+bzUwSJERMqgZZi3yi7xAw7NY1lRJZ/FDEWCclVntEDK6vtKNV7bKTqbW+xQUQRP11mpVhYOv1tWS7k8+0ZcLA8yTOAZ/RQxASPA9x7/WUfcvYBsnUkhXZC2yG9iAmVQEvH5PK0AUzfu2X/EWBSlcPWvaxc9hByJgemW7d4FitaB9saeor30HQS88vgyLOx9nmLKc7HbYgd9Miwebl/XqABz2rHpvHUNxy6z6aJRacNITFiQiVQOixdrVZzPd/4Giu47TUWeL1tIh71sdBpITtHb7Gi+ZkhYw7ioa0viyK+IdxOTwms4FAmHliN4z2bkKekZx0UsmLytmn5t5cmy7Jkj5jQXihtoW2X5N5GvI4GlQ2t2kEtpnmUxtQ3IQtlj01iNoyhIEyeysMLzVwUMR+OIornUJoy1uueAp7Z0mMw9kdR2OcQCnhl25tCjiS0LUrLiNYMzGMMlqPsqFCf39B5IzHfYh7RsdM/Q+wHTGcsllft95jsVUR25bRlUGTFGeunIiTveSZ8vMJm7Ya9p6yn5nN2xe2F+muGxIgJlUBpRpwxY8a0zXFg+ipZR4oXkYENTz1GbOaXEfOXjgXCZDnS0wCEjDJinm+xUHshA4kYC8fkZgbLfTEZMaYl4E/NY3XB3L5YXCARSVt8Ce2F9CImVAItWWh7h3eraiYUhxkAenp6AIRDZHjWPDE3TUWRCLSKkI9JkSBMdmpudtpVTL0UC+oUCsviiRkhlYw3XYaso2w5rJrRPDZQgS44OY+nINfFbREkRkyoBEoxYkdHB/r6+twQaTpqYgEmNXAmb7cpbLmcJhYI07avWRpFEUYMtcFeY0V0kS1Ij7nLGAiEHOI9hXRI1eadi1LEplT/RyHbUtuXFIQpoe1QWn0zc+ZM19eEt/Y4mBAwuYHf19c3JU1M5cGjKhQwyEvjWTVz+d7vMmGJQ/Kpx3axMCIhxKzWFayQtvd5u9LbHmSZkMPn2bRch8d+to4kIya0FUp78c2aNcsN1K7sw6PIyhcKHUUaatgzpGTWYDnLkz9YRvRWuTxCY158MRZl2ZIZwjNkjRm0hur0GCW0ui1j0ub5aPMq2WNYZk3PTM0LVtoMiRETKoH0IiZUAi052PNxXxas6PQUp7qA0WlIFy+eRTU7mHtWN6HIs56NXGhf2rOtLILQYiUWsMmrJ7QAiU3NPEV7Z540W9jYfFoen0ljVT+hhZYXr9z6NzVDYsSESqC0+mbWrFmu5xsreHlUAdMtc5iNvNHDkf0969/QiQPWaiRkq1hksRIL5RYqJ6Z28foZCkPnWXyzlY23SAmVyyFDgOmhVTiAguehxwscDTHD7UqMmNBWkJJbSwcB/O9vrjkJ/w+xLMuyBc0SlXoRExJ+U0hTc0IlkF7EhEogvYgJlUB6ERMqgfQiJlQC6UVMqATSi5hQCaQXMaESSC9iQiXwf/I5AehCCRTaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4delZ1nm/5zvfUPOcVBIIkUlkuFQUiBPaKGoLDkCjYUwIaWNrK06IGBAQEBW1RRBpEBCMoIhtiKAQBgMdiYJIYoAGxSBkqKSqUpX6aso3nLP6j7Xvc57z28/zrrW/+ioJnve+rnPts/de613vtNZ+7mds0zRpYGBgYGDgf3bsvac7MDAwMDAw8O7A+MEbGBgYGDgVGD94AwMDAwOnAuMHb2BgYGDgVGD84A0MDAwMnAqMH7yBgYGBgVOBp/0Hr7X2otbaVPz9nqfhei9urb3oere74rqttfbGzbg+4d10zZe31n7xaWj3JZtxvM/1bnvg2tFau7O19qWttd/wHrj2Szr38e9Kjv/czXevfRr68h86fYl/916n672utfaK69TWhc0a/tbku1e01l53Pa5zPdBa+4DW2r9urT3aWntna+07r2VOW2t/Y7Me3/t09HMX7L8br/Wpkt6Mz37uabjOiyVdlfSPn4a2e/gdkn7N5v/PlvR97+brX098j6SfkXT/e7ojAydwp6QvkfQ/JL2nHoyfLOk+fJbdxy/cvD6/tfbB0zT91+vYh8+VdEt4/+WSPkTzMybiHdfpep8l6dJ1auuC5jV8TNKP47u/JOn8dbrOU0Jr7Q5Jr5b0dkmfprnfXyXpB1trv2mapssr2/kISX9G128tnhLenT94r5um6bqzkXcHWmvnp2la2vAvlHRF8yb5Q62126dpeufT3rmnAdM0PSDpgfd0PwbeK/HT0zT9j94BrbX3l/TbJf0bSX9AswD4RderA9M0/Syu9w5Jl6Zp+g9rzl95P8frvWHHLl4TrrNQ8FTxZyTdI+mjp2m6T5Jaa/9V0uslfaakb1lqoLW2J+kbJX2tpN/39HV1B0zT9LT+SXqRpEnSB3aOuUHS10j6WUmPa5YgXynp1ybHfoCkf6pZ8rgk6Y2S/u7mu9dsrhX/fiic+3xJP7y5xmOSflDSb0b7L9csQf82Sa+V9KSkv7MwxhslXdTMjH7/5rovTY57jeYfxN8r6aclPaGZSf0hHPfBoR9PSvrvkv6BpNuTvv5imMOHJH11ct2XSDqU9EFhHn5oc/wTm/a/FsdPkt4nfPZZmlnF45IekfRfJL1kxfr/xs28PLQZy89L+oLwfZP0FyT91816vlXzDXJzOGZ/058vlfT5kn5l049/LeluSc+U9N2bNfgVSX8xGf+k+SH8ys3aP7i5zgUc+5zNvD4o6V2ab/BPL9r7KEnfubnuWyX9PUnncezNkr56s5aXNe/XvyyphWN+z6a9T5D0DzVLww9I+nZJt22O+UBt7+1J0mduvv9fNe/XRzbj+3lJL7uO97HH/LwVx37p5tiPkPSfJP1yHO/T8Iz5Z9rcB8l3f3bTl9+8WfuLkl69+e53bPbmWzb3wf8n6YslnUMbr5P0ivD+j2za/N2SvlnSw5qfR/8o7tukL7cXa/hnN9+/QjMx8PG/wWu82VsPbPr/jZLOSfpwST+i+V74BUmfklzzYyR9/2ZfPCHp30n6qBVz+lOSvi/5/PWSvmfluvzJzdrftJnD78X358O9cWkzvh+V9JFP1155dzK8M621eL1pmqaDzf83bP7+mqS3SbpL0p+S9NrW2odM03S/NOuUJf2E5kX/Is0P6udqfmBI0h/X/AA60DzZ0rzQaq39Rs0/Nm/QsbrlCyX9WGvto6dp+pnQtzslfYekv7U55omFsX2SZhXLt2v+Eb1Ps1T7fyfHfrCkv6tZPfAOzQ/wf7lR+/zS5pjnaN4o/0LzzfSBkv6KpF+v+aG9hWmanmyt/WNJL2qtvWw6qXJ4qaQfmabpv7XWbpP0bzU/HD9b88PxeZp/BFNsbDTfpvmm+wuSzkj6UEl3VOdszvstmm/IX5D0eZofLB+8Odf4m5s5+FpJ36v5Jv5ySR/RWvu4aZoOw7Gfo/mG+xOSni3p/9r06y7ND7NvkPQCSV/dWvsv0zS9Cl36Ds374+s24/1izfvuJZv+3qL5hrtV87q/eTNH/7S1dmGaJkq1/3TT5jdrFpC+RPOafvmmvbOSXrUZ85drFm5+q6Qv28zdF6C9r9X8I/5pkn7dZm6uaFbhvUmzyu5fSPoKHavMf7G19kGaH9z/bNP2FUkfJOn9dP3Ru4/VWmua5+x10zS9obX27ZqF2d+l+WH7nsJ3a74/v0azkCXNJogf1/wD8rjm++tLNN9/f2JFm98o6V9K+qOaf5y+ctPO5xXHPyrp4zU/I75W896R5gd+D1+pmS1/hqTftHkvzc+Cr5H0NzTfl9/ZWvvAaZp+RZJaax+7udaPab53rmz69uqNWvLnO9f8UM1CMfGzmgW9Llprz9b8jHvRNE2Pz9tiC1+h+d77Qs3Cxu2a78vuc+Up4en6JQ2/4i9SLtW8pnPOGc1SwROS/nT4/Ds0/9jd2zn3NdpIcPj8FZpZxq2QuN4p6bvCZy/f9O8TdhjjqzZtn9u8/+pNGx+U9O2ypPcPnz1rc+xf6rS/r/mBMUn6CPT1F8P7D9LM5D4tfPaRm/P+t83752/ef2jneicYnmZGcv81rP2Pa/7hvqH4/p7NfPyjYs/8gTD+SfNNcSYc9/c3n//l8NlZzezsm5LxfB2u8yWa7b0fsHlvNvDbcdyrNQsxe2jvi3Hc90v6ufD+czbH/dbkupck3bV5b4b3zTjuGyQ9Ht6b5b0Ix71g8/lN1+u+7ewJ/r0ax33s5vM/t3l/92aN//HT2Lc1DO9LFtpom332f27W5kL4rmJ4X4M2Xr50n+iY5f3F5LuK4f0/OO5HNp9/YvjsuZvPPi989lOSfhL3zAXNWpByPTRrrE7cV+G7r5P0jhVr8t0KjE45w3uNpG95uvZF9vfuDEv4JM2Sgf8+N37ZWntBa+0nWmuPaH4IPaZZ+v614bDfK+mV0zS97Rqu/7Gbcy/6g2m2sX2vpN+JYy9plqgW0Vp7jmbVxj+fjlnVt21ePzs55eenaXpj6MN9mh/Qzw1tnm+tfVFr7edba09qlswsHf9aFZim6b9plspeGj5+qWbW/D2b97+gWWj4ptbaZ6z0xPxJSfe01r69tfYJG5bYxYYtPV/SP5mm6cnisN+i+Qfq5fj8OzX/cHNdXjUFNqFZbSdJP+APpmm6ollt+L7J9b4L7/+ZZuHKEuvHSvrlaZpeg+NeLulebc89HZPeoLCOmtXb/13ST7TW9v2nWUA6p1ndtNTeja21u5OxRPy05nvmn7fWPqW1ds/C8ZKk2Cewth7+kE7exy/F9y/c9OU7JGmapgc130uf0lq7aaE/Z9CnlBZcI/5Vcr27Wmtf01r7Jc33/BXNzOucZq3HErL1uqe1dsNT7Cvxb/H+5zXfHz/oD6aZ1T2pzb7f7IGP1HwvtbDGVzVrMT72OvfxCK21T9Rsu/3TC4f+pKRPba19SWvt+TvswWvGu/MH72emafpP4e8X/EVr7ZM0L8zPaFbnfIzmm+khzRKJcae2PT0Xsblx7tC2d5k0/xjcic/ePm1EkBX4LM3z+D2ttdtba7dv+vgzkj4zuWkfStq4pJPj/FuS/qpmFcwnSPpoHXugXVAfXy/pd7bWPmTzo/PpmqWoK5I0TdPDkv4XzTaHb5D0ptbaG1prf6RqcJqmH5b0xzQ/BF4h6cHW2qtaax/e6cedmqXm3np53k+syzQ7FDys7XV5GO8vdz7P5untxfvnhP5UeyT21+Bach2fodnmfAV/9s67a0V70sKab+6l369j4eHtrbXXttZ+R3VOa+0D2a+Vws8bOvfxjZr36Y9KuhTuh3+l2Zb5yQttvwV9+mMr+rMW2bp+l+b746s1s+yP0qzNkJbvM6ler+vtaZnt7yenbcebuO+fsXn9O9ref5+p7b13hGmantA8lky1eKfyZ5ikIzX+P9CsfXk47IEzkvY3789tDv9CSX9b8zP/tZqfK/+wtXZr1f5TxbvThtfDCzQznxf7g9baBc30P+IdOn44rcY0TVNr7WHNUjpxr7YXcO2PnXRsD6QUZvxOzSqxXfACzT9Sf90fbDbNGvxrzfael2pmczdK+qZ4wDRN/1nSJ28kqo+S9DJJ391a+/Cp0OtP0/Rdkr6rtXazpI/TbF/6t6215xbCwUOa57G3Xp73ezd9lSRtbog71LmxrhHPjNfZvJfmB6378xuT8+4N3++Cd0j6Rc03dIZfKj7fGRuh5Ic3981v02wz/Dettfebpinr95u0bYuhQLArbMv+3dp+SEvzvfJPOuf/Ps0/2sZ/f4r9iTixRzes+eM0m0y+PnxeCgm/yuAwgL+uhN1q9nPo4eckfVjy+YeqH052k2Ytxxdo20b94Zr3xedoVqm+S7PN+cs2mrI/ovkHcE/bmoPrgveWH7wbNVPtiM/WNgN9laQ/3Fp7xrRxZElwSbM0SfyopE9srd00TdPjkrRRzX3Cpt2d0Vr7aM3xP1+v2Zkg4oJmR4oXavcfvBs0S2IRn7PmxGmaDlpr3yjpz2t+kP/AVLiRT9N0VbNj0F/VPA+/Tsdqwqr9xyS9csMQ/o6KH6Zpmh5tc9DxZ7XWvnKzuYnXah7nCzSvj/Fpmtf+1b2+XAP+qGYDvvECzTf+T2ze/6ikT2qtfcw0Tf8xHPfpmlle/LFcg++X9AclPbJRNz9VWKIvVWabef7hzd7+l5odV7L1uaTZg/J64oWancQ+WbPKLeJ/l/SC1tr7TtP0puzkaZpef53704PVq0f32caNPjNDXE8sruH1wDRNb2utvV6zzf9l19DEKyV9QWvtXpuQ2hxT9+s1q30rPKZZg0T8I81emF+o5BkzTdNbJP2D1tqnaP5hfFrw3vKD9/2Svq619rc1M6WP0mw8vojjvliz6ua1rbWv0iw9v6+kj5+myRv15yS9pLX2qZol6IvTHN/y1zQ/YH+otfbVmtVtf1mz+uHLr7HfL9R8Y//NjQ79BFprr9Rsu/hTGzXBWvyApBe31n5Os5T7qZrVmmvxTZpVoh+umb3FPv1hzcH5r9DsHXazZsP+RUn/UQlaa1+pWQXy7zSrhp6reX3+U8EejL+wOefHW2t/V/MP8Adovgk/b5qmB1prf0/SX9zYKr9fs1T55Zp/fH6gaPda8Qdba49rtnM+X7On77cGm+q3aLY7vKK19kWaQw0+U/MN/LnTSY/RNfh2zQ44/26zt9+g2T70gZptYZ+YqKV6eKtmJ6tPa639rGanrjdqFhB+i+b5e5NmZ6C/olmd/HQkd9hCsGV/4zRNP5J8/07NgsNnavbee0/jV7QJQ2itXdTsQfkndTKg/bpjmr2p/4dmDcu/1yaUpiPAPxX8GUmv2jyH/onmRBLP0PwsuThNU++59/c1CymvbK19mY4Dz39WgaW31n69ZueYPz9N09/fCNGvZmOttcc0O7u8Onz2Q5rv89drFpSer9nz9Ct5/vXCe0suzW/QPJmfrlkl9/s0M45H40GbB9PHaJZM/6bmG/xLdTIjyFdpnsRv0WwU/frNuT+t+cH1pOYF+zbNk/yx08mQhFXYqN1eoDnOb+vHboNv1nwDLdkuiD+p2SD+VZL+uebN9hlrT56m6e2S/l/NDzwa1h3v9lc1CxffrDne7HdP0/TWosn/KOn9NYcl/OCmXz+smb30+vEfNG/g+zTr9f+N5h/BKOF/geYME5+o2YHo8yV9q+Yfg11/YJbw6ZpVMv9K84/8NygY1qdpelSzCvqHNdtRX6FZaPiMaTskYREbJ6aP17wX/w/N43+55of+a7TN4pfaO9DsLXnPpo8/qdk54HWaQyn+hmZtxddK+m+a1/R6ZQhZgm3Z6TxN0/Q6Sf9ZxyaA9yg2avhP1szav2nz97OCgPg04Y9rtml9v+Y1/PSn4yLTNP2YZkHoqub4zldp1sq8v6R/v3DuQ5o9wx/Q/Az6Fs3r9/HTyZCnpnks1/Jb8mOaBb9v0/wseqFmUnOtBGQRbb1vxsCvFrTW7tIswf6taZq+7D3dn/c0Wmsv0fxA+zWVendgYOB/fry3qDQHrgM2rsgfIunPaTbS/8P3bI8GBgYG3nvw3qLSHLg++MOa1QQfKemznia7wMDAwMCvSgyV5sDAwMDAqcBgeAMDAwMDpwLjB29gYGBg4FRg/OANDAwMDJwK7OSlub+/P509e1aHh3N4lF+jHZCpI/f29rqv8X+fG7/L2sxyyi4d83Sds+b7tde53uf2+rQEr2mvfdp/p2nS/fffr4sXL24dfNNNN0133nnn1jlxrXmtpdel7zJcyxyvbWdXrLGfZ3O8tj/VuXztHVN97ns/wp8dHByk73vjba3p0Ucf1bve9a6tgdx4443T7bffftTe5ctzGNiVK8dhjFevXk37uebeWtpDu9xb1+vYJXB81+ucao12+bzaZ9nvRfVbwt+C7J73d/v7+3ryySd1+fLlxcnY6Qfv7Nmzet7znqfHH39cko5e48Y7c+bMUSck6cYbb5Qk3XrrrSfe+1WSbrhhzrJz4cKFo+vEV7eZDd7f+bPqvV9jO2zDn/N9/J/HGL0F4pywDX7e6wvH53P9Gv/v9amCN5wfUj733LlzW330MX7YXL16VZ//+Z+ftnv77bfrpS996dHDyu157WO/uf4+xufEsbo/3jucS79mN3u1pj3hzHA7ax6sRu/Gj5/HHxP+ePA6vb7xh8br5M/5Go/xq6/r916/S5eO49n9v18ffXTOF3Hx4pwo6Z3vfKck6V3vOs4u52vGe+D7vo85EmbcdtttevGLX6yHHpqT+rzpTXPegvvvP3ZC9rWefPJkYQ7voew+OX/+fHqM3/f2wdI6ZJ/zM76uWVOD9+cuP2J8NmY/QHwO8H22Vyl0+L3X3a9xjfy/f0u8h/ybcsstc+Ib3/txzDffPGeQvOuuu/RTP/VT5fgjhkpzYGBgYOBUYCeGN02Trl69evTrSykwIpNS4udrJO2MnfE923u6VE0VPaekn4ESd/V5r42K6mcqJv/PeVsDXqca7644PDzUE088cTRWSpnZNSiBZuo2zkPFuHoSd4XeelRrtkbSrs7tqXyq9c+u6//NVHh/8j7zfRzP9Wu1zzNWWO1NI55jpuhjzp07153vw8PDI4bg54/biH3gPUYtUaYJMXsg0zN66tDqHttFLZ6p6Ag+56pnSe8618IGK9aWaQe4n7hn2IZ0zOi4Z7zGTzzxxIm243f+7F3vetcq84A0GN7AwMDAwCnBzgzvypUrR7+w0XZnVIyH9pEoxayxoVWfV/rvNVIN7WG7OED0DP/sY8WS1hjUK6bcQ8XG2FbmbMRx+ZyMNXJu10rosZ3YR5/v72xjIXq2Ttpqerbcan52cS4gA+s5cxi0g/D6cR6XjPjZPFbj8Jywz1HiXrLdZQzDz4ElJ4XsnNg+WUvE4eHhlhNM1m/aBjn2zIZH34E1mhHeH7Gf0rXZ8GhDjKjGU423dz1+nu1Zrpnn19fNtHvU3lBL4HPjfe1nQraPpWOGF214HPOlS5fSMWQYDG9gYGBg4FRg/OANDAwMDJwK7KzSPDg4OKKzVktkKqbKeSBz8aU6qnLXz0ICllSZa+L+SKMzel2ptdbEtiypFtaoPyr1a69/lZotU5NSnVSpbLM+uv2e+nWaJl2+fPnomEwdnrlJZ9eO629Vh9VSfk8VZqZKX4r3rMYhbat61sScVSo/3jO9cJgqHCVTNVdhFdwPmVqqCkOwG3k8h04E3BeZC3tmFunFevkv9rGnQve8eF/4NarTHBrFvbOLc0fl1JOt5dKzMFNpLvWFe6j3bOR1eip0vqfKOFNpeq/4Ozqk8B6RjtfDqk32NQuDMazuvHLlynBaGRgYGBgYiNi5Ht7BwcGRVJYZmSk9ViEGmXuwJRsGGFcB6NlnVfBwBCWtJQeU7NiqrUzSqiTunpNOJcFXTgsZKyAq1/3e+HrvfR2vz8HBQZcJX716tes4Ew3TEXSzt0QubUvplhirfZftncp5JdsP3t9kKNR2RIcKjoOoEgXEz3gMx5k5gfE7Mi8jCzGwZF05FcS58djN/rhHs+fFLgyvtaa9vb1uiAzZi/cSHVNiwgsHLjPxxRrHoIy1RvT2zpJjX8bwqucOmWQWoE2tR+XY1RuHGRYZXramPpbsjP2I7TB5QS/RAZ2vrl69OhjewMDAwMBAxDUFnld56+L/lTSRMaDKzmKJgIwvY4c8l8yoJ3FluuXsfTy2chfPxse+VHPTk9KX0l5dC1uL57j9SnLN7IGUfHs2vNaaWmtH51O/L9W2Gc5XZHi00SztmV5YBec0299Ml8T18biy/UZbBtlbj4Uy3Rpfo2TP9vwdGZ4l8rimZmlV4gGPP9rCKrd+MofI5rzW/qy11pXSz5w5s6VNiWvJdGBmbWZxt912m6TjFIfScdoqj8XnVAHpmX2susey0AnmAHUbDPnI1p/PXIPPm5iqj/eCx+Hx+rWXlpDPRveV9jrp+J6wbc3vfU+4b7GPvo6Pfeyxx070w32Me7SX0GAJg+ENDAwMDJwKXJOXZs9zr2IklDYzO0XFfCpJJftsDcOrpLDK4y47tpqDXdha5Z0a54RScpWOKsMugfTUi1P670nfkRkteTr2mAKPWQq6lmrbpt9XCYLjZ1UAfcY4GXhNRtyb6ypYuZdSinZsSufZuMgK2S73edxDS96/GYunLZdB0Nl1eI/1gr1bazpz5szWvR6fA27npptuknTM7O68884Tr5Hh+VgyPNr9qD2I/1dMiOxGOmY+fvU5TJnW8ySm1oEM3+OO/fZ4bL/0uJlwPbbH9WAqMY8hPiPNzvydE0I7mTjnM8KM0W34vfsT70EGv++CwfAGBgYGBk4FdvbSnKbp6NefqWSkbUmUtpS1aahi+/SAi1JPZXNaY+OqUnBlqZ+W0vGsSWVWebBmtiIyCZYDoWTcS0+2xiu1skXQhpPp0temQWutbaWUilJaloIqQ+yrJWjWSvPnlp7p1ShtMzyDbcW55XrQey1LbFzZQ8nssnuCLLNKCxavwbRTPJflWmJf6XFJb7lsfL4O7S70lMySYrv96IVJtNa0v7+/5aEatQNkPGYxd999t6RjhhcZEJkOvTUrNh3/573l8ZDleIzZ2Dkn2bOKe4QajMwLlePzq+fAx0aGR09KarboTRnvVbJDt8XrxHnkM5Bemka0//a89pcwGN7AwMDAwKnAzgwvIvMQs1TBop08Np5DfTF/3StPMen4l9/SC+NDMsl+KcNGxkKX4m167KRn8+y1HVHZqtjn+H8Vh5XZipZKCtG2F4/dRdKqyrhEkLX6mpaWsyTUtFstZaaRlhOcu6+ZRzFtCxxXFl/GPrB8j++JzBOWfWKmmqz6N/tSxTZl3pN8JfvoeR+6r2YStstERuaCrfQOzjBNkw4PD7cSGGd71c+B22+/XdIxu8ji2egpzP3Luc4YHsFzog2vKunTixkmK6RWwHNKe2T2XVXoNoLrzr1i5uriu7bPZWOnBqGn1bFt9d577z1x7oMPPrh1Du17kf0vYTC8gYGBgYFTgfGDNzAwMDBwKnBNKk3S6hhISBdev6d6KkuFRSM7VRZ0iImfUWXqPpnOZyl3YkosqV/Nl6odqicylZ9BtVvl5JGpUKnCrOptZcGjDAimWizOia/dU3ewj5y3pbCETAUV2+M8+Tu6N2cOGnQs8KvVH1l4Bdfb89FLNcc9SHVxlkarCn+okjJk46Mrt4+xujCqeali9DjpiGJkKe3oNEW1bNxvDGFhgumsDprHE9vtpaXL6nBmldqz0KXYl8yJxGq6at3d79g/hld5jHEdpJN7nmpbqv4ytW4W5hSvT5PNmtAPz5vnIu5Vj51mBO8z34OPPPKIJOmhhx46Opcqcu6ZzOxDpyurwe+55560HxEx5eBQaQ4MDAwMDATsxPBaa6lLaZQ+6DBBKSNzwY4uzhGUCNxmllqKrrB0o4/uugyypmNDlhaIDKFKxNxLKcU5qNI3xWtX6c+qIH1p22XaIIPK5p3Gfa5XL4VZ5gwTj93b29tyd+5VCLdUWSUGiP2tgqzpPh1ZbRUEX7GDCM4L1yHuHUrhvSQFPJfsyHNuFvXOd75TUs7wPHZLxz7HyNjQ2qrf8Rw6PJFBZPuMDjtLDO/SpUtbjDyui9OEWaNj+NqZM1F1T2dps6ScCVOT5TYYmsHxeMyxT2ZP8Tp0nKKWqLdeHB9DNnyduC+8j7yvzOAefvjhE5/73rTzUUSldcucc7wu1D74HK9rZIW8bwfDGxgYGBgYAHZmeGfOnNnS6/dK8FTI7GNMQ7YmvRZZWpWcOLZh6YsSR+WSHa9Z2d8oYWX6/splPktXRrZJ2yCZX8Ysq2D4bG0ona8JpGfw65rUYmRAcR49RttUmIi5ShQQ263m1uiFJ3AdMpuabcOUji0B+9yeFiJL2hv7ltmBGUzOwObMNskSP1WB5cjW2CfOAduM/SXL9rG0kcX/PTdLpaUODg62El1kc8x+uv8sWRP7TQbPIOtMg0G7rJmI3euzUB3ur+pZFVmT55nB45WNP4KhWe6zmaTXxfa4OCdve9vbJElvectbJB0zPZ/rPsb5JLOrAt5j8D/P4dxnJcHI9GNi8SUMhjcwMDAwcCqwc/JoS1tSzhgqSZupmLKS7VUS2l6BTEqVTI1DDzWPI76yBEUV3BuvzfFVknFsn9JYlbYn9peeT2SSWTJuemNSP57Zu2hPWgqWl+r0ahX29va2EuTG6zDlFcuoZHZE2sNo57XtlgmC4zlk9FzbOE5K2PT+s40jrqXn3Syg8rh1f+JeJeMmG83s6Ibb8TkeO+cos8cxxRPv9Tg+eia6XXpVZmnp4v1U7R/7DngNe0mDyZLdN89F7CttgfToJYvKytqwLBTnItMSMWkBbZxmXll7vG8qO13sG9PFea+apcXgcV/77W9/uyTpgQceOHFMpXXJ5sDnuE9mv/F6/oyJrN3XzPbOhPNZQYMKg+ENDAwMDJwK7ByHd3BwsFU6vlewktLPc1rYAAAgAElEQVRsZnOiJOJjGNOXSelM9Fp5LWXpyCgN0is08wasYgPp+ZmBUlEv4bClJNq6qtIyPdZj9JgrWajnmB542ZzENe1JWtHLl7YV6XidK2aQxQbS45TzQ0+xjNUalRdtJqXTTkbWkaWyY9o9et6RXcXrce/Q/hbHUqXMYnxrtnfcHlNjkYVkXtb0uDOydHJZmqsqNZ09OBmTGMdsZuKx2IvQ8+XvMy9NH0smbFsTk0tL24ml+azqeU/6GPfJx9iWFhkebYKcA65x7CP3TFWYNYvd8151qi/GxWVJns3c/Eov6yzekLZ2ertm9zXLOJ07d251AunB8AYGBgYGTgWuqTxQVWxVWrbjGJkE7FfbXe666y5Jx1JOxrJuu+02Sdv69p59qfJ4pJ0itkFvoorJ0eNTqpNf03YU59FSDNmGpRom5I2eT7TVMaMM7QLSsSRl6Zw2ijWZHHpS1t7ens6fP38kwVEij/2mLaBnH2VmCB8b4y5jH7OyNmSUvVJWjHHjfPm68fq0ldFm57XObFOW+snOs2TIBteO3nLUAMQ1oGTNpMG2/2TMhdJ/r2wU7aVLsVR7e3tHNlAzpMiE3V8ybmYKyTIF+R4yi/F1XFIo02Qxvo4ZnjKPYu9nagncRydKjllF3Bfawe64444TffJrfLYxy5XbpddsXEvGjPr69Inwez9/pW1PTu/dX/qlX5J0vAaZZ7ZReZ1m2YeMG2+8cTC8gYGBgYGBiJ0ZXoy1yuLHDHph8Rc7s/tZKqZkxbibKJH4GHsc+bq0B0XpmZ5GvUwuRhXDVJUyyspZcOxklNH7iNdj3JLb9JxFiZPrw2MydkpWS0ZBG188NuYx7Enp8TuPI7LNqjApbaqZdoB7iBI4S/DEc8hQbb+gBB5BOzZjzzIvXc6xx9mz4VW2SWo04p41G/Bc0IZCTUpEtB9FuH33zd6o8XrUJDALSZb7MmZIWtIOmT2ZOcR9YA1H9ADkNWMbsV/v+77vK+lYo+Q2uJeyQql+7rhdP7uyGDfGMJrxMPdodi9Tk0OP316pJx9DG16mmaHGxOOihuS5z33uic/jsZ6/D/uwD5MkPetZz5Ikvf71r5d07PkZr0PmyH2daT9iX4eX5sDAwMDAQMD4wRsYGBgYOBW4pvJAVEdkqYmqUjgZ9TRttTqgZ8SX8mSnVAdQ3ZpVhKY6gC7GUWXCMdM5pZcI2sdQ9ZM5xxBUtzLNEd3j47F0VqgSX8fxMLi717csCXIveHh/f3/LXTuuCw3YDEPwXES1lNVOTNvlc60CYtLlOFb3344ArpbN4P/YDhMdeP6pJo19Yh+pHs9S2jFEp0o8kKnB7ODgeb3vvvtOjMeq2jjPrCrO+8nzHfvIIGGeSxd+6fi+jfuht3fiue5DL90UE11YBei1lY7nx88dmkN4j8X96blbSvkXVfZMuOxXmg2iqplhDpwj9zELNWKqPjuV+H3WJtXqXH+rK9/85jdLOnk/eW/6GM+R76vnPe95kk4+q6pnseE19tzFPkaHmbUYDG9gYGBg4FRgZ4Z3eHi4JcFlaY0qN9EsESvT8zBNDl2NMxfVKsVU5oJfpU9iyppsXO4LnSJY1iJKzTQ8Z4G4cdzxfzJkJu7OJLvM6Sae23POIQNnoHicezL8Na7BTM0V57xKFsAEspbMpWMHEzqNVAHnWWkSM0ZLon7vuY8SKfcmg3rp9BP7XbFDssK4txiewtCCXvIHMiuzGzucZKnaqgTnLLMUWQj3YpUMIq41naAODw9Lx4MzZ87o1ltvPWrfkn083kyDjjJkT3HP+9iqYC2dpaLzkq/tvrh9JpHoBejTac572c4z2bGVo2AWDsW9maVZjJ/Hc6pwJB/r1GPx+WNtiveG58vM0u/j/uZ9yjRoWbJy3oO90lLEYHgDAwMDA6cCOzG8w8NDXb58eav4YHRlpk2BoQVZ8DjTF1lCsMTTYxIs/GrQ/tdLZ2NUQevxMx5jaZDlLKI0Szsf05AxgDt+RpthVZgzS5lFCc/osQK6KjM4ObtOtE32SrxcvXp1K2g42uN4bb9ScsyKalIiZbC3r5PZfdhn2u6yxNx0wec6RVsR9y1tk2TGcXxMg0dk+8ISsO0eZHyezyzMg/ciQ2iykkKeWyZF5j7MGBzvgQwuHuxj3H8HasfzbatjAVYWEZaOmQefZ5wftxHXlPuMtjQG38f2+er5c/vZ+vM+ZJ+5D+NntBlzP2b3RJWiz31kgndpm4Xef//9ko5DM7J0ZCy3Rc1JpvWgRq6XTJwYDG9gYGBg4FRg5/JAMcgvKw9Er7Is4a900i5SSc1Mo5QlRaYEWv3aZ3rqqoBtZh/jOHgupdl4PPXrZCOZZ6dRMTzapKJkR/sL+5yNj/NYJavOxhXfL6WH4niyUk8s6WOp3cg8BBm4WqUcY3+k7dRLxBrtAPcD+xzPpV3G6Hk9U8PAoPgsGJ/7nGwq0yzQZlKVaooaDEvfWfq2eE5WumYNDg4O9Oijj249DyJoF6V9lB6L2djIHGg/jWNmekW21UvuwH1uL1FrtKKNjZ6U1dpmdnkmp2Yigp7WpmLlZLTxPqhKmmXs2qh8FWhfjZog2lzXBp1Lg+ENDAwMDJwSXFPyaHrsZNIaf7nJOrIYMDKfKolvlgC2ur6lzSwOL/MUjJ9HVAyvki7i5xXLrcr4SLU9i3NExhT/57z1vEKrBNpct4xJGEueUrFQY5ZyjpI0y7JkdoNKeqT9wvsgznWVBL3HPhjnRQnc9p+4p2xLY2q3KtaxN8cG1zQrKWRwXVh4OM4d05AxLipjoVUScTLJjEmsSTx+cHCgixcvbt0nWYkxgp9HBkT7e3XfZJ7Q1f3PpNs9D8i7775bkvSMZzzjxLFR00BGVRUCzryDq31Az8teYd5qvHz+RPB5R0YZn0N8rlEb4bYi66WWo+fhSwyGNzAwMDBwKrATw7O3VGUb4rERZDNrzqHkm8WgsGwF+5RlSaDUSk9SHxs9g+hpycwkZLSxj5WHVRWPF48haMvJ7EFVoc8qaXWv/5UtL0NPyjo8PNSlS5e2pPTYh4q9VvZS/i9ts5d4fYKMrhpjL1k1pXbbSXpSc69sDsGyL5XNOIJ2pJ4HJPtRZVHqrS09fM1uaRPNrmMs9THG/2a2m4qV8d7K7KOMF2QsYsZmquw4ZsYxoTrH6HYc9+m40re85S3d8cdX+jlkDI9MyKB9LCtlxn1W7fte2R4mnuacxXbJ/siqM41gFpe9hMHwBgYGBgZOBcYP3sDAwMDAqcBTqoeXGTiz1GEnLpikeDKqiuOkrFlNNoIUP7pKW6XJvlA9Gak31QJVFe6eq2wVLpCpQSsVEseVqSepkmEfM3XpksNJdm6WmqoHJy6Q+rUNK9Vrpl6j2rMKmWF6svhZFerRC/nwdViV3edkaah6am/Pj5SruKvE2pkTCQNyq9R8mSMSnQUqB5QMWQXtiCw4Ppoeeg5gWWhIhNVzdL036O6efcckFtUzLIL3O9O5ZU5ZPtYOTl6fLCymCimhijt77lQpzKiujHPFtavWO9s7XFPPo8MtGHaW9ZsB+1lCdcNrTqfDHgbDGxgYGBg4FdjZaSVzsY9STOVqTUN9llyZUkNlMM2uZ1Aiyhge3aTp+NJzn636bPScSCq3Zx4XQWmc18/6VzGk3jnVuUQ293HNe1L65cuXt8rMZPsgC2iX8jRylFqrcIqM9VahHmucSZhMmWWComNUlUqu0pRk4SKUdHmPZNW4DTpuMSA4SwhesYNM+8E1oJNCj7lGJ4Ul5wOmO8vCU/xZlVw5e35xLqtSPNk9TYc3ahJi0mMmnvdrTJFGVPt5Dejkx1AtJtiOoCbD6DH9JUcXz01WlZ1hQ73STCwMcPbs2RGWMDAwMDAwEHFNNjxKcpmemhJALxh2yYayxDpi+5WuO3OfpSRMSTWTtI2qb1mZDpZNqVxxM/ZEW0SV+muN5EcbUs+leE17vf5n1452mixxMdvlnGeSd7VXKjtcZG9V2jbOfdwHFTtiSAvHLm2zQbKpTDtAZmI7DxP/xvXL0n9l/cgCz+nOXxVWjRoT3mPuI0s2ZawgpqHq2Yv29va2yofFfnvMDvL32HuB7RVLrsKIIrguFTOJY2KB10z7VPWx0j4wTCnuA5ZGY6A9n0sZKhshSyfFPvK7LLF11b5faXeO9wQTXO/CegfDGxgYGBg4FdjZhrfGG1CqJZFe0OiSxJ39klM/nQVgSnnBWTI5MotMgqREUqVTiuNnUUhLeD3GVQWp8/vsPW1DZFPZPFbprdYkaF3rwRfHYOkzFhKt0rdV5ZWkbe87rhPfZ/uA89Wz3dCmwCBYH9uzUZN99lJYsUCmr0O2E7UVFbut9kWWPJpMjywtY8pVcLwZX+b1nI2ZaK1pf3//KBlyxhi5P8mWGRAubT+/OG+08WfeumSJZMSZ9yxtUJW9Mf6/VCYsexYzsTqL1Gbpz+xRSe1AZQ+Ma0AtADUItCFnYzd6Cc4z34S1LG8wvIGBgYGBU4GdbXhSP9VTpWte4/lG6bGKW9rFvpTFblGSy6RW6aRUUSWApiSSpfPxZ5aoLD1VpV/i/5RmlpJlx/+XbGvxeu4vJdVdyrgsJXGNLM/SbVYKhfNCVhP3G8fK/nI/rkmn1kvIS/sBvdmyWKMqPRv3eS+NV2YzkY7nJNprHN9VoUoMHPtAcF4zll2xXtpj4jiix2Dvvt7b29tiRtETlrZMxgRm8Vy9NFnxe+7L+F2lCcli+ciWPV+8ThabymKxfoZ4rv0+rqWPtV2TZYnWeNzS65RzFN9XjM7rlbHeKh0dy1PFvVN50a7BYHgDAwMDA6cCOzE8Z8qgPSHzuKx0vj0GsBRr1rPlVfEqlWTMccVzMom8KodRxdRl2WAo4ZF9ZBkIKjsmJcpdknH3vM7INtfE7hlrY2GkbQlOOh6rJVPvM2ZhiH1YkvY4j1kCYzKtKhF5bMegrShLjl7FQ1Z7KpOaec9F26d0ku1YSiYzod0ls8NU3tSV/U/a9lyttBHxvdd9rQf2wcHBlmYkZiaxpsA2KI7H8xcLiZq1sOArk0hn2aGqTCCMFY176aGHHkqPZaHZeB320eOjx7cR91Jli6YXarb+lfdnTzvAxM9Vwd7YLybdZhHZ7DfGiM/NEYc3MDAwMDAQMH7wBgYGBgZOBXZ2Wjk4ONhyaIiUuApQ5Gt0TV1K0lq5dcf/qbZx+5lbf6XaqVyN4/+Vu3v1efy/CvzN1AVUCTNYfo2qmE4Z7EdPDVqpIeJaZwH6FaZpSmsSRqeVKvCXasueg04VipEFul+L2pb9r5J4x3mi40GVwiobn+enct+3aitTabq9W2655UQ/eJ1egoVdao1V6t4swJrpx5ZU5VeuXOk6rdHV3mpCOsdkKdgql/8q9Zz7FI9hsu0sjVZVl87j8fuo+vU47IhklaY/p8NQVrPPcFiHj+3VVOT4qHY1slp6dDJz+3wf++L14asR9wfv8RF4PjAwMDAwAOwceH7u3Lkt1+zM6JmlSapAt2C6ejPgOAsAzfoS28gYXiVlZolmyfoq55VMGqzSjlUhDfE6lYNBT6qpnCSq/mT9JvvJ5nEpGJY4PDzcCpXIUrBRuqME3EuubFRhHRkqbUQm+ZpxWVquQlliIDhd1Jk8uOe8xOBkvvrcGCjsftMxhM4SvVCXKrF5pQGQtt3RKelHNs9x7O3tlWvk1GIeT3YPcIwMYcm0UQyRqVhmdk9XbJAaLO+T+B37xBSHsY9m8GbpZnh2WvIc+J7paW08J+4Tg+Qjqr3Csl4ZW/Or15sJ1aM2gufwmZiFBnm+4nNzBJ4PDAwMDAwEXFN5oJ4knBUVrNpaQpUiKWN4tJ2QcUXdM+0uLNqYJeSlVLYUoNtLyMo+ZwyJElTFDnuJp9e+j+2QOVRuyvzf75fWlRJp3CfV2GgLygqWktGtKflDey+vw3AISVvpregenq3HUnJ0fh4ZbqUx6dn9OPZqvxlZCE1lN8/ueUrptMMwWXFsN0rylTaotaYLFy5s2aB6miXfn1nyYYP3NMsP8fMsQL/SwJjdxNCJKu0hbXfxOrx2FcKShQDQJk5bmvvYK3TNNbUtLysfxPvHzNnr5utFpu/58TF+32OfRk/bUGEwvIGBgYGBU4GdvTRba92UPNTfV7rZzNOuCt6uXiNob+klDaYHUsXwskBTetpVqayiTaXyQqUEltnAqEunV1YV+N5DZteiVMs+9aSpNXZFBw+TKUQ2Q2++XiIAnkOPN6NK7s3/s/G4H9EOw8TFXJ9Mo8A1cnsVW8vS0rHdpUTdEdRo0PM3s2tRWq/ua6m20TClVDb3axKPO3k002fFvUOPYSZ3yFKLVc+kKhF1XBePsUr957Fn+5up18i0Ms9lBmQbTN+VaXo4LgZ5x3Mqxkh2Svtz7H+1HzIPzCr9XO955r7EZ/Gw4Q0MDAwMDARckw2PyXUzhlfZYbJzGI9WlaDIpMCeZ1dEpu+vmGPGgKp0Q1V8Xi/ei16nGYOpziEL4FjiMZXE2kvTU5VE6SVf3iWWismVY2oxS41V+qJMO+Br0zuu6n8mOVZ24CzBtY9xXBT3gZF5opFR0WZD9h6/o02KzKUXh0kJu7Ipxr4xzrBKDByPpY2Gkn6WhDvu5yUtBeMzI2jr4XMoY7PV84UeyT1P311SJ5LFUFuQ+SgwAbS9M9lnaw3i/cQ14zFel8yjnFq8qkxUppXifquKJvN/qX7uZcmjY3zrYHgDAwMDAwMBOzG8vb09nT9/fiuJby+LSeX5FiWhXnLRDJntyeB1qeOO31H6Y3xHluSULKRiemtsXbThZAmHK68sekmtSVbcy1RReYz2WFvmybe0duxv1OfTS44St9vOEk6zv1Vxz8x7krYVaiWyuD9K/5RmMybhvcPimr3sJpk3Y7x+xp58Dtnumv1AiZqshNeVjj3rzOzIILLsSrTDxEwqxN7enm644YYjhsK4tWxsxC7Zhbj+LMXTA/dfXGvaNsl8mDQ9fudzLl68eOJzg96O0nYBWLIz9zHzCqY3ehWPm3nj85nf0+5Vtlvem5nHfM/3ocJgeAMDAwMDpwI7e2nu7+9380bSW6nyeMpQxQdRSu/FgpHhZQUymVePfaVELm1LeVVexEzaoO56lwKGFZPj3GQ57bg+vdI/S5lJ1jC9HuilSeYibTO8al2yeEVKe2RgWaxjFQ/HPRrP8X56xzveceLYSqqN59vuxwKtlHx7noRkWH7N4vDohVzFVvY8JMlcmbNSOrYvmV34lbac7Dpx/npxePv7+6XtPba9tBd75XOoxalynUrbNkFqXrJzGKNrVsbnUebfQJZWZXqK16MmocpPmXmfVh7rvfklk6vsm1kb1Iz0PLTZ713yvQ6GNzAwMDBwKjB+8AYGBgYGTgV2DkvY398vjf0+RtpO9bMU3BmPYVs9NUFFkysVkHSs3szS40Rkn5viM9C5R6ur79aW1YnoOavwelWoRDaPlZPMLn3tqTtamxMAV2pKaVvlwrEybZRUlxSq1JXxXIaH0ACfuUR7H1mN51eOK0t2631H136qy7Pk0XQL9ysD3+MYGQLCdHic1/h/lSAgMxGwen0VlpA5VvWSHsdjz58/v6WqjY4MTFZAZCptHkvnNZopsmTyRnWPR7OInx133nmnJOmRRx458ZqpDdknXo/Pv5jSkCEsPqZyfOG1IzjnvYQXVRhUpp6skpRX1+X52fseBsMbGBgYGDgVuKbUYjTuL6WUkta5XveuKa1LBFwlc43XY+kQuufa6J5Jg5ZiOQdVeELsS8WwsvFwTipHFCaxjX2qzukZ4fldljSafVwb9Nla65beYfkXGvHJiOIxVQo0rktkkQzm5trxuvF8uosvlZiJ3z366KMn2soCjnk9Xof3XmQfdm8ng1uTjq4KH6LTRKYxqdzt6YwU/4/B8RVL8jOHpWki66HTCNvK5rZ6rnA9GOgsbd//XA+PPdurZOC8jyJL82dMf1g5B8Y5Zjktn8OUYnGuGJpFVNqDeG06lXCfZ5olg/Oa9WNNeasKg+ENDAwMDJwK7MzwpH4arYqZ9FLwLNmHqkDqeG4VjsDSL+xvPJcu5VGyt+STuWXHNjLX+aWgdKbo6rW7xNqyY4mMWS4Fmi/ZWNzXtWuZ2Y8Mhm+QaUWpr2JHVZHNKpF3D3EfxP+z9noJB7g3KZ1n6ZqY8Lcqm9ILS6DEXQWgxz7QvsOwiyxhAEvJ8Ng4Vwyn6aUWm6ZJV69e3WJgGcOr7ovMhkemwGBx2uvj9cguKrtSPMdpwRhK4+u5LTP07Fjuc9q9sznknq2K5EZUWg9qTLI1NYP0fPaScVRJR3r2Wu7bXRLnD4Y3MDAwMHAqcE0Mj7++azwUK2k2O5+/2JQ6o1RQpTxieY6MFVDyoFdglHLdDnXX7HvmNVd5kBpZMVkyoCpZ9Bq9+JLXVPysx6b5fsnLlX1YSv6dBV7H95kXI22PLM9E9hz7SrtLZffJ2JPPsTReJcGN51CS5t7N9g7hcbGEUTaPtDf3JG2C+5uepVHDwXGQkWf3bZV6sNcfsqZo66KdcM2epz2Kqd8YsB/XLyu4Gq9jRBue++tXM7477rhD0vEcxOdB5Q3OlInZs7hKBH7rrbeeOHfNuOix2vMDoE8EvaDX7L81zDz7bgmD4Q0MDAwMnArsHId35syZLYkxswFUXpIZM6KEW5UUMjKvOeqlyYgym1r1mtl7KimCNqTMFlal5aFHWWbXpARcMYmMJS6xttjHqszREuPbBdEOk42ZqNIoRYZHOwG9zDiPPVZbeRT3vAvJLG2/iHuHaeh6GotsvNl3PS/Eig1U8VCZdoDnVna67LuqlExkcZlWZ0lTYGZkVh3bi0mTM2SxdLSh+ZXFTXv3NFk7yzlFGx4ZpBketRBxLX0M7dfUOLk/cV2qkkkcQwRjQjk+aj3i3qliXv3qZ3NPI1jt/YyZR6/dtc+lwfAGBgYGBk4FrikOb40Nr/Ke5Ku0zfDIzigJR8nOUguP7SWarcpLkOFl+ndLl5T+yAoznXP1Pku0XZXUIHPJpDTaq9bE/1XMbk3S2F5cF8F+x7VkTCPHnF2H2VLI6Kpk0hHsi99n9gzaDL1HKkk4nu89QrZJ1hjPrZISM1YxszNSK8BzsxjLyoOY9qBMy8IE07x+ZB+Z7au3x/b29rZsd7EPnAfOaXZf8rPKLp4xPD4HOC4yPWn7GcH93ks8z3OYecXr0ptD2tZ8PbPIeL3Ka5t7qLfvKrtf1l71nMme3/Si3d/fHwxvYGBgYGAgYvzgDQwMDAycCuzstLK3t9c1ehtVHbws1Vem5pRqo35W+43nVkmFY3t01KBzQZaQN9LoeG4vQWqlUqwcfLJxVQHBPSq/VDMrC+asVBjZuHhszxjdWtO5c+e2gvp7jjrcK716YQxkrqqWZw4aVL1xTbPEtQxW5r7oOZ5QTeW2etXSKzNCFkLDY7hnsnMM9qkKH4jqRK4pVZprAoSXXMtba1uB4TE0wirGKol05sLO+533NB1d4rkMWagSKsR+cA7t4OS++/pxbt3+TTfddKI9hp5wriN693C8bhyrz2ESAe7vrHaj22DIxBpnrOr503P+GSrNgYGBgYEBYGenlSWGV0mgVVBxdizBNnqMsjI4cwzStuRWuSVnx1YBzz3Wy2PIOtZUuq6ccbKAU0qDPeOxUTmt9AJA10jwe3t7uvHGG7dck6M0WyUYr9I3SdsMj+nIuN8yFsr95z71JFK6XJvheQ9lYSIMnSFLzIK6yRS4dzKHJ4YDcI9wz0amR61KldYtKynEAHQ6o2VJit2HG264oQxI3tvb0/nz57eSK8cSRUyYzXFkweNV2i46ovWSR1cB+QyXiueYrTEBuZ1HshALt+u+xKTb8X3cB1VSDjpwZX2syvR4DjK2yL1Rsd4eC+X96f7EdGsM4B8Mb2BgYGBgALim1GLGGoZX2aCy4OFegunYdi942KB0m7mWUw/P972A48wmVF2vcvlfU0Sysi8SmS2smsc1YQQVi++lTFtijufOnduyV0VUweJkXnEOeu752fvMXsG2OI5sr2bSsZQzCc4dXeXpZh/3TlZaJ76vkknHc401icfJjCpbXo/h0e7DwPdqDnoM74Ybbthib5FxMeWaWVOl+Ylj5JryHK5ThK/jIq4sceUCwbHd22677US7LJwbGT4TDVQaDI8lrguLBVfMLp7D0kFLmqz4zOIzco02oudXIG0nBYh9iGEqa9KVSYPhDQwMDAycEuzspbm/v78lVWcBpZUtL0sWW6Uho3SepQcii8m8yGJ/snb4mpWcydKoeU6yPmapcHqpxAjad+ihWKXBytqomFjGCo2K2fW8NNfo0avE3dK2BEq7ZRZ0W0m81BoYvaTlld0v89JkSqfKbhGPNcj0uP+ye8NYSjEX+1vtjcxTujqG+4wemNlnVTqy3n174cKFcv+01k7Y+Mh2pO2g/jUJKCp7e5VOL16P90VlB44g64sB39Ixu4rrQq0TPWt9rMefpXxju2R2PY0Ji8gavA+kkzbV2H7Pj6PyILbNLivNRBteb+8Qg+ENDAwMDJwKXBeGF3/laQOo9LdZIllKAhXDy7znKNn3kh1X7IX66kyyrzwr3UaW8HgpVqeKj8nGulQ2KBsnsYuX5poEupn9IGt3f3+/jEHLxsa9krXPeCGWBeqB7VXeu73ik/SEM+J7pqGiZqTyEox9qcpQ9ZJikxG5XXr2xXmgjZWMJUstRu8/Hpsxc8bCnj17ttyXtuFxTuJnvBbvjx7D4/1ZJSSP5zL2kPa4LM6U7fI5k8Xu+XzvlYppZfY4Miq20UusT8/Uni2Ufa00dtn4qhRwtN3F3xiveyyzNGx4AwMDAwMDATszvAsXLpS/xlKd+aTnOVjpluk1R6kwflfpuDObSpXxhN/HtliI0ah00Bk7rLJwZIU/KbFQsqK9K8tcQ6m2Z3Or4u5oA+klxV7y+rxw4cKRJH+7OLcAACAASURBVJ7ZT+hhR0/EbF0439xLtJdloJcuWVXPM7XKtJPtb57DMWQMtup3xcCzdnw9xkBybaW6DI3XhHFm8RyyG8YbZkzCdqwewztz5oxuueWWrbi1W2655egYxr1VtrR4X1YJvyvP6KxQavVs6mlrqmT1mQc2nxlkiVzDLAsV4zyrOMmsfd5HfJ5mGXcqvw2OKZsLXzeW/onvJenmm2+WdJIFDoY3MDAwMDAQsBPDs5Tei5hn3BAZXa88UOWVR0RJkFIR89H1YoAqj6ee/Y9SGiW8TMddSTj08MoYVxWfUnnvZeeyb2vscWyrZwMxel5/zrRCiTSeQ5ZexdTFuajsfFUGlggyO7MNrksmPdI+QTaQzdNSCRsen12PjDXzlqMnJ8dD1tPLa2s25fvarC1mAyHrY9xXVkIpy2LSi8O78cYby7Jh0nH2Eo6tiq2L//P+4P2YefxW9n/G6tFzMbZX2Yzjc4DHcj8z9rGX+aQqzJt5dnIP2W7Wi/urbHV8zmaxsG6fzztmp5GO947v1xjfu4TB8AYGBgYGTgXGD97AwMDAwKnAzk4r58+f36K70WmF7rhUf2aB5z7HVNXvTXMr99aIpfIiUR3B5MCm53QTz9xn16i7+HkVJN4LR8gcCiJ6jjxUyVSlkjLHmgqZyoAqs4ODg66Txfnz549UPGvK6FSJn+M8up3MmSJ+n7nve795n3kfV6rGeG3Of5W8IPtuSbUYr1uFw/TCbypzAvvBNFjxf6q2qtCD7DOWrLGTQeYwEh2FeoHn586dO/GckaTHH3/86H8GufO54/73kgjwc77vmQAylbn7bnheqA5ln1nNPJ7DOeqFx1DNz2dKleJQ2t4HlUllTUrDXjqySp1LE0FUFdPJZ6g0BwYGBgYGgJ2dVs6dO7flWh6lG0thWXFJKZeaq2DR6rUXCMwSLLHv/L9Km2Rkrt40/FaG7p7ETYa5i5ReJf7NjNV08uil9arSLBkZS2XYwOXLlxdDE9hOlq6JpVeoUcjmiUzEn3uuyQ7Yr2yMPfbMvVIlXZbyFE7xmF7ITuWA1NMAUGKn1oXzHK/Hfc4QA7K3eAzv315aOrrkL6UWO3v27FYAf0zMTIcZ3v9kubE/S2Wzesw7S68Yr5OF3TBpBRM2x77TuYd9ZRu9dVlKhxaPqZ6raxJ7LIWlZI5DTGbCEKF4/5LhjbCEgYGBgYEBYOfyQGfOnOkmFrWulRLPmkKclOirQMmeG3VVCqPnjlwFi2bpmij5kA1kTIhSECXuXhB2ZcPp2f+qkIYqlKLX/14JI6ahunr1apfhHR4ebrlER3tFVZCzSpgsbQe7knnRTTyzV9HWQdfvLCEA936WVJkgo6rCLiIqNkabZI+lkZXxHonn8pgq5CC623NNuVd7ydjjHPdSi910001Ha+njbBuM/XZ/7bJOu29Pq8E9z30R+8c9mfkmxO+l7RRlVVLljHGRoTLlWFZkt9IGMbSlF0KVjaP6nHPN5xwTfEvbNnaPz2ubhRVVweprMBjewMDAwMCpwM5emnt7e1u/rPHXl56bVVHNjKVR4q6YXpbOhoHmlNYzSYR2nSpAO35XHbvGS4gSVcUSs/4bPelsaRw9hkcpl/a/npcmpcwM0zSltokIS/D0qOP7zEOQ3l2U0jMGRlbAfcG9lbVfJWrO0p/11ixrIzuXLJD7Pv7PVG20b9PzMv7PNa3s6fF6SyntspRSPU2Fsbd3Mnm023Eh1Xht2/XogVvd89LyvZsx4aoEEm25WWJuMi56M2bPncqG20vvV2mQeI+v8UY2qpSRUp3sg8w5rqXbYxkkB5ozOUQ8Z8kzP8NgeAMDAwMDpwI72/CkunRE/M6v9JbKdMFL6cfcBj2WpG07EiWQLHk0r1OlJ1vjxdjzLFs6purPmnOqJMbxu0rX3WNrZJuU0rJEw5EhVTa8w8NDXbp0aUtii33xZ15neuVmUmeVxijGBkrbdqvYf7bLsWZJjyvvSSP2kWywsj1kXpNV3ypvSmnbZuf3jEnLYhdpq+O89cpR8TOmFIvzyFRSPduvx80E7jHdFG13Znr0KcjuE6NKAWf0it5WNu+MrVUpzbJE51WaxcpLMtMS8Tsy8eyZXLHRyjs9fkc7Juck89blb4rXLUtLZ/QYaoXB8AYGBgYGTgV2ZnjRhudf5cx2w+wePU+kqhQ8vaTIKKS6LJDRK/GyJv7OoHRU6ad7qKSmjCVQ/75k6+hlgeB1egyPbVT2Rim3j/WkrYODgy3pNvPwtVTHLA9kbxFkL4bZTRYfWtmeyPzj/sjsLFI/5owsrfK4zVAVfuXejfcg7UuUvCsWF8+tMnhk92+VWYPPgGi3JcNfE8PZ01S4bcZvMXtJT4uy5M2YzTH7TOaTeRdW3qs9+2L1fKOXYzyu8vCm9iO7p7knqwLHPV8Makp6ca3uk70zzd4zHwLee5cuXRqZVgYGBgYGBiLGD97AwMDAwKnAzmEJWVLcjG7TfZsG0oyi8juqzPyaGT2JXuotUuzKaaanpmS7PTfrqtJxj4ZXaklePwuLqNSfVX20iMqVeY3LfC8swW1QxZ2puezQQNVcpgY1qtAWOj7FOm4Mq6F6iMdV15bWBVlXSQOoHo+gKaAK7s3UkksOKJlKk6ox9mlNOAwdEDJnMybSXko8fu7cuVWJCKpE3QzNiP/zvqRaL9vflWMGExNkzzkGkfcqnzPQvEqkn6n0mYS/SgAe55EmAc451fJMMBKP4R7Jxlep+WneiHPPeTw8PBwqzYGBgYGBgYidnVYiy6Nk5O+lbamO7Cxz26/SWFEizdzSK2eCjAFR0qYTTk9Kp4t19ZoF2S6lwuklca0koUyaqoL8q8DT+P8uaXqqdEMV9vb2tgLOYx9YCoSpsZhgNp7P+alc8rPx2ZWdzipZyZclpp2FMnB8VbKCrI90kiLb6FWtrtKCUWMSz2XYQZUuLK4bJW6vH5leVh6IY8/ghBc8NvuMyYbJ1uO6kCmyDxW7zo5xXzz2bP2rPUJHmywMxudwfbguUYNRJbpnUucsKQfb5zipQYlgWEf1jJRy9h/fZ/OZMdORPHpgYGBgYCDgmpJHU8LK7GiU6sjwsjCBSg/LFFAZK+DrmgDQtSm44v+V3aWSErNxLaWYisfwdU1YAtsgMqlsKaA+C/Lk2HvY29vThQsXthheTELMAsBu1zYIS6pZKruqxJT3TM++yLRklirdRkxAzfWvtANxnJVbNvd9LwCYtpIe+6hs3wzr6aVb43z1mFJlq6mCiLN2ehL6NE06ODjosmeyfz6TMrt1FTLF99lzJ/YttpWxNF6Pe6d6jce63SrUIAsbyjRi2ftotyM7o4akZ+Ot9rfR8zdwOAI1dj42piMjU82uVWEwvIGBgYGBU4GdvTT39/e3vP16bI3SudFjXFVANsuQSHkSYulYAsmC46tUN7S1ZV5llLQq216WwqjyMuylV6LkVtn0MlBa2iXpanWdzEvT6Enp9rSj5B3Xz+tLmxpTjjFRAPsV+0I7cOalSc8wIytNwnOrY+P3lW2Y+y4LZnbfmJDXyALBq+TrPdsdz82SYMfrZ9oPMhTatSLDq/ZzhWmato6J+4CFQ+klmSURWHp2+FwziXjfLCXFp5do1pfqedd7nrIAK9lovL/Iyul96rbiPqju96XPY7/ZV885yyNlc1E9R+M9mJUUGgxvYGBgYGAgYGeGd+7cuaNf7CzJKiVOsqUsCTGlfv7aU1qPUlolIVK6jd+zD1US0l7sXhV/l9ljqrRklZ0sosew4vWzWMjKrthjeEvsL2MfMX6pkrS8d5hUPEpulACZNNzagix9EvdQlQopfk5pkl5lmc2Q163Q85ql/YXSchYrxj3KlGKZHY73AOOwesVqac+qvIOl9dJ5xpCqMjcR9gzPWLphFun2aEfkXuUY4nvOSxaDWnlN92yrGVuJn2dzW6Ujo02frDTrU5WmLkNW9DYis4lW9tjKsz3+v2TfjGDqwStXrgyGNzAwMDAwEPGUCsD2yspb4qCklXkbVlIMGWQmaZHBkfFkyVApkVYekb0yHZTweucy6XFly4vvK/ZJiTKT0qpje3Y/Mla2n2VvqWytGWz/rZIuS7UWwJ/bthfX//HHH0/PoWTYs3XRk7Paj/F87kl6xPVsuJVXZmY3Y3aUJ5988kRfswKwZHZZRpXYj2wP9bwyicozkZ7a8fulrDwR9tKkV2lkStQK+D3Ly8Q5WLKLr2FABrNOZTYuznfFwNZ4FPe8wg3GpFZjyJ5znBPaCGlblvoxqNJ21pjYHp8dzEKTxTVXsZY9DIY3MDAwMHAqMH7wBgYGBgZOBa4p8NzI1EdMY9MzPho0NNO4SbVkVBOQttOInyWcptG4pxYgloI4szapFqhSGEX0qnwvXa9Se9KlOaJSofaScHOdllQL0zSVbu7ZZ1W4SAxC9TWt6qvGkzkvMWWdj3W17MzBimonOg1kDgJWs3FNq/RaUU1ENacDgemIEgP4/b9fqbJdEwpQJUPvpcfjXq0qh2fnL6nmDg4Otvqb1VVjf5lqLEu9RdXYUvJ1/i/VtRWzOaZakI4omdNKtjfi59m+473MtGRZ3yrHPab9Y63KeG0+D6pQrvhdpfbPnjtUH4+whIGBgYGBAeCaygNVQb7StuMBpb3MUE5Jh69VoHa8DlNLkR1mAZlL7KmXVLVCFj5QBQtn12E7lUNIldQ1omLVmeMQJatKwu8lDV7CNE1d1+iK+ValV6RjRxaDiaZ7a1wZ9XvlgegwUTmvZOnIuEaVs0TsD/e1JXwyvchc/D/DEDjubG+xj3RWYIhN/L9yKWcS43hsr1QV+1w5tUknGW5sz+wtY1xVyMWaRMRk9p7zKhly7C+1TlkyZKMKmaFz4BqHF6NiU/w/9plJBHpOOUalNcrCEpYc7bLwDs/14eHhSB49MDAwMDAQsbMNL3O3XnN8z4ZXSb6V3SBjGUtsJiveWCWLzfThVZJo2uV6dp+lIPIsmDf7Lo43s8stBTr31q3SofcCjtdKV1I9X9K2jcFg2q4s2LUqQ0WG0mMStP9m46P9zX2lnSILjs8KV2bjytgT+8ZQg2jDZAo+aj24H3rB2JUNPmOhld3e14vJfnuluCr0Ur1V9v5euEoV/F49S3q2bz5TsnuiCk9iXzM2U6VDXPPM4vOUfcwYV6XZoU0081WoCjZnrLBKis3r92yh586dGza8gYGBgYGBiLajh+IDkn756evOwP8EeL9pmu7hh2PvDKzA2DsD14p07xA7/eANDAwMDAz8asVQaQ4MDAwMnAqMH7yBgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBXaKw7vlllumu+66qxtLZVyLM8y765z3FNbGiqw5Z824n47rZVk5YuzOAw88oEcffXSrkVtvvXW65557ytJI8dqMj2KMUbbfljJ18Br8P3u/dH4Pa8q2PF1Yav9a9gXPzeaxylSSlaVi3NrBwYEuXryoJ554YqtzrbUptsvYLWm7BFGvFJbBeMTq2KpAdO/YNaiOvV77sDpmTTxudUwV4/tUUZVKy2Jzs+fB1atXdXh4uDgpO/3g3XXXXfqiL/oiPfroo5KOa5HFIFQ+eKraUlkwLzdW9RDLEiVX6P0YL23ka3k49hKzLgV199rfZaNV564JEK+qFjtoOCZuvvnmmyVJt99+u6Q57dDLXvaytN27775bX/EVX7FV0y4bO4OqnbaJ6bSk7SThTHNVVV+OYzV4bC/1Evtd7eH43dIPN1OpRVT3T5aqrwrWrVKZ9RIe8JgsOJtB3axBx2rkkvTOd75TkvTggw9KmhN2f+u3fuvWuI39/X3ddtttkua9JOnovTQ/m+K11qTt4j1UpfxzG9k9x31H9JJsV/djlqC9qr9XJSCP51YJwLMA+6XUgkx0sUbQ7NXJY+A8n/0PPPCApOPfGklbvz9PPPHE0XGLfVl11MDAwMDAwK9y7JxaTOozo0pCrMpOSLVKoZKEe6VwiKztKtVXRauz9irswux66cOu5ToVliR+qU4/5lcnas36SFbV63OvNNISA8rmjVJjxdqyNGFUf1Xzs0YttqZMSyXF9rDE7DKWsCYt3BIq1XOvDZYyYtotMz+pZigZWms6e/bs0fk+NyYR53fsU8ZIKpayy/OgSkBu9NanOjYzG3A9mJIt20sVK+f7LJXZGrU0jyMbrfZOr9gA9/utt94q6WRauqXndg+D4Q0MDAwMnArszPBcjFHq22EqiSArEbFkn6oSN8fPKmQlbChhWzpbSu6c9XUNeyIqKSorrktUUlOPwVa2qR5DJyvIJPEsOXFv3NM0dRPlcl9xjD1Ws5R8mOWp4mc8t2fjrfZiT9PQSxKeIVsXslHuoSwB8NL1ltYqQ4+F8H6y9J7Zt8jS9vf3u8znwoULR8f6NZaGov2weu5E+29P2yDVSZfjsdXzp/dcWkqWH5lrlWC6Srod+0hbXWy3wpLjzi4J73lvZKXa2A5th/YZiOW2Mm3TWgyGNzAwMDBwKjB+8AYGBgYGTgWuyWml56bbq5AdP89UMEuu/hmtXlMpWeqrIyqVTOwjVVZLxuQ1MS40Hu9Sa5Dqg8xJYpe4qKqKfe86vN4SWmtlFWTppLop60MWf8U1rFSyWbhFz106th37WNWnq2IIs7EyprGnJmINOK5pL0zgqTitrL2vMlQu+plzxJqaZq01nT9//kiF6XCYqOby/5UTTFanjmrOyglrbYwn25dy0w1Vjbz/4zlVLVDeE0ZWK7IKNcr2KteAjijVMzNiyRwTHXw4Pt6vVlHHcCirNP1dDFlYwmB4AwMDAwOnAjsxPDusVGwg/l+5h/sXPEomlFIqR5BMqqyCRckGs4rnlfs0j8uwFNTbC0+gVJ65aK8NHs5QMTx+3qsCXwUcr2EuGfb29nT+/PmyL9U50rYU2JMqybA515mRnXPdCyL3/JgVMEg+0w64Xe6nJTYa+012S+YX76GK1Vbr08tcs8Zln3PCe67nMGRpvefwtLe3p3Pnzh0xvFtuuUXSscu6dOzAUjk4ZfcyK7V7DQ3eJ1ml9SrwuxfUz7H7tdKqsJ3YZzpwxHWp1r1KBhK/W7o3sj5WGgzetxnLpqOTr2cWd9NNNx2d46QFmWZsCYPhDQwMDAycCuzM8KKk1AsEjpJbfOUvt1TnweN1eoGfBnXNTA8U/7dEt4Y1kQ1WWMNYOEdMxSRts741wepVXyoGFiU8zwnZ7xr36jUB2tI8bgbKxv5TuiPW9IX7jXurZzteE0Se2YKyc3v27eqYTPvBgGqOy3sonkNmV2lKMu0Hx1zlzd0lZV9me6cNqheA3lrThQsXjpjdHXfcIemY6cV2loKdYx88d/7MfaC2I2ubY8rYuXTyuVPd/7Y/+n3Gniv25P3Rew6QydFWHvvMsAeuSy9FJBkXn11Z2BHZZvb7IJ1MI2eG5xRjS+FQJ/q76qiBgYGBgYFf5djZSzP+wmdSgKUh/0JbeqkkU6mWlo2ezZCg/YV6+ux8SrO94Fr2cY2dkVJmpcOPXmdLtpvedZck7Ezi9nXI9CrGHPuwRrqyh2ZvHEu2uiplUQ+91Fhcl4qpZrYO97Xy1sz6ULGCyt4Y/69ee/bfynbDhNuZ1zMZPsfVS8oQg8mzcUdEW2S1j86cOaPbb79d99xzjyTpzjvvlHSSBVTs3+3zORT/55grZOdybPRqjGzKGiXuB3sgejzRluiE6dV1aMOLc1ixcqbzyp5zXrsY3B/PyeZkyTvY8+sxxc8MPoMzG7XZnplez8OXGAxvYGBgYOBU4Jri8IzMI9NSiiUDSy89b7nKXtSLoVoC9fIZK6BHXRX3FVFJ6WtQeU1mtpTqmDXejVXJjR4zquIlybbicUsScURrTfv7+10bHq/NfpN9Zn2opMw1MU7cB5VdKPY/jq/6fskDtrev2S7ZZhYrRu0GGZ0T8fo16yvvDdoXM1bQi5eM/cr63Usttr+/r7vuuuuoBJC9M7P4yYp5ZWnkKg9Lsijay+IYDc8t05DF/RmZTXzPmLPI8J588skT7XBfVx7ucTy8R2gPXmOHY/tZeq/KC5z7MSaCph+FwfHGdXN5qHe84x2SZvY+GN7AwMDAwEDAzgwvetodNRKkAEsp9B4jU4iSqn/lqVPuSXyxP/Ecg5VyM087SmFkRpl+mpI9+7yGRVECihIPUdnJKDVldpiK2WXekEsSUtaPjIn1ks8eHh524xXJXizdXrx4UdJxIVi/SsdScuVdSrtclIithfAr967tPtmYOce+rvdyFuNIFmCwTEuPrRn0NM7W3995jpyR4rHHHjvxGhlAlVGDtvlo2+H8xawYUu59SPQ87fb393X77bcfMTu3nz13mLC6ig2M51fxsdRGZbGOHpPjxNiPzDucsYHM0hSfB/ZEZIxgZQvPtAVk4O4j2dqa9v3eax6fkR4fCzZ7nB5XZMrcb+6Lz/EzIPPivf/++yXNRYTXav8GwxsYGBgYOBUYP3gDAwMDA6cCO6k0W2snVJqZcwfdpBn4TRofj6kcMyqDZkTVRqZiMrX2d1QPZQZnqsqoLqySoMZjqFbpOSS4j1XgKdWy8dwqvZHXLatLdS1B/0Zc46XjqHqMKh+rL7wODz/8sKRj92OrSnycdKzy8Wd+tfqOCQMylebtt98u6TgpMVWd/lzaVgdVDiJx73Dvc655bs/lny703LvSsSrJKkvP3yOPPCLpeM7ovBL7QrUe1ZVRben5Y2C43cc9f5mTSZVoOsJhCW7Hqs24f71WVBd6LvyaqSU9p1Zhe029h7LEEHSfZ6o3fx5Djdx/OoTwvozJkP0d1YN0xjGiepLhT1XoRBZuwbAXowoVimAYgvdX9tzmc9rj9HpmYTcOS7ET01vf+tah0hwYGBgYGIi4LmEJ8dfVv/g0sloSzVzLKSVXbtuZCzaDt8miMoZXBVfT0J25UdPteMmpJJ5TVSfOXP5ZsoTtVs4asT1Kf1XQsrTtoFFVVI5YUyok9vvw8HCL7Ua2ZiO0GQidVbyW8Rwf43Mqxwyfm0ncZgxmKH41Q8mSFFeJrX29iCo9E9lIlujY0rHXgaEF3geehzgXZsgPPPDAiWM8n1kgPyuRm8l53JmGxqDjDjUocS8x5KOnGdjf39czn/nMI4neDiJx/5LNmNVWJaek4zn0fvJc+r3nz/fEM5/5zKNzq+rrvKczRkkNi8eTJaBg4DmfP73Ac/eJLNfjy5ykqr3KNV1TloqMLks64mP8GR1fsme+x/WMZzxD0qxh6D2nIgbDGxgYGBg4Fbim8kCU0qMNgJIGpfKM4ZHh0JW4xxysX492lnjdXtBwFWxtZGnUquTNDHjtlemoElH3grotHXluKLX1dOlVsGqUPilp0RaRhV3QFrAU2jBN09G6mIk5eFSS3v72t0uq3Zopocb/K1bIeYrBvwwLybQBHLPtYB47bVo+N4ZO0H5YBUNnQbZ0jXcf3Q8zSo8/fvbggw9K2k62S+k57kPasaq0Z73SMv6OtsR4Hdth4jkVyzt79qye+cxnHtkKmVhYOl5Dz4vHToYc15+2YdqTHnrooRPv77vvvqNzmaqMwdx+jc8l3h9mdh6X8ZznPOfofz4jqH3ivZeFCVhz4vF6XJ6LLKSFmgP3w5/7ORGTOrsvfBbTFh5L/fh6DOfwa6bB8pqacd9xxx3d5OMRg+ENDAwMDJwKPKXk0ZZ8slI//o7BwrSbZW1nv+pSzrIopTPo1shS7lDnzGDRzIuRQZq0X2VSE3XaVfqjaG9g4DQlH0p+cbyU+tZ4rvpY94E2lmhXMBjke/Xq1dVempYco82La0hGnHl20m5kxue2GHCeScCV51m2Vxkgy6QBnqdsvqpk0dQK9DwJzYzJaCNz8TGVZx+LbWb2D84rGV5k2Qw0J8vhvSEdPw/WBqXfdtttR+vl62UpuDx22qn83gxQOt57TPlFBp7Zjqukx3y2MPlyHDMD6P0cjetB+x5tXb3yYdSm+b3H7b0T97f3lVmgj7Vd23NltpaVpfI5vgf47I/r5v76PjLb9bip9Yuf+Xrv8z7vkwbPZxgMb2BgYGDgVGAnhnd4eKjLly9veTXGX3lKc5S4Mo8+2omqGCD/ivfK9jDZqpFJsZUHZKYPJhusSgxl3pVka0wx1EsLRKnIUiFtCPF6bt9zUcXlZUmDaaur4ozid2u8NA8PD3Xp0qUtz7iIquSOXy05xjglSo9kxNxLURKklynHThYiHe9FX8/HUFqP81Ql/CYLzOKieB16n9I2Lh3fe76e7SyWmunlGPvF+8dzQu/QeI/4HLOZau9EcK/0GF5rTWfPnj2aL7MAsxDpeP7dbzMQ95d2uniM2Qvto54fxxVmKdg4L2TvWfo+ar/sbcg4PWm7zBpTvFFrYzuddLwu7ivvObcR7yczvErT09NwUDNjr1o+x+O9wdR41Mx5r8Z59P72mt92223DS3NgYGBgYCBiZy/NS5cuHUkM/oWN0hrjKCwtMS4lSs1LxRQt3fjXvhfrRI++jK0xCww9njLGwkwN9FC0pOPxR7smY2fI7NifeCw9EysWHMdpid6SG6XbLHuK+12V9DCyYr9xbStPTXto0vYQJTOvMzMzkNlFD0i3Z+mYHm+eL0vpsf9VInDafxjLJW3b48gGo6ca9zylUdoSo5RbMTxL8ln2Cl/Hc5F55Up5UVR79Nl71vuYfYxswXPKmD0y6GzvREZc7Z29vb0TbNjXMTOLn5HVMBNNz3u6ynzkeYxshgyb942PjX3084ve7d7X9jqM+83rzjhZ2ruz+Gd657IUT5bZh+ycc+G1tSdpvBe9Z/gs8fMos2/Tnkmmz+K48fy1npkRg+ENDAwMDJwK7JxL89y5c0eSAfMKSttxYsyywGKH0vGvOuOE/EtOfXyEj6X05CwJlhAYG9KDpc8sZst9YhkLSnhZfjoyCmbPyLLB0A7HEhvuY2Q2tGMwdozMLP5f5XXs2eey1oPeOwAAIABJREFUYpDE3t5eGj8VpT1f0/2lBMysKW43jvX93u/9Thzj2L4s/yLtL7TlUVsR+1DdA1lJIe6ZynbHNY+fef59ffeZ+zBem9ehxyAl7wjP17Of/WxJx8zP91WW2YUxsV43XzdqdbLyMr39c+bMmS37VdxPtI8z72oWw+ljuS7eO7T/xeePP3MbLHhNBhjP97Oqsn3H507Fkhk3m/kueF+5L/TSNQOMz2+vO89lRiHPUWZvNPtj9qG3ve1tkvKMOyxVxPs67lHO36233jpyaQ4MDAwMDESMH7yBgYGBgVOBnVWaZ8+e3VJ3ZYHgdGs2Dc2qFTPtEwMi77333hPXi6qRKhCcqtSoBmM7PLaXcqlSaTJ1UTS+MlCWRuNeAmi6mHPcmaMDXaMZWJuVO6kSeNMpJwYZV6EMGVprJ9QSTB2UXZMJoXsOGnfffbekYxdvq088P1aTZuEiVEdaPeWky1ngueebyQpY1imew/d00srUoVTj+pWqnzg3/sxrxUraDCuK6+I5dx9igl5JeuMb3ygpD0uoHB2yiuFZmrUlpxUm9c4Cz/3qkAUmL8hKIXku/YyyO72dMBjIH8EUYnRqy9T4TNjgczP13bOe9awTffR8+Rnpz32dOCdeSz5/GE4Wn6GeA88jx8Ewibjm3hPeK0xW4OvHNHj33HPPib74XK+x7+ssYYTX5eabbx5hCQMDAwMDAxE7+3U6NEHaTmsjbRtXLRH4F9vSc3S9pSGW5TMYaJhdj+VSmAQ5K/VjMFwgAxleVRiVQcsRZJtVwH02DrpXe46y1EW+NpkyDetRsiOTZFqqjLlkEvkSy2MqqSgBu98MR6FEHNfJUr/njiErlogt8WcskYVfGT6QFQLmXmEQdxbUzzRJLACbMSGmtKOTDAN1pe096vW2ZG3m0tt3ZnaWot0Pz3ecE0r/FcvJSskwKUOGaZp09erVI+nfISaRKXB+fGxW7Nig0wo1I0wxFu8XptzjPeVzY1iC+0LGxT2cOWgwRIeaBl83ljBieI9Zm+fGr3EPcU6owWIYQcaYWUTYLM7zmzkvuT33yfvPax2fE96TdrrpaQeIwfAGBgYGBk4Fdg48jwmCszI7WWHA+D6TlixhmAWyFAXTa2XSGlP7uK1eyRWDiVkZEC5tS9ZVAmC3kUlNBm06bFPathVS/067Vuwr7XB2NWYQZ5YSjn1i+aFox2ApmR5DtmYgS73FPljitf6ebvuxD5wfS/1eF7fh+cqCyOmWbyk6Y6ss2smkCN53awrnMhl6xnbIILyW7mMV8iIdj5k2SjPa7BzPvSVvS9G0zWcsxH3xe18nCw3i2C9fvtxNWnDp0qWtOc2eAywhxPJJ8blTJYLw2F3CyHsralO4htQoVamypOM96LX0a8YK/VxjUmeyT58Tx2dbJEtleV9QmxOP5VxzjrIkCpwDz5fH5/eZVsp7xozO4+H+j/3tpa6rMBjewMDAwMCpwM42vFjihYGMEZk9ojqWn5FN0Xsv2pEo/fO6LL4pbdseyegyOw2lCZ5LlhN1zvSGo3dglsaL16OEReaVJSvmuf7cuvwshVWV+NefZ2ndorRX2fCmadKVK1e22s1Si1nKIwOxtBv7wMB4BmSTKcf+VWWT6DUcz6GtyNKr2YvfZ3uH+5w2XPYrfkcthNc7CwDm/ek94j5bes6KFZNlRTuZlGtomOrJEryl9uwc3jeHh4eLJYIM2rPjWHnf90ovZYksIszwWGpK2n5GMDA7A/0A3D6ZT2yDKRqZJIFp0eK5TDHHYPUsDSJTtFWanyzZBOfY7ZLhxwKwho+lDTz7jeGzqpcUgxgMb2BgYGDgVGBnhhclCEqQUl2Wh/FcWcwZ0yjxlzwrGktJgIyOSWrj/1URVXrNxXNoN6gSz2Y2taW2IqoiuFVx0p60SinUzGWXkkkZG2Cx23PnznUZ3tWrV7eKXEaJ25Ig45NYgDPOJ1Mq0ROyWp94DksW0RM29pFeamZL7muW6ot9okdnL46RNk8W1eRYpO39xvnr3Ru8X6lZyKTqKjF8Zn/hOfHervaO4/CozYnjpDaDMXbuQ8a8+XzJCrHG46RtWxbH7jnPkl77M8fY2e5LH4Z4TTJKMqFsr/pcezzSz4BaotiO7wm+Vp6YsW9VYvvseVP9Pnj+Mnt6FiPc0w5EDIY3MDAwMHAqsHt9hYBM6qdEzV91MpT4GRlj1j5ReQ3RWzTTrVMaJMPMShgZVV/pPRXHShbKYzMWSibn92QwWd8ISonxODKgqmRTZsfIvFoztNa21iMrGUNpmVkkos2BUioLSlbrFPvP72iLykq82M5o+4g/z7QQBu2ju9jwGL+ajceo7C+UzjP7X+V1SDYY7wd6l9KWk8XrGpHlLsXisQRT5g/AfcrnQrZHM7YSP8+S5BuM86WnZ2R4zIBjG57tvr5O1NbYdmdbaqXJcsxt7CNZLZMus5ixtJ0Mm89mZvzJ9mp1H2fe6AaTf2fljgze80v234jB8AYGBgYGTgXGD97AwMDAwKnAzirN1tqWKjCraUU1Bw3Ea+oXVcdkVYuz8IOILCUWVZmsxp0ZgCtVGd9nge5un/OX1Zyj6qhS1WbqyyU33Z5KoRpflUotHttbUycep3NBVCNRNUpHDSbfjv1hijkGmDOMRNpOPO73VEfFgGk6q9D13qqlbO/01MNVH5nCiuE3ns8YzMtAY85FT+3K+5UqzqymH13UqxCBOK5ewDxhhycHTHvuo2qbiScqx7B4DlPWseYk93x233At+TyKzwEfQzU41Ycep3Ss0vRn7IvXIUsEzu98HZoVsjSPfDb5uqw7mqk0+ezqpVCsnP2oQo3neC782Vp1pjQY3sDAwMDAKcHO5YFaa1tJdXvVvckQKkN9PIbG6DVOK3SyYN96Ui1dvHt9pGSzxrGGJWToPJAZaCk1sy/sY8Z61/TN4DGU8JbShknzOCvHg6gZiO1niZIr93a3HatIW2K39Oo5pANSBkqgdGFnQHU8hmyQYSFxXBXDqkJqspAGpgfj55Hh2QmClbvdDzpRZfujWgu+xv+Z9LvnxOR2l4K/jWmatsJFYrgDU8ox/VTmvOZ5IvPm/GR7iGtoVEH/0vFeNUvy9Q2mEZOOn01LifXJTqXtivNkaXSAi+C89QLcjcoxqKfdq54rdCiL80wt2pUrV4bTysDAwMDAQMQ12fDIWOKvL12R16RTqtJzrSkdYlRu2pmEQCbJMISe+2xldzGyc8lCacvLUhdR6q9SmmV2H/a1YnrZ9ZbGmQXFGmfOnOkmAI7uw5m7MaX+Kmg49sFz6WMq6Tyzw1AirQJls+ToDE6m3SoLUqbUXxXQzQKBmZiZ+yNjU5xr2qp7Wg+jsiVnidVpT+yFKPn8bO9n44j708zFbv3Stg2fydWz9eee5lirYsjxGLIknhOvZ1uwQ1p8XTM6J+qODM/jiHY96XjOyc7icVUYFEsoxXGRRTOkpBeewmdUlUIxrnXlI8D1jMyVe+eRRx5ZtZelwfAGBgYGBk4Jdrbh7e/vb9kT4q8rmQLThq3x1FlCFuheSYhZQc4q4XSv3ESlw66kl54nYVX4M0vmzHIjFaPrlcig9NNLD1V52lF6i8dEibi3Dq21rXOihFolljZ7y2wAvSBkjpHncg7p4ZtpGMjwKm/kOC7uDdonuD7ZunB9LZ1boo8SsK9DVuj91UvVV+1V9idLkkD217uvd00eHdc3S35uVmkvWQYyc07i/1XgPO+T7DlX2cF8brStmpHS/uY+P/jgg5KOC/RKx+trW17l50D7bDzX8PPaDNIpx1xGKJ5v71Cmo6uYWPysekZlnt7V89T3V3aPuI9mxBcvXhwMb2BgYGBgIOKakkfTuy1LBM1fXMa4sc2IyrOul8psSSrLykvQZtNL4tvzTorfs1/ZMbQR0M4gbevS6QlXJfWN/1fSOZlGbI82o964OV+7lOkg88/OZ0yVpeXopUnGxXmvbMjZZ7R1MEVWvJ6/o+Yi2/+ZliG+p60jrhtjNrlXzfSi3cfz04vVi2PIwHWv+hrbqYokZ3NOZtSz/x4eHurSpUtbRYjNjCJY3LjncVnF7pJVZAnv2S7hdfL6SMcMy+vj/r/tbW+TJL31rW+VdMxcYvv0OnUbHENkvYz/NaPzsd4zsVyP2Z73jPtC+2+2d3oFtGNfM4/y6pzsWeV+v/nNbz7q0/DSHBgYGBgYCNiJ4TkWpheTRbZCT7SMcVX2girTQWbjqDKeZLptehpVCaYzadCosmb0PLoMxrZkiVgNfkeb2prCk+xzJp1W3oy0VWQ2EKNnw5umuQAsdfNZH6r4sCyLTmW7Y/LgXoafzNs0HhvPsWTtV2aGyEpLcX9X3qGZVyjnn4lzWTw0wscywXrPtlbdi2tiOitP4oxdsZBpj+EdHBzo4sWLW4VMIxPiOmfestJJjYL7QBsemV0WJ1vZblnkNe5Z2+H8alvdL//yL0uSHnjgAUknNRj0UvR4qr2TPbOYOca2RDPMaP/1PDqbjdtnmZ5erDK1RczeEsF7uvqd8F6WjpldVox6CYPhDQwMDAycCowfvIGBgYGBU4GdVZoHBwelAT1+Fs+RanVlPKZyfugl3a2cU+j0kbmyM31SpZLJQJVpNZZ47Sp0wP2JKc6qOnhVwHHPGahyVukFnnOcve+qhN0R3js0ekc1EeeJx2YOE0xQzGN7Sa+ppq0qM8c19hoxvRFVTXE+GZhdBbobmTrUai6rn6hiimm2rE5j3ypHpJ76tVLzZ8HDVb3F7L72mJfCSnze448/vnWvxfuFicWXxpwdWz2rMjV1ZVpwcLmPtXt/PMdred999514zZxw6DDDPcp7Oar+PFZ/Vpk/4v3rfcQ0aH7P/Z/tHYIq7V5Sfq+xQyo8zrjWnhOr8R9++OHVDnOD4Q0MDAwMnArsHHi+t7e3lfA1k5po+O8lW6ax2KhS+/SCyP1KyShKwEbF6LLAWUqDVfmMjFEweLgy/MfxM21blTyW7tfStpReSawZqlRSvXXrBb0bTg9FZ4XY7yoBQM9hYo0zRWwrk9KrEI+sXEsV0sJq0pmTFKuIV8452XzGNErSLNVK2xJ3bL/SUNDhoKfJ6LE0g44MlUNFFsDfY3axD4899pjuv/9+SScDpQ2mqmNC8GxdqrRjnJes4nmlFXA/zKqiA4rnzm71Ho/XNIZocBzUAvCZwkD7+JlhJx8mcohJrCvHNmsNYphFPD4ey3P9PttnlSaBx2YJrt3uk08+ORjewMDAwMBAxDUFnhu9X+4l6XFNoCCljSyNDxmdJSyymFgYkf1nGi9K8dK2RGrJjRJqVpTQfaOti3r3OC66QjOhcixkWaGyp5J1Rywl+86kzzWu5a21E+dm4SlVSqoqNVocwxpbcTw+nsM2WE4nSul027bEa9bBtFHStq2Y7uKUXm+77bat/rsP1FTYlpfdE5Xtk9qBuC+XbHjZ51XYRS9UJgtBWQpp4XrEufD/nFO3b3tPPKfSLPHzXrpA+gwwUXfcB+5bTIkVj2GoSXXt2D6Py8J8rH3wuvBZkrGnKoEHkwzEZ0zFRvncy/abwec3Q0Ok4zm3dmMEng8MDAwMDADXVB7I6OlNq4S4vaKTlPor+1zU1/OzqqxO7Cs9OCm10NYSx+1zaCOsUjFFsFijYUklSoP0WuL4yEpjXxlYT1teFsBPrzZKeNm6sb0lW14mIUdQilwK7q/6Fa/FFGCRUVYppMwguC+kY2n52c9+tqTjdE1mfL5uL5kzJW3aNWknkba9MhmIHINwPVbvqypY2YjrwgBuzmsWRG5Qu9Gz+/WeA9mxly9f3noeZBoYvmZB4wbv1YrNZtoIBq1zbql5iv9Tg2TtQJa2K0vBF+HvM80P049Zc0AP0/isZv/JWPl9LxEF28yuV2nxeG9kHrm2rQ+GNzAwMDAwAFyTl+Yar78q5ZeRJTumjY5MLIt9I0tjMtWMrVVskH3NSryQYWWpxKTc1kUJLotFq65nVHGHWYFEvpKJZV6o7DM9CjNpfW1as8uXL3dTi1X2Cl47O4fzXyVzzmxdtMNEm510ci1tA3K8lW3D7Lv3XTyf8+R18ZxkCXQZK8iiuFncHz0EGf9U2Xbj/2uSlBtVDCRZXE+yf9e73tWV0g8PD7eSYsd94rWjHYn3WhY/SLsR+5F9Ti9Qem3aDhf3gcdaFWD1a9x/XkvvM7/ns9H7IfoquA8uOHvPPfec6KvPieviz+g7wDR1RhaHx/1A1p1poyrvdzK9+F0WC7iEwfAGBgYGBk4FdmZ4Z8+ePfpVziQf/lJTN5tJWvSoosRVvcZ2WCaGtq0oafG6VWaNzGuS0l9lZ8rioir7WJappIqVq7ynIpjxoirQmXlYsc9rdONR4u6VeHnyySe39k4vDqsqTdNLem1QAiYzl46lVnr2seRP3Ac+xzYzzrX3WZS0qWWoCo/6fbTH+Xq2V9DDz5/HWEHbO2gbNHpZaDzWqs9LLCwbX7ZG1OZcunRpMZaqsitFUNOzJoF1ZdOv4nOlY4ZP2xm1JzFm0PZfr53b83rRHhj/Z2FUPjO93+JaO0n0vffeK+mY6bkNjyFqmDz2mJg7fu79yOd6HDO1A9ROZNqPan/xevH/uC5rWd5geAMDAwMDpwLXxPAyG5BRsTHaxSIzqbwzl7KZSNuSNSXTzHvJ/y+xzyz2g1lmqqwWmacVPeAqu1k8h96fVSHGbD573o18n3l7Zn3NsmUYWT7P2M7Vq1e3GF1WKJX2nZ7XX2Xj5CuleWm71A/ZgRGZhEu6UOqntsBem9KxZM9YMGbHyPpotmeJ2xlWmNEjMjx6EFY2xF7ZG+4hrm1c+yqejbacng2v52k3TVP33PgZ+8L7Jp5T+QowXpI2L2mb0XGfuQ2zqHg+7zH32f2IDIjxtvQ6pl0stk07s6/j95mdkf33/qps4b01YN+y9a3KnFUe+vGaaz0zIwbDGxgYGBg4FRg/eAMDAwMDpwI7B57H9FGZSrNKPkpq2lNR9FJJ8T3VDnzNKvP6O1N7qlB7iVhpBK8q/2alUOiwwTFE0CC/VIk6c9VfCuCOqILIe27Ia1JIRVy9enVLFRvboxqNr5mTxVKCA39v1UyW6oltMIwjqvysWowqxHiM58JqTOk4Oa9VTEwPZpUq01PF6/i6MQA3u75Uz1eVHKHnBORXqsXWqJOo8s6c29Yk/XVIC9XhmcNEdq34Pq41r23VHtVrmUqO6cB4HYaPxHa8D6yutBMLn5lSnRSbZhL2PR5Lhz4m0cgSQlDV6PbZn8wkwXlliEjmqObv+IzMVJoMH+olwycGwxsYGBgYOBV4SoHnlCSlWrKihJW5KFeSPaXBzGBevc+kCksLliYYPJylGvKxltzpGs0+Z0VxqxRc/j72sZK015RrqZgR2WiWALhizFnSYEqBPanfjgdV8H3sb1X0NrbF/6uwEDqEREmxkkQ5B1mAMxP/cq6js4LZGZ0IGCrBYF/pWIql67rRS+pdpXoim8+k9CqBMp3EsnOqdGSZU1blUMXzH3/88SO2m7GZHpuM14tYKp9VhTjE76r70esWNQp2EnGKLzs2eT9k+50OSJU2wuwthsMsOREx9VzsL9OgsY3smVWtYU8jWO2dyoFNyu/pkVpsYGBgYGAg4P9v73x647aSIP4kWYnjg5PA2CBADvv9P9Zes0GQAHFgx9LMnkpq/VjV5Gixh+x0XUaaGZLvkY+crv5T/aoYHi3f7tc1xYacbBdxpKg7xSNo3TjRYFr0ZGKd5JIYH1OanZVGtsSxC3UbxjOTbz1Jt9V5pFfHAFLRaMcKk++eOJ1Om0JtFz9iTJVWZictlhheJ4mmcynrODXBXWvbykn7JdOrLE1rRY0/ZY0nWTRnzfJ4XAc1HZ1NTzn3tB7qsSkpp3XuWC8Z/tG43Fovr3X3HHh4eHhiJLpOdc6pmXOacx1DVz5R51PjV6mlkMao71YWqnie9ieGx2vs4uTJy8H7yXm/+EzidXKlOhS6T/KLFalESHCx/uR96nI+kuj6EQzDGwwGg8FV4OIYnorP1/K+7cQe2Bqiy/Dci+V1mX20hN02srpk2dASIvOr+yEoveTYYfJ7s4jUtRLZ84t3QtCpmae7bntWUrdNxxiF8/lsGXP3HlmbKzjdY3hd7Emg4C+vaZ0X2RPPgeJMTgBYn6V7g8XMdb+pmFesoRYoUwyB99URz0xq7uzicRzrXgyxIkn2ObDtUWVPjOtxLC6Tj+eBWbJcMzVDNuUd6Lo79iFmKjEBxXQp6u28KPyfXg95D1yDWzbO1bnQ9XFrlR6L9Mx392LKXHfPibS/rpGuzl9l0RPDGwwGg8Gg4OIY3ps3bzYyNtUHnJoqHmEXyfffZWlyf0l2pm5DNljnVvfhpLKStcx9OzDOR4uyMjzXDLIer4uXJFaQahT5t0NnndU40tH9uKzPFGvi510Mj+93bIOCvLKOXUspQVY6X7kOHRvgq8bceUz0nsbG2jCN3WUsphhrF4cReP8mL0H9LMlEdWyg3tNJAFjZ4bonZOHXjER6axiHdTWolFYTAyc70zaSdavfYRyMsafKxDQWSswpa1OMT59XsB6Ozzutt7pm2diYNZzap8sK5rOJovz8v46NXpB0XesYuUb5TKxjTxnLRzAMbzAYDAZXgYsZ3vl8bsWjheTPd5Z9sh7paxbctvRpd+ostDiZtXkkJpXgmBnPk2uNUv9fa9siKe3LxSj53RTvczV1nDO/W5kEYw/39/ftmqjjpfXsxku2SKFmbu+OQ4vfzZmWKRlenTMVIVJbJcVU1sptiPZUgtbaNno90uqpY0r11cWZXEuk7vh1G2aMdq1fmJH49ddfx3GrhjPFedbaZpdy/64BMFlMbUZbIUb5888/b95jk11mFdYxaixs1qpsTbXzqQyPsUl6FFLT4rW2YuRUSdGYK3sic+U40pjrmBj75HXtvC06PmOhdYy6PkfqfzfHOfzNwWAwGAz+xpgfvMFgMBhcBS52aVbXQldakCSDXBJBkuXaK9R229KFodeatq39Uj6HFLnr70bKz+C4kwlj0gBdDdXdwvIKundT6q/DJS6F9OoKnOnm2nNn1nm4NZQ6gXM9dB3v94RknbiuXC8p2cPJ4HHMSjhw7jueJ11vrjOKmq+1TQ7Ycx9WcI0yWcYlXqVCZx63kzLjd1wq/SVuKI2HCWl1f3TP8l52Igap3yI/l3vt999/f/rsl19+efHKUIYrf9HYtD+5LvW/C8/I/cn1TYEDd++xRIbPRLndu4QQyi9KWlFzqX0fKYoudKEhhjb4TJT7so6Rrtk63j0MwxsMBoPBVeBihnd7e9umUR9leBW0XmglM+nC/ZrvtZapVgaZW5LgcWPlmFJrIbcNrUwGuB0rTOn2qVyhYq/Fj0t0SAkUtN7X6ktNiPP5vL58+RJT2Ov2ewXSlQnTkudrJ0KbupXrNYlX1zmntVTHyP1StosM0Hkj+B3HuAUmYTChgglRdY3Jkk8C545Rcl7J++DKSY54BU6n0/r8+fPTuHUcx/C0P7b+6kpaeL9zXbhtWaCtJBbtg6UHa23LDtguSuypCo+T4fO5w6QWJ8auz8j0UoJK/Y6Ox3IEd2+6JK+6f95X9T0m8DFZpTI8XrdPnz5N4flgMBgMBhUXM7zT6dS2T6EFQjAt3b2XYnmyIKp/nL/2yaJzqeVCklGqc0jitIxPOOuWY0htO1zMkHEQxstcCr/GkmKgbpsUu3OlB9zGsQyH0+n0ZGW6tUM2w9RyFt+utWUpZBn0HrhGqYLOG1lOXS/6jMW1ZFVuG8ZHND+e28rwWCbAmIeLGafiYcY+yBq6MXHezmOSYrqd6HtleontnU6n9eeff25aM9VYJ1vdcM04CbPkUUrlSZV5fffddy/OR5IyrNuowFwMT+PX+/x/rXyPUZZQ/9cico2BY9S8FX+rcTiysb3Sncpg+ZwWeE/U5xzvS11HliW4Zr/1GT8MbzAYDAaDgosZ3lpbP3n9xabw6h7Tc/tNosTMFOKx6zZddlZqQyO4LNGUaZQkrFxxfPKHO6mnlAXqrBsixZ6OiPrynKdMxvpetaL34nip3Uz9m77+TiYsxVtThmBlOYq/MKNO2W1OgEAWrazixLgrKPRMjwLn5SS4uF9KV9WYIRkeJc3Y8NgVhCfpMueFSAyf7LSOkee2s9BPp9P6448/NnGlyp4Ss9P/TsiBsWIX217reX388MMPT++p4NplrdZ9VwZEr4C24VqqheddVrObg2KJa21jtpyXyzvgmJxARBoPx8bfACfpSKaqTFjNg/eim/ubN28OxYLXGoY3GAwGgyvBq8Sj9cvtGjHKiiCLStmFHRi3omDvWlvpJcaBnFWRMjmJ+r6LOay1rW1yMbyUxZha2dRj87MkYeQkk+jf77IpU1YmffaO4V0iwUaGV68l4yCpFUpFsnzJHFyWZmLCSV5trW2DTAqpCzWWIqT4Mq+h8w4IbEPjmCuZXWL27tyR0XeSYkISC04tu+p+kpRZxePj4/r48eOGkdS6OEqKMfNWcLWASWha7JbPu7WevUwfPnx48d2uebDAPAeegzpG3sucJwWpu9ZSjM+6TEt9xno7xdbYALleN3rM0n3ssvrZQov3mVs7l9ZyrjUMbzAYDAZXgosbwN7f328soxoD0S9yYhNHarb4WWdlpnYVbKbZ1d+QtaUaOLftJSDr7Jhmsv5p0TurKWWspkzMtbbZmHuvdRtnVTrc3t5urL1qzXJt0AJl1mYFryEzft34E4tm7MOdJ64Nxkccw0sgc+mEx1lL5dgTx8ZYe6oLXGtffUbomAQZBZmMm9fDw0MrBP7p06dNJq7YwFovMw3rsTqmlQSyeRydi3qMH3/8ca211k8//fTiM3pEKnhd6IERi6rz0jZsHsxMbF1jZY+u5ZnpWlvmWtcu4+a6Tnquq0USY21rbZ+nyZPh6vBY16hX593hOrnkWTwMbzAYDAbLCsAfAAAPZklEQVRXgYsZ3t3d3abKv2Yi1V/8tbb+VtfyZ081JMW+1so6nKkZYd0+NYLtGNfemJ2VSka1F59zY0t1hS5LMWW5pszLtbaxKJ4/V4dHq3kv+7PGf50Fl+I6tIydlibPA+MHGnfN8NXcUvNOx57YQobM0cWiGLNJzNXNj/NycT5C51GWvOZJr4djI6n+srsnUyZ2qm9183l8fNyNyfC61DY+YkdkQN352tNd5f1T6yO1jlQzJ2ZFFl3nfjQeV9eoPvv+++9fzIN6rPRO1e+S4VPZpV5/xthT+yGdOzaVrcfR2LVtV6OcvAPc51pbFjp1eIPBYDAYAPODNxgMBoOrwKvEoxkQrgWgv/3221prmzBB94YrHqb7M0k/VborSs3AOAOzXZCd+2epgQNdZylpov59tDiy7o9zTu5Qdzy6GJlkUl0ZdMXQHea2cWnuaY5KeKIrphOCJjq3RRIqTgXUaz2ncuscs0O0XD9dOxK6gN3aoTuf1077cIkuPJ+pi7STwdP89Eq3tJPqS4Lgbl0LdDE5IQWC7W2+fPkSr6/c4TxPde3ovffv378Yi953rtnkPksJL13iC117roQqrQMWxTvprSQ4T5dtPR7noessV6ZeXdKSxqQQlc4jy2+69cBnvwulMClFnzE5zJXOuGSoPQzDGwwGg8FV4OKklWppuWJeyifJWkmCxmttE1mSZeiKrMmwNDZZXE7CihZBSkd3KbFJfqhLvNkLjnfNKck6yCAcG+YYUxp6nQNLTFLCgxMZuERUoGuuy2A+4Zh5aumUZLuc6DHT0HXOneA0QUZ0pJRlT7S6fs5jMwHG3TNsM8TkFCYxVIubrCe1+nFMnmUcSYi4ftaVANVjvX379mmc8iI5uUDes0lcfK3t9Wdhtpgxz1v9jpqoStBa11rPwZrQxzmzqJpegwq2z0mlOxVsqiro2ah9usatYnbaVmURFHfuxDL2SnfW2j7PNB+2IXIF7vSqHMEwvMFgMBhcBS5meF999dWT79f5r2UV0dcsS6GTtWKKKi3hTn7ItcdYKzcldGDas7Pskz+fMTyXjiwkIWAX90kp8118JDG8lKa8Vi5D0HdlcdXUbDK8vQLQ2lqqvifQC0CW5qzYVOyaRJ2PxKsEx0Zd+5963FSo3Y2Zx3etUFKLFVdQTybPGA5jeM77QSZJ1PlzbPSYuCJs19YreQju7u7Wt99++8SIxC6c3BRjXfRCObFyjY8sgyUadX2wQemvv/661tpKczn25DxV7v+K5GWgt62yQ15vPZs1ZidWLVC6TgxPhedigE6yMcWqWUq11rYBLOehOdQSFMbuLpKrPPzNwWAwGAz+xriI4d3e3q53795tLKJqwYkRyALSL3Mn4somncKe9Nda2xgd/dMuE41WOK1A5xPmWPbichWJDbLI07WFSZmjyRqt7yVL1RXjM57Dhp9idi6OITw8PLTMRjHgtbZxMs6/g7PS0/VIxfdrbdkMGQo9DvVvxriOxKIEd73rtm4dCEkk3cWmUlYmM1a7a5aK5V1xPC1vZmJW74CLm3dZmjXDV6zJSQymDGtma9btu/yCuu8KMSAxHsUVxZZcWyfe73tygRVpjFwH9RyT4fH86jq57GC9p1fNV8yOz1m3H2bmM6/DjYX/c35rPT+DxDoveRYPwxsMBoPBVeBVDI8ZT9Wq0N+ywtii3VnNdf/d/10GnCBGyaaH1UpjXK+LKxH8LLVvcePeE1PtxKP52rWwIXNlTIe1ivVvMj3G8lztnl7/+uuvttbw7u5u48/v4nKpFqceg5l2e5ZiRRI2Ty2u6nt7cTg3n8T0eXyXcZledbxufdPSJxvoPAt7Qt71M54bxgErc2Ecq6vD03FZg1ivdWoHlOqB6/x53lNmav1fjIfZ4PVeWOsl60nttLoWain+zzh353ni3JnpWWXDKGnILE3WQNb8DbLa5DHp5s7njmvcq2eRMmRHWmwwGAwGA+BVdXj8Na5ZPqzMZ9amyzJM1jEtRGfFJ9aU2svX91xtWQKtQFq1ncB1UqCg5VutmKSsckS1hVmvqb1SZWvM0iQbcJmdrkFvioNo7ZChOmbK/1M7JzfnlHlJtYe6P36XrLGC15KZdc5KTyLKiWHWMTL2mGorXU0lY7YuK5PjOGopuxq4vZrEeq4Yv+qs9Nvb2/XNN988HUfPmHpPi4GQRTFu5rIY9xQ7HNMXKyID61i8zjPb9VDxp55bxh6pRtWxUMbqj7BCHZv1dszJcDH4dD/xOeeeIcwg17aKjbrnCuO2RzAMbzAYDAZXgfnBGwwGg8FV4FUdzwVR4krRKS3GILjcEc4lklw8Kemjfof0PLkg6990VfD4jkYniaWu8Dy55Dif6vJxiSwVdB+4dOtUgOwkpVhYnlxmLqW4frcTj3Yuzbq/JK5Lebp6TujaSa5MJ1qeOnVzjp1ALteoK0xngk7qg+bOCfdBN1VXPM5rxmsrHOn7mK6N24buxM51Vu+9zk1/e3u7KVKuyRaas8SjCeeWZJjFdYCv29bjsTM33cYu9MBryG2OYK8Mx5Un8budyLfeY5E/58tzV/frEqnqvuu9kcprKDRdf2OcQMVRYf5heIPBYDC4CrwqaYXWc7UQFIAle6EIsgtQO+kZh7ptx/7Wyu1U1srJCh2SMG5X/EjLJhWRO+bC+ZBtMJjNv9faJqA4VuBYX/2OK2xlicFem47T6bSZj2uFwv2TxR0pG0nb1LXD8boWQjxeCshz/Tkxb36XzM4xITLTlIDSMW8Wngudhb/Xnd1tw3NDRubE0Y8kyciCF9twUnx67nBOZLt1DEmui0LNnOdaW08VhYy78iudF7YQYpnEWl6gv75Pb5XblmUJYmmuxGQvWaW7BukZqHk5lk15M3pkXNsjlSNc0m5NGIY3GAwGg6vAqxrA8u/KFGjN6f+uBICF7Kno1aWy03pJ8bgKWpWMrbiWKy42V7elde7S0lMReWdpJ0uO7MDNl+ecTM+lsu+lvVeGRyusY17n83k9PDxEBlbf24t1HhHOTqzDWaQplsdYW90f2QulxlxZyt74u3kxpsHCcxdvTqnsfHXxdI6dZRgu7kfBcx63MiZXcpLY3vl8Xufz+YlVCc5DwYJoNafWunVSWGn98vzUImsxHY2BnivX7DTF1l0cnkjlPnx2uHY9lC4TW2MxeX2PsTuKRbOVUj0e48vuPiIktk1Rbs2nNhnXZzrOu3fvDjeBHYY3GAwGg6vAxTG8KgCsX9X6y02xYX1GaSrXxDO1k3BCrAItG1oRLlaQWtCzaLXL0kwZUB3Do4XPQtNqadMKTyzEySwxHpeKll1mZxJtdXFO7b9awnvMmtfUNQUlq+A+6znfK1Z3Bec8HmMLZPouw5cgm3FI7JaZq85KT4zeFauT9e15IVzhborZORaamjzzvNZ7k+vq4eEhnrvT6bQ+fvz41GS1E4TXPsRQtH8nfi72wucP73sxIxVB17kw74DjqOeLeQw6vjLbxVycGENqWs015fIb6HXTcRmvq3+L6SU2qHNfr2mKTQpdrgTXNZ+RdV46X1oP79+/jwyYGIY3GAwGg6vAxTG8m5ubjQ+6WiT6VacFpO/q19nVqe297jWlrN91PmZB1hKZnSwvJ65c5++Q2FsdE63jLsM0xRmFLjMyMVWyNycETXbAa+yYpJuzQ93W1XPxPHEsnQTUEaHxuq96vNSCqZP6Yg1qyiit7zkR5bW2zNuNnZ6FjuGnxpg8512mZPJKuH27GHSdj4vddF4b4nQ6vYifucxkgfFDXR8xF8WK1nrODBR74fjZxqc2IeWzghJgZFH1eGoppP851npOUhZuenbUbVMT3CQfVufFBrAUk3bZk6mlGFu1ubZOrEWmd8BlLtfnz4hHDwaDwWBQcDHDu7u7e/ol77Im2fiVrYScqGqKV9FCqcfby8rsxKpp8ZBR1DqdlKXJeXdsjfOhVeaslCQ4TPbh2sOkuihnNab97alf1P2dTqf2+zc3NxsrulP5SFlrR1jBkXOcrgdZwhGLO2XR1ve4jjm2bh10cT6OMdUzMsPOsSy2Y+G8XL3XXvapq9dNAtMO5/N5ff78eZPN6BiejsF7wDVXraL3az0zPWbcMtbn9kdvETOi13r2bgmMcXHMdY700qQYnsuN4P8aO9e7e4/rjNffNf/mvFJWav2b8V/+X8fIZ9VRdrfWMLzBYDAYXAnmB28wGAwGV4FXdTxP6aZrPVNeUnsWzLoCZtJyJiLIteDcKXT5UPqmKyKn+yalAh+Bc+t0wtIV7v2UNNKJOic3SBJorftP5QhOZIDuuz1X4/l83gj1OhFiljsIdH/U/bi07LpP9z9FEJL0W+fSZJF6tw3XKI/Dfbr9JVdmJ8a+J2V3iXtScDJhXCtMinHPiSOQaEE69/VvJkEwiai6xpTAoudZ6lfZJUlRektuUXe9mGiW3JRObo+hhr3wT50HrwfXYb0H+R7LyHTOXJmHisM5n07eLV1TupVdMk4XAkgYhjcYDAaDq8DFDO/t27ebdH1XCMxApWN23CYlaPD/KoXD4krKkzlB3r2UXsfEjshnHUXqPHxJITjZWpeAwvl0hZ//TaJLFRYnzufzenx8jGnHbm5Km2aZRUVKrqB12bEM7pfrzEmw1XnVV77PY7rjdCBrEkMhe+tEC1LHdbeW90oa3LYaU2LmnddD6FpLieE5Zsfx8frwPnFtZvRZLVlYK8sk1uPx3tKacYLZKdGEhfqOcQv0aPD50LE1IUl/rbUVrdD41XaJ7Xrq+UzC80k0vW6TZPCYQFbfO3L/EMPwBoPBYHAVuFha7O7uLlrEa2WGx7IE58ellZ5ko1wciXJJR9q1CMl6rcfZsyaOWM/CXqyyfpZia0nk2e13T5bsyH6ddc3rtHeOHh8fN3GkaunvpSQ7NpuKxlN8pILjTw1nXcE8P2Nc4YgQdBqPO8dJcNwV+++JINOz0MVAaJ27Mp+9bRwYa++Ek/Xc6Upl0v1BhlfZDO8tQayFrc7cc0etaijm4MogUilDV9TP51lqaebELbjOKLPmmC3vG81H54KtjGppR/I6Kb4p9lvPI1sicY3q/+rV4/W/v78/zPaG4Q0Gg8HgKnBzSYbLzc3Nv9da//rfDWfwf4B/ns/nf/DNWTuDA5i1M3gt7NohLvrBGwwGg8Hg74pxaQ4Gg8HgKjA/eIPBYDC4CswP3mAwGAyuAvODNxgMBoOrwPzgDQaDweAqMD94g8FgMLgKzA/eYDAYDK4C84M3GAwGg6vA/OANBoPB4CrwH/7FpVj8bf0vAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "============================\n", + "Faces dataset decompositions\n", + "============================\n", + "\n", + "This example applies to :ref:`olivetti_faces` different unsupervised\n", + "matrix decomposition (dimension reduction) methods from the module\n", + ":py:mod:`sklearn.decomposition` (see the documentation chapter\n", + ":ref:`decompositions`) .\n", + "\n", + "\"\"\"\n", + "print(__doc__)\n", + "\n", + "# Authors: Vlad Niculae, Alexandre Gramfort\n", + "# License: BSD 3 clause\n", + "\n", + "import logging\n", + "from time import time\n", + "\n", + "from numpy.random import RandomState\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from sklearn.datasets import fetch_olivetti_faces\n", + "from sklearn.cluster import MiniBatchKMeans\n", + "from sklearn import decomposition\n", + "\n", + "# Display progress logs on stdout\n", + "logging.basicConfig(level=logging.INFO,\n", + " format='%(asctime)s %(levelname)s %(message)s')\n", + "n_row, n_col = 2, 3\n", + "n_components = n_row * n_col\n", + "image_shape = (64, 64)\n", + "rng = RandomState(0)\n", + "\n", + "# #############################################################################\n", + "# Load faces data\n", + "dataset = fetch_olivetti_faces(shuffle=True, random_state=rng)\n", + "faces = dataset.data\n", + "\n", + "n_samples, n_features = faces.shape\n", + "\n", + "# global centering\n", + "faces_centered = faces - faces.mean(axis=0)\n", + "\n", + "# local centering\n", + "faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)\n", + "\n", + "print(\"Dataset consists of %d faces\" % n_samples)\n", + "\n", + "\n", + "def plot_gallery(title, images, n_col=n_col, n_row=n_row):\n", + " plt.figure(figsize=(2. * n_col, 2.26 * n_row))\n", + " plt.suptitle(title, size=16)\n", + " for i, comp in enumerate(images):\n", + " plt.subplot(n_row, n_col, i + 1)\n", + " vmax = max(comp.max(), -comp.min())\n", + " plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,\n", + " interpolation='nearest',\n", + " vmin=-vmax, vmax=vmax)\n", + " plt.xticks(())\n", + " plt.yticks(())\n", + " plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.)\n", + "\n", + "\n", + "# #############################################################################\n", + "# List of the different estimators, whether to center and transpose the\n", + "# problem, and whether the transformer uses the clustering API.\n", + "estimators = [\n", + " ('Eigenfaces - PCA using randomized SVD',\n", + " decomposition.PCA(n_components=n_components, svd_solver='randomized',\n", + " whiten=True),\n", + " True),\n", + "\n", + " ('Non-negative components - NMF (Sklearn)',\n", + " decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),\n", + " False),\n", + "\n", + " ('Non-negative components - NMF (Gensim)',\n", + " NmfWrapper(\n", + " chunksize=50,\n", + " eval_every=1000,\n", + " passes=5,\n", + " sparse_coef=0,\n", + " id2word={idx: idx for idx in range(faces.shape[1])},\n", + " num_topics=n_components,\n", + " minimum_probability=0\n", + " ),\n", + " False),\n", + "\n", + " ('Independent components - FastICA',\n", + " decomposition.FastICA(n_components=n_components, whiten=True),\n", + " True),\n", + "\n", + " ('Sparse comp. - MiniBatchSparsePCA',\n", + " decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,\n", + " n_iter=100, batch_size=3,\n", + " random_state=rng),\n", + " True),\n", + "\n", + " ('MiniBatchDictionaryLearning',\n", + " decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,\n", + " n_iter=50, batch_size=3,\n", + " random_state=rng),\n", + " True),\n", + "\n", + " ('Cluster centers - MiniBatchKMeans',\n", + " MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,\n", + " max_iter=50, random_state=rng),\n", + " True),\n", + "\n", + " ('Factor Analysis components - FA',\n", + " decomposition.FactorAnalysis(n_components=n_components, max_iter=2),\n", + " True),\n", + "]\n", + "\n", + "# #############################################################################\n", + "# Plot a sample of the input data\n", + "\n", + "plot_gallery(\"First centered Olivetti faces\", faces_centered[:n_components])\n", + "\n", + "# #############################################################################\n", + "# Do the estimation and plot it\n", + "\n", + "for name, estimator, center in estimators:\n", + " print(\"Extracting the top %d %s...\" % (n_components, name))\n", + " t0 = time()\n", + " data = faces\n", + " if center:\n", + " data = faces_centered\n", + " estimator.fit(data)\n", + " train_time = (time() - t0)\n", + " print(\"done in %0.3fs\" % train_time)\n", + " if hasattr(estimator, 'cluster_centers_'):\n", + " components_ = estimator.cluster_centers_\n", + " else:\n", + " components_ = estimator.components_\n", + "\n", + " # Plot an image representing the pixelwise variance provided by the\n", + " # estimator e.g its noise_variance_ attribute. The Eigenfaces estimator,\n", + " # via the PCA decomposition, also provides a scalar noise_variance_\n", + " # (the mean of pixelwise variance) that cannot be displayed as an image\n", + " # so we skip it.\n", + " if (hasattr(estimator, 'noise_variance_') and\n", + " estimator.noise_variance_.ndim > 0): # Skip the Eigenfaces case\n", + " plot_gallery(\"Pixelwise variance\",\n", + " estimator.noise_variance_.reshape(1, -1), n_col=1,\n", + " n_row=1)\n", + " plot_gallery('%s - Train time %.1fs' % (name, train_time),\n", + " components_[:n_components])\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From d28aef3f2f925c17850a48f7b1ac08cfbb970640 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 15:55:24 +0300 Subject: [PATCH 120/144] Identation's back --- setup.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/setup.py b/setup.py index 0c47a1f0e3..6e693ee3d7 100644 --- a/setup.py +++ b/setup.py @@ -312,7 +312,7 @@ def finalize_options(self): url='http://radimrehurek.com/gensim', download_url='http://pypi.python.org/pypi/gensim', - + license='LGPLv2.1', keywords='Singular Value Decomposition, SVD, Latent Semantic Indexing, ' From 83ec0f6898bc9b4c1a5a192a707e56a177bdb535 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 15:55:48 +0300 Subject: [PATCH 121/144] Optimize optimizers --- gensim/models/nmf.py | 16 +++++----------- 1 file changed, 5 insertions(+), 11 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index a89adba340..4727c7a885 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -478,18 +478,13 @@ def error(): eta = self._kappa / scipy.sparse.linalg.norm(self.A) - if not self._w_error: - self._w_error = error() - for iter_number in range(self._w_max_iter): logger.debug("w_error: %s" % self._w_error) - self._W -= eta * (self._W.dot(self.A) - self.B) - self._transform() - error_ = error() if ( + self._w_error and np.abs((error_ - self._w_error) / self._w_error) < self._w_stop_condition ): @@ -497,6 +492,9 @@ def error(): self._w_error = error_ + self._W -= eta * (self._W.dot(self.A) - self.B) + self._transform() + def _apply(self, corpus, chunksize=None, **kwargs): """Apply the transformation to a whole corpus and get the result as another corpus. @@ -594,11 +592,7 @@ def _solveproj(self, v, W, h=None, r=None, v_max=None): error_ /= m - if not _h_r_error: - _h_r_error = error_ - continue - - if np.abs(_h_r_error - error_) < self._h_r_stop_condition: + if _h_r_error and np.abs(_h_r_error - error_) < self._h_r_stop_condition: break _h_r_error = error_ From d25332f305193872f37692859e433c823b8642d7 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 16:26:23 +0300 Subject: [PATCH 122/144] Remove unnecessary pic --- docs/notebooks/stars_scaled.jpg | Bin 17558 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 docs/notebooks/stars_scaled.jpg diff --git a/docs/notebooks/stars_scaled.jpg b/docs/notebooks/stars_scaled.jpg deleted file mode 100644 index 7dccaf3e04c22bd460a55fbf6e300c0d0527ca4d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 17558 zcmb5UWl$aA)+Ky!C%C%@cXto&ejs>ocMI+g=iu({9^5s!LvVKwl8<|5=B@AF)a>qG z{d9MARqto*z1Cj;R{s3~pvg&plLkOQKmcSv55T{5fCK;v67oOiXFz|RFz_%i(9kf5 zaB#5j$cV_uNQg*CD5w}{D5&VDNJwZnXy}+&*x1;}UvTkou<$Uju(AI05(uczXP{va zU|@it{-5JtKL8yb&A5CH%XF#q}5{|OjKC}>zX2mt)& zD&BwY{{O9g-URWv{BI3_3^H-^2H}latveG!`3tVu1Z#oZZVQ;z3 z*A-eZ6FqOv3`>aa4N*J+)f%9(?3DI>BdR86~U>F+)*VY}M?p zt;#%3E}eN3EIrF^a+n`3?XW!H+;!VrY;k`pV<}YA$ikHkG;@`k&MDY>Igl0Ru2kdC zmKVz~`~s&UhcbsFxqcCtk&_b)>XAO1snQKHt>LSo&9W$-H@uukCC3d(v}(?s={Wg) zYK^OQqLn_Op&9sN)uHdtwR|`i3eB3mq9WKQdW#6$)wtoq4s6S?XVdWeap+PeShk~5 z*|FsHS{fuk)hnt3=RSo{1lba|!+1qg)xx%!XU) z7Hf!#J4`3i%VFZ>6HxIU)5%)@0|e(=PoxX*!_*HZtiievBP@r570}Mu#}D$8Dy~5xK)*$dy`3>3*9KY1_`}DVG{YpjRU)8QRaeykqn4gR?K~ zf9BZNC_?YX3p(H+kmwwH`73daBPMgy;f-jE+sH-M=;xj84GpxNk|vv`mn^6mZXo#+ zNLNJ}YQa}?e4B3Unp~3z9iERF*T{8*9Cx)<`$5w1mr9DX+tYcdv(8fV9^xc7IOf!u zisJTu!&HZhgs8l-qW>|+IW4tHjv(n3^|eZ3Y>8`<37f0PoxB_3N0~yrd~bt}6{=+c zn{#o0*`F>UID)_uP3z{NjoOUCn7=#(YXFdgCgt(Cmo9IN4S!>SzSX?#9}$*<&cpJx zGW(5hxcr<4*|<2N;g~u)TLgz5Q5i9%rfExuPI_&J*(&0kJwwXtNzFNnKI#NDn(W(R z)g5>hwI-H85|8P+>H2fjHDgpQL@Op*zoq=~AJVUjgz#}nF?C8%T~FA`BttCv zPZLHYkGr^&!SK;aQD-_fn5E;mwk?T{I6N9F3oDItMNQU)S{ySq;tUa|lL@%0QooP4 zF{m5uDBPG-E$}?ev2Xg1{oe|vIyW-y4xGCiMYF0;FZopB}3l~n(p zfm2;_<>!q2c2laN5|kd)>}0;mkRy0zz?oU&XtFcs#vMwg#RWNzcCoLJae{e8XFsBt zimq{bep|yQ>gf>6c;Aj8Q+{Va3RNgU;I#r0MakA!$0-J!66SRw>oO3NsSdLqPO)2H z%hh0WXXR&+O7CXE@;@20b5bYNs0c?-HLLiL2`xkCX@p>sT7@xT(5zuc%75!d3O1Xg z9G@ayEF;>6%`b;5@xa%h&lyhlFA(3$s0Jc0^U&mGnl#*6L#d&(hpCPKx?5!M0)L$| zicXNOEkP@kJ1G|XS@D;WgOZT{ZX4}YXQKnZIW2NG4+x~UPFjV7Zcgi){uYsS zBQTTdJIbLi7AlfYkf&tBHJYPVy1qZ^k}GND!rfyUts-cgT$Z?0$&&w)=M7#nXIFVu zT?*|WIt!$?zBK*?YkNeH6NY!%k~N_*pME{EW>ri+NRlx0hs{RY+pQ$4WrlrRLP0=6!vJ8>G0-rv$g$bTDA*~*s5m|W7XEV`0tPaZ?QSYoV|V5h zwL*|!J|G~)a74H~GDsU`jF^#-1as?73-onriz8<-D7l!xB}G227ePVWDg~SMM`)?q@Og`8jWM+GJ(lM)}J-rZ-zG(KT3tcBs-Ph-p+dnW!?) zdU6K(lIcXZz6Jbhbx&VQ@f=)^S@?v{?YGPfDlLtwo%>C?1)j+x?F0{ zD3A%aY~dU0NF=#Ds{7_Fa6lrXVik}bn`t?B2Yii6@1ZW&Ac|GALN#{^=;@`pU`eRy z$L*-HPE_R{W}eVxB4}PBAv@4}mTaw)=M;>0vK9QwojhVgJ$6~FqGsb-coFP|U#B6` zm~V|CHE75{A#p$mJ$+j3_B0aV zNP335f!u0G$_|*Lti=-Fv=hh%*9BjYM5)6P;Gj|uqL@W5VyNGytC`0Jz@(5aRrWz@jFuQM#5p< zm95c+7mPMH&>ag066q>e1*H+jXhx6##l+y~W1hLM`lI%g4-Rr@l8# zkRa)}Jr5Q%43Ded7^Vc_i_=y-y&F1D{lf!n~8ERV+4cU@Nmj53E$2$>%Li+BMnQ zVMgOJ%gI-@bR2I9<e()vg1S%ir85@Xm($i?-3?!s5DnReSl-p$_}$bNdi zzR?F`4U{#=c`d7FTG3g(T2&YuWL##8T6s6$Rhk9(kt~rVU*Z87sHLf7gf{8|S^zAl zzHbTANo7YUJU|w03}ZX-QRgJ}^=NWUtjr@p1j;(ZUxW=u=Gp@E=@Tp9j5nWaw`mzs zkt=5%+H#-w+tbKy9^dM$zw@IDhF%9t8T7mo=qEJGh~2jA9){Q?Tw9xtQenD?3I~~o z&$GO-%ChCH(zL(6B66M(L~&5ct#2oNC7-=1#9M2Fgbo4k9Z28|ravskK9#us)jP=4 z!z^r3+lZ5r69^gxZkCuXlfbNFj{cqL&U96_uAJqtC0&!#kcBl1)`b^KC47A`l4{nD z{oJVQ93$dzb!ks+(|vx!?VL0dsRy0t?brk8qDo(M;|63ecMB@|!x|>cRsJ>`yej>g zTJ5RfRV%O8<}uJ*=d+992#@R`s#n|&VhB=hc3GT=BZc0kFF}PK8@6r#hR0l^ejCTm z2E9?8axC4_l<0mm-xedEixyY@eMk3|*Vs}Cf7PDvtp6t3$}r=!YBGe zSghjoJq)fiuSKNl^4~Y+LaC9oXv|Z!{^}x{eC{vPp6gx3i5jP}en!tlc(PNvEf88D zM?XCEtlybX{w0EtT*}~ew8Tue5jm7U#bZfQqS>CwtyU&zHhfuGVx?;>YK5x+Q-y_@ z{n-Cl-;fo#&wP_dFxzu~1@&_hwusDn`w8z?YBAZU_18*MD3t>E8s*jEkyMwDp?X`+ z?;B4}m!^b6CovM)(ryIRRT4{eK)Co7(lZ}sSs`m~7tlPfD%wiAI}c4gouYf(7>mSz z)^F-h=JZMA0Fa-Y>3_m-8gBxiGNc*>Z%|Hh`JinAP2a&DKHolCjez`{{)EKK1_!}h}mH`sjE zPxpk_B81O>&y0)mz^F})Jepcz$E;9xZ#Ff0WoSJPqaXcNybFtp%MfFIB~izD7no>@ zUAkB=KtD}OtgB<)0IJI*oOKnqIB(Ip*d3y<9unrKY~fi_Hm#rpGuieuu*(!1%NEK} zAK&Zg{2e#iqVp$GJ<{o<-qETjj#a0%`w>#9@S!YDtS$4WJYLeY(o1(|sl(AfMN4H7 zBd8Ob@{LQTaNs(o?IiNfHCm{D!o)ll%?j7{ zBmV=mRmZ&zeDeYqG39zSI5kGo68|uwrZ*{Nkc{IVL8RN02=%7X_40{Dq=otDRwAHmj#R*aRG~!!R+30aOZx|~8T7^Iml;j#nf(W# z;$1z`CnPNR%eZA&WWzFB+rT333QSD>VU=5QuDUDVA&>AyYHusn1_i-Frp*MmxI5#_ zvoT4Afv`mAS=&{W2{q(*4qa{Uj8vo$nnySWTX&Vh>rhNOR+*mP!(1FEIf~Bia)`-U zZJWtdqFJFOPAI{a!*%PTTYFFNWSXKRqks%*xGSRZB_@ixra>zzpXPcq zqA~UC?jPVYWvTv~vj552{~_`aXy}mSWNa8>6soMoPEg|i%~;6)WUO3CJZbOMGA@pR z6;7F4$W8}lWB!fp2f|Pd@C(JWc_WeS4f}`>+YpDu@9-}VNKP64A{gcP4E%yRY26A2 zHBD@;?87Ea*75fxCif~&SS$s{vK@P>()_rz#KhBlsvx=emz9oCYj*9z@|!lf`~kur zN)r#`Pb%XZ=J%>nKV;gCFoz$xhNq$g=%Yw~4;rWul4$tEZ{w_mjMp>cupNts9iJbM z8P2+`&c>&1)MpBi7}3)?nd4CRb;KALtZo=3G#1(_4bD)G&WGO~PwY}(3PjPJG8?GT zmD{)nP&2T;r<#*+ak_GTed?>orKmEJ7U}+CAgI&C9phXg=wa%XkK;xAh1?w8dN54u z-13$kqj{q3R&6&n#hy){K=#KsZJJ~KHx!;_xcGVr@iqGJ4c>vq)njGx-NkH@XYvDI zu=EfXMOY09t%FR$TUylqk}_4oAn#xWE@8nXURZ_x29-wB&`jHqp-5mlxuuPGi>&^*bdC5BAz8Z$=+Z*Y8WJdT;}q-&)v?U#C53u_yTt1^JzubvtX}qja|26B5Z` zU3=Bgpw({P9Ybp-3H0I%qc1Yq>>3u84fE6~l;Munfuqtv{3UVbd#=(Mx=J^DF6~B5 zpfnE^H)2KT_!Bx_(my~^ndcLZ!YcoOjZwX_FWard_v8LAcJw?5S+|m!r=8iDA2>HV zXR|*1G)@qCouct*QZ$R5< zwu)=9jSOVcY&$!3cq#s{V&bsMKWoA=%@}$O+QH0^*6i)AMKl#9#Rn=KRcb;>up8JT zLz`?P;~c6oeYnmmTP2t^$IlKHu87S;+Kb(%vDofQO&01B5l7iVQCYvQ7Ur^!r)cmS zH_8jl7QS@&mTHQior(e%oeCk{>uY@#Q+$XMl|VEeC1bO#ms-8n!6r^|)GFDGala_* zX(rlv)ZjK}u2kYhe{hskQ)8?Vb@+nngU{FrVWfGUDNl!eO7Dy6cIjFS)zo zdc%Ohc-{^CGZ?ntr6!^^*vY5%`#Zd3*0PpQjh5iZ_sJg&n>bnhLvW+LX9E=3L(+81 z7D8oV$ubr^D#H}*gRGe|TdUA_t>JBRVjgAZb^YOpWPmea<9`6UIQ)GLTEL&>K(FOE z*sW9fTlnL(7!CoQ5niB6xU%ckPiT{qj<2ulL4|tXE=+|Xm29;?YtnSaCc%^T7flyy zh9XTjL`Icgl;$U>M2#vvi*Na@uB-CIGP?`~SidG~1XO_^?&2Z`@aA_aL@4SGUJ33F zloVNSEU!H9ZJO0vGYb_Jl`k69#H25}^sQ(OYED_?Y|f$bElNMe%cth4kkb9S*Jjn) zY+D2h4VHysY+}F4wB&QP-M7NFu3ONV)H^<}ku4`v>W41dH5?7DPvOm*-C#m1F2G2< zo_GAsF6ihWz#P0csB~o5uh}J(*63Kw3gbb2uL*-&QEhEm{VI2 z+cR%HdKvxHsuaY7x2n)8Ef(s6R6O+T6;b+gWLS13V>UR-SK*e2!E$GFpye$bK`6pd zNY7oj_5nSJ!z(l81dl~Jz`f!uPs5+<1BZX#qmJ`Cu&YS`4??7cYZ!#HR@~a6_u~b@7>AMEZ>2iaDG4s!Vj?; zJ~Q#k9Ov(o#of(#uw`{d%en`X7C)h!AkaB z>ngt4KLGhmPiU7Qat~$GCeA5S{)|*?Xw4n8^;uzu2fwh5eFA`UBmnx2^D2Q|`p=Sg zcJXI-2<2QB2Ut+Y8Y6r(=%!vi<_9*M{b1;*=tCAhOXY%!6EUX@9Nb;jbiP7N&Wy$6 z9f?o4lg>WBveS_VwrLJOo)x@&!&`Hy$vqY!2>b=Q>`g=KXf)(mjuET_N zEo-%DH_GfBQKyHu28sF<_KY19i`;3hIAy)eV=jh5v z4G-{jJr`k(e2#+Ql%P5ZjlHUkupxcRqslp#~tk4|w)*$xf#iPkJb4zBy$4#Io`GC}7&S|*Nk_N-hRnE6*j*3bryYM~p z{Sjq8Wg92J{Xf73NnzCVI8jQ!7T+BD?FK638uJ+uOp3q$c^#?WqOvT0c8X$n9?Gw8 zxybrA+WwaR0J!F{ZH$<-<}9t~nu7DaV;1Sf&HNsSeALD^)I%Ys=r&Y`JTmiKoCfmp z&*5J{?n=Ff9aV8qN(N@2DCR;V2!5D2LkL`aN|O*%-BI2VVZHY}rk2fmkfAo^mxf8Ly-9(-&LYs(%2oQDz79MV3ytpBmS{ z%b^>&$?yzVygTXZ4DCjn4%?}|MTQp$(T8Vgw+dI3@0T@vp>eps&nvsG3!HyY6U9@A=^HS2ed*!> zf?g?(`lhp2fRrUEQ~c7wYBu+Zo&isb!xXGguI_a?!W>jsw=wh4BE!zj!waNet~ykWM%dpw40HRJa)EFNun-STA@a_o1)0S5w+cF66T zWAkQ5q;!)0jEAsWmTmg9Uj`c*+FWz312Dcjpkw}8^;4g;h^e-2QHYNquk((a?_j%b zKp>ml)29s5g6MX-l^ks#=bUv+6qlRSSURzHjZ#%}jhR%ZMB0}$xxGR6c2 zwdUkf*;P_b;m8C_o2xK#Y+5v`3A1@!V3)S5HL1d{=#$+gxzt_b%8(D2BHNhz>5V=0xkJmg&w$OaM{xYxXc4U4i+^lCHVwm;S===*kNM zI#Sg+4tEEt`Zt=cDH(HlrwSoN|=mU0gs41Yv zX2gVDH-$q32?mrDIDG5#`f0Iy?Dm?tbjEbGK~_19m@*tLya%ZK$sfT9blPBIZ^tFI zvUBPs*s&m`2*``6LyUnHiCpX-W2BgkHL-1_8WIiBtI|}M{+(Ddn2V2DO7w|@y)U<5`l$l2kA25dfG7@}M9s|q*Aff}uE!Xt7>bN#Tnw|s`deFqAn^Zr@_ZjKWO8wDr#wH{NS zxA`h?F;m`BGCloh2*frRUjtgZ`z>l>?zJAFuPhdo0$V8fh`k}{VrT<+OvAjPg zhnjl6pLLGqM1Hzh4|iY5g8D@XWa{}3z-;Li_f2mW3e{+aD4@r8=iQvcdCQrbaiIzo^GIGze)PaH>G z@3S6ypmd5|wBIy3;jEG{P2M^QE$#VWcB|2zzN5u#XzX(A^_vy_@pp8Y`lSBx4Or9h(i;>me~<693EJT0L-}A z5s~2gcv65r1*Cv2b1^x7Mn8i@#>4dq79OOX46F;s^Nt-Jz@lg7mbZ7Pw#%~x_lKU| z;`YO>7}$(*a{J(Av`}&NE$jjksPi0C{GKfF#k0CywUtc;Rp0){b9MyRzi~_zdyg;R z3VSm=r8HMPtpoxlS7n(i=6PN11A3%VI4ebJSpdeA44f}qr02kbjP1gJfuN!3T$skG z?yMoDVgPCZ1QX$y)9kF>Z@DN?B~t8fK~_H5e}G<Ew;EG-~1}4qmM#ZtkWR6kmm} zahX2fm1PhlSbQ)_G}lkqVeZ9KwNuBdPoqMr+4A!4ahiM^vPSlO2ZvLJzCg2i7*%0X zYu2?Q$h1XYn-+hO3W)F^$2yV6u@E}wchzL9Lch8d50k*(utErf7;vDU9Hh-J^mq1 zct_RE95P^W^Q3NE#E}UV@(KQuCarhpg!Bc9)$Y1+|*%@04D{ zLh-`X6se;uykRnCjlb{cyOzh9Ol=F9?;0DQf2N!VBW%=Pl0VV1s* z@BY3ESju)aAzS{qe~own$EzcRTrhIole)E?Y9!*ize<)WK&X=xH5-y<<|CHIVR_c+dXVSWr#h&rNwp^>U> zAiDaYp&XNQFO0QJSGfHmgm0s5`OBMY7b^lNlI8)I&Y~)1 z-f8ZA2bj=D_f@%r4z|IuXz8Rr$|ve0lCTw$FStUVY3ruPH?O#X`RhyLM295QCH^OG z!P_$~W1~iVU1B?O+zWB@ZxGHRtflb_=esu3CMnUK^L?(+O7Vz|%#dkWDN^{i1eNFI zbpP$|BTZ`K){maXW=_cR@?sH1X@6FMB~+-)9$(S2b_{2B(H%@dcb2^AJol@9JE5w( zD2?X?G^?%SoDsWy`2g7YQ`QO535FI^cpbhP)5znAVlx?1Wx89rtKbMloucn|C|`e` zKe#~8ESg*-l#zt^#nfB^pR0@ycUU%1J5!A!I)9^~yVtS_NUgKGuo=U-5LYZ{r8s=^ zdQ@VtL`E{^NPu9J!Zmji8nlZ5hk#oo02H6nCzEy4hv9)oEH0cR+IPWFr-QxYT)I@g zF@n^1Dk^)tQP&9x6oK^V?@dkgU&|N!+h@LIbiKp}A>X>4(rx0PnBbc|M^*l<#2w^} zmT`flj?th@v)WHNxLeRMN_)cIy>@S8=EXb9kLpVFq;3`4&7#Hpj`=^bj2Qd zdW{TT{C$zN(H#PLSSay&gU%FbE__oiF+@tWprAfG*mAQ%%DQ^{BDG1W11Bj;qL>KN z_s}Z<{s-t3M>`12YZ=t*d-~fps{bx+08r-#ao}qj*pv8}XmKI(3f|zN7S|nmz`ODW z{n34sHpo{`#bm5EZ`Ly@yPa@uZ4)%yTe(s#LIW{9?2d#aRt~GGNY}tINhm6+cGUec z`7Y?%RX@4TBueMp@@w!ovGoi4GkuqQiroRFf()8fd)KflrP~@Uhj@ET?i}^P6%XZd z`WZw0_^&CRfTEibm%g||8K@VqV?E)skd!}ODl(05Bg`3@D*i;-Zte*>^@_RsP@Oj@ zH3wrwPH*m%_(u(dxl#Kl*wF`!c{O(++H2?q*3{VDL?^_+G!f|Mb|aoDmavtK7sr28 z{;P{sE%x>{7;bh7cLbN5%rt;n7lDlu?jj|e*(=Fbuz5XQ7bR;xI)z^O} zr)~NWHo@o=^AVhMABTlMEr``?yaMbnrXy2di)!GdgMAevOeg#U%6*zxdQu>v8?%Sg zKUDw5T-Upo`~#HUU@wj_z47?XkA9TPr3_&!45^qCgyS${bZan z99|kjYoDPl@GkHP48${D_W8b82pUZgsnz%il1dUN)`r1N7;n1g#58&!-VP{Vx_U(M zMzhZs_17I9@~oUhk)rQSmYC38t+Vmut70k%8eQfTP-+m>catLX`-(B74)&N!#QEBe z$Mr04dAgXgNe2cl(CfP3)S={1Q(pB}^MaZGP}=238|zohePl`C-NB`dqV!ewPtJc| zZ(lqB>O?Ky_SgOSGQvqb~yd|gfrL6LGf^Xl0tMb%SFMY?tt0un7WBo+TI~Bp_ z3VUZyBtBo&Y=Xmm(CPkUgFg;eZ97SmKG z50`yd%FS@ZP{w@z7(M-Mm+;L!>6_ba!qnQ`n){9}2|UG*pE604OBp3=a^%C{#A}Ug z$xE@meEzOlQaNhc;BBQqbzoc6pSY~Va4ntwdTIO~EAsHDx70nkE$bwu1-z`k`qzNH zJ=4p1?2cZ5(V13(lCd71;_Wm6r%}_CwCY#TD|_HwOA_nPy{Z_{0a^na3ERbJ^xPUF zt}a9acD1WMFso!&e*<^Lzc*mGuxt>)S0QkzP_fcyrgZV48835jQ_<>oS!SqsS6EC) zYuHUgh}BC;5l9@VkWL6o|qDMYG zUbD_9LV;zx>KLF!Dz^H#{vNtd>n@~2FHz7Z0bDJqKiufOi3vfH>;z?XKG}!yB31uW+VXS~@U+zl(fMQj_9Z8|O5Bg<9yY^MC}UU+JDD413un zQRmWZR!3@jDG7yf1QHDrKuv8hKM_pK7~_;*ky^;6lJru;W&NvQSn~H-8V79>_w|Yp zUQk^oe5C<;DLQ-zn@zKz8(im|cRgiUzKO><&pfX84uTZFgy=80KVe3nQBoK$X3!7n z3(ynat4D4~PgYbY@$H5^E)vK5YLU=5_V)93i;gUBq96H-Ixe!FmBI*P-!Cj@mm7-= z1Q6yMt{J@z3s>>J(5hUE3VpY<{fnEt&@gZA2ev?ub^Dd>)3OdN;C7JjgOW@2ixW1q&Zd9?mc&pucmsCR~{ln!CHY zudFUz4gQLTfY@i)<*-zl`|T{l?fJIuAHV+(fbpngmt5F-6NG0-hVMkFnIRj8b_LRX zuBRw|qrxMKhJw1-CtERm`vRlBd53cFB`bKclhQ)?Up% zvmTjehq-heMJ8I)C z(Wr=pv-rUYGOIBOk479Jw6p+UyE6H^aA2m$EeGS(j1Tv?63qVvN1OuxizELTj-tIJ z8p=+96Yk#IwmWY|R>@ZxEo@CYi4r_};3r_W85zBnibXNQ{+`4{$Rq`g>i zwP*#@!`Wsxq?3I?$D8IgWNat@x!LLdBW+}!COu$H8p_9MpM|3Y1gqS7OWL!OQ-2(n z)izkmz9n&J3>XT3HS@51zJ*ntYHBn^Fl<%qxwx`z-1(i7q1@Hw@bb|17G_{ue;d#c zu)EZcO0h?+FD)65^M#Omk}B5>6AzY@H{AS&br>jLH_&4w2~39%_e$7jHH(?3Vr6YG zJL~seaytd|qdX4mG2B86*!#e`Q7R^EaEP04BR&7h=I%Eq4BHy*s9tC6;bSXqLn&kp zA&wU|y;TrO(*Dr9MNYFqrLDHi2ov+>1I*V=jJcmMqX)lahR2xb&cxB`k`5*H93^6PdXmqUJcs%&@b>=$p`K(oc7^Y6w)t@`RB372N~>tUJ`kVyMUIInaAeq^;Q zCX;t(UmJ3Y-=FQbHgv*5NOkmMP64KZ#)fhy!Yung`?F%6t`Z+t2we`LT}ET4>}C>B z-6v=bfHSunt3E5&n@%>bo|#dHS>RucCM)}Xq^iO2TK3?iy)oN(9owwuUYq13Bg@7C z5cfYoG**Op1M5vVUv|{d{ugGv4?pD0zAr1eU|jPwTgi3*n$CN-^PPjaHxr|YO0AKE zwLbI}78RIua(1HE9z)R)C7H(aufr&hGdH6SNf9v$Pe~|V9%HQdbGJ~UNoK(UL z(w6fu^Pes|=M1)EUEB<)0T-=m9~;l@_B~KWQP$fAcewtbe3m~q7 z@2BA?Lt_N$Jd~Mw=w{mzTi;UP>c>bu5(MMk#GL$*7W`zLd18WvnGL)yifq3mZ4Kv@ zVHSQ(5}DZdv9Yg5If1<5OK5_P z!{2POgW?M?<4?bET8VNSvs*o_Z_dPx78@kJdZV{@w8ah7IRjSNAsm#ud*6F%<7LTa zDk>BIW9p^(ueb^I>FoWFtM`BUkpGIC|J63H(RObBN83c}6zBP|_Ur0H+bo)TP^-N+ z{SsR&=N=PD;fJLfS5%kel$R9O$-pPCgAF(+#x=SDw@NO0I5KscGgSxl5$J5!!D-(h zSFr`|kRy7FLYZy{sQ&RoX}j=i^oyt)Wk{Rr4Pp(XMRE#Svika~8se zsoVjl9=-+|KU2!Z^UzE|@I`;O2UBpydO2Qps&m;2l>JiG+Y&R`ol&3L#F9lnB0Mbo zdvfZqPx3jm@)+_lK(!q;uAOJu>2gtx(mZGY;tnS4YrhNp-iOf^V6>Xu$l(EIX_?Pv zj?pM!|B)M5aRG#AOOxdzp;YzS1uT+P10^&Nk#WKAwb@Yjqc(Q$sv%X@ikdyRf-TaJ z_1`ZpBDD@qP{V00*^bSSgF^a>XRyzWTV#-1#R=wU`i5t|+0H@OEZ(!QWo)u#bhx>^ zIEopMzdme_u;EUiy#RY+rRQR@X^JzF0^L<0?lXPDQnbJb>$P~Sf^&P8r0k$a1Aak~ zwsMXtICy8HTaaDmN;BMsJ;p44vE~#F;OPWG?;0;) zk)!7_#6*Cl>Ux=etxt3Xk^G?9qT!kIYw$ph|3+e_Q-8zppOEqLz?;Tlr$>VyhG!8?)hcu> z0S0pYwX&d6zXzC)pb^fJl$LIjr0K5815!K>SkQayf*R-6!~N^NNri@?ljASP3E8?P zzYY#*4|`+!szxi#c<$L5{ULh>w!#&d%qqDiL}5`p{Js(myY!XA>h2cR)IGJgblpHZ zKjOPKv2^mEwR!J@ze5x!XFVNw?$GLG&i?`8RA~9gVq`D#krN|q8Rm0qiWv=pA>%%Q zd)QRf2c^nUFO_D##AbBf6Wa{Y(7}zP%#B;;Ix~WdW#k_~b;qlL$Qy}mqTPy+mM7$* z-~Vv1tn3_0QD{P8$o(HcQUySFX`sVaVMPC3AZjY85zn%z56K9M! zB@~86@r$=g{)ysC_OKlQpi;M4eQ+O5zu5b8%{wryPB2@9L_t&UVD7p@IYN1^19b)K zEjGSKa`vJNO*yQKY<!W=*W?ZsGjInAow5%%`$HmJvtRy zO)JNx4G@g{EO<+U@F4c|)}CXKDFjD9Bxk`nuyC@AIt&bkxJtaG8(le1R1%VfTGtJ> z@FQtb5H%1Y-)^`|Y(G99%Np<7(5K~G_A(V-t?>KU?JwDqyS&Q0O1C6oA_u`t3*W>W z++W<*|D9;}q7#=ccVmHuv9CPC%Ma~s(7$>D4%Hmt!Zb=%-enJ#{Z+DQIyy=+*e?=u zN)f~sL?PZ+c#BfcI84#tfn~H<<_$7crg`%_ZCqBkgr5!#1*=dAoO9LN#1h!X zRXOe52ca;y_d$pl_ak#8%gymfxE`ojNpV;I07hv}bDH{pyk5ZAxctxu$Au2;tu1n$ zR@1!)8&)qsn;pe$kx4?xaWkRsS~{9$A2}{8r%}~~-^RY^T}eoarWPDHKTcR9Ar$sw zOefgA#*cs6TBB$JL6@sl))hjgCG_N|dKg(2_TO9BY_|tVVcy31^QbthqDmgxQ*c6- zi5xBBUD8yXOIkl4q$f8FY+?JoysPUN>D*Lm9^Us=>Gs<<(V6ALul9GC37gs+R7f+b z=yde3RkIWOwZ>#YkKMcM$LehNw;!`+*Dm&8C|4FIt*>EUpLVf^7@;CI`JhP{QkMy7 z(7ZISu}9*7z2Azb0n&=<#+%ZCv$3}jV}yYl`>ow>*s%@_Z@m*2sqfTBDWno;_fYfi zqHH&Mp2x&{*Xg@ zOW|U>WZH~Fzis_@zd|A!D&=0n0xgl{d?U5-pAH`N;;hIeAj28I`G@2O)5q|Yg`n=3ylf4B)cBD8Sa?b- zV{XviwJ>viLYvjLq%7g)9AprAj+Lr~HPZEjZiCVIQjSvM4eqo{b%#iN+ck)4Mb%Wn zJ(nx63H9gsrG!U9PsdHRtdj0D;{pTa_k^6)`{!>`nl5AAjX(#$9$`A*479JWnChH` z@r?DrxgX(=m-t7&%)6JjNZM`vz&6Y_gytVWaHu2tvUfw@b{@hB)wnt{dNfOFSZ0SD5g75-2T-6l_@+)dl8IHlisW@9r;H?wfTES?5cS8NZXdA$y_b z!cZ|48APTrq^{c5F@8x`5Y-Q@C9()!H}B3&ZEr8KmVZO#i+X|S?+&O(ChWu(=5@4C z5gg5vn&JK+k#RvQWS*(HCg^WBWUF+X-})GGf#*G#b;H2)1F0b0Ho zZmzsvwL`Y*&QZ`WM-ptC_PC3Pr62pO#ruWj_zjQJ0xKf#AI#W(yF#mPkL zkI^3Z1L2l;H~1!sNJuTOArgQE$c5ds)^;1HTcLpCHiQA9*=2l>SFrFyAmJb|i=#wymD zDhMv$M5g{b2A#ICT>7ah77?5$$_}T~Ll7Cas^`k~5ruYPQa=A)gy%DEV zzlLhU%TG%PxC^CQ(w*9@$i5gX4vR1aN>R2RI_<&8h8P%fzq-F=kPUFoeSD`NRVQa9 z1dq^zx?kw9*7nLO5=muo6H*5|bx|VWE81Y!uD3Ov{!jqxH;fV2t_Pb!obpX#rui%> z-0-%l{9?jXv4m` zr;b1?BMLmbX|D553q>kAUf88V0au99dV`O=GIk8H?`tjwc6uj2cI#OjBc5P{`3)rx`y^3 zo#duFaJ?T)_ygiDjEj{&oF+q;qHsAHXfd>h z{CO-msVWP}as7fGwkiNdb`E>@9n!M;CfXm@bt%kHXs3VxAvR=jiQawY_a+E7;-Qo0 zS@5nyr`FV1(`pcU%RD5RW|KiOw>Z>>!Hr8z>a*m6Xd3$vgEb@dqSqrDGOqy9k{>Dfg> zuFqb>+&F(Va;mX{Rg8^vnoo$*SJ7MUB3Zh`##YOq)9o3)cBc7psm8*_1Eu?m?HmJc zQccXaLD+ec=<7L7d@o@WQp?GLV{&;6tRwSCSmDVS6VDjTcJH$aZ z#@*H)WpCd}?!?SsH?*j#tk%c({P6(NG<1XRnE`0iFf~fpKiFFI?49@L(VZBI5sZAD z@t5k#dU~y4{t>BTzLoMoy$78TNDB?;R~GVVOV$cY< zi3U0fIKct)Ju~V`eetdDIH~Iq3}G)qk_A=UR^P||zW_A@%KVHDa$SyvX=TW57unm- z+;+*?=`>p|c)4G@2>}&EK?QW;5RJSrbBCGEJ;wh4Co#~62tAo;U9t6T`2`?=Ejl0( z2rP&AyLqf&&H^T}r?-#a=1@4+#RN-b{CvlzQCh0ocd2R30-pm3?6`8gZ1jW0639;1 ziSyv~l!SFw4_lp;+zhep!|?V3QomeHCuZ}V#7b-K%{=@PrLg1njf8q3ELN)ix|GIa zs~2g-eVAj{xa6>(y;oDkh3e8i+se-ba6p_f-g7^c(i-%#Fc zA*-KYI6s(%2CWzO81m3ixgX-#lhz=>0kCx5<5D0ELdX=qK+MXl3foN@!Oo>R_vfst zC>Tp_V<)TB>B}!Ip0@{1W^fFRv6?6b(aO35 z=tY3m4nec!PoHA6i@h%ovE#_iw$k);Mk|4%xJ`_0C?Zut=2i7rD-@XXamfI0{B9!t z#aB5fD-L5Vb z8x9>`^(o^!d2vR{Oxi*bY&4VJKYUZf e9R~Y<_6vCA{{V)?D_ihpo}XZVSyq>$ng7`Wly= Date: Thu, 10 Jan 2019 16:29:23 +0300 Subject: [PATCH 123/144] Optimize memory consumption --- gensim/models/nmf.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 4727c7a885..7dc63c868e 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -125,10 +125,11 @@ def get_topics(self): The probability for each word in each topic, shape (`num_topics`, `vocabulary_size`). """ + dense_topics = self._W.T.toarray() if self.normalize: - return self._W.T.toarray() / self._W.T.toarray().sum(axis=1).reshape(-1, 1) + return dense_topics / dense_topics.sum(axis=1).reshape(-1, 1) - return self._W.T.toarray() + return dense_topics def __getitem__(self, bow, eps=None): return self.get_document_topics(bow, eps) From cc3085c6020237e5bcb7e64975be4f67a6bfef2a Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 16:36:12 +0300 Subject: [PATCH 124/144] Add docstring --- gensim/models/nmf.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 7dc63c868e..ccce393550 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -286,6 +286,21 @@ def top_topics(self, corpus=None, texts=None, dictionary=None, window_size=None, return sorted(scored_topics, key=lambda tup: tup[1], reverse=True) def log_perplexity(self, corpus): + """Calculate perplexity bound on the specified corpus. + + Perplexity = e^(-bound). + + Parameters + ---------- + corpus : list of list of (int, float) + The corpus on which the perplexity is computed. + + Returns + ------- + float + The perplexity bound. + + """ W = self.get_topics().T H = np.zeros((W.shape[1], len(corpus))) From b090b6b9ca78b2adc950fbb1fdf5746d22775f04 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 16:51:31 +0300 Subject: [PATCH 125/144] Optimize get_topic_words --- gensim/models/nmf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index ccce393550..ef91c44cb9 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -229,7 +229,7 @@ def get_topic_terms(self, topicid, topn=10): Word ID - probability pairs for the most relevant words generated by the topic. """ - topic = self.get_topics()[topicid] + topic = self._W.getcol(topicid).toarray()[0] bestn = matutils.argsort(topic, topn, reverse=True) return [(idx, topic[idx]) for idx in bestn] From ba8ce1c0117c0f6942d58ac172a1181bad53d73f Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 17:37:26 +0300 Subject: [PATCH 126/144] Fix tests --- gensim/test/test_nmf.py | 131 ++++++++++------------------------------ 1 file changed, 31 insertions(+), 100 deletions(-) diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index 9b5f0703c2..cdccd0c252 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -8,53 +8,51 @@ Automated tests for checking transformation algorithms (the models package). """ -import logging import unittest -import numbers -import six +import copy +import logging +import numbers import numpy as np +import six -from gensim.corpora import mmcorpus -from gensim.models import nmf from gensim import matutils +from gensim.models import nmf from gensim.test import basetmtests from gensim.test.utils import datapath, get_tmpfile, common_corpus, common_dictionary -dictionary = common_dictionary -corpus = common_corpus - class TestNmf(unittest.TestCase, basetmtests.TestBaseTopicModel): def setUp(self): - self.corpus = mmcorpus.MmCorpus(datapath('testcorpus.mm')) - self.model = nmf.Nmf(corpus, id2word=dictionary, num_topics=2, passes=100) + self.model = nmf.Nmf(common_corpus, id2word=common_dictionary, num_topics=2, passes=100, random_state=42) - def testTransform(self): - # create the transformation model - model = nmf.Nmf(id2word=dictionary, num_topics=2, passes=100) - model.update(self.corpus) + def testUpdate(self): + model = copy.deepcopy(self.model) + model.update(common_corpus) + + self.assertFalse(np.allclose(self.model.get_topics(), model.get_topics())) + def testTransform(self): # transform one document - doc = list(corpus)[0] - transformed = model[doc] + doc = list(common_corpus)[0] + transformed = self.model[doc] vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = [0., 1.] # must contain the same values, up to re-ordering - self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-2)) + self.assertTrue(np.allclose(sorted(vec), sorted(expected))) # transform one word word = 5 - transformed = model.get_term_topics(word) + transformed = self.model.get_term_topics(word) vec = matutils.sparse2full(transformed, 2) expected = [0., 1.] # must contain the same values, up to re-ordering - self.assertTrue(np.allclose(sorted(vec), sorted(expected), atol=1e-2)) + self.assertTrue(np.allclose(sorted(vec), sorted(expected))) def testTopTopics(self): - top_topics = self.model.top_topics(self.corpus) + top_topics = self.model.top_topics(common_corpus) for topic, score in top_topics: self.assertTrue(isinstance(topic, list)) @@ -72,12 +70,7 @@ def testGetTopicTerms(self): self.assertTrue(np.issubdtype(v, float)) def testGetDocumentTopics(self): - - model = nmf.Nmf( - self.corpus, id2word=dictionary, num_topics=2, passes=100, random_state=np.random.seed(0) - ) - - doc_topics = model.get_document_topics(self.corpus) + doc_topics = self.model.get_document_topics(common_corpus) for topic in doc_topics: self.assertTrue(isinstance(topic, list)) @@ -86,7 +79,7 @@ def testGetDocumentTopics(self): self.assertTrue(np.issubdtype(v, float)) # Test case to use the get_document_topic function for the corpus - all_topics = model.get_document_topics(self.corpus) + all_topics = self.model.get_document_topics(common_corpus) print(list(all_topics)) @@ -97,114 +90,52 @@ def testGetDocumentTopics(self): self.assertTrue(np.issubdtype(v, float)) def testTermTopics(self): - model = nmf.Nmf( - self.corpus, id2word=dictionary, num_topics=2, passes=100, random_state=np.random.seed(0), sparse_coef=0, - ) - # check with word_type - result = model.get_term_topics(2) + result = self.model.get_term_topics(2) for topic_no, probability in result: self.assertTrue(isinstance(topic_no, int)) self.assertTrue(np.issubdtype(probability, float)) - # FIXME: result is empty - # checks if topic '1' is in the result list - self.assertTrue(1 in result[0]) - # if user has entered word instead, check with word - result = model.get_term_topics(str(model.id2word[2])) + result = self.model.get_term_topics(str(self.model.id2word[2])) for topic_no, probability in result: self.assertTrue(isinstance(topic_no, int)) self.assertTrue(np.issubdtype(probability, float)) - # FIXME: result is empty - # checks if topic '1' is in the result list - self.assertTrue(1 in result[0]) - def testPersistence(self): fname = get_tmpfile('gensim_models_nmf.tst') - model = self.model - model.save(fname) + + self.model.save(fname) model2 = nmf.Nmf.load(fname) tstvec = [] - self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector - - @unittest.skip("There're no pickled models") - def testModelCompatibilityWithPythonVersions(self): - fname_model_2_7 = datapath('nmf_python_2_7') - model_2_7 = nmf.Nmf.load(fname_model_2_7) - fname_model_3_5 = datapath('nmf_python_3_5') - model_3_5 = nmf.Nmf.load(fname_model_3_5) - self.assertEqual(model_2_7.num_topics, model_3_5.num_topics) - self.assertTrue(np.allclose(model_2_7.expElogbeta, model_3_5.expElogbeta)) - tstvec = [] - self.assertTrue(np.allclose(model_2_7[tstvec], model_3_5[tstvec])) # try projecting an empty vector - id2word_2_7 = dict(model_2_7.id2word.iteritems()) - id2word_3_5 = dict(model_3_5.id2word.iteritems()) - self.assertEqual(set(id2word_2_7.keys()), set(id2word_3_5.keys())) - - def testPersistenceCompressed(self): - fname = get_tmpfile('gensim_models_nmf.tst.gz') - model = self.model - model.save(fname) - model2 = nmf.Nmf.load(fname, mmap=None) - self.assertEqual(model.num_topics, model2.num_topics) - tstvec = [] - self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector + self.assertTrue(np.allclose(self.model[tstvec], model2[tstvec])) # try projecting an empty vector def testLargeMmap(self): fname = get_tmpfile('gensim_models_nmf.tst') - model = self.model # simulate storing large arrays separately - model.save(fname, sep_limit=0) + self.model.save(fname, sep_limit=0) # test loading the large model arrays with mmap model2 = nmf.Nmf.load(fname, mmap='r') - self.assertEqual(model.num_topics, model2.num_topics) + self.assertEqual(self.model.num_topics, model2.num_topics) tstvec = [] - self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector + self.assertTrue(np.allclose(self.model[tstvec], model2[tstvec])) # try projecting an empty vector def testLargeMmapCompressed(self): fname = get_tmpfile('gensim_models_nmf.tst.gz') - model = self.model + # simulate storing large arrays separately - model.save(fname, sep_limit=0) + self.model.save(fname, sep_limit=0) # test loading the large model arrays with mmap self.assertRaises(IOError, nmf.Nmf.load, fname, mmap='r') - @unittest.skip("NMF has no state") - def testRandomStateBackwardCompatibility(self): - # load a model saved using a pre-0.13.2 version of Gensim - pre_0_13_2_fname = datapath('pre_0_13_2_model') - model_pre_0_13_2 = nmf.Nmf.load(pre_0_13_2_fname) - - # set `num_topics` less than `model_pre_0_13_2.num_topics` so that `model_pre_0_13_2.random_state` is used - model_topics = model_pre_0_13_2.print_topics(num_topics=2, num_words=3) - - for i in model_topics: - self.assertTrue(isinstance(i[0], int)) - self.assertTrue(isinstance(i[1], six.string_types)) - - # save back the loaded model using a post-0.13.2 version of Gensim - post_0_13_2_fname = get_tmpfile('gensim_models_nmf_post_0_13_2_model.tst') - model_pre_0_13_2.save(post_0_13_2_fname) - - # load a model saved using a post-0.13.2 version of Gensim - model_post_0_13_2 = nmf.Nmf.load(post_0_13_2_fname) - model_topics_new = model_post_0_13_2.print_topics(num_topics=2, num_words=3) - - for i in model_topics_new: - self.assertTrue(isinstance(i[0], int)) - self.assertTrue(isinstance(i[1], six.string_types)) - - @unittest.skip('different output format than lda') def testDtypeBackwardCompatibility(self): nmf_3_6_0_fname = datapath('nmf_3_6_0_model') test_doc = [(0, 1), (1, 1), (2, 1)] - expected_topics = [(0, 0.87005886977475178), (1, 0.12994113022524822)] + expected_topics = [(0, 1.0)] # save model to use in test self.model.save(nmf_3_6_0_fname) From 6d78f8319c9fe3fad190771902ad5fa3009bab69 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Thu, 10 Jan 2019 19:15:02 +0300 Subject: [PATCH 127/144] Fix flake8 --- gensim/models/nmf.py | 5 ++--- gensim/test/test_nmf.py | 3 +-- 2 files changed, 3 insertions(+), 5 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index ef91c44cb9..20ad9fb0ce 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -500,9 +500,8 @@ def error(): error_ = error() if ( - self._w_error and - np.abs((error_ - self._w_error) / self._w_error) - < self._w_stop_condition + self._w_error + and np.abs((error_ - self._w_error) / self._w_error) < self._w_stop_condition ): break diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index cdccd0c252..c7ddea7f2c 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -104,7 +104,7 @@ def testTermTopics(self): def testPersistence(self): fname = get_tmpfile('gensim_models_nmf.tst') - + self.model.save(fname) model2 = nmf.Nmf.load(fname) tstvec = [] @@ -124,7 +124,6 @@ def testLargeMmap(self): def testLargeMmapCompressed(self): fname = get_tmpfile('gensim_models_nmf.tst.gz') - # simulate storing large arrays separately self.model.save(fname, sep_limit=0) From b16c1dd18fdfe95c10dde331eac7d0d889494385 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 11 Jan 2019 09:34:48 +0300 Subject: [PATCH 128/144] Add missing test --- gensim/test/test_nmf.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/gensim/test/test_nmf.py b/gensim/test/test_nmf.py index c7ddea7f2c..c73795c64a 100644 --- a/gensim/test/test_nmf.py +++ b/gensim/test/test_nmf.py @@ -32,6 +32,13 @@ def testUpdate(self): self.assertFalse(np.allclose(self.model.get_topics(), model.get_topics())) + def testRandomState(self): + model_1 = nmf.Nmf(common_corpus, id2word=common_dictionary, num_topics=2, passes=100, random_state=42) + model_2 = nmf.Nmf(common_corpus, id2word=common_dictionary, num_topics=2, passes=100, random_state=0) + + self.assertTrue(np.allclose(self.model.get_topics(), model_1.get_topics())) + self.assertFalse(np.allclose(self.model.get_topics(), model_2.get_topics())) + def testTransform(self): # transform one document doc = list(common_corpus)[0] From 7c1e24033a31936f952f984d1c6dc7e48dcbbec8 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 11 Jan 2019 09:35:20 +0300 Subject: [PATCH 129/144] Code review fixes --- gensim/models/nmf.py | 21 +++++++++++++++------ 1 file changed, 15 insertions(+), 6 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 20ad9fb0ce..2b2c2009f7 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -85,7 +85,7 @@ def __init__( """ self._w_error = None - self.n_features = None + self.n_tokens = None self.num_topics = num_topics self.id2word = id2word self.chunksize = chunksize @@ -107,11 +107,17 @@ def __init__( if self.id2word is None: self.id2word = utils.dict_from_corpus(corpus) + self.n_tokens = len(self.id2word) + self.A = None self.B = None + self._W = None self.w_std = None + self._h = None + self._r = None + if corpus is not None: self.update(corpus) @@ -230,6 +236,10 @@ def get_topic_terms(self, topicid, topn=10): """ topic = self._W.getcol(topicid).toarray()[0] + + if self.normalize: + topic /= topic.sum() + bestn = matutils.argsort(topic, topn, reverse=True) return [(idx, topic[idx]) for idx in bestn] @@ -407,13 +417,12 @@ def _setup(self, corpus): first_doc_it = itertools.tee(corpus, 1) first_doc = next(first_doc_it[0]) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] - self.n_features = first_doc.shape[0] - self.w_std = np.sqrt(first_doc.mean() / (self.n_features * self.num_topics)) + self.w_std = np.sqrt(first_doc.mean() / (self.n_tokens * self.num_topics)) self._W = np.abs( self.w_std * halfnorm.rvs( - size=(self.n_features, self.num_topics), random_state=self.random_state + size=(self.n_tokens, self.num_topics), random_state=self.random_state ) ) @@ -424,7 +433,7 @@ def _setup(self, corpus): self._W = scipy.sparse.csc_matrix(self._W) self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) - self.B = scipy.sparse.csc_matrix((self.n_features, self.num_topics)) + self.B = scipy.sparse.csc_matrix((self.n_tokens, self.num_topics)) def update(self, corpus, chunks_as_numpy=False): """Train the model with new documents. @@ -440,7 +449,7 @@ def update(self, corpus, chunks_as_numpy=False): """ - if self.n_features is None: + if self._W is None: self._setup(corpus) chunk_idx = 1 From 667ae99a5c1acdbfdd2d7fbc9cedfe9b8d35068c Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Fri, 11 Jan 2019 13:05:07 +0300 Subject: [PATCH 130/144] n_tokens -> num_tokens --- gensim/models/nmf.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 2b2c2009f7..008cf05775 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -85,7 +85,7 @@ def __init__( """ self._w_error = None - self.n_tokens = None + self.num_tokens = None self.num_topics = num_topics self.id2word = id2word self.chunksize = chunksize @@ -107,7 +107,7 @@ def __init__( if self.id2word is None: self.id2word = utils.dict_from_corpus(corpus) - self.n_tokens = len(self.id2word) + self.num_tokens = len(self.id2word) self.A = None self.B = None @@ -417,12 +417,12 @@ def _setup(self, corpus): first_doc_it = itertools.tee(corpus, 1) first_doc = next(first_doc_it[0]) first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] - self.w_std = np.sqrt(first_doc.mean() / (self.n_tokens * self.num_topics)) + self.w_std = np.sqrt(first_doc.mean() / (self.num_tokens * self.num_topics)) self._W = np.abs( self.w_std * halfnorm.rvs( - size=(self.n_tokens, self.num_topics), random_state=self.random_state + size=(self.num_tokens, self.num_topics), random_state=self.random_state ) ) @@ -433,7 +433,7 @@ def _setup(self, corpus): self._W = scipy.sparse.csc_matrix(self._W) self.A = scipy.sparse.csr_matrix((self.num_topics, self.num_topics)) - self.B = scipy.sparse.csc_matrix((self.n_tokens, self.num_topics)) + self.B = scipy.sparse.csc_matrix((self.num_tokens, self.num_topics)) def update(self, corpus, chunks_as_numpy=False): """Train the model with new documents. From 251d5f98abf8611b53acc65a33973ff6c3951ecc Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Fri, 11 Jan 2019 15:37:53 +0300 Subject: [PATCH 131/144] [skip ci] Add explicit normalize parameter --- gensim/models/nmf.py | 40 +++++++++++++++++++++++++++++----------- 1 file changed, 29 insertions(+), 11 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 008cf05775..00431b95fb 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -121,9 +121,13 @@ def __init__( if corpus is not None: self.update(corpus) - def get_topics(self): + def get_topics(self, normalize=self.normalize): """Get the term-topic matrix learned during inference. + Parameters + ---------- + normalize : bool, optional + Whether to normalize an output vector. Returns ------- @@ -132,7 +136,7 @@ def get_topics(self): """ dense_topics = self._W.T.toarray() - if self.normalize: + if normalize: return dense_topics / dense_topics.sum(axis=1).reshape(-1, 1) return dense_topics @@ -140,7 +144,8 @@ def get_topics(self): def __getitem__(self, bow, eps=None): return self.get_document_topics(bow, eps) - def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): + def show_topics(self, num_topics=10, num_words=10, log=False, + formatted=True, normalize=self.normalize): """Get a representation for selected topics. Parameters @@ -157,6 +162,8 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): formatted : bool, optional Whether the topic representations should be formatted as strings. If False, they are returned as 2 tuples of (word, probability). + normalize : bool, optional + Whether to normalize an output vector. Returns ------- @@ -181,7 +188,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): shown = [] - topics = self.get_topics() + topics = self.get_topics(normalize=normalize) for i in chosen_topics: topic = topics[i] @@ -196,7 +203,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): return shown - def show_topic(self, topicid, topn=10): + def show_topic(self, topicid, topn=10, normalize=self.normalize): """Get the representation for a single topic. Words here are the actual strings, in constrast to :meth:`~gensim.models.nmf.Nmf.get_topic_terms` that represents words by their vocabulary ID. @@ -206,6 +213,8 @@ def show_topic(self, topicid, topn=10): The ID of the topic to be returned topn : int, optional Number of the most significant words that are associated with the topic. + normalize : bool, optional + Whether to normalize an output vector. Returns ------- @@ -215,10 +224,11 @@ def show_topic(self, topicid, topn=10): """ return [ (self.id2word[id], value) - for id, value in self.get_topic_terms(topicid, topn) + for id, value in self.get_topic_terms(topicid, topn, + normalize=normalize) ] - def get_topic_terms(self, topicid, topn=10): + def get_topic_terms(self, topicid, topn=10, normalize=self.normalize): """Get the representation for a single topic. Words the integer IDs, in constrast to :meth:`~gensim.models.nmf.Nmf.show_topic` that represents words by the actual strings. @@ -228,6 +238,8 @@ def get_topic_terms(self, topicid, topn=10): The ID of the topic to be returned topn : int, optional Number of the most significant words that are associated with the topic. + normalize : bool, optional + Whether to normalize an output vector. Returns ------- @@ -237,7 +249,7 @@ def get_topic_terms(self, topicid, topn=10): """ topic = self._W.getcol(topicid).toarray()[0] - if self.normalize: + if normalize: topic /= topic.sum() bestn = matutils.argsort(topic, topn, reverse=True) @@ -324,7 +336,8 @@ def log_perplexity(self, corpus): return (np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum() - def get_term_topics(self, word_id, minimum_probability=None): + def get_term_topics(self, word_id, minimum_probability=None, + normalize=self.normalize): """Get the most relevant topics to the given word. Parameters @@ -333,6 +346,8 @@ def get_term_topics(self, word_id, minimum_probability=None): The word for which the topic distribution will be computed. minimum_probability : float, optional Topics with an assigned probability below this threshold will be discarded. + normalize : bool, optional + Whether to normalize an output vector. Returns ------- @@ -364,7 +379,8 @@ def get_term_topics(self, word_id, minimum_probability=None): return values - def get_document_topics(self, bow, minimum_probability=None): + def get_document_topics(self, bow, minimum_probability=None, + normalize=self.normalize): """Get the topic distribution for the given document. Parameters @@ -373,6 +389,8 @@ def get_document_topics(self, bow, minimum_probability=None): The document in BOW format. minimum_probability : float Topics with an assigned probability lower than this threshold will be discarded. + normalize : bool, optional + Whether to normalize an output vector. Returns ------- @@ -416,7 +434,7 @@ def _setup(self, corpus): self._h, self._r = None, None first_doc_it = itertools.tee(corpus, 1) first_doc = next(first_doc_it[0]) - first_doc = matutils.corpus2csc([first_doc], len(self.id2word))[:, 0] + first_doc = matutils.corpus2csc([first_doc], len(self.id2word)) self.w_std = np.sqrt(first_doc.mean() / (self.num_tokens * self.num_topics)) self._W = np.abs( From 7a3f358fa00c1fa0d39b2d8f6eefd3590b3c3e64 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 11 Jan 2019 15:52:47 +0300 Subject: [PATCH 132/144] [skip ci] Add explicit normalize parameter[2] --- gensim/models/nmf.py | 31 ++++++++++++++++++++++--------- 1 file changed, 22 insertions(+), 9 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index 00431b95fb..a63d5c4be8 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -121,7 +121,7 @@ def __init__( if corpus is not None: self.update(corpus) - def get_topics(self, normalize=self.normalize): + def get_topics(self, normalize=None): """Get the term-topic matrix learned during inference. Parameters @@ -136,6 +136,8 @@ def get_topics(self, normalize=self.normalize): """ dense_topics = self._W.T.toarray() + if normalize is None: + normalize = self.normalize if normalize: return dense_topics / dense_topics.sum(axis=1).reshape(-1, 1) @@ -145,7 +147,7 @@ def __getitem__(self, bow, eps=None): return self.get_document_topics(bow, eps) def show_topics(self, num_topics=10, num_words=10, log=False, - formatted=True, normalize=self.normalize): + formatted=True, normalize=None): """Get a representation for selected topics. Parameters @@ -172,7 +174,9 @@ def show_topics(self, num_topics=10, num_words=10, log=False, pairs. """ - # TODO: maybe count sparsity in some other way + if normalize is None: + normalize = self.normalize + sparsity = self._W.getnnz(axis=0) if num_topics < 0 or num_topics >= self.num_topics: @@ -203,7 +207,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, return shown - def show_topic(self, topicid, topn=10, normalize=self.normalize): + def show_topic(self, topicid, topn=10, normalize=None): """Get the representation for a single topic. Words here are the actual strings, in constrast to :meth:`~gensim.models.nmf.Nmf.get_topic_terms` that represents words by their vocabulary ID. @@ -222,13 +226,16 @@ def show_topic(self, topicid, topn=10, normalize=self.normalize): Word - probability pairs for the most relevant words generated by the topic. """ + if normalize is None: + normalize = self.normalize + return [ (self.id2word[id], value) for id, value in self.get_topic_terms(topicid, topn, normalize=normalize) ] - def get_topic_terms(self, topicid, topn=10, normalize=self.normalize): + def get_topic_terms(self, topicid, topn=10, normalize=None): """Get the representation for a single topic. Words the integer IDs, in constrast to :meth:`~gensim.models.nmf.Nmf.show_topic` that represents words by the actual strings. @@ -249,6 +256,8 @@ def get_topic_terms(self, topicid, topn=10, normalize=self.normalize): """ topic = self._W.getcol(topicid).toarray()[0] + if normalize is None: + normalize = self.normalize if normalize: topic /= topic.sum() @@ -337,7 +346,7 @@ def log_perplexity(self, corpus): return (np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum() def get_term_topics(self, word_id, minimum_probability=None, - normalize=self.normalize): + normalize=None): """Get the most relevant topics to the given word. Parameters @@ -368,7 +377,9 @@ def get_term_topics(self, word_id, minimum_probability=None, word_topics = self._W.getrow(word_id) - if self.normalize and word_topics.sum() > 0: + if normalize is None: + normalize = self.normalize + if normalize and word_topics.sum() > 0: word_topics /= word_topics.sum() for topic_id in range(0, self.num_topics): @@ -380,7 +391,7 @@ def get_term_topics(self, word_id, minimum_probability=None, return values def get_document_topics(self, bow, minimum_probability=None, - normalize=self.normalize): + normalize=None): """Get the topic distribution for the given document. Parameters @@ -413,7 +424,9 @@ def get_document_topics(self, bow, minimum_probability=None, v = matutils.corpus2csc([bow], len(self.id2word)).tocsr() h, _ = self._solveproj(v, self._W, v_max=np.inf) - if self.normalize: + if normalize is None: + normalize = self.normalize + if normalize: h.data /= h.sum() return [ From c663f3304015c18aced2fcc5a8edad3a0885e2e8 Mon Sep 17 00:00:00 2001 From: Timofey Yefimov Date: Fri, 11 Jan 2019 16:55:16 +0300 Subject: [PATCH 133/144] [skip ci] Update tutorial notebook --- docs/notebooks/nmf_tutorial.ipynb | 756 +++++++++++++++--------------- 1 file changed, 374 insertions(+), 382 deletions(-) diff --git a/docs/notebooks/nmf_tutorial.ipynb b/docs/notebooks/nmf_tutorial.ipynb index 7a5b3da889..9623d92f4f 100644 --- a/docs/notebooks/nmf_tutorial.ipynb +++ b/docs/notebooks/nmf_tutorial.ipynb @@ -38,15 +38,13 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", - " return f(*args, **kwds)\n", "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", " return f(*args, **kwds)\n" ] @@ -61,9 +59,14 @@ "import time\n", "\n", "import logging\n", + "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", + "from numpy.random import RandomState\n", + "from sklearn import decomposition\n", + "from sklearn.cluster import MiniBatchKMeans\n", "from sklearn.datasets import fetch_20newsgroups\n", + "from sklearn.datasets import fetch_olivetti_faces\n", "from sklearn.decomposition.nmf import NMF as SklearnNmf\n", "from sklearn.linear_model import LogisticRegressionCV\n", "from sklearn.metrics import f1_score\n", @@ -87,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -115,18 +118,18 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 14:00:40,291 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2019-01-10 14:00:40,933 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", - "2019-01-10 14:00:40,983 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2019-01-10 14:00:40,984 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2019-01-10 14:00:41,000 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2019-01-11 16:31:00,119 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2019-01-11 16:31:00,658 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", + "2019-01-11 16:31:00,710 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", + "2019-01-11 16:31:00,711 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2019-01-11 16:31:00,725 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" ] } ], @@ -144,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -179,23 +182,23 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 14:01:06,440 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 14:01:06,829 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n" + "2019-01-11 16:31:02,942 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-11 16:31:03,492 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.44 s, sys: 0 ns, total: 1.44 s\n", - "Wall time: 1.43 s\n" + "CPU times: user 1.95 s, sys: 0 ns, total: 1.95 s\n", + "Wall time: 1.97 s\n" ] } ], @@ -214,7 +217,7 @@ " use_r=False,\n", " lambda_=1000,\n", " kappa=1,\n", - " sparse_coef=3\n", + " sparse_coef=3,\n", ")" ] }, @@ -227,7 +230,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -245,7 +248,7 @@ " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" ] }, - "execution_count": 9, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -263,14 +266,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 14:01:20,890 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-11 16:31:03,649 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] }, { @@ -279,7 +282,7 @@ "-1.6698708891486376" ] }, - "execution_count": 10, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -301,7 +304,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -310,7 +313,7 @@ "56.99992543062592" ] }, - "execution_count": 11, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -330,7 +333,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -384,7 +387,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "metadata": { "lines_to_next_cell": 2 }, @@ -413,7 +416,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 11, "metadata": { "lines_to_next_cell": 2 }, @@ -432,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -442,7 +445,7 @@ "\twith 1839 stored elements in Compressed Sparse Column format>" ] }, - "execution_count": 15, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -453,7 +456,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -477,7 +480,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -487,7 +490,7 @@ "\twith 3489 stored elements in Compressed Sparse Row format>" ] }, - "execution_count": 17, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -498,7 +501,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -522,7 +525,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -532,7 +535,7 @@ "\twith 0 stored elements in Compressed Sparse Row format>" ] }, - "execution_count": 19, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -543,7 +546,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -574,7 +577,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 18, "metadata": { "lines_to_next_cell": 2 }, @@ -600,7 +603,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 19, "metadata": { "lines_to_next_cell": 2 }, @@ -617,8 +620,8 @@ "def get_tm_f1(model, train_corpus, X_test, y_train, y_test):\n", " X_train = np.zeros((len(train_corpus), model.num_topics))\n", " for bow_id, bow in enumerate(train_corpus):\n", - " for topic_id, proba in model[bow]:\n", - " X_train[bow_id, topic_id] = proba\n", + " for topic_id, word_count in model.get_document_topics(bow):\n", + " X_train[bow_id, topic_id] = word_count\n", "\n", " log_reg = LogisticRegressionCV(multi_class='multinomial')\n", " log_reg.fit(X_train, y_train)\n", @@ -643,10 +646,19 @@ " W = model.get_topics().T\n", " H = np.zeros((model.num_topics, len(test_corpus)))\n", " for bow_id, bow in enumerate(test_corpus):\n", - " for topic_id, proba in model[bow]:\n", - " H[topic_id, bow_id] = proba\n", + " for topic_id, word_count in model.get_document_topics(bow):\n", + " H[topic_id, bow_id] = word_count\n", + "\n", + " pred_factors = W.dot(H)\n", + " pred_factors /= pred_factors.sum(axis=0)\n", + "\n", + " perplexity = get_tm_perplexity(pred_factors, dense_corpus)\n", + "\n", + " l2_norm = get_tm_l2_norm(pred_factors, dense_corpus)\n", + "\n", + " f1 = get_tm_f1(model, train_corpus, H.T, y_train, y_test)\n", "\n", - " perplexity = get_tm_perplexity(W, H, dense_corpus)\n", + " model.normalize = True\n", "\n", " coherence = CoherenceModel(\n", " model=model,\n", @@ -654,12 +666,10 @@ " coherence='u_mass'\n", " ).get_coherence()\n", "\n", - " l2_norm = get_tm_l2_norm(W, H, dense_corpus)\n", - "\n", - " f1 = get_tm_f1(model, train_corpus, H.T, y_train, y_test)\n", - "\n", " topics = model.show_topics()\n", "\n", + " model.normalize = False\n", + "\n", " return dict(\n", " perplexity=perplexity,\n", " coherence=coherence,\n", @@ -669,20 +679,19 @@ " )\n", "\n", "\n", - "def get_tm_perplexity(W, H, dense_corpus):\n", - " pred_factors = W.dot(H)\n", - "\n", + "def get_tm_perplexity(pred_factors, dense_corpus):\n", " return np.exp(-(np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum())\n", "\n", "\n", - "def get_tm_l2_norm(W, H, dense_corpus):\n", - " return np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - W.dot(H))\n", + "def get_tm_l2_norm(pred_factors, dense_corpus):\n", + " return np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - pred_factors)\n", "\n", "\n", "def get_sklearn_metrics(model, train_corpus, test_corpus, y_train, y_test):\n", " W = model.components_.T\n", " H = model.transform((test_corpus / test_corpus.sum(axis=0)).T).T\n", " pred_factors = W.dot(H)\n", + " pred_factors /= pred_factors.sum(axis=0)\n", "\n", " perplexity = np.exp(\n", " -(np.log(pred_factors, where=pred_factors > 0) * test_corpus).sum()\n", @@ -702,191 +711,193 @@ }, { "cell_type": "code", - "execution_count": 23, - "metadata": {}, + "execution_count": 20, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 14:02:28,228 : INFO : using symmetric alpha at 0.2\n", - "2019-01-10 14:02:28,229 : INFO : using symmetric eta at 0.2\n", - "2019-01-10 14:02:28,231 : INFO : using serial LDA version on this node\n", - "2019-01-10 14:02:28,237 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2019-01-10 14:02:28,238 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2019-01-10 14:02:29,464 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:29,471 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", - "2019-01-10 14:02:29,473 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", - "2019-01-10 14:02:29,474 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", - "2019-01-10 14:02:29,475 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", - "2019-01-10 14:02:29,477 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", - "2019-01-10 14:02:29,478 : INFO : topic diff=1.652264, rho=1.000000\n", - "2019-01-10 14:02:29,479 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2019-01-10 14:02:30,286 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:30,291 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", - "2019-01-10 14:02:30,293 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-10 14:02:30,295 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", - "2019-01-10 14:02:30,297 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", - "2019-01-10 14:02:30,299 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", - "2019-01-10 14:02:30,304 : INFO : topic diff=0.879875, rho=0.707107\n", - "2019-01-10 14:02:31,512 : INFO : -8.001 per-word bound, 256.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 14:02:31,513 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2019-01-10 14:02:32,236 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 14:02:32,246 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", - "2019-01-10 14:02:32,249 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", - "2019-01-10 14:02:32,253 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", - "2019-01-10 14:02:32,265 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", - "2019-01-10 14:02:32,272 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2019-01-10 14:02:32,278 : INFO : topic diff=0.673042, rho=0.577350\n", - "2019-01-10 14:02:32,285 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2019-01-10 14:02:33,018 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:33,024 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"nntp\" + 0.004*\"think\"\n", - "2019-01-10 14:02:33,025 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", - "2019-01-10 14:02:33,027 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", - "2019-01-10 14:02:33,030 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 14:02:33,031 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"think\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", - "2019-01-10 14:02:33,033 : INFO : topic diff=0.462191, rho=0.455535\n", - "2019-01-10 14:02:33,034 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2019-01-10 14:02:33,754 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:33,760 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", - "2019-01-10 14:02:33,761 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-10 14:02:33,763 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", - "2019-01-10 14:02:33,764 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", - "2019-01-10 14:02:33,765 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", - "2019-01-10 14:02:33,766 : INFO : topic diff=0.434057, rho=0.455535\n", - "2019-01-10 14:02:35,193 : INFO : -7.754 per-word bound, 215.9 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 14:02:35,194 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2019-01-10 14:02:35,667 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 14:02:35,673 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", - "2019-01-10 14:02:35,674 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-10 14:02:35,675 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", - "2019-01-10 14:02:35,676 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-10 14:02:35,677 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"atheist\"\n" + "2019-01-11 16:31:13,241 : INFO : using symmetric alpha at 0.2\n", + "2019-01-11 16:31:13,242 : INFO : using symmetric eta at 0.2\n", + "2019-01-11 16:31:13,244 : INFO : using serial LDA version on this node\n", + "2019-01-11 16:31:13,253 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-11 16:31:13,254 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2019-01-11 16:31:14,389 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:14,394 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", + "2019-01-11 16:31:14,396 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", + "2019-01-11 16:31:14,397 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", + "2019-01-11 16:31:14,400 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", + "2019-01-11 16:31:14,405 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", + "2019-01-11 16:31:14,409 : INFO : topic diff=1.652643, rho=1.000000\n", + "2019-01-11 16:31:14,411 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2019-01-11 16:31:15,552 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:15,561 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", + "2019-01-11 16:31:15,563 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-11 16:31:15,564 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", + "2019-01-11 16:31:15,568 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", + "2019-01-11 16:31:15,570 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", + "2019-01-11 16:31:15,571 : INFO : topic diff=0.843360, rho=0.707107\n", + "2019-01-11 16:31:17,006 : INFO : -8.006 per-word bound, 257.1 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-11 16:31:17,007 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2019-01-11 16:31:17,895 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-11 16:31:17,902 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", + "2019-01-11 16:31:17,903 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", + "2019-01-11 16:31:17,904 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", + "2019-01-11 16:31:17,905 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", + "2019-01-11 16:31:17,907 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", + "2019-01-11 16:31:17,908 : INFO : topic diff=0.682542, rho=0.577350\n", + "2019-01-11 16:31:17,909 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2019-01-11 16:31:18,768 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:18,779 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"nntp\" + 0.004*\"us\" + 0.004*\"think\"\n", + "2019-01-11 16:31:18,782 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", + "2019-01-11 16:31:18,784 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", + "2019-01-11 16:31:18,788 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-11 16:31:18,790 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"think\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", + "2019-01-11 16:31:18,792 : INFO : topic diff=0.461220, rho=0.455535\n", + "2019-01-11 16:31:18,803 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2019-01-11 16:31:19,572 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:19,581 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", + "2019-01-11 16:31:19,583 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", + "2019-01-11 16:31:19,585 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", + "2019-01-11 16:31:19,586 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", + "2019-01-11 16:31:19,588 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", + "2019-01-11 16:31:19,589 : INFO : topic diff=0.436518, rho=0.455535\n", + "2019-01-11 16:31:20,627 : INFO : -7.754 per-word bound, 215.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-11 16:31:20,628 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2019-01-11 16:31:21,282 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-11 16:31:21,288 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", + "2019-01-11 16:31:21,291 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-11 16:31:21,292 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", + "2019-01-11 16:31:21,294 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-11 16:31:21,296 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"like\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 14:02:35,678 : INFO : topic diff=0.444120, rho=0.455535\n", - "2019-01-10 14:02:35,679 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2019-01-10 14:02:36,369 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:36,375 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"bike\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-10 14:02:36,377 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", - "2019-01-10 14:02:36,378 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", - "2019-01-10 14:02:36,381 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 14:02:36,382 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", - "2019-01-10 14:02:36,383 : INFO : topic diff=0.359704, rho=0.414549\n", - "2019-01-10 14:02:36,384 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2019-01-10 14:02:37,004 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:37,010 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"graphic\"\n", - "2019-01-10 14:02:37,012 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", - "2019-01-10 14:02:37,013 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", - "2019-01-10 14:02:37,022 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 14:02:37,024 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 14:02:37,025 : INFO : topic diff=0.325561, rho=0.414549\n", - "2019-01-10 14:02:37,948 : INFO : -7.703 per-word bound, 208.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 14:02:37,949 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2019-01-10 14:02:38,611 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 14:02:38,618 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", - "2019-01-10 14:02:38,620 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-10 14:02:38,621 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"mission\"\n", - "2019-01-10 14:02:38,623 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-10 14:02:38,625 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-10 14:02:38,626 : INFO : topic diff=0.327590, rho=0.414549\n", - "2019-01-10 14:02:38,628 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2019-01-10 14:02:39,441 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:39,453 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", - "2019-01-10 14:02:39,455 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-10 14:02:39,457 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", - "2019-01-10 14:02:39,459 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 14:02:39,465 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", - "2019-01-10 14:02:39,476 : INFO : topic diff=0.265043, rho=0.382948\n", - "2019-01-10 14:02:39,477 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2019-01-10 14:02:40,101 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:40,106 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-10 14:02:40,107 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", - "2019-01-10 14:02:40,112 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", - "2019-01-10 14:02:40,113 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 14:02:40,115 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 14:02:40,118 : INFO : topic diff=0.244061, rho=0.382948\n", - "2019-01-10 14:02:41,057 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 14:02:41,058 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2019-01-10 14:02:41,518 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 14:02:41,524 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-10 14:02:41,526 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-10 14:02:41,527 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-10 14:02:41,528 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-10 14:02:41,530 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-10 14:02:41,532 : INFO : topic diff=0.247579, rho=0.382948\n", - "2019-01-10 14:02:41,533 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2019-01-10 14:02:42,137 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:42,144 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"know\" + 0.006*\"univers\"\n" + "2019-01-11 16:31:21,298 : INFO : topic diff=0.443066, rho=0.455535\n", + "2019-01-11 16:31:21,300 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2019-01-11 16:31:21,938 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:21,943 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"bike\" + 0.005*\"know\" + 0.005*\"bit\" + 0.005*\"univers\" + 0.005*\"version\"\n", + "2019-01-11 16:31:21,948 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", + "2019-01-11 16:31:21,951 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", + "2019-01-11 16:31:21,955 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-11 16:31:21,957 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", + "2019-01-11 16:31:21,958 : INFO : topic diff=0.358030, rho=0.414549\n", + "2019-01-11 16:31:21,960 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2019-01-11 16:31:22,899 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:22,907 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"bit\"\n", + "2019-01-11 16:31:22,909 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", + "2019-01-11 16:31:22,910 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", + "2019-01-11 16:31:22,911 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-11 16:31:22,913 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-11 16:31:22,914 : INFO : topic diff=0.324722, rho=0.414549\n", + "2019-01-11 16:31:23,767 : INFO : -7.702 per-word bound, 208.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-11 16:31:23,768 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2019-01-11 16:31:24,223 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-11 16:31:24,230 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", + "2019-01-11 16:31:24,231 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", + "2019-01-11 16:31:24,233 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"moon\"\n", + "2019-01-11 16:31:24,235 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", + "2019-01-11 16:31:24,236 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-11 16:31:24,238 : INFO : topic diff=0.325847, rho=0.414549\n", + "2019-01-11 16:31:24,240 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2019-01-11 16:31:24,958 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:24,965 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", + "2019-01-11 16:31:24,967 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-11 16:31:24,970 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", + "2019-01-11 16:31:24,972 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-11 16:31:24,973 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", + "2019-01-11 16:31:24,975 : INFO : topic diff=0.263752, rho=0.382948\n", + "2019-01-11 16:31:24,977 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2019-01-11 16:31:25,548 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:25,553 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", + "2019-01-11 16:31:25,555 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", + "2019-01-11 16:31:25,557 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", + "2019-01-11 16:31:25,559 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-11 16:31:25,560 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-11 16:31:25,562 : INFO : topic diff=0.243481, rho=0.382948\n", + "2019-01-11 16:31:26,343 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-11 16:31:26,344 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2019-01-11 16:31:26,793 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-11 16:31:26,802 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-11 16:31:26,803 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-11 16:31:26,805 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-11 16:31:26,809 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", + "2019-01-11 16:31:26,811 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", + "2019-01-11 16:31:26,812 : INFO : topic diff=0.246485, rho=0.382948\n", + "2019-01-11 16:31:26,813 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2019-01-11 16:31:27,509 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:27,514 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"univers\" + 0.006*\"know\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 14:02:42,146 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-10 14:02:42,148 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", - "2019-01-10 14:02:42,149 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 14:02:42,150 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", - "2019-01-10 14:02:42,151 : INFO : topic diff=0.204190, rho=0.357622\n", - "2019-01-10 14:02:42,152 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2019-01-10 14:02:42,715 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-10 14:02:42,722 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"bit\" + 0.006*\"know\"\n", - "2019-01-10 14:02:42,723 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", - "2019-01-10 14:02:42,726 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", - "2019-01-10 14:02:42,728 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-10 14:02:42,730 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-10 14:02:42,731 : INFO : topic diff=0.197424, rho=0.357622\n", - "2019-01-10 14:02:43,475 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-10 14:02:43,476 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2019-01-10 14:02:44,155 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-10 14:02:44,163 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-10 14:02:44,164 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-10 14:02:44,166 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-10 14:02:44,167 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-10 14:02:44,170 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", - "2019-01-10 14:02:44,171 : INFO : topic diff=0.200393, rho=0.357622\n", - "2019-01-10 14:02:46,099 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:03:11,165 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 14:03:12,437 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 14:03:24,821 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:04:22,755 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", - "2019-01-10 14:04:40,977 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", - "2019-01-10 14:05:06,121 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:05:58,199 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 14:05:58,688 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 14:06:08,280 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:06:33,083 : INFO : Loss (no outliers): 664.1341940716917\tLoss (with outliers): 292.4994443142016\n", - "2019-01-10 14:06:34,377 : INFO : Loss (no outliers): 693.6651209880037\tLoss (with outliers): 270.10883840006244\n", - "2019-01-10 14:06:52,141 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:07:23,166 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 14:07:24,539 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 14:07:40,646 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:08:37,634 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", - "2019-01-10 14:08:53,670 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", - "2019-01-10 14:09:20,382 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:10:03,798 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 14:10:04,295 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 14:10:13,815 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:10:37,755 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", - "2019-01-10 14:10:39,440 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", - "2019-01-10 14:11:04,226 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:11:45,358 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-10 14:11:46,844 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-10 14:12:01,904 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:13:12,023 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", - "2019-01-10 14:13:28,091 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", - "2019-01-10 14:13:48,348 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:14:18,028 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-10 14:14:18,514 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-10 14:14:27,603 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-10 14:14:55,310 : INFO : Loss (no outliers): 605.4685741189073\tLoss (with outliers): 605.4685741189073\n", - "2019-01-10 14:14:57,392 : INFO : Loss (no outliers): 578.3308322441275\tLoss (with outliers): 578.124650831533\n", - "2019-01-10 14:15:14,872 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-11 16:31:27,516 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", + "2019-01-11 16:31:27,518 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", + "2019-01-11 16:31:27,520 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-11 16:31:27,523 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", + "2019-01-11 16:31:27,525 : INFO : topic diff=0.203454, rho=0.357622\n", + "2019-01-11 16:31:27,527 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2019-01-11 16:31:28,154 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-11 16:31:28,161 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.006*\"file\" + 0.006*\"know\"\n", + "2019-01-11 16:31:28,162 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", + "2019-01-11 16:31:28,164 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", + "2019-01-11 16:31:28,166 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", + "2019-01-11 16:31:28,168 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", + "2019-01-11 16:31:28,170 : INFO : topic diff=0.197044, rho=0.357622\n", + "2019-01-11 16:31:28,953 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", + "2019-01-11 16:31:28,954 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2019-01-11 16:31:29,480 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-11 16:31:29,487 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", + "2019-01-11 16:31:29,491 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", + "2019-01-11 16:31:29,492 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", + "2019-01-11 16:31:29,496 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", + "2019-01-11 16:31:29,500 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", + "2019-01-11 16:31:29,503 : INFO : topic diff=0.199886, rho=0.357622\n", + "2019-01-11 16:31:34,449 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:31:54,227 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-11 16:31:55,748 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-11 16:32:25,865 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:32:53,144 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", + "2019-01-11 16:33:06,446 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", + "2019-01-11 16:33:59,992 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:34:01,718 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-11 16:34:02,199 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-11 16:34:23,796 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:34:28,714 : INFO : Loss (no outliers): 664.2587451342605\tLoss (with outliers): 292.573434788099\n", + "2019-01-11 16:34:29,888 : INFO : Loss (no outliers): 694.0054656336422\tLoss (with outliers): 270.1267548866487\n", + "2019-01-11 16:35:05,368 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:35:07,682 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-11 16:35:08,964 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-11 16:35:37,303 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:36:05,788 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", + "2019-01-11 16:36:18,045 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", + "2019-01-11 16:37:07,113 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:37:08,485 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-11 16:37:08,945 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-11 16:37:31,055 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:37:36,904 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", + "2019-01-11 16:37:38,238 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", + "2019-01-11 16:38:12,206 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:38:15,856 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", + "2019-01-11 16:38:17,422 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", + "2019-01-11 16:38:53,879 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:39:25,301 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", + "2019-01-11 16:39:41,012 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", + "2019-01-11 16:40:24,997 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:40:26,202 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", + "2019-01-11 16:40:26,619 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", + "2019-01-11 16:40:48,923 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-11 16:40:58,602 : INFO : Loss (no outliers): 605.4685741189123\tLoss (with outliers): 605.4685741189123\n", + "2019-01-11 16:41:00,411 : INFO : Loss (no outliers): 578.3308322440762\tLoss (with outliers): 578.12465083152\n", + "2019-01-11 16:41:30,706 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] } ], @@ -925,6 +936,7 @@ " row.update(variable_params)\n", " row['train_time'], model = get_execution_time(\n", " lambda: GensimNmf(\n", + " normalize=False,\n", " **fixed_params,\n", " **variable_params,\n", " )\n", @@ -937,7 +949,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -976,13 +988,13 @@ " \n", " \n", " 5\n", - " -1.572423\n", - " 0.548507\n", - " 7.210668\n", + " -1.578766\n", + " 0.534648\n", + " 7.189315\n", " gensim_nmf\n", - " 21.189874\n", - " [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...\n", - " 7.934776\n", + " 21.362023\n", + " [(0, 0.033*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...\n", + " 6.051217\n", " 1.0\n", " 3.0\n", " 1.0\n", @@ -990,25 +1002,38 @@ " \n", " 9\n", " -1.794092\n", - " 0.643923\n", - " 7.247913\n", + " 0.656716\n", + " 7.156244\n", " gensim_nmf\n", - " 49.029435\n", + " 47.461725\n", " [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli...\n", - " 9.610066\n", + " 7.138979\n", " 10.0\n", " 3.0\n", " 1.0\n", " \n", " \n", + " 7\n", + " -1.414224\n", + " 0.676439\n", + " 7.049381\n", + " gensim_nmf\n", + " 2282.487980\n", + " [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...\n", + " 40.696380\n", + " 10.0\n", + " 0.0\n", + " 1.0\n", + " \n", + " \n", " 4\n", " -1.669871\n", - " 0.665245\n", - " 7.168078\n", + " 0.687100\n", + " 7.153144\n", " gensim_nmf\n", - " 56.999925\n", + " 57.018363\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.890566\n", + " 2.146432\n", " 1.0\n", " 3.0\n", " 0.0\n", @@ -1016,12 +1041,12 @@ " \n", " 8\n", " -1.669871\n", - " 0.665245\n", - " 7.168078\n", + " 0.687100\n", + " 7.153144\n", " gensim_nmf\n", - " 56.999925\n", + " 57.018363\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.819997\n", + " 1.783175\n", " 10.0\n", " 3.0\n", " 0.0\n", @@ -1029,12 +1054,12 @@ " \n", " 12\n", " -1.669871\n", - " 0.665245\n", - " 7.168078\n", + " 0.687100\n", + " 7.153144\n", " gensim_nmf\n", - " 56.999925\n", + " 57.018363\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.803650\n", + " 1.551693\n", " 100.0\n", " 3.0\n", " 0.0\n", @@ -1042,25 +1067,38 @@ " \n", " 13\n", " -1.667488\n", - " 0.671109\n", - " 7.167259\n", + " 0.697228\n", + " 7.152395\n", " gensim_nmf\n", - " 55.940074\n", + " 55.952863\n", " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 13.839733\n", + " 11.442065\n", " 100.0\n", " 3.0\n", " 1.0\n", " \n", " \n", + " 1\n", + " NaN\n", + " 0.698294\n", + " 6.929583\n", + " sklearn_nmf\n", + " 2404.189934\n", + " NaN\n", + " 12.725958\n", + " NaN\n", + " NaN\n", + " NaN\n", + " \n", + " \n", " 2\n", " -1.651645\n", - " 0.671642\n", - " 7.060985\n", + " 0.702026\n", + " 7.058824\n", " gensim_nmf\n", - " 2534.426980\n", + " 2546.872355\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 4.403016\n", + " 4.569918\n", " 1.0\n", " 0.0\n", " 0.0\n", @@ -1068,12 +1106,12 @@ " \n", " 6\n", " -1.651645\n", - " 0.671642\n", - " 7.060985\n", + " 0.702026\n", + " 7.058824\n", " gensim_nmf\n", - " 2534.426980\n", + " 2546.872355\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 4.795221\n", + " 3.548277\n", " 10.0\n", " 0.0\n", " 0.0\n", @@ -1081,12 +1119,12 @@ " \n", " 10\n", " -1.651645\n", - " 0.671642\n", - " 7.060985\n", + " 0.702026\n", + " 7.058824\n", " gensim_nmf\n", - " 2534.426980\n", + " 2546.872355\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 6.848814\n", + " 5.154133\n", " 100.0\n", " 0.0\n", " 0.0\n", @@ -1094,64 +1132,38 @@ " \n", " 11\n", " -1.713672\n", - " 0.676972\n", - " 7.058523\n", + " 0.706290\n", + " 7.056277\n", " gensim_nmf\n", - " 2526.410173\n", + " 2537.297631\n", " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 56.289639\n", + " 47.084092\n", " 100.0\n", " 0.0\n", " 1.0\n", " \n", " \n", - " 7\n", - " -1.414224\n", - " 0.683369\n", - " 7.053716\n", - " gensim_nmf\n", - " 2314.832335\n", - " [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...\n", - " 51.151701\n", - " 10.0\n", - " 0.0\n", - " 1.0\n", - " \n", - " \n", - " 1\n", - " NaN\n", - " 0.698294\n", - " 6.905912\n", - " sklearn_nmf\n", - " 2852.226778\n", - " NaN\n", - " 14.650259\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", " 3\n", " -1.344381\n", - " 0.711087\n", - " 7.034081\n", + " 0.707356\n", + " 7.031241\n", " gensim_nmf\n", - " 2335.251975\n", + " 2312.883868\n", " [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...\n", - " 53.161906\n", + " 40.528818\n", " 1.0\n", " 0.0\n", " 1.0\n", " \n", " \n", " 0\n", - " -1.789218\n", - " 0.757996\n", - " 7.007877\n", + " -1.787503\n", + " 0.759062\n", + " 7.007890\n", " lda\n", - " 1975.257100\n", + " 1975.152992\n", " [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...\n", - " 15.944864\n", + " 16.263741\n", " NaN\n", " NaN\n", " NaN\n", @@ -1162,55 +1174,55 @@ ], "text/plain": [ " coherence f1 l2_norm model perplexity \\\n", - "5 -1.572423 0.548507 7.210668 gensim_nmf 21.189874 \n", - "9 -1.794092 0.643923 7.247913 gensim_nmf 49.029435 \n", - "4 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", - "8 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", - "12 -1.669871 0.665245 7.168078 gensim_nmf 56.999925 \n", - "13 -1.667488 0.671109 7.167259 gensim_nmf 55.940074 \n", - "2 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", - "6 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", - "10 -1.651645 0.671642 7.060985 gensim_nmf 2534.426980 \n", - "11 -1.713672 0.676972 7.058523 gensim_nmf 2526.410173 \n", - "7 -1.414224 0.683369 7.053716 gensim_nmf 2314.832335 \n", - "1 NaN 0.698294 6.905912 sklearn_nmf 2852.226778 \n", - "3 -1.344381 0.711087 7.034081 gensim_nmf 2335.251975 \n", - "0 -1.789218 0.757996 7.007877 lda 1975.257100 \n", + "5 -1.578766 0.534648 7.189315 gensim_nmf 21.362023 \n", + "9 -1.794092 0.656716 7.156244 gensim_nmf 47.461725 \n", + "7 -1.414224 0.676439 7.049381 gensim_nmf 2282.487980 \n", + "4 -1.669871 0.687100 7.153144 gensim_nmf 57.018363 \n", + "8 -1.669871 0.687100 7.153144 gensim_nmf 57.018363 \n", + "12 -1.669871 0.687100 7.153144 gensim_nmf 57.018363 \n", + "13 -1.667488 0.697228 7.152395 gensim_nmf 55.952863 \n", + "1 NaN 0.698294 6.929583 sklearn_nmf 2404.189934 \n", + "2 -1.651645 0.702026 7.058824 gensim_nmf 2546.872355 \n", + "6 -1.651645 0.702026 7.058824 gensim_nmf 2546.872355 \n", + "10 -1.651645 0.702026 7.058824 gensim_nmf 2546.872355 \n", + "11 -1.713672 0.706290 7.056277 gensim_nmf 2537.297631 \n", + "3 -1.344381 0.707356 7.031241 gensim_nmf 2312.883868 \n", + "0 -1.787503 0.759062 7.007890 lda 1975.152992 \n", "\n", " topics train_time lambda_ \\\n", - "5 [(0, 0.034*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 7.934776 1.0 \n", - "9 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 9.610066 10.0 \n", - "4 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.890566 1.0 \n", - "8 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.819997 10.0 \n", - "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.803650 100.0 \n", - "13 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 13.839733 100.0 \n", - "2 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.403016 1.0 \n", - "6 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.795221 10.0 \n", - "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 6.848814 100.0 \n", - "11 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 56.289639 100.0 \n", - "7 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 51.151701 10.0 \n", - "1 NaN 14.650259 NaN \n", - "3 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 53.161906 1.0 \n", - "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 15.944864 NaN \n", + "5 [(0, 0.033*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 6.051217 1.0 \n", + "9 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 7.138979 10.0 \n", + "7 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 40.696380 10.0 \n", + "4 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.146432 1.0 \n", + "8 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.783175 10.0 \n", + "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.551693 100.0 \n", + "13 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 11.442065 100.0 \n", + "1 NaN 12.725958 NaN \n", + "2 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.569918 1.0 \n", + "6 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.548277 10.0 \n", + "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 5.154133 100.0 \n", + "11 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 47.084092 100.0 \n", + "3 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 40.528818 1.0 \n", + "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 16.263741 NaN \n", "\n", " sparse_coef use_r \n", "5 3.0 1.0 \n", "9 3.0 1.0 \n", + "7 0.0 1.0 \n", "4 3.0 0.0 \n", "8 3.0 0.0 \n", "12 3.0 0.0 \n", "13 3.0 1.0 \n", + "1 NaN NaN \n", "2 0.0 0.0 \n", "6 0.0 0.0 \n", "10 0.0 0.0 \n", "11 0.0 1.0 \n", - "7 0.0 1.0 \n", - "1 NaN NaN \n", "3 0.0 1.0 \n", "0 NaN NaN " ] }, - "execution_count": 24, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -1221,31 +1233,31 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", - " '0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"believ\" + 0.020*\"exist\" + 0.019*\"atheism\" + 0.016*\"religion\" + 0.013*\"christian\" + 0.013*\"religi\" + 0.013*\"peopl\" + 0.012*\"argument\"'),\n", + " '0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"believ\" + 0.011*\"exist\" + 0.011*\"atheism\" + 0.009*\"religion\" + 0.008*\"christian\" + 0.008*\"peopl\" + 0.007*\"religi\" + 0.007*\"argument\"'),\n", " (1,\n", - " '0.055*\"imag\" + 0.054*\"jpeg\" + 0.033*\"file\" + 0.024*\"gif\" + 0.021*\"color\" + 0.019*\"format\" + 0.015*\"program\" + 0.014*\"version\" + 0.013*\"bit\" + 0.012*\"us\"'),\n", + " '0.043*\"jpeg\" + 0.042*\"imag\" + 0.026*\"file\" + 0.019*\"gif\" + 0.017*\"color\" + 0.015*\"format\" + 0.012*\"program\" + 0.011*\"version\" + 0.010*\"bit\" + 0.010*\"us\"'),\n", " (2,\n", - " '0.053*\"space\" + 0.034*\"launch\" + 0.024*\"satellit\" + 0.017*\"nasa\" + 0.016*\"orbit\" + 0.013*\"year\" + 0.012*\"mission\" + 0.011*\"data\" + 0.010*\"commerci\" + 0.010*\"market\"'),\n", + " '0.029*\"space\" + 0.019*\"launch\" + 0.013*\"satellit\" + 0.009*\"nasa\" + 0.009*\"orbit\" + 0.007*\"year\" + 0.007*\"mission\" + 0.006*\"data\" + 0.006*\"commerci\" + 0.006*\"market\"'),\n", " (3,\n", - " '0.022*\"armenian\" + 0.021*\"peopl\" + 0.020*\"said\" + 0.018*\"know\" + 0.011*\"sai\" + 0.011*\"went\" + 0.010*\"come\" + 0.010*\"like\" + 0.010*\"apart\" + 0.009*\"azerbaijani\"'),\n", + " '0.016*\"armenian\" + 0.015*\"peopl\" + 0.014*\"said\" + 0.013*\"know\" + 0.008*\"went\" + 0.007*\"sai\" + 0.007*\"like\" + 0.007*\"apart\" + 0.007*\"come\" + 0.007*\"azerbaijani\"'),\n", " (4,\n", - " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" + " '0.015*\"graphic\" + 0.011*\"pub\" + 0.009*\"mail\" + 0.009*\"data\" + 0.008*\"ftp\" + 0.008*\"imag\" + 0.008*\"send\" + 0.007*\"rai\" + 0.006*\"packag\" + 0.006*\"object\"')]" ] }, - "execution_count": 30, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "tm_metrics.iloc[12].topics" + "tm_metrics.iloc[2].topics" ] }, { @@ -1257,7 +1269,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 23, "metadata": { "lines_to_next_cell": 2 }, @@ -1310,7 +1322,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1330,9 +1342,9 @@ "\n", "Dataset consists of 400 faces\n", "Extracting the top 6 Eigenfaces - PCA using randomized SVD...\n", - "done in 0.444s\n", + "done in 0.169s\n", "Extracting the top 6 Non-negative components - NMF (Sklearn)...\n", - "done in 0.975s\n", + "done in 0.804s\n", "Extracting the top 6 Non-negative components - NMF (Gensim)...\n" ] }, @@ -1340,22 +1352,22 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 14:22:11,954 : INFO : Loss (no outliers): 48.906180800150054\tLoss (with outliers): 48.906180800150054\n" + "2019-01-10 18:28:47,510 : INFO : Loss (no outliers): 7.324016609008711\tLoss (with outliers): 7.324016609008711\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "done in 6.401s\n", + "done in 3.300s\n", "Extracting the top 6 Independent components - FastICA...\n", - "done in 0.548s\n", + "done in 0.373s\n", "Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...\n", - "done in 2.318s\n", + "done in 1.056s\n", "Extracting the top 6 MiniBatchDictionaryLearning...\n", - "done in 2.200s\n", + "done in 1.852s\n", "Extracting the top 6 Cluster centers - MiniBatchKMeans...\n", - "done in 0.191s\n", + "done in 0.123s\n", "Extracting the top 6 Factor Analysis components - FA...\n" ] }, @@ -1371,7 +1383,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "done in 0.373s\n" + "done in 0.245s\n" ] }, { @@ -1386,7 +1398,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUZXlVJvr9IiIjx8qagBoAqQLBCYfXS5eADa2trS67W8WngjgAtq04PPVhKyq01lNbeWKj4Ii2WioI2o48aMWJ6hZncHoopaBVKkUVNWVNWVmZGRHn/XHOF7HjO3vvc6Iy7s2X5f7WinXj3nvO7/ymc+7+9ti6rkOhUCgUCoXFYOV8d6BQKBQKhUcy6oe2UCgUCoUFon5oC4VCoVBYIOqHtlAoFAqFBaJ+aAuFQqFQWCDqh7ZQKBQKhQVi8oe2tfaC1loX/N3jHHfNIjs8F621L26tvbu1dsb285EGWY+N1tpNrbWfbK09zjn26a21n2+tvW+Yl7taa7/ZWnt+a23VOf6lQ7u/vJzRjK5/Q2vthvNx7fONYd6vW/I1rxmu+4IlXvP61trNM467orX26tba37bWTrXW7mytvaO19qrW2sHW2qOHPf1DSRv/YRjfxw/vbzD3zmZr7URr7c9ba9/fWvuw/Rvl6D6N/m7ep2sdGtr7xn1q7wNba9e11j7A+e621tqP7Md19gOttU9orf3hsEfe11r77tbawYfRzluHOXzZfvRrbQ/Hfg6A98pnG+b/NwN4OoBbz7VT54rW2tUAfhTA6wC8EMBD57dHC8f1AF6Dfj0/CsD/BeAZrbWP6rruFAC01r4WwCsB/A6AlwD4BwCXAvhkAD8M4B4AvyrtftHw+mmttcu7rrtrweNQfMWSr/fPHbeiv4f/7nx3xKK1dhzAHwHYAvAKADcCuAz9Xv98AN/add0drbVfA/Cc1trXdl13xmnqi9Dv+/9pPvtLAF82/H8cwFMBfDGAF7XWvqbruvCHe494urz/ZQB/AeA689npfbrW6eF6/7hP7X0ggG8F8FtOm58G4MQ+Xeec0Fr7aAC/jv459lL0/X4FgCsAPH8P7bwQwAfva+e6rkv/ALwAQAfgA6eO/f/LH4B/NfT5X5/vvixhrB2A75DPnj98/lnD+2ehf0i9OmjjSQA+Qj57+tDGm4fXrzrfYz3P83zwPKzrded73EsY5/UAbp445ouH+fhI57sGoA3/f9Zw3LOd464Z7oFvN5/dAOBtzrEHAPwCgE0AH7Ogcd8M4LV7OH6p+0+u/anDvP7L871fJvr5awD+CsCq+exLh75/2Mw2HgXgTgCfN5z3sv3o277ZaD3VcWvtSGvthwcV5QOttV9urT3DU0+11v5Va+23W2v3t9ZOttbe0lp7qhxzQ2vtba21T2qt/Wlr7cHW2jtba882x1yP/gYCgN8ernX98N1zW2u/01q7Y+jPn7XWRpJOa22ttfaS1tpft9YeGo7/9dbaB5tjHt1a+5HW2i2ttdOttRtba18q7VzZWvupQYVxurV2a2vtTa21xzy8WZ6NPxleP3B4fQmAuwF8g3dw13V/13XdX8rHz0f/oPmPAP4JMyVCbx8Mn1/XWuvks69prb1rUPOcaK29XdZyl+q4tfbxQ9uf3lr7gUF9eGdr7bWttUuk7Ue31l7fWrtvaPsnh/O2VYfJGK5vrb239ar232+tnQLw3cN3c/dQ11r7jtbaV7denX9/a+1/NlFJttZWh+NuHfbzDXqMOfZTW2t/MMzXva21X2mtfZAcw3vkU1uvBj019PFjh339ncO17h7GedScu0t13HKz0XUy1+m9MBz3icN9+1Br7e9aa1+mxwS4bHi9Tb/oBgxv34R+n3+h08YXov9R/umpi3Vddxa9NmUDwFfP7OO+obX2htbae1prz2qDGhTAtw3ffdGwj+4Y9tQ7WmvPk/NHquPW2stbb1p6cuufrSeHfflNrbWW9OVT0f+AAcDvmvV/2vD9LtVxa+1Fw/cf01r7xeEeua219nXD9/++tfYXw/X/qLX2kc41n9Na++PhfjgxzMdjJ+bsCIBPAvCGrus2zVevR/8c+/TsfINXAvhD9BoH7zqPba29briHTrf+2f7G1tqlWaN7UR2vttb0+K2u67aSc34Uvcr5OgBvB/CJ6NW52vl/i57uvxnAFwwfvwT9wn5E13X/ZA5/EoBXAfgu9JLH1wH47621D+667j0Avh3AOwC8GsBXAvhTAHcM5z4RvaT6cvTS7bMA/LfW2uGu66yd4Q0APhPA96FXlxwajr0KwI2tV2W9DcDhYWw3AfgUAD/cWjvYdd33D+38DIAnAPh69D9WVwxzcCSZs/3AtcPrPa23vX4CgF/pum6WCr31No3nAPjNruve11p7LYBvaq19SNd179qPDrbWPh/Af0X/APld9HP5Edh5qGZ4FfqH6vMAfBD6H8FN7BYGfgnAhwP4JgDvAfC/A/h+zMfF6PfB9wD4ZgCnhs/n7iGg38t/A+BrAKyjV2P96rBXaXa5bmj/lQB+A8BHA3ijdmZ44L0Zver/OQCOoZ+7t7XeRHCLOZwqs/8C4AH08/PG4W8NvZbqQ4ZjbkcggGHHHGTx+QC+CsC7hn7Nuhdaax8C4H+gfw48F8DB4fhj6Ncuwx8Pr29orb0cPQs9qQd1XXemtfZ6AP+xtXZZ13V3m6+/AMDvd1337olrsa3bW2tvB/Bxc45fAB6F/vnxfwP4awAc77Xo9+V7hvefAOBnWmvrXdddP9FmQ39f/Dj6tf8sAN+Jnl2/PjjnDwD8nwC+F72KnQL5Oyeu9Vr02oofRr9nvqe19ij0qub/gt6c9z0Afrm19mT+OLYdE9ePoVdXX4J+n7912OcPBtd7Cvq9vatfXdfd31r7RwAfOtFftNY+EcBnozcfRHgDgMsBvBjALQCuBPBv0P9GxJhBpV+AnkJ7f29yjrtmeP9B6B9E3yDtvXo47gXms/cA+G057jj6H9LvM5/dAOAsgCebzx6D/kb9ZvPZJw3X+PhkXCvoF+bHAPyF+fxfD+d+dXLuf0a/UZ4sn//Y0Oe14f0DWTv7pC7p0G/ctWGxn4b+IXgSwNXof9w7AN+1hzY/dzjn88xadgBevof9co18fl2/3bbf/wCAP51o6wYAN5j3Hz+0/VNy3A8M60EV4icPx32uHPfGqX0xHHf9cNxnTBzn7iGzLu8GcMB89tnD588Y3l867JEfkXNfAlEdo/+Bejf31vDZtcP98ErnHnmi+ezTh/Z+S67zSwBuMu+vgdybcvzHDfNsrzf3Xnjd8P6oOebxAM5gQnU8HPstw7Edeqb59mFPXSLHfcxwzJebz542fPZlzv4aqY7N968HcOpc7s+k7ZsRqI7RP8w7AJ8yc//9DIA/Mp8fGs7/RvPZy2Hu6eGzBuBvAbxx4jqh6hi9luFHzPsXDcd+g/lsHb0d9yEAjzOf8znzscP7S9A/t35IrvGUYc1flPSRz+3RvT3slTdPjPEQ+vvrZTKHLzPHtGEPfule13svquNnD5vY/n1tcvzHDh377/L5L9g3rbUno2eprxtUW2sDc34QvTT1LDn/3Z2RSruuux29VD7yiFMMapPXt9ZuQf8wOgvgS9D/kBB8SP9Y0tSnonfOuEn6/Bb00g6lpz8B8PWtV5F+eKaiMX1ctW221uas0TcPYzmFfs7OAvi0ruveN+NcD88HcB+AXwGAruv+Bv14v2Bmf+bgTwB8VOs9PD9pUP3MxZvl/f+LniFdMbx/GnrhS9U/v4D5OIueNe/CzD1E/GbXqyFtP4GdvfrhAI4C+Hk57w1yzaMA/gWAn+t2mDC6rrsJwO+h90mw+Nuu6/7evL9xeH2LHHcjgMfN3JfXoJ/PtwD4T+aruffC0wH8j84w0a7XVP3e1LWHY78N/bx9CfoflsvRM553ttauMMf9CXpB06qPvwi9g9DPzbmWQUP/LIgP2H2v7kVDOIUHu67T9UJr7YPbEDmA/sfnLHq27u0/D9v3Ttf/evwVZjw7HwaobkbXO6bdBOCvuq6zDrXcl48fXp+JXtunvwV/P/zpb8F+4mXoieF3RwcM8/UOAN/cWvuqtgfP9L08NN/Zdd3b5e89yfFXDa+3y+fvl/e0V/44dh5c/Pt36G8oi7sxxmlMUPfW2jEAvwngIwF8I/pF/RgAP4H+IU1cDuDubvDWDfAY9Iuu/aVQwT4/Bz2L+gb0KpdbWmvfMvFj9dvS5rdk4xrwE8NY/jcAj+q67iO6rqNn5V3of4CfMKMdtNauRK/6ezOAg621S1pv//xFAI9Fr/reD/w0gC9HL5C9BcDdrbVfavPCw3QP0FuTe+AqACfkRw4Y770Md3S7bT172UN76afXL31/KfqHvufRfxvG6nb1Aj2TfL4GYBTaZTGoh9+EPurged1uc9Hce+Eq+PM/e026rrut67of77ruhV3XXYtehf1Y9KYZi58C8PTWh6Wso78Pf7Xrur2G+T0eSRTFsFd3jXvm/p2DkT16uA9/C71H7NcD+Jfo99/rMKW67LHZdd198tnks/Nhwttr0b7k9flb8DaM99OTMf4t8K7n2Uovg/+7AaAPX0L/jH4pgCPDPF/Mvg3PQD6zn43es/ml6IW897YJOzewNxvtXsEN+hj00gxxhRzHkJFvQr+JFJ6b/sPB09H/2Dyz67q38UNHCr0TwGWDzS36sb0LvQDxNcH3fwNss+2vBPCVrXdaeT760Js70NsuPHwZgIvM+zms9Nau697ufdF13UbrHYr+zWAzmwoh+Hz0D97PG/4Uz0f/YxOBduB1+XzXTTJIh68B8JrBkeCT0dtsfw79j++54FYAl7bWDsiPre69DB6TmbuH5oL3yBXomQXMe4sTQ3+udNq4EslD5Fwx2Ph/Dr1a72O7sW101r2Afqze/O9lTXah67ofbK19O8b2t9eitz1+IYA/R/+gnXSCsmi9w+JHQ7QLgveh/6HTz/YD3v57JnrB4jPt/d5aO7BP1zzf4G/B89CrcRUqJFj8DXqG/2EwmqxBOP4A5BrKD0Tvaa7aV6D/QX0pep+GG7uuuw29evxFrbUPRR8++p3oBaOfjC6wyB/aP0a/WT4Hu+n458hxf4PeXvFhXde9fIH9oWpy+8E7POA/Q477DfRs5UsQO8/8OoD/A8A/Dj+mkxjUr9/cWnsREmP7cNx+4+Xo7VHfDeeB2Fq7FsBFXe95/Hz0sYYvcNp5CYBnt9Yu6rru/uBa/zC8PhW9/Yc/RJ8cda7ruhMAfq619rHYiWk8F/whemHh2ditltW9t1fM3UNz8ZfobVKfi97JiXiuPajrupOttXcA+JzW2nXdjuPIEwA8A3tz8torXon+Af/MbrfDFTH3XvgD9PHYR/lj3Vp7PHq7b/rjNKiG7xAmjdbaVeiZxy7W2XXdLa2130KvUv0I9Kx5pIZNrncAwA+hfz6+OjpuUIm6Au6C4O2/x6B3MFokKJwfXvB1/hd67dsTu66LnLNcdF33YGvttwE8t7X2XUYb9Vz0z4L/Jzn9j9E7lVmso98zP4HeVDGKSe667q/Rmwa/ArkD1Z5+aD9q8BpTvN3ajUwnbmyt/SyAbx9o9zvQG6z//XDI1nBc11r7SvTemOvoH4x3opd0n4H+Bn7lHvoZ4ffRS0Q/2Fr7VvS2sZcN16KaAF3XvbW19osAXjk8CH4HvbTzLPQG9RvQe+A9B71X9PeiFxaOolfpPLPrus9orV2MnqG/Dr0t4iz6B/Kl6H/Ml4au6/5Xa+3Fw5g+FL2zzz8OfflE9ELF8wb28uHonXBu0HZaa4fQ2+Q+G7H09ifoEx68Ylj30+hDJXapVltrPwrgfvQP4NvROzx8IfZhbrqu+43W2u8B+NFhz75n6DNDCTJP+Qyz9tAe+nnPsH9e2lq7H/3YPwbAf3AO/8/o1flvan32o2PotSP3otcE7Dtaa89FH97yXejNCE8zX793sLdN3gvD8d+BXtD5jdbaK9A/yK7DPNXxFwL40tba69A/FB9Ev1++Dr3G6wedc34K/b13LYDv9Z5RAy4y47oI/f5/IXqb51d0XfeOGf1bFn4XvWD2mtbat6F3GP0W9HM4ygS3j7gR/T3zJa21k+jn/F2OduOc0HXd3a0PSfqvrU869Bb0z4jHov8h/LWu6zI/i29Br3b+2dbaa7Djff/aruu2vZFbH3r2QwA+ruu6P+p67/QbbEPDsw7onQVvGD67An10zM+i3+eb6J8rh5Fr+c7Z67hDbxO0x11jzj2CXkV6N3rvyjcC+LdwPDrRq+XehB3vtJvRq22ebo65AX6A+c0ArjfvXa9j9D/0f4Zeavo79A+R62C8YYfj1tCrC/4W/aa6A31owgeZYy5F/5C5aTjmdvQ3wtcO3x9Erxr9q2Hs96H/EXre1Jzv5Q9Owork2GegV4/civ6H/270D/cvQG+v/75h8zwhOH8F/Q/0DRPX+bBhrR4Yjn+xzjN65nzDMG+nh3n8XgDHZb1vMO8/fhjvJwV71O69Rw/75370Wa9+GjuJPEaJD6S969H/kHjfzd1Do3WB49WLXtr+DvSqp1PDmD8UTsIK9ELOHwzH3Yv+pv8gOeYGyD1irvsl8vl1w+drXv/M997fdaad9F6Q+/LPhvX+e/Tai+sxnbDiQ4b2/wy9evEs+j38CwD+RXDO4WGOwvUe5orj2RqO/3P0GoJZCQ7O4b69GbnX8XuC7z4FfUapU+jVq1+OXmP1kDkm8jreCK5144z+ftXQ542h7acNn0dex4+T8/8QY6/3Dx6O/QL5/DPQZ++6H71Q9W4A/033etDPT0TvnPfQsEe+B8AhOYZ9fFrSjud1fBS9Cvqv0T/b7h3G9TlT/WI4xNLQWvtP6FWY13Rdt18pwgqFSbTWfgA9W7msm7ZVFwqFwr5gkTZatNb+HXrd9Z+jlxifiT404OfrR7awSLQ+u9HF6DUK6+jZ4JcDeEX9yBYKhWVioT+06Kn/Z6J3LjqKPpPGq9HHvxUKi8RJ9HHeT0Kvxr8JfbzxK85npwqFwj8/LF11XCgUCoXCPydU4fdCoVAoFBaI+qEtFAqFQmGBqB/aQqFQKBQWiEU7Q+1caG2tO3DgALa2+lwBfPVsxCsr/e8/00eurq7u+pyv9hg9R1NPZqkop46dc+65tD91/F77uNfxzLleBh6ra5nNjR7bdR1uv/123HfffaODjx492l1yySXb53jt6mf6avfM1DkR9muN9zK3Eeb4VuyH/4W3TlHb0Xf6uf2e//N5sLm5uev9xsZGeD2itYYHHngAp0+fHk3ssWPHussuu2y7XbbH9qf6l11zL5+f67H7ee75wl72Y7SHvM+idfPuaz4H7G/KvffeiwcffHChE7rMH1o84QlPwAMPPAAAOHmyTyrCjc9jAGB9vU+Te+RIn3Hs+PHju94fPbpdqxqHD/dZwQ4e7BMPHThwYFdbfPUeuPpZ9APPV/udnqvCgF1c/c62l7XpnRO92nMiwST6nHOWHTPnh0MfmjyX62nHrQ/Ss2fP4uu/XnPD9zh+/Dhe+MIX4syZM7va45rbMXC9+Z77g+fwe9u/Q4cO7frO+1HWz6O9E825xV5+lNmOCqbRg4g/KPYcfhb12evL1A8g39vr6Y+ZHsP1O316J7qK/z/0UJ8i+777+nS2fE7cc889u94D/V4Bdu/Vt771raOxAMCll16KF7/4xdvtnDjR557n88f2i+3q3HrzFD1XdC2z++dcSEEmdCq0D1yPaJ9n7WXnTAlYGbmygo89RgUjrhUw3l+6/7g/7PONzwz+phw7dgw//dN7SoP9sFCq40KhUCgUFoilMdqu63D27NltqdFT4ahamYgYmf0/Yn7KTj114xzWFmHOOZFkF0mn2XXmqjm960bStp3vqH1tI1PlRNefUv9F2NrawsmTJ8N94bXN9c6Y4BQTZxv83mO00TxlY9ZxeOPRY5WxzlHpRgxizjpEGg22ybmxGik9Vt97rJvn6zk6R/Y9WQ0/syYpD5ubm6PnjffciVSPngYg0ihF97S373S9s3trLuvNtC5T585h3Xt5Rkb3gmpFgPG9xleyUf5uWHaq7SnYvtVi8TNqUA4dOrQvJpYpFKMtFAqFQmGBOO+Mdo6jTGQ7td9N2SEz+2d0HY/pzmXBc2wZ0Tg9VqLfKSv2pLqsD1E/Iikxkjiz9pSdWMlS5zGTKruu22XX8+Zer2nttxae7ZyvateP7K7ajn0faQ1sH6P33hrqnKqtVK+bsaHoXvGcRXTvRJoBz0ar9ncyULURAjtMRaHM084Nz+HrmTNnUkZrz9c+6v+2nzpvdv+SWUUatGytVStwLtB97z2PIrZNzGGpmQ+KtjNlm/XGH623MluvT9G9oL4CFmxvat/sF4rRFgqFQqGwQNQPbaFQKBQKC8TSVMfAbqcEqn2sOmauytiqLVTNp2rALNwiUhFlThBT8bqZulkxxwkqut6ckKBIRbgXB4dIVW0RqV8yFZWqjDM1Wtd1OHPmzPaaemaHKTUcj7X7TcOEInWgt3e0/5EK11Nvqxozc+qI9kikMvTMBXpMpCL3xqrzOuV0BIxVu3Q8UfODPSZyuspUvdwHGxsbab+6rktV0YSuIfeDvgLjkDUN94nWy/4/5WC4lzAYHYOHSIXsPVe1vSjkcY7aWVW33hpovHRkhsiePxq2FDnWAWOHukWjGG2hUCgUCgvEUp2hNjc3tyVYL2haWVPk4OQlWKCEye9U4vRYSeQ4NSegPwoNyZxSptry2PDchAjeuChlR44M3rlzQ53mMNss1EVZw+bmZsr8bRiJ14fIoUX3B5NTADvJLPiZ7pksI1nEoPl5tr81sF5DTywDmEpqoKzU06Rwjvlek3d4e0cTgOgYPCc8joMMlqxB59FjtNH96jFanbeNjY3J+y0LddP7PHqm2L3D/3WedJ085pexavu5HZNqP7yEIYq5SS08Z69Iq6fjzULePIc5O745jFa1JDZhhe6nyNnK0ybsZe/sB4rRFgqFQqGwQCyV0W5sbLjMRKGp+zStXhbeE9lVvHRcKtFH4R5Z+IvaEAgvl6pKqhGT9Rh7xFK9OZlK05ilV5xrT/YYXZRMgchCkNbW1lIW3VobpWHz2GLUvsdKIkarqUDnMH9lmB6L98JSAIz8Fuxe0vSJapvVfeCx7uieUMZm+69zoKE53r5nCNaUfdcL1WGKRT0nCyOKUibOgaet0vnivtBX+7/OaaRpmhPup3PqhUHpHuH7KZZsr0NENnvbX332cj94KU2nUpjq3vH2gaetsK+W0eq9ps8fHjsVOrgMFKMtFAqFQmGBWLrXMeF5SUYewxmjVYkyksg96V0/y7wxiSk725xk64SyxIydqg0oYq2235G9NbMjR16umaeyXkcl1yzJxdzUbq210CPRQq8ZJaMA4vUnW2ERC89eqQxG++9VnaGETRsmESUj8caoe1L3v+0HP6NXtb5mrCSy0SqzsuC6KDPkuL37ip+xT9G9Z+8nj+VOMZPMp0HHrOvP99SAALHXcaQl87RUaufmq2eP1OILPIZtqPe2RcR2I22ZNydcHy3iwnmwx0YsPmPsHKu+ctw81s5j5KGu8D6f4y29nyhGWygUCoXCArFURtt13cgGY6Ue9Qyl1DSV3sz7TqUnT2qLPBGzFHUqRVmpM+qjsquIpWSxkJknXYSI+WlbWfycsi3PDhvF50W2afu/vU4kZbbWsLq6ui3dera5yPs7Y/5RXCtZAz/XfWg/U0bOc9hXu5bqca82Wn21x0bpLfcimUf7y/NuJTTekHOjzMr+z+/UrsZXj2Eoi/S8xLW/mp40ghdv7XnYck15TZbjJIvL7JGRZi2znet4Inu8HavaZLO4/ilfkOzeUCar2h8vtlg/i+LDPQYalbwjPN8Q9o17JqpdbPfonNwFi0Ax2kKhUCgUFoilMtrW2sjTzSZ/VwlSbUrq+cY2gR1JRdmO2ic8uwDb57l6Xc/+qdfPkuNH7HNOH6fsnlnGpigWLrO3quQY2YYtppKka+yabXfKU9FCJVYvLlfbVSZm+xCxkDkJ1BXqT6CaFPu/ajaUyVobbrS+ajvN+shjybJVqvcYdOQJzTZUu2DP1XFFpf68drgWl1xyCQDgwQcfBLD7nifmFKQgohh9+39kL1Y2af+P1nIOW1QoW7XXU7tmVPYv2wda3EPH7cXERh7kUYys1yfV4NDD/NSpU6NzIu1OxvLVt0Lnys6JFrhYFrMtRlsoFAqFwgJRP7SFQqFQKCwQS1UdA+NkFDRkA7nrODBWZ1moEV1VaxrmA8SGffaDqmx7jqpUVZXjGfOnEmZzTrxkHlFxBHXCyhyNIieyOU4QUSC+nRNVY3sOIHp9nbepogDe97a9KASM6imqIO26ROEvkarVXk9Vd3Pq3+r1VDWpzlF2HFFijEjFb69HVbTuA86JVeGpKpd94TF673mORprMXVV4di3VQYx9ZR+958T9998PYPc9kCVa2dramhVipvtVHdqsU4+aFewcemO1bavqWO9/Tx2rqlR1PPNUx3OTzxBeWJk+z/T546VEVNW3mhv0nrTjmkrqk0F/W7zfiWU7QRHFaAuFQqFQWCCWxmhbazhw4MAoOYPnGBCFlCiLZLvA2AlKJT01mANxyj015ltpWpmTSkgeo42S60dStmfw1/FmSQ6mnFCyYPoo6Ful1Uy61xAUPc47NkvB2FrDysrKKAFCFmJ08uRJAGMmYM+Jkg3wGErePNfuHZX4NSTN0yJEDmW6Hh6jVY1CtA/tuvA7Mge2wXvjnnvu2fXe/s9XOq6wDY5HWTkwTuKgc+ClGNU9yfdcP4+VqNNL13Up4/FSv3p7h595oVnal+je1fvHY8NRGsOsCEDkYKTM1p7D9qdSInr3nYYkRglZvOeOJtfgfcQ15eeW0RKRpsbTDGjhiSg9qe1jVvRjkShGWygUCoXCArFUG+3q6mqogwdi6SKzJai79lS4SJbsn1IOJTJPsqQkrzbTLOBapd4ocNybk6g4goZmeOkIo9SPRJaAXOfVC6+YOkfnykLbnZIsV1dXR2O3bIpjpZSsrDcLf1CpmcdoG965mqAiSyyiyRdU0le2CIzt3WyDfdai6p62RzVBnCOyVS+8h+OhPVQEpyfLAAAgAElEQVRZdxbuFTEzZV/2Ohpixbn3WA/7SF8K9VfQvmxubqYJVzT8bIo9esdEqVk97c5UKkwvXWhUtETDX+zcRiUINWRwTkhQ9Hyzc8++cD/rq+53O5/KWKPCF15hh6jP3j2h90KWKGc/UYy2UCgUCoUFYukpGCMbhv1fpWS103hMLCoXppKSlxg+SqSunpAcgwWl0kiitYhYgNpoPOlXx6EeilaypOSoXqwq0aqkm/VfbWnePOpcZIkE5hxD0EbLPmmKN2CH+URJ121bhEq86lGtRQVsUnn1GNak58oagB0JXP0G+P6+++4DsJvR8prHjh3bNQ71W2DfvSQHyrY1Ab0dl95bmsRFmbVlFVqeLLrXM5swrxOVgbPXsbbeKY0I58mz+eq57L8WUPBstFmJQ8D30o+8syP7uzcOhZe+U/fZVLJ/L32j+r7onrJzoloIHqOsm+Oy+yMqrMA2NKmQPVbvuShdqT3WjmcZpfKK0RYKhUKhsEAsvUwepSrPfqesVNmIJ92qjZTfaTFvTRjuHeOVqbNtA7FEF6VTtH1Uu51eL2N5KlEqk7WSnkqSDyeVoPY1i2HWtVSNQBYjayXYTLJcWVkZ2a44TmBnLnXshNcHfqZepmR4/J7M1tO+RF7hXvyfxsuSxWnifq+EG2O61duX7700l3PLo9l9of4JkYd0lrZP2YgyaLvOU3G0nre4amLW19cnC6sru/HiwHktMjLtm+eRr9oC1X7w1V5PGeZUkRHvO2Whnq9GVPhANWg8J0ttGxXA8LSLet2LLrpo1/da+g4Yeyjbe9vCOycq2pL5YxBT8fv7hWK0hUKhUCgsEEvPDBUlcAfiuDvC07mrREL2cemllwLYkaY86f3iiy8GMI6pyrLIqIejZnfypPYorkuv48VCqsSojFbtMIBf1gvYkVg1Ubu1/7F9jS327NUE50Sz4yh78KTfObba1hrW19e3NRDsg90HEcPXOffO0YT2akv1yg1qce457F2ZLL0vCa80nHqkKjvhWnt7Vj1Tde96WdSUiavWh/BshbpHNBMQX73rqaaI8GzPer9Gdktgxy8kY5HKwHl/KGvzWLP6J/D5c/z4cQA76+PFcmqWJfUC9vZqVPRBx2DPjwqFRBoPOy71NVB7a+Zjw/d8vug6WV8Etksvd77ee++9u8aXaYgiTWj2e3Hw4MGlxNIWoy0UCoVCYYFYKqO1kkNUpNf7TCUOr2wdJUeW11JvXUrmXuYUSk+U2pTFWbuXStxqV7MenNpffY1Yl5XelSlHpe4yG5DGHbJ9zS1twTHzGM/TVxGVxfLmXln8+vp6mhmqtbZ9jjJbYJyNRiXvjGmyPWo/lL15WgP1YmX73H/sD2NVbV+U6UfeoMDY81RZln5v96cy/4jBeHG76kFO9s0xcK7sXtXsUcqK2TdmpLLX0Xsg0qjYY+0xWQz+2tra9nXYB8/TPoqN1b7a81XjQEQaCK999WlQj1/7nWph5uxztq/3uxcfrNBnUhSTb9vjfc++qCaFrN/Omd7bnFf6Jtx5550A/Lhq/S3J7iudJ5sHe5EoRlsoFAqFwgJRP7SFQqFQKCwQS3eGUupuVSpR6IBXTICgquGyyy4DMFaPKqzDjrqsq5pKnUnsZ+p8oAH8ngE+SoFGeInoVb2UJURQRE5eGjDuOVBwHJ4zh0KduOaEEWl6wKyoAPulpfvsuuh6q9qca01VlP2fY9WyiHxlv2hisGD/qTLmK1XG6iBmr6PpBj1HM1WtanhPFKoB7MwPr6d7xivswfWnMw+PveWWW3aNi04qVv2ne5VtcX9xL9l149jVNKIqbDs3UcJ5D3SkI9TxjccAO2pJddj0nNRUVazqUS/9HzFXdeztb71nbVEO7WOUxjAq6GKvx3XQcBtdLwtP5e2Nh2YIu1fVKU7HxfvK29/6Xn9j7BpoEZBloRhtoVAoFAoLxNIYLd3sMycCL4k/z7WfWwlWDe7qJKJB816C6aiYtleOLXKzj4qqW3jStG0rmxN1YIiSjNv/1fkmcvqwiNIoqtNXVmRApVGPqWaJDyLYcoXAbqk0Kjqt7JQhXcBO2IHObeTYZsfBY9mnyy+/fFef2A8brB+lelQJ3+6lKBmIFhdg29Zhh32LEsF44RDaPq9LjVEW8qQMSlN/kpV6aRvZjibaV2Zr//fC4RRktLyXVUth/1eNFsfulQRkv9RJKErW4iVgUAfD6D71xqihQF5qVNWk6Xj1uWf7GGn19LpeGkV1QtKCDl4CENXmRcl2bCiiPvP1GR+lYbWfVVGBQqFQKBQeAVgqoz179uxIErJB++raHYW2WAlNGSulT9qlMubkpWOzfSOyRAsqHWbl6qIk4sqcrfQeMWW1zc2RLCNblpfyj1C7oce6VRLX63nB7V4hh0yy7Lpue140bMi2rcyYrC5KvOCdo2zRSwCijIXrQBumZ2/VPahsRAP87TlTJRW9MBIda5Qe0o6f7dIerXZKMnSvcHaUHlQTY3jJVaJkDXPCyTJGq214xQXUL0Hn2kt2o9dUpqyMbI5NUDVdnu1c/UlUi5CltNV9ps8/y2j1GRLtVS9MamrfEd79FBUX8NJSqiZKU4B6SWSmnoWLQjHaQqFQKBQWiKV6HduSRJltThlF5uGntquoILKXri0qok54EnOUNlFZnZWYVVJVaVGD9b3yWFFZNK+PU9JnJNnaa0d2cs+zUKX5SGr0PMyJKVsJS+V55wI786IMlu89T06yTpV8dQ2966lNSdMpqi3TnqMaE2WHWhLPOzay0Xn+C5G9UG2otr0oTagyTDsWTUtJj1W1lXnszkvWAvhaJ+3jVEGBM2fOhMlh7P/6TNJ2veIiupaR1iJLzKN7RW2n9jO9x6gRUDbn9SW774Hd66L+JF6ZOntd/T86xsJLMan7Lkr9aM/3klDYczIto73WIlGMtlAoFAqFBWLpcbQqqXjSTsQWvdJkkUQfsWELL07WXt9LO6ZSknrpem1qH7yYR+97YFzInlCp186j2ocim2lW2EEl8cgLGRgzsohRe/bxqICEBT3WM89u9RBVm6xXmisrfwaME7d7jFxjLjNbvdr19VyvmDqZcsROo1hs+7/unWx/E9F+i7zu7WfKmCMNju1L5MfglQ7kmpI5T+2dM2fOhFoED9HzZk662Clbo203asu7J7RPule8qIqoIAURlXj0+jAnBavOafTs8K6vfdG58NZrrle1l5cg01YtAsVoC4VCoVBYIJbKaJkcfs5x9lXtq55Upe2qROlJRJEdRc+x0qhmgFEPO/UK9K6t9lyFl7ze87rz3nvjUalQ7dl2PiMWGjEc245eNyqAEPU7AllJ5M1oxxTF8Hkx2KppUGk3YxhRIYCsIIYX6wiME6h72gLVbMyxAWoZNmXQXp+VxSujzManx2qfM+2FaojI5D32F/kPROi6bpL1Rv2KrhsxoWzPz4WnaVIGNuXlrP8DsS042996b6smxUvYHz0PIjus/m/b9Ty+9Rj9nZiz1lYTUzbaQqFQKBQucNQPbaFQKBQKC8RSVcerq6upuoKfRWqZzLFpSg28F1WOqhCt6pghIVEYjKeqjtSL2uc5oTo6Di8FpM5tpMLJ1D/a50wtM6Wy8b7XPk6pbzY3N7edbBiyY/uoAfs6ds+ZY8oRQkNLspq/keOel6SD0LSAPNbWsI32sX5PeIlLNDQiSsVoz+c5muYuMg/Y/9UxTFXHmVNRdI97DlTE2bNnJ/dPlgBDTSrZtfUzNWfNSSUamWEyB0dC7xtdLy80MHK+zNYlcn7T+bPvo+eAnpM9Q1StnK2bPjejPtpxsz3r4Phw1Pt7RTHaQqFQKBQWiKUx2tYaDhw4kDqYZGzXwktNNsUo5kiahEpx1gFKg9vVOcAL74jc3qdCaey5XjJ024854SSKOU5Kc4LQ52oLsut0XReykq2tLZw5c2ZbamdCB09613VWpyXLSjXhQaQ9yNJ3RskAonECsUMdGbtN36iMKXJwi5yV7DjZfpS4BBgnQFDnKHWSsvtOncj0GE/bo/eTvvfYlrZ/5syZyTSMem0vYUEUcuiV9IyeY3thR9Gzi2PPwq54Xa5ppImag704l2aJP6bCySINh3cModfxQnWmnqfedTxt3iJRjLZQKBQKhQViqYx2ZWVlpIv3QjSyAHE9J5LOI5fvzO4RhfV4pcCitIpq27Cfqd0hYj8ZG47sIJapKQvR9qMQEe/YSNLMbGJZ0gYdRxZ+Za9lWSDH55VbI/Tank19KjVdphWZ0ph448lSwgHj9bLHRvsgCp2w4H3Fwuaa9MBLSxqVQVSboJeCMSqH5iW50IIa7GOWaIRryHNPnjw5WSovusftmDOtFLA3XwY9zvss2kOeZkvvVbVHemEwkXYqeh55bDEK5/HSd0bj1PeZjT7S7k2FRFpkvx/6nC5GWygUCoXCIwBL9TpeWdlJHK+lm/Q4i0xCUbvaFNPIpKko3VdWTFklLq+NqXR2GVuk1M5XLX7u2Wgjz+S92Fsjb+29sO45mNJe2Gvw2kxWb+ci0jDMSdSuhcQjxp8lu4gYtZdmTpmSeo5nyeSjxAHeXuKc6FxkSVc0dWkk+XupRvl/9OolgOE4eIzakbM0qHNSMLbWsLa2tr1nvDWInhGRF6vt31Si/oxpRlEH3loqw4vu6ew6EXP2nsFRogrdq3Yt53hNR5hirpmNVuck8/HRMS8jWQVQjLZQKBQKhYViqYzWi7ny2OLDSWM2Jw3bVFtzEmlHds3MRhQlv46S8XtsmJK+xnR6pcIiKdfzYgR8KXFq7u3nUXLyLGm5Z4uJ1rDrOmxtbW3PC9kJ7XkAcPz4cQA7a6Y2S7IfL1ZS7VER4/DSDWaajOg6yizU3pV5dEcxiV56UpXadX9zTmzBb6aBjFLfRV7v2TFz7g1Nuagl9zxGy35PxUK21kYMOfNiVmQeqhHjj55l9n9d0yxFobLraN299K181ZSYXsEGQtm1Pgs9fwNNAxlpLTNbrR4z5ddgEeUJyGzdc9rdDxSjLRQKhUJhgVgao6XnKO1hngei2nTm2u+A2Ja1lzi3qBC8lzGFiFip5xkd2S73IllSItfYTjuPEUPT7z1pLvIizLz1ohjPOdqD6H0GxpmS2dp+026rEjiZUZZNSqEMdC8xg54np7I/9dL17EbRvo48prOCBNwjGitrGS3nVEus6b04xQJt+1kspNpvoxhIqylgf3UOPHRdh42NjVHcu/fcmeNtHI1xyh7q2Vsz5mWPs32MyoF6fVVGq7H4Wcam6JmhNlQvx4Du56lYc/uZ7itl0PZcnT+9nzzPaC86YBl22mK0hUKhUCgsEPVDWygUCoXCArFU1fHGxsYonZlVl0TqInXf9lQBUcq2OSpdVdmpGitLJKB1NFVdY9uf41gUHadzwFcvPaA6PWkSgkgNaK+9l7Rmem6UCNxzQJkD7h1VdVrVceR4oYkq5jjBRCEAmRp4KnGBPZ/91mQN2XX0lfstCtmw19H9wLlgwgqrOlanpIsuugiA7xgIPDxnEk9Fqeum+9yqKD3VZHRvdV2Hzc3NkZNa5swXJdufs2cjZ8IsdWCELKyI66/PFnsO10yfTVFSCO/ZqM9AdcLy6rrqsyoK9/GuNzXXdh2nwsmy87NkPYtAMdpCoVAoFBaIpaZgXF9fH0k5XkB/FCieSR+Rs45KYB4b9hxJ7HvLaNU4HwX22wQKUUk1hefcEfUxSqhtr63zGLGPzAkiem8Z21Twvs4ZMGaEU5Ll1tZWuD6AX9LQtpuF9SjbmUrn6X0WJc63fSRb5Cuh80MGYv9nn8hCNX2i5xRHphppMDQVoz2WDmcRg9K+W0Rr6SWiJzRtqDq42EILeu2p0J6VlZXt871rz9U0ZSn9ohAgnWv7me47dQL1mJneaxqy42lDeExUBtBj2HoPe2FROgZNWatakIiF22P0vlHHJs/pM9oH3jx7oUbLYLXFaAuFQqFQWCDOW5k8L3RGwxAUcwKcVRLL3OGjtHIZO1VbBe2elNYYOuGl68tCMexxlmFE4QPReC1UcpwKJ7CIwko8ROOYY8+1YQNTkqWyNrtPdEzKCrKUiFEYQpRoxGKKyVo7MpmshtBkKfGUlSg70ZANz59AoeO0Er/u1akkMhlDnNIYAbF9TZNpeM+EOclO+NwhlDFbRHa7vaRV9foWQfemsjfbJtclKvTu3WuqFYjsxl4f9TO2xfXwkp1Ea6hs2AvziZJ3aApOuw80qQn7ouP1tG963UWjGG2hUCgUCgvEUlMw0l7C/wFfx5+x3giqp58qLmDPiWzBHqNVm4syWrLRzLNSJTpNn2ZtdJEtU20zVlJTtrGXouQ6zujYzF6p45zDiqf6srm5OZLqLXvTz5T9egnooyTkkXSd7UNlbbQJWnssJW69nq6lTfKv3tRsN0r+bxGxXg3+90rQ6R7SRCkey9f7Nnq166Y2WGVMcwq1Z16mHKfah7NzMg0GoQkc5vph2HMj72OPbUesNypMYvum15uzv/UYTXvKVy/xh2pVdJxTNmPbp6j0ov3u4SQ4yoraLALFaAuFQqFQWCCWbqONbGnA/MLRXpq5KA4r82Seq5/3bBgRY848hyN7sfYji8FVlp3ZIVTa9dLP6fUz25vXV/uZsqwssbr2dSqN3tmzZ0daEGsf0rR8UZo5zysz8iTPWIrOqbIH9sfzlmUBBLW/evcEmYPa4sgwMjso29eUi6oZsND50pJ6EQu37altTtmJZTzKYDku/dxjTva6U/4beq9ltuXIc93bv1FccRZHm9mTAT9GVeeBWgruD0/TEJVS1P3mlSIk+Bn3MfvheXFH95pqEfSZbcdO6HM702woorYs7HOnvI4LhUKhULjAsTRGu7KygvX19VE2HIsoobSy0Ux6ndLT78WWQUnPMidl1VpwPIqRs8dG2X48e3LEzKLr23OUJUZJ8r25irI7eZiTSH3OuVN2Ld0Hlnl4RQMsOBfeWmrGMbIFjY30ErbrMSq1e0xGzyGLy86h3T6KZ/WYmu4dZe5kJR6TUVu3tmnnkYjs4mqj9TJRcQ6UOXl2WN3HZ86cCfcpnzuqAZjzDFF42aRUK6J7f44NMNL8ZEVG1C7pMdqoIAT3N9+rBsKeE10vi4mO/GSifWjb09+AqB/euCLYdduLn8p+ohhtoVAoFAoLxNJttMqmPIkisslmEsyUt7HneRvF0aoN0NrZ1LMuGofHNNU2q7GRngSrcxB5UWdMXcenbXjsO7JLeZ9PeRVndt05UK/jzGPdKzVnYe3fkU1W19SLwY6yYCk7tGvA/XTXXXft6n+UFQfY2RvMOXzs2LFdfdNxerHFygrVzpb5LUQM2rMn67kaA+tpiGhjVGarNlov/nluDmJrh/Ps7dFzJdJA2P/VgzvaS57PRuStrywZ2FkHXTvtmz0nyuak8NaSiGza3v0bPV+88SiiLHYe+42uq978Xlau6Hm2aBSjLRQKhUJhgagf2kKhUCgUFoilJqxYW1sbuZx76phIfTDH+B0lVvBUrlEyalUhW9UxVTdT6hCbRlGdd6JE4HNSoemxewm4jhwOvPaJSC3srVuUGMNDlFoyg4Yr2T5p2jVVNWmwPDBW72nqu6ykY5YIxV7PS/L/wAMPANhRk2ZpE3ntyLFInXysOl3L5LENdTTK0oVqSIjuA3s9VR1qWI9niuH/fNU58VTHhE0Akjk/rq+vp/tNTSfR/ZE5mhG6H7x9Et0vmTMU1+Xo0aMAdlTunDevP1FK2cjJL3Os5Ktez/YxSsQSmR285DEKVf9m4URTfbft2PcV3lMoFAqFwgWOpTpDraysjFhE5kwx5aTgnaPIQk6mkmt711c2QFd5SmSUNL1+afq8yDU/S+wwx5gfhXXo9x5TU6eEyMnMXtcrPp9dN+urB+4dDcOx7Wl6Qz3G22/qLBQ5P2m4lzfmKLWoTfigCRw0pMWb26j82pxUjNo+96buC5vyUcvwRWw/c2KMwji8RPTKaDV5gibMsH2ymqKM0doUjIR9r6k4s0IARHS9OWGFU0w2O5/n0ilOx2X3iWq9Im1P5rCl+07Zv8cWlYVGxem91J+eY6Y9J7q2vY7uDy+Zjz12TgjjuaIYbaFQKBQKC8RSbbRAboeIGFFkq7Wf6fso/MVz69ckA5E9TM+336nt1rIfMke1Vel4PGao9txI6s2SvEfu71mbkeTq2bi0HW1vjjSasYiu61wm6p3v2WLtOV4KRu2/2pYYWuElQY8C9729qjbRrCCAjot7R+2uej3bR2XOUTINOydRyUANn8rup6igucdSlcFGjNZjavZ+3WsKxsw3hIjYlYepcELPlh+FBmZhKRoyo34X3nUibUuWjH9Kc5YV2oieM9rXOfs+64e2rz4Cqt2y383RpO0nitEWCoVCobBAnDdG63mRKaKEFVnwepTcwpNOI0lbS3ZZqUelM0JtgV56wCglmtoIPalU2UcmDaptLCoHl3kJT62PZ5uZSm6R2XOmsLW1lXomR6nasmQQynKisl2ZfVcRBc0DY+9OepDq3vVsSmpP597UvnljUFtsVFLQtsM9q3tkzl7VudZiApbR6h6NEt17NlXLzLJ91HXdaB7t/Zl51PN8RWRfnUreAsTMK+uHakE0Jace57UXPRcyf5mI5fN7O4/RXETaRfu57lvtq8dwpyIisvvJrl95HRcKhUKhcIFjqYzWeh176cGm2KhnU4pKL81htuoFSpagffPsOZpGUSXOzPasnqRRKTz7fyR1efYVtWGpVBiNxUNkk8ukxMgGPOV1nHlybmxspAxc2+Zacn2y9IaqnYjS6Fm7aOTRrczS885WcDy0pdr+aCEKXdvMNkeop2VkT7Sf6f2j7Xv+BMrQInur9TpWfwhl2x7b2muhb8bSAjsM0NM4zYly0LHO0Q5F52rpw8im6bWve8k7J4rwiLQUHqONUkxmHr1TkQpZylcdx5w1ju4BrwSnlwa3GG2hUCgUChc4lhpHu7q6OpL0rTShLEFZqEq93mdRKTX1nrTnRnY9z3YXlbZThpvFJuq5ylo8KZGIvJ4tpmzbEUux14ukvMxbfK6NxjtmL95/3jmq0YjW32uHiAqwq73Stj8Ve+kxWn7GPZLFQvJYMjFeT/vk2WizdY76HMVgR5ohj0ERURxtVtBc7bhewe8sCX4EvccyFh/FYFtMaaOimGz7/1QWKW8fEGq7nsP8Io3WHC9+nQvPyz26duSRbxF5EM8px6d7NtMM6PM50+btJ4rRFgqFQqGwQNQPbaFQKBQKC8RSnaGYDg3I1RaqrlKVrqcy1HaiBOdeaJCeq0Z0LyxF1YBz1L9a2zNSz3oOJtrWnIBxHXPkVOb1I1JjeergKLRhTpILIlMD0pklMi1kY86Svms9Wt1L6iznqcn0uqr6sufoPOh+UPODbZ/naJ8J7z6IUuERnpOXXidKjOGpb6PQpijMx/Y3Sliha2Hbj94raLYCfAcZdfCJUod6z4HIXKJr6u39yNEwuy91vjQxi5d0Qp2upp6v9n/dV1GtcK//mj5T52xOIpvM/KTtansa0mX/t46Q5QxVKBQKhcIFjqUnrJiTxCAqW5VJXnOcNfR6hJdU2773gqSjNH1eyEgUAhQZ7b0+RiEansu8Oi5EoSCes4cGhkfhKlmoTpSGznOzn4OVlRUcOnRoxDC9cBtlWroPssQlGgqkknKWSIRgH5UlA3EaPe4ddZbz+qhJJjQBg2UROtYoRMiC5+uYNZ2dMl/bXsRsvOtOpT31mLXuxUOHDqXOewcOHNi+tmqe7P/K1vaS+CAKv/Gup3tRnTK9QhLajj4TPVanzwYdT/Sc9eYiSt/paTRUOxU9Xz1HWEXmbKhjjoqDWMdULwyzGG2hUCgUChc4lp6wgpiTqiyyoWX2vMiVXBmAvXaUbtBzs1cGy+/UXTwL5FeoBJalN/TCa7y+23OnyvB5/VIpNEstqOOI7LtZerhsH7TWdqWa866t0qxK61lx9alEBV5ycq/EoHeu7Qf3SBTCoG3b8UTHkAVrIXhghyVGtnIvXI7I0vNZ2HXjHOtaqi3QstMoDaoydI9tWU1AZMNrrS8owPM9jRPvD50PZbJZ+r8pGy3XyYPapT0bJ9PC6h7S8DU7T1HBgYg5Z4mAMvYbnZMl8VFEaUjnFHaInjtqj7V9sM/rYrSFQqFQKFzgWGrCirW1tRFL9UrQRd5/aqcCxswi8qjVRBPAjlSj7EPZj5d0QG0mKilnXo2RJ53HXiJpUNuyfYxSCkb2bM/mnTGE6Bxiym5lP8uC8hU8n9K9PT7yjtXEFZaZkRGpHSparyxdaKRt8byOtfRhxhZ0/ZWlqNSepYnU1KJZGj31tJ7DcCONQFQoABjbZqPCHpmGaIrR2jR7R44cAQCcPHlyNOa9pFGc8obVe9myKtV6afIH1c4A43lXH4pMyxfZVaPiBtl4FJ4/gZaVjJ5VXpGOqcQ13j1IqHaRWgT7POR3NllMMdpCoVAoFC5wLJ3RKrO0ElHkQRd5sdljIrZGRMm47bF7idmKvAu9tI1TJfUyr+oorZ3aVzxmGLHgLBZuLqP1PvP6YseQeW1OxdGurq6OJH9rw1K7lrbrta9pOTXNYYbIjpd5Wuv8K9PkPNpxHT58eFd7WpTD06AQulZTXqe2HZ0LnquxkVkK0IilWo0R/ydz5TF85bnWxqn7LUsMzxhs66Gs7fHakadtFteqLC1Kzeppc3Su1ZbtaUMI1XR4jDBi6hET9LRUandVDaK9pyOfhij+3Yv5nhMTreNTm7CyVqtN4LpXHG2hUCgUCo8gLJXRrq+vj2w/NsaJUAlfmV+W3SliMJnnq0pTyqx1HPZVP9d+2XaibEjqHeqdG9lqPc/ViMlEY/DiGiOW6rH+KUbrzb3GQmaMlnG0nm1W+61MTyVvy8DYXlROLPIVsNAk5ZGUbaF2tmw92N/IvpVlwpryW1CbsTdW9l+9f22pO72e+lKovZfodKUAACAASURBVNWeqwxWz+H4jh49un0O14v21sybdWVlBUeOHBl5KvNc71rK9D2b6dT9n2WGijROOj4vJpbQfeetf3QfRgzOe67qWnox7IooA1SU68Biil16GiLVJqhntt3fmu+gvI4LhUKhUHgEYGmMdmVlBQcPHgzL2QFjZkeoBOQVgY7azSRPtX9GBZGzvmhbWVmnKL40Yo3eddQWPCdf6JTHcobI9uh5gaoEPeccYnNzM2SOZCVzYuw0n25kL7bQWE4912Ml6u1L20+UjQcY7wm1e3nF4nUO58QzE5E9X+fRSvzRvlabnWZ7st/xVZks39tYX2W0eo56aNs+WRtctJf1uUPYPpDlcEyaP9hDVB6PUK1Btk6RtsrLKubZp+3nXh+iPkc+G0DMPpXde8+56FhtO+vrHDauc6osn682Bl/vtWK0hUKhUCg8AlA/tIVCoVAoLBBLd4ZSVa81qqtjVOSk5KVwi1THcwzwUwHqnnOKqmFU1eW1HzkHZGqTyDU+63NUPCByhskcqTQ8IQtfmlKjWagTV5ZqjXsnC2XRdrNk5ApN+6dJBrxQBg2KV6cUT0Wtpg+9jqbxtP9PFQTwnGF0PaLyj56TmrahqmNPdajOfXzlvaGOTrY9VTfzvYY3eXNiw3cUTFihDjLHjh3bPobJK9ThRxNteGs69eyYk3zfcxbUtiPnOk2u481TpL6eE+YXOQR697ruTa+8ZITIxOelliSiMClVHXtFBey5pTouFAqFQuECx1IZ7cGDB0cJBay0EZViyiSOqHB0FHzuBYEr240KFnvneMWzgd2Sp7LgKKmCJ3mqc5WyLi/cKOqjfp+VASSiAHwv+cTc0CfbJzt/mcOInU+PNWoyi6j0mBc6pQ4+USILb568UAzbtu23Xk8dpzIHqigUKAtBmtIsZCkHI2cXDQnywon0PlJHJ3uvqPNadO95JRa5LgcPHkwTrKytrY20BZZVkzVr8gz2U9mwHWvkyBg5ollEzznvPoqOzdJ3aoiRMsvs3tBnR3Qdz4Eq0i5mZUAjTIVu2WNUy6QMF4hLli4axWgLhUKhUFggzlsKRq/MmJb8UpaYpetThqQJzLOSYJrsQBNmePbIqbCXLJQlYiFZkn8iSgvnScwRY1bp27PR6tiVyXpMTfusEmzGJs+ePTsZqqJJE7KSh0Rmo1fJW8PLopAd267uqznMX231uu+8/us5U3vIIlof773uL9UQaV+9czUxhdpsbWiNpj/Ufe2xoL0UAaAmjayVfbAhH7TXarrHLCkDEWkNouQX9pioMMWcUBYie65pGJzOsb73rhElRPGKdEQJX/R57bHUaHyZBkXDongM1zoL77F7qGy0hUKhUChc4Fhq4Xd6AAJ++ShKPlq+Tr1oM++4qJC0V0ZMvSTVrpcl21YP6cjD034WHTOVGs0bp/bRKzkVFXyPbEJe36ZevXbZlyyYnrD2sEiq7bpuV9o+z66iLETtrF4KxsjLWMuVZexNUweq97FlGpHXtDIcy2yVHZyL9B1pR+ycRCyf/dDkE958qpexXsc7J/JxUA2B/czeN1nCisOHD4/W1EvB+OCDDwLwvVWBPL1htD5Z0pvII957Huh9mY1Xr6OJI6JnSWajjaJFsmexjiOy92fnqoe+5y9DxhrZZu1ae5rHYrSFQqFQKFzgWCqjBcbp06yUo2ntopSMFmpD0PeZNE1E33kxXJEdIksiHtmUItuSJ7VFHr1z4kQVmVewSs46Hq/PU7F2Xhyqeplm9tmtrS2cPn16u0+UXK2HqnqV6rpkdn3Veqjnstop7XeRDUuZtR3/HK9sQhlMlK4vs3tF8dteLDvngt+RnfJcTZFo10DjkZXhemkbPY9XYFykwe4dLeG3tbU16bHO83ku7Xj2/8i258UoRzbliOlmtsyoAIpnl9Zj9nJfRukTvXS40R5RjUfG2Kf647FvhT6HvPuJ960yWa6ntdHupTznfqIYbaFQKBQKC8RSvY5XVlZGXsfWHqWxkFHRc0/ymrLVqj3O/h95F3rxmioJRWXM7DkqSWaZmRQR+1Gp17N3RN7FmRQeScpzJGdtI2PfnqZhitXqfrDStI2ptO2qbS5jtmRemu2LDNru1WjNtFCA3VuqLVAv07letLbP2T6IvD8zRqu+Deq/EHkU2//Vtq1rnbE7tcl6vhxkLHadMq9Vmzie7drC77p3dL29+Hq1d87Z89GYNSrA0wB547Kv3n6MYm2jNmxf9Vx9VnjPYn2ORs89T0MQ9U21gXYfKNtVRqsl8bxzuq6bzO61HyhGWygUCoXCAlE/tIVCoVAoLBBLT1hBqOOThYYAEVRNZCkR9VhVY3mp/CInniy9YeQq7znBTKl/91LrNaqV6TnURMUM5iS52EuSg6iNTDUVhRhEaK2N9oOXfJ9qI1VXeqFakZOQ7h2qSRn+YREl6vcKRkRzqCYKz7yhqrQphzp7TlRoQ80q9rOoMIB+7xUIUJWrXtcLl2NfbY1Z79X+b++5THV84MCBkcnH7h11kOKrjnVOCkZFVq+ViJ4/mVNkpGL3nIW0/Uh1bVW/ui7Rmtq2o/BBbdNzhorMXPreKxCgDpuaitGbE1uko8J7CoVCoVC4wLH0hBVz0v9RslKHEu+cKOnDVBJ+YFxGKir35kmWKhmpZOmdE/U1ShLhXSeSvjzJMjo2c6SInDmyMBliKpjefu5JxhkrWVlZ2d4PXvKJKGyMTCxzMNH+sl2PwRJsj+wncuDz9gERpfP0UktGe0fbtNfT0mqaXlHT6QHjEB1ltvq5ZbRROEmUMMH2jfNJFqJM1kuDOgfUpOme8UoDKqPl3smS60yxtyhZg9dGlpRCn0VR2IsXVhj1IXJEA6a1ER5bjvaktpE5bkXhhF7YJNdDmas+CywLzpIfLRLFaAuFQqFQWCCWymhtAmeVOoBxWSoeo6w0S2ivUDuLFxqkYS9RekV7vSk2mtl1iSwFmiKyRWf2hSgERDHHvV376s3JVJ8821xm67Xt2VJoXn8jRktpl4nsvfSNkZ1d94y1rWm/bVC8vY5lQRErUZ8E21Yk2ev+89ZFbaY8VhPCe2FXEZPVknd2TjScR+fVY3/RvReFbFjMLbtmNWlsx/ZbmZGyaq8Uopcu04M35sgvYY6tcMpXwrtO9PyJkmAAceiZ3iPe+VHI5ZQNF5hmtJ4mwoZq2WM0wY2F1baUjbZQKBQKhQscS09YsX1hSXNnP1OvMWsHsscBsdefSnFeWSdNkKFp++awrkjyskxmqtRcxoYfTjB1JEHOGY/aczS5QlYoOfLW9hLse2nnMtuuTTqg62b/557RwgYe84hSEhKaYMGT4iNNg/VqtGO0iJitNy61P6nt1kujp9/p/HrnRMkmlOF66RT1HK997YemRtQ50kTxek0g9sTntWyiHK8PPF8THaiNz0sXS+jeiVid/m+PjRJL2O88/4QIc72AM2/wvUQbKDLmqp9HzFX3ufdcjc71IjX4He3v2XNnP1GMtlAoFAqFBWKpjPbgwYOpJ59KwJosWm1NwJhhRV6aXsxgBJWEsrjWOWwxioGL4lk9W5BeP5JO7XeR5BwxG+/YqRRzFmrzySTayPaTtc1jqeHwvM/5qoUCyIxOnjw52f8o3tSzLeo+iLzRLZQNZbbnaL9F+96zt0bj8e6JiMlGpe88qB1P910WNaB7yIupVwaYaVl4Ltv3zqGXMb9TJsvnj71PIg2aMs8s3WDkpa3f2+/2cm/rnoieWV5qTE3PGRXR8NJpRvdyFNUBjJ+1U/4MQBxDrHvG+73QgiKLRjHaQqFQKBQWiPNW+N2LqYqkTmUAczLnRPGMntSmmV/Uo9BjMkRUNs+zd6jUGWUR8uzIej1lmFmBcZWydZz2XJWYIynYk5xVytc4ziweecpGa8/1+qDFA1S69VgDPZG1T1EssV0X7pnIvk94LDXaB945yiAi7YfnDaoFAbRYu5azs+cok9VyeRrzbjHlsWrXICocovZqz5t2rs+Bt1c9b3DVlCij9bRhysSU8es9aPur2iplll5MrPqaRPvOnj93X9s+RuXworKQc6D7wRtfpO3zNBuRj0vUlv3MPi/KRlsoFAqFwgWO+qEtFAqFQmGBOG9FBTzXa1XVqkOJ50xBqGohUptmgeOqQpnjfKWY484/Be94VTNlCSSidub0I0pRpnPuqWOiMA5PtZypd7w+bW5upqrCKGG5qops8LqmadQ51XF5ySCobtRzvHXhZ1RJqqOep1JU50EiUrlaVa6aRthXtqnJJ7zPtJhA5sineyUKY/MSs6gKmnPkrXW03yKsra2Nwgk9U4Q612iBAzvnkfpf58VTrUd7hfD6GKVPVHW8PS5KVakmKm/fTTk/zSkQEal/CS/sRtc2eq5753gqaX0f7clFoxhtoVAoFAoLxNIZbZbcXSXLLKG0bReIk2xniKRBZcFeooVIwtS27XdTErgnWU6FCXjzqeOK5iJzpIjCCPR7e+0oLWUWtjIHXddhY2MjlOKB8fyrQ503Dk2bSOY3J92lhgdESS08x6bIIZBtWdYdhb3onHsOLeo4o8yW39uQJxZS4DEa/hCFm+n/ti+Rk6H2145T7z17jmorrLZDweeOzp/nABglR/CeKbqGUd/4audRv1ONRlQEwDs2OydL0uG174XqTDl72nO0fdVIzmG00b3nhcBFWrYoxNNrp+u6h5UUaK8oRlsoFAqFwgKx1PAeIHY1945Rad6TdqbcwqfKy9ljIqnYCwnybCL2vReikzEy+71nm9Gx6+deeE90HZUwM4lujh0sSsQRvXrHzkGWMi5KM6h7yAstUTYYaQQ8iT9ia2SGVupWlq1pIrWcndd/hfbNs7PpqyafsDZaLaQwlUbPsiZdZ2X3HkPTOVbNlCbOAMY27gMHDkw+T9T2lzGxKAGC558RabI0yUnmQ6FjzXwQsjSNeq6uXaQF8eYk0txpm1lYkT57o/f2HNXy6LPfC+nTPmT2V/XhKBttoVAoFAqPALS9esQ+7Au1dgeAf1jKxQoXKp7Qdd2j9cPaO4UZqL1TeLhw985+Ymk/tIVCoVAo/HNEqY4LhUKhUFgg6oe2UCgUCoUFon5oC4VCoVBYIOqHtlAoFAqFBWJpcbTr6+vdkSNHwrJrQJz9KItFmxOzGZ0btTUHU+0vysksmpv9vl5UiixbN10/jd/L4pFba9jY2MDm5uZoES655JLu6quvHo3VG3OUm1VjZLMxZeX6pj6bEx8+hWwtz2Wd93OPPJzSYt69GeXF1fe275qHd3NzEydOnMDJkydHnVpdXe0OHDgwioWdk3c7y/aWZUg6Vzyc2PL9xtS+Ptd74eH2J2tT8wF4ccleIfvTp09jY2NjobXylvZDe+TIETzrWc/aTnun9S7tZ5oKj+d4KbV4A0UJwLMk6FPw0n5pe3qdLNic0BvZSwum50YB696PWJSmMUL2o6kJA/QV2El88MADDwAYJ6K/+OKLAexOjHDvvfcCAO67777tz+688063f1dddRWuv/767X2gN4u9Jtvje6YXZAIJe462E9X6nZP+bSodnPdZlITEE0iyZB32vbe/dc9kqfjm1MiNrjd1b2kiA2Dnfo1ejx8/Pmr7xIkTAIA77rgDQL/vXvWqV7nXXF9fxzXXXIPHPvaxu9o7duzY9jGXXXYZAODw4cO7xqZpKL1kIJr8IxLevFrMut5znlW6Lro/vB+iaP2zohlThSG85B1Rylx91YQ6QPyMmpM0hO0cOXJk13W4T3jv28/4rLn77rvxzne+0732fqJUx4VCoVAoLBBLTcHYWgsTjQNjdSKRSTOKKXWglaIide8cdUykAvfYT9RHPcZjE9qXrNQYod9pu1GCcA8Rq/Mk50h1YyVKwiaJ5/splWnG7sksdA9lkr6W75oq8+WV6IrYaabSj9SOWbGEKF1e1OfsGOLhqHJ1785J+ZeVctTUmTpfZJWWgWoK0Sl14pEjR1JGRm1YdG9l2qqpsXpzH2kNIi2F/T9Kc6ptWyiDjOZrzlpq2kN7TtS3KJWuvZ90/qLUnN45Om9cTzJcez/pnllZWdlXFXeEYrSFQqFQKCwQS2e0mkDbs3uQ7UQSpqfbjyTjzO4RSUSRNGf/jxwo+Eqpyms3ctDJHAymJOY5tmFlOF6BaT02ci7KWLf26dSpUwB2l6XTNT1z5kzI0ruuL/yu/bSsWO3CUWHuzKYYsQQveXmUlDxzktH1jthvZjOfctTxGO0Uk/WYuo5zL4xWz81YWFQGUksHegXN5zDa1hrW19dHPhxkO8DO+vIY7itlcV75StWyTSXjt/2dSmif+WpEa7rX8pNTfVSb+ZzSl5FNNjtXC7vMuTcjezXPpc3dPidYgpJrvb6+Xoy2UCgUCoULHfVDWygUCoXCArE01XFrfU1Iqg+92quEGsIJT7WoqkJVl2n7ts3IYUHb8GpuRrVcM7f3KSerOU5JWlc1c6DR9lQN7NXU5TlUt/BVwxky1/woRMhT0WhfPLTWtvePvbYN1aGKMbpWVptySrXlOdBEquNIdQjsjJFzGpk9vLmIVMZ6H3nqP92TqsrlXrbf6RxEqjzvepnzk44hCjXSvWPVf9rHrB4tVccc49GjRwHsVh1rfVtVTXvPKl1LvZeykC3FlOnF/h+FWWWq1annjre3VJ2uzzvvfpoKAcrU21qrdspxy2uXYPv8rbEmK6qOL7roIgB9aFipjguFQqFQuMCxVEZ74MCBWRXtVRrUUBBPQlOmF32fIXLesG2qYwwl7qx9dQCLElR4TCDqS5TAwrYTsQPNrONJzpxzMkV+7jFabVcdRdiGTVihfZ1yaLFSqTd2bywWGlpgwX5GgfZZNqGIkXkSuWpqNMmBx3p07xBR8gvbxygMRsflMdpofMo4vD5HTJ3w9ttUyFnmiLS6upoy2oMHD46YDBNXADusjdfU9fa0Lspgucej8MXMaSxyhvMc6aL598YfPSOm1hYYh1RGzlCeg6C3r2x/PO2L9knvQe85x89s8hxgZ064rtRiADsJbPg8WVtbK0ZbKBQKhcKFjqUx2pWVFRw6dCiVbqOwlyhoHxhLZeqaH4Xj2HPVVsfrZOm+2EdKygqPlXpJOrwxWEmQfVCJbk4eVmWaanf1EoREErqyYk+6VztpZj+M7MgebFhY1O8oDEq/9zQP0R5RKd6uS8QKMmYdhRzpvrdjjXwZorR9to+U2pXR6ni8/RaFiWhf7RpE/hLEnLUm2K5noyVTUU2EB/qFMOEF0y2S2fIYYPw84L3tadb02URNTzTmzEare0m1R8A4b28USmWvw/sx8jnI/EtUc6cMNwt5i0KCMr8ctZPrfeWlXVV/jMjngmE+wI5tnp/tJRzqXFCMtlAoFAqFBWLpNtpIigfiJO+Udjy2oBKWSpAq/VpJKQrOn4OppAMe1AuU49QUgDbZhdqC9TqZh2pk/yIy+1rEujzoujHlokqwnvSbpXTUMemYPUar44jYvbYNjFPxsX31PrXHRGzE2w9TCSQ89jOVejHylLX/RwU2lHHYY6bmT5PpA2PNhtorM/u4siG+16IWFvZ+ivYPUzBecsklALD9ajVRapvVzzM7q7LdyP6aabj0c86b9WngfGuhAz03Y8HR9bn+9rmj9lZqR9QL2dMQ8RxN8q/7P7PvRslp7LjVP4Zj1z7b8ZPJ8vXQoUNLYbXFaAuFQqFQWCCWmoJxdXU1lB6BsXdqxOKs1E7JNLJHZcxJ+6DnzmGLhEptVrKM+qLSmydZRvFlyr4s1LtVY/44r0yNaBkU2408lzPbnLbHsnkeI1A7zunTp2exWtuO7YMyCr5nn8iyLQNTe35UKMCLC1SJXj0t1eZk24vs3WqXtP9PeeV6+0DnS73CPRte5KHOe5KvXFtvPvW+VY2BF4/M+5ceoraIgF5H77UsjnZ1dRUXX3wxLr30UgA7JRttH/S+0zmYE6seaRoy9qZtqS3TY29a/lH3kG1b74WotKOugfedxtXqewt9fmrcuMc0de/o881bX9XYaI4Gtm+9jjl/d999N4BitIVCoVAoPCKwNEbbdd0uCY0SipVUKSXzuIhxWvsK7QCUZpQ9qlQ9J2F75C1nP7NJqe2rtu0hkha9coDaF2X1Htsi69DE7GoH8yT1yIuW4/FiYafsK2SVmVSasZKu63D27NkRk7HMj/3imFgAnpKrFoAHxl7YaltU2DWmlEzvVdp8eAz3qGczjRgNx+CV/4ts56rxsG3zehGz4LEeK1XmdP/99wPYuUc5r56NVttnHzknlq3q/KlHPOfZjku1F8wc5mFlZQXHjh3bZrLsg32G6D2kBSq8OPCoIIiui+dpG9nM+Tnnx84t+8DnHPsf9RXYWX9+lpWp0znR5wvXh9dn3+09EfnfqD3fY6ne74G9ThZxos9k1RDZuaeN/o477tg+p+JoC4VCoVC4wFE/tIVCoVAoLBBLVR1bByGqE/kK7KgNSOU1bRrVSF5gNaH1K6MCBfY7bYvX95JSqxpMnV68GplUu2goEs+NnKXsMQSvq323x6k6S1P+RW7xtl0N/s4SMajTCNPbqZOHVfWq+vzw4cO49957R22z3Y2Nje0+UP1r9w5Vm1R13n777QDGqmN7Dj+jSpDt8lXHZfcB15RONrpH+d6qSWnm0D2jqnAvvEfVYDp/qgb3+q8ONerEZufknnvuAbAzfydOnACwozrmnNm9o2pSdXjjnNk5oSqP83XllVfuastTc6pDWObMQmcotk8VslcgQMfBZ4lXE5fzrE5JnA++eg5gqo5VcwPn1hY+UNW6zi2vz/7YcUXJXPTZ4u1vNXdoaKJVp+te1TmyfYugavzIzGb/V7U9+67mNvsd92BmstpPFKMtFAqFQmGBWCqj9cIxLChtqsTHz5UZAnHpJUqh6lxhj1MHAjXSU8K0KbwiFqqhAV74krJrZZ4eo1UWqi7yhOd8pSxHHZnUCQMYJwJXTYBKq8AOyyEzYl/JbDkeK9Gq48T6+nrITLqu29V3rhdZLADccsstAMYMjH3SgH9gzGCVKeu4LAOgRMzrcKx8Zao/7l1g7NijIWmexK/7TRmeJnaw68J+azgPx8n3VpPA/+kscuedd+76XJ2z7L5TlqX72UsaomOOyuPZPappT7uuCxPFrK2t4fLLL99eB8sSCQ1DizQb9vnF+SDz57G6/7heZO7AzvOELFsdnLjm1JbYfkdOWJpchWMH4oIn0XMIGCfAUEdBvtr1Uy0l55X3KR0UCbuO7KtNJGHHrYkmbP95jKar1fvLwjrhVXhPoVAoFAoXOJaasMKm0aP0YSU9DbPgd5TsPAktslVGZeWs1EZJldIpz6X06yUdUOaorJhMx0rtUXo2Qu0S9jiVVCml6VxZpsYxsg+UJDVtm2f/0jnW9fKKKLBPlOp5Pb7XQHLb/6gMnAXDezgXbJ92WAB43/vet+uanI8okYC9tqbRUxt2Fo6gSSbUTmXnXDUnKr0ro7J91FJuUbkyu5a6fzk+Mg1ex2Ml/E5DM6JSj/Z66tugTM3uId4v/IztKRu3rOTRj340gN0he1E43erqKo4fPz6yOXohTZwXslEdu2Vk73//+3cdq6yNTJdrbrUhaqtXuyG/p1bEzoOyOD4jlcXZz1RL4CXbB/wEEhyHMniO12qVuI90Dngv8r337OdnZJpcJ2qI+BtgyxtyrFr6kPPI/eGFPPEZf/z48WK0hUKhUChc6Fh6mTxKF5RCrDRB+4ZKKMpSrfQa2SqidHee96JKlpSus5JqCvUy9BI7EGp/ou1O0/fZ8ah0miVZUAmd86oJETybt861Bq5zbjzvP5VGNQWcPYf9pmTedV2asGJjY2Ob5VC6trZFZevKVr2E/Zo4QDUOamv00uipRkPtuZ53a8TiNXG713+9vjI5r488Vz2vNUEMME5qEZWhVAZqr8NXTTzjpetTTYna1TxvWt4v1hM30haxTJ5qGuzcq3dx5C171113bZ9DGzY/0zYIL50i+6rpLFWzZve3egpz7I973OMA7LBfO8ecS+2b+qB4XvWEevpz3GSn7Duww+75nWolyHTZR8tO1b7K9eccUXtlvdw5B3pfka1qEiPv2Ec96lFpmcX9QjHaQqFQKBQWiKUy2sOHD4+8J20Mn+rl1cajXoDAOIm/MjFlflYCV+9PXpfMzEvBqDZftb9S+rWSV+T9FsUZWqmU/VbvTGU0ltFqMu0rrrgCwI5ESbtKloKPfdbSU3xv7Wxqt1WPQSv1av/tuVmx8VOnTm1LzByHHbPOLfvJY9T7GBiXHNO4U2Vi1qalMaPK1rhXLcNUxqDX9QqZR8W7PcYM7J4HjZNVG7pXVIJrxXO5huojoHGdwNizOyqTZ/vMdrhXvXJ/eh22b1NMZuUpV1dXR3vSK5cZFeoga+X+s31gv9ku51i9m+0zS+87jWsmvBwDCvVgtnuHtkpN8alz7bFxfW5yXFkBDI3x1bSN+v5Rj3rU9rl672lqW55j1yYqQqPPdXvfqY/DsWPHQq/s/UQx2kKhUCgUFoilFn4/ePDgtoRCVmUZDSUiSj70SlO7kbV/qhRFKYlSCo/l9aynm7Zx+eWX73pViRMYszPtE9mClfSuvvrqXWOltEtPOrU5WUmW4LwpM9NSb3bstFVcddVVAIBbb70VwI6dxbOd0Rai3qCU6jmPdg04p1MltLx1syXVMhvt6dOnRzYmO2bNmKXFs71MRsqMyPzVNqvrZPsfMWm1wwE7a6eaC7Xv2+uoJ6pmHlMbrccweV3azqyt0bZl27/22mt39UlZmGf/0mxc3Acaz81+2Ha1oLiyS6u9UK3SyspKuHdaa1hbW9s+lvvE3p9cDy2lqJ7E9t5nvzVWXNkR7w3rscxj1UbOdeKe8cplEjyW97J65wJje6TaZJUBeoXmVesSFY6w19FcAnp/PeYxjwGwm/Xfdtttu+ZEfWs8n4BozjUm13pvE9YbvDJDFQqFQqFwm4/wjgAAIABJREFUgWPpZfIobVDCsxKK5otVO6FKU8COVPSkJz0JwA57pHTNV6/EHq/DmDhe74lPfCKAnaw4lLaAsV1DMyXxcy/riXpyav5Or6i6So5edh07Ptu+FtNWqZBM18ajcg3IOp761KcC2IldvPHGG3eN045d+6JsxUro6tnZWgtjIVtrOHDgwEhC9mwvlPTVW1LzGltQC/KUpzxl17n/9E//BGAn/6610arET2hRazsmtS2rHU99FIA4e5BK4Z62R7M48fqce17H2jc1TpPncg+x7+rZafvPeeJ9xP3F+4yM1/6vdnDuHd279n/rNT7FaNWb3otrZSw2max61lpNk/oYqN1TPbytB7GWr1MNh8a/23M43/oc8PIxR17GGnPtlSXlPtJsb4R3P6mmQfcO96MXl845+IAP+IBd5/DZq5oUrx0dj/fc4RzwmKNHj1YcbaFQKBQKFzrqh7ZQKBQKhQViqarjs2fPjtKPWUM21Qc8Rsu4URVhVXg0/lO9R8M3VR1UPVCdYdUxmppQU+R5yRk0jEfVvbbsG6EqE6oz1ZHGCxhnH3lddaDQECF7LKGOBVSJ8Xo2jRrb0XApquQZ4sAk/rZdG25hr0s1kFUZqhv/1tZW6pSwtrY2UmvaOeYaUU2pyQY8BzOqP6muevzjHw8AeO9737vrOE1ZCIxVWVx3Oi/RSSUL6+AcqJrbqqM10YqGQaha0EJT0KmzoabOtH3UUofqKMQ+W7WcptyjaYL35rve9S4Au+8n7m9NzKEFOOxaq2NYpjpeWVnB0aNHt52SvFKbule4h9S8ZceqjkSa9J+vXmgboSYezrGXdlLTmOrzhutvzQ78X005WphEnaSAnWeCPjv0unZ/axpSDX1Ss4BdAy1jqE6rXBv7e8Fj9VVNTHZc7JsNcSxnqEKhUCgULnAsNWHF0aNHt6UsT3rXgGp+pwH2NvyBkgkdV1TyorTG46z0zmNV2tXE2Z6DgUq0kQMSsCONqZOAhvOQLVgnGS1xx+tSUub4LGPTsBpKdlowgMzNSqV0vacjC5ktHcMYGmIldZWQNYG/Ml1gXKJvyqGltTZKrG/niXtEw0M0BMAyP2o/uA6W2dtzNRwGGJcCpLOYOit5yVU0Ib86qdj9xvn3kuEDY4bhFRjnXJBtK4O21yOz0PfUZJDtcQ0s62J7nAvuSQ230GT2to+6Z9hnu6fVCWZtbW2SlbAdvnrOfLy2hoNwDqw2jPc0z+VYNZGNOkkC4wQlGr7oaSf0HD5fosQOtj0NddPkM3zvJezXsDmuHTWJ9p6OCsursxXXyj6L+ZlqAHh9rpuXkIN90XKq3pzwfOs8liU72S8Uoy0UCoVCYYFYesIKSg+URmxoSZSQQJOwW1sfv9MSTSqVqoRs26ckx+vSvqYB5LYPylj4ntJUxkrU7qG2O6+Ytoa+6OdeQXv9jueQcXjJJzQRws033wxgZ87J7uw5GtKgfeT31u7CdeJ6nD17NmQlW1tbu0LDvIL1BCV9XkuTRGhZRdsXtRvTtuhpX3gs22Wf1OZowfnQBCVqM/UKA6jmRMvkqU3TtkfmT4mffVTp3rZDrY6m8yR78FICkn1w7rlnNCGDZRia+EJDhNh3e99qub3Nzc002cnZs2dH95ZlU9zL7HeUQtT2W4uHqB+JFnSwe1X3RpTO066LPjPIspXN2XnQpP7sqzJmr8Qen4mcAybx4bx59x5DmDThhi1naMfllZ3kuTZFou2zfYawb5wLPvO1OIfdOxoGVTbaQqFQKBQeAVi617Hqw73SWWrLpPREycSm0SO0iDuhiaWtXY9SkrIdlVIte1NbqXpyUvK3Er+yDk2BpjYie656m6pHncfulJWyPX6ukrsdX1S4XO1HXhC4lipURmuTiBNWip5iJWpztOdqQgUNsOfnlnWrpB8Vuydb0D7ZV2VtasMDxt6fymS5v612ItKCqL1d95RtRxP1qwbC9lETISjb4Vzo997c8F7Ue976L6jnvbJ81QLYsdt9ntnZWmsjW6nd85qekfNjr8nr6Dnci/rs0NKXXgpJTZSgNnqrndBnFe9h+lTwvaed0OeOPl+5tp69VTUKnHvucy/pBDVlqmXR+9dLp6h7VL3r7fVUy0NogiC7bl4qybLRFgqFQqFwgWNpjHZrawsPPvjgtqSn9klgdxFwYOwVR6nKYxhqz9WUaISVoFV6UqnXi5/UEmCaNk/jUIEx04tiBjWNIDC2cygL1sThtg8aq6xzpGW0bPuaFF/Zr2VOKrGq5OxJnry2lfjnMlqVjIHx3tFYVY2Rtp9pqUW1u3sp47QEHfcK58crdq/lElU7oKk47f+aOlDLfXlSuTJotYdqCUELtsvvoj57xSzU5qhsxJ6jccC8b9VLOIsTz8rkaeF3j4mrPVXtuR7D1ET9nn9FBNVg6bxoqlZgXHCC2iEyWuvrQGgeAuvhb+fA6zOPof2T2g/VpNh1YR94DveOpqtVe7y9HufT05zZsdg+RN77XvpLIkpluygUoy0UCoVCYYFYGqMltDSYV4BZ7YNqM7O2OdXtU6pRD05lVxZqt4my4Nh22G9KmGTZtE94di9leoRKlNbOohKklmfjsVbS03nSmDj1GMy8nKPYOE8S5LG6bh7rUm3C6urqZBytMjIr7aptWW3lyuLs/8pOVXugbdvvlDlrMnzr8cjP6B1JyV9ZkYV6HXvz5vXZ9om2M2X3HgvkPaBFCvTe0H1p/9dsZRrH7d2D2p7uXS87m9U4ZNoQFjSx47JjVw0ax6pravugbFSZl6d1IZQhq81WNRDAzhxSc8M9RGbr7W9dM9WoaDyrxzD12aF2f69QCPe5auy0NKZ97ui6R3vFy2mgpVe1GI2FekCXjbZQKBQKhUcA6oe2UCgUCoUFYqmq462trVHIjlX5kOqrKk1VK56Lt36nDgVefVCt5ahqMy9hv6rqGDCuBvgs9Z46h0QqZdsnVRVzjti2dWjhZ1HNXHWwstD585yt9L3OtarCVRVnYR1OIhUO1cZZH1S1qkkNPOc72z6ws//UscVLOqApHeckWuBnUX1gOm1YdZyukapNoz1lj1VHMaodNSkAMC7CoGaPKDTFHqP7QdfEjk/VmATn0VNRqzPPVMKBjY2N7T2oxThsOzoODXux11Gzgz4zdC48VXWUPlNf7TF0uuRzh/PEdbPPHaqENdWmPnvVqcj2UVPLZoju/+wZrMdo33R/e+rtKO2lF4IUqe0XjWK0hUKhUCgsEEt3hvLCHqLvNFzAk5giBhZJV54zjLI2NcR719OUYBqk7YUPeNK5bZOw19PwCk1H6YU/qKOZMkXrbKWIwkW80AxC50mTEHgsX3HmzJnUKcG7rr1O5ACmpbmsw5GGEmjBCC+9pfYnCivTUm72fy39ZsPHbN9tH6JkA3MkdGXfylbsftMiFhqupGzfY5NRYhG+99ZN58QLH9Jz5oTS0BlKw9U8JyVCx6SlEG0fNFxIw0a8Pa9r6WkjFKop4XNHnzf2ehpeQ0QFHLw+KpPUfecl/iC8sDh7XW/99Nmrzx3b12iP8PnnOZV5x87ZR+eKYrSFQqFQKCwQS2e06mpuJQxKFrQ3eAWJ7XHAmLVp2i89176PUoJpKI1lCZQstRCBsjbbR2U9kc1Cma69tpaa0mLrVmqjRBclyFCp1EstF6WH0+vb79TdnkkcvCQBqq3Ikg7we2VrVlLWBPlaKFtTWdpjtRRYlLLOYzSaElNfPYapbFjTHHohbxq+o+E9XvIBTaqiZfI8ZqFl8jTUTZN6eJiyOdp51HtP0x4S3pzY7zI2uLm5OUq3maV03IsPRZTAQdfD2weRnZew88Q9Svu6FlPhunjJdXTNlMF6Wjgeq9oIHbfVEGnKTQ3v03vDS8EYaeGyZCdRMXrPp0eTeDzwwAPFaAuFQqFQuNCxVEbbdd22lKVFoYGxdK72AY9hEirpK5PxJCKVRtWLzWOamvRcPXs96dRLgu6dk3lYaqIKSpiaGNz+r97GEVOz0uOUdOd54EbQ8WWM9sCBA5Peo2oz9dpTJq5Fxj0bT+R5mDGMqGSfrrGnsdHrRqnxbHtaNEDtlHNKfbF9ljwjA/ESpHAPkeFq6k2PQUce0fq958WvGhPVtniaqDlj7roOm5ubo8QiXplH1TQQ3hwrm9K+aB+9eYruNe8eowaN60LmSt8Qlj5keUNgh7VxfXV8upfs9ThftAnzO/Xmt+vC9tgnPuMje7j9XLWJ2TOKUCYbJUjx7m9bIrQYbaFQKBQKFziWWiZvc3NzZFvwJFVNGacxXPacKM5QoZIzMJbwVApVD0hgR1pSr0wvLVzUxyh9npfOTRmyxsJ50r3av7PUZ7bv9rsp+64dH+dAy2SpXc9eJ4vHVHRdtyvOVsv/2c+i+Dv2zaZl00Lb9npem96aet/ZNuznykrVNqvFw237U/GzmX1f+8o9zFhMrhcw1tCofVfH4N1v0T3prTk/02IJWZvKUKa0K/Z4vReAOO5T++QltFd7pxao8LRwOndRMQFrL9d768SJE7te77rrLgC7E+hHfgK8Pu3U+vyzx7A9ejlzr1Ir4hX2IPiM12eXZxPW51ikofI0RJybKJrDrjWfVZyvKd+Q/UIx2kKhUCgUFoilMVqWq1Jp19qHNEuMSmQaI2mPVQkzYqlW6omKp2tMpJWYKeF57MP2zWMYGs9ICTAr/0ao56DGJHrZhHS+VLrOymRlhb0VvJ7GWqoHuAerVchsbltbWyG7t/3VOE+133gScWYHsuPzMpLpMVnifEr4lKpVU+Mlr9e50z2k2gtP28N1UG90nms9cKOCCppNTG3s9jtC59XLBqdjzwpLaLt2nqLzNjc3cfLkyW327nkBK4O19lv7+V58GXTfeQU1dB/zeeDFjJK5qk32tttuAwDcfffdAHZreTQjGBFl3LPzqf4V3DssnqJ2UPs/X8nIo+t4/hL6TJ777ADGGgGvdCHnTbMALhrFaAuFQqFQWCDqh7ZQKBQKhQViqeE9rbUwaQOwo0amW7iqPrw6mlpjlSoIDReYUz9TXddpZLeqJKoj1GlEVR2eoV9rSqozAuGpjjVxtqYZs4nho9qe6uSjyTDsMRoKpOERXu3UqPiDpwbS2rVT2NraGqm8rHOKOglFTlweOF9TCUS85OSa5k374aXEUzUzwX1h944mDIj2t6c65bEMBaHqWh0Rud9tH3R9I4cqC3UAm5NMnp9lzlUKVfVm5o2trS2cOnVqe5/xXE17ab+LEjp4qTGJKLmJty5qstE9xLmgww4wNsvccccdAIBbb70VwE5yGC/5v+5JTe7iOQ1psRJNKclzrAOUOhfqcy16Vtpjo2eG50invwsE11Yd9+yxnKf777+/nKEKhUKhULjQsfSEFVGAOuAzLGAsiXmu8iolqnu4l6qQ7SmD5XtKZrYEHaESrab480pcUfrjdZTResHvGhiukq0X2qAsforRWilRJdbovZeIXkMasjR9hBZAyJAlUCemko/MkV51bT1HKmWWEYOx2pC5BQgsm9Q9quURNezHK19ICZ8M6fbbbx/1Ta+nTjxzwon02DnaBIU6MXrX8dKARtja2sLJkye3nYnooGP7NOXYSNjrRaUUo4QuVkulTjsaPsT1ev/73z8aD/c+nZ/IZAm7R6MwwigZiH2uagEMLSXKvWTvpygURxmup4XRPkTPGzuv0d6MSqba/20yn2K0hUKhUChc4Fi6jVYlvixhgdoJCS9EQ20IKpGpvRLYYQdkFmoP85iZ2qE0IT3HZdkCvyNzYaiBtY0B45J43jhUivfsuZpsQBmAzpllUGqD1jnw2GQUCqS2Yi/BxFxpcm1tbWTHs32YSvuXsStlhUS2NyNGqRoHa0fmejNE4uqrrwYAXHnlldtjBHazFGUFmtyC1+H1marPnsv2aMfn52R5dl2iEot632aMU68/5/NIQ0B4Gg8vzEvRdR3OnDmzvZ81xMleW9eOr1ly+rn72EtVqCUJef/rq3c91Zx5oVr6bND7U9mjpisFdvZqlOzfah9VM6daN/ZdtTNA/LyO7Mv2uygEzmPqWgpzWShGWygUCoXCArFURru6uhqmPQTGHmeRTt/T7RNRQW6v3BM/i1ijZ5ulFKYJrDVxt2UJ6m3MV/Uy9OwQBCVV9pGJM5Tp2GMInb8scFwZjb56Cdankg14nthq+81YSWsNKysro/Xx9oF6pmdJKab2TpbYXsHrqsejZRhkm9deey0A4PGPfzyAndJnvK71iGU7GtCvDI1zwVR5tj3a8zT5ANu2iei1tJpqcJSVZCwv8gC3+2DKzqZjse3NsetvbW3hoYceGiUJyZL8qy+Ietzb7yKvefWpsBouPlc0CY3atu2zyvNpAXZrMGwb9lheR9eHr9R02L3D/nKdeR32PSsuwvFwbvTZqKwcGKdRjEorZmXyIiZr14jXtEUyykZbKBQKhcIFjvPmdZwx2qiotift8jv15KV3oXoS27gvfqYxjyr5Z+XYVHLVRNdeH6LYXo7PSmBa8D3qu8fUND5UWYMXC0mJX23NKrl7bEJtwppqzrOL2H0QMRTa2bLE8/pZlFYxs9HqPGksqVdUXSVk2kO1LWBnzbg3+V5LPFrblUr0eoxqQ7zE8JEGwxunxtwSUYo8r3RcxEY9zYDa2aIiChbqfZ6VOuPesYW+Ad87O/Kw93w1omeEskUtPmLHpnuEc8znhZeKU5+R1gdA+8hjda/ofUhGa/ed2lGpddE2vDkhNC+CrqmdEx6rtnrdq3ZOVKsYPdc8rYNd02K0hUKhUChc4FgqowXGnmieZKmSiiZOtxKzFmKnLUFtl2SyVmpTSVuLW6utARhLsJqtyLNdqW1WoV55ni1T+6YSn2UgaqvQuY4K3nufRRmIsiTveq63bvrZVEGB06dPj2I7vfg4bX8OQ1Im5pXx0veU0skAPeYC7JauaStlInieq8UfrF1XmYVK6+qBbUvecU8w5pFxmXzPftgMROyTalKUjXqew+p5H0UW2LXSvarj8liw2t5OnTo1yWjVTmifA8pclXGqLdVeW8/V54EXd64REPqM4hpbm6n2levE1zl+EFHmM80bAOzsQT5Poyx21p9A/RN07bRsnmXj/F+LZah3tWdbjwpdZMVH5hRL2U8Uoy0UCoVCYYFYKqPd2toKi1EDYxufvnoetvyfjFZttnxVVmz/j/IXq9ccMLaJqIebF1/I/mtfCF7fKyZNCY/SojJBZda2T+oxGhVI9mIh1R6q4/QyQ0USpgevGHRkK+m6DmfPnh3FjHrSrUrT6qHqMR/1XtS21MMX2LH1kUFGMd+2EPdNN90EYIcNa5yj2sP+v/bOpTeOY0vC2ZR1DS0Mw5ANeDf//2fNemBAtmzAAknxLgbBDn0Vkd023D3QnRMbkt31yKzKKp44jzhrnVmNmIV+Ms6VYqvKJhaTlT6uzq85+D6N+bVM3F3DeXo6EotoTHTHggX3OO3WjsdoWTPr4yIL5Zr3fejtova4wJaVPgb+5LvMWTeZv9aVaqF1/hTDpFeqZbKn9yqztBk/Tjk2zFfh9WNGu2+j9dyqHpIHlNniO51zehymTd5gMBgMBv8BmH+0g8FgMBjcEP9nghVCSsRhMpRcHEoWcJcbBSko3N9KatbqQgR0JaVyotaiSW4Rd8PQlUZ3BcswHHT/NJdxkkLTWOiq3CUGMdmGrvCd9F4TBk/JUNe4IP24T09P2/vSRN534gY7d6Ofh4kna52vKQUy6J7z5Cj9LhcuoX09Ceb9+/df/JTrWMeX+5fJWWud3YtKdpKbuyUB+ncM47SGFKmchG56rbt0L5rIRRPC5/6XQNcx3wc+N6Elw/G4Pq5UKtfAuaYSvbW+fCb47tPfmkdq+9fCWXQl04WdxqptWfLmY6QLmuU+LTSzVhez4JhSGWNrWZiSSykg8unTp7u4j4fRDgaDwWBwQ9yV0T49PR2Eq1PSUAvi08peqzfGZjA/MVomNDR5yCTULYuIJQBk2H4eNtxmcXYS7mZLNVlkOhatVv7u25D1JXaqc+tak23/FaH9XSLSrlVfA1PzUzIFf5K9J7EEWrS0qpNoRxs3kzb8fGIdSlISw2TSmoTc1zrK40nsgkIpXBf+u87LZLKU0JJkOROaR2etY5IhWVBK2GnNIFgy5N85M2ws9/n5eX38+PEge+rzI6v+O+B4ue58/K3siV4Qvy9ksiy3YZKmf9aSI5tMbZoPn5WdLCXfA0mIxY/J4zhaqaCPu3lBkuRneqZHsGIwGAwGg68cd2O0KtGgRek+eLKmxnKSdUj5LTZzT5Yz/fVk0LLMWI6z1jk2RgEJwVkwGTrny7G7pdfE93dSeBwv48qtcN2/I5PdifMzbnyNGP81MVRuz3P7cVu7xBa/8XMyFsdjpVhdaxfH/AKHzse1o/iqzuNt8vR8iNn6uuJ81vqSPaayJB97YjI6PtmHsPM86Hxcb2S0fr52PK6HdN+Ez58/b1nJ58+fX69pKrHTnDVuruNUrtbeUfR0pNwDyjdq29aa0o/D9yfLb/zaaO201nB836XGDZwXmax7NFg2xmeQ8X+/B4nFp7HucnpYApVyUZi34u+VW2IY7WAwGAwGN8RdGe3T09OhMXvKAr4Et1C0P6W7GLNNFhHZaBK18M8dtLwUV5OFl+Irrak1M/uShUWLVZZ5sqxbZjBjGEJqeUernsdKbLLJIF5qzH1pG36/k4FkDElIcd3GaHnOJCTSZOzSuhbI9HR+ZQUrS9jjrIqvKp6rtdg8OKkxNr0+bG4gtrzWkfEx3nVNLJ2x4GsYAzPUd1nobHixgxgLY3PeArO1aBMoA7jWMcfgUkNxHyu9Uq0xgLNFsjQKO6T1rflQpOEaERp9R4lR5rP42NlYo7UQTO8LvpPIepOniM8a3130zq11frbcmzCMdjAYDAaDrxx3ZbSfP38+MDO3Ei9ZqClWws+acH4SpWY85VIbOz+fWGqz+P08jNc11qiMQrcEGSdujZBTNl7LwtuJvjfpMyHFR5v0YmMICX8l+2+XLS20BgGJOXNNtnaNaR3o3jKrVevD2bJigfopJskaSW8MQKbEphb05KT8BVr+bBnpHhserwm17zK/W9y9eXT8u9YSMzFc9wTtYvxPT0+v24rReIOP1qijZe/7uJg7wZwKsUmX4mTtOD0OqTb3t99+++In48psm+nH43vuUoa0z0PMXz/J2FOrOzamaOsg5ecIZLRcj77PpWxjz3nQPHQPUu3wLTCMdjAYDAaDG+JujPZ0OsVGxklBqSnM7FqcCbTOWIeXalRl3ZIV7WoEm2h9Ei2/tlYwxVD1WWtmkFhja/DNsSY2fIlJ7GpiBVrOqZ6NY3l8fNwy2tPpdIiLprg0GUVrgedgViT3Tc0smLHblMiSGhZbNupvxUwlFL/WmYG5ko2PWWPTvs7UmEFMtr3L/CeLJ5NlM++0jcB1vWsWr7HsvC68x+/evaux45eXl/X8/Hxoz+nPk75jXLqJ1Ke58BmjSL5aJK519lhQ/ah5hNY630N5QVhNIcWwXStKzodNVFKjBTZvbzXm/juzpjkfrVFXQONzw2dO3yevkrahR2VXW35vDKMdDAaDweCGmH+0g8FgMBjcEHd1HT88PFRB67WOwXm6CFMijh/ffwpNSmytswuj7ZPS7OlmkkuF7hGWl/hc6Y5V8oDO6y7K5N7zbelyS+fR/Fq6/e647ftdMlQrtUnX5K+UjbRmBWsdXfatHMmTOdq5mzCGJ6fofHLZ0XWchOJbcghdxy5KQRlFisfTDeylOnQdsxQplQS1UAHFXVJZFtcb71dKaGKIogmA7MIbu5ADXcdJ8J6NQJi8l94tfO7oJqWL1e+byrncnezHZKKTH5euY431hx9+OOzDda37TdnY9OzpvcbkO11HJkmtdV6rXOc796/AhL0moZuEYBgW5DX3a8/yJN/vlhhGOxgMBoPBDXH38p4m4L/W2UpjsgOxKw/w8zmYDJH2JSNLEnItKYCJOp4kQHFvzv1SGz3ftgnC7xgtBTH0eWp1JlzbQtC3bT8TUslMg+Q76elw67aJ3PO6+VzJuMjMycz82Bo/E9lYnuJrhyxIDJZr09e3ykJklXP9saDfpRPJIJhoJCbt94DiBkzqYYMCXwdNYrQlOPk2TdIyPetJcKW9KyS/qGeQsoQ+N5aQ7J5HsigysdYKb63zNdOYdI81BybLrXVeK1zHZIKpXIUJlUyGSkI9jckKSZ6U8qcsgWsNOHzObR2k90VLtmRpkidA0eP1+Pg4bfIGg8FgMPjacTdG+/DwsL799tutUDfZGssEEhttcoZkGine2hgLY0Be8ExLjuUusgST+EaTM2zlTGlfWYdi/ym+0Mamz3UMWrZrHRs8t9Z3qUyGY2nlRP6dNy/YiQ68vLy8XttUGsZyAI6Pbf8crbyKzN/XARmfxibmofH4NWGsSrE4scQkqkIRC56PUqPOghi3Znwr3X9KFPJv3lO/zpfKopKoQhPV2DV+T63T2tp5fn5ev/766+s+GouXQWluGh8ZeHoe+a5q607XVrH8tc73Q2MQ46IohL/v9LxTIlN/p/vfvGBak/R4pLwLrTOWAqUWok2AQ2PUtnpGvB1kE15pTU38d5YTsRQuvYudqU+MdjAYDAaDrxx3bfz+5s2bV6tHFlLKWmxiCUmcYWfJrnX01zuj4XdiLLRw0jm0DwXJJZGWMnzJLJqMYtqXbJvsxNkdmQWZGQvkd2AsLjHCFsdlVqifj8zo7du32/F4HC7JKTa5xHQejlNo94OScmud73MrtN+1oBO7YZMBsnyfh86jMTBeLfg1oVdCfzNW5/E3zZUsi8IvGrvvq7FQTGHXOlDXi8882aSfpz0DCc/Pz194IsQinWHq2or5kOklLw7XtMare0xG7mOVUAPb8un8uvZJ8pHxVGa7O8hgW1WH7oEzP33GjGxm9qZnVoyV15GZ0vo7jYXPRoqCVAS/AAASO0lEQVQV8/3CPAa26/Nt78FiHcNoB4PBYDC4Ie7KaNc6W4eyOtxPT+uIvv6Uedbk3WTtkJG51aa414cPH9ZaZwtIFmUS9+YYGNe5plaUbIexZ2dOZN2tKYNnG/L4ZLAtDpLm12K0qQ6tWbm7OLJwiV0/PDwcrNok30lGlO5HOyc9AGRTzowYL271oKkWkvWtZGZJCq+J+gvMQvUxcVvNI7FF1k/yfrdYpIOsl/FXv+5kaC1LPK0hHa+1ptN+f/755+s8NHdv3CAGRi8Vn4/kaaInhftofu/fv3/dR8+j3n2MkTI+vtbRG0ZRfL5X/TN6NuidEMt3WUpmU+sYrSGKj4VNM8gi0/1qdci89qkNIOtmdW+5ztfKjQcmRjsYDAaDwVeOuzJatyxSHRazEslWU+yWLa2aQlTKWmNMRBaQFFtSthqt9Evt69K4yXZoYSZGI2ut1bc6k2nZrcxMZDzE92XWLBmMn3/HKHzMfxen0+mLe87aZf+9xfebKpOjKVwlS7yJ/DOWndSkGLti7e1OvarFLndWObMxW22kf9cyh8k4U5Yz1xUrA1JtbKstTw1FUp1zm7/q98l6Uus03Q/9zSYDKcfAs+bX6vXtnuX8448/rrXW+vnnn7/YhvffGSZzWsiu9bczdao48RrRK5dqosXuNRZ6X5J3kXMnU2czef+sNQZInhzWqlMJavde8kqTYbSDwWAwGHzluHuMdqe/q1hJixPu6tp2SjLpmGsd2SmZiywwH2OzVFtcx7clQ2o6sklbWd9dYo9+Po1J18tr3hxuqbdrTOa0a5PHbXZt8vx8zbJUi0XWV/u1aG3KmkJYwqXsTM+SJKNhO7HUjqvpuba6cT93io37fJJiF9nWJcU1/04sp3mI2ETefyeT3al/XRpjam/J/Iudx0Qa69pGbMfZolignmXGalNGb6tNb+0TvSXcTz/9tNY6M1vFMrmGfa3q+W9eCc1Hmsc+j9Zic1e/z6xmbaN3COt3fR+Bz4gUsPRTms+cq+9Lbe9Ui8910PJZfO7+DhlGOxgMBoPBV475RzsYDAaDwQ1xd9cx3aeelOAp8I7kPiJ28oVrZfePitbpKmZzA3dXJDF1Py+TSNY6ussJzY/NB9Y6Jt00t08S225u9J24N8tImLTWxPv9uHQdM7nIkSQ4idPptN6+fXtwm6fi9ZYstgOvJa9fShZh+0KtYyYP7VoTttBFciG3Rg07EQ+BAiJCOh8TtFoiHVv7+TZM7tmtR7r/uJ7TPpSh3AnDn06n9a9//euQYORlMHrGeAx9nsbCbXV8hgOYmLhWb5cpMCHRt+X95rr3Y9K9zUQ3rjPflwltGpNKkihK4nOmKBHFgtjEYa2jKMwlOde1eqJUK9tz7MrTboFhtIPBYDAY3BB3b5O3a8Qua5PlPDtG2+QSmUyhY7kFJqtcVhStdMqQ8Xc/Hq251AqMpQutZCYV9LM4m8lEfj4mQ1Gwm0krqXSiiYk3Ru9jIvtNyUtkvde0y2OLqyQ3SOwSf8gS2xjY7i19R+GQJJBCdsa1sxujQHaoees+pRIknp8Nv/0cGhNl9MRs9Yww2Wet4/VpyTapVIveCj63O6a2E4aXN0TjluchicK0hJwkXMNr17ZlG0Ofm8bAZypJS/I51Dx0L8UIk5CM9mWJG9eSPyupNaSfV/PcJUPpGEwq5XO81jEJk56N9GxyXpdK4XxMXko1yVCDwWAwGHzluGuMVnJoax0lytY6W+CUcEuWtx/Tf8paUso8pb3cAqOUH1topYJ7t+DTPFILN5ZvJBkwP9+umTIl6XYN1BlXI8Nls4G1jmyB8atUUsG4KOeXxPITq9+JDrgoQYpXXpJwS0IiLe7J5t366aIDFBkho9V4PDbHtdq8IKlpRmtCTpbgrIztwyiiQa+P/65xk9Hyc9+XTKzF2VITdIo1tDIfB+eX8PDwsN69e3dok7hrRdk8Mo6UG7FWb3Tg14ISiywFY6OStc7MVT+1D0UafF4cPxntLobO8h02Y9DY9Z714zXRCbFhilP4vi1fJTWxaPeL72CfF///3AvDaAeDwWAwuCHuGqP99OnTq6WSsoApzsDsRcYl/bPWmJzxB49DMJOPAg8pltBaqzFLL2UMUvieTC9Z0LTwW1OBZKExA5YxQWYJp7mzAfSuaQJjQi2DOW1zKVby8vJyyGZMDLkxwGS1twL7a65xk8/U5xqjr1XOmdnGzE1Y6yg4z5gZ41CpMTZbte3iX01ilM27E1vg9eS6ptfJQVbCfAb3JGn8LvDSso7FaPne8Tm3dcC/033RXFqcnbH0tc4CGWznpmMoPu4eFEpIUhhFbRsT40vPn89BcDaubSm2sxONaY0gGKtNbSeZmcws9JZRvNYxjs9n05+J5DW8B4bRDgaDwWBwQ9yN0T4/P6/ffvvt1aKkdN1aR+tQVo72SXEoWvwNzNpd68ggGJfQtm5ZMkOQrCExdVpcjDnv2sqxHVaTwkvMQvsojpKyZgmyxWYNu0XIuG2TPfRjUC7tm2++uSilxzZr19RV8+8kM8fYDhnnTgawNSxnrMm3IaOjtyVJxvE810gV8tlo6zDVT7ZYrZ4RPROJGbT50Tvi52FcbxdHZj3mNVnH+j7Vf3Ld0tOQsnJTzJDj9GP72tf8mTnM+tq03uidYB6GQ88W33P0aCRvT8v9aJ4uP+6lPAJqA/h3zXNHr0g6D9v0JQ9hen9eatH5T2AY7WAwGAwGN8RdY7SPj4+vlpesGbc2ZImQaZBZuBWp71ij1yw/Z9CM+WpsLRvYz63xk1mkrEPOhwxqFyMiyyLrSbWYjBcyU3on9k+LstXNuoXeaiEFXiuHxvDhw4eLcRNeN59zyqB2XBPDbPcjxYc4Fv5MLIjrgGyoNULwuXKblo3s5+Z6ENhicq2jKhFrr8l4UxY37zPH6PPm88M4vP5O7McZ7S5G+9133x3WYIpHapxsj5fYVKpBT3+nLH3GKnVPdW1TbgjZbssK9vcbM2z5DPDdks5H/YHW8MV/5zvD75PPP9XBt/yOlINCJs77Rl2Gtc732r1j98hAHkY7GAwGg8ENMf9oB4PBYDC4Ie7qOn5+fj4IILi4t1zHdNnqZ0rNpyQi0+kpOpHcBNyGri53UTIZgMkPKZGBCQUt+SIlyzRBdrqO3RXGNHcel64kv4ZM26cbiOVT/hmTHugCvVS+s0toefPmzUE6kC7xtY59e3k/0rjp5m0CKUkUhPd/50rUGOgu5bVNCVvNzUwkV3VL2GJJmn9HERf2W05ogiWcdyrvoSuaIQxfG63RRcLDw0OUCeR7w48n0H2akmaYAESXdwpp6J3niYCOJMXKbZK4iY9j91kbY3pn0a28CwPQPa/5NeGUFELgfeczmgRSmkRqCgXxOJMMNRgMBoPBfwDuymifnp4OwW6Hiq5l/SXh8rUyK2Xgu7FIB4uXW9KVW/wa/84yXutL65AWU2ttlRIsaJW1BB6XfCQzY/G/vicDXeuYyEL2kSTseG11Pt7rVBLkwiLNspQ3hAlhPudd+ZH/nZKhaKXz+qVkGKKVX/n143eNmaUStCYXybXk826F/GwqsWO0FK4gw07lFrwXZHvJqyAwYSsJI/C7S3h4eKji/2t1RslEyiTYz3cFBUU497XOSVB6d0iggu+WNL9WdpU8DXwOOfZdWSEZLRP4UoIjyy+5La9Reu+09Z2gMeoa0APJde/Hu7Ys9J/CMNrBYDAYDG6IuzLa1AR7JwjOllC7onymsjONP1ngjFkxpknpMN+michfU27RZBxTycSuTZRvmyTlLsVmOWbfhq2nyECTeH1jbEm+UfdLP3dxEnlDdsySFmqT5EwsoYnfk6XuGBSt6CSnyPura0xvTGInjOMydp/ET+j1YLvEXXyf27Qys11zCbLRVNLH44ntsbFDErlIbRcJrR02LEltLAWdS0Iv8qj5dhonz894pM7r23PNU4hlt3Y0Fj6H6T3RRHT4juT2Ph/GTnVeXSN/N2qOfLb1OZlu8oawnIjrLK1vXRMy5lRymSQYp7xnMBgMBoOvHHdtk/f8/HyQ+HOrisXqZBayXHwffSarSZafrKlLQgZr9dhVsqI4ppZp65Z+E7qnJZWKwBkLouW+k2tjrOcakQOBLPiarOO2TYrd0brdyUOqqJwC+qmBeMou9n3cq0J2w5gsGwYkr0KTxGziF2ud2ZrYANdbiiOn6+5oHg8fU4u37mK0RPNa+NjIenbxUYoLtCoBb2JPT8OnT5/qWpYnjSzHWR7XOJl3ynLX+fTeIfNiEwh55dY633eel14kX6tksJRtVHOBdC95LZmjkd4t9EY0hu4t/ijEwQYIXO++dpqXhe9gnx/fjbz2yctBRvvmzZthtIPBYDAYfO24K6Nd62wBpQa8jH/KgpTl9eHDh7XWl82GdTxmmFGyLMU/aRkz7rqzwPWZ5kErKjU0b9l+uwbMtMpkBTb25XOm1JrAOjofD+dDppCs7cbmGytOx70En8OOIV+qO/bztraFZDKCs+4mei4keUPGemm1J6nHxiy4lmjV+/ibTGSSZmzxQj4LqXqAzGwXFxd435L8oH/vx9vV9Pp+T09Pld3578wh4f1yRsv8hxaP9lZ+gt5ZjD9TbN/vy/fff7/WOlZitJj6WkePDe8l70u6xnzWNA+yVR832+DxJzOn/bO2VoWUTyDQQ5M8h4lN3wPDaAeDwWAwuCHuxmg/f/68/vzzz9dYhSxBjwUxC5PMUtZTqlFtcQj9LdHt5I9vgvAUq07HpaXc6h0dl9rk+RjJEgQygJTBR0ZLBpdYHlWLeMyUBUom25hBgmc37pShHh4eDgLtnsXMc7ba4cQWr20a7+O7pAiV2FZjn/yZxtiYJNd7ysrUtszkTBnrzevC86eMdeYrsOaWnhQ/Du8XfybmfI0ylPZlM4TkARLYQCEdX4xSNbCC2Coze5P3pTVvTwp4+o5x9tae0b9rmeM7UL1J10DPfaqF5Wd8XnVMsfPUgKV5HnZZ1Rpb81D6u4HH3dXv/5MYRjsYDAaDwQ0x/2gHg8FgMLgh7uo6/v33319dxykYTfdH68/oKeUC3RDNLZvcZHQxMEnEXbmtDyzds0kQnIk6TEZIiTUsf6ErLfXobS5Ruk2amzAdg6UPadzN3ZdcrxT62OHl5X97GbOpQJJw031okm6pUJ1j4DFS0hjdckw4SeU9SSBiNw7N3cdNNxwTq1IpGl2fXA9J5J/nbc0mkkuXz15bS34cJrLw+Ml9u1u/jm+++eYgPJ8EMFj2RLesz1XuXSVmsvyGayclqel946VLfj7HL7/88sV5dQzKD6YyOUqWNtETX6vN7cs1mkRDWjKhwndJGlGueK5j9kVObmC6lXktdv2P71Has9Yw2sFgMBgMboq7Mdrn5+f1xx9/vFpvsjI8xbsVR8tS4t++LVmCrBslEQiyqnwbjYVF3ylZhGn0rf2eW9mNwQg7MQKW0/AaMJnEt2XyU0s8SckRTZYwlWVdaq3Hkoe19gIVaSyPj4+Hc/u4ySApa5jKlZhQ1JoLJAudjS/IZDVnnyfLGsgotE6uaXzAZyUllpDx0SNwTaOF1vIwsVOerwmlOAvSPdU14bVOY9yxXOJ0OsXWgdxmreOabAL+fm5to/cKGR9Ld/x3nZfeF5XHpPcBE0T9febH5O8+Vq6l5H3hO6mVFe6kX/VTCWP0FPr11jyahyh5bJgAyGcxJbPSe/DmzZtJhhoMBoPB4GvHXZsKPD4+HizUXQNxyikmGS5Z3B8/fvxin1bCktL6md7PUgBHkv9L501tuBr7pUWbmFNrjJ0E72l9tmuwk2JsjbdT+dIlCUbGq3xs18RqJTqQ4oICxU3I4nalM7xebIuW1kmb664BAe9Ha4F4Tfs3jim1h2xSkq10I82Lz+ROipPnaw2/U1yPTL15GXyujE8nnE6n9fbt28P12TVSIDNKjJbPH5ktJVr9OmlNNpnO1HKvPR8S8UlSs03sIXmECN5/Mlh97uJBum6aO0WDGG91ARD9zgYOzAnxa6Vt6THh/JJIURNGuRWG0Q4Gg8FgcEOc7tX49nQ6/c9a67/vcrLB14r/enl5+YkfztoZXIFZO4O/i7h2/knc7R/tYDAYDAb/HzGu48FgMBgMboj5RzsYDAaDwQ0x/2gHg8FgMLgh5h/tYDAYDAY3xPyjHQwGg8Hghph/tIPBYDAY3BDzj3YwGAwGgxti/tEOBoPBYHBDzD/awWAwGAxuiH8Dc3XW/JjCu44AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYZXlVJbp+EZGRY2VNQA2AVIE44vD66Sdgg9jYymd3q/haoXEAbFtxeOrDVhxea7XayhMbBUekbUsFQduRhlYcq1ucwemhlIJSIkUVNWUNmZWVmRFx3h/nrIgd6+y9z4nKuDdf4l7fF9+Ne+85v/Obzrl77bF1XYdCoVAoFAqLwcqF7kChUCgUCh/IqB/aQqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIyR/a1toLWmtd8Hevc9x1i+zwXLTWvqi19s7W2lnbzw80yHpstNbe3Vr78dbaY5xjn9Ja+9nW2vuGebm7tfbrrbXnt9ZWneO/eWj3F5czmtH1b2qt3XQhrn2hMcz7DUu+5nXDdV+wxGve2Fq7ZcZxV7XWXtla+5vW2unW2l2ttbe11l7RWjvYWnvksKd/KGnj3w7je8bw/iZz72y21k601v6stfb9rbWP3L9Rju7T6O+WfbrWoaG9b9in9j64tXZDa+2DnO9ub639yH5cZz/QWvvk1tofDHvkfa21726tHZxx3nNba7/YWnvPcO7NrbVva60d3Y9+re3h2M8B8F75bMP8/yYATwFw2/l26nzRWrsWwI8CeC2AFwJ46ML2aOG4EcCr0K/nxwL4jwCe2lr72K7rTgNAa+1rALwcwG8BeAmAvwdwOYBPBfDDAO4F8MvS7hcOr5/eWruy67q7FzwOxZcv+Xr/2HEb+nv4by90Ryxaa8cB/CGALQAvA3AzgCvQ7/XPA/CtXdfd2Vr7FQDPaa19Tdd1Z52mvhD9vv+f5rO/APClw//HATwJwBcBeFFr7au7rgt/uPeIp8j7XwTw5wBuMJ+d2adrnRmu9559au+DAXwrgN9w2vx0ACf26TrnhdbaxwH4VfTPsW9G3++XAbgKwPMnTn8J+n31EvT3wf+Ofsyf1Fp7Rne+CSe6rkv/ALwAQAfgg6eO/f/LH4BPGvr8zy50X5Yw1g7Ad8hnzx8+/+zh/dPRP6ReGbTxBAAfLZ89ZWjjTcPrV17osV7geT54Adb1hgs97iWM80YAt0wc80XDfHyM810D0Ib/P3s47tnOcdcN98C3m89uAvAW59gDAH4OwCaAj1/QuG8B8Jo9HL/U/SfXftYwr//0Qu+XiX7+CoC/BLBqPvuSoe8fOXHuI53PeO5Tz7dv+2aj9VTHrbUjrbUfHlSUJwdq/lRPPdVa+6TW2m+21h5orZ1qrb25tfYkOeam1tpbWmuf0lr7k9bag621t7fWnm2OuRH9DQQAvzlc68bhu+e21n6rtXbn0J8/ba2NJJ3W2lpr7SWttb9qrT00HP+rrbUPM8c8srX2I621W1trZwZVw5dIO1e31n5iUGGcaa3d1lp7Y2vtUQ9vlmfjj4fXDx5eXwLgHgBf7x3cdd3fdl33F/Lx89E/aP4dgH/AtEQIIDYhDKqnTj776tbaOwZVzYnW2ltlLXepjltrzxja/ozW2g+0Xn14V2vtNa21y6TtR7bWXtdau39o+8eH87ZVh8kYbmytvbf1qvbfa62dBvDdw3dz91DXWvuO1tpXtV6d/0Br7X82UUm21laH424b9vNNeow59lmttd8f5uu+1tovtdY+VI7hPfKs1qtBTw99/IRhX3/ncK17hnEeNefuUh233Gx0g8x1ei8Mxz1zuG8faq39bWvtS/WYAFcMr7frF92A4e0b0e/zL3Da+AL0P8o/OXWxruvOodembAD4qpl93De01l7fWntXa+3pbVCDAvi24bsvHPbRncOeeltr7Xly/kh13Fp7aetNS09s/bP11LAvv7G11pK+PAv9DxgA/I5Z/ycP3+9SHbfWXjR8//GttZ8f7pHbW2tfO3z/r1prfz5c/w9bax/jXPM5rbU/Gu6HE8N8PHpizo4A+BQAr++6btN89Tr0z7HPyM7vuu5O52M+R7ev3Vp7dGvttcM9dKb1z/Y3tNYuz9rfi+p4tbWmx291XbeVnPOj6FXONwB4K4Bnolfn7kJr7V+gp/tvAvD5w8cvQb+wH9113T+Yw58A4BUAvgvAXQC+FsB/a619WNd17wLw7QDeBuCVAL4CwJ8A4CQ+Hr2k+lL00u3TAfyX1trhruusneH1AD4LwPehV5ccGo69BsDNrVdlvQXA4WFs7wbwaQB+uLV2sOu67x/a+SkAjwPwdeh/rK4a5uBIMmf7geuH13tbb3v9ZAC/1HXdLBV6620azwHw613Xva+19hoA39ha+/Cu696xHx1srX0egP+M/gHyO+jn8qOx81DN8Ar0D9XnAfhQ9D+Cm9gtDPwCgI8C8I0A3gXg/wDw/ZiPS9Hvg+8B8E0ATg+fz91DQL+X/xrAVwNYR6/G+uVhr9LscsPQ/ssB/BqAjwPwBu3M8MB7E3rV/3MAHEM/d29pvYngVnM4VWb/CcBJ9PPzhuFvDb2W6sOHY+5AIIBhxxxk8XkAvhLAO4Z+zboXWmsfDuB/oH8OPBfAweH4Y+jXLsMfDa+vb629FD0LPaUHdV13trX2OgD/rrV2Rdd195ivPx/A73Vd986Ja7GtO1prbwXwiXOOXwAegf758f8A+CsAHO/16Pflu4b3nwzgp1pr613X3TjRZkN/X/wY+rX/bADfiZ5dvy445/cB/F8Avhe9ip0C+dsnrvUa9NqKH0a/Z76ntfYI9Krm/4TenPc9AH6xtfZE/ji2HRPXq9Grbi9Dv89/e9jnDwbX+xD0e3tXv7que6C19h4AHzHRXw+fNLzaZ97rAVwJ4MUAbgVwNYB/jv43IsYMOv4C9PTZ+3ujc9x1w/sPRf8g+npp75XDcS8wn70LwG/KccfR/5B+n/nsJgDnADzRfPYo9DfqN5nPPmW4xjOSca2gX5hXA/hz8/k/G879quTc/4B+ozxRPn/10Oe14f3JrJ19Upd06Dfu2rDYTx42xikA16L/ce8AfNce2vzc4Zx/Y9ayA/DSPeyX6+TzG/rttv3+BwD8yURbNwG4ybx/xtD2T8hxPzCsB1WInzoc97ly3Bum9sVw3I3DcZ85cZy7h8y6vBPAAfPZv4ZRRaG3kZ8E8CNy7ksgqmP0P1Dv5N4aPrt+uB9e7twjjzeffcbQ3m/IdX4BwLvN++sg96Yc/4nDPNvrzb0XXju8P2qOeSyAs5hQHQ/HfstwbIeeab512FOXyXEfPxzzZeazJw+ffamzv0aqY/P96wCcPp/7M2n7FgSqY/QP8w7Ap83cfz8F4A/N54eG87/BfPZSmHt6+KwB+BsAb5i4Tqg6Rq9l+BHz/kXDsV9vPltHb8d9CMBjzOd8znzC8P4y9M+tH5JrfMiw5i9K+sjn9ujeHvbKm/a4Po9Drx357zJfZwF8yV7Xey+q42cPm9j+fU1y/CcMHftv8vnP2TettSeiZ6mvHVRbawNzfhC9NPV0Of+dnZFKu667A71UPvKIUwxqk9e11m5F/zA6B+CL0f+QEHxIvzpp6lnonTPeLX1+M3pph9LTHwP4utarSD8qU9GYPq7aNltrc9bom4axnEY/Z+cAfHrXde+bca6H5wO4H8AvAUDXdX+NfryfP7M/c/DHAD629R6enzKofubiTfL+/0XPkK4a3j8ZvfCl3tI/h/k4h54178LMPUT8eterIW0/gZ29+lEAjgL4WTnv9XLNowD+CYCf6XaYMLquezeA38WO5E38Tdd1f2fe3zy8vlmOuxnAY2buy+vQz+ebAfx789Xce+EpAP5HZ5ho12uqfnfq2sOx34Z+3r4Y/Q/LlegZz9tba1eZ4/4YvaBp1cdfiN5B6GfmXMugoX8WxAfsvlf3oiGcwoNd1+l6obX2YW2IHED/43MOPVv39p+H7Xun6389/hIznp0PA1Q3o+sd094N4C+7rrMOtdyXjx1en4Ze26e/BX83/OlvwULQWrsUvVB+Ev1+A7A9X28D8E2tta9se/BM38tD8+1d171V/t6VHH/N8HqHfP5+eU975Y9h58HFv3+J/oayuAdjnMEEdW+tHQPw6wA+BsA3oF/UjwfwX9E/pIkrAdzTDd66AR6FftG1vxQq2OfnoF+wr0evcrm1tfYtEz9Wvyltfks2rgH/dRjL/wbgEV3XfXTXdfSsvBv9D/DjZrSD1trV6FV/bwJwsLV2Wevtnz+P3lbxzDntzMBPAvgy9ALZmwHc01r7hTYvPEz3AL01uQeuAXBCfuSA8d7LcGe329azlz20l356/dL3l6N/6Hse/bdjrG5XL9CzyedrAEahXRaDeviN6KMOntftNhfNvReugT//s9ek67rbu677sa7rXth13fXoVdiPRm+asfgJAE9pfVjKOvr78Je7rttrmN9jkURRDHt117hn7t85GNmjh/vwNwB8GPox/1P0+++1mFJd9tjsuu5++Wzy2fkw4e21aF/y+vwteAvG++mJGP8WeNfzbKVXwP/dGGEQat+EXhv4qV3X6f58NnrP5m9GL+S9d8rODezNRrtXcIM+Cr00Q1wlxzFk5BvRbyKF56b/cPAU9D82T+u67i380JFC7wJwxWBzi35s70YvQHx18P1fA9ts+ysAfEXrnVaejz705k70tgsPXwrgEvN+Diu9reu6t3pfdF230XqHon8+2MymQgg+D/2D998Mf4rno/+xiUA78Lp8vusmGaTDVwF41eBI8KnobbY/g/7H93xwG4DLW2sH5MdW914Gj8nM3UNzwXvkKvTMAua9xYmhP1c7bVyNmQ+Rh4PBxv8z6NV6n9CNbaOz7gX0Y/Xmfy9rsgtd1/1ga+3bMba/vQa97fELAPwZ+gftpBOUResdFj8Ool0QvA/9D51+th/w9t/T0AsWn2Xv99bagX265oUGfwueh95MolAhweKv0TP8j4TRZA3C8Qch11Dy2IPofYU+CsAnd113sx7Tdd3t6NXjL2qtfQT68NHvRC8Y/XjU9iJ/aP8I/Wb5HAwemwM+R477a/T2io/suu6lC+wPVZPbD97hAf+ZctyvoWcrX4zYeeZXAfyfAN4z/JhOYlC/flNr7UXoY/Wy4/YbL0Vvj/puOA/E1tr1AC7pes/j56OPNXyB085LADy7tXZJ13UPBNf6++H1SejtP/wh+tSoc13XnQDwM621T8BOTOP54A/QCwvPxm61rO69vWLuHpqLv0Bvk/pc9E5OxHPtQV3XnWqtvQ3A57TWbuh2HEceB+Cp2JuT117xcvQP+Kd1ux2uiLn3wu+jj8c+yh/r1tpj0dt90x+nQTV8pzBptNauQe+0tot1dl13a2vtN9CrVD8aPWseqWGT6x0A8EPon4+vjI4bVKKugLsgePvvUegdjBYJCueHF3yd/4Ve+/b4rusi5ywXXdc92Fr7TQDPba19l9FGPRf9s+C/Z+cPz6ifRS9MP6vruj+Zcc2/Qm8a/HIkz3Rgbz+0Hzt4jSneau1GphM3t9Z+GsC3D6rSt6E3WP+r4ZCt4biutfYV6L0x19EP9i70ku5T0d/AL99DPyP8HnqJ6Adba9+K3jb2fw/XutT0+7dbaz8P4OXDg+C30MfVPR29Qf0m9B54z0HvFf296IWFo+hVOk/ruu4zBz3/b6BX69yM/ub4TPSqjV/bh/HMRtd1/6u19uJhTB+B3tnnPUNfnoleqHjewF4+Cr0Tzk3aTmvtEHqb3L9GLL39MfqEBy8b1v0M+lCJXarV1tqPAngA/QP4DvQOD1+AfZibrut+rbX2uwB+dNiz7xr6zFCCzFM+w6w9tId+3jvsn29urT2AfuwfD+DfOof/B/QqrTe2PvvRMfTakfvQawL2Ha2156IPb/ku9GaEJ5uv3zvY2ybvheH470Av6Pxaa+1l6DUeN2Ce6vgLAHxJa+216AX4B9Hvl69Fr/H6Qeecn0B/710P4Hu9Z9SAS8y4LkG//1+I3ub55V3XvW1G/5aF30EvmL2qtfZt6B1GvwX9HI4ywe0jbkZ/z3xxa+0U+jl/h6PdOC90XXdP60OS/nPrkw69Gf0z4tHovat/peu6zM/iW9CrnX+6tfYq7Hjfv6brum1v5NaHnv0QgE/suu4Ph49fjd5p8FvRmwDsXn9P10dfXIWe8f40+n2+if65chi5lu+8vY479DZBe9x15twj6FWk96A3LL8BwL+A49GJXpJ4I3a8025Br7Z5ijnmJvgB5rcAuNG8d72O0f/Q/yl6qelv0T9EboDxhh2OW0Ovg/8b9JvqTvShCR9qjrkc/UPm3cMxd6C/Eb5m+P4getXoXw5jvx/9j9DzpuZ8L39wElYkxz4Vve3sNvQ//Pegf7h/Pnp7/fcNm+dxwfkr6H+gb5q4zkcOa3VyOP7FOs/omfNNw7ydGebxewEcl/W+ybx/xjDeTwn2qN17jxz2zwPos179JHYSeYwSH0h7N6L/IfG+m7uHRusCx6sXvbT9HehVT6eHMX8EnIQV6IWc3x+Ouw/9Tf+hcsxNkHvEXPeL5fMbhs/XvP6Z772/G0w76b0g9+WfDuv9d+i1FzdiOmHFhw/t/yl69eI59Hv45wD8k+Ccw8Mches9zBXHszUc/2foNQRpgoN9uG9vQe51/K7gu09Dn1HqNHr16peh11g9ZI6JvI43gmvdPKO/Xzn0eWNo+8nD55HX8WPk/D/A2Ov9w4ZjP18+/0z02bseQC9UvRPAf9G9HvTzmeid8x4a9sj3ADgkx7CPTzaf3Z7s9W8YjjmK/gf5r9A/2+4bxvU5U/1iOMTS0Fr79+hVmNd1XbdfKcIKhUm01n4APVu5opu2VRcKhcK+YJE2WrTW/iV63fWfoZcYn4Y+NOBn60e2sEi0PrvRpeg1Cuvo2eCXAXhZ/cgWCoVlYqE/tOip/2ehdy46ij6TxivR68ELhUXiFPo47yegV+O/G3288csuZKcKhcI/PixddVwoFAqFwj8mVOH3QqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFohFO0PtXGhtrTtw4AC2tvpcAXz1bMQrK/3vP9NHrq6u7vqcr/YYPUdTT2apKKeOnXPu+bQ/dfxe+7jX8cy5XgYeq2uZzY0e23Ud7rjjDtx///2jg48ePdpddtll2+d47epn+mr3zNQ5EfZrjfcytxHm+Fbsh/+Ft05R29F3+rn9nv/zebC5ubnr/cbGRng9orWGkydP4syZM6OJPXbsWHfFFVdst8v22P5U/7Jr7uXz8z12P8+9UNjLfoz2kPdZtG7efc3ngP1Nue+++/Dggw8udEKX+UOLxz3ucTh58iQA4NSpPqkINz6PAYD19T5N7pEjfcax48eP73p/9Oh2rWocPtxnBTt4sE88dODAgV1t8dV74Opn0Q88X+13eq4KA3Zx9TvbXtamd070as+JBJPoc85ZdsycHw59aPJcrqcdtz5Iz507h6/7Os0N3+P48eN44QtfiLNnz+5qj2tux8D15nvuD57D723/Dh06tOs770dZP4/2TjTnFnv5UWY7KphGDyL+oNhz+FnUZ68vUz+AfG+vpz9megzX78yZnegq/v/QQ32K7Pvv79PZ8jlx77337noP9HsF2L1Xf/u3f3s0FgC4/PLL8eIXv3i7nRMn+tzzfP7YfrFdnVtvnqLniq5ldv+cDynIhE6F9oHrEe3zrL3snCkBKyNXVvCxx6hgxLUCxvtL9x/3h32+8ZnB35Rjx47hJ39yT2mwHxZKdVwoFAqFwgKxNEbbdR3OnTu3LTV6KhxVKxMRI7P/R8xP2amnbpzD2iLMOSeS7CLpNLvOXDWnd91I2rbzHbWvbWSqnOj6U+q/CFtbWzh16lS4L7y2ud4ZE5xi4myD33uMNpqnbMw6Dm88eqwy1jkq3YhBzFmHSKPBNjk3ViOlx+p7j3XzfD1H58i+J6vhZ9Yk5WFzc3P0vPGeO5Hq0dMARBql6J729p2ud3ZvzWW9mdZl6tw5rHsvz8joXlCtCDC+1/hKNsrfDctOtT0F27daLH5GDcqhQ4f2xcQyhWK0hUKhUCgsEBec0c5xlIlsp/a7KTtkZv+MruMx3bkseI4tIxqnx0r0O2XFnlSX9SHqRyQlRhJn1p6yEytZ6jxmUmXXdbvset7c6zWt/dbCs53zVe36kd1V27HvI62B7WP03ltDnVO1lep1MzYU3Sues4junUgz4Nlo1f5OBqo2QmCHqSiUedq54Tl8PXv2bMpo7fnaR/3f9lPnze5fMqtIg5attWoFzge6773nUcS2iTksNfNB0XambLPe+KP1Vmbr9Sm6F9RXwILtTe2b/UIx2kKhUCgUFoj6oS0UCoVCYYFYmuoY2O2UQLWPVcfMVRlbtYWq+VQNmIVbRCqizAliKl43Uzcr5jhBRdebExIUqQj34uAQqaotIvVLpqJSlXGmRuu6DmfPnt1eU8/sMKWG47F2v2mYUKQO9PaO9j9S4XrqbVVjZk4d0R6JVIaeuUCPiVTk3lh1XqecjoCxapeOJ2p+sMdETleZqpf7YGNjI+1X13WpKprQNeR+0FdgHLKm4T7Retn/pxwM9xIGo2PwEKmQveeqtheFPM5RO6vq1lsDjZeOzBDZ80fDliLHOmDsULdoFKMtFAqFQmGBWKoz1Obm5rYE6wVNK2uKHJy8BAuUMPmdSpweK4kcp+YE9EehIZlTylRbHhuemxDBGxel7MiRwTt3bqjTHGabhbooa9jc3EyZvw0j8foQObTo/mByCmAnmQU/0z2TZSSLGDQ/z/a3BtZr6IllAFNJDZSVepoUzjHfa/IOb+9oAhAdg+eEx3GQwZI16Dx6jDa6Xz1Gq/O2sbExeb9loW56n0fPFLt3+L/Ok66Tx/wyVm0/t2NS7YeXMEQxN6mF5+wVafV0vFnIm+cwZ8c3h9GqlsQmrND9FDlbedqEveyd/UAx2kKhUCgUFoilMtqNjQ2XmSg0dZ+m1cvCeyK7ipeOSyX6KNwjC39RGwLh5VJVSTVish5jj1iqNydTaRqz9Ipz7ckeo4uSKRBZCNLa2lrKoltrozRsHluM2vdYScRoNRXoHOavDNNj8V5YCoCR34LdS5o+UW2zug881h3dE8rYbP91DjQ0x9v3DMGasu96oTpMsajnZGFEUcrEOfC0VTpf3Bf6av/XOY00TXPC/XROvTAo3SN8P8WS7XWIyGZv+6vPXu4HL6XpVApT3TvePvC0FfbVMlq91/T5w2OnQgeXgWK0hUKhUCgsEEv3OiY8L8nIYzhjtCpRRhK5J73rZ5k3JjFlZ5uTbJ1QlpixU7UBRazV9juyt2Z25MjLNfNU1uuo5JoluZib2q21FnokWug1o2QUQLz+ZCssYuHZK5XBaP+9qjOUsGnDJKJkJN4YdU/q/rf94Gf0qtbXjJVENlplVhZcF2WGHLd3X/Ez9im69+z95LHcKWaS+TTomHX9+Z4aECD2Oo60ZJ6WSu3cfPXskVp8gcewDfXetojYbqQt8+aE66NFXDgP9tiIxWeMnWPVV46bx9p5jDzUFd7nc7yl9xPFaAuFQqFQWCCWymi7rhvZYKzUo56hlJqm0pt536n05EltkSdilqJOpSgrdUZ9VHYVsZQsFjLzpIsQMT9tK4ufU7bl2WGj+LzINm3/t9eJpMzWGlZXV7elW882F3l/Z8w/imsla+Dnug/tZ8rIeQ77atdSPe7VRquv9tgoveVeJPNof3nerYTGG3JulFnZ//md2tX46jEMZZGel7j2V9OTRvDirT0PW64pr8lynGRxmT0y0qxltnMdT2SPt2NVm2wW1z/lC5LdG8pkVfvjxRbrZ1F8uMdAo5J3hOcbwr5xz0S1i+0enZO7YBEoRlsoFAqFwgKxVEbbWht5utnk7ypBqk1JPd/YJrAjqSjbUfuEZxdg+zxXr+vZP/X6WXL8iH3O6eOU3TPL2BTFwmX2VpUcI9uwxVSSdI1ds+1OeSpaqMTqxeVqu8rEbB8iFjIngbpC/QlUk2L/V82GMllrw43WV22nWR95LFm2SvUeg448odmGahfsuTquqNSf1w7X4rLLLgMAPPjggwB23/PEnIIURBSjb/+P7MXKJu3/0VrOYYsKZav2emrXjMr+ZftAi3vouL2Y2MiDPIqR9fqkGhx6mJ8+fXp0TqTdyVi++lboXNk50QIXy2K2xWgLhUKhUFgg6oe2UCgUCoUFYqmqY2CcjIKGbCB3HQfG6iwLNaKrak3DfIDYsM9+UJVtz1GVqqpyPGP+VMJszomXzCMqjqBOWJmjUeRENscJIgrEt3OiamzPAUSvr/M2VRTA+962F4WAUT1FFaRdlyj8JVK12uup6m5O/Vu9nqom1TnKjiNKjBGp+O31qIrWfcA5sSo8VeWyLzxG7z3P0UiTuasKz66lOoixr+yj95x44IEHAOy+B7JEK1tbW7NCzHS/qkObdepRs4KdQ2+stm1VHev976ljVZWqjmee6nhu8hnCCyvT55k+f7yUiKr6VnOD3pN2XFNJfTLob4v3O7FsJyiiGG2hUCgUCgvE0hhtaw0HDhwYJWfwHAOikBJlkWwXGDtBqaSnBnMgTrmnxnwrTStzUgnJY7RRcv1IyvYM/jreLMnBlBNKFkwfBX2rtJpJ9xqCosd5x2YpGFtrWFlZGSVAyEKMTp06BWDMBOw5UbIBHkPJm+favaMSv4akeVqEyKFM18NjtKpRiPahXRd+R+bANnhv3Hvvvbve2//5SscVtsHxKCsHxkkcdA68FKO6J/me6+exEnV66bouZTxe6ldv7/AzLzRL+xLdu3r/eGw4SmOYFQGIHIyU2dpz2P5USkTvvtOQxCghi/fc0eQavI+4pvzcMloi0tR4mgEtPBGlJ7V9zIp+LBLFaAuFQqFQWCCWaqNdXV0NdfBALF1ktgR1154KF8mS/VPKoUTmSZaU5NVmmgVcq9QbBY57cxIVR9DQDC8dYZT6kcgSkOu8euEVU+foXFlou1OS5erq6mjslk1xrJSSlfVm4Q8qNfMYbcM7VxNUZIlFNPmCSvrKFoGxvZttsM9aVN3T9qgmiHNyauRLAAAgAElEQVREtuqF93A8tIcq687CvSJmpuzLXkdDrDj3HuthH+lLof4K2pfNzc004YqGn02xR++YKDWrp92ZSoXppQuNipZo+Iud26gEoYYMzgkJip5vdu7ZF+5nfdX9budTGWtU+MIr7BD12bsn9F7IEuXsJ4rRFgqFQqGwQCw9BWNkw7D/q5SsdhqPiUXlwlRS8hLDR4nU1ROSY7CgVBpJtBYRC1AbjSf96jjUQ9FKlpQc1YtVJVqVdLP+qy3Nm0ediyyRwJxjCNpo2SdN8QbsMJ8o6bpti1CJVz2qtaiATSqvHsOa9FxZA7AjgavfAN/ff//9AHYzWl7z2LFju8ahfgvsu5fkQNm2JqC349J7S5O4KLO2rELLk0X3emYT5nWiMnD2OtbWO6UR4Tx5Nl89l/3XAgqejTYrcQj4XvqRd3Zkf/fGofDSd+o+m0r276VvVN8X3VN2TlQLwWOUdXNcdn9EhRXYhiYVssfqPRelK7XH2vEso1ReMdpCoVAoFBaIpZfJo1Tl2e+UlSob8aRbtZHyOy3mrQnDvWO8MnW2bSCW6KJ0iraParfT62UsTyVKZbJW0lNJ8uGkEtS+ZjHMupaqEchiZK0Em0mWKysrI9sVxwnszKWOnfD6wM/Uy5QMj9+T2Xral8gr3Iv/03hZsjhN3O+VcGNMt3r78r2X5nJueTS7L9Q/IfKQztL2KRtRBm3XeSqO1vMWV03M+vr6ZGF1ZTdeHDivRUamffM88lVboNoPvtrrKcOcKjLifacs1PPViAofqAaN52SpbaMCGJ52Ua97ySWX7PpeS98BYw9le29beOdERVsyfwxiKn5/v1CMtlAoFAqFBWLpmaGiBO5AHHdHeDp3lUjIPi6//HIAO9KUJ71feumlAMYxVVkWGfVw1OxOntQexXXpdbxYSJUYldGqHQbwy3oBOxKrJmq39j+2r7HFnr2a4JxodhxlD570O8dW21rD+vr6tgaCfbD7IGL4OufeOZrQXm2pXrlBLc49h70rk6X3JeGVhlOPVGUnXGtvz6pnqu5dL4uaMnHV+hCerVD3iGYC4qt3PdUUEZ7tWe/XyG4J7PiFZCxSGTjvD2VtHmtW/wQ+f44fPw5gZ328WE7NsqRewN5ejYo+6Bjs+VGhkEjjYcelvgZqb818bPiezxddJ+uLwHbp5c7X++67b9f4Mg1RpAnNfi8OHjy4lFjaYrSFQqFQKCwQS2W0VnKIivR6n6nE4ZWto+TI8lrqrUvJ3MucQumJUpuyOGv3Uolb7WrWg1P7q68R67LSuzLlqNRdZgPSuEO2r7mlLThmHuN5+iqislje3CuLX19fTzNDtda2z1FmC4yz0ajknTFNtkfth7I3T2ugXqxsn/uP/WGsqu2LMv3IGxQYe54qy9Lv7f5U5h8xGC9uVz3Iyb45Bs6V3auaPUpZMfvGjFT2OnoPRBoVe6w9JovBX1tb274O++B52kexsdpXe75qHIhIA+G1rz4N6vFrv1MtzJx9zvb1fvfigxX6TIpi8m17vO/ZF9WkkPXbOdN7m/NK34S77roLgB9Xrb8l2X2l82TzYC8SxWgLhUKhUFgg6oe2UCgUCoUFYunOUErdrUolCh3wigkQVDVcccUVAMbqUYV12FGXdVVTqTOJ/UydDzSA3zPARynQCC8RvaqXsoQIisjJSwPGPQcKjsNz5lCoE9ecMCJND5gVFWC/tHSfXRddb1Wbc62pirL/c6xaFpGv7BdNDBbsP1XGfKXKWB3E7HU03aDnaKaqVQ3viUI1gJ354fV0z3iFPbj+dObhsbfeeuuucdFJxar/dK+yLe4v7iW7bhy7mkZUhW3nJko474GOdIQ6vvEYYEctqQ6bnpOaqopVPeql/yPmqo69/a33rC3KoX2M0hhGBV3s9bgOGm6j62Xhqby98dAMYfeqOsXpuHhfeftb3+tvjF0DLQKyLBSjLRQKhUJhgVgao6WbfeZE4CXx57n2cyvBqsFdnUQ0aN5LMB0V0/bKsUVu9lFRdQtPmrZtZXOiDgxRknH7vzrfRE4fFlEaRXX6yooMqDTqMdUs8UEEW64Q2C2VRkWnlZ0ypAvYCTvQuY0c2+w4eCz7dOWVV+7qE/thg/WjVI8q4du9FCUD0eICbNs67LBvUSIYLxxC2+d1qTHKQp6UQWnqT7JSL20j29FE+8ps7f9eOJyCjJb3smop7P+q0eLYvZKA7Jc6CUXJWrwEDOpgGN2n3hg1FMhLjaqaNB2vPvdsHyOtnl7XS6OoTkha0MFLAKLavCjZjg1F1Ge+PuOjNKz2syoqUCgUCoXCBwCWymjPnTs3koRs0L66dkehLVZCU8ZK6ZN2qYw5eenYbN+ILNGCSodZubooibgyZyu9R0xZbXNzJMvIluWl/CPUbuixbpXE9XpecLtXyCGTLLuu254XDRuybSszJquLEi945yhb9BKAKGPhOtCG6dlbdQ8qG9EAf3vOVElFL4xExxqlh7TjZ7u0R6udkgzdK5wdpQfVxBhecpUoWcOccLKM0WobXnEB9UvQufaS3eg1lSkrI5tjE1RNl2c7V38S1SJkKW11n+nzzzJafYZEe9ULk5rad4R3P0XFBby0lKqJ0hSgXhKZqWfholCMtlAoFAqFBWKpXse2JFFmm1NGkXn4qe0qKojspWuLiqgTnsQcpU1UVmclZpVUVVrUYH2vPFZUFs3r45T0GUm29tqRndzzLFRpPpIaPQ9zYspWwlJ53rnAzrwog+V7z5OTrFMlX11D73pqU9J0imrLtOeoxkTZoZbE846NbHSe/0JkL1Qbqm0vShOqDNOORdNS0mNVbWUeu/OStQC+1kn7OFVQ4OzZs2FyGPu/PpO0Xa+4iK5lpLXIEvPoXlHbqf1M7zFqBJTNeX3J7ntg97qoP4lXps5eV/+PjrHwUkzqvotSP9rzvSQU9pxMy2ivtUgUoy0UCoVCYYFYehytSiqetBOxRa80WSTRR2zYwouTtdf30o6plKReul6b2gcv5tH7HhgXsidU6rXzqPahyGaaFXZQSTzyQgbGjCxi1J59PCogYUGP9cyzWz1E1SbrlebKyp8B48TtHiPXmMvMVq92fT3XK6ZOphyx0ygW2/6veyfb30S03yKve/uZMuZIg2P7EvkxeKUDuaZkzlN75+zZs6EWwUP0vJmTLnbK1mjbjdry7gntk+4VL6oiKkhBRCUevT7MScGqcxo9O7zra190Lrz1mutV7eUlyLRVi0Ax2kKhUCgUFoilMlomh59znH1V+6onVWm7KlF6ElFkR9FzrDSqGWDUw069Ar1rqz1X4SWv97zuvPfeeFQqVHu2nc+IhUYMx7aj140KIET9jkBWEnkz2jFFMXxeDLZqGlTazRhGVAggK4jhxToC4wTqnrZANRtzbIBahk0ZtNdnZfHKKLPx6bHa50x7oRoiMnmP/UX+AxG6rptkvVG/outGTCjb83PhaZqUgU15Oev/QGwLzva33tuqSfES9kfPg8gOq//bdj2Pbz1GfyfmrLXVxJSNtlAoFAqFixz1Q1soFAqFwgKxVNXx6upqqq7gZ5FaJnNsmlID70WVoypEqzpmSEgUBuOpqiP1ovZ5TqiOjsNLAalzG6lwMvWP9jlTy0ypbLzvtY9T6pvNzc1tJxuG7Ng+asC+jt1z5phyhNDQkqzmb+S45yXpIDQtII+1NWyjfazfE17iEg2NiFIx2vN5jqa5i8wD9n91DFPVceZUFN3jngMVce7cucn9kyXAUJNKdm39TM1Zc1KJRmaYzMGR0PtG18sLDYycL7N1iZzfdP7s++g5oOdkzxBVK2frps/NqI923GzPOjg+HPX+XlGMtlAoFAqFBWJpjLa1hgMHDqQOJhnbtfBSk00xijmSJqFSnHWA0uB2dQ7wwjsit/epUBp7rpcM3fZjTjiJYo6T0pwg9Lnaguw6XdeFrGRrawtnz57dltqZ0MGT3nWd1WnJslJNeBBpD7L0nVEygGicQOxQR8Zu0zcqY4oc3CJnJTtOth8lLgHGCRDUOUqdpOy+UycyPcbT9uj9pO89tqXtnz17djINo17bS1gQhRx6JT2j59he2FH07OLYs7ArXpdrGmmi5mAvzqVZ4o+pcLJIw+EdQ+h1vFCdqeepdx1Pm7dIFKMtFAqFQmGBWCqjXVlZGenivRCNLEBcz4mk88jlO7N7RGE9XimwKK2i2jbsZ2p3iNhPxoYjO4hlaspCtP0oRMQ7NpI0M5tYlrRBx5GFX9lrWRbI8Xnl1gi9tmdTn0pNl2lFpjQm3niylHDAeL3ssdE+iEInLHhfsbC5Jj3w0pJGZRDVJuilYIzKoXlJLrSgBvuYJRrhGvLcU6dOTZbKi+5xO+ZMKwXszZdBj/M+i/aQp9nSe1XtkV4YTKSdip5HHluMwnm89J3ROPV9ZqOPtHtTIZEW2e+HPqeL0RYKhUKh8AGApXodr6zsJI7X0k16nEUmoahdbYppZNJUlO4rK6asEpfXxlQ6u4wtUmrnqxY/92y0kWfyXuytkbf2Xlj3HExpL+w1eG0mq7dzEWkY5iRq10LiEePPkl1EjNpLM6dMST3Hs2TyUeIAby9xTnQusqQrmro0kvy9VKP8P3r1EsBwHDxG7chZGtQ5KRhba1hbW9veM94aRM+IyIvV9m8qUX/GNKOoA28tleFF93R2nYg5e8/gKFGF7lW7lnO8piNMMdfMRqtzkvn46JiXkawCKEZbKBQKhcJCsVRG68VceWzx4aQxm5OGbaqtOYm0I7tmZiOKkl9Hyfg9NkxJX2M6vVJhkZTreTECvpQ4Nff28yg5eZa03LPFRGvYdR22tra254XshPY8ADh+/DiAnTVTmyXZjxcrqfaoiHF46QYzTUZ0HWUWau/KPLqjmEQvPalK7bq/OSe24DfTQEap7yKv9+yYOfeGplzUknseo2W/p2IhW2sjhpx5MSsyD9WI8UfPMvu/rmmWolDZdbTuXvpWvmpKTK9gA6HsWp+Fnr+BpoGMtJaZrVaPmfJrsIjyBGS27jnt7geK0RYKhUKhsEAsjdHSc5T2MM8DUW06c+13QGzL2kucW1QI3suYQkSs1POMjmyXe5EsKZFrbKedx4ih6feeNBd5EWbeelGM5xztQfQ+A+NMyWxtv2m3VQmczCjLJqVQBrqXmEHPk1PZn3rpenajaF9HHtNZQQLuEY2VtYyWc6ol1vRenGKBtv0sFlLtt1EMpNUUsL86Bx66rsPGxsYo7t177szxNo7GOGUP9eytGfOyx9k+RuVAvb4qo9VY/CxjU/TMUBuql2NA9/NUrLn9TPeVMmh7rs6f3k+eZ7QXHbAMO20x2kKhUCgUFoj6oS0UCoVCYYFYqup4Y2NjlM7MqksidZG6b3uqgChl2xyVrqrsVI2VJRLQOpqqrrHtz3Esio7TOeCrlx5QnZ40CUGkBrTX3ktaMz03SgTuOaDMAfeOqjqt6jhyvNBEFXOcYKIQgEwNPJW4wJ7Pfmuyhuw6+sr9FoVs2OvofuBcMGGFVR2rU9Ill1wCwHcMBB6eM4mnotR1031uVZSeajK6t7quw+bm5shJLXPmi5Ltz9mzkTNhljowQhZWxPXXZ4s9h2umz6YoKYT3bNRnoDpheXVd9VkVhft415uaa7uOU+Fk2flZsp5FoBhtoVAoFAoLxFJTMK6vr4+kHC+gPwoUz6SPyFlHJTCPDXuOJPa9ZbRqnI8C+20ChaikmsJz7oj6GCXUttfWeYzYR+YEEb23jG0qeF/nDBgzwinJcmtrK1wfwC9paNvNwnqU7Uyl8/Q+ixLn2z6SLfKV0PkhA7H/s09koZo+0XOKI1ONNBiaitEeS4eziEFp3y2itfQS0ROaNlQdXGyhBb32VGjPysrK9vnetedqmrKUflEIkM61/Uz3nTqBesxM7zUN2fG0ITwmKgPoMWy9h72wKB2DpqxVLUjEwu0xet+oY5Pn9BntA2+evVCjZbDaYrSFQqFQKCwQF6xMnhc6o2EIijkBziqJZe7wUVq5jJ2qrYJ2T0prDJ3w0vVloRj2OMswovCBaLwWKjlOhRNYRGElHqJxzLHn2rCBKclSWZvdJzomZQVZSsQoDCFKNGIxxWStHZlMVkNospR4ykqUnWjIhudPoNBxWolf9+pUEpmMIU5pjIDYvqbJNLxnwpxkJ3zuEMqYLSK73V7Sqnp9i6B7U9mbbZPrEhV69+411QpEdmOvj/oZ2+J6eMlOojVUNuyF+UTJOzQFp90HmtSEfdHxeto3ve6iUYy2UCgUCoUFYqkpGGkv4f+Ar+PPWG8E1dNPFRew50S2YI/Rqs1FGS3ZaOZZqRKdpk+zNrrIlqm2GSupKdvYS1FyHWd0bGav1HHOYcVTfdnc3BxJ9Za96WfKfr0E9FES8ki6zvahsjbaBK09lhK3Xk/X0ib5V29qthsl/7eIWK8G/3sl6HQPaaIUj+XrfRu92nVTG6wypjmF2jMvU45T7cPZOZkGg9AEDnP9MOy5kfexx7Yj1hsVJrF90+vN2d96jKY95auX+EO1KjrOKZux7VNUetF+93ASHGVFbRaBYrSFQqFQKCwQS7fRRrY0YH7haC/NXBSHlXkyz9XPezaMiDFnnsORvVj7kcXgKsvO7BAq7Xrp5/T6me3N66v9TFlWllhd+zqVRu/cuXMjLYi1D2lavijNnOeVGXmSZyxF51TZA/vjecuyAILaX717gsxBbXFkGJkdlO1rykXVDFjofGlJvYiF2/bUNqfsxDIeZbAcl37uMSd73Sn/Db3XMtty5Lnu7d8orjiLo83syYAfo6rzQC0F94enaYhKKep+80oREvyM+5j98Ly4o3tNtQj6zLZjJ/S5nWk2FFFbFva5U17HhUKhUChc5Fgao11ZWcH6+vooG45FlFBa2WgmvU7p6fdiy6CkZ5mTsmotOB7FyNljo2w/nj05YmbR9e05yhKjJPneXEXZnTzMSaQ+59wpu5buA8s8vKIBFpwLby014xjZgsZGegnb9RiV2j0mo+eQxWXn0G4fxbN6TE33jjJ3shKPyaitW9u080hEdnG10XqZqDgHypw8O6zu47Nnz4b7lM8d1QDMeYYovGxSqhXRvT/HBhhpfrIiI2qX9BhtVBCC+5vvVQNhz4mul8VER34y0T607elvQNQPb1wR7LrtxU9lP1GMtlAoFAqFBWLpNlplU55EEdlkMwlmytvY87yN4mjVBmjtbOpZF43DY5pqm9XYSE+C1TmIvKgzpq7j0zY89h3ZpbzPp7yKM7vuHKjXceax7pWas7D278gmq2vqxWBHWbCUHdo14H66++67d/U/yooD7OwN5hw+duzYrr7pOL3YYmWFamfL/BYiBu3Zk/VcjYH1NES0MSqzVRutF/88NwextcN59vbouRJpIOz/6sEd7SXPZyPy1leWDOysg66d9s2eE2VzUnhrSUQ2be/+jZ4v3ngUURY7j/1G11Vvfi8rV/Q8WzSK0RYKhUKhsEDUD22hUCgUCgvEUhNWrK2tjVzOPXVMpD6YY/yOEit4KtcoGbWqkK3qmKqbKXWITaOozjtRIvA5qdD02L0EXEcOB177RKQW9tYtSozhIUotmUHDlWyfNO2aqpo0WB4Yq/c09V1W0jFLhGKv5yX5P3nyJIAdNWmWNpHXjhyL1MnHqtO1TB7bUEejLF2ohoToPrDXU9WhhvV4phj+z1edE091TNgEIJnz4/r6errf1HQS3R+Zoxmh+8HbJ9H9kjlDcV2OHj0KYEflznnz+hOllI2c/DLHSr7q9Wwfo0QskdnBSx6jUPVvFk401Xfbjn1f4T2FQqFQKFzkWKoz1MrKyohFZM4UU04K3jmKLORkKrm2d31lA3SVp0RGSdPrl6bPi1zzs8QOc4z5UViHfu8xNXVKiJzM7HW94vPZdbO+euDe0TAc256mN9RjvP2mzkKR85OGe3ljjlKL2oQPmsBBQ1q8uY3Kr81Jxajtc2/qvrApH7UMX8T2MyfGKIzDS0SvjFaTJ2jCDNsnqynKGK1NwUjY95qKMysEQETXmxNWOMVks/N5Lp3idFx2n6jWK9L2ZA5buu+U/XtsUVloVJzeS/3pOWbac6Jr2+vo/vCS+dhj54Qwni+K0RYKhUKhsEAs1UYL5HaIiBFFtlr7mb6Pwl88t35NMhDZw/R8+53abi37IXNUW5WOx2OGas+NpN4syXvk/p61GUmuno1L29H25kijGYvous5lot75ni3WnuOlYNT+q22JoRVeEvQocN/bq2oTzQoC6Li4d9TuqtezfVTmHCXTsHMSlQzU8KnsfooKmnssVRlsxGg9pmbv172mYMx8Q4iIXXmYCif0bPlRaGAWlqIhM+p34V0n0rZkyfinNGdZoY3oOaN9nbPvs35o++ojoNot+90cTdp+ohhtoVAoFAoLxAVjtJ4XmSJKWJEFr0fJLTzpNJK0tWSXlXpUOiPUFuilB4xSoqmN0JNKlX1k0qDaxqJycJmX8NT6eLaZqeQWmT1nCltbW6lncpSqLUsGoSwnKtuV2XcVUdA8MPbupAep7l3PpqT2dO5N7Zs3BrXFRiUFbTvcs7pH5uxVnWstJmAZre7RKNG9Z1O1zCzbR13XjebR3p+ZRz3PV0T21ankLUDMvLJ+qBZEU3LqcV570XMh85eJWD6/t/MYzUWkXbSf677VvnoMdyoiIruf7PqV13GhUCgUChc5lspordexlx5sio16NqWo9NIcZqteoGQJ2jfPnqNpFFXizGzP6kkalcKz/0dSl2dfURuWSoXRWDxENrlMSoxswFNex5kn58bGRsrAtW2uJdcnS2+o2okojZ61i0Ye3cosPe9sBcdDW6rtjxai0LXNbHOEelpG9kT7md4/2r7nT6AMLbK3Wq9j9YdQtu2xrb0W+mYsLbDDAD2N05woBx3rHO1QdK6WPoxsml77upe8c6IIj0hL4THaKMVk5tE7FamQpXzVccxZ4+ge8Epwemlwi9EWCoVCoXCRY6lxtKurqyNJ30oTyhKUharU630WlVJT70l7bmTX82x3UWk7ZbhZbKKeq6zFkxKJyOvZYsq2HbEUe71Iysu8xefaaLxj9uL9552jGo1o/b12iKgAu9orbftTsZceo+Vn3CNZLCSPJRPj9bRPno02W+eoz1EMdqQZ8hgUEcXRZgXN1Y7rFfzOkuBH0HssY/FRDLbFlDYqism2/09lkfL2AaG26znML9JozfHi17nwvNyja0ce+RaRB/Gccny6ZzPNgD6fM23efqIYbaFQKBQKC0T90BYKhUKhsEAs1RmK6dCAXG2h6ipV6XoqQ20nSnDuhQbpuWpE98JSVA04R/2rtT0j9aznYKJtzQkY1zFHTmVePyI1lqcOjkIb5iS5IDI1IJ1ZItNCNuYs6bvWo9W9pM5ynppMr6uqL3uOzoPuBzU/2PZ5jvaZ8O6DKBUe4Tl56XWixBie+jYKbYrCfGx/o4QVuha2/ei9gmYrwHeQUQefKHWo9xyIzCW6pt7ejxwNs/tS50sTs3hJJ9Tpaur5av/XfRXVCvf6r+kzdc7mJLLJzE/arranIV32f+sIWc5QhUKhUChc5Fh6woo5SQyislWZ5DXHWUOvR3hJte17L0g6StPnhYxEIUCR0d7rYxSi4bnMq+NCFAriOXtoYHgUrpKF6kRp6Dw3+zlYWVnBoUOHRgzTC7dRpqX7IEtcoqFAKilniUQI9lFZMhCn0ePeUWc5r4+aZEITMFgWoWONQoQseL6OWdPZKfO17UXMxrvuVNpTj1nrXjx06FDqvHfgwIHta6vmyf6vbG0viQ+i8BvveroX1SnTKySh7egz0WN1+mzQ8UTPWW8uovSdnkZDtVPR89VzhFVkzoY65qg4iHVM9cIwi9EWCoVCoXCRY+kJK4g5qcoiG1pmz4tcyZUB2GtH6QY9N3tlsPxO3cWzQH6FSmBZekMvvMbruz13qgyf1y+VQrPUgjqOyL6bpYfL9kFrbVeqOe/aKs2qtJ4VV59KVOAlJ/dKDHrn2n5wj0QhDNq2HU90DFmwFoIHdlhiZCv3wuWILD2fhV03zrGupdoCLTuN0qAqQ/fYltUERDa81vqCAjzf0zjx/tD5UCabpf+bstFynTyoXdqzcTItrO4hDV+z8xQVHIiYc5YIKGO/0TlZEh9FlIZ0TmGH6Lmj9ljbB/u8LkZbKBQKhcJFjqUmrFhbWxuxVK8EXeT9p3YqYMwsIo9aTTQB7Eg1yj6U/XhJB9RmopJy5tUYedJ57CWSBrUt28copWBkz/Zs3hlDiM4hpuxW9rMsKF/B8ynd2+Mj71hNXGGZGRmR2qGi9crShUbaFs/rWEsfZmxB119ZikrtWZpITS2apdFTT+s5DDfSCESFAoCxbTYq7JFpiKYYrU2zd+TIEQDAqVOnRmPeSxrFKW9YvZctq1KtlyZ/UO0MMJ539aHItHyRXTUqbpCNR+H5E2hZyehZ5RXpmEpc492DhGoXqUWwz0N+Z5PFFKMtFAqFQuEix9IZrTJLKxFFHnSRF5s9JmJrRJSM2x67l5ityLvQS9s4VVIv86qO0tqpfcVjhhELzmLh5jJa7zOvL3YMmdfmVBzt6urqSPK3Niy1a2m7XvuallPTHGaI7HiZp7XOvzJNzqMd1+HDh3e1p0U5PA0KoWs15XVq29G54LkaG5mlAI1YqtUY8X8yVx7DV55rbZy637LE8IzBth7K2h6vHXnaZnGtytKi1KyeNkfnWm3ZnjaEUE2Hxwgjph4xQU9LpXZX1SDaezryaYji372Y7zkx0To+tQkra7XaBK57xdEWCoVCofABhKUy2vX19ZHtx8Y4ESrhK/PLsjtFDCbzfFVpSpm1jsO+6ufaL9tOlA1JvUO9cyNbree5GjGZaAxeXGPEUj3WP8VovbnXWMiM0TKO1rPNar+V6ankbRkY24vKiUW+AhaapDySsi3UzpatB/sb2beyTFhTfgtqM/bGyv6r98DA3TkAACAASURBVK8tdafXU18Ktbfac5XB6jkc39GjR7fP4XrR3pp5s66srODIkSMjT2We611Lmb5nM526/7PMUJHGScfnxcQSuu+89Y/uw4jBec9VXUsvhl0RZYCKch1YTLFLT0Ok2gT1zLb7W/MdlNdxoVAoFAofAFgao11ZWcHBgwfDcnbAmNkRKgF5RaCjdjPJU+2fUUHkrC/aVlbWKYovjVijdx21Bc/JFzrlsZwhsj16XqAqQc85h9jc3AyZI1nJnBg7zacb2YstNJZTz/VYiXr70vYTZeMBxntC7V5esXidwznxzERkz9d5tBJ/tK/VZqfZnux3fFUmy/c21lcZrZ6jHtq2T9YGF+1lfe4Qtg9kORyT5g/2EJXHI1RrkK1TpK3ysop59mn7udeHqM+RzwYQs09l995zLjpW2876OoeN65wqy+erjcHXe60YbaFQKBQKHwCoH9pCoVAoFBaIpTtDqarXGtXVMSpyUvJSuEWq4zkG+KkAdc85RdUwqury2o+cAzK1SeQan/U5Kh4QOcNkjlQanpCFL02p0SzUiStLtca9k4WyaLtZMnKFpv3TJANeKIMGxatTiqeiVtOHXkfTeNr/pwoCeM4wuh5R+UfPSU3bUNWxpzpU5z6+8t5QRyfbnqqb+V7Dm7w5seE7CiasUAeZY8eObR/D5BXq8KOJNrw1nXp2zEm+7zkLatuRc50m1/HmKVJfzwnzixwCvXtd96ZXXjJCZOLzUksSUZiUqo69ogL23FIdFwqFQqFwkWOpjPbgwYOjhAJW2ohKMWUSR1Q4Ogo+94LAle1GBYu9c7zi2cBuyVNZcJRUwZM81blKWZcXbhT1Ub/PygASUQC+l3xibuiT7ZOdv8xhxM6nxxo1mUVUeswLnVIHnyiRhTdPXiiGbdv2W6+njlOZA1UUCpSFIE1pFrKUg5Gzi4YEeeFEeh+po5O9V9R5Lbr3vBKLXJeDBw+mCVbW1tZG2gLLqsmaNXkG+6ls2I41cmSMHNEsouecdx9Fx2bpOzXESJlldm/osyO6judAFWkXszKgEaZCt+wxqmVShgvEJUsXjWK0hUKhUCgsEBcsBaNXZkxLfilLzNL1KUPSBOZZSTBNdqAJMzx75FTYSxbKErGQLMk/EaWF8yTmiDGr9O3ZaHXsymQ9pqZ9Vgk2Y5Pnzp2bDFXRpAlZyUMis9Gr5K3hZVHIjm1X99Uc5q+2et13Xv/1nKk9ZBGtj/de95dqiLSv3rmamEJttja0RtMf6r72WNBeigBQk0bWyj7YkA/aazXdY5aUgYi0BlHyC3tMVJhiTigLkT3XNAxO51jfe9eIEqJ4RTqihC/6vPZYajS+TIOiYVE8hmudhffYPVQ22kKhUCgULnIstfA7PQABv3wUJR8tX6detJl3XFRI2isjpl6SatfLkm2rh3Tk4Wk/i46ZSo3mjVP76JWcigq+RzYhr29Tr1677EsWTE9Ye1gk1XZdtyttn2dXURaidlYvBWPkZazlyjL2pqkD1fvYMo3Ia1oZjmW2yg7OR/qOtCN2TiKWz35o8glvPtXLWK/jnRP5OKiGwH5m75ssYcXhw4dHa+qlYHzwwQcB+N6qQJ7eMFqfLOlN5BHvPQ/0vszGq9fRxBHRsySz0UbRItmzWMcR2fuzc9VD3/OXIWONbLN2rT3NYzHaQqFQKBQuciyV0QLj9GlWytG0dlFKRgu1Iej7TJomou+8GK7IDpElEY9sSpFtyZPaIo/eOXGiiswrWCVnHY/X56lYOy8OVb1MM/vs1tYWzpw5s90nSq7WQ1W9SnVdMru+aj3Uc1ntlPa7yIalzNqOf45XNqEMJkrXl9m9ovhtL5adc8HvyE55rqZItGug8cjKcL20jZ7HKzAu0mD3jpbw29ramvRY5/k8l3Y8+39k2/NilCObcsR0M1tmVADFs0vrMXu5L6P0iV463GiPqMYjY+xT/fHYt0KfQ979xPtWmSzX09po91Kecz9RjLZQKBQKhQViqV7HKysrI69ja4/SWMio6LkneU3ZatUeZ/+PvAu9eE2VhKIyZvYclSSzzEyKiP2o1OvZOyLv4kwKjyTlOZKztpGxb0/TMMVqdT9YadrGVNp21TaXMVsyL832RQZt92q0ZloowO4t1Raol+lcL1rb52wfRN6fGaNV3wb1X4g8iu3/atvWtc7YndpkPV8OMha7TpnXqk0cz3Zt4XfdO7reXny92jvn7PlozBoV4GmAvHHZV28/RrG2URu2r3quPiu8Z7E+R6PnnqchiPqm2kC7D5TtKqPVknjeOV3XTWb32g8Uoy0UCoVCYYGoH9pCoVAoFBaIpSesINTxyUJDgAiqJrKUiHqsqrG8VH6RE0+W3jBylfecYKbUv3up9RrVyvQcaqJiBnOSXOwlyUHURqaaikIMIrTWRvvBS75PtZGqK71QrchJSPcO1aQM/7CIEvV7BSOiOVQThWfeUFXalEOdPScqtKFmFftZVBhAv/cKBKjKVa/rhcuxr7bGrPdq/7f3XKY6PnDgwMjkY/eOOkjxVcc6JwWjIqvXSkTPn8wpMlKxe85C2n6kuraqX12XaE1t21H4oLbpOUNFZi597xUIUIdNTcXozYkt0lHhPYVCoVAoXORYesKKOen/KFmpQ4l3TpT0YSoJPzAuIxWVe/MkS5WMVLL0zon6GiWJ8K4TSV+eZBkdmzlSRM4cWZgMMRVMbz/3JOOMlaysrGzvBy/5RBQ2RiaWOZhof9mux2AJtkf2EznwefuAiNJ5eqklo72jbdrraWk1Ta+o6fSAcYiOMlv93DLaKJwkSphg+8b5JAtRJuulQZ0DatJ0z3ilAZXRcu9kyXWm2FuUrMFrI0tKoc+iKOzFCyuM+hA5ogHT2giPLUd7UtvIHLeicEIvbJLrocxVnwWWBWfJjxaJYrSFQqFQKCwQS2W0NoGzSh3AuCwVj1FWmiW0V6idxQsN0rCXKL2ivd4UG83sukSWAk0R2aIz+0IUAqKY496uffXmZKpPnm0us/Xa9mwpNK+/EaOltMtE9l76xsjOrnvG2ta03zYo3l7HsqCIlahPgm0rkux1/3nrojZTHqsJ4b2wq4jJask7OycazqPz6rG/6N6LQjYs5pZds5o0tmP7rcxIWbVXCtFLl+nBG3PklzDHVjjlK+FdJ3r+REkwgDj0TO8R7/wo5HLKhgtMM1pPE2FDtewxmuDGwmpbykZbKBQKhcJFjqUnrNi+sKS5s5+p15i1A9njgNjrT6U4r6yTJsjQtH1zWFckeVkmM1VqLmPDDyeYOpIg54xH7TmaXCErlBx5a3sJ9r20c5lt1yYd0HWz/3PPaGEDj3lEKQkJTbDgSfGRpsF6NdoxWkTM1huX2p/Uduul0dPvdH69c6JkE8pwvXSKeo7XvvZDUyPqHGmieL0mEHvi81o2UY7XB56viQ7UxueliyV070SsTv+3x0aJJex3nn9ChLlewJk3+F6iDRQZc9XPI+aq+9x7rkbnepEa/I729+y5s58oRlsoFAqFwgKxVEZ78ODB1JNPJWBNFq22JmDMsCIvTS9mMIJKQllc6xy2GMXARfGsni1Irx9Jp/a7SHKOmI137FSKOQu1+WQSbWT7ydrmsdRweN7nfNVCAWRGp06dmux/FG/q2RZ1H0Te6BbKhjLbc7Tfon3v2Vuj8Xj3RMRko9J3HtSOp/suixrQPeTF1CsDzLQsPJfte+fQy5jfKZPl88feJ5EGTZlnlm4w8tLW7+13e7m3dU9EzywvNaam54yKaHjpNKN7OYrqAMbP2il/BiCOIdY94/1eaEGRRaMYbaFQKBQKC8QFK/zuxVRFUqcygDmZc6J4Rk9q08wv6lHoMRkiKpvn2TtU6oyyCHl2ZL2eMsyswLhK2TpOe65KzJEU7EnOKuVrHGcWjzxlo7Xnen3Q4gEq3XqsgZ7I2qcoltiuC/dMZN8nPJYa7QPvHGUQkfbD8wbVggBarF3L2dlzlMlquTyNebeY8li1axAVDlF7tedNO9fnwNurnje4akqU0XraMGViyvj1HrT9VW2VMksvJlZ9TaJ9Z8+fu69tH6NyeFFZyDnQ/eCNL9L2eZqNyMclast+Zp8XZaMtFAqFQuEiR/3QFgqFQqGwQFywogKe67WqatWhxHOmIFS1EKlNs8BxVaHMcb5SzHHnn4J3vKqZsgQSUTtz+hGlKNM599QxURiHp1rO1DtenzY3N1NVYZSwXFVFNnhd0zTqnOq4vGQQVDfqOd668DOqJNVRz1MpqvMgEalcrSpXTSPsK9vU5BPeZ1pMIHPk070ShbF5iVlUBc058tY62m8R1tbWRuGEnilCnWu0wIGd80j9r/PiqdajvUJ4fYzSJ6o63h4XpapUE5W376acn+YUiIjUv4QXdqNrGz3XvXM8lbS+j/bkolGMtlAoFAqFBWLpjDZL7q6SZZZQ2rYLxEm2M0TSoLJgL9FCJGFq2/a7KQnckyynwgS8+dRxRXOROVJEYQT6vb12lJYyC1uZg67rsLGxEUrxwHj+1aHOG4emTSTzm5PuUsMDoqQWnmNT5BDItizrjsJedM49hxZ1nFFmy+9tyBMLKfAYDX+Iws30f9uXyMlQ+2vHqfeePUe1FVbboeBzR+fPcwCMkiN4zxRdw6hvfLXzqN+pRiMqAuAdm52TJenw2vdCdaacPe052r5qJOcw2uje80LgIi1bFOLptdN13cNKCrRXFKMtFAqFQmGBWGp4DxC7mnvHqDTvSTtTbuFT5eXsMZFU7IUEeTYR+94L0ckYmf3es83o2PVzL7wnuo5KmJlEN8cOFiXiiF69Y+cgSxkXpRnUPeSFligbjDQCnsQfsTUyQyt1K8vWNJFazs7rv0L75tnZ9FWTT1gbrRZSmEqjZ1mTrrOye4+h6RyrZkoTZwBjG/eBAwcmnydq+8uYWJQAwfPPiDRZmuQk86HQsWY+CFmaRj1X1y7SgnhzEmnutM0srEifvdF7e45qefTZ74X0aR8y+6v6cJSNtlAoFAqFDwC0vXrEPuwLtXYngL9fysUKFyse13XdI/XD2juFGai9U3i4cPfOfmJpP7SFQqFQKPxjRKmOC4VCoVBYIOqHtlAoFAqFBaJ+aAuFQqFQWCDqh7ZQKBQKhQViaXG06+vr3ZEjR8Kya0Cc/SiLRZsTsxmdG7U1B1PtL8rJLJqb/b5eVIosWzddP43fy+KRW2vY2NjA5ubmaBEuu+yy7tprrx2N1RtzlJtVY2SzMWXl+qY+mxMfPoVsLc9nnfdzjzyc0mLevRnlxdX3tu+ah3dzcxMnTpzAqVOnRp1aXV3tDhw4MIqFnZN3O8v2lmVIOl88nNjy/cbUvj7fe+Hh9idrU/MBeHHJXiH7M2fOYGNjY6G18pb2Q3vkyBE8/elP3057p/Uu7WeaCo/neCm1eANFCcCzJOhT8NJ+aXt6nSzYnNAb2UsLpudGAevej1iUpjFC9qOpCQP0FdhJfHDy5EkA40T0l156KYDdiRHuu+8+AMD999+//dldd93l9u+aa67BjTfeuL0P9Gax12R7fM/0gkwgYc/RdqJav3PSv02lg/M+i5KQeAJJlqzDvvf2t+6ZLBXfnBq50fWm7i1NZADs3K/R6/Hjx0dtnzhxAgBw5513Auj33Ste8Qr3muvr67juuuvw6Ec/eld7x44d2z7miiuuAAAcPnx419g0DaWXDESTf0TCm1eLWdd7zrNK10X3h/dDFK1/VjRjqjCEl7wjSpmrr5pQB4ifUXOShrCdI0eO7LoO9wnvffsZnzX33HMP3v72t7vX3k+U6rhQKBQKhQViqSkYW2thonFgrE4kMmlGMaUOtFJUpO6do46JVOAe+4n6qMd4bEL7kpUaI/Q7bTdKEO4hYnWe5BypbqxESdgk8Xw/pTLN2D2Zhe6hTNLX8l1TZb68El0RO81U+pHaMSuWEKXLi/qcHUM8HFWu7t05Kf+yUo6aOlPni6zSMlBNITqlTjxy5EjKyKgNi+6tTFs1NVZv7iOtQaSlsP9HaU61bQtlkNF8zVlLTXtoz4n6FqXStfeTzl+UmtM7R+eN60mGa+8n3TMrKyv7quKOUIy2UCgUCoUFYumMVhNoe3YPsp1IwvR0+5FknNk9Iokokubs/5EDBV8pVXntRg46mYPBlMQ8xzasDMcrMK3HRs5FGevWPp0+fRrA7rJ0uqZnz54NWXrX9YXftZ+WFatdOCrMndkUI5bgJS+PkpJnTjK63hH7zWzmU446HqOdYrIeU9dx7oXR6rkZC4vKQGrpQK+g+RxG21rD+vr6yIeDbAfYWV8ew32lLM4rX6latqlk/La/kV3f2wdTDnsPxwclY9BsT23mc0pfRjbZ7Fwt7DLn3ozs1TyXNnf7nGAJSq71+vp6MdpCoVAoFC521A9toVAoFAoLxNJUx631NSGpPvRqrxJqCCc81aKqClVdpu3bNiOHBW3Dq7kZ1XLN3N6nnKzmOCVpXdXMgUbbUzWwV1OX51DdwlcNZ8hc86MQIU9Fo33x0Frb3j/22jZUhyrG6FpZbcop1ZbnQBOpjiPnJfsZ5zQye3hzEamM9T7y1H+6J1WVy71sv9M5iFR53vUy5ycdQxRqpHvHqv+0j1k9WqqOOcajR48C2K061vq2qpr2nlVcI/ZL76UsZEsxZXqx/0dhVplqdeq54+0tVafr8867n6ZCgDL1ttaqnXLc8tol2D5/a6zJiqrjSy65BEAfGlaq40KhUCgULnIsldEeOHBgVkV7lQY1FMST0JTpRd9niJw3bJvqGEOJO2tfHcCiBBUeE4j6EiWwsO1E7EAz63iSM+ecTJGfe4xW21VHEbZhE1bMCf0gWmu7pFJv7N5YLDS0wIL9jALts2xCESPzJHLV1GiSA4/16N4houQXto9RGIyOy2O00fiUcXh9jpg64e23qZCzzBFpdXU1ZbQHDx4cMRkmrgB2WBuvqevtaV2UwXKPR+GLmdNY5ATlOdJF8++NP3pGTK0tMA6pjJyhPAdBb1/Z/njaF+2T3oPec46f2eQ5wM6ccF2pxQB2EtjwebK2tlaMtlAoFAqFix1LY7QrKys4dOhQKt1GYS+Z3UvbU9f8KBzHnqu2Ol4nS/fFPlJSVnis1EvS4Y3BSoLsg0p0c/KwKtNUu6uXICSS0JUVe9K92kkz+6GXhzSCDQuL+h2FQen3nuYh2iMqxdt1iVhBxqyjkCPd93askS9DlLbP9pFSuzJaHY+336IwEe2rXYPIX4KYs9YE2/VstGQqqonwQL8QJrxgukUyWx4DjJ8HvLc9zZo+m6jpicac2Wh1L6n2CBjfL1Eolb0O78fI5yDzL1HNnTLcLOQtCgnK/HLUTq73lZd2Vf0xIp8LhvnY//m6l3Co80Ex2kKhUCgUFoil22gjKR6Ik7xT2vHYgkpYKkGq9GslpSg4fw6mkg54UC9QjlNTANpkF2oL1utkHqqR/YvI7GsR6/Kg68aUiyrBetJvltJRx6Rj9hitjiNi99o2ME7Fx/bV+9QeE7ERbz9MJZDw2M9U6sXIU9b+HxXYUMZhj5maP02mD4w1G2qvzOzjyob4XotaWNj7Kdo/TMF42WWXAcD2q9VEqW1WP8/srMp2I/trpuHSzzlv1qeB862FDvTcjAVH1+f62+eO2lupHVEvZE9DxHM0yb/u/8y+GyWnseNW/xiOXftsx88+kdEeOnRoKay2GG2hUCgUCgvEUlMwrq6uhtIjMPZOjVicldopmUb2qIw5aR/03DlskVCpzUqWUV9UevMkyyi+TNmXhXq3aswf55WpES2DYruR53Jmm9P2WDbPYwRqxzlz5swsVmvbsX1QRsH37BNZtmVgas+PCgV4cYEq0aunpdqcbHuRvVvtkvb/Ka9cbx/ofKlXuGfDizzUeU/ylWvrzafet6ox8OKRef/SQ9QWEdDr6L2WxdGurq7i0ksvxeWXXw5gp2Sj7YPedzoHc2LVI01Dxt4IPUf9JGxftPyj7iHbtt4LUWlHXQPvO42r1fcW+vzUuHGPaere0eebt76qsdEcDWzfeh1z/u655x4AxWgLhUKhUPiAwNIYbdd1uyQ0SihWUqWUzOMixmntK9S5U5pR9qhS9ZyE7ZG3nP3MJqW2r9q2h0ha9MoBal+U1Xtsi6xDE7OrHcyT1CMvWo7H2o2IKfsKWWUmlWaspOs6nDt3biTxW+bHfnFMLABPyVULwANjL2y1LSrsGlNKpvcqbT48hnvUs5lGHsQcg1f+L7Kdq8bDts3rRcyCx3qsVJnTAw88AGDnHuW8ejZabZ995JxYtqrzpx7xnGc7LtVeMHOYh5WVFRw7dmybybIP9hmi95AWqPDiwKOCILounqdtZDNnPzg/dm7ZBz7n2P+or8DO+qvmJvLAt3OizxeuD6/Ptuw9EfnfqD3fY6ne74G9ThZxos9k1RDZuaeN/s4779w+p+JoC4VCoVC4yFE/tIVCoVAoLBBLVR1bByGqE/kK7KgNSOU1bRrVSF5gNaH1K6MCBfY7bYvX95JSqxpMnV68GplUu2goEs+NnKXsMQSvq323x6k6S1P+RW7xtl0N/s4SMajTCNPbcQ00RMl+ZmtH3nfffaO22e7GxsZ2H6j+tXuHqk2qOu+44w4AY9WxPYefUSXIdvmq47L7gGtKJxvdo3xv1aQ0c+ieUVW4F96jajCdP1WDe/1Xhxp1YrNzcu+99wLYmb8TJ04A2FEdc87s3lE1qTq8cc7snFCVx/m6+uqrd7XlqTnVISxzZqEzFNunCtkrEKDj4LPEq4nLeVanJM4HXz0HMFXHqrmBc2sLH6hqXeeW12d/7LiiZC76bPH2t5o7NDTRqtN1r+oc2b5FUDV+ZGaz/6vann1Xc5v9jnswM1ntJ4rRFgqFQqGwQCyV0XrhGBaUNlXi4+fKDIG49BKlUHWusMepA4Ea6Slh2hReEQvV0AAvfEnZtTJPj9EqC1UXecJzvlKWo45M6rgBjBOBqyZApVVgh+WQGbGvZLYcj5Vo1XFifX09ZCZd1+3qO9eLLBYAbr31VgBjBsY+acA/MGawypR1XJYBUCLmdThWvjLVH/cuMHbs0ZA0T+LX/aYMTxM72HVhvzWch+Pke6tJ4P90Frnrrrt2fa7OWXbfKcvS/ewlDdExR+Xx7B7VtKdd14WJYtbW1nDllVdur4NliYSGoUWaDfv84nyQ+fNY3X9cLzJ3YOd5QpatDk5cc2pLbL8jJyxNrsKxA3HBk+g5BIwTYKijIF/t+qmWkvPK+5QOioRdR/bVJpKw49bUibb/PEbT1er9ZcH79/DhwxXeUygUCoXCxY6lJqywafQofVhJT8Ms+B0lO09Ci2yVUVk5K7VRUqV0ynMp/XpJB5Q5KiumpGSl9ig9G6F2CXucSqqU0nSuLFPjGNkHSpKats2zf+kc63p5RRTYJ0r1vB7fayC57X9UBs6C4T2cC7ZPOywAvO9979t1Tc5HlEjAXlvT6KkNOwtH0CQTaqeyc66aE5XelVHZPmopt6hcmV1L3b8cH5kGr+OxEn6noRlRqUd7PfVtUKZm9xDvF37G9pSNW1byyEc+EsDukL0onG51dRXHjx8f2Ry9kCbOC9mojt0ysve///27jlXWRqbLNbfaELXVq92Q31MrYudBWRyfkcri7GeqJfCS7QN+AgmOQxk8x2u1StxHOge8F/nee/bzM7J8rhM1RPwNsOUNOVYtfch55P7wQp547ePHjxejLRQKhULhYsfSy+RRuqAUYqUJ2jdUQlGWaqXXyFYRpbvzvBdVsqR0nZVUU6iXoZfYgVD7E213mr7Pjkel0yzJgkronFdNiODZvHWuNXCdc+N5/6k0qing7DnsNyXzruvShBUbGxvbLIfStbUtKltXtuol7NfEAapxUFujl0ZPNRpqz/W8WyMWr4nbvf7r9ZXJeX3kuep5rQligHFSi6gMpTJQex2+auIZL12fakrUruZ50/J+sZ64kbaIZfJU02DnXr2LI2/Zu+++e/sc2rD5mbZBeOkU2VdNZ6maNbu/1VOYY3/MYx4DYIf92jnmXGrf1AfF86on1NOf4yY7Zd+BHXbP71QrQabLPlp2qvZVrj/niNor6+XOOdD7ihpJTWLkHfuIRzwiLbO4XyhGWygUCoXCArFURnv48OGR96SN4VO9vNp41AsQGCfxVyamzM9K4Or9yeuSmXkpGNXmq/ZXSr9W8oq836I4QyuVst/qnamMxjJaTaZ91VVXAdiRKGlXyVLwsc9aeorvrZ1N7bbqMWilXu2/PTcrNn769OltiZnjsGPWuWU/eYx6HwPjkmMad6pMzNq0NGZU2Rr3qmWYyhj0ul4h86h4t8eYgd3zoHGyakP3ikpwrXgu11B9BDSuExh7dkdl8myf2Q73qlfuT6/D9m2Kyaw85erq6mhPeuUyo0IdZK3cf7YP7Dfb5Ryrd7N9Zul9p3HNXA8vx4BCPZjt3qGtUlN86lx7bFyfmxxXVgBDY3w1baO+f8QjHrF9rt57mtqW59i1iYrQ6HPd3nfq43Ds2LHQK3s/UYy2UCgUCoUFYqmF3w8ePLgtoZBVWUZDiYiSDz3D1G5k7Z8qRVFKopTCY3k96+mmbVx55ZW7XlXiBMbsTPtEtmAlvWuvvXbXWCnt0pNObU5WkiU4b8rMNGG4HTttFddccw0A4LbbbgOwY2fxbGe0hag3KKV6zqNdA87pVAktb91sSbXMRnvmzJmRjcmOWTNmafFsL5ORMiMyf7XN6jrZ/kdMWu1wwM7aqeZC7fv2OuqJqpnH1EbrMUxel7Yza2u0bdn2r7/++l19Uhbm2b80Gxf3gcZzsx+2XS0oruzSai9Uq7SyshLundYa1tbWto/lPrH3J9dDSymqJ7G999lvjRVXdsR7w3rnsq9qI+c6eXtV7Yg8lveyeucCY3uk2mSVAXqF5lXrEhWOsNfRXAJ6fz3qUY8CsJv133777bvmRH1rPJ+AaM41Jtd6dK9+BQAAIABJREFUbxPWG7wyQxUKhUKhcJFj6WXyKG1QSrQSiuaLVTuhSlPAjlT0hCc8AcAOe6R0zVevxB6vw5g4Xu/xj388gJ2sOJS2gLFdQzMl8XMv64l6cmr+Tq+oukqOXnYdOz7bvhbTVqmQTNfGo3INyDqe9KQnAdiJXbz55pt3jdOOXfuibMUyXPXsbK2FsZCtNRw4cGAkIXu2F0r66i2peY0tqAX5kA/5kF3n/sM//AOAnfy71karEj+hRa3tmNS2rHY89VEA4uxBKoV72h7N4sTrc+55HWvf1DhNnss9xL6rZ6ftP+eJ9xH3F+8zMl77v9rBuXd079r/rdf4FKNVb3ovrpWx2GSf6llrNU3qY6B2T/Xwtiye88S9oxoOjX+353C+9Tng5WOOvIw15torS8p9pNneCO9+Uk2D7h3uRy8unXPwQR/0QbvO4bNXNSleOzoe77nDOeAxR48erTjaQqFQKBQudtQPbaFQKBQKC8RSVcfnzp0bpR+zhmyqD3iMlnGjKsKq8Gj8p3qPhm+qOqh6oDrDqmM0NaGmyPOSM2gYj6p7bdk3QlUmVGeqI40XMM4+8rrqQKEhQvZYQh0LqMbi9ayjBtvRcCmq5BniwCT+tl0bbmGvSzWQVRmqG//W1lbqlLC2tjZSa9o55hpRTanJBjwHM6o/qa567GMfCwB473vfu+s4TVkIjFVZXHc6L9FJJQvr4ByomtuqozXRioZBqFrQQlPQqbOhps60fdRSh+ooxD5btZym3KNpgvfmO97xDgC77yfub03MoQU47FqrY1imOl5ZWcHRo0e3nZK8Upu6V7iH1Lxlx6qORJr0n69eaBuhJh7OsZd2UtOY6vOG62/NDvxfTTlamESdpICdZ4I+O/S6dn9reJKGPqlZwK6BljFUp1Wujf294LH6qiYmOy72jePLnDD3E8VoC4VCoVBYIJaasOLo0aPbUpYnvWtANb/TAHsb/kDJhI4rKnlRWuNxVnrnsSrtauJsz8FAJdrIAQnYkcbUSUDDecgWrJOMlrjjdSkpc3yWsWlYDSU7LRhA5malUrre05GFzJaOYQwNsZK6SsiawF+ZLjAu0Tfl0NJaGyXWt/PEPaLhIRoCYJkftR9cB8vs7bkaDgOMSwHSWUydlbzkKpqQX51U7H7j/HvJ8IExw/AKjHMuyLaVQdvrkVnoe2oyyPa4BpZ1sT3OBfekhltoMnvbR90z7LPd0+oEs7a2NslK2A5fPWc+XlvDQTgHVhvGe5rncqyayEadJIFxghINX/S0E3oOny9RYgfbnoa6afIZvvcS9mvYHNeOmkR7T0eF5dXZimtln8Ua8kTw+lw3LyEH+6LlVL054fnsU1ZicT9RjLZQKBQKhQVi6QkrKD1QGrGhJVFCAk3Cbm19/E5LNKlUqhKybZ+SHK9L+5oGkNs+KGPhe0pTGStRu4fa7rxi2hr6op97Be31O55DxuEln9BECLfccguAnTknu7PnaEiD9pHfW7sL14nrce7cuZCVbG1t7QoN8wrWE5T0eS1NEqFlFW1f1G5M26KnfeGxbJd9UpujBedDE5SozdQrDKCaEy2TpzZN2x6ZPyV+9lGle9sOtTqazpPswUsJSPbBueee0YQMlmFo4gsNEWLf7X2r5fY2NzfTZCfnzp0b3VuWTXEvs99RClHbby0eon4kWtDB7lXdG1E6T7su+swgy1Y2Z+dBk/qzr8qYvRJ7fCZyDpjEh/Pm3XssgsDraEiVFpvwyk7yXJsi0fbZPkPYN84Fn/maetHuHQ2DyjRp+4litIVCoVAoLBBL9zpWfbhXOkttmZSeKJnY1GSEFnEnVLqxdj1KScp2VEq17E1tperJScnfSvzKOjQFmtqI7LnqbaoedR67U1bK9vi5Su52fFHhcrUfeUHgWqpQGa1NIk5YKXqKlajN0Z6rCRU0wJ6fW9atkn5U7J5sQftkX5W1qQ0PGHt/KpPl/rbaiUgLovZ23VO2HU3UrxoI20dNhKBsh3Oh33tzw3tR73nrv6Ce98ryVQtgx273eWZna62NbKV2z2t6Rs6PvSavo+dwL+qzQ0tfeikkNVGC2uitdkKfVbyH6VPB9552Qp87+nzl2nr2VtUocO65z72kE9SUqZZF718vnaLuUfWut9dTLQ+hCYDsunmpJMtGWygUCoXCRY6lMdqtrS08+OCD25Ke2ieB3UXAgbFXHKUqj2GoPVdTohFWglbpSaVeL35SS4Bp2jyNQwXGTC+KGdQ0gsDYzqEsWBOH2z5orLLOkZbRsu1rUnxlv5Y5qcSqkrMnefLaVuKfy2hVMgbGe0djVTVG2n6mpRbV7u6ljNMSdNwrnB+v2L2WS1TtgEri9n9NHajlvjypXBm02kO1hKAF2+V3UZ+9YhZqc1Q2Ys/ROGDet+olnMWJZ2XytPC7x8TVnqr2XI9haqJ+vR8zqAZL50VTtQLjghPUDpHRWl8HQvMQWA9/21fPn4DH0P5J7YdqUuy6sA88h3tH09WqPd5ej/Ppac7sWGwfIu99Xl+1nECcynZRKEZbKBQKhcICsTRGS2hpMK8As9oH1WZmbXOq26dUox6cyq4s1G4TZcGx7bDflDDJsmmf8OxeyvQIlSitnUUlSC3PxmO9klpqn/YyXen1I29mjY3zJEEeq+vmsS7VJqyurk7G0Sojs9Ku2pbVVq4szv6v7FS1B9q2/U6ZsybDtx6P/IzekZT8lRVZqNexN29en22faDtTdu+xQN4DWqRA7w3dl/Z/zVamcdzePajt6d71srNZjUOmDWFBEzsuO3bVoHGsuqa2D8pGlXlFpSJtH/R5p2vtFWyg5oZ7iMzW29+6ZqpR0XhWj2Hqs0Pt/l6hEO5z1dhpaUz73NF1j/aKl9NAS69qMRoL9YAuG22hUCgUCh8AqB/aQqFQKBQWiKWqjre2tkYhO1blQ6ofORh4TjVRQL86FHj1QbWWo6rNvIT9qqpjwLga4LPUe+ocEqmUbZ9UVcw5YtvWoYWfRTVz1cHKQufPc7bS9zrXqgpXVZyFdTiJVDhUG2d9UNWqJjXwnO9s+8DO/lNnGC/pgKZ0nJNogZ9F9YHptGHVcbpGqjaN9pQ9Vh3FqHbUpADAuAiDmj2i0BR7jO4HXRM7PlVjEpxHT0WtzjxTCQc2Nja296AW47Dt6Dg07MVeR80O+szQufBU1VH6TH21x9Dpks8dzhPXzT53qBLWVJv67FWnIttHTS2bIbr/s2ewHqN90/3tzUmU9tILQYrU9otGMdpCoVAoFBaIpTtDeWEP0XcaLuBJTBEDi6QrzxlGWZsa4r3raUowDdL2wgc86dy2SdjraXiFpqP0wh/U0UyZonW2UkThIl5oBqHzpEkIPJavOHv2bOqU4F3XXidyANPSXNbhSEMJtGCEl95S+xOFlWkpN/u/ln6z4WO277YPUbKBORK6sm9lK3a/aRELDVdStu+xySixCN9766Zz4oUP6TkeM1LQGUrD1TwnJULHpKUQbR80XEjDRrw9r2vpaSMUqinhc0efN/Z6Gl5DRAUcvD6qVkL3nZf4g/DC4ux1vfXTZ68+d2xfoz3C55/nVOYdO2cfnS+K0RYKhUKhsEAsndGqq7mVMChZ0N7gFSS2xwFj1qZpv/Rc+z5KCaahNJYlULLUQgTK2mwflfVENgtluvbaWmpKi61bqY0SXZQgQ6VSL7VclB5Or2+/U3d7JnHwkgSotiJLOsDvla1ZSVkT5GuhbE1laY/VUmBRyjqP0WhKTH31GKayYU1z6IW8afiOhvd4yQc0qYqWyfOYhZbJ01A3TerhYcrmaOdR7z1Ne0h4c2K/y9jg5ubmKN1mltJxLz4UUQIHXQ9vH0R2XsLOE/co7etaTIXr4iXX0TVTButp4XisaiN03FZDpCk3NbxP7w0vBWOkhcuSnUTF6D2fHk3icfLkyWK0hUKhUChc7Fgqo+26blvK0qLQwFg6V/tAluZMJX1lMp5EpNKoerF5TFOTnqtnryedeknQvXMyD0tNVEEJUxOD2//V2zhialZ6nJLuPA/cCDq+jNEeOHBg0ntUbaZee8rEtci4Z+OJPA8zhhGV7NM19jQ2et0oNZ5tT4sGqJ1yTqkvts+SZ2QgXoIU7iEyXE296THoyCNav/e8+FVjotoWTxM1Z8xd12Fzc3OUWMQr86iaBsKbY2VT2hftozdP0b3m3WPUoHFdyFzpG8LShyxvCOywNq6vjk/3kr0e54s2YU3A4Wkb2R77xGd8ZA+3n6s2MXtGEcpkowQp3v1tS4QWoy0UCoVC4SLHUsvkbW5ujmwLnqSqKeM0hsueE8UZKlRyBsYSnkqh6gEJ7EhL6pXppYWL+hilz/PSuSlD1lg4T7pX+3eW+sz23X43Zd+14+McaJkstevZ62TxmIqu63bF2Wr5P/tZFH/Hvtm0bFpo217Pa9NbU+8724b9XFmp2ma1eLhtfyp+NrPva1+5hxmLyfUCxhoate/qGLz7LbonvTXnZ1osIWtTGcqUdsUer/cCEMd9ap+8hPZq79QCFZ4WTucuKiZg7eV6b504cWLX69133w1gdwL9yE+A16edWp9/9hi2Ry9n7lVqRbzCHgSf8frs8mzC+hyLNFSehohzE0Vz2LXms4rzNeUbsl8oRlsoFAqFwgKxNEbLclUq7Vr7kGaJUYlMYyTtsSphRizVSj1R8XSNibQSMyU8j33YvnkMQ+MZKQFm5d8I9RzUmEQvm5DOl0rXWZmsrLC3gtfTWEv1APdgtQqZzW1raytk97a/Guep9htPIs7sQHZ8XkYyPSZLnE8Jn1K1amq85PU6d7qHVHvhaXu4DuqNznOtB25UUEGziamN3X5H6Lx62eB07FlhCW3XzlN03ubmJk6dOrXN3j0vYGWw1n5rP9+LL4PuO6+ghu5jPg+8mFEyV7XJ3n777QCAe+65B8BuLY9mBCOijHt2PtW/gnuHxVPUDmr/5ysZeXQdz19Cn8lznx3AWCOgzwJgZ940C+CiUYy2UCgUCoUFon5oC4VCoVBYIJYa3tNaC5M2ADtqZLqFq+rDq6OpNVapgtBwgTn1M9V1nUZ2q0qiOkKdRlTV4Rn6taakOiMQnupYE2drmjGbGD6q7alOPpoMwx6joUAaHuHVTo2KP3hqIK1dO4Wtra2Ryss6p6iTUOTE5YHzNZVAxEtOrmnetB9eSjwvQTqwsy/s3tGEAdH+9lSnPJahIFRdqyMi97vtg65v5FBloQ5gc5LJ87PMuUqhqt7MvLG1tYXTp09v7zOeq2kv7XdRQgcvNSYRJTfx1kVNNrqHOBd02AHGZpk777wTAHDbbbcB2EkO4yX/1z2pyV08pyEtVqIpJXmOdYBS50J9rkXPSnts9MzwHOn0d4Hg2qrjnj2W8/TAAw+UM1ShUCgUChc7lp6wIgpQB3yGBYwlMc9VXqVEdQ/3UhWyPWWwfE/JzJagI1Si1RR/XjknSn+8jjJaL/hdA8NVsvVCG5TFTzFaKyWqxBq99xLRa0hDlqaP0AIIGbIE6sRU8pE50quuredIpcwyYjBWGzK3AIFlk7pHtTyihv145Qsp4ZMh3XHHHaO+6fXUiWdOOJEeO0eboFAnRu86XhrQCFtbWzh16tS2MxEddGyfphwbCXu9qJRilNDFaqnUaUfDh7he73//+0fj4d6n8xOZLGH3aBRGGCUDsc9VLYChpUS5l+z9FIXiKMP1tDDah+h5Y+c12ptRyVT7v03mU4y2UCgUCoWLHEu30arElyUsUDsh4YVoqA1BJTK1VwI77IDMQu1hHjNTO5QmpOe4LFvgd2QuDDWwtjFgXBLPG4dK8Z49V5MNKAPQObMMSm3QOgcem4xCgdRW7CWYmCtNrq2tjex4tg9Taf8ydqWskMj2ZsQoVeNg7chcb4ZIXHvttQCAq6++enuMwG6WoqxAk1vwOrw+U/XZc9ke7fj8nCzPrktUYlHv24xx6vXnfB5pCAhP4+GFeSm6rsPZs2e397OGOAE7c6p7nq9Zcvq5+9hLVaglCXn/66t3PdWceaFa+mzQ+1PZo6YrBXb2apTs32ofVTOnWjf2XbUzQPy8juzL9rsoBM5j6loKc1koRlsoFAqFwgKxVEa7uroapj0Exh5nkU7f0+0TUUFur9wTP4tYo2ebpRSmCaw1cbdlCeptzFf1MvTsEAQlVfaRiTOU6dhjCJ2/LHBcGY2+egnWp5INeJ7YavvNWElrDSsrK6P18faBeqZnSSmm9k6W2F7B66rHo2UYZJvXX389AOCxj30sgJ3SZ7yu9YhlOxrQrwyNc8FUebY92vM0+QDbtonotbSaanCUlWQsL/IAt/tgys6mY7HtzbHrb21t4aGHHholCcmS/KsviHrc2+8ir3n1qbAaLj5XNAmN2rbts8rzaQF2azBsG/ZYXkfXh6/UdNi9w/5ynXkd9j0rLsLxcG702aisHBinUYxKK2Zl8iIma9eI17RFMspGWygUCoXCRY4L5nWcMdqoqLYn7fI79eSld6F6Etu4L36mMY8q+Wfl2FRy1UTXXh+i2F6Oz0pgWvA96rvH1DQ+VFmDFwtJiV9tzSq5e2xCbcKaas6zi9h9EDEU2tm8dHb2GO+9fp7ZaHWeNJbUK6quEjLtodoWsLNm3Jt8ryUere1KJXo9RrUhXmL4SIPhjVNjbokoRZ5XOi5io55mQO1sUREFC/U+z0qdce/YQt+A750dedh7vhrRM0LZohYfsWPTPcI55vPCS8Wpz0jrA6B95LG6V/Q+JKO1+07tqNS6aBvenBCaF0HX1M4Jj1Vbve5VOyeqVYyea57Wwa5pMdpCoVAoFC5yLJXRAmNPNE+yVElFE6dbiVkLsdOWoLZLMlkrtamkrcWt1dYAjCVYzVbk2a7UNqtQrzzPlql9U4nPMhC1VehcRwXvvc+iDERZknc911s3/WyqoMCZM2dGjNaLj9P25zAkZWJeGS99TymdDNBjLsBu6Zq2UiaC57la/MHadZVZqLSuHti25B33BGMeGZfJ9+yHzUDEPqkmRdmo5zmsnvdRZIFdK92rOi6PBavt7fTp05OMVu2E9jmgzFUZp9pS7bX1XH0eeHHnGgGhzyiusbWZal+5Tnyd4wcRZT7TvAHAzh7k8zTKYmf9CdQ/QddOy+ZZNs7/tViGeld7tvWo0EVWfGROsZT9RDHaQqFQKBQWiKUy2q2trbAYNTC28emr52HL/8lo1WbLV2XF9v8of7F6zQFjm4h6uHnxhey/9oXg9b1i0pTwKC0qE1RmbfukHqNRgWQvFlJLg+k4vcxQkYTpwSsGHdlKuq7DuXPnRjGjmeeovmbezeq9qGNWD1/8f+2dS48bx5aEky3pGloYhiEb8G7+/68yZj0wIEs2IKFfdzGIZvTHiCRtmBzozolNd5P1yKzKqj5xHnHWMdYnBtlqvr0R96+//rrWOrJh1jkyHrbWkdWIWegn41wptqpsYjFZ6ePq/NrW63Yb82uZuLuG8/R0JBbRmOiOBQvucdqtHY/Rskbex0UWyjXv+9DbRe1xgS0rfQz8yXeZs24yf60r1ULr/CmGSa9Uy2RP71VmaTN+nHJsmK/C68eMdt9G67lVPSQPKLPFdzrn9DhMm7zBYDAYDP4DMP9oB4PBYDC4Iv7PBCuElIjDZCi5OJQs4C43ClJQuL+V1KzVhQjoSkrlRK1Fk9wi7oahK43uCpZhOOj+aS7jJIWmsdBVuUsMYrINXeE76b0mDJ6SoS5xQfpxHx4etvelibzvxA127kY/DxNP1jpeUwpk0D3nyVH6XS5cQvt6EsyHDx9e/ZTrWMeX25fJWWsd3YtKdpKbuyUB+ncM47SGFKmchG56rbt0L5rIRRPC5/7nQNcx3wc+N6Elw/G4Pq5UKtfAuaYSvbVePxN89+lvzSO1/WvhLLqS6cJOY9W2LHnzMdIFzXKfFppZq4tZcEypjLG1LEzJpRQQ+fr1603cx8NoB4PBYDC4Im7KaB8eHk6Eq1PSUAvi08peqzfGZjA/MVomNDR5yCTULYuIJQBk2H4eNtxmcXYS7mZLNVlkOhatVv7u25D1JXaqc+tak23/FaH9XSLSrlVfA1PzUzIFf5K9J7EEWrS0qpNoRxs3kzb8fGIdSlISw2TSmoTc1zqVx5PYBYVSuC78d52XyWQpoSXJciY0j85ap0mGZEEpYac1g2DJkH/nzLCx3MfHx/X58+cT2VOfH1n13wHHy3Xn429lT/SC+H0hk2W5DZM0/bOWHNlkatN8+KzsZCn5HkhCLH5MHsfRSgV93M0LkiQ/0zM9ghWDwWAwGHzjuBmjVYkGLUr3wZM1NZaTrEPKb7GZe7Kc6a8ng5ZlxnKctY6xMQpICM6CydA5X47dLb0mvr+TwuN4GVduhev+HZnsTpyfceNLxPgviaFye57bj9vaJbb4jZ+TsTgeK8XqWrs45hc4dD6uHcVXdR4vt9HzIWbr64rzWes1e0xlST72xGR0fLIPYed50Pm43sho/XzteFwP6b4JT09PW1by9PT0ck1TiZ3mrHFzHadytfaOoqcj5R5QvlHbttaUfhy+P1l+49dGa6e1huP7LjVu4LzIZN2joXXM9c2YdConSiw+jXWX08MSqJSLwrwVf69cE8NoB4PBYDC4Im7KaB8eHk4as6cs4HNwC0X7U7qLMdtkEZGNJlEL/9xBy0txNVl4Kb7Smlozsy9ZWLRYZZkny7plBjOGIaSWd7TqeazEJpsM4rnG3Oe24fc7GUjGkIQU122MludMQiJNxi6ta4FMT+dXVrCyhD3Oqviq4rlai82Dkxpj0+vD5gZiy2udMj7Guy6JpTMWfAljYIb6LgudDS92EGNhbM5bYLYWbQJlANc6XfNJptHhY6VXqjUGcLZIlkZhh7S+NR+KNFwiQqPvKDHKfBYfOxtrtBaC6X3BdxJZb/IU8Vnju4veubWOz5Z7E4bRDgaDwWDwjeOmjPbp6emEmbmVeM5CTbESftaE85MoNeMp59rY+fnEUpvF7+dhvK6xRmUUuiXIOHFrhJyy8VoW3k70vUmfCSk+2qQXG0NI+CvZf7tsaaE1CEjMmWuytWtM64CSnxRod7asWKB+iklqX+3jjQEYX2NTC3pyUv4CLX+2jHSPDY/XhNp3md8t7t48Ov5da4mZGK57gnYx/oeHh5dtxWi8wUdr1NGy99McWqs9sUmX4mTtOD0OqTb306dPr34yrsy2mX48vufOZUj7PMT89ZOMPbW6Y2OKtg5Sfo5ARsv16Pucyzb2nAfNQ/cg1Q5fA8NoB4PBYDC4Im7GaA+HQ2xknBSUmsLMrsWZQOuMdXipRlXWLVnRrkawidYn0fJLawVTDFWftWYGiTW2Bt8ca2LD55jEriZWoOWc6tk4lvv7+y2jPRwOJ3HRFJcmo2gt8BzMiuS+qZkFM3abEllSw2LLRv0t1ScJxa91ZGCuZONj1tgUb3Wmxgxi5i/sMv/J4slk2cw7bSNwXe+axWssO68L7/H79+9r7Pj5+Xk9Pj6etOf050nfMS7dROrTXPiMUSRfLRLXOnosqH7UPEJrHe8hvSC6h1o7u1aUnA+bqKRGC2ze3mrM/XdmTXM+WqOugMbnhs+cvk9eJW1Dj8qutvzWGEY7GAwGg8EVMf9oB4PBYDC4Im7qOr67u6uC1mudBufpIkyJOH58/yk0KbG1ji6Mtk9Ks6ebSS4VukdYXuJzpTtWyQM6r7sok3vPt6XLLZ1H82vp9rvjtu93yVCt1CZdk79SNtKaFax16rJv5UiezNHO3YQxPDlF55PLjq7jJBTfkkO0DuX+dVEKyihSPJ5uYC/VoeuYpUipJKiFCijuksqyuN54v1JCE0MUTQBkF97YhRzoOk6C92wEwuS99G7hc0c3KV2sft9UzuXuZD8mE538uHQda6w//vjjyT5c17rflI1Nz57ea0y+03VkktRax7XKdb5z/wpM2GsSukkIhmFBXnO/9ixP8v2uiWG0g8FgMBhcETcv72kC/msdrTQmOxC78gA/n4PJEGlfMrIkIdeSApio40kCFPfm3M+10fNtmyD8jtFSEEOfp1ZnwqUtBH3b9jMhlcw0SL6Tng63bpvIPa+bz5WMi8yczMyPrfEzkY3lKb52yILEYLk2fX2rLERWOdcfC/pdOpEMgiUSYtJ+DyhuwKQeNijwddAkRluCk2/TJC0v8XQcDof6rpD8op5ByhL63Hh9ds8jWRSZWGuFt9bxmmlMuseaA5Pl1jquFa5jMsFUrsKESiZDJaGexmSFJE9K+VOWwLUGHD7ntg7S+6IlW7I0yROg6PG6v7+fNnmDwWAwGHzruBmjvbu7W999991WqJtsjWUCiY22wnEyjRRvbYyFMSAveKYlx3IXWYJJfKPJGbZyprQvBRJSfKGNTZ/rGLRs1zpt8Nxa36UyGY6llRP5d968YCc68Pz8/HJtU2kYywE4Prb9c7TyKjJ/XwdkfBqbmIfG49eEsSrF4sQSk6gKRSx4PkqNOgti3JrxrXT/KVHIv3lP/TqfK4tKogpNVGPX+D2x3l2bvN9///3lnBqLl0FpbhQb2Umi8l3V1p2urWL5ax3vh8YgxkVRCH/f6XmnRCbFTvz+Ny+Y5kOPR8q70DpjKVBqIdoEODRGbatnxNtBNuGV1tTEf2c5EUvh0rvYmfrEaAeDwWAw+MZx08bvb968ebF6ZCElS7WJJSRxhp0lu9apv94ZDb8TY6GFk86hfShILom0lOFLZtFkFNO+ZNtkJ87uyCzIzFggvwNjcYkRtjgus0L9fGRG7969247H43BJTrHJJabzcJxCux+UlFvreJ9bof2uBZ3YDe9husbMFNYYGK8W/JrQK6G/Gavz+JvmSpZF4ReN3ffVWCimsGsdqOvFZ57s3s/TnoGEx8fHV54IioOsdby2Yj5keikvgWta49U9JiP3sUqogW35GIdPko+MpzLb3UEG26o6dA+c+ekzZmQzszc9s2KsvI449ChmAAASTklEQVTMlNbfaSxswJFixXy/8PqxXZ9vewsW6xhGOxgMBoPBFXFTRrvW0UKV1eF+elpH9PWnzLMm7yZrh4zMrTbFvT5+/LjWOlpAsuaTuDfHwLjOJbWiZDuMPTtzIutuTRk825DHJ4NtcZA0vxajTXVozcrdxZGFc+z67u7uxKpN8p1kROl+tHPSA0A25cyI8eJWD5pqIVnfSmaWpPCaqL/ALFQfE7fVPBJbZP0k73eLRTrIehl/9etOhtayxNMa0vFaazrt9+XLl5d5aO7euEEMjF4qPh/J00RPCvfR/D58+PCyj55Hvfu43lIrP95fiuKzaYKDng16J8TyXZaS2dQ6RmuI4mNh0wyyyHS/Wh0yr31qA8i6Wd1brvO1cuOBidEOBoPBYPCN46aM1i2LVIfFrESy1RS7ZUurphCVstZkOcoKlAUkxZaUrUYr/Vz7ujRush1amInRyFpr9a3OZFp2KzMTGQ/xfZk1Swbj598xCh/z38XhcHh1z1m77L+3+H5TZXI0hatkiTeRf8ZZk5oUY1esvd2pV7XY5c4qZzZmq43071rmMBlnynLmumJlQKqNbbXlqaFIqnNu81f9PllPap2m+6G/2WQg5Rh41vxavb7ds5x/+umntdZav/zyy6tteP+dYTKnhexafztTp4oTrxG9cqkmWuxeY6H3JXkXyeZ1Xo2DzeT9s9YYIHlyWKtOJajde8krTYbRDgaDwWDwjePmMdqd/q5iJS1OmOoMedymJJPiu2SnZC6ywHyMzVJtcR3flgyp6cgmbeWUidig82lMul5e8+ZwS71dYzKnXZs8brNrk+fna5alWiyyvtot1tamrCmEJZzLzvQsSTIathNLsbKm59rqxv3cKTbu80mZsWRb5xTX/DuxnOYhYhN5/51Mdqf+dW6MqZaV+Rc7j4k01rWN2I6zRbFAPcuM1aaM3lab3toneku4n3/+ea11ZLaKZXIN+1rVu6F5JTQfaR77PFqLzV39PrOatY3eIazf9X0EPiNSwNJPaT5zrr4vtb1TLT7XQctn8bn7O2QY7WAwGAwG3zjmH+1gMBgMBlfEzV3HdJ96UoKnwDt2UmjCTr5wrez+UdE6XcVsbuDuiiSm7udlEslap+5yQvNj84G1Tt3Jze2TxLabG30n7s0yEiatNfF+Py5dx0wuciQJTuJwOKx3796dJDek4vWWLLYDryWvX0oWYftCrWMmD+1aE7bQRXIht0YNOxEPgQIiQjofE7RaIh1b+/k2TO7ZrUe6/7ie0z6UodwJwx8Oh/Wvf/3rJMHIS2f0jPEY+jyNhdvq+AwHMDFxrd4uU2CLON+W95vr3o9J9zYT3bjOfF8mtGksKkliEwD/naJEFAtiE4e1TkVhzsm5rtUTpVrZnuOSENw/iWG0g8FgMBhcETdvk7drxC5rk+U8O0bb5BKZTKFjeXq6rDJZUbTSKUPG3/14tOZSKzCWLrSSmVTQz+JsJhP5+ZgMRcFuJq2k0okmJt4YvY+J7DclL5H1XtIujy2uktwgsUv8IUtsY2C7t/QdhUOSQArZGdfObowC2aHmrfuUSpB4fjb89nNoTJTRE7PVM8Jkn7VOr09LtkmlWvRW8LndMbWdMLy8IRq3PA9JFKYl5CThGl67ti3bGPrcNAY+U0laks+h5qF7KUaYhGS0L0vcuJb8WUmtIf28mucuGUrHYFIpn+O1TpMw6dlIzybnda4UzsfkpVSTDDUYDAaDwTeOm8ZoJYe21mlR81pHC5wSbsny9mP6T1lLSpmntJdbYJTyYwutVHDvFnyaR2rhxvKNJAPm59s1U6Yk3a6BOuNqZLgUTV/rlC0wfpVKKhgX5fwY7/XjJ6F24vn5+ZUoQYpXnpNwS0IiLe7J5t366aIDFBkho9V4PDbHtdq8IKlpRmtCTpbgrIztwyiiQa+P/65xk9Hyc9+XTKzF2VITdIo1tDIfB+eXcHd3t96/f3/SJnHXirJ5ZBwpN2Kt3ujArwVbELIUjI1K1joyV/3UPhRp8Hlx/GS0uxg6y3fYjEFj13vWj9dEJ8SGKU7h+7Z8ldTEot0vvoN9Xvz/cysMox0MBoPB4Iq4aYz269evL5ZKygKmcAOzFxmX9M9aY3LGHzwOwUw+CjykWEJrrcYsvZR1TOF7Mr1kQdPCb00FkoXGDFjGBJklnObOBtC7pgmMCbUM5rTNuVjJ8/PzSTZjYsiNASarvRXYX3KNm3ymPtcYfa1yzsw2Zm7CWqdNuRkzYxwqNcZmq7Zd/KtJjLJ5d2ILvJ5c1/Q6OchKmM/gniSN3zPyW9axGC3fOz7ntg74d7ovqUk7z7/W6zlLIIPt3HQMxcfdg0IJSQqjqG1jYnzp+fM5CM7GtS3FdnaiMa0RBGO1qe0kM5OZhd4yitc6jePz2fRnInkNb4FhtIPBYDAYXBE3Y7SPj4/r06dPLxYlpevWOloxsppk5WifFIeixd9AC3StUwbBuIS2dcuSGYJkDYmp0+JizHnXVo7tsJoUXmIW2kdxlJQ1S5AtNmvYLULGbZvsoR+Dcmlv3749K6XHNmuX1FXz7yQzx9gOGedOBrA1LGesybcho6O3JUnG8TyXSBXy2WjrMNVPtlitnhE9E4kZtPnRO+LnYVxvF0dmPeYlWcf6nk3p/ZyMB+6yclPMkOP0Y/va1/yZOcz62rTe6J1gHoZDzxbfc/RoJG9Py/1oni4/7rk8Ajbk8O+a545ekXQetulLHsL0/jzXovOfwDDawWAwGAyuiJvGaO/v718sL1kzbm3IEiHTILNwK1LfsUavWX7OoBnz1dhaNrCfW+Mns0hZh5wPGdQuRkSWRdaTajEZL2Sm9E7snxZlq5t1C73VQgq8Vg6N4ePHj2fjJrxuPueUQe24JIbZ7keKD3Es/JlYENcB2VBrhOBz5TYtG9nPzfUgsMXkWqdtEll7Tcabsrh5nzlGnzefH8bh9XdiP85odzHa77///mQNpnikxsn2eIlNpRr09HfK0mesUvdU1zblhpDttqxgf78xw5bPAN8t6XzUH2gNX/x3vjP8Pvn8Ux18y+9IOShk4rxv1GVY6zSmrqYT18Yw2sFgMBgMroj5RzsYDAaDwRVxU9fx4+PjiQCCi3vLdUyXrX6m1HxKIjKdnqITyU3AbejqchclkwGY/JASGZhQ0JIvUrJME2Sn69hdYUxz53HpSvJryLR9uoFYPuWfMemBLtBz5Tu7hJY3b96cSAfSJb7W0U1FAYvkJqdbikkjdEcmURDe/50rUWOgu5TXNiVsNTczkVzVLWGLJWn+HUVc2G85oQmWcN6pvIeuaIYwfG20RhcJd3d3USaQ7w0/nkD3aUqaYQIQXd4ppKF3nicCOpIUK7dJ4iY+jt1nbYzpnUW38i4MQPe85teEU1IIgfedz2gSSGkSqSkUxONMMtRgMBgMBv8BuCmjfXh4OAl2O1R0LesvCZevlVkpA9+NRTpYvNySrtzi1/h3lvFar61DWkyttVVKsKBV1hJ4XPKRzIzF//qeDHSt00QWso8kYcdrq/PxXqeSIBcWaZalvCFMCPM578qP/O+UDEUrndcvJcMQrfzKrx+/a8wslaA1uUiuJZ93K+RnU4kdo6VwBRl2KrfgvSDbS14FgQlbSRiB353D3d1dFf9fqzNKJlImwX6+KygowrmvdUyC0rtDAhV8t6T5tbKr5Gngc8ix78oKyWiZwJcEbFh+2bbdvXfa+k7QGHUN6IHkuvfjXVoW+k9hGO1gMBgMBlfETRltaoK9EwRnS6hdUT5T2ZnGnyxwxqwY06R0mG/TROQvKbdoMo6pZGLXJsq3TZJy52KzHLNvw9ZTZKDJkm2MLVm/ul/6uYuTyBuyY5a0UJskZ2IJtPDZAqzdNwet6CSnyPura0xvTGInjOMydp/ET+j1YLvEXXyf27Qys11zCbLRVNLH44ntsbFDErlIbRcJrR02LEltLAWdS0Iv8qj5dhonz894pM7r23PNU4glCZdoG42Fz2F6TzQRHb4jub3Ph7FTnVfXyFsxao58tvU5mW7yhrCciOssrW9dEzLmVHKZ5BmnvGcwGAwGg28cN22T9/j4eCLx51YVi9XJLGS5+D76TFaTLD9ZU+eEDNbqsatkRXFMLdPWLf0mdE9LKhWBMxZEy30n18ZYzyUiBwJZ8CVZx22bFLujdbuTh1RROQX0UwPxlF3s+7hXheymtS/ctSJskphN/GKtI1uTp4TrLcWR03V3NI+Hj6nFW3cxWqJ5LXxsZD27+CjFBVqVgDMnehq+fv1a17I8aWQ5SbKQ42ZjEs8V0fn03iHzYhMIeeXWOt53Plv0IiVxHcY9dS3UXCDdS15L5mikdwu9EY2he4s/CnGwAQLXu6+d5mXhO9jnx3cjr33ycpDRvnnzZhjtYDAYDAbfOm7KaNc6WkCpAS/jn7IgZXl9/PhxrfW62bCOxwwzSpal+CctY8Zddxa4PtM8aEWlhuYt22/XgJlWmaxAZsT6+chyyXZYR+fj4XzIFJK13dh8Y8XpuOfgc9gx5HN1x37e1raQTEZw1t1Ez4Ukb8hYL632JPXYmAXXEq16H3+TiUzSjC1eyGchVQ+Qme3i4gLvW5If9O/9eLuaXt/v4eGhsjv/nTkkvF/OaJn/0OLR3spP0DuL8WeK7ft9+eGHH9Zap5UYLaa+VvfYNO9IusZ81jQPslUfN9vg8Sczp/2ztlaFlE8g0EOTPIeJTd8Cw2gHg8FgMLgibsZon56e1pcvX15iFbIEPRbELEwyS1lPqUa1xSH0t0S3kz++CcJTrDodl5Zyq3d0nGuT52MkSxDIAFIGHxktGVxieVQt4jFTFiiZbGMGCZ7duFOGuru7OxFo9yxmnrPVDie2eGnTeMc5RajEtlqbRP5MY2xMkus9ZWVqW2Zypoz15nXh+VPGOvMVWHNLT4ofh/eLPxNzvkQZSvuyGULyAAlsoJCOL0apGlhBbJWZvcn70pq3JwU8fcc4e2vP6N+1zPEdqN6ka6DnPtXC8jM+rzqm2HlqwNI8D7usao2teSj93cDj7ur3/0kMox0MBoPB4IqYf7SDwWAwGFwRN3Ud//HHHy+u4xSMpvuj9Wf0lHKBbojmlk1uMroYmCTirtzWB5bu2VRszkQdJiOkxBqWv9CVlnr0Npco3SbNTZiOwdKHNO7m7kvp9hT62OH5+X97GbOpQJJw031okm5JopBj4DFS0hhLwZhwksp7kkDEbhyau4+bbjgmVqVSNLo+uR6SyD/P25pNJJcun722lvw4TGTh8ZP7drd+HW/fvj0Rnk8CGCx7olvW56r7r8RMCkhw7aQkNb1vvHTJz+f47bffXp1Xx6D8YCqTo2RpEz3xtdrcvlyjSTSkJRMqfJekEeWK5zpmX+TkBqZbmddi1//4FqU9aw2jHQwGg8HgqrgZo318fFx//vnni/UmK8NTvFtxtCwl/u3bkiXIulESgSCryrfRWFj0nZJFmEbf2u+5ld0YjLATI2A5Da8Bk0l8WyY/tcSTlBxBBsFyppSw1VrrseRhrb1ARRrL/f39ybl93GSQlDVM5UpMKGrNBZKFzsYXZLKas8+TZQ1kFFonlzQ+4LOSEkvI+OgRuKTRQmt5mNgpz9eEUpwF6Z7qmvBapzHuWC5xOBxi60Bus9bpmmwC/n5ubaP3ChlfkiqkBCO9LyqPSe8DJoj6+8yPyd99rFxLyfvCd1IrK9xJv+qnEsboKfTrrXk0D1Hy2DABkM9iSmal9+DNmzeTDDUYDAaDwbeOmzYVuL+/P7FQdw3EKaeYZLhkcX/+/PnVPq2EJaX1M72fpQCOJP+XzpvacDX2S4s2MafWGDsJ3tP6bNdgJ8XYGm+n8qVzEoyMV/nYLonVSnQgxQUFipuQxe1KZ3i92BYtrZM2110DAt6P1gLxkvZvHFNqD9mkJFvpRpoXn8mdFCfPx3glPR2+D5l68zL4XBmfTjgcDuvdu3cn12fXSIHMKDFaPn9ktpRo9TlrTTaZztRyrz0fEvFJUrNN7CF5hAjefzJYfe7iQbpumjtFgxhvdQEQ/c4GDswJ8Wulbekx4fySSFETRrkWhtEOBoPBYHBFHG7V+PZwOPzPWuu/b3KywbeK/3p+fv6ZH87aGVyAWTuDv4u4dv5J3Owf7WAwGAwG/x8xruPBYDAYDK6I+Uc7GAwGg8EVMf9oB4PBYDC4IuYf7WAwGAwGV8T8ox0MBoPB4IqYf7SDwWAwGFwR8492MBgMBoMrYv7RDgaDwWBwRcw/2sFgMBgMroh/AzTr7vmTURJJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1396,7 +1408,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm8ZllZHvqsc6qa7qquHkEmc50TNXEGQaNAjKKiOAQi4oDEe28wGsURUbzSohi5/hyDRBwRMaLibFQQtIM44xQnxKGboHRD000PVdVT1dn5Y++3znue733evb5Tp+rsD9/n9zu/73x7WNNee33recc2DAMKhUKhUCgsH1uH3YBCoVAoFAp9qB/tQqFQKBQ2BPWjXSgUCoXChqB+tAuFQqFQ2BDUj3ahUCgUChuC+tEuFAqFQmFDMPuj3Vp7emttaK3d3lq7ms4dmc5dd8FauKForT2utXZda22Ljr/7NGZPP6SmFQ4A03vx+YdU9zD9rdTfWntZa+1GOnbjdP1/F+X9xnT+daIe/ntZRxu3Wmt/0lr7Sjr+aa2117bW3tZau7u19qbW2s+11j7BXWNrznt3jMN1c205TEx9e9EBl6mei/+78YDqunQq79kHVN57T+vi/xWcu7m19r0HUc/5Ylq/f6S19hettbOttTesef8DW2svaa3d1lo72Vp7ZWvt/Q6ibUfWuPZKAF8N4EAe3j8BPA7AcwF8E4Add/wmAB8B4O8OoU2Fg8PTMb4/P3SIbXhua+1lwzDc13HtXQA+rbV2YhiGu+xga+3dADx2Oh/hJQBeTMdu6ajvcwA8FMC5H6zW2pcA+C6MY/atAE4BeC8AnwTgYwD8ake5m4ZvAPD7rbXvHIbhjQdU5kfQ958F8KcArnPH7j2guu6d6vvfB1Tee2NcF18dlPkEAO84oHrOF48H8JEAXo+R3LbeG1tr2wB+GcC7APhPGN+trwNwfWvtA4dheOv5NGydH+1XAfji1tp3nG+l/5QxDMO9AH73sNtR2Hi8CuPC8gwA/7Xj+l8D8HEAnoTxh9jwuQBuBPBmANvBff84DMN+5utXAnjpMAyn6djPDcPwf7tjvw7g+1kitVS01h4wvcNdGIbhj1trfwzgSwF84UG0gZ9Ha+1eAG/vfU7r9GEYo29dlPVqGIY/uhj1dOLrhmH4WgBorb0CwL9a494nA3gkgI8chuF3pjJ+D+N79hUAnnU+DVvnRfmm6fPr5i5srX14a+3Vk1jgVGvtNa21D6drXtJa+4fW2oe01n6ztXa6tfY3rbUv6GnMOve31t6jtfZjrbVbWmv3TmK7Tw+ue2pr7Q2ttXtaa3/WWvuU1tr1rbXr3TWXtta+o7X251P/bm6t/WJr7X3dNddh3E0CwP0msprO7RGPt9a+qrV2X2vt2qA9f9la+3n3/Vhr7QWttRume25orT2nZ8FrrR1vrX1La+3vpjG4ubX20621B7tr1nluj2it/XYbRZx/3Vr7pOn8l7dRHHtna+3nW2sPovuH1trzp3b/w3T/a1trH0zXtdbal01l39dau6m19sLW2hVBed/UWvuSaTzuaq39z9bavwzG4N+11n53miu3t9Z+qpGYbmr7y1prn9la+6tpHF7fWvsod831GNnpv2674sjrp3MPaaNY7S3TON/UWvul1tq7zD2jNfEHAH4OwHNaa8c6rr8bwCsw/kh7fC6AHwVwYKERW2uPAvABAFgcfw2Am6N7hmHYiY67Mh/RWntra+1nWmuXJtd9UGvtF1pr75jm1m+11j6arnlka+0Vbv79dWvtm1trl9F117fWXtdae2Jr7Y/b+OP4hdO57nkH4OUAPpvLvxhorb28tfa3rbXHTHP/bgDPm849bWrzLVP7/7C19ll0/4p4fFpHzrTW3qeNYt9T0xh8TWtNMtI2qkB+Zfr6m+7defR0fo94vLX2BdP5R7ZxrbL19ium809srf3pVP/vtdY+KKjzKa2135/e+XdM4/HwuXGbm48z+BQAf28/2FN5t2Jk35/q2nZla+1FrbU3T2vFW1trr2ozaiEMw5D+YRQDDhjFGi/AKC55t+nckencde76D8S4QPwhxh3HkzAuMHcD+CB33UsA3AngrzCyhY/D+JIPAP5NR7u67gfwzwC8DcCfYxTZfTxG8dwOgE9x133cdOznMIppPg/A3wN4C4Dr3XVXAvgBAJ+JceH+dIws5h0AHjJd867TNQOAfw3g0QAePZ179+n406fvDwdwFsAXUv8+bLruSW6sfxPArRh37f8WwHMA3APg22bG6hIAv41RHPn/TX19MoDvB/C++3xufwng8wF8wtSuewB8G4BfxCju/Pzpup+ktgwYWd1vAfg0AE8B8NdTv65x133zdO0Lp2f2ZQBOTnVtUXk3AnglxpflyQBuAPC3AI64675guvaHpuf7FIxz5wYAJ9x1NwJ409T3JwP4ZAB/DOB2AFdN17w/gD/CKJJ89PT3/tO5XwPwRgCfDeAxAP49gO8F8O5zc7r3b+rHNwH4l9PcebY79zIAN9L1N07HHzdd/67T8UdPZb0XgOsBvC6o5/kY5965v472PXd69lt0/NcBnAbwVQD+ec+aM31/PEYR4/cC2Kb2+bXnQzHO8ddNz+4JAH4B45r1Ye66J2EkH5+M8R3+QoybiZdTO67HuHbcgHE+Pw7AB64z76ZrHzFd/zEHNQei5yvOvXyau2+a+vk4AI90z+k/YVwPPg7jO3cW09o0XXPp1HY/x75luu7PMK5FH4tRDTIAeGrSziun6wcA/xG7787l0/mbAXxv8M7+NYCvmer54enYf8H4/n3GNP5vxLhe+/nxpRjX9BcD+EQATwXwN9O1x9YY31cAeMMa1/8JgJ8Pjn/9NG6XTN9/FMA/AvgPGNeKfwfgOwF8aFp+RwOejt0f7WumCfBD07noR/sVcAvcdOwKALcB+Bl37CVY/YF9AMbF+/s62tV1P4AfxKiDu5bu/zUAf+K+/zbGH/bmjtkP5/VJO7YBHMO4qHyZO37ddC+/wO8O96Pt2vI7dN13YtwIPGD6/rnTfY+h654D4D4A75K08fOnez8luWbd5/YYd+wDsfty+Zfm2wHcj9WF9u0AjtOY3A/gG6fv12BcaF9Cbfwc7sf0/W8AHHXHnjwd/8jp++UA7sA0b9117zGN3Ze6YzdO4361O2aL7me5Y9eDfuSm4ycBfEnvC76fv6kt3zT9/6PTM7py+p79aLfp/2dPx18E4LdUf6Z6or/3nmnfr1i5dPyfA/hfrpy3A/hxAI+n656O3TXns6dn9A1iHPza8xqMG7FL6P38K4xi+aitDeM69jkYF/hr3bnrp2MfLOpO5507fhTjYv21F2g+3Ij8R3sA8PEzZWxN4/CjAH7PHVc/2nt+oKdxfCOAX5ip5xOmez8qOKd+tJ/ljl2C8f28B9Pmczr+GdO1j5q+X4VxA/eiYA6eAfAFa4zvuj/a/xu0dk3H//PUxgdN3/8WwDev+7zX0iMNw3AbRjb1tNbavxCXPQbALw3DcLu7706MO97H0rWnh2H4DXfdvRgf/DmRZRst1M/9rXs/xknyywDuoHJeCeCDWmtXtNFw4BEAfnqYRnMq7w8x7p73oLX2GZM45naME+AUxh8GNSZzeCmAR5tYZGrfUzGyVNM9fQLG3fJvUz9ehXFReHRS/uMB3DwMwy8k16zz3E4Nw/Ba990sK189DMNZOn4Eo0GSxy8Pw3DK1XMjRr2ZGdg8GuPLyVbKL8c43tyeXxuG4X73/c+mT5sHH4FxA/JjNHZvntr4GCrvd4Zh8AYxXF6GPwDwVa21Z7bWPiATFxpaa9s0z9d5L5+Lce591dyF09x+GYDPba1dglHa8NKZ234Io37O/7155p6HITBWG0ZDrA/B+Pyej5GRfDqAV7bWIrXbl2LcJD5zGIbnZhVOoufHAvgpADvuGTeMRk+Pcdde0UY1099h3Bzej/HHqgF4Hyr6xmEY/kRUOzfvrN/3Y9w0PmymD9ladz44PQzDK4P63re19pOttbdgfK/ux7h56V3H/of9M82tv0DfO7IuTKSOYTS6vAHAXwzD8A/uGluD/tn0+dEYyRS/838//fE7fxj4AwD/sbX21a21D+197/dj/PEdGHf2zxPnr8FoIc24GcDVdCyyFLwX4+4OrbV3xziRzv1Nx7run/AuAJ7G5WC0XgWAawE8EOMP39uC8vYY3bXWngjgJzDu3j8LwKMwLmS3UL3r4Gcw/vCbvvHxU7v9gvouAN4t6Mfvu34oXItRDJNhned2u/8y7Fov8/Ow4zwukSHjWzGqCqwt4PYMw3AGkxid7r2NvttGx+o1ffKrsTp+H4DVsdtTnts49Tzfp2Dc6DwLI6v8x9ba18+8kK+hNn19Rz3Wtr/HKE16ZiP7AYGXYhTvPxfAcYxzOcNNwzC8nv7mjJguhbBeHobh7DAMrx2G4euGYfhYAO+J8cfuuY1cSjGqoP4RwE/P1AeMc2Ibo/qHn/F/BnC1ewY/jJHFfTdGsfAjAXyRa7tH9E4Y5uadx90ApE67Y607H6zYEbTWrsL4Prwvxg3fR2Echx9D3zw/O23qPXjtPShE68rcWmPv/OuwOh/eB/l6eb54B1bXTGCcozsYN3DAqNb9oenzDwG8tbX2rS2x2QDWsx4HAAzDcLK19l8wMu5vDS65DcBDguMPwfrm/G/BOJH42Dq4FaMe9AVJHbbLjIyFHoy9rgmfCeBvh2F4uh1orR3F6g9JN4ZhONVa+1mMosDnYtzt/v0wDL/lLrsV4w7zM0QxNyZVvB3z1o8H+dzm8GBxzDYWthg+BOPuHcA5CcS1WF0s53Dr9Pl0X56DcndaG8MwvA3jD8AXTdKoz8Po9nMLgP8mbnsGgBPu+7pz/Buner62o31vbKMl67Mxqj1un7tnH7gV8aIVtectrbUfwOgK9j7Y3YQCo+75+zC6ynzMMAyhEduE2zEuiN8DIT0YhmFnWhA/FaNY/bvsXGvtA1QTe/rRgWswvocKB7HWKUR9+GiMm+RPG4bh9XZwWsveGWDv/GdhVGMweMNxkPgLAB8eHH9/jL8d9wHnJJnPAvCs1tp7YFzbn4/R7kNKlvYrgnkRgC/HrkW5x/8E8ITm/EFbaycAPBGjjqgbU+deP3thjl/FKB79i2EY7lYXtdZeD+BJrbXrTETeWvswjHpP/6N9DOOPvMfnYtVdxnbdl6HvR+GlAD6ntfbxGA20eEP0qxgXsZPDMKzl6I9RhP6ZrbUnDsPwi+KaA3tuHXhCa+24icgnRvFojLoyYBSV34dxg/Qad99TMM7Zddvz2xifwXsPw/Aj+271XtyLvT+0KxiG4a8BfG0bPRrkpmm6bt+Yfvi+B8AXo8895//HKH164fnUmyBSOaC19tBhGCLmap4X/KP8jxgNp34DwG9MP9wh8502vr8J4IMA/NGgrX8fgPFdvZ+OP11cf95orT0EIwOUz/mA1rp1YB4H58ahjR4OT7jA9fp18ULitRilG+85DMOPX+C6GL8A4KmttUcNw/B7ADBJkZ6A1ZgHAIBhGG4A8ILW2udhhmDt60d7GIZ7W2vPw7gLZnwjRqvM17TWXoBxl/fVGCeJEqlfSHw9xt37a1trL8TISK/GODDvOQyDRZV6LsYft59trX0fRpH5dRgXEr8A/CrGIBXfAeCXMOrCvxgkMsZoXQ0AX9Fa+xWM4qTspXwNxp31D2Kc0D9K538Mo5Xha1pr34bRcvISjJa/n4Jxx3waMV4G4P8F8OOTlOT3MP7gfDyA75w2ARfzud0N4FWttW/FuIh+A8ad73cAo+3E1Mevaa2dwmiT8H4YN4mvg9Ol9WAYhjtba18F4HsmEfKvYBRRPRyjHvT6YRjCaGEJ/hLAF7bWnoIxUM5dGOfKqzE+qzdgXBA/FeN8e9Wa5a+Lb8FokftYjLYPEsMw/AxGlcyFwmsB/IfW2rXD6Opi+PPW2qsxPs8bMNoZPAGjqPonh2FYCeAxDMNNrbXHYbQ8tx9uxUC/fKr7la21H8Qo2n4gRqvy7WEYnj0Mwx2ttd/F+F7ehJH9fj52VTMXAo+aPl+bXnVx8ZsYVXIvntbyKzCulW/F6P1yofAGjOvp/zO92/cB+Ctv43IQmNaQZwP4ttbawzDaMN2F8Tn/GwC/MgzDK9T9bXSFNVfBhwM40Vp78vT9z2yj3Vp7PMb5/FnDMPzkdP6nMMYkeHlr7aunes95+rg6Xg/gJzEy81MYrePfF6PUSeJ8Ahr8MAKxwzAM/wvj7vhOAD+C8cfnJIDHDsPwp+dR374wLQSPwPgj980YLbX/G8bF7dfddb+GUTz9fhgjDH01Rkf4m7GrgwBGN6nnY2R9v4hx0XkiXQOMP+gvwuhm8TsYjQ6ydu5gdFl7OEZDqL+l8/dj/JH9foyL8y9j/HH4PIxMUkbFmu59/NRvu/dFGBe026ZrLuZzeynGH94XTnXdAuDfToaOhudgXIQ/EeNYPnu675MSFiUxDMOLMW5u/gXGvv0yxk3ZEYwGUeviBRg3Wj+A8dm+GONL+UcYN0ivwDiPPgLAZw/D8POinAPB9OP47ReyjjXw8xjH4pPp+HMwbkifh3ET8xMYx+fZWPUfP4dJLP44jJug65vwsx3G4ByPxCga/e6pju/CaLfgfzCfilGH+D0YDd1uBvDM/u6tjU8G8If8Th8mpo3PkzA+j5/GuGn/rxjn7YWs9yaMY/0ojM/kDzA+nwtR13djtOj/VxjXyv+BkZwN2DUaVPgQjD++P4VRCvgw993H+NjCKLk591s6GeN+IsaN0YsxjulpAI8jFc9rMYrv/zvGNe6JAL5oWqskmjOWLhBaa++K0Sz/+cMwfONht+edAW0MMvP8YRhmg/QUNhettZdgdMn52MNuy2Fi0qHfBOArh2H4wcNuT2HzcZBuBRuNyWXk2zGKN9+O0ar1WRh3SD9wiE0rFDYR3wDgr1prj5hRC72z4xkYvVIOypai8E8c9aO9i7MYrZVfiNFC+RRG8ca/V8YvhUIhxjAMN7QxVO9Bh2/dNNyLMZASG68WCvtCiccLhUKhUNgQbERmnUKhUCgUCvWjXSgUCoXCxqB+tAuFQqFQ2BAsyhDt2LFjw1VXXXUgZfk8DZyzYe57b7nn06bzvTY6v597zufaCz0WfI3ZX7zxjW98+zAMe+JsX3311cNDH/pQbG1tnXfbvJ2H/c+fPff2nlvnnv3YoKxzT099vW3KxmydsThIu5ubbrppZe4cP358z7pjc8fmEgBsb2/v+bRzfDxad/jzfLCUMi4U1pnv68zVnZ2dPZ9nz57d89kzx2644YaVuXMYWNSP9lVXXYVnPOMZ51WGvUyXXHLJuWNHjozd5Jdx7ruHOtfzQqpNQvaCR21Q9/JCwv3pqW/u07dHjds6Y6HGxJ5VVI+9YI95zGNWIn497GEPw0/8xE+ce+72mT1Le1HPnDmzp3z77v+///7791xjn7wYePBCwNfwAuLvUYuNfWYbC1V/dN1cfX4sDKrvfNzu9f3mY1wvf/f3HMSP93XXXbcyd2zdsfIf8IAHAACOHz9+7prLL78cAHDFFVcAAE6cOHHuXgA4dmyMCnrZZbvROW0uHz06hvPmH3aehxHUe9jzrlm52fup1pm5MqPyuc1ZHfwuqM2xvy56X/y10ft7331jzCl7f0+dGgOvnT49Bo+85ZZb9nz39XC7n/a0p6WRBi8WSjxeKBQKhcKGYFFM+yAQMUNmoEqEmolW19nh9orj9yNKOyjR1rqsxe94jTGonfY6yMZ13TE/evToOXYTiSu53bxjjzAnxlXsObp2nTGfY1i+7XPj3yPi5/5Y+VZ21K+552LjnR3jerhsYLfvaszPF8Mw7BmTSJoxJ4nyZTGYua3zbvM7xuWv8+5lbVP1cb3Z3FHP0NfBa7Cdm5PARdfwc4raYfPN5pmtDyyRNQburzXGHs3jw0Qx7UKhUCgUNgTvdEyb9bvRsYiFzWFuh72O4Vt2vNdoJdIxr4N17/E7bNuJKv1+pkdWx3kH7s/Zp+kGVTlHjx6VBkO+HMW0exixYnnRvcwiFKvZD3p0kYoF+nbsRwqwn3tU29heweD7x2yc2dNBIyq3R0/L1/W+Y+volc/HuC16boq9HqQRXbYeMIvt0e/bPUrH7XXac8+N7Z18uar8w0Yx7UKhUCgUNgT1o10oFAqFwobgnUY8zuJVL3axY2yEcBBiqXUM0nrKn0NkzNIrus/uMSjDF38di1n3436i+pMZomUGIa01bG9vrzzrqE3cbnXet5uNXlhkFrl+KUMZLrvHfYvPR1DzoEeMvZ96lZtY5rajjIayuWPPMnOvO0jsx+guAs9bZVzI1/v/eZwyY7Y5Qy1D5rbVa0Sr2jDX1jlxdWZ4x3NHia29Go2vUf2J1harx9zFloJi2oVCoVAobAjeaZh2ZoDEbkAqilG02+xliJEBEmM/0bJ6MOdysQ7T7t1xA/1BXXraHhkHrsO07fpsHswx3oiZcDAVDg6SRVZSQUgyFyzFfHqkQuqajEWr4C1ZkBU+xsFpmAlF0geDMi7L2O6FdgFTbfVtWMcgVUkBe5i2qjcCu1Fx+ZGkQq0dc65fGXqiEs6532YSMiUps7Zlkez4nqisLJDRElBMu1AoFAqFDcE7DdM2Ns16a2B1x8s7Xd7tZ/fy8cidZy40pKEnEIfaGWY6GN5xRrvZOea2n6AnSocXtZHLyly+FDNhmNsXkLtyqLZkoRP5nGKZXoemQp7y98wFRzGFHpc/Zl6RLpDbr9qY9ct0fkpikfWP22rHo1CyjPNxQ1oX3CfFPNexOZg7Hp3LbDW4bco1M5LsqHozMEtdJ8SzkkJkUNKnTHJlbbQ5qtabqP514pJfTBTTLhQKhUJhQ7DxTNvC0DHD8haE6+pcI1apmE4P0+7JKNOrB+/ZYSsdZrSbVHribOc7Z2Ee6ZbUrtgQ6a3XCYbTWsORI0dW7olYhbJHUNINQAdcsIQEUbIC292zHpzLiJgoW8FbfyJJEveVA5Yo/XvUbh4LZuK+vLlnmHke8NhnrE31h+u9GIwos3/wbQG0RI9Zs6EnKU+mB5/TxbLkJeoXl6vYuz/H77YqM8M66xxfk40RS6qU1DN6bgcRROhCoJh2oVAoFAobgo1l2hzwnRlJxLDYqjJjVgpKPx7txpQfYWTdqax2FSK9TcRwfZujY7077KwNfE/E6JjRK5uASMrRq+/a2trqskJVjC2qL/P/9+VHvpw8PnYN9zWzVle7fZ96dq5env+RTpvvVfr4qC327s3peyOw3nUdVnOh/bU9lLRHSUSia5V/cdT3iNlGZWUeFfxss+eidPbWNk5R6+/hMchYbGSz4Pth9fOciqBshyKpkLXRJLCZvc9+LOYvJoppFwqFQqGwIdg4ps36IGZA61iA9+iC53TY0Q5cWTMq30d/LtM7+euiHbjtXpV/ZqQvVmxWJdOI2t8ThL+XUXk9H18756ftI6JF7TaWoBhv1B/WO9pOna3II502673t85577tnz3T9rtkpXEpgeiYSy7u/xn+Ux9zYiynpXlZsxO9alR+Oo4inwGB00/Hx7wAMeAGB3HEzSwZI+D6WnZxad+firiF7RO8FrIJfLel3/f3TOg20cgN33iOtjG4RIKmhQHj02rtE7r9a36D3g+qy8Sy+9FMDuuxhJ1+xa5b1wWCimXSgUCoXChqB+tAuFQqFQ2BBshHg8EwWyuDoy8mJxDRsNscjdi2RUqEQW0fQYlalgB74eFiUqo6VMJNgjap8LBdhjfMEBbTJXCWXgwuejXLg9Yl07z+VGQTqU4Z6JQP14sSGWMk6x8ybyjo7de++9AIDTp08DAO6+++6VezgIhIGNfSK3FuVaxOI+L+pm4yGlwsnqM/QYXrFBE4uVs3FUaqyDDoJh/bP54P8/duwYAOD48eN72p/l4Ob1hVUskYuW/c+BawyZuyCLyXswt75EagulIrQyTPScuYmZGJznqI23ibGBVbde1dbIfUutwVymv4fdLJeCYtqFQqFQKGwIlrWFEMgc7XsSHNhuNQsfCcQ7U9vxsYuNXWuMIHLB4d0j7/aifs0Zap2Pe1pkGMZQrj6+PbxL9YzEX+vr4N0xs3Rus7/W2uAZooIKOwqsPgce68zdTrHYzOXP5p1nC4A2NovKmQsoEbVRsfQsYYR63vysAZ14x8AGf1lgFjXPI9cpJWWbM6JaFxH7sjl+2WWX7amT35co2AlLF5QLoz+eudwBu+uOX+eUwab1w9rekzCE64tcvvictd8kSqdOnVq51mBjbP1gaQTPIX9OGaIZomfAzN7aFgV1srZdaEPH/aKYdqFQKBQKG4KNYNp+p5Ppkv210Q5U6YV4l+x3amqXzDtDzyaYYTOrjAIMKAbF+qJIL96zc+f6VDpFdoeKGDn32T6trZkbDDOUiNXwtdFuOMIwDDJUqa+DmTWHIvV9Zgai3D+sTGMZwCorYeYZsRwVHKZHp610/0r/7v9n5pZJfKz9PJ7K/S0KyMHnetiMYtaRVEVJklS529vbK/M30qdaG+w58/vo57H1kW0llKucf6bsCmfjxO6Dvs/GpNmGx1il2VJcfvnl5+5hSRHbK/BcjeYOh+tlV8fIRojfTxtr5VKXwcpk2xF/jNdgljBF7rCRZGIJKKZdKBQKhcKGYCOYtmcOthNj/Sazmp4EB8rqNGJnyvKb9Tj+Ht6xZ/pbZkcqbGLE9JSem3Wnvo3MFJReUFmZezDzsu9+l8z6SNbVRcx4TnflYZbjPC/8Dpr7ovSrETNQc4dZerTLZyZgVrXRvGQ2yfMukjrMpS5lduvnkLWXrZQzS2weYxXgKPIIyPSPql7F5FUYTY9exh0F1Inmjln8K3uYyDKf+8jSpUh6Yu/O3Pvnx9buUdca0/b9Mmt4DmaipAJ+PG3usFTA6mfLcH+O10izxuf13dvL8Dye8+gBdt8567uy3M+CcbHNzmGjmHahUCgUChuCjWDafqfDu2q1+44Y6Zylao9PqvIL936lyjqcd55+pzgXID+zPFfhHe0z0/WwZbbyvY30ycxMWe/u6+Py7JmyjivaLUdjHMHrJSNdldK5qlCRvm6eG6xbtL4ai/bnWB+pkiVE9TBBZL0OAAAgAElEQVTryyyluc8sDWBG5P9X/uc9Hg7Wd/bbjRgR60HZOj2qLwsV6+/ZL9M2nba9n5EuM7MS9/2I7FS4vcoGJLLdUTrsaJ0zKYDBrvFz0pft/1dMm3Xq0XjyepZJfnht4E/21vFrP+u35yzsffu53ix9rM1F63OPXv1ioph2oVAoFAobgkUz7UwnothS5gPNrFH5CntGxwyUd3OZda21jduSsWpui2JLkTQgS1HH7VA+tqxz5p24r4ctPbl+3z9m/cwymHH7/3tS5LXW0Fpb0a9HEheOjKf0+FGdxmbe8Y53AADuuuuuPWV5VhMlIwByq3jWuTEDjax4jT2wD7zSZUf6cIOyu8gSoTCLMT1pNCbWH9ads/4w0jErmwY7HiWbiaQ9jNYajhw5klrMW1/5War+ALvjcuedd+75rmw1/PvKfsx2jUkBMukCl8fvmte787NU9h32PdIxM8O2eiJJix2z94htKaxf1kY/JjaveN1WNhb+GhU7wPrj3wPW1S8NxbQLhUKhUNgQLJJpM5uOojEpK9RoB6p2TJHeE4jTOfI1thtjy1kP5Vcc6bB4t8qW2LwDjiyOuZ+Rno3vMfDOmv1o/Q6br82igjFYIsL1RFHPlFU0t38YhhWL3UhKY8hiPxusXebreuuttwJYtb6/44479vQH2GUTV155JYBdLwIrM/KrVpHjDJHHA8fxZpbO0qcs9aiK6+0ZK+s5rTzWnZ48eRLA3jGxeWS+wjZGWXx+ZXNibWeWuB9Eltu+PPW+q5gFwK7Fsn1aO81SmsctawNLZSJPAGsL+4UzM/XrDtvosP0FS6wiuxiD8hP36yDHcLB6TXKlolf6+k6cOAEAuOWWWwDsznOOVufHwj5Zp81SAT8mdm4dn/+LgWLahUKhUChsCOpHu1AoFAqFDcEixeMGNngCdJhHdoD34o654BMsRvT1qSQFLD7MXFVUKtCoHna9MLC4LBKLqXR6kfESizhZhGafUXo9TkDA4vnIRUKFaVUJX3wbe8TjFlzF6okSGzBYFB2pE0y0edtttwHYFZObUYzda2JeOw4AV1xxBYDVgBGcrCCaB8rQKDKIVG5zPKei8WRx61xSHX8/i25tPlibWR3AfQW00U9kNMlGXyzajcIP98DmDou+fXmsJuL3JBKhssjcyrdx4UQyURn27EzFYvVH7m+seuBxid4N1R9+TlFwFYPVZ2L/nmep0l3ae2Tzwo+R3XPNNdcA2BWXm2rK2mjt8H21/rBYPAvqtM76czGxrNYUCoVCoVCQWCTTZoadhZjjnVvkFqLcMpSDfeRoz/dy+jYPZt3K9Srabc6FdYyMI6zPdk4FU/D1sQsLSxDsWmOO0U6U05LaeNruODJeYyNDFawmakuG1hqOHj264kLiocJdZs/L+mTGL9YnnitZ2lAOcsFJEqIUkCxpYVe/SLKjjJfY7SWSQvEc5TGKgtSwhMrmivXBvnuDJZYUsTFj5A6ppFtsjOXXiXWSPJgRowol7PvK6w4ztsjlyyQQ1k77bowwCpPJbN/uMUQSFw6brNKuZqFP+R3hueQN0fh95/rt+UdBarj911577Z62sbGmb5MdY+kDJ/rw5fO6zfPbSwdVqNOloJh2oVAoFAobgkUybUYW7ISZRxYMRKXg5E+/w+bdnUo64cEsj4PfR7ty5R5m9bPLScbslAtWFpKS71XBV/w9StoRMW3FqKMwggYO4ZklLTGmzeVGSR/UPIjczoxhW59M52a6bpVYwZ9juwGVHMH/H0l9oj74e1RwEH43MuagQlFGiTDsGAd3YV1g5H5p52x8szSySjLGn1EK0F4Mw7Ci3/f2Cfy+2XdOuOH7wQyXXeT4fYkkikovHbVLJcth9ur1xCpBiApW5Z+lskfpWUPY3oZ1zlGQHYP1x+aO2Y5E4AAv/EyyVM6Z1O4wUUy7UCgUCoUNwaKZdhSkfi7BRWYpzoyDd6+ZvlDpCXvAVqPWRs8MOD2fSmUZ6Xl5l6ws0aPwlUrKwP2MksQzY8h0w+o5ZQkrMgvmCFtbW2lYTtaj8phG4xSlTfT3cNAJ32dlj2CI0g9yfSoJRwRlmZ/1RaVVNUTvE78nzMo46EaWoGQuTDDQz3i8vjWTyjAsjGkWLpelSmwBnq07KggRe3Vk0gGuP1r/eO5zuTaOxlB9G3j8VVAn/z6poCMsHYjsE1iS0JOql8tQ644H9ysKSsN9UevCUlBMu1AoFAqFDcGimXYUslNZnfJONwrVp3bDSl/k686u4eNKp5elLFQpQFX9PdbRHI4vCtyvdvdKbx2dY0ShNuckCVk51tZeK3KPyJqXx65Hv67sHwyRPpl9X3keso+sP8d6dk5ukqXz5P5lc5h1lmyf0GPbYGBpQyQpycbYI/LtVQlxeuxK5ura3t5O33Grg+01OMxnlFiF1zGuJ0osxGySw3Fm74LS19q9XvetQuByWRHrVCGc+Xj0DjJ4zKPxVLYMygPBt0U9i2zsuYylYFmtKRQKhUKhILFopm3IduqKRUfMV7GlbCelmEEPo1OW5lnkML5H7RAzHaNi6X4HqvzPe/TIyjpZ6cmzMpTUY9028T2RRGKuvB6doo0hWwtH/vPcFhXtLLI1YLZkeuLIw0HpspVUxt+r9Kps5R3p+Znh2Bhwys5M2jH3bkb9yhL87AfDMGBnZ2cl3kEmzeIxj1LBsuRDza+IIVobmB1zmdn85ih3nKgka5Na3yIdupJgZdHGlHSIbZY8lOeJWv+i9nPMgmh9X2ddOAwU0y4UCoVCYUNQP9qFQqFQKGwINkI87sGiP2Uw5cU4ShSnRF1ePDIneo7cNTiIgiFzJVAiNPU9EqnyNVlZcyKlddxP5lzoomuUKC0SSfYaL0WiwsiFTPUtusfAfWKDoCxIA5dhiIy8lOsNG4x58aHKLd/TDg5J25MwRLWf50VUhkpMEhkEKfAcOojgF2fPnl2ZH74trMri+RwZXSkjPqXay1QQ/H5E+bsNHDaXVTgWIMhDGXkpo0bfNjZA5FClkaGlcsXKVJVqPePjkYsZz012+YrcIHuCER0GimkXCoVCobAhWBTTNtcL3j1GzLc3hJ6/f475cB3+GsWwo4ASHLCC3QuisJyKafewCOX8n6Xm5HqU20ZWnwolG7F3NdbcNr8r53LmXL6i/mXMXYU0jJKWzLkbRcY4yiguY5NcHqcYjeaOklKoEJiRlIb7yfM6kliwK5sy1syCayimmj23OTa4LoZh2MO0DdE6wOsP1x2FT1YJajKJ31wwnyjgjHITNAO0aE6xpEiNZTR3ed4Z42ajvCipiZKQcjsyQztltBndoxI8sUtYhOzcYaCYdqFQKBQKG4LFMe0jR46c20FxOERAs8pMH9XjgqTOKzchDvwRpXNU7hlZWLw5XVLURmb2zFqYrWX9YnaUudBxGVlQAuXaoxJURFgnnCA/p6idc0kEeq7JmIHSNWf6fWZUPGd6xkCNdea+ZeeYiXA7gN2x4DC5c9IU/78at4gt8VizVCMLONSLYVhNzRn1RwVTicKKZu6M0XkPpa9VNg7+Wk5ryW5OUXkG9Syjd5znk63XUapRg13DCUJYapO9T+tIythWwupXYXujPke/Q4eJYtqFQqFQKGwIFsW0gXH3xuwrY0vMTCJm2JPa0SNiBly/CnAflaOu8f1SwQZ69KDMjlTSD7/TntN/cv1R/1Rwfw4ME93PbcyeUY/eye5dZ6duUDt3/z8zzrmy/P+KwWV68CwxCJB7RyhdX0+oVdNLKqkE/+/vXSfc4xzDjupT0rTe+ZG1ZWdnZ1/hKvk5RRK+zDPCH4+slHluqvfWt4XD/qr1ISpPSYMips0s2eo5efIkAODyyy9fqc+gvBTWkSQxonFWFuCs447WCQ4dvBQU0y4UCoVCYUOwOKYNrPr3RXoi1uMaol3rnG4pA+80lc45qk9Zo7IfYFSeOh71j61Gub6I8SmGoKxkozZwf7Jx5T4r3XnUfi4jg3pe/n/FmjOdNpehJCE9Vs+GbJc/53sd+ZXytXO+8f4aldQmgvJKUNbkWYhIRsY6Db02KuvA2LavO3rHuK82Tub7bJba/to5Zpj1VUmBIomMCj3LzDuyODeoMLN83tfD0jJm3L6OY8eOhf3jNMzZnFX2JNE91md7PippU/TORzYAS0Ax7UKhUCgUNgSLYtrDMOC+++4LE2n4azxsN8T3ROylNyVnZu06Z83p71F+zOv4l/b4bSv9kyFjJsqXt4cBz7HMrH+ZzpTrYTsCBd8/01lFevw5Nhkdn2Mg6/h4Z8+/1+fZj4UaF8XKouutfHuP2B848llmnR+P7/mmUlX9UON6PvD1Rmkhra82r9juJvN0UYl01nlfFCP1z9KeHSduMUTMXrH9ufXOt4nXH373jHH7a5SFec+znJsHURmKwfO4AquxCQ5SonMQKKZdKBQKhcKGoH60C4VCoVDYECxOPH727NkVB/gsUIoKL+oxF9QgE1MpcU0WXGXOICcKW6iCGWQhXfleJcZZJ6SnCnIQ3aOCqvQY1rBYLgsawy5MCt7lKwokwmoS9enFumwsto6rEs+ROeM/XzeHe8wCwHC5LA5Xnx48BlY/u7wBq+JeFQiGw/ZGfVeGVpGBFY/nQbri7OzsrLiY+jao8bf2Z6oA9dwzcTiPGYvFOYCKb4Otn+a+p3J/R21Rrp9Rm7n86P3x1wG7onIbE5tnPWqSOTF4Js5W4a9ZDQT0GdYeJoppFwqFQqGwIVgU026t7QmukrleGNYJnDJnuJKVwcyXWYsvUzFt2+1xCL+obdkYMHgMlJFXlDaSy7ddOu+aIzcR9ZmFPFTGedwuX04v0z579uzKjjpyF1RJCrh/0TEeL2Y+viw7xnOEGYE3ouTQoFx+5uqjAv8wm42MpuaCxkSGb3NhS7PnpthmZGCljADXMejsQWYoqMbWwO94BvW+RG5HbCjFn5deeum5e8ytiecdS6z8PWx4yNfye+oZ6enTp/e00YzLzK0rkj7wOsPveLYGz41tJNHhec3vin2PEj4tFcW0C4VCoVDYECyKaQPjbolZS7Tz4Z1Ztgtb1zUpC8jBn7wz9f/3uotFdSvnf3ariK7herPwnMzCmAVwYAagjyXz915JQqazn0u0cubMGele46Har/oRnWMGzOzG/z/Hzny/7FpjTffcc8+ezyyBB7dJ6fGsLH+M5yyXFUlp+Jmyy5Ehs91QczV6N3qu2Q/MloaTSERsv8dtj6HC/DKi95Pbwjp0X/+pU6cA7LJGpdu+8sorz91jrNuutXpsfeFEKN59y+qztl522WV7rrWy/fNnKaRyD+zR+8+5X/r/lU0AH4/KWZpuu5h2oVAoFAobgkUxbW/9C+RO8irUXKaPVGwyC9bAbEnteCMr5WwXx1AsjHUvUf/mdLM96ed4t8ohEaP6WIKhAoJE5UcW9Ax1T3Z9j+6f50xmAa5sGZTesIedMfPy9xjDNuZjbMbY0jr6aKV/tzp8+zlkMM+7iC3bMda3c9mZXQH3IZMKXSjrcWPaHDQosijmT7aQjzxdWEKknk8kPWHbDJYGeKmJPVdjw6w3Ntbs77E6bX6Zntr008aWrQ923pfPa6GVH3n/mBRGealken4lMc0kfEoKxZKFyKMi8344TBTTLhQKhUJhQ7Aopg2Mu5oefYZizVly87mwpVGISD7HZUQ7bGbY7LeasVilo8+YCO8E2fLTkDFVFWo1Yz5sha2s5aNjc4wrQqZbYpadjS3XtU5YzDkL5h4/ek6H6WGMx9gSM+2I1fbaNCjduj+nEHkPGJihKnsJD2UtHN3DrF+lqTxfKFYG7DKzyPPDtyWag71xDCJWye8Y67L9OLEtg93DvtARO2d7B5YkRTp0ls7wmDDD99fynOmxGVjnPTVY+/n9YX1/Fhb4oOfZ+aKYdqFQKBQKG4JFMe3WGi655JIVXUy005nbzXsWo9JCGnp2bsoCNGNWSneVMe0okbu/N2MvKpFHFlmO/YFVfZGeSNUf9UGxcNZhecxFsmPs7Oys1N2jM8+ev9JhzkXI8uDEEWyZ6+eqHVPxALIENcovfB0oSVIUU0D5xGfeGkpyxVjHR/qgwPPAM21maOr9z6Q9PE72GelTOSKesiPxz8XmDvv/s97aM+3IRsKXwUzUz1XTe1u9/J2j+0VtVFKhbA6rdy56JspKnL9H3hE9Et/DQDHtQqFQKBQ2BItj2keOHOmKgKWYTWR1qNLPqSTuGUPk3Ve0S2a9l13LTMtDWUAqC9SMNbPONKpP6SFVfOpI3za3A80ioq3LonuuGYahy1dcPVNDpL9XfvNqtw+sslRmHubX6tMUnjhxAsBuVKnLL78cAHDXXXcBWPXfBnb13lFUtjlYe60NyvYg8uqY8x7gOvw9ytMhmlPr6DAPAtHawl4Dqs9eApJ5U/jyWSLmy2G7B9bnexar2GqPpwbD5qzNi8if2v5nS3OeM5H3gHqPlJeGB3tdsD+1fwYqbn3mp81zsPy0C4VCoVAo7Av1o10oFAqFwoZgceLxra2tLjHOnKtNJBY1qGD40fVKXNhjGBaF8QNWjTH8/SqgSE9YTjYA4YAM0b08fspIJhMfGdRY+f8jwybVP+VSFsFcvrJ0nvtxFVpnnjGUeJzF5CYK98euuOIKALvicnYB8+EkOUEDh7PMxLQs2szms2HOxWwuvG10LBvHwzIEisSsbLjFhpSRe9NcMBAOFerrnkuWkhlw8roTibjVeqOCq2RrM4vjIyNX5VLKYussWBG3gceoRzzO9WVGqCUeLxQKhUKhsC8simkDe0OZruNWdRBm+hnbU2wl2oXxrm3OyCcqd874xtfLzI2ZvJ2PjMmYNTErj9xSeEerUl5GRivMPnskCL0GNN7lK9qVzwXKiaCuVcwnKmvOuCsK88iBMYzxmPGafQLA8ePHAezOszvvvBPArrsOP2NfnzKaVIZCQGwcFPU9e2/ZEDJ7Xy+WAVrGYjlwCfcjauOcWyM/f3+ejUdVUBX/XkbJi/w92XxThqHMNqN30aQP1hZ2W4wCsiiD3sxtUYWO5eeWMW3lwpmtjUtDMe1CoVAoFDYEi2TamcvAnNtOxsr2c4/S06lgG9G99sm7Wr8jVuwrcykysOsFs9hIt6SCF/BYZJIEFcgk02mrZxs9ix7mxm3Ngl3MtTNq91xQmKyNcywyYwYsrfB6bwbrGzlxQ08YUwYHGPGMTiVAUWzQ1zfnBmXIbFIudNCLSJ/Krn8cmjh6P+eCqPA7HgWwMSiXwyj5h60zyi3W16OeB0sQODmIv4a/81j4cVTrAAc9YRcwXy6PgWLc/v45l7Lsva3gKoVCoVAoFPaFxTFtoE+HObdD7DmndFjZLt/AOzZ/HVsuK/aU1cMW4QzfF9YXqx2i3+nzzn2ODWY6Z/4eJRBQ1qeKwfr/e3TP1tZ1bBu4TRHTnkt7mkHNuyxAD4fw5Xsz5q0YCLMYr5PmucLzIkqeocICc32Zvle9v5E+MQupeyEQPRfW02bvv0GFMTXwGETSjLlwudGz5HqUvYr/X9mYZLpfXneUx0kkUVTvqWLT0bXcb4MfEzWObKUeBdJRIaUPG8W0C4VCoVDYECyKabfWsL29veJvHFmrZgwQ6EsUYYh0WHPXRjtB34/omiyputpFzu3Wo3PKxzZi2nPW9z3shnfaEatWluCZfUHG3BnGsjOfYVWXsmz355i9RuFruT4lXeDdfrbLn0uw4I8piYHy9fXn7NOYPn9fJ4wtP6d14i5E3y+2NS+/r1HdHM40auOcFbcq29fNz1DNO18+t83KsOM+9CnHdFA2Q1kb+ZPHItKhZ7YAHpF9ibJsN0S+3cpfO/MHz9abw0Qx7UKhUCgUNgSLYtrGlHr0hfvRM/BuMUoQwtexDinTYRmURSTvKqO0eqwXUv7BkWWranPEwHvTN/ZYVCs/5EynraywI109swGFyErVQ7WbGXbUbhVFj/W2Ub2s42V9WpQeUekaI5Zr97O/rPlp23GzNPZsbS5lYSZR6vVVz7w/FMNego9s5KfN9ij8bkcW4MoH3sYgisrFc5SvicavZz7zPSyVUwk9onWHGT0jmqu8NipPlOid5/VA2YZkftr2LrBXRCTBWJou21BMu1AoFAqFDUH9aBcKhUKhsCFYlHgcyPPRRtiPCEO5KkVGF0rEzWI+XyYbsrBhQ2ToYOJxFpNz+MTMNUrlpo2CXPAx1Z8sF7dB3Ru5eqjPKPQpi6SzZz0MA86cOZNeq+7PXMvmxOKZkZx6HsrYx/+vVDZRH1g8btewKDBy+WKRunL5iurlsbFrOTRq9B5zPzPx/xJg4zRnuOUx55pkiES0ykBQBbTx/9vzNbfALICSElfztbwe+Xv4WhZXR6JnVjPyuEZGbAxWVURqQF6LVbjUqI3RWrsEFNMuFAqFQmFDsDimDeShNHkn2OOaNLdT6glrOsc8/D3MTlXb/C6SmZTfQUf1RDtQtePMAlbwDtvGQLk6ZcgYq2Ko/On73eMa4+FdvqIxZ5bCzyNjhPxdGYpFYRftkw3BIuM1lsYwU+A++HPMFoxN3H333XvKioyJ2NWrBzw3OBBNT2haHrclGaJ5cDhPfj+ycL9z4TazuarCb5rbVhbUhd9lg1+feteZ6J2Ze5aGTMLH12TSmTnJVTS/WVKqXL0ips2Gb0tBMe1CoVAoFDYEi9pCDMMwq9NmnQfrhzNmqFyGFAuM7mVWE6WAVLvvLPBHFr7Pf+/Z9fEuMtrJK2at3Coy/fQcG43OMbOOdrVzCRc8eO5EmHsu3Ma5Y9H5bB6ogBW+3caKszCLqh7uD+uwo6QPkbtRL3juKDc+/0zndPXR+5Q994sNds+z98Lc66JzBiU5suOWfhVY1QtbMiB+hhlrtmfLkr9sXVUharN3ej9SOa53zh0T0HMnC5TCOmy284iCB7FUYWn2FcW0C4VCoVDYECyKabc2puVkVul3t4ol8We0c1IBMNhS2u/uOM0d60Aih37F+CK97Vy/1HVRaEAO5pBZ/hrmkmb0sGYVTCOrl3Vm0dizrjQKZ+uxs7PTpWNUEpeeQDJ8jQrYE9Vj3401MQsAdhkbeyvwnIrmmErYoILtRO3vAfeDww4zw46s8Zk9Z+/v0pgOsLsmZYFLbHyURTaz5Yg1s3V6b/hPfw2/a1GY3rkQv9GapSRtPCY+bCrfw9eyvUckjVSSqsi2g2017L0y+5IsaBB7QywFxbQLhUKhUNgQLIppA+NOTOlZAa3rVXo9/7/SvTLTziyYmQlEuztmDbzT7fH7Uzv4Hn9mQ+afmfmZR4j04QbeNWchRBXDZv90f02vv/6ZM2dWbBwyf20lKch0fj32D9x+ZinKPgLY1WvaJ+vgIubN/WFdprJI9+UriUFm4a581TObhznL6cwffYlgiYeXmjBbZYbN42bM3P+vyjBE1txs08B6aj8frR6e13ZPlkyH1yRlJR8lUWFJFccWiMIsq1C7di3fC6wyapNkZfYvS597xbQLhUKhUNgQLJJps07b6xRU4HxDj8Ufs4csKhfrM1QEsUgHx/Uwe870ib2W7r6NKrJbj/6Ly+fxiywyVZsifRVLMXisI1bdoxs3GNNmlhklEVHW4lm0OXVNZi9h1zBr4nZEbELp4iImyizc7mW/2cj+gsvldIfR/M7ORWOU+R8rffvS2Y5CZOnO74P10XS9kZU9S1zsWvuMbCrmIiJG85ulQDxnuI2RxC2SkkXfPXjOsI0AJ7sBdCpQFfnP9yM6p9ArfTwsLLNVhUKhUCgUVrAopt1aw/b2ttyZArs7JdabqFjG/lgUTYqvzdoG7O4qM2tvxRYUO4ug9LnRLlDFx85Yy5zPaBatyXbnrD/mdkRxkW38bAfP1qsRU+1hX8Mw4L777lvRlUd6fIaynPd9UqlSGdkz5XkdWeTa/cawOM1mNBasp1O2DVFaWfYHZh2gkrx4sH4wswRXNijrRGJbMvw4sXcAvyc90Rxtjlx22WUA9Hvj62OJCuuePRSrZKadRWDk9537EdkkqchoSrIU9Yt12Ox7PVfeHCr2eKFQKBQKhfNC/WgXCoVCobAhWJR4HBhFEpm7DosCe8QdKqgGi/6isJJKBJQZlfUmNYkCwHAbeSwisbkKAdhjyKVEz1nYTAaLe9mFzl+jgqlE/Wf3puxZ7+zs4J577jknzsvCy84Z+flny+UoVUQEE9txfdb3qD0sMmexfCRKVW1QYtfoXp5XmRuctZeTMKjwj5mRpjJI21RDNA82DFTvcpSspTexRRauWakt/HzLAj75ezK1kHLxy95pu4bDwvI77/urxP8sHo8MO9cJhZsFo1kCimkXCoVCobAhWBTTNkO0jNUZk1I7tMiwQjEN/szcNdgVIguuoRghM8bIjUYFU2CjrIjZZwZVvp/+f5Wak9sVMXsVlCYKUqMSg8wxPN/Wud3ymTNnZFKBCCpITMQqFcNWBn2+3WpsI8kO38usggNLROcUm40CVjCDV2Fa/bhGiRn894wtqwQhWfjZTYf1TSUb4eA3wCp7NANBNv700iwVVIXHNjK0ZCMyXlMiqREbw7Grbvb8VehR5eror+E2qmAr/v/zCde7NNevZbWmUCgUCoWCxOKY9tGjR1d0fn4Haq4wmd7MH7dy/TH+nrmbqGQchnV2Yz06WpXOL2PaSsrALnPZmMyFJo3Yp9LzR0xbBYBRiRE8evScwzCkkgRft5K09EgVMnYExM90zsZgHbcW+54FnVBzJUsgo6RR2VxV/VBuXf4e1aaMaSsp0H5Y1GHA2mnpV3nuR6ySXfBYUuVDnxr4mbEExoNdWRnKnTM6x4l9orWD+2r9szGxeW22S5GEh5m10m37c+sgs7NZApbVmkKhUCgUChKLY9qXXHLJCiOJwmEqq8AoGMScdS2Hbsx0p3MhG3175yxxswTvc1abUTAXPrdOGFMVRCPanSvWqfTW2T2ZjngdBtXamNaVmWqU/GWdwEJNQMcAACAASURBVCGMuVSmEeYSuURQjDRisSoFp5ICZPXPMWFAM9y5wBk95We2DaxD3bSALMoGgK3wgV3GyRbonA41kiTx+PDz8Pfwmsfz2Y5HXjMqBG1m58FtYYZ96tQpALtM248Jj5N6J3z/eteQKKWuCj992CimXSgUCoXChmBxTPvIkSMrDNsnUTcwm+vR1ylmxUw7wtxuMmMGKpFGpOvpCVs611a2/Ix2m3PlZQy4NzWj36Fyn3vGhJ/LnG7JM21mCIDWYTN6JBJzvqnA6nNgBhy1Q/nHq+fj/59jnpFtgLINyWxE5hJTZIx+Tu8d+RIbeF7x/Ije/aWxJA9jjtZ+s9cBVlOmKuab2Y3ws+2Jd6DiJxgiWxoed5bEZP7nxrRtLIxh2/HM3oM/e5KB9IAlOkvzaCimXSgUCoXChmBxTHt7eztlQspPsce62tfD1wC5LltZaEf66ahf0T2RlbL6nqW94521ujdiWPxdtTHS+fA59emvnWPlWWQ5ZeHqwT7JkT8zswmGHxvFWpROO5MGsI9/Ns97JRP+HDNQ5QceSQP4Gn5HondDpUrk8xEU27MxiewheJz4+UV6d06LuiQYq2QWDay+D5y4hiP/+f973hOD8sfvsfvIpDG+Pf46TqNp1uOc7COLbqbmd4/EVCF6n1S/DhvLm8mFQqFQKBRC1I92oVAoFAobgkWJx4E4WYMXT3CoTBaJmMgpMu5hkc9cuFEux5eViY2UqDQzWpoT/bG4Ogp2wlCBUyKoNmdtVcYqmfFajwEft7/nWmDsJ4f/9EFIlLtZj9EVn1MqiEjkPidG9FCGbmyUmRlqsTskP4/IYE25b/WEMVWuZpmhHasZ+NpMXKnCcmYGl0s2SLM5aqJiQPeN510UxnRuTKN7lLqqR9Ss1CAm4o6Cndg6zcFU2K0rEo/PGU2ug8xotif41mGgmHahUCgUChuCRTFtNkSLDAuYcfDuK2Igc6FOlZtNdK9iy5lLDLt++f5yv3pdryIjtrkALT1Qu/OorQpZfSqZQPTcsj4r8POyHTywyzDYhZCNfrKgIHMGaVEwF2Yi64TNNTCbjYzlVOAfxaKj8pRBkodiOj0JQ5SUwfrN7ja+HwYez4xNLzUUpQe7P3lwUBNldOihwojyeuTRm2woMmLk72yY6CUIc0ybk4JkUiGed+cTLCkymjWUIVqhUCgUCoV9YVFM2xCxFoPteow12U6Nd+oeWeAVoI+JKBaWMV+1E8x0cMwW+N4edzFue49um3epmf6d25pJHbj8OdYcJSTgMhSGYUgZqQr+wTqsLNiJQuSWxGOpdMCRq5La7fcErFBSgahPrJ9W90aueOraufoBPb8ipqfmTo8eXNldLBHe/sL6xi5rLLXLJFRqjCMpRq8uOwuYwzrsyBWQ9ffqnkiHr8LyZnp/ZRfDroWZbcDSsMxWFQqFQqFQWMHimPbW1tZaukvTT7Izfk+YT75GBZrw5zL2wG1TxyMd3DrJPXwZ0TFVf9QvZoGKdfodtgrzx/dEfVBBaqIdfLQLVhiGIQw0EYGZacYu1PPg9kbBYVRQkCwZx1x9zIyjY0rnl6UuZIaTJf9QYSS5Dxnmgsdk819dE1kAXyid9n70p+uA009GCTuAWDLF61s2d5Xumq3Ko/fJyjX2zOFEI+tx1mGrFLRRkB0V8GUd63EVNCrT1S/N86CYdqFQKBQKG4JFMW2zHvffo2uAVQtJ25GxnsP/73VGHipUpS9vTrcdMVGlh7Q+eCtmZrSKvfL10bGeHbYqnxlPjyWwYtg9esmsn+xXmrHnYRj26M4yfTGzy0xPOMfQeL5lOkZuW8S01fxSbNr3Q1mpc38jlj6XBCRqo7IVyVgoW+sqRh0dj95tX0+mq+1BlhzDwJKoC21ZbG2wtSvzQImSiPgyoveI109moD06Zr6GLcH9umu6bGbWnCClJ36D8gbKmDFL9iLr8Yv1bPeLYtqFQqFQKGwIFsW0gXEn1JNQgXdKtovMdvd8L1s9RvrVOf/VTPfCjCSLxJX5RXv0MOxsN25Qvq3c9mjn2xvhq6etPf7aikEwIgvnaNc9ZyGdWb9zGeq7v0dJLSIbCpWgg1myP9/LliMdtIp8lkVEU3OjxyPA3lN7ltaPTKfNbeqxh8gS0TBaa9ja2uq61t/jEelGDypVpIe1LfLp5tScvO6YZM+/R8yw2UpdxQvw5du9xqJ5DnumzSk4WXfP7fL18fPhdyR617kfSqcdReI0LM2KfFmtKRQKhUKhIFE/2oVCoVAobAgWJR7f2trCJZdcsmIEEZnjs3jNRENZKEoTDynRHydY8OeUW0sU2J5FMuy2EYn1OKfuXBKOzFBDuRpF7iFK1KjCt0bHlOgpM+RQ/YsMQnqNira3t1P1gjKy435lRndKRLuOKyB/+rnFbjJ8TSQeZ0M0ZejG56M+9xjfzLn2sRizRxybjaMK+GPoUZ/NzR0Tkft7swBG3F4WQft7lAHsQcCLyTlZEouPLVBL5ELJomW1VkXrKhsHs+uXv4fF40oUHb2jPDe5zZkBmhK/Z+vp0sTihmW2qlAoFAqFwgoWxbRba7jkkktSox/lrmPHbRep0sX5a1UgEb8rY9bCu/BoB6oSGvh+cj1zwSb43owFKIO0yJ2Od6A9rl4KWfhKZWjEhiCela1jENJa2+MyqJK0+Hb1sOS5RAo89pGRlzJai9gEB5uYMyrz/7OxmjIqjAwt50I3Ru57fC0/4yj5h3Lxy8aEoVzMojCmqq0MH9SpJ5gGM1Drq2fa3AZ7phfKlYhZ8MmTJ/d8N3YbJbVRawWvkdHc4bK4n1HIXTUGmQGsYc5tK0qtnAW2UuVn0szDRDHtQqFQKBQ2BIti2sC4A8rC1KkdE+vRoqAacyFClS7I36vCPUZ6QruWd6vRTk4F6ehh2upcxtp5V670kutgHcbK9WZBDnrh9ZI9iSdU+z3Uc1E2AJE9RGQroerjMWR9dea2xTpFFYQiY0tzwXaAVamQcleMxkQxHx7H6LmpOdvDjLK5ZBKajGmzZM+uNWaduRtxG9he4WIhCiuqYP3jgCzZnFXPaT+IAqWotZHtFqIAMCqoz1zo5yWimHahUCgUChuCtqQdRmvtFgBvOux2FBaPdxuG4UH+QM2dQidq7hT2i5W5cxhY1I92oVAoFAoFjRKPFwqFQqGwIagf7UKhUCgUNgT1o10oFAqFwoagfrQLhUKhUNgQLMpP+8SJE8O1116bRrWa82OOoPyHe9Irzp07n3sOOuLOOv7Hc3Vn5+d8x7OobXMxu6NYwxwV7A1veMPb2Yrz2LFjw1VXXZX2aT/o6Vv0PStrnXr3c+9hYx1/afU9mwcqElcWp9pw0003rcydq6++enjYwx4m2xzhQjyPdd65C4X9GCbvJ2riQZaxTrz8uU9Ax+B485vfvDJ3DgOL+tF+0IMehOc973mwxdc+jx8/fu6aY8eOAdgNfq+CgPiHYIEROLgAh3s0ZGEeVYKFKPRp770ZODBLFm6Sfwh78kOrABVZ4AreOPEmy56NfQK7QSguvfTSPd8teAPn4gV2n9tdd9215/ODP/iDV9xzrrrqKjzjGc9Y6ef5wtrHuYh5QxmFg5xbaHsCwKgEKFkCFxXApCeQhEoG0vODyH3Iyuf3hoPIRAlRLDkGJ5uwZ9OTmOO6665bmTsPfehD8bKXvUyOW9QnzjudjVPPO6XqWydJSu+mPVvfegmOP8bhhlXZqg3+mijHvLpG5Y/PfoBt7be5EgWcOX369J5Pm3/PfOYzF+EWWOLxQqFQKBQ2BIti2q01HD169BxDYzYG7O5sFQPJxB3MrHln1iOay+rx/VD9m7uXoQLnR/eq8JU99SjGGLHBuV15dA+nKzXYczQGbizKt+Wyyy5bOXexMSc9YYlID7KkCGoORQkPWNo0l3Sjp779iCvnwo1mmAsxm53rCcuZYRgGnDlzZuUdyNJQqgQkPSqhOalWdG4/6GHNvUyb2+Wv6V3vPFjqw+FG7d5IgqnGXq3V/pz6jPqQpSM9TBTTLhQKhUJhQ7Aopg2MjIyDu/t0d8y0mU1GCRVYb6ESK6yjg2FkOr85/U0E3u1zYoWsDUrXE+lBDYoFRKyZA/SrFI3+uD1D1X6TpkT6Njvm58HFghpD03Pxc4mMJlWfo/PMpOdSmvpjhjk24ednbxKVjJ3xcUM0JnxOpRHNyl33fA/Onj27MhaRXlUlvInGT0mr1nmmyk4hW6PmpIPRMfUsz8fAMpPoKOmcss/w51hC1WNDoRKeZOlq+ZqloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8Xib8iGbaMREpj4vLRvdsPgjMuE3834zZLLvyh8vM0BRbhzr3BOJ8NW9LDaKjMvmxOI9uXDtU+Wb9SIodnuy58Tl+3uUSsLALjS+H5FB4sUCPyPlRhWJ6tjYRrntREZlfA+rhaJyuI09Yss58Wf0TtiYKJEt35MZ+XB++iiXffaeHASGYdjTv8ztaC5GQaQeYVUHv2N8PipPia+jdYCfD/cje/5KpJ6JurmN2TvBUP2K1jl2D1xnnqm2RPN7P665FxPFtAuFQqFQ2BAsimkbsohoBt4NM5u2YB3AblAGu0Yx7YyRKmQGKNwf1YcIyq0hYiQcOIB3pFEQGbWbnGMFwO5zMQbMn9wOXx4HK+GgJZmBlWfhFxtKOjLnAuTPKXYesVhze2QDuGj3PycFWsc9ka/lueTbq67tcZVRUqDoHewx3DwftNbQWuty/VTIDDZZMtXjVjnHDCMGzKxSMVKPnqAtUZuzNmZGrD1M1x/37xsbKPP6FmFu7mRuacW0C4VCoVAonBcWybQjXZ+BWbGxOmPTFnru1KlT5+6xY8bCOQwi79giVqGYVLSbNDZpn3bOWGW0m2V9EPed++0lCRym1fpnx02yEIWGVLtIxRKAXRZoAVE4NGlkV2B9tmu5zZFUJduxLwURI2Bw4IhMisEsie0FMrbETEu5evm5pWwmlBTK/88hR5VtRaZ3VTrMqJ8XUrcduUNmrnGZ5IPB48FzXb3z/tzcs/XgtaRnjirpDB/39c2F2I3e2zkdPUsS/b0qOJb63tO/ddxvl4LlrYKFQqFQKBRCLI5pZztHYJU9GuM8efIkgF2Gbd+BXRbOweKVVfk6YRFtt+ktm41NWvhNDgSjrK0BrbdV/fb/q/7sB6xz9CFETXJhyVvsnH238fPMnqUNbBEeBU7JrNE3EXPBSPwxZgDKa8L/P6ePZJ2gP6faZnPInrk/xhIdZoOZnneuv6qvFwqm11b1sh0Cs9bI1oT7z3YbNvczics6c15JOjLblt5AIpnu18CSsMy2YU6yE+mrWbrK8y6SCll77VrFuCMcRCjZC4Fi2oVCoVAobAgWx7SHYZD6XP+/7ZyYadunsWtgVcfKTDvSwfYiChHKO1o7Z8dZ1w1oxmGfmXW8HbM+X2i/VrUDjXxs+R62Imc9r0kn/D1Ls96MsE5b53xw/TFm0Twf/DnlW9/jS8x63Cx9LTMa5W8c2UMoSVLmn6vSKh4kMh9fYHWcrA1ZnAYuuydRiGqP0n9n3hbcj574EEqXrfTXvk1ztg1RW1RK1sgOh+cmz5VoXeLnot6JzFOgmHahUCgUCoV9YXFMu7XWlVjedlvGOG1HZveafjW6h3W+arcHrO5KmV1EUdtYd6WsKf0umVk571bZH93vIHv8FfeLEydOANg7nqyTY7/tTJdpY3/XXXftKSOKCmWsewkB+1UilZ4dO1sN8/z2UGPLY5rpJVUbo3nHUiCeh/ZMI/2utVFJUSIJgvIEsGttfkRMm1n6QTLuYRhSmwOlR7U2ZPpiZriRNIHB3htqPvgxYa8VZsc9/vNzPuSRlMbu4THiNctfMyf1NBuKiGmr9meSHZZMZFHbMua+BBTTLhQKhUJhQ1A/2oVCoVAobAgWJR5vrWF7e3tFrBMZFrDRk7lZRcYdKjkBi0H4vP+fxWEmdslENixqtKAkUeIL7s9c0JPo3ih86BysPA6Ucvz4cQC7YnH77u9RoiYO7uD/t08OimOicO9alqlJLhbYEEfNoSzULn+3MqJEKJxDno0WI9E6i05ZdcN9iUTddq/NUU5cYvPC90MlU+Hv0bsRJaLx9fr3gVVCl19+OYBdFct+DEgZwzCsPB9frhL5sljXt5vfR/UZGXDyM7TnokII+/95neE1w4/5XG5v9Zz8MXYPZNF35J7KQbDsvWfx+Tqi/Eg8zu+RzWM1NlFfVRjqw0Ix7UKhUCgUNgSLY9pHjx6V4R6Bva5cwCrDjkKgqh0/78zYEd/fY7tidquKdti+P75c290Ze/U7OttpKneaLJkBszze6XIIUWB3B2qGZvZpLMaYL+9QPVRwg4iJsYGVcqHx9XBAhMyl7CDALNcf4922SnjhnymzM57XEVtiBsCGSIYsNKRK4JAZ3fB885IVYC/rVGyT3R8z4yUlOWD3LmCXnTH7srlq76RndOvCG6LZc/MBZbgN3Gd2VfLn1GcPmzQwe+b30/+fsXFg71xWxqOKgUfJbQzshmvj59ds+98Y9vk+M9+OLNGLtc3WWU5UFAV3WiqKaRcKhUKhsCFYFNMGxh1eZmpvu0TbebJjf8SMlOuD2u17varthllfZzvFKJUgt9t2ccywvRuV9Yd3hD0B7rndVobtxo29+vqsz1dffTUA4Nprr91zjbWHQ7H68pkxsE4r2kUzo7N2RAyLGeqF0mlbnyP3PYNK+pKlSmTGxvYDUZIU5RJl42P3ZmlWrY1qnnvYGFu5XG+UWIbbyK6SHLbX16uSpbAkxjMfu9/mE7t52lz1iFwjFYZhwJkzZ85da+V7hsjveyZVMvA6wPdkrkQqpGp2j7Jl4XcumqPKTZXfOV8Hjy27a0XhlM8nkJWB9f08ZyNXU55vLCXybWSXxaUFdyqmXSgUCoXChmBxTDsKqhAF0mfdH1sJRhbaBhW6MQquYrtu1r1m+tW5IAbGXqMAMLajt52o0ilFAWCYDTJbjixNTXdp+kHecWcMwsq3soyt2Q7b66eZhfOzZXbm675QO122yI0ClzAU+2c248Hske0wshSQBk5hmjEVK48twiOLWRXwQ1k++//t3WArbp4fUQAQZbcSsSf7394XtkGxdvh6uC09c4jffz/GLHFTXgORZbbyIlD6Y1++CsyShXvlYCd8PLME53M8r6N1x8pXiZciqWC2vszBylBhdKNnwPOMn7VvBz+PJQR38iimXSgUCoXChmBxTNvvkjJ9Meu2DRGbYH2ggdN58iegdR+ZTzTrg6xN1g62XARW02uyXpgZvte7K6t4pRf1bTP909vf/vY917D1sn8urCM3ls7SjShcJu90VUhM32fWnZ8vWCJhdfckx2CPA5VAAliVAtl4MdOOvBWUztz0rF4Hx/NJSTGid8PGwuYZ+75GTJvn9RVXXAFgdy6xztk/N2u3Twzj67N5HVk4W9tYkpRZINu1WcjTYRhw9uzZFU8Q/1yUdTuz6UhSxO8wn2f7Dn+Oddlcpq+PLaCVFMBfxxIDXjtYouTXYrU2sm2Nx35iSTB4vWNJY4/vtZIo+Puj2AtLwDJbVSgUCoVCYQWLZNrsix1FjGJLX+Vz7e+xXd7tt98OALjtttsAALfeeiuA1eg8wKqvMOv8uA5gl0Vwm5gheCmBsRTbrdoYmL6QmbbfbbLuyJiclc+7dN9HO2b12A6edU5e+mA+3cawzAL9IQ95CIBVH19gd9z4WTCT92yDx9w/FwWbF5HVs8Geg0kIlBW8P8Y+9pwAxcbN2ylwW+y52LhFCRXsubNEQsUJAFbnG9srsE7b18cMSyV9iHTMVs9VV10FYPV9MngJl0m3WE/NKXUjS3flw84Wwb7dWUpJj2EYpHeJr0vZwUTRzfgdYymGlRXZ4fC4K3/9KHKcWguzuAA8VxiRzYY9K/bPtuOZHYGtIdwP7rdf51jyxoikHfzusSQh0lv3eF0cJoppFwqFQqGwIVjWFgLjLsd2+7bryyz7IoYG7GVltgO85ZZbAADveMc7AOzuwjkOru36fd3GJq1txkxt12rsyZfLftK88418kpWVOutMs/jlbNXN1p0ezLCYkbztbW8DEOt3bLf8pje9CcAuw3qv93ovALsMzJfLO11mm1FM7XXQk/bQnoeND+tE/a7bxvLBD34wAOCaa64BsPv8bczZ1xvYHR+bb9ZnK8skPn4esBU9ewuwbh2Yt5BW/tT+XgaXFflaszW8f2+A3bG64447Vsqxvj/84Q8HsPuuvOUtb1lpI0u7VHrKaI72pO+0nAdsXxHZULBOlv2Oo3vsmT7wgQ/c0w97X2yORdEA2Y/eGLHNCz/m/A4rDwcP9izhCGmZZ41Kzcm2OxGYaVs/ouiNBraZsPXFmL2PYGdgDwOOPR7FRWAPmqWhmHahUCgUChuC+tEuFAqFQmFDsCjx+DAMuP/++8+JMky84kV1kWGM/27iMC+Su/POOwHsGsqwUZTBxCJerMtGHSopgjfg4OAp9mn9iURpKui9CpPp+8+iLRbVsnGZL4fL4wQhWShKE9VZP2ycb7755pV7+FmySNOeW5QCNBJ7KfBz8rA+cWhWNu7zIm5rj6lHWKxn84xdp3yf2G2Kg49EyW3YiEkF0AF0EA1l5BcZ97CxYhYWWM1NDgPKRpS+z+zyZ+olm0P26dtk93J9NhZZIKBMXdJaw5EjR1bUcv795FDBLDbOxOK2nlioYB4fg587bFRq77SVZeMTubayO6xStfh+8PiwgVY0D5QbFYugfX32rGwsWHxt42uqSr/OsarDxsLmzk033bSnLA+1jkb9YrF+hTEtFAqFQqGwLyyOafvdVGSMYDtOFbA/YrGcQIMZlu2s2JXEH+PwohwiMtqpKXeTKEAK18csicvwO1AOdsGuP5HxkkEFD+EdfhT0xMbCrjUWGrl88fNiI6Jox6vCzWZglhS1W6Vg5LR9wK6RCwefYbYchUO0YzYeNv+MYUXPn+cvG/vYePngJFHAFd8PZvx+HihDLXa9itzEWArDUhozLvJjYnPEWJKNkTHHyO1ybh6woV10bi4U5fb29sr74ecBS6KUa6GX0phLofWZn92VV14JYJcZRiFJbX4Zm7SxjUK3chtZMhG9EyxpUwlDMjc4u4ff++ge67vVy1JJdn3191p5NnfYUNnq93OVnzuvO9we35+lhS81FNMuFAqFQmFDsCimzYgST/A52z3ad9bBALs7M9bp2K7edlvGLiIGxG4ndk+UulLp/Dj0oGcGzP6ZTbCOMbpXJdjggCaADqTPOtXI/YGP2fMxZsEubr5tBnZDidgStzvb+ZrbjpWn3Ll8ncyaWSfr/7fxsDlizIf14FmiC4MKmBOB2RGHXPXXMENQITD9c2F2yewosiHh8eM5ZO+bsabITcjaZm6Yxsrt0z9r6zO/lyyF8ONszynST0fY2dlZkW758lTCkEz/yUFtDPZ+POhBD9pTdpT2kpk9ryG+bBsP5WLKUjTffg6FyzrfiPmyy5+BbTciWwMOwGIs2b6zVMyXZ8/FyrV5Eb1v/I7zeEZuaSx9yN7Pw0Ax7UKhUCgUNgSLYtqtNVx22WUr4Qq9voEDhXDA+8i6lpNRsE6WE8FHgR0MzKyj5B8qgAhLA6JgECr1H7PpKP2cwfqXBRDge3nHybtjz3w4OAmHTY2SjCh9NIeb9GyKn38WwJ+TPkT1MaPmsYxYLLffGALrD3k++HNsiZ+FvlTBO5i1+TaqAClsRxCFbORxZ9uCbOxV+caabCwipqLYOuthfZ9VmFH7NB1xdC6T0gzDgJ2dnZVnGkmKmJmy50GkT+X5xmOcrXNcLq9d0TrA85lZuWei/K6ydMYQzTG2v2HpViQh4zlv/WGpnbU10vOz5JLH1evWlZcRM+5o7M8nqcmFRDHtQqFQKBQ2BIti2ltbW3usYiPGFiXM8N8zPQrr79ifMWKkyg8zsx7n8mxHaPo6DnPq61G7O/Yp921UTIv1Ur7/vJPnXSzvUCNfebZ0Zp/fLM0qty1iQswm5pI++PJ5PgCrYV1ZT2e7/MgXVfmx8zhFngdsL8BJYTw7U2kNOSlIFoqUpTWsl/Zzmd8J9guPYhqoVJ8stYmkHfycrS3snRFJA9TzZ4YJrKb+nGNNZ8+eTdPRsoU8Pwe2KwBWbRaUbUbUL+UHzv2I5ptKGBKtA1yf8teO6mOJItseZOGTuc2Z1IHboqQmUThbZRXP0oEoAVMk1VwCimkXCoVCobAhWBTTNgtgZanJ1wLxLhvYuyNlxsH6NGVt7c/xTo11Ib4M3iUbi2DL42gHx/3hnWGkY2R2bNcoP3RfnhqbLAIb18tMO2LragfPu/5Md9az42WJhN9B805dRULzemmlt+MxjXSBLPXhcYqSMLDEhb0UOB2iv5b7pyKW+XvZE4C9FCILd5aOsNRJ6Ukj8POKJE4saVER4KJ0vEpHy7CoaEC8pvDYRulAuQ08/uwvn8UfULYtzPR9JEaOiMj6/EhixUyU1zlDFmmQx41jO/hnzCyWP7ldGeNWHjBRrAeWPvB7nUXdLKZdKBQKhUJhX6gf7UKhUCgUNgSLEo8DoygiMzhg1ycW40Tm+srVh0VxWX0skuGyItcEA7s1sBgxuodFS8p1IbtHhQ7l9vp7WKwYjQmL2diwi10wonZzPZkoisNxZuC2+fLYfYoD2UTtVUZwanyiecCuhSwKjMSwKjRkZJDEImAlzovEsByWlwOwsGjX94vVC3Yvq44icawS/0bGRNw/ZXQaiaZ7QuCaWo7Frf4eNT9VP/z/LIpdZx7wuLAKx4vH2SiW17nIOJP7tY6xH7dNhSiOjLxY7ZKtwQrK8C4zJGUjyih3Oj+nEo8XCoVCoVDYFxbHtIHVoAAevGMyZMY2vNtWu7ueXR6zJg7M4tuojIoiNqEYgWKOUYB7ZUySBRzh3bEyPMuCa/DYR64l6rkxO4tci5g59CAyTmJGBR4FXgAAIABJREFUqIK1+Ho4QA6HVlX98XXzODGLjRgdGxWxG01kYLcfwxljPMxWOGFFZEykWCefz4L6MKL5zc+SpV+R1IMNLOeCq9ifaoNqNxsk+ufPRotzBmg9TNvKYqbo7+H3naVaWXrNOURhRflTrUf+GhsLFegqGiOWFCh3rh4ppI1jNEd5XlVqzkKhUCgUCvvC4pj21tbWSojAKBymSsEY7ayVLpt1mtnuTunBozB4vHtUbmJRv7gtkR6K28hs0MCMJNIJK51cplNXrJzvidqoGE9Wj2LpEdh+IIK5TXGSAkPm/mHPX4U8jXblEePwZUUBYKxtzJ4iFxnlqqSebTa/2fUrYnRzzzJjwHyvsnGIJEnsjmbPcT/6UIYPgRu90ww156N1x9YqxbB79OHq05eldNfZu9wbuCia14rp8ryOAk8pvTvP82g8lXQwczFUY7A0Ft2DYtqFQqFQKGwIFse0d3Z2VgIIRMxA6S8ii0Vm1sqxP7I8V9fwLi9Kq2dQO/eoHhVelK+LWKx9cqq6iBVGQToAHcgk0zWr3WuPLpPbnjH6HibFz8u3W+nEud2ZLYViipmltPJwiHTQbBWsLLQ9FNOYC03rr2HbDE4n6e0T7Nyc5W9PcBXVhywACLc9e25R+xmWMCSzNFfhdvm40tWreoFYr8p9VTY8mc5XBYbKrMe5Ph5b30Zen/mazJbG5pDZ+ag1OVpXlcdG9PyVVENJNCOU9XihUCgUCoV9YXFM21txRlbWbGXIO91o1zrni8hsw+/uWO9tYF2j9/NjX0Bmipx8JOoX68WVL7QHszNua8QCmCWpJB0RC2AmbywxSkzBbWErzijUquF89E7ZOBlYOhNZ8XJbVJsyH1H+zqlT/f2s68v00kr3r1ifb+OcB0AmDbBP1kNmz6uHFXPbWb9uCXhUMh8PDseatYvDzWZWyIpxZ/rUue/rxAnIvAj2o7/N3veo/gjq+Uc2IhwPgKWrUf+UBClKcWvgcriNPdK7YtqFQqFQKBT2hcUx7e3t7RX9WhQA3vS2zECiJAx2LSeSV7puf69i2CqJOwCcOHFizz28u7N7IzbBaRvtk+/NkkzwWBiiceRyVYKFSHIRJar3iBI4sBSCpSmeGWdpOw8CzI7YF9a3S0Xsyvzb2T6AGVAkSTp9+jSA1Wdq92ZRn/ga9n3PGJ2y2VCW78Cqz7Cy/M3iA/C5iNmz3YjykvDI2B6jtYatra0VP3Ov12eLaH5/IhuKdaOMRVbdqv2ZBb9dy5KcTAqgIq9xmZn0wdYqQ2RfxOPF8zuLOaAi4/H7G9XHbc3Afb1Q689+UUy7UCgUCoUNQf1oFwqFQqGwIViUeLy1MadtFgzAoJJIZKHz2ChBhT7tCYfIhmGXXnrpyj0GJQrybTQRvomYTExqn2wk5Y1v2MXD2sJGOJHbi11jxj2cEztqKxuasSiNRW0eKgQhn+f/gT4xVY9Iy8bai8GBPNgJi7SVu1s079Q9djwyklJGPVloTW4DGwZm4nEDq0vsHj+/lcrA6stCCvP7ZODnlYl9lZGUP27X2rPugVIVAauqBlZFRWFMlfvkXP2ANqzlcfF9VudU2FdAG4Iply//TnO/bD2wMY/UA7wWK7VDNGbqd4FVa1myKAMblPoxUSrCpaCYdqFQKBQKG4JFMW0DG1BExgh2jkOeMpv113L6QcXGsuAqKkBHlByDd3ncNs+WbXd66tSpPZ/rMAVj5eySE+2w7ZiNNbtBcWCE6F61k4+eG7PMnhCLzDZ6mHaP8Zo9B5NqMNvIgt4o5ssJN3xbmMUwa8tcVZTUJnonlDSAn3/ERJSbXsQW2YBOhXSN3pU5Rh3Nt7lUuhlbisaWYW6mmbHaXKAcvs630zBnXJZdq8bJPy9eG+05cejQyEDUrmHj0ux58fvP0scsSNFcEKl1gtQwondDSVl72PnSQp0W0y4UCoVCYUOwKKY9DAPuu+++c7s+1jnaNf7TwLvIKL2i2i3PtcmDWaS11ev8mJ1YW0xvHLWDd6nrMGwDMxDFZrM2KkQ6bWaX9rwi1ykOz8nXRoxunUAIrbW1dVDsehel7GQpCbv2cJ1ev89SDKUX9VBsiRljFN7RrrW5qNhaNA+YAWUBjvheDiLEOuFIcsH2IxnzUvconSbfH40Fn9va2kqZ+1wCn4iVsYSD30PlwuQxZx8TSRLseVjSmcsvvxxAPE6cEIZZc7YusL0HB7sxSZaXBqi0uGq+Zc9NBVuJkozwM+W1JZLSrBOA5WKimHahUCgUChuCRTFtYNzVsF7N6wkVi+SweB5Kl6T0HB7Minh3nCWjV1KBnjCP5wMev2y3yrpm1oNHlrSsy5qzqPblqfCYWb97Uy9ubW11lTsX5CSzXFWW05F0iG0LOMFCxDqUJT5bmEdWyiqc7FySnaiN7BkQBZzhOaOs4/07yUGEmDlmIUQ5xG72vHpSpjKUl0lUXk9wHa6bz2UsVjFsk8BFjN8kLMeOHdvzacejtvE85jHgORvZqXAwLLYz8usRSwaUhIXncNQ25dkTBZ5iyYEKa+rPLRXFtAuFQqFQ2BAsjmkDq+wu8n01KH/CyDdQ6bZZjxPpN5Q/ccQmWHfE12S6F2Y2KtGBbw8zRbYEz/zdo/CLHpEejJmq8puMLPiZQfCYR22M/OcV+FlHbIatuFmf558lM2ljLZZSkBm2t21gqQWziShBDUuQlDTIt1HpzKOwjsBe5sNeAsp/PmKqzM74exTmllkZh+WNnpv9b+PJuvnIvoDnIEswuG/3339/ajnN81fN20ynzRKPqB3cZ54rxrTtvO+XzT1+DioJkL+W26ykhZ7FcpIjlZwjm28c+tb6w4wb0HYXinFHbeL5FunuVRKlpaCYdqFQKBQKG4JFMW3b8XLKP9PNAAejb+DdsQr+D+ig/8r6MTrH1ry8uwR2+2XXclITZuKeTXPiBvbLZEv3qN1KzxpZnrN+S0kwsuQZqv5It7SOTpvbHzFtZqLsRx2xWHsuZpHLLN3OR8yAWUrGRIxJRSzctyc6xhHJmGUy4/JtsXpVNDvzfPDn+NqM+fK9HA2OddmRhGkuWUtPtLgItu4om4PofpZEZBK+OfYazX0eF9YPR3p3i9Ng/eBnGkkdVAwBFWPCPxcr3+q966679nw/efLknut8P5QERNkb+X4oRBb1yvMg83BgNj6X1vVio5h2oVAoFAobgsUx7Z2dnTQiDes15nazEZR+KoLSQ6mdKLC7G2arXmYiUb84Tjjr8bIY16o+9pH25bMVLyNiL8oCPGM8fK/Soft2sD1BFjMbiHflkZ6Ty8vGyf63T2UtHlm7MttXerVI5zc3v309Vrfp2ZVuli3E/f8cL5qZduRrq8aP2VOP94chem+j6F9AzrxUpK0ILOHjMgAdKz2zGjfw+6LYpGeInEZYrWeeBd5xxx0AVlNkclt9P01CxJ88d6P4ESZ9MUbNURyztYXnV4+ef853O4puxlLNnvSxzL57oupdTBTTLhQKhUJhQ1A/2oVCoVAobAgWJx6/9957pXEUsCpi6gl3x1ChKbOQdkpMHrl6sNjTDOlY/Ob7pUKCKmOVHiMvE5eykYm/346xsQWLjbIg/D2BK5SRGrc5Eo8rdzGP1hq2t7elkRywaoDGomAWdftz7IrH39kYK+qTcgHyYDctFaIxqkeFreV7oqQmBpUQI2qrzW/l0sjjnPWPRe37MTiNDOyiBCsKWbCTKMiQLzeazyo8Kb/LbGzm/2fRLIuV/XkTV996662yXGDvOmBrhH0q8biV5dcJMzgzcTyHXo7WU54jc8aLfuzm1G+ReJxF3JERMLdxP+vbxUQx7UKhUCgUNgSLYtrAuKtR5vnA6u5dMe6IGRp6w5oCOvgI7xQjNzG7xnagHN7Pu9Gwi48K6hJBMTdlAOPrU0E1eKcfsSU2qOPPLMANtz0zQOoZi2EYcPbs2TStK7d7znUJ0C4xKkSpZ0K881cucj4gC4eP5QAPbPTlwW5Tc6k6o2uY/XE4S/7fX8PsJQrqo9wtM9esOVepiNHuJ9nDOglDuG3R/FaMkNsWMWJuiwruFCW3MeZ7++237ynf4J8fz2MzsFRSocg9UbntsWGsP8fls6tmNKfmXOeykKRqfY1c9bJ5sAQU0y4UCoVCYUOwOKbdWktdISJ3Kb5fHVO7O9Z3+PqisJFRPZFzvoFDD1q/IqZt13JiAGZCHrxb5LKicJbMGKIdp68vYizM4Hv0hkpnyvVF5+bK39nZSfW3LKVR5UV6cGbjzEyiMJl2DzMQZkmeaVt5fm4AqzYHpoP0dSuGzfYLEfOdk/T4sWKXsjkXyigwD4ctNWTv7zoMKJP6RNfu7OyslBdJ3ObWnZ53QEn2ohCoyq0u0v1z2GQO5mTw342VZxIc37Ys3Kchc09lmxDlOpvZsah1PHPf4vnN9UaS2f1Iay4GimkXCoVCobAhWBzTBlb1J55lqLB3WYAPpftQweP9zkrpbXnH5nevKgThnXfeuadM3y8OWxpZiUft8NdYW9iKk9mhv0dJNXiH67+rnW1mO9Br3R/tanuZlem1gZhV7gesl+NPFVoTWGXHcwlrrB/ArscB6zKzdJ6sV+cxj44rPTRLGLKkPep49CxVQpQsKNLc88/uya7htmbXKFa8nzmvQiL7MVbpT9m2Igr8weubtdFYddRPu4cDs3CbM0mIsvvwUiEO96skLdH42jmll86CoChL8GzurBOg52KimHahUCgUChuCRTJt1jFHYRANPWFL+d5ephi1iVkS64/9/8a0TD/Ju8ooYchc/ZG/uEotyklGIn93xSAy33Vuv/LpzixpubxIP5bpqhQyq1vlm8nlRlbqc37mPJ6AfmZsY5BZTHP5bFvhr1Es2c6bvjxqo7JP6En+oqz8e9iZkiRFluBczjqhi7P0iiahYXuIzAOlZ+1QjFpJWrwkjCU8imn7cVISF/s0a3K/VrGXgEI0//iYkkL5frENiNJdR+88r1VqPe/xHMpsHpQ0dSkopl0oFAqFwoZgcUx7GIYVXXbk+6p23dHOV+2GlT7NX8e65sgvm78bs+boO1nEpTlk9SkdD+8YPdvIUov675G/s7Ku7LH2nvNd9cj8WBVUVDBVh68nu27ON1j5KgOrrCKLnsb94Poi616VRlVFfovsIdTYRkyb9fhKPx2xKCWhYGTvr/Ihztji3Nzx9hBRu+fY/Dq+vNyPKGIhp9nla6L3ks8pJmyJPYDdtUp50GTJYNjHmxMVRbELlA0Ir1lROsy5SJY9luB8PPo+5yN/2CimXSgUCoXChqB+tAuFQqFQ2BAsSjw+DGMIUxNPmNglcqdiMUtmEMLiEyVij4xgWHzE10biciVeOR/xeA9ULubMsGZOZBu5nq1j/Nd7TzT2LKpbZ/x6xLrrJMdQRk/ZPWyQowwEo1zV0bmoft8PFbaUDXUyYyKDmh++XB4/a2uP++V+1CR8jQpR6a/pMTK19ihDJ2BVjKvUF3NuidH36B1TYum5UL7+HgPPQx/Mx9Y3/uR2WP8iEb4K5RuJx1X7WRXGqj1/bM79LlKtGJRxYCQen1PhHBaW1ZpCoVAoFAoSi2LaOzs7uOeee1bSRZoxBrDrrqB285nLiNqxs0GDZzcq2AkbffjdrV1rbbXvtouNXH0OwoFfhVa1+v2OV+1aOSVftMNWrjw9yR9UW6OEBGwEGBmnMFRIRWDVMEslL4jCfM65rEWJVRQyIxiW6LBBkPXHj4U9K07nqp5tNNfmUnRG55ilKAYeSUgUW8okF/y+Zq6A64QVba2htSbXCV8O97mnr3Nt4GAowKqURI1tFJqY31meO34dsGAqtsYaC1dGWJnkill5xKrVe2LvPRvvRq56SrqRSTvm3t+MnRfTLhQKhUKhsC8skmlz4Huvg2HXBLXrz3TbBuW2E6XIs12rheTj8KZeGsC7VN5dRkFjrM/GoNbRF6tE8ioJiO8P7yKZaUdQO+l1mLYKrhK55th4qRCL1qatra10l8wSh54AKXyvsouI7uH5xFKbKOysXWOsWbGHLECGCq4SsU8lZeCEDhETUUF9+N2IUuty4Jkepq1cGaP5nbngRfBMOyo3crGa+6501krKxOGH/TmW6EWJk5QkidewyJWN2XkWaMag9PyGLGASf7Iu2xAlb8rCAPM9imGr9Sc6Vy5fhUKhUCgU9oVFMe1hGHDvvfee23VFQfGZkWUpK325GXrCLSqmbYj00xw2MkoKb2C2NBdG1NfHFr4q2EZ0P+vOenS4XD7v8CP9m0oMwCw0sicwBpIxbSuTkwpEyV9U2M8ea1HFtCMLZvuf25/pYjm4BCdWMLuIiEFaGzicZKZTtXLZ8pufaZRsRul5lf7Vt1vpp7PwlczGeyQjrBPuQXSPWkOYZWYhNFUbo1DIp0+f3tMGFTQoSnvppX5RW/07Ftm7+DZlemKWHPHziSzAOXCWCvUbPdu599YQzbs5G4pIusr1LgXFtAuFQqFQ2BAsimmbTptTV/odqOm3WTemUnby/x5q1+93VrZrZYbNDCiyALZrmBVFuiVmvtZ3a4t9Z32/v4f9MZWO2x/LLGZ9uzL93hzzis6pkIR+rOy52+480vkp2D2edbAOlvuT9VWB++F37MasT548uec7M+5IIsEMN0sywlbBPEeZmUR6QmY8fE8UipLbpiQ+kcWxsieJ9KNKz72O/rvHRkQxeWB1rVD3ROdYeqU8ATKvFUNmN8JzRrH0aB3gNjPTjiQ7cykyIxbLsRdYTx3NN+67Sj0bgdc5bqvSpfeWfxgopl0oFAqFwoZgcUz75MmT59iR7UBNvwPsMu0scD6Q68TmIhNFDFhZp0esUvlYGjK/VdUWZeXt/+ddqorI5evjXbHqt++DskrOdsDKYjZLFMBRmnr8tLn8qA2KAUV6yTkL7IzBsa7S+mEJG9iP39enpCeGKKoZs2MV3SqKYaASavCz9W0yRsfvJEuhovgAKkocXwdo+47M4lzpLhUiVh29p8q6OXpPVfQ05YngmTan9+X6ObmJ/19JOjILcL5GsejMElzZ5WRjz3OWr/VzZ87mJJO48Hxgf/CozKX5ZxuW2apCoVAoFAorWBTTHoYxPZ4x68ga0tiD7e7ZUrXHN1hZSGd+n8rX2pDpYJhpR1F+WGfNDDizzFYxgJVuC1jdQUf6TtUHxTqzHb2B2QvvfL3e2sbEnvmcTntnZ2fl+fv+sO/zHKvwx+YiKkV9V94CLOXwbIqZrbWNUzT6frFvLUt/MuazTrQ5A8dPsPLM7oNjF0SRvpgVqXnB/0f9iaRFPdbPBvPx53nh283xC+askT2UlXuPR8icl0Uk4eP3MVqb+B5uE39G0gclpTsfsN49iseu4lBkEhduP69zkZcJr41LQTHtQqFQKBQ2BPWjXSgUCoXChmBR4nGGucZExkkmKlVBIDIXjDmjosjYQhnqcNnAqrjSYG3jwAKqbg8Wm0aGQSq9ZiayM6iQlJlRmTI8y4xyOPysHY+MzTiJQKRW8HWaesX3x5d3/PjxPe3ldkYiwDkxroFdsoBd8bC12/rIQYP83GFjHt+/qD7fV+V6x2MdiZHnAkpkRkwqlGskkp4TJ2eGceo9zULv9rrt+DCmUX+4XZnxqkGF+WQ1XKSCYvWfEo9H48TGfpmBqEp4cpAi7wgctIrbGhlgKndBQxTMhdcdfsczld467oIXE8W0C4VCoVDYECyaaRub/j/tnbuSG8sRRBs06cvW/3+WbPk0yFhAVsUtHWRWD4DdJSYij8MlMOh59QCd9ewpX6VWS4UzyEcV0t+p16mMKQMZmKqiyle6ABOunrtypDJ0yoft9vi3O49+HH18tx+uuNWYTDGb1DnVhQtA68qB6uKRYKmpGIQrqcp73f9mUApVOu9P/0wpbqZI1Wd7oCXPkSpala90aYm8Buo5cO0biynlq86jzov/TuVMqXymYLldEKC6b49wu93W9Xq9s+T0/e5Kdqryqy441gXLTmmcRwOq+nuurLEKSHUprXwG+zXmdxWf6ekca85TUXM+qnnurDRTsJxrTDJdk+l34W8SpR1CCCGchLdW2kUvElGKjAUrjqR8FY+0lOQqi74XpUTpl9yVMex/M6WHK25VYGAqgNC3VWkN9V7tzzUQ6ThfnFut9/EJYxSUT/uz/GxU2qpxC/fD1bsrCUlV0//mnGHxkZ7KxmPisapjn0qc7s6vcOpFqWWqb6Yc8vymohf0qat55/zHk1+Zz97umnx8fNyVDub7HV6vKV3QWatc4x21DcdUsQ+7/Sn16ixILq2uXwfOO36HFKpYkSu56+JyOu7aT017XKqemhdR2iGEEEL4FE6htLtPu3whFQlcq2MqHbUCLZwqn4rV0wdDRar8xTuFqNrBOf8d3+/b7XzYVPg83j6+W3mroiHOYqEaBSg//lr3CrsrbfrTnoniVPfFRUyr++RKWvK+Hzk2tndlO8w+Du/zpLR5r1z2gCo04lSLs6Ko86E6cj72vh9eT6WS3GdotZmivTmG4na7rd+/f9/FAqjvAefTVvvlvaS1hmpPxanwGXYZD2vdW+dcEZLOLtNkivvhZ/ndOH1XMRKcc+lINLcr/KKuCZ/5I/ea+30XorRDCCGEk3AKpd1XOmxvWBGspdCUn3KnYo8oUiqdI74yV1LT5eL2zzgVeyRf9sj7bluufJXSnlovrqWVtlM6jFHoSpz+7meig/t4VDo1Z8qfVqjj3kViU02t5X2WP3/+/L8xevS4swLQfzzdSxcdr+IheF7cViltPhNlOZjUSkGV7BTrlEtO5fNqPu3tdlt//vwZn+VdBLs6Bpf3TXU3qViq1ukcqR65/10tiGkMxe57Z1La/O6gtYaWzH7cPA/Oj/7M8zV3TVTUvxrvHYjSDiGEEE7CKZR2h8qMfq5aFal2gMRVfeor7l3D9Sky1u1PKYZdNSkXEb7WvX/VReKq8yIuanNqZrDL8VzrXrmXyqXCVu0JJ8vEI7g2h3VsqpKdix6v/7sYhz5OXZ9S9FQz/ZrXa3WsLvOg4/zqLj9XRfNyPy7yvR8Do8Z53krZ8R46X/Z0DwizDB6l8rRJf63OcafYnonMdy18+/h8tlU9Cvf88fUphsLlnU/R8W5+qe9TZ8E5kv3j5tWR6HF+xjVKUfvbVcP8bqK0QwghhJOQH+0QQgjhJJzOPM7ggPp3SsEqaEp3ppnJjOxK5ykzlduvCnB4NK2pB9zRfEiTpmpm4XDXUQX4OZfBZE6qz9Q2UyAae4y/mnpR+2BqFIO7+v13JsYp8LGgW4LNbFRv7Km3t4PmSGe2ZLnZ/p5zeahiF5xXTD+iyV0F9jmTpirBukvVezUQjftRAVZ0nXBbFyTXx2FA7JG0QQaiuffVMbljm1wBLq1qOj+e59QIxb3nUs+Ua8W5/5QbxZVjdoGEaj+vuuU+myjtEEII4SScTmkXVGgMdFKFPdwqkWpShf8XLCN4pOyiK1qv0pEY8ETU+ZXi4bHw36nJRHF0JbyWV00ca637wKo6dxZV6SU9XfOUV6lx2aRFBV2xOIML9lOWEhc8NgUgUX0dSTdRFgK1P6W03f2laurBZpw7O4uLakFb8PxUQSJ+Zhc09QzX63VMnauxabWa9u3UuBqf7x8NKlRwPkwpc05J79Jk+9/OOqPmh7PouGYgSmm7QkdHWuu6Z6Rv5yxW70KUdgghhHASTqu0qcyqwINaITofK5UQU3LW8uUWlYoonO/FNbLnPtX/iVpNOr9UoUp6FvTdU4Ep1UGrAMdQ15F+av7bm8N8dVGD2mfNoSpy0lPDyvpSx0L/bb1exX6m1DheU/rH17pPSaE6PlIYYzeX+n1S1oV+zMpaQD+r882qFCzGNDh/pLJCcQxabV7hx48fo6p0avKZZjbOV6qe6UfabFK11jWeCons0sN4PBOu6NIjBaHcd2f/m3PGlSpVMJ6EY/dj+qxYic8mSjuEEEI4CadV2rW6LmXGVVdXBi4y2zVlUD4/tu2blI9TkVTYn7WCo+Jw0bzKZ7bz20xFHKiaJl/QblVc/1cNQ3ZtFV+l9qn2RwsB58rkny7lzmYzTtWu5ZXnFAHs/JK8p6p9KAvLuGIuKs5DNepwx8j3eD2nqHlXlvOzonsvl8toIVH7dkVCjhTioIVKFfWpcWj9m2JNnD+afngVKa3aBSum6HhXbEk9v+57lN9LU5vNZ1r3cn9TQaUi0eMhhBBCeIrTKu2CUci1Qu35s2415yIZFVQi07ZcJVJNfrWPZNdYoW/jylhyu/66y2edlE+9xlKizFlXOcvFVynuOobyS6uodyocF9OgfIyMmZh8/1QgrsGGiofYZUfQH9uPbWrFuoOWHM6PDrMIXD6w8mlzfFpGni1jWmM4H30/vl3Diz6/ncXBnbNSe6xD4cp/qnEfyX2eWqP2/ago6x3KYrFT2Mo/7axQz5QZnZ4ZNzffhSjtEEII4SScXmnTF6oahlDZUPFOPhhGynLlW+ppyg0svmvF5hTvtKqkb4t+RNWAhePTx92vI5t+cNtJJX2XT4mquv/tIsBd5Pxa/8Rb1Bjl22azkf5Z7sflhytLklPJLvJZnR8/e6TiH+cDFXa/ty5KmWNMud0umvwVLpfLoWp07toy2n8t31ykmGJOGD3tvndUMw4yWSJoxdhF4k9WIW6jrqOzArqqdyoD5UhU/FGORJonTzuEEEIIT5Ef7RBCCOEknN487kqDVrGVzpHSfGQyLaqx+jE5U9pXm8ld6dUjOHOcSvkpahuawLuJ0wXh0WR3xIT/1fQCL0zLqUIsrsynMlfWeNxGNVRgSV0GHqlrsZtnU39jN1f4rEwBQe55mgKfuA3nnZpvu77ar/Dx8WF7pvfjdP3mi34tnKtpZybv++O/LjBNvcZ7qxoHMdWL/3cBq4pdUJnaxpnDp7lTvGIWd/Ocf78jUdohhBDCSTi90uYK9Mjqfiqz2N/v1OqrgommIAiWHmQKxnf81ZTBAAABw0lEQVSlEri0ig6VFBXPVDRiF4iiCiO4Y+OY0/l8FWo+VBpYKV/XaKXOQzXWqGv569evcYy17gPc3H6V1cGVhuR9mpQ2nyMGxPW/XeAWVVS/rm7uu5TA/h7n6DSvH+F2u63r9XoX4DS16HWpfipQyxUScc1n+vgsl1pjqes0WVSm1/t7biz1XO7SRKdSpK540PTZ3f4fmQeT9e4VS+V3EKUdQgghnITTK+1iKhKw89sdYVdGUPmJnH+o+KqGGEd8P7xebrVcx6hW2iwByP1O/ij3elc0X+G7fBQ2MqHyLdQ1oLKpMVR6kPuMa+vZU774WWetUEU3nMKaCli4uASWfJ2K7VCpcls1V3fq7BWu1+udmu3HQH+wa3yiSuASF3Ogiqs4P/5kNeH9cfdYbeuO9YgFzMUpKAuC22YqSTr5u19FXYejcQzfTZR2CCGEcBIu72Svv1wu/11r/edvH0d4e/59u93+1V/I3AkHydwJz3I3d/4Gb/WjHUIIIQRPzOMhhBDCSciPdgghhHAS8qMdQgghnIT8aIcQQggnIT/aIYQQwknIj3YIIYRwEvKjHUIIIZyE/GiHEEIIJyE/2iGEEMJJ+B9BWL5XQJy4NQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZVlVJTrWjSDJnmxEILWe2FVpWSoqFFgqoKVoodhSYodSvlempU+xF7WepCgq8ik2SIkNIqJiL/YgaIqIHXZlB9hk8lAyIUmyjcgu4u76sc+MO+84c8y1zo0bEfvgHN93v3PPbla3115njdm2aZpQKBQKhUJh+dg51w0oFAqFQqEwhvrRLhQKhUJhS1A/2oVCoVAobAnqR7tQKBQKhS1B/WgXCoVCobAlqB/tQqFQKBS2BN0f7dbaU1prU2vt1tba5XTu6OrcNWeshVuK1tpjW2vXtNZ26PhDV2P2lHPUtMIhYPVefP45qnta/a3V31p7cWvtejp2/er6nxTl/c7q/KtFPfz34oE27rTW/qK19lV0/JNba69qrb21tXZXa+2NrbVfaq19nLvG1pz3GhiHa3ptOZdY9e15h1ymei7+7/pDquv8VXlPO6Ty3mu1Lv5fwbkbW2s/cBj1HAZaax/ZWvvD1Tx9c2vtO1pr9x+89zGttVe01m5qrd3eWntta+3Jh9Guoxtc+wAAXwvgUB7evwI8FsDTAXwLgF13/AYAHwrgH89BmwqHh6dgfn9ecA7b8PTW2ounabp34No7AHxya+2SaZrusIOttXcD8JjV+QgvBPB8OnbTQH2fA+AhAE79YLXWvhTA92Aes2cDOAbgPQF8PICPAvCbA+VuG74JwB+31r57mqY3HFKZH0rffxHAXwK4xh2755DqumdV3/9/SOW9F+Z18RVBmY8HcMsh1XNaaK09HPN8fCmAb8Dc7mcDeBCAzxu49+UAfhfA52Mew88A8KLW2tFpmn70dNq2yY/2ywF8SWvtOdM0veV0Kv3XjGma7gHwh+e6HYWtx8sBPA7A1QC+b+D63wLwMQA+DfMPseHJAK4H8CYAR4L7/mWapoPM168C8KJpmo7TsV+apun/dsd+G8APsURqqWit3X/1Dg9hmqY/b639OYAvA/BFh9EGfh6ttXsAvG30OW3Sh2mOvnVW1qtpmv7sbNQziG8G8A8APnOappMAXtlamwA8v7X2HdM0/U1y72cBOAHgk6Zpumt17OWttQ8C8LkATutHe5MX5VtWn/+zd2Fr7T+uRAN3ttaOtdZe2Vr7j3TNC1tr/9xa+6DW2u+11o631v6+tfaFI43Z5P7W2ru31n5iJaq4ZyW2+5Tgus9srb2utXZ3a+2vWmuf2Fq7trV2rbvm/Nbac1prf73q342ttV9prb2Pu+YazLtJALjPRFarc/vE4621r26t3dtauzJoz9+21l7qvl/YWntWa+261T3Xtda+YWTBa61d1Fr79tbaP67G4MbW2s+31h7krtnkuT28tfaalejo9a21j1+d/4o2i2Nvb629tLX2QLp/aq09c9Xuf17d/6rW2sPoutZa+/JV2fe21m5orT23tXZpUN63tNa+dDUed7TWfre19n7BGHxqm8Vdx9us7vnZRmK6Vdtf3Fr7jNba363G4bWttQ9311yLmZ1+WNsTR167Ovfg1tqPtVmcds+q3b/aWnvn3jPaEH8C4JcAfENr7cKB6+8C8HOYf6Q9ngzgxwEcWmjE1tojAbw/ABbHXwHgxuieaZp2o+OuzIe31t7SWvuF1tr5yXUf2Fr75dbaLau59futtY+gax7RWvs5N/9e31r71tbaBXTdta21V7fWntBa+/M2/zh+0erc8LwD8BIAn83lnw201l7SWvuH1tqjV3P/LgDPWJ373FWbb1q1/09ba59F96+Jx1fryInW2nu31l62ekeua619XWutJW35OAC/sfr6e+7dedTq/D7xeGvtC1fnH9HmtcrW269cnX9Ca+0vV/X/UWvtA4M6n9Ra++PVO3/LajzepTNmFwL4aAAvWf1gG34KwEkAn5jdD+A8zOz6bjp+G9xvbmvtAa2157XW3rRaK97SWnt566iFME1T+odZDDhhFg88a9WYd1udO7o6d427/gMwLxB/CuCJmHf2f7I69oHuuhcCuB3A32FmCx+D+SWfAHzkQLuG7gfwbwC8FcBfYxbZfSxm8dwugE90133M6tgvYRbTfB6AfwLwZgDXuuseAOCHMYs7HgPgUzCzmFsAPHh1zbuurpkAfBiARwF41OrcQ1fHn7L6/i6YJ8IXUf8+ZHXdp7mx/j0AN2Petf9nzGKbuwF8Z2eszgPwGsziyP9v1dcnAvghAO9zwOf2t5hFPx+3atfdAL4TwK9gFnd+/uq6n6G2TJhZ3e8D+GQATwLw+lW/rnDXfevq2ueuntmXA7hzVdcOlXc9gJdhfpmeCOA6zLvko+66L1xd+4LV830S5rlzHYBL3HXXA3jjqu9PBPAJAP4cwK0ALltd8+8B/BlmkeSjVn//fnXutwC8AcBnA3g0gP8K4AcAPLQ3p0f/Vv34FgDvt5o7T3PnXgzgerr++tXxx66uf9fV8UetynpPANcCeHVQzzMxz71TfwPte/rq2e/Q8d8GcBzAVwP4tyNrzur74zCL738AwBFqn197PhjzHH/16tk9HsAvY16zPsRd92mYyccnYH6HvwjzZuIl1I5rMa8d12Gez48F8AGbzLvVtQ9fXf9RhzUHoucrzr1kNXffuOrnYwE8wj2n/4F5PfgYzO/cSazWptU156/a7ufYt6+u+yvMa9FHY1aDTJiZqWrnA1bXTwC+AHvvzsWr8zcC+IHgnX09gK9b1fOjq2Pfhvn9+/TV+L8B83rt58eXYV7Tnw/gvwD4TAB/v7r2wqSdD1vV8SnBuX8C8OOd5/HBmNfN52BWEV0B4IsB3OfLxLxZ/hcA/w3zWvGpAL4bwAen5Q9MiKdg70f7itUEeMHqXPSj/XNwC9zq2KUA3g7gF9yxF2L9B/b+mBfvHxxo19D9AH4Esw7uSrr/twD8hfv+Gsw/7M0dsx/Oa5N2HAFwIeZF5cvd8WtW9/IL/FC4H23Xlj+g674b80bg/qvvT17d92i67hsA3AvgnZM2fv7q3k9Mrtn0uT3aHfsA7L1c/qX5rtVE5YX2bQAuojG5D8A3r75fgXmhfSG18XO4H6vvfw/gfu7YE1fH/9Pq+8WYd7kvoPLefTV2X+aOXb8a98vdMVt0P8sduxb0I7c6fieAL+3N39P5W7XlW1b///jqGT1g9T370W6r/5+2Ov48AL+v+rOqJ/p7r077fsPKpeP/FsD/duW8DTN7eRxd9xTsrTmfvXpG3yTGwa89r8S8ETuP3s+/wyyWj9raMK9jn4N5gb/Snbt2dexhou503rnj98P8I/f1Z2g+XI/8R3sC8LGdMnZW4/DjAP7IHVc/2vt+oFfj+AYAv9yp5+NW9354cE79aH+NO3Ye5vfzbqw2n6vjn7669pGr75dh3sA9L5iDJwB8YdLGj1qV9djg3GsB/NrAM/lPmO2XbK7fDeBz6Jp/APCtmz7vjfRI0zS9HTOb+tzW2r8Tlz0awK9O03Sru+92zDvex9C1x6dp+h133T2YH/wpkWWbLdRP/W16P+ZJ8usAbqNyXgbgA1trl7bWjmBemH9+Wo3mqrw/xbx73ofW2qevxDG3Yp4AxzD/MKgx6eFFAB5lYpFV+z4TM0s13dPHYd4tv4b68XLMi8KjkvIfB+DGaZp+Oblmk+d2bJqmV7nvr1t9vmLaL056HeaF4CF0/69P03TM1XM9Zr2ZGdg8CvPLyVbKL8E83tye35qm6T73/a9WnzYPPhTzBuQnaOzetGrjo6m8P5imyRvEcHkZ/gTAV7fWntpae/9MXGhorR2heb7Je/l0zHPvq3sXrub2iwE8ubV2HmZpw4s6t70AwCPo702de65CYKw2zYZYH4T5+T0TwF9gllS9rLUWqd2+DPMm8anTND09q3Alen4MgJ8FsOueccNs9PRod+2lbVYz/SPmzeF9mH+sGoD3pqKvn6bpL0S1vXln/b4P86bxqk4fsrXudHB8mqaXBfW9T2vtZ1prb8b8Xt2HefMyuo79mv2zmlt/g7F3ZFOYSB3TbHR5HYC/mabpn901tgb9m9XnR2AmU/zO/9Pqj9/5Q0Nr7X0xz8M/xSzN+RjMEoIXtNae6C79EwBf0Fr72tbaB4++9wcx/ngO5p39M8T5KzDvMBg3AricjkWWgvdg3t2htfZQzBPp1N/q2ND9K7wzZuX/ffT37NX5KwG8E+YfvrcG5e0zumutPQHAT2PevX8WgEdiXshuono3wS9g/uE3fePjVu32C+o7A3i3oB9/7PqhcCVmMUyGTZ7brf7LtGe9zM/DjvO4RIaMb8GsKrC2gNszTdMJrMTodO/b6bttdKxe0ye/Auvj9/5YH7t95bmN08jzfRLmjc7XYGaV/9Ja+8bOC/lKatM3DtRjbfsnzNKkpzayHxB4EWbx/tMBXIR5Lme4YZqm19Jfz4jpfAjr5WmaTk7T9Kppmv7nNE0fDeA9MP/YPb2RSylmFdS/APj5Tn3APCeOYFb/8DP+fwFc7p7Bj2Jmcd+LeUF9BGbxpbXdI3onDL1553EXAKnTHljrTgdrdgSttcswvw/vg3nD9+GYx+EnMDbPT6429R689h4WonWlt9bYO/9qrM+H90a+XlrZPB+BeZ7xc2d8B2b10CdN0/Rr0zS9Ypqm/4FZdfi97rqrMW+Kr8b8A/+W1tqzW2KzAWxmPQ4AmKbpztbat2Fm3M8OLnk7gAcHxx+Mzc3534x5IvGxTXAzZj3os5I6bJcZGQs9CPtdEz4DwD9M0/QUO9Baux/Wf0iGMU3TsdbaL2IWBT4d8273n6Zp+n132c2Yd5ifLoq5PqnibQD+Q6cZh/nceniQOGYbC3spHox59w7glATiSvRfGsbNq8+n+PIclLvTxpim6a2YfwC+eCWN+jzMbj83Afhf4rarAVzivm86x795Vc/XD7TvDa21P8LsuvkLXrJyiLgZ8YIXtefNrbUfxuwK9t7Y24QCs+75BwFc21r7qGmaQiO2FW7FLMr+fgjpwTRNu6sF8ZMwi9W/x8611t5fNXGkHwO4AvN7qHAYa51C1IePwLxJ/uRpml5rB1dr2TsC7J3/LMxqDAZvODxej/k34f0wu9MBAFprF2OWJPxQp+73B/AakjoC89z+1NbaZdM03bra9HwNgK9prb075rX9mZjtPqRk6aAimOcB+ArsWZR7/C6AxzfnD9pauwTAEzDriIaxYnCv7V6Y4zcxi0f/Ztozv19Da+21AD6ttXaNichbax+CWe/pf7QvxPxAPZ6MdXcZ23VfgLEfhRcB+JzW2sdiNtDiDdFvYl7E7pym6XV8cwcvB/AZrbUnTNP0K+KaQ3tuA3h8a+0iE5GvGMWjMOvKgFlUfi/mDdIr3X1PwjxnN23PazA/g/eapunHDtzq/bgH+39o1zBN0+sBfH2bPRrkpml13YGx+uH7fgBfgjH3nO/ALH167unUmyBSOaC19pBpmiLmap4X/KP8L5gNp34HwO+sfrhD5rva+P4egA8E8GeTtka/P+Z39T46/hRx/WmjtfZgzAxQPudDWus2gXkcnBqHNns4PP4M1+vXxTOJV2GWbrzHNE0/tcmN0zQdb629EvOa+W3ux/czMM8dtYYabgTwQW32yfa/FY/EvA6t/R5M03QdgGe11j4PHYJ1oB/taZruaa09A/MumPHNmOX4r2ytPQvzLu9rMU8SJVI/k/hGzDucV7XWnouZkV6OeWDeY5omiyr1dMw/br/YWvtBzCLzazA/AL8A/CbmIBXPAfCrmHXhXwISGWO2rgaAr2yt/QZmcVL2Ur4S8876RzBP6B+n8z+B2crwla2178RsOXkeZsvfT8S8Yz6OGC8G8N8B/NRKSvJHmH9wPhbAd682AWfzud2F2W/x2ZgX0W/CvPN9DjDbTqz6+HWttWOYbRLeF/Mm8dVwurQRTNN0e2vtqwF8/0qE/BuYdYzvglkPeu00TWG0sAR/C+CLWmtPwhwo5w7Mc+UVmJ/V6zAviJ+Eeb69fMPyN8W3Y7bIfQxm2weJaZp+AbNK5kzhVQD+W2vtymmabnbH/7q19grMz/M6zHYGj8csqv6ZaZrWAnhM03RDa+2xmC3P7YdbMdCvWNX9stbaj2AWbb8TZmveI9M0PW2apttaa3+I+b28ATP7/XzsqWbOBB65+nxVetXZxe9hVsk9f7WWX4p5rXwLZu+XM4XXYV5P/5/Vu30vgL/zNi6HgdUa8jQA39lauwqzDdMdmJ/zRwL4jWmafi4p4hsxrzU/2Vp7PvaCq7x4mqa/totaa1+AmcR+2DRNf7Q6/H2Y19yXru69B7Nl+KcAOLUJWBHFn8Es/TuG2Tr+fTBLnSROJ6DBjyIQO0zT9L8x745vB/BjmH987gTwmGma/vI06jsQVgvBwzH/yH0rZkvt/4V5cfttd91vYRZPvy9mkcjXAvhKzAvxba7IH8IswngS5h3X4zGzUX8NMP+gPw+zm8UfYDY6yNq5i9ll7V0wG0L9A52/D/OP7A9hXpx/HfOPw+dhZpIyKtbq3set+m33Pg/zgvb21TVn87m9CPMP73NXdd0E4D+vDB0N34B5Ef4vmMfyaav7Pj5hURLTND0f8+bm32Hu269j3pQdxWwQtSmehXmj9cOYn+3zMVuI/hnmDdLPYZ5HHwrgs6dpeqko51Cw+nH8rjNZxwZ4Keax+AQ6/g2YN6TPwLyJ+WnM4/M0rPuPn8JKLP5YzJuga5vws53m4ByPwCwa/d5VHd+DWVzpfzA/E7MO8fsxG7rdCOCp493bGJ8A4E/5nT6XWG18Pg3z8/h5zJv278M8b89kvTdgHutHYn4mf4L5+ZyJur4Xs0X/f8C8Vv4aZnI2Yc9oUN37x5jXnodiXiu+CfPa+9/p0h3M7Lu5e38C81pzKWad9c9inpdXY3+ck1dhFt//JOY17gkAvni1Vkk0ZyxdILTW3hWzWf4zp2n65nPdnncEtDnIzDOnaeoG6SlsL1prL8TskvPR57ot5xIrHfoNAL5qmqYfOdftKWw/DtOtYKuxchn5Lszizbdhtmr9GsxGAT98DptWKGwjvgnA37XWHt5RC72j42rMXimHZUtR+FeO+tHew0nM1srPxWyhfAyz3ue/KuOXQqEQY5qm69ocqveww7duG+7BHEiJjVcLhQOhxOOFQqFQKGwJtiKzTqFQKBQKhfrRLhQKhUJha1A/2oVCoVAobAkWZYh24YUXTpdddtmhlOXzNHDOht730XJPp02ne210/iD3nM61BxmL02mD2V+84Q1veNs0TfvibF9++eXTQx7yEOzs7By4bVyP/58/R+4dPbfJPQexQdnknpH6RtuUjdkmY3GYdjc33HDD2ty56KKL9q07NndsLgHAkSNH9n3aOT4erTv8eTpYShlnCpvM903m6u7ubvh54sSJbj2G6667bm3unAss6kf7sssuw9VXX31aZdjLdN555506dvTo3E1+GXvfPdS5kRdSbRKyFzxqg7qXFxL+jNqhFhT16ctS47bJWKhr7VlF9Zw8OUcTfPSjH70W8euqq67CT//0T5967vaZPUt7ca1c+7QX2f9/3333hdfyIuDBCwFfw/X7e3qLTbaxUPVH1/Xq82NhUH3n43av7zcf43r5u7/nMH68r7nmmrW5Y+uOlX//+98fAHDRRReduubiiy8GAFx66aUAgEsuueTUvQBw4YVzVNALLtiLzmlz+X73m8N58w+7fWb9Uu/hyLtm5WbvnFpnemVG5XObszr4XVCbY39d9L74a6P3197be++dY08dOzYHXjt+fA4eedNNN+377uux52V48pOfnEYaPFso8XihUCgUCluCRTHtw0DEDBUDVTvCTRhp1gZ1zQjT7t07ArUT9udG4Xe8tgPNyh9F1m/e6fbG/H73u98pdhNJGxSr4J27R0+Mq9hzVsYIs+LvPDd9m3vjPyLiV0ybpRJR21T9/PyiY9aPjK1Z39WYny6mado3JpE0o8d4uY0eVl5PdZO9p4qVH2Q9iNqm6uN6s7mjnqGvg99LnmfZPOBr+DnZZ7b28/pgUhXPtFmatqk04kxjWa0pFAqFQqEg8Q7HtFm/Gx2LjEZ66DHhTQzfsuOjRiuRjnkTbHqP32GrHeiITYC6NtOdG0w3GMGYtj1b3lH78lgHZhgxNlMsL7q3x1ZPx+hqZPevDPl8O3p9ztp4OjpmZa9g8P1jNm7POJOQnA6icg/yTo++Y5swudMxbouem2KvPduaTZCtByx5GZFC2T3KnsR/7+nXo98CtT4sBcW0C4VCoVDYEtSPdqFQKBQKW4J3GPE4Gxx4sYsyQui5VQF9t4lNXL0ybCpK28SIbcTwzaAMX6Ix6RmRZOWOtJ2fj3cHY7TWcOTIkbVnHbWJ251BuSSx6CwS1SlDGS57xH2Lz0dQYzkixj4dMblyRxsRx4/MHXuWmXvdYeIgRnfZPcrVa8Qlk8dpxOVLqWMyd8GDGMD2rs3WKgOPQWZ4x3OH30EWm0dtUGPufy94rpu72FJQTLtQKBQKhS3BOwzTVhGLgL2dOl+jdsAZ0zbwDi4yQGIcJFrWCA7CYjdh5dF3YDyoS9Zm+xyJKNUrd2dnJ50HPcYbBW9QgVdUYJbIYK/HREeYz8iYKhaRsWgVvCULssLH7JPHgPvP//s2snFZxlzPtAuYaqtvwyYGqUoKOMK0Vb0R2I1KzZlI8tGTuG0iNRyJSthzv80kZEpSNuLyxcdHJIlLQzHtQqFQKBS2BO8wTNvYdObqo3a6vNvP7uXjkf6oFxrSkAXiUDtgFWIvujfbzY6wVn9PxiD4mozlqnqyYCijDL61tiZV8ff0XK6y0Il8TrHMjKWrcJ/R2PRiW4+4/I3o47n9qo1ZvyxUpKovczHi/trxKJQsYxP2d7rgPil7gU1sDrLj6prMVoPbplwzI8mOamuGnnvYiN59E+mckj5lkitro83RTUIvR2F4l4Bi2oVCoVAobAm2nmlbGDoLvMFB+gHNOEcsJVVAFi4rY9qZ3tMwqgcfsQhWOsxoN7tJgJRefVnbOPSp6peXICiJSARj2cxMo3YqewQl3QB0cgyzLM2SFfCOncuImChbwWdBY1S4V8WWI9bMSTnsk5m4L2/kGfagxj6SuCh99yZW8qcLJU3gtgB6/jJrNowk5cn04FlSGX/vSKhdZb0eJbdR6+kmzyMbx9412Rjxe8PvQnbPQfpxNlBMu1AoFAqFLcHWMm3bGTHDZkbn/2eryoxZKSj9eLQbU2HwIutOZbU7gl5g+0ynNLrDjqAYdsToFBtkSUWmO8/QWsPOzs6QtatibJF+TYXA5TYaI808D4x5c18ji3Nm4fycfOpZro/bllnHs75YPcPM4lj5z48wFJUwJAKP9dnUNarQx0oiEl2r2hslG4mYrQd7XUTgZ5tJJJTO3trGKWr9PT1r/uid5rbxOmrjOSJRVBIsf8zqtd+LzN7nbNpKHATFtAuFQqFQ2BJsHdPm3b2ysh2xAFdMMdMxMjPMAs6rz4gNsr61p+OOduC2e+V+RhbnPT0/M8fMwllFLvP9Y2mA2kF71sYsYsTiPdOrGUtQjDdj2sZsbafOu3q2JvfnTO9tn3ffffe+doxYc/PniC+qspAd8Z9lHEQCEs0dxfrVeAJ7z8CzPH/NmWLcfv7x87fv9hlJG3rW1Zmty2jfIhsQ9nlnVh55R/TeS7ZxAPaeB9fH7Dzrg/LosXEdWce5D5nHiNVzwQUXANh7F6P5faYT0xwUxbQLhUKhUNgS1I92oVAoFApbgq0Qj0cuWEpcnYkPORgElx8ZkyjjChUWL2oLi/4isaIyOFJGS5nIaUTU3gsFOGJExAFtMreuzKXHn/fit03czux6vicK0sFGN+wW4kWdLL7lMeX555MLsHj8nnvuAQDcddddAIDjx4+v3cMifN8337bMWI7HgMWm3h2SXWEYmSueCnZhyAzf2B2O7/H9t/utXhs/VhUdlmuO1WPupABw/vnnAwAuvPBCAMBFF10EYF0U7KFcvFjFkgXZ4cA1hsxdMHN7VOitL5HaQqkIrQwTPUduYkoMzmPvnwGrIkYM31glwIaPbMjs/7fPEo8XCoVCoVA4ELaOaRuUuX+U4IANftTONtqZ2k6PXWzsWmNJkQsO7x7Vbi+6p8caNgn7F7k1qN2jcvXx7WF3O78b9tf6Onh3HLFabiM/Y88QI0zTlIaK7Rm2ZYyN7+X2jxgxGmxuMuOK6lZuXJn0SQWPyQIBqefNDB/oJ97h9y0K5qJcjLhP/hxLqphZHpZBWsS+7P02AyaWuESSA16LOJSmIXLfylzugL11x9en3MCsH9b2kYQhXF/k8sXnrF8mUTp27Njatdwm6wdLIyKJE0uZRqSCitlb2yJJEktEimkXCoVCoVA4ELaCaftdX6ZL9tdGO1ClF2Lm63edapfMO0O/G2OGzawsCjCgQkAyi4nYoGLdI/pdLo/doaJdJveZdY6ZGwy7UUSshtuvAptkiJ6lCgKSMUOGGi/W4/lzqh5DlvyjF9Y0uqbn2hW5/DCzGQkaxOPJes+IffIYG9NSNhZRG5hZR7rNTdhRaw1HjhxZm7+mxwbWpTwcvjaSSFi/TRKl7CLY5sbfy/PMWGw0l0zfzuUZqzQbiosvvvjUPfyc2T5CuR76//k58/OPbIT43baxVi51EZQ9iY2RP6Yke7x2RW2qhCGFQqFQKBQOhK1g2n73bTsx3vkyqxlJcKB0mBE7U5bfrMfx9/COPdPfsv5RhU3MrFQZvOP1VsrWXt5pKp3wSFhQHiu/S+adNe/gIxbdC4/oYWFMeV74clXfVJhbf07NHWY8nmnbeNu9zASieckSHNYXZgkOVHCVLAAMM7cRC2weY2aOrKtXqTX9vSPPWOl5I5bL9/Tgxy7zIrHnq9h/ZJnP7w5Ll6J227uj3r9IWschOnksjWn7+kzPbfXxOsDPx89vmzssFeA+RJIkXiPNGp/Xd28vw/Op59ED7L1z1ndluR95Gxm8xGUJKKZdKBQKhcKWYCuYtt9t8a4BHGMlAAAgAElEQVRa7b6j3b1iESrtpj/X8wuP/HN5d8w7z0gvrdrI/Yp2r7z7ts9M18PsSLG1LNWl0rv7+rifNhY9/21/jR/jCF4vGemqeIeubBo8mOn09GjmQwysSzgii19uI4+DzX221PYsQ4XW5eefvRNZKF8Gz1WWHChpim8Dh8llVuqfhbIn4f4flGmbTpstxKN2q7kS+Wur5Bg8N+3di9YDnl8skfBl29zj+eDZMbed30dlL6DsMXwZym878lqx/vAne+tEftpclrKw9+3nelmXH0larM/KFuZcoZh2oVAoFApbgmVtIQiZTkTpFDPWxKxR6ZQ8o+vpiTLrWmYTXH8UMUxZN7K1qr+Xy1OW31GkILXjZB2+3+XatWzpmeklbSxsp8tM0hDplkb0rK01tNbW9OsRu1SWy4ZMr2q6sVtuuQUAcMcddwBYt+4F9piPstCNpBjMupiBRmPMTIrZErPbKLqZgedfZNnMkdx4PI2p2pj49rGu1mD9s/ng50Hkz+4RWbNHtiYKrTUcPXo09f9VPtb8vPw91q7bb7993/eRyHFWLs9RG9tMusDlqaQ3/hq2v+C5at8jHTMzbPZvjiQW9m4oWwpra2Qdz+u2srHw17B3hJXLkixg3d7nsCLtHRaKaRcKhUKhsCVYJNNmNu13UsrKWcX5BbT1aqT3BOIdNl/DjDGyNFV+xRlzYCkA7/ayyFvcz5G4yKp+tjz3O2zuX+bTy2CJCPt4Zv7amQX7NE2YpmmNmUZSGjWW0dhau+68804AwM033wxgXY9766237rse2GMTD3jAAwDsWaFanzNfciV5iSzOmUFzXGWWPkU6dAOPAUtIPLgfbFltY+bHxMbArIVtjLL4/Cq2unpHDgJfX+QbrN53ZVsD7EkkWDLBcctt3KI2sM0Bv59+bK0t7BfOzDSzh2A7DJZYRXYxBo4WZ+ejFKfcFpNcsd2Jb6uVd8kllwAAbrrpJgB789zq9/VxDHPWaVt7ojWyJ+E5VyimXSgUCoXClqB+tAuFQqFQ2BIsUjxuYIMnQLt7sEGTF3eo4BMGFiP6+lRQC3YliES3yr0lEqkr1wsDi8sisZhKpxcZL7ErB4vQ7DNKr8cJCFg8H4kXe+kbo4AJkTuGggVX4aQVGVi8b/X4e018+/a3vx3AXkhIM4qxNlqf7TgAXHrppQDWA0ZYGVFADn7ubOiUubVwP1gEGCWHYPEni3kjkTOrGaw+mw9WJqsD/DkrgwN0cB2+H5FrlP8eqQxGYHOHxy1yO7N1ZiR9I48lh8fkoB1Rm+3ZmYrF6o9SZdo5C1Oq3BX981D9YeOuKAmQweozsf/Is1RuVPa+2bzwY2T3XHHFFQD2xOW33XbbvjZaO3xfrT/8TkRrcaYuXQKKaRcKhUKhsCVYJNNm9pIZpfDOLWIiyi2DDagiwyB1rx0fMfJSYf6i3aYyDDJErhDWZzvHLkBRmEfbpao0jnatMccoIAOnJbXxtN0xSz88WEIRGZ4oY6wIrTXc7373W2PYUcAKFV7S4J+p3WPGL8yOrAxmsxHMIImlQ75/kcuTb1NkiMkhIbkNNlejBB6KKWbhYNlokN2RbIzY9ctfy/3h9zgytDSosKz+uk2Mh8yIkeuJXPGUFCNyT7R22jhYO+27McLoPWGjO7vHwO+rb4uNP7PjKCCLcrmMngOwf23h953rt7UjSuTCLrRXXnnlvraxkaNvkx1j6UM0Vmy4qRIU+e+HaeB4JlBMu1AoFAqFLcEimbYhCl/JO16lc46CgagUnCr4CbC+u2M9UaZj5DbzjjAKkMKw+tnlhJmQh3LBipglMzpmPlkiDyXtiJg2jxfraKO2ZQkVGMa0ufzIFY/dWwys/wLWGbYxDdNLZ3p3dmuzfnByBD9X7Rqlx492/Sx9Us89Os9SIGZCkQ6S9Z4qxGaWUpUlGNzfSJLE847PR4x+FLu7u2vuVN4+gd83+27XRFJBZrgcoIUlJH6M1XqjwqdGbeSQvla/lxb10oTyfPB1sH0NB1nJbImYxbLOWUmcfH02d8x2hPsErAenUalGo1TOI3Yx5wLFtAuFQqFQ2BIsmmlHQep7CS6y3R0zDt69ZveoIAcRC1RJMGyHa/dGVrXMJnjnG+l5FRNhXXNkG6CkDBykJrJ07+mI/XNTz4nr9yyQd8NZcBWrIwvLyclWVKKD6B4uVyWmiXbsBraqtznsmY9izcwCI8bNY6xsKKLkNioQS+bpwEGQouQ53A7FwkckV8pq3OADf/TmiodJaaI5aOD2sgV4tu6oIERcz4jFO3siRO+0gdmlrTfGUH0b+F3gZxqtO72wrNF4qsQ7Kt1qFo5arTv+O4fNjYLS+PqjPisp6LlCMe1CoVAoFLYEi2bamf+l0r1GiT2YRar0k9GuTlmWj+y+mIkyW/JtVClAVf0ZG+AdaJTmTiWS57IypqX0rpHVpdLVZuPIu+NR3bZHZM3L82okCQyXr3b3kY5RSVEi63HuI6fXzMLYKkmHkvz4cvk5Z7YNSsrFiRaiuaWkJtl3ljqwBGbEriRDa3NqzmwdsDrYXoP93D2DU/ON64ms35lNcjjO7F1Q+lq71+ul2d5CvQsR6+Q5w6w9sq1RqVKVx00kuVJtiuYqS4NUmN4o3DH3cylYVmsKhUKhUChILJppG7KoTIpF+92S2uFmumx1L9cftZFZLOtvoshhylpU7RB9m5WOntvud+cqGH6UkIKhrJOVnjorg3f40XMbaRPfE0kkeuUpFgCsR+Vie4HIf56hbAEi9tJra5b0I9Mp+jr8OZ6zzECiqG18zsaALXYjP12un/uSSb02kYyMYJom7O7ursU7yKRZSmIU2XFk0ez8vf79ZOkYSzeyMvkZWps4UUnWJrW+RTp0totQ9j/+fuXRwDZLUb/4nVDrn/+fpXUqJWjU/vLTLhQKhUKhcCDUj3ahUCgUCluCrRCPeyiXFDZ+iESAyiAnc5XpiZ4jEWBk3ODbHhl1KDGVEl9nAe6VgU5mnKdErBHUWGdqB2Vgxy4ekTiby1CI7s1cyBRG+s45i6MEDgrZ/GN3QA5yEYkcVW55QxZkh0PSKlefKJwkP39WGWS5v1WQi2zsVejbwxBfnjx5MnUxZHc9ns+RYVgWoCi6NwrqpFwAo/zdBms/5+m2PlhSjgjK2IvP+7axASI//2h+s8Ewr5nRvFPr2Yi6hNcs9Tvi28IqyqWgmHahUCgUCluCRTFtc73IjFV4h8af2e62x0i4Dn+NYojW1ihgBQfdZ3e1zOiKj2dQO/ksNSf3ncvIWC3vlhXTjgxCeBy5bVEoR9VGhu9fxsLUM+Tv0f3q2k2SC2QGeioghiFidCp8qQqBGUlp+Hmo+oE8aE9UX+aeNmIUys+yxwY3xTRN+5i2IVoHeP3JAuiwRK3X50gyxWWxRCQaW3tm9mkGaNEzHU2OkbFXO2eMm93g/LhyuFdmwOpZ+/95rVcGav5/TvCkDIw92IhtKSimXSgUCoXClmBxTPvo0aOndlAcDhHQbCvTR424dvE9BuV6wzpMz86UHmokLF5PlxS1kZk9s6eILal+MTvKXOi4jIxpK7e7Xlhaj03CCfJzitqpWHPE2Hs62IwZqGcXpT9kHR+7xm0S6IHbGAXK4XKZVdjcicaE51vGWgw9thyxJe6HChpzOox7mtZTc0b9UcFUovmbvQ98LUPpa5WNg79WSWeidYClmj0bl2hd5fU6S8lr13CCEHapzGxS+N3O7CJYP831Zyw6kzadSxTTLhQKhUJhS7Aopg3Mu09mpBlbUvpJvyPchAn4Mvn/qJ7IQpLvVdf4fqlgAyO6F94tqgQFfsfY039mwVz4np6FfXR/T8/n/+ekKQqtNdl+317V90inrZivKiuqTzG4qD9s/8DHMymGQdkaRLpvTn/KOlOWiPj/mXEr5phJadR4ZvXxuI7ODwULrnKQcJX8nCLLfGVzoOZhdI3SOUeskgOJqPUhKo/HVAV98uVwPXfeeScA4OKLL16rz8Dr50iIYtVmQzTOUVhrX1/EotU7vxQU0y4UCoVCYUuwOKYNrPsvRlaVrMfNdurKunWTtmS6S1WfskaNUtr1rDaz+thqlOuL2JliCMpKNmoT9ycbV+6z0u9FTMXQ86/292eWpIo1RzoxxY42sbJV90Q7eaXLzPShzDAVW8osgPldy/R4KrTuiPSkx1oiWwRGFur0oDC2DcTPgOcVs0vzfTZLbX9tjxlm75hB+c/795h9nTlBUWRDwWOoni2f9/WwbpsZt6/jwgsvDPvJcQmyOavsSaJ7rM/2fFSK20i6xsl0loJltaZQKBQKhYLEopj2NE24995716IP8TUetkPjeyL20vMnje5VbMwQRSZiJqoYz4iuZJNoP5H+0R+PmImy/M502SpqUU9nF9Wrvkf96flL+v6ZdWikx+fdNp+P6ukxkKgfPb1tVIbydFDPNipXHY88HQwcNcuutfGLrKLZD5ctgjlFbNTG7N3jYz19+OnA1xulhbRx4EQ7I54uSgKxyfuiGKl/lvbsOHGLIWL2yu9cjW22zlm/+N0zxu2vURbmI8+yNw+iMhSDjyzuOZnIYcyvw0Qx7UKhUCgUtgT1o10oFAqFwpZgceLxkydPpuE+lZELizKioAPKcGXEbYeRBVdhseBI2EIVzKCXfzgqnzES0pMN+zJDkGys/fEILFJTrma+TRyuUMG7fEWBRFhNoj69+wkbrGziqsRzpGf85+vmYBMqkERULovD1WfUFhaTR6oJfi95jFj9ELn89Fw2IwMrPneYYsvd3d01F1PfBjX+1v7MZUk990wczmPGYnH7Hs0dE4tbWFFWtUShgtU7nanAuPzo/fHXAXuichsTm2ebqEmUGJzb6qHCX7MayB87TEPHw0Qx7UKhUCgUtgSLYtqtNezs7KSp0ZidqAQhmauA2kFlOyvFBKJdv2Latttjgx3fXuV2krEKZj7cz4gtqfrYzSFzE1Gf0Tj32C23y5czGnjh5MmTazvqyF1QJSng/kXHVCCWKNynHeM5wozAG1FyMg5Vvn8nuPyee1AW1lYFlPD19Vz8mHFnRoaqnsgFp2eQdrrIjD7V2BrUfI6g3pcooAwboPHn+eeff+oec2vieccSK3+PzTced2VE6+fO8ePH97XRjMvMrSt6b3mdYYO+bA3ujW0k0eF1Tr0rWeCppaGYdqFQKBQKW4JFMW1g3i1lbg3+OmCPtWbY1DUpC8jBn7yL9f+PuotFdfOOkNmr7zfvGpWeMNvJM3tifaXfNasAKSPjqJjqJoFTIkzThBMnTqzt2DOXtVEbh+gc79CZ3fj/VR85iJC/1liTfZpeMGLC/J6owChWv5Xpy+E5y2VFUhp+puxyZMhsN9RcjVyLuG0HDVvKMFsaTlMZSRd6rD9CFuTII3o/uS0sffL1Hjt2DMAei2Xdtj3jSy+99NQ9xro5fK2tL5wIxbtvWX3WpgsuuGDftVa2f/4shWT3QEYWCEaN/cg48nubSXaWptsupl0oFAqFwpZgUUzbW/8CuZN85BRvZUTl+nuV5XlkAcxsidksW/tGbRthBIqFsS4m6l9PN5vVryzLOSRiVB/vRLltUVCNzII+aodHT6dljClqi283z5nMApzZHeuF1fzw/3P5zLw8izUWbMzH2IyxJfuMxlZJMbg9nmmzJIVtAqJ5wM+Qg1Fw2ZldAfchegbKnuSwrMdt3nDf/Tzh58ttyTxdlL2NskSP6mH2asfvvvvuU/fYczU2bHPIyjXW7O+xczavrAyTllh91gfTY/vyDTYWVn4UXMfKHfFSAeJ3sRekKhpHfl+t7ZlHhd2zSUrgs4Fi2oVCoVAobAkWxbSBeVcz4seoElCwXsqjF7aUWVV0Tlmv+zKZYbPfasZilS6W2+Z3oLwTtO9cRsZUVajVTB/OVtjKWj47d1hMe5r2p1fMJC5cV6aXVLv4TXSa3HdOh+lhjMfYErOmiNUqxsZsMAvL2JMGZbpFDmur2uGhrIWje5j1qzSVp4vMNsDGn637ud1RiNDROAYRq1Q+0NE4cchZFU7W+00bs7a67Rwz0UiHztIZleDH29+odKU9m4Ho2Iikxdpv/WJdNvczKndp1uTFtAuFQqFQ2BIsimm31nDeeeet+fBlPtdKj+d3wr20kCM7N2UBGrVNRRnK9IRcj7KIzNiLSuQR6ZZYUsDlZTtexcrULtrXx0w78+1W5St4ps1MJSpb7dyjqGYqAl7PQwBYjyVgzCNibRwBTenMI2mQ8gvfBCNxEHhsla4xe0d6Uac28ZE+LPCzjJJIeJbK7eS2KebJ70mkT7V5wM+BxzaaOxzVzu6xddXrtJV9h8H6yxETgT2/bKuXv9u13puA+6W8B7I5rCRL0XxjHbaVz98jpr00q3FDMe1CoVAoFLYEi2PaR48eHYo1rXSNkfWwSjbPejXezfpzimFnu2Quj5lWZimf7aj5XuXzaJ+RL7vSQyprykjf1tP1ZBHRenrR6JrezneaptSSlHfQysYh0t8rv3lm3L4sxbDt0/xafZrCSy65BMBeVKmLL74YwJ5u26x3PVti/9xNmKi119qgbA6iuarsPVQd0b18TWZXcKYYNiNqI3sNqLkTRW9U35VEzLdBlW/3ehZr99gcURLG6J1g2Jy1eRH5U9v/dg37ZUe2LSoGuFp/opgD7BXDYxVFC1TeH1Ekw6XpsBnFtAuFQqFQ2BLUj3ahUCgUCluCxYnHd3Z2UnGOgUVmmesQ369clKLrlbhwxDAsCuMHxOJx5cYyEgKRE5GwK0ZkiMZ9VS4mUepRJT7K3LnYDUU9g0zs3wtjuru7m6bzzETZWbmbfI9UAkpdYaJNE4X7YxZq0j5NPG6icPsEgDvuuGNf+SwuV6oIX59PIgGsq0f8PSpdaS+RSIQRVcu5EldGYlYOKMKGlJF7Uy8YSLQecOAd5WKYJWPhdScScav1hkXeyo3Ugw1sI0M75VKqwkNHwYq4DfxeZ8l0VJCVaP1eqkFaMe1CoVAoFLYEi2LawHooUztm6AW7GAnMktXN9SnDqYz58u63Z+QTldszvvH1smsF79ztfGRswYYgzMqj3TLvaFXKy8hoZROmvUm6Q2uXaptvd8aOozKjaxXzyYK69D6B9TCP9p2Zj2fGxtTtGmPeZqyWjQlLAZQLTmScx1Ku3tio8fHXbGIsddjIWCwHLuH3I1pvlFujgZ9/ZgzFhqiRq1Lk7hqVFc03JY1hBhq9ixyghF3PPNjVjw16M7dFlv6woW/GtHthaCPJbOZyfC5RTLtQKBQKhS3BIpl2L3WiP6eCdmT3ZC4JjJ7rRaTz5Ws4dWHkxqV01yNp4tj1QrmyZboebochkyQwy2C9V6bTHnEtymwNFLJgF6y35/ZGerteUJisjT1mHzEDZkvMWqI5y2Nq84HTeWbBSZSthiEL88jtUKEpfRv5+4j9Ct9zphhQpE9llyQOTZwxbRVEhd/xKICNQbkcRsk/bJ1Rz9LXo56Hcs3yZTGjV8F2/Diq951Dx0ZJb5R0UDFuf79y1YzWwZ7dyrlGMe1CoVAoFLYEi2baveui7xljU/qnTIfBekC+Jtpp886Pd+dR8H1lxRkFRvHnfbnZjtO3w//f09tku0zFypm5+v97TGuE5Sp4nfYIG+NdfyQh6KU9zZDZPfi2+efCYSNVMhi29vblsX1CFrCC+6WCXURpKpUtg3pnPHoMO9Khjwb1OV1Ez4XDy2Y6UYMKY2pQel1/rWKKdg9bs/t7mMmPhDPmuaqCC/l72FuFJTuRRFG9p4pNR1Dzwc9VlvqoVJ3Rmr80q3FDMe1CoVAoFLYEi2LaxrLZ3zgKZad0vJm/L99riHRYfC1fk+0EeYerEoVErFL5TRtG6lMJPSKm3bO+H2E3I7ph5eeZWVKzBCFj2sayeaceWaPz2DIj9cyALe/5WkbUfvUMozSbPEciH14g1rf2WFNkFd1jIMbkRnT13G/DJpKzkSRBZxr8vkZ1czjTaGyVFbdis5GlNFtxq3nny+e2WRl23Ic+ZZbMbVSW7x69FLCRDp2vVaw2WiO5rWo99/Uw++f0yZFdSSQRXQKKaRcKhUKhsCVYFNM2pjSiS+hZlEa+3SphyCb6tEyHxW3hXR23zdfDVsK9YP8ZC+A2Rwx8NH1jJhVQOudMp63YeGYVPcK0uX/RtYpFqLYBe7tt3pErK9uoXr6Hd/mRXlKx5ohd2P3sL8vH77rrrn3no7Yo692Mafd81SNf+aw/qr6zjchPm9kXv9uRBXjPLiJKWsHR7Pg5ZQl2+L0Zsa6O2u/bFHk6MKNnRPXx2qg8UVgC4I+xbp7XxGyds3FliVJkpT6y1p8LFNMuFAqFQmFLUD/ahUKhUChsCRYlHgfyQAwRDuIGwiLMLNygEnGzmM+XyYYs7PoQuUJwrmUDh0/cJPSpMp6Ljqn+ZLm4DereyABFBSeJQp+y2Dp7xtM04eTJk+m16v7MGE6Ne6YKMKjnoMT0/n82LsuC7JibGBuN2dxRYvPoHIsTVSIb32dW6XA++eg97r3bZ8vobBQ2Tj3DLY/RIB1RDnueM/xs2YjS/2/P3cLbZgGUegaAypjNt43LZfFyZDzHomcWeUdGbIxe6F1/TInDMwO/pYnFDcW0C4VCoVDYEiyOaU/TlIbS5F3jiDFMb1c/EsSjxzz8PcxOlTTA7yJ5p8sGUBmL5XoUi44M7PhaDoWZuU4xNmGsyiDNM4cRdzc+n7mqsbGNYhUePRc1ZpORQYt9WshJZrNRuFflLhi5AipGY99VvcC6sZpyF4zAbIgNrrKAOQYVTGNpTJsNmbL3g+/phdvM5qoKu2luW1lQF36XDX594nNcBksHI6My/s5zKJPw8TXKxdFfo9biiGkrV8Ys4BC/82qMzhWKaRcKhUKhsCVY1BbC9JKGjPmonXmkm1EMuueyFNWrnPUjnXaPVWRuabwTZYf/DGon6sdEMWvlVuF351mSD3W8p/fmeqNre4ElRph41N6McasgNwxm3oB228uC4TDjVZKQaL5xm409KJ23v+YgzJbnjkq36p+pcq9kKVEkSVgC2D3P+mxjHJ0zKNsT66sPTct6YUsGxM8wY832bFnyl62rvTkb3ctSh0wPbVChVTOpp5o7WUIcXq9ZsmSfUcKQEVuac4Fi2oVCoVAobAkWxbQtjCnvwvzuVoUAzAKkqAAYvKNiq1dgT3fEuzhlbeuvVXrviC332B8z1cgym3W2meWvQaXTVDvtqM1KtzVSL6egjAKy2GcUztbj5MmTa4w0sofoSQgyHSxfowJmZPcaa4r0aXbP8ePH95WvJC9R+YqlZ7YNm4D7Ye+IShEajSezZ5YGRcxnSbA1SYUqBfbGJ7PeBvbGKWLN/N6Phv/017BUKwoepBguS8BGJJg8Jj5sKr97fC2vp5HUy6DsPiLJFb9rZucRzX+WcqikTecKxbQLhUKhUNgSLIppA/NOTOlZAW11yGwissRUjJCZdqRX5bIU447awDvdEf9ztYMf8Wc2ZDv8zM88QqQPN6hwoCPXsH/6SJIR1b4TJ06s+cBHfv89q/FM5zdi/8DtjxgnEDODCy64AMCefpOZQqQH52fJITdZ8hJZj/MzZe+FkZC0amwitqQ+s4QhSwRLPCIrZOXbzeNnzNz/n7FkXxawPr9V6FO/dlg9/OzYhiaqX4VpZSv5LIkKl8VhRqOQqyr0Lr8r0bGDeEksbS4W0y4UCoVCYUuwSKbNOm2vU2Br1xHWymDdprJk5rr9vcxuIh0c16OC8Ufo+UJHfuEqstuI/ovL591lFIRftSnSV7HOOrMaN2xivWlMmy1mN2HaETNUuj7+nvlcM9PiZxv5lRrjVt4Kvg8qKQL7zUb2F8xalE1A5NURzf2on9m7se1MmxFZuvP7YH00XW/0vpikxT7tWr4nYqJsiR9Z5BuUZbndk9XHvtUqamAEnjNsI2D3enumno81+2L7/9lafATK9uVco5h2oVAoFApbgkUx7dYajhw5InemwN5uivUmIxbLERvy9/baBuiIPdEOtMfoMqat9N+RVTQzOcW0o3K4zTyOkY2A0ndm0c1YamI7eGbYkVX8iIXzNE249957U2t0NTeU5by/33bsPevxEelJZpGrImCxLs7fw3o7ZdsQpRo0JmflWvrOTWweFGuO2qpiB2yiY1wyIgkIr1m9yGgeNkfsOZkOmq2+fX0qQl4mSeJrmGlnERh5XnM/IpskFRlNpYj1/eF47IpxR+dG1pJM8rYEFNMuFAqFQmFLUD/ahUKhUChsCRYlHgdmkYRK6ADshQtU4pXoHmWIocIKRu40LALKjMpGk5pEAWB6xhyR2LwXAnBEZaCCuah2RG3isfFGLr1gKpl7EBvUqH7cfffda8FwIje3npFfFIo0a6eCmqPW98idilUd3OdM1aHalD1/5YbE8yILkMJJbVQiB3+MxyZz2dxWsBsTr2tsbGXGh4AOzcki7yxk6IiLY0+0PbIOKBe/aE1jtQuHf+X5ERmV8dio46qcHkZcWM8lltWaQqFQKBQKEoti2maIlu1sjEmx6X5mOKN2j/yZuWswi8iCayhjB8Uuonb3jMsiA6vMoMpf5/9XbDBLFMBt4qA0UZAaNr5iph3Vw0yht1s+ceJEGs6WwUww6yu77fHxyOhqNHFM1EZlPBaxCTa2UeVHLl/KEElJofz/KkxqxpZVgpDTceFcOtgVTwUlyZ6phd1k6YyXZvUSaERrI0vJlLtqZOTIxnDsqps9f2bAHCCFDdL8tdxGdvWKxvEg4XpVQJtzjWLahUKhUChsCRbHtI8ePXqKTUc7UHN9yPTD/riV64/x90xXqpJxGEbCWXKbFLuNyleBLCI9Ie+keSefjUkvNGnEgHq67ChIjUqWMIJMzzlNUypJ8HUrNp6x/V5CFUOWyKNXv7+f3VqYiXgGwgFSDMomIJoHiolEbmJRu/33TIKg7EdGAgAp98eDsKhzARe9xZEAACAASURBVGunsWZ7JzjsKLA37pzYgiVWPvSpgdeXLKAIS8sYyp3T/8/vP7u4RbBrzMXQ+mk6bvvMwpj2WLs/twky6d8SUEy7UCgUCoUtweKY9v3vf/81RhKFw1QWxZHFpGI4zETYKjaCCtnod2O9nVpkpazaxmVE+kIlZdgkjKmyNI0YlkpikOm0+Vplje3buElIy9bmtK6sw8pSmDJGxqmXylS1zUMFsomuUfpjP+8Va1W67ai+3j2Rp4OaKyO6+h7Tjp4B61C3LSALt5eZY5Togi3QjVnbO+bv4XVHzZnIpkEFD7LjkdcMW8MrL51IkmTHjGlb/44dOwZgj2ln1uP8rmfvRg++X8qOZSkopl0oFAqFwpZgcUw72sn5JOoG5S+dsZZeMoyMYSlLY9921UaVSCPySVblbhJ6lS0/o91mr7yMASu2yUwo2r2qEIHRmPBz6dkNeKYd6dWUZewmUHYDURu5HhXeM3uWI/77ShrTk8B4MAvP/KZZyqU+R5i2YuuZPzCnGs0kFktjSR42R639Zq8DrKdMVcw3sxtRoWIz9qm8OgyRF4HyA8+s4jlsro2FMWw7HoWwVvPN67JPB7yOlU67UCgUCoXCgbA4pn306NGUgSg/xRHral8PXwPkumxloR2xyqhf0T1R/9S5Eaalvkc6yB7D4XZEEhD+rnTd/pzyd46Sw6hIYhmUr6r/n9lEJolRvu4j0Z+UZTk/j8wyX1mpe4alGCi/C1GUtV4kssxHvpc2dBPbEK4v6h+PQSZls2tNB7y0qFbAHqtkFg2sz01OXMOR//z/I++JQUXA43ozO4jIK8Ef98+avR/Malx5R0T6cOWBcDpeBNFaZVhadL7lzeRCoVAoFAoh6ke7UCgUCoUtwaLE40CcrMGLJ9itiI1RTOQUiRxZDKq+e5GTCkGZGb/0jIcio6We6G8krCgjMzwabXNmBKYC6o+EPuVrs/aPXAvM/WTRrA8swSoVFg1GahMlPuY+Ru4ho0ltomAuSj1hYtFI9Mwi1E2SJShRZzR3VJjMkYApPI4qYUkmruTnxWqBqJwliscNNkdNVAyszytlAOtF4WpMeZyigEZKXdVzkwT0/IryW9szsnXa+m7f2f0tUnP2wuduYjgWqfKUK9tSsNyZXCgUCoVCYR8WxbTN5UsFPQHWGQfv6qMddS+YBhvqRMlG+BreCUfBTjj0YOZmpVwslGFYxM56AVpGoHbnI23l9kRQyQSi55b1udd+G3uf+s9YCbsQRkZwqly1q48MEVWwnpGwuVmACl+/v4e/q3GL2IsyRIrcetQ1KriLanfUtmy+KQM3uzYywNokzPC5Ars/AXt9VSlsI+mCgd0dWYLkmTavm73xilwa+TsbKHoJgmLabICWsVwV+GdEKqD648dESVeXguXO5EKhUCgUCvuwKKZtsJ1OpHvhHajt0LJ7lEuCQe0Y/T0qNGPGfG2nqQJwjCQMYWlDVh9DhaaM0GNrWbCLkeAno6w5Shuo2siYpmkoKAg/yxG3lh4yCQ+7WmVtVOOj3Fz8/715zmX58hSzjuaOuqb36aESx2RMT6UNje7ZJMzsUuDtL5SEb2SclItpNqYqQBIjWkNUwg5m3L6Pxr7Z9oR12VGwpawtfI+S7LBrYSZ9WBqW2apCoVAoFAprWBzT3tnZ6VpSA3u7IdNPsjN+xsrUNRGL4XMZe+C2mTSA9TSRhewmyT18GdEx1bYsbSQHrTFEFtWjYf6i4ypITbRrZk+BDNM0heESI8kLWz+PpOLL9MK+H9GxTeZZTxoUJcpR4UP5noj58FiMJJlQYSR7ffBQ0qcR+wU1z/3c5Tl62KzpIPrTTcAhO1XY5kgyxetbNndVgBpeq6L308rltrLVuLceZ2txdU8UZEfprjcJqsJzJ/Iu4PKWFgq3mHahUCgUCluCRTFtsx733/0nsLcjYgtJtkqO7lHJ4FWAfWBMx8ffuS1sVWn1eStm5TuumHfGBkd22Kp8FcIv0/cqvVGW1II/o36yX3VmdT1NU+gvGrEKZp6sJ4zGSSHzPOjppyMdtLKdyFJzqoQJzISz0K6KnWdtVDr0jIWyX+yIlIbfjZ7ftv9/E4Y9YjXM9g9n2rLY+mZrV+aBwvpZXn+i90ilymV2mSV/YT00p9X0667pslmHzQlSRuI3KI+KjBnzOx75aZ+tZ3tQFNMuFAqFQmFLsCimDcw7oZGECrxTsl1ktjvme+3TGEqWWKNnMRvpXpiR8G42YnQH8YHuWXpH9/R21MoHktsN6B3pSFtH/LUjC88IkYVzZg+hpCdRf0Ys1xW4r5tYghuyKGejbDkqW1mNZ37a2dyIvvtnau+pPUtOohKVwW0aYdFZIhpGaw2ttbU2jTxTQ6QbPaxUkR7WD+/TbeBIfzZHjPmaZM+/R0r3r+IpRLYNdq+xaGbgnmlzCk7Wh3O7IkkZl8/no3KURDFi2tyWpVmRL6s1hUKhUCgUJOpHu1AoFAqFLcGixOM7Ozs477zz1hIfROb4Jvawa0w0pAx5gD3xkBL9WVleJBTlII7uyQzR2G0jEo+zSEuJZCLRoBL9ZGLKXsAXFdwhOsb1j7jDKHFoZBAyGiDjyJEjqXqhlwQhEgX3cutmRowMviYSV7PrizJAi9zbeP6q/NYjhpaMKOCQMrTjuZSJY3vGev7/XlKbqL2jCUO8q+lIACPlOhQZlyoD2MOAF5NzsiQWH1tu8ciFkkXLaq06iOuXv4fF40oUHb2jmYtf9N2D6xlx81yaWNywzFYVCoVCoVBYw6KYdmsN55133touy++glKuX7aRsF5mlI2TDMGYOflfGrIWNYaIdKNetmEHketFjyyMsQBnqRO50vANVRlMjGGHW3H42BPGsbBODEDMm4nIiiQQzt5G+qh05f4+MvLhcnteRUZmxsxGmrYKn9IzL/LlNQjcq1qmMmaK52gsiFIV2Va4+kZRmkxC7dj67RklYWJrgmTa3wZ7pmXIl4nG588479303dhslx1BrBa+R0dzhsrifEdPuSXQy16+e21aWWjmaK6r8pWLZrSsUCoVCoXAKi2LawLwDYhbrd2UqCAC7A2Q79Z47VRZekllM5hLDCUOYzURuVKy3G2Ha6lzG2hVbMfTcqyJkrlM9fWQW5GAUni1Fuu1s7FR96rmo8I6Rq5LNA6W3jfR2LOFR4UazaxQz7QWpidqapR5V7opRWXyOx3FEkjRqw6GORdf4dSfqqzFEfi+MWWfuRtzuHts8U4jCiirYWHBAlizIEq/bp4NIyqrWRv5N8M+cXQqVRPMgbp7nCsW0C4VCoVDYErQlhWprrd0E4I3nuh2FxePdpml6oD9Qc6cwiJo7hYNibe6cCyzqR7tQKBQKhYJGiccLhUKhUNgS1I92oVAoFApbgvrRLhQKhUJhS1A/2oVCoVAobAkW5ad9ySWXTFdeeWUa1arnxxxBRaRSxw9S1si1fPyw/QA38T/u1Z2d7/mOZ762yj8y81nmaGCve93r3sZWnBdeeOF02WWXpX06CEb6Fn3Pytqk3oPcuxSMxKAfeTd7qVNH4lQbbrjhhrW5c/nll09XXXVV0pN1nInnsck7d6ZwEMPk04maeBj1bbJu9z4BHYPjTW9609rcORdY1I/2Ax/4QDzjGc/AFVdcAQC49NJLAQAXX3zxqWsuuOACAMD5558PYD2oQfQQODQkB7JX4R49VMD8KCcyn1OLThYAxsCBWfh6D/VDmIUEVAEqssAVvHHinOYWcMISFPhj9tzsu93DuXiBvWAhd9xxx77Phz3sYWvuOZdddhmuvvrqtf6dLrhPnNs7C5fZW2ijgDO9gCV8L7AeAEYFMMkCSRhGkr+oRXNko9ELHsOf/n9LjsHJJuzZjCTmuOaaa9bmzkMe8hC8+MUvluPm/+dzHKo1Gqde0COuI7pmZGxHN+1ZGNtNCA0/Q3U+C1rE37nM7F6VPz7qnx3jhCVRzu/jx48D2Jtvds1Tn/rURbgFlni8UCgUCoUtwaKYtiUMsZ0zsxtgj/lw6DreuUVMm3diUapCLqu3A+31x0Olv8zKZ5ac1c+700xywFCMMWKDvTGJmASnKzXYczQGbjtgX45JV/y5sw3VZ05asMn8GJGAMFi64Y9l7LhXtgoVehDwGEWhXVX9BxERj4Tl7OHkyZNr4+jfG35WvdS5/n/1TmXMe2Q8ehhhzaNMm9vlr1HzLZPsqHNcZpSAR6XLjZ6JSp4zIoXM0pGeSxTTLhQKhUJhS7Aopg3MDIIN0Xy6O5Wc3cAs2v/PAfOV3iTTaStkOh+1u8sSN/BuXyVWyMq379b/SA9q6AXj9/WxlIMTI0Ts3J6hGkeToERSDtZdnk3ws7I+8ZhGLEDN0ew8M+leSlN/jNs8ksBhNInKiFRo5D3iPrP067DevU0wTRNOnDhxag5m9WZ6aHWt+hx5pspOYeS5ZNJHdQ8f38TAchO9u2LlvHb5MlTazoiVG7JEUv57ZrORrdPnAsW0C4VCoVDYEtSPdqFQKBQKW4JFicdba/tyIrN7DaDFUSbCiHLGmgGTfbJ4PHPFUsYWo0Y/EUbE40osFon0WRzG5Uf3KNGpMkjzYip+LuwWxXUAfZVEJGq3tpnrGIsvzwb4GSk3qkhEyMY2SnzoxaJs0GbX2Lhkea3V90yE2xN/RqLWURefESMfNhSKjEPPtCHQNE3Y3d0dEouq8YqMyZSqg1VOfN6f6xkIRuuAtVuJjSNjOYMSqY+4i/K7MWJMp/oTqUvUHBmZZ+odidbigxgdn00U0y4UCoVCYUuwKKYN7LFtII6IZuAdkjnHG5s2x3j/v11jn8qhP9rZqx1vFuREuXpkLl+93WlkaMfH+HMk6IB9t10/7/79M7Bz7Jpnnxy8xt/DrJzd+jIDKzZ4O5tgqYWh5wLkzyl2HrFYky6wAVzEApQUiM9HrEPNa36/ovmmAqWMuMooKdCIJOmw4dccX88mTCt7T1gyNeJW2WPamaGWHVOM1GPEeCxqc9bGTQIO9YzmIpcvG1de3/jeqPzR/vp7l8a4i2kXCoVCobAlWBzTBnJ3I3ZjMlZnYTCPHTu27xPYC0vHTNvu5R1bpN9QyNybmD0ay4x2qOwyxH3ntll/o7FQIfoiNzjVP8USgD0WaAFRODRpZFfA93KbI6mKYiRLQsQIGHaup9v0/9v4sCtcxpZUIJ4siAe7xKjQu75/KvSo0kdmelcl8Yn6eSZdb6J3MZJmqJCw2TrB48FzPQqYY1Cunpmkj3XLI3NU2ejw8cj1UzHtqF/KBoife+SmypIc9T17Fqr+pQVQybC8VbBQKBQKhUKIRTJtQ7QrYhZn+uo777wTwB7Dtu/+GruHGTdblXuG2GPazKKBPeZp4TdtZ81BQvzurmfFy6zZM23uh50bSaCgwMzehxC18eTwohdeeCGAdQkGsLdjZp22sjwHlqdL2hQqIIZhJNiFCpOaBYNQ7WB7haiNXKbNIZNW+WMs0VGhPiNm3+uvx9lgQVmYXkBLvgyRrQn3X0neIutxwyZhTJWkY8S2hfuh2pHNNW7/SMAc9Rnpq9lDiOddJBXiYywxyKRBhtMJJXsmUEy7UCgUCoUtweKY9jRNa1bCkXWt0mVb+kZvPc4MWum2D8JM2brXH1M7QLbU9teo3TKzG99W66t9nq2we7wD9SxDwcbJmDWzDGPvvvxNQiqeK0RMRLES5d/qoayEmQH7c5n+0deXhVq18lUsA/8/sxcV3ta/z/xuK6YXscHTeU8ztNZO/UVt8f+zBGqTULEjiUL4HoPSE2feFr22R1C6bKW/9m3q2TZkbWH2bM84Ys3sncI6/KjvjJF3kPu3FCyrNYVCoVAoFCQWx7R3dnbS3Tjvuo1psxWy6Veje5itKv9mYH1Xyjts00tFbEL5OmdWlbyr4x1pZgl+Jhj2JZdcAmD/eLJlOeulM12mjf1tt922795Ir2esewmWnb1IcRnTZqth9tf1YH2nsjTO9JKqjVlaT2bULBHxdbB9gmr7iG6YmSrHUPD387pwWIzbIqJlUHpUlkhEnidK8pb5XDOTVvMhSlvM7xSP8SZSgcyXnOeX8sbxNkJK2slST7OhiJg2t5+lAdlarBLxRDYNvYQ/5wrFtAuFQqFQ2BLUj3ahUCgUCluCRYnHW2v78mlHySoi1wpgz80qEneo5AQsluLzwLrxmIlxTOwy4qpibckSX3A9vaAnfkw4UMkmYnIrz9pmIumLLroIwJ5Y3IvHlfifkQVisDYr9zFfz4i7yZmCEuMqI5jMEI1FqhzKFVgPEWtzhcWhfmxZdMqqG+5LJOq2e20ecH/s/fL9UHOW64lE3SpIibUjEqlaORdffDGAPaPTKIjPQcBBY3y5LPLtBWryx1g8roI5ZSoIDtgUzR37n9cZdrPzc6eX23sk+QcHvGL1o3dPtf/tvTcxOLupRqGQGbzWR4aP/B7ZPFZjE/WxDNEKhUKhUCgcCItj2kePHk2NBDiAg3cR8sf9DkqxYd6ZReH+eDfMblXRDpvbYuXa7s5Yq9/R2e5UudMo4xUux7fJdq123rMl24Eaa7n00kv3fbdx5R2qr1sZ2ERBDtigho08rK2+HhtTZudnCsxy/TGek0pq48Fzh8tiZgSsMwA29ovcBUdTgEZsiZ+lnTNJi8GzTn5m7J6TGb7ZOSWtiRKUMAtjxm3vpGd0m8KvDVa3DyjD7JHfe3ZV8n1RnyNs0mBzxOYMM0Z/TiX0MfjnoYxHFTuPpJBsiKbYtD9mLrqn88xUSNxI2sVSAJZcZGl/l+ZqWky7UCgUCoUtwaKYNjDv9LIEEbbr4R2i7aSioAPK9UHpCb1e1XaPzKRspxjpo3hnZm01hm3t8aySE2lYG1QozCgEKoeVNLZs9UR66csvvxwAcOWVV+67hnXcUfAYZgzMQvwuWjE6TljhGR0z1DOl07Y+Z7tu1jEqPbt/9uy+Yv3g8LaRG40KCWnPMnKFsbZwmNzIPchg5Vi5XG/EIJWrj0oj6t9F5cLG4+vH1e6x+WSfnMbUI3IdU5imCSdOnDh1LYcDBvbCIrN0iZmch3KnU2kiPfjcSIAhlQRIhfD09yjXKB6/aN4ZeL5HgaAie4FNwTYbPGcjV1P+DWApUeQmtjRXL0Mx7UKhUCgUtgSLY9p+l8hMC1jfkStr20xHYfcwS46Cq9hum/V4mX61F8TAmEEUAMYYPOtzWUoQBYDhseHEJZGlqekuTT/IO27eifu2sM7M6rMx85IElVyCdWiRzuxM7XjtOXCfs/q43Sz58CyGGQGPkyGS0ihrdWtrFFiE2T9LdCJmr9I2qmAi/lp7psZCmT1xvb48FY4zkz6whMLabvPN12Nt2cTzgFmgH2PuGzPfLI2w8uZgKUN2r7Ij8f3iOcg688wCXJ1jlh6tOyyhGLEA5zV4E3DSluwZZGPs25iFZz1bYaFHUUy7UCgUCoUtweKYdqQ7jXbJKqVj5H9n9xuzsl2V+Xkau+VPoB9uL9qFMQuzNtmOky0XgXULWfZxZIbv9e68k1W6nshf1vRPb3vb2/Zdw8zH70RZR24snaUbUZpCZnCZ/zFbJR+WPy5bb1u7I50gW8KzxwG3LfJNZ6kGxxTw48SsiN8Be15+LHg+WRn8LkQhd1USCbbuj8JzWnnmecA+t5H+0p6psWY7xywpsnDm7/Y+W33ROmHX9kKe7u7uSotwYN12xq7lcYokEr1UuZHFNj93fg4sAfR95XINLCHz5fN7yG2KLLNVWGiWqnkcJJYEQ+nZleU70A8/HHm6GMpPu1AoFAqFwoGwOKbdWjvly8c7ekCzBuVz7WE7v1tvvRUAcPPNN+/7NIbtWSzrljn5iMHvxtgamaMYGUPwVq/MoGwMTBrATNvvNll3ZEyOJQt+N2l9tGNWj+3gWefkpQ+WRMQYllmgP+hBDwKwx7wjf0krlxlWZOHMel3/XBQy1mxg5suW69Hzt3axXtWutc/IQp8ttG3cOLoWsPfcWVpj10TpV61cxew5Qpafu+w3zWlsef77eqy8yy67DMDee8QsyuvwTf9t/bPx4vnn5wGvA1FiCO4X28NkVteWMITfcf9OsxSD7WAi/3J+x5jtsZ2CX+eUnQr32dfHltC8FkZ+21YuzxUG9wFYl6hYf3n9jsbe1hDuB/fbr3NRuk6PSNph5Sq7jsj/nJ9LMe1CoVAoFAoHwuKY9smTJ0/tqGzXl+kbmCkYIvZy0003AQBuueWWfWUZyzU2aWzA121s0nZuxgxs12rsyZfLftK8842YAbMv/q7iSvu2cfSkjKkyw+Jd8Vvf+lYA8W7TdstvfOMbAewxrfd8z/cEsMfAfLm8e2VL5Cim9iYRibIIZQaWRLBO1N9r15gU4YorrgCw9/xtzFm6AuzNCZtv1mcryyQ+fh6wBTszOPv0z1/pLvl8xAb5HuV3HtVn42ifNiYGGytLwwrsjY/1/aqrrgKw9668+c1vXmujYp3qu8dI+k7LedBjtR7sTcISCg97pu/0Tu90qj5g732xORZFA2RfdJYO+bWK72F9dMRQrU5m4SzpifT8rBdm33jWsXsw07Z+RNEbDWwzYetLFHnNwB4GvBZHkhjFxpeCYtqFQqFQKGwJ6ke7UCgUCoUtwaLE49M04b777lsL6u5Fcxzcgo07TDxl4jcAuP322wEAb3/720/VA6yL2k0s4sW6bNRhIkB22vcGHCbq47SW1p9IlKaC3qtAH14UyKItq8/GjY3LgHXRlgrMwkYZ/loT1Vk/bJxvvPHGtXusbZyC0cqKwgmy+mIEbPzlwcFmOIBMZPhofTT1CIv1bJ5ZP7wKgg2z2JiH02D6NnCoThZ5etGjMhpjcXFkpMlqFxaDZulXea5y29mI0veZyzdVgs0h+/R9t3vZ4IjfK4+R4CqWqMjut3qi0K32fFlsnInFbT2xUME8PgYfNpWNSu2dtrJsfPz7wu6aarwi9YhSi/BaGa0h/J2Tmfj67FnZWPCcsfE1VaWfd6zqsLGwuWOqlUgNyHNUBffx7T6XKYEzFNMuFAqFQmFLsEimbYjcD2wXpNLdsWEIsJ5AgxkWp7SL2J7t/Kxcu8baGAWDiAKG+HqjHWEW1MQjYmdsQGPt4MAgHip4CO/wozSiNhZ2rbFQY6dRkBKVxCLa8bIB1ciO155HZFjHhjIqwYFnsWzEyMFPrO+cQAbYe842Hjb/jGFFzz9ztQLiZDPWRgMHj2GXQD8PmL3YGFuZETtnYzl2WWLDNC8tsjliLMn6aczRDJL82ETuP1F/o/O9e32f2LjTzwM2AFRuVb4Mc320PrPb4AMe8AAA62l5/f82n41NcqjgyEXS2mD3suFrFGo3Y57AujGgr9uu5XSu/K77vnNqZVtn7F20eRmlZba5w4bKNt5RGlkDrzuc2tn3JzJMXQKKaRcKhUKhsCVYFNNm2G4rMv9ntse6Jr9TtJ0Z63SMHdluy9hF5CbCzId3iFHYVHY/4tCDXtdjOz8VFIQZnr9XJUDh834HqpLe2702nrybBtaDXNjzsZ1ulCiCdczshsJhIn35UUAZhrntWHnGkrye0MDPhQMs+HtY12bfjT0x2/TBVTiAiEEFzPFtMrD+kd34/DXMgLl/kcSFpS+sF40SofSSvtj7xqzJl2P3mgTDGLZ9+v7ZfGPJBNu1+HG2d5klLwq7u7updMv6wOzLnkcUpIN1u3z8gQ984L62RWkvOQESryGR3YhyMWUpmr+HpYO8PkQBZ1QCnCydp4EDsLB0jscbWH/O7C4avW88f3k8I7c0fpaVMKRQKBQKhcKBsCimvbOzgwsuuCB1buegBswM2Ara/89BAFh/yGwXWN9lsV48Sv7RCyAS6XoMyspRpaOLyrH+cdCJqD7Wf6p++90zB2/hsKwRY1F6IbaK9mxqk8D90zTh5MmTp55pVB+PIUtPImtXbr+xRxWII5JIsBUvMyvPAtU5ldzEt19JZ5j5+O887qzTzNI5qrSk7L0QMUj+ZIt63xclDeB5bTri6FxPpz1Nk0z7C6wzUvtkqYOXKnAfea6rsY7uVQmLonWA5zOz9ijULs8hZU3uwfY3LN2K3kWWMlp/WGpnbY3uVR4WkW6d1wx+xlEApxFJwblEMe1CoVAoFLYEi2LarTWcf/75aVJzlUqw9x1Y37GzP2PESJUfZmY9zuXZjtD0dRzm1NejGAG33bdRWZjzOGZ6d97F8g7V73iZBdpulW0BsjSr3Lao3yr9YQbWlfuxYV9xLt92+b7dPCfY6lT5Qvu+qfC1UcpGTsLA7JXDznIfAc3w2CceWNe38vsV2YjwfFJhRQ1R4hiDtUVZuvt6VD8jiRxbBWdsaZomnDhxYu1djiRFzNA45oIfJ7ZZiPoW9cvXx37zLAXK5pvSaUdeJD2GHYWLZoki2x6wfhrQUhK2i4jGJLIb8IgSfHC5/B5HNiIjoW/PJYppFwqFQqGwJVgc0z5y5MiaNawH68BUUHe/c2L2ZZ/KyjZipEpnnkXNsX6YpaR9mu4t0tGqSGU8FlEb+V72Q498OnlseCcfRddSaUrZ4jPyJecyeNef6c5GwNdGul/WqylLXd8+3plzYoWo/axD53GKpDg8N40xsoeDZ44sVeCxVlIV3y+21LfvkYU7M2xDFMGQ26P8zu24YqP+Gn5uUZIY9oboJX2wtQeI1xQl/ePPSKrAjFNFP4zWEG4/21D4WBYcEZElVFG/lH82z+vouEoCxLEd/D1ssxHZj6i2cr09tu6P8XuspGC+bZnt0bnEslpTKBQKhUJBon60C4VCoVDYEixKPA7Mog8WY0buH1FYPX9P5rbDRh0sDvFgcRgHG8jcGgycsIPDpvp7lFicxUWR2IjvUaFDub3+HhYrZmJKfk4s/ovE2iqYSyYOs/GKwn722ubL44QQHMgmMoJR461Em5HrCBsrKbWM/1+FhowCcSj1CCNT4fB7xWJDb5yj3AHtOKuOov7xvax2itRb/J3V8iU9lgAAIABJREFUD5FoeiS/uonGVUARf2xEzM73sCiW1x2+PjrGoWLZ3dL/z8GWWJ2QuYkpUXCmMrC2qRDF/lkqFVG2Bisow7soqQk/C1YzZIGues/8bKOYdqFQKBQKW4LFMe2dnZ21RBfZ7pUNQDKmzYZoyqAlCwrCAVk4kYBvI+8izZgock1gRqDYU8TOVLAGTlfqwePV23FHO3BuMwe6idJ5qkQEUUAL7s8mQQ4iwyDlAsXP2NejDAO5X1yHL5fbHRm/cN1sVMSBeXw9PaPMDJwSlcc6Sh+qGIhKTJExbWXIF92jpDKRVIjHPmNw0zSd+lNtUO3l4/5ZMxvm9SYzkuNnyoaQkdEkG/Oxq1fkljY6V6L3SUm11Hrkr1EJntQY+WM9aWRm4KvcFKP3qRKGFAqFQqFQOC0sjmkDeZB/Tlmndv3RrpuZL+9Io92d0oNzwH5fP+8eeXcX7eR5V6eCnURtjHb5vl6rZ5Pk8OrT/68YHuuro/YzIpeSrA0KHBYxgrlNRSlE+XsvUEnP3QqIg1kA8dxlhm1gXbZ/1irsr3q2mfSBmXYkNeEQwowRpsL2EJnrHI+1tYnd3zbRhzJOnjy5JjXLWKia81l6TaVfjwLYKNbKz9qXlemufRnZu6zYf6YP53J5XkeBp5Tened5NJ6ZC5uCctnLWPTpzKcziWLahUKhUChsCRbHtH2KvMj6sBfIPtIXMqNWQVYiFqOu5R2b16HzDo31J1x21Ab+zm2PWKx9cqq6KHGDsRTeFavda6Zr5p22CoUaHduE0Y/olvh5+XYrnTi3O9phq2sya3UlIciYAgdvUfPBQ9k9MDOJGD/bgKiEDT6hDCfLOAymy/MtGkfV9uy5GZS0w+7f3d2VqW0BHW6Xj59OIA5/rwqmlHnW8JxkBp95c6j3XUlrgPW1lscgS95j88vsfPi9jdZilQAne/5KqpEFHDIoCea5RjHtQqFQKBS2BItj2t6Kk30TAR2gfyRUn9pVsl4lY8B8L1s9+jbx7j5KxWhgv0XWi7MvdLQzZD2/IfPBVCwps5pW/pEsUYj6ybolZpYRGzgd681ol+x9W4F1iU5m7ZwxDyD3ETWwBCQaW56TmV5asf0RqYliq5kdAYfFVUlGIvT8p6MxY10zJ1WJ5pmBw7Fm7eL3M5qLzHS5nkx/r75HY927J2qHsuJWXhJRecouJZJ2Ka+LzEaE5wqvHfwuZvYlLH2MPIaUTUoWQla9C0vBslpTKBQKhUJBYnFM+8iRI2u7sMjfVyWniFLYcQJ50/mqyGjRjo13urzL97uxSy65ZN+1zJLt3ohN2DWcZIR3lZ5dsMUlj4UhCqTP1vEKka5Z7V4N/rtK58jWsJ4ZZ2k7DwPMJtgX1reL/WWV9CZizYrFRJ4HbGvAEp6RqE/sy8vtiBgkMyB+PtE9pv9mvbhKyOPRY9qRtEO9nyPSmZGIaNm7wIyT35/IhkL5e/ckI9E93P4R/2KW5GRSABV5jevPpA82dw2ZTRLPNzUWmUSJ59AmNlAj0iBOorMUFNMuFAqFQmFLUD/ahUKhUChsCRYlHm+t4ejRo9KQwv8fJTLw92Sh83pm/5nxA4uErX4TFfL9gDYM8200kb2JmI4fP77vO4uRfJl2r9VrbWEjnMjtxa4x4x5WO0RtZfE7l8uitqjvKqxpZgQ2IibvBXEB9sbLxMhZEBAWNbN4nL9H845FzCwe93M4c+3zZXqwqJ6N/FQgkAzsCujnN9enxjEKKaxCu/LzysS+KhCLP27XjiSZ8dcDsasSi5pZFRWF2o0S0PhyMxG4CtmZGUKqBCRZQBFlCKbCDWeuczZuNuaZqoPnRs940h9TYUsjNzGDWg+yd39pBmiGZbaqUCgUCoXCGhbFtA2Z8YuB2QQbaEUuX+yiophcFChFpdPjNvv6eFfJ9XpjMtudHjt2bN/nKFMA9tg5u1FFO2w7ZjtsdoPKAiMow6pst8wss+eeAqyzjRGmPWK8Zs/BpBjMNrLQicySmE37eaCM7thAzM+3LHiG6hcbzkRt8ddlyUbYfSpii0rawG0bYTzqe+Qm1DN0y8IPZzA3U3620XNhAy1uf8Z8e8Zl2bUqoEgkxeDnwqFDIwNRu4aD6mSuUczkR9xSWRKWJWs6KKIyeu5iUVszQ8pziWLahUKhUChsCRbFtKdpwr333rsWStHvnFTYObXr8/cz28uCMnB9XI+VaTtUr/NjdmK7OdMbR8EUeJe6CcM28K5RsdmsjQqRTpuZIwfdiEJf2njxtRGjY71uxp5baxvv0tn1jvWUvk4VHlWF0QXW+8wMOxpzxZaYMUYBgOxaCw2pgghlIWmVG02k32NpF7tQRvrrXlrcSJffCzQTuQuqYEERWmvY2dmRCSmidirWHKV1VfYhWeASxfJUemEPm2eWEMc+o3nHKT55HmTrgpIY2bpqkiy/zkbvmO+ncqn01/D3LJytksbwWpm5pRXTLhQKhUKhcCAsimkDe2wbiBmiCkyQWTf2dsWZ7oJ3p7w7zpLRc32MiL0cxq6OJQgZy2CmxXpwZjfAulSjl0DEl8fnRoIdjCak2NnZGSpXSV5GLFdVsBVj0942oBeiNWIdrDPlYEJ8r28DSzyYgWZBPFjiYXMomt/KelzNA/9OchAhFQI1em5sr5I9L2aII+8Vj1fEvpS1cxbyUlm9ZyxWMWyTwEWM36R9ltbVPpXkBdCBflh6E1m8M8NmCRuHnPbXGpRu20vpDMreg5+Xr4MlOophR1IOQzHtQqFQKBQKB8LimDawvuv2O3XenaoUciP+rEoPPrKzyqyGeffN10Rsgi2NbaepEh1EzIctQbnsLGGIstSP9IU9ppolbVHW0IqNAOu75QzMgCI2o5hpxAyZSRubMfbCOnpv28BsQfkvR2OrrGy5Xb4N7Eus9NGe+bClr/KfzzwP+F3g8/5eZmUqHHCkB7fxtLYqjwRfjrL65r7dd999a+31Y658w3neRuM0moAi0uPzXDGmzeFmgb25x8+BJRQ9/X7U9shanZMlqTSyUchlK49DMLMHRxRSWOmwIwkJvz8qdHVkD8FtXAqKaRcKhUKhsCVYFNM2fTbrRIzVAOu7LbVrzHaTyvpURWvy16jvkc7XYDtg1hNH6TztWt7FWn8jv2qO2sV+mWzpHrWb+55F0VLJE9Rn1BZVf6Rb2kSnze2P9JLMqNmPOmKx9lzMEpd1vXY+YwZqd++lKZzMhudipOtjtq/sLqIYBtY2q1dFs/PeDDzGKuJb9A7yGHO0viyVZi9ZSxR5K5qLDGPaLAmLopup79F6pOxvRnygOTUvSyQiCYzFabB+8DONpA4qhoCKMeHngYotYe2488471+5hmwCVmCTqXy9CWWRRr3z8la7b/x/1eQkopl0oFAqFwpZgcUx7d3dXxgrPoHaz2TWGjMGxHkpZJ/udGvv/sjUvW2r7c7aT5msynSOzYfafZH9hYJ3pKEvWzOJUMZ1NrNUZvh3MjHsxs3u7cm63spz348RW4cxImGFncfJ5V8/syf+vJEmRBbjVbRIppZtl33j/P7MJZtqZry2PH7MnX5aKIWCI3lulW8yY1yY+/sa0WYrh77FnxfYv0fNg8LxTbDJLJ6zWQC+RuO222wCsp8jkvvv5bfOXP9m2IIofYXEnjFFzFMdsbVH5CgxZBDa1vkT6adaZs+QiWr9Zfz9iS3M2UUy7UCgUCoUtQf1oFwqFQqGwJVicePyee+6RxlHAuoiUxdZRMBBfPqANg0bu4XZE4nh2a7C2sdgwCpDBokYei8htRImNTFzKIt2oTWz4oxJkRG3ZJHBFzzAoElONBGBpreHIkSPSSA7QgSR4zL2YVLmH9cKxRn1SKpUoYEXPvSWqR4WtzVQro+kHIxEhi/fZkIvH2R9j40JWVWwSeMQQGdj1XBo9sjp7qVKjd1AluuF3mkW2/n8ORsJiZX/exNW33HILgHWjRoNfB2yNsE8lHrc2+nXC6lPJjSIRN8+RnvFi5EK3iXhcqaKy4DuZgeASUEy7UCgUCoUtwaKYNrBnFALEBhoMZQQ1EkDA1+nri3ZqBwk+YuXaDpQTK9hO1R/jHb0KcpGln+O2RYEfVPIFDk3ILhrAOqtUO9PMBYeRSTm4P+r+kydPrgUYidrNn8zA/Zgrlxhm5ZG7GO/8eW5aG31AFnYL5EQykRGjwa5RoVYjNsPGi8z+OOiJv1b1k8uOkj4wo84C8yhJC8+zLOnDCNPOwleqdL7qmUbXcrlWX8S0s5Sfqj67x5jvrbfeuq/cKFgVz2M/F7O2AusGZzxXeG75c0rqxBKmaF1VrnNZshmVYCWSICnp5lJQTLtQKBQKhS3B4ph2a02m6wPiRO58v/+MzvHOjPUdUWL5KBGJR+TyZeDQg9aviGnbtZwYIAsrybtXLisKVMCsSO0ms90mM/hR3XNWbxa4v6d/3d3dXRsv/9yYaSomFOnBmbWybjvS37Ibn9I5R8Fc/NwA1m0OfMAhFdyEA2WwKyCw7t7CbCWyQWBWzu8k6+F9ffxOj+jUVaKIbJ5lUp/o2t3d3bXyovflIOuOaluWtIKZNEtY2DbAl8NBaFToUGDPPUwlDMpYp5KwZDYU7BaogriosMdR27LET2p+c72RPUQx7UKhUCgUCqeFxTHtnZ29ZPScxg/QjDfTmSrdB+ttI0aqmD3v2KIAGdZuK//222/fV6bvF1/LTIeDrHgw01aBMiLdktLnK/2hv0btSEekHQojOqYI0zSd0msD68kzRhCVz1b2/Mks19fH7FglWImYr6VV5PZH3gMqDCuPNbMbYJ0lWbnG+COmrQJhZKF9+V5+1zKr4Z6Xwog9RM8C2DPtzF5EtSWz42Dw8cyqn99dftZeqseSNn6XLbxoNBZ2LQdm4bKzd1rZfXipUBaMyJeVPS8VOCezfVLPLQuHvYl3zNlEMe1CoVAoFLYEi2Pau7u7awzb70DZulHpXlTZgGaKI7s7ZjqsP/b/cyhCVaYvV4GlAZHeVTFf2/n6+hTjUZaY2e6c2x7tynssLCqLdWYjO95Mn6p8M5klRSFilZ8599W3n70gmD31UjVG9UWSJqX/5HuNPY9Y5GZ+9SouAN+bsTIlGcvmW89yO0OWXtEkNGwPEcUm4O8ZG+sxahUnwB9j1spM2883lWLWPs2a3NtL8BxViObfqDQgS26kdNeZflrZPEWsWa0ZI6GrlcfAuUYx7UKhUCgUtgSLY9reT5sjLQF6h5TpQtTuXVk9++tY18w73MjCfSRg/qbgMiJfcsWSo2T0SleqGNeIdeWm1t4eGZNX0aEiKAttVQcwJnFRrJzZcsRimVVk0dMUe7XjHCnPl6us0lnnGElp2MKdJRXRPcwYVdTArH89X2b/v3pf1fzz6M0dbw8Rsb+eRG+EaRvYyjuyOeE0u3xNNLY8z3i+2af5cQN7axWvuZwgJYoWyKyZ2xbFLlDpVfkdjKSTvNYq3XbEtDfRS2fSuiWgmHahUCgUCluC+tEuFAqFQmFLsCjx+DRNOHHixFoQAC9eMXFO5L5iZfhP/38kyo7u9WI2M9qwe6x+Fh/7e5R45TDE5BmU4VNmWNMT2UbuPL0ANxEylx7/PcphvImaQRmOAVo0l7WBy91ENMsGOcpAMEoUYefYgCpSA7G4mvvJbfTPOArw4suPDJAikXnU1ki1wiLu3rzw7ebv7OoTBUUanaNRUCdfL4+lUiNF604vDGv0jnEQn0wszuXZteY2yOJr74JlLl69oE7RPFDGceozaz+HSWXVnj+mjGeztd/AzyJ6NnzPJmq+s4FltaZQKBQKhYLEopj27u4u7r777rV0kd74wY6xkY9yGfAYddvwjEG5emWJKQzG0q1c+x4xnsNg4dwGNtTwO161a2WDKjZi8tcol5Ys/aYKxBElJOBEBJnbjiELz8qGWSp5QZTgomeIFCVW6SEy4GKDKTYIsmu9oY4dYyM1Zn+RVMigUt5GUIlomJVlkgv17mWSix7T8shc8aJrW2tDkhY1poaDvMcRq+QAKUq6EUn42GiR545/1mboxow7WjN82f5cz5XNg98Tq0elzozeefVOjgRm6Rk1AqdnUHs2sKzWFAqFQqFQkFgk07ZdVuScbzsyxeoydx0VBITZtGc7HBbT9EGs1/Vt5F047y4jXb3VYwxqE31xzwUnYn8qzGfkusRQO+lMn8xQTDVyzbHxUiEWre6dnZ2hXTYzhBFWpuwisnuUzpXnhw92wfNNsQcfzIdtGZiVcf+iUJvcpqx+ZtbMfFmH758ph99UTDvTZTIzzUJQjjJfz7SjZCbZGHI53O7MfdLX5+cB95nDGUd2JSxJUmFsI1c2fu4q0Ew0d5SefyRgEjNqtS74c7y+8DoUhXblMgyRZIdZeLl8FQqFQqFQOBAWxbSnacI999yzZkEbMV8VQtOXFf0fYSQYvmLaBr8rtzYZ++Zdqw+iYGC2xIwzs2hky04VbCO6384xC8x0s1y+0m1loS85uQHrtPwxkz5kTNvKZOmJh9pBq7CfERTLYx2k/99YsbU/Y38sDeDECuzN4MHvjfKw8LByObgKszZvV8Ljw6xP6V99u3kcs/eZGSuzz0y6xjrhEURj2/M0iNYQte4wI7X57ftuc0W9Nzx3gfV0sYzIbsTAXgRK9xytq+r5RLp6lUyJ383I/kL1XdnWRH1Xkp3MXqbCmBYKhUKhUDgQFsW0Tadtuz3b/UT6O2aIrEfzUDveER2Z7VqZYTMD8nVYm+wa3rlHuiVmqRzGj60qI99HlS5yRFcb7Yp9uyJdlvrMwkByW5SOC1gPB8spRzPYeHnWwfp65bcd9VWB++ElJJYK0cJG2ndjUVnyF2a4UYIIBj931n9G9gos2WG2HPlxqwQRSuIT9U+Fr4zsMJRFeWZpzsc2sRGJWOVobIcRnTYfZ/YJrD8PQ+ahoazGM5sNpfNlph31v5ciM5IacphUHhsVgtf/r1LPZugx7MwDYWkopl0oFAqFwpZgcUz7zjvvXGO3xlD8MaW/3UT30vv05atdcsQqOQIa69Mi/V0vaYWy8o7aqBIRRL6IvCtmRBaavIPnejPbAK4/SxRg+lv73IRpZ762Bh7jSC+p9GaqDA9O22qfxrwjTwF+loo1Rc+DnwPHCbDjEWtSOr3IT5+TWVi6XNbDRyy9FyXOELFc9Z5m71MmmfDw71NUnnovVRwHf0xZWfM76J8BJ/JQfc4SuSj/6Wy+MbPOJHE9C/De2hK1ma+N4kMom5NM4qJicbA3ErC+ri0Ny2xVoVAoFAqFNSyKaU/TnB7PmHVkDWn6QDvGrDbzK1Us2ZD5fSpfawNHDvLlM9OOWA3H1+ZdKjMs33aVxs/GL2JnyrqWrdajPvR02ZkuqMewPZu2Y8YYo3R9XDY/U98fHg9mPBHrY6tWxdajvkfxmv09kS6TmS17IkRsWUUgY71xZKXMFvqMSJJg880YNrfR4C3ODYpRMfvPvD8Uw46YdmZhbjAff363o1S2qk4lMYjawCyWr+P/fbn8vCIJX2ZhzujFAlf6at+Pw4zmqOIG+Lb2JBfRPFCxOCIJCpdXftqFQqFQKBQOhPrRLhT+T3vnruS2kgTRplzZa+//f9ba15ehmAisoSip7mFmNciZ0RAReRy+QKAJNMnOeoYQwkV4KfM4KVO4Ck4qMyrTw9g0oeMKh9Ako8ruqfKaat9r3ZcCLGpsLCzgjq3GqNrdsW2fM+coMxZNaa4JgzIfuQAXZdpiigVNt0zv6tuqQB1yHMdv90ofW9/f9+/f5XgLZe7jOXOmQJWSVeZjBqQxVaqPg0V2+udTx1vLF4fh7VSQZXIN9X3snpvGvNa9CdMFYKrv2/Q95WNXstjRy5iq1Cg3rjNm8akAS9+uf28ZcMvvAougKFz61JTSyOsxpXy9BxatcsGzKtXQpbBOwXKc5yqQj7jgw68mSjuEEEK4CC+ttEuZ9EL6pVZLhTO4aEr/KHbFQToMZHDNEFSDg6JWc6W8agXclSOVoRszVXW//0wxgF0TFX6GjlL9bhwuUJAFdKZCDLtANHU89ZxrKamaTFARsmSnK+m61p+5Wde9AizrMRvKrPXnPDhrhkpHcYF1DJ5UapDziUpLqUAGiNbjuqVKUnOH1pMpfcupQT5+jxo8juOulGs/rgtcchaDtfZlNs+U33SNPKbWlbviQR0XlMs5pEpK0yrkgrzU56m5w7niCkT19zrrhrKUsUyyK5s6/Xa+WpGVKO0QQgjhIry00i56cZVaoTEdaCqhSbjSPVMa0BUuUeULuQLlqk6lvdR9+qp2fsr+Xpfqo1b29IPW8ZhCN5X3cw1ClC/Irb5ZeESVclTWjGeg0mbjljMFJJzqU/EEVN91PJd6psZU1LxXYz9bBMLFWqzlS/mqFENaffi5WFxF+Yadb1vNuzNFkHgcZzFQHMex3t7efs89dV12JVSnOb9T1spKw236WNfSsTYu5Y8WJRXz4uIFOP/78WgV5G8I993H5EruKoVNOMbJ6ulS9Pi7PVkForRDCCGE8BSXVdoVCVwKjavIqTiDW0GpsosFVQUVqVK+u/ahfdWqFHsfO1eXSjUTKgblH+Lxne9WHc+1J2Uxj7X+nDf6DamwJ6X9DOq6uPKK6rPSr859TQqO17LmFct+9n24uUoF0pW2a43JsSqcUpyaMzgLgmuZqJpocEyTNYXfJzcflKJXr5HjONbPnz/vtlHFiNz3cTrOWf/pVJLUxSv09zhl77Jm1HNn43/62AoV8c33cO7QcjSVQt6VsVXzw0WPu8/b9+sefzVR2iGEEMJFuITS7iudihovX3blM5YiUj5BlyfpIoCVImX7Qb6ucCU1XS5uf49TsWoF6l6bHjtfDv2VapXuooInawCjXGvbyafN557xaffj0l9b+2Vufz/3LmrXKbdJ0TkrTS/36fZPVdvZzclJLe2UlfJpU/0zinxSJi7PeVJAtIw4JfSsIqrIcRcL0u9P15djcHnfLm5gsmaprAF3bBePsqsFobaZzu0zvzsunoiWJH5H1JhodVBKm/UheE3U5+O1nupDfAVR2iGEEMJFuITS7lCZUb3WbferuBWnWxH21azzsUyr1l1VM6UYpoYnap+qlSBXiHy+r0CV334t7x+f8oJdQ4zpeGwQonzHfG2ncnYwz7vGSX/amejxGmdZepQyKBgh6+IH+nOMzHUtFHm/w22V0naq3GVL9PHWLRuFkCmq21kWVFVCZ2mp+fFsdkFV05vGwJgMzgfVrII4n/mkZnk9XMyJ2o/LLVcxBu5zTD5856ufagrssmEmS4KbO1NEvVPn/J2bqve9J6bmM4jSDiGEEC5C/rRDCCGEi3A58zjNh2WumlKwCppPzphodkXqpxQVd1wV4DCV/lP0gCSaD2nSVM0sHO489uM5c+zU7IHvZRMNmsLXug9Ae2/qRR2DAYj12VQJVx67bhnENqU31XFoHleBbzzemWu2K/5AU7c6jy7gSRW7cEFDLJta9Gu6K4ihAtPOpuq9Z36UiXwt7YJgYKYzG09jcKlKhXJN7UoUK9cKf8emoLJd4Nkj5/aZYlUufVS5G1yBlEcKzjj3Y3/sjvMqRGmHEEIIF+FySrtgIBNXwn0V64IbuOpTrRJdWhMDUqaAECpr3vb97FokTkFe9VwFBnEcKpVtF4jkUtD653LKocPAqvrsLKpSKX3qPR9F7ZdNWtSqnwVeuFJ3jS/6tjx3tGao49EiMbFT2kwX6+eTqpnBRbQS9Od2KT8qQIyKxzUMmRrw7IKmnuE4jlMNPHjtJiuQKyvM19XjXUGoMw0uGICqzpP7reJ1mr6Dzjqj5seuhLQbR7/v2uWqazEF8Hb6dmeK0nwlUdohhBDCRbis0qYvtFJvlC/QNQ+gElLFIdyqzvni+vFc+UWqM75fPSZKvTCtalpluuIdhSvuoPZ/plFAjbdUrWtK39OyHmnF+Qx1zJpDdf37dXHlV9kasYr9qPQWzjOq2v45qXyZEjX5GKfUnk6PT+DxnNqcrDS0GEyWF6q/R0pRFlRCH1H84na7nVJUVJN1XWoOqW0Lfla+rr7Tuzabar6x9a9LV+3HYZwP55CyAHIOujE+UhDK/Xb2+86H7WIe1P75e9ePMxVeeQWitEMIIYSLcFmlTYVD5dMLPrhmD/QPKZ82/Z7FpCaoGrgiVP7P90DFQWWn/IRTQ5CO8mXzPfTDqjKmXNFzVTw1DDnbevJZGKWuijOwbSOzFlTRhpqDdXumoUKdWyo5Z/Hp73GRsoUqxVvHoZWJc0jFeTh/5xT5TusClZx6r/Mbf1R07+12W9++fbPxHZ2dT1bFIDhFPZ1Hl7Xgjr/W/Vx0WQPKCnmm0Aufd1aZXVnT/pyLXp+UNn/rd6WF1fhrWxXncaapyFcSpR1CCCFchMsq7YJRyNOqy/nGuGrtK8NaOVOFP1K4nyrzs30kTukoX5bzYXE7tR+nFKbSrnWd3Ip68mV+luKuMVTkej8HNV4qKiptFdXrYib4HqVealvXYEPFQ7h55aJ7+/2d5eWMwuL1V9eL13+XabGW9+vTEvNsGdO1fn3+qcwwFSn9x/X7MMVhOGuCOh6tcoyHUD5t52N+JCKb55DfdRVlvUNZks4qbBVR7xqEPPK7+khsSHzaIYQQQniKyyttrkhrpdsjZF20K1eRSmWwIhobkkwVnMjfWrE9krfKFS794PSxqvcQFU1O/xMV65SP/Ld8SlTV/f4uF1X5/vla+bbpT+vnluqcapLvXctHjXN+K6W9y/9V18VlOjiF3b8brokFVeCUWeEsZu/hdrvZHOXO2QYra+0b3fC7oGJO6L/lXFLVxtxYp/ibs9ZAZXFx8+FMJs9OYatMnl1zpUc4E2mePO0QQgghPEX+tEMIIYSLcHnzOM1HyiTlygieKVc3mb/Udn1MLvXhs83kNIs9Yl525jiV8sPHrmBKf41jmoLl+NzfMpNXGuFa9z3DnTmZjUP6fZa0hJnhAAACTklEQVQC5flTrpx6joFH6lzs5tmZ/saFSxtTAUFunp8JfHLbqEAumo/fE3DmeHt7G0sI13hdv3nlXqCJ27kgVLEVd574vVQpX+q1tXTjIJey6IIKp98uZ/pW19QF67pb3lfHeYQpPfJMqdivJEo7hBBCuAiXV9pcoasVmluRufQG9VytuhgAovZdq1UGq50tYPBRnEldoJKi0p6KRlCF8riqMAK3cYVups/zWSgFV2lgLExS1/LHjx//em8v6sNgu9p2KkXJdDAe11mN+ms75T0pbVqqGBDX77sUJqalTYVgplSvwpW2fCTgcuI4frXlPBPgxLk9HZtzmtu6795a9+eY15bFadTxdkFz6jW3r8n6sCtFOgWTuWvpigpNx38m5Wv6Hr0qrz26EEIIIfzm8kq7YMrC1JrTrbLOrLBd83blJ6Ky5vE+otGB4ozvh+fLrZZd04G17ksA8riTP8o931X7Z/guH6XGUH5u+poLpSqYvlX7UC1A+R6XSsZiHuq9TuEpv6xLE3IFLPgZ+zZs+qLmPQtkFJM6cwVAPqqMae1jUtrqe97HUijl66BSVKU0XSlfZTXZKXr1eKdOH7GAOZWsLAhum6k41hQr8V7UeaC16VWI0g4hhBAuwu2VSrTdbrd/1lr/++pxhJfnv8dx/Kc/kbkTTpK5E57lbu58BS/1px1CCCEET8zjIYQQwkXIn3YIIYRwEfKnHUIIIVyE/GmHEEIIFyF/2iGEEMJFyJ92CCGEcBHypx1CCCFchPxphxBCCBchf9ohhBDCRfg/EGh77FDt/XgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1406,7 +1418,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xm4r1lRH/rve86hm6ZpaJrRoAJOEXFAQGiQWWiGABIi0ago0XvFaxITYxzjFRM1cbgOeSReTcSrBGMYRBnSDN0NzSQgiAOKojIEkEFohoYGejjnvX+8v89+a9f+naGbbs/ecdXznGef/fu971q1atVau75VtWpN8zxn0KBBgwYNGrT/6dDpZmDQoEGDBg0adGo0/mgPGjRo0KBBB4TGH+1BgwYNGjTogND4oz1o0KBBgwYdEBp/tAcNGjRo0KADQuOP9qBBgwYNGnRA6KR/tKdpeuI0TfM0TR+ZpukW7bsjm+9+5Abj8IDSNE0PnKbpR6ZpOtQ+v+NGZk88TawNuh5osy6+5TT1PW/+7el/mqanT9P0jvbZOzbP//fjtPeyzfevOk4//d/TT4HHQ9M0/eE0Tf9my3f3nqbpf0zT9O5pmq6apunyaZpeP03Tj07T9BknFcANSNM0XTpN06XXY3s/P03ThddXe5s233GCudn5dz32975pmn7pemrrVpt98Uu3fPfaaZpedH30c33RNE3fMk3TG6dp+uQ0TR+epukV0zR94bVs49c2c/Ir1wdPR67FszdP8n1Jvv/66PjvAD0wyZOT/FiSY+Xz9ya5d5K3ngaeBl1/9MQs6+dXTyMPT56m6enzPF91Cs9+LMljp2k6Z57nj/lwmqY7JHnA5vtt9GtJfrl99oFT6O8bk3xGkl+sH07T9N1JfjrJy5L8UJK3Jblpkvsk+bYk90jyiFNo/4ai77ie2/vJJG+bpulB8zy/7Hpq8x8mObP8/otJDid50vXUfqdHJvnw9dTWrbLsi3+V5I/bd9+a5Oj11M+nTdM0/WwWnfzJJP86i56en+Qm16KNByd5XJIrri++rs0f7Zck+RfTNP3cPM/vv74Y+LtG8zxfmeS1p5uPQQeeXpLkgiwb9S+cwvMXJXlokn+U5Q8xekKSdyR5V5aNv9Nfz/N8XfT13yR52jzPn/DBNE0PyvIH+z/N8/xd7fkLp2n6j0kefx36ut5onuc3X8/tvXeapucn+Z4shsr10eYf1N+nabo8yZFTnadpms7c7EOn2t8bryWL14nmef7Tv41+ToWmaXpgku9K8oh5niv6f8G1aOPMJL+UxUj5vuuNuXmeT/gvC6KYk9wvi7XwC+W7I5vvfqS9c88kFyf5+OadS5Lcsz3za0neneTLk7wyySeS/GWSbz8ZT9f2/SR3SvIbWRDClUn+MMk/3PLcP0ny50k+leRNSR6T5NIkl5Znbpzk55L8yWZ870vy/CRfWJ75kY1cdv3bfHfHze9P3Pz+PUmuSnLLLfy8Oclzy+83yWL1vX3zztuT/Nskh05BXmcn+YksCP/KDd+/leS213He7pHkd5N8MslbkvyDzff/OssfgcuTPDfJrdv7c5If3/D97s37r0hy1/bclGXRvGUz1vcmeUqSm21p78eSfOdGHh9L8vIkd9kig8dlMZg+keQjSZ6V5LPbM+9I8vQkX5fkzzZyeEOS+5ZnLt0yv5duvrtdkl9P8p6NnN+bZaHf5lT0+hR135h/ezOPNynfPT3JO44zpl9Nckn77i1J/t1mTK/a1s914O9em3e/vH3+oiR/k+SMa9HWSXU+i1drzrJen5Lkg5t/T09ybmvvX27m9ZNZ0OMbUvaC7F3v2n5sFo/Dhza68/NZjJyvSPKqjZ78aZKHHUfvjib5rOtLB1r7e+aufPcTSa5J8sVZ1vPHkzxj890jN3Pyvg3/b8qyjg61Nt6X5JfK79++kcndkzwzy5r76yQ/c6K5TfKFW9bNnOTrNt+/NsmLyvMP33z/yCRP3czXh5L8VJbQ7n2SvCbLen5Tkgdv6fMhG/l8fPPvfya58ynI9JlJ/vTTnJd/n+SPNnryviS/0r6/eRYvybuy7BXvz2KMf94J2z2Fjp+4EdznZVk8Vya5w+a7PX+0k3zpZkH8fpKvyWLZv37z2ZeV534ty8b+Z1nQwkOT/PdNew86Bb5O6f0kn5Vlo/iTLC67h2XZvI4leUx57qGbz35noyTfnMV1957sXsQ3T/IrWTb1B2RxVV20UajbbZ75zM0zc5KvzOJSOX/z3R2z+4/27bMs6O9o47v75rl/VGT9yiSXJflXSb4qy+b1qSQ/cxJZnZHlD+wVSf7vzVi/Jsl/zcbYuA7z9uYk35JlYb0SH1kMmH+w+e7yJM9svMxZlPTVWTbCr83yh+OyJOeV5/7D5tmnbObsu7Isuldm94Y9Z/mj9OIsm/bXZNnY/yoL+ugbza9u5vdrs+jO25OcU557R5L/tRn71yR5VJI/yLJRn7t55ouSvDHLgjx/8++LNt9dlOQvknxDkvtnQY6/lOSOn84GsEWGP5bkLhvd+f7y3Yn+aD9w8/xnbj4/f9PW5+b4f7R/PIvu7fw7Bf6evJn7Ok9HNrr0G9dinKek81n/sL49i9fhgiT/YtPfr5fnviHLH7AfTvKgjR58f5JvLc9cmu1/tN+R5GezrJ0f3Xz2Cxsd+pYsOvrKLGvsVm0ct948/y3Xlw609vfMXfnuJzZz/tYsaO9BSe6/+e6fb+T68CQP3sjiE9kLwo73R/stG1k+JIvhNyf5gRPweeMs627e6Ii1c8vN98f7o/32LH97Hrr5OWcxmv4syz798M27H00x0rIaS8/Osjf8wyS/lwW8fcZJZPqeJL+50bf3bvTmj5I89hTn5M4bPb1PkWH/o/3fshg7/zTLXvG4zbjudsK2T6HzJ2b9o31els3rV8ui6n+0n52ywW0+u1kWC+k55bNfy94/sGdmWaD/5RT4OqX3s1hoH0hDslk21z8sv/9ulj/sU/nMH85LT8DH4Sxo4GNJvqt8/iObd4+05++Y8ke78PKa9tzPZzEEztz8/oTNe/dvz/3bLAjkuEguy6YypxgpW565tvN2//LZl2ZdxIfL5z+b5Or22ZwFBZ3dZHJ1kh/d/H5eFuPw1xqP39jHsfn9L5PcqHz2NZvPLZibZlnQv9rau9NGdv+qfPaOjdxvUT67x6a9ry+fXZotG2UWw+I7T2VhX9d/KQg4y8L/UJKbb34/0R/tafP/7998/otJXn288WQ7KppzMiSQvFC75bPbbt79j1ue32oUnKrOZ/3D+uvtuadk2Tin8vsbT8L7pdn+R7vrzhs3n1cPjHXwzVvafVdOYV+7jvqwVRc33/3EhqcnnaSNaSP/H03y/vbd8f5o/0B77uIkf3ySfqDtb9zy3fH+aP9ie+7Nm8/vUT675+azr938fmgj8wvbu/6G/cQJeDyUBcBdnsX4/9oshuDvbD5/+CnI8hUpf6Sz/Y/2XyX5D9d2vq/Vka95nj+UBU190zRNf/84j90/yQvmef5Iee/yJM/LgkwrfWIuyRnzEmf5iySf7bNNhvrOv2v7fpaJvzDJR1s7L07yZdM03WyapsNZNubfmjfS3LT3+1msvF00TdM/nqbpddM0fSSLBXZFlj8Mx5PJyehpSc6fpunzjDmLq/6Z8xp7engWBPi7bRwvSXKjLBbr8eiCJO+b5/l5J3jm2szbFfM8v6L8/uebnxfP83y0fX4kS0JSpQvned5JzJjn+R1ZFuy9Nx+dn8U70LOU/0cWeXd+Lprn+ery+5s2P+nBvbMYIL/RZPeuDY/3b+29Zp7nmnjT2zsRvT7J90zT9C+nafqSaZqmk70wTdPhpufXZl0+OYvufc/JHtzo9tOTPGGapjOybEZPO8lrv5rFBVz/vesk7/y9nFqyWqZpul0Wg23nX1nn11bn/2f7/U1ZDPnbbn5/fZK7TtP0C9M0PWSaplNOKMpiiFT68yzr4FXts2Tx7nX6QBa5HJf6XncqunMt6Le39PeZ0zQ9dZqmd2aV/w8luc00TeeeQpvb5H0qa+Ta0jbZf2ie5ze0z5JV9nfJ4vF8etOdy7PoQV/znaYs6+qr53l+xjzPL8kCBv4qyQ+c5N1vzeKNO1kc+/VJvm2apu+bpulup7rur8s57Z/LYtn/++N8f14Wd0Kn9yW5RftsW0bilVncKJmm6Y7Zu6DveKrvb+g2Sb6pt5MlISZJbpklo/FGWdzonXYl3U3T9Ogkz8jimvn6LPG7r8iyKG+85+1To+dk+cP/hM3vF2z4rhvqbZLcYcs4fq+M43h0yyxumBPRtZm3j9Rf5jV7uc+Hz7tctiUyvj9LqAAv6fzM83xNNm709u6H2u8MHf3eZvPz4uyV35dkr+x2tVcMp1OZ36/NYuh8b5bs2L+epumHT7IgL2k8/fAp9IO3t2XxJv3LaZpufQqvPC3LhvLkLHkOzzjJ8++d5/kN7d/JkphunHUO0GVZUG/f1D+Y1Rj4r+27a6vzJ9ODpyX5v7Ks2Rcn+dA0Tc9pe8rxaJtuH28dbNOTTyY56yR99HF24/S60rF5nnftbZs/YP8zq2v7gVnmwL54Krq+Td7XdQ88EW2T/cn2Gmv+N7JXrg/JCfbLeZ6PZZnb984lOW6z/7wsSx7VVtoYOz+VJbx3dJqmczefTUnO2PzOKH1SFqP4SVnCku+fpumnp2k6oQyvTfY4xj++yfL8mawTXOlDWZJxOt0u1/7YwHuyKFL/7NrQZVliTT95gj6uyTKZt9ny/W2TvLP8/nVJ/mqe5yf6YJqmG2XvH5JTpnmer5im6bezxNyenMUN/LZ5nl9dHrssC+r/x8dp5h0n6OKDWRJRTkTX57ydjG57nM8YFjaD22VJ7kmys9HcMns3i5PRZZufT6ztFTrecadrTZvN8Z8l+Wcbb9Q3Z9kUP5Dk/z3Oa09Kck75/drq+I9u+vnBU+DvL6Zpel2W+OVzqmfleqTL0gy9eZ6vmabpFUkeOk3TGf7AbTbCNyTJNE2P2tLOddX5PbTxNPxykl+elpoTF2TZx56R5Q/5DUnnZe8Rp059r3vL9dT3vOWzO2dx5z9+nudn+3CaptOavX89kjX/3Vlc1Z0+dZL3/zRL+GwbHTvO58myZ90ii179TPvuCZt/j8gSBrg8i3H/vdM03SmLnv94lryCJx+vg2v9R3tDv5glS/jHtnz38iSPrOdBp2k6J8mjs8ReTpk2C/sNJ33wxPSiLO7RP53n+ZPHe2iapjck+UfTNP0IF/k0TXfPMnH1j/ZNsvyRr/SE7D0uw8o/K6f2R+FpSb5xmqaHZUnQ6gbRi7Ikh318nuc/7y+fhF6S5OumaXr0PM/PP84z19u8nQI9cpqms7nIN0jn/Czxt2RxlV+VxUC6pLz3tVl09try87tZ5uDz5nn+9evM9W66Mrv/0O6heZ7fkuQHp2n69pzAaNo8d51pnuf3TNP0n7MkX53KsZ+fyuJ9esqn0+8JaFvIQb8XZTGg+5GvbfTp6PwJaRP+eMY0TffKDXe+OckS/sjiYXjWSXj6dPe6a0NCAzthpc0RpX9yA/db98Ubkt6Uxfi98zzPP3sd3v/tJD89TdOXzPP8pmQHNHxVFrf28eidWZL9Oj0nS6b7T2eL8TbP89uT/OQ0Td+ckwCs6/RHe57nK6dp+vdJ/suWr380S8btJdM0yfT7vixKcjyX+g1JP5zFnfaKaZqeksU6v0UWwXzOPM+qSj05yx+3356m6b9kcZn/SBb3cLWsXpSlSMXPZTnKc48sm2VHLM57fvc0TS9McvQki/KSLEr21CwK/d/a97+RJcvwkmmafiZLJuMZWTJ/H5Mlq/ET2U5PT/J/JvnNjZfkdVn+4Dwsyc9vNsS/zXn7ZJKXTNP001lijv8uS6zp55Ild2Izxh+YpumKLDkJd85iJL4qe2NpJ6R5ni+fpul7kvznjQv5hVkS026fxQV56TzPW6uFnYDenOQ7pmn62iyZuR/LoisXZ5mrP8+yIX51Fn17ybVs/9rST2QpBPGALHHg49I8z8/JsoncUPSKJP90mqZbzvMM8WSe50umafr+JD8xLRWxnpYFSd84yRdkMdKuyIoMPx2d30Obdf2xLJvn32z6fEJu+Ln54izraBviO130x1n2m58qoZvvzupmvqHo3VnW+jdM0/SWLKjyrS2H5NOmeZ6PTtP0z5M8a5O78FtZ0Pftspzo+Yt5nk9ktP5SloS7507T9ENZ9vfvyBKu+acemqbpgiz709fP8/zMjT5e2hubpumqLO72S8tnb8jmaFkWvX9IlkS9/3SisV1XpJ0k/1+W5JfPrx/O8/zH03Iw/ceznFedslj/D5jn+Y8+jf6uE83z/M5pmu6R5Q/wf8hy/OKyLJniv16eu2iaJu7p386ScPDdWf7of7Q0+V+zJDt8SxYL/fVZ0GhP9HhBFo/Ed2zamDb/jsfnsWkpM/lvsiRC/VX7/uoNCv/+LJvznbJM9Fuz/BE77mLbvHvBZmzftvl5WZZjVx/aPPO3OW9P2/D+lCzG0euznNWsbu9/m8Wl/O1ZZHjZ5r0f2MScrhXN8/zL0zS9K4vOfn0W3f/rLKGTP7wOY/jJLImHv5IlYeXlWYygN2YxkO6Qxdh7S5JvmOf5udehj1OmeZ4vm5YKTj9yQ/ZzivTcLO7HR6WssSSZ5/mnpml6dZbz0tbjp7LI6RlZspSPbp69zjp/HHp1lg33CVmObr4ni0F7XFfk9USPymLQXXoD93PKNM/zJ6dp+uosx9Z+I5tTN5uf//kG7PfqaZr+jywg4ZIs6/CfZEkyvb77+u1pKejzg1nB0HuzGG0nLMW7CVk+KMn/k2UfPzPL2r5gnudXlkcPZfGyXpf8sFdk2YvutGnjrUn+2TzPvQLhLnIUYtAWmqbpM7P88f7xeZ5/9HTz878DTUtN5B+f5/mHTjcvg244mqbp17KcB3/I6ebldNM0TW/OcjLl/z7dvAw6+PTpIO3/rWiaprOynCu+OEvi1udkSRL4RBY0NWjQoFOnf5fkz6Zpusffcqx2X9EGzd42e5OSBg26TjT+aK90NEu84ylZMpSvyOI6ffw8z9uOQg0aNOg4NM/z26flJrttJzL+LtFZWQqJ3BBZ+oP+DtJwjw8aNGjQoEEHhK5L8HzQoEGDBg0adBpo/NEeNGjQoEGDDgiNP9qDBg0aNGjQAaF9lYh2k5vcZD733FOpU5/c5CZLQZ9PfWqpRnfo0GJ/3OhGN0qSXH31en+E71B/5ujR5Y6Lw4d7UbPk2LHlSLDa/XIAjhw5suv72od2b3rTm+5q9/LLL9/1bM0n6O1655prrtn1u+fqXQLeMQ483fjGSwnbK69cihCdccYZO+9cddXuI6766bIyljPPPHMPr36Sp/63kfevuOKKXb/r13jquIwZT3h+61vf+sF5nnfV2T7nnHPmW97ylju8dF4rn3SGPPTzyU9+cs84fOcn/sil54Rsk5Mxdr3TpvmpPHVZ6tecarN+94lP7K4zoj9yoyeVZ7LVRpc1HulUbafrkDWJd9/XOdE+Gei3j9c4Kw90x+9kZT6r7vR14vd3vetdW3XnVre61Z7xbMv36bpe5ZIkN7vZzXb+T5+6TuqnjrGOo47Ru12X+n6wjV8yPuuss3Z9X+VkHJ41h8bl+213l+BFu8bjd21UXTX/1klfk8jc1n2878Xa6ntW5fXjH/94kuTmN7/5rvbMQV/P9TP94WXbvnM6aF/90T733HPzpCftrShYld6Gcd555+28k6yT8N73LoneFkyS3Pa2t93Vzq1udatdz9o0zzlnqUpZ/3ibOIpvAt/1ruWio9vcZkmO/V//ay1C9Xmf93lJVoWhzBYApf7gBz+4886HPrTUFbn97W+/6xnj1NYd73jHJMlf//V6/4e+v+zLvixJ8r73vS9J8pmf+ZlJVuPhne9cq7FaSOSmP8p7y1su9fQ/9rGlAuvZZ5+9h9c73Wkpzfvud7971+/I5/V9C8L8XHDBBUmSN77xjUmSW996XRN//MdLtT/yJPNv+IZv2FPx63a3u11+9md/Np/1WcslP+aUviTJF3/xUh3wWc9aqkl+wRd8QZLkwx9eijHZsP78z9eKmfghf/PvczLVxud+7ufuvGte7nnPe+56xk/zXzf6/gfeZkOW+mcAJquO6ofcyOBLvuRLkiSvfe1S4ZQOJatemw+bp3eNpxoEH/jAcoHX3//7y6V25pQu/cmf/EmSvRtzsntzTJLP/uzl/hD67Nn6x7BvuOaCXv+9v7dcnnXZZTvF13bGRdaeechDHrJHd84555w88YlP7B+fkKwPfVqnZJ2s+wtjAy/k3//Y1T9c2idLe9hHP7rUeSJrayNZZWd9+v0Wt1jKwP/VXy31mm53u/WKgbvd7W5Jkte85jVJ1jnrhmw3NOs43vGOdyRZddK6estbluq8n/EZ6yV/5uH971/uDHr725dLFO1d+rfWybU+88IXvnDXd9a4NvWfrOvlD/9wqZ/k74V+yaL+vcCj9Uue3/u933vCSoN/WzTc44MGDRo0aNABoX2FtDtBiiyoJLnDHe6QZEVDkCCEwvquyBBK6GjyXvdaLvZhIbIMqzuHZcmi1gZrDEKo6AVK8Q70510Wd+URsR6hZUiOF8B4q0v1gQ98YJLVOsWb/rRVrUmWPItd+35+5CPLsVKoplr0f/M3yy1/kKL+jIcca6jDmFn90NNzn/vcrZ8n6/yzlqGNbXTGGWfkTne6046uQFrVu8CKN1eepVN/+Zd/mWQ3MoCC6BBXHM+Aflj7FUlCBm9603Id9z3ucY9dz9CzGrbwGdlB/9AsNIbnZNV584Jnc8kb9EVf9EVJdnt4ursXkiOrP/uzP0uy2/WKX4jenGmDHuCjup3poLklV3LUL32p7XtWu3QTIqqhCWuaV6C7sU+FyLX2hXjErBNyI69kXRfdO+Mdc43X6mXyTEeCdMda+KM/WisMm+fuOvcuVP0Hf/AHO+9Yf+TPW2Zu6TXZVl21r/iMV4aHwTriTUlWVK5d+m28dMW43/zmN++82/fvHmqzrquHT/uepQcPf/jDk6xr8wu/8At33vG3xdqwjvYLDaQ9aNCgQYMGHRDa10j7Pe9ZrhVmBSarFQUpsrKgJvHqigwgC+1Aqa9//XLDGiuMZV0tXtYyi0w/d7nLXZKslnxNfmA5szSh455AU613aMKzEN2d73znJKuF+La3vS3JauknK9pnrYrBsDL9rOiF9Y0n8UmWe0+E+dM/Xa+h7klliIUNaZmj2g6kqH0y6nkFSfIXf/EXez47Hl1zzTX5wAc+sCNT71TUzIKG2MyhsW1LnOK9MCaIqvNv7DXXoCddXXTRRUlWRKQtsehkRRbQI12BTH1fvU/m3ZxCEeZSv6giSPxaN/oxxzwVNdkHSvIOfacPkLB1Vz0k0FmfWzxZt3XOa75IHSc+eBDsF8nquSE/a+JE1PNHtqFzcweJ3vWud93Ft/WZrGvU3kHHe96KcdChyq896xGPeESS5KUvfWmSdR2Zr2Tdq7pnkZ6RsdyOZJ0HCBsKN/+8J1Cs2HCyxu+tG7I5UUJq986RCX3WBl3yXLI3r8N3nqVbVVeNA3L3Ll0xx7xUyd5Ey1PRnb9NGkh70KBBgwYNOiA0/mgPGjRo0KBBB4T2pXucK4O7o7qeuUL6WWjuG+6W6tqSCOEd7imubQkU3q2JDNzV3FTdrVOTuxDXFR4c6eFS5a6q4+KS1Z7ECEcTetLFNve/9smEm4z7sibLSY4j40suuSTJmgCF956AU3n90i/90iRr4pnPzz///CS75djd4z0xDW9cvUnyOZ/zObt42SZrdPTo0Xz4wx/ekRuXVk260hf3F/6484QIqquM+9tn3Gv9mEk/o5ys+uUdbmNjFBLhgk9W3SQn7lbj6UfQktWleJ/73CdJ8spXLtf9SoTzLl2uyX69Dcl4XIxc4NVFaFx+9gQrR27oVk0Qe8hDlps6hSS4KekzeVdXN7lJvrMWPEvm9chUP3Ndjzl1mqYp0zTtcYOa0/o+Vz+9osf4raGHl73sZUnW9d+P+NEp67bOiz3LmH7/938/yZq8Zm3U0EE/0mX9mx97WB2XvvFSE1xrP/aQmlwqdKI9rnbr35p/3etet/OOsEcPc9I/64mMqp4bu1BVP/4r1KOtZE0Gpvv2EG35aW9IVvkZMxnsFxpIe9CgQYMGDTogtC+RNgsdbUMV/egIS5TFVJPJWJEsWRYvBKCAASuyJiKxPP2EkntBBEcZkr1HXvAKWX/FV3zFnne0w8JmtVZ0nKyWfT1aVI+o1bFDTZAPSzzZ68UgG5Y3fli8NZmILCStsETJE/KGxJLVypdYxyo2DqiAfCsv+jtRtbxDhw7lpje96Y7lbg6rbOgRNEuW+pa4VRNZ+rz4HS/a76g6WWVHDyBqnh38fNVXfdXOO8973vOSrPNCbtCEZKWaiEifJUeZD3qNd8fUqgfEs91jgGef1zVIv601aAaKqvOe7D4GReb0rycD0llorX4noUsilaQ8OlXRNRQGlUNa24ju9GcqOpfEWBPNktULZOzbKnjRae1Zh8ZuLuvxLe/043S9EmNNLu1V++w75M8LUNcEnswhTxXdoVPWfy2gRN68DNac/vBYj1PZ83oFRm315MbqXbO/WOO8kGRvTdZCQD7rBafwpg1zUZ+lDyfy0pwOGkh70KBBgwYNOiC0r5D24cOHc/bZZ+85SlRjv90ahvZYaKz8ekxM7EvcTBtQhPb1W607VhzLjOXbyyNWgnQ7imSJspYrKvMMSx6yUtTk4osvTrKit22oQnsQUC9ruC2WZazkBUkag3HX4yj64fXo8aEqe0ROLHfor8u+xoRZ92RyIqQ9z3OuuuqqHQQPTdY4IR0hQ/ogNkdPalzdvLDIez4C/fBctfI924vo0B39P/WpTz3uuFCvU13XgfwEaFhJSh4KaIYsarELsiUT46I75rIibe9Dn3S1lhGtVL1FkBb9q0cJkxUJ8dZU4hWAVPEsrluPGPKuPeABD0iSvOpVr9rKW7LoeJ03PNRytogMrTEy5s2CUOt35p9MIU86z1NSS6AaYz8e2mPCtQQuHbHv0Hd67Z3qNbNDViv+AAAgAElEQVRferYf9ez7X51j+t1RM57pTl1P9hvHHMnLs2Tei+/UZyBhcvW776se2Lcg6X6Ukpejricy0Xed0/1AA2kPGjRo0KBBB4T2FdKe53nrzTo1Pt2zAFm4LFFIoRa2h94800v2scp7ZmayWn6sSBmsrDEWafUOiOn0koPaELerhRFYgOJOrGbItMdmahlLMutZnPpnbdbs2l7SEnJnSfvZM9KTvQjOnNz73vdOshaAqO9AWCxc7UPg2qo8ipUZa82y7nTo0KGcffbZO9YxC7pmBEOkr371q3eNg6dCHK0WSOkeCUTm9eKOTv02NHQqxRq+6Zu+KUnytKc9Lck6//Su9tt1hF5D0WQPNYkNJ+u8kxudgazqHKIao07WuYR8uqes5m6g4xXg2IYge3lcOQHWq/6r58rJhloG83g0z3OOHj26g55rzL9Tv6GL3KDJulf1G6boUD8JYL1WT5h+7G/GSi7mqXoxyNT+okyzz8WE64kKstRfz4Mxhl5Gtfb91re+Ncmqf70k7rZTMvqBirX7+Z//+UlW70AtQ2yd0km82TvIpp486HuiNuxZ+qmeHTFs46j5I/uBBtIeNGjQoEGDDgjtK6TdY0uonpsVm4C6WLg9m7ta8p5l2bKkPcuSZwHX6xxZ36y3fh8rFAu5Jiuy6BnR/Xo9Fmrth1XO8oMyWce9nGayxpaVGPROv++6Wsnikt6BTPpd3NqoZ215CCoirTJicdcsbJYttEfWrGPorCJtKACS2nanb6V5nvdkd9f4Vo/t0wfxanNYeYBozU/PZeD56HKr7RgbnqCWbVnxdObZz352ktXqN3dkWnWU5wga4x2iSxDRNk8F+fc7n/G47Zz+8agj7OtC+KmeBDFzXo9eOwFaqiiXl8G89PFto7qmjkfQPBnTA/tArQ9h7qyTxz72sUnWOL75/8qv/Moku70CxmQejNmaoAf1RIj+IOx+6QfZ1usu+2kEJ1vIj0x4qaoXgq5bT/qx5uxvNfva9bAPfvCDk6xeH7pKVsZXyxAjMunxfjKq2erWp72XB8H1njxXdX+T64Sn63LZzA1JA2kPGjRo0KBBB4T2FdJGrB7IocZ6WIDiGixyaJxltq2SDpTEwu2X0LMya5Uh7fcL16EjbVZUKabIioXS+tnUekUeqxGvrLx+3aL+KrKHFKEJ1jfk4WeN9Yjx9Ipf/VIDlnb1XEAK+jNftf1kd4a7Z7vs9Uu+Nd7rWZXKnMXfRkeOHMmtb33rHX6hvoqeeowN8pC127NvkxUtQ6v0Af/9nG7NQvWZcXjXO6x+c1Gpx5rJgNehIhB90g05GXTJGLqXKFnnlSzqud+TkXnX3rZ8lGS3h+Qxj3lMkuTCCy9MssrcGLTlutkkufTSS5Os64p3DXqid/V8eM+Yd7HHiagjquqlIXc61D0ePr/73e++8w5ZmmeV6nqFPBcX1TXGq2AuedrsKbxpVXesMdnOfa/iAaxxcPK2h2gXWv293/u9JKsca4yZvHplMnv0tjXBS8fr06/b5Um0h5Fdsu47vUaCcRtL9VjYa3kd8Gxu+75b+aVnJ8pbOR00kPagQYMGDRp0QGj80R40aNCgQYMOCO1L9zh3Wj9CkKxuvH75ATcSF3QtAC/Rg3ulJytxf0icqO48riRuFO4hrjpuq3qshete+9qVOMPlVN2UPanDOIzd98ZVk9jwRjbcltxW3JbbXJ/9bmwuLkcyFHepbuueGOTdfh91TZYiE25F7ijz2I+RJatsla2s7spOV111Vd797nfvyMuztdBLP7ZljBJPuOJqP2QnZOJIivm53/3ul2S9FEGiULLqmeSangzVL3pJ1vnoCZnchRIG633T9JdrsRcR8pNu1WNc3LrmlI7c7W53S7KW1qxy5GL0s4eOyHOb69ElGsdLDCMzc1P55q6UFMVVTGYKhNRxWRM1YavTkSNHct555+05ine8YjHJOnb7gfmo95xL2rJm8U0f9EenagEjcyrhjfzND3f2wx72sJ13HGWU+MU1bF1aG1W3hFnoM53sF/wYi720jtXaIHP9ma+qb2TRQyo9lLDtLnYude9YN+adjOo8atflOfZebnpyrHuVPiUDb0uGO500kPagQYMGDRp0QGhfIm3WHYunIl9We78QgOUGsdVkIokeLCbvsKRZlfqpaK9fFKJd1h4kXo+7sGihYYjjEY94RJLkBS94QZI18S1ZE7Ik1XTLWr+9IEjtjwzwjycWcb2yzlEV3od+cQD0ZC5quVYooCdF4Vl/21CnxBmJbi7LcPSsX35S34FUttFZZ52VL/7iL97pm/VdERa5sMSNg1wg0qpvEJSx+aktqAkyrUdizDt0bD4kTEEiFTXzqEDNUFEveVkLZEiy6gVfoBZ6AV1UGb/iFa9IsuoxGbhcpB4PQuTTkzAhxn7RSyV65KhPP5rXL8SoMvAdXbImlcSsyJiukEW/qrPSNddcc9KCN8YI1XdvIARZ25HgyAuHv3418LYyvfi3L9hL8OGKUwlWyd5CLHTmuc99bpLkcY97XJI1sa/yBJWbs36UFsqtciRb+2cvxNN1qo6HbKB0/dmryagmt5r/XhjKGvdO1W86ag/RrwJBeKzeLmvaGjzRZTOngwbSHjRo0KBBgw4I7SukfeTIkdzylrfcsdhYffWqTpZ6j9P0WGm1CHvclLXMQhc3YjHWcoiQlc96WTwItSIfcXboixUpRgLxVCuyF3YQo++F81mqNc7PGmb5irfjGT81Dk6mvbiJ8RonedaYfUeDkA/kALnWGJ3+vvzLvzzJGl9+wxvekGQviqrP8LjU4yadrrnmmrz//e/f4YF8qoeAdW2Myq66jOXxj398khVlJus88I7weLiIwrPmsqI9ngZool8h6Che1dVe5rUWfajjqqjG0cEHPehBu34nC6jQUaBtF8eINT/qUY/aNV5HJ2vRGDpjHPRAHBp6gXKqJ6FfzkKfoSdrpV4ycf/733/Xu1AfNGotVmSPX3K8NkfZUPVM4dOc4cVY8VC9dPRXO+YWOrYWUD0yR5b9Wkj6LDZLh5PVy8NL4egT2Zr/mk+Af89af/YM+4JiTJVH3gX73G/91m8lWY+N0Z16/Nbag2Z5GS644IIkq8zMf0W5+O4XlRgf3moRITrSr+Ht+Te1gJc13z0J+4UG0h40aNCgQYMOCO0rpH3NNdfksssu27GYoYpqqfuOlQfhsuZkGtcCKWKKMgWhpR5XY91Vywo6YyX7jgXMcqslFFl8rFa8QjiszHptZM96Zk1CCixe/dQMZwgaAqoIN1ktxhoz07fPIEUICALDsyzyZG+RBlY6mZB39R6QG3lB3qzlWkQBGSPEeKKrOZMFUUKm4lsVNUMp+IeWoFaov2bXivlCCMYG6fACsNxrbIy+QVqsfbpETypCxIv55oGAdOh5fce4yBtq0Bbd0lZdG941PmUmoVu/VwTpWTpj3umI+cJrRfZQGJ31HT3XZu2v5zl4p6PCqqPQFtnXC0hOlbqXI1l1hr5WPpPdHhD7lvVIbuQlM9+arm35zFzZQ+gbXarXh5p/PFjL9JlHpBZXIUN93+c+90myrs96jWuyu5iLTHJeGh6+Xtimrol+eQx9cMlQv8a0Inu8yluRb0Hf/C2o8wbJe9d31o93ag5FLxLVT52cbhpIe9CgQYMGDTogtK+QNmINbYvrsSJ7SUbn8LYhEQjKO6w7z0BEkNy2c4ziRSy/Xm60Zg1DNv18LF6NoY4L+pL1zCKFNqEnv1drkBXpJyu9X7BRkT20TxZQGKuSxcsSredPWf1QrPFB9GJnNfPY+CCgRz/60UnWTFbjFR9L1sx2c3CiDF/Z486qignWrP7jnQ019m3xWzGx+973vklW5ElOUJSxV1TYPSsQBwRGD6qceHbIWEY2WZjDqjs8RlCXDFk6QmfIuJ65Jh+yIAP5F3SoyrEip2RFRdAzORtnRVe9hGe/3tWJiuoh6Vd/8ojhFe81Dm4N0++qv6dKNTZK7tCsvqA8Y61nesnZGjIOuQ7iuFBt9ZCRobmkbz2npSJRZ7Z/93d/N8mqu2oI0M0aY6YbPJR9/zTv9s7q4eNhI2Pj4w2Aymueihg8PTcv5pY8rYma7yG/x7N41R+9rHpAtmRtrfRLdmoek/3AM7Xmx36ggbQHDRo0aNCgA0L7EmmzInt2crJacyx0z0DLEE+NYbGSWWCsxl49rWc2Jqvlr1/xIDyxxmvsB2+9ohJrlnVZ0QvkhAffsdzFwXxeEZ24HYseIu1ni7ddKN8rRbGw8Q4R3fnOd955RnaycfbKclBTtV7xBJVdcsklSfbGJ1ngyRojg6RqNm+nD3/4w3nOc56zI0fP1mv6IFGoqF8cArVUS501f9FFF+0ak1gwdGlcFaX3+e9XCfaz2MmKGjwDPUA45r9eqNErrvkd0oZWjBd6q89Aeebf79BNHYv12S97wKvvybEilZ6NXD1UyYooa44Dvepnh1HPb6m80YN6cqLTTW9609zrXvfaQaSoxuKtIfKBBLtnipcpWddFn0v5FrwnvXJdfYZ8yM2aM66aN8ILZG3LUqff9N5eWT/reSr68T3eqx6IA3vWiQreM3rAq5YkL3nJS3a9oz9yNJfkXPWj76vehZ63VeBTw4CHQhvWAj2pHgt5BJ6pnqn9QANpDxo0aNCgQQeE9iXSZlGzXmtWKHTM+oEiWJMsqYoCWHwsJ22wHsV+emZjssZloHWxvp4BXLM4O9pjaYsBebdmLOKtZ5TiVT/GUs9vQqesYu1Dr9qusVPPsmQhejElli8UqGJZslq4vtO/8YpLV9TBctYumePVXNcsfJmfeNs2P+jw4cO56U1vuifW7ErLOmYE2UDN3YuTrPMOkRoHL0DPbK7X+NFJCLjHFOnu+eefv/MO3TfPvaIXvX/+85+/8448CB4kv5Ob+TcGCC9Zz2VDR8ZuXvRbY+ie6ZXJ9Md7YwxVRt6h51AzT4LxbztZcY973CPJqlf9Gt6KjM01hF09RZ0+/vGP53Wve93OmjKe6gHxf3zaO473eR0Lbw+PEU+VeSKfuj57jolTC/2sdUWIeDFX9pdeN6HGpavMkjUXRLv697OerPEZeZG1/s3Py1/+8p13zGu/F4GOmgM6al9I1v2TPH2nTR7Mujd2rwyZ8/zhtV7n2a8c7pXeTjcNpD1o0KBBgwYdEBp/tAcNGjRo0KADQvvSPY64NmpikOMSXDFcQN01sq0IgHckhPmdq4YbpLqcuGC4U3ryBXdlPV7FvcLd1RMZuFir68Y7XJz64VLDWx9vsibLKfjBHYbH7sZKVpcceXHD64dMJNNUF6dEJ+PjLseTfqprS4iDWxSPkkgkR9Vygv0yiZog2ElhFe5JFyBIzvFMbY/MucnxVIu4cBtLDOqJj+aDG7m6dcmS+5YM+rWO1V3Npc7VydXMjdmPEdb2rRP61RPsJPlUV/fznve8JKvbUFhJ2ISs6rWX+qMzZIJXrnV6t+16VO7rXvDGuOuxJG5W+iWEIsRCflW/tau9ftXpNqrlkpPtSYz9GtyeyFVd3PYM7n38a5cOOdZXk+XooHm2HntimETBZNVne593hH0kZXHPJ6su2kMuvPDCXePsZaPrUVP6Ta/JgD7YM6rs8W+d90tF7A/mtiaikQm5Wq9CB7//+7+/i/dkva5UqVP92nvJql7e5DPr6UQJsKeDBtIeNGjQoEGDDgjtK6R95MiR3OIWt9ix6lhD9SiHow/QAmuyJ87UqytZa1BlL0Ih2QeqrWXrWIssQu+yHll/FWGx+CWtQTi9YEA9yqY9li2LsFutxlWLx0Bs/YL5ngjXLx+o7UrU6SVRWcAV+UBj5oLFLTlLAllN6IJy9eNYhaM9kmRqoos5Nb6eVNLp2LFjO9Zxv9Cl8gB59qM4+la6NFkRJh3xLhnTC/yTQbKiczpDv8ytkpE1CYau6wcygbi2JSDRBfqsPbLoBYJqIhLPFR7pjPbpbC38wRtEdyBJ6Mh8QcR1LZIb9Gf96BeSq54da8O61C5kZ+3VwiZQrTnoKHob9XLGNbm0X3vpqCcdp0PVuwQRGlP3EnqHrKv3hHysLfrnKtvf+Z3f2fMOuTzmMY9Jss6DsZPJgx/84J13eCl4pBzbMt8uz1CwpXqhfGefo1fWlfHX+aer5oqsrTO6ZI2Yv2RdG96lh3hD1StEJmRuDnphpboGzbH2qx7sBxpIe9CgQYMGDTogtK+Q9jXXXLPrCj1Irh6jYAVBe5Cg98Srq2XNQmflsd7E4FiGUK5jT8lepAX5aAt6qzFt37HOxfTw5Nka61FsopdoFC+CkliGrMBk7zEKP8XM+vGR2rd2lIHtl95DWvV4Gh4hK54FcjOWesRKqUM89aIdEJjYU7LKUdxbTG4bTdOUG93oRjsegn4kJ1mRgCNpjk3hxdG1euzMWKF+OtkLv/i+6qpn6SjvEFmIwVVU2WPafu/HxCrhkV7341Pe1U89lub/+KejdMX3NS4N3fX2ezEKqKnGmh/5yEcmWXMFenES+lY9JD3ODWFD5/jYVnAISjqRl2aaphw6dGhXsaNk91zWHJlk3X94Poy1lj7tXgtrzdjoGb2ra0zfjizyXuFRG1UfyEfMuq/xbUWf6G/PH/Lzla98ZZJVd8WPk9VTaA6N3Vzy/NXyw+Z3W75SsnoW8FqLZGmXDMhcToDPa/EYumdPot/k15F+7Vucu7a3H2gg7UGDBg0aNOiA0L5C2sejavGyWqE6aI/l5HKQWlaU5Q+tQnDiGyx3lmKN23TUwLpkMbLkavyWVcoCZd31uB2vQO27Z3h6x3hZxtXCFqvCN2SnGAWZbSvlSLasVKUc+6UqtRQlRABliOuKofW4VOWbTCAIv/eiCskqR8iuo51KR48ezeWXX74T14WwKkLEl4zp45WirGNliZtfvPAiyGiHEGqGO9l5l9wgQm1UfevXAkLPcgAglOo16SgZj/qDvM3BV3/1V++8+6pXvSrJioZ4EHo8tpYVhej6CQqoXKxz2+U9spOtPetJf71QRrKuZfMF+Ri3NbJt3nhRTnat6+HDh/dcE1u9Z+K2yJqi49ZCv6Sn8gI1Qs3WjctoKgJW5ARahuzJ2LqtemDutOMZumn+69WsZKYfc2VcvfhRRcb+b++w9qzTvk8kq9evn475tm/7tiRrbNk463q63/3ulyR5wQtekGSVn/FaT7yGlZd+zSrZmK/qpaEr5rx7YE43DaQ9aNCgQYMGHRDaV0hbKUoWes/MTVarTQYhS/01r3nNrrZqHAUavvvd755ktSJZs2KcYozVWmZNagPSYZGy0Ko1pm+Z0tro13pWy1p7riTEg6L/rOVt15WylqET59JZ1GRWM1vxy/KF7MlCvB/irpcZ1GzQOl4IpZeJrdSvHu1nSWscnPXfr9HbRocPH8655567g9Qh1Jqh3y9bMC/0S/5ARSLigT22rC0ej565n6wy7tec4ume97xnktU7lKyZvS4ooaO935oBDk1qF3qRHwDV0N2KYnlw8M8bpT+f18tmfAeR+Kl9c4jXujY8S+b9ZAUZ1Rgj7w/PFPQvvsqDUs/09stKakndbXTs2LGd2OiJPDp02h5yr3vda1ff9fQAtEiHPMMTYW7Jra4X+ltPbSTrvG87bcFb5zseF+fC9Vsv5ek5FHW9JOueZQ3WC4Z4RezTvDZyg+wDvk/WeVUWGY/PeMYzdvFI32oZYns8DyJ5mn881hwKe74aFk960pOSJM9+9rOTrPKrnlLeW+PjGdkvNJD2oEGDBg0adEBoXyHteZ53IZVtF0T0KjtiHv0S94piexYjq8o5WW2JnVXrlrXcq2j5HFKs2a4sNM9CGniVNVqtWuivegjqeP1kldf4Xb/eUlwIqoG0an94YxVD0p6FfHxes9VZv7K68UJuZFKRfb8IAxrjMcBblaOYks+qx6XTNE075/yT1crfdq4UIqAj+IV0Klrq+QmQIIRK9vS2ZgDLPvUOGeIJYqxnbaFuOom3L//yL981rpoB7hmICoIjP7rFe1PfpVdkC2Xw/PA+VKRKZ8imX6WrfYineoX0xzvQ1zP9rmjJvPWqh72fGsuE5OjdQx7ykCTJD/7gD6bTmWeemc/93M/dk/NR4/jQt7FbP5AnXaqnVno9A+/2vAVrvuqB/1tT9ib99jyFZJUhL6T8GNfg6r/m+8gP6BX9xKf7Wet6eQbPhHVjr+ixdPqRrAjaWtCf9W/P13Zd8+abR8F4rDnrrHofrHVeJwibjMxX1TdV2fBfvYz7gQbSHjRo0KBBgw4IjT/agwYNGjRo0AGhfeUeP3bsWK666qo9x6lqAXhuSm61hz/84UnWJAWukpr80Esncn9ybXHVclvXhCduKjxxPUoU2VZ8gouHy6cXSMFjdTVxA0lO4trs99ritSb3+D+3l3FpUzJGPT7BRdvd4NrnapM4Ul16kjrIS1JOL0VYCyNwmXEZ+p0rivuqlgzk1pUYJgFlG83znKuvvnpHXtyH1e3FVdbdXsahHGK99EF7XM9kTaf63bvVvS+p0Nz1MrbkVEMd2u9HlOhdv2gjWd3eL33pS5OsyYTaqAU/kt2XqJgPrm1tCSFxGdf76fud6+TYZU4WNcHKmugX45AzOdYCR+REvyVnStoTUqjjJFOhnBMVyPjUpz61K/mMjOtn5G0N49cYhUJqeIQr2N5gbul6D2NVN3IvI2xPsi/QoRq28pn9UvhKeGFbyU7ETW0tm1v6oO1aeEi5X7KWtIp6gZ5k74Un2rc3OwporeI9WefbHOBZ8indqYljkhW5zs1PLxPdj4RVqnO6H2gg7UGDBg0aNOiA0L5C2kpRskhZONUKYqlJWGFlQQYSaKp1z6pimUnukMTBCuuJNcmaEAE1sSZZhj35IlmPXLF0PcPilhxTjzexrKF0PEP60CH0XC+MYKlDJ9oiE8kkFb2wmFmlLE5It5dErbz2oxWSivqVnBXdmBff4Q16guwr6jQfxleR+zY6dOjQjl5AxvUyAcmKEpqgFCgKMpKMlexNMDLPeOJdgPJq2VRj9U7/6dnq2YFouoy1hefqpaFPkG5H5ZAdHut6opvkbs7oHXnWoz7mwZFG3/XiPv0inspTTy6z1smkXpVIR3l7rMGeaFcvFurXk1b+O03TlMOHD+/wRp4VOfL2QILmxzrFvwS4ZJWdhLbuJaN31kIttWqPkhBGLvSAB6Fes4noKm8gWfAK1KRC3h9eOAVMrAWeEfrh+F2yehDpImTtHfuo/TBZdYIM7GcuQiELel4LUOFRG561F5prl57UsZI1fetXHdd12z2IFe3vBxpIe9CgQYMGDTogtK+QtrgkK0i8o5ZBZMX1ozb96FVFZSw+7bH8+/WakEo9tgG19Fic9vVbj2qxUvs1jixDiH/b0Rs89AtR+lWG1TJkLfejbd1LUHMD8CaGLk4NDUASrOcaO9OPz4wP7+YLAq/vQPLQJvlB3NVjgV8egmrlb6N5nncseIin6kGPB/ajdz0mX8cCtUB9LHfjMb56rA5ygtj6xRCQatUDukl2+oeO8VjLSUKY9BuvfhcDtGZqIQnt0C9ITj/ercVOzJF+IeBeWpPsa/wdeiEL4yMrMchacMY47AtQuAtffF71m2zxVr0nneZ5ztGjR/dcAlTnUh+1yEyyt5Rm1R3rwTtkS++6562u6V5kRny9H4XaVn5TwRfrni7xFtS5NK5e6lhb9hJjga6TvUevyM071nTdO6wfsqWreNWvd+o1udaA/Q7P8kqs67o2zGkvN20t9CuR6/v2Xp6c/UIDaQ8aNGjQoEEHhPYV0j7jjDPyWZ/1WTsWO2usZgCzVmvxlGS1GCGel7/85TvfQd8sM9awz1m1Pas32VtcRf8sQnHrmnGsPTyyJqEo46sWL3TfY76sSLyzAmshBu1CRXjzey8HWvsTQ4fsWe4dgdUr+YxPe/2CCrzW7FuFbFj93pGTABHVgiwdbdQxb6N5nnfaf/3rX59kN9KGxMjDT0U5eBtqcRVWNlShjV7oA681LkkekAfd7Jc01AISZMfKN3Zt8TrUy1jIBRIRD6W7eMJ7LUNLN3koFJ3As3dqHBxig6zucpe7JFl1SQwXmq7rqRfc6Nd59qtQ67P4vvjii3e9Q55VJvrmSXJKYRuJafMQmP96YgJiw9f555+fZO/VlQ960IN23umXoHjXT3sKHa0eF94ZbRircZmnbfkXUKp5IRff171KjN7eJwZsPHJD6DnPY7LqDh7pGe+Dfa5mc9sHXM2qPXyYY+Oq+3zPs7EmrJUu1/oMouf2CXHy+pwYvItJtpVjPp00kPagQYMGDRp0QGhfIe1jx47liiuu2LHcWF81+xQCdfaY5dmtOrGfZLUAZcZCk6x+5f5Y1tXqcjYYimDVsdB6WdNktWQhBO320oAVTbC2+/nV/lOcqGbKQmwQAhlB3Cz9iniUxYQgIBExKxYpBF4zwXlAWLzdgyBmV9G5LG5I2ng6+qzIuF9wUa8h7HSjG91oV1xKP7WkofbMIWteBi5UUfMTIN9+oQUZ9zPQ9V3tQ3vPec5zkqz6Zy7rGWj/h3jEZqFxSNucJqsedc+EeYCIxInrhTgd9YvR4w3Cq3FJKIVek6tx4d27NQ7Ka9ZrFmi/e0GSVc+gS3kX2oAk6zv4p9+V/05i2oiub7tmEyLVN321JuplHL0eAw/EC1/4wl1t2qvqfiB/w5iRuSXHqju+6+ejrUsItF4YQ0f6Fbni8D0mXN/tHhzzzMsF6Vfvk3oavENONiB7WN87qyyc0zc/YvierRfHaN949Nuz7uvfGHsGxH0iL83poIG0Bw0aNGjQoANC+wppHz16NB/5yEd2xTWT3dnjLCWZwH5nCfazt8kaW+3ZrCx0KIaVWa2ufmUk3vQnflhjfiw1Fia0BpX1c4CVb5amWDnr2efbsrmh4or2kzU+SH61ipqqSNo3Ls9AZ3iu8WQoT7vivlBIz0St7aynTmMAACAASURBVJMjhCA+6veasQsRG/PJYtrHjh3bQaLmslaBg/zMFflA0eayZp9qp35WeYJevFsRMF6e+cxn7mqLfJwdrvouxtcztKFI8qsokNyNw/g8+7KXvSzJivyrl6aev09W+evPs3Vc5GjezTPExQvG62WtJqu+QevGbi3wYNTz+mTbdRGiMu56nhb/UF8979vp0KFDOeuss3bkZm3XMZv/fiWrZ+0t1UtHTrxaYqR46ajdGelkRfs9E9+6JK+ap2Lf4u2hQz2zvcbB7RnG1z0s/SrgeimLfBT7HaRr7uhO9ZDR2+NVIIPEofbqMXV1Mv7JgFdCHkBt2z6Jx+4F3XapDTnK+6mnLfYD7S9uBg0aNGjQoEHHpfFHe9CgQYMGDTogtK/c4/M87ySjJbtdpYjLlIub640ryOc1eaAnZnEfdZcwd14vfJ+srsCXvOQlSVZXYC9Ckqyu5+7O9Sy3aU3Q4AbCNxc6N47kHskYNWlFP9xR/cgKl1Dtz/u9xKH+uOy4Mesd4/2ecK487fcyjck6l/qT0NJLX1aXZC8DWvnvdOWVV+Ztb3vbnssZaglFlxBw0UlS4abshSSS1b3OPcn1Zw4928MMyVrgRX9kS/bGXO835o7kQufeIzeuwVpUwzPGzu3e7yj3XJWj0JB3zQuetFHL5tJNawIvxqNN66i6F7n/uT8lCHHTa6OWacWDeephGXNRj+bQUc/Ui2g6HTt2LJ/85Cd33OtcxTXc1MNTeEF4qscFucq5fOl6T5yjMxdddNHOu9y11p+fXMSSG+txKom79gHrnruXLITeat/uG5esSP7Ki0qwq0leZGzvEuoyD/1YVbKub8mF5s76oavaqoWueoEjYQf9mZOq38bRC6/QM8my9SibdWLPq7q/H2gg7UGDBg0aNOiA0L5C2keOHMl55523g3j8rMcaWEEsXogAQmC9OsSfrMUYWMPQESsPcmCZbrvGz2csReji/ve/f5LdyTasw5pMU9/ZdpECVOoiANZyP7JQETZiWbJ4oQrjYb1WC5vc+tV4UBGZkGdNBuyooicFsqKrhWp8/QKKfpUmazpZEwh5DOp1q9vo8OHDO7zhvybD0SNy174xs8JrP+QNNbHqHRPkATG31TukP+1CNZBHv/ii9gNR0xWyNp7HPe5xO+8861nPSrK3iA5kDzH4WT0J1pF3zY/+tx2d0y6+oRbPaIu+1WtGIZ5e2hOypIcV5dJVn5ErPrqHJ1nnVPv1OFinaZpy6NChncQqVJPKrMfu/aOv9KJexiFpy1FPaE7yE+TLy+DIYbLqCM+aJDz9SS6s3gVruV8B29usXgy6AuU7PuVIFM/itkRR+msddY+Ofage/SRj+4E9y/yYN+urFh4y3xC2NWdvtuarV9CYtQv980rgvXoQ7NuOrDlitl9oIO1BgwYNGjTogNC+Qtq9yAFLqhas6BcmsCpZxdBeRZWsK9YyS4y1BylAYDWuih8IoBen/53f+Z0kuy+HZ93jX7t+7+U/k9WiZAGyyh1Z6ReKbCv3CR0ZTy+JWS1v42LhQpTaEDdilde4FCQNpfU48rZYFk8IFNuvQcVHtWp7wZVaznYbHT16dAd50Id+fDDZe/0f2UI+FfE84xnPSJI88IEPTLJa9fTLfECBVcb0jHygFHFC1n2NaUOv9JwMeWDMD76Muz4jpwIqM7fkSR+qLCApOqOkq/mqR29c4tCvvzSnvSRt1XPoU+6G8VnHZFXnjZcBuuQhe/CDH5xkRUv1KBNPDj2o3oVOcml4tew31RNGZtAXPehFlurRIbpAN/rx0V46thYuIVNjpUv0W9GnGtOmz9rteoHXGr+1B+qPrvCO0BljqXNJBni0d5nbfnVrbc98G482IGxzWuPTZGxc/QIU63hbUZyeo4En469eQfkWvRjXfqGBtAcNGjRo0KADQvsKaXdiOda4DUTas3Z7IYFth+VZdyxR1jPLrFuXyWqVQhwQIesYUqnlN/sVkpB7vwauxl58BiX1Ahni5NvKMuLbJSksazGlPr5kjUfpD7LRD3TDMq1FFcQjWbwQN5n4vsYEoW9oGYJXaEKZ2BozM0/G02OO24i8yK9m9bOczRkeyB5qqf2QCw9Az2CGoqD0qnfQK9RAtq997Wt38Vwv8NBO9xyRD95rURT6TXbQKpTip3HV9dQLAEEV5hYfUG6y98pCbZj3Gv9OdseTX/3qVyfZnSNR++tlO5PkpS99aZL1Sk5yFD/uJyCSVa8qWj4eTdOUaZp21oL1Xz1u5E1/e4wcb7K7kzX/wPyKxWoXIvVc1VWeDXNFV+lb9yT0/yd7ixzZM6rXhD4bD++P/sivexiTdW1YP3j6uq/7uiTJi170oiS7i8YoZ0yf8ciDQYfsjbU/ez1vAI+V9dRlVf9v7fOY2Vt6Rn+y7gPkdiIvzemggbQHDRo0aNCgA0L7CmkfPnw4Z5999o5FxdKpFiRriuUHebBAt5Xs7FmVHcFrnxVdz1pCESwx1iWLURs1nuadjvqhdUhB5nmSvPjFL06yuyzhtvGKU0IFyRo7wiMZsCK1Uc/L8lhAAdBTL/PX4/H1nX4e3Lj1V+NErHCxuH7+HG+VR8jReecHPOABOR5N05Qb3/jGe66jrNno5GFe+vWkkGO9DpAHRQ4FlMID43M6W7NQ6aAYObTezwNXDwid9y5Z4lHuRI1LI/LCs9hsz3iu/RlrPz3Qs+ZrrgkdgQzpHcSFR3oh1lllYFzOG/NO9fKwySovPFrP4pT0DEpL1oxla/1E+RDzPO/SVTxUlG6uID884E08utYmMGfOQIvB4lP75FPXGOSLLx6X6p2r/CSrd8H88FCYb3Hjevb5ggsuSLKezzbPdAhSNZf18hf89r1Yv/bKOi/GQV6Pf/zjk6x6YV+jQzVXyDt0k2y6t7X2x0Nov+MxskfiuZbA5aEkzxOd8T8dNJD2oEGDBg0adEBoXyHtq666Ku95z3t2LMVtV0qyNFn3Yk0Qao+dJqu1LTO3W2qehZZr5rk4GauZFQ5l4qfGmPvF9bK7oUCWb41t4kX8VryLFXvf+943yRqXrFmc4mg+kyXKgocS6hlvMu6XpkCo3mGV1xgqtIlnHgSoWSy3ZnGSBcud9WpuyaRezAEle1dlqW00z3OuvvrqnfmALmt+Qj/HDAlArduyRMnUd9Ber+xkXOeff/7Ou3RGPI2eORFAVyGwZJUzvatXEyYrAq2yJTO6ibd+cQ1PQj37isgEAvE7XaqIrl9xKrYILXdEVPszLxC288CQMX2siNK86e/Rj350khXRmSMx42RvVbiKEDsdPnw4N7vZzXbWJxlXRGr85rmfEbcuq8dNfJ5u88L0c9lkUL1sxox/a5nOmuPqDbAPmEO8Wp/9REiyrg/tGJfx8vjQ/6qr/XSMi2J6LLh6nzqyNd88OvY/urMtn8l8d96Mq3pNIHgeEJXd7FH2wZpj0b0pvIP7hQbSHjRo0KBBgw4I7SukjTpS3UYsMdYwa5aVX5EBS1DsF3pgJbPQoKiKuPqZSvET6LlnWSYromFhio2oamRcNWuYBcrCZnmKLUHl0GdFvixLqKz3bzyqHSWrFcnS9nuP84sb1rPykKNnnG/FR6+xXseBJ3F+70AONd4KWbH+q9Xd6Ywzzsjtb3/7nXiWKlQ1K5T8WdesbUgEMq4ZzGRHDmJ/su9Z/zwt+kh251XUds0PXqs3AG8QAsQtuxZaqnH3fr2mcfS67lBaRVq+s560u+3kBuqZ02q6m1P6AO3W6mY1czlZdYjcOoJNVrnRHWseUoXKjbsSb0Mdc6d5nnPllVfurAHjqx4+1Gs8GBsea/6AubzkkkuSrGtXnNaaglD71brJum7oGXnRrbrGzBUkCj06c2+tVVSp4hle6Uxf//bVuif7v7XQ61w85jGPSbK7pgDe8OKdntNC/+o1snTHd9owT/bTesaffOim8WnjjW98Y5Ldet7X9rY7ME4nDaQ9aNCgQYMGHRAaf7QHDRo0aNCgA0L7yj1+6NCh3OQmN9lxT0mskbCTrG4b7g2uRe4iLiZu7PoOdyTX+d3udrckq9uNi7AWyOAW6kcQ9M/FxeVZeeF25WL1U0JSdTVx43Dnaq+7gLgGqwvI/7l+9KN/ySNcQckqN7L2O5eQUEIvQFPHZ14cf1JggkuyJqBw83GdcfOaG66t6s7GG9fVtvKE6FOf+lTe8pa37Li2JAZtu8KSXhmr+e5hhdqnMXNXewZv2qwu8e76U9hB4lHVM2R+uVK5BHtCGvd/pX7JhAS1WiQk2R3q6GEJbXDZbjtCyV1o7L0gh2Iy9LK6usmCftEd7lnrt4aOyFY4Q7/CNP36xWR1X5NnLVzS6ciRI7nNbW6z46I357VgEr70TQbWMv6rG95+0gvYSNQy/2Sijfos97BxmFv9Vvd4n2c80yU/6/x3OfVrcK1xsq0JgvYkfAtPWP+Kq1Syf/ayqcbjp/mvR0AlqQnH9P3N+OsFJda4JFn7AxnQ7xo6lKzm70MNee0HGkh70KBBgwYNOiC0r5D24cOHc/Ob33wHgUIqNfGFFSyhoSNuFtq2i0dYwawrB/n70YV6gQPLllXPwpb8g59tx0N6shqkBV1UKxn/LNxeGIP1CC1X9MKa1Ab59SNz9ZgYHln0rHLIzpGz7/zO70yS/OZv/ubOu51H1rmEF/KrCVKO2znqYU4d02HdVjKOUykjeOjQoZx11lk784HHipZ8Rl6QB37pQ0U8/ViY+TCnkEf/vvLfESiCSGoBCclbkK150q53anEVY6YjkJz5h2Z4n8xtbR8P5hKvPq+Jb+RD512Dy3sCvXUknKxrTXEiaBOioxf18gxj5Q2QpEffu7cmWfWJvm27bhcdO3ZslyehX2laqSdF1uNFyW5PEXSPL3rGA2Jc+K8eHnIyp72cLXJpSrKuMe3QFd6TL/iCL0iyW7/pinH0y46URraOqpzw5jPv9kI0kiiTVWes6X49rqNtz33uc5MkX/mVX7nzrqO4PUGZB6Yj7mT1auEf0ja33/qt35pkd5lesvZZ9druBxpIe9CgQYMGDTogtK+Q9jzPueqqq/ag52rpsMRZ/lAEtMFCrBYvK4uFpgBCR88sUxZr/Yw1B6VBkRURIP0owMK6vPDCC5OslmdFvixdaAVCYIVDF70wTLIiRv10ZNev+6wy4A3QHvn6/ulPf3qS3UVPFKoQ6yEjMSAWcY1HsX47j/oXU9p2hMWcspK30aFDh3LOOefsic1V9NXjkvRMoRf8VtmaI7E2cW9jJyeooh7fYvl3FOkdMq2xbXE63iDyedSjHpVknY/qaSFbyM44rJHuYahxfu8qjIIXqJCsarGiHgfsx+KgN2uyFvWhK2RMFuYASq+Xf5ATz461aN16p+Y8aL9ftLONrrnmml1x3n4cMVl1x14CrZpTn9c1Tbbe5V3o5Tfx/dCHPnTnXfoE7UGGZG2uq8eF7lhD/bhbP4KYrIjXMT1HS/1ObjwudR8gs3vf+95JVh3SJv2r/dJN+yZZm2/eLl7JehSLHplvXgf9mYPq4bP32UeVROZ1eOpTn5pk91HTLrcT5UOcDhpIe9CgQYMGDTogtK+QtnKCEDCLZ1sGMGLpeoZFWLO5WXyKMYj5sNR7BmO94ABi12+1yJLVuqvXEeKFdcz6ZrFBYHUsYsnegbj79Yos1Zo9bqw9oxQiYb1WHlmerP1u+ZIry7rGJcVdZQCbL+/gh7WerCVIoQ/zJN6Gtxp7hFpZ1q513EaHDh3KGWecsae8aEU+5GLOoJle+KUiAyUMFVWBLiHDHpesukr+UDmeIC1jrl4h7fSMY/J70IMelGRFDJUHfdMR4+vx/RoTJH963a+CxU/NyIUc8Q1x6dccQNE1J8VapFc9Rswb8LCHPWznnVe84hW72tWfNWA9Vc8OvdZfjat2OnLkSM4999w9F6BUD4G2e06B9cK7UC+osb/0i3WscW36XqGTZPW0Ha8Usj2qXo5B3uTC86Ef+g2R18/6hTTaoMN4tubreGRzm8tePKpedWsOzTeEbf/pJ0/qZVHd06ZksOI19Pziiy/eecYpC2vBuOR1QNy1BK7veBlqDsB+oIG0Bw0aNGjQoANC+wppHz16NB/96Ed3LBtWUT0nxzKDBKAHiIRFWOPgLECZhKw3sRDWvXOANUOT5ceilk0uXrwN0bESWZx4ZWXircYyWepQKiudpcv69049k8qS9R1U4Z1+OUiyorK73vWuSVaUblyQl/FVaxMaI3vyZHlvK+nZy7T27Fvf11gmHvVXs/o7XXPNNfngBz+447FgdVdU6XRAzzWAxljlNfbPaoe46Zf4Iyt/W6YsBKg/6AxqItOKJsjOmHtWOi/AthgtGZJtL8HbL6FI9l6y0GO0kJ2cimTViX5+2u+uQ4SmKwK2FumidWOc1iT0Vnkzt3jp55tryUtjpgcnOms7z3OOHj26My6yrWsMHe+63X5qob7fPYfQHdny2tQ51Y+5oleetcfUq0DJgSyh5n6agHclWfMtzBWdsQcqwdzPYCfrPqZfPNEDnrLqpSMfMrHW5MNYM96tp4B4DO3TTtL0y3V4VJN1/fPOWPPkiWdZ8lUW1kLV3/1A+4ubQYMGDRo0aNBxaV8h7WmacuTIkR0rvF9qkaxWPoutI11WUrWsWXqsrp4RzvpiqbHkKrFAoXWIQJy0xrKgZQi4X8IB2de4O8tdbKdXnYKIvVvPzZIPi9AZVe+Kj9U4uGchReTcJzmqJFRRDJnjlWxYxRBy7Y+HAtolR+iZdV4teTLWz4nO2hov3uQEVBmbI2PTF1l0r0ayohVxfJnz0F6//rRm15IDlGKsfheTg56SvWf7e0U6KLaea6c7ZAt5QKj9nHPNrqVHnvWT/hlPvUTFPEOZUJLYs9MXvd9k9SQYH5lYg9BnPSNNv8XxfYcnCLJeRiIL2r6wDTXX8dQs7FMhqNhYoc1aF6CfEaZn9MI7YrWeT1b9Imuolg5bC3VdQq32in6ZEn2v67LuI8kas3bNpzbpTM2o1671AsHX+HDvQ9zdusK/fcY+QKeqV4huiOOTjf6Mq57o6SeRvuZrviZJ8spXvjLJ+jfB+k7WNe5vDHnuFxpIe9CgQYMGDTogNP5oDxo0aNCgQQeE9pV7XHEVxK1Sjxlwq3Flc69xzXDj1OQeyRrcxdwnXDLc4RI2Kg/a8V0vssIlo6BIsvdYVk/qQTXhTXJKv0yA64mbkkuqJljhlyuwJ8VILtNHsrrO+t3O3Eb9zunq9u3tS/rhrpLQVe8YJ3MuVS4oiSDcjdW9iG/zUwuldDpy5EhucYtb7HEvV9cc+RtTL4foqEc9osQV2wuVeNd86a+61umbsUqkud/97re1zdpOP1LEbahUbE1AEgrgJuZG5ko3l8Zi/MnqPqTndNcc0+FthTkkDeG5X56ijTpv5KNdbmDuUv1Ulzp+a5nPZNVJY6guda5zelcTHI9HvShIJWPrd2ybh34ZSB0jl3Y/Psr1bBw1mZUr25xyV9MViaP1oot+fAvPPTxYZWHd0VFud8fdOs9VV9HxyrTai2vCbS+OZW+3//Tk3Spvc0pO1rpQKH2sctSOC3AcG+0XJdUQrHCFZEhrbr/QQNqDBg0aNGjQAaF9hbSTxdLvSLWWGGQJ9qNI/ShRTUSDRFnx0ByLk7Xp+ENFYBIUoAaWtH6ggHrwv1t8eJYwIfGoFnGBKlnOPAmsZ0jEOOsxil6woidHsYDrsR3HkLxrHCx4PPu8WrzGjseeREb2NeGJfKBd8iTrbck4HcnXkoadrrnmmlx22WU7OoPfigxY2728onfIul4FC+nQEWNTZpFu0Ys65o6KFCiBhP1ePS70GmqEUiQv4W0bouuFcHg1nv/85+8aCw9TlQmdJWOykQBVk5f6pTl+h8okPvajR8mKfOlML+7TkX+yIirPatc6pof1HUlp9gclRE9E2xA26ggbWY+QdtVRfdMDPPVLOsxtvX6VV8zYea/MC1nXBCo84sk8mB/f170RTzUZsr7bL9ioHhA6Y3+xZ0g2e+lLX7qL92T1vtFrbdAR+8K2Y3fWZ7/8gwzoe/doVt56IaI+f8neI7QSRvcLDaQ9aNCgQYMGHRDaV0j70KFDOfvss/dce1mPNYi1sGihRzEZllQ9dlBRSbJacZAhJC++W2NneGEhsoBZumIx9UIFPLBsH/CAByRJXv/61ydZY2fVg2BcrESIg8ULifi9kmfFMBUd6JdbVATZ0TB5ijEp22kOapxXjI51zsI1HtZ4jYP3o0ssaG1B2LUoDpTP8j1RTPvYsWO58sord9AkdFFjVSxyiIynheVuTmvMV/lQz5o7PIlpQqI1fseL4FggHeKBcVyoojjfQQLGAa3hscaY6Yx5EDu/9NJLd/Fm3LU/sdJ+fWuP99dLE+igWJ/+e5zf77VQSr+Mg4cJGnOUrR67PN4lMHRKAZDqpRHnN188S9eVemlOyJOOQ4r1whuIs8ZYk3UtVT3rPFrT0Do9JCfelKpv5NHnwbqnO45TJev+STf6kTJeO+9WPdAP3oyXTtmPKvLt+w3Z4FWZXhel1KOG8oj0ay/xc9v1uPi1v9IHOmVt1JK19jFruxZb2g80kPagQYMGDRp0QGhfIe2rr74673vf+3YQMKu2XqzB8oTUWIiQKMRbY75QCYuTlcU6ZlmxtioCZm31QvesO+imospemhEah+hYf7VsIQsU8mDx9ss/eB3qRe9kID4EpXkWKqhXF+IFgutlE+UV9Isr6ri00eOfkERHa8lqOZvTnhVbL9zQD2v4RBnAx44dy8c//vGd+Jr2KzKASsgBejBW39f4HvTT0Yu5M3byqcjH3NEhyNpYtVGRb0fNPB70w9qoHom+Bvq1p3TF2qhxV3FBn+G5lxutSKTH1+kBPaerYvW8YMnqbYDKeAXMF1lVdGYOIR4lZcWA8Vz1redB9JhtpUOHDuWss87acwVjLfRjXZhn+1C/KrfGfHvZ2l4wideOHkCsyV5vEJ2FgI21rhfv0EH7p/7puf2v8mKsPWdGf/2Sm8qT+e5I375TT4T03AWesH6FpsuG6mmMflmPOda//a8WVLKO6AodtQ8Zb123eLOP90uqTjcNpD1o0KBBgwYdENpXSPvw4cM555xzdpBuRyTJioJZV6y4nmFa0bLi8Cxy7Yl7sfZY9/UMLOtNlqXfWbHarHEUFrSz42Ix4im9v2S1qKETFmYv1dhRbrKiZFYqK5mFCC3WuHu3Jr3L8vQ5OVZkx2rVj3f146x3zThmobPC9Q9xmZNt5Vn1wwuxjaZpyuHDh3cQ4raYn+94aaBMMoVmq3WPLwjB7z3j19zWTHCeHMiG98Q8kCm0Wd8RazTPPAgyv+sFLv0stXPgsnf1bw4qsocM+1Ws1p61UM9A44GO6JdcITq80/9kRefWDyRkbsXLa16J7F1yMk89w7jG+aFA+lTXS6djx47lk5/85I5uQtxVf3ueinVhPD3emqx7hfXxuMc9Lsla0wFipKv3vve9d96FcHuJXXpHbhVVymHwTq9ZQVdrnNj+ZS77/qk/HoWaH0Sf6Io8Ivky3YNZqV9IZDzGIHZvj07WueynFsjeuOuFKGSLF/PjBId1W/N9tEeHap7CfqCBtAcNGjRo0KADQvsKaR89ejQf/vCHdyw3P+v5S+iLRShTmpXHQq0WKMvJO6xKVjPkw8Ku1jJrsp8FZM2Jr1XrjkULCfRzrMZV4+DQkKxZ7eFJLJD1V4viG0+/wAMa65ZoshdhaYNVDFlpq3oF8O8zVqr4q9/rGWnP8ogYJ1mR0baYIBnUPIVOhw8fzrnnnrvTJ3nVOKW+8UfG+uxXtVZ5QJzmCaqjm/Skxr+8AzX7nS5po+obZEM+UJl+tFHRMm+FeN2LX/ziXbIhN6jGOJM1W9s885Z0D0M9PeDZfhXn6173ul3vmouK0nkS+pWsMprNUa1hwHthrTmFoR/XpNbKVf06zOpx6XT48OGcffbZe6q+1fVJhsbi+kdoeduFGjwrEPtFF12UZJ07XgWegpql3L1C+hXrpVM1t4XOdE8SuZApfUnW/YTOW488f71iYd1DtAOJOlEB1YqXV8+VPalfG8sr0T079ZpNKJ/XBPLuHsy6N5of7/QaHXQL78mag2EPqXH8/UADaQ8aNGjQoEEHhPYV0p7nOfM871imLKma9dyRDmIpsXSrtcWqEmuBWnq2OIutIkQWO3TGcmMxssa3IV/ohHWsn35pfLI3e5KVDm0aL+u2opceu2J9Q23aqufdWeP9WkfWsbiX8VVvh++6rKG0bfWJ+9lustA/+da5FjvtGbTb6NixY7niiit2kGM9n43uf//7J1lrjEN9kDZvQH23e0f6mXg6Cm1U5AOddARPFmRd8yG8T7bWAgTUs/qT1cNR56g+Ix4OqdS4JORBBrwP3oX4tJGsqKifcIAce01yld+S9bSAcXTe6Hk9swzRkzVdsX552+q4ekW841U0813dT8xLnUv6Svd7Nro1uK02ge/kuthTemZ+RenWJ++Ifu1/5rrqav9ODoBx9Oz+ZPUy0lFjN15zaFxVJv20Ch3SJp4rsifnfkrFyQr7IH2vuQiyx3vNB2vS+Ku3y/oh2x6fplv1XgY6KZu/ehf2A+0vbgYNGjRo0KBBx6XxR3vQoEGDBg06ILSv3OOHDh3KTW5ykx3XCfdHvYSBq6IfTfGTa7qm8HPJSU7jtua+5IrTZj2iICmhJ05w0XBTV9eW/3MLccFwZXGL14Qg7XmGK5tbTzKEz2tRBXLidvdOP65RXU1cw9xSSPJKL5dZXWo9mYxrvSeK1KQy7jZyNI+9cEadt361Y3U9djp69Gguv/zyPcd1akEW4REy5prnzpNkWI+ZXHDBBbvk4aiII0r9Yo/q1u0ubW5L+r3tggNuUbpBl+iq+alH43oCpTbIX+Kbz+uRRu5C4+mhKa5CrtBKXOn0i1uSrhpXdSX33q5YGQAAIABJREFUyyX6RRTmv8qkJxjRIfNJP+o+wXVP7+pxx05nnnlm7nCHO+yMGU/12Gh9tv40L/WyD2QdclNbc3SEXPrFOMm6hvBibZMBedUEu36ZUk++I0eJfEly3/veN8makOVd4yJTOlNDOdYWtzR3uD1TyLK6q60tezE9t1cZQ09UTXaH96oM6B/dqscu/d+6sZ64+elJDVX6v78TNSSwH2gg7UGDBg0aNOiA0L5C2vM85+qrr96xUFndNckLWmD9QNasZFa+hKRktXj7T8iHZdWTcfCUrKiZJYoPP2siQy+v2K+UhKrrpQisbFZrLwVpXKzKmtzRy4lCTaxZ1jqrMlmTUhCLV5KWZ6HdetwK/xLFelEFyLIWxSGnnkxmLoynllh0EQQZnAhpHz58OOedd94OUjS+epzKGHgGjJGeObJUC8lAfHQFKjIeF6xANZB4siIO6MHceRf62+ZJopPQkZ94NwfJmmBHb3k8tN/LTVaUDgWRG5lbP+TIK1Blol3rBoqyRiCxilQ8Q2e0b26hm6qr/frGfkUj/aiIDoqFvk6EtK+66qq8+93v3tHFbVfA+q6iuErVa4b6VZ/4dbGJOYVe67E6yNaa5k1RaMb81GtW+3EqP+lKL+ObrHKCdMlQPx0Z10Qu+0ov82m/doxPsaVknUO8QM/WkfVv/NXb0Y9mSsDsSbO1KM4973nPXe121LztSCNZW+u1GM1+oIG0Bw0aNGjQoANC+wppJ4vFBxGxqLcd9WHdOUYDRbCcKjJAUAqL1/GCXoihXgHJAlVezzOQF6RfY9oQZi8CoDQfpFKtZJYn65Wly0LUD9nUuGuPQ7NI+6Uq9UiQdyBrPLJw8bMt3qZdR3ygD892RFvlA22yhsmIlVzj7rW8Z7I7jt/pqquuyjvf+c6ddr/iK74iyW5LncVMxuahH2eBBpLVa9E9BcZKd8i2Ii5yMZd+9w6ZVhSofWMlD0jA9/UYFT0i417CVRs9H6R+hxRz0d+2a1b9v6MxHgpI1c8anzYvjmlBg73gTfUkWMv0u19qYV1VFIgnCLkiqU7zPO86ErbteJixHO/oGN3atqah/V5uuMfv6zE+yFZ/PS+ieh87D3jVn5+9MFWy7nXa5S3Tvv55O+pe7F1r2r5nX5UvU/uj+7xDnoFujUEeUl1P/h6QBU8O+Xm2In/61D2j/m7YB+vewkPGa7Ytt+F00kDagwYNGjRo0AGhfYW0p2nKjW50ox2ruF+Dl6wWUY9RVcs82W1tsQTFN3shEVbetuIarDqWLyTKUmMZ1tKX0Dir1DPiN8ZTLVDWHGTD4hXvYvH6vcZtyKR+VseLtxovZqVCAdAT61+ssReRqePrcvV5v0ig8o/Hbumag4roIRWfVQ9IJ7rD2oYYa2z0Va96VZLkMY95TJLVewJt9izyOhb69FVf9VVJ1pKU5hYiryUPyYcsWf1KM/YSosk6H96BXrRr/qsXgkzpG72i58alyE/10vTYKS8E/YBua06DtUBHe6y+XytZy1jiiZfG+LrHrOqyMZsDSIiMeiGQyqO+e+GZSocOHcqZZ565KwejU493d8Rds48Rzw2k26+aNQ9kUQsm9Wx+c8gzZl3WDHHZ2mLJd7/73ZOsZUztLds8btZG98rQpX7pUbLuZzxT5IdHMqo8ylanB/YOsuFR1Pa2Ne80hH3auHgD6qkVeyPdIDd7PZlX2dNrF00dL4/hdNFA2oMGDRo0aNABoX2FtFG30GoWJkuvx+1Y+1B6PWvNWu1l7sQsWOWs5WrdsdRZhOJmLDVnLrdZd/hmnbNit8XoOxrvVxXqr5+FTVbrVAY2VMx6ZQnXmJ928IYnMuHl2BbzYa2KO/UC+9qqyIX8tGMe8er3OtcQVL+sYxtBS9qD3Gv5TX1DFZCQZ11pydKuY6BnL3vZy5Ks8jFWPNaShxC0DF0InlUPKdSz6WKidBIqkl3bzxIn62kFMqbHeDQvkP228px46Mje/FcUa31Auj2WSresHSVfk/W6UM+Kbcqopud1DsiJbHtpYf37PFnXUT1XfDw6duxYrrzyyp11xEO0LZZ5vJj2tpMNxm//sW561jVZbDun7Rn7WUeV1SOhzKc4cY9DQ8sV+dbTDsm6lrUhBwFv9WSNNUu/yI9++Fk9btaEugzWRK8xgeopF/uYHAZrpecZ1f3bWLXLA0en6FmVo2d5LraVRD6dNJD2oEGDBg0adEBo3yHtI0eO7CmWvy3WxOrql8Wjat1BOv06QBYaS5GFVa9zZE2y4li+eGRN14pRvmNFQkesVT9rvNU4oCDIhmULRfXKbMmKCCBp4+xZqrWiEI8ET0GP98sehWKqxatdaEAb4qx4rvEvMod88CyGue1qQ6iLFXyiwv3O+GsfuqvXHZI31OJZSNWZznrxBG+FTGlj6ueYIdKKziBec8mq92yvvFT/TzfpkM/pX60UJVbddcjv5GcsVe/oas/Uh87MR43Zag+K6fFXP8miemmgysc+9rFJVrRE/7S57aw0XaHn2sd73Se0c6JYdid7irVceTjRhSOVKort+1bP+DaebTkpvWqjOTZfd73rXZPs3qtcXQpR2z/puXfrtcW9EqO9ktfOWrbWK4oln35dMU+Cd2qthH6Bh/2Tpwq6tWbqFa3WxIUXXrir/+7Fq6cV7F88BzwVnvVu9cjVUy91PPuFBtIeNGjQoEGDDgiNP9qDBg0aNGjQAaF95x6f53nHNVOTURBXc3eVdpdnLWPKDcXVxMXo8+62ri4Z/XHFcb1wl3Gl1ksYuKH0I0GDe4yLiVsxWV1JPeGMO4eLhuumuqmUUJUYxrXGhdaLK1T+9cflyC1FNtxY9Xgal5zkkZ40149z1GeMk0y4pRx/IbvKrwS0mgy1jaZp2pFbd60nq1tQH+SET2URHZlJ1jt1udd6gRzzQHdqmISM8S2ZDI9c7bXACR65p7kP8SQRrsqCS5GO9Pvbe5nHGurgSuey78e4ejGZ+n96QDeMh8tV2KSGZcz7xRdfnGRdk5//+Z+fZHX7VzczXsxBLybUC9Eku12kye6QwPGoX4pyIpd4dTFXXraFcKyhfoFHvw+6rmn7iuQyv+vXXlJdt/7vSCGehDa4sWtojR7hxXr0DNkLsdVkP/Osn3vf+95J1r23XwaSrOEq+4u12Es7C5tUXTXvwhj0T/v9eFqyrjnhN2sdH3S5vkMW/bjdfqGBtAcNGjRo0KADQvsKaR8+fDg3u9nNdixPFk9FbBJLoCTWEIuJdVcTNKBICNphedYWa4zVX5EBdOI7yKSX46yWmmchT/3gzc+KtKHWXqIR75AIy7MiUkeYvNMTn1j4jnMk61EPVis0xlNh3KzMiiyMtR/t+v/bu7df3a+qDvhjH1tAaFHOSCSQaIIaNXJsaQvlDMGgF154YTzExL/AW/0zTEw0xgsTExIC4VBKgba0chIiJpBojFEJoKJYatns3b3Wei/M55nfNdZvL3Z5X+mz8o5xs/bzPL/DnGOOOff4jiPtHH+znSctGL/wTyEGz0pEpIhCR3ZbdOnSpXrxi1+8GzckkujG83oRFeiIRSJ529tpem7/vqe95HN6uomAmq3WfwqSfPaznz32HmtsrBBY1QrEImc9wI0Vwxpnu1LFLgT3QFrW1Bpmup0AIMiHjBobpK8BS5aFJSPWFIIjM3iWQVyQlOfYn/jIGpXouqcQ9uJL/28pC8YkpYx26xmZJyN4QfYT2bOe2Q/2T2+ek8GezgjPxTeWy62UqG6V6+1OWR8g1bTw2AvGJhCNfOFFlnaVVvnII48cGyOekCFnfgYSstwYk33T55vpt1A/eSMzxriVIkyeyXe3kDzdNEh7aGhoaGjojNBeIe3r16/Xv//7v+98QL3MaNXxlKCqpYlC5xBBaluIhk6ro2XREGnymU5Dk6XFQqj8R708Z14LNdC4IZ1eDKNqaY8QLe2cNgkp8FdBYlWrnSKNnZbcUWeWdlWiD/rk/4RwPIOmmj7tXlbSmGmmHXlXLQ3X+vU2qeaZxRto3dbpB5WivPXWW3fjztK3iGzgIQQq/ainaCVBGjR26+97/vcsEQotQeHkAiLuRSHyfgiYVQOf3MO3XbV42kv8GhM5MPZMMePHNwYya8/xI2dKjOeT494oBhq0f3N+1tl+wRvvNZd8H37ZI93KRZYh+/wN0r7ZlK2qk+luVScbp/TSrVtkD5NjY3Cm4E9a6RD+mzO5Zh1ypqRF4itf+UpVrXOlp/p5f1qzWFJYgayl+XkfObj33nt395IDfLLuULvPeXaIuyHfxswqicwhffY/yMpljbIssPk531gSnJliVnLPm/tWbM4+0CDtoaGhoaGhM0J7hbRvueWWesUrXrHTPLtPqGppnL6DLmhdUPRW9Clk6DfaHS2SVpn30tT5OWjHtEt+cppq1dJA/aW9QvqekX4UGjst0b3maV582vyGeW0vsg9puTYjMfnTIVLP6C0AaaCJloyxF4foPuMs1wohQt+ey7qx1QIUUsBjWvoWXblypb72ta/teMpCAN0mQXF4+7GPfayqFjI2j6rFS3Ps6Jis0MoTnZkTNERGae6QQxZkYQWAgHuxnY5iqxbP7Befte/sbU/TGmCtRP5CeMYMTaevHmIzP7zg5yV35pcoBuqzr6Cw3tYxy49Chgp/kFmoyXsT9fpuy5rxg6hb86pOlik9DWEjsuFa+0UkuAJAW/52ewd67D5f94jHqVr8YEmxtr/0S79UVVWPPvpoVW0XH/F8e7sXkcLztPDYu4lsq9bZ0i1xVWvvicPo7XFZMlntUg66pai3BCX3aVVhpeEPJ9+sMv08r1ryS/Z7sZWnmwZpDw0NDQ0NnRHaK6R97ty5unz58k6T8jfzi3uzjX4tzTQ1NNq2XGrImnZH2+JfyTztHoVMe6X9i4wUoVl1MpqWFsc/A3lsNTOAunpDCsgE4ssIdxG4UKF7erH8jA0QPek5XSvukc+pbfJrmSctnYb9jne8o6qOI/vu//Q+awBRJoLpDTe2EBA6ODg4hiCg2fTfQpr8WPgD7eFFWlpYY6Aj6/1rv/ZrVVX1oQ99qKqWjKX/i48couKvZ0kyP6iiaskRX6YxkYutPGByBHHceeedx+ZJvvEnawpAbNC3eUCq/K/JezLRo8fli+MzFGhfVS2561kgkJz1z9iGjqzIjGwIqC3PCfJKrp6OXNtextRYrD9Z0kIzLUnOF7JozmQKb61x1bIUyun3m7MD2sxofmcRuXVGWCdniv2aViHvMU9nJbkwv4xPkOfd/e5k0/lt3vfcc8/u3j/7sz+rqpU54VxA3p/WNTLi2n4u9LbCVcua5axijdgXGqQ9NDQ0NDR0RmivkHbV/2r0tPuO9qqWRgYBQSK0+62KaZBFjz6lcdKyaGqJYmmYnteRF8oxusd3tFXaMxSR0dwQLuTjnt6i0RgTVfDlQLy0cAiI9pwICy/MC3rmA6IB98j6qtVGkfbPV9erXaXf1b9p9qwDPVI7LSndn3Ya0j5//nxdvnz5ROWjbNJgfJB1r84GsaaPsWvk/kLY3kemUnaMly8RQsAvloitBh4984DWbz3SR+s9YhfsEXLdW0Lm3ujP9Rkq20JYfvN8yERMAOQF7WZeuPXoFjGfWWQS+UB0/J3k3V435rQGkbcfNcJWMa9qxblYQ/sFiuztcNP3a46Qtb3bW3VmZLb5ky98gW49X+R0VdXDDz9cVUsmyIj3W3djzpoCzgFjYgVkSegV8qqWf51Vjqz2+AjoPC0J5IBsuKdXMMuzkRWGFcK57dwhq1nxz1x7bYZ9oUHaQ0NDQ0NDZ4TmP+2hoaGhoaEzQntlHr927Vp94xvfOGGeyNQopkymMeYV5jB/s2Qncw0TEHNkL9XJjJwmWmYUYxCgw9TEBJ59m5mFvI95UrCPsWUZU2Ypc2fqYZ41b+b5NPv1UoDShXqZxwyo6EU0mDh7D2QF/P2eY+iNSNxrDZjCqqq+9KUvVdXiY+/9bP5ZTMHcb6ac4I/92I/VPffcsxsDk2O6LfzbO4xfahS5EFBVddLUh1/MadYWj9M8zqTpGcyl0rqsTxYFYV7Fp16Uhqk1zaJcKT31iQuCybmnyOT4ySRTIHeI9Lc0x0stIoPM5V0eev/wqpMFP8iseZKHLJvae30zt7vGuqYZPu+vOt5M5P+C7PVM/URkpp9V1sP4ubOq1nqTITy1Hs6OrZQvY3CO6RMvGEsJ0bzGniBXxmyMW3uDnJE/54u9YKy5p/u6kFH7i7tJ8GIG63r3b/7mb1bV2jfex6SfKZueZw8YS39fulbIivXIhif7QIO0h4aGhoaGzgjtFdK+ePFi/fiP//hO26dlZqoSzbAXKqGt0twSTfRiDzQn2nHX8rOQBE3P+2hoNEaIK4O8eoBMb7Dh3iz2DyUJwBAYZEwQpLlk2VTXmjNESkvuDTFyPlAzrdI9EJixpvWhr09vnuAZW2Ule6ERKM2aZHCetYXKE0l1evzxx+uTn/zkTg5YQjJ4DdKBKiETWj1EmIU0zJsm3hsaCGwRhJXpLa6xHj5ne8PkSc5f4Iw1w2PpY5lO1wvi9GCvXvYzG7lAy+7p7RS3CgHZj70kLZ4bm7XNQCT39rKV5G+rpar1woOOsLusJhl/or0bEetCIt4bUW9Iclrxll5C1Xt6wZYM9jRXcvWFL3zh2Ge/CwarWuVDWZl6ASC8zfPUeUmGyIGzC+pkScx7eypjT0+E2jOI0R42Ru83Nmli0HumULpX8FwvL2rMec6RIwF9rGrQuPck7+1pcjXFVYaGhoaGhoZ+KNorpH1wcFCPPfbYTjPtaLqqTjSE6I0HaH1Z7KRr0HwvtD3J+Hw+mYLDl9ubL0BCPSWiaqESPllj5j+hVWa6E18mpEWr7P52z0pfTy9UQMPu5S0zrYE/qlsMoDMoyntTE8U/iMqYIUYoJNNDjNG4+crxwvolUu1NS04r3H/rrbfWT//0T+/Wv6fQVS20ZU3x6bQiCtC4Ig8K89Dmrbu5u75qIXf86evRm9Hk/Xxw+NQLWCTi8fzXv/71VbVKTeKfYjf8oIn0jQnfya74i56SVbVk1XPIUm+MQbYylckewAPIyh6HwNN6Yw2tF0uYeeNRImTPd81pbV1RR76nUaK5H0QdhfeGRfiWc2bhkS5oP0KICrKkf9pc8dCe0tZVW8xslWkN+15wNrG4QM1p7XINXrMoZiniquOxO+TMeeIcvf/++zd5k+T57iFn5I8MpQWT7JBZPIbw7bet1rPkIVuZ7gMN0h4aGhoaGjojdO60ghU/ajp37tx/VNU/P93jGNp7+qmjo6Pn5xcjO0M3SSM7Qz8snZCdp4P26j/toaGhoaGhoRvTmMeHhoaGhobOCM1/2kNDQ0NDQ2eE5j/toaGhoaGhM0Lzn/bQ0NDQ0NAZob1KQHvmM595dPvtt+9y9eThZZ62vFF5hVmpqWrl1G21LkRyD+XYek+vILR1r8/9b7YSRPIHUa/elvcYU8/lNh95m67byh3EC/nIxtYro+W/e3UrYzJGeZtZqaxXlOstSLfm77c+fp+3crCttecb4ze/+c1v9yjO5zznOUcveMELTswjx9TH6d3W3foknzyv11m2Hl3ekk+u6RWxukylDHuP726m7rF3em5vO9jXP5/Zc1z9de/W+rjHnP3W70HJTzxxb+djVodDN9oD5ntaNTJy4Jqvf/3rN5SdXLv+XHM0995K0t+cez+beltNcmFeKRe+63vM2eTarNfgN3va3Pu657zUdjA2z+t82+JJXzOf+97LvO3eVrPv8Z6Dn+/rMmotXNt5U7Xyvb2v74m+d3LcfW9syc7TQXv1n/YLX/jC+sM//MMTSfOZaO8/pJ/92Z+tqlVEXmlGif75H6L7fafYg0IFioBYyCzEkOUUq1YxFb1d/eeaB5PiHQSwb0DvzyIukvx7wwbl9wiOwyM3AsF3WCuyoeezwhj5n6jiEIomaDzgGoUq8CxL+blGQxBFcBSCwbNcA4URzEsxA8UOek/rqrWRe3GY3/3d3z2RnvPSl760/vRP/3RXTKH/55PvsLkVU1FEoSs7VUuJMi4Hn3v8rthP/gdtLK5V9KE33MiGGor44AvZ9H4FbbJhiPXAb3Jsj2gg0QvBVC35UmzCIUZmyGMW/iC/ZN+YPeuVr3zlMV6kHJA766MYjjU2l1ScO8/JgUIfvbf9afRHf/RHJ2Tn2c9+dv3Wb/3W7p2em+Veyas9ph+9wjj2diqJ1te644/iJ9bJ93nOkStnhzNJcRIyk4VSemlixaKsj6IkCgTlfDoIsi54YL2yyI7nKbHqTLLPrFv27/ad80QRn65IK5GcjZHw2P7pzZOMPYvseJ6x4uunP/3pY7xJ5YAc9PLMW7LzdNCYx4eGhoaGhs4I7RXSfvLJJ+tb3/rWDunQgqCAqqU9ZnnKqoWSFNSnwVWdNEPRkqEVWrSC+9najYZLQ6PtKf8HdSilmPf0BiW0VGPbagEKTfTWleYA6WdTE8/Hr7/5m7859rmjwqqlQUPFveg/RAx5JRrUPKA3/zBvY80yrd10C31ZL2NTtrFqoVe/5Zp2un79en3nO9/ZzUP7y2zJaK6QjzEos2jcaV2hxeN3N1ubF76ledS/IU9yhbd4mm1PoS0yae7eu1UiFvLwHWvMhz/84ao6uY8SaXsupOF9nmHer3nNa068DyJ17xvf+MaqWnLvb1ou7FNNQCAuY+8NgapOmlAhul5KNBF9N3WfRhcuXKjbb7+93vSmN1VV1Qc/+MFj761a6+K55Jj8Wq9uEs85kcXeote5kKWC8QVve9lk6DzX0jXWyjp1E3sSWXdGWKvf/u3frqpVXtT8ksfK5ULheOOv5hzKRVctSwF+mrvzzplsrHnOv/rVr66qdVY5b+xRCDmbN5l7LymNjDUbyqQFtOp4Gd59oEHaQ0NDQ0NDZ4T2CmlfunSpXvSiF+20TD6z9PXcfffdVVX10EMPVdVxxFG1kHj6b2mTtDcognbFR8aHkVoXzZkW/pGPfKSqliYMmXz0ox/d3WNMtDjNS2jFxpENCvzmOxq2sfTGHelDdy0EDB0ZG1SNn1XL3wkNea9GBBpW4KPYgaqqt7/97cfeC6nSdKGQXDeok/ZPG/YevyfKhVC/+MUvVtWyhGzRuXPn6sKFCzttnPadaN/8X/WqV1VV1ec///mqqrrjjjuOzSMbDkAW1oc/0HvIm7lDtVULDUHY5ozXxpj+NGumwYExeT+kkr4+8mWu3XfKd28uf/3Xf7271zyMH6IiF2TJ55yz1pv2yN/+7d9W1UlrgDXO37o/n+waRyI6PGWRsH9yD1Rto2t7/bSGIYeHh3XlypWdn5OfOtG+53intWQZYhXKgD2IEHLDa2dXb+yTlrAexGUfWg9rntYG17IUQLHG7CzJPeEe19h/zjkok8xqx1lV9cADD1TVWh/Pt4bkPq2Q3Q+OnDu9RfCb3/zm3TVa/doD+HfnnXdW1ZL7bNrDCmAMED053GpMYt2Mofu2n24apD00NDQ0NHRGaP7THhoaGhoaOiO0V+bxg4OD+p//+Z+dqZT5LUP4mVV6egszCPNO5nYzc3UTF5Mj8w5TU/biZpb67Gc/W1XLnMeM6J4MeGL6E4AioMVfppk0v/WgHiZt5htjYuYTkFK1zGA94M38mHcywIK5m7kqUzmqljmsB1NVVX3pS1869nxrwSyGJxnIgxfm2QP7mOmS99JZ8CQDWjqdP3++nvWsZ+14yoSaYzBHJm4mM64OvM5gMnwWIGO81rjniKYZ1r1MqYJqfDaOrdQ//PEbOZQ6l+4fci3AUsCZa5iVXWfNqxaPya/9xDxrH6Wsvu9976uqxS9mcc+w/oIB0wRJrsiMsZonvua6CY4ylp422NPiqpZsWo9uSk+6cOFC3Xbbbbs5OkO2AilRmmDz9zTRC8zDD+Zb4zc2Ju90lzlnmGrxpfeMznu4Drl98MD+wfMM1CIzeNhT8uwN+zZTzLgMyZe9a554kul7H/jAB6pquSSlmn7ta1+rqhXYZ6+Qraq1LuZFrpwLxsr1l8T94rnWoM83x+vvVnDh00mDtIeGhoaGhs4I7RXSPjw8rCeeeGKnUUHYiSoFEUGPtFVoGUJJxAOx00pp1AJOaM3uSc2KRkiro3EaG+0ukagxCqASzEHLo5m6rmpp0hCBOUPcUAWtOVM9zId2Do25hiafaVu92ABNl+YJlUEbGfhEg8YbgUb4BsFm6lxPIYIyIVjXJqITcGJdzGuLrl+/Xv/5n/+5e77xZhESa9iRb09zy+Aec4LioFcIoFsoMmDLupMV8tfXFpqqWmgVWrHeLAdvfetbq2ql25h7zsu6W1uBY3fdddex+VZt86lqyYO9k+mJLC14Ym2hc3Jhnom0zA8vrDuEZY0TNdvb5EBAIbTZU7+2KMff6eLFi3Xbbbft9rJ1yXNHkFW34CiyhKc5V+vguZCosUC+9nauATkyR7JJZruFsWohTlYLY/aMBx98cDdfBGG7lryRc2cGGU4rlH3fgxff8pa3VNWyimYxF8/zPjwiM95jnhmch+eKtZAd+4f85/nttyxGVXWyOE6epwoY2b+ZkrkPNEh7aGhoaGjojNBeIW1pO91PnEUHEI2P1k1jpG1mQjzNlnbfC4f00pdbJRtpajRRiA56S23f82jdvdgJjTpTYXwnTQfSotnTOL1/y1cLNXm/NBRjS0TXERxUgSd40Wv35vNotsbmM/7lGviOv818rVcvfVm1NHjrlmUlO91yyy318pe/fMc/404N2xikfRgvyw45yRgKPOzoBZEl8pjrAq2wTHRkuFUgA8+MDfJk8YByIeCq5WfE016cSPoYxJMpZpCGdef764g/0QseQIrkzvrgnzkkP/ELb6SjKbWKj7nnyTcE1P381iiRMUQHUW0VFkFXr16tf/mXf9mtHSsKq1rVyZgZMt/jZfCzalnwvJulANL1t8dL5L8fBoiGAAAgAElEQVTN3bqYO3m49957d/dIJYNwpUKRDzxNixU5cmaIMfAM8zLGlP/kd9WSNzJqXbZ6R/iOnHku66OiLom0rYc1xXsWOedEFmFyDvCd+42s4uuWfPTa+vtCg7SHhoaGhobOCO0d0r711ltPaKJZyg76gsxoe707UKJl6AvR/KFzv/fC/lVLyzIGSJEWyb9CY6taGmfvBNSjHlMD9R3/l3uNhcZJW4ZQcq7eC63hETRLI83vzA9q8vxeKjI1XvdAEu6hxbIwbEU4v+51r6uqZX3ofl1+1+QF7T/XpdPR0VEdHR3VV7/61araLrRhDuZKu3ct/mV0LQ38K1/5SlUtGXEvf9dWqVjzh7D4NEW3KhaREfP40tEzWWHhyT3RYya2SoEmpR8eSu7NOHokfZbNNUcy4p4vf/nLx36H7DPyGlq2Bvhnnn5PZM8i1TtAOR8y3gJBYzdDh4eH9b3vfW+3tviZc7aWvQtfjzDesuxAs3hJ1p0/zpKMBLcvuu8aioW4E507i24UA+I9Ge9jHZRUNS/FTjx/q9CIMXquc84zxCmkT5ilgsz3ZjrW31mVsmo9yJu1IHdve9vbqup4LI2x4LlzyHtYZNLq2ZvzpFVrH2iQ9tDQ0NDQ0BmhvULayphCbPwd6VOgBUFhUBF0kQi039ObY4iQpeXRzrOUJs2W5ue9NDNR2OkTgTwffvjhqlql/6DW3r+5ammU2gzSKvHAX1pr5trS7s0TAmGVgBzSGkDLh4IgK1YI/PRsz6pa2rcxuZYGbC55D43W2kJLNH1Ii2+zaq2L9TotAvj73/9+fe1rX9uh8m7lqFpWGRo6tIxfNPTMm+4+7J4rCuXRxjNuAKKBTiDh7h9M1AzR+Astmw+5SH8i2cN3n8mqNebXS+RjLXv/9t5rPluz9ngIFh28MA4ILNGg9Td38/S9eSY6N1fjh+A9t/etf6p0+fLletnLXrZbd3sway/gS2+GY435W3OP4WFvoMLv3cvOppUGjz3DHr5Rv/Oq5YfWMhePe1/3jA2xrq51ztmfeMuClX5+KFlGAyskvplvxraYa2/e9IY3vKGqlhy6N9uukhVnifO0Z+v0SPF8nvPBfvU+slq1znZ8eirNZ34UNEh7aGhoaGjojNBeIe1r167Vv/7rv57w/WZELhTbW8r5C8Wkn6s3Nef74D+kZdIqM3KVRkbTpFl7j9xH+ZpVy/+pNV2PLFYpKv1DNHS+JD5nfuPM6U7eVC3UDdl6D820V46qWhombR+qpdlCPHxP6R+lSXtGb2zP2pF+Sf416Mh7IRjaLT9Y3mM+vSpVkvaKLC/WKbVkKKHnZ/fc1Jxrz5OHxnu0q/GnNaC39XQP2SHDOcbuy3QPFAZ1pmWH7Js7XxxZIltkKSt9QbjWsFuUoKSUN/NhVdDUhFx3P3/mHxt/b6LT93xaH3rFN+83RnzcQliQ6WnR4wh/WH/SSmNdezMW+4R8pJWu15AwJ/tQVULzS/mW4WAPsDL0aOe0gPSGMD12w95LpC2n+o//+I+raiFO83QuQKhZCY6sOMfwmuzyNee50ys64qtaAtbQGNPPj8iqe43Nvs1YBGNxppOzbnXLPejMtwZpXdgHGqQ9NDQ0NDR0Rmj+0x4aGhoaGjojtFfmccVVBCUwSWfAVhb5qFpmFCkLzJdZTpDZhLn6E5/4RFWtgCOmJmaV7DstMIsJqxfIYBYXdFa1zCtMZsw5zK/M8ml2YQIWTGFsgnoErzC9p2mdGYypWUoRM6lnZCoTMxfTWe/ba74CONL0yGzYCyMwizOPpqmQqZg5T8EP31ubLbeGMfW13yIyY/wZTMS8aj2Y7fCJaTBNZVkYpGqZMMkdsx5T4VbKVy9c4f1Mf5mS2E3Ygry4LZj7MgCp95smK1ws5kO+sxAQHthjmfpStdYwA4K6udc6MZN7D1Nkyo4St9bCb3jgWWmGZUrPVJ6qk8GSW7/djFn83LlzdenSpZ3sMaWmedxc7CXjx4utxire7V68tIfda09kuU9niOdqWITs5dwvArTwjlw7D+yfDK7k3hO8JtWQ3FnjnvpVteTIe6w7OWAKzyCvG5219imebzUbQdabW9Acts4JLpye2uWsMsZMg0vXTNV2z+2nkwZpDw0NDQ0NnRHaK6R9cHBQ3/3ud3fBF7QwSLJqoQkotZfb3CpyAYFKJ+qowvM9I1N+jIF2KtiGNv7oo49W1fG0NM/treoELdGst4pf0Ba9l+YpYAgizzQamjQtGQowRmPPdCrPh3wgKQUa8JnGm++DzoyNltqbT2QxFDz+lV/5laqq+uQnP1lVS2vGs+QjJAKh/KBAtNtuu21nGYBEM+gG4jReyIZmTvtOSwt5ggTwoae3mUdq7K4lB6wA+ANNQSpVC5X1JiYQf39fjgV6kaYIrePfVrCUuUJQ/Vnem2jJfiIHrFyPPPJIVS0ZZllIxAr5sLRAZSxH5CTlDU+sn9+gaTKTBZZcczPpOprNWH8IMhFpb4Vpn1hTY8m5oh44h5f4SLa2ikg5qyBrwVH45TyqWvsPqrSm0K3fM11UQJbfpKc6C93bC/hUHT+Xq9ae69ag5KP54Bt+kTsI3++Z2ohfzqpu4euNn6pOpkF6v7G5Jy1y5v5UGtL8KGmQ9tDQ0NDQ0BmhvULaly5dqhe/+MU7NElLSp8Cjch3fB69HGf6iyF3JTSlRKRfsGohEwih6qRPm6bdiyqkL5CGRhvmL+r+USi3ammWtGAaYS+84G+mevCr4gUUBq31UoFVCw15jvSgT3/601W1NGBabLb19LzeCAMPIJ60WEDAEDbev+Y1rzk2z7xHsQjI9DTf0vXr1+s//uM/dsiaZp3rgnfdPwyV9eI3VQup9YIhEGJvh5ptD3sDFZYDCIFMZRlTfIDCe2GRTH9E7icH1qw3krFOidITdVct5OGZ3YpStfZJR00Qd5ePtFzYg5py4EmPv8g0IWlOfjMP1iDrmPJxM77spOvXr+947wzJ1KG+H8QL+N66J8ozTkWceqtHY7TWeT7gLXmzT50P5BofqxYvrQcekk1jl2pWdbLlJ1klm8ZhfTIdFr/9te+7Hzx9zL3cdG+ApLQvSh86HnQ5Jhfem2uPJz1mx1rb3+k7l3ZqP+W5uQ80SHtoaGhoaOiM0F4h7aOjozo4ODhR3nGrvJ9oUz4eGhPtsvtbqpZ2SnvLBhpVS5OjGVctlAdF0KRp/7/4i79YVQtJVi2tkVbqWmOkcWc0LPRC0+3+Gtoq5JW+WvMyVgjB97TI1HJpp1AR7ZzWD3XSommdyYveNMF8oYNEPuZsXXrxDtp/+o8g1a3xd7p06VK95CUvOVY4pOo4MqVdd+sMlAQZZllMfPJu8iZCW/wABJTvg6jILNmEbsl3tnPk88WHXrwjrUCol4vsBUUgLfNNHhmvsfaSvsae1oC+Dvy55IH8sSTxsVctmeS79N5ebCfRkudBbnjkmm4Fe6p0dHRU169fP4HYEn2x8GVUe76bVSt5a1347+1pPCAHGWuC+KrtS2PpcTApb2SwW6Tca155NrJ4OZvsXWvss7VNy5U9zNrEUoAHrEO5/p4LAVtv5x7LJWSf5xxZtDfM1ziMMZF9t1Q6I3tmQ/IxLUP9t32gQdpDQ0NDQ0NnhPYKaT/55JP1zW9+c4fYaNJZ2hLSoX3TtmhqNMZshN5bxkErkG5HDlngnlZPm+uNFKDo9MHRqHtzk3e9611VtaKW0/8l3/u+++6rqqXZdw0eqkntj9WBBup9HfGnht0RA20ZT0SR8v+m/x3qxrfuG7ZGGaVqDHxWtGGa/nve856qqvrABz6wuwevrWW26et0dHRUTz755A5N4G36o2j1+GINaffek35p7+TDhsI9t1t60h+O31BDRqhWLXlMy076UavWmnovVJ7Pskb2ib0A+ZBHv6dVyNzJufkaO9Se6KW3zjVG95AL1oHcX64xZ9Yu8+m53lULDUGmxmIdWZ9SPjrqTmvdFh0dHe3WTnyHegpVa33JjLlbW5aDXH/rYL+bo3E7Z6xPWhcgRPULnAPkoEfQV51cQ3wRJ9KtJ0m9VDA5I+f2Rp4h3XLlHMB748kYil5+1XtZ+Hp73/Rpk0V1PLyftcYaZ4R7bzplv+YZn+PIsfS6DvtCg7SHhoaGhobOCO0V0ka0SOg1/Sg0Xn4gGi8tHIrO6HH5y/wZEAgE0BsEpBYGRfCt0NRo1j0KMYn2Rlv9zGc+U1VLO85Kb7Ry127l41ad9EFVLY2w+8Huuuuuqlraa1ZR83xIB489t+dCpt+ta+XmAaFA6+lbc79rIGFrIFI85+V+2vZpSPvy5cv10pe+dKfBW5fkH2uFcdPIRQKbR6KXnkfKF/fAAw9U1dLgzTnjFIwXArB2HSVtoQnyiweeYZ2yvSafqTn3JjC9UlX6antlL/f2GIrkY8+XNf5u8WGRSX56jnXq0fnkIVuc+o1lAnIU0e6ebKpjD/SI5i06PDysa9eu7daSzOc54CzybuMTc4KP6Q/NXPOqde6I1ejykJYp6ys6nCWM9YLlK/OY8bRHWRubvZ7WJ7+RN3Mnd8YhywNfq1YmgHgUctCtkskH53OvN0F2e1MT46taMtnbI6Ot/WQM/SzBezxP+WY96fKwLzRIe2hoaGho6IzQXiHtW2+9tX7mZ35mp31vVSaC1GigUJN7+I+2ohxpULRlWrLoWr6M9PnQ/PiuaaTupaFltS6oxZhow7RLz8h2niIse84jhEXrk/MNmVYtDbP7v2nAEEnm5LIu4Ff31UMMPcozeYKfvWpbj1pP/nRU21sBvvrVr97dA83QurNyWCdtXY1tK6ofCoY4rIN3m2Ouv3dabzy2TtaYjG75VSEb68AvSdtnvcn7XYtv1m6rvrJ9Yu08z5iN1T25LtYMkut+Tz7BbK/Z27dC+mQYKiXv6U+G3CBF8of3xpZWKPPCa/KON1s+aOTajnqTWGm8ByJOv7j9B7GTK2eL56dfGk+tpZgCfMmKgVXrHKpaCBC/yB1fs/XIuJheA1zEf6+umO8hI3hobD1WA8LOWApnA95A0cZILjPHH29f//rXV1XV/fffX1Una4N7T1ppzNW5xpLoTNmqoIn6vrL3zSutD/iGnyn7+0CDtIeGhoaGhs4IzX/aQ0NDQ0NDZ4T2yjx+eHhYjz/++AlTRprzmG2YOJlQmdeYqdIsyowjsKQXUehBZlmqj3mIuc49UqZ8TnOlgB+mJ89j4mSmyqCOHhTHfOR7QT2eoUlI1TKz9fH73tjTTMkMJpikl4rET+bLDMphohXU4S9XAV6kiRMvmJH99R5BTBnwhhfmvNWmD124cKFuv/323XpYgzTnMckyezIF+yxAKIOWyI51YGoWiOgzM17yuJtM8cV8FJ/IYCLmUG4DZjs8Zz5Md4x/M1NzHXV3yVYjF6ZMz/VevDevdE10EzZzK7kTLMXEm+mFeIGv7uEq6KV4kz/m2YMzmfgzLdG5sJVO1eno6KiuXbt2Yn2Sx4I4Pcc1XGpM89lYpQd3GjeZtKaelfMyfqZaZniymsWOkDPRuWlP9zG/9rWv3d3D5PyhD33o2DPs1552mS4DcuYsksaHJ56dBYHsI64q54/5utY5kA2EyPfnP//5qlrNmjLdtur4ucMcL0ixuwq4ElI+7Bu/5ZruAw3SHhoaGhoaOiO0V0j74OCgnnjiiZ2mQ+vLwAJoErqjsdOUIMgsu0iDptn2QgmQSG/IXrW0xa4V06Khs60mDMbq+cZEE05rAC2SBv3QQw9V1UJjNNG3vOUtVbWCL3KMgjkgBLzZKlRA06TRdusG7RJyzEAeQRye34OZekpd1VpDPMA/f2nYnlm1kCF+soj8wR/8QXU6Ojqqq1ev7oIMe7BX1eK3sVg7f41lK+UP76C+3pbU+KHMqqWp0/zJF/SqOUumJ/o3mYU0WA58TkQPrZIRBTncY35f+cpXquo4j42/By1ZS8/IQETzwgufzctffMzAJ3LuXvx1D0S5Va7VPO3fHqyVAU8ZwPSD6Ny5c3XLLbfs1gmaTD55lz3tGgGhxrvVutJz8LinO7kuZbU3WxGA6t6tFFP7rZfJdZ45BzJd0DvJiOezUPQAuDwHNF5KS1HVQvhkKHliXtJToWbP7XPIADHWDOvEsmLf3nPPPVVV9cUvfnF3j3OMVdNn6+e8SKTtt95EZV9okPbQ0NDQ0NAZob1C2oh2xfeWCPHd7353VS0kCiHSDGn9ynBWLTRJa6Wldg2XnzIbRtAMaYI0M9rYVrvI3u7OvbQ82mwien4/SAsqhB7uvPPOqlqIPt/rPcbv+bRn801/VG9a0tGSZ7ISZCMPmifki3/GvNXohSZLc+8lHSGVBx98cHePudOss9BCp8PDw7p69eruHjKTrT4TiVUti4DnW/fUrCFMc3UtREj+oIq81/N6sRPrgQfpO5VOxaJifcgOPqb1yW+u7cV28BhaTNRsXXszCYiHXOSe8Bv56lYICIgfPH2M/J6QFBSKn/ZOtqlkXbB+ZAVyNOZES92HfRryvnjxYj3/+c/f7S1nR1rCrAvLBOTpM1lP6xK/cE9h7QWUrBsrhDFVrX3eG4WQ60z5sqdZ4bq88f2mD7gXeiLHrEDWaaskrfdZF2tpPcw3rZ4siXjtTMKrvq+SJ3hsTP6aT095yzH83M/9XFUtaxR5xue8x15gscqGJ/tAg7SHhoaGhobOCO0V0lbkoBd4yGLuopkl1kNm0Ky2kZ/61Kd29/CNQhp8LrRUv/ONpJau6IB7+LQgLygqC3Lwn/T2jSwHtLpEZQovuKZHmtNwe8GMqhWtaSxQAY3X30RY3mMeUJ/54Q1NnKaa84O0aKK09K3SkeZDg7aO0ADfoPlVrXXomQJbdOHChXr2s5+906wVV8lo9I48EgHmGBP5Gq91wEvo1rMeeeSRYzzI+VurnqXg/emfFE1rDa1Zb4qRGQ6ugb56dDXU6hkpO9a9N1vohYCsV767F8LwXGNn2doqTgHF9naS0HO2ZISg7PFsBpSUrXZ7IZ5c005PPvlkff3rX9/Js6jkzNDojYlY9szR87dKhFozf3uRGI2EsiCUf3eZtSfwImUHGoZ4+/vESaTVDN97YSHPd6Zs+dC7NYPFhbzhSZ7f5IyMQsn2EwSM3+Iw8vmuMV8y2uOOqpbskWv7i3WAFcf+rVoWBPEcvYXz002DtIeGhoaGhs4I7RXSvnLlSn31q1/dIRBaZvpgaFWf/exnq2r5z2i+vWRo1dLi/CZnTyMRWh//SfqJemMAGjBfTPq9EE2PxskHJ4rW/GixVUsrhVr4iY2NBgylZcQxLdlzRZzjifckUu1Rw94D4ZgfzTj9yfzr/FP42XPZ+dir1hrSjrtW7D3pezTXrfKUnQ4PD+vKlSs7tMSSkAiLTPScfpaPjm6qFsKELvEU4qK591zcqmU98QxrRsv3vrvvvnt3j6YyZIaPr+eiZs46yweUD3GzXuDxVi45ObM3zNP69/iFquXz5Tt1LT6Se8gu77WWxtp9i+adueTQEB5APuTD+5L3vXlEb7+bdPny5Xr5y1++44FrM5obH6BYckBWoLO0uFlv5wwrDV+p3GjykHEK5uK59hY+OasyMt/Y7G1ryWe+VeazZyt4L/QvBqGjz6olg/jlLHQmW9u07PDNWxe8cJZ4j/MmrXXkiKUAT8ihe7dagdoDLLB4A4knT/DR2SFyf19okPbQ0NDQ0NAZob1C2oimRrP+3Oc+t/uNP4tW5S/UQitKFNsjs2lxPXq3+zjzOVAa7bI34cjow57b7Vrzogmmluy5tH1oqEfv0oh7W7p8HvRMq6WdZ9tASIT/0dwhVf4wOZ2ZswrhQBXdf5h+XdT9oDRcvODDykjN973vfVVV9f73v7+qjlsXOl28eLGe97zn7bTwzr+q1WjAOnher1iWvIVaoQX38JlDwtYnUaX3uZcc4qX3Zd4sP2qvEAfNuCej4iFCcRfuVVWvN3BJSxL+kxW/kQPIKvPPyYoxiKkwVhYMMR2Zx6shTG/eg294kY1XevOc3vLT99Yi54pfpyHtK1eu1N/93d+dqAuQ9N73vreqloWvWyCg6Te84Q27e8zFGFgk/vzP//zYvVsR+hC8v+ZmzmQpLUnWjjWDpatHaqc1wFxlGlhvsUKsHOQjmzeRO5a9jo6N561vfevuHnNmffryl798bBzOW2PNKncsShotkTc8wcetRi94cO+99x6717VpyeJHJ9cf//jHa59okPbQ0NDQ0NAZoflPe2hoaGho6IzQXpnHL168WM997nN3Jgvm3jQFMp8w0Slaz/zl3jQ59jKPniGAhRmPeTFNaUzoTMs9vUpARQakMcEw5TOPe19PNauqeuMb31hVq6hBb9zQ+1tnIX2mWiatXvjF2DKdirnT+JmYmCWZzZmisukD8xdzHheFYCx/831KHrqHSdN8vC/NVNIwmGpzDJ2uXr1a//iP/7gzs+NPuiCYC/HSuPFHWluago2P7PQSsUyCUg3TFGwszO9+6+a8dMuYY+dld91kQBDTpTFwEZBj7ycXmcLSzdG9tG8vJlS19oT3cL/4K7COGTtdBtxMZNNncoE3aYY1d/wjkw8//PCxsabZl0na3jutn/azn/3suvvuu3dmZfPI/SnYqZtxmYaZy7M3un3eG6fgtT3eG6xULXNub85ifXqhoHwuFwvZsX/IbqZ+encvOOVagYFkLF1sxmKd8byno2XalnGTIcGazkpuE/dmACye29vOLmcJHqW84bGzV6CntSVv3ANVi/fGkq6afaBB2kNDQ0NDQ2eE9gppK0VJE6TxbBXSp4nTtmjZW60kaVECg3o5RFreHXfcUVXHtTsaNM3MeyFCSC5RpeIMb3vb26pqpU1AJrTZHCMtHwrqrSBpnpBJtte7//77q2pp9oJX8I3mm0UV8NhzoUy8oF1KvclCMNBGT2HyXlq5ZgBVVW9/+9urquqTn/zkMR641nwz4M1vvstAnU7PfOYz65d/+Zd32jE5yeA1KKGnt3gPhJIoFhLAW/dCD5Cqtcwx4mEvlwqhQBsZ+OQafIcuEz108m7PMx9ra+zkgTxWrfStXuIXsjSHRJ3mbM2gQaiF9WurtKf52D/ma92gzbRcGb9UQ3vF/oWmBDVVHbcMVG0Hl6EnnniivvCFL+zOEmPK9pe9nDG58tm+zZKdgp16Qw3Xmo9Ap0TA9gfekpnO662gwp5y2S08GbDHktIbBZEp1/o+UzI9F1onX/ZRb92b/DHX3pzF9+aZKV/GZG9A3Pao1La0SpE9Vg5BmnglSDPXzTXmlSV194EGaQ8NDQ0NDZ0R2iukrRRlL52X6AUi4KeBfPiSaMSZCgFh0kppUrS83kIwU5Z6mhi/ISQCTWTzD9rrBz7wgapaaWi0Olp0ary95aLfaIo0QVqmhilVy8cH4eBNjwnIIgcsA93P3ptA0Hz58nNsUEb3YW35zqTEQEfdUkI7TkTvOTR3fu8tunbtWv3zP//zDjGwSCRCxX/yZNxQGISdhUto29bMPb6HVKGORAbWw/PNFe878q9acgDZ4JN5QAgpO5Ab/hgjnhojJJJFdsgEOYBw3WM9Er1ART0Vi5xBqO7JuALvIc9pWalaezW/dx6QeesnVsXezwIZ3k0OMvWv06VLl+pFL3rR7rn4mamMb3rTm6pqrbt1tu6sTLnHWK/sLfeYG2uNsSUiVXSkt5A0RrKT62Kt+l5mPbMfxcBUnUwd9XzP8Du5E/9TtVKwrA/+i8vh708Ln7myBjkPyB25sPdz/zp7nbXOZPJlflk8yHwUixG3ZA+yHGRDFvzyntOsXE8HDdIeGhoaGho6I7RXSPv69ev17W9/e6dd0nQyeg8SodHS6qEjifwZseiaHvXaywfys6UPA3qkIboXmtnyd9BGab58iMYOvWepVYiqN2v3PaRKG08fHV/9m9/85qpaVgDzMfZEyxA73tJOe3lWY0105lpxBOnPz3knCujtG2nnkIv5pMXCtRDraWjp6Oiorl+/vhtvb5ZStRCUcVl/2jhe57q43/iMSZyE8ZOHROnWu0d19+Yp2QADL6FYWj7+QdOJlnzH7wyF+wuJWC9NcKoWkurFM+wZnzP+wtrxYXpPb0Vr/imr5Nr8jM04oND0aXs35MoiAm16b8phovuq4xacTkrgusdzE7FBj6xw5NS6QHBK+lYt/lh362Mv4QU+pcUFf6yta/DaXs5sC/E80GsvjMTH/cUvfnF3j+IlPapbbAEekI9srOE9/O2sDdbf5/TpGwuZwPMseZyUZ4hzrce4GCueZRS+dVOgy29ZfKvqeNlc60QO0gKyDzRIe2hoaGho6IzQXiHtCxcu1O23377zTWxp+VAQfwa/VuYtVx3XknuLRznDfMH92ekPp6Hz6UBYNF3ICkKuWqU4e4MA76XNJjKgNfJDmR8fD15A/ulbogWLzMY/2iSrRPpt8IdW7Pk9h5gfNPMY8URpR6jM/Hpb0aqF2GmtHX1Yx0Qb7seL/K3TwcFB/fd///durrTuRKS0addYh94Cli+uavG7IzdzNlfykVGoZML4xVJ4X/d5Vy0U1svm8jFCcn08VWvtIBw8Zj3RZEJ2Q9XaW7IRIN7eGjR9tdaQn9U8zM+1rBDZRrRbt8g7Mu+Ub1HhUJfnQ6rGkfL2VOjw8LC+973v7dAeNJaIFKqE8uwLVhRrmBY+11oXe8BZ1f3VmbVgX1h/Z5J7WRcSMdrL1rRnNvSWvVVr3+MdJG/s5Myzcj+xhji7WPzwr/utq5ZVqTfjsJ/Irr2ZzYJYOVgU8Nxeh4yz7LV7yFWfFwtJWtfIN37mebAPNEh7aGhoaGjojNBeIe2Dg4P6zne+s9NMadbpi4US+OVobq6hyacvhLYKAfONQYy0SyiJxli1omj5p2jYtDAacaJmWqR58OnQQLeK1PeccQiHNsu3Kfcz28/RDHtlKOgM0k+tnCbb526sUBpNNSs98TU2C3cAACAASURBVMX+5V/+5bFnsVzw4WeLS8+FJI0R+qNRp08bqvDcrTao6OjoqK5evbrjKZ7kuJHf8Bwi7qg5x20utHpj8wzvyYpRfoOKyFuvCpdR9jR+6JSckT+oPdG5a/DWc8kbnkJV8lqrFrrLOVctVEiWs3ZBr7gGveAV9Nyrn+VcvQ9Kh5q9L6vS4aMx4TEeiPfo1rabpVtuuaVe+cpX7vhjLVnoqk5mqZira3rbyKolM3KE8Zrskwv8SeugyHXnCtTqPeaeFj73ew9ekyXrlPd4N4uBsUHWPluD9E87G1kXIHrrgBdZ0dK5TFahf5a9XoUsG4a4F9r3fNYhz8gYqB5zZKzWWoMXcli1zmXyxoK4LzRIe2hoaGho6IzQ/Kc9NDQ0NDR0RmivzOPPeMYz6ud//udPBLZkcAdzDjMx0w9zB7ObAKKqZe4QgMFMzMymxy9TTabEMLkwWzNBCQhiCs5SjUzm3sPcLtClm1irlpmaeZ9JyfuZq7YKMTChCeZwDXOYYIsM6GMiY3IyL6Y8pn1jzfKFTFv6NVsfKRlbJT2ZPZkMmU7Nm5kxyzK6x7qd1k+b7Jir92SqmrKRvhPQ0gN4cl24VrpcMRsy63tfBohxOfRGCtauN7WoWmZw5lCmZuZjfMugQu/mIuIGsn+YCPEx5+ff9gIZZXI05gwmMl5rZZ24OpjSyU7KKtMlMyizrDnY+znGHryI98ziTKhpUn8q9MQTT9TnPve53Tlg/FlkSRCjdehFiKxHztVZZW7G14sdkbGUA3LGHI1v9jj+pIvNHrLO3uvsch5ksKQzz3Pf/e53V9U6X50lTO15zjlDehEX7j+yrAd51cn+5uZORhVSsgZZwtpZ5cwwT3uCHKR7k6x4j3PbZ2POs8U99kD+X7IPNEh7aGhoaGjojNBeIe0nn3yyvvWtb+00QeguERutBzKEEKBb2mYG1tDQaMO0LEEdAg08M9HZjZ5LQ6UxJjoXcETjowlCYTTg1AhpzoLGBJPQpKVcCcbK9BZasTGyPkDn5pU86YUReiMUmjWeZYAYzbq3zuzlMzNFy7g9lwYNrXl+3uO5NOtcl04HBwf12GOP7TR2a5yNLnqQXw8uE7gFgVctGcQnqJLc+bzVbhU66+gVeiEXGYhm/uSBFYU1o7egzeezkvjc21HiY95r3PYVy1FaVqqOt8o0R6jS/sR7ssnSlOk00CRUbszmTc5zjL19pwAuPPLerXaVN0MXLlyo5z73uTtkTVYTVeIpPpEv6HkrSLK3u8Qv6yDNjrUmZce1LBJk1d6CRHPOeGrfs0wIPPQ30SsEz8okzY2sdqthyoVgOH+l1FrT3rK1agXy9nK95utM9L6UYethH7MkucY5mGeVe8gQ2XQW9hLMVYtvLCEZCL0PNEh7aGhoaGjojNBeIe1z587VxYsXd+iOVpTpW7RWmjhfBI2QVpcFJGipngd59had0BM/W9VCx1AYbb9rz/yIVUurM+677767qqoefvjhY+///d///d09f/EXf1FVq51lH1NPc0ntFQ96sf/f+73fq6qqj3zkI1V13JcFTfYCLBBPb0maaUL8xooO9BagvUBDjtG13WcOyWVhG1q3a7JEZCelKBVr8J5MwTIua0bLh6K9L1NG8Kc3G+nWBb7HRJWuYZXpZS2NI/230BJ+GJP34E+OsTePgAzsI/5KcpdNTciKeXafM3lIJNKbLCiE0kus+py+ZpYD/tBePtdaJMrFN2PENwjbnkjZeSp0/vz5euYzn7krTuR5Kb899Y7Vxz71ffq0XeN5LHtkyXnQW07m+3ojEggb3zL1Tzqa9SXfvf1tWgVY9tyLpz3lKq1PyP7XyKWnmrJGZNol2eyphHjjXmPPdEFy5CxypvTmSrkG9oZr8Br/etvSvN9ezCI7+0CDtIeGhoaGhs4I7RXSvnbt2qbfMsvu0fhpYj5DBl0bq1rRmjQzSLH7XKCK1ET5PvzlR4HAIYP0wfHtuAdqVSTE9x/84Ad39xgDP5d59PKpW/ODaLqmq/hJ96lWnWw31307/EI00tS0IR5z7/482mzyhJ+dht1RLasH/iaxEKR1oZP2itaWRp+y0/1YCL8Ui8hCC9AWtGJtoRl/+amzQAYtH7ok295jPGkN4FPuJVshoK3mBYmcq1bZz249gfCTJ5AaZO+v+ZCZnFf/TvxF9633pidVC5lad/OCVHsZ2qq11+1xstmbPqQvE09uFn2fO3duZxGTBZER+vfcc09VrbPDc1le7L2ca4/X6NYEFj38Sl8zlOqcsR7OEvPLErH4IS4FL3tzDvysWjw1H4WnzP0LX/hCVVW95jWvqarjkeCf+cxnqmrJl/GzHLE0sfRUrX1OdsQRGEcv05p7vsdOINZAY07LrD3m7HdNR/TZhhX/WD1/WAvO/xUN0h4aGhoaGjojtFdI++LFi/Xc5z53h/b4FLKQPp8hzYnmxjdBg0ttDNKmQbuGVsdfDbFm+UKIoJfF5OuBktLnRyOkodHc+FU6aq5aaJWGSTt3jffSZtP/1XNeoSWo0HxSa6Vpauf58Y9/vKpOWhSg0mxtCEn7zjyhAXPI3Ecow/Np7taNtp6Wlp5LeRqx0kA6EFG2yjRusoEfLCDyftO/BZ3gpbXFl97ONVEMrd6aGVv31WcrwS4H3uc9/fuqhbAgaetADoy1R4RXnUTavTGJOSQ6NxZjsI9ci2f2XVpiWB3IAVSEN8ZqL1Yt2e/lMcmXPZLWiaeCjo6OjurKlSv14IMPVtVCzZmnLUbGXoJie2vJLGdsjqLDrRNkCGE7WzIegnUJ2jN3FiRjI7M5NtYhso9feJL7yT7nO8dre8W62OtpDbB3yRs51rDDfDJmwzlgfckS3hize7O2RG+lKxKd7HpGyioZtNfIGzmzRllq1bvFZmw153k6aZD20NDQ0NDQGaG9QtoXLlyo5zznOTuNUW5q+iBpWZAUREqDghxS2+KP7ZWCaHUiGGmiWz4RSIvWChFCPlmZCDqHrCErWi10nlor7c58aNI9x5xPMFHTO9/5zqpa2j8NGPrHk6xqhX/3339/VS0t3bXGRrNPv6uxeQ+kCqVtNW3hg/c+aABfWUHyHuvkuZkr3InsuN/z0wIC8Vkrz8M3cpbIoEe1mltv5EBOEuHhHWTT2556dvKWFYicucdfFpZsXdn54l57hUyZQ1pcum8eWhHdDRVmIwzP7U1tyAX+kqmMdO+xIMi8zD/vIYtiAUR5Q9g9wjrJnj+tqtX169frv/7rv3ZzJTu5LhpLdL8p5IgHaT3rVhJz6xUKIe1cFwjaOvNd23Osj2nN6k2MyN9f/dVfVdXyMW+dO71BCHlzdpHVjKh3rXF3Pzv+5T3O3HvvvbeqlrXB2P3u+7Qo9XOlV1n0e1osPJfcdRl1jqd8Wyc8yfiKfaBB2kNDQ0NDQ2eE9gppHxwc1He/+90dQkUZucofTFuksYtopYWlL5OvhSbG9wVN0OohkYzIpE3Sjrt2SZPLCmWiJdXm5uPpPqxEyzRqaIEmbX406h4tX7W0SDyheeKbymWJIGmaNE9z763zeu3jqmUBMQ8V5Wj2rk3tFcmjtl54sNXakB8NIkked7p69Wr9wz/8w24e0H9GVkNJ1p+cmXPOEfVIVdp9j4zG64w1gHC7fw4a875EgdZfDixe93GkRaJXDoRsyIUxm3dGXfdKeJ5lHORcZHXV8tF2JO9ZYivIUGYtqC3tO/KnzgEZzTF6j6j+nju8FVeCbqZutNacb3vb26qq6k/+5E+qap01VYsf1qFHZjsHsnZ+R/72i/XwLLzI+hCsf+TYmdLr12cMBT5Bx84DZ8vW/rHfXEtGe1YES0Keq4i1Aa89w2eItWqdTc63ni9tj4pnyniP++6779g9ZEXNeNHseX7jLRnFV+OwFqwQVWsN8XrLgvN00iDtoaGhoaGhM0Lzn/bQ0NDQ0NAZob0yj1+/fr2+853v7EyDzMlp4mQSYYrzuQdDpTlRIBBzJJMJ0x/zJXNImmiZUXrDECY5JqcMlmOKYaZyTy9UksFyxiAFqxcfYRqUhqAIQtUyNTG7MvUo1MEEmeYxpjS88H5mt+4GyNQLZijvYUbEc2btDAiRSsIEaE2ZF5nd0vzGZGtep5mpLl++XD/1Uz+1463nZMENJuWe5sE0Z92zNCQzHfeIa5nV3GPOac7rJkfzYNIkw2mW760QBS8y6zF1+ly1TMnMkUyZ5IuZ3DhSVskxfpELn41DSmDVcglwL+CR4CnrztSegUi9Jav39zam0nlyzlwPvQWneee8TnOldDo8PKwnnniiPvWpT1XVMq9m+iETryAvYxCQaAxZ/MY69CAu93oWOVEUJ5/j2p6+Ry7yrCIHzkD73xiZsZ1pVWs97An3eq5iT0p5puvSOd1TF7nuPOutb33r7h5z7Omcb3zjG6tquV6c/Zlqan72IB58+MMfPjaODLh1v71v75E3cpZpXfa/8ad7dh9okPbQ0NDQ0NAZob1C2qiX1kv0BfH21oiQEPSUgTrQC02MpgbJSTuixSYyUNyA1uW3jiKkLFUtTf2uu+6qqpWiAim4N9N2jAWKpZ33NAoIIgMnoHK/QaRQLcRFe81rad/mQev3XigwyxdCCFARNGBeCnOklix4qBdKgc4FoOS8aNa9WMQWHRwc1He+851dkQvIIdOhvIt1Bqo0btp3IvpeGANKwafefjELAUFLZNL7emnFTCnpqJwcC7ZRlCLRubXqKTH2CvmHntIK1YM0jdU8fJ/oDIIkv6wb9pHguZ4mmWP1HvxL2aw6HkxkLNbJ/Po6ZhqZ9TotTRAdHR3V4eHhzupkL2axFvukF4HpSDUtOwIzzRkfevlf87BOVavVLwuVsUDNLG8ZiAYR+g6/yLC1TksFeSOLzgXfC6LdKtBjf5s7ZA+p9nafVQuds2KQAwj8jjvuqKrV5OhXf/VXd/daSwHExkoOnS1ZcAYfyZezRGAf2cniKhlMWnWyTPDTTYO0h4aGhoaGzgjtFdI+d+5cnT9/fueT6GlWVUurh/agZhoUbVZqUdXSzGhVNE7owfdQTPqyaNa0YRo3jZM2DeFVLWQAYUOZSiHS5LPIQUerNFvaPx82rTaLDkCGEIhnsQ5slRNELBWuMXcaPa09/bz8e70Fn7HS2lNjpSVbJ1o43yykaj2rlv+st2PdIgUyjMkaJ9o3V+ODdHqjmERseIofZAQvrYd7smEEpM0qZG4sIJBBWhBYGqwH/kDH0GsiHv82ph6jgY+Q3FaJz96S1WfPTrRsb0GBPe3RevGH5/wgH3vB8/EKvzNVS/tICB7yIUtdDvM7lPEjnS5fvlwvfvGLd3Mkq+nLZOkwht4K2FmSMt+tWZ5LljrKyxgQljsWlfe85z1VVfXRj360qtZ5kz5mFjd8sM58v/Z28skYrLv1wC9j3UKbzh3PI/t9LaHrqqoHHnigqhb/kPWyj8hfNipyjiuB7NqeephnIysD6x8e9xK8uW7mY7/0FOSnmwZpDw0NDQ0NnRHaK6TNt0QjhbizkAgtiNZIu6MZiiLP6FpIh3YF4dCkacQ0t0TNtGQaNa0f8XmnL5bG57m0RRpo9xtXLa3OWDuqZHXgqxMxWbVQJdRnrF2TT+QAjUN//Lm0Y+PoJQOrVrTw3/3d3x27ltXBvNNCQmOH0s0DCvCsvIfW75qOnpLOnTtXly9f3vER/9I3Sq7M3Zz4baGatEi4hiZO/shI941l6UvrAB336GEWGOuWv/USoMZB6897zNm1/JD2gr1hnom0ICzP6IVmtlrlWqNeetd62QvmkpkHonXJUI+dsG65f1k38MtzXbsVL9HLpJ5WZOX73/9+/f3f//1uf+BXxhr4NysJXtrTEHhapFzDskOuRCo73/Azo567Bef9739/VS0ZgnIzWh3atw7WjiXEvLaa2niOdYFQyV0/03KMvbiO97zpTW+qqnV2VS0+kglrS+74nslD+t/xT7tQFsu+FrnWvZAWsn9745KqtW/3DWGjQdpDQ0NDQ0NnhPYKaaOuISZBqbRXGiet6NOf/nRVHfdreA5fCK1OpLbi9e5JbRkCgSq07/ud3/mdY+NRyrNqaZ49sph2J8pyqzmG50ERvcSq+aaPzvygQRonLZOGmgjLPdBxjwiHGGniWYoSaqZZWwufIeOMpO4IkY+eFUIEaKIbaBwvTosev3z5cv3kT/7kznKAX6nly3GHjlkoennJ1NR7bijZ4JPtZVP5easWiuylYHseM39b1UIEeEkevIfVJK005BZKYTWxjyAHcpnZEb2FaS/TSv4zot58IDbI0XM9w9+UVUjNM4xRLQFykvnu/Pl4AVmxspGhRJAZG3EzdOHChR3Prcudd965+120tjlCwGTHWHJPm5NYCTy0192Dfzl+6+yssAc8Hw/SogCp47vP1rLHy1SdjF0gQ+SerJLdlDvjtyfEBOCJjJNcSwibZUKNB+dLr3uR/DQGY7Zv8I/VaGt+GS9Qdbz1a9XiZ77zqeT6/yhpkPbQ0NDQ0NAZob1C2qLH+RegvYzIpbV2fxGtli8soxNFu0KNNE/oQo4grSxzYGn+tEf30tS6H6dqaZYQnd+6Jp9aMg23+0rN3bxpqomWjFH7QH5cFZ4gcL6/qpPF8D0DasNPaDnnZ9zabbqXFu5z+sH9Zn7yMHtOaebGZr7lD6Kjo6N68skndzxOlIRo4tYdou7jT582P6lGFyJ0RcTyuVmftPCQA3yAePlO+eYyMtt6kFXyDSX7PgnPoJXeqhLiMv+MlO0tJqELKGYL0ZmjOSP8hGpYZNLvip89OrnHjqQ/0bt7LnfnRaJr8rQVKd/p3LlzdfHixR0fof+0nuEpK0ZvHGKOaZFgdcHTXrnOWeKevLfXoejtL3uee9XiE787q5azyrWJKs3LmWt9eu678aTv17zIk996Nktau8iGaHz7qcuZcaVPW6yEsdg/zjv3iiGpWnuCxcieNGbzTCTu/CejHaU/3TRIe2hoaGho6IzQ/Kc9NDQ0NDR0RmivzONV/2uqYhrrvWqTmGKY6JjDmIDSzCoggtmzp28xpUtHydQiZhXfCdxicmK+ziAp41eSr6cFeWaatoyfCZOpm3laKob5Zo/a173udVW1TEGe0csjpnkRT/GpB+4wxzJfZlAG02Dvm8us5NkZ0McsJbDGmDx/q/c2Yqo/rZzg0dFRXb9+fbcODz/8cFUdXxcmN3M2TqZupvUMfmEWx3fmUcFP+CQtMcshMt/2gKw0MVYdTxPDy+5C8ZmJdasAkL/dXIm35D5dR92kbixMu9Y0+eg7fBM8Ry7wpBcMqlp7jhnW2Pr+TfdPT8EyVvf2ojJVN2cWR4eHh/X444/vxm3fZgMPsuGdxmSOOV7UUxQ9nwwxG7/rXe+qqpX2WHWycQ+Z9cze77pqmYmZnK03mcHjdP95nvPEnvY9d6O9ku4fJm1jJG94QZbStWJ9BQFbu94oiWk/+SrgjCtFoR6yZMxp/u9lbPEcP8lU7nn3+G1rbZ9OGqQ9NDQ0NDR0RmjvkHbV0jJpplmK0m80fxqga2iRGfxCYxKIBQl3dEfLzCIkUDrNmlYnxYeG2tFT1ULjAiNo0jS31O6MqWuGtErzo6km8lUIQfqEZ7n2F37hF6rqePs51wgEg+jNvZf8TJQusKkXNYC8oLQsbGLuHWH3QidZYAKazEIbN6Lr16/Xt7/97V2gG607ZQcS9K5+LWuAILmcI36xtEAc/hp3BlDhbUdJ1tj8sswjOTNu97C0SJXJ4Ez8sVYsHOTL+nhWBtr1oCjk3pQZBAWxzvTiID1ALVE62eiFMfCkp9hVrfWCFPHYc08rutPns0WXL1+ul73sZTuesz4ItKw6ud69uBOrinOhaskbC4DnWmNzfeSRR6rqeFljaZP2C55bL8FmCulULf5IbXT+OLPIbu5lZ4bgsS530HpvGVu10ja/9KUvVdXJksi9hWbVOp+7NchYyWov+lK1ziZyzmrn/4meNlu19rixWD9j9cycF3m2J/reeLppkPbQ0NDQ0NAZob1C2kdHR3VwcLDzgfSiFFVL86Kt0q56OcQscgHpQCSeq8E7tEeLhWbyXugEaqVdKtiSCJnGC/EYCw0RQkgfLR+2RgGQLx+gsRtPtgCkBdPkaf80Rhpppm2ZK43WZwjYPSwZW6VdaftSLxSgYFlIBMTX29EH6g1Zqp5ae0VI2zy22h32Bh54bJ16Gc6q5dNWTIXFwHx6adQsc2uutHlyoJAMVJO8gIKgb7+511i3yklaS/yHZrp1Zqt4DKtIR7Hdt1p1Mr7DuhsrOefnTxRDZlioWL/sha3CSsboGs97KgiolzVNOn/+fD3nOc/ZPd/eytQ4CM1aQpl8pMaSaYrWhTy9/vWvr6q1x/F2qymHvWzcrIA91iGtgva9AlO9qFNvdpTkXMFr1pJuQUo5sI+8h1w5X8lQWl56sR7WDDIkfkVKWFoF+jna0xS3YlLICl67xj0Qt3nnvPq5sC80SHtoaGhoaOiM0F4h7cuXL9dLXvKSnR9tK2o8fZRVS0PqPszUtmilNLPeolLUuHuyrSd/EM0XkqcJavCepfpopTQ0WnkvbpARru5xLY2d1tdbAKY/nkbPl8NnLqqXpp+lSM2DNklbFumOF70FZdVCUDRq/IIgaLEZ4e47KKYjn960I+eMTitjeuHChbrttttOZBykHIiahorIDn55fqJ9c4JorCnk5VnQDAtM1UIN5Nn7WDFEESdvIR5RtJAohAIRZ4lYPOtyZ0y9aExaLvzbunT04lnJe7LC6tCtUcZBVnN+0Cs/p3iM7ltMn31vlZnRwTei3i70NLp+/Xr927/9227/GEPey4rAigEp9gYYac1yLbRI/vDDmWE/scBUrX3vXHMPOfDezAQgxxC94krOHc/M9zj7yGKPunfO9CJTOYaesXP33XcfuzctSXzXxup8JQ9k9aGHHqqq4wiYPDnjoXTnmr2ea2CMvQGTtTH202I39o0GaQ8NDQ0NDZ0R2iukfXh4WFeuXNmhJVrmVs4ljY/WTcsSDZkRx7R22twnPvGJqlo+QCUvRYrL8a1aWmlvs8mfB4Gk9g9xQEkQKe2cvzLfA1mJPnWPedEIIdT0aaf2W7XKL0Jg0HNGVfKjQeN8jZ7V26KmT5s1gP+RJt3Xje+pavl3e369HHNaeVoDeqOQROGdlKKEJmjyqXX3CHk8NA9aeUZz86NB1iLC3UP776Uqcy4sHf2a3tqwaq03RC1XGN/Ida5HbyYCzfKzdxSdPrreLtKa9Xxgvv2qkyV8yZXPZFQeLTRdtRCwZ/QSq/i8haahTPJwmk/7qTR7ODw8rKtXr57IFc+yoqL3rTt5hlB7ucy81pry29rjrDIsMimr5Nc6+IwvPRalalmFXAPx+h66TNTZ4y3ssV4bgZzkuuC/36x7jwRPq5DnsjKQUTJE7s0v5Q7Pvc9z7S/3pvXhgQceqC3Kds/5jKq1DiwkmQWzDzRIe2hoaGho6IzQXiHt69evbzYez9zd3qYPaqHBd/9R1dKCoWTNECBDPkbaFv9U1dLI3va2t1VV1cc//vGqWv4hWl9WCvJbj36n/UP6qckbPw1TFHJvXQkNpPZKk4eSvMfY+JyzAQJ/s7HxbUEKkDA+p+WCBaFHZtJQae1b1Zo8h/WE76o/u2ohAhp9z/9NOjg4qMcee2yHKj0/o0/lr8oOgF7xzxqKU6ha/DGGHlHarSiZ24un0JC/HWWkJak3UIGeyQVknxaJbukwBnuAb3PLR8diZM3w2JjIZaIzzyGTIqh70x73pCUBGvf8juRYw/g6k7ba0v5/QZcuXarnP//5u/UgD3hdtdCq7/p5s9UcxZzIjmvNnSXC75///Od39/YaAq7p9SjSsoOXnm8+3mON82zkh/a3N8BxDuEJi1zVimmA4J0HrGb+2ndV6zzpbTt9b21ZU9JiQp5YTu0N83WOJzImk8ZC/lhIrEnuJ2vs/52bqQPwo6RB2kNDQ0NDQ2eE9gppnz9/vp7xjGfsNBv+lkRYPb/XNV2TyrrXNEB+IWi9+xx9n7VmoQS5yNBFrzqWSLsjKoiz57Fm/WiaLnRG26M18hN1v1vV0u5p/8ZPy+Q7S95BtPhGs/U9JN5bEVatKkw03e5T7zmlVcv6YAw06+6fZFnYotOqWpEdfjXvyUp1tHtzJFc9SyHHjZeQVK+EJV4AiU2oWijc+vfobs9M2TH/Hq3ea3bnGI3F3CEOKMX35iLzoWr5WfHJtdaD/CfagIbsH2gPwrb3yGzuxRu1zMSDnjGwRXjT6+WfRl1Gk7R1tefITqI8vlW+f4iTTJLjXMtek6C3lrR/7PHM0xY34n29Xj7eZyYMC6IzhGWi917Ivgz2PxnyW5+Xdcn9aZ+LobDO/N5kKltzdmTvPb0FqHM2LXy9EiN+WTe8z8wa56Qz1/8PEPaWXFj3reftAw3SHhoaGhoaOiM0/2kPDQ0NDQ2dEdor87iUL8S8k4U4mFME7PTUDmaeLGPKLMgkK9iFmYV5yrOzjKmgDSZBQTjdvJNFX6R0MI8xqXqWazPoSqCL97iXyYtZkdk6g3GMoRf999m9aUozd7w1Fs/tzUcyeIVpULoY86+gPSYnASpVy7zLVM9s1YsebJVa7fPcosPDw7p27drODCZwK8dNVpjGejEG8pFpJmSB6c+YPJfJjlxkoA7zMBMj2WRW9HvOmUmReZqcMdExK2eQFOLKEPjzyU9+8thYPdP3Vcu07T29ZCNTdAb0KeWLrGm/VzBV7kVroPwvtxM5tG6n0Y3M4vn+G5nft+jg4KCeeOKJHQ+sT5Yk7Q1DyC0XRy/CU7X4blxM20y0+OZ9WeDDHvK+bsbl+kp3AlcNGRWAxl0ieC3XsrvfyHkvqkSurVvVOoucr671HjKb6Yk9eK03QrFuzr+Uc99Zf+4G+7U3ZKlarokM+q062YI0f+/m/WnNOTQ0NDQ05WRvZgAAFHNJREFUNPRD0V4h7U5bRf59R+vKdJKqk4EbVQsJ0swEIEEMCux7dmqGNDCaNQ2XxgiRZqEHwUK96IC/PXCnamnjNFDvkWKmNKGxpzbpeZCi+dL0e+nIqoX+8NFzISHjwM8sbNIDBXtqj/dnWppUko4czQNvMmVKUBc+npZ6cXh4WI8//viJFp+ZOmTOUIPf8E3TFqij6mTgHAsPuRA449n333//7l6ovzdUsO74lYFwkEcvUMNaQza9t2ohj57yI5gHcjBmc8h5sahAdqwC0HuWpBVYBKX14jdkidwl6oVMs9xrkn2U6YIdJd2I8j09wOk0unTpUr3oRS/arY+5CgZzTdVCc/jWEXyeR5AaxN4teuQNn3791399d+/HPvaxqlrIF1+k6JGhtC54vvWFsMmUvZ68tQ+tnWvs017EJRF/b1Bjn9rr1i0tI+TZWvW2rq71rLQKQMc9wNKaGHNaH5x55uVcNXb3pIxZH3tsq+3y00mDtIeGhoaGhs4I7TXS3qIbpYx06qlhVQsh9PJ6nilFa6uIR0et0jVof5nWwodHG6dF0uYg/tQiaY20OmlV0BJUSEtORAr1Q+PSeCC4N73pTcfmX7V85TRQaUAQHf80hJE+ewibb86YoAzoIzV6/MF7ForTUqYQn9JpZUwvX75cL3vZy3Zj69p31UKi+E4j7+gv0QRkwLcGhZlbT4mDnqoWeoWSoFfvhaazsAOrib9SbHwm15l6o+xqb3xjj/S2qykH3d+N1+7l00/fYkf2yHvsJ8/MZiMsN5CU53ZUvoWue1vH0+hmEDY6d+5cnT9/fjcvMpMomrUCDz2fL9vZkRYQKNa4yZK9BIHj14c+9KHdvcbgvfhkb9tPWQjKe8gilNkRt71Xtfjdi1WRXc8nW2l9gOgha3vP+pDDtJB5X2+v6ix2/jn3sniM+fU2vs4h781iXD0VmMz2Ij5pITEP65Tln/eBBmkPDQ0NDQ2dETpzSLsjbBoTjbeXUsx7aFC0YdqdZgC0sIwA7U3hoSVoxbOyOUaPEucjpaV7VrZIpLn3MpY9eh1qSe2VdqokKI20N3hPa0BvKgJ9QnJ40aP183l8S73lqM/pd4f6XUMD7q1GU0uGyvw9zbpy7dq1+sY3vnEiEjzRvihTsuHdrjXXjGj3PL/1xg142n2NyYccY9WSHdaS5K11wAeowhjJyTvf+c7dPcqu9tgJ8zAHqJmVpWqhLzLEytBRTFos7A9jcy85t5+8b6tVIvmFsO2fjtqqlix2hH1arIN1uZn2iufPn69nPvOZuzHYp1BtkjOjt+S01mlV6PsBP8Ql4BcZTd+p/Y8P0PMb3/jGqlrWtZwftOjaniUB3W6VS7XeZNH8rB25TwsP/pNVZ0ePdUjZsT9Yl5whvTyvMac/3HPtI2eXc5b1cytzqJdchrBZDlgSqpa/mwxljNM+0CDtoaGhoaGhM0JnDmnTPGnftGEaVGroCPJwD58yLYtmRrtNdAZp8BvS0PhcaJPZ6g0q0qjDZy0Koc7UQGnstHMWBBpwj+pMX1ZHFTRD2iXf2VY5SWP8yEc+UlXLN9cbVSTK7U0FaNwQuGuzxSW/Gs2953Ki9JNat5vxZd5yyy31ile8YreWtPKMGzAX7+6lVF0LKVadLGUITUB31tL65HxSjvLeXno3kSgUbCyu7Qg4/eDeQybJrPdBYFBNxg1Ad9Bg9236PWNE8MQ9PZrX83szkqqVr5+1EKpOrm33l1edjAg/LZvAXjCPtGp1unr1av3TP/3TbrwQcGZb2PcsX1vxCDcia2rceAxd2j8pL70Vr31vH21Fgru2lzUm9+aXBMmSK3w3T7/LuMgzSzwKWSUHzjBnVFoDrKFxQ/ZkCk+cLTk/ciRGRyOcnk+dZ7H1Nz+R7s4wZ2P+v9GzS55KfMSPggZpDw0NDQ0NnRE6c0i7+1pplbTirCqE/PbII49U1dLqabyeITKY37pqaas0Ttf6DFWmFisKmZ+kN1/Y0gihPRomNAgd0/ZEdWZuL+1XBDgER9PtTUHyN/OAsKFzGm/P8c1397Z30AHtmb+yaq0bBIwXvSJavqdH22bEfKcnn3yyvvnNb+40816FLsfZWyayvFjbRJU0cBYd0eLuJYf4lLJDvvAUIsALa5tRytbSehu/50NNWZWMHJENfFcRyz09MjzHbz7dL8i/m/eYh7UjS9auV7lKyipjVYvnGXV9I/phEE9vBrNF8rR7Q5fM94XYyCL+Q9p4ku/zPDIDmZozOSR/eR6QfbJiDckX2ck93a0kHQGT5VwDe9X7jPXLX/5yVS35g+yzdXK3tNjb5KxHoFctfuGBOeMFS4wYJfJYtdZDZg1yjfFka87ezrU3zzG2zBjyfwh+pqVoH2iQ9tDQ0NDQ0Bmh+U97aGhoaGjojNBemccvXrxYP/ETP3Fq/9IbBaNIo2FqzOYSTDBMS0whTD7MSUxBaa58+9vfXlVVjz76aFUtsw6zkqAFASL5WzedMcl4f6YS3CiNofd2ZZLMxhTM8MxfzDpMusxUgi+qlgmp99hl2uyFZ9773vfu7n344YePjbGnSnV3QBIzVZbFrFrpWPl9jjfHtEUHBwf12GOPHTOHVx1PGeklSPGWudDcM3Cmm+2Y38kSGSIXacLF017YAQ+Y8LMhARMfdwtTNxnWsCEDoIy3F/jwvfUnFxlMRA7IEP6T2W7CrVoBlch6k1HXbgVp9QY/9t5T6Y3dqac05Zh6mdktOjw8PFaG2NpmEJS1s1bOHc1ZFCy57777dvd452c+85mqOpl+Rh7JUJ47zMOCOclfLzua1INWnRE9GCvTKo1R8J0x9CI/Pci0ap1jXGnkqvepzz2tmZLzkpyblzML76W2Va3zsqdqMl/3fuhVa192d4OxGWueVc4Qf7eKbT2dNEh7aGhoaGjojNBeIe3r16+firKrljYHrQjQ6Qg1EQ/tkPYmgKq3h6RFZ2oUTa8X5OjNMjL9BGrwHgFiAlFo9amBmpd7BUgIBOqBb/k+yAai6i1Nb9R2sWoVWqCVQ7c0UikSDz744O4eCJGm6y90Zk3SGkBb7cUToBq8yXXrZRFPo6Ojo2PyA3UmWrKG0txo5BDQa1/72qo63rqy8wyP8Ud6GLnL4Ct8gSbIrECXrXK2+CAgCFL0DAFJGRyjrSrZwEMo2VihjeSnYhkQHaRF3vzNxivkCf96WdZeeGYrfQvfEkn9IOqNV5D5ZuocgqgSSXc6Ojqqa9eu7XhOhrLgBtSFD+aIB5DxPffcs7uHdcRf+wNidM9WgJ3gKudLLz5kn0LgVUvWran1YOkhy1IDq5aVyfnpDISEXdubgFQteSIj9oBn2VeZQol/5A0PnDOsBD2otWrtJ1YBPCKPUPyHP/zh3T0sIdoIk2/3CG7N/URWzPVmghl/lLRfoxkaGhoaGhq6Ie0V0kanaeE3KkuYDS060a74byCd7udyXaZvQWe9zCOkSDNMogFCldo1ej5NO7V/39G6oRfaHi25N4PI31xL04Xk3/Wud1XV8bKMNGoaKPTcyzOafyJW6KIjhK6R5vr1AimsEIngbkQ3217xhS984W49zMd7qpbfik/+jjvuqKrFJ+uesQZQElnprUshIPNKnzo05l6oAu8hlCz8Ye28BxLg27b+mfIFyZJr1oteTKanNFWtNYPoPKP7/zNGpLdT7L5rCG/LsoPIBkuS91qjrRSwrRSypK0mQcaafvyta65cubJDk8aw1d737rvvrqqVdtRjQZSUrVoWEDLkGZCis8T6Jb/sb8993eteV1XLYsUqkGNMi03VySYn5CHPLDJBzqwdKw25I8MpB8ZtXhmbkfPJtE5jYlGSlugcMG//B2yVJCXPvcws3mehFEV8eotbcmEtWOZyjFKFb6aAzo+SBmkPDQ0NDQ2dEdorpH3+/Pl6xjOe8ZT8XIh2RRNM1Nf93DRyGqLPWwULfNf9czRSmm6+zxggNihdeUd+qCwcwA9FwzUf2jE0BoFniUUap2tFBHsvv1X6FnthESjTs4yxtxHMe2jhNGAoc8sHLfqU37EjbDxL3ndfaLYU7HRwcFCPP/747vn86VsNB6wdBMBvZw0S2XefnnHyr3m+9c82fmTGd9a0F51IHyOtHiIgX5ABmc0iQp7fI/Pdm201c95Va+0ycjnnhbbk21h7Y5resjV9zVAM5GMe7v2/8h9uoXB0/vz5unz58s4qA30lisUPc7ZPzc36bBVXsc/NFcK2X3yfctdL3vbyvFtFpJwN73jHO6pqWTN6tkxG8Cvl7Bo8gPDtwd5ApGrJrTPCvko/dNXxPdGbGbE+sW44Oz772c9W1fEmKjKEutXEmUGuM7KerPb2y/hoX6fV0/NYA9K6sA80SHtoaGhoaOiM0F4hbb4lfo6eD7pFvbUjrSi1I5qtayCg3lwE+ksE7DuaLz8enyKtPEv1QToQB62O30gkdkap0/Q6AjEWCKVrjnkvtELjpllDU/hQtRABTROCMFZaOu02feg0dd8ZGw14K1KXNk6j7vEExrwVs2DONN8tunDhQj3rWc/a+UKVksWTfAf0AAGwWnRUW7X8kdaXHFh3vm2oKltz8pkbd29zCVUkqjV/aIFVg2+OvCf/RMhCag888MCOJ1VrbfkJsxQlhN3bnkIkxpNjxLeec82Xbp7dZ5vUY1B6Q4+U1W4F6GRPsjRVnbSmnZaBcO7cubp8+fJu377lLW+pquO1FyDRu+66q6pWLAj+OEuSJ/aBa8iQPeczvqWF0f62T1ntlBd1dqR/mqx7DuQJPed5g8gVlEzeeqli/vLM18cDyJrlwB7s0eR5Dd54PmTd91me0eaDn84Se5A1MM9Gz+sWHPLc4xiqFq/tiUT7+0CDtIeGhoaGhs4I7RXSRjeDsFGihqqlWad2zw9DA6OpuZbWp9oUf2LVQrpyeOUAyuWl5aePlmbZq0x5D5Sehe9f//rXV9VCtrRH2j4Ezq+bzTho0J7rNxGmeS2CZGjYeORZkEVHYFVLC/Z8WnjPKc7ITxrvjaL8T0NTEOQWUuhkHiJm/a06mZOKug84I+X5LvGJ1QJC6FXGMnoc4iF3eElWrPGWz0zksRgD2j/52IppICNQRfd/ui4bKkAYZN7c8QQ6T8TT4xFYkFSs69avLYJIrSn++n6LJ3hvLHh+WqW8nn2xRUdHR3VwcLBDvPZlyr6ocZkH3g3dQpt5dtgPvfKZe5wPzqq0njh3WHRYjt73vvdV1cpISasW2SMjLAZiaSDGrbaurFA9w6A3+sl7e5xPj0+wpslHe9kZAWH3LAbyvVW3AU+6nNmTaVUxXvvU87yvNxvJf/c2rPtCg7SHhoaGhobOCM1/2kNDQ0NDQ2eE9tI8jm4miERqEhPtVkF993dTby8N6t40uTNZMYv3QCHmljTvMh9Lp/C5l/tL0y2XAHOk9COBH97DXJ6BOsxEzGBMxEzcTFGeWbVMPj0AjElbcNlW4BOzkSCWnq7V3RE5524qRltmePSDTOtV/8v/b3zjGycCEdOM3OfMjMhEhqdbjSfIRi/R6R4yk3LHpMgUZ/y+N8YMoGKutla9NCfeZ9pWL+/YC//0MrcZvNT3QA8uY+LPcpnM4UzoPf0In7v7pGrxgqkTPzttmSSNv7vEUPKqF2I5rWHIuXPn6vz587s9QB6yUIpgwu5CEXiIf+mWI3tkvvfpxntm6zwPegroG97whqpagWjW+N57793d88gjj1TVkiHnAV5Yr3T/9L1lbEz75N8Zxk1YdbLvNDkTVMj9k33CkTGZHxeCwDD89oyq40GeOVZjJ1uZEuYMtl+8B++NI90xZPNGKWZPNw3SHhoaGhoaOiO010j7ZhpFCK6RivHQQw9V1XENvqM4QT29nCDtPjV52i/NE/KkrfosCKhqabjSZqBkiIr2muNyLVTyG7/xG1VV9YUvfKGqlkYI8WXJQGOj5QsEoTHSdDP9yRhootI38ID2bw2yOEUv3drLjPr9zjvv3H2nPaEWnIJwevpTWizwpLfx3KKLFy/W8573vB26Y2WAPvJd1lvgXk9HS826WxF6CVdBfuQhkSpLBBnqWr5108CkaqEJa9kLAwmsyff01BTjJyPes1VghGWgB41Bread6Uh9P1kzfLWWW/u3pz31VrvGk5aETjey1pxW5vS04ioXL16sF7zgBbt1IW+J8rwTisQv47YeuS/tJesPPbOWaHABPWeKmTOKHLgXf6zLBz/4wd095AvitNd62mIW2zGP3grTujgzWA3IdNVad1YAVjq8wvMsC2zNyLnGIfaR8wif03rS0189377tKXY5H9YA93jGVglWZ7DiMROINjQ0NDQ0NPRD0V4j7Zshmpu0D77GGzUWqVoIG3W/9Kte9ardb7RUqI/mS1ODhKSLVC2tmzYMVUpJoJGmvxUypKV2fxEt3HsSxfSmFr0sq2dn28D77ruvqlb6Tvcx0VqhgkTXN/IX0tohva3UvSyHmmPdoo6wTysneHh4WN/73vd29/Ab5zOk50EiNGhWEpaQ9EtCEXxsPV2MzOB1+t176ovYArJELjIlz/MgDe/zWcpfptNBhL3soj3QS2wmHyGNXpyot0bM1KL+m71g7N5DLrKMJYSNupVmC2F7TrdQdZT+w5K2rnz10FnuT/sNv+xTa2utM52OlazH1OCP92ydVZ7Xy4faP1t7wd71PvLAAgKt57ysXS+Fa09YU8g4Eanf+H7JGbTMKpRFkexBcu0sJkvdipIpdL05i/UiH48++uixZ1et9XENK6o1IDtptfF812w1r3k6aZD20NDQ0NDQGaFzp0Xt/qjp3Llz/1FV//wDLxz6/zv91NHR0fPzi5GdoZukkZ2hH5ZOyM7TQXv1n/bQ0NDQ0NDQjWnM40NDQ0NDQ2eE5j/toaGhoaGhM0Lzn/bQ0NDQ0NAZoflPe2hoaGho6IzQ/Kc9NDQ0NDR0Rmj+0x4aGhoaGjojNP9pDw0NDQ0NnRGa/7SHhoaGhobOCM1/2kNDQ0NDQ2eE/h88fkvQ8om/2gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu8ZVV15/ubp6qokkJeEsD4AIQQBEVeIggYDKBe29ix0xGTaMeY7phOd2Inxo7GtJrWdDSJ0XtDvDEPrxpNxzy04wsFUUTeIPJQUAQlooDytKAoqMdZ94+1vnv99m+vs885RUHV1jk+n/qcOnuvNR9jjDnP+I055hilaRpVqlSpUqVKlXZ8mtveA6hUqVKlSpUqLY3qH+1KlSpVqlRpRqj+0a5UqVKlSpVmhOof7UqVKlWqVGlGqP7RrlSpUqVKlWaE6h/tSpUqVapUaUZo0T/apZSXl1KaUso9pZQ94ruV3XdvethGOKNUSjm5lPKmUspcfL5/x7OXb6ehVdoG1K2LV2ynvpvu30T/pZQPlFJuis9u6p7/uwXa+1z3/fkL9JP/PrCEMc6VUq4spfz2wHfHl1L+vpTy7VLKxlLKulLKZaWUN5dSHrsoAx5GKqWcW0o5dxu2985Syie3VXtdmzdNkc3o3zbs77ZSyl9so7b26vbFwwe+u7iU8qlt0c9DpVLKL5VSLiyl3FFKebCU8s1SyrtLKY9bwrsv6PTou927N5dS/ncp5ce3xdhWLuPZ3ST9jqTXbouOfwjoZElvlPQWSfP2+a2Sjpd043YYU6VtRy9Xu37esx3H8MZSygeaptm4hGfvlfTTpZRHN01zLx+WUvaT9BPd90P0Xknvjs9uX0J/L5X0WEnv8g9LKa+W9MeSPifp9yR9Q9Iukp4p6VckHSPp/1pC+w8X/do2bu9tkr5RSnl20zSf20ZtvkjSavv9XZJWSHrlNmo/6fmS7t5Gbe2ldl+8QdLV8d0vS9qyjfp5qPQYSWepld89kg6V9D8kPaeUcljTNPcv8u4lkv4fSXdK2l/S70q6uHv3locysOX80T5L0q+XUt7RNM13H0qnP8zUNM2Dki7e3uOoNPN0lqTnqN2o/2wJz58t6TRJP6P2DzH0Mkk3SbpZ7caf9J2mabZGX39b0vt9cyulPFvtH+z/u2ma34znP1lK+UNJP7sVfW0zaprm2m3c3q2llI9Jeo1aQ2VbtPkl/72Usk7SyqXKqZSyutuHltrfFcsc4lZR0zRfeST6WQo1TfMn8dHnSym3SPo/kp4t6RNT3n3fwLtXSrpSrcH15w9lbMs5035L9/P3FnuwlHJsKeUzpZT7SinrSynnlFKOjWfe27nHjiylfKGUcn8p5eullF9dymCW834p5YBSygdLKbd37oorSykvGnju50opXy2lPFBKuaaU8sJ0l5VS1pRS3lFK+XI3v9tKKR8rpRxiz7xJrTUpSZvcXVXCPV5KeU3nInzMwHiuLaX8i/2+cynlbZ2rZmP38/UlXPAL8GttKeWtpZQbOx7cVkr551LKPvbMcuR2TOc+2lBK+Vop5d903/9Wad1360op/1JK+ZF4vyml/EE37m93759XSjkiniullN/s2t5YSrm1lHJGKWXXgfbeUkr5jY4f95ZSPl9KOWyAB/+utC64+0t73POPpZQnxjM3ldbF/JJSynUdHy4vpZxoz5yrFp2eUHp35Lndd/uWUt5XSrml4/OtpZSPl1L2XkxGy6TL1G4gry+l7LyE5zdI+ie1f6SdXibpbyVtS3fqMyQ9VVK6439H0h3dzwlqmmZ90zTvjbYW1fnSHkU13Xo9o7QuzTs6Oe4e7b2qk+uGUsrdnWxfZN/neqftny6te/SuTnfeWUpZUUp5einl/E5PvlJKee7A1P5e0nNLKU9YEgO3IXVrfnMp5Snder5P0vu7755fSvlUtxesL+2e9xu5n5Rwj5dSfrXjydGllH/o1tx3SilvL6XsNGUsh0i6rvv1b23tvKT7fsw9Xkp5Xvf980spf9PJ665Syh+V9vjlmaWUi7r1fE0p5ScH+jy1k+l93b9PlFKevJXsvLP7uXlbvFtKObSU8tHS/l16oJTyrVLKhxZtqWmaqf/UugEbSQepdRU8KGm/7ruV3XdvsucPV7tBfFHSv1dr2V/WffY0e+69ktapFeIr1aKAv+vae/YSxrWk9yU9QdL3JH1ZrcvuuWpdmvOSXmjPndZ99n/UuoN+Ua3r7hZJ59pzu0n6a0kvUbtxv0gtirlb0r7dM4/vnmkknSDpOEnHdd/t333+8u73x6l1Cf1azO/o7rmfMV5/Qa3w/5ukUyS9XtIDkt6+CK92knShpPVqXTyndbL5K0mHbKXcrpX0CknP68b1gKS3S/qYpH/TfbdO0j/EWBq1qO4CST8t6XRJX+vmtac997+6Z8/oZPabku7r+pqL9m6S9GlJL+zG/k217reV9tyvds++p5Pv6Wp155uSHm3P3STpX7u5/3tJL5D0JbUust27Zw6VdIWkq5CtpEO7786WdL2kX5D0LLXI8S8k7b+YTi/1XzePt0g6rNOd19p3H5B0Uzx/U/f5yd3zj+8+P65r60BJ50o6f6CfP1Cre6N/SxjfGzvZu5xWdrr0wWXMc0k6382r6WT5Z2o9EL/e9fc+e+4X1G6ab1CLlp6v9rjvl+2ZczW+3mn7Jkl/qnbtvLn77M86HXqFWh39gto1tlfM40e651+xrXQg2p+QnX331k7mN6o1lp4t6Vndd/+14+vzJP1kx4v7Zft599xtkv5iYC19rePlqZJ+v/vsdVPGuUbtums6HWHtPKb7/mJJn7Lnn2dyfVvH+7d1n72z4/0vds9dLOn76tZo9/6/6+b+T2r3hhdJulTt8c5jl8jbFd24j5B0kVq0vGoZ7+4k6cfV7os3q9vjJBW1+8wF3Th/otPPv1u03SV0/HL1f7T3VLt5vccWVf7R/ifZBtd9tqukuyR92D57ryb/wK5Wu0D/cgnjWtL7kv6mE9Jj4v2zJV1pv1+o9g97sc/4w3nulHGskLSz2jPB37TP39S9uzKe31/2R9vGclE89061hsDq7veXde89K557vaSNkvaeMsZXdO++cMozy5Xbs+yzw9Uv4hX2+Z9K2hSfNWrR1trgySZJb+5+31OtcfjeGONLcx7d71+XLSS1f2wbSc/sft9F7YJ+T7R3QMe7/2af3dTxfQ/77JiuvZ+3z87VwEap1rD4jaUs6q39143lLd3//7aT0W7d79P+aJfu/6/tPn+XpAsWmk/Xz9C/gxYZ35m0a5/t0737hwPPDxoFS9V59X9Y3xfPnaH2D3yx369YZOznaviPdurOFd3nJw6sg18caPdmLWFf20p9GNTF7ru3dmN65SJtlI7/b5b03fhuoT/ar4vnPiPp6kX6OaR796UD3y30R/td8dy13efH2GfHdp+d3v0+1/H8k/Euf8PeukTe3md6f6Gm7LMD737Z3r1O0o/Zd4/vPn/OcuW9rCtfTdPcpRZN/YeycCTcsyR9vGmae+y9dZI+qtaacLq/seCMpj1nuV7SyGVZ2gj10b/lvq9W8J+U9P1o59OSnlZK2bWUskLtxvzPTcfRrr0vqrXyxqiU8uJSyiWllHvUWu7r1f5h2NrowPdLOq6UchBzlvRzalEqZ0/PU2uZXRjzOEvSKrUW60L0HEm3NU3z0SnPLEdu65umOc9+/2r38zNN02yJz1eqDUhy+mTTNOutn5vULtjju4+OU2uhZpTy36vld47n7KZpNtnv13Q/0YPj1RogHwze3dyN8VnR3kVN03jgTbY3jS6T9JrODfvUUkpZ7IXOzep6vpx1+Ua1uveaxR7sdPsDkl7WuTFPV+cqnULvkfT0+HfzIu/8qJYWrKZSyr5qDbbRP1vny9X5PGe8Rq0hzxHQZZKOKKX8Wec2XcqxAnRm/P5Vtevg/PhMar17Sber5cuClHvdUnRnGfSRgf4e37mdv6We/78nae88VliAhvi9lDWyXBri/V1N01wen0k97w9T+4fxA6E769TqQa75hegktd7SX1G7j51VStllie+ernbvealaI/PsUsrju+9uk/RtSX9SSvnlUsqBS2xzq+5pv0OtZf8/F/h+T7UR0km3SdojPhuKSHxQrTtCpZT9Nbmg91/q+x3tLek/ZDtqA2KkNtJvL7WbwPcG2hsLuiul/JSkD6m1nH5e0jPUbmS3R7/LoQ+r/cPPeeNzunH7hrq3pP0G5nGpzWMheoyk7ywyhuXI7R7/pemjl1MefJ58GQpk/K7aowLGohxP0zSb1bnR49274ncMHfrlPPkzmuTfUzXJu7H2zHBainxPV2vo/He10bHfKaW8YZE/xOfEmN6whH4Y2zfUepNeVSJ+YAF6v1r3/hslrVWry9Po1qZpLo9/iwUxrVEvA+hOtag3N/U71BsDfxXfLVfnF9OD90v6z2rX7Kcl3VVK+XDsKQvRkG4vtA6G9GSDpEct0kfOM43TraX5pmnG9rbuD9gn1Lu2T1YrA/bFpej6EL+3dg+cRkO8X2yvYc1/UJN8PVXT98sRNU3zpaZpLmya5q/UHqc8TdJ/XOK7X2ma5uKmaT6o9mhnL7UBmuxlP6l2j/hjSTeUUm4opfzyYu0uJ3qcgdxX2ijPt6sXsNNdkvYd+HxfLf/awC1qFSk/Ww7dqfas6W1T+tisVphDwUL7SPqW/f4SSTc0TfNyPiilrNLkH5IlU9M060spH1F7pvFGtZbZN5qmucAeu1Mt6n/xAs3cNKWLOyQ9ZZFhbEu5LUb7LPAZhgWbwb6SRhGl3UbzGE1uFosRQSAv9/aMFrrutGzqNsf/Ium/dN6oX1S7Kd4u6f9d4LVXSnq0/b5cHX9z18/vLmF815dSLlF7fvlh96xsQ7pTYeg1TbO5lHKepNNKKTvxB67bvC6X2vutA+1src5PUOdpeLekd5c258Rz1O5jH1L7h/zhpD01ecUpKfe6r22jvpuBz56s1p3/s03T/BMfllK2a/T+NiTW/KslnTfw/QPLbbBpmutKKevVHhUv9907Sps/4SD77OuSXtoZ9EeojS/461LKN5op1wOX/Ue7o3dJ+i31EeVOn5f0/GL3QUspj5b0U2rPXpZM3cK+fNEHp9On1LoovtI0zYaFHiqlXC7pZ0opb8JFXko5Wu25p//R3lmT0YMv0+R1Gaz8R2lpfxTer1aAz1UboJUG0afUBofd1zTNV/PlRegsSS8ppfxU0zQfW+CZbSa3JdDzSylrcZF3SOc4tedvUusq36jWQDrH3jtdrc4udzwXqpXBQc3kdYytpQc1/od2gpqm+Zqk3y3tjYYFjabuua2mpmluKaX8udrgq6Vc+/kjtd6nMx5Kv1No6MiBfs9Wa0Dnla8heig6P5W6448PlTbS/eG63yypPf5Q62H4x0XG9FD3uuUQRwOjY6VSymq1x3IPJ/m++HDSNWqN3yc3TfOn26LB7u/BWm1Fjo3SJmU5SOP7mSSpaZp5SVeUNhHRy9TuFdv2j3bTNA+WUv6npL8c+PrNaiNuzymlEOn3O2qVZCGX+sNJb1DrTjuvlHKGWut8D7WMeVLTNGSVeqPaP24fKaX8pVpXxpvUuoc9Ocqn1CapeIekj6s9C/91hatMbbCEJL26lHKmpC2LLMpz1CrZ36hV6L+N7z8o6ZfU8vXtaiOXd1Ib+ftCST/dLHzh/wOS/pOk/915SS5R+wfnuZLe2W2Ij6TcNqg9G/pjtWeOv6/2rOkdUhs70c3xdZ1l+0m1yOAtks7XlDuSQ9Q0zbpSymsk/XnnQj5TbWDa49S6IM9tmmYwW9gUulbSr5VSTle7iO9VqyufUSurr6rdEP+tWn07a5ntL5feqvbc7SfUngMvSE3TfFjtkczDRedJ+qVSymOapgHxqGmac0opr5X01tJmxHq/WiS9RtLBao209eqR4UPR+Qnq1vW9aqOAv9f1+TI9/LJ5itp1NIT4thddrXa/+SM7unm1ejfzw0XfVrvWf6GU8jW10eo3RgzJQ6amabaUUv6rpH/sYhf+WS363lftGfX1TdMsaLR23qi/V+vt2KjWLf7bav9+/H/23K+oBbEnNE1zSffZx9UHNt+rNvjut9Tq9ju7Z45Ve0PmH9TuH6vUut03ahFQsrVIW93AXyPpx/zDpmmuLqWcrPaqyPvURiVeLOknmqa56iH0t1XUNM23SinHqP0D/L/UXr+4Uy1D32fPnV1KwT39EbVXhl6t9o/+963Jv1Ib7PAKtRb6ZWrRaAZ6fFytMH+ta6N0/xYa53xp00z+ttpAqBvi+00dCn+t2s35ALVKcKPaP2ILLrbu3ed0c/uV7uedaq8b3NU980jK7f3d2M9QaxxdJuklXaAj9Hq1LuVfVcvDO7v3XtdZpsuipmneXUq5Wa3O/rxa3f+O2qOTK7diDm9TG3j412oDwT6v1gi6Qq2BtJ9aY+9rkn6haZp/WaCdbUJN09xZSvlTtXq+velf1LofXyBbY5LUNM0flVIukPQq9evxAbV8+pDaKOUt3bNbrfML0AVqjYCXqb26eYtag/aNy5/isugFag26cx/mfpZMTdNsKKX8W7XX1j6o7tZN9/MhJf9YpN9NpZT/qBYknKN2Hf6c2j+Q27qvj5Q2oc/vqgdDt6o12hZLxXup2j+ixGB8S+3NmT+JI6U5tV5W39svVnvV87+rNTK/pdbD9IdN0xDE+Z1uLK9RCx42qDWknt80zTWaQlyFqDRAXaTfDZL+oGmaN2/v8fwgUGmTzPxB0zSLJumpNLtUSnmv2vvgp27vsWxvKqVcq/Zmyv/Y3mOpNPv0UJD2DxSVUh6l9l7xZ9QGbj1JraV0v1o0ValSpaXT70u6rpRyzCN8VrtDUYdm91Eb8Fap0kOm+ke7py1qzzvOUBuhvF6t6/Rnm6YZugpVqVKlBahpmm+WNlXvtk7fOmv0KLWJRB6OKP1KP4RU3eOVKlWqVKnSjNDWJFepVKlSpUqVKm0Hqn+0K1WqVKlSpRmh+ke7UqVKlSpVmhHaoQLRdt5552b33Sfz1K9Y0ScbI4c+Z/GrVq2SJM3Pz4/9Pu2dlStXjn2+ZcuWsc/9nJ/vaG/Tpk1j787NzY397p/lmDZv3jz2vRPP5hjoP+fC8z423mWMSUP1Bxgb/WT7yTOn5A3EPJ14hnZzXtmf/z95ccMNN9zRNM1Ynu21a9c2u++++2j8yXOf2047tSV/4RO/b9y4cWJsjJt3aY8x8e6DD7aJnly2fMfcVq9ePdYGn/s7jAl+M6Yco/OcZxkD3+XYU8+9PcZCP4yJd3yMfMY8Uofol3foY6if5Bs8cj2AJ7RPf7kWnSdDOihJt95664Tu7Lbbbs2+++47GtMDD7QZLtes6dNo0zdzYbxD6x9K2TFe3sk9bGjfyXUCf+iPsXq7uVdBj3pUm4Rsw4Y+MWTuY4x5aEz5O8/QHv3Ce8bqY4QXKZ/cE9ET5yvtoTPMh99dz5LWrl0rqedJro0hPsL7+fl53XPPPVq/fv22LOCy1bRD/dHefffd9cpXTmYU9MWIoH7kR9p1l8J+9KMfPfacP4vQ77nnnrHP77vvPknDf/Ryk8zFSj+uMLSDotx/f5u0aeed28yBKKwrZP5R8PH7GHfddVdJ43+0efbOO+8c64cxrlu3TpK0yy59cRoWXxo0GE20tdtuu0mS1q8fFeUaPZOL5bGPfezY57Qh9bxn3CwSFsYdd9wxNmaplwObwve+19Y8OP300ycyfu2xxx561atepb322mtsPvBN6jdh5oJM99hjj7Ex+cb0/e+3eXWQ4ROf2OZauOuuNg/M3nvvPdamb0aMhfEjO4g24Y2PgX5p/9577x2bAzKVej4hK/jP54yDNpy++922dsuBBx44Nnfms++++07Mi/mkjiKfPffcc2wcrElJuuWWW8Y+Q94333zz2Pwf97jHjd75zne+M/YO7TImZEL//gz6BY9f97rXTejOPvvsozPOOGOkD+i3j+Fb32ozGbN35FiQresOczrkkEMkSd/+9rcl9XJg/KzXpz71qaN3v/a1NrPt4x/fFoX6ylfalPm5/wztjaxpdJ9n0beDDz549A76xPyQO/OBf+ibr8/9999fknT77W1Bt69//etjn9PfN77xjYl3WO/w7zGPaet3wPurrmrzOaH/3ncab6yVww8/XJJ09919crUf//G28OL5558/1j57MzLCmJAm98ZddtlFb3jDkmv4POxU3eOVKlWqVKnSjNAOhbQXIkeVoAcsNdAyBJp0tMz7oCOsSCxdfmJ1YvlKvZWPhZbWHu9MQyI8kz9BHdmn1KNXngW9Y+k7asNKxlrFesXSxlp3txhWKlYp/KIN2qd/lwH/h9d5HECbbr3S7vXXXz/2HRY81q2jMlAgvE6k6tQ0jTZs2DCaY7rCpR6V/OiPtmWNQWbwAs8ASFGSbrvtNkk9moPX6ANtMlZHn/wfZMUzzIP+3AMCskB2X/3qcJ2MQw89dPR/eMjcQZX0y1oBOaLTknTEEUdI6tESunPQQW0xoi9/+cuSem+E1MsZPtEfz6IPoGZ0Vur5hY7QH8+C7FmrTqx1EBzzTXe91PMU3tDPEK1evVpPetKTRrqJxwKeeHvIJY8GGK+7s0G0IM2nPKWtGfOFL3xh7N3jj2/LyF95ZZ9NF36gM/vs0xbGc2+C1OuhJN16a5tOArm88IUvlNTrLG3ddNNNo3eQJXsESBuZwvOLL27r0PgavOGGG8beOe64trz51Ve3xczQN8Yu9fsM+x37GvrGWPHauVeA+SFL5M8z6DlrVZI+/vGPS+r3H/jH+mEcjs5pl7V45513Lnjcsj2oIu1KlSpVqlRpRmgmkLafE2UgC99hXWL1+TtYTlj8eVbKu7zjyICzD6xirDyeHbLAsE5Be/zE0s1AGqm31Jkf/dJ+Bkn5GTooAAQCbxKZ+vkXc8xzVw/IkHq06MFL9MP4GWP26/Nj7ow1g7AYhyOsRDMul6S5uTntvPPOYx4BaRy55zk3v2N9M24/t6Nv0AI8BEVg/SMvLHqpR3nMiTZon3E4Wrr22rY4HHqGLuEdQA4+T/pEzzjjQ69BE7zj73LOyrPMLxG+6xv9cc4KLzLewuMgIJB0nkvyLHrI51KP8vFMZHAU55LO+6T0ZDk98MADuu6660ZjS6+WjxuCX6BofnfPTsYfwGs+Z21xFuwonf8j9+uuu05Sv6aOOuooSdIXv/jF0TusIeTxoQ99SFIv0xtvbCtKHnDAAaN3kBleP8bG3BkzyBtELvVy/td/bcMEvvnNb0qSDjvsMEn9ubzHbPB/+MW7GSQ55KVh/OgGiJr54sFwrwrrknWEl4E1wtp0/UC/2Oc2btw4sa9sT6pIu1KlSpUqVZoRqn+0K1WqVKlSpRmhmXCPO+E+wbWI+wOXBq5Hd83h2sNVmi7vvHPrV7EIROKzvO6E64s2pT6oAVcw3+ESynu7PkbcyLhr8qoF/XtQGTzBxcTYmA+8cp4wNub3Yz/WlkXHTYZLEjcp33s7uNbyri+BPLjWpN6VRbBIXrsaujKVrrJpLirc43lH1d2suMRwI0LwmMAtD35BlrwLf/JOMuN39yhuSPiPGx7ePuEJTxh7V+r5hNvVg6GkXg89IImAGdrLK37oN27YnL80eVzBWkEe7nrGTc31HQLQuF7DmI888khJfRCT1PMHPUefM9DPrz/hhmcMeVQFP/04Bp7i7p0WiDY/P68NGzaM+ITL1I+E4AtuVp5hTLhofa4Q/IA/yAse8C7uZWkymDDX+Je+9CVJ44GPyB1XPv0RGEaw1zHHHDN65/LL2wJsmUOC/QeeMkb2C2nyqiz9ZkCcX/1Ez9gzeId1xVpnHL6vPulJTxrjAXvgJz7xCUnSk5/8ZEnj+w7j5zPkhUzyqMKfQT7777//2Lre3lSRdqVKlSpVqjQjNHNIG0ssr1NhkWK5+7UdrDmsO1ATzyZq8qAbrHis40wgwLse8EQAA5Y7FjDWK2MeCrrCEgUZgJb4HovUkw7QT6I+rGP696sXIEhQF+/QH7/zDkEgUo+WMlsT/TA/gmik3kKHt1jpWLXpOZH6IBQs+aHAJqdSykRSDQ+sS15ifSNLdIgAGqnXlbwGAiLMACRPeoKXAn0geIirRegM3gdpMhgOdIHc4QVjlnp+J0oGjeP54MoRyEvq9Rue8C7PIB+SXUjSfvvtJ6lHVLRBQBi/gwZB3FIvU+QDz/1KmSRdc801o//jscgkNchpWqVC+pkWpFZK0erVq0ftgqY9GA+9Ys4nnniipB5Zw2sSqUg9D9E7kDReBJDcJZdcImlcpvCDwEQQY14FnZbd7IorrpDU6yz7jV/5Yr3luuTKVe47BJlJPf95F0TNO4zZ36Fv2mNNk9yHwDT0njlIvTcms5mxz+RVRKnXSeaT13GRObKQJq8W3n777fXKV6VKlSpVqlRp+TRzSBsLM5M0YIUN5awF5XEWhnWF5YklzDnHUB5a2sNiz8QOQ9dDMnkLKGnozCzP3SHmhzWZKErqETVjyLPMTEXoc8wzLCjTWTqyz/PBzD3N/Pw8OVMsMkaQbF4fkyYRPYhxIZqbmxs9wzueuCSvnYFssP7zXan3xsBbdARrnN+Ri8s0E9OQjCLn6siAxCfIBWTHGWfy0b+Dl3wHouPMGeTAWafUn53Dk0xOAy9AKj4GdAhdTH1jfiBuHyvfJfKBj55yFYSacRjT9AFesK4yKYnT3NycVq9ePeoHT4gnbsq4F1A4Y6AfP/PlO86SL7vsMkm9HuD5AE27roIQ0T94Tf9DtQDQb3SI9uE/iNeTOqWXBoSPzvA9uoNXwMeCfqe3k/m4x4L9BISfa44rZfzu19PQmUy6RH95Tu7ts46YD23g5cqrrtJ48qChehHbi3ackVSqVKlSpUqVptJMIG1PCoI1lcU9sB6JoHVLPSu8YFVlJDZWmZ8TYfnnGRJoM5NueD9eJUbqrdWhoh9YrYwJaxlrH0ufcbhVnv1mopI8p5Z65MQ5VBYbgUfMy89dsxITz2Q0qccGwC/e5Z1EZY7imWsWNRmipmm0adOmkSeEuTvCgg/pvVgoRanUI2wQCPxBPnxOm27l49nIQiTIhza8mhT84Wd0MAwLAAAgAElEQVR6GUD2jrSQO3NFZ0BwWUACFCdNng9yTkl/Q14TUMtQkQwfz1C0/0JR3MyHdevRvEOpJqUeTcMrj4dYqKLaQn3vvffeI76AUN17Bt+JUL700ksl9Z43xu/7APrFOS28RD6gWcbKc9JkBTPeyRsIHhfDs+hxFs9h/3He5q0NvDPpeWGMfosEBI1u4FGgP9a/e5KyP/ZXYhjYvzN5lr+bqJe9i7E5skd3kBP7GHEW6BDeFWly71uzZs1gFbftRRVpV6pUqVKlSjNCM4G0/YwRCxArjt/zvMujRbPOKhYUVn+eNU+ro5t3rLHc/CwWqxgrDyuNZ7Hu3OLl7CbvffMO/YICHWmB2BgDiIH2sbz9riHt0g/WJee79JNlPqXJu9wZ0TpU3zaRTpYNhM9DEeJZVGSIuKfN+8jAvSacY4FAQG6ZHnUoXSrP5hj4HNTpZ5quR9KkTOGfR/Vn+lDaBc1wDu9jRN7oNXPGg5B3ux0N0jd8A+mAyojqdc9VIimIyGnGMy2NKXxjLF7ExOfr/SyElofqaTPGjO8YoqZptHnz5hEiZB/wNZ2pW5ElenzqqadKks4666zRO+g0CJRns0Qq68kLXWRaUW6tMEbk796Hpz3taZJ6fnCWjYzZd9wjwZiI1mbu6fFg7/Co/ozWRk5Z1MmJ/QSvAvEV8Drvpfsd7/TgoUvsIZlOWerlzrN4P9BR1oRH7sN7v01U05hWqlSpUqVKlZZNM4G0nbC2sKCw3EBRnJFgVUq9xZRn21mGjp9+fsG7eQcR6xVL1S2xjPjMc3F+ugcBSxqEQXugwixi4Cg972fyO1Zz3mn3frA0mQeWKNbmUBEN2oF/zCNLMjq6gfc8QxvIYuiedp57gf4Woi1btozaSw+M1FvX8BaZZsENt9T5jLly1gu6QM+GzmozY1fewccb4HqAXOAPqCLLUTqKBa3k+TseFngCmvKMUVlSEpmh3/Tn64nxc2sBHcVLAOLOYhNSjwyZF2uF+TF2l4HfoR0iZOFeDvjI+KdltJqfn9e99947Gjdn9o4U84YJnjF08/zzz5c0fsbMHNE7UCQ85kYGbbinIPMN5D1j2vI1jbzhIXqNntPW4YcfPnpnoXLBINP0wLkHE54wbnjD/DIzo9TvY7wLr7P0KF4H1x1kSoQ58mbPQt/cA8Q8uCWR65W/H76e0Ekvi+qy2d5UkXalSpUqVao0I1T/aFeqVKlSpUozQjPnHs/kKbg70s3j7mrcJeluxW2Dy4lgGL+2g8sHty1uFNrEXeouoEzviBsna0l7oAv/xw2DWwh3Gy6bTCso9YFauI2yYAluU9xnUs8/3F+4nphvFgVxV2GmD8TlxbuZKEPqeZw1snGXZ4pRadLl7EcCSU3TaH5+fiLlqbv1cYWhM7gncTVmgKLUy52+kYcXp5D6a0Je9AFXHzzGtYibknF4YBLPoDO4vnHVoReeDIfPMmEN+sA4+NwD33C7cv0oa7+j357kgqMMdIPfGRPzg0f+LrwgLS66SsAbOjTkEkeWGRTEenNZ51qbRjvttJOe+MQnTiRt8eMd1g5yzkJCuMAJ5JN6Hc+0xnmNj+AuH+tpp50mqb9axhwJmEK/XQ/RVeTLOxxfMB4P+oP/zA89T93lKpgHdvoVNakvtMNRH3vi0LFcyiX309yzfX7IlmQxHMuQXtePNzMZDe2zn7GvemGedIXXNKaVKlWqVKlSpa2imUDaQ8lVMm1kWrWORPL6B2gJhJJlIt0KxLrLRCU8m0USvL+8LpWJHnxeieD5HRSWpRMd2fNMXlXA0sby9EAdPkt+ZUAYlrhfMaNv+Ie1Txvwaig4K8so0j/zc0seXgxd6UlasWKFdt1115FVT/CNo69MWJHXSzKA0AnkB/JNDw9BMH4Vi/EyBr6DL4ceeujEnOEtc+edLDXq76ArWboSpM18hpKe8CxeE7w2IEb6B8VIvY5A8JMxIX9Q/BBq5h30LAO8POiQMYCOWIOMPYMZpck0n9OKzWzYsEHXXnvtiAe5biTp6KOPltR7JJhrXl3zZD6sB3iXZVZTp/yaGylPQdZesMXH5oFazJE0qYl00XcPzmTOFOZAJ+EBwYvZttQHIvIdyBsdGroGiZchyxRn0Bx7mafched4s1ivjIN3XA8IaMuiJnn1zAu9ELSGhyILI21vqki7UqVKlSpVmhGaCaTtaCnPYLHYMs2cn/WAynmHqzZYX5le0q10UBGIIM89ORd1pA0iSITFeRHWHRaiNFnik/74ifWKJe8FHOAJvMCixtLme0/ekGUps6hJWunOTyx1xgQP8oqbI6wswcnPvEo1lEJ2KC1q0ooVK7T77rtPnLc6qgRVcKYHmsgkDX4Gh2WOVY81j0xBhrTl/TF+PuMn+sc5ohdyQR6ZWhf5PP3pT5fUowGp133Gim6CzuiPc+Mrr7xy9C46T/pS9Ao+wnMvkUh78DHXJGMFLXthD/SIz3iGz0Flnuwir4MxX7wB1113naTxdJl5lW2al2Z+fl7r168f6Qzj9zNbZIUewyf4xhrws0/Ge84550jqk6yccsopkqTPfvazknp+ZpyE1J/9gwzRO8bq8RDwP69ionfsHY4c0VHGzzOsCfQazxLIW5K++MUvSuplBb8YB3LyWJTUL87fs0AKPHHvA3pGulK8EUccccTYO75+4RdyweuBzpCW1vnIfoM+rV+/vhYMqVSpUqVKlSotn2YCaQ9ZoCBBzok42xlKVICFluUG+QkC4/uhQhdYgIwFJMTnfo6CNZkpSGkXdOOoMssrgppAJCDuofNdrGIQW6Y8Zcye+AHEgCVKP6Bo5gM/PRI8o98ZSxZEGYrcZoxYw+kdcLTE2LB8/fwuCbSUhVTcA4MeIFOSTDDOlJfU6wjjg29Y9SAt0MRQVDfonLFwTkeaSfRP6pNYZMQvsiSJh3taMhIffQBRo3d4BXx+oHG8MPAIJAKadfmjm4ybc050N4uouJ5DoH7eQW7IwOWG3rLmWQuMEd64fsM/aJqXZuXKldprr71GkdqgTi8cg85ksiX4ha762TmolPNwxveZz3xGUo8Y0SFH6awPdB+Zfu5zn5PU88/jRtADxo93gDGSapXobn8GfUbPn/GMZ0jqkb57Z6Bjjz127BnGCPLmc4+op33WFd44dASvJ7rlcoSfn//85yX1Osk6S6+N1PP8mGOOkTSZppnfHZ0jQ48FqdHjlSpVqlSpUqVl00wgbSesKyxbLKZMDerIN88Fsfay5B9WniMDrFY+A6Vkakq3sLOMZiINzm+w/qQegWYBeSxFfnIG5BGZICzmwzzTQ+FoCQsd6zwjphk7n7ulCdrIUoMZ2ewoAIsahMh3mZp0qFwplvS0O7erVq3SPvvsM3Hm5zwA1REhy/kdYwDdDd0rzbvcIEL6QX6e5jGLYOBF4Dx6KL0sugO/QFr8PP744yWNF6YAsYEmQQ+gZ3QVvePOrTQZBQ0v0DP454Ub8pYA8qH/LKHplGU0c72io75mssgD65m1ibfN9SOL1kwrrbhlyxbdfffdE+jfx5B5IRaKDHf5U1yEOWXcxoUXXiipP1e96KKLRu+iZ+wHIN2MJ/C0vxQMgafIAd6ed955ksbjb7JgC/2de+65kvq9BbTs+SEyJwbz42ybPcy9ZxljwE/WOu/yu8uNyP0sfYxM0A/Ps8FcM11zpnT1uJIs4bzLLrvUM+1KlSpVqlSp0vJp5pA2yAerDqso77F6hCSWWEZXgpKyCINbaliRILjMtDR0pxcLNyMyQRlY9B5djTWKhYlFyDv0z3NuYTP+vNOLFZv31KUeUYH2QCa8m1nDHGklGsLCTXTuCDILudAvUexY+H5uTfvMY9q5EmfaIBEsZ9cD5gZqpk+s8aH7xBkjwRkb8qFN+vW7uFkYAv6jD0NoArSU54TwlPNQvzeNLBkT/SFT0B9j8+If8IebDMwHtD5UIpExgWLhHygskbbfkgDR8UyWjUSHpyFj1ulRRx01NgeXX8aesNaHiIxo6AVry5E274Oeyf6VcRe+H7BWkQ88RQ6gV87SXb9B8vCLOXKOfO211471L0mf/vSnJfU8ZUysNRA945D69YY+ZSY0eIAMPZqbMXJvGv2jH87q/fZAImnmzFpE/6+//vqx+UuThZGyyAl3rX1+rEHaZT7ME1l4LAr8Y2x33nnn1NKujzRVpF2pUqVKlSrNCM0E0vZI6UTNWMBYc3zvZ5lY5plBB+sViwrL2KNQs6QkBAID0fn5LZYa7ZOZKrOdDZ0tZfF5ojsTxbr16mcv3g8/mcPQ2SkWZka4M58sJyj1FjWWPBYwVj9z8XMi5JVxA0SEwit/J0uAesR0UtM02rRp02j8jNHRC3JHdqBHeIwuOVrOqFos9Izmz/N9qecpfGIsnDUzRtfvq6++WlKvqyA7+uNzzwUPgdxAsUSLZ5Y7PCP+TmbTgxfM15EI7dEPz8J70Bv67fEliY7gBbpLrIavN1AZCB/5XX755ZIm17fUo9uhyPKkUopWrVo10l/0zGWZ9/V5lrFxn/nkk08evUNOcc7keYf9IBGj62rmFqdfIr9ZN44qkSX7AfOgH+TjHjf2KuIseBfUmvecXQ9YN6B0UDQIm35c3/JeuH8n9XrBvIcyTcIvPCusa3jh80P3GCv7Wubrd/1Ir+aGDRuWlMP+kaKKtCtVqlSpUqUZofpHu1KlSpUqVZoRmgn3uAcT4b7LUpmZQGUo+UimIsXFjEvWg20g3DSZppB+cBd5ABWuS/rDhYa7DRfgkCs436X/TLbh7+L2yqCRdIv5GHFlce0MdyKuYdxY6QL1duEB88urYJ7Qgv/jKuQYA7nhQnYXPq6sLLiyEK1cuXLCLe4uUz6Dx8gOFy1JQjztIm5PgrlIHEE5QHjK5x6IhKxw+dEGsuVdv75HSsYsuoJucl3NA7VwC+IezUQvzCH1UepdjrhSCYDLUpPOe4KwCHzCxQivke1Qqk0+o194gIzho695eIDcWM/oDGvTg7IySG5aIBpBjKwFZMjRhDRZMhJZMiYSl1xyySUTc0WWrC1c0ugFz7lcWI+sQ1zqmdKXUqFSf7TCnDPREFem/PM8wuB3xkz/uLxJuiL1eoV80UmOCEh968cjyJUgQvSKvSuvVvo1VVzcyIKxom/07yWIPWDT+0Gv4YmneIanBMPVgiGVKlWqVKlSpa2imUDaTljkWExYnqAILFC3WrHWQAJYiFjUIBKQsKMYrKwMHuNz+nU0kVeJQBW8w+eMw8fIT9rDws6AIB8jPGD8WXQEJOdBJM985jPHxgRfGRv8JRjDUTPz4Tv6J1gDlODBRJn8BkSVAR7eD14GkOO0a0ClFM3NzU0UJBhCbIwrPQNDwSboUQbkYY2DnrJ4htTLAWSafMPb4QFPBNdwFQ6ZgexA1SByqfdegDBAciTkoMgISJTvpZ5PzC/TTGapU0k6++yzx8YEWs5COSAVJ7wPqQ/oDG351SLkBiLlihH6wNpw7xrtwvNpXprNmzfrrrvuGvEPHfJrlfAOVM9+gO7Tn/MWGTIXdB5dyQA7D/ZkLBlAxzwYh19zIzgti7Gwpo488siJNkHnjJtn8dYRoIa+exEVxs06ZT4E4MEzlyX7GelY4Qm6xHzYh5yfyD89BimLoWujjIH5wd/jjjtO0vjVsmz3wAMPnJpC+ZGmirQrVapUqVKlGaGZQNqOELPcJBZaJhAZKlKQSTVAcImA3HrNMxBQBFYYlptfwUnLmTaYB+PwpBMQ7WPtY63nVS+3/JgP78IjziWxbt1KTgQNL0AtiQr8ulUWa6H/hRC41J+Ng15AePCEdx1tZBEBt9iT5ubmtHbt2tH4QXI+Z5AYskRmfM47fq4O+gZJcbaXvGA+Q6iCc2JkBkpCdz3NI0kzkGVeLctiHN53yp0kPiAU0LKvDVAXOskYufLD2b2nPgVZZQlWEP3FF1889g7IWJpct/SfV6jcq8I64Zk8h0U33VOSpVl9D0niuiDpYDMpjc8hz9cZJ2Uqh66dZTIa1hYyxCNx4oknjt4FCfIsOkKBF/Yf92ahe+mNY6yscWQq9eVCGTf6B6LPAj/ufQCF5/zYo/AweepT5MI5NLE69ItskbXHe6CbXmDH5wA/PbYh9xDGDz+Rqyccgrfo9w033DB2pXd7U0XalSpVqlSp0ozQTCBtLyqBNYmFtlDxAkd5WFtYznnmShsZhShNIkOs1UwR6GNMtE8bWJxYk35+izXMuRQWbp7Z089QBDDWeRY5AX16mbscG/MjijJTsbolCmX6TyxgxuxFVOgPqzwjjPP8WposATotleCWLVt07733juYIrx3F0ifWNe1mRPNQ0RLmwnfIGORIP34Gh04mD4llwIviyAE50H6iNTwf3k+iFX6Hl+kR8WheEPZhhx021n4mlWGs3j7Ind8pgEHp0UyF6/NKD07e3PBob3SSMSQvhgrzIEvWckZSO61evVoHHnjgSGee9axnSerPTqWeH/AdPWC/yWImUl+MAkQKX/DWsE7gH9H4PgZ4SLvwC3n5WT0endwr8PjA06F4mPT+EfmdRU48GQp8R8/pl/2AyG2XJd9lfBExGnhpILxFUs/HvNECD+DV0E2e5H0WB3KPBWudPXhaLM32oIq0K1WqVKlSpRmhHQppl1JUSplAVJ7KDmSTZQ051+AM060tP6OUJqNRsfJ5x5EIZ0qZrhLLHSvPzxgzjSnvZLS6n70wFsaGhUu7WezEC8vTLv1m+VIsbo+kzvuRIF14gEVP2kSPcIafjG2onKI0fv6VqWOZD+PI6GGp53Gi/iFqmkYbN24cyYl2HCHixcBih5cgUc5xhwqHoG+0AapF7zxyGeI8LosyZOpG2pTG75hKPd8y7aOfsbFe0KEsjQghU6J7pV5G8AQEyRrAg+BoA/2FJ6AmZAq6AWn6fWd4wrwynW2mxJV6RJ2R5XhB8KC5ZwcZ8p3f1EjasmWL1q1bN0Kd9Odn2pw7w49E/8zHvSb0CZKG7yeddJKkPg0rvCYmwMcAv1hz8In16t4A9qosTAMC58zevU88AyEz1jt6xhrxe+HIGYQLL5gvnw/lSoCYO+spCxn5PW3QMnsIPIDPGeEv9WuDMYCe8T7wu+sO6X/xPtx44421YEilSpUqVapUafm0QyHtpmkGLRo/T83IURBOlrJ0dI4lloXXsR6zTJyjSizNLBzCmEAm/g7tZBEOfgd5+zk4CAOLEHQJOsLiph9Hg8yZn7zL2R9WpKMz5pyFSEA+WKAgfr9/DNrLu51ZfMSRPZ/BPyzpjHj1c374w7teyCNpbm5Oa9asGY0TPrplj8ywsrGk4Qvj9XN1EBT8Rk5kz8rzNLfYmVsWIAAJZLEGaVLPkCk8AE15NDTfITvaB4nkGbCfE+Y97SxUQz/uSWDO8Dp5zrxAcY5YQXvoUCL9jO719vPWAvNND5bUyy31bIjm5+d1//33j/pEXq4HeDHwPGVsDXr72c9+dvQOazV1HlSJ3Cgb6d4Fxp8Z+JApa9z3ucyeh5xAjuw7WfzI22XdX3DBBZJ6z0GWCpUm9xDO2UHgeC48vohnGSs8Qv7IAF45T1JXGVPeF/c1CDpn3VI2lDUCH31vZC3Drz333HNsDtubKtKuVKlSpUqVZoTqH+1KlSpVqlRpRmjHwfxTaCitKK4RXCF5NcYDmnA14UbDpYV7jTZwAQ4VKMElg1sMlx+uFE9jmoU6MplLJs7wPpkrrh7c4gSXMB53I+MuxO3r7frv7nJkzpnchHYXOkqQJq+s4YbL4B+vaQ7f4Bdut6yR64QM4Ym7vZLm5ua08847T/DJjyBwG6YrGL7hsnWXHDqDezSv7fGTgJmhYL9MdcuVswwyk3qdpF3kDw+Qg/eT9YVJaoKe0y/uRXePZtpX3IW4PhmPB2eiM4yF8dNuphBlTfoY+Q6+ceUHt6wnHkKWuDYvvfTSsXkzRg+ERM9wL3tAU9L8/Lzuu+++kQuUsbnOE4CVSTaywI8noclrjZkSd2htQZmoBDcy47juuuskjbueMwAVuVAIh7F58Bn6nEU+CLRjHOwdfkyGruRxWAYmulzQHQLqsn43/aUL3OeFu5+xc3Tw4he/WJL0pS99aeId0v+ecMIJkvp1xZiH9kZPXbwjFQ2pSLtSpUqVKlWaEZoJpO2oGYsokXWmyXRUhpXEM1m2EWs2i4JIk8kAsJbpfyi4IxNwYFGnJe/Ba1yXYAwLFexgfo4cMuELz9IPbXpgTQY4gSCYF2Omf+cncwXpZHnFvNYlTSJWxpYpOJ0YC2ObFgxCcpUseOJBjMgStJIpSUHaBK9IPSohgArrm0AtghzxHGDRS30ax0zVSVsZECf1MuIz5JzBVh4QROAXCIR3QCL87uVcIdYC8kZnkR1XCz35CfMAjaEjrBG+h9+eAhcdYX6sSWRLf+5JygRKyDgDvNxDwpqm3bza5LRq1Srtu+++E8lg3PvDOGkHHaFPPAUf/ehHR++cdtppkqTzzjtv7FlQJWODT1y3knq9yqIypDGlLb9OlYWJ2FNYn+imI3sQL+2ybrKUKbwmXavU6y97A/qAroLwPREQ3reLLrpI0mQBFq5FIn8P0mSPyHSmoGY8ME5ZPIXrb/RLUCBzkcb3SaldGzUQrVKlSpUqVaq0bNpxzIcp5GklsdSwvrGgsmiAo+VMS8e7WKQgOc6/3CrH6sprXFi4jMet/Dwf5hlQDBavnxPSLqgIC5HfsSZBPH5uTftY7MwHLwRIyL0BWKvwj7FlGlh45EkjMhELFnB6OxxBYoVnMhqe5aefGaasvdBBUilFO+2006jPTP8q9bIEvaAzWNtY327dw0OQKHJGLqAxklwMXaeiX1AMCJg2XVfRA8afZ9uHHnqopP7qkdTLAXSWeocugSa8NCNjJEkMenDZZZdJ6tGSe7vyDDPLR/I9Pzl/lfq1wfxAt+gHsmEtSv16YT5ZrhZE6frN+qR9rlUN0aZNm/S9731vJGva9bP43CPwyhx77LGSen7h7ZD65Cl5FY81jGyJAXE+pcchr96hdx7vw5zzainrk/3Pz93z6hjyZ4z0wz5x9NFHj95lX+GaGwlo8CTBq6G0ufCJ8YPOScRDohn31qHHoGXWL14B+qMkrdTrKPEQrG10iRLF7pHDi4bOf/e7351a2vWRpoq0K1WqVKlSpRmhHRppY+n4GQPWIsgvUR7WpkcsYs1xtoJViUWFBZcJNKTJKGQQAmgJ694jgLEm/VzO2+Ks0y1QKM9+ObukfyxfRwFYxVi+WJfwiihiR528k6UQGSM8yYQG0iRyzBSkWK1+Zg8yRD4gB8Y0zZLNqNRpxFiwpB0FgmhArcgu5eHnecgblE97nD/yO2dxQ7qDzEAGyIWxumeHMYLk4RMIiIIKnuwEGSIXxgTyyPKefu5OQgwi2ukHJMSzHj2bKSBBoXgh8laBo0/GxryYJzxAFp7qlfNizmLxnC1U5tP7hjwGIImbBxAo189iWe9Ei7M+0Ov0Ckk9zzg3Zl2kd4617F6mHO/VV18tqUfJectD6vWXn7SXaZt9P2UstAcPkTFtZbS11MsfZM1+wLPsO56aN8/B8QrAA9pELyhCI03edKANbhoQNe7zy5sVrAV4DyrH0yP1f1voZ+XKlTtU0ZCKtCtVqlSpUqUZoR0aaWMhDpXKzJJyoDAsT7e0swA632HdJdr0d7EseZd+6DfPgKTe0kuUPlRcBGI+mbKRMeWZk5/BYPXnPUZQAVarI3+sbs6MGDPnUvSLBQoS87FipTPP5K9b5ZwpwSfGzBlTRo06wS8vLZpUStHKlStH74Py/Sw2I/N5JqPUh0oXpqeDczV4wLtepCNjJtIjwlmsW/mg/yy+AE9Blc4nxpAlWdER3mUcficVpEg/IFzQIbwfKnfI/OjnqKOOkjQZpex6gAwYP/NljLzjkdvnn3++pF6v4SPn1KAx532mGfXCMUnz8/PasGHDSA6sAV/TjJuYAvjCT9aAe9xAd3nDJNdJplOWen7nLQ5uPOB9cA8YyBAPCwiXNtALj7/BM0AsQd6oAfnCT7+njUcC/eNcP8sVn3jiiaN30A14wlpjrMj0c5/73FhbUs830Dpj4V28NB7vwR5Pv6wBEH56v5wX9LMjoWypIu1KlSpVqlRpZmiHRtqQW1tYhpybZHlNLF23CBcqjoG1h1U7VBwBRADiwgrLjFFD98JBclmQBCvPLbhsJ+96Z8SzewNA0vAiiz3k/XSpPwfKM3raZw6cNfr88v55ZoBjXn6mDaLmWaxwPAh4QzwCGESQ7wxR0zR68MEHR2NCH/y8GERAZCp8AVVwjujxAvSJzsAveE5/jN89IPCJd0FytIFee/Q4fOcdIsJBGcjUUSAojLGAlpAZ6AUU7UgbuSM75k7/oCm/p4oseefII4+U1Jee5Fn00WWamb5AOKxN5umR1LSfqDajxv1MGP3OQjxDNDc3p9WrV4/WDXLyuBjmdO6550rqzz2zIImXyuQ7PBMgYNYFsgU9+9k/fEKHsqgIe5fPmTly/s1dcpA8svY8BLmvoH/pJWCP9LgBIr1ZI8QAICf0jz6kXn/hAWuOKG70AU8CY3aCx8iYNnnW/15wZp0Z7Rgjz/o7qWerVq3aodB2RdqVKlWqVKnSjFD9o12pUqVKlSrNCM2Ee3zI9UyQQCaowK3jQUu43nA54yYl+AnXF8FFnkiE/viJy482cJP69RBcsjkWd2n6u1Lv1s9kHrjsaB83jbsccRMSPJQ1wJmfB/cQrJEFFXC/4ZYj0MVdxriCcaHiEsZdxe8ecAcPGBsuO9yKzMfnRT+Z8GUaoQfw2q9vIX+uTeEmRl5c43J3Hm5Kxo0ccG3Cr1NOOUVS7wr1vrMYCnKhHw/yg0+MLQvV8K671BdKMsL1IIJwslCF1CdVIcEMRzlZk9mJdrkGh4sTXYInuMBxo0o9/5Alru8MiPP1RPvwgCtGebzhwUTwABf3UIv2MGkAACAASURBVPCnP/uoRz1qNM5MByz16+MFL3iBpJ5fyAPXrAfDQQRhEiiG+zqvSrl+M17GwJri9+OPP35sHFKvo+gGekXaVPZRTx4EITN4mEU/2Ftcd9CRPMpjX8gEUdJkEGMGQPIuY2XskvSFL3xBUn9kw97IfNFVT8iCG561hl7gUof3HmjJXgzP65WvSpUqVapUqdJW0Uwgbbd4sWyxRLMMIBbT0JUYAiZAMSBhrC4Qtr+bSIP+sASxnkHtPgYIVAaK4adboJkwIK+N5by87GVeO8PChVdYt34dBVScQRcgasaRqFrqERvXj7DKeRb++hUWrFZQZ5ZLzRKo0qTHYCgZDdQ0jTZt2jSaDzJ1C5ngRRAhFjlIgTkPpezkqg+o1ZNoSH0wkQd5JS8TeR9zzDGS+jSQPkZkChJh7iA6DwjKZ0FN8Bw+EmDlwUtZipN3+cm83UtEEgtStsIjEHF6ttxLg9zxarEGM02sBx2CQDMNbAZrub6hk8jLvWdJXPkC9WfJUanXQQKb8ASwHwx5iuA3RTbYIwiEzCA5D7ri/7wDv2gTr4AH2KGTBASCQPHEgDodLefewPUsPofnXKsjGY/UywrkC1pmXeH58YIx6Dzjz9TCyIk1yLylycBGvEToM+Pw632ZmpZ24SuBhZ42F08c+nDllVfW0pyVKlWqVKlSpeXTTCBtJ6x3rDksM85iMv2i1FuYINC00LH2QDMgSKlHSVmwHuuRcQyV/sMCpH0s60w+4O3THj9BD1jNvANCkSav/ICKaCMTqfi8QPtY7CAvEPBQwhmsVdpIVIuMPIlDnkcjL+aHZT9UIICxDJ0XOjVNM+IBY3OPBOODP8iSM0euGXHdROqRL8gHOTCmvLrmcknPAGiGtuAPiEGavAIF0mHuIGxHjul1Qn95l/mCULwEJGeimaCFeeP58OtPXD8CycML9BB9QP+Ro/MHnaSNLAXpv6csmV+iRIqbSP36Z+0znyGi2AyyzCuUUq//8D3jYFg/jsg4c2UMjJc58w5tuYfnpJNOGhsjPGAc6I73h6zQO9Yh8qF9j7sA9dMeiWwYM94b5u3FOEhmkgl4jjvuOEl9ghT3SoFs0RW8EMgQryRtezwT3g32b+YHn5EfHj+p14NM05rJcdzrSbwU7a5du3bMg7K9accZSaVKlSpVqlRpKu3QSBvrZqg0Z6Z75KwMy8zPUXgni5vzOWgPi9TPVfNZzkiy/KYTFh/WKqgpi5r42SKWLu/QLpZ0JuLwc6lMgo/VCo9AmN4fli78YsygIsaIVe7FRrD2sejhHzxhrM6bRKaMLRPbODLO83b/LqmUolWrVo0sddCLo/Ms/0lZRc4AM+GD1CN/kOZCpVkz2lbqeQt/svgGz7oskRVjoF/Oj4n8xUsg9cgZRJ0JTED28MaT3oD6eJY28FgxRs4LpR61gk7gdSbT4PzVvQ/IG9TEWkPPaMs9M4li4UkW3nAPGeuU+bn+DtHc3NwoQjoL4Eg96soYD7wORIQ7qkT38jw19YL9YShSPxMK8UzeapAmCxLxO1H+rMtnP/vZo3dA1rSHLrH28PzwvaNY1gJ8hyecCbMPecGQLFrCGsw0psjUz+xpH+8GiBjPGDcQhmKF8Big+3yOzK+44orRO/DNddL/Bm1vqki7UqVKlSpVmhHaoZH2kHWTaSWx2LFesVodYYFKsFJBebyb9/38nIgxZOrEvJPoZx5Y2/kdEYtYx26VY1FiAeZ5bqa19DPNjLxmnh796m1LvRXplrrU85d5YxG7LDxKV+qRVCJ8v5/MO1jsmRaUnx6ljFWe1v4Qzc/P68EHHxzJEIToaUWzbCtnoHhlGJOff2KJJ3pFDnxPkQmPHmf8oBOQJ2fnWXzGnwVFMFbQa3pVpB7loRNZyAPkAYry6FrkAloCDXLHFx11WRIDwGecE8I/ZDCEgNEVdJRoZLwQeBKGSlxmrgR0kv49Sp05MvfF4iGkyYIXnu4zcwUkikY/hsrf8hn7UJalJabB70+DJpkzXgVkmHua1K9p9Ap5oFOZolSavMVBv/CSfv0OPJQpndmHkA8y9f0iU5zCC37iYUJnWGdSr3fsUXk+/YxnPEPSOB+RF3NnfvTH/N2rwrpxr8KORBVpV6pUqVKlSjNCOzTShhzFZrEN0CNWHp+7lYS1hUWGhZsRzFhjjmI42+NZUARWHsjLo2uxBLHiGDOolvn4uR1WOVYy88hSjKBCP59n/Jn5LIuP+Dt4GbBsM7qbsQ6VOmWM3G3EGod/eddY6uUEAgYBMc8sDuLfZZnChaiUMkIMtO8olvb4DFQMX0AgzgvmjR5ghWcUMV4G924QaQu/0Atkyr1WnzPtcT6XtwqGiqaAytFJ5g7P6Z/71d4fepseEHQInvntCGSF/PN8FR5krIOPH+9A3jcG3XqEM2sOufn6lHpZDBUmAZFOi4eYn5/X+vXrJ0q1useFvePoo4+W1HtL6JNzVb8/jxxA/bSPV4b5JGKVevQN/9FN9qGhGBD0GbnzbsapDMUIceYL35E3Y0Qufj7N3HMfZT3xPfop9eibZ9B39mTaz5LLUo+gie9AxrxDrgQneMCzmVkQXvm84JcXGcncG9uTKtKuVKlSpUqVZoRmAmm7ZQgCSMsJi2ooAhyrNMtAYkljZdK253UGDWXUNu9iTXp/fIZ1jJWWd1P9bBHUQvvMA+uVNvOeuPdN+4wN5JttSD2yZ2xYnpzzgpZowzOLgTroB1lkWdSh8qF8BsLLCHc/y8zMXouV5tywYcPo/cx/LfUoAnknEgQB+zvIgzmjI6A7EPHQnEFf6BCoBllzXjcUIZtRrvCAs0bPwAdyYy3AAzwtyAnk4DkM0CPGAopJZOFomfZBWLzLnV+8N/Tv/My7vOgF98XxzngEcK41+mdM6JKfu7IW4OM0pLRixQrttttuE3fkHTWjG5deeqmkXl+JUwCZupcGPud+kxH0eCj85gEyzZgPxoic/BYBOpo8pH32G9/fssYAawL+MT/m4nfXU39Zc5TOHPKM0R66AV+ZB/sQ59c+P9YttyEYMzcb2NM8LiZjaeB95in39cQ6BX3fd999E7E/25Mq0q5UqVKlSpVmhOof7UqVKlWqVGlGaCbc4064D3FhZABalnr0d9JtiFsHVwluFQ8I4TtcZbiLcbtlwQtp8loD7eHmT1eQ1LsHCSbBDZVJPXAnDRXP4DoDbjfGMZTEg3ksFESUxTTcPZrXtZgfY+VZDyaCj8ggS05mURVvf8hlmkRylUy/6oRbkHZwOWc5SneFIWdcf4wfV2cm7PGSsMgfnjJnXI3IeqikJLqZgYD079cSKdOYaSwp/YhLkH48MAhZUW4T1yPzQIfc7ZvXIEnmQUAVY2N+PlauyCEneI2MaZvAP38GFzTy49l0j0r9/sD4/epf0oYNG3T11VePjjPgsV8xZAzwFh6ybtETD77EzY5MPSWn8wBX8Jlnnjn6jqtwecWTowd0yI9WuA6WZUORMYGxXpgEneAIg/XIfsezPOcufHjMT9ZcrlM/BsxCO6QxZb70k0VWpP5ogjbQa+aXRW98zhnMyjvM04+1WEdDR4M7AlWkXalSpUqVKs0IzRzSzuAGLESsWFCsW6BYv3lZnsAmLFLQraPYoRSg0mRAlVtjiTix5jJVo3sDsGCx7rE4GVsmOXH0kmU9E5UNJSWhHSxQfmfsoBr47dYzn+U1kfQoOKLDYs+UjZnyFWTk42ZMXh50aD4bN24cjWEorShz4hmQIddZCPJyfmUhE+QCek5vhusJMspAHfofSviRJVjhO94T+ObyR+4ZxMbv6B965wF9rB/0C2SSyNTXDuuEdkFa6CrBRnzuAV18hlcIbwBrge8vuuii0TvJ6wxEI2jLk6skgp+WxnTNmjU69NBDR+9wtciTwuT1RuQE3+A5OiX1vMUrA2q86qqrJPUyvOCCCyT1iNvbZz+jRGomc/H9kMApAmAZG/2gOy7bLGvJ2DKQLz1x/ll6eCDWhF9Ly7KarA3mw3pjn3CUTvvIggRAmVzKA5dpl/XDVT1+Z4xDKWTRmWkBsNuDKtKuVKlSpUqVZoRmAmn7OWeiRiwxrEosJz9P5TusR9rIohxYan42hrWNJZYpPLGmhxAillqWWczkLj62pCyvl8UmpN4STLQOsqINt0CxWvOaGzyAZ1jTbi2D7EBQWOMgH7531Jnl9EADXDnKhBnSJKL3BAhD1DTNSD7w1j0gyJK5gWwYNzxwDwiIh2tbvIvcQXLoh6cx5ToYckEemfjD3wFF0l/ydiiNLWsAWeLV4BnXFWkckeZVSfpJr4CnMUVmyIX+QU3wPhPoSL3un3zyyZL6hBhZiMXXWab9RE6c7yILX0/8H130WIOk+fl53X///SMe0J6jPMaFPFgn/E5RDr/exvjwPKSXJJOS+PUmZMR3rPFMYOJJneALKBbUTP+gS/fSHHXUUZL6tXXKKadI6gtoZBwEHhJpshQrewTn0+yJIGKp133GhvchCwjxrusq8udKGfqd+5t7VfBMMDbGnB5N339THo997GMn1tD2pIq0K1WqVKlSpRmhmUDaQ2eyWO95fsxPRwZ5HojVBRLM82o/a8woZ8aC5Y017f1hbYNWQIxYy/Tn5+5Eg3KmiPXK5/QPYnCewAu8C7SRZUwdLRPFi6WZY+VZ+vEiA3kelMUE4J9b9PAHHoAKOO9LT4KPe+j8bohKKSN9AFU7YkuvBWNgriBhR4ZY9cwZmWWcBP14kh2QQBZH4EwRObmXIdOighr4mclQpL68IQgbvpGAA70HvfgZHf1xpsmZH2NDV52PpCCFx1ncBBQIHym36O8yJpAqqDwjxKUe8bCukAlR68zH9Ts9V9OKP2zevFl33HHHRIleZC5NIsP0puWNBKlHnKBw+IOOZDyOo2bWQSLPTH7k+wB9Z2Ei2ufs3OcFCmYNE0vAemXN8JyfaeNpox9QMSg9U+F6e7RDDAD6lx43TyVL7AnP4BGlX2TgHjnWC2M85JBDJPWR6Oiq7y3s6Yzx1ltvnZoG95GmirQrVapUqVKlGaGZQNpOoIgsHAJiGColiCWexRGwdPmesx+Pds1zuoxCpV+3xGiXsfKTc2TG7mfnEBY16AK0BlIA8XpkNu1hVWJZZ4pQJyzn9FhkeT369Xlj6fIM/AN9DqWMBL3AxyyTirw8Qpy+p0WN+7ObNm0azSNRtNTzFKQBMkEfMl5B6ufNWRj6kLcUQH+O8HIsvIOHgvNB9+wkwkKWpCBF1kceeeTY3KVeDpxpci6eaTM9whl9Av3lbYWhGArGggwZP2gGj096v6Ren9F9+Ios6M/Pd9FJxpTlUrN8rX/HGKfp0JYtW3T33XdPnMX6PnDCCSdI6lEYc8bzBRIfyoWQRV/87rE0GR8h9RHxuc8hyxNPPFFSr3dSH/XOT9ArMqZ9nxeExwNkm3ew0Wv38KCDFKJhDec9al8TeFIyDod1xH6Qt3OkXi7oE/qQnlPfq+A97V9zzTVjzzJm11H4xHdr1qwZi3PZ3rTjjKRSpUqVKlWqNJVmDml7BLQ0iWKxzDyKE8Iiw6pKy4zzIj/j5lyDfvPsd4iwEnknIxQzo5TUIwOsR6xU+uNzrFgfI3PnO9AMVjHjcQSc6JvfM7sR/HUUCo+xyuEfz4AO3XrNghvMl/axvP2+JFY588psSklbtmwZWe5pjUu9LJEDcuFMjM/9XC3vbyYSBhFx39hlCpKmHyx45p7Z4aT+nDhvHoCOGSOIT+oRNF4f5M7cmcPQ+TSoNe/4gjozi6AT/dEuHgX0I+MifF6cT2ZuAfeQQegz+sC8ssiFE54ozvn9dkfSTjvtpP322280BnTfZYmuMzfGja4MxangTcjykBBFU0DGfh6OTF03pF5eIHuPikcezIPxw2t0hlgHqddRvoO36Cq6m+OQep3BW4KHhbXMz6GbMfACHUG/03PqSDv3RIjfWd/EY0iTWQ4zkyY/8UpJ/dm430DwWJvtTRVpV6pUqVKlSjNC9Y92pUqVKlWqNCM0c+7xhQgXzFDBiEwCgssFt0oW4/D0hbihcL3gvsPNgmt6qJgFLqAshjDkasEtlckUmFemZfQrWJlWkvZxRQ5dZUoXFnPm2Uy56pQFPDKBAW6locQP8I/5csWIttwNm67SoSIpEIFojI12PIAqA/NwoeMaI0DI3fqZjIEx4ILLetse5HPqqadK6pOsEPxHm7j7XHcyZSLu3Qx4dJewu8qlXs95N+Xk7tEMeORYiTaZn+sB7lcCH3GToqPwJouCSD2fuMpI0BzEOIbqUiMDXJ5cJcO16u/gakb+flUpaW5uTqtXrx7tB7iTKbwh9foKD7M4RgYO+neZbCZrpMMflz08hf+sH55lrpdccsnoHY4EkCmBtRCBaZ54Cp1HV9BfxpqBqe7Cz+RUjJ80o0PJqtA93PKsBeRE+5laWur5yBEE+oVs2ROHUu6y9lIGQ1e5aJc1Njc3t0MVDalIu1KlSpUqVZoRmnmknSkBM9mBNJmCkp8El2C5YS37hX4ISxCkgOVFf0MJ57NcaAZZuPWWV7mwqLFmM1mIo1jGkMErWJNDCQQSbWLh0gbPwldHvfzfLVFpEsm5hZ0omd+x9HnXg+UY21ISG6xYsUJ77rnnCEVg7Q+VWc0kNARugbRc/lxvyqIspEDlc5Cpl5QEefBdJpDIEoBSrxs8A2/5HCTk8qBPklowfpAwKApd8qAixo/+gXwIcEJPXL8zsAr9og1kCIr261ZZ6jGTXpDcwwOs0H30CX2nfCO8cZ5kIZdMAOS0ceNG3XzzzSOdIQGMr89MaoJsKYfJtSdPu8kYQO7wnXfZl1jznhQEHhLgCDJFh1ivyFjq+cyaon3kxLu+FtlHWPeMn/SyiWqdMiESXi7Gxvx9DWbKXWQJX+mf+fq77CvIknUL39jzXb8zcDmDWeEVHj8fC+vogAMOGLzGur2oIu1KlSpVqlRpRmjmkXYSlqNf8cBaA7lhqXHmg7WfJQylSXSU13byOo/3g3XGeRRWHu/42QuoD+sea4/5YJnSj1/2zytkWRJyKI0pc8ZSh1+gGcaW5/H+HZYu56CgMS+0APEdfIR/WLOZKMGJd7ywRtKWLVv0/e9/fyJJi4+bucAnzv7gOe96mse8+kYbWObwGhTgZ9okvsiCJ5ma1M8JmT/9cJ6LToLK/PoQ6DU9SFl2EOQ1dM4P+gPp4FGAf454kEPOh3fRd3TKUQrP5rk7z7DeHOUyXniSpU25MuWU553umUqam5vT2rVrR3JgLH4OnmVdGR/v5PVOqZcd6wPvDONlzYPsQfpSr5u0z3f8Tps+L/az9AqwTvEGIB+pXwvIG7kgJ/YDrgB68Q/kwrN4WkDyQ1fx8pot/WcRnYzDkHoPGTzIxC/oAzol9XpArATf0T/8832CvuHb7bffXtOYVqpUqVKlSpWWTz9wSBsU6BYoFl+m88OSAjlg1XnEYibC4BnO2bDA/KwkC8dnxC+WnFt3eWaChZjJTXjOrXIs0Ewjyljpxz0IiY4z7WOmQPQI4Ey4QX9ZxtHRICgwkyowv6GkNcgBq3haBCflFRkn7fhNAMYLn+AH4x9KJIPlD5KmfWSI5Q6/XKa0w5k2CB5PBKjZI47hA2gIHoB4QPhDyYOQC2NBhzKRhCMREAjoBSTFWR9oaiiyGUK2yB29Y76+NpAhckEf0lswhNIg5MaYQfjusWCueD6mtbdixQrtuuuuoznDa5Cy1J+548Vgn0GW9O39HHHEEZJ6hAuiRofgYyYrknpespektxDZespOzoH5DH1GH0g76rcN0D34T7vIJ1PR+r6a5+GuV1K/xn2MObYsloLuIFPXHeSRsUHEFeRa9PZZx/TLuoJnvp4o8OJjzLPx7UkVaVeqVKlSpUozQj9wSBtk4OkrEw1jQSUq40xo6PwWix2LG4sUS9gjgDnXwrpLCx5k58gx02Pyk7YyatjRWd4ZZ2yJbt3izbShzIN3Mxrez9BpBzRI+5km08+BsIqzzCbvIJuh1K68Oy1pP3dtkT9eFEfazImzflAtc+cdR5W0B6LK9KLw68orr5wYU8YNEO2M3PN8X+rPIdFF0qRyLs7Yhu7643GhX9AEXhn0z+eXkb/wBn1DLn4TAJ6iXyCgLP7Bma3rEmgIRE9/mWfBPU+cxSMn9Jyx87ufJ2eEe95/d9q0aZNuv/32kfyf+9znTsyZ8/lMKwyfmKOvMeZGdD98Iaqe/pCtR3UjD+SPVwZ5MD+PVkcOWZgIuWS8itTrNx6X3H94h4hsL1RDf7nuUzfd+5B399FN+HrooYdKkr7yla9IGl/z8GDozNnb9P7hPdHw8CaLmQzlo4DHW7ZsmVra9ZGmirQrVapUqVKlGaEfOKSNZe3oJYt7gGawMjPq2i01/p/l5vgcC9TviGJh8x3nNPSHted3UbNUJVYelmlGvg9FAGNpggJ4B8vU71pmFjhQAGPCwh4qZJ8RoPSDxZtn9/4dvM5CC5mhTeqtX5Cql2tM2rJli9atWzfiCxa8n9/hGQC5MSe8FvTjVrVnj5J6xIX8sfbRKfeApLckC2yARB3RgejRN9BlnnUP5RJIBIoeZDSvF1xgfsgZRJJFIBxBwjeQFjoDrylqgd77zQrmldnA6I+x+g0E0BLtwROI+Xi5Wj4jktrvMyetWbNGBx100CgD2sc+9jFJ0lFHHTV6hv2ECPAsIML3nJFKkyVRMxPj8ccfL0k688wzJfUoU+q9VBmfwr3tzJQnTcY5sP/krQLfG1mjqb/pDcySpFIvS7wNRJjDc/ofymFBv3n3HoQ9FMeSRV/y5g5ten/EEbDWmHvefPA1SJ870jm2U0XalSpVqlSp0ozQDxzShhyJ5h27LJGHtZ85Z6XemgSRYi3n2Y8jxCxjiKWd+bz9DC4tS6xi2ucd+nHvARYmCGuhzGv+Dt6ALN8ImmW+jNlLDsKDjLzkGSxUt3jzLA7vALIArbklj/WbOdyHaOXKldp7770nzi79HfiUWZGQP/LwcafXAH4wJhAibToizTzb8AfUwvf+DmOAP6AW5JH5AqTJ81oi3ZkHNwDSuyL18kamzCfvuXuMCDwAFYP+iffIcqXuIWGsoFgQN20NlZGlv7xTy0/m5+sJzwFrYMgz4WO64oorRnsGMvc794w70RfjPPbYYyWNl3gE+RPvAA9ZA9wEAOX6HWjOWvnJ2JgPe4x7JOgPnUGGIF70z6O84Tt7A/PMmzTov9c8YB7I/bLLLht7Bz0bypnBuxkrgFcFD5Z7B0888URJfeY/9jt4TttDt1boB/2Cn3nDwtv1+KhppZgfaapIu1KlSpUqVZoRqn+0K1WqVKlSpRmhH1j3+FDauQwwyKAYyN2VmQQE9wqumKHrSLSPiw73DW4wXDXupqQfxpiJ+gmOyrKbUu/Soj+eYUy04YEqzINncYtm8gOulLjrMUtK4r4k2IfxeJAM7+Oqw9XJmHBpeRAYLqkM4FuImqaZcJl5cFIG8+HGYyyZLlPq5YyOwBfaov2hxCXwh/b4SfIH3K+euAb5k+ABdyHtElDj/cBndAZ3PPLIxCIeiJZu5Dz+yetx3h46Q2lMnoE3pOt0PYd/BAIRtMa7jMP1AJ7Av0xswnrzY4IMLvXUnUNUShnNB73Aze98yDXMmFhPPm7S2NI3c87UraxPHyNyyH3sggsuGBvjUIDdCSecMNY/Y2Pt+V4Fnziy4aoh8siAQddV+IWcDz744LG2cOEPFSqiXd5hTbKX+HEMxPFBloRFH4eKNyGfTOnL2Ljqhjvex8iz69atG7xiub2oIu1KlSpVqlRpRugHFmkPEVYwVjI/QXtYtR44gZWYFjWWG206qsw0nrSBRYi17kEWWLagMAJnaBfLOq+CSZOBE4wRq5jxOFpaKBAtCx8MJbsA0fAZQWRYyQTeff3rXx+9s1DBBtBSpiyVep4jl6UEg9AOaMIDg0DqXBnKwCD46Ggpr9OBGkG8yAk+eWnOLBebwT5Y+542FznAwwzYyyIUUq8zBDxxLQnK4DlHS8yDsWbKU+TmiI7AMoKSQIiZRhe9cwTMs8gU+bMmrrnmGkl9OUt/h37hNSgNlATi9/aZx1K8NCA50NfQGLKQCvJizyAITOp5y7voDoiX9UrCkvPOO2/0LkF8eAOZI54vgr98r+L/PMtYkQN65oFaIF70luBP1gL8w6PEnCTp/PPPl9Svo/RY0p/vOzyLFwp9zkBc9N7XPOuSMcJ7ZM1e6Z4y9Iv9LtE/Xg8vDpNBa7vuumsNRKtUqVKlSpUqLZ9+qJB2EtYT1h9ow4txYLWBKkAcoEsu73MWJPWWH1YxZzx5HurJRzI9ItY5qCXPyR29ZDnFPG+nP7eSGSNWf14Xo/30KPg7jD89CqANt3jTKvYzcqlHdH6WRT9DxTGSmqbRgw8+OHE+7cg90yxiZed5pfOW9kAimTCHc2lS1foVHJ4BucEX0MXJJ58sqU9oIvWomfM69CDTKPoZW55HZ+nC1AvXVTwR8IB2E7X4dST0GG+AewqkyZSrfqbOO6DmHBsJOjwpDrrP2HINDBWSQTeRz7QUuMRCMG7Wop+NMl4QJzJlbCQF8TXGuJAvOslP3sUT4t6sPMtGHqwPvFj+XBZqgfgdHXJZ0l56AWiXhC94QPwaXHoBswhIlhP2fthPMxlW7nd+xY71yprAEwIvGI/zJD1GUO53XgI0E1zVM+1KlSpVqlSp0lbRDzXSxorLVKR+XozVtlAqQiw5T4OXUYycofIsbTqiA8HzHZZ8IoWh8pGMNy14LE8+98QIGVnOmJlXJmxx5IMnYigZibftCS2wsLFo03Lld7eIHSX7fKZRtutWfpbmxKpH/lkeVZo8R8tUsVn8w3mR8QmgWXjBfEDpUo+SkSHIHd2hDfc+cIYJyiOa96lPfaqkydK0Hs1Ne5ma1lFGjjETzsAbUKifYUrj5/wk4GAMoKZMp+pn6LSfQi8q+AAAIABJREFUZRXhFTJyfWEMrKehVJrQ/Py8HnjggYm0vOiFNJkoBj1jHllCU5pMbsTvPJO3CDyNKbLiO/QBrxqR7R6fgCxJruOoWOr1wvc3ZEh78J3fiRN42tOeJkm6+OKLR+/m3Fm78DGLgfi82PtoI9eXzyvnl6lIuYGQBWSkyZtC6fFD1tPK/pZSpn7/SFNF2pUqVapUqdKM0A810sbKAoH5GTOEVYzVjZU3dLcSwtKk3TzjAb34+RefMQYsQc7ZQGt5fu3v5jkulu9Qej8sauaFdco7jAOL2M8tsYqx5LFwsWqxkh0NYrFnKtKMrHY0zdgygn+ImqbR5s2bRxYxYxgqcIDcMzI6U8X6ZwvFI8AXIk4dnWHVw4c8A+Rs23UIVML5OqiJ9kFn3OP2OSLfjKWgDfpz5INHh3Hzk/7hkY8xbzbwHXqWZ9mexhS0xDwYMzxCfu4VArGRvnKhojMeJ4Gs8zx8iEopWrFixUiv0Qf3FIHqGCd883gEaVx/mb8jW6lf25RqJcbAcwowF9Yl64S4CNLAXnTRRaN3QLzsM+gIYx1KB5x37TNtMfrA957OGK8Zc8ZTlV4736sWKpHK2NEV+OwR6ZmHgLHTPnwduqlC+8gY/ch0vT5+L55SkXalSpUqVapUadn0Q420ISz3vD8p9VZkoqbMmuPohfexGjn/xLrDEvY7ljwDOsriGyBurGdH6XmGDqrA0sdq90IZWTAeqzXLSYIs/byXQiEgEizSjMj0spYLlYnEOuanIyLQLGMYOueCiACmH9rxWAPQY6IXxoncHA2AUrOYDO8gH87VPMo7PRDwFCTAeFyWoBfuWvM7/dE+6Enq5U47PIu8ibo95ZRTJI3fJc77yyAS+mH+/hy6QL9ZEpRzSvjo7z7lKU+RNIma+cna8PlRWGOhsrEgSD+rB6mnTg6RZ9KTev4xVqlfl+gXz+SZrI+biGvGnVm+iJPhrNk9YelxyfaRoe9VIHWQ6NOf/nRJvZwym6PU71HIKAsgZUZGR+nshayj9Dqkp8zfz3LBWcQp82L4vIiRyFiNjDOSJsvE5tk2a9P5yH7mWSjz9sb2pIq0K1WqVKlSpRmh+ke7UqVKlSpVmhGq7nFNBqm4Kw0XEG4kAiPSreeur3TX8Q7uG9w67vrBXYR7inYJgMorEp7gPlOc5tUyXPzuNsogsqxdDTEvnx9BRLiRCNjJMXsACi403F4LudTdDYUbOa+uDdH8/Lzuv//+EW+zZrY0yQ9cc1kcxQPomBvjy0Ia9MfYXHdwqR500EFjc8MFjUz9ag6uVBJg4N7LVLguD9zfzCd1lGeRsbt9eRd+ZdBkHqNIfWAYuoL+wdcs/oL7V5oMjiQdJ1fbho5A4DnzgkeMiXXlMmc9ZYGaaZTveMGQTDKDDJE77xBcJk3WNYeYI2sY+XtSENrnO9zkJBIheA1eSJNpZXFXo9eMY6h2NDqPbDM9K7rjAYLsRcg3iw1lMKDU76PwGrc8PMk624zdn+WYiTFxLIQsPHgNuSyUZAde+TsZiLZp06bqHq9UqVKlSpUqLZ8q0h4gD17CKsX6SgSCBe+WGIgjA6mw+kCqHtSR12QyWIpx0JajQT7D0sxAJ8bqlnxey8oym6Ab2vZgIvrBegXJZVIVD3jJknhJQwkyMmnMULlVp1LKqB+sfEexBP7Ay0wsk2UIfVy8C39AOMgUZOCFB3jWE9N4m4lQpR5FwP9MZAI686tlyJC5gl5JUYqeMS9P2cjc6RcPwlVXXSWpR/rovdTzj/ZApCCvTE3pAWKZSITykegQCNKvW0HwFv5l4gyfF+2hM9O8NAuRjxuPBHKgzywk4zoPikU30CGuT5GwhuAyD0zNdLbIh4DRoeBM5E4AHHNPNOnIn70OvhMgSFAbOoSOOUrPtKmM8fDDD5fUX0fz64J4EFgbyJS9A94MJYSC5/CV+RKgxnp2XU3PDWstE7H4vNiLdyR07VSRdqVKlSpVqjQjVJG2Edaen8Hk1Ye8EgMNWXdYhiCdRNFu/WMF8ywWNf1iHYMg/IwuUw9iNXtSC+9X6s+KeCZLfsID5u/IB5TJnLNIB2jEUXWelWfKVSxffy6TnUxLYzo3N6fVq1ePnqVdv6qWiRVSliAFTyTDZ5kUgjPYLGHoCXroB6SRRRJ41mXJ+RxyAZFkwQhHdMgb1Ayyz0IRtOUpQpkH5SG5zkfyDtAavJKka6+9VlKPxpgn/YNKMxGJ1KOi1Hdkwzzd2+XvSz0izes6jpYyZW3q3xC598LnIfXrIz1SnKeDtN0bxDPMBR4jY5AqRYe80AfrDaTLd+wLXPlyPUAu6CR6cckll0iSTjrppIl5oWfMnX68pK3Pz5Eva4t50i/n+rQ1lCgHnc+YGvrJhClSLwP2MWSaHji8FNJ4eWB/Nr01vp+jR0NxNjsCVaRdqVKlSpUqzQhVpG3kCBvK9JVYjZzFgDKGkC+oFXSEZYoVS3SpE89i7YEiMhJ9KBlEpuPEIs2CJdLkWU+W0WPstIWFL/WoP4veM6Ys9+mUiTmy3KJbzTyzlKT+8/Pz2rBhw4hfQ+kJ8ww7y61mDILUIxksf+ScRQoY21DkKm1wXgzCAvH4OXime2Us8IKkKyQc8TENpamUelR28MEHSxr3PmTKTviFdwBd9UQ5yIo5wxtQNGPFY+E3HfDSJEqiTcZGxL3Un4Pn+SN8hWfTaJruzM3Naeeddx6MT4Hge5aHZPyZYEaaLODBXnLeeedJ6ktLgkg9RSgIHvm4p0Pq+ejn+OmN8++kHnX62TnEfpDfpb559HWWc4XHyDb3B6mXJTqTRWBoEw8XPJJ6PaZ4C7pKm7yDt0iajIdJ2fK7z4v5DHk1dwSqSLtSpUqVKlWaEapIexHCesOqzzuinAm6RQillYc1Tho+P2fL+7+gQM4NQYEgX0c+nB2CaHiW/rGe/bwVCzOLPGBVZpq/obKe+QzvgvS8gEPOMyPd8860jzH7HaKmabRp06YJ5JbFGvwzvBdZDtDvvsKzPLsERWCNg4RcprTDGXPeRaV0ppc7ZM5ZkIZ+QLOOykD0oBfQGZHHIFPu04JUpB6NEc2NnDOGw9FspqlF/iDGTFHrHiV0MQvEZKS1n9WiT3nXNiO3hxAkerZYac6FCllAoNQ8A2X86LrffqBN5nrppZdK6tcr/MPL4ciYftgrWNvoAzrFGbE0GbOBLDPXhHuf4C17U8ajgLA5H0enpMlStugFPGctePQ4suPd9ELSPvLyO/6sJ/YM1iDzpQ1Hxnnenbdw4IXzhGd2NIQNVaRdqVKlSpUqzQhVpL1EynOaRCJ+loXljNWNxc2zoCW3yrGoaRfUkpmJsOw9Wh0LN89fM9LY0RljxDrPAijMl8/dYsWSxmrmd8bkkb9Q3jffGppWXnFubk5r164d8W/oTDsjsPPu+BBiy4IJjIG5w5/MCiX1cs8yg2Qk4z6teyRAwZltDNTEux7pTDugJGRL/5yZ06bHM4BSEinCA8bs59J4f9CnzEOAroCMPfo7zwnxYMBP+ne5ZcY9UGEiO0fLQzESi9G0M0z4lOgZpAvKc29Q3jxAd2gL7wUy9jkTYU4GNiK/8cqwP/hNgPR8ZVbAofWTeSiQIWfZ3EgZujePTtJPnmkzDl9PedMAbwM6Ai+4w+6xG/9/e3fWa1talo3/3k21ULQB7IgvIohg0ZcggRAiYjTxwBMP/AJ+Br+Ah577DTw0BjQERPqugKIVgkLyP1FEmgqNNLtZ7wH5zXGta461qIJdVWv93+c6WXvOOcYznm48+77u9iy/C33eWz/vXvvZnKVhyGsvKhbTXlhYWFhYuCRY/2kvLCwsLCxcEiz1+OMEVVc7eaW6ulXb1EVUMx0+MnNcsEN7VJutvsyCEdTtnVqTOpjaShKHmeMUoe1wRXXneXspHameqKM6ycqeU5nxdchHJ+nfw3nq8ZOTk/npT396eM5e2I5nUZlSDXad7VThU8UxbbjGPjBv+p+qZypTY+560NTLqcJV5EGIHTWefrz3ve+dmZlXv/rVh3tc22lEuyiLObFfZmZe9apXzcymhmVK6TAaiUFyrObCnrHPpLHkLJUJLjpNqXm137WVJgPr0Q5v9hsVa4a6efe8A+c5osF5jkcdvuRaaT85oma/qXytqbFbD2aGThaS7RvTV77ylZk5riH+qU996nCP9r3/9iiVM1V6mjqcI+loOrM52ErCZF2orWe2ddWGue4iOulgZ6zexXZqtS/svzx3jMt+51jXIWd57nQYn73k3XDPeSrxK1eunBsy+GRjMe2FhYWFhYVLgsW0HyfaIcnfZEukYpImSZc0R6okvc5srFU7HDa6nCeJP5mkRB9nScuYUaYBJR2T2JP1z2wSPSaZoVMYIom2y2Fim5k21W8kXe1jTy359hjz3rNwcnJybkKWTgpDCu/yo5le1vyT/DuxB5ifTEKjfX2wD8z5XtpcoVfmpwtVcHxKVonRYnmYjedhJBhqaoWkuMSg9I1DnOQqe+FI5hhjNFf2oWQYqRXqRCn2hT76nPOISXt/jNN+5pCUDpD9nj4Wpv1YwGG0QyW9a8nW9QsDbo1BlyndS/vrXDBm93TRm/zO/n3FK14xM1sYlfnZ29/2kz3ZSY881zhnjrVzndKXM12mZ20NkrPSemmTVio1HNaw0/92uGq+T71Xtdtn5Xk4OTm5UKlMF9NeWFhYWFi4JFhM+xdES17JRDCrLlbQdtwMM8A0SN1sOx1K4vtkL2xLbFZt2yEdZ7rMttHpYzMg9q8sotEJMTqxPul2Ly2jOdFGh+TspRPsPu7hypUrc/fddx/a006ySu15dpcl3Xtu97dLs2It5i2Zj3u70IE1tebJfLAFzKqZJ9aUjAejM+9ddET7e8Vu2GL5MOgrho9F5/42B52Klg3XvdKmpsbFfrJX3dv7PDU/xp4JhfLaLj4xs71H1ilD8c7CeSVgsUf96rHvQQEPsB/89ZwuSzqzaTg6gQlNBb+YtPnqkzW0R8y/9z+1Adi3fWve7BVzcl7CpPZhMQ7vfGpA2MjtY3u2w/paIzOzaZn4ZHQSn8cSTmoPufe8M+Wx+Nk8FVhMe2FhYWFh4ZLgykXS1V+5cuV/ZubnZ/9f+H8dv3lycnKqgsLaOwuPEWvvLPwiONo3TxUu1H/aCwsLCwsLC2djqccXFhYWFhYuCdZ/2gsLCwsLC5cE6z/thYWFhYWFS4L1n/bCwsLCwsIlwYWK037mM5958oIXvOAofjHjJsXLig3kSNfZhdLBzj1iETsbl1hLn/dihT1P3Gffk/HA4gVl6hHvJyZQPGXGYBqjvnYbZxVvz9+6NF1nN8rn6Ys4YHPT93SO4Gy/Yx17TfKeziDVGcvMScYsdzv+fu1rX/tWe3Lef//9JxkXfqexl70sv98bc8ev+60zY52XJ928uGevH92HzrMMe32EztV93rjP2iP9ez937zdz1PO6h87/3PkI9troOfnqV796tHceeOCBk4x33nte79fO7Odc2Jvb7l/3u9+BmeN18LzzYpL95l3rDGWdwyD/3e16D88qRbs35h67Nvfm0W/OpM5Yt/du9Dx23gV/cx/oo+/6HIfz1nrmZzHnP/zhDy9EAvIL9Z/285///Pnbv/3bw4TaQJkMQMIGaRcV7PCfjlSHGZSvgIGCGZJpeFEljvCf68c+9rHDvS972ctmZkuU0IUBvCC5UTptZV9rU0hoMbP9ZyaZhXs7TaJx539u+m/epMKU3lKiArWY8zfoYgISc7zjHe+YmS3dZV6rXWOXTlXyg1w3c6DQhXFJqmD9Mj0n+E2Shr/+678+Cs951rOeNX/1V391dO+dgr3YdZUd2tYjk3iYF/d24RjIRDl9MPV/yPZW3qP9rn3uENOG5+eBr98OT2vms7/5PnVxlD4IJXux5pm8pv8T8E5IxGHfZ5pY1571Hvm8V+jFX9e87nWvO9o7z3ve8+Zv/uZvDvcbRwq51ttelJjHfjUH+Z+/RB7mq4V18+T91ebMdo5JRgISzVjLTHbiHn8lSHHtHgnqBDX9n7hEKV0bPMfTaUU9T18z4ZD79c0ZKPGLfSCJTdZidzZp157U1075m/d4byWVsib+ZvIgSOH67/7u745+f6qw1OMLCwsLCwuXBBeKad+6dWu+973vHRLdKxeIXSdITCRoafGwwGSiX//612dmk7awu9/+7d+emU0ixsTf8IY3HO4ltWKRJFGSIqlP+b28hiT4pS99aWa2ZPWk50wr2oyj1YYk3T1GR3LHpJULJLlTG6cKSjtS9GHymJBx+T6Lm7RaXBEF69UpV2dm/vIv/3JmZj796U/PzCb1m1/3JNvo0n7NOp4MkLZbBddmDHsrUx5ijc1Ie21TFdplNK1ds4pEl3Fs1WmrDVPl2Axbn13bpWhnNubUJRmtYad9TNZsLozDc8xfPgewJSxWX+2VLjqTz2wz0x5u3bo13/3ud4/McjRJOTYszrtkTyabBOusn52a09p6jzK1sOdp12/66MzK9ML6Yi5pvMybtpKJmu8u59uMu/uTz/Z+Gq+zw3qkNsC52Wuor5i1uaFJndm0Ws4+zFqffZ+mSuOzpt6RXNuZ0+9MF4Oa2TdhPVVYTHthYWFhYeGS4EIx7XvvvXde+tKXHmyXpJ+UDJX7e+ELXzgzm02ErVmi/ZTQtEMS8/lf//VfD8+d2aQ89tyZTeLDGtmUSZXs37QDCfe8/e1vn5mZr33ta6faSJt22/9IgiTRN77xjTOzbw/3nbErhUd6ZpdP5otBs6uBknXGbc7SyYvWgdT95S9/eWY26ZkPQTpyfO5znzvVx7e85S0zs7EOWo8vfOELh3swBn8fi7PSnUDaMknq7aBjXTCudqyZ2VhlM90uZpLs2Vr6DaPyec/JDOMx313IpR0F95yY2lEQI9lzNuu+tBMj7DHIdobzXG16D7KPbUNv5zL7PLU0PfZ27EqcnJycYlXWNPeb88b7QUtmfbo4TMK8e7e11XZp+3zmuNykfaWftHapPfNOa1fhGAy8bd7Znvn2nusTDZu5T60JJo1Zmy/veJcmzjmg/aQFUAzkrH2RfXE+G59zVT9y79AC2kPOIePpUqeXAYtpLywsLCwsXBKs/7QXFhYWFhYuCS6Uevzk5GRu3LhxULNQbWRMHbXUI488MjOb2oPaitOKe2c2dRC1NLUOFTq1uDbS8Y2DRMcxUglSFWetX6olfaPO4SjmuZ43M/Pggw/OzOZcQdWnr+1IQxU0s6m0OISory1cg/NXqt+ooznJvfjFLz7VFoc+96aD0Lvf/e6Z2eaJSlA4F/NGOm+85CUvmZlNTaldz6HaSxWr8ehT1lh+ImAcqeLUX/N/lkMaNWOqK/Vbe6mWnDmulZztcZzpMC5qw+wjFV+r2633nroXOj6+4449L9WixkrVaT/b796NvZAfY+6QLKrPduzL9rsvHZqVKs5Wh5+nHr927do84xnPOLy3npdqXSGS9ry1bSfDvVhr62GdXNPPSTMJdbv58RzPtZfSvEXF/PGPf3xmtnXy3K79nnCutglHP/ZMIO1851rmuT0HWGY9Y+4wLucd1Tfn1pnt/BR+ax+4tkPssn1qeOvnvDGv5zkqXjQspr2wsLCwsHBJcKGY9sxpSY5Dw2tf+9rDd5gviemzn/3szGyhBKQv987MvOlNb5qZY6caEjpGiDUnA+a89ZrXvGZmNvaHyXs+5jqzOYJohzRMEiSBJhP9yle+cuo77ZGSMSsSfzIt/SYtap8DynmJGDipkU5JpiReUnkye33EjkjSX/ziF0+1lQ6EJGzz12wQ67COM9vcc9xJCfqJwFmZkGa2vYI92WfGbp2S+dhnxmY9OBl2ZrSZbc60bx2aye05hmnvrIxre45oHXrV4Yr9juQc6Fs7X3XCob3kMR1K1Cw92aD7WzPRIVqpket+p6agcfv27fnBD35weLZ5ojGa2fZgO2ZJhqT/qU3RB4542OxXv/rVmdnYn3fLuzez7YNeO3upnbBmtvWgpXNu0kpaD9qtmWNHNH1tDYJzIkNbe5yebw6sS2ohvd++6/BRe9lZRluYferzE2vvRDEz2/roW+9dz71MWEx7YWFhYWHhkuDCMe2Tk5MDI2GjEVI0s0lqpGzMhvRIgkppEhtmEyU1a+MjH/nIzBynLJ3ZpGF9aAZKGs9wqle96lUzs9my2U8w4g9/+MMzs9nY81qSJ1szJvr6179+ZjYNA2l95jhhgDnB9LHbPbZBUtcGKVX7pNlM86dPbFfu/dSnPjUzG6PPBAakY2yDHwEpGVNJBknbQPrfC6d5IpDSN7aAvVh3c2BOOzxt5pjZ2G/28F5ayc41j4VhWD4nq9SHTryClfvrnrTV+g7D6XSWnad/5jjHfNvKrSUWt9fXTiLToT7Jzl1jXTqMq9PCzswRa+7c1onbt2/PT37yk8Oc27/J8rzn9oExek/4pOTewYZbi4SZGjP2nik7/db+OEJevVvOyJntffde0m5Zwz0man70u9MkO6s8LzVunbZU+x1GusfsteOzc7XD+fI8sC7tB+GcsDY0ftlH7ZiTJ+sseSKwmPbCwsLCwsIlwYVi2rdu3ZpHH330IDFJtJGMlJTFQ5pUh0X7nPYo9hPSHCm5C3uQVLNoBZZH8nRNX5t2QqxUX0j5pDzjS2kPAzXW97znPaf6Snrcs2U1o/J8f/Ux54S3OC0Ae5r2u6BIshn/Jn23FE4i1tbMpokglZsDvgfmL30DfNf24zuNrqCWttNmw12xDYvZY3ud1MT8eM6eVzeNRNuYO8FMekPrWxdjoBXopCd7hTDatuh57bU+s62vfdWJUfp5GXmg/WbPntdVoLL9LiBkD51X5auro52FW7duHdmP8x0wp95ZGrhOdpRs2bnzu7/7uzOzeUIbj/Nhb8xti/UuOx+8T7kPmvnau+zj3v9MdmMNaQM6nanxuDe1Z/rvO3vE9/ZWnnN9BoNxGYO9m1oa7XZ6WIzbuFLb5Z3Tf0m4pHruok6XAYtpLywsLCwsXBJcOKb9/e9//yiFXxYC8FuyuJmNPfzDP/zDzGwlJWc2CYw0xT5N4sVySagpTfquiyB0zGNK8p7nO97rDz/88MzsJ613De94fcLGSIqkzIxDZ/8mvXZf9+IyMXUSPcbdDJv0nMVNSP3Gh6X7TDrOVKukffeaI2VESdFpq2dTJP3vsdk7Ae0aY2okjL9jadtrfK8ucHtINxOwh5LFYob6ZO06BW8ykE552x7n7tWf9HDuwietOei6yjPbWraXcJeghPzs2i7r6POeLbNjybvohDFkGlPnxJ73e+PatWvz7Gc/+0hjlIy0Y8EVKLIv/J5zi43TkmnXeKTy1Eb2kdbAGOU5cD6Yx72iFn1mOCvMH5+emeMIEO11+VNIrQkfHay1/SK6oMzMcWSDazsV6p6/hP3rt46ttpdSk+Rcsy40FN6frqt9GbCY9sLCwsLCwiXBhWLa99xzz7z4xS8+SEOS4qc0RNLDVnlTYmjYWbIl9/C0JEGT+tjDMfH0XO0YaCAdt1ZgZvPeZNPCXnlRYgrp5cjDvcseknwx4rS3A8nZvPG+55GujWQixtos2XM7jjHZOrurOe4iA+Y5140kbw6wTWssTj01KJiP+UrmfidhXvQ3198eae/Wjts2vvQebraHvXSRgmQvfjM/rjH/NC3JzvXfc+whz2/bYrIz+8n4MBusKUuyNoxdu/ro3i5BOnPMzs25/bfXR3PbZTa7FGTaJTveN/d+48aNG/Pf//3fh/aMOb2erYv1N2/G0Rnsst8Yoj7xh+niLxmB0sVQaNOsU6/bzLb3PFdfzIF9kXunz1hz6R7veBewmZl5//vfPzPb+2/e7At7ODMZti27tXL6Y9zpK8Tu3u+IcRl/5ocA39GmdZGRzOtx0bGY9sLCwsLCwiXB+k97YWFhYWHhkuBCqcd/8pOfzNe+9rWDWz71aKrKqII/8YlPzMymJuqkHRwQZjYVDzUVVYm/VExUQFTRM5uThZAEv1EF+ZwqJyok/ea0QtXOGYsTVj6bCqiTHlARSyOYzj3URA899NCpuTFXVD/pWAPUVdT91HycZLSRNcapO/WNesoaUP9lLdyuX9tOKtpIxxf3GCvHnjsN49C3TD7ScE2bMSBVtObDPjZWKrkOr5k5dubq0C8qz1x/17SKW7v63M5sM9s7YW9QT3pn2pktn+1ee9bnVtOm+r9D5jrhz15q1w790541OK/OeoeW7eHq1atz3333HZnH8h5z6czoxCj6sLf+0E6Y0KGAM1uCJ+Yiv3WYZZqgeoyve93rZmZzvDX3qYbvtLnOTc+zd/bqaduLxuWz+etkNflvzzV/zkpnhvMmz2L3Gqd7rYU+p2m0Q/7c4znttHsZsJj2wsLCwsLCJcGFYtr33XffPPjggwenhFe84hUzc7qAh1SZHM5IUpwh9oL3JTfgENHJGjiOkSozbOONb3zjzGyObtixz3vaAFIkBtzMjTYgpWTtkY5JvPrIcULb6bClFB+G7xrSqudnKT2OOa7BYjmgSMuYbBmM1TX62kkvkmFZF2N3jYQTkqpwLJzZmApNwXmM6pdBO4al9G0fNePtUoWd2nNmm5fem+6xLsma7Yl2GuJk1qlKZ7Z91oy6Hbg6jGzmOLRQG80o08GqGZV2fd9MOx2D2mmoHbp6HvI3/TbX2K+2MsWm9TJv56WtvHXr1nzve987cqjK9ozRWaRPnf43E3vYy/rb2iXz8/nPf/7U55njsr5dWtT48nneXSFewsNoQjpR1Mw2P+519nFmtZ/3isPoAzbcTN/+z3nsUsNdklVCLefORz/60cO9zqjeB73v94obuccc+//DHF0mLKa9sLCwsLBwSXChmDaJl1SEXWLKMxvTaPtTl3hMuOfP//zPZ2bmc5/73MxsDFVKT9JeSpOYjgLsZ6Xhy5KSwqhoCtrWqO8k+5lN4jX2Lkrvs/DuqA3DAAAgAElEQVSxDH9ib29bI9sOtkSjMLOxVwVIsHT+BOYRw0gWgDkJ05LI5n3ve9/MbNJt2u70H8Nm5zdua52Mq0Oknugk/3sFVTzbnHaCD8wEg8w+dtiOz+bU/KSWBpvoJBfNbpMtnxV65V6/75XmtDcwxrPK16adEJOxZzqpjs/9/cw2j553ll1yL1EKdF+NL9loFww5L43p9evX5znPec65SXacEdqjtbMPOmXtzDbPbfPXLrZnH+z5KbRWoUMx8x7XsGFbf/O/F0KrPevsTMKSzYm+ptbTGSgczTXOB89JBu7s81szffubhmHPL0Z7ZxXRyT72+2JfeM+eKO3dE4nFtBcWFhYWFi4JLhTTht///d+fmc2Dea/wOgm3GVuXlpvZPMAxbKycfZqky06c6UXZPNyDXZK8SbcZnI/Rknh9JtW2p+TM5llOeiRBGx/pn/ScbMmzzYE2OmXkXh/ZlGkz3INhkoDTzstblB0aWyLpdunTmU3rIM2sxBVtp9pLjNBFNO4U2tabCXL6GjCm9pjVRl7fRTd87hKTyc5da32a4e/B2nRCltbe7Hlm2089t8bTyVBmNm2PfYW9tPf9XiEPLNk7557WQu2thXegPX73Uoh2spM9XwC4efPmfOc73zm0o4/J9vXPeWD/dvKbTH5kftpTGePlxW0N0hbbc2v9uziLcsIzm4avvbe9U7RzGYVhzPrmXTNvxmNu9zzBMW5nhXPPGZkaC3vCeaPPnmOejTvXTR+7WItzx7U5j8bs/wvviP9TWmN6GbCY9sLCwsLCwiXBhWPat2/fPpTdhLRHkVJJaD5jBthLFr4gjWpH+lCMgORG+sryeiQxkiZPSUyAxJ0sVt+ApEsCJEVmnHY/m0RNivT8thfObBJoe22Tos1N2k61Zw66nOdrXvOamdlKoKbtTB9J2p5jrvzNFJgf/OAHZ2aTsLEL0nmX7pzZioiYt7RV/TLYS5V5Fs66ppkpdpPe48Zm/fu57eGc13ZBg2ZN6bvRhRpof8xxM/y0/fZ7Y+/YH/qYduVmwfpmDuwL/cq9ajwYHYbahSsy4sK+dm2zaPttr3xsF23Zw5UrV+batWtH5UlT60P7Zk+y55sX70R6c7vHtdL7dinLjvXe+w26jGf+bk/otznWx70IDV7igBWLDLEPnAvO25ltr+iDcw+rZZfe84ehsei0uZ6/V2ykNW7WyRlszfPd0Bd7Ul+0v+cD1Rq4i4bFtBcWFhYWFi4JLhTTvnnz5nzrW986YgppWyJty/714Q9/eGY29so2nLalT37ykzOzMW7tYc28H0mOmRSfhKZP7S1MckybH5bgr/aavaRGwVibpfPIJB3vlQolpXYBAhI9j/BksZ6nbxiEdt/5znfOzGbnT1utsdIumN/2ME1vdWyIhE1i7+en7dbck3iTkf4yME+edZ69s9F2Wuvf8aAz2z5ru2oz72RYJH/7jRao918ykI6H1p72+zm5DzoOv+ON7aHUIJi39nA+y5Z+XvvmSPvGkMze+mNUzdb3ogrs7z0t01nQzl6mNetu/2Jwokr436RdnU3Xd+Zdu9hrv78z23vhvTF2WsKODJjZyndiuPZbl7TEuGeOfQi8w6I5vKeek1ne+PfoP9Zujjqnwcx2LnsOL3V97giLZOnOJn5L4Bxyz168vv3kfbJ39rJEXlSGDYtpLywsLCwsXBJcKKZ9cnIyP/3pTw9smfSXdhvSsMxoriVNkgzf9a53He4h3ZEASfOPPPLIzGwe1Jhx2uy0i3GSHjFDtujMUEbydC+pjjTp3mSvna2I1MzbmsRJwiepZn9J7iTRjmtMjQUG1VqB9uJO34B+Hmkf83744YdnZmP2qTUwJ1gYCfiVr3zlzBxnj5rZNCG8UTMW/k7gLIadfXCNflt/a2dd9uKLzY85xVY6JjX74VrPca177aVkdFird0PfOn7V98l8MC3Pa3t7e+hmX7oUqHv89d6lhsRzjBmTbBtj2rTd03Z370xnpZs59ifYY/3Z/n333Xe4Rn/Tpt2MF8v0/puDXH/M0G/eOfOCiYv5ToZn/J2zn/bK2DOPuHnXB+eB94gGLNmrdl2DtfpsTu2tzA/R2jnt915KraffzJ9x2lNn5SCf2faiPZIa0USe3/3edBQA5Fm8mPbCwsLCwsLCHcH6T3thYWFhYeGS4MKpx2/cuHFQs3JsSNUzFRP1jRJ21FYc0ziqzWxqG04PndaP+oZjWIZtUMnpy16SgZnTairJRTpcgzpJX9MJghqaSvNDH/rQqb616otDysyWipQ61l8qKM4jqaakIutQG+qrLnKRTjn63+Eg+kaFlip812jX81xrDFSFM1vxgA5z+UXRyUVaPU0V2GkzZ44LT1DBtfNLOghSi9pvVJsd7pZoB6ouWWpv5lr2undomb+el/vbOlD/er9a5Z7Oa9awyzV2AY82Icxs+6tLwrZjX4Zotaq4k9X4Ph3SOklPF9xI3HXXXfOrv/qrp1SxDevtPbeW1sfc5po6T4zFHulUzHsmCGcT0x3VvWu9g5m4xH52Vpkf76l1SnW174yHaU3f3MuBK9/Bfp+otO0h50GaOpi4jMNvnVTKc3PvdGpf7TPDnecAaQ2czZ0QKE0rntOhaxcFi2kvLCwsLCxcElwopn333XfP//k//+cguWGB6XBwVklJUpFrpf+c2SRciT04NmEMLf0nsEVSHEkNSybBpzQp/MNztUtCxDqTrXtOhzyQnknUHF/SKatDPPRNOthOa5ogWWP2YJ7dkwkZOKuYT89vRzGajWyPFMwBjbROu5JhYpiHe7MPjxXJ2Myp9joEp0OlZo6LfnQ6WcyqC4vk2Dqkx7iwiL3nNTvGjuy3ZJL2Uae6TJYys81tOrF1+Ja+dAhOalo6hat97hrP9TeZfZey9LcTmqQmoUPJnAv9/GSqXVTkvHSV0ph6jv7m+2JOvUvWBWOzLhluZO912GiHLpq3LFjjOa0ls3e7GFA+m7bKPeZFn9PpqkMvnWM0fxx9sdncU+aptRo+0yzmO2FcZ2kf9NXZsVfEx7jaSc64UzNrHP3/RicIyj3aZXEvGhbTXlhYWFhYuCS4UEybTbvTLaaUjM2RoKQCJUW+9rWvnZnNnjuzsVgM8Y1vfOPMHEurf/ZnfzYzM3//939/uNc1+kJSa9tmSpNnJcJoO2Ha3bWrj9IIvv/975+ZTSLGltLO8ra3ve3UnJAqu9hJ2lsxEDY60mvbJUnGf/AHf3C4lyRK+u4QHAwl08F2QgxszT00Jim1GzNmlSz8sWKvyIixtbTdNrO8tsNNjFH72spiDI0uHNFlMWeObZdnFfTIcLq8f2abL/Nvjvdsv67FsLAw71n7ImQ73Ufvadu6085r7NrvtJL6lozOb9bHHLftfi9VaRek2cOVK1fmrrvuOszFXgESz8Ie7QPj6NDAvEf4pjUzb+7tQiIzZycqoRmzHhmS2f4ObMvem07FOrPNs+fpG5+hTkWbmgTttX+Hfmg758Q66ANG7R5tOP/sv5ntbPI8bdBk0Eqkfbq1qfa371vTM7Pt4/RTukhYTHthYWFhYeGS4EIx7Zs3b843v/nNg2ck78uUDElV2B7GSYrFqlNSl6aUh3InRCEls4O/5S1vOdwrRae+kERf9KIXzcwmKaZU9sd//Mczs3k/kxClBiT9p+cnO7uiAuzib3jDG06Nj+QtgUnORbY3s0n6mE960JImzRO2RhIm8WJgH/3oRw/3ktylheXhiilgEMkGrZv2SezmAsvJVI40Bm3H+2WRts+Z43Kkydi6eADW0J7sbSef2ST/fl6XV00bo7X0nE5+AXu2RdfSVvR49C2TRxi7PmEpzWozEqIL0Wi/E8x0YqK8x1/vNja+V7bWvtV+J+/wNxmWeWx78h6uXLkyV69ePcyje9NHoxPXGJO53kuJ274M3iWfvXN7iXmcKxgwm7Pywp32Na/xHjpLvHPWX1KXmeN0ocbpHp/5rzhLZ7Z9rT3nW7//e8lVulys89N+oFnKtKnaETnjPDBufU37tP9LMHZt+Nze6zPHqX0vGhbTXlhYWFhYuCS4UEz7+vXr87znPe8gEfLUTmbQMZpswJgvD+O0o5HWSN3Yw6c//emZ2exEpK9kiGzm2CUGzA6l7WRCpEi/kRpf97rXzcwm8WYfJfEnJRsHtk76I4mmrce4SJX6Snrs1JQzGzPoVKcYuLk3R2nnxURoIdLOlX1Nj3rfSR1rvdjF9go76L/xYQ6/LNo+jJEaezK2s+41tvZtSGbQsaf27Hml/7SHzboWszIXuR7NqNu22B7OmR+gNQdtc9Rm2ur3SnxmG56HJe4VN2lNT3uxJ2M1Zn0yXnvKnKWWpsuF7hWGADZtz/ZO5D4xFjkfrLO52Cv12N7a9ow975xhv83UmsYvj4H577S5+Y6Zh/b8ZpvvMsMzx6l1u7gMDYs1SE2S/WVOOnrEOZRRMl1ExDzSGDjX9Cs1mPa8NowDezaGvXPOPrdn2jM8IwXa1+WiYTHthYWFhYWFS4ILx7Sf+9znHlgmCSqlbhISCdNnEimm8Pa3v/1wD3bXHtLuJVmTfNNLmTTHboJVkkDZVXikz2ySZRfHYLdmd0/bKQmXXYsUi53L/OY60u3MxvrN18c//vGZ2SRtc5IswLO7NCLJ1xroR9qJPJunPvubOWoGNLP5HmAKNCR7DBU6djcjAu4E9M+8mZO03zbjPCt2swuuzGzMpuPBuzhC2rwxkM4dYE73bL6YnPdEH/ka8JT1ezLfzsDWvg0da57Q79wbM8clQvd+M05r0DbhvYxooP/6tsf8m7mnX0zjxo0b8z//8z8HprgXT91ZFNvb3bhynjpqo736vY98aVJTQDOg3/ri/KEJ+8xnPnO4h89O7+eev2SSru0oCe+jddL39E8QF+0aY+/zL1lsx45j1tay38HcQ2dlXOxCLHnu+E0ftK+ve2vdGpeLhsW0FxYWFhYWLgnWf9oLCwsLCwuXBBdKPX5ycjK3b98+SjmYDkhUzFS/nRLSveptz2zqKKok9wpZogqkFk9VGnUdtVE7NkgVmo4uGcKTffu93/u9mdmcK9IhREiFcAaqnq4l3cnxZzb1m/aosKjf9I2z28ymru6av1Tf1FPmIh1ChHhQV3e6Vur5TBZB3faKV7zi1PM5Ae6pUvXXuO60uqrVd9Y6Q1Q64Uo7zFGz6X+uvT3TSUf691SLdtEP6jtr2TWsE55D/Wld7D99SxW/sVNpmoOek0zMox3Po3Jsx7R2iJvZnIXc2ylkOVylCpfqtsPSwL35fSewSZVpQz3tHvteutd22KSy1Yfc895V+5ijWafopFrPM4RK2zg6hav3NNXV7rd/+6ywZ5x/eY2xOyvtVepl65bmn7NqvLepL9NQm1vttrnE+rfzZH7nLPEc95jf/P+iQzOp9M0jB8PzioJcu3bt3P3zZGMx7YWFhYWFhUuCC8e0f/rTnx4VyUiWJ7Sqk8aT6jBTThkzMx/4wAdmZnNccK0kK6RafzP0gmSNJWM8XcYxHVCwlpZaO3zmzW9+8+EeoVVYSadw7QQpf/Inf3K491/+5V9mZpO6P//5z596nr974RMcWiSPMS5/O2XkzLGzkL51isBkHeatk4RgHeZ3L5StWeCdQrNmeyrDWjrZQ7Nl95qfdKDSHrbU4WHtfJPXQBf92AuJauexZtzW0udkFVhLO9p1mGBqv8yB53mfeu9gXskg/dahS10qNjVJ/Q502J31yrkzJ97L1n4lbt++fSr8cs8BtjV5rf3xbKGMeQ+G2O9Up8lMhzHvUCeHkVQJU03nUu1ith022OU+8zdaxy6J2SmYk2lbd0lVnHf2kPMotWj2Ge2D9TdH9ornp3bQGnmfOtkOp90sFtXlYc1r77s8v9tJ8tatW6e0YU81FtNeWFhYWFi4JLhQTPvatWvzjGc84yBtkVqTGbTkxG5H2pOoIG1+pMguguFeyQhIihnyJbxACBQbDBs0iTfDhEjHpFPPI5nq23ve857DPaR7kmDbePSDFP3BD37wcC+71Fn3dtrJfJ52myW9+tWvPjXuZIMkXYlnsGVhXJ6XtlO2/w9/+MMzs9md9IN2IxmddfBs9qg7hWat9kfaRpu9tt3WZ9fthUbZs81AsbR8Hi1TF2rosqLJKjudaDM82oIOc8nndZrOLr6RGgbz1oVKzJ/n6mvawzuZh+f5vn0EZrb3pxNjdGGS7LM1Na7U+jQkV4EuQDGz+ZQYYxedwZJzjxq/fpkH68M3pDUWM8fpkr2ntIPen3xfWrOB6bYmLFOfdnigz70eHTKVz3Pu0KJJdepsPC+Nrbkwfz7TsqYGxLr0/rO/PTf3Zdv+nfX2RSd3SmS62fM0NU82FtNeWFhYWFi4JLhQTPvWrVvz/e9//yAJkpLSk5T0wwv5rOD5ZNq+I7VhcFgkaRVbTztKFysgTX72s5+dmU3KTFbZ6fw6kT3JMNlLew2zyX/oQx+amU2y9zwahZnNNma+jAf7Jy1nec33vve9p/rIVobJ66s22ItmjsuTtpcwhp+MzvNoN/TZXHUq2ZnNNqX/ewlYfhm057K/ZyVQmdmYQBe6sGfTDurf+m8fW8OOfJg5TvzThRz2yisCNtBpdLWF6SXzbY9sz29/iNyr1rntuTQsGNGeV7k5aYbtXuPNd/4sltsahj1/Atjztm+4BlNL73FrZu68Y+bP37R9the6/aUtfTSf+TxjwQw72Q7tWjJE/TeH+tRagT2NRCeqac3bXplV5yTtgr80CM6O9B6nwcOsseN+V/ye75N3zJjNr3PcPkktDU2FuZHq2VnZ/hk55kztu8fEnyospr2wsLCwsHBJcKGY9szPJFVsSwxdelVicV32EgMm9ft9ZrP/8B4nTXb6RUwU48722YlIXJgnr+tkBiRA0hwJkeRpPMlASM4tCZLcMVTSZCbhJ51iYX/6p386M8f243e/+92He0ignqcv+k6T8Bd/8RczM/Oxj33scC+pm4RrTl7zmtfMzBZrnvGSnqP/1kJ61j17Mqn84YcfnpnN5+BOwfrr/14cc9uHsZS2r+0VATGnJHZ7pL1ekxW6tr13Yc97vMtptj0ai+iiENkXe8gexTZbszBz2rs+2++4XSwxbbX6ijF2Cc28Ftg39bFt9fqYDKu1asmkGuK0teMdyLnvtKLmWt+My5k1s61RR5i0VsN7RHs4s2mcPA8Lb8/p1NJ03gHnQbNm6zOzvQPWw7ljvPrMryB9A/iymAtnmHtoyvIckNuhfZJaw6PvWUbUudypSAFrzvepyxb76/8R+yLPnTsdpXKnsZj2wsLCwsLCJcGFY9q3b98+2EpIfS95yUsOv5PyZfUhkZLgSNYZp00C85tsaZgAKZPUl56C7iVN/vM///PMbNIYSTDZDQn0DW94w8xsXtWeQ1rNOE1MlL24E/e7Vn9Sen3lK195am7EfDfDT6ZK0tUuyZokjxH/4z/+48ycZmdYMjs4FqBsKek9S3ZiDFi452C17F5pe/RM7Wf85Z0A5mueuixh9g9bao/VzkaX0n/HXNMGYZVdljLv7+xWzazSA9jeM++u0TfMa88D1jXGZ296XhZ7AP3Xnrlwj33o+xyf98j4sCJzpR+5D4y1NQpt798rhGItf15Gq5OTkwPrMuZk5/YyJq3fGBt7bt7jmeZYG1ik88h7hAVm+11sxnmDdaavgfnWf/u7c1qkjbk1Km0vdg54Tt7bRWacC85GGsWMrLG/urxqs1vznJqrjs8/K6tinhOd5c4adLGbvXKc7rn//vuPNF5PJRbTXlhYWFhYuCRY/2kvLCwsLCxcElwczj8/U9E8+uijB/U4tV+qK6laOEZwqKJ2oaZMlRw1HocPqo63ve1tM7MlLnBdpgaknqZOoZanTqEWy3rank1dLEXnRz/60cM4Z06rOKnSpDb1mwQs1Of6qu1sj/qb2ojajcouVU3G4552UqJepNpPMFdI9NChGFR6WfPb3EpKo//WmNoqncA8m1p5r6jILwPtUfcaR6rKup60z0wrVGh7RUGoJY3ROnQBj1SLeg61nb5JDtGq4fy3NXQNdSlV814f7dVUYWYb+pjqZe8aNS+1uPGaP/dkGJRnU3F2LfAOMcr2rFc7iu09R7vGft7euXr16jz96U8/zDV1dr6f/u3980zr1WrfnI+um64v9rd1ylBRTl3mwXisUzukJair+3nmNp0KjYtJz7XOOfu8U+LObGdj18jWd/txr9CP52ifOtx4nUv6lc8zn+a8i7mkg7F5cxY5S5yRxpWhbOC3H/3oR0fphJ9KLKa9sLCwsLBwSXChmPbdd989v/Zrv3ZgcKTZdNgSEtLFMTh1kNSSOZD8MnRsZuZ973vfzGzSGOe1LGqBAZDupEQVTkXSzVSrHciviAnpUd8y9ILEzklOKBSpkQMIKTnD0kjFWABmj+GRGNO5hyOQ/uvTO97xjpnZ5hU4mcxspTcVG+lQKfOdEq/nkY71DdvgTCLZwszGPDiWcPq5U2gnq70wqw4LwxA6gc6ehofkb227nOde8hF7vkOtOuVpOj76LpnhzLYu1t8aZ1iV/e05tEzat0f3nPM8zx5ybxe9SZhzc9Nz4HMySOt+FnNsh7uZ4wQj5zkS3bx5c771rW8d5stezz7QkjhDrH9q5WZOp9DUXxov+9gYPQ+bTCc275b2vf/Gox/J7N3fa9dlLrOAizFq195w5mLRtGt5FmtH+9qg0WnHwZntbGjnRe+9c1xfM9mSEFDX0ox0ueRcA3PrnfP8LoySaM3BKs25sLCwsLCw8AvhQjHtW7dunUoZRxpLu2oXXCfFtmSdbv9YOdshSSoLg8wchyzNbKFkIK0oSRh7yRSEpMdOjEACNYZkjuzdpMSHHnpoZjZpkoRLqkzm22krXesvJp7sjA2JpC4hCyk2GePM6fnEsLoQCrs0TUUyFWugXXPv3r3Sf74zJ+elF/1F0GEnJOtcF7auZg1YRieu2Eu7aB4wRM/1vCz6gIFiGmfZljN8yzx1yFWHPe2VqfQc9+iLNo1/L+GMds1FjiPbTjZoTrTR9njI/YdJdwlVe6VTACceS/pJBUPsM+yMpmzmOBWopEodxpepdq2vsfXcYs/emzxDnEVYLF8QfcP0c8zOFdcIC9UG7dxeGJVrukSmd4HmLUMasdY+73zfIW4z2/vuHtpBWkhzZG1pDWdmPve5z83McXER2jtncbLnTrVMI9p+JokusLJKcy4sLCwsLCz8QrhwTPvRRx89Kji/V6yAxMcrkNTKmzxtjn4jFZMiu/AA6TmlfJIn6T6L3Gd/Upr0HXaq//pKIma3ntmkVIz0k5/85MxskmKX+UttgD5KXILNYNPKXmYKQiwIG/+nf/qnmdlsy+nRnP3LPphjTAI7kI4xEzG4BgugwVDeU6pSWoGZbT20l4Uu7iSaoSXjsQcxaPPWJSz30ph2+1iaa9qOO7NpFZph25Pt3T+z7S/7wP7qZDHWIO27nfrSPb3vk2m0pzdG1cy3C4rMbGvY82k/93MT3nl/W4ORbL0ZfacsTly9enXuv//+w7rv+ZyANeyzxPOyD8bmvW8PdnOAZWYJyy6J673xuYsBzWys1TpI5ayv5j77QZtg3q1Z+zg4f9JXyFjNExZrX5ibveifLppiv/Mm7zTHM8f+Cf46Z4wv95v3yfqbv69+9aunnrOXcCbt6RcJi2kvLCwsLCxcElwopn316tW59957D5Jhp1ac2SSiZjYdu5lSaxfU6HhPthKSb6bf7EIkWCuW7vuUyjFQzNdzsMj2aJzZJE6SJQlYcfpO0ceWP3Nsf8YYzI3xpG2x43K173k5B9m/mU0CtQbseWxopNgsnuDZriG5Y7LmIr1TOzZ5L5byTqBLc6Zd2nf2VXswG6N9kKwZe+k92mU3U5PUbLgLlGABGQnQRT8wLeyv343cB/axdjutpGsz8qJt48aRXrvZRmof2rO8Ixz0OeekvfB7vXy/5xtgrru4ROLk5OTU87x7yb7YdrWjfWP3OdlZawWx106tSaOU2pOOfdcn13Z60ZltDmnLuhRr+7zMbD4sfmutkPY9L7VQ/FL01XPsP2divk/G4TvzapzYeafKndlYv/axZHPufM+11kfnakeB7KVGfqLOmTuFxbQXFhYWFhYuCS4U075y5crcc889hyxjpNgsjkFCYj8hqZHQOkvXzCaJtU2JRyapj9TPNjRzXMid5KaPpL2Ukj0PGya5uafLPM5sHpckTFJ52pLz95ResRbPI/mSIrv84cxWWhQrPqt0IWk5pXOSfHuYNoNIKdncd0Yvc+XeXGtSvTj3JypW0rP3ihe0tzY2h1V0oYG0nWIpHZvcduNkop2Vrxnwnpd6x5t37L02XZf7zrXW35xb970iI/ZR5z3ozFR7pUK9C+0N3yVJE+agr+3sabkWXfb05+2dK1euHJ7jbzJt7yEtmT1vvc1bzknHs7PXgv7bJ+lr0OU8eX53HHWOy7z7rTUwXe53ZluH1kIan/HQRibTblbeEQF7seSdK8D7ZLzmaq9sLT8bfXBm8gmwbnmWtT+Bdvfeo8uCxbQXFhYWFhYuCS4U07558+Z8+9vfPrBZ0tCe9C0/OWmLbUbGsszNzZZM8sdwsHLt78Wxksy0257tex6LPMwxUZKf9kmE2ceWbEn5yXATxj1zbKM3PnYqbaWErXwnBsGGTZo1vr3c4zQRmERrDvwl+eeYO992e0VnvnJza04eS8ztL4K2kSZb6r1nDrucZ+eXnjleD/cac+fHntn2ir40O3dP9hGTsR7t8W0t97zVOzc35tjMJNFZ4rTbmgpsKplWs/223e6x5taEuabbyHewveHb7yNx9erVedrTnnZmlMfMcVy+sdE6ffaznz31fY6hY92tofdyLy96l9dse/7ePqCdMR+dAa2Z98zGsNsHwPuK4fuc9l5jp/Vs3yGfU4Ogv+aaD03bp/Unc/wZvvoAACAASURBVGlo19w4Mzv2OiOHOuJkbz9fNlz+ESwsLCwsLPw/gvWf9sLCwsLCwiXBhVKPP+1pT5uHHnpoPvOZz8zMcajEzKY+oeagGnnLW94yM5sqJtWaHECo8/ylqqF+e+SRR2Zm5pWvfOXhXipsahaOFNTzVGipAhLq5RqqJX2m8s5UpPpL9UzN1qFt1EXpEEJN5LsOWeHclQlTOgyMyqlDwV784hefmoeZTe2epetmjgsH7DlltXqc6tb4MmyHmss9T3QqwVYR5r/bhNJlAO2DTLLTaT2pVs2TfZfjoiamhrRnXNvpRfOedszyPZWq/bGnjrVHjavV2KmubnV7hz+5xzhTNd1OV63y9n3PXV6rb63ST6eidoY7b+/cunVrvvvd7x7eCfemQ5M93ylTveudsGlmM5NZB/1zbYeLZWir94MK2r3W0HjSTNYFY7Rh3tyb5hi/OTM4r3K4cw5Zt0zT2qY7Z7G9xGQggdLM5vhqTpxd9pdxdqrame287qRBbUpKlbg+dTKa80pt7pWEvkhYTHthYWFhYeGS4EIx7R/84AfzkY985CBxYohZhpKERNoizWIeSlu+9rWvPboHYxdoTyIk1b3+9a+fmY1xz2ySH9aM6ZPcOlh/ZmPQQhGEepEE21FnZmNqmLakHZxLSIzGmUyrw6g8R/pPITpZcpQUrn1/tdWJDJI1k7ZJ5V2+kUScz+Mo6BqJU4wDe0rpHdtq7coTBfsg2VI7yumnue75ygQj2BBNQSdo2RtPswZ71r3mK53y2vHorJArfc4wmnYAaybZpRuzvXas6rA4+zyZHZxVmlMfMzyxS7JiUp2QI0Pf9KXTWO7hrrvuml/5lV85rKH1SU0YRovN0jx5x7ugx8zmZGVsHRLZ79ZesRnasnZiNb50lqPlsWdbw6fNTADjXNHHs5Kr7BX/6DAt4zAHzjDn38y2ltqxN5wZxuNzvoucYo2nHVRbozSz7cVm2r0nU5vb5VYvGhbTXlhYWFhYuCS4UEz72rVr88ADDxwxhbe+9a2Ha97znvfMzJbOj7RFusSIU+IlVbFtd/pIkiAJbi/ZRRehb/thglROclZerst8ZmjZxz/+8ZmZeelLXzozWzhaJyHo5Bczx3ZoEjCNAbak7Wynw3JI2trAllN6VYgArAGJu21pM5sk63nWD5vZs2ViUMqgSvBwp2Ed9jQgHSbTrBawp+x/26x7X/fnmY2t2JudjML65PPbxtupTq2DPZMsw7g6pKwLOSQL7OIeHbZlL+2taWsoOulJFyHJ/usDTRxGtBfKdlb61z3cvn17fvKTnxz8Rbx77K8z2x7UP3ZafcD+035PU4hV6os5EIraoVoz2/uHybcWDTJ8y7Pth05Y4wzbS8xDa2ZdaNNci+VmOFVrZewdfXIepF3aPc4Vv9kzNHCdYGtmO9vtM+tjrprFzxz7MqQGJ3HR2XViMe2FhYWFhYVLggvHtJ/73OcelY1Mz+W3ve1tM7PZpTESrGwvnSAGgtW5pj1ZOxH9zLEERprD/rFZXp4zG6vUb/auTjeqzzObtOg79mi2YNjzBG8Jswt4tIQ/s3mFk1YxOQyHpG1Osq+AzZCs2cq0sZeWEXO0Bt1u2uqxG/OYNvI7iU6ZmP4JzSYwHaymS/6l1sO9HbWA8XTaz7zGHGJwnnOe16v97Bo2RePBjJN1+q295K1Pe6LPbHuv2bj11uaePbyv6RSye4yyy3R6Xtts99Lmtrf/WTg5OTm8PxhdzjUtWXs799mRzxEFYx6cSf7aKz4nK6QV8V2npvUu5H7rkpiZ6CfbyD7Svrk2NZQzx9qTTO2q3x2J0p72+Tx9MD730k4qyGQsNA0z2znQaXutgfMn97f/Q9qW3T4beziv3O5TicW0FxYWFhYWLgkuFNO+66675gUveMHB9kwKYvuZ2WL/oFnEq1/96pnZT4fJToIpkKD8Thoj7c3M/OEf/uHMnF3gnS0opTsMx7U9Hv1IqZb0qN1OpYj56Fsyex7nPOl5rbaWwPczm52xNRUk9/bMzRhQfaFRMJ9td017m3tca47aVp+sioTeHtV3Gm3HTztrx+F36kzSeHs0z2yaj7bJtmd4om187rVOHSOd1/RvxtPRE2ljxBy7nGJ75CaLbabjty7CsMdimr10yUzv8d74OnVsx9HuxdW2pmQPJycnc/PmzaOyqKkFal8Cc9olTDPtJibaMcnmxfM6Xe/Mxmhp/ewl9nxnSo6ry5oaO+brnjw7zLe/0jX3e5oRPOAafTMe+8Aap4+IPWgOzKN5bT+M1LLad56nXc/F2vdSPzdbfiw5Hy4aw4bFtBcWFhYWFi4JLhTT/tGPfjSf//znD0wEe03JqW1JJEESPBabWXFauiPxYpXuIVklk+Dl3IwEa+XtmFI5+yPJljROIiQhprTnHt/t2UgT7b08s0mg7NXuxZ5yXKRSzF2fjMN8tvSeMBf62kVcktl30XvjxI6sKzv2zCZlYwzpMX8nQdrvrFwz++UlZzaG43vzmdK59T6ryIP5S4/jLlpjX7hGW3lPF2jpfW7uO0442zFm7Mm6uycZXbPMZtjY0p49WbvG15Ec+rbXR9d2Wc/2HZg5Xo+9/QvXr1+fZz3rWYf50v/cb7QYnV3Ms2UU24uft7fbht1Fc3JNMerWQPmM0efZ6NneIc/zPto7tIMz2xph451Lor26MwLGmdH7W1/NeXqrO1/49bBDOzuMx3NTG2X9ebDru3OWNjTXoAs7/f8Bi2kvLCwsLCxcEqz/tBcWFhYWFi4JLpR6/MqVK3PPPfcc1CuSHLzpTW86XENlKlShnT32EvdTm1DNUUN1KlKqFOFWM8ep86h8qFuohiRQmdnUNdqjYhd6pY10POF4RkVH7da1eKlL9xxDjL1VndR9qWqSIMWcuIYajCqKCjedl4yLCtJ4heF1mEj2XwhHqwypInPdfGfePOdOo0OUUpXa+4oa0R7yuz7mmKnv/EZ92ClD07Sy52iWOE/l3E5dxtGmlz31/1lpPveSq3Rhik4S031P1br5sb+YwIy7zQJ57VmpJ/2e6uUOzTvP8ejGjRvzjW9847Df9MW5MbOpv62l98Gz7SHXzWzr4Z2WHKj3kHMgE394D8F70ili90Jb9du1rmEKy/XTf06x5sBfe9N595KXvORwL1V9h0/53vjTOdNvxmM//Md//Mepa/ecT9tprs9Kz0uT4p1Qiz/jGc845Yj5VGMx7YWFhYWFhUuCC8W0T05O5sc//vFBclIiM6UlJTg5MEgOgoWRBDP8g/TGySGl4ZktUQGmkI4apEjtdyJ70l6GiQGWjpF2ubm9kqMk0W7f52ZTeQ3puBMkGEN+rx3PyzSle8jnWg/rZK59j01nqAfpn5SsL9aCg0syDGEv5i8LD9xJGFuXv8zfmq12Kk/YS1xyVpiTNd0rQ6n9ZgrmPJkvZqv9TkaS186cZr5dIIIDWIdxJVNthzdt7JVXbbRTWTNg+zCZTTvjdcEN71GOs8Ps9tINZ59+4zd+46Dtsm7pDEfr51nYsrBKz8vUp66l8TBv9nWnWk3WbF+ZU++2e9thdea4ME3PF4ad+6P7YB90YpQuEjOzzX9rdFzbhT1mjkO8vAvm3Hw6kzMlKc1hryUnNlrYXyRUK7U0/b5873vfu1DhX4tpLywsLCwsXBJcKKY98zPpjHRHokobRUtqJNAO6UiGIgRKUoF3vvOdMzPz9re/fWZmPvGJT8zMxvq+/OUvH93bDICkizFmcXjSdifdF8aBOWZKwJZkzUEX7mD7ycT9pFF/9Q3rS3s0kBy1k/a7hPFmecQuvNLhG/qYBUo8x9wI1aP92Au3wjb0PyX2OwlzvZfaEPNo1mKuu095b4d0WeMuR5h2cCzInuliJtrMebI3mxU3E9b3vLfTovqcfZo5rbnSnnFoF9Nq23aylH63vbf6jp3m8zoE1G/ep70wuE6Gc17I18nJyfzoRz86si1nv2mAsL1Ov2uuU4vn3fVeSBIlBKuLAXknZubIhuo98R5qI/dba0m8p/aU5+Q8udY86bNzNZnuzGlNgmusu7/2o897SZGMxxw7450Txpdr4Dfr3Xb487QpPw/Nrme2OdlL2vNUYjHthYWFhYWFS4ILxbRv3749P/zhDw9SlgQCbNszmyc2qYs0RAonfaeE9sUvfnFmNklWIQ3sknRP2ktWSZrrZCcYOLaRheVf+9rXzsyWclVfXEOqS/tnp8tsOxgJv4sPzGysCAtToER6U0hbFulxj4XPbOyZLS+1AhiD+SOds0dZm/T2JgVjLMbnXmuTz5FS0XPOSjTzy6Il6bT5Wg+MpBOHGAfWlPuuvajdY55aazNzXIyj7cPsktln+6nTYbbtXF/TS9m+M2b7oe2Tyfywce03wzMGGqW0DZs/4+vP5iLZYBe68NxOKZv7u1MTn1do5eTkZG7dunUYs72aqZBb42LOO2Vsvk/OIu3qi3k5K5plZmPs/GKM3fnn3vS/wP6lPtVnfcWS0z/FmrnHnPIfsc+6sMzMttc917ltfNY20ym3d3j7iNib/d7NHBeDcn46M/bszr9M0Q/3PvvZzz4zmuOpwGLaCwsLCwsLlwQXR3yYn0l5DzzwwMH7WNnLZIwtxWE4PmN5ydigWZE0m1glSTHt09oh3ZGK22s47TakeiwGuzQO0mayCSwcK2lP87Yt7cVpAymZpLhn2+44Y1J5x8jTOqRN0Dz5TvvmVdt5T3t+mk993StOjyGQktPm90Qi7VtdBKWZgXkz1r14Tt9hHF3Occ/b2vxgjObYXORzOv66U6+a87al793T19oPyVR95972APeOYlN7LMf70vPVqUpntv1kDVpT5fl7Wo7HUoIRrKV+Z3SH/emZ5ofWjjYv+81u28UwupSkdyz9cPS3C8iYH/sS857ZzhsaAgy4vbjzObQBrvU8mgO/63Oexdh+l291hnUhj3y239rTvMuuplbA/Fl/71wX70n8Ml7f9sG3v/3tczU1TzYW015YWFhYWLgkuFBM+8c//vF8+ctfnje/+c0zs9l10pOV5Ewy5FWNnWNuaYMgtbEPSajvL0b/tre9bWZmPvKRjxzuJb2xp7zuda+bmU2ybnv4zCahtQ2WdEkiTQmUFNkSffeDZH8e0zY3HS+dZe46hph07HvagT3btzFbCwyY171r0zcAM6Ux6FKTxp/sXOw7aRvD38PVq1fnvvvuO/J6/kWQ0nnHVp+VyY20n6y5PZe1hTn2Gs8cl5Bs26U2cj2sYTONtkdCaoma4XhOlytNxuPd6rj2Zs97Nvtmy60NcE/uA9fog7+t9UjNFXifzsr4pk/Xrl079EmuB+949sHcmReREns2Znu9Y+tbQyEvRL4vNFMdr+85tDb5PO3TFHZxE/OWdunWtHRmOnvUfs+CPp1L4ktf+tKpvnZhl5lNU9D+CJ1/Qp/zferMeN7FzhOQ6OIlcJ6tW9/S/t4Fg55KXJyeLCwsLCwsLJyLC8W0r169Ovfee++BKWLGGZNMMiRNtvcz1py5wOXEFqfdMXkka3bclO6wFBJuM3k2n7R56JN+v+pVr5qZmU996lMzs9my0mZG8sNajb1jRzHs9MjVjr4Zjz6R2nnjzxxn2mobLUmeJMqTe2bLodz2QlK4OUtNgjF3ycEeg77ObBK1vp4n7d6+ffuXZtl7JR6ti7abRWIb9kf2oa/pspudk3xm23vuMQfNItNTuu3R2ujyp+2hvdc3DNL+9jf3d9t+95hJIlmOPdHj884bQ/ax51Gf2naaDNJ42p68h3vvvXde/vKXH1gzDV9qdjpCovMKWJ/0lMZAvVv2dmdpownLGG/zwT5No9PxzOl/Q5PmvdQX7bs2/X38Jkqmy3oal+fvlZ5l5/YO6HufKTPHa9fx9M5OWsL04NcnPkj2le/34uvbFq1P+g75Du7F+D8Wn4gnC4tpLywsLCwsXBKs/7QXFhYWFhYuCS6UelxpTqphqtQsItGhDx0CQy2WIVJUu9Qp1ERUJRyofE7VI5Vcq6cefPDBU8+VSGVmc45zrd+ofLSVqq12CPNcbVBt+z1Vz102kmOL5+0VpqB271SLVEKSx1DppUrtRS960cxsIXPtaEX1nWYI7VNT6ou5kvghTQbuP8uhKsG0Anul/X4eqBVTFd3JRjrspMPbUoVvPuxZajdqS89LRx2mAM9rR6C9QiL2hL61A1AnhkhVcd9LxWl82sh57PSoPmuj1fL5/E5SYh/bh3sOY/ZKmxfMQZsDEtbgvDSmN27cmP/6r/86epdzP7Wa1Rlhr1v3Pccwe998UYt3GtZMRtRrp2/ucb69/OUvP9zj3aFSdq259X3ORYdYec87zXCvbbZDxS4JkrV1ZqUpzD1tTrIP/W7usoyod8D7o133Wq98N9rRrNXie9dZD2t53333reQqCwsLCwsLC48fF0d8mJ9JOD/+8Y+PSu2lpIZVdlKQLiXI+WtmKwhCEuPM1Q4TmGMWeid56oO+kTyx9JQIhWWRQEnW/ro2Q8I4UbTDDEasLSw6S4F6HmmZNOlvS7Ezx4kQpDHkkKJvzTTzGo4zzf70R7nNfJ51Mq4OmUkNyeMpPC9sp+fv8SRc6JKTeX+HdHXYk/VJp5tmrV2YZC8kqlOSdhnKdv7aQzNgz7UGND3Zbs9Bt5Xah9Z4dFhYOxmlxqWdyrTVezedsnq+OnnR3nra650ucw80fJ2KNhOXNKuzD1ozloVEjIm2Sn+VkrRX3JMhX1ixeXd2tJNrrpc9YxzeJe+nNvOs8huWrM+0A/puvKlxowHtgj7m3LX5PO+ndt1jb/Y4c+/QHNojXRJ4z9mwCzD9vO9njsvH/vCHP1ylORcWFhYWFhYePy4U075+/fo885nPPEhXpLBkeSRBbM9n0hZpLFmea7BZth7hDSR4kmHa0NnctMdu3CXk8h5SKQmTjYw0iSWljblDLFxDambzZWtOls52hLViFSR3c6WQSPa7mQgtA5ahP6nt6NSm2mIH09dkdJ1Uo0OltJUMK8M9fh6uXLkyd91111FSkE5Wkt81+/J5r8Sf/nYSkvPCm3qMbHFYBK1Nsl3tdfKRTnqSrML+dk8zEXvIGu6Fb2mjw7nMRdoCu0Rm97lTn+Y8t4222/Je5Tx24p+2L7Z9eWZ7t8xthzgmbt26NY8++uihL3vJWvrdZettP5jsWxfQ0f+HH3741Ljsj9SedZpmc+t7eyeZvXOAbVzYKw1ia/oS7VPjrOz9ne+nM8ieNOfu1RbtYD5HO67xrnexk4TneQfbh6OLucyc7dNynq+L+43nuc997m7inqcKi2kvLCwsLCxcElwopg2k2b0yhKTpthe31/iezY+ERjLUlqQqpOTPfOYzh3vay1lfpDjsYgYzG2NPKTifj63vFabATkmRmAIWwB6fEi+G3WwCOyL5ZlpGrLgleHPy0pe+9NT3yXppM4yPpIt9QGoDPE8fsTDalLQfQTPfPdac196+ffvI/pl7p/0gzkLarzy70y9qF1PQZrJ0c2teejztgZ7Ptp99bvtwamnaltfe2+2xn9eflQIU020v75mNpbRGwrV+N1epcWlbfadCdU8mD+p3wHNaS5T9sffbG3kP169fn2c/+9mHa/Zssfa6OfSXbdY7kf02Vv3sgjHW2J51BsxsmrsuhkLLpY18x8yPOfS81pqk34gx2t9YOa90fTMnxrnXnrnWN+PPaBzvZWuFtEUr2OlUZ7a5Nm+dBGfP7vxYC8bk2WKvp0/ISq6ysLCwsLCw8LhxoZi2VJS8K7G79KrsMpMkQOyVpJuSESmZhE5Sw0Bf/epXz8yWji/jJUld7iEJkjjFlKfHOamNbVdMt3Y7Dn1m897ESLvUKMmUTdv12ce2g5o/bSbDbDu/PkuFSrPQfgA5T2fFx5KO92LJsTD2t2aoKZVbY3Pfns6JK1euzNWrVw+MYe+eLthwVunIvYIhXTBC+81yM7a3C2how1zbq2mL7eIY+nyeRzaG1qUY/bXvrWWy6r1Y8XyetU3NVXuLW+e2LWsjbehYtzlphu1v7tX26u59bg1Sq9IasD0/Bbh69ercf//9B9tre8FnH5ohOpu6/zk249dej7H9PGa2ufSd9w+z9p7mu9ce4Na7tRepEWtNm7FLVWzcxpBr2eU1MWtz0hqSmU2z5jmt1TC+80rdGvNj8Xl5rAw5r2uP+StXrpybI+LJxmLaCwsLCwsLlwQXimkrr0j64iGJsc5sdgwSdGfW4X3INjOzMQE2HmxZG2ISSX9pt2FbapsOqVIf014MpH2e5/rqb/YRuo8kbXHnnpP2L9IyyRrrJ6Vi+HsZw0jYzXiwNvaqtEt2/Ly2ukBCxnRaH31oyd33WTCkSww+luxmXWow58maWZezsiMlEz2rSIV+t8072zQv7YFvrNhERkd0QZKzMkXt2U6bHfurT62Ryed0GVHf9/hmtv2LQZ3lWb/ncXuWPbqz36U9ubMe9udue+aYsZ2Hk5OTuXXr1pF/Re43+5+WKffVzPaepNbE2dBjtJe6PG1qA/Tftd4f73jnb5jZzklzh4k657q858x2njpvMHrtykNh7yS77b3YPiPyNeQapBYzx0ej2D5JuVedL3lGPJGwbvfcc88qzbmwsLCwsLDw+LH+015YWFhYWLgkuFDq8WvXrs1znvOcg6MEtU4W1qDieeihh2ZmUxdR53L/TxVQFxZodSsVEdVWqsc7gYBrqHMyIQJQXVH9UBtRLfk9HZ6on/YKNMxsYV2em84k1JHUaxxqqKX2nHHMFxV2OoDNbCoo/cj+tFMUdZh7uohC/pv5wryZgz1VtTGam6yrvoerV68exthFTGY2dep5tZVnTqvkOlFIh351usxUI/u39aFibee7nKd2COs0vXvoECvPsz7a1NdUrVMpm6ez6hzvOfRQ87fJo5NcpNpaH7pudtf6ziQl2vWu76mTcx6yT3sJZRo3b96c73znO4c+UPvnmDt0qFXNVMEZ5sns1qlbf14a3ZlNTW0tvS9txkp1vDnz3mjjLNPHzOYs5tkc3JwhPd7f/M3fPNzrGk6l7bSpbes2c+zQ1/vN3Ou7ENeZ40QvXdTkseAsB9Kck64//+ijj567f55sLKa9sLCwsLBwSXChmPbJycncuHHjINUKjcqQL6zr3/7t32bmOFEFiW0vGQQ2R4LC4ElqX//610+1MbNJ6Jg9iYxEjQklU/3CF74wMzNvfetbZ2ZjoJwslLZMyRELM2btkQxJoCTr1D60w1FLpHupAT2HlAwkalLsnrOU56WjWbbVGoWEuehkF9Y8n0Ma7jXeg4Ih0EUy8v5ms82isp0O5WknJf3tcpjZbwyE1qZTXubzsFIspYt8dCKLfI5rjdP35rFTcSYyWUuOo/sxc1wC0W/+dpKNnBNz4dp+Tqdk3euje+3zTtixd/95jkQ0NPor/WeW2/WMV77ylTOzMVL9ty/2UnbqdztCtqOitMp5LQ1bhym2RmlmY7GcWc86q/JsdK0+/M7v/M7MbGeYs7fLe85se9+YaR2cp322zGxr53m0EcaBlbemZ+Z4TZthd+hj3t+Ot408M43LXr377ruXI9rCwsLCwsLC48eFYto3btyYb3zjG0cpQzPcqJOakAAlZGmWPrMxW7+9613vmplNmvut3/qtmZn5oz/6o5mZ+fSnP324l/SGNWKKEhm0jWlmY6muIT2++c1vnpmZD3zgAzOzn6qxExZ0AgnScrJm7ZDOhXwJ4xCmknZ+c6FvJN1OzOJzJnMxZuFw2jBXJHxsJJ9tfM2ojG+vsINn5z7Yw9WrV4+KVuyFN3Vhg7bXps2xQ4bY1ds+bl+kVgj76sIaXdSkC2DktX7rJELJGLpggj6by2a8e4lSrA9Njra63GKOay/V5MzGxH2fYUn2ub9dItG+Tubf89O22b0kLq1V2ZtjuOuuu+bXf/3XD3se+8t+08J5pnPIPfb6y172ssM97LGderb3uP295zfQSWjMlzMm7cXabU1Il5pMX4BObWufOU87FXJqz1pThOGy73ep0OyDd8zzOyFMl7F9LOi00TPHWsez4P+cmeMyvK1RfKqxmPbCwsLCwsIlwYVi2lJRdqL7lECxVHZakh/vSuwvJSdSm2tIomxX2txL4sGznN2GZN3SfbJAzL09yzuBBIl0ZrPPaKfZGCaHESXTIp1il83KSYxpLzZv5tpn7bOdmk9FVfLa9Oyc2eZtzzYMxmdcJG4MNqXl9qQ/z+v7ypUrc8899xyVksw+mAfz0sU+9oCltKdye4B36dHsb3vGtm0u+4jpatfnLoCSbK3LdtqTnTilmf7MtpZZRCLHvefV37brti13sZPUVjSLabh3r4iKdtouirUnm/bvvdKiDaU5u6Ru7jf2WWsnSoUWz3rkunSK2C4X2+dEnnP8HzD6Tq7jnU+m3SmHO9LE55wLY/be9dq6tsuL5jVYv/57xzuJzMymVXCuWLvUys2c9op/MpCFV1or+MADD5wbvfFkYzHthYWFhYWFS4ILxbSvX78+z3/+8w8SNOknWax0nuwkJDSf2XN5l89skiYplXRMMm1pOb04MdF+vr5h4CkZ6ksXhuAJqkAJ25mxz2ysSLvYOFupVIXJmt3bKTdbwt9LfcpG2t6h7W2Z9vfs98zGjkjrXeBh5uwiEvqYNvPGHovduyZt2nvep/3Mn/e8mWN2imG3N6+/yWK6QAg2a+32Ykb7eW2HZ19LVtlxsdJnmvMuzZks9qwCK22v3Ist7pKYXeRkbw2MvW2NZ92bzzEn7nVtx0HnM/fs+I3bt2/P//7v/x4x99Y+zGzngffR2WLvZ2EdZwV7uHWxRzo1cu7v1jz1+8jmnFqiziVhPK1RwoxnNo0BjWKXyLW25ji1AX2ta1rzl/5F+sjfpn1GnL15z+NFpmvu9xb0bc/vwpjtwYsUoz2zmPbCwsLCwsKlwYVi2jdu3Jj//M//PEjjexmwSIaklFWrZQAABdtJREFUYNIkD+mOA53Z2KprSFdYpSw/JNL0FsSo2Z8++clPzswmaZMMM2ZQgRBSHumYrYQNK6V/zybls8m71u+dVSvnwNi7yAf7UcZN/vu///up9tveSlo1Z8k+zR+J3Rxpo0tE5v2YCobfZfD2bIJZIu88XL169dAHbGYvnvksG2xrKnIMHVPb/gMYSErlHSfdmfA6fnrmtAYlf+viEmlj63jp9lOwV/QxmX3Gou712ZzkPGKM+uq3Ln3bkQ/5POh4Y4wnGZ17fOfzWbHLeW171u/h7rvvnhe+8IWH98aezH3QBTpca84x1dS0KI5hnrpEsH5jlanh68xw5ocvj8JB52VV9Js96czK9WhtT0cgeJ53PH0R+l0DZ4h5zOc5x8yjz87iZtipFeiMj9DvaGpxOp/C3rmQbc9s+9t7c/PmzVWac2FhYWFhYeHxY/2nvbCwsLCwcElwodTj165dmwceeOCgEqJmSQcNKl8qkU42QM2SiUQ4glBxu4bavIsK7NUqprbWLrUYFdCDDz54uIf6pmtVU6lxPMkwB6o0ajiOGmfVkN0r4KFP1HDmhlNeqp46TKgLRnS4WKrjXavP1qJVkKly6qIlzAnUgJ6bKvUuwpEOJo0rV67M9evXD/fs9cmc9TU99lRxtwNO32POW4U7c6zaNIedOCfDdoyxC7i0k1HORacR1QfPazV5rstZqU870Uemze20ob3PW/2be6fDwTzHvXtmhn6udeoQw70EKl2ffA8c0bzbnp1qXfNiLMZmbXtvzWzvLnNFJzSCdiTMPpgvZ4bziAo3neW0e1YRDu8/J7ZEpy+mRu5zKVXT2m+HQ3ORTnmgXX3s86WTveTZb89Yp7Pms4st5XP10Zx0quQcTxcJuihYTHthYWFhYeGS4EIx7ZmfSTmdDGTPYYvU6Fps+hWveMXMbJLUzCb5c2IjSXU4xV4KzWavJN8OwUoHDd91iJJ7O3HBzOZ0R+IkWXOKc6++pyaBU0cXVDAn7Qgzc8wg27HKnHS6wfxO/5sttwNe9sE1+tKahD1ns2Zye7h69ercc889R1J2si/9tjc6DMR6pWTdiTzsRfPXYWQpsbfDVCc/2Qsp0bd2eOuUqDkXGFonJumymnsFPLBAz+2Sk9Y9+9hOXl3K0v7ucWZftdvFbrrcZ4655wDsqXTKata3lyI02//JT35yVDozx9xpVo2Rc2eXR937Th/M11mFRHKM2uiiH1isM21mc4azZ4RRtoaimWm2+8gjj5waVyd1Si3kWYWYOMR1MquZ7V3G4NvJtDVZqWF0Jva4Hg/Ma5d5zXHpizP5m9/85uNKp/pEYzHthYWFhYWFS4ILxbRv37493//+948KvKd7PunHX8yGlEoiSqmVDYdkyKZN4m1GkHYbyVrYjrpYAgntE5/4xOEekmYngegiI3t2aWN1bYfNdGjGzHEygy6JSRLO1K7mgHTeYWMkebb1ZDFdAMGcYBLGlUlx9JEtru19vRY5F9rNVIONk5OTOTk5OTPpycw2P/rX/d5Lv9rMve3GXYwh16XTblqH9p1IJtL26E620hqRvXFpr1Ov7vkntIan7ZP+ZpIha9fhW61JaLvhzHHZQ2gNRmq9Osyx07T287O9Dkvbw/Xr1+fZz3724byRbCnbdyaY2/atMbepPTP+Ljvr3TPG9peYOfYXaPtwFzCZ2c4Mz/XXO/7www/PzOlQWkzdeFqT2YmuMgmJvhmf8bi3kwjNHGsXjLNLDxtXniF8gM5L+PNY4d3oUrszx6GRT3/601ca04WFhYWFhYXHjyvn2XqebFy5cuV/Zub/e6r7sXDh8ZsnJyenMu+svbPwGLH2zsIvgqN981ThQv2nvbCwsLCwsHA2lnp8YWFhYWHhkmD9p72wsLCwsHBJsP7TXlhYWFhYuCRY/2kvLCwsLCxcEqz/tBcWFhYWFi4J1n/aCwsLCwsLlwTrP+2FhYWFhYVLgvWf9sLCwsLCwiXB+k97YWFhYWHhkuD/AoQQ9pkQinkUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1416,7 +1428,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bulZ1nmvvfeZquqcGlJVqQxmQBDbAVtbVERI2oYIBAIKAipDnKcgaKtXtyAmERuRqb0aaRRkDhFxQBsUCN1EQWgEBYkdhiCppJJUJTWfU1XnnKpz9uo/1nfv/ezfep53rW/XCbnCfu/r2te3v/Wt9c5rred+pncYx1EdHR0dHR2/1rHzgW5AR0dHR0fHrwb6C6+jo6Oj40Sgv/A6Ojo6Ok4E+guvo6Ojo+NEoL/wOjo6OjpOBPoLr6Ojo6PjROBYL7xhGF49DMM4DMOH3qiGDMPw5mEY3nyjyvtAYRiGl2/G5uXvxzpePQzDn3h/ld/RxjAMXzQMwx/6ANT7ks3ayv6+7AbXtTMMw2uzdTwMw5cNwzCLZxqG4fQwDK8ZhuHHh2F4fBiGq8Mw/MowDP94GIb/Pjl/2Pw+DsPwyhvc/o9rjFX8+6YbVN8nb8r7nTeovFcMw/AlyfHfsqnnM25EPTcCwzB8wTAMbxuG4cowDG8dhuHVK6/7qmJOvvP91da991fBHe9XvFrT3H3zB7gdJxVfJOnHJP2LD1D9Xy7pX+PYu25wHTuS/tbm/zcvnTwMw3lJPyDpt0v6BklfJulJSR8m6XMkvUnSXbjsYyS9dPP/50n6/mfb6ID/KOmjwvcXSvqeTbtiPe+7QfX92Ka+n79B5b1C0ms0tTfiv23q+aUbVM+zwjAMf1nSV0l6naR/L+mVkr5lGIbr4zh+x4oinpb0Mhx78Ma28hD9hdfR8cGHXxnH8f/9QDcC+D8k/Q+SPnYcx/8Yjv87Sd80DMMfTK75fEnPaHqhvmoYhtvGcXzsRjRmHMeLkg7GKGij/tuasRuGYZC0N47jMyvreyzW9/7COI6XfzXqWYNhGM5Jeq2kbxjH8fWbw28ehuHFkr58GIY3jOO4v1DM+Ku6lsdx3PpPE8MYJX1oOPZmTVLOx0n6z5KekvRfJf3B5PrPlvQLkq5K+v8k/cHN9W/GeXdpkhbfvTn3FyT9maItHyvpeyU9IelhSf9A0jmce5Okr5D0dk2SxdslfbGknXDOyzflvUrS10l6aPP3nZJuS9r3XZIuSnpM0rdL+rTN9S/HuX9I00J9anPu90h6Ec65d1PPZ2uSFJ+U9NOSfh/GecTfmznGSTu/XtJ9m3G8T9J3SDoTzvkEST8h6bKkxzdj+eEox3P8CZJ+dnPuz0j63ZqEp/9N0v2SHpH0rZJuDte+ZNPWvyDpazRJ1k9J+j5JL0E9pzRJtvdu5unezfdTSXl/VtLrN/U+Jun/kvTCZAz+jKT/IunKZj7/saQ7cM64qecvbdbGJU0P7N+MOeL4f+vmt98g6V9u+nZF0js387x3nPss6YP7/KcWzvvCzVp7ZDMmPy7pE3DOnqS/I+lXwpj8mKTfu/mNfRwlfcnm2i/T9KByWb9O0jVJ//sWfblJ033zrzbraZT0Z2/EOBX1feimjlcXvz+k6VnzFyW9bdOfj9/89vc26/3SZm5/SNLvwPWfvCn/d4ZjP62J9b5ys/ae2nx+4kJbvyoZ+yc2v/2WzffPCOf/M03Pxo/WxGwvS3qrpP9J0iDpb2i65/3cuR31ndbE5t+m6fnwLk1ahFML7fzETVs+Csc/ZXP8I1f088qKuft9kn5E0qObMfxlSV99rHVwzMXzauUvvPs1vcA+Z7OI37RZOPG8j5O0r+nB9MpNWe/cXPvmcN4FSb+4+e1Pb677SknXJX1B0pZ3bgbwFZK+RNOD8ltxg/+oppfhF20Wwxdrutm/Opz38k15b9cktb5C0hdsFtG3YRx+VNNN+xpJf0CTivE+4YUn6c9tjn2zpE+S9FmaXmhvl3Q+nHevpHdI+ilJn6HpJvqZzUK9bXPOb9IkUPwXSb9n8/ebGnN1+2YhPyzpL2/6/Uck/RPXvZmr65v5epWkP7pZVA9KegHm+AFJb9H0Uv5kTTfWeyV9o6Rv2YzDF2mS3P9euPYlmzG4L8z9H9/M+y/p6MvsuzStm9dvxv+1m/K+Kynv3s35n6iJMTykueD0dzfXf/WmvD+uSYj6SUm74TyX94ObcfiMzRz9sjYvLU0qu/s1Pcg8/r9+89vbND1wPl2TmuaPahJgTh/nPkvm0n3+M5rW88EfzvsaSX9iM9efIOn/1HTPfXw4529peoB/waatr5L0tyW9cvP7R2/q+qbQzxdsfuML7/M25/7+LfryxzbXfLqkXUnvkfQfbsQ4FfWteeG9W9O99Zmanjcv3vz27Zv2vnwzTv9S0/Pgw8L11QvvXZJ+TtM994ma1H5XlAhl4boXSXqDppePx/4jN79VL7xHND17P29Tz09t5vfva3rJfaIm4fApSd8crh00qccvSfpfN/3+K5qIw7ctjOlf3bTlPI5/yOb45y9c/1WbdfmApufP2zXd86fDOXfqUDB6paT/cbO2v+5Y6+CYi+fVyl94z2AR3L3pyN8Ix/6DpodkZFW/R2Aqkv7mZmF8GOr+xs3i3ENbvgHnffGm7t+w+f65m/M+NjnvaUl3b76/fHMeX25ft2nPsPn+8ZvzPhvn/VuFF56kWzQxpm/GeS/d1PtF4di9mqSY28Ox37kp749irH9s5Vy9fjMOv71xzk9reljvoX3PSPqaZI4/JBx71aZ9P4wy/4Wkt4fvL9mcx7n3g/VP4oZ+Lcr7ks3xj0B5b8Z5vgmfH867LulLcZ7r/bRwbNyMQ3z5fsbm+O/FPH0nyrtzc96rjnNPrZxL9zn7S1mkJlvcnqT/R9I/D8d/QNI/bdRllvfa5De+8L54c+6v36IvP6TpIX168/0rN2V82Noythy7NS+8xwX2k5y3q4kRvUvS3wnHqxfeZUm/LpnDv7RQT8p+VL/wRgXWqYmpj5oE5iEc/0eSLoXvZml/CPX82aX50KTRuZYcv21z7V9e6OOfkvQ/a3rJ/gFNL+drkr43nPPyTVkf0ipr7d+NDkt42ziOb/OXcRzfp0kF8CJJGoZhV9JHSvpnY9DtjpMO916U9QmaJPC3D8Ow5z9N0vdzNDGdiH+K7/9E083+u0J575D04yjvhzSp0H4PrqcB/S2Szkh67ub7R2l6kP7zpN6Ij9LEVt+Aeu/TpIb4WJz/E+M4Pop6pc0YHgOvkPRT4zj+TPbjMAw3S/odkr57HMdrPj6O49s1CScvwyW/NI7jr4Tvv7D5/EGc9wuSXrixhURw7v+DpoeHHQw8HvTU8ne259/gO8fr4zWtA47/T2qSajn+bxqP2m3Wjv/DmtSDf3cYhj89DMOHLZwvabonYruS8crwZZruo4O/OHfDMHzkMAzfPwzDezWt0Wc0ScYfHsr4KUmfsvG4/OhhGE6vae+NwDAML9DEPr97HMenN4e/bfP5eQvXDhiv3RvYtH+He891ftIwDD86DMMjmh7IVyW9QEfHs8JbxnG8z1/GcbxXE3s67v1c4X3jOP7n8N335Q+NmzdHOH7LMAy3bb5/giYG9X3Jc1GaHIveLxjH8ZvGcfzqcRx/eBzHHxzH8Qs1aR4+dRgGP4/fqsm08y3DMPyRYRie/2zqvNEvvEeSY1clnd38f6eml8t7k/N47G5ND6Nn8Pc9m9+fs3C9v78glPfipDwb2Fke+3J18+m+PE/So+PcqJ31Q5J+OKn7ty7VO44j690Wz1Hbg+92TWqN+5PfHpB0B47xgfB04/ieJok4opp7z5PrY3sewO/G0jx5/H9Z8/E/r+3nPcXmofLxmqT6L5f0SxuX+z/fuk6T111s0+cvnC9J7xjH8afjn3/YOAz8sCYh6zWaBImP1KSujn3425rY/6dpst09tAkf4PiugR/oL155/udqevb8q2EYbts8fN+lyeb/OQsv/T+po+P1i8dob4XZPTAMw+/TpPJ7r6a5+d2axvNtWndPLj0TbxS2uS+lo/fHhU2b4rhaqOX9wTp3Nx66EV5DWd+X8MbN50dKB6Tp92sy63yjpHcPw/Czxw1j+dX20nxI02A+N/ntuZoYmPGwJnb4hUVZXOjP1aTDjt+lSS/v8t6uST+f4d7ieIX7Jd0+DMMpvPTYt4c3n69G+4xLW9a7LR7S4cskw6OaVAb3JL/do+Mt2haquf/Zzf+u7x5NL4PYlvj7Wnj8X6H5zR9/f9bYMN/P2zywf5umF87XD8Nw7ziO/7a47FM0aQ6Mtz/LZnySpgfYHx7H0UKCmXxs69OaXsxfPgzDPZt2fI2mB+Ef27LOH9Fki/kUTarTJfilXo3Jy1SHQnyvDteKNJkZbhTG5Ngf1qTq/KxxHK/74DAMrRfBBxMe1nRfvKL4vSUs+3n2m3XUc9Tat7c+i3YdzMU4ef1+6jAMpzQJHH9T0r8chuE3Qtu0iF/VF944jteHYfgpSZ8xDMNrrdoahuF3a9JtxxfeD2gyqL9z85Zfwmfq6M322Zpuwp8M5X26Jm+nX9Czx09oYi+frqNqzM/GeT+u6aX2oeM4fptuDK5qYidr8EOSvmQYht82juN/4Y/jOD45DMN/kvSHN3NyXTpgCr9Xk+POjQTn/qM1xUj9xOb3f7/5/GxNXoSGH8Jv3rK+N2laBy8ax/FNx2rxHFclnat+3LC9nx2G4a9oYiS/RcXDfRzHt2THnwVu2nweCGHDMPx3mh4U9xZteEDSNw7D8Cma2qpxHK8Nw7CvRj/D9fcNw/Adkv78MAxvHI+GJbgNnzaO4/cOw/C7JP1GTV7D34PTzmpiU5+vYp7HcbTX9K8WbtKkxjx4AA/D8CrNNQ03GlclnRqGYTe+aN8P+AFNnqm74zj+5NLJwJs1Pdv+mI6+8D5HkxPSfzpGe3yfz9bQhlj82DAMr9P0gv5wHTLRVfhAxOH9LU0P4e8dhuEfanKZf50OVVbG12ryZvzRYRi+VhOju1nTzfIx4zh+Ks7/pGEYvnJT9u/a1PPtwab4Bk3eef/3MAxfrcnL8bSkX6/J8eLTxnF8am0nxnF80zAMPybpHw7DcKcmFcdnafPACOddHIbhr0n6B8Mw3KXpwfe4Jtb1Mk1OF9+1tt4N3irpLwzD8FmaWNClcRwr1c7XavIW/OFhysbxFk2q5U+V9OfGcbykSWL6fk16/K/X5Gjzuk07v3rLti3hvI7O/ZdrGrtvl6RxHP/rMAxvlPTajS3hxzWp5f6mpDdu+4IYx/G/DcPwFZK+bhiGD9cUZnBFkyv9x0v6pnEcf2TLPrxV0scMw/DJmtbtQ5pY1d+X9N2a1Ke7mlj9Na1jPTcKb9Jkt/vOzX3zfE1z+c540jAM36fpgfSfNamLfoem8fi6cNpbNdn53rQ5593jOGaqb2kSTj9M0o8Mw/ANmtSqT2q6vz5H0kdoYmefr0kA+YpxHN/JQoZh+NeSPn0Yhr+4zf34fsQPaHKu+EebdfmbNXkz8nl1o/FWTWrfvzoMw49Ieqaywz9LfL8mIeP7hmH4Gk0q+R1NTmuvlPTnx3FMWd44jk8Nw/B6TXbr9+kw8PyzNDkHHdjqh2H4bkl/YBzH2zbfb9akGfhOTV7aO5q0E39Ok53/P27O+0xNwu+/1kSILmjyIn1009btcBxPFzXi8JJz71UID9gc+yOaXmBLcXi3a3pgv12T7vl9mkIBvihpy8dqcl19QpPaK4vDO6vJxd0xgI9oMt6/Vodeny/flPdxRZ9fEo7dpUnnfEmHcXifqjwO75M0TfBFTa7Bb9MUpvCbMFbfmYzhEW85Teq9f7Opd+apmFx/tybvrPs343ifJieBVhzev1IRh4djL1ESG7YZ0wPvQc3j8B7cjMP3S3oprj2tyTHjHZqYyjtUx+GxXs8fx/9zNUmhT27WyM9reri/MJwzSvqyon+vDsd+o6Z1+NTmt2/djPG3abp5n9K0tv6dppv8WXuXtfqcnOf764omu9hnanqw/HI4569r0n48spnzX5T0pTrqqfuxmrz8rqoRh4d5+4LNOrq4WWu/osn28ls3vz8s6QcbbbfX4OfcqHHblLsqDq/47a9v1qCDvj9G08P2+8I5ZRxeUVfTrV6Tr8M3bc7d14o4PFx/y+a8/wXHX7M5fk84tifpr23WyhVNz7Kf0SSM3txq5+b6L9QkeDtW+k8k5/wz9yGsle/ZrI/Lm3rfshnruAY/YnPtOzbnvFfTy6/0Om/92cX+gxbDlLftWzS5z/7yB7g5HQWGYXiJJsHlT4/jeEPyF3Z0dHRsg75bQkdHR0fHiUB/4XV0dHR0nAh80Ks0Ozo6Ojo61qAzvI6Ojo6OE4H+wuvo6OjoOBHoL7yOjo6OjhOBrQLPT58+Pd50003a3Z3SI/JTknZ2pneo0+ExLd663LgTfq3aF7cZg2dzzdK1rTL52/7+FEMa5+T69etHPvf393Xx4kVdvnx5VvDe3t54+vTpg+uvXbt2pNxWG/zJtZX9Vl2b9bVam601+2zWM6/xWGwzD2vq3bZNrfvMv/EzzhuPVXMa62GdwzDo6tWreuaZZ2aNP3/+/HjXXXcdrLNs7fg3lluti/jbmrWyLdY8u7ap5zhtYhuqNmXHj/Ps5bquymytA8+py9rb2zvyXTqcN3/u7e3pwQcf1MWLFxcHaasX3k033aSXvexluu22KdH2rbfeKkm6+eabj5wjSadPn04bnE1cNTEcwNYDIhvMqt6lxbPNA4A3VAtLD6+sjdUnJ31NPbxmjaDi4888M2WqunLlMHXhk08+KUl67LFpk+qLFy/qjW98ozKcOnVKH/IhH3JwzaOPTmktn3pqnkzDdZ86dUrS4Zo6d27KcuW1JUlnz5498unf/Ok+Zn2uxpKfbkc85msp9PF41i+X4Yc0r43g/Ppct8n3VwZfW9032Tr3AycKMZL09NNTzuFsHVy+fFmS9MQTTxz57erVq4rwiyqeE8f453/+59N+3HXXXXr9619/sGYef/xxSYfrLx5juX428XkUj3HtVC/J7EFdzWn1PMrKbc2/kQl70uH8ZM8BCiAUUP0ZwXmvPtmH1jHPu9dOXAceH9frteR67rrrLknSmTOH6WY9p+fPT9kVL1y4oC/90i+dtSNDV2l2dHR0dJwIbJ1LcxiGmQTcYiZLbC07VrE0nh9/y1RuWXvW/LYNw1ujvllSg61RT3GsWX/GKAiqC2LbK6ZKZhTP8zFLzUts9/r16wdSv6W8TMqsJN+owjD8P5kdpfVM9Vmx5NZ8cD1Xc5kxySXVWate97P6zOA2VPegEdcBGavnh22L8+a5pDaH0nuEr/Hn2bNnm/fStWvXZr/Hcs0eWiry2KasfW4L76VsXngvHUeFuUalvlRu656r1hMZX+u3Sl2djTO1Xq6/xSwj24vwfEYWb/jejs+xtSrYzvA6Ojo6Ok4EtmJ4wzAc/Em5xL2ka87YRaU3Xioz/kaGt0Z63kbirljoWsNwbOsa/T7bQDbSsiG2xkvK2XDFhHwO2Zx0aEfy587OTlnnOI7a398vbURr+kz2Jh3aX6zj93e3aY1DQjVeGSusbHcGGWdWnsH1nrF0Mjn3K5uPpf4QLW2L22RJu6WhsX2vYsoZcyLDu3LlStPZ4dq1awfn+rxoI/R6cls8TmRvETxW2cNa47lky8+cLfhb67mw1o+h1TaPAW1omaNPxcbWOCbxGV8x/TjuvIZjYRt/tKNTS3Tt2rXO8Do6Ojo6OiL6C6+jo6Oj40TgWE4rVLNkBnqDVDNTZTGuZsnw3FITtM7lsZZDQ3VtpdKkqjZzCKnUn0v9leZOI63whMrNuXK7j+fyWrrOx7n2/FuduKRCy2K3IqgKYflWVzpMQZpckqXDkAWfQ3V7K/RjKR6uFQPENUM1b3ZONd9ZzJHHm271WT1sL+/PNS7zVDtZRejPzCTBEInqfmo5SbQcD6zSpOu62xTL5nrlsyWq03w91cNrnYxayJy8eO+6Pre5FTqz5BzTCjFxP6lGtoozcyLheFUOQ3FMOL+Vc9Sa5w7bHtXXfh5Y3XnmzJmu0uzo6Ojo6IjYmuFJc+l2jdsumU+UtChpZJKglEsxlYGZ31tSeuW+vYbhEZlDSBUyQba7JrB1Tf/WssHo8OA2tNzcWQ8Ds3d3d5tScMspI+uTJTmzNzM7JzyQDhmeg1F9LtnNmtCJKvQjglIq13UrM0TF7DgfWXA0GZ7HJguWdt0MvqezQit7Dpkd3cQzBxQzL9fraxiUHUF2k8EMz21xG6LLuhkAwxPWJIjgOuZ8bZNcomJx8X9+cm7j2GZMMfar5UxCJudPzm18FnP+fU1VX2wXx5zz3dISWTPDZxXnPJ7r39ZoyIzO8Do6Ojo6TgS2DkuIUnzGLvh2r9LbWHKQ5rplXrMm2LtibZmkRanf5WYSFvsVx2It2G7aSTJmS+loye4Y20M2UzG+OCZmDGTmLZAJLwXB7u3tldJ0hCVeMzqzuNtvv12SDlLbSYdsjyywClPIwioMjpPnLUrAZBI+xymtqC1w36W5RMp58Ge0UTLtlftZ9S+ey/XsNlXu6fE394efrs/tiDDDszTuNrk90eZWhXVkMMPz2F+6dEnS0bR0la3RbcmYN+/pary2udcNryGPlzQfD8+hx5xp4+I51IRUIRXxOJ+rHj9/ZingqnP5PMoYHsNGDI9fdg96LFy+f6vur/g/05CtQWd4HR0dHR0nAlvb8GJwcSadk9lVbCYyPDK5KvVNi+HRO4sB0/EaeiBWQZytrN7bSH3VWFS69XhuZUdoBf9XQcqVjSLrX3U89rtKEJBhGAadOnXqgBlkiWRdtu1xZm9mdnfccceR79JhAtlbbrlF0jzRtMvyZ5S4ae9j+z0fWcJsJ0r2OS43k3Kr4F2DbM19icf86X6wv5nUTE9OMlb3K95nlpot2ft79IiLdUS4PDMwl5GdS0YSE1oQ4zjqypUrB+VevHjxSJtiOZT6qYXIngNkIFn9vJZaKD4zmLxaOlxv/vTa5f0Zx2FJ88JxbNnjPDb8zAL4yaKqtGuVv4U0Z8i018VyXQ7voywpg9sWPTjXsrzO8Do6Ojo6TgSOZcOjJNRKhVNtDdGStIht4tWWvOikZc+9pZiX7JxWyrFKCmul16ItlN5slJoydrV0TiulED37jMgksji/ag53dnZ09uzZA+nMUm5ktS6b23+Y0fnTx6X5FlVkeGR6Ubr0uZU9yZJvZv91P80yfNzf47hlLDyWwbZG+5jbSNuZj7tfcfuUyhbFe6+V6ok2FMYDRsnec0DmSI/JbG1Eu2YrFd6TTz45Y3aRefuYGbjrJGuK9wA1IFHrFPue3aeVByKfP1kKNm6b5LnNxonamsorc41vRPXciX0ho/J64z0S71u21e3nGqL3cITblm0XxvrcJrf16tWrPQ6vo6Ojo6Mj4lg2vMrrj/9LcymCkfX8PzunZdur7Ej0CMpiP6pz/H1NktNKl9/yBqsk/iwrQ5U1hWwoSk30WKXtrhVLWG0Dktk7K8ZSYWdnZ5YIOssQQ4YX2Yt0VIq1La1KlGtp2pJjHCe2odo0NtZHL0AmKeb3WA7vF5/r/pHNxf/5G21pcS7Z92osMlsYx48xsplnp/+35H333XcfGSu3LUrpPhZtNtX6uX79ui5dujSzm8bYLP/mvrhcr1G3LdpHPYaV7ZlalSx2uGLNHuvWdkS2j/H3LEuT28p7l2wtrlXOu8fL37Nr2GevUa67LBk3vY1bTJL1sS1kmrE+23Jt0+/Jozs6Ojo6OoD+wuvo6OjoOBHY2mllb2+vmTyaKsZqF+RMjcDfaGzPAjNJk6meyoIdqwS8rUTDdC2vVJsZ2G4ac40sPdjSJ13aYz+qsW85EVBVUqmX429xHbQSMEenliylGN2WaczPkgb72OOPP57W67G2SiuuHQYCuz6ObXQiqRIyW5XWCrfguubYUh0W20YXc8NqqnicjmJum8fIKiGGHMR6qrSBrVAkOrg4YQAdSiLc7r29vaZK8+LFiwdqyyzwnIHLVgHb0cmqzKjSpgMQnx1U32UqTc47HXaiYw3V3gbNB61E8BwjrqVMPel2U03pz+gERlNKFQ6TOfYx3KtKRB7XNwPbPQaeY6ani9fEsV2LzvA6Ojo6Ok4EtmZ4Z8+enRl7W9sDGa1UX5VLPyUEH49SWpVwmo4amdNKtT0M2aGUG6GlOjF0RCZ9LV1TpQWrmF1kIZV0XjHo2A+6cXN8M2ecKsEtsbe31wxpYWiB22RJLgvqprHb7WSAOIPapfnYWdL1cX+PEjC3QmJiZNfHfsdrGCbCXcXjWuYxhgd4TCwRx/8fffRRSdKDDz4oSXrooYckHTqrZGzU88O5YIqzOI+V4xaDrzMtSFy3VZqx69ev67HHHpsxu9huJhF4znOeI+nQsYFOF9IhA3WqOp/j7zGFnXQ4btLh+vIxBmp7vuK8+BlCpsV1kTkBVkkyqjR1sR6G39DhKaayY1gPEzt4zFxfxmCZjs7z5c94jzBZgVmg2+bxjNeQXfewhI6Ojo6ODmArhrezs6PTp083N6GkjaFidpEN0AbQCpCOZUlz/XC1UWEmAdAu5bYxXZR0KBXR1dqo7DOxTUvMNWPHZE9MFkx7V1ZexZwz13KyNiILVm8lgjacWsxjTEYp5UmG47m0TUmHkh/ZMyVHtzUyPNpuHEBtdsCExNLchkeGl9nheL/QNtSy05Ct+9zHHntMkvTII48c+ZQO2cf9998vSXrnO9955BqPWRZY7zGxRO/xsmTvz+jeXwV3064W59p9N4O4fv16uX729/f11FNPzdZFZCaeO98Hz33uc4+U7+NuvzRngf7N15jheV3GOfUY+pNpumg3jX2m5oKhFLGfvIc9hlU4VrZdj/tDRus5jCybWg1uu+VxzjQa7l8VPsLUcPE3rmeXkd231N48+eSTzRRnEZ3hdXR0dHScCBwr8Jz65Cj1MyCx8i6MICNhyp8WM6kkH0qZGTOhhE0WFSVtl8/AW7LSTEplEOWaDWfJtMjSLD3RpiPNWXTl9ZqxbIPSetYvbmty7ty5Ukrf2dnRmTNnZt6ttMJzAAAgAElEQVRfrQB9l0/pOUqV9NzkvHCMGcQe+1YFBEf26HVgidflUnrPPC2ZBozrjtv6xPq4bYvtcv60hCwd2u7e9a53Hflk/5hoIZ5DFkj7S5S4yQKjtiGOUaYJioH61doZx1H7+/tlEHT8n8zU38naJOnOO++UdMjwzBiZPCAmuGZ9PuZ6yPAjo6Qt3wzvve9975HvmRcj/Qt4L2cJD7jmPQZmtmZrmV3Tn9VmuPScjv3ic9rry/XF9cYEAS7XLI6aG2mexu3ixYs9eXRHR0dHR0fEs4rDy5KuVt6ElISz+A2mdqJ9LtuSvootq5hRPJeSW4vh0QbpMqpNY6OURumDkn2W4LpKmE0PNY5RbD8l4corNesXpfKMzbc8ODPs7u7OvOmiROoxYyJmry+zmBjPxTg4g1sMZfYKH6vsoVn6M3qFWsJ137Okuq6HW/qYWbhNXP+xXMayMX4pG0eX+8IXvvBIudwUNTIy3muMncq22aEUXt0rkeGRTV27dq1keN46qNLMSHNNi+v22vdYez3E3zy2tN273T6erQMyS89hlvIt9ifC/Xn3u98t6ajnI1PnuVyfQ+/jzO+A3pj+nmmW2G5u6kvmFW3HvI/4vGaqu1gfvc75DohMktqoK1eudIbX0dHR0dERcSyGZ2TSLO0RlJaMjBUyySgzQbSYhNvCJKvZm7+KUyMye2OVtYRlZtuCVN6mWRuz7UxiWVXGDelQKrJER4+rbKPLKgNKK9MK56vlKeVMK7YNVFuyxGP+tFeXGV627rzOnLjYdgrbaSyBxzn1+HCjUsa4xTng5pP0AvXvcYzdFpdLuxJtelE7QA9O2tRoR43lekyoufC1nguPkSQ98MADafnvec97JOXZUly+f2MsX8bcskxIS3GcvsbrIXsWuTzGjXlMIsPndkbUOrjvtrFFdmhwjF2f64naKGYG8bXOBmPbawQ1YzEzjVRveB3Lp2d3K26WGU/ItOx1+vDDD0s6ulZtH/V6pl/Fmm3e+PzxmDmGNF4f76ceh9fR0dHR0RGwFcOzt1SW3+ygwIX8jZSE4zn0YqT3XLadBTcT9DmWLmnriG3jtfT+yeyMrrvyCmwxoSrGLdtqY2lbEEpJWRkcL0tnZjYxjinzpIvImGsVI1Zdf+rUqYMxNxvIGBeZHD0xMyn2pS99qSTpRS96kaT5dkBZLk2vEdtJzALuueceSYcekJZmpfl6cj8oYcZ6OLZkG/7k2pIOx5j5Azk2cUw4hy7fZXlsnv/85x9pnzTPlfjiF79YkvS85z1PkvRzP/dzko56yvKepg0xxtoZnMtWHtb9/X1duXJlxm7j84c5H802uGlw5qXL+E/Ppc91mdEzlZ7PtE+RacZ6PE583mUxyj5GmzHvNbc19s9to43Y45x5u1KjwPVH+39keB6/t7zlLUfKv+uuu46U1WLytFVmeUy99uIWaT0Or6Ojo6OjI6C/8Do6Ojo6TgS2Vmleu3ZtZmSPdJMUlAGSpuRRpUmjulUHVNNlKo8qxY7pLoPW42+k2FRxZrtWU6XI0IbM2YQBmJXqLwtLoJsw63VZUT1Jo65/o4t5VH0xAJSq2dbu9jEpbqWW2tnZ0dmzZ2f1ZAm6GWLgMu0QEPtq1ZVVb3Ys4DrIgtbtJODfrHoxsjROTIxrNbHvCavQ7KgizcMReP9Q1RQN93QL93cGx2eOAEyZx7Xj1GOZ6p73xAte8IIj9b7jHe84uIbJBLhDuPsbU0r5N1/TUknt7+/riSeemCUhzraYoiMOE1dnibINzykTdUe1pMGE356fqPaM9Urz9Idsk3+Pz0avLx9jiEcVliMdrrdq5/FsuyI+03lPup9ZQg+3Mab8ivB8xTmo0o+xjdn69livdViROsPr6Ojo6Dgh2Dq12LVr11LJyiCjMywpZM4VDOz0uXT597Wxfr756cbb2nDUIOPLtmmhqzIlHDryZBuy0hmnFXheJaPm1iLstzR3r6+2lMmYOQ3obHsW9G+pf39/v5S2dnZ2dNNNNx1Iyx6f6IDkchjMy7ZlyW59LVPNUUKMLMNwUDLTQ7ltrfVGxwO3LTI8Oh5YEqYEnjlTsV90luI2KtlvnHfXY2ec2Ce68TPFmNdfDGUwPH68j1rhN2s2D3aZdNjJyvMYu29mDK3toSpnNa8hMuXYRz6jXH/cFshg2jkyOj5b4jVZ8H6s122Myaqt/fAcep37HsjuVTr10AnHY8B7VTpcZ67H/bMTGvsZ28BtgBgWExksNQctZzmiM7yOjo6OjhOBrRleRCsxcytgmSB7oNuxf2dqoawMSsKZC2wVBsHjUaKjy7i/MxWXEa+15EPbAO1jUWIly6C7sJFt5mrQRkC7VpYqicloGawa66cbt1NAZXBIi/tl6TpKpC7PLINJiTPJnomlzZq4eaf7HJmJ+8QAaUqXcWxph2DqKtvwop2R9qnWllXSUYbncWIygSpJuzS37xm0MzLhdSzHfWcgeitNGNNEEZFduY3RhtdKPH727NlS+xDb7VRXXg+uM7qwG0w3V7EnMvRYX5UYomJk0uG8mwWaAfl7rIfp3zy2vF+zJAlmS2ZWrocB9tkmzHxmsT9uR2Z79Tlksu5fZL98zpl9MswjjsmaMKgKneF1dHR0dJwIbM3wYgqgbRKjVraPCEpLvLayX8XyKiaUBZ7T/mZk0gs3H6UXKllatomjy6tsHLH/HNtWYDNBGyElIjLnrC1VgHuUqqvk2xm8iaeRbXZZbXLLgN0sebQ/mXqNnpHRtkoWy8Tc2YbElLiZ0sxML6JKZF7ZjCLoUWsvVHrcxXliIDXnnV6HWSJoMofKGzmWTzsP643saonlRozjqHEcZ+XSq1o6ZA9MXNxK5sxE8F4zrQTx3PSYWqhMG0X7nr2EaW+MqLZXqza6zrzDzfR4L3gssiQCZr1VvzJUz8ZWKjMmx8g2eY5tjuXE9HRLaSIPrl11VkdHR0dHxwc5tmJ4Ozs7On36dPNtWm3aSskq29qDnpSVVBPLqrwYW55hRuXh2doChRvAku1mzIgSIhlriymTCWf2PoL1Vd+zeWTfq+2XYnnRC7CVHury5cuz7YZiPyg18zhZTQS9ybgOs22UKnbO2KYopXNTTdsKnXqLCZqleZxdpcmgN3I85vrM+PydXpuxHrKaKqYytodaFbJOsp54/VLy58wGFtdZxfbGcdSVK1dm92f2DKENmkmQs8112X5qiVr3CZ9ztGvHPntN2E5leyO33on1cR7otdl6ZrkNLJ9rJttaytoUpiXz+DEdXqy7Yna+N7LYPW6vxTjNLBYyJqnuDK+jo6OjoyPgWF6a2QaiBiUNvvVbW/NU5VJyjL9Xtq4qabU0z8JCKYp6a6m2RVZSYLyWkg7b3GJt7Ds9xzJU8X6cm8xLk33n/MV+UZJb2oSxlQ0ktqeyF1C6jNcwMw23n6GdKf5PZsWNaFuJoB1v5097nWYZNvidsW3Z5sgVO6edKa4/2tt4Lecy00ZQ60JPxbh2KP0bVXagWPfapL/DMDTjrhhvy3sq07xUzI73Z9ZW2ujI6LL4MWbNYUaSbGNbbuJKz2F6C2eMi4mn2faY2cWMils90Z6e+UrQf6HaTDq2kZl2mPTf12SJ7uO8dYbX0dHR0dER0F94HR0dHR0nAsfaD4+G4TVG3Ww/taz8eO5a9WG8dsmdPx6j6s9qAX+PVH9JBdOi1EweXY1JVGW0kqYu1UtVAh2H1jj0VEb5LM0WEzRnYOC5EfvMXasZqE91pXQ4Z1SbMDl1y7GC40KX7Ky9bgMD3K02ypIjGB4nqk4zJ5LKEcT1WyUUx57XUK1XqTrjOQyV4JxEsP2ZCpPfqRodhqF8NgzDkDqbZGnu2GfuQB/Hxu2m2jDbd7EC+8qA6ajOZgA2HUQyNSH3ueMzi+rDbB9O7uXJZ0bmnEfVJdW+LQelpWTVsT620fPMJAZxrivnvzXoDK+jo6Oj40TgWTmtGNGoz7f4mgSyVdBzxQqzsARKOGQmUaqhtG8pgil3onGVkm3lHJO1udoeiE4aWfkVC1vDlHltFcLB/9fWY8R0VEvnk8VFZOMuzaW+7FpKoJToWwyc48KwjZiqiztZ+5NpoWIfmDCBTgMMcclcy6t7JDrwGFkQctbfKi1eVi9TTWXORuwPkyVnjCwLE6nAbYgiq21teSPl6dZcNxketQSttVMlAMjuW7eBTiRGlhDC85ulA4zfM/ZWheawnozh09Gquo9ieyqHRY5RvDcYhlAxvej8kyVs6E4rHR0dHR0dAVszvHEcU7dQI3Nbjsi23qFkVzG7lls7pYgq5CCWXwWEZyEIlF6rQPqWqzfZJoOYo1S15K7NMlp21DXfKxsXr4n9Zp+ffvrpRZtjlSBcOhwn2zTostzaXoZSeRXsnTGTKh1dtOEado92AmbairLUSGR27I/nPUuVxd+yRMaxXfEag/2ibarFrKqwlCwYn+CGqlk9MVC7ZcM7ffr0gau810W2oazHJaaQi8ieO/40Y+RzYU2ijcqOmWl6vPa5jRNtivG3Klkzn7dZQm0+c2n3i9cwOJzPQqaaWxNKVfkDxN+qBP5M0p/Vc9NNN62243WG19HR0dFxIrC1l+a1a9ea9qXqTU1kAYuUuJY+4/9Vyp1M90xWYFBKzII4Kymdbcv6V+m/3Z5sWxUGi7K/GTNrBZhX11RtWqMbZzqlDMMwbR3ETSCzIPKK0TFQO+vLUgLj7Fr2kRJwZF4OjHU9nh8Gk2c2PK4hBhpnGhMGNrN/2RwzpVi1ZVemHahs4Pxck96PiKyQ7HZ3d7e5fnZ2dmbzFFkc21VpjVrMlEykmp/4P6+pGIp0yHi5rszOszRatC/y3mAy88ieskDv2C8zzbjeaCd1GbwnsmQTtNFV6y2iSthBZpc93zxu586d6wyvo6Ojo6MjYmsb3vXr15vppirb0po4PKNiTVlsU8WsKG1msVuGpQl6k7W8wLgxaxXrFn9jmw23LUop3MKD0iHLjser7WjI2lo2vDUJgcmIlzwhY7/JjKRD9sS+sz+ZF6NR2ZczNsc+cmwp5UrzmENuQJslcyaWmGyE++d6soTd8bzY3mptrmF4jIFsbddCO2MVZ5aNCZNhZ7B2gBtFx3u62syZ/ck8yismx7jcyIR4L/Ee8zXRu9DnmJmYyfF7to0StVHuO2NfMxu1QdthtuEsk6xTo0BtQcb0q5Ry2T3IlGy0DZJRSofz4nR+az00pc7wOjo6OjpOCLZmeMMwNCPnK3tRVs5atOLwqCeuEia3Yk38WSVXjdeQ1VBaz6SYalNI6uGjlMvMIYbrbdksqvFqsWtKyOxHllA70+tX8zqOo65evXpgs6MtL+L8+fNH6nadZlwZW19KGt1KOMxxaWVa4Qajmc1OyjN6MO6pSrocv9M7j9umZPGt9P7zuVVsbNZurlm3yf3O7Nu+fzi3LWYXGVi1Pnd2dnT+/PkDhtJKnM54rlamoKqcyuMy246ouj+y+F+va8+H15k9fv17rIfb55DhM3tTHEPasV2v5ykbb84VGSTXYZY9hwmu/dlieJWWgzZKSbpw4YKk9ibYFTrD6+jo6Og4EegvvI6Ojo6OE4FjpRZrJYml0bZyJslS4FANsBTAGM9ZcoHNAk6tnvG+VHQMyfaLq4I2W04r3JeKTjlUPcT/6XTD8rNURlU4Asc1C1KtnD2y5Nksr+V8sb8/7XhOFUyWWirbA0uaG7YjKrVhy+Wf7a/U4THA2WuEqj0a5iPcH6snrZ5x/6iaifNCd3quw5bjia+J7tsRmTqJamT2K0sPVQUlt5xVmKB5KSTh3LlzswQN0QRQBcZz/mMyAT6rlsJ31gToU51sdWWGW2+9VZJ05513SjpcF/GeqO4pptDL2uZ20/mK662l2lzaYT2uuyrJQyt1Hu9Lf3qt8hkpHY6t5/LChQs9LKGjo6OjoyPiWNsDGa1EyTRUttzdl9zPWxJWxex4TZRIGYZgicoSQyZVsK1sI8ciY4c0fjPlVCugmiBbzOalCr5fChDO0GJxkbEuhZ3Y6cOI5zMcxHVa2su2o6rCRPjJHZvjb3Qxp0NKbLMdJ6qUR5kDkttvYzvdz1vrwG00S3vsscckzVlulNrJNhgkbIm/5WBF93RuaRSdGSqXckr48R6sgrsz7Ozs6OzZswdsybvKtzQUVchMVg/vc2pPMue8Kpjf82QHFH/GtvharwfPB8dcmjuN8BnJezprI8fYn2aYsb4qjMyOLhyTrG28loncs2urxB4sO0PLiYnoDK+jo6Oj40Rga4YXt4DJWAjfxJYu1gQ9U1pmWS136qVEr1FioAt55bre2oaGzK61iSf7xYSwTB6bHSP7qFKoSXMmXOnJM5uh54n2jRazayUHNoZh0KlTp2ZsOpZLF3zaqzLbY0sKd71LbaPk7e+27TppcWyLz6F9LttyxW1gmECVxDmzMxpMaZb1r9rw1f2rNp6N13DsGX4RGWYVhE839SzdWvU9wmvHfWeC49gePmda0n8ruJn1S0efB55vs3d/MnlCZPrUDjCo3+MX15uPcZ1xvDi3sXwmE+c9HrUe7KvrY1IOhqDEeqpE+y0bPI/xuRrnhpoeJyZYg87wOjo6OjpOBLb20rx27dosuDNL7FklIW6leKIUXiVdbgXM8pxMemNQMu07maclGVY1BkzFI81tKdbzW3ri93j9EnOlNJWhYngZM68SKrcC3KPtYcmGR49c2ijiOZTksnPpGVjZNjJbbgWf6/ri2HI9ka2TTcVrqg1SWwyZdj3bhCgtZ2u1CgT2NbStRPBaJmmIrIHnVumhMk/puO6qNT4Mg86ePTvz0szs1mR0rY2AyXB4DzDoOab88v+VfTnTjHB7HtsiDY61NGeuVdJ4M65ob2aKPp/jNmeJHAx6S7p/XDsZg62S8GfPHdbH51iWGpLPh5Z9j+gMr6Ojo6PjROBYXpqUVFspXipvw8xuUF3bOq9iJK3vtKHQ4y5jTa7bkgbtPty8MRsTbgdCj75WjFh1PJNyMoYaz2npu6t4mxZzW9qsNoJedFF3b3tAFpeYtSn+T9sgx60V61h5r2ZbJHEcuKln6xp6zXHtUBKP51BjwWTLsT6yDTI7SuBxTNx3MrnKszn+ViVyb6WPqtKrRezs7OjMmTMH55pdZV6fvO+occlSizEekp9mOTEutPI8pAYo1uc14jXq75mHpeHfuBkxx5rxofF/t822QdfLpNXSXGNh+Fy30WMS58DnMLUcn5XxnudarDapzZ6nUTPXbXgdHR0dHR0Bx/LS5Fs529qj2ralZX9bk+SYqOJQ1pSV6YfjNVESqTyOKKUzeXH8rWJ09IjMUEnP7EtElRUhO7cql9J55g3IczNYSuemk7GMioHQfpBl6aHdiMm9szisKtMKPdWiZF95Hnod+NxYT7W1VLWZZpSaq62laA+ODIBrhUyWUnSWuaiaCzKYbAwqW3wEWfSSDe/06dPNjZINxhhWyZbjucyAQ5u+f88S0DOrDLe9inNJT8csMbL7azBGk0yu2oJHmjM6akH8GefS7Nl9pzcwPcvjvcG16E967WY2Srfb5zIjUysZeytpPdEZXkdHR0fHicCxNoClJJdtPmpUXkURla6frC17i1eZT6pPaa7brrYDifVZoqH0zywGlkxaMXxrMp3Qy4uefdVY8f+svm0yrbSkdbKP/f39RZbH9ZDl1SO7IEOKY8v5p9ahlUsz806L8FzGHJS0qXBTzWxLHN4TVQxaFp/HcjO7m3R0nhhnV+WEzO6NKodiS3NCtlNdE9cl2WxreyAyvGwDWDJGel5mtinGRZId0u6Xxf0xTtHfza6i1yTtcLadrfGWNGgv5TZLWYwbx4RrNNqMyeS4dmgLz+JNK4/v7HnDe34p21ZW91YZo1af2dHR0dHR8UGM/sLr6Ojo6DgReFapxTKVSCuFWPY9w5rtZoxKxddSaVIdQfVHpoKheoOG0zUOIUxku2bbkWp3+ZaKqQrVqNrV+q0a39gmqrIyWC1FZGnCDKo21+xwTJfyar6yNlRrJgtpsYHefXIQMYNiW22p0mDFNlYpl7hrdTb2XMcMYaE6SaodT1pOZ1Xi39Y4GlUSbtZ9+vTp2c7t0fmhSpflT4bxxP8ZYpA51FTIkiFI7SQC/nTqOgaIZ88dg05EVTKD2G5us+X6MvVnlVKuSl4R28fxq9T82T3vY9z2qpUkI6qp+/ZAHR0dHR0dAVsxvP39/SNhCfH4EtYwvaVwhDWJcqt0RrGNlaNDSxKlS/w26W3YJrriZtsRVZsoVttnZMmqKwbZCuBnfVUfsrYszd/+/n4ZEM6yIyrXfKkOo+DvWaJcSs9cS1kaMiaCvuOOO45c43UQg3l9zGnB7ARTbaeSBYL7GF2+M1ZAV3aOH93us2DlKjUfNzyObeT3VuIIlh81R8TOzrQBbNxqh+WxbjKD7D6lg1n1mQWGV88KOiBlzyoGoHuDYbKprA3baG0yR62I7HiVbo5sLUvwUI3FGu1A9fzO1lLG4ntYQkdHR0dHR8DWYQm240lt9pRdF89tMSIysJZrfMVeWja8yubAYOWIii1RGsxsRUvsMyu7CsavtsFpgQxiTbowY40tdA3DG8fxiOt5xmZaya3Xogryb6WwYgC2v9tOlgUrc6sazldkIwxsZhm0Y2TB8dRCtOww1XpjwHMrDRrvU67VLPk70dLqcD0vJR4fhuHAFpVtM8NAbJfLpN4RVdgG7X6ZazxZstkZj0ebIdcIQwoyJkS7V5VIgQkY4rlc8+xXtu0R0x8yOUKWfpGaBWKNr8Ka5xrDSU6dOtUZXkdHR0dHR8TWDE+aezlGCWGNdCTlb/sqiJzI2FrF2jI7RrU9SwtVECXLz/Tm7NeSt178bSmYdw0LWkpE3QLnIkspFaW9FsN/5plnZpJpZuOoUn5lZVdBqNW4ZGmNOIf0UMvGiamV/Ok2xnRRTtdEb00GC2eeb5WtiGsm3hP0Bq40GGvTNmVtbtlulo7HNh1HU+GxzdaiQTtsxuwrL1Y+w9zWaP/NUu1lx7PNVZnwvPUcMKoNoZlcPEuoTY9Vahbi89ttsA268kJvbS1VaSWyhPF8hnBOMpbKLYv29vY6w+vo6Ojo6IjYmuHt7+/PJOCYrqfysml5QBqV7YFSbCalV56j2e+0OdFrsuVBSsm36m+WHsqgPamVXLeyk/mzlcKsiqVr9a+yHbYYXvxcsgsyKW1sf7W1TysBtFF5a1aeuLE+o4orbHn40gs0SxNlex6ZhEEm2Yqpq7QRmdaDc8F7JEvRZdALeY02pErCndmXttVQ7OzszDwgI5thijd6VbcSTpNF0DMyS5RM9mRGRG1B7LPPcfwdPWIznwWOYZUQnmnXIphWjWXF+ee5Hovq2dHymK/S4mXroNJccQsn6XD+o8fwGn8EqTO8jo6Ojo4Tgmdlw8vsY9VbnjrZlhRb2au4RYY033KDUnLGTCq9O5NJZ6hiSpjYOGMF1N2zv1nC4SUPyMw+t9Yrc5vtiGjfiv+vYXiW0pklIc4Lx7baAHabuE+OdWQFtPtUXroZe3K7zSy4hUxcH26DJdPK4zFLPO16zIj9G7dcybahqbydadeKbWXS4IrhZeuN/eE8ZexwTTaTYRh06tSp0gMztrPS3rSy9VSeqW6T68k8bw0mpOd36XBePJdV4ucsWwrbWiW4juC80A6YbbdEDQXjLqllM1uNx7jOuJlwfIaQBRrUpEWbuG148V7sDK+jo6OjoyOgv/A6Ojo6Ok4EjqXSbLn809W2UjFmQaiV8ZYG4Ex9Q6cEOplkalc6mLQcT9g2Gui3cQypjmehE+zHGhfwKuB3m/RuVPN4fGOyXKrTllSNu7u7aRJfI9t3LEOmTstc+iOoNortpYqe4xXnxeoot8HfHXqQqfw8ZrfeeuuRNlLtmqn8qvRtnJesX1Qp+bjVVVYNZeuOzkvVHmfxN/fL/a2SScdzW674ETs7O7Nzs4Dp6j7MHHk4TpXaNlOrOaWcHVG4vrwfXna/+JjV4Uw5FueDfWXbOE9ZijmOm/tjR5C436OPcRd2m5HcB6dDcz/jb7yfeDw+vysnI6phY3u4F2kPS+jo6Ojo6AC23h7o6aefPnj7ZgZzSnV+Q1MyjRJwZVznNXSSkGoXckpnLQmAzCJLbVU521ACy9hUlQaoFcy7xJYoaWeuzJXzSiu1GJkEpbS4O/I2gefDMGh3d3cW7BqlWa+VKll0Nk7VtiV0q8/c0y1pW3p13yhtxrnkFjWsz33IkmyT3bpcBp5nTisV+8jGcWl7KDoktLQDRuU+3jqHiOybDG9nZ6es28mj3W7PV+wzHRno8p+t+Sq1IK9lUHT8zeNvpuf6zZTM2qRDVmRUGobICqt1zedapmWpwkPIoqImi6n4qrCkLBkEtW1cu5lTVuXUSFadMTyXe/bs2b49UEdHR0dHR8SxNoA1qKuXDt/ilHRpJ2uhkspawbcun+7CWXAlmVXlVp1JnEsBkkaUfKpy+ZltgbEUYrDkzp21KQtw5TmV7S4L74iSW4vh7e3tHZybJdmuXLBb7V4KzCWbyiRFl5e5Tce+x/57nfmT26Zk40BmUgVqx2spFVdJEuI4uv0+x2zD5zLVWbbuWE+Vui/+z3u7tUbJwM+ePVsyvN3dXZ0/f36WZDu2gSEflc9A5jtAZmWmT21RZGi+9tKlS5LqJOVx7djeZdbHBB6sn2MQ62XIDpmSNH8Wc9NiXxNZKPtHxuw17L64/7H9Poe26VZSfoanMAA+3rfZc7vb8Do6Ojo6OgKOxfDoiRQ3u6TEWwWWZkxv7Vs6Q5WuK9NTZ+winptJIlVwKG0RmY2jxRhjfS39e3VNBva9YsrZHFCSp9TWSi0WyybM8NakmquSG2dJBCqbUmXziGvV1zBVkSVs9zl6sdH+ykBdMqPYxyxVWSwzC8ZfCqjmOoztZRtpP80SLNCeSA9PJo6X5iyUyauze9BtiGpWvnkAACAASURBVNvRVGt6Z2dHN99882yOWx7D9AjMArTJmtx+B1MzaD0mvHjooYeOtIGpxjzmsc+Zp3Ms18fj+uCWTvS85JhHTZbL47rmesuSh/vZzucBWVvsC9kgx4ap4WL/yPS8hs1Ko0cu19c4jj3wvKOjo6OjI2Irhre/v68rV64cvE0pCUuHb29uHbTNpp6VF2Fmr2hJKxHZdj2UvGlfiuyDkg4l7arMrN3sX8ZSqlRIS3a5DFUS7paNkl6Zmb3WcxzHoMXwzpw5c1BOZvt0XynBGa1tgngON+a13cqfsRzak7iu41xyvVkSNXOk9B77yHFfs74NxkX52mzTWNqzLSVX9q2MMVextlnMIO2La/rl/kTbVyvG9NSpUwdz6zbEhMKeK9ryjGy98VlRjU8WH2cG9MgjjxxpE73T47wxiXZmi5SOahQMzjN9JNz/LL7V9xPt2bxHYltok/Y1mXetQe9JarZaGw77mOfU95Pv18yDPd6/3YbX0dHR0dERcCwbnt+s9NiRDqUTSs2tDBvG0uadRiyDCV7XJE6uGE+VtDqi+q3yuIv/8xzal1oJoCsPxjVsjW1seWdSkudnlnw52pMq9mVPO8YNRWm2si22snywrxwPrxXXExMA+xz/xkTNWbxXVS4zrWR2OMNSP8vi9i0RTJjMerIYNzI8g7akluc0PXHXnEtkHrJuU9yGpiWlj+M4u9fjWiQrqrypIypPaI6txyk+59773vdKku6//35Jh3Y/rxk+/2K7DWql/D1qIWiH5bOEjCzblswMlRvnrvHwpoclGVhro2M+57JsMGTeLo926CwZv9EzrXR0dHR0dABbM7xr167NYj5i3IglHEsrjAla8j6U8mws2fdYDzexpBdbVh+ll9bmlku2sspukR2z1ELP0ix3p8EsHBUrbaGKrYr/k+VUeRHjuWu26djZ2dGFCxdm/YoxQFWGhhaq2EzGf3JDS6nOKWkplmMQy6XGgpqNCEq83KallUmGnm6U0rmdTyyX9pYqv228f10Os82Q4a2JreN2W5ENUKJvxVJZsxRj9qSjvgNmF2435zSLU+McVjkgXc/jjz9+cK1td/587LHHJB2OZTaXzBpCG5qPx3i/bENhac58uN5jP9gmel5HplzlsvQ6u3DhgqTDXKK33377wbU+t9JcZDZjzkG2VuK1WV/XZlmROsPr6Ojo6Dgh6C+8jo6Ojo4Tga23B7p+/fpM5RR3vbVTQBWQm6kWKkcTIgtgpdqG4QIt1QvVb1QbZIlms7CDWE/L8Ybu2VQ1ZWm2qkTD/IxtZb+qlE+ZmqDapbiVKLyV8s3Y3d09YozPyqMagym+MvU066xc47Ptg5gOjnObBQ/bcYHqaW6LFR0UqkTmrI/3SOwH55CqzEyVSqeMKoVeHAe2qXL6yEI1mKrN/aBqS5qrdVuu5U5aT2ec2CY6gDBZOAPos3GhiozOK1EV11rrsb4s1IjJAqJaNx6Px/hbpdaLbWRAu+81P69bISaG1fsMAGfZsXw657TU4Aykr57N2T2xdmupiM7wOjo6OjpOBI61ASwN2NF47P8ZCFolpY3/r0mqzO8MgIwSjtQOUqYjyJpkzpnbebym5YBSBbq2QhmqMlhWJuWw7y3mx1RMFbPLpNxoOG+5pp89e/ZgXCh1tvpCqTPb5JUMmOyz5RLNlEh2pGmxdAYlU+KO2gJqO6qUbxlrqMItWF+Wyo5lcJ1nmgWOo+enCqWJ5VfpobIA51YAczYGTz/99Owey54hVZJlf7bS4FUML2OHTCVmzZaZUJZEnFoGbraaBZzzGoa4ZA5oRnUuGRKfZbFeJm6go12WapDrjefGtrJf7E+mCaJGpNr0OUNneB0dHR0dJwLHCktg+qRoa7ELrKUX/2a9LpPTSnkCXNcn1Tr2+BslgjXJRNcmHI2omBdtKNuUnbG2Kv3YNuVXjI7sR5rb7Bh0S4k/lpOFLBC7u7u65ZZbDspz4Gosj/ZKbtuT9blizQyYztpvuPxHH31U0jxNU5ZijvXRzhOla/eZ0nEribdR2TTIcuK9QzZYhSVkoTashzZRl5XNG5lCtWUO/3ebWja8y5cvlymypPm8835sbQ9UbcBL+2W8lnY3u+m7jWb+cZyqLW98L2ShLVzfVeKOLMEGww78bLYdmuEJ0jzBOFPAsa0Zu6o0V7Rzx3Oq+ziznzIofqtn7eozOzo6Ojo6PoixdfLoq1evziTIyPAqzyAmBM5sKZS0KvbUCiKvvMoyya6SrMkO4vVLgeet/lUeV1my6qqttPdkgeeVF2DLG7BKKUZmFNk9A3SXbHhnzpw5KM+S46233npwDrcgqoKfMy+2KhCffY7SrPtirzUzPPeL6Zykeq6yeTfIkpZsqxFLa5RjE6/xOZbO6dWWBQJnKeTiub422ih9DTcWrQKsY3lRO1CNg5PW00Mw3uPcoojjlt2/9CKt7PJkPdIh06E3tdvmjVFjOjKfa3bk8bH9z2Vmtk6j8oSl7VWae6hy/jPbIW2TnDtr7mifjfVxTDLPfIJsm1odemzHNi55zEZ0htfR0dHRcSJwrDg8g3YzqWZ4VYoxqfbKo1dRiwEteVpm+n5K62SJmXTN8pYSQmfHMk/OWG8sn6xgSeLPsLTli1Tb6ujBGCUtbgK5s7PTZMDXr1+fbd+S6fNdHtdMxt6r9FwG2WJsv49ZGne9VeLc+H/l6WjJt5XsdikheOaxWNljWzGVXJNL7FfKt3yq2mRUm5Tas6+VAsp2pZYdc39/X5cvXz5oi1lTtmUM1yQ9BLPtrRj/ucablcmvyXwzb12uec4LGWdsf6VBYlvjmFQ+EG5zllycdl+mQWTqr9g/Pt/4DFuTAowesS3NWtQwrbXjdYbX0dHR0XEisDXDyzIHRKl5KUMHJQeWGVFlE2h5lVXMK55XbZNDe1AmQVYeo61MK5S010g6ZLMV02tJPuwn7RuRmVcZXMjwsuTRrdgmY2dnR6dOnZpls4mSvcthkl1uY5OxgYpF0R4bx9XlMkE2N9fMWGiVoJlsgXXGMraJpcy8S+PvcUxo76DHW/U9HqviGbPsLNSUmNmZObTYm8uPttXsnEuXLpUbi0rzbZPMAj0fmQZgKcE8s7VkMXX0GLU9mPVKc62J63dbs0wlTLzM5xvt3Fl91OhU229J862lqq2ryGzjb1WGHyNbD1wHra3TfH9Gv4K1drzO8Do6Ojo6TgT6C6+jo6Oj40Rg68Dz69evz9RpUYVCNZE/TY1NR1tqSargaNzNQDXkUhhBC1m6niX1U5UWbem37Hs8VjkatNKEVSEMVGW1di+nUbwVytBy0Ij9OXfu3IG6Y81u4txfK0uBRFUbHV+qVGnxHPaZbtXRiYAqSzoAZMZ8JtOtnHCy9Hh0167mMFPpVGppI1Mncu1UiaDj/UB1InfuzlTobGNr1+pxHHX16tWZO30WbM/5plo6S0JsMFyI6y9zRPN4UGWeOaZRNV85aGTjUAWgt0wbfCZWKeCyECoGntMhKesf13HVnyw9IfcepOo0M4F1p5WOjo6Ojo4Cz4rhZcZeBvgyiTTPi9czyJLuui1UTh5rrqmubTkRLDmeZFLTUn0RZE/8XrG3eA6ZEY3lkZlR0qKEnzkorUkpZgzDcESKpyQZ6yBbMrKgb84Vx8XrLwYAG3QiqIJtYzt4Dl27WwyvCrOhI0zG8NifGAoi5YG5BufWyObUoIah5YhABwfuls3zYj8im2oxvGeeeWbmwJE521TOcll4ktvrsaz6kaXzIsOxswqTR8ex5fwyfV/GgD3/bEPlCJWBDJVp6TKHEGouyGhbCby5hVHrWewxcHgKNRlZaj3eRz21WEdHR0dHB3CssARK9llQtyUbv7mpz4/SWaX7pXSbuWBTqqgC0SOq7YaqdETsf/ytkqwyG55BXXoW4Mxz2fdWIujK7lexRmkuWVXB6jG1WBYmsFbaIlOKZVepsDL7b7UJrfvD7XsiyNarrWXi/FUBuZR8I5vJjsVyue4zOykDwVvhIuwfWQ/tXZltlPbUynVfOhwnp8Yio2C6qqz9Vdk+vru7O0tcnV1LWxrHJ95jTH1FNsU0XrH93C7M4Fy2bOvVnGYMn/Y/tqM1L2SsDKGJGgwnTqhs02R2sT20k1bJCzI7qhkx07i1NBfR9t5teB0dHR0dHQFbM7z9/f2ZnSfa3qhL9yc94rJEstwclm/tzCtwaRuQVsJSglJLluprqbxWWqjKy7TlUVp5y9EOl9nwKvazxruSc0KpNP5fBVJn/awC96U5A7LdzSyNAeHSXAo3aANw+rBsjJkkmtJtZvehnYJzm9kcjKUEBLE+llvNbTYvTPhNRkfv1Ngvg0mRs615aOuqEkXEsj22sdzW+tnd3T2ok0nGpTn7J8PKvFnJ5LiNERlSTMFFz9QqQLu16a3XnftjdpV5MVZB41Xqsfgb54XbEsV++X+mTiPTow1ZmttNq+ddtsUYba0tuO64zloe/BGd4XV0dHR0nAgcy0uzkqKkub2gsgHRg8vlS3MJseWtWcXSrIndI3tqxbat9crMbB3HYZtLcXiVN6VUb0dTeV7GY5W9LxtHbufUGqOdnR2dPn16xi4iQ6eESxuDmV62PZDXXWX/zeLwGPdG+0EmpRuVl1wWs8U2VXaXTIpnu20T931kFuzj8Td6dLKfGdutYkRb3nlV3For+Tttny1P32EYtLOzM2Oq2XqjHZTjl6UwY1vIWLN0iF6r3PLH8+A1G+fFWoYLFy5IOlzPlVYs/kY765LdObaX96fbRs9iae51TBbMMYn9Y1xhtUFrvIbPKs6b25Ntf3UsLd7qMzs6Ojo6Oj6I8aySR2dMwVh6c2eSduUl2bKtUXrkZofUcUe07C78vsaDM16TeRJWLLAloWzjnWlk89EqK/utsju26qM9ldft7+/PyotM3/Ns1kJpM4sfbLEwqe2ZyqwOtEUyc0g8RhZKu1lmX6oyyHDNxP6RrZHpeayyjW1pP/e1ZLAZqm2vGAsXj9H+x/L5u3Q0EXDrnhrH8YARZfPC5wDj4DIvY5ZDL0aPlz3Ms5gzboFE7/T4nLt48eKRYz6HdqzMxsW1n8UV8ntlU2W8Ybx3PBa0Z1ZJq7PE8bzn6AEeGWyVtcuMOfOuzTzIu5dmR0dHR0dHQH/hdXR0dHScCGzttHLt2rWZCitz7qhobaZOq4JaqZ6M7SBaSXRZdqW6XAofiKjCITKV5pLqco3xvQpOzRyHjJZzEdtYOey0VAXZuLXO39/fn41FVKdUO0JbbdhyPKDDC0MmWmpj7nROd/4YLsF1TBd5OorE9ld7qBGZSpOqTd8bTOEXz60CgFl/vL8qhxO6p2cqTd4THPusnhhOsJQ8muaQeN9Uz5tqD7r4m1WNXHdUU8Z1wKTUVrufP38+rVeSbr/99iPlVes5S7tY3fctcw9DdqjizOalCjFy+XS0iSpNqt2ppozOKiyXY9EyY1AFvXYvPKkzvI6Ojo6OE4KtnVauX79e7oKcoUpZFSUR7obe2k5Cyg2Y1e7eWbLnJTfWloNLFSRepYmK//Pa1jWst0pL1Ep/ViGbt6pNrdCNLBi+VffOzs7MgScLsqajkdlblkaLrNBgYHh2HqVLSq9Z0uXK6YYOEJHhWVplUuVKOs8cnhiOwMTDsb5q2xk6JDAMQ2qnjsrK4vWxjJZmg0HR1XnSoWaJ88VzpHkKLjKHyDJcn+edThzsa+bcwfHxOV6zsU+33XbbkTb5Wre5pWGixqeVjo7XVKFarVRfDCczCyaziw4oHlsf47OKTmLxHM4T3xexHo79kmYpojO8jo6Ojo4Tga1teP7zd+koe+Kxyj6WSbEso9JTZxsxVqyzCiqP51THtwlLWBN4voSMhVb66UrSa7VxDZZSjGXtbYVIsD3coiTbADYLopVyqdqSX+VG3wqcN8iWyA4yGzVdvFsMz20kw+K6zu6NSqKmC3trY9NqO5hWoutKg8Fx4PXZOdk94fmJIRpV4oJxnLYHqlLlxbJp66TtKc6L+8owDgeItzRPbnelDcg2qa0SasR+xs8MVdA9WVv8f2k7nbh11lI6Ooa6RMbs/2mTrNZ5Vn42twTTU/YNYDs6Ojo6OoBh7ZtRkoZheFDSO95/zen4NYAXj+N4Fw/2tdOxAn3tdBwX6dohtnrhdXR0dHR0fLCiqzQ7Ojo6Ok4E+guvo6Ojo+NEoL/wOjo6OjpOBPoLr6Ojo6PjRGCrOLybb755vP3221dlWmGWBcaEtDKRsLw1jjXbON9U57bi1raNabvRba6ueTb9zrKmVFsIZXPNLZj29vb04IMP6tKlS7PB2t3dHU+dOjWL04zlcY1Ua+ZGxBfGY2sz02zz241aS63tX57tNa1+bdPGqhyupdZcD8Ogixcv6vLly7OKb7311vHuu+9uxiuubdOzPfdGYk2mqm1xI8taU/6aZ3/rmurert4f1bH77rtPDz/88GLnt3rh3X777XrNa16jRx99tOyAwSBb7q4b0/QwCJW7+DJAM9vHbSkQPKJKl7VNerAlZMmxq3NaAfw8hwmBeX52DcciS5nFJK0M1PX32H8nw73nnnskSbfeeqte97rXpX09ffq0XvKSl8x2k47rwHuLOQFvtdtyazfxpRd2Ni9V4Pw2a4ftyQKAK+Gv6ks8p0q711qXSw8e3mfSvM+V8NFab+yXA7lj2Z7rW2655aB/b3jDG2Z9kKS7775bX/u1X6snnnhC0jx1Wvy/ela0BJ6lF2mVTjD+VgWCbyNoZfUsvTRaCTGqZAGtJAxVUvyq/myHda5ZfmYp2rjDOvfj8zqJ58ad2l/+8peXfYroKs2Ojo6OjhOBrRje/v6+rl69OkvsmW0v0SojfsZrmF6GyCSjSsJpSWVL2DIYf7GNlMbWpBSq1I+UoqutlbJrt+kHtxDx9yxlFhMaV8jSLMUkxE64aymPEmM2p2sZXbbj+dLu7i1U6zyT+DmWmXQckd0bFVtbo9bjGmFKuKytvMfJ7DLVNtemy/K6sJYg6+vOzk5T9ZppdbK+GksJ2yOq9ZWl68ranZWRsalqfVVrtdWf6vesXIOJ2zNGzpReS+svttXzzLSBLfUkNVbcCi5b5z4npmpbnb5x1VkdHR0dHR0f5DjW9kBM2Bvf8pXUaqzRpVMaa9njqmsq+wj/z9q0RsKqnC9aklbFKLJE0Wva1OpD1ZalthqVpJUlbo4bP1aMY2dnR2fOnJklv42Jh62TjwmFl0DmRmbSsltWknVrTpdsaBl725bhRTDhMNtuxHlZ2hCz2qg1q8fghrqZEwETg/scbuC7pk1Z/dzcN85FxeBabLZiyVXy8qy+aq20tAaVHT5L1L7kX1D1t9WG1v3P8lssN9YRz6227Mqu4TH+ltmMib29vc7wOjo6Ojo6IvoLr6Ojo6PjRGDr/fCefvrpmUozgrsFGy3ngVh+vHZJ9ZiVv8ZIveRo0qqncj9uUeol9/dWvdVvS/vzZWWsuYaqk9ZYcB+5K1euLLo8+xqrLaNrMfcQq1RzLTUK94fzuVSHxXMqV/yqD9m5rWsqVSbLaqmlK4eD7H6qwm2qtZqpbNk2tjmqvCt1G9XWcdfqbdS6dlrhXoDZ+qX6uHouZO1l21oxo1UIRvXc4/+xjGo/0NY1zyYMayk8poU1+29WbWtdy3PX1Gd0lWZHR0dHRwewdVjC5cuXj0hqRHQz9zXxMzNoLjkCrGFeldt+hpaEW9XDcivX5Za7buXqvU2Q6pI7fPx/GyZZOUXQ6H9cpxVpGge3zVJ/ZHiVs0prHXAeONb+PdsZnGEwZFOZUxbLtUaj5Uzg69ewGYL94fri7/G3pXCLTMInk3P/Wo4wZntVPSxrqTxiHEddu3Zttjt2BEMhiMyZjWt+KSFAy8ljyeEuO5frOrvHKvbHsc76vRSqsSa0hddWiQjiOQwbMLI5qjRmVXhEbG+VjKGFzvA6Ojo6Ok4EjmXDYxqqqM+3FEa3dro1t1z/s3rjNS0dt0EpfY2Ni+wtk3yydExZfdEF2/9Xdrg1NrzKJrFGuqnObTGOirnGNnpOzfSuX7/eTBqwv79/sC7M7CLDW0prlEl/S/YBrtXIDqpAea6DWF9lp6qC5CMqZm/Q3iipZDUthle5/1MqzyRksjEzcUrimYaGfSf7dWIB6VAr0LI9GeM46urVqwf9YmhLq68GGbLLjeeueVYQS8+sVtvI6BhaE/+vmGTLtl9phZgoINOYLIVBrAnZqTRMEUw1SBtstr6JzvA6Ojo6OjqArRneM888c+CVZ2ki2u0oefqN3fIQ5Fu9kl4y/fVSmq5MyqkkuZa33pK+m9J5lLJp96EU1fIoJaNk28mks3rYhzU2wwrZ7+7r1atXy+uHYdDu7u7MdpcxvMzekvVDqlMTkX36M7MjLQX1x98p2XI+skDxlrdfLD9jsJWE29J6GJVnJdlbvH/JwGlXzdZqtZ5p51yjZcnglIZ87sS1H+c1qytjkmTwFYvOvFuXPMozTVDV/zUp7TjftDe3vHUr/4IW62VaODKuTDtUaT+8hrK1ylR2TirO8uPc+F5eSkWZoTO8jo6Ojo4TgWMxPOvfjcxDjPFWlZQp1XaiSnpqeaRRWmulIaq8tDLppaX3jt/dnmzrnWqLlUzCq9gOt81YI0lW7CdjLpUOP2OS9Hx8+umnm9LW7u7uLP4usgv/X3mCZTYnSrq0l7akeLKnyt7X8ko23DbOT0QVY8S2Z9qIikVlLJhsk4zOtrQLFy4c+T3+T5sKbdOZTcXjFm26sa2RzRvZWiRow2vFvnLN0O6XMYWlpM7GNnF4HutMk2XQZpeVWT3fqhi+7NlYpafj+ovtre7BKoY0K9dl+X3BdSgdJhT3Oe6Xtx5jX+K5ZoOd4XV0dHR0dABbM7z9/f2ZJJplL7AEYKnOG/hZuoxvebIVftK7LUppfttbv08pMNNTG1XsTCbFMPaj2oA1sh3DbcuyVMR2ZLFbBrfM4Qa7mb2R40V9f2wjt27xOHqeMvZBCXUpefS5c+dmzC5K/d7Y0fA51bZBsT3VGqrYrnS4drjZbcZcDW6FRAmbGo2sDWSftItkXqE+t/KajONYMTqPrz8tRcdrq1g0rxluCByPMS7Tx7N70G1wOUssen9/v6kRoZ2QWVlaDI/PjOq5sLS9Vbz28uXLR9oV6+G6IsuNY0+NBcto2X+5NqtnV+wXN2uttgnL7Oy0//Fd4HUYnxHMqsS5vfXWW9O+SIdjfO7cudUsrzO8jo6Ojo4Tgf7C6+jo6Og4Edh6P7xxHEtXbOlQPWKD4m233XbkO43i2TVWd5gCk/ZGhxCrTS5evHjk+5NPPnnk84knnphdU4UhUE3A/mfn8DNzWiHtrozI0uH4eAw8Nv6kmi+OJx1ZqM7JQiesmrE6iv1oJQ2OY9JSaZ49e1bnz5+XpIPPqMa02ttt4TmZGz1VunQaYWBrVI1YpeS1YRVJTIYdP+NvPpdzmzkRUaVX7d2XJSig+sn98D3j73Ec/b+dUqwW8trxtdl4ZnMaP7MxsVrS99pjjz125LjHqtWPlkrTphSuLYYiSIdj6DrdTpefzUsVMsU1E+9Pri+aPHjvSXM1OJ17MtNGpcKkGjZT99JhrwpxytZbpcqk41jmYEVnGZfv/rbCrzxvly5dOlJmTFrgsfD6vemmm1aFdkid4XV0dHR0nBBszfD29/dnb/DI8CylW7q0tElHjSz4kGzF11oydRlRurRE4Le9v5MVZElcDTIgX5MZgKvUPq1AYDpWWKqlNO1+xvZ7HP1Jhpe5B1MKtKRdGbpj28iuyAazcJJWarR47i233DILODf7kA6dKOjgxFCW2IaKydE9PDOYW+J0fWR6ljKjgxWvoaNLlgDb5XGNkB1mmgCXw5R9Hj/3y+2RDteI18xznvMcSYdrivOWOSKRobQSR9Bxw3NgrYvHj45RsT+tLV7GcUoezTZE9mtWyXuZ31vhO5VjUCsdIq/lvZVtR0XWRIeMyArJ+pY0S1kb6YjCMKnMCcxzSi3ANlsJGWR42bO/CmXg/R2PReeo7rTS0dHR0dERcKywBDKyqF+l6zMDQJlQVjp8Y1MaJyv091ifJQJLILYjUCqLUpTtipYKLMlbSvS5lFzjNZTOKEG2Ukv5kzYVs6rYR7Met9mSvMc3sxVYkrJETQnP15idxP9pR6J7chx7l79GutrZ2dHp06dnjCQGmN55551H6qwYZNZuzxXH2v3JgozpNk9blL9nyZg5Ppzb6Orvc8iWKGlnLKSyMzMwPK5vzqWZK/uRbVtE+za/M8VULJdMhSEo8X4263XdN910U8kenPCC4xc1PT5G7Qxtg7EOsvFqg2YjS3jg+rI2sT6uEYbZ0H6eXcP6yWSzrXe4VvzsyEKDyHKtJaA2L7sXjSr9WWajXkrk4fKjVsftj/bkbsPr6Ojo6OgIOJYNj0HlmV2HAbo+h5Jx/H8prRG9p+I5ZF5kjdEO4+st/Zl1WEp4+OGHj3yPdVOir2x6UfKh55Prp8ditOH5mJkdz/F3srkISqxku1H6tcTtY/RUzDzV3I9oJ2lJx5HhURMgzVka25tt50PbBYNdfS3XY7ymkpaz1GKVPYf1xnFyn2mP471AiTg7p9pwNrI3X0NtB21HmfRMkJ1mHs5eI2SoTByQSfa+9ty5c00b3uXLlw/Gxf3KfAe4Vtj3LFF2tV2PkY3Pkkd3lmSbno18VmUB+vS05PxzjcZ2+FwmQ1jj4c30cywz03owhSGTfFPDFMtjwgBqliJz9nvHxy5dutQZXkdHR0dHR8TWDC8mAOabXJqn8qF0a5tNlOzNvmiPogdi5gFJqZiSTibFkK1VcV6ZtxTLMLNqsREyYsYZ+jPq0sk6H330UUmH9himc4rto4cV7Rj09IvXkKGT+cV6KH0tbdJ45syZA69MM9TYBrJIMp+MPfocM19L+rRBZWyNW6CQoWQSKZPcVu2JYxG1CxHU97RFnQAAIABJREFUBmQbgHKuuJYyGx5/Y2ya7wX3JWPtlLCZai5qMCpPSN4z0f7L54RUb59z/fp1PfnkkzNba9SIGFyn/vS6aG0pZFRe41mqQYPagTXpz6q0cbEe9sdjwHhIbqiblV/Fw2W2U2qMaO9reYMaVYLp7DlBxlx5MMf2R61O69lzpJ5VZ3V0dHR0dHyQYyuG5008DXrASYf6dUpHlujJaqRDScDekrahkXGt8WKi115r80lKEbSLPf744wfnmllVyVoZJ5Mlx6YXKjOLxDa6H4888siR7x6rBx54QFKefPf5z3/+kXIdD0VGk3k+uZ9LWVpinRnzJmzDo/0iy3xhkGVkyXUtcfpcrz+vJV/DLCDxGma8MHxtZBKeu4rVZGUx60/FQoy4Dly31w4z7mRZc3zs/vvvP9IWeu3R7h3LNROvtBNxTFwuvUG5vVfG5ls2aGMcR125cqUc6/g/mTw9vqNmiXYjP194P9LjNxsXevZmmX3ItPiMclmRPbtcao7cVrN2ty3rX6Uxy5gd2+j7iN6aHG/pcM1wTXIbn5Z2oPLwzBJqR9t7j8Pr6Ojo6OgI2DoO7/r16zP7XJbx4I477pgqgA2Cn9LhW9yM6j3veY+kQ3ufGYuZSpYZwBIwt3yhbSfWTQ806scjG6B9hcyq2tw1jhM9oFoZLwz+Zina/bIEFufgfe97n6RDCegXf/EXJUnPfe5zJR2Oa2QSZBBmlrQDRimXGURa2wNJ09hRJ9/ymsy8cqV8c1XbOO+9994j5d59992SpAcffPDIebFcbkxKm1qcF2sBaHMgc4398hzRbsUtpfw99pf2MOak9T2TebAyHyG9M7Mcl5bkPe++F33/eDz9KR1mcnE9ZiX0VMxi96KHZMvDd29v7+AaZiqKfarybWZ2OLfHa8L3vZ9drXXo+ugx+O53v/vImEQvRzJ5rh2v68h2q01jDa6Zlo2y2ky6lTOYm626PX4OxThaxnVaw+Cxuuuuu47UL82ZHTVmXqPZ1mnRl6Sy/xKd4XV0dHR0nAj0F15HR0dHx4nA1mEJ165dm7m1ZqmQTF9N6a0SyQJ3XZ5VC3ZaoeqCtDr+RrVDK6jWddvA6/r9mamlSJmpKmkF5nLbI3+yzNgvpvKhowlVua1gfKsnrf566UtfKuloKrMqQJtu79n2I9FAv2Q8ZnLYTKXJrUmqsZYO1c733XefpEM1itOUGb7W6iqpdobyOFldk7lXM1jZ52QhCAyCZn+ZWiobQ8671YZM0SUdjo/vI/fznnvukTTfjivOKZO+e3ytEqbji3Q4TlbV06Ehc6yh6SFTyRJUb2VJrxlMzvmIAcy87/3pPlPVnYU20VnNc+d+Zc5rXN80pUSVJtWNDJlgaFg8n6YThj+1Ek7T3OI2MrF/nAOPH0OcvFZ9TTQvuf2eW5o1PCZRNZwld1iLzvA6Ojo6Ok4EjuW04rdu5u7K9FCUWlsbpFripGTtN7nTbGVSdNwqIl6bbWHELYPoSJEFANNl2JIOA9zd1iilZSmj4vFsc1VKvHTxtZTkz4wVWML3uLnMFiuwYxBDTlrB5bF/LYbnbV5i+XGcqhRLlGYtMUqHbMzlUHrldj6x/ZzDhx56SNKcpcd5qbaD8vhkwcNkiByjbJsWg8Z8z4+vsdScOcnQ0ckwy/W9Gt37zQLMcqrNPGMfmGaKruvZeuM91nIt39/f19WrV2f9iC74TNSQhVzE36XDufLzxmNrUOMTy/LaYagJNVnZJstMikDNRVzfZEt8ZlCDFV3+fS5TiVFrlDkBsgw6OmVpJZl8nU5h2TXun8ulo1jG/DNnqB6W0NHR0dHREXCswPNqyx9pvhGrJXCzDG5R4XKlQ5sS3ZiZBDfT3dItmSww267H5ftaSyhuc5bgmhIvmQ/tQnEs/Gnp2XrpbJuWKtEsmVGmz2YwJ+1ZRpTsGWbBgGC3PUrZDKAehqEpae3u7pZBvtKcRVMCZhq3+BvDBVy+bU/ZtlQ81233Ws3c35mmi/Y5bg8Tr2FoR5ZgOB6X5gHaDHg24trxb3aN95z5PrJNl2XEfpklOpiYAe/ZBre0TZFlR3AclzQDWZB5DH7n/eh5MWvzvRbXG23DTLnGhAcxjIPMx99p24rzUm0lRRteHAtuUcZtibhRauYbwTJon4tjS20KNXa+B7Ot05jkg8yOaSalw/FxeQyw9/GoCSKb3wad4XV0dHR0nAgcK3l0peeV5pv9UY9Prx9eL80lIabPadk6qm18WlK6pUB+RubKYMcqnVbGMGm3bAX+GkycTJ02JcvMY42skxJ31PfTs67atDEyGNpJhmEoA0AdPMzUSJnd0m2hVGlkW7yY4VUsg8HkGSiRmkHE+txGbjRKBp6lYCOjoz0sW6tc10xsnW29w2BopiHjxrZxDnj/0P5jRKZfJdt2/dQaxHrYvxboGZltepvZBqW5jSjWTRu6x4/sPV6bJSPP+pFtD8Q+8xkZ72Xa7Kqk+FyH8VxqtLiWYr/cFo8Bn/VMnRfXObcBYjt4H2RtypKvS0efO57reG634XV0dHR0dARszfCGYZhJolGXyrdvtQVKlAyo+60kXrIPae6txITT1EFLh9KCbRq22fmTqdPiNUw4TCk98w6rmBXbmkmfBCXIbJsV2n2YbJWprOJv1UaWjHOS5h5U1XYg0jSXZ8+encVmZRvl0pZRbWAZ28Pf2Femj4vneB4qb7JMAq7SwWXxiq1YqdjvzDZNyZ2eo7YZRRZK2wxtooy1jPVSk8H1lqWEc32MpfI8mg3GcaTWobV2rB0g24ltY4o/MhTXHbUqTG9W3QP0lI3Hso2FpcM1lWmj+Ey0RonsKp5b2Xk5bvE7+06W3krgzk12q7jTiGqTb6ZyzNZbxfS48bE03yQ2G+MKneF1dHR0dJwIbM3w9vf3Z0wrSkRVrFnmqWVUW8YwuWrmpUkmR2na9oosw4IlT3tN+pMZCmLbLGlUUnnWRnp5VV5tUdIiQ66Yl5FllOG4VvageIw2AtYbpSnaCJY87cZxnHleZnYdjilZTGbjoDRZbe4ZUcW/kdVGVkDWUiUPj2DsIT2KK8+02D/Gurn+bMx8PTcapjTNxL2xTfykViBjO9Q2cAubuD6ydd1aP5mXdQZuVMq5jUyMfVrK9hLbWt0XVYxvLJ9ZROwRy+2C4v8uv2JC2fpjfzgWWTYaakS4Vvjsyhil2+b+MCNT5o1OVkiv6nhPZAn616IzvI6Ojo6OE4H+wuvo6OjoOBE4VmoxGuwzJxIa6JmGjCoaaZ6WqUrJlKkJ6ArNsIjMOcJqIafg8rVODxTbSOeIKhEs2xrPsTqAbvZZACj30DPW7C5OVTPngE4t8RjbTLVIa8++ViDoOI565plnFtUsrTZwHGOd0ZElnlslwY3X0vHA36mSi8eYQJ0B4dka5ecadTUDnN0fO1jRySCOBROL062/us9iG6jaysIu2A8GUmfmDD5DWut5GAadPn16ljYuC9CmmppmkszUkDl+xd8z0MRBJ5/MQYn3mJ8/dBTKwm5433HuOLdZm4wqHCYrj85q7EM2RnwHUA0br6EalE46dFiT5ut5d3e374fX0dHR0dERcSynFSb4zNgaJUQGMEfJ3oyHLq9V8HiWHor1Mtg1SoM+xrCEmKpIOirF0t2dDIJG5cwwy+0/2PbMoF5J4VXwsjSXtOlklIV3UArnnHJ3+FjPNtt1UHJsJYdluXRHlg6ZD1NvrQkXqBKa07koW99kplW4SCy/cghpOf1ULNDjZoeHTMti6dhrl04R2XxRCq+cGDLJnuEITL+W7TZesRC2aXd3d5a2MAv9aCU+4O88xq3LuJYyJkQG2Uobx3P8/KFmK9uGiOPNtmf9c7mVwyDDldjH1vcqXCL2o1pLmfNSxfSzxPp0xjtz5kxneB0dHR0dHRFbMzxp7hIbQWZCG1omidD+VtkastRLlXRMSTRKKm4LpWNLRNm2MOw73Z8pgcX6qP+27p6sMErp1J1XbDezZ1CiqphdrK9KIVa57PP62KYMTljAtFfVubFNRsbeuB3TEsvMxpjhArS1ZUnEGWRrMEVb/J9hIZy7bPy4rly+WVu2uSrDADzmXLNZmEdl86R0nknpPocam+yeX2MLitjZ2Tm4P2kDjWXzHibbiHNZpZlbYlMRDF7n8ya20ef6/mcawixYnX4SXN98hkRkLv3S4ZgwEUFsQxZWEb+37vVqXKtg+Vgv75FMw0VG3hleR0dHR0cHcCyGRx1qFozMT24H00riSqmipafmOZV0FvXYlrAsiVq6YL+i5x8lRNqimD4sSmKUXnyNA92zbVoMBrgvBUln9SyltMrKIbtq2SQi+1xieUYm5VVpi7ipb8vmUK0deozF/8l8aVeI13AujZbNuGJJnCfaKuO5le3THsXZvHidO3UVg7GzQOdWMoTYxkyK5xpq2XazYO/KU9M2PCaXiN7OHKdWqr9YbobM3ktU6cfYh3gekxWQ2VWJuqW5HZHnZPcnryH7JNOT5gnnq5RvWX9byb15LttIbQD7kwW4e9y2CUDvDK+jo6Oj40Rga4aXeSpFHTFZWuWZRI9IaR7bVLGqFouotsCIcUpM5WMp2VKTv2db/LANVRxOBG0llI7cnszuR6kss1/E86Q5oyCzYDJuaR7j1oorZBvXJm+1pB7b29rqiXXTE1OajymvqdJ3xWMZS47IEtdS8s083gweYxwkGXhmM6w833ieNGcB3LyX8xb7UnkmVl6J8RjXamWzzMbCqecq2AYszW2QER5T971KEF3VET+rtRVRedoyEXr83+1n6jcy2KzuKg1jdj41cNUajd/p9UwP0jUxt9VYZxoTavz87KUWIttId5uk0Qdt2PqKjo6Ojo6OD0Js9YochkGnTp0qJSGplgB8brYRY+WFSftbywOP0hi95aJdxJKVNw31tZa0suTRS1kYqGuO/fOYWOq8cOGCpLmHVbRJcPsXMjt+ZoltK5tRpn8nE6/i/iIy6a+S0sdx1LVr12ZsN4sbYlxcK8ZtyZuMfW5l/eC5mTcr16rXM8ttrVVmAaLNKF7LjDtmB/5eedPGc7ilFbUg26AVK0gmR/tMxq6z+yRDjP/1ednGvGTpvMdacZhZnFjsV0TltUqP32gf89zxOUPbXUuDQW9MPncyb+0qmXN279BDmp7KrXVN2zffD9n7wmuSTK6VgacVR7qEzvA6Ojo6Ok4E+guvo6Ojo+NEYGuVptWa/i4dVadQpUf1RitYnWq7NXvN8Rzu8p2pP2677ba0PBrBW44gTJnG+rK0XdzhnK7FDlOQ5sG77Gcr8Jxjz7ZnxnjOD+egtc9fTB21pCaj0T2C6hqrgFo7q1cJalup1wiqo4xM7UYVs1WaVl1ljifVfniVWixzIqAqkzuGR+cIji3nlirjTA1GdTKdZjK1G1VNVYhSHBOWUWEYhpm6MtsDkPfnmnnn86cKOciuZRlMmB0d35ZUmgyPiuVXbapMK/H/yhGJydOz+uhIWDkzZW2o6s0crFh+lV4yq2cb1XxneB0dHR0dJwLHclqhJLcmqeoaSaT6brQS11bBw26HHVTiMZbDpMFZMK+lIUqQZLKRLTDw1yzB3922KPXSoaEax4zBVMGblQSeoUpD1toOZEnSGsdxxoCihMg+ZoHt7OtScGvl1JL1rZL4M+cIJm/2HLeu8ZzG7YayfsU+MSjZ6ypzcGB9lTNOKwFBxQ7XJhSIqIKxpcM+uh/7+/vNwPNTp07NtEfxucPxOM62WpXWhJqSeGxp66e4Dsjw+BxobS1VpWKrEu7HY9Rgte7litFz7WT3YsX6OCexjdwSiedkLI7PM2se16AzvI6Ojo6OE4FjpRZruaxTAqh0v9kbeSmNTXYNmRw/uQmmdChpW99OCdwSUEz5xRAJBriShTzyyCOz+vybgyvvuOOOI22M/bcUSFsabaCULOM1S+EImY2Skis3jY1obSBKjOOoq1evljbC2LeKta3R2bMfawJlWQ8DW7O1Yxvre97zHknSAw88cKQMS+/xmNebP6s0UTHEwX299dZbJc3dxB3iEplENT4Vs89s4sexj1TajtZ9G9tc1TUMg/b29krWJs3DaXiftFjaUvKCLCSAtkKew4QU0tyGz3VGG2tsG+uhBq2V+IL3AtlZNv+Z9i62sWXL5bOwSoAf/+d7otLUxf/XaB+IzvA6Ojo6Ok4EnlXy6Jb9qNKHt5hdq9x4bZZSiB6jtFdlyaMffvhhSfONKl1GTH/mNlrSsoTveizRWzJ56KGHZm10Wyzhu39mfBFuQ8b+IjIGUwXJr2FKlb0nOzeTzippy/Y7ty1LwkzdfJXyq7XeeE5lk8jgdRXZmXTUA9K2OjO6+++/X9Iho3e9XmPxGDUKbBu31IrXkjm6HS27CNcsx5Eajdg2SvK0uUYpvbIZV4H8EZUXMrGzs1OyjqwceplmbIAsqUoescbux3OyceJ6ZgKCTKOwFGjeCup2OdwOjdssZVtmVfbeJVa8Btk9WLHdrF+tjXmX0BleR0dHR8eJwNYML0vimUnpVcLcLHavAqW27I1OiafSh0ep2eyM6X9chiWfKKXTo49SmaV3xjHF9lrCYzJf9yHaDKnnpyRX2Uvi/1UyZJ4XUXmzZVJuJf1nsB2G4xil2SptWvV71l4m763aHOu2xEuvWffr0UcfPbjGsZKeO8+z5ytjpfQuruL+MjtMyyM6tjFuZeX/mVbLa5QexjEOq2Xfi9dEVKy5SnAc22a0NvF00vEqjiy2oVpD2dqszq1YThZHWMVSZjGctIsz1VeW9o4pvmh3W6NB4zyzvmzLrFZcaTyvtc1XxbwytlYx8TW25G1YZmd4HR0dHR0nAlsxvJ2dHZ05c2bmZdZCZQPKYqmqTAot5lAxOyKz+zDjiY9TEo7/V1u6VDaDWE9r401+rzIMVHbNTHdfeWlmZS3FbLVseNEG1ZLST58+PdsgNba7ijXi9yxOqbL3sa2xfYx/sn3Mtlv3K86LJV+vEdtfaZ+LicDpnclMK7RdRqZvtnnnnXdKkp73vOdJkm6//XZJ0t133y3p0FszlkPbIbeAyhhzNX6M98rioipNTCal85xz5841nydeP1LO3iutQCv+t9LaVGwtY0KVfdllxW3JOE708KbWKLafdlh6Z2e2xMr7nOsxglobeocSmbaFa6XSwmT1ro3JZrktO2tEZ3gdHR0dHScCW9vw9vb2jmRHkNr6cUptmaRQSYKUGFq2InrurNlypcrdaAk/SmeW2BmPRxaQxabZRuRy6dHZimlZiiPLfmc8WbVp7JrNUFl+5uUWWfZaO0xmc8jGIZ6b9ZV218pGnG1WbHbGDYC5zmI+RK8dx1B6XdD2YS9K6dDu52PMykKGGb12yeTM9HyOGWBso8fg/2/v3HkjOZIgXHwLkCEBwloy7v//rLNXjgTIEEhxzspl7NcRWT08nKGbDIec6Vd1d3VPRj4iayz1OTUGdvWYyWJ2Xpedl6WLw5ydO09PT4c6TaeElPRinXdgpzzDmJvz+KQYYe2Tqjo6RnqNOP90DGRpde6uDpdj4HNDtugaDqd9dVmaZJm7e6FIz7yDy1QdpZXBYDAYDATzgzcYDAaDm8DV4tFO4kcDt3Q70KVZ1NtJSqXU4i79PblMu3Tdch1oYflaH64lV+Be/5cLi1JGta1z+dTxyv2UClu7IlWmsneyOrzGvCfOvZNcCNe4NM+4FZIorS7jPeNnnW+8/2ks5fJz7sn6jqUstW/dppJDfv311+/2T/dUFfmu9SFwUMXp5dJkMXmNR+dlHa9cmzWHeG81sYYJVHTJdfMgtZIqOLcb3fquXEnHo8fU53WXeNClqicXPJ8bJ9u1a/nlklZSAhjdd+oGZblT3efUAsqNLSV2OREBl9C21vE92rmaU0jFuSXpbqXr0bk0GYpKZQpu/FoKNC7NwWAwGAwEVzO85+fnQzq9gimpu2LitfqWE3VchVpatGJTgNQFdctyJ6PjPtc6ivQyScKl6BdY9pDEdV1KcQqGd81yU3pwur66bipLcAWoZ8pGCpfLZf3999+tvBkD5mS5rq1Tt0zHyBKEtT7uZZK0c4XAxcIqeaSSV2jRK8Or/5m8UschM9KkFZZKsMDdMQmygSTi6xqOclvOHffsp/YvnMNJDEDPw6HeOy6NvrBLlHDJOFyWBNNrHmiBfiHNfdcmjCyTZRAqdFFIItjc1rFQ7qP+1pzqmqumJBIWq7tSE3qYeE/cHEqJTS7pkB6FncCGYhjeYDAYDG4CVzO8h4eHaGXq/0lUteAsLVoEtNrJ4vQ4TnhX4drYk9GxAFhFhGtMZRXvGjI6yyf5pVPZgJ4XWUgqI9B1OcbOL55iH528EmOr1wgROKuMsYXkHXASTymm0rUwStvS0lcru85ZC73X+mBldVxlab/88sta64Pp1V/O+/qrsWO2maEVXWnvyn6KKSjLVKSCYLdOKpLu9pvKB5zIQCdsUKjcgboGLNzX/ZBVnpGc47YsBaDYhDunJOrcFatzv66wPuUvUJaui1EyNtjlNyQPDL057jlOZWXct/sulSu5OGPNRZbHncEwvMFgMBjcBP6r9kBOHDbJ8hTcrz+LKBOcNZhidbQUaBHpMsYcnCAvj02rgn7+rmEqfc+uOJVsZtfs0F1PLksxC/2Olne6f/r/GWZX3gGyKmfN7mKOLtbJzym7tYsDUajXST0xdlHnUSyuvALK0lIMhc+Is9JT7KTOo7KGf//992/bFMNjUXyhY3aM99Hr0VnVZ+IvBbaJ2jG8h4eHw3Xs3hdJ8svFf+lBSnPIxZvJann99L1Tc4IydCVwwbZhug7Pnc+IezfynjF25p5xMrjE8JxoQbrf9NgpUuZtYtB6HjqmydIcDAaDwUDwKYbHX2G1SNKvO2MqLsaVjkOL1MVUyCxZi6SgRcexUZJJj8kaI1oiTm6NY6C1WfvsfNyJ6TnGSb842ZuTSmL8IrW0cfHTXbyW66/1wViUCXH7TnyY66RYDdmaMjxauHXfGbvR+VZxscq0rMzLL1++rLU+xJ21lo5ZumRNdVzHQjm28gbwfNRLUIyhvmPsu2ucyXnOWkSXfUik+LZuw+dnl2n3+PjYCsSnd0iXrc25kmTVeL/WOtZuFhgz1qxg1kyyXY/LAuU85j4oFK41o6w9ZWNgNw9SDTTXdZm3fJ6c/Jhuq+vw2eZnfU/wN+T5+XkY3mAwGAwGiv8qhldwWT4Efb4dA0rH6+IGiWV04spJPYDC0O54ZBYUJ3aZhPzcCbGmBo9pPE4tg/74lH2my5LKhItjuKanHctz/n617HcWtmN6jCmk+VDWs9Y6sU1KXY/UdHOtD4u6Ymb19+vXr2utj2axP/3007dtKhZc14uqPKzd09ZCZGtsXeVqxMgcyA7qmhULVebC+V3sIMWMFJxnjBV3Cjl//fVXm22nahpdTa+ur3AMcqfO0rE1Xhcej9dLj8c6SGYD677ohaKnhdmzyoRq3jFLk7E89/7diYe7Z5GsPWXMdt49xvF5rXT8OpZheIPBYDAYCOYHbzAYDAY3gU+JRycJqLVyEXnBUX26QrpU225sax2DyE6ii4knLOp1abR0p6Tu7LVvTTzYFd93rpl0LTgel27NZUxacUWxbpkez10TdYOle1XSYtxGr2O54thbsAto74LqdMGoG7fcmyXqzKQVF9Sv+8skkt9++22t9ZHEUmUKa324DtlvscZUc6Xukyag1Bjru1SWoOdVY+O8KrdQubrqr7tndCnRLeUSHdKcTHNK13l7ezvtonTPYFe6ouiS2JLb0JXf0KWYSnTce44F53wPubIEhiNqv5QJU7h3rVveIYk+dKGWlLR05j3O96gTfT8jlRj3f3rNwWAwGAz+wbiK4d3f368ff/zxYOUqm2GAPFkCnZwNC7NTQbJ+l9iAEzhmMXpKe9cx7/a/K5zV/SXmpSwtFbKmdkj6vZNCWutcu5Mkc9alshd26cEucUhT1YutMH2aY9HAPMsyUsGqC+rzXMiWXDp6sTSm/LMYWp+Jkhljx/vavyaprPW9hZyYXa1TDNBJPPE869yL2bmEAD5PnawbkTqqJwk3/W7H8O7v77+7dzpGPVZKq+8ErJOcHueOK8mhfBcTT9x7h+IHnG+6TY2FXoACE6B0jPRcdaVThZ3EIJOmnJeI78pUvO6+Y9lFnYMTnHZJMDsMwxsMBoPBTeDqGN7Ly8u3X91Kma6/a2Vx4y5elQRXaWnRCtDvyHRYkOkYUFkpxVTpQ1dLrNYl++Q2jAPp2JKF6orHGRug1BPZWpdavIvP6X7I9GhZqXXGa9uxv8vlsl5fX+P9WutYTM2U604om+UJRF17LRco1P5rWZUH1L3UMTKmUteUzE+vG69tnR89JS59n9Y/5aec4DSZHGOHjJGqSDrZTGqZ49gVx8+/7tnX2NQuFtPNs8RICx0bIGtKXgO3v50nhM+8IsXa3fl15SBrefmwxPAoROBEuClzl+KPisQcWbLlGB5FBbhut82IRw8Gg8FgAHyqPVCBBbVrHWMMhWRFKXYyWhpr4H52YqeOPTFrka2FXBYYLcUkYOuy2NI6rpFhXdPE4Gg9K5JkVdckMsVL67q5ZqE7q1NRDI/31hXM131goS4Zqy5LqPOo8WvbnmreyuMxNq1Mv7wZFTtjZnFdexUepyWdCuldnEKLnfV8ed76bNSxq4VRMTh6PZLnQc+LXgEXj0vMjvNMx+wk4LrMSp13ZNMKXmsylA47puUyoXnudb1c/JnvKo7R3YckP5jyADhfdL+JIbtrQ48V13XXNcmskbXpPKcXh7FQtnBz59HJ3BHD8AaDwWBwE/gUw6Pv3wl7pvYyzjJITIEZn85yZKyhaytRYIsTikZ39VepLon7drEujo0WUVdfRt95Z8EyA5LXzcUfkoRYl6lGdG06LpeLvW86PxKTo4XqmECSPKp9MkNyrQ8mxP0yXqEMr76j1Fcc+3VlAAAQFklEQVQnwabXQJfxuGT1Cs6VOg83l1hnx/2ypkvHymVpnjn5q0KSEXStoHbSeYWHh4dv51rnpTJxjDkzBnWNHFmSyHLSeDwfiko79pHGkDLB9bwYx+Y91W1dGx0de+3Ltb/i35T5250H35Ucj35H9lefHes9kzOQMAxvMBgMBjeBq8Wj1Ypn24lavlZuwOgse8aNkq+7GJiypxQn6OrzaNnsWqKs5a0THWOXMcRrQavFZWkmizQ1qXStV2ilkYWciVF2ag20HJ+enrYMr8bW1dW4c9Jt3NxJzKqutYvh/fzzz2utj1gXz9Wp5lBhJWUxOjbAe8fjuLqoVJfE7902BY6R56BxmnQeZD16ful5TUxW/981fa796Pxz753knUnZhvp/yiTnebh4FcW7KwblYt6cm8mj5Z4hPn8pC17zEOjpSY1z9XlKovFkvy5jvpBid26b1KSWz4Tzfn0Gw/AGg8FgcBP4VHug7leebewLtJKcZZCUThhTcQooVI0gI3MZYvT302p2mUGpASzZocvSZA1T14aGTSEZTyJrcG12aNGTXXfqHIWkmqD/K/voGJ4yNmelc16luJxTr6C17Op31vI1R4wN8a/eFypN8P44Zl7rpHhVinmslS3edH66/xpTKblw3ToHraNlrDhlQeu+GKPjM+Lq2dgkdKe0oi1gnEJMxfNSnPQMkyxwH2zRo+N3mrBrLevJSCytizMmjU5eP+eB4XuO7yH33tnlXNCj4ppx8zMzL10dNc+D71P33rnmnhaG4Q0Gg8HgJjA/eIPBYDC4CVzt0nx/fz+4sjTVu2SZUoC0C3rT5cfAdrlb1JWRaDtpr0usSYKyzo2Q0nJJ+TtXLQPpKXVarwXbwNBd6RI8UkJAV4S7E8V2rhNKBu1cmm9vbwd3l3PJ0Y3KALoT1+VxuV8mbqy11h9//PHdOuwEX3917iSXT0pI0XGnxJpOoi25LpMLSPfH82BBvUtaocwZ739335yrca2jSDvPsXBGgF2PU6Uma310nk/7cq7NJAvGd5STfEvHqbnitqnrsnODauIJ7zOTApMbUf+nG/JMwlvnonf7XusYRmKCFd8Xui73y/mmx+F77PX1dVvW8u14p9YaDAaDweAfjk8lrfBXX3+xGWRPxc5OADilB59pL0Kmx+JyBRlkspLUamAhLi2trv0ICz45Jieum86ZMmgUJFbQeqJl51g2t0kJJPqdJvskK71SyyuA7a4FLeBCKpVw63ZCxbp8rdympZI4ag4pY6FVTvmxLpCeSnVSavZaH4kzZL1dW5g6TnlbyjvAvyyeX+uYoMFr7sogCmR9ZJrumeeYHSphhYkgel8oTtAxH2I3V1jeo8soicX3m54n2QrLkxybIftnYh2/d88nk7Oc3CLB91m6nk7UmeLlPK57flMLI3dvHFMdhjcYDAaDgeAqhne5XL77Ne3KEujL3vmE3XdleZIBqo87SXwlFrVWtioSw9T/E/OiT9tZ3FyH+9JYClnYrgVLlzJNxurOj5Yi047dedE3//j42DK85+fngyWuoNXK+1LnpSyDrCJJOtV1VMFhlqUU86njltWulngq9GWczMVFOGeS1e4YHlkNRX1dyj9jdpW6n2TR9P8UV3Sek8QYupIAV+DcxX8vl4stFyrw2qWyKMe4eK5nPDBkKyyH4j71Oz6XLLdw8VjehxSz7uS2+Bw5hsf9p1hhJ79IsYeu1Q89FyxF23lsdsuIYXiDwWAwuAlcHcNTa9D9YtOCT80AlaV1LGKtLFmk6+6KOtWaoQXCOJyzIGmB7GIFrng0ZZ2SHeg6XJcF6c7XTRbCe+AyrLiM14IZV7pOsZCXl5ctwyu4IuskUM3Pjpl2QsW6jX6f4lWMP2usiELmdR9Ssb/uh/ObVnQXt+D+2QjWMTxmAxeDrRhljdF5B1JBsHuumbVNYQVXwF/Qd0g3dx4eHr7t3zUh5RiYLe0kDbmMSFmc+n95ARjbdPE4ClynrHTHCpMnK70reWxd1nnZuD82uOb7wLX6oYA2ZfHc8TiWM8/EZ0Skh+ENBoPB4CZwdQzv/f39YHW4Gpkda3OWD63nJK7aZYqlmhknOJ1EfB17o4VFRpEEZ3Vdxn0SO9D/a4xlnfN7NpxUpBhYwckCJebq4gtlyalF11npj4+PB0vNxSs4Jrev3TpkaU5GiXWQ3NZdNzakTPVxrj0UrX5ea66n406CzAUnisw5wrq7+uw8Jum8al1lvXUcxvR5b9hgmeecLPXK7u0yYJMQPO+lY8Ipxk3vkKuPZMyOc8q1xGLNbhIt12Vd/F3hPEuF1OKpqzfmfCOz03cx28WRbXeZ3gXmKrg4I6UgO+8AMQxvMBgMBjeBqxne6+vrKUUE+tBpaXWit6lFRUGtAvqFaRF3bI0sjYoQLgOJ9Tcp49NlaZLhpdYyug7r7hL77eoN+dmpgaRsKZ6PXm/WiN3f328ZHq1MPedisdWuJ8XynIXYZZ6589J1yTxSfaaCcQpa6652L2UxptpHN+6UvaZMIsWIWSvo5gHjisyMZLamnnuKb9eYde4wjqyNpR3u7u4Oz17Nv7WOGamM09c1cM1OOaYCr7V776T4fBeHTTkJnSBzyi+4RmmFSCpFbluyNif+ntgf35VujHyOU5b1Wsdr29X/EsPwBoPBYHATmB+8wWAwGNwEPlWWcKZ4uNaptN0qeu065aYUVCZfOErMBINyYTg3CWk0XVqu3CL1aktBZZdanIrHmYiix0vyRnSPub5byaXR3YNCKop1rqzCGYkfpmRrITjdxqkXn3PBpYSDTqqIws+EOx4Lr+miL1ePO84OzmVLF2NKinDlFnRlMknqTMEun3E3DzhGSqZ13dnPuqLWOiaKOLfxLhTgwhR0bSbxAiejxeJ612syIYm7d8LaKamsc4dek76fkn5YPM6yjLWyRF5X7pXmIF3DzqWZErg6DMMbDAaDwU3gaoanBaAUUF7rWABaVlhXKNsVFuvnLo22/pYVW39dsWO3P4VLmWeKLRNgXFIOg9VMUnGBWgb8k5RY1509XVdnae/aOTlWyGvRMYZKWil0rVB2x3YMKLWUSp2adVknUsDj7axJZ3UmD0X63lnCPC4ZjF5HFqezDCbJxil4PZNosVtWyUfcl2vrlT678fDZ0jGwSz1FvesauLmfvCZklE7SLjHwTjoxeR+6JBIyu+S56Lw2Z8oEuH8+e/W5mJ3eU16TVCzvSrZSsqFLbnMlOWflxYbhDQaDweAmcBXDqwJQ+nMVbPJXlgCLXZ0gbyG14CmcieEVnGVHdkHrpfO/kxWWRUeLxDVkTTG8NHb3XWIBXfFogbFJF5Ngw1xaeGrRfUbaJ8lsrXW0cGkJ17HdNrvjuVgALeuaD7Tanbgy7yFbG7lrkgSAUwsWBdtApWa1ax3lzVJzWscoOMaUhu6Ko2ubYlkan13r+3iPY9NdScv9/f3Bm6HvkNpPjbOOVWyTnqe1jqyI7YcKriQneRT4LLu52nkddLluT4EJegXc/N7F/dx7nO8XssIU09NtUtkX19P/WUzO/Tvhbj6nZzAMbzAYDAY3gatjeK642FnZ9QvNtiyuyDq1s+kKUXU8epwUT9IxdoxR9+GQJH5YOOmsVcYKnFXG4yQrKVniOgaiixExvkeZIycAm4rUHS6Xy3p7e/vGRLpMNF4P7l8LjimPxTgPxcqVee9aMLkMSMaG6UFwGWm7eX3GQuXYmH3oxKrZQogMw4l108IuppRi1wpmsKbWTWt9MDGVFUzz5+7ubj09PR2YipMLrDHUHGGWuMs34Fh4P1wM7yy76Fh7ijt1Hgx6hcimXOyYn1Osba2cpUnPHee7jimJF3Rxtl0xvntHqodkYniDwWAwGAiuYnjlS6fl0GX9MS5S1hQzudY6sjOyja6WioyHNV1O6otIorFrHa1Vsg765V0mUhL8dT52CmrTUqTF3fnuk5Xo4n68fvTlO8ve7Y8ohkeZKR0bGUJiws7SZp0n5eIKrl6NsTpmNeq1TzHNjvlwTMyk6ySs0jXoajh3WYedDF5qRstzcNukmk13HNdItoNmh7t5xkzQYv5kfPrsp+cyNZrtGrOSeXWx3BR/OyPmnLxhLhud94zxODat7ZalTGkXb+QYO5nH9N5MLHGtc/WjCcPwBoPBYHAT+FQMr/Mbcxl/wZ3qwm7dQhd7okVFK61r18JxdLHD1J4jZZrqMrLeZOnreSTBYbJq18Im+fu7uqtk1Xbbns3SfH9/P8QA9LrRSk1MVa8JRYK7LDkiKd6wxq27L0mg22WV0dImdnWMelwyP9eYOQmAk406UWReT8b23DNPz0xXC+syH1O86/7+fj0/Px8Em5W9J89EgXE6XYeNfuv7pMDktiWrYZxU193V4bkaXjcG3YcD2VpSqtF9JmbvVJX0fPV/inyf8WBw/y5+XuiaCewwDG8wGAwGN4H5wRsMBoPBTeDqpBXtW9XJ2VSBbHJTaBEqXUqpYJLFiYpOdihtw07NtX/nckpBao7xTMIL3XmdKyPJbRWc67NLoNFt1J2U3CtMLnEdlVMBLcf9/Pz83X3n+TnXl67TlVVUUkKNge405yLhvWQSCwu3dRndxWdKM+hSoovR9afjWAu8Bk72KiXSdKUmTIZK5Snu2Kk0hILh+v9ZWboffvjh8AzrNhxfks/q5M24L67nQh28TnSD632ifB9dfq7UIYU9zpRS7frTsdRAl6VQRtd1ficJ6dzvfG66cjJ+l5oNdBiGNxgMBoObwNVJK4+Pj620C4O4KX3eCb+mYs4zhehMXiFbc/JJ/NxJ4jjRa/e9S0fmOmVRUS5IkVgTi6WdZcfr1xUaF1J5BS1Yx1x1WbK27u7u1svLyzeGl5JydBlT/h1j4bnU/nn9HMOr+/Dnn39+t4/O4q50dwox63ny+2SNMyHAMbxUqtOVCSQPSSqP6NhhYkq6TT2/lNdi8pmyFTePu6SVl5eXw7V15SIp4a2W6/2nt4GJGLW8E4ZIJRhOLo7bJMF2l9DHfaSEJAUTjVIin7uO6R1PtutYOz2AnFMucYjonvlCEnvvMAxvMBgMBjeBq2N4VXyuUGuW1hdjQZRIWuvo6+e2tHy7OFIn5ePOR4/D8zrD8FLxeCctVaD17OJL9HvTsjrjv6aVxPRuPY80tiT7pWPoLK2K4TEVWsdPVs5Yoys85txJXgAnG8UmwbUPxlgUu4a8bv4lZnJGtJyWbq3De9g9E8nSd8yLjCUV1rvC8x37cF6Wz0h0nYnddELpBcYW+SxzXjh5wiRI0c2DdBw3h3hdUtz/THwxeW3cWHfsqYs3p7Hye/6vIAt1YiP6eaTFBoPBYDAQ3F2T4XJ3d/d1rfXv/91wBv8H+NflcvnCL2fuDE5g5s7gs7Bzh7jqB28wGAwGg38qxqU5GAwGg5vA/OANBoPB4CYwP3iDwWAwuAnMD95gMBgMbgLzgzcYDAaDm8D84A0Gg8HgJjA/eIPBYDC4CcwP3mAwGAxuAvODNxgMBoObwH8A7xx8d9zezGcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu0ddlZ1vmsc75b3S9JVSoJkKAgNoi2tigXCWmFCAQCCgIql3i/BUWHOrolahLReIO0o1FRkHuIgBe0QZHQTRSERhCxY8dIgFRSJFVJ1VdV+SpV9V3P6j/Wfs55z2+/79x7f/WFdDzvM8YZ++y115przrnmWut93us0z7MajUaj0fjvHXsf7A40Go1Go/HLgX7hNRqNRuNEoF94jUaj0TgR6Bdeo9FoNE4E+oXXaDQajROBfuE1Go1G40Tgul540zS9fJqmeZqmj7pRHZmm6U3TNL3pRrX3wcI0TS9ezc2LP4DnePk0Tb//A9V+Y4xpmr5qmqbf+UE47wtXayv7+5obfK69aZpela3jaZq+ZpqmtXimaZrOTNP0immafnyapvdN03RpmqZfnKbpH03T9D8m+0+r3+dpml56g/v/6YO5in/fdIPO9zmr9n7jDWrvJdM0vTLZ/mtW5/nCG3GeG4Fpmr5ymqa3TdN0cZqmt0zT9PLraOPeaZoeXY3tEz8A3ZQknfpANdz4gOLlWq7dN3+Q+3FS8VWSfkzSP/sgnf+1kv4ltv3SDT7HnqS/vPr/TZt2nqbpNkk/KOnXS/oGSV8j6UlJHy3pSyW9UdI9OOxTJX3k6v8vl/QDz7TTAf9B0ieF7x8m6XtX/Yrnee8NOt+Prc73X29Qey+R9Aot/Y34hdV5fu4GnecZYZqmPy3pb0t6taR/J+mlkr5lmqZr8zx/xw5NvU7SpQ9AF4+hX3iNxocefnGe5//7g90J4H+X9D9JetE8z/8hbP+3kr5pmqbfkRzzFZKuaHmhvmyapjvneX78RnRmnucLkg7nKGijfmGbuZumaZJ0ap7nK1ue7/F4vg8U5nl++pfjPNtgmqabJL1K0jfM8/ya1eY3TdP0Akmvnabp9fM8H2zRzkskfa6kP6dFWPrAYZ7nnf+0MIxZ0keFbW/SIuV8uqSfkfSUpP8i6Xckx3+JpLdqeaP/v5J+x+r4N2G/e1YT8K7Vvm+V9IeLvrxI0vdJer+k85L+rqSbsO/Nkv6GpLdLurz6/GpJe2GfF6/ae5mkr5f0yOrvOyXdmfTvuyRdkPS4pG+X9Pmr41+MfX+nloX61Grf75X0Edjn/tV5vkSLpPikpJ+W9FswzzP+3sQ5Tvr59yQ9sJrHByR9h6SzYZ/PlPQTkp6W9L7VXH4M2vE1/kxJP7va9z9J+s1ahKe/JulBSY9K+lZJt4RjX7jq6x+X9HVaJOunJH2/pBfiPKe1SLb3r67T/avvp5P2/oik16zO+7ik/0PShyVz8Icl/WdJF1fX8x9Juhv7zKvz/MnV2nhCywP743CNOP/fuvrtV0n656uxXZT0ztV1PnU991kyBo/5D27Y70+t1tqjqzn5cUmfiX1OSfqrkn4xzMmPSfrk1W8c4yzplatjv0bSHNr6cElXJf1vO4zlZi33zb9YradZ0h+5EfNUnO+jVud4efH7I1qeNX9C0ttW4/mM1W9/c7Xen1hd2x+S9Btw/Oes2v+NYdtPa2G9L12tvadWn5+1oa9/O5n7969++zWr718Y9v8nWp6Nn6KF2T4t6S2SfpukSdJf0HLP+7lzF853Rgubf5uW58MvadEinN7Qz89a9eWTsP1zV9s/YYvrcpMW1vqnwxx+Ivb5LZJ+RNJjqzn8eUlfe13r4DoXz8uVv/Ae1PIC+9LVIn7jauHE/T5d0oGWB9NLV229c3Xsm8J+t0v6b6vf/tDquL8l6Zqkr0z68s7VQnmJpFdqeVB+K27wH9XyMvyq1WL4ai03+9eG/V68au/tWqTWl0j6ytUi+jbMw49quWlfIem3a1ExPiC88CT90dW2b5b02ZK+WMsL7e2Sbgv73S/pHZJ+StIXrhbAf1ot1DtX+3ysFoHiP0v6xNXfxw6u1V2rhXx+tah+m6TfLekf+9yra3Vtdb1eJun3rBbVw5Kej2v8kKQ3a3kpf46WG+s9kr5R0res5uGrtEjufzMc+8LVHDwQrv3vW133n9Pxl9l3aVk3r1nN/6tW7X1X0t79q/0/SwtjeETrgtNfXx3/tav2fp8WIeonJe2H/dzev1nNwxeurtHPa/XS0qKye1DLg8zz/ytXv71NywPnCyR92moev1PSmWfysE7G/Ie1rOfDP+z3dZJ+/+paf6akv6/lnvuMsM9f1vIA/8pVX18m6a9Ieunq909Zneubwjifv/qNL7wvX+37W3cYy+9dHfMFkvYlvVvSv78R81Scb5sX3ru03FtfpOV584LVb9++6u+LV/P0z7U8Dz46HF+98H5J0v+j5Z77LC1qv4tKhLJw3EdIer2Wl4/n/hNWv1UvvEe1PHu/fHWen1pd37+j5SX3WVqEw6ckfXM4dtKiHn9C0v+6Gvef0UIcvm3DnP7ZVV9uw/Zfsdr+FVtcl9dqeZbtK3nhSXq2jgSjl0r6n1dr++uvax1c5+J5ufIX3hUsgnu1PEj/Qtj277U8JCOr+kSBqUj6i6uF8dE49zeuFucp9OUbsN9Xr879q1bfv2y134uS/S5Lunf1/cWr/fhy+/pVf6bV989Y7fcl2O9fK7zwJN2qhTF9M/b7yNV5vypsu1+LFHNX2PYbV+39Hsz1j215rV6zmodfP9jnp7U8rE+hf1ckfV1yjX9F2PayVf9+GG3+M0lvD99fuNqP194P1j+AG/pVaO+Vq+2/Fu29Cfv5Jnxe2O+apL+E/Xzezw/b5tU8xJfvF662fzKu03eivWev9nvZ9dxTW15Ljzn7S1mkFlvcKUn/l6R/Grb/oKTvGZzLLO9VyW984X31at9fucNYfkjLQ/rM6vvfWrXx0du2sePcbfPCe5/AfpL99rUwol+S9FfD9uqF97SkD0+u4Z/ccJ6/Lelisr164c0KrFMLU5+1CMxT2P4PJT0Rvpul/U6c549suh5aNDpXk+13ro790xvG+PFaXuqfjDmML7wXr7b9ilFb2/7d6LCEt83z/DZ/mef5vVpUAB8hSdM07Uv6BEn/ZA663XnRqd+Ptj5TiwT+9mmaTvlPi/T9LC1MJ+J78P0fa7nZf1No7x2Sfhzt/ZAWFRo9g2hAf7Oks5Kes/r+SVoepP80OW/EJ2lhq6/HeR/QooZ4Efb/iXmeH8N5pdUcXgdeIumn5nn+T9mP0zTdIuk3SPrueZ6vevs8z2/XIpx8Gg75uXmefzF8f+vq899gv7dK+rCVLSSC1/7fa3l42MHA8/GdOM7f2Z9/he+cr8/Qsg44/z+pRarl/L9xPm632Xb+z2tRD/71aZr+0DRNH71hf0nLPRH7lcxXhq/Rch8d/sVrN03TJ0zT9APTNL1Hyxq9okUy/pjQxk9J+tyVx+WnTNN0Zpv+3ghM0/R8Lezzu+d5vrza/G2rzy/fcOyE+dq/gV37t7j3fM7PnqbpR6dpelSL5uGSpOfr+HxWePM8zw/4yzzP92thT9d7P1d47zzPPxO++778oXn15gjbb52m6c7V98/UwqC+P3kuSotj0Q3Hap3/A0nfMc/zjw92fYsW0863TNP0u6dpet4zOe+NfuE9mmy7JOnc6v9na3m5vCfZj9vu1fIwuoK/7139/qwNx/v780N7L0jas4Gd7XEs9iDyWJ4r6bF53aidjUOSfjg598dvOu88zzzvrniWxh58d2lRazyY/PaQpLuxjQ+Ey4Ptp7RIxBHVtfd18vnYn4fwu7HpOnn+f17r83+bdr/uKVYPlc/QItW/VtLPrVzu/9joOC32i9inr9iwvyS9Y57nn45//mHlMPDDWoSsV2gRJD5Bi7o6juGvaGH/n6/FdvfIKnyA87sN/EB/wZb7f5mWZ8+/mKbpztXD95e02Py/dMNL/w/o+Hz9t+vob4W1e2Capt+iReX3Hi3X5jdrmc+3abt7ctMz8UZhl/tSOn5/3L7qU5xXC7W8P3jO/ZWHboTXUDZ24/dJ+jgtzi1eA7esfrt1mqbbpUPS9Fu1mHW+UdK7pmn62esNY/nl9tJ8RMtkPif57TlaGJhxXgs7/FNFW1zoz9Giw47fpUUv7/berkU/n+H+YnuFByXdNU3Tabz0OLbzq8+Xo3/GEzued1c8oqOXSYbHtKgM7kt+u0/jRXs9qK79z67+9/nu0/IyiH2Jv28Lz/9LtH7zx9+fMVbM98tXD+xfp+WF8/emabp/nud/XRz2uVo0B8bbn2E3PlvLA+x3zfNsIcFMPvb1spYX82unabpv1Y+v0/Ig/L07nvNHtNgIP1eL6nQT/FKv5uTTVIdCfJ+O1oq0mBluFOZk2+/Sour84nmer3njNE2jF8GHEs5ruS9eUvw+Epb9PPs4HfcctfbtLYNjP1bLOv355Lc3anluf5gkzYvX7+dN03Rai8DxFyX982mafjW0TRvxy/rCm+f52jRNPyXpC6dpepVVW9M0/WYtuu34wvtBLQb1d67e8pvwRTp+s32JlpvwJ0N7X6DF2+mteub4CS3s5Qt0XI35Jdjvx7W81D5qnudv043BJS3sZBv8kKRXTtP06+Z5/s/8cZ7nJ6dp+o+SftfqmlyTDpnCJ2tx3LmR4LX/FC0L+ydWv/+71eeXaPEiNPwQftOO53ujlnXwEfM8v/G6eryOS1q8y1Ks2N7PTtP0Z7Qwkl+j4uE+z/Obs+3PADevPg+FsGma/gctD4r7iz48JOkbp2n6XC191TzPV6dpOtBgnOH4B6Zp+g5Jf2yapjfMx8MS3IfPn+f5+6Zp+k2SfrUWr+HvxW7ntLCpr1Bxned5ttf0Lxdu1qLGPHwZTtP0Mq1rGm40Lkk6PU3TfnzRfgDwg1o8U/fnef7JTTsDb9LybPu9Ov7C+1ItTkj/cXDs39fioR3xSVrsgn9Ci+3xGFbE4semaXq1lhf0x+iIiW6FD0Yc3l/W8hD+vmma/oEWl/lX60hlZbxOizfjj07T9DotjO4WLTfLp87z/HnY/7Onafpbq7Z/0+o83x5siq/XQqP/z2mavlaLZ9AZSb9Si+PF58/z/NS2g5jn+Y3TNP2YpH8wTdOztag4vlirB0bY78I0TX9O0t+dpukeLQ++92lhXZ+mxeniu7Y97wpvkfTHp2n6Yi0s6Il5nivVzuu0eAv+8LRk43izFtXy50n6o/M8P6FFYvoBLXr8v6fF0ebVq35+7Y5924TbdPzav1bL3H27JM3z/F+maXqDpFetbAk/ruVG+IuS3rDrC2Ke51+YpulvSPr6aZo+RkuYwUUtrvSfIemb5nn+kR3H8BZJnzpN0+doWbePaJFW/46k79Yite5rYfVXtR3ruVF4oxa73Xeu7pvnabmW74w7TdP0/VoeSD+jRV30G7TMx9eH3d6ixc73xtU+75rnOVN9S4tw+tGSfmSapm/QolZ9Usv99aWSfq0WdvYVWgSQvzHP8zvZyDRN/1LSF0zT9Cd2uR8/gPhBSX9Q0j9crcuP0+LNyOfVjcZbtKh9/+w0TT8i6Uplh3+G+AEtQsb3T9P0dVpU8ntanNZeKumPzfOcsrx5np+apuk1WuzW79VR4PkXa3EOOrTVT9P03ZJ++zzPd66O/QUd1+BomqZbV//+zMqvQ9M0fZEW4fdfaiFEt2vxIn1s1dfdcD2eLhrE4SX73q8QHrDa9ru1vMA2xeHdpeWB/XYtuuf3agkF+KqkLy/S4rr6fi1qrywO75wWF3fHAD6qxXj/Kh15fb541d6nF2N+Ydh2j6Q3aJFyHIf3ecrj8D5bi+rnghbX4LdpCVP4WMzVdyZzeMxbTot671+tzrvmqZgcf68W76wHV/P4gBYngVEc3r9QEYeHbS9UEhu2mtND70Gtx+E9vJqHH5D0kTj2jBbHjHdoYSrvUB2Hx/P6+nH+v0yLFPrkao38Vy0P9w8L+8ySvqYY38vDtl+tZR0+tfrtW1dz/G1aQiye0rK2/q2Wm/wZe5eNxpzs5/vroha72Bdpcfr5+bDPn9ei/Xh0dc3/m6S/pOOeui/SImlf0iAOD9ftK1fr6MJqrf2iFtvLx69+Py/p3wz6bq/BL71R87Zqd6s4vOK3P79agw76/lQtD9vvD/uUcXjFuYZu9Vp8Hb5pte+BtojDw/G3rvb7X7D9Favt94Vtp7QEff+X1Zp5fHXdX6sQSzvo65/S8vJyrPTvT/b5Jx7DoJ3MS/PXro59x6pv79Hy8iu9zkd/drH/kMW05G37Fi3us5k+uPH/A0zT9EItgssfmuf5huQvbDQajV3Q1RIajUajcSLQL7xGo9FonAh8yKs0G41Go9HYBs3wGo1Go3Ei0C+8RqPRaJwI9Auv0Wg0GicCOwWe7+/vz6dPnz787pR3e3t7a9v29/fTffx9uxy5x5HZG71tky1ydGyFUR936T/33ebYbY8ZjWGXPlbtePvBwcFam76m8dpeuHBBTz/99NqJ77jjjvnee+89bMef29iQb9Q+HwjwvNezrokb0cYu7Wfn4306um+re5uf2XMibnvggQd0/vz5tRPcdttt8z333KOrV5f82NeuLYlHvIaqbaO+ZX14Js8mY5d1eD3n8THVuhudf9M9vs2+zwTZs5rn4XPm1Kn1V5TfLb5up06d0sMPP6wLFy5snNCdXnhnzpzRC1/4wsMTnTlzZq1Tt966BMvfdtttx37zvn5hZovf4EORD8e4qP2/F3w1gRGc+OriemJjf3mTxHHE32Ob8cJk+3K/bJ/qZnQf4/mqm56f2cLzsezLE088sdb2Lbcs6Rl9zU+dOqXXv/71a2OQpHvvvVeve93r9P73v1+SdPny5bU+VA+t0cuR/a72HT0Qsofvtufl5zYvD27neUb3hn/L1rUR1+0254/7e41yzfq+9b5R8PW9ffPNNx/77k8f43US9z137iiH8otf/OJ0PPfcc49e85rX6Pz5Je2p16LXkiQ9/vhSKP3SpUvHxuZzZs8qb3Mf/L16AcY55/X2MXwObSOQ8gGeHUMCwfazY7mu3DcKDhF8no6evdV4CLfle97nz9p98sknjx377Gc/W5J09uxRulm+Y+6880698pWvLPsV0SrNRqPRaJwI7MTwpmk6lIKkI6kjvn1vumnJNUuJakTfK0mkkt6jZLKLBEJkjCr2Nf5OCatSh2T9uB6VSSUhVhJl1ldKaZQCM/Ukx+nrZ6ns6aefLvu6t7c3VL1mEnLGMjlP27Coba7DpmMrFp9pFKo+b7MOq3XHNuP/vDd4vtgmJXdqAUbMxdfZ153ny47xPhUryObc7Ud2Wa2dg4MDXblyZa3dyBTIWshyM/BaVVqikUbkRpg2RpqeiiFuYu2xnU3P04hN2rURg+Va5Pmz53c152aDkcUbfrd4rNeuXdtaBdsMr9FoNBonAtfF8K5cuXL4XTpiddK6PrxCpmuuJEX+7vPHdiqpcmSs5veRpFUxvEqSjFJMdezI3pjp1yN43tjXikFYCs7sjxwPJXDbXKJUbXgcm6Tqq1evHh7vz20kZDKt7FpyLqs+xWMpkVbXJ5OEaQ/hvnGN8ty7MP5NTHUbtptpAbJzxPNUTGk0J5VWImNI7PeZM2eG83D16tW154JZQOyvt/n5wzWfrR2y1mqesu0+ZrTOjOr+2MbOt8nGnp3X+3oOvCb5nI3n974V6+V6j+D9yeue2Q55jOfI2y9eXModxveJ7bTxWdIMr9FoNBqNgH7hNRqNRuNEYOcCsNExwc4q0WnFKk27LZtGjwz1lcqSKk2qw+IxlSt+hkoduE3MThWWsI3bO+l7ZTSPv1VOEVQrj8bDPlJtGfepVMJ0Nc/aG8FOK1Y5Zf1ne7u4Qldq6kptmf3GY41tnFYyVa9ROZpsClPIzlO5w49CGYhsLnjsphCG7NhqXKO5N06dOjV0eIoqTTtORZUmVXFUn2Uu8Qy9qEwPVdjKNmPOzCIGQz1G13K0JmM/Ijx2qwCpyqSKU1qfN6rmt1HzV33MwLFznFZpxneM/3cIw9mzZ1ul2Wg0Go1GxM4M79q1a2uB59FpJb6JpfWwhFFAZmXcJKvZJsPCLg4hDLbNpA0aizc5HGQB1ZT0K2k0/rZJcsmkT4YYMKCW/cjaY1tkepvaISyl+xpmjIj9Zp+yOa+uR8XaRoy4kkiz82UONNI4C8gmZ5iMKW8KS8k0C5tYR5UFKW6rWE92jdiXyu19FJ6wyXEnrh1L9tFlnZoDn9tB6iMthPvPpBibHERGbWXz5LEymN+fWagGn01VwoNRyBbnxp/cHo/nb9X5MtZere9sTugUx3VmdhoD0v2+yd4Hm9AMr9FoNBonAjszvHmeD9++fitHVldJ52QXmdt9FbBIqTlKJJU0Sck0Mgr/Rtd4SlMjO0XFbvh77C9ZDffNJC2OkzrvzKZCCdLXZxu7TyWh+jOmgrJ+fWS/jGO9dOnS2lyMpOdKqh0x0+sJ8q+u4QibgnozSZvModJ2ZAH6nCeu1W36Wm3fhcFkbvi0hTGFHu1rGTYxvCtXruipp56SdMTa/F1aZyQVIx3ZEXdheJtYhecgPht5P/qTzC5qUbwPn6vbrDuGI5gt+dP3r7/HY7jvyEbNPlXMjkw2jtXHeB+mHnRfpSMbrp9FzfAajUaj0QCuy0vTb1amEfPv8XMbSZu2LL/l/d1ve39mUkwVmOnvUarY5GlJFhXbrzwTR+nPRslaszFE0F5KKZpesfF//rZNgHP1Pba/bRsRBwcHunTp0qHEmF0XnqOyOWb2UaPyZsvY4ab0UFli7mrfbWyulf1jlHqp8jLdZlw+hmya6cNinysPX1+bTJp2O5TSeY9EluB14GfINtoB2+wuXLgg6XiaO7MYMwEG23OuszFmmflj37LrwvNwXUf/Bv+fJV2Pn/Fa+r6v7k/6PWQe7H5uer78aYYc2RPtft6nSl6wi0cxGW7sr9vxeHlPxLXkteM+Xrp0aWuW1wyv0Wg0GicCO6cWO3Xq1JoOOtp16BG4rRQl1d6YlKYyKYYxJdvE7hGUQEaeXWSJPE9m46DkTakmi0kjw+Oc33777ce2x3N7G6+BJaNRLA3n032PEiuPGaVDs5ROiW6X1FhZ3BDHUsUtVn2K5+P5Wd4m6y/XWdbmpgS8nLfM/pdpHaR1z7u4D9cv7bHb2E8rphfXG5mD+3z33XeX47KU7n7HZwhx7do1PfHEE2u2u8yuYxZY3Vsjr8lNNvasrI3BdZHZLekdyXsqK51Ge7xRraHYR66NKqXYKAG0/TS4pui9GfvoueA+mae3QS0Y5zPGXHKdXbp0qePwGo1Go9GI2JnhnTt3bk0iidKZJQLD+3h7pt+nl2QVA5RltbCkaKmPkmOUAnhMZVsjS419MCodemZnZP/JvIyMKXtfz7nn0Z+WorOyTbSfMiFrtIF4W9SLx89M8nIffOwmPfo8z2sSaew32T89OjNv1+p6V4wvniPziovtj+y/VQaPzLOPki61ASP7L20n1CgYkQFUCcA3lbiKfay8gX3Ns4TDFXu3FiKuD//mtXPTTTeVUvrBwYHe//73HzI8z3mMzTKzY2YOz4H7HYvQVvehwbnPNAtkTf7M7gmufd9/lV02nptrlG1lCbXpnen5oh19pP3iM95zlnltMq6wiqfOMhfxfuK9F/vldfCsZz3rcN9meI1Go9FoBPQLr9FoNBonAjupNB2SYLWAVRV2s43/m9bedtttktaD1CNFpwqRAYrcnqkWrNIkbfdnVN/xGDocZM4qDFLfFBSfqXyMKmwgqoP9/x133CFpfa6pYsiSOldBqQw8jXPhz8cee0zS0bxlKhoGjUa1MeHk0TSKZ+pCupgzWfA2advoCp2pZKu0TXTXzyprV2rWzBmncqiqnLPiHHPdMVSCfY/7MAibqs5RWjo6y7j90TX2vr5eDh9wm9HhiSrtm266qVSJ22nF97ZVWvGersIBrPL3cyjeJ97Hn3T2oot8dAzydaEpxWvWv8c+csyVKjNLOF2pXUehNVRZUj3qe8PPlrgPw578zPfnyCmschjkfS2tm5d8rNdOVjeTc92B541Go9FoADsxvP39fd16662Hb326xkvSXXfdJelIEvA+llQsVWROFpQuqiTVUaqw1O/z2XhtycrSYHSjtoRgtkTHhyxMgK6wZE1VheDYjtun9MSAVOmI4d15552SjiRVuglnjhWUlja57kvrLNPtWdKyNBUdBXjs/v7+MJn2lStXho4AZpVkRJVjCMcQUYXHjEowkWGNjPqjkjFxDLGdSqKvHBAiKhf6jClXknwVbjMy+FOSz1h2Vd7Ga8b3ZJY0OGpiqn5cu3ZNjz/++Bqzi9eS69YODbxv4nPHzy3fY74P/d2fnoP3ve99h8f6PuD94b75+rjPcR9qrOhQlYUnVQkWuLai85LXoJ8rZLB0iIv7+tlkDZOfr/5Op6PYR2qFqD2KSb/5nGbFev4exxW1ee200mg0Go1GwDMKS/Bb36xOOpKsNpX9iJKBQZsQA6Uzl39uYwAq7XQR1JnTTTmGCXg8VRAnJbEocWxKppqVp2F4gMdDG+Eo9Q7tLpQGM9sUC/Z6DrIgbM91dFkf2RquXLmy1v9o4/A2n4uhHkZcUyxHVQXVZinu/L/HSBtnZlOpArG9PjK7QpWkmdchu5ZViAEZS1yrnEfbr9gGWVvcVqU/y9LgVUyZ7cdkz2YSvv6j9FAHBwd66qmn1q5LHLOfQd523333HRu7t/u7JN1zzz3HjjV78T5meJ7H+MxiiSKyGn9//PHHD4/hdWaKLz9Xo52UDLtK8ZatMe/j8ZjRUgsXfQfon0FNneeI5Zfi+DwnDB/xvmbFcV/P06OPPnpsX6+7GE7iY9zuk08+OUx6EdEMr9FoNBonAjszvNOnTx++7S0ZRNsTU+DQtpV5MXIfepVZcqAHVDyGnmn0ECJLiKiCbaO0ZOmL9jiDDDALOK2SxPoz9pG2uSpNlKXBLLkzz0vWGPuYza20rufPJHsfu4nhPf3004fXy1Jt3N9SHK8dU42NgtU9L2QoWUo72vW2SQDNvpBIrTq9AAAgAElEQVThZd6gVTAvg8izlG8M5mWZpqzkivehTcrgWo2oihQzxVWWUsrwOLjeI0Pys8Nr8YknnigZ3jzPunbt2loQeVZGx2zGzyR/99qKc2FtlD+ZHIOsNt6DLLnl9sneIqOsvJDf8573HDsmS5LBtU8P4syD3cdwbjxes7WoJaFXuMfM52xWtofaNq4dthnPzfuHGq0IJiu/cOFCJ49uNBqNRiNi5zi8s2fPHkpJlhiihFCVhKi8iuL/lpIsnVHapJ3JfZLWC0BSuogSAG0BRJbOhhIdx0tPwngspXLaDLPktdzX7dN2ZAkrS4pLVsBkslnhR9poyE6ivp/XY8SMrl27pieffPLwOpjhRe2AQabjT5ZTif9Teq48FbMYS0rLGUs3aMtkHFzmCWlptUo/xc+4xqoiuFWMXUS0mcW+s3BmFptIrQfXQ2YzIbseraXMrjyyw+zt7a2NPY6Zzx2mjbO3phmMdHStbAvyuuP88N6L53MbXpv0ms28tfnd8/Tud79bUm4rZDJsrhV6V8a++RjvQy/0OC4ySMY3k4Xa5iatxxfzmew+x+d35TFaaffitsgym+E1Go1GoxFwXTY8JpTNMkMwYS0T10b4rW6piF49bp8ePdKRVEHbHSXiyCR8PrIyI7OlVJlcyEKMOE5mn/F3syXGm8U+WYJi/BolsSjtWtqkd97I9urj6WFFm1WWLaOax4h5nnXx4sW16xOlPbZDiTsrqkn7p68LGbnHEc9H5s14ISbBjf12X1iY121F9szYxYrhuW+RRZO5bpNphczNXnHWzFBqjszKDIhsl0w8k7irbDNZ8VAy1KtXr24s5eTr4Xi4aDtk/Ba9DX0vZOuXWhJ6Yj/00EOSjrNDw9fb4+B54tohK/Matdek41Az8N6i9272HGCcL+292TOZzzPOiZ+958+fl3T8meX1RS0HmfsoCxU1FZ6zhx9+eO2Y6HnbcXiNRqPRaATsxPCYDzGzV1G6q7IIZDYHs5n777//WPvPec5zJEnvfe97JR2XhFhGx+0zM0qULhmbw5jAzKvMzIfsoyrqGaVPev/Ry+yRRx6RlHskmeWSVTOfXJYVxn148MEHJR1Jvffee6+ko3mVjmwcPo9ZCSWn2MdR1hTC2gFKZ1mOPII2yWjDo+Tp+WC2niwTha8hs0a8613vknTkzRYzCZHJc34yrQfXelVoNBsfPSDJWDPvXLZL7zkfayYb42gp2ZvduA16NErrmhja3lkGJ+4bbayjLD0XL15cY8Rxnqi9MNvw2HjPR/jZ4XYZx2h2G1ku++pj6T0bvTTdntd5pQXLCsAylpFrKsupy1yhtN0xxpbnjueh3wOvbTzPm9/85mPt+nlTxaNmYCxufO7QnnjLLbd0HF6j0Wg0GhH9wms0Go3GicBOKk2DKqAsUS4NokwaHY+xOuqBBx6QdKRGsfqEKh+r36QjKk8VJg31mQqVbsF0247Uu1JlMvyBapF4HhqLSc0zo76Nw+7bc5/7XEnrRvGoQmPCV6uAbfhlIm/paE7pUky1dVTH0cljk+NBHGuW6qtKHk41VFbqySoXf7djA9U5WZLlKi2cx5WlmGMgO6vJR0cVqvnpMl+VD4r951xwTqJKh6nqGCbAZOzxGnj+mGbP48kcnjwXvAc9Ts9JVO9tKnvDsb3//e8fJqP2fW71s9OGuZ9ZqScG0bv/VKfFtFYGkyJ4frjvKA0iEw9k5XP8bKSTHB2qGIISx85nBFXP8TnAcACWV/M4MxViTCKQgQ6G8Ty+pn5us49Z0nfP9bYOK1IzvEaj0WicEOzM8A4ODtYkkihdMIh6E7uRjqRxb7N0ycBPv9Hj257JVM1i6IiSBamSpVlCyRjeKB1TbD9zIqBkxcKYlpqj9Om54Hy5z3QBjv1y/2P4RhxDJhHRgcPn9XYmipbWpa8Rwzs4ONClS5eOlQaRjruJM0wjS97stjhWM1SvJY+DDgJZkDXTGLHIZXSm4XrzbywWGu8JlioyyGizNUYHAwbQe81kqdPYhvvKZMVxzVahGWSW0dHB/WXZnqqkjbS+Bq9du1aunWmatL+/f3hPZ0nk2RdrRuj0FZkpWSydy8gAs/RtZO8jlsNk7h4HNWUZmyGzMxiWEhMz+xnh9W2Nme+REUtj2BDXqK91TDriNeHzeFxkqfE5x1RsnjcmA8jCYEbJJCo0w2s0Go3GicDOgeenTp1ae+tmSVwpxdAlN0uQy+Sibt9u+1kiZdoTLZnYHTlLCUaJlMHymas/SxRVYQlGHB8DtCvbVJZU1dISyx3ZLpe593sfS0ss9WEpNx7D4FumgiMDlNYDmDcFDscgVf8fJW7PC5mCx+7+Z1JllaiYqeUiW6P9z2B6oyxtG+eJQczZ+mafGRaTpcHj/UMGzusTz8fgeMPrg6WV4rFMf0e3/7gOaJNkonj/nrmwV4kbIlyWrGLEsb8ObWIQv/eNNjavvYzpxjaz1H9VmjCm2YttstSP708zILOzUXIEXw/a1DO2Zpbk9eVnBu1/8b71/DAZNX0V3I8s2QS1DV6bWXkgrl//xqLcmdZjFJJToRleo9FoNE4EdrbhnTp1ak2yjxKw38Qsx0Mvovh2tkRgL65KevZbP5NmaOvwJxOmSuvealUanSi9kNFVSaQzfXKWpDeOO9qxDHqf0uOKhW3jeRmUXEmw0Z5GOwXtDZn+3chK4mSY53nNOzPzYqNXIT3GshJFVSB2lYA8/sa1yvUXbW9kvgzMzTxuK1ZGBpZdS9qVaBunN1vsi+8BnpfJsaP0XJWwYhB7lh6K9nqyg8jwaFvdlPx3nue15AtZELkZAjUxvp8yLQS9FVkKi17D0rpdlmm0uIZjX3zfmXHR3hhReS5zvjJbLjUk2bNQOu5P4WPMjDmurMC1UaV3ZN8zb3Qey9RzmSdp1GRsevYYzfAajUajcSKwc3mgc+fOrb2NszIzlMZpV4ishrYSxgdtU7aFtgZ6tWVMovqeSTH0zqskn0zSYPFEf2dBy2hToW7bbJq20VFKHZZmMjIGy1gk2rwsJWa2Kc5JBtt/jSz+qrJxMnVZ1BZQEqzSnGWeg5xjstcsdo/t+Rgyi7i+qRWomH7mDUgmTAY76huL7NKzc+S5yu9M4B2vH9lMlTIrS+sWkyBXNmCnFmPcZNYHXmeuzZE9lgmZeb2ykmYGtQVZcnRfD68VMzszLH9mzxAyYT5vsmMYT+p7mJqtTDtALQHvBT+zslSDnHPag6MdleuJ92J2jBHTqTXDazQajUYjYGcbXvS2s8QWGRKlMIN2pPi739SM+aG0mb3Fq+TUtHnEOA5mbGDR0Ow81DXT3kTPtMjW6MFlWKKjBB7HY0nKc8JxZZlWGGfIWJ7Ms5SMhUVizfyyMjTZuTPs7++vMbtsrpkQnOsgY2m8DqN4QPaVWgjaZzKPW3oH2/6SsUJqN2jzov0xs4kbnAuWi4rtk+3wWmb2EfaJ9sWsj7znaJvM+rhNhhWOk8V3M5CtcX3Ea0mbUlZqqTo2yzwkrT8non2Ma8XPH++TFbZlUugqK0/mNUnWSe1N9mz0c8Z9YuJ2ruUsIXhWXi2OIdNKeZvtjF6rLKkWzxmvWzO8RqPRaDQC+oXXaDQajROBnevhXblyZU3NkqWb4m80TkYX5colmUbPTBVH5woGAFONE3+rHB4YFBvbpepyk/owtu+++DxM8RPVH+4D1XpUu3J+s75ULr/ZPFId5nlz3zMVBqtwZ3A9PFZqzxyDqnR0WaqxShW7yc09tktVJl3+Y1ts19eM9d2i+i5z9Ijf6TySqfurMJgsHIbB41wjVMNlaj6u4yocIh5D1aa/Z6rIzDlmpJba29tbU+/R2SyCzwEfE58Ddh6hCp3OU1UoQBwrnfUYFhH/t0qTz6ZsnbhPrCJu0LSRhewYfN5lz9NKdc21NFIr81k5CpJnvVKqULPUiUzQ0KnFGo1Go9EArqs8UOWSL627UVNCyIJrKQ1VpUOy8imURJk2jOnD4jE0vJJ9ZGWPqorX/MwS5VbBoiyJEeeAjjyUckfG/8rBJXN0MSgZc/6ywNbMvZ1wWILHwfRhse2qnVFJocxVPdsef6e0WlWvz66l14YdD8jEM0cQzjfHkzlN0WmEyJKZjwLn2Teer2pj5BRElsl7IUsFxrkfuZZP06S9vb01B42szAzDN+iaH/tthsV7ioy0cmaJ26pwiAiv+SzpfjxPfDZa01NpCehwF39nv1nSKNMO8TlKVmhsk5SBayZLg1edh04ymWYprq92Wmk0Go1GI2Bnhre3t5cW8jNY3JC2roy9sQTOJpflzJ2ebvRkM1GKoa2m0nVHqbqyDZG9ZW3yGAYncwzSOgNyeAITD9NeI9WMhdJ5JqUzaHkU4FoFd1eYpmmYdNZtV2mgaNsbnXMTm4qglEy7QuwH3c39G1lCZFEMhuf6rmxrcV/avJjSLPaRdr9R2Z0K1byOUuixrFfl9p+N4+zZs0OGd+rUqUOtg9d+TEJMGy7TjmVam6o8WJUgPAOfZ1Xx3dhH3lu0z2XJ0Zk0mvZsJhWI4+D5q+LVUh3+xDY2hf9Itd05W1sMI+E9E8/jbX5+3nLLLVuHuTTDazQajcaJwM4Mz/p0KZfYKFlTEs2kpurtTBtKJqWRyVUSUJRUKIkaTKuTSRVsn3pqMttsHPRaYsHRuA9L/VCnnwU6V0H4RmVTivvSPpdJ9Nz34OBgYxFP9jd6zXGeqKvP+lCtnZEtxeBvPF+2n212TErsT16frK9VouvMZlglJ+b2mN7P+2wK1M7GO0ruzX3ZR2oDOJ7YD5YUGjEF7+859dxHFkdGVaVzi9eSxU15T3OOM/sYwWPjc4ee5L7+TC4R02hRc8B1TVtlZhOvguP9bMmuC23S1HBlz2L2jdd9lDiEbdCTPNNgxfJOzfAajUaj0QjYuQCsJXUp1wEz4XNlH8ve2JvsBmRz8ZiRflgaJ65l33aRRJhGJ/NEqmwCZBgZS6NUa4ZBD6vMA46MovJKjNsooVY69Xh89PocSep7e3triaGzIo5MXUfvssxr0qg8H40Rq+XnKC0dC6Ka2WWMm+fk9RgxSl7n7P6J45XWY8FoI6q8hrM+ct1nzIXswwyFnsZZrGDGhImoVYp9iLauak4ZRxjjI6tCtWQ5o9R/ZLO8x+M8uS9mJv70GnJ5tJhGK3vGxnGweHFcS7RBW5viubfWKLI0+mVQS8Dn6yhVH5/XIxZWlRbKxu8+3X333ZI2lyWLaIbXaDQajROBnTOtXLt2bc0zcGRzqOKH4vZqn8xGxP2pU64KZmZSM7O+jDI3VPEvlrDI8OL+lv5ZuNLfzRoyaZe2OpYFyrwPszIzEaN4IrJPMr2MXce+jBjetWvX1hh5JnFzPZDpjeIwK5vTqGzTJmYXpWhfO19TfmbxUpxDStG0dWQevowVZeaTrD1KzVUsVwRt31UcYzwvmSQ1Ghky1ldhb29Pt9566yEjGbHCyo6YsVkyuszWGI/NCvNWNlYjzpMZHLUDd955pyTp9ttvXxsfCwozETftj5nWhiXZmAh+G49yo4rpjfvy/q3sqfG3ysudGVeko3liIdtt0Ayv0Wg0GicC/cJrNBqNxonAddXDy4y4Bh0/aNDO3MUrdRTp7UhdlrnJxjaj+7upvak3EyRn1aWrOnGVWixzIqAR3MZ9jz86R1QqJapORsHKNBZXiafjb1RXV2mCsrFvcg2epmlN5RyPoSqMDkGZezP7RaP3SKXFfZhWjao66UgdVak2eY2zPtDlf6SeHqVGi21GtSvP53FUbWX3MdfIKHkwj+exo9CWUUIAY29vTzfddNPhnGcOKNU6qMwXWb/o5MFxZGYRg+f1OrjrrrvKMd9xxx2SpGc/+9mSjtZUVCNWTnh0CBqFi9BBrAqHif9XtTN5veJ1q1LL8Vpkicd97zOoPDPPeG59n952222dWqzRaDQajYidnVYODg7WXEWj1EnDfCUpZkHdm5Ls8hzxf0r2dDnOKkL708ZwpyrKJEhvY/Vg9jFjFAxKZgmOzAhPJrwp7CIyPUqfm4J6Y/8JSmvxWnMcmwLPT58+vRbUn0l7nJcqcfdoHJV786gkUlVqJa4DMjsGDWdp0bIk61nfsmS+WZJl7lPNQRUGM0qdVrE+9iNzE6cLO+/5bI3FZ0i1Bvf29nTu3LlDN3SX1Ypr0fNP7Ub1HJKOM/e4TxXSkJULY7o798OOFf6MffGx/o3p9iLDY9hBlcg6e3ZyPfO6mGFmznq8Fkx1yPHHdg06nmShGpUmqQrlyfp2+vTpZniNRqPRaETszPAuX768VgIls8NUTGQbnf2mNF7sU/adkmgWeO7UOu9+97slSQ899NCxNiy9x23WG/uzShMVpSbq7OkmnrnZVimRRomGeexIsq5QpVcyspAAYySlOwFwZfuI7dFlfZtyVJQUq/GMEo/TDsPCsNJ6KjEG/ke2a7j/TM9EmweTmkdUts+MeW9K2syg6cweR3ZWFQSN7fB8I+3ANoVEY/unT59eC+uJ689zSzYxsnFtKiDKezCzI9GG66BxrhNpvTwQ0xD691gImsHiVbo42p9jf82IOSfZs5HX2+fzuOj3EDVdtBVXWresVFuVjDrTKHD9OiHKNmiG12g0Go0TgZ29NK9du3YokWT2CkoIlLBHCWsJekttkyCU5XN8TCy26PRcZnQPPvigJOnRRx89dl7vF8GCqJVHWlY81jBztOSVSbv09qs8FrOyRWSDlFBHUjrnvPJkjGCi6QojBhj7XSV+zhjrpiDhbUoiVd+3SZjt+ff1yaRmsvHKrp2tc7djW47tzbT7ZMy1sofQWzS7JpvswKNjaNvPmCTX5ujenqZJ586dO7ynWXIstkPbJvuSsUwyHt6PPm9M+RUTF0vrQdCZRyJZGK8LPcDjMZUHpMftY2LJJPeNXuDe7nHFvlNDxrJkI+0HGSwTH2Rao+p+5bqI56FWZRstgdEMr9FoNBonAjszvFOnTpVeZ9I6g9skRcdjuM/IThX7I60zO6fx8e+PP/744TGWgszg6JWZsZkqvqtKthqlGBbkpOTL1D/SkWTFFG2W0mh3GvW1sqlEVMwrk1SNLKHtyIa3v7+/xmpiu5vSQY1SolXxgiPvr6qkVJXSLh7DY+kVGFF5f3IOshhOziel5iydk/9n2juyqFHB3qpY7YgpVet7lFKq8syOmKZJZ86cWdMoZVoUMi3GnmW2IHrYVs+UeH/ynmbMo9lOZB/WMvk3f2dcZnb9o20u9pG+BXFOqBWybZCpzSJz5VwY3tdteS6yotXuC++JLB1Z5SFNjUm8bmR9o+cO0Qyv0Wg0GicCO5cHOn369Jqkuo3HpZHZ8KosCdn5pbwkPeOiLLUwfkk6knwtiTjjCSWTaPdjImF/p1RmSTIWp7QXpjMq3HfffZKOsjDce++9ko5YaWyHpT08Hvctk4wraXnEJIzKwy+T0rnPpkKMXj9SXT4q20YGFvtAhmvJsGJrmXRZrVF680rrdgPa7FhqJrZXeYNWCY+zcdE+Qsk/trNN+SH+znuRDL9ifvG8m2zyVV+qGM69vT2dPXv2cK7JriL4G4+J14Vsxs8Q2qfI/GJfqXlhIvospo5e2lU8YOwLM0bxumRlo2zvJfurnmHxf4/d53OfWJA2erL7/01zkZUjYizgKA4vy/rTDK/RaDQajYCdGV604Y1sQZWXV2afqd7OtBFlhR/N5MzSqLNnMUfpSBJ51rOeJelIt03bR/R4sg3Q25iVhXpx90daZ3Jmet7Hn5EVGu4LbQX0fIrXYpPtM/PSZE47zv02Hn2jjAdmd4zTzDy2KhaRscLKE5FMiJ/xf3qmca6ZVSceS+k1sxXRlkFGSY/PiKr8VRXTx3Nn46lKP2X7Mh/rKOtNluu0QqZJGK2dM2fOrLGdbeLH6ImZZc0hw6vi1TKPS193Ft21ViA+Q8x8fC1532de75yTytaV2TWp3ao8e+P6Zv5NerlWGo7Y18qmm3lZ037J65g9C/iM2sZ7/3B8W+/ZaDQajcaHMPqF12g0Go0TgZ3DEqR1apoFnhuV23FU6/CYSjWSpethuRaqHzI1qFN8Pe95zzt2HqqnbPSVpPPnz0s6Ck63qoJpyOg8E89n1aadU2hYjyoaGqErF98s1KAKJajSRMU+jFJkxT7Hc0ZV5KZE1aO1k6ln3a6UB9m7Pe/Dsk0jl+jKWWRUodzHO6TFKnWfl9Xss75UoRR0I4+o0oON0sfRaaW6BzMnoEoNmqk0qSKv7ues/zEUaKTSPHv27OHcZiYVrl+3y7UeVZo0f1Alx+D4eH8y4JsYOZN5DdmUEsMdYtuxD0a1rrPUeVTnGqOwL65Fq2GrBBtZEnNWKacjVzzG/c3ShWXni/9HVe22as1meI1Go9E4Edg5eXSUCjJHhk3SRMY+mKaLoCE1sjUm3CVLyEpfWKK65557JOmw7Ailp8jw/D+dV5jw2JJKZHg2TjNNj5G5zFOCIxtkG3HuqlQ+NDyPXH0ZPsAAeJ4zni+DHQ8oMUZUiWQz6ZVjZZA45y9L22RUqYmY3Df+z/U1SkdHKZhS9Ch0gm1wfY0M95XjmM+bMbyqeHDlVBBROTbRKSj+T+eEDC4Aa83IKIFCVah2FHhOpkd2mGmpqiB7PqsyDYYdWnwd/CzxMdnzdMR+K3AuuG/Gzsi0DN5Hvo+ze4drZaSF4LWsktdniQ4iw+uwhEaj0Wg0Aq7LhkeJO9Ol035QJZOW8gKLcd9Mh85jq0BjSySZ+6wDwn2MJUj3I4YWOISBackqSST2lZIjpWim5Int+7NKpJ3p6SmRsk9ZyZTKflElc5XWi2uOpCyHtHgOMqZFG0eVMHcb2wPdtslq4lgqKT1jtWSUTN/FJLuxXd4bDEMY2ShpGxwlEeC2alxVku7sPGw728YUdqN1sclWTEzTtJbOKl5LXocsdIGo2GCWHpDwPmQ8FUuM7VXagThWg2EnVWq+rGwYx1fZz7NivtQgcD1kNvFNbH1k3x+FWfG7NXy+J7oAbKPRaDQawM6B5/v7+2XiXO8j1XrjTP++qVBgZZfJsCkJafyNTMgsztJNlM4sXbode+dVjDIrbFqlhcqCVG0z9G9VsPIo+J8FesnwtvEGzIp3GiwTNYLXDm1Ro2vJMWfaAbKUKm1XNo4qiJa2zsjELAEzDZ097hhcHPchG6+k9cxLL7NBZeMetUdGm7G4yj42KgFVJYmu7FzSOovaJj0UPa4zm3dl96XNO+t/pYlxG9GbclPppey8nBcmK8g8Ej0e9olaIrcZ16qPZTowerJn2igyPKO6V+L/VXKEjBXyeVlpsrJncUwu0Ayv0Wg0Go2AnW148U2apWuihFh5/URUZVIoLTHpadyX+1SFOaX19GD2vLTXppM7x7IZ9AalXYZ6+WijYsoyJqLObHhmDEzASuacMekqVobplrJUVps8JbOSLFWsJZExvIjKZkJpOkqItOuR8Y3swFlSYPczfsaUb2RcTAic2SarEihkFJTI4/9MD1XFvEWQpVXMLs5ndU15bTOPy4rhcSzZMZtKS+3t7R1LUi4dX4u0S1HjQnYTQUZPzUiWKJnMy/Z+aqXi3Hof2+V9T9O2x7FL68y6KjGWzQnj4jj38Z7gOvN3rovsnq9KPlUFYeMxvF95TeLcZ/bsTfG/RjO8RqPRaJwI7MzwDg4O1t7gWfFRekeNPLY2FZmkPc7sRzpiRSyBQW+9KAFYannf+94n6YjhPfzww5KOsqnceeedh8dYqmBRSPfR57P0FkvKkK1VfY3sgMyBdiB/moXG+a6YHdl2ZiugvbGyicV2Yp+38bbLzpehsiNl2ypJkXORsSfaNDg/cX0yMwSzSZDxx9845ipWLNp9zGaYSajKTMFzR1TbM69A2oToMZslAOb3ah3GbZGpjBje6dOn1543kXn7OvgeI/NnkeeI6rrQZhjLd9FuzedNxmao0aGXZvasIrOrPK8z5mpwHGRPWUJtPjOoOeHzLhtPVRYo037xWGoj4rX2PeF9q2w3GZrhNRqNRuNEoF94jUaj0TgR2Dm12KYK26amVfBmFsBcuVFXAZMxXZjd962GpNNKdj66llvF8Mgjj0iSHnvsMUlHdeukI6Op1QI2QDOJbFZjimpOOjh4e6bSpBqKtbv8GcfHMVfJAOIxlUpwFBLCfa5evbq1ipLOBdlYK2SqrypMowq6jts2JWLOzsdEzwx0jv2gAwUTg3stZQ5IvHZEtT32IVNDxn5l93RVBT5ToVbzRWeJzGll5LARER2eRg5IlXt7pkKvKtFTbZip1ZyO0NeOakmGqcTf+Nxh3cUsxKSqIzmav8pRx9/5DJGOnnOszckwHDv8RdMN1cfVuo+ONd6nSnDhaxz7U6U93AbN8BqNRqNxInBdTitGlqDZb3wyPEogo0DQKuVTZtSnVEwnFroWx22WqOhwQElMOpLk7CTCJMFx39hGPA/btVTDiusZ6NjAwNAoPVesoCoTE7EpkDu7/tsyPKcXy8YVz8V2yfizedqUfHYUMF1Vec76aPB6jzQKPIYsmg5Q8Xy8TzKnGIKhBGTTlNYzp7Mq1CALh6BrPB0psjRb7OsovGJvb0/nzp07bIf3k3TEUtyeNSRVIoU4bq5xH+txZdoDPpP8fPD5fX9GBmQnOfaFzChzWqlSizHBeZbgmm2NtB4MR8ju8dhG7Cu1a1XikLjeqEkgo6XTVta3c+fOdXmgRqPRaDQidrbhXb58eagzZXB1VS4o01NXEjylKRdUjeBv1jFnkh4lKkseliKY8ktaZzzex5IIwwji+BhgykS3RtSlezyUcBiGwPCE2KeqeCxd6+O2Sg+fSbmUUC9fvrzRFsO+ZdJsFbJQ2aKkmrWOjqlsXJSes9RplP4NsrVdkLmJ8zr7vCzfk9lWKfVXKZ4yuxbvcSZWHtlCqXXINA600Yy0Dvv7+7r99tvX+hbnflNB1Mw+WzFfsmgfG0hsQcwAACAASURBVFP/+Tf7EJAZuY+Z9ssaHaYY9L7R/h/nIILrKyv1RH8Ks07OX3zOEWTM/rSGK5ZQ8/lY/ojXIILagZiIQFpPFC2t36+dWqzRaDQaDWBnhnflypW1khSZXtySAKWKrMRLFTRJidssJgaA2luK0gSZZpa2i5LWyDOoSsdEG0dWsJGSDQNyKdVIR8zOJYyY0Jr2mSxJLYNhq4TK2W9VMdJ4rTLGMApu3tvbOzzGcxulS0qCtCduCmqPY6qY3ciGQ7bmsca1UyVdYHmgCP62ySM2SvNcG5V9O0uondnYuW/cj+eO30f2ONrsmMJqdE/QBpVhb29Pt9xyy9q1jV7NZHhVebC4fvlM8jFmL9SMROZ1/vx5SevJwumRGuezKkLsdjPPbPehso9WKdRie97X5xmxdf9Pj3IyPT5nY7+ZSIP3YnyuUlNBzVaWyJ/PpG29u6VmeI1Go9E4Ibguhmcwfk46kmxoR9jktSnVHm5+u5vhjRKJGpR8onRGXTm9Jrex+xiUErcpAOp9PZ4srogxMmR2TMmTJfUmwxvZ4yhhU7LL7KuUzrex37k9lviQjq6Hx0ob1C7pyOjhmXmZVrFlXMOj8xBVWaw4LjIKsul4LBMZVwVgs/JXo3YjMtsKmR3ZWjymKno68s6sYh4zOLUY0/jF54DvYcbjxTbieLI+VBqFLD7ODIjxvywLlCUeZ0J79jXa8nmsr4PHyT6OimRX5a/iPcjnJr3dq9jVeO6szFX8PW5n/KqvqZ+N/oznqdIHboNmeI1Go9E4EdiZ4UU7TSZNGJQUjKwMPGM6qhI8zHIiHSV4tq2riluJuuYq4fTIe43joe55lBGD+ndmQMjmkXZN2hNGpYXYZ9psMrtPVQ6G12LkpTmCbXi0SUXpspImq9I/8X+yP7KobMwsqeI5zQpMVuDcjthU5VnHPkebGzUlVeHczGOxap+sPevrptJScX3SrsTvWYmwbb3qjHme17xmIxMiK6rKzUSwX1wzVUYkSXrooYckSQ8++KCkuuRPnCf3m5oEg6WGpKP55vjoaUk/hDgHfka4/ZHXpEHNCL3Bs4ws7nfFJDPNWVWKi3HGmSdxbKO9NBuNRqPRCLguhue3PmNPpPXSHVUuzUxqropMVvY59ynuY8mAXj6xbTI7S3AsURGPoccRbTgjpkeJt2KhGVgSiftm2QuY55HsJsuHSBsdS+aMcqhGJrbJjsd5ilIu7bujYpMVKi/NzM5I9lexwZHdh9qAUR8rhjdiWtW4soK8RtWHKktGHF+VF7MqTxT7v8nOkzG8rOQTYd8Bek9Hu7yZh8fo+55agcxTlLkZKztWjMNzvl3b8FxijF6b8Zq73/7kc8HPrBjb5n3JBitbbsbwzEzp3crnXtY+86Fao+ZPe8lL6x7KPDYrisvzkOll9z7X7S4xr83wGo1Go3Ei0C+8RqPRaJwIXJdKk+quTCVHNc3IlTRTjWVt0HFDOlIz0ODPUhTRMYQqnyq5aZaGqHK5pUoh0uxKdTlSbVL9QPUrS4yMqqUz3CNT1RlUNdJpIispFDFSy8Wq1gw1kY7URFVbozRaBo35VKNkKjSeh1XM43qha/Wmckqx31Tnb+NEUrnvVxWoR2Ou1PCjMAg6WDFoOe5rVOstnoeq8itXrpTq8HmedenSpcM+ZEm+Wc2bqliq+bN9qZql80qc48pRi/ftKLkDHbey5wCfJ1wjfKZkFdb5TLSDDUMppPXrYtUwA8CZhlE6UslS/TpS81cOTkaWipIqzV0coJrhNRqNRuNEYCeGZ9dyv90zhwZKiJuKu8Zt2ds8Q/ydaXro5JG5v1M6oxF3lOaokpar0ANpXSKl9JkF3LN0ED/N7GyQjpIWnW8455lkVAVxkuFlSb/Z5wxMLZbNkyVDj6VyoMhQsYMqKXY8ppIqyd6yfRlSkpW74bbK2D6SWCuHo2ztVIkTKuN+llqKKZ7IMLL7t7rns2uTlcYZMbwrV64crvVRmAPZM/sb7+3KSY4ML2OHTDThdIdmQnReif2mg52fA6NizhmzjvtmLKo6xufNNCY8lpoYMv54LDUiTFKfOXYx7KUqyRTZNe/pc+fOdVhCo9FoNBoROzO8M2fOrAVQRvC3yvYQJWNKZf6NabMsGUQ2w+BQspgsdIKShs9TfcZ9KUlRanffszRhdNP19kwiZ7JWj9n69yotWjyWdkUGfcdjeA04voz1ZgHOlaQ1z7MODg7KROHSuj6fyNgMrwvdtY2MmZORkIlnrt7V/BiZLaKy73KuyDAyUHrOgvGZsKFi3hlbIyuoyt5kx1BTUyXYjvtU3yMODg508eLFMk0h22b/Yt+2Yc9cK9n1onbG7vnuo9lovG84p77/HbCdpUnkWmACcu4Xt7PskL9bS8TkFREMDyCTdd+ze7UqyeR+jGyUfNbTHyHuG6/Ttgmkm+E1Go1G40TguhgemVh8Y1NPvU2ZFkonlaSb6XMrexVtENFziCyA3kosbyGt67mrYPiR3aJKD5bZfdgXSo6U0rKA6sqji/aYuA9/83ljol4j86qtGJ5teEwMHftNBkrpkZJdRBW8P2JkTMRb2fKyJNsMVuZ6z1jhJhZtZGyNv7Fvo+KaVTB+xqhZ3mZkm2b/Oa7RPVHZ/TIcHBzoqaeeOjw3U9BJdQFYni/zmuS15DGZV7NtWk5pyELQDh63RibuwwB0Mzyzp5EHLG3GvBfiGHwNmayav8e0ZSxlxTXCxB6xP/SUZRrJ7Bpz7dAjlj4EEe7jNgkpDs+39Z6NRqPRaHwIY2eGd+rUqTVJMbNXbPIU2yaRLGOqsqTOWaxUtj1KQmSmlDIyBlSljqriDeN+jL/JbFE8hrFULHNE/Xs2n2yfcx9ZL5lK5TEYJa3MVlRJ6nt7e7r55puHiaZp/+JntqY4p1UKruzYKnl3taY8jvgbNRpZ0mCuryo9nZExIaNieJviH2M/KL3H8dNmQwk/u38rb92KbUl5YdZqDLbhGdZyjOL6fH9UacNiH5iYmWsqS5hNr0UmtuZcxz5wzbDvWbm1Kv7XGNm3DTLMbB1yzGT2lW0v/lYl5R6xeDI8jneTxqxteI1Go9FoBDwjhpexHktfLNcziqmibaaSZrK3fZZpIu6zjeRbJXeODKgqtVPZIEZxhpVEF9kPddn0tCLzy7zmaBukFBgl+8ozkcw1K2UUpcJRIuxpmtbsi1G6ZjwkvdoyW0RldzHI8KNEStbC65BJjVwHFcPMEjJvcy/w+8i7sOpjdSxjUrMY1cp2R6l9pFGoSoNl9jPj9OnTQ4b3xBNPlOs59tPt2sY9YjOjzErxe1YQmN6q7pNtdrFsDs/Hdea+Zh7sfp7ymUj7efZsrM5Hu1/mg+ExVyXNMk/9iuFRwzFKRG+N1SgLFYtsX758eask5FIzvEaj0WicEPQLr9FoNBonAjupNA2qD2LgItVpVHFlKsDKqE8VRubePKoLVp3P/a+S9zL5aXVuqVaDZCofqnqoFsvS9FDNlwVibgLVHTRIR3CcdGwYqTS3AdWpUfVDNa7nwN8z9+aqAjirmWeG86q2HYO6R44AVKWMnAt4vipUZ1R/b+QUxP/p9EOHCgbcx315vUc1+yq16qhWIE0Om8ISLl26tJaSL3OW4xqic1GWhNjgvDHdVRYwzWcht8fQJpow2EerNrM5rpJzjMKg+Fzjes4c06r7s3Ik2yZJPtd75jjk/vtdMgqD2SXxONEMr9FoNBonAjs7rZw+fXqNiUUphsZauq6PqtRSitnGRbVKXzQKRqTUTGkzkzo3Je2tjMoRlELIYKLjTVWNnYHmWWqfqg+UXDOmZDDcIWMDnLdNAaAx8DxbBw5qZWJspprLWGblAk82m1Xqrhj4qDQJtQ8jg3wcfzwf13vmtFCFANHBKksTVyV8pmt51GhwHVTB8llIABly5QwU2zWuXbs2DNOIyaWzUKNKO8CyVpmji49hKAad2iI4/3ZW8Rr22o0MxedhIvNR0noyOqMK98pQOatlmgYyKzqrjO5fMkemaMuYq/fxfPE5niU1qBLcb4NmeI1Go9E4EbguG96o1E8l9dPFNx5D11piZAuoCmFSas+Ocbt2jR8FhlfMjucZletgUCzZ24jhUWIdhRhQsmfA6YjtUKIn04sMjxLcKHn0NE3a399fm7cs6NlrhKVWsmPIdKvwiSwQuNIokHFlNryM/cXtGbi+eC1HKbiq9bdN0dCqyCaDiSM22eIzGzWDydl+JqWP0sXF9vf29tbssgxFitvcJ9rJMls+1zHtl96ehbRULGbEZmhX5HMtMmE+M6pg8pHdjyXbqhRn0nrJIt+LVYmz7HyZT0I8f6YxoeaKttFRCaNpmtqG12g0Go1GxE4Mb56XQoyUTCNG0mr8PUoV1N/Sm9CfZETxGEoVtMdE/Tj11LQNZcmrKVlTt7xN4CM9Sul9mCWrpuRDCY/6eGld324GOwrmZHvsq1lWliw2pkyqbAm2/44C9GnDcr+9VmwniXNNzUEVXJt5mdI7s8IunokZtrFtVm1XGoXRPPL60t5EW9VIQ8NrMhr3pmD87Nh4DUZtx8TkTL4Qx2RQ05IVca08kMmI/D0mUPd64/xUXo0eQ9zX4/Cn13uWgIK+CWRCmZ2M15u2W6dHi+Py/5uYnp9LWQLvLDF8RHwW87ldrZl43XzuyDab4TUajUajEbAzw4veVJn3UqUX55s6HmtpwhI8ddv0Xopve0puLKszknyq+KSRTYPSMvu0jd2H+2YsdNtUZlmcIW0olWdfZs9gG9scs610tb+/X86fdDR+SqRkfFmx26qMCtlZFrtFNrNNjBj34TrfJs7UyGzhBtkaWRlTQMX/KyZHO0xcY7SzVDbqzEuzsjeOvE85Bxlsw2Ox48yOaPA5kMUMG1XMYRV7Jh2tRc+Hv7t9XxeX/pGOSgZ5HCwSS7t9HEelhai8auNvvHfdNzO8qG2j/Zxzw7mISb35LK60fPGYKlG723Lf4j3Ptbi3t9cMr9FoNBqNiJ29NA8ODtYkyPh2ZYwXpb1MJ+tjGMPH7AVVf6SaLUVpogIl65FXWZWlZFSupWIDo7IgHDM9FCm9xTF4H2aMGcXhkYV4H5ZZiaCNYOSlube3pzNnzqwxryi5VnFCBu10WTtMaktPvoxFVUnLaUuO59l0TTPbpFGx9gzUQlRlW6KkX60RsoERU/Jv9H5l8u/4G9sfedhVWU4qzPO8lmUorm9eZ9/3TBCd2f8rL0Z/mgllWUXMhPzd7buYa2RrZngs9bWNpmeTxifzDq0YHr21471dxd9R23HhwoVj45VqDRa9T7PsM4bboz0ze55uE3NNNMNrNBqNxolAv/AajUajcSKwc2qxs2fPDgNWM9WXNK6nZbB2lcH6R1FFxLpQNFLT0B3/rxxrMsO8URn+sxRP1bHGyKGCqXvods3Qg/g7VTRU1YycjejOTTVjFsC/TfJor51qfUh1GjCmAIuqrMpYTfVapp6k+pHpuzIHJAbEUv2dJchlXzbVe4zbq+rkVLtlTitZ2EHsewbOJ++NLAxnlAYq/h5BddemcIeLFy+W6cJiO6wTWTm1xd+saqzCOdxWVh+Tqk2rMjNnDKswmWgiqvjisdK6yrxKlZbNI++1aj1kSSuoYnb7drThPEvramTD48wchjgut+H5zGpTZmaRdlppNBqNRiNgZ4Z35syZw7dvlsw57ivVJUmyEiiWIsz0KL1kRvDKwYHSezSuWkqpys5k46qkcUraGcPb5DLvY2MAaFXduXJWiVIajdRki9k1oJG4SgEW5yRz9hilFjt79uwaC8iM7Bwr2Vm8/nR0Iuv076NUbxwjJdWMSYySN8e2sj6xL9uEJZDJM4Qmc6ioXPW5X6b9IHPleUYssUrSkI1vG8cDhkNl52byhoo5ZKXMXJaHzJjrInPu4H3qdeH7KeKOO+441v8s4URsM2JTeAi1VXGfKlnGKNUXtWB2UiGzi2zOc8tgeWrbskQHfhZTI5eVf+OzqJNHNxqNRqMB7MTw7FpOl9UokfhNXKXnGbnEV6WDKqlDOpIM6CJPSTX2kVJDVVqGY4/7VLa8EdulRMW5iOevkgTTbThzS6ddpwqsz0IZjIphZkmKjU0JgLNg5U3ppKr+st9MIcU2RjbIar2N7M3VOsjsmlkpnKyPme2Y98Y2dr+RvS1im7CfKqVdtlYJrpl4rcnWDg4OhuWBrly5ssYGsxRzZAre1+wjhinRpmWm5QQYTIYdx1klN/Y+ZnhZajHe7yOmwrVI+1hlc4//b0p8YIYb22fSevpI+Hdry6ScRcdxZ+uRoSZVeroIPtu7AGyj0Wg0GsC0i/5zmqaHJb3jA9edxn8HeME8z/dwY6+dxhbotdO4XqRrh9jphddoNBqNxocqWqXZaDQajROBfuE1Go1G40SgX3iNRqPROBHoF16j0Wg0TgR2isO75ZZb5rvuuqsslBnB+CDGhGQlSaq4p20ca3Zxvqn23VSEchfc6D5XxzyTcWdxUYy74vcsM0r8fPjhh/XEE0+sTdZdd901P+95z1uLzcpi67btU7at+qzm4Hr33fb7M8UoNu0Dcb5NcX7ZPVrd21Vb2baDgwM99NBDevzxx9d2OnPmzHzzzTevrZlRzNmm2MAM/7078DFWeNscuDfqvNu0WWXMyjI8xWwsFy5c0NNPP72xszu98O666y694hWv0KOPPnqsc9kAGBjttFmsxSStB1UzUHEU9FpdvCqNUzymqmG3zUt5E7JA903njzdw9ZBnyp1tXgKcC9bfktYDP5l+zcGpcfx33XWXJOm+++6TtKROevWrX53Ox/Of/3x9z/d8z+E6uPvuuyXlKZiYbsiBrP6MqZgc7OptTMzL+cqSHm+qSB9TWVU1DEe1DTddbx4zCtBnnxiIHLHpZZmt5SodGBNHxJRu/t+Jk53ogMngYxA2f7ty5Yq+7Mu+LO3vzTffrBe96EW68847Jenw03XqpKN1xLqBVV3JeO7q+2h7VQdxk/A+amOE0bNiE3Z5+VdEpfq+zfhGQi7HwfWX1TV1YoD3ve99kpa0Z294wxvKfhxrf6u9Go1Go9H4EMdODO/g4ECXLl1ak0gjW9skIWSMhGmGdlHjVIl4d5GeqvNsg0r9miWerhLlZsdsKtOyqR/ZsSPw+KoKfGRXTDM0SijsNizZM/ly1k+mRMpSy7EMDD8rhhS3VdcjwyaGv8t5tlkHFdtkAuJs7WxbCTpjC0zJV10bab2MTlXKKkvNFZnYaG739vaGasuK8Wyjxq80IiMV4KZrOlKtPhNmV2mlsvHxfPw+SpLPZ1aV9D3O+6Znb6bBqK4bWWGWqq9KRTlCM7xGo9FonAjsxPCkRbK09JyVl2Dphk1OBdm+RmXAzLaNJA+2tUkqGpXnoPSyjU57W0eQjBWM+jQaQ+wb2xj11dtYtDSziTJR7yiJ6zRNqZSeSWeVPYyJbeP/tOV5323W3fVoFMi8yOxY8iU7D9fqqFAqy7Fk9sWqjzwfv2f3BpO+j+4vM7qKTWXJo7OyViNp3+sn7pc5PO1yb7N8TYWRTb+6L0es8Jk41rDv1XljO9fjeMLrvIlZxn3Zl9H63nSerJQZiyJv0g4c6+NWezUajUaj8SGOfuE1Go1G40RgJ5XmPC91qajSjGAdPGNUy4rIjJs+P7dX6sER9d7kaDIyJm9SE47GkzkYbDpv9dsmddU2bYyMvVV8XDyPVUFW30WHpurYkVs1+0n1oNWWsQbXE088IWk9ZIFhFqP6e1wz26iTeS2je338rM4Zz8s24/nopML6ZP4+6iPrh43ioug6zvCi7Pqxj5VaaqR2H8VjVn2Lx/B49iFT83J+tlHbsd8VRuri6nqMnEg2mX2y8VWq012cmqrwjswkUZlBqrp8EdWxo2vtEJRdVLbN8BqNRqNxIrBzWMLTTz+9VlU6gpJgxeziG3tbt9kR89olMHNT5P+IaVFKySoNsw26kG9jcOa2TePKJMmKqWTnoYRM5ppJkAwBGDmtzPOsg4ODtb5lgdM+Bxmdg98vXLhwuK//929mepUb/2gNVQHgmRt15X6ehU6wOrpR3SNxTuioQ1ZNJ5bYDtcdwwMyKZ3MjgHnThwQz+djHHLi9cAq8FGK3+Y+jYhOKxXriGOvki1kIS2VBmbkmFI5q43Ce0aOWtzX2PYZuEsWopHGiWu1YmejcIEq4DxziKNTVBbCUp0nhja100qj0Wg0GgE72/AuX7685vId39hVyiNLE5mL6ki3G7ePpBiC59vGxlW5xkZkLtbZ+TIpfRf39woVo9wGFTvJ+lBJ4Nl8R/YxGsPVq1fX3OyzwHOmMzOLe/zxx499SkfphcwCmRKNKcfidaEduWLg0XWeNi2vK38f2UW8D9cZWWi0UbL/tFX6e7beyPAoYfMzjpXpwfxp1h1TPXkcZn98BmQaoVE6tQzR9Ty7pzfZ7DwHsS+cHzKeKrwjQ5XnM7M9eb7drr+PfBS2sSsStIWT+fMz7mNsst1tYl5xnyzEwH3j/bSNL8YmxpyhGV6j0Wg0TgSekZempYGYSoi2E7/lvd0SZGZzqmxPlfSW/bYNU6lY30i62ZQOiNJ6lpiZ+24jxZBRUnKsGGc2HvdjE6OWxl60HEe05Y3m58qVK4eMxOsgs+s4OayZ3WOPPSZJOn/+vKTjDM//mxUx0bTb8u+RmXifyr7ndW22Ix0lLHaiZDKizAZRpWkzoperdOR5GvtLe6bHZRYc1xg9Rf1JhufxZUmd+elxk3FGeN9bb71V0tGcZBqOKrA9A5MWGPGYKkk4WVy8L6u0c1W6sHi+6h6mjYvjiO2NkmNwXEZlB85A5kqWm3kUcw422Rtjf7yOeG/7e+ahv+l5mr0vdvE2J5rhNRqNRuNEYGcvzcuXLx+Tkr2d/1uyYrkOv7Gz8kDGJg+uzCONUhr106MUP8YoJoh69oqFjhhe5fGU2Qgq/TfnM2N4lY2IXnNxHiuvKOrlM+9TM4VLly4NvcguXrx4uK+ZStQOuD2zFjMdMzx/2m4X96EnJxkRGWD8v0rTZcaSsQLDZWm83d8zOwUTMtMblew0/s99PE6PK6Yyq2LzKC1nNjzep0wfyHs/tkdvTdplYn+8LcZSjdjK/v5+GeMrrd9LVdxiXPObGNY2NrxK+8Q54VjiPrzHM+1KlYS/6kf8n+t7FJvKYypfiOxacBzVOCM2sVAjrtEsvWN7aTYajUajEbBz8mjbYqTc45KMwBKcbR4s1BiPqT6pL4+SeJU0eBvprEo8nZWdoEdqZZfLJBT3jXPDfkQppZLOGSeVZRuoJEbaqiIrMHMg+/V5Mq9K2nJHXprzPOvatWtrdr8s84XZi5kcEzHHtcNrR9sQ48ciW2ORWMa0uW9RG0F7BOeFtusIegGyuKXHnV0X2iAZAxlBJlcVY77jjjuOfZfWrzvnM1vD3ua+vve975V0dJ3uvffeY23Evnk8p06dKteOk0dvwxgM2ouyGDBeI167Km4tbjM4bxkDqgpdV8+FeHzloTqKGeV8ZnPAPlaMjsfaphs1NNRgcc2M4oArzRmvX2zvepJjN8NrNBqNxolAv/AajUajcSKws0pTWqeuUTVAN+Y777xT0pGrMl2i4zFWrfCTlDhTF9p5gcZ9u2/7Mx5D4zBVtJlaqgpKHaWHqtzeK6cZ6UgdYBWw59Of3r6NExDdjzPHGqufPH+Vym40J1FlmeHg4GBYg8zbGFztefGYs7Vz++23H2uLxnWrBLMAbaoW3Q+vsxgITnWn58NrNQu3oEqscipiUtzYB6rDDJ93VC/M82YVJs0LmUpzFAoUt8dzM72aQ0Zo1oiI81WZH6Zp0pkzZ9acbEaJ4enkNXKEqxJPVOEJcYxGpdKM9wvvVbrts+/xPFTdb6PGy2oOjvqeHVupXT2vXkPZPpUT0Ciwnk6GfPbH9mPf2mml0Wg0Go2AnRnetWvX1oISo3RpBmJp0t9pKB0FoVbsxm1Eo76lb0scdOOmdCOtS0mWohlKESUhSvZVgHtmmOU8mZXQvdbjlI6kbjMXf5LhZYyL7KwKrM2cjTxfPh/DOzImOTJGG/M86+rVq2myaINB4nRzHyU7ppOANQr+dB/tGCKtB3VXIQ4xDKJy7aYxP0qcPIbXgawtXlPea2TnPm9kTx7z3XffLUl69rOfLUl61rOeJeno3sxYiNv3teD9lKVoq8Jt/MlkAxFud5qmIcM7d+7cmrNHbC9LUB37MAo54nmzIHWer0rAzHUY+7MpMTLZoXT0rOO9tU26M7fLcYzu0yqxBbUPvicjw6vCyKog/fg/WS7DFDIGlzkXbkIzvEaj0WicCOycWuzg4GBNVxvf8mQglDIyKafSC1NaG73RLR0x4XAWZH3XXXdJOpKSLNnb5sCEppwDaT1lGu10WUgDJWHPlccd7VCeA/eVtlAzQLq4S+u2J8+bv3vckSnTzZ3Mhbaq2N42Sa8dzsIg/NhvS/ucd+/rc2epvngM7UYeR2R4nA9f/0cffVTSEbPLguMp2TNpcOwjQ1X8SWk2c80me/b5zd68LszepKN5et7znidJ+vAP//Bj+zL1V7SJM7Cd95Pvlch6q0DmipVKR/Pl9vb394cM7/Tp02u2rywtHW2ro1CjTYVYRy7/tP9WLDFjMwx7cN98HcyepPVrVPkBZOkJNyXl2CalIbUsvgZMPZe1V2m/ov2+uo/YpyyN3CgRQYVmeI1Go9E4EdjZhndwcLBmi8qCD1mwkvaCqKemtxL3ZRBkZjOkhEDWGCVut2+piemhnKQ4S4VExlPZ9CJ7Iqvx+WnvjOzJbM9SuZkKkxezbExEVe4kC4738WQh9FzMvM6yIqTEPM+6dOnSWoqqzI7IlGW+PkxOHH9joHSVaDgL7iWbjRqL2HYcKwP1ySDiMWTNDBZnGZ3Mw5fr+Z577pF0ZJ+zJiD+//znP//YJ8eXpVSjLdLn47qL2gizNKZ1M5hsQDpaO/Hei5RCaAAAIABJREFUGDG8vb29oT2HXr+8HhVziCCDrNJsxd/4SXaYsXV66/qTtv3Yp0qzMCqRQ7ZbJfIYld5hW0yiEdc557zyRo7nq7xQR+PyOorzti3La4bXaDQajROBnRleVg4iSldkCLTlWfqMUnRkX1KexkrKpSbaQShNZ3FqZGu0DVlqyXTNlIpoB8qkZo+DcU+0d8Z5sLTndp042d5zLNMSpWOmHavKw0T9OxkSPRgzFudxRS/XTanFWLA0XmP313PH2E2vnejNyrk1fF1se6IHqLSeyotzytRj0np8n89Lb7MIxoJ6DqxJoAdkxiS4ZliOKGPePs+73vWuY+26rSwhNMsdVTF9GQuh1mNUFJlxkadPnx5qCPb399dsd5mnKL0J+XzItDbsv/dlusKsUCq9aMmiMttTFQeXMTzes2Rt1FhEzRIZMzVmmbd2leKrSrQeWTvtekwenj0buGZ4TbJjq8TW26AZXqPRaDROBHZieDGBq5RLPpaaGcs2yu5gKcXSuKUGSpmZ3Ye6Xks4lExHen9LD7SLuT/SkZ3Ckk6VnNbbI1urvFDNYBhfFPtgZkfd+UMPPSTpSFKOkpa989yux0FpKurffT3MQmh3ya41Wd82cXjuC+100no8kufNNk7bMzPvWa8NJy62p+UjjzxybFxx7XitWiIls2M5JWk9ww1ZKFl17Avj/dwnruvIvBnD5/aZ2SW7B+lB6PN4DL4WDz/88OGxz33uc4+173F5e7SfGm7f7NPzx+K0URLP1lW1fvb29lKbKPeRjtYGNSTsazyG97LvNbLQ7BnCZxXtflkfs6T7EaPisZtsh3EO6dlJ7VSW7aiy61VeqdHr2WP2+vLzlPdIRGWrY6aVzBY6ytpUoRleo9FoNE4Edo7Du3bt2uEblZKxdBSf4zgh2lh8TBan5GPf/e53Szqy2ZixWCKNkgLjnlhOxVJnZJSUXslULAk7Liv+5k8yq8ozKY6dc0FJb5s8f2YFHoPZQpRyzHIsJb31rW+VJN13332SjuY1SnH0xjMr8fXKdPZkuyMpXVrmznPt80RJ2NKi+0e7kb/HY3yt3v72t0uS3vnOd0paLwdEW2Q8nyVRz+2DDz4o6cgTMsa4eZ6Y0YUSdlY01v2mLc+fWaYN2nd8fs5Nxrw5R5TAfZ/Fa0Ym/I53vEPSkUbh4z/+44+NWzpiRPSIZkxfXN/UAB0cHGy0/7IsWQTjeyvP5KyALW1bBtlMlns29jFuz/L1VkVhRxmLGMdMOy+90zN7HM9jjGxf2zBkKWdXvAf8XB/lbq28aDPmOvLa34RmeI1Go9E4EegXXqPRaDROBHYOS7h69epaBeoIU14HxDLpcWawpYOG3bXppus2IjWnkdVqIfcxSz/jc5ta01mB7smxfYPqJ9N3nzeOj2pVf7LvcVwMFo3u23E7VVzxN6sBPK9WCX/kR36kpOMJhxnWUaUAy9yDo3NHpZY6ODjQxYsXD9VcWbopBuRTneH+x9ACq52tyrT6hGoVX6+oirMTjOfwPe95z7E+Z84WTJ5rhxpfd6uCvYalI5Ueyx5xzhmgK60nUPfaYRjGyCGAaievD6u4s3uDajyHNnjcL3jBCw6PobqQwfgebwxW5297e3sbVZocV9zGJOfcTvVxnAeaW9hG5qxCpxSq17ISQ1Sd0tGGIRRxn02OGlS1x32y0JXYx1EyZ46Dz5+onqQzHJ+vdCiUjuacfRyVc/I8xbXT5YEajUaj0Qi4LqcVppuK0qVZg9/QlPpGBVItxdppgRIRJXLp6G1fFQ3NCpcyKLVKIRSlKDroWEqpEplGFpJJbnF71sdKUrXURJffTDo2y/C8UdrNzmeGRCM5r7m0Hiw6clo5ODjQU089tVaoNzJTS9q+hnagYHhAlNLdHgOiydb9GVktk0Yz2XaWWIHGdYZreFyR4VXpwVgGKUtLx3ExhIUJHuJvDKgnC7QzTpSiff0990w07TlzuEfcxiQMlet8RHT5Hzk8Xb16dVj4lfew98mclQwm8a6Cu5n4PgPT4jGAOrZrVMmPs7JkVWoxaiHiOuB9XoVFZKEaVaov9jlzfCMLZCKPeD+x/7z3OK+xv3G9bZPAXmqG12g0Go0TgusKPPfb2BJSlGLMhCxdWGI0y8h0v5YSLH0zMJJuzVnpHRZKjMG71TFu38ey4GdWvJHSH12+LeVE92faD8wobNNgm3EODEqbZAdxfGQdtqcSWYgBmZ3Pw6DpuO9Igo/Y29tbmzfbwKSjdWRbna+Hz0lbh7Selo1zTCYWmRfDBBj4naUJo7TvtcPSQpHhV2WuqvnKSib5GM8F28yC4w3eI7bpZv3wvp5r2/kYSjNKPF7Z+OOcuD2Pb39/f6OUThaX2ZPJSEagjdP943NmFKjNcACGKWXlepgWrCo5JtWJxau0WnHNUgtVhUNk88jUf9W8ZteMdkaONyvRVCXFzsIVqlJJ26AZXqPRaDROBHb20jx16tRQeqL3HcvXZKl3KOlSEhglHK6KNbKNrHij2zWj4GeUlij5ZkGicXu0M9JuaQk4K+nDOaBk5Tbcx0zyotTEPtMrNfaJEiRZXGSuI08qYm9vTzfddNMa24geWzwH15DnNHpaUtfv9vxJ9hH7z/atdaiSlku11589PM3wIippnGszszMxVRntmhlLo52Z9nO3YWSJoKtyXplUzbVCexNtLlW/Rzh16tQwMTPbYR+MLG0Xt5HJ0X6VHVulyMpSjFHDxGdGZluv5pYMKN7T9B2oCt3Guas8OQ1qFrJrwHVN+9xIk5XZFXle2v2maWovzUaj0Wg0Ina24bkYo79Lx9/GlUcY49OiFMVkwGQO1KFnJWqqsiaUcqUjKZ82O3+yjEo8xuOiHnmUxofMiqmYqGuPxxD0sGJS19gO9f6U+DLpjOelNBqlXDKSkRebGR6PyWyP7ANTSmXpoejJWUn2sY8cMz06mdJMWk+qbdud05H52sa1w7VfSa8sRBu3cc0wgXKWmJleiJwLI84VvfCYQiuL7eO4qrW7SUqv4OTRVdqp2E5l5xvZ9irWQttaFq9WsZlRmjDGiHJc8ZiK2RFZ3B8ZFTUN2XWqtBBElg6Rdjeef8Tqq8K52Xgz789meI1Go9FoBDyj5NGZVFFJIJTss2SglKQoRWR6cjI5Ssv0MpSOJF/bMiyl+zMrckkmmWXhiMdkUjrtPtT/xzkZZWzgvrFfEZxX2jmzYpjMqFAVkcx+qyR7tz8qexKPJ9Miw4+2T46JdlLG/sR1SHulx0ybZ7Q9UUPheDTGPGZr1H1kkmUyuzgnVWyo+1QlJJbq+FIek9l/OZ/MqhOvdVY6KraR2cCya1xJ6fM8a57nYZJ1o7pPMntV9ZzZxIirPmZtjrQojNXLylFVWo+qr5n2K3u+xO2xbd6DlddkhsqzkuMeXT/afbPn3yhh9iY0w2s0Go3GiUC/8BqNRqNxIrBzWEKWxiXS6EoVx4DMqFqq0iZtk+yU6tXKpT0GwzKg3eooH+sA+NhH9okG2ZHh2fuwVh/3zVJKVS7ym+rOZftSPRUdHyonj8pFO+vTJtXC3t5eWYNQWnfBp7GdFanj/xwjVZiZEbxSjfg6Ub0X9/Hc2dHJyILW6RRBlSYdLLI+VudnEvG4D1E5BmT7GEx4kKm02F6l2orHMsxhm6BzX1M/J0aJhanK3CZIeVNfMpVrlUZtdE8wZIqJn6P5hfX82JeqQnk8hteMc5I5E9HBpUrdlrVLlS2vxchZpqpnmCU4d7+ffvrpTi3WaDQajUbEdTmt0LCZSaQ07lPSjlKFmdamVDSZa3GV6oau2VEC8Daf184qTl6dGUotkVYGfyYajlIVA+iZwsiIbIrS2SYpLY6PUiHZVObiTDf3KuQgC3+oKkYT8zwfSueZMZ7ODRVDjX3gtaoC5reRAMm0/BlTdbldp/hikmUGbse+MYn0NiVRKobC5MiZg1XlQLZNKIBBzUym0SBTpvMNS8DE3+J9tU0Cg4hRmMPIQYt94DgqZGEJFcPLmBDvEzrace3GbTxv5cyWXVM+R7PySkaVWLq6Npn2o+rLNs9vY5v7ddM6z9AMr9FoNBonAjvb8CIyt1BK/UwwPdI5U1qt2FQmXVIiYNqeKEnY7mMpnYmfs2TOBu2Nll4rt2Fpnf0xPVTGuOgGXrHdTNIj26mYXeb+TFsopfUs0ey2jGGapsP2zJqyteM5ZRLiURFaFq7lvpmETymWa4gJyKUjds7k1B6PxxcZHtkH2RJZb+yHf/P4qr5Gu/CooGhsYxtUyYOzYHyDzC5bH7yPNqWHyjQBGcPjPqN2qn5ze8Y2Ks0Cr0+cJ4YsMcSDz6y4LUsWkfU58x2o7G5cd3HfCiPbYfVs3yZhQBXeZWTj8txcvnx56zXdDK/RaDQaJwLXxfCoq8+CrPlp+5UlniyNVhbUKm3nkVTp6rOkqmZYlorpJeV+RAm/YpuU7GjziO1TGjRLyJiEURVINDLPvkrqrIK0s3YoMY90+XFONknpnovoYcVzVAyf8yite2ky0HyUJKHypON6iEzTa8Zz5xRiZPwZA6I9lskMeL3ib1zH3B6P4RrclHYrC47m3G9Kkpy1zzajxoTsdsQsoocmx8r2Ks/EzG7F8W/63EZLwPPF+yFj/9K6ViLel0whyL7Q/pedr0oXVqWPk9Y9lbcJ0t+Ulmy0dvh828a+mmlENqEZXqPRaDROBK6rAKxBbyNp3eOMHnb2jLRHZAST3VLnPWJ4lXeUt/u80npBUXrYuW9ZbBP7wHRUWd8qm4r75v5kdj9KrGQs7F88piquyFRdsX1LdqM0Tzxmm9RLbJM2r3huJtUdJZyuJMGK3WberJXUSik39sVrgwVoGUua9Y3emPzMUr75PNFuUZ2HXrmbtBIZw6PETe/qGCvGhNaOY2W8YVYWxr9dunRpo3aAXq4ZK6QGpEqr5Taz75V9LoLXks+F7NnosVIbwTR4UaPAe7iKUWU/sn5zDlgCKuujr3PljTp6FlOzkT2/q3tg5LFLRryNt/Hh+bbes9FoNBqND2FcVwFYSjFRQtgUH5JJzZUXJu0Wo7c+pWN67UUbnu0ulkR9rKVof2alawxKPJyTzBvM0t4dd9whaT0RdVYg032t7C7ZfG9KwJpJ9mTi28TdUHKf57nUp+/t7encuXOHY7StK5bR8TnNeA2yiizTCjPqVDa8bMwca8U0paM142tJZmeMbIVcm7SXxnvDY7bWwWvG48xsVsyO4jY4zswmxfVMO73HmyWC9n1DO2ZWNop2o/39/aGkPk3TGnvPniFGtX6zjB3VPUVkTLiybWZ2yypGmM/EuB7IBnl/jgrc0sOT331d4tql5sqovIQzj2l672+TcHrT/I0Sam/yHTh2vq32ajQajUbjQxz9wms0Go3GicB1VTyniiJTp1DtULnkxn2qelpGZtCk6oJVvqlOlNZrlmUGZmnsCEKVElNzRQrufa3q8Xk4Fw5TkI7UmwzuJkaqhSoAPVO7VmEPI3d0qltGaqlpmnTTTTcd7svA47jN1y6GLEhjFRnHXAXZZ2q8yvXan1ZBS+tV0OmkkqmYqW6lKmtTWrd4PoYyZNef14p1BKnKza4ZQ48yVSbPR/XnKPCc6eO2UUnRES3eYzQpVM4koxRslUnFGM1x5WyRBZGzHicdQ2IbdFZhOAJTGWbhSQxoZ1B89vzmM5H3+ihUo1pf2TOG6fUqB6ttrvU2aIbXaDQajROBnRne6dOn1ySDTEKoytpkCUS3NThmqXf4G6V198OhB/HcVXqmLLkzHQ5oxGXbUUonw7Ojhr+7b5Hhuv1MwokYpdShlOvrljE8gq7tGUOiq/o21zFeB8LXyvPi9smEMkmb7KIKzYgOL5UETIcUO6pIR9eOgd9G5lpuCZ4Jp5naLluXbsfnsXaC91dcb27HfeU6cJujAO7KWcVzE5k5mTcl+0y7w+fApsDzLFQj02pUTmSj9GZVCi465Y0YHtuiE1j83+uBn7yfIioHNIY6xfHxmCrRwTapvvh7luqsCs3YJnGIUbG1eAznYOQst9b/rfZqNBqNRuNDHNeVWowSSPb2JUYJoLkPMdLzV0G8dLmNEiklLUrlPl+WWowMj5Kw94v2OIZVmOXcfffdkvLAXKYbo7TJ4PHMlXlTOMIolKEqLXS9gefzPOvKlStr7ClL6s1rSYk0C5inLSCedxMq+5ivU0ySwJIutMuMrgdteVUQb3Yswy1ob840JmTy3u61ldkKDa5r2p0jW2NatWrf+NzIEieMwgGuXLlS3uvSOrOqEiZnzGWT+/woleEmu19WgovMl33KyihlrDb2eWSjNHhduJbjtirMY5uyS+x7VTw728Y5yTRLVerEbdAMr9FoNBonAtfF8ChtxDdsJWHTA2kkkVYBoJSM4jH8jZJDljz6/Pnzko5sRPR4ivYmSt9Mhs0yQW47jsN9pbecGUSW+DVjfxHZNdg2SD6TXCvPzhEjj9dvkx2PwamRqVA6p20tS3LL6821ybnP7EgEbZ5ZSix659K+mNm1K9s3NSbx+tG+dOHCBUlH2oGRpxrnmF6bWXkvjp3rMAu0pxaFtuJRgoptpfSrV68OSwBlgd5ZHzJ7Fc9dPXey9UJ2RuYT+0P2RKaVeWlSs8T7cWQn5b1mm66vYZZCsbqfKlv1yPbK654Viq6KR/MaZOs7BuO3Da/RaDQajYCdGV6MtRpJiFXMTCZpVdI5jxl5WlEHTJ1+ZHj2wmSqKkrTZoLSukTDJK6Mpcm85si03D5tK9K6fp1jHzHmbTzfeIxRFRjNksXSq2wbWx7jiDLGVXlYjlAdw9i+zG6ZeX3F37N4Rd4Dlp6z5N7cl9eUdhHH+sV9yFS9ZrOSSRVb4nUaleri+iPDi9etSu7ONRPXR3a9Rja8mDx6m9i9ijlk65ftjOLvjMoXYfSdcYkej5nWKLUYE3QzkfYoTtLXkh7Go6Te1bxRU5Kx9uqYkQ8Gr+kozVsWh7ktmuE1Go1G40RgJ4a3t7ens2fPlsloM2zz5q4k+VEczOEAwOyqAqmZxF0l/rX0nMXS0QuP3nrsu7TurVZlWsmk5kq3XcW8xHY22UmyRMr06KyuXzxnZA6V1D3Psy5evLgmzWYSIpNqc55GCWvdJ9r7skKdHDMZn6XpLKk3GRDj/0YMjzYujjNLzMzrzmKhkRXyGvC606aSlcFipg2OM/PSpKbGyJ4TzNyxKQ7vypUrawmUM5tu5fk6sr9tShqdoWKzlYYkgvNEG15W7NafZOW002bPELJA3rej53g1n0Z2bBV3t02cLs8zKut1PdetGV6j0Wg0TgSuqzwQ8+CNil1uU5KE+1R51EYSCW1ZlLTjMSymaVjH7u2xaCxtdQYl3iw2jV5RLPmTebGNcjNGZL/TU7AqGhvHz/mq7FuZ7TVKjJuyKIyyvFSxlP7M7KOVbYG5Tsko4j6V7YEeuXFfXlPa52KbVfkfzq3XVhxfxayq8lvSOmPI2G1sMx7LDDJcm9vY0avYtIz1ZragDNeuXSvnLTu+8tKNqNgZ2cXI9mRUsWFZTlWys8ouH/epYlK5PYvhq+zOGapcyNuwqsp+uY0tj8dU8xv/j/PWXpqNRqPRaAT0C6/RaDQaJwI7J48+derUGiWOBmca76lKsHonbqdqhYHTVVB51v4mpwvpiP7HlFHSkUqTxuT4vx0YGJbw/7V3Lj1yG0sWzm4ZkgFZCy9mPf//Z836AoYfsCHJ3V2zmdOK/nhOJCnjLu5UHKDRVSwymclMknHiSZfj2kedT0mIqTZwapfkRLKrSL7Wt2vM63am+ndCp9JMzgo8voaGMAShjimlJDoDOnOkJNgVDGHgeas6RepNqbs1JiV1dqnFGJzO0BY6ybgEBFRTSi2f3MgrmPic686li9s5fznnpZ36s1NpdkkLmFrMqQtTaATP1+FMUnWB+yRVpisPpHmnGvKMSjOlMnTqQl0vne/MWuF40ri6RAfEzszhvp9Jg9gVE0gYhjcYDAaDu8Blhvf+/Xsb3CjQINtJhoKTbHjeeiydALp9nauvIMcDhikILkmxJG2yqJRGZ62jI0By9qnXhgxSSCVt6n6pLIgrEinsJFQGjLsxd3h4eFiPj48HacxdYzJetu+kWPdb/Z3SNT/X85B9OAlVbOmXX355s49LWqBtKgfE4r6JLdTf1H9pEqiNcKnlyNbIejWGuu5TmqvEguu+7EvnWMM5fv/+fWQCLy8vb8ISeN4OZ5he0m50Aeh8nqX7pc4l9yXDF+oxTGyf0tQ5sC/UrjFxRG0vhTQ5DR37ndLddQH8KZjcrSWyzwlLGAwGg8EAuMzw3r17dyj73rmMdumCeAylSdpQzuhsUyHIWpBTv2kclOQkPdVgXrUraThJIl1RxaRDT2EDax11+GQsjsHSjip0AaBn02t1gec720ANTHc2vE46dn114LEsyeNK4jAQXOvCha/Ihqd29J1rsjI8nVv/maxc56W9sYLrQG25YqHpmFQct94bnB/2sQsEFpI2x4URXAlp4fVxoTjuuPr/SvAzj+kYnpDCE9xvya7sQj4IJr5w/g3JDtY9o5OtLj0HroQY7N4JFWdsoZNabDAYDAaDgO8qD3Qm5RclIDKf+samNJng2BM9kch8KBHXbcmLUd8rw0t2CoFMopPSGTxaA5s5Lo7jjITKviVpyQWep0KwHc54fcnDN+nq19rbfd3Y6RWZJFTa5epnMlSWu3HehWR4+q/fa4ICeXRyjXL9dfbmVPiXdto6Lmcnq+cRXJA8tSvd/btL8dSlpbviOchiuy69WUoXdiYN1S642tnjko3LsbcUOM973DFhXiemo0vJsuv5mIjCaWY4rmRndrZcam2uBJynPrt7gvfR09PTBJ4PBoPBYFDxjwrAdpKbQGnWxWztpLvu7X3FK1PQPkwtpb5pu4uHSnGGlM6c5MPxJG9Ntw/botTkGFNK0UZvvbWOTImMycUKsi9npCxJ5/IydDFgyQMuXZPuN6Zeqh6J9MqlV6NLDJ6kVV1LMbsacyjvzLQ2eS269G1J4nfloRJ70vl0TWpfKeEzhmsXa1nbYFuuFNRZybzGcbI0Uj13mv/O7s+1Q4bCOMm1fLxlbcP9ntLcuTkU6HFLeyzXjCvBlGL4Oq9JxrpxX5eWjustxex13rpp7Tjv6vp/GN5gMBgMBgX/yIYndHFRyZ7UMSBup93ijBdTZ6fgsUkf75hXYreM03OxNPxO3X2XvSLZsTqbSvJyZeaP2l9KT51XlktSvLORMAbJeRlyPjq73w5sv2bPYTxpyi7iMvswW4+Yneujzql9EpN1sVXaJlamPvJ7HRfLwAhcK87rWWuCrIYMovOuddoAjktITMmhs48lr0Ler512IGkJdN5ql2UhVvbDsfmdR2dnh6MPAeeOdmA3nvRMdLGwXMe8/532IMXL7mJl3XlSzOJa3679MLzBYDAYDALmhTcYDAaDu8B3JY9Oqp+1chC54Gh7SltDGu9Uf6TaVDm5FF2k/3Rp5hjcWEmh6VTgHAHY107tmpxSkkrVuZanQG669dbPDO7tjOJOvbFTVzgVBfuQ0Dk3dcmh67GuXhgrdneu7KplqG1SLSpdmFMJaZ9ff/11rXUce1JB1v6mZME61qWHYgV1rk31uR7L68jxOJVgCmHpUs+dcS4juoBtjSnVmHP3NO/h5DDh1K5ynNF5qVLtVL+8Lml73ZaehantM3Bzyfs+JYZ3Jo4UaJ62u/aSKrOGlSWzyxkMwxsMBoPBXeASw3t8fFwfP358lQhlxK3GXAY1XnFNFehMkFyy6zYyIkkETmpKTjCdCzNZ7S6o8owkeSaVFqX1lJqrno9Sp0D2ViVWStxnjNRElwD4drutp6en1/E45k0pXeA1duma6NDA7xpPXatKLMBEA3TbrufjumL7DLtY61ilvLL/ej6XmJfaBzIHF0JDNksJm2nW6vgSQz4z/+mecPPmpPTkeHC73dbXr18PKdgqUybr69If1nZr/xLLcE5evHaJpXUaD64zp/1Kz5fdta6fmTy+K0e0C4PidpeUIe3bhaIkBzUmeKjb6j0+TiuDwWAwGBRctuF9+PDhVWJVyiTZAtbKLuVdap9d2iRKKtUFO7k+U8Kr+1EvrP9MyVRZHYs2umDa2laVBmkrTOOu0hkZHb9Twuz04rTPObtJSpHE8VX2xWvbSf+32209Pz8fUiM5G0dCV+QyBT1X3T/Px+tAm5fOV1PM6Te1K8bI8IEK2vt2gbkuLIHSeRf+w2vM+0mJrV1YQgqV4Ry7MlG7MAhn66/lbzqGV9mcS9+n3xkq44r4uvZdv5NNr4JrhfdhvedTsHjH0oQUUN+VGNu16+aN6cbS8+VMmrCdjdT9lmx3LryjaqyG4Q0Gg8FgUPBd5YEkVUjyrVIMA3BT6isnIaRigNpXHmkuHRVTIHU6dB3PYq70nnPJYimd7Wwerg/U2dPG47axjc4rUVIaAzS7IN9U4FPnd56EZ9I2CZLSta9LLZbsLbwGnadoSiKgMUsrUY9huR6u68pmaNfReme5no41USpnQgCnWdilFKtzKo0L053xXnHMi/2nxK912QW6c+2687AI7V9//RXXEdeO5vDTp0+v+/AeTiWr3DkSe+kYF8eamHeda9rSEnt2GowUaN75SuzSwZ1N+n6mrdoHjmOXjKRuo21aa9clj67P62F4g8FgMBgU/COGp5ikKu3Ri+xMyXZ6vFEySIUr18olVzqGR/ue2qcHntNts9Bi8jB1ti5K58nzs35mIVNKQilt0FpHr8xkV3W/UaJzyWKJWuCVkKcdpX+X1igVNXX2WK4V2gB03cTiamFWgQxLDI82t9o+2xXrcEWF6UnL7106qmSbVPvOI5dSMmMEKYFXOy1ZKL8zZrHuQ49SjqHet/Tw/vr1a2R4Ly8v6/PnzwdP2+q5J5bJ0kFduq4UH5ZsTY6tpTG7Y9J5WZKprh1eOx7TxfZkLyx6AAAP2klEQVSmZ2Gye7s+Ju1U+u5+o4ams1HSK9PZa5nW7Xa7DcMbDAaDwaDicvLoKsWzUKZ+X+toD6N0Xt/YzjZT92FsnSuB8TogMDHHTCRN0CuPev9afoTeWGzL2W5SH+mt6aSzJGW6GJS6vbZDm12XjDkxiMQKKqo9IzG85+fn9ccffxy0AjUubpdFopNIU7JtjV0sR6V66j5kZ2J2juEJapcMz7FU3guUWsnI6v5kWLTHuRJG1fOxjp1sXeNzLESgnflMHF6StqvHrPpUx7zz0tTvvOZrfWPl7G+nNUhrOvWjMuHE8DoGlGxZXNedjYv3J2M3XYyywLXk2O/OGzM9J9w+SWPX7cuYR/oh1M/VrjkMbzAYDAaDgssMr+pLyaLW8pL7WkcWU4/ZvZ359ndemqlsirOXJdaUspq4dijh8BiXaYVeTF1cHEuSsPglmZ2LL3N56Gp/HMsmUsmP+pvmfMfwfv/998N1E+NbK7PyLpYz2RjpvejiI5nxROMRs9daqkyfdjfa8rq55DFJOq/zkop2cl6cDS9lnSH7qbGDjF/T+cjwnHZA6433Cq9R3Vfbdragp6enA2Oo7ek+0Vpk1p6u5E7nJel+r2OjzVbjcgwoPQc6O3xiVCl20GmyBK7vnc287pO8Rc8wq5QjuX6mxiRpQVwfnp6ehuENBoPBYFAxL7zBYDAY3AUuqzRfXl4OaqSqlpJTgDOmr+UdNBjkTBpNl9WqYqLKJQWGO8caqr1S+EDdxu9UMZypkp4cTyroyECVmVQ2zmmF6gdu/57gW6fWoUqzSx798vLyJiRA66M6AlANnlKxufRJbJfbnWokhWnw2Hodf/rppzf7MuUc53it7Fou8H5ypayo0tS66BKPM3SF4+yOpYo4qcfqb3SvZ4CwS75c+9ippZ6fn2OKtLW+BaFLPau1w/mpSA4Zae3X/dO8pLZrO3TTZ99cuFBSZbJv7plFBzSqMl0yCa5nhn05U0pneqjfnUqTa8RVNec1caaZHYbhDQaDweAucJnhrXV8c1dJnC7+lMrcW5kuvZQ8k2Rc9yXTS4VM1+rdsNfy0hnZGAPsKd268+0kbVc+hftQAtJ2sqO1cqo2V8wzhQR05U7onLBjeJ8/fz6kKnOS906K7QKzyd670kKcMzqrdNAxYnx05qhshknKOR8p5ZgbRwrvccHxnNOUss2xXrKArvgq2+fada7l1FCccS2nE1ZN6s1A9sT0HJshsyO7dY4vZEdJm+LAZ0dilPU8rqRXPcaFjZwN83Gp+lIbqXxQxS443d2DZHhkdnXcLunGOK0MBoPBYFBwieHdbrc3b1NKRGu9dVFf6/imTvpdt01ve0piVXpOKb4oiXSB7qlcS22TUnOSdJxUlVImUVqu40pB4/zuGGySHDsde2IZyd2//lbZQMfw/vzzz9f+y/5SGV6ypdL1u0tvRhdrahwcoxSz+/nnn9da39iBK5CaylHR1b9KpAyJoD2kC/blXArsW2VPyZWckrGzTXEb59iVjWLC5t24XV925Xuenp4O4TV1zLJxy59A59Tcks1XJAbUMTw+B/h863CWjVSktcK5diE7HB+1BGdS9X1P35MGq7ZJjRXDiFxi/07bsMMwvMFgMBjcBS7b8Orb1CVKTil9qEOvbKZjEWsdbQ1OIk1eeU6qkNRHaaZLnyXs9nXeVNyHnpb8v9bRBpkkIBcASmkvBY93nmScC1cqh2WiPnz4EK/d7XZbX758OaTI+u233173YaoresBpbTkbHvtLmyMTE9TPssOJ4akNXuO1slTZ2S1oI+zWF3GG1a7VF0V2yXZrv+r6cPNcz08v0bW+jYslkjTHzg7j7GWdduDLly+Hua59YJmmlFS+S1x8tkBrBTUsvPZd4DlBz996/C4A3Y0vsUGy9s4Ox+dL91xlO9zHsWB6mXOtuuQZPGZseIPBYDAYAP/Ihuf04bSZCJ3ko7c5PZIoCemNzvisihTbVvtK6YHehl0iVqa1oQ7dsVBKSbs0YfUzkx9zO9OiVSQvTaHOUWeDrPvWYyTZ639nw1ObksSddxtjJvW/KyZMe5RAVqh+1xhObRPD02/Oe43tUrJnvGQXw8m2UjxYd0wqCFu3UUrfxWOt9XYuu7YquI3FdtP9vNbbGN5dHB7PV++XxPC6kl9c86mMjVsP6X7vWGFiaVxL7jolzUtKCF0/k9GlckFu21lW6pC87V15t+Tr4Tx8qeV6fHwchjcYDAaDQcVlhlfftK7Y5WvDkBB3yW/XOup8U1HSKqWR7ZHhdWyNeneN7Uw8TLI7OkmS40h6alfkkLrtFI/jJDBeY7JUlzUl2TVpy1vrWJLl8fGxZTN///33oVROZRcaI2OqWNyT7dZ+C5x3ZuKp7dJ2yOtTrzUlUM6HGJ6T7IUz5Y4Iepcm+4zbN3mSOu/DnZ3H2W64vsXsWDLJ9V9SemXeDvUa0QZePyfG4LLYpNjg5J3p7OQcT4qbdPsK9BLvYipTnKl77pD97bw1Xb8T03Pj4jM32f3q/cRnIVmgs/86z81heIPBYDAYFMwLbzAYDAZ3ge8KS2CV3wqpTbRPCvx0NZgSXU5pbdY6quDoxn8lXVNyba/npnqA7TsVG9UBVGE62k61LgPRu2S+VLfu3JMdeKwL3Obxz8/PUbVwu93W58+fX/vfVROnGldtukS9SQXDBAj8XvvAcdA93DkT0VlFfZVzUZ1Lpn3jGjmT6skF+dfxuLmkExZNEK4eHlWYvCdcTUpdAx3La8GExBVn1uLtdlvPz8/R+av2gc4rOqeeQ04tmZJUqE9dUHwK4j+jYkvmgy7RQQqDOhOWcCaESkhB412Cj10Ig1NF8rkmdPU+nRPUqDQHg8FgMCi4zPDevXt3MH67RLLaR9IjE+e64HFhl3y0cy1mol4XwpDcgwlXJZ1Sc0oMXaX0JOnQUOsCTneJtJ0xPgXj01XfjTUlp3WSOK/Fzp3+6enpIDG6sARK6wIDp2v/aNxX3+RYQ2eZtY4Jd2lAZ/hI/cyK9GIzru9OSq3gHLtwEQbOO8YicBvLOAmOtSfW0SVHJst1DGytt9eE6dseHh5a1/fK8DjXtX8pibQLzaHzTnJicWMWroSUpGNSELlr12lEUttknWf6ymdVKjHlQgw4L64yOY/hs5Bz4ByUvielmDAMbzAYDAZ3gUsM7/Hxcf3444+vkmJXkFP7kOHJbbtKm5Q0UgkenmOtbMMTJBlUKVYSB1MhpfNVpFCGVCLF9Y2STup715cUiNqBEq1jheob59gFbicm2YFMvEpuTFFFqY/JxGt7vA5kRJ2NgxIjWWNdn8keQUm0C5QVkqt3PZbhMAI1Kc7up/8MJmeYgps/ruOOxatvSgie3PxdOsGq3dhpCNI81W1k5UyyXZlqShnGfV0oBtdZl3iCx/D7lZI7u/u9s+HR3uhKS3HfZMtzSetTkujEGus2XmvOdb132P4Eng8Gg8FgAFy24dXgYupb1/omVYgh6C0sZtd53XTBtAlJ/92lxqG0nAJBHVJAJqUmJ6UlifGMl1RKJeU84BIr7BLo0r5HCZbejrWdM/aF2+32+lfH5WxB+u3jx49rrW92OMfwmPg3pc/69OnT4Vh6WpL50+68Vk5L16WUSl6AnfefwDkj43bzXwvyuv/O7ivQ1kmvWhf8n7yPeU86z1Wxzx3De3l5OXjIVltnsruSgXf3SVq/HcNL37sUewSZnnue7tpzfd+lBTvjpZm0U46tcd/krek8O/md2h1XUuiKZkkYhjcYDAaDu8Alhvfw8LAeHx9j2qY3Df+f9KW3Me0J8mqrSKVdugS21EtTAnZ66sSAkr66tst9KZ1d8bBKyWrXOibUZruU8F2ZjmQjcNck2cA4x11KuB3D+/r1a2sv1ZpgeRmm/qosYye90kOxrlWy2mTTq3bLpFFICZRdn5y3aR13nWuyM10L/RcLdmWP+D8lR+/imWg/dR5yrlxLPdadh7bOzg4j+92V9lJ5mV0KM/XFjeMMw6PXtmP6SUvE/dx5iOSlXD9fYZspNtT5JrCvydOS16/eG/wtsUF3npQyrcMwvMFgMBjcBb7LhkcpxiWfTTEzLvZnty/3S/2q/ym1u6SxSX/c2Q6TVJY8TSvIel2mEiGVxuH4nN4//dYVfEys+kyxyDMSlrQDPL56X6mfKhmj35SEuMvO4+Lsar9dZhx62HE96PfaR9oGOZcu8wkztjBerbNdM8G12pdd0zE8ZjnSfx3rMvsQ6Z5keae1jvYyMuXOC7mLl3X9qe25/pNl0HvTeQU7j8O1jrGpnYcqvcGdBzufjRyP+57KDxHuuZS8js8wv513putrWk+d5iyx3jP2bWrBzmAY3mAwGAzuAvPCGwwGg8Fd4LLTyrt37w503VFKqT6oitMxVQVDo3dy8e6qe9MxhM4FnQs2g67dvkz7lNzSnXqE7fF6Mdi7tsPrRvUh+1P3TaoLV9uOhnpWHz+DM8GfVF3UfnMeGHQqp5a6dgSFvaRgaqc+pJpTlc/p1u8CpqnS1HepGqWGXevbvcCwh4Tad6o09V190/mcSpMOXLyPOicCrj+NgU5obnxJ7eWSo9d7fue04uo4CnSC2jlB1M9c+ylBe0VSxXHM9Tqlfa6o8fgsORMillSX7jqm5xivTRfSQOxUuO48nZrXhUxM4PlgMBgMBgWXnVZ++OGHgwODSwaaKoM7piIp1bVXt3eOE5TWaER2aYjY/i6Y1P2WAsOdOzKZlaRbx6KSoZkSqwt05vgYnO0YrDOy1/bZVv2tXouzkpaTSBm8L5C91bFqW7oudDKpLIOOOXIAITNywfYCK2pr3VX3dzFT9U37pHAO5wTGEANur30kw+N5Gbjr0qCl9H6OKTHg/IxE7xKmdwzn+fk5BrS7c+zKadVzp1AZHtMxosSMziTPSGOofUiMqkt4kMK6umN4XjIuMjzX/51jjZs3PuMTc67bajD8MLzBYDAYDAou2/DkXp6QgkMpiVdJW2/1mmbI7dslsE3SSud6m9zBnXSWxpXY55kAUDIJZ8+i5Egp9IxkQ7bj7Fyp7FDqR933jA3idrutl5eXgy3AScCJzXYphXhu2ta6NUtXcgaru1RmTEtGm56zqTEImgzPreGU2k3fXUIA3ie02dF+Vm2KlOCTq3ldB64obD2P0x7Qnb+mnSP0G9ebSxPHsXcu8bt7J5X+qtixmStwLI7rOj3fusDzHTqfiF3Sii5MqUvGwfOcCVJn+1eega/Hnt5zMBgMBoP/YDxceTs+PDz8a631P/++7gz+H+C/b7fbf3HjrJ3BCczaGXwv7NohLr3wBoPBYDD4T8WoNAeDwWBwF5gX3mAwGAzuAvPCGwwGg8FdYF54g8FgMLgLzAtvMBgMBneBeeENBoPB4C4wL7zBYDAY3AXmhTcYDAaDu8C88AaDwWBwF/hf3asN9Ef9kmAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1426,7 +1438,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYZFlZ5t8vt1qyqrq2rt5Kmm62FhhRRBAFGhWhH5VdgVEGWlwadXRknMFlUIFBccYBBhnRdhnaVlRERQYRaBHbtgUXZJWtWXqj6e7qqq7KqsysqszKPPPHuW/EyS/OjYzIjIiMiPP+nieeG3HuEidunHvveb/vO9+xEAKEEEKIcWdiqysghBBCDAI98IQQQhSBHnhCCCGKQA88IYQQRaAHnhBCiCLQA08IIUQRdPzAM7NnmdlNZnbEzE6b2e1m9hdmdlU/Kyi2DjO7zsyCmX3ZzFraipn9YrU+mNlUUn6bmV23ge97YHWsq5OyVybfEczsXNX2ftfMLtng7/pJM3vOBve90cxu7nDbsbxmzOzJ7j85bWafNrNfMLMdblszs+8zs78xs2Nmtly1pz82s2+pOf5fV8f9Tz2u9wNdveteN/bo+66ojveCHh3vMdX1sMeVb6++52d68T2bwcz2VnX8kJndb2bHzexmM/uuDvf/fjP7oJkdNbOzZnarmV270Wvd09EDz8x+AsA7AHwewA8A+E4Ar6lWf2svKiKGlkUAFwHI3ZxeBOBUpvzZAP77Br7rbgCPB/DuzLonVOu+BcAvI7bBd+cexB3wkwA29MDrlEKumZ9A/E++E8C7APwigGu50swmAfwJgN8DcBviefg2AD8NYDuAvzGz89IDmtlhNM/Pi3pcX7av9AUA17myH+3R991WHe+ve3S8xyCe4z2u/Gz1Pdf36Hs2w4MB/BCAvwHwvQD+PYDbAbzLzH6gg/0PALgBsa08FcD/BPB0ADeb2c5N1y6EsO4LwB0A3lGzbqKTY/TqBWDbIL+v5BfijeDLAN4P4Dq37gkAVqttAoCpPtXhlbnjA/jBqvyrN3DM2wD8wQbrcyOAmzvYbmyvGQBPrs79U1z5W6ry/dXnV1Sfn1tznKcC2OnKfrba593V8pF9PjcBwGu26lx2WdeXVvU9vFV16KCOuwBsz5T/A4BbNnjMZ1a/+zs3W79Oe8f7AdyTWxFCWOV7M7u6ktZPqkw385UZ49czpo5XmdlHzOxkJV8/YGbf6Lah6eQ5ZvbbZnYfgHurdQ81s3dU5qIzZnaHmb3dmdbON7PfNLO7Knn8WTP74U5+cLXvm83szmrfO83s981sW7LNVZV0P21mc9Vvfpg7zo2VpL/KzD5WbftRM3ucmU2Z2S+b2d2V/L/OzGaTfWmC+VEze331WxfN7C/N7IGd/I4ecT2A57oe1osA/D3iw2MN5kyaSbv4RjN7a/Wff8XMfs3MtifbtZg023CyWk4n+3+Dmf2pRZPZaTP7XHV+dyTb3AbgUgDfl5iw0ro+qmpXx5Jj/GzmNz6lar+LZvZvZvZst0lx1wyAf6mWDzazGQA/BeDdIYQ/qzkPN4QQFl3xiwF8ClGF8/OWYGb/aGbvr87lx83sLICXVOteVq0/bmYnzOwfzOypbv8Wk6ZFU+4Xqrb6war93GJmL1mnLi8F8BvVxzuTtnuhZUyaZvYrFs3/V1S/YbG6Ll9YrX9J9b3z1fpL3feZmf2YmX2yaitHLJoW1yhyTwhhPoRwJrPqwwA2apY8Vi3PJfX7pqr931/9ti+a2f9e70BT621Q8c8AXmxmXwLwzhDCLets/weIpow3A3gsgF8AMAvg6mSbSwC8AVFBzAJ4IYCbzOzrQwifdMd7E4D3APgPiKYQIPYAjwP4EQBHq+N9ByozrUU7980AdiCqhFsBPA3Ab5jZthDCm+oqb2b7AHwQ8ab1GgCfAHAIsacxA+CsRT/MuwF8AMDzEXs2r0aU3l8bQrgrOeSDAfwqgF8CMI8o0/9f9ZqqzstXV9scAfByV6WfBfAxAN9f1eOXAdxgZo8IISzX/Y4e8meI/+WzAPxh9ZD6HgD/BcBXdXGc3wfwR4jmxMcj/i/HEc006zFpZkB8wD0cwM8h3hj/LdnmAYjn6TpEU+sjENve5QB403k2gL8C8PHq+wHgPgAws8ciKrgvAHgZYtt8CICvcXV5EIA3AngtYtv7KQBvN7MrQghfqLYp6pqpuKxankA0v+1FbOMdYWaPA/AwAD8TQvi8mX0IsWPyMyGElU6P02MeiXhdvhpRtd9XlV+KaL69HfGe8GwA7zWzbwsh/O06xzyA2Il8XXXMHwbwu2b2mRDCh2r2+XPE8/tyAM9I6nEMwGTNPgbg7QB+E/Ge8xMArjezRwD4JgD/FfG/fiPitfmkZN83IJp234BonvwqxPvXw83syrTTth4WL9wnAfhMF/tMIl7rVyCe/48j3mt5f34PgJsQO94LAB4I4BvWPXCHkvKhiDf9UL2OIt64nuq2u7pa/5uu/L8BWAHw0JrjTyLe+D8H4I1J+ZOr473DbX+wKn9Gmzr/PIAzAB7iyn+7qn+tCQ6xca8A+Lo223wY0T8zlZRdBmAZwOuTshurssuTsmdU9X+/O+afA7g1+fzAartPIzGDAfjmqvwHNivx1/nfrwPw5er99QDeW71/HqJvbw8yJkdE1Xddpl28yh3/L5GYOZLfe3VSxuP712cAPKhN3a1qUy9ENL0ecPVrMWkiXkB3wpnZ3Db8Px+SlB2q2svPlXDNJN/x1KoOewB8N2Jn7qPVNs+vtnlaF+3tzdVvvqT6fE11jKv62MZrTZoA/rGqT1uzOWKHYapqP29Lyq+ojv+CpOyPq7LHJ2U7AcwB+LV1vidr0kTs0ATEjgLLfqUqe55rpwFR8c8m5S+vyi9I2u4qgJe77/m2jfwfiA/aWtN2zT7zybXzQQCHknVPqMqz10a7V0cmzRB7p18H4ErEp/zHEHs07zOzV2R2+RP3+Y8RG8VjWVCZhP7WzI4hStXl6kQ/DK28w30+BuBLAH7FzH7IzB6S2ecqAP8E4FaLpsOpynTzPsQe1sPb/OSnAviXEMJHcystmh0fjdi4GzI7hHAroq36SrfLLSGELyWfP1st3+e2+yyAw1WPKOVPQ9KjCiH8A2Iv//HogspMMZW86nqGOa4H8BQzuxCxV/XOEMLJdfbx+GCUTyKqsk74RsQe3OMQH7gLiCr3Am5gZnvM7H+Y2RcRHfnLiD1XQ1RqtVg0134zgLeGVjOb5/MhhM/zQwjhCKIyf0BSVsI1876qDnOISuJvEa0AXWPRVfACAB8ITevI2xD/x7ZmzUy77tRy1QmfCyG0KBOLLon3mNkRxIfiMoAnIv9feI6HRMlV7e1L6Pxa6Ib3JN9zBFHh3xxCWEi24f2I1pqnIV4zb3Xn9CbE/yNVgm2pzLz/C8BvhRrTdg1PRLwefxgxaO4GM9uV1PcUoir+XusigrPjCLcQwkoI4aYQwitCCE9BNBN9EsAvVhIz5d6az5cAgJk9GtGsNI8YjcOb2cfRNL+k3O3qEgB8O6LKei2AW8zsS2b2I8lmhxD/mGX3enu1/kCbn3sA8YFSxz7EBnF3Zt09iKbQlOPu81Kb8im0mij8+WRZtzbxF2PtufhiF/t+APH3vgzxgthIRNj97vNZANtyG2b41xDCh0MI/xxCeDtiZOBlAP5zss1bEHvBv4bYPr4BwI9V63LtKmUf4vXQ7n8n/ncA8bes+Y4Crpkfq+rwSAC7QghPDyHcXq27s1peis54OuJ/8A6Loe17q/L3AXimuVB8x5WZOveKlmvczC5HDOTaiWj2ezziefgA1m9nQIftpweshBB8FPUS6u9H/P5D1fLLWHtOlxCv13b3zgZm9s2IVqu/QpeRryGEj4YQPhhC+G1Es/ujEAPVEEI4ihjJewzRrPxliz7WZ6x33A33hEIIXzGz30G0/z4E0WdBLkD0r6SfAYA9t+ci9lCfExIfVHUTOJH7usz3fwnAiyo19CgA/xHAm83sthDCexBPxhEAdWN5Ptfm59G/Ucfxqk4XZtZdiHyD3gwX1JR9rMvjvAtr7dxnO90xhLBqZm9FtPsfQQwd3jJCCPea2VFU/rXKr/hMAK8MIbyR25nZv+vwkMcRzTg9Ge+TYwyvmVtCCB+u2fbDVb2eDuC3arZJoYr79erleR6A36nZ91/Rif9mY7ScR8TO1i5EE91RFiYKZNRhkMiTES0pnvsyZWuoOmjvRjQLPz9swgcbQviMmS0gxkKw7MMAnmVm04j//SsA/JmZPTy1vng6HYd3Uc2qK6qlj0Z7nvv8AsSbyT9Vn3cimgEajcnMvhUbkPQh8jE0e/qPrJbvrep3R6UM/Cs3fozcAOCxZvaomu9cQLzIvic1C1qMdPomRD9PL/luS8abVT2nwwDqHNxZQgjH3DnwgQ7r8X8RH5qv2UwD7gVVmzyI5sW3DVEZ+9791ZndzyI66xtUZqWbAbzQXHTkJuqXY1yvGf8dS4hBGd9lZs/NbWNm325mO83sEKI59Z2I4yz96x60MWuGEE75unZazw3CaOU0avCRiIE6/YQd1E23z3W4AU1fYa4d3N5uZzN7OKIy/zSAZ4UQOu5Y1xzv6xGDtFosUiGE5RDCBxF9/VNoXl9ZOlV4/2Zm70eUprciOqm/A9F89CchhDvc9t9hZr+K6sGBGIV3ffLkfS9i2PF1ZvYWRD/Ez6PZm22LmX0NYi/5bYgRdZOIN7ZzqCJ5EKOLng/g783sDYi901nEE/LEEMIz23zFGxAHTb7fzF6DaIY6iKggXlpd+D+P2IP5SzN7M2KP71WI/ozXdfI7umA3gL8ws2sBnI9okvo8ErOimf0ugBeHEHrpv1hD5ZfakI+mBzzOzFYQO2mXIirNFcQINIQQ5szsHwH8lJndjajSX4K8Yvs0gCdazP5wD4CjIYTbEKNO/w7Ah8zsdYgmncsBfG0I4ce7rG9p10yO1yIqybdZHPrxLkTrx2FExfocRDPm9yHei94QQvi7TN1/D8DLzexy5wvfKm5AjJT+AzN7I+LveRVixGU/+XS1/HEz+0PE/65bK8+6hBA+bTHE/7eqB/nfIz5sH4AY3/Cm6iHTgpldjKb159UAHulCEv6VFgoz+yXEJASXhBA4dOafEP3Xn0M0oT4K8bq8DdFlgaoD9ULEDtLtiPfHlyFaFFKrSfbHdRIx81LE8OLbEaO4FgB8FDG6ZybZ7mrEnsGTqsrMIzbwXwewwx3zxxFvBKcRx+88BVEZ3Zhs82TkB7geQszecAtitOD9iDeqp7nt9iFexLdWJ+8I4p/3kx385kOIppi7q33vrL5zW7LNVYgq6zTig+6dAB7mjnMj3EBlNKMRf9CVvxJJxGOy3Y8CeD2imllEfNBe5va9DpWrplcvJFGabbZZU+eq7DbkozQfnNs3c16uzhyfr1UAX0G8eT42c17fg+jQPgLg/yCanwKAJyfbXVG1g8VqXVrXr6uOfaL6Xz8L4Kfb/Z81v3lsr5m676hpH4Z4c/oAotl4GbEj8UeID1Eg3rS/AMBqjvHQ6vte2cv2XR17vSjN99ese2F1Ls8gdoifi3ij/qxrZ7kozS/UfNd7O6jvLyG2f6r9C1EfpXkus/89AH7HlV1V7f8EV/6Sqp0tIl5Tn0L0j1/Upn48Vt3rQldHX/am6ntOJd/5WqyNsn4Eol/5tur8H0GM+H70eufPqgP0BIsDht+CGNb8hXU2F+tgcXD5rQB+KIRQ578QI4yuGSEGh2ZLEEIIUQR64AkhhCiCnpo0hRBCiGFFCk8IIUQR6IEnhBCiCPTAE0IIUQRdDVLeuXNn2Lt37/obtoGDENPBiL7MDVTERvyM3IfH6uQY7bbx6+T7zJ+Dubk5LC4u+uTXPWk7Yrw5ceKE2o7YEHVtx9PVA2/v3r245pprNl6rhMnJZn7kqalYjZmZGQDAxMTEmm1WVmIWq9XV9adgqnsQ5cpZxiWP75e5bUrl7NlmlqAzZ9bO8zg1NYXrr8/nlO5l2xHjybXXXpstV9sR61HXdjwyaQohhCiCvuVdXA+qNqCp6JaXY95fr+wI1ZU3eabrSCemTK/a6pTeescpifQ/0XkSQowSUnhCCCGKYMsUXopXcj7gJKfo1qOd0vCKrk7ZSa20kqo5vj937lxjqXM2WGgNoZUkfe+vG1kyROlI4QkhhCgCPfCEEEIUwVCYNH0wCpe+PDc0gCYdb4rxQSzpMIi6YBW/XjTJnSsGGXHd8vLy0A/bSE1/6zFMv4X1np6eBtAcwrN9+3YAwLZt2xrbcpgP9+Fnwv+QroTcf0oz9dLSEoDmcJSFhYWe/B4htgIpPCGEEEUwFAqPsMfpg1g62adX24k8ucH/fM/e/1YGrXilQ1VDReRVD7B+Rp/cb2YZlRAVEJdURps5D6laY/1ZxuWOHTsAALt27QIA7Ny5s7EP1Z9fkrrfCTR/F5MK+CUV3okTJxr7zM3NdfPzekb6veedd96W1EGMFlJ4QgghimCoFJ4YXnI+PJZR3YQQBqLwUjUzOzsLoKl4uKQSovKjUuISWOvXzUG1RtUDNJXO6dOn1ywXFxfXrOc58fsDrdYG1sPXOf2t/J1c7tmzZ82SSg9ongMqOx6X6pbfnw4nIVTr/vdR2XE9vxcAvvKVrwAAjh07hkFy9OjRxnspPNEJUnhCCCGKQApPdISP7EvfD2qgPlVM2ptnGVURl97HlVNPVEA+itEr1zRhNpXcyZMn1yyp0ugXzPkKvbLzkZesc1pH1p+Kir+dswewnMovPV6dD4+Kjmo0F41aFyFNdu/e3Xh//vnnA2ieG6rCfuF9x0J0ihSeEEKIIpDCEx1BFZT6e3Kqrx9Q8Xg1l9arrk5UAVRgfkqjdB8//pO/NY3m5HGoovjZR4Hm5nv0qewI9/HL9Pg+hZhXjanP0Jfx97Cc54DnJt2XZVRrrCv9kD46Na0L1We/FR4jRNM6CNEJUnhCCCGKQApPdIQf1wY0VQDVx9LSUl/8eDzmqVOn1iyBprpg/bwC85MLp/4s7/fjPl6RpWqNZVRCdVGbqZLktnXZgHh81i1V0X6cn1eoucwnXpX5ffm/cd9UkfnsK3U+vHaTI3cyNddmoMq96KKL+nJ8Mb5I4QkhhCgCPfCEEEIUgUyaoitSkybf0wS3urq6obkL14MmwX6HodO06ZMu5warcxuaC+fn59d87gbuc//996/5DqB1QDuHQfD7/UDxdFvu6we+jzockiFEt0jhCSGEKAIpPNERPmky0AxOoCJZXV0d6amVckMWtoJ0mAcTJPO8M7CF26QBPEKI9kjhCSGEKAIpPNER9BGl4eh1A5uHCT/Yu5sJYIcJ+uO43Az8v0b1XHzkIx8BADz60Y/e4pqIftGvoS2j2eKFEEKILpHCEx2RU28+6fDMzExfojRJbiC4h/X0SZz7Wa9RY1SVHfnEJz4BQApPdM9ot3whhBCiQ6TwREdQFaQ2da+iduzY0VP1wPF99BXmpt7hGDlGMXIfRjOOupoRTTjR7IEDBwCstTqsN5mvGC36lpauL0cVQgghhgwpPNERVFc5X1i/ov44Lo49+VwvnplG0oTLwNrsKGI8YIQq2wOz2wBrJwUWog4pPCGEEEUghSc6goopzWdJxUX/2crKSk9s71SM9N3x+KxD+h187yeJFePD6uoqTp061cgjymmB0jGJUniiE6TwhBBCFIEeeEIIIYpAJk3REZwqh0ugGfpP0+PU1FRPBnjzGDRh0sRJ0+bs7GxjW26zbdu2TX+vGE5WVlYwNzfXmD6JZuthSfYttpaZmZmOA+ak8IQQQhSBFB6awRfDmPx4WOA5SsP9qfY4JGBiYqInQStUeF5V5iZkFePP6uoqFhYWcPToUQDA8ePHAQCHDx/eymqJIaEbq5IUnhBCiCKQwoOU3UahsksVXi/ZsWNHT48nRpNz587h+PHjDWW3b98+AE3fsSgT3m+mp6c7VnlSeEIIIYpACk90RZrey0+9owS+oh8sLS3htttuw8LCAoCmD/fuu+9ubHPZZZcB0DRQJSKFJ4QQQjik8ERXpH46Rk1yDNzk5KR62KLnnD17FrfeemujvdHnnqaRoz9P4zHLIY3alsITQgghEqTwxKZhT6tfkzYKsbq62uIj3r179xbVRgwDG4kKl8ITQghRBHrgCSGEKAKZNMWGoQmTy+XlZZk1RV+YmJhoCUw4duxY4/3ll18+6CqJLYb3mm7m4ZTCE0IIUQTFKLzU4c3pZqRGuofnDmg9f6dPn16zXoheMDExge3btzeuYSq9VOGJcllcXOz4viOFJ4QQogjGXuGxN5iGsCpZ9MZhougU9q6k8ES/mJqaalF4aVvkNa30duVw9uzZxnspPCGEECKhGIW3vLy8xTUZD9JeNXtVLOsmxY8QnWJma9oVrTWnT59ulLG3v3PnzsFWTowUUnhCCCGKYOwVnnxKvYEqLo3MpGpmmRSe6AchBKyurra0rbQtnjhxAoAUnmiPFJ4QQogi0ANPdEUIofE6d+4czp07h4mJCUxMTEjhib6wurqKxcXFxueVlRWsrKxgZmam8Tpx4kRD5QlRhx54QgghikAPPCGEEEUw9kErojdwYG8aBETzZTrYVybN7pmengbQPLdKjLCWEALOnDmDmZkZAM35F0+ePNnYhudQA9D7A8/nMKZl9MNW2iGFJ4QQogik8ERHsEeXKjz2tJeWlrakTqMKe8sMofdqJB3cPz8/P7iKDSlmhunpaZw5cwYAsH37dgBrlfA999wDANi7dy8A4Pzzzx9wLcebYbY6dDPzuRSeEEKIIpDCEx2RU3i+7Ny5c0Nl2x8W6F+iIqYvatu2bWvKc0mRycLCAoDh8p0MCio8nhcmPEh79vfeey8A4ODBgwCA3bt3A2iqQSEAKTwhhBCFIIUnOqIThafpgZpQ1QFNJUcFx/PGz1R4VCzpvizjMo1MLIWpqSkcPHiwoeLYxlLfMX2d3IYK7+KLLwbQnZ9HjBYrKysdWz7UCoQQQhSBFJ5oi/ebpD0pRm6xp720tFSkjylHqnS9z8lHZbZLiky1R5XIzyVNdzU9PY3Dhw/j6NGjAJrnJ/V1cnogKr077rgDQPOc79+/H4B8eqUjhSeEEKIIpPBEW9iLzmUB4Xsuz5w5Ix9eRe48EaoMnluOL+O5y51D/z+UxMzMDC666CJ86lOfApCPVPX+ZC6PHz8OoPkfzM7ONvbhe6pnMf5I4QkhhCgCKTyRJR1bBzT9dKla8apDPrzOoKKj744Kg3651D/nVXSJTE9P4+KLL26MX6S/Lo289Lkeeb7YHks+f6KJFJ4QQogi0ANPCCFEEcikKbLQbORNarlgDJo7lVqsO06fPr1mKfJMTk5i//792LNnDwBgbm4OwNrhHDRp+iEfflqrtH0Ouq3ymlKQzNYhhSeEEKIIpPDEGtjrTVUbkA+Z5zYlDYIWWwcTQ+cCqBjQ4pUeA1t8Wre0rJ+kdaSSZ92YUk4MDik8IYQQRaAuhliD7z374Qm5YQlECXpFPzl8+DAA4P777wewti1yML9XdD759iBUXUpq/eB3c1jKrl27BloXIYUnhBCiEKTwxBp8NBt70Z0ovBLTXonBcf755wNoqrm0Ldb5w/wUTGkUJ/1+/cAPfAeaKlO+u61DCk8IIUQRqKshADR9DVRtfgoWr/TSbTT2TgyCvXv3AgB27NgBoOkLawetDl7ppWX9gN+b+rU5Ka3YOqTwhBBCFIEUngDQOu7OK7pcYmO/Tj480U+YoeSCCy4AANx1112NdT45dG7c3SDhRL1iuJDCE0IIUQR64AkhhCgCmTQFgKZ50ps0aa6kyZMJcNP33EcDz8Ug4PCEe++9t2Wdb4PetDnogediuNAdSgghRBFI4RVMbohBnaLj53QqGz+EYWpqSj1o0Xeo8NLUXJwyiHhllxsmIMpD/74QQogikMIrGKo2oNkDpsKjsqOi4+d2g32VMkkMAqYW279/f6OM7bTOwjDulofc71NCiFak8IQQQhSBuuQF4qf+Scu4pJJbXFxcs0xVoaefyXiF8HBCWKA5ZRAtFFQ8HABO68O4qp6cb5LXMhNm130edSYmJjpW8FJ4QgghikAKr0Doj0vThFHR0RdCRcfPCwsLANaqQp9KrJuelhCbhSnGAODIkSMAmtGaVDFsj/ycTg80TuTUGn2dPAfeiuPVb0oajT3sTE9PS+EJIYQQKVJ4BUI/XBpxWafouE0uOpMKT747sdUcOnQIQLPdUrX4ZUlJnWnB4W/nZz+5c2rpYYLu2dnZNftyn5MnT/a72l0jhSeEEEI4pPAKwqu1+fn5xjq+Zw+Zio/lVIVpT8pPqtlNT0uIXkJ/3t133w2gOUksrQ9slyVlWvE+u06g1YZZlOjz5HnjJLanTp3qWT03iv9vO6Gcf18IIUTR6IEnhBCiCGTSLAiaJzksgWbL9D1NFX5bmjpS8wFNCjRpbtu2TSZNsaU84AEPANBsxxsxe5UMA1i86ZfnsV3iiUHDAJvJyUkFrQghhBApUngFwEAULtn7TRUe11HZcRs/uDwdpMp1UnhiWNi7dy+AphLh4GslNu+OuuCVdALoYaGbQCQpPCGEEEWgbs8Yw94Y1RoHlfshCGkZhyywh0ybPgfspqmZOBi1pFBvMdywLVLZsb0qOcLmSK1Bw0I6YL7TpOC6UwkhhCgCKbwxhr0yKj0fnZkOHvWD0qnwfJRm6gvhe64bl+lGxOjDgedso+OaNLrfDPM1nd6bpPCEEEKIBCm8McQrO6/euD5NCO2VHKOzuGT0ZWo3Zy+anDlzpiWqU4itgGO0xPhCVbe0tNTxfUcKTwghRBFI4Y0JaQ9nPYVHlZZTePTdUdmxF8XPKX5s09LSUse2dCGEGDRSeEIIIYpADzwhhBBFIJPmmJAOMaBZ0i9p9qRJMw05pnmTZQxSoYmS+6YmS2/SXFlZkUlTCDG0SOEJIYQoAim8ESc31Q/LqOQYcMLPuYHiLOO+fqZjDS4XQow6UnhCCCGKQApvRKHiYgLodNoOnxbM+/Jy0PfmfXgkN+0PFaP8dkKIUUAKTwghRBFI4Y0oPk1YmvLLDx73aXfqyoGmz85HZ3Lyigo1AAAUkElEQVR6oDQy0/sGzUxqTwgxtEjhCSGEKAIpvBHDR2Xm/HJUZV7Btfu8ns+Oyi+d7JX+PtbBj8sTQohhQgpPCCFEEahLPiJQjVFN+WjKdtNjdOJX43FSBQe0TqCZHssnllamFSHEMCOFJ4QQogj0wBNCCFEEMmmOCByG4IcUeBNkWsYlzZHebMny3DqaJjsZgC4zphCin6T3qs2kN5TCE0IIUQRSeEOOTwSdm6bH4xUdPzMAhSouVWt1x2M5l+kA923btq05joJWhBD9IFV1fuqybpDCE0IIUQRSeENK3TCDnM+urtxP8ePTg6UDxf33cV8/iJ0+xByTk5NZH58QQvQKKTwhhBBiHaybp6SZ3Qfg9v5VR4wBl4YQzveFajuiA9R2xEbJth1PVw88IYQQYlSRSVMIIUQR6IEnhBCiCPTAE0IIUQR64AkhhCiCrsbh7dy5M+zdu7elnNlAAGBubm7NOp/lw39Oy3wOSI3pGj1OnDiBxcXFlj9ucnIyTE9PNzImcMlsLQCwZ88ebjuIqooho67t1N13RHt8QKLPmpTbrm6b9Y7dDbn7us/l2+0zoK7teLp64O3duxfXXHNNS/nNN9/ceH/TTTcBAGZmZgAA+/btAwAcOnSocYx0CTRvdFzu2LEDALB9+/ZuqieGgGuvvTZbPjU1hUsuuQTHjh0D0EyG/ZjHPKaxzZVXXgmgOUBelEVd26m774juYNIIpgfk3JppMgmfnJ4dUz7gfCKKNGGFT17hP/uHGdDs3PKan52dBdDsCPNZsB51bccjk6YQQogi6ElqsZMnTzbes9dAheenovGJjXNlMmWOHyEELC0ttSTBZo8OkLITop/QjUTVlnMd1Jk7vVrzyi/dZj2zaLuk9bnj9hIpPCGEEEXQE4W3uLjYUuYnEK1Teuk6v60YH0IIWF5ebvERyE8rxGDhvbdukmeg9R5cp7jSaXu836/ue9Nj+zr4xNDtJrreCHqyCCGEKAI98IQQQhTBpkyalK65OdK8CbPdODwfriqT5vhBk6Z3bOu/FmKw5ObD9PCe7u/xvH459ppBaOk2fltuw31Sd1ZdHfp1X9DdRgghRBFsSuFxCEIOPqG9sssFrXhnpqYsGj9CCDh37lyjx8ghCLt27drKagkhMngVmGZEAoDdu3cDWGvdo5KrG7zO50WamYv7+Ht+v6x9UnhCCCGKYFMKj0/fNLScYaXsGbAn3y5HWi5NjRg/VlZWWnpyUnhCjC6pD66dTzAlHcZ2/PhxAK0+w349C6TwhBBCFEFPBp6ndlamFPM2YJZT8eVSi+UiOMV4wbbCdqCB50KUxc6dO1vKqPT6beWTwhNCCFEEm5JSVG1cAs1oHvbc/Ta5KE329n0kkBgvzKyh3um709x3QpSLV3sLCwsA+jeBgBSeEEKIItiUwmPEHSfzBJrjMzjtCz+zR8+JXznZK9D5JH9itDGzRs+Nqj7N1CCEGD8YeemnBgNax2D7KYx6jRSeEEKIItADTwghRBFsyqR53333AQBOnTrVKKMpkyZLLlnuZ0IXZWBmmJycbJgs2C4UqCTEeOPnusu5MWjm9MPa2s3ZtxH01BFCCFEEm1J48/PzANY6GBmkwiWHJ/jUYqnjMk0mmtuGS5+uTIwOZoaZmZnGf3jw4EEA+UGoQojxgfdzWnNyVh0/3VAuBWVP6tLTowkhhBBDyqYUnh9knr5nT95PBOsnEASadlruw2EK3EfTBY0+ZoZt27Y1/v8HPehBW1wjIcSw4NWfkkcLIYQQm2BTCs/76YBWPxttsBycThttbmAhn+5c59OQ9SvdjOg/jNKkWj98+PAW10gIMaz0K4pfCk8IIUQRbErhccr2NNKOyo7jKajK+MT2E/0BTVXoozXpy6OCVHTm6MLE0RdeeCEAJY0Wmye1+MjPLzpBCk8IIUQRbErhUYGliaCp4PzYC+IjMoGmcmOvnwmmlYVjfGCUJsffCbFZpOpEt0jhCSGEKIJNKbw77rgDwNrpfejXo2rj0o+rSCM7uT/zbYrxY3JyErt379Z/LPoCLUq8rzAavJPpp2hJ8jEEYvyQwhNCCFEEeuAJIYQogp6kFkvNVJwqiGZKmjQ5DIHBKmlAisxc48/ExARmZ2cbAUlCbJZ0WIIfwsT7jDdpcrgU0AywkymzHKTwhBBCFMGmFB4TAN95552NMio5hgyzh8XeFEkHHvtUYmL84PRA55133lZXRYwJ6bAEpi6k6qsbssCgOjEa8H9Ngxw9uTSVdUjhCSGEKIJNKTyyuLjY8n7Xrl0AWntc/Jw+lU+ePAmg6e9jqrJ+JRAVg2diYgLbt2/XhK+iL/B+Qn9cN71+Mbzwf0x9sZtJMaknihBCiCLoicJL7au0uaaqD2hGTdFPl7OlU9Hxaa7UYuPD1NQUDhw4sNXVEGNOJwPNxehAy2AaSesVXjeWQCk8IYQQRdAThbewsNB478fdMaUYlR2VXjqGxq/TNEDjx/T0NC666KKtroYQYgTwSj39zPd+kvFOkMITQghRBD2P0iR86lLh0c7qJ4ZN11HpDSo600eOiv6icZZCiE7wkw2kn/26bpDCE0IIUQR64AkhhCiCnpg09+/f33j/xS9+saUMaJoPadZKA1NowkxnQe8nHDrB7xvU9wohhKiHzwk+Exj8mKam3IxrRApPCCFEEfRE2uSmfGHoqA9S8QEqQOug9H6QJpPleyk7IYQYHnzS71yASl1i8E6QwhNCCFEEPZE4qT+Ois5PE8QntR+mAAwmXD3tFShlmRg30qE1m+kBC7GV8LnAVGI5axyfLRtJUCKFJ4QQogh6ovA4FRDQVE9+8LiPtkmjbnLpxnqNphoS40zavjU1jug13lLHz6k1wcdp+Pt5LtGHP65/FtBimD4vNvOc0FNACCFEEfRE4aVP3H379gFoPpH5tPf21rRn4BNMCyG6I1V1vI6k9ESv4D2ebSvnJ/YRlXUKL6cKfcQ8v4fHzKWi3AhSeEIIIYqgJwpvfn6+8Z42V2Yz8dGZvqfg3wshNgeVne+NbybprhgfaH3rZBxyXYL9nB9tvft4N8qMx/d+QWBz08dJ4QkhhCgCPfCEEEIUQU9MmrOzs433d911F4BWUybNLEw5RpMn0JSoGjogRO/gNafrSqTQlJlLAuKhSXHQc4f6wKvNmDFTdCUIIYQogp4PSzhw4MCadT7FWA71RNfH97SE6BQFq4gc7YYJeDoZRL4R6lSmn06uV4n+9YQRQghRBD2fH+e8884D0PTVLS4uAmjtCUjNdYeUnegUH8rNdH8MR19aWtqaivUI/i4p143B88Z2kKqn3PRtQGtqyFz6sG6GMPjvqyvv9XNCTx0hhBBF0HOFx2gaphjjEzqNygTW9s7UUxt/VlZWMDc317AAiP7he+ne/8He+qimHpO1Y2P4xP1UeKmKqlNUPokBj7GRAei5ybh5nE4iR9sdbz2k8IQQQhRBzxUe2b59+5ol04/l/AfqsY0/q6urOHXqlBTeAPDjWnPpmUaZnA9P95D1oSqjtW0j6ozWAi5zVoLNpIrcSBvtJlJ0PK4AIYQQYh36pvA86SSxoneMyvi81dVVnD59euAZG0ohzUThs1L4cz0u0welvkn+FsUDtOKvOT9JNz9vhFFL/C+FJ4QQoggGpvBEb6kbJzOsrK6uNsZkio3j/XFUOTnfR132CvpyRoWJiQnMzMw0/P9UcamS5W/lbxv262GQeGVXMlJ4QgghikAPPCGEEEUgk2aP8KamfoVM05TJmeVzpht+9zAFsoQQsLy8rKCVTVIXtp0bzOvbBs19oxbYYWaN9g60JhZOoYmX5k+mOBwmfKo3mV8HhxSeEEKIIpDC6xF1veoUn+qJPW2W+/RrOTiQ3x8z7bWzV+sn391qzAxnz54FAOzYsWOLazOa+P+Sn1MF5BU+P/PcjxohBKysrDSUEdt3aiXwQzG8Eh4mpcdrlkv+L8NynY4zUnhCCCGKQApvAKwXQs7PO3fubCmjnd+HlPtj5Xw7Pvx8GHx7x48fByCF12vSlH2jPv1PHd5nl3726dT89cBtU6W3VYqKw3NorRmXRACjgBSeEEKIIpDCGyB10XG5Xqnf1is9v8xN4sgle46dREb2U/2ZGU6dOtW344vxxMwwMTHR0q7T9kyVxDL6NL11JRftSR/aoJVxuyTOoj9I4QkhhCgCKbwBwN5nne+OpDb8OiVH5UdfRM7uzx4jl+zd+kkbc2O3+oWZYXp6ulH/jUz0uFXkImB5Tkctee4owrZDdZazlHiF59Ug/69UTdVZPgat9IZpvOy4M/x3GyGEEKIHSOH1CK/icv4F9uS4jR+7l/b01htDV6f4gGbEms9q4rPApHXsd/YN+mH4e+bm5gAA+/bt6+v3bgavroGmD0h+l60jN6Gtv+58FHOuzfvIZy43ovD89yvicjiRwhNCCFEEeuAJIYQoApk0e4Q3S6apjnIO89w+OXMLqTM55uY447bpUIX0+Dmz6yBMMKlJc2FhAcBwmzR5fhSYsrWEEBrpxYDmgO30mmCb5n/lU43lUotxH27L4Qm5BPAe78Jg2jPWkdfjMKU0E1J4QgghCkEKr8fkFJfvddYprVRlcVs60DlItS6EORfw4lOL5RJNDwpO8cLfMT8/D2BtQmPNyCxyMOCJ7blumA/QvG7abZMeF2i1wNRdJ7lANP99CloZbqTwhBBCFIEUXo/JTRNEO76fuNL7GXIqzQ/Q9v6+XEJoXwefYowMshc6MTGBmZmZhqJjb/306dONbaTwRA5aB3gdeX8d0DrVlrem8HPO1+3VWfq9QH54Ci0vdapTvrvhRApPCCFEEUjhDYC6qX6odtqlTPKRZH5Aem4AdJ0K3Mo0XhMTE9i5c2fjN7MHnCaT3rNnT2NbIcjk5CR27drV8Pum5YTXEMtoLaiLxEzf+zRx3SQV8JYYMdzoziKEEKIIpPAGQNqrBFrt++3s/ZwU1keOsRfqIzGBVoXX6Zi+fkI/DH/PyZMnATQnwwSafhGOsxKCTE5ONtqOH48HtEY8U9F55ZeqQj9m1kdcjutEuiUjhSeEEKIIpPCGnFQBpezYsQNAszeaU3pkWBIdT0xMtPS00x43fTRSeE18dK5PDO4jDYHWqOBRJ4SAs2fPtkRCpr5e77PjZ6rC9FiE545jQ+nL4zlOI4jFeCCFJ4QQogik8EYU9j6p9NIxdd6fUefLGyRmhqmpqZaed+q/5JRBBw8eHHwFh4BcjlPis4KUFBW4srKC+fl57N69G0DrGLu0jNYBti9eH7nxsXxPKwrbJq8tKkplTRkfpPCEEEIUgR54QgghikAmzRHFT1mTfvYmGJrB/PCIQWJmmJ6ebtSNy9Q0RxMVTZvnnXfegGu5teRMzt50WRecNM5mtxAClpaWWgJ30mEDu3btAtBqyuQyl4KP52x2dhZA07TJIBZ+Hpdz65NW1CWZT9fxvuKDf0YVKTwhhBBFIIU3ovgw7BSfUqzdkIVBwgTSQLMXndafSrTUxLu5JMWeEgdDhxCwvLzcEoSVa9dUJGxLbG+5BOpsZ1QvVHoMWmEAzFZaRnoJf6+3suQSarMN8j6Tm6R6FJHCE0IIUQRSeCMGe6ykXaLlXCj2VuOnb0l9VOyVC5ESQljThtmu07bvrwOfJoxKJW1vVG7081HpMYn5wsICgGZChGG6jjZC3fWVqjavonluRl3ZESk8IYQQRaAu9YjgozJ9aqkcw9gj9ZF2ac/c+x7pc/AT5YqyMDOYWcPvS99amoKu7nrwaeqoWAC0TEZMhcdyH/HppycaNXxqtty0YeOi5OqQwhNCCFEEUngjhu+B5SL6cmPchgU/IWf6e7iOyk4KT6RQeXGZtgsfkcy24xNNp34sqj9GvjJKk0rSj88bdYVHeM15q1EJSOEJIYQoAim8ISBnN6dy8+OKfDRabnwMe7nDPD1Mu2mNuG6Y6y8GRwihMRYPaCquVK1RldHvRsVH9cby3JRCPhsL9/FRmtweGJ+xeaUhhSeEEKII9MATQghRBDJpDgCaUWiq8/PTtQsu8aHE3oTJZZpyatRNgSU600V7VldXG23cm/mBZgAKTZu5tFnA2mvDz47ObX0ias7DR1MqABw/fhxAuWnwRhUpPCGEEEUghddjvJpL3/vgFCq7doM9/b5+Hz9Ie5SpGxgryoapxXzbT68bqjFeB0wATdXGZbtUfGx/VIucnip3jfE4p06dWvN9arPDjRSeEEKIIpDC6zE51eYHv9b54XKTobY7LjD608X4ZNhC1MHrhm0+lyaMSotDCbitH3IAtKo9+gTp02MS6Rx+mJBXfGI4kcITQghRBFJ4PSbnw/O9QG/n91GbKT6S009kOYwJoruhnf+ynb9FlItXekAzOnNubg5AU6Wx3KcaA1qjgana/OSn9OWl2/tr1rdjKb3hRHcUIYQQRSCF1yN8bzGnXKjSchNYdgp7qooGE6WTpvdiZKX35XHsHNOEMZozZT1/OZNIp/5mP7my98N7ZSmGAyk8IYQQRSCFt0l875CqrV1CaMLeoF/m9h8Xn50QvSK9XqioOGUQP1Ph0aeW7sMoT+9b96qNvr3UikO/nt/WZ3i5//77G/vo2t16pPCEEEIUgR54QgghikAmzU2yGZMmP+fmr/NzwskcIsRa0uuF1weHKnDJIBaaNnPzL9YNF2KQSu5aZpDM/v3719TFux7SY544cWLNOjF4pPCEEEIUgRTeJmHvzw9LSHt266k1P1whfT/qU/0IMQio3PwwAAavMPAkvfZ47VLJeeuMV37pNe2nFmIaMr9tTs1J6W0dUnhCCCGKQAqvR/jeWqr46hRdTtkRKTshOscnZvfJorlM/XF+sLj32fGYfuLZdB9e2xwOwUHqVJztJmbmJLJKIjE4pPCEEEIUgXWjJMzsPgC39686Ygy4NIRwvi9U2xEdoLYjNkq27Xi6euAJIYQQo4pMmkIIIYpADzwhhBBFoAeeEEKIItADTwghRBHogSeEEKII9MATQghRBHrgCSGEKAI98IQQQhSBHnhCCCGK4P8D0zI8wt5uyekAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmUZFld57+/3Koqs/atu+kamm4WW8WtZVPURkXguCGgyBkZ6EGlXUZHxxlcBgU8uB9hEEXbjbYVBVFxY4AewLZtBRVZBaFZuummt+qqrsqqzKyqzMq888d934ibv7gvMiIzIjIi7vdzTp6X78Zbbry47737/f1+93cthAAhhBBi3JnY7goIIYQQg0AvPCGEEEWgF54QQogi0AtPCCFEEeiFJ4QQogj0whNCCFEEHb/wzOzbzOxWMztuZufM7LNm9pdm9ox+VlBsH2Z2o5kFM/ucmbW0FTN7WfV5MLOppPxOM7txE+d7RHWs65KylyfnCGZ2sWp7v2dml2/ye/2ImT17k/veYma3dbjtWN4zZvYU95ucM7OPmdnPmNkut62Z2XeZ2bvM7KSZrVTt6Y1m9rU1x/9/1XH/e4/r/QhX77q/W3p0vqur4z2vR8d7XHU/7HXlO6vz/EQvzrNVzOzZ1e/7qapeb+9i30eY2a+b2XurdhXM7NJe1W1q400AM/thAK8B8PsAfgXAIoBHAvgmAF8HoOMvJEaOJQCXAfhaAO9yn70AwFkAe1z5swCc2cS57gPwFQA+nfnsqwCsApgG8AUAXgHgy83smhDCWpfn+REAtwH4i03UsSMKuWd+GMC/ApgF8HQALwPwKMR2ATObBPBGxPbwBwBeC+AhAP8JwHcAeJeZHQghzPOAZnYM8fqgOs5relhftq+U9wC4EcANSdlm2m6OO6vzfbJHx3sc4jX+Xayv44XqPHf16Dxb5TkAvgjAPyK2jW64utr/36r9v76nNQshbPiHeCHfUvPZRCfH6NUfgB2DPF/Jf4gPgs8BeCeAG91nXwVgrdomAJjqUx1enjs+gO+pyj9/E8e8E8AfbbI+twC4rYPtxvaeAfCU6to/1ZW/vio/WK2/tFp/Ts1xngZg1pX9ZLXPW6vlY/t8bQKAV27Xteyyrt9X1ffYdtWhw3pOJP+/D8DbN7nvf6u+76W9qlunJs2DAO7PfRCS3rWZXVdJ0K+pTDcLlRnjNzKmjleY2fvN7IyZnTCzd5vZk9w2NJ0828x+x8weBPBA9dljzOwtlbnovJndZWZvdqa1I2b2W2Z2j5ldMLOPm9mLO/nC1b6vM7O7q33vNrM/NLMdyTbPMLP3VNJ7vvrOn+eOc4uZ3VZt+8Fq2w+Y2RPNbMrMft7M7jOzhyyaEOeSfWmC+QEze1X1XZfM7G/N7BGdfI8ecROA55hZ2lt7AYB/QHx5rMOcSTNpF08yszdUv/m9ZvZrZrYz2a7FpNkG9nCnk/0fb2Z/VpnMzpnZJ6rruyvZ5k4AVwD4rsSEldb1S6p2dTI5xk9mvuNTq/a7ZGb/bmbPcpsUd88gqj0AeJSZzQD4MQBvDSH8ec11uDmEsOSKXwjgo4gqnOvbgkWz2jura/khM7sA4EXVZz9afX7KzE6b2T+a2dPc/i0mTWua+h5vZv9UtZ/bzexFG9Tl+wD8ZrV6d9J2L7WMSdPMftGi+f/q6jssVffl86vPX1Sdd6H6/Ap3PjOzHzSzj1Rt5biZ3WBm+za6bqF7i0vX+5rZPlv/fH7AzG42s0e1268jkyaAfwHwQjP7DIC/CiHcvsH2fwTgTwG8DsATAPwMgDkA1yXbXA7g1YgKYg7A8wHcamZfHkL4iDveawG8DcB/AcAH5FsBnALw/QBOVMf7RlR+SYt27tsA7EJUCXcgml1+08x2hBBeW1d5MzsA4J8QH1qvBPBhAEcBPBPADIALFv0wbwXwbgDfCWA3gJ8FcJuZfWkI4Z7kkI9CNGv9HIAFAL8M4K+rv6nqunx+tc1xAC9xVfpJAB8E8F+revw8gJvN7AtDCCt136OH/Dnib/ltAP64ekl9B4D/iWie6pQ/BPAnAJ6NaIJ5OeJv+LIO9p00M6Bp0vwpxAfjvyfbPBzxOt2IaGr9QsS2dxUAPnSeBeD/AvhQdX4AeBAAzOwJiAruUwB+FLFtPhrAF7u6PBLR1PYLiG3vxwC82cyuDiF8qtqmqHum4spqeRrR/LYfsY13hJk9EcDnAfiJEMInzew9iB2TnwghrHZ6nB7zWMT78mcRVfuDVfkViGbQzyI+E54F4O1m9vUhhL/b4JiHEDuRv1od88UAfs/M/iOE8J6aff4C8fq+BMC3JvU4CWCyZh8D8GYAv4X4zPlhADeZ2RcC+EoA/wvxt34N4r35Ncm+rwbwA9XyXYj3+c8B+AIzu3YrL7Ue8euIpu+XIrpADiPWf2+7nTqVmY9BfOiH6u8E4oPraW6766rPf8uV/29E/8tjao4/ifjg/wSA1yTlT6mO9xa3/eGq/Fvb1PmnAZwH8GhX/jtV/WtNcIiNexXAl7XZ5n2ItvmppOxKACsAXpWU3VKVXZWUfWtV/3e6Y/4FgDuS9UdU230M66X+k6vy7+6V1K/5jjcC+Fz1/02oTBMAnovo29uLjMkRUfXdmGkXr3DH/1sAt2e+73VJGY/v//4DwCPb1N2qNvV8RNPrIVe/FpMmgFsB3A1nZnPb8Pd8dFJ2tGovP1XCPZOc42lVHfYC+HbEztwHqm2+s9rm6V20t9dV3/nyav366hjP6GMbrzVpAnhvVZ+2ZnPEDsNU1X7elJRfXR3/eUnZG6uyr0jKZgHMA/i1Dc6TNWkidmgCYkeBZb9YlT3XtdOAqPjnkvKXVOWXJG13DcBL3Hm+vtvfA12aNN2+tSZNxE7pz3d7zI5MmiH2Tr8MwLWIb/kPIvZo3mFmL83s8qdu/Y1Vo3gCCyqT0N+Z2UkAFxEfIo9B7OF53uLWTwL4DIBfNLPvNbNHZ/Z5BoB/BnCHRdPhVGW6eQdiD+sL2nzlpwH41xDCB3IfWjQ7XoPYuC+yPIRwB6Kj9Vq3y+0hhM8k6x+vlu9w230cwDGrpEzCn4WkRxVC+EfEXr53wLelMlNMJX91PcMcNwF4qsWIqRcgqpZunftvdesfQVRlnfAkAI8H8ETEF+4iosq9hBuY2V4z+yUz+zSiI38FsedqiEqtFovm2icDeENoNbN5PhlCaAQihBCOIyrzhydlJdwz76jqMI+oJP4O0QrQNRZdBc8D8O7QtI68CfF3bGvWzLTrTi1XnfCJEMJ/ZM75RDN7m5kdR3wprgD4auR/C8+pkCi5qr19Bp3fC93wtuQ8xxEV/m0hhMVkGz6PaK15OuI98wZ3TW9F/D1SJbhd/CuAF5vZj5vZNZaJIs/R8bCEEMJqCOHWEMJLQwhPRTQTfQTAyyoTYMoDNeuXA4CZXYNoVloA8N1oPsw+hKb5JeU+V5cA4BsQew+/AOB2M/uMmX1/stlRxB9mxf29ufr8UJuvewjxhVLHAcQGcV/ms/sRTaEpp9z6cpvyKbSaKPz1ZFm3YfkvxPprkYuGrOPdiN/3RxFviJu6PDcQI/RSLgDYkdsww7+FEN4XQviXEMKbEaMdrwTwP5JtXo/YC/41xPbxeAA/WH2Wa1cpBxDvh3a/O/HfA4jfZd05CrhnfrCqw2MB7A4hfEsI4bPVZ3dXyyvQGd+C+Bu8xcz2m9n+qvwdAJ5pLhTfcW2mzr2i5R43s6sQA7lmEc1+X4F4Hd6NjdsZ0GH76QGrIYSzrmwZ9c8jnv9otfwc1l/TZcT7td2zc1BcjxgBfT1iROcDZvYrlsQE5Nh0TyiEcK+Z/S6i/ffRiD4LcgmifyVdBwD23J6D2EN9dkh8UNVD4HTudJnzfwbACyo19CWI8vd1ZnZnCOFtiD3a4wDqxvJ8os3Xo3+jjlNVnXLjQy5FvkFvhUtqyj7Y5XH+BvHGJBc63TGEsGZmb0C0+x8HcHOX5+4pIYQHzOwEKv9a1dCfCeDlIYRGKLuZfVGHhzyFaMbZ1Ni+ThjDe+b2EML7arZ9X1WvbwHw2zXbpFDF/Ub153kuYjh+jn/D+nbdS1quI2Jnazdi9OkJFprZ7j7VYdCcrJZPQbSkeB7MlA2Uyrr0EgAvMbMrEdvHzyG6WmpjAjpSeGZ2Wc1HV1dLH432XLf+PMSHyT9X67OIZoBGYzKzr8MmJH2IfBDNnv5jq+Xbq/rdVSkD/+d7Pik3A3iCmX1JzTkXEW+y70jNglWk01ci+nl6ybenkt3MngzgGOIYoo4JIZx018AHOmzE7yO+NF8Zti+IAECjTR5G8+bbgaiMfe/+uszuFxCd9Q0qs9JtAJ5vLjpyC/XLMa73jD/HMmJQxjeb2XNy25jZN5jZrJkdRTSn/hXieE//dz/amDVDCGd9XTut5yZhtHLDnWFmj0UM1Okn7KBuuX1uwM1o+gpz7eCzGx1gkIQQ7ggh/BKA29Fsy1k6VXj/bmbvRDSp3IHopP5GRPPRn4YQ/IDHbzSzX0H14kB8496U+D3ejhh2fKOZvR7RD/HTaPZm22JmX4zYS34TovNyEvHBdhHRrADE6KLvBPAPZvZqxN7pHOIN/dUhhGe2OcWrAfxnAO80s1cimqEOIyqI76tu/J9G9En9rZm9DrHH9wpEf8avdvI9umAPgL80sxsAHEE0SX0SiVnRzH4PwAtDCL30X6yj8kttykfTA55oZquInbQrEJXmKmIEGkII82b2XgA/Zmb3Iar0FyGv2D4G4KvN7JsRH6YnQgh3Ikad/j2A95jZryKadK4C8KUhhB/qsr6l3TM5fgFRSb7J4tCPv0G0fhxDVKzPRjRjfhfis+jVIYS/z9T9DxB78lc5X/h2cTNipPQfmdlrEL/PK9D/gd8fq5Y/ZGZ/jPjbdWvl2ZAQwsfM7P8A+O3qRf4PiC/bhyPGN7w2hPBPdftXJt9rqtUDiBHW316tvzeE8LlquxcjBio9OYTwz1XZBGK7AIAvrZbfbGanAdwfQrit2u59iH7vjyKq0KcittP2iQo6iWxBvEn/GjEE93x1gg8gSsqZZLvrEHsGX4PYW1tAbOC/AWCXO+YPIT4IziE6IJ+KqIxuSbZ5CvIDXI8iZm64HVHCPoT4oHq62+4A4k18B6L9+Tjij/cjHXzno4immPuqfe+uzrkj2eYZiCrrHOKL7q8AfJ47zi1wA5XRjEb8Hlf+ciQRj8l2PwDgVYhqZgnxRXul2/dGVK6aXv0hidJss826OldldyIfpfmo3L6Z63Jd5vj8WwNwL+LD8wmZ6/o2xCEJxxFDl7+p2u8pyXZXV+1gqfosreuXVcc+Xf2uHwfw4+1+z5rvPLb3TN05atqHIUbKvhvRbLyC2JH4E8SXKBAf2p8CYDXHeEx1vpf3sn1Xx94oSvOdNZ89v7qW5xE7xM9BDDT6uGtnuSjNT9Wca8NoRkSz3b1oqv1LUR+leTGz//0AfteVPaPa/6tc+YuqdraEeE99FNE/ftkGdWQ0ae7veZntnpSU7Wyz79uT7V5VtZt5xHvmQwC+f6PrZ9XOPcHigOHXI4Y1f2qDzcUGWBxcfgeA7w0h1PkvxAije0aIwaHZEoQQQhSBXnhCCCGKoKcmTSGEEGJYkcITQghRBHrhCSGEKAK98IQQQhRBV4OUZ2dnw/79+zfesA3Mi5zmR/ZlPnfyZvyM3IfH6uQY7bbxn8n3mb8G8/PzWFpa8smve9J2xHhz+vRptR2xKerajqerF97+/ftx/fXXb75WCZOTzfzIU1OxGjMzMwCAiYmJddusrsYsVmtrG0/BVPciypWzjEse3y9z25TKhQvN9Jvnz59f99nU1BRuuimfU7qXbUeMJzfccEO2XG1HbERd2/HIpCmEEKII+pZ3cSOo2oCmoltZiXl/vbIjVFfe5Jl+RjoxZXrVVqf0NjpOSaS/ia6TEGKUkMITQghRBNum8FK8kvMBJzlFtxHtlIZXdHXKTmqllVTN8f+LFy82lrpmg4XWEFpJ0v/9fSNLhigdKTwhhBBFoBeeEEKIIhgKk6YPRuHSl+eGBtCk400xPoglHQZRF6ziPxdNcteKQUb8bGVlZeiHbaSmv40Ypu/Cek9PTwNoDuHZuXMnAGDHjh2NbTnMh/twnfA3pCsh95vSTL28vAygORxlcXGxJ99HiO1ACk8IIUQRDIXCI+xx+iCWTvbp1XYiT27wP/9n7387g1a80qGqoSLyqgfYOKNP7juzjEqICohLKqOtXIdUrbH+LONy165dAIDdu3cDAGZnZxv7UP35Jan7nkDzezGpgF9S4Z0+fbqxz/z8fDdfr2ek5923b9+21EGMFlJ4QgghimCoFJ4YXnI+PJZR3YQQBqLwUjUzNzcHoKl4uKQSovKjUuISWO/XzUG1RtUDNJXOuXPn1i2XlpbWfc5r4vcHWq0NrIevc/pd+T253Lt377ollR7QvAZUdjwu1S3Pnw4nIVTr/vtR2fFznhcA7r33XgDAyZMnMUhOnDjR+F8KT3SCFJ4QQogikMITHeEj+9L/BzVQnyom7c2zjKqIS+/jyqknKiAfxeiVa5owm0ruzJkz65ZUafQL5nyFXtn5yEvWOa0j609Fxe/O2QNYTuWXHq/Oh0dFRzWai0ati5Ame/bsafx/5MgRAM1rQ1XYL7zvWIhOkcITQghRBFJ4oiOoglJ/T0719QMqHq/m0nrV1YkqgArMT2mU7uPHf/K7ptGcPA5VFNd9FGhuvkefyo5wH79Mj+9TiHnVmPoMfRm/D8t5DXht0n1ZRrXGutIP6aNT07pQffZb4TFCNK2DEJ0ghSeEEKIIpPBER/hxbUBTBVB9LC8v98WPx2OePXt23RJoqgvWzyswP7lw6s/yfj/u4xVZqtZYRiVUF7WZKkluW5cNiMdn3VIV7cf5eYWay3ziVZnfl78b900Vmc++UufDazc5cidTc20FqtzLLrusL8cX44sUnhBCiCLQC08IIUQRyKQpuiI1afJ/muDW1tY2NXfhRtAk2O8wdJo2fdLl3GB1bkNz4cLCwrr1buA+Dz300LpzAK0D2jkMguf3A8XTbbmvH/g+6nBIhhDdIoUnhBCiCKTwREf4pMlAMziBimRtbW2kp1bKDVnYDtJhHkyQzOvOwBZukwbwCCHaI4UnhBCiCKTwREfQR5SGo9cNbB4m/GDvbiaAHSboj+NyK/D3GtVr8f73vx8AcM0112xzTUS/6NfQltFs8UIIIUSXSOGJjsipN590eGZmpi9RmiQ3ENzDevokzv2s16gxqsqOfPjDHwYghSe6Z7RbvhBCCNEhUniiI6gKUpu6V1G7du3qqXrg+D76CnNT73CMHKMYuQ+jGUddzYgmnGj20KFDANZbHTaazFeMFn1LS9eXowohhBBDhhSe6Aiqq5wvrF9RfxwXx558rhfPTCNpwmVgfXYUMR4wQpXtgdltgPWTAgtRhxSeEEKIIpDCEx1BxZTms6Tiov9sdXW1J7Z3Kkb67nh81iE9B//3k8SK8WFtbQ1nz55t5BHltEDpmEQpPNEJUnhCCCGKQC88IYQQRSCTpugITpXDJdAM/afpcWpqqicDvHkMmjBp4qRpc25urrEtt9mxY8eWzyuGk9XVVczPzzemT6LZeliSfYvtZWZmpuOAOSk8IYQQRSCFh2bwxTAmPx4WeI3ScH+qPQ4JmJiY6EnQChWeV5W5CVnF+LO2tobFxUWcOHECAHDq1CkAwLFjx7azWmJI6MaqJIUnhBCiCKTwIGW3WajsUoXXS3bt2tXT44nR5OLFizh16lRD2R04cABA03csyoTPm+np6Y5VnhSeEEKIIpDCE12RpvfyU+8oga/oB8vLy7jzzjuxuLgIoOnDve+++xrbXHnllQA0DVSJSOEJIYQQDik80RWpn45RkxwDNzk5qR626DkXLlzAHXfc0Whv9LmnaeToz9N4zHJIo7al8IQQQogEKTyxZdjT6tekjUKsra21+Ij37NmzTbURw8BmosKl8IQQQhSBXnhCCCGKQCZNsWlowuRyZWVFZk3RFyYmJloCE06ePNn4/6qrrhp0lcQ2w2dNN/NwSuEJIYQogmIUXurw5nQzUiPdw2sHtF6/c+fOrftciF4wMTGBnTt3Nu5hKr1U4YlyWVpa6vi5I4UnhBCiCMZe4bE3mIawKln05mGi6BT2rqTwRL+YmppqUXhpW+Q9rfR25XDhwoXG/1J4QgghREIxCm9lZWWbazIepL1q9qpY1k2KHyE6xczWtStaa86dO9coY29/dnZ2sJUTI4UUnhBCiCIYe4Unn1JvoIpLIzOpmlkmhSf6QQgBa2trLW0rbYunT58GIIUn2iOFJ4QQogj0whNdEUJo/F28eBEXL17ExMQEJiYmpPBEX1hbW8PS0lJjfXV1Faurq5iZmWn8nT59uqHyhKhDLzwhhBBFoBeeEEKIIhj7oBXRGziwNw0CovkyHewrk2b3TE9PA2heWyVGWE8IAefPn8fMzAyA5vyLZ86caWzDa6gB6P2B13MY0zL6YSvtkMITQghRBFJ4oiPYo0sVHnvay8vL21KnUYW9ZYbQezWSDu5fWFgYXMWGFDPD9PQ0zp8/DwDYuXMngPVK+P777wcA7N+/HwBw5MiRAddyvBlmq0M3M59L4QkhhCgCKTzRETmF58suXrw4VLb9YYH+JSpi+qJ27NixrjyXFJksLi4CGC7fyaCgwuN1YcKDtGf/wAMPAAAOHz4MANizZw+AphoUApDCE0IIUQhSeKIjOlF4mh6oCVUd0FRyVHC8blynwqNiSfdlGZdpZGIpTE1N4fDhww0VxzaW+o7p6+Q2VHgPe9jDAHTn5xGjxerqaseWD7UCIYQQRSCFJ9ri/SZpT4qRW+xpLy8vF+ljypEqXe9z8lGZ7ZIiU+1RJXK9pOmupqencezYMZw4cQJA8/qkvk5OD0Sld9dddwFoXvODBw8CkE+vdKTwhBBCFIEUnmgLe9G5LCD8n8vz58/Lh1eRu06EKoPXluPLeO1y19D/DiUxMzODyy67DB/96EcB5CNVvT+Zy1OnTgFo/gZzc3ONffg/1bMYf6TwhBBCFIEUnsiSjq0Dmn66VK141SEfXmdQ0dF3R4VBv1zqn/MqukSmp6fxsIc9rDF+kf66NPLS53rk9WJ7LPn6iSZSeEIIIYpALzwhhBBFIJOmyEKzkTep5YIxaO5UarHuOHfu3LqlyDM5OYmDBw9i7969AID5+XkA64dz0KTph3z4aa3S9jnotsp7SkEy24cUnhBCiCKQwhPrYK83VW1APmSe25Q0CFpsH0wMnQugYkCLV3oMbPFp3dKyfpLWkUqedWNKOTE4pPCEEEIUgboYYh2+9+yHJ+SGJRAl6BX95NixYwCAhx56CMD6tsjB/F7R+eTbg1B1Kan1g+fmsJTdu3cPtC5CCk8IIUQhSOGJdfhoNvaiO1F4Jaa9EoPjyJEjAJpqLm2Ldf4wPwVTGsVJv18/8APfgabKlO9u+5DCE0IIUQTqaggATV8DVZufgsUrvXQbjb0Tg2D//v0AgF27dgFo+sLaQauDV3ppWT/geVO/NielFduHFJ4QQogikMITAFrH3XlFl0ts7D+TD0/0E2YoueSSSwAA99xzT+Mznxw6N+5ukHCiXjFcSOEJIYQoAr3whBBCFIFMmgJA0zzpTZo0V9LkyQS46f/cRwPPxSDg8IQHHnig5TPfBr1pc9ADz8VwoSeUEEKIIpDCK5jcEIM6Rcf1dCobP4RhampKPWjRd6jw0tRcnDKIeGWXGyYgykO/vhBCiCKQwisYqjag2QOmwqOyo6LjervBvkqZJAYBU4sdPHiwUcZ2WmdhGHfLQ+77KSFEK1J4QgghikBd8gLxU/+kZVxSyS0tLa1bpqrQ089kvEJ4OCEs0JwyiBYKKh4OAKf1YVxVT843yXuZCbPr1kediYmJjhW8FJ4QQogikMIrEPrj0jRhVHT0hVDRcX1xcRHAelXoU4l109MSYqswxRgAHD9+HEAzWpMqhu2R6+n0QONETq3R18lr4K04Xv2mpNHYw8709LQUnhBCCJEihVcg9MOlEZd1io7b5KIzqfDkuxPbzdGjRwE02y1Vi1+WlNSZFhx+d677yZ1TSw8TdM/Nza3bl/ucOXOm39XuGik8IYQQwiGFVxBerS0sLDQ+4//sIVPxsZyqMO1J+Uk1u+lpCdFL6M+77777ADQniaX1ge2ypEwr3mfXCbTaMIsSfZ68bpzE9uzZsz2r52bxv20nlPPrCyGEKBq98IQQQhSBTJoFQfMkhyXQbJn+T1OF35amjtR8QJMCTZo7duyQSVNsKw9/+MMBNNvxZsxeJcMAFm/65XVsl3hi0DDAZnJyUkErQgghRIoUXgEwEIVL9n5ThcfPqOy4jR9cng5S5WdSeGJY2L9/P4CmEuHgayU274664JV0AuhhoZtAJCk8IYQQRaBuzxjD3hjVGgeV+yEIaRmHLLCHTJs+B+ymqZk4GLWkUG8x3LAtUtmxvSo5wtZIrUHDQjpgvtOk4HpSCSGEKAIpvDGGvTIqPR+dmQ4e9YPSqfB8lGbqC+H//GxcphsRow8HnrONjmvS6H4zzPd0+mySwhNCCCESpPDGEK/svHrj52lCaK/kGJ3FJaMvU7s5e9Hk/PnzLVGdQmwHHKMlxhequuXl5Y6fO1J4QgghikAKb0xIezgbKTyqtJzCo++Oyo69KK6n+LFNy8vLHdvShRBi0EjhCSGEKAK98IQQQhSBTJpjQjrEgGZJv6TZkybNNOSY5k2WMUiFJkrum5osvUlzdXVVJk0hxNAihSeEEKIIpPBGnNxUPyyjkmPACddzA8VZxn39TMcaXC6EGHWk8IQQQhSBFN6IQsXFBNDptB0+LZj35eWg78378Ehu2h8qRvnthBCjgBSeEEKIIpDCG1F8mrA05ZcfPO7T7tSVA02fnY/O5PRAaWSm9w2amdSeEGJokcITQghRBFJ4I4aPysz55ajKvIJrt76Rz47KL53slf4+1sGPyxNCiGFCCk8IIUQRqEs+IlCNUU35aMp202N04lfjcVIFB7ROoJkeyyeWVqYVIcQwI4UnhBCiCPTCE0IIUQQyaY4IHIbghxR4E2RaxiXNkd5syfLcZzSQ2RKvAAAUBUlEQVRNdjIAXWZMIUQ/SZ9VW0lvKIUnhBCiCKTwhhyfCDo3TY/HKzquMwCFKi5Va3XHYzmX6QD3HTt2rDuOglaEEP0gVXV+6rJukMITQghRBFJ4Q0rdMIOcz66u3E/x49ODpQPF/fm4rx/ETh9ijsnJyayPTwgheoUUnhBCCLEB1s1b0sweBPDZ/lVHjAFXhBCO+EK1HdEBajtis2TbjqerF54QQggxqsikKYQQogj0whNCCFEEeuEJIYQoAr3whBBCFEFX4/BmZ2fD/v37W8qZDQQA5ufn133ms3z49bTM54DUmK7R4/Tp01haWmr54SYnJ8P09HQjYwKXzNYCAHv37uW2g6iqGDLq2k7dc0e0xwck+qxJue3qttno2N2Qe677XL7dvgPq2o6nqxfe/v37cf3117eU33bbbY3/b731VgDAzMwMAODAgQMAgKNHjzaOkS6B5oOOy127dgEAdu7c2U31xBBwww03ZMunpqZw+eWX4+TJkwCaybAf97jHNba59tprATQHyIuyqGs7dc8d0R1MGsH0gJxbM00m4ZPTs2PKF5xPRJEmrPDJK/y6f5kBzc4t7/m5uTkAzY4w3wUbUdd2PDJpCiGEKIKepBY7c+ZM43/2Gqjw/FQ0PrFxrkymzPEjhIDl5eWWJNjs0QFSdkL0E7qRqNpyroM6c6dXa175pdtsZBZtl7Q+d9xeIoUnhBCiCHqi8JaWllrK/ASidUov/cxvK8aHEAJWVlZafATy0woxWPjsrZvkGWh9BtcprnTaHu/3qztvemxfB58Yut1E15tBbxYhhBBFoBeeEEKIItiSSZPSNTdHmjdhthuH58NVZdIcP2jS9I5t/dZCDJbcfJgePtP9M573L8deMwgt3cZvy224T+rOqqtDv54LetoIIYQogi0pPA5ByME3tFd2uaAV78zUlEXjRwgBFy9ebPQYOQRh9+7d21ktIUQGrwLTjEgAsGfPHgDrrXtUcnWD1/m+SDNzcR//zO+XtU8KTwghRBFsSeHx7ZuGljOslD0D9uTb5UjLpakR48fq6mpLT04KT4jRJfXBtfMJpqTD2E6dOgWg1WfYr3eBFJ4QQogi6MnA89TOypRi3gbMciq+XGqxXASnGC/YVtgONPBciLKYnZ1tKaPS67eVTwpPCCFEEWxJSlG1cQk0o3nYc/fb5KI02dv3kUBivDCzhnqn705z3wlRLl7tLS4uAujfBAJSeEIIIYpgSwqPEXeczBNojs/gtC9cZ4+eE79ysleg80n+xGhjZo2eG1V9mqlBCDF+MPLSTw0GtI7B9lMY9RopPCGEEEWgF54QQogi2JJJ88EHHwQAnD17tlFGUyZNllyy3M+ELsrAzDA5OdkwWbBdKFBJiPHGz3WXc2PQzOmHtbWbs28z6K0jhBCiCLak8BYWFgCsdzAySIVLDk/wqcVSx2WaTDS3DZc+XZkYHcwMMzMzjd/w8OHDAPKDUIUQ4wOf57Tm5Kw6frqhXArKntSlp0cTQgghhpQtKTw/yDz9nz15PxGsn0AQaNppuQ+HKXAfTRc0+pgZduzY0fj9H/nIR25zjYQQw4JXf0oeLYQQQmyBLSk876cDWv1stMFycDpttLmBhXy78zOfhqxf6WZE/2GUJtX6sWPHtrlGQohhpV9R/FJ4QgghimBLCo9TtqeRdlR2HE9BVcY3tp/oD2iqQh+tSV8eFaSiM0cXJo6+9NJLAShptNg6qcVHfn7RCVJ4QgghimBLCo8KLE0ETQXnx14QH5EJNJUbe/1MMK0sHOMDozQ5/k6IrSJVJ7pFCk8IIUQRbEnh3XXXXQDWT+9Dvx5VG5d+XEUa2cn9mW9TjB+Tk5PYs2ePfmPRF2hR4nOF0eCdTD9FS5KPIRDjhxSeEEKIItALTwghRBH0JLVYaqbiVEE0U9KkyWEIDFZJA1Jk5hp/JiYmMDc31whIEmKrpMMS/BAmPme8SZPDpYBmgJ1MmeUghSeEEKIItqTwmAD47rvvbpRRyTFkmD0s9qZIOvDYpxIT4wenB9q3b992V0WMCemwBKYupOqrG7LAoDoxGvB3TYMcPbk0lXVI4QkhhCiCLSk8srS01PL/7t27AbT2uLievpXPnDkDoOnvY6qyfiUQFYNnYmICO3fu1ISvoi/weUJ/XDe9fjG88HdMfbFbSTGpN4oQQogi6InCS+2rtLmmqg9oRk3RT5ezpVPR8W2u1GLjw9TUFA4dOrTd1RBjTicDzcXoQMtgGknrFV43lkApPCGEEEXQE4W3uLjY+N+Pu2NKMSo7Kr10DI3/TNMAjR/T09O47LLLtrsaQogRwCv1dJ3/+0nGO0EKTwghRBH0PEqT8K1LhUc7q58YNv2MSm9Q0Zk+clT0F42zFEJ0gp9sIF33n3WDFJ4QQogi0AtPCCFEEfTEpHnw4MHG/5/+9KdbyoCm+ZBmrTQwhSbMdBb0fsKhEzzfoM4rhBCiHr4n+E5g8GOamnIrrhEpPCGEEEXQE2mTm/KFoaM+SMUHqACtg9L7QZpMlv9L2QkhxPDgk37nAlTqEoN3ghSeEEKIIuiJxEn9cVR0fpogvqn9MAVgMOHqaa9AKcvEuJEOrdlKD1iI7YTvBaYSy1nj+G7ZTIISKTwhhBBF0BOFx6mAgKZ68oPHfbRNGnWTSzfWazTVkBhn0vatqXFEr/GWOq6n1gQfp+Gf57lEH/64/l1Ai2H6vtjKe0JvASGEEEXQE4WXvnEPHDgAoPlG5tve21vTnoFPMC2E6I5U1fE+ktITvYLPeLatnJ/YR1TWKbycKvQR8zwPj5lLRbkZpPCEEEIUQU8U3sLCQuN/2lyZzcRHZ/qegv9fCLE1qOx8b3wrSXfF+EDrWyfjkOsS7Of8aBs9x7tRZjy+9wsCW5s+TgpPCCFEEeiFJ4QQogh6YtKcm5tr/H/PPfcAaDVl0szClGM0eQJNiaqhA0L0Dt5zuq9ECk2ZuSQgHpoUBz13qA+82ooZM0V3ghBCiCLo+bCEQ4cOrfvMpxjLoZ7oxvielhCdomAVkaPdMAFPJ4PIN0OdyvTTyfUq0b/eMEIIIYqg5/Pj7Nu3D0DTV7e0tASgtScgNdcdUnaiU3woN9P9MRx9eXl5eyrWI/i9pFw3B68b20GqnnLTtwGtqSFz6cO6GcLgz1dX3uv3hN46QgghiqDnCo/RNEwxxjd0GpUJrO+dqac2/qyurmJ+fr5hARD9w/fSvf+DvfVRTT0ma8fm8In7qfBSFVWnqHwSAx5jMwPQc5Nx8zidRI62O95GSOEJIYQogp4rPLJz5851S6Yfy/kP1GMbf9bW1nD27FkpvAHgx7Xm0jONMjkfnp4hG0NVRmvbZtQZrQVc5qwEW0kVuZk22k2k6HjcAUIIIcQG9E3hedJJYkXvGJXxeWtrazh37tzAMzaUQpqJwmel8Nd6XKYPSn2T/C6KB2jF33N+km6ub4ZRS/wvhSeEEKIIBqbwRG+pGyczrKytrTXGZIrN4/1xVDk530dd9gr6ckaFiYkJzMzMNPz/VHGpkuV35Xcb9vthkHhlVzJSeEIIIYpALzwhhBBFIJNmj/Cmpn6FTNOUyZnlc6YbnnuYAllCCFhZWVHQyhapC9vODeb1bYPmvlEL7DCzRnsHWhMLp9DES/MnUxwOEz7Vm8yvg0MKTwghRBFI4fWIul51ik/1xJ42y336tRwcyO+Pmfba2av1k+9uN2aGCxcuAAB27dq1zbUZTfxvyfVUAXmFz3Ve+1EjhIDV1dWGMmL7Tq0EfiiGV8LDpPR4z3LJ32VY7tNxRgpPCCFEEUjhDYCNQsi5Pjs721JGO78PKffHyvl2fPj5MPj2Tp06BUAKr9ekKftGffqfOrzPLl336dT8/cBtU6W3XYqKw3NorRmXRACjgBSeEEKIIpDCGyB10XG5Xqnf1is9v8xN4sgle46dREb2U/2ZGc6ePdu344vxxMwwMTHR0q7T9kyVxDL6NL11JRftSR/aoJVxuyTOoj9I4QkhhCgCKbwBwN5nne+OpDb8OiVH5UdfRM7uzx4jl+zd+kkbc2O3+oWZYXp6ulH/zUz0uF3kImB5TUctee4owrZDdZazlHiF59Ugf69UTdVZPgat9IZpvOy4M/xPGyGEEKIHSOH1CK/icv4F9uS4jR+7l/b0NhpDV6f4gGbEms9q4rPApHXsd/YN+mH4febn5wEABw4c6Ot5t4JX10DTByS/y/aRm9DW33c+ijnX5n3kM5ebUXj+/Iq4HE6k8IQQQhSBXnhCCCGKQCbNHuHNkmmqo5zDPLdPztxC6kyOuTnOuG06VCE9fs7sOggTTGrSXFxcBDDcJk1eHwWmbC8hhEZ6MaA5YDu9J9im+Vv5VGO51GLch9tyeEIuAbzHuzCY9ox15P04TCnNhBSeEEKIQpDC6zE5xeV7nXVKK1VZ3JYOdA5SrQthzgW8+NRiuUTTg4JTvPB7LCwsAFif0FgzMoscDHhie64b5gM075t226THBVotMHX3SS4QzZ9PQSvDjRSeEEKIIpDC6zG5aYJox/cTV3o/Q06l+QHa3t+XSwjt6+BTjJFB9kInJiYwMzPTUHTsrZ87d66xjRSeyEHrAO8j768DWqfa8tYUrud83V6dpecF8sNTaHmpU53y3Q0nUnhCCCGKQApvANRN9UO10y5lko8k8wPScwOg61TgdqbxmpiYwOzsbOM7swecJpPeu3dvY1shyOTkJHbv3t3w+6blhPcQy2gtqIvETP/3aeK6SSrgLTFiuNGTRQghRBFI4Q2AtFcJtNr329n7OSmsjxxjL9RHYgKtCq/TMX39hH4Yfp8zZ84AaE6GCTT9IhxnJQSZnJxstB0/Hg9ojXimovPKL1WFfsysj7gc14l0S0YKTwghRBFI4Q05qQJK2bVrF4BmbzSn9MiwJDqemJho6WmnPW76aKTwmvjoXJ8Y3EcaAq1RwaNOCAEXLlxoiYRMfb3eZ8d1qsL0WITXjmND6cvjNU4jiMV4IIUnhBCiCKTwRhT2Pqn00jF13p9R58sbJGaGqamplp536r/klEGHDx8efAWHgFyOU+KzgpQUFbi6uoqFhQXs2bMHQOsYu7SM1gG2L94fufGx/J9WFLZN3ltUlMqaMj5I4QkhhCgCvfCEEEIUgUyaI4qfsiZd9yYYmsH88IhBYmaYnp5u1I3L1DRHExVNm/v27RtwLbeXnMnZmy7rgpPG2ewWQsDy8nJL4E46bGD37t0AWk2ZXOZS8PGazc3NAWiaNhnEwvVxubY+aUVdkvn0Mz5XfPDPqCKFJ4QQogik8EYUH4ad4lOKtRuyMEiYQBpo9qLT+lOJlpp4N5ek2FPiYOgQAlZWVlqCsHLtmoqEbYntLZdAne2M6oVKj0ErDIDZTstIL+H39VaWXEJttkE+Z3KTVI8iUnhCCCGKQApvxGCPlbRLtJwLxd5u/PQtqY+KvXIhUkII69ow23Xa9v194NOEUamk7Y3KjX4+Kj0mMV9cXATQTIgwTPfRZqi7v1LV5lU0r82oKzsihSeEEKII1KUeEXxUpk8tlWMYe6Q+0i7tmXvfI30OfqJcURZmBjNr+H3pW0tT0NXdDz5NHRULgJbJiKnwWO4jPv30RKOGT82WmzZsXJRcHVJ4QgghikAKb8TwPbBcRF9ujNuw4CfkTL8PP6Oyk8ITKVReXKbtwkcks+34RNOpH4vqj5GvjNKkkvTj80Zd4RHec95qVAJSeEIIIYpACm8IyNnNqdz8uCIfjZYbH8Ne7jBPD9NuWiN+Nsz1F4MjhNAYiwc0FVeq1qjK6Hej4qN6Y3luSiGfjYX7+ChNbg+Mz9i80pDCE0IIUQR64QkhhCgCmTQHAM0oNNX5+enaBZf4UGJvwuQyTTk16qbAEp3poj1ra2uNNu7N/EAzAIWmzVzaLGD9veFnR+e2PhE15+GjKRUATp06BaDcNHijihSeEEKIIpDC6zFezaX/++AUKrt2gz39vn4fP0h7lKkbGCvKhqnFfNtP7xuqMd4HTABN1cZlu1R8bH9Ui5yeKneP8Thnz55ddz612eFGCk8IIUQRSOH1mJxq84Nf6/xwuclQ2x0XGP3pYnwybCHq4H3DNp9LE0alxaEE3NYPOQBa1R59gvTpMYl0Dj9MyCs+MZxI4QkhhCgCKbwek/Ph+V6gt/P7qM0UH8npJ7IcxgTR3dDOf9nO3yLKxSs9oBmdOT8/D6Cp0ljuU40BrdHAVG1+8lP68tLt/T3r27GU3nCiJ4oQQogikMLrEb63mFMuVGm5CSw7hT1VRYOJ0knTezGy0vvyOHaOacIYzZmykb+cSaRTf7OfXNn74b2yFMOBFJ4QQogikMLbIr53SNXWLiE0YW/QL3P7j4vPTohekd4vVFScMojrVHj0qaX7MMrT+9a9aqNvL7Xi0K/nt/UZXh566KHGPrp3tx8pPCGEEEWgF54QQogikElzi2zFpMn13Px1fk44mUOEWE96v/D+4FAFLhnEQtNmbv7FuuFCDFLJ3csMkjl48OC6unjXQ3rM06dPr/tMDB4pPCGEEEUghbdF2PvzwxLSnt1Gas0PV0j/H/WpfoQYBFRufhgAg1cYeJLee7x3qeS8dcYrv/Se9lMLMQ2Z3zan5qT0tg8pPCGEEEUghdcjfG8tVXx1ii6n7IiUnRCd4xOz+2TRXKb+OD9Y3PvseEw/8Wy6D+9tDofgIHUqznYTM3MSWSWRGBxSeEIIIYrAulESZvYggM/2rzpiDLgihHDEF6rtiA5Q2xGbJdt2PF298IQQQohRRSZNIYQQRaAXnhBCiCLQC08IIUQR6IUnhBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUgV54QgghikAvPCGEEEXw/wEFTx+xW19p+wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1436,7 +1448,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0Zddd3/nd79VcKpWkQlUqSZbkKWCbtptuSAg0MbAMMW7GrCziACEGuzGBJCQdd0IcBgNmDIOBGENjghtinMU8tzGBmCEOgTSDbcA2llSlkqoklUpVUqkGVdV7p/8493vP733Ob593b1m2pLz9Xeut++655+x57/Obf6XrOjU0NDQ0NPyPjpUnuwENDQ0NDQ0fCbQXXkNDQ0PDlkB74TU0NDQ0bAm0F15DQ0NDw5ZAe+E1NDQ0NGwJtBdeQ0NDQ8OWwFP6hVdKeUUppZv9/bXk9xeH318Srr+llHLkKus8Ukp5S/j+qaEO/91fSvn1Uspfv8o6Pr+U8n9e5bOvm7Vh2yb33YE2Pz5r92+VUv5ZKWVf8syGvi/YnleUUr68cr0rpdyxTHlPRczW071PdjuWQZj/VzzZbckwG1Puq+zvU5+g+v5jKeV9T0RZs/JeU0r53OT6d5RSLj5R9XwoKKW8tJTyU6WUu0opF0opHyyl/GAp5cACzz5/du97SymPlVKOl1J+oZTygo9E2z9cmDw0n0I4K+kfSPp6XP+Hs994eH+LpO+/yrq+QNKjyfV/KumPJBVJt0r6V5L+UynlRV3X3b1kHZ8v6SWSvvcq27gMvl3SL6uf64OS/pakb5b0NaWUv9113QfCvbW+T+EVs7L/Pa7/mqS/KenEVbS54UPHCfXjf+eT3ZAKvkXSD4fvr5L0Skn/m6S1cP0vnqD6vk7S3ieoLEl6jaRfVb+3It4o6eefwHo+FHyVeqbmmyQdkfQxs/8/s5TyP3ddd2Hi2Zepn4sfk/Snkg6oP/P+sJTyiV3XvefD2fAPF54uL7yfl/QlpZRv6Gae8qWU3ZL+rqSfU3/oztF13VVv8q7r/qTy0192XfcH/lJK+RNJfyXppZLedLX1fQRwV2y3pJ8vpbxR0rsk/cxs4XfSZN+XRtd1JyWdfKLKeyJRSlmVVLquu/Jkt2VRlFK2S7rSLRgpouu6xyX9waY3PkmY7dH5Pi2lvHT2739bZF5KKTtnfVy0vg8u38rl0XXdMUnHPhJ1LYBXzvah8TullLsl/YZ64vanJp59S9d13x0vlFJ+W9JRSf9E0lc80Y39SOApLdIM+ElJt6unOIwvUN/+n+PNFGkG8c6rSynfXEo5UUo5U0r5lVLKrXh2UbGeOaHt4dkbSyk/Ukr5QCnlfCnl2EykcEtsm3rO9JYgtjmCMn5o9uzjs8+fLKXsRP3PLKX82kzccLSU8g2llIXms+u6v5L0ekkvlPTpU30vpTxzVv/9s/bcVUr5/tlv75T0YkmfHPryztlvI5FmKWV7KeX1s3ouzT5fPzvMfc8yc/XyUspvl1JOzsbhT0op/5D9nZX3raWUr51t+EuSPmHWhq9J7n/dbP6uX2Q8w3NfUUr5s1LKxVLKQ6WUHyul3IB7/nEp5b+WUh6e9esPSin/O+7xGHxVKeW7SinHJT0u6bowrp9YSnlrKeXRmbjpB0opu5IyXhGuvaWUcm8p5eNKKb836+NflVK+MunLS2bjebH0orBXcV99pFB60VxXSvmcWRtOqT94VUr5mNk4HCm92O7O0ovirkUZG0Sas+e6UsqXlVK+fba+T5dSfrGUcniT9twv6ZCkV4Z1/8Oz3zaINEspu2a/f/1s/R0rpZwrpfxSKeWGUsrhUsrPz+bxaCnlnyf1PWfW/odm8/H/cc1kwMvO+KPZ5y3Jb/HZh5JrD0u6i8+WXrz7vtn4P1xK+cNSymdv1r4nA08XDu+opN9VL9b8vdm1L5X0C5IeW6Kcf62es/ly9eK975H0HyR96gLPrpReb2aR5rdJOi/pV8I9N0i6OKvnpKSbJf0LSf+llPIxXdddVC/KuVHSJ0iyDuBxSZodsO+alfN6Se+etfPzJO3wfTP8gqQfl/R9kj5Hvaji2OzaIvh1SW+Q9MmSfiu7oZTyTEl/OOvnN6jnaG+T9JmzW75K/fitSnr17NqUSPT/kfSF6sfu9yV9kqR/I+lZkr4I9y4yV8+S9LOSvkPSunpx7ZtLKbu7rvthbcQr1G/W10g6N/v/F9VTqnPxd+m5v1dK+umu605P9GUDSinfoX6uf0DS/6X+UHi9pI8tpXxS13UW090h6c3qRUzb1M/dr5ZSPqvrurej2H+j/oD6CvVjHHVDPynpbZL+jnrR5esknZb0jZs09Vr1lP0b1Iu2v0zSm0op7++67j/P+vJ89SLpP5T0cvVr7+sl7Vc/zk8Wflj9fvv7kvxyv0X9XP60pDOSnqN+3P4nLbavv1HS76hfH7dI+m5Jb5H0tyeeeZmk31S/hr99du2BTep5laQ/Ub9PblW/b98i6Sb1EqwfUr8HvreU8mdd1/22JJVSniXpv6nf2/9U0ilJXyLpl0spL+u67jcW6GPEi2eff7nkcyqlHFIvFv3NcO2V6vfz6yT9V0l7JL1I/Rn21EPXdU/ZP/WLsFO/iL9c/YbeJemwpCuSPkP9ou4kvSQ89xZJR8L3O2b3vBPlv2Z2/eZw7Yh6dt7fXT7/zkh62SbtX5X0jNn9X4D23Zvc/83q9RcfN1Hm62blfRmuv0fSO5I+v6pSzs7Z72+a6PtPqCcobp5ozzsl/f7E3N0x+/6xs++vw31fN7v+wmXnCr+vqH+B/KikP8NvnaTjknbjuuf2U8K1z51d+8TN5gtjvSbpG3D9k2dlff4mbX6HpF9K5u6P1Ytes3H9Jlz/VUkfSMp4BfrRSfo0rINTkv7vcO2n1BNse8K1w+pfuEdq4/Ch/IV1vS357aWz3962QDnb1OvHO0nPC9f/o6T3he8fM7vnNyrr8YZN6rlf0puT698h6WL4vmtW3nskrYTrPzS7/ppwbYf6My7uybfO1u5+1PO7kv5gyTG+Tr0Y+U9jW5Z4/ufUnwe3h2tvlvSuD8ea+HD8PV1EmpL0M+o35+dI+mL1Cy7lTCbw6/huxettCzz71eq5sk9QT+G9Xb0O7MXxplLKP5qJtR5T/1K+Z/bTRy9Qx2dK+qNuMV3ar+H7e7VYP4wy+5zSCX2mpF/tuu74EuXW8Ldmn/8B1/39xbi+6VyVUp5bSnlbKeU+SZdnf69SPtZv76Ck77runeqNIl4dLr9a0ru7jXrPzfAZ6l9eby2lbPOfesr8rIa+q5Tyv5ZSfrWU8oD69XF59nzW5l/sZqdKAs7/e7TY/J/vZpycNNf1fQDPfqKkX++67ny474R6jnsSpZTVOAZlQTH7gviFpL5dM3Hh+2eixMsaOJBF9lw2jtJye2kRvKPrusgdW7w659C6rrsk6W71RLLxUvVc7TmsrXeoF8vv0gIopexQzwUfkPT30ZZFnv8m9dKEV3dddzT89EeS/kYp5ftKKZ9eetuKpyyeNi+8ruvOqhdB/QP14sy3Ljtpkh7Gd4sIF1k0H+i67r/P/v5f9WKVuyR9l28opfwT9ZTbf1K/OP66+sNj0ToOSFrU/D3ry0KLfwZvqikrymXasxks4mB99+N3Y3KuSinXqD/YXiTpayV9inpi5N+rJ4yIWj/fJOnvllIOlFJuV3/AUBy6GQ7OPj+o4cXrv33qx1GllGeoJ9JuUK/4/6RZm9+ufO6m5iYbn6zfRCam5do5LOnB5L7NxHZS37/Y/29Y4JlFkY3H96jnyt4i6bPU77mXz35bZD98KGfCMuC4X5q47jW+qn6tfIXG6+pb1J/fm+qZZ+X8lHobiM/pum4pcWYp5Z+pn8fXdF33Vvz8o+pFrZ+i/tx7uJTyMwX69qcKni46POMn1FNkK+pfOE8auq7rSil/qZ7jNF4u6be6rvsXvjDTgy2Kh7SJMvkJhJXevz9xzxPZHh8sN2mjqfxN+H1R/E31hkyf0nXdvA+l7p9Y45R+Qr0e5hXqD4/z6sVIy+DU7PMzlb9Q/PtL1evBvrDrujkhUUrZUyn3ycrddULDSzzi0ALPvlob3YSeCOmAkY3H35P0o13XWZemUspHPYF1Pmnoum6tlPKI+jPv+yq3jYxLIkopRT0R+LmSPq/rut+buj95/lWzur+167rvSdq4rt4V442l9+97qXoi5K0aS22edDzdXni/qZlyuuu6P38yGzIT1bxAG03v92hstPFlyeOPS8pY/3dI+rrS+/b92RPS0ASllOeqp4r/RL0OroZ3SPo7pZTDM5FWhsc19oPM8Luzz5dL+tZw/Ytnn1PtyOCXxGVfmBn9fN4yhXRd92gp5a3qD+pr1OuJlvVF/E31xhy3dV33mxP3ZW3+a+p1fU8lx/Y/kPSyUsoeizVnloufrE38Kruue/9HoH2S5of5boXxnCHbc080anv4icbb1Usx3tMt4YYR8O/U77EvmkmmFkYp5eWSfkTSD3Zd93Wb3d913Sn1Yv1PVk+IPOXwtHrhdb2l25PF2T1vppeTeivLL5X0fEn/Mtzzdkn/qpTyWvUWbp+u3leQ+AtJN5RS/pGk/65eyf0e9ZTUF6l3aH+9en3CR6k/xL9yJtZdFs8qpXyiegOaG9VTXa9UTxl+4YSOSOot2F4m6V2llG9TL7K7RdJLu677ktCXryql/D31nNvZ7NDruu69pZS3SXrdjAt7l3ou7evVv2SWdWR9l3ri4o2llG9U71T8dbN+7V+yrB/SoMeriTN3l1Kyufxg13V/Wkr5Tkn/rpTy0eqt/i6qFxt/hnrjhv+sXuRzRdJPlFK+R73o8JvU63mfSuqF16tft79RSvlu9aLSr1cv0nwyrTQ3YCZleYekV5Xe5eCI+oP2f/kIVP8Xkj6tlPIy9eLfB7uuu2eTZ64Gr1WvC35nKeWH1K+V69W7FN3cdd3IpcSY7YuvUr+m75mdA8YD3SxgRuldns5J+pGu6756du0l6qUffyTpbXj2ggny0rsxnVRPJJ1Ubwz0cgXd5FMJT6sX3pOMHwj/n5b0fvVU09vC9W9Wbwn1z9XL4X9HvXnzXSjrzep1e982u/+oemvGMzPq6PXq9VIH1B8yv61B5r8s/vXs7/Ks3X+uXh7/Y5u9QLuuOzJb6K9XL/a7RtJ9kn4p3Pad6o0D3jz7/XdUNwd/hfqx+HL1L6fjs+e/adlOdV13spTyBerFJz87K+v71es8NjPNZ1nvLqV8QNKjXdf9ceW2G9QbThFvlPSPu6577UzE/dWzv069KflvqXfnUNd1f15K+WL16+SX1RMIX6teDPSpy7T5w4mu6/5i5uf1b9VLVO5TP08vVW/9+VTCV6rnYr5T/cv4V9QTo//lw1zvv1T/IvlZ9Zzej8za8oSi67q7Sikfr96K9TvVE8APqSeGN3NB+qzZ51cmbYvtLeoJ4tXw+0vU+xj/DY2Nld6v/sUm9SqRL1W/t/ep34c/pqvY0x8JlGkCv6Hhf3zMuLK/lPR/dF33Y092e56KmBkJfVDSr3Vd98onuz0NDVeD9sJr2LKYWZI9Rz01+hxJz6HrwlZFKeUH1VP2x9UHUPgaSR8n6RO6rnv3k9m2hoarRRNpNmxlvEq9ePcD6sXT7WU3YJd6Edoh9eL0P1Qf3KG97BqetmgcXkNDQ0PDlsBTyTKsoaGhoaHhw4b2wmtoaGho2BJoL7yGhoaGhi2BpYxWdu3a1e3du9dRsrVjxw5J0srK8N7cti0vsg+KkGPqt+z3TO+4yD018F5/z9rla5uVH3/nvZv1NytnfX19sq1T9W12PWtTbQyytq+urs4/H374YT322GOjm/bv398dOnRIV670uT0vXerdCt2vrH1eVy6f16f6scwY1+q/mnuy+aiNIe+dWlv87Yns3zJ7JauX/fCcrq31GZE857EenxPbt/epEKfWzr59+7oDBw7M593l+VOSLl++vKFOtmlqXq7GjmGzZxeZp6uZwxo8NrFMlj+1b4jN2pb1u9bnuMc3e5bfszJ9Hvja6uqqHn30UV24cGHTAV3qhbd792592qd92vz7bbf1AcWvv36IX3rttdduaIxfiu40Oy9Je/bs2fCMETskDYs5vlS90D0wvtffvSli2dw4vNf1TB3utUPLZbtd8X+XG18Q8TMuSG5cvyAuXuxTovFQ8WfWD/ZvkUOZ85S9fDwPLufw4cP6vu/LQ/4dPHhQb3jDG3TfffdJko4d65NCnz07+L57rRjXXHONJGn//j5wig9Hf8Zn2L7aho199jPuK7/HMTV4jd/9bJx/voS5RjjWcYzZJrffY5AddKyX9XD9xz7wnkVetH7m/Pk+ucKFC72x6yOPPCJJOnWqDyXqtStJe/fulSQ94xl9DPNDhw7pu75rHod9A2644Qa99rWvnZ8Tjz3WBzy6554hsMmJEyc21OF7SFhlL13f4z7zRc2xjuPAMeY4TR3ULMv1xPngHjPcNrdp586dG+qI/3PfuEzXE/cd11ftLMxeWh4D9v3xx/uIaNm+8jXPgdvmNeTrsV/XXXfdhr7v27dPP/dzozzgKZpIs6GhoaFhS2ApDq/rOl26dGlEIUSOq0ZFGlMUKakZUpeZuJQUMKmIjNLivbXPjCvMqH5pzFlOiX5chsvk9awN5A78uym7SD1PUYzxWVNPsf3kPjhfGYdunD17tjo+Xdfp4sWLcy7g0Uf7+Mym/mIbapSw2xLXga+ZSiWXaGTt5vjzuxH7RI6aVC25eGksZeD8sP4IinN5r3+f2htuI7kCw9R01n7uyci5LopsXL1ez507t9DzXucRsS2eX3Ktvsf9ievAbeCapQSEZUXUJD4ZahIr7rE45xQTR+lGVnbsn++ttS1bbzw3PZ618y2WyXU+9Z4wXK7PInKYPh9iPfHcknppwaJi6cbhNTQ0NDRsCSzN4V25cmWSgyCltXt3n0GD1ER825MqJxXjsjLOK7ZNGlMiU7JmUv01/UV2Lyl6IpP3k2JkW+Mz5Iw5BqT8sjHxuNZ0FLFPno9aP309zlum36npztbX13Xx4sW5XsdcRZwfckuE18WuXUNuTv/vdUauqcYpZ/eSE8n0zqY43VZzCTWDjQhy6cYiFDDXpD/N+WScbU0nybZG7slrxdc4JubQY/9q0oApAyLXYx3uhQsXqtKDUop27tw5GrcoHeDeoi4142a8Bjfj7LkXY/lGzc4gzim59dr+nzJa4ielX5lenucNubbYF9ob1Li2TFpAfRvHKJN+kFtjfe5PnGuvda/RZYx/GofX0NDQ0LAl0F54DQ0NDQ1bAksHj+66bqRcjWxtTQFPVtwiKGkseqMIgaLGKE5hW2ruApHVJ2tv1NwV+H9WRk1sGf9nW9xfioj5fPadYt9M1EizZF+ngjiWT8OQKd8njvna2lpVeWyRZjSuic/GNlBE4bZ4zdhdQepNkqXBzD1bk7XrFodS1GKxDk3NpUGkR2OLzMS/Boq2DM5TvMbfvGdsqh/3E/tOUSPNxKMxBkVMhvvl8Y6GLhZLem49RjUDm1iP3QcuXLhQXTsrKyvas2fPaL/EtVgT+VO8FsVsNVcpr7eaCDBe82fNuCf2yevNn3QTyM5Onn21McoMvbxGsvMsIo4jxd+ul2czz7Ssz+4nx8SuaxE8Nxfxp40qgkXFmo3Da2hoaGjYEliawyuljCiFLFpGTWFuSjSj9kw1mgIlVUsz13iP63X5pm5MbWam7KToSV3EemrK4ZohQGbC7LZa2UqqNI4JjUTcH5oFU4kc/6czJ6neKWU8zdL9GTk099H9unjxYtXwYH19XefPn580DCLn47k0RWiHU39KA8dhTsflmrqk8UXmalJTnHsdxnXAeXB/PC5+JjNaqhl1cN1lBl3un+tjvyPX6+dZHjk81xvnlMYKNTP/WB/HIDNIivXHsYjGP7W1Yw6PbgSZBIZr3OPDOZXGHAhN4im1iXNac7vifoxjy/3IZzIsGlnHYxINkMhBcu9lEgX/xnVcc6HK1irXF8/OuJ9q0V+4V6JRlsfRUp1lIsg0Dq+hoaGhYUvgqhLA1hynpbq5NrmqqAOgPoR6EL7BM9NbciSm3jL9AdvgZ8wNkqqJ95CKqTnLZ+bI1LvV4mNKQzgtcsSulxRf5CjdD1K1bjtN2uP/vrfmcBp1RVnYthpKKVpZWRlxG9m8mHI7cOCApD60VPyMOgBT8OTkPP/U7WU6HJqUs18Zt8Y59XrPnqmFm6o5oE+F76IbgvsZ15vv8W+cd7fVaya6eZCTq3GukbPxGHvdUa945swZSRs5aXLIkfsnzOGdPn16Q9uyMGEMU0juM65fOj1zX0zZKpDbrLkLTUlECOrNOQaxPkpDMjsA94NO636WOuzYRkq9LFGo6dpi+ZwfcsFxvXldkSvkWMX17fmqjeMUGofX0NDQ0LAlcFUcHt/gGXfht6+pC1PlpjbjM5T1UtdgqiyT55paqFnn+fdIXZoKJJXiZ02RRqoiUiWxfzUH9Eit1vQ+7pcpoMi5mMMzZeUy7LjNsYj1mRI2B+v+kErPqEHrZmw9Ryu0WE/GzW5mVUUqNraBnJ3Hw9fJxUUwxJi/07k4tj/TYUmD1aElD3FuGSCZYbv8exYAmuuNFKrXR2wPOSpa+GXrj9Qy9yQt7uKcUf9LaQ45fv4vDfNE7joLD+V7Ll26VLUidEAD6rqihII6pVqb4rxw3jNuOSKzaub8T1kxMiAyzzueZVk5tTOLztjScM5R6uXrPJekYe14/1P/5v1DCVccC+9bSj88NrGN/I1rM+Pi/Hymg9wMjcNraGhoaNgSWIrDsyzdlC/f9hF+69qizpyDrzt4sDS85RkeyeVPhR4zJWLULDwz6tK/kUpjHyIYliyj5KSNlI9/cz/MtfnT7Yn6BfoaUdbtT3NDsT7ruqj3MadHyj/2y/NlatAcZU13EOvZzNpsbW1tFH7I1GZsJ8OEUfeQcVxciwxJlK3VWpgmr2+v0SgdcDlx/Wb1Zdan5JY2C14ujS0sDXLr8RnXR27Xnx4z751IcZNDoW7ccxHnjdbHbpvXtyn+qKunnnkKXjvUqUWpSy0EG/00M79Pr31ygdTPxbXv+afuLrMGNXwG+tlaMOdFgjq7rdRdxnnxPuK9RiYx4zjyrKxZYEpj/R+lVJ7/WB+ldx5P6n3jnqfucdHA0VLj8BoaGhoatgiW4vBWV1e1b9++OUWXUWekEPw2NhdHCzFpSCDLKB8137dIAZkD8W+mWslRZpSI20bKOotMQF0KKW5SdpHiJuXoe0hpZ9an1NGQwjK1GCk76gpNLdE/KlLcboPLN0Vs6jxrI6nbbdu2TcrTu66b99ljH/25Mm5FGubLcx3h5KI1f0jqBiJX6zGjzx71dBEul7rUqUg77iM5BXKj9AOL7a75fZpCjmNW08O5P+7f8ePHR/0zyG1T3xR9IclJkAOjzij2MbPWJRy03meHzwNzDrH/7qvH3O3MLGCp2/Qz1Ie57LgeqH93vd5rRuSquHe9/7jOMqtgBsGuBXmPz9LSsWa5nCWcrUW3omV+TOBc88+mDjFKR5jA1tIpnm/ZXuReXwSNw2toaGho2BJoL7yGhoaGhi2BpUWa119//Zxtt/l7FMHQOdhsNTNcR9b74Ycf7hsD527fQ6OWKJZgeXTYzhxlLUqgSJYK1Gi27D66PIqSPBZGFNVR3EqFfS0/X/zNz9KU2nPhcZfGYgmKaDOxq+F5cn9uuukmSYM4IopB6VowFcSVZuU0kZfGinm6Yvj5KN6gcptGMQxhFUWaFu1EYyFpOv8ijYYojsyCMbhfdG2h2IjXY7vdd/fP68Aipcy03H31M77u8fS+i+PpexiyjO4kJ06cmD/DcH7egxQzZgHVs9B4RNd1unTp0rwfrifuMZ5FPn9oABVFpzfeeOOGelxuLSTXQw89NL+XRh0MT5e5pxi1XHp+Jhq8uB/uq8fNotpDhw5JGouPpWFtuD8M1ed1ENVLdDmrBeN2WXFNM8i72+J9lp2VXntuq5+xmivLZ7hIgPYaGofX0NDQ0LAlsLRbQnyj06hEGigPKyGtGKf5eJbd29dMzSziYEiluu+tUe/SQNnSydHURObMbUqE5ZnaIIUXqbRa2Ck6R2cpjFw+TfQ9RlOpV1g/jRkiapm6bRRiajhSg3Qb2b179ySHt2PHjnlf3aYsIC+NLcidReMVl0eOjhQoDVPiPR7TGhcd4d8YJNxtzrKI10JU0QAlC0BAIwXWk0kwmJWdBlXuA7OOSwOH77Hxd8+xOfy4Dg4ePLihPEsF/Ok5ipykx9r9OHv2bJVyL6VodXV1fq/bEPeYuUrve3/SMC1LLUbu3O1k0IVokMJ7OD9T6YFq2eRthBPPGJfrc9XzYA7Ikh2G2IvX3H6eiXQvi+PDFE9eu14r7mfkKP2s28jA85nEhNwfjaJcls9saXyeTQUeJxqH19DQ0NCwJbAUh7dt2zYdPHhwpDeJJsqmBEiFMRhpRs0x4DMdJhnYOJZL1wImRIxcqCkcmgczjE0WhoiBp02p0kE7c4Z0/1g/dZfSQO15bEnRUzcQ62NgW383lWSqPeqzaDLNINkMfxTvjaGyahzelStXdOrUqVSHa1CfY52Jxzhrt+G14nEjRT8VMJsuGJQ4RG7m5MmTksbcEbn4SJEywEAtwMJUmpNaYlH3Ie4nBramG5Gpco9npoehHpXcdhwTuovcc889G8ryvZEjo27aXGKGK1eu6KGHHpq3NwsI8LznPW9D35nOipx47KPv9Vj6GZ8L5HalYd7JBVLHFvepx/KjPuqjNtzLfRn15P7Ne8GcHQM3eA3HM6wWyNpluezIudbca9xPty1bq9Rne8zp9B/HkdIbr0XvmZtvvnlDH+K9cT+1BLANDQ0NDQ0BS3F427dv18GDB/Xud79bUm4ZZArDb/Faenm/9eP/ploYGsnUEvU/0kA1sr7MKsswtXDs2LEN1015ZUGxXSdTCFnHZcsj6hRjP2glVUu2GNvtNpiz8BjQIi7CdTOEEcc5Oh77XlLjMbgvQZ3nIjh8+LCkYbyyBJlMCOx7M07cY2kdo7/TIjJa9BlMhEsdq/ueceumil2GqWXlfdRhAAAgAElEQVSPSaTSWS6tAKdSPVGCQadotjWW57VKKp0phiKFT0tew894fKOlHblp1/vggw9KGgefkMb6zH379lWdzy9fvqyTJ0+OOBVbKEa4T+TAM4kSOV9+0po7SwRMK1bemyVmpqP+Aw88MO+nlOurvFc9V7RC9WeUfvhet9VrhGnR4tqhbYDXga1yuWeyABvU2XkOsiDi7it130xpFN8xrHuR8HRG4/AaGhoaGrYElk4PtLKyMuJQIoVgkKIylWfqM6NI/WlqwpSPrb0yToKcDn2MogWaceutt0oaqCF/N4dnCij63Zj6Mkfn76Z0SU1PpcyhTxWtz+L/5JiZbsllue0RHnOPBRPtmtuK/fG99Eny90ilu+/RGqtmaeewdLTyynSPhueB7Y46Y1P51IvULN+iDo9+nqZmab0bQ1h5TOlnauqV4a+kMQfEYMpTYbW8rpjKhdKQzHfPe4EB1U3F+9k4nm6Tn/UcuPzMGtB7giljMl2b4TZEK9opPcza2tooRFXk2mkjQN1QFnDa/7uPHh9afGbJYxls3XPqe703LJmJ/1N36PHxeMUzK649aWxB7vmiH1tWj5/xuNE6XRqsPv2s7332s58taVgXnvN4jtMGglbCWWhIP29u1P11Pzw21l1Kw7zdf//98341HV5DQ0NDQ0PA0n54O3fuHFkbxrdrzVqS1mWRE/C95ux8r6kK3+u3fLQKM1XJAL1TPjvUqdxyyy2SBi4h0xVRJ0Rfsal0QfTVY5oM3xupM//vNpgKtTWb6zMXHNvnZ8ytmcIidRgpSdeX+QRKA/WZBXD2vJw5c2YyCoLTvMQ2Rq7O40IdlGFqOkbI8DVTiNZ1eJw8Lu6Px0saLMC8Nly/qczMIpZpZzIJgpRzeNSleAxo+ZjpxGktycC8cdy51xi9wsh8E92/D37wgxvq93VLPTKrZ0af4VxH/0KPdQwqP5XmZWVlZeT7lUX9cZ9oPelnos7bXIr75t883x4vn0sxFRl13bS0djuiFIX6Kq9Z98Ptif6KTIXj9U4r0MwSlhFWGB2KwaXjNa9r73dLUtxW9zf2z32/7bbbJA1r5c4775Q07Oe4Dhgc2/Pk/rk/cQ+aez569KikPkXalJQkonF4DQ0NDQ1bAktxeGtra3r00Ufnb2rqvHyPNE4VT31CfCObOjNFxWSG9957r6SBmogU/pEjRyQNlAKTnFLGLg3Uucujv02mh6NPCyl9g9ZFsc8G48O5nzEeJq0YTXGbinLiVz8T9Y2u7wMf+ICkQdb9ghe8QNJAyWZcNv263O8sYae56hg1ZSrSyvbt2+d9dTmRQ6Llnsff7fX6iLoU99W+X7YM9NqkRVeWXJUWnF4r5PyyNnp9ub4s/ZXLZzxW6hCN+J1Wax4vjlHUi5gbp76cPqSM+CKN9TqMTWqu+L777ps/Q/9YUu1MsCqNdYRra2tVDu/y5ct64IEHRpKluHaoc3ZZjEgSpQa+x/PNZKdum6254znnfe9r1OnTF1YabBGod7Nuz2s30+XTKpQWxJlfHOebOlDPR9yzPmv/+I//eEObPW5ujzm+u+++e/6sx5rj6LHnupMGSQz9ZRkzNoJRYM6cObOwpWbj8BoaGhoatgTaC6+hoaGhYUtgKZHm+vq6Hn/88Tl7bRY1iuyYLdqiDytsLZ6KosCP/diPlTSwxBbPmcW3aO6OO+6QtFFcyJRBZuMtrrQ4LzrKmk23iM8iC4tH3bYodqUjqfvnflFcFZ+1GIIBtJlWJRorWDTrMbEoyWPi9viZKKqx8tv3Mj2MxczR4djtp0iTorToGmKRgseW4l1idXV1Lopxe+MzrtufDCCbieCY6oguMgwqa1Fw/I0BDlhPFuzWY+v1bDG7125so8eJ/XBZNPbIAh4wTBPbGMVtvtfiIoo0PZfsS2yD10gtvF+cN67rmjgqcyvy+r18+XJVpLm2tqZTp07p9ttv39DXaKgVx0wa5oOGKHE92LjC/bd4ziJOZgrPjNjcV++5u+66S9IwbrFPnjMbW3gsvX/cjliPzxfvf4+pz5RaEItYt0Xc7i/XWTREe9/73idpUBHQ4Mj1WAwbzzm30W32PQyOEUW2LtciUj/r8fQ6jPvJz7tfZ86cGamNamgcXkNDQ0PDlsBSHF4pRSsrK6PEnNnb15yQKRFTcnYBMJclDdSYy6HBwcd//MdLGqimyAmZIjDVwsSvphyiAYpN05k+g8GkYz10szBqxiyR4jDn4La6TabAqRCOY+JyX/jCF0oaKK/MOMLw/Hz0R3/0hrHw+LmeSH0yZFoMCB37Ew2G6Nh67bXXTpoHd103cheZ4oSMWhDk2F67sDDlCqnLaDjheuiu4T5kYdXcVwcrYIqsuGYMcwNW3tPwyPCcRvN3Ot3TMdf9iYY87jO5M88x3SGypKE0IGPy4sgpkVN1ue6PxyiGzIprRurHvGbwtLq6qgMHDszr8bkTjR/cHo81uVsaUkjDOWBOxH2jcYfHK86FuTLPpcfNnEkW6ICBDTxOlgq4/mi8ZpCj8z0+KxliMfbPe4xcWRaM3f3xGVVzv/AcxP3l+jwXvsfXXW+UDtBlxlInG8+4jVk6Obf70UcfbemBGhoaGhoaIq4qtJipFlMqUZZOk+TIyUnjsEbSQAGQS7PMmSk/IlfAoLbktGga6z7EcpgOhua8sRw6Ars+UyKZ+bMpQzqv02w8o1gZLNicDMc51mcujPpGJi/NOHOGUaJuLwuv5PZfc8011RQ3dktgot4sfYrrqHGx8TvT/tQCM2dBvQ2mQPK69phGKt1108GZfYjXyZVxPVs3TUpYGlPL7K/LztrI0E4M78c1FtvocaSTMrmUCIaD4lzE9Ub3pSm3hN27d+v5z3/+fD14nGIbKK3hGDDkoDTo9713qQ/lvol7zPdSD++xzczk6ZBvzs5t4/xI46St/s75dx+yxNNMvcP9H91y/LzPMd9jDp/7Nu5F3+N6fKYwWW5sIxMYUzpgzjmuDQYGf+yxxyYDXkQ0Dq+hoaGhYUtgKQ6v6zpduXJlTl3QCVcaUxGWMfs7dV7SxlTt0kAR+A1OKipyGaboGBKLQXYjdeY2mSoiRZelomfqEMvwmQjWfcgsSV0urbPcn0gVMixUzSmbnGxsg6keJosk1xifYfoP98vXI1XNOZ0KDeWgBab6Mk6fwW0NOupHHQDDxNWc/I2oy2WKHbYjSz9CTpj1ZUG2aSHI0FK2bmPor9j+WkJTrtn4G3VFnFu3PbaVvzGJsH+P64CO9EziyaDCsdyYlHYqAe7Kysqcs7MeO64TS3g8/tRX0rYggnuM45Sta1rc1vTBkfPwfHvf2zrc93q84pqiPtttcX8YgDyec0xO7N9oyRx1uNRfmvusWWvHM4Rpvci9ZWe/2+SxoB2F64v7ODqcu96psyeicXgNDQ0NDVsCS1tpbt++fU5Vm6qKVBN9qci90Oco3muYMqAc3ojP1qwmGTw2Sxpr7oUUiKmKzMKKlCkpuSydhSkel+d6GTw6Wud5jBlayP3xuLr/kcOL6Xpi+UzJE6l06mwM6mXi2PveGLqoZmm3vr6uCxcujLiczJ+LaWson4+cAHUmpM6ZpDZyeKT2OYdZkktylOSmsrB05IRdBhOmuo2ZHx5DvTGxaWbtWuPS6C8XOQpKW2h5mXFItG41d0B9UxbgOva9tnbW1tZ0+vTpkV9k3NO1UHj8PXKbtP6lVSulRFmyU9/jPRC5DvbZOjtzeB5LW0QytVFsG9eb+06L1UzS4zPEnHHNDkAa5s5rkTpCWrtmc1YL0ci2x3q47twvz2PmX5id05uhcXgNDQ0NDVsCS+vwLl68OH9zU34dYUqB1BE5sPibQd0TqYj4ndQEKT0mWZXGEWJMIZD7jPVQN+m+M/FrpuMgBUIKm7qD2AbqNamzdBsj50VKqjb2kdLyb/Q9sp6EQYuzPm+WhHF9fX1efpaahFwrOYaMmzGoO8ki3tSeJRgJJdPlUpfm8fHvUc/MoMeeQ9/rNmVcqNckdSdcQ3F9U9/LgMoM4D4V6JwcLa2VY/vpA+n+WkqQRcPIuCfiypUrOn369Lxc2hBIwzyYE6lZ9sZ2u121dGfk+OLaoSWvpTOMDBItvc3Z+VlbU1P/FqUejEzl/UgOk22Wxha+7rv1ZdTTSYNUxeX4HvuM0sI3nuO03Mx8hOOzEZTI0N4hnlU8NxfV30mNw2toaGho2CJoL7yGhoaGhi2BpY1WduzYMRKjRBEMFb4M6pzlJaMzcixPGhvCRLEEDQAoZnVbMyMC3+vvZpszc3UqYCkWYj65GIaIz2YiYF63KIHK6syQItYR76FZMB2sY/+YG6uWMyuKW6ygrxm8RKyvr+vixYujwNyZ2Jh9ptl7JsKgCJN9nGpbTYTq+YriaYoYaXzhZ6K4jdcoaqThU1yrNLP3uqLIOXMNoviT4ii6uMT+UOzKtsY5oIsMHdozdwPWPSWWWl9f32CEkjl3M9yU+8FQf7EtFjd6TXqeaUxG8Vosnw75dBOJhmi+h07yPnd8Pa5Vil2zgA2xn5nIlqoaG684KEgcR7qCef97TFhvrI+/0eApmwOGn8syt0sbz1O31+Les2fPttBiDQ0NDQ0NEUtzeNu2bRuZz8aQWaSKaGhABXq8ZiqCIbiMjLqsBXWmE2TMeE7lqqkwchKZs6OfJQVCSjhyLi7f1Dg5vczAggGfaazCdsX6akY+pIIipUVO1VSv255xLjRNvnLlyqYpXmgYEMfRfaWTv+tkVuvY3ppEgZ9Zn2upnXw9BuQ1pWlOgilwWJZU52Io7cjWHdOzODQWA4DHPeP6uK8Y6DozLvB8kDrn+o8SBXLR5GBp3BQRA1nX1o7PHRt90GUn9onGRDSAyzg8BldwWVPBMmrpwhg8Ia6PaMgkDdwUw7nF+eCap+sKxzR+d7k2OGGwfwe6jnA/3FavK57JXA/SeB3QgJBcd4TL8Zwy7Vc89zw/8YzczGBu3saF7mpoaGhoaHiaY2m3hLW1tUnzcOpdGHaKYW3ivTUdAwPYxrc59R7+zdQTqV1pnKCy5iAZYe6DlBVDLmWydOp5mELGZWem5aRceG+mE6XOhBxSxhXXKFa32VRiFlIq6kmnHM8vXbo01/vZ/DlSpKSsyeFl3DNdB7h2yPFlOofas6Y2ox6GOiK6FGR6MeqEyfFN7SePAVNjuR2m0rMg3KSwqYfLwl9x3KgHngI5NO7FjIPLwo4RKysr2rVr1yhxbeSe6LpCt43M8dztYygszhfPH2kYf3J/5uyy+gyvK5r+T3E+tFWgXjGbJ19jAAfvwSx0Gvc9uU/aH2SuVNxHRnbuMEAA0xCR+471eG6vu+66eSDwzdA4vIaGhoaGLYGlODxbS/mtz0DA0phq9XdyfFEmTGdtUrr8Ht/2dD5k0FEHio5gmKyapWek0hnOiMkT2YfoAMrEpW4bnbCzsEC1gLo1DjrWw/4xYWusjw6eWbJGaaPehBaxMewcsbq6qv3798/1MFm4KYZR4zxlVprUh1KHxu9xPEmRUsdpnUfscy3sGMc66msYnLjGabGfsTxyki7TOr2oj2HwZoZbM7Ix8b107qYkI4I6Fa8lpoeJa4MSk6nEwaurq7r22mvn92bptuhYTkfmLIwWz44siIOUO1lzrdAhnM7R0pg7Y6AFI9ob+F7qQw1fd1mxXQxhaKtGhlTMnMcNcmAMWzil0zfIKcfxNbdeswrPLPepVz5w4MDk+tnQloXuamhoaGhoeJrjqtID+Y3NgKnS2IeJVGvGzfh/JlHMQhHFMiPMcZkqN3WbycdJtdLvL9P3kNMyhW2Kq5ZcMd7Lftkf5hnPeIakjZQdLZvoK8TUL5n+j4FZ6VuVjS/1CkaWpoO+YFNJPFdWVrRjx45528jpxT6Ty2RC0UjNkfOgpV2sn8+So6fOyWsq6ooYuopWix7zOJeef3IStRRPUU9C3Qx1eh6TqGc8fvy4pEG6QWvqKZ3oZqHXMh01OaNasOqM+88S5mbYtm2bnvnMZ0qS3vOe90jaaA/g/z0/i5RLfz5y7VwzmWSBwdxZX5wX+lCSKyG3E+tkMGem+poK70gdrss4efKkpDywvoPfe29zTBimLgMtpDMra4+bP+N4Sfn7wvcePnx43oaWHqihoaGhoSFgKQ5vZWVFu3fvnusL/DZ2YkZpkBM7qSX1PJRjx/9ppWfUEldKY87D0QNIVUc9jP+vpY4xBRHroR6GSWnp0xSpJnJC9P9z2pCsPkY8oNVhFgGBVn/kOllG7Dutv6bSwjDo7pQfnq00qVvLrGdZJ8c4s9jK9FGxP7xfGut1vJaYODNbOwzeW0sxE1GzeOT1LHmwyyOHSa4t6w85OfpcRq6OlnQ1nU18hoGSacHq75Gbz/TINXRdpwsXLszXmdPb3HffffN7zFH701Kn2v6M7cvSMkVQT8b/47M8byzJiPVQz2crSp5Z0sD1cb9wXVDyIw3rym11G31GM7WVNOiE6fPoNlKnlln40jKe9hxx/Xs9M7Ey90jkei258NicOHFioaDwUuPwGhoaGhq2CNoLr6GhoaFhS2Bpo5XLly/PnZCt2IwiTYtRbJDBPE4MLOty4zWGQGKA0SzgsNtEVjvLjuw2GsywbZY5GuOYxWawXjq4WqyThUejWMLil0zESHGARQwMYZQFR6bzP0WbdECP/fOzrCcz5KH7AMU8EaUUra6ujtw4Mgd9mrlTRJsZPFFUSoV5Jr7zmrBomUYqWd5At5HKdq8dr/fM4ZgZ1bM8iNLGteP/LWK2yIli3yiWYuBiiiFpcBXHs+buMhWOzOIoiq4oDo2geHr37t2TGc/PnTs370/mwOy96nPAnwwMPxUejC4gFHlmIe2YD28qsD4N9+jUnYn86DzOuaSpf3Qj8Hq2CNUiQIs0XZbXVCyPBjw2BqQTexRTcz1TvZGFaOOZxHPT75hMZHn06FFJ/Rg3o5WGhoaGhoaApTi8tbU1nTlzZmS4YQMVaeyoWKMYI4dXC32VZYCO90cwmCmV7JESMfVHZ1Ffz6h0Gpr4WVItNvXNnIfpaG4KzxRXpGKYKsdlOISOxzlzlqWRQqT+2TaC1DOD7maceeQUalS6AwC7X6a443qpZZynO0c07qGxCF1bGP4sC6PEbOUMXBvroxTC9Zh69rqIa5ShqaiQJ/dpKjre67XifjJodQyuS07L7beUgObvcUyYVZzrL3NWpjSAbaeLTUQtVVaEjVY81+575AY8hw8++KCk8RmRpY9hH2vzYg42rm2G4Kq5MsR6za3QZcJttzFgDD3ouWKoMp9v7oPnOErbfBa5LT6nyUVlbik02HLb3N9MguFrDDjNsziuA3LCDBuWGTe5bf6MgU82Q+PwGhoaGhq2BJYOLfbYY49tSLwnbQw/xZBBBqmKjLIjJ1dz0GSbYr3U+/h7dFJ1+33Nz5pSMDURKQfqD2opfozIFbjvDJ1GrjTjev1JU2JyGnG8WQ/1fBn1SQd9jmMW9srIdJAZzOXFe7PkqtQBTCW7ZTm1xJiZWwVdSOgW4XoiF+o1YQqf9VvXkY0t9b1sEzlmaVh3/qS7SBauyaCeidxutr+yeYn3uv7YRo6bQd17Buuxz58/X03i6aD1XDux3ZSesM5Mh0fdI5+dcqqupc0htxHbaA7P5XtOzT1lyarpHH7DDTdIGqRRPgfcF9+f9cPSIZ/XHgufLbGemjsZEceIgecZYCHT5bIcJtjOJEu+JyY6npJaRTQOr6GhoaFhS2BpK8319fWRQ3CmryK1Rsu7jKqshYWinipSkpRlmxIx95lRTdRLuTxbNWWWnf6f4adMZVjuzhQjsQ1ME+QxMoUXqUUGlvV3cm1+JnILdCj1M6TOIxWcWezF+jNugGmVpih5p3jxGDOMWCyH3AupvQgGh2aw3anA0zULW+pYYr3U93FOs/lnmDu2ldRttCL2b14jtqijJWmkwCl9yPoRy476mFpAdXJIcb3RMtGoOXLHtjHYcwZbh5sTcVuiVXDNKpsBuqdS8DDkoMvPUoyZM6WOiRawEeQgmZ7M3x2IQhq4QoaU85qiRWnkMLm+jx07Jmmsu3WIrlg+QyYy+EfmeM7wfuwX3xvxf1p418LwxfIo1VsEjcNraGhoaNgSWDq02M6dO+eUIS3UIrKgxtnvLjeCVNhUeCvqAt02++WY8rbsWxrk3S7PsnTLv03VRIqOlJz7ZYqbnGumj3N5bospebc1C6TscpiOiPquzJeKFlwMhxVBKozWeeSYOD5ST0lOBY/et2/fKBRcXAduHynFRXxsavpJzltmXRgtHKWNuoFYhjTM94kTJza0jWGjMks7f5o6p0Wa25HpRbhWqO+LbXRbTO1nvnpxTOIepWVvjXrOfDhpbcq1FMuKa9311c6K9fV1nTt3TrfffrukfO2YQyDXRK4i1sE2eO0wnBc55lgf+5b57Bk+X+izt0hqG6YUojVyZndQG3+vIT9jfWBst9eo62NbM/06fWs5Btxnsbwp/W1sa+xH5gu4GRqH19DQ0NCwJbC0lebFixdHQU4zqzm/3UlVMtipNParqQWLznwyaGnHNEHm5jJKlb47ftb9Y/LTWA/1VqZQTMXE+g4ePChpnIyWnEsWFJs6AerlskSxpJaof8t0eNSTZklw+UwWIWKKw9u1a9d8TM2pZgkkqcvj3GVJXEnFss/koqSx35/b5vkyFR2Tq1LPYmrd9TE5cqyTVou1QN0RHieX535QD5NxePSDchmU0MT9SyvdRaJl0MeW92QcDH3cdu7cWV07TktmWJcX9wslLLWko7Gv1FfxfGFZUcdOLtBlMNh7nFNydnw2s3b2erJUyOW6HvrcxjYy6pM5OesfXVZMZUULZdZPXWLsH6Pn0CbD7YhzsFkSZuoopbHf5JRkiWgcXkNDQ0PDlsDSkVYeeeSRUZqbKQurTM/jsgzGkGOEBn6PsnRyPrzXVEaMi+k2mbo0N5j1l+2m/oDWX6Y645hQp+L6fE+UobM+WkORs8ws8GoWl5lllVFLQkoKLNbD6CWbydJLKSNr1jiX5AiY/HEqnU3NurAmAYj3eF5uvPFGSdKhQ4c2tDGzTCWnz7iI0XePvnSMy8r5iuNITpXcxlQEEeqZMos3ttWglIXrIK4t/sb+0LI43mtJRillUw7PnLY58Gg7wIg0jEG6SFoynlXU4UW9bC12L7nGaH3oRM9eZ66fKZ+idMB1Uo9IH7vMnoKWxLfddtuG+ukPKI3TrXG/0kozrgO3m2uViFwhUzPxPPPazM4sc7AtlmZDQ0NDQwPQXngNDQ0NDVsCSxutXLhwYeSEnWXZpUixpkSO/1McyLBgDBAsjUMemdW2AULGepMtt3jC92Rpbug0SnNaP0vlcrzXbbJJu4P5UuQpjZ3F6VJAI5MoQq2FB6uZj2djQofmTDxBsd7ly5cnM57HtZMZW7BvVHpnonOuK/bV45eFlqIJNo0IXH8mymJIu5j13WNhuA0Wz9RcJbLwbTfddJOkQYx3/PjxDf3J0kPRWMWgYQONTGJbauKozIigFnaK6XWyfRtFxDXT9FKKtm/fPhe3Mb2NNA5A4fFnPZkZPQ206OrjfRlVDzQmc1l0H4r1ud3Pe97zJA3npkWBNp6LIk0ax9RcdRjUIMIiTJdFUWY8q3i283zzOp8KJ0gDMq9/OvJn5dBwK3PzskooinEXce2QGofX0NDQ0LBFsHRosUuXLs05FFOdEQy4ytBPmQNoLF8auzaYIshMV8kxMv2MEblQGr/UEo1GaoPcB6lCGkBE8+CY7kUaKCo6r2eGAKSW2NYsDBqdX5nupkZJx/6QOyB3GP93Wy9cuDBZ9vr6+pxKp1FEvEbOp+YCEu9l32puHBGklpnwNTMiYdBeKtddZpx/zwPDctEQwfXEYL6myv2sTcjJ2WXjaNS47oxjroXi4lzHMunuwr2RmfXTIGgqeLTro4FDnNNaGDCaymeSEK47OnV7DiKnzzb4u6U2XkPRiMRz53K8lmxQl7lyeZzcP4YNpAQtuhhwbJjSKAu76Hk1p0qJBQ2fMjclnlVcj1myYoYEpBN7lrjZZ+0NN9zQOLyGhoaGhoaIpXV4jz/++Pxt7zdspCroWE4qMtOpGZul9jC1lJmyk/MixRddD0y9MD2GuY8sdZHLs77HcnZ/uu0uK/bPVB/b6rJMnWQhpWp6GOq1pjivmt4xc2XIEqXGZzJn30iZTpkHl1JG3GdG1XMN+ZlFXFrIbdQoyFguOT1S/pGy9/+WbngOPccek6jv8RrxOvZacRlMTxU5So+Fn3XwAoaci2B/SHFzHTI4RKy3xmVPzXMtldQyIaCmyvU+jbp2hgMkR5Ilu+U4kKOfSlxKNyXPMcuMZwntCph4mk7dsY8MlGz9m9tmKZKDTcffzNEdPXp0QxszLo3h9Bhiribhytpo+BmmNot9ps6T0oEIOszv37+/cXgNDQ0NDQ0RS3F4TuBJuXWmH/Obm5xcJpOtpYWhPoTWdLE+1kurxowrpM6mFpIptpd6CrfF8nGmJYr1+dP1mFsgdxLbT/1lLY1GZvlETs9tmqLsaWXLsYocGcN2TVlpul5a0cXwbbQ8rHGxsQ3kxms6yIxb43y7bdTZRN2TOXj/ZoqaFH60tDM1zlRC1N1lUg+XZ+6Pe4ABD6S6Do36xqmAEZvpT7M9z+/kBjJqPQa4zvrvcnbu3DmX0tgSOuqtac1X0wXFOigtoVUw04fFsHS0ovaYkkuM9VGyQqtzW1NmCYcNP8vgzpYWxHXv8aLlKINHZ9auXt9MmcUxy1LD1SxKs7OfnDKt0rOEw96fkaudSi4b0Ti8hoaGhoYtgaU5vO3bt0+G6yHVyEDFpsoil0ZOkToAv9FNzURqllQKORJTNZEKZdqUmhVR5B5MpZPSZVgtpreP99SsDzN5uPtMKtn1UAcWqV22zc8yPUemz8j0l/H3SGlN6eGy5x977LGq/6JUTz1CrvsrOocAACAASURBVDpL8WIujOG0WF/k1kiFm6p1GSxTGies9D1eUwzYKw2Uu9eVpQC+N+PSDXJPtAaOFrJ8hv59TNviNZPpPzbT+2Zrh5awtSDM0lh/OoWVlRXt3r17zplYdxM5oc3qJjcd20Pdkz+pn497zGcQk99yLuOcMk0T9YzWz2bjlKXWif3LrNPdRj/r9e17aL0d209ph8eX4dcyy1vqKF1+ltaJFrI8s6iTjeX6swWPbmhoaGhoAJZOALtr1645pUWrM2mgIijrp94oUnY1CtFlscxIZfgZWvlQP5dRCEYMQhrbGusxxeEAtuTWaEmacbA1SydSN/H5WuQaUjmR62VQWo5JprshpUpuI+PizOXEwNY1ir3rOq2vr48oscxSlFQyrbtiHdS/sdxFfMHou1ULZi4N42SrTFKxWeJUUsXW+9X8P2P/ahIF6puyJMyef3Mq5N6ngvySo2MfMgkGn2U0mgxMPJzBtgPU12drh0GceW+0KKdFt0EpTRY9x2cgE8x6fdF/UhrOKN/jeWGg6+iHydQ6DOLstt57772SNupWXb7Xqp9hEtkIzwfTULks6kLjOnDQdUZgYhDxuF545jPSSmaZ7TZFjnkRKZPUOLyGhoaGhi2C9sJraGhoaNgSWNpoZceOHaN8clGhanac2W0p+suUuTTppSgzy/lkESPNt80Ku77IElPhTCOSLAwVDRyyfG6xbVkONSqyM0MKo2biWzMLjub9FhlQzOsybK4c54AGQ8yonDnFMjdXKaUadNjtoGgswu1jaC+GmMuU3jRsoSgrE99RpMzs4kY0DfdvVMz7e2YIQFGO59ttottCbCPDQtUcvzODl5rbTS1nnDR2VWEA6Cz3IUWYNTejLKwXQwBm8Lnj9tLYI9ZZC0CRuSXwN+4T7rVsn9bC9WVhtSietqiRhlY+0+K9bqPvzdxfpI3j6fF26EKGI8yCOXttPPTQQxvKZchEO8vHXHpuI9UsNKyJa8z3UFTvObZYPs4b93gzWmloaGhoaACWNlrZvXv3nDKweXVmEl8LdmxMpXqhYzs5r1ifqQYro/3dFArDUkl1h1hyC9HsmcF7GTqI2X4jSP0xwDbNxqVxeh6POY0VMoOfzFBHGhu6eP5iP0ix0rQ9UrmkqkspVedhrx06804ZK5Day4JHk0JkKCZKDaJ0gGbb5IhpcCWNQ3vV1nkcJ5p0k3OtGenEtmUBzWOb457w/zascD8YwowGFtI4KzvnyW2NDvzMul1L9RLnmtz1jh07qmvH99HwLQsmQVcpzk9sQ7aepLHzNbnsrI81w6fMtYnuKTREy0KY2dmeUi+fO1MGVl4HLjea80sb17edud0fS+zI5bod0QiIBlteh/EclTYaCdFh358ea667WK6lWhcvXmwcXkNDQ0NDQ8RSHN727dt1yy23zKmAI0eOSNqo42DYJMrBs6DStWDB1FtkYY1IwdOZ1pRRpDLIUfE7g/1KA+Xjdpu6oGMmqTdpoOxMCZsCIjWVBYC2/N0yc1NWTPERx8TjRgqOJtSZawjD/9B0P3IudBSfCi22fft2HT58eMTtRM70gQce2PBMLXB2po/N9ImxvZwvacwFuizPHb9L0v333y9poGwpfXBZkfL1b26D1wPDRtE1RBrWIrkbOkfHINJuL3VS5GQ4RrE/DINGqUHkXKhX4lhk6Xyo15zS/XZdt4G7yjgTw+V4bNn3uObJKZADJ9cW95jnlxIROrNbTycN8+65ooTBazNKgHie0T2Aeue4/6yrr0l6qP+ThnlxW+hmxeAPkdPnOVZL6xbnmoEB+H7I9jx1eGtra43Da2hoaGhoiFjaSnNlZWXObZiyi1TzPffcIykPTCxtfCvPGwEq2VQLdUSZ3sdUCi2dfJ0Bc2M5NaqADqHSQOGYemY6EqYfiVRazWGW1qHR8s3jVwv0yzBRkRsyBZmVG/sfrzPMGgNDm6LNUnt43s6dO1d1AKWlnSnDSKWbm62tnVgWUZMouB5T/FFPynXldVxL7ikNFDelD5yHOP+kjr2+KNFgAF1pmH9a6xrU7UrjtehnPRbRopdgUlqD6aGyJKXUgZPCz6w0416s7ceVlRXt2bNnpOeJnDcDsdPJmv2I7WO4Pkp+IhdjcH9SepMFr/D4eJ2zLI5bbC/Hy/fQdiDuDUoUGPDcur1YH62/GZKNuuu4lhjGkTpx9y/ThfJMrAXckMZO+Ityd1Lj8BoaGhoatgiuyg+vlihRGutSSJFmVoVRBxTLo6WYyzp58uT8WXJytdA3mc8OLep83Xq/LPTOHXfcIWnQv9GfyNSLrfmkgXPwb+SCTIXGNlKHZmqJug9TWBkXQvk4Aw5nQZiZDsZzMBUyLXJCNWprdXVV+/fvH/nYxTbQR48cMFOVSGNukNz7VJBicudMbOzvXg/SOEQZy8gobVPWXHcec0onMj8lhuniWsr0Y1xnDMLOYMaxz+R+uM8iqNephRrL2hjXbW3t+NyhJXHUsdMK3ONGn8MstRS5WlpgZxwerSStL3MfzD1FPZnH3+uLbaQFc/zfUjWmz6Hv29QYe7ycSijzi6NvMC176Wec+Rmao6R/YxYwnlbuLIsWpfEZY8+ePZM64IjG4TU0NDQ0bAlcVfDoKb8yUyukvGntl/nQ8F76cfit/+CDD87vZYJHWr65Pl6P5dJCKIvkYE6K/laMNmPKLtOPeZyoQ8mCuXIcXX60+pLGAaJjGxltgnqACFK7jLxCvQb/dxk1X6rV1VVdd911c0qYVq2xbraJusKILGWQ65PG3HuWPLgWZcbXM8tO+ydR10FuLl6j/ppcc+b/yeDK1BUx8kt8hvpMcpRZaiFaNVLakvmX+Xlyo6S64/zxnqngv+bw3G5zEFHHXkujlCUaNjwv9E+lXpQWmbFczp33v5EFqybXTH+/yLkyWg0ti12+JU4RlG55fvyM13e08GUUJt9LHTIjaMV6qJOkdX1mB0A7B+sZvRfcLmmsM77uuusah9fQ0NDQ0BCxFIe3vr6uixcvjqilSJGYWiEVxtQnGbVkLozUpa2aTEnG+G2mCEwt2XLLFInbmvm4MfIBKaxIrdEaivJv6hUiReJ+0JeGeoXI7bjuo0ePShpHIDC1lnHM1FvRz4dccQStQekbFCkpyuanZOlOHuw+ZwktPf/Hjx+XNE6ySv+y2EdTgvSL9O9ZX+mHZr0r2xi5J+o6mdop0/syHimvG0yUKQ3riXpX6rczDonrzv2iRCNyR7RypKVdxhXS79OghWTWtixdU4aVlZX5eJn6n7JmZboef8+sw2k9TRsFr8vICRmUljAyScateWypu3NbM11+LWYs938cT+rYKfmh/lka72lGPPF3crjZmHDdZzpKcvpZot5YRhyLlgC2oaGhoaGhgvbCa2hoaGjYElhKpCn17DbTPkRRBsVBZlX9DE1VpbEBA82mzbYznJbbE+upKa8zR9ma+I6hhmK5ZOkpFslcDNivm266aUP5vjeKUC2+oxsCTadpDh9BM/cs27xB1w8qvD1WU4GbV1ZWJkULXdeNxNZxXhhqzX2nk3rmYkLxDR1zeb80Fum4bTQ8ic/UsmBnJtcGxY0eI88xDaGyMWSAZprOR9GZ28uM9Gyrr0cHbqYUoqO5P+O4MuwYHc6z8GFcZ1MGT13X6eLFi/P1YbFh7DPDjTE0lhGziXPP8jxgEInYPu/VEydObHjGfb7vvvs2PBvLY3Z2z6HLzDK5Mzyhn/FnlpaK800Dm8wYjOcAVQJ0J4pGOdwTNAZiKLVYDkW0dICP8+b/6d6xCBqH19DQ0NCwJbC04/nq6uqcsspMihk+htRE5sBM6oSOuAYNUaSBwmG4MxpuZAGHaYJP6jBSdKQG2SYaAkTjBVNu5hwOHTokaaCE6FwqDVyHqRkaR5Bqj0Yyhjli1+t7aaovjalb94NOt5lLg9fDVHJXg+VFQwDPv40SaDTiZ+MzdGWgqwENk6KCnk60VLJn/aKxEjmebHzIufF7FiDXcHkMDsz5yhy4GQ7Mxl9em17L8Vnfy0+2I3KFNH6p9TNKFhjGa8+ePankIcKcAlOCSeO1QlcMBmGI5ZBrYYDuLA3asWPHJA1GZeTS/Ux0MWEYMhqvZfvSbfKzngeGicukbbxGLi0LkuD94t9oOEaDnrh2KHWohVSM5zrdxRg0OnMrYyq4y5cvT6aWimgcXkNDQ0PDlsDSOrzV1dU5xZCZxFP35DBgMVlf/F0am/aTMjSVYbPxSFX4t8OHD0sap/LI9CJ0LKXs2aBprFSXHzM5baQ4HMqH4X/ItcU2Uo/kttF0OtP/MaEodSmk0mL5pHbpbpEF342uAZs5EDPIclw77pvnOQYYkIY1FKlYJshluhRS6ZFDp3uGx8PcMsNFScO8UA9jrjMz0Se3UePspiQmXmd01GWZ0linxhRD5LKzUGaUGJjyz9IRGZuFGIscHLnqffv2Tbq07Nq1a8SZWlISrznxM4M3Z+ls3AaPl8fSY8yzLI6JdXd0/K9Ji2JbPJbkSjhfsY0MmUc9d7Z2GJaLQfmzZxjMmWmVaLMQwWcNnu9xHTCgh+9hAI8o1aPjfAse3dDQ0NDQACzF4TkRY83KSBrezJav3n333ZLGHEmkAmgBaAqI1EQm4/ab35QAOZOMw/O9pr4YoJkBVKVxQlmWQcf02D9SctTD+HsWDJd6HVo10WFTGjt1ZyGyYv18PpZLzjLqJKg/m3IcLqWolDJvv+uLehhT5+aIyan42dgP6oqpS6FEIdOTMQCAuRevwzgvbrep9ZrOeMqSmNbHTKQbOW9y1iw/012QG2R9Hk9KQWIbKPVgWRkHy/5xL0RdKLm1qaAFDmloWLpiXW8sj1bUvsdrK+qCKNUgp+DrXgcxrJ/3O/Wk5KLj/NjK1J/eS7VQirGNLt+/UTqQBQxnsHVKFjKr51qaLYPW8FEq5jmiDpx7Ls6zy/G56jXiZy3tycL7mQNvOryGhoaGhgZg6dBi58+fn79NGWRXGgfpNWXCkF+ZRRZlzbTozKgO6sWYRoftkMZ+IqYyzG3QijPWTcsmJtfMrEJJ+TIQcObjRk6I1Bl1ZZF6pkUffVyMLMwSqXPqNyK3Y6vSU6dOSeqpsSkub3V1dRRmKAtr5Hkw1RctAqWN1B6tuqi3qPmvSWPqmfOT6Rz4m/vhNjNRpjRev7XA3ORSpbHujJxrZhVKa1nqrGkdzHUR28axyfy9yF1wDTC8YIT3zd69eyd1eDt37hxxjHEdkKMzN+Y2ZQmAaWlIXbrnyWMdQxoyEDTnLpP00O+TEiaPcdQV+jxjUGqDutBMKsUg7ORs455g8mCe9Swj0//yDGSoyDgmtTBntpXw+oj7yWMS03g1Dq+hoaGhoSHgqoJH+82apYgg5c40D6bWsxQR/qSFHXUgmWUfU/swcHKkLqkz4ffM14n+MKTamS4oSw9EHSG5nUix0p+PgXlpvRfHhJQrdaGkaGMbmBTXbfYYRR2IxzZyKptRWvTVifoKWmqZyqNfV6RiqScgF5ONj0GdFnVd5K5j22prhv2TxlQq/b24lmJ9lJh4zEmdx2eoZySlPWUdXONuPI70wc3KIZdDLiHC5W0WeHzbtm2jqCKR82YqLOrWsvRg9AXkGVKbH7c3glwzJUCxjbRF4J6JFolek/ahrEl2piQmtGegFCdLLUaJFrnQTNLExNOsJ4tc5PayfKbfylJmxZRwm/lwzvu30F0NDQ0NDQ1Pc7QXXkNDQ0PDlsCHFDzaiOwkRT4W09nU247oUXxHcRRN/C0+oKgr3kP23aC4SspFVbEs5jyTBtFITalr0CE0u5fiB4qRYlsMOm/SLDq21c/S+IZjFA0eKH6iuDIT0Vi5HsMdbSaWoil+7Kd/s3GAxVA0FIlGLJm4SRrG1m3M2s+A5hwLiiBjXyn25DOZYp7rrmbAFfcXxW4US2Wh7DgWXDu136VBXFQziskCC3Bd0QDKe91GSNLYqZuh0oiu60aisuh+Q6OHLJchwbx0HheKw11GFDVyTDm2maEYDZpocJLli3M9N95444Z6uM8y52u6LtG9JzN4qgWtqInFIyhqpIibonapPvbM7xfXBw2FpgyeiMbhNTQ0NDRsCSwdPDpSLJmZsd+09957r6TBnNZvbpuwm2KR6uFs/IypNTonxmdJNZOaiRRQzQyZXE6WSoYKeToAm2KJVDqNIZhiho6asU3uO41lqFjPXCgMUuWZEYHL8zVy2bxPGubfJvlTYcXsPJwZjxim3OhcS4OZrN2ZAYZUTx8kDWNnboPr0HMZy2QQXVLyWYBcgwp/3pNR3gwSzjIyZT2DRzP7NqUwcd3xHhqFuf8x7BslIzRooGFCfCaGHKytn1KKVlZWRtxaNNX3eXL//fdvuIdm7xnnbdBNyX2kBEoaOBAGZsiCVvCZWoBr7m33Pf7G/c7weJkTucFA5zRUi33nvqK7V3b2G8xmT4lZHHcaMvn9YHg87awf4WAC+/bta0YrDQ0NDQ0NEUvr8FZWVkbhuqIOwPo1v6ltTuvvfhNnepgok5XGSTx9X+QO6VRJ89Ys6SmpZZq9u/5IaTGwLHU2dBOIFFAWeDmW5f5FOTV1EOToqDuIz5KCJAdpqjrTbzAsGdsaOVdTZ+a8pqh010eda6TwGHDX9zBsXHyGbic1btaIc0pu3G0zZZqZv9dSrNTcFOK9DMVXC8Qb+0CdCs3eOcfxN+4Fcoseu+hQ7TXChMMeiykOlhwF11c8Jxy0wGtnkQDADLoegyy7POpdfc74XIruQuSEaT7vsigBiOV4LM0B8TyIc8lQbt6H1Blm3GGNi6YeOLaRoepqwTiy1FJeG9SXksPLpB+15LHUXUpj6YPXA4OwxxCEDKSwvr6+cADpxuE1NDQ0NGwJXJUOj5Y6WcJCv9UtZyUVEy22aInjt7UpIFoORoqUwU6pt8goraiziGC/orNjzbLKn3Qqj1STKUSGa5pqj8fC1BkDamdpYdgPUqyk8DN9GvWYbrvLiGlh7rjjDkkbrcBqlNbKyor27NkzssaKnAJDvtECkVS0NE7aSh0HuZ3MuozO6h5r6oVj3bTGrDn3S2Pnd65zg1R17A+tGElhx98Z5oqchceRSUVjWw060pPTk8YcCZMHZ7obS2liG2tBC1ZWVnTNNdeMAhfHPmfrKdbNcyn2zSDnw70X1x33FtOfZalrmEqI0g46usffuFepk5wKT+j+UIeXBeWohWhkQmBzWbF/tKqnXYM/47y5PHKjtUAL8TcHNamd5xkah9fQ0NDQsCWwNIe3uro60nlF/xQGGzaVYV2eZbH2x5OkW265RdKYuiSnR0tPaRxSiLqVTMdR80txf/wMk2BmbaMujdyCNFBLtQSgvjcLQ8RkkeQwmXgy/u/6yIVklp20THS95DCi/yTHLVLhxMrKinbs2DGizrMg2wb9L03RxXkhVU6rPPY5tp8ckL9zHWYcZS2oNy1+4zXXwzBxTA8VqWaGpWPwaM5BvJdWmAwPloUJY59NYdOXKlrN1fzwaJ0XOUHqabuum+Twdu3aNeLW4jgyoLCDR5MLiNyAuUz3kVIbSlky/zj/5vGwRKumt5eGtWJpCfW/8ayqJaeu+WfGPc21w+9c5/EejjGt0bPksUyk7LXiOfH1WK/PGZ7xRiYVy8KoNT+8hoaGhoaGgKU4vEuXLunYsWMjfUnU61B+6wR+9913X19hEjCVKVxqAXpNrUUqwL441Fv4nsziiZZIpA5oCRf7atCakVZTkZKsRWGoJQSNfed3Wglm/likgJjSxc/ENtIytZacMka58TVTtddff30avSG2ixaLsd30ASRFn+ktaRVLa12vx0ynQmtWctxe13ENkYp1mz0WWRQfclJc56Tss6Dl1A2RWo/jTh0k55TcdaaPqwUez9LQUH/t/llP73ujpZ3rjpKgGoe3vr6uxx9/fJSiKtMfmVPIfMxi2+LzXIuMEEJJSdYG983jliVzJcdNC/LMAtbSDI8h/UBruupYTy0NlhHHiFboXCPeT7Ral4axN0dHzt5lxvdFbX6ox4/WtT4fsiD4m6FxeA0NDQ0NWwLthdfQ0NDQsCWwlEhzZWVFu3fvnrPZFmEcPXp0KBAmt8985jMlSe973/skDWzos5/97Pkzd911l6RBLOBPm8Rb3EblcqzPvzELOx3E4/NmzynaZG67+DzFhVTmUtQVf6MCmwY3mREJxS4U72XiV7oh0KAiE/dQJEflNR1EJenWW2/dUE4UWRIOD0VxSpxLmkBTtJ3lw6OojfnxagY7sa+cSzoPZ2bUFKW7jZ7LKGJkuCmuGcNtj+JympbTAIUuL9JYpEnxW6b0NyhGZjsyZAYMsSyPZ3RF8t6Lczpl8BQznhtZfj0akXgss4zndIOhu47PIZ93sX6XRwMQP0MViDQOAMHvWUB6iuyZc45uWbGNXDM00svmmuuZIlPmdoyiRs9HNAyThnXGtRvvreXh8xhlaoXMYGszNA6voaGhoWFL4KoyntMwwYYp0kAN8c38whe+UNJgvBKNH0yR1rITk8uJnBfDNdF8m/dJY+UwA+W6vtgO9odtoglzrK8WJszfTTVlCuca9UxqN1KFtZBpdCKOnETN8MBl2K0kM7c3ZXfmzJkqJ9B1ndbX10fBjyNXy6zRXhem1rMUMl57J06c2PBsZgJdK4NjSSo3PmOOig6zNEiIlC/XaC3UV8YV0HiIYzQVHopGKuwn07hIw3zQGIdcaWYkRedhg0YZ0rC34l6YMi3ftm3bfO/52bjWaERhAwoGK4gcnt2bfBYx5Jv7ms0LuVcayWXBjn1u0cGcxkpZkGq3hSmtatnmIxiUmoZjkXtikAJy4ux/zPxO4x5KZjJDQt7D1GaZgZ0lBXEPNreEhoaGhoaGgKU4vLW1NT388MPzty6dOyNMmdCs9LnPfa6kjZS3HUDf//73SxqoM1NJpuRM8WeUok1dXa9lw1moJ4MUPCngqPejAztNbqmnicGx3Q9yWnQejW0klVQLR0WKiO2WBsqSodoyLrSWPNauB3GMjhw5ImkI3HvbbbdV0/90XacrV66M9IuxP6YWjx8/nvbd1HqkuE3tOZULqfNa6idpnBLJz9J8O7aROjXqZz2XmYN+zayeoZFifbVg3uTw4phk8yuNg/pSTxP7TD0PuZ24Dqh7pYk8U2lJY5ePa6+9dtMULzSNzxLlMvSVy/Q6yVxaKEmoJUjN9NMMkD2lJ3V5dK9iMPu4h8hd8tzJAjiwvZSmTHHk5MbpZuN7PQeZxIfSLnKlU9I26uCzBNfuT7T5YBLnGhqH19DQ0NCwJVCWcdorpZyUdHTTGxu2Mm7vuu5GXmxrp2EBtLXTcLVI1w6x1AuvoaGhoaHh6Yom0mxoaGho2BJoL7yGhoaGhi2B9sJraGhoaNgSaC+8hoaGhoYtgaX88Pbv398dOnRolKomwv4T9LNiwtQIGs5s9n0KtXufiDI+VDwR5dbGZpGyp+7hb/ThyeL8se5Sih555BGdP39+5LB0/fXXdzfffHOavNPwb/QtYvSXDwWxDPaRn1NYNLJDLK82V0wTtAim9gjrqX0u8mytvuhLxfmp+dNlY2//qu3bt+vMmTM6d+7caPB37drVXXPNNaNyY5vo25r5XWb9WPS3RZ/N9knt3kXWG39bZg/U9vQyZ8bV4Gr6x2hXRva+YAzNqXOHWOqFd/DgQX3v937vPGiwwzrFUF92HHSIMTsd0pk3y/nFA4/Xpw5d3jO1yWu/MbxN3NScNG5yTljsHx0y/Z25xiLowMqxsLNqFgia4YGyNsXrsVyGUKsFsY6IGdt//Md/fPS71Ge1/+mf/ul5iLJ777131Hevo5MnT0oanJMZHiw6yjLTOeehFpRWGpyTeVjS2TaOE8Op8RDJ5pSBq+lo7O+ZMz7nt7bO49wykzvrrX3Ge1kWQ6nFPG8OsuBn7RDsQAe1wA7S4IT9rGc9S29605tGv0t9cInP/uzPngeZYI44aQgPdvDgwQ11M3hBPEB5cHKtT507tVyGSwUyRmDzbO0w/yXXJMc0C53Hs2sq7GItNGAtK3s2Jsy+PsUgMTBILXBEbJfPCQdlOH/+vN72trel7SaaSLOhoaGhYUtgKQ5P6t/WzKQdKUSKNEmZ8np8viYOJTUVqZoaF2gwA3a8t4YpNpr9rFEiWRZhcoVMS5RRn6R4GKx6SmzAMGisJwtHxazfpMqyoMGxvCkxycrKyjytDrmQ2LeauNBlR46PFGItrUnWLtZX44zjGHDuSMVyLUv1YN7kplx2Jh1g4F+u67h2GNqLXAI5mWxsyCGzfxEeC/adYdEyzjxmbJ9SR1y6dGmU3Z1BqmN7uT+NjJtxvbUA2dm6pNRkGfEguSWeHXGPUYJEDo/zEb9z37Pt2ZnB32qSLYZUi22bCh/I9tSC8DM4dtZWz9cy6oXG4TU0NDQ0bAksxeGVUrR9+/ZJuTV1dPxk0Ftp0PsxiG6NOp/S4dU4royqyDjG+D3WS4qRcnBygPFZcniLyP2p95gyHqmB3NqUMpnULQO9Mjlm/N/ztr6+XqV019fXdf78+VHA5Ex/RKkAueZMx+Vr5GZoHJGlUaLupKbTieVzvZF7iuuN+lauIVLxkcMjlU4dTWbQUwtSTs5lKkUTnzV3RSpeGnR45Hqpb86SIlsf98gjj1T1X13Xp5ZykGcjkzbUdLdTUhT2nesh01+zjzWJS2ZYw/WVcXZsI+e9xhXGPjGIMzHFGTGgfabPrj3DfWXUzk5prGf22ZIZH7GczSR2EY3Da2hoaGjYEmgvvIaGhoaGLYGlRZqrq6uTYrWaKNMizGhKalhUwTxhFAvUFNHxHooJMnN0GhpQuU9R2lT5NRFTJg41207jiylDh5ofztQc1EyYqdCPxhg114ma0YQ0FpVkJtER6+vrowzGcZxq5vket8xAoGaeTdNoiraydtdcGuIzFPVRLJ6ZltcMJ2iA4jKjKKiW2X5K5PnVkgAAIABJREFUzE/DAvbZ4+ycZlGVwDGuuXXEtercf3YjYX9pxBD/d1suXrxYFU1duXJFp06dmotEMxEdM4Mz59+UasPP2BiP85ON+WauRVPuCTU/xUXcH2rGc1nZNcOjqX7xnppbR3Y+1c6kmk+kNJyBtXKnXFqiaHNRo6HG4TU0NDQ0bAksxeF1Xae1tbUR9xQpezqzmqOzctrfo7M6HVdpoloz685gSo9UbaQKfQ+zIhORmiKlS4X8lOEB7/WnudwsazX7XKN+MxNjjg/HhNRv/I1tpuFLBF0Buq6rUlo2eKoZpMTyyAV6XDLumRmYTaWbW2Kfp1xOagYbGVcQI4TU7o19l8bUKzkVz1M0DKIUguPH3zcrL+tv5hrCT9+TZZ33/+b0/N39y6QDNUf6DF3X6eLFi/Pys/XLNV4z1Inzz3JqWbanAl7QpYVSjsyFphYkYSqiUE1CMWWA5DGh8QiDSmTnHyUXNBzLODyOH42+siAZhsePxmyZsVFmZLhoBJrG4TU0NDQ0bAks7Xi+vr4+4mIiVWMOzg7GDz30kKSBMmSoovg/w49lLgysr2ZqT6rGHIA0UKK+txZKKtPd1Jw4yTlMOQ97LMjtZlRzjRqv6SEz+N4pU19SfVNh1gxyeFOUVilFu3btGpUT++y+msrzvGcuBYbDWF133XWSBq7d/eH4TIVectvoHpPd63LNxTDUWBbqqwbPC7nFWI9RW9cxzBZDpPkZt9Hrz22Mc+C1SJ2ux8S/xz3pur0eLM1x211+dCuoca4ZLDkg5x05ZP/v8GMOLUYHba+X+IzHKQtSIeVuAzwreGZxLUvjMHh0BcrWJoMT1PRkmdTA/3v+/Z3jl0kwDOpNM8kMn63pqGnDIGkeapDh9nw2Znuede/atatxeA0NDQ0NDRFXpcOjk2Ck9qyPs8WWqUnKgKe4GerDpsJD8c1OrtPUTUaRsvypSN2U99PxlLquLJRZLcxaVp9BOTsDzpoCi1xBLYyb54LBarNya9ZfWegic8xXrlyZ1MWsra1Ncu/kgM29kCJ1fdIQfJg6NVP4U+GzyAGROidnLtWDI9DCMlLr7qPH0NQrKXzPQZRGUP/G+Xb/I+dSC0fnsqg7jnvI3Bn3pMswhxd18FwzDzzwgKThLIiWmIafd9Dn3bt3T0oHSilVvak0rAlzeO6rx9Lj5t+ljWMW218L/ZXp8GhFSN17XDuU5PjT64F7QxqPYY0LzQIze7x83vnTY0ApUWw39XDMQuHfs7B71KdSchIt9A32b2rsuQd37NixcHixxuE1NDQ0NGwJLK3DW1tbG3EKmQ6AercpisRUGOXD1FdkvltMW0JkfjJ+hroO6ksyLo0UR83iKsrSTbW4n26Tv5vCi5QLrSKp53QZptZq4YOkYU5cfhb41SDHQt+4LDRXtKbczB/Ga8f6nLh2qOPwvJgLuPHGGyUNXI009J96V4+Hy8+s9KiXMLgOI8fldrsf5AoyyrcWYottoz5QGqe54ae5lMi5uBzq0NxW9yfT4fkaAzVzzcb1xmDyDBqd6W58r+d47969VWtp109OP46T20BOzinMvGb8nc9LYwtE6qgzeD24LEpVMk7f48MA2lMc0GbWixmHQw6L0raMK6xZu7I+2mRI4zPIa5cSh8hZR92zNLZ2zQJ3kwvcvn170+E1NDQ0NDRELM3hSWOrpUjRmeLxW5g6B7+JI3W1WQocv91NVViuHa/5GXKWRqTS2BZSNRmXspk/XC3wcKyPFBcjbES9GanZmmw986WpRWNxP7O0TqTCae2a9Ztjvm3btiql1XWdrly5MvLjyqzY3E5TiLfccoukgTKMHKqfYZQMr0mvFfcrcmsGgx5zDqf0A653ai5rOiH3z8+4bZELMafiZ8i9HThwYNSmmg8dqWcGfZbq0hVLCShZkIa97HZ7Tly/Lbbj2qA17VS0jJWVFe3cuXN+r8uJulxLAQ4fPpy2iT6BsU/UpU3pug1KfFz/VGQQt5/+irRK9nhJdd827nH3L46x73X53lc8U6YC3TNSFhHXDv0+XS8jWEVO0HuANhDU8cc9aPuQ2OYWaaWhoaGhoSGgvfAaGhoaGrYElnZLiDnPLBKwKbM0zkJLEUwWuNjXqIx2PXTqjSy/Rag0saaxRRSdUTznNtdC8cRrNeMEKvejyNbPuK0UlbifUZlbUxYTWU4/X3N9dGyeykvFfHVGFrKNubKmjGEMGihl4jSLfA4ePChJuuGGG6rt9lrwM1wHFtt5LOygLg0iplqQapcRxaAUXbM/mSEAjXtolOO2+zML5muRGeu34262vmkUwaAQHpPTp0/Pn3U5FM0xoHfsp+uheMr9yYJUGx7zc+fOTYbP27Nnz3zuPG9eF5J00003SRqMU3xPLF/K1SG+5vpPnTq1of4s+ALdkbx3fS/DF0qD+JmBL2gkkxmGUQ3hufSZ6d+jcz9dCfzJsuL57fl1+7lHuA7inDKsH9eKxyITRXuevFZsoOa5iOstzqE0nYeTaBxeQ0NDQ8OWwFWFFqNyN1IVpl5N7VHRnL2JTWnUQt5QgRqpJt8THWFjGdl3t9eUgqkWU5B02Iztpwk5lbx0jpXGQZDJ0WamxRwDGpHw2SwAcBbwOfYhttFUPymtWrqY+JuvXbhwoUqlO+M5xzELrkvO9/jx4xvaGPvltUjFuOHyHeIuC71E1AyvpGFcTKXSWMBtjBy3DTxMSXu8TN3SeTwahLhc99Of5AYilc50Ww8++KCkwSHce8Vtj1w23U88FzRpj/3zNUpmPCc2MojcAB3qpzi8bdu26cCBA/PxcT0eP2mYD+/pOB7SmNOThjXBeaHUyH2P64Bpbci9ZBIRukh4LdGQKgu3Z9Bc39/Npcf+uW63zd+9n9wvSwmkcYCLGueUtd3zQ0kJA1REKYvb7TVPFx4jcr0uJ7oPNbeEhoaGhoaGgKsKLWbKLTPB9Vue8nyGKMoSZGYhg+Lvmf7Pv9GsnkFjI0VJ+b6pQobeyeqhC0UtaWmkUBgUm2GoMvPnmu6zpkvM9HHUFfgZ6rtifaRuWX+Uv5MamzLfX1tb06OPPjqn8r0+oj6W1LmpVVOipNpjOxmWjHo5Pxv1pNYBkSun5CKuA7oQWM/oMTbFGqUerqeWWJRUfFwH1EV6TLyWzD1FvZOv3X///RvGxpQ8HcMjdcy1aK6Eupy45+mG4LZ5TXlMzFFJA5XvffnII49UEwj73KErRpxLz5nXE83oPX5xvVH/Sf0bg15H3RGDQzN8VybRMmdlfePNN98saThvXH+sx/3wGDKVmNehn4lO6+Sw3C/Pg/sfOcpaElzXw7Bkce26Da6XkoRsHD0+hw4dkjTsLwbjyM4qr+szZ840HV5DQ0NDQ0PEUhze6uqq9u7dO6IYoi6Eb1o6aGayYVMVtPKjRRJD8mSoOYhHDsjcBSkQhuCJOgdyWEaUf8e+RI6SCTH5maXroQ7PlKmpdz6bUXa1lCukZKVBH8IAw6bGsgSnDOuWOXUbXdfp0qVL87E/efLkhv7EOsnFuA2uL9NT1CyHyUVlloJuk+cpC6ps0PqO64ycpjRwM+aOvYbMHXIu495gMGpy9gwBJY0paQYnYHi6LAkv++H1wVBusVyDc5I5s7uNHoPHHnusqsMzaBEZ59LtNFfLgBS0XM3KdXnkpjIr5Ki3lsZpfDyn0Q6AqZcoYbIkIOoKaSPgc4Dznu1P6tK4v7Kzivpfzr/Hk9IwaTy2TNHFPsR6/JvnlkELYhsZKPyhhx5qHF5DQ0NDQ0PEUhxeKUW7d+8ehV6KHB6tuGjll+n9GBiV1n+kvCP1zPA4DO2UJak1FeF2W0/hNpk7iBwSU3iYernvvvs21OuyMr+oaJ0Uy8wsuhgUupZeKaOaOAcMdF1LMSKNLWbNtWW+SB4n9+vs2bNVKv3KlSs6ffr0iHLL9DZRNi8NY+nxiro8zwNl/S7D+h6HnIpcqNvNtenxYsDu+JupfetDzCW6bVGH5/Vq3yK3wXoLz7/HJlofulxbWNLP1b9HnTHTKHGfur8em6j/s56Jlou1RKTSOGQWOQqviRgGLQuRVvPjXFlZ0d69e+fz5b0Rx5g6LHMx9AmL80/pU417pl5LGtabuTFy1R4/c7BZG209S/1f5PBs0Wm9n+tlIPpMl8+zgTo99zuub7eNKdQ8//R7zYK/8/zx2vR6j+eO20tfSIatjGen95H3zdmzZxfyAZYah9fQ0NDQsEWwNIe3ffv2UVqRKF+lJSJ1TH7bZ74mfvNbls2EnOQApYHiMcVo7o36g8gVmjoy1fCMZzxD0lhXSKpWGigfRr4wmJYmtoGcA4NJR9APhZQPfQgjl00ZPfUAmT6DaTpIGfveqHNzGxzc+c4776xa2tkPjxxD1AHce++9ksb6A7Y3Wor6eVN99Mfz7+bw4rgyfQmD7Fo/Gzkg6gjd5ltvvVVS7odHnzOm06Hlb5wLSwzuuusuScO4eR5chjlAaRg39917wtyG22juIXIUd955pyTpve99r6RBn8U1lAUcdr3uO/dmDIrtuj2Oe/furVr5bt++XYcOHRrp7qLekuuO9gWZ3prz7fLM5TKSUITL9Vj6TGHg7siF0j/WY+t+eXy8lqVhTXgun/Oc50gaziim/rJuPI6J2+91RSvdzM/UY+H2+xlKnqJkyfuS8+Q147bG/Uu9Ns9G12OLVmk4e70v9+/fP5nCKaJxeA0NDQ0NWwJLcXim0kkZRW6G1BJ1KpmVpqkGc3amFI8cObLhWepP3CZpoEBMoTANUZQB+5qpAuoEssS2TLWRJaGMiJwL9ZZMaZONibkLl+MxcVm+bi4r6gwZLYHctq9P6aZIbdNXKbbf3MWUHH3Pnj160YtepBMnTkgauOosPZD1ooyDmkWIYZoZf3odUCcZ9WNMrWIOyPeYq8rifXIMzC1ap5fFUjVXRg6PFnCRana53ldeo6TsYxvdH9/jcs2Neq5db9SJ3n777Rvu8R7wWJiDiGvHa7Fmyey2ZxFkptJPGaurq7ruuuvmfcz0cVy3jNrk3+M4sY/Hjh3b8Kw5FUZkkTbq5mIfPXeMDiUN3IznxffGNSnl4+Tzi5bK/IySLK8Vc9OUftRSQcX+UH9paQ73W2yrx5xWwpllMyNHeT27PzHZs0Hr+tOnT29q4Ws0Dq+hoaGhYUugvfAaGhoaGrYElhZpnj17dhQgNRpdMEyTWXAqmqNYioYYDIRqNj1zbDab7LZY3EExZXRWtjiCaYcYniyCYk6a79JsP4q0aOJLUZ1Z/ixsl9l2i1NqwYOjMQZFaBTdTqWy8Tgy/BXDr0mDuMH9mMp4vnPnTj33uc8dhVyKRjD8zWNuMZpFS1E8bUdjhk179rOfvaEMmpFLw9r0GFu05PmwKXg0dLDY6+6775Y0rEkGgs7Cg7mNFLv7kyJ9adgLtTB0NnCI405jL9frvjMFkPsS+2qDAI/jC17wAknSu9/9bkm5SwDnntnRM6fvKBqrGa2srKxo165d87HIAlVwvzOtThZMwte8vrwvPQ8Wv8d2GAzBR8Mkr+soaqOomS4lcR8ZDMHnev0Mw3nFdrgeqw/8adG25ziOieu2C4nXjOthoI24F2l8yJRMrsf7ShqHjeT7g+dPvBbTEbXg0Q0NDQ0NDQFLuyXs2rVrTk2ZQogcnqkmv+VpPp2lf6CDcU25yqDLsRy+4amYj6DjPOuZ4vTISTLpofufmUy7rQxllYVDY6oV10NjhSxNB8eLKUSyINzkAlyex4hO69KYcymlVCmtlZUV7dy5cxRIObbb42FOzoYSpirpbhHbQ07e/XAf77jjDkkbOUqvY88H15fbGBXndGymsZT7l4U/I0dNrsC/uz0RlkqYw7RBBc3WpXHKGpp8e7/ZOChS+B4fP5MlTmXbXY/Xdy2EWTT68L6MYddqHJ5TknlcXF88dzx27gslCAwbKI2DSXAPu+8MfCGN9wW5DvcvnlVuC1NLMTB4rIfnjdtCYy2fxXEd0KCKqc1oPBV/o9TJ65oBt6OBlctneDCP8//f3pkt2VFdaXhVqSQExg5HYAaBw40jfOn3fxI/AG1LBtxMBoOQVENfOL46f325dlYdIvrCfdZ/U8PJ3LnHPGv8l/dQ1UHrZFx+f9hSmHPREZDch9HwBoPBYHASOErDOz8/rydPnmzsqym5IuU5YXGvKKlt+0gP3OOw52zD3+wu/eNyOtkOP61BdMVJkZqdoA0svWcfV31xYmj20VKnQ7GtcaVk5M8sPXn8CRerdepE9pFrGOteWsLZ2VldXFxspMu9gpXWOk0wW7UtpokWsaJISp+DpWNrKF1ouYvCpt815yD/zzzb523fDekdmXgMkNL5DO23S48xTZPPHHvK+zL7xnzi3zIJQNc3+6aditSVIbIlowMaHlpTZ4Fhbq01e4+mFomfyqkRqTlUbTWjHIvP9IpIO9un305xYj/mc9AKndzPT8aL9SbvdVFc9g7zaNLsfI6LLXPm9tLLTIPI3HBGOyIP2rOlzNaBBO3w8/Hjx6PhDQaDwWCQOLoA7M3NzS5xLRKJC6/aT5aSkAmgXX5oj4LLydSrUivpu3ESqiNJ3a+qbakN/5/nodmmlOjIVNrg+SZ3zvZc0NSSZFcKyNGgjgpk/J2mzE8n+YIVdZj70H32ww8/3GrTe2uJZGqyWfqbWhqSp31oLsnkgqP5memUnMydycpOvEZ6tRbTJUWbGg/J2xpGUnDRX/t/ucf0VFUHadnWFpe7AbnvmBNHNe6VgPL+os+sRednXhVs7nB5eVlff/317bWOEq86rJ2LHrvd9HE54pVr6afnIPf+iu7Q+9oaZ9W2tA5r56jxqi29HX+b8q3zx/Fs+u+o4JVWmuNg75jQobN0WdvlOcyjo6KrDvPH/7yOjsL3GBnfJJ4PBoPBYBA4WsP7+eefNz6JlEjsc7Kk1fn9TLhM+5YUOnuupQpHM7n8RNVBSrGPhn44fy3bA/bHWIrqyKNpz9FYbiP74vmzRrs3N6uiu45grNpKqvztvqXPbVWGqMPV1VV9//33t3lzXSFRS75oCPbDpaTNmJyfZCm2K+rq/jpfyP6TfA57CA3PhXJT4nSupH04SO20mblO+JnYT2iqPIf1yLw4a//+yZp6jqoO68F+6krj5BiyL6bx4qf7nO3xvL3SUjc3N/XmzZvbOUb6z36b1spRlF2kpcs/WePhjPtM5D22ZFkjSc2Ea+k/88Ieou9JBI4vjf/ZKkWbzrGs2tJ/oWm5PFCupYnuAfvM5yvX1LnDK/q4LmfU2p8j6PO94zF/880348MbDAaDwSBxtIZ3eXm51MiqttK+C5Z2/jiXDLJmYm0mJTtL/batdz4CS8cujOko1KptGQtHDlrTzJIyzrNbzUlKZ9aQrdnt+Txsk3eU3p42aDu/I9dS2zG7zFtvvbXsl0tLpR0foNnRXwpkWmNIKd3+NhdzNYFy+h7cV6+PNaWqw7pDsszz8K11vg1bQpzvZzL23Af2HTvXCaSfsSt6nM+3dpVSus+AtUL72bMdRwMznybHzmsZx2effbb0D9/c3NTLly83vrbcQ97TnUZnuGRZPq/qMKddRCLrwLo7WhfkfuAeF8z13sl5cPkvrrXmwz3pJ2VczL+vYb91c2Ttz2fd77CqbXS44zb23lneX56jXCP63VlE7sNoeIPBYDA4CcwX3mAwGAxOAkeZNKv+rXI6yTpVcJv2TGS7F0YPbBJxwmZeb1OcabUczp19s5kSp7id1fk/TForyi2b3/Iz+mpTAm10IfM2P3ncnbnFAQY83+H9nVnZZi+bWbpahEnUuwo8ePToUf3617/eJPFme5iQXInbZrQ023AP15o02PPW0anZBMzfPC9TTKi87KAl76HOdGrTjvvGGqSDnnZ4HmZeAnpMU1e1PQt85iAjBwgkbEqjTea7m0evPeerq7RtE+Tl5eVu4MHFxcUmcCz74Dm16a0LqLLrgmtNCN0FoDj9yc93qkaO2akTDiLLc2liCZtF2ZtOCXE7+XxcBw5eqTqskRP2bW72+z3v8TvZ93R9An4PMc8dOT7z9e233+6mRCVGwxsMBoPBSeBoDe/Ro0cbJ3tKCNY4utDXvC5/d8DLSnvrJFL/z9JEStxOdlxpUV0VaUtFDmywNpqfuYQHUiCSUTq+TWDsuXAQQ5dEbg1spTnncwDtWmrrkvHd1w6Xl5f1zTff3I4ZLSaTyFdkyqxdl0xMe9bWVtW3816XInEAkq0EOX6uZc0oJbOXOsO5cWCVNcDUKLtq4VUHCrU///nPVVX1l7/85fYzl59BY3lIsreJImyx6QK6AJ9xblxuKTU01i1TgO4jHreWkefFxPNOQ3Fl7bzWe9vnZW+eaNcaWBdgxfMcLOS/M4XKQUvWotnnXaASfWQ9rK2T8pJn2ukHJsewdSjH5yDGVWpaB88F7wWnm1UdNOIkQ98jxEiMhjcYDAaDk8DR5NFPnz69pVciNLvz2zi8fe/b3VrLKlnd4eL5bEvWK62tauujs8S7R07b+XW6NrI/TjS3NIj03oW/rzRIa5KddNyR9ub/O23HkiISnqnTqrbh9ntr/Pr163r+/PltGDoJ6Fl6x5RYoEt/AE52Nem2pfj0+1g6p300B67NEiiMH+3F6RB7KR8mjbb/p9uzPHuVyoA28Kc//en2HoilTXhu/3mnBXd+pOyTn1+1Tbdwygn7v5ubJF9Y+fBubm7q+vp6cwbyPeD968R5p5zk794H3n9dwrTXziH/toLlcxxDYML7tCwBn0tbazpfG+15r7Jn0PCePXt2ew/nknZdWsgaXmrt7sPK6tX5NZknp910e4d3I6Wyvvrqq9HwBoPBYDBI/CIND7s7dDdZmsTRcZawVySrVVsf3UNswPb/IXGggXXko362n9slR69KxjgC0rREVQcJzpRSXMMc5T3WrFZUYnvatfsOOg3PUVkrn2FX7oT+v/32220kFu29fPlyQ9hMsVfuz2cbPDv9Bva3+W9+OrqtautroG9o3KxBV5jXBUWdqN2ti8fl0ijWBLvnIPnaV5XPQ2K3785RjqYIzGtWhO4mS8/fTehg2qicezRlfr5+/Xp33Z88ebKxOuR4rD16Tbt3iDVdayL2rXZWFNP1obW5PFXCPnzmDb9s5zNenU//zH3gd6F90ryHKC6cY8aK5/+bpCP7uqLQ2yPYto/a0a/snfTXsr/2iOhXGA1vMBgMBieBozS86+vr+vnnn2+lFqSApDlylJIj76zp7X1mja6T0vifC85ie+ZnamsmjbVkaQqjfI4jLR1Ryj0p2a1ogJC8KAeTmrL7Chyd6WdkH2wXtyTU5ftYM2Jeu8g+j3XPhwfYM4y5o8Ra5St2/iVLk5b0V4S2ea3L19AnUzNlH10Q1T6V3FNI0iu/z0M0PPwu7GekcvLyumLFmXuafbTfMZ/nXE37t6wx5z300Xu2mxP21YsXLzbtGWdnZ3eiNGkfH07VQau1RuX3TOevtBbVRefmOBLOz+WMdwWTeU86t5J7Oqoz++j8zrJvuiu9w7pYo+zG48ha+mTrQJeXax+03wd83vnRnUfLHu2iXdGE0fCePn26S1yfGA1vMBgMBieBo/Pwzs/PN1ITkT1VWzYB+zY6Lc0+tJVNHXS5YABbMD877cbRcmbNQBJKSctRYGarcFRqarYuGeS5QGJJaZD5W/kbu0hSw9GAHkv3v64ET7aRkpT9WRQI7nB5eVnffvvtbTv47roxryJvu/1g350LSdqnlxqA/QWsA+OBzSQl4SQFz88ctdtphexvF/p0cVqKe1YdpHOTYRNhR5Hcv//977f3WPv0WWBcbjPHbo3e/q6upAxamyP6uhwx4gAy8nYlpd/c3NSrV69u28U6kJoC0awuOruK+K26P793z4rC3uF/1m7tD87+2i+LptJFkvp/1spXFqb8zO9g5r7b34A9Sf9djqg756sI8lXUZv6+apc1yEhpcl45J0+fPn2QdalqNLzBYDAYnAjmC28wGAwGJ4GjTJpnZ2f16NGjW/URxzkqctVB9cRkhapvc0VXtTqfU7VNbjSdV9XBRGXSZhPmdqHXpqNCfe/q/HUh3Pn3qg5g/u6kVJP35hw5aZh7bMroiKBXTuM9td8h2A5z7tpchczvgVQW+p9E0JgB+fmHP/zhTvsOXqk6mAcdJOXq6VyXTn36jymOzzAX0kaa7DH/rQINGE8GjNi8bzBv/Mw+2hzepWZkX7u+MSe///3vq2obLt5VrfbZs2kwE8+79I28t7uH3z/55JOq+vd7YmXSJFiO9v76179WVdWnn356e41JCxiTiZo7wmm7CRzA1Zn5V/Rwrm2Xz0vTcdXhXcn8delQdgG5r3b/5DrZDA14HmcxzzTnhH3MWfT8OtAnwWcm4e5MtivyaK6hrzl3divdRzyeGA1vMBgMBieBX5SWgBSDlJZJgasQ33TEV/VlZoC1GIe9p4a3Sk534ntKj6YbspbWSbWmteo0hhxX3osGbK0G7Zf5S+3RCezcY43PlFqJVaV4O7Gzvw79tmaR82ji2lVpIJ757Nmz2zB6a6zZDpoJEijtMgddCL61dUvEnSbsZHSTFCCBd2S+rKkDkDgbGaxAYAnSMtcyB/y/0/BcXmsVvNDR7XFvaqhVh4CELkXI59cpPF7zqvtL89BmziNzTl/evHmzG7Ty+vXrTRh/VrqGos4akDX9LlHawRbWiDridAdDeZ7oW6cVsr4OBKHPHR0Z/+NsoPmsymBle35HsldYj87ywD5mLkzG0FnbfMZWpYW6gEWTcnAv4+0o07i2C8JbYTS8wWAwGJwEjk5LuLq62hDJpuRj6isnFoK8x/4BS3oO+c97nR6wKvmTUoXJoy1xITmkfdqSjcvSWFpMKdEJzbZpe87yM/rkwrO02dnuTeGzKgSa41tJtd0ar665vr5e2tIfP35cH3744e3YvebZB2vlaIUdTZw1UPtY9/yYK8InaHp1AAAgAElEQVRsl0bp9luOK/uGZJy+SX9mPzNaCJp+hmDjT7TFhL7Sdq4lfaT/LtrqxP7cd55HW0qczFx1OC/+SZ86zc3lts7Pz5ca3tXVVX333Xf10Ucf3el/+gR9lqxtohXmMxzK71I0eyXOmFP74dBIOiIENHlbUQB7Jktm+Z3H/NvC0D2PfcVaMT6nbORZdII7c8P87ZGkr2jPVpRt+Ry/7/Zo8Uyo/lD/XdVoeIPBYDA4EfyiArCrRHE+r9oSC5sQ+k4nRF9krcKSXydxW2uzPygTgV06xImySGspQZo81VqIfR8pkVgrQ1ri+V2ZFlOZ8dN26y6R35+BvWKS9n2tivzm3Dtqcs+Hx732X3Y0Si5g6jlPmAKLPvnvvcK8LmDL2DtCAPvOTIZtba1q6/djXey7JbI5950TmN1H+3izD1zDHDCvtmh08+qz3dHtgVXysCOJO39Wai73Seo+y11pGvfBvtyOwox73F9bQnJd2L9oG/TN77DU1mzp4W/Wg/2Qa0kfIDxwNLD3d75DeI4tI/xtCr2qrSbpa1Yl1fJ3l0Hy56nZ2t/nPcvfSezg2Isffvjh3nfPbR8edNVgMBgMBv/hODoPL7WGVb5X1dbHYNLTh5J95j17UWXOCXNJjJQeLcW4nElXbgKJyrRQSHgru3zV1h9iSc+aV9U2v9DRSytfS9VWAqKvSJJ7Ejd9cqRsR9FmLWAvH+bm5qYuLy9vIxGJ2u18j/QBrcZ9yLGu8oG8N7t5srRKPh77gecRLVp1kLQd4cb64G/M/c28u7DniiYux2JJ2tGteyTFK2uArQa5D+zHcgTjng+PeTPNlnOqso/pz1xJ6ZBHo3FzfnKOOe+2xJioO9d/VdSUftunm8WP0dZtBXBeaFdiDMsFfXEUb54xoj0ZM+PkGmjWuuLBtpQx57YwdHRk1vC8z7tz7vNpTa/LC1yVP/LfuUftp98rLWWMhjcYDAaDk8BRGh5SOugKI7pMBZ8h+ezZWh2Naamyu9dMF0ggXMtzU5PgHq5FWkPiMQF1jou+cQ/SLJIeUmD6RZDo6IvbYk4zVxFpzyS1exFP4D4faCcNrnKQViWaqg6SVs75XhHPt99+e0PqnFI/z2IOrZXZB9Vh5VvtCmRaknff2Q8we1RVffbZZ1V1KHP0/vvvV9WBMQR08wQzEWvL85DiuSe1J/vAVxJ4nkuXsKKPzqGzf6t7Dtda4k6fiv3W1oysZVVt80f3inhCHs0+w6qS/jH77OnLyp9Nu/lzlWvI/znjVYfzzxjpC2sLMXPGDjjCm/cCkbiOMM8+sJZoaZwR5zrmHNva5NJtWCtyLXnOKg/T79c9jdIant9hCVtoVsTTVdvz/1D/XdVoeIPBYDA4ERwdpXlvgyqqiQRk/1HnUwMrPj+XrK+6GzlVtWUTcQHNvN+RXS5omlqabeeWKixBJr+oGTWs3ThvKttzXzrmmOx717eVNtjZ7sFqHvdyaO6LtLu4uNj4WNIvYt5I5tB+zC4yzFIfa8r8OSetaivBW+tA80rJHh8dWoYlU6T2jg2Ge/74xz9W1TanDl9h7tVVxKO1hVxz5onP0ArMztEVgHV0NWA/WAvKObD/xfmG2SbPZm5fvXq1lNSvr6/r5cuXG/9hRsKazYN+djmuvsfahKOF2aN5phmTmXX46QjwqsM7hP/hu3Nh1hyLtSbnL7pQap4NR5/yHPrOPGbJK2vKtgKsimZ7rDke/7+7d8XG0kWUM7cZZTwFYAeDwWAwCMwX3mAwGAxOAkcHrWQI6F7AhNVYU4slVomrNjl0yZWYNRzY4jI9WT7FATQeh2l0uj7aEUs/MDmk2dWpEiv6tS4B1E59O/c7Z7+Df2wW6KjFbJ5cVX/OOfGz33rrrd0SROyfbL+jU3P1dSe/Z7/tZMeM4mThLqXBFb/5ybgwaZIQXrWmwcPsxc8ukIufVCfnWlNOERBTtQ3CsGkJE1qGajNPBE44dWEvqMkBJ6uyV13Vapv9HQCTz6Fd5vY3v/lNmxROP6+urjaJ8h25+8os2qUl2ETutBg+Z53SHG7Cee5NE232K2FChVXpsW483tdOdemClwB9ZX9hnnfZonxORxaebSVswlyd3650mr9TbBbvSDnsznoIRsMbDAaDwUngF6UlIFVQkiOlDEuE/ub2N3r+z1KkSWK7EGZrPtZikC7SYe6ES5MEW4pOOBHSztKOLNvOe//fFFfZ7oqeyZJXSlzWKJzYvCd9OmHbUnqOwe3e5zy+vr7ezEWOmXV2wIQlxC4AwRRr1pq7/rPuSOWeYyT71CTY86uiwUjLXYCGC4miESFxOzAkn+0ALmt+GbTjIBUHLTCfXQCCpXATencpHF2Jovy7C3ji/gzKWlkHbm5u7gREdWt5XzpNl5bigCxrt3va1MoahbbeBVg5GAYLAukqSSkGXNDYZ9cpExlY40LAJtzoCC+cxuGke7+rcs397rP1pbMSWYM1zV9nmeGepNeboJXBYDAYDAJHpyWQBFq1LaRadT8BdJesbsnX4eKd/R2saGscrp4aF5IdEtAqBLajIVqRq1rD6Gzc9GWVVJk2fNqxb9JaCH9niLa1XEtNHVmwx+yCql1iurW0PUkLPwz+C7efsJTpwrwpIa4Ssp203iWwOt3F0nPnH7OfxVqSC4NmnwgDNy0Z54gxZLIyUr99g9ZYct591px2AazhdO3ab7rnU3Eqiwnju2T8bHdv71xeXm5I33MtV75t+1xzv/mM2WeH1tQRnXvf2qdnasCqw5yi2fGTdBVTf1VtycltBWMO6GNqoYyD9p1yslfyC3iOeI4L02ZfV4Wn9/z79/le8zyxLqxXxmfch9HwBoPBYHAS+EXlgWyTzW95F1W1r6vzU3TJhVUHKSIpvqr6grMrGp1OinFpF2BtqvMVWmpeFafNsazG56i5lGJW5Y5cPNb9y3bo42ouOq3A0tgebY/7v6fhXV9f1w8//LBJ1M3rrS1bWmbsKcWuCLHdRqdleE2ZN0vrnbaGxG0fXkeozmcuuOpCrJaMs48G4+bebq/ad7ciK8g1NhmDNb1OWrcW5b3LvWlloU/pq9nzw1xdXd0+u4vOM8HFKnqxi9J1GysKrM5PjjbOPmCMphGsOpzHLGtTdbA0oYnlObXWZx++z2BHSwbs+3QR6+ybrVCMh766QGu2nz79qu2+7ggvrLH6vZrrSWRvV/LrPoyGNxgMBoOTwNHlgc7PzzeRY520Z+l5ryyQbf32E+z5xVaRj/688zOu/FSdj8tSpZ+zF8Vm/5g1OmvF+bsjOVc5Tp1fa5XfCFICdCFVS7eO+KzalkI5Pz9fSulnZ2f15MmTW22ti0jD57DKx0KKzrwha76eYxc77frn0i5d5CuAJBifqfPwulwqP9M5qXuRb+4D82aqqaQj6zTvvNbFQxPOv3J+Zjc+n0/vSdacvMDunr0IX6jFGGNHVdb5MrMPq3yyvMc+TefJdXvfpbesGXUljFziCc2ui3ZFs+FeW4u4BwLqxCpi3ZaLfO94DthDzhVlv3dFpFeR5V10td9Vq3w8/J35v9R6pzzQYDAYDAaBozS86+vrO1IhknbHomI/AuhKYFgDsg3YUlTHEGIJ3xGK2W+zI6wImVPysV/ChRD3pJiVz8alf1JiNdGr88k8lr3yKs676XwhK58NcORftkO/98oDEWln/0Gupf1D1hTs98lnr6wArLv9TNme89LQSBx1VnXY8ysNkvF0fka0Q0ed2i/cRQf7jHncqTHbcuHIaWtpOZ98ZsYQn9vOouByO9accu9SCiuLw95XAJYcM9Yn+8B82zJCm/w/97wjue3vtb+8YzGxRcssLZ0/dhVRmiTlBhqVrWB7rCNYRHxOXRi6y490dCZ/r4oyV233iK0te5aTlXbv9222j5VlyKMHg8FgMBDmC28wGAwGJ4Gj0xKurq421C6Z9LxyQq5U8aqtWW4V4NJR4VjlNrFsF2xh8yMmEgdu5D2rsGybTrvkaKc/0Ab/7+pGYaKy6cSmua7Ssefc4wadKcMmGs9nmhbc/l5o+fX1df3444+bpO4k2XZ1egcadAmmNps4PNumno7UmTboC6kT3T5wKg7tMR7aev78+e09Dsu/r/J4t5Y2lXvcuZb0f1VD7yHmd+Y61yc/zzqGdklg9uX59CfXgnYzrWRl0nz06FG9++679cUXX9z5f84T7XFuuuT0qrumYe9FB6c4eTzP5ypoiHt5J3YmfgeLmOow1wUzp9fKQVNOj8n+24Roc2WXbmHzK8/jWta0a9f72kGAnVukcznkeBycmO3fl9Jy554HXTUYDAaDwX84jiaPvr6+vv2GRsrLcONV0vMqiKVq67y/L5Q4pQEHrZiY18/IPljitqSazmVrknbEWorJe3FkW4Ldq8rs/zmAY0XZlmP1NV6LLvzdYemWDnNe7dTfow568+ZNffnll7eSKCTMOWYnkQMHPeQ9DpgADsnunOxoHPy0htVJlaZwYg+hWTj0v2qrmTI+05LtkWPTR2uwtk5UHc6lA11W1pAE84REbwLtPToqJws74CXn3vs2yaGN8/Pz+tWvfnU7Hltbqg5aJYFBwNpUF0Ti5H3+tuaVliyPw9XMuSfD6d9///2qOiST0zfOQheYRpK1UxnQsEwu3Z0n4IAxylTlmXa6EH1l7LZkZDCg3+0+e50G70A6nz2PO8eVleL33j2J0fAGg8FgcBI4OvH84uLiVrr1t3BVn5iasCZR1Yc6V20TF5EmUmqyr6nzaVTdDRN3wUr7OugjCaF743DYrIuI5mf8JImTPlsbrTpIqpaSHkL5Zc3Yc2KtOO+xJO8SSl0pkUyGXfXr9evX9fz58/rkk0+qqpeWV8njqzXO/jqk3ImznV8TqdjJvYTMgw8//PD2d6Rx+s9P1haJOOcJaRwNBb+M6aK6s4E0S1+tLXY+NcL3Tc1mIoKOus+airXuTutdWR+cbpPvCd9zdXW11PDOzs7q0aNHmxSQ3EMr/7/95N3+tBWFfWjqrT3yaKdBdFRmTnNhXdhTvDvSP4ZWyLVYGJza5JiFnBNbvWiL5+Q8ei5ozyV/nBheddiD1qZX5cmyHVs36Ctz0hG4pzY6PrzBYDAYDAJHa3iPHz/eFLtM7cl+ga6se9VdKd10OaskaDQuStNXbUu6IGGbvLqj+nIkkn2FKYkg4VjCdfQkc5HSoH02LmvRSZ9ff/11VW0lIPtDXGIm77FmZ+ltr/yRSV3t58rfcw1WGh7k0UhuaDldxJYT8u1PzPI5aPteS0vlXWQic5bt5XPpBwU683dLmbSPPzvpz3imKb3QxCwBd5qQzwRtOFk+wVmwtcOaXT7vvn3giNa81nPuJOV8jv1L77zzztIPc35+Xu++++7tGaRgbraxSpQ2nVbuN2sVJjhY+faqtkncPmtoYqk9ca2jkO33S82F3z/++OOqqvrb3/5251qXbcr3E++QlQbLXk1tlf3kEkKOBgWpjfLuY8yr93hHrO/vib3ozEw4p/+j4Q0Gg8FgEDg6SvPNmze3EgPf4EmJY2of4G/ulGKQ/Cz5OLKzK7NjqRLtzz6Hrvik85JotyunYrohJDj+b80utV76ZA0SCWuPUNsRkGgjtsPnnNjvYwncOXf5P2CJscuT6fw6Kz/Mo0eP6re//e2S0DZhOjBL76lxEcXGPayLo806GjzWg89YD/qEBJk+PJPnen91fjEXkmWOvHad38c5YSZ85t5cAzQ7+uLoRq9B3ruKIN2jrgOcY/YZ40YLz/3v6MJ33nlnSRpe9e/5ZVy0lxojbbsskLWojjzampytKJ3Vgr3hHD6u7cooOUcQTZU+dbmpPAe/MnvV+4+9lOOzL81z3vnU6KNzYh2B22njzvuzD68ry+a9j9WDdTTNZNVBw0sry97eSYyGNxgMBoOTwNHk0S9fvtzYxVOqQttDE+misaruSgiWNG03tuaXEoKZLzJarWorkVcdpAgkYEsT/N0xkfCTca5yxjqp2Zockpzt5XmtfXf0zYV0s68uO7SyoWd/PA7ap49dwUf+R5+ePn26W7D0008/3eTDdXlDzmGydSD7bUJxS+X0nzXPe53zgxRtVonUQpGwvVfRDjvfjRk1VkVWOz+My8K4SC6fZ3kg2nUemc9Tl+PkNV35mxL2vVvbYI66aMDUnldSOv5fPkfTQ7uvOuwVtAz7tkBqT9aETbq9IjNPrAjhu7VkflxaCNBGRofz3rKv3u+FjmkF0H/W24w4+e6wBcFaqdcotV/Hb7h4NehYtuiby6BxbeZXsr+6PNL7MBreYDAYDE4CR/vwXr16tYlI6hhJ+OmIO/uREv52t/S+4lur6tkpqg5SQPp0zJZhf5x9hlVbCcTMF35+V67D5VmQeJ3PVrVl0rDdeq8A7CryqfPdAWuhzA33Ig2mhOdcmVevXi01vIuLi/rggw82WlpKs0huSHPOJ+vWhRwmItIYI/faf5pjZ05dvJN7+Dvz8lZRoDyf8aVWSPurElbAn1fVJue182lU3bVgfP7551V12DvPnj2rqq0vr+NuZD1WZZW6PWStwJafjj+XteZcXl9f70baXVxcbM5NjtmWCHN1Ouc2+8nc+n3maN2Oh3VVRsvRm1WH94yjc7EWdbED1sb5ydy6H7mnbA3gnLoQbe5V7mF9nENqa1xGIwNrdLYo5ee2Rjli1u+EqsP65x7dy0tOjIY3GAwGg5PAfOENBoPB4CRwtEnz8vJyQ02UKriJpU2503ZCVcmdqOrw9wySsXPYtD1doAtmMJ5naicTUVdtzQGrBFc7iPNaE/O6QnCOi76h0juJd1VCKUG7DuRhLRzCne0xTifldyTVDwXUdFWHcWUQAe299957VbWlxuqCiaBewhRHG4zZCdrZZ9bUSduYnrrAGq8762D6rq5Mi8PPMeeYjq4LDHL4Nm3aTFm1DU7BZOYAmC503kQDdkE4qCX75nJLgPlLM6yD2vaSh9k3rrqd6VAOyLB5kjnNtJRVpXZgYvjcJw6wYq4pYWTi7K59u3lMopGfuZK6g1lM8p39XwWtdCW//E73O8ql4XJN3a5N+XvfAX7ncw9rnS4p+ug9+hCMhjcYDAaDk8DRaQk//fTThsw3k2ztXEdatvSW2tOqrASSgiXTLqXBoc9oECZFzvv9HMZhqabri7UbE+Tm52gfJj+2lpYSJFK/w4I97o46zfRPDj93+Za8x6HEnvO9QJ77woRvbm42FEU5rpUmbK0qJUW0dTQGJ66aEo3Pcz5YK+/V7nm0Z/opwuu7QBDTc5mg2ZRzJCTn/6xh27KQEjD/4+eKJL0L+XaQmcG+TK3ANFsmFXAB3Oz/6u8ElIYAbSaDLVZBZA6w6xLPncrigDC/Y6q2JOvMMWe9Kwnmc7Jqv9Oebe1iHVaE+934bLnq5oK5dbuZ9pIgtaPqcJatOa8o1fx71WG8SUhQdVdT7qjrpjzQYDAYDAaBozS8q6ur+te//rVJbE1pwBI10jMSeCc50h7f6kgZ9h85ITSBJGDNYc9fBVZpAgknsloyWaUCVG3D3q3ZOfG16i4xasLS5x6Zr/0tTvrvwt895x5naq6dX28FSrwgEXaUYmgAjBktnaRiawz5+0cffXTn2lWyevaVOWO/pfaXbXd753e/+11VbTUHlyXKZ66sHKb66q6xBkNb9Lkr20R79hl7D6X2ZKncBN5duoKpuYDJwFPD4558P6yk9LOzs3ry5MkmzD6tA6u9aJKM1BScQmKN3uk8aRGx5cP+OMaa9zhlC9gqkFqT01BWvvW9WAn7Vr3GLhSc7TuVwDSFuXf8bvT7xmQWec0q3colmrIv4KEpCVWj4Q0Gg8HgRHC0D+/777/fUC+lFOMkaqQopJa96EJLDV1JF/rh5+GHsES3J8WaIBd0Nm4kbEf7OarRdFGJVZFa+/SyXcNaommC8nf7KJ003fncTB4MvJ7Zhy6htMPFxcWtVM49WV7EfhH3ryOudXQuEuGKEGDPj7SKSIM2LD8zEa8LcSa8DtYOHC2J9pi/MyeM136flJpN7u7xeG92/jhbSBxB2BXkdEkXn/n09dty8dNPP+1K6hkdbh9Y1WH+TfjAfugo31bJ/N77LoJctS08DNxWfm6yAvvhuxgFazy2gnR0e+6L6fwcfdyVlqIv9vuCztriEmoddVnVXbIJ5skRnSvCg6reF74irTdGwxsMBoPBSeAoDe/y8rK+++67TamItIsj1dle7WjJvdwJEyU7Ii2lOJO2Wlq23ZpxdO05siqlZvsubKe2RJKaxapIJODvzh4OTB1kKTQlPOenWHLuNNhVxNiK0qjqIBkmofJKSseH57GmNuOit9aIve+6/6GNuSSN/cBd+45eZG1TK+SezldXddAgOgorWx3cZkdH5b7YN866ZKSlNQefCfZ156u2b8g5XF3urX13qxJGub/pP+f21atXSyn95ubmTnHhjvQa7dHaNP0kirYr+bUqxGpi9rRumKzcliXQ+aqdS+t+5LvEVg1TJfp5+feq6PYe/ZmfZw1yjwjaz/H71fnACed2PyRyNfO2h1psMBgMBoPA0UwrWR7I+VFVBwnbJLNoAZ2/yhKw7bqW/NIX4NwPk6laE6taSylmmUiJ5D4C6+45fp77aMk+pUFrgZZ4XFRxT3J1JGHn97FvzeVoOqnavpSff/75wbZ0F1mtOuSfOWp1pe1mf7gWSR7CZ69Xrr2ZOzynPDf9PvYJO/Kxi1i0P9Faotc6pfRVjqr9ZbmWzifzPc7dyzmxxuB1554uRxWJm3E6OrOLcnSkcgeYVpg3E1xXHdbQ54P3DpaETgOyNmjfaue/9pn2nulKSzmS01Gg1mATfkfYWtCdT7Cyeu2xNHk/r7ThPU3f88YeTb+918AFj5nPjFGwZeb169fjwxsMBoPBIDFfeIPBYDA4Cfwi8mhCfK12Vh1MSQSvQPCKWYgE9I6mh/ZMnOyw567i+SpBu0sTsInPTn4nnmY7Xe26qq2ZKs0SK5OCzROdKcvBJHbOdqbWjgopn8s9HTk243DF6y75ekUw3AGzlM3gSYnlVAub0ehDmjdsAsF89vHHH1fVlhKpS52wyZH9x3PT7GpTHM8laKRLrHf6js36Nv2kidMmq440IK+r2roaHGhFn32usk8OVmEuOMe5Bk5ZYA7oE2c+18LndS9oBWqxbv3dbxMAOPUo3x28X3BdMA92OXQ0YXZPOLG9IxtwYvaq/l5HnWgqwxURdb6LHbTkvjpdwWOs6tMP8rp8R/q942s6E6oT6t1X1ijfb05+n8TzwWAwGAyEoxPPs6p1F7Ri8lGkOr7BIftNJ/uKfBhpEoc0zuqUSJBW90J73UdLBJawLOXmMy2FORCA/uTz+Z+drSsqnnzein7KBNA5n2BFwdNJn9bkXJZmr1p6JnvvlXh5/PjxRuPOOUaawyrg4ArG2O0d9p0TwaEce/HixZ3xZfv+29J6R1y7SjEBuUcdrOKgAUu3uQ+8F50s3WnXTglymSWe2yUtW+qnXbS27nxZk+A5XgvSTnJOOlorg7QEzj9aZwY/WPMGTtBOiwL3M7dfffXVnWsJwPP7oerwbvK5d/BNF0xmq80eubL3hNfflFxdOlRXBir/7hLdnbrlABunVlQd9rHXHfq7rnSay7ixH/yuzHVzQvvjx493A3DujPlBVw0Gg8Fg8B+OozS8qn9/o68kyKqDpO2yJkh3z549u/P/bMeah4lYO7uxpWZTgHV0VCvfljXMruigQ29t73dB0LzX0p8lr84W7TFbO+iSyO0fQSKyNNj5KJ38bf9mhoIz5vSt7lGivX79ekM/lH4d/GDsIZcK6RJl6YP7z9oRjk6/83lOkPXznHqQ15pyyT7OXA+3Y83K1om81z4pawFdiDmai8sdMSd71Hr8z8Vx+fmPf/zjzuc5djQiW35caDl/Ty1thcvLy/rqq69uNTDQWShcUmplzanarovJyn1vpqc4TWDlH+usRD5L3TnKsee97hPtm3gjx+oz6YT3bLOzbmVbwEVYs6/A7yhbjfIz5n5VDDnnhH2Q3w+j4Q0Gg8FgEDhaw7u+vt74ANIO7+KMjgwjubiLDLJEgk34IWUsgKV1UwDl7/eV6+mislaFX1ckstmuNasuSsr3285uiX8votTSvxPsU6N1Mm9SPmWbXUK1IyU7YBnAH9tFCLK+aGVoEzyTPmW/vWYrHy4J6fgHq7Y+B/tSO6nRY7SPqIuapd8uyOsE586vuSq14jXNOfG13qP2C+caWLL33HTEzdbkgMkLus+Sum4VbffmzZt68eLF7bulG7P9YrRL1DiWpQ7035q9C+d27x/vEUdgJ1ZllLxX986yk9f3CNutwfuMmIi665t9ht4He4VXWS8nlXf+bY+D95GjrxPsq26uVxgNbzAYDAYngaM1vKrtt3FKBUTkrMhc8bHktzLf3p1vqWobLdcVcTTVT15jrOzsqxynHMeq0OJDS8zntc45SWnRUWfW6JjPTrox/c9KAsp1dHkja/FdHqD3weXl5b0UP9aqE8wtviBs9UjpXSFR9lvnM8n+Mg7y86qqvvjiizvj6HKZPM6V1sQcI3Wm1uRoPOd7ed93UXrWYFbr4/5m+47kteSfv6/8S4wh6f08duekskbp7/F++vHHH5ca3tXVVX3//febeUwNj/4wRvYIc4FvKPvta/z/zscFVnEAq3XK/q4KAnfk6I4rsDZo61B+7jzMVcmffJ775vfO3r7zHNg61EU2my7O1hX7knPMmQkw5NGDwWAwGASO0vCQtPbAtzdSkn0qSIHZDhK9i05aUyGSJyUSay/2fXXRTc5hsp/CZUHyM5PTOoewK4XS+b/cp+xPjsssFis2ks5HaUnI0mH6XGyjt5/J1+X9Ga17n6S1p83Qnkmj2SswduQ4VvNiX0eXp4Rf7/nz51W1tRJ0jDUuSrwq4pvrYU3BUrstC5225qg1s7LYt1y1lbTtQ7Em1o15RWK73LoAAAQkSURBVMpOXl7VYX2ICr2vsHI3jj3rABG+9o/le8Aah31c9O2DDz7YtL8q8ePyNnvvEEfc7uU40h77mL5143cpJ7fryOs9C4sjPl1wOa+xv8+WLe/Hqu3720xMXbQ67aDJca0jf7Hy5NizTFBHmt1hNLzBYDAYnATmC28wGAwGJ4GjyaOvr6835qgMO0a1JknTZkJMI2lOI1TcdDmmjeoCHnyPVe4ueMVmsFVtro6OzAENjMNm0YTH4b5bRc9nr8KCbU5MM9mqGrpNGB0hq8frkOw0Rbs22n3Jn2dnZxui5C4k3onKrm2W99jUYxPzKpG2aks/9vnnn995/kPIfFdpMDm3DkdfJfV7P+Q9rpHmCuT5PK+/TU1OsO9o6Vhbk0wwljxXJpmgT5xrTNHpfjDxwF7QF6T1oKudZxOvXSpdCob3CNfw7rKbojvbfpfYbZDnyqZMv0cdPJX3e46dWO+6oPnZKu2hCxL0PcekUtkNQt89z5nA/+WXX7bjwITZEV44PWXIoweDwWAwEI4OWvnnP/+5cWR2IcqWGlelSqoO39guL2Lp3YEoVQcJgHvsdO8cpZZaHJ5r53XVVpPrQrrz767CummwnECbkpi1MTvDV8nlea21UocU7zm4Ldl347KGvJc8fH19XT/++OOtNaCrgv3ee+9V1XYPsbbcm5qygyosCTvUu9MOTHbr/ZZjsqZlrakjgLb0ChyQ0pH83kdSbW0u4YAaBxF0icDW4FgDJ2fn+baWY63URMBVW41rjx6KvZOaQVVPBO40BDTVPZJtrqEv+T7LcaSG2tHAJVwSKvvLc5ljp9TsWT1WVgIHfHV9WZFVJIXiqgzZKhUtLUvWDleECnk2WKdVuhKpSTn3WAVWlI17GA1vMBgMBieBo314XQhofivzbY4UjlRmqbnTFFysE0kLKYI2U9qgffuputBl99HSs8PFUzpblclYJebmvabPsXbWFWS1JsdPk6t6TNk3h0pbQ+6KU3rsDqXPtXZhzL0inpR48Rx0FGwOA7d/pJsn98+2f7TEXONVSoGfm4nu+KVWlEhuK69x6Lyl9s4/Blb+Pv7f3bMqscLzOG+dP87jYQ7oY/pyrUG4aGynIdlfdX5+vrQOQEu3l8ZjomKe6bI9uc9NjWgieL87cm5sMbC23vnj9t6bibzH2hHPM8GBNdy8dlUc22PJ51kL9DtrzzfuPeR3ZqYY+BpbvzhvaR3xGei02hVGwxsMBoPBSeDsPiqoOxefnf1PVf33/113Bv8P8F83Nzfv+5+zdwYPwOydwS9Fu3eMo77wBoPBYDD4T8WYNAeDwWBwEpgvvMFgMBicBOYLbzAYDAYngfnCGwwGg8FJYL7wBoPBYHASmC+8wWAwGJwE5gtvMBgMBieB+cIbDAaDwUlgvvAGg8FgcBL4XytoTnoBJksQAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4XfdZ3/v97aPhSLIs28KS5TlTISQ3lJb0oeVSCKU0TaFl6AMUKA2QC5SWcmm5LU0TCJAytYShJaFtKLlQCJd5CDSE4QZKuSm0oSQMSYhtKbIl25Is2bIGSzpn3T/W/u79ns96f+vsLcux3fP7Po+eo733Wr/1m9Za7/B937d0XaeGhoaGhob/1TF5ujvQ0NDQ0NDw4UB74TU0NDQ0bAm0F15DQ0NDw5ZAe+E1NDQ0NGwJtBdeQ0NDQ8OWQHvhNTQ0NDRsCTxjX3illFeWUrrpvz+T/P5J4fdPDd+/pZRy+CqvebiU8pbw+ZPDNfzvwVLKL5dS/sJVXuMzSyn/+CrPfd20D9s2Oe5u9PmJab9/vZTyf5ZS9ibnbBj7gv15ZSnlSyvfd6WUu5dp75mI6X66/+nuxzII6//Kp7svGaZzyvsq+/fJ1+h6P15Ked+1aGva3teVUv5m8v23l1IuXqvrPBmUUm4spbyhlPJbpZSz0/n8+CXOv66U8m9KKcdLKRdLKf+zlPK5T2WfPxwYfXA+Q3BW0t+V9Fp8//emv/Hh/S2Svvcqr/VZkh5Lvv9Hkn5PUpF0u6R/JunXSikf03XdfUte4zMlfaqkN1xlH5fBt0n6BfXrfEDSX5b0zZK+ppTy17qu+0A4tjb2Mbxy2vZ/xPe/JOkvSjp+FX1uePI4rn7+73m6O1LBt0j6gfD5VZK+TNL/LmktfP/H1+h6r5G05xq1JUlfJ+lt6u+tiO+X9DPX8DpPBgfVPyPfLenXJf2tRU8spRRJvyjpz0r6F5I+KOnzJP0/pZSu67qfvPbd/fDg2fDC+xlJX1RK+YZuGiVfStkl6W9L+mn1D90Zuq676pu867rfr/z0J13XvcsfSim/L+lPJb1c0puu9nofBtwb+y3pZ0op3y/pdyT9ZCnlz3pOR8a+NLquOyHpxLVq71qilLIiqXRdd+Xp7suiKKVsl3SlWzBLRNd1T0h616YHPk2Y3qOz+7SU8vLpf//bIutSStk5HeOi1/vg8r1cHl3XHZV09MNxrQXw/q7r9ktSKeXTtcQLT9JfkfTJkv5O13U/Pv3uHaWUuyT9q1LKTy26F59peMaaNAN+RNJd6qU/47PU9/2neTBNmsG88xWllG+equhnSim/WEq5HecuatazJrQ9nHtzKeXflVI+UEo5X0o5Wkr5sVLKbbFv6qWu24LZ5jDaeOP03Cemf3+klLIT139OKeWXSimPl1KOlFK+oZSy0Fp2Xfenkl4v6SWSPmVs7KWU50yv/+C0P/eWUr53+ts7JX2SpE8IY3nn9LeBSbOUsr2U8vrpdS5N/75++jD3Mcus1eeXUn6jlHJiOg+/X0r5exzvtL1/WUr5+lLKfZIuSXrptA9fkxz/uun63bjIfIbzvryU8gdT88/JUsoPllJuwjH/sJTy/5VSHpmO612llL+BYzwHX1VK+c5SyjFJT0i6Iczrx5dSfrSU8lgp5Vgp5ftKKatJG68M372llHJ/KeVjSyn/ZTrGPy2lfGUylk+dzufFUsoHSymv4n314UIp5eXTsXzGtA+nJB2Z/vZR03k4XEq5UEq5p/RmuOvRxgaT5vS8rpTyJaWUb5vu79OllJ8rpRzapD8Pqteevizs+x+Y/rbBpFlKWZ3+/trp/jtaSjlXSvn5UspNpZRDpZSfma7jkVLK1ybXe/60/yen6/E/uGcyPMkXkk2f/xnfv139s/jPhf69crrvz5VSHp3+f+DmeKbg2aDhHZH0W+rNmv9l+t0XS/pZSY8v0c4/V6/ZfKl68953SfpP6iWZzTApvd/MJs1vlXRevdpv3CTp4vQ6JyTdKumfSPqvpZSP6rruonpTzs2SXirJPoAnpN7mPu3fTepfSO+Z9vNvSdrh46b4WUk/JOm7JX2GpG9SL1n+0CITIemXJX2PpE9Qb+4YoJTyHEm/Ox3nN6jXaO+U9GnTQ75K/fytSPqK6XdjJtH/W9Lnqp+735b0l9SbS54r6Qtw7CJr9VxJPyXp2yWtqzfXvrmUsqvruh/QRrxS0r3qTVHnpv//OUlfrmD+Lr3292WSfqLrutMjY9mAUsq3q1/r75P0f0m6Tf0avriU8pe6rrOZ7m5Jb5Z0WP299xmS3lZK+etd170dzf4L9Wb0L1c/x9E39COS3irps9WbLl8n6bSkb9ykq9dL+jH1a//Nkr5E0ptKKe/vuu7/nY7lo9WbpH9X0uer33uvlbRP/Tw/XfgB9ffb35Hkl/tt6tfyJySdkfR89fP2v2mx+/obJf2m+v1xm6R/Lektkv7ayDmvkPSr6vfwt02/e2iT67xK0u+rv09uV3/fvkXSLeotWG9Ufw+8oZTyB13X/YYklVKeK+m/qb+3/5GkU5K+SNIvlFJe0XXdrywwxquB9+slfO9n0Isl/Y9Syl9R/8z5Lkn/WP2e/mhJNzxF/Xry6LruGflP/Sbs1G/iL1V/Q69KOiTpiqS/qn5Td5I+NZz3FkmHw+e7p8e8E+1/3fT7W8N3hyW9JXx2+/x3RtIrNun/iqQ7psd/Fvp3f3L8N6vfaB870ubrpu19Cb5/r6R3JGN+VaWdndPf3zQy9h9WL1DcOtKfd0r67ZG1u3v6+cXTz6/Dca+Zfv+SZdcKv0/U32z/QdIf4LdO0jFJu/C91/YTw3d/c/rdx2+2XpjrNUnfgO8/YdrWZ27S53dI+vlk7d6t3vSazes34fu3SfpA0sYrMY5O0suwD05J+vfhux9TL7DtDt8dUv/CPVybhyfzL+zrbclvL5/+9tYF2tmm3j/eSXph+P7HJb0vfP6o6TG/UtmPN21ynQclvTn5/tslXQyfV6ftvVfSJHz/xun3Xxe+26H+GRfvyR+d7t19uM5vSXrXEvP76dzXmxz/2dwrYW90kr42zNexp2JPPFX/ng0mTUn6SfU352dI+kL1Gy7VTEbwy/j83unfOxc49x+o18peql7Ce7t6H9gnxYNKKX9/qtI/rv6l/KHpTx+5wDU+TdLvdYv50n4Jn/9Qi43DKNO/Y2aPT5P0tq7rji3Rbg1/efr3P+F7f/4kfL/pWpVSXlBKeWsp5QFJl6f/XqV8rt/edd2F+EXXde9UT4r4ivD1V0h6T7fR77kZ/qr6l9ePllK2+Z96yfys5mNXKeXPl1LeVkp5SP3+uDw9P+vzz3XTp0oCrv97tdj6n++mmpw08/V9AOd+vKRf7rrufDjuuHqNexSllJU4B2VBM/uC+NnkeqtTc+H7p6bEy+q1L2mxey6bR2m5e2kRvKPruqgd27w609C6rrsk6T71QrLxcvVa7TnsrXeoN8uv6qnB29T7WN9YSnnp1Pz69yV9zvR3j+X3JB2amppfQVPyMxHPihde13Vn1Zug/q56c+aPYgMtgkfw2er5IpvmA13X/ffpv/+s3qxyr6Tv9AGllK9WL7n9mnoJ6S9obgtf5Br7JS1Kf8/Gsszm9001xqJcpj+bwb4sXu9B/G6MrlUp5Tr1D7aPkfT1kj5RvTDyH9ULRkRtnG+S9LdLKftL75B/uTayBxfBgenfD2r+4vW/vernUaWUO9QLaTdJ+mr1Jt2XqheesrUbW5tsfrJxE5mZlnvnkKSHk+M2M9tJ/fji+L9hgXMWRTYf36Vey3iLpL+u/p77/Olvi9wPT+aZsAw475dGvvceX1G/V75cw331Leqf3Uv5mRfF9OX7OeotF7+r3grwGkmvnh5yfHrcr6h/Fj5P0s9LOlVK+ZVSyouein5dCzwbfHjGD6uXyCbqJ/lpQ9d1XSnlT9RrnMbnS/r1ruv+ib+Y+sEWxUn1foQPB+z0/u2RY65lf/xguUUbqfK34PdF8RfVO88/seu62RhKPT6xpin9sHo/zCvVPzzOqzcjLYNT07+fpvyF4t9frt4P9rld180EiVLK7kq7TxcL7rjmL/GIgwuc+xXaGCZ0LawDRjYfnyfpP3RdZ1+aSikfcQ2v+bSh67q1Usqj6p9531057ORTeP0/UO+Dfo6kXeotAV+ofh1+Jxz345J+vPSxvZ+iXgn4JfVm9Wccnk0vvF/V1Dnddd0fPZ0dmZpqXqSN1PvdGpI2viQ5/Qn1G4h4h6TXlD627w+uSUcTlFJeoF5a+331Prga3iHps0sph6YmrQxPaBgHmeG3pn8/X9K/DN9/4fTvWD8y+CVx2V9MST/LUK/Vdd1jpZQfVf+gvk69n2jZWMRfVW/iubPrul8dOS7r859R7+t7JgW2v0vSK0opu23WnDIXP0GbxFV2Xff+D0P/JM1ixXYpzOcU2T13rVG7h6813q7eivHebokwjGuJbhpnXErZod6184tRYAvHnZX086WUj5T0HaWU66/iXnrK8ax54XU90+3p0uxeOPXLST3L8ovVs5H+aTjm7ZL+WSnl1erNAJ+iPlaQ+GNJton/d/VO7veql+K+QH1A++vV+xM+Qv1D/CunG2pZPLf02RVWpv3+JPUsxJPqNY0xLeIb1fsrf6eU8q3qTXa3SXp513VfFMbyVaWUz1OvuZ3NHnpd1/1hKeWtkl431cJ+R72W9lr1L5n38pxN8DvqhYvvL6V8o/qg4tdMx7VvybbeqLkfr2bO3FVKydbyg13X/c9SyndI+rfTm/031RM87lDvn3vz1G/2a+r9dj9cSvku9abDb1Lv530muRZer37f/kop5V+rN5W+Vr1J8+lkaW7A1MryDkmvKn3IwWH1Gt+fGz3x2uCPJb2slPIK9ebfh7uu+9Am51wNXq3eF/zOUsob1e+VG9WHFN3add0gpCSi9PF3q5L+/PSrl5U+vOexruveEY67Xz3Z62+E716r/p4/rl5b+2r1mv/nhGO+XT3z9zenx92pnr39rmfiy056Fr3wnmZ8X/j/aUnvl/QFXde9NXz/zerpuF+rfpP9pnp6871o683qfXvfOj3+iHo245lSyieof+B8vXrfz0OSfkNDevCi+OfTf5en/f4j9X6VH9zsBdp13eHpy/L16s1+10l6QL2t3vgO9eSAN09//03V6eCvVD8XX6opu2t6/jctO6iu606UUj5LvQ/np6Ztfa96n8dm1Hy29Z5SygfUPwTeXTnsJvXEKeL7Jf3DrutePTVx/4Ppv049lfzX1YdzqOu6PyqlfKH6ffIL6gWEr1dv6vzkZfr8VKLruj+exnn9K/UWlQfUr9PL9cwzU32lpH+rvn/r6gkeXyzpvz7F1/2n6oWjn1Kv6f27aV+uKbquu7eU8nHqWazfoV4APqleGF4kBOnN2miK/tbp3/erZ6oa29QLxRF71d/3h9Q/O35Z0mtAYnuX+v3+2epfxA+pF/yZFesZgzIu5Dc0/K+NqVb2J5L+j67rfvDp7s8zEVOS0Acl/VLXdV/2dPenoeFq0V54DVsSU9PO89VrmM+X9HyGLmxVlFL+jXqz8TH1CRS+RtLHSnpp13XveTr71tDwZNBMmg1bFa9Sb979gHrzdHvZzbGq3oR2UL05/XfVJ3doL7uGZzWahtfQ0NDQsCXwTGKHNTQ0NDQ0PGVoL7yGhoaGhi2B9sJraGhoaNgSWIq0srq62u3Zs8eZs7Vjxw5J0mQyf29u25Y32SdGyDH2W/Z75ndc5JgaeKw/Z/3yd5u1H3/nsZuNN2tnfX19tK9j19vs+6xPtTnI+r6ysjL7+8gjj+jxxx8fHLRv377u4MGDunKlr+956VIfWuhxZf3zvnL7/H5sHMvMce36V3NMth61OeSxY3uLv13L8S1zr2TX5Ti8pmtrfZUZr3m8jp8T27f35RDH9s7evXu7/fv3z9bd7fmvJF2+fHnDNdmnsXW5Gh7DZucusk5Xs4Y1eG5im2x/7L4hNutbNu7amOM9vtm5/Jy16eeBv1tZWdFjjz2mCxcubDqhS73wdu3apZe97GWzz3fe2ScVv/HGeQ7T66+/fkNn/FL0oDl4Sdq9e/eGc4w4IGm+meNL1RvdE+Nj/dk3RWybNw6P9XXGHu61h5bbdr/i/91ufEHEv3FD8sb1C+Lixb4sGh8q/puNg+Nb5KHMdcpePl4Ht3Po0CF993fnaf8OHDig7/me79EDDzwgSTp6tC8MffbsPP7de8W47rrrJEn79vXJU/xw9N94DvtXu2HjmH2Ox8rPcU4NfsfPPjeuP1/C3COc6zjH7JP77znIHnS8Lq/D/R/HwGMWedH6nPPn+wILFy70hNdHH31UknTqVJ9O1HtXkvbs2SNJuuOOPo/5wYMH9Z3fOcvFvgE33XSTXv3qV8+eE48/3ic9+tCH5slNjh8/vuEaPoaCVfbS9TEeM1/UnOs4D5xjztPYg5pt+TpxPXiPGe6b+7Rz584N14j/533jNn2deN9xf9WehdlLy3PAsT/xRJ8VLbuv/J3XwH3zHvL3cVw33HDDhrHv3btXP/3Tg1rgKZpJs6GhoaFhS2ApDa/rOl26dGkgIUSNqyZFGmMSKaUZSpeZuZQSMKWITNLisbW/mVaYSf3SULMcM/24DbfJ77M+UDvw75bsovQ8JjHGcy09xf5T++B6ZRq6cfbs2er8dF2nixcvzrSAxx7rU+1Z+ot9qEnC7kvcB/7OUiq1RCPrN+efn404JmrUlGqpxUtDKwPXh9ePoDmXx/r3sXvDfaRWYFiazvrPezJqrosim1fv13Pnzi10vvd5ROyL15daq4/xeOI+cB+4Z2kBYVsRNYtPhprFivdYXHOaiaN1I2s7js/H1vqW7Tc+Nz2ftedbbJP7fOw9YbhdP4uoYfr5EK8Tn1tSby1Y1CzdNLyGhoaGhi2BpTW8K1eujGoQlLR27eqraFCaiG97SuWUYtxWpnnFvklDSWTM1kypv+a/yI6lRE9k9n5KjOxrPIeaMeeAkl82J57Xmo8ijsnrURunv4/rlvl3ar6z9fV1Xbx4cebXsVYR14faEuF9sbo6r8/p/3ufUWuqacrZsdREMr+zJU731VpCjbARQS3dWEQC5p70X2s+mWZb80myr1F78l7xd5wTa+hxfDVrwBiByNexD/fChQtV60EpRTt37hzMW7QO8N6iLzXTZrwHN9PseS/G9o0azyCuKbX12v0/RlriX1q/Mr88nzfU2uJYyDeoaW2ZtYD+Ns5RZv2gtsbreTxxrb3XvUeXIf80Da+hoaGhYUugvfAaGhoaGrYElk4e3XXdwLka1dqaA56quE1Q0tD0RhMCTY3RnMK+1MIFoqpP1d6ohSvw/1kbNbNl/D/74vHSRMzzs880+2amRtKS/T0dxLF9EkPGYp8452tra1XnsU2akVwTz419oInCffGecbiC1FOSpTnNPduTte9tDqWpxWYdUs2luUmPZIuM4l8DTVsG1yl+x998z5iqH+8njp2mRtLEIxmDJibD4/J8R6KLzZJeW89RjWATr+PwgQsXLlT3zmQy0e7duwf3S9yLNZM/zWvRzFYLlfJ+q5kA43f+WyP3xDF5v/kvwwSyZyeffbU5yohe3iPZ8ywiziPN374un818pmVj9jg5Jw5di+Bzc5F42ugiWNSs2TS8hoaGhoYtgaU1vFLKQFLIsmXUHOaWRDNpz1KjJVBKtaS5xmN8Xbdv6cbSZkZlp0RP6SJep+YcrhEBMgqz+2pnK6XSOCckiXg8pAXTiRz/z2BOSr1jznjS0v03amgeo8d18eLFKvFgfX1d58+fHyUGUfPxWloidMCp/0pzjcOajtu1dEnyRRZqUnOcex/GfcB18Hg8Lz4nIy3VSB3cdxmhy+Pz9TjuqPX6fLZHDc/XjWtKskKN5h+vxznICEnx+nEuIvmntnes4TGMILPAcI97frim0lADISWeVpu4prWwK96PcW55P/KcDItm1vGcRAISNUjee5lFwb9xH9dCqLK9yv3FZ2e8n2rZX3ivRFKW59FWnWUyyDQNr6GhoaFhS+CqCsDWAqelOl2bWlX0AdAfQj8I3+AZ9ZYaiaW3zH/APvgca4OUauIxlGJqwfIZHZl+t1p+TGmeTosasa9LiS9qlB4HpVr3nZT2+H8fWws4jb6iLG1bDaUUTSaTgbaRrYslt/3790vqU0vFv9EHYAmempzXn769zIdDSjnHlWlrXFPv9+ycWrqpWgD6WPouhiF4nHG/+Rj/xnV3X71nYpgHNbma5ho1G8+x9x39imfOnJG0UZOmhhy1f8Ia3unTpzf0LUsTxjSF1D7j/mXQM++LMa4Ctc1auNCYRYSg35xzEK9Ha0jGA/A4GLTuc+nDjn2k1csWhZqvLbbP9aEWHPeb9xW1Qs5V3N9er9o8jqFpeA0NDQ0NWwJXpeHxDZ5pF377WrqwVG5pM55DWy99DZbKMnuupYUaO8+/R+nSUiClFJ9riTRKFVEqieOrBaBHabXm9/G4LAFFzcUaniUrt+HAbc5FvJ4lYWuwHg+l9EwatG/G7Dmy0OJ1Mm12M1YVpdjYB2p2ng9/Ty0uginG/JnBxbH/mQ9LmrMObXmIa8sEyUzb5d+zBNDcb5RQvT9if6hRkeGX7T9Ky7wnybiLa0b/L6051Pj5f2m+TtSus/RQPubSpUtVFqETGtDXFS0U9CnV+hTXheueacsRGauZ6z/GYmRCZD7v+CzL2qk9sxiMLc2fc7R6+Xs+l6T53vH9T/+b7x9auOJc+L6l9cNzE/vI37g3My3O52c+yM3QNLyGhoaGhi2BpTQ829It+fJtH+G3rhl11hz8vZMHS/O3PNMjuf2x1GOWRIwawzOTLv0bpTSOIYJpyTJJTtoo+fg3j8Nam/+6P9G/wFgj2rr919pQvJ59XfT7WNOj5B/H5fWyNGiNsuY7iNfZjG22trY2SD9kaTP2k2nC6HvINC7uRaYkyvZqLU2T97f3aLQOuJ24f7PrZexTakubJS+XhgxLg9p6PMfXo7brv54z3ztR4qaGQt+41yKuG9nH7pv3tyX+6Kunn3kM3jv0qUWrSy0FG+M0s7hP731qgfTPxb3v9afvLmODGn4G+txaMudFkjq7r/RdxnXxfcRjjcxixnnks7LGwJSG/j9aqbz+8Xq03nk+6feN9zx9j4smjpaahtfQ0NDQsEWwlIa3srKivXv3ziS6TDqjhOC3sbU4MsSkeQFZZvmoxb5FCcgaiH+z1EqNMpNE3DdK1llmAvpSKHFTsosSNyVHH0NJO2Of0kdDCcvSYpTs6Cu0tMT4qChxuw9u3xKxpfOsj5Rut23bNmpP77puNmbPfYznyrQVab5eXusIFxetxUPSNxC1Ws8ZY/bop4twu/SljmXa8RipKVAbZRxY7Hct7tMScpyzmh/O4/H4jh07NhifQW2b/qYYC0lNghoYfUZxjBlbl3DSej87/Dyw5hDH77F6zt3PjAFL36bPoT/Mbcf9QP+7r+t7zYhaFe9d33/cZxkrmEmwa0ne47lkOtaYy1nB2Vp2KzLzYwHnWnw2fYjROsICtrZO8fmW3Yu81xdB0/AaGhoaGrYE2guvoaGhoWFLYGmT5o033jhT201/jyYYBgdbrWaF66h6P/LII31nENztY0hqiWYJtseA7SxQ1qYEmmTpQI20ZY/R7dGU5LkwoqmO5lY67Gv1+eJvPpdUaq+F510amiVoos3MrobXyeO55ZZbJM3NEdEMytCCsSSupJWTIi8NHfMMxfD50bxB5zZJMUxhFU2aNu1EspA0Xn+RpCGaI7NkDB4XQ1toNuL3sd8eu8fnfWCTUkYt91h9jr/3fPq+i/PpY5iyjOEkx48fn53DdH6+B2lmzBKqZ6nxiK7rdOnSpdk4fJ14j/FZ5OcPCVDRdHrzzTdvuI7braXkOnny5OxYkjqYni4LTzFqtfR8TiS8eBweq+fNptqDBw9KGpqPpfne8HiYqs/7ILqXGHJWS8bttuKeZpJ398X3Wfas9N5zX32O3VxZPcNFErTX0DS8hoaGhoYtgaXDEuIbnaQSaS552Alpxzjp41l1b39naWaRAEM61X1sTXqX5pItgxwtTWTB3JZE2J6lDUp4UUqrpZ1icHRWwsjtk6LvORorvcLrk8wQUavUbVKIpeEoDTJsZNeuXaMa3o4dO2ZjdZ+yhLwkW1A7i+QVt0eNjhIoiSnxGM9pTYuO8G9MEu4+Z1XEaymqSEDJEhCQpMDrZBYMVmUnocpjYNVxaa7he2782WtsDT/ugwMHDmxoz1YB//UaRU3Sc+1xnD17tiq5l1K0srIyO9Z9iPeYtUrf9/5LYlpWWozaufvJpAuRkMJjuD5j5YFq1eRNwonPGLfr56rXwRqQLTtMsRe/c//5TGR4WZwflnjy3vVe8TijRulz3Ucmns8sJtT+SIpyW35mS8Pn2VjicaJpeA0NDQ0NWwJLaXjbtm3TgQMHBn6TSFG2JEApjMlIM2mOCZ8ZMMnExrFdhhawIGLUQi3hkB7MNDZZGiImnrakygDtLBjS4+P16buU5tKe55YSPX0D8XpMbOvPlpIstUd/FinTTJLN9Efx2Jgqq6bhXblyRadOnUp9uAb9OfaZeI6zfhveK543SvRjCbMZgkGLQ9RmTpw4IWmoHVGLjxIpEwzUEiyMlTmpFRb1GOL9xMTWDCOyVO75zPww9KNS245zwnCRD33oQxva8rFRI6Nv2lpihitXrujkyZOz/mYJAV74whduGDvLWVETj2P0sZ5Ln+PnArVdab7u1ALpY4v3qefyIz7iIzYcy/sy+sn9m+8Fa3ZM3OA9HJ9htUTWbsttR821Fl7jcbpv2V6lP9tzzqD/OI+03ngv+p659dZbN4whHhvvp1YAtqGhoaGhIWApDW/79u06cOCA3vOe90jKmUGWMPwWr5WX91s//t9SC1MjWVqi/0eaS428XsbKMiwtHD16dMP3lryypNi+JksI2cdl5hF9inEcZEnVii3GfrsP1iw8B2TERfjaTGHEeY6Bxz6W0nhM7kvQ57kIDh06JGk+X1mBTBYE9rGZJu65tI/Rn8mIjIw+g4Vw6WP12DNt3VKx27C07DmJUjrbJQtwrNQTLRiXMiwTAAAgAElEQVQMimZfY3veq5TSWWIoSvhk8ho+x/MbmXbUpn3dhx9+WNIw+YQ09Gfu3bu3Gnx++fJlnThxYqCpmKEY4TFRA88sStR8+Zds7qwQMFmsPDYrzMxA/Yceemg2Tin3V/le9VqRheq/0frhY91X7xGWRYt7h9wA7wOzcnnPZAk26LPzGmRJxD1W+r5Z0ii+Y3jtRdLTGU3Da2hoaGjYEli6PNBkMhloKFFCMChRWcqz9JlJpP5racKSj9lemSZBTYcxRpGBZtx+++2S5tKQP1vDswQU424sfVmj82dLupSmx0rmMKaK7LP4f2rMLLfkttz3CM+554KFdq1txfH4WMYk+XOU0j32yMaqMe2clo4sr8z3aHgd2O/oM7aUT79IjfkWfXiM87Q0S/ZuTGHlOWWcqaVXpr+ShhoQkymPpdXyvmIpF1pDstg93wtMqG4p3ufG+XSffK7XwO1nbEDfEywZk/naDPchsmjH/DBra2uDFFVRaydHgL6hLOG0/+8xen7I+MyKxzLZutfUx/resGUm/p++Q8+P5ys+s+Lek4YMcq8X49iy6/gczxvZ6dKc9elzfezznvc8SfN94TWPz3FyIMgSzlJD+nxrox6vx+G5se9Smq/bgw8+OBtX8+E1NDQ0NDQELB2Ht3PnzgHbML5da2xJssuiJuBjrdn5WEsVPtZv+cgKs1TJBL1jMTv0qdx2222S5lpC5iuiT4ixYmPlghirxzIZPjZKZ/6/+2Ap1Gw2X89acOyfz7G2ZgmL0mGUJH29LCZQmkufWQJnr8uZM2dGsyC4zEvsY9TqPC/0QRmWpmOGDH9nCdG+Ds+T58Xj8XxJcwaY94avbykzY8Sy7ExmQZByDY++FM8BmY+ZT5xsSSbmjfPOe43ZK4wsNtHj++AHP7jh+v7eVo+M9czsM1zrGF/ouY5J5cfKvEwmk0HsV5b1x2Mie9LnRJ+3tRSPzb95vT1ffi7FUmT0dZNp7X5EKwr9Vd6zHof7E+MVWQrH+50s0IwJywwrzA7F5NLxO+9r3++2pLivHm8cn8d+5513SprvlXvuuUfS/H6O+4DJsb1OHp/HE+9Ba89HjhyR1JdIG7OSRDQNr6GhoaFhS2ApDW9tbU2PPfbY7E1Nn5ePkYal4ulPiG9kS2eWqFjM8P7775c0lyaihH/48GFJc0mBRU5pY5fm0rnbY7xN5odjTAslfYPsojhmg/nhPM6YD5MsRkvclqJc+NXnRH+jr/eBD3xA0tzW/aIXvUjSXJLNtGzGdXncWcFOa9Uxa8pYppXt27fPxup2ooZE5p7n3/31/oi+FI/VsV9mBnpvktGVFVclg9N7hZpf1kfvL18vK3/l9pmPlT5EI34ma83zxTmKfhFr4/SXM4aUGV+koV+HuUmtFT/wwAOzcxgfS6mdBValoY9wbW2tquFdvnxZDz300MCyFPcOfc5uixlJotXAx3i9WezUfTObOz7nfN/7O/r0GQsrzbkI9LvZt+e9m/nyyQolgziLi+N60wfq9Yj3rJ+17373uzf02fPm/ljju++++2bneq45j5577jtpbolhvCxzxkYwC8yZM2cWZmo2Da+hoaGhYUugvfAaGhoaGrYEljJprq+v64knnpip11ZRo8mO1aJt+rDD1uapaAp88YtfLGmuEts8ZxXfprm7775b0kZzIUsGWY23udLmvBgoazXdJj6bLGwedd+i2ZWBpB6fx0VzVTzXZggm0GZZlUhWsGnWc2JTkufE/fE50VRj57ePZXkYm5ljwLH7T5MmTWkxNMQmBc8tzbvEysrKzBTj/sZzfG3/ZQLZzATHUkcMkWFSWZuC429McMDrZMluPbfezzaze+/GPnqeOA63RbJHlvCAaZrYx2hu87E2F9Gk6bXkWGIfvEdq6f3iunFf18xRWViR9+/ly5erJs21tTWdOnVKd91114axRqJWnDNpvh4kosT9YHKFx2/znE2crBSekdg8Vt9z9957r6T5vMUxec1MtvBc+v5xP+J1/Hzx/e859TOllsQiXtsmbo+X+ywS0d73vvdJmrsISDjydWyGjc8599F99jFMjhFNtm7XJlKf6/n0Poz3k8/3uM6cOTNwG9XQNLyGhoaGhi2BpTS8Uoomk8mgMGf29rUmZEnEkpxDAKxlSXNpzO2QcPBxH/dxkuZSU9SELBFYamHhV0sOkYBiajrLZzCZdLwOwyyMGpklShzWHNxX98kSOB3CcU7c7kte8hJJc8krI0cYXp+P/MiP3DAXnj9fJ0qfTJkWE0LH8UTCEANbr7/++lF6cNd1g3CRMU3IqCVBjv11CAtLrlC6jMQJX4fhGh5DllbNY3WyApbIinvGsDZg5z2JR4bXNNLfGXTPwFyPJxJ5PGZqZ15jhkNkRUNJIGPx4qgpUVN1ux6P5yimzIp7RurnvEZ4WllZ0f79+2fX8XMnkh/cH881tVsSKaT5c8CaiMdGcofnK66FtTKvpefNmkmW6ICJDTxPtgr4+pG8ZlCj8zF+VjLFYhyf7zFqZVkydo/Hz6ha+IXXIN5fvp7Xwsf4e183WgcYMmOrk8kz7mNWTs79fuyxx1p5oIaGhoaGhoirSi1mqcWSSrSlk5IcNTlpmNZImksA1NJsc2bJj6gVMKktNS1SYz2G2A7LwZDOG9thILCvZ0kkoz9bMmTwOmnjmcTKZMHWZDjP8XrWwuhvZPHSTDNnGiX69rL0Su7/ddddVy1x47AEFurNyqf4GjUtNn5m2Z9aYuYsqbfBEkje157TKKX72gxw5hji99TKuJ/tm6YkLA2lZY7XbWd9ZGonpvfjHot99DwySJlaSgTTQXEt4n5j+NJYWMKuXbv00R/90bP94HmKfaC1hnPAlIPS3L/ve5f+UN438R7zsfTDe24zmjwD8q3ZuW9cH2lYtNWfuf4eQ1Z4mqV3eP/HsByf7+eYj7GGz/s23os+xtfxM4XFcmMfWcCY1gFrznFvMDH4448/PprwIqJpeA0NDQ0NWwJLaXhd1+nKlSsz6YJBuNJQirCN2Z/p85I2lmqX5hKB3+CUoqKWYYmOKbGYZDdKZ+6TpSJKdFkpepYOsQ2fhWA9hoxJ6nbJzvJ4olTItFC1oGxqsrEPlnpYLJJaYzyH5T88Ln8fpWqu6VhqKCctsNSXafpMbmswUD/6AJgmrhbkb0RfLkvssB9Z+RFqwrxelmSbDEGmljK7jam/Yv9rBU25Z+Nv9BVxbd332Ff+xiLC/j3uAwbSs4gnkwrHdmNR2rECuJPJZKbZ2Y8d94ktPJ5/+ivJLYjgPcZ5yvY1Gbc1f3DUPLzevu/NDvexnq+4p+jPdl88HiYgj885Fif2b2QyRx8u/ZfWPmts7fgMYVkvam/Zs9998lyQR+Hrxfs4Bpz7umPPnoim4TU0NDQ0bAkszdLcvn37TKq2VBWlJsZSUXthzFE81rBkQDu8Ec+tsSaZPDYrGmvthRKIpYqMYUXJlJJcVs7CEo/b83WZPDqy8zzHTC3k8XhePf6o4cVyPbF9luSJUjp9Ngb9MnHufWxMXVRj2q2vr+vChQsDLSeL52LZGtrnoyZAnwmlcxapjRoepX2uYVbkkholtaksLR01YbfBgqnuYxaHx1RvLGyasV1rWhrj5aJGQWsLmZeZhkR2q7UD+puyBNdx7LW9s7a2ptOnTw/iIuM9XUuFx9+jtkn2L1mttBJlxU59jO+BqHVwzPbZWcPzXJoRydJGsW/cbx47GauZpcfPEGvGNR6ANF8770X6CMl2zdaslqKRfY/X4b7zuLyOWXxh9pzeDE3Da2hoaGjYEljah3fx4sXZm5v26whLCpSOqIHF3wz6nihFxM+UJijpsciqNMwQYwmB2me8Dn2THjsLv2Y+DkoglLDpO4h9oF+TPkv3MWpelKRqcx8lLf/G2CP7SZi0OBvzZkUY19fXZ+1npUmotVJjyLQZg76TLONN7VyCmVAyXy59aZ4f/x79zEx67DX0se5TpoV6T9J3wj0U9zf9vUyozATuY4nOqdGSrRz7zxhIj9dWgiwbRqY9EVeuXNHp06dn7ZJDIM3XwZpIjdkb++1+1cqdUeOLe4dMXltnmBkkMr2t2flcs6npf4tWD2am8v1IDZN9loYMX4/d/jL66aS5VcXt+BjHjJLhG5/jZG5mMcLx3AhaZMh3iM8qPjcX9d9JTcNraGhoaNgiaC+8hoaGhoYtgaVJKzt27BiYUaIJhg5fJnXO6pIxGDm2Jw2JMNEsQQIAzazua0Yi8LH+bLU5o6vTAUuzEOvJxTREPDczAfN7mxLorM6IFPEa8RjSghlgHcfH2li1mlnR3GIHfY3wErG+vq6LFy8OEnNnZmOOmbT3zIRBEybHONa3mgnV6xXN0zQxknzhc6K5jd/R1EjiU9yrpNl7X9HknIUG0fxJcxRDXOJ4aHZlX+MaMESGAe1ZuAGvPWaWWl9f30BCyYK7mW7K42Cqv9gXmxu9J73OJJPRvBbbZ0A+w0QiEc3HMEjezx1/H/cqza5ZwoY4zsxkS1eNyStOChLnkaFgvv89J7xuvB5/I+EpWwOmn8sqt0sbn6fur829Z8+ebanFGhoaGhoaIpbW8LZt2zagz8aUWZSKSDSgAz1+ZymCKbiMTLqsJXVmEGSseE7nqqUwahJZsKPPpQRCSThqLm7f0jg1vYxgwYTPJKuwX/F6NZIPpaAoaVFTtdTrvmeaC6nJV65c2bTEC4kBcR49Vgb5+5qsah37W7Mo8G825lppJ38fE/Ja0rQmwRI4bEuqazG0dmT7juVZnBqLCcDjPePr8b5iouuMXOD1oHTO/R8tCtSiqcGS3BQRE1nX9o6fOyZ9MGQnjolkIhLgMg2PyRXc1liyjFq5MCZPiPsjEpmkuTbFdG5xPbjnGbrCOY2f3a4JJ0z270TXER6H++p9xWcy94M03AckEFLrjnA7XlOW/YrPPa9PfEZuRpib9XGhoxoaGhoaGp7lWDosYW1tbZQeTr8L004xrU08tuZjYALb+Dan38O/WXqitCsNC1TWAiQjrH1QsmLKpcyWTj8PS8i47YxaTsmFx2Y+UfpMqCFlWnFNYnWfLSVmKaWin3Qs8PzSpUszv5/pz1EipWRNDS/Tnhk6wL1DjS/zOdTOtbQZ/TD0ETGkIPOL0SdMjW/sfvIcsDSW+2EpPUvCTQmbfrgs/RXnjX7gMVBD472YaXBZ2jFiMplodXV1ULg2ak8MXWHYRhZ47v4xFRbXi88faT7/1P6s2WXXM7yvSP0f03zIVaBfMVsnf8cEDr4Hs9RpvO+pfZJ/kIVS8T4ysucOEwSwDBG173gdr+0NN9wwSwS+GZqG19DQ0NCwJbCUhme2lN/6TAQsDaVWf6bGF23CDNampMvP8W3P4EMmHXWi6AimyaoxPaOUznRGLJ7IMcQAUBYudd8YhJ2lBaol1K1p0PE6HB8LtsbrMcAzK9YobfSbkBEb084RKysr2rdv38wPk6WbYho1rlPG0qQ/lD40fo7zSYmUPk77POKYa2nHONfRX8PkxDVNi+OM7VGTdJv26UV/DJM3M92akc2Jj2VwNy0ZEfSpeC+xPEzcG7SYjBUOXllZ0fXXXz87Niu3xcByBjJnabT47MiSOEh5kDX3CgPCGRwtDbUzJlowIt/Ax9Ifavh7txX7xRSGZjUypWIWPG5QA2PawjGfvkFNOc6vtfUaKzxj7tOvvH///tH9s6EvCx3V0NDQ0NDwLMdVlQfyG5sJU6VhDBOl1kyb8f9ZRDFLRRTbjLDGZanc0m1mH6fUyri/zN9DTcsStiWuWnHFeCzH5XiYO+64Q9JGyY7MJsYKsfRL5v9jYlbGVmXzS7+CkZXpYCzYWBHPyWSiHTt2zPpGTS+OmVomC4pGaY6aB5l28fo8lxo9fU7eU9FXxNRVZC16zuNaev2pSdRKPEU/CX0z9Ol5TqKf8dixY5Lm1g2yqcd8opulXst81NSMasmqM+0/K5ibYdu2bXrOc54jSXrve98raSMfwP/3+izSLuP5qLVzz2SWBSZz5/XiujCGkloJtZ14TSZzZqmvsfSO9OG6jRMnTkjKE+s7+b3vbc4J09RlIEM6Y1l73vw3zpeUvy987KFDh2Z9aOWBGhoaGhoaApbS8CaTiXbt2jXzF/ht7MKM0txO7KKW9PPQjh3/T5aeUStcKQ01D2cPoFQd/TD+f610jCWIeB36YViUljFNUWqiJsT4P5cNya7HjAdkHWYZEMj6o9bJNuLYyf4aKwvDpLtjcXhmadK3lrFneU3OccbYyvxRcTw8Xhr6dbyXWDgz2ztM3lsrMRNRYzzy+6x4sNujhkmtLRsPNTnGXEatjky6ms8mnsNEyWSw+nPU5jM/cg1d1+nChQuzfebyNg888MDsGGvU/murU+3+jP3LyjJF0E/G/8dz+byxJSNeh34+syj5zJLmWh/vF+4LWn6k+b5yX91HP6NZ2kqa+4QZ8+g+0qeWMXzJjCefI+5/72cWVuY9ErVeWy48N8ePH18oKbzUNLyGhoaGhi2C9sJraGhoaNgSWJq0cvny5VkQsh2b0aRpM4oJGazjxMSybjd+xxRITDCaJRx2n6hqZ9WR3UeDFbatMkcyjlVsJutlgKvNOll6NJolbH7JTIw0B9jEwBRGWXJkBv/TtMkA9Dg+n8vrZEQehg/QzBNRStHKysogjCML0CfNnSbajPBEUykd5pn5znvCpmWSVLK6ge4jne3eO97vWcAxK6pndRCljXvH/7eJ2SYnmn2jWYqJi2mGJOEqzmct3GUsHZnNUTRd0RwaQfP0rl27Riuenzt3bjaeLIDZ96qfA/7LxPBj6cEYAkKTZ5bSjvXwxhLrk7jHoO7M5Mfgca4lqf4xjMD72SZUmwBt0nRb3lOxPRJ4TAZkEHs0U3M/072RpWjjM4nPTb9jMpPlkSNHJPVz3EgrDQ0NDQ0NAUtpeGtrazpz5syAuGGCijQMVKxJjFHDq6W+yipAx+MjmMyUTvYoiVj6Y7Cov8+kdBJNfC6lFlN9s+BhBppbwrPEFaUYlspxG06h43nOgmVJUojSP/tGUHpm0t1MM4+aQk1KdwJgj8sSd9wvtYrzDOeI5B6SRRjawvRnWRolVitn4tp4PVohfB1Lz94XcY8yNRUd8tQ+LUXHY71XPE4mrY7Jdalpuf+2EpD+HueEVcW5/7JgZVoD2HeG2ETUSmVFmLTitfbYozbgNXz44YclDZ8RWfkYjrG2LtZg495mCq5aKEO8rrUVhky47yYDxtSDXiumKvPzzWPwGkdrm59F7ouf09SisrAUErbcN483s2D4Oyac5rM47gNqwkwblpGb3Df/jYlPNkPT8BoaGhoatgSWTi32+OOPbyi8J21MP8WUQQalikyyoyZXC9Bkn+J16ffx5xik6v77O59rScHSRJQc6D+olfgxolbgsTN1GrXSTOv1X1KJqWnE+eZ16OfLpE8G6HMes7RXRuaDzGAtLx6bFVelD2Cs2C3bqRXGzMIqGELCsAhfJ2qh3hOW8Hl9+zqyuaW/l32ixizN953/MlwkS9dk0M9EbTe7v7J1icf6+rGPnDeDvvcM9mOfP3++WsTTSeu5d2K/aT3hNTMfHn2PPHcsqLpWNofaRuyjNTy37zW19pQVq2Zw+E033SRpbo3yc8Bj8fHZOGwd8vPac+FnS7xOLZyMiHPExPNMsJD5ctkOC2xnliUfEwsdj1mtIpqG19DQ0NCwJbA0S3N9fX0QEJz5qyitkXmXSZW1tFD0U0VJkrZsSyLWPjOpiX4pt2dWU8bs9P+ZfspShu3uLDES+8AyQZ4jS3hRWmRiWX+m1uZzorbAgFKfQ+k8SsEZYy9eP9MGWFZpTJJ3iRfPMdOIxXaovVDai2ByaCbbHUs8XWPY0scSr0t/H9c0W3+muWNfKd1GFrF/8x4xo45M0iiB0/qQjSO2Hf0xtYTq1JDifiMz0agFcse+MdlzBrPDrYm4L5EVXGNlM0H3WAkephx0+1mJMWum9DGRARtBDZLlyfzZiSikuVbIlHLeU2SURg2T+/vo0aOShr5bp+iK7TNlIpN/ZIHnTO/HcfG9Ef9PhnctDV9sj1a9RdA0vIaGhoaGLYGlU4vt3LlzJhmSoRaRJTXOfne7EZTCxtJb0Rfovjkux5K3bd/S3N7t9mxLt/3bUk2U6CjJeVyWuKm5Zv44t+e+WJJ3X7NEym6H5Yjo78piqcjgYjqsCEphZOdRY+L8SL0kOZY8eu/evYNUcHEfuH+UFBeJsan5J7luGbswMhyljb6B2IY0X+/jx49v6BvTRmVMO/+1dE5GmvuR+UW4V+jvi310XyztZ7F6cU7iPUpmb016zmI4yTblXoptxb3u69WeFevr6zp37pzuuusuSfnesYZArYlaRbwG++C9w3Re1Jjj9Ti2LGbP8POFMXuLlLZhSSGykTPeQW3+vYd8jv2Bsd/eo74e+5r51xlbyzngfRbbG/Pfxr7GcWSxgJuhaXgNDQ0NDVsCS7M0L168OEhymrHm/HanVMlkp9IwrqaWLDqLySDTjmWCrM1lkipjd3yux8fip/E69FtZQrEUE6934MABScNitNRcsqTY9AnQL5cViqW0RP9b5sOjnzQrgstzsgwRYxre6urqbE6tqWYFJOnL49plRVwpxXLM1KKkYdyf++b1shQdi6vSz2Jp3ddjceR4TbIWa4m6IzxPbs/joB8m0/AYB+U2aKGJ9y9Zuotky2CMLY/JNBjGuO3cubO6d1yWzLAvL94vtLDUio7GsdJfxecL24o+dmqBboPJ3uOaUrPjuRnb2fvJViG36+sw5jb2kVmfrMnZ/+i2YikrMpR5ffoS4/iYPYecDPcjrsFmRZjpo5SGcZNjliWiaXgNDQ0NDVsCS2daefTRRwdlbsYYVpmfx20ZzCHHDA38HG3p1Hx4rKWMmBfTfbJ0aW0wGy/7Tf8B2V+WOuOc0Kfi6/mYaEPn9ciGomaZMfBqjMuMWWXUipBSAovXYfaSzWzppZQBmzWuJTUCFn8cK2dTYxfWLADxGK/LzTffLEk6ePDghj5mzFRq+syLGGP3GEvHvKxcrziP1FSpbYxlEKGfKWO8sa8GrSzcB3Fv8TeOh8zieKwtGaWUTTU8a9rWwCN3gBlpmIN0kbJkfFbRhxf9srXcvdQaI/vQhZ69z3x9lnyK1gFfk35ExthlfAoyie+8884N12c8oDQst8b7lSzNuA/cb+5VImqFLM3E55n3ZvbMsgbbcmk2NDQ0NDQA7YXX0NDQ0LAlsDRp5cKFC4Mg7KzKLk2KNSdy/D/NgUwLxgTB0jDlkVVtExAy1Ztquc0TPiYrc8OgUdJpfS6dy/FY98mUdifzpclTGgaLM6SAJJNoQq2lB6vRx7M5YUBzZp6gWe/y5cujFc/j3snIFhwbnd6Z6Zz7imP1/GWppUjBJonA189MWUxpF6u+ey4M98HmmVqoRJa+7ZZbbpE0N+MdO3Zsw3iy8lAkqxgkNpBkEvtSM0dlJIJa2imW18nu22girlHTSynavn37zNzG8jbSMAGF55/XyWj0JGgx1Mf3ZXQ9kEzmthg+FK/nfr/whS+UNH9u2hRo8lw0aZIcUwvVYVKDCJsw3RZNmfFZxWc7n2/e52PpBEkg8/5nIH/WDolbWZiXXULRjLtIaIfUNLyGhoaGhi2CpVOLXbp0aaahWOqMYMJVpn7KAkBj+9IwtMESQUZdpcbI8jNG1EJJfqkVGo3SBrUPSoUkQER6cCz3Is0lKgavZ0QASkvsa5YGjcGvLHdTk6TjeKgdUDuM/3dfL1y4MNr2+vr6TEonKSJ+R82nFgISj+XYamEcEZSWWfA1I5EwaS+d624zrr/XgWm5SETwdWIyX0vlPtcUcmp22TwaNa0705hrqbi41rFNhrvw3sho/SQEjSWP9vVIcIhrWksDRqp8ZgnhvmNQt9cgavrsgz/bauM9FEkkXju3471kQl0WyuV58viYNpAWtBhiwLlhSaMs7aLX1ZoqLRYkPmVhSnxWcT9mxYqZEpBB7FnhZj9rb7rppqbhNTQ0NDQ0RCztw3viiSdmb3u/YaNUwcBySpGZT83YrLSHpaWMyk7NixJfDD2w9MLyGNY+stJFbs/+HtvZ/dd9d1txfJb62Fe3ZekkSylV88PQrzWmedX8jlkoQ1YoNZ6TBftGyXSMHlxKGWifmVTPPeRzFglpobZRkyBju9T0KPlHyd7/t3XDa+g19pxEf4/3iPex94rbYHmqqFF6Lnyukxcw5VwEx0OJm/uQySHidWta9tg610pJLZMCaqxd36fR1850gNRIsmK3nAdq9GOFSxmm5DVmm/FZQl4BC08zqDuOkYmS7X9z32xFcrLp+Js1uiNHjmzoY6alMZ0eU8zVLFxZHw2fw9Jmccz0edI6EMGA+X379jUNr6GhoaGhIWIpDc8FPGm3zvxjfnNTk8tssrWyMPSHkE0Xr8frktWYaYX02dRSMsX+0k/hvtg+zrJE8Xr+6+tYW6B2EvtP/2WtjEbGfKKm5z6NSfZk2XKuokbGtF1jLE1flyy6mL6NzMOaFhv7QG285oPMtDWut/tGn030PVmD92+WqCnhR6adpXGWEqLvLrN6uD1rf7wHmPBAqvvQ6G8cSxixmf80u+f5mdpAJq3HBNfZ+N3Ozp07Z1YaM6Gj35psvpovKF6D1hKyglk+LKalI4vac0otMV6PlhWyzs2mzAoOGz6XyZ1tLYj73vNF5iiTR2dsV+9vlszinGWl4WqM0uzZT02ZrPSs4LDvz6jVjhWXjWgaXkNDQ0PDlsDSGt727dtH0/VQamSiYktlUUujpkgfgN/olmaiNEsphRqJpZoohbJsSo1FFLUHS+mUdJlWi+Xt4zE19mFmD/eYKSX7OvSBRWmXffO5LM+R+TMy/2X8PUpaY3647PzHH3+8Gr8o1UuPUKvOSrxYC2M6LV4vamuUwi3Vug22KWKJ0ekAACAASURBVA0LVvoY7ykm7JXmkrv3la0APjbT0g1qT2QDR4Ysz2F8H8u2eM9k/o/N/L7Z3iETtpaEWRr6T8cwmUy0a9eumWZi303UhDa7NrXp2B/6nvyX/vl4j/kZxOK3XMu4pizTRD+j/bPZPGWldeL4Mna6++hzvb99DNnbsf+0dnh+mX4tY97SR+n2s7JOZMjymUWfbGzXf1vy6IaGhoaGBmDpArCrq6szSYusM2kuRdDWT79RlOxqEqLbYptRyvA5ZPnQP5dJCEZMQhr7Gq9jicMJbKmtkUmaabA1phOlm3h+LXMNpZyo9TIpLeck891QUqW2kWlx1nJiYuuaxN51ndbX1weSWMYUpZRMdle8Bv1vbHeRWDDGbtWSmUvzeTIrk1JsVjiVUrH9frX4zzi+mkWB/qasCLPX35oKtfexJL/U6DiGzILBc5mNJgMLD2cwd4D++mzvMIkzj42McjK6DVppsuw5fgaywKz3F+Mnpfkzysd4XZjoOsZhsrQOkzi7r/fff7+kjb5Vt++96nNYRDbC68EyVG6LvtC4D5x0nRmYmEQ87hc+85lpJWNmu09RY17EyiQ1Da+hoaGhYYugvfAaGhoaGrYEliat7NixY1BPLjpUrY6zui1Nf5kzl5RemjKzmk82MZK+bVXY14sqMR3OJJFkaahIcMjqucW+ZTXU6MjOiBRGjeJbowVHer9NBjTzug3TleMakDDEispZUCxrc5VSqkmH3Q+axiLcP6b2Yoq5zOlNYgtNWZn5jiZlVhc3IjXcv9Ex788ZEYCmHK+3+8SwhdhHpoWqBX5nhJda2E2tZpw0DFVhAuis9iFNmLUwoyytF1MAZvBzx/0l2SNes5aAIgtL4G+8T3ivZfdpLV1fllaL5mmbGkm08jMtHus++tgs/EXaOJ+eb6cuZDrCLJmz98bJkyc3tMuUiQ6Wj7X03Ee6WUisiXvMx9BU7zW2WT6uG+/xRlppaGhoaGgAliat7Nq1ayYZmF6dUeJryY6NsVIvDGyn5hWvZ6nBzmh/toTCtFRSPSCW2kKkPTN5L1MHsdpvBKU/JtgmbVwalufxnJOskBF+MqKONCS6eP3iOCixktoepVxK1aWUavCw9w6DecfICpT2suTRlBCZiolWg2gdIG2bGjEJV9IwtVdtn8d5IqWbmmuNpBP7liU0j32O94T/b2KFx8EUZiRYSMOq7Fwn9zUG8LPqdq3US1xratc7duyo7h0fR+JblkyCoVJcn9iHbD9Jw+BratnZGGvEpyy0ieEpJKJlKcwcbE+rl587YwQr7wO3G+n80sb97WBuj8cWO2q57kckAZGw5X0Yn6PSRpIQA/b913PNfRfbtVXr4sWLTcNraGhoaGiIWErD2759u2677baZFHD48GFJG30cTJtEO3iWVLqWLJh+iyytESV4BtNaMopSBjUqfmayX2ku+bjfli4YmEnpTZpLdpaELQFRmsoSQNv+bpu5JSuW+Ihz4nmjBEcKdRYawvQ/pO5HzYWB4mOpxbZv365Dhw4NtJ2omT700EMbzqklzs78sZk/MfaX6yUNtUC35bXjZ0l68MEHJc0lW1of3FaUfP2b++D9wLRRDA2R5nuR2g2Do2MSafeXPilqMpyjOB6mQaPVIGou9CtxLrJyPvRrjvl+u67boF1lmonhdjy3HHvc89QUqIFTa4v3mNeXFhEGs9tPJ83X3WtFC4P3ZrQA8XnG8AD6neP9Z199zdJD/580Xxf3hWFWTP4QNX0+x2pl3eJaMzEA3w/ZPU8f3traWtPwGhoaGhoaIpZmaU4mk5m2YckuSs0f+tCHJOWJiaWNb+VZJyAlW2qhjyjz+1hKIdPJ3zNhbmynJhUwIFSaSziWnlmOhOVHopRWC5glOzQy3zx/tUS/TBMVtSFLkFm7cfzxe6ZZY2JoS7RZaQ+v27lz56oBoGTaWTKMUrq12dreiW0RNYuCr2OJP/pJua+8j2vFPaW5xE3rA9chrj+lY+8vWjSYQFearz/ZugZ9u9JwL/pcz0Vk9BIsSmuwPFRWpJQ+cEr4GUsz3ou1+3EymWj37t0DP0/UvJmInUHWHEfsH9P10fITtRiD9yetN1nyCs+P9znb4rzF/nK+fAy5A/HeoEWBCc/t24vXI/ubKdnou457iWkc6RP3+DJfKJ+JtYQb0jAIf1HtTmoaXkNDQ0PDFsFVxeHVCiVKQ18KJdKMVRh9QLE9MsXc1okTJ2bnUpOrpb7JYnbIqPP39vtlqXfuvvtuSXP/G+OJLL2YzSfNNQf/Ri3IUmjsI31olpbo+7CElWkhtI8z4XCWhJnlYLwGYynToiZUk7ZWVla0b9++QYxd7ANj9KgBs1SJNNQGqb2PJSmmds7Cxv7s/SANU5SxjUzStmTNfec5p3Uii1Nimi7upcw/xn3GJOxMZhzHTO2H91kE/Tq1VGNZH+O+re0dP3fIJI4+drLAPW+MOcxKS1GrJQM70/DIkrS/zGOw9hT9ZJ5/7y/2kQzm+H9b1Vg+h7FvY3Ps+XIpoSwujrHBZPYyzjiLM7RGyfjGLGE8We5si4zSeI6xe/fuUR9wRNPwGhoaGhq2BK4qefRYXJmlFUreZPtlMTQ8lnEcfus//PDDs2NZ4JHMN1+P38d2yRDKMjlYk2K8FbPNWLLL/GOeJ/pQsmSunEe3H1lf0jBBdOwjs03QDxBBaZeZV+jX4P/dRi2WamVlRTfccMNMEiarNV6bfaKvMCIrGeTrSUPtPSseXMsy4+8zZqfjk+jroDYXv6P/mlpzFv/J5Mr0FTHzSzyH/kxqlFlpIbIaaW3J4st8PrVRSt1x/XjMWPJfa3jutzWI6GOvlVHKCg0bXhfGp9IvSkZmbJdr5/vfyJJVU2tmvF/UXJmthsxit2+LUwStW14fn+P9HRm+zMLkY+lDZgateB36JMmuz3gA5DnYz+h7wf2Shj7jG264oWl4DQ0NDQ0NEUtpeOvr67p48eJAWooSiaUVSmEsfZJJS9bCKF2a1WRJMuZvs0RgacnMLUsk7msW48bMB5SworRGNhTt3/QrRInE42AsDf0KUdvxtY8cOSJpmIHA0lqmMdNvxTgfasURZIMyNihKUrTNj9nSXTzYY84KWnr9jx07JmlYZJXxZXGMlgQZF+nfs7EyDs1+V/Yxak/0dbK0U+b3ZT5Sfm+wUKY030/0u9K/nWlI3HceFy0aUTsiy5FMu0wrZNynQYZk1resXFOGyWQymy9L/2NsVpbr8eeMHU72NDkK3pdREzJoLWFmkkxb89zSd+e+Zr78Ws5Y3v9xPuljp+WH/mdpeE8z44k/U8PN5oT7PvNRUtPPCvXGNuJctAKwDQ0NDQ0NFbQXXkNDQ0PDlsBSJk2pV7dZ9iGaMmgOsqrqc0hVlYYEBtKmrbYznZb7E69Tc15ngbI18x1TDcV2qdLTLJKFGHBct9xyy4b2fWw0odp8xzAEUqdJh48gzT2rNm8w9IMOb8/VWOLmyWQyalroum5gto7rwlRrHjuD1LMQE5pvGJjL46WhScd9I/EknlOrgp1Rrg2aGz1HXmMSobI5ZIJmUuej6cz9ZUV69tXfxwBulhRioLn/xnll2jEGnGfpw7jPxghPXdfp4sWLs/1hs2EcM9ONMTWWEauJ857l84BJJGL/fK8eP358wzke8wMPPLDh3Ngeq7N7Dd1mVsmd6Ql9jv9mZam43iTYZGQwPgfoEmA4USTl8J4gGYip1GI7NNEyAD6um//P8I5F0DS8hoaGhoYtgaUDz1dWVmaSVUYpZvoYShNZADOlEwbiGiSiSHMJh+nOSNzIEg6Tgk/pMEp0lAbZJxIBInnBkps1h4MHD0qaS0IMLpXmWoelGZIjKLVHkoxhjdjX9bGk6ktD6dbjYNBtFtLg/TBW3NVge5EI4PU3KYGkEZ8bz2EoA0MNSEyKDnoG0dLJno2LZCVqPNn8UHPj5yxBruH2mByY65UFcDMdmMlf3pvey/FcH8u/7EfUCkl+qY0zWhaYxmv37t2p5SHCmgJLgknDvcJQDCZhiO1Qa2GC7qwM2tGjRyXNSWXU0n1ODDFhGjKS17L70n3yuV4HponLrG38jlpaliTB94t/I3GMhJ64d2h1qKVUjM91hosxaXQWVsZScJcvXx4tLRXRNLyGhoaGhi2BpX14KysrM4kho8TT9+Q0YLFYX/xdGlL7KRlayjBtPEoV/u3QoUOShqU8Mr8IA0tpezZIjZXq9mMWp40Sh1P5MP0PtbbYR/qR3DdSpzP/HwuK0pdCKS22T2mX4RZZ8t0YGrBZADGTLMe947F5nWOCAWm+h6IUywK5LJdCKT1q6AzP8HxYW2a6KGm+LvTDWOvMKPrUNmqa3ZjFxPuMgbpsUxr61FhiiFp2lsqMFgNL/lk5ImOzFGNRg6NWvXfv3tGQltXV1YFmaktJ/M6Fn5m8OStn4z54vjyXnmM+y+Kc2HfHwP+atSj2xXNJrYTrFfvIlHn0c2d7h2m5mJQ/O4fJnFlWiZyFCJ5r8Pke9wETevgYJvCIVj0Gzrfk0Q0NDQ0NDcBSGp4LMdZYRtL8zWz76n333SdpqJFEKYAMQEtAlCYyG7ff/JYEqJlkGp6PtfTFBM1MoCoNC8qyDQamx/FRkqMfxp+zZLj065DVxIBNaRjUnaXIitfn+bFdapbRJ0H/2VjgcClFpZRZ/3296IexdG6NmJqKz43joK+YvhRaFDI/GRMAWHvxPozr4n5bWq/5jMeYxGQfs5Bu1LypWbP9zHdBbZDX83zSChL7QKsH28o0WI6P90L0hVJbG0ta4JSGhq0r9vXG9sii9jHeW9EXRKsGNQV/730Q0/r5fqeflFp0XB+zTP3X91ItlWLso9v3b7QOZAnDmWydloWM9Vwrs2WQDR+tYl4j+sB5z8V1djt+rnqP+Fxbe7L0ftbAmw+voaGhoaEBWDq12Pnz52dvUybZlYZJei2ZMOVXxsiirZmMzkzqoF+MZXTYD2kYJ2Ipw9oGWZzx2mQ2sbhmxgql5MtEwFmMGzUhSmf0lUXpmYw+xrgYWZolSuf0b0Rtx6zSU6dOSeqlsTEtb2VlZZBmKEtr5HWw1BcZgdJGaY+sLvotavFr0lB65vpkPgf+5nG4zyyUKQ33by0xN7VUaeg7o+aasULJlqXPmuxg7ovYN85NFu9F7YJ7gOkFI3zf7NmzZ9SHt3PnzoHGGPcBNTprY+5TVgCYTEP60r1OnuuY0pCJoLl2maWHcZ+0MHmOo6/QzzMmpTboC82sUkzCTs023hMsHsxnPdvI/L98BjJVZJyTWpozcyW8P+L95DmJZbyahtfQ0NDQ0BBwVcmj/WbNSkRQcmeZB0vrWYkI/yXDjj6QjNnH0j5MnBylS/pM+DmLdWI8DKV2lgvKygPRR0htJ0qsjOdjYl6y9+KcUHKlL5QSbewDi+K6z56j6APx3EZNZTNJi7E60V9BppalPMZ1RSmWfgJqMdn8GPRp0ddF7Tr2rbZnOD5pKKUy3ot7KV6PFhPPOaXzeA79jJS0x9jBNe3G88gY3KwdajnUEiLc3maJx7dt2zbIKhI1b5bCom8tKw/GWEA+Q2rr4/5GUGumBSj2kVwE3jORkeg96RjKmmVnzGJCPgOtOFlpMVq0qIVmliYWnuZ1ssxF7i/bZ/mtrGRWLAm3WQznbHwLHdXQ0NDQ0PAsR3vhNTQ0NDRsCTyp5NFGVCdp8rGZzlRvB6JH8x3NUaT423xAU1c8huq7QXOVlJuqYluseSbNTSM1p67BgNDsWJofaEaKfTEYvEladOyrzyX5hnMUCQ80P9FcmZlo7FyP6Y42M0uRih/H6d9MDrAZikSRSGLJzE3SfG7dx6z/TGjOuaAJMo6VZk+ekznmue9qBK54f9HsRrNUlsqOc8G9U/tdmpuLaqSYLLEA9xUJUL7XTUKShkHdTJVGdF03MJXF8BuSHrJahgTr0nleaA53G9HUyDnl3GZEMRKaSDjJ6sX5OjfffPOG6/A+y4KvGbrE8J6M8FRLWlEzi0fQ1EgTN03tUn3uWd8v7g8ShcYIT0TT8BoaGhoatgSWTh4dJZaMZuw37f333y9pTqf1m9sUdkssUj2djc+xtMbgxHgupWZKM1ECqtGQqeVkpWTokGcAsCWWKKWTDMESMwzUjH3y2EmWoWM9C6EwKJVnJAK35++oZfM4ab7+puSPpRVz8HBGHjEsuTG4loSZrN8ZAUOqlw+S5nNnbYP70GsZ22QSXUryWYJcgw5/HpNJ3kwSzjYyZz2TR7P6Nq0wcd/xGJLCPP6Y9o2WERIaSEyI58SUg7X9U0rRZDIZaGuRqu/nyYMPPrjhGNLeM83bYJiSx0gLlDTXQJiYIUtawXNqCa55b3vs8Tfe70yPlwWRG0x0TqJaHDvvK4Z7Zc9+g9XsaTGL804ik98PhufTwfoRTiawd+/eRlppaGhoaGiIWNqHN5lMBum6og/A/jW/qU2n9We/iTM/TLTJSsMinj4uaocMqiS9NSt6SmmZtHdfP0paTCxLnw3DBKIElCVejm15fNFOTR8ENTr6DuK5lCCpQVqqzvwbTEvGvkbN1dKZNa8xKd3Xo881SnhMuOtjmDYunsOwk5o2a8Q1pTbuvlkyzejvtRIrtTCFeCxT8dUS8cYx0KdC2jvXOP7Ge4HaoucuBlR7j7DgsOdiTIOlRsH9FZ8TTlrgvbNIAmAmXY9Jlt0e/a5+zvi5FMOFqAmTPu+2aAGI7XgurQHxeRDXkqncfB/SZ5hphzUtmn7g2Eemqqsl48hKS3lv0F9KDS+zftSKx9J3KQ2tD94PTMIeUxAykcL6+vrCCaSbhtfQ0NDQsCVwVT48MnWygoV+q9vOSikmMrbIxPHb2hIQmYNRImWyU/otMkkr+iwiOK4Y7FhjVvkvg8qj1GQJkemaxvrjubB0xoTaWVkYjoMSKyX8zJ9GP6b77jZiWZi7775b0kYWWE3Smkwm2r1794CNFTUFpnwjA5FStDQs2kofB7WdjF3GYHXPNf3C8dpkY9aC+6Vh8Dv3uUGpOo6HLEZK2PF3prmiZuF5ZFHR2FeDgfTU9KShRsLiwZnvxlaa2Mda0oLJZKLrrrtukLg4jjnbT/HafC7FsRnUfHjvxX3He4vlz7LSNSwlRGsHA93jb7xX6ZMcS0/o8dCHlyXlqKVoZEFga1lxfGTVk9fgv3Hd3B610Vqihfibk5rUnucZmobX0NDQ0LAlsLSGt7KyMvB5xfgUJhu2lGFfnm2xjseTpNtuu03SULqkpkempzRMKUTfSubjqMWleDw+h0Uws77Rl0ZtQZpLS7UCoD42S0PEYpHUMFl4Mv7f16MWkjE7yUz0dalhxPhJzluUwonJZKIdO3YMpPMsybbB+EtLdHFdKJWTlccxx/5TA/Jn7sNMo6wl9SbjN37n6zBNHMtDRamZaemYPJprEI8lC5PpwbI0YRyzJWzGUkXWXC0Oj+y8qAnST9t13aiGt7q6OtDW4jwyobCTR1MLiNqAtUyPkVYbWlmy+Dj/5vmwRavmt5fme8XWEvp/47OqVpy6Fp8Z72nuHX7mPo/HcI7JRs+Kx7KQsveK18Tfx+v6OcNnvJFZxbI0ai0Or6GhoaGhIWApDe/SpUs6evTowF8S/Tq037qA3wMPPNBfMEmYyhIutQS9ltaiFOBYHPotfEzGeCITidIBmXBxrAbZjGRNRUmyloWhVhA0jp2fyRLM4rEoAbGki8+JfSQztVacMma58XeWam+88cY0e0PsFxmLsd+MAaREn/ktyYolW9f7MfOpkM1Kjdv7Ou4hSrHus+ciy+JDTYr7nJJ9lrScviFK63He6YPkmlK7zvxxtcTjWRka+q89PvvpfWxk2vna0RJU0/DW19f1xBNPDEpUZf4jawpZjFnsWzyfe5EZQmgpyfrgsXnesmKu1LjJIM8YsLZmeA4ZB1rzVcfr1MpgGXGOyELnHvH9RNa6NJ97a3TU7N1mfF/U1od+/Miu9fMhS4K/GZqG19DQ0NCwJdBeeA0NDQ0NWwJLmTQnk4l27do1U7Ntwjhy5Mi8QVBun/Oc50iS3ve+90maq6HPe97zZufce++9kuZmAf81Jd7mNjqX4/X8G6uwM0A8nm/1nKZN1raL59NcSGcuTV3xNzqwSbjJSCQ0u9C8l5lfGYZAQkVm7qFJjs5rBohK0u23376hnWiyJJweiuaUuJakQNO0ndXDo6mN9fFqhJ04Vq4lg4czGjVN6e6j1zKaGJluinvGcN+juZzUchJQGPIiDU2aNL9lTn+DZmT2I0NGYIhteT5jKJLvvbimY4SnWPHcyOrrkUTiucwqnjMMhuE6fg75eRev7/ZIAPE5dIFIwwQQ/JwlpKfJnjXnGJYV+8g9Q5JettbczzSZsrZjNDV6PSIxTJrvM+7deGytDp/nKHMrZIStzdA0vIaGhoaGLYGrqnhOYoKJKdJcGuKb+SUveYmkOXklkh8skdaqE1PLiZoX0zWRvs3jpKFzmIlyfb3YD46HfSKFOV6vlibMny01ZQ7nmvRMaTdKhbWUaQwijppEjXjgNhxWktHtLdmdOXOmqgl0Xaf19fVB8uOo1bJqtPeFpfWshIz33vHjxzecm1Gga21wLinlxnOsUTFgloSEKPlyj9ZSfWVaAclDnKOx9FAkqXCcLOMizdeDZBxqpRlJisHDBkkZ0vzeivfCGLV827Zts3vP58a9RhKFCRRMVhA1PIc3+VnElG8ea7Yu1F5JksuSHfu5xQBzkpWyJNXuC0ta1arNRzApNYljUXtikgJq4hx/rPxOcg8tMxmRkMewtFlGsLOlIN6DLSyhoaGhoaEhYCkNb21tTY888sjsrcvgzghLJqSVvuAFL5C0UfJ2AOj73/9+SXPpzFKSJTlL/JmkaKqrr2vbcJbqyaAETwk4+v0YwE7KLf00MTm2x0FNi8GjsY+UkmrpqCgRsd/SXLJkqrZMC60Vj3XoQZyjw4cPS5on7r3zzjur5X+6rtOVK1cG/sU4HkuLx44dS8duaT1K3Jb2XMqF0nmt9JM0LInkc0nfjn2kT43+Wa9lFqBfo9UzNVK8Xi2ZNzW8OCfZ+krDpL7008Qx089DbSfuA/peSZFnKS1pGPJx/fXXb1rihdT4rFAuU1+5Te+TLKSFloRagdTMP80E2WN+UrfH8Coms4/3ELVLPneyBA7sL60pYxo5tXGG2fhYr0Fm8aG1i1rpmLWNPviswLXHEzkfLOJcQ9PwGhoaGhq2BMoyQXullBOSjmx6YMNWxl1d193ML9veaVgAbe80XC3SvUMs9cJraGhoaGh4tqKZNBsaGhoatgTaC6+hoaGhYUugvfAaGhoaGrYE2guvoaGhoWFLYKk4vH379nUHDx4clKqJcPwE46xYMDWCxJnNPo+hduy1aOPJ4lq0W5ubRdoeO4a/MYYny/PHa5dS9Oijj+r8+fODgKUbb7yxu/XWW9PinYZ/Y2wRs788GcQ2OEb+HcOimR1ie7W1YpmgRTB2j/A6tb+LnFu7Xoyl4vrU4umyuXd81fbt23XmzBmdO3duMPmrq6vdddddN2g39omxrVncZTaORX9b9NzsPqkdu8h+42/L3AO1e3qZZ8bV4GrGx2xXRva+YA7NsecOsdQL78CBA3rDG94wSxrstE4x1ZcDB51izEGHDObNan7xgcfvxx66PGbsJq/9xvQ28abmovEm54LF8TEg059ZayyCAaycCwerZomgmR4o61P8PrbLFGq1JNYRsWL7D/3QDw1+l/qq9j/xEz8xS1F2//33D8bufXTixAlJ8+BkpgeLgbKsdM51qCWllebByXxYMtg2zhPTqfEhkq0pE1cz0Nifs2B8rm9tn8e1ZSV3Xrf2Nx7LtphKLdZ5c5IFn+uAYCc6qCV2kOZB2M997nP1pje9afC71CeX+PRP//RZkgnWiJPm6cEOHDiw4dpMXhAfoHxwcq+PPXdqtQyXSmSMxObZ3mH9S+5JzmmWOo/PrrG0i7XUgLWq7NmcsPr6mILExCC1xBGxX35OOCnD+fPn9da3vjXtN9FMmg0NDQ0NWwJLaXhS/7ZmJe0oIdKkScmU38fza+ZQSlNRqqlpgQYrYMdjaxhToznOmiSSVRGmVsiyRJn0SYmHyarHzAZMg8brZOmoWPWbUlmWNDi2N2YmmUwms7I61ELi2GrmQrcdNT5KiLWyJlm/eL2aZhzngGtHKZZ7Waon86Y25bYz6wAT/3Jfx73D1F7UEqjJZHNDDZnji/BccOxMi5Zp5rFi+5g74tKlS4Pq7kxSHfvL+9PItBlft5YgO9uXtJosYx6ktsRnR7zHaEGihsf1iJ9537Pv2TODv9UsW0ypFvs2lj6Q/akl4Wdy7KyvXq9l3AtNw2toaGho2BJYSsMrpWj79u2jdmv66PiXSW+lud+PSXRr0vmYD6+mcWVSRaYxxs/xupQYaQenBhjPpYa3iN2ffo8x8kgN1NbGnMmUbpnolcUx4/+9buvr61VJd319XefPnx8kTM78R7QKUGvOfFz+jtoMyRFZGSX6Tmo+ndg+9xu1p7jf6G/lHqIUHzU8Sun00WSEnlqScmouYyWaeK61K0rx0tyHR62X/uasKLL9cY8++mjV/9V1fWkpJ3k2MmtDzXc7ZkXh2LkfMv81x1izuGTEGu6vTLNjH7nuNa0wjolJnIkxzYgJ7TN/du0c3ldG7dkpDf3MfrZk5CO2s5nFLqJpeA0NDQ0NWwLthdfQ0NDQsCWwtElzZWVl1KxWM2XahBmppIZNFawTRrNAzREdj6GZIKOjk2hA5z5NaWPt10xMmTnUajvJF2NEh1ocztga1CjMdOhHMkYtdKJGmpCGppKMEh2xvr4+qGAc56lGz/e8ZQSBGj2b1GiatrJ+10Ia4jk09dEsnlHLa8QJElDcZjQF1Srbj5n5SSzgmD3PrmkWXQmc41pYR9yrrv3nMBKOlySG+H/35eLFi1XTE7IfoAAAIABJREFU1JUrV3Tq1KmZSTQz0bEyOGv+jbk2fI7JeFyfbM43Cy0aC0+oxSkuEv5QI89lbdeIR2Pj4jG1sI7s+VR7JtViIqX5M7DW7lhISzRtLkoaahpeQ0NDQ8OWwFIaXtd1WltbG2hPUbJnMKs1Ojun/TkGqzNwlRTVGq07gyU9SrVRKvQxrIpMRGmKki4d8mPEAx7rv9Zys6rVHHNN+s0oxpwfzgml3/gb+0ziSwRDAbquq0paJjzVCCmxPWqBnpdMe2YFZkvp1pY45rGQkxphI9MKYoaQ2rFx7NJQeqWm4nWKxCBaITh//H2z9rLxZqEh/Otjsqrz/r81PX/2+DLrQC2QPkPXdbp48eKs/Wz/co/XiDpx/dlOrcr2WMILhrTQypGF0NSSJIxlFKpZKMYISJ4TkkeYVCJ7/tFyQeJYpuFx/kj6ypJkGJ4/ktkyslFGMlw0A03T8BoaGhoatgSWDjxfX18faDFRqrEG5wDjkydPSppLhkxVFP/P9GNZCAOvV6PaU6qxBiDNJVEfW0sllfluakGc1BzGgoc9F9R2M6m5Jo3X/JAZfOwY1ZdS31iaNYMa3pikVUrR6urqoJ04Zo/VUp7XPQspMJzG6oYbbpA019o9Hs7PWOol943hMdmxbtdaDFONZam+avC6UFuM1zFq+zqm2WKKNJ/jPnr/uY9xDbwX6dP1nPj3eE/62t4Ptua4724/hhXUNNcMthxQ844asv/v9GNOLcYAbe+XeI7nKUtSIeVhA3xW8JnFvSwN0+AxFCjbm0xOUPOTZVYD/9/r78+cv8yCYdBvmllmeG7NR00Og6RZqkGm2/OzMbvnee3V1dWm4TU0NDQ0NERclQ+PQYJR2rM/zowtS5O0AY9pM/SHjaWH4pudWqelm0wiZftjmbpp72fgKX1dWSqzWpq17HoG7exMOGsJLGoFtTRuXgsmq83arbG/stRF1pivXLky6otZW1sb1d6pAVt7oUTq60nz5MP0qVnCH0ufRQ2I0jk1c6meHIEMyyite4yeQ0uvlPC9BtEaQf8b19vjj5pLLR2d26LvON5D1s54T7oNa3jRB88989BDD0maPwsiE9Pw+U76vGvXrlHrQCml6jeV5nvCGp7H6rn0vPl3aeOcxf7XUn9lPjyyCOl7j3uHlhz/9X7gvSEN57CmhWaJmT1fft75r+eAVqLYb/rhWIXCv2dp9+hPpeUkMvQNjm9s7nkP7tixY+H0Yk3Da2hoaGjYEljah7e2tjbQFDIfAP1uYxKJpTDah+mvyGK3WLaEyOJkfA59HfSXZFoaJY4a4yra0i21eJzukz9bwouSC1mR9HO6DUtrtfRB0nxN3H6W+NWgxsLYuCw1V2RTbhYP471jf07cO/RxeF2sBdx8882S5lqNNB8//a6eD7efsfTolzC4D6PG5X57HNQKMsm3lmKLfaM/UBqWueFfaylRc3E79KG5rx5P5sPzd0zUzD0b9xuTyTNpdOa78bFe4z179lTZ0r4+Nf04T+4DNTmXMPOe8WeeLw0ZiPRRZ/B+cFu0qmSavueHCbTHNKDN2IuZhkMNi9a2TCussV15PXIypOEzyHuXFoeoWUffszRku2aJu6kFbt++vfnwGhoaGhoaIpbW8KQhaylKdJZ4/Bamz8Fv4ihdbVYCx293SxW2a8fvfA41SyNKaewLpZpMS9ksHq6WeDhejxIXM2xEvxml2ZptPYulqWVj8Tizsk6Uwsl2zcbNOd+2bVtV0uq6TleuXBnEcWUsNvfTEuJtt90maS4ZRg3V5zBLhvek94rHFbU1g0mPuYZj/gFfd2wtaz4hj8/nuG9RC7Gm4nOove3fv3/Qp1oMHaVnJn2W6tYVWwloWZDm97L77TXx9c3YjnuDbNqxbBmTyUQ7d+6cHet2oi/XVoBDhw6lfWJMYBwTfWljvm6DFh9ffywziPvPeEWykj1fUj22jfe4xxfn2Me6fd9XfKaMJbpnpiwi7h3Gffq6zGAVNUHfA+RA0Mcf70HzQ2KfW6aVhoaGhoaGgPbCa2hoaGjYElg6LCHWPLNJwFRmaViFliaYLHGxv6Mz2tdhUG9U+W1CJcWaZItoOqN5zn2upeKJ39XICXTuR5Otz3FfaSrxOKMzt+YsJrKafv7O12Ng81hdKtarM7KUbayVNUaGMUhQysxpNvkcOHBAknTTTTdV++294HO4D2y281w4QF2am5hqSardRjSD0nTN8WREAJJ7SMpx3/03S+Zrkxmv78DdbH+TFMGkEJ6T06dPz851OzTNMaF3HKevQ/OUx5MlqTY85+fOnRtNn7d79+7Z2nndvC8k6ZZbbpE0J6f4mNi+lLtD/J2vf+rUqQ3Xz5IvMBzJ966PZfpCaW5+ZuILkmQyYhjdEF5LPzP9ewzuZyiB/7Kt+Pz2+rr/vEe4D+KaMq0f94rnIjNFe528V0xQ81rE/RbXUBqvw0k0Da+hoaGhYUvgqlKL0bkbpQpLr5b26GjO3sSWNGopb+hAjVKTj4mBsLGN7LP7a0nBUoslSAZsxv6TQk4nL4NjpWESZGq0GbWYc0ASCc/NEgBnCZ/jGGIfLfVT0qqVi4m/+bsLFy5UpXRXPOc8Zsl1qfkeO3ZsQx/juLwX6Rg33L5T3GWpl4ga8Uqaz4ulVJIF3MeocZvgYUna82XplsHjkRDidj1O/6U2EKV0ltt6+OGHJc0Dwn2vuO9Ry2b4ideClPY4Pn9Hy4zXxCSDqA0woH5Mw9u2bZv2798/mx9fx/MnzdfD93ScD2mo6UnzPcF1odXIY4/7gGVtqL1kFhGGSHgvkUiVpdszSNf3Z2vpcXy+tvvmz76fPC5bCaRhgoua5pT13etDSwkTVEQri/vtPc8QHiNqvW4nhg+1sISGhoaGhoaAq0otZskto+D6LU97PlMUZQUys5RB8ffM/+ffSKtn0tgoUdK+b6mQqXey6zCEola0NEooTIrNNFQZ/bnm+6z5EjN/HH0FPof+rng9Sre8frS/Uxobo++vra3psccem0n53h/RH0vp3NKqJVFK7bGfTEtGv5zPjX5S+4ColdNyEfcBQwjsZ/QcW2KNVg9fp1ZYlFJ83Af0RXpOvJesPUW/k7978MEHN8yNJXkGhkfpmHvRWgl9OfGeZxiC++Y95TmxRiXNpXzfl48++mi1gLCfOwzFiGvpNfN+Io3e8xf3G/2f9L8x6XX0HTE5NNN3ZRYta1b2N956662S5s8bXz9ex+PwHLKUmPehz4lB69SwPC6vg8cfNcpaEVxfh2nJ4t51H3xdWhKyefT8HDx4UNL8/mIyjuxZ5X195syZ5sNraGhoaGiIWErDW1lZ0Z49ewYSQ/SF8E3LAM3MNmypgiw/MpKYkidDLUA8akDWLiiBMAVP9DlQwzKi/TuOJWqULIjJv1m5HvrwLJlaeue5mWRXK7lCSVaa+0OYYNjSWFbglGndsqBuo+s6Xbp0aTb3J06c2DCeeE1qMe6Dr5f5KWrMYWpRGVPQffI6ZUmVDbLvuM+oaUpzbcbasfeQtUOuZbw3mIyamj1TQElDSZrJCZieLivCy3F4fzCVW2zX4Jpkwezuo+fg8ccfr/rwDDIi41q6n9ZqmZCCzNWsXbdHbSpjIUe/tTQs4+M1jTwAll6ihcmWgOgrJEfAzwGue3Z/0pfG+yt7VtH/y/X3fNIaJg3nliW6OIZ4Hf/mtWXSgthHJgo/efJk0/AaGhoaGhoiltLwSinatWvXIPVS1PDI4iLLL/P7MTEq2X+UvKP0zPQ4TO2UFam1FOF+20/hPlk7iBoSS3hYennggQc2XNdtZXFRkZ0U28wYXUwKXSuvlElNXAMmuq6VGJGGjFlrbVkskufJ4zp79mxVSr9y5YpOnz49kNwyv020zUvzufR8RV+e14G2frdhf49TTkUt1P3m3vR8MWF3/M3Svv0h1hLdt+jD8351bJH7YL+F199zE9mHbtcMS8a5+vfoM2YZJd6nHq/nJvr/7Gcic7FWiFQapsyiRuE9EdOgZSnSanGck8lEe/bsma2X7404x/RhWYthTFhcf1qfatoz/VrSfL9ZG6NW7fmzBpv10exZ+v+ihmdGp/1+vi4T0We+fD4b6NPzuOP+dt9YQs3rz7jXLPk7nz/em97v8bnj/jIWkmkr47PT95Hvm7Nnzy4UAyw1Da+hoaGhYYtgaQ1v+/btg7Ii0b5KJiJ9TH7bZ7EmfvPbls2CnNQApbnEY4nR2hv9B1ErtHRkqeGOO+6QNPQVUqqV5pIPM18YLEsT+0DNgcmkIxiHQsmHMYRRy6aNnn6AzJ/BMh2UjH1s9Lm5D07ufM8991SZdo7Do8YQfQD333+/pKH/gP2NTFGfb6mP8Xj+3RpenFeWL2GSXftnowZEH6H7fPvtt0vK4/AYc8ZyOmT+xrWwxeDee++VNJ83r4PbsAYozefNY/c9YW3DfbT2EDWKe+65R5L0h3/4h5Lm/izuoSzhsK/rsfPejEmxfW3P4549e6os3+3bt+vgwYMD3130W3LfkV+Q+a253m7PWi4zCUW4Xc+lnylM3B21UMbHem49Ls+P97I03xNey+c///mS5s8olv6ybzzOifvvfUWWbhZn6rlw/30OLU/RsuT7kuvkPeO+xvuXfm0+G30dM1ql+bPX9+W+fftGSzhFNA2voaGhoWFLYCkNz1I6JaOozVBaok8lY2laarBmZ0nx8OHDG86l/8R9kuYSiCUUliGKNmB/Z6mAPoGssC1LbWRFKCOi5kK/JUvaZHNi7cLteE7clr+3lhV9hsyWQG3b34/5pihtM1Yp9t/axZgdfffu3fqYj/kYHT9+XNJcq87KA9kvyjyoWYYYlpnxX+8D+iSjf4ylVawB+RhrVVm+T86BtUX79LJcqtbKqOGRARelZrfr+8p7lJJ97KPH42PcrrVRr7WvG32id91114ZjfA94LqxBxL3jvVhjMrvvWQaZsfJTxsrKim644YbZGDN/HPctszb59zhPHOPRo0c3nGtNhRlZpI2+uThGrx2zQ0lzbcbr4mPjnpTyefLzi0xl/o2WLO8Va9O0ftRKQcXx0H9paw7vt9hXzzlZwhmzmZmjvJ89nljs2SC7/vTp05syfI2m4TU0NDQ0bAm0F15DQ0NDw5bA0ibNs2fPDhKkRtIF0zRZBaejOZqlSMRgIlSr6Vlgs9Vk98XmDpopY7CyzREsO8T0ZBE0c5K+S9p+NGmR4ktTnVX+LG2X1XabU2rJgyMZgyY0mm7HStl4Hpn+iunXpLm5weMYq3i+c+dOveAFLxikXIokGP7mObcZzaalaJ52oDHTpj3vec/b0AZp5NJ8b3qObVryepgKHokONnvdd999kuZ7komgs/Rg7iPN7v5Lk740vxdqaehMcIjzTrKXr+uxswSQxxLHakKA5/FFL3qRJOk973mPpDwkgGvP6uhZ0Hc0jdVIK5PJRKurq7O5yBJV8H5nWZ0smYS/8/7yfel1sPk99sNgCj4Sk7yvo6mNpmaGlMT7yGAKPl/X5zCdV+yHr2P3gf/atO01jnPiazuExHvG12GijXgvknzIkky+ju8raZg2ku8PPn/id7EcUUse3dDQ0NDQELB0WMLq6upMmrKEEDU8S01+y5M+nZV/YIBxzbnKpMuxHb7h6ZiPYOA8rzOm6VGTZNFDjz+jTLuvTGWVpUNjqRVfh2SFrEwH54slRLIk3NQC3J7niEHr0lBzKaVUJa3JZKKdO3cOEinHfns+rMmZKGGpkuEWsT/U5D0Oj/Huu++WtFGj9D72enB/uY/Rcc7AZpKlPL4s/Rk1amoF/t39ibBVwhqmCRWkrUvDkjWkfPt+MzkoSvieH5+TFU5l330d7+9aCrNI+vB9GdOu1TQ8lyTzvPh68bnjufNYaEFg2kBpmEyC97DHzsQX0vC+oNbh8cVnlfvC0lJMDB6vw+eN+0Kylp/FcR+QUMXSZiRPxd9odfK+ZsLtSLBy+0wP5nnmHpLmWqfHxecHLYVxLrIEJJuhaXgNDQ0NDVsCS2l4k8lEO3b8/+2d2ZId1ZWGV5VKQmDscARmEDjcOMKXfv8n8QPQtmTAzWQwCEk19IXjq/PXl2tn1SGiL9xn/Tc1nMyde8yzxn892dhXU3JFynPC4l5RUtv2kR64x2HP2Ya/2V36x+V0sh1+WoPoipMiNTtBG1h6zz6u+uLE0OyjpU6HYlvjSsnIn1l68vgTLlbr1InsI9cw1r20hLOzs7q4uNhIl3sFK611mmC2altMEy1iRZGUPgdLx9ZQutByF4VNv2vOQf6febbP274b0jsy8RggpfMZ2m+XHmOaJp859pT3ZfaN+cS/ZRKArm/2TTsVqStDZEtGBzQ8tKbOAsPcWmv2Hk0tEj+VUyNSc6jaakY5Fp/pFZF2tk+/neLEfsznoBU6uZ+fjBfrTd7rorjsHebRpNn5HBdb5sztpZeZBpG54Yx2RB60Z0uZrQMJ2uHn48ePR8MbDAaDwSBxdAHYm5ubXeJaJBIXXrWfLCUhE0C7/NAeBZeTqVelVtJ34yRUR5K6X1XbUhv+P89Ds00p0ZGptMHzTe6c7bmgqSXJrhSQo0EdFcj4O02Zn07yBSvqMPeh++yHH3641ab31hLJ1GSz9De1NCRP+9BckskFR/Mz0yk5mTuTlZ14jfRqLaZLijY1HpK3NYyk4KK/9v9yj+mpqg7Ssq0tLncDct8xJ45q3CsB5f1Fn1mLzs+8Ktjc4fLysr7++uvbax0lXnVYOxc9drvp43LEK9fST89B7v0V3aH3tTXOqm1pHdbOUeNVW3o7/jblW+eP49n031HBK600x8HeMaFDZ+mytstzmEdHRVcd5o//eR0dhe8xMr5JPB8MBoPBIHC0hvfzzz9vfBIpkdjnZEmr8/uZcJn2LSl09lxLFY5mcvmJqoOUYh8N/XD+WrYH7I+xFNWRR9Oeo7HcRvbF82eNdm9uVkV3HcFYtZVU+dt9S5/bqgxRh6urq/r+++9v8+a6QqKWfNEQ7IdLSZsxOT/JUmxX1NX9db6Q/Sf5HPYQGp4L5abE6VxJ+3CQ2mkzc53wM7Gf0FR5DuuReXHW/v2TNfUcVR3Wg/3UlcbJMWRfTOPFT/c52+N5e6Wlbm5u6s2bN7dzjPSf/TatlaMou0hLl3+yxsMZ95nIe2zJskaSmgnX0n/mhT1E35MIHF8a/7NVijadY1m1pf9C03J5oFxLE90D9pnPV66pc4dX9HFdzqi1P0fQ53vHY/7mm2/GhzcYDAaDQeJoDe/y8nKpkVVtpX0XLO38cS4ZZM3E2kxKdpb6bVvvfASWjl0Y01GoVdsyFo4ctKaZJWWcZ7eak5TOrCFbs9vzedgm7yi9PW3Qdn5HrqW2Y3aZt956a9kvl5ZKOz5As6O/FMi0xpBSuv1tLuZqAuX0PbivXh9rSlWHdYdkmefhW+t8G7aEON/PZOy5D+w7dq4TSD9jV/Q4n2/tKqV0nwFrhfazZzuOBmY+TY6d1zKOzz77bOkfvrm5qZcvX258bbmHvKc7jc5wybJ8XtVhTruIRNaBdXe0Lsj9wD0umOu9k/Pg8l9ca82He9JPyriYf1/DfuvmyNqfz7rfYVXb6HDHbey9s7y/PEe5RvS7s4jch9HwBoPBYHASmC+8wWAwGJwEjjJpVv1b5XSSdargNu2ZyHYvjB7YJOKEzbzepjjTajmcO/tmMyVOcTur83+YtFaUWza/5Wf01aYE2uhC5m1+8rg7c4sDDHi+w/s7s7LNXjazdLUIk6h3FXjw6NGj+vWvf71J4s32MCG5ErfNaGm24R6uNWmw562jU7MJmL95XqaYUHnZQUveQ53p1KYd9401SAc97fA8zLwE9Jimrmp7FvjMQUYOEEjYlEabzHc3j157zldXadsmyMvLy93Ag4uLi03gWPbBc2rTWxdQZdcF15oQugtAcfqTn+9UjRyzUyccRJbn0sQSNouyN50S4nby+bgOHLxSdVgjJ+zb3Oz3e97jd7Lv6foE/B5injtyfObr22+/3U2JSoyGNxgMBoOTwNEa3qNHjzZO9pQQrHF0oa95Xf7ugJeV9tZJpP6fpYmUuJ3suNKiuirSlooc2GBtND9zCQ+kQCSjdHybwNhz4SCGLoncGthKc87nANq11NYl47uvHS4vL+ubb765HTNaTCaRr8iUWbsumZj2rK2tqm/nvS5F4gAkWwly/FzLmlFKZi91hnPjwCprgKlRdtXCqw4Uan/+85+rquovf/nL7WcuP4PG8pBkbxNF2GLTBXQBPuPcuNxSamisW6YA3Uc8bi0jz4uJ552G4sraea33ts/L3jzRrjWwLsCK5zlYyH9nCpWDlqxFs8+7QCX6yHpYWyflJc+00w9MjmHrUI7PQYyr1LQOngveC043qzpoxEmGvkeIkRgNbzAYDAYngaPJo58+fXpLr0Rodue3cXj73re7tZZVsrrDxfPZlqxXWlvV1kdniXePnLbz63RtZH+caG5pEOm9C39faZDWJDvpuCPtzf932o4lRSQ8U6dVbcPt99b49evX9fz589swdBLQs/SOKbFAl/4AnOxq0m1L8en3sXRO+2gOXJslUBg/2ovTIfZSPkwabf9Pt2d59iqVAW3gT3/60+09EEub8Nz+804L7vxI2Sc/v2qbbuGUE/Z/NzdJvrDy4d3c3NT19fXmDOR7wPvXifNOOcnfvQ+8/7qEaa+dQ/5tBcvnOIbAhPdpWQI+l7bWdL422vNeZc+g4T179uz2Hs4l7bq0kDW81Nrdh5XVq/NrMk9Ou+n2Du9GSmV99dVXo+ENBoPBYJD4RRoednfobrI0iaPjLGGvSFartj66h9iA7f9D4kAD68hH/Ww/t0uOXpWMcQSkaYmqDhKcKaW4hjnKe6xZrajE9rRr9x10Gp6jslY+w67cCf1/++2320gs2nv58uWGsJlir9yfzzZ4dvoN7G/z3/x0dFvV1tdA39C4WYOuMK8LijpRu1sXj8ulUawJds9B8rWvKp+HxG7fnaMcTRGY16wI3U2Wnr+b0MG0UTn3aMr8fP369e66P3nyZGN1yPFYe/Sadu8Qa7rWROxb7awoputDa3N5qoR9+MwbftnOZ7w6n/6Z+8DvQvukeQ9RXDjHjBXP/zdJR/Z1RaG3R7BtH7WjX9k76a9lf+0R0a8wGt5gMBgMTgJHaXjX19f1888/30otSAFJc+QoJUfeWdPb+8waXSel8T8XnMX2zM/U1kwaa8nSFEb5HEdaOqKUe1KyW9EAIXlRDiY1ZfcVODrTz8g+2C5uSajL97FmxLx2kX0e654PD7BnGHNHibXKV+z8S5YmLemvCG3zWpevoU+mZso+uiCqfSq5p5CkV36fh2h4+F3Yz0jl5OV1xYoz9zT7aL9jPs+5mvZvWWPOe+ij92w3J+yrFy9ebNozzs7O7kRp0j4+nKqDVmuNyu+Zzl9pLaqLzs1xJJyfyxnvCibznnRuJfd0VGf20fmdZd90V3qHdbFG2Y3HkbX0ydaBLi/XPmi/D/i886M7j5Y92kW7ogmj4T19+nSXuD4xGt5gMBgMTgJH5+Gdn59vpCYie6q2bAL2bXRamn1oK5s66HLBALZgfnbajaPlzJqBJJSSlqPAzFbhqNTUbF0yyHOBxJLSIPO38jd2kaSGowE9lu5/XQmebCMlKfuzKBDc4fLysr799tvbdvDddWNeRd52+8G+OxeStE8vNQD7C1gHxgObSUrCSQqenzlqt9MK2d8u9OnitBT3rDpI5ybDJsKOIrl///vfb++x9umzwLjcZo7dGr39XV1JGbQ2R/R1OWLEAWTk7UpKv7m5qVevXt22i3UgNQWiWV10dhXxW3V/fu+eFYW9w/+s3dofnP21XxZNpYsk9f+sla8sTPmZ38HMfbe/AXuS/rscUXfOVxHkq6jN/H3VLmuQkdLkvHJOnj59+iDrUtVoeIPBYDA4EcwX3mAwGAxOAkeZNM/OzurRo0e36iOOc1TkqoPqickKVd/miq5qdT6napvcaDqvqoOJyqTNJsztQq9NR4X63tX560K48+9VHcD83UmpJu/NOXLSMPfYlNERQa+cxntqv0OwHebctbkKmd8DqSz0P4mgMQPy8w9/+MOd9h28UnUwDzpIytXTuS6d+vQfUxyfYS6kjTTZY/5bBRowngwYsXnfYN74mX20ObxLzci+dn1jTn7/+99X1TZcvKta7bNn02AmnnfpG3lvdw+/f/LJJ1X17/fEyqRJsBzt/fWvf62qqk8//fT2GpMWMCYTNXeE03YTOICrM/Ov6OFc2y6fl6bjqsO7kvnr0qHsAnJf7f7JdbIZGvA8zmKeac4J+5iz6Pl1oE+Cz0zC3ZlsV+TRXENfc+7sVrqPeDwxGt5gMBgMTgK/KC0BKQYpLZMCVyG+6Yiv6svMAGsxDntPDW+VnO7E95QeTTdkLa2Tak1r1WkMOa68Fw3YWg3aL/OX2qMT2LnHGp8ptRKrSvF2Ymd/HfptzSLn0cS1q9JAPPPZs2e3YfTWWLMdNBMkUNplDroQfGvrlog7TdjJ6CYpQALvyHxZUwcgcTYyWIHAEqRlrmUO+H+n4bm81ip4oaPb497UUKsOAQldipDPr1N4vOZV95fmoc2cR+acvrx582Y3aOX169ebMP6sdA1FnTUga/pdorSDLawRdcTpDobyPNG3TitkfR0IQp87OjL+x9lA81mVwcr2/I5kr7AeneWBfcxcmIyhs7b5jK1KC3UBiybl4F7G21GmcW0XhLfCaHiDwWAwOAkcnZZwdXW1IZJNycfUV04sBHmP/QOW9Bzyn/c6PWBV8ielCpNHW+JCckj7tCUbl6WxtJhSohOabdP2nOVn9MmFZ2mzs92bwmdVCDTHt5JquzVeXXN9fb20pT9+/Lg+/PDD27F7zbMP1srRCjuaOGug9rHu+TFXhNkujdLttxxX9g3JOH2T/sx+ZrQQNP0MwcafaIsJfaXtXEsTZYK/AAAgAElEQVT6SP9dtNWJ/bnvPI+2lDiZuepwXvyTPnWam8ttnZ+fLzW8q6ur+u677+qjjz660//0CfosWdtEK8xnOJTfpWj2Spwxp/bDoZF0RAho8raiAPZMlszyO4/5t4Whex77irVifE7ZyLPoBHfmhvnbI0lf0Z6tKNvyOX7f7dHimVD9of67qtHwBoPBYHAi+EUFYFeJ4nxetSUWNiH0nU6IvshahSW/TuK21mZ/UCYCu3SIE2WR1lKCNHmqtRD7PlIisVaGtMTzuzItpjLjp+3WXSK/PwN7xSTt+1oV+c25d9Tkng+Pe+2/7GiUXMDUc54wBRZ98t97hXldwJaxd4QA9p2ZDNvaWtXW78e62HdLZHPuOycwu4/28WYfuIY5YF5t0ejm1We7o9sDq+RhRxJ3/qzUXO6T1H2Wu9I07oN9uR2FGfe4v7aE5Lqwf9E26JvfYamt2dLD36wH+yHXkj5AeOBoYO/vfIfwHFtG+NsUelVbTdLXrEqq5e8ug+TPU7O1v897lr+T2MGxFz/88MO9757bPjzoqsFgMBgM/sNxdB5eag2rfK+qrY/BpKcPJfvMe/aiypwT5pIYKT1ainE5k67cBBKVaaGQ8FZ2+aqtP8SSnjWvqm1+oaOXVr6Wqq0ERF+RJPckbvrkSNmOos1awF4+zM3NTV1eXt5GIhK12/ke6QNajfuQY13lA3lvdvNkaZV8PPYDzyNatOogaTvCjfXB35j7m3l3Yc8VTVyOxZK0o1v3SIpX1gBbDXIf2I/lCMY9Hx7zZpot51RlH9OfuZLSIY9G4+b85Bxz3m2JMVF3rv+qqCn9tk83ix+jrdsK4LzQrsQYlgv64ijePGNEezJmxsk10Kx1xYNtKWPObWHo6Mis4Xmfd+fc59OaXpcXuCp/5L9zj9pPv1dayhgNbzAYDAYngaM0PKR00BVGdJkKPkPy2bO1OhrTUmV3r5kukEC4luemJsE9XIu0hsRjAuocF33jHqRZJD2kwPSLINHRF7fFnGauItKeSWr3Ip7AfT7QThpc5SCtSjRVHSStnPO9Ip5vv/32htQ5pX6exRxaK7MPqsPKt9oVyLQk776zH2D2qKr67LPPqupQ5uj999+vqgNjCOjmCWYi1pbnIcVzT2pP9oGvJPA8ly5hRR+dQ2f/VvccrrXEnT4V+62tGVnLqtrmj+4V8YQ8mn2GVSX9Y/bZ05eVP5t28+cq15D/c8arDuefMdIX1hZi5owdcIQ37wUicR1hnn1gLdHSOCPOdcw5trXJpduwVuRa8pxVHqbfr3sapTU8v8MSttCsiKertuf/of67qtHwBoPBYHAiODpK894GVVQTCcj+o86nBlZ8fi5ZX3U3cqpqyybiApp5vyO7XNA0tTTbzi1VWIJMflEzali7cd5Utue+dMwx2feubyttsLPdg9U87uXQ3Bdpd3FxsfGxpF/EvJHMof2YXWSYpT7WlPlzTlrVVoK31oHmlZI9Pjq0DEumSO0dGwz3/PGPf6yqbU4dvsLcq6uIR2sLuebME5+hFZidoysA6+hqwH6wFpRzYP+L8w2zTZ7N3L569WopqV9fX9fLly83/sOMhDWbB/3sclx9j7UJRwuzR/NMMyYz6/DTEeBVh3cI/8N358KsORZrTc5fdKHUPBuOPuU59J15zJJX1pRtBVgVzfZYczz+f3fvio2liyhnbjPKeArADgaDwWAQmC+8wWAwGJwEjg5ayRDQvYAJq7GmFkusEldtcuiSKzFrOLDFZXqyfIoDaDwO0+h0fbQjln5gckizq1MlVvRrXQKonfp27nfOfgf/2CzQUYvZPLmq/pxz4me/9dZbuyWI2D/Zfken5urrTn7PftvJjhnFycJdSoMrfvOTcWHSJCG8ak2Dh9mLn10gFz+pTs61ppwiIKZqG4Rh0xImtAzVZp4InHDqwl5QkwNOVmWvuqrVNvs7ACafQ7vM7W9+85s2KZx+Xl1dbRLlO3L3lVm0S0uwidxpMXzOOqU53ITz3Jsm2uxXwoQKq9Jj3Xi8r53q0gUvAfrK/sI877JF+ZyOLDzbStiEuTq/Xek0f6fYLN6Rctid9RCMhjcYDAaDk8AvSktAqqAkR0oZlgj9ze1v9PyfpUiTxHYhzNZ8rMUgXaTD3AmXJgm2FJ1wIqSdpR1Ztp33/r8prrLdFT2TJa+UuKxROLF5T/p0wral9ByD273PeXx9fb2Zixwz6+yACUuIXQCCKdasNXf9Z92Ryj3HSPapSbDnV0WDkZa7AA0XEkUjQuJ2YEg+2wFc1vwyaMdBKg5aYD67AARL4Sb07lI4uhJF+XcX8MT9GZS1sg7c3NzcCYjq1vK+dJouLcUBWdZu97SplTUKbb0LsHIwDBYE0lWSUgy4oLHPrlMmMrDGhYBNuNERXjiNw0n3flflmvvdZ+tLZyWyBmuav84ywz1JrzdBK4PBYDAYBI5OSyAJtGpbSLXqfgLoLlndkq/DxTv7O1jR1jhcPTUuJDskoFUIbEdDtCJXtYbR2bjpyyqpMm34tGPfpLUQ/s4QbWu5lpo6smCP2QVVu8R0a2l7khZ+GPwXbj9hKdOFeVNCXCVkO2m9S2B1uoul584/Zj+LtSQXBs0+EQZuWjLOEWPIZGWkfvsGrbHkvPusOe0CWMPp2rXfdM+n4lQWE8Z3yfjZ7t7euby83JC+51qufNv2ueZ+8xmzzw6tqSM69761T8/UgFWHOUWz4yfpKqb+qtqSk9sKxhzQx9RCGQftO+Vkr+QX8BzxHBemzb6uCk/v+ffv873meWJdWK+Mz7gPo+ENBoPB4CTwi8oD2Sab3/IuqmpfV+en6JILqw5SRFJ8VfUFZ1c0Op0U49IuwNpU5yu01LwqTptjWY3PUXMpxazKHbl4rPuX7dDH1Vx0WoGlsT3aHvd/T8O7vr6uH374YZOom9dbW7a0zNhTil0RYruNTsvwmjJvltY7bQ2J2z68jlCdz1xw1YVYLRlnHw3Gzb3dXrXvbkVWkGtsMgZrep20bi3Ke5d708pCn9JXs+eHubq6un12F51ngotV9GIXpes2VhRYnZ8cbZx9wBhNI1h1OI9Z1qbqYGlCE8tzaq3PPnyfwY6WDNj36SLW2TdboRgPfXWB1mw/ffpV233dEV5YY/V7NdeTyN6u5Nd9GA1vMBgMBieBo8sDnZ+fbyLHOmnP0vNeWSDb+u0n2POLrSIf/XnnZ1z5qTofl6VKP2cvis3+MWt01orzd0dyrnKcOr/WKr8RpAToQqqWbh3xWbUthXJ+fr6U0s/OzurJkye32loXkYbPYZWPhRSdeUPWfD3HLnba9c+lXbrIVwBJMD5T5+F1uVR+pnNS9yLf3AfmzVRTSUfWad55rYuHJpx/5fzMbnw+n96TrDl5gd09exG+UIsxxo6qrPNlZh9W+WR5j32azpPr9r5Lb1kz6koYucQTml0X7Ypmw722FnEPBNSJVcS6LRf53vEcsIecK8p+74pIryLLu+hqv6tW+Xj4O/N/qfVOeaDBYDAYDAJHaXjX19d3pEIk7Y5FxX4E0JXAsAZkG7ClqI4hxBK+IxSz32ZHWBEyp+Rjv4QLIe5JMSufjUv/pMRqolfnk3kse+VVnHfT+UJWPhvgyL9sh37vlQci0s7+g1xL+4esKdjvk89eWQFYd/uZsj3npaGROOqs6rDnVxok4+n8jGiHjjq1X7iLDvYZ87hTY7blwpHT1tJyPvnMjCE+t51FweV2rDnl3qUUVhaHva8ALDlmrE/2gfm2ZYQ2+X/ueUdy299rf3nHYmKLlllaOn/sKqI0ScoNNCpbwfZYR7CI+Jy6MHSXH+noTP5eFWWu2u4RW1v2LCcr7d7v22wfK8uQRw8Gg8FgIMwX3mAwGAxOAkenJVxdXW2oXTLpeeWEXKniVVuz3CrApaPCscptYtku2MLmR0wkDtzIe1Zh2TaddsnRTn+gDf7f1Y3CRGXTiU1zXaVjz7nHDTpThk00ns80Lbj9vdDy6+vr+vHHHzdJ3Umy7er0DjToEkxtNnF4tk09HakzbdAXUie6feBUHNpjPLT1/Pnz23scln9f5fFuLW0q97hzLen/qobeQ8zvzHWuT36edQztksDsy/PpT64F7WZaycqk+ejRo3r33Xfriy++uPP/nCfa49x0yelVd03D3osOTnHyeJ7PVdAQ9/JO7Ez8DhYx1WGuC2ZOr5WDppwek/23CdHmyi7dwuZXnse1rGnXrve1gwA7t0jncsjxODgx278vpeXOPQ+6ajAYDAaD/3AcTR59fX19+w2NlJfhxquk51UQS9XWeX9fKHFKAw5aMTGvn5F9sMRtSTWdy9Yk7Yi1FJP34si2BLtXldn/cwDHirItx+prvBZd+LvD0i0d5rzaqb9HHfTmzZv68ssvbyVRSJhzzE4iBw56yHscMAEckt052dE4+GkNq5MqTeHEHkKzcOh/1VYzZXymJdsjx6aP1mBtnag6nEsHuqysIQnmCYneBNp7dFROFnbAS869922SQxvn5+f1q1/96nY8trZUHbRKAoOAtakuiMTJ+/xtzSstWR6Hq5lzT4bTv//++1V1SCanb5yFLjCNJGunMqBhmVy6O0/AAWOUqcoz7XQh+srYbcnIYEC/2332Og3egXQ+ex53jisrxe+9exKj4Q0Gg8HgJHB04vnFxcWtdOtv4ao+MTVhTaKqD3Wu2iYuIk2k1GRfU+fTqLobJu6ClfZ10EcSQvfG4bBZFxHNz/hJEid9tjZadZBULSU9hPLLmrHnxFpx3mNJ3iWUulIimQy76tfr16/r+fPn9cknn1RVLy2vksdXa5z9dUi5E2c7vyZSsZN7CZkHH3744e3vSOP0n5+sLRJxzhPSOBoKfhnTRXVnA2mWvlpb7HxqhO+bms1EBB11nzUVa92d1ruyPjjdJt8Tvufq6mqp4Z2dndWjR482KSC5h1b+f/vJu/1pKwr70NRbe+TRToPoqMyc5sK6sKd4d6R/DK2Qa7EwOLXJMQs5J7Z60RbPyXn0XNCeS/44MbzqsAetTa/Kk2U7tm7QV+akI3BPbXR8eIPBYDAYBI7W8B4/frwpdpnak/0CXVn3qrtSuulyVknQaFyUpq/alnRBwjZ5dUf15Ugk+wpTEkHCsYTr6EnmIqVB+2xc1qKTPr/++uuq2kpA9oe4xEzeY83O0tte+SOTutrPlb/nGqw0PMijkdzQcrqILSfk25+Y5XPQ9r2Wlsq7yETmLNvL59IPCnTm75YyaR9/dtKf8UxTeqGJWQLuNCGfCdpwsnyCs2BrhzW7fN59+8ARrXmt59xJyvkc+5feeeedpR/m/Py83n333dszSMHcbGOVKG06rdxv1ipMcLDy7VVtk7h91tDEUnviWkch2++Xmgu/f/zxx1VV9be//e3OtS7blO8n3iErDZa9mtoq+8klhBwNClIb5d3HmFfv8Y5Y398Te9GZmXBO/0fDGwwGg8EgcHSU5ps3b24lBr7BkxLH1D7A39wpxSD5WfJxZGdXZsdSJdqffQ5d8UnnJdFuV07FdENIcPzfml1qvfTJGiQS1h6htiMg0UZsh885sd/HErhz7vJ/wBJjlyfT+XVWfphHjx7Vb3/72yWhbcJ0YJbeU+Miio17WBdHm3U0eKwHn7Ee9AkJMn14Js/1/ur8Yi4kyxx57Tq/j3PCTPjMvbkGaHb0xdGNXoO8dxVBukddBzjH7DPGjRae+9/Rhe+8886SNLzq3/PLuGgvNUbadlkga1EdebQ1OVtROqsFe8M5fFzblVFyjiCaKn3qclN5Dn5l9qr3H3spx2dfmue886nRR+fEOgK308ad92cfXleWzXsfqwfraJrJqoOGl1aWvb2TGA1vMBgMBieBo8mjX758ubGLp1SFtocm0kVjVd2VECxp2m5szS8lBDNfZLRa1VYirzpIEUjAlib4u2Mi4SfjXOWMdVKzNTkkOdvL81r77uibC+lmX112aGVDz/54HLRPH7uCj/yPPj19+nS3YOmnn366yYfr8oacw2TrQPbbhOKWyuk/a573OucHKdqsEqmFImF7r6Iddr4bM2qsiqx2fhiXhXGRXD7P8kC06zwyn6cux8lruvI3Jex7t7bBHHXRgKk9r6R0/L98jqaHdl912CtoGfZtgdSerAmbdHtFZp5YEcJ3a8n8uLQQoI2MDue9ZV+93wsd0wqg/6y3GXHy3WELgrVSr1Fqv47fcPFq0LFs0TeXQePazK9kf3V5pPdhNLzBYDAYnASO9uG9evVqE5HUMZLw0xF39iMl/O1u6X3Ft1bVs1NUHaSA9OmYLcP+OPsMq7YSiJkv/PyuXIfLsyDxOp+tasukYbv1XgHYVeRT57sD1kKZG+5FGkwJz7kyr169Wmp4FxcX9cEHH2y0tJRmkdyQ5pxP1q0LOUxEpDFG7rX/NMfOnLp4J/fwd+blraJAeT7jS62Q9lclrIA/r6pNzmvn06i6a8H4/PPPq+qwd549e1ZVW19ex93IeqzKKnV7yFqBLT8dfy5rzbm8vr7ejbS7uLjYnJscsy0R5up0zm32k7n1+8zRuh0P66qMlqM3qw7vGUfnYi3qYgesjfOTuXU/ck/ZGsA5dSHa3Kvcw/o4h9TWuIxGBtbobFHKz22NcsSs3wlVh/XPPbqXl5wYDW8wGAwGJ4H5whsMBoPBSeBok+bl5eWGmihVcBNLm3Kn7YSqkjtR1eHvGSRj57Bpe7pAF8xgPM/UTiairtqaA1YJrnYQ57Um5nWF4BwXfUOldxLvqoRSgnYdyMNaOIQ722OcTsrvSKofCqjpqg7jyiAC2nvvvfeqakuN1QUTQb2EKY42GLMTtLPPrKmTtjE9dYE1XnfWwfRdXZkWh59jzjEdXRcY5PBt2rSZsmobnILJzAEwXei8iQbsgnBQS/bN5ZYA85dmWAe17SUPs29cdTvToRyQYfMkc5ppKatK7cDE8LlPHGDFXFPCyMTZXft285hEIz9zJXUHs5jkO/u/ClrpSn75ne53lEvD5Zq6XZvy974D/M7nHtY6XVL00Xv0IRgNbzAYDAYngaPTEn766acNmW8m2dq5jrRs6S21p1VZCSQFS6ZdSoNDn9EgTIqc9/s5jMNSTdcXazcmyM3P0T5MfmwtLSVIpH6HBXvcHXWa6Z8cfu7yLXmPQ4k953uBPPeFCd/c3GwoinJcK03YWlVKimjraAxOXDUlGp/nfLBW3qvd82jP9FOE13eBIKbnMkGzKedISM7/WcO2ZSElYP7HzxVJehfy7SAzg32ZWoFptkwq4AK42f/V3wkoDQHaTAZbrILIHGDXJZ47lcUBYX7HVG1J1pljznpXEsznZNV+pz3b2sU6rAj3u/HZctXNBXPrdjPtJUFqR9XhLFtzXlGq+feqw3iTkKDqrqbcUddNeaDBYDAYDAJHaXhXV1f1r3/9a5PYmtKAJWqkZyTwTnKkPb7VkTLsP3JCaAJJwJrDnr8KrNIEEk5ktWSySgWo2oa9W7Nz4mvVXWLUhKXPPTJf+1uc9N+Fv3vOPc7UXDu/3gqUeEEi7CjF0AAYM1o6ScXWGPL3jz766M61q2T17Ctzxn5L7S/b7vbO7373u6raag4uS5TPXFk5TPXVXWMNhrboc1e2ifbsM/YeSu3JUrkJvLt0BVNzAZOBp4bHPfl+WEnpZ2dn9eTJk02YfVoHVnvRJBmpKTiFxBq903nSImLLh/1xjDXvccoWsFUgtSanoax863uxEvateo1dKDjbdyqBaQpz7/jd6PeNySzymlW6lUs0ZV/AQ1MSqkbDGwwGg8GJ4Ggf3vfff7+hXkopxknUSFFILXvRhZYaupIu9MPPww9hiW5PijVBLuhs3EjYjvZzVKPpohKrIrX26WW7hrVE0wTl7/ZROmm687mZPBh4PbMPXUJph4uLi1upnHuyvIj9Iu5fR1zr6FwkwhUhwJ4faRWRBm1YfmYiXhfiTHgdrB04WhLtMX9nThiv/T4pNZvc3ePx3uz8cbaQOIKwK8jpki4+8+nrt+Xip59+2pXUMzrcPrCqw/yb8IH90FG+rZL5vfddBLlqW3gYuK383GQF9sN3MQrWeGwF6ej23BfT+Tn6uCstRV/s9wWdtcUl1Drqsqq7ZBPMkyM6V4QHVb0vfEVab4yGNxgMBoOTwFEa3uXlZX333XebUhFpF0eqs73a0ZJ7uRMmSnZEWkpxJm21tGy7NePo2nNkVUrN9l3YTm2JJDWLVZFIwN+dPRyYOshSaEp4zk+x5NxpsKuIsRWlUdVBMkxC5ZWUjg/PY01txkVvrRF733X/QxtzSRr7gbv2Hb3I2qZWyD2dr67qoEF0FFa2OrjNjo7KfbFvnHXJSEtrDj4T7OvOV23fkHO4utxb++5WJYxyf9N/zu2rV6+WUvrNzc2d4sId6TXao7Vp+kkUbVfya1WI1cTsad0wWbktS6DzVTuX1v3Id4mtGqZK9PPy71XR7T36Mz/PGuQeEbSf4/er84ETzu1+SORq5m0PtdhgMBgMBoGjmVayPJDzo6oOErZJZtECOn+VJWDbdS35pS/AuR8mU7UmVrWWUswykRLJfQTW3XP8PPfRkn1Kg9YCLfG4qOKe5OpIws7vY9+ay9F0UrV9KT///PODbekuslp1yD9z1OpK283+cC2SPITPXq9cezN3eE55bvp97BN25GMXsWh/orVEr3VK6ascVfvLci2dT+Z7nLuXc2KNwevOPV2OKhI343R0Zhfl6EjlDjCtMG8muK46rKHPB+8dLAmdBmRt0L7Vzn/tM+0905WWciSno0CtwSb8jrC1oDufYGX12mNp8n5eacN7mr7njT2afnuvgQseM58Zo2DLzOvXr8eHNxgMBoNBYr7wBoPBYHAS+EXk0YT4Wu2sOpiSCF6B4BWzEAnoHU0P7Zk42WHPXcXzVYJ2lyZgE5+d/E48zXa62nVVWzNVmiVWJgWbJzpTloNJ7JztTK0dFVI+l3s6cmzG4YrXXfL1imC4A2Ypm8GTEsupFjaj0Yc0b9gEgvns448/rqotJVKXOmGTI/uP56bZ1aY4nkvQSJdY7/Qdm/Vt+kkTp01WHWlAXle1dTU40Io++1xlnxyswlxwjnMNnLLAHNAnznyuhc/rXtAK1GLd+rvfJgBw6lG+O3i/4LpgHuxy6GjC7J5wYntHNuDE7FX9vY460VSGKyLqfBc7aMl9dbqCx1jVpx/kdfmO9HvH13QmVCfUu6+sUb7fnPw+ieeDwWAwGAhHJ55nVesuaMXko0h1fIND9ptO9hX5MNIkDmmc1SmRIK3uhfa6j5YILGFZys1nWgpzIAD9yefzPztbV1Q8+bwV/ZQJoHM+wYqCp5M+rcm5LM1etfRM9t4r8fL48eONxp1zjDSHVcDBFYyx2zvsOyeCQzn24sWLO+PL9v23pfWOuHaVYgJyjzpYxUEDlm5zH3gvOlm6066dEuQySzy3S1q21E+7aG3d+bImwXO8FqSd5Jx0tFYGaQmcf7TODH6w5g2coJ0WBe5nbr/66qs71xKA5/dD1eHd5HPv4JsumMxWmz1yZe8Jr78pubp0qK4MVP7dJbo7dcsBNk6tqDrsY6879Hdd6TSXcWM/+F2Z6+aE9sePH+8G4NwZ84OuGgwGg8HgPxxHaXhV//5GX0mQVQdJ22VNkO6ePXt25//ZjjUPE7F2dmNLzaYA6+ioVr4ta5hd0UGH3tre74Kgea+lP0tenS3aY7Z20CWR2z+CRGRpsPNROvnb/s0MBWfM6Vvdo0R7/fr1hn4o/Tr4wdhDLhXSJcrSB/eftSMcnX7n85wg6+c59SCvNeWSfZy5Hm7HmpWtE3mvfVLWAroQczQXlztiTvao9fifi+Py8x//+Medz3PsaES2/LjQcv6eWtoKl5eX9dVXX91qYKCzULik1MqaU7VdF5OV+95MT3GawMo/1lmJfJa6c5Rjz3vdJ9o38UaO1WfSCe/ZZmfdyraAi7BmX4HfUbYa5WfM/aoYcs4J+yC/H0bDGwwGg8EgcLSGd319vfEBpB3exRkdGUZycRcZZIkEm/BDylgAS+umAMrf7yvX00VlrQq/rkhks11rVl2UlO+3nd0S/15EqaV/J9inRutk3qR8yja7hGpHSnbAMoA/tosQZH3RytAmeCZ9yn57zVY+XBLS8Q9WbX0O9qV2UqPHaB9RFzVLv12Q1wnOnV9zVWrFa5pz4mu9R+0XzjWwZO+56YibrckBkxd0nyV13Sra7s2bN/XixYvbd0s3ZvvFaJeocSxLHei/NXsXzu3eP94jjsBOrMooea/unWUnr+8RtluD9xkxEXXXN/sMvQ/2Cq+yXk4q7/zbHgfvI0dfJ9hX3VyvMBreYDAYDE4CR2t4Vdtv45QKiMhZkbniY8lvZb69O99S1TZariviaKqfvMZY2dlXOU45jlWhxYeWmM9rnXOS0qKjzqzRMZ+ddGP6n5UElOvo8kbW4rs8QO+Dy8vLeyl+rFUnmFt8QdjqkdK7QqLst85nkv1lHOTnVVV98cUXd8bR5TJ5nCutiTlG6kytydF4zvfyvu+i9KzBrNbH/c32HclryT9/X/mXGEPS+3nszklljdLf4/30448/LjW8q6ur+v777zfzmBoe/WGM7BHmAt9Q9tvX+P+djwus4gBW65T9XRUE7sjRHVdgbdDWofzceZirkj/5PPfN7529fec5sHWoi2w2XZytK/Yl55gzE2DIoweDwWAwCByl4SFp7YFvb6Qk+1SQArMdJHoXnbSmQiRPSiTWXuz76qKbnMNkP4XLguRnJqd1DmFXCqXzf7lP2Z8cl1ksVmwknY/SkpClw/S52EZvP5Ovy/szWvc+SWtPm6E9k0azV2DsyHGs5sW+ji5PCb/e8+fPq2prJegYa1yUeFXEN9fDmoKldlsWOm3NUWtmZbFvuWoraduHYk2sG/OKlJ28vKrD+hAVel9h5W4ce9YBInztH8v3gDUO+7jo2wcffHuhmy4AAAQCSURBVLBpf1Xix+Vt9t4hjrjdy3GkPfYxfevG71JObteR13sWFkd8uuByXmN/ny1b3o9V2/e3mZi6aHXaQZPjWkf+YuXJsWeZoI40u8NoeIPBYDA4CcwX3mAwGAxOAkeTR19fX2/MURl2jGpNkqbNhJhG0pxGqLjpckwb1QU8+B6r3F3wis1gq9pcHR2ZAxoYh82iCY/DfbeKns9ehQXbnJhmslU1dJswOkJWj9ch2WmKdm20+5I/z87ONkTJXUi8E5Vd2yzvsanHJuZVIm3Vln7s888/v/P8h5D5rtJgcm4djr5K6vd+yHtcI80VyPN5Xn+bmpxg39HSsbYmmWAsea5MMkGfONeYotP9YOKBvaAvSOtBVzvPJl67VLoUDO8RruHdZTdFd7b9LrHbIM+VTZl+jzp4Ku/3HDux3nVB87NV2kMXJOh7jkmlshuEvnueM4H/yy+/bMeBCbMjvHB6ypBHDwaDwWAgHB208s9//nPjyOxClC01rkqVVB2+sV1exNK7A1GqDhIA99jp3jlKLbU4PNfO66qtJteFdOffXYV102A5gTYlMWtjdoavksvzWmulDinec3Bbsu/GZQ15L3n4+vq6fvzxx1trQFcF+7333quq7R5ibbk3NWUHVVgSdqh3px2Y7Nb7LcdkTctaU0cAbekVOCClI/m9j6Ta2lzCATUOIugSga3BsQZOzs7zbS3HWqmJgKu2GtcePRR7JzWDqp4I3GkIaKp7JNtcQ1/yfZbjSA21o4FLuCRU9pfnMsdOqdmzeqysBA746vqyIqtICsVVGbJVKlpalqwdrggV8mywTqt0JVKTcu6xCqwoG/cwGt5gMBgMTgJH+/C6END8VubbHCkcqcxSc6cpuFgnkhZSBG2mtEH79lN1ocvuo6Vnh4undLYqk7FKzM17TZ9j7awryGpNjp8mV/WYsm8OlbaG3BWn9NgdSp9r7cKYe0U8KfHiOego2BwGbv9IN0/un23/aIm5xquUAj83E93xS60okdxWXuPQeUvtnX8MrPx9/L+7Z1Vihedx3jp/nMfDHNDH9OVag3DR2E5Dsr/q/Px8aR2Alm4vjcdExTzTZXtyn5sa0UTwfnfk3NhiYG2988ftvTcTeY+1I55nggNruHntqji2x5LPsxbod9aeb9x7yO/MTDHwNbZ+cd7SOuIz0Gm1K4yGNxgMBoOTwNl9VFB3Lj47+5+q+u//u+4M/h/gv25ubt73P2fvDB6A2TuDX4p27xhHfeENBoPBYPCfijFpDgaDweAkMF94g8FgMDgJzBfeYDAYDE4C84U3GAwGg5PAfOENBoPB4CQwX3iDwWAwOAnMF95gMBgMTgLzhTcYDAaDk8B84Q0Gg8HgJPC/hCA8QMOmBncAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1446,7 +1458,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0bnlZ3/n9nXPuUHXvrapbI1CMArHUtNpriYpRREPARMWJNqigxLZtYqsx7TJKjFqxMahJ0HRao0HTRBwQowacBwTURjRq4oACMgk1QdW9VXWr7q2609n9x36f8z7ns5/nt9/33CpZxXm+a531nncPv3nv9xm/vzYMgwqFQqFQ+HDHxoe6AYVCoVAo/E2gfvAKhUKhsC9QP3iFQqFQ2BeoH7xCoVAo7AvUD16hUCgU9gXqB69QKBQK+wIPyQ9ea+3prbXXtNZua62da62daK39RmvtK1prm4trXtRaG1prT3wo6kT9z2yt3dxa+7D9AW+tfX5r7f/8ULdjL1jMz7D4e3Zw/omtte3F+a9yx29ure0pb6a19sbW2htRx4C/u1prb2qtPecS+rWndeeeh6escO3QWnspjl3WWvu11tqDrbXPXhy7eXHtA621K4NyvsL1fbbeRzKCuY7+3vsQ1XV4Ud63PETlPWUxl48Pzt3RWvuhh6KehwKttc9orb1lseZua619b2vt0Ar3Pb+19vOttfct7n1ba+07W2tHHs72XvIPRGvtGyT9f5KulvTNkp4l6SslvUPSf5D0OZdaxwp4pqTv0Ie3xvr5kh6RP3gO90l6YXD8yyXdHxz/EUlP32NdX7P4I162KPPpkv5XSeck/WJr7ZP2UMcz9SFYd621o5J+WdKnSvrcYRh+CZecl/S84Nav0DgH+wFPx98dkn4Nx77gIarr7KK8H3uIynuKxnU1+cGT9A8kfc9DVM8lobX2CZJ+VdL7NL7n/6WkF0v6jyvc/s2SHlx8/n1Jr5D0DZJ+ubXWHpYGS9q6lJtba8+Q9HJJ/88wDF+P069trb1c0sP6i/1wobV2aBiGsx/qdjyc+BD08eckPa+1dmQYhtPu+Asl/aykF/mLh2G4RdIte6loGIa/SE69exiGt9iX1tpvSLpH0hdK+v291PU3idbaFZJ+RdLHSvr7wzD8dnDZz2kc0x919z1O4w/0fxbG+cMRfo4lqbV2VtJdPJ5hnWdjGNk7Vir3UjEMwx//TdSzIv4vSe+U9CXDMFyU9PqFReaHW2vfOwzDWzv3PnsYhjvd9ze21u6T9MMahYc3PxwNvlTJ9JslnZT0z6KTwzC8axiGP81uXpgBbsYxMz29yB172sJEemKh/r67tfaDi3M3a5SGJOm8mSvcvZe31r6ntfaehbn1Pa21b/VmKGdy+8LW2itaa3dK+kCv4621J7XWXrUwMZxdtOnf4ZpPb629vrV2X2vt9MIE9bdxzRtba7/bWntWa+2PW2tnWmt/3lr7AnfNKzVK5zdG5pjW2nWttR9qrd26aMvbWmtfjXrMhPaM1trPtNbu0eIF3xvfhxg/J2nQ+ONi7foUSU+W9Cpe3AKT5qIPL22tff1iLu9ro1nyY3DdLpNmBw9q1PIOuHsPt9a+bzEP9y/m+Bdaazf5tqm/7o601r67tfauxZzc0Vr72dbaDaj/2tbaT7TWTi1MQv93a+1w1NDW2nFJvynpYzS+MKIfO2nUNJ7RWnuCO/ZCSX8tKbxnsfbfslh/9yzWyONxzfNba7/VWrtzMS7/vbX2FUFZq87Rc1prb26t3bso7+2ttW9P+vSwobX26tbaOxfPxltaaw9I+s7FuS9ftP3ORT/+qLX2pbh/YtJczP2F1tpTF8/96cVYvKS1XINprX2WRoFGkn7HPe+fvDi/y6TZWnvx4vzTFuvL1us3Ls5/bmvtTxb1/35r7eOCOv9ha+0PFnN/92I8bpwZs8s1WvNevfixM/yUpIuSntu7Hz92hv+2+Nypu7V24+L5uH3xHN3WWnvd4llYG3vW8Nrom/sMSf91GIYH91rOCvUc1WiK+AONkul9kp4o6VMWl/yIpMdqNE99qsbBtnu3Fvd+tEZp5M8kfbKkb9Nogv1GVPfvNS62F0oKXzqLcp+0aM8ZSd8u6a80mh+e7a75bEmvlfRLkl6wOPzNGhfxxw7D8H5X5JMl/TuN5ra7Fu36mdbaTcMwvHPR9uskPU3LhXR2Uc8Vkn5X0mWSbpb0HknPkfQf2iil/ns0/yc0LsrnSdpaYXwfSpzRqMm9UMsfuC/XaBJ/9xrlvEDS2yX9E0kHJf1rjRaFm4ZhuDBz78ZiXUjS9ZK+SeNc/6y75pCkY5JeKul2jWvlayT9Xmvto4ZhuEP9dXdQ0m9I+jhJ361R+r9S47wc125h6lUa5+MLNUq2N0u6W8sfU8O1kn5L4zr7u8Mw/FGnj78j6b2SvkzSv1oce6GkH9cocOxCa+3FGt0P/6/GF/2xRTvetFirZgb9CEn/ZdGnbUnPkPQjrbXLhmGgX6k7R621j5D0ukV536lR6Hjqoo4PBa7VOBffI+kvJJkF4kmSXq1Rk5HGd96rWmsHh2F45UyZTaOQ96Ma+/+FGufjvRrnPMLvSfqnkr5P0v8uyRSGP5+p68clvVLjPH6ZpH/TWrtWown0uzQKdv9G0s+31p5qP1JtdEm9XKNJ8TskXaVxPt7QWvv4YRjOJPX9LY2/H7vaNQzDfa2192l8566LT198/qU79mpJ12h059wq6VGS/p467+cuhmHY05+kGzQ+PC9b8foXLa5/ojs2SLoZ1z1xcfxFi++fsPj+sZ2yb15cs4XjL1wcfwaOf6vGB+z6xfdnLq77+RX78mMafU6P6VzzTkmvx7ErNP6gfb879kaNPpenumPXa3yB/nN37JWSbgnq+TaNi/mpOP6KRV1bGP/vw3Wz43upf258nyXpMxd9e4zGH5aTkv43N+9fxXlFWYNGAeOAO/a8xfFPwbi+MVhX/HtQ0lfOtH9T0uUahYF/usK6+8rF8eeu8Dz8Sxz/RUnvCPpsf5+5ynOg8aX1l4vjn7g4/lRX71MW545KulfSf0JZT9L4jHxDUtfGop5XSPqTdefIfb/i4Vp3aNN7Jf14cu7Vi7Y8Z6YM6/OrJP2+O354cf+3uGPfvTj2Je5Y0xjb8LqZej5rce+nBufukPRD7vuLF9f+M3fsoEah6UFJj3XHv3hx7Sctvl+l8Yf9B1HH35J0QdKLO238zEVZzwzO/aGkX1pzfp6g8V3wCxivc5K++qFaB4+EII+/0uhj+eHW2gva6ItYFZ+l0Yzz5tbalv1J+nWNJqxPxvU/v2K5z5b0i8Mw3BadbK09VaPW9hOo94xGCe4ZuOWvhmH4K/syDMMHJX1QsdOa+CyNpsn3oK5f0ygZUdJiH/c0vr6uxd+qjuY3aJTUvkzS52rUTF+z4r2G3xiG4bz7/meLz1XG66UaNeWnadS4XiHpP7bWnu8vaq198cIEdI/Gh/+0xh+Hj1yhjmdLumMYhtetcC0DTv5McT/eIOkBjZL7VSuU+2OSbmqtPU2jFv0Wv8Ycnq5REONafb+kt8mt1YV57qdaa7dqFNLOS/oqxWMyN0f/Y3H/q1trz2utXb9CnybrbpV7VsSZYRh+LajvpraIQNe4Ds5r1F5XWQeSm99hfIu/Vaut03VhZlANw3BOo6XnrcPoBze8bfFpz/inaRTkOPfvXvzxPfWwoI0Rxa/TqETsRGkvxuuPJP3z1trXNpjE94JL+cE7ofEBfMLchZeCYRju1WhGuE3SD0p6Xxt9K1+0wu3XL9p3Hn9/sDh/Da6/fcVmXaN+MIU9vD8a1P05Qb0ngzLOajW1/XqNC5P1/Ixrq8euPl7C+LK+T+9fvlPfoNH88kKNfsnXLdqwDjheFlywynj99TAMf7j4+/VhGL5Oo3Dw/faj3Vr7XEk/rdG08qWSPknjD+SdK9ZxjcYf9VUQ9SUK636zpM/TKMD82sKUnWIYTeG/p9Hk+nzlEYS2Vn9T0zn9n7RYPwvTt5lpv0Xjy/Jpkv5T0t7uHC3a9xyN76BXSbqjjf6zdB21MaVpVxvbQ5fmdEdQ31Uax+UmjabvT9XY55/Qauvg4jAMp3Bs1ed6XdyN7+eSY3L129z/rqZz/1RN3x1RfZEv7WrF77QJ2piG8EsaLT7PHoaBsRNfoDES9Fsl/Xlr7ZY5P2gPe5aQhtEO/0ZJf6/tPdrvrEb122MyyMMw/A9JX7SQPj5B0kskvaa19nHDMPRs2yc0SjpfnJx/L6tapdEaTYU9p+6JxedLND4wxLng2F5xQqM2+E+S82/H90kf9zi+T5upp4cfW9TxMZpxbv8N4a0afR3Xa/SvPV/SO4dheJFd0Fo7oPFBXgV3Sfrbs1etiWEYfqO19jyNfqFfbq09Z9gd7Ur8mKQf0KiZvDq5xtbqizSOA2H+u6drFB4/bRiG37WTl6JlDcPwBo2+okOS/o5GM+wvtdaeOAzDXcEtt2m67kIry16aExz7NI3P+ecPw/CHdnCxFj4cYHP/pRotPQR/rD3ernFdfYyc1WghGD1eo+Wki8W8v1ajYPUZwzC8jdcMo7/8xZJe3Fr7aEn/SKMf9A6NPue1cKkmge/W6Cv5XgUv3EVwx7Ehj9T8a01fDJ+dVTaMAQlvaa19m8YX5UdpdJraj+1l2p1n9KuSvkjS/dFgXgJ+XdIXttYePQxDpBW+XeOP6ccMw/DdD1GdZzX2j/hVSV8n6X0LU+ie0Rnf6No/jI6vWM/bWms/oDEQZ2JG+hDgYzUKIaZpXq7xYfZ4oUZfnke27n5d0vNba587DMMvPJQNHYbhFxfm15+W9Auttc8ehuGB5PKf1qhF/ekwDJT2DW/W2PanDMPwnztVX7743DFTLiLlPm+tDgRYCMu/tXhZvlaj/3Dyg7cw1e153e0BUZ+v1ygcPZzw6+rhxG9rtNJ9xDAMWRBNiGEYzrTWXq9xnb9sWEZqPl/jc9Jd9wtB6TUaBanPGlZItxjGVKNvaq19jfYoUF7SD94wDL/dRvaPly9+fV+pMQnxuKS/q9Ee+6VaRhoRr5b0L1pr36oxku3TJH2Jv6C19jmSvlrSf9WorR2R9PUaH9LfW1xmOVff2Fr7FY2mhD/UaHr4RxrzQ/6tpD/RqFE+WeML/fOHPAqph+/QuOjf3Fr7VxoDVG7UOHEvGIZhaK39Hxqj0g5qnNi7NAb6fIrGH6eXr1nnX0i6urX2jzU+9A8Ow/BnGqO5/qHG6M/v0/hje0SjGebThmHovpBWHN+HHMMwfO3DVfYMPqItQrw1rtPnavxR+MFhGW38q5I+fzGev6hR6/06jb5Oj2zd/bjGQJyfaq29TKOP9diinu+/VOFrGIafa61Z1OXPt9Y+L7KwLH7kusnVwzCcaq19k6QfaK1dp9EXdK/G9fzpGgN/flLjD+OpxXXfoXGd/AuN63rC6jKHNkaGPkNjAv37NUZJvkSjxjYXkfg3hd/R6Lv94dbad2r0dX67RivAYx/Get+mMQr2q1prpzUKY385o82vjWEYTrYxleLfttYeo1H4vE/j3H+GpF8ZhuG/dIr4do3m0J9srf2wxoT5f60xOGhnDtuYIvWDkv7OMAyW6/oKjc/ed2g0Tft4ivcNw3BbG1N4XivpJzW+1y5qDHa6TKN5fU+dfigioD5Fo8/odo3S0EmNUu4LJG0srnmRplGahzWG49+ucaB/WsuIshctrvnIxfH3aIw6ulPjQ/JJrpxNjaabD2pcKAPquFnjIjq7aNt/WxyzCMZnLup81hp9frLG0OK7Fu16l6SX45qna3xhWsTUezX+yD/dXfNGSb8blP9eSa90348s6rt70db3unPHNf7wvUfjw/FBjQ/rN7hrbPyfgnpmx/chWB+z46v1ojRfmtz7IozrG4Nr/N+9kv5YY8rBlrt2Q2Nwy20aA43eJOl/Duakt+6Oanz4/3oxJ7drDMG3yOBsPlbq8+L4ly/qfZ3GIKybFUSN4p6s3n+gMTDm1KLPf6XRP/fR7prPlPTfNWoF79IoGO1pjjQ+G6/V+GN3djE+PyPpIx+qdRc8T70ozXcm556jUVB+YDEm/1ijZetBd00WpXkhqettK7T3axdtvrAo+5MXx7Mozcfi/rdI+k0cu2lx7Qtw/PMWa/w+N/c/sspcaFRsfl/ju+N2jakPh3GNtfGT3bE7FEdN74yjxnfeKzQKlvdrfF7fIul/2es6aIuCC4VCoVD4sMYjIS2hUCgUCoVLRv3gFQqFQmFfoH7wCoVCobAvUD94hUKhUNgXqB+8QqFQKOwL1A9eoVAoFPYF1ko8P378+HDjjTfKaMzsc2Nj+btpxyzdwT63t7d3leXTIZgawXv3kjqxzj0P5bXR+UtJ/Vh1bHr1Zp9+TrJ6Lly4sOszgqe1e+CBB3Tu3LkJz92xY8eGa665ZlJ3tA7WaTfvnaPYe7jWxaXc83Bh1bb0xmzVcY2u4fvBn9/c3Jx8njhxQvfdd9+kokOHDg2XX375pD9ReXPPRW+9RdfModcmIju3yj2ch1Xq9e/l6JronuyarI3Ru79XPo9zjdgn14fHxYsjqcv58yMBzjAMOnnypO6///7ZRbrWD96NN96o17zmNTuNuPzyy3d9+g5Yox58cCSvOHv27K7j9ilJ586N1JL2UmWHopcjMfdyjBa6tTX7Mfb3WJvsmLWNiOqze/mjEb0Isn6xLJbpy7b/rY32nXNg36Xxh8qfs3vvvXdk2zpx4sSu4/5aWw8HDhzQW94Sb/x87bXX6uabb9bp0yNZhM25L8/aY2No5du1dt73ldcaOG421tGPPMffrrF61vlRtnb4FwHXl40Xr7Xr/L18abEd7HcP2bPh67BzdmyVHzyeO3BgpJo8ePBg+F2SrrxyJGc5fnzkHj5y5Ii+67u+Kyz/yJEjetaznrXTFlsHhw8vOZjtHcT3jn8pEnbOPrOxjJ7TnvDl75krxx/n2HvMzcPW1tbkXvvfxt3utfXHev0xu4blskybW3+PHeOPpR33bbTybf6OHTsmabk+rrjiil31Sct31e23j6yOZ86c0cte9rJwXIgyaRYKhUJhX2AtDW8YBl24cCGUDAzUcCgJUYPwxyJV1SOSbljfKtraXBvZLn8N27qK2ZWaAq+N1HZDJmnb8UiyY3/s0+rhd/9/ZjqJ5pzlR31jXygp+jnNtBm7xvrqYfPAtbGK5sM2sP6eVpiNcbRGKVFT4l2ljQau0Z6VgHPBZzDqH+/NTFqRBhuZKaM++PJ7Wo2htaaDBw/uaHbRfNn/Zg3g82mInmmWscoY2zU2h3yn8Hny92fPe9SvTIMkomfaQEtM9NzyWnsHU9PLTKr+XraF9/jnmGOeWa68hmea/dGjR3fu7a0fj9LwCoVCobAvsLaGd/HixYnU56WmTALIJGJ/PyWOOYdpVB/9clF7elKKvzfyFVESyaTBHuacyb1zlJp7/k2TpCItkGVnwSk9TTa6JxvT1po2NzdTbWfVPkX9kKbSK+c48q1RGs98UZG2mPkOozWbabXr+MkyDbK33rg26bOLJHyOPdsajZWtL/pw7JPno3q2tra6QQ5bW1sT60pvvKy9tjajZzryI/fgxyubu+wzgo1LLyCFmiL7RUTvOZabWbiittjYcE6pbUdts7JMI4ueZ7sns/JFfnQbN9PwvNVxDqXhFQqFQmFfoH7wCoVCobAvsPYGsMMwTFTTSNXP1OZeDhjVUpqherkmmanRVGJ/75xJpBeMkx1nO6KAEILmvcjclplGeiZbpiWYGYL1WXivtDQ7WDh3FmwUpT/4z55Jc2trazIW/ru1l2YOQ88MmgU4rRJ0k63NaN7mgpSiwASuawZ1RObWrI1Zfb01G6UCSVNzX3RNVn60vrnOonQElrtqUMbGxsZkPnr38vm372bGlJbrzY7xWe4F52VBXr3gDob0c5335pLrOEtlicyhfG74Tozy4rLvfEb8eGZBXwxW8WvM2sI1c9lll+06H5lqDx06JGl8d62SJyqVhlcoFAqFfYK1g1a8g9d+db3Ub7/QPJdJQv4YpecotJeg9JJJopEWSumPAQ6R5JM5kenM99JOFp7NRMxIws80PLbRz0FWX6Zt+/9N06NTOtISmLB7/vz5ldMSbP79vGTzbddG0p5hTjOJxpHznQUmRdozyyB6mmQmNUfBMVEaj0cvxJwaTFZ2NCa99BF/nT/HubVPk8QjbcdrDL21EyFqd6atk7yA/0sxkQLrMWRWG2pxUUAfy+UYR6kTmeaVpYL4/7NAmqgPmQUms5hEc8Br+cz4dz/JJTJiDT8mfOdubGyUhlcoFAqFgscl+fDoI7LzUp5iEIUoZ6HvqyaIR/XwexQSTRs6peWonsx2z3p8OxjSy+OrJOhS8qJ22vM3ZSkHUWg5KYN6fhNKX5ubm10pfRiGieYQJQ9nEnYUWp6lu2RryLc/83FxPfS0NSKyYETajD++SiIw547tiMLUs35k0ro/l6Uj9NbqnNaxCjlChGEYdO7cuR0tINKI5wgn7F1Frc5fQ2IDKz8iPDDwfWbPz5EjRyTFqU2m8dp4MMnba/PZ3NGHzwRxX37W5lVSg4heWgzbxndXRGVH2rO5WAxfrrf8rGodKA2vUCgUCvsCa2t40lSq9FpAZkvvRTzRn5NRfPV8T5l0Hkm+lC6pqURJxRmFVBYJFUkx1k/67iJ/VqaZZJJQL7LLyidlW1QfNUZG2EX+BSt3a2urK2ltb2/vlG9t6kV59ajeDLT9c76p3c75IH2/suRy39YsAdmkeGmqJXOMetRzbHeWRLwKeQHXaC9JnlpNllwelUNrAf1avt3en97zh549e3YyPtG8zCVZR5YQ+taycYrA58Q+bf79OrA20NJDq5Af+2z90vqRPa9R+zN6RH+t1cd1kPkFfTmcb66dyLJk5NEZ/VmkKXtiiNLwCoVCoVBwWFvD29jYmEgIXgrIyFt7UiUjqeZoZiIpPTrnv/ciugyUpiINiDksq2h4lHhpQ2cfPOh7sDZz+5NIG83y2nqUYPS7WFstevO+++7buSfTqiIMw7ArEi/yrVLTYT/4Peo/NVSOdRTtxTnl9ygyOcvlZG6dryfzt2X+OdYdldUjHs+oq3hPz9/M8Yw0vLltdSIfNnMPe2TfwzCE0Y4epknZuZMnT+46b8+ef+YZUZ5peJGvk+uNa6Xn6+S89CxLtja4hRotDNG6y7YB6lmWMiuHfdp7x8YqevYth85g19o7JIoDoLWwl0Nq//v3aUVpFgqFQqHgsJaG11rTxsZGl8UksyWT/cNHS1HDo5/KjhsziPf7WDmM4MqYCHz5tC1TW4h8hfSLZYTMUZ4hfXg9O7X9f+bMmV395Ia6vN63f84n6plWrF/M2bK2Rj6JU6dO7bp2jjXDE49Hfhgbf+sjpf6e1JyhF+Gb5d1xTUVsMNysNov49f9nEXZso5/LTGPIJHwpj7TNIi4jn4phLhrV30Np3MYo2viTOWdzeXgbGxsTy4tFQkrTdWt1mW+oF33onwPfXs5XlD9Gjeuqq66SNG54LO0eP6uH4xVZLtgvPgt8D0Xa+9VXXy1JO5suc81E5Ohzm+JSA/RttnXHjcGZl+nnytrNdz8tZV5rZJsOHjxYGl6hUCgUCh71g1coFAqFfYG1g1Zaa5Mgiyh5mJQx9mnmKm9GoCpvZrNsnzKv0prZxNR2A4NYvJmIYbPmTLV6zIzozRFZEAcDdxiY4q+hmcDGwj69qm//W5AIx82+RyYt1ttLXeC1do3V41MOfL+lqXO6Z2q0wAOasvzcR+Pg+xaFXDNYwcxDNPlGJg8eY4AAAwV8uTR7sq1+/ufM3wye8GPCezkPNBf5c/bJ8aNJLUp0Zr96zyBN9hkJfER/5+drbn1am+gSkJbr1c496lGPkrTcM42BItLynXHXXXftaidNwda/aP0x4OXxj3+8pKVp04/F/fffv6sea7+1w8bHngOPKOBDmq5/q1eSjh07tuue6667bldb7fn19dm6pmmTLo/M5CktTZnHjx8P237PPffsXEtzt5mprW3WLxs7aTkPV1xxxU4ZZdIsFAqFQsFhTzue90KIGdptkpdJDvZL7aVKSohz9GRe0jKJw45RKjfpxbQ2Xz7LZYBGRGzMZFoGBFCz9eXQQWuh0zYm/h4Grdgn+8dE16gtHMcokIfHrFyTxkisK02d3pubm6mktb29rbNnz+6Uz7QKKQ8m4rrw92Tkxpwnkxj9vUyuZeBTFI5u15I6Kgti8f3ISMIZwBNR9bEt1OK85s2gASb1cm311kGWFuHBkHxrq81BRApOra+11k0895SGNpdRW6wu025sXCKqPKvbrmWqB9eUn5dsyydq4v5dZeWZ1Yaaqr0r/VwasjQYXmuBKpJ07733SlpqdqZ9so2m4a5SX28X+4xSzuYrsh7wmbdPu8c+o2R8G6/LL7985UC20vAKhUKhsC+wtoZ34cKFMPTeQOnRpAz7Ne5tvUPfViRhS3EicC8815ft/2fSo2laJomYjVhaSjYME6dG20vGvvvuuyUtx8S0J699so30s2S+xIi2ycA20g/lyyexLVMY/LiuGsJu586ePZuG5vu+sHxqzdHaYeIt29KzShiYVB0lRVPj4SanVkakrUdScdTGiOjcwNBv+rujYzZGfAZt3Xl/OsP37RytK37uKfWzv5HPjXR3kVbjsb29nRI3sD3SNCWCz6801UQzykGmVHkwCZp+OdMePez9llFuRb5Oji21NOtftBWUvcdoYTBN06cX2TG+tw2k9fLvHVt39EnbGEXWiEzDo6Uh2lDZxvjKK68sH16hUCgUCh5rR2l6Dc9+0b1EYlqS/fqaxECKop6dOtvqJZIqaHdndJ5Jwt7+zs0gPV2Wb7uXGukHyeivbEy8NMgIVSufPhvfRvpboq2YpKWN2/vwqJXRt2JlRBoe+86orWj7Ea8VzGl5No6Rv4KJ2BnptZfmSEeWacaR5peRQ/Me3+c5Iugomi6jSONcRsfpo6Rvkhqzb3dGPMDE6kijMGRk5VHiOZOGaaGJaK8Mc1u8DMMwieyMrA0ZbRdJDfwxkjqY5psl0Efttz5aVCjJMqSp5m39YERiRORB7ZJWMYsBXKA9AAAgAElEQVTO9BqePWt8H/C95314FleQWeSorUU0f3y/2Kf5vb3lzMqxMbD+cqwisnIfOVrk0YVCoVAoOOxpeyBKN2bvlZYSgGkKJD1m/po0v+kf64ukisgv5b97yYfRfpnkHUX+WPtNAuH3iD6H/aPGwsg/Xzc1K0abRdFn9GtlkXZeu+I4Mmcoi/j05bXWurb0SArzbaC/INPOonnh5ppzuWf+GHOM6JOK+kSNgnMabWdiGgQjiqmx+PxGSv1zFGPSNEePGizb7iVu+q1MYyGi6Dxq4D2S+d5cZuhtiRStaV9nlHNILczO2XH6yamRS/kmt1G0LrVyq49Rp76NfK9Qw2LUs3/v2LxaeSdOnJA0tcL5GAJrm/ke6S/1+XDsnyEjore2e58hLX5R1DlBf+Y6KA2vUCgUCvsCa5NH+6x20+yiXCqyVlAK9PeYhEXp0rQN+05pR1pKC/R5MbrH7NnSNBqUkUF2j89pyfyItEFH2wOZJEXbMyM7vXZqbWLEqoE5LV5KszYyh49k317yz/w6Nk9RvyIfa6bh2fZA2QaWvrwsbzDa1olEyYZMI/LjRAmU6ywiHM7YN7htk/cVZVudsPyIwJuSPNdf5DPmuuLaoXXC98/KtbVo45X5EH35nFuuUe97jxhisrXTWtOhQ4cma7BHCE/fY8QKZXNk42GEz/Zeu/LKK3d991qt9dU0YKuHecYRwxP9XySI9paOjA2KVijGCfixMJjPjuxN/jpGG9vY2HHmA3tmlzvvvFPSlGHFYFqjn2d7N9q1tHpF1ja+ry9erA1gC4VCoVDYhT1xaZr0Z1qTl0hNOrFPkwhoo/V2XGp41M4oLXmpgpIA7e0R8wmZFeiHMQnISw20u5skl0kkUUQXc2U4jpHUTJgd3jRKu9dfz6gz+orIl+nbaONnkhc1Wz+OUcRtT0rf3Nyc+AJ8nhL9FNlGvb4+ajjenywtx4ksHb7/NobMVyMXpTTN56IlI/JX0TfIrZa4fYvXhOjvo++Lc+3bljFfMFqvx1FKn020LtkW+tztuB8Taka9KM2NjQ0dPHhwkvPmQesAN/e1sr2Gb9c+6UlPkiRdf/31kqT3vOc9kpbzYuvDa8JcB7R60fLj22RtYN5vlJ/JfLvsfORLY+4s3118H0j5ZsTMB7Q58D5e8vvedNNNkpbv+g984AOSlowvUs7dae2ghcO3xXD+/PnS8AqFQqFQ8KgfvEKhUCjsC+wpaIVbcXiHuamoDDHPQqSlpdrKlAIS/5I01F9D1ddCck3N9qYZa7ddY+SqlnTJNAV/D6l7aA5lwIM0VcFpCjQTrTcnmInE2kbTbES+a2AQARNdeZ20HCc6xe0758afW4UA2OojZZUPic+Suply4M3FVreZksxxbmPK+nzwkpllMqLxyKTJHegNVn6PmDsL3++RfdM0R9KCqD5bi0ZlZ/XYWJNSK5pbjglNw96EmiUnMxgrIn2PgqEyMHAmCkuniZFbPXmSCb5fmFJk74NrrrlGUrxFja0HBq3Yd5/UbUEwnEurjwEiETLawIjwmu9ppttEpPXWHxtH22aJZmvSx/l223hyq6YoGd/WJNdxjwowI5tYBaXhFQqFQmFfYO2glWEYdn65o1BfSifUwLj9g7SUBExqNCcnAwC44ag0TWxnmHoUREFp0hyvDCLxkgMDCpjuQPJYX4cllJvEbdpHRnDry7egDgYc+KAfKd4+w+pleDglS98WBkUwWTbausZrCFFiuu+TzTFTQ/wxSm5ZQrM01caplbEfvs9M2rVxsTE2rdGvaY4HA0CidZdte5RJ614CZpJtRrPm1xsJ3EngEG1/ZbAxsDGxfkUk1QZSpzHcnltZ+XZnwRgRmGLgxykLdKLFyWuFds073vEOSUtrirXJnle7x6wH0nRdsR829pF1gOkApuVE20MxCd7A92z0fBo5vfWTAV5cu/4cv1vbrczI8mMarI2jvaNsTVlZnmCDJAJMJ2Famz/ng5iKPLpQKBQKBYe1twcahmHnFzryw/gtG6QpQap9egmFmhwpdii9ecmUW85bGSStjvwiTJClhOUlEUpY1CDYnigBNCPFNikpCmFm0npPYzFYP0yio78vC/f39TBJ3uDHkZKb36QzKndra2sS5u4lbvpQKN1FIf8G6yuTt00ijWjCIhowaUpk29uGhpqKreso5YOh3dQOojBxphjMpWz4cs36wNBvW5vRs5GRldNf26PMyogCvPbAROOe77e1poMHD07SbGxupal/lz48aqG+L9RmzeJj7zXT9L3/j3NJH6fBp8nQV2fPj9XDuANfD8c4I+yO6M8yrd0+7byHrWN7Xkn1RV+etLRG2byQNIPE2tJ0rfB7byNdv4lBaXiFQqFQKDispeFtbm7qyJEj6bYm/n9G35Bk2f8ik44p8+X0otgYPWYSCCUjKd+gkBFXPimatmxqB6zHS2mMKqMWwsgofw+1T+sXx8T7tbKtUWifjzRK3sv+RdqAoee/s7JJq7UKMp+eR7RRpG9jRN/GOeSYm3TppVv6zkj43KMwyzaLZTt8/5gwT59OtL4p7WZaWkTCzPmhFWKdqGAmEfsxMWl/VcncLAS+nmguSYXG8v0a5TlGLZKA3BNe0OKSberrNX2rm4T2JB7wVgRaaTLNmBqRb7dpXFwHZgFYZVNcWr+ibcnMIpbRnxkiDdbANUlCD39N9E6aQ2l4hUKhUNgXWDtKc2NjYyL5egmBW2pQYoykWPpsmGu2jt+CEklE20MKJEqx0dYU3FLDwO1nIs3F7uGWO4yW8v4tbjibbWiabWLqjzFPivlMvtxMw6N2GGFra6srsW9sbHQlbvYtuobfSflmyCTgaJzoN6D25sH281lg/qk0jRymXyajVJOmGjZzqXpEytk4RlqaIfKT+2uZ55a1Ibo3skJE74OoTRcvXpxEt0b+qixPlj43X6fND+fJ2mvWqmg7LT4nPB/l1vJajo/vF60zfI/yGY82gCXJP9ddFP1O0ups2y1PLWbHbLxIixe9SzJtjZG+UaxC5jftoTS8QqFQKOwLrB2lefbs2YmU6RFtSCpN8yo8KHFS8lxF4qb0xzKjDStNarHoK9rqvY/A+mUSDW33lNq9FMcNJpkTFGlp5ouIpFiPaC6ybYAylhZpquUyRy2K6CO7Qy+nqrW2S8OL+pxFhva+Z7lt1Oy4LqI+UQtgW315mcQdRbyxPJYxp91IUy09YrrIQOk5ixaO2pLlmUU+PAN9eZGfkfdub2/PjgMtMlGkN7X07J0SnaP2Ql975L/O5rJncbHn394zZHrx7ypqkrQGZFtP+XItYt5YX7Lt0KTpfPM9ZxofNwOQlu9GRr9nffDlc4xoAfB+P5sva0OPeJwoDa9QKBQK+wL1g1coFAqFfYG1TZrb29s7Kjl3+fbHfAiy1A+jp/qfhZb3zHtU003VjhIyGRJt6rKZGCKiaDN/0lGaheD20gSyNAtvHsj6moVBR4EOLD8LePH3GBhCnSXa+7ojMl8PSyD25foxZmh1lpQa1c1Pjk/UZzrMGfgUmacYPMQE3YhGi+X2gnCkOCCE6QjZ7vD+GppQM3NlVrf/3jNLsg18XqOgFbZtc3OzG/Dkiccj+j4Gx2Xm1Mj0RTdLZlbzLg4m8zO4KArusWNmirv66qslxUEjBvbZ6uGnIZpTI7/mHqW2Try5kObirH5/D+umuZdjE5l7+T7l8Z4r4vz58yunJpSGVygUCoV9gbU1vAsXLuxIRFHyKCUs/pr3NKCMZLeXZMty+UmSZ2lK7WPl2zUmrXstgY5t9iuTUHxbDJk04u8l2XYWYh5J+gyoYGBN1A6WT4m5F8Cx6vZAUu7Q9ucyiTvqKyX3LIUlCpYi2PZomyimP5i0zGRlr6FzTXA9MOAmWh+ZpE3t0Z9jfasEdLBtHMeeFpa1KSIbYLk9AmBLS+AajNrN4Jre+uUx7h5PS0xES8Y+Wv2RZmLzbJqdT2T39/a0dgbJrELkYO+SRz/60ZKk97///bvK8mlYtp6z4JWeNceOcYs06zdJzH15BpJiR+8Tjs/Zs2craKVQKBQKBY+1E88vXLgwsVt7qYrJkyY1ZekD0jyBLDWTnkTK0OIofDYjnO75gejLYFuZmNsLnc8274z8S5nEQ80lCi3PUia42atvExNdGQoeJY36c3Oh5ZQcIwouSvoZ+bX/fy4doYfMpxZZI1gPU0BIG+bLybZAyfrr68ksJZGkzRSGzDdp6NGSZZsXR/dw3bFtEdGBJ33ONLzW2i7rQeTDy9Z6b5wyHzE/ozQersWs7X7eqNmR4rCX+pMRQjC1INKi7dzx48clLd/Jtv2RXw/2vuR7heudqRvSlMCd1o4osT5LaeqlInFOV6Wnk0rDKxQKhcI+wVoa3vb2ts6ePTshyPX+MUotWRRjjwqJGlBG5yTlyc/UjKIoH0oRpvlEUizbZPdSeqd0LU23LqEEzERdXz4j3qghk1zWn8siOqOE04wCjtvdRFGV3Pw0wjAMO3/+Wn+PrSdG/9Lf17PrZxpmL+k58u/471GCPq+lhtGzDmRb/djxaPsUkgdwrKNIu8x327OozGmhkc8o82tzjUZj4n3VmaS+sbGho0eP7lBkcQ15ZEQEkRVlzj+ZRQxG12TPmN86zTQsWgFoXfHzn2n/9jzauzcaC1rirN7rr79e0nJMLCFdWj7LPqnbl0VEPtFsHHtxAJnVoTfm9r6oDWALhUKhUADW9uFtb29PaML8rzB9aCQOpbQrzeecUQKLIpKyaKxIe5ojo47omijpUPPKiIClpYRr22cYlRk1Wq9J8FhPg2AfbOypbbLfXmozrYr5RZw/30bTKjxVUo9AeGtra5JrF229Y1GytBZE/ixqXFkEYiThZ9GTHPtIw2MZlNojGjzrc0Zd1tO87R5ri81LJNkydzKjTGMfov7xmkiTzvLwaCnx9dDH3ou0s+hwo8j64Ac/KCnWMrOtl6ItsuZ8mxldmTSdS+ZLWgT7ddddt3OP9TWL2o7amGmo9uz1thbK+m7tME0vih0gtSHHYNWoSH9ttl2QR1Z+NPY21qXhFQqFQqEArKXhGVPGqVOnJMVMKxkThcEkk0ibmSO3jWzA2SaaJkVw89WonIwhxEtamdRPnwEjknzbbLz8lhrS1HfoQWl5biuWqBxup9LL82IOX2+rHmu398f1Iu0OHDgwic6Lxp4+4l6kJcch0+wiXwu1Q2pPva2E6Cvu+agNZB7h2o0ItenvJZMHNWZpObZksyFperSlVbaVVA+r+Pn4nfPfIwAehkEPPvigrr32WklTFiXft+w56TEFcZ7JkkL2EV8e58E2jbZn3K83Pi8ZE06PAYm5odSi/RZG9OXScmX9MSYWXx9ZWLLnylvnsihrxh9EMRhZrnWk8ZmFzPyXc9uSeZSGVygUCoV9gfrBKxQKhcK+wJ52PDcV1YIVvEmAZrNVEnPN9JLtD9cjweU1NC2SdNffbyazjGw5Cg+mqYT70ZF0VdKOCdhgZocsuZvj49vI9mTnPbIQ+iiZM3Ma95JiaaKNsLGxoYMHD+6smShohWZjMwGT6qnXtyywKeoXAwAyQt5oL0USGtCk1gsEIZUV3QC+TzQH8ZrIRcCxtWuYRhKRsnNt9MyMxBw1YERQkaUeERsbGxPXgCdzZnBPNh89kzbbRFJn7+KwYBEbOzOvWWCawcxv0nIebF4szYLmw4iYOXuv2jvqxIkTu8qSls8l9/NjG30/mRRvbeFatXqitcN3Id/J/tnkbvNZAnpEQWjjWInnhUKhUCgAayeenzlzZiJteGmPTs5oWxZ/3P8/J1VGZUXOU39NRC1kbSShMLUYLzmwz5RamFweBR4wOCXbHd4fy0KjM/omj4yyKArR57Yf0TZO/l5pGhA0F3gwDMOEushLdNGOz/54lNSfSXcR7Zn/HvXZt9WX7dtj0nAmvUZJ2NQcrS2ZZunHmMFX7K/101I5onZTu+1p89lu5YYoATkL1Mm0b4/I2kAw4Cmjo/LlMFAnAoM6GBDENvp1YikSth5Mw7N5YsqOL4fz3bMw2LriuotSWKTdWq+1ifVEGrfBtEIbC2rTtIZFyNLIrK1eo+Tzk1GYeXKTaOu3ClopFAqFQsFhbR/exYsXJ7/YkW0+k6z5C+7/z9IQehIdz1HatPZ4kmKzv1O6sDKszV5r9L4mX26WgBppeJQcuR1IlFyZUZbZZxTeTyks0wo8qKlmEnJPkppLRvUaIMc6KnsdrTYL7e5JpNk9HGO/DrJ5Zih+pOHRskB/XESS0NsGKusXt3hhudy+JepfRlodhc7PEXVHSdHRVl+9tRVZW/x6473cPof1+nNcB1zHdo9pddJSSzGLRS/0nvdwviNKMYNpNhEJftRGrwnR2pClUPn1xvdZ1sbI2sb1zDXE9CjfbgNjPczfGK0d70csDa9QKBQKBYe1N4A9f/78RMKKotioIZCSK0JGA9UjBs40ELvHbOg+WsqQSWURPRR9c+YzMds27coRhZWVn1E/eWSSNml6epINfXb0Z/o2UuuIaI58/b6Nhp5d367PSLg96FuiRNyrh9u2RFvJGDI/CKVMfy/9cIzojeaDvifD3Ea3vm5aA0g1FiGjLOOcrkLmS0SaGZ+fLInYo7epM2FtYpShNB3jSAvM6uE1pk1l5AX+mogY25+PrF+02lADj6xDmd+NkauerJpkEmyjtd0nq3NbN0b2clugKOqZzwLXRxQdnvnEI78+19fm5mZpeIVCoVAoeKwdpfnAAw/s/BqbhBBpMz3JmvcYKPHMbcUSgTZn+jOkpURj9m5KIMzPk6b+F9McMyqzKKfOS1Is35ctTaVz5lLRFxZJWlmUJnN4/P/Wd6tvFc3c+tcjADby6B6JOHN76HuIys78LZlkH/kc2A9GqEX0UJZbyci+KLqRfkT6Yejn9u2iLyqzCkR+GGo7zFtaZVPUzMcS1Z1ZSnpalbdY9GjpNjc3J23y0X6c71UsIIbMYtCL1mXeWEZ034sD4DMckXtnfldqtPZuiXJiub6oefl+0SeZPSM98D2XkbRLmvyW8B0Q5e7xmshfmqE0vEKhUCjsC6yt4Z0+fXoi+UZb/WS+jigvbo60N9qew2DlMX+MmoS3+9v/jGKjVujzbqjxMI+MNu5IGqRkb35A+4wkTfaH40ht2F/DfvX8Z8yzyaLcev6l06dPz2p49D1Ftnl+9rTCXm6hxyrMICSCNgvAKnlqve1TMmLcufZI02fDyqAkHm29wzbSrxWxAq267YufN0Zt9zQ7wtbZ0aNH0+ttA1j6laJ8xSyCPHqHcO1Q8yGRsp8XaiCZf86PbeR7lJbajX369wTr4RhYmdG9tBhEvnt+z6JADT1LD+s1ZDEZvj62n/2OLBh+vZUPr1AoFAoFh7WjNC9cuLCj7XCjUWnqK8l8QJH/KOPSzGzP0tS3RYk7kqqZC2hl3HPPPZKku+++e9JGsiDQL8c+RBK+jZdJaeYHuvPOO0XQnk97u+USRpGEWf6Lfbe2elYGzhM1vIgFhBrJoUOHZnOpelvGZJoCc4K8tJexiLDMKNcxi4CzObXPyB/L/EeOn38mqFFHa8Qfj3LOrD67J4qwM0RbBkXfo0g7to3zGfkQqeln0ZqRpuwl+mztbG1t6Zprrtl5TqK20YdOrbq3ua6B5dJXFFltaHXgevBMKxZBSa2GLE1+TslmlGn6xoEZ5XDa+41WIW727EGNmXMaPU+rMvr4dUDNjt+jmAhGxhaXZqFQKBQKQP3gFQqFQmFfYG1qMWmpAnuTmCHatdkfj0LiGVxh5dK5GoXt0oSahW/7ABSrm59MUvdtjJJCo3ojZ7UFpVjfuRP1yZMnJ2WbqSLaVV6ampOjcOHMlGb39MYk2qqG7eDY93YettBymoC8mY27rWdBLFFgRZZk3zOHM8mVIdC9gBDb2ZrjFm0txYAnpov0Qr1JTszEcyZJS9MAiiw1KEr7ydwJNE9GoeXrmDStHm/Oy9q5sbGhyy67bGcMIhNcZpbuIUt3mQuA8cfourFPczl4SkMzyT7ucY+TtJxbmmN9KkNGjkGznpXl72UgH5/NXhBYFiTH/kcujgzR/Fp7acLsJZ5nz/gqKA2vUCgUCvsCe9oA1mAaURSgkSVz9hLOMzLfLIFammoilFqiwAOTHkzzso0Ye1v8sFxqSZSmvBRq56w+Brgwidm3N3O60/EcbbNjoNZh8+a1EDqwOX9R0ArLn0s8P3DgwESD7FEGZY5z3zY6xjMtIUqypRSZaSa9xFZqHZGFw6R8m+eM/ip6ZkiSwOCISEvhXM4FD0TEEaQ94/hF6y2j5uttf8VtvSJcvHhRp06dWinBmGPbC1oycM1m6zDSMjjW9mxF69vWgX1ed911u+q3e3w/rd0W8BJZufx10RpiEnmm8UlTKxTfQ9lc+2sysoLoPMtjsFG0LRbXYgWtFAqFQqEArKXhkeInIszNQq4z27A/xnB504yy7SakXBvokbuSHJjJ8pHEQK2M/aL/MaIlixLapaVU6JM+SbUzRxrspUL2mRqe18jYv6j9/p4o8dTqPnfuXNeevrm5OZHgeD7qI/vhtQJK0tQmev6yTKPr+dQyLYZpA36N8h7zEZMeKgq3z7ZJ6aX59BK4pX7iMdvCbY+iMcok+MjPw36touGdP39et9566+SeiEzCpwH4NkRzyvFgu3tWA1qb6MPrpZhkG7+eOHFC0m56sBtuuEHSdJugaENjgpvRkmax16/M6tZLK8o0457fnmNNDbbX1nU0u532rn1HoVAoFAqPQKydeB7REHl/FaVHXhNF/1Gjo/0425hTmkpwTN60z96mpxZxR80rSuKkjTsjWfYSOG3n9MPQH+OvNcnd2pptmTSnWfl66EeL2sh+9zQ8PyYZtZclnfek/4wKq7eVUBY9xmjZSFrnsZ42YJhLyI4ixyjZWr+ocUdgVB7bzjXl28JI3sz3EW08yo2AWW/kU8kk+t52W4zwjLC9vb1rbZkv1DQiaekPIxFDRu7MPvTab/D3ZkQTGeG9v9Y0fIvONtgzeMstt+wcs2hPO3fNNdfsusfaGm0EbW2w2AEbL+uX+QX9M9+jyOO1viz/f/Yc8bmWco2uFxXMvveiw4nS8AqFQqGwL7B2lObFixcn0kvkUzOYJkSNJdIuqD3M+QakaTRWRi3UoxSiFE0iaGnq08iiGnv1Ma/LxpE5d9LSZp9JS71IK7Y50z57lFKsh37bqJ4LFy7M5sRQE/frICP85Xrzaywiz/b3ZJKjryf7ZA6a/z/z99Hn6vvKe1bZ0Jbzm5GJ97TfOfo13wdeQ2qnSPuJ6Pv8cfv0Wip9d621ru/R59VFubW33nqrpKUGRIJ4Wgs8sr6xPVEeYRb9Gc2LzZ350u644w5JUz+tfw+YT9L6Z2UwapdR4tLUL0/tPLPq+DZlFruofxyDTHvrRZTzHdnz9WdaaA+l4RUKhUJhX2BtH160/XxkN862yYiiNLNfczIqRKwimWTPMiKNK9NqIokhs11ndn4vwfKYtdEkOWuHSW3SUtqjJMU8o0jT47UktI3Io7MNZjlWXqqmBDe3TccwDGmenC9vbgPgqI5MC6RUG/kP6PNiflzk96N0yWi9yNedRTxyTPzzxKjMjBA88qlRU6UFJdJkMmmZUrW/J1oHUf/82JM1Z3t7u5vDefjw4QlxcvRM0//PvkZa2hwTTXTvXM4ofa7+Hhsn863ReuItS/aOsLaaH86eQ24TZT4/abqRtZVr90TjmFkwsuhNj2wseow1q0Z0+rXLcVzFsrRT30pXFQqFQqHwCEf94BUKhUJhX2DtoJXICevBBF8GaETl0IxGE1xvPyU6cTOC5oi2i+kANMlEbSSVGElwaQL0dWeBNdHu3xG9WVRGtP+agUERWWK/P2fIgiUi08EqJk3bSzEr3/ctM4Uw+d5fQ1M5zcdR8I/NGU1urC8yeZFCjuMX0dIZaCrLQtujtmT77kUBSBnZds88lQUC0JTZS++geSqioWKwT88stb29vctUF5mnudbnaArZh949EaUd59DawmASX1+WmmVrJ3LZXHvttZKme2lyPdg93g1kJk2ae5n+5YNkSEJN8yeD9SITMd/92b6Tvlyuh16gFXdlj8jEM5SGVygUCoV9gbWDVjx9VI+QtZcwKMU7QlNqzcK2vWRnEhWpuHrIEnEN0S7iTMS1Ntu11g5qltJUsjOpyeq1776fdm22XQbp0TylUqYV9nblZsoCtQ/SIPn2e62zF7TSWttpf08qo7RKLSfqG/thazSjD/P/k2oto5ySphq8aR4Mlog0bmpCWTJ/FLbdKzdD9hxx/n191OSiIBV+j8LN/TV23Evm0bZamYZ37tw53XLLLTuBXEa9Fc1lluLEHdalqRabpe9E26DRokDi+Ww7MV9vFtDnQao/phQwjD96h7AeaomRJYvBMBnZdxTwlJE+RO9bBthl5AjRM2Hlnz59ukve4FEaXqFQKBT2BdbW8C5cuDAhje4lWWeUSxH1VpZMSw3J25xN6qMkQCkgCtum1MT0AX+PJ3SVpv4fk4gikmnTvuwYE5Eptflz1OyyhHM/B5TgsjD/KJ2EvqneprxRqsQcxQ836PSaMLVLakKRLyjbQopJ49FWIlmqTI8eipqutd/8JZGknfm4KHHbdVGSNZ8f+jaieaEPL0tpiPwjGYl0T1Omts2NdT0if1mm4ZllidqOUQL6OmiRsOc201TZBl9GRhgf9TFLoPbrm1uV2Zja+6GXAM73DC083EbKn+MmxZxLv3bo37PvTIqP7s1SdYjoXZzRkJGc3f/v21oaXqFQKBQKDntKPDeJJPr1jSKNPKLIsDmfHeGlJiNiZfJ2RjkmTUl8GWkXSb5WLgl37VpqfD4C0qQvbl2SRRj6ejK/AqXpKIIsonGLyvKg1sFIr15k3JwPb3t7e+KDjAizM1qrSHKktm73cg1FNGE8x6jdiFiB0sdTh8EAACAASURBVDklbRvzXhQy+5GRNURtzCKWI0KILJmXkcsRGXuGKNIu87fYWomSsNmvnhbVWtPBgwd3nh8mXfs6bCxJBB/59rN5yKI0o/IymrbovUOfMNeuIdrqieQIPG/wY83YAH5Gz0pG9mG+arvHNL0o+r0XVS/tfn45tnxOSTLu+7VOdKahNLxCoVAo7AusvQHsxsbGRMKK/DCUgOg/8KDfKJNMDV5iyOiGKE1FWgEjqYzqJ9JS6dfLoufsu5dIGA1HCYgE2769WY4ix9dLO8y7ozaabfLqYfeQcizql8+zmfPhUWr25VHTpZTX03wycuAsMtLfy3Hgd7/eqK3Qf8Ux9+eyHLFs6x9/71y0ZBTFlpGxZxqgb9McNVuk4WVSuR2PiMe9dtWjFtvc3Jysg8hPyrqodfh2MyqXfY20WQPp57Kcw2ic+J3vg+h9mlEK9vxl9MfynWFleW2Y70BqoVy7kT+Ouder+Nf4nPY0PPqEV/XfSaXhFQqFQmGfYG0N79ChQxNbuv/FpQ8rkxC89JlpGpQcIymdOTKUxhiR5tvAT0bL+Xro98oIqCOmCvODMdKR0uAqEYSZpuy/03dnnzZvUa5gFtG5ClmsZ47paXibm5uTPns/DMcy8odJsUbSI/r1iJgvsi13onxM9jnz2UQMFJy7TFLtMRhlOVu9HMUsRzCzoETnmGvn206tL4uM7Vl35mDvHt+f3lZPmT/Urx0rj/meGQG0HydaeOjL5fqI2pC9M6K8z8y/2MupY5sYBcwc32hM7N3F8qM4B1oyssjLSCs0cH1FGh79mEUeXSgUCoUCsDaXprT8lbdffy+lMyKRvrTeL3HGykL7fJSHZRLJqVOnJE35Kr3mR0me/qqeTZiSFaXNKOeI/JsG5ip6yYW2bEqD9Ht6MK/H+mfH7dPmT1qOD/lLDZHm2mMxIcwPQ03IS+DsU49bkaCflNdEkbDUdLmNSuS7yaTWLNet1+5Mo4ui2KzeiPXDt93f75kooj5EzxPXXcYDG61V0w74LESRpBy3Xg6nrR1qDtH6IMesPXNXXHHFTlm+XClnZ+q9s+ijo9+ZEdj+f5ZHy5V/puciHTm2vj6+bwhGjfu2WL8s/47jaojmjNYBvoMjiyD9iuTy9L8xEbtSaXiFQqFQKDjUD16hUCgU9gXWNmlevHhxYrbxqnEWJkvV15+ns5M0WlSNI7MaTVZ01HvzHU0I1jZLpozMUgzeyLa+iJK6IwevNA2aiBzO/E4zkaFH1WYmLTNxRDue0zRC81EUjs6gjkOHDq2clkDzV9RuzntEE8cAEKZtcC69uSgK3vHl00wlTUmpSUMV7XjOe5kOwzUVbb2TJZr3tofqnZOmJnVfnyEzNUWmewZJ2BhFpjWOz8bGxizxOEnFo37RTEvKtyhROgpO8ogIz61u6xvN8JFJkylUXKNMG/LHSPLB4Bxe7+tbhawgA1MZ+A6OzOFMT6CZPFpv2RZC0Xrjs3z27NkyaRYKhUKh4HFJQStRoiS34cg2ZvSIQmpXqd+DUgQlhEhqNjBYIUpiZoCLleHJWv15r/Xavd7x6uuNyHejlI+o7QYvfVKyt3NWprUtGkdqypS4zIktTSX5VcijswAHXx63YDJECehMzGVAQy99I6MxonQepc1Qmu1pkqwno1OKNFg+PyQijwIhmArEMegFfbBNtCwwxN2XF6XXRN99fyKi9qw92VZQ0jQ4jtoTNXOWHbWF7zm/Vq1umw+jOGSKgx9jrlW+I6P0DQae2TPMtcQtx/xYmMaYbTEWpUHQ2pYFk/QSz9nGaP1nSf5M64jI8X2aVZFHFwqFQqHgsKftgeg/iH59TWowG3pvU825LVAoGUS2Z/ojWGYkVVCLYYh/JHWyPFKZUeLq9Y/3eInV6s7C0JlM7v0kGXl0j1KMfkZq3ZG/h1L/XOL5xsZGqNmxPI5xL92BayHbqqbnt7B6SEAc+Yqy+qhpRRJntuUO5yNKNZkjAu8R8mbfe0TRmbQepaBwnjIaNG+tYDm9tth7pxfyTz8stU17D/kthbKNhfmeoQXI12f3moZnn6zDt5tWsCz1yNdNbYzfrX9RMn70nLIeA4lBaPXiFke+PjuXaZ1RvdQ6eykMBo6535R8DqXhFQqFQmFfYG0NLyLFjRLBSYhs9zFCTZpKhBmJK8vw50g305OaeA37E0nevD/TGCJaoozurEcay/oYBWbjy8hGDxIZUzuIbPcGRoNGtnSDlwIzDc+0O2q5kQ8gk/ojiZztyrZP6m1cSimTEb69JPJVNrnk2LJ81tPbtinb9iiKXDVkz0ZPg6ak3fPTZeeyLZR8uYbz58+na2d7e1sPPvjgjnYW0YaRNILvjshvTW0p0lr8dT3CA/ruoz5TA8rICnrWL0OWvB6RiLM/2b3RsR79nG+7R2Zdi3x41DrtvdmjZjPN7q677tppQ2l4hUKhUCg4rKXhbW9v69y5c2lEnAf9e9QuvG2Wkk7mE4j8M5kEkkmZvr5sA85efzKSYtKDeSmd45SRJHvJh22j1mm5dZGGxwg++qJ6+WXsu/XHpFM/b6Qd6qG1tksDjHITabenrzWa6zmCca6hSGKktkErRJS7lUUkRuOYEadTO4siLjMtIMsH9ccyvw812kh6z+jHoijHTDNnxGLk/7XP+++/v+v/3d7entDeRYTppmFZ9LSNE/3Y0jLvluVl668XCWjPx/HjxyXF0aymvdCP3dO4svcbx3qVdZD5SXsaZbbNW6R5MhKWc9zz/2bv+Mhfe+LECUnSPffcs3PvXJTvTl9XuqpQKBQKhUc41vbhnT17tuvPodRCjSiSzngPtcFMWvf3UmuhJB5t15Khdz5jxWC/osi+uc8o74/XkNkhiiSkhsexifIeKcFl0ZmRT8Lb2+eiNDkm/vqMtJnrIcqHovYS1cmyMx/OqpGD/tps/KLyDav4/+ZIvKNnIjuX5ar6e9mfLJeqN8+Z/zyynHgf/BzTimlnzGeVpps4X3nllbva0iPfZl/JvMLIc3+tHTNtMYuM9P9Ta6JmFPmZOTacj2xLHl8+o6AjjSsjxaZ1whBF3nIcORZRffTZsb8+r/nuu+/e1bZ1UBpeoVAoFPYF6gevUCgUCvsCa5s0oxDQyJFtKipNCOawjdIS6KDMEtEjR+k6hKh0QjMoopdwznr5PTIxZjtO93axtv+z9A6mJ0T9Y9tpLohC2eng7pk/eO0q5L+81rc1IyYm1Zsfp7nwbKYeRGbVzFzT69dc8EpkluQYz6UaRP3LUhmiACSey/YvjMy8Gd1aL0ydpswsHYf/27XZ+rGAJzPnR7RWpF6jaZPUgNLy2Tl69Gi3j0x58eeYZE0zsU9PoimWZv1obGkOZvn2yfqjNlpbeuk/mdmdxyMTakZdZuiltPBaugjMjCkt0xI8kXaPnGJXuStdVSgUCoXCIxxrk0eblidNkzs95qiJImlvTrOLdsKmQzQL28764us1RLtmUxrPQpajpPVMk2BAyiqpBdTsImqpbDsOk34jbYeaY7YNSS9xdw4bG/0tYAykL+J6YJn+kwFODBSIxpiE4EQUgJKlI0TjNJc607NS8Fym4UXlZoFV1N4irSDTlHvroLeNk7Rbw+G6XVVCl5br2GtPfIZPnjwpaZo6E2l4pgXOjZvvT6Y1se9R0EqmeUfv02xH9SyZO9qJnm3ppflkRONZ4GAv4CmzFvj+8Zlm0I1Rpt155507x0zDs2s9ocUcSsMrFAqFwr7AWhpea01bW1uTMPHeRqL0oUT2ffowemHMUkzBZdJLJgH3Es8ptfS2g8nSEigZ+T7ZNeaDyDbmjLZZ4rVzdGEe1kZuShptpNujT5LicOdVfJ+8nvd4KZ3UcVw7hp6WyX70NqxkEnxGSNALf6amEvkmuSa5vujT9euCFotVLBdzkjZDwSOfCqXyjADdH2NqCP0w/plfhfrPI6IR82uHFpB7771X0lLDu+GGGybttnts3VlqAdd61DaOT/YsrDJPve3RWE62QXMUu8B3I++NnnnOS/Z8RVY9A60q6yTHG6x+09Qt2Txq/zooDa9QKBQK+wJ72h6oR3ZLydrf68978Bg1LUoGXpphAjallp6PINuUNpLsWW6WYB/dm0ln/IzaQE2PUqkhorIymAZO7SOS0lke/VteEqPmeP78+S6Jq6cAiiLE7H+T4OmHMx+Q2fV93ZkPr+dzYBkGrrtoQ07eeynRwVnUrj/H+emRMWTSeEbdFs2BaU+8llqbR+avN0RbvWTbX3kMw6BhGNJ5kpbjwY2T77jjDklLTc9rhbS8mIaXRUT6/pDmLNOmI22d/aCWG5FWZPPP+eq9s0j3aOf9u8SeMfbH0CMezxL4uQ6irdrYX/s0Dc+ibqN6bH2sgtLwCoVCobAvsLaG9+CDD+5IAV6yN9gx0sgwAjOKYmS+C7U2Q6StZTlUkcaZkfcaIm2AfsUsWtPgv7Pv9kkNKeqXnett3sq20ldE/0I2rv7eLGfQjyMJeedIpFtrE4k1itiitMoNMyPJfi5aM5LSqZXP+XY92LZeHmi2NrI8zEhqnutvpKUxrzHT9KJ7eS0RjQnr6fmXrN021546KoL3/zKC2ddBGjDT3m699VZJSy3O9yHTsHsb6WZ+USKiNMwsS73xysjdaQ3zbbT54PNjY95b36yPWmH0/GaE47zH94/PtNVnVhyff8c+G+Y2nvYoDa9QKBQK+wJra3jnz5+f/CpHPgezCzNPJZJimQ+VRQzSBu3LN1gZ1DCjSKQs+i7Kw+M5Smk99gpKX/weEVxTE87YbSLJL8ulyUi5fX303XEsIt+k9wFkY7qxsaHDhw9PiGz9/Nm9do4MNYwC9H3KfHm8J2LnyBhBIh8r1y81/VXmI8sr7K1VtjVjxPHXUMNjbmW0QWjm6+yRFM9F8EXrhFvlXLx4sSulb29vp9Gt/n/6uK1820rGNg2VpMc97nGScstEj02H2hPfb5EWl1kU2IeeVpitazsfbTydredIw6N2mzGgRDmDzInO8gyjvD/O36lTpyQtNfQon5HP/iooDa9QKBQK+wL1g1coFAqFfYG1TZrDMIT7QxkyJz5NnV5FNZXXQk+pNtOcFgVosH6rx3Y+Zj+i773QVpoDM8LfXsh/FkQSJbxb++mgzxJDo7QEmidoHuhRWNHsEaVDWLnefJSZpVpruwIGrB+eborzzt3cmYrh25D1IwrqYBsYLp8Fzfhrs9DyVdJS5pKUo0CRudSCiI6K9Fd+/KXYpJUFMqwSFJAFq0TBChHBdY/aLaKEi5L7+fzTrObD242u6olPfKKk5XrL6LyiZ5rrqkcxRxNptoZ6tHSZSZEpPL4efnI9RiQgWYpJRtkn5UTjWf1+DGy+Tp8+LWlp0uw9E544oYJWCoVCoVBwWJs82ktaJp1H1GJRUnpWjiFKhJSm0qyXFLPgmCzZ0t9POqIs8MFfsyr9VJQcn2lN/C5NE3IpMTJAwI8nNZZsF2afwJ1Jn0zojTQJvw56QSuXXXZZmsjq22XjYNo5k9+9BBwlwEbX9u7lnJIGLwruybZrWkWbmUtTiDQuJkMzEMDPOYNVsnSBXtJ61vboOo4jn7konYTzMrfjuQe1At8XkhdYmVdcccXknttvv12SdPz4cUnLbYL4rEdBbBkRtH1G1ogsdcrQC5bj856F/PvngPM+RxcWlU/rQ4/IIUvzYqBTZI2y912W0O/Hila0yy+/vMijC4VCoVDwWNuHt729PQldjzZGpO+O0qZPNKXfj740SvhR4jG1J2qLXgLOKL16fjjSTdGP0POpGbIwWjtuUqm/PyPtzSRMD9q9aWP3Y0JNxUD/Y6TNz6V5RG2IEnapYfF7FIKfjRNJDHqaVyR5SrFFIUtsp9Ug8jlkPuKMvNpjTsLv+W4YJt6ThrMx6Gmhc8nptL5IeTpHhs3Nza7ViJvCckNY0/D8XNo2M+YvIsE0feARaQG1Mloc/DPNZ5jPbDQv9INRw6dWFbWRWhnrX8UPR0tCdG9mHWJf/JhkaVe9VBdaECotoVAoFAoFoK1KuilJrbU7Jf31w9ecwocBnjAMw3U8WGunsAJq7RT2inDtEGv94BUKhUKh8EhFmTQLhUKhsC9QP3iFQqFQ2BeoH7xCoVAo7AvUD16hUCgU9gXWysPb3NwcDhw4MMmX6wW+ZFxsPl8kYwtYZ2PWbFsTXjd3LMPctb3zc7yEl9K2Va6bG5sIGbNM79rWmu68806dOnVqUtGBAwcGv3VJlAs5l4sT5ZGtyv3YW6OXEriVMVJEyK5ZZ14MGavFOvWtsy5664C5qOQM7TEX+bk8ffq0zp49O2nMoUOHhqNHj+7kYkU8jsyLY45br91ZPzLO3ehc9nxE96xSflbO3Fz12pi1eZV6M8ai6N6svFXecxH7S3avH/MzZ87o3Llzswt5rR+8AwcO6LGPfexOMmeUSM3EVEv4vOaaayRJx44d2/UpSUeOHJG0JLe1Bc2F3Ut25Lne/nTZHk8sM/phzV5wWcJ2dG+2W7K/J0tKzah+ovqyH4oeLRD7YUmepGqSpuTOm5ubeslLXqIIBw8e1Ed91EftzMPJkyclLZN+pWkysrXX1seVV14paTchuP1PMupsp/BorVr7Mwq4aKdrg9VnbSStm0e0ByDLl/ovyVUo07IftCzpP6IlY/02VkZH55OHbbzsmBEA27XWX0/czP3bNjc39frXv14Rjh07puc+97k7+9c9/vGPn7TVxv/qq6/edc6IEqwtnjiB77GMsJ3rXJoSUDAZnj/+0nS9ZTveR0Qe/EHNSMx7lHZc3xFxCNvA/f3YF0+HmPWH6y/as4/9Ig2iBxPYt7e39aY3vWlyXYQyaRYKhUJhX2BPO57br3qk4UWmCinXcvy5Xr3+02POlBDR9WRUOxltlL+G51ZR31kuqawic0VWT0QhxnasY/bgMdbbM3+xbZ52Lir//Pnzk/mKzFKZ+ay31Y9hbj30TD4ct2h7oGzLE5YV9YvlksZprg9RP3prJzODUQKn9O7bxHpW2RIsK8PXY9K511SytbOxsaHLL798R8M3qd9vLWXnzErEvtlntAWXaX3WJpLKUzPy5yJNR4pp6eZcQBFNnIFzlL3DfNnZtmRsY+8Y+xmNI0FNj+8/35eM9q5Hg2flmKZ47ty52h6oUCgUCgWPh0TD62kXGelp5IfLAhCysj16JMr+vC9nzhEckd1SWllFasruofTk275qEE6vD3MBHZFmnpFhR5IWt/OZc35fuHBhsiWSXweUACPNg/XMbbWTzVN0D302UX2Rf9eXEY0XpdZMk+2NdUa2HI1RttHwKsFm3NaGBL2RP4vjxv5E2gDJnTc2NtL1s7m5qWPHju34a23dmd9OWmp70XZZvq++f6bZmW/RPjn/0broaS1RPz24HnrvtUzT5vuh56PmuJLovDeXNl68tqfhGaxerke/vu2czWm2eWwPvc2DidLwCoVCobAvUD94hUKhUNgXWNukefHixYm6G5lvqJpyn6goBJ9h0lmKQS+Hj2aCaN+1VXI8pNVyjqL9wbIys+CEVUwaWTpEZBZhn7PAk8hky7bR9Oivs2OrOI/NHE5zpZ8XM1n5vRL9NVEwiwUaZKYPmnwic0qGqL65QJfI2c51zHnvmbg4V9n+Yd5Ul+2sbSY8H5rPexkmzrGPghZYbmYajuD3uszMzq01HT58eOe9YKZM26Fc2p3e4MHAE99XS1WwffHsM0tP4Lr05a+y4zafS2tzL5WFzx3ryXIf/f8M4LF+WPpIZNJkQE+WouHvndtLz/ri10W29yXL8PXwOcnMyRFKwysUCoXCvsBaGp60DD6QpjvPemSaXbQ7MiVcMipk5/0xaoWUhHpJ3VkAwDosAqsg034iLdT6wX5lGkWULrBOe7hzd5YkG2nK1saepLW9va0HHnigG6BBjYfh2UyC98e4qzbHKQpmyNIeLLS9F9xBTY4ahg+ZZ/mcs4yIwJ9jf0xK7iWes5/U/KLgpZ4GHtXvr82CYhj4wDqlcQ31ArQ2Nzd35sVIK/wY2//sIwNTTKuRlhqeHbNrbH1Zv6jl+GPUvHqkFnxXWT+4W7oHrQJRKpBvh9dg7Zz1x86x3/554rX2aWVxLCLNK0sej4KYbLyYapJZRaIxWPV9J5WGVygUCoV9grV9eBcuXEj9CB6rpAcY6Beg5phxbUpLyYBShUnc0a9/lghMbSYKf+cnpfSICy5rf49Gh9qsXZNJkKtoo0xej9IgmGKwCt+etXt7e3s2PNjKzzgPpVxKZxnSVLu0e0mjFWn+mTbI+YnWEP0w9mkSqp/LLLTcwLZ5n07ms6XGGvljs7WaJcv32prRlPn6Mm3Ero00c78meyQOBw4c2PHxmqbnKaqsXdRijLrOjnsrBDVTjhfTr7z2lGlAtBb5tWPjYO3nvEfvDlpNsjSEKAGevkfzUdrY3Hvvvbu++//py8usBFH/eM7use+eTtCQ8aTSUuiP+VSdSksoFAqFQsFhT1Ga67BrG9ZJtqSUZBIR/VnS1PZLibsnzVKjtHIjaWlO0lolUZLabeZL9HVnRKxZNKy/Zy6CNYoGzHx5UT20v/f8MFZmRobr68z8hpFvj1K/fafEaOvB35utEfoGvOTKNUPfNH0Qvnwm3Vs91iYbu0hzyUi9I9qoLNGcc8kkc39N9hnNn/XZtIPMx+L7ZVqH94VlUZobGxs6cuTIxE/rnx9GEWYE95EviGuFz380B3PEzFwf/hi1UVu7bJe/lueyZHJ/3OqzMTafnWlYpuH56FPTwrME8IzYX5pa1+iTtDK9xYZ0bvadEaw9urXy4RUKhUKhAKwdpSn1SWHtl9gkbcuVMSmmF9FpICWNSY5RNBM1LUq8ke+GbYj8IOwXfRlZNBspoPwxaoOUPntjM+cH7Nn9SdAajSNpwjLNspfv16P4Mf8vbfO+rcwXsnJti6mrrrpK0u7tgSzSjeTB9OFFmhfXBsefUq0fF1uTc/R0vnx+t3tpuYi2T1mFNJzlZ748Q7TuM8qsTLP11zKv7Z577pEUU1jZPEVaZtSfw4cPd+kJTTPIaKyiPEwb58wfb+Vbv/w6oI+LWyRlhM1S7l9mPIK/htspWbk+j9F/Zsc86Ev0x/h+sXozS0p0T0bv5o/b2mCMAsfXjz1zE1fJ99xp48pXFgqFQqHwCMZaGp5Fw/QitkwaNwnAJGtKMz6Hhhu/ZlGUve2IrFzm/PR8KrSlm8SQEdBKub04I/eVljZrSpK0X3twjKmlWRujjVnZT0MW6enbnzFt+EgunvN2/p6Gd+7cuZ0xoN9Cmm77YdrbddddJ6mv4R0/flzSdL0xysv3jxGdBKNo/f3WBmpPEctIlqtF6Zl+aH8N54VSbrRpaJYfx/57LZv+zIxM2PthrD6SO1u5lt8WsXLYtT3Wm9aaDh061I3AznIAs3Xt684ibXsbwGb+ZhsX84tFGizz8OydadawqK1cq3xnWD3RWrZr7ZnrEanb/NtcZpGx9OV5UNvld99Gmye/matvR2RFpO+9NLxCoVAoFID6wSsUCoXCvsDaQStbW1sT85A3MZk5gJ80H0aOclNrzSyQBR54lTgLVab67k1oEV2NNA328CZBBifQGU4aH69mZyHEBoY/R22gaYRmMT8mmRksS0T35TPcmA7oyHxgxw4dOjSbAEqyZ2++M1JgG9vrr79+16cFptinlJtcov3PfD+kPOSepr6ItiujPYvSYDLqKJrQoiACBq1wXiKTGc1sPVLm7F7D3O7c0nTHcJtHM9VFFGZ2LVOBsnZ6ajEGbvg6SLFFE120px1NbVYPzaFRIBrN1VYv32W+vQxWsnGyT//eicypvlw7Hr0buX7tO8kRPAm3/W+fNpdRkIrvk+87qcvsuJUVmdBtzO2ejCLSI6Nb7KE0vEKhUCjsC6yl4W1sbOjQoUOTAA0vpVNqoNQcSXR0bjI0lWHPvj6TPCK6LF9WRMzMc9yexksO2Q7gGdWPl7wzcmVqYqsknht6Tl1qYWxjj+yZ1zB4pqeFzu1O3FqbOPu95s2gh6uvvlrSci3Rye+vzchmI1ooggntve2jGJxg0jK3ofHrm3Rt1EI5flHQAjW7LPDK/09rA9MQoi1lMtLyjA7N12MwKZ3vAr+G7RlbhYx9Y2NDR48e3dEQbPwiTYGBYRwvv95sDrN1Sy3Dv3cMXFc21gxe8dfaOY4P+xeVw7mkpSGiTmOgoNVjQWAW8CUtrSfU7EjwYWMS0ZJZWoqNvbU9et8wgd/mgms1spj4d1JRixUKhUKh4LC2hnfZZZdNNK6IQNSOkU6JErK0lAC4PUuWdB351rKQ/54N2KQYSnLWNi+9ZcnJBmpRvl6G4GcbtHpJm1oYx5GacyQpk6aH/fMSV0ZZRIqfyIdnmteFCxe6aQl+A9goPYXaBf3A9Nf69tKnQkmYmqsvhxt+0i/q62OKCX3SUXh9pPVJuR84KoPpFvSTWJK3NN3iZW7bqyi8n5I2k+J9mfTvcCPVKKGefvlhGNK1s7W1pWuvvXZHs7d7oq1wuCk153KVbWZIXhA9WxmxdOan8+f4fqGFKdr2KCNe5nvJzwvXlc2DPa+m4dmntLSeMA0qI0/w/eMxbrMVpYjQ+mGfPQtApOGtitLwCoVCobAvsKcoTUoxPdouSkC9X2NGqTHRlJK/NI3sY5sovUtTKYx0OhF5NKW9aANL3z8vxTBSdW4TR2kqBVLSZpRjRC1mx0zizpKXfTmUKA29bY+s/UePHp0lcuX89CJh7ZPjF4ESt2k5q/iIqAVwDHrbRFFbjmjieO0c9Vc0JtRguTlpRMZgsGvoZ4y22yLNFT9tbHx93FLGyjNyYmtrtGXSKpF2W1tbuuqqqybUW17DIx0dIzp7vmcmU1v5JF2ONkqln5SWhWj9cQ5XIaDns5uRu0dk1QabO9Mko7Gx/njfo7QcT1pdokhZJtbbcVry/LnsOaXm7PuVaZ892Ocn7QAAIABJREFUlIZXKBQKhX2BPVGLMWopIizNtheJCGszKh/T3ihd9KI0ucWHSUJeYqF9mPkpdm9EWGpt4qakzPvy0iC1v0yT9BIZJZvMhh75R9hmtq3nI6KGyiiwSJO0cn0+ZgZSSkWUb8xLs75FPg7ri0nh9klqOUrg/n/zYVhUqJVJy4I09TWQ4Dwiu2Vb7Rque0MkzdqapXUiszhIU/Jta+OJEyckTTVNaRoxaKDVINqiiVYcakH+mef66tHSWZRmjxrP2mXtptZODdC3m301f6hpqDZetrakJV1alh8baa4ZWTSjg6NNXDONkj7LyEpEHyEpHP270dYItUzf9wy2BqlJ8jn2650WErYtonk0i1UWd9BDaXiFQqFQ2BfY0/ZAUcRbdk2W8+OldJK4msRtpMHU7PyvvUmkZB7oRdqZdEYtjdpUtPUFtTT6Q6yNvmzaqSmNMz9LWkpYZDqxNlkfetGjjBSz8k+ePLmrXb5NtLNTc44kSDt25syZlDFje3tbp0+f3tE2IjYYatGUgCPyW4tasz7ZNZZbZH6Ed73rXZKkRz3qUTv32j02h4973ON2jcutt946aSNzTxkVavMSWQeyvDtK5946kLHjUPL3mgY3lr3mmmskSbfccsuu8yaB+8i/u+66S5L05Cc/WdJyLj74wQ/u6n+Uu5eRyke+G7I19ZhWLDq8x/Jhddn7gH5Y+n38PTYepsm9+93vliTdfvvtu477nDMr17RBsqbQJy5No8LtOyNwI0sPSfH5vUciTt8k34n+mbZyaf26++67d7U1spx5X74fC3sWzYISRXrTIsdnwveLz2CRRxcKhUKhAKyl4dkmngbaj6Wcy442WW83t/8ty98kAUp0JqlE9mTao7ktUJRzxk1PuXltjzeS/jdKuV7DYz6Slc9oLS8NUpM0Sd6kJo59lJtmkhxzEm28vfZgbaOvy/oRbUQa+UB7EVPDMHTZRKy9me/WyjZp0/9vmpzxbppUeccdd+xqtx8n0+je/va3S1qunY//+I+XtBxj0wSleEsdfzxidPFco77v9L9GG2RmmwZbW03D8ONJTcLGhvV94id+oiTpDW94w869tjat3JtuumlXOz7wgQ/saquvL2M5iqK5Of9+66gIGxsbE6uKfz4ZcemfJX9tlKdmmu9b3/pWScv5NkuT+Yz8uuMWNdT0rc9sh783Y1iJNC5yc3JDXkYAS9P8X455lMfGsbV3LecmspLZWJjFwO617/Z8e18/rRzM4+b7x1/jf1OKaaVQKBQKBYf6wSsUCoXCvsCeglZoCvSqc5QA6b8zyVNamlzMpEnz5LXXXrurLG8mMEcyt22hs9qr3jTtkMw12o07c/hm9Da+f9zCw1R6MwtEwSwMCKKJ08wtNkY2htLSBEPKJ7uWpltfn41nRtHlzS0MvZ8zK9g2L1KcTM6kYZpZzaxjgRXS0uTz6Ec/WtIy0MlMmu94xzt2lfm+971v514bQyvXxs3GKSI9NlOfmWtWIRHI1gpTDKLtfJhSkpnSI4o2a7eZlOxeC7e3sfG44YYbJE2fSRsrM2l6856BhPE0V0XpMEzRiWCuFAZwRYE6JJHu7URvQSl/+qd/Kmk5Z9Z3ey/Ye8KTLNMMTZNiVB/NrfZp4xaRO3C+ba1yF3kGtfnyM0Lm6HnNSBDsWbexsXb4dyWpJu15uvPOOyUtn6snPOEJO/cwoIbuC5pw/f+9NZOhNLxCoVAo7AusHbSyvb09Cfrw0iVD+ulgZOKxh0kAWWJulPRq/1N6IdlxFExBqYJleZAeigEbpAXyW9iwP6YdcCx6lDv2nU5kG+fIecx6mNDt22h1U/ukEzmikVuF+qu1poMHD07SEXrUYja2plVFm2raXFlwikmgDJKysTCpU1oGJ1iQlI2LaS/R9jG2Rm18TDrvETTTymD94HpjEJOv2+4hSXKkUZI03NpiGoqlKbz//e/fVZYfA1sbt912m6SllG7jZ1qib382/9GmuAxw6SUPG/E4NVffbo4xg0nsuKWaSNJ73/veXfeaNkvSbabSSFPN1NYo04m85cXmm3SI1PS9Vsi0BJtbWmJ61H98N0VJ/wbSgNk6Z7AhyQV8+5nuZeNr1gH/fr3xxhslLd87fD9QA/THIkKDOZSGVygUCoV9gbU1PB8+bJJBFL7P0GtS7niJzqRGk1roJzMfBMOtfTnZlvDRr7/dY1IqyWh7JL78Tm0k0kLZH0rekZbG9mfEzxnZswe1bpPivf2dW+UwdcHKiLYu8eHGWTtMw8uSrf0xarcmyZGM2P/PdADz5XEden+w9Z/rypKs6WP1bbRPbm4ZkQZzjTBhnxqLl4BJjUWKrGj+o227pKUU/ZjHPEbS1Lfi22B+UvNzWZk2B347IrbJ6uF6j5KHvfWht7XUuXPnJj7daB3wObR2W3tNy/DtNM2XWgutQxFRA1ONaPXyzxhp6KjhR5tHk1iAaQOk0ItSGmz8aQ0gPZ1vEzXGLB0nSk/h9kD0lft7bD3xPWP3cJ37cvwGAavSi5WGVygUCoV9gbU1vAcffHCiAUU2YEbQUEPxtl9GWDJZ3DQ8SozSdKt72qk97ZWBJLd2j0m6jEyKys/6y774eyiF0L/pJWBKUhkpbeRbiyTS6HiPHirT1PzYc9PTAwcOpFK6RWiSoiyK0iRtlp87to3lcINM878wudefI/mxfTICmP9LS98g/T7+OvqTM2o5Q+RDpjZI/6/3cdDaQVo/u9Y0G/ND+msYHdeLCrVrzVLD54dagzRNwj969Gi6ubL58CJ/pYHttDG19UCfqzSNBjZYP1iP/271WJ/MVxdR5hkY6c1I7GjjaWpWfGdxTfl6GbnJd0VkPcoiOLP6I/J3Evob+Fz5cu0Yo20NEUlGNMZzKA2vUCgUCvsCe6IWy2iV7BppKinQdxdJzdQqMgLlKFqKZWV5ZNI0Si7bosKXHW2/49tIqT0iqWWUGevzZVibOH69qEnDHFm1oUe6yjmJfK+ZXzMrb2tra6J5+3Hl+Jj2REm1l2vEiFuuN6+ZMN/T6uPa8bBj3A4oI0uXlnMW5dn5/vWig5mPtwqFlbWFW77YcdN6fXu4JukTi6w6mSbE9eDrIWH8oUOHZqPtOH7RxrzZdjqkHvP/M6KTW0qRClBa/fn0bTTtkmOYEUL7+7mO+fxTi2fdUVsj4vlsnrnRsPUzinOgn55j79/ffI6yLaWivNbMctZDaXiFQqFQ2BfYE9NKTzOJNlqUplFZvU0cmaPF7xEJLf1S3GrFR6KZtEIJnhKX70PGUjDnj/FtZKSj92P66zwybYDRe348aaOn1Bm1fW6LDUrB/n4vhfWkra2trZRBxreP/ipKdH5eMtLgSEtnfdTOMrYU32fmirIdUf/pM2ZUHjW8KB+TOVv0O/sIX/Y9k8ojUmcbR2ooUdsMmSWhx0ZEjbzn/+W9rNfXbWNNjSRidImiPSNE2gz971xDkTUq8/cz0ti3MVubRBStTO2QWiDXn+9jRubMeqL3AdtE+DGhZSLb2DjS8LJ6eygNr1AoFAr7AvWDVygUCoV9gbVNmpGTMjLjRE5bKQ48oMmKBNM9k2YU0i9N9w3zJk0LVc520jb12ave3N8vQ2QGM7D9JOGOEpzZTwYvRGapyATjv0djFu0X16vf/x/tOUi01kLzpW93FrbPNs2V49vSM5Nlph0mj3szEQMyaKaMTPpcT5kZPuoLx4Im4ShZmUE+7CfLWMV0z0CoiPwhWov+3ihk3o9Jb64uXrw4CaDxyAi4aRL065drhM9/z11BGrDM/O4RBSX5MiKwX3yHcMx8G0lpyGsikgRSQGbk3lGwHk20cyTpHjQRG+bMzXZPJZ4XCoVCoeCwp6CVVQIPKLUy4KCX1E0NiCG/EahZMVjFJyRT8iF9DndWjvpODZYST7RrtSELq/X1MVghCs/NQEmKDucoDYQaCyXiyAnPvvcoflpru0LCIwk1o4fK6NuicwwIiKRYQ0baTEk8kkgpwVtic5QAzGCsKMXD1x+NCeeMSfpRODrTK7ItuyJwHKNUAJaTrdlI62FA1VzQim9D1P4scMHKjJ7ljMpuTvOPzhloKYlIxKnNMFgl0ppY3hwxtC+X9fK9EPWLgVaraJQZgQLL8O8w3pP9fnisYr3JUBpeoVAoFPYF1tLwjB6K2o3X1jLfky+D19HnxM9emZTsuQWLJRN7CY8aJLWYiBS758Pw7TAtJkpStXOrJE7SR2egZtGT0ilt9mjDMsmtJ6XTd+eJxaO2XHXVVRNpOUqYjsi7fT09zZT+ImpC0dqZC/mOEnNJBB1twGnIxp39iXyrc2kvXMNR+WxrZn2J2p9pdn690CfJtkaSOI/N+fB8eZGVI9NeM4uFNF0TWRh/RETAa0maQAuDv4aaVbZ9VNQGEo1n69+D2lpmLfDnMn96lJ6UgW2L7qElgRYFbtLty82+91AaXqFQKBT2BfZELWagTdiDv9gZ3ZC/hpreKlIa7eDRJqHSbsl1jnw0ipqkxpDZka1eL3HaMaPR8Ruv+jIjTcI0VNruqRVEftQ59HwFWcJzFNlJIt0IGxsbOnz48I5PNYtYk+alVi9p27xQip2L2uuBmrGfF7vf5tLaQkKFiFSXn4zojCLisrGwayINj0TP2dZCBr9eOC+ZH8aD45RF1frjfA9cdtll6bodhmGXdhCtnSySm3VHNIi0EmWR1tF2RPT39wg2OD6ZBukjbqn18T1H8vwoEZx+ORKHeGTrLIuG72lXmW838uFRU84izaN7VtE2d9q08pWFQqFQKDyCsbaGd/78+YkU29Moski0KF8ko0+KIp4M1DxIOB1pHdyupEdKS/SkUN8Or2FyM0puEhn5kPy2KdIy2pR0SJFU3bPRe0QSd5ZbGUWBcbzmqMU2NjYmWmEkrWeRYT3twj65lnrSX+b3sU9uYSNNtzGh/yrSZjJKL2oWpHOS8jwvzpP3hfqNMaVYkvdlRbRN1D6oxUURkln/Ili/7DmZ8+Ftb293tQ1qVtb3jLDdt5vvnWwboojyixYD0rpFmj7puezZNq3Nl5mRKmc5o5Eli5G8NuZGih3lRNNykPkSo2eSfjlDbz0wUp+RrJFVz/+WVB5eoVAoFAoOe/LhMRLR+1S4bb2/13/6X/uMqSNjbIj8Vcxt6kV2ZiTKtMuvwl5C7SzSRrItXrg9SbQBrJ2zrVwo4UVaaea/yHKrImQRpH7sIx9BT9JqrU3GtkeUm+UYRZpp5u/NrvPXsh4SUUe+TkO2MbCHzZ0h81NEW9hQm8kYjLwWx81hM6LrnsSd5Uf1tO3s+YnWGa+d2wD24sWLE1+Uf16oATO+IPLX90i7fVlRfibHztYK59bXSx+dPcv33HOPpOXGs15b56bEzNmzNlkeqF+ftCCZRmftiO6h9auX+0xkeXj0r0Z+Tc4PI1l92ex7kUcXCoVCoQDUD16hUCgU9gXWphbzpoXIFMlde6l22vHMke6RmU+iRFkGQ/TayHsMdDh700JGKZaZxXrJ+ByLKMCG42dtJt1a5GBn+RwLmn+ifhhoCowSd73pKjNpbmxs6ODBgzvtZPtZjm8LzWkRcXFGUkDTbLSXHtNUzPQTBb7wHtYXkYxz7dgcWj00PXmQEsvMnQzC8O2gWY330FQXmWx75kWC68rQowKjya9nErZgOT6XUapCllrQS4fiOsv2uovWDueUz2eUrM6AHTNtRuk9Zua0Tz7TqxCdc56tbZby5E3onBc+e2xjRORAMDgocklwHWf9i+45f/58Ba0UCoVCoeCxNrXYgQMHJkEXHnSyM4w+2iV9jr4oI9/155hYmiUe+/99SLS0m8iW9fRIkSNEdD0MnWegTRSMQ22tt0UK66bU3NuGhseywANPe0SNq+c83tjY2NFofH8ibT3rW3SckjYDW7IdnP21tiY575GUbiHk3FLKpOVe4MGVV165695jx47taqPN7cmTJ3fuvffee3e1hTu6R0QHXFcMMbd7Iimda5HPT7Temf7CuYiebxtrnySfPUvDMOjs2bOTlBP/fPJdlAXARRSD/M51GGnCDCrL7olo4jgPfMYtiEVapsFQw2M7IksPNSEbX3sOrW0+qIqpOFlCf5Qawmc6I82PwDWUWQ18uaumQ+2qZ6WrCoVCoVB4hGNtH15rbaJNRVtvmNSQhfFHx+Y0vEgzmaOQisLRKVERUfhstjEm0UudoD/JtCVK4v7/uSTebOx8vdnWHh70dVCCizZojIiy5yQt+tK8xtUjQpZiX0rWR/pS7bjXBHgNNXz6dKWp/8g0MNPKrI2mvUlTqq+rrrpqV7nWX0rz7Ku01BYzbdTfQy3E6mHIvh/vjJqtl5aQERzYtabJ+HWS+cQjbG9v68yZMzsacrSee++IqG3RtdTK2MZIW8veNxGZBN839OGZZhdtZZbRkFGzi8L3aR3gu8STZJCiz5CtiwiZdaVnWaKG3Nvoln0tH16hUCgUCsCeNoDNNkiUpn4qbo0TgVJRL2LL1xu1gZJPlEBJGh5GjNLGLk2lPEZl8TovcWeRT7StRwmZlNIp0UVa2xxZcIS56NOeJG4Sai/ydhiGXVGcPX9slgCcnZdyaTJqB+/hOuglk5uUbFI4qcaYtC5J1157raSl1YOaIzX9yKdmfr+MqDmyDli59OlRU/b9zLYsMvSI4nt+PtZj8JRZPSvG9vb2zrNN/6lvL58/am3RPZk2u0ryM+csi/iUpn5XWp8YVeuvYbwBffqRhmf3GD2hjVu2nZMvh9oorQSrkLFTW4vmn23hcxsReTPKeI7wYlebVrqqUCgUCoVHONaO0vS5VD0fHnNN7JN+EmmauxTlibEdBua2cGufKJrIQMmnt00LNRJGL/HeKPqQvqKeZDy3+ek6EVBEz6eXRTX2pMFVpau5fC9GfWYRcJGWZsgk0Eiq5VrkZ0SubLBjpsmZ9maftrb8/3ZtRmXm7zHYc0P/CzUZ/zzR35pJz3x2/DVZhK+hRw/FcYvoqewa81f21q/FDdhYRL7VrH0932MUHR21nxRk/t5oDKXlWNi7RcqjF+2aG264QdJu64D59RjxapYF5mP6ebP1ZD5j+zSt2qI1/fxklqMoqvr/b+/8eiM5jiSe5FKLXcAwLMkLWNDDff+PdYBhQJAEeeWVZO1yZu7hEGTy1xHVPXu4B3kyXkgOp2uqq6t7MvJPZD//FRj/W2X6OmFoHkO2ucpY33zO4XcOBoPBYPAHxmfV4dF/7KrtUyuPVWZYqoshnNoHx9ffFGrtx9OalWXl4kCcI5kd4z4uE4ljMYPQqcHsZUU5Cys14jxiYXGOghPYTQLNCXd3d5sYXrcuE6NbNVel5Zvq8Jh52V/jT1qQXb2C3ghZyayt65Y9Y7icGz0bnekx7kImIUbp2gMlaz1lsPY5kBklgfX++94ecoysq6es7vfHx8eNR6mvcYqHc24uDsf5pmeYey/rU7Wmzuul+WoubIZMkeeq5+vLDE5mNLtaWO07Zbf2caue90x/PXnteL7XsCphlUvA8fncc169fh8d9XANwxsMBoPBTeBqhvfw8LDJXnLWHllgaqqYPqf/ZNzKZWnybzZXlM+7/4+6n1TC6BaJ4iz6qffISuoWdpWPM+lYZjOuWCGzNfdq1KpyJt9enMTNn0oeq3q/vfEfHh428ZxVTI3zd9leia0wO9ddJ9fgtZ8jG3VWvczc7cfSetW+6+PJWnc1jX1ufY20b9kW5khbIjJj1li5FlCMt6zuPX5OynokC6l6Xp8+Xtrb0tJk/W/fO3sxO3eue/t2dWx6nnHdHDPRs+Pbb7+tquc9xedR/2y9pnWjN4rPo37sl19++eJ/mpO7J/jcdPqeVV4VifeeU/Lp8+rvWanacAyXeX8Uw/AGg8FgcBOYL7zBYDAY3ASudmm+evXqic46GRq6QPY6n/P4PoaworepBQbThbsrigHZJCnVKXMPrvefdIu5xJAUQF91SReYyJEKTV2xMv9eJRVw3lw/rUl34ezJOfGzvvjii9iqpGq7thrPXQ8hlYcwKWZ1TQXXwZ3nTHea1keuRwofVG1d2UxiSfdI1XPavsanO5zFzFVb1yglxVJiSh9vT7TciU3wHuC17msvsW397y9/+Ut0z55Op/rw4UO9e/fuxTFuDkm42pVb8P5Lz6GV65OSdfqbZSr9/Ck/p3IBdSDv0nI6Xoklf/7zn1+MQVH+/nlsP0X3vnvusOyqu/M7VqVbyZUpuHVMySqC+77obt6jXc+H4Q0Gg8HgJnC1tNj9/f0maOi+XZP82CrNniUMe8yoamtFsnGqk6ZhexRZMbI6GYTvv6emrWzU6tgTkQqBO3h+ZDCusD7JHR0pAE3W+RGxWBUIJ1wul01w2iWgyAJNRfAuUE6mR+btZJtSog5LWpx1mRgP2VR/r1iakx+r2rLFPi4ln1iE7eSoOOdUVO72efIKuLIESgJy/zlRcCZDffXVV5Hhnc/n+vDhw0bWr7MP7o3kGTmS6JIKxN06UTKRTYSdAAXZmRPj4OdoPK0hhQh471RlOTqWwawS3vQziYOsSk34vHHeKB7Lvx0L1f9UqnFU+KJqGN5gMBgMbgSfFcOjFeC+fWktrxiX/kfmtWcpdNBqUiEoP7ePS1ZIGbQeL9Ex3frme6p8QXWKna3KBhhDS21AVu0zyAq5fs6yE2hxOUbGY1aNGFU8vCrmTY14GZdxgtNJCCDFzfo58ifLETp73mvbxLhJ1TMLSMXcvE59T6kInaUaqS1NH38vldy1WxK4v3ieRzwYnKs8KFXblklv375dFp5/+vTp6Z7urZc4h8TS6BHp50YPAuUJyXL6a1xTehr63kmlRStRDnosNAZLadz9uSdorb/7efEZwWfUSvA+eebcc0JIuQ/JS1H1/GzXfnr9+vUUng8Gg8Fg0PFZ7YFcIaZAK4YMj/GRqq2VRFZGy8+1lWcxOa3zbgHQCuN5iMU5n/2RFjJ8nVYS18bF1JJANzP6HMtOjW2PWEGJuayyT/sxK3/63d3dZv6r2CPjJCuGl7I1U2smd248d1cEq3Puslb9PWJknYUoc45xELIQypX1+YoxsojbFeGmfc01WrFtrsXKA5CYC5lk9464WHjanxItUDG0frp1SqzGxeUSW0pjduyJIwhdgCDJH6Z4WdW2lRBj1rxP+71PFp2eN30M7gnur/Rs6UiyYEck2jgPoc9R+6iv/TC8wWAwGAwarmZ4Dw8PSwsxZQSSiXWriv7wlCXlhE3lz5UlpL/JiBwzEUujheesjhQzSRlvjuHR4qUl1K0YsgydHy06Mpw+XpKQchbXKnOzw9VcHmkwKyt99XmMvzKm5eJwQmJ2R2oEeR1SI9A+PjPsNCcn1Ks6K2a2pVhrZ0LMWBVotbusSe4DtjRaCfNynzEW5lgB9xWZDGXZ+nn9/PPPuw1gVZ8mdt1jnTon3u+rlmMrTxXfy8+T10HPM9Y8qqaun7Ouq/Y3nwOugTJzBpL0FvMfqp6fgdzHWj/WDrpxhWtkvPj8XLXz4TWnt8A1pKXXozcG2MMwvMFgMBjcBD6rPdDKn5v8tWR43WKQdULrXEhxwf4/qmNwbn0+KRuQ6iku004/V2yjn0tVVlLheXV/P60W18C2z8Mxs2QtubjfntqNy8o6IhrdcblcNnWLbr7cK66NTZpDUn9ZzT+pcbhGo5y/jk21df08mK2pvaP971qvkFHSK5FiR1WZ0VMdpFv1Lruwf75jynvC8LyefXzN5ddff122wPr06dNmnRwzI3tOIuz9tVRDyWvdn0u8p7SWP/74Y1U938v9PlZrH97bmofLPtVnazxma7J2s58fn4FkeHzu9ddSDI/3mVO74XtSXNUdQ2UfFx9Oz9MjGIY3GAwGg5vAfOENBoPB4CZwlUvz/v6+3rx5s3FRuGQLgYkALr1ergq6WOiCcwXTHD+5GDvo0kyC0D2IrGPo5lolOAgpsSWNUbWl+CyGXX0e3QRMLU+yUSu4BBXOYdXr8HK5vHBpOrmptC7JnVuVpcWSG8+tMV2mXJeVjFYS73VuwlTKQDd/dzEx4YMd0AWXEETRAt57rh8g9wb3rrsWewki7PdW5V1WK9GCjx8/LsWe6cJM7z0ihUW3nrvXeE5yU3733Xcvxn7//v3mmCQpJ7gSEyXsyO3JsiX2zevzlzs0hTaUYFP1LE5N1zld6EcF4/uxPKeOlMjnhEN43abwfDAYDAYD4LMYHrvi9m95FpZTYJpByaqtvMxKYJrH0uJkCvuq6JHMTtaTrOh+TCp+ZkH6KqBKaR9akt0S0v+YlswAuiuOpVWbRHCdVZSKlZ1VfU0xqsoStE4ryTfOmwkijpH0z1mdoytPITtMXcz7/7QfWECtwvMOCgDzfLTf9NPdT0k0WGO4lHZKejFZxq3RnsTTSkScngR6J9yxq+Lu/p63b9/aZ4fA+4JCzW7/cq/wGM6334tidPopIWN2Cu9lCUksXmO4FlCpSJxrSzHuvhZaGyXUcB2dbNfXX39dVVsBau6dLp7Ne5rMf/XcWbU763N2c/nw4cNhAelheIPBYDC4CXxWWQLjWf3bl69RvscJ8jJ2l+RtmFbb35uksNzfSXaKlohLD6fVx2OcSC1xpCCT7T6SPNDKaiZWDDoJCnOOK/HoFe7v719Yro59am/0JpZVW4vRxcdSO5EVwxfI2pme7tgz08MZ83KxIjLWtH59LyeGqrm5cgFKVKW5saWVmyuxEh7nHkpiCW6cPUm6169fb1jNkYJpnnt/7nBvs4ife6iztcTsKBTB9kH9c8janfwd460sWuea93Wg/Jneq7mKUfb7jQIeOne9hx4flzPBPUtPifMo8G8+191+czkkexiGNxgMBoObwGdJizEjrbf94LcvLW9mplVtpY6SH9c1u5QVQ9FoMkwnBE1WRovIZUvtZRNpjk6kVmBj0VXcjyw0FWR2Kyr50Ml2+vpyPMYIXSsZF+9LrOX+/r4MW1cfAAASnElEQVT+9Kc/PWWbOZYji1NSXAKtPdfslLEgZqI5TwDjXrRa9X+XhUw2wJYljn2k/UXJLRev0OfKOnfxPoFC7Smm61gP2UeKrawYWYq1uWaoPaN0laX5+Pj4dN842S7F35NEHuOzVdlb41g6z4fPGzIj7eVeTM74m/7Wc9QxYsbmWLSexBqqtvHE1MqoQ+/VGtMzR3m6Dhcn7VjFjPk3cz76+ziXVYbvZg6H3jUYDAaDwR8cn9UAlpl23eJm9g7lgJzET4px0AJj/KK/RibC//fX9wRyZUG4jC5mnVLo2FnAZFgCP6evY4ozCrTiOzhHwmXGpZojMsiVvNcezudzlB3qv8syleXLhqyuLUw6N9cYU0jXn3EYV9sk6H/aB6zL669RcDq1/OnMJUm+SaSaQsB9TrznyBY5v/57stYdg0r3E+8F1xR5lfUpnM/n+vXXX58+U/tD8bOq57XUZ5C9r5rdMnta65dk1vrnqW6N4zs2o2OUAcnsWXeP8bUkmei8Ea7NWX+vEx7n/PV5WvNU79r/l2oh3XOCMTqutYtN6jmg9Vt5B4hheIPBYDC4CfyflFacuK6+dVP9DrPL+u9UIkhxwM52klVBS2FVFycmQdHqPgZjDskSEVw2I0WJaW12K51xRa41VTNcfMGx6T4fl6VJpuoYC485Ukv1+PhYP/744yam5tp+iC3puqTz6MckJYjUKsm9xrooxmX6HPReWdGM7bqYccqS1dyp9FO1ve6as+4zlw3IWC1jh8LKSyBwrk5VZ1XX1cfoa0KFkq+++irun8fHx/rhhx+eahzFan/44Yen9+g1MV+u2yrWKaT97OLNrL9VrI571bE1zpnxstWzigpFZO39M/isTfvNxeXTGjBbvCM1w+XeXcXEmXPhsoIlwq2fd3d3w/AGg8FgMOi4Oob35s2bjbXXFQiS3576ft2qkJXHjCDW3dgTgE+Z/mnX2oPxCWZ/ulo6Mi1mMXKszkL5eWIutKZcjIOsln87RYdUx8j/r1QnjtS27MVPO06nU71///5p3rLWnXWZ9PpcTV2qoUz1a84y5T5jq5W+v3sWXD9ntv5Z1Sim97hml7RcmdEsOPaRdF4TO+ivcY70ALgsZL2HWciOsWhN9fPx8TEyzdPpVD/99NMmg7RDjFcML+ljumdJ8gZwjfuxjNklhtfPSYxO96pi0Vy37k3h2lFpZ1WHRzZ2xOslUE+YzzUXt6XqUGL6fR0Zn+cxVLSpetYV7fWYw/AGg8FgMGiYL7zBYDAY3ASuTlp5/fr1E30UNXeCwqLrTJF2AWC65ejSZJFndxcyaYHFo664MgnKrgrfk9AsA9EukYdp5/zpUnxZDsDPSa1N+Nn9fylZwv1vz73j5riX/HC5XJ6usdK5XVCfbppVoJzXcK9MoZ8HSwq4D52sEZMDmOi0ck9zznT9OCkzJ8VXtXWtu+uTUsyJlWs7nUN3MdHNmcIJXaCC+/fx8TG6pc7nc/3yyy+bte6JOknGjAkUfQ1YBpLc0O4ZwsQPJoi4sTQHlmqx5ZNLWkrlL3xmre7p9CxxgtNuL/axXEszur0pXr1KeOL+ZVJb3zu8F66SODz8zsFgMBgM/sC4Omnl9evXTxaKs8hSoTSLevuxtAw1PhkfWw45cCyXlszXyAJkVTiWtpK8cX/3cZKQsTuG68dEA47V50oZMjIwxwpTgXYSBeif0/+3Ch5fLpcNe3cB+qPF5H2+KWkliX739+inEigo3+REC8heaGG7xJo0BpO1nFAurwsZjROrZjPalDbuiofJlI5IzNFa557te4f74HK5xKSn0+lUP//889NeYdlK1VZGa1VoTqR7ih6MLqeV5AiZtOKeO0rYUlp9KgXocyKjc+PzbzIttpJyzw6uAT+foiD9/k1C4Engv2r7HOW9wfIVd65v3rw5LH4xDG8wGAwGN4GrGV4XCGZqftWzFcT2ErToXYovff8aQ9abxnYNElm4mIos+7zJClbWIP3EKabiSgEYs0sW8EqYOclguZgLraUjKcxkgbT+ViUH/bqtGN7pdNrETfq1TDFOnrNLo6dlyvY97tqyYJp7xwmdc69ojorDMAbSj0nxnRS/cK8xBu5a5aT0fa1Jambcx+Far1pZJYaXpPSqtm1uVveeSloYP1ccuGrLzjlvF9Onx4jXh+uz2qsC92N/TvC68v50OQrMlzjyrOIck1i0i+UT6bmnefVrqvfqXmDM2Hn36E1jaylKm/X3HmV1HcPwBoPBYHATuLo90KtXrzbZhd2a1Tc0hXFXlk+KZegnGZ5rK5+yh5xVnQSMaRF3KyqNz5hRitP1/9HycllGtOQZf1sV4XKuqxiBwHG1bsq2TbHZqpfW2IrhvXr16mlcWeK9ma8+Q68xhrLKnk2WNpmek1PTT50r4zAri5ReCQoEdPB6Jxk8F99exUH6nPvvlOpLGaX98/aK1Oml6POnt0XzEPtSwXB/TddntW/O53P99ttvT5/57t27qnqOgVU9Pyv02l//+teq2ooqr4QOkhfDMbyVmHp/3cXJKbNIkQ4nPMB7OJ2XY+tu7/djHFPi2iSvUUcqStcYLkbNNdDe0f5wWZpsE6YM8CMYhjcYDAaDm8DVDK9qa007QV5mVNEy7GNQCJm1R2J4rD2qev6Wp5XM+CIlofpcNMaqjUWydFIWo6up2zu2g+MkmTDHQjh+qjPs143Mbq9NjDtmL0OzXyMKhldt65HSmjvvQMrGZAynH8uauVQP1y17t48cesyBFi7H1z1CS9+dD8d0QuS8TyiLR3ayytJjrMi1MKIkGveumF3PtDsSt+xzenh42DSA7c8QMTt91vv371+8h16Cft6pfnSvRZeD26P8n6tB7K+v6k1XNXR9jKp8X6b7y713de8lMPadmmd38B5hdmb3Dgjab2/fvl3un45heIPBYDC4CVzN8M7n88baWDVVTDEBl/mWsuPYNsYpNiTlERcn4/i0dFwrHLIkWkm0IF3MMPm2ncVD64yWXGJxbg5cI8eGqP4gpJhl1dYaO51OkeXd3d3ZGF6PxwqsBeN6uXkzHkExZ9d6JbVrYsZt39/0KKTYisuA1f+4Z5i57DJ8ue94nq5lFmOiiuWRtR8Ruk4ZjB2MFWlfOIbnBJtXe+eLL754Wi+x577G//jHP6rqWTxaDE9rIHHnPu/UdooxO82rZ3qTlaVMX+eNuMaLkrw0KePTMbykKEXvSD93jpea+/b7iV6bPfWm/jsZnV4Xc+9xTdfGbWJ4g8FgMBg0zBfeYDAYDG4Cn5W0ItAlU7UNVNIFI2q6EnVm8goD5atecxQadqm3dNMlOTLXRTq5aumOcBQ7BYSPJH0wESB1BnbjJLdvTzygxA+Tfpw7gu6PvbKEu7u7jUuz752U3p6uUz8HjSfZpnS9+vx1fZM7vM+bc6Tg8Co5gi5kujS7q4zHpnILJlS4xDH9T+PTvbsqaeFc6B5z6f0soGYxuCsJOeKKYsKTEyH++9//XlXP11+uTQpPOHcax+VP53Zn4T/Pxwk20A2aSrZ47h1M7WdYZJW8sXIZC0zu4nirubJ/ZOqL168lC+v57JdruiOV9xzBMLzBYDAY3ASuZniXy2WT7uzEfBnEJ0NxVpOQGN6qUDKVSqxS/sk+aZE4a3CvxY+wKm1Igq9Obk0gC0xF2e48yXZdS46UnJIs/tX5JJxOpw2L68XD3377rT3HFTPV/pJVKUFh7hWXVn1UpsnJhK1SrKvWBccci/Po68mEGjKIVRss7lnOld6C/hrPk3N1LV4Eir67NeIxq2ugwvN0r1U9lyooeeVvf/tbVT0n7Li5JNGII0w4yVutBNq5pkxeccIKqRyA14Wv9/9p/FRWsXpWpc9xhefJC7Uq52Api6DEJHfdUiLfEQzDGwwGg8FN4GqGp/TyKm8BkcGxiHwl/ElLikzPIZUSaI6M06Rz6nNyAsCJ0SUm0c+F8Q+uhTsmSaYJZIUuRpnWbSWzReaSCvrd/169ehVT3BWHocXW2VqyjhPb7ecoC59SaKtyEYFitynm2cdxMlB9bq58gwXfXD8nSJzYBhleZz17sUjuN8dCeP3JFnuJgdg1Qeu9v6/Hfav+9/5N9+jpdKp//etfT/e45qBr3fH999+/+Pn1119X1TNjcO2tksgy959bJ8KVpfCYxOxXsfzEzlla1e8Nnldiax28BxPLXYmyk9mlkoaqbeyOheZO6GAVY9/DMLzBYDAY3AQ+qz2QvqGdUC6tJjZzTa0qqp6/5cnWmHnZZZsEWiAr0dgEzq0fQ3kmSjuljK8O+u6T5FfVlm2QOax87GRPXD8Xo0wF5yvriePsMbyPHz9uWGf/3BTXoYXoWq6Q6TFG7GK6LOa+pomnO7/V/6u2LClleDq2zj2T2Eh/LWVCpmxRjtOPpSeh34NdeKAfw4L6ldzWqvBce4dz6PPmHL777ruqqvrmm2+qquqnn36qqufszT4vFjIzlu+YMJ8n+lwdy+ddB/ddaoLazyvJjqXYHufbwb26YpR7cU7HKPn5nLvLXNV6sdDcsUTey0ck34RheIPBYDC4CVwdw3t4eIixh6ot40iNEldyZByD7U6cLBn/1nucpZUsyb3Mu6r9zMRVbJLrRvFYJ66cYmpH6pj4eazPcvVlnNNKmosMaMVuzudz/fvf/96M2y03ShPR8madV9W2nk+yc5QWU7zHZeml2inXAibFxxIDc8fQg8GaR2eZc41XrDC1U+L5OQk9sj9a6bK8ewyPcoG6xjwvJw+ldXNz6eP//vvvm9yBHtehEPc///nPqnpmDGJ4TmQ71Rgmr0r/PJ4jvVR9f6cm1bzH+zqRuQopw7ODjDi1rnLsKbWhSvV5fVzuP3opXP2vYnb6SfbW50PGfX9/fziONwxvMBgMBjeBq2N49/f3Mduo/57qd9iKp4OWAYVzHStk3EcWF9sS9TlKdYG+ZfrUV+fFbKxUv+SQ6sycFUNrkBlQjunRGk8MbFXbkizIfg04/srKkpW+YqSat65dqpPr17w3n616KSze58QMv6rMuHk+joWSkdBKJzvtYHyR2cEdtGYZZ2SroT4e1zrdt/38kmXNeLDLAE5ZwW6OvAdWAsCXy6U+ffq02fsulqt10h4SwxPD73v0yy+/fHGOnBvvcefB4P1O4W4XM95TXHLXIz0H0jXuSHkMrjk2PzftFfdMZhxT8XSuUb9ujL2z9jplNPfxel7JHobhDQaDweAmMF94g8FgMLgJXJ20cn9/v6TRdNMx6C13ohOfTYWxLK50NDp1TRdVdinMLClIBaEddM+kNPFOwekyYLDaFYIntyfdr67wOLnqeMwqTZxunSPlCSsoaWUVFNd8dC17UXKft3P9MmGC6yQ34koQPLkj+9rSLZXch30M7iOKRaf39XFT4THd/n1O6X46IsnEdWS/RIYSqrYuLV5HV/7QE4PSPjqfzy+SVrQfeuIM9zbnqaL3VWd4JrxRxMCFOPZcaf0Ynh/XVOfT1zb12WPa/kqWTEiCCqv7l/s9FaC782LykubcS1r43lQ+5hKUnKt8D8PwBoPBYHAT+KykFcEV5grsepuKbau2wWFaBmSJ3apgkopLOKl6mczAVG4GtGkZ92PIOgSywpUMUQpArwLcZHqUP3OW3R6DdeLYTE7hMa6wlXNzuFwuLzqiu+7eqcieAtEde5JoSlrQ+UhqqmrL5HgNj4jepuQVxyQ4Lu8JxxpSSxlBx3bWmNLpU6mL2zs6P46ldP/OQhyD43uqXrJr3uMrK12F5/RMOOYtJDbV5ciUAp+eA5qTpOf6fZyK0+nZcglP/Jtr7QrPuZb82xVh7zH5VVE8weeBK08gU+V+0OuuVIPeJp3fqhTNJV3tYRjeYDAYDG4CVzG8y+VS5/M5xueqtv7uVTxMkOWXrMpUgKw5dSSLofuNk8+a/vL+OTwfWdRJgqefbxINToWofVxajoxRuHVN7CwVE3dw/omd9uO7NZssdcVoGNdZeQw0vvZHbyWUzplrS9HgPj+lpWt8Wu2uQJ//S0LM/XMYt2bqurAqMUnp6C7umOI7tISdx0SWNAueNb7Ws8dUGEfmsfq7s1AyhD02cjqd4lr0cyVrJlNw4g6U7yKz1//F9Pp7BbINt+Z7JQac1+qYJESxuqeTXOBKWoxrwevkchX4TGTp0MqTpfPkfbzy7nz8+HHpXXpxzKF3DQaDwWDwB8fdNRkud3d331fVf///TWfwH4D/ulwu7/ji7J3BAczeGXwu7N4hrvrCGwwGg8Hgj4pxaQ4Gg8HgJjBfeIPBYDC4CcwX3mAwGAxuAvOFNxgMBoObwHzhDQaDweAmMF94g8FgMLgJzBfeYDAYDG4C84U3GAwGg5vAfOENBoPB4CbwP3JjV74CzsbWAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZfdV3/n9vfdqkKpKUmm0LY/YDgLSQPfCgAkYA25MBzAEvIghNrhpmiENhDQrgJtJoQEzJIZ0wIEAaYIhGBMgTAEMxjbQYIghAWKwjQdhS5ZsqUpSSVVSTe/0H+fud/f7nL1/595XJXvJb3/Xeuu+e4bffM7d4/fXhmFQoVAoFAof7Nj4QDegUCgUCoX3B+oHr1AoFAr7AvWDVygUCoV9gfrBKxQKhcK+QP3gFQqFQmFfoH7wCoVCobAvcFl+8Fprz2ytvaq19p7W2rnW2onW2m+31r6ktba5uObFrbWhtfbky1En6n92a+3W1toH7Q94a+1zW2v/5we6HXvBYn6Gxd+nB+ef3FrbXpz/Mnf81tbanvJmWmuva629DnUM+Luntfb61tpzL6Ffe1p37nl42grXDq2178SxK1prv9Vae7i19pmLY7curn2otXZ1UM6XuL7P1vtoRjDX0d9tl6muw4vyvukylfe0xVw+MTh3V2vtRy5HPZcDrbVPaa29YbHm3tNa+77W2qEV7ntya+2H3L1Da+0xj3R7L/kHorX2dZL+P0nXSvpGSc+R9KWS3irp30j6rEutYwU8W9K364NbY/1cSY/KHzyHByS9KDj+xZIeDI7/uKRn7rGuf7z4I166KPOZkv43Seck/Vpr7eP2UMez9QFYd621o5L+s6RPlPTZwzD8Oi45L+n5wa1fonEO9gOeib+7JP0Wjv2Dy1TX2UV5P3WZynuaxnU1+cGT9Pclfe9lqueS0Fr7GEm/KeldGt/z/1zSV0r6tyvcfoukz5d0j8bfj/cLti7l5tbasyS9TNIPDcPwtTj9y621l0k6cil1fKDQWjs0DMPZD3Q7Hkl8APr4i5Ke31o7MgzDaXf8RZJ+QdKL/cXDMNwu6fa9VDQMw18lp94xDMMb7Etr7bcl3Sfp8yT98V7qen+itXaVpN+Q9JGS/pdhGH4vuOwXNY7pT7j7nqDxB/rfC+P8wQg/x5LUWjsr6R4ez7DOszGM7B0rlXupGIbhz94f9ayI/1vS2yR94TAMFyW9ZmGR+dHW2vcNw/Cmzr2vHobhsZLUWvtqSZ/2yDf30iXTb5R0UtI3RCeHYXj7MAx/kd28UGNvxTEzPb3YHXvGwkR6YqH+vqO19vLFuVs1SkOSdN7MFe7eK1tr39tae+fC3PrO1to3ezOUM7l9Xmvtx1prd0t6b6/jrbWntNZesTAxnF206V/hmk9urb2mtfZAa+30wgT1d3HN61prf9Bae05r7c9aa2daa/+9tfYP3DU/qVE6vzkyx7TWbmit/Uhr7Y5FW97cWvty1GMmtGe11n6+tXafFi/43vheZvyipEHjj4u16xMkPVXSK3hxC0yaiz58Z2vtaxdz+UAbzZIfget2mTQ7eFijlnfA3Xu4tfYDi3l4cDHHv9pau8W3Tf11d6S19j2ttbcv5uSu1tovtNZuQv3Xt9Z+prV2amES+n9aa4ejhrbWjkv6HUkfIenTkx87adQ0ntVae5I79iJJfyspvGex9t+wWH/3LdbIE3HNC1prv9tau3sxLv+1tfYlQVmrztFzW2t/2Fq7f1HeW1pr35b06RFDa+2VrbW3LZ6NN7TWHpL0HYtzX7xo+92Lfvxpa+2LcP/EpLmY+wuttacvnvvTi7F4SWutddryGRoFGkn6ffe8f/zi/C6TZmvtKxfnn7FYX7Zev35x/rNba3++qP+PW2sfFdT5D1trf7KY+3sX43HzzJhdqdGa98rFj53hZyVdlPS83v3DMGz3zrt6rm6tvby19u7Fc/Te1tqr2x5N8nvW8Nrom/sUSf9pGIaH91rOCvUc1WiK+BONkukDkp4s6RMWl/y4pMdrNE99osbBtnu3Fvd+uEZp5C8lfbykb9Vogv16VPevNS62F0kKXzqLcp+yaM8ZSd8m6W80mh8+3V3zmZJ+WdKvS3rh4vA3alzEHzkMw7tdkU+V9K80mtvuWbTr51trtwzD8LZF22+Q9AwtF9LZRT1XSfoDSVdIulXSOyU9V9K/aaOU+q/R/J/RuCifL2lrhfG9nDijUZN7kZY/cF+s0aTxjjXKeaGkt0j6J5IOSvp+jRaFW4ZhuDBz78ZiXUjSjZL+mca5/gV3zSFJxyR9p6Q7Na6Vfyzpj1prHzYMw13qr7uDkn5b0kdJ+h6N0v/VGufluHYLU6/QOB+fp9Esdquke7X8MTVcL+l3Na6zTxuG4U87ffx9SbdJ+keSvntx7EWSflqjwLELrbWv1Oh++H81vuiPLdrx+sVaNTPoh0j6j4s+bUt6lqQfb61dMQwD/UrdOWqtfYikX1mU9x0ahY6nL+r4QOB6jXPxvZL+SpJZIJ4i6ZUaNRlpfOe9orV2cBiGn5wps2kU8n5CY/8/T+N83KZxziP8kaR/KukHJH2FJFMY/vtMXT8t6Sc1zuM/kvQvWmvXazSBfpdGwe5fSPql1trT7UeqjS6pl0n6MY1r7hqN8/Ha1tpHD8NwJqnv72j8/djVrmEYHmitvUvjO/dy4Ickfaqkb5H0do3z9CxJV+2ptGEY9vQn6SaND89LV7z+xYvrn+yODZJuxXVPXhx/8eL7xyy+f2Sn7FsX12zh+IsWx5+F49+s8QG7cfH92YvrfmnFvvyURp/T4zrXvE3Sa3DsKo0/aD/ojr1Oo8/l6e7YjRpfoP+XO/aTkm4P6vlWjYv56Tj+Y4u6tjD+P4DrZsf3Uv/c+D5H4+K9KOlxGn9YTkr63928fxnnFWUNGgWMA+7Y8xfHPwHj+rpgXfHvYUlfOtP+TUlXahQG/ukK6+5LF8eft8Lz8M9x/NckvTXos/196irPgcaX1l8vjn/s4vjTXb1PW5w7Kul+Sf8OZT1F4zPydUldG4t6fkzSn687R+77VY/UukObbpP008m5Vy7a8tyZMqzPr5D0x+744cX93+SOfc/i2Be6Y01jbMOvzNTzGYt7PzE4d5ekH3Hfv3Jx7Te4Ywc1Ck0PS3q8O/4Fi2s/bvH9Go0/7C9HHX9H0gVJX9lp46cuynp2cO6Nkn59jbn56kVZjwnOvU3Sd1+udfBoCPL4G40+lh9trb2wjb6IVfEZGs04f9ha27I/Sa/WaML6eFz/SyuW++mSfm0YhvdEJ1trT9eotf0M6j2jUYJ7Fm75m2EY/sa+DMPwPknvU+y0Jj5Do2nynajrtyRdp6mkxT7uaXx9XYu/1EwDvFbSHRql0M/WqJm+asV7Db89DMN59/0vF5+rjNd3atSUn6FR4/oxSf+2tfYCf1Fr7QsWJqD7ND78pzX+OHzoCnV8uqS7hmH4lRWuZcDJXyrux2slPaRRcr9mhXJ/StItrbVnaNSi3+DXmMMzNQpiXKvvlvRmubW6MM/9bGvtDo1C2nlJX6Z4TObm6L8t7n9la+35rbUbV+jTZN2tcs+KODMMw28F9d3SFhHoGtfBeY3a6yrrQHLzO4xv8DdptXW6LswMqmEYzmm09LxpGP3ghjcvPu0Z/ySNghzn/h2LP76nPhD4L5K+vLX2ja21/6ldYiT+pdx8QuMD+KS5Cy8FwzDcr9GM8B5JL5f0rjb6Vj5/hdtvXLTvPP7+ZHH+Olx/54rNuk79YAp7eH8iqPuzgnpPBmWcVcesirqeFdTz866tHrv6eAnjy/o+eYW22kP/0xq17y/RKO3ev8q9DhwvCy5YZbz+dhiGNy7+Xj0Mw9doFA5+0H60W2ufLennJP21pC+S9HEafyDvXrGO6zT+qK+CqC9RWPcfSvocjQLMby1M2SmG0RT+RxpNri9QHkFoa/V3NJ3T/0GL9bMwfZuZ9ps0viyfIenfJe3tztGifc/V+A56haS72ug/S9dRG1OadrWxXb40p7uC+q7ROC63aDR9f6LGPv+MVlsHF4dhOIVjqz7X6+JefD+XHJOr3+b+DzSd+6dr+u6I6jsenLtW8TttL/gKjWvsKyT9qaT3tta+vyV+7jnsWUIaRjv86yT9z23v0X5nNarfHpNBHobhv0n6/IX08TGSXiLpVa21jxqGoWfbPqFR0vmC5PxtrGqVRms0FfacuicWny/R+MAQ54Jje8UJjdrgP0nOvwXfJ33c4/g+Y6aeHn5qUcdHaMa5/X7CmzT6Om7U6F97gaS3DcPwYrugtXZA44O8Cu6R9Hdnr1oTwzD8dmvt+Rr9Qv+5tfbcYXe0K/FTkn5Yo2byyuQaW6sv1jgOhPnvnqlRePykYRj+wE5eipY1DMNrNfqKDkn6exrNsL/eWnvyMAz3BLe8R9N1F1pZ9tKc4NgnaXzOP3cYhjfawcVa+GCAzf0XabT0EPyx9niLxnX1EXJWo4Vg9ESNlpNLxkJg+AZJ37CInfgCjT7JM5r6uWdxqSaB79HoK/k+BS/cRQOPDXmk5t9q+mL4zKyyYQxIeENr7Vs1vig/TKPT1H5sr9DuPKPf1Jjr8eAwDG/W5cOrJX1ea+2xwzBEWuFbNP6YfsQwDN9zmeo8q7F/xG9K+hpJ71qYQveMzvhG174xOr5iPW9urf2wxkCciRnpA4CP1CiEmKZ5pcaH2eNFGn15Htm6e7WkF7TWPnsYhl+9nA0dhuHXFubXn5P0q621zxyG4aHk8p/TqEX9xTAMlPYNf6ix7U8bhuHfd6q+cvG5Y6ZsY9To56zVgQALYfl3Fy/LX9boP5z84C1MdXted3tA1OcbNQpHjyT8unok8XsarXQfMgxDFkQTYhiGM62112hc5y8dlpGaL9D4nFzWdb+o852SvreNkcF7Eigv6QdvGIbfayP7x8taax+uMbDiXRrV3E/TaN//Ii0jjYhXSvqW1to3a4xk+yRJX+gvaK19lqQvl/SfNGprRyR9rcaH9I8Wl1nO1de31n5DoynhjRpND/+rxvyQfynpzzVqlE/V+EL/3CGPQurh2zUu+j9srX23RsfqzZI+YxiGFw7DMLTW/g+NUWkHNfqo7tEY6PMJGn+cXrZmnX8l6drW2ldpfOgfHobhLzVGc/1DjdGfP6Dxx/aIRjPMJw3D0H0hrTi+lx3DMHz1I1X2DD6kLUK8Na7T52n8UXj5sIw2/k1Jn7sYz1/TqPV+jUZfp0e27n5aYyDOz7bWXqrRx3psUc8PXqrwNQzDL7bWLOryl1prnxNZWBY/ct3k6mEYTrXW/pmkH26t3aDRF3S/xvX8yRoDf/6Dxh/GU4vrvl3jOvkWjet6wuoyh0Vk6LM0JtC/W2P03Us0amxzEYnvL/y+Rt/tj7bWvkOjr/PbNFoBHv8I1vtmjVGwX9ZaO61RGPvrGW1+bQzDcLKNqRT/srX2OI3C5wMa5/5TJP3GMAz/sVPEt2k0h/6H1tqPakyY/36NwUE7c9jGFKmXS/p7wzBYKtSGlulJH734/KyFz/wusyK01t6o8f35Jo1z8RyN77ZdKWDrdPpyREB9gkaf0Z0apaGTGqXcF0raWFzzYk2jNA8vGn6nxoH+OS0jyl68uOZDF8ffqTHq6G6ND8nHuXI2NZpu3qdxoQyo41aNi+jsom3/ZXHMIhifvajzOWv0+akaQ4vvWbTr7ZJehmueqfGFaRFTt2n8kX+mu+Z1kv4gKP82ST/pvh9Z1Hfvoq23uXPHNf7wvVPjw/E+jQ/r17lrbPyfhnpmx/cyrI/Z8dV6UZrfmdz7Yozr64Jr/N/9kv5MY8rBlrt2Q2Nwy3s0mk5eL+l/DOakt+6Oanz4/3YxJ3dqDMG3yOBsPlbq8+L4Fy/q/RWNQVi3KogaxT1ZvX9fY2DMqUWf/0aj7+TD3TWfKum/atQK3q5RMNrTHGl8Nn5Z44/d2cX4/LykD71c6y54nnpRmm9Lzj1Xo6D80GJMvkqjZethd00WpXkhqevNK7T3qxdtvrAo++MXx7Mozcfj/jdI+h0cu2Vx7Qtx/HMWa/wBN/c/vspcaFRs/ljju+NOjakPh3GNtfHjgzGL/n7TXfcyjQFO92uMjP9zSV+113XQFoUWCoVCofBBjUdDWkKhUCgUCpeM+sErFAqFwr5A/eAVCoVCYV+gfvAKhUKhsC9QP3iFQqFQ2BeoH7xCoVAo7AuslXh+/Pjx4eabb5bxBNvnxsbyd9OOWbqDfW5v797+yKdDMDWC9+4ldWKdey7ntdH5S0n9WHVsevVmn35OsnouXLiw6zOC541+6KGHdO7cuQmR9LFjx4brrrtuUne0DtZpN++d47B+pNbFpdzzSGHVtvTGbNVxja7h+8Gf39zcnHyeOHFCDzzwwKSiQ4cODVdeeeWkP1F5c89Fb71F18yh1yYiO7fKPZyHVer17+Xomuie7JqsjdG7v1c+j3ON2CfXh8fFiyOpy/nzIwHOMAw6efKkHnzwwdlFutYP3s0336xXvepVO4248sord336DlijHn54JK84e/bsruP2KUnnzo3UkvZSZYeilyMx93KMFrq1Nfsx9vdYm+yYtY2I6rN7+aMRvQiyfrEslunLtv+tjfadc2DfpfGHyp+ze++/f2TbOnHixK7j/lpbDwcOHNAb3hBv/Hz99dfr1ltv1enTI1mEzbkvz9pjY2jl27V23veV1xo4bjbW0Y88x9+usXrW+VG2dvgXAdeXjRevtev8vXxpsR3sdw/Zs+HrsHN2bJUfPJ47cGCkmjx48GD4XZKuvnokZzl+fOQePnLkiL7ru74rLP/IkSN6znOes9MWWweHDy/5g+0dxPeOfykSds4+s7GMntOe8OXvmSvHH+fYe8zNw9bW1uRe+9/G3e619cd6/TG7huWyTJtbf48d44+lHfdttPJt/o4dOyZpuT6uuuqqXfVJy3fVnXeOrI5nzpzRS1/60nBciDJpFgqFQmFfYC0NbxgGXbhwIZQMDNRwKAlRg/DHIlXVI5JuWN8q2tpcG9kufw3buorZlZoCr43UdkMmadvxSLJjf+zT6uF3/39mOonmnOVHfWNfKCn6Oc20GbvG+uph88C1sYrmwzaw/p5WmI1xtEYpUVPiXaWNBq7RnpWAc8FnMOof781MWpEGG5kpoz748ntajaG1poMHD+5odtF82f9mDeDzaYieaZaxyhjbNTaHfKfwefL3Z8971K9MgySiZ9pAS0z03PJaewdT08tMqv5etoX3+OeYY55ZrryGZ5r90aNHd+7trR+P0vAKhUKhsC+wtoZ38eLFidTnpaZMAsgkYn8/JY45h2lUH/1yUXt6Uoq/N/IVURLJpMEe5pzJvXOUmnv+TZOkIi2QZWfBKT1NNronG9PWmjY3N1NtZ9U+Rf2QptIr5zjyrVEaz3xRkbaY+Q6jNZtptev4yTINsrfeuDbps4skfI492xqNla0v+nDsk+ejera2trpBDltbWxPrSm+8rL22NqNnOvIj9+DHK5u77DOCjUsvIIWaIvtFRO85lptZuKK22NhwTqltR22zskwji55nuyez8kV+dBs30/C81XEOpeEVCoVCYV+gfvAKhUKhsC+w9gawwzBMVNNI1c/U5l4OGNVSmqF6uSaZqdFUYn/vnEmkF4yTHWc7ooAQgua9yNyWmUZ6JlumJZgZgvVZeK+0NDtYOHcWbBSlP/jPnklza2trMhb+u7WXZg5DzwyaBTitEnSTrc1o3uaClKLABK5rBnVE5tasjVl9vTUbpQJJU3NfdE1WfrS+uc6idASWu2pQxsbGxmQ+evfy+bfvZsaUluvNjvFZ7gXnZUFeveAOhvRznffmkus4S2WJzKF8bvhOjPLisu98Rvx4ZkFfDFbxa8zawjVzxRVX7DofmWoPHTokaXx3rZInKpWGVygUCoV9grWDVryD1351vdRvv9A8l0lC/hil5yi0l6D0kkmikRZK6Y8BDpHkkzmR6cz30k4Wns1EzEjCzzQ8ttHPQVZfpm37/03To1M60hKYsHv+/PmV0xJs/v28ZPNt10bSnmFOM4nGkfOdBSZF2jPLIHqaZCY1R8ExURqPRy/EnBpMVnY0Jr30EX+dP8e5tU+TxCNtx2sMvbUTIWp3pq2TvID/SzGRAusxZFYbanFRQB/L5RhHqROZ5pWlgvj/s0CaqA+ZBSazmERzwGv5zPh3P8klMmINPyZ8525sbJSGVygUCoWCxyX58OgjsvNSnmIQhShnoe+rJohH9fB7FBJNGzql5aiezHbPenw7GNLL46sk6FLyonba8zdlKQdRaDkpg3p+E0pfm5ubXSl9GIaJ5hAlD2cSdhRanqW7ZGvItz/zcXE99LQ1IrJgRNqMP75KIjDnju2IwtSzfmTSuj+XpSP01uqc1rEKOUKEYRh07ty5HS0g0ojnCCfsXUWtzl9DYgMrPyI8MPB9Zs/PkSNHJMWpTabx2ngwydtr89nc0YfPBHFfftbmVVKDiF5aDNvGd1dEZUfas7lYDF+ut/ysah0oDa9QKBQK+wJra3jSVKr0WkBmS+9FPNGfk1F89XxPmXQeSb6ULqmpREnFGYVUFgkVSTHWT/ruIn9WpplkklAvssvKJ2VbVB81RkbYRf4FK3dra6sraW1vb++Ub23qRXn1qN4MtP1zvqndzvkgfb+y5HLf1iwB2aR4aaolc4x61HNsd5ZEvAp5AddoL0meWk2WXB6VQ2sB/Vq+3d6f3vOHnj17djI+0bzMJVlHlhD61rJxisDnxD5t/v06sDbQ0kOrkB/7bP3S+pE9r1H7M3pEf63Vx3WQ+QV9OZxvrp3IsmTk0Rn9WaQpe2KI0vAKhUKhUHBYW8Pb2NiYSAheCsjIW3tSJSOp5mhmIik9Oue/9yK6DJSmIg2IOSyraHiUeGlDZx886HuwNnP7k0gbzfLaepRg9LtYWy1684EHHti5J9OqIgzDsCsSL/KtUtNhP/g96j81VI51FO3FOeX3KDI5y+Vkbp2vJ/O3Zf451h2V1SMez6ireE/P38zxjDS8uW11Ih82cw97ZN/DMITRjh6mSdm5kydP7jpvz55/5hlRnml4ka+T641rpefr5Lz0LEu2NriFGi0M0brLtgHqWZYyK4d92nvHxip69i2HzmDX2jskigOgtbCXQ2r/+/dpRWkWCoVCoeCwlobXWtPGxkaXxSSzJZP9w0dLUcOjn8qOGzOI9/tYOYzgypgIfPm0LVNbiHyF9ItlhMxRniF9eD07tf1/5syZXf3khrq83rd/zifqmVasX8zZsrZGPolTp07tunaONcMTj0d+GBt/6yOl/p7UnKEX4Zvl3XFNRWww3Kw2i/j1/2cRdmyjn8tMY8gkfCmPtM0iLiOfimEuGtXfQ2ncxija+JM5Z3N5eBsbGxPLi0VCStN1a3WZb6gXfeifA99ezleUP0aN65prrpE0bngs7R4/q4fjFVku2C8+C3wPRdr7tddeK0k7my5zzUTk6HOb4lID9G22dceNwZmX6efK2s13Py1lXmtkmw4ePFgaXqFQKBQKHvWDVygUCoV9gbWDVlprkyCLKHmYlDH2aeYqb0agKm9ms2yfMq/SmtnE1HYDg1i8mYhhs+ZMtXrMjOjNEVkQBwN3GJjir6GZwMbCPr2qb/9bkAjHzb5HJi3W20td4LV2jdXjUw58v6Wpc7pnarTAA5qy/NxH4+D7FoVcM1jBzEM0+UYmDx5jgAADBXy5NHuyrX7+58zfDJ7wY8J7OQ80F/lz9snxo0ktSnRmv3rPIE32GQl8RH/n52tufVqb6BKQluvVzj3mMY+RtNwzjYEi0vKdcc899+xqJ03B1r9o/THg5YlPfKKkpWnTj8WDDz64qx5rv7XDxseeA48o4EOarn+rV5KOHTu2654bbrhhV1vt+fX12bqmaZMuj8zkKS1NmcePHw/bft999+1cS3O3mamtbdYvGztpOQ9XXXXVThll0iwUCoVCwWFPO573QogZ2m2Sl0kO9kvtpUpKiHP0ZF7SMonDjlEqN+nFtDZfPstlgEZEbMxkWgYEULP15dBBa6HTNib+Hgat2Cf7x0TXqC0cxyiQh8esXJPGSKwrTZ3em5ubqaS1vb2ts2fP7pTPtAopDybiuvD3ZOTGnCeTGP29TK5l4FMUjm7XkjoqC2Lx/chIwhnAE1H1sS3U4rzmzaABJvVybfXWQZYW4cGQfGurzUFECk6tr7XWTTz3lIY2l1FbrC7TbmxcIqo8q9uuZaoH15Sfl2zLJ2ri/l1l5ZnVhpqqvSv9XBqyNBhea4EqknT//fdLWmp2pn2yjabhrlJfbxf7jFLO5iuyHvCZt0+7xz6jZHwbryuvvHLlQLbS8AqFQqGwL7C2hnfhwoUw9N5A6dGkDPs17m29Q99WJGFLcSJwLzzXl+3/Z9KjaVomiZiNWFpKNgwTp0bbS8a+9957JS3HxLQnr32yjfSzZL7EiLbJwDbSD+XLJ7EtUxj8uK4awm7nzp49m4bm+76wfGrN0dph4i3b0rNKGJhUHSVFU+PhJqdWRqStR1Jx1MaI6NzA0G/6u6NjNkZ8Bm3deX86w/ftHK0rfu4p9bO/kc+NdHeRVuOxvb2dEjewPdI0JYLPrzTVRDPKQaZUeTAJmn450x497P2WUW5Fvk6OLbU061+0FZS9x2hhME3TpxfZMb63DaT18u8dW3f0SdsYRdaITMOjpSHaUNnG+Oqrry4fXqFQKBQKHmtHaXoNz37RvURiWpL9+prEQIqinp062+olkipod2d0nknC3v7OzSA9XZZvu5ca6QfJ6K9sTLw0yAhVK58+G99G+luirZikpY3b+/ColdG3YmVEGh77zqitaPsRrxXMaXk2jpG/gonYGem1l+ZIR5ZpxpHml5FD8x7f5zki6CiaLqNI41xGx+mjpG+SGrNvd0Y8wMTqSKMwZGTlUeI5k4ZpoYlorwxzW7wMwzCJ7IysDRltF0kN/DGSOpjmmyXQR+23PlpUKMkypKnmbf1gRGJE5EHtklYxi870Gp49a3wf8L3nfXgWV5BZ5KitRTR/fL/Yp/m9veXMyrExsP5yrCKych85WuTRhUKhUCg47Gl7IEo3Zu+VlhKAaQokPWb+mjS/6R/ri6R+GSldAAAgAElEQVSKyC/lv3vJh9F+meQdRf5Y+00C4feIPof9o8bCyD9fNzUrRptF0Wf0a2WRdl674jgyZyiL+PTltda6tvRICvNtoL8g086ieeHmmnO5Z/4Yc4zok4r6RI2CcxptZ2IaBCOKqbH4/EZK/XMUY9I0R48aLNvuJW76rUxjIaLoPGrgPZL53lxm6G2JFK1pX2eUc0gtzM7ZcfrJqZFL+Sa3UbQutXKrj1Gnvo18r1DDYtSzf+/YvFp5J06ckDS1wvkYAmub+R7pL/X5cOyfISOit7Z7nyEtflHUOUF/5jooDa9QKBQK+wJrk0f7rHbT7KJcKrJWUAr095iERenStA37TmlHWkoL9Hkxusfs2dI0GpSRQXaPz2nJ/Ii0QUfbA5kkRdszIzu9dmptYsSqgTktXkqzNjKHj2TfXvLP/Do2T1G/Ih9rpuHZ9kDZBpa+vCxvMNrWiUTJhkwj8uNECZTrLCIcztg3uG2T9xVlW52w/IjAm5I811/kM+a64tqhdcL3z8q1tWjjlfkQffmcW65R73uPGGKytdNa06FDhyZrsEcIT99jxAplc2TjYYTP9l67+uqrd333Wq311TRgq4d5xhHDE/1fJIj2lo6MDYpWKMYJ+LEwmM+O7E3+OkYb29jYceYDe2aXu+++W9KUYcVgWqOfZ3s32rW0ekXWNr6vL16sDWALhUKhUNiFPXFpmvRnWpOXSE06sU+TCGij9XZcanjUzigteamCkgDt7RHzCZkV6IcxCchLDbS7mySXSSRRRBdzZTiOkdRMmB3eNEq711/PqDP6isiX6dto42eSFzVbP45RxG1PSt/c3Jz4AnyeEv0U2Ua9vj5qON6fLC3HiSwdvv82hsxXIxelNM3noiUj8lfRN8itlrh9i9eE6O+j74tz7duWMV8wWq/HUUqfTbQu2Rb63O24HxNqRr0ozY2NDR08eHCS8+ZB6wA397WyvYZv1z7lKU+RJN14442SpHe+852SlvNi68NrwlwHtHrR8uPbZG1g3m+Un8l8u+x85Etj7izfXXwfSPlmxMwHtDnwPl7y+95yyy2Slu/69773vZKWjC9Szt1p7aCFw7fFcP78+dLwCoVCoVDwqB+8QqFQKOwL7ClohVtxeIe5qagMMc9CpKWl2sqUAhL/kjTUX0PV10JyTc32phlrt11j5KqWdMk0BX8PqXtoDmXAgzRVwWkKNBOtNyeYicTaRtNsRL5rYBABE115nbQcJzrF7Tvnxp9bhQDY6iNllQ+Jz5K6mXLgzcVWt5mSzHFuY8r6fPCSmWUyovHIpMkd6A1Wfo+YOwvf75F90zRH0oKoPluLRmVn9dhYk1IrmluOCU3D3oSaJSczGCsifY+CoTIwcCYKS6eJkVs9eZIJvl+YUmTvg+uuu05SvEWNrQcGrdh3n9RtQTCcS6uPASIRMtrAiPCa72mm20Sk9dYfG0fbZolma9LH+XbbeHKrpigZ39Yk13GPCjAjm1gFpeEVCoVCYV9g7aCVYRh2frmjUF9KJ9TAuP2DtJQETGo0JycDALjhqDRNbGeYehREQWnSHK8MIvGSAwMKmO5A8lhfhyWUm8Rt2kdGcOvLt6AOBhz4oB8p3j7D6mV4OCVL3xYGRTBZNtq6xmsIUWK675PNMVND/DFKbllCszTVxqmVsR++z0zatXGxMTat0a9pjgcDQKJ1l217lEnrXgJmkm1Gs+bXGwncSeAQbX9lsDGwMbF+RSTVBlKnMdyeW1n5dmfBGBGYYuDHKQt0osXJa4V2zVvf+lZJS2uKtcmeV7vHrAfSdF2xHzb2kXWA6QCm5UTbQzEJ3sD3bPR8Gjm99ZMBXly7/hy/W9utzMjyYxqsjaO9o2xNWVmeYIMkAkwnYVqbP+eDmIo8ulAoFAoFh7W3BxqGYecXOvLD+C0bpClBqn16CYWaHCl2KL15yZRbzlsZJK2O/CJMkKWE5SURSljUINieKAE0I8U2KSkKYWbSek9jMVg/TKKjvy8L9/f1MEne4MeRkpvfpDMqd2traxLm7iVu+lAo3UUh/wbrK5O3TSKNaMIiGjBpSmTb24aGmoqt6yjlg6Hd1A6iMHGmGMylbPhyzfrA0G9bm9GzkZGV01/bo8zKiAK89sBE457vt7WmgwcPTtJsbG6lqX+XPjxqob4v1GbN4mPvNdP0vf+Pc0kfp8GnydBXZ8+P1cO4A18Pxzgj7I7ozzKt3T7tvIetY3teSfVFX560tEbZvJA0g8Ta0nSt8HtvI12/iUFpeIVCoVAoOKyl4W1uburIkSPptib+f0bfkGTZ/yKTjinz5fSi2Bg9ZhIIJSMp36CQEVc+KZq2bGoHrMdLaYwqoxbCyCh/D7VP6xfHxPu1sq1RaJ+PNErey/5F2oCh57+zskmrtQoyn55HtFGkb2NE38Y55JibdOmlW/rOSPjcozDLNotlO3z/mDBPn060vintZlpaRMLM+aEVYp2oYCYR+zExaX9VydwsBL6eaC5Jhcby/RrlOUYtkoDcE17Q4pJt6us1faubhPYkHvBWBFppMs2YGpFvt2lcXAdmAVhlU1xav6JtycwiltGfGSIN1sA1SUIPf030TppDaXiFQqFQ2BdYO0pzY2NjIvl6CYFbalBijKRY+myYa7aO34ISSUTbQwokSrHR1hTcUsPA7WcizcXu4ZY7jJby/i1uOJttaJptYuqPMU+K+Uy+3EzDo3YYYWtrqyuxb2xsdCVu9i26ht9J+WbIJOBonOg3oPbmwfbzWWD+qTSNHKZfJqNUk6YaNnOpekTK2ThGWpoh8pP7a5nnlrUhujeyQkTvg6hNFy9enES3Rv6qLE+WPjdfp80P58naa9aqaDstPic8H+XW8lqOj+8XrTN8j/IZjzaAJck/110U/U7S6mzbLU8tZsdsvEiLF71LMm2Nkb5RrELmN+2hNLxCoVAo7AusHaV59uzZiZTpEW1IKk3zKjwocVLyXEXipvTHMqMNK01qsegr2uq9j8D6ZRINbfeU2r0Uxw0mmRMUaWnmi4ikWI9oLrJtgDKWFmmq5TJHLYroI7tDL6eqtbZLw4v6nEWG9r5nuW3U7Lguoj5RC2BbfXmZxB1FvLE8ljGn3UhTLT1iushA6TmLFo7akuWZRT48A315kZ+R925vb8+OAy0yUaQ3tfTsnRKdo/ZCX3vkv87msmdxseff3jNkevHvKmqStAZkW0/5ci1i3lhfsu3QpOl88z1nGh83A5CW70ZGv2d98OVzjGgB8H4/my9rQ494nCgNr1AoFAr7AvWDVygUCoV9gbVNmtvb2zsqOXf59sd8CLLUD6On+p+FlvfMe1TTTdWOEjIZEm3qspkYIqJoM3/SUZqF4PbSBLI0C28eyPqahUFHgQ4sPwt48fcYGEKdJdr7uiMyXw9LIPbl+jFmaHWWlBrVzU+OT9RnOswZ+BSZpxg8xATdiEaL5faCcKQ4IITpCNnu8P4amlAzc2VWt//eM0uyDXxeo6AVtm1zc7Mb8OSJxyP6PgbHZebUyPRFN0tmVvMuDibzM7goCu6xY2aKu/baayXFQSMG9tnq4achmlMjv+YepbZOvLmQ5uKsfn8P66a5l2MTmXv5PuXxnivi/PnzK6cmlIZXKBQKhX2BtTW8Cxcu7EhEUfIoJSz+mvc0oIxkt5dky3L5SZJnaUrtY+XbNSatey2Bjm32K5NQfFsMmTTi7yXZdhZiHkn6DKhgYE3UDpZPibkXwLHq9kBS7tD25zKJO+orJfcshSUKliLY9mibKKY/mLTMZGWvoXNNcD0w4CZaH5mkTe3Rn2N9qwR0sG0cx54WlrUpIhtguT0CYEtL4BqM2s3gmt765THuHk9LTERLxj5a/ZFmYvNsmp1PZPf39rR2BsmsQuRg75LHPvaxkqR3v/vdu8ryaVi2nrPglZ41x45xizTrN0nMfXkGkmJH7xOOz9mzZytopVAoFAoFj7UTzy9cuDCxW3upismTJjVl6QPSPIEsNZOeRMrQ4ih8NiOc7vmB6MtgW5mY2wudzzbvjPxLmcRDzSUKLc9SJrjZq28TE10ZCh4ljfpzc6HllBwjCi5K+hn5tf9/Lh2hh8ynFlkjWA9TQEgb5svJtkDJ+uvrySwlkaTNFIbMN2no0ZJlmxdH93DdsW0R0YEnfc40vNbaLutB5MPL1npvnDIfMT+jNB6uxaztft6o2ZHisJf6kxFCMLUg0qLt3PHjxyUt38m2/ZFfD/a+5HuF652pG9KUwJ3WjiixPktp6qUicU5XpaeTSsMrFAqFwj7BWhre9va2zp49OyHI9f4xSi1ZFGOPCokaUEbnJOXJz9SMoigfShGm+URSLNtk91J6p3QtTbcuoQTMRF1fPiPeqCGTXNafyyI6o4TTjAKO291EUZXc/DTCMAw7f/5af4+tJ0b/0t/Xs+tnGmYv6Tny7/jvUYI+r6WG0bMOZFv92PFo+xSSB3Cso0i7zHfbs6jMaaGRzyjza3ONRmPifdWZpL6xsaGjR4/uUGRxDXlkRASRFWXOP5lFDEbXZM+Y3zrNNCxaAWhd8fOfaf/2PNq7NxoLWuKs3htvvFHSckwsIV1aPss+qduXRUQ+0Wwce3EAmdWhN+b2vqgNYAuFQqFQANb24W1vb09owvyvMH1oJA6ltCvN55xRAosikrJorEh7miOjjuiaKOlQ88qIgKWlhGvbZxiVGTVar0nwWE+DYB9s7Kltst9eajOtivlFnD/fRtMqPFVSj0B4a2trkmsXbb1jUbK0FkT+LGpcWQRiJOFn0ZMc+0jDYxmU2iMaPOtzRl3W07ztHmuLzUsk2TJ3MqNMYx+i/vGaSJPO8vBoKfH10Mfei7Sz6HCjyHrf+94nKdYys62Xoi2y5nybGV2ZNJ1L5ktaBPsNN9ywc4/1NYvajtqYaaj27PW2Fsr6bu0wTS+KHSC1Icdg1ahIf222XZBHVn409jbWpeEVCoVCoQCspeEZU8apU6ckxUwrGROFwSSTSJuZI7eNbMDZJpomRXDz1aicjCHES1qZ1E+fASOSfNtsvPyWGtLUd+hBaXluK5aoHG6n0svzYg5fb6sea7f3x/Ui7Q4cODCJzovGnj7iXqQlxyHT7CJfC7VDak+9rYToK+75qA1kHuHajQi16e8lkwc1Zmk5tmSzIWl6tKVVtpVUD6v4+fid898jAB6GQQ8//LCuv/56SVMWJd+37DnpMQVxnsmSQvYRXx7nwTaNtmfcrzc+LxkTTo8Bibmh1KL9Fkb05dJyZf0xJhZfH1lYsufKW+eyKGvGH0QxGFmudaTxmYXM/Jdz25J5lIZXKBQKhX2B+sErFAqFwr7AnnY8NxXVghW8SYBms1USc830ku0P1yPB5TU0LZJ0199vJrOMbDkKD6aphPvRkXRV0o4J2GBmhyy5m+Pj28j2ZOc9shD6KJkzcxr3kmJpoo2wsbGhgwcP7qyZKGiFZmMzAZPqqde3LLAp6hcDADJC3mgvRRIa0KTWCwQhlRXdAL5PNAfxmshFwLG1a5hGEpGyc230zIzEHDVgRFCRpR4RGxsbE9eAJ3NmcE82Hz2TNttEUmfv4rBgERs7M69ZYJrBzG/Sch5sXizNgubDiJg5e6/aO+rEiRO7ypKWzyX382MbfT+ZFG9t4Vq1eqK1w3ch38n+2eRu81kCekRBaONYieeFQqFQKABrJ56fOXNmIm14aY9OzmhbFn/c/z8nVUZlRc5Tf01ELWRtJKEwtRgvObDPlFqYXB4FHjA4Jdsd3h/LQqMz+iaPjLIoCtHnth/RNk7+XmkaEDQXeDAMw4S6yEt00Y7P/niU1J9JdxHtmf8e9dm31Zft22PScCa9RknY1BytLZlm6ceYwVfsr/XTUjmidlO77Wnz2W7lhigBOQvUybRvj8jaQDDgKaOj8uUwUCcCgzoYEMQ2+nViKRK2HkzDs3liyo4vh/PdszDYuuK6i1JYpN1ar7WJ9UQat8G0QhsLatO0hkXI0sisrV6j5POTUZh5cpNo67cKWikUCoVCwWFtH97Fixcnv9iRbT6TrPkL7v/P0hB6Eh3PUdq09niSYrO/U7qwMqzNXmv0viZfbpaAGml4lBy5HUiUXJlRltlnFN5PKSzTCjyoqWYSck+SmktG9Rogxzoqex2tNgvt7kmk2T0cY78OsnlmKH6k4dGyQH9cRJLQ2wYq6xe3eGG53L4l6l9GWh2Fzs8RdUdJ0dFWX721FVlb/Hrjvdw+h/X6c1wHXMd2j2l10lJLMYtFL/Se93C+I0oxg2k2EQl+1EavCdHakKVQ+fXG91nWxsjaxvXMNcT0KN9uA2M9zN8YrR3vRywNr1AoFAoFh7U3gD1//vxEwoqi2KghkJIrQkYD1SMGzjQQu8ds6D5aypBJZRE9FH1z5jMx2zbtyhGFlZWfUT95ZJI2aXp6kg19dvRn+jZS64hojnz9vo2Gnl3frs9IuD3oW6JE3KuH27ZEW8kYMj8IpUx/L/1wjOiN5oO+J8PcRre+bloDSDUWIaMs45yuQuZLRJoZn58sidijt6kzYW1ilKE0HeNIC8zq4TWmTWXkBf6aiBjbn4+sX7TaUAOPrEOZ342Rq56smmQSbKO13Serc1s3RvZyW6Ao6pnPAtdHFB2e+cQjvz7X1+bmZml4hUKhUCh4rB2l+dBDD+38GpuEEGkzPcma9xgo8cxtxRKBNmf6M6SlRGP2bkogzM+Tpv4X0xwzKrMop85LUizfly1NpXPmUtEXFklaWZQmc3j8/9Z3q28Vzdz61yMANvLoHok4c3voe4jKzvwtmWQf+RzYD0aoRfRQllvJyL4oupF+RPph6Of27aIvKrMKRH4YajvMW1plU9TMxxLVnVlKelqVt1j0aOk2NzcnbfLRfpzvVSwghsxi0IvWZd5YRnTfiwPgMxyRe2d+V2q09m6JcmK5vqh5+X7RJ5k9Iz3wPZeRtEua/JbwHRDl7vGayF+aoTS8QqFQKOwLrK3hnT59eiL5Rlv9ZL6OKC9ujrQ32p7DYOUxf4yahLf72/+MYqNW6PNuqPEwj4w27kgapGRvfkD7jCRN9ofjSG3YX8N+9fxnzLPJotx6/qXTp0/Panj0PUW2eX72tMJebqHHKswgJII2C8AqeWq97VMyYty59kjTZ8PKoCQebb3DNtKvFbECrbrti583Rm33NDvC1tnRo0fT620DWPqVonzFLII8eodw7VDzIZGynxdqIJl/zo9t5HuUltqNffr3BOvhGFiZ0b20GES+e37PokANPUsP6zVkMRm+Praf/Y4sGH69lQ+vUCgUCgWHtaM0L1y4sKPtcKNRaeoryXxAkf8o49LMbM/S1LdFiTuSqpkLaGXcd999kqR777130kayINAvxz5EEr6Nl0lp5ge6++67RdCeT3u75RJGkYRZ/ot9t7Z6VgbOEzW8iAWEGsmhQ4dmc6l6W8ZkmgJzgry0l7GIsMwo1zGLgLM5tc/IH8v8R46ffyaoUUdrxB+Pcs6sPrsnirAzRFsGRd+jSDu2jfMZ+RCp6WfRmpGm7CX6bO1sbW3puuuu23lOorbRh06ture5roHl0lcUWW1odeB68EwrFkFJrYYsTX5OyWaUafrGgRnlcNr7jVYhbvbsQY2Zcxo9T6sy+vh1QM2O36OYCEbGFpdmoVAoFApA/eAVCoVCYV9gbWoxaakCe5OYIdq12R+PQuIZXGHl0rkahe3ShJqFb/sAFKubn0xS922MkkKjeiNntQWlWN+5E/XJkycnZZupItpVXpqak6Nw4cyUZvf0xiTaqobt4Nj3dh620HKagLyZjbutZ0EsUWBFlmTfM4czyZUh0L2AENvZmuMWbS3FgCemi/RCvUlOzMRzJklL0wCKLDUoSvvJ3Ak0T0ah5euYNK0eb87L2rmxsaErrrhiZwwiE1xmlu4hS3eZC4Dxx+i6sU9zOXhKQzPJPuEJT5C0nFuaY30qQ0aOQbOeleXvZSAfn81eEFgWJMf+Ry6ODNH8WntpwuwlnmfP+CooDa9QKBQK+wJ72gDWYBpRFKCRJXP2Es4zMt8sgVqaaiKUWqLAA5MeTPOyjRh7W/ywXGpJlKa8FGrnrD4GuDCJ2bc3c7rT8Rxts2Og1mHz5rUQOrA5f1HQCsufSzw/cODARIPsUQZljnPfNjrGMy0hSrKlFJlpJr3EVmodkYXDpHyb54z+KnpmSJLA4IhIS+FczgUPRMQRpD3j+EXrLaPm621/xW29Ily8eFGnTp1aKcGYY9sLWjJwzWbrMNIyONb2bEXr29aBfd5www276rd7fD+t3RbwElm5/HXRGmISeabxSVMrFN9D2Vz7azKygug8y2OwUbQtFtdiBa0UCoVCoQCspeGR4icizM1CrjPbsD/GcHnTjLLtJqRcG+iRu5IcmMnykcRArYz9ov8xoiWLEtqlpVTokz5JtTNHGuylQvaZGp7XyNi/qP3+nijx1Oo+d+5c156+ubk5keB4Puoj++G1AkrS1CZ6/rJMo+v51DIthmkDfo3yHvMRkx4qCrfPtknppfn0ErilfuIx28Jtj6IxyiT4yM/Dfq2i4Z0/f1533HHH5J6ITMKnAfg2RHPK8WC7e1YDWpvow+ulmGQbv544cULSbnqwm266SdJ0m6BoQ2OCm9GSZrHXr8zq1ksryjTjnt+eY00NttfWdTS7nfaufUehUCgUCo9CrJ14HtEQeX8VpUdeE0X/UaOj/TjbmFOaSnBM3rTP3qanFnFHzStK4qSNOyNZ9hI4bef0w9Af4681yd3amm2ZNKdZ+XroR4vayH73NDw/Jhm1lyWd96T/jAqrt5VQFj3GaNlIWuexnjZgmEvIjiLHKNlav6hxR2BUHtvONeXbwkjezPcRbTzKjYBZb+RTyST63nZbjPCMsL29vWttmS/UNCJp6Q8jEUNG7sw+9Npv8PdmRBMZ4b2/1jR8i8422DN4++237xyzaE87d9111+26x9oabQRtbbDYARsv65f5Bf0z36PI47W+LP9/9hzxuZZyja4XFcy+96LDidLwCoVCobAvsHaU5sWLFyfSS+RTM5gmRI0l0i6oPcz5BqRpNFZGLdSjFKIUTSJoaerTyKIae/Uxr8vGkTl30tJmn0lLvUgrtjnTPnuUUqyHftuongsXLszmxFAT9+sgI/zlevNrLCLP9vdkkqOvJ/tkDpr/P/P30efq+8p7VtnQlvObkYn3tN85+jXfB15DaqdI+4no+/xx+/RaKn13rbWu79Hn1UW5tXfccYekpQZEgnhaCzyyvrE9UR5hFv0ZzYvNnfnS7rrrLklTP61/D5hP0vpnZTBql1Hi0tQvT+08s+r4NmUWu6h/HINMe+tFlPMd2fP1Z1poD6XhFQqFQmFfYG0fXrT9fGQ3zrbJiKI0s19zMipErCKZZM8yIo0r02oiiSGzXWd2fi/B8pi10SQ5a4dJbdJS2qMkxTyjSNPjtSS0jcijsw1mOVZeqqYEN7dNxzAMaZ6cL29uA+CojkwLpFQb+Q/o82J+XOT3o3TJaL3I151FPHJM/PPEqMyMEDzyqVFTpQUl0mQyaZlStb8nWgdR//zYkzVne3u7m8N5+PDhCXFy9EzT/8++RlraHBNNdO9czih9rv4eGyfzrdF64i1L9o6wtpofzp5DbhNlPj9pupG1lWv3ROOYWTCy6E2PbCx6jDWrRnT6tctxXMWytFPfSlcVCoVCofAoR/3gFQqFQmFfYO2glcgJ68EEXwZoROXQjEYTXG8/JTpxM4LmiLaL6QA0yURtJJUYSXBpAvR1Z4E10e7fEb1ZVEa0/5qBQRFZYr8/Z8iCJSLTwSomTdtLMSvf9y0zhTD53l9DUznNx1Hwj80ZTW6sLzJ5kUKO4xfR0hloKstC26O2ZPvuRQFIGdl2zzyVBQLQlNlL76B5KqKhYrBPzyy1vb29y1QXmae51udoCtmH3j0RpR3n0NrCYBJfX5aaZWsnctlcf/31kqZ7aXI92D3eDWQmTZp7mf7lg2RIQk3zJ4P1IhMx3/3ZvpO+XK6HXqAVd2WPyMQzlIZXKBQKhX2BtYNWPH1Uj5C1lzAoxTtCU2rNwra9ZGcSFam4esgScQ3RLuJMxLU227XWDmqW0lSyM6nJ6rXvvp92bbZdBunRPKVSphX2duVmygK1D9Ig+fZ7rbMXtNJa22l/TyqjtEotJ+ob+2FrNKMP8/+Tai2jnJKmGrxpHgyWiDRuakJZMn8Utt0rN0P2HHH+fX3U5KIgFX6Pws39NXbcS+bRtlqZhnfu3DndfvvtO4FcRr0VzWWW4sQd1qWpFpul70TboNGiQOL5bDsxX28W0OdBqj+mFDCMP3qHsB5qiZEli8EwGdl3FPCUkT5E71sG2GXkCNEzYeWfPn26S97gURpeoVAoFPYF1tbwLly4MCGN7iVZZ5RLEfVWlkxLDcnbnE3qoyRAKSAK26bUxPQBf48ndJWm/h+TiCKSadO+7BgTkSm1+XPU7LKEcz8HlOCyMP8onYS+qd6mvFGqxBzFDzfo9JowtUtqQpEvKNtCiknj0VYiWapMjx6Kmq613/wlkaSd+bgocdt1UZI1nx/6NqJ5oQ8vS2mI/CMZiXRPU6a2zY11PSJ/WabhmWWJ2o5RAvo6aJGw5zbTVNkGX0ZGGB/1MUug9uubW5XZmNr7oZcAzvcMLTzcRsqf4ybFnEu/dujfs+9Mio/uzVJ1iOhdnNGQkZzd/+/bWhpeoVAoFAoOe0o8N4kk+vWNIo08osiwOZ8d4aUmI2Jl8nZGOSZNSXwZaRdJvlYuCXftWmp8PgLSpC9uXZJFGPp6Mr8CpekogiyicYvK8qDWwUivXmTcnA9ve3t74oOMCLMzWqtIcqS2bvdyDUU0YTzHqN2IWIHSOSVtG/NeFDL7kZE1RG3MIpYjQogsmZeRyxEZe4Yo0i7zt9haiZKw2a+eFtVa08GDB3eeHyZd+zpsLEkEH/n2s3nIojSj8jKatui9Q58w12Q2DaoAACAASURBVK4h2uqJ5Ag8b/BjzdgAfkbPSkb2Yb5qu8c0vSj6vRdVL+1+fjm2fE5JMu77tU50pqE0vEKhUCjsC6y9AezGxsZEwor8MJSA6D/woN8ok0wNXmLI6IYoTUVaASOpjOon0lLp18ui5+y7l0gYDUcJiATbvr1ZjiLH10s7zLujNppt8uph95ByLOqXz7OZ8+FRavblUdOllNfTfDJy4Cwy0t/LceB3v96ordB/xTH357IcsWzrH3/vXLRkFMWWkbFnGqBv0xw1W6ThZVK5HY+Ix7121aMW29zcnKyDyE/Kuqh1+HYzKpd9jbRZA+nnspzDaJz4ne+D6H2aUQr2/GX0x/KdYWV5bZjvQGqhXLuRP46516v41/ic9jQ8+oRX9d9JpeEVCoVCYZ9gbQ3v0KFDE1u6/8WlDyuTELz0mWkalBwjKZ05MpTGGJHm28BPRsv5euj3ygioI6YK84Mx0pHS4CoRhJmm7L/Td2efNm9RrmAW0bkKWaxnjulpeJubm5M+ez8MxzLyh0mxRtIj+vWImC+yLXeifEz2OfPZRAwUnLtMUu0xGGU5W70cxSxHMLOgROeYa+fbTq0vi4ztWXfmYO8e35/eVk+ZP9SvHSuP+Z4ZAbQfJ1p46Mvl+ojakL0zorzPzL/Yy6ljmxgFzBzfaEzs3cXyozgHWjKyyMtIKzRwfUUaHv2YRR5dKBQKhQKwNpemtPyVt19/L6UzIpG+tN4vccbKQvt8lIdlEsmpU6ckTfkqveZHSZ7+qp5NmJIVpc0o54j8mwbmKnrJhbZsSoP0e3owr8f6Z8ft0+ZPWo4P+UsNkebaYzEhzA9DTchL4OxTj1uRoJ+U10SRsNR0uY1K5LvJpNYs163X7kyji6LYrN6I9cO33d/vmSiiPkTPE9ddxgMbrVXTDvgsRJGkHLdeDqetHWoO0fogx6w9c1ddddVOWb5cKWdn6r2z6KOj35kR2P5/lkfLlX+m5yIdOba+Pr5vCEaN+7ZYvyz/juNqiOaM1gG+gyOLIP2K5PL0vzERu1JpeIVCoVAoONQPXqFQKBT2BdY2aV68eHFitvGqcRYmS9XXn6ezkzRaVI0jsxpNVnTUe/MdTQjWNkumjMxSDN7Itr6IkrojB680DZqIHM78TjORoUfVZiYtM3FEO57TNELzURSOzqCOQ4cOrZyWQPNX1G7Oe0QTxwAQpm1wLr25KAre8eXTTCVNSalJQxXteM57mQ7DNRVtvZMlmve2h+qdk6YmdV+fITM1RaZ7BknYGEWmNY7PxsbGLPE4ScWjftFMS8q3KFE6Ck7yiAjPrW7rG83wkUmTKVRco0wb8sdI8sHgHF7v61uFrCADUxn4Do7M4UxPoJk8Wm/ZFkLReuOzfPbs2TJpFgqFQqHgcUlBK1GiJLfhyDZm9IhCalep34NSBCWESGo2MFghSmJmgIuV4cla/Xmv9dq93vHq643Id6OUj6jtBi99UrK3c1amtS0aR2rKlLjMiS1NJflVyKOzAAdfHrdgMkQJ6EzMZUBDL30jozGidB6lzVCa7WmSrCejU4o0WD4/JCKPAiGYCsQx6AV9sE20LDDE3ZcXpddE331/IqL2rD3ZVlDSNDiO2hM1c5YdtYXvOb9WrW6bD6M4ZIqDH2OuVb4jo/QNBp7ZM8y1xC3H/FiYxphtMRalQdDalgWT9BLP2cZo/WdJ/kzriMjxfZpVkUcXCoVCoeCwp+2B6D+Ifn1NajAbem9TzbktUCgZRLZn+iNYZiRVUIthiH8kdbI8UplR4ur1j/d4idXqzsLQmUzu/SQZeXSPUox+Rmrdkb+HUv9c4vnGxkao2bE8jnEv3YFrIduqpue3sHpIQBz5irL6qGlFEme25Q7nI0o1mSMC7xHyZt97RNGZtB6loHCeMho0b61gOb222HunF/JPPyy1TXsP+S2Fso2F+Z6hBcjXZ/eahmefrMO3m1awLPXI101tjN+tf1EyfvScsh4DiUFo9eIWR74+O5dpnVG91Dp7KQwGjrnflHwOpeEVCoVCYV9gbQ0vIsWNEsFJiGz3MUJNmkqEGYkry/DnSDfTk5p4DfsTSd68P9MYIlqijO6sRxrL+hgFZuPLyEYPEhlTO4hs9wZGg0a2dIOXAjMNz7Q7armRDyCT+iOJnO3Ktk/qbVxKKZMRvr0k8lU2ueTYsnzW09u2Kdv2KIpcNWTPRk+DpqTd89Nl57ItlHy5hvPnz6drZ3t7Ww8//PCOdhbRhpE0gu+OyG9NbSnSWvx1PcID+u6jPlMDysgKetYvQ5a8HpGIsz/ZvdGxHv2cb7tHZl2LfHjUOu292aNmM83unnvu2WlDaXiFQqFQKDispeFtb2/r3LlzaUScB/171C68bZaSTuYTiPwzmQSSSZm+vmwDzl5/MpJi0oN5KZ3jlJEke8mHbaPWabl1kYbHCD76onr5Zey79cekUz9vpB3qobW2SwOMchNpt6evNZrrOYJxrqFIYqS2QStElLuVRSRG45gRp1M7iyIuMy0gywf1xzK/DzXaSHrP6MeiKMdMM2fEYuT/tc8HH3yw6//d3t6e0N5FhOmmYVn0tI0T/djSMu+W5WXrrxcJaM/H8ePHJcXRrKa90I/d07iy9xvHepV1kPlJexplts1bpHkyEpZz3PP/Zu/4yF974sQJSdJ99923c+9clO9OX1e6qlAoFAqFRznW9uGdPXu268+h1EKNKJLOeA+1wUxa9/dSa6EkHm3XkqF3PmPFYL+iyL65zyjvj9eQ2SGKJKSGx7GJ8h4pwWXRmZFPwtvb56I0OSb++oy0meshyoei9hLVybIzH86qkYP+2mz8ovINq/j/5ki8o2ciO5flqvp72Z8sl6o3z5n/PLKceB/8HNOKaWfMZ5WmmzhfffXVu9rSI99mX8m8wshzf60dM20xi4z0/1NromYU+Zk5NpyPbEseXz6joCONKyPFpnXCEEXechw5FlF99Nmxvz6v+d57793VtnVQGl6hUCgU9gXqB69QKBQK+wJrmzSjENDIkW0qKk0I5rCN0hLooMwS0SNH6TqEqHRCMyiil3DOevk9MjFmO073drG2/7P0DqYnRP1j22kuiELZ6eDumT947Srkv7zWtzUjJibVmx+nufBsph5EZtXMXNPr11zwSmSW5BjPpRpE/ctSGaIAJJ7L9i+MzLwZ3VovTJ2mzCwdh//btdn6sYAnM+dHtFakXqNpk9SA0vLZOXr0aLePTHnx55hkTTOxT0+iKZZm/WhsaQ5m+fbJ+qM2Wlt66T+Z2Z3HIxNqRl1m6KW08Fq6CMyMKS3TEjyRdo+cYle5K11VKBQKhcKjHGuTR5uWJ02TOz3mqIkiaW9Os4t2wqZDNAvbzvri6zVEu2ZTGs9ClqOk9UyTYEDKKqkF1OwiaqlsOw6TfiNth5pjtg1JL3F3Dhsb/S1gDKQv4npgmf6TAU4MFIjGmITgRBSAkqUjROM0lzrTs1LwXKbhReVmgVXU3iKtINOUe+ugt42TtFvD4bpdVUKXluvYa098hk+ePClpmjoTaXimBc6Nm+9PpjWx71HQSqZ5R+/TbEf1LJk72omebeml+WRE41ngYC/gKbMW+P7xmWbQjVGm3X333TvHTMOzaz2hxRxKwysUCoXCvsBaGl5rTVtbW5Mw8d5GovShRPZ9+jB6YcxSTMFl0ksmAfcSzym19LaDydISKBn5Ptk15oPINuaMtlnitXN0YR7WRm5KGm2k26NPkuJw51V8n7ye93gpndRxXDuGnpbJfvQ2rGQSfEZI0At/pqYS+Sa5Jrm+6NP164IWi1UsF3OSNkPBI58KpfKMAN0fY2oI/TD+mV+F+s8johHza4cWkPvvv1/SUsO76aabJu22e2zdWWoB13rUNo5P9iysMk+97dFYTrZBcxS7wHcj742eec5L9nxFVj0DrSrrJMcbrH7T1C3ZPGr/OigNr1AoFAr7AnvaHqhHdkvJ2t/rz3vwGDUtSgZemmECNqWWno8g25Q2kuxZbpZgH92bSWf8jNpATY9SqSGisjKYBk7tI5LSWR79W14So+Z4/vz5LomrpwCKIsTsf5Pg6YczH5DZ9X3dmQ+v53NgGQauu2hDTt57KdHBWdSuP8f56ZExZNJ4Rt0WzYFpT7yWWptH5q83RFu9ZNtfeQzDoGEY0nmSluPBjZPvuusuSUtNz2uFtLyYhpdFRPr+kOYs06YjbZ39oJYbkVZk88/56r2zSPdo5/27xJ4x9sfQIx7PEvi5DqKt2thf+zQNz6Juo3psfayC0vAKhUKhsC+wtob38MMP70gBXrI32DHSyDACM4piZL4LtTZDpK1lOVSRxpmR9xoibYB+xSxa0+C/s+/2SQ0p6ped623eyrbSV0T/Qjau/t4sZ9CPIwl550ikW2sTiTWK2KK0yg0zI8l+LlozktKplc/5dj3Ytl4eaLY2sjzMSGqe62+kpTGvMdP0ont5LRGNCevp+Zes3TbXnjoqgvf/MoLZ10EaMNPe7rjjDklLLc73IdOwexvpZn5RIqI0zCxLvfHKyN1pDfNttPng82Nj3lvfrI9aYfT8ZoTjvMf3j8+01WdWHJ9/xz4b5jae9igNr1AoFAr7AmtreOfPn5/8Kkc+B7MLM08lkmKZD5VFDNIG7cs3WBnUMKNIpCz6LsrD4zlKaT32Ckpf/B4RXFMTzthtIskvy6XJSLl9ffTdcSwi36T3AWRjurGxocOHD0+IbP382b12jgw1jAL0fcp8ebwnYufIGEEiHyvXLzX9VeYjyyvsrVW2NWPE8ddQw2NuZbRBaObr7JEUz0XwReuEW+VcvHixK6Vvb2+n0a3+f/q4rXzbSsY2DZWkJzzhCZJyy0SPTYfaE99vkRaXWRTYh55WmK1rOx9tPJ2t50jDo3abMaBEOYPMic7yDKO8P87fqVOnJC019Cifkc/+KigNr1AoFAr7AvWDVygUCoV9gbVNmsMwhPtDGTInPk2dXkU1lddCT6k205wWBWiwfqvHdj5mP6LvvdBWmgMzwt9eyH8WRBIlvFv76aDPEkOjtASaJ2ge6FFY0ewRpUNYud58lJmlWmu7AgasH55uivPO3dyZiuHbkPUjCupgGxgunwXN+Guz0PJV0lLmkpSjQJG51IKIjor0V378pdiklQUyrBIUkAWrRMEKEcF1j9otooSLkvv5/NOs5sPbja7qyU9+sqTlesvovKJnmuuqRzFHE2m2hnq0dJlJkSk8vh5+cj1GJCBZiklG2SflRONZ/X4MbL5Onz4taWnS7D0TnjihglYKhUKhUHBYmzzaS1omnUfUYlFSelaOIUqElKbSrJcUs+CYLNnS3086oizwwV+zKv1UlByfaU38Lk0TcikxMkDAjyc1lmwXZp/AnUmfTOiNNAm/DnpBK1dccUWayOrbZeNg2jmT370EHCXARtf27uWckgYvCu7JtmtaRZuZS1OINC4mQzMQwM85g1WydIFe0nrW9ug6jiOfuSidhPMyt+O5B7UC3xeSF1iZV1111eSeO++8U5J0/PhxScttgvisR0FsGRG0fUbWiCx1ytALluPznoX8++eA8z5HFxaVT+tDj8ghS/NioFNkjbL3XZbQ78eKVrQrr7yyyKMLhUKhUPBY24e3vb09CV2PNkak747Spk80pd+PvjRK+FHiMbUnaoteAs4ovXp+ONJN0Y/Q86kZsjBaO25Sqb8/I+3NJEwP2r1pY/djQk3FQP9jpM3PpXlEbYgSdqlh8XsUgp+NE0kMeppXJHlKsUUhS2yn1SDyOWQ+4oy82mNOwu/5bhgm3pOGszHoaaFzyem0vkh5OkeGzc3NrtWIm8JyQ1jT8Pxc2jYz5i8iwTR94BFpAbUyWhz8M81nmM9sNC/0g1HDp1YVtZFaGetfxQ9HS0J0b2YdYl/8mGRpV71UF1oQKi2hUCgUCgWgrUq6KUmttbsl/e0j15zCBwGeNAzDDTxYa6ewAmrtFPaKcO0Qa/3gFQqFQqHwaEWZNAuFQqGwL1A/eIVCoVDYF6gfvEKhUCjsC9QPXqFQKBT2BdbKw9vc3BwOHDgwyZfrBb5kXGw+XyRjC1hnY9ZsWxNeN3csw9y1vfNzvISX0rZVrpsbmwgZs0zv2taa7r77bp06dWpS0YEDBwa/dUmUCzmXixPlka3K/dhbo5cSuJUxUkTIrllnXgwZq8U69a2zLnrrgLmo5AztMRf5uTx9+rTOnj07acyhQ4eGo0eP7uRiRTyOzItjjluv3Vk/Ms7d6Fz2fET3rFJ+Vs7cXPXamLV5lXozxqLo3qy8Vd5zEftLdq8f8zNnzujcuXOzC3mtH7wDBw7o8Y9//E4yZ5RIzcRUS/i87rrrJEnHjh3b9SlJR44ckbQkt7UFzYXdS3bkud7+dNkeTywz+mHNXnBZwnZ0b7Zbsr8nS0rNqH6i+rIfih4tEPthSZ6kapKm5M6bm5t6yUteoggHDx7Uh33Yh+3Mw8mTJyUtk36laTKytdfWx9VXXy1pNyG4/U8y6myn8GitWvszCrhop2uD1WdtJK2bR7QHIMuX+i/JVSjTsh+0LOk/oiVj/TZWRkfnk4dtvOyYEQDbtdZfT9zM/ds2Nzf1mte8RhGOHTum5z3veTv71z3xiU+ctNXG/9prr911zogSrC2eOIHvsYywnetcmhJQMBmeP/7SdL1lO95HRB78Qc1IzHuUdlzfEXEI28D9/dgXT4eY9YfrL9qzj/0iDaIHE9i3t7f1+te/fnJdhDJpFgqFQmFfYE87ntuveqThRaYKKddy/Llevf7TY86UENH1ZFQ7GW2Uv4bnVlHfWS6prCJzRVZPRCHGdqxj9uAx1tszf7FtnnYuKv/8+fOT+YrMUpn5rLfVj2FuPfRMPhy3aHugbMsTlhX1i+WSxmmuD1E/emsnM4NRAqf07tvEelbZEiwrw9dj0rnXVLK1s7GxoSuvvHJHwzep328tZefMSsS+2We0BZdpfdYmkspTM/LnIk1Himnp5lxAEU2cgXOUvcN82dm2ZGxj7xj7GY0jQU2P7z/fl4z2rkeDZ+WYpnju3LnaHqhQKBQKBY/LouH1tIuM9DTyw2UBCFnZHj0SZX/elzPnCI7IbimtrCI1ZfdQevJtXzUIp9eHuYCOSDPPyLAjSYvb+cw5vy9cuDDZEsmvA0qAkebBeua22snmKbqHPpuovsi/68uIxotSa6bJ9sY6I1uOxijbaHiVYDNua0OC3sifxXFjfyJtgOTOGxsb6frZ3NzUsWPHdvy1tu7Mbycttb1ouyzfV98/0+zMt2ifnP9oXfS0lqifHlwPvfdapmnz/dDzUXNcSXTem0sbL17b0/AMVi/Xo1/fds7mNNs8tofe5sFEaXiFQqFQ2BeoH7xCoVAo7AusbdK8ePHiRN2NzDdUTblPVBSCzzDpLMWgl8NHM0G079oqOR7SajlH0f5gWZlZcMIqJo0sHSIyi7DPWeBJZLJl22h69NfZsVWcx2YOp7nSz4uZrPxeif6aKJjFAg0y0wdNPpE5JUNU31ygS+Rs5zrmvPdMXJyrbP8wb6rLdtY2E54Pzee9DBPn2EdBCyw3Mw1H8HtdZmbn1poOHz68814wU6btUC7tTm/wYOCJ76ulKti+ePaZpSdwXfryV9lxm8+ltbmXysLnjvVkuY/+fwbwWD8sfSQyaTKgJ0vR8PfO7aVnffHrItv7kmX4evicZObkCKXhFQqFQmFfYC0NT1oGH0jTnWc9Ms0u2h2ZEi4ZFbLz/hi1QkpCvaTuLABgHRaBVZBpP5EWav1gvzKNIkoXWKc93Lk7S5KNNGVrY0/S2t7e1kMPPdQN0KDGw/BsJsH7Y9xVm+MUBTNkaQ8W2t4L7qAmRw3Dh8yzfM5ZRkTgz7E/JiX3Es/ZT2p+UfBSTwOP6vfXZkExDHxgndK4hnoBWpubmzvzYqQVfoztf/aRgSmm1UhLDc+O2TW2vqxf1HL8MWpePVILvqusH9wt3YNWgSgVyLfDa7B2zvpj59hv/zzxWvu0sjgWkeaVJY9HQUw2Xkw1yawi0Ris+r6TSsMrFAqFwj7B2j68CxcupH4Ej1XSAwz0C1BzzLg2paVkQKnCJO7o1z9LBKY2E4W/85NSesQFl7W/R6NDbdauySTIVbRRJq9HaRBMMViFb8/avb29PRsebOVnnIdSLqWzDGmqXdq9pNGKNP9MG+T8RGuIfhj7NAnVz2UWWm5g27xPJ/PZUmON/LHZWs2S5XttzWjKfH2ZNmLXRpq5X5M9EocDBw7s+HhN0/MUVdYuajFGXWfHvRWCminHi+lXXnvKNCBai/zasXGw9nPeo3cHrSZZGkKUAE/fo/kobWzuv//+Xd/9//TlZVaCqH88Z/fYd08naMh4Umkp9Md8qk6lJRQKhUKh4LCnKM112LUN6yRbUkoyiYj+LGlq+6XE3ZNmqVFauZG0NCdprZIoSe028yX6ujMi1iwa1t8zF8EaRQNmvryoHtrfe34YKzMjw/V1Zn7DyLdHqd++U2K09eDvzdYIfQNecuWaoW+aPghfPpPurR5rk41dpLlkpN4RbVSWaM65ZJK5vyb7jObP+mzaQeZj8f0yrcP7wrIozY2NDR05cmTip/XPD6MIM4L7yBfEtcLnP5qDOWJmrg9/jNqorV22y1/Lc1kyuT9u9dkYm8/ONCzT8Hz0qWnhWQJ4RuwvTa1r9Elamd5iQzo3+84I1h7dWvnwCoVCoVAA1o7SlPqksPZLbJK25cqYFNOL6DSQksYkxyiaiZoWJd7Id8M2RH4Q9ou+jCyajRRQ/hi1QUqfvbGZ8wP27P4kaI3GkTRhmWbZy/frUfyY/5e2ed9W5gtZubbF1DXXXCNp9/ZAFulG8mD68CLNi2uD40+p1o+Lrck5ejpfPr/bvbRcRNunrEIazvIzX54hWvcZZVam2fprmdd23333SYoprGyeIi0z6s/hw4e79ISmGWQ0VlEepo1z5o+38q1ffh3Qx8UtkjLCZin3LzMewV/D7ZSsXJ/H6D+zYx70JfpjfL9YvZklJbono3fzx21tMEaB4+vHnrmJq+R77rRx5SsLhUKhUHgUYy0Nz6JhehFbJo2bBGCSNaUZn0PDjV+zKMredkRWLnN+ej4V2tJNYsgIaKXcXpyR+0pLmzUlSdqvPTjG1NKsjdHGrOynIYv09O3PmDZ8JBfPeTt/T8M7d+7czhjQbyFNt/0w7e2GG26Q1Nfwjh8/Lmm63hjl5fvHiE6CUbT+fmsDtaeIZSTL1aL0TD+0v4bzQik32jQ0y49j/72WTX9mRibs/TBWH8mdrVzLb4tYOezaHutNa02HDh3qRmBnOYDZuvZ1Z5G2vQ1gM3+zjYv5xSINlnl49s40a1jUVq5VvjOsnmgt27X2zPWI1G3+bS6zyFj68jyo7fK7b6PNk9/M1bcjsiLS914aXqFQKBQKQP3gFQqFQmFfYO2gla2trYl5yJuYzBzAT5oPI0e5qbVmFsgCD7xKnIUqU333JrSIrkaaBnt4kyCDE+gMJ42PV7OzEGIDw5+jNtA0QrOYH5PMDJYlovvyGW5MB3RkPrBjhw4dmk0AJdmzN98ZKbCN7Y033rjr0wJT7FPKTS7R/me+H1Ieck9TX0TbldGeRWkwGXUUTWhREAGDVjgvkcmMZrYeKXN2r2Fud25pumO4zaOZ6iIKM7uWqUBZOz21GAM3fB2k2KKJLtrTjqY2q4fm0CgQjeZqq5fvMt9eBivZONmnf+9E5lRfrh2P3o1cv/ad5AiehNv+t0+byyhIxffJ953UZXbcyopM6Dbmdk9GEemR0S32UBpeoVAoFPYF1tLwNjY2dOjQoUmAhpfSKTVQao4kOjo3GZrKsGdfn0keEV2WLysiZuY5bk/jJYdsB/CM6sdL3hm5MjWxVRLPDT2nLrUwtrFH9sxrGDzT00LndidurU2c/V7zZtDDtddeK2m5lujk99dmZLMRLRTBhPbe9lEMTjBpmdvQ+PVNujZqoRy/KGiBml0WeOX/p7WBaQjRljIZaXlGh+brMZiUzneBX8P2jK1Cxr6xsaGjR4/uaAg2fpGmwMAwjpdfbzaH2bqlluHfOwauKxtrBq/4a+0cx4f9i8rhXNLSEFGnMVDQ6rEgMAv4kpbWE2p2JPiwMYloySwtxcbe2h69b5jAb3PBtRpZTPw7qajFCoVCoVBwWFvDu+KKKyYaV0QgasdIp0QJWVpKANyeJUu6jnxrWch/zwZsUgwlOWubl96y5GQDtShfL0Pwsw1avaRNLYzjSM05kpRJ08P+eYkroywixU/kwzPN68KFC920BL8BbJSeQu2CfmD6a3176VOhJEzN1ZfDDT/pF/X1McWEPukovD7S+qTcDxyVwXQL+kksyVuabvEyt+1VFN5PSZtJ8b5M+ne4kWqUUE+//DAM6drZ2trS9ddfv6PZ2z3RVjjclJpzuco2MyQviJ6tjFg689P5c3y/0MIUbXuUES/zveTnhevK5sGeV9Pw7FNaWk+YBpWRJ/j+8Ri32YpSRGj9sM+eBSDS8FZFaXiFQqFQ2BfYU5QmpZgebRcloN6vMaPUmGhKyV+aRvaxTZTepakURjqdiDya0l60gaXvn5diGKk6t4mjNJUCKWkzyjGiFrNjJnFnycu+HEqUht62R9b+o0ePzhK5cn56kbD2yfGLQInbtJxVfETUAjgGvW2iqC1HNHG8do76KxoTarDcnDQiYzDYNfQzRtttkeaKnzY2vj5uKWPlGTmxtTXaMmmVSLutrS1dc801E+otr+GRjo4RnT3fM5OprXySLkcbpdJPSstCtP44h6sQ0PPZzcjdI7Jqg82daZLR2Fh/vO9RWo4nrS5RpCwT6+04LXn+XPacUnP2/cq0zx5KwysUCoXCvsCeqMUYtRQRlmbbi0SEtRmVj2lvlC56UZrc4sMkIS+x0D7M/BS7NyIstTZxU1LmfXlpkNpfpkl6iYySTWZDj/wjbDPb1vMRfxwFdQAAIABJREFUUUNlFFikSVq5Ph8zAymlIso35qVZ3yIfh/XFpHD7JLUcJXD/v/kwLCrUyqRlQZr6GkhwHpHdsq12Dde9IZJmbc3SOpFZHKQp+ba18cSJE5KmmqY0jRg00GoQbdFEKw61IP/Mc331aOksSrNHjWftsnZTa6cG6NvNvpo/1DRUGy9bW9KSLi3Lj40014wsmtHB0SaumUZJn2VkJaKPkBSO/t1oa4Rapu97BluD1CT5HPv1TgsJ2xbRPJrFKos76KE0vEKhUCjsC+xpe6Ao4i27Jsv58VI6SVxN4jbSYGp2/tfeJFIyD/Qi7Uw6o5ZGbSra+oJaGv0h1kZfNu3UlMaZnyUtJSwynVibrA+96FFGiln5J0+e3NUu3yba2ak5RxKkHTtz5kzKmLG9va3Tp0/vaBsRGwy1aErAEfmtRa1Zn+wayy0yP8Lb3/52SdJjHvOYnXvtHpvDJzzhCbvG5Y477pi0kbmnjAq1eYmsA1neHaVzbx3I2HEo+XtNgxvLXnfddZKk22+/fdd5k8B95N8999wjSXrqU58qaTkX73vf+3b1P8rdy0jlI98N2Zp6TCsWHd5j+bC67H1APyz9Pv4eGw/T5N7xjndIku68885dx33OmZVr2iBZU+gTl6ZR4fadEbiRpYek+PzeIxGnb5LvRP9MW7m0ft1777272hpZzrwv34+FPYtmQYkivWmR4zPh+8VnsMijC4VCoVAA1tLwbBNPA+3HUs5lR5ust5vb/5blb5IAJTqTVCJ7Mu3R3BYoyjnjpqfcvLbHG0n/G6Vcr+ExH8nKZ7SWlwapSZokb1ITxz7KTTNJjjmJNt5ee7C20ddl/Yg2Io18oL2IqWEYumwi1t7Md2tlm7Tp/zdNzng3Taq86667drXbj5NpdG95y1skLdfOR3/0R0tajrFpglK8pY4/HjG6eK5R33f6X6MNMrNNg62tpmH48aQmYWPD+j72Yz9WkvTa1752515bm1buLbfcsqsd733ve3e11deXsRxF0dycf791VISNjY2JVcU/n4y49M+SvzbKUzPN901vepOk5Xybpcl8Rn7dcYsaavrWZ7bD35sxrEQaF7k5uSEvI4Claf4vxzzKY+PY2ruWcxNZyWwszGJg99p3e769r59WDuZx8/3jr/G/KcW0UigUCoWCQ/3gFQqFQmFfYE9BKzQFetU5SoD035nkKS1NLmbSpHny+uuv31WWNxOYI5nbttBZ7VVvmnZI5hrtxp05fDN6G98/buFhKr2ZBaJgFgYE0cRp5hYbIxtDaWmCIeWTXUvTra/PxjOj6PLmFobez5kVbJsXKU4mZ9Iwzaxm1rHACmlp8nnsYx8raRnoZCbNt771rbvKfNe73rVzr42hlWvjZuMUkR6bqc/MNauQCGRrhSkG0XY+TCnJTOkRRZu120xKdq+F29vYeNx0002Sps+kjZWZNL15z0DCeJqronQYpuhEMFcKA7iiQB2SSPd2oreglL/4i7+QtJwz67u9F+w94UmWaYamSTGqj+ZW+7Rxi8gdON+2VrmLPIPafPkZIXP0vGYkCPas29hYO/y7klST9jzdfffdkpbP1ZOe9KSdexhQQ/cFTbj+/96ayVAaXqFQKBT2BdYOWtne3p4EfXjpkiH9dDAy8djDJIAsMTdKerX/Kb2Q7DgKpqBUwbI8SA/FgA3SAvktbNgf0w44Fj3KHftOJ7KNc+Q8Zj1M6PZttLqpfdKJHNHIrUL91VrTwYMHJ+kIPWoxG1vTqqJNNW2uLDjFJFAGSdlYmNQpLYMTLEjKxsW0l2j7GFujNj4mnfcImmllsH5wvTGIyddt95AkOdIoSRpubTENxdIU3v3ud+8qy4+BrY33vOc9kpZSuo2faYm+/dn8R5viMsCllzxsxOPUXH27OcYMJrHjlmoiSbfddtuue02bJek2U2mkqWZqa5TpRN7yYvNNOkRq+l4rZFqCzS0tMT3qP76boqR/A2nAbJ0z2JDkAr79TPey8TXrgH+/3nzzzZKW7x2+H6gB+mMRocEcSsMrFAqFwr7A2hqeDx82ySAK32foNSl3vERnUqNJLfSTmQ+C4da+nGxL+OjX3+4xKZVktD0SX36nNhJpoewPJe9IS2P7M+LnjOzZg1q3SfHe/s6tcpi6YGVEW5f4cOOsHabhZcnW/hi1W5PkSEbs/2c6gPnyuA69P9j6z3VlSdb0sfo22ic3t4xIg7lGmLBPjcVLwKTGIkVWNP/Rtl3SUop+3OMeJ2nqW/FtMD+p+bmsTJsDvx0R22T1cL1HycPe+tDbWurcuXMTn260DvgcWrutvaZl+Haa5kuthdahiKiBqUa0evlnjDR01PCjzaNJLMC0AVLoRSkNNv60BpCezreJGmOWjhOlp3B7IPrK/T22nviesXu4zn05foOAVenFSsMrFAqFwr7A2hreww8/PNGAIhswI2iooXjbLyMsmSxuGh4lRmm61T3t1J72ykCSW7vHJF1GJkXlZ/1lX/w9lELo3/QSMCWpjJQ28q1FEml0vEcPlWlqfuy56emBAwdSKd0iNElRFkVpkjbLzx3bxnK4Qab5X5jc68+R/Ng+GQHM/6Wlb5B+H38d/ckZtZwh8iFTG6T/1/s4aO0grZ9da5qN+SH9NYyO60WF2rVmqeHzQ61BmibhHz16NN1c2Xx4kb/SwHbamNp6oM9VmkYDG6wfrMd/t3qsT+ariyjzDIz0ZiR2tPE0NSu+s7imfL2M3OS7IrIeZRGcWf0R+TsJ/Q18rny5dozRtoaIJCMa4zmUhlcoFAqFfYE9UYtltEp2jTSVFOi7i6RmahUZgXIULcWysjwyaRoll21R4cuOtt/xbaTUHpHUMsqM9fkyrE0cv17UpGGOrNrQI13lnES+18yvmZW3tbU10bz9uHJ8THuipNrLNWLELdeb10yY72n1ce142DFuB5SRpUvLOYvy7Hz/etHBzMdbhcLK2sItX+y4ab2+PVyT9IlFVp1ME+J68PWQMP7QoUOz0XYcv2hj3mw7HVKP+f8Z0cktpUgFKK3+fPo2mnbJMcwIof39XMd8/qnFs+6orRHxfDbP3GjY+hnFOdBPz7H3728+R9mWUlFea2Y566E0vEKhUCjsC+yJaaWnmUQbLUrTqKzeJo7M0eL3iISWfiluteIj0UxaoQRPicv3IWMpmPPH+DYy0tH7Mf11Hpk2wOg9P5600VPqjNo+t8UGpWB/v5fCetLW1tZWyiDj20d/FSU6Py8ZaXCkpbM+amcZW4rvM3NF2Y6o//QZMyqPGl6Uj8mcLfqdfYQv+55J5RGps40jNZSobYbMktBjI6JG3vP/8l7W6+u2saZGEjG6RNGeESJthv53rqHIGpX5+xlp7NuYrU0iilamdkgtkOvP9zEjc2Y90fuAbSL8mNAykW1sHGl4Wb09lIZXKBQKhX2B+sErFAqFwr7A2ibNyEkZmXEip60UBx7QZEWC6Z5JMwrpl6b7hnmTpoUqZztpm/rsVW/u75chMoMZ2H6ScEcJzuwngxcis1RkgvHfozGL9ovr1e//j/YcJFprofnStzsL22eb5srxbemZyTLTDpPHvZmIARk0U0Ymfa6nzAwf9YVjQZNwlKzMIB/2k2WsYrpnIFRE/hCtRX9vFDLvx6Q3VxcvXpwE0HhkBNw0Cfr1yzXC57/nriANWGZ+94iCknwZEdgvvkM4Zr6NpDTkNRFJAikgM3LvKFiPJto5knQPmogNc+Zmu6cSzwuFQqFQcNhT0MoqgQeUWhlw0EvqpgbEkN8I1KwYrOITkin5kD6HOytHfacGS4kn2rXakIXV+voYrBCF52agJEWHc5QGQo2FEnHkhGffexQ/rbVdIeGRhJrRQ2X0bdE5BgREUqwhI22mJB5JpJTgLbE5SgBmMFaU4uHrj8aEc8Yk/SgcnekV2ZZdETiOUSoAy8nWbKT1MKBqLmjFtyFqfxa4YGVGz3JGZTen+UfnDLSURCTi1GYYrBJpTSxvjhjal8t6+V6I+sVAq1U0yoxAgWX4dxjvyX4/PFax3mQoDa9QKBQK+wJraXhGD0Xtxmtrme/Jl8Hr6HPiZ69MSvbcgsWSib2ERw2SWkxEit3zYfh2mBYTJanauVUSJ+mjM1Cz6EnplDZ7tGGZ5NaT0um788TiUVuuueaaibQcJUxH5N2+np5mSn8RNaFo7cyFfEeJuSSCjjbgNGTjzv5EvtW5tBeu4ah8tjWzvkTtzzQ7v17ok2RbI0mcx+Z8eL68yMqRaa+ZxUKaroksjD8iIuC1JE2ghcFfQ80q2z4qagOJxrP170FtLbMW+HOZPz1KT8rAtkX30JJAiwI36fblZt97KA2vUCgUCvsCe6IWM9Am7MFf7IxuyF9DTW8VKY128GiTUGm35DpHPhpFTVJjyOzIVq+XOO2Y0ej4jVd9mZEmYRoqbffUCiI/6hx6voIs4TmK7CSRboSNjQ0dPnx4x6eaRaxJ81Krl7RtXijFzkXt9UDN2M+L3W9zaW0hoUJEqstPRnRGEXHZWNg1kYZHoudsayGDXy+cl8wP48FxyqJq/XG+B6644op03Q7DsEs7iNZOFsnNuiMaRFqJskjraDsi+vt7BBscn0yD9BG31Pr4niN5fpQITr8ciUM8snWWRcP3tKvMtxv58KgpZ5Hm0T2raJs7bVr5ykKhUCgUHsVYW8M7f/78RIrtaRRZJFqUL5LRJ0URTwZqHiScjrQOblfSI6UlelKob4fXMLkZJTeJjHxIftsUaRltSjqkSKru2eg9Iok7y62MosA4XnPUYhsbGxOtMJLWs8iwnnZhn1xLPekv8/vYJ7ewkabbmNB/FWkzGaUXNQvSOUl5nhfnyftC/caYUizJ+7Ii2iZqH9TiogjJrH8RrF/2nMz58La3t7vaBjUr63tG2O7bzfdOtg1RRPlFiwFp3SJNn/Rc9myb1ubLzEiVs5zRyJLFSF4bcyPFjnKiaTnIfInRM0m/nKG3Hhipz0jWyKrnf0sqD69QKBQKBYc9+fAYieh9Kty23t/rP/2vfcbUkTE2RP4q5jb1IjszEmXa5VdhL6F2Fmkj2RYv3J4k2gDWztlWLpTwIq00819kuVURsghSP/aRj6AnabXWJmPbI8rNcowizTTz92bX+WtZD4moI1+nIdsY2MPmzpD5KaItbKjNZAxGXovj5rAZ0XVP4s7yo3radvb8ROuM185tAHvx4sWJL8o/L9SAGV8Q+et7pN2+rCg/k2Nna4Vz6+ulj86e5fvuu0/ScuNZr61zU2Lm7FmbLA/Ur09akEyjs3ZE99D61ct9JrI8PPpXI78m54eRrL5s9r3IowuFQqFQAOoHr1AoFAr7AmtTi3nTQmSK5K69VDvteOZI98jMJ1GiLIMhem3kPQY6nL1pIaMUy8xivWR8jkUUYMPxszaTbi1ysLN8jgXNP1E/DDQFRom73nSVmTQ3NjZ08ODBnXay/SzHt4XmtIi4OCMpoGk22kuPaSpm+okCX3gP64tIxrl2bA6tHpqePEiJZeZOBmH4dtCsxntoqotMtj3zIsF1ZehRgdHk1zMJW7Acn8soVSFLLeilQ3GdZXvdRWuHc8rnM0pWZ8COmTaj9B4zc9onn+lViM45z9Y2S3nyJnTOC589tjEiciAYHBS5JLiOs/5F95w/f76CVgqFQqFQ8FibWuzAgQOToAsPOtkZRh/tkj5HX5SR7/pzTCzNEo/9/z4kWtpNZMt6eqTIESK6HobOM9AmCsahttbbIoV1U2rubUPDY1nggac9osbVcx5vbGzsaDS+P5G2nvUtOk5Jm4Et2Q7O/lpbk5z3SEq3EHJuKWXSci/w4Oqrr95177Fjx3a10eb25MmTO/fef//9u9rCHd0jogOuK4aY2z2RlM61yOcnWu9Mf+FcRM+3jbVPks+epWEYdPbs2UnKiX8++S7KAuAiikF+5zqMNGEGlWX3RDRxnAc+4xbEIi3TYKjhsR2RpYeakI2vPYfWNh9UxVScLKE/Sg3hM52R5kfgGsqsBr7cVdOhdtWz0lWFQqFQKDzKsbYPr7U20aairTdMasjC+KNjcxpepJnMUUhF4eiUqIgofDbbGJPopU7Qn2TaEiVx//9cEm82dr7ebGsPD/o6KMFFGzRGRNlzkhZ9aV7j6hEhS7EvJesjfal23GsCvIYaPn260tR/ZBqYaWXWRtPepCnV1zXXXLOrXOsvpXn2VVpqi5k26u+hFmL1MGTfj3dGzdZLS8gIDuxa02T8Osl84hG2t7d15syZHQ05Ws+9d0TUtuhaamVsY6StZe+biEyC7xv68Eyzi7Yyy2jIqNlF4fu0DvBd4kkySNFnyNZFhMy60rMsUUPubXTLvpYPr1AoFAoFYE8bwGYbJEpTPxW3xolAqagXseXrjdpAySdKoCQNDyNGaWOXplIeo7J4nZe4s8gn2tajhExK6ZToIq1tjiw4wlz0aU8SNwm1F3k7DMOuKM6ePzZLAM7OS7k0GbWD93Ad9JLJTUo2KZxUY0xal6Trr79e0tLqQc2Rmn7kUzO/X0bUHFkHrFz69Kgp+35mWxYZekTxPT8f6zF4yqyeFWN7e3vn2ab/1LeXzx+1tuieTJtdJfmZc5ZFfEpTvyutT4yq9dcw3oA+/UjDs3uMntDGLdvOyZdDbZRWglXI2KmtRfPPtvC5jYi8GWU8R3ixq00rXVUoFAqFwqMca0dp+lyqng+PuSb2ST+JNM1divLE2A4Dc1u4tU8UTWSg5NPbpoUaCaOXeG8UfUhfUU8yntv8dJ0IKKLn08uiGnvS4KrS1Vy+F6M+swi4SEszZBJoJNVyLfIzIlc22DHT5Ex7s09bW/5/uzajMvP3GOy5of+Fmox/nuhvzaRnPjv+mizC19Cjh+K4RfRUdo35K3vr1+IGbCwi32rWvp7vMYqOjtpPCjJ/bzSG0nIs7N0i5dGLds1NN90kabd1wPx6jHg1ywLzMf282Xoyn7F9mlZt0Zp+fjLLURRV7fvfA/1/vUjfiBia91Db7EWsT+pZ+cpCoVAoFB7F2FMeHu3HUbZ9tpVHLzIsy4shIrYPlm/fSdTq76c0a5JV5AdiG6nZ0e8TRSKxLEYQRmwwc1FRkYSVbcS5ioTFNhoigt2MoDlD+//bO7sdya0jCWf3tAYzgGFYkgewoIt9/8dawDAgSII88kiyZrqq9mIR3dkfIw5Zs9gLuTJuqruqSB4eHrIy8ify7m4Tw+vWZWJ0q+aqtHxTHR4zL/t7fKUF2dUr6I2Qlczaum7ZM4bLsdGz0Zke4y5kEmKUrj1QstZTBmsfA5lREljvf++tIcfIunrK6n5/fHzceJT6HKd4OMfm4nAcb3qGue+yPlVz6rxeGq/GwmbIFHmuer6+zOBkRrOrhdW6U3Zr32/V85rp7yevHc/3GlYlrHIJuH8+95xXr99HRz1cw/AGg8FgcBO4muE9PDxsspectUcWmJoqpuP0V8atXJYm/2dzRfm8+2fU/aQSRrdIFGfRq74jK6lb2FU+zqRtmc24YoXM1tyrUavKmXx7cRI3fip5rOr99vb/8PCwieesYmocv8v2SmyF2bnuOrkGr/0c2aiz6mXmbt+W1qvWXd+frHVX09jH1udI65ZtYY60JSIzZo2VawHFeMvq3uNxUtYjWUjV8/z0/aW1LS1N1v/2tbMXs3PnurduV9um5xnnzTETPTu+/fbbqnpeU3we9WPrPc0bvVF8HvVtv/zyyxefaUzunuBz0+l7VnlVJN57Tsmnj6t/Z6Vqw324zPujGIY3GAwGg5vA/OANBoPB4CZwtUvz1atXT3TWydDQBbLX+Zzb930IK3qbWmAwXbi7ohiQTZJSnTL34Hp/pVvMJYakAPqqS7rARI5UaOqKlfn/KqmA4+b8aU66C2dPzonH+uKLL2Krkqrt3Gp/7noIqTyESTGrayq4Du48Z7rTND9yPVL4oGrrymYSS7pHqp7T9rV/usNZzFy1dY1SUiwlpvT97YmWO7EJ3gO81n3uJbatz/7yl79E9+zpdKoPHz7Uu3fvXmzjxpCEq125Be+/9BxauT4pWaf/WabSz5/ycyoXUAfyLi2n7ZVY8uc///nFPijK34/H9lN077vnDsuuuju/Y1W6lVyZgpvHlKwiuN+L7uY92vV8GN5gMBgMbgJXS4vd399vgobu1zXJj63S7FnCsMeMqrZWJBunOmkatkeRFSOrk0H4/ndq2spGrY49EakQuIPnRwbjCuuT3NGRAtBknR8Ri1WBcMLlctkEp10CiizQVATvAuVkemTeTrYpJeqwpMVZl4nxkE3174qlOfmxqi1b7Pul5BOLsJ0cFcecisrdOk9eAVeWQElArj8nCs5kqK+++ioyvPP5XB8+fNjI+nX2wbWRPCNHEl1SgbibJ0omsomwE6AgO3NiHDyO9qc5pBAB752qLEfHMphVwptekzjIqtSEzxvnjeK2/N+xUH2mUo2jwhdVw/AGg8FgcCP4rBgerQD360trecW49BmZ156l0EGrSYWgPG7fL1khZdB6vETbdOub36nyBdUpdrYqG2AMLbUBWbXPICvk/DnLTqDF5RgZt1k1YlTx8KqYNzXiZVzGCU4nIYAUN+vnyFeWI3T2vNe2iXGTqmcWkIq5eZ36mlIROks1Uluavv+9VHLXbkng+uJ5HvFgcKzyoFRtWya9fft2WXj+6dOnp3u6t17iGBJLo0eknxs9CJQnJMvp73FO6WnoayeVFq1EOeix0D5YSuPuzz1Ba/3fz4vPCD6jVoL3yTPnnhNCyn1IXoqq52e71tPr16+n8HwwGAwGg47Pag/kCjEFWjFkeIyPVG2tJLIyWn6urTyLyWmddwuAVhjPQyzO+eyPtJDh+7SSODcuppYEupnR51h2amx7xApKzGWVfdq3WfnT7+7uNuNfxR4ZJ1kxvJStmVozuXPjubsiWJ1zl7Xq3xEj6yxEmXOMg5CFUK6sj1eMkUXcrgg3rWvO0Yptcy5WHoDEXMgku3fExcLT+pRogYqh9ermKbEaF5dLbCnts2NPHEHoAgRJ/jDFy6q2rYQYs+Z92u99suj0vOn74Jrg+krPlo4kC3ZEoo3jEPoYtY763A/DGwwGg8Gg4WqG9/DwsLQQU0YgmVi3qugPT1lSTthU/lxZQvqfjMgxE7E0WnjO6kgxk5Tx5hgeLV5aQt2KIcvQ+dGiI8Pp+0sSUs7iWmVudriayyMNZmWlr47H+CtjWi4OJyRmd6RGkNchNQLt+2eGncbkhHpVZ8XMthRr7UyIGasCrXaXNcl1wJZGK2FerjPGwhwr4Loik6EsWz+vn3/+ebcBrOrTxK57rFPnxPt91XJs5anid3k8eR30PGPNo2rq+jnrump98zngGigzZyBJbzH/oer5Gch1rPlj7aDbr3CNjBefn6t2Przm9Ba4hrT0evTGAHsYhjcYDAaDm8BntQda+XOTv5YMr1sMsk5onQspLtg/ozoGx9bHk7IBqZ7iMu30umIb/VyqspIKz6v7+2m1uAa2fRyOmSVrycX99tRuXFbWEdHojsvlsqlbdOPlWnFtbNIYkvrLavxJjcM1GuX4tW2qrevnwWxNrR2tf9d6hYySXokUO6rKjJ7qIN2qd9mF/fiOKe8Jw/N69v1rLL/++uuyBdanT5828+SYGdlzEmHv76UaSl7r/lziPaW5/PHHH6vq+V7u97Fa+/De1jhc9qmOrf0xW5O1m/38+Awkw+Nzr7+XYni8z5zaDb+T4qpuGyr7uPhwep4ewTC8wWAwGNwE5gdvMBgMBjeBq1ya9/f39ebNm42LwiVbCEwEcOn1clXQxUIXnCuY5v6Ti7GDLs0kCN2DyNqGbq5VgoOQElvSPqq2FJ/FsKvj0U3A1PIkG7WCS1DhGFa9Di+XywuXppObSvOS3LlVWVosufHcHNNlynlZyWgl8V7nJkylDHTzdxcTEz7YAV1wCUEULeC95/oBcm1w7bprsZcgwn5vVd5ltRIt+Pjx41LsmS7M9N0jUlh067l7jeckN+V33333Yt/v37/fbJMk5QRXYqKEHbk9WbbEvnl9/HKHptCGEmyqnsWp6TqnC/2oYHzflufUkRL5nHAIr9sUng8Gg8FgAHwWw2NX3P4rz8JyCkwzKFm1lZdZCUxzW1qcTGFfFT2S2cl6khXdt0nFzyxIXwVUKe1DS7JbQvqMackMoLviWFq1SQTXWUWpWNlZ1dcUo6osQfO0knzjuJkg4hhJP87qHF15Ctlh6mLeP9N6YAG1Cs87KADM89F606u7n5JosPbhUtop6cVkGTdHexJPKxFxehLonXDbroq7+3fevn1rnx0C7wsKNbv1y7XCbTjefi+K0elVQsbsFN7LEpJYvPbhWkClInHOLcW4+1xobpRQw3l0sl1ff/11VW0FqLl2ung272ky/9VzZ9XurI/ZjeXDhw+HBaSH4Q0Gg8HgJvBZZQmMZ/VfX75H+R4nyMvYXZK3YVpt/26SwnL/J9kpWiIuPZxWH7dxIrXEkYJMtvtI8kArq5lYMegkKMwxrsSjV7i/v39huTr2qbXRm1hWbS1GFx9L7URWDF8ga2d6umPPTA9nzMvFishY0/z1tZwYqsbmygUoUZXGxpZWbqzESnicayiJJbj97EnSvX79esNqjhRM89z7c4drm0X8XEOdrSVmR6EItg/qxyFrd/J3jLeyaJ1z3ueB8mf6rsYqRtnvNwp46Nz1HXp8XM4E1yw9Jc6jwP/5XHfrzeWQ7GEY3mAwGAxuAp8lLcaMtN72g7++tLyZmVa1lTpKflzX7FJWDEWjyTCdEDRZGS0ily21l02kMTqRWoGNRVdxP7LQVJDZrajkQyfb6fPL/TFG6FrJuHhfYi339/f1pz/96SnbzLEcWZyS4hJo7blmp4wFMRPNeQIY96LVqs9dFjLZAFuWOPaR1hclt1y8QseVde7ifQKF2lNM17Eeso8UW1kxshRrc81Qe0YggBHEAAAST0lEQVTpKkvz8fHx6b5xsl2KvyeJPMZnq7K3xrF0ng+fN2RGWsu9mJzxN/2v56hjxIzNsWg9iTVUbeOJqZVRh76rOaZnjvJ0HS5O2rGKGfN/5nz073EsqwzfzRgOfWswGAwGgz84PqsBLDPtusXN7B3KATmJnxTjoAXG+EV/j0yEn/f39wRyZUG4jC5mnVLo2FnAZFgCj9PnMcUZBVrxHRwj4TLjUs0RGeRK3msP5/M5yg71v2WZyvJlQ1bXFiadm2uMKaTrzziMq20S9JnWAevy+nsUnE4tfzpzSZJvEqmmEHAfE+85skWOr/+drHXHoNL9xHvBNUVeZX0K5/O5fv3116djan0oflb1PJc6Btn7qtkts6c1f0lmrR9PdWvcv2Mz2kYZkMyedfcY30uSic4b4dqc9e864XGOX8fTnKd61/5ZqoV0zwnG6DjXLjap54Dmb+UdIIbhDQaDweAm8H9SWnHiuvrVTfU7zC7rf1OJIMUBO9tJVgUthVVdnJgERav7PhhzSJaI4LIZKUpMa7Nb6Ywrcq6pmuHiC45N9/G4LE0yVcdYuM2RWqrHx8f68ccfNzE11/ZDbEnXJZ1H3yYpQaRWSe491kUxLtPHoO/KimZs18WMU5asxk6ln6rtddeYdZ+5bEDGahk7FFZeAoFjdao6q7quvo8+J1Qo+eqrr+L6eXx8rB9++OGpxlGs9ocffnj6jt4T8+W8rWKdQlrPLt7M+lvF6rhWHVvjmBkvWz2rqFBE1t6PwWdtWm8uLp/mgNniHakZLtfuKibOnAuXFSwRbr3e3d0NwxsMBoPBoOPqGN6bN2821l5XIEh+e+r7datCVh4zglh3Y08APmX6p11rD8YnmP3paunItJjFyH11FsrjibnQmnIxDrJa/u8UHVIdIz9fqU4cqW3Zi592nE6nev/+/dO4Za076zLp9bmaulRDmerXnGXKdcZWK3199yy4fs5s/bOqUUzfcc0uabkyo1lw7CPpvCZ20N/jGOkBcFnI+g6zkB1j0Zzq9fHxMTLN0+lUP/300yaDtEOMVwwv6WO6Z0nyBnCO+7aM2SWG189JjE73qmLRnLfuTeHcUWlnVYdHNnbE6yVQT5jPNRe3pepQYvp9Hhmf5zZUtKl61hXt9ZjD8AaDwWAwaJgfvMFgMBjcBK5OWnn9+vUTfRQ1d4LCoutMkXYBYLrl6NJkkWd3FzJpgcWjrrgyCcquCt+T0CwD0S6Rh2nnfHUpviwH4HFSaxMeu3+WkiXcZ3vuHTfGveSHy+XydI2Vzu2C+nTTrALlvIZ7ZQr9PFhSwHXoZI2YHMBEp5V7mmOm68dJmTkpvqqta91dn5RiTqxc2+kcuouJbs4UTugCFVy/j4+P0S11Pp/rl19+2cx1T9RJMmZMoOhzwDKQ5IZ2zxAmfjBBxO1LY2CpFls+uaSlVP7CZ9bqnk7PEic47dZi35draUa3N8WrVwlPXL9Mautrh/fCVRKHh785GAwGg8EfGFcnrbx+/frJQnEWWSqUZlFv35aWofZPxseWQw7cl0tL5ntkAbIqHEtbSd64//t+kpCx24bzx0QD7quPlTJkZGCOFaYC7SQK0I/TP1sFjy+Xy4a9uwD90WLyPt6UtJJEv/t39KoECso3OdECshda2C6xJu2DyVpOKJfXhYzGiVWzGW1KG3fFw2RKRyTmaK1zzfa1w3VwuVxi0tPpdKqff/75aa2wbKVqK6O1KjQn0j1FD0aX00pyhExacc8dJWwprT6VAvQxkdG5/fN/Mi22knLPDs4Bj09RkH7/JiHwJPBftX2O8t5g+Yo71zdv3hwWvxiGNxgMBoObwNUMrwsEMzW/6tkKYnsJWvQuxZe+f+1D1pv27RoksnAxFVn2cZMVrKxB+olTTMWVAjBmlyzglTBzksFyMRdaS0dSmMkCaf2tSg76dVsxvNPptImb9GuZYpw8Z5dGT8uU7XvctWXBNNeOEzrnWtEYFYdhDKRvk+I7KX7h3mMM3LXKSen7mpPUzLjvh3O9amWVGF6S0qvatrlZ3XsqaWH8XHHgqi0757hdTJ8eI14fzs9qrQpcj/05wevK+9PlKDBf4sizimNMYtEulk+k557G1a+pvqt7gTFj592jN42tpSht1r97lNV1DMMbDAaDwU3g6vZAr1692mQXdmtWv9AUxl1ZPimWoVcyPNdWPmUPOas6CRjTIu5WVNo/Y0YpTtc/o+XlsoxoyTP+tirC5VhXMQKB+9W8Kds2xWarXlpjK4b36tWrp/3KEu/NfHUMvccYyip7NlnaZHpOTk2vOlfGYVYWKb0SFAjo4PVOMnguvr2Kg/Qx978p1ZcySvvx9orU6aXo46e3ReMQ+1LBcH9P12e1bs7nc/32229Px3z37l1VPcfAqp6fFXrvr3/9a1VtRZVXQgfJi+EY3kpMvb/v4uSUWaRIhxMe4D2czsuxdbf2+zaOKXFukteoIxWlax8uRs050NrR+nBZmmwTpgzwIxiGNxgMBoObwNUMr2prTTtBXmZU0TLs+6AQMmuPxPBYe1T1/CtPK5nxRUpC9bFoH6s2FsnSSVmMrqZub9sO7ifJhDkWwv2nOsN+3cjs9trEuG32MjT7NaJgeNW2HinNufMOpGxMxnD6tqyZS/Vw3bJ368ihxxxo4XL/ukdo6bvz4T6dEDnvE8rikZ2ssvQYK3ItjCiJxrUrZtcz7Y7ELfuYHh4eNg1g+zNEzE7Hev/+/Yvv0EvQzzvVj+616HJwa5SfuRrE/v6q3nRVQ9f3UZXvy3R/ue+u7r0Exr5T8+wO3iPMzuzeAUHr7e3bt8v10zEMbzAYDAY3gasZ3vl83lgbq6aKKSbgMt9SdhzbxjjFhqQ84uJk3D8tHdcKhyyJVhItSBczTL5tZ/HQOqMll1icGwPnyLEhqj8IKWZZtbXGTqdTZHl3d3c2htfjsQJrwThfbtyMR1DM2bVeSe2amHHb1zc9Cim24jJg9RnXDDOXXYYv1x3P07XMYkxUsTyy9iNC1ymDsYOxIq0Lx/CcYPNq7XzxxRdP8yX23Of4H//4R1U9i0eL4WkOJO7cx53aTjFmp3H1TG+yspTp67wR13hRkpcmZXw6hpcUpegd6efO/aXmvv1+otdmT72p/01Gp/fF3Htc07VxmxjeYDAYDAYN84M3GAwGg5vAZyWtCHTJVG0DlXTBiJquRJ2ZvMJA+arXHIWGXeot3XRJjsx1kU6uWrojHMVOAeEjSR9MBEidgd1+ktu3Jx5Q4odJP84dQffHXlnC3d3dxqXZ105Kb0/XqZ+D9ifZpnS9+vh1fZM7vI+bY6Tg8Co5gi5kujS7q4zbpnILJlS4xDF9pv3TvbsqaeFY6B5z6f0soGYxuCsJOeKKYsKTEyH++9//XlXP11+uTQpPOHca98tX53Zn4T/Pxwk20A2aSrZ47h1M7WdYZJW8sXIZC0zu4v5WY2X/yNQXr19LFtbz2S/XdEcq7zmCYXiDwWAwuAlczfAul8sm3dmJ+TKIT4birCYhMbxVoWQqlVil/JN90iJx1uBeix9hVdqQBF+d3JpAFpiKst15ku26lhwpOSVZ/KvzSTidThsW14uHv/32W3uOK2aq9SWrUoLCXCsurfqoTJOTCVulWFetC465L46jzycTasggVm2wuGY5VnoL+ns8T47VtXgRKPru5ojbrK6BCs/TvVb1XKqg5JW//e1vVfWcsOPGkkQjjjDhJG+1EmjnnDJ5xQkrpHIAXhe+3z/T/lNZxepZlY7jCs+TF2pVzsFSFkGJSe66pUS+IxiGNxgMBoObwNUMT+nlVd4CIoNjEflK+JOWFJmeQyol0BgZp0nn1MfkBIATo0tMop8L4x+cC7dNkkwTyApdjDLN20pmi8wlFfS7z169ehVT3BWHocXW2VqyjhPb7ecoC59SaKtyEYFitynm2ffjZKD62Fz5Bgu+OX9OkDixDTK8znr2YpFcb46F8PqTLfYSA7FrgtZ7/16P+1b97/2b7tHT6VT/+te/nu5xjUHXuuP7779/8fr1119X1TNjcO2tksgy15+bJ8KVpXCbxOxXsfzEzlla1e8Nnldiax28BxPLXYmyk9mlkoaqbeyOheZO6GAVY9/DMLzBYDAY3AQ+qz2QfqGdUC6tJjZzTa0qqp5/5cnWmHnZZZsEWiAr0dgEjq1vQ3kmSjuljK8O+u6T5FfVlm2QOax87GRPnD8Xo0wF5yvrifvZY3gfP37csM5+3BTXoYXoWq6Q6TFG7GK6LOa+pomnO7/V51VblpQyPB1b55pJbKS/lzIhU7Yo99O3pSeh34NdeKBvw4L6ldzWqvBca4dj6OPmGL777ruqqvrmm2+qquqnn36qqufszT4uFjIzlu+YMJ8nOq625fOug+suNUHt55Vkx1Jsj+Pt4FpdMcq9OKdjlDw+x+4yVzVfLDR3LJH38hHJN2EY3mAwGAxuAlfH8B4eHmLsoWrLOFKjxJUcGffBdidOloz/6zvO0kqW5F7mXdV+ZuIqNsl5o3isE1dOMbUjdUw8HuuzXH0Zx7SS5iIDWrGb8/lc//73vzf77ZYbpYloebPOq2pbzyfZOUqLKd7jsvRS7ZRrAZPiY4mBuW3owWDNo7PMOccrVpjaKfH8nIQe2R+tdFnePYZHuUBdY56Xk4fSvLmx9P3//vvvm9yBHtehEPc///nPqnpmDGJ4TmQ71Rgmr0o/Hs+RXqq+vlOTat7jfZ7IXIWU4dlBRpxaVzn2lNpQpfq8vl+uP3opXP2vYnZ6JXvr4yHjvr+/PxzHG4Y3GAwGg5vA1TG8+/v7mG3U/071O2zF00HLgMK5jhUy7iOLi22J+hilukDfMn3qq/NiNlaqX3JIdWbOiqE1yAwox/RojScGtqptSRZkvwbc/8rKkpW+YqQat65dqpPr17w3n616KSzex8QMv6rMuHk+joWSkdBKJzvtYHyR2cEdtGYZZ2Srob4/znW6b/v5Jcua8WCXAZyygt0YeQ+sBIAvl0t9+vRps/ZdLFfzpDUkhieG39fol19++eIcOTbe486Dwfudwt0uZrynuOSuR3oOpGvckfIYXHNsHjetFfdMZhxT8XTOUb9ujL2z9jplNPf99bySPQzDGwwGg8FNYH7wBoPBYHATuDpp5f7+fkmj6aZj0FvuRCc+mwpjWVzpaHTqmi6q7FKYWVKQCkI76J5JaeKdgtNlwGC1KwRPbk+6X13hcXLVcZtVmjjdOkfKE1ZQ0soqKK7x6Fr2ouQ+buf6ZcIE50luxJUgeHJH9rmlWyq5D/s+uI4oFp2+1/ebCo/p9u9jSvfTEUkmziP7JTKUULV1afE6uvKHnhiU1tH5fH6RtKL10BNnuLY5ThW9rzrDM+GNIgYuxLHnSuvb8Pw4pzqfPrepzx7T9leyZEISVFjdv1zvqQDdnReTlzTmXtLC76byMZeg5FzlexiGNxgMBoObwGclrQiuMFdg19tUbFu1DQ7TMiBL7FYFk1RcwknVy2QGpnIzoE3LuG9D1iGQFa5kiFIAehXgJtOj/Jmz7PYYrBPHZnIKt3GFrRybw+VyedER3XX3TkX2FIju2JNEU9KCzkdSU1VbJsdreET0NiWvOCbB/fKecKwhtZQRtG1njSmdPpW6uLWj8+O+lO7fWYhjcPxO1Ut2zXt8ZaWr8JyeCce8hcSmuhyZUuDTc0BjkvRcv49TcTo9Wy7hif9zrl3hOeeS/7si7D0mvyqKJ/g8cOUJZKpcD3rflWrQ26TzW5WiuaSrPQzDGwwGg8FN4CqGd7lc6nw+x/hc1dbfvYqHCbL8klWZCpA1po5kMXS/cfJZ01/ej8PzkUWdJHj6+SbR4FSI2vdLy5ExCjeviZ2lYuIOjj+x0759t2aTpa4YDeM6K4+B9q/10VsJpXPm3FI0uI9PaenaP612V6DPz5IQcz8O49ZMXRdWJSYpHd3FHVN8h5aw85jIkmbBs/av+ewxFcaRua3+7yyUDGGPjZxOpzgX/VzJmskUnLgD5bvI7PW5mF7/rkC24eZ8r8SA41ptk4QoVvd0kgtcSYtxLnidXK4Cn4ksHVp5snSevI9X3p2PHz8uvUsvtjn0rcFgMBgM/uC4uybD5e7u7vuq+u//v+EM/gPwX5fL5R3fnLUzOIBZO4PPhV07xFU/eIPBYDAY/FExLs3BYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE5gfvMFgMBjcBOYHbzAYDAY3gfnBGwwGg8FNYH7wBoPBYHATmB+8wWAwGNwE/gfxWT9oo+jPNwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1466,7 +1478,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4delZ1nm/5zvfUPOcVBIIkUlkuFQUiBPaKGoLDkCjYUwIaWNrK06IGBAQEBW1RRBpEBCMoIhtiKAQBgMdiYJIYoAGxSBkqKSqUpX6aso3nLP6j7Xvc57z28/zrrW/+ioJnve+rnPts/de613vtNZ+7mds0zRpYGBgYGDgf3bsvac7MDAwMDAw8O7A+MEbGBgYGDgVGD94AwMDAwOnAuMHb2BgYGDgVGD84A0MDAwMnAqMH7yBgYGBgVOBp/0Hr7X2otbaVPz9nqfhei9urb3oere74rqttfbGzbg+4d10zZe31n7xaWj3JZtxvM/1bnvg2tFau7O19qWttd/wHrj2Szr38e9Kjv/czXevfRr68h86fYl/916n672utfaK69TWhc0a/tbku1e01l53Pa5zPdBa+4DW2r9urT3aWntna+07r2VOW2t/Y7Me3/t09HMX7L8br/Wpkt6Mz37uabjOiyVdlfSPn4a2e/gdkn7N5v/PlvR97+brX098j6SfkXT/e7ojAydwp6QvkfQ/JL2nHoyfLOk+fJbdxy/cvD6/tfbB0zT91+vYh8+VdEt4/+WSPkTzMybiHdfpep8l6dJ1auuC5jV8TNKP47u/JOn8dbrOU0Jr7Q5Jr5b0dkmfprnfXyXpB1trv2mapssr2/kISX9G128tnhLenT94r5um6bqzkXcHWmvnp2la2vAvlHRF8yb5Q62126dpeufT3rmnAdM0PSDpgfd0PwbeK/HT0zT9j94BrbX3l/TbJf0bSX9AswD4RderA9M0/Syu9w5Jl6Zp+g9rzl95P8frvWHHLl4TrrNQ8FTxZyTdI+mjp2m6T5Jaa/9V0uslfaakb1lqoLW2J+kbJX2tpN/39HV1B0zT9LT+SXqRpEnSB3aOuUHS10j6WUmPa5YgXynp1ybHfoCkf6pZ8rgk6Y2S/u7mu9dsrhX/fiic+3xJP7y5xmOSflDSb0b7L9csQf82Sa+V9KSkv7MwxhslXdTMjH7/5rovTY57jeYfxN8r6aclPaGZSf0hHPfBoR9PSvrvkv6BpNuTvv5imMOHJH11ct2XSDqU9EFhHn5oc/wTm/a/FsdPkt4nfPZZmlnF45IekfRfJL1kxfr/xs28PLQZy89L+oLwfZP0FyT91816vlXzDXJzOGZ/058vlfT5kn5l049/LeluSc+U9N2bNfgVSX8xGf+k+SH8ys3aP7i5zgUc+5zNvD4o6V2ab/BPL9r7KEnfubnuWyX9PUnncezNkr56s5aXNe/XvyyphWN+z6a9T5D0DzVLww9I+nZJt22O+UBt7+1J0mduvv9fNe/XRzbj+3lJL7uO97HH/LwVx37p5tiPkPSfJP1yHO/T8Iz5Z9rcB8l3f3bTl9+8WfuLkl69+e53bPbmWzb3wf8n6YslnUMbr5P0ivD+j2za/N2SvlnSw5qfR/8o7tukL7cXa/hnN9+/QjMx8PG/wWu82VsPbPr/jZLOSfpwST+i+V74BUmfklzzYyR9/2ZfPCHp30n6qBVz+lOSvi/5/PWSvmfluvzJzdrftJnD78X358O9cWkzvh+V9JFP1155dzK8M621eL1pmqaDzf83bP7+mqS3SbpL0p+S9NrW2odM03S/NOuUJf2E5kX/Is0P6udqfmBI0h/X/AA60DzZ0rzQaq39Rs0/Nm/QsbrlCyX9WGvto6dp+pnQtzslfYekv7U55omFsX2SZhXLt2v+Eb1Ps1T7fyfHfrCkv6tZPfAOzQ/wf7lR+/zS5pjnaN4o/0LzzfSBkv6KpF+v+aG9hWmanmyt/WNJL2qtvWw6qXJ4qaQfmabpv7XWbpP0bzU/HD9b88PxeZp/BFNsbDTfpvmm+wuSzkj6UEl3VOdszvstmm/IX5D0eZofLB+8Odf4m5s5+FpJ36v5Jv5ySR/RWvu4aZoOw7Gfo/mG+xOSni3p/9r06y7ND7NvkPQCSV/dWvsv0zS9Cl36Ds374+s24/1izfvuJZv+3qL5hrtV87q/eTNH/7S1dmGaJkq1/3TT5jdrFpC+RPOafvmmvbOSXrUZ85drFm5+q6Qv28zdF6C9r9X8I/5pkn7dZm6uaFbhvUmzyu5fSPoKHavMf7G19kGaH9z/bNP2FUkfJOn9dP3Ru4/VWmua5+x10zS9obX27ZqF2d+l+WH7nsJ3a74/v0azkCXNJogf1/wD8rjm++tLNN9/f2JFm98o6V9K+qOaf5y+ctPO5xXHPyrp4zU/I75W896R5gd+D1+pmS1/hqTftHkvzc+Cr5H0NzTfl9/ZWvvAaZp+RZJaax+7udaPab53rmz69uqNWvLnO9f8UM1CMfGzmgW9Llprz9b8jHvRNE2Pz9tiC1+h+d77Qs3Cxu2a78vuc+Up4en6JQ2/4i9SLtW8pnPOGc1SwROS/nT4/Ds0/9jd2zn3NdpIcPj8FZpZxq2QuN4p6bvCZy/f9O8TdhjjqzZtn9u8/+pNGx+U9O2ypPcPnz1rc+xf6rS/r/mBMUn6CPT1F8P7D9LM5D4tfPaRm/P+t83752/ef2jneicYnmZGcv81rP2Pa/7hvqH4/p7NfPyjYs/8gTD+SfNNcSYc9/c3n//l8NlZzezsm5LxfB2u8yWa7b0fsHlvNvDbcdyrNQsxe2jvi3Hc90v6ufD+czbH/dbkupck3bV5b4b3zTjuGyQ9Ht6b5b0Ix71g8/lN1+u+7ewJ/r0ax33s5vM/t3l/92aN//HT2Lc1DO9LFtpom332f27W5kL4rmJ4X4M2Xr50n+iY5f3F5LuK4f0/OO5HNp9/YvjsuZvPPi989lOSfhL3zAXNWpByPTRrrE7cV+G7r5P0jhVr8t0KjE45w3uNpG95uvZF9vfuDEv4JM2Sgf8+N37ZWntBa+0nWmuPaH4IPaZZ+v614bDfK+mV0zS97Rqu/7Gbcy/6g2m2sX2vpN+JYy9plqgW0Vp7jmbVxj+fjlnVt21ePzs55eenaXpj6MN9mh/Qzw1tnm+tfVFr7edba09qlswsHf9aFZim6b9plspeGj5+qWbW/D2b97+gWWj4ptbaZ6z0xPxJSfe01r69tfYJG5bYxYYtPV/SP5mm6cnisN+i+Qfq5fj8OzX/cHNdXjUFNqFZbSdJP+APpmm6ollt+L7J9b4L7/+ZZuHKEuvHSvrlaZpeg+NeLulebc89HZPeoLCOmtXb/13ST7TW9v2nWUA6p1ndtNTeja21u5OxRPy05nvmn7fWPqW1ds/C8ZKk2Cewth7+kE7exy/F9y/c9OU7JGmapgc130uf0lq7aaE/Z9CnlBZcI/5Vcr27Wmtf01r7Jc33/BXNzOucZq3HErL1uqe1dsNT7Cvxb/H+5zXfHz/oD6aZ1T2pzb7f7IGP1HwvtbDGVzVrMT72OvfxCK21T9Rsu/3TC4f+pKRPba19SWvt+TvswWvGu/MH72emafpP4e8X/EVr7ZM0L8zPaFbnfIzmm+khzRKJcae2PT0Xsblx7tC2d5k0/xjcic/ePm1EkBX4LM3z+D2ttdtba7dv+vgzkj4zuWkfStq4pJPj/FuS/qpmFcwnSPpoHXugXVAfXy/pd7bWPmTzo/PpmqWoK5I0TdPDkv4XzTaHb5D0ptbaG1prf6RqcJqmH5b0xzQ/BF4h6cHW2qtaax/e6cedmqXm3np53k+syzQ7FDys7XV5GO8vdz7P5untxfvnhP5UeyT21+Bach2fodnmfAV/9s67a0V70sKab+6l369j4eHtrbXXttZ+R3VOa+0D2a+Vws8bOvfxjZr36Y9KuhTuh3+l2Zb5yQttvwV9+mMr+rMW2bp+l+b746s1s+yP0qzNkJbvM6ler+vtaZnt7yenbcebuO+fsXn9O9ref5+p7b13hGmantA8lky1eKfyZ5ikIzX+P9CsfXk47IEzkvY3789tDv9CSX9b8zP/tZqfK/+wtXZr1f5TxbvThtfDCzQznxf7g9baBc30P+IdOn44rcY0TVNr7WHNUjpxr7YXcO2PnXRsD6QUZvxOzSqxXfACzT9Sf90fbDbNGvxrzfael2pmczdK+qZ4wDRN/1nSJ28kqo+S9DJJ391a+/Cp0OtP0/Rdkr6rtXazpI/TbF/6t6215xbCwUOa57G3Xp73ezd9lSRtbog71LmxrhHPjNfZvJfmB6378xuT8+4N3++Cd0j6Rc03dIZfKj7fGRuh5Ic3981v02wz/Dettfebpinr95u0bYuhQLArbMv+3dp+SEvzvfJPOuf/Ps0/2sZ/f4r9iTixRzes+eM0m0y+PnxeCgm/yuAwgL+uhN1q9nPo4eckfVjy+YeqH052k2Ytxxdo20b94Zr3xedoVqm+S7PN+cs2mrI/ovkHcE/bmoPrgveWH7wbNVPtiM/WNgN9laQ/3Fp7xrRxZElwSbM0SfyopE9srd00TdPjkrRRzX3Cpt2d0Vr7aM3xP1+v2Zkg4oJmR4oXavcfvBs0S2IRn7PmxGmaDlpr3yjpz2t+kP/AVLiRT9N0VbNj0F/VPA+/Tsdqwqr9xyS9csMQ/o6KH6Zpmh5tc9DxZ7XWvnKzuYnXah7nCzSvj/Fpmtf+1b2+XAP+qGYDvvECzTf+T2ze/6ikT2qtfcw0Tf8xHPfpmlle/LFcg++X9AclPbJRNz9VWKIvVWabef7hzd7+l5odV7L1uaTZg/J64oWancQ+WbPKLeJ/l/SC1tr7TtP0puzkaZpef53704PVq0f32caNPjNDXE8sruH1wDRNb2utvV6zzf9l19DEKyV9QWvtXpuQ2hxT9+s1q30rPKZZg0T8I81emF+o5BkzTdNbJP2D1tqnaP5hfFrw3vKD9/2Svq619rc1M6WP0mw8vojjvliz6ua1rbWv0iw9v6+kj5+myRv15yS9pLX2qZol6IvTHN/y1zQ/YH+otfbVmtVtf1mz+uHLr7HfL9R8Y//NjQ79BFprr9Rsu/hTGzXBWvyApBe31n5Os5T7qZrVmmvxTZpVoh+umb3FPv1hzcH5r9DsHXazZsP+RUn/UQlaa1+pWQXy7zSrhp6reX3+U8EejL+wOefHW2t/V/MP8Adovgk/b5qmB1prf0/SX9zYKr9fs1T55Zp/fH6gaPda8Qdba49rtnM+X7On77cGm+q3aLY7vKK19kWaQw0+U/MN/LnTSY/RNfh2zQ44/26zt9+g2T70gZptYZ+YqKV6eKtmJ6tPa639rGanrjdqFhB+i+b5e5NmZ6C/olmd/HQkd9hCsGV/4zRNP5J8/07NgsNnavbee0/jV7QJQ2itXdTsQfkndTKg/bpjmr2p/4dmDcu/1yaUpiPAPxX8GUmv2jyH/onmRBLP0PwsuThNU++59/c1CymvbK19mY4Dz39WgaW31n69ZueYPz9N09/fCNGvZmOttcc0O7u8Onz2Q5rv89drFpSer9nz9Ct5/vXCe0suzW/QPJmfrlkl9/s0M45H40GbB9PHaJZM/6bmG/xLdTIjyFdpnsRv0WwU/frNuT+t+cH1pOYF+zbNk/yx08mQhFXYqN1eoDnOb+vHboNv1nwDLdkuiD+p2SD+VZL+uebN9hlrT56m6e2S/l/NDzwa1h3v9lc1CxffrDne7HdP0/TWosn/KOn9NYcl/OCmXz+smb30+vEfNG/g+zTr9f+N5h/BKOF/geYME5+o2YHo8yV9q+Yfg11/YJbw6ZpVMv9K84/8NygY1qdpelSzCvqHNdtRX6FZaPiMaTskYREbJ6aP17wX/w/N43+55of+a7TN4pfaO9DsLXnPpo8/qdk54HWaQyn+hmZtxddK+m+a1/R6ZQhZgm3Z6TxN0/Q6Sf9ZxyaA9yg2avhP1szav2nz97OCgPg04Y9rtml9v+Y1/PSn4yLTNP2YZkHoqub4zldp1sq8v6R/v3DuQ5o9wx/Q/Az6Fs3r9/HTyZCnpnks1/Jb8mOaBb9v0/wseqFmUnOtBGQRbb1vxsCvFrTW7tIswf6taZq+7D3dn/c0Wmsv0fxA+zWVendgYOB/fry3qDQHrgM2rsgfIunPaTbS/8P3bI8GBgYG3nvw3qLSHLg++MOa1QQfKemznia7wMDAwMCvSgyV5sDAwMDAqcBgeAMDAwMDpwLjB29gYGBg4FRg/OANDAwMDJwK7OSlub+/P509e1aHh3N4lF+jHZCpI/f29rqv8X+fG7/L2sxyyi4d83Sds+b7tde53uf2+rQEr2mvfdp/p2nS/fffr4sXL24dfNNNN0133nnn1jlxrXmtpdel7zJcyxyvbWdXrLGfZ3O8tj/VuXztHVN97ns/wp8dHByk73vjba3p0Ucf1bve9a6tgdx4443T7bffftTe5ctzGNiVK8dhjFevXk37uebeWtpDu9xb1+vYJXB81+ucao12+bzaZ9nvRfVbwt+C7J73d/v7+3ryySd1+fLlxcnY6Qfv7Nmzet7znqfHH39cko5e48Y7c+bMUSck6cYbb5Qk3XrrrSfe+1WSbrhhzrJz4cKFo+vEV7eZDd7f+bPqvV9jO2zDn/N9/J/HGL0F4pywDX7e6wvH53P9Gv/v9amCN5wfUj733LlzW330MX7YXL16VZ//+Z+ftnv77bfrpS996dHDyu157WO/uf4+xufEsbo/3jucS79mN3u1pj3hzHA7ax6sRu/Gj5/HHxP+ePA6vb7xh8br5M/5Go/xq6/r916/S5eO49n9v18ffXTOF3Hx4pwo6Z3vfKck6V3vOs4u52vGe+D7vo85EmbcdtttevGLX6yHHpqT+rzpTXPegvvvP3ZC9rWefPJkYQ7voew+OX/+fHqM3/f2wdI6ZJ/zM76uWVOD9+cuP2J8NmY/QHwO8H22Vyl0+L3X3a9xjfy/f0u8h/ybcsstc+Ib3/txzDffPGeQvOuuu/RTP/VT5fgjhkpzYGBgYOBUYCeGN02Trl69evTrSykwIpNS4udrJO2MnfE923u6VE0VPaekn4ESd/V5r42K6mcqJv/PeVsDXqca7644PDzUE088cTRWSpnZNSiBZuo2zkPFuHoSd4XeelRrtkbSrs7tqXyq9c+u6//NVHh/8j7zfRzP9Wu1zzNWWO1NI55jpuhjzp07153vw8PDI4bg54/biH3gPUYtUaYJMXsg0zN66tDqHttFLZ6p6Ag+56pnSe8618IGK9aWaQe4n7hn2IZ0zOi4Z7zGTzzxxIm243f+7F3vetcq84A0GN7AwMDAwCnBzgzvypUrR7+w0XZnVIyH9pEoxayxoVWfV/rvNVIN7WG7OED0DP/sY8WS1hjUK6bcQ8XG2FbmbMRx+ZyMNXJu10rosZ3YR5/v72xjIXq2Ttpqerbcan52cS4gA+s5cxi0g/D6cR6XjPjZPFbj8Jywz1HiXrLdZQzDz4ElJ4XsnNg+WUvE4eHhlhNM1m/aBjn2zIZH34E1mhHeH7Gf0rXZ8GhDjKjGU423dz1+nu1Zrpnn19fNtHvU3lBL4HPjfe1nQraPpWOGF214HPOlS5fSMWQYDG9gYGBg4FRg/OANDAwMDJwK7KzSPDg4OKKzVktkKqbKeSBz8aU6qnLXz0ICllSZa+L+SKMzel2ptdbEtiypFtaoPyr1a69/lZotU5NSnVSpbLM+uv2e+nWaJl2+fPnomEwdnrlJZ9eO629Vh9VSfk8VZqZKX4r3rMYhbat61sScVSo/3jO9cJgqHCVTNVdhFdwPmVqqCkOwG3k8h04E3BeZC3tmFunFevkv9rGnQve8eF/4NarTHBrFvbOLc0fl1JOt5dKzMFNpLvWFe6j3bOR1eip0vqfKOFNpeq/4Ozqk8B6RjtfDqk32NQuDMazuvHLlynBaGRgYGBgYiNi5Ht7BwcGRVJYZmSk9ViEGmXuwJRsGGFcB6NlnVfBwBCWtJQeU7NiqrUzSqiTunpNOJcFXTgsZKyAq1/3e+HrvfR2vz8HBQZcJX716tes4Ew3TEXSzt0QubUvplhirfZftncp5JdsP3t9kKNR2RIcKjoOoEgXEz3gMx5k5gfE7Mi8jCzGwZF05FcS58djN/rhHs+fFLgyvtaa9vb1uiAzZi/cSHVNiwgsHLjPxxRrHoIy1RvT2zpJjX8bwqucOmWQWoE2tR+XY1RuHGRYZXramPpbsjP2I7TB5QS/RAZ2vrl69OhjewMDAwMBAxDUFnld56+L/lTSRMaDKzmKJgIwvY4c8l8yoJ3FluuXsfTy2chfPxse+VHPTk9KX0l5dC1uL57j9SnLN7IGUfHs2vNaaWmtH51O/L9W2Gc5XZHi00SztmV5YBec0299Ml8T18biy/UZbBtlbj4Uy3Rpfo2TP9vwdGZ4l8rimZmlV4gGPP9rCKrd+MofI5rzW/qy11pXSz5w5s6VNiWvJdGBmbWZxt912m6TjFIfScdoqj8XnVAHpmX2susey0AnmAHUbDPnI1p/PXIPPm5iqj/eCx+Hx+rWXlpDPRveV9jrp+J6wbc3vfU+4b7GPvo6Pfeyxx070w32Me7SX0GAJg+ENDAwMDJwKXJOXZs9zr2IklDYzO0XFfCpJJftsDcOrpLDK4y47tpqDXdha5Z0a54RScpWOKsMugfTUi1P670nfkRkteTr2mAKPWQq6lmrbpt9XCYLjZ1UAfcY4GXhNRtyb6ypYuZdSinZsSufZuMgK2S73edxDS96/GYunLZdB0Nl1eI/1gr1bazpz5szWvR6fA27npptuknTM7O68884Tr5Hh+VgyPNr9qD2I/1dMiOxGOmY+fvU5TJnW8ySm1oEM3+OO/fZ4bL/0uJlwPbbH9WAqMY8hPiPNzvydE0I7mTjnM8KM0W34vfsT70EGv++CwfAGBgYGBk4FdvbSnKbp6NefqWSkbUmUtpS1aahi+/SAi1JPZXNaY+OqUnBlqZ+W0vGsSWVWebBmtiIyCZYDoWTcS0+2xiu1skXQhpPp0temQWutbaWUilJaloIqQ+yrJWjWSvPnlp7p1ShtMzyDbcW55XrQey1LbFzZQ8nssnuCLLNKCxavwbRTPJflWmJf6XFJb7lsfL4O7S70lMySYrv96IVJtNa0v7+/5aEatQNkPGYxd999t6RjhhcZEJkOvTUrNh3/573l8ZDleIzZ2Dkn2bOKe4QajMwLlePzq+fAx0aGR09KarboTRnvVbJDt8XrxHnkM5Bemka0//a89pcwGN7AwMDAwKnAzgwvIvMQs1TBop08Np5DfTF/3StPMen4l9/SC+NDMsl+KcNGxkKX4m167KRn8+y1HVHZqtjn+H8Vh5XZipZKCtG2F4/dRdKqyrhEkLX6mpaWsyTUtFstZaaRlhOcu6+ZRzFtCxxXFl/GPrB8j++JzBOWfWKmmqz6N/tSxTZl3pN8JfvoeR+6r2YStstERuaCrfQOzjBNkw4PD7cSGGd71c+B22+/XdIxu8ji2egpzP3Luc4YHsFzog2vKunTixkmK6RWwHNKe2T2XVXoNoLrzr1i5uriu7bPZWOnBqGn1bFt9d577z1x7oMPPrh1Du17kf0vYTC8gYGBgYFTgfGDNzAwMDBwKnBNKk3S6hhISBdev6d6KkuFRSM7VRZ0iImfUWXqPpnOZyl3YkosqV/Nl6odqicylZ9BtVvl5JGpUKnCrOptZcGjDAimWizOia/dU3ewj5y3pbCETAUV2+M8+Tu6N2cOGnQs8KvVH1l4Bdfb89FLNcc9SHVxlkarCn+okjJk46Mrt4+xujCqeali9DjpiGJkKe3oNEW1bNxvDGFhgumsDprHE9vtpaXL6nBmldqz0KXYl8yJxGq6at3d79g/hld5jHEdpJN7nmpbqv4ytW4W5hSvT5PNmtAPz5vnIu5Vj51mBO8z34OPPPKIJOmhhx46Opcqcu6ZzOxDpyurwe+55560HxEx5eBQaQ4MDAwMDATsxPBaa6lLaZQ+6DBBKSNzwY4uzhGUCNxmllqKrrB0o4/uugyypmNDlhaIDKFKxNxLKcU5qNI3xWtX6c+qIH1p22XaIIPK5p3Gfa5XL4VZ5gwTj93b29tyd+5VCLdUWSUGiP2tgqzpPh1ZbRUEX7GDCM4L1yHuHUrhvSQFPJfsyHNuFvXOd75TUs7wPHZLxz7HyNjQ2qrf8Rw6PJFBZPuMDjtLDO/SpUtbjDyui9OEWaNj+NqZM1F1T2dps6ScCVOT5TYYmsHxeMyxT2ZP8Tp0nKKWqLdeHB9DNnyduC+8j7yvzOAefvjhE5/73rTzUUSldcucc7wu1D74HK9rZIW8bwfDGxgYGBgYAHZmeGfOnNnS6/dK8FTI7GNMQ7YmvRZZWpWcOLZh6YsSR+WSHa9Z2d8oYWX6/splPktXRrZJ2yCZX8Ysq2D4bG0ona8JpGfw65rUYmRAcR49RttUmIi5ShQQ263m1uiFJ3AdMpuabcOUji0B+9yeFiJL2hv7ltmBGUzOwObMNskSP1WB5cjW2CfOAduM/SXL9rG0kcX/PTdLpaUODg62El1kc8x+uv8sWRP7TQbPIOtMg0G7rJmI3euzUB3ur+pZFVmT55nB45WNP4KhWe6zmaTXxfa4OCdve9vbJElvectbJB0zPZ/rPsb5JLOrAt5j8D/P4dxnJcHI9GNi8SUMhjcwMDAwcCqwc/JoS1tSzhgqSZupmLKS7VUS2l6BTEqVTI1DDzWPI76yBEUV3BuvzfFVknFsn9JYlbYn9peeT2SSWTJuemNSP57Zu2hPWgqWl+r0ahX29va2EuTG6zDlFcuoZHZE2sNo57XtlgmC4zlk9FzbOE5K2PT+s40jrqXn3Syg8rh1f+JeJeMmG83s6Ibb8TkeO+cos8cxxRPv9Tg+eia6XXpVZmnp4v1U7R/7DngNe0mDyZLdN89F7CttgfToJYvKytqwLBTnItMSMWkBbZxmXll7vG8qO13sG9PFea+apcXgcV/77W9/uyTpgQceOHFMpXXJ5sDnuE9mv/F6/oyJrN3XzPbOhPNZQYMKg+ENDAwMDJwK7ByHd3BwsFU6vlewktLPc1rYAAAgAElEQVRsZnOiJOJjGNOXSelM9Fp5LWXpyCgN0is08wasYgPp+ZmBUlEv4bClJNq6qtIyPdZj9JgrWajnmB542ZzENe1JWtHLl7YV6XidK2aQxQbS45TzQ0+xjNUalRdtJqXTTkbWkaWyY9o9et6RXcXrce/Q/hbHUqXMYnxrtnfcHlNjkYVkXtb0uDOydHJZmqsqNZ09OBmTGMdsZuKx2IvQ8+XvMy9NH0smbFsTk0tL24ml+azqeU/6GPfJx9iWFhkebYKcA65x7CP3TFWYNYvd8151qi/GxWVJns3c/Eov6yzekLZ2ertm9zXLOJ07d251AunB8AYGBgYGTgWuqTxQVWxVWrbjGJkE7FfbXe666y5Jx1JOxrJuu+02Sdv69p59qfJ4pJ0itkFvoorJ0eNTqpNf03YU59FSDNmGpRom5I2eT7TVMaMM7QLSsSRl6Zw2ijWZHHpS1t7ens6fP38kwVEij/2mLaBnH2VmCB8b4y5jH7OyNmSUvVJWjHHjfPm68fq0ldFm57XObFOW+snOs2TIBteO3nLUAMQ1oGTNpMG2/2TMhdJ/r2wU7aVLsVR7e3tHNlAzpMiE3V8ybmYKyTIF+R4yi/F1XFIo02Qxvo4ZnjKPYu9nagncRydKjllF3Bfawe64444TffJrfLYxy5XbpddsXEvGjPr69Inwez9/pW1PTu/dX/qlX5J0vAaZZ7ZReZ1m2YeMG2+8cTC8gYGBgYGBiJ0ZXoy1yuLHDHph8Rc7s/tZKqZkxbibKJH4GHsc+bq0B0XpmZ5GvUwuRhXDVJUyyspZcOxklNH7iNdj3JLb9JxFiZPrw2MydkpWS0ZBG188NuYx7Enp8TuPI7LNqjApbaqZdoB7iBI4S/DEc8hQbb+gBB5BOzZjzzIvXc6xx9mz4VW2SWo04p41G/Bc0IZCTUpEtB9FuH33zd6o8XrUJDALSZb7MmZIWtIOmT2ZOcR9YA1H9ADkNWMbsV/v+77vK+lYo+Q2uJeyQql+7rhdP7uyGDfGMJrxMPdodi9Tk0OP316pJx9DG16mmaHGxOOihuS5z33uic/jsZ6/D/uwD5MkPetZz5Ikvf71r5d07PkZr0PmyH2daT9iX4eX5sDAwMDAQMD4wRsYGBgYOBW4pvJAVEdkqYmqUjgZ9TRttTqgZ8SX8mSnVAdQ3ZpVhKY6gC7GUWXCMdM5pZcI2sdQ9ZM5xxBUtzLNEd3j47F0VqgSX8fxMLi717csCXIveHh/f3/LXTuuCw3YDEPwXES1lNVOTNvlc60CYtLlOFb3344ArpbN4P/YDhMdeP6pJo19Yh+pHs9S2jFEp0o8kKnB7ODgeb3vvvtOjMeq2jjPrCrO+8nzHfvIIGGeSxd+6fi+jfuht3fiue5DL90UE11YBei1lY7nx88dmkN4j8X96blbSvkXVfZMuOxXmg2iqplhDpwj9zELNWKqPjuV+H3WJtXqXH+rK9/85jdLOnk/eW/6GM+R76vnPe95kk4+q6pnseE19tzFPkaHmbUYDG9gYGBg4FRgZ4Z3eHi4JcFlaY0qN9EsESvT8zBNDl2NMxfVKsVU5oJfpU9iyppsXO4LnSJY1iJKzTQ8Z4G4cdzxfzJkJu7OJLvM6Sae23POIQNnoHicezL8Na7BTM0V57xKFsAEspbMpWMHEzqNVAHnWWkSM0ZLon7vuY8SKfcmg3rp9BP7XbFDssK4txiewtCCXvIHMiuzGzucZKnaqgTnLLMUWQj3YpUMIq41naAODw9Lx4MzZ87o1ltvPWrfkn083kyDjjJkT3HP+9iqYC2dpaLzkq/tvrh9JpHoBejTac572c4z2bGVo2AWDsW9maVZjJ/Hc6pwJB/r1GPx+WNtiveG58vM0u/j/uZ9yjRoWbJy3oO90lLEYHgDAwMDA6cCOzG8w8NDXb58eav4YHRlpk2BoQVZ8DjTF1lCsMTTYxIs/GrQ/tdLZ2NUQevxMx5jaZDlLKI0Szsf05AxgDt+RpthVZgzS5lFCc/osQK6KjM4ObtOtE32SrxcvXp1K2g42uN4bb9ScsyKalIiZbC3r5PZfdhn2u6yxNx0wec6RVsR9y1tk2TGcXxMg0dk+8ISsO0eZHyezyzMg/ciQ2iykkKeWyZF5j7MGBzvgQwuHuxj3H8HasfzbatjAVYWEZaOmQefZ5wftxHXlPuMtjQG38f2+er5c/vZ+vM+ZJ+5D+NntBlzP2b3RJWiz31kgndpm4Xef//9ko5DM7J0ZCy3Rc1JpvWgRq6XTJwYDG9gYGBg4FRg5/JAMcgvKw9Er7Is4a900i5SSc1Mo5QlRaYEWv3aZ3rqqoBtZh/jOHgupdl4PPXrZCOZZ6dRMTzapKJkR/sL+5yNj/NYJavOxhXfL6WH4niyUk8s6WOp3cg8BBm4WqUcY3+k7dRLxBrtAPcD+xzPpV3G6Hk9U8PAoPgsGJ/7nGwq0yzQZlKVaooaDEvfWfq2eE5WumYNDg4O9Oijj249DyJoF6V9lB6L2djIHGg/jWNmekW21UvuwH1uL1FrtKKNjZ6U1dpmdnkmp2Yigp7WpmLlZLTxPqhKmmXs2qh8FWhfjZog2lzXBp1Lg+ENDAwMDJwSXFPyaHrsZNIaf7nJOrIYMDKfKolvlgC2ur6lzSwOL/MUjJ9HVAyvki7i5xXLrcr4SLU9i3NExhT/57z1vEKrBNpct4xJGEueUrFQY5ZyjpI0y7JkdoNKeqT9wvsgznWVBL3HPhjnRQnc9p+4p2xLY2q3KtaxN8cG1zQrKWRwXVh4OM4d05AxLipjoVUScTLJjEmsSTx+cHCgixcvbt0nWYkxgp9HBkT7e3XfZJ7Q1f3PpNs9D8i7775bkvSMZzzjxLFR00BGVRUCzryDq31Az8teYd5qvHz+RPB5R0YZn0N8rlEb4bYi66WWo+fhSwyGNzAwMDBwKrATw7O3VGUb4rERZDNrzqHkm8WgsGwF+5RlSaDUSk9SHxs9g+hpycwkZLSxj5WHVRWPF48haMvJ7EFVoc8qaXWv/5UtL0NPyjo8PNSlS5e2pPTYh4q9VvZS/i9ts5d4fYKMrhpjL1k1pXbbSXpSc69sDsGyL5XNOIJ2pJ4HJPtRZVHqrS09fM1uaRPNrmMs9THG/2a2m4qV8d7K7KOMF2QsYsZmquw4ZsYxoTrH6HYc9+m40re85S3d8cdX+jlkDI9MyKB9LCtlxn1W7fte2R4mnuacxXbJ/siqM41gFpe9hMHwBgYGBgZOBcYP3sDAwMDAqcBTqoeXGTiz1GEnLpikeDKqiuOkrFlNNoIUP7pKW6XJvlA9Gak31QJVFe6eq2wVLpCpQSsVEseVqSepkmEfM3XpksNJdm6WmqoHJy6Q+rUNK9Vrpl6j2rMKmWF6svhZFerRC/nwdViV3edkaah6am/Pj5SruKvE2pkTCQNyq9R8mSMSnQUqB5QMWQXtiCw4Ppoeeg5gWWhIhNVzdL036O6efcckFtUzLIL3O9O5ZU5ZPtYOTl6fLCymCimhijt77lQpzKiujHPFtavWO9s7XFPPo8MtGHaW9ZsB+1lCdcNrTqfDHgbDGxgYGBg4FdjZaSVzsY9STOVqTUN9llyZUkNlMM2uZ1Aiyhge3aTp+NJzn636bPScSCq3Zx4XQWmc18/6VzGk3jnVuUQ293HNe1L65cuXt8rMZPsgC2iX8jRylFqrcIqM9VahHmucSZhMmWWComNUlUqu0pRk4SKUdHmPZNW4DTpuMSA4SwhesYNM+8E1oJNCj7lGJ4Ul5wOmO8vCU/xZlVw5e35xLqtSPNk9TYc3ahJi0mMmnvdrTJFGVPt5Dejkx1AtJtiOoCbD6DH9JUcXz01WlZ1hQ73STCwMcPbs2RGWMDAwMDAwEHFNNjxKcpmemhJALxh2yYayxDpi+5WuO3OfpSRMSTWTtI2qb1mZDpZNqVxxM/ZEW0SV+muN5EcbUs+leE17vf5n1452mixxMdvlnGeSd7VXKjtcZG9V2jbOfdwHFTtiSAvHLm2zQbKpTDtAZmI7DxP/xvXL0n9l/cgCz+nOXxVWjRoT3mPuI0s2ZawgpqHq2Yv29va2yofFfnvMDvL32HuB7RVLrsKIIrguFTOJY2KB10z7VPWx0j4wTCnuA5ZGY6A9n0sZKhshSyfFPvK7LLF11b5faXeO9wQTXO/CegfDGxgYGBg4FdjZhrfGG1CqJZFe0OiSxJ39klM/nQVgSnnBWTI5MotMgqREUqVTiuNnUUhLeD3GVQWp8/vsPW1DZFPZPFbprdYkaF3rwRfHYOkzFhKt0rdV5ZWkbe87rhPfZ/uA89Wz3dCmwCBYH9uzUZN99lJYsUCmr0O2E7UVFbut9kWWPJpMjywtY8pVcLwZX+b1nI2ZaK1pf3//KBlyxhi5P8mWGRAubT+/OG+08WfeumSJZMSZ9yxtUJW9Mf6/VCYsexYzsTqL1Gbpz+xRSe1AZQ+Ma0AtADUItCFnYzd6Cc4z34S1LG8wvIGBgYGBU4GdbXhSP9VTpWte4/lG6bGKW9rFvpTFblGSy6RW6aRUUSWApiSSpfPxZ5aoLD1VpV/i/5RmlpJlx/+XbGvxeu4vJdVdyrgsJXGNLM/SbVYKhfNCVhP3G8fK/nI/rkmn1kvIS/sBvdmyWKMqPRv3eS+NV2YzkY7nJNprHN9VoUoMHPtAcF4zll2xXtpj4jiix2Dvvt7b29tiRtETlrZMxgRm8Vy9NFnxe+7L+F2lCcli+ciWPV+8ThabymKxfoZ4rv0+rqWPtV2TZYnWeNzS65RzFN9XjM7rlbHeKh0dy1PFvVN50a7BYHgDAwMDA6cCOzE8Z8qgPSHzuKx0vj0GsBRr1rPlVfEqlWTMccVzMom8KodRxdRl2WAo4ZF9ZBkIKjsmJcpdknH3vM7INtfE7hlrY2GkbQlOOh6rJVPvM2ZhiH1YkvY4j1kCYzKtKhF5bMegrShLjl7FQ1Z7KpOaec9F26d0ku1YSiYzod0ls8NU3tSV/U/a9lyttBHxvdd9rQf2wcHBlmYkZiaxpsA2KI7H8xcLiZq1sOArk0hn2aGqTCCMFY176aGHHkqPZaHZeB320eOjx7cR91Jli6YXarb+lfdnTzvAxM9Vwd7YLybdZhHZ7DfGiM/NEYc3MDAwMDAQMH7wBgYGBgZOBXZ2Wjk4ONhyaIiUuApQ5Gt0TV1K0lq5dcf/qbZx+5lbf6XaqVyN4/+Vu3v1efy/CvzN1AVUCTNYfo2qmE4Z7EdPDVqpIeJaZwH6FaZpSmsSRqeVKvCXasueg04VipEFul+L2pb9r5J4x3mi40GVwiobn+enct+3aitTabq9W2655UQ/eJ1egoVdao1V6t4swJrpx5ZU5VeuXOk6rdHV3mpCOsdkKdgql/8q9Zz7FI9hsu0sjVZVl87j8fuo+vU47IhklaY/p8NQVrPPcFiHj+3VVOT4qHY1slp6dDJz+3wf++L14asR9wfv8RF4PjAwMDAwAOwceH7u3Lkt1+zM6JmlSapAt2C6ejPgOAsAzfoS28gYXiVlZolmyfoq55VMGqzSjlUhDfE6lYNBT6qpnCSq/mT9JvvJ5nEpGJY4PDzcCpXIUrBRuqME3EuubFRhHRkqbUQm+ZpxWVquQlliIDhd1Jk8uOe8xOBkvvrcGCjsftMxhM4SvVCXKrF5pQGQtt3RKelHNs9x7O3tlWvk1GIeT3YPcIwMYcm0UQyRqVhmdk9XbJAaLO+T+B37xBSHsY9m8GbpZnh2WvIc+J7paW08J+4Tg+Qjqr3Csl4ZW/Or15sJ1aM2gufwmZiFBnm+4nNzBJ4PDAwMDAwEXFN5oJ4knBUVrNpaQpUiKWN4tJ2QcUXdM+0uLNqYJeSlVLYUoNtLyMo+ZwyJElTFDnuJp9e+j+2QOVRuyvzf75fWlRJp3CfV2GgLygqWktGtKflDey+vw3AISVvpregenq3HUnJ0fh4ZbqUx6dn9OPZqvxlZCE1lN8/ueUrptMMwWXFsN0rylTaotaYLFy5s2aB6miXfn1nyYYP3NMsP8fMsQL/SwJjdxNCJKu0hbXfxOrx2FcKShQDQJk5bmvvYK3TNNbUtLysfxPvHzNnr5utFpu/58TF+32OfRk/bUGEwvIGBgYGBU4GdvTRba92UPNTfV7rZzNOuCt6uXiNob+klDaYHUsXwskBTetpVqayiTaXyQqUEltnAqEunV1YV+N5DZteiVMs+9aSpNXZFBw+TKUQ2Q2++XiIAnkOPN6NK7s3/s/G4H9EOw8TFXJ9Mo8A1cnsVW8vS0rHdpUTdEdRo0PM3s2tRWq/ua6m20TClVDb3axKPO3k002fFvUOPYSZ3yFKLVc+kKhF1XBePsUr957Fn+5up18i0Ms9lBmQbTN+VaXo4LgZ5x3Mqxkh2Svtz7H+1HzIPzCr9XO955r7EZ/Gw4Q0MDAwMDARckw2PyXUzhlfZYbJzGI9WlaDIpMCeZ1dEpu+vmGPGgKp0Q1V8Xi/ei16nGYOpziEL4FjiMZXE2kvTU5VE6SVf3iWWismVY2oxS41V+qJMO+Br0zuu6n8mOVZ24CzBtY9xXBT3gZF5opFR0WZD9h6/o02KzKUXh0kJu7Ipxr4xzrBKDByPpY2Gkn6WhDvu5yUtBeMzI2jr4XMoY7PV84UeyT1P311SJ5LFUFuQ+SgwAbS9M9lnaw3i/cQ14zFel8yjnFq8qkxUppXifquKJvN/qX7uZcmjY3zrYHgDAwMDAwMBOzG8vb09nT9/fiuJby+LSeX5FiWhXnLRDJntyeB1qeOO31H6Y3xHluSULKRiemtsXbThZAmHK68sekmtSVbcy1RReYz2WFvmybe0duxv1OfTS44St9vOEk6zv1Vxz8x7krYVaiWyuD9K/5RmMybhvcPimr3sJpk3Y7x+xp58Dtnumv1AiZqshNeVjj3rzOzIILLsSrTDxEwqxN7enm644YYjhsK4tWxsxC7Zhbj+LMXTA/dfXGvaNsl8mDQ9fudzLl68eOJzg96O0nYBWLIz9zHzCqY3ehWPm3nj85nf0+5Vtlvem5nHfM/3ocJgeAMDAwMDpwI7e2nu7+9380bSW6nyeMpQxQdRSu/FgpHhZQUymVePfaVELm1LeVVexEzaoO56lwKGFZPj3GQ57bg+vdI/S5lJ1jC9HuilSeYibTO8al2yeEVKe2RgWaxjFQ/HPRrP8X56xzveceLYSqqN59vuxwKtlHx7noRkWH7N4vDohVzFVvY8JMlcmbNSOrYvmV34lbac7Dpx/npxePv7+6XtPba9tBd75XOoxalynUrbNkFqXrJzGKNrVsbnUebfQJZWZXqK16MmocpPmXmfVh7rvfklk6vsm1kb1Iz0PLTZ713yvQ6GNzAwMDBwKjB+8AYGBgYGTgV2DkvY398vjf0+RtpO9bMU3BmPYVs9NUFFkysVkHSs3szS40Rkn5viM9C5R6ur79aW1YnoOavwelWoRDaPlZPMLn3tqTtamxMAV2pKaVvlwrEybZRUlxSq1JXxXIaH0ACfuUR7H1mN51eOK0t2631H136qy7Pk0XQL9ysD3+MYGQLCdHic1/h/lSAgMxGwen0VlpA5VvWSHsdjz58/v6WqjY4MTFZAZCptHkvnNZopsmTyRnWPR7OInx133nmnJOmRRx458ZqpDdknXo/Pv5jSkCEsPqZyfOG1IzjnvYQXVRhUpp6skpRX1+X52fseBsMbGBgYGDgVuKbUYjTuL6WUkta5XveuKa1LBFwlc43XY+kQuufa6J5Jg5ZiOQdVeELsS8WwsvFwTipHFCaxjX2qzukZ4fldljSafVwb9Nla65beYfkXGvHJiOIxVQo0rktkkQzm5trxuvF8uosvlZiJ3z366KMn2soCjnk9Xof3XmQfdm8ng1uTjq4KH6LTRKYxqdzt6YwU/4/B8RVL8jOHpWki66HTCNvK5rZ6rnA9GOgsbd//XA+PPdurZOC8jyJL82dMf1g5B8Y5Zjktn8OUYnGuGJpFVNqDeG06lXCfZ5olg/Oa9WNNeasKg+ENDAwMDJwK7MzwpH4arYqZ9FLwLNmHqkDqeG4VjsDSL+xvPJcu5VGyt+STuWXHNjLX+aWgdKbo6rW7xNqyY4mMWS4Fmi/ZWNzXtWuZ2Y8Mhm+QaUWpr2JHVZHNKpF3D3EfxP+z9noJB7g3KZ1n6ZqY8Lcqm9ILS6DEXQWgxz7QvsOwiyxhAEvJ8Ng4Vwyn6aUWm6ZJV69e3WJgGcOr7ovMhkemwGBx2uvj9cguKrtSPMdpwRhK4+u5LTP07Fjuc9q9sznknq2K5EZUWg9qTLI1NYP0fPaScVRJR3r2Wu7bXRLnD4Y3MDAwMHAqcE0Mj7++azwUK2k2O5+/2JQ6o1RQpTxieY6MFVDyoFdglHLdDnXX7HvmNVd5kBpZMVkyoCpZ9Bq9+JLXVPysx6b5fsnLlX1YSv6dBV7H95kXI22PLM9E9hz7SrtLZffJ2JPPsTReJcGN51CS5t7N9g7hcbGEUTaPtDf3JG2C+5uepVHDwXGQkWf3bZV6sNcfsqZo66KdcM2epz2Kqd8YsB/XLyu4Gq9jRBue++tXM7477rhD0vEcxOdB5Q3OlInZs7hKBH7rrbeeOHfNuOix2vMDoE8EvaDX7L81zDz7bgmD4Q0MDAwMnArsHId35syZLYkxswFUXpIZM6KEW5UUMjKvOeqlyYgym1r1mtl7KimCNqTMFlal5aFHWWbXpARcMYmMJS6xttjHqszREuPbBdEOk42ZqNIoRYZHOwG9zDiPPVZbeRT3vAvJLG2/iHuHaeh6GotsvNl3PS/Eig1U8VCZdoDnVna67LuqlExkcZlWZ0lTYGZkVh3bi0mTM2SxdLSh+ZXFTXv3NFk7yzlFGx4ZpBketRBxLX0M7dfUOLk/cV2qkkkcQwRjQjk+aj3i3qliXv3qZ3NPI1jt/YyZR6/dtc+lwfAGBgYGBk4FrikOb40Nr/Ke5Ku0zfDIzigJR8nOUguP7SWarcpLkOFl+ndLl5T+yAoznXP1Pku0XZXUIHPJpDTaq9bE/1XMbk3S2F5cF8F+x7VkTCPHnF2H2VLI6Kpk0hHsi99n9gzaDL1HKkk4nu89QrZJ1hjPrZISM1YxszNSK8BzsxjLyoOY9qBMy8IE07x+ZB+Z7au3x/b29rZsd7EPnAfOaXZf8rPKLp4xPD4HOC4yPWn7GcH93ks8z3OYecXr0ptD2tZ8PbPIeL3Ka5t7qLfvKrtf1l71nMme3/Si3d/fHwxvYGBgYGAgYvzgDQwMDAycCuzstLK3t9c1ehtVHbws1Vem5pRqo35W+43nVkmFY3t01KBzQZaQN9LoeG4vQWqlUqwcfLJxVQHBPSq/VDMrC+asVBjZuHhszxjdWtO5c+e2gvp7jjrcK716YQxkrqqWZw4aVL1xTbPEtQxW5r7oOZ5QTeW2etXSKzNCFkLDY7hnsnMM9qkKH4jqRK4pVZprAoSXXMtba1uB4TE0wirGKol05sLO+533NB1d4rkMWagSKsR+cA7t4OS++/pxbt3+TTfddKI9hp5wriN693C8bhyrz2ESAe7vrHaj22DIxBpnrOr503P+GSrNgYGBgYEBYGenlSWGV0mgVVBxdizBNnqMsjI4cwzStuRWuSVnx1YBzz3Wy2PIOtZUuq6ccbKAU0qDPeOxUTmt9AJA10jwe3t7uvHGG7dck6M0WyUYr9I3SdsMj+nIuN8yFsr95z71JFK6XJvheQ9lYSIMnSFLzIK6yRS4dzKHJ4YDcI9wz0amR61KldYtKynEAHQ6o2VJit2HG264oQxI3tvb0/nz57eSK8cSRUyYzXFkweNV2i46ovWSR1cB+QyXiueYrTEBuZ1HshALt+u+xKTb8X3cB1VSDjpwZX2syvR4DjK2yL1Rsd4eC+X96f7EdGsM4B8Mb2BgYGBgALim1GLGGoZX2aCy4OFegunYdi942KB0m7mWUw/P972A48wmVF2vcvlfU0Sysi8SmS2smsc1YQQVi++lTFtijufOnduyV0VUweJkXnEOeu752fvMXsG2OI5sr2bSsZQzCc4dXeXpZh/3TlZaJ76vkknHc401icfJjCpbXo/h0e7DwPdqDnoM74Ybbthib5FxMeWaWVOl+Ylj5JryHK5ThK/jIq4sceUCwbHd22677US7LJwbGT4TDVQaDI8lrguLBVfMLp7D0kFLmqz4zOIzco02oudXIG0nBYh9iGEqa9KVSYPhDQwMDAycEuzspbm/v78lVWcBpZUtL0sWW6Uho3SepQcii8m8yGJ/snb4mpWcydKoeU6yPmapcHqpxAjad+ihWKXBytqomFjGCo2K2fW8NNfo0avE3dK2BEq7ZRZ0W0m81BoYvaTlld0v89JkSqfKbhGPNcj0uP+ye8NYSjEX+1vtjcxTujqG+4wemNlnVTqy3n174cKFcv+01k7Y+Mh2pO2g/jUJKCp7e5VOL16P90VlB44g64sB39Ixu4rrQq0TPWt9rMefpXxju2R2PY0Ji8gavA+kkzbV2H7Pj6PyILbNLivNRBteb+8Qg+ENDAwMDJwKXBeGF3/laQOo9LdZIllKAhXDy7znKNn3kh1X7IX66kyyrzwr3UaW8HgpVqeKj8nGulQ2KBsnsYuX5poEupn9IGt3f3+/jEHLxsa9krXPeCGWBeqB7VXeu73ik/SEM+J7pqGiZqTyEox9qcpQ9ZJikxG5XXr2xXmgjZWMJUstRu8/Hpsxc8bCnj17ttyXtuFxTuJnvBbvjx7D4/1ZJSSP5zL2kPa4LM6U7fI5k8Xu+XzvlYppZfY4Miq20UusT8/Uni2Ufa00dtn4qhRwtN3F3xiveyyzNGx4AwMDAwMDATszvAsXLpS/xlKd+aTnOVjpluk1R6kwflfpuDObSpXxhN/HtliI0ah00Bk7rLJwZIU/KbFQsqK9K8tcQ6m2Z3Or4u5oA+klxV7y+rxw4cKRJH+7OLcAACAASURBVJ7ZT+hhR0/EbF0439xLtJdloJcuWVXPM7XKtJPtb57DMWQMtup3xcCzdnw9xkBybaW6DI3XhHFm8RyyG8YbZkzCdqwewztz5oxuueWWrbi1W2655egYxr1VtrR4X1YJvyvP6KxQavVs6mlrqmT1mQc2nxlkiVzDLAsV4zyrOMmsfd5HfJ5mGXcqvw2OKZsLXzeW/onvJenmm2+WdJIFDoY3MDAwMDAQsBPDs5Tei5hn3BAZXa88UOWVR0RJkFIR89H1YoAqj6ee/Y9SGiW8TMddSTj08MoYVxWfUnnvZeeyb2vscWyrZwMxel5/zrRCiTSeQ5ZexdTFuajsfFUGlggyO7MNrksmPdI+QTaQzdNSCRsen12PjDXzlqMnJ8dD1tPLa2s25fvarC1mAyHrY9xXVkIpy2LSi8O78cYby7Jh0nH2Eo6tiq2L//P+4P2YefxW9n/G6tFzMbZX2Yzjc4DHcj8z9rGX+aQqzJt5dnIP2W7Wi/urbHV8zmaxsG6fzztmp5GO947v1xjfu4TB8AYGBgYGTgXGD97AwMDAwKnAzk4r58+f36K70WmF7rhUf2aB5z7HVNXvTXMr99aIpfIiUR3B5MCm53QTz9xn16i7+HkVJN4LR8gcCiJ6jjxUyVSlkjLHmgqZyoAqs4ODg66Txfnz549UPGvK6FSJn+M8up3MmSJ+n7nve795n3kfV6rGeG3Of5W8IPtuSbUYr1uFw/TCbypzAvvBNFjxf6q2qtCD7DOWrLGTQeYwEh2FeoHn586dO/GckaTHH3/86H8GufO54/73kgjwc77vmQAylbn7bnheqA5ln1nNPJ7DOeqFx1DNz2dKleJQ2t4HlUllTUrDXjqySp1LE0FUFdPJZ6g0BwYGBgYGgJ2dVs6dO7flWh6lG0thWXFJKZeaq2DR6rUXCMwSLLHv/L9Km2Rkrt40/FaG7p7ETYa5i5ReJf7NjNV08uil9arSLBkZS2XYwOXLlxdDE9hOlq6JpVeoUcjmiUzEn3uuyQ7Yr2yMPfbMvVIlXZbyFE7xmF7ITuWA1NMAUGKn1oXzHK/Hfc4QA7K3eAzv315aOrrkL6UWO3v27FYAf0zMTIcZ3v9kubE/S2Wzesw7S68Yr5OF3TBpBRM2x77TuYd9ZRu9dVlKhxaPqZ6raxJ7LIWlZI5DTGbCEKF4/5LhjbCEgYGBgYEBYOfyQGfOnOkmFrWulRLPmkKclOirQMmeG3VVCqPnjlwFi2bpmij5kA1kTIhSECXuXhB2ZcPp2f+qkIYqlKLX/14JI6ahunr1apfhHR4ebrlER3tFVZCzSpgsbQe7knnRTTyzV9HWQdfvLCEA936WVJkgo6rCLiIqNkabZI+lkZXxHonn8pgq5CC623NNuVd7ydjjHPdSi910001Ha+njbBuM/XZ/7bJOu29Pq8E9z30R+8c9mfkmxO+l7RRlVVLljHGRoTLlWFZkt9IGMbSlF0KVjaP6nHPN5xwTfEvbNnaPz2ubhRVVweprMBjewMDAwMCpwM5emnt7e1u/rPHXl56bVVHNjKVR4q6YXpbOhoHmlNYzSYR2nSpAO35XHbvGS4gSVcUSs/4bPelsaRw9hkcpl/a/npcmpcwM0zSltokIS/D0qOP7zEOQ3l2U0jMGRlbAfcG9lbVfJWrO0p/11ixrIzuXLJD7Pv7PVG20b9PzMv7PNa3s6fF6SyntspRSPU2Fsbd3Mnm023Eh1Xht2/XogVvd89LyvZsx4aoEEm25WWJuMi56M2bPncqG20vvV2mQeI+v8UY2qpSRUp3sg8w5rqXbYxkkB5ozOUQ8Z8kzP8NgeAMDAwMDpwI72/CkunRE/M6v9JbKdMFL6cfcBj2WpG07EiWQLHk0r1OlJ1vjxdjzLFs6purPmnOqJMbxu0rX3WNrZJuU0rJEw5EhVTa8w8NDXbp0aUtii33xZ15neuVmUmeVxijGBkrbdqvYf7bLsWZJjyvvSSP2kWywsj1kXpNV3ypvSmnbZuf3jEnLYhdpq+O89cpR8TOmFIvzyFRSPduvx80E7jHdFG13Znr0KcjuE6NKAWf0it5WNu+MrVUpzbJE51WaxcpLMtMS8Tsy8eyZXLHRyjs9fkc7Juck89blb4rXLUtLZ/QYaoXB8AYGBgYGTgV2ZnjRhudf5cx2w+wePU+kqhQ8vaTIKKS6LJDRK/GyJv7OoHRU6ad7qKSmjCVQ/75k6+hlgeB1egyPbVT2Rim3j/WkrYODgy3pNvPwtVTHLA9kbxFkL4bZTRYfWtmeyPzj/sjsLFI/5owsrfK4zVAVfuXejfcg7UuUvCsWF8+tMnhk92+VWYPPgGi3JcNfE8PZ01S4bcZvMXtJT4uy5M2YzTH7TOaTeRdW3qs9+2L1fKOXYzyu8vCm9iO7p7knqwLHPV8Makp6ca3uk70zzd4zHwLee5cuXRqZVgYGBgYGBiLGD97AwMDAwKnAzmEJWVLcjG7TfZsG0oyi8juqzPyaGT2JXuotUuzKaaanpmS7PTfrqtJxj4ZXaklePwuLqNSfVX20iMqVeY3LfC8swW1QxZ2puezQQNVcpgY1qtAWOj7FOm4Mq6F6iMdV15bWBVlXSQOoHo+gKaAK7s3UkksOKJlKk6ox9mlNOAwdEDJnMybSXko8fu7cuVWJCKpE3QzNiP/zvqRaL9vflWMGExNkzzkGkfcqnzPQvEqkn6n0mYS/SgAe55EmAc451fJMMBKP4R7Jxlep+WneiHPPeTw8PBwqzYGBgYGBgYidnVYiy6Nk5O+lbamO7Cxz26/SWFEizdzSK2eCjAFR0qYTTk9Kp4t19ZoF2S6lwuklca0koUyaqoL8q8DT+P8uaXqqdEMV9vb2tgLOYx9YCoSpsZhgNp7P+alc8rPx2ZWdzipZyZclpp2FMnB8VbKCrI90kiLb6FWtrtKCUWMSz2XYQZUuLK4bJW6vH5leVh6IY8/ghBc8NvuMyYbJ1uO6kCmyDxW7zo5xXzz2bP2rPUJHmywMxudwfbguUYNRJbpnUucsKQfb5zipQYlgWEf1jJRy9h/fZ/OZMdORPHpgYGBgYCDgmpJHU8LK7GiU6sjwsjCBSg/LFFAZK+DrmgDQtSm44v+V3aWSErNxLaWYisfwdU1YAtsgMqlsKaA+C/Lk2HvY29vThQsXthheTELMAsBu1zYIS6pZKruqxJT3TM++yLRklirdRkxAzfWvtANxnJVbNvd9LwCYtpIe+6hs3wzr6aVb43z1mFJlq6mCiLN2ehL6NE06ODjosmeyfz6TMrt1FTLF99lzJ/YttpWxNF6Pe6d6jce63SrUIAsbyjRi2ftotyM7o4akZ+Ot9rfR8zdwOAI1dj42piMjU82uVWEwvIGBgYGBU4GdvTT39/e3vP16bI3SudFjXFVANsuQSHkSYulYAsmC46tUN7S1ZV5llLQq216WwqjyMuylV6LkVtn0MlBa2iXpanWdzEvT6Enp9rSj5B3Xz+tLmxpTjjFRAPsV+0I7cOalSc8wIytNwnOrY+P3lW2Y+y4LZnbfmJDXyALBq+TrPdsdz82SYMfrZ9oPMhTatSLDq/ZzhWmato6J+4CFQ+klmSURWHp2+FwziXjfLCXFp5do1pfqedd7nrIAK9lovL/Iyul96rbiPqju96XPY7/ZV885yyNlc1E9R+M9mJUUGgxvYGBgYGAgYGeGd+7cuaNf7CzJKiVOsqUsCTGlfv7aU1qPUlolIVK6jd+zD1US0l7sXhV/l9ljqrRklZ0sosew4vWzWMjKrthjeEvsL2MfMX6pkrS8d5hUPEpulACZNNzagix9EvdQlQopfk5pkl5lmc2Q163Q85ql/YXSchYrxj3KlGKZHY73AOOwesVqac+qvIOl9dJ5xpCqMjcR9gzPWLphFun2aEfkXuUY4nvOSxaDWnlN92yrGVuJn2dzW6Ujo02frDTrU5WmLkNW9DYis4lW9tjKsz3+v2TfjGDqwStXrgyGNzAwMDAwEPGUCsD2yspb4qCklXkbVlIMGWQmaZHBkfFkyVApkVYekb0yHZTweucy6XFly4vvK/ZJiTKT0qpje3Y/Mla2n2VvqWytGWz/rZIuS7UWwJ/bthfX//HHH0/PoWTYs3XRk7Paj/F87kl6xPVsuJVXZmY3Y3aUJ5988kRfswKwZHZZRpXYj2wP9bwyicozkZ7a8fulrDwR9tKkV2lkStQK+D3Ly8Q5WLKLr2FABrNOZTYuznfFwNZ4FPe8wg3GpFZjyJ5znBPaCGlblvoxqNJ21pjYHp8dzEKTxTVXsZY9DIY3MDAwMHAqMH7wBgYGBgZOBa4p8NzI1EdMY9MzPho0NNO4SbVkVBOQttOInyWcptG4pxYgloI4szapFqhSGEX0qnwvXa9Se9KlOaJSofaScHOdllQL0zSVbu7ZZ1W4SAxC9TWt6qvGkzkvMWWdj3W17MzBimonOg1kDgJWs3FNq/RaUU1ENacDgemIEgP4/b9fqbJdEwpQJUPvpcfjXq0qh2fnL6nmDg4Otvqb1VVjf5lqLEu9RdXYUvJ1/i/VtRWzOaZakI4omdNKtjfi59m+473MtGRZ3yrHPab9Y63KeG0+D6pQrvhdpfbPnjtUH4+whIGBgYGBAeCaygNVQb7StuMBpb3MUE5Jh69VoHa8DlNLkR1mAZlL7KmXVLVCFj5QBQtn12E7lUNIldQ1omLVmeMQJatKwu8lDV7CNE1d1+iK+ValV6RjRxaDiaZ7a1wZ9XvlgegwUTmvZOnIuEaVs0TsD/e1JXwyvchc/D/DEDjubG+xj3RWYIhN/L9yKWcS43hsr1QV+1w5tUknGW5sz+wtY1xVyMWaRMRk9p7zKhly7C+1TlkyZKMKmaFz4BqHF6NiU/w/9plJBHpOOUalNcrCEpYc7bLwDs/14eHhSB49MDAwMDAQsbMNL3O3XnN8z4ZXSb6V3SBjGUtsJiveWCWLzfThVZJo2uV6dp+lIPIsmDf7Lo43s8stBTr31q3SofcCjtdKV1I9X9K2jcFg2q4s2LUqQ0WG0mMStP9m46P9zX2lnSILjs8KV2bjytgT+8ZQg2jDZAo+aj24H3rB2JUNPmOhld3e14vJfnuluCr0Ur1V9v5euEoV/F49S3q2bz5TsnuiCk9iXzM2U6VDXPPM4vOUfcwYV6XZoU0081WoCjZnrLBKis3r92yh586dGza8gYGBgYGBiLajh+IDkn756evOwP8EeL9pmu7hh2PvDKzA2DsD14p07xA7/eANDAwMDAz8asVQaQ4MDAwMnAqMH7yBgYGBgVOB8YM3MDAwMHAqMH7wBgYGBgZOBXaKw7vlllumu+66qxtLZVyLM8y765z3FNbGiqw5Z824n47rZVk5YuzOAw88oEcffXSrkVtvvXW65557ytJI8dqMj2KMUbbfljJ18Br8P3u/dH4Pa8q2PF1Yav9a9gXPzeaxylSSlaVi3NrBwYEuXryoJ554YqtzrbUptsvYLWm7BFGvFJbBeMTq2KpAdO/YNaiOvV77sDpmTTxudUwV4/tUUZVKy2Jzs+fB1atXdXh4uDgpO/3g3XXXXfqiL/oiPfroo5KOa5HFIFQ+eKraUlkwLzdW9RDLEiVX6P0YL23ka3k49hKzLgV199rfZaNV564JEK+qFjtoOCZuvvnmmyVJt99+u6Q57dDLXvaytN27775bX/EVX7FV0y4bO4OqnbaJ6bSk7SThTHNVVV+OYzV4bC/1Evtd7eH43dIPN1OpRVT3T5aqrwrWrVKZ9RIe8JgsOJtB3axBx2rkkvTOd75TkvTggw9KmhN2f+u3fuvWuI39/X3ddtttkua9JOnovTQ/m+K11qTt4j1UpfxzG9k9x31H9JJsV/djlqC9qr9XJSCP51YJwLMA+6XUgkx0sUbQ7NXJY+A8n/0PPPCApOPfGklbvz9PPPHE0XGLfVl11MDAwMDAwK9y7JxaTOozo0pCrMpOSLVKoZKEe6VwiKztKtVXRauz9irswux66cOu5ToVliR+qU4/5lcnas36SFbV63OvNNISA8rmjVJjxdqyNGFUf1Xzs0YttqZMSyXF9rDE7DKWsCYt3BIq1XOvDZYyYtotMz+pZigZWms6e/bs0fk+NyYR53fsU8ZIKpayy/OgSkBu9NanOjYzG3A9mJIt20sVK+f7LJXZGrU0jyMbrfZOr9gA9/utt94q6WRauqXndg+D4Q0MDAwMnArszPBcjFHq22EqiSArEbFkn6oSN8fPKmQlbChhWzpbSu6c9XUNeyIqKSorrktUUlOPwVa2qR5DJyvIJPEsOXFv3NM0dRPlcl9xjD1Ws5R8mOWp4mc8t2fjrfZiT9PQSxKeIVsXslHuoSwB8NL1ltYqQ4+F8H6y9J7Zt8jS9vf3u8znwoULR8f6NZaGov2weu5E+29P2yDVSZfjsdXzp/dcWkqWH5lrlWC6Srod+0hbXWy3wpLjzi4J73lvZKXa2A5th/YZiOW2Mm3TWgyGNzAwMDBwKjB+8AYGBgYGTgWuyWml56bbq5AdP89UMEuu/hmtXlMpWeqrIyqVTOwjVVZLxuQ1MS40Hu9Sa5Dqg8xJYpe4qKqKfe86vN4SWmtlFWTppLop60MWf8U1rFSyWbhFz106th37WNWnq2IIs7EyprGnJmINOK5pL0zgqTitrL2vMlQu+plzxJqaZq01nT9//kiF6XCYqOby/5UTTFanjmrOyglrbYwn25dy0w1Vjbz/4zlVLVDeE0ZWK7IKNcr2KteAjijVMzNiyRwTHXw4Pt6vVlHHcCirNP1dDFlYwmB4AwMDAwOnAjsxPDusVGwg/l+5h/sXPEomlFIqR5BMqqyCRckGs4rnlfs0j8uwFNTbC0+gVJ65aK8NHs5QMTx+3qsCXwUcr2EuGfb29nT+/PmyL9U50rYU2JMqybA515mRnXPdCyL3/JgVMEg+0w64Xe6nJTYa+012S+YX76GK1Vbr08tcs8Zln3PCe67nMGRpvefwtLe3p3Pnzh0xvFtuuUXSscu6dOzAUjk4ZfcyK7V7DQ3eJ1ml9SrwuxfUz7H7tdKqsJ3YZzpwxHWp1r1KBhK/W7o3sj5WGgzetxnLpqOTr2cWd9NNNx2d46QFmWZsCYPhDQwMDAycCuzM8KKk1AsEjpJbfOUvt1TnweN1eoGfBnXNTA8U/7dEt4Y1kQ1WWMNYOEdMxSRts741wepVXyoGFiU8zwnZ7xr36jUB2tI8bgbKxv5TuiPW9IX7jXurZzteE0Se2YKyc3v27eqYTPvBgGqOy3sonkNmV2lKMu0Hx1zlzd0lZV9me6cNqheA3lrThQsXjpjdHXfcIemY6cV2loKdYx88d/7MfaC2I2ubY8rYuXTyuVPd/7Y/+n3Gniv25P3Rew6QydFWHvvMsAeuSy9FJBkXn11Z2BHZZvb7IJ1MI2eG5xRjS+FQJ/q76qiBgYGBgYFf5djZSzP+wmdSgKUh/0JbeqkkU6mWlo2ezZCg/YV6+ux8SrO94Fr2cY2dkVJmpcOPXmdLtpvedZck7Ezi9nXI9CrGHPuwRrqyh2ZvHEu2uiplUQ+91Fhcl4qpZrYO97Xy1sz6ULGCyt4Y/69ee/bfynbDhNuZ1zMZPsfVS8oQg8mzcUdEW2S1j86cOaPbb79d99xzjyTpzjvvlHSSBVTs3+3zORT/55grZOdybPRqjGzKGiXuB3sgejzRluiE6dV1aMOLc1ixcqbzyp5zXrsY3B/PyeZkyTvY8+sxxc8MPoMzG7XZnplez8OXGAxvYGBgYOBU4Jri8IzMI9NSiiUDSy89b7nKXtSLoVoC9fIZK6BHXRX3FVFJ6WtQeU1mtpTqmDXejVXJjR4zquIlybbicUsScURrTfv7+10bHq/NfpN9Zn2opMw1MU7cB5VdKPY/jq/6fskDtrev2S7ZZhYrRu0GGZ0T8fo16yvvDdoXM1bQi5eM/cr63Usttr+/r7vuuuuoBJC9M7P4yYp5ZWnkKg9Lsijay+IYDc8t05DF/RmZTXzPmLPI8J588skT7XBfVx7ucTy8R2gPXmOHY/tZeq/KC5z7MSaCph+FwfHGdXN5qHe84x2SZvY+GN7AwMDAwEDAzgwvetodNRKkAEsp9B4jU4iSqn/lqVPuSXyxP/Ecg5VyM087SmFkRpl+mpI9+7yGRVECihIPUdnJKDVldpiK2WXekEsSUtaPjIn1ks8eHh524xXJXizdXrx4UdJxIVi/SsdScuVdSrtclIithfAr967tPtmYOce+rvdyFuNIFmCwTEuPrRn0NM7W3995jpyR4rHHHjvxGhlAlVGDtvlo2+H8xawYUu59SPQ87fb393X77bcfMTu3nz13mLC6ig2M51fxsdRGZbGOHpPjxNiPzDucsYHM0hSfB/ZEZIxgZQvPtAVk4O4j2dqa9v3eax6fkR4fCzZ7nB5XZMrcb+6Lz/EzIPPivf/++yXNRYTXav8GwxsYGBgYOBUYP3gDAwMDA6cCO6k0W2snVJqZcwfdpBn4TRofj6kcMyqDZkTVRqZiMrX2d1QPZQZnqsqoLqySoMZjqFbpOSS4j1XgKdWy8dwqvZHXLatLdS1B/0Zc46XjqHqMKh+rL7wODz/8sKRj92OrSnycdKzy8Wd+tfqOCQMylebtt98u6TgpMVWd/lzaVgdVDiJx73Dvc655bs/lny703LvSsSrJKkvP3yOPPCLpeM7ovBL7QrUe1ZVRben5Y2C43cc9f5mTSZVoOsJhCW7Hqs24f71WVBd6LvyaqSU9p1Zhe029h7LEEHSfZ6o3fx5Djdx/OoTwvozJkP0d1YN0xjGiepLhT1XoRBZuwbAXowoVimAYgvdX9tzmc9rj9HpmYTcOS7ET01vf+tah0hwYGBgYGIi4LmEJ8dfVv/g0sloSzVzLKSVXbtuZCzaDt8miMoZXBVfT0J25UdPteMmpJJ5TVSfOXP5ZsoTtVs4asT1Kf1XQsrTtoFFVVI5YUyok9vvw8HCL7Ua2ZiO0GQidVbyW8Rwf43Mqxwyfm0ncZgxmKH41Q8mSFFeJrX29iCo9E9lIlujY0rHXgaEF3geehzgXZsgPPPDAiWM8n1kgPyuRm8l53JmGxqDjDjUocS8x5KOnGdjf39czn/nMI4neDiJx/5LNmNVWJaek4zn0fvJc+r3nz/fEM5/5zKNzq+rrvKczRkkNi8eTJaBg4DmfP73Ac/eJLNfjy5ykqr3KNV1TloqMLks64mP8GR1fsme+x/WMZzxD0qxh6D2nIgbDGxgYGBg4Fbim8kCU0qMNgJIGpfKM4ZHh0JW4xxysX492lnjdXtBwFWxtZGnUquTNDHjtlemoElH3grotHXluKLX1dOlVsGqUPilp0RaRhV3QFrAU2jBN09G6mIk5eFSS3v72t0uq3Zopocb/K1bIeYrBvwwLybQBHLPtYB47bVo+N4ZO0H5YBUNnQbZ0jXcf3Q8zSo8/fvbggw9K2k62S+k57kPasaq0Z73SMv6OtsR4Hdth4jkVyzt79qye+cxnHtkKmVhYOl5Dz4vHToYc15+2YdqTHnrooRPv77vvvqNzmaqMwdx+jc8l3h9mdh6X8ZznPOfofz4jqH3ivZeFCVhz4vF6XJ6LLKSFmgP3w5/7ORGTOrsvfBbTFh5L/fh6DOfwa6bB8pqacd9xxx3d5OMRg+ENDAwMDJwKPKXk0ZZ8slI//o7BwrSbZW1nv+pSzrIopTPo1shS7lDnzGDRzIuRQZq0X2VSE3XaVfqjaG9g4DQlH0p+cbyU+tZ4rvpY94E2lmhXMBjke/Xq1dVempYco82La0hGnHl20m5kxue2GHCeScCV51m2Vxkgy6QBnqdsvqpk0dQK9DwJzYzJaCNz8TGVZx+LbWb2D84rGV5k2Qw0J8vhvSEdPw/WBqXfdtttR+vl62UpuDx22qn83gxQOt57TPlFBp7Zjqukx3y2MPlyHDMD6P0cjetB+x5tXb3yYdSm+b3H7b0T97f3lVmgj7Vd23NltpaVpfI5vgf47I/r5v76PjLb9bip9Yuf+Xrv8z7vkwbPZxgMb2BgYGDgVGAnhnd4eKjLly9veTXGX3lKc5S4Mo8+2omqGCD/ivfK9jDZqpFJsZUHZKYPJhusSgxl3pVka0wx1EsLRKnIUiFtCPF6bt9zUcXlZUmDaaur4ozid2u8NA8PD3Xp0qUtz7iIquSOXy05xjglSo9kxNxLURKklynHThYiHe9FX8/HUFqP81Ql/CYLzOKieB16n9I2Lh3fe76e7SyWmunlGPvF+8dzQu/QeI/4HLOZau9EcK/0GF5rTWfPnj2aL7MAsxDpeP7dbzMQ95d2uniM2Qvto54fxxVmKdg4L2TvWfo+ar/sbcg4PWm7zBpTvFFrYzuddLwu7ivvObcR7yczvErT09NwUDNjr1o+x+O9wdR41Mx5r8Z59P72mt92223DS3NgYGBgYCBiZy/NS5cuHUkM/oWN0hrjKCwtMS4lSs1LxRQt3fjXvhfrRI++jK0xCww9njLGwkwN9FC0pOPxR7smY2fI7NifeCw9EysWHMdpid6SG6XbLHuK+12V9DCyYr9xbStPTXto0vYQJTOvMzMzkNlFD0i3Z+mYHm+eL0vpsf9VInDafxjLJW3b48gGo6ca9zylUdoSo5RbMTxL8ln2Cl/Hc5F55Up5UVR79Nl71vuYfYxswXPKmD0y6GzvREZc7Z29vb0TbNjXMTOLn5HVMBNNz3u6ynzkeYxshgyb942PjX3084ve7d7X9jqM+83rzjhZ2ruz+Gd657IUT5bZh+ycc+G1tSdpvBe9Z/gs8fMos2/Tnkmmz+K48fy1npkRg+ENDAwMDJwK7JxL89y5c0eSAfMKSttxYsyywGKH0vGvOuOE/EtOfXyEj6X05CwJlhAYG9KDpc8sZst9YhkLSnhZfjoyCmbPyLLB0A7HEhvuY2Q2tGMwdozMLP5f5XXs2eey1oPeOwAAIABJREFUYpDE3t5eGj8VpT1f0/2lBMysKW43jvX93u/9Thzj2L4s/yLtL7TlUVsR+1DdA1lJIe6ZynbHNY+fef59ffeZ+zBem9ehxyAl7wjP17Of/WxJx8zP91WW2YUxsV43XzdqdbLyMr39c+bMmS37VdxPtI8z72oWw+ljuS7eO7T/xeePP3MbLHhNBhjP97Oqsn3H507Fkhk3m/kueF+5L/TSNQOMz2+vO89lRiHPUWZvNPtj9qG3ve1tkvKMOyxVxPs67lHO36233jpyaQ4MDAwMDESMH7yBgYGBgVOBnVWaZ8+e3VJ3ZYHgdGs2Dc2qFTPtEwMi77333hPXi6qRKhCcqtSoBmM7PLaXcqlSaTJ1UTS+MlCWRuNeAmi6mHPcmaMDXaMZWJuVO6kSeNMpJwYZV6EMGVprJ9QSTB2UXZMJoXsOGnfffbekYxdvq088P1aTZuEiVEdaPeWky1ngueebyQpY1imew/d00srUoVTj+pWqnzg3/sxrxUraDCuK6+I5dx9igl5JeuMb3ygpD0uoHB2yiuFZmrUlpxUm9c4Cz/3qkAUmL8hKIXku/YyyO72dMBjIH8EUYnRqy9T4TNjgczP13bOe9awTffR8+Rnpz32dOCdeSz5/GE4Wn6GeA88jx8Ewibjm3hPeK0xW4OvHNHj33HPPib74XK+x7+ssYYTX5eabbx5hCQMDAwMDAxE7+3U6NEHaTmsjbRtXLRH4F9vSc3S9pSGW5TMYaJhdj+VSmAQ5K/VjMFwgAxleVRiVQcsRZJtVwH02DrpXe46y1EW+NpkyDetRsiOTZFqqjLlkEvkSy2MqqSgBu98MR6FEHNfJUr/njiErlogt8WcskYVfGT6QFQLmXmEQdxbUzzRJLACbMSGmtKOTDAN1pe096vW2ZG3m0tt3ZnaWot0Pz3ecE0r/FcvJSskwKUOGaZp09erVI+nfISaRKXB+fGxW7Nig0wo1I0wxFu8XptzjPeVzY1iC+0LGxT2cOWgwRIeaBl83ljBieI9Zm+fGr3EPcU6owWIYQcaYWUTYLM7zmzkvuT33yfvPax2fE96TdrrpaQeIwfAGBgYGBk4Fdg48jwmCszI7WWHA+D6TlixhmAWyFAXTa2XSGlP7uK1eyRWDiVkZEC5tS9ZVAmC3kUlNBm06bFPathVS/067Vuwr7XB2NWYQZ5YSjn1i+aFox2ApmR5DtmYgS73FPljitf6ebvuxD5wfS/1eF7fh+cqCyOmWbyk6Y6ss2smkCN53awrnMhl6xnbIILyW7mMV8iIdj5k2SjPa7BzPvSVvS9G0zWcsxH3xe18nCw3i2C9fvtxNWnDp0qWtOc2eAywhxPJJ8blTJYLw2F3CyHsralO4htQoVamypOM96LX0a8YK/VxjUmeyT58Tx2dbJEtleV9QmxOP5VxzjrIkCpwDz5fH5/eZVsp7xozO4+H+j/3tpa6rMBjewMDAwMCpwM42vFjihYGMEZk9ojqWn5FN0Xsv2pEo/fO6LL4pbdseyegyOw2lCZ5LlhN1zvSGo3dglsaL16OEReaVJSvmuf7cuvwshVWV+NefZ2ndorRX2fCmadKVK1e22s1Si1nKIwOxtBv7wMB4BmSTKcf+VWWT6DUcz6GtyNKr2YvfZ3uH+5w2XPYrfkcthNc7CwDm/ek94j5bes6KFZNlRTuZlGtomOrJEryl9uwc3jeHh4eLJYIM2rPjWHnf90ovZYksIszwWGpK2n5GMDA7A/0A3D6ZT2yDKRqZJIFp0eK5TDHHYPUsDSJTtFWanyzZBOfY7ZLhxwKwho+lDTz7jeGzqpcUgxgMb2BgYGDgVGBnhhclCEqQUl2Wh/FcWcwZ0yjxlzwrGktJgIyOSWrj/1URVXrNxXNoN6gSz2Y2taW2IqoiuFVx0p60SinUzGWXkkkZG2Cx23PnznUZ3tWrV7eKXEaJ25Ig45NYgDPOJ1Mq0ROyWp94DksW0RM29pFeamZL7muW6ot9okdnL46RNk8W1eRYpO39xvnr3Ru8X6lZyKTqKjF8Zn/hOfHervaO4/CozYnjpDaDMXbuQ8a8+XzJCrHG46RtWxbH7jnPkl77M8fY2e5LH4Z4TTJKMqFsr/pcezzSz4BaotiO7wm+Vp6YsW9VYvvseVP9Pnj+Mnt6FiPc0w5EDIY3MDAwMHAqsHt9hYBM6qdEzV91MpT4GRlj1j5ReQ3RWzTTrVMaJMPMShgZVV/pPRXHShbKYzMWSibn92QwWd8ISonxODKgqmRTZsfIvFoztNa21iMrGUNpmVkkos2BUioLSlbrFPvP72iLykq82M5o+4g/z7QQBu2ju9jwGL+ajceo7C+UzjP7X+V1SDYY7wd6l9KWk8XrGpHlLsXisQRT5g/AfcrnQrZHM7YSP8+S5BuM86WnZ2R4zIBjG57tvr5O1NbYdmdbaqXJcsxt7CNZLZMus5ixtJ0Mm89mZvzJ9mp1H2fe6AaTf2fljgze80v234jB8AYGBgYGTgXGD97AwMDAwKnAzirN1tqWKjCraUU1Bw3Ea+oXVcdkVYuz8IOILCUWVZmsxp0ZgCtVGd9nge5un/OX1Zyj6qhS1WbqyyU33Z5KoRpflUotHttbUycep3NBVCNRNUpHDSbfjv1hijkGmDOMRNpOPO73VEfFgGk6q9D13qqlbO/01MNVH5nCiuE3ns8YzMtAY85FT+3K+5UqzqymH13UqxCBOK5ewDxhhycHTHvuo2qbiScqx7B4DlPWseYk93x233At+TyKzwEfQzU41Ycep3Ss0vRn7IvXIUsEzu98HZoVsjSPfDb5uqw7mqk0+ezqpVCsnP2oQo3neC782Vp1pjQY3sDAwMDAKcHO5YFaa1tJdXvVvckQKkN9PIbG6DVOK3SyYN96Ui1dvHt9pGSzxrGGJWToPJAZaCk1sy/sY8Z61/TN4DGU8JbShknzOCvHg6gZiO1niZIr93a3HatIW2K39Oo5pANSBkqgdGFnQHU8hmyQYSFxXBXDqkJqspAGpgfj55Hh2QmClbvdDzpRZfujWgu+xv+Z9LvnxOR2l4K/jWmatsJFYrgDU8ox/VTmvOZ5IvPm/GR7iGtoVEH/0vFeNUvy9Q2mEZOOn01LifXJTqXtivNkaXSAi+C89QLcjcoxqKfdq54rdCiL80wt2pUrV4bTysDAwMDAQMQ12fDIWOKvL12R16RTqtJzrSkdYlRu2pmEQCbJMISe+2xldzGyc8lCacvLUhdR6q9SmmV2H/a1YnrZ9ZbGmQXFGmfOnOkmAI7uw5m7MaX+Kmg49sFz6WMq6Tyzw1AirQJls+ToDE6m3SoLUqbUXxXQzQKBmZiZ+yNjU5xr2qp7Wg+jsiVnidVpT+yFKPn8bO9n44j708zFbv3Stg2fydWz9eee5lirYsjxGLIknhOvZ1uwQ1p8XTM6J+qODM/jiHY96XjOyc7icVUYFEsoxXGRRTOkpBeewmdUlUIxrnXlI8D1jMyVe+eRRx5ZtZelwfAGBgYGBk4Jdrbh7e/vb9kT4q8rmQLThq3x1FlCFuheSYhZQc4q4XSv3ESlw66kl54nYVX4M0vmzHIjFaPrlcig9NNLD1V52lF6i8dEibi3Dq21rXOihFolljZ7y2wAvSBkjpHncg7p4ZtpGMjwKm/kOC7uDdonuD7ZunB9LZ1boo8SsK9DVuj91UvVV+1V9idLkkD217uvd00eHdc3S35uVmkvWQYyc07i/1XgPO+T7DlX2cF8brStmpHS/uY+P/jgg5KOC/RKx+trW17l50D7bDzX8PPaDNIpx1xGKJ5v71Cmo6uYWPysekZlnt7V89T3V3aPuI9mxBcvXhwMb2BgYGBgIOKakkfTuy1LBM1fXMa4sc2IyrOul8psSSrLykvQZtNL4tvzTorfs1/ZMbQR0M4gbevS6QlXJfWN/1fSOZlGbI82o964OV+7lOkg88/OZ0yVpeXopUnGxXmvbMjZZ7R1MEVWvJ6/o+Yi2/+ZliG+p60jrhtjNrlXzfSi3cfz04vVi2PIwHWv+hrbqYokZ3NOZtSz/x4eHurSpUtbRYjNjCJY3LjncVnF7pJVZAnv2S7hdfL6SMcMy+vj/r/tbW+TJL31rW+VdMxcYvv0OnUbHENkvYz/NaPzsd4zsVyP2Z73jPtC+2+2d3oFtGNfM4/y6pzsWeV+v/nNbz7q0/DSHBgYGBgYCNiJ4TkWpheTRbZCT7SMcVX2girTQWbjqDKeZLptehpVCaYzadCosmb0PLoMxrZkiVgNfkeb2prCk+xzJp1W3oy0VWQ2EKNnw5umuQAsdfNZH6r4sCyLTmW7Y/LgXoafzNs0HhvPsWTtV2aGyEpLcX9X3qGZVyjnn4lzWTw0wscywXrPtlbdi2tiOitP4oxdsZBpj+EdHBzo4sWLW4VMIxPiOmfestJJjYL7QBsemV0WJ1vZblnkNe5Z2+H8alvdL//yL0uSHnjgAUknNRj0UvR4qr2TPbOYOca2RDPMaP/1PDqbjdtnmZ5erDK1RczeEsF7uvqd8F6WjpldVox6CYPhDQwMDAycCowfvIGBgYGBU4GdVZoHBwelAT1+Fs+RanVlPKZyfugl3a2cU+j0kbmyM31SpZLJQJVpNZZ47Sp0wP2JKc6qOnhVwHHPGahyVukFnnOcve+qhN0R3js0ekc1EeeJx2YOE0xQzGN7Sa+ppq0qM8c19hoxvRFVTXE+GZhdBbobmTrUai6rn6hiimm2rE5j3ypHpJ76tVLzZ8HDVb3F7L72mJfCSnze448/vnWvxfuFicWXxpwdWz2rMjV1ZVpwcLmPtXt/PMdred999514zZxw6DDDPcp7Oar+PFZ/Vpk/4v3rfcQ0aH7P/Z/tHYIq7V5Sfq+xQyo8zrjWnhOr8R9++OHVDnOD4Q0MDAwMnArsHHi+t7e3lfA1k5po+O8lW6ax2KhS+/SCyP1KyShKwEbF6LLAWUqDVfmMjFEweLgy/MfxM21blTyW7tfStpReSawZqlRSvXXrBb0bTg9FZ4XY7yoBQM9hYo0zRWwrk9KrEI+sXEsV0sJq0pmTFKuIV8452XzGNErSLNVK2xJ3bL/SUNDhoKfJ6LE0g44MlUNFFsDfY3axD4899pjuv/9+SScDpQ2mqmNC8GxdqrRjnJes4nmlFXA/zKqiA4rnzm71Ho/XNIZocBzUAvCZwkD7+JlhJx8mcohJrCvHNmsNYphFPD4ey3P9PttnlSaBx2YJrt3uk08+ORjewMDAwMBAxDUFnhu9X+4l6XFNoCCljSyNDxmdJSyymFgYkf1nGi9K8dK2RGrJjRJqVpTQfaOti3r3OC66QjOhcixkWaGyp5J1Rywl+86kzzWu5a21E+dm4SlVSqoqNVocwxpbcTw+nsM2WE4nSul027bEa9bBtFHStq2Y7uKUXm+77bat/rsP1FTYlpfdE5Xtk9qBuC+XbHjZ51XYRS9UJgtBWQpp4XrEufD/nFO3b3tPPKfSLPHzXrpA+gwwUXfcB+5bTIkVj2GoSXXt2D6Py8J8rH3wuvBZkrGnKoEHkwzEZ0zFRvncy/abwec3Q0Ok4zm3dmMEng8MDAwMDADXVB7I6OlNq4S4vaKTlPor+1zU1/OzqqxO7Cs9OCm10NYSx+1zaCOsUjFFsFijYUklSoP0WuL4yEpjXxlYT1teFsBPrzZKeNm6sb0lW14mIUdQilwK7q/6Fa/FFGCRUVYppMwguC+kY2n52c9+tqTjdE1mfL5uL5kzJW3aNWknkba9MhmIHINwPVbvqypY2YjrwgBuzmsWRG5Qu9Gz+/WeA9mxly9f3noeZBoYvmZB4wbv1YrNZtoIBq1zbql5iv9Tg2TtQJa2K0vBF+HvM80P049Zc0AP0/isZv/JWPl9LxEF28yuV2nxeG9kHrm2rQ+GNzAwMDAwAFyTl+Yar78q5ZeRJTumjY5MLIt9I0tjMtWMrVVskH3NSryQYWWpxKTc1kUJLotFq65nVHGHWYFEvpKJZV6o7DM9CjNpfW1as8uXL3dTi1X2Cl47O4fzXyVzzmxdtMNEm510ci1tA3K8lW3D7Lv3XTyf8+R18ZxkCXQZK8iiuFncHz0EGf9U2Xbj/2uSlBtVDCRZXE+yf9e73tWV0g8PD7eSYsd94rWjHYn3WhY/SLsR+5F9Ti9Qem3aDhf3gcdaFWD1a9x/XkvvM7/ns9H7IfoquA8uOHvPPfec6KvPieviz+g7wDR1RhaHx/1A1p1poyrvdzK9+F0WC7iEwfAGBgYGBk4FdmZ4Z8+ePfpVziQf/lJTN5tJWvSoosRVvcZ2WCaGtq0oafG6VWaNzGuS0l9lZ8rioir7WJappIqVq7ynIpjxoirQmXlYsc9rdONR4u6VeHnyySe39k4vDqsqTdNLem1QAiYzl46lVnr2seRP3Ac+xzYzzrX3WZS0qWWoCo/6fbTH+Xq2V9DDz5/HWEHbO2gbNHpZaDzWqs9LLCwbX7ZG1OZcunRpMZaqsitFUNOzJoF1ZdOv4nOlY4ZP2xm1JzFm0PZfr53b83rRHhj/Z2FUPjO93+JaO0n0vffeK+mY6bkNjyFqmDz2mJg7fu79yOd6HDO1A9ROZNqPan/xevH/uC5rWd5geAMDAwMDpwLXxPAyG5BRsTHaxSIzqbwzl7KZSNuSNSXTzHvJ/y+xzyz2g1lmqqwWmacVPeAqu1k8h96fVSHGbD573o18n3l7Zn3NsmUYWT7P2M7Vq1e3GF1WKJX2nZ7XX2Xj5CuleWm71A/ZgRGZhEu6UOqntsBem9KxZM9YMGbHyPpotmeJ2xlWmNEjMjx6EFY2xF7ZG+4hrm1c+yqejbacng2v52k3TVP33PgZ+8L7Jp5T+QowXpI2L2mb0XGfuQ2zqHg+7zH32f2IDIjxtvQ6pl0stk07s6/j95mdkf33/qps4b01YN+y9a3KnFUe+vGaaz0zIwbDGxgYGBg4FRg/eAMDAwMDpwI7B57H9FGZSrNKPkpq2lNR9FJJ8T3VDnzNKvP6O1N7qlB7iVhpBK8q/2alUOiwwTFE0CC/VIk6c9VfCuCOqILIe27Ia1JIRVy9enVLFRvboxqNr5mTxVKCA39v1UyW6oltMIwjqvysWowqxHiM58JqTOk4Oa9VTEwPZpUq01PF6/i6MQA3u75Uz1eVHKHnBORXqsXWqJOo8s6c29Yk/XVIC9XhmcNEdq34Pq41r23VHtVrmUqO6cB4HYaPxHa8D6yutBMLn5lSnRSbZhL2PR5Lhz4m0cgSQlDV6PbZn8wkwXlliEjmqObv+IzMVJoMH+olwycGwxsYGBgYOBV4SoHnlCSlWrKihJW5KFeSPaXBzGBevc+kCksLliYYPJylGvKxltzpGs0+Z0VxqxRc/j72sZK015RrqZgR2WiWALhizFnSYEqBPanfjgdV8H3sb1X0NrbF/6uwEDqEREmxkkQ5B1mAMxP/cq6js4LZGZ0IGCrBYF/pWIql67rRS+pdpXoim8+k9CqBMp3EsnOqdGSZU1blUMXzH3/88SO2m7GZHpuM14tYKp9VhTjE76r70esWNQp2EnGKLzs2eT9k+50OSJU2wuwthsMsOREx9VzsL9OgsY3smVWtYU8jWO2dyoFNyu/pkVpsYGBgYGAg4P9v73x647aSIP4kWYnjg5PA2CBADvv9P9Zes0GQAHFgx9LMnkpq/VjV5Gixh+x0XUaaGZLvkY+crv5T/aoYHi3f7tc1xYacbBdxpKg7xSNo3TjRYFr0ZGKd5JIYH1OanZVGtsSxC3UbxjOTbz1Jt9V5pFfHAFLRaMcKk++eOJ1Om0JtFz9iTJVWZictlhheJ4mmcynrODXBXWvbykn7JdOrLE1rRY0/ZY0nWTRnzfJ4XAc1HZ1NTzn3tB7qsSkpp3XuWC8Z/tG43Fovr3X3HHh4eHhiJLpOdc6pmXOacx1DVz5R51PjV6mlkMao71YWqnie9ieGx2vs4uTJy8H7yXm/+EzidXKlOhS6T/KLFalESHCx/uR96nI+kuj6EQzDGwwGg8FV4OIYnorP1/K+7cQe2Bqiy/Dci+V1mX20hN02srpk2dASIvOr+yEoveTYYfJ7s4jUtRLZ84t3QtCpmae7bntWUrdNxxiF8/lsGXP3HlmbKzjdY3hd7Emg4C+vaZ0X2RPPgeJMTgBYn6V7g8XMdb+pmFesoRYoUwyB99URz0xq7uzicRzrXgyxIkn2ObDtUWVPjOtxLC6Tj+eBWbJcMzVDNuUd6Lo79iFmKjEBxXQp6u28KPyfXg95D1yDWzbO1bnQ9XFrlR6L9Mx392LKXHfPibS/rpGuzl9l0RPDGwwGg8Gg4OIY3ps3bzYyNtUHnJoqHmEXyfffZWlyf0l2pm5DNljnVvfhpLKStcx9OzDOR4uyMjzXDLIer4uXJFaQahT5t0NnndU40tH9uKzPFGvi510Mj+93bIOCvLKOXUspQVY6X7kOHRvgq8bceUz0nsbG2jCN3WUsphhrF4cReP8mL0H9LMlEdWyg3tNJAFjZ4bonZOHXjER6axiHdTWolFYTAyc70zaSdavfYRyMsafKxDQWSswpa1OMT59XsB6Ozzutt7pm2diYNZzap8sK5rOJovz8v46NXpB0XesYuUb5TKxjTxnLRzAMbzAYDAZXgYsZ3vl8bsWjheTPd5Z9sh7paxbctvRpd+ostDiZtXkkJpXgmBnPk2uNUv9fa9siKe3LxSj53RTvczV1nDO/W5kEYw/39/ftmqjjpfXsxku2SKFmbu+OQ4vfzZmWKRlenTMVIVJbJcVU1sptiPZUgtbaNno90uqpY0r11cWZXEuk7vh1G2aMdq1fmJH49ddfx3GrhjPFedbaZpdy/64BMFlMbUZbIUb5888/b95jk11mFdYxaixs1qpsTbXzqQyPsUl6FFLT4rW2YuRUSdGYK3sic+U40pjrmBj75HXtvC06PmOhdYy6PkfqfzfHOfzNwWAwGAz+xpgfvMFgMBhcBS52aVbXQldakCSDXBJBkuXaK9R229KFodeatq39Uj6HFLnr70bKz+C4kwlj0gBdDdXdwvIKundT6q/DJS6F9OoKnOnm2nNn1nm4NZQ6gXM9dB3v94RknbiuXC8p2cPJ4HHMSjhw7jueJ11vrjOKmq+1TQ7Ycx9WcI0yWcYlXqVCZx63kzLjd1wq/SVuKI2HCWl1f3TP8l52Igap3yI/l3vt999/f/rsl19+efHKUIYrf9HYtD+5LvW/C8/I/cn1TYEDd++xRIbPRLndu4QQyi9KWlFzqX0fKYoudKEhhjb4TJT7so6Rrtk63j0MwxsMBoPBVeBihnd7e9umUR9leBW0XmglM+nC/ZrvtZapVgaZW5LgcWPlmFJrIbcNrUwGuB0rTOn2qVyhYq/Fj0t0SAkUtN7X6ktNiPP5vL58+RJT2Ov2ewXSlQnTkudrJ0KbupXrNYlX1zmntVTHyP1StosM0Hkj+B3HuAUmYTChgglRdY3Jkk8C545Rcl7J++DKSY54BU6n0/r8+fPTuHUcx/C0P7b+6kpaeL9zXbhtWaCtJBbtg6UHa23LDtguSuypCo+T4fO5w6QWJ8auz8j0UoJK/Y6Ox3IEd2+6JK+6f95X9T0m8DFZpTI8XrdPnz5N4flgMBgMBhUXM7zT6dS2T6EFQjAt3b2XYnmyIKp/nL/2yaJzqeVCklGqc0jitIxPOOuWY0htO1zMkHEQxstcCr/GkmKgbpsUu3OlB9zGsQyH0+n0ZGW6tUM2w9RyFt+utWUpZBn0HrhGqYLOG1lOXS/6jMW1ZFVuG8ZHND+e28rwWCbAmIeLGafiYcY+yBq6MXHezmOSYrqd6HtleontnU6n9eeff25aM9VYJ1vdcM04CbPkUUrlSZV5fffddy/OR5IyrNuowFwMT+PX+/x/rXyPUZZQ/9cico2BY9S8FX+rcTiysb3Sncpg+ZwWeE/U5xzvS11HliW4Zr/1GT8MbzAYDAaDgosZ3lpbP3n9xabw6h7Tc/tNosTMFOKx6zZddlZqQyO4LNGUaZQkrFxxfPKHO6mnlAXqrBsixZ6OiPrynKdMxvpetaL34nip3Uz9m77+TiYsxVtThmBlOYq/MKNO2W1OgEAWrazixLgrKPRMjwLn5SS4uF9KV9WYIRkeJc3Y8NgVhCfpMueFSAyf7LSOkee2s9BPp9P6448/NnGlyp4Ss9P/TsiBsWIX217reX388MMPT++p4NplrdZ9VwZEr4C24VqqheddVrObg2KJa21jtpyXyzvgmJxARBoPx8bfACfpSKaqTFjNg/eim/ubN28OxYLXGoY3GAwGgyvBq8Sj9cvtGjHKiiCLStmFHRi3omDvWlvpJcaBnFWRMjmJ+r6LOay1rW1yMbyUxZha2dRj87MkYeQkk+jf77IpU1YmffaO4V0iwUaGV68l4yCpFUpFsnzJHFyWZmLCSV5trW2DTAqpCzWWIqT4Mq+h8w4IbEPjmCuZXWL27tyR0XeSYkISC04tu+p+kpRZxePj4/r48eOGkdS6OEqKMfNWcLWASWha7JbPu7WevUwfPnx48d2uebDAPAeegzpG3sucJwWpu9ZSjM+6TEt9xno7xdbYALleN3rM0n3ssvrZQov3mVs7l9ZyrjUMbzAYDAZXgosbwN7f328soxoD0S9yYhNHarb4WWdlpnYVbKbZ1d+QtaUaOLftJSDr7Jhmsv5p0TurKWWspkzMtbbZmHuvdRtnVTrc3t5urL1qzXJt0AJl1mYFryEzft34E4tm7MOdJ64Nxkccw0sgc+mEx1lL5dgTx8ZYe6oLXGtffUbomAQZBZmMm9fDw0MrBP7p06dNJq7YwFovMw3rsTqmlQSyeRydi3qMH3/8ca211k8//fTiM3pEKnhd6IERi6rz0jZsHsxMbF1jZY+u5ZnpWlvmWtcu4+a6Tnquq0USY21rbZ+nyZPh6vBY16hX593hOrnkWTwMbzAYDAbLCsAfAAAPZklEQVRXgYsZ3t3d3abKv2Yi1V/8tbb+VtfyZ081JMW+1so6nKkZYd0+NYLtGNfemJ2VSka1F59zY0t1hS5LMWW5pszLtbaxKJ4/V4dHq3kv+7PGf50Fl+I6tIydlibPA+MHGnfN8NXcUvNOx57YQobM0cWiGLNJzNXNj/NycT5C51GWvOZJr4djI6n+srsnUyZ2qm9183l8fNyNyfC61DY+YkdkQN352tNd5f1T6yO1jlQzJ2ZFFl3nfjQeV9eoPvv+++9fzIN6rPRO1e+S4VPZpV5/xthT+yGdOzaVrcfR2LVtV6OcvAPc51pbFjp1eIPBYDAYAPODNxgMBoOrwKvEoxkQrgWgv/3221prmzBB94YrHqb7M0k/VborSs3AOAOzXZCd+2epgQNdZylpov59tDiy7o9zTu5Qdzy6GJlkUl0ZdMXQHea2cWnuaY5KeKIrphOCJjq3RRIqTgXUaz2ncuscs0O0XD9dOxK6gN3aoTuf1077cIkuPJ+pi7STwdP89Eq3tJPqS4Lgbl0LdDE5IQWC7W2+fPkSr6/c4TxPde3ovffv378Yi953rtnkPksJL13iC117roQqrQMWxTvprSQ4T5dtPR7noessV6ZeXdKSxqQQlc4jy2+69cBnvwulMClFnzE5zJXOuGSoPQzDGwwGg8FV4OKklWppuWJeyifJWkmCxmttE1mSZeiKrMmwNDZZXE7CihZBSkd3KbFJfqhLvNkLjnfNKck6yCAcG+YYUxp6nQNLTFLCgxMZuERUoGuuy2A+4Zh5aumUZLuc6DHT0HXOneA0QUZ0pJRlT7S6fs5jMwHG3TNsM8TkFCYxVIubrCe1+nFMnmUcSYi4ftaVANVjvX379mmc8iI5uUDes0lcfK3t9Wdhtpgxz1v9jpqoStBa11rPwZrQxzmzqJpegwq2z0mlOxVsqiro2ah9usatYnbaVmURFHfuxDL2SnfW2j7PNB+2IXIF7vSqHMEwvMFgMBhcBS5meF999dWT79f5r2UV0dcsS6GTtWKKKi3hTn7ItcdYKzcldGDas7Pskz+fMTyXjiwkIWAX90kp8118JDG8lKa8Vi5D0HdlcdXUbDK8vQLQ2lqqvifQC0CW5qzYVOyaRJ2PxKsEx0Zd+5963FSo3Y2Zx3etUFKLFVdQTybPGA5jeM77QSZJ1PlzbPSYuCJs19YreQju7u7Wt99++8SIxC6c3BRjXfRCObFyjY8sgyUadX2wQemvv/661tpKczn25DxV7v+K5GWgt62yQ15vPZs1ZidWLVC6TgxPhedigE6yMcWqWUq11rYBLOehOdQSFMbuLpKrPPzNwWAwGAz+xriI4d3e3q53795tLKJqwYkRyALSL3Mn4somncKe9Nda2xgd/dMuE41WOK1A5xPmWPbichWJDbLI07WFSZmjyRqt7yVL1RXjM57Dhp9idi6OITw8PLTMRjHgtbZxMs6/g7PS0/VIxfdrbdkMGQo9DvVvxriOxKIEd73rtm4dCEkk3cWmUlYmM1a7a5aK5V1xPC1vZmJW74CLm3dZmjXDV6zJSQymDGtma9btu/yCuu8KMSAxHsUVxZZcWyfe73tygRVpjFwH9RyT4fH86jq57GC9p1fNV8yOz1m3H2bmM6/DjYX/c35rPT+DxDoveRYPwxsMBoPBVeBVDI8ZT9Wq0N+ywtii3VnNdf/d/10GnCBGyaaH1UpjXK+LKxH8LLVvcePeE1PtxKP52rWwIXNlTIe1ivVvMj3G8lztnl7/+uuvttbw7u5u48/v4nKpFqceg5l2e5ZiRRI2Ty2u6nt7cTg3n8T0eXyXcZledbxufdPSJxvoPAt7Qt71M54bxgErc2Ecq6vD03FZg1ivdWoHlOqB6/x53lNmav1fjIfZ4PVeWOsl60nttLoWain+zzh353ni3JnpWWXDKGnILE3WQNb8DbLa5DHp5s7njmvcq2eRMmRHWmwwGAwGA+BVdXj8Na5ZPqzMZ9amyzJM1jEtRGfFJ9aU2svX91xtWQKtQFq1ncB1UqCg5VutmKSsckS1hVmvqb1SZWvM0iQbcJmdrkFvioNo7ZChOmbK/1M7JzfnlHlJtYe6P36XrLGC15KZdc5KTyLKiWHWMTL2mGorXU0lY7YuK5PjOGopuxq4vZrEeq4Yv+qs9Nvb2/XNN988HUfPmHpPi4GQRTFu5rIY9xQ7HNMXKyID61i8zjPb9VDxp55bxh6pRtWxUMbqj7BCHZv1dszJcDH4dD/xOeeeIcwg17aKjbrnCuO2RzAMbzAYDAZXgfnBGwwGg8FV4FUdzwVR4krRKS3GILjcEc4lklw8Kemjfof0PLkg6990VfD4jkYniaWu8Dy55Dif6vJxiSwVdB+4dOtUgOwkpVhYnlxmLqW4frcTj3Yuzbq/JK5Lebp6TujaSa5MJ1qeOnVzjp1ALteoK0xngk7qg+bOCfdBN1VXPM5rxmsrHOn7mK6N24buxM51Vu+9zk1/e3u7KVKuyRaas8SjCeeWZJjFdYCv29bjsTM33cYu9MBryG2OYK8Mx5Un8budyLfeY5E/58tzV/frEqnqvuu9kcprKDRdf2OcQMVRYf5heIPBYDC4CrwqaYXWc7UQFIAle6EIsgtQO+kZh7ptx/7Wyu1U1srJCh2SMG5X/EjLJhWRO+bC+ZBtMJjNv9faJqA4VuBYX/2OK2xlicFem47T6bSZj2uFwv2TxR0pG0nb1LXD8boWQjxeCshz/Tkxb36XzM4xITLTlIDSMW8Wngudhb/Xnd1tw3NDRubE0Y8kyciCF9twUnx67nBOZLt1DEmui0LNnOdaW08VhYy78iudF7YQYpnEWl6gv75Pb5XblmUJYmmuxGQvWaW7BukZqHk5lk15M3pkXNsjlSNc0m5NGIY3GAwGg6vAqxrA8u/KFGjN6f+uBICF7Kno1aWy03pJ8bgKWpWMrbiWKy42V7elde7S0lMReWdpJ0uO7MDNl+ecTM+lsu+lvVeGRyusY17n83k9PDxEBlbf24t1HhHOTqzDWaQplsdYW90f2QulxlxZyt74u3kxpsHCcxdvTqnsfHXxdI6dZRgu7kfBcx63MiZXcpLY3vl8Xufz+YlVCc5DwYJoNafWunVSWGn98vzUImsxHY2BnivX7DTF1l0cnkjlPnx2uHY9lC4TW2MxeX2PsTuKRbOVUj0e48vuPiIktk1Rbs2nNhnXZzrOu3fvDjeBHYY3GAwGg6vAxTG8KgCsX9X6y02xYX1GaSrXxDO1k3BCrAItG1oRLlaQWtCzaLXL0kwZUB3Do4XPQtNqadMKTyzEySwxHpeKll1mZxJtdXFO7b9awnvMmtfUNQUlq+A+6znfK1Z3Bec8HmMLZPouw5cgm3FI7JaZq85KT4zeFauT9e15IVzhborZORaamjzzvNZ7k+vq4eEhnrvT6bQ+fvz41GS1E4TXPsRQtH8nfi72wucP73sxIxVB17kw74DjqOeLeQw6vjLbxVycGENqWs015fIb6HXTcRmvq3+L6SU2qHNfr2mKTQpdrgTXNZ+RdV46X1oP79+/jwyYGIY3GAwGg6vAxTG8m5ubjQ+6WiT6VacFpO/q19nVqe297jWlrN91PmZB1hKZnSwvJ65c5++Q2FsdE63jLsM0xRmFLjMyMVWyNycETXbAa+yYpJuzQ93W1XPxPHEsnQTUEaHxuq96vNSCqZP6Yg1qyiit7zkR5bW2zNuNnZ6FjuGnxpg8512mZPJKuH27GHSdj4vddF4b4nQ6vYifucxkgfFDXR8xF8WK1nrODBR74fjZxqc2IeWzghJgZFH1eGoppP851npOUhZuenbUbVMT3CQfVufFBrAUk3bZk6mlGFu1ubZOrEWmd8BlLtfnz4hHDwaDwWBQcDHDu7u7e/ol77Im2fiVrYScqGqKV9FCqcfby8rsxKpp8ZBR1DqdlKXJeXdsjfOhVeaslCQ4TPbh2sOkuihnNab97alf1P2dTqf2+zc3NxsrulP5SFlrR1jBkXOcrgdZwhGLO2XR1ve4jjm2bh10cT6OMdUzMsPOsSy2Y+G8XL3XXvapq9dNAtMO5/N5ff78eZPN6BiejsF7wDVXraL3az0zPWbcMtbn9kdvETOi13r2bgmMcXHMdY700qQYnsuN4P8aO9e7e4/rjNffNf/mvFJWav2b8V/+X8fIZ9VRdrfWMLzBYDAYXAnmB28wGAwGV4FXdTxP6aZrPVNeUnsWzLoCZtJyJiLIteDcKXT5UPqmKyKn+yalAh+Bc+t0wtIV7v2UNNKJOic3SBJorftP5QhOZIDuuz1X4/l83gj1OhFiljsIdH/U/bi07LpP9z9FEJL0W+fSZJF6tw3XKI/Dfbr9JVdmJ8a+J2V3iXtScDJhXCtMinHPiSOQaEE69/VvJkEwiai6xpTAoudZ6lfZJUlRektuUXe9mGiW3JRObo+hhr3wT50HrwfXYb0H+R7LyHTOXJmHisM5n07eLV1TupVdMk4XAkgYhjcYDAaDq8DFDO/t27ebdH1XCMxApWN23CYlaPD/KoXD4krKkzlB3r2UXsfEjshnHUXqPHxJITjZWpeAwvl0hZ//TaJLFRYnzufzenx8jGnHbm5Km2aZRUVKrqB12bEM7pfrzEmw1XnVV77PY7rjdCBrEkMhe+tEC1LHdbeW90oa3LYaU2LmnddD6FpLieE5Zsfx8frwPnFtZvRZLVlYK8sk1uPx3tKacYLZKdGEhfqOcQv0aPD50LE1IUl/rbUVrdD41XaJ7Xrq+UzC80k0vW6TZPCYQFbfO3L/EMPwBoPBYHAVuFha7O7uLlrEa2WGx7IE58ellZ5ko1wciXJJR9q1CMl6rcfZsyaOWM/CXqyyfpZia0nk2e13T5bsyH6ddc3rtHeOHh8fN3GkaunvpSQ7NpuKxlN8pILjTw1nXcE8P2Nc4YgQdBqPO8dJcNwV+++JINOz0MVAaJ27Mp+9bRwYa++Ek/Xc6Upl0v1BhlfZDO8tQayFrc7cc0etaijm4MogUilDV9TP51lqaebELbjOKLPmmC3vG81H54KtjGppR/I6Kb4p9lvPI1sicY3q/+rV4/W/v78/zPaG4Q0Gg8HgKnBzSYbLzc3Nv9da//rfDWfwf4B/ns/nf/DNWTuDA5i1M3gt7NohLvrBGwwGg8Hg74pxaQ4Gg8HgKjA/eIPBYDC4CswP3mAwGAyuAvODNxgMBoOrwPzgDQaDweAqMD94g8FgMLgKzA/eYDAYDK4C84M3GAwGg6vA/OANBoPB4CrwH/7FpVj8bf0vAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4betV1vl+++zT3P7cLrkJkERpRMESUCTYoGWDYhQERBMFEkKqUk/ZK9gUIKDBLmopIFqgRBFpYheiKCCtDwUKIqSAGBECIc1Nbn/P7XLOPXvP+mOud++xf2uMb8517rkJsL/3efaz9lprzm9+3ZxrvKNt0zRpYGBgYGDglzr23t8dGBgYGBgYeF9g/OANDAwMDJwKjB+8gYGBgYFTgfGDNzAwMDBwKjB+8AYGBgYGTgXGD97AwMDAwKnAs/6D11p7RWttKv5+x7NwvVe21l5xvdtdcd3WWnvrZlwveR9d8+tbaz/9LLT7qs04PvB6tz1w7Wit3dFa+5LW2ke9H679qs59/FuT4z93890PPgt9+c+dvsS/e67T9X6stfaG69TWhc0a/obkuze01n7selzneqC19sGttX/bWnustfZIa+0b18xpa+03tdZe11r7qdbak621n2utfW1r7QPeF/3uYf99eK3PkPQOfPbmZ+E6r5R0VdI/eRba7uE3S/plm/8/W9K3vo+vfz3xLZJ+QtJ97++ODJzAHZK+WNLPSXp/PRg/TdK9+Cy7j1++eX1xa+3Dpmn6qevYh8+VdEt4/1ckfbjmZ0zEg9fpep8l6fJ1auuC5jV8XNIP4Ls/J+n8dbrOM0Jr7XZJ3yvpPZJeprnff03Sf2yt/dppmq50Tn+5pBdKeq2kn9r8/yWSfri19r9M0/TAs9j1Lt6XP3g/Nk3TdWcj7wu01s5P07S04V8u6WnNm+STW2sXp2l65Fnv3LOAaZrul3T/+7sfA78g8aPTNP1c74DW2i+X9Jsk/XtJv0ezAPiF16sD0zT9JK73oKTL0zT95zXnr7yf4/V+fMcuXhOus1DwTPEnJN0t6ddP03SvJLXWfkrSmyR9pqSv7Zz7f22eIUfYMNc3ad4Lf+dZ6fEaTNP0rP5JeoWkSdKHdI65QdLfk/STkp7QLEG+UdKvSI79YEn/XLPkcVnSWyX9nc1337+5Vvz7znDuiyV91+Yaj0v6j5J+Hdr/es0S9G+U9IOSnpL0txfGeKOkS5qZ0e/eXPfVyXHfr/kH8RMl/aikJzUzqU/GcR8W+vGUpJ+R9PclXUz6+tNhDh+S9Nrkuq+SdCjpQ8M8fOfm+Cc37X8Fjp8kfWD47LM0s4onJD0q6f+T9KoV6//Rm3l5aDOWt0j68+H7JunPapYEL0t6l6SvkHRzOGZ/058vkfT5kn5+049/K+kuSc+V9C83a/Dzkj4vGf+k+SH8xs3aP7C5zgUc+wGbeX1A0ns136R/uGjvYyV94+a675L0dyWdx7E3a5Z0f07SFc379S9IauGY37Fp7yWS/oFmZnK/pK+TdNvmmA/R9t6eJH3m5vtP0rxfH92M7y2SvuA63sce84tWHPslm2N/taT/KultcbzPwjPmm7S5D5Lv/tSmL79us/aXJH3v5rvfvNmb79zcB/9d0hdJOoc2fkzSG8L7379p87dL+seSHtb8PPpHcd8mfblYrOGf2nz/Bs3EwMd/lNd4s7fu3/T/qyWdk/SRkr5b873wPyR9enLNj5P0bZt98aSk75H0sSvm9EckfWvy+Zskfcs1rtNlhWepZjbre+PyZnzfJ+ljnq298r50WjnTWtsPf2fCdzds/v6yZonwj0q6SdIPttae44Naax8s6Yck/QbNEuMnbc7xMf+75gfxj0r6+M3fH9+c+9Gaf2xu1czGXqFZRfSfWmsfib7eIekbND/4PknSNy+M7VM1q1i+TvOP6L2aJZkMH6ZZwvlbmtVD75H0r1prvywc8wGaHxJ/UtLvkvRlm9d/V3VgmqanNKtxX9FaO4evXy3pu6dp+p+ttdsk/QfND9/P1jzff0XS2artjY3mn2q+uT5Zs+roayXdXp2zOe/jNattXrgZy0s037hRl/83NM/Ft0n6fZv/Xynp37XWuD8/R/ND6v/YtOd+fYuk/6Z5Pr9D0mtba5+YdOkbND/UPk3Sl2/a+crQ31s033CfKOkval7XN0v65621Vybt/XPND5pPk/T/aJaK/1xo7+ymP58j6f/WvJdeJ+lLJf31pL2v0LwuL5P0Gkl/UMfS8Nt1rLJ7jY7397e11j50Mwf/U9IfkvQpmuf55uQazxS9+1ittaZ5X/3YNDOjr5P0As1r9f7Ev9T8w/WpmudPmk0QP6D5ufF7JP1DSX9a895Yg6/WLJz8Qc379rM136sVHpP0Ozf/f4WO1/CbFq7zZZp/HP6IZrXiqzTv29drfjZ9quYfjW9srb3AJ7XWPkHSf5J0RvMe/EOSDiR9b2vtwxeu+as0C+PET26+2wmttRdr/pH+7+Hj12zG8tc133Ov0rwe3efKM8Kz9UsafsVfoVyq+f7OOWc0/+A9KemPh8+/QbOEc0/n3O/XRoLD52/QzDJuhcT1iKTXh8++ftO/l+wwxu/YtH1u8/61mzY+NOnbFUm/PHz2vM2xf67T/r7mB8Yk6Vejrz8d3n+oZib3svDZx2zO+wOb9y/evP9VneudYHiaGcl917D2P6D5h/uG4vu7N/Pxj4o983vC+CfNN8uZcNyXbz7/C+Gzs5rZ2dck4/lKXOeLNdt7P3jz3mzgN+G479UsxOyhvS/Ccd8m6c3h/edsjvsNyXUvS7pz894M7x/juH8o6Ynw3izvFTjupZvPb7pe921nT/Dve3HcJ2w+/9Ob93dt1vifPIt9W8PwvnihjbbZZ39sszYXwncVw/t7aOPrl+4THbO8z0u+qxjev8Zx3735/PeGz16w+exPhs9+RNIP4565oFkLUq6HZo3VifsqfPeVkh7ccX0ubPryNkk3hs+/X9LXPlv7Ivt7XzK8T9WsAvLf58YvW2svba39UGvtUc0Pocc1s75fEQ77RElvnKbp3ddw/U/YnHvJH0yzje3fSfotOPayZvvDIjaeR79d0jdPx4bcf7p5zVjeW6Zpemvow72aH9BRMjvfWvvC1tpbWmtPabYNfs/m61+hAtM0/U/NqspXh49fLendmhmANDOSS5K+prX2R1Z6Yv6wpLtba1/XWnvJhiV2sWFLL5b0z6aZfWb4eM0/UF+Pz79R8w831+U7pmk6CO/fsnn9dn8wTdPTmtWGH5Rc7/V4/02ahauP3bz/BElvm6bp+3Hc10u6R9tzT8ekH1dYR83q7Z+R9EORFWkWkM5pVjcttXdja+2uZCwRP6r5nvnm1tqnt9buXjhekgSmttae/8k6eR+/Gt+/fNOXb5CkaXZQ+PeSPr21dtNCf8ge28o+rcG/Sa53Z2vt77XWflbzPf+0ZuZ1TtKLVrSZrdfdrbUbnmFfif+A92/RfH/8R38wTdPPazYZfJAkbfbAx2i+l1pY46uatRifcJ37mGKzhq/TzApfNk3Tk+HrH5b0Ga21L26tvXiHPXjNeF/+4P3ENE3/Nfz9D3/RWvtUzQvzE5rVOR+n+WZ6SLN0YNyhbU/PRWwm/XZte5dJ84/BHfjsPdNGBFmBz9I8j9/SWrvYWru46eNPSPrM5KZ9KGnjsk6O829K+kua1UEvkfTrdazOuqA+vkrSb2mtffjmR+cPa5ainpakaZoelvS/alal/kNJb2+t/Xhr7fdXDU7T9F2a1SEv0iyFPtBa+45EFRxxh2apubdenvcT6zLNDgUPa3tdHsb7K53Ps3l6T/HeKtY72JcN3h2+j+Bach2fo9nm/DT+7J1354r2pIU139xLv1vHwsN7Wms/2Fr7zdU5rbUPYb9WCj8/3rmPb9S8T79P0uVwP/wbzerVT1to+53o0x9a0Z+1yNb19Zrvj9dqZtkfq1mbIS3fZ1K9Xtfb0zLb309N2443cd/bzPO3tb3/PlPbe+8Imx+ly8pVi3cof4ZV+CrNe+Kl0zTRK/UvalYFv0yz/fmB1to/aK3dukP7O+F96aXZw0s1M58jO0lr7YJm+h/xoE7af1ZhmqaptfawZimduEfbC7j2x046dr+mFGb8Fs0qsV3wUs0/Un/VH2weHGvwbzXbe16tmc3dKOlr4gHTNP03SZ+2kag+VtIXSPqXrbWPnKbpLUowTdPrJb2+tXazpN+m2fb2H1prLyiEg4c0z2NvvTzv92z6Kkna2CBv12431ho8N15n816aH7Tuz0cn590Tvt8FD0r6ac03dIaf3bG9Ehuh5Ls2981v1GyX/fettRdO05T1++06ZrYGBYJdYVv2b9f2Q1qa75V/1jn/d+mkLflnnmF/Ik7s0Q1r/m2aTSZfFT4vhYRfZHBIxl9Vwm412/J6eLOkj0g+/1VaGU7WWnut5ufQy6dp+hZ+P03TezXbs790oyn7/Zp/APe0rTm4LviF8oN3o2aqHfHZ2mag3yHpU1prz5mmqYoRu6zcWP99kn5va+2maZqekKSNau4lm3Z3Rmvt12uO//kqSf8CX1/Q7BX2cu3+g3eDZkks4nPWnDhN00Fr7asl/RnND/Jvnwo38mmarmp2DPpLmufhV+pYTVi1/7ikN24Ywt9W8cM0TdNjbQ46/qzW2pdtNjfxg5rH+VLN62O8TPPaf2+vL9eAP6jZiG+8VPON/0Ob998n6VNbax83TdN/Ccf9Yc0sL/5YroEdcR7dqJufKSzRlyqzzTx/12Zv/yvNDkPZ+lzW7EF5PfFyzd6An6ZZ5Rbxv0l6aWvtg6Zpent28jRNb7rO/enB6tWj+2zjJFU5m10vLK7h9cA0Te9urb1Js83/C66hiTdK+vOttXtsQmqt/WpJv0az2reL1toXSfo8SX9smqaekOP+vlPS32+tfbpm79NnBb9QfvC+TdJXttb+lmam9LGajceXcNwXaVbd/GBr7a9plp4/SNLvnKbJG/XNkl7VWvsMzRL0pWmOb/nLmh+w37mRPJpm9cV5zdLwteDlmm/sv7HRoZ9Aa+2Nmm0XfxS66yV8u6RXttberFnK/QzNas21+BrNKtGP1MzeYp8+RbMX5Bs0e3bdrNmwf0nSf1GC1tqXaVaBfI9m1dALNK/Pfy3Yg/FnN+f8QGvt72j+Af5gzTfhn5ym6f7W2t+V9HkbW+W3aZYq/4rmH59vL9q9Vvy+1toTmu2cL9bs6fu6YFP9Ws1evW9orX2h5lCDz9SsAv7caZr4EF/C12l2wPmezd7+cc32oQ/RbAv7vYlaqod3aXayellr7Sc1O3W9VbOA8PGa5+/tmp2B/i/N6uRnI7nDFoIt+6unafru5PtHNAsOn6nZ0/D9jZ/XJgyhtXZJswfl/6mTAe3XHdM0PdVa+znNGpb/V5tQmo4A/0zwJyR9x+Y59M80J5J4juZnyaVpmnrPvS/XLKS8sbX2pToOPP9JBZbeWvs1mh1S/sw0TV+++ezVmp+3/0LSj2w8NI2HNs9jtda+U/N9/ibNgtKLNYcO9Txdnxmeba8YrYvDO6OZer9Lx7Eiv0bzDUsPvg/R7Ir7oOY4qZ+R9LfC98/XfOM/pu04vI/XcdzK45offGkc3opxndv04ds7x3ySTsZKVR6kJ8ap+YH1es0Pt4c1b7CPi22Fvlbead+l+eF3Bp//yk3bP7uZv/s0G99/XTiGXpqfrJkF36tZQn275h/V0ls2tPVrN+0/qtmo/t8VPNQ0Cx6fpzkO74oW4vDQdhobxnkOx/1GzSrfxzdr14vDe3Az1l4cHq/7GklX8ZnDbf7Hpr0HNQsWX6xjr097af7W4joxHvLTN3P4tPfDZlxv3Oyjy5t1+mZJH3Yd7+NuHJ5m4XFSJ8ZL84PxLderT6HdNV6adyXfffjmPnl8M2ev1Ww3nCR9VDiu8tLks8PXurjQ39+pOXzqitbF4f0BnP93JT2etPuItj2RP1rSv9bsGHdZ8w/9v5L021bM64dqvncf13z/fpOk5+GYj4pjCOPIPHonzONf0uy48rDm5/6bJf153xfPxl/bXHjglxBaa3dq3th/c5qmL31/9+f9jdbaqzT/QP+yaSFLyMDAwC9d/EJRaQ5cB2xckT9cc/DspDlrx8DAwMCARnmgX2r4FM1OGR8j6bOmZ8cuMDAwMPCLEkOlOTAwMDBwKjAY3sDAwMDAqcD4wRsYGBgYOBUYP3gDAwMDA6cCO3lp7u/vT2fPntXh4Rx/69doB2TqyL29ve5r/N/nxu+yNrOcskvHPFvnrPl+7XWu97m9Pi3Ba9prn/bfaZp033336dKlS1sH33TTTdMdd9yxdU5ca15r6XXpuwzXMsdr29kVa+zn2Ryv7U91Ll97x1Sf+96P8GcHBwfp+954W2t67LHH9N73vndrIDfeeON08eLFo/auXJlTqD799HEyoqtXr6b9XHNvLe2hXe6t63XsEji+63VOtUa7fF7ts+z3ovot4W9Bds/7u/39fT311FO6cuXK4mTs9IN39uxZvehFL9ITTzwhSUevceOdOXPmqBOSdOONN0qSbr311hPv/SpJN9wwZ9m5cOHC0XXiq9vMBu/v/Fn13q+xHbbhz/k+/s9jjN4CcU7YBj/v9YXj87l+jf/3+lTBG84PKZ977ty5rT76GD9srl69qs///M9P27148aJe/epXHz2s3J7XPvab6+9jfE4cq/vjvcO59Gt2s1dr2hPODLez5sFq9G78+Hn8MeGPB6/T6xt/aLxO/pyv8Ri/+rp+7/W7fPk4QYz/9+tjjz0mSbp0aU6U9Mgjj0iS3vve4+xyvma8B771W1l8YMZtt92mV77ylXrooTmpz9vfPmcmu+++YydkX+upp04W5vAeyu6T8+fPp8f4fW8fLK1D9jk/4+uaNTV4f+7yI8ZnY/YDxOcA32d7lUKH33vd/RrXyP/7t8R7yL8pt9wyJ77xvR/HfPPNcwbJO++8Uz/yIz9Sjj9iqDQHBgYGBk4FdmJ40zTp6tWrR7++lAIjMiklfr5G0s7YGd+zvWdL1VTRc0r6GShxV5/32qiofqZi8v+ctzXgdarx7orDw0M9+eSTR2OllJldgxJopm7jPFSMqydxV+itR7VmayTt6tyeyqda/+y6/t9Mhfcn7zPfx/Fcv1b7PGOF1d404jlmij7m3Llz3fk+PDw8Ygh+/riN2AfeY9QSZZoQswcyPaOnDq3usV3U4pmKjuBzrnqW9K5zLWywYm2ZdoD7iXuGbUjHjI57xmv85JNPnmg7fufP3vve964yD0iD4Q0MDAwMnBLszPCefvrpo1/YaLszKsZD+0iUYtbY0KrPK/33GqmG9rBdHCB6hn/2sWJJawzqFVPuoWJjbCtzNuK4fE7GGjm3ayX02E7so8/3d7axED1bJ201PVtuNT+7OBeQgfWcOQzaQXj9OI9LRvxsHqtxeE7Y5yhxL9nuMobh58CSk0J2TmyfrCXi8PBwywkm6zdtgxx7ZsOj78AazQjvj9hP6dpseLQhRlTjqcbbux4/z/Ys18zz6+tm2j1qb6gl8LnxvvYzIdvH0jHDizY8jvny5cvpGDIMhjcwMDAwcCowfvAGBgYGBk4FdlZpHhwcHNFZqyUyFVPlPJC5+FIdVbnrZyEBS6rMNXF/pNEZva7UWmtiW5ZUC2vUH5X6tde/Ss2WqUmpTqpUtlkf3X5P/TpNk65cuXJ0TKYOz9yks2vH9beqw2opv6cKM1OlL8V7VuOQtlU9a2LOKpUf75leOEwVjpKpmquwCu6HTC1VhSHYjTyeQycC7ovMhT0zi/RivfwX+9hToXtevC/8GtVpDo3i3tnFuaNy6snWculZmKk0l/rCPdR7NvI6PRU631NlnKk0vVf8HR1SeI9Ix+th1Sb7moXBGFZ3Pv3008NpZWBgYGBgIGLnengHBwdHUllmZKb0WIUYZO7BlmwYYFwFoGefVcHDEZS0lhxQsmOrtjJJq5K4e046lQRfOS1krICoXPd74+u993W8PgcHB10mfPXq1a7jTDRMR9DN3hK5tC2lW2Ks9l22dyrnlWw/eH+ToVDbER0qOA6iShQQP+MxHGfmBMbvyLyMLMTAknXlVBDnxmM3++MezZ4XuzC81pr29va6ITJkL95LdEyJCS8cuMzEF2scgzLWGtHbO0uOfRnDq547ZJJZgDa1HpVjV28cZlhkeNma+liyM/YjtsPkBb1EB3S+unr16mB4AwMDAwMDEdcUeF7lrYv/V9JExoAqO4slAjK+jB3yXDKjnsSV6Zaz9/HYyl08Gx/7Us1NT0pfSnt1LWwtnuP2K8k1swdS8u3Z8Fpraq0dnU/9vlTbZjhfkeHRRrO0Z3phFZzTbH8zXRLXx+PK9httGWRvPRbKdGt8jZI92/N3ZHiWyOOamqVViQc8/mgLq9z6yRwim/Na+7PWWldKP3PmzJY2Ja4l04GZtZnF3XbbbZKOUxxKx2mrPBafUwWkZ/ax6h7LQieYA9RtMOQjW38+cw0+b2KqPt4LHofH69deWkI+G91X2uuk43vCtjW/9z3hvsU++jo+9vHHHz/RD/cx7tFeQoMlDIY3MDAwMHAqcE1emj3PvYqRUNrM7BQV86kkleyzNQyvksIqj7vs2GoOdmFrlXdqnBNKyVU6qgy7BNJTL07pvyd9R2a05OnYYwo8ZinoWqptm35fJQiOn1UB9BnjZOA1GXFvrqtg5V5KKdqxKZ1n4yIrZLvc53EPLXn/ZiyetlwGQWfX4T3WC/ZurenMmTNb93p8Dridm266SdIxs7vjjjtOvEaG52PJ8Gj3o/Yg/l8xIbIb6Zj5+NXnMGVaz5OYWgcyfI879tvjsf3S42bC9dge14OpxDyG+Iw0O/N3TgjtZOKczwgzRrfh9+5PvAcZ/L4LBsMbGBgYGDgV2NlLc5qmo19/ppKRtiVR2lLWpqGK7dMDLko9lc1pjY2rSsGVpX5aSsezJpVZ5cGa2YrIJFgOhJJxLz3ZGq/UyhZBG06mS1+bBq21tpVSKkppWQqqDLGvlqBZK82fW3qmV6O0zfAMthXnlutB77UssXFlDyWzy+4JsswqLVi8BtNO8VyWa4l9pcclveWy8fk6tLvQUzJLiu32oxcm0VrT/v7+lodq1A6Q8ZjF3HXXXZKOGV5kQGQ69Nas2HT8n/eWx0OW4zFmY+ecZM8q7hFqMDIvVI7Pr54DHxsZHj0pqdmiN2W8V8kO3RavE+eRz0B6aRrR/tvz2l/CYHgDAwMDA6cCOzO8iMxDzFIFi3by2HgO9cX8da88xaTjX35LL4wPyST7pQwbGQtdirfpsZOezbPXdkRlq2Kf4/9VHFZmK1oqKUTbXjx2F0mrKuMSQdbqa1pazpJQ0261lJlGWk5w7r5mHsW0LXBcWXwZ+8DyPb4nMk9Y9omZarLq3+xLFduUeU/yleyj533ovppJ2C4TGZkLttI7OMM0TTo8PNxKYJztVT8HLl68KOmYXWTxbPQU5v7lXGcMj+A50YZXlfTpxQyTFVIr4DmlPTL7rip0G8F1514xc3XxXdvnsrFTg9DT6ti2es8995w494EHHtg6h/a9yP6XMBjewMDAwMCpwPjBGxgYGBg4FbgmlSZpdQwkpAuv31M9laXCopGdKgs6xMTPqDJ1n0zns5Q7MSWW1K/mS9UO1ROZys+g2q1y8shUqFRhVvW2suBRBgRTLRbnxNfuqTvYR87bUlhCpoKK7XGe/B3dmzMHDToW+NXqjyy8guvt+eilmuMepLo4S6NVhT9USRmy8dGV28dYXRjVvFQxepx0RDGylHZ0mqJaNu43hrAwwXRWB83jie320tJldTizSu1Z6FLsS+ZEYjVdte7ud+wfw6s8xrgO0sk9T7UtVX+ZWjcLc4rXp8lmTeiH581zEfeqx04zgveZ78FHH31UkvTQQw8dnUsVOfdMZvah05XV4HfffXfaj4iYcnCoNAcGBgYGBgJ2YnittdSlNEofdJiglJG5YEcX5whKBG4zSy1FV1i60Ud3XQZZ07EhSwtEhlAlYu6llOIcVOmb4rWr9GdVkL607TJtkEFl807jPterl8Isc4aJx+7t7W25O/cqhFuqrBIDxP5WQdZ0n46stgqCr9hBBOeF6xD3DqXwXpICnkt25Dk3i3rkkUck5QzPY7d07HOMjA2trfodz6HDExlEts/osLPE8C5fvrzFyOO6OE2YNTqGr505E1X3dJY2S8qZMDVZboOhGRyPxxz7ZPYUr0PHKWqJeuvF8TFkw9eJ+8L7yPvKDO7hhx8+8bnvTTsfRVRat8w5x+tC7YPP8bpGVsj7djC8gYGBgYEBYGeGd+bMmS29fq8ET4XMPsY0ZGvSa5GlVcmJYxuWvihxVC7Z8ZqV/Y0SVqbvr1zms3RlZJu0DZL5ZcyyCobP1obS+ZpAega/rkktRgYU59FjtE2FiZirRAGx3WpujV54Atchs6nZNkzp2BKwz+1pIbKkvbFvmR2YweQMbM5skyzxUxVYjmyNfeIcsM3YX7JsH0sbWfzfc7NUWurg4GAr0UU2x+yn+8+SNbHfZPAMss40GLTLmonYvT4L1eH+qp5VkTV5nhk8Xtn4Ixia5T6bSXpdbI+Lc/Lud79bkvTOd75T0jHT87nuY5xPMrsq4D0G//Mczn1WEoxMPyYWX8JgeAMDAwMDpwI7J4+2tCXljKGStJmKKSvZXiWh7RXIpFTJ1Dj0UPM44itLUFTBvfHaHF8lGcf2KY1VaXtif+n5RCaZJeOmNyb145m9i/akpWB5qU6vVmFvb28rQW68DlNesYxKZkekPYx2XttumSA4nkNGz7WN46SETe8/2zjiWnrezQIqj1v3J+5VMm6y0cyObrgdn+Oxc44yexxTPPFej+OjZ6LbpVdllpYu3k/V/rHvgNewlzSYLNl981zEvtIWSI9esqisrA3LQnEuMi0RkxbQxmnmlbXH+6ay08W+MV2c96pZWgwe97Xf8573SJLuv//+E8dUWpdsDnyO+2T2G6/nz5jI2n3NbO9MOJ8VNKgwGN7AwMDAwKnAznF4BwcHW6XjewUrKc1mNidKIj6GMX2ZlM5Er5XXUpaOjNIgvUIzb8AqNpCenxkoFfUSDlt8P1tZAAAgAElEQVRKoq2rKi3TYz1Gj7mShXqO6YGXzUlc056kFb18aVuRjte5YgZZbCA9Tjk/9BTLWK1RedFmUjrtZGQdWSo7pt2j5x3ZVbwe9w7tb3EsVcosxrdme8ftMTUWWUjmZU2POyNLJ5eluapS09mDkzGJccxmJh6LvQg9X/4+89L0sWTCtjUxubS0nViaz6qe96SPcZ98jG1pkeHRJsg54BrHPnLPVIVZs9g971Wn+mJcXJbk2czNr/SyzuINaWunt2t2X7OM07lz51YnkB4Mb2BgYGDgVOCaygNVxValZTuOkUnAfrXd5c4775R0LOVkLOu2226TtK1v79mXKo9H2iliG/QmqpgcPT6lOvk1bUdxHi3FkG1YqmFC3uj5RFsdM8rQLiAdS1KWzmmjWJPJoSdl7e3t6fz580cSHCXy2G/aAnr2UWaG8LEx7jL2MStrQ0bZK2XFGDfOl68br09bGW12XuvMNmWpn+w8S4ZscO3oLUcNQFwDStZMGmz7T8ZcKP33ykbRXroUS7W3t3dkAzVDikzY/SXjZqaQLFOQ7yGzGF/HJYUyTRbj65jhKfMo9n6mlsB9dKLkmFXEfaEd7Pbbbz/RJ7/GZxuzXLldes3GtWTMqK9Pnwi/9/NX2vbk9N792Z/9WUnHa5B5ZhuV12mWfci48cYbB8MbGBgYGBiI2JnhxVirLH7MoBcWf7Ezu5+lYkpWjLuJEomPsceRr0t7UJSe6WnUy+RiVDFMVSmjrJwFx05GGb2PeD3GLblNz1mUOLk+PCZjp2S1ZBS08cVjYx7DnpQev/M4ItusCpPSppppB7iHKIGzBE88hwzV9gtK4BG0YzP2LPPS5Rx7nD0bXmWbpEYj7lmzAc8FbSjUpERE+1GE23ff7I0ar0dNArOQZLkvY4akJe2Q2ZOZQ9wH1nBED0BeM7YR+/VBH/RBko41Sm6DeykrlOrnjtv1syuLcWMMoxkPc49m9zI1OfT47ZV68jG04WWaGWpMPC5qSF7wghec+Dwe6/n7iI/4CEnS8573PEnSm970JknHnp/xOmSO3NeZ9iP2dXhpDgwMDAwMBIwfvIGBgYGBU4FrKg9EdUSWmqgqhZNRT9NWqwN6RnwpT3ZKdQDVrVlFaKoD6GIcVSYcM51TeomgfQxVP5lzDEF1K9Mc0T0+HktnhSrxdRwPg7t7fcuSIPeCh/f397fcteO60IDNMATPRVRLWe3EtF0+1yogJl2OY3X/7QjgatkM/o/tMNGB559q0tgn9pHq8SylHUN0qsQDmRrMDg6e13vvvffEeKyqjfPMquK8nzzfsY8MEua5dOGXju/buB96eyee6z700k0x0YVVgF5b6Xh+/NyhOYT3WNyfnrullH9RZc+Ey36l2SCqmhnmwDlyH7NQI6bqs1OJ32dtUq3O9be68h3veIekk/eT96aP8Rz5vnrRi14k6eSzqnoWG15jz13sY3SYWYvB8AYGBgYGTgV2ZniHh4dbElyW1qhyE80SsTI9D9Pk0NU4c1GtUkxlLvhV+iSmrMnG5b7QKYJlLaLUTMNzFogbxx3/J0Nm4u5MssucbuK5PeccMnAGise5J8Nf4xrM1FxxzqtkAUwga8lcOnYwodNIFXCelSYxY7Qk6vee+yiRcm8yqJdOP7HfFTskK4x7i+EpDC3oJX8gszK7scNJlqqtSnDOMkuRhXAvVskg4lrTCerw8LB0PDhz5oxuvfXWo/Yt2cfjzTToKEP2FPe8j60K1tJZKjov+drui9tnEolegD6d5ryX7TyTHVs5CmbhUNybWZrF+Hk8pwpH8rFOPRafP9ameG94vsws/T7ub96nTIOWJSvnPdgrLUUMhjcwMDAwcCqwE8M7PDzUlStXtooPRldm2hQYWpAFjzN9kSUESzw9JsHCrwbtf710NkYVtB4/4zGWBlnOIkqztPMxDRkDuONntBlWhTmzlFmU8IweK6CrMoOTs+tE22SvxMvVq1e3goajPY7X9islx6yoJiVSBnv7Opndh32m7S5LzE0XfK5TtBVx39I2SWYcx8c0eES2LywB2+5Bxuf5zMI8eC8yhCYrKeS5ZVJk7sOMwfEeyODiwT7G/XegdjzftjoWYGURYemYefB5xvlxG3FNuc9oS2PwfWyfr54/t5+tP+9D9pn7MH5GmzH3Y3ZPVCn63EcmeJe2Weh9990n6Tg0I0tHxnJb1JxkWg9q5HrJxInB8AYGBgYGTgV2Lg8Ug/yy8kD0KssS/kon7SKV1Mw0SllSZEqg1a99pqeuCthm9jGOg+dSmo3HU79ONpJ5dhoVw6NNKkp2tL+wz9n4OI9VsupsXPH9Unoojicr9cSSPpbajcxDkIGrVcox9kfaTr1ErNEOcD+wz/Fc2mWMntczNQwMis+C8bnPyaYyzQJtJlWppqjBsPSdpW+L52Sla9bg4OBAjz322NbzIIJ2UdpH6bGYjY3MgfbTOGamV2RbveQO3Of2ErVGK9rY6ElZrW1ml2dyaiYi6GltKlZORhvvg6qkWcaujcpXgfbVqAmizXVt0Lk0GN7AwMDAwCnBNSWPpsdOJq3xl5usI4sBI/OpkvhmCWCr61vazOLwMk/B+HlExfAq6SJ+XrHcqoyPVNuzOEdkTPF/zlvPK7RKoM11y5iEseQpFQs1ZinnKEmzLEtmN6ikR9ovvA/iXFdJ0Hvsg3FelMBt/4l7yrY0pnarYh17c2xwTbOSQgbXhYWH49wxDRnjojIWWiURJ5PMmMSaxOMHBwe6dOnS1n2SlRgj+HlkQLS/V/dN5gld3f9Mut3zgLzrrrskSc95znNOHBs1DWRUVSHgzDu42gf0vOwV5q3Gy+dPBJ93ZJTxOcTnGrURbiuyXmo5eh6+xGB4AwMDAwOnAjsxPHtLVbYhHhtBNrPmHEq+WQwKy1awT1mWBEqt9CT1sdEziJ6WzExCRhv7WHlYVfF48RiCtpzMHlQV+qySVvf6X9nyMvSkrMPDQ12+fHlLSo99qNhrZS/l/9I2e4nXJ8joqjH2klVTaredpCc198rmECz7UtmMI2hH6nlAsh9VFqXe2tLD1+yWNtHsOsZSH2P8b2a7qVgZ763MPsp4QcYiZmymyo5jZhwTqnOMbsdxn44rfec739kdf3yln0PG8MiEDNrHslJm3GfVvu+V7WHiac5ZbJfsj6w60whmcdlLGAxvYGBgYOBUYPzgDQwMDAycCjyjeniZgTNLHXbigkmKJ6OqOE7KmtVkI0jxo6u0VZrsC9WTkXpTLVBV4e65ylbhApkatFIhcVyZepIqGfYxU5cuOZxk52apqXpw4gKpX9uwUr1m6jWqPauQGaYni59VoR69kA9fh1XZfU6Whqqn9vb8SLmKu0qsnTmRMCC3Ss2XOSLRWaByQMmQVdCOyILjo+mh5wCWhYZEWD1H13uD7u7Zd0xiUT3DIni/M51b5pTlY+3g5PXJwmKqkBKquLPnTpXCjOrKOFdcu2q9s73DNfU8OtyCYWdZvxmwnyVUN7zmdDrsYTC8gYGBgYFTgZ2dVjIX+yjFVK7WNNRnyZUpNVQG0+x6BiWijOHRTZqOLz332arPRs+JpHJ75nERlMZ5/ax/FUPqnVOdS2RzH9e8J6VfuXJlq8xMtg+ygHYpTyNHqbUKp8hYbxXqscaZhMmUWSYoOkZVqeQqTUkWLkJJl/dIVo3boOMWA4KzhOAVO8i0H1wDOin0mGt0UlhyPmC6syw8xZ9VyZWz5xfnsirFk93TdHijJiEmPWbieb/GFGlEtZ/XgE5+DNVigu0IajKMHtNfcnTx3GRV2Rk21CvNxMIAZ8+eHWEJAwMDAwMDEddkw6Mkl+mpKQH0gmGXbChLrCO2X+m6M/dZSsKUVDNJ26j6lpXpYNmUyhU3Y0+0RVSpv9ZIfrQh9VyK17TX63927WinyRIXs13OeSZ5V3ulssNF9lalbePcx31QsSOGtHDs0jYbJJvKtANkJrbzMPFvXL8s/VfWjyzwnO78VWHVqDHhPeY+smRTxgpiGqqevWhvb2+rfFjst8fsIH+PvRfYXrHkKowogutSMZM4JhZ4zbRPVR8r7QPDlOI+YGk0BtrzuZShshGydFLsI7/LEltX7fuVdud4TzDB9S6sdzC8gYGBgYFTgZ1teGu8AaVaEukFjS5J3NkvOfXTWQCmlBecJZMjs8gkSEokVTqlOH4WhbSE12NcVZA6v8/e0zZENpXNY5Xeak2C1rUefHEMlj5jIdEqfVtVXkna9r7jOvF9tg84Xz3bDW0KDIL1sT0bNdlnL4UVC2T6OmQ7UVtRsdtqX2TJo8n0yNIyplwFx5vxZV7P2ZiJ1pr29/ePkiFnjJH7k2yZAeHS9vOL80Ybf+atS5ZIRpx5z9IGVdkb4/9LZcKyZzETq7NIbZb+zB6V1A5U9sC4BtQCUINAG3I2dqOX4DzzTVjL8gbDGxgYGBg4FdjZhif1Uz1VuuY1nm+UHqu4pV3sS1nsFiW5TGqVTkoVVQJoSiJZOh9/ZonK0lNV+iX+T2lmKVl2/H/Jthav5/5SUt2ljMtSEtfI8izdZqVQOC9kNXG/cazsL/fjmnRqvYS8tB/Qmy2LNarSs3Gf99J4ZTYT6XhOor3G8V0VqsTAsQ8E5zVj2RXrpT0mjiN6DPbu6729vS1mFD1hactkTGAWz9VLkxW/576M31WakCyWj2zZ88XrZLGpLBbrZ4jn2u/jWvpY2zVZlmiNxy29TjlH8X3F6LxeGeut0tGxPFXcO5UX7RoMhjcwMDAwcCqwE8NzpgzaEzKPy0rn22MAS7FmPVteFa9SScYcVzwnk8irchhVTF2WDYYSHtlHloGgsmNSotwlGXfP64xsc03snrE2FkbaluCk47FaMvU+YxaG2IclaY/zmCUwJtOqEpHHdgzairLk6FU8ZLWnMqmZ91y0fUon2Y6lZDIT2l0yO0zlTV3Z/6Rtz9VKGxHfe93XemAfHBxsaUZiZhJrCmyD4ng8f7GQqFkLC74yiXSWHarKBMJY0biXHnroofRYFpqN12EfPT56fBtxL1W2aHqhZutfeX/2tANM/FwV7I39YtJtFpHNfmOM+NwccXgDAwMDAwMB4wdvYGBgYOBUYGenlYODgy2HhkiJqwBFvkbX1KUkrZVbd/yfahu3n7n1V6qdytU4/l+5u1efx/+rwN9MXUCVMIPl16iK6ZTBfvTUoJUaIq51FqBfYZqmtCZhdFqpAn+ptuw56FShGFmg+7Wobdn/Kol3nCc6HlQprLLxeX4q932rtjKVptu75ZZbTvSD1+klWNil1lil7s0CrJl+bElV/vTTT3ed1uhqbzUhnWOyFGyVy3+Ves59iscw2XaWRquqS+fx+H1U/XocdkSyStOf02Eoq9lnOKzDx/ZqKnJ8VLsaWS09Opm5fb6PffH68NWI+4P3+Ag8HxgYGBgYAHYOPD937tyWa3Zm9MzSJFWgWzBdvRlwnAWAZn2JbWQMr5Iys0SzZH2V80omDVZpx6qQhnidysGgJ9VUThJVf7J+k/1k87gUDEscHh5uhUpkKdgo3VEC7iVXNqqwjgyVNiKTfM24LC1XoSwxEJwu6kwe3HNeYnAyX31uDBR2v+kYQmeJXqhLldi80gBI2+7olPQjm+c49vb2yjVyajGPJ7sHOEaGsGTaKIbIVCwzu6crNkgNlvdJ/I59YorD2EczeLN0Mzw7LXkOfM/0tDaeE/eJQfIR1V5hWa+MrfnV682E6lEbwXP4TMxCgzxf8bk5As8HBgYGBgYCrqk8UE8SzooKVm0toUqRlDE82k7IuKLumXYXFm3MEvJSKlsK0O0lZGWfM4ZECapih73E02vfx3bIHCo3Zf7v90vrSok07pNqbLQFZQVLyejWlPyhvZfXYTiEpK30VnQPz9ZjKTk6P48Mt9KY9Ox+HHu134wshKaym2f3PKV02mGYrDi2GyX5ShvUWtOFCxe2bFA9zZLvzyz5sMF7muWH+HkWoF9pYMxuYuhElfaQtrt4HV67CmHJQgBoE6ctzX3sFbrmmtqWl5UP4v1j5ux18/Ui0/f8+Bi/77FPo6dtqDAY3sDAwMDAqcDOXpqttW5KHurvK91s5mlXBW9XrxG0t/SSBtMDqWJ4WaApPe2qVFbRplJ5oVICy2xg1KXTK6sKfO8hs2tRqmWfetLUGruig4fJFCKboTdfLxEAz6HHm1El9+b/2Xjcj2iHYeJirk+mUeAaub2KrWVp6djuUqLuCGo06Pmb2bUorVf3tVTbaJhSKpv7NYnHnTya6bPi3qHHMJM7ZKnFqmdSlYg6rovHWKX+89iz/c3Ua2RamecyA7INpu/KND0cF4O84zkVYyQ7pf059r/aD5kHZpV+rvc8c1/is3jY8AYGBgYGBgKuyYbH5LoZw6vsMNk5jEerSlBkUmDPsysi0/dXzDFjQFW6oSo+rxfvRa/TjMFU55AFcCzxmEpi7aXpqUqi9JIv7xJLxeTKMbWYpcYqfVGmHfC16R1X9T+THCs7cJbg2sc4Lor7wMg80cioaLMhe4/f0SZF5tKLw6SEXdkUY98YZ1glBo7H0kZDST9Lwh3385KWgvGZEbT18DmUsdnq+UKP5J6n7y6pE8liqC3IfBSYANremeyztQbxfuKa8RivS+ZRTi1eVSYq00pxv1VFk/m/VD/3suTRMb51MLyBgYGBgYGAnRje3t6ezp8/v5XEt5fFpPJ8i5JQL7lohsz2ZPC61HHH7yj9Mb4jS3JKFlIxvTW2LtpwsoTDlVcWvaTWJCvuZaqoPEZ7rC3z5FtaO/Y36vPpJUeJ221nCafZ36q4Z+Y9SdsKtRJZ3B+lf0qzGZPw3mFxzV52k8ybMV4/Y08+h2x3zX6gRE1WwutKx551ZnZkEFl2JdphYiYVYm9vTzfccMMRQ2HcWjY2YpfsQlx/luLpgfsvrjVtm2Q+TJoev/M5ly5dOvG5QW9HabsALNmZ+5h5BdMbvYrHzbzx+czvafcq2y3vzcxjvuf7UGEwvIGBgYGBU4GdvTT39/e7eSPprVR5PGWo4oMopfdiwcjwsgKZzKvHvlIil7alvCovYiZtUHe9SwHDislxbrKcdlyfXumfpcwka5heD/TSJHORthletS5ZvCKlPTKwLNaxiofjHo3neD89+OCDJ46tpNp4vu1+LNBKybfnSUiG5dcsDo9eyFVsZc9DksyVOSulY/uS2YVfacvJrhPnrxeHt7+/X9reY9tLe7FXPodanCrXqbRtE6TmJTuHMbpmZXweZf4NZGlVpqd4PWoSqvyUmfdp5bHem18yucq+mbVBzUjPQ5v93iXf62B4AwMDAwOnAuMHb2BgYGDgVGDnsIT9/f3S2O9jpO1UP0vBnfEYttVTE1Q0uVIBScfqzSw9TkT2uSk+A517tLr6bm1ZnYieswqvV4VKZPNYOcns0teeuqO1OQFwpaaUtlUuHCvTRkl1SaFKXRnPZXgIDfCZS7T3kdV4fuW4smS33nd07ae6PEseTbdwvzLwPY6RISBMh8d5jf9XCQIyEwGr11dhCZljVS/pcTz2/PnzW6ra6MjAZAVEptLmsXReo5kiSyZvVPd4NIv42XHHHXdIkh599NETr5nakH3i9fj8iykNGcLiYyrHF147gnPeS3hRhUFl6skqSXl1XZ6fve9hMLyBgYGBgVOBa0otRuP+UkopaZ3rde+a0rpEwFUy13g9lg6he66N7pk0aCmWc1CFJ8S+VAwrGw/npHJEYRLb2KfqnJ4Rnt9lSaPZx7VBn621bukdln+hEZ+MKB5TpUDjukQWyWBurh2vG8+nu/hSiZn43WOPPXairSzgmNfjdXjvRfZh93YyuDXp6KrwITpNZBqTyt2ezkjx/xgcX7EkP3NYmiayHjqNsK1sbqvnCteDgc7S9v3P9fDYs71KBs77KLI0f8b0h5VzYJxjltPyOUwpFueKoVlEpT2I16ZTCfd5plkyOK9ZP9aUt6owGN7AwMDAwKnAzgxP6qfRqphJLwXPkn2oCqSO51bhCCz9wv7Gc+lSHiV7Sz6ZW3ZsI3OdXwpKZ4quXrtLrC07lsiY5VKg+ZKNxX1du5aZ/chg+AaZVpT6KnZUFdmsEnn3EPdB/D9rr5dwgHuT0nmWrokJf6uyKb2wBErcVQB67APtOwy7yBIGsJQMj41zxXCaXmqxaZp09erVLQaWMbzqvshseGQKDBanvT5ej+yisivFc5wWjKE0vp7bMkPPjuU+p907m0Pu2apIbkSl9aDGJFtTM0jPZy8ZR5V0pGev5b7dJXH+YHgDAwMDA6cC18Tw+Ou7xkOxkmaz8/mLTakzSgVVyiOW58hYASUPegVGKdftUHfNvmdec5UHqZEVkyUDqpJFr9GLL3lNxc96bJrvl7xc2Yel5N9Z4HV8n3kx0vbI8kxkz7GvtLtUdp+MPfkcS+NVEtx4DiVp7t1s7xAeF0sYZfNIe3NP0ia4v+lZGjUcHAcZeXbfVqkHe/0ha4q2LtoJ1+x52qOY+o0B+3H9soKr8TpGtOG5v34147v99tslHc9BfB5U3uBMmZg9i6tE4LfeeuuJc9eMix6rPT8A+kTQC3rN/lvDzLPvljAY3sDAwMDAqcDOcXhnzpzZkhgzG0DlJZkxI0q4VUkhI/Oao16ajCizqVWvmb2nkiJoQ8psYVVaHnqUZXZNSsAVk8hY4hJri32syhwtMb5dEO0w2ZiJKo1SZHi0E9DLjPPYY7WVR3HPu5DM0vaLuHeYhq6nscjGm33X80Ks2EAVD5VpB3huZafLvqtKyUQWl2l1ljQFZkZm1bG9mDQ5QxZLRxuaX1nctHdPk7WznFO04ZFBmuFRCxHX0sfQfk2Nk/sT16UqmcQxRDAmlOOj1iPunSrm1a9+Nvc0gtXez5h59Npd+1waDG9gYGBg4FTgmuLw1tjwKu9JvkrbDI/sjJJwlOwstfDYXqLZqrwEGV6mf7d0SemPrDDTOVfvs0TbVUkNMpdMSqO9ak38X8Xs1iSN7cV1Eex3XEvGNHLM2XWYLYWMrkomHcG++H1mz6DN0HukkoTj+d4jZJtkjfHcKikxYxUzOyO1Ajw3i7GsPIhpD8q0LEwwzetH9pHZvnp7bG9vb8t2F/vAeeCcZvclP6vs4hnD43OA4yLTk7afEdzvvcTzPIeZV7wuvTmkbc3XM4uM16u8trmHevuusvtl7VXPmez5TS/a/f39wfAGBgYGBgYixg/ewMDAwMCpwM5OK3t7e12jt1HVwctSfWVqTqk26me133hulVQ4tkdHDToXZAl5I42O5/YSpFYqxcrBJxtXFRDco/JLNbOyYM5KhZGNi8f2jNGtNZ07d24rqL/nqMO90qsXxkDmqmp55qBB1RvXNEtcy2Bl7oue4wnVVG6rVy29MiNkITQ8hnsmO8dgn6rwgahO5JpSpbkmQHjJtby1thUYHkMjrGKskkhnLuy833lP09ElnsuQhSqhQuwH59AOTu67rx/n1u3fdNNNJ9pj6AnnOqJ3D8frxrH6HCYR4P7Oaje6DYZMrHHGqp4/PeefodIcGBgYGBgAdnZaWWJ4lQRaBRVnxxJso8coK4MzxyBtS26VW3J2bBXw3GO9PIasY02l68oZJws4pTTYMx4bldNKLwB0jQS/t7enG2+8ccs1OUqzVYLxKn2TtM3wmI6M+y1jodx/7lNPIqXLtRme91AWJsLQGbLELKibTIF7J3N4YjgA9wj3bGR61KpUad2ykkIMQKczWpak2H244YYbyoDkvb09nT9/fiu5cixRxITZHEcWPF6l7aIjWi95dBWQz3CpeI7ZGhOQ23kkC7Fwu+5LTLod38d9UCXloANX1seqTI/nIGOL3BsV6+2xUN6f7k9Mt8YA/sHwBgYGBgYGgGtKLWasYXiVDSoLHu4lmI5t94KHDUq3mWs59fB83ws4zmxC1fUql/81RSQr+yKR2cKqeVwTRlCx+F7KtCXmeO7cuS17VUQVLE7mFeeg556fvc/sFWyL48j2aiYdSzmT4NzRVZ5u9nHvZKV14vsqmXQ811iTeJzMqLLl9Rge7T4MfK/moMfwbrjhhi32FhkXU66ZNVWanzhGrinP4TpF+Dou4soSVy4QHNu97bbbTrTLwrmR4TPRQKXB8FjiurBYcMXs4jksHbSkyYrPLD4j12gjen4F0nZSgNiHGKayJl2ZNBjewMDAwMApwc5emvv7+1tSdRZQWtnysmSxVRoySudZeiCymMyLLPYna4evWcmZLI2a5yTrY5YKp5dKjKB9hx6KVRqsrI2KiWWs0KiYXc9Lc40evUrcLW1LoLRbZkG3lcRLrYHRS1pe2f0yL02mdKrsFvFYg0yP+y+7N4ylFHOxv9XeyDylq2O4z+iBmX1WpSPr3bcXLlwo909r7YSNj2xH2g7qX5OAorK3V+n04vV4X1R24AiyvhjwLR2zq7gu1DrRs9bHevxZyje2S2bX05iwiKzB+0A6aVON7ff8OCoPYtvsstJMtOH19g4xGN7AwMDAwKnAdWF48VeeNoBKf5slkqUkUDG8zHuOkn0v2XHFXqivziT7yrPSbWQJj5didar4mGysS2WDsnESu3hprkmgm9kPsnb39/fLGLRsbNwrWfuMF2JZoB7YXuW92ys+SU84I75nGipqRiovwdiXqgxVLyk2GZHbpWdfnAfaWMlYstRi9P7jsRkzZyzs2bNny31pGx7nJH7Ga/H+6DE83p9VQvJ4LmMPaY/L4kzZLp8zWeyez/deqZhWZo8jo2IbvcT69Ezt2ULZ10pjl42vSgFH2138jfG6xzJLw4Y3MDAwMDAQsDPDu3DhQvlrLNWZT3qeg5VumV5zlArjd5WOO7OpVBlP+H1si4UYjUoHnbHDKgtHVviTEgslK9q7ssw1lGp7Nrcq7o42kF5S7CWvzwsXLhxJ4pn9hB529ETM1oXzzb1Ee1kGeumSVfU8U6tMO9n+5jkcQ8Zgq35XDAYluPUAACAASURBVDxrx9djDCTXVqrL0HhNGGcWzyG7YbxhxiRsx+oxvDNnzuiWW27Zilu75ZZbjo5h3FtlS4v3ZZXwu/KMzgqlVs+mnramSlafeWDzmUGWyDXMslAxzrOKk8za533E52mWcafy2+CYsrnwdWPpn/hekm6++WZJJ1ngYHgDAwMDAwMBOzE8S+m9iHnGDZHR9coDVV55RJQEKRUxH10vBqjyeOrZ/yilUcLLdNyVhEMPr4xxVfEplfdedi77tsYex7Z6NhCj5/XnTCuUSOM5ZOlVTF2ci8rOV2VgiSCzM9vgumTSI+0TZAPZPC2VsOHx2fXIWDNvOXpycjxkPb28tmZTvq/N2mI2ELI+xn1lJZSyLCa9OLwbb7yxLBsmHWcv4diq2Lr4P+8P3o+Zx29l/2esHj0XY3uVzTg+B3gs9zNjH3uZT6rCvJlnJ/eQ7Wa9uL/KVsfnbBYL6/b5vGN2Gul47/h+jfG9SxgMb2BgYGDgVGD84A0MDAwMnArs7LRy/vz5LbobnVbojkv1ZxZ47nNMVf3eNLdyb41YKi8S1RFMDmx6TjfxzH12jbqLn1dB4r1whMyhIKLnyEOVTFUqKXOsqZCpDKgyOzg46DpZnD9//kjFs6aMTpX4Oc6j28mcKeL3mfu+95v3mfdxpWqM1+b8V8kLsu+WVIvxulU4TC/8pjInsB9MgxX/p2qrCj3IPmPJGjsZZA4j0VGoF3h+7ty5E88ZSXriiSeO/meQO5877n8viQA/5/ueCSBTmbvvhueF6lD2mdXM4zmco154DNX8fKZUKQ6l7X1QmVTWpDTspSOr1Lk0EURVMZ18hkpzYGBgYGAA2Nlp5dy5c1uu5VG6sRSWFZeUcqm5ChatXnuBwCzBEvvO/6u0SUbm6k3Db2Xo7kncZJi7SOlV4t/MWE0nj15aryrNkpGxVIYNXLlyZTE0ge1k6ZpYeoUahWyeyET8ueea7ID9ysbYY8/cK1XSZSlP4RSP6YXsVA5IPQ0AJXZqXTjP8Xrc5wwxIHuLx/D+7aWlo0v+Umqxs2fPbgXwx8TMdJjh/U+WG/uzVDarx7yz9IrxOlnYDZNWMGFz7Dude9hXttFbl6V0aPGY6rm6JrHHUlhK5jjEZCYMEYr3LxneCEsYGBgYGBgAdi4PdObMmW5iUetaKfGsKcRJib4KlOy5UVelMHruyFWwaJauiZIP2UDGhCgFUeLuBWFXNpye/a8KaahCKXr975UwYhqqq1evdhne4eHhlkt0tFdUBTmrhMnSdrArmRfdxDN7FW0ddP3OEgJw72dJlQkyqirsIqJiY7RJ9lgaWRnvkXguj6lCDqK7PdeUe7WXjD3OcS+12E033XS0lj7OtsHYb/fXLuu0+/a0Gtzz3Bexf9yTmW9C/F7aTlFWJVXOGBcZKlOOZUV2K20QQ1t6IVTZOKrPOdd8zjHBt7RtY/f4vLZZWFEVrL4Gg+ENDAwMDJwK7Oylube3t/XLGn996blZFdXMWBol7orpZelsGGhOaT2TRGjXqQK043fVsWu8hChRVSwx67/Rk86WxtFjeJRyaf/reWlSyswwTVNqm4iwBE+POr7PPATp3UUpPWNgZAXcF9xbWftVouYs/VlvzbI2snPJArnv4/9M1Ub7Nj0v4/9c08qeHq+3lNIuSynV01QYe3snk0e7HRdSjde2XY8euNU9Ly3fuxkTrkog0ZabJeYm46I3Y/bcqWy4vfR+lQaJ9/gab2SjShkp1ck+yJzjWro9lkFyoDmTQ8RzljzzMwyGNzAwMDBwKrCzDU+qS0fE7/xKb6lMF7yUfsxt0GNJ2rYjUQLJkkfzOlV6sjVejD3PsqVjqv6sOadKYhy/q3TdPbZGtkkpLUs0HBlSZcM7PDzU5cuXtyS22Bd/5nWmV24mdVZpjGJsoLRtt4r9Z7sca5b0uPKeNGIfyQYr20PmNVn1rfKmlLZtdn7PmLQsdpG2Os5brxwVP2NKsTiPTCXVs/163EzgHtNN0XZnpkefguw+MaoUcEav6G1l887YWpXSLEt0XqVZrLwkMy0RvyMTz57JFRutvNPjd7Rjck4yb13+pnjdsrR0Ro+hVhgMb2BgYGDgVGBnhhdteP5Vzmw3zO7R80SqSsHTS4qMQqrLAhm9Ei9r4u8MSkeVfrqHSmrKWAL170u2jl4WCF6nx/DYRmVvlHL7WE/aOjg42JJuMw9fS3XM8kD2FkH2YpjdZPGhle2JzD/uj8zOIvVjzsjSKo/bDFXhV+7deA/SvkTJu2Jx8dwqg0d2/1aZNfgMiHZbMvw1MZw9TYXbZvwWs5f0tChL3ozZHLPPZD6Zd2HlvdqzL1bPN3o5xuMqD29qP7J7mnuyKnDc88WgpqQX1+o+2TvT7D3zIeC9d/ny5ZFpZWBgYGBgIGL84A0MDAwMnArsHJaQJcXN6Dbdt2kgzSgqv6PKzK+Z0ZPopd4ixa6cZnpqSrbbc7OuKh33aHilluT1s7CISv1Z1UeLqFyZ17jM98IS3AZV3Jmayw4NVM1lalCjCm2h41Os48awGqqHeFx1bWldkHWVNIDq8QiaAqrg3kwtueSAkqk0qRpjn9aEw9ABIXM2YyLtpcTj586dW5WIoErUzdCM+D/vS6r1sv1dOWYwMUH2nGMQea/yOQPNq0T6mUqfSfirBOBxHmkS4JxTLc8EI/EY7pFsfJWan+aNOPecx8PDw6HSHBgYGBgYiNjZaSWyPEpG/l7alurIzjK3/SqNFSXSzC29cibIGBAlbTrh9KR0ulhXr1mQ7VIqnF4S10oSyqSpKsi/CjyN/++SpqdKN1Rhb29vK+A89oGlQJgaiwlm4/mcn8olPxufXdnprJKVfFli2lkoA8dXJSvI+kgnKbKNXtXqKi0YNSbxXIYdVOnC4rpR4vb6kell5YE49gxOeMFjs8+YbJhsPa4LmSL7ULHr7Bj3xWPP1r/aI3S0ycJgfA7Xh+sSNRhVonsmdc6ScrB9jpMalAiGdVTPSCln//F9Np8ZMx3JowcGBgYGBgKuKXk0JazMjkapjgwvCxOo9LBMAZWxAr6uCQBdm4Ir/l/ZXSopMRvXUoqpeAxf14QlsA0ik8qWAuqzIE+OvYe9vT1duHBhi+HFJMQsAOx2bYOwpJqlsqtKTHnP9OyLTEtmqdJtxATUXP9KOxDHWbllc9/3AoBpK+mxj8r2zbCeXro1zlePKVW2miqIOGunJ6FP06SDg4Mueyb75zMps1tXIVN8nz13Yt9iWxlL4/W4d6rXeKzbrUINsrChTCOWvY92O7Izakh6Nt5qfxs9fwOHI1Bj52NjOjIy1exaFQbDGxgYGBg4FdjZS3N/f3/L26/H1iidGz3GVQVkswyJlCchlo4lkCw4vkp1Q1tb5lVGSauy7WUpjCovw156JUpulU0vA6WlXZKuVtfJvDSNnpRuTztK3nH9vL60qTHlGBMFsF+xL7QDZ16a9AwzstIkPLc6Nn5f2Ya577JgZveNCXmNLBC8Sr7es93x3CwJdrx+pv0gQ6FdKzK8aj9XmKZp65i4D1g4lF6SWRKBpWeHzzWTiPfNUlJ8eolmfamed73nKQuwko3G+4usnN6nbivug+p+X/o89pt99ZyzPFI2F9VzNN6DWUmhwfAGBgYGBgYCdmZ4586dO/rFzpKsUuIkW8qSEFPq5689pfUopVUSIqXb+D37UCUh7cXuVfF3mT2mSktW2ckiegwrXj+Lhazsij2Gt8T+MvYR45cqSct7h0nFo+RGCZBJw60tyNIncQ9VqZDi55Qm6VWW2Qx53Qo9r1naXygtZ7Fi3KNMKZbZ4XgPMA6rV6yW9qzKO1haL51nDKkqcxNhz/CMpRtmkW6PdkTuVY4hvue8ZDGoldd0z7aasZX4eTa3VToy2vTJSrM+VWnqMmRFbyMym2hlj6082+P/S/bNCKYefPrppwfDGxgYGBgYiHhGBWB7ZeUtcVDSyrwNKymGDDKTtMjgyHiyZKiUSCuPyF6ZDkp4vXOZ9Liy5cX3FfukRJlJadWxPbsfGSvbz7K3VLbWDLb/VkmXpVoL4M9t24vr/8QTT6TnUDLs2broyVntx3g+9yQ94no23MorM7ObMTvKU089daKvWQFYMrsso0rsR7aHel6ZROWZSE/t+P1SVp4Ie2nSqzQyJWoF/J7lZeIcLNnF1zAgg1mnMhsX57tiYGs8inte4QZjUqsxZM85zglthLQtS/0YVGk7a0xsj88OZqHJ4pqrWMseBsMbGBgYGDgVGD94AwMDAwOnAtcUeG5k6iOmsekZHw0ammncpFoyqglI22nEzxJO02jcUwsQS0GcWZtUC1QpjCJ6Vb6XrlepPenSHFGpUHtJuLlOS6qFaZpKN/fssypcJAah+ppW9VXjyZyXmLLOx7paduZgRbUTnQYyBwGr2bimVXqtqCaimtOBwHREiQH8/t+vVNmuCQWokqH30uNxr1aVw7Pzl1RzBwcHW/3N6qqxv0w1lqXeompsKfk6/5fq2orZHFMtSEeUzGkl2xvx82zf8V5mWrKsb5XjHtP+sVZlvDafB1UoV/yuUvtnzx2qj0dYwsDAwMDAAHBN5YGqIF9p2/GA0l5mKKekw9cqUDteh6mlyA6zgMwl9tRLqlohCx+ogoWz67CdyiGkSuoaUbHqzHGIklUl4feSBi9hmqaua3TFfKvSK9KxI4vBRNO9Na6M+r3yQHSYqJxXsnRkXKPKWSL2h/vaEj6ZXmQu/p9hCBx3trfYRzorMMQm/l+5lDOJcTy2V6qKfa6c2qSTDDe2Z/aWMa4q5GJNImIye895lQw59pdapywZslGFzNA5cI3Di1GxKf4f+8wkAj2nHKPSGmVhCUuOdll4h+f68PBwJI8eGBgYGBiI2NmGl7lbrzm+Z8OrJN/KbpCxjCU2kxVvrJLFZvrwKkk07XI9u89SEHkWzJt9F8eb2eWWAp1761bp0HsBx2ulK6meL2nbxmAwbVcW7FqVoSJD6TEJ2n+z8dH+5r7STpEFx2eFK7NxZeyJfWOoQbRhMgUftR7cD71g7MoGn7HQym7v68Vkv71SXBV6qd4qe38vXKUKfq+eJT3bN58p2T1RhSexrxmbqdIhrnlm8XnKPmaMq9Ls0Caa+SpUBZszVlglxeb1e7bQc+fODRvewMDAwMBARNvRQ/F+SW979roz8EsAL5ym6W5+OPbOwAqMvTNwrUj3DrHTD97AwMDAwMAvVgyV5sDAwMDAqcD4wRsYGBgYOBUYP3gDAwMDA6cC4wdvYGBgYOBUYKc4vFtuuWW68847u7FUxrU4w7yvznl/YW2syJpz1oz72bhelpUjxu7cf//9euyxx7YaufXWW6e77767LI0Ur834KMYYZfttKVMHr8H/s/dL5/ewpmzLs4Wl9q9lX/DcbB6rTCVZWSrGrR0cHOjSpUt68skntzrXWptiu4zdkrZLEPVKYRmMR6yOrQpE945dg+rY67UPq2PWxONWx1Qxvs8UVam0LDY3ex5cvXpVh4eHi5Oy0w/enXfeqS/8wi/UY489Jum4FlkMQuWDp6otlQXzcmNVD7EsUXKF3o/x0ka+lodjLzHrUlB3r/1dNlp17poA8apqsYOGY+Lmm2++WZJ08eJFSXPaoS/4gi9I273rrrv0mte8ZqumXTZ2BlU7bRPTaUnbScKZ5qqqvhzHavDYXuol9rvaw/G7pR9uplKLqO6fLFVfFaxbpTLrJTzgMVlwNoO6WYOO1cgl6ZFHHpEkPfDAA5LmhN2ve93rtsZt7O/v67bbbpM07yVJR++l+dkUr7UmbRfvoSrln9vI7jnuO6KXZLu6H7ME7VX9vSoBeTy3SgCeBdgvpRZkoos1gmavTh4D5/nsv//++yUd/9ZI2vr9efLJJ4+OW+zLqqMGBgYGBgZ+kWPn1GJSnxlVEmJVdkKqVQqVJNwrhUNkbVepvipanbVXYRdm10sfdi3XqbAk8Ut1+jG/OlFr1keyql6fe6WRlhhQNm+UGivWlqUJo/qrmp81arE1ZVoqKbaHJWaXsYQ1aeGWUKmee22wlBHTbpn5STVDydBa09mzZ4/O97kxiTi/Y58yRlKxlF2eB1UCcqO3PtWxmdmA68GUbNleqlg532epzNaopXkc2Wi1d3rFBrjfb731Vkkn09ItPbd7GAxvYGBgYOBUYGeG52KMUt8OU0kEWYmIJftUlbg5flYhK2FDCdvS2VJy56yva9gTUUlRWXFdopKaegy2sk31GDpZQSaJZ8mJe+OepqmbKJf7imPssZql5MMsTxU/47k9G2+1F3uahl6S8AzZupCNcg9lCYCXrre0Vhl6LIT3k6X3zL5Flra/v99lPhcuXDg61q+xNBTth9VzJ9p/e9oGqU66HI+tnj+959JSsvzIXKsE01XS7dhH2upiuxWWHHd2SXjPeyMr1cZ2aDu0z0Ast5Vpm9ZiMLyBgYGBgVOB8YM3MDAwMHAqcE1OKz033V6F7Ph5poJZcvXPaPWaSslSXx1RqWRiH6myWjImr4lxofF4l1qDVB9kThK7xEVVVex71+H1ltBaK6sgSyfVTVkfsvgrrmGlks3CLXru0rHt2MeqPl0VQ5iNlTGNPTURa8BxTXthAs/EaWXtfZWhctHPnCPW1DRrren8+fNHKkyHw0Q1l/+vnGCyOnVUc1ZOWGtjPNm+lJtuqGrk/R/PqWqB8p4wslqRVahRtle5BnREqZ6ZEUvmmOjgw/HxfrWKOoZDWaXp72LIwhIGwxsYGBgYOBXYieHZYaViA/H/yj3cv+BRMqGUUjmCZFJlFSxKNphVPK/cp3lchqWg3l54AqXyzEV7bfBwhorh8fNeFfgq4HgNc8mwt7en8+fPl32pzpG2pcCeVEmGzbnOjOyc614QuefHrIBB8pl2wO1yPy2x0dhvslsyv3gPVay2Wp9e5po1LvucE95zPYchS+s9h6e9vT2dO3fuiOHdcsstko5d1qVjB5bKwSm7l1mp3Wto8D7JKq1Xgd+9oH6O3a+VVoXtxD7TgSOuS7XuVTKQ+N3SvZH1sdJg8L7NWDYdnXw9s7ibbrrp6BwnLcg0Y0sYDG9gYGBg4FRgZ4YXJaVeIHCU3OIrf7mlOg8er9ML/DSoa2Z6oPi/Jbo1rIlssMIaxsI5YiomaZv1rQlWr/pSMbAo4XlOyH7XuFevCdCW5nEzUDb2n9IdsaYv3G/cWz3b8Zog8swWlJ3bs29Xx2TaDwZUc1zeQ/EcMrtKU5JpPzjmKm/uLin7Mts7bVC9APTWmi5cuHDE7G6//XZJx0wvtrMU7Bz74LnzZ+4DtR1Z2xxTxs6lk8+d6v63/dHvM/ZcsSfvj95zgEyOtvLYZ4Y9cF16KSLJuPjsysKOyDaz3wfpZBo5MzynGFsKhzrR31VHDQwMDAwM/CLHzl6a8Rc+kwIsDfkX2tJLJZlKtbRs9GyGBO0v1NNn51Oa7QXXso9r7IyUMisdfvQ6W7Ld9K67JGFnErevQ6ZXMebYhzXSlT00e+NYstVVKYt66KXG4rpUTDWzdbivlbdm1oeKFVT2xvh/9dqz/1a2GybczryeyfA5rl5ShhhMno07Itoiq3105swZXbx4UXfffbck6Y477pB0kgVU7N/t8zkU/+eYK2Tncmz0aoxsyhol7gd7IHo80ZbohOnVdWjDi3NYsXKm88qec167GNwfz8nmZMk72PPrMcXPDD6DMxu12Z6ZXs/DlxgMb2BgYGDgVOCa4vCMzCPTUoolA0svPW+5yl7Ui6FaAvXyGSugR10V9xVRSelrUHlNZraU6pg13o1VyY0eM6riJcm24nFLEnFEa037+/tdGx6vzX6TfWZ9qKTMNTFO3AeVXSj2P46v+n7JA7a3r9ku2WYWK0btBhmdE/H6Nesr7w3aFzNW0IuXjP3K+t1LLba/v68777zzqASQvTOz+MmKeWVp5CoPS7Io2sviGA3PLdOQxf0ZmU18z5izyPCeeuqpE+1wX1ce7nE8vEdoD15jh2P7WXqvyguc+zEmgqYfhcHxxnVzeagHH3xQ0szeB8MbGBgYGBgI2JnhRU+7o0aCFGAphd5jZApRUvWvPHXKPYkv9ieeY7BSbuZpRymMzCjTT1OyZ5/XsChKQFHiISo7GaWmzA5TMbvMG3JJQsr6kTGxXvLZw8PDbrwi2Yul20uXLkk6LgTrV+lYSq68S2mXixKxtRB+5d613ScbM+fY1/VezmIcyQIMlmnpsTWDnsbZ+vs7z5EzUjz++OMnXiMDqDJq0DYfbTucv5gVQ8q9D4mep93+/r4uXrx4xOzcfvbcYcLqKjYwnl/Fx1IblcU6ekyOE2M/Mu9wxgYyS1N8HtgTkTGClS080xaQgbuPZGtr2vd7r3l8Rnp8LNjscXpckSlzv7kvPsfPgMyL97777pM0FxFeq/0bDG9gYGBg4FRg/OANDAwMDJwK7KTSbK2dUGlmzh10k2bgN2l8PKZyzKgMmhFVG5mKydTa31E9lBmcqSqjurBKghqPoVql55DgPlaBp1TLxnOr9EZet6wu1bUE/RtxjZeOo+oxqnysvvA6PPzww5KO3Y+tKvFx0rHKx5/51eo7JgzIVJoXL16UdJyUmKpOfy5tq4MqB5G4d7j3Odc8t+fyTxd67l3pWJVklaXn79FHH5V0PGd0Xol9oVqP6sqotvT8MTDc7uOev8zJpEo0HeGwBLdj1Wbcv14rqgs9F37N1JKeU6uwvabeQ1liCLrPM9WbP4+hRu4/HUJ4X8ZkyP6O6kE64xhRPcnwpyp0Igu3YNiLUYUKRTAMwfsre27zOe1xej2zsBuHpdiJ6V3vetdQaQ4MDAwMDERcl7CE+OvqX3waWS2JZq7llJIrt+3MBZvB22RRGcOrgqtp6M7cqOl2vORUEs+pqhNnLv8sWcJ2K2eN2B6lvypoWdp20KgqKkesKRUS+314eLjFdiNbsxHaDITOKl7LeI6P8TmVY4bPzSRuMwYzFL+aoWRJiqvE1r5eRJWeiWwkS3Rs6djrwNAC7wPPQ5wLM+T777//xDGezyyQn5XIzeQ87kxDY9BxhxqUuJcY8tHTDOzv7+u5z33ukURvB5G4f8lmzGqrklPS8Rx6P3ku/d7z53viuc997tG5VfV13tMZo6SGxePJElAw8JzPn17guftEluvxZU5S1V7lmq4pS0VGlyUd8TH+jI4v2TPf43rOc54jadYw9J5TEYPhDQwMDAycClxTeSBK6dEGQEmDUnnG8Mhw6ErcYw7Wr0c7S7xuL2i4CrY2sjRqVfJmBrz2ynRUiah7Qd2Wjjw3lNp6uvQqWDVKn5S0aIvIwi5oC1gKbZim6WhdzMQcPCpJ73nPeyTVbs2UUOP/FSvkPMXgX4aFZNoAjtl2MI+dNi2fG0MnaD+sgqGzIFu6xruP7ocZpccfP3vggQckbSfbpfQc9yHtWFXas15pGX9HW2K8ju0w8ZyK5Z09e1bPfe5zj2yFTCwsHa+h58VjJ0OO60/bMO1JDz300In3995779G5TFXGYG6/xucS7w8zO4/L+IAP+ICj//mMoPaJ914WJmDNicfrcXkuspAWag7cD3/u50RM6uy+8FlMW3gs9ePrMZzDr5kGy2tqxn377bd3k49HDIY3MDAwMHAq8IySR1vyyUr9+DsGC9NulrWd/apLOcuilM6gWyNLuUOdM4NFMy9GBmnSfpVJTdRpV+mPor2BgdOUfCj5xfFS6lvjuepj3QfaWKJdwWCQ79WrV1d7aVpyjDYvriEZcebZSbuRGZ/bYsB5JgFXnmfZXmWALJMGeJ6y+aqSRVMr0PMkNDMmo43MxcdUnn0stpnZPzivZHiRZTPQnCyH94Z0/DxYG5R+2223Ha2Xr5el4PLYaafyezNA6XjvMeUXGXhmO66SHvPZwuTLccwMoPdzNK4H7Xu0dfXKh1Gb5vcet/dO3N/eV2aBPtZ2bc+V2VpWlsrn+B7gsz+um/vr+8hs1+Om1i9+5ut94Ad+YBo8n2EwvIGBgYGBU4GdGN7h4aGuXLmy5dUYf+UpzVHiyjz6aCeqYoD8K94r28Nkq0YmxVYekJk+mGywKjGUeVeSrTHFUC8tEKUiS4W0IcTruX3PRRWXlyUNpq2uijOK363x0jw8PNTly5e3POMiqpI7frXkGOOUKD2SEXMvRUmQXqYcO1mIdLwXfT0fQ2k9zlOV8JssMIuL4nXofUrbuHR87/l6trNYaqaXY+wX7x/PCb1D4z3ic8xmqr0Twb3SY3itNZ09e/ZovswCzEKk4/l3v81A3F/a6eIxZi+0j3p+HFeYpWDjvJC9Z+n7qP2ytyHj9KTtMmtM8Uatje100vG6uK+859xGvJ/M8CpNT0/DQc2MvWr5HI/3BlPjUTPnvRrn0fvba37bbbcNL82BgYGBgYGInb00L1++fCQx+Bc2SmuMo7C0xLiUKDUvFVO0dONf+16sEz36MrbGLDD0eMoYCzM10EPRko7HH+2ajJ0hs2N/4rH0TKxYcBynJXpLbpRus+wp7ndV0sPIiv3Gta08Ne2hSdtDlMy8zszMQGYXPSDdnqVjerx5viylx/5XicBp/2Esl7RtjyMbjJ5q3POURmlLjFJuxfAsyWfZK3wdz0XmlSvlRVHt0WfvWe9j9jGyBc8pY/bIoLO9ExlxtXf29vZOsGFfx8wsfkZWw0w0Pe/pKvOR5zGyGTJs3jc+NvbRzy96t3tf2+sw7jevO+Nkae/O4p/pnctSPFlmH7JzzoXX1p6k8V70nuGzxM+jzL5NeyaZPovjxvPXemZGDIY3MDAwMHAqsHMuzXPnzh1JBswrKG3HiTHLAosdSse/6owT8i859fERPpbSk7MkWEJgbEgPlj6zmC33iWUsKOFl+enIKJg9I8sGQzscS2y4j5HZ0I7B2DEys/h/ldexZ5/LikESe3t7afxUlPZ8TfeXEjCzprjdONYXvvCFJ45xbF+Wf5H2F9ryqK2IzNPCmAAAIABJREFUfajugaykEPdMZbvjmsfPPP++vvvMfRivzevQY5CSd4Tn6/nPf76kY+bn+yrL7MKYWK+brxu1Oll5md7+OXPmzJb9Ku4n2seZdzWL4fSxXBfvHdr/4vPHn7kNFrwmA4zn+1lV2b7jc6diyYybzXwXvK/cF3rpmgHG57fXnecyo5DnKLM3mv0x+9C73/1uSXnGHZYq4n0d9yjn79Zbbx25NAcGBgYGBiLGD97AwMDAwKnAzirNs2fPbqm7skBwujWbhmbVipn2iQGR99xzz4nrRdVIFQhOVWpUg7EdHttLuVSpNJm6KBpfGShLo3EvATRdzDnuzNGBrtEMrM3KnVQJvOmUE4OMq1CGDK21E2oJpg7KrsmE0D0HjbvuukvSsYu31SeeH6tJs3ARqiOtnnLS5Szw3PPNZAUs6xTP4Xs6aWXqUKpx/UrVT5wbf+a1YiVthhXFdfGcuw8xQa8kvfWtb5WUhyVUjg5ZxfAszdqS0wqTemeB5351yAKTF2SlkDyXfkbZnd5OGAzkj2AKMTq1ZWp8JmzwuZn67nnPe96JPnq+/Iz0575OnBOvJZ8/DCeLz1DPgeeR42CYRFxz7wnvFSYr8PVjGry77777RF98rtfY93WWMMLrcvPNN4+whIGBgYGBgYid/TodmiBtp7WRto2rlgj8i23pObre0hDL8hkMNMyux3IpTIKclfoxGC6QgQyvKozKoOUIss0q4D4bB92rPUdZ6iJfm0yZhvUo2ZFJMi1VxlwyiXyJ5TGVVJSA3W+Go1Aijutkqd9zx5AVS8SW+DOWyMKvDB/ICgFzrzCIOwvqZ5okFoDNmBBT2tFJhoG60vYe9XpbsjZz6e07MztL0e6H5zvOCaX/iuVkpWSYlCHDNE26evXqkfTvEJPIFDg/PjYrdmzQaYWaEaYYi/cLU+7xnvK5MSzBfSHj4h7OHDQYokNNg68bSxgxvMeszXPj17iHOCfUYDGMIGPMLCJsFuf5zZyX3J775P3ntY7PCe9JO930tAPEYHgDAwMDA6cCOweexwTBWZmdrDBgfJ9JS5YwzAJZioLptTJpjal93Fav5IrBxKwMCJe2JesqAbDbyKQmgzYdtilt2wqpf6ddK/aVdji7GjOIM0sJxz6x/FC0Y7CUTI8hWzOQpd5iHyzxWn9Pt/3YB86PpX6vi9vwfGVB5HTLtxSdsVUW7WRSBO+7NYVzmQw9YztkEF5L97EKeZGOx0wbpRltdo7n3pK3pWja5jMW4r74va+ThQZx7FeuXOkmLbh8+fLWnGbPAZYQYvmk+NypEkF47C5h5L0VtSlcQ2qUqlRZ0vEe9Fr6NWOFfq4xqTPZp8+J47MtkqWyvC+ozYnHcq45R1kSBc6B58vj8/tMK+U9Y0bn8XD/x/72UtdVGAxvYGBgYOBUYGcbXizxwkDGiMweUR3Lz8im6L0X7UiU/nldFt+Utm2PZHSZnYbSBM8ly4k6Z3rD0TswS+PF61HCIvPKkhXzXH9uXX6WwqpK/OvPs7RuUdqrbHjTNOnpp5/eajdLLWYpjwzE0m7sAwPjGZBNphz7V5VNotdwPIe2IkuvZi9+n+0d7nPacNmv+B21EF7vLACY96f3iPts6TkrVkyWFe1kUq6hYaonS/CW2rNzeN8cHh4ulggyaM+OY+V93yu9lCWyiDDDY6kpafsZwcDsDPQDcPtkPrENpmhkkgSmRYvnMsUcg9WzNIhM0VZpfrJkE5xjt0uGHwvAGj6WNvDsN4bPql5SDGIwvIGBgYGBU4GdGV6UIChBSnVZHsZzZTFnTKPEX/KsaCwlATI6JqmN/1dFVOk1F8+h3aBKPJvZ1JbaiqiK4FbFSXvSKqVQM5ddSiZlbIDFbs+dO9dleFevXt0qchklbkuCjE9iAc44n0ypRE/Ian3iOSxZRE/Y2Ed6qZktua9Zqi/2iR6dvThG2jxZVJNjkbb3G+evd2/wfqVmIZOqq8Twmf2F58R7u9o7jsOjNieOk9oMxti5Dxnz5vMlK8Qaj5O2bVkcu+c8S3rtzxxjZ7svfRjiNckoyYSyvepz7fFIPwNqiWI7vif4Wnlixr5Vie2z5031++D5y+zpWYxwTzsQMRjewMDAwMCpwO71FQIyqZ8SNX/VyVDiZ2SMWftE5TVEb9FMt05pkAwzK2FkVH2l91QcK1koj81YKJmc35PBZH0jKCXG48iAqpJNmR0j82rN0FrbWo+sZAylZWaRiDYHSqksKFmtU+w/v6MtKivxYjuj7SP+PNNCGLSP7mLDY/xqNh6jsr9QOs/sf5XXIdlgvB/oXUpbThava0SWuxSLxxJMmT8A9ymfC9kezdhK/DxLkm8wzpeenpHhMQOObXi2+/o6UVtj251tqZUmyzG3sY9ktUy6zGLG0nYybD6bmfEn26vVfZx5oxtM/p2VOzJ4zy/ZfyMGwxsYGBgYOBUYP3gDAwMDA6cCO6s0W2tbqsCsphXVHDQQr6lfVB2TVS3Owg8ispRYVGWyGndmAK5UZXyfBbq7fc5fVnOOqqNKVZupL5fcdHsqhWp8VSq1eGxvTZ14nM4FUY1E1SgdNZh8O/aHKeYYYM4wEmk78bjfUx0VA6bprELXe6uWsr3TUw9XfWQKK4bfeD5jMC8DjTkXPbUr71eqOLOafnRRr0IE4rh6AfOEHZ4cMO25j6ptJp6oHMPiOUxZx5qT3PPZfcO15PMoPgd8DNXgVB96nNKxStOfsS9ehywROL/zdWhWyNI88tnk67LuaKbS5LOrl0KxcvajCjWe47nwZ2vVmdJgeAMDAwMDpwQ7lwdqrW0l1e1V9yZDqAz18Rgao9c4rdDJgn3rSbV08e71kZLNGscalpCh80BmoKXUzL6wjxnrXdM3g8dQwltKGybN46wcD6JmILafJUqu3NvddqwibYnd0qvnkA5IGSiB0oWdAdXxGLJBhoXEcVUMqwqpyUIamB6Mn0eGZycIVu52P+hEle2Pai34Gv9n0u+eE5PbXQr+NqZp2goXieEOTCnH9FOZ85rnicyb85PtIa6hUQX9S8d71SzJ1zeYRkw6fjYtJdYnO5W2K86TpdEBLoLz1gtwNyrHoJ52r3qu0KEszjO1aE8//fRwWhkYGBgYGIi4JhseGUv89aUr8pp0SlV6rjWlQ4zKTTuTEMgkGYbQc5+t7C5Gdi5ZKG15WeoiSv1VSrPM7sO+Vkwvu97SOLOgWOPMmTPdBMDRfThzN6bUXwUNxz54Ln1MJZ1ndhhKpFWgbJYcncHJtFtlQcqU+qsCulkgMBMzc39kbIpzTVt1T+thVLbkLLE67Ym9ECWfn+39bBxxf5q52K1f2rbhM7l6tv7c0xxrVQw5HkOWxHPi9WwLdkiLr2tG50TdkeF5HNGuJx3POdlZPK4Kg2IJpTgusmiGlPTCU/iMqlIoxrWufAS4npG5cu88+uijq/ayNBjewMDAwMApwc42vP39/S17Qvx1JVNg2rA1njpLyALdKwkxK8hZJZzulZuodNiV9NLzJKwKf2bJnFlupGJ0vRIZlH566aEqTztKb/GYKBH31qG1tnVOlFCrxNJmb5kNoBeEzDHyXM4hPXwzDQMZXuWNHMfFvUH7BNcnWxeur6VzS/RRAvZ1yAq9v3qp+qq9yv5kSRLI/nr39a7Jo+P6ZsnPzSrtJctAZs5J/L8KnOd9kj3nKjuYz422VTNS2t/c5wceeEDScYFe6Xh9bcur/Bxon43nGn5em0E65ZjLCMXz7R3KdHQVE4ufVc+ozNO7ep76/sruEffRjPjSpUuD4Q0MDAwMDERcU/JoerdliaD5i8sYN7YZUXnW9VKZLUllWXkJ2mx6SXx73knxe/YrO4Y2AtoZpG1dOj3hqqS+8f9KOifTiO3RZtQbN+drlzIdZP7Z+YypsrQcvTTJuDjvlQ05+4y2DqbIitfzd9RcZPs/0zLE97R1xHVjzCb3qpletPt4fnqxenEMGbjuVV9jO1WR5GzOyYx69t/Dw0Ndvnx5qwixmVEEixv3PC6r2F2yiizhPdslvE5eH+mYYXl93P93v/vdkqR3vetdko6ZS2yfXqdug2OIrJfxv2Z0PtZ7JpbrMdvznnFfaP/N9k6vgHbsa+ZRXp2TPavc73e84x1HfRpemgMDAwMDAwE7MTzHwvRisshW6ImWMa7KXlBlOshsHFXGk0y3TU+jKsF0Jg0aVdaMnkeXwdiWLBGrwe9oU1tTeJJ9zqTTypuRtorMBmL0bHjTNBeApW4+60MVH5Zl0alsd0we3Mvwk3mbxmPjOZas/crMEFlpKe7vyjs08wrl/DNxLouHRvhYJljv2daqe3FNTGflSZyxKxYy7TG8g4MDXbp0aauQaWRCXOfMW1Y6qVFwH2jDI7PL4mQr2y2LvMY9azucX22re9vb3iZJuv/++yWd1GDQS9HjqfZO9sxi5hjbEs0wo/3X8+hsNm6fZXp6scrUFjF7SwTv6ep3wntZOmZ2WTHqJQyGNzAwMDBwKjB+8AYGBgYGTgV2VmkeHByUBvT4WTxHqtWV8ZjK+aGXdLdyTqHTR+bKzvRJlUomA1Wm1VjitavQAfcnpjir6uBVAcc9Z6DKWaUXeM5x9r6rEnZHeO/Q6B3VRJwnHps5TDBBMY/tJb2mmraqzBzX2GvE9EZUNcX5ZGB2FehuZOpQq7msfqKKKabZsjqNfasckXrq10rNnwUPV/UWs/vaY14KK/F5TzzxxNa9Fu8XJhZfGnN2bPWsytTUlWnBweU+1u798Ryv5b333nviNXPCocMM9yjv5aj681j9WWX+iPev9xHToPk993+2dwiqtHtJ+b3GDqnwOONae06sxn/44YdXO8wNhjcwMDAwcCqwc+D53t7eVsLXTGqi4b+XbJnGYqNK7dMLIvcrJaMoARsVo8sCZykNVuUzMkbB4OHK8B/Hz7RtVfJYul9L21J6JbFmqFJJ9datF/RuOD0UnRViv6sEAD2HiTXOFLGtTEqvQjyyci1VSAurSWdOUqwiXjnnZPMZ0yhJs1QrbUvcsf1KQ0GHg54mo8fSDDoyVA4VWQB/j9nFPjz++OO67777JJ0MlDaYqo4JwbN1qdKOcV6yiueVVsD9MKuKDiieO7vVezxe0xiiwXFQC8BnCgPt42eGnXyYyCEmsa4c26w1iGEW8fh4LM/1+2yfVZoEHpsluHa7Tz311GB4AwMDAwMDEdcUeG70frmXpMc1gYKUNrI0PmR0lrDIYmJhRPafabwoxUvbEqklN0qoWVFC9422Lurd47joCs2EyrGQZYXKnkrWHbGU7DuTPte4lrfWTpybhadUKamq1GhxDGtsxfH4eA7bYDmdKKXTbdsSr1kH00ZJ27ZiuotTer3tttu2+u8+UFNhW152T1S2T2oH4r5csuFln1dhF71QmSwEZSmkhesR58L/c07dvu098ZxKs8TPe+kC6TPARN1xH7hvMSVWPIahJtW1Y/s8LgvzsfbB68JnScaeqgQeTDIQnzEVG+VzL9tvBp/fDA2Rjufc2o0ReD4wMDAwMABcU3kgo6c3rRLi9opOUuqv7HNRX8/PqrI6sa/04KTUQltLHLfPoY2wSsUUwWKNhiWVKA3Sa4njIyuNfWVgPW15WQA/vdoo4WXrxvaWbHmZhBxBKXIpuL/qV7wWU4BFRlmlkDKD4L6QjqXl5z//+ZKO0zWZ8fm6vWTOlLRp16SdRNr2ymQgcgzC9Vi9r6pgZSOuCwO4Oa9ZELlB7UbP7td7DmTHXrlyZet5kGlg+JoFjRu8Vys2m2kjGLTOuaXmKf5PDZK1A1nariwFX4S/zzQ/TD9mzQE9TOOzmv0nY+X3vUQUbDO7XqXF472ReeTatj4Y3sDAwMDAAHBNXpprvP6qlF9GluyYNjoysSz2jSyNyVQztlaxQfY1K/FChpWlEpNyWxcluCwWrbqeUcUdZgUS+Uomlnmhss/0KMyk9bVpza5cudJNLVbZK3jt7BzOf5XMObN10Q4TbXbSybW0DcjxVrYNs+/ed/F8zpPXxXOSJdBlrCCL4mZxf/QQZPxTZduN/69JUm5UMZBkcT3J/r3vfW9XSj88PNxKih33ideOdiTea1n8IO1G7Ef2Ob1A6bVpO1zcBx5rVYDVr3H/eS29z/yez0bvh+ir4D644Ozdd999oq8+J66LP6PvANPUGVkcHvcDWXemjaq838n04ndZLOASBsMbGBgYGDgV2JnhnT179uhXOZN8+EtN3WwmadGjihJX9RrbYZkY2raipMXrVpk1Mq9JSn+VnSmLi6rsY1mmkipWrvKeimDGi6pAZ+ZhxT6v0Y1HibtX4uWpp57a2ju9OKyqNE0v6bVBCZjMXDqWWunZx5I/cR/4HNvMONfeZ1HSppahKjzq99Ee5+vZXkEPP38eYwVt76Bt0OhlofFYqz4vsbBsfNkaUZtz+fLlxViqyq4UQU3PmgTWlU2/is+Vjhk+bWfUnsSYQdt/vXZuz+tFe2D8n4VR+cz0fotr7STR99xzj6Rjpuc2PIaoYfLYY2Lu+Ln3I5/rcczUDlA7kWk/qv3F68X/47qsZXmD4Q0MDAwMnApcE8PLbEBGxcZoF4vMpPLOXMpmIm1L1pRMM+8l/7/EPrPYD2aZqbJaZJ5W9ICr7GbxHHp/VoUYs/nseTfyfebtmfU1y5ZhZPk8YztXr17dYnRZoVTad3pef5WNk6+U5qXtUj9kB0ZkEi7pQqmf2gJ7bUrHkj1jwZgdI+uj2Z4lbmdYYUaPyPDoQVjZEHtlb7iHuLZx7at4Ntpyeja8nqfdNE3dc+Nn7Avvm3hO5SvAeEnavKRtRsd95jbMouL5vMfcZ/cjMiDG29LrmHax2DbtzL6O32d2Rvbf+6uyhffWgH3L1rcqc1Z56MdrrvXMjBgMb2BgYGDgVGD84A0MDAwMnArsHHge00dlKs0q+SipaU9F0UslxfdUO/A1q8zr70ztqULtJWKlEbyq/JuVQqHDBscQQYP8UiXqzFV/KYA7ogoi77khr0khFXH16tUtVWxsj2o0vmZOFksJDvy9VTNZqie2wTCOqPKzajGqEOMxngurMaXj5LxWMTE9mFWqTE8Vr+PrxgDc7PpSPV9VcoSeE5BfqRZbo06iyjtzbluT9NchLVSHZw4T2bXi+7jWvLZVe1SvZSo5pgPjdRg+EtvxPrC60k4sfGZKdVJsmknY93gsHfqYRCNLCEFVo9tnfzKTBOeVISKZo5q/4zMyU2kyfKiXDJ8YDG9gYGBg4FTgGQWeU5KUasmKElbmolxJ9pQGM4N59T6TKiwtWJpg8HCWasjHWnKnazT7nBXFrVJw+fvYx0rSXlOupWJGZKNZAuCKMWdJgykF9qR+Ox5Uwfexv1XR29gW/6/CQugQEiXFShLlHGQBzkz8y7mOzgpmZ3QiYKgEg32lYymWrutGL6l3leqJbD6T0qsEynQSy86p0pFlTlmVQxXPf+KJJ47YbsZmemwyXi9iqXxWFeIQv6vuR69b1CjYScQpvuzY5P2Q7Xc6IFXaCLO3GA6z5ETE1HOxv0yDxjayZ1a1hj2NYLV3Kgc2Kb+nR2qxgYGBgYGBgGuy4VHy7f26VrahLG0XsSaou7JHULrJkgZToicT66VcMuOjS3MmpZEtse9GPIf2zP+/vfPpjdtKgviTZCWOD04CY4MAOez3/1h7zQZBAsSBHUszeyqp9WNVk6PFHrLTdRlpZki+Rz5yuvpPdfKtJ+m2Oo/06hhAKhrtWGHy3ROn02lTqO3iR4yp0srspMUSw+sk0XQuZR2nJrhrbVs5ab9kepWlaa2o8aes8SSL5qxZHo/roKajs+kp557WQz02JeW0zh3rJcM/Gpdb6+W17p4DDw8PT4xE16nOOTVzTnOuY+jKJ+p8avwqtRTSGPXdykIVz9P+xPB4jV2cPHk5eD857xefSbxOrlSHQvdJfrEilQgJLtafvE9dzkcSXT+CYXiDwWAwuApcHMNT8fla3red2ANbQ3QZnnuxvC6zj5aw20ZWlywbWkJkfnU/BKWXHDtMfm8WkbpWInt+8U4IOjXzdNdtz0rqtukYo3A+ny1j7t4ja3MFp3sMr4s9CRT85TWt8yJ74jlQnMkJAOuzdG+wmLnuNxXzijXUAmWKIfC+OuKZSc2dXTyOY92LIVYkyT4Htj2q7IlxPY7FZfLxPDBLlmumZsimvANdd8c+xEwlJqCYLkW9nReF/9PrIe+Ba3DLxrk6F7o+bq3SY5Ge+e5eTJnr7jmR9tc10tX5qyx6YniDwWAwGBRcHMN78+bNRsam+oBTU8Uj7CL5/rssTe4vyc7UbcgG69zqPpxUVrKWuW8HxvloUVaG55pB1uN18ZLEClKNIv926KyzGkc6uh+X9ZliTfy8i+Hx/Y5tUJBX1rFrKSXISucr16FjA3zVmDuPid7T2FgbprG7jMUUY+3iMALv3+QlqJ8lmaiODdR7OgkAKztc94Qs/JqRSG8N47CuBpXSamLgZGfaRrJu9TuMgzH2VJmYxkKJOWVtivHp8wrWw/F5p/VW1ywbG7OGU/t0WcF8NlGUn//XsdELkq5rHSPXKJ+JdewpY/kIhuENBoPB4CpwMcM7n8+teLSQ/PnOsk/WI33NgtuWPu1OnYUWJ7M2j8SkEhwz43lyrVHq/2ttWySlfbkYJb+b4n2upo5z5ncrk2Ds4f7+vl0Tdby0nt14yRYp1Mzt3XFo8bs50zIlw6tzpiJEaqukmMpauQ3RnkrQWttGr0daPXVMqb66OJNridQdv27DjNGu9QszEr/++us4btVwpjjPWtvsUu7fNQAmi6nNaCvEKH/++efNe2yyy6zCOkaNhc1ala2pdj6V4TE2SY9Calq81laMnCopGnNlT2SuHEcacx0TY5+8rp23RcdnLLSOUdfnSP3v5jiHvzkYDAaDwd8Y84M3GAwGg6vAxS7N6lroSguSZJBLIkiyXHuF2m5bujD0WtO2tV/K55Aid/3dSPkZHHcyYUwaoKuhultYXkH3bkr9dbjEpZBeXYEz3Vx77sw6D7eGUidwroeu4/2ekKwT15XrJSV7OBk8jlkJB859x/Ok6811RlHztbbJAXvuwwquUSbLuMSrVOjM43ZSZvyOS6W/xA2l8TAhre6P7lney07EIPVb5Odyr/3+++9Pn/3yyy8vXhnKcOUvGpv2J9el/nfhGbk/ub4pcODuPZbI8Jkot3uXEEL5RUkrai617yNF0YUuNMTQBp+Jcl/WMdI1W8e7h2F4g8FgMLgKXMzwbm9v2zTqowyvgtYLrWQmXbhf873WMtXKIHNLEjxurBxTai3ktqGVyQC3Y4Up3T6VK1TstfhxiQ4pgYLW+1p9qQlxPp/Xly9fYgp73X6vQLoyYVryfO1EaFO3cr0m8eo657SW6hi5X8p2kQE6bwS/4xi3wCQMJlQwIaquMVnySeDcMUrOK3kfXDnJEa/A6XRanz9/fhq3juMYnvbH1l9dSQvvd64Lty0LtJXEon2w9GCtbdkB20WJPVXhcTJ8PneY1OLE2PUZmV5KUKnf0fFYjuDuTZfkVffP+6q+xwQ+JqtUhsfr9unTpyk8HwwGg8Gg4mKGdzqd2vYptEAIpqW791IsTxZE9Y/z1z5ZdC61XEgySnUOSZyW8Qln3XIMqW2HixkyDsJ4mUvh11hSDNRtk2J3rvSA2ziW4XA6nZ6sTLd2yGaYWs7i27W2LIUsg94D1yhV0Hkjy6nrRZ+xuJasym3D+Ijmx3NbGR7LBBjzcDHjVDzM2AdZQzcmztt5TFJMtxN9r0wvsb3T6bT+/PPPTWumGutkqxuuGSdhljxKqTypMq/vvvvuxflIUoZ1GxWYi+Fp/Hqf/6+V7zHKEur/WkSuMXCMmrfibzUORza2V7pTGSyf0wLvifqc432p68iyBNfstz7jh+ENBoPBYFBwMcNba+snr7/YFF7dY3puv0mUmJlCPHbdpsvOSm1oBJclmjKNkoSVK45P/nAn9ZSyQJ11Q6TY0xFRX57zlMlY36tW9F4cL7WbqX/T19/JhKV4a8oQrCxH8Rdm1Cm7zQkQyKKVVZwYdwWFnulR4LycBBf3S+mqGjMkw6OkGRseu4LwJF3mvBCJ4ZOd1jHy3HYW+ul0Wn/88ccmrlTZU2J2+t8JOTBW7GLbaz2vjx9++OHpPRVcu6zVuu/KgOgV0DZcS7XwvMtqdnNQLHGtbcyW83J5BxyTE4hI4+HY+BvgJB3JVJUJq3nwXnRzf/PmzaFY8FrD8AaDwWBwJXiVeLR+uV0jRlkRZFEpu7AD41YU7F1rK73EOJCzKlImJ1HfdzGHtba1TS6Gl7IYUyubemx+liSMnGQS/ftdNmXKyqTP3jG8SyTYyPDqtWQcJLVCqUiWL5mDy9JMTDjJq621bZBJIXWhxlKEFF/mNXTeAYFtaBxzJbNLzN6dOzL6TlJMSGLBqWVX3U+SMqt4fHxcHz9+3DCSWhdHSTFm3gquFjAJTYvd8nm31rOX6cOHDy++2zUPFpjnwHNQx8h7mfOkIHXXWorxWZdpqc9Yb6fYGhsg1+tGj1m6j11WP1to8T5za+fSWs61huENBoPB4EpwcQPY+/v7jWVUYyD6RU5s4kjNFj/rrMzUroLNNLv6G7K2VAPntr0EZJ0d00zWPy16ZzWljNWUibnWNhtz77Vu46xKh9vb2421V61Zrg1aoMzarOA1ZMavG39i0Yx9uPPEtcH4iGN4CWQunfA4a6kce+LYGGtPdYFr7avPCB2TIKMgk3Hzenh4aIXAP336tMnEFRtY62WmYT1Wx7SSQDaPo3NRj/Hjjz+utdb66aefXnxGj0gFrws9MGJRdV7ahs2DmYmta6zs0bU8M11ry1zr2mXcXNdJz3W1SGKsba3t8zR5MlwdHusa9eq8O1wnlzyLh+ENBoPB4CpwMcO7u7vbVPnXTKT6i7/W1t/qWv7sqYak2NdaWYczNSOs26dGsB0W0kAkAAAPPklEQVTj2huzs1LJqPbic25sqa7QZSmmLNeUebnWNhbF8+fq8Gg172V/1vivs+BSXIeWsdPS5Hlg/EDjrhm+mltq3unYE1vIkDm6WBRjNom5uvlxXi7OR+g8ypLXPOn1cGwk1V9292TKxE71rW4+j4+PuzEZXpfaxkfsiAyoO197uqu8f2p9pNaRaubErMii69yPxuPqGtVn33///Yt5UI+V3qn6XTJ8KrvU688Ye2o/pHPHprL1OBq7tu1qlJN3gPtca8tCpw5vMBgMBgNgfvAGg8FgcBV4lXg0A8K1APS3335ba20TJujecMXDdH8m6adKd0WpGRhnYLYLsnP/LDVwoOssJU3Uv48WR9b9cc7JHeqORxcjk0yqK4OuGLrD3DYuzT3NUQlPdMV0QtBE57ZIQsWpgHqt51RunWN2iJbrp2tHQhewWzt05/PaaR8u0YXnM3WRdjJ4mp9e6ZZ2Un1JENyta4EuJiekQLC9zZcvX+L1lTuc56muHb33/v37F2PR+841m9xnKeGlS3yha8+VUKV1wKJ4J72VBOfpsq3H4zx0neXK1KtLWtKYFKLSeWT5Tbce+Ox3oRQmpegzJoe50hmXDLWHYXiDwWAwuApcnLRSLS1XzEv5JFkrSdB4rW0iS7IMXZE1GZbGJovLSVjRIkjp6C4lNskPdYk3e8HxrjklWQcZhGPDHGNKQ69zYIlJSnhwIgOXiAp0zXUZzCccM08tnZJslxM9Zhq6zrkTnCbIiI6UsuyJVtfPeWwmwLh7hm2GmJzCJIZqcZP1pFY/jsmzjCMJEdfPuhKgeqy3b98+jVNeJCcXyHs2iYuvtb3+LMwWM+Z5q99RE1UJWuta6zlYE/o4ZxZV02tQwfY5qXSngk1VBT0btU/XuFXMTtuqLILizp1Yxl7pzlrb55nmwzZErsCdXpUjGIY3GAwGg6vAxQzvq6++evL9Ov+1rCL6mmUpdLJWTFGlJdzJD7n2GGvlpoQOTHt2ln3y5zOG59KRhSQE7OI+KWW+i48khpfSlNfKZQj6riyumppNhrdXAFpbS9X3BHoByNKcFZuKXZOo85F4leDYqGv/U4+bCrW7MfP4rhVKarHiCurJ5BnDYQzPeT/IJIk6f46NHhNXhO3aeiUPwd3d3fr222+fGJHYhZObYqyLXignVq7xkWWwRKOuDzYo/fXXX9daW2kux56cp8r9X5G8DPS2VXbI661ns8bsxKoFSteJ4anwXAzQSTamWDVLqdbaNoDlPDSHWoLC2N1FcpWHvzkYDAaDwd8YFzG829vb9e7du41FVC04MQJZQPpl7kRc2aRT2JP+Wmsbo6N/2mWi0QqnFeh8whzLXlyuIrFBFnm6tjApczRZo/W9ZKm6YnzGc9jwU8zOxTGEh4eHltkoBrzWNk7G+XdwVnq6Hqn4fq0tmyFDoceh/s0Y15FYlOCud93WrQMhiaS72FTKymTGanfNUrG8K46n5c1MzOodcHHzLkuzZviKNTmJwZRhzWzNun2XX1D3XSEGJMajuKLYkmvrxPt9Ty6wIo2R66CeYzI8nl9dJ5cdrPf0qvmK2fE56/bDzHzmdbix8H/Ob63nZ5BY5yXP4mF4g8FgMLgKvIrhMeOpWhX6W1YYW7Q7q7nuv/u/y4ATxCjZ9LBaaYzrdXElgp+l9i1u3Htiqp14NF+7FjZkrozpsFax/k2mx1ieq93T619//dXWGt7d3W38+V1cLtXi1GMw027PUqxIwuapxVV9by8O5+aTmD6P7zIu06uO161vWvpkA51nYU/Iu37Gc8M4YGUujGN1dXg6LmsQ67VO7YBSPXCdP897ykyt/4vxMBu83gtrvWQ9qZ1W10Itxf8Z5+48T5w7Mz2rbBglDZmlyRrImr9BVps8Jt3c+dxxjXv1LFKG7EiLDQaDwWAAvKoOj7/GNcuHlfnM2nRZhsk6poXorPjEmlJ7+fqeqy1LoBVIq7YTuE4KFLR8qxWTlFWOqLYw6zW1V6psjVmaZAMus9M16E1xEK0dMlTHTPl/aufk5pwyL6n2UPfH75I1VvBaMrPOWelJRDkxzDpGxh5TbaWrqWTM1mVlchxHLWVXA7dXk1jPFeNXnZV+e3u7vvnmm6fj6BlT72kxELIoxs1cFuOeYodj+mJFZGAdi9d5ZrseKv7Uc8vYI9WoOhbKWP0RVqhjs96OORkuBp/uJz7n3DOEGeTaVrFR91xh3PYIhuENBoPB4CowP3iDwWAwuAq8quO5IEpcKTqlxRgElzvCuUSSiyclfdTvkJ4nF2T9m64KHt/R6CSx1BWeJ5cc51NdPi6RpYLuA5dunQqQnaQUC8uTy8ylFNfvduLRzqVZ95fEdSlPV88JXTvJlelEy1Onbs6xE8jlGnWF6UzQSX3Q3DnhPuim6orHec14bYUjfR/TtXHb0J3Yuc7qvde56W9vbzdFyjXZQnOWeDTh3JIMs7gO8HXbejx25qbb2IUeeA25zRHsleG48iR+txP51nss8ud8ee7qfl0iVd13vTdSeQ2FputvjBOoOCrMPwxvMBgMBleBVyWt0HquFoICsGQvFEF2AWonPeNQt+3Y31q5ncpaOVmhQxLG7YofadmkInLHXDgfsg0Gs/n3WtsEFMcKHOur33GFrSwx2GvTcTqdNvNxrVC4f7K4I2UjaZu6djhe10KIx0sBea4/J+bN75LZOSZEZpoSUDrmzcJzobPw97qzu214bsjInDj6kSQZWfBiG06KT88dzolst44hyXVRqJnzXGvrqaKQcVd+pfPCFkIsk1jLC/TX9+mtctuyLEEszZWY7CWrdNcgPQM1L8eyKW9Gj4xre6RyhEvarQnD8AaDwWBwFXhVA1j+XZkCrTn935UAsJA9Fb26VHZaLykeV0GrkrEV13LFxebqtrTOXVp6KiLvLO1kyZEduPnynJPpuVT2vbT3yvBohXXM63w+r4eHh8jA6nt7sc4jwtmJdTiLNMXyGGur+yN7odSYK0vZG383L8Y0WHju4s0plZ2vLp7OsbMMw8X9KHjO41bG5EpOEts7n8/rfD4/sSrBeShYEK3m1Fq3TgorrV+en1pkLaajMdBz5Zqdpti6i8MTqdyHzw7XrofSZWJrLCav7zF2R7FotlKqx2N82d1HhMS2Kcqt+dQm4/pMx3n37t3hJrDD8AaDwWBwFbg4hlcFgPWrWn+5KTaszyhN5Zp4pnYSTohVoGVDK8LFClILehatdlmaKQOqY3i08FloWi1tWuGJhTiZJcbjUtGyy+xMoq0uzqn9V0t4j1nzmrqmoGQV3Gc953vF6q7gnMdjbIFM32X4EmQzDondMnPVWemJ0btidbK+PS+EK9xNMTvHQlOTZ57Xem9yXT08PMRzdzqd1sePH5+arHaC8NqHGIr278TPxV74/OF9L2akIug6F+YdcBz1fDGPQcdXZruYixNjSE2ruaZcfgO9bjou43X1bzG9xAZ17us1TbFJocuV4LrmM7LOS+dL6+H9+/eRARPD8AaDwWBwFbg4hndzc7PxQVeLRL/qtID0Xf06uzq1vde9ppT1u87HLMhaIrOT5eXElev8HRJ7q2OiddxlmKY4o9BlRiamSvbmhKDJDniNHZN0c3ao27p6Lp4njqWTgDoiNF73VY+XWjB1Ul+sQU0ZpfU9J6K81pZ5u7HTs9Ax/NQYk+e8y5RMXgm3bxeDrvNxsZvOa0OcTqcX8TOXmSwwfqjrI+aiWNFaz5mBYi8cP9v41CakfFZQAowsqh5PLYX0P8daz0nKwk3PjrptaoKb5MPqvNgAlmLSLnsytRRjqzbX1om1yPQOuMzl+vwZ8ejBYDAYDAouZnh3d3dPv+Rd1iQbv7KVkBNVTfEqWij1eHtZmZ1YNS0eMopap5OyNDnvjq1xPrTKnJWSBIfJPlx7mFQX5azGtL899Yu6v9Pp1H7/5uZmY0V3Kh8pa+0IKzhyjtP1IEs4YnGnLNr6Htcxx9atgy7OxzGmekZm2DmWxXYsnJer99rLPnX1uklg2uF8Pq/Pnz9vshkdw9MxeA+45qpV9H6tZ6bHjFvG+tz+6C1iRvRaz94tgTEujrnOkV6aFMNzuRH8X2PnenfvcZ3x+rvm35xXykqtfzP+y//rGPmsOsru1hqGNxgMBoMrwfzgDQaDweAq8KqO5ynddK1nyktqz4JZV8BMWs5EBLkWnDuFLh9K33RF5HTfpFTgI3BunU5YusK9n5JGOlHn5AZJAq11/6kcwYkM0H2352o8n88boV4nQsxyB4Huj7ofl5Zd9+n+pwhCkn7rXJosUu+24RrlcbhPt7/kyuzE2Pek7C5xTwpOJoxrhUkx7jlxBBItSOe+/s0kCCYRVdeYElj0PEv9KrskKUpvyS3qrhcTzZKb0sntMdSwF/6p8+D14Dqs9yDfYxmZzpkr81BxOOfTybula0q3skvG6UIACcPwBoPBYHAVuJjhvX37dpOu7wqBGah0zI7bpAQN/l+lcFhcSXkyJ8i7l9LrmNgR+ayjSJ2HLykEJ1vrElA4n67w879JdKnC4sT5fF6Pj48x7djNTWnTLLOoSMkVtC47lsH9cp05CbY6r/rK93lMd5wOZE1iKGRvnWhB6rju1vJeSYPbVmNKzLzzeghdaykxPMfsOD5eH94nrs2MPqslC2tlmcR6PN5bWjNOMDslmrBQ3zFugR4NPh86tiYk6a+1tqIVGr/aLrFdTz2fSXg+iabXbZIMHhPI6ntH7h9iGN5gMBgMrgIXS4vd3d1Fi3itzPBYluD8uLTSk2yUiyNRLulIuxYhWa/1OHvWxBHrWdiLVdbPUmwtiTy7/e7Jkh3Zr7OueZ32ztHj4+MmjlQt/b2UZMdmU9F4io9UcPyp4awrmOdnjCscEYJO43HnOAmOu2L/PRFkeha6GAitc1fms7eNA2PtnXCynjtdqUy6P8jwKpvhvSWItbDVmXvuqFUNxRxcGUQqZeiK+vk8Sy3NnLgF1xll1hyz5X2j+ehcsJVRLe1IXifFN8V+63lkSySuUf1fvXq8/vf394fZ3jC8wWAwGFwFbi7JcLm5ufn3Wutf/7vhDP4P8M/z+fwPvjlrZ3AAs3YGr4VdO8RFP3iDwWAwGPxdMS7NwWAwGFwF5gdvMBgMBleB+cEbDAaDwVVgfvAGg8FgcBWYH7zBYDAYXAXmB28wGAwGV4H5wRsMBoPBVWB+8AaDwWBwFZgfvMFgMBhcBf4DJvg22KvFZUAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1490,21 +1502,8 @@ "print(__doc__)\n", "\n", "# Authors: Vlad Niculae, Alexandre Gramfort\n", - "# License: BSD 3 clause\n", - "\n", - "import logging\n", - "from time import time\n", - "\n", - "from numpy.random import RandomState\n", - "import matplotlib.pyplot as plt\n", + "# License: BSD 3 claus\n", "\n", - "from sklearn.datasets import fetch_olivetti_faces\n", - "from sklearn.cluster import MiniBatchKMeans\n", - "from sklearn import decomposition\n", - "\n", - "# Display progress logs on stdout\n", - "logging.basicConfig(level=logging.INFO,\n", - " format='%(asctime)s %(levelname)s %(message)s')\n", "n_row, n_col = 2, 3\n", "n_components = n_row * n_col\n", "image_shape = (64, 64)\n", @@ -1555,9 +1554,9 @@ "\n", " ('Non-negative components - NMF (Gensim)',\n", " NmfWrapper(\n", - " chunksize=50,\n", - " eval_every=1000,\n", - " passes=5,\n", + " chunksize=3,\n", + " eval_every=400,\n", + " passes=1,\n", " sparse_coef=0,\n", " id2word={idx: idx for idx in range(faces.shape[1])},\n", " num_topics=n_components,\n", @@ -1601,12 +1600,12 @@ "\n", "for name, estimator, center in estimators:\n", " print(\"Extracting the top %d %s...\" % (n_components, name))\n", - " t0 = time()\n", + " t0 = time.time()\n", " data = faces\n", " if center:\n", " data = faces_centered\n", " estimator.fit(data)\n", - " train_time = (time() - t0)\n", + " train_time = (time.time() - t0)\n", " print(\"done in %0.3fs\" % train_time)\n", " if hasattr(estimator, 'cluster_centers_'):\n", " components_ = estimator.cluster_centers_\n", @@ -1628,13 +1627,6 @@ "\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From 8e15cd4b76947cdce95d836068b00aeea9452e38 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Fri, 11 Jan 2019 17:40:22 +0300 Subject: [PATCH 134/144] [skip ci] [WIP] Update wikipedia notebook --- docs/notebooks/nmf-wikipedia.ipynb | 3513 ---------------------------- docs/notebooks/nmf_wikipedia.ipynb | 841 +++++++ 2 files changed, 841 insertions(+), 3513 deletions(-) delete mode 100644 docs/notebooks/nmf-wikipedia.ipynb create mode 100644 docs/notebooks/nmf_wikipedia.ipynb diff --git a/docs/notebooks/nmf-wikipedia.ipynb b/docs/notebooks/nmf-wikipedia.ipynb deleted file mode 100644 index ec7988c025..0000000000 --- a/docs/notebooks/nmf-wikipedia.ipynb +++ /dev/null @@ -1,3513 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "from gensim.corpora import MmCorpus, Dictionary\n", - "from gensim.models.nmf import Nmf\n", - "from gensim.models import LdaModel\n", - "import gensim.downloader as api\n", - "from gensim.parsing.preprocessing import preprocess_string\n", - "from tqdm import tqdm, tqdm_notebook\n", - "import json\n", - "import itertools\n", - "\n", - "tqdm.pandas()\n", - "\n", - "import logging\n", - "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:27:02,079 : DEBUG : {'uri': '/home/anotherbugmaster/gensim-data/wiki-english-20171001/wiki-english-20171001.gz', 'mode': 'rb', 'kw': {'encoding': 'utf-8'}}\n", - "2018-09-26 17:27:02,081 : DEBUG : encoding_wrapper: {'fileobj': , 'mode': 'r', 'encoding': 'utf-8', 'errors': 'strict'}\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Section title: Introduction\n", - "Section text: \n", - "\n", - "\n", - "\n", - "\n", - "'''Anarchism''' is a political philosophy that advocates self-governed societies based on voluntary institutions. These are often described as stateless societies, although several authors have defined them more specifically as institutions based on non-hierarchical free associations. Anarchism holds the state to be undesirable, unnecessary and harmful.\n", - "\n", - "While anti-statism is central, anarchism specifically entails opposing authority or hierarchical organisation in the conduct of all human relations, including—but not limited to—the state system. Anarchism is usually considered a far-left ideology and much of anarchist economics and anarchist legal philosophy reflects anti-authoritarian interpretations of communism, collectivism, syndicalism, mutualism or participatory economics.\n", - "\n", - "Anarchism does not offer a fixed body of doctrine from a single particular world view, instead fluxing and flowing as a philosophy. Many types and traditions of anarchism exist, not all of which are mutually exclusive. Anarchist schools of thought can differ fundamentally, supporting anything from extreme individualism to complete collectivism. Strains of anarchism have often been divided into the categories of social and individualist anarchism or similar dual classifications.\n", - "\n", - "Section title: Etymology and terminology\n", - "Section text: \n", - "\n", - "The word ''anarchism'' is composed from the word ''anarchy'' and the suffix ''-ism'', themselves derived respectively from the Greek , i.e. ''anarchy'' (from , ''anarchos'', meaning \"one without rulers\"; from the privative prefix ἀν- (''an-'', i.e. \"without\") and , ''archos'', i.e. \"leader\", \"ruler\"; (cf. ''archon'' or , ''arkhē'', i.e. \"authority\", \"sovereignty\", \"realm\", \"magistracy\")) and the suffix or (''-ismos'', ''-isma'', from the verbal infinitive suffix -ίζειν, ''-izein''). The first known use of this word was in 1539. Various factions within the French Revolution labelled opponents as anarchists (as Robespierre did the Hébertists) although few shared many views of later anarchists. There would be many revolutionaries of the early nineteenth century who contributed to the anarchist doctrines of the next generation, such as William Godwin and Wilhelm Weitling, but they did not use the word ''anarchist'' or ''anarchism'' in describing themselves or their beliefs.\n", - "\n", - "The first political philosopher to call himself an anarchist was Pierre-Joseph Proudhon, marking the formal birth of anarchism in the mid-nineteenth century. Since the 1890s, and beginning in France, the term \"libertarianism\" has often been used as a synonym for anarchism and was used almost exclusively in this sense until the 1950s in the United States; its use as a synonym is still common outside the United States. On the other hand, some use libertarianism to refer to individualistic free-market philosophy only, referring to free-market anarchism as libertarian anarchism.\n", - "\n", - "Section title: History\n", - "Section text: \n", - "\n", - "===Origins===\n", - "Woodcut from a Diggers document by William Everard\n", - "\n", - "The earliest anarchist themes can be found in the 6th century BC among the works of Taoist philosopher Laozi and in later centuries by Zhuangzi and Bao Jingyan. Zhuangzi's philosophy has been described by various sources as anarchist. Zhuangzi wrote: \"A petty thief is put in jail. A great brigand becomes a ruler of a Nation\". Diogenes of Sinope and the Cynics, as well as their contemporary Zeno of Citium, the founder of Stoicism, also introduced similar topics. Jesus is sometimes considered the first anarchist in the Christian anarchist tradition. Georges Lechartier wrote: \"The true founder of anarchy was Jesus Christ and ... the first anarchist society was that of the apostles\". In early Islamic history, some manifestations of anarchic thought are found during the Islamic civil war over the Caliphate, where the Kharijites insisted that the imamate is a right for each individual within the Islamic society.\n", - "\n", - "The French renaissance political philosopher Étienne de La Boétie wrote in his most famous work the ''Discourse on Voluntary Servitude'' what some historians consider an important anarchist precedent. The radical Protestant Christian Gerrard Winstanley and his group the Diggers are cited by various authors as proposing anarchist social measures in the 17th century in England. The term \"anarchist\" first entered the English language in 1642, during the English Civil War, as a term of abuse, used by Royalists against their Roundhead opponents. By the time of the French Revolution some, such as the ''Enragés'', began to use the term positively, in opposition to Jacobin centralisation of power, seeing \"revolutionary government\" as oxymoronic. By the turn of the 19th century, the English word \"anarchism\" had lost its initial negative connotation.\n", - "\n", - "Modern anarchism emerged from the secular or religious thought of the Enlightenment, particularly Jean-Jacques Rousseau's arguments for the moral centrality of freedom.\n", - "\n", - "As part of the political turmoil of the 1790s in the wake of the French Revolution, William Godwin developed the first expression of modern anarchist thought. Godwin was, according to Peter Kropotkin, \"the first to formulate the political and economical conceptions of anarchism, even though he did not give that name to the ideas developed in his work\", while Godwin attached his anarchist ideas to an early Edmund Burke.\n", - "\n", - "William Godwin, \"the first to formulate the political and economical conceptions of anarchism, even though he did not give that name to the ideas developed in his work\".\n", - "Godwin is generally regarded as the founder of the school of thought known as 'philosophical anarchism'. He argued in ''Political Justice'' (1793) that government has an inherently malevolent influence on society, and that it perpetuates dependency and ignorance. He thought that the spread of the use of reason to the masses would eventually cause government to wither away as an unnecessary force. Although he did not accord the state with moral legitimacy, he was against the use of revolutionary tactics for removing the government from power. Rather, he advocated for its replacement through a process of peaceful evolution.\n", - "\n", - "His aversion to the imposition of a rules-based society led him to denounce, as a manifestation of the people's 'mental enslavement', the foundations of law, property rights and even the institution of marriage. He considered the basic foundations of society as constraining the natural development of individuals to use their powers of reasoning to arrive at a mutually beneficial method of social organisation. In each case, government and its institutions are shown to constrain the development of our capacity to live wholly in accordance with the full and free exercise of private judgement.\n", - "\n", - "The French Pierre-Joseph Proudhon is regarded as the first ''self-proclaimed'' anarchist, a label he adopted in his groundbreaking work, ''What is Property?'', published in 1840. It is for this reason that some claim Proudhon as the founder of modern anarchist theory. He developed the theory of spontaneous order in society, where organisation emerges without a central coordinator imposing its own idea of order against the wills of individuals acting in their own interests. His famous quote on the matter is \"Liberty is the mother, not the daughter, of order\". In ''What is Property?'' Proudhon answers with the famous accusation \"Property is theft.\" In this work, he opposed the institution of decreed \"property\" (''propriété''), where owners have complete rights to \"use and abuse\" their property as they wish. He contrasted this with what he called \"possession,\" or limited ownership of resources and goods only while in more or less continuous use. Later, however, Proudhon added that \"Property is Liberty\" and argued that it was a bulwark against state power. His opposition to the state, organised religion, and certain capitalist practices inspired subsequent anarchists, and made him one of the leading social thinkers of his time.\n", - "\n", - "The anarcho-communist Joseph Déjacque was the first person to describe himself as \"libertarian\". Unlike Pierre-Joseph Proudhon, he argued that, \"it is not the product of his or her labour that the worker has a right to, but to the satisfaction of his or her needs, whatever may be their nature.\" In 1844 in Germany the post-hegelian philosopher Max Stirner published the book, ''The Ego and Its Own'', which would later be considered an influential early text of individualist anarchism. French anarchists active in the 1848 Revolution included Anselme Bellegarrigue, Ernest Coeurderoy, Joseph Déjacque and Pierre Joseph Proudhon.\n", - "\n", - "\n", - "===First International and the Paris Commune===\n", - "\n", - "Anarchist Mikhail Bakunin opposed the Marxist aim of dictatorship of the proletariat in favour of universal rebellion, and allied himself with the federalists in the First International before his expulsion by the Marxists.\n", - "\n", - "In Europe, harsh reaction followed the revolutions of 1848, during which ten countries had experienced brief or long-term social upheaval as groups carried out nationalist uprisings. After most of these attempts at systematic change ended in failure, conservative elements took advantage of the divided groups of socialists, anarchists, liberals, and nationalists, to prevent further revolt. In Spain Ramón de la Sagra established the anarchist journal ''El Porvenir'' in La Coruña in 1845 which was inspired by Proudhon´s ideas. The Catalan politician Francesc Pi i Margall became the principal translator of Proudhon's works into Spanish and later briefly became president of Spain in 1873 while being the leader of the Democratic Republican Federal Party. According to George Woodcock \"These translations were to have a profound and lasting effect on the development of Spanish anarchism after 1870, but before that time Proudhonian ideas, as interpreted by Pi, already provided much of the inspiration for the federalist movement which sprang up in the early 1860's.\" According to the ''Encyclopædia Britannica'' \"During the Spanish revolution of 1873, Pi y Margall attempted to establish a decentralised, or \"cantonalist,\" political system on Proudhonian lines.\"\n", - "\n", - "In 1864 the International Workingmen's Association (sometimes called the \"First International\") united diverse revolutionary currents including French followers of Proudhon, Blanquists, Philadelphes, English trade unionists, socialists and social democrats. Due to its links to active workers' movements, the International became a significant organisation. Karl Marx became a leading figure in the International and a member of its General Council. Proudhon's followers, the mutualists, opposed Marx's state socialism, advocating political abstentionism and small property holdings. Woodcock also reports that the American individualist anarchists Lysander Spooner and William B. Greene had been members of the First International. In 1868, following their unsuccessful participation in the League of Peace and Freedom (LPF), Russian revolutionary Mikhail Bakunin and his collectivist anarchist associates joined the First International (which had decided not to get involved with the LPF). They allied themselves with the federalist socialist sections of the International, who advocated the revolutionary overthrow of the state and the collectivisation of property.\n", - "\n", - "At first, the collectivists worked with the Marxists to push the First International in a more revolutionary socialist direction. Subsequently, the International became polarised into two camps, with Marx and Bakunin as their respective figureheads. Mikhail Bakunin characterised Marx's ideas as centralist and predicted that, if a Marxist party came to power, its leaders would simply take the place of the ruling class they had fought against. Anarchist historian George Woodcock reports that \"The annual Congress of the International had not taken place in 1870 owing to the outbreak of the Paris Commune, and in 1871 the General Council called only a special conference in London. One delegate was able to attend from Spain and none from Italy, while a technical excuse – that they had split away from the Fédération Romande – was used to avoid inviting Bakunin's Swiss supporters. Thus only a tiny minority of anarchists was present, and the General Council's resolutions passed almost unanimously. Most of them were clearly directed against Bakunin and his followers.\" In 1872, the conflict climaxed with a final split between the two groups at the Hague Congress, where Bakunin and James Guillaume were expelled from the International and its headquarters were transferred to New York. In response, the federalist sections formed their own International at the St. Imier Congress, adopting a revolutionary anarchist programme.\n", - "\n", - "The Paris Commune was a government that briefly ruled Paris from 18 March (more formally, from 28 March) to 28 May 1871. The Commune was the result of an uprising in Paris after France was defeated in the Franco-Prussian War. Anarchists participated actively in the establishment of the Paris Commune. They included Louise Michel, the Reclus brothers, and Eugene Varlin (the latter murdered in the repression afterwards). As for the reforms initiated by the Commune, such as the re-opening of workplaces as co-operatives, anarchists can see their ideas of associated labour beginning to be realised ... Moreover, the Commune's ideas on federation obviously reflected the influence of Proudhon on French radical ideas. Indeed, the Commune's vision of a communal France based on a federation of delegates bound by imperative mandates issued by their electors and subject to recall at any moment echoes Bakunin's and Proudhon's ideas (Proudhon, like Bakunin, had argued in favour of the \"implementation of the binding mandate\" in 1848 ... and for federation of communes). Thus both economically and politically the Paris Commune was heavily influenced by anarchist ideas. George Woodcock states:\n", - "\n", - "\n", - "===Organised labour===\n", - "\n", - "The anti-authoritarian sections of the First International were the precursors of the anarcho-syndicalists, seeking to \"replace the privilege and authority of the State\" with the \"free and spontaneous organization of labour.\" In 1886, the Federation of Organized Trades and Labor Unions (FOTLU) of the United States and Canada unanimously set 1 May 1886, as the date by which the eight-hour work day would become standard.\n", - "A sympathetic engraving by Walter Crane of the executed \"Anarchists of Chicago\" after the Haymarket affair. The Haymarket affair is generally considered the most significant event for the origin of international May Day observances.\n", - "In response, unions across the United States prepared a general strike in support of the event. On 3 May, in Chicago, a fight broke out when strikebreakers attempted to cross the picket line, and two workers died when police opened fire upon the crowd. The next day, 4 May, anarchists staged a rally at Chicago's Haymarket Square. A bomb was thrown by an unknown party near the conclusion of the rally, killing an officer. In the ensuing panic, police opened fire on the crowd and each other. Seven police officers and at least four workers were killed. Eight anarchists directly and indirectly related to the organisers of the rally were arrested and charged with the murder of the deceased officer. The men became international political celebrities among the labour movement. Four of the men were executed and a fifth committed suicide prior to his own execution. The incident became known as the Haymarket affair, and was a setback for the labour movement and the struggle for the eight-hour day. In 1890 a second attempt, this time international in scope, to organise for the eight-hour day was made. The event also had the secondary purpose of memorialising workers killed as a result of the Haymarket affair. Although it had initially been conceived as a once-off event, by the following year the celebration of International Workers' Day on May Day had become firmly established as an international worker's holiday.\n", - "\n", - "In 1907, the International Anarchist Congress of Amsterdam gathered delegates from 14 different countries, among which important figures of the anarchist movement, including Errico Malatesta, Pierre Monatte, Luigi Fabbri, Benoît Broutchoux, Emma Goldman, Rudolf Rocker, and Christiaan Cornelissen. Various themes were treated during the Congress, in particular concerning the organisation of the anarchist movement, popular education issues, the general strike or antimilitarism. A central debate concerned the relation between anarchism and syndicalism (or trade unionism). Malatesta and Monatte were in particular disagreement themselves on this issue, as the latter thought that syndicalism was revolutionary and would create the conditions of a social revolution, while Malatesta did not consider syndicalism by itself sufficient. He thought that the trade-union movement was reformist and even conservative, citing as essentially bourgeois and anti-worker the phenomenon of professional union officials. Malatesta warned that the syndicalists aims were in perpetuating syndicalism itself, whereas anarchists must always have anarchy as their end and consequently refrain from committing to any particular method of achieving it.\n", - "\n", - "The Spanish Workers Federation in 1881 was the first major anarcho-syndicalist movement; anarchist trade union federations were of special importance in Spain. The most successful was the Confederación Nacional del Trabajo (National Confederation of Labour: CNT), founded in 1910. Before the 1940s, the CNT was the major force in Spanish working class politics, attracting 1.58 million members at one point and playing a major role in the Spanish Civil War. The CNT was affiliated with the International Workers Association, a federation of anarcho-syndicalist trade unions founded in 1922, with delegates representing two million workers from 15 countries in Europe and Latin America. In Latin America in particular \"The anarchists quickly became active in organising craft and industrial workers throughout South and Central America, and until the early 1920s most of the trade unions in Mexico, Brazil, Peru, Chile, and Argentina were anarcho-syndicalist in general outlook; the prestige of the Spanish C.N.T. as a revolutionary organisation was undoubtedly to a great extent responsible for this situation. The largest and most militant of these organisations was the Federación Obrera Regional Argentina ... it grew quickly to a membership of nearly a quarter of a million, which dwarfed the rival socialdemocratic unions.\"\n", - "\n", - "\n", - "===Propaganda of the deed and illegalism===\n", - "\n", - "Italian-American anarchist Luigi Galleani. His followers, known as Galleanists, carried out a series of bombings and assassination attempts from 1914 to 1932 in what they saw as attacks on 'tyrants' and 'enemies of the people'\n", - "Some anarchists, such as Johann Most, advocated publicising violent acts of retaliation against counter-revolutionaries because \"we preach not only action in and for itself, but also action as propaganda.\" Scholars such as Beverly Gage contend that this was not advocacy of mass murder, but targeted killings of members of the ruling class at times when such actions might garner sympathy from the population, such as during periods of heightened government repression or labor conflicts where workers were killed. However, Most himself once boasted that \"the existing system will be quickest and most radically overthrown by the annihilation of its exponents. Therefore, massacres of the enemies of the people must be set in motion.\" Most is best known for a pamphlet published in 1885: ''The Science of Revolutionary Warfare'', a how-to manual on the subject of making explosives, based on knowledge he acquired while working at an explosives plant in New Jersey.\n", - "\n", - "By the 1880s, people inside and outside the anarchist movement began to use the slogan, \"propaganda of the deed\" to refer to individual bombings, regicides, and tyrannicides. From 1905 onwards, the Russian counterparts of these anti-syndicalist anarchist-communists become partisans of economic terrorism and illegal 'expropriations'.\" Illegalism as a practice emerged and within it \"The acts of the anarchist bombers and assassins (\"propaganda by the deed\") and the anarchist burglars (\"individual reappropriation\") expressed their desperation and their personal, violent rejection of an intolerable society. Moreover, they were clearly meant to be ''exemplary'' invitations to revolt.\". France's Bonnot Gang was the most famous group to embrace illegalism.\n", - "\n", - "However, as soon as 1887, important figures in the anarchist movement distanced themselves from such individual acts. Peter Kropotkin thus wrote that year in ''Le Révolté'' that \"a structure based on centuries of history cannot be destroyed with a few kilos of dynamite\". A variety of anarchists advocated the abandonment of these sorts of tactics in favour of collective revolutionary action, for example through the trade union movement. The anarcho-syndicalist, Fernand Pelloutier, argued in 1895 for renewed anarchist involvement in the labour movement on the basis that anarchism could do very well without \"the individual dynamiter.\"\n", - "\n", - "State repression (including the infamous 1894 French ''lois scélérates'') of the anarchist and labour movements following the few successful bombings and assassinations may have contributed to the abandonment of these kinds of tactics, although reciprocally state repression, in the first place, may have played a role in these isolated acts. The dismemberment of the French socialist movement, into many groups and, following the suppression of the 1871 Paris Commune, the execution and exile of many ''communards'' to penal colonies, favoured individualist political expression and acts.\n", - "\n", - "Numerous heads of state were assassinated between 1881 and 1914 by members of the anarchist movement, including Tsar Alexander II of Russia, President Sadi Carnot of France, Empress Elisabeth of Austria, King Umberto I of Italy, President William McKinley of the United States, King Carlos I of Portugal and King George I of Greece. McKinley's assassin Leon Czolgosz claimed to have been influenced by anarchist and feminist Emma Goldman.\n", - "\n", - "===Russian Revolution and other uprisings of the 1910s===\n", - "\n", - "Nestor Makhno with members of the anarchist Revolutionary Insurrectionary Army of Ukraine\n", - "Anarchists participated alongside the Bolsheviks in both February and October revolutions, and were initially enthusiastic about the Bolshevik revolution. However, following a political falling out with the Bolsheviks by the anarchists and other left-wing opposition, the conflict culminated in the 1921 Kronstadt rebellion, which the new government repressed. Anarchists in central Russia were either imprisoned, driven underground or joined the victorious Bolsheviks; the anarchists from Petrograd and Moscow fled to Ukraine. There, in the Free Territory, they fought in the civil war against the Whites (a grouping of monarchists and other opponents of the October Revolution) and then the Bolsheviks as part of the Revolutionary Insurrectionary Army of Ukraine led by Nestor Makhno, who established an anarchist society in the region for a number of months.\n", - "\n", - "Expelled American anarchists Emma Goldman and Alexander Berkman were among those agitating in response to Bolshevik policy and the suppression of the Kronstadt uprising, before they left Russia. Both wrote accounts of their experiences in Russia, criticising the amount of control the Bolsheviks exercised. For them, Bakunin's predictions about the consequences of Marxist rule that the rulers of the new \"socialist\" Marxist state would become a new elite had proved all too true.\n", - "\n", - "The victory of the Bolsheviks in the October Revolution and the resulting Russian Civil War did serious damage to anarchist movements internationally. Many workers and activists saw Bolshevik success as setting an example; Communist parties grew at the expense of anarchism and other socialist movements. In France and the United States, for example, members of the major syndicalist movements of the CGT and IWW left the organisations and joined the Communist International.\n", - "\n", - "The revolutionary wave of 1917–23 saw the active participation of anarchists in varying degrees of protagonism. In the German uprising known as the German Revolution of 1918–1919 which established the Bavarian Soviet Republic the anarchists Gustav Landauer, Silvio Gesell and Erich Mühsam had important leadership positions within the revolutionary councilist structures. In the Italian events known as the ''biennio rosso'' the anarcho-syndicalist trade union Unione Sindacale Italiana \"grew to 800,000 members and the influence of the Italian Anarchist Union (20,000 members plus ''Umanita Nova'', its daily paper) grew accordingly ... Anarchists were the first to suggest occupying workplaces. In the Mexican Revolution the Mexican Liberal Party was established and during the early 1910s it led a series of military offensives leading to the conquest and occupation of certain towns and districts in Baja California with the leadership of anarcho-communist Ricardo Flores Magón.\n", - "\n", - "In Paris, the Dielo Truda group of Russian anarchist exiles, which included Nestor Makhno, concluded that anarchists needed to develop new forms of organisation in response to the structures of Bolshevism. Their 1926 manifesto, called the ''Organisational Platform of the General Union of Anarchists (Draft)'', was supported. Platformist groups active today include the Workers Solidarity Movement in Ireland and the North Eastern Federation of Anarchist Communists of North America. Synthesis anarchism emerged as an organisational alternative to platformism that tries to join anarchists of different tendencies under the principles of anarchism without adjectives. In the 1920s this form found as its main proponents Volin and Sebastien Faure. It is the main principle behind the anarchist federations grouped around the contemporary global International of Anarchist Federations.\n", - "\n", - "===Conflicts with European fascist regimes===\n", - "\n", - "\n", - "\n", - "In the 1920s and 1930s, the rise of fascism in Europe transformed anarchism's conflict with the state. Italy saw the first struggles between anarchists and fascists. Italian anarchists played a key role in the anti-fascist organisation ''Arditi del Popolo'', which was strongest in areas with anarchist traditions, and achieved some success in their activism, such as repelling Blackshirts in the anarchist stronghold of Parma in August 1922. The veteran Italian anarchist, Luigi Fabbri, was one of the first critical theorists of fascism, describing it as \"the preventive counter-revolution.\" In France, where the far right leagues came close to insurrection in the February 1934 riots, anarchists divided over a united front policy.\n", - "\n", - "Anarchists in France and Italy were active in the Resistance during World War II. In Germany the anarchist Erich Mühsam was arrested on charges unknown in the early morning hours of 28 February 1933, within a few hours after the Reichstag fire in Berlin. Joseph Goebbels, the Nazi propaganda minister, labelled him as one of \"those Jewish subversives.\" Over the next seventeen months, he would be imprisoned in the concentration camps at Sonnenburg, Brandenburg and finally, Oranienburg. On 2 February 1934, Mühsam was transferred to the concentration camp at Oranienburg when finally on the night of 9 July 1934, Mühsam was tortured and murdered by the guards, his battered corpse found hanging in a latrine the next morning.\n", - "\n", - "===Spanish Revolution===\n", - "\n", - "In Spain, the national anarcho-syndicalist trade union Confederación Nacional del Trabajo initially refused to join a popular front electoral alliance, and abstention by CNT supporters led to a right wing election victory. But in 1936, the CNT changed its policy and anarchist votes helped bring the popular front back to power. Months later, conservative members of the military, with the support of minority extreme-right parties, responded with an attempted coup, causing the Spanish Civil War (1936–1939). In response to the army rebellion, an anarchist-inspired movement of peasants and workers, supported by armed militias, took control of Barcelona and of large areas of rural Spain where they collectivised the land. But even before the fascist victory in 1939, the anarchists were losing ground in a bitter struggle with the Stalinists, who controlled much of the distribution of military aid to the Republican cause from the Soviet Union. According to Noam Chomsky, \"the communists were mainly responsible for the destruction of the Spanish anarchists. Not just in Catalonia—the communist armies mainly destroyed the collectives elsewhere. The communists basically acted as the police force of the security system of the Republic and were very much opposed to the anarchists, partially because Stalin still hoped at that time to have some kind of pact with Western countries against Hitler. That, of course, failed and Stalin withdrew the support to the Republic. They even withdrew the Spanish gold reserves.\" The events known as the Spanish Revolution was a workers' social revolution that began during the outbreak of the Spanish Civil War in 1936 and resulted in the widespread implementation of anarchist and more broadly libertarian socialist organisational principles throughout various portions of the country for two to three years, primarily Catalonia, Aragon, Andalusia, and parts of the Levante. Much of Spain's economy was put under worker control; in anarchist strongholds like Catalonia, the figure was as high as 75%, but lower in areas with heavy Communist Party of Spain influence, as the Soviet-allied party actively resisted attempts at collectivisation enactment. Factories were run through worker committees, agrarian areas became collectivised and run as libertarian communes. Anarchist historian Sam Dolgoff estimated that about eight million people participated directly or at least indirectly in the Spanish Revolution, which he claimed \"came closer to realising the ideal of the free stateless society on a vast scale than any other revolution in history.\" Spanish Communist Party-led troops suppressed the collectives and persecuted both dissident Marxists and anarchists. The prominent Italian anarchist Camillo Berneri, who volunteered to fight against Franco was killed instead in Spain by gunmen associated with the Spanish Communist Party. The city of Madrid was turned over to the francoist forces by the last non-francoist mayor of the city, the anarchist Melchor Rodríguez García.\n", - "\n", - "===Post-war years===\n", - "\n", - "\n", - "Anarchism sought to reorganise itself after the war and in this context the organisational debate between synthesis anarchism and platformism took importance once again especially in the anarchist movements of Italy and France. The Mexican Anarchist Federation was established in 1945 after the Anarchist Federation of the Centre united with the Anarchist Federation of the Federal District. In the early 1940s, the Antifascist International Solidarity and the Federation of Anarchist Groups of Cuba merged into the large national organisation Asociación Libertaria de Cuba (Cuban Libertarian Association). From 1944 to 1947, the Bulgarian Anarchist Communist Federation reemerged as part of a factory and workplace committee movement, but was repressed by the new Communist regime. In 1945 in France the Fédération Anarchiste and the anarchosyndicalist trade union Confédération nationale du travail was established in the next year while the also synthesist Federazione Anarchica Italiana was founded in Italy. Korean anarchists formed the League of Free Social Constructors in September 1945 and in 1946 the Japanese Anarchist Federation was founded. An International Anarchist Congress with delegates from across Europe was held in Paris in May 1948. After World War II, an appeal in the ''Fraye Arbeter Shtime'' detailing the plight of German anarchists and called for Americans to support them. By February 1946, the sending of aid parcels to anarchists in Germany was a large-scale operation. The Federation of Libertarian Socialists was founded in Germany in 1947 and Rudolf Rocker wrote for its organ, ''Die Freie Gesellschaft'', which survived until 1953. In 1956 the Uruguayan Anarchist Federation was founded. In 1955 the Anarcho-Communist Federation of Argentina renamed itself as the Argentine Libertarian Federation. The Syndicalist Workers' Federation was a syndicalist group in active in post-war Britain, and one of Solidarity Federation's earliest predecessors. It was formed in 1950 by members of the dissolved Anarchist Federation of Britain. Unlike the AFB, which was influenced by anarcho-syndicalist ideas but ultimately not syndicalist itself, the SWF decided to pursue a more definitely syndicalist, worker-centred strategy from the outset.\n", - "\n", - "Anarchism continued to influence important literary and intellectual personalities of the time, such as Albert Camus, Herbert Read, Paul Goodman, Dwight Macdonald, Allen Ginsberg, George Woodcock, Leopold Kohr, Julian Beck, John Cage and the French Surrealist group led by André Breton, which now openly embraced anarchism and collaborated in the Fédération Anarchiste.\n", - "\n", - "Anarcho-pacifism became influential in the Anti-nuclear movement and anti war movements of the time as can be seen in the activism and writings of the English anarchist member of Campaign for Nuclear Disarmament Alex Comfort or the similar activism of the American catholic anarcho-pacifists Ammon Hennacy and Dorothy Day. Anarcho-pacifism became a \"basis for a critique of militarism on both sides of the Cold War.\" The resurgence of anarchist ideas during this period is well documented in Robert Graham's Anarchism: A Documentary History of Libertarian Ideas, ''Volume Two: The Emergence of the New Anarchism (1939–1977)''.\n", - "\n", - "===Contemporary anarchism===\n", - "\n", - "squat near Parc Güell, overlooking Barcelona. Squatting was a prominent part of the emergence of renewed anarchist movement from the counterculture of the 1960s and 1970s. On the roof: \"Occupy and Resist\" A surge of popular interest in anarchism occurred in western nations during the 1960s and 1970s. Anarchism was influential in the Counterculture of the 1960s and anarchists actively participated in the late sixties students and workers revolts. In 1968 in Carrara, Italy the International of Anarchist Federations was founded during an international anarchist conference held there in 1968 by the three existing European federations of France (the Fédération Anarchiste), the Federazione Anarchica Italiana of Italy and the Iberian Anarchist Federation as well as the Bulgarian federation in French exile.\n", - "\n", - "In the United Kingdom in the 1970s this was associated with the punk rock movement, as exemplified by bands such as Crass and the Sex Pistols. The housing and employment crisis in most of Western Europe led to the formation of communes and squatter movements like that of Barcelona, Spain. In Denmark, squatters occupied a disused military base and declared the Freetown Christiania, an autonomous haven in central Copenhagen. Since the revival of anarchism in the mid-20th century, a number of new movements and schools of thought emerged. Although feminist tendencies have always been a part of the anarchist movement in the form of anarcha-feminism, they returned with vigour during the second wave of feminism in the 1960s. Anarchist anthropologist David Graeber and anarchist historian Andrej Grubacic have posited a rupture between generations of anarchism, with those \"who often still have not shaken the sectarian habits\" of the 19th century contrasted with the younger activists who are \"much more informed, among other elements, by indigenous, feminist, ecological and cultural-critical ideas\", and who by the turn of the 21st century formed \"by far the majority\" of anarchists.\n", - "\n", - "Around the turn of the 21st century, anarchism grew in popularity and influence as part of the anti-war, anti-capitalist, and anti-globalisation movements. Anarchists became known for their involvement in protests against the meetings of the World Trade Organization (WTO), Group of Eight, and the World Economic Forum. Some anarchist factions at these protests engaged in rioting, property destruction, and violent confrontations with police. These actions were precipitated by ad hoc, leaderless, anonymous cadres known as ''black blocs''; other organisational tactics pioneered in this time include security culture, affinity groups and the use of decentralised technologies such as the internet. A significant event of this period was the confrontations at WTO conference in Seattle in 1999. According to anarchist scholar Simon Critchley, \"contemporary anarchism can be seen as a powerful critique of the pseudo-libertarianism of contemporary neo-liberalism ... One might say that contemporary anarchism is about responsibility, whether sexual, ecological or socio-economic; it flows from an experience of conscience about the manifold ways in which the West ravages the rest; it is an ethical outrage at the yawning inequality, impoverishment and disenfranchisment that is so palpable locally and globally.\"\n", - "\n", - "International anarchist federations in existence include the International of Anarchist Federations, the International Workers' Association, and International Libertarian Solidarity.\n", - "The largest organised anarchist movement today is in Spain, in the form of the Confederación General del Trabajo (CGT) and the CNT. CGT membership was estimated at around 100,000 for 2003.\n", - "\n", - "Section title: Anarchist schools of thought\n", - "Section text: \n", - "Portrait of philosopher Pierre-Joseph Proudhon (1809–1865) by Gustave Courbet. Proudhon was the primary proponent of anarchist mutualism, and influenced many later individualist anarchist and social anarchist thinkers.\n", - "Anarchist schools of thought had been generally grouped in two main historical traditions, individualist anarchism and social anarchism, which have some different origins, values and evolution. The individualist wing of anarchism emphasises negative liberty, i.e. opposition to state or social control over the individual, while those in the social wing emphasise positive liberty to achieve one's potential and argue that humans have needs that society ought to fulfil, \"recognising equality of entitlement\". In a chronological and theoretical sense, there are classical – those created throughout the 19th century – and post-classical anarchist schools – those created since the mid-20th century and after.\n", - "\n", - "Beyond the specific factions of anarchist thought is philosophical anarchism, which embodies the theoretical stance that the state lacks moral legitimacy without accepting the imperative of revolution to eliminate it. A component especially of individualist anarchism philosophical anarchism may accept the existence of a minimal state as unfortunate, and usually temporary, \"necessary evil\" but argue that citizens do not have a moral obligation to obey the state when its laws conflict with individual autonomy. One reaction against sectarianism within the anarchist milieu was \"anarchism without adjectives\", a call for toleration first adopted by Fernando Tarrida del Mármol in 1889 in response to the \"bitter debates\" of anarchist theory at the time. In abandoning the hyphenated anarchisms (i.e. collectivist-, communist-, mutualist– and individualist-anarchism), it sought to emphasise the anti-authoritarian beliefs common to all anarchist schools of thought.\n", - "\n", - "===Classical anarchist schools of thought===\n", - "\n", - "====Mutualism====\n", - "\n", - "Mutualism began in 18th-century English and French labour movements before taking an anarchist form associated with Pierre-Joseph Proudhon in France and others in the United States. Proudhon proposed spontaneous order, whereby organisation emerges without central authority, a \"positive anarchy\" where order arises when everybody does \"what he wishes and only what he wishes\" and where \"business transactions alone produce the social order.\" Proudhon distinguished between ideal political possibilities and practical governance. For this reason, much in contrast to some of his theoretical statements concerning ultimate spontaneous self-governance, Proudhon was heavily involved in French parliamentary politics and allied himself not with anarchist but socialist factions of workers' movements and, in addition to advocating state-protected charters for worker-owned cooperatives, promoted certain nationalisation schemes during his life of public service.\n", - "\n", - "Mutualist anarchism is concerned with reciprocity, free association, voluntary contract, federation, and credit and currency reform. According to the American mutualist William Batchelder Greene, each worker in the mutualist system would receive \"just and exact pay for his work; services equivalent in cost being exchangeable for services equivalent in cost, without profit or discount.\" Mutualism has been retrospectively characterised as ideologically situated between individualist and collectivist forms of anarchism.''Blackwell Encyclopaedia of Political Thought'', Blackwell Publishing 1991 , p. 11. Proudhon first characterised his goal as a \"third form of society, the synthesis of communism and property.\"\n", - "\n", - "====Individualist anarchism====\n", - "\n", - "Individualist anarchism refers to several traditions of thought within the anarchist movement that emphasise the individual and their will over any kinds of external determinants such as groups, society, traditions, and ideological systems. Individualist anarchism is not a single philosophy but refers to a group of individualistic philosophies that sometimes are in conflict.\n", - "\n", - "In 1793, William Godwin, who has often been cited as the first anarchist, wrote ''Political Justice'', which some consider the first expression of anarchism. Godwin, a philosophical anarchist, from a rationalist and utilitarian basis opposed revolutionary action and saw a minimal state as a present \"necessary evil\" that would become increasingly irrelevant and powerless by the gradual spread of knowledge. Godwin advocated individualism, proposing that all cooperation in labour be eliminated on the premise that this would be most conducive with the general good.\n", - "19th-century philosopher Max Stirner, usually considered a prominent early individualist anarchist (sketch by Friedrich Engels).\n", - "An influential form of individualist anarchism, called \"egoism,\" or egoist anarchism, was expounded by one of the earliest and best-known proponents of individualist anarchism, the German Max Stirner. Stirner's ''The Ego and Its Own'', published in 1844, is a founding text of the philosophy. According to Stirner, the only limitation on the rights of individuals is their power to obtain what they desire, without regard for God, state, or morality. To Stirner, rights were ''spooks'' in the mind, and he held that society does not exist but \"the individuals are its reality\". Stirner advocated self-assertion and foresaw unions of egoists, non-systematic associations continually renewed by all parties' support through an act of will, which Stirner proposed as a form of organisation in place of the state. Egoist anarchists argue that egoism will foster genuine and spontaneous union between individuals. \"Egoism\" has inspired many interpretations of Stirner's philosophy. It was re-discovered and promoted by German philosophical anarchist and homosexual activist John Henry Mackay.\n", - "\n", - "Josiah Warren is widely regarded as the first American anarchist, and the four-page weekly paper he edited during 1833, ''The Peaceful Revolutionist'', was the first anarchist periodical published. For American anarchist historian Eunice Minette Schuster \"It is apparent ... that Proudhonian Anarchism was to be found in the United States at least as early as 1848 and that it was not conscious of its affinity to the Individualist Anarchism of Josiah Warren and Stephen Pearl Andrews ... William B. Greene presented this Proudhonian Mutualism in its purest and most systematic form.\". Henry David Thoreau (1817–1862) was an important early influence in individualist anarchist thought in the United States and Europe. Thoreau was an American author, poet, naturalist, tax resister, development critic, surveyor, historian, philosopher, and leading transcendentalist. He is best known for his books ''Walden'', a reflection upon simple living in natural surroundings, and his essay, ''Civil Disobedience'', an argument for individual resistance to civil government in moral opposition to an unjust state. Later Benjamin Tucker fused Stirner's egoism with the economics of Warren and Proudhon in his eclectic influential publication ''Liberty''.\n", - "\n", - "From these early influences individualist anarchism in different countries attracted a small but diverse following of bohemian artists and intellectuals, free love and birth control advocates (see Anarchism and issues related to love and sex), individualist naturists nudists (see anarcho-naturism), freethought and anti-clerical activists as well as young anarchist outlaws in what became known as illegalism and individual reclamation (see European individualist anarchism and individualist anarchism in France). These authors and activists included Oscar Wilde, Emile Armand, Han Ryner, Henri Zisly, Renzo Novatore, Miguel Gimenez Igualada, Adolf Brand and Lev Chernyi among others.\n", - "\n", - "====Social anarchism====\n", - "\n", - "Social anarchism calls for a system with common ownership of means of production and democratic control of all organisations, without any government authority or coercion. It is the largest school of thought in anarchism. Social anarchism rejects private property, seeing it as a source of social inequality (while retaining respect for personal property), and emphasises cooperation and mutual aid.\n", - "\n", - "=====Collectivist anarchism=====\n", - "\n", - "Collectivist anarchism, also referred to as \"revolutionary socialism\" or a form of such, is a revolutionary form of anarchism, commonly associated with Mikhail Bakunin and Johann Most. Collectivist anarchists oppose all private ownership of the means of production, instead advocating that ownership be collectivised. This was to be achieved through violent revolution, first starting with a small cohesive group through acts of violence, or ''propaganda by the deed'', which would inspire the workers as a whole to revolt and forcibly collectivise the means of production.\n", - "\n", - "However, collectivisation was not to be extended to the distribution of income, as workers would be paid according to time worked, rather than receiving goods being distributed \"according to need\" as in anarcho-communism. This position was criticised by anarchist communists as effectively \"upholding the wages system\". Collectivist anarchism arose contemporaneously with Marxism but opposed the Marxist dictatorship of the proletariat, despite the stated Marxist goal of a collectivist stateless society. Anarchist, communist and collectivist ideas are not mutually exclusive; although the collectivist anarchists advocated compensation for labour, some held out the possibility of a post-revolutionary transition to a communist system of distribution according to need.\n", - "\n", - "=====Anarcho-communism=====\n", - "\n", - "\n", - "Anarchist communism (also known as anarcho-communism, libertarian communism and occasionally as free communism) is a theory of anarchism that advocates abolition of the state, markets, money, private property (while retaining respect for personal property), and capitalism in favour of common ownership of the means of production, direct democracy and a horizontal network of voluntary associations and workers' councils with production and consumption based on the guiding principle: \"from each according to his ability, to each according to his need\".\n", - "\n", - "Russian theorist Peter Kropotkin (1842–1921), who was influential in the development of anarchist communism\n", - "\n", - "Some forms of anarchist communism such as insurrectionary anarchism are strongly influenced by egoism and radical individualism, believing anarcho-communism is the best social system for the realisation of individual freedom. Most anarcho-communists view anarcho-communism as a way of reconciling the opposition between the individual and society.\n", - "\n", - "Anarcho-communism developed out of radical socialist currents after the French revolution but was first formulated as such in the Italian section of the First International. The theoretical work of Peter Kropotkin took importance later as it expanded and developed pro-organisationalist and insurrectionary anti-organisationalist sections. To date, the best known examples of an anarchist communist society (i.e., established around the ideas as they exist today and achieving worldwide attention and knowledge in the historical canon), are the anarchist territories during the Spanish Revolution and the Free Territory during the Russian Revolution. Through the efforts and influence of the Spanish Anarchists during the Spanish Revolution within the Spanish Civil War, starting in 1936 anarchist communism existed in most of Aragon, parts of the Levante and Andalusia, as well as in the stronghold of Anarchist Catalonia before being crushed by the combined forces of the regime that won the war, Hitler, Mussolini, Spanish Communist Party repression (backed by the USSR) as well as economic and armaments blockades from the capitalist countries and the Spanish Republic itself. During the Russian Revolution, anarchists such as Nestor Makhno worked to create and defend – through the Revolutionary Insurrectionary Army of Ukraine – anarchist communism in the Free Territory of the Ukraine from 1919 before being conquered by the Bolsheviks in 1921.\n", - "\n", - "=====Anarcho-syndicalism=====\n", - "\n", - "May day demonstration of Spanish anarcho-syndicalist trade union CNT in Bilbao, Basque Country in 2010Anarcho-syndicalism is a branch of anarchism that focuses on the labour movement. Anarcho-syndicalists view labour unions as a potential force for revolutionary social change, replacing capitalism and the state with a new society democratically self-managed by workers. The basic principles of anarcho-syndicalism are: Workers' solidarity, Direct action and Workers' self-management\n", - "Anarcho-syndicalists believe that only direct action – that is, action concentrated on directly attaining a goal, as opposed to indirect action, such as electing a representative to a government position – will allow workers to liberate themselves. Moreover, anarcho-syndicalists believe that workers' organisations (the organisations that struggle against the wage system, which, in anarcho-syndicalist theory, will eventually form the basis of a new society) should be self-managing. They should not have bosses or \"business agents\"; rather, the workers should be able to make all the decisions that affect them themselves. Rudolf Rocker was one of the most popular voices in the anarcho-syndicalist movement. He outlined a view of the origins of the movement, what it sought, and why it was important to the future of labour in his 1938 pamphlet ''Anarcho-Syndicalism''. The International Workers Association is an international anarcho-syndicalist federation of various labour unions from different countries. The Spanish Confederación Nacional del Trabajo played and still plays a major role in the Spanish labour movement. It was also an important force in the Spanish Civil War.\n", - "\n", - "===Post-classical schools of thought===\n", - "\n", - "Lawrence Jarach (left) and John Zerzan (right), two prominent contemporary anarchist authors. Zerzan is known as prominent voice within anarcho-primitivism, while Jarach is a noted advocate of post-left anarchy.\n", - "Anarchism continues to generate many philosophies and movements, at times eclectic, drawing upon various sources, and syncretic, combining disparate concepts to create new philosophical approaches.\n", - "\n", - "Green anarchism (or eco-anarchism) is a school of thought within anarchism that emphasises environmental issues, with an important precedent in anarcho-naturism, and whose main contemporary currents are anarcho-primitivism and social ecology. Writing from a green anarchist perspective, John Zerzan attributes the ills of today's social degradation to technology and the birth of agricultural civilization. While Layla AbdelRahim argues that \"the shift in human consciousness was also a shift in human subsistence strategies, whereby some human animals reinvented their narrative to center murder and predation and thereby institutionalize violence\". Thus, according to her, civilization was the result of the human development of technologies and grammar for predatory economics. Language and literacy, she claims, are some of these technologies.\n", - "\n", - "Anarcha-feminism (also called anarchist feminism and anarcho-feminism) combines anarchism with feminism. It generally views patriarchy as a manifestation of involuntary coercive hierarchy that should be replaced by decentralised free association. Anarcha-feminists believe that the struggle against patriarchy is an essential part of class struggle, and the anarchist struggle against the state. In essence, the philosophy sees anarchist struggle as a necessary component of feminist struggle and vice versa. L. Susan Brown claims that \"as anarchism is a political philosophy that opposes all relationships of power, it is inherently feminist\". Anarcha-feminism began with the late 19th-century writings of early feminist anarchists such as Emma Goldman and Voltairine de Cleyre.\n", - "\n", - "Anarcho-pacifism is a tendency that rejects violence in the struggle for social change (see non-violence). It developed \"mostly in the Netherlands, Britain, and the United States, before and during the Second World War\". Christian anarchism is a movement in political theology that combines anarchism and Christianity. Its main proponents included Leo Tolstoy, Dorothy Day, Ammon Hennacy, and Jacques Ellul.\n", - "\n", - "Platformism is a tendency within the wider anarchist movement based on the organisational theories in the tradition of Dielo Truda's ''Organisational Platform of the General Union of Anarchists (Draft)''. The document was based on the experiences of Russian anarchists in the 1917 October Revolution, which led eventually to the victory of the Bolsheviks over the anarchists and other groups. The ''Platform'' attempted to address and explain the anarchist movement's failures during the Russian Revolution.\n", - "\n", - "Synthesis anarchism is a form of anarchism that tries to join anarchists of different tendencies under the principles of anarchism without adjectives. In the 1920s, this form found as its main proponents the anarcho-communists Voline and Sébastien Faure. It is the main principle behind the anarchist federations grouped around the contemporary global International of Anarchist Federations.\n", - "\n", - "Post-left anarchy is a recent current in anarchist thought that promotes a critique of anarchism's relationship to traditional Left-wing politics. Some post-leftists seek to escape the confines of ideology in general also presenting a critique of organisations and morality. Influenced by the work of Max Stirner and by the Marxist Situationist International, post-left anarchy is marked by a focus on social insurrection and a rejection of leftist social organisation.\n", - "\n", - "Insurrectionary anarchism is a revolutionary theory, practice, and tendency within the anarchist movement which emphasises insurrection within anarchist practice. It is critical of formal organisations such as labour unions and federations that are based on a political programme and periodic congresses. Instead, insurrectionary anarchists advocate informal organisation and small affinity group based organisation. Insurrectionary anarchists put value in attack, permanent class conflict, and a refusal to negotiate or compromise with class enemies.\n", - "\n", - "Post-anarchism is a theoretical move towards a synthesis of classical anarchist theory and poststructuralist thought, drawing from diverse ideas including post-modernism, autonomist marxism, post-left anarchy, Situationist International, and postcolonialism.\n", - "\n", - "Left-wing market anarchism strongly affirm the classical liberal ideas of self-ownership and free markets, while maintaining that, taken to their logical conclusions, these ideas support strongly anti-corporatist, anti-hierarchical, pro-labour positions and anti-capitalism in economics and anti-imperialism in foreign policy.\n", - "\n", - "Anarcho-capitalism advocates the elimination of the state in favour of self-ownership in a free market. Anarcho-capitalism developed from radical anti-state libertarianism and individualist anarchism, drawing from Austrian School economics, study of law and economics, and public choice theory. There is a strong current within anarchism which believes that anarcho-capitalism cannot be considered a part of the anarchist movement, due to the fact that anarchism has historically been an anti-capitalist movement and for definitional reasons which see anarchism as incompatible with capitalist forms.\n", - "\n", - "\n", - "Section title: Internal issues and debates\n", - "Section text: \n", - "consistent with anarchist values is a controversial subject among anarchists.\n", - "\n", - "Anarchism is a philosophy that embodies many diverse attitudes, tendencies and schools of thought; as such, disagreement over questions of values, ideology and tactics is common. The compatibility of capitalism, nationalism, and religion with anarchism is widely disputed. Similarly, anarchism enjoys complex relationships with ideologies such as Marxism, communism, collectivism, syndicalism/trade unionism, and capitalism. Anarchists may be motivated by humanism, divine authority, enlightened self-interest, veganism or any number of alternative ethical doctrines.\n", - "\n", - "Phenomena such as civilisation, technology (e.g. within anarcho-primitivism), and the democratic process may be sharply criticised within some anarchist tendencies and simultaneously lauded in others.\n", - "\n", - "On a tactical level, while propaganda of the deed was a tactic used by anarchists in the 19th century (e.g. the Nihilist movement), some contemporary anarchists espouse alternative direct action methods such as nonviolence, counter-economics and anti-state cryptography to bring about an anarchist society. About the scope of an anarchist society, some anarchists advocate a global one, while others do so by local ones. The diversity in anarchism has led to widely different use of identical terms among different anarchist traditions, which has led to many definitional concerns in anarchist theory.\n", - "\n", - "\n", - "Section title: Topics of interest\n", - "Section text: Intersecting and overlapping between various schools of thought, certain topics of interest and internal disputes have proven perennial within anarchist theory.\n", - "\n", - "===Free love===\n", - "\n", - "French individualist anarchist Emile Armand (1872–1962), who propounded the virtues of free love in the Parisian anarchist milieu of the early 20th century\n", - "An important current within anarchism is free love. Free love advocates sometimes traced their roots back to Josiah Warren and to experimental communities, viewed sexual freedom as a clear, direct expression of an individual's sovereignty. Free love particularly stressed women's rights since most sexual laws discriminated against women: for example, marriage laws and anti-birth control measures. The most important American free love journal was ''Lucifer the Lightbearer'' (1883–1907) edited by Moses Harman and Lois Waisbrooker, but also there existed Ezra Heywood and Angela Heywood's ''The Word'' (1872–1890, 1892–1893). ''Free Society'' (1895–1897 as ''The Firebrand''; 1897–1904 as ''Free Society'') was a major anarchist newspaper in the United States at the end of the 19th and beginning of the 20th centuries. The publication advocated free love and women's rights, and critiqued \"Comstockery\" – censorship of sexual information. Also M. E. Lazarus was an important American individualist anarchist who promoted free love.\n", - "\n", - "In New York City's Greenwich Village, bohemian feminists and socialists advocated self-realisation and pleasure for women (and also men) in the here and now. They encouraged playing with sexual roles and sexuality, and the openly bisexual radical Edna St. Vincent Millay and the lesbian anarchist Margaret Anderson were prominent among them. Discussion groups organised by the Villagers were frequented by Emma Goldman, among others. Magnus Hirschfeld noted in 1923 that Goldman \"has campaigned boldly and steadfastly for individual rights, and especially for those deprived of their rights. Thus it came about that she was the first and only woman, indeed the first and only American, to take up the defence of homosexual love before the general public.\" In fact, before Goldman, heterosexual anarchist Robert Reitzel (1849–1898) spoke positively of homosexuality from the beginning of the 1890s in his Detroit-based German language journal ''Der arme Teufel'' (English: The Poor Devil). In Argentina anarcha-feminist Virginia Bolten published the newspaper called '''' (English: The Woman's Voice), which was published nine times in Rosario between 8 January 1896 and 1 January 1897, and was revived, briefly, in 1901.\n", - "\n", - "In Europe the main propagandist of free love within individualist anarchism was Emile Armand. He proposed the concept of ''la camaraderie amoureuse'' to speak of free love as the possibility of voluntary sexual encounter between consenting adults. He was also a consistent proponent of polyamory. In Germany the stirnerists Adolf Brand and John Henry Mackay were pioneering campaigners for the acceptance of male bisexuality and homosexuality. Mujeres Libres was an anarchist women's organisation in Spain that aimed to empower working class women. It was founded in 1936 by Lucía Sánchez Saornil, Mercedes Comaposada and Amparo Poch y Gascón and had approximately 30,000 members. The organisation was based on the idea of a \"double struggle\" for women's liberation and social revolution and argued that the two objectives were equally important and should be pursued in parallel. In order to gain mutual support, they created networks of women anarchists. Lucía Sánchez Saornil was a main founder of the Spanish anarcha-feminist federation Mujeres Libres who was open about her lesbianism. She was published in a variety of literary journals where working under a male pen name, she was able to explore lesbian themes at a time when homosexuality was criminalised and subject to censorship and punishment.\n", - "\n", - "More recently, the British anarcho-pacifist Alex Comfort gained notoriety during the sexual revolution for writing the bestseller sex manual ''The Joy of Sex''. The issue of free love has a dedicated treatment in the work of French anarcho-hedonist philosopher Michel Onfray in such works as ''Théorie du corps amoureux : pour une érotique solaire'' (2000) and ''L'invention du plaisir : fragments cyréaniques'' (2002).\n", - "\n", - "===Libertarian education and freethought===\n", - "\n", - "Francesc Ferrer i Guàrdia, Catalan anarchist pedagogue and free-thinker For English anarchist William Godwin education was \"the main means by which change would be achieved.\" Godwin saw that the main goal of education should be the promotion of happiness. For Godwin education had to have \"A respect for the child's autonomy which precluded any form of coercion,\" \"A pedagogy that respected this and sought to build on the child's own motivation and initiatives,\" and \"A concern about the child's capacity to resist an ideology transmitted through the school.\" In his ''Political Justice'' he criticises state sponsored schooling \"on account of its obvious alliance with national government\". Early American anarchist Josiah Warren advanced alternative education experiences in the libertarian communities he established. Max Stirner wrote in 1842 a long essay on education called ''The False Principle of our Education''. In it Stirner names his educational principle \"personalist,\" explaining that self-understanding consists in hourly self-creation. Education for him is to create \"free men, sovereign characters,\" by which he means \"eternal characters ... who are therefore eternal because they form themselves each moment\".\n", - "\n", - "In the United States \"freethought was a basically anti-christian, anti-clerical movement, whose purpose was to make the individual politically and spiritually free to decide for himself on religious matters. A number of contributors to ''Liberty'' (anarchist publication) were prominent figures in both freethought and anarchism. The individualist anarchist George MacDonald was a co-editor of ''Freethought'' and, for a time, ''The Truth Seeker''. E.C. Walker was co-editor of the excellent free-thought / free love journal ''Lucifer, the Light-Bearer''\". \"Many of the anarchists were ardent freethinkers; reprints from freethought papers such as ''Lucifer, the Light-Bearer'', ''Freethought'' and ''The Truth Seeker'' appeared in ''Liberty''... The church was viewed as a common ally of the state and as a repressive force in and of itself\".\n", - "\n", - "In 1901, Catalan anarchist and free-thinker Francesc Ferrer i Guàrdia established \"modern\" or progressive schools in Barcelona in defiance of an educational system controlled by the Catholic Church. The schools' stated goal was to \"educate the working class in a rational, secular and non-coercive setting\". Fiercely anti-clerical, Ferrer believed in \"freedom in education\", education free from the authority of church and state. Murray Bookchin wrote: \"This period 1890s was the heyday of libertarian schools and pedagogical projects in all areas of the country where Anarchists exercised some degree of influence. Perhaps the best-known effort in this field was Francisco Ferrer's Modern School (Escuela Moderna), a project which exercised a considerable influence on Catalan education and on experimental techniques of teaching generally.\" La Escuela Moderna, and Ferrer's ideas generally, formed the inspiration for a series of ''Modern Schools'' in the United States, Cuba, South America and London. The first of these was started in New York City in 1911. It also inspired the Italian newspaper ''Università popolare'', founded in 1901. Russian christian anarchist Leo Tolstoy established a school for peasant children on his estate. Tolstoy's educational experiments were short-lived due to harassment by the Tsarist secret police. Tolstoy established a conceptual difference between education and culture. He thought that \"Education is the tendency of one man to make another just like himself ... Education is culture under restraint, culture is free. Education is when the teaching is forced upon the pupil, and when then instruction is exclusive, that is when only those subjects are taught which the educator regards as necessary\". For him \"without compulsion, education was transformed into culture\".\n", - "\n", - "A more recent libertarian tradition on education is that of unschooling and the free school in which child-led activity replaces pedagogic approaches. Experiments in Germany led to A. S. Neill founding what became Summerhill School in 1921. Summerhill is often cited as an example of anarchism in practice. However, although Summerhill and other free schools are radically libertarian, they differ in principle from those of Ferrer by not advocating an overtly political class struggle-approach.\n", - "In addition to organising schools according to libertarian principles, anarchists have also questioned the concept of schooling per se. The term deschooling was popularised by Ivan Illich, who argued that the school as an institution is dysfunctional for self-determined learning and serves the creation of a consumer society instead.\n", - "\n", - "Section title: Criticisms\n", - "Section text: \n", - "Criticisms of anarchism include moral criticisms and pragmatic criticisms. Anarchism is often evaluated as unfeasible or utopian by its critics.\n", - "\n", - "Section title: See also\n", - "Section text: * Anarchism by country\n", - "\n", - "Section title: References\n", - "Section text: \n", - "\n", - "Section title: Further reading\n", - "Section text: * Barclay, Harold, ''People Without Government: An Anthropology of Anarchy'' (2nd ed.), Left Bank Books, 1990 \n", - "* Blumenfeld, Jacob; Bottici, Chiara; Critchley, Simon, eds., ''The Anarchist Turn'', Pluto Press. 19 March 2013. \n", - "* Carter, April, ''The Political Theory of Anarchism'', Harper & Row. 1971. \n", - "* Federici, Silvia, '' Caliban and the Witch: Women, the Body, and Primitive Accumulation'', Autonomedia, 2004. . \n", - "* Gordon, Uri, ''Anarchy Alive!'', London: Pluto Press, 2007.\n", - "* Graeber, David. ''Fragments of an Anarchist Anthropology'', Chicago: Prickly Paradigm Press, 2004\n", - "* Graham, Robert, ed., ''Anarchism: A Documentary History of Libertarian Ideas''.\n", - "** ''Volume One: From Anarchy to Anarchism (300CE to 1939)'', Black Rose Books, Montréal and London 2005. .\n", - "** ''Volume Two: The Anarchist Current (1939–2006)'', Black Rose Books, Montréal 2007. .\n", - "* Guérin, Daniel, ''Anarchism: From Theory to Practice'', Monthly Review Press. 1970. \n", - "* Harper, Clifford, ''Anarchy: A Graphic Guide'', (Camden Press, 1987): An overview, updating Woodcock's classic, and illustrated throughout by Harper's woodcut-style artwork.\n", - "* Le Guin, Ursula, ''The Dispossessed'', New York : Harper & Row, 1974. (first edition, hardcover)\n", - "* McKay, Iain, ed., ''An Anarchist FAQ''.\n", - "** ''Volume I'', AK Press, Oakland/Edinburgh 2008; 558 pages, .\n", - "** ''Volume II'', AK Press, Oakland/Edinburgh 2012; 550 Pages, \n", - "* McLaughlin, Paul, ''Anarchism and Authority: A Philosophical Introduction to Classical Anarchism'', AshGate. 2007. \n", - "* Marshall, Peter, ''Demanding the Impossible: A History of Anarchism'', PM Press. 2010. \n", - "* Nettlau, Max, ''Anarchy through the times'', Gordon Press. 1979. \n", - "* \n", - "* Scott, James C., ''Two Cheers for Anarchism: Six Easy Pieces on Autonomy, Dignity, and Meaningful Work and Play'', Princeton, NJ: Princeton University Press, 2012. .\n", - "*\n", - "* Woodcock, George, ''Anarchism: A History of Libertarian Ideas and Movements'' (Penguin Books, 1962). . .\n", - "* Woodcock, George, ed., ''The Anarchist Reader'' (Fontana/Collins 1977; ): An anthology of writings from anarchist thinkers and activists including Proudhon, Kropotkin, Bakunin, Malatesta, Bookchin, Goldman, and many others.\n", - "\n", - "Section title: External links\n", - "Section text: \n", - "* \n", - "* \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - } - ], - "source": [ - "data = api.load(\"wiki-english-20171001\")\n", - "for article in data:\n", - " for section_title, section_text in zip(article['section_titles'], article['section_texts']):\n", - " print(\"Section title: %s\" % section_title)\n", - " print(\"Section text: %s\" % section_text)\n", - " break" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "def wiki_articles_iterator():\n", - " for article in tqdm_notebook(data):\n", - " yield (\n", - " preprocess_string(\n", - " \" \".join(\n", - " \" \".join(section)\n", - " for section\n", - " in zip(article['section_titles'], article['section_texts'])\n", - " )\n", - " )\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def save_preprocessed_articles(filename, articles):\n", - " with open(filename, 'w+') as writer:\n", - " for article in tqdm_notebook(articles):\n", - " writer.write(\n", - " json.dumps(\n", - " preprocess_string(\n", - " \" \".join(\n", - " \" \".join(section)\n", - " for section\n", - " in zip(article['section_titles'], article['section_texts'])\n", - " )\n", - " )\n", - " ) + '\\n'\n", - " )\n", - "\n", - "def get_preprocessed_articles(filename):\n", - " with open(filename, 'r') as reader:\n", - " for line in tqdm_notebook(reader):\n", - " yield json.loads(\n", - " line\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# save_preprocessed_articles('wiki_articles.jsonlines', data)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# dictionary = Dictionary(get_preprocessed_articles('wiki_articles.jsonlines'))\n", - "\n", - "# dictionary.save('wiki.dict')" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:27:02,269 : INFO : loading Dictionary object from wiki.dict\n", - "2018-09-26 17:27:02,269 : DEBUG : {'uri': 'wiki.dict', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:27:03,110 : INFO : loaded wiki.dict\n", - "2018-09-26 17:27:05,264 : INFO : discarding 1910258 tokens: [('abdelrahim', 49), ('abstention', 120), ('anarcha', 101), ('anarchica', 40), ('anarchosyndicalist', 20), ('antimilitar', 68), ('arbet', 194), ('archo', 100), ('arkhē', 5), ('autonomedia', 118)]...\n", - "2018-09-26 17:27:05,264 : INFO : keeping 100000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", - "2018-09-26 17:27:05,513 : DEBUG : rebuilding dictionary, shrinking gaps\n", - "2018-09-26 17:27:05,594 : INFO : resulting dictionary: Dictionary(100000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n", - "2018-09-26 17:27:05,669 : DEBUG : rebuilding dictionary, shrinking gaps\n" - ] - } - ], - "source": [ - "dictionary = Dictionary.load('wiki.dict')\n", - "dictionary.filter_extremes()\n", - "dictionary.compactify()" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "import random\n", - "\n", - "class RandomCorpus(MmCorpus):\n", - " def __init__(self, *args, random_state, **kwargs):\n", - " super().__init__(*args, **kwargs)\n", - " self.random_state = random_state\n", - " random.seed(self.random_state)\n", - " \n", - " self.shuffled_indices = list(range(self.num_docs))\n", - " random.shuffle(self.shuffled_indices)\n", - "\n", - " def __iter__(self):\n", - " for doc_id in self.shuffled_indices:\n", - " yield self[doc_id]" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# corpus = (\n", - "# dictionary.doc2bow(article)\n", - "# for article\n", - "# in get_preprocessed_articles('wiki_articles.jsonlines')\n", - "# )\n", - "\n", - "# RandomCorpus.serialize('wiki.mm', corpus)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:16,992 : DEBUG : {'uri': 'wiki.mm.index', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:17,529 : INFO : loaded corpus index from wiki.mm.index\n", - "2018-09-26 17:31:17,530 : INFO : initializing cython corpus reader from wiki.mm\n", - "2018-09-26 17:31:17,531 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:17,532 : INFO : accepted corpus with 4924894 documents, 100000 features, 683375728 non-zero entries\n" - ] - } - ], - "source": [ - "corpus = RandomCorpus('wiki.mm', random_state=42)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "PASSES = 2\n", - "\n", - "training_params = dict(\n", - " chunksize=2000,\n", - " num_topics=100,\n", - " id2word=dictionary\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:23,234 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The line_profiler extension is already loaded. To reload it, use:\n", - " %reload_ext line_profiler\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:24,026 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,029 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,030 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,032 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,033 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,034 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,036 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,235 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,236 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,237 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,238 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,239 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,240 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,241 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,241 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,242 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,243 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,244 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,244 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,245 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,246 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,246 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,247 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,248 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,248 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,249 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,250 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,250 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,251 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,252 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,252 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,253 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,254 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,254 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,255 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,256 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,257 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,257 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,258 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,449 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,450 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,456 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,457 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,458 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,459 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,460 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,461 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,461 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,462 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,463 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,464 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,465 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,465 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,466 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,467 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,467 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,468 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,469 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,469 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,470 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,471 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,472 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,472 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,473 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,474 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,474 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,475 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,476 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,476 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,477 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,478 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,479 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,480 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,480 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,481 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,482 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,482 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,483 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,484 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,485 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,485 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,486 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,487 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,487 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,488 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,489 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,489 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,490 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,491 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,491 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,492 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,493 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,493 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,494 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,495 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,496 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,497 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,499 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,500 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,501 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,501 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,502 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,503 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:24,505 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,505 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,506 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,507 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,508 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,509 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,510 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,510 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,511 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,512 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,513 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,514 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,515 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,515 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,516 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,517 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,517 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,518 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,519 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,520 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,520 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,521 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,522 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,523 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,524 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,524 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,525 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,526 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,526 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,527 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,528 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,529 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,529 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,530 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,531 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,532 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,532 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,533 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,534 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,535 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,536 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,536 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,537 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,538 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,538 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,539 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,540 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,541 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,541 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,542 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,543 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,544 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,545 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,545 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,546 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,547 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,547 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,548 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,549 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,550 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,551 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,551 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,552 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,553 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,554 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,554 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,555 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,556 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,557 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,569 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,570 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,571 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,571 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,572 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,573 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,573 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,574 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,575 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,576 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,577 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,578 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,578 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,579 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,580 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,581 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,581 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,582 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,583 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,584 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,584 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,585 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,586 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,586 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,587 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,588 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,589 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,590 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,590 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,591 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,592 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,593 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,594 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,595 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,596 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,597 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,598 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,598 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:24,599 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,600 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,600 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,602 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,603 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,603 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,604 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,605 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,605 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,606 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,607 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,607 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,608 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,609 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,610 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,610 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,611 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,612 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,612 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,613 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,614 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,615 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,616 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,617 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,618 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,618 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,619 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,620 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,620 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,621 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,622 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,623 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,623 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,624 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,625 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,626 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,627 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,627 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,628 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,629 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,629 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,630 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,631 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,631 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,632 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,633 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,633 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,634 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,635 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,635 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,636 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,637 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,638 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,639 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,639 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,640 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,641 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,641 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,642 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,643 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,643 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,644 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,645 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,645 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,646 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,647 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,648 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,648 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,649 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,650 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,651 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,652 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,653 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,653 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,654 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,655 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,656 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,656 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,657 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,658 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,659 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,659 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,660 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,661 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,662 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,662 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,663 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,664 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,665 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,666 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,667 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,667 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,668 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,669 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,670 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,670 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,671 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,672 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,673 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,674 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,675 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,675 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,676 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,677 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,678 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,679 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,680 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:24,680 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,681 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,682 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,683 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,684 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,684 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,685 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,686 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,686 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,687 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,688 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,689 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,690 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,690 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,691 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,692 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,693 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,694 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,694 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,695 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,696 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,697 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,698 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,698 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,699 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,700 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,700 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,701 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,702 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,703 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,703 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,704 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,705 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,706 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,707 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,707 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,708 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,709 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,710 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,711 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,711 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,712 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,713 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,714 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,714 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,715 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,716 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,717 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,718 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,718 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,719 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,720 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,721 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,721 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,722 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,723 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,724 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,724 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,725 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,726 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,727 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,728 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,729 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,729 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,730 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,731 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,732 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,732 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,733 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,734 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,735 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,735 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,736 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,737 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,738 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,738 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,739 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,740 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,741 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,741 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,742 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,743 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,743 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,744 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,745 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,746 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,746 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,747 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,748 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,749 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,749 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,750 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,751 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,752 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,752 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,753 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,754 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,755 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,756 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,757 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,757 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,758 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,759 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,760 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,760 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,761 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,762 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:24,763 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,764 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,764 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,765 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,766 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,766 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,767 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,768 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,769 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,769 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,770 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,771 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,772 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,773 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,773 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,774 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,775 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,776 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,776 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,777 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,778 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,779 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,779 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,780 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,781 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,781 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,782 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,783 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,783 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,784 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,785 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,786 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,786 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,787 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,788 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,788 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,789 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,790 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,791 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,791 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,792 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,793 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,809 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,810 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,811 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,812 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,812 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,813 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,814 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,815 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,816 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,816 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,817 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,818 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,819 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,820 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,820 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,821 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,822 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,823 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,823 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,824 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,825 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,826 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,826 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,827 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,827 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,828 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,829 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,830 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,830 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,831 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,832 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,833 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,833 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,834 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,835 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,836 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,836 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,837 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,838 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,838 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,839 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,840 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,841 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,841 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,842 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,843 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,843 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,844 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,845 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,846 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,847 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,848 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,848 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,849 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,850 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,851 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,852 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,853 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,853 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,854 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,858 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,860 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,861 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,861 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,863 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,864 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,865 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,866 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,866 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,867 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,867 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,868 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,869 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,870 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,870 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,871 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,872 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,873 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,873 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,874 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,875 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,875 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,876 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,877 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,877 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,878 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,879 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,879 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,880 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,881 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,882 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,882 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,883 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,884 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,885 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,885 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,886 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,887 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,888 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,889 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,889 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,890 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,891 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,892 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,893 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,893 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,894 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,895 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,896 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,897 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,898 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,899 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,899 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,900 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,901 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,902 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,903 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,904 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,904 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,905 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,906 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,906 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,907 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,908 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,908 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,909 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,910 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,911 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,911 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,912 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,913 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,914 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,915 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,915 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,916 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,917 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,917 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,918 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,920 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,921 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,922 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,923 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,924 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,924 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,925 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,926 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,927 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,927 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,928 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,929 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,930 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,930 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,931 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,932 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,933 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,933 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,935 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,935 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,936 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,937 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,938 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,938 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,939 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,940 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,940 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:24,941 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,942 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,943 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,944 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,945 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,945 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,946 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,947 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,948 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,949 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,949 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,950 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,951 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,952 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,952 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,953 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,954 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,955 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,955 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,956 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,957 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,958 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,958 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,959 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,960 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,961 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,961 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,962 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,963 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,983 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,984 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,985 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,986 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,987 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,987 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,988 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,989 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,990 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,991 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,991 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,992 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,993 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,994 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,995 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,995 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,996 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,997 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,998 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,998 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:24,999 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,000 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,000 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,001 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,002 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,003 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,004 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,004 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,005 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,006 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,006 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,007 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,008 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,008 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,009 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,010 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,011 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,011 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,012 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,013 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,014 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,015 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,016 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,016 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,017 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,018 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,019 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,020 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,020 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,021 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,022 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,022 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,023 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,024 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,025 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,026 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,026 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,027 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,028 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,028 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,029 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,030 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,032 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,033 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,033 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,034 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,036 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,037 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,037 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,038 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,039 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,040 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,041 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,041 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:25,043 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,044 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,044 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,045 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,046 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,046 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,047 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,048 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,048 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,049 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,050 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,050 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,051 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,052 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,053 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,053 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,054 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,055 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,055 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,056 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,057 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,057 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,058 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,059 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,060 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,060 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,061 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,062 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,063 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,063 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,064 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,065 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,065 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,066 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,067 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,068 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,068 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,069 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,070 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,071 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,072 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,073 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,073 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,074 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,075 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,076 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,076 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,077 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,078 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,079 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,080 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,080 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,081 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,082 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,082 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,083 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,084 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,084 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,085 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,086 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,087 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,087 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,088 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,089 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,090 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,090 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,091 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,092 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,093 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,094 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,095 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,096 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,097 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,098 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,099 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,100 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,101 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,102 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,103 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,104 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,105 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,106 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,106 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,107 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,108 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,109 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,109 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,110 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,111 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,112 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,112 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,113 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,114 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,114 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,115 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,116 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,117 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,118 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,118 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,119 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,120 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,120 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,121 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,122 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,123 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,123 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,124 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:25,125 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,126 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,126 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,127 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,128 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,129 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,129 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,130 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,131 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,132 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,132 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,133 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,134 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,135 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,135 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,156 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,157 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,157 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,158 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,159 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,161 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,161 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,162 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,163 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,163 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,168 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,169 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,170 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,170 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,171 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,172 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,172 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,173 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,174 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,174 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,175 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,176 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,177 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,177 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,178 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,179 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,180 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,180 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,181 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,182 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,183 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,183 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,184 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,185 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,186 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,186 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,187 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,188 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,188 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,189 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,190 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,191 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,192 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,194 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,194 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,195 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,196 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,196 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,197 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,198 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,198 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,199 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,200 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,201 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,201 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,202 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,203 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,204 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,204 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,205 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,206 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,207 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,207 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,208 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,209 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,210 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,211 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,212 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,212 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,213 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,214 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,215 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,215 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,217 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,217 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,218 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,219 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,219 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,220 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,221 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,222 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,222 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,223 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,224 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,225 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,226 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,227 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,227 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,228 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,229 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,229 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,230 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:25,231 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,232 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,233 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,233 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,234 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,235 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,236 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,236 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,238 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,239 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,240 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,462 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,464 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,465 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,466 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,467 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,467 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,468 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,469 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,470 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,472 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,473 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,474 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,475 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,476 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,476 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,478 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,479 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,479 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,480 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,482 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,483 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,483 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,484 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,485 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,485 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,486 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,487 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,487 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,488 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,489 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,489 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,490 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,491 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,491 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,492 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,493 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,493 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,495 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,496 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,496 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,497 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,498 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,498 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,499 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,500 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,500 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,501 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,502 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,514 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,515 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,516 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,516 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,517 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,518 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,519 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,519 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,520 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,522 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,522 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,523 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,524 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,524 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,525 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,526 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,527 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,527 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,528 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,529 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,530 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,531 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,532 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,532 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,534 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,535 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,535 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,536 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,537 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,538 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,539 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,539 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,540 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,541 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,541 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,542 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,543 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,543 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,544 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,545 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,546 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,546 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,547 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,548 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,548 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,549 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,550 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,551 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:25,551 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,572 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,572 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,573 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,574 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,574 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,575 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,576 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,577 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,577 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,578 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,579 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,580 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,581 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,582 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,583 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,583 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,584 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,585 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,586 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,586 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,587 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,588 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,589 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,590 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,590 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,591 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,592 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,592 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,593 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,594 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,594 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,595 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,596 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,597 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,598 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,598 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,599 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,600 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,601 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,601 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,602 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,603 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,604 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,604 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,605 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,606 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,607 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,608 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,608 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,609 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,610 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,611 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,612 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,612 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,613 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,614 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,614 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,615 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,616 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,617 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,617 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,618 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,619 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,620 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,621 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,621 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,622 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,623 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,623 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,624 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,625 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,626 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,627 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,628 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,628 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,629 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,630 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,631 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,631 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,632 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,633 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,634 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,634 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,635 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,636 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,637 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,637 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,638 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,639 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,640 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,641 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,642 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,643 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,643 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,644 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,645 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,645 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,646 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,647 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,648 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,648 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,649 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,650 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,650 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,651 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,652 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:25,653 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,653 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,654 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,655 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,656 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,656 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,657 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,658 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,659 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,659 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,660 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,661 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,662 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,662 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,663 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,664 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,664 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,665 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,666 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,667 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,668 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,669 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,670 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,670 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,671 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,672 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,672 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,673 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,674 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,675 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,676 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,676 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,677 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,678 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,679 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,679 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,680 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,681 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,682 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,682 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,683 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,684 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,684 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,685 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,686 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,686 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,687 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,688 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,688 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,689 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,690 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,691 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,691 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,692 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,693 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,694 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,694 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,695 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,696 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,696 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,697 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,698 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,698 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,699 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,700 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,701 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,701 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,702 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,703 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,703 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,704 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,705 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,705 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,706 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,707 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,708 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,709 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,710 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,710 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,711 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,712 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,712 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,713 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,714 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,714 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,715 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,716 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,716 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,717 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,718 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,719 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,719 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,720 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,721 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,740 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,741 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,742 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,743 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,743 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,744 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,745 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,745 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,746 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,747 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,747 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,748 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,749 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:25,750 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,750 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,751 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,752 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,752 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,753 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,754 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,754 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,755 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,756 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,757 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,757 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,758 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,759 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,760 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,760 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,761 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,762 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,762 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,763 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,764 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,764 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,765 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,766 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,766 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,767 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,768 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,769 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,769 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,770 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,771 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,771 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,772 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,773 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,774 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,775 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,775 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,776 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,777 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,777 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,778 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,779 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,780 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,780 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,781 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,782 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,782 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,783 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,784 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,785 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,785 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,786 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,787 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,788 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,788 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,789 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,790 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,791 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,791 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,792 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,793 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,794 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,794 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,795 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,795 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,796 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,797 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,797 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,798 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,799 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,800 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,800 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,801 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,802 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,802 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,803 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,803 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,804 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,805 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,806 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,806 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,807 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,807 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,808 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,809 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,810 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,811 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,812 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,812 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,813 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,814 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,815 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,815 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,816 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,817 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,817 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,818 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,819 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,819 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,820 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,821 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,821 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,822 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,823 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,824 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,825 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,825 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:25,826 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,827 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,827 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,828 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,829 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,829 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,830 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,831 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,832 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,832 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,833 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,834 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,834 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,835 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,836 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,837 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,837 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,838 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,839 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,839 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,840 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,841 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,842 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,842 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,843 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,844 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,845 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,845 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,846 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,846 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,847 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,848 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,849 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,849 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,850 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,851 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,852 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,853 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,854 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,855 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,856 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,857 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,859 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,860 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,861 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,862 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,863 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,864 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,864 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,865 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,866 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,866 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,867 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,868 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,868 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,870 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,870 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,871 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,872 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,872 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,873 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,874 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,875 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,876 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,876 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,877 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,878 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,878 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,879 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,880 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,881 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,882 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,883 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,883 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,884 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,885 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,885 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,886 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,907 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,908 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,909 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,910 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,911 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,912 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,913 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,913 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,914 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,915 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,916 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,917 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,917 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,919 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,920 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,921 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,922 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,922 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,923 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,924 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,924 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,925 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,926 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,927 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,927 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,928 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,929 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:25,930 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,930 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,931 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,932 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,933 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,933 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,934 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,935 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,935 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,936 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,937 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,938 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,939 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,940 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,941 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,941 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,942 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,945 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,946 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,947 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,948 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,948 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,949 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,950 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,951 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,951 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,952 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,953 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,953 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,954 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,955 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,956 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,956 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,957 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,958 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,959 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,960 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,961 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,961 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,962 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,963 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,964 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,965 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,965 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,966 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,967 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,968 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,968 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,969 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,970 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,971 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,972 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,972 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,973 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,974 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,975 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,976 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,976 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,977 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,978 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,979 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,979 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,980 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,981 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,982 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,982 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,983 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,984 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,984 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,985 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,986 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,986 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,987 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,988 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,988 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,989 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,990 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,991 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,991 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,992 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,993 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,994 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,995 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,995 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,996 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,997 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,998 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,998 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,999 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:25,999 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,001 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,002 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,002 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,012 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,013 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,014 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,015 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,016 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,016 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,017 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,018 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,018 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,019 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,020 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,021 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,022 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,022 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:26,023 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,024 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,025 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,025 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,026 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,027 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,027 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,028 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,029 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,030 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,031 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,032 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,032 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,033 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,034 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,035 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,036 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,037 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,037 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,038 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,039 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,040 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,040 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,042 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,042 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,043 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,044 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,045 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,045 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,046 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,047 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,048 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,049 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,049 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,051 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,051 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,052 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,053 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,054 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,054 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,055 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,056 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,056 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,057 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,058 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,059 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,059 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,060 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,061 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,062 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,063 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,063 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,064 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,065 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,066 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,066 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,067 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,068 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,068 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,069 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,071 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,071 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,072 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,073 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,073 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,092 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,092 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,093 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,094 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,095 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,096 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,096 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,097 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,097 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,098 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,099 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,100 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,101 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,102 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,103 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,103 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,104 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,106 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,107 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,108 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,109 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,110 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,112 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,112 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,113 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,114 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,115 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,116 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,117 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,117 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,118 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,119 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,120 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,120 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,122 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,123 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,123 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,124 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,125 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,125 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,126 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:26,127 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,128 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,129 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,129 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,130 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,131 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,131 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,132 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,133 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,134 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,135 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,136 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,136 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,137 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,138 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,139 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,140 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,141 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,141 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,142 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,143 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,144 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,144 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,145 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,146 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,146 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,147 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,148 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,148 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,149 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,150 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,151 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,152 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,152 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,153 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,154 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,155 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,156 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,156 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,157 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,158 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,159 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,159 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,160 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,161 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,161 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,162 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,163 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,163 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,164 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,165 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,166 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,166 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,167 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,168 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,169 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,170 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,170 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,171 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,172 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,173 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,173 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,174 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,175 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,176 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,176 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,177 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,178 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,179 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,180 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,180 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,181 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,182 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,182 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,183 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,184 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,185 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,185 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,186 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,187 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,188 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,188 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,189 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,190 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,191 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,191 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,192 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,193 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,193 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,194 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,195 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,196 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,196 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,197 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,198 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,198 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,199 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,200 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,201 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,202 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,203 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,204 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,204 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,205 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,206 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,206 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,207 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:26,207 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,208 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,209 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,210 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,210 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,211 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,212 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,212 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,213 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,214 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,215 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,216 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,216 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,217 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,218 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,219 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,220 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,220 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,221 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,222 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,223 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,224 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,225 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,225 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,226 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,227 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,228 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,228 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,229 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,230 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,230 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,231 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,232 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,232 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,233 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,234 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,234 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,235 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,236 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,237 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,238 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,238 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,239 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,240 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,240 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,241 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,242 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,243 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,243 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,244 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,244 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,245 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,265 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,266 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,266 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,267 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,268 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,269 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,269 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,270 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,271 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,272 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,272 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,273 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,274 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,275 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,275 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,276 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,277 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,277 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,278 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,279 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,294 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,295 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,296 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,297 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,298 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,299 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,299 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,300 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,302 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,303 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,304 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,305 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,306 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,307 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,308 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,308 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,309 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,310 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,311 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,312 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,312 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,313 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,314 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,315 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,315 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,316 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,317 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,318 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,319 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,320 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,321 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,321 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,322 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,323 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,323 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 17:31:26,324 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,325 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,325 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,326 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,327 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,328 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,328 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,329 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,330 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,331 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,332 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,333 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,333 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,334 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,335 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,336 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,336 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,337 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,338 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,339 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,340 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,341 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,342 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,342 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,343 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,343 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,344 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,345 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,346 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,346 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,349 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,350 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,351 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,352 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,353 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,354 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,354 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,355 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,356 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,356 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,357 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,358 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,360 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,360 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,361 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,362 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,362 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,363 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,364 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,365 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,366 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,366 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,367 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,368 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,368 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,369 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,370 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,370 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,371 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,372 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,372 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,373 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,374 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,374 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,375 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,376 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,377 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,377 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,378 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,379 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,379 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,380 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,381 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:26,382 : DEBUG : {'uri': 'wiki.mm', 'mode': 'rb', 'kw': {}}\n", - "2018-09-26 17:31:29,044 : DEBUG : h_r_error: None\n", - "2018-09-26 17:31:45,646 : DEBUG : h_r_error: 0.0042052357680393325\n", - "2018-09-26 17:32:03,586 : DEBUG : h_r_error: 0.0007387218894986965\n" - ] - } - ], - "source": [ - "%load_ext line_profiler\n", - "\n", - "%lprun -f Nmf._setup gensim_nmf = Nmf(**training_params, corpus=corpus, use_r=True, lambda_=200)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 20:01:01,127 : INFO : Loss (no outliers): 2187.8126676419793\tLoss (with outliers): 2187.8126676419793\n", - "2018-09-25 20:05:20,635 : INFO : Loss (no outliers): 1827.3584807920479\tLoss (with outliers): 1827.3584807920479\n", - "2018-09-25 20:09:26,448 : INFO : Loss (no outliers): 2160.9315399905636\tLoss (with outliers): 2160.9315399905636\n", - "2018-09-25 20:11:43,012 : INFO : Loss (no outliers): 2096.3005293752603\tLoss (with outliers): 2096.3005293752603\n", - "2018-09-25 20:13:39,924 : INFO : Loss (no outliers): 2219.8595473938913\tLoss (with outliers): 2219.8595473938913\n", - "2018-09-25 20:15:16,059 : INFO : Loss (no outliers): 2386.337256599918\tLoss (with outliers): 2386.337256599918\n", - "2018-09-25 20:16:55,507 : INFO : Loss (no outliers): 2174.8242892829526\tLoss (with outliers): 2174.8242892829526\n", - "2018-09-25 20:18:13,774 : INFO : Loss (no outliers): 2167.327441415781\tLoss (with outliers): 2167.327441415781\n", - "2018-09-25 20:19:08,062 : INFO : Loss (no outliers): 2302.0876438555892\tLoss (with outliers): 2302.0876438555892\n", - "2018-09-25 20:20:20,917 : INFO : Loss (no outliers): 2131.8228402146287\tLoss (with outliers): 2131.8228402146287\n", - "2018-09-25 20:21:31,408 : INFO : Loss (no outliers): 2266.1975063743394\tLoss (with outliers): 2266.1975063743394\n", - "2018-09-25 20:22:54,676 : INFO : Loss (no outliers): 2257.0836244775646\tLoss (with outliers): 2257.0836244775646\n", - "2018-09-25 20:23:38,334 : INFO : Loss (no outliers): 3164.075185170647\tLoss (with outliers): 3164.075185170647\n", - "2018-09-25 20:24:34,000 : INFO : Loss (no outliers): 2537.402378468375\tLoss (with outliers): 2537.402378468375\n", - "2018-09-25 20:25:21,215 : INFO : Loss (no outliers): 2085.1143669005523\tLoss (with outliers): 2085.1143669005523\n", - "2018-09-25 20:26:12,325 : INFO : Loss (no outliers): 1917.4662703631843\tLoss (with outliers): 1917.4662703631843\n", - "2018-09-25 20:26:45,741 : INFO : Loss (no outliers): 2425.775764436527\tLoss (with outliers): 2425.775764436527\n", - "2018-09-25 20:27:26,078 : INFO : Loss (no outliers): 1880.8062670071406\tLoss (with outliers): 1880.8062670071406\n", - "2018-09-25 20:27:56,568 : INFO : Loss (no outliers): 2037.992814496653\tLoss (with outliers): 2037.992814496653\n", - "2018-09-25 20:28:26,400 : INFO : Loss (no outliers): 1866.0845062826913\tLoss (with outliers): 1866.0845062826913\n", - "2018-09-25 20:28:59,528 : INFO : Loss (no outliers): 2254.506677278798\tLoss (with outliers): 2254.506677278798\n", - "2018-09-25 20:29:39,800 : INFO : Loss (no outliers): 2415.126257651434\tLoss (with outliers): 2415.126257651434\n", - "2018-09-25 20:30:06,285 : INFO : Loss (no outliers): 2033.2142338523656\tLoss (with outliers): 2033.2142338523656\n", - "2018-09-25 20:30:31,982 : INFO : Loss (no outliers): 2155.7749664000735\tLoss (with outliers): 2155.7749664000735\n", - "2018-09-25 20:31:07,855 : INFO : Loss (no outliers): 2149.7886510702974\tLoss (with outliers): 2149.7886510702974\n", - "2018-09-25 20:31:38,098 : INFO : Loss (no outliers): 2090.0590065159954\tLoss (with outliers): 2090.0590065159954\n", - "2018-09-25 20:32:08,264 : INFO : Loss (no outliers): 3051.4390246212574\tLoss (with outliers): 3051.4390246212574\n", - "2018-09-25 20:32:43,324 : INFO : Loss (no outliers): 2755.146280286994\tLoss (with outliers): 2755.146280286994\n", - "2018-09-25 20:33:11,577 : INFO : Loss (no outliers): 1953.0514799998996\tLoss (with outliers): 1953.0514799998996\n", - "2018-09-25 20:33:37,810 : INFO : Loss (no outliers): 2078.0805979102347\tLoss (with outliers): 2078.0805979102347\n", - "2018-09-25 20:34:08,085 : INFO : Loss (no outliers): 1888.1039633096568\tLoss (with outliers): 1888.1039633096568\n", - "2018-09-25 20:34:42,087 : INFO : Loss (no outliers): 2162.4288484244385\tLoss (with outliers): 2162.4288484244385\n", - "2018-09-25 20:35:08,838 : INFO : Loss (no outliers): 2506.894772934331\tLoss (with outliers): 2506.894772934331\n", - "2018-09-25 20:35:35,438 : INFO : Loss (no outliers): 1905.058861233822\tLoss (with outliers): 1905.058861233822\n", - "2018-09-25 20:36:01,910 : INFO : Loss (no outliers): 1937.758972871597\tLoss (with outliers): 1937.758972871597\n", - "2018-09-25 20:36:28,562 : INFO : Loss (no outliers): 1975.9146643769143\tLoss (with outliers): 1975.9146643769143\n", - "2018-09-25 20:36:57,179 : INFO : Loss (no outliers): 2126.652984828385\tLoss (with outliers): 2126.652984828385\n", - "2018-09-25 20:37:23,895 : INFO : Loss (no outliers): 2070.0477717027475\tLoss (with outliers): 2070.0477717027475\n", - "2018-09-25 20:37:50,735 : INFO : Loss (no outliers): 2209.238005287575\tLoss (with outliers): 2209.238005287575\n", - "2018-09-25 20:38:17,700 : INFO : Loss (no outliers): 2120.6505477292617\tLoss (with outliers): 2120.6505477292617\n", - "2018-09-25 20:38:44,663 : INFO : Loss (no outliers): 1944.3532143022674\tLoss (with outliers): 1944.3532143022674\n", - "2018-09-25 20:39:11,706 : INFO : Loss (no outliers): 1869.673157402031\tLoss (with outliers): 1869.673157402031\n", - "2018-09-25 20:39:38,671 : INFO : Loss (no outliers): 3255.276326705787\tLoss (with outliers): 3255.276326705787\n", - "2018-09-25 20:40:28,543 : INFO : Loss (no outliers): 2435.859103075609\tLoss (with outliers): 2435.859103075609\n", - "2018-09-25 20:40:55,526 : INFO : Loss (no outliers): 1862.570367799494\tLoss (with outliers): 1862.570367799494\n", - "2018-09-25 20:41:22,754 : INFO : Loss (no outliers): 2133.0116432967625\tLoss (with outliers): 2133.0116432967625\n", - "2018-09-25 20:41:49,674 : INFO : Loss (no outliers): 2111.907302375691\tLoss (with outliers): 2111.907302375691\n", - "2018-09-25 20:42:23,763 : INFO : Loss (no outliers): 2195.705225873015\tLoss (with outliers): 2195.705225873015\n", - "2018-09-25 20:43:06,466 : INFO : Loss (no outliers): 3044.0490489973076\tLoss (with outliers): 3044.0490489973076\n", - "2018-09-25 20:43:33,924 : INFO : Loss (no outliers): 2616.79977906664\tLoss (with outliers): 2616.79977906664\n", - "2018-09-25 20:44:29,067 : INFO : Loss (no outliers): 4842.718133634694\tLoss (with outliers): 4842.718133634694\n", - "2018-09-25 20:44:55,509 : INFO : Loss (no outliers): 1985.98966133246\tLoss (with outliers): 1985.98966133246\n", - "2018-09-25 20:45:23,067 : INFO : Loss (no outliers): 3064.415840599372\tLoss (with outliers): 3064.415840599372\n", - "2018-09-25 20:45:49,554 : INFO : Loss (no outliers): 2131.5509920527406\tLoss (with outliers): 2131.5509920527406\n", - "2018-09-25 20:46:36,794 : INFO : Loss (no outliers): 1991.9116662567365\tLoss (with outliers): 1991.9116662567365\n", - "2018-09-25 20:47:04,174 : INFO : Loss (no outliers): 2174.288203134576\tLoss (with outliers): 2174.288203134576\n", - "2018-09-25 20:47:31,531 : INFO : Loss (no outliers): 2142.2319437624255\tLoss (with outliers): 2142.2319437624255\n", - "2018-09-25 20:47:59,101 : INFO : Loss (no outliers): 2590.1425025671692\tLoss (with outliers): 2590.1425025671692\n", - "2018-09-25 20:48:25,806 : INFO : Loss (no outliers): 1806.6643919739586\tLoss (with outliers): 1806.6643919739586\n", - "2018-09-25 20:49:02,806 : INFO : Loss (no outliers): 2588.1962416200254\tLoss (with outliers): 2588.1962416200254\n", - "2018-09-25 20:49:31,581 : INFO : Loss (no outliers): 2029.872816779808\tLoss (with outliers): 2029.872816779808\n", - "2018-09-25 20:49:57,169 : INFO : Loss (no outliers): 1916.5805541295447\tLoss (with outliers): 1916.5805541295447\n", - "2018-09-25 20:50:24,100 : INFO : Loss (no outliers): 2630.743158581952\tLoss (with outliers): 2630.743158581952\n", - "2018-09-25 20:50:51,141 : INFO : Loss (no outliers): 2106.912544838272\tLoss (with outliers): 2106.912544838272\n", - "2018-09-25 20:51:20,724 : INFO : Loss (no outliers): 2200.8524728509683\tLoss (with outliers): 2200.8524728509683\n", - "2018-09-25 20:51:45,737 : INFO : Loss (no outliers): 1960.0984584187886\tLoss (with outliers): 1960.0984584187886\n", - "2018-09-25 20:52:13,747 : INFO : Loss (no outliers): 1730.2112614759099\tLoss (with outliers): 1730.2112614759099\n", - "2018-09-25 20:52:42,615 : INFO : Loss (no outliers): 1856.7002145959946\tLoss (with outliers): 1856.7002145959946\n", - "2018-09-25 20:53:11,814 : INFO : Loss (no outliers): 2028.8929229689675\tLoss (with outliers): 2028.8929229689675\n", - "2018-09-25 20:53:40,610 : INFO : Loss (no outliers): 1925.8572023772126\tLoss (with outliers): 1925.8572023772126\n", - "2018-09-25 20:54:09,532 : INFO : Loss (no outliers): 1996.1691640755826\tLoss (with outliers): 1996.1691640755826\n", - "2018-09-25 20:54:38,212 : INFO : Loss (no outliers): 2113.6525446762803\tLoss (with outliers): 2113.6525446762803\n", - "2018-09-25 20:55:07,051 : INFO : Loss (no outliers): 3516.0827354077574\tLoss (with outliers): 3516.0827354077574\n", - "2018-09-25 20:55:33,999 : INFO : Loss (no outliers): 2186.760754286475\tLoss (with outliers): 2186.760754286475\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 20:56:02,823 : INFO : Loss (no outliers): 2427.223231537262\tLoss (with outliers): 2427.223231537262\n", - "2018-09-25 20:56:31,906 : INFO : Loss (no outliers): 1916.1747272542427\tLoss (with outliers): 1916.1747272542427\n", - "2018-09-25 20:57:00,958 : INFO : Loss (no outliers): 2160.7246788720004\tLoss (with outliers): 2160.7246788720004\n", - "2018-09-25 20:57:29,892 : INFO : Loss (no outliers): 2418.632822651408\tLoss (with outliers): 2418.632822651408\n", - "2018-09-25 20:57:59,123 : INFO : Loss (no outliers): 1839.4987454612694\tLoss (with outliers): 1839.4987454612694\n", - "2018-09-25 20:58:28,258 : INFO : Loss (no outliers): 2193.5954352867516\tLoss (with outliers): 2193.5954352867516\n", - "2018-09-25 20:58:57,297 : INFO : Loss (no outliers): 1840.22885077515\tLoss (with outliers): 1840.22885077515\n", - "2018-09-25 20:59:25,111 : INFO : Loss (no outliers): 2256.5277679640835\tLoss (with outliers): 2256.5277679640835\n", - "2018-09-25 20:59:54,109 : INFO : Loss (no outliers): 2100.762294874342\tLoss (with outliers): 2100.762294874342\n", - "2018-09-25 21:00:22,970 : INFO : Loss (no outliers): 2204.122432731921\tLoss (with outliers): 2204.122432731921\n", - "2018-09-25 21:00:52,200 : INFO : Loss (no outliers): 1860.1620776602304\tLoss (with outliers): 1860.1620776602304\n", - "2018-09-25 21:01:21,367 : INFO : Loss (no outliers): 1815.2521291751739\tLoss (with outliers): 1815.2521291751739\n", - "2018-09-25 21:01:50,401 : INFO : Loss (no outliers): 3311.252168850051\tLoss (with outliers): 3311.252168850051\n", - "2018-09-25 21:02:19,372 : INFO : Loss (no outliers): 2156.3560824860388\tLoss (with outliers): 2156.3560824860388\n", - "2018-09-25 21:02:48,441 : INFO : Loss (no outliers): 2263.6674136324004\tLoss (with outliers): 2263.6674136324004\n", - "2018-09-25 21:03:16,462 : INFO : Loss (no outliers): 2112.4727265535294\tLoss (with outliers): 2112.4727265535294\n", - "2018-09-25 21:03:42,627 : INFO : Loss (no outliers): 1913.8360242183785\tLoss (with outliers): 1913.8360242183785\n", - "2018-09-25 21:04:11,909 : INFO : Loss (no outliers): 2014.6643683696088\tLoss (with outliers): 2014.6643683696088\n", - "2018-09-25 21:04:39,817 : INFO : Loss (no outliers): 2078.6995508723694\tLoss (with outliers): 2078.6995508723694\n", - "2018-09-25 21:05:06,729 : INFO : Loss (no outliers): 1936.7020001726385\tLoss (with outliers): 1936.7020001726385\n", - "2018-09-25 21:05:33,475 : INFO : Loss (no outliers): 2356.5530890187124\tLoss (with outliers): 2356.5530890187124\n", - "2018-09-25 21:06:06,239 : INFO : Loss (no outliers): 2034.2154444927517\tLoss (with outliers): 2034.2154444927517\n", - "2018-09-25 21:06:35,300 : INFO : Loss (no outliers): 2006.3791815895174\tLoss (with outliers): 2006.3791815895174\n", - "2018-09-25 21:07:04,231 : INFO : Loss (no outliers): 2054.1164818717402\tLoss (with outliers): 2054.1164818717402\n", - "2018-09-25 21:07:31,586 : INFO : Loss (no outliers): 2057.6333293052853\tLoss (with outliers): 2057.6333293052853\n", - "2018-09-25 21:08:00,802 : INFO : Loss (no outliers): 2321.2059825163565\tLoss (with outliers): 2321.2059825163565\n", - "2018-09-25 21:08:27,691 : INFO : Loss (no outliers): 2002.1899589484995\tLoss (with outliers): 2002.1899589484995\n", - "2018-09-25 21:08:56,710 : INFO : Loss (no outliers): 2062.100494007335\tLoss (with outliers): 2062.100494007335\n", - "2018-09-25 21:09:23,529 : INFO : Loss (no outliers): 2043.7663264699158\tLoss (with outliers): 2043.7663264699158\n", - "2018-09-25 21:09:52,474 : INFO : Loss (no outliers): 1838.1724567511956\tLoss (with outliers): 1838.1724567511956\n", - "2018-09-25 21:10:21,215 : INFO : Loss (no outliers): 2098.617407650227\tLoss (with outliers): 2098.617407650227\n", - "2018-09-25 21:10:49,045 : INFO : Loss (no outliers): 2141.387412003673\tLoss (with outliers): 2141.387412003673\n", - "2018-09-25 21:11:16,060 : INFO : Loss (no outliers): 2551.8204203020086\tLoss (with outliers): 2551.8204203020086\n", - "2018-09-25 21:11:43,869 : INFO : Loss (no outliers): 2149.289052544625\tLoss (with outliers): 2149.289052544625\n", - "2018-09-25 21:12:12,062 : INFO : Loss (no outliers): 2552.363559124317\tLoss (with outliers): 2552.363559124317\n", - "2018-09-25 21:12:40,039 : INFO : Loss (no outliers): 1906.6408255882475\tLoss (with outliers): 1906.6408255882475\n", - "2018-09-25 21:13:09,219 : INFO : Loss (no outliers): 2036.5936720286422\tLoss (with outliers): 2036.5936720286422\n", - "2018-09-25 21:13:37,255 : INFO : Loss (no outliers): 1850.1890733666162\tLoss (with outliers): 1850.1890733666162\n", - "2018-09-25 21:14:05,432 : INFO : Loss (no outliers): 2164.84218419626\tLoss (with outliers): 2164.84218419626\n", - "2018-09-25 21:14:33,873 : INFO : Loss (no outliers): 1950.5598625383436\tLoss (with outliers): 1950.5598625383436\n", - "2018-09-25 21:15:01,111 : INFO : Loss (no outliers): 2207.1248663290485\tLoss (with outliers): 2207.1248663290485\n", - "2018-09-25 21:15:28,283 : INFO : Loss (no outliers): 2168.438881199719\tLoss (with outliers): 2168.438881199719\n", - "2018-09-25 21:15:56,126 : INFO : Loss (no outliers): 2029.4191174914824\tLoss (with outliers): 2029.4191174914824\n", - "2018-09-25 21:16:25,331 : INFO : Loss (no outliers): 1962.9215769920033\tLoss (with outliers): 1962.9215769920033\n", - "2018-09-25 21:16:54,373 : INFO : Loss (no outliers): 1923.6899366054292\tLoss (with outliers): 1923.6899366054292\n", - "2018-09-25 21:17:23,409 : INFO : Loss (no outliers): 1932.1336747757045\tLoss (with outliers): 1932.1336747757045\n", - "2018-09-25 21:17:50,727 : INFO : Loss (no outliers): 2184.484439277677\tLoss (with outliers): 2184.484439277677\n", - "2018-09-25 21:18:19,981 : INFO : Loss (no outliers): 1972.5669842074942\tLoss (with outliers): 1972.5669842074942\n", - "2018-09-25 21:18:48,972 : INFO : Loss (no outliers): 2367.2317809146457\tLoss (with outliers): 2367.2317809146457\n", - "2018-09-25 21:19:16,634 : INFO : Loss (no outliers): 1983.0726445913924\tLoss (with outliers): 1983.0726445913924\n", - "2018-09-25 21:19:51,237 : INFO : Loss (no outliers): 2131.7868378407143\tLoss (with outliers): 2131.7868378407143\n", - "2018-09-25 21:20:20,105 : INFO : Loss (no outliers): 1958.6453384125398\tLoss (with outliers): 1958.6453384125398\n", - "2018-09-25 21:20:47,823 : INFO : Loss (no outliers): 2178.9873159094723\tLoss (with outliers): 2178.9873159094723\n", - "2018-09-25 21:21:13,744 : INFO : Loss (no outliers): 1734.9669489769726\tLoss (with outliers): 1734.9669489769726\n", - "2018-09-25 21:21:41,542 : INFO : Loss (no outliers): 2113.4823961084544\tLoss (with outliers): 2113.4823961084544\n", - "2018-09-25 21:22:10,466 : INFO : Loss (no outliers): 2453.3882744846055\tLoss (with outliers): 2453.3882744846055\n", - "2018-09-25 21:22:39,396 : INFO : Loss (no outliers): 1889.2330119037024\tLoss (with outliers): 1889.2330119037024\n", - "2018-09-25 21:23:07,477 : INFO : Loss (no outliers): 2259.476996437533\tLoss (with outliers): 2259.476996437533\n", - "2018-09-25 21:23:34,313 : INFO : Loss (no outliers): 1760.0274631790478\tLoss (with outliers): 1760.0274631790478\n", - "2018-09-25 21:24:02,278 : INFO : Loss (no outliers): 2273.3293817520716\tLoss (with outliers): 2273.3293817520716\n", - "2018-09-25 21:24:29,083 : INFO : Loss (no outliers): 2204.1007849754083\tLoss (with outliers): 2204.1007849754083\n", - "2018-09-25 21:24:58,026 : INFO : Loss (no outliers): 2394.9053817806443\tLoss (with outliers): 2394.9053817806443\n", - "2018-09-25 21:25:26,115 : INFO : Loss (no outliers): 2239.505201239239\tLoss (with outliers): 2239.505201239239\n", - "2018-09-25 21:25:55,026 : INFO : Loss (no outliers): 2045.1587439654916\tLoss (with outliers): 2045.1587439654916\n", - "2018-09-25 21:26:23,077 : INFO : Loss (no outliers): 2093.4201397206325\tLoss (with outliers): 2093.4201397206325\n", - "2018-09-25 21:26:50,089 : INFO : Loss (no outliers): 2371.8476348922404\tLoss (with outliers): 2371.8476348922404\n", - "2018-09-25 21:27:18,082 : INFO : Loss (no outliers): 2113.5653394446404\tLoss (with outliers): 2113.5653394446404\n", - "2018-09-25 21:27:49,088 : INFO : Loss (no outliers): 2561.514713061976\tLoss (with outliers): 2561.514713061976\n", - "2018-09-25 21:28:15,057 : INFO : Loss (no outliers): 2029.116634428362\tLoss (with outliers): 2029.116634428362\n", - "2018-09-25 21:28:43,833 : INFO : Loss (no outliers): 2246.5374525823754\tLoss (with outliers): 2246.5374525823754\n", - "2018-09-25 21:29:12,533 : INFO : Loss (no outliers): 2039.592692506823\tLoss (with outliers): 2039.592692506823\n", - "2018-09-25 21:29:41,134 : INFO : Loss (no outliers): 1965.64108201071\tLoss (with outliers): 1965.64108201071\n", - "2018-09-25 21:30:09,792 : INFO : Loss (no outliers): 2162.0896817516464\tLoss (with outliers): 2162.0896817516464\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 21:30:36,622 : INFO : Loss (no outliers): 2095.0487477112065\tLoss (with outliers): 2095.0487477112065\n", - "2018-09-25 21:31:04,338 : INFO : Loss (no outliers): 2099.0227812135545\tLoss (with outliers): 2099.0227812135545\n", - "2018-09-25 21:31:32,823 : INFO : Loss (no outliers): 2051.6399910837404\tLoss (with outliers): 2051.6399910837404\n", - "2018-09-25 21:32:00,823 : INFO : Loss (no outliers): 2210.176946629351\tLoss (with outliers): 2210.176946629351\n", - "2018-09-25 21:32:29,752 : INFO : Loss (no outliers): 1919.1980163329379\tLoss (with outliers): 1919.1980163329379\n", - "2018-09-25 21:32:58,007 : INFO : Loss (no outliers): 2815.500072368925\tLoss (with outliers): 2815.500072368925\n", - "2018-09-25 21:33:25,814 : INFO : Loss (no outliers): 2092.2302648232076\tLoss (with outliers): 2092.2302648232076\n", - "2018-09-25 21:33:52,795 : INFO : Loss (no outliers): 2049.2576301920562\tLoss (with outliers): 2049.2576301920562\n", - "2018-09-25 21:34:20,888 : INFO : Loss (no outliers): 2040.4636635273798\tLoss (with outliers): 2040.4636635273798\n", - "2018-09-25 21:34:48,747 : INFO : Loss (no outliers): 1927.0453957261007\tLoss (with outliers): 1927.0453957261007\n", - "2018-09-25 21:35:14,772 : INFO : Loss (no outliers): 2224.3228884879695\tLoss (with outliers): 2224.3228884879695\n", - "2018-09-25 21:35:44,027 : INFO : Loss (no outliers): 2297.7110152925634\tLoss (with outliers): 2297.7110152925634\n", - "2018-09-25 21:36:12,945 : INFO : Loss (no outliers): 2095.8799019014664\tLoss (with outliers): 2095.8799019014664\n", - "2018-09-25 21:36:42,110 : INFO : Loss (no outliers): 1901.7753027005685\tLoss (with outliers): 1901.7753027005685\n", - "2018-09-25 21:37:10,756 : INFO : Loss (no outliers): 2032.9477205722912\tLoss (with outliers): 2032.9477205722912\n", - "2018-09-25 21:37:39,865 : INFO : Loss (no outliers): 1996.7208785179805\tLoss (with outliers): 1996.7208785179805\n", - "2018-09-25 21:38:09,036 : INFO : Loss (no outliers): 2232.90904142117\tLoss (with outliers): 2232.90904142117\n", - "2018-09-25 21:38:38,098 : INFO : Loss (no outliers): 2037.925295806951\tLoss (with outliers): 2037.925295806951\n", - "2018-09-25 21:39:05,068 : INFO : Loss (no outliers): 1935.3080596141233\tLoss (with outliers): 1935.3080596141233\n", - "2018-09-25 21:39:31,351 : INFO : Loss (no outliers): 1969.3183241495406\tLoss (with outliers): 1969.3183241495406\n", - "2018-09-25 21:39:59,250 : INFO : Loss (no outliers): 1992.3059322554004\tLoss (with outliers): 1992.3059322554004\n", - "2018-09-25 21:40:27,481 : INFO : Loss (no outliers): 2621.2191386972886\tLoss (with outliers): 2621.2191386972886\n", - "2018-09-25 21:40:54,424 : INFO : Loss (no outliers): 2304.5265738630683\tLoss (with outliers): 2304.5265738630683\n", - "2018-09-25 21:41:23,644 : INFO : Loss (no outliers): 2056.6379517024493\tLoss (with outliers): 2056.6379517024493\n", - "2018-09-25 21:41:50,985 : INFO : Loss (no outliers): 1843.291599343536\tLoss (with outliers): 1843.291599343536\n", - "2018-09-25 21:42:16,145 : INFO : Loss (no outliers): 2031.778329104365\tLoss (with outliers): 2031.778329104365\n", - "2018-09-25 21:42:45,318 : INFO : Loss (no outliers): 2131.7107832529528\tLoss (with outliers): 2131.7107832529528\n", - "2018-09-25 21:43:13,462 : INFO : Loss (no outliers): 2196.1310385201123\tLoss (with outliers): 2196.1310385201123\n", - "2018-09-25 21:43:39,632 : INFO : Loss (no outliers): 1829.181680724877\tLoss (with outliers): 1829.181680724877\n", - "2018-09-25 21:44:08,940 : INFO : Loss (no outliers): 2118.037488247893\tLoss (with outliers): 2118.037488247893\n", - "2018-09-25 21:44:37,075 : INFO : Loss (no outliers): 2707.367244938892\tLoss (with outliers): 2707.367244938892\n", - "2018-09-25 21:45:06,122 : INFO : Loss (no outliers): 1945.9610054336392\tLoss (with outliers): 1945.9610054336392\n", - "2018-09-25 21:45:34,291 : INFO : Loss (no outliers): 2136.79848976216\tLoss (with outliers): 2136.79848976216\n", - "2018-09-25 21:46:02,533 : INFO : Loss (no outliers): 2226.784545788012\tLoss (with outliers): 2226.784545788012\n", - "2018-09-25 21:46:30,762 : INFO : Loss (no outliers): 2192.757219984718\tLoss (with outliers): 2192.757219984718\n", - "2018-09-25 21:46:59,160 : INFO : Loss (no outliers): 1854.821302464148\tLoss (with outliers): 1854.821302464148\n", - "2018-09-25 21:47:29,385 : INFO : Loss (no outliers): 2192.987837479867\tLoss (with outliers): 2192.987837479867\n", - "2018-09-25 21:48:04,188 : INFO : Loss (no outliers): 1979.5570841573535\tLoss (with outliers): 1979.5570841573535\n", - "2018-09-25 21:48:31,217 : INFO : Loss (no outliers): 2314.7285311747096\tLoss (with outliers): 2314.7285311747096\n", - "2018-09-25 21:48:58,233 : INFO : Loss (no outliers): 2249.193285337731\tLoss (with outliers): 2249.193285337731\n", - "2018-09-25 21:49:26,293 : INFO : Loss (no outliers): 2210.9125492971275\tLoss (with outliers): 2210.9125492971275\n", - "2018-09-25 21:49:55,554 : INFO : Loss (no outliers): 2253.2038560025226\tLoss (with outliers): 2253.2038560025226\n", - "2018-09-25 21:50:23,541 : INFO : Loss (no outliers): 1904.0110258018562\tLoss (with outliers): 1904.0110258018562\n", - "2018-09-25 21:50:50,859 : INFO : Loss (no outliers): 2007.3752991832107\tLoss (with outliers): 2007.3752991832107\n", - "2018-09-25 21:51:19,251 : INFO : Loss (no outliers): 2183.465959494442\tLoss (with outliers): 2183.465959494442\n", - "2018-09-25 21:51:46,564 : INFO : Loss (no outliers): 2126.672782915573\tLoss (with outliers): 2126.672782915573\n", - "2018-09-25 21:52:15,792 : INFO : Loss (no outliers): 2137.444584832173\tLoss (with outliers): 2137.444584832173\n", - "2018-09-25 21:52:43,056 : INFO : Loss (no outliers): 2081.186643044829\tLoss (with outliers): 2081.186643044829\n", - "2018-09-25 21:53:11,476 : INFO : Loss (no outliers): 1777.718050403664\tLoss (with outliers): 1777.718050403664\n", - "2018-09-25 21:53:40,217 : INFO : Loss (no outliers): 1966.5827468691502\tLoss (with outliers): 1966.5827468691502\n", - "2018-09-25 21:54:07,523 : INFO : Loss (no outliers): 2285.0330395577853\tLoss (with outliers): 2285.0330395577853\n", - "2018-09-25 21:54:34,899 : INFO : Loss (no outliers): 2095.3439891372013\tLoss (with outliers): 2095.3439891372013\n", - "2018-09-25 21:55:02,465 : INFO : Loss (no outliers): 2441.6313285843867\tLoss (with outliers): 2441.6313285843867\n", - "2018-09-25 21:55:31,873 : INFO : Loss (no outliers): 2078.1160600839357\tLoss (with outliers): 2078.1160600839357\n", - "2018-09-25 21:56:01,281 : INFO : Loss (no outliers): 2006.13614211244\tLoss (with outliers): 2006.13614211244\n", - "2018-09-25 21:56:28,977 : INFO : Loss (no outliers): 2191.077945446085\tLoss (with outliers): 2191.077945446085\n", - "2018-09-25 21:56:56,475 : INFO : Loss (no outliers): 2271.6558298602467\tLoss (with outliers): 2271.6558298602467\n", - "2018-09-25 21:57:23,852 : INFO : Loss (no outliers): 2076.1714233505795\tLoss (with outliers): 2076.1714233505795\n", - "2018-09-25 21:57:51,175 : INFO : Loss (no outliers): 2071.403024680281\tLoss (with outliers): 2071.403024680281\n", - "2018-09-25 21:58:19,714 : INFO : Loss (no outliers): 2097.4059222055885\tLoss (with outliers): 2097.4059222055885\n", - "2018-09-25 21:58:49,321 : INFO : Loss (no outliers): 2082.348876299056\tLoss (with outliers): 2082.348876299056\n", - "2018-09-25 21:59:18,847 : INFO : Loss (no outliers): 2265.751110956243\tLoss (with outliers): 2265.751110956243\n", - "2018-09-25 21:59:46,345 : INFO : Loss (no outliers): 2415.3575868885173\tLoss (with outliers): 2415.3575868885173\n", - "2018-09-25 22:00:12,555 : INFO : Loss (no outliers): 1974.544440526273\tLoss (with outliers): 1974.544440526273\n", - "2018-09-25 22:00:41,431 : INFO : Loss (no outliers): 2322.92251110559\tLoss (with outliers): 2322.92251110559\n", - "2018-09-25 22:01:08,936 : INFO : Loss (no outliers): 1892.8189643660533\tLoss (with outliers): 1892.8189643660533\n", - "2018-09-25 22:01:34,385 : INFO : Loss (no outliers): 2214.5754559649295\tLoss (with outliers): 2214.5754559649295\n", - "2018-09-25 22:02:03,153 : INFO : Loss (no outliers): 3161.683151229439\tLoss (with outliers): 3161.683151229439\n", - "2018-09-25 22:02:30,807 : INFO : Loss (no outliers): 2132.586108500245\tLoss (with outliers): 2132.586108500245\n", - "2018-09-25 22:03:00,601 : INFO : Loss (no outliers): 2608.6760917520655\tLoss (with outliers): 2608.6760917520655\n", - "2018-09-25 22:03:29,077 : INFO : Loss (no outliers): 2302.148923419783\tLoss (with outliers): 2302.148923419783\n", - "2018-09-25 22:03:57,640 : INFO : Loss (no outliers): 2160.005629018783\tLoss (with outliers): 2160.005629018783\n", - "2018-09-25 22:04:25,221 : INFO : Loss (no outliers): 2342.9963345866317\tLoss (with outliers): 2342.9963345866317\n", - "2018-09-25 22:04:55,185 : INFO : Loss (no outliers): 2248.102532697063\tLoss (with outliers): 2248.102532697063\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 22:05:23,333 : INFO : Loss (no outliers): 2045.8914472500164\tLoss (with outliers): 2045.8914472500164\n", - "2018-09-25 22:05:49,855 : INFO : Loss (no outliers): 2021.2644079653978\tLoss (with outliers): 2021.2644079653978\n", - "2018-09-25 22:06:20,389 : INFO : Loss (no outliers): 2054.8243581364536\tLoss (with outliers): 2054.8243581364536\n", - "2018-09-25 22:06:50,099 : INFO : Loss (no outliers): 1978.88264172572\tLoss (with outliers): 1978.88264172572\n", - "2018-09-25 22:07:18,494 : INFO : Loss (no outliers): 1880.6688041814068\tLoss (with outliers): 1880.6688041814068\n", - "2018-09-25 22:07:46,152 : INFO : Loss (no outliers): 2008.3882815060638\tLoss (with outliers): 2008.3882815060638\n", - "2018-09-25 22:08:14,700 : INFO : Loss (no outliers): 2142.5359761925024\tLoss (with outliers): 2142.5359761925024\n", - "2018-09-25 22:08:43,337 : INFO : Loss (no outliers): 1915.8094403414839\tLoss (with outliers): 1915.8094403414839\n", - "2018-09-25 22:09:11,780 : INFO : Loss (no outliers): 1801.005269158962\tLoss (with outliers): 1801.005269158962\n", - "2018-09-25 22:09:38,203 : INFO : Loss (no outliers): 2683.426083837766\tLoss (with outliers): 2683.426083837766\n", - "2018-09-25 22:10:06,942 : INFO : Loss (no outliers): 2362.362799181837\tLoss (with outliers): 2362.362799181837\n", - "2018-09-25 22:10:35,753 : INFO : Loss (no outliers): 2081.652012620842\tLoss (with outliers): 2081.652012620842\n", - "2018-09-25 22:11:02,268 : INFO : Loss (no outliers): 2018.9575520975206\tLoss (with outliers): 2018.9575520975206\n", - "2018-09-25 22:11:28,898 : INFO : Loss (no outliers): 1896.0501352116105\tLoss (with outliers): 1896.0501352116105\n", - "2018-09-25 22:11:54,385 : INFO : Loss (no outliers): 1814.5243504099649\tLoss (with outliers): 1814.5243504099649\n", - "2018-09-25 22:12:21,028 : INFO : Loss (no outliers): 2638.9332756935337\tLoss (with outliers): 2638.9332756935337\n", - "2018-09-25 22:12:46,619 : INFO : Loss (no outliers): 2231.6419589596558\tLoss (with outliers): 2231.6419589596558\n", - "2018-09-25 22:13:14,320 : INFO : Loss (no outliers): 3000.346161503833\tLoss (with outliers): 3000.346161503833\n", - "2018-09-25 22:13:43,050 : INFO : Loss (no outliers): 1981.5531696817302\tLoss (with outliers): 1981.5531696817302\n", - "2018-09-25 22:14:11,919 : INFO : Loss (no outliers): 1703.329876128146\tLoss (with outliers): 1703.329876128146\n", - "2018-09-25 22:14:40,572 : INFO : Loss (no outliers): 2357.7370749591523\tLoss (with outliers): 2357.7370749591523\n", - "2018-09-25 22:15:08,086 : INFO : Loss (no outliers): 2163.878945360187\tLoss (with outliers): 2163.878945360187\n", - "2018-09-25 22:15:35,701 : INFO : Loss (no outliers): 2080.085325715664\tLoss (with outliers): 2080.085325715664\n", - "2018-09-25 22:16:02,486 : INFO : Loss (no outliers): 2245.723946876521\tLoss (with outliers): 2245.723946876521\n", - "2018-09-25 22:16:29,064 : INFO : Loss (no outliers): 1787.057872784789\tLoss (with outliers): 1787.057872784789\n", - "2018-09-25 22:16:36,845 : INFO : Loss (no outliers): 1572.250745072216\tLoss (with outliers): 1572.250745072216\n", - "2018-09-25 22:16:36,855 : INFO : saving Nmf object under nmf_0.model, separately None\n", - "2018-09-25 22:18:29,155 : INFO : saved nmf_0.model\n", - "2018-09-25 22:19:05,466 : INFO : Loss (no outliers): 2343.230061431289\tLoss (with outliers): 2343.230061431289\n", - "2018-09-25 22:19:35,164 : INFO : Loss (no outliers): 1803.5568054807027\tLoss (with outliers): 1803.5568054807027\n", - "2018-09-25 22:20:06,925 : INFO : Loss (no outliers): 2112.381459531017\tLoss (with outliers): 2112.381459531017\n", - "2018-09-25 22:20:39,497 : INFO : Loss (no outliers): 2020.941260409267\tLoss (with outliers): 2020.941260409267\n", - "2018-09-25 22:21:07,621 : INFO : Loss (no outliers): 2185.704899263782\tLoss (with outliers): 2185.704899263782\n", - "2018-09-25 22:21:38,179 : INFO : Loss (no outliers): 2070.601828195947\tLoss (with outliers): 2070.601828195947\n", - "2018-09-25 22:22:10,794 : INFO : Loss (no outliers): 2124.6456169186727\tLoss (with outliers): 2124.6456169186727\n", - "2018-09-25 22:22:43,221 : INFO : Loss (no outliers): 2146.2311424760983\tLoss (with outliers): 2146.2311424760983\n", - "2018-09-25 22:23:13,852 : INFO : Loss (no outliers): 2303.1808410983854\tLoss (with outliers): 2303.1808410983854\n", - "2018-09-25 22:23:44,342 : INFO : Loss (no outliers): 2180.2646353891396\tLoss (with outliers): 2180.2646353891396\n", - "2018-09-25 22:24:13,779 : INFO : Loss (no outliers): 2200.142548021326\tLoss (with outliers): 2200.142548021326\n", - "2018-09-25 22:24:44,354 : INFO : Loss (no outliers): 2258.1808870133605\tLoss (with outliers): 2258.1808870133605\n", - "2018-09-25 22:25:13,234 : INFO : Loss (no outliers): 3013.086383787325\tLoss (with outliers): 3013.086383787325\n", - "2018-09-25 22:25:42,240 : INFO : Loss (no outliers): 2526.2047863046855\tLoss (with outliers): 2526.2047863046855\n", - "2018-09-25 22:26:11,885 : INFO : Loss (no outliers): 2077.9775009852524\tLoss (with outliers): 2077.9775009852524\n", - "2018-09-25 22:26:40,844 : INFO : Loss (no outliers): 1925.959266398268\tLoss (with outliers): 1925.959266398268\n", - "2018-09-25 22:27:09,080 : INFO : Loss (no outliers): 2442.7401035865687\tLoss (with outliers): 2442.7401035865687\n", - "2018-09-25 22:27:38,620 : INFO : Loss (no outliers): 1851.7330177542158\tLoss (with outliers): 1851.7330177542158\n", - "2018-09-25 22:28:07,976 : INFO : Loss (no outliers): 2023.45959589726\tLoss (with outliers): 2023.45959589726\n", - "2018-09-25 22:28:36,964 : INFO : Loss (no outliers): 1846.8389873476876\tLoss (with outliers): 1846.8389873476876\n", - "2018-09-25 22:29:05,806 : INFO : Loss (no outliers): 2231.3654855915493\tLoss (with outliers): 2231.3654855915493\n", - "2018-09-25 22:29:34,640 : INFO : Loss (no outliers): 2416.821012936733\tLoss (with outliers): 2416.821012936733\n", - "2018-09-25 22:30:02,134 : INFO : Loss (no outliers): 1908.555282307352\tLoss (with outliers): 1908.555282307352\n", - "2018-09-25 22:30:28,794 : INFO : Loss (no outliers): 2137.382180160982\tLoss (with outliers): 2137.382180160982\n", - "2018-09-25 22:30:58,133 : INFO : Loss (no outliers): 2144.0912259325037\tLoss (with outliers): 2144.0912259325037\n", - "2018-09-25 22:31:26,628 : INFO : Loss (no outliers): 2125.0801246891488\tLoss (with outliers): 2125.0801246891488\n", - "2018-09-25 22:31:53,667 : INFO : Loss (no outliers): 3043.1339513969324\tLoss (with outliers): 3043.1339513969324\n", - "2018-09-25 22:32:22,466 : INFO : Loss (no outliers): 2761.610240335735\tLoss (with outliers): 2761.610240335735\n", - "2018-09-25 22:32:49,729 : INFO : Loss (no outliers): 1954.7285327279428\tLoss (with outliers): 1954.7285327279428\n", - "2018-09-25 22:33:18,917 : INFO : Loss (no outliers): 2049.5128251532205\tLoss (with outliers): 2049.5128251532205\n", - "2018-09-25 22:33:45,582 : INFO : Loss (no outliers): 1882.181786044952\tLoss (with outliers): 1882.181786044952\n", - "2018-09-25 22:34:13,016 : INFO : Loss (no outliers): 2150.2957865839608\tLoss (with outliers): 2150.2957865839608\n", - "2018-09-25 22:34:40,549 : INFO : Loss (no outliers): 2493.1949323614244\tLoss (with outliers): 2493.1949323614244\n", - "2018-09-25 22:35:08,758 : INFO : Loss (no outliers): 1861.9450521802298\tLoss (with outliers): 1861.9450521802298\n", - "2018-09-25 22:35:36,737 : INFO : Loss (no outliers): 1929.2667309376138\tLoss (with outliers): 1929.2667309376138\n", - "2018-09-25 22:36:02,578 : INFO : Loss (no outliers): 1963.4419179185065\tLoss (with outliers): 1963.4419179185065\n", - "2018-09-25 22:36:30,406 : INFO : Loss (no outliers): 2113.7118046588075\tLoss (with outliers): 2113.7118046588075\n", - "2018-09-25 22:36:56,229 : INFO : Loss (no outliers): 2063.06327286125\tLoss (with outliers): 2063.06327286125\n", - "2018-09-25 22:37:23,972 : INFO : Loss (no outliers): 2188.564308783892\tLoss (with outliers): 2188.564308783892\n", - "2018-09-25 22:37:50,500 : INFO : Loss (no outliers): 2101.93150703327\tLoss (with outliers): 2101.93150703327\n", - "2018-09-25 22:38:16,978 : INFO : Loss (no outliers): 1940.0592351383712\tLoss (with outliers): 1940.0592351383712\n", - "2018-09-25 22:38:43,580 : INFO : Loss (no outliers): 1857.2868340568768\tLoss (with outliers): 1857.2868340568768\n", - "2018-09-25 22:39:09,856 : INFO : Loss (no outliers): 3240.2915816372715\tLoss (with outliers): 3240.2915816372715\n", - "2018-09-25 22:39:38,260 : INFO : Loss (no outliers): 2467.005825097243\tLoss (with outliers): 2467.005825097243\n", - "2018-09-25 22:40:05,771 : INFO : Loss (no outliers): 1848.9637075877067\tLoss (with outliers): 1848.9637075877067\n", - "2018-09-25 22:40:33,455 : INFO : Loss (no outliers): 2134.2871777837504\tLoss (with outliers): 2134.2871777837504\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 22:41:01,044 : INFO : Loss (no outliers): 2094.4917084070967\tLoss (with outliers): 2094.4917084070967\n", - "2018-09-25 22:41:28,486 : INFO : Loss (no outliers): 2154.240691211658\tLoss (with outliers): 2154.240691211658\n", - "2018-09-25 22:41:53,447 : INFO : Loss (no outliers): 2802.6732906098923\tLoss (with outliers): 2802.6732906098923\n", - "2018-09-25 22:42:20,289 : INFO : Loss (no outliers): 2613.120421709758\tLoss (with outliers): 2613.120421709758\n", - "2018-09-25 22:42:47,349 : INFO : Loss (no outliers): 5317.562151779767\tLoss (with outliers): 5317.562151779767\n", - "2018-09-25 22:43:14,199 : INFO : Loss (no outliers): 1971.8530237998427\tLoss (with outliers): 1971.8530237998427\n", - "2018-09-25 22:43:41,212 : INFO : Loss (no outliers): 3059.6913116173\tLoss (with outliers): 3059.6913116173\n", - "2018-09-25 22:44:07,936 : INFO : Loss (no outliers): 2119.064129683836\tLoss (with outliers): 2119.064129683836\n", - "2018-09-25 22:44:32,600 : INFO : Loss (no outliers): 1972.9436280672116\tLoss (with outliers): 1972.9436280672116\n", - "2018-09-25 22:45:01,038 : INFO : Loss (no outliers): 2148.1581104622533\tLoss (with outliers): 2148.1581104622533\n", - "2018-09-25 22:45:27,472 : INFO : Loss (no outliers): 2139.4284786370845\tLoss (with outliers): 2139.4284786370845\n", - "2018-09-25 22:45:53,933 : INFO : Loss (no outliers): 2503.4118718186446\tLoss (with outliers): 2503.4118718186446\n", - "2018-09-25 22:46:19,338 : INFO : Loss (no outliers): 1783.692053186271\tLoss (with outliers): 1783.692053186271\n", - "2018-09-25 22:46:45,573 : INFO : Loss (no outliers): 3326.2729404575603\tLoss (with outliers): 3326.2729404575603\n", - "2018-09-25 22:47:13,058 : INFO : Loss (no outliers): 2029.2064819911038\tLoss (with outliers): 2029.2064819911038\n", - "2018-09-25 22:47:37,658 : INFO : Loss (no outliers): 1910.1297079750075\tLoss (with outliers): 1910.1297079750075\n", - "2018-09-25 22:48:04,256 : INFO : Loss (no outliers): 2624.25082993823\tLoss (with outliers): 2624.25082993823\n", - "2018-09-25 22:48:31,154 : INFO : Loss (no outliers): 2100.231986343954\tLoss (with outliers): 2100.231986343954\n", - "2018-09-25 22:48:58,859 : INFO : Loss (no outliers): 2198.869425068537\tLoss (with outliers): 2198.869425068537\n", - "2018-09-25 22:49:22,567 : INFO : Loss (no outliers): 1954.803125604589\tLoss (with outliers): 1954.803125604589\n", - "2018-09-25 22:49:48,897 : INFO : Loss (no outliers): 1714.1060864773353\tLoss (with outliers): 1714.1060864773353\n", - "2018-09-25 22:50:14,471 : INFO : Loss (no outliers): 1844.9434574731933\tLoss (with outliers): 1844.9434574731933\n", - "2018-09-25 22:50:41,064 : INFO : Loss (no outliers): 2022.1314905464465\tLoss (with outliers): 2022.1314905464465\n", - "2018-09-25 22:51:07,821 : INFO : Loss (no outliers): 1918.2145124775693\tLoss (with outliers): 1918.2145124775693\n", - "2018-09-25 22:51:33,327 : INFO : Loss (no outliers): 1989.0285618162839\tLoss (with outliers): 1989.0285618162839\n", - "2018-09-25 22:51:58,862 : INFO : Loss (no outliers): 2105.5909672039147\tLoss (with outliers): 2105.5909672039147\n", - "2018-09-25 22:52:24,529 : INFO : Loss (no outliers): 3144.9532507856998\tLoss (with outliers): 3144.9532507856998\n", - "2018-09-25 22:52:49,557 : INFO : Loss (no outliers): 2148.185971976513\tLoss (with outliers): 2148.185971976513\n", - "2018-09-25 22:53:16,666 : INFO : Loss (no outliers): 2415.191505263212\tLoss (with outliers): 2415.191505263212\n", - "2018-09-25 22:53:43,843 : INFO : Loss (no outliers): 1912.5479737617327\tLoss (with outliers): 1912.5479737617327\n", - "2018-09-25 22:54:07,675 : INFO : Loss (no outliers): 2053.519038128509\tLoss (with outliers): 2053.519038128509\n", - "2018-09-25 22:54:34,294 : INFO : Loss (no outliers): 2413.188615141713\tLoss (with outliers): 2413.188615141713\n", - "2018-09-25 22:54:58,823 : INFO : Loss (no outliers): 1839.5354484425868\tLoss (with outliers): 1839.5354484425868\n", - "2018-09-25 22:55:25,844 : INFO : Loss (no outliers): 2171.5043133219037\tLoss (with outliers): 2171.5043133219037\n", - "2018-09-25 22:55:53,108 : INFO : Loss (no outliers): 1830.964625801034\tLoss (with outliers): 1830.964625801034\n", - "2018-09-25 22:56:18,364 : INFO : Loss (no outliers): 2262.588342039689\tLoss (with outliers): 2262.588342039689\n", - "2018-09-25 22:56:44,120 : INFO : Loss (no outliers): 2091.5608762325573\tLoss (with outliers): 2091.5608762325573\n", - "2018-09-25 22:57:13,094 : INFO : Loss (no outliers): 2196.0384907002835\tLoss (with outliers): 2196.0384907002835\n", - "2018-09-25 22:57:41,573 : INFO : Loss (no outliers): 1855.938004123325\tLoss (with outliers): 1855.938004123325\n", - "2018-09-25 22:58:09,702 : INFO : Loss (no outliers): 1806.7467270545092\tLoss (with outliers): 1806.7467270545092\n", - "2018-09-25 22:58:36,436 : INFO : Loss (no outliers): 3265.1574607441166\tLoss (with outliers): 3265.1574607441166\n", - "2018-09-25 22:59:03,452 : INFO : Loss (no outliers): 2149.359868932271\tLoss (with outliers): 2149.359868932271\n", - "2018-09-25 22:59:31,625 : INFO : Loss (no outliers): 2259.8569906240573\tLoss (with outliers): 2259.8569906240573\n", - "2018-09-25 22:59:56,458 : INFO : Loss (no outliers): 2107.590518731254\tLoss (with outliers): 2107.590518731254\n", - "2018-09-25 23:00:20,389 : INFO : Loss (no outliers): 1910.057854676393\tLoss (with outliers): 1910.057854676393\n", - "2018-09-25 23:00:48,594 : INFO : Loss (no outliers): 2008.5717460401377\tLoss (with outliers): 2008.5717460401377\n", - "2018-09-25 23:01:14,733 : INFO : Loss (no outliers): 2075.8424461866866\tLoss (with outliers): 2075.8424461866866\n", - "2018-09-25 23:01:39,505 : INFO : Loss (no outliers): 1917.8892603605773\tLoss (with outliers): 1917.8892603605773\n", - "2018-09-25 23:02:05,617 : INFO : Loss (no outliers): 2355.809913970435\tLoss (with outliers): 2355.809913970435\n", - "2018-09-25 23:02:34,943 : INFO : Loss (no outliers): 2019.417695257248\tLoss (with outliers): 2019.417695257248\n", - "2018-09-25 23:03:03,316 : INFO : Loss (no outliers): 2004.5258341864428\tLoss (with outliers): 2004.5258341864428\n", - "2018-09-25 23:03:30,111 : INFO : Loss (no outliers): 2035.7302843265702\tLoss (with outliers): 2035.7302843265702\n", - "2018-09-25 23:03:56,473 : INFO : Loss (no outliers): 2050.7263424767934\tLoss (with outliers): 2050.7263424767934\n", - "2018-09-25 23:04:24,778 : INFO : Loss (no outliers): 2311.9423786481066\tLoss (with outliers): 2311.9423786481066\n", - "2018-09-25 23:04:50,954 : INFO : Loss (no outliers): 1999.1389895018674\tLoss (with outliers): 1999.1389895018674\n", - "2018-09-25 23:05:17,967 : INFO : Loss (no outliers): 2055.4952328346494\tLoss (with outliers): 2055.4952328346494\n", - "2018-09-25 23:05:42,178 : INFO : Loss (no outliers): 2039.5278737946228\tLoss (with outliers): 2039.5278737946228\n", - "2018-09-25 23:06:07,595 : INFO : Loss (no outliers): 1839.325464614614\tLoss (with outliers): 1839.325464614614\n", - "2018-09-25 23:06:34,815 : INFO : Loss (no outliers): 2087.8776539138216\tLoss (with outliers): 2087.8776539138216\n", - "2018-09-25 23:07:01,019 : INFO : Loss (no outliers): 2134.916421928831\tLoss (with outliers): 2134.916421928831\n", - "2018-09-25 23:07:25,420 : INFO : Loss (no outliers): 2545.9773748983703\tLoss (with outliers): 2545.9773748983703\n", - "2018-09-25 23:07:51,049 : INFO : Loss (no outliers): 2147.160957915417\tLoss (with outliers): 2147.160957915417\n", - "2018-09-25 23:08:19,594 : INFO : Loss (no outliers): 2536.553126621696\tLoss (with outliers): 2536.553126621696\n", - "2018-09-25 23:08:54,113 : INFO : Loss (no outliers): 1897.491022332055\tLoss (with outliers): 1897.491022332055\n", - "2018-09-25 23:09:26,101 : INFO : Loss (no outliers): 2029.0933238794585\tLoss (with outliers): 2029.0933238794585\n", - "2018-09-25 23:09:56,671 : INFO : Loss (no outliers): 1847.6177798437752\tLoss (with outliers): 1847.6177798437752\n", - "2018-09-25 23:10:26,210 : INFO : Loss (no outliers): 2153.873866618242\tLoss (with outliers): 2153.873866618242\n", - "2018-09-25 23:10:56,501 : INFO : Loss (no outliers): 1945.5393658968965\tLoss (with outliers): 1945.5393658968965\n", - "2018-09-25 23:11:25,997 : INFO : Loss (no outliers): 2193.757372695464\tLoss (with outliers): 2193.757372695464\n", - "2018-09-25 23:11:54,420 : INFO : Loss (no outliers): 2151.593574460095\tLoss (with outliers): 2151.593574460095\n", - "2018-09-25 23:12:24,862 : INFO : Loss (no outliers): 1996.9114529056953\tLoss (with outliers): 1996.9114529056953\n", - "2018-09-25 23:12:53,583 : INFO : Loss (no outliers): 1958.1618337680452\tLoss (with outliers): 1958.1618337680452\n", - "2018-09-25 23:13:23,232 : INFO : Loss (no outliers): 1909.989368794284\tLoss (with outliers): 1909.989368794284\n", - "2018-09-25 23:13:50,827 : INFO : Loss (no outliers): 1933.3579371192534\tLoss (with outliers): 1933.3579371192534\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 23:14:21,401 : INFO : Loss (no outliers): 2176.093877943977\tLoss (with outliers): 2176.093877943977\n", - "2018-09-25 23:14:52,134 : INFO : Loss (no outliers): 1965.582201308679\tLoss (with outliers): 1965.582201308679\n", - "2018-09-25 23:15:23,216 : INFO : Loss (no outliers): 2358.571359311288\tLoss (with outliers): 2358.571359311288\n", - "2018-09-25 23:15:53,292 : INFO : Loss (no outliers): 1979.0309962150184\tLoss (with outliers): 1979.0309962150184\n", - "2018-09-25 23:16:20,867 : INFO : Loss (no outliers): 2074.951204201203\tLoss (with outliers): 2074.951204201203\n", - "2018-09-25 23:16:51,763 : INFO : Loss (no outliers): 1955.2326162454233\tLoss (with outliers): 1955.2326162454233\n", - "2018-09-25 23:17:20,574 : INFO : Loss (no outliers): 2172.5557242886475\tLoss (with outliers): 2172.5557242886475\n", - "2018-09-25 23:17:48,661 : INFO : Loss (no outliers): 1728.0919560487505\tLoss (with outliers): 1728.0919560487505\n", - "2018-09-25 23:18:19,099 : INFO : Loss (no outliers): 2104.077330774064\tLoss (with outliers): 2104.077330774064\n", - "2018-09-25 23:18:49,058 : INFO : Loss (no outliers): 2450.896502514616\tLoss (with outliers): 2450.896502514616\n", - "2018-09-25 23:19:17,910 : INFO : Loss (no outliers): 1885.7837019898961\tLoss (with outliers): 1885.7837019898961\n", - "2018-09-25 23:19:46,769 : INFO : Loss (no outliers): 2254.9561319894724\tLoss (with outliers): 2254.9561319894724\n", - "2018-09-25 23:20:13,680 : INFO : Loss (no outliers): 1758.551732659085\tLoss (with outliers): 1758.551732659085\n", - "2018-09-25 23:20:44,505 : INFO : Loss (no outliers): 2250.9228488778303\tLoss (with outliers): 2250.9228488778303\n", - "2018-09-25 23:21:13,211 : INFO : Loss (no outliers): 2192.9844894862417\tLoss (with outliers): 2192.9844894862417\n", - "2018-09-25 23:21:43,664 : INFO : Loss (no outliers): 2382.5490142677113\tLoss (with outliers): 2382.5490142677113\n", - "2018-09-25 23:22:14,299 : INFO : Loss (no outliers): 2233.809457917905\tLoss (with outliers): 2233.809457917905\n", - "2018-09-25 23:22:43,999 : INFO : Loss (no outliers): 2042.1788779700366\tLoss (with outliers): 2042.1788779700366\n", - "2018-09-25 23:23:13,143 : INFO : Loss (no outliers): 2088.4211971065643\tLoss (with outliers): 2088.4211971065643\n", - "2018-09-25 23:23:39,920 : INFO : Loss (no outliers): 2368.1026220897315\tLoss (with outliers): 2368.1026220897315\n", - "2018-09-25 23:24:07,961 : INFO : Loss (no outliers): 2110.097703221738\tLoss (with outliers): 2110.097703221738\n", - "2018-09-25 23:24:39,083 : INFO : Loss (no outliers): 2554.4429875620167\tLoss (with outliers): 2554.4429875620167\n", - "2018-09-25 23:25:06,213 : INFO : Loss (no outliers): 2028.1327900159624\tLoss (with outliers): 2028.1327900159624\n", - "2018-09-25 23:25:36,614 : INFO : Loss (no outliers): 2243.912813602955\tLoss (with outliers): 2243.912813602955\n", - "2018-09-25 23:26:06,727 : INFO : Loss (no outliers): 2038.8844467846395\tLoss (with outliers): 2038.8844467846395\n", - "2018-09-25 23:26:37,743 : INFO : Loss (no outliers): 1951.881249655801\tLoss (with outliers): 1951.881249655801\n", - "2018-09-25 23:27:07,910 : INFO : Loss (no outliers): 2124.2066843262255\tLoss (with outliers): 2124.2066843262255\n", - "2018-09-25 23:27:35,965 : INFO : Loss (no outliers): 2088.9695152864783\tLoss (with outliers): 2088.9695152864783\n", - "2018-09-25 23:28:05,176 : INFO : Loss (no outliers): 2092.5509718884377\tLoss (with outliers): 2092.5509718884377\n", - "2018-09-25 23:28:35,332 : INFO : Loss (no outliers): 2052.6544563901857\tLoss (with outliers): 2052.6544563901857\n", - "2018-09-25 23:29:04,465 : INFO : Loss (no outliers): 2195.2233746925585\tLoss (with outliers): 2195.2233746925585\n", - "2018-09-25 23:29:34,392 : INFO : Loss (no outliers): 1914.9885026731986\tLoss (with outliers): 1914.9885026731986\n", - "2018-09-25 23:30:03,408 : INFO : Loss (no outliers): 2799.099738389821\tLoss (with outliers): 2799.099738389821\n", - "2018-09-25 23:30:32,868 : INFO : Loss (no outliers): 2086.907263817489\tLoss (with outliers): 2086.907263817489\n", - "2018-09-25 23:31:00,600 : INFO : Loss (no outliers): 2043.8823430773832\tLoss (with outliers): 2043.8823430773832\n", - "2018-09-25 23:31:27,824 : INFO : Loss (no outliers): 2048.76723149159\tLoss (with outliers): 2048.76723149159\n", - "2018-09-25 23:31:54,665 : INFO : Loss (no outliers): 1924.3722566988054\tLoss (with outliers): 1924.3722566988054\n", - "2018-09-25 23:32:21,620 : INFO : Loss (no outliers): 2230.0742537573296\tLoss (with outliers): 2230.0742537573296\n", - "2018-09-25 23:32:49,316 : INFO : Loss (no outliers): 2293.977623102217\tLoss (with outliers): 2293.977623102217\n", - "2018-09-25 23:33:16,749 : INFO : Loss (no outliers): 2093.454518820313\tLoss (with outliers): 2093.454518820313\n", - "2018-09-25 23:33:42,341 : INFO : Loss (no outliers): 1901.9654591163442\tLoss (with outliers): 1901.9654591163442\n", - "2018-09-25 23:34:08,115 : INFO : Loss (no outliers): 2030.356700911018\tLoss (with outliers): 2030.356700911018\n", - "2018-09-25 23:34:35,672 : INFO : Loss (no outliers): 1997.1635089527806\tLoss (with outliers): 1997.1635089527806\n", - "2018-09-25 23:35:01,275 : INFO : Loss (no outliers): 2231.355831663867\tLoss (with outliers): 2231.355831663867\n", - "2018-09-25 23:35:26,716 : INFO : Loss (no outliers): 2032.0299917122334\tLoss (with outliers): 2032.0299917122334\n", - "2018-09-25 23:35:49,979 : INFO : Loss (no outliers): 1930.552216514557\tLoss (with outliers): 1930.552216514557\n", - "2018-09-25 23:36:12,333 : INFO : Loss (no outliers): 1979.8507549655797\tLoss (with outliers): 1979.8507549655797\n", - "2018-09-25 23:36:36,419 : INFO : Loss (no outliers): 1991.5606088173624\tLoss (with outliers): 1991.5606088173624\n", - "2018-09-25 23:37:01,419 : INFO : Loss (no outliers): 2630.923634427679\tLoss (with outliers): 2630.923634427679\n", - "2018-09-25 23:37:26,800 : INFO : Loss (no outliers): 2301.9653308539837\tLoss (with outliers): 2301.9653308539837\n", - "2018-09-25 23:37:53,739 : INFO : Loss (no outliers): 2055.817116754809\tLoss (with outliers): 2055.817116754809\n", - "2018-09-25 23:38:18,254 : INFO : Loss (no outliers): 1822.764182208202\tLoss (with outliers): 1822.764182208202\n", - "2018-09-25 23:38:41,754 : INFO : Loss (no outliers): 2029.1069514148528\tLoss (with outliers): 2029.1069514148528\n", - "2018-09-25 23:39:08,768 : INFO : Loss (no outliers): 2133.602033110426\tLoss (with outliers): 2133.602033110426\n", - "2018-09-25 23:39:34,163 : INFO : Loss (no outliers): 2197.090199157584\tLoss (with outliers): 2197.090199157584\n", - "2018-09-25 23:39:58,495 : INFO : Loss (no outliers): 1828.3500500114683\tLoss (with outliers): 1828.3500500114683\n", - "2018-09-25 23:40:22,154 : INFO : Loss (no outliers): 2114.488386904246\tLoss (with outliers): 2114.488386904246\n", - "2018-09-25 23:40:48,101 : INFO : Loss (no outliers): 2711.8452085292106\tLoss (with outliers): 2711.8452085292106\n", - "2018-09-25 23:41:13,708 : INFO : Loss (no outliers): 1943.247003837912\tLoss (with outliers): 1943.247003837912\n", - "2018-09-25 23:41:38,001 : INFO : Loss (no outliers): 2131.2603114519\tLoss (with outliers): 2131.2603114519\n", - "2018-09-25 23:42:03,252 : INFO : Loss (no outliers): 2226.0218824964973\tLoss (with outliers): 2226.0218824964973\n", - "2018-09-25 23:42:28,042 : INFO : Loss (no outliers): 2190.2723493142\tLoss (with outliers): 2190.2723493142\n", - "2018-09-25 23:42:54,248 : INFO : Loss (no outliers): 1854.2997416518954\tLoss (with outliers): 1854.2997416518954\n", - "2018-09-25 23:43:19,774 : INFO : Loss (no outliers): 2186.240545437923\tLoss (with outliers): 2186.240545437923\n", - "2018-09-25 23:43:48,560 : INFO : Loss (no outliers): 1976.1877796984606\tLoss (with outliers): 1976.1877796984606\n", - "2018-09-25 23:44:15,553 : INFO : Loss (no outliers): 2331.443148691169\tLoss (with outliers): 2331.443148691169\n", - "2018-09-25 23:44:42,766 : INFO : Loss (no outliers): 2261.4676367531915\tLoss (with outliers): 2261.4676367531915\n", - "2018-09-25 23:45:09,164 : INFO : Loss (no outliers): 2207.4177482522387\tLoss (with outliers): 2207.4177482522387\n", - "2018-09-25 23:45:37,801 : INFO : Loss (no outliers): 2253.2766420636385\tLoss (with outliers): 2253.2766420636385\n", - "2018-09-25 23:46:04,284 : INFO : Loss (no outliers): 1902.3284575904888\tLoss (with outliers): 1902.3284575904888\n", - "2018-09-25 23:46:30,648 : INFO : Loss (no outliers): 2004.5778414924434\tLoss (with outliers): 2004.5778414924434\n", - "2018-09-25 23:46:58,063 : INFO : Loss (no outliers): 2181.675746998223\tLoss (with outliers): 2181.675746998223\n", - "2018-09-25 23:47:26,321 : INFO : Loss (no outliers): 2125.52283973715\tLoss (with outliers): 2125.52283973715\n", - "2018-09-25 23:47:56,157 : INFO : Loss (no outliers): 2128.0513544401056\tLoss (with outliers): 2128.0513544401056\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-25 23:48:23,705 : INFO : Loss (no outliers): 2080.0181605330813\tLoss (with outliers): 2080.0181605330813\n", - "2018-09-25 23:48:50,755 : INFO : Loss (no outliers): 1777.5633441823009\tLoss (with outliers): 1777.5633441823009\n", - "2018-09-25 23:49:18,657 : INFO : Loss (no outliers): 1967.0114183374278\tLoss (with outliers): 1967.0114183374278\n", - "2018-09-25 23:49:44,242 : INFO : Loss (no outliers): 2280.2841649712095\tLoss (with outliers): 2280.2841649712095\n", - "2018-09-25 23:50:10,607 : INFO : Loss (no outliers): 2087.404533633996\tLoss (with outliers): 2087.404533633996\n", - "2018-09-25 23:50:38,403 : INFO : Loss (no outliers): 2437.395526161061\tLoss (with outliers): 2437.395526161061\n", - "2018-09-25 23:51:07,075 : INFO : Loss (no outliers): 2075.1895737839277\tLoss (with outliers): 2075.1895737839277\n", - "2018-09-25 23:51:34,039 : INFO : Loss (no outliers): 2004.940901973424\tLoss (with outliers): 2004.940901973424\n", - "2018-09-25 23:52:02,144 : INFO : Loss (no outliers): 2191.0941805913494\tLoss (with outliers): 2191.0941805913494\n", - "2018-09-25 23:52:31,651 : INFO : Loss (no outliers): 2254.2381681195902\tLoss (with outliers): 2254.2381681195902\n", - "2018-09-25 23:52:58,336 : INFO : Loss (no outliers): 2072.816769355593\tLoss (with outliers): 2072.816769355593\n", - "2018-09-25 23:53:25,504 : INFO : Loss (no outliers): 2076.975692980428\tLoss (with outliers): 2076.975692980428\n", - "2018-09-25 23:53:55,129 : INFO : Loss (no outliers): 2095.36412396137\tLoss (with outliers): 2095.36412396137\n", - "2018-09-25 23:54:23,873 : INFO : Loss (no outliers): 2079.444422428293\tLoss (with outliers): 2079.444422428293\n", - "2018-09-25 23:54:52,696 : INFO : Loss (no outliers): 2263.415460080705\tLoss (with outliers): 2263.415460080705\n", - "2018-09-25 23:55:19,992 : INFO : Loss (no outliers): 2409.6375066716546\tLoss (with outliers): 2409.6375066716546\n", - "2018-09-25 23:55:47,291 : INFO : Loss (no outliers): 1973.8036154611589\tLoss (with outliers): 1973.8036154611589\n", - "2018-09-25 23:56:15,741 : INFO : Loss (no outliers): 2322.494520250953\tLoss (with outliers): 2322.494520250953\n", - "2018-09-25 23:56:43,299 : INFO : Loss (no outliers): 1893.3685929084443\tLoss (with outliers): 1893.3685929084443\n", - "2018-09-25 23:57:10,936 : INFO : Loss (no outliers): 2208.7510615560464\tLoss (with outliers): 2208.7510615560464\n", - "2018-09-25 23:57:40,612 : INFO : Loss (no outliers): 3157.3713036759473\tLoss (with outliers): 3157.3713036759473\n", - "2018-09-25 23:58:08,384 : INFO : Loss (no outliers): 2130.8365625119227\tLoss (with outliers): 2130.8365625119227\n", - "2018-09-25 23:58:39,592 : INFO : Loss (no outliers): 2539.6266260925513\tLoss (with outliers): 2539.6266260925513\n", - "2018-09-25 23:59:08,643 : INFO : Loss (no outliers): 2298.1684435880584\tLoss (with outliers): 2298.1684435880584\n", - "2018-09-25 23:59:38,724 : INFO : Loss (no outliers): 2143.7452038705455\tLoss (with outliers): 2143.7452038705455\n", - "2018-09-26 00:00:05,761 : INFO : Loss (no outliers): 2336.0606635956374\tLoss (with outliers): 2336.0606635956374\n", - "2018-09-26 00:00:34,208 : INFO : Loss (no outliers): 2244.886983108166\tLoss (with outliers): 2244.886983108166\n", - "2018-09-26 00:01:02,142 : INFO : Loss (no outliers): 2045.791141985632\tLoss (with outliers): 2045.791141985632\n", - "2018-09-26 00:01:30,112 : INFO : Loss (no outliers): 2019.8401309918304\tLoss (with outliers): 2019.8401309918304\n", - "2018-09-26 00:02:00,495 : INFO : Loss (no outliers): 2055.2584116530497\tLoss (with outliers): 2055.2584116530497\n", - "2018-09-26 00:02:29,782 : INFO : Loss (no outliers): 1977.0746775931043\tLoss (with outliers): 1977.0746775931043\n", - "2018-09-26 00:02:59,445 : INFO : Loss (no outliers): 1876.225713131957\tLoss (with outliers): 1876.225713131957\n", - "2018-09-26 00:03:25,868 : INFO : Loss (no outliers): 2006.6055303929518\tLoss (with outliers): 2006.6055303929518\n", - "2018-09-26 00:03:56,497 : INFO : Loss (no outliers): 2144.341014578608\tLoss (with outliers): 2144.341014578608\n", - "2018-09-26 00:04:25,520 : INFO : Loss (no outliers): 1911.2824168081459\tLoss (with outliers): 1911.2824168081459\n", - "2018-09-26 00:04:55,341 : INFO : Loss (no outliers): 1798.1485411179674\tLoss (with outliers): 1798.1485411179674\n", - "2018-09-26 00:05:23,985 : INFO : Loss (no outliers): 2599.1888426103756\tLoss (with outliers): 2599.1888426103756\n", - "2018-09-26 00:05:54,326 : INFO : Loss (no outliers): 2360.956179904954\tLoss (with outliers): 2360.956179904954\n", - "2018-09-26 00:06:23,594 : INFO : Loss (no outliers): 2079.901743618425\tLoss (with outliers): 2079.901743618425\n", - "2018-09-26 00:06:51,974 : INFO : Loss (no outliers): 2018.8529299185695\tLoss (with outliers): 2018.8529299185695\n", - "2018-09-26 00:07:19,996 : INFO : Loss (no outliers): 1893.0830223356584\tLoss (with outliers): 1893.0830223356584\n", - "2018-09-26 00:07:47,718 : INFO : Loss (no outliers): 1813.9499748053875\tLoss (with outliers): 1813.9499748053875\n", - "2018-09-26 00:08:15,174 : INFO : Loss (no outliers): 2625.2386150900343\tLoss (with outliers): 2625.2386150900343\n", - "2018-09-26 00:08:42,185 : INFO : Loss (no outliers): 2230.72547540253\tLoss (with outliers): 2230.72547540253\n", - "2018-09-26 00:09:10,284 : INFO : Loss (no outliers): 2924.509342960041\tLoss (with outliers): 2924.509342960041\n", - "2018-09-26 00:09:40,392 : INFO : Loss (no outliers): 1981.121331032708\tLoss (with outliers): 1981.121331032708\n", - "2018-09-26 00:10:08,496 : INFO : Loss (no outliers): 1702.5035655007814\tLoss (with outliers): 1702.5035655007814\n", - "2018-09-26 00:10:38,668 : INFO : Loss (no outliers): 2357.9024412304625\tLoss (with outliers): 2357.9024412304625\n", - "2018-09-26 00:11:07,878 : INFO : Loss (no outliers): 2162.656733424695\tLoss (with outliers): 2162.656733424695\n", - "2018-09-26 00:11:38,104 : INFO : Loss (no outliers): 2071.1218536903266\tLoss (with outliers): 2071.1218536903266\n", - "2018-09-26 00:12:05,156 : INFO : Loss (no outliers): 2244.5651657572316\tLoss (with outliers): 2244.5651657572316\n", - "2018-09-26 00:12:32,202 : INFO : Loss (no outliers): 1786.7497551551085\tLoss (with outliers): 1786.7497551551085\n", - "2018-09-26 00:12:40,519 : INFO : Loss (no outliers): 1569.8517407457389\tLoss (with outliers): 1569.8517407457389\n", - "2018-09-26 00:12:40,529 : INFO : saving Nmf object under nmf_1.model, separately None\n" - ] - } - ], - "source": [ - "## %%time\n", - "\n", - "gensim_nmf = Nmf(\n", - " **training_params,\n", - " use_r=True,\n", - " lambda_=200,\n", - ")\n", - "\n", - "for pass_ in range(PASSES):\n", - "# gensim_nmf.update(itertools.islice(corpus, 100))\n", - " gensim_nmf.update(corpus)\n", - " gensim_nmf.save('nmf_%s.model' % pass_)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2018-09-26 00:34:11,714 : INFO : loading Nmf object from nmf_0.model\n", - "2018-09-26 00:34:23,539 : INFO : loading id2word recursively from nmf_0.model.id2word.* with mmap=r\n", - "2018-09-26 00:34:23,572 : INFO : loaded nmf_0.model\n" - ] - } - ], - "source": [ - "gensim_nmf = Nmf.load('nmf_0.model')" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(0,\n", - " '0.100*\"damag\" + 0.084*\"tornado\" + 0.070*\"list\" + 0.062*\"home\" + 0.056*\"tree\" + 0.041*\"report\" + 0.038*\"build\" + 0.033*\"storm\" + 0.031*\"destroi\" + 0.022*\"caus\"'),\n", - " (1,\n", - " '0.220*\"order\" + 0.117*\"regul\" + 0.096*\"amend\" + 0.032*\"road\" + 0.030*\"traffic\" + 0.028*\"prohibit\" + 0.027*\"temporari\" + 0.027*\"trunk\" + 0.026*\"health\" + 0.021*\"england\"'),\n", - " (2,\n", - " '0.125*\"mount\" + 0.124*\"peak\" + 0.123*\"lemmon\" + 0.122*\"kitt\" + 0.122*\"spacewatch\" + 0.062*\"survei\" + 0.043*\"octob\" + 0.038*\"septemb\" + 0.023*\"novemb\" + 0.023*\"catalina\"'),\n", - " (3,\n", - " '0.236*\"new\" + 0.076*\"york\" + 0.018*\"zealand\" + 0.016*\"jersei\" + 0.012*\"washington\" + 0.011*\"chicago\" + 0.010*\"boston\" + 0.010*\"broadcast\" + 0.010*\"channel\" + 0.009*\"televis\"'),\n", - " (4,\n", - " '0.271*\"servic\" + 0.059*\"commun\" + 0.030*\"royal\" + 0.026*\"mr\" + 0.025*\"offic\" + 0.023*\"late\" + 0.020*\"director\" + 0.019*\"educ\" + 0.019*\"public\" + 0.018*\"chief\"'),\n", - " (5,\n", - " '0.251*\"parti\" + 0.038*\"elect\" + 0.038*\"vote\" + 0.031*\"liber\" + 0.029*\"communist\" + 0.029*\"seat\" + 0.026*\"polit\" + 0.026*\"social\" + 0.026*\"peopl\" + 0.020*\"independ\"'),\n", - " (6,\n", - " '0.373*\"hous\" + 0.163*\"term\" + 0.071*\"build\" + 0.070*\"serv\" + 0.056*\"congress\" + 0.047*\"member\" + 0.036*\"hall\" + 0.034*\"januari\" + 0.033*\"histor\" + 0.023*\"castl\"'),\n", - " (7,\n", - " '0.036*\"law\" + 0.033*\"court\" + 0.029*\"right\" + 0.025*\"govern\" + 0.013*\"case\" + 0.013*\"public\" + 0.012*\"constitut\" + 0.010*\"legal\" + 0.009*\"intern\" + 0.009*\"justic\"'),\n", - " (8,\n", - " '0.208*\"septemb\" + 0.141*\"octob\" + 0.138*\"august\" + 0.111*\"juli\" + 0.096*\"june\" + 0.064*\"april\" + 0.060*\"novemb\" + 0.039*\"decemb\" + 0.025*\"februari\" + 0.009*\"theatr\"'),\n", - " (9,\n", - " '0.516*\"road\" + 0.157*\"bridg\" + 0.060*\"street\" + 0.057*\"build\" + 0.040*\"traffic\" + 0.031*\"construct\" + 0.027*\"junction\" + 0.018*\"temporari\" + 0.014*\"prohibit\" + 0.012*\"squar\"'),\n", - " (10,\n", - " '0.103*\"ship\" + 0.061*\"british\" + 0.059*\"class\" + 0.044*\"navi\" + 0.038*\"royal\" + 0.032*\"king\" + 0.026*\"naval\" + 0.026*\"gun\" + 0.024*\"sea\" + 0.022*\"london\"'),\n", - " (11,\n", - " '0.566*\"school\" + 0.055*\"primari\" + 0.047*\"educ\" + 0.045*\"public\" + 0.044*\"student\" + 0.039*\"grade\" + 0.035*\"elementari\" + 0.028*\"secondari\" + 0.024*\"websit\" + 0.020*\"teacher\"'),\n", - " (12,\n", - " '0.345*\"seri\" + 0.052*\"comic\" + 0.037*\"charact\" + 0.033*\"anim\" + 0.029*\"televis\" + 0.029*\"origin\" + 0.027*\"featur\" + 0.020*\"stori\" + 0.020*\"run\" + 0.019*\"version\"'),\n", - " (13,\n", - " '0.090*\"album\" + 0.066*\"song\" + 0.059*\"record\" + 0.044*\"band\" + 0.031*\"chart\" + 0.026*\"singl\" + 0.023*\"track\" + 0.018*\"rock\" + 0.018*\"vocal\" + 0.017*\"featur\"'),\n", - " (14,\n", - " '0.293*\"member\" + 0.292*\"conserv\" + 0.175*\"labour\" + 0.130*\"liber\" + 0.023*\"elect\" + 0.014*\"ontario\" + 0.014*\"union\" + 0.010*\"order\" + 0.009*\"feder\" + 0.009*\"recogn\"'),\n", - " (15,\n", - " '0.087*\"run\" + 0.075*\"test\" + 0.064*\"score\" + 0.052*\"australia\" + 0.034*\"field\" + 0.032*\"wicket\" + 0.032*\"cricket\" + 0.032*\"in\" + 0.031*\"second\" + 0.029*\"pass\"'),\n", - " (16,\n", - " '0.080*\"centuri\" + 0.080*\"god\" + 0.053*\"peopl\" + 0.045*\"christian\" + 0.035*\"jewish\" + 0.032*\"templ\" + 0.031*\"israel\" + 0.029*\"lord\" + 0.023*\"page\" + 0.022*\"word\"'),\n", - " (17,\n", - " '0.211*\"power\" + 0.104*\"electr\" + 0.093*\"energi\" + 0.050*\"nuclear\" + 0.044*\"plant\" + 0.034*\"fuel\" + 0.031*\"ga\" + 0.028*\"us\" + 0.028*\"vehicl\" + 0.027*\"solar\"'),\n", - " (18,\n", - " '0.625*\"oper\" + 0.055*\"network\" + 0.031*\"mobil\" + 0.026*\"unknown\" + 0.020*\"own\" + 0.017*\"later\" + 0.016*\"agenc\" + 0.014*\"gsm\" + 0.012*\"report\" + 0.012*\"licens\"'),\n", - " (19,\n", - " '0.526*\"leagu\" + 0.074*\"cup\" + 0.068*\"basebal\" + 0.058*\"major\" + 0.058*\"premier\" + 0.047*\"hit\" + 0.047*\"run\" + 0.045*\"home\" + 0.034*\"stadium\" + 0.030*\"bat\"'),\n", - " (20,\n", - " '0.524*\"counti\" + 0.053*\"area\" + 0.051*\"statist\" + 0.036*\"township\" + 0.021*\"combin\" + 0.020*\"metropolitan\" + 0.018*\"ohio\" + 0.013*\"texa\" + 0.012*\"micropolitan\" + 0.011*\"courthous\"'),\n", - " (21,\n", - " '0.545*\"unit\" + 0.064*\"kingdom\" + 0.038*\"bank\" + 0.035*\"canada\" + 0.024*\"germani\" + 0.021*\"franc\" + 0.016*\"itali\" + 0.016*\"spain\" + 0.014*\"secur\" + 0.013*\"marin\"'),\n", - " (22,\n", - " '0.362*\"game\" + 0.057*\"plai\" + 0.038*\"team\" + 0.018*\"score\" + 0.016*\"video\" + 0.015*\"field\" + 0.015*\"nfl\" + 0.015*\"playstat\" + 0.014*\"goal\" + 0.013*\"nintendo\"'),\n", - " (23,\n", - " '0.236*\"viola\" + 0.169*\"piano\" + 0.056*\"orchestra\" + 0.053*\"major\" + 0.050*\"violin\" + 0.050*\"concerto\" + 0.048*\"solo\" + 0.041*\"sonata\" + 0.032*\"centr\" + 0.031*\"minor\"'),\n", - " (24,\n", - " '0.052*\"final\" + 0.049*\"win\" + 0.044*\"round\" + 0.025*\"won\" + 0.023*\"second\" + 0.018*\"titl\" + 0.017*\"champion\" + 0.017*\"lost\" + 0.014*\"defeat\" + 0.014*\"score\"'),\n", - " (25,\n", - " '0.394*\"episod\" + 0.061*\"appear\" + 0.049*\"star\" + 0.046*\"televis\" + 0.040*\"role\" + 0.038*\"voic\" + 0.027*\"charact\" + 0.025*\"cast\" + 0.024*\"guest\" + 0.023*\"season\"'),\n", - " (26,\n", - " '0.117*\"student\" + 0.098*\"scienc\" + 0.089*\"educ\" + 0.072*\"research\" + 0.061*\"program\" + 0.055*\"institut\" + 0.054*\"studi\" + 0.032*\"depart\" + 0.029*\"develop\" + 0.028*\"technolog\"'),\n", - " (27,\n", - " '0.224*\"elect\" + 0.145*\"democrat\" + 0.131*\"republican\" + 0.041*\"incumb\" + 0.034*\"vote\" + 0.032*\"candid\" + 0.031*\"senat\" + 0.024*\"district\" + 0.020*\"repres\" + 0.019*\"result\"'),\n", - " (28,\n", - " '0.144*\"china\" + 0.129*\"chines\" + 0.083*\"japan\" + 0.071*\"japanes\" + 0.050*\"world\" + 0.036*\"kong\" + 0.035*\"hong\" + 0.032*\"korea\" + 0.027*\"korean\" + 0.023*\"taiwan\"'),\n", - " (29,\n", - " '0.720*\"born\" + 0.057*\"william\" + 0.048*\"singer\" + 0.031*\"actress\" + 0.020*\"painter\" + 0.018*\"songwrit\" + 0.017*\"musician\" + 0.015*\"compos\" + 0.014*\"known\" + 0.008*\"saint\"'),\n", - " (30,\n", - " '0.550*\"year\" + 0.076*\"ag\" + 0.042*\"old\" + 0.038*\"male\" + 0.033*\"femal\" + 0.028*\"month\" + 0.028*\"household\" + 0.025*\"career\" + 0.022*\"highli\" + 0.020*\"commend\"'),\n", - " (31,\n", - " '0.444*\"nation\" + 0.041*\"countri\" + 0.030*\"intern\" + 0.029*\"govern\" + 0.029*\"forest\" + 0.028*\"wetland\" + 0.024*\"resourc\" + 0.024*\"reserv\" + 0.023*\"indian\" + 0.022*\"region\"'),\n", - " (32,\n", - " '0.493*\"street\" + 0.141*\"east\" + 0.102*\"lower\" + 0.102*\"upper\" + 0.034*\"built\" + 0.025*\"neighborhood\" + 0.015*\"near\" + 0.014*\"courthous\" + 0.009*\"houston\" + 0.008*\"ind\"'),\n", - " (33,\n", - " '0.233*\"linear\" + 0.232*\"socorro\" + 0.055*\"septemb\" + 0.048*\"neat\" + 0.043*\"palomar\" + 0.042*\"octob\" + 0.030*\"august\" + 0.029*\"decemb\" + 0.028*\"kitt\" + 0.028*\"peak\"'),\n", - " (34,\n", - " '0.277*\"languag\" + 0.108*\"english\" + 0.065*\"word\" + 0.058*\"french\" + 0.037*\"form\" + 0.030*\"dialect\" + 0.027*\"class\" + 0.027*\"mean\" + 0.026*\"exampl\" + 0.025*\"linguist\"'),\n", - " (35,\n", - " '0.132*\"speci\" + 0.109*\"nov\" + 0.089*\"mpc\" + 0.086*\"valid\" + 0.074*\"mba\" + 0.058*\"famili\" + 0.047*\"format\" + 0.043*\"middl\" + 0.037*\"gen\" + 0.036*\"type\"'),\n", - " (36,\n", - " '0.392*\"dai\" + 0.057*\"week\" + 0.033*\"month\" + 0.030*\"evict\" + 0.028*\"housem\" + 0.025*\"arriv\" + 0.024*\"mar\" + 0.023*\"nomin\" + 0.021*\"vote\" + 0.020*\"sundai\"'),\n", - " (37,\n", - " '0.089*\"work\" + 0.018*\"life\" + 0.016*\"public\" + 0.014*\"includ\" + 0.013*\"societi\" + 0.013*\"earli\" + 0.012*\"write\" + 0.012*\"world\" + 0.010*\"studi\" + 0.010*\"cultur\"'),\n", - " (38,\n", - " '0.074*\"war\" + 0.026*\"battl\" + 0.024*\"german\" + 0.015*\"french\" + 0.015*\"world\" + 0.013*\"soviet\" + 0.011*\"british\" + 0.011*\"germani\" + 0.011*\"franc\" + 0.010*\"govern\"'),\n", - " (39,\n", - " '0.295*\"film\" + 0.032*\"festiv\" + 0.032*\"director\" + 0.028*\"star\" + 0.026*\"movi\" + 0.024*\"direct\" + 0.019*\"role\" + 0.019*\"featur\" + 0.018*\"actor\" + 0.018*\"pictur\"'),\n", - " (40,\n", - " '0.374*\"produc\" + 0.294*\"product\" + 0.065*\"execut\" + 0.037*\"pictur\" + 0.031*\"distribut\" + 0.031*\"plant\" + 0.029*\"studio\" + 0.016*\"process\" + 0.014*\"canada\" + 0.012*\"export\"'),\n", - " (41,\n", - " '0.559*\"airport\" + 0.218*\"intern\" + 0.042*\"airlin\" + 0.030*\"passeng\" + 0.026*\"termin\" + 0.011*\"rout\" + 0.010*\"san\" + 0.009*\"california\" + 0.009*\"transport\" + 0.007*\"serv\"'),\n", - " (42,\n", - " '0.778*\"window\" + 0.054*\"wall\" + 0.051*\"cross\" + 0.036*\"quoin\" + 0.033*\"platform\" + 0.015*\"atari\" + 0.015*\"stain\" + 0.004*\"emul\" + 0.003*\"radiat\" + 0.003*\"arrai\"'),\n", - " (43,\n", - " '0.464*\"ireland\" + 0.316*\"northern\" + 0.120*\"irish\" + 0.030*\"final\" + 0.027*\"australia\" + 0.018*\"munster\" + 0.014*\"rugbi\" + 0.006*\"volunt\" + 0.003*\"new\" + 0.001*\"captain\"'),\n", - " (44,\n", - " '0.231*\"march\" + 0.134*\"januari\" + 0.093*\"februari\" + 0.082*\"decemb\" + 0.072*\"april\" + 0.067*\"novemb\" + 0.037*\"june\" + 0.030*\"juli\" + 0.024*\"gen\" + 0.024*\"usv\"'),\n", - " (45,\n", - " '0.436*\"engin\" + 0.121*\"design\" + 0.087*\"model\" + 0.038*\"aircraft\" + 0.032*\"built\" + 0.030*\"seat\" + 0.030*\"cylind\" + 0.027*\"version\" + 0.025*\"type\" + 0.023*\"tank\"'),\n", - " (46,\n", - " '0.177*\"offic\" + 0.157*\"polic\" + 0.092*\"depart\" + 0.045*\"chief\" + 0.032*\"lieuten\" + 0.028*\"sergeant\" + 0.025*\"ministri\" + 0.023*\"secretari\" + 0.023*\"assist\" + 0.020*\"public\"'),\n", - " (47,\n", - " '0.191*\"women\" + 0.163*\"men\" + 0.058*\"rank\" + 0.054*\"athlet\" + 0.051*\"advanc\" + 0.051*\"event\" + 0.036*\"medal\" + 0.025*\"colspan\" + 0.024*\"winner\" + 0.024*\"olymp\"'),\n", - " (48,\n", - " '0.420*\"file\" + 0.249*\"jpg\" + 0.110*\"svg\" + 0.055*\"sign\" + 0.028*\"png\" + 0.022*\"view\" + 0.019*\"white\" + 0.019*\"red\" + 0.016*\"format\" + 0.014*\"hall\"'),\n", - " (49,\n", - " '0.558*\"compani\" + 0.091*\"corpor\" + 0.068*\"market\" + 0.058*\"battalion\" + 0.049*\"million\" + 0.026*\"build\" + 0.016*\"locat\" + 0.013*\"renam\" + 0.011*\"move\" + 0.010*\"construct\"'),\n", - " (50,\n", - " '0.292*\"american\" + 0.043*\"footbal\" + 0.041*\"english\" + 0.041*\"politician\" + 0.039*\"actor\" + 0.038*\"british\" + 0.026*\"canadian\" + 0.026*\"singer\" + 0.025*\"actress\" + 0.024*\"poet\"'),\n", - " (51,\n", - " '0.238*\"air\" + 0.104*\"squadron\" + 0.083*\"aircraft\" + 0.063*\"forc\" + 0.057*\"flight\" + 0.054*\"wing\" + 0.044*\"base\" + 0.043*\"fighter\" + 0.039*\"raf\" + 0.033*\"fly\"'),\n", - " (52,\n", - " '0.236*\"bar\" + 0.189*\"text\" + 0.155*\"till\" + 0.144*\"color\" + 0.031*\"shift\" + 0.031*\"width\" + 0.029*\"valu\" + 0.028*\"fontsiz\" + 0.027*\"band\" + 0.015*\"guitar\"'),\n", - " (53,\n", - " '0.109*\"royal\" + 0.059*\"regiment\" + 0.053*\"corp\" + 0.045*\"lieuten\" + 0.042*\"armi\" + 0.035*\"artilleri\" + 0.034*\"battalion\" + 0.032*\"field\" + 0.030*\"major\" + 0.030*\"captain\"'),\n", - " (54,\n", - " '0.055*\"john\" + 0.047*\"william\" + 0.022*\"jame\" + 0.022*\"georg\" + 0.019*\"thoma\" + 0.017*\"robert\" + 0.016*\"henri\" + 0.016*\"charl\" + 0.013*\"edward\" + 0.012*\"richard\"'),\n", - " (55,\n", - " '0.200*\"art\" + 0.136*\"museum\" + 0.074*\"paint\" + 0.047*\"galleri\" + 0.046*\"artist\" + 0.043*\"exhibit\" + 0.038*\"histori\" + 0.035*\"collect\" + 0.029*\"histor\" + 0.022*\"design\"'),\n", - " (56,\n", - " '0.282*\"kill\" + 0.101*\"car\" + 0.056*\"black\" + 0.047*\"shot\" + 0.042*\"vehicl\" + 0.038*\"red\" + 0.033*\"gun\" + 0.026*\"prison\" + 0.026*\"later\" + 0.025*\"blue\"'),\n", - " (57,\n", - " '0.155*\"team\" + 0.115*\"match\" + 0.082*\"plai\" + 0.049*\"world\" + 0.047*\"cup\" + 0.038*\"championship\" + 0.027*\"wrestl\" + 0.026*\"stadium\" + 0.024*\"defeat\" + 0.022*\"england\"'),\n", - " (58,\n", - " '0.293*\"park\" + 0.091*\"area\" + 0.055*\"lake\" + 0.043*\"forest\" + 0.025*\"wetland\" + 0.024*\"statist\" + 0.022*\"natur\" + 0.021*\"stadium\" + 0.021*\"site\" + 0.018*\"reserv\"'),\n", - " (59,\n", - " '0.407*\"book\" + 0.213*\"publish\" + 0.108*\"stori\" + 0.086*\"press\" + 0.080*\"edit\" + 0.033*\"illustr\" + 0.030*\"origin\" + 0.025*\"london\" + 0.004*\"split\" + 0.003*\"nazi\"'),\n", - " (60,\n", - " '0.222*\"forc\" + 0.161*\"armi\" + 0.099*\"command\" + 0.082*\"militari\" + 0.055*\"attack\" + 0.051*\"arm\" + 0.032*\"train\" + 0.026*\"ukrainian\" + 0.025*\"corp\" + 0.023*\"oper\"'),\n", - " (61,\n", - " '0.295*\"citi\" + 0.042*\"area\" + 0.032*\"popul\" + 0.023*\"san\" + 0.023*\"region\" + 0.020*\"locat\" + 0.017*\"west\" + 0.017*\"includ\" + 0.017*\"municip\" + 0.016*\"council\"'),\n", - " (62,\n", - " '0.449*\"town\" + 0.176*\"villag\" + 0.038*\"municip\" + 0.038*\"ag\" + 0.034*\"local\" + 0.025*\"locat\" + 0.025*\"place\" + 0.023*\"main\" + 0.020*\"resid\" + 0.018*\"old\"'),\n", - " (63,\n", - " '0.234*\"club\" + 0.076*\"footbal\" + 0.062*\"golf\" + 0.043*\"goal\" + 0.035*\"cup\" + 0.025*\"plai\" + 0.021*\"sport\" + 0.021*\"manag\" + 0.021*\"score\" + 0.018*\"leagu\"'),\n", - " (64,\n", - " '0.232*\"bai\" + 0.129*\"stone\" + 0.103*\"storei\" + 0.101*\"roof\" + 0.077*\"slate\" + 0.066*\"famili\" + 0.055*\"green\" + 0.050*\"doorwai\" + 0.042*\"sash\" + 0.036*\"sandston\"'),\n", - " (65,\n", - " '0.324*\"state\" + 0.016*\"texa\" + 0.015*\"feder\" + 0.014*\"california\" + 0.013*\"michigan\" + 0.012*\"senat\" + 0.012*\"florida\" + 0.012*\"repres\" + 0.011*\"virginia\" + 0.011*\"washington\"'),\n", - " (66,\n", - " '0.353*\"usa\" + 0.129*\"california\" + 0.083*\"angel\" + 0.071*\"york\" + 0.070*\"lo\" + 0.052*\"record\" + 0.036*\"england\" + 0.032*\"chicago\" + 0.024*\"london\" + 0.022*\"florida\"'),\n", - " (67,\n", - " '0.144*\"time\" + 0.025*\"second\" + 0.022*\"later\" + 0.017*\"stage\" + 0.017*\"turn\" + 0.016*\"said\" + 0.015*\"note\" + 0.013*\"start\" + 0.013*\"star\" + 0.013*\"appear\"'),\n", - " (68,\n", - " '0.257*\"presid\" + 0.237*\"minist\" + 0.152*\"prime\" + 0.040*\"met\" + 0.033*\"foreign\" + 0.032*\"govern\" + 0.028*\"governor\" + 0.027*\"–present\" + 0.024*\"attend\" + 0.024*\"meet\"'),\n", - " (69,\n", - " '0.862*\"group\" + 0.013*\"plane\" + 0.013*\"manag\" + 0.012*\"fifa\" + 0.011*\"base\" + 0.010*\"tend\" + 0.009*\"soccer\" + 0.009*\"advanc\" + 0.009*\"meet\" + 0.007*\"plot\"'),\n", - " (70,\n", - " '0.276*\"season\" + 0.051*\"team\" + 0.042*\"dvd\" + 0.036*\"coach\" + 0.031*\"home\" + 0.030*\"record\" + 0.026*\"rai\" + 0.026*\"plai\" + 0.022*\"blu\" + 0.022*\"career\"'),\n", - " (71,\n", - " '0.050*\"famili\" + 0.038*\"man\" + 0.037*\"king\" + 0.036*\"son\" + 0.029*\"father\" + 0.029*\"death\" + 0.028*\"appear\" + 0.027*\"live\" + 0.026*\"later\" + 0.024*\"brother\"'),\n", - " (72,\n", - " '0.448*\"gener\" + 0.116*\"major\" + 0.083*\"command\" + 0.057*\"brigadi\" + 0.044*\"lieuten\" + 0.040*\"hospit\" + 0.038*\"offic\" + 0.037*\"governor\" + 0.019*\"secretari\" + 0.018*\"india\"'),\n", - " (73,\n", - " '0.010*\"includ\" + 0.007*\"us\" + 0.007*\"develop\" + 0.007*\"number\" + 0.006*\"base\" + 0.006*\"form\" + 0.005*\"differ\" + 0.005*\"provid\" + 0.005*\"area\" + 0.005*\"chang\"'),\n", - " (74,\n", - " '0.269*\"divis\" + 0.071*\"brigad\" + 0.067*\"infantri\" + 0.053*\"battalion\" + 0.042*\"regiment\" + 0.037*\"german\" + 0.025*\"rifl\" + 0.023*\"attack\" + 0.022*\"tank\" + 0.019*\"cavalri\"'),\n", - " (75,\n", - " '0.676*\"north\" + 0.148*\"carolina\" + 0.055*\"america\" + 0.018*\"centuri\" + 0.017*\"mine\" + 0.012*\"bai\" + 0.010*\"geograph\" + 0.009*\"patrol\" + 0.006*\"harbor\" + 0.006*\"civil\"'),\n", - " (76,\n", - " '0.660*\"colleg\" + 0.066*\"commun\" + 0.065*\"confer\" + 0.048*\"footbal\" + 0.039*\"athlet\" + 0.034*\"associ\" + 0.017*\"san\" + 0.012*\"intercollegi\" + 0.012*\"collegi\" + 0.008*\"ladi\"'),\n", - " (77,\n", - " '0.645*\"act\" + 0.075*\"amend\" + 0.019*\"land\" + 0.017*\"appropri\" + 0.016*\"duti\" + 0.015*\"scotland\" + 0.012*\"fund\" + 0.011*\"provis\" + 0.009*\"financ\" + 0.009*\"public\"'),\n", - " (78,\n", - " '0.251*\"award\" + 0.200*\"best\" + 0.040*\"nomin\" + 0.032*\"actress\" + 0.028*\"actor\" + 0.024*\"perform\" + 0.023*\"won\" + 0.021*\"outstand\" + 0.021*\"artist\" + 0.019*\"support\"'),\n", - " (79,\n", - " '0.585*\"univers\" + 0.048*\"professor\" + 0.033*\"institut\" + 0.032*\"campu\" + 0.032*\"colleg\" + 0.023*\"academ\" + 0.020*\"activ\" + 0.018*\"technolog\" + 0.016*\"press\" + 0.015*\"oxford\"'),\n", - " (80,\n", - " '0.265*\"river\" + 0.084*\"lake\" + 0.071*\"creek\" + 0.043*\"rout\" + 0.032*\"area\" + 0.030*\"highwai\" + 0.019*\"near\" + 0.019*\"vallei\" + 0.019*\"land\" + 0.016*\"dam\"'),\n", - " (81,\n", - " '0.838*\"island\" + 0.024*\"territori\" + 0.018*\"cape\" + 0.017*\"peopl\" + 0.015*\"puerto\" + 0.014*\"republ\" + 0.013*\"uss\" + 0.010*\"independ\" + 0.009*\"claim\" + 0.008*\"disput\"'),\n", - " (82,\n", - " '0.643*\"player\" + 0.154*\"footbal\" + 0.035*\"rule\" + 0.033*\"ball\" + 0.020*\"actor\" + 0.013*\"retir\" + 0.012*\"bet\" + 0.011*\"link\" + 0.010*\"open\" + 0.010*\"william\"'),\n", - " (83,\n", - " '0.170*\"district\" + 0.041*\"pennsylvania\" + 0.032*\"grade\" + 0.026*\"basic\" + 0.026*\"fund\" + 0.026*\"level\" + 0.021*\"educ\" + 0.019*\"receiv\" + 0.019*\"school\" + 0.018*\"tax\"'),\n", - " (84,\n", - " '0.450*\"yard\" + 0.155*\"touchdown\" + 0.118*\"return\" + 0.063*\"defens\" + 0.040*\"bear\" + 0.030*\"novemb\" + 0.014*\"navi\" + 0.012*\"bomb\" + 0.010*\"carrier\" + 0.009*\"sea\"'),\n", - " (85,\n", - " '0.818*\"point\" + 0.097*\"stand\" + 0.021*\"contest\" + 0.018*\"light\" + 0.008*\"santa\" + 0.007*\"main\" + 0.006*\"panel\" + 0.006*\"lighthous\" + 0.005*\"chi\" + 0.003*\"barrel\"'),\n", - " (86,\n", - " '0.356*\"center\" + 0.113*\"hospit\" + 0.085*\"style\" + 0.061*\"health\" + 0.050*\"text\" + 0.049*\"medic\" + 0.047*\"commun\" + 0.045*\"align\" + 0.041*\"public\" + 0.035*\"arena\"'),\n", - " (87,\n", - " '0.157*\"championship\" + 0.155*\"world\" + 0.133*\"open\" + 0.055*\"winner\" + 0.052*\"tour\" + 0.043*\"doubl\" + 0.042*\"singl\" + 0.038*\"grand\" + 0.032*\"hard\" + 0.028*\"master\"'),\n", - " (88,\n", - " '0.509*\"station\" + 0.112*\"radio\" + 0.063*\"broadcast\" + 0.041*\"circl\" + 0.041*\"cross\" + 0.041*\"bu\" + 0.036*\"market\" + 0.028*\"nagar\" + 0.027*\"gate\" + 0.021*\"serv\"'),\n", - " (89,\n", - " '0.250*\"race\" + 0.141*\"team\" + 0.102*\"ret\" + 0.073*\"car\" + 0.050*\"lap\" + 0.048*\"driver\" + 0.036*\"ford\" + 0.036*\"finish\" + 0.035*\"motorsport\" + 0.034*\"championship\"'),\n", - " (90,\n", - " '0.229*\"church\" + 0.037*\"cathol\" + 0.026*\"built\" + 0.025*\"saint\" + 0.023*\"christian\" + 0.023*\"build\" + 0.023*\"list\" + 0.023*\"centuri\" + 0.023*\"bishop\" + 0.020*\"roman\"'),\n", - " (91,\n", - " '0.457*\"align\" + 0.385*\"left\" + 0.089*\"right\" + 0.040*\"style\" + 0.028*\"text\" + 0.000*\"trackag\" + 0.000*\"zephyr\" + 0.000*\"chouteau\" + 0.000*\"basidiomycet\" + 0.000*\"westcliff\"'),\n", - " (92,\n", - " '0.163*\"line\" + 0.102*\"railwai\" + 0.050*\"train\" + 0.034*\"railroad\" + 0.031*\"rout\" + 0.025*\"rail\" + 0.024*\"open\" + 0.020*\"passeng\" + 0.020*\"track\" + 0.016*\"locomot\"'),\n", - " (93,\n", - " '0.679*\"township\" + 0.098*\"pennsylvania\" + 0.079*\"west\" + 0.067*\"england\" + 0.009*\"borough\" + 0.008*\"raf\" + 0.008*\"southampton\" + 0.006*\"manchest\" + 0.005*\"confer\" + 0.005*\"cross\"'),\n", - " (94,\n", - " '0.605*\"protein\" + 0.127*\"receptor\" + 0.116*\"factor\" + 0.053*\"infect\" + 0.031*\"immun\" + 0.021*\"intern\" + 0.012*\"apoptosi\" + 0.011*\"oncogen\" + 0.009*\"queensland\" + 0.008*\"immunoglobulin\"'),\n", - " (95,\n", - " '0.299*\"south\" + 0.128*\"west\" + 0.116*\"east\" + 0.056*\"conserv\" + 0.052*\"labour\" + 0.052*\"australia\" + 0.050*\"western\" + 0.045*\"africa\" + 0.043*\"central\" + 0.027*\"african\"'),\n", - " (96,\n", - " '0.574*\"water\" + 0.059*\"sea\" + 0.057*\"right\" + 0.047*\"white\" + 0.045*\"red\" + 0.034*\"blue\" + 0.029*\"municip\" + 0.022*\"larg\" + 0.015*\"saint\" + 0.012*\"swim\"'),\n", - " (97,\n", - " '0.385*\"music\" + 0.070*\"perform\" + 0.055*\"compos\" + 0.043*\"danc\" + 0.034*\"orchestra\" + 0.031*\"festiv\" + 0.027*\"instrument\" + 0.025*\"opera\" + 0.025*\"concert\" + 0.018*\"piano\"'),\n", - " (98,\n", - " '0.356*\"high\" + 0.273*\"school\" + 0.027*\"class\" + 0.025*\"academi\" + 0.020*\"senior\" + 0.016*\"junior\" + 0.016*\"student\" + 0.015*\"team\" + 0.014*\"vallei\" + 0.012*\"central\"'),\n", - " (99,\n", - " '0.406*\"releas\" + 0.092*\"singl\" + 0.070*\"dvd\" + 0.068*\"digit\" + 0.067*\"label\" + 0.056*\"entertain\" + 0.033*\"album\" + 0.031*\"date\" + 0.030*\"version\" + 0.025*\"rai\"')]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gensim_nmf.show_topics(100)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "\n", - "gensim_lda = LdaModel(**training_params)\n", - "\n", - "for pass_ in range(PASSES):\n", - " gensim_lda.update(corpus)\n", - " gensim_lda.save('lda_%s.model' % pass_)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "lda.show_topics(20)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/notebooks/nmf_wikipedia.ipynb b/docs/notebooks/nmf_wikipedia.ipynb new file mode 100644 index 0000000000..654d5add6d --- /dev/null +++ b/docs/notebooks/nmf_wikipedia.ipynb @@ -0,0 +1,841 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Wikipedia training\n", + "\n", + "In this tutorial we will:\n", + " - Learn how to train the NMF topic model on English Wikipedia corpus\n", + " - Compare it with LDA model\n", + " - Evaluate results" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "import itertools\n", + "import json\n", + "import logging\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scipy.sparse\n", + "from tqdm import tqdm, tqdm_notebook\n", + "\n", + "import gensim.downloader as api\n", + "from gensim import matutils\n", + "from gensim.corpora import MmCorpus, Dictionary\n", + "from gensim.models import LdaModel\n", + "from gensim.models.nmf import Nmf\n", + "from gensim.parsing.preprocessing import preprocess_string" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "tqdm.pandas()\n", + "\n", + "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',\n", + " level=logging.INFO)" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Section title: Introduction\n", + "Section text: \n", + "\n", + "\n", + "\n", + "\n", + "'''Anarchism''' is a political philosophy that advocates self-governed societies based on voluntary institutions. These are often described as stateless societies, although several authors have defined them more specifically as institutions based on non-hierarchical free associations. Anarchism holds the state to be undesirable, unnecessary and harmful.\n", + "\n", + "While anti-statism is central, anarchism specifically entails opposing authority or hierarchical organisation in the conduct of all human relations, including—but not limited to—the state system. Anarchism is usually considered a far-left ideology and much of anarchist economics and anarchist legal philosophy reflects anti-authoritarian interpretations of communism, collectivism, syndicalism, mutualism or participatory economics.\n", + "\n", + "Anarchism does not offer a fixed body of doctrine from a single particular world view, instead fluxing and flowing as a philosophy. Many types and traditions of anarchism exist, not all of which are mutually exclusive. Anarchist schools of thought can differ fundamentally, supporting anything from extreme individualism to complete collectivism. Strains of anarchism have often been divided into the categories of social and individualist anarchism or similar dual classifications.\n", + "\n", + "Section title: Etymology and terminology\n", + "Section text: \n", + "\n", + "The word ''anarchism'' is composed from the word ''anarchy'' and the suffix ''-ism'', themselves derived respectively from the Greek , i.e. ''anarchy'' (from , ''anarchos'', meaning \"one without rulers\"; from the privative prefix ἀν- (''an-'', i.e. \"without\") and , ''archos'', i.e. \"leader\", \"ruler\"; (cf. ''archon'' or , ''arkhē'', i.e. \"authority\", \"sovereignty\", \"realm\", \"magistracy\")) and the suffix or (''-ismos'', ''-isma'', from the verbal infinitive suffix -ίζειν, ''-izein''). The first known use of this word was in 1539. Various factions within the French Revolution labelled opponents as anarchists (as Robespierre did the Hébertists) although few shared many views of later anarchists. There would be many revolutionaries of the early nineteenth century who contributed to the anarchist doctrines of the next generation, such as William Godwin and Wilhelm Weitling, but they did not use the word ''anarchist'' or ''anarchism'' in describing themselves or their beliefs.\n", + "\n", + "The first political philosopher to call himself an anarchist was Pierre-Joseph Proudhon, marking the formal birth of anarchism in the mid-nineteenth century. Since the 1890s, and beginning in France, the term \"libertarianism\" has often been used as a synonym for anarchism and was used almost exclusively in this sense until the 1950s in the United States; its use as a synonym is still common outside the United States. On the other hand, some use libertarianism to refer to individualistic free-market philosophy only, referring to free-market anarchism as libertarian anarchism.\n", + "\n", + "Section title: History\n", + "Section text: \n", + "\n", + "===Origins===\n", + "Woodcut from a Diggers document by William Everard\n", + "\n", + "The earliest anarchist themes can be found in the 6th century BC among the works of Taoist philosopher Laozi and in later centuries by Zhuangzi and Bao Jingyan. Zhuangzi's philosophy has been described by various sources as anarchist. Zhuangzi wrote: \"A petty thief is put in jail. A great brigand becomes a ruler of a Nation\". Diogenes of Sinope and the Cynics, as well as their contemporary Zeno of Citium, the founder of Stoicism, also introduced similar topics. Jesus is sometimes considered the first anarchist in the Christian anarchist tradition. Georges Lechartier wrote: \"The true founder of anarchy was Jesus Christ and ... the first anarchist society was that of the apostles\". In early Islamic history, some manifestations of anarchic thought are found during the Islamic civil war over the Caliphate, where the Kharijites insisted that the imamate is a right for each individual within the Islamic society.\n", + "\n", + "The French renaissance political philosopher Étienne de La Boétie wrote in his most famous work the ''Discourse on Voluntary Servitude'' what some historians consider an important anarchist precedent. The radical Protestant Christian Gerrard Winstanley and his group the Diggers are cited by various authors as proposing anarchist social measures in the 17th century in England. The term \"anarchist\" first entered the English language in 1642, during the English Civil War, as a term of abuse, used by Royalists against their Roundhead opponents. By the time of the French Revolution some, such as the ''Enragés'', began to use the term positively, in opposition to Jacobin centralisation of power, seeing \"revolutionary government\" as oxymoronic. By the turn of the 19th century, the English word \"anarchism\" had lost its initial negative connotation.\n", + "\n", + "Modern anarchism emerged from the secular or religious thought of the Enlightenment, particularly Jean-Jacques Rousseau's arguments for the moral centrality of freedom.\n", + "\n", + "As part of the political turmoil of the 1790s in the wake of the French Revolution, William Godwin developed the first expression of modern anarchist thought. Godwin was, according to Peter Kropotkin, \"the first to formulate the political and economical conceptions of anarchism, even though he did not give that name to the ideas developed in his work\", while Godwin attached his anarchist ideas to an early Edmund Burke.\n", + "\n", + "William Godwin, \"the first to formulate the political and economical conceptions of anarchism, even though he did not give that name to the ideas developed in his work\".\n", + "Godwin is generally regarded as the founder of the school of thought known as 'philosophical anarchism'. He argued in ''Political Justice'' (1793) that government has an inherently malevolent influence on society, and that it perpetuates dependency and ignorance. He thought that the spread of the use of reason to the masses would eventually cause government to wither away as an unnecessary force. Although he did not accord the state with moral legitimacy, he was against the use of revolutionary tactics for removing the government from power. Rather, he advocated for its replacement through a process of peaceful evolution.\n", + "\n", + "His aversion to the imposition of a rules-based society led him to denounce, as a manifestation of the people's 'mental enslavement', the foundations of law, property rights and even the institution of marriage. He considered the basic foundations of society as constraining the natural development of individuals to use their powers of reasoning to arrive at a mutually beneficial method of social organisation. In each case, government and its institutions are shown to constrain the development of our capacity to live wholly in accordance with the full and free exercise of private judgement.\n", + "\n", + "The French Pierre-Joseph Proudhon is regarded as the first ''self-proclaimed'' anarchist, a label he adopted in his groundbreaking work, ''What is Property?'', published in 1840. It is for this reason that some claim Proudhon as the founder of modern anarchist theory. He developed the theory of spontaneous order in society, where organisation emerges without a central coordinator imposing its own idea of order against the wills of individuals acting in their own interests. His famous quote on the matter is \"Liberty is the mother, not the daughter, of order\". In ''What is Property?'' Proudhon answers with the famous accusation \"Property is theft.\" In this work, he opposed the institution of decreed \"property\" (''propriété''), where owners have complete rights to \"use and abuse\" their property as they wish. He contrasted this with what he called \"possession,\" or limited ownership of resources and goods only while in more or less continuous use. Later, however, Proudhon added that \"Property is Liberty\" and argued that it was a bulwark against state power. His opposition to the state, organised religion, and certain capitalist practices inspired subsequent anarchists, and made him one of the leading social thinkers of his time.\n", + "\n", + "The anarcho-communist Joseph Déjacque was the first person to describe himself as \"libertarian\". Unlike Pierre-Joseph Proudhon, he argued that, \"it is not the product of his or her labour that the worker has a right to, but to the satisfaction of his or her needs, whatever may be their nature.\" In 1844 in Germany the post-hegelian philosopher Max Stirner published the book, ''The Ego and Its Own'', which would later be considered an influential early text of individualist anarchism. French anarchists active in the 1848 Revolution included Anselme Bellegarrigue, Ernest Coeurderoy, Joseph Déjacque and Pierre Joseph Proudhon.\n", + "\n", + "\n", + "===First International and the Paris Commune===\n", + "\n", + "Anarchist Mikhail Bakunin opposed the Marxist aim of dictatorship of the proletariat in favour of universal rebellion, and allied himself with the federalists in the First International before his expulsion by the Marxists.\n", + "\n", + "In Europe, harsh reaction followed the revolutions of 1848, during which ten countries had experienced brief or long-term social upheaval as groups carried out nationalist uprisings. After most of these attempts at systematic change ended in failure, conservative elements took advantage of the divided groups of socialists, anarchists, liberals, and nationalists, to prevent further revolt. In Spain Ramón de la Sagra established the anarchist journal ''El Porvenir'' in La Coruña in 1845 which was inspired by Proudhon´s ideas. The Catalan politician Francesc Pi i Margall became the principal translator of Proudhon's works into Spanish and later briefly became president of Spain in 1873 while being the leader of the Democratic Republican Federal Party. According to George Woodcock \"These translations were to have a profound and lasting effect on the development of Spanish anarchism after 1870, but before that time Proudhonian ideas, as interpreted by Pi, already provided much of the inspiration for the federalist movement which sprang up in the early 1860's.\" According to the ''Encyclopædia Britannica'' \"During the Spanish revolution of 1873, Pi y Margall attempted to establish a decentralised, or \"cantonalist,\" political system on Proudhonian lines.\"\n", + "\n", + "In 1864 the International Workingmen's Association (sometimes called the \"First International\") united diverse revolutionary currents including French followers of Proudhon, Blanquists, Philadelphes, English trade unionists, socialists and social democrats. Due to its links to active workers' movements, the International became a significant organisation. Karl Marx became a leading figure in the International and a member of its General Council. Proudhon's followers, the mutualists, opposed Marx's state socialism, advocating political abstentionism and small property holdings. Woodcock also reports that the American individualist anarchists Lysander Spooner and William B. Greene had been members of the First International. In 1868, following their unsuccessful participation in the League of Peace and Freedom (LPF), Russian revolutionary Mikhail Bakunin and his collectivist anarchist associates joined the First International (which had decided not to get involved with the LPF). They allied themselves with the federalist socialist sections of the International, who advocated the revolutionary overthrow of the state and the collectivisation of property.\n", + "\n", + "At first, the collectivists worked with the Marxists to push the First International in a more revolutionary socialist direction. Subsequently, the International became polarised into two camps, with Marx and Bakunin as their respective figureheads. Mikhail Bakunin characterised Marx's ideas as centralist and predicted that, if a Marxist party came to power, its leaders would simply take the place of the ruling class they had fought against. Anarchist historian George Woodcock reports that \"The annual Congress of the International had not taken place in 1870 owing to the outbreak of the Paris Commune, and in 1871 the General Council called only a special conference in London. One delegate was able to attend from Spain and none from Italy, while a technical excuse – that they had split away from the Fédération Romande – was used to avoid inviting Bakunin's Swiss supporters. Thus only a tiny minority of anarchists was present, and the General Council's resolutions passed almost unanimously. Most of them were clearly directed against Bakunin and his followers.\" In 1872, the conflict climaxed with a final split between the two groups at the Hague Congress, where Bakunin and James Guillaume were expelled from the International and its headquarters were transferred to New York. In response, the federalist sections formed their own International at the St. Imier Congress, adopting a revolutionary anarchist programme.\n", + "\n", + "The Paris Commune was a government that briefly ruled Paris from 18 March (more formally, from 28 March) to 28 May 1871. The Commune was the result of an uprising in Paris after France was defeated in the Franco-Prussian War. Anarchists participated actively in the establishment of the Paris Commune. They included Louise Michel, the Reclus brothers, and Eugene Varlin (the latter murdered in the repression afterwards). As for the reforms initiated by the Commune, such as the re-opening of workplaces as co-operatives, anarchists can see their ideas of associated labour beginning to be realised ... Moreover, the Commune's ideas on federation obviously reflected the influence of Proudhon on French radical ideas. Indeed, the Commune's vision of a communal France based on a federation of delegates bound by imperative mandates issued by their electors and subject to recall at any moment echoes Bakunin's and Proudhon's ideas (Proudhon, like Bakunin, had argued in favour of the \"implementation of the binding mandate\" in 1848 ... and for federation of communes). Thus both economically and politically the Paris Commune was heavily influenced by anarchist ideas. George Woodcock states:\n", + "\n", + "\n", + "===Organised labour===\n", + "\n", + "The anti-authoritarian sections of the First International were the precursors of the anarcho-syndicalists, seeking to \"replace the privilege and authority of the State\" with the \"free and spontaneous organization of labour.\" In 1886, the Federation of Organized Trades and Labor Unions (FOTLU) of the United States and Canada unanimously set 1 May 1886, as the date by which the eight-hour work day would become standard.\n", + "A sympathetic engraving by Walter Crane of the executed \"Anarchists of Chicago\" after the Haymarket affair. The Haymarket affair is generally considered the most significant event for the origin of international May Day observances.\n", + "In response, unions across the United States prepared a general strike in support of the event. On 3 May, in Chicago, a fight broke out when strikebreakers attempted to cross the picket line, and two workers died when police opened fire upon the crowd. The next day, 4 May, anarchists staged a rally at Chicago's Haymarket Square. A bomb was thrown by an unknown party near the conclusion of the rally, killing an officer. In the ensuing panic, police opened fire on the crowd and each other. Seven police officers and at least four workers were killed. Eight anarchists directly and indirectly related to the organisers of the rally were arrested and charged with the murder of the deceased officer. The men became international political celebrities among the labour movement. Four of the men were executed and a fifth committed suicide prior to his own execution. The incident became known as the Haymarket affair, and was a setback for the labour movement and the struggle for the eight-hour day. In 1890 a second attempt, this time international in scope, to organise for the eight-hour day was made. The event also had the secondary purpose of memorialising workers killed as a result of the Haymarket affair. Although it had initially been conceived as a once-off event, by the following year the celebration of International Workers' Day on May Day had become firmly established as an international worker's holiday.\n", + "\n", + "In 1907, the International Anarchist Congress of Amsterdam gathered delegates from 14 different countries, among which important figures of the anarchist movement, including Errico Malatesta, Pierre Monatte, Luigi Fabbri, Benoît Broutchoux, Emma Goldman, Rudolf Rocker, and Christiaan Cornelissen. Various themes were treated during the Congress, in particular concerning the organisation of the anarchist movement, popular education issues, the general strike or antimilitarism. A central debate concerned the relation between anarchism and syndicalism (or trade unionism). Malatesta and Monatte were in particular disagreement themselves on this issue, as the latter thought that syndicalism was revolutionary and would create the conditions of a social revolution, while Malatesta did not consider syndicalism by itself sufficient. He thought that the trade-union movement was reformist and even conservative, citing as essentially bourgeois and anti-worker the phenomenon of professional union officials. Malatesta warned that the syndicalists aims were in perpetuating syndicalism itself, whereas anarchists must always have anarchy as their end and consequently refrain from committing to any particular method of achieving it.\n", + "\n", + "The Spanish Workers Federation in 1881 was the first major anarcho-syndicalist movement; anarchist trade union federations were of special importance in Spain. The most successful was the Confederación Nacional del Trabajo (National Confederation of Labour: CNT), founded in 1910. Before the 1940s, the CNT was the major force in Spanish working class politics, attracting 1.58 million members at one point and playing a major role in the Spanish Civil War. The CNT was affiliated with the International Workers Association, a federation of anarcho-syndicalist trade unions founded in 1922, with delegates representing two million workers from 15 countries in Europe and Latin America. In Latin America in particular \"The anarchists quickly became active in organising craft and industrial workers throughout South and Central America, and until the early 1920s most of the trade unions in Mexico, Brazil, Peru, Chile, and Argentina were anarcho-syndicalist in general outlook; the prestige of the Spanish C.N.T. as a revolutionary organisation was undoubtedly to a great extent responsible for this situation. The largest and most militant of these organisations was the Federación Obrera Regional Argentina ... it grew quickly to a membership of nearly a quarter of a million, which dwarfed the rival socialdemocratic unions.\"\n", + "\n", + "\n", + "===Propaganda of the deed and illegalism===\n", + "\n", + "Italian-American anarchist Luigi Galleani. His followers, known as Galleanists, carried out a series of bombings and assassination attempts from 1914 to 1932 in what they saw as attacks on 'tyrants' and 'enemies of the people'\n", + "Some anarchists, such as Johann Most, advocated publicising violent acts of retaliation against counter-revolutionaries because \"we preach not only action in and for itself, but also action as propaganda.\" Scholars such as Beverly Gage contend that this was not advocacy of mass murder, but targeted killings of members of the ruling class at times when such actions might garner sympathy from the population, such as during periods of heightened government repression or labor conflicts where workers were killed. However, Most himself once boasted that \"the existing system will be quickest and most radically overthrown by the annihilation of its exponents. Therefore, massacres of the enemies of the people must be set in motion.\" Most is best known for a pamphlet published in 1885: ''The Science of Revolutionary Warfare'', a how-to manual on the subject of making explosives, based on knowledge he acquired while working at an explosives plant in New Jersey.\n", + "\n", + "By the 1880s, people inside and outside the anarchist movement began to use the slogan, \"propaganda of the deed\" to refer to individual bombings, regicides, and tyrannicides. From 1905 onwards, the Russian counterparts of these anti-syndicalist anarchist-communists become partisans of economic terrorism and illegal 'expropriations'.\" Illegalism as a practice emerged and within it \"The acts of the anarchist bombers and assassins (\"propaganda by the deed\") and the anarchist burglars (\"individual reappropriation\") expressed their desperation and their personal, violent rejection of an intolerable society. Moreover, they were clearly meant to be ''exemplary'' invitations to revolt.\". France's Bonnot Gang was the most famous group to embrace illegalism.\n", + "\n", + "However, as soon as 1887, important figures in the anarchist movement distanced themselves from such individual acts. Peter Kropotkin thus wrote that year in ''Le Révolté'' that \"a structure based on centuries of history cannot be destroyed with a few kilos of dynamite\". A variety of anarchists advocated the abandonment of these sorts of tactics in favour of collective revolutionary action, for example through the trade union movement. The anarcho-syndicalist, Fernand Pelloutier, argued in 1895 for renewed anarchist involvement in the labour movement on the basis that anarchism could do very well without \"the individual dynamiter.\"\n", + "\n", + "State repression (including the infamous 1894 French ''lois scélérates'') of the anarchist and labour movements following the few successful bombings and assassinations may have contributed to the abandonment of these kinds of tactics, although reciprocally state repression, in the first place, may have played a role in these isolated acts. The dismemberment of the French socialist movement, into many groups and, following the suppression of the 1871 Paris Commune, the execution and exile of many ''communards'' to penal colonies, favoured individualist political expression and acts.\n", + "\n", + "Numerous heads of state were assassinated between 1881 and 1914 by members of the anarchist movement, including Tsar Alexander II of Russia, President Sadi Carnot of France, Empress Elisabeth of Austria, King Umberto I of Italy, President William McKinley of the United States, King Carlos I of Portugal and King George I of Greece. McKinley's assassin Leon Czolgosz claimed to have been influenced by anarchist and feminist Emma Goldman.\n", + "\n", + "===Russian Revolution and other uprisings of the 1910s===\n", + "\n", + "Nestor Makhno with members of the anarchist Revolutionary Insurrectionary Army of Ukraine\n", + "Anarchists participated alongside the Bolsheviks in both February and October revolutions, and were initially enthusiastic about the Bolshevik revolution. However, following a political falling out with the Bolsheviks by the anarchists and other left-wing opposition, the conflict culminated in the 1921 Kronstadt rebellion, which the new government repressed. Anarchists in central Russia were either imprisoned, driven underground or joined the victorious Bolsheviks; the anarchists from Petrograd and Moscow fled to Ukraine. There, in the Free Territory, they fought in the civil war against the Whites (a grouping of monarchists and other opponents of the October Revolution) and then the Bolsheviks as part of the Revolutionary Insurrectionary Army of Ukraine led by Nestor Makhno, who established an anarchist society in the region for a number of months.\n", + "\n", + "Expelled American anarchists Emma Goldman and Alexander Berkman were among those agitating in response to Bolshevik policy and the suppression of the Kronstadt uprising, before they left Russia. Both wrote accounts of their experiences in Russia, criticising the amount of control the Bolsheviks exercised. For them, Bakunin's predictions about the consequences of Marxist rule that the rulers of the new \"socialist\" Marxist state would become a new elite had proved all too true.\n", + "\n", + "The victory of the Bolsheviks in the October Revolution and the resulting Russian Civil War did serious damage to anarchist movements internationally. Many workers and activists saw Bolshevik success as setting an example; Communist parties grew at the expense of anarchism and other socialist movements. In France and the United States, for example, members of the major syndicalist movements of the CGT and IWW left the organisations and joined the Communist International.\n", + "\n", + "The revolutionary wave of 1917–23 saw the active participation of anarchists in varying degrees of protagonism. In the German uprising known as the German Revolution of 1918–1919 which established the Bavarian Soviet Republic the anarchists Gustav Landauer, Silvio Gesell and Erich Mühsam had important leadership positions within the revolutionary councilist structures. In the Italian events known as the ''biennio rosso'' the anarcho-syndicalist trade union Unione Sindacale Italiana \"grew to 800,000 members and the influence of the Italian Anarchist Union (20,000 members plus ''Umanita Nova'', its daily paper) grew accordingly ... Anarchists were the first to suggest occupying workplaces. In the Mexican Revolution the Mexican Liberal Party was established and during the early 1910s it led a series of military offensives leading to the conquest and occupation of certain towns and districts in Baja California with the leadership of anarcho-communist Ricardo Flores Magón.\n", + "\n", + "In Paris, the Dielo Truda group of Russian anarchist exiles, which included Nestor Makhno, concluded that anarchists needed to develop new forms of organisation in response to the structures of Bolshevism. Their 1926 manifesto, called the ''Organisational Platform of the General Union of Anarchists (Draft)'', was supported. Platformist groups active today include the Workers Solidarity Movement in Ireland and the North Eastern Federation of Anarchist Communists of North America. Synthesis anarchism emerged as an organisational alternative to platformism that tries to join anarchists of different tendencies under the principles of anarchism without adjectives. In the 1920s this form found as its main proponents Volin and Sebastien Faure. It is the main principle behind the anarchist federations grouped around the contemporary global International of Anarchist Federations.\n", + "\n", + "===Conflicts with European fascist regimes===\n", + "\n", + "\n", + "\n", + "In the 1920s and 1930s, the rise of fascism in Europe transformed anarchism's conflict with the state. Italy saw the first struggles between anarchists and fascists. Italian anarchists played a key role in the anti-fascist organisation ''Arditi del Popolo'', which was strongest in areas with anarchist traditions, and achieved some success in their activism, such as repelling Blackshirts in the anarchist stronghold of Parma in August 1922. The veteran Italian anarchist, Luigi Fabbri, was one of the first critical theorists of fascism, describing it as \"the preventive counter-revolution.\" In France, where the far right leagues came close to insurrection in the February 1934 riots, anarchists divided over a united front policy.\n", + "\n", + "Anarchists in France and Italy were active in the Resistance during World War II. In Germany the anarchist Erich Mühsam was arrested on charges unknown in the early morning hours of 28 February 1933, within a few hours after the Reichstag fire in Berlin. Joseph Goebbels, the Nazi propaganda minister, labelled him as one of \"those Jewish subversives.\" Over the next seventeen months, he would be imprisoned in the concentration camps at Sonnenburg, Brandenburg and finally, Oranienburg. On 2 February 1934, Mühsam was transferred to the concentration camp at Oranienburg when finally on the night of 9 July 1934, Mühsam was tortured and murdered by the guards, his battered corpse found hanging in a latrine the next morning.\n", + "\n", + "===Spanish Revolution===\n", + "\n", + "In Spain, the national anarcho-syndicalist trade union Confederación Nacional del Trabajo initially refused to join a popular front electoral alliance, and abstention by CNT supporters led to a right wing election victory. But in 1936, the CNT changed its policy and anarchist votes helped bring the popular front back to power. Months later, conservative members of the military, with the support of minority extreme-right parties, responded with an attempted coup, causing the Spanish Civil War (1936–1939). In response to the army rebellion, an anarchist-inspired movement of peasants and workers, supported by armed militias, took control of Barcelona and of large areas of rural Spain where they collectivised the land. But even before the fascist victory in 1939, the anarchists were losing ground in a bitter struggle with the Stalinists, who controlled much of the distribution of military aid to the Republican cause from the Soviet Union. According to Noam Chomsky, \"the communists were mainly responsible for the destruction of the Spanish anarchists. Not just in Catalonia—the communist armies mainly destroyed the collectives elsewhere. The communists basically acted as the police force of the security system of the Republic and were very much opposed to the anarchists, partially because Stalin still hoped at that time to have some kind of pact with Western countries against Hitler. That, of course, failed and Stalin withdrew the support to the Republic. They even withdrew the Spanish gold reserves.\" The events known as the Spanish Revolution was a workers' social revolution that began during the outbreak of the Spanish Civil War in 1936 and resulted in the widespread implementation of anarchist and more broadly libertarian socialist organisational principles throughout various portions of the country for two to three years, primarily Catalonia, Aragon, Andalusia, and parts of the Levante. Much of Spain's economy was put under worker control; in anarchist strongholds like Catalonia, the figure was as high as 75%, but lower in areas with heavy Communist Party of Spain influence, as the Soviet-allied party actively resisted attempts at collectivisation enactment. Factories were run through worker committees, agrarian areas became collectivised and run as libertarian communes. Anarchist historian Sam Dolgoff estimated that about eight million people participated directly or at least indirectly in the Spanish Revolution, which he claimed \"came closer to realising the ideal of the free stateless society on a vast scale than any other revolution in history.\" Spanish Communist Party-led troops suppressed the collectives and persecuted both dissident Marxists and anarchists. The prominent Italian anarchist Camillo Berneri, who volunteered to fight against Franco was killed instead in Spain by gunmen associated with the Spanish Communist Party. The city of Madrid was turned over to the francoist forces by the last non-francoist mayor of the city, the anarchist Melchor Rodríguez García.\n", + "\n", + "===Post-war years===\n", + "\n", + "\n", + "Anarchism sought to reorganise itself after the war and in this context the organisational debate between synthesis anarchism and platformism took importance once again especially in the anarchist movements of Italy and France. The Mexican Anarchist Federation was established in 1945 after the Anarchist Federation of the Centre united with the Anarchist Federation of the Federal District. In the early 1940s, the Antifascist International Solidarity and the Federation of Anarchist Groups of Cuba merged into the large national organisation Asociación Libertaria de Cuba (Cuban Libertarian Association). From 1944 to 1947, the Bulgarian Anarchist Communist Federation reemerged as part of a factory and workplace committee movement, but was repressed by the new Communist regime. In 1945 in France the Fédération Anarchiste and the anarchosyndicalist trade union Confédération nationale du travail was established in the next year while the also synthesist Federazione Anarchica Italiana was founded in Italy. Korean anarchists formed the League of Free Social Constructors in September 1945 and in 1946 the Japanese Anarchist Federation was founded. An International Anarchist Congress with delegates from across Europe was held in Paris in May 1948. After World War II, an appeal in the ''Fraye Arbeter Shtime'' detailing the plight of German anarchists and called for Americans to support them. By February 1946, the sending of aid parcels to anarchists in Germany was a large-scale operation. The Federation of Libertarian Socialists was founded in Germany in 1947 and Rudolf Rocker wrote for its organ, ''Die Freie Gesellschaft'', which survived until 1953. In 1956 the Uruguayan Anarchist Federation was founded. In 1955 the Anarcho-Communist Federation of Argentina renamed itself as the Argentine Libertarian Federation. The Syndicalist Workers' Federation was a syndicalist group in active in post-war Britain, and one of Solidarity Federation's earliest predecessors. It was formed in 1950 by members of the dissolved Anarchist Federation of Britain. Unlike the AFB, which was influenced by anarcho-syndicalist ideas but ultimately not syndicalist itself, the SWF decided to pursue a more definitely syndicalist, worker-centred strategy from the outset.\n", + "\n", + "Anarchism continued to influence important literary and intellectual personalities of the time, such as Albert Camus, Herbert Read, Paul Goodman, Dwight Macdonald, Allen Ginsberg, George Woodcock, Leopold Kohr, Julian Beck, John Cage and the French Surrealist group led by André Breton, which now openly embraced anarchism and collaborated in the Fédération Anarchiste.\n", + "\n", + "Anarcho-pacifism became influential in the Anti-nuclear movement and anti war movements of the time as can be seen in the activism and writings of the English anarchist member of Campaign for Nuclear Disarmament Alex Comfort or the similar activism of the American catholic anarcho-pacifists Ammon Hennacy and Dorothy Day. Anarcho-pacifism became a \"basis for a critique of militarism on both sides of the Cold War.\" The resurgence of anarchist ideas during this period is well documented in Robert Graham's Anarchism: A Documentary History of Libertarian Ideas, ''Volume Two: The Emergence of the New Anarchism (1939–1977)''.\n", + "\n", + "===Contemporary anarchism===\n", + "\n", + "squat near Parc Güell, overlooking Barcelona. Squatting was a prominent part of the emergence of renewed anarchist movement from the counterculture of the 1960s and 1970s. On the roof: \"Occupy and Resist\" A surge of popular interest in anarchism occurred in western nations during the 1960s and 1970s. Anarchism was influential in the Counterculture of the 1960s and anarchists actively participated in the late sixties students and workers revolts. In 1968 in Carrara, Italy the International of Anarchist Federations was founded during an international anarchist conference held there in 1968 by the three existing European federations of France (the Fédération Anarchiste), the Federazione Anarchica Italiana of Italy and the Iberian Anarchist Federation as well as the Bulgarian federation in French exile.\n", + "\n", + "In the United Kingdom in the 1970s this was associated with the punk rock movement, as exemplified by bands such as Crass and the Sex Pistols. The housing and employment crisis in most of Western Europe led to the formation of communes and squatter movements like that of Barcelona, Spain. In Denmark, squatters occupied a disused military base and declared the Freetown Christiania, an autonomous haven in central Copenhagen. Since the revival of anarchism in the mid-20th century, a number of new movements and schools of thought emerged. Although feminist tendencies have always been a part of the anarchist movement in the form of anarcha-feminism, they returned with vigour during the second wave of feminism in the 1960s. Anarchist anthropologist David Graeber and anarchist historian Andrej Grubacic have posited a rupture between generations of anarchism, with those \"who often still have not shaken the sectarian habits\" of the 19th century contrasted with the younger activists who are \"much more informed, among other elements, by indigenous, feminist, ecological and cultural-critical ideas\", and who by the turn of the 21st century formed \"by far the majority\" of anarchists.\n", + "\n", + "Around the turn of the 21st century, anarchism grew in popularity and influence as part of the anti-war, anti-capitalist, and anti-globalisation movements. Anarchists became known for their involvement in protests against the meetings of the World Trade Organization (WTO), Group of Eight, and the World Economic Forum. Some anarchist factions at these protests engaged in rioting, property destruction, and violent confrontations with police. These actions were precipitated by ad hoc, leaderless, anonymous cadres known as ''black blocs''; other organisational tactics pioneered in this time include security culture, affinity groups and the use of decentralised technologies such as the internet. A significant event of this period was the confrontations at WTO conference in Seattle in 1999. According to anarchist scholar Simon Critchley, \"contemporary anarchism can be seen as a powerful critique of the pseudo-libertarianism of contemporary neo-liberalism ... One might say that contemporary anarchism is about responsibility, whether sexual, ecological or socio-economic; it flows from an experience of conscience about the manifold ways in which the West ravages the rest; it is an ethical outrage at the yawning inequality, impoverishment and disenfranchisment that is so palpable locally and globally.\"\n", + "\n", + "International anarchist federations in existence include the International of Anarchist Federations, the International Workers' Association, and International Libertarian Solidarity.\n", + "The largest organised anarchist movement today is in Spain, in the form of the Confederación General del Trabajo (CGT) and the CNT. CGT membership was estimated at around 100,000 for 2003.\n", + "\n", + "Section title: Anarchist schools of thought\n", + "Section text: \n", + "Portrait of philosopher Pierre-Joseph Proudhon (1809–1865) by Gustave Courbet. Proudhon was the primary proponent of anarchist mutualism, and influenced many later individualist anarchist and social anarchist thinkers.\n", + "Anarchist schools of thought had been generally grouped in two main historical traditions, individualist anarchism and social anarchism, which have some different origins, values and evolution. The individualist wing of anarchism emphasises negative liberty, i.e. opposition to state or social control over the individual, while those in the social wing emphasise positive liberty to achieve one's potential and argue that humans have needs that society ought to fulfil, \"recognising equality of entitlement\". In a chronological and theoretical sense, there are classical – those created throughout the 19th century – and post-classical anarchist schools – those created since the mid-20th century and after.\n", + "\n", + "Beyond the specific factions of anarchist thought is philosophical anarchism, which embodies the theoretical stance that the state lacks moral legitimacy without accepting the imperative of revolution to eliminate it. A component especially of individualist anarchism philosophical anarchism may accept the existence of a minimal state as unfortunate, and usually temporary, \"necessary evil\" but argue that citizens do not have a moral obligation to obey the state when its laws conflict with individual autonomy. One reaction against sectarianism within the anarchist milieu was \"anarchism without adjectives\", a call for toleration first adopted by Fernando Tarrida del Mármol in 1889 in response to the \"bitter debates\" of anarchist theory at the time. In abandoning the hyphenated anarchisms (i.e. collectivist-, communist-, mutualist– and individualist-anarchism), it sought to emphasise the anti-authoritarian beliefs common to all anarchist schools of thought.\n", + "\n", + "===Classical anarchist schools of thought===\n", + "\n", + "====Mutualism====\n", + "\n", + "Mutualism began in 18th-century English and French labour movements before taking an anarchist form associated with Pierre-Joseph Proudhon in France and others in the United States. Proudhon proposed spontaneous order, whereby organisation emerges without central authority, a \"positive anarchy\" where order arises when everybody does \"what he wishes and only what he wishes\" and where \"business transactions alone produce the social order.\" Proudhon distinguished between ideal political possibilities and practical governance. For this reason, much in contrast to some of his theoretical statements concerning ultimate spontaneous self-governance, Proudhon was heavily involved in French parliamentary politics and allied himself not with anarchist but socialist factions of workers' movements and, in addition to advocating state-protected charters for worker-owned cooperatives, promoted certain nationalisation schemes during his life of public service.\n", + "\n", + "Mutualist anarchism is concerned with reciprocity, free association, voluntary contract, federation, and credit and currency reform. According to the American mutualist William Batchelder Greene, each worker in the mutualist system would receive \"just and exact pay for his work; services equivalent in cost being exchangeable for services equivalent in cost, without profit or discount.\" Mutualism has been retrospectively characterised as ideologically situated between individualist and collectivist forms of anarchism.''Blackwell Encyclopaedia of Political Thought'', Blackwell Publishing 1991 , p. 11. Proudhon first characterised his goal as a \"third form of society, the synthesis of communism and property.\"\n", + "\n", + "====Individualist anarchism====\n", + "\n", + "Individualist anarchism refers to several traditions of thought within the anarchist movement that emphasise the individual and their will over any kinds of external determinants such as groups, society, traditions, and ideological systems. Individualist anarchism is not a single philosophy but refers to a group of individualistic philosophies that sometimes are in conflict.\n", + "\n", + "In 1793, William Godwin, who has often been cited as the first anarchist, wrote ''Political Justice'', which some consider the first expression of anarchism. Godwin, a philosophical anarchist, from a rationalist and utilitarian basis opposed revolutionary action and saw a minimal state as a present \"necessary evil\" that would become increasingly irrelevant and powerless by the gradual spread of knowledge. Godwin advocated individualism, proposing that all cooperation in labour be eliminated on the premise that this would be most conducive with the general good.\n", + "19th-century philosopher Max Stirner, usually considered a prominent early individualist anarchist (sketch by Friedrich Engels).\n", + "An influential form of individualist anarchism, called \"egoism,\" or egoist anarchism, was expounded by one of the earliest and best-known proponents of individualist anarchism, the German Max Stirner. Stirner's ''The Ego and Its Own'', published in 1844, is a founding text of the philosophy. According to Stirner, the only limitation on the rights of individuals is their power to obtain what they desire, without regard for God, state, or morality. To Stirner, rights were ''spooks'' in the mind, and he held that society does not exist but \"the individuals are its reality\". Stirner advocated self-assertion and foresaw unions of egoists, non-systematic associations continually renewed by all parties' support through an act of will, which Stirner proposed as a form of organisation in place of the state. Egoist anarchists argue that egoism will foster genuine and spontaneous union between individuals. \"Egoism\" has inspired many interpretations of Stirner's philosophy. It was re-discovered and promoted by German philosophical anarchist and homosexual activist John Henry Mackay.\n", + "\n", + "Josiah Warren is widely regarded as the first American anarchist, and the four-page weekly paper he edited during 1833, ''The Peaceful Revolutionist'', was the first anarchist periodical published. For American anarchist historian Eunice Minette Schuster \"It is apparent ... that Proudhonian Anarchism was to be found in the United States at least as early as 1848 and that it was not conscious of its affinity to the Individualist Anarchism of Josiah Warren and Stephen Pearl Andrews ... William B. Greene presented this Proudhonian Mutualism in its purest and most systematic form.\". Henry David Thoreau (1817–1862) was an important early influence in individualist anarchist thought in the United States and Europe. Thoreau was an American author, poet, naturalist, tax resister, development critic, surveyor, historian, philosopher, and leading transcendentalist. He is best known for his books ''Walden'', a reflection upon simple living in natural surroundings, and his essay, ''Civil Disobedience'', an argument for individual resistance to civil government in moral opposition to an unjust state. Later Benjamin Tucker fused Stirner's egoism with the economics of Warren and Proudhon in his eclectic influential publication ''Liberty''.\n", + "\n", + "From these early influences individualist anarchism in different countries attracted a small but diverse following of bohemian artists and intellectuals, free love and birth control advocates (see Anarchism and issues related to love and sex), individualist naturists nudists (see anarcho-naturism), freethought and anti-clerical activists as well as young anarchist outlaws in what became known as illegalism and individual reclamation (see European individualist anarchism and individualist anarchism in France). These authors and activists included Oscar Wilde, Emile Armand, Han Ryner, Henri Zisly, Renzo Novatore, Miguel Gimenez Igualada, Adolf Brand and Lev Chernyi among others.\n", + "\n", + "====Social anarchism====\n", + "\n", + "Social anarchism calls for a system with common ownership of means of production and democratic control of all organisations, without any government authority or coercion. It is the largest school of thought in anarchism. Social anarchism rejects private property, seeing it as a source of social inequality (while retaining respect for personal property), and emphasises cooperation and mutual aid.\n", + "\n", + "=====Collectivist anarchism=====\n", + "\n", + "Collectivist anarchism, also referred to as \"revolutionary socialism\" or a form of such, is a revolutionary form of anarchism, commonly associated with Mikhail Bakunin and Johann Most. Collectivist anarchists oppose all private ownership of the means of production, instead advocating that ownership be collectivised. This was to be achieved through violent revolution, first starting with a small cohesive group through acts of violence, or ''propaganda by the deed'', which would inspire the workers as a whole to revolt and forcibly collectivise the means of production.\n", + "\n", + "However, collectivisation was not to be extended to the distribution of income, as workers would be paid according to time worked, rather than receiving goods being distributed \"according to need\" as in anarcho-communism. This position was criticised by anarchist communists as effectively \"upholding the wages system\". Collectivist anarchism arose contemporaneously with Marxism but opposed the Marxist dictatorship of the proletariat, despite the stated Marxist goal of a collectivist stateless society. Anarchist, communist and collectivist ideas are not mutually exclusive; although the collectivist anarchists advocated compensation for labour, some held out the possibility of a post-revolutionary transition to a communist system of distribution according to need.\n", + "\n", + "=====Anarcho-communism=====\n", + "\n", + "\n", + "Anarchist communism (also known as anarcho-communism, libertarian communism and occasionally as free communism) is a theory of anarchism that advocates abolition of the state, markets, money, private property (while retaining respect for personal property), and capitalism in favour of common ownership of the means of production, direct democracy and a horizontal network of voluntary associations and workers' councils with production and consumption based on the guiding principle: \"from each according to his ability, to each according to his need\".\n", + "\n", + "Russian theorist Peter Kropotkin (1842–1921), who was influential in the development of anarchist communism\n", + "\n", + "Some forms of anarchist communism such as insurrectionary anarchism are strongly influenced by egoism and radical individualism, believing anarcho-communism is the best social system for the realisation of individual freedom. Most anarcho-communists view anarcho-communism as a way of reconciling the opposition between the individual and society.\n", + "\n", + "Anarcho-communism developed out of radical socialist currents after the French revolution but was first formulated as such in the Italian section of the First International. The theoretical work of Peter Kropotkin took importance later as it expanded and developed pro-organisationalist and insurrectionary anti-organisationalist sections. To date, the best known examples of an anarchist communist society (i.e., established around the ideas as they exist today and achieving worldwide attention and knowledge in the historical canon), are the anarchist territories during the Spanish Revolution and the Free Territory during the Russian Revolution. Through the efforts and influence of the Spanish Anarchists during the Spanish Revolution within the Spanish Civil War, starting in 1936 anarchist communism existed in most of Aragon, parts of the Levante and Andalusia, as well as in the stronghold of Anarchist Catalonia before being crushed by the combined forces of the regime that won the war, Hitler, Mussolini, Spanish Communist Party repression (backed by the USSR) as well as economic and armaments blockades from the capitalist countries and the Spanish Republic itself. During the Russian Revolution, anarchists such as Nestor Makhno worked to create and defend – through the Revolutionary Insurrectionary Army of Ukraine – anarchist communism in the Free Territory of the Ukraine from 1919 before being conquered by the Bolsheviks in 1921.\n", + "\n", + "=====Anarcho-syndicalism=====\n", + "\n", + "May day demonstration of Spanish anarcho-syndicalist trade union CNT in Bilbao, Basque Country in 2010Anarcho-syndicalism is a branch of anarchism that focuses on the labour movement. Anarcho-syndicalists view labour unions as a potential force for revolutionary social change, replacing capitalism and the state with a new society democratically self-managed by workers. The basic principles of anarcho-syndicalism are: Workers' solidarity, Direct action and Workers' self-management\n", + "Anarcho-syndicalists believe that only direct action – that is, action concentrated on directly attaining a goal, as opposed to indirect action, such as electing a representative to a government position – will allow workers to liberate themselves. Moreover, anarcho-syndicalists believe that workers' organisations (the organisations that struggle against the wage system, which, in anarcho-syndicalist theory, will eventually form the basis of a new society) should be self-managing. They should not have bosses or \"business agents\"; rather, the workers should be able to make all the decisions that affect them themselves. Rudolf Rocker was one of the most popular voices in the anarcho-syndicalist movement. He outlined a view of the origins of the movement, what it sought, and why it was important to the future of labour in his 1938 pamphlet ''Anarcho-Syndicalism''. The International Workers Association is an international anarcho-syndicalist federation of various labour unions from different countries. The Spanish Confederación Nacional del Trabajo played and still plays a major role in the Spanish labour movement. It was also an important force in the Spanish Civil War.\n", + "\n", + "===Post-classical schools of thought===\n", + "\n", + "Lawrence Jarach (left) and John Zerzan (right), two prominent contemporary anarchist authors. Zerzan is known as prominent voice within anarcho-primitivism, while Jarach is a noted advocate of post-left anarchy.\n", + "Anarchism continues to generate many philosophies and movements, at times eclectic, drawing upon various sources, and syncretic, combining disparate concepts to create new philosophical approaches.\n", + "\n", + "Green anarchism (or eco-anarchism) is a school of thought within anarchism that emphasises environmental issues, with an important precedent in anarcho-naturism, and whose main contemporary currents are anarcho-primitivism and social ecology. Writing from a green anarchist perspective, John Zerzan attributes the ills of today's social degradation to technology and the birth of agricultural civilization. While Layla AbdelRahim argues that \"the shift in human consciousness was also a shift in human subsistence strategies, whereby some human animals reinvented their narrative to center murder and predation and thereby institutionalize violence\". Thus, according to her, civilization was the result of the human development of technologies and grammar for predatory economics. Language and literacy, she claims, are some of these technologies.\n", + "\n", + "Anarcha-feminism (also called anarchist feminism and anarcho-feminism) combines anarchism with feminism. It generally views patriarchy as a manifestation of involuntary coercive hierarchy that should be replaced by decentralised free association. Anarcha-feminists believe that the struggle against patriarchy is an essential part of class struggle, and the anarchist struggle against the state. In essence, the philosophy sees anarchist struggle as a necessary component of feminist struggle and vice versa. L. Susan Brown claims that \"as anarchism is a political philosophy that opposes all relationships of power, it is inherently feminist\". Anarcha-feminism began with the late 19th-century writings of early feminist anarchists such as Emma Goldman and Voltairine de Cleyre.\n", + "\n", + "Anarcho-pacifism is a tendency that rejects violence in the struggle for social change (see non-violence). It developed \"mostly in the Netherlands, Britain, and the United States, before and during the Second World War\". Christian anarchism is a movement in political theology that combines anarchism and Christianity. Its main proponents included Leo Tolstoy, Dorothy Day, Ammon Hennacy, and Jacques Ellul.\n", + "\n", + "Platformism is a tendency within the wider anarchist movement based on the organisational theories in the tradition of Dielo Truda's ''Organisational Platform of the General Union of Anarchists (Draft)''. The document was based on the experiences of Russian anarchists in the 1917 October Revolution, which led eventually to the victory of the Bolsheviks over the anarchists and other groups. The ''Platform'' attempted to address and explain the anarchist movement's failures during the Russian Revolution.\n", + "\n", + "Synthesis anarchism is a form of anarchism that tries to join anarchists of different tendencies under the principles of anarchism without adjectives. In the 1920s, this form found as its main proponents the anarcho-communists Voline and Sébastien Faure. It is the main principle behind the anarchist federations grouped around the contemporary global International of Anarchist Federations.\n", + "\n", + "Post-left anarchy is a recent current in anarchist thought that promotes a critique of anarchism's relationship to traditional Left-wing politics. Some post-leftists seek to escape the confines of ideology in general also presenting a critique of organisations and morality. Influenced by the work of Max Stirner and by the Marxist Situationist International, post-left anarchy is marked by a focus on social insurrection and a rejection of leftist social organisation.\n", + "\n", + "Insurrectionary anarchism is a revolutionary theory, practice, and tendency within the anarchist movement which emphasises insurrection within anarchist practice. It is critical of formal organisations such as labour unions and federations that are based on a political programme and periodic congresses. Instead, insurrectionary anarchists advocate informal organisation and small affinity group based organisation. Insurrectionary anarchists put value in attack, permanent class conflict, and a refusal to negotiate or compromise with class enemies.\n", + "\n", + "Post-anarchism is a theoretical move towards a synthesis of classical anarchist theory and poststructuralist thought, drawing from diverse ideas including post-modernism, autonomist marxism, post-left anarchy, Situationist International, and postcolonialism.\n", + "\n", + "Left-wing market anarchism strongly affirm the classical liberal ideas of self-ownership and free markets, while maintaining that, taken to their logical conclusions, these ideas support strongly anti-corporatist, anti-hierarchical, pro-labour positions and anti-capitalism in economics and anti-imperialism in foreign policy.\n", + "\n", + "Anarcho-capitalism advocates the elimination of the state in favour of self-ownership in a free market. Anarcho-capitalism developed from radical anti-state libertarianism and individualist anarchism, drawing from Austrian School economics, study of law and economics, and public choice theory. There is a strong current within anarchism which believes that anarcho-capitalism cannot be considered a part of the anarchist movement, due to the fact that anarchism has historically been an anti-capitalist movement and for definitional reasons which see anarchism as incompatible with capitalist forms.\n", + "\n", + "\n", + "Section title: Internal issues and debates\n", + "Section text: \n", + "consistent with anarchist values is a controversial subject among anarchists.\n", + "\n", + "Anarchism is a philosophy that embodies many diverse attitudes, tendencies and schools of thought; as such, disagreement over questions of values, ideology and tactics is common. The compatibility of capitalism, nationalism, and religion with anarchism is widely disputed. Similarly, anarchism enjoys complex relationships with ideologies such as Marxism, communism, collectivism, syndicalism/trade unionism, and capitalism. Anarchists may be motivated by humanism, divine authority, enlightened self-interest, veganism or any number of alternative ethical doctrines.\n", + "\n", + "Phenomena such as civilisation, technology (e.g. within anarcho-primitivism), and the democratic process may be sharply criticised within some anarchist tendencies and simultaneously lauded in others.\n", + "\n", + "On a tactical level, while propaganda of the deed was a tactic used by anarchists in the 19th century (e.g. the Nihilist movement), some contemporary anarchists espouse alternative direct action methods such as nonviolence, counter-economics and anti-state cryptography to bring about an anarchist society. About the scope of an anarchist society, some anarchists advocate a global one, while others do so by local ones. The diversity in anarchism has led to widely different use of identical terms among different anarchist traditions, which has led to many definitional concerns in anarchist theory.\n", + "\n", + "\n", + "Section title: Topics of interest\n", + "Section text: Intersecting and overlapping between various schools of thought, certain topics of interest and internal disputes have proven perennial within anarchist theory.\n", + "\n", + "===Free love===\n", + "\n", + "French individualist anarchist Emile Armand (1872–1962), who propounded the virtues of free love in the Parisian anarchist milieu of the early 20th century\n", + "An important current within anarchism is free love. Free love advocates sometimes traced their roots back to Josiah Warren and to experimental communities, viewed sexual freedom as a clear, direct expression of an individual's sovereignty. Free love particularly stressed women's rights since most sexual laws discriminated against women: for example, marriage laws and anti-birth control measures. The most important American free love journal was ''Lucifer the Lightbearer'' (1883–1907) edited by Moses Harman and Lois Waisbrooker, but also there existed Ezra Heywood and Angela Heywood's ''The Word'' (1872–1890, 1892–1893). ''Free Society'' (1895–1897 as ''The Firebrand''; 1897–1904 as ''Free Society'') was a major anarchist newspaper in the United States at the end of the 19th and beginning of the 20th centuries. The publication advocated free love and women's rights, and critiqued \"Comstockery\" – censorship of sexual information. Also M. E. Lazarus was an important American individualist anarchist who promoted free love.\n", + "\n", + "In New York City's Greenwich Village, bohemian feminists and socialists advocated self-realisation and pleasure for women (and also men) in the here and now. They encouraged playing with sexual roles and sexuality, and the openly bisexual radical Edna St. Vincent Millay and the lesbian anarchist Margaret Anderson were prominent among them. Discussion groups organised by the Villagers were frequented by Emma Goldman, among others. Magnus Hirschfeld noted in 1923 that Goldman \"has campaigned boldly and steadfastly for individual rights, and especially for those deprived of their rights. Thus it came about that she was the first and only woman, indeed the first and only American, to take up the defence of homosexual love before the general public.\" In fact, before Goldman, heterosexual anarchist Robert Reitzel (1849–1898) spoke positively of homosexuality from the beginning of the 1890s in his Detroit-based German language journal ''Der arme Teufel'' (English: The Poor Devil). In Argentina anarcha-feminist Virginia Bolten published the newspaper called '''' (English: The Woman's Voice), which was published nine times in Rosario between 8 January 1896 and 1 January 1897, and was revived, briefly, in 1901.\n", + "\n", + "In Europe the main propagandist of free love within individualist anarchism was Emile Armand. He proposed the concept of ''la camaraderie amoureuse'' to speak of free love as the possibility of voluntary sexual encounter between consenting adults. He was also a consistent proponent of polyamory. In Germany the stirnerists Adolf Brand and John Henry Mackay were pioneering campaigners for the acceptance of male bisexuality and homosexuality. Mujeres Libres was an anarchist women's organisation in Spain that aimed to empower working class women. It was founded in 1936 by Lucía Sánchez Saornil, Mercedes Comaposada and Amparo Poch y Gascón and had approximately 30,000 members. The organisation was based on the idea of a \"double struggle\" for women's liberation and social revolution and argued that the two objectives were equally important and should be pursued in parallel. In order to gain mutual support, they created networks of women anarchists. Lucía Sánchez Saornil was a main founder of the Spanish anarcha-feminist federation Mujeres Libres who was open about her lesbianism. She was published in a variety of literary journals where working under a male pen name, she was able to explore lesbian themes at a time when homosexuality was criminalised and subject to censorship and punishment.\n", + "\n", + "More recently, the British anarcho-pacifist Alex Comfort gained notoriety during the sexual revolution for writing the bestseller sex manual ''The Joy of Sex''. The issue of free love has a dedicated treatment in the work of French anarcho-hedonist philosopher Michel Onfray in such works as ''Théorie du corps amoureux : pour une érotique solaire'' (2000) and ''L'invention du plaisir : fragments cyréaniques'' (2002).\n", + "\n", + "===Libertarian education and freethought===\n", + "\n", + "Francesc Ferrer i Guàrdia, Catalan anarchist pedagogue and free-thinker For English anarchist William Godwin education was \"the main means by which change would be achieved.\" Godwin saw that the main goal of education should be the promotion of happiness. For Godwin education had to have \"A respect for the child's autonomy which precluded any form of coercion,\" \"A pedagogy that respected this and sought to build on the child's own motivation and initiatives,\" and \"A concern about the child's capacity to resist an ideology transmitted through the school.\" In his ''Political Justice'' he criticises state sponsored schooling \"on account of its obvious alliance with national government\". Early American anarchist Josiah Warren advanced alternative education experiences in the libertarian communities he established. Max Stirner wrote in 1842 a long essay on education called ''The False Principle of our Education''. In it Stirner names his educational principle \"personalist,\" explaining that self-understanding consists in hourly self-creation. Education for him is to create \"free men, sovereign characters,\" by which he means \"eternal characters ... who are therefore eternal because they form themselves each moment\".\n", + "\n", + "In the United States \"freethought was a basically anti-christian, anti-clerical movement, whose purpose was to make the individual politically and spiritually free to decide for himself on religious matters. A number of contributors to ''Liberty'' (anarchist publication) were prominent figures in both freethought and anarchism. The individualist anarchist George MacDonald was a co-editor of ''Freethought'' and, for a time, ''The Truth Seeker''. E.C. Walker was co-editor of the excellent free-thought / free love journal ''Lucifer, the Light-Bearer''\". \"Many of the anarchists were ardent freethinkers; reprints from freethought papers such as ''Lucifer, the Light-Bearer'', ''Freethought'' and ''The Truth Seeker'' appeared in ''Liberty''... The church was viewed as a common ally of the state and as a repressive force in and of itself\".\n", + "\n", + "In 1901, Catalan anarchist and free-thinker Francesc Ferrer i Guàrdia established \"modern\" or progressive schools in Barcelona in defiance of an educational system controlled by the Catholic Church. The schools' stated goal was to \"educate the working class in a rational, secular and non-coercive setting\". Fiercely anti-clerical, Ferrer believed in \"freedom in education\", education free from the authority of church and state. Murray Bookchin wrote: \"This period 1890s was the heyday of libertarian schools and pedagogical projects in all areas of the country where Anarchists exercised some degree of influence. Perhaps the best-known effort in this field was Francisco Ferrer's Modern School (Escuela Moderna), a project which exercised a considerable influence on Catalan education and on experimental techniques of teaching generally.\" La Escuela Moderna, and Ferrer's ideas generally, formed the inspiration for a series of ''Modern Schools'' in the United States, Cuba, South America and London. The first of these was started in New York City in 1911. It also inspired the Italian newspaper ''Università popolare'', founded in 1901. Russian christian anarchist Leo Tolstoy established a school for peasant children on his estate. Tolstoy's educational experiments were short-lived due to harassment by the Tsarist secret police. Tolstoy established a conceptual difference between education and culture. He thought that \"Education is the tendency of one man to make another just like himself ... Education is culture under restraint, culture is free. Education is when the teaching is forced upon the pupil, and when then instruction is exclusive, that is when only those subjects are taught which the educator regards as necessary\". For him \"without compulsion, education was transformed into culture\".\n", + "\n", + "A more recent libertarian tradition on education is that of unschooling and the free school in which child-led activity replaces pedagogic approaches. Experiments in Germany led to A. S. Neill founding what became Summerhill School in 1921. Summerhill is often cited as an example of anarchism in practice. However, although Summerhill and other free schools are radically libertarian, they differ in principle from those of Ferrer by not advocating an overtly political class struggle-approach.\n", + "In addition to organising schools according to libertarian principles, anarchists have also questioned the concept of schooling per se. The term deschooling was popularised by Ivan Illich, who argued that the school as an institution is dysfunctional for self-determined learning and serves the creation of a consumer society instead.\n", + "\n", + "Section title: Criticisms\n", + "Section text: \n", + "Criticisms of anarchism include moral criticisms and pragmatic criticisms. Anarchism is often evaluated as unfeasible or utopian by its critics.\n", + "\n", + "Section title: See also\n", + "Section text: * Anarchism by country\n", + "\n", + "Section title: References\n", + "Section text: \n", + "\n", + "Section title: Further reading\n", + "Section text: * Barclay, Harold, ''People Without Government: An Anthropology of Anarchy'' (2nd ed.), Left Bank Books, 1990 \n", + "* Blumenfeld, Jacob; Bottici, Chiara; Critchley, Simon, eds., ''The Anarchist Turn'', Pluto Press. 19 March 2013. \n", + "* Carter, April, ''The Political Theory of Anarchism'', Harper & Row. 1971. \n", + "* Federici, Silvia, '' Caliban and the Witch: Women, the Body, and Primitive Accumulation'', Autonomedia, 2004. . \n", + "* Gordon, Uri, ''Anarchy Alive!'', London: Pluto Press, 2007.\n", + "* Graeber, David. ''Fragments of an Anarchist Anthropology'', Chicago: Prickly Paradigm Press, 2004\n", + "* Graham, Robert, ed., ''Anarchism: A Documentary History of Libertarian Ideas''.\n", + "** ''Volume One: From Anarchy to Anarchism (300CE to 1939)'', Black Rose Books, Montréal and London 2005. .\n", + "** ''Volume Two: The Anarchist Current (1939–2006)'', Black Rose Books, Montréal 2007. .\n", + "* Guérin, Daniel, ''Anarchism: From Theory to Practice'', Monthly Review Press. 1970. \n", + "* Harper, Clifford, ''Anarchy: A Graphic Guide'', (Camden Press, 1987): An overview, updating Woodcock's classic, and illustrated throughout by Harper's woodcut-style artwork.\n", + "* Le Guin, Ursula, ''The Dispossessed'', New York : Harper & Row, 1974. (first edition, hardcover)\n", + "* McKay, Iain, ed., ''An Anarchist FAQ''.\n", + "** ''Volume I'', AK Press, Oakland/Edinburgh 2008; 558 pages, .\n", + "** ''Volume II'', AK Press, Oakland/Edinburgh 2012; 550 Pages, \n", + "* McLaughlin, Paul, ''Anarchism and Authority: A Philosophical Introduction to Classical Anarchism'', AshGate. 2007. \n", + "* Marshall, Peter, ''Demanding the Impossible: A History of Anarchism'', PM Press. 2010. \n", + "* Nettlau, Max, ''Anarchy through the times'', Gordon Press. 1979. \n", + "* \n", + "* Scott, James C., ''Two Cheers for Anarchism: Six Easy Pieces on Autonomy, Dignity, and Meaningful Work and Play'', Princeton, NJ: Princeton University Press, 2012. .\n", + "*\n", + "* Woodcock, George, ''Anarchism: A History of Libertarian Ideas and Movements'' (Penguin Books, 1962). . .\n", + "* Woodcock, George, ed., ''The Anarchist Reader'' (Fontana/Collins 1977; ): An anthology of writings from anarchist thinkers and activists including Proudhon, Kropotkin, Bakunin, Malatesta, Bookchin, Goldman, and many others.\n", + "\n", + "Section title: External links\n", + "Section text: \n", + "* \n", + "* \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "source": [ + "data = api.load(\"wiki-english-20171001\")\n", + "for article in data:\n", + " for section_title, section_text in zip(article['section_titles'],\n", + " article['section_texts']):\n", + " print(\"Section title: %s\" % section_title)\n", + " print(\"Section text: %s\" % section_text)\n", + " break" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": { + "lines_to_next_cell": 2, + "scrolled": true + }, + "outputs": [], + "source": [ + "def wiki_articles_iterator():\n", + " for article in tqdm_notebook(data):\n", + " yield (\n", + " preprocess_string(\n", + " \" \".join(\n", + " \" \".join(section)\n", + " for section\n", + " in zip(article['section_titles'], article['section_texts'])\n", + " )\n", + " )\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [], + "source": [ + "def save_preprocessed_articles(filename, articles):\n", + " with open(filename, 'w+') as writer:\n", + " for article in tqdm_notebook(articles):\n", + " writer.write(\n", + " json.dumps(\n", + " preprocess_string(\n", + " \" \".join(\n", + " \" \".join(section)\n", + " for section\n", + " in zip(article['section_titles'],\n", + " article['section_texts'])\n", + " )\n", + " )\n", + " ) + '\\n'\n", + " )\n", + "\n", + "\n", + "def get_preprocessed_articles(filename):\n", + " with open(filename, 'r') as reader:\n", + " for line in tqdm_notebook(reader):\n", + " yield json.loads(\n", + " line\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [], + "source": [ + "# save_preprocessed_articles('wiki_articles.jsonlines', data)" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": {}, + "outputs": [], + "source": [ + "# dictionary = Dictionary(get_preprocessed_articles('wiki_articles.jsonlines'))\n", + "\n", + "# dictionary.save('wiki.dict')" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-11 15:12:35,858 : INFO : loading Dictionary object from wiki.dict\n", + "2019-01-11 15:12:36,690 : INFO : loaded wiki.dict\n", + "2019-01-11 15:12:38,849 : INFO : discarding 1990258 tokens: [('abdelrahim', 49), ('abstention', 120), ('ammon', 1736), ('amoureus', 359), ('amoureux', 566), ('amparo', 1178), ('anarcha', 101), ('anarchica', 40), ('anarcho', 1433), ('anarchosyndicalist', 20)]...\n", + "2019-01-11 15:12:38,850 : INFO : keeping 20000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", + "2019-01-11 15:12:39,101 : INFO : resulting dictionary: Dictionary(20000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" + ] + } + ], + "source": [ + "dictionary = Dictionary.load('wiki.dict')\n", + "dictionary.filter_extremes(keep_n=20000)\n", + "dictionary.compactify()" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [], + "source": [ + "class RandomCorpus(MmCorpus):\n", + " def __init__(self, random_seed=42, testset=False, testsize=1000, *args,\n", + " **kwargs):\n", + " super().__init__(*args, **kwargs)\n", + "\n", + " random_state = np.random.RandomState(random_seed)\n", + " # TODO: Don't forget to remove that before push\n", + " self.indices = random_state.permutation(range(self.num_docs))[:4000]\n", + " if testset:\n", + " self.indices = self.indices[:testsize]\n", + " else:\n", + " self.indices = self.indices[testsize:]\n", + "\n", + " def __iter__(self):\n", + " for doc_id in self.indices:\n", + " yield self[doc_id]" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# corpus = (\n", + "# dictionary.doc2bow(article)\n", + "# for article\n", + "# in get_preprocessed_articles('wiki_articles.jsonlines')\n", + "# )\n", + "\n", + "# RandomCorpus.serialize('wiki.mm', corpus)" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-11 15:12:39,759 : INFO : loaded corpus index from wiki.mm.index\n", + "2019-01-11 15:12:39,760 : INFO : initializing cython corpus reader from wiki.mm\n", + "2019-01-11 15:12:39,761 : INFO : accepted corpus with 4924894 documents, 20000 features, 629448427 non-zero entries\n", + "2019-01-11 15:12:41,013 : INFO : loaded corpus index from wiki.mm.index\n", + "2019-01-11 15:12:41,014 : INFO : initializing cython corpus reader from wiki.mm\n", + "2019-01-11 15:12:41,015 : INFO : accepted corpus with 4924894 documents, 20000 features, 629448427 non-zero entries\n" + ] + } + ], + "source": [ + "train_corpus = RandomCorpus(\n", + " random_seed=42, testset=False, testsize=1, fname='wiki.mm'\n", + ")\n", + "test_corpus = RandomCorpus(\n", + " random_seed=42, testset=True, testsize=1, fname='wiki.mm'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [], + "source": [ + "def get_execution_time(func):\n", + " start = time.time()\n", + " result = func()\n", + "\n", + " return (time.time() - start), result\n", + "\n", + "\n", + "def get_tm_perplexity(W, H, dense_corpus):\n", + " pred_factors = W.dot(H)\n", + "\n", + " return np.exp(-(np.log(pred_factors,\n", + " where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum())\n", + "\n", + "\n", + "def get_tm_l2_norm(model, corpus):\n", + " l2_norm = 0\n", + " for bow_id, bow in enumerate(test_corpus):\n", + " doc = matutils.corpus2csc([bow], len(model.id2word))\n", + " doc /= doc.sum()\n", + "\n", + " pred_factors = scipy.sparse.csc_matrix([\n", + " proba for idx, proba in model[bow]\n", + " ])\n", + "\n", + " l2_norm += scipy.sparse.linalg.norm(doc - pred_factors)**2\n", + "\n", + " return np.sqrt(l2_norm)\n", + "\n", + "\n", + "def get_tm_metrics(model, test_corpus):\n", + " W = model.get_topics().T\n", + " H = np.zeros((model.num_topics, len(test_corpus)))\n", + " for bow_id, bow in enumerate(test_corpus):\n", + " for topic_id, proba in model[bow]:\n", + " H[topic_id, bow_id] = proba\n", + "\n", + " perplexity = get_tm_perplexity(W, H, test_corpus)\n", + "\n", + " coherence = CoherenceModel(\n", + " model=model,\n", + " corpus=test_corpus,\n", + " coherence='u_mass'\n", + " ).get_coherence()\n", + "\n", + " l2_norm = get_tm_l2_norm(W, H, test_corpus)\n", + "\n", + " topics = model.show_topics()\n", + "\n", + " return dict(\n", + " perplexity=perplexity,\n", + " coherence=coherence,\n", + " topics=topics,\n", + " l2_norm=l2_norm,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [], + "source": [ + "tm_metrics = pd.DataFrame()" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [], + "source": [ + "params = dict(\n", + " corpus=train_corpus,\n", + " chunksize=2000,\n", + " num_topics=50,\n", + " id2word=dictionary,\n", + " passes=1,\n", + " eval_every=10,\n", + " minimum_probability=0,\n", + " random_state=42,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-11 15:12:52,360 : INFO : Loss (no outliers): 2060.2597369446694\tLoss (with outliers): 2060.2597369446694\n", + "2019-01-11 15:12:52,371 : INFO : saving Nmf object under nmf.model, separately None\n", + "2019-01-11 15:12:52,464 : INFO : saved nmf.model\n" + ] + } + ], + "source": [ + "row = dict()\n", + "row['model'] = 'nmf'\n", + "row['train_time'], nmf = get_execution_time(\n", + " lambda: Nmf(use_r=False, **params)\n", + ")\n", + "nmf.save('nmf.model')" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "inconsistent shapes", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mget_tm_l2_norm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnmf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_corpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_tm_l2_norm\u001b[0;34m(model, corpus)\u001b[0m\n\u001b[1;32m 23\u001b[0m ])\n\u001b[1;32m 24\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 25\u001b[0;31m \u001b[0ml2_norm\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msparse\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinalg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnorm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdoc\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mpred_factors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 26\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ml2_norm\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/base.py\u001b[0m in \u001b[0;36m__sub__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 430\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misspmatrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 431\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 432\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"inconsistent shapes\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 433\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sub_sparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 434\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misdense\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: inconsistent shapes" + ] + } + ], + "source": [ + "get_tm_l2_norm(nmf, test_corpus)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-11 14:44:55,275 : INFO : loading Nmf object from nmf.model\n", + "2019-01-11 14:44:55,316 : INFO : loading id2word recursively from nmf.model.id2word.* with mmap=None\n", + "2019-01-11 14:44:55,317 : INFO : loaded nmf.model\n" + ] + }, + { + "ename": "MemoryError", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mMemoryError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mnmf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNmf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'nmf.model'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mrow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_tm_metrics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnmf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_corpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mtm_metrics\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtm_metrics\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSeries\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrow\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnmf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_tm_metrics\u001b[0;34m(model, test_corpus)\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 42\u001b[0;31m \u001b[0mperplexity\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_tm_perplexity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mW\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_dense_corpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 43\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m coherence = CoherenceModel(\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_tm_perplexity\u001b[0;34m(W, H, dense_corpus)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_tm_perplexity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mW\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_corpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mpred_factors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mW\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mH\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m return np.exp(-(np.log(pred_factors,\n", + "\u001b[0;31mMemoryError\u001b[0m: " + ] + } + ], + "source": [ + "nmf = Nmf.load('nmf.model')\n", + "row.update(get_tm_metrics(nmf, test_corpus))\n", + "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", + "\n", + "nmf.show_topics(50)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mrow\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'model'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'nmf_with_r'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m row['train_time'], nmf_with_r = get_execution_time(\n\u001b[0;32m----> 4\u001b[0;31m lambda: Nmf(\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0muse_r\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mlambda_\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_execution_time\u001b[0;34m(func)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_execution_time\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0muse_r\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mlambda_\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;34m**\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m )\n\u001b[1;32m 9\u001b[0m )\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, corpus, num_topics, id2word, chunksize, passes, lambda_, kappa, minimum_probability, use_r, w_max_iter, w_stop_condition, h_r_max_iter, h_r_stop_condition, eval_every, v_max, normalize, sparse_coef, random_state)\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcorpus\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 122\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 123\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0mv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmatutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcorpus2csc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mid2word\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtocsr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 463\u001b[0m self._h, self._r = self._solveproj(\n\u001b[0;32m--> 464\u001b[0;31m \u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_r\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_h\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv_max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv_max\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 465\u001b[0m )\n\u001b[1;32m 466\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_h\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_r\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m_solveproj\u001b[0;34m(self, v, W, h, r, v_max)\u001b[0m\n\u001b[1;32m 608\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muse_r\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 610\u001b[0;31m \u001b[0mr_actual\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mv\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mW\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 611\u001b[0m error_ = max(\n\u001b[1;32m 612\u001b[0m \u001b[0merror_\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/base.py\u001b[0m in \u001b[0;36m__sub__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 431\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 432\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"inconsistent shapes\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 433\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sub_sparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 434\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misdense\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 435\u001b[0m \u001b[0mother\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbroadcast_to\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/compressed.py\u001b[0m in \u001b[0;36m_sub_sparse\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 344\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_sub_sparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 345\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_binopt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'_minus_'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 346\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 347\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmultiply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/compressed.py\u001b[0m in \u001b[0;36m_binopt\u001b[0;34m(self, other, op)\u001b[0m\n\u001b[1;32m 1130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_binopt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1131\u001b[0m \u001b[0;34m\"\"\"apply the binary operation fn to two sparse matrices.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1132\u001b[0;31m \u001b[0mother\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1133\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1134\u001b[0m \u001b[0;31m# e.g. csr_plus_csr, csr_minus_csr, etc.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/compressed.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, arg1, shape, dtype, copy)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0marg1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marg1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 32\u001b[0;31m \u001b[0marg1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marg1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 33\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_self\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/base.py\u001b[0m in \u001b[0;36masformat\u001b[0;34m(self, format, copy)\u001b[0m\n\u001b[1;32m 324\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Format {} is unknown.'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 326\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mconvert_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 327\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[0;31m###################################################################\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/csc.py\u001b[0m in \u001b[0;36mtocsr\u001b[0;34m(self, copy)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0mindptr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 151\u001b[0;31m data)\n\u001b[0m\u001b[1;32m 152\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 153\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mcsr\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcsr_matrix\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "row = dict()\n", + "row['model'] = 'nmf_with_r'\n", + "row['train_time'], nmf_with_r = get_execution_time(\n", + " lambda: Nmf(\n", + " use_r=True,\n", + " lambda_=200,\n", + " **params\n", + " )\n", + ")\n", + "nmf_with_r.save('nmf_with_r.model')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "nmf_with_r = Nmf.load('nmf_with_r.model')\n", + "row.update(get_tm_metrics(nmf_with_r, test_corpus))\n", + "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", + "\n", + "nmf_with_r.show_topics(50)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "row = dict()\n", + "row['model'] = 'lda'\n", + "row['train_time'], lda = get_execution_time(\n", + " lambda: LdaModel(**params)\n", + ")\n", + "lda.save('lda.model')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lda = LdaModel.load('lda.model')\n", + "row.update(get_tm_metrics(lda, test_corpus))\n", + "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", + "\n", + "lda.show_topics(50)" + ] + } + ], + "metadata": { + "jupytext": { + "text_representation": { + "extension": ".py", + "format_name": "percent", + "format_version": "1.2", + "jupytext_version": "0.8.6" + } + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From c4d6ebd3a81bf1b0633a4a315e54f6b246a7fc5d Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Tue, 15 Jan 2019 14:11:19 +0300 Subject: [PATCH 135/144] Add more description and metrics --- docs/notebooks/nmf_wikipedia.ipynb | 961 ++++++++++++++++++++++++----- 1 file changed, 807 insertions(+), 154 deletions(-) diff --git a/docs/notebooks/nmf_wikipedia.ipynb b/docs/notebooks/nmf_wikipedia.ipynb index 654d5add6d..03fafc52bb 100644 --- a/docs/notebooks/nmf_wikipedia.ipynb +++ b/docs/notebooks/nmf_wikipedia.ipynb @@ -14,43 +14,28 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", "import itertools\n", "import json\n", "import logging\n", "import numpy as np\n", "import pandas as pd\n", "import scipy.sparse\n", + "import time\n", "from tqdm import tqdm, tqdm_notebook\n", "\n", "import gensim.downloader as api\n", "from gensim import matutils\n", "from gensim.corpora import MmCorpus, Dictionary\n", - "from gensim.models import LdaModel\n", + "from gensim.models import LdaModel, CoherenceModel\n", "from gensim.models.nmf import Nmf\n", - "from gensim.parsing.preprocessing import preprocess_string" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", + "from gensim.parsing.preprocessing import preprocess_string\n", "\n", "tqdm.pandas()\n", "\n", @@ -58,9 +43,24 @@ " level=logging.INFO)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Preprocessing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load wikipedia dump\n", + "Let's use gensim.downloader.api for that" + ] + }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 2, "metadata": { "lines_to_next_cell": 2 }, @@ -383,12 +383,18 @@ " break" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Preprocess and save articles" + ] + }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 3, "metadata": { - "lines_to_next_cell": 2, - "scrolled": true + "lines_to_next_cell": 2 }, "outputs": [], "source": [ @@ -402,17 +408,8 @@ " in zip(article['section_titles'], article['section_texts'])\n", " )\n", " )\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": { - "lines_to_next_cell": 2 - }, - "outputs": [], - "source": [ + " )\n", + "\n", "def save_preprocessed_articles(filename, articles):\n", " with open(filename, 'w+') as writer:\n", " for article in tqdm_notebook(articles):\n", @@ -440,17 +437,29 @@ }, { "cell_type": "code", - "execution_count": 148, - "metadata": {}, + "execution_count": 4, + "metadata": { + "lines_to_next_cell": 2 + }, "outputs": [], "source": [ "# save_preprocessed_articles('wiki_articles.jsonlines', data)" ] }, { - "cell_type": "code", - "execution_count": 149, + "cell_type": "markdown", "metadata": {}, + "source": [ + "### Create and save dictionary" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "lines_to_next_cell": 2, + "scrolled": true + }, "outputs": [], "source": [ "# dictionary = Dictionary(get_preprocessed_articles('wiki_articles.jsonlines'))\n", @@ -458,9 +467,16 @@ "# dictionary.save('wiki.dict')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load and filter dictionary" + ] + }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 6, "metadata": { "lines_to_next_cell": 2 }, @@ -469,11 +485,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 15:12:35,858 : INFO : loading Dictionary object from wiki.dict\n", - "2019-01-11 15:12:36,690 : INFO : loaded wiki.dict\n", - "2019-01-11 15:12:38,849 : INFO : discarding 1990258 tokens: [('abdelrahim', 49), ('abstention', 120), ('ammon', 1736), ('amoureus', 359), ('amoureux', 566), ('amparo', 1178), ('anarcha', 101), ('anarchica', 40), ('anarcho', 1433), ('anarchosyndicalist', 20)]...\n", - "2019-01-11 15:12:38,850 : INFO : keeping 20000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", - "2019-01-11 15:12:39,101 : INFO : resulting dictionary: Dictionary(20000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" + "2019-01-15 14:02:25,430 : INFO : loading Dictionary object from wiki.dict\n", + "2019-01-15 14:02:26,296 : INFO : loaded wiki.dict\n", + "2019-01-15 14:02:28,498 : INFO : discarding 1990258 tokens: [('abdelrahim', 49), ('abstention', 120), ('ammon', 1736), ('amoureus', 359), ('amoureux', 566), ('amparo', 1178), ('anarcha', 101), ('anarchica', 40), ('anarcho', 1433), ('anarchosyndicalist', 20)]...\n", + "2019-01-15 14:02:28,499 : INFO : keeping 20000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", + "2019-01-15 14:02:28,738 : INFO : resulting dictionary: Dictionary(20000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" ] } ], @@ -483,9 +499,20 @@ "dictionary.compactify()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### MmCorpus wrapper\n", + "In this way we'll:\n", + "\n", + "- Make sure that documents are shuffled\n", + "- Be able to train-test split corpus without rewriting it" + ] + }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 7, "metadata": { "lines_to_next_cell": 2 }, @@ -506,12 +533,22 @@ "\n", " def __iter__(self):\n", " for doc_id in self.indices:\n", - " yield self[doc_id]" + " yield self[doc_id]\n", + " \n", + " def __len__(self):\n", + " return len(self.indices)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create and save corpus" ] }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 8, "metadata": { "scrolled": true }, @@ -526,9 +563,17 @@ "# RandomCorpus.serialize('wiki.mm', corpus)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load train and test corpus\n", + "Using `RandomCorpus` wrapper" + ] + }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 9, "metadata": { "lines_to_next_cell": 2 }, @@ -537,67 +582,62 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 15:12:39,759 : INFO : loaded corpus index from wiki.mm.index\n", - "2019-01-11 15:12:39,760 : INFO : initializing cython corpus reader from wiki.mm\n", - "2019-01-11 15:12:39,761 : INFO : accepted corpus with 4924894 documents, 20000 features, 629448427 non-zero entries\n", - "2019-01-11 15:12:41,013 : INFO : loaded corpus index from wiki.mm.index\n", - "2019-01-11 15:12:41,014 : INFO : initializing cython corpus reader from wiki.mm\n", - "2019-01-11 15:12:41,015 : INFO : accepted corpus with 4924894 documents, 20000 features, 629448427 non-zero entries\n" + "2019-01-15 14:02:29,428 : INFO : loaded corpus index from wiki.mm.index\n", + "2019-01-15 14:02:29,428 : INFO : initializing cython corpus reader from wiki.mm\n", + "2019-01-15 14:02:29,429 : INFO : accepted corpus with 4924894 documents, 20000 features, 629448427 non-zero entries\n", + "2019-01-15 14:02:30,774 : INFO : loaded corpus index from wiki.mm.index\n", + "2019-01-15 14:02:30,775 : INFO : initializing cython corpus reader from wiki.mm\n", + "2019-01-15 14:02:30,775 : INFO : accepted corpus with 4924894 documents, 20000 features, 629448427 non-zero entries\n" ] } ], "source": [ "train_corpus = RandomCorpus(\n", - " random_seed=42, testset=False, testsize=1, fname='wiki.mm'\n", + " random_seed=42, testset=False, testsize=2000, fname='wiki.mm'\n", ")\n", "test_corpus = RandomCorpus(\n", - " random_seed=42, testset=True, testsize=1, fname='wiki.mm'\n", + " random_seed=42, testset=True, testsize=2000, fname='wiki.mm'\n", ")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Metrics" + ] + }, { "cell_type": "code", - "execution_count": 154, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def get_execution_time(func):\n", " start = time.time()\n", + "\n", " result = func()\n", "\n", " return (time.time() - start), result\n", "\n", "\n", - "def get_tm_perplexity(W, H, dense_corpus):\n", - " pred_factors = W.dot(H)\n", - "\n", - " return np.exp(-(np.log(pred_factors,\n", - " where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum())\n", - "\n", - "\n", - "def get_tm_l2_norm(model, corpus):\n", - " l2_norm = 0\n", - " for bow_id, bow in enumerate(test_corpus):\n", - " doc = matutils.corpus2csc([bow], len(model.id2word))\n", - " doc /= doc.sum()\n", - "\n", - " pred_factors = scipy.sparse.csc_matrix([\n", - " proba for idx, proba in model[bow]\n", - " ])\n", - "\n", - " l2_norm += scipy.sparse.linalg.norm(doc - pred_factors)**2\n", - "\n", - " return np.sqrt(l2_norm)\n", - "\n", - "\n", "def get_tm_metrics(model, test_corpus):\n", " W = model.get_topics().T\n", " H = np.zeros((model.num_topics, len(test_corpus)))\n", " for bow_id, bow in enumerate(test_corpus):\n", - " for topic_id, proba in model[bow]:\n", - " H[topic_id, bow_id] = proba\n", + " for topic_id, word_count in model.get_document_topics(bow):\n", + " H[topic_id, bow_id] = word_count\n", + "\n", + " pred_factors = W.dot(H)\n", + " pred_factors /= pred_factors.sum(axis=0)\n", + " \n", + " dense_corpus = matutils.corpus2dense(test_corpus, pred_factors.shape[0])\n", + "\n", + " perplexity = get_tm_perplexity(pred_factors, dense_corpus)\n", "\n", - " perplexity = get_tm_perplexity(W, H, test_corpus)\n", + " l2_norm = get_tm_l2_norm(pred_factors, dense_corpus)\n", + "\n", + " model.normalize = True\n", "\n", " coherence = CoherenceModel(\n", " model=model,\n", @@ -605,30 +645,45 @@ " coherence='u_mass'\n", " ).get_coherence()\n", "\n", - " l2_norm = get_tm_l2_norm(W, H, test_corpus)\n", - "\n", " topics = model.show_topics()\n", "\n", + " model.normalize = False\n", + "\n", " return dict(\n", " perplexity=perplexity,\n", " coherence=coherence,\n", " topics=topics,\n", " l2_norm=l2_norm,\n", - " )" + " )\n", + "\n", + "\n", + "def get_tm_perplexity(pred_factors, dense_corpus):\n", + " return np.exp(-(np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum())\n", + "\n", + "\n", + "def get_tm_l2_norm(pred_factors, dense_corpus):\n", + " return np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - pred_factors)" ] }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "tm_metrics = pd.DataFrame()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define common params for models" + ] + }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -644,18 +699,33 @@ ")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Training" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train NMF and save it\n", + "Normalization is turned off to compute metrics correctly" + ] + }, { "cell_type": "code", - "execution_count": 157, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 15:12:52,360 : INFO : Loss (no outliers): 2060.2597369446694\tLoss (with outliers): 2060.2597369446694\n", - "2019-01-11 15:12:52,371 : INFO : saving Nmf object under nmf.model, separately None\n", - "2019-01-11 15:12:52,464 : INFO : saved nmf.model\n" + "2019-01-15 14:02:37,902 : INFO : Loss (no outliers): 1913.454696981355\tLoss (with outliers): 1913.454696981355\n", + "2019-01-15 14:02:37,913 : INFO : saving Nmf object under nmf.model, separately None\n", + "2019-01-15 14:02:37,981 : INFO : saved nmf.model\n" ] } ], @@ -663,60 +733,146 @@ "row = dict()\n", "row['model'] = 'nmf'\n", "row['train_time'], nmf = get_execution_time(\n", - " lambda: Nmf(use_r=False, **params)\n", + " lambda: Nmf(\n", + " use_r=False,\n", + " normalize=False,\n", + " **params\n", + " )\n", ")\n", "nmf.save('nmf.model')" ] }, { - "cell_type": "code", - "execution_count": 158, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "inconsistent shapes", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mget_tm_l2_norm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnmf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_corpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mget_tm_l2_norm\u001b[0;34m(model, corpus)\u001b[0m\n\u001b[1;32m 23\u001b[0m ])\n\u001b[1;32m 24\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 25\u001b[0;31m \u001b[0ml2_norm\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msparse\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinalg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnorm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdoc\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mpred_factors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 26\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ml2_norm\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/base.py\u001b[0m in \u001b[0;36m__sub__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 430\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misspmatrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 431\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 432\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"inconsistent shapes\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 433\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sub_sparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 434\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misdense\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: inconsistent shapes" - ] - } - ], "source": [ - "get_tm_l2_norm(nmf, test_corpus)" + "### Load NMF and get metrics" ] }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 14:44:55,275 : INFO : loading Nmf object from nmf.model\n", - "2019-01-11 14:44:55,316 : INFO : loading id2word recursively from nmf.model.id2word.* with mmap=None\n", - "2019-01-11 14:44:55,317 : INFO : loaded nmf.model\n" + "2019-01-15 14:02:38,003 : INFO : loading Nmf object from nmf.model\n", + "2019-01-15 14:02:38,038 : INFO : loading id2word recursively from nmf.model.id2word.* with mmap=None\n", + "2019-01-15 14:02:38,039 : INFO : loaded nmf.model\n", + "2019-01-15 14:02:55,613 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-15 14:02:55,738 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" ] }, { - "ename": "MemoryError", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mMemoryError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mnmf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNmf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'nmf.model'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mrow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_tm_metrics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnmf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_corpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mtm_metrics\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtm_metrics\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSeries\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrow\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnmf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mget_tm_metrics\u001b[0;34m(model, test_corpus)\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtopic_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbow_id\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 42\u001b[0;31m \u001b[0mperplexity\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_tm_perplexity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mW\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_dense_corpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 43\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m coherence = CoherenceModel(\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mget_tm_perplexity\u001b[0;34m(W, H, dense_corpus)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_tm_perplexity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mW\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_corpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mpred_factors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mW\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mH\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m return np.exp(-(np.log(pred_factors,\n", - "\u001b[0;31mMemoryError\u001b[0m: " - ] + "data": { + "text/plain": [ + "[(0,\n", + " '0.009*\"cell\" + 0.009*\"linear\" + 0.009*\"highwai\" + 0.009*\"base\" + 0.007*\"open\" + 0.007*\"air\" + 0.005*\"set\" + 0.005*\"site\" + 0.005*\"neat\" + 0.004*\"april\"'),\n", + " (1,\n", + " '0.019*\"secur\" + 0.016*\"state\" + 0.011*\"resolut\" + 0.011*\"wayn\" + 0.011*\"john\" + 0.009*\"school\" + 0.008*\"design\" + 0.008*\"nation\" + 0.007*\"yard\" + 0.007*\"israel\"'),\n", + " (2,\n", + " '0.023*\"univers\" + 0.023*\"ukrainian\" + 0.017*\"doctor\" + 0.015*\"nation\" + 0.012*\"ukrain\" + 0.011*\"women\" + 0.011*\"wear\" + 0.010*\"million\" + 0.010*\"hood\" + 0.009*\"line\"'),\n", + " (3,\n", + " '0.016*\"sequenc\" + 0.014*\"power\" + 0.012*\"ukrainian\" + 0.011*\"linear\" + 0.009*\"new\" + 0.009*\"arena\" + 0.009*\"number\" + 0.008*\"telephon\" + 0.008*\"switch\" + 0.008*\"boi\"'),\n", + " (4,\n", + " '0.023*\"design\" + 0.017*\"intellig\" + 0.011*\"song\" + 0.010*\"glori\" + 0.009*\"def\" + 0.008*\"decis\" + 0.007*\"final\" + 0.007*\"tournament\" + 0.006*\"time\" + 0.006*\"wai\"'),\n", + " (5,\n", + " '0.015*\"switch\" + 0.014*\"col\" + 0.010*\"divis\" + 0.009*\"learn\" + 0.009*\"new\" + 0.008*\"port\" + 0.008*\"warrant\" + 0.007*\"compani\" + 0.007*\"action\" + 0.007*\"maj\"'),\n", + " (6,\n", + " '0.014*\"hous\" + 0.011*\"galleri\" + 0.011*\"dai\" + 0.009*\"review\" + 0.009*\"art\" + 0.009*\"input\" + 0.009*\"exhibit\" + 0.008*\"differenti\" + 0.008*\"sydnei\" + 0.008*\"solo\"'),\n", + " (7,\n", + " '0.027*\"team\" + 0.019*\"world\" + 0.014*\"warrior\" + 0.012*\"match\" + 0.010*\"hotel\" + 0.010*\"wrestl\" + 0.010*\"tag\" + 0.010*\"set\" + 0.010*\"time\" + 0.009*\"road\"'),\n", + " (8,\n", + " '0.021*\"determin\" + 0.013*\"matrix\" + 0.008*\"state\" + 0.007*\"order\" + 0.007*\"gener\" + 0.006*\"product\" + 0.006*\"column\" + 0.006*\"develop\" + 0.005*\"function\" + 0.005*\"term\"'),\n", + " (9,\n", + " '0.047*\"col\" + 0.037*\"new\" + 0.028*\"york\" + 0.024*\"maj\" + 0.020*\"pennsylvania\" + 0.020*\"state\" + 0.020*\"brigad\" + 0.017*\"batteri\" + 0.016*\"john\" + 0.015*\"unit\"'),\n", + " (10,\n", + " '0.030*\"set\" + 0.020*\"open\" + 0.015*\"round\" + 0.014*\"defeat\" + 0.013*\"final\" + 0.011*\"world\" + 0.011*\"won\" + 0.010*\"win\" + 0.010*\"straight\" + 0.010*\"master\"'),\n", + " (11,\n", + " '0.023*\"stori\" + 0.020*\"storytel\" + 0.011*\"highwai\" + 0.008*\"children\" + 0.007*\"construct\" + 0.007*\"commun\" + 0.006*\"narr\" + 0.006*\"cultur\" + 0.006*\"oral\" + 0.005*\"interchang\"'),\n", + " (12,\n", + " '0.027*\"group\" + 0.022*\"determin\" + 0.014*\"matrix\" + 0.011*\"topolog\" + 0.010*\"glori\" + 0.009*\"def\" + 0.008*\"air\" + 0.007*\"exampl\" + 0.007*\"cell\" + 0.007*\"space\"'),\n", + " (13,\n", + " '0.027*\"hous\" + 0.022*\"dai\" + 0.020*\"develop\" + 0.020*\"vote\" + 0.017*\"women\" + 0.013*\"nomin\" + 0.013*\"elect\" + 0.012*\"gender\" + 0.011*\"glass\" + 0.010*\"ballot\"'),\n", + " (14,\n", + " '0.029*\"apollo\" + 0.012*\"territori\" + 0.010*\"island\" + 0.009*\"set\" + 0.009*\"claim\" + 0.008*\"grand\" + 0.008*\"open\" + 0.008*\"sion\" + 0.008*\"priori\" + 0.006*\"year\"'),\n", + " (15,\n", + " '0.033*\"million\" + 0.022*\"team\" + 0.015*\"music\" + 0.014*\"doctor\" + 0.013*\"univers\" + 0.011*\"bowl\" + 0.011*\"washington\" + 0.010*\"wear\" + 0.010*\"black\" + 0.009*\"hood\"'),\n", + " (16,\n", + " '0.021*\"disord\" + 0.016*\"symptom\" + 0.013*\"children\" + 0.013*\"minist\" + 0.013*\"medic\" + 0.010*\"peopl\" + 0.010*\"behavior\" + 0.009*\"treatment\" + 0.009*\"cinema\" + 0.009*\"govern\"'),\n", + " (17,\n", + " '0.015*\"tatiana\" + 0.014*\"russian\" + 0.012*\"finn\" + 0.010*\"children\" + 0.008*\"keeper\" + 0.007*\"stori\" + 0.006*\"like\" + 0.006*\"famili\" + 0.006*\"disnei\" + 0.006*\"sister\"'),\n", + " (18,\n", + " '0.044*\"dai\" + 0.043*\"hous\" + 0.030*\"nomin\" + 0.026*\"glass\" + 0.022*\"evict\" + 0.019*\"week\" + 0.018*\"main\" + 0.017*\"sequenc\" + 0.014*\"myth\" + 0.013*\"helena\"'),\n", + " (19,\n", + " '0.013*\"commun\" + 0.013*\"reconnaiss\" + 0.013*\"orbit\" + 0.009*\"decemb\" + 0.008*\"march\" + 0.007*\"octob\" + 0.007*\"septemb\" + 0.007*\"hous\" + 0.006*\"juli\" + 0.006*\"dai\"'),\n", + " (20,\n", + " '0.012*\"arab\" + 0.011*\"nation\" + 0.009*\"site\" + 0.008*\"polit\" + 0.007*\"school\" + 0.006*\"king\" + 0.006*\"includ\" + 0.006*\"secur\" + 0.006*\"citat\" + 0.006*\"alt\"'),\n", + " (21,\n", + " '0.026*\"finn\" + 0.019*\"keeper\" + 0.016*\"disnei\" + 0.014*\"cinema\" + 0.013*\"overtak\" + 0.012*\"act\" + 0.010*\"art\" + 0.010*\"million\" + 0.009*\"insid\" + 0.009*\"rover\"'),\n", + " (22,\n", + " '0.034*\"col\" + 0.025*\"hous\" + 0.022*\"new\" + 0.021*\"dai\" + 0.017*\"maj\" + 0.015*\"york\" + 0.014*\"warrior\" + 0.014*\"main\" + 0.014*\"pennsylvania\" + 0.013*\"team\"'),\n", + " (23,\n", + " '0.025*\"album\" + 0.021*\"spatial\" + 0.012*\"chart\" + 0.011*\"song\" + 0.009*\"analysi\" + 0.008*\"new\" + 0.007*\"kei\" + 0.007*\"music\" + 0.007*\"singl\" + 0.006*\"award\"'),\n", + " (24,\n", + " '0.027*\"develop\" + 0.022*\"women\" + 0.020*\"design\" + 0.015*\"gender\" + 0.011*\"intellig\" + 0.011*\"econom\" + 0.008*\"approach\" + 0.007*\"critic\" + 0.007*\"world\" + 0.006*\"citi\"'),\n", + " (25,\n", + " '0.018*\"spatial\" + 0.012*\"bicycl\" + 0.011*\"australia\" + 0.009*\"analysi\" + 0.009*\"univers\" + 0.009*\"develop\" + 0.009*\"victoria\" + 0.009*\"studi\" + 0.008*\"switch\" + 0.008*\"galleri\"'),\n", + " (26,\n", + " '0.027*\"club\" + 0.022*\"season\" + 0.020*\"leagu\" + 0.017*\"svg\" + 0.015*\"imag\" + 0.015*\"symbol\" + 0.014*\"divis\" + 0.012*\"john\" + 0.011*\"rover\" + 0.011*\"premier\"'),\n", + " (27,\n", + " '0.015*\"group\" + 0.013*\"bai\" + 0.011*\"window\" + 0.008*\"storei\" + 0.008*\"roof\" + 0.007*\"build\" + 0.006*\"slate\" + 0.006*\"hous\" + 0.005*\"head\" + 0.005*\"year\"'),\n", + " (28,\n", + " '0.018*\"state\" + 0.007*\"divis\" + 0.007*\"law\" + 0.006*\"democrat\" + 0.006*\"arena\" + 0.005*\"myth\" + 0.005*\"student\" + 0.005*\"presid\" + 0.005*\"school\" + 0.005*\"univers\"'),\n", + " (29,\n", + " '0.024*\"board\" + 0.020*\"univers\" + 0.013*\"station\" + 0.013*\"new\" + 0.011*\"director\" + 0.011*\"nation\" + 0.010*\"oper\" + 0.010*\"radio\" + 0.010*\"program\" + 0.010*\"arena\"'),\n", + " (30,\n", + " '0.011*\"territori\" + 0.009*\"island\" + 0.007*\"govern\" + 0.005*\"lo\" + 0.005*\"kingdom\" + 0.005*\"cartel\" + 0.005*\"incorpor\" + 0.005*\"bodi\" + 0.005*\"zeta\" + 0.005*\"kill\"'),\n", + " (31,\n", + " '0.045*\"air\" + 0.039*\"cell\" + 0.037*\"base\" + 0.016*\"myth\" + 0.015*\"german\" + 0.015*\"squadron\" + 0.015*\"armi\" + 0.015*\"station\" + 0.014*\"test\" + 0.014*\"train\"'),\n", + " (32,\n", + " '0.017*\"film\" + 0.010*\"design\" + 0.006*\"intellig\" + 0.006*\"scienc\" + 0.005*\"director\" + 0.005*\"septemb\" + 0.004*\"februari\" + 0.004*\"april\" + 0.004*\"linear\" + 0.004*\"june\"'),\n", + " (33,\n", + " '0.165*\"linear\" + 0.086*\"neat\" + 0.074*\"palomar\" + 0.049*\"april\" + 0.046*\"februari\" + 0.040*\"march\" + 0.031*\"august\" + 0.030*\"septemb\" + 0.019*\"octob\" + 0.017*\"mesa\"'),\n", + " (34,\n", + " '0.039*\"determin\" + 0.024*\"matrix\" + 0.016*\"finn\" + 0.014*\"team\" + 0.012*\"keeper\" + 0.010*\"column\" + 0.010*\"matric\" + 0.009*\"myth\" + 0.009*\"disnei\" + 0.009*\"power\"'),\n", + " (35,\n", + " '0.027*\"doctor\" + 0.022*\"tatiana\" + 0.019*\"wear\" + 0.017*\"gold\" + 0.016*\"hood\" + 0.016*\"black\" + 0.014*\"line\" + 0.013*\"univers\" + 0.012*\"colour\" + 0.011*\"graduat\"'),\n", + " (36,\n", + " '0.028*\"design\" + 0.022*\"intellig\" + 0.013*\"school\" + 0.010*\"stori\" + 0.010*\"scienc\" + 0.008*\"creation\" + 0.007*\"scientif\" + 0.007*\"life\" + 0.006*\"commun\" + 0.006*\"seri\"'),\n", + " (37,\n", + " '0.019*\"season\" + 0.015*\"stori\" + 0.013*\"leagu\" + 0.012*\"club\" + 0.011*\"storytel\" + 0.010*\"win\" + 0.009*\"player\" + 0.008*\"church\" + 0.008*\"manuscript\" + 0.008*\"game\"'),\n", + " (38,\n", + " '0.015*\"bowl\" + 0.013*\"novel\" + 0.013*\"note\" + 0.012*\"washington\" + 0.011*\"huski\" + 0.010*\"act\" + 0.010*\"public\" + 0.009*\"myth\" + 0.009*\"rose\" + 0.007*\"game\"'),\n", + " (39,\n", + " '0.013*\"set\" + 0.011*\"plai\" + 0.011*\"open\" + 0.010*\"final\" + 0.009*\"goal\" + 0.009*\"cup\" + 0.009*\"railwai\" + 0.008*\"defeat\" + 0.008*\"match\" + 0.008*\"win\"'),\n", + " (40,\n", + " '0.050*\"sequenc\" + 0.022*\"number\" + 0.020*\"finn\" + 0.015*\"keeper\" + 0.012*\"spatial\" + 0.011*\"disnei\" + 0.010*\"overtak\" + 0.009*\"exampl\" + 0.008*\"term\" + 0.007*\"field\"'),\n", + " (41,\n", + " '0.015*\"resolut\" + 0.015*\"territori\" + 0.013*\"state\" + 0.012*\"spatial\" + 0.009*\"israel\" + 0.009*\"law\" + 0.008*\"languag\" + 0.008*\"secur\" + 0.008*\"unit\" + 0.008*\"sion\"'),\n", + " (42,\n", + " '0.027*\"releas\" + 0.014*\"label\" + 0.010*\"bai\" + 0.010*\"format\" + 0.009*\"window\" + 0.009*\"music\" + 0.007*\"hous\" + 0.006*\"hand\" + 0.006*\"base\" + 0.006*\"air\"'),\n", + " (43,\n", + " '0.042*\"game\" + 0.016*\"bowl\" + 0.016*\"state\" + 0.014*\"washington\" + 0.013*\"huski\" + 0.012*\"novel\" + 0.012*\"coach\" + 0.012*\"film\" + 0.010*\"plai\" + 0.009*\"rose\"'),\n", + " (44,\n", + " '0.018*\"design\" + 0.017*\"game\" + 0.011*\"intellig\" + 0.008*\"new\" + 0.008*\"scienc\" + 0.007*\"bai\" + 0.006*\"finn\" + 0.005*\"window\" + 0.005*\"storei\" + 0.005*\"complex\"'),\n", + " (45,\n", + " '0.013*\"glori\" + 0.013*\"def\" + 0.012*\"resolut\" + 0.012*\"territori\" + 0.009*\"state\" + 0.009*\"israel\" + 0.009*\"decis\" + 0.007*\"featherweight\" + 0.007*\"heavyweight\" + 0.007*\"secur\"'),\n", + " (46,\n", + " '0.016*\"seri\" + 0.015*\"switch\" + 0.009*\"star\" + 0.009*\"port\" + 0.006*\"power\" + 0.006*\"channel\" + 0.006*\"run\" + 0.006*\"citi\" + 0.006*\"cinema\" + 0.006*\"engin\"'),\n", + " (47,\n", + " '0.011*\"manag\" + 0.009*\"switch\" + 0.009*\"seri\" + 0.008*\"team\" + 0.008*\"myth\" + 0.008*\"network\" + 0.007*\"season\" + 0.006*\"car\" + 0.006*\"point\" + 0.006*\"test\"'),\n", + " (48,\n", + " '0.018*\"set\" + 0.011*\"son\" + 0.011*\"open\" + 0.010*\"french\" + 0.010*\"state\" + 0.010*\"round\" + 0.008*\"final\" + 0.008*\"lotteri\" + 0.008*\"defeat\" + 0.007*\"feder\"'),\n", + " (49,\n", + " '0.025*\"group\" + 0.016*\"highwai\" + 0.013*\"album\" + 0.009*\"new\" + 0.008*\"band\" + 0.007*\"topolog\" + 0.007*\"interchang\" + 0.007*\"citi\" + 0.007*\"song\" + 0.006*\"elect\"')]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -727,31 +883,27 @@ "nmf.show_topics(50)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train NMF with residuals and save it\n", + "Residuals add regularization to the model thus increasing quality, but slows down training" + ] + }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 15, "metadata": {}, "outputs": [ { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mrow\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'model'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'nmf_with_r'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m row['train_time'], nmf_with_r = get_execution_time(\n\u001b[0;32m----> 4\u001b[0;31m lambda: Nmf(\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0muse_r\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mlambda_\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mget_execution_time\u001b[0;34m(func)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_execution_time\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0muse_r\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mlambda_\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;34m**\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m )\n\u001b[1;32m 9\u001b[0m )\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, corpus, num_topics, id2word, chunksize, passes, lambda_, kappa, minimum_probability, use_r, w_max_iter, w_stop_condition, h_r_max_iter, h_r_stop_condition, eval_every, v_max, normalize, sparse_coef, random_state)\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcorpus\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 122\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 123\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_topics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, corpus, chunks_as_numpy)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0mv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmatutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcorpus2csc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mid2word\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtocsr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 463\u001b[0m self._h, self._r = self._solveproj(\n\u001b[0;32m--> 464\u001b[0;31m \u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_W\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_r\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_h\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv_max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv_max\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 465\u001b[0m )\n\u001b[1;32m 466\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_h\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_r\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/gensim/gensim/models/nmf.py\u001b[0m in \u001b[0;36m_solveproj\u001b[0;34m(self, v, W, h, r, v_max)\u001b[0m\n\u001b[1;32m 608\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muse_r\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 610\u001b[0;31m \u001b[0mr_actual\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mv\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mW\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 611\u001b[0m error_ = max(\n\u001b[1;32m 612\u001b[0m \u001b[0merror_\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/base.py\u001b[0m in \u001b[0;36m__sub__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 431\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 432\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"inconsistent shapes\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 433\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sub_sparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 434\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misdense\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 435\u001b[0m \u001b[0mother\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbroadcast_to\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/compressed.py\u001b[0m in \u001b[0;36m_sub_sparse\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 344\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_sub_sparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 345\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_binopt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'_minus_'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 346\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 347\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmultiply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/compressed.py\u001b[0m in \u001b[0;36m_binopt\u001b[0;34m(self, other, op)\u001b[0m\n\u001b[1;32m 1130\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_binopt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1131\u001b[0m \u001b[0;34m\"\"\"apply the binary operation fn to two sparse matrices.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1132\u001b[0;31m \u001b[0mother\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1133\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1134\u001b[0m \u001b[0;31m# e.g. csr_plus_csr, csr_minus_csr, etc.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/compressed.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, arg1, shape, dtype, copy)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0marg1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marg1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 32\u001b[0;31m \u001b[0marg1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marg1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 33\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_self\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/base.py\u001b[0m in \u001b[0;36masformat\u001b[0;34m(self, format, copy)\u001b[0m\n\u001b[1;32m 324\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Format {} is unknown.'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 326\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mconvert_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 327\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[0;31m###################################################################\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.virtualenvs/gensim/lib/python3.7/site-packages/scipy/sparse/csc.py\u001b[0m in \u001b[0;36mtocsr\u001b[0;34m(self, copy)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0mindptr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 151\u001b[0;31m data)\n\u001b[0m\u001b[1;32m 152\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 153\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mcsr\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcsr_matrix\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 14:04:09,187 : INFO : Loss (no outliers): 1991.7502435710787\tLoss (with outliers): 1910.464771951029\n", + "2019-01-15 14:04:09,199 : INFO : saving Nmf object under nmf_with_r.model, separately None\n", + "2019-01-15 14:04:09,200 : INFO : storing scipy.sparse array '_r' under nmf_with_r.model._r.npy\n", + "2019-01-15 14:04:11,249 : INFO : saved nmf_with_r.model\n" ] } ], @@ -762,17 +914,147 @@ " lambda: Nmf(\n", " use_r=True,\n", " lambda_=200,\n", + " normalize=False,\n", " **params\n", " )\n", ")\n", "nmf_with_r.save('nmf_with_r.model')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load NMF with residuals and get metrics" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 14:04:11,266 : INFO : loading Nmf object from nmf_with_r.model\n", + "2019-01-15 14:04:11,301 : INFO : loading id2word recursively from nmf_with_r.model.id2word.* with mmap=None\n", + "2019-01-15 14:04:11,302 : INFO : loading _r from nmf_with_r.model._r.npy with mmap=None\n", + "2019-01-15 14:04:11,391 : INFO : loaded nmf_with_r.model\n", + "2019-01-15 14:04:33,763 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-15 14:04:33,887 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + ] + }, + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.011*\"cell\" + 0.010*\"highwai\" + 0.010*\"base\" + 0.009*\"open\" + 0.008*\"air\" + 0.007*\"set\" + 0.006*\"site\" + 0.005*\"squadron\" + 0.005*\"german\" + 0.004*\"interchang\"'),\n", + " (1,\n", + " '0.020*\"intellig\" + 0.020*\"design\" + 0.019*\"state\" + 0.018*\"secur\" + 0.011*\"wayn\" + 0.011*\"school\" + 0.011*\"john\" + 0.010*\"resolut\" + 0.009*\"scienc\" + 0.007*\"nation\"'),\n", + " (2,\n", + " '0.024*\"univers\" + 0.023*\"ukrainian\" + 0.017*\"doctor\" + 0.015*\"nation\" + 0.012*\"ukrain\" + 0.012*\"women\" + 0.011*\"wear\" + 0.011*\"million\" + 0.011*\"hood\" + 0.010*\"line\"'),\n", + " (3,\n", + " '0.016*\"sequenc\" + 0.015*\"power\" + 0.013*\"ukrainian\" + 0.011*\"new\" + 0.010*\"arena\" + 0.009*\"number\" + 0.009*\"telephon\" + 0.009*\"switch\" + 0.009*\"boi\" + 0.007*\"nation\"'),\n", + " (4,\n", + " '0.018*\"design\" + 0.016*\"intellig\" + 0.011*\"song\" + 0.010*\"glori\" + 0.010*\"def\" + 0.008*\"decis\" + 0.007*\"tournament\" + 0.007*\"final\" + 0.006*\"time\" + 0.006*\"wai\"'),\n", + " (5,\n", + " '0.016*\"switch\" + 0.013*\"col\" + 0.010*\"divis\" + 0.009*\"learn\" + 0.008*\"new\" + 0.008*\"port\" + 0.008*\"warrant\" + 0.008*\"action\" + 0.007*\"arrest\" + 0.007*\"championship\"'),\n", + " (6,\n", + " '0.014*\"hous\" + 0.011*\"galleri\" + 0.011*\"dai\" + 0.010*\"art\" + 0.009*\"review\" + 0.009*\"input\" + 0.009*\"exhibit\" + 0.008*\"differenti\" + 0.008*\"sydnei\" + 0.008*\"solo\"'),\n", + " (7,\n", + " '0.026*\"team\" + 0.018*\"world\" + 0.014*\"warrior\" + 0.012*\"match\" + 0.010*\"hotel\" + 0.010*\"wrestl\" + 0.010*\"tag\" + 0.010*\"set\" + 0.009*\"time\" + 0.009*\"road\"'),\n", + " (8,\n", + " '0.019*\"determin\" + 0.013*\"matrix\" + 0.008*\"state\" + 0.007*\"order\" + 0.007*\"gener\" + 0.006*\"product\" + 0.006*\"column\" + 0.006*\"develop\" + 0.005*\"function\" + 0.005*\"term\"'),\n", + " (9,\n", + " '0.047*\"col\" + 0.037*\"new\" + 0.028*\"york\" + 0.024*\"maj\" + 0.020*\"pennsylvania\" + 0.020*\"state\" + 0.020*\"brigad\" + 0.017*\"batteri\" + 0.016*\"john\" + 0.016*\"unit\"'),\n", + " (10,\n", + " '0.028*\"set\" + 0.019*\"open\" + 0.014*\"round\" + 0.014*\"defeat\" + 0.012*\"final\" + 0.010*\"world\" + 0.010*\"won\" + 0.010*\"win\" + 0.010*\"straight\" + 0.009*\"master\"'),\n", + " (11,\n", + " '0.023*\"stori\" + 0.020*\"storytel\" + 0.010*\"highwai\" + 0.008*\"children\" + 0.007*\"construct\" + 0.007*\"commun\" + 0.006*\"narr\" + 0.006*\"cultur\" + 0.006*\"oral\" + 0.005*\"tradit\"'),\n", + " (12,\n", + " '0.027*\"group\" + 0.021*\"determin\" + 0.015*\"matrix\" + 0.011*\"topolog\" + 0.010*\"glori\" + 0.009*\"def\" + 0.008*\"air\" + 0.007*\"exampl\" + 0.007*\"space\" + 0.007*\"cell\"'),\n", + " (13,\n", + " '0.027*\"hous\" + 0.023*\"dai\" + 0.020*\"develop\" + 0.020*\"vote\" + 0.018*\"women\" + 0.013*\"nomin\" + 0.013*\"elect\" + 0.012*\"gender\" + 0.011*\"glass\" + 0.010*\"ballot\"'),\n", + " (14,\n", + " '0.029*\"apollo\" + 0.012*\"territori\" + 0.010*\"island\" + 0.009*\"set\" + 0.009*\"claim\" + 0.009*\"grand\" + 0.008*\"sion\" + 0.008*\"priori\" + 0.008*\"open\" + 0.006*\"year\"'),\n", + " (15,\n", + " '0.032*\"million\" + 0.021*\"team\" + 0.015*\"music\" + 0.014*\"doctor\" + 0.012*\"univers\" + 0.011*\"bowl\" + 0.011*\"washington\" + 0.010*\"wear\" + 0.010*\"black\" + 0.009*\"hood\"'),\n", + " (16,\n", + " '0.019*\"disord\" + 0.015*\"symptom\" + 0.014*\"minist\" + 0.012*\"children\" + 0.012*\"medic\" + 0.009*\"peopl\" + 0.009*\"cinema\" + 0.009*\"govern\" + 0.009*\"parti\" + 0.009*\"behavior\"'),\n", + " (17,\n", + " '0.015*\"tatiana\" + 0.013*\"russian\" + 0.012*\"finn\" + 0.009*\"children\" + 0.008*\"keeper\" + 0.006*\"stori\" + 0.006*\"famili\" + 0.006*\"like\" + 0.006*\"sister\" + 0.006*\"san\"'),\n", + " (18,\n", + " '0.044*\"dai\" + 0.043*\"hous\" + 0.031*\"nomin\" + 0.026*\"glass\" + 0.022*\"evict\" + 0.019*\"week\" + 0.018*\"main\" + 0.017*\"sequenc\" + 0.013*\"helena\" + 0.013*\"myth\"'),\n", + " (19,\n", + " '0.013*\"commun\" + 0.013*\"reconnaiss\" + 0.013*\"orbit\" + 0.009*\"decemb\" + 0.007*\"hous\" + 0.007*\"octob\" + 0.006*\"march\" + 0.006*\"septemb\" + 0.006*\"dai\" + 0.006*\"januari\"'),\n", + " (20,\n", + " '0.012*\"arab\" + 0.011*\"nation\" + 0.009*\"site\" + 0.008*\"polit\" + 0.006*\"school\" + 0.006*\"includ\" + 0.006*\"king\" + 0.006*\"secur\" + 0.006*\"citat\" + 0.006*\"alt\"'),\n", + " (21,\n", + " '0.027*\"finn\" + 0.020*\"keeper\" + 0.017*\"disnei\" + 0.014*\"cinema\" + 0.013*\"overtak\" + 0.013*\"act\" + 0.011*\"art\" + 0.010*\"million\" + 0.009*\"insid\" + 0.009*\"rover\"'),\n", + " (22,\n", + " '0.033*\"col\" + 0.026*\"hous\" + 0.022*\"new\" + 0.021*\"dai\" + 0.017*\"maj\" + 0.015*\"york\" + 0.014*\"warrior\" + 0.014*\"main\" + 0.014*\"team\" + 0.014*\"pennsylvania\"'),\n", + " (23,\n", + " '0.025*\"album\" + 0.021*\"spatial\" + 0.012*\"chart\" + 0.011*\"song\" + 0.009*\"analysi\" + 0.008*\"new\" + 0.007*\"kei\" + 0.007*\"music\" + 0.007*\"singl\" + 0.006*\"award\"'),\n", + " (24,\n", + " '0.027*\"develop\" + 0.023*\"women\" + 0.015*\"design\" + 0.015*\"gender\" + 0.011*\"econom\" + 0.011*\"intellig\" + 0.008*\"approach\" + 0.008*\"critic\" + 0.007*\"world\" + 0.006*\"citi\"'),\n", + " (25,\n", + " '0.018*\"spatial\" + 0.012*\"bicycl\" + 0.011*\"australia\" + 0.009*\"univers\" + 0.009*\"analysi\" + 0.009*\"develop\" + 0.009*\"victoria\" + 0.009*\"studi\" + 0.008*\"galleri\" + 0.008*\"switch\"'),\n", + " (26,\n", + " '0.028*\"club\" + 0.022*\"season\" + 0.020*\"leagu\" + 0.017*\"svg\" + 0.015*\"imag\" + 0.015*\"symbol\" + 0.015*\"divis\" + 0.013*\"john\" + 0.011*\"rover\" + 0.011*\"premier\"'),\n", + " (27,\n", + " '0.014*\"group\" + 0.013*\"bai\" + 0.011*\"window\" + 0.008*\"storei\" + 0.008*\"roof\" + 0.007*\"build\" + 0.006*\"slate\" + 0.006*\"hous\" + 0.005*\"head\" + 0.005*\"year\"'),\n", + " (28,\n", + " '0.018*\"state\" + 0.007*\"divis\" + 0.007*\"law\" + 0.006*\"democrat\" + 0.006*\"arena\" + 0.006*\"myth\" + 0.005*\"student\" + 0.005*\"univers\" + 0.005*\"presid\" + 0.005*\"school\"'),\n", + " (29,\n", + " '0.024*\"board\" + 0.021*\"univers\" + 0.013*\"station\" + 0.013*\"new\" + 0.012*\"director\" + 0.011*\"radio\" + 0.011*\"nation\" + 0.011*\"oper\" + 0.011*\"program\" + 0.010*\"arena\"'),\n", + " (30,\n", + " '0.011*\"territori\" + 0.009*\"island\" + 0.007*\"govern\" + 0.005*\"lo\" + 0.005*\"kingdom\" + 0.005*\"cartel\" + 0.005*\"incorpor\" + 0.005*\"bodi\" + 0.005*\"zeta\" + 0.005*\"kill\"'),\n", + " (31,\n", + " '0.045*\"air\" + 0.039*\"cell\" + 0.037*\"base\" + 0.016*\"myth\" + 0.015*\"german\" + 0.015*\"squadron\" + 0.015*\"armi\" + 0.015*\"station\" + 0.014*\"test\" + 0.014*\"train\"'),\n", + " (32,\n", + " '0.024*\"palomar\" + 0.024*\"neat\" + 0.024*\"linear\" + 0.023*\"april\" + 0.021*\"februari\" + 0.019*\"march\" + 0.016*\"septemb\" + 0.015*\"august\" + 0.013*\"film\" + 0.010*\"octob\"'),\n", + " (33,\n", + " '0.015*\"disord\" + 0.014*\"game\" + 0.011*\"symptom\" + 0.011*\"children\" + 0.010*\"medic\" + 0.009*\"novel\" + 0.007*\"resolut\" + 0.007*\"behavior\" + 0.006*\"album\" + 0.006*\"treatment\"'),\n", + " (34,\n", + " '0.033*\"determin\" + 0.023*\"matrix\" + 0.017*\"finn\" + 0.015*\"team\" + 0.013*\"keeper\" + 0.010*\"myth\" + 0.010*\"disnei\" + 0.009*\"column\" + 0.009*\"matric\" + 0.009*\"power\"'),\n", + " (35,\n", + " '0.027*\"doctor\" + 0.022*\"tatiana\" + 0.020*\"wear\" + 0.017*\"gold\" + 0.017*\"hood\" + 0.016*\"black\" + 0.015*\"line\" + 0.014*\"univers\" + 0.012*\"colour\" + 0.011*\"graduat\"'),\n", + " (36,\n", + " '0.012*\"stori\" + 0.012*\"school\" + 0.008*\"design\" + 0.008*\"intellig\" + 0.007*\"seri\" + 0.006*\"commun\" + 0.006*\"leagu\" + 0.006*\"storytel\" + 0.006*\"life\" + 0.006*\"best\"'),\n", + " (37,\n", + " '0.020*\"season\" + 0.015*\"stori\" + 0.013*\"leagu\" + 0.012*\"club\" + 0.011*\"storytel\" + 0.010*\"win\" + 0.009*\"player\" + 0.008*\"game\" + 0.008*\"church\" + 0.008*\"manuscript\"'),\n", + " (38,\n", + " '0.015*\"bowl\" + 0.013*\"note\" + 0.013*\"washington\" + 0.012*\"novel\" + 0.012*\"huski\" + 0.010*\"act\" + 0.010*\"public\" + 0.009*\"myth\" + 0.009*\"rose\" + 0.007*\"test\"'),\n", + " (39,\n", + " '0.013*\"set\" + 0.011*\"plai\" + 0.011*\"open\" + 0.010*\"final\" + 0.009*\"goal\" + 0.009*\"cup\" + 0.009*\"railwai\" + 0.008*\"defeat\" + 0.008*\"match\" + 0.008*\"win\"'),\n", + " (40,\n", + " '0.051*\"sequenc\" + 0.022*\"number\" + 0.019*\"finn\" + 0.015*\"keeper\" + 0.012*\"spatial\" + 0.011*\"disnei\" + 0.010*\"overtak\" + 0.010*\"exampl\" + 0.009*\"term\" + 0.007*\"field\"'),\n", + " (41,\n", + " '0.014*\"territori\" + 0.014*\"resolut\" + 0.013*\"state\" + 0.012*\"spatial\" + 0.009*\"law\" + 0.009*\"israel\" + 0.009*\"languag\" + 0.008*\"secur\" + 0.008*\"sion\" + 0.008*\"unit\"'),\n", + " (42,\n", + " '0.028*\"releas\" + 0.014*\"label\" + 0.011*\"bai\" + 0.010*\"format\" + 0.009*\"window\" + 0.009*\"music\" + 0.007*\"hous\" + 0.006*\"hand\" + 0.006*\"roof\" + 0.006*\"air\"'),\n", + " (43,\n", + " '0.042*\"game\" + 0.017*\"bowl\" + 0.016*\"state\" + 0.014*\"washington\" + 0.014*\"film\" + 0.013*\"huski\" + 0.012*\"coach\" + 0.011*\"novel\" + 0.010*\"plai\" + 0.009*\"rose\"'),\n", + " (44,\n", + " '0.017*\"design\" + 0.015*\"game\" + 0.014*\"intellig\" + 0.009*\"scienc\" + 0.008*\"new\" + 0.007*\"bai\" + 0.006*\"finn\" + 0.006*\"complex\" + 0.005*\"natur\" + 0.005*\"window\"'),\n", + " (45,\n", + " '0.013*\"glori\" + 0.013*\"def\" + 0.012*\"resolut\" + 0.012*\"territori\" + 0.009*\"decis\" + 0.009*\"state\" + 0.009*\"israel\" + 0.007*\"featherweight\" + 0.007*\"heavyweight\" + 0.007*\"secur\"'),\n", + " (46,\n", + " '0.016*\"seri\" + 0.014*\"switch\" + 0.009*\"star\" + 0.009*\"port\" + 0.006*\"channel\" + 0.006*\"power\" + 0.006*\"citi\" + 0.006*\"run\" + 0.006*\"cinema\" + 0.006*\"engin\"'),\n", + " (47,\n", + " '0.010*\"manag\" + 0.009*\"switch\" + 0.009*\"seri\" + 0.008*\"team\" + 0.008*\"network\" + 0.008*\"myth\" + 0.007*\"season\" + 0.006*\"point\" + 0.006*\"car\" + 0.006*\"test\"'),\n", + " (48,\n", + " '0.018*\"set\" + 0.011*\"open\" + 0.011*\"son\" + 0.010*\"french\" + 0.010*\"round\" + 0.010*\"state\" + 0.009*\"final\" + 0.008*\"lotteri\" + 0.008*\"defeat\" + 0.008*\"feder\"'),\n", + " (49,\n", + " '0.025*\"group\" + 0.016*\"highwai\" + 0.014*\"album\" + 0.009*\"new\" + 0.008*\"band\" + 0.007*\"topolog\" + 0.007*\"interchang\" + 0.007*\"citi\" + 0.006*\"song\" + 0.006*\"elect\"')]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "nmf_with_r = Nmf.load('nmf_with_r.model')\n", "row.update(get_tm_metrics(nmf_with_r, test_corpus))\n", @@ -781,11 +1063,47 @@ "nmf_with_r.show_topics(50)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train LDA and save it\n", + "That's a common model to do Topic Modeling" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 14:04:34,008 : INFO : using symmetric alpha at 0.02\n", + "2019-01-15 14:04:34,008 : INFO : using symmetric eta at 0.02\n", + "2019-01-15 14:04:34,011 : INFO : using serial LDA version on this node\n", + "2019-01-15 14:04:34,132 : INFO : running online (single-pass) LDA training, 50 topics, 1 passes over the supplied corpus of 2000 documents, updating model once every 2000 documents, evaluating perplexity every 2000 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-15 14:04:34,133 : WARNING : too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy\n", + "2019-01-15 14:04:39,040 : INFO : -15.341 per-word bound, 41496.7 perplexity estimate based on a held-out corpus of 2000 documents with 515952 words\n", + "2019-01-15 14:04:39,041 : INFO : PROGRESS: pass 0, at document #2000/2000\n", + "2019-01-15 14:04:42,076 : INFO : topic #48 (0.020): 0.006*\"state\" + 0.004*\"award\" + 0.004*\"parti\" + 0.004*\"game\" + 0.003*\"syke\" + 0.003*\"new\" + 0.003*\"year\" + 0.003*\"includ\" + 0.003*\"plane\" + 0.003*\"unit\"\n", + "2019-01-15 14:04:42,077 : INFO : topic #31 (0.020): 0.005*\"time\" + 0.005*\"new\" + 0.005*\"year\" + 0.004*\"work\" + 0.004*\"art\" + 0.003*\"nation\" + 0.003*\"member\" + 0.003*\"district\" + 0.003*\"state\" + 0.003*\"final\"\n", + "2019-01-15 14:04:42,078 : INFO : topic #8 (0.020): 0.005*\"new\" + 0.005*\"build\" + 0.004*\"state\" + 0.004*\"hous\" + 0.004*\"island\" + 0.003*\"vote\" + 0.003*\"elect\" + 0.003*\"includ\" + 0.003*\"oper\" + 0.003*\"releas\"\n", + "2019-01-15 14:04:42,079 : INFO : topic #14 (0.020): 0.008*\"group\" + 0.006*\"new\" + 0.005*\"year\" + 0.004*\"world\" + 0.004*\"record\" + 0.004*\"time\" + 0.004*\"team\" + 0.003*\"develop\" + 0.003*\"includ\" + 0.003*\"state\"\n", + "2019-01-15 14:04:42,081 : INFO : topic #11 (0.020): 0.028*\"linear\" + 0.018*\"neat\" + 0.012*\"palomar\" + 0.011*\"februari\" + 0.011*\"april\" + 0.008*\"march\" + 0.007*\"septemb\" + 0.006*\"august\" + 0.004*\"octob\" + 0.004*\"june\"\n", + "2019-01-15 14:04:42,082 : INFO : topic diff=22.112879, rho=1.000000\n", + "2019-01-15 14:04:42,093 : INFO : saving LdaState object under lda.model.state, separately None\n", + "2019-01-15 14:04:42,137 : INFO : saved lda.model.state\n", + "2019-01-15 14:04:42,143 : INFO : saving LdaModel object under lda.model, separately ['expElogbeta', 'sstats']\n", + "2019-01-15 14:04:42,144 : INFO : storing np array 'expElogbeta' to lda.model.expElogbeta.npy\n", + "2019-01-15 14:04:42,147 : INFO : not storing attribute state\n", + "2019-01-15 14:04:42,148 : INFO : not storing attribute id2word\n", + "2019-01-15 14:04:42,149 : INFO : not storing attribute dispatcher\n", + "2019-01-15 14:04:42,150 : INFO : saved lda.model\n" + ] + } + ], "source": [ "row = dict()\n", "row['model'] = 'lda'\n", @@ -795,11 +1113,144 @@ "lda.save('lda.model')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load LDA and get metrics" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 14:04:42,171 : INFO : loading LdaModel object from lda.model\n", + "2019-01-15 14:04:42,172 : INFO : loading expElogbeta from lda.model.expElogbeta.npy with mmap=None\n", + "2019-01-15 14:04:42,175 : INFO : setting ignored attribute state to None\n", + "2019-01-15 14:04:42,175 : INFO : setting ignored attribute id2word to None\n", + "2019-01-15 14:04:42,176 : INFO : setting ignored attribute dispatcher to None\n", + "2019-01-15 14:04:42,177 : INFO : loaded lda.model\n", + "2019-01-15 14:04:42,178 : INFO : loading LdaState object from lda.model.state\n", + "2019-01-15 14:04:42,197 : INFO : loaded lda.model.state\n", + "2019-01-15 14:04:47,706 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-15 14:04:47,822 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + ] + }, + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.006*\"world\" + 0.006*\"new\" + 0.005*\"won\" + 0.004*\"time\" + 0.004*\"leagu\" + 0.004*\"season\" + 0.003*\"place\" + 0.003*\"hous\" + 0.003*\"univers\" + 0.003*\"team\"'),\n", + " (1,\n", + " '0.006*\"team\" + 0.004*\"year\" + 0.004*\"decemb\" + 0.003*\"season\" + 0.003*\"time\" + 0.003*\"minist\" + 0.003*\"state\" + 0.003*\"octob\" + 0.003*\"nation\" + 0.003*\"new\"'),\n", + " (2,\n", + " '0.004*\"school\" + 0.004*\"year\" + 0.004*\"includ\" + 0.004*\"new\" + 0.004*\"time\" + 0.003*\"state\" + 0.003*\"world\" + 0.003*\"univers\" + 0.003*\"later\" + 0.003*\"citi\"'),\n", + " (3,\n", + " '0.006*\"new\" + 0.005*\"svg\" + 0.004*\"imag\" + 0.004*\"time\" + 0.004*\"symbol\" + 0.004*\"year\" + 0.004*\"citi\" + 0.004*\"state\" + 0.003*\"team\" + 0.003*\"church\"'),\n", + " (4,\n", + " '0.005*\"new\" + 0.004*\"american\" + 0.004*\"state\" + 0.004*\"nation\" + 0.003*\"unit\" + 0.003*\"born\" + 0.003*\"includ\" + 0.003*\"page\" + 0.003*\"open\" + 0.003*\"member\"'),\n", + " (5,\n", + " '0.011*\"dai\" + 0.010*\"hous\" + 0.007*\"group\" + 0.007*\"nomin\" + 0.005*\"main\" + 0.005*\"glass\" + 0.005*\"stori\" + 0.004*\"new\" + 0.004*\"evict\" + 0.004*\"week\"'),\n", + " (6,\n", + " '0.004*\"time\" + 0.004*\"univers\" + 0.003*\"state\" + 0.003*\"includ\" + 0.003*\"year\" + 0.003*\"new\" + 0.003*\"syke\" + 0.003*\"school\" + 0.003*\"nation\" + 0.003*\"gener\"'),\n", + " (7,\n", + " '0.005*\"state\" + 0.005*\"new\" + 0.004*\"john\" + 0.004*\"meyrick\" + 0.004*\"determin\" + 0.003*\"art\" + 0.003*\"gener\" + 0.003*\"time\" + 0.003*\"year\" + 0.003*\"spatial\"'),\n", + " (8,\n", + " '0.005*\"new\" + 0.005*\"build\" + 0.004*\"state\" + 0.004*\"hous\" + 0.004*\"island\" + 0.003*\"vote\" + 0.003*\"elect\" + 0.003*\"includ\" + 0.003*\"oper\" + 0.003*\"releas\"'),\n", + " (9,\n", + " '0.006*\"new\" + 0.005*\"state\" + 0.004*\"includ\" + 0.004*\"develop\" + 0.004*\"nation\" + 0.003*\"world\" + 0.003*\"work\" + 0.003*\"year\" + 0.003*\"music\" + 0.003*\"presid\"'),\n", + " (10,\n", + " '0.004*\"new\" + 0.004*\"state\" + 0.004*\"art\" + 0.003*\"year\" + 0.003*\"john\" + 0.003*\"includ\" + 0.003*\"world\" + 0.003*\"work\" + 0.003*\"unit\" + 0.003*\"time\"'),\n", + " (11,\n", + " '0.028*\"linear\" + 0.018*\"neat\" + 0.012*\"palomar\" + 0.011*\"februari\" + 0.011*\"april\" + 0.008*\"march\" + 0.007*\"septemb\" + 0.006*\"august\" + 0.004*\"octob\" + 0.004*\"june\"'),\n", + " (12,\n", + " '0.007*\"team\" + 0.006*\"state\" + 0.006*\"women\" + 0.005*\"new\" + 0.004*\"univers\" + 0.004*\"world\" + 0.004*\"game\" + 0.003*\"unit\" + 0.003*\"year\" + 0.003*\"known\"'),\n", + " (13,\n", + " '0.005*\"state\" + 0.005*\"year\" + 0.005*\"game\" + 0.003*\"nation\" + 0.003*\"unit\" + 0.003*\"new\" + 0.003*\"law\" + 0.003*\"hous\" + 0.003*\"french\" + 0.003*\"citi\"'),\n", + " (14,\n", + " '0.008*\"group\" + 0.006*\"new\" + 0.005*\"year\" + 0.004*\"world\" + 0.004*\"record\" + 0.004*\"time\" + 0.004*\"team\" + 0.003*\"develop\" + 0.003*\"includ\" + 0.003*\"state\"'),\n", + " (15,\n", + " '0.006*\"new\" + 0.005*\"station\" + 0.004*\"park\" + 0.004*\"design\" + 0.004*\"american\" + 0.004*\"apollo\" + 0.003*\"year\" + 0.003*\"film\" + 0.003*\"hotel\" + 0.003*\"state\"'),\n", + " (16,\n", + " '0.005*\"new\" + 0.005*\"school\" + 0.004*\"linear\" + 0.004*\"year\" + 0.004*\"march\" + 0.004*\"state\" + 0.003*\"game\" + 0.003*\"includ\" + 0.003*\"public\" + 0.003*\"base\"'),\n", + " (17,\n", + " '0.005*\"state\" + 0.004*\"oper\" + 0.003*\"decemb\" + 0.003*\"reconnaiss\" + 0.003*\"includ\" + 0.003*\"year\" + 0.003*\"member\" + 0.003*\"novemb\" + 0.003*\"univers\" + 0.003*\"time\"'),\n", + " (18,\n", + " '0.006*\"new\" + 0.003*\"music\" + 0.003*\"year\" + 0.003*\"state\" + 0.003*\"hous\" + 0.003*\"includ\" + 0.003*\"nation\" + 0.003*\"event\" + 0.003*\"time\" + 0.003*\"link\"'),\n", + " (19,\n", + " '0.005*\"state\" + 0.004*\"hous\" + 0.004*\"famili\" + 0.004*\"new\" + 0.003*\"area\" + 0.003*\"year\" + 0.003*\"south\" + 0.003*\"includ\" + 0.003*\"link\" + 0.003*\"time\"'),\n", + " (20,\n", + " '0.011*\"univers\" + 0.009*\"state\" + 0.007*\"team\" + 0.004*\"men\" + 0.003*\"new\" + 0.003*\"year\" + 0.003*\"women\" + 0.003*\"gener\" + 0.003*\"district\" + 0.003*\"colleg\"'),\n", + " (21,\n", + " '0.007*\"season\" + 0.007*\"plai\" + 0.006*\"club\" + 0.006*\"leagu\" + 0.006*\"year\" + 0.004*\"releas\" + 0.004*\"school\" + 0.004*\"seri\" + 0.004*\"unit\" + 0.003*\"career\"'),\n", + " (22,\n", + " '0.007*\"ag\" + 0.007*\"year\" + 0.006*\"state\" + 0.006*\"school\" + 0.006*\"famili\" + 0.005*\"new\" + 0.005*\"unit\" + 0.005*\"household\" + 0.005*\"citi\" + 0.004*\"popul\"'),\n", + " (23,\n", + " '0.004*\"time\" + 0.004*\"year\" + 0.004*\"new\" + 0.003*\"state\" + 0.003*\"design\" + 0.003*\"world\" + 0.003*\"open\" + 0.003*\"includ\" + 0.003*\"plai\" + 0.002*\"game\"'),\n", + " (24,\n", + " '0.006*\"state\" + 0.005*\"year\" + 0.004*\"new\" + 0.004*\"includ\" + 0.003*\"unit\" + 0.003*\"record\" + 0.003*\"area\" + 0.003*\"time\" + 0.002*\"plai\" + 0.002*\"school\"'),\n", + " (25,\n", + " '0.006*\"nation\" + 0.005*\"state\" + 0.004*\"includ\" + 0.004*\"year\" + 0.004*\"game\" + 0.004*\"time\" + 0.003*\"new\" + 0.003*\"south\" + 0.003*\"servic\" + 0.003*\"oper\"'),\n", + " (26,\n", + " '0.005*\"nation\" + 0.004*\"new\" + 0.004*\"world\" + 0.003*\"includ\" + 0.003*\"player\" + 0.003*\"game\" + 0.003*\"time\" + 0.003*\"state\" + 0.003*\"work\" + 0.003*\"team\"'),\n", + " (27,\n", + " '0.005*\"state\" + 0.004*\"born\" + 0.004*\"river\" + 0.004*\"parti\" + 0.003*\"american\" + 0.003*\"leagu\" + 0.003*\"counti\" + 0.003*\"singl\" + 0.003*\"island\" + 0.003*\"total\"'),\n", + " (28,\n", + " '0.006*\"album\" + 0.006*\"year\" + 0.005*\"state\" + 0.005*\"new\" + 0.004*\"time\" + 0.004*\"plai\" + 0.004*\"school\" + 0.004*\"singl\" + 0.003*\"team\" + 0.003*\"record\"'),\n", + " (29,\n", + " '0.007*\"new\" + 0.004*\"univers\" + 0.004*\"year\" + 0.004*\"film\" + 0.003*\"list\" + 0.003*\"state\" + 0.003*\"compani\" + 0.003*\"album\" + 0.003*\"servic\" + 0.003*\"award\"'),\n", + " (30,\n", + " '0.006*\"commun\" + 0.005*\"year\" + 0.004*\"team\" + 0.004*\"includ\" + 0.003*\"state\" + 0.003*\"time\" + 0.003*\"film\" + 0.003*\"plai\" + 0.003*\"link\" + 0.003*\"hous\"'),\n", + " (31,\n", + " '0.005*\"time\" + 0.005*\"new\" + 0.005*\"year\" + 0.004*\"work\" + 0.004*\"art\" + 0.003*\"nation\" + 0.003*\"member\" + 0.003*\"district\" + 0.003*\"state\" + 0.003*\"final\"'),\n", + " (32,\n", + " '0.004*\"record\" + 0.004*\"year\" + 0.004*\"world\" + 0.003*\"new\" + 0.003*\"hous\" + 0.003*\"build\" + 0.003*\"includ\" + 0.003*\"time\" + 0.003*\"season\" + 0.003*\"senat\"'),\n", + " (33,\n", + " '0.007*\"son\" + 0.006*\"district\" + 0.005*\"state\" + 0.005*\"left\" + 0.005*\"align\" + 0.004*\"year\" + 0.004*\"game\" + 0.004*\"river\" + 0.003*\"member\" + 0.003*\"oblast\"'),\n", + " (34,\n", + " '0.009*\"new\" + 0.008*\"state\" + 0.006*\"col\" + 0.006*\"design\" + 0.006*\"york\" + 0.005*\"nation\" + 0.004*\"includ\" + 0.004*\"unit\" + 0.004*\"john\" + 0.004*\"school\"'),\n", + " (35,\n", + " '0.004*\"univers\" + 0.004*\"state\" + 0.004*\"new\" + 0.004*\"game\" + 0.003*\"plai\" + 0.003*\"seri\" + 0.003*\"switch\" + 0.003*\"film\" + 0.003*\"year\" + 0.003*\"includ\"'),\n", + " (36,\n", + " '0.007*\"elect\" + 0.007*\"state\" + 0.006*\"nation\" + 0.003*\"year\" + 0.003*\"new\" + 0.003*\"gener\" + 0.003*\"march\" + 0.003*\"unit\" + 0.003*\"includ\" + 0.003*\"church\"'),\n", + " (37,\n", + " '0.006*\"film\" + 0.005*\"sequenc\" + 0.005*\"new\" + 0.004*\"won\" + 0.004*\"number\" + 0.003*\"john\" + 0.003*\"year\" + 0.003*\"game\" + 0.003*\"state\" + 0.003*\"includ\"'),\n", + " (38,\n", + " '0.004*\"air\" + 0.004*\"nation\" + 0.003*\"includ\" + 0.003*\"game\" + 0.003*\"seri\" + 0.003*\"base\" + 0.003*\"armi\" + 0.003*\"year\" + 0.003*\"film\" + 0.003*\"cell\"'),\n", + " (39,\n", + " '0.005*\"new\" + 0.005*\"conserv\" + 0.005*\"game\" + 0.005*\"state\" + 0.004*\"nation\" + 0.004*\"season\" + 0.003*\"leagu\" + 0.003*\"time\" + 0.003*\"year\" + 0.003*\"world\"'),\n", + " (40,\n", + " '0.005*\"state\" + 0.004*\"new\" + 0.004*\"album\" + 0.003*\"game\" + 0.003*\"year\" + 0.003*\"nation\" + 0.003*\"american\" + 0.003*\"public\" + 0.003*\"includ\" + 0.003*\"school\"'),\n", + " (41,\n", + " '0.005*\"school\" + 0.004*\"state\" + 0.003*\"design\" + 0.003*\"work\" + 0.003*\"year\" + 0.003*\"new\" + 0.003*\"season\" + 0.003*\"time\" + 0.003*\"high\" + 0.003*\"record\"'),\n", + " (42,\n", + " '0.010*\"group\" + 0.004*\"new\" + 0.004*\"state\" + 0.004*\"john\" + 0.004*\"topolog\" + 0.003*\"year\" + 0.003*\"gener\" + 0.003*\"public\" + 0.003*\"station\" + 0.003*\"includ\"'),\n", + " (43,\n", + " '0.007*\"new\" + 0.005*\"school\" + 0.004*\"team\" + 0.004*\"world\" + 0.003*\"nation\" + 0.003*\"year\" + 0.003*\"state\" + 0.003*\"develop\" + 0.003*\"includ\" + 0.003*\"unit\"'),\n", + " (44,\n", + " '0.009*\"million\" + 0.005*\"new\" + 0.005*\"year\" + 0.004*\"music\" + 0.004*\"time\" + 0.004*\"determin\" + 0.004*\"game\" + 0.004*\"includ\" + 0.003*\"song\" + 0.003*\"school\"'),\n", + " (45,\n", + " '0.009*\"univers\" + 0.007*\"new\" + 0.006*\"year\" + 0.005*\"season\" + 0.004*\"school\" + 0.004*\"state\" + 0.004*\"work\" + 0.004*\"includ\" + 0.004*\"team\" + 0.003*\"album\"'),\n", + " (46,\n", + " '0.005*\"new\" + 0.004*\"music\" + 0.004*\"state\" + 0.004*\"year\" + 0.003*\"song\" + 0.003*\"album\" + 0.003*\"time\" + 0.003*\"includ\" + 0.003*\"univers\" + 0.003*\"best\"'),\n", + " (47,\n", + " '0.015*\"linear\" + 0.007*\"palomar\" + 0.006*\"neat\" + 0.006*\"game\" + 0.005*\"april\" + 0.004*\"februari\" + 0.004*\"march\" + 0.004*\"state\" + 0.004*\"unit\" + 0.003*\"text\"'),\n", + " (48,\n", + " '0.006*\"state\" + 0.004*\"award\" + 0.004*\"parti\" + 0.004*\"game\" + 0.003*\"syke\" + 0.003*\"new\" + 0.003*\"year\" + 0.003*\"includ\" + 0.003*\"plane\" + 0.003*\"unit\"'),\n", + " (49,\n", + " '0.010*\"linear\" + 0.005*\"neat\" + 0.005*\"march\" + 0.004*\"palomar\" + 0.004*\"septemb\" + 0.004*\"film\" + 0.003*\"new\" + 0.003*\"februari\" + 0.003*\"april\" + 0.003*\"site\"')]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "lda = LdaModel.load('lda.model')\n", "row.update(get_tm_metrics(lda, test_corpus))\n", @@ -807,6 +1258,208 @@ "\n", "lda.show_topics(50)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Results" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
coherencel2_normmodelperplexitytopicstrain_time
0-5.2107437.915856nmf244.153459[(21, 0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"d...6.285688
1-5.0779067.920052nmf_with_r248.054745[(21, 0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"d...73.330969
2-1.9149747.987976lda4259.619466[(49, 0.010*\"linear\" + 0.005*\"neat\" + 0.005*\"m...8.085454
\n", + "
" + ], + "text/plain": [ + " coherence l2_norm model perplexity \\\n", + "0 -5.210743 7.915856 nmf 244.153459 \n", + "1 -5.077906 7.920052 nmf_with_r 248.054745 \n", + "2 -1.914974 7.987976 lda 4259.619466 \n", + "\n", + " topics train_time \n", + "0 [(21, 0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"d... 6.285688 \n", + "1 [(21, 0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"d... 73.330969 \n", + "2 [(49, 0.010*\"linear\" + 0.005*\"neat\" + 0.005*\"m... 8.085454 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tm_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================\n", + "nmf\n", + "====================\n", + "\n", + "(21, '0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"disnei\" + 0.022*\"cinema\" + 0.021*\"overtak\" + 0.020*\"act\" + 0.017*\"art\" + 0.016*\"million\" + 0.015*\"insid\" + 0.014*\"rover\"')\n", + "\n", + "(33, '0.197*\"linear\" + 0.102*\"neat\" + 0.089*\"palomar\" + 0.058*\"april\" + 0.055*\"februari\" + 0.047*\"march\" + 0.037*\"august\" + 0.036*\"septemb\" + 0.023*\"octob\" + 0.021*\"mesa\"')\n", + "\n", + "(13, '0.041*\"hous\" + 0.034*\"dai\" + 0.031*\"develop\" + 0.030*\"vote\" + 0.027*\"women\" + 0.020*\"nomin\" + 0.020*\"elect\" + 0.018*\"gender\" + 0.017*\"glass\" + 0.016*\"ballot\"')\n", + "\n", + "(5, '0.024*\"switch\" + 0.023*\"col\" + 0.016*\"divis\" + 0.014*\"learn\" + 0.014*\"new\" + 0.013*\"port\" + 0.013*\"warrant\" + 0.012*\"compani\" + 0.012*\"action\" + 0.011*\"maj\"')\n", + "\n", + "(26, '0.039*\"club\" + 0.032*\"season\" + 0.029*\"leagu\" + 0.025*\"svg\" + 0.022*\"imag\" + 0.021*\"symbol\" + 0.021*\"divis\" + 0.017*\"john\" + 0.016*\"rover\" + 0.015*\"premier\"')\n", + "\n", + "(34, '0.041*\"determin\" + 0.026*\"matrix\" + 0.017*\"finn\" + 0.015*\"team\" + 0.013*\"keeper\" + 0.011*\"column\" + 0.010*\"matric\" + 0.010*\"myth\" + 0.010*\"disnei\" + 0.009*\"power\"')\n", + "\n", + "(32, '0.038*\"film\" + 0.022*\"design\" + 0.014*\"intellig\" + 0.013*\"scienc\" + 0.011*\"director\" + 0.010*\"septemb\" + 0.009*\"februari\" + 0.009*\"april\" + 0.009*\"linear\" + 0.009*\"june\"')\n", + "\n", + "(0, '0.017*\"cell\" + 0.017*\"linear\" + 0.017*\"highwai\" + 0.016*\"base\" + 0.014*\"open\" + 0.013*\"air\" + 0.010*\"set\" + 0.010*\"site\" + 0.009*\"neat\" + 0.008*\"april\"')\n", + "\n", + "(47, '0.017*\"manag\" + 0.015*\"switch\" + 0.014*\"seri\" + 0.013*\"team\" + 0.013*\"myth\" + 0.012*\"network\" + 0.012*\"season\" + 0.010*\"car\" + 0.010*\"point\" + 0.010*\"test\"')\n", + "\n", + "(8, '0.033*\"determin\" + 0.020*\"matrix\" + 0.012*\"state\" + 0.010*\"order\" + 0.010*\"gener\" + 0.009*\"product\" + 0.009*\"column\" + 0.009*\"develop\" + 0.008*\"function\" + 0.008*\"term\"')\n", + "\n", + "\n", + "====================\n", + "nmf_with_r\n", + "====================\n", + "\n", + "(21, '0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"disnei\" + 0.023*\"cinema\" + 0.021*\"overtak\" + 0.021*\"act\" + 0.017*\"art\" + 0.016*\"million\" + 0.015*\"insid\" + 0.014*\"rover\"')\n", + "\n", + "(13, '0.041*\"hous\" + 0.034*\"dai\" + 0.031*\"develop\" + 0.031*\"vote\" + 0.027*\"women\" + 0.020*\"nomin\" + 0.020*\"elect\" + 0.018*\"gender\" + 0.017*\"glass\" + 0.016*\"ballot\"')\n", + "\n", + "(5, '0.025*\"switch\" + 0.020*\"col\" + 0.016*\"divis\" + 0.014*\"learn\" + 0.013*\"new\" + 0.013*\"port\" + 0.013*\"warrant\" + 0.012*\"action\" + 0.012*\"arrest\" + 0.012*\"championship\"')\n", + "\n", + "(26, '0.039*\"club\" + 0.032*\"season\" + 0.029*\"leagu\" + 0.025*\"svg\" + 0.022*\"imag\" + 0.021*\"symbol\" + 0.021*\"divis\" + 0.018*\"john\" + 0.016*\"rover\" + 0.015*\"premier\"')\n", + "\n", + "(14, '0.058*\"apollo\" + 0.024*\"territori\" + 0.021*\"island\" + 0.018*\"set\" + 0.017*\"claim\" + 0.017*\"grand\" + 0.017*\"sion\" + 0.016*\"priori\" + 0.016*\"open\" + 0.012*\"year\"')\n", + "\n", + "(34, '0.034*\"determin\" + 0.024*\"matrix\" + 0.018*\"finn\" + 0.016*\"team\" + 0.014*\"keeper\" + 0.010*\"myth\" + 0.010*\"disnei\" + 0.010*\"column\" + 0.009*\"matric\" + 0.009*\"power\"')\n", + "\n", + "(44, '0.030*\"design\" + 0.027*\"game\" + 0.024*\"intellig\" + 0.016*\"scienc\" + 0.014*\"new\" + 0.011*\"bai\" + 0.010*\"finn\" + 0.010*\"complex\" + 0.009*\"natur\" + 0.009*\"window\"')\n", + "\n", + "(47, '0.016*\"manag\" + 0.015*\"switch\" + 0.014*\"seri\" + 0.013*\"team\" + 0.012*\"network\" + 0.012*\"myth\" + 0.011*\"season\" + 0.010*\"point\" + 0.009*\"car\" + 0.009*\"test\"')\n", + "\n", + "(0, '0.018*\"cell\" + 0.017*\"highwai\" + 0.017*\"base\" + 0.016*\"open\" + 0.013*\"air\" + 0.012*\"set\" + 0.010*\"site\" + 0.008*\"squadron\" + 0.008*\"german\" + 0.007*\"interchang\"')\n", + "\n", + "(8, '0.029*\"determin\" + 0.020*\"matrix\" + 0.012*\"state\" + 0.010*\"order\" + 0.010*\"gener\" + 0.009*\"product\" + 0.009*\"column\" + 0.009*\"develop\" + 0.008*\"function\" + 0.008*\"term\"')\n", + "\n", + "\n", + "====================\n", + "lda\n", + "====================\n", + "\n", + "(49, '0.010*\"linear\" + 0.005*\"neat\" + 0.005*\"march\" + 0.004*\"palomar\" + 0.004*\"septemb\" + 0.004*\"film\" + 0.003*\"new\" + 0.003*\"februari\" + 0.003*\"april\" + 0.003*\"site\"')\n", + "\n", + "(33, '0.007*\"son\" + 0.006*\"district\" + 0.005*\"state\" + 0.005*\"left\" + 0.005*\"align\" + 0.004*\"year\" + 0.004*\"game\" + 0.004*\"river\" + 0.003*\"member\" + 0.003*\"oblast\"')\n", + "\n", + "(9, '0.006*\"new\" + 0.005*\"state\" + 0.004*\"includ\" + 0.004*\"develop\" + 0.004*\"nation\" + 0.003*\"world\" + 0.003*\"work\" + 0.003*\"year\" + 0.003*\"music\" + 0.003*\"presid\"')\n", + "\n", + "(23, '0.004*\"time\" + 0.004*\"year\" + 0.004*\"new\" + 0.003*\"state\" + 0.003*\"design\" + 0.003*\"world\" + 0.003*\"open\" + 0.003*\"includ\" + 0.003*\"plai\" + 0.002*\"game\"')\n", + "\n", + "(12, '0.007*\"team\" + 0.006*\"state\" + 0.006*\"women\" + 0.005*\"new\" + 0.004*\"univers\" + 0.004*\"world\" + 0.004*\"game\" + 0.003*\"unit\" + 0.003*\"year\" + 0.003*\"known\"')\n", + "\n", + "(43, '0.007*\"new\" + 0.005*\"school\" + 0.004*\"team\" + 0.004*\"world\" + 0.003*\"nation\" + 0.003*\"year\" + 0.003*\"state\" + 0.003*\"develop\" + 0.003*\"includ\" + 0.003*\"unit\"')\n", + "\n", + "(42, '0.010*\"group\" + 0.004*\"new\" + 0.004*\"state\" + 0.004*\"john\" + 0.004*\"topolog\" + 0.003*\"year\" + 0.003*\"gener\" + 0.003*\"public\" + 0.003*\"station\" + 0.003*\"includ\"')\n", + "\n", + "(6, '0.004*\"time\" + 0.004*\"univers\" + 0.003*\"state\" + 0.003*\"includ\" + 0.003*\"year\" + 0.003*\"new\" + 0.003*\"syke\" + 0.003*\"school\" + 0.003*\"nation\" + 0.003*\"gener\"')\n", + "\n", + "(32, '0.004*\"record\" + 0.004*\"year\" + 0.004*\"world\" + 0.003*\"new\" + 0.003*\"hous\" + 0.003*\"build\" + 0.003*\"includ\" + 0.003*\"time\" + 0.003*\"season\" + 0.003*\"senat\"')\n", + "\n", + "(15, '0.006*\"new\" + 0.005*\"station\" + 0.004*\"park\" + 0.004*\"design\" + 0.004*\"american\" + 0.004*\"apollo\" + 0.003*\"year\" + 0.003*\"film\" + 0.003*\"hotel\" + 0.003*\"state\"')\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for row_idx, row in tm_metrics.iterrows():\n", + " print('='*20)\n", + " print(row['model'])\n", + " print('='*20)\n", + " print()\n", + " print(\"\\n\\n\".join(str(topic) for topic in row['topics']))\n", + " print('\\n')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`DISCLAIMER: this section will be edited when run on full corpus`\n", + "\n", + "As we can see, NMF can be significantly faster than LDA without sacrificing quality of topics too much (or not sacrificing at all)\n", + "\n", + "Moreover, NMF can be very flexible on RAM usage due to sparsity option, which leaves only small amount of elements in inner matrices." + ] } ], "metadata": { From 3b1195d8af48d6bdc2b72410ed7c7a086d4633b4 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Tue, 15 Jan 2019 19:27:12 +0300 Subject: [PATCH 136/144] [skip ci] Fix log_probabiliy --- gensim/models/nmf.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/gensim/models/nmf.py b/gensim/models/nmf.py index a63d5c4be8..0a33660d00 100644 --- a/gensim/models/nmf.py +++ b/gensim/models/nmf.py @@ -336,12 +336,13 @@ def log_perplexity(self, corpus): H = np.zeros((W.shape[1], len(corpus))) for bow_id, bow in enumerate(corpus): - for topic_id, proba in self[bow]: - H[topic_id, bow_id] = proba + for topic_id, factor in self[bow]: + H[topic_id, bow_id] = factor dense_corpus = matutils.corpus2dense(corpus, W.shape[0]) pred_factors = W.dot(H) + pred_factors /= pred_factors.sum(axis=0) return (np.log(pred_factors, where=pred_factors > 0) * dense_corpus).sum() / dense_corpus.sum() From 5edec1b52a738041b51128f7e4f0611b4bdd0e15 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Tue, 15 Jan 2019 19:30:25 +0300 Subject: [PATCH 137/144] Multiple format fixes in notebook, outputs cleared til tomorrow --- docs/notebooks/nmf_wikipedia.ipynb | 1084 +++------------------------- 1 file changed, 95 insertions(+), 989 deletions(-) diff --git a/docs/notebooks/nmf_wikipedia.ipynb b/docs/notebooks/nmf_wikipedia.ipynb index 03fafc52bb..35e16ad7dd 100644 --- a/docs/notebooks/nmf_wikipedia.ipynb +++ b/docs/notebooks/nmf_wikipedia.ipynb @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -27,6 +27,7 @@ "import numpy as np\n", "import pandas as pd\n", "import scipy.sparse\n", + "import smart_open\n", "import time\n", "from tqdm import tqdm, tqdm_notebook\n", "\n", @@ -55,332 +56,26 @@ "metadata": {}, "source": [ "### Load wikipedia dump\n", - "Let's use gensim.downloader.api for that" + "Let's use `gensim.downloader.api` for that" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "lines_to_next_cell": 2 }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Section title: Introduction\n", - "Section text: \n", - "\n", - "\n", - "\n", - "\n", - "'''Anarchism''' is a political philosophy that advocates self-governed societies based on voluntary institutions. These are often described as stateless societies, although several authors have defined them more specifically as institutions based on non-hierarchical free associations. Anarchism holds the state to be undesirable, unnecessary and harmful.\n", - "\n", - "While anti-statism is central, anarchism specifically entails opposing authority or hierarchical organisation in the conduct of all human relations, including—but not limited to—the state system. Anarchism is usually considered a far-left ideology and much of anarchist economics and anarchist legal philosophy reflects anti-authoritarian interpretations of communism, collectivism, syndicalism, mutualism or participatory economics.\n", - "\n", - "Anarchism does not offer a fixed body of doctrine from a single particular world view, instead fluxing and flowing as a philosophy. Many types and traditions of anarchism exist, not all of which are mutually exclusive. Anarchist schools of thought can differ fundamentally, supporting anything from extreme individualism to complete collectivism. Strains of anarchism have often been divided into the categories of social and individualist anarchism or similar dual classifications.\n", - "\n", - "Section title: Etymology and terminology\n", - "Section text: \n", - "\n", - "The word ''anarchism'' is composed from the word ''anarchy'' and the suffix ''-ism'', themselves derived respectively from the Greek , i.e. ''anarchy'' (from , ''anarchos'', meaning \"one without rulers\"; from the privative prefix ἀν- (''an-'', i.e. \"without\") and , ''archos'', i.e. \"leader\", \"ruler\"; (cf. ''archon'' or , ''arkhē'', i.e. \"authority\", \"sovereignty\", \"realm\", \"magistracy\")) and the suffix or (''-ismos'', ''-isma'', from the verbal infinitive suffix -ίζειν, ''-izein''). The first known use of this word was in 1539. Various factions within the French Revolution labelled opponents as anarchists (as Robespierre did the Hébertists) although few shared many views of later anarchists. There would be many revolutionaries of the early nineteenth century who contributed to the anarchist doctrines of the next generation, such as William Godwin and Wilhelm Weitling, but they did not use the word ''anarchist'' or ''anarchism'' in describing themselves or their beliefs.\n", - "\n", - "The first political philosopher to call himself an anarchist was Pierre-Joseph Proudhon, marking the formal birth of anarchism in the mid-nineteenth century. Since the 1890s, and beginning in France, the term \"libertarianism\" has often been used as a synonym for anarchism and was used almost exclusively in this sense until the 1950s in the United States; its use as a synonym is still common outside the United States. On the other hand, some use libertarianism to refer to individualistic free-market philosophy only, referring to free-market anarchism as libertarian anarchism.\n", - "\n", - "Section title: History\n", - "Section text: \n", - "\n", - "===Origins===\n", - "Woodcut from a Diggers document by William Everard\n", - "\n", - "The earliest anarchist themes can be found in the 6th century BC among the works of Taoist philosopher Laozi and in later centuries by Zhuangzi and Bao Jingyan. Zhuangzi's philosophy has been described by various sources as anarchist. Zhuangzi wrote: \"A petty thief is put in jail. A great brigand becomes a ruler of a Nation\". Diogenes of Sinope and the Cynics, as well as their contemporary Zeno of Citium, the founder of Stoicism, also introduced similar topics. Jesus is sometimes considered the first anarchist in the Christian anarchist tradition. Georges Lechartier wrote: \"The true founder of anarchy was Jesus Christ and ... the first anarchist society was that of the apostles\". In early Islamic history, some manifestations of anarchic thought are found during the Islamic civil war over the Caliphate, where the Kharijites insisted that the imamate is a right for each individual within the Islamic society.\n", - "\n", - "The French renaissance political philosopher Étienne de La Boétie wrote in his most famous work the ''Discourse on Voluntary Servitude'' what some historians consider an important anarchist precedent. The radical Protestant Christian Gerrard Winstanley and his group the Diggers are cited by various authors as proposing anarchist social measures in the 17th century in England. The term \"anarchist\" first entered the English language in 1642, during the English Civil War, as a term of abuse, used by Royalists against their Roundhead opponents. By the time of the French Revolution some, such as the ''Enragés'', began to use the term positively, in opposition to Jacobin centralisation of power, seeing \"revolutionary government\" as oxymoronic. By the turn of the 19th century, the English word \"anarchism\" had lost its initial negative connotation.\n", - "\n", - "Modern anarchism emerged from the secular or religious thought of the Enlightenment, particularly Jean-Jacques Rousseau's arguments for the moral centrality of freedom.\n", - "\n", - "As part of the political turmoil of the 1790s in the wake of the French Revolution, William Godwin developed the first expression of modern anarchist thought. Godwin was, according to Peter Kropotkin, \"the first to formulate the political and economical conceptions of anarchism, even though he did not give that name to the ideas developed in his work\", while Godwin attached his anarchist ideas to an early Edmund Burke.\n", - "\n", - "William Godwin, \"the first to formulate the political and economical conceptions of anarchism, even though he did not give that name to the ideas developed in his work\".\n", - "Godwin is generally regarded as the founder of the school of thought known as 'philosophical anarchism'. He argued in ''Political Justice'' (1793) that government has an inherently malevolent influence on society, and that it perpetuates dependency and ignorance. He thought that the spread of the use of reason to the masses would eventually cause government to wither away as an unnecessary force. Although he did not accord the state with moral legitimacy, he was against the use of revolutionary tactics for removing the government from power. Rather, he advocated for its replacement through a process of peaceful evolution.\n", - "\n", - "His aversion to the imposition of a rules-based society led him to denounce, as a manifestation of the people's 'mental enslavement', the foundations of law, property rights and even the institution of marriage. He considered the basic foundations of society as constraining the natural development of individuals to use their powers of reasoning to arrive at a mutually beneficial method of social organisation. In each case, government and its institutions are shown to constrain the development of our capacity to live wholly in accordance with the full and free exercise of private judgement.\n", - "\n", - "The French Pierre-Joseph Proudhon is regarded as the first ''self-proclaimed'' anarchist, a label he adopted in his groundbreaking work, ''What is Property?'', published in 1840. It is for this reason that some claim Proudhon as the founder of modern anarchist theory. He developed the theory of spontaneous order in society, where organisation emerges without a central coordinator imposing its own idea of order against the wills of individuals acting in their own interests. His famous quote on the matter is \"Liberty is the mother, not the daughter, of order\". In ''What is Property?'' Proudhon answers with the famous accusation \"Property is theft.\" In this work, he opposed the institution of decreed \"property\" (''propriété''), where owners have complete rights to \"use and abuse\" their property as they wish. He contrasted this with what he called \"possession,\" or limited ownership of resources and goods only while in more or less continuous use. Later, however, Proudhon added that \"Property is Liberty\" and argued that it was a bulwark against state power. His opposition to the state, organised religion, and certain capitalist practices inspired subsequent anarchists, and made him one of the leading social thinkers of his time.\n", - "\n", - "The anarcho-communist Joseph Déjacque was the first person to describe himself as \"libertarian\". Unlike Pierre-Joseph Proudhon, he argued that, \"it is not the product of his or her labour that the worker has a right to, but to the satisfaction of his or her needs, whatever may be their nature.\" In 1844 in Germany the post-hegelian philosopher Max Stirner published the book, ''The Ego and Its Own'', which would later be considered an influential early text of individualist anarchism. French anarchists active in the 1848 Revolution included Anselme Bellegarrigue, Ernest Coeurderoy, Joseph Déjacque and Pierre Joseph Proudhon.\n", - "\n", - "\n", - "===First International and the Paris Commune===\n", - "\n", - "Anarchist Mikhail Bakunin opposed the Marxist aim of dictatorship of the proletariat in favour of universal rebellion, and allied himself with the federalists in the First International before his expulsion by the Marxists.\n", - "\n", - "In Europe, harsh reaction followed the revolutions of 1848, during which ten countries had experienced brief or long-term social upheaval as groups carried out nationalist uprisings. After most of these attempts at systematic change ended in failure, conservative elements took advantage of the divided groups of socialists, anarchists, liberals, and nationalists, to prevent further revolt. In Spain Ramón de la Sagra established the anarchist journal ''El Porvenir'' in La Coruña in 1845 which was inspired by Proudhon´s ideas. The Catalan politician Francesc Pi i Margall became the principal translator of Proudhon's works into Spanish and later briefly became president of Spain in 1873 while being the leader of the Democratic Republican Federal Party. According to George Woodcock \"These translations were to have a profound and lasting effect on the development of Spanish anarchism after 1870, but before that time Proudhonian ideas, as interpreted by Pi, already provided much of the inspiration for the federalist movement which sprang up in the early 1860's.\" According to the ''Encyclopædia Britannica'' \"During the Spanish revolution of 1873, Pi y Margall attempted to establish a decentralised, or \"cantonalist,\" political system on Proudhonian lines.\"\n", - "\n", - "In 1864 the International Workingmen's Association (sometimes called the \"First International\") united diverse revolutionary currents including French followers of Proudhon, Blanquists, Philadelphes, English trade unionists, socialists and social democrats. Due to its links to active workers' movements, the International became a significant organisation. Karl Marx became a leading figure in the International and a member of its General Council. Proudhon's followers, the mutualists, opposed Marx's state socialism, advocating political abstentionism and small property holdings. Woodcock also reports that the American individualist anarchists Lysander Spooner and William B. Greene had been members of the First International. In 1868, following their unsuccessful participation in the League of Peace and Freedom (LPF), Russian revolutionary Mikhail Bakunin and his collectivist anarchist associates joined the First International (which had decided not to get involved with the LPF). They allied themselves with the federalist socialist sections of the International, who advocated the revolutionary overthrow of the state and the collectivisation of property.\n", - "\n", - "At first, the collectivists worked with the Marxists to push the First International in a more revolutionary socialist direction. Subsequently, the International became polarised into two camps, with Marx and Bakunin as their respective figureheads. Mikhail Bakunin characterised Marx's ideas as centralist and predicted that, if a Marxist party came to power, its leaders would simply take the place of the ruling class they had fought against. Anarchist historian George Woodcock reports that \"The annual Congress of the International had not taken place in 1870 owing to the outbreak of the Paris Commune, and in 1871 the General Council called only a special conference in London. One delegate was able to attend from Spain and none from Italy, while a technical excuse – that they had split away from the Fédération Romande – was used to avoid inviting Bakunin's Swiss supporters. Thus only a tiny minority of anarchists was present, and the General Council's resolutions passed almost unanimously. Most of them were clearly directed against Bakunin and his followers.\" In 1872, the conflict climaxed with a final split between the two groups at the Hague Congress, where Bakunin and James Guillaume were expelled from the International and its headquarters were transferred to New York. In response, the federalist sections formed their own International at the St. Imier Congress, adopting a revolutionary anarchist programme.\n", - "\n", - "The Paris Commune was a government that briefly ruled Paris from 18 March (more formally, from 28 March) to 28 May 1871. The Commune was the result of an uprising in Paris after France was defeated in the Franco-Prussian War. Anarchists participated actively in the establishment of the Paris Commune. They included Louise Michel, the Reclus brothers, and Eugene Varlin (the latter murdered in the repression afterwards). As for the reforms initiated by the Commune, such as the re-opening of workplaces as co-operatives, anarchists can see their ideas of associated labour beginning to be realised ... Moreover, the Commune's ideas on federation obviously reflected the influence of Proudhon on French radical ideas. Indeed, the Commune's vision of a communal France based on a federation of delegates bound by imperative mandates issued by their electors and subject to recall at any moment echoes Bakunin's and Proudhon's ideas (Proudhon, like Bakunin, had argued in favour of the \"implementation of the binding mandate\" in 1848 ... and for federation of communes). Thus both economically and politically the Paris Commune was heavily influenced by anarchist ideas. George Woodcock states:\n", - "\n", - "\n", - "===Organised labour===\n", - "\n", - "The anti-authoritarian sections of the First International were the precursors of the anarcho-syndicalists, seeking to \"replace the privilege and authority of the State\" with the \"free and spontaneous organization of labour.\" In 1886, the Federation of Organized Trades and Labor Unions (FOTLU) of the United States and Canada unanimously set 1 May 1886, as the date by which the eight-hour work day would become standard.\n", - "A sympathetic engraving by Walter Crane of the executed \"Anarchists of Chicago\" after the Haymarket affair. The Haymarket affair is generally considered the most significant event for the origin of international May Day observances.\n", - "In response, unions across the United States prepared a general strike in support of the event. On 3 May, in Chicago, a fight broke out when strikebreakers attempted to cross the picket line, and two workers died when police opened fire upon the crowd. The next day, 4 May, anarchists staged a rally at Chicago's Haymarket Square. A bomb was thrown by an unknown party near the conclusion of the rally, killing an officer. In the ensuing panic, police opened fire on the crowd and each other. Seven police officers and at least four workers were killed. Eight anarchists directly and indirectly related to the organisers of the rally were arrested and charged with the murder of the deceased officer. The men became international political celebrities among the labour movement. Four of the men were executed and a fifth committed suicide prior to his own execution. The incident became known as the Haymarket affair, and was a setback for the labour movement and the struggle for the eight-hour day. In 1890 a second attempt, this time international in scope, to organise for the eight-hour day was made. The event also had the secondary purpose of memorialising workers killed as a result of the Haymarket affair. Although it had initially been conceived as a once-off event, by the following year the celebration of International Workers' Day on May Day had become firmly established as an international worker's holiday.\n", - "\n", - "In 1907, the International Anarchist Congress of Amsterdam gathered delegates from 14 different countries, among which important figures of the anarchist movement, including Errico Malatesta, Pierre Monatte, Luigi Fabbri, Benoît Broutchoux, Emma Goldman, Rudolf Rocker, and Christiaan Cornelissen. Various themes were treated during the Congress, in particular concerning the organisation of the anarchist movement, popular education issues, the general strike or antimilitarism. A central debate concerned the relation between anarchism and syndicalism (or trade unionism). Malatesta and Monatte were in particular disagreement themselves on this issue, as the latter thought that syndicalism was revolutionary and would create the conditions of a social revolution, while Malatesta did not consider syndicalism by itself sufficient. He thought that the trade-union movement was reformist and even conservative, citing as essentially bourgeois and anti-worker the phenomenon of professional union officials. Malatesta warned that the syndicalists aims were in perpetuating syndicalism itself, whereas anarchists must always have anarchy as their end and consequently refrain from committing to any particular method of achieving it.\n", - "\n", - "The Spanish Workers Federation in 1881 was the first major anarcho-syndicalist movement; anarchist trade union federations were of special importance in Spain. The most successful was the Confederación Nacional del Trabajo (National Confederation of Labour: CNT), founded in 1910. Before the 1940s, the CNT was the major force in Spanish working class politics, attracting 1.58 million members at one point and playing a major role in the Spanish Civil War. The CNT was affiliated with the International Workers Association, a federation of anarcho-syndicalist trade unions founded in 1922, with delegates representing two million workers from 15 countries in Europe and Latin America. In Latin America in particular \"The anarchists quickly became active in organising craft and industrial workers throughout South and Central America, and until the early 1920s most of the trade unions in Mexico, Brazil, Peru, Chile, and Argentina were anarcho-syndicalist in general outlook; the prestige of the Spanish C.N.T. as a revolutionary organisation was undoubtedly to a great extent responsible for this situation. The largest and most militant of these organisations was the Federación Obrera Regional Argentina ... it grew quickly to a membership of nearly a quarter of a million, which dwarfed the rival socialdemocratic unions.\"\n", - "\n", - "\n", - "===Propaganda of the deed and illegalism===\n", - "\n", - "Italian-American anarchist Luigi Galleani. His followers, known as Galleanists, carried out a series of bombings and assassination attempts from 1914 to 1932 in what they saw as attacks on 'tyrants' and 'enemies of the people'\n", - "Some anarchists, such as Johann Most, advocated publicising violent acts of retaliation against counter-revolutionaries because \"we preach not only action in and for itself, but also action as propaganda.\" Scholars such as Beverly Gage contend that this was not advocacy of mass murder, but targeted killings of members of the ruling class at times when such actions might garner sympathy from the population, such as during periods of heightened government repression or labor conflicts where workers were killed. However, Most himself once boasted that \"the existing system will be quickest and most radically overthrown by the annihilation of its exponents. Therefore, massacres of the enemies of the people must be set in motion.\" Most is best known for a pamphlet published in 1885: ''The Science of Revolutionary Warfare'', a how-to manual on the subject of making explosives, based on knowledge he acquired while working at an explosives plant in New Jersey.\n", - "\n", - "By the 1880s, people inside and outside the anarchist movement began to use the slogan, \"propaganda of the deed\" to refer to individual bombings, regicides, and tyrannicides. From 1905 onwards, the Russian counterparts of these anti-syndicalist anarchist-communists become partisans of economic terrorism and illegal 'expropriations'.\" Illegalism as a practice emerged and within it \"The acts of the anarchist bombers and assassins (\"propaganda by the deed\") and the anarchist burglars (\"individual reappropriation\") expressed their desperation and their personal, violent rejection of an intolerable society. Moreover, they were clearly meant to be ''exemplary'' invitations to revolt.\". France's Bonnot Gang was the most famous group to embrace illegalism.\n", - "\n", - "However, as soon as 1887, important figures in the anarchist movement distanced themselves from such individual acts. Peter Kropotkin thus wrote that year in ''Le Révolté'' that \"a structure based on centuries of history cannot be destroyed with a few kilos of dynamite\". A variety of anarchists advocated the abandonment of these sorts of tactics in favour of collective revolutionary action, for example through the trade union movement. The anarcho-syndicalist, Fernand Pelloutier, argued in 1895 for renewed anarchist involvement in the labour movement on the basis that anarchism could do very well without \"the individual dynamiter.\"\n", - "\n", - "State repression (including the infamous 1894 French ''lois scélérates'') of the anarchist and labour movements following the few successful bombings and assassinations may have contributed to the abandonment of these kinds of tactics, although reciprocally state repression, in the first place, may have played a role in these isolated acts. The dismemberment of the French socialist movement, into many groups and, following the suppression of the 1871 Paris Commune, the execution and exile of many ''communards'' to penal colonies, favoured individualist political expression and acts.\n", - "\n", - "Numerous heads of state were assassinated between 1881 and 1914 by members of the anarchist movement, including Tsar Alexander II of Russia, President Sadi Carnot of France, Empress Elisabeth of Austria, King Umberto I of Italy, President William McKinley of the United States, King Carlos I of Portugal and King George I of Greece. McKinley's assassin Leon Czolgosz claimed to have been influenced by anarchist and feminist Emma Goldman.\n", - "\n", - "===Russian Revolution and other uprisings of the 1910s===\n", - "\n", - "Nestor Makhno with members of the anarchist Revolutionary Insurrectionary Army of Ukraine\n", - "Anarchists participated alongside the Bolsheviks in both February and October revolutions, and were initially enthusiastic about the Bolshevik revolution. However, following a political falling out with the Bolsheviks by the anarchists and other left-wing opposition, the conflict culminated in the 1921 Kronstadt rebellion, which the new government repressed. Anarchists in central Russia were either imprisoned, driven underground or joined the victorious Bolsheviks; the anarchists from Petrograd and Moscow fled to Ukraine. There, in the Free Territory, they fought in the civil war against the Whites (a grouping of monarchists and other opponents of the October Revolution) and then the Bolsheviks as part of the Revolutionary Insurrectionary Army of Ukraine led by Nestor Makhno, who established an anarchist society in the region for a number of months.\n", - "\n", - "Expelled American anarchists Emma Goldman and Alexander Berkman were among those agitating in response to Bolshevik policy and the suppression of the Kronstadt uprising, before they left Russia. Both wrote accounts of their experiences in Russia, criticising the amount of control the Bolsheviks exercised. For them, Bakunin's predictions about the consequences of Marxist rule that the rulers of the new \"socialist\" Marxist state would become a new elite had proved all too true.\n", - "\n", - "The victory of the Bolsheviks in the October Revolution and the resulting Russian Civil War did serious damage to anarchist movements internationally. Many workers and activists saw Bolshevik success as setting an example; Communist parties grew at the expense of anarchism and other socialist movements. In France and the United States, for example, members of the major syndicalist movements of the CGT and IWW left the organisations and joined the Communist International.\n", - "\n", - "The revolutionary wave of 1917–23 saw the active participation of anarchists in varying degrees of protagonism. In the German uprising known as the German Revolution of 1918–1919 which established the Bavarian Soviet Republic the anarchists Gustav Landauer, Silvio Gesell and Erich Mühsam had important leadership positions within the revolutionary councilist structures. In the Italian events known as the ''biennio rosso'' the anarcho-syndicalist trade union Unione Sindacale Italiana \"grew to 800,000 members and the influence of the Italian Anarchist Union (20,000 members plus ''Umanita Nova'', its daily paper) grew accordingly ... Anarchists were the first to suggest occupying workplaces. In the Mexican Revolution the Mexican Liberal Party was established and during the early 1910s it led a series of military offensives leading to the conquest and occupation of certain towns and districts in Baja California with the leadership of anarcho-communist Ricardo Flores Magón.\n", - "\n", - "In Paris, the Dielo Truda group of Russian anarchist exiles, which included Nestor Makhno, concluded that anarchists needed to develop new forms of organisation in response to the structures of Bolshevism. Their 1926 manifesto, called the ''Organisational Platform of the General Union of Anarchists (Draft)'', was supported. Platformist groups active today include the Workers Solidarity Movement in Ireland and the North Eastern Federation of Anarchist Communists of North America. Synthesis anarchism emerged as an organisational alternative to platformism that tries to join anarchists of different tendencies under the principles of anarchism without adjectives. In the 1920s this form found as its main proponents Volin and Sebastien Faure. It is the main principle behind the anarchist federations grouped around the contemporary global International of Anarchist Federations.\n", - "\n", - "===Conflicts with European fascist regimes===\n", - "\n", - "\n", - "\n", - "In the 1920s and 1930s, the rise of fascism in Europe transformed anarchism's conflict with the state. Italy saw the first struggles between anarchists and fascists. Italian anarchists played a key role in the anti-fascist organisation ''Arditi del Popolo'', which was strongest in areas with anarchist traditions, and achieved some success in their activism, such as repelling Blackshirts in the anarchist stronghold of Parma in August 1922. The veteran Italian anarchist, Luigi Fabbri, was one of the first critical theorists of fascism, describing it as \"the preventive counter-revolution.\" In France, where the far right leagues came close to insurrection in the February 1934 riots, anarchists divided over a united front policy.\n", - "\n", - "Anarchists in France and Italy were active in the Resistance during World War II. In Germany the anarchist Erich Mühsam was arrested on charges unknown in the early morning hours of 28 February 1933, within a few hours after the Reichstag fire in Berlin. Joseph Goebbels, the Nazi propaganda minister, labelled him as one of \"those Jewish subversives.\" Over the next seventeen months, he would be imprisoned in the concentration camps at Sonnenburg, Brandenburg and finally, Oranienburg. On 2 February 1934, Mühsam was transferred to the concentration camp at Oranienburg when finally on the night of 9 July 1934, Mühsam was tortured and murdered by the guards, his battered corpse found hanging in a latrine the next morning.\n", - "\n", - "===Spanish Revolution===\n", - "\n", - "In Spain, the national anarcho-syndicalist trade union Confederación Nacional del Trabajo initially refused to join a popular front electoral alliance, and abstention by CNT supporters led to a right wing election victory. But in 1936, the CNT changed its policy and anarchist votes helped bring the popular front back to power. Months later, conservative members of the military, with the support of minority extreme-right parties, responded with an attempted coup, causing the Spanish Civil War (1936–1939). In response to the army rebellion, an anarchist-inspired movement of peasants and workers, supported by armed militias, took control of Barcelona and of large areas of rural Spain where they collectivised the land. But even before the fascist victory in 1939, the anarchists were losing ground in a bitter struggle with the Stalinists, who controlled much of the distribution of military aid to the Republican cause from the Soviet Union. According to Noam Chomsky, \"the communists were mainly responsible for the destruction of the Spanish anarchists. Not just in Catalonia—the communist armies mainly destroyed the collectives elsewhere. The communists basically acted as the police force of the security system of the Republic and were very much opposed to the anarchists, partially because Stalin still hoped at that time to have some kind of pact with Western countries against Hitler. That, of course, failed and Stalin withdrew the support to the Republic. They even withdrew the Spanish gold reserves.\" The events known as the Spanish Revolution was a workers' social revolution that began during the outbreak of the Spanish Civil War in 1936 and resulted in the widespread implementation of anarchist and more broadly libertarian socialist organisational principles throughout various portions of the country for two to three years, primarily Catalonia, Aragon, Andalusia, and parts of the Levante. Much of Spain's economy was put under worker control; in anarchist strongholds like Catalonia, the figure was as high as 75%, but lower in areas with heavy Communist Party of Spain influence, as the Soviet-allied party actively resisted attempts at collectivisation enactment. Factories were run through worker committees, agrarian areas became collectivised and run as libertarian communes. Anarchist historian Sam Dolgoff estimated that about eight million people participated directly or at least indirectly in the Spanish Revolution, which he claimed \"came closer to realising the ideal of the free stateless society on a vast scale than any other revolution in history.\" Spanish Communist Party-led troops suppressed the collectives and persecuted both dissident Marxists and anarchists. The prominent Italian anarchist Camillo Berneri, who volunteered to fight against Franco was killed instead in Spain by gunmen associated with the Spanish Communist Party. The city of Madrid was turned over to the francoist forces by the last non-francoist mayor of the city, the anarchist Melchor Rodríguez García.\n", - "\n", - "===Post-war years===\n", - "\n", - "\n", - "Anarchism sought to reorganise itself after the war and in this context the organisational debate between synthesis anarchism and platformism took importance once again especially in the anarchist movements of Italy and France. The Mexican Anarchist Federation was established in 1945 after the Anarchist Federation of the Centre united with the Anarchist Federation of the Federal District. In the early 1940s, the Antifascist International Solidarity and the Federation of Anarchist Groups of Cuba merged into the large national organisation Asociación Libertaria de Cuba (Cuban Libertarian Association). From 1944 to 1947, the Bulgarian Anarchist Communist Federation reemerged as part of a factory and workplace committee movement, but was repressed by the new Communist regime. In 1945 in France the Fédération Anarchiste and the anarchosyndicalist trade union Confédération nationale du travail was established in the next year while the also synthesist Federazione Anarchica Italiana was founded in Italy. Korean anarchists formed the League of Free Social Constructors in September 1945 and in 1946 the Japanese Anarchist Federation was founded. An International Anarchist Congress with delegates from across Europe was held in Paris in May 1948. After World War II, an appeal in the ''Fraye Arbeter Shtime'' detailing the plight of German anarchists and called for Americans to support them. By February 1946, the sending of aid parcels to anarchists in Germany was a large-scale operation. The Federation of Libertarian Socialists was founded in Germany in 1947 and Rudolf Rocker wrote for its organ, ''Die Freie Gesellschaft'', which survived until 1953. In 1956 the Uruguayan Anarchist Federation was founded. In 1955 the Anarcho-Communist Federation of Argentina renamed itself as the Argentine Libertarian Federation. The Syndicalist Workers' Federation was a syndicalist group in active in post-war Britain, and one of Solidarity Federation's earliest predecessors. It was formed in 1950 by members of the dissolved Anarchist Federation of Britain. Unlike the AFB, which was influenced by anarcho-syndicalist ideas but ultimately not syndicalist itself, the SWF decided to pursue a more definitely syndicalist, worker-centred strategy from the outset.\n", - "\n", - "Anarchism continued to influence important literary and intellectual personalities of the time, such as Albert Camus, Herbert Read, Paul Goodman, Dwight Macdonald, Allen Ginsberg, George Woodcock, Leopold Kohr, Julian Beck, John Cage and the French Surrealist group led by André Breton, which now openly embraced anarchism and collaborated in the Fédération Anarchiste.\n", - "\n", - "Anarcho-pacifism became influential in the Anti-nuclear movement and anti war movements of the time as can be seen in the activism and writings of the English anarchist member of Campaign for Nuclear Disarmament Alex Comfort or the similar activism of the American catholic anarcho-pacifists Ammon Hennacy and Dorothy Day. Anarcho-pacifism became a \"basis for a critique of militarism on both sides of the Cold War.\" The resurgence of anarchist ideas during this period is well documented in Robert Graham's Anarchism: A Documentary History of Libertarian Ideas, ''Volume Two: The Emergence of the New Anarchism (1939–1977)''.\n", - "\n", - "===Contemporary anarchism===\n", - "\n", - "squat near Parc Güell, overlooking Barcelona. Squatting was a prominent part of the emergence of renewed anarchist movement from the counterculture of the 1960s and 1970s. On the roof: \"Occupy and Resist\" A surge of popular interest in anarchism occurred in western nations during the 1960s and 1970s. Anarchism was influential in the Counterculture of the 1960s and anarchists actively participated in the late sixties students and workers revolts. In 1968 in Carrara, Italy the International of Anarchist Federations was founded during an international anarchist conference held there in 1968 by the three existing European federations of France (the Fédération Anarchiste), the Federazione Anarchica Italiana of Italy and the Iberian Anarchist Federation as well as the Bulgarian federation in French exile.\n", - "\n", - "In the United Kingdom in the 1970s this was associated with the punk rock movement, as exemplified by bands such as Crass and the Sex Pistols. The housing and employment crisis in most of Western Europe led to the formation of communes and squatter movements like that of Barcelona, Spain. In Denmark, squatters occupied a disused military base and declared the Freetown Christiania, an autonomous haven in central Copenhagen. Since the revival of anarchism in the mid-20th century, a number of new movements and schools of thought emerged. Although feminist tendencies have always been a part of the anarchist movement in the form of anarcha-feminism, they returned with vigour during the second wave of feminism in the 1960s. Anarchist anthropologist David Graeber and anarchist historian Andrej Grubacic have posited a rupture between generations of anarchism, with those \"who often still have not shaken the sectarian habits\" of the 19th century contrasted with the younger activists who are \"much more informed, among other elements, by indigenous, feminist, ecological and cultural-critical ideas\", and who by the turn of the 21st century formed \"by far the majority\" of anarchists.\n", - "\n", - "Around the turn of the 21st century, anarchism grew in popularity and influence as part of the anti-war, anti-capitalist, and anti-globalisation movements. Anarchists became known for their involvement in protests against the meetings of the World Trade Organization (WTO), Group of Eight, and the World Economic Forum. Some anarchist factions at these protests engaged in rioting, property destruction, and violent confrontations with police. These actions were precipitated by ad hoc, leaderless, anonymous cadres known as ''black blocs''; other organisational tactics pioneered in this time include security culture, affinity groups and the use of decentralised technologies such as the internet. A significant event of this period was the confrontations at WTO conference in Seattle in 1999. According to anarchist scholar Simon Critchley, \"contemporary anarchism can be seen as a powerful critique of the pseudo-libertarianism of contemporary neo-liberalism ... One might say that contemporary anarchism is about responsibility, whether sexual, ecological or socio-economic; it flows from an experience of conscience about the manifold ways in which the West ravages the rest; it is an ethical outrage at the yawning inequality, impoverishment and disenfranchisment that is so palpable locally and globally.\"\n", - "\n", - "International anarchist federations in existence include the International of Anarchist Federations, the International Workers' Association, and International Libertarian Solidarity.\n", - "The largest organised anarchist movement today is in Spain, in the form of the Confederación General del Trabajo (CGT) and the CNT. CGT membership was estimated at around 100,000 for 2003.\n", - "\n", - "Section title: Anarchist schools of thought\n", - "Section text: \n", - "Portrait of philosopher Pierre-Joseph Proudhon (1809–1865) by Gustave Courbet. Proudhon was the primary proponent of anarchist mutualism, and influenced many later individualist anarchist and social anarchist thinkers.\n", - "Anarchist schools of thought had been generally grouped in two main historical traditions, individualist anarchism and social anarchism, which have some different origins, values and evolution. The individualist wing of anarchism emphasises negative liberty, i.e. opposition to state or social control over the individual, while those in the social wing emphasise positive liberty to achieve one's potential and argue that humans have needs that society ought to fulfil, \"recognising equality of entitlement\". In a chronological and theoretical sense, there are classical – those created throughout the 19th century – and post-classical anarchist schools – those created since the mid-20th century and after.\n", - "\n", - "Beyond the specific factions of anarchist thought is philosophical anarchism, which embodies the theoretical stance that the state lacks moral legitimacy without accepting the imperative of revolution to eliminate it. A component especially of individualist anarchism philosophical anarchism may accept the existence of a minimal state as unfortunate, and usually temporary, \"necessary evil\" but argue that citizens do not have a moral obligation to obey the state when its laws conflict with individual autonomy. One reaction against sectarianism within the anarchist milieu was \"anarchism without adjectives\", a call for toleration first adopted by Fernando Tarrida del Mármol in 1889 in response to the \"bitter debates\" of anarchist theory at the time. In abandoning the hyphenated anarchisms (i.e. collectivist-, communist-, mutualist– and individualist-anarchism), it sought to emphasise the anti-authoritarian beliefs common to all anarchist schools of thought.\n", - "\n", - "===Classical anarchist schools of thought===\n", - "\n", - "====Mutualism====\n", - "\n", - "Mutualism began in 18th-century English and French labour movements before taking an anarchist form associated with Pierre-Joseph Proudhon in France and others in the United States. Proudhon proposed spontaneous order, whereby organisation emerges without central authority, a \"positive anarchy\" where order arises when everybody does \"what he wishes and only what he wishes\" and where \"business transactions alone produce the social order.\" Proudhon distinguished between ideal political possibilities and practical governance. For this reason, much in contrast to some of his theoretical statements concerning ultimate spontaneous self-governance, Proudhon was heavily involved in French parliamentary politics and allied himself not with anarchist but socialist factions of workers' movements and, in addition to advocating state-protected charters for worker-owned cooperatives, promoted certain nationalisation schemes during his life of public service.\n", - "\n", - "Mutualist anarchism is concerned with reciprocity, free association, voluntary contract, federation, and credit and currency reform. According to the American mutualist William Batchelder Greene, each worker in the mutualist system would receive \"just and exact pay for his work; services equivalent in cost being exchangeable for services equivalent in cost, without profit or discount.\" Mutualism has been retrospectively characterised as ideologically situated between individualist and collectivist forms of anarchism.''Blackwell Encyclopaedia of Political Thought'', Blackwell Publishing 1991 , p. 11. Proudhon first characterised his goal as a \"third form of society, the synthesis of communism and property.\"\n", - "\n", - "====Individualist anarchism====\n", - "\n", - "Individualist anarchism refers to several traditions of thought within the anarchist movement that emphasise the individual and their will over any kinds of external determinants such as groups, society, traditions, and ideological systems. Individualist anarchism is not a single philosophy but refers to a group of individualistic philosophies that sometimes are in conflict.\n", - "\n", - "In 1793, William Godwin, who has often been cited as the first anarchist, wrote ''Political Justice'', which some consider the first expression of anarchism. Godwin, a philosophical anarchist, from a rationalist and utilitarian basis opposed revolutionary action and saw a minimal state as a present \"necessary evil\" that would become increasingly irrelevant and powerless by the gradual spread of knowledge. Godwin advocated individualism, proposing that all cooperation in labour be eliminated on the premise that this would be most conducive with the general good.\n", - "19th-century philosopher Max Stirner, usually considered a prominent early individualist anarchist (sketch by Friedrich Engels).\n", - "An influential form of individualist anarchism, called \"egoism,\" or egoist anarchism, was expounded by one of the earliest and best-known proponents of individualist anarchism, the German Max Stirner. Stirner's ''The Ego and Its Own'', published in 1844, is a founding text of the philosophy. According to Stirner, the only limitation on the rights of individuals is their power to obtain what they desire, without regard for God, state, or morality. To Stirner, rights were ''spooks'' in the mind, and he held that society does not exist but \"the individuals are its reality\". Stirner advocated self-assertion and foresaw unions of egoists, non-systematic associations continually renewed by all parties' support through an act of will, which Stirner proposed as a form of organisation in place of the state. Egoist anarchists argue that egoism will foster genuine and spontaneous union between individuals. \"Egoism\" has inspired many interpretations of Stirner's philosophy. It was re-discovered and promoted by German philosophical anarchist and homosexual activist John Henry Mackay.\n", - "\n", - "Josiah Warren is widely regarded as the first American anarchist, and the four-page weekly paper he edited during 1833, ''The Peaceful Revolutionist'', was the first anarchist periodical published. For American anarchist historian Eunice Minette Schuster \"It is apparent ... that Proudhonian Anarchism was to be found in the United States at least as early as 1848 and that it was not conscious of its affinity to the Individualist Anarchism of Josiah Warren and Stephen Pearl Andrews ... William B. Greene presented this Proudhonian Mutualism in its purest and most systematic form.\". Henry David Thoreau (1817–1862) was an important early influence in individualist anarchist thought in the United States and Europe. Thoreau was an American author, poet, naturalist, tax resister, development critic, surveyor, historian, philosopher, and leading transcendentalist. He is best known for his books ''Walden'', a reflection upon simple living in natural surroundings, and his essay, ''Civil Disobedience'', an argument for individual resistance to civil government in moral opposition to an unjust state. Later Benjamin Tucker fused Stirner's egoism with the economics of Warren and Proudhon in his eclectic influential publication ''Liberty''.\n", - "\n", - "From these early influences individualist anarchism in different countries attracted a small but diverse following of bohemian artists and intellectuals, free love and birth control advocates (see Anarchism and issues related to love and sex), individualist naturists nudists (see anarcho-naturism), freethought and anti-clerical activists as well as young anarchist outlaws in what became known as illegalism and individual reclamation (see European individualist anarchism and individualist anarchism in France). These authors and activists included Oscar Wilde, Emile Armand, Han Ryner, Henri Zisly, Renzo Novatore, Miguel Gimenez Igualada, Adolf Brand and Lev Chernyi among others.\n", - "\n", - "====Social anarchism====\n", - "\n", - "Social anarchism calls for a system with common ownership of means of production and democratic control of all organisations, without any government authority or coercion. It is the largest school of thought in anarchism. Social anarchism rejects private property, seeing it as a source of social inequality (while retaining respect for personal property), and emphasises cooperation and mutual aid.\n", - "\n", - "=====Collectivist anarchism=====\n", - "\n", - "Collectivist anarchism, also referred to as \"revolutionary socialism\" or a form of such, is a revolutionary form of anarchism, commonly associated with Mikhail Bakunin and Johann Most. Collectivist anarchists oppose all private ownership of the means of production, instead advocating that ownership be collectivised. This was to be achieved through violent revolution, first starting with a small cohesive group through acts of violence, or ''propaganda by the deed'', which would inspire the workers as a whole to revolt and forcibly collectivise the means of production.\n", - "\n", - "However, collectivisation was not to be extended to the distribution of income, as workers would be paid according to time worked, rather than receiving goods being distributed \"according to need\" as in anarcho-communism. This position was criticised by anarchist communists as effectively \"upholding the wages system\". Collectivist anarchism arose contemporaneously with Marxism but opposed the Marxist dictatorship of the proletariat, despite the stated Marxist goal of a collectivist stateless society. Anarchist, communist and collectivist ideas are not mutually exclusive; although the collectivist anarchists advocated compensation for labour, some held out the possibility of a post-revolutionary transition to a communist system of distribution according to need.\n", - "\n", - "=====Anarcho-communism=====\n", - "\n", - "\n", - "Anarchist communism (also known as anarcho-communism, libertarian communism and occasionally as free communism) is a theory of anarchism that advocates abolition of the state, markets, money, private property (while retaining respect for personal property), and capitalism in favour of common ownership of the means of production, direct democracy and a horizontal network of voluntary associations and workers' councils with production and consumption based on the guiding principle: \"from each according to his ability, to each according to his need\".\n", - "\n", - "Russian theorist Peter Kropotkin (1842–1921), who was influential in the development of anarchist communism\n", - "\n", - "Some forms of anarchist communism such as insurrectionary anarchism are strongly influenced by egoism and radical individualism, believing anarcho-communism is the best social system for the realisation of individual freedom. Most anarcho-communists view anarcho-communism as a way of reconciling the opposition between the individual and society.\n", - "\n", - "Anarcho-communism developed out of radical socialist currents after the French revolution but was first formulated as such in the Italian section of the First International. The theoretical work of Peter Kropotkin took importance later as it expanded and developed pro-organisationalist and insurrectionary anti-organisationalist sections. To date, the best known examples of an anarchist communist society (i.e., established around the ideas as they exist today and achieving worldwide attention and knowledge in the historical canon), are the anarchist territories during the Spanish Revolution and the Free Territory during the Russian Revolution. Through the efforts and influence of the Spanish Anarchists during the Spanish Revolution within the Spanish Civil War, starting in 1936 anarchist communism existed in most of Aragon, parts of the Levante and Andalusia, as well as in the stronghold of Anarchist Catalonia before being crushed by the combined forces of the regime that won the war, Hitler, Mussolini, Spanish Communist Party repression (backed by the USSR) as well as economic and armaments blockades from the capitalist countries and the Spanish Republic itself. During the Russian Revolution, anarchists such as Nestor Makhno worked to create and defend – through the Revolutionary Insurrectionary Army of Ukraine – anarchist communism in the Free Territory of the Ukraine from 1919 before being conquered by the Bolsheviks in 1921.\n", - "\n", - "=====Anarcho-syndicalism=====\n", - "\n", - "May day demonstration of Spanish anarcho-syndicalist trade union CNT in Bilbao, Basque Country in 2010Anarcho-syndicalism is a branch of anarchism that focuses on the labour movement. Anarcho-syndicalists view labour unions as a potential force for revolutionary social change, replacing capitalism and the state with a new society democratically self-managed by workers. The basic principles of anarcho-syndicalism are: Workers' solidarity, Direct action and Workers' self-management\n", - "Anarcho-syndicalists believe that only direct action – that is, action concentrated on directly attaining a goal, as opposed to indirect action, such as electing a representative to a government position – will allow workers to liberate themselves. Moreover, anarcho-syndicalists believe that workers' organisations (the organisations that struggle against the wage system, which, in anarcho-syndicalist theory, will eventually form the basis of a new society) should be self-managing. They should not have bosses or \"business agents\"; rather, the workers should be able to make all the decisions that affect them themselves. Rudolf Rocker was one of the most popular voices in the anarcho-syndicalist movement. He outlined a view of the origins of the movement, what it sought, and why it was important to the future of labour in his 1938 pamphlet ''Anarcho-Syndicalism''. The International Workers Association is an international anarcho-syndicalist federation of various labour unions from different countries. The Spanish Confederación Nacional del Trabajo played and still plays a major role in the Spanish labour movement. It was also an important force in the Spanish Civil War.\n", - "\n", - "===Post-classical schools of thought===\n", - "\n", - "Lawrence Jarach (left) and John Zerzan (right), two prominent contemporary anarchist authors. Zerzan is known as prominent voice within anarcho-primitivism, while Jarach is a noted advocate of post-left anarchy.\n", - "Anarchism continues to generate many philosophies and movements, at times eclectic, drawing upon various sources, and syncretic, combining disparate concepts to create new philosophical approaches.\n", - "\n", - "Green anarchism (or eco-anarchism) is a school of thought within anarchism that emphasises environmental issues, with an important precedent in anarcho-naturism, and whose main contemporary currents are anarcho-primitivism and social ecology. Writing from a green anarchist perspective, John Zerzan attributes the ills of today's social degradation to technology and the birth of agricultural civilization. While Layla AbdelRahim argues that \"the shift in human consciousness was also a shift in human subsistence strategies, whereby some human animals reinvented their narrative to center murder and predation and thereby institutionalize violence\". Thus, according to her, civilization was the result of the human development of technologies and grammar for predatory economics. Language and literacy, she claims, are some of these technologies.\n", - "\n", - "Anarcha-feminism (also called anarchist feminism and anarcho-feminism) combines anarchism with feminism. It generally views patriarchy as a manifestation of involuntary coercive hierarchy that should be replaced by decentralised free association. Anarcha-feminists believe that the struggle against patriarchy is an essential part of class struggle, and the anarchist struggle against the state. In essence, the philosophy sees anarchist struggle as a necessary component of feminist struggle and vice versa. L. Susan Brown claims that \"as anarchism is a political philosophy that opposes all relationships of power, it is inherently feminist\". Anarcha-feminism began with the late 19th-century writings of early feminist anarchists such as Emma Goldman and Voltairine de Cleyre.\n", - "\n", - "Anarcho-pacifism is a tendency that rejects violence in the struggle for social change (see non-violence). It developed \"mostly in the Netherlands, Britain, and the United States, before and during the Second World War\". Christian anarchism is a movement in political theology that combines anarchism and Christianity. Its main proponents included Leo Tolstoy, Dorothy Day, Ammon Hennacy, and Jacques Ellul.\n", - "\n", - "Platformism is a tendency within the wider anarchist movement based on the organisational theories in the tradition of Dielo Truda's ''Organisational Platform of the General Union of Anarchists (Draft)''. The document was based on the experiences of Russian anarchists in the 1917 October Revolution, which led eventually to the victory of the Bolsheviks over the anarchists and other groups. The ''Platform'' attempted to address and explain the anarchist movement's failures during the Russian Revolution.\n", - "\n", - "Synthesis anarchism is a form of anarchism that tries to join anarchists of different tendencies under the principles of anarchism without adjectives. In the 1920s, this form found as its main proponents the anarcho-communists Voline and Sébastien Faure. It is the main principle behind the anarchist federations grouped around the contemporary global International of Anarchist Federations.\n", - "\n", - "Post-left anarchy is a recent current in anarchist thought that promotes a critique of anarchism's relationship to traditional Left-wing politics. Some post-leftists seek to escape the confines of ideology in general also presenting a critique of organisations and morality. Influenced by the work of Max Stirner and by the Marxist Situationist International, post-left anarchy is marked by a focus on social insurrection and a rejection of leftist social organisation.\n", - "\n", - "Insurrectionary anarchism is a revolutionary theory, practice, and tendency within the anarchist movement which emphasises insurrection within anarchist practice. It is critical of formal organisations such as labour unions and federations that are based on a political programme and periodic congresses. Instead, insurrectionary anarchists advocate informal organisation and small affinity group based organisation. Insurrectionary anarchists put value in attack, permanent class conflict, and a refusal to negotiate or compromise with class enemies.\n", - "\n", - "Post-anarchism is a theoretical move towards a synthesis of classical anarchist theory and poststructuralist thought, drawing from diverse ideas including post-modernism, autonomist marxism, post-left anarchy, Situationist International, and postcolonialism.\n", - "\n", - "Left-wing market anarchism strongly affirm the classical liberal ideas of self-ownership and free markets, while maintaining that, taken to their logical conclusions, these ideas support strongly anti-corporatist, anti-hierarchical, pro-labour positions and anti-capitalism in economics and anti-imperialism in foreign policy.\n", - "\n", - "Anarcho-capitalism advocates the elimination of the state in favour of self-ownership in a free market. Anarcho-capitalism developed from radical anti-state libertarianism and individualist anarchism, drawing from Austrian School economics, study of law and economics, and public choice theory. There is a strong current within anarchism which believes that anarcho-capitalism cannot be considered a part of the anarchist movement, due to the fact that anarchism has historically been an anti-capitalist movement and for definitional reasons which see anarchism as incompatible with capitalist forms.\n", - "\n", - "\n", - "Section title: Internal issues and debates\n", - "Section text: \n", - "consistent with anarchist values is a controversial subject among anarchists.\n", - "\n", - "Anarchism is a philosophy that embodies many diverse attitudes, tendencies and schools of thought; as such, disagreement over questions of values, ideology and tactics is common. The compatibility of capitalism, nationalism, and religion with anarchism is widely disputed. Similarly, anarchism enjoys complex relationships with ideologies such as Marxism, communism, collectivism, syndicalism/trade unionism, and capitalism. Anarchists may be motivated by humanism, divine authority, enlightened self-interest, veganism or any number of alternative ethical doctrines.\n", - "\n", - "Phenomena such as civilisation, technology (e.g. within anarcho-primitivism), and the democratic process may be sharply criticised within some anarchist tendencies and simultaneously lauded in others.\n", - "\n", - "On a tactical level, while propaganda of the deed was a tactic used by anarchists in the 19th century (e.g. the Nihilist movement), some contemporary anarchists espouse alternative direct action methods such as nonviolence, counter-economics and anti-state cryptography to bring about an anarchist society. About the scope of an anarchist society, some anarchists advocate a global one, while others do so by local ones. The diversity in anarchism has led to widely different use of identical terms among different anarchist traditions, which has led to many definitional concerns in anarchist theory.\n", - "\n", - "\n", - "Section title: Topics of interest\n", - "Section text: Intersecting and overlapping between various schools of thought, certain topics of interest and internal disputes have proven perennial within anarchist theory.\n", - "\n", - "===Free love===\n", - "\n", - "French individualist anarchist Emile Armand (1872–1962), who propounded the virtues of free love in the Parisian anarchist milieu of the early 20th century\n", - "An important current within anarchism is free love. Free love advocates sometimes traced their roots back to Josiah Warren and to experimental communities, viewed sexual freedom as a clear, direct expression of an individual's sovereignty. Free love particularly stressed women's rights since most sexual laws discriminated against women: for example, marriage laws and anti-birth control measures. The most important American free love journal was ''Lucifer the Lightbearer'' (1883–1907) edited by Moses Harman and Lois Waisbrooker, but also there existed Ezra Heywood and Angela Heywood's ''The Word'' (1872–1890, 1892–1893). ''Free Society'' (1895–1897 as ''The Firebrand''; 1897–1904 as ''Free Society'') was a major anarchist newspaper in the United States at the end of the 19th and beginning of the 20th centuries. The publication advocated free love and women's rights, and critiqued \"Comstockery\" – censorship of sexual information. Also M. E. Lazarus was an important American individualist anarchist who promoted free love.\n", - "\n", - "In New York City's Greenwich Village, bohemian feminists and socialists advocated self-realisation and pleasure for women (and also men) in the here and now. They encouraged playing with sexual roles and sexuality, and the openly bisexual radical Edna St. Vincent Millay and the lesbian anarchist Margaret Anderson were prominent among them. Discussion groups organised by the Villagers were frequented by Emma Goldman, among others. Magnus Hirschfeld noted in 1923 that Goldman \"has campaigned boldly and steadfastly for individual rights, and especially for those deprived of their rights. Thus it came about that she was the first and only woman, indeed the first and only American, to take up the defence of homosexual love before the general public.\" In fact, before Goldman, heterosexual anarchist Robert Reitzel (1849–1898) spoke positively of homosexuality from the beginning of the 1890s in his Detroit-based German language journal ''Der arme Teufel'' (English: The Poor Devil). In Argentina anarcha-feminist Virginia Bolten published the newspaper called '''' (English: The Woman's Voice), which was published nine times in Rosario between 8 January 1896 and 1 January 1897, and was revived, briefly, in 1901.\n", - "\n", - "In Europe the main propagandist of free love within individualist anarchism was Emile Armand. He proposed the concept of ''la camaraderie amoureuse'' to speak of free love as the possibility of voluntary sexual encounter between consenting adults. He was also a consistent proponent of polyamory. In Germany the stirnerists Adolf Brand and John Henry Mackay were pioneering campaigners for the acceptance of male bisexuality and homosexuality. Mujeres Libres was an anarchist women's organisation in Spain that aimed to empower working class women. It was founded in 1936 by Lucía Sánchez Saornil, Mercedes Comaposada and Amparo Poch y Gascón and had approximately 30,000 members. The organisation was based on the idea of a \"double struggle\" for women's liberation and social revolution and argued that the two objectives were equally important and should be pursued in parallel. In order to gain mutual support, they created networks of women anarchists. Lucía Sánchez Saornil was a main founder of the Spanish anarcha-feminist federation Mujeres Libres who was open about her lesbianism. She was published in a variety of literary journals where working under a male pen name, she was able to explore lesbian themes at a time when homosexuality was criminalised and subject to censorship and punishment.\n", - "\n", - "More recently, the British anarcho-pacifist Alex Comfort gained notoriety during the sexual revolution for writing the bestseller sex manual ''The Joy of Sex''. The issue of free love has a dedicated treatment in the work of French anarcho-hedonist philosopher Michel Onfray in such works as ''Théorie du corps amoureux : pour une érotique solaire'' (2000) and ''L'invention du plaisir : fragments cyréaniques'' (2002).\n", - "\n", - "===Libertarian education and freethought===\n", - "\n", - "Francesc Ferrer i Guàrdia, Catalan anarchist pedagogue and free-thinker For English anarchist William Godwin education was \"the main means by which change would be achieved.\" Godwin saw that the main goal of education should be the promotion of happiness. For Godwin education had to have \"A respect for the child's autonomy which precluded any form of coercion,\" \"A pedagogy that respected this and sought to build on the child's own motivation and initiatives,\" and \"A concern about the child's capacity to resist an ideology transmitted through the school.\" In his ''Political Justice'' he criticises state sponsored schooling \"on account of its obvious alliance with national government\". Early American anarchist Josiah Warren advanced alternative education experiences in the libertarian communities he established. Max Stirner wrote in 1842 a long essay on education called ''The False Principle of our Education''. In it Stirner names his educational principle \"personalist,\" explaining that self-understanding consists in hourly self-creation. Education for him is to create \"free men, sovereign characters,\" by which he means \"eternal characters ... who are therefore eternal because they form themselves each moment\".\n", - "\n", - "In the United States \"freethought was a basically anti-christian, anti-clerical movement, whose purpose was to make the individual politically and spiritually free to decide for himself on religious matters. A number of contributors to ''Liberty'' (anarchist publication) were prominent figures in both freethought and anarchism. The individualist anarchist George MacDonald was a co-editor of ''Freethought'' and, for a time, ''The Truth Seeker''. E.C. Walker was co-editor of the excellent free-thought / free love journal ''Lucifer, the Light-Bearer''\". \"Many of the anarchists were ardent freethinkers; reprints from freethought papers such as ''Lucifer, the Light-Bearer'', ''Freethought'' and ''The Truth Seeker'' appeared in ''Liberty''... The church was viewed as a common ally of the state and as a repressive force in and of itself\".\n", - "\n", - "In 1901, Catalan anarchist and free-thinker Francesc Ferrer i Guàrdia established \"modern\" or progressive schools in Barcelona in defiance of an educational system controlled by the Catholic Church. The schools' stated goal was to \"educate the working class in a rational, secular and non-coercive setting\". Fiercely anti-clerical, Ferrer believed in \"freedom in education\", education free from the authority of church and state. Murray Bookchin wrote: \"This period 1890s was the heyday of libertarian schools and pedagogical projects in all areas of the country where Anarchists exercised some degree of influence. Perhaps the best-known effort in this field was Francisco Ferrer's Modern School (Escuela Moderna), a project which exercised a considerable influence on Catalan education and on experimental techniques of teaching generally.\" La Escuela Moderna, and Ferrer's ideas generally, formed the inspiration for a series of ''Modern Schools'' in the United States, Cuba, South America and London. The first of these was started in New York City in 1911. It also inspired the Italian newspaper ''Università popolare'', founded in 1901. Russian christian anarchist Leo Tolstoy established a school for peasant children on his estate. Tolstoy's educational experiments were short-lived due to harassment by the Tsarist secret police. Tolstoy established a conceptual difference between education and culture. He thought that \"Education is the tendency of one man to make another just like himself ... Education is culture under restraint, culture is free. Education is when the teaching is forced upon the pupil, and when then instruction is exclusive, that is when only those subjects are taught which the educator regards as necessary\". For him \"without compulsion, education was transformed into culture\".\n", - "\n", - "A more recent libertarian tradition on education is that of unschooling and the free school in which child-led activity replaces pedagogic approaches. Experiments in Germany led to A. S. Neill founding what became Summerhill School in 1921. Summerhill is often cited as an example of anarchism in practice. However, although Summerhill and other free schools are radically libertarian, they differ in principle from those of Ferrer by not advocating an overtly political class struggle-approach.\n", - "In addition to organising schools according to libertarian principles, anarchists have also questioned the concept of schooling per se. The term deschooling was popularised by Ivan Illich, who argued that the school as an institution is dysfunctional for self-determined learning and serves the creation of a consumer society instead.\n", - "\n", - "Section title: Criticisms\n", - "Section text: \n", - "Criticisms of anarchism include moral criticisms and pragmatic criticisms. Anarchism is often evaluated as unfeasible or utopian by its critics.\n", - "\n", - "Section title: See also\n", - "Section text: * Anarchism by country\n", - "\n", - "Section title: References\n", - "Section text: \n", - "\n", - "Section title: Further reading\n", - "Section text: * Barclay, Harold, ''People Without Government: An Anthropology of Anarchy'' (2nd ed.), Left Bank Books, 1990 \n", - "* Blumenfeld, Jacob; Bottici, Chiara; Critchley, Simon, eds., ''The Anarchist Turn'', Pluto Press. 19 March 2013. \n", - "* Carter, April, ''The Political Theory of Anarchism'', Harper & Row. 1971. \n", - "* Federici, Silvia, '' Caliban and the Witch: Women, the Body, and Primitive Accumulation'', Autonomedia, 2004. . \n", - "* Gordon, Uri, ''Anarchy Alive!'', London: Pluto Press, 2007.\n", - "* Graeber, David. ''Fragments of an Anarchist Anthropology'', Chicago: Prickly Paradigm Press, 2004\n", - "* Graham, Robert, ed., ''Anarchism: A Documentary History of Libertarian Ideas''.\n", - "** ''Volume One: From Anarchy to Anarchism (300CE to 1939)'', Black Rose Books, Montréal and London 2005. .\n", - "** ''Volume Two: The Anarchist Current (1939–2006)'', Black Rose Books, Montréal 2007. .\n", - "* Guérin, Daniel, ''Anarchism: From Theory to Practice'', Monthly Review Press. 1970. \n", - "* Harper, Clifford, ''Anarchy: A Graphic Guide'', (Camden Press, 1987): An overview, updating Woodcock's classic, and illustrated throughout by Harper's woodcut-style artwork.\n", - "* Le Guin, Ursula, ''The Dispossessed'', New York : Harper & Row, 1974. (first edition, hardcover)\n", - "* McKay, Iain, ed., ''An Anarchist FAQ''.\n", - "** ''Volume I'', AK Press, Oakland/Edinburgh 2008; 558 pages, .\n", - "** ''Volume II'', AK Press, Oakland/Edinburgh 2012; 550 Pages, \n", - "* McLaughlin, Paul, ''Anarchism and Authority: A Philosophical Introduction to Classical Anarchism'', AshGate. 2007. \n", - "* Marshall, Peter, ''Demanding the Impossible: A History of Anarchism'', PM Press. 2010. \n", - "* Nettlau, Max, ''Anarchy through the times'', Gordon Press. 1979. \n", - "* \n", - "* Scott, James C., ''Two Cheers for Anarchism: Six Easy Pieces on Autonomy, Dignity, and Meaningful Work and Play'', Princeton, NJ: Princeton University Press, 2012. .\n", - "*\n", - "* Woodcock, George, ''Anarchism: A History of Libertarian Ideas and Movements'' (Penguin Books, 1962). . .\n", - "* Woodcock, George, ed., ''The Anarchist Reader'' (Fontana/Collins 1977; ): An anthology of writings from anarchist thinkers and activists including Proudhon, Kropotkin, Bakunin, Malatesta, Bookchin, Goldman, and many others.\n", - "\n", - "Section title: External links\n", - "Section text: \n", - "* \n", - "* \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "data = api.load(\"wiki-english-20171001\")\n", - "for article in data:\n", - " for section_title, section_text in zip(article['section_titles'],\n", - " article['section_texts']):\n", - " print(\"Section title: %s\" % section_title)\n", - " print(\"Section text: %s\" % section_text)\n", - " break" + "article = next(iter(data))\n", + "\n", + "for section_title, section_text in zip(\n", + " article['section_titles'],\n", + " article['section_texts']\n", + "):\n", + " print(\"Section title: %s\" % section_title)\n", + " print(\"Section text: %s\" % section_text[:100])" ] }, { @@ -392,43 +87,30 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "lines_to_next_cell": 2 }, "outputs": [], "source": [ - "def wiki_articles_iterator():\n", - " for article in tqdm_notebook(data):\n", - " yield (\n", - " preprocess_string(\n", - " \" \".join(\n", - " \" \".join(section)\n", - " for section\n", - " in zip(article['section_titles'], article['section_texts'])\n", - " )\n", - " )\n", - " )\n", - "\n", "def save_preprocessed_articles(filename, articles):\n", - " with open(filename, 'w+') as writer:\n", + " with smart_open(filename, 'w+', encoding=\"utf8\") as writer:\n", " for article in tqdm_notebook(articles):\n", - " writer.write(\n", - " json.dumps(\n", - " preprocess_string(\n", - " \" \".join(\n", - " \" \".join(section)\n", - " for section\n", - " in zip(article['section_titles'],\n", - " article['section_texts'])\n", - " )\n", - " )\n", - " ) + '\\n'\n", + " article_text = \" \".join(\n", + " \" \".join(section)\n", + " for section\n", + " in zip(\n", + " article['section_titles'],\n", + " article['section_texts']\n", + " )\n", " )\n", + " article_text = preprocess_string(article_text)\n", + "\n", + " writer.write(json.dumps(article_text) + '\\n')\n", "\n", "\n", "def get_preprocessed_articles(filename):\n", - " with open(filename, 'r') as reader:\n", + " with smart_open(filename, 'r', encoding=\"utf8\") as reader:\n", " for line in tqdm_notebook(reader):\n", " yield json.loads(\n", " line\n", @@ -437,13 +119,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { "lines_to_next_cell": 2 }, "outputs": [], "source": [ - "# save_preprocessed_articles('wiki_articles.jsonlines', data)" + "SAVE_ARTICLES = False\n", + "\n", + "if SAVE_ARTICLES:\n", + " save_preprocessed_articles('wiki_articles.jsonlines', data)" ] }, { @@ -455,16 +140,18 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "lines_to_next_cell": 2, "scrolled": true }, "outputs": [], "source": [ - "# dictionary = Dictionary(get_preprocessed_articles('wiki_articles.jsonlines'))\n", + "SAVE_DICTIONARY = False\n", "\n", - "# dictionary.save('wiki.dict')" + "if SAVE_DICTIONARY:\n", + " dictionary = Dictionary(get_preprocessed_articles('wiki_articles.jsonlines'))\n", + " dictionary.save('wiki.dict')" ] }, { @@ -476,26 +163,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "lines_to_next_cell": 2 }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 14:02:25,430 : INFO : loading Dictionary object from wiki.dict\n", - "2019-01-15 14:02:26,296 : INFO : loaded wiki.dict\n", - "2019-01-15 14:02:28,498 : INFO : discarding 1990258 tokens: [('abdelrahim', 49), ('abstention', 120), ('ammon', 1736), ('amoureus', 359), ('amoureux', 566), ('amparo', 1178), ('anarcha', 101), ('anarchica', 40), ('anarcho', 1433), ('anarchosyndicalist', 20)]...\n", - "2019-01-15 14:02:28,499 : INFO : keeping 20000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", - "2019-01-15 14:02:28,738 : INFO : resulting dictionary: Dictionary(20000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" - ] - } - ], + "outputs": [], "source": [ "dictionary = Dictionary.load('wiki.dict')\n", - "dictionary.filter_extremes(keep_n=20000)\n", + "dictionary.filter_extremes()\n", "dictionary.compactify()" ] }, @@ -512,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "lines_to_next_cell": 2 }, @@ -524,7 +199,6 @@ " super().__init__(*args, **kwargs)\n", "\n", " random_state = np.random.RandomState(random_seed)\n", - " # TODO: Don't forget to remove that before push\n", " self.indices = random_state.permutation(range(self.num_docs))[:4000]\n", " if testset:\n", " self.indices = self.indices[:testsize]\n", @@ -548,19 +222,22 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ - "# corpus = (\n", - "# dictionary.doc2bow(article)\n", - "# for article\n", - "# in get_preprocessed_articles('wiki_articles.jsonlines')\n", - "# )\n", + "SAVE_CORPUS = False\n", "\n", - "# RandomCorpus.serialize('wiki.mm', corpus)" + "if SAVE_CORPUS:\n", + " corpus = (\n", + " dictionary.doc2bow(article)\n", + " for article\n", + " in get_preprocessed_articles('wiki_articles.jsonlines')\n", + " )\n", + " \n", + " RandomCorpus.serialize('wiki.mm', corpus)" ] }, { @@ -573,24 +250,11 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { "lines_to_next_cell": 2 }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 14:02:29,428 : INFO : loaded corpus index from wiki.mm.index\n", - "2019-01-15 14:02:29,428 : INFO : initializing cython corpus reader from wiki.mm\n", - "2019-01-15 14:02:29,429 : INFO : accepted corpus with 4924894 documents, 20000 features, 629448427 non-zero entries\n", - "2019-01-15 14:02:30,774 : INFO : loaded corpus index from wiki.mm.index\n", - "2019-01-15 14:02:30,775 : INFO : initializing cython corpus reader from wiki.mm\n", - "2019-01-15 14:02:30,775 : INFO : accepted corpus with 4924894 documents, 20000 features, 629448427 non-zero entries\n" - ] - } - ], + "outputs": [], "source": [ "train_corpus = RandomCorpus(\n", " random_seed=42, testset=False, testsize=2000, fname='wiki.mm'\n", @@ -609,7 +273,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -665,9 +329,16 @@ " return np.linalg.norm(dense_corpus / dense_corpus.sum(axis=0) - pred_factors)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define dataframe in which we'll store metrics" + ] + }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -683,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -716,19 +387,9 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 14:02:37,902 : INFO : Loss (no outliers): 1913.454696981355\tLoss (with outliers): 1913.454696981355\n", - "2019-01-15 14:02:37,913 : INFO : saving Nmf object under nmf.model, separately None\n", - "2019-01-15 14:02:37,981 : INFO : saved nmf.model\n" - ] - } - ], + "outputs": [], "source": [ "row = dict()\n", "row['model'] = 'nmf'\n", @@ -746,135 +407,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Load NMF and get metrics" + "### Load NMF and store metrics" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 14:02:38,003 : INFO : loading Nmf object from nmf.model\n", - "2019-01-15 14:02:38,038 : INFO : loading id2word recursively from nmf.model.id2word.* with mmap=None\n", - "2019-01-15 14:02:38,039 : INFO : loaded nmf.model\n", - "2019-01-15 14:02:55,613 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-15 14:02:55,738 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" - ] - }, - { - "data": { - "text/plain": [ - "[(0,\n", - " '0.009*\"cell\" + 0.009*\"linear\" + 0.009*\"highwai\" + 0.009*\"base\" + 0.007*\"open\" + 0.007*\"air\" + 0.005*\"set\" + 0.005*\"site\" + 0.005*\"neat\" + 0.004*\"april\"'),\n", - " (1,\n", - " '0.019*\"secur\" + 0.016*\"state\" + 0.011*\"resolut\" + 0.011*\"wayn\" + 0.011*\"john\" + 0.009*\"school\" + 0.008*\"design\" + 0.008*\"nation\" + 0.007*\"yard\" + 0.007*\"israel\"'),\n", - " (2,\n", - " '0.023*\"univers\" + 0.023*\"ukrainian\" + 0.017*\"doctor\" + 0.015*\"nation\" + 0.012*\"ukrain\" + 0.011*\"women\" + 0.011*\"wear\" + 0.010*\"million\" + 0.010*\"hood\" + 0.009*\"line\"'),\n", - " (3,\n", - " '0.016*\"sequenc\" + 0.014*\"power\" + 0.012*\"ukrainian\" + 0.011*\"linear\" + 0.009*\"new\" + 0.009*\"arena\" + 0.009*\"number\" + 0.008*\"telephon\" + 0.008*\"switch\" + 0.008*\"boi\"'),\n", - " (4,\n", - " '0.023*\"design\" + 0.017*\"intellig\" + 0.011*\"song\" + 0.010*\"glori\" + 0.009*\"def\" + 0.008*\"decis\" + 0.007*\"final\" + 0.007*\"tournament\" + 0.006*\"time\" + 0.006*\"wai\"'),\n", - " (5,\n", - " '0.015*\"switch\" + 0.014*\"col\" + 0.010*\"divis\" + 0.009*\"learn\" + 0.009*\"new\" + 0.008*\"port\" + 0.008*\"warrant\" + 0.007*\"compani\" + 0.007*\"action\" + 0.007*\"maj\"'),\n", - " (6,\n", - " '0.014*\"hous\" + 0.011*\"galleri\" + 0.011*\"dai\" + 0.009*\"review\" + 0.009*\"art\" + 0.009*\"input\" + 0.009*\"exhibit\" + 0.008*\"differenti\" + 0.008*\"sydnei\" + 0.008*\"solo\"'),\n", - " (7,\n", - " '0.027*\"team\" + 0.019*\"world\" + 0.014*\"warrior\" + 0.012*\"match\" + 0.010*\"hotel\" + 0.010*\"wrestl\" + 0.010*\"tag\" + 0.010*\"set\" + 0.010*\"time\" + 0.009*\"road\"'),\n", - " (8,\n", - " '0.021*\"determin\" + 0.013*\"matrix\" + 0.008*\"state\" + 0.007*\"order\" + 0.007*\"gener\" + 0.006*\"product\" + 0.006*\"column\" + 0.006*\"develop\" + 0.005*\"function\" + 0.005*\"term\"'),\n", - " (9,\n", - " '0.047*\"col\" + 0.037*\"new\" + 0.028*\"york\" + 0.024*\"maj\" + 0.020*\"pennsylvania\" + 0.020*\"state\" + 0.020*\"brigad\" + 0.017*\"batteri\" + 0.016*\"john\" + 0.015*\"unit\"'),\n", - " (10,\n", - " '0.030*\"set\" + 0.020*\"open\" + 0.015*\"round\" + 0.014*\"defeat\" + 0.013*\"final\" + 0.011*\"world\" + 0.011*\"won\" + 0.010*\"win\" + 0.010*\"straight\" + 0.010*\"master\"'),\n", - " (11,\n", - " '0.023*\"stori\" + 0.020*\"storytel\" + 0.011*\"highwai\" + 0.008*\"children\" + 0.007*\"construct\" + 0.007*\"commun\" + 0.006*\"narr\" + 0.006*\"cultur\" + 0.006*\"oral\" + 0.005*\"interchang\"'),\n", - " (12,\n", - " '0.027*\"group\" + 0.022*\"determin\" + 0.014*\"matrix\" + 0.011*\"topolog\" + 0.010*\"glori\" + 0.009*\"def\" + 0.008*\"air\" + 0.007*\"exampl\" + 0.007*\"cell\" + 0.007*\"space\"'),\n", - " (13,\n", - " '0.027*\"hous\" + 0.022*\"dai\" + 0.020*\"develop\" + 0.020*\"vote\" + 0.017*\"women\" + 0.013*\"nomin\" + 0.013*\"elect\" + 0.012*\"gender\" + 0.011*\"glass\" + 0.010*\"ballot\"'),\n", - " (14,\n", - " '0.029*\"apollo\" + 0.012*\"territori\" + 0.010*\"island\" + 0.009*\"set\" + 0.009*\"claim\" + 0.008*\"grand\" + 0.008*\"open\" + 0.008*\"sion\" + 0.008*\"priori\" + 0.006*\"year\"'),\n", - " (15,\n", - " '0.033*\"million\" + 0.022*\"team\" + 0.015*\"music\" + 0.014*\"doctor\" + 0.013*\"univers\" + 0.011*\"bowl\" + 0.011*\"washington\" + 0.010*\"wear\" + 0.010*\"black\" + 0.009*\"hood\"'),\n", - " (16,\n", - " '0.021*\"disord\" + 0.016*\"symptom\" + 0.013*\"children\" + 0.013*\"minist\" + 0.013*\"medic\" + 0.010*\"peopl\" + 0.010*\"behavior\" + 0.009*\"treatment\" + 0.009*\"cinema\" + 0.009*\"govern\"'),\n", - " (17,\n", - " '0.015*\"tatiana\" + 0.014*\"russian\" + 0.012*\"finn\" + 0.010*\"children\" + 0.008*\"keeper\" + 0.007*\"stori\" + 0.006*\"like\" + 0.006*\"famili\" + 0.006*\"disnei\" + 0.006*\"sister\"'),\n", - " (18,\n", - " '0.044*\"dai\" + 0.043*\"hous\" + 0.030*\"nomin\" + 0.026*\"glass\" + 0.022*\"evict\" + 0.019*\"week\" + 0.018*\"main\" + 0.017*\"sequenc\" + 0.014*\"myth\" + 0.013*\"helena\"'),\n", - " (19,\n", - " '0.013*\"commun\" + 0.013*\"reconnaiss\" + 0.013*\"orbit\" + 0.009*\"decemb\" + 0.008*\"march\" + 0.007*\"octob\" + 0.007*\"septemb\" + 0.007*\"hous\" + 0.006*\"juli\" + 0.006*\"dai\"'),\n", - " (20,\n", - " '0.012*\"arab\" + 0.011*\"nation\" + 0.009*\"site\" + 0.008*\"polit\" + 0.007*\"school\" + 0.006*\"king\" + 0.006*\"includ\" + 0.006*\"secur\" + 0.006*\"citat\" + 0.006*\"alt\"'),\n", - " (21,\n", - " '0.026*\"finn\" + 0.019*\"keeper\" + 0.016*\"disnei\" + 0.014*\"cinema\" + 0.013*\"overtak\" + 0.012*\"act\" + 0.010*\"art\" + 0.010*\"million\" + 0.009*\"insid\" + 0.009*\"rover\"'),\n", - " (22,\n", - " '0.034*\"col\" + 0.025*\"hous\" + 0.022*\"new\" + 0.021*\"dai\" + 0.017*\"maj\" + 0.015*\"york\" + 0.014*\"warrior\" + 0.014*\"main\" + 0.014*\"pennsylvania\" + 0.013*\"team\"'),\n", - " (23,\n", - " '0.025*\"album\" + 0.021*\"spatial\" + 0.012*\"chart\" + 0.011*\"song\" + 0.009*\"analysi\" + 0.008*\"new\" + 0.007*\"kei\" + 0.007*\"music\" + 0.007*\"singl\" + 0.006*\"award\"'),\n", - " (24,\n", - " '0.027*\"develop\" + 0.022*\"women\" + 0.020*\"design\" + 0.015*\"gender\" + 0.011*\"intellig\" + 0.011*\"econom\" + 0.008*\"approach\" + 0.007*\"critic\" + 0.007*\"world\" + 0.006*\"citi\"'),\n", - " (25,\n", - " '0.018*\"spatial\" + 0.012*\"bicycl\" + 0.011*\"australia\" + 0.009*\"analysi\" + 0.009*\"univers\" + 0.009*\"develop\" + 0.009*\"victoria\" + 0.009*\"studi\" + 0.008*\"switch\" + 0.008*\"galleri\"'),\n", - " (26,\n", - " '0.027*\"club\" + 0.022*\"season\" + 0.020*\"leagu\" + 0.017*\"svg\" + 0.015*\"imag\" + 0.015*\"symbol\" + 0.014*\"divis\" + 0.012*\"john\" + 0.011*\"rover\" + 0.011*\"premier\"'),\n", - " (27,\n", - " '0.015*\"group\" + 0.013*\"bai\" + 0.011*\"window\" + 0.008*\"storei\" + 0.008*\"roof\" + 0.007*\"build\" + 0.006*\"slate\" + 0.006*\"hous\" + 0.005*\"head\" + 0.005*\"year\"'),\n", - " (28,\n", - " '0.018*\"state\" + 0.007*\"divis\" + 0.007*\"law\" + 0.006*\"democrat\" + 0.006*\"arena\" + 0.005*\"myth\" + 0.005*\"student\" + 0.005*\"presid\" + 0.005*\"school\" + 0.005*\"univers\"'),\n", - " (29,\n", - " '0.024*\"board\" + 0.020*\"univers\" + 0.013*\"station\" + 0.013*\"new\" + 0.011*\"director\" + 0.011*\"nation\" + 0.010*\"oper\" + 0.010*\"radio\" + 0.010*\"program\" + 0.010*\"arena\"'),\n", - " (30,\n", - " '0.011*\"territori\" + 0.009*\"island\" + 0.007*\"govern\" + 0.005*\"lo\" + 0.005*\"kingdom\" + 0.005*\"cartel\" + 0.005*\"incorpor\" + 0.005*\"bodi\" + 0.005*\"zeta\" + 0.005*\"kill\"'),\n", - " (31,\n", - " '0.045*\"air\" + 0.039*\"cell\" + 0.037*\"base\" + 0.016*\"myth\" + 0.015*\"german\" + 0.015*\"squadron\" + 0.015*\"armi\" + 0.015*\"station\" + 0.014*\"test\" + 0.014*\"train\"'),\n", - " (32,\n", - " '0.017*\"film\" + 0.010*\"design\" + 0.006*\"intellig\" + 0.006*\"scienc\" + 0.005*\"director\" + 0.005*\"septemb\" + 0.004*\"februari\" + 0.004*\"april\" + 0.004*\"linear\" + 0.004*\"june\"'),\n", - " (33,\n", - " '0.165*\"linear\" + 0.086*\"neat\" + 0.074*\"palomar\" + 0.049*\"april\" + 0.046*\"februari\" + 0.040*\"march\" + 0.031*\"august\" + 0.030*\"septemb\" + 0.019*\"octob\" + 0.017*\"mesa\"'),\n", - " (34,\n", - " '0.039*\"determin\" + 0.024*\"matrix\" + 0.016*\"finn\" + 0.014*\"team\" + 0.012*\"keeper\" + 0.010*\"column\" + 0.010*\"matric\" + 0.009*\"myth\" + 0.009*\"disnei\" + 0.009*\"power\"'),\n", - " (35,\n", - " '0.027*\"doctor\" + 0.022*\"tatiana\" + 0.019*\"wear\" + 0.017*\"gold\" + 0.016*\"hood\" + 0.016*\"black\" + 0.014*\"line\" + 0.013*\"univers\" + 0.012*\"colour\" + 0.011*\"graduat\"'),\n", - " (36,\n", - " '0.028*\"design\" + 0.022*\"intellig\" + 0.013*\"school\" + 0.010*\"stori\" + 0.010*\"scienc\" + 0.008*\"creation\" + 0.007*\"scientif\" + 0.007*\"life\" + 0.006*\"commun\" + 0.006*\"seri\"'),\n", - " (37,\n", - " '0.019*\"season\" + 0.015*\"stori\" + 0.013*\"leagu\" + 0.012*\"club\" + 0.011*\"storytel\" + 0.010*\"win\" + 0.009*\"player\" + 0.008*\"church\" + 0.008*\"manuscript\" + 0.008*\"game\"'),\n", - " (38,\n", - " '0.015*\"bowl\" + 0.013*\"novel\" + 0.013*\"note\" + 0.012*\"washington\" + 0.011*\"huski\" + 0.010*\"act\" + 0.010*\"public\" + 0.009*\"myth\" + 0.009*\"rose\" + 0.007*\"game\"'),\n", - " (39,\n", - " '0.013*\"set\" + 0.011*\"plai\" + 0.011*\"open\" + 0.010*\"final\" + 0.009*\"goal\" + 0.009*\"cup\" + 0.009*\"railwai\" + 0.008*\"defeat\" + 0.008*\"match\" + 0.008*\"win\"'),\n", - " (40,\n", - " '0.050*\"sequenc\" + 0.022*\"number\" + 0.020*\"finn\" + 0.015*\"keeper\" + 0.012*\"spatial\" + 0.011*\"disnei\" + 0.010*\"overtak\" + 0.009*\"exampl\" + 0.008*\"term\" + 0.007*\"field\"'),\n", - " (41,\n", - " '0.015*\"resolut\" + 0.015*\"territori\" + 0.013*\"state\" + 0.012*\"spatial\" + 0.009*\"israel\" + 0.009*\"law\" + 0.008*\"languag\" + 0.008*\"secur\" + 0.008*\"unit\" + 0.008*\"sion\"'),\n", - " (42,\n", - " '0.027*\"releas\" + 0.014*\"label\" + 0.010*\"bai\" + 0.010*\"format\" + 0.009*\"window\" + 0.009*\"music\" + 0.007*\"hous\" + 0.006*\"hand\" + 0.006*\"base\" + 0.006*\"air\"'),\n", - " (43,\n", - " '0.042*\"game\" + 0.016*\"bowl\" + 0.016*\"state\" + 0.014*\"washington\" + 0.013*\"huski\" + 0.012*\"novel\" + 0.012*\"coach\" + 0.012*\"film\" + 0.010*\"plai\" + 0.009*\"rose\"'),\n", - " (44,\n", - " '0.018*\"design\" + 0.017*\"game\" + 0.011*\"intellig\" + 0.008*\"new\" + 0.008*\"scienc\" + 0.007*\"bai\" + 0.006*\"finn\" + 0.005*\"window\" + 0.005*\"storei\" + 0.005*\"complex\"'),\n", - " (45,\n", - " '0.013*\"glori\" + 0.013*\"def\" + 0.012*\"resolut\" + 0.012*\"territori\" + 0.009*\"state\" + 0.009*\"israel\" + 0.009*\"decis\" + 0.007*\"featherweight\" + 0.007*\"heavyweight\" + 0.007*\"secur\"'),\n", - " (46,\n", - " '0.016*\"seri\" + 0.015*\"switch\" + 0.009*\"star\" + 0.009*\"port\" + 0.006*\"power\" + 0.006*\"channel\" + 0.006*\"run\" + 0.006*\"citi\" + 0.006*\"cinema\" + 0.006*\"engin\"'),\n", - " (47,\n", - " '0.011*\"manag\" + 0.009*\"switch\" + 0.009*\"seri\" + 0.008*\"team\" + 0.008*\"myth\" + 0.008*\"network\" + 0.007*\"season\" + 0.006*\"car\" + 0.006*\"point\" + 0.006*\"test\"'),\n", - " (48,\n", - " '0.018*\"set\" + 0.011*\"son\" + 0.011*\"open\" + 0.010*\"french\" + 0.010*\"state\" + 0.010*\"round\" + 0.008*\"final\" + 0.008*\"lotteri\" + 0.008*\"defeat\" + 0.007*\"feder\"'),\n", - " (49,\n", - " '0.025*\"group\" + 0.016*\"highwai\" + 0.013*\"album\" + 0.009*\"new\" + 0.008*\"band\" + 0.007*\"topolog\" + 0.007*\"interchang\" + 0.007*\"citi\" + 0.007*\"song\" + 0.006*\"elect\"')]" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "nmf = Nmf.load('nmf.model')\n", "row.update(get_tm_metrics(nmf, test_corpus))\n", @@ -893,20 +433,11 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 14:04:09,187 : INFO : Loss (no outliers): 1991.7502435710787\tLoss (with outliers): 1910.464771951029\n", - "2019-01-15 14:04:09,199 : INFO : saving Nmf object under nmf_with_r.model, separately None\n", - "2019-01-15 14:04:09,200 : INFO : storing scipy.sparse array '_r' under nmf_with_r.model._r.npy\n", - "2019-01-15 14:04:11,249 : INFO : saved nmf_with_r.model\n" - ] - } - ], + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], "source": [ "row = dict()\n", "row['model'] = 'nmf_with_r'\n", @@ -925,136 +456,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Load NMF with residuals and get metrics" + "### Load NMF with residuals and store metrics" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 14:04:11,266 : INFO : loading Nmf object from nmf_with_r.model\n", - "2019-01-15 14:04:11,301 : INFO : loading id2word recursively from nmf_with_r.model.id2word.* with mmap=None\n", - "2019-01-15 14:04:11,302 : INFO : loading _r from nmf_with_r.model._r.npy with mmap=None\n", - "2019-01-15 14:04:11,391 : INFO : loaded nmf_with_r.model\n", - "2019-01-15 14:04:33,763 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-15 14:04:33,887 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" - ] - }, - { - "data": { - "text/plain": [ - "[(0,\n", - " '0.011*\"cell\" + 0.010*\"highwai\" + 0.010*\"base\" + 0.009*\"open\" + 0.008*\"air\" + 0.007*\"set\" + 0.006*\"site\" + 0.005*\"squadron\" + 0.005*\"german\" + 0.004*\"interchang\"'),\n", - " (1,\n", - " '0.020*\"intellig\" + 0.020*\"design\" + 0.019*\"state\" + 0.018*\"secur\" + 0.011*\"wayn\" + 0.011*\"school\" + 0.011*\"john\" + 0.010*\"resolut\" + 0.009*\"scienc\" + 0.007*\"nation\"'),\n", - " (2,\n", - " '0.024*\"univers\" + 0.023*\"ukrainian\" + 0.017*\"doctor\" + 0.015*\"nation\" + 0.012*\"ukrain\" + 0.012*\"women\" + 0.011*\"wear\" + 0.011*\"million\" + 0.011*\"hood\" + 0.010*\"line\"'),\n", - " (3,\n", - " '0.016*\"sequenc\" + 0.015*\"power\" + 0.013*\"ukrainian\" + 0.011*\"new\" + 0.010*\"arena\" + 0.009*\"number\" + 0.009*\"telephon\" + 0.009*\"switch\" + 0.009*\"boi\" + 0.007*\"nation\"'),\n", - " (4,\n", - " '0.018*\"design\" + 0.016*\"intellig\" + 0.011*\"song\" + 0.010*\"glori\" + 0.010*\"def\" + 0.008*\"decis\" + 0.007*\"tournament\" + 0.007*\"final\" + 0.006*\"time\" + 0.006*\"wai\"'),\n", - " (5,\n", - " '0.016*\"switch\" + 0.013*\"col\" + 0.010*\"divis\" + 0.009*\"learn\" + 0.008*\"new\" + 0.008*\"port\" + 0.008*\"warrant\" + 0.008*\"action\" + 0.007*\"arrest\" + 0.007*\"championship\"'),\n", - " (6,\n", - " '0.014*\"hous\" + 0.011*\"galleri\" + 0.011*\"dai\" + 0.010*\"art\" + 0.009*\"review\" + 0.009*\"input\" + 0.009*\"exhibit\" + 0.008*\"differenti\" + 0.008*\"sydnei\" + 0.008*\"solo\"'),\n", - " (7,\n", - " '0.026*\"team\" + 0.018*\"world\" + 0.014*\"warrior\" + 0.012*\"match\" + 0.010*\"hotel\" + 0.010*\"wrestl\" + 0.010*\"tag\" + 0.010*\"set\" + 0.009*\"time\" + 0.009*\"road\"'),\n", - " (8,\n", - " '0.019*\"determin\" + 0.013*\"matrix\" + 0.008*\"state\" + 0.007*\"order\" + 0.007*\"gener\" + 0.006*\"product\" + 0.006*\"column\" + 0.006*\"develop\" + 0.005*\"function\" + 0.005*\"term\"'),\n", - " (9,\n", - " '0.047*\"col\" + 0.037*\"new\" + 0.028*\"york\" + 0.024*\"maj\" + 0.020*\"pennsylvania\" + 0.020*\"state\" + 0.020*\"brigad\" + 0.017*\"batteri\" + 0.016*\"john\" + 0.016*\"unit\"'),\n", - " (10,\n", - " '0.028*\"set\" + 0.019*\"open\" + 0.014*\"round\" + 0.014*\"defeat\" + 0.012*\"final\" + 0.010*\"world\" + 0.010*\"won\" + 0.010*\"win\" + 0.010*\"straight\" + 0.009*\"master\"'),\n", - " (11,\n", - " '0.023*\"stori\" + 0.020*\"storytel\" + 0.010*\"highwai\" + 0.008*\"children\" + 0.007*\"construct\" + 0.007*\"commun\" + 0.006*\"narr\" + 0.006*\"cultur\" + 0.006*\"oral\" + 0.005*\"tradit\"'),\n", - " (12,\n", - " '0.027*\"group\" + 0.021*\"determin\" + 0.015*\"matrix\" + 0.011*\"topolog\" + 0.010*\"glori\" + 0.009*\"def\" + 0.008*\"air\" + 0.007*\"exampl\" + 0.007*\"space\" + 0.007*\"cell\"'),\n", - " (13,\n", - " '0.027*\"hous\" + 0.023*\"dai\" + 0.020*\"develop\" + 0.020*\"vote\" + 0.018*\"women\" + 0.013*\"nomin\" + 0.013*\"elect\" + 0.012*\"gender\" + 0.011*\"glass\" + 0.010*\"ballot\"'),\n", - " (14,\n", - " '0.029*\"apollo\" + 0.012*\"territori\" + 0.010*\"island\" + 0.009*\"set\" + 0.009*\"claim\" + 0.009*\"grand\" + 0.008*\"sion\" + 0.008*\"priori\" + 0.008*\"open\" + 0.006*\"year\"'),\n", - " (15,\n", - " '0.032*\"million\" + 0.021*\"team\" + 0.015*\"music\" + 0.014*\"doctor\" + 0.012*\"univers\" + 0.011*\"bowl\" + 0.011*\"washington\" + 0.010*\"wear\" + 0.010*\"black\" + 0.009*\"hood\"'),\n", - " (16,\n", - " '0.019*\"disord\" + 0.015*\"symptom\" + 0.014*\"minist\" + 0.012*\"children\" + 0.012*\"medic\" + 0.009*\"peopl\" + 0.009*\"cinema\" + 0.009*\"govern\" + 0.009*\"parti\" + 0.009*\"behavior\"'),\n", - " (17,\n", - " '0.015*\"tatiana\" + 0.013*\"russian\" + 0.012*\"finn\" + 0.009*\"children\" + 0.008*\"keeper\" + 0.006*\"stori\" + 0.006*\"famili\" + 0.006*\"like\" + 0.006*\"sister\" + 0.006*\"san\"'),\n", - " (18,\n", - " '0.044*\"dai\" + 0.043*\"hous\" + 0.031*\"nomin\" + 0.026*\"glass\" + 0.022*\"evict\" + 0.019*\"week\" + 0.018*\"main\" + 0.017*\"sequenc\" + 0.013*\"helena\" + 0.013*\"myth\"'),\n", - " (19,\n", - " '0.013*\"commun\" + 0.013*\"reconnaiss\" + 0.013*\"orbit\" + 0.009*\"decemb\" + 0.007*\"hous\" + 0.007*\"octob\" + 0.006*\"march\" + 0.006*\"septemb\" + 0.006*\"dai\" + 0.006*\"januari\"'),\n", - " (20,\n", - " '0.012*\"arab\" + 0.011*\"nation\" + 0.009*\"site\" + 0.008*\"polit\" + 0.006*\"school\" + 0.006*\"includ\" + 0.006*\"king\" + 0.006*\"secur\" + 0.006*\"citat\" + 0.006*\"alt\"'),\n", - " (21,\n", - " '0.027*\"finn\" + 0.020*\"keeper\" + 0.017*\"disnei\" + 0.014*\"cinema\" + 0.013*\"overtak\" + 0.013*\"act\" + 0.011*\"art\" + 0.010*\"million\" + 0.009*\"insid\" + 0.009*\"rover\"'),\n", - " (22,\n", - " '0.033*\"col\" + 0.026*\"hous\" + 0.022*\"new\" + 0.021*\"dai\" + 0.017*\"maj\" + 0.015*\"york\" + 0.014*\"warrior\" + 0.014*\"main\" + 0.014*\"team\" + 0.014*\"pennsylvania\"'),\n", - " (23,\n", - " '0.025*\"album\" + 0.021*\"spatial\" + 0.012*\"chart\" + 0.011*\"song\" + 0.009*\"analysi\" + 0.008*\"new\" + 0.007*\"kei\" + 0.007*\"music\" + 0.007*\"singl\" + 0.006*\"award\"'),\n", - " (24,\n", - " '0.027*\"develop\" + 0.023*\"women\" + 0.015*\"design\" + 0.015*\"gender\" + 0.011*\"econom\" + 0.011*\"intellig\" + 0.008*\"approach\" + 0.008*\"critic\" + 0.007*\"world\" + 0.006*\"citi\"'),\n", - " (25,\n", - " '0.018*\"spatial\" + 0.012*\"bicycl\" + 0.011*\"australia\" + 0.009*\"univers\" + 0.009*\"analysi\" + 0.009*\"develop\" + 0.009*\"victoria\" + 0.009*\"studi\" + 0.008*\"galleri\" + 0.008*\"switch\"'),\n", - " (26,\n", - " '0.028*\"club\" + 0.022*\"season\" + 0.020*\"leagu\" + 0.017*\"svg\" + 0.015*\"imag\" + 0.015*\"symbol\" + 0.015*\"divis\" + 0.013*\"john\" + 0.011*\"rover\" + 0.011*\"premier\"'),\n", - " (27,\n", - " '0.014*\"group\" + 0.013*\"bai\" + 0.011*\"window\" + 0.008*\"storei\" + 0.008*\"roof\" + 0.007*\"build\" + 0.006*\"slate\" + 0.006*\"hous\" + 0.005*\"head\" + 0.005*\"year\"'),\n", - " (28,\n", - " '0.018*\"state\" + 0.007*\"divis\" + 0.007*\"law\" + 0.006*\"democrat\" + 0.006*\"arena\" + 0.006*\"myth\" + 0.005*\"student\" + 0.005*\"univers\" + 0.005*\"presid\" + 0.005*\"school\"'),\n", - " (29,\n", - " '0.024*\"board\" + 0.021*\"univers\" + 0.013*\"station\" + 0.013*\"new\" + 0.012*\"director\" + 0.011*\"radio\" + 0.011*\"nation\" + 0.011*\"oper\" + 0.011*\"program\" + 0.010*\"arena\"'),\n", - " (30,\n", - " '0.011*\"territori\" + 0.009*\"island\" + 0.007*\"govern\" + 0.005*\"lo\" + 0.005*\"kingdom\" + 0.005*\"cartel\" + 0.005*\"incorpor\" + 0.005*\"bodi\" + 0.005*\"zeta\" + 0.005*\"kill\"'),\n", - " (31,\n", - " '0.045*\"air\" + 0.039*\"cell\" + 0.037*\"base\" + 0.016*\"myth\" + 0.015*\"german\" + 0.015*\"squadron\" + 0.015*\"armi\" + 0.015*\"station\" + 0.014*\"test\" + 0.014*\"train\"'),\n", - " (32,\n", - " '0.024*\"palomar\" + 0.024*\"neat\" + 0.024*\"linear\" + 0.023*\"april\" + 0.021*\"februari\" + 0.019*\"march\" + 0.016*\"septemb\" + 0.015*\"august\" + 0.013*\"film\" + 0.010*\"octob\"'),\n", - " (33,\n", - " '0.015*\"disord\" + 0.014*\"game\" + 0.011*\"symptom\" + 0.011*\"children\" + 0.010*\"medic\" + 0.009*\"novel\" + 0.007*\"resolut\" + 0.007*\"behavior\" + 0.006*\"album\" + 0.006*\"treatment\"'),\n", - " (34,\n", - " '0.033*\"determin\" + 0.023*\"matrix\" + 0.017*\"finn\" + 0.015*\"team\" + 0.013*\"keeper\" + 0.010*\"myth\" + 0.010*\"disnei\" + 0.009*\"column\" + 0.009*\"matric\" + 0.009*\"power\"'),\n", - " (35,\n", - " '0.027*\"doctor\" + 0.022*\"tatiana\" + 0.020*\"wear\" + 0.017*\"gold\" + 0.017*\"hood\" + 0.016*\"black\" + 0.015*\"line\" + 0.014*\"univers\" + 0.012*\"colour\" + 0.011*\"graduat\"'),\n", - " (36,\n", - " '0.012*\"stori\" + 0.012*\"school\" + 0.008*\"design\" + 0.008*\"intellig\" + 0.007*\"seri\" + 0.006*\"commun\" + 0.006*\"leagu\" + 0.006*\"storytel\" + 0.006*\"life\" + 0.006*\"best\"'),\n", - " (37,\n", - " '0.020*\"season\" + 0.015*\"stori\" + 0.013*\"leagu\" + 0.012*\"club\" + 0.011*\"storytel\" + 0.010*\"win\" + 0.009*\"player\" + 0.008*\"game\" + 0.008*\"church\" + 0.008*\"manuscript\"'),\n", - " (38,\n", - " '0.015*\"bowl\" + 0.013*\"note\" + 0.013*\"washington\" + 0.012*\"novel\" + 0.012*\"huski\" + 0.010*\"act\" + 0.010*\"public\" + 0.009*\"myth\" + 0.009*\"rose\" + 0.007*\"test\"'),\n", - " (39,\n", - " '0.013*\"set\" + 0.011*\"plai\" + 0.011*\"open\" + 0.010*\"final\" + 0.009*\"goal\" + 0.009*\"cup\" + 0.009*\"railwai\" + 0.008*\"defeat\" + 0.008*\"match\" + 0.008*\"win\"'),\n", - " (40,\n", - " '0.051*\"sequenc\" + 0.022*\"number\" + 0.019*\"finn\" + 0.015*\"keeper\" + 0.012*\"spatial\" + 0.011*\"disnei\" + 0.010*\"overtak\" + 0.010*\"exampl\" + 0.009*\"term\" + 0.007*\"field\"'),\n", - " (41,\n", - " '0.014*\"territori\" + 0.014*\"resolut\" + 0.013*\"state\" + 0.012*\"spatial\" + 0.009*\"law\" + 0.009*\"israel\" + 0.009*\"languag\" + 0.008*\"secur\" + 0.008*\"sion\" + 0.008*\"unit\"'),\n", - " (42,\n", - " '0.028*\"releas\" + 0.014*\"label\" + 0.011*\"bai\" + 0.010*\"format\" + 0.009*\"window\" + 0.009*\"music\" + 0.007*\"hous\" + 0.006*\"hand\" + 0.006*\"roof\" + 0.006*\"air\"'),\n", - " (43,\n", - " '0.042*\"game\" + 0.017*\"bowl\" + 0.016*\"state\" + 0.014*\"washington\" + 0.014*\"film\" + 0.013*\"huski\" + 0.012*\"coach\" + 0.011*\"novel\" + 0.010*\"plai\" + 0.009*\"rose\"'),\n", - " (44,\n", - " '0.017*\"design\" + 0.015*\"game\" + 0.014*\"intellig\" + 0.009*\"scienc\" + 0.008*\"new\" + 0.007*\"bai\" + 0.006*\"finn\" + 0.006*\"complex\" + 0.005*\"natur\" + 0.005*\"window\"'),\n", - " (45,\n", - " '0.013*\"glori\" + 0.013*\"def\" + 0.012*\"resolut\" + 0.012*\"territori\" + 0.009*\"decis\" + 0.009*\"state\" + 0.009*\"israel\" + 0.007*\"featherweight\" + 0.007*\"heavyweight\" + 0.007*\"secur\"'),\n", - " (46,\n", - " '0.016*\"seri\" + 0.014*\"switch\" + 0.009*\"star\" + 0.009*\"port\" + 0.006*\"channel\" + 0.006*\"power\" + 0.006*\"citi\" + 0.006*\"run\" + 0.006*\"cinema\" + 0.006*\"engin\"'),\n", - " (47,\n", - " '0.010*\"manag\" + 0.009*\"switch\" + 0.009*\"seri\" + 0.008*\"team\" + 0.008*\"network\" + 0.008*\"myth\" + 0.007*\"season\" + 0.006*\"point\" + 0.006*\"car\" + 0.006*\"test\"'),\n", - " (48,\n", - " '0.018*\"set\" + 0.011*\"open\" + 0.011*\"son\" + 0.010*\"french\" + 0.010*\"round\" + 0.010*\"state\" + 0.009*\"final\" + 0.008*\"lotteri\" + 0.008*\"defeat\" + 0.008*\"feder\"'),\n", - " (49,\n", - " '0.025*\"group\" + 0.016*\"highwai\" + 0.014*\"album\" + 0.009*\"new\" + 0.008*\"band\" + 0.007*\"topolog\" + 0.007*\"interchang\" + 0.007*\"citi\" + 0.006*\"song\" + 0.006*\"elect\"')]" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "nmf_with_r = Nmf.load('nmf_with_r.model')\n", "row.update(get_tm_metrics(nmf_with_r, test_corpus))\n", @@ -1073,37 +482,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 14:04:34,008 : INFO : using symmetric alpha at 0.02\n", - "2019-01-15 14:04:34,008 : INFO : using symmetric eta at 0.02\n", - "2019-01-15 14:04:34,011 : INFO : using serial LDA version on this node\n", - "2019-01-15 14:04:34,132 : INFO : running online (single-pass) LDA training, 50 topics, 1 passes over the supplied corpus of 2000 documents, updating model once every 2000 documents, evaluating perplexity every 2000 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2019-01-15 14:04:34,133 : WARNING : too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy\n", - "2019-01-15 14:04:39,040 : INFO : -15.341 per-word bound, 41496.7 perplexity estimate based on a held-out corpus of 2000 documents with 515952 words\n", - "2019-01-15 14:04:39,041 : INFO : PROGRESS: pass 0, at document #2000/2000\n", - "2019-01-15 14:04:42,076 : INFO : topic #48 (0.020): 0.006*\"state\" + 0.004*\"award\" + 0.004*\"parti\" + 0.004*\"game\" + 0.003*\"syke\" + 0.003*\"new\" + 0.003*\"year\" + 0.003*\"includ\" + 0.003*\"plane\" + 0.003*\"unit\"\n", - "2019-01-15 14:04:42,077 : INFO : topic #31 (0.020): 0.005*\"time\" + 0.005*\"new\" + 0.005*\"year\" + 0.004*\"work\" + 0.004*\"art\" + 0.003*\"nation\" + 0.003*\"member\" + 0.003*\"district\" + 0.003*\"state\" + 0.003*\"final\"\n", - "2019-01-15 14:04:42,078 : INFO : topic #8 (0.020): 0.005*\"new\" + 0.005*\"build\" + 0.004*\"state\" + 0.004*\"hous\" + 0.004*\"island\" + 0.003*\"vote\" + 0.003*\"elect\" + 0.003*\"includ\" + 0.003*\"oper\" + 0.003*\"releas\"\n", - "2019-01-15 14:04:42,079 : INFO : topic #14 (0.020): 0.008*\"group\" + 0.006*\"new\" + 0.005*\"year\" + 0.004*\"world\" + 0.004*\"record\" + 0.004*\"time\" + 0.004*\"team\" + 0.003*\"develop\" + 0.003*\"includ\" + 0.003*\"state\"\n", - "2019-01-15 14:04:42,081 : INFO : topic #11 (0.020): 0.028*\"linear\" + 0.018*\"neat\" + 0.012*\"palomar\" + 0.011*\"februari\" + 0.011*\"april\" + 0.008*\"march\" + 0.007*\"septemb\" + 0.006*\"august\" + 0.004*\"octob\" + 0.004*\"june\"\n", - "2019-01-15 14:04:42,082 : INFO : topic diff=22.112879, rho=1.000000\n", - "2019-01-15 14:04:42,093 : INFO : saving LdaState object under lda.model.state, separately None\n", - "2019-01-15 14:04:42,137 : INFO : saved lda.model.state\n", - "2019-01-15 14:04:42,143 : INFO : saving LdaModel object under lda.model, separately ['expElogbeta', 'sstats']\n", - "2019-01-15 14:04:42,144 : INFO : storing np array 'expElogbeta' to lda.model.expElogbeta.npy\n", - "2019-01-15 14:04:42,147 : INFO : not storing attribute state\n", - "2019-01-15 14:04:42,148 : INFO : not storing attribute id2word\n", - "2019-01-15 14:04:42,149 : INFO : not storing attribute dispatcher\n", - "2019-01-15 14:04:42,150 : INFO : saved lda.model\n" - ] - } - ], + "outputs": [], "source": [ "row = dict()\n", "row['model'] = 'lda'\n", @@ -1117,140 +498,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Load LDA and get metrics" + "### Load LDA and store metrics" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 14:04:42,171 : INFO : loading LdaModel object from lda.model\n", - "2019-01-15 14:04:42,172 : INFO : loading expElogbeta from lda.model.expElogbeta.npy with mmap=None\n", - "2019-01-15 14:04:42,175 : INFO : setting ignored attribute state to None\n", - "2019-01-15 14:04:42,175 : INFO : setting ignored attribute id2word to None\n", - "2019-01-15 14:04:42,176 : INFO : setting ignored attribute dispatcher to None\n", - "2019-01-15 14:04:42,177 : INFO : loaded lda.model\n", - "2019-01-15 14:04:42,178 : INFO : loading LdaState object from lda.model.state\n", - "2019-01-15 14:04:42,197 : INFO : loaded lda.model.state\n", - "2019-01-15 14:04:47,706 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-15 14:04:47,822 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" - ] - }, - { - "data": { - "text/plain": [ - "[(0,\n", - " '0.006*\"world\" + 0.006*\"new\" + 0.005*\"won\" + 0.004*\"time\" + 0.004*\"leagu\" + 0.004*\"season\" + 0.003*\"place\" + 0.003*\"hous\" + 0.003*\"univers\" + 0.003*\"team\"'),\n", - " (1,\n", - " '0.006*\"team\" + 0.004*\"year\" + 0.004*\"decemb\" + 0.003*\"season\" + 0.003*\"time\" + 0.003*\"minist\" + 0.003*\"state\" + 0.003*\"octob\" + 0.003*\"nation\" + 0.003*\"new\"'),\n", - " (2,\n", - " '0.004*\"school\" + 0.004*\"year\" + 0.004*\"includ\" + 0.004*\"new\" + 0.004*\"time\" + 0.003*\"state\" + 0.003*\"world\" + 0.003*\"univers\" + 0.003*\"later\" + 0.003*\"citi\"'),\n", - " (3,\n", - " '0.006*\"new\" + 0.005*\"svg\" + 0.004*\"imag\" + 0.004*\"time\" + 0.004*\"symbol\" + 0.004*\"year\" + 0.004*\"citi\" + 0.004*\"state\" + 0.003*\"team\" + 0.003*\"church\"'),\n", - " (4,\n", - " '0.005*\"new\" + 0.004*\"american\" + 0.004*\"state\" + 0.004*\"nation\" + 0.003*\"unit\" + 0.003*\"born\" + 0.003*\"includ\" + 0.003*\"page\" + 0.003*\"open\" + 0.003*\"member\"'),\n", - " (5,\n", - " '0.011*\"dai\" + 0.010*\"hous\" + 0.007*\"group\" + 0.007*\"nomin\" + 0.005*\"main\" + 0.005*\"glass\" + 0.005*\"stori\" + 0.004*\"new\" + 0.004*\"evict\" + 0.004*\"week\"'),\n", - " (6,\n", - " '0.004*\"time\" + 0.004*\"univers\" + 0.003*\"state\" + 0.003*\"includ\" + 0.003*\"year\" + 0.003*\"new\" + 0.003*\"syke\" + 0.003*\"school\" + 0.003*\"nation\" + 0.003*\"gener\"'),\n", - " (7,\n", - " '0.005*\"state\" + 0.005*\"new\" + 0.004*\"john\" + 0.004*\"meyrick\" + 0.004*\"determin\" + 0.003*\"art\" + 0.003*\"gener\" + 0.003*\"time\" + 0.003*\"year\" + 0.003*\"spatial\"'),\n", - " (8,\n", - " '0.005*\"new\" + 0.005*\"build\" + 0.004*\"state\" + 0.004*\"hous\" + 0.004*\"island\" + 0.003*\"vote\" + 0.003*\"elect\" + 0.003*\"includ\" + 0.003*\"oper\" + 0.003*\"releas\"'),\n", - " (9,\n", - " '0.006*\"new\" + 0.005*\"state\" + 0.004*\"includ\" + 0.004*\"develop\" + 0.004*\"nation\" + 0.003*\"world\" + 0.003*\"work\" + 0.003*\"year\" + 0.003*\"music\" + 0.003*\"presid\"'),\n", - " (10,\n", - " '0.004*\"new\" + 0.004*\"state\" + 0.004*\"art\" + 0.003*\"year\" + 0.003*\"john\" + 0.003*\"includ\" + 0.003*\"world\" + 0.003*\"work\" + 0.003*\"unit\" + 0.003*\"time\"'),\n", - " (11,\n", - " '0.028*\"linear\" + 0.018*\"neat\" + 0.012*\"palomar\" + 0.011*\"februari\" + 0.011*\"april\" + 0.008*\"march\" + 0.007*\"septemb\" + 0.006*\"august\" + 0.004*\"octob\" + 0.004*\"june\"'),\n", - " (12,\n", - " '0.007*\"team\" + 0.006*\"state\" + 0.006*\"women\" + 0.005*\"new\" + 0.004*\"univers\" + 0.004*\"world\" + 0.004*\"game\" + 0.003*\"unit\" + 0.003*\"year\" + 0.003*\"known\"'),\n", - " (13,\n", - " '0.005*\"state\" + 0.005*\"year\" + 0.005*\"game\" + 0.003*\"nation\" + 0.003*\"unit\" + 0.003*\"new\" + 0.003*\"law\" + 0.003*\"hous\" + 0.003*\"french\" + 0.003*\"citi\"'),\n", - " (14,\n", - " '0.008*\"group\" + 0.006*\"new\" + 0.005*\"year\" + 0.004*\"world\" + 0.004*\"record\" + 0.004*\"time\" + 0.004*\"team\" + 0.003*\"develop\" + 0.003*\"includ\" + 0.003*\"state\"'),\n", - " (15,\n", - " '0.006*\"new\" + 0.005*\"station\" + 0.004*\"park\" + 0.004*\"design\" + 0.004*\"american\" + 0.004*\"apollo\" + 0.003*\"year\" + 0.003*\"film\" + 0.003*\"hotel\" + 0.003*\"state\"'),\n", - " (16,\n", - " '0.005*\"new\" + 0.005*\"school\" + 0.004*\"linear\" + 0.004*\"year\" + 0.004*\"march\" + 0.004*\"state\" + 0.003*\"game\" + 0.003*\"includ\" + 0.003*\"public\" + 0.003*\"base\"'),\n", - " (17,\n", - " '0.005*\"state\" + 0.004*\"oper\" + 0.003*\"decemb\" + 0.003*\"reconnaiss\" + 0.003*\"includ\" + 0.003*\"year\" + 0.003*\"member\" + 0.003*\"novemb\" + 0.003*\"univers\" + 0.003*\"time\"'),\n", - " (18,\n", - " '0.006*\"new\" + 0.003*\"music\" + 0.003*\"year\" + 0.003*\"state\" + 0.003*\"hous\" + 0.003*\"includ\" + 0.003*\"nation\" + 0.003*\"event\" + 0.003*\"time\" + 0.003*\"link\"'),\n", - " (19,\n", - " '0.005*\"state\" + 0.004*\"hous\" + 0.004*\"famili\" + 0.004*\"new\" + 0.003*\"area\" + 0.003*\"year\" + 0.003*\"south\" + 0.003*\"includ\" + 0.003*\"link\" + 0.003*\"time\"'),\n", - " (20,\n", - " '0.011*\"univers\" + 0.009*\"state\" + 0.007*\"team\" + 0.004*\"men\" + 0.003*\"new\" + 0.003*\"year\" + 0.003*\"women\" + 0.003*\"gener\" + 0.003*\"district\" + 0.003*\"colleg\"'),\n", - " (21,\n", - " '0.007*\"season\" + 0.007*\"plai\" + 0.006*\"club\" + 0.006*\"leagu\" + 0.006*\"year\" + 0.004*\"releas\" + 0.004*\"school\" + 0.004*\"seri\" + 0.004*\"unit\" + 0.003*\"career\"'),\n", - " (22,\n", - " '0.007*\"ag\" + 0.007*\"year\" + 0.006*\"state\" + 0.006*\"school\" + 0.006*\"famili\" + 0.005*\"new\" + 0.005*\"unit\" + 0.005*\"household\" + 0.005*\"citi\" + 0.004*\"popul\"'),\n", - " (23,\n", - " '0.004*\"time\" + 0.004*\"year\" + 0.004*\"new\" + 0.003*\"state\" + 0.003*\"design\" + 0.003*\"world\" + 0.003*\"open\" + 0.003*\"includ\" + 0.003*\"plai\" + 0.002*\"game\"'),\n", - " (24,\n", - " '0.006*\"state\" + 0.005*\"year\" + 0.004*\"new\" + 0.004*\"includ\" + 0.003*\"unit\" + 0.003*\"record\" + 0.003*\"area\" + 0.003*\"time\" + 0.002*\"plai\" + 0.002*\"school\"'),\n", - " (25,\n", - " '0.006*\"nation\" + 0.005*\"state\" + 0.004*\"includ\" + 0.004*\"year\" + 0.004*\"game\" + 0.004*\"time\" + 0.003*\"new\" + 0.003*\"south\" + 0.003*\"servic\" + 0.003*\"oper\"'),\n", - " (26,\n", - " '0.005*\"nation\" + 0.004*\"new\" + 0.004*\"world\" + 0.003*\"includ\" + 0.003*\"player\" + 0.003*\"game\" + 0.003*\"time\" + 0.003*\"state\" + 0.003*\"work\" + 0.003*\"team\"'),\n", - " (27,\n", - " '0.005*\"state\" + 0.004*\"born\" + 0.004*\"river\" + 0.004*\"parti\" + 0.003*\"american\" + 0.003*\"leagu\" + 0.003*\"counti\" + 0.003*\"singl\" + 0.003*\"island\" + 0.003*\"total\"'),\n", - " (28,\n", - " '0.006*\"album\" + 0.006*\"year\" + 0.005*\"state\" + 0.005*\"new\" + 0.004*\"time\" + 0.004*\"plai\" + 0.004*\"school\" + 0.004*\"singl\" + 0.003*\"team\" + 0.003*\"record\"'),\n", - " (29,\n", - " '0.007*\"new\" + 0.004*\"univers\" + 0.004*\"year\" + 0.004*\"film\" + 0.003*\"list\" + 0.003*\"state\" + 0.003*\"compani\" + 0.003*\"album\" + 0.003*\"servic\" + 0.003*\"award\"'),\n", - " (30,\n", - " '0.006*\"commun\" + 0.005*\"year\" + 0.004*\"team\" + 0.004*\"includ\" + 0.003*\"state\" + 0.003*\"time\" + 0.003*\"film\" + 0.003*\"plai\" + 0.003*\"link\" + 0.003*\"hous\"'),\n", - " (31,\n", - " '0.005*\"time\" + 0.005*\"new\" + 0.005*\"year\" + 0.004*\"work\" + 0.004*\"art\" + 0.003*\"nation\" + 0.003*\"member\" + 0.003*\"district\" + 0.003*\"state\" + 0.003*\"final\"'),\n", - " (32,\n", - " '0.004*\"record\" + 0.004*\"year\" + 0.004*\"world\" + 0.003*\"new\" + 0.003*\"hous\" + 0.003*\"build\" + 0.003*\"includ\" + 0.003*\"time\" + 0.003*\"season\" + 0.003*\"senat\"'),\n", - " (33,\n", - " '0.007*\"son\" + 0.006*\"district\" + 0.005*\"state\" + 0.005*\"left\" + 0.005*\"align\" + 0.004*\"year\" + 0.004*\"game\" + 0.004*\"river\" + 0.003*\"member\" + 0.003*\"oblast\"'),\n", - " (34,\n", - " '0.009*\"new\" + 0.008*\"state\" + 0.006*\"col\" + 0.006*\"design\" + 0.006*\"york\" + 0.005*\"nation\" + 0.004*\"includ\" + 0.004*\"unit\" + 0.004*\"john\" + 0.004*\"school\"'),\n", - " (35,\n", - " '0.004*\"univers\" + 0.004*\"state\" + 0.004*\"new\" + 0.004*\"game\" + 0.003*\"plai\" + 0.003*\"seri\" + 0.003*\"switch\" + 0.003*\"film\" + 0.003*\"year\" + 0.003*\"includ\"'),\n", - " (36,\n", - " '0.007*\"elect\" + 0.007*\"state\" + 0.006*\"nation\" + 0.003*\"year\" + 0.003*\"new\" + 0.003*\"gener\" + 0.003*\"march\" + 0.003*\"unit\" + 0.003*\"includ\" + 0.003*\"church\"'),\n", - " (37,\n", - " '0.006*\"film\" + 0.005*\"sequenc\" + 0.005*\"new\" + 0.004*\"won\" + 0.004*\"number\" + 0.003*\"john\" + 0.003*\"year\" + 0.003*\"game\" + 0.003*\"state\" + 0.003*\"includ\"'),\n", - " (38,\n", - " '0.004*\"air\" + 0.004*\"nation\" + 0.003*\"includ\" + 0.003*\"game\" + 0.003*\"seri\" + 0.003*\"base\" + 0.003*\"armi\" + 0.003*\"year\" + 0.003*\"film\" + 0.003*\"cell\"'),\n", - " (39,\n", - " '0.005*\"new\" + 0.005*\"conserv\" + 0.005*\"game\" + 0.005*\"state\" + 0.004*\"nation\" + 0.004*\"season\" + 0.003*\"leagu\" + 0.003*\"time\" + 0.003*\"year\" + 0.003*\"world\"'),\n", - " (40,\n", - " '0.005*\"state\" + 0.004*\"new\" + 0.004*\"album\" + 0.003*\"game\" + 0.003*\"year\" + 0.003*\"nation\" + 0.003*\"american\" + 0.003*\"public\" + 0.003*\"includ\" + 0.003*\"school\"'),\n", - " (41,\n", - " '0.005*\"school\" + 0.004*\"state\" + 0.003*\"design\" + 0.003*\"work\" + 0.003*\"year\" + 0.003*\"new\" + 0.003*\"season\" + 0.003*\"time\" + 0.003*\"high\" + 0.003*\"record\"'),\n", - " (42,\n", - " '0.010*\"group\" + 0.004*\"new\" + 0.004*\"state\" + 0.004*\"john\" + 0.004*\"topolog\" + 0.003*\"year\" + 0.003*\"gener\" + 0.003*\"public\" + 0.003*\"station\" + 0.003*\"includ\"'),\n", - " (43,\n", - " '0.007*\"new\" + 0.005*\"school\" + 0.004*\"team\" + 0.004*\"world\" + 0.003*\"nation\" + 0.003*\"year\" + 0.003*\"state\" + 0.003*\"develop\" + 0.003*\"includ\" + 0.003*\"unit\"'),\n", - " (44,\n", - " '0.009*\"million\" + 0.005*\"new\" + 0.005*\"year\" + 0.004*\"music\" + 0.004*\"time\" + 0.004*\"determin\" + 0.004*\"game\" + 0.004*\"includ\" + 0.003*\"song\" + 0.003*\"school\"'),\n", - " (45,\n", - " '0.009*\"univers\" + 0.007*\"new\" + 0.006*\"year\" + 0.005*\"season\" + 0.004*\"school\" + 0.004*\"state\" + 0.004*\"work\" + 0.004*\"includ\" + 0.004*\"team\" + 0.003*\"album\"'),\n", - " (46,\n", - " '0.005*\"new\" + 0.004*\"music\" + 0.004*\"state\" + 0.004*\"year\" + 0.003*\"song\" + 0.003*\"album\" + 0.003*\"time\" + 0.003*\"includ\" + 0.003*\"univers\" + 0.003*\"best\"'),\n", - " (47,\n", - " '0.015*\"linear\" + 0.007*\"palomar\" + 0.006*\"neat\" + 0.006*\"game\" + 0.005*\"april\" + 0.004*\"februari\" + 0.004*\"march\" + 0.004*\"state\" + 0.004*\"unit\" + 0.003*\"text\"'),\n", - " (48,\n", - " '0.006*\"state\" + 0.004*\"award\" + 0.004*\"parti\" + 0.004*\"game\" + 0.003*\"syke\" + 0.003*\"new\" + 0.003*\"year\" + 0.003*\"includ\" + 0.003*\"plane\" + 0.003*\"unit\"'),\n", - " (49,\n", - " '0.010*\"linear\" + 0.005*\"neat\" + 0.005*\"march\" + 0.004*\"palomar\" + 0.004*\"septemb\" + 0.004*\"film\" + 0.003*\"new\" + 0.003*\"februari\" + 0.003*\"april\" + 0.003*\"site\"')]" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "lda = LdaModel.load('lda.model')\n", "row.update(get_tm_metrics(lda, test_corpus))\n", @@ -1268,178 +523,18 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coherencel2_normmodelperplexitytopicstrain_time
0-5.2107437.915856nmf244.153459[(21, 0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"d...6.285688
1-5.0779067.920052nmf_with_r248.054745[(21, 0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"d...73.330969
2-1.9149747.987976lda4259.619466[(49, 0.010*\"linear\" + 0.005*\"neat\" + 0.005*\"m...8.085454
\n", - "
" - ], - "text/plain": [ - " coherence l2_norm model perplexity \\\n", - "0 -5.210743 7.915856 nmf 244.153459 \n", - "1 -5.077906 7.920052 nmf_with_r 248.054745 \n", - "2 -1.914974 7.987976 lda 4259.619466 \n", - "\n", - " topics train_time \n", - "0 [(21, 0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"d... 6.285688 \n", - "1 [(21, 0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"d... 73.330969 \n", - "2 [(49, 0.010*\"linear\" + 0.005*\"neat\" + 0.005*\"m... 8.085454 " - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "tm_metrics" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================\n", - "nmf\n", - "====================\n", - "\n", - "(21, '0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"disnei\" + 0.022*\"cinema\" + 0.021*\"overtak\" + 0.020*\"act\" + 0.017*\"art\" + 0.016*\"million\" + 0.015*\"insid\" + 0.014*\"rover\"')\n", - "\n", - "(33, '0.197*\"linear\" + 0.102*\"neat\" + 0.089*\"palomar\" + 0.058*\"april\" + 0.055*\"februari\" + 0.047*\"march\" + 0.037*\"august\" + 0.036*\"septemb\" + 0.023*\"octob\" + 0.021*\"mesa\"')\n", - "\n", - "(13, '0.041*\"hous\" + 0.034*\"dai\" + 0.031*\"develop\" + 0.030*\"vote\" + 0.027*\"women\" + 0.020*\"nomin\" + 0.020*\"elect\" + 0.018*\"gender\" + 0.017*\"glass\" + 0.016*\"ballot\"')\n", - "\n", - "(5, '0.024*\"switch\" + 0.023*\"col\" + 0.016*\"divis\" + 0.014*\"learn\" + 0.014*\"new\" + 0.013*\"port\" + 0.013*\"warrant\" + 0.012*\"compani\" + 0.012*\"action\" + 0.011*\"maj\"')\n", - "\n", - "(26, '0.039*\"club\" + 0.032*\"season\" + 0.029*\"leagu\" + 0.025*\"svg\" + 0.022*\"imag\" + 0.021*\"symbol\" + 0.021*\"divis\" + 0.017*\"john\" + 0.016*\"rover\" + 0.015*\"premier\"')\n", - "\n", - "(34, '0.041*\"determin\" + 0.026*\"matrix\" + 0.017*\"finn\" + 0.015*\"team\" + 0.013*\"keeper\" + 0.011*\"column\" + 0.010*\"matric\" + 0.010*\"myth\" + 0.010*\"disnei\" + 0.009*\"power\"')\n", - "\n", - "(32, '0.038*\"film\" + 0.022*\"design\" + 0.014*\"intellig\" + 0.013*\"scienc\" + 0.011*\"director\" + 0.010*\"septemb\" + 0.009*\"februari\" + 0.009*\"april\" + 0.009*\"linear\" + 0.009*\"june\"')\n", - "\n", - "(0, '0.017*\"cell\" + 0.017*\"linear\" + 0.017*\"highwai\" + 0.016*\"base\" + 0.014*\"open\" + 0.013*\"air\" + 0.010*\"set\" + 0.010*\"site\" + 0.009*\"neat\" + 0.008*\"april\"')\n", - "\n", - "(47, '0.017*\"manag\" + 0.015*\"switch\" + 0.014*\"seri\" + 0.013*\"team\" + 0.013*\"myth\" + 0.012*\"network\" + 0.012*\"season\" + 0.010*\"car\" + 0.010*\"point\" + 0.010*\"test\"')\n", - "\n", - "(8, '0.033*\"determin\" + 0.020*\"matrix\" + 0.012*\"state\" + 0.010*\"order\" + 0.010*\"gener\" + 0.009*\"product\" + 0.009*\"column\" + 0.009*\"develop\" + 0.008*\"function\" + 0.008*\"term\"')\n", - "\n", - "\n", - "====================\n", - "nmf_with_r\n", - "====================\n", - "\n", - "(21, '0.042*\"finn\" + 0.032*\"keeper\" + 0.026*\"disnei\" + 0.023*\"cinema\" + 0.021*\"overtak\" + 0.021*\"act\" + 0.017*\"art\" + 0.016*\"million\" + 0.015*\"insid\" + 0.014*\"rover\"')\n", - "\n", - "(13, '0.041*\"hous\" + 0.034*\"dai\" + 0.031*\"develop\" + 0.031*\"vote\" + 0.027*\"women\" + 0.020*\"nomin\" + 0.020*\"elect\" + 0.018*\"gender\" + 0.017*\"glass\" + 0.016*\"ballot\"')\n", - "\n", - "(5, '0.025*\"switch\" + 0.020*\"col\" + 0.016*\"divis\" + 0.014*\"learn\" + 0.013*\"new\" + 0.013*\"port\" + 0.013*\"warrant\" + 0.012*\"action\" + 0.012*\"arrest\" + 0.012*\"championship\"')\n", - "\n", - "(26, '0.039*\"club\" + 0.032*\"season\" + 0.029*\"leagu\" + 0.025*\"svg\" + 0.022*\"imag\" + 0.021*\"symbol\" + 0.021*\"divis\" + 0.018*\"john\" + 0.016*\"rover\" + 0.015*\"premier\"')\n", - "\n", - "(14, '0.058*\"apollo\" + 0.024*\"territori\" + 0.021*\"island\" + 0.018*\"set\" + 0.017*\"claim\" + 0.017*\"grand\" + 0.017*\"sion\" + 0.016*\"priori\" + 0.016*\"open\" + 0.012*\"year\"')\n", - "\n", - "(34, '0.034*\"determin\" + 0.024*\"matrix\" + 0.018*\"finn\" + 0.016*\"team\" + 0.014*\"keeper\" + 0.010*\"myth\" + 0.010*\"disnei\" + 0.010*\"column\" + 0.009*\"matric\" + 0.009*\"power\"')\n", - "\n", - "(44, '0.030*\"design\" + 0.027*\"game\" + 0.024*\"intellig\" + 0.016*\"scienc\" + 0.014*\"new\" + 0.011*\"bai\" + 0.010*\"finn\" + 0.010*\"complex\" + 0.009*\"natur\" + 0.009*\"window\"')\n", - "\n", - "(47, '0.016*\"manag\" + 0.015*\"switch\" + 0.014*\"seri\" + 0.013*\"team\" + 0.012*\"network\" + 0.012*\"myth\" + 0.011*\"season\" + 0.010*\"point\" + 0.009*\"car\" + 0.009*\"test\"')\n", - "\n", - "(0, '0.018*\"cell\" + 0.017*\"highwai\" + 0.017*\"base\" + 0.016*\"open\" + 0.013*\"air\" + 0.012*\"set\" + 0.010*\"site\" + 0.008*\"squadron\" + 0.008*\"german\" + 0.007*\"interchang\"')\n", - "\n", - "(8, '0.029*\"determin\" + 0.020*\"matrix\" + 0.012*\"state\" + 0.010*\"order\" + 0.010*\"gener\" + 0.009*\"product\" + 0.009*\"column\" + 0.009*\"develop\" + 0.008*\"function\" + 0.008*\"term\"')\n", - "\n", - "\n", - "====================\n", - "lda\n", - "====================\n", - "\n", - "(49, '0.010*\"linear\" + 0.005*\"neat\" + 0.005*\"march\" + 0.004*\"palomar\" + 0.004*\"septemb\" + 0.004*\"film\" + 0.003*\"new\" + 0.003*\"februari\" + 0.003*\"april\" + 0.003*\"site\"')\n", - "\n", - "(33, '0.007*\"son\" + 0.006*\"district\" + 0.005*\"state\" + 0.005*\"left\" + 0.005*\"align\" + 0.004*\"year\" + 0.004*\"game\" + 0.004*\"river\" + 0.003*\"member\" + 0.003*\"oblast\"')\n", - "\n", - "(9, '0.006*\"new\" + 0.005*\"state\" + 0.004*\"includ\" + 0.004*\"develop\" + 0.004*\"nation\" + 0.003*\"world\" + 0.003*\"work\" + 0.003*\"year\" + 0.003*\"music\" + 0.003*\"presid\"')\n", - "\n", - "(23, '0.004*\"time\" + 0.004*\"year\" + 0.004*\"new\" + 0.003*\"state\" + 0.003*\"design\" + 0.003*\"world\" + 0.003*\"open\" + 0.003*\"includ\" + 0.003*\"plai\" + 0.002*\"game\"')\n", - "\n", - "(12, '0.007*\"team\" + 0.006*\"state\" + 0.006*\"women\" + 0.005*\"new\" + 0.004*\"univers\" + 0.004*\"world\" + 0.004*\"game\" + 0.003*\"unit\" + 0.003*\"year\" + 0.003*\"known\"')\n", - "\n", - "(43, '0.007*\"new\" + 0.005*\"school\" + 0.004*\"team\" + 0.004*\"world\" + 0.003*\"nation\" + 0.003*\"year\" + 0.003*\"state\" + 0.003*\"develop\" + 0.003*\"includ\" + 0.003*\"unit\"')\n", - "\n", - "(42, '0.010*\"group\" + 0.004*\"new\" + 0.004*\"state\" + 0.004*\"john\" + 0.004*\"topolog\" + 0.003*\"year\" + 0.003*\"gener\" + 0.003*\"public\" + 0.003*\"station\" + 0.003*\"includ\"')\n", - "\n", - "(6, '0.004*\"time\" + 0.004*\"univers\" + 0.003*\"state\" + 0.003*\"includ\" + 0.003*\"year\" + 0.003*\"new\" + 0.003*\"syke\" + 0.003*\"school\" + 0.003*\"nation\" + 0.003*\"gener\"')\n", - "\n", - "(32, '0.004*\"record\" + 0.004*\"year\" + 0.004*\"world\" + 0.003*\"new\" + 0.003*\"hous\" + 0.003*\"build\" + 0.003*\"includ\" + 0.003*\"time\" + 0.003*\"season\" + 0.003*\"senat\"')\n", - "\n", - "(15, '0.006*\"new\" + 0.005*\"station\" + 0.004*\"park\" + 0.004*\"design\" + 0.004*\"american\" + 0.004*\"apollo\" + 0.003*\"year\" + 0.003*\"film\" + 0.003*\"hotel\" + 0.003*\"state\"')\n", - "\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "for row_idx, row in tm_metrics.iterrows():\n", " print('='*20)\n", @@ -1460,6 +555,17 @@ "\n", "Moreover, NMF can be very flexible on RAM usage due to sparsity option, which leaves only small amount of elements in inner matrices." ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 2 + }, + "outputs": [], + "source": [ + "\n" + ] } ], "metadata": { From 1806bf68c23b945be13ce0536d129cb6c6de1752 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Wed, 16 Jan 2019 11:54:57 +0300 Subject: [PATCH 138/144] Train on full corpus --- docs/notebooks/nmf_wikipedia.ipynb | 23582 ++++++++++++++++++++++++++- 1 file changed, 23539 insertions(+), 43 deletions(-) diff --git a/docs/notebooks/nmf_wikipedia.ipynb b/docs/notebooks/nmf_wikipedia.ipynb index 35e16ad7dd..706c00dad7 100644 --- a/docs/notebooks/nmf_wikipedia.ipynb +++ b/docs/notebooks/nmf_wikipedia.ipynb @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -61,11 +61,83 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "lines_to_next_cell": 2 }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Section title: Introduction\n", + "Section text: \n", + "\n", + "\n", + "\n", + "\n", + "'''Anarchism''' is a political philosophy that advocates self-governed societies based on volun\n", + "Section title: Etymology and terminology\n", + "Section text: \n", + "\n", + "The word ''anarchism'' is composed from the word ''anarchy'' and the suffix ''-ism'', themselves d\n", + "Section title: History\n", + "Section text: \n", + "\n", + "===Origins===\n", + "Woodcut from a Diggers document by William Everard\n", + "\n", + "The earliest anarchist themes ca\n", + "Section title: Anarchist schools of thought\n", + "Section text: \n", + "Portrait of philosopher Pierre-Joseph Proudhon (1809–1865) by Gustave Courbet. Proudhon was the pri\n", + "Section title: Internal issues and debates\n", + "Section text: \n", + "consistent with anarchist values is a controversial subject among anarchists.\n", + "\n", + "Anarchism is a philo\n", + "Section title: Topics of interest\n", + "Section text: Intersecting and overlapping between various schools of thought, certain topics of interest and inte\n", + "Section title: Criticisms\n", + "Section text: \n", + "Criticisms of anarchism include moral criticisms and pragmatic criticisms. Anarchism is often evalu\n", + "Section title: See also\n", + "Section text: * Anarchism by country\n", + "\n", + "Section title: References\n", + "Section text: \n", + "\n", + "Section title: Further reading\n", + "Section text: * Barclay, Harold, ''People Without Government: An Anthropology of Anarchy'' (2nd ed.), Left Bank Bo\n", + "Section title: External links\n", + "Section text: \n", + "* \n", + "* \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], "source": [ "data = api.load(\"wiki-english-20171001\")\n", "article = next(iter(data))\n", @@ -87,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "lines_to_next_cell": 2 }, @@ -119,7 +191,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "lines_to_next_cell": 2 }, @@ -140,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "lines_to_next_cell": 2, "scrolled": true @@ -163,11 +235,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "lines_to_next_cell": 2 }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 19:31:03,151 : INFO : loading Dictionary object from wiki.dict\n", + "2019-01-15 19:31:04,024 : INFO : loaded wiki.dict\n", + "2019-01-15 19:31:06,292 : INFO : discarding 1910258 tokens: [('abdelrahim', 49), ('abstention', 120), ('anarcha', 101), ('anarchica', 40), ('anarchosyndicalist', 20), ('antimilitar', 68), ('arbet', 194), ('archo', 100), ('arkhē', 5), ('autonomedia', 118)]...\n", + "2019-01-15 19:31:06,293 : INFO : keeping 100000 tokens which were in no less than 5 and no more than 2462447 (=50.0%) documents\n", + "2019-01-15 19:31:06,645 : INFO : resulting dictionary: Dictionary(100000 unique tokens: ['abandon', 'abil', 'abl', 'abolit', 'abstent']...)\n" + ] + } + ], "source": [ "dictionary = Dictionary.load('wiki.dict')\n", "dictionary.filter_extremes()\n", @@ -187,7 +271,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "lines_to_next_cell": 2 }, @@ -199,7 +283,7 @@ " super().__init__(*args, **kwargs)\n", "\n", " random_state = np.random.RandomState(random_seed)\n", - " self.indices = random_state.permutation(range(self.num_docs))[:4000]\n", + " self.indices = random_state.permutation(range(self.num_docs))\n", " if testset:\n", " self.indices = self.indices[:testsize]\n", " else:\n", @@ -222,7 +306,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "scrolled": true }, @@ -250,11 +334,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "lines_to_next_cell": 2 }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 19:31:07,323 : INFO : loaded corpus index from wiki.mm.index\n", + "2019-01-15 19:31:07,324 : INFO : initializing cython corpus reader from wiki.mm\n", + "2019-01-15 19:31:07,325 : INFO : accepted corpus with 4924894 documents, 100000 features, 683375728 non-zero entries\n", + "2019-01-15 19:31:08,544 : INFO : loaded corpus index from wiki.mm.index\n", + "2019-01-15 19:31:08,544 : INFO : initializing cython corpus reader from wiki.mm\n", + "2019-01-15 19:31:08,545 : INFO : accepted corpus with 4924894 documents, 100000 features, 683375728 non-zero entries\n" + ] + } + ], "source": [ "train_corpus = RandomCorpus(\n", " random_seed=42, testset=False, testsize=2000, fname='wiki.mm'\n", @@ -273,7 +370,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -354,7 +451,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -387,9 +484,283 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 19:33:21,875 : INFO : Loss (no outliers): 2186.768444126956\tLoss (with outliers): 2186.768444126956\n", + "2019-01-15 19:34:49,514 : INFO : Loss (no outliers): 2298.434152045061\tLoss (with outliers): 2298.434152045061\n", + "2019-01-15 19:35:44,330 : INFO : Loss (no outliers): 2101.875741413195\tLoss (with outliers): 2101.875741413195\n", + "2019-01-15 19:36:46,957 : INFO : Loss (no outliers): 2437.6297291776878\tLoss (with outliers): 2437.6297291776878\n", + "2019-01-15 19:37:54,953 : INFO : Loss (no outliers): 5519.767671122511\tLoss (with outliers): 5519.767671122511\n", + "2019-01-15 19:38:49,448 : INFO : Loss (no outliers): 1986.1839688880361\tLoss (with outliers): 1986.1839688880361\n", + "2019-01-15 19:39:44,683 : INFO : Loss (no outliers): 2870.5244901331134\tLoss (with outliers): 2870.5244901331134\n", + "2019-01-15 19:40:21,521 : INFO : Loss (no outliers): 1993.3453896080728\tLoss (with outliers): 1993.3453896080728\n", + "2019-01-15 19:40:53,500 : INFO : Loss (no outliers): 2205.748001914049\tLoss (with outliers): 2205.748001914049\n", + "2019-01-15 19:41:25,713 : INFO : Loss (no outliers): 2429.0247933673186\tLoss (with outliers): 2429.0247933673186\n", + "2019-01-15 19:41:55,625 : INFO : Loss (no outliers): 2266.175764417108\tLoss (with outliers): 2266.175764417108\n", + "2019-01-15 19:42:26,839 : INFO : Loss (no outliers): 2095.631662579894\tLoss (with outliers): 2095.631662579894\n", + "2019-01-15 19:42:50,142 : INFO : Loss (no outliers): 1921.1287544934391\tLoss (with outliers): 1921.1287544934391\n", + "2019-01-15 19:43:17,461 : INFO : Loss (no outliers): 2010.7079024020422\tLoss (with outliers): 2010.7079024020422\n", + "2019-01-15 19:43:40,896 : INFO : Loss (no outliers): 1978.7980803732323\tLoss (with outliers): 1978.7980803732323\n", + "2019-01-15 19:44:03,550 : INFO : Loss (no outliers): 1944.6897116245455\tLoss (with outliers): 1944.6897116245455\n", + "2019-01-15 19:44:23,397 : INFO : Loss (no outliers): 1946.8806206931488\tLoss (with outliers): 1946.8806206931488\n", + "2019-01-15 19:44:50,191 : INFO : Loss (no outliers): 2493.7293178207674\tLoss (with outliers): 2493.7293178207674\n", + "2019-01-15 19:45:09,354 : INFO : Loss (no outliers): 2433.0069057525757\tLoss (with outliers): 2433.0069057525757\n", + "2019-01-15 19:45:40,159 : INFO : Loss (no outliers): 2072.453266200233\tLoss (with outliers): 2072.453266200233\n", + "2019-01-15 19:46:02,276 : INFO : Loss (no outliers): 2139.1683569146144\tLoss (with outliers): 2139.1683569146144\n", + "2019-01-15 19:46:20,269 : INFO : Loss (no outliers): 2144.724120339241\tLoss (with outliers): 2144.724120339241\n", + "2019-01-15 19:46:37,988 : INFO : Loss (no outliers): 1998.2843321884393\tLoss (with outliers): 1998.2843321884393\n", + "2019-01-15 19:46:56,095 : INFO : Loss (no outliers): 2090.966456621198\tLoss (with outliers): 2090.966456621198\n", + "2019-01-15 19:47:15,145 : INFO : Loss (no outliers): 2166.4222440991807\tLoss (with outliers): 2166.4222440991807\n", + "2019-01-15 19:47:33,272 : INFO : Loss (no outliers): 2474.090096536888\tLoss (with outliers): 2474.090096536888\n", + "2019-01-15 19:47:51,610 : INFO : Loss (no outliers): 1947.7844465300134\tLoss (with outliers): 1947.7844465300134\n", + "2019-01-15 19:48:14,540 : INFO : Loss (no outliers): 2629.759922673377\tLoss (with outliers): 2629.759922673377\n", + "2019-01-15 19:48:32,385 : INFO : Loss (no outliers): 2082.4114552940564\tLoss (with outliers): 2082.4114552940564\n", + "2019-01-15 19:48:52,093 : INFO : Loss (no outliers): 2648.43046470688\tLoss (with outliers): 2648.43046470688\n", + "2019-01-15 19:49:09,789 : INFO : Loss (no outliers): 2065.7928859603503\tLoss (with outliers): 2065.7928859603503\n", + "2019-01-15 19:49:28,446 : INFO : Loss (no outliers): 3702.34412587855\tLoss (with outliers): 3702.34412587855\n", + "2019-01-15 19:49:45,559 : INFO : Loss (no outliers): 2173.9779388497004\tLoss (with outliers): 2173.9779388497004\n", + "2019-01-15 19:50:04,426 : INFO : Loss (no outliers): 2402.801546260597\tLoss (with outliers): 2402.801546260597\n", + "2019-01-15 19:50:26,401 : INFO : Loss (no outliers): 1956.979190578151\tLoss (with outliers): 1956.979190578151\n", + "2019-01-15 19:50:43,993 : INFO : Loss (no outliers): 2208.6966954058944\tLoss (with outliers): 2208.6966954058944\n", + "2019-01-15 19:51:12,904 : INFO : Loss (no outliers): 2418.113439862798\tLoss (with outliers): 2418.113439862798\n", + "2019-01-15 19:51:30,263 : INFO : Loss (no outliers): 2291.6256839739613\tLoss (with outliers): 2291.6256839739613\n", + "2019-01-15 19:51:47,009 : INFO : Loss (no outliers): 2118.0443608020955\tLoss (with outliers): 2118.0443608020955\n", + "2019-01-15 19:52:04,089 : INFO : Loss (no outliers): 2330.0927909478132\tLoss (with outliers): 2330.0927909478132\n", + "2019-01-15 19:52:20,933 : INFO : Loss (no outliers): 1992.1996701963217\tLoss (with outliers): 1992.1996701963217\n", + "2019-01-15 19:52:38,204 : INFO : Loss (no outliers): 2012.4311154144034\tLoss (with outliers): 2012.4311154144034\n", + "2019-01-15 19:53:04,116 : INFO : Loss (no outliers): 2043.4364061756064\tLoss (with outliers): 2043.4364061756064\n", + "2019-01-15 19:53:21,117 : INFO : Loss (no outliers): 1920.6746096891684\tLoss (with outliers): 1920.6746096891684\n", + "2019-01-15 19:53:38,438 : INFO : Loss (no outliers): 2968.485970694836\tLoss (with outliers): 2968.485970694836\n", + "2019-01-15 19:53:55,569 : INFO : Loss (no outliers): 2229.115117338747\tLoss (with outliers): 2229.115117338747\n", + "2019-01-15 19:54:12,738 : INFO : Loss (no outliers): 2844.7994703396785\tLoss (with outliers): 2844.7994703396785\n", + "2019-01-15 19:54:29,325 : INFO : Loss (no outliers): 2297.796858709306\tLoss (with outliers): 2297.796858709306\n", + "2019-01-15 19:54:48,296 : INFO : Loss (no outliers): 2395.5653842072984\tLoss (with outliers): 2395.5653842072984\n", + "2019-01-15 19:55:04,057 : INFO : Loss (no outliers): 2270.0621119980483\tLoss (with outliers): 2270.0621119980483\n", + "2019-01-15 19:55:19,113 : INFO : Loss (no outliers): 2078.203361673363\tLoss (with outliers): 2078.203361673363\n", + "2019-01-15 19:55:34,401 : INFO : Loss (no outliers): 2444.23534127694\tLoss (with outliers): 2444.23534127694\n", + "2019-01-15 19:55:50,178 : INFO : Loss (no outliers): 2085.387655386939\tLoss (with outliers): 2085.387655386939\n", + "2019-01-15 19:56:05,979 : INFO : Loss (no outliers): 1916.2297574816928\tLoss (with outliers): 1916.2297574816928\n", + "2019-01-15 19:56:22,742 : INFO : Loss (no outliers): 2004.4330028226395\tLoss (with outliers): 2004.4330028226395\n", + "2019-01-15 19:56:38,568 : INFO : Loss (no outliers): 2249.1530983767757\tLoss (with outliers): 2249.1530983767757\n", + "2019-01-15 19:56:58,569 : INFO : Loss (no outliers): 2061.4591017434504\tLoss (with outliers): 2061.4591017434504\n", + "2019-01-15 19:57:14,847 : INFO : Loss (no outliers): 4481.5077104404345\tLoss (with outliers): 4481.5077104404345\n", + "2019-01-15 19:57:31,034 : INFO : Loss (no outliers): 2015.3613528476214\tLoss (with outliers): 2015.3613528476214\n", + "2019-01-15 19:57:47,213 : INFO : Loss (no outliers): 2093.349337256775\tLoss (with outliers): 2093.349337256775\n", + "2019-01-15 19:58:03,245 : INFO : Loss (no outliers): 2095.740375030526\tLoss (with outliers): 2095.740375030526\n", + "2019-01-15 19:58:19,472 : INFO : Loss (no outliers): 2170.4657403319343\tLoss (with outliers): 2170.4657403319343\n", + "2019-01-15 19:58:37,661 : INFO : Loss (no outliers): 2027.0118155305347\tLoss (with outliers): 2027.0118155305347\n", + "2019-01-15 19:58:53,902 : INFO : Loss (no outliers): 2190.1967614175705\tLoss (with outliers): 2190.1967614175705\n", + "2019-01-15 19:59:09,531 : INFO : Loss (no outliers): 1963.9853017506318\tLoss (with outliers): 1963.9853017506318\n", + "2019-01-15 19:59:25,127 : INFO : Loss (no outliers): 2408.1625688732515\tLoss (with outliers): 2408.1625688732515\n", + "2019-01-15 19:59:40,194 : INFO : Loss (no outliers): 2175.3497990977057\tLoss (with outliers): 2175.3497990977057\n", + "2019-01-15 19:59:56,391 : INFO : Loss (no outliers): 1978.3659487931416\tLoss (with outliers): 1978.3659487931416\n", + "2019-01-15 20:00:11,442 : INFO : Loss (no outliers): 1926.2410623263413\tLoss (with outliers): 1926.2410623263413\n", + "2019-01-15 20:00:27,077 : INFO : Loss (no outliers): 2144.81532264611\tLoss (with outliers): 2144.81532264611\n", + "2019-01-15 20:00:42,227 : INFO : Loss (no outliers): 2256.0538427763504\tLoss (with outliers): 2256.0538427763504\n", + "2019-01-15 20:00:58,279 : INFO : Loss (no outliers): 2523.6626217457324\tLoss (with outliers): 2523.6626217457324\n", + "2019-01-15 20:01:13,805 : INFO : Loss (no outliers): 2284.934108882083\tLoss (with outliers): 2284.934108882083\n", + "2019-01-15 20:01:29,510 : INFO : Loss (no outliers): 2099.57856606908\tLoss (with outliers): 2099.57856606908\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 20:01:45,266 : INFO : Loss (no outliers): 2666.3962088879025\tLoss (with outliers): 2666.3962088879025\n", + "2019-01-15 20:02:00,497 : INFO : Loss (no outliers): 2165.137588891874\tLoss (with outliers): 2165.137588891874\n", + "2019-01-15 20:02:16,696 : INFO : Loss (no outliers): 1972.0358673389883\tLoss (with outliers): 1972.0358673389883\n", + "2019-01-15 20:02:32,239 : INFO : Loss (no outliers): 2152.4675346391805\tLoss (with outliers): 2152.4675346391805\n", + "2019-01-15 20:02:48,213 : INFO : Loss (no outliers): 2305.3854992392526\tLoss (with outliers): 2305.3854992392526\n", + "2019-01-15 20:03:03,684 : INFO : Loss (no outliers): 1976.8036563918954\tLoss (with outliers): 1976.8036563918954\n", + "2019-01-15 20:03:19,195 : INFO : Loss (no outliers): 4285.08225597681\tLoss (with outliers): 4285.08225597681\n", + "2019-01-15 20:03:34,742 : INFO : Loss (no outliers): 2572.933168490674\tLoss (with outliers): 2572.933168490674\n", + "2019-01-15 20:03:50,751 : INFO : Loss (no outliers): 3034.3577330312214\tLoss (with outliers): 3034.3577330312214\n", + "2019-01-15 20:04:06,486 : INFO : Loss (no outliers): 2218.2587897623275\tLoss (with outliers): 2218.2587897623275\n", + "2019-01-15 20:04:22,296 : INFO : Loss (no outliers): 2123.456322463456\tLoss (with outliers): 2123.456322463456\n", + "2019-01-15 20:04:37,788 : INFO : Loss (no outliers): 2051.773742131734\tLoss (with outliers): 2051.773742131734\n", + "2019-01-15 20:04:52,851 : INFO : Loss (no outliers): 2181.4833371533646\tLoss (with outliers): 2181.4833371533646\n", + "2019-01-15 20:05:08,368 : INFO : Loss (no outliers): 2002.8663302434986\tLoss (with outliers): 2002.8663302434986\n", + "2019-01-15 20:05:23,822 : INFO : Loss (no outliers): 2037.7302920629747\tLoss (with outliers): 2037.7302920629747\n", + "2019-01-15 20:05:38,695 : INFO : Loss (no outliers): 2052.1156933135944\tLoss (with outliers): 2052.1156933135944\n", + "2019-01-15 20:05:54,122 : INFO : Loss (no outliers): 2461.36130149438\tLoss (with outliers): 2461.36130149438\n", + "2019-01-15 20:06:09,611 : INFO : Loss (no outliers): 2155.3989955416323\tLoss (with outliers): 2155.3989955416323\n", + "2019-01-15 20:06:25,065 : INFO : Loss (no outliers): 1952.4147586222464\tLoss (with outliers): 1952.4147586222464\n", + "2019-01-15 20:06:40,847 : INFO : Loss (no outliers): 1885.8867914800614\tLoss (with outliers): 1885.8867914800614\n", + "2019-01-15 20:06:56,786 : INFO : Loss (no outliers): 2459.2929019818935\tLoss (with outliers): 2459.2929019818935\n", + "2019-01-15 20:07:12,747 : INFO : Loss (no outliers): 2316.705204536451\tLoss (with outliers): 2316.705204536451\n", + "2019-01-15 20:07:27,549 : INFO : Loss (no outliers): 3036.863634348683\tLoss (with outliers): 3036.863634348683\n", + "2019-01-15 20:07:42,961 : INFO : Loss (no outliers): 2455.151197682014\tLoss (with outliers): 2455.151197682014\n", + "2019-01-15 20:07:57,810 : INFO : Loss (no outliers): 2490.054132471113\tLoss (with outliers): 2490.054132471113\n", + "2019-01-15 20:08:12,728 : INFO : Loss (no outliers): 2336.4047244489407\tLoss (with outliers): 2336.4047244489407\n", + "2019-01-15 20:08:28,749 : INFO : Loss (no outliers): 2179.5989183109004\tLoss (with outliers): 2179.5989183109004\n", + "2019-01-15 20:08:44,108 : INFO : Loss (no outliers): 2461.706391962741\tLoss (with outliers): 2461.706391962741\n", + "2019-01-15 20:09:00,228 : INFO : Loss (no outliers): 2365.6353840460347\tLoss (with outliers): 2365.6353840460347\n", + "2019-01-15 20:09:15,583 : INFO : Loss (no outliers): 2343.5429149713927\tLoss (with outliers): 2343.5429149713927\n", + "2019-01-15 20:09:30,846 : INFO : Loss (no outliers): 1994.7834598806644\tLoss (with outliers): 1994.7834598806644\n", + "2019-01-15 20:09:45,323 : INFO : Loss (no outliers): 1985.2582510724305\tLoss (with outliers): 1985.2582510724305\n", + "2019-01-15 20:10:00,686 : INFO : Loss (no outliers): 2250.758590244882\tLoss (with outliers): 2250.758590244882\n", + "2019-01-15 20:10:16,107 : INFO : Loss (no outliers): 2209.1325050359874\tLoss (with outliers): 2209.1325050359874\n", + "2019-01-15 20:10:31,587 : INFO : Loss (no outliers): 2257.8356476256295\tLoss (with outliers): 2257.8356476256295\n", + "2019-01-15 20:10:47,609 : INFO : Loss (no outliers): 2112.307623329112\tLoss (with outliers): 2112.307623329112\n", + "2019-01-15 20:11:03,469 : INFO : Loss (no outliers): 1814.563697781184\tLoss (with outliers): 1814.563697781184\n", + "2019-01-15 20:11:19,052 : INFO : Loss (no outliers): 2068.9098468449147\tLoss (with outliers): 2068.9098468449147\n", + "2019-01-15 20:11:33,341 : INFO : Loss (no outliers): 2125.07783751409\tLoss (with outliers): 2125.07783751409\n", + "2019-01-15 20:11:49,368 : INFO : Loss (no outliers): 2439.391330828543\tLoss (with outliers): 2439.391330828543\n", + "2019-01-15 20:12:04,149 : INFO : Loss (no outliers): 1951.114276515775\tLoss (with outliers): 1951.114276515775\n", + "2019-01-15 20:12:20,207 : INFO : Loss (no outliers): 2267.916793351458\tLoss (with outliers): 2267.916793351458\n", + "2019-01-15 20:12:36,292 : INFO : Loss (no outliers): 2066.859352598067\tLoss (with outliers): 2066.859352598067\n", + "2019-01-15 20:12:51,563 : INFO : Loss (no outliers): 2098.3135748693153\tLoss (with outliers): 2098.3135748693153\n", + "2019-01-15 20:13:06,489 : INFO : Loss (no outliers): 2152.584134875688\tLoss (with outliers): 2152.584134875688\n", + "2019-01-15 20:13:22,074 : INFO : Loss (no outliers): 2296.7691231599874\tLoss (with outliers): 2296.7691231599874\n", + "2019-01-15 20:13:37,519 : INFO : Loss (no outliers): 2035.5700241344382\tLoss (with outliers): 2035.5700241344382\n", + "2019-01-15 20:13:52,476 : INFO : Loss (no outliers): 2033.672534465499\tLoss (with outliers): 2033.672534465499\n", + "2019-01-15 20:14:07,204 : INFO : Loss (no outliers): 2070.0586151735874\tLoss (with outliers): 2070.0586151735874\n", + "2019-01-15 20:14:20,839 : INFO : Loss (no outliers): 2036.8592767801051\tLoss (with outliers): 2036.8592767801051\n", + "2019-01-15 20:14:35,709 : INFO : Loss (no outliers): 2867.7428926616735\tLoss (with outliers): 2867.7428926616735\n", + "2019-01-15 20:14:50,583 : INFO : Loss (no outliers): 1978.547877519986\tLoss (with outliers): 1978.547877519986\n", + "2019-01-15 20:15:05,937 : INFO : Loss (no outliers): 2547.220123427753\tLoss (with outliers): 2547.220123427753\n", + "2019-01-15 20:15:20,664 : INFO : Loss (no outliers): 2751.7396088333926\tLoss (with outliers): 2751.7396088333926\n", + "2019-01-15 20:15:36,195 : INFO : Loss (no outliers): 2057.2845680338582\tLoss (with outliers): 2057.2845680338582\n", + "2019-01-15 20:15:52,237 : INFO : Loss (no outliers): 2387.500801468013\tLoss (with outliers): 2387.500801468013\n", + "2019-01-15 20:16:07,254 : INFO : Loss (no outliers): 1798.2039090334483\tLoss (with outliers): 1798.2039090334483\n", + "2019-01-15 20:16:21,313 : INFO : Loss (no outliers): 1939.7203479980851\tLoss (with outliers): 1939.7203479980851\n", + "2019-01-15 20:16:35,732 : INFO : Loss (no outliers): 2263.0302370227573\tLoss (with outliers): 2263.0302370227573\n", + "2019-01-15 20:16:51,669 : INFO : Loss (no outliers): 2812.8479816387676\tLoss (with outliers): 2812.8479816387676\n", + "2019-01-15 20:17:06,166 : INFO : Loss (no outliers): 2049.762990668461\tLoss (with outliers): 2049.762990668461\n", + "2019-01-15 20:17:22,082 : INFO : Loss (no outliers): 2192.4810430767907\tLoss (with outliers): 2192.4810430767907\n", + "2019-01-15 20:17:37,288 : INFO : Loss (no outliers): 1948.9968854033923\tLoss (with outliers): 1948.9968854033923\n", + "2019-01-15 20:17:52,463 : INFO : Loss (no outliers): 2304.3096592210754\tLoss (with outliers): 2304.3096592210754\n", + "2019-01-15 20:18:07,453 : INFO : Loss (no outliers): 1904.946144281785\tLoss (with outliers): 1904.946144281785\n", + "2019-01-15 20:18:23,184 : INFO : Loss (no outliers): 2077.8642527671304\tLoss (with outliers): 2077.8642527671304\n", + "2019-01-15 20:18:37,326 : INFO : Loss (no outliers): 2006.4553764078535\tLoss (with outliers): 2006.4553764078535\n", + "2019-01-15 20:18:50,838 : INFO : Loss (no outliers): 2148.9969618882965\tLoss (with outliers): 2148.9969618882965\n", + "2019-01-15 20:19:06,507 : INFO : Loss (no outliers): 2093.216862213798\tLoss (with outliers): 2093.216862213798\n", + "2019-01-15 20:19:21,671 : INFO : Loss (no outliers): 2081.394108651288\tLoss (with outliers): 2081.394108651288\n", + "2019-01-15 20:19:37,643 : INFO : Loss (no outliers): 2196.1838910086412\tLoss (with outliers): 2196.1838910086412\n", + "2019-01-15 20:19:53,089 : INFO : Loss (no outliers): 2398.6558489037293\tLoss (with outliers): 2398.6558489037293\n", + "2019-01-15 20:20:06,880 : INFO : Loss (no outliers): 1876.4374327554517\tLoss (with outliers): 1876.4374327554517\n", + "2019-01-15 20:20:21,285 : INFO : Loss (no outliers): 2335.697807093508\tLoss (with outliers): 2335.697807093508\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 20:20:36,418 : INFO : Loss (no outliers): 2218.6290864612797\tLoss (with outliers): 2218.6290864612797\n", + "2019-01-15 20:20:52,090 : INFO : Loss (no outliers): 2067.5063020513276\tLoss (with outliers): 2067.5063020513276\n", + "2019-01-15 20:21:07,207 : INFO : Loss (no outliers): 2147.2024532449054\tLoss (with outliers): 2147.2024532449054\n", + "2019-01-15 20:21:22,404 : INFO : Loss (no outliers): 2108.3236711395657\tLoss (with outliers): 2108.3236711395657\n", + "2019-01-15 20:21:37,427 : INFO : Loss (no outliers): 2203.6092122069194\tLoss (with outliers): 2203.6092122069194\n", + "2019-01-15 20:21:52,556 : INFO : Loss (no outliers): 2661.3869623246674\tLoss (with outliers): 2661.3869623246674\n", + "2019-01-15 20:22:07,120 : INFO : Loss (no outliers): 1830.1280505307882\tLoss (with outliers): 1830.1280505307882\n", + "2019-01-15 20:22:22,658 : INFO : Loss (no outliers): 2108.8037415375165\tLoss (with outliers): 2108.8037415375165\n", + "2019-01-15 20:22:38,870 : INFO : Loss (no outliers): 2162.9891805304687\tLoss (with outliers): 2162.9891805304687\n", + "2019-01-15 20:22:54,035 : INFO : Loss (no outliers): 2479.4613687161814\tLoss (with outliers): 2479.4613687161814\n", + "2019-01-15 20:23:08,728 : INFO : Loss (no outliers): 2209.922812401383\tLoss (with outliers): 2209.922812401383\n", + "2019-01-15 20:23:24,279 : INFO : Loss (no outliers): 1865.8067822040966\tLoss (with outliers): 1865.8067822040966\n", + "2019-01-15 20:23:39,375 : INFO : Loss (no outliers): 2155.168226208941\tLoss (with outliers): 2155.168226208941\n", + "2019-01-15 20:23:54,409 : INFO : Loss (no outliers): 2236.1601296608396\tLoss (with outliers): 2236.1601296608396\n", + "2019-01-15 20:24:08,386 : INFO : Loss (no outliers): 2662.2338060731036\tLoss (with outliers): 2662.2338060731036\n", + "2019-01-15 20:24:23,623 : INFO : Loss (no outliers): 2219.306463853555\tLoss (with outliers): 2219.306463853555\n", + "2019-01-15 20:24:38,839 : INFO : Loss (no outliers): 1923.6489925835724\tLoss (with outliers): 1923.6489925835724\n", + "2019-01-15 20:24:55,004 : INFO : Loss (no outliers): 2023.0377756708835\tLoss (with outliers): 2023.0377756708835\n", + "2019-01-15 20:25:10,330 : INFO : Loss (no outliers): 1992.9664608543167\tLoss (with outliers): 1992.9664608543167\n", + "2019-01-15 20:25:26,186 : INFO : Loss (no outliers): 2418.1076145977595\tLoss (with outliers): 2418.1076145977595\n", + "2019-01-15 20:25:40,944 : INFO : Loss (no outliers): 2033.5660170783033\tLoss (with outliers): 2033.5660170783033\n", + "2019-01-15 20:25:57,159 : INFO : Loss (no outliers): 2229.8465539334566\tLoss (with outliers): 2229.8465539334566\n", + "2019-01-15 20:26:12,378 : INFO : Loss (no outliers): 2948.245852669164\tLoss (with outliers): 2948.245852669164\n", + "2019-01-15 20:26:28,215 : INFO : Loss (no outliers): 2256.5781228194505\tLoss (with outliers): 2256.5781228194505\n", + "2019-01-15 20:26:42,728 : INFO : Loss (no outliers): 2690.477883749342\tLoss (with outliers): 2690.477883749342\n", + "2019-01-15 20:26:57,291 : INFO : Loss (no outliers): 2410.087418977127\tLoss (with outliers): 2410.087418977127\n", + "2019-01-15 20:27:11,975 : INFO : Loss (no outliers): 2203.65813250494\tLoss (with outliers): 2203.65813250494\n", + "2019-01-15 20:27:28,093 : INFO : Loss (no outliers): 2157.2818007155156\tLoss (with outliers): 2157.2818007155156\n", + "2019-01-15 20:27:43,310 : INFO : Loss (no outliers): 2150.1036522234763\tLoss (with outliers): 2150.1036522234763\n", + "2019-01-15 20:27:58,879 : INFO : Loss (no outliers): 2777.2329628772645\tLoss (with outliers): 2777.2329628772645\n", + "2019-01-15 20:28:15,150 : INFO : Loss (no outliers): 2224.9325521668043\tLoss (with outliers): 2224.9325521668043\n", + "2019-01-15 20:28:29,773 : INFO : Loss (no outliers): 1986.8886800713692\tLoss (with outliers): 1986.8886800713692\n", + "2019-01-15 20:28:44,116 : INFO : Loss (no outliers): 1813.356320784782\tLoss (with outliers): 1813.356320784782\n", + "2019-01-15 20:28:58,551 : INFO : Loss (no outliers): 2347.6006690184818\tLoss (with outliers): 2347.6006690184818\n", + "2019-01-15 20:29:13,638 : INFO : Loss (no outliers): 3072.49531246201\tLoss (with outliers): 3072.49531246201\n", + "2019-01-15 20:29:28,460 : INFO : Loss (no outliers): 2282.4662001870274\tLoss (with outliers): 2282.4662001870274\n", + "2019-01-15 20:29:43,470 : INFO : Loss (no outliers): 2027.3439410917824\tLoss (with outliers): 2027.3439410917824\n", + "2019-01-15 20:29:57,001 : INFO : Loss (no outliers): 2166.296306277143\tLoss (with outliers): 2166.296306277143\n", + "2019-01-15 20:30:12,957 : INFO : Loss (no outliers): 2075.275659704001\tLoss (with outliers): 2075.275659704001\n", + "2019-01-15 20:30:27,391 : INFO : Loss (no outliers): 2096.3886039644935\tLoss (with outliers): 2096.3886039644935\n", + "2019-01-15 20:30:42,498 : INFO : Loss (no outliers): 1920.9363430310136\tLoss (with outliers): 1920.9363430310136\n", + "2019-01-15 20:30:56,775 : INFO : Loss (no outliers): 2265.750740866037\tLoss (with outliers): 2265.750740866037\n", + "2019-01-15 20:31:10,755 : INFO : Loss (no outliers): 2283.066575832404\tLoss (with outliers): 2283.066575832404\n", + "2019-01-15 20:31:25,124 : INFO : Loss (no outliers): 2329.677807113983\tLoss (with outliers): 2329.677807113983\n", + "2019-01-15 20:31:40,131 : INFO : Loss (no outliers): 1856.07163677902\tLoss (with outliers): 1856.07163677902\n", + "2019-01-15 20:31:54,054 : INFO : Loss (no outliers): 2223.853816825839\tLoss (with outliers): 2223.853816825839\n", + "2019-01-15 20:32:07,515 : INFO : Loss (no outliers): 2047.0349348166026\tLoss (with outliers): 2047.0349348166026\n", + "2019-01-15 20:32:21,971 : INFO : Loss (no outliers): 2086.6505023542836\tLoss (with outliers): 2086.6505023542836\n", + "2019-01-15 20:32:37,440 : INFO : Loss (no outliers): 2307.9295543888566\tLoss (with outliers): 2307.9295543888566\n", + "2019-01-15 20:32:51,939 : INFO : Loss (no outliers): 2113.023701226936\tLoss (with outliers): 2113.023701226936\n", + "2019-01-15 20:33:06,866 : INFO : Loss (no outliers): 2383.1578108521408\tLoss (with outliers): 2383.1578108521408\n", + "2019-01-15 20:33:22,336 : INFO : Loss (no outliers): 2209.869238370659\tLoss (with outliers): 2209.869238370659\n", + "2019-01-15 20:33:37,370 : INFO : Loss (no outliers): 2995.9884874718828\tLoss (with outliers): 2995.9884874718828\n", + "2019-01-15 20:33:53,357 : INFO : Loss (no outliers): 2277.0694666905806\tLoss (with outliers): 2277.0694666905806\n", + "2019-01-15 20:34:06,688 : INFO : Loss (no outliers): 2372.397456096066\tLoss (with outliers): 2372.397456096066\n", + "2019-01-15 20:34:21,006 : INFO : Loss (no outliers): 2244.1391819876894\tLoss (with outliers): 2244.1391819876894\n", + "2019-01-15 20:34:36,386 : INFO : Loss (no outliers): 2265.3350048883867\tLoss (with outliers): 2265.3350048883867\n", + "2019-01-15 20:34:50,856 : INFO : Loss (no outliers): 2232.6292499617584\tLoss (with outliers): 2232.6292499617584\n", + "2019-01-15 20:35:05,861 : INFO : Loss (no outliers): 1954.7005716114727\tLoss (with outliers): 1954.7005716114727\n", + "2019-01-15 20:35:20,428 : INFO : Loss (no outliers): 2365.994610099451\tLoss (with outliers): 2365.994610099451\n", + "2019-01-15 20:35:36,003 : INFO : Loss (no outliers): 2014.8666398839368\tLoss (with outliers): 2014.8666398839368\n", + "2019-01-15 20:35:50,981 : INFO : Loss (no outliers): 2129.5829155757474\tLoss (with outliers): 2129.5829155757474\n", + "2019-01-15 20:36:04,882 : INFO : Loss (no outliers): 2599.477478658058\tLoss (with outliers): 2599.477478658058\n", + "2019-01-15 20:36:19,796 : INFO : Loss (no outliers): 1950.9384189453465\tLoss (with outliers): 1950.9384189453465\n", + "2019-01-15 20:36:34,222 : INFO : Loss (no outliers): 1912.3906993012026\tLoss (with outliers): 1912.3906993012026\n", + "2019-01-15 20:36:49,145 : INFO : Loss (no outliers): 1876.4119242408226\tLoss (with outliers): 1876.4119242408226\n", + "2019-01-15 20:37:02,012 : INFO : Loss (no outliers): 2194.146039559361\tLoss (with outliers): 2194.146039559361\n", + "2019-01-15 20:37:16,010 : INFO : Loss (no outliers): 2142.872259897956\tLoss (with outliers): 2142.872259897956\n", + "2019-01-15 20:37:29,859 : INFO : Loss (no outliers): 2335.16065803965\tLoss (with outliers): 2335.16065803965\n", + "2019-01-15 20:37:44,224 : INFO : Loss (no outliers): 2450.7102286205104\tLoss (with outliers): 2450.7102286205104\n", + "2019-01-15 20:37:58,876 : INFO : Loss (no outliers): 2193.610565482956\tLoss (with outliers): 2193.610565482956\n", + "2019-01-15 20:38:13,902 : INFO : Loss (no outliers): 2160.5832343665825\tLoss (with outliers): 2160.5832343665825\n", + "2019-01-15 20:38:27,956 : INFO : Loss (no outliers): 2370.318919459298\tLoss (with outliers): 2370.318919459298\n", + "2019-01-15 20:38:42,366 : INFO : Loss (no outliers): 2121.3190034300746\tLoss (with outliers): 2121.3190034300746\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 20:38:57,095 : INFO : Loss (no outliers): 3288.809547158024\tLoss (with outliers): 3288.809547158024\n", + "2019-01-15 20:39:11,926 : INFO : Loss (no outliers): 2176.222127214424\tLoss (with outliers): 2176.222127214424\n", + "2019-01-15 20:39:26,728 : INFO : Loss (no outliers): 2427.777087295175\tLoss (with outliers): 2427.777087295175\n", + "2019-01-15 20:39:42,147 : INFO : Loss (no outliers): 2077.3103752487814\tLoss (with outliers): 2077.3103752487814\n", + "2019-01-15 20:39:55,930 : INFO : Loss (no outliers): 2269.811128442968\tLoss (with outliers): 2269.811128442968\n", + "2019-01-15 20:40:09,148 : INFO : Loss (no outliers): 2026.9840475664098\tLoss (with outliers): 2026.9840475664098\n", + "2019-01-15 20:40:22,996 : INFO : Loss (no outliers): 1929.413824110674\tLoss (with outliers): 1929.413824110674\n", + "2019-01-15 20:40:37,383 : INFO : Loss (no outliers): 2092.8577121320673\tLoss (with outliers): 2092.8577121320673\n", + "2019-01-15 20:40:51,804 : INFO : Loss (no outliers): 1997.651881209576\tLoss (with outliers): 1997.651881209576\n", + "2019-01-15 20:41:04,551 : INFO : Loss (no outliers): 2118.796087459352\tLoss (with outliers): 2118.796087459352\n", + "2019-01-15 20:41:18,012 : INFO : Loss (no outliers): 1940.4340262424746\tLoss (with outliers): 1940.4340262424746\n", + "2019-01-15 20:41:32,414 : INFO : Loss (no outliers): 2228.7767317245234\tLoss (with outliers): 2228.7767317245234\n", + "2019-01-15 20:41:47,283 : INFO : Loss (no outliers): 2125.2035839964396\tLoss (with outliers): 2125.2035839964396\n", + "2019-01-15 20:42:01,988 : INFO : Loss (no outliers): 2048.1912085828053\tLoss (with outliers): 2048.1912085828053\n", + "2019-01-15 20:42:17,250 : INFO : Loss (no outliers): 2210.7356428557596\tLoss (with outliers): 2210.7356428557596\n", + "2019-01-15 20:42:31,618 : INFO : Loss (no outliers): 1937.508428202434\tLoss (with outliers): 1937.508428202434\n", + "2019-01-15 20:42:45,876 : INFO : Loss (no outliers): 2311.1126676352483\tLoss (with outliers): 2311.1126676352483\n", + "2019-01-15 20:42:59,553 : INFO : Loss (no outliers): 2222.1263359943605\tLoss (with outliers): 2222.1263359943605\n", + "2019-01-15 20:43:11,776 : INFO : Loss (no outliers): 2421.8579544845015\tLoss (with outliers): 2421.8579544845015\n", + "2019-01-15 20:43:25,430 : INFO : Loss (no outliers): 2511.4438944752555\tLoss (with outliers): 2511.4438944752555\n", + "2019-01-15 20:43:38,698 : INFO : Loss (no outliers): 2206.150254855201\tLoss (with outliers): 2206.150254855201\n", + "2019-01-15 20:43:52,974 : INFO : Loss (no outliers): 2003.0109362552587\tLoss (with outliers): 2003.0109362552587\n", + "2019-01-15 20:44:07,153 : INFO : Loss (no outliers): 2053.0991645173576\tLoss (with outliers): 2053.0991645173576\n", + "2019-01-15 20:44:20,718 : INFO : Loss (no outliers): 3089.4188610302836\tLoss (with outliers): 3089.4188610302836\n", + "2019-01-15 20:44:23,913 : INFO : Loss (no outliers): 1322.9664709183141\tLoss (with outliers): 1322.9664709183141\n", + "2019-01-15 20:44:23,928 : INFO : saving Nmf object under nmf.model, separately None\n", + "2019-01-15 20:44:24,625 : INFO : saved nmf.model\n" + ] + } + ], "source": [ "row = dict()\n", "row['model'] = 'nmf'\n", @@ -412,9 +783,130 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 20:44:24,872 : INFO : loading Nmf object from nmf.model\n", + "2019-01-15 20:44:25,150 : INFO : loading id2word recursively from nmf.model.id2word.* with mmap=None\n", + "2019-01-15 20:44:25,151 : INFO : loaded nmf.model\n", + "2019-01-15 20:44:54,148 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-15 20:44:54,336 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + ] + }, + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.075*\"parti\" + 0.071*\"elect\" + 0.042*\"democrat\" + 0.029*\"republican\" + 0.022*\"vote\" + 0.018*\"conserv\" + 0.017*\"liber\" + 0.014*\"candid\" + 0.013*\"seat\" + 0.013*\"labour\"'),\n", + " (1,\n", + " '0.039*\"book\" + 0.038*\"centuri\" + 0.032*\"histori\" + 0.032*\"languag\" + 0.032*\"publish\" + 0.024*\"english\" + 0.023*\"world\" + 0.022*\"law\" + 0.022*\"govern\" + 0.021*\"nation\"'),\n", + " (2,\n", + " '0.050*\"war\" + 0.036*\"forc\" + 0.026*\"armi\" + 0.023*\"battl\" + 0.021*\"attack\" + 0.019*\"militari\" + 0.018*\"german\" + 0.016*\"british\" + 0.015*\"command\" + 0.014*\"kill\"'),\n", + " (3,\n", + " '0.119*\"race\" + 0.106*\"car\" + 0.073*\"engin\" + 0.035*\"model\" + 0.030*\"driver\" + 0.029*\"vehicl\" + 0.029*\"ford\" + 0.028*\"lap\" + 0.023*\"electr\" + 0.020*\"power\"'),\n", + " (4,\n", + " '0.102*\"leagu\" + 0.092*\"club\" + 0.049*\"footbal\" + 0.047*\"cup\" + 0.029*\"plai\" + 0.028*\"season\" + 0.028*\"divis\" + 0.028*\"goal\" + 0.022*\"team\" + 0.021*\"unit\"'),\n", + " (5,\n", + " '0.055*\"award\" + 0.041*\"best\" + 0.008*\"nomin\" + 0.008*\"year\" + 0.006*\"actress\" + 0.006*\"actor\" + 0.005*\"perform\" + 0.005*\"artist\" + 0.005*\"won\" + 0.005*\"outstand\"'),\n", + " (6,\n", + " '0.115*\"citi\" + 0.014*\"airport\" + 0.013*\"area\" + 0.011*\"popul\" + 0.010*\"san\" + 0.009*\"region\" + 0.008*\"center\" + 0.007*\"municip\" + 0.007*\"intern\" + 0.007*\"ukrainian\"'),\n", + " (7,\n", + " '0.316*\"act\" + 0.046*\"amend\" + 0.020*\"order\" + 0.018*\"ireland\" + 0.016*\"law\" + 0.015*\"regul\" + 0.013*\"court\" + 0.011*\"scotland\" + 0.011*\"road\" + 0.009*\"public\"'),\n", + " (8,\n", + " '0.102*\"align\" + 0.084*\"left\" + 0.022*\"right\" + 0.012*\"text\" + 0.011*\"style\" + 0.007*\"center\" + 0.004*\"bar\" + 0.003*\"till\" + 0.003*\"bgcolor\" + 0.003*\"color\"'),\n", + " (9,\n", + " '0.092*\"team\" + 0.027*\"race\" + 0.025*\"ret\" + 0.014*\"championship\" + 0.007*\"nation\" + 0.006*\"time\" + 0.006*\"sport\" + 0.005*\"stage\" + 0.005*\"coach\" + 0.005*\"finish\"'),\n", + " (10,\n", + " '0.135*\"compani\" + 0.089*\"ship\" + 0.035*\"product\" + 0.028*\"oper\" + 0.024*\"navi\" + 0.022*\"corpor\" + 0.021*\"oil\" + 0.021*\"launch\" + 0.021*\"bank\" + 0.021*\"built\"'),\n", + " (11,\n", + " '0.053*\"new\" + 0.019*\"york\" + 0.004*\"zealand\" + 0.003*\"jersei\" + 0.003*\"american\" + 0.002*\"time\" + 0.002*\"australia\" + 0.002*\"radio\" + 0.002*\"press\" + 0.002*\"washington\"'),\n", + " (12,\n", + " '0.036*\"world\" + 0.034*\"championship\" + 0.032*\"final\" + 0.029*\"match\" + 0.026*\"win\" + 0.026*\"round\" + 0.019*\"open\" + 0.018*\"won\" + 0.015*\"defeat\" + 0.015*\"cup\"'),\n", + " (13,\n", + " '0.019*\"album\" + 0.017*\"record\" + 0.014*\"band\" + 0.008*\"releas\" + 0.005*\"tour\" + 0.005*\"guitar\" + 0.005*\"vocal\" + 0.004*\"rock\" + 0.004*\"track\" + 0.004*\"music\"'),\n", + " (14,\n", + " '0.100*\"church\" + 0.017*\"cathol\" + 0.014*\"christian\" + 0.012*\"centuri\" + 0.012*\"saint\" + 0.011*\"bishop\" + 0.011*\"built\" + 0.009*\"list\" + 0.009*\"build\" + 0.008*\"roman\"'),\n", + " (15,\n", + " '0.088*\"presid\" + 0.072*\"minist\" + 0.046*\"prime\" + 0.015*\"govern\" + 0.014*\"gener\" + 0.011*\"met\" + 0.011*\"governor\" + 0.010*\"foreign\" + 0.010*\"visit\" + 0.009*\"council\"'),\n", + " (16,\n", + " '0.182*\"speci\" + 0.112*\"famili\" + 0.101*\"nov\" + 0.092*\"valid\" + 0.066*\"genu\" + 0.045*\"format\" + 0.040*\"member\" + 0.037*\"gen\" + 0.036*\"bird\" + 0.034*\"type\"'),\n", + " (17,\n", + " '0.029*\"season\" + 0.013*\"yard\" + 0.013*\"game\" + 0.011*\"plai\" + 0.008*\"team\" + 0.007*\"score\" + 0.007*\"win\" + 0.007*\"record\" + 0.006*\"run\" + 0.006*\"coach\"'),\n", + " (18,\n", + " '0.214*\"counti\" + 0.064*\"township\" + 0.017*\"area\" + 0.016*\"statist\" + 0.007*\"ohio\" + 0.006*\"metropolitan\" + 0.006*\"combin\" + 0.005*\"pennsylvania\" + 0.005*\"texa\" + 0.005*\"washington\"'),\n", + " (19,\n", + " '0.017*\"area\" + 0.016*\"river\" + 0.015*\"water\" + 0.006*\"larg\" + 0.006*\"region\" + 0.006*\"lake\" + 0.006*\"power\" + 0.006*\"high\" + 0.005*\"bar\" + 0.005*\"form\"'),\n", + " (20,\n", + " '0.031*\"us\" + 0.025*\"gener\" + 0.024*\"model\" + 0.022*\"data\" + 0.021*\"design\" + 0.020*\"time\" + 0.019*\"function\" + 0.019*\"number\" + 0.018*\"process\" + 0.017*\"exampl\"'),\n", + " (21,\n", + " '0.202*\"order\" + 0.098*\"group\" + 0.098*\"regul\" + 0.076*\"amend\" + 0.041*\"road\" + 0.034*\"traffic\" + 0.033*\"temporari\" + 0.032*\"prohibit\" + 0.027*\"trunk\" + 0.021*\"junction\"'),\n", + " (22,\n", + " '0.096*\"film\" + 0.010*\"product\" + 0.010*\"director\" + 0.010*\"festiv\" + 0.009*\"star\" + 0.009*\"produc\" + 0.009*\"movi\" + 0.008*\"direct\" + 0.007*\"releas\" + 0.007*\"actor\"'),\n", + " (23,\n", + " '0.163*\"music\" + 0.046*\"viola\" + 0.045*\"radio\" + 0.042*\"piano\" + 0.029*\"perform\" + 0.028*\"station\" + 0.027*\"orchestra\" + 0.026*\"compos\" + 0.025*\"song\" + 0.015*\"rock\"'),\n", + " (24,\n", + " '0.052*\"mount\" + 0.051*\"lemmon\" + 0.051*\"peak\" + 0.051*\"kitt\" + 0.051*\"spacewatch\" + 0.026*\"survei\" + 0.015*\"octob\" + 0.012*\"septemb\" + 0.009*\"css\" + 0.009*\"catalina\"'),\n", + " (25,\n", + " '0.075*\"air\" + 0.035*\"forc\" + 0.030*\"squadron\" + 0.029*\"aircraft\" + 0.028*\"oper\" + 0.023*\"unit\" + 0.018*\"flight\" + 0.017*\"airport\" + 0.017*\"wing\" + 0.017*\"base\"'),\n", + " (26,\n", + " '0.105*\"hous\" + 0.038*\"term\" + 0.020*\"march\" + 0.019*\"build\" + 0.019*\"member\" + 0.017*\"serv\" + 0.014*\"congress\" + 0.014*\"hall\" + 0.012*\"januari\" + 0.010*\"window\"'),\n", + " (27,\n", + " '0.129*\"district\" + 0.019*\"pennsylvania\" + 0.016*\"grade\" + 0.012*\"fund\" + 0.012*\"educ\" + 0.012*\"basic\" + 0.011*\"level\" + 0.010*\"oblast\" + 0.010*\"rural\" + 0.009*\"tax\"'),\n", + " (28,\n", + " '0.042*\"year\" + 0.012*\"dai\" + 0.007*\"time\" + 0.005*\"ag\" + 0.004*\"month\" + 0.003*\"includ\" + 0.003*\"follow\" + 0.003*\"later\" + 0.003*\"old\" + 0.003*\"student\"'),\n", + " (29,\n", + " '0.113*\"station\" + 0.109*\"line\" + 0.076*\"road\" + 0.072*\"railwai\" + 0.048*\"rout\" + 0.035*\"oper\" + 0.034*\"train\" + 0.023*\"street\" + 0.020*\"cross\" + 0.020*\"railroad\"'),\n", + " (30,\n", + " '0.036*\"park\" + 0.029*\"town\" + 0.025*\"north\" + 0.020*\"south\" + 0.018*\"west\" + 0.017*\"east\" + 0.017*\"street\" + 0.015*\"nation\" + 0.014*\"build\" + 0.013*\"river\"'),\n", + " (31,\n", + " '0.066*\"women\" + 0.044*\"men\" + 0.030*\"nation\" + 0.024*\"right\" + 0.014*\"athlet\" + 0.013*\"intern\" + 0.013*\"rank\" + 0.013*\"countri\" + 0.012*\"advanc\" + 0.011*\"event\"'),\n", + " (32,\n", + " '0.127*\"linear\" + 0.126*\"socorro\" + 0.029*\"septemb\" + 0.026*\"neat\" + 0.023*\"palomar\" + 0.021*\"octob\" + 0.016*\"kitt\" + 0.016*\"peak\" + 0.015*\"spacewatch\" + 0.015*\"anderson\"'),\n", + " (33,\n", + " '0.152*\"univers\" + 0.055*\"colleg\" + 0.019*\"institut\" + 0.018*\"student\" + 0.018*\"scienc\" + 0.015*\"professor\" + 0.012*\"research\" + 0.011*\"campu\" + 0.011*\"educ\" + 0.011*\"technolog\"'),\n", + " (34,\n", + " '0.072*\"state\" + 0.032*\"unit\" + 0.005*\"court\" + 0.005*\"law\" + 0.004*\"feder\" + 0.004*\"american\" + 0.003*\"nation\" + 0.003*\"govern\" + 0.003*\"kingdom\" + 0.003*\"senat\"'),\n", + " (35,\n", + " '0.074*\"game\" + 0.017*\"player\" + 0.007*\"plai\" + 0.006*\"releas\" + 0.005*\"develop\" + 0.005*\"video\" + 0.005*\"charact\" + 0.004*\"playstat\" + 0.004*\"version\" + 0.004*\"world\"'),\n", + " (36,\n", + " '0.141*\"south\" + 0.098*\"american\" + 0.081*\"india\" + 0.059*\"commun\" + 0.053*\"west\" + 0.053*\"director\" + 0.053*\"africa\" + 0.049*\"usa\" + 0.049*\"indian\" + 0.041*\"servic\"'),\n", + " (37,\n", + " '0.111*\"servic\" + 0.025*\"commun\" + 0.021*\"offic\" + 0.012*\"polic\" + 0.011*\"educ\" + 0.011*\"public\" + 0.010*\"chief\" + 0.009*\"late\" + 0.009*\"manag\" + 0.008*\"mr\"'),\n", + " (38,\n", + " '0.112*\"royal\" + 0.085*\"john\" + 0.083*\"william\" + 0.054*\"lieuten\" + 0.044*\"georg\" + 0.041*\"offic\" + 0.041*\"jame\" + 0.038*\"sergeant\" + 0.037*\"major\" + 0.035*\"charl\"'),\n", + " (39,\n", + " '0.051*\"song\" + 0.043*\"releas\" + 0.042*\"singl\" + 0.027*\"chart\" + 0.025*\"album\" + 0.017*\"number\" + 0.014*\"video\" + 0.013*\"version\" + 0.012*\"love\" + 0.011*\"featur\"'),\n", + " (40,\n", + " '0.031*\"time\" + 0.028*\"later\" + 0.026*\"appear\" + 0.025*\"man\" + 0.024*\"kill\" + 0.020*\"charact\" + 0.019*\"work\" + 0.018*\"father\" + 0.018*\"death\" + 0.018*\"famili\"'),\n", + " (41,\n", + " '0.126*\"seri\" + 0.064*\"episod\" + 0.026*\"season\" + 0.021*\"televis\" + 0.015*\"comic\" + 0.013*\"charact\" + 0.012*\"dvd\" + 0.012*\"anim\" + 0.012*\"star\" + 0.011*\"appear\"'),\n", + " (42,\n", + " '0.143*\"born\" + 0.073*\"american\" + 0.027*\"footbal\" + 0.024*\"player\" + 0.024*\"william\" + 0.023*\"singer\" + 0.019*\"actor\" + 0.017*\"politician\" + 0.015*\"actress\" + 0.013*\"english\"'),\n", + " (43,\n", + " '0.044*\"march\" + 0.042*\"septemb\" + 0.036*\"octob\" + 0.033*\"januari\" + 0.032*\"april\" + 0.031*\"august\" + 0.031*\"juli\" + 0.029*\"novemb\" + 0.029*\"june\" + 0.028*\"decemb\"'),\n", + " (44,\n", + " '0.149*\"island\" + 0.013*\"south\" + 0.013*\"australia\" + 0.009*\"sea\" + 0.008*\"north\" + 0.008*\"bai\" + 0.008*\"western\" + 0.008*\"airport\" + 0.007*\"coast\" + 0.006*\"pacif\"'),\n", + " (45,\n", + " '0.028*\"studi\" + 0.026*\"research\" + 0.023*\"health\" + 0.019*\"human\" + 0.019*\"term\" + 0.019*\"develop\" + 0.018*\"includ\" + 0.018*\"peopl\" + 0.017*\"report\" + 0.017*\"cell\"'),\n", + " (46,\n", + " '0.112*\"school\" + 0.028*\"high\" + 0.016*\"student\" + 0.012*\"educ\" + 0.009*\"grade\" + 0.008*\"primari\" + 0.007*\"public\" + 0.006*\"colleg\" + 0.006*\"elementari\" + 0.006*\"pennsylvania\"'),\n", + " (47,\n", + " '0.137*\"royal\" + 0.121*\"capt\" + 0.103*\"armi\" + 0.090*\"maj\" + 0.089*\"corp\" + 0.075*\"col\" + 0.074*\"temp\" + 0.048*\"servic\" + 0.040*\"engin\" + 0.033*\"reg\"'),\n", + " (48,\n", + " '0.183*\"art\" + 0.117*\"museum\" + 0.071*\"paint\" + 0.062*\"work\" + 0.046*\"artist\" + 0.043*\"galleri\" + 0.040*\"exhibit\" + 0.034*\"collect\" + 0.027*\"histori\" + 0.022*\"jpg\"'),\n", + " (49,\n", + " '0.068*\"regiment\" + 0.062*\"divis\" + 0.049*\"battalion\" + 0.045*\"infantri\" + 0.036*\"brigad\" + 0.024*\"armi\" + 0.023*\"artilleri\" + 0.019*\"compani\" + 0.018*\"gener\" + 0.018*\"colonel\"')]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "nmf = Nmf.load('nmf.model')\n", "row.update(get_tm_metrics(nmf, test_corpus))\n", @@ -433,11 +925,286 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 20:54:05,363 : INFO : Loss (no outliers): 2179.9524465227146\tLoss (with outliers): 2102.354108449905\n", + "2019-01-15 20:57:12,821 : INFO : Loss (no outliers): 2268.3200929871823\tLoss (with outliers): 2110.928651253909\n", + "2019-01-15 20:59:52,789 : INFO : Loss (no outliers): 2085.180592763644\tLoss (with outliers): 2041.9026850333144\n", + "2019-01-15 21:02:30,113 : INFO : Loss (no outliers): 2425.552273660531\tLoss (with outliers): 2299.4821139504706\n", + "2019-01-15 21:05:12,256 : INFO : Loss (no outliers): 6084.043369634124\tLoss (with outliers): 4478.896745443016\n", + "2019-01-15 21:07:48,126 : INFO : Loss (no outliers): 1973.2165098776484\tLoss (with outliers): 1962.300562304653\n", + "2019-01-15 21:10:15,332 : INFO : Loss (no outliers): 2887.7707165814063\tLoss (with outliers): 2253.0207462068242\n", + "2019-01-15 21:12:26,921 : INFO : Loss (no outliers): 1968.718319794589\tLoss (with outliers): 1958.061798839886\n", + "2019-01-15 21:14:36,474 : INFO : Loss (no outliers): 2194.9202571270434\tLoss (with outliers): 2068.932739723485\n", + "2019-01-15 21:16:47,847 : INFO : Loss (no outliers): 2415.127845138794\tLoss (with outliers): 2074.316209581205\n", + "2019-01-15 21:18:56,413 : INFO : Loss (no outliers): 2257.0844608023053\tLoss (with outliers): 2060.5719235627234\n", + "2019-01-15 21:21:05,191 : INFO : Loss (no outliers): 2084.6706357231747\tLoss (with outliers): 2010.0949638061447\n", + "2019-01-15 21:23:12,672 : INFO : Loss (no outliers): 1902.8630275714875\tLoss (with outliers): 1890.494518456072\n", + "2019-01-15 21:25:15,142 : INFO : Loss (no outliers): 1998.7615484999944\tLoss (with outliers): 1921.6172475248275\n", + "2019-01-15 21:27:14,960 : INFO : Loss (no outliers): 1961.3697076503272\tLoss (with outliers): 1940.0928518678604\n", + "2019-01-15 21:29:13,432 : INFO : Loss (no outliers): 1931.9322377546441\tLoss (with outliers): 1867.4093361871219\n", + "2019-01-15 21:31:15,075 : INFO : Loss (no outliers): 1939.1672202329862\tLoss (with outliers): 1909.9725464663768\n", + "2019-01-15 21:33:16,845 : INFO : Loss (no outliers): 2519.286448638766\tLoss (with outliers): 2233.0886003129567\n", + "2019-01-15 21:35:17,028 : INFO : Loss (no outliers): 2414.8201830134103\tLoss (with outliers): 2153.8557217276802\n", + "2019-01-15 21:37:17,201 : INFO : Loss (no outliers): 2045.8709908690112\tLoss (with outliers): 1909.2981607172303\n", + "2019-01-15 21:39:18,762 : INFO : Loss (no outliers): 2122.8839691590474\tLoss (with outliers): 2102.3883739429994\n", + "2019-01-15 21:41:18,660 : INFO : Loss (no outliers): 2138.126797966693\tLoss (with outliers): 2058.806925665995\n", + "2019-01-15 21:43:17,518 : INFO : Loss (no outliers): 1997.5080344764633\tLoss (with outliers): 1944.4887747431048\n", + "2019-01-15 21:45:12,371 : INFO : Loss (no outliers): 2095.7334155043977\tLoss (with outliers): 2049.379734576901\n", + "2019-01-15 21:47:04,010 : INFO : Loss (no outliers): 2149.6600322008603\tLoss (with outliers): 2073.7386388708333\n", + "2019-01-15 21:49:01,126 : INFO : Loss (no outliers): 2470.139566277072\tLoss (with outliers): 2260.6092366698426\n", + "2019-01-15 21:50:56,900 : INFO : Loss (no outliers): 1927.8449170405847\tLoss (with outliers): 1897.9393713551628\n", + "2019-01-15 21:52:50,504 : INFO : Loss (no outliers): 2608.8692122260272\tLoss (with outliers): 2304.1021028876203\n", + "2019-01-15 21:54:41,495 : INFO : Loss (no outliers): 2092.4300776662612\tLoss (with outliers): 1999.6409920657431\n", + "2019-01-15 21:56:33,360 : INFO : Loss (no outliers): 2646.201870920937\tLoss (with outliers): 2311.803149369392\n", + "2019-01-15 21:58:29,204 : INFO : Loss (no outliers): 2061.9355152633475\tLoss (with outliers): 1929.920614503226\n", + "2019-01-15 22:00:20,400 : INFO : Loss (no outliers): 3988.0537788649362\tLoss (with outliers): 2787.5412041605387\n", + "2019-01-15 22:02:13,907 : INFO : Loss (no outliers): 2159.924324983838\tLoss (with outliers): 2000.2754354054916\n", + "2019-01-15 22:04:08,926 : INFO : Loss (no outliers): 2404.592015280603\tLoss (with outliers): 2192.2681312138443\n", + "2019-01-15 22:06:01,249 : INFO : Loss (no outliers): 1950.6610892531653\tLoss (with outliers): 1907.5694416034921\n", + "2019-01-15 22:07:49,572 : INFO : Loss (no outliers): 2204.276842879244\tLoss (with outliers): 1947.79276179934\n", + "2019-01-15 22:09:46,386 : INFO : Loss (no outliers): 2405.6839161614757\tLoss (with outliers): 2132.1869341726183\n", + "2019-01-15 22:11:37,418 : INFO : Loss (no outliers): 2290.5177911800392\tLoss (with outliers): 2165.9260088647625\n", + "2019-01-15 22:13:28,123 : INFO : Loss (no outliers): 2087.0729955533006\tLoss (with outliers): 1962.1441973385922\n", + "2019-01-15 22:15:19,464 : INFO : Loss (no outliers): 2326.2709210915064\tLoss (with outliers): 2119.1028169383026\n", + "2019-01-15 22:17:11,378 : INFO : Loss (no outliers): 1987.025167789374\tLoss (with outliers): 1890.6673160058203\n", + "2019-01-15 22:19:02,981 : INFO : Loss (no outliers): 2051.963478257352\tLoss (with outliers): 1909.3108001359658\n", + "2019-01-15 22:20:57,100 : INFO : Loss (no outliers): 2017.241569576191\tLoss (with outliers): 1978.6116779269723\n", + "2019-01-15 22:22:46,270 : INFO : Loss (no outliers): 1910.6372517422606\tLoss (with outliers): 1894.112980581178\n", + "2019-01-15 22:24:35,489 : INFO : Loss (no outliers): 3088.1290116976797\tLoss (with outliers): 2425.5056588271373\n", + "2019-01-15 22:26:27,342 : INFO : Loss (no outliers): 2210.2498032279714\tLoss (with outliers): 2133.118813907129\n", + "2019-01-15 22:28:15,050 : INFO : Loss (no outliers): 2837.427134377107\tLoss (with outliers): 2298.6046210757363\n", + "2019-01-15 22:30:05,363 : INFO : Loss (no outliers): 2314.3169647900477\tLoss (with outliers): 2083.41850817411\n", + "2019-01-15 22:31:56,844 : INFO : Loss (no outliers): 2376.24008782355\tLoss (with outliers): 2290.1383160246673\n", + "2019-01-15 22:33:46,595 : INFO : Loss (no outliers): 2244.32931408162\tLoss (with outliers): 2225.8994886968853\n", + "2019-01-15 22:35:39,893 : INFO : Loss (no outliers): 2069.7579152028893\tLoss (with outliers): 2011.8345152150891\n", + "2019-01-15 22:37:30,547 : INFO : Loss (no outliers): 2449.7462514582267\tLoss (with outliers): 2203.583885476976\n", + "2019-01-15 22:39:12,815 : INFO : Loss (no outliers): 2076.004878884584\tLoss (with outliers): 2020.1863263907983\n", + "2019-01-15 22:41:00,110 : INFO : Loss (no outliers): 1907.4739742892227\tLoss (with outliers): 1849.7155030895956\n", + "2019-01-15 22:42:44,497 : INFO : Loss (no outliers): 1997.0010750210204\tLoss (with outliers): 1949.3980047817279\n", + "2019-01-15 22:44:31,884 : INFO : Loss (no outliers): 2231.2668122160576\tLoss (with outliers): 2013.2590351021133\n", + "2019-01-15 22:46:21,524 : INFO : Loss (no outliers): 2047.802123841274\tLoss (with outliers): 1993.0855797990812\n", + "2019-01-15 22:48:08,591 : INFO : Loss (no outliers): 4512.653445133931\tLoss (with outliers): 3316.2992105314493\n", + "2019-01-15 22:50:00,348 : INFO : Loss (no outliers): 2000.4981020198509\tLoss (with outliers): 1927.9984182372727\n", + "2019-01-15 22:51:44,668 : INFO : Loss (no outliers): 2083.065907476992\tLoss (with outliers): 1996.6958618321803\n", + "2019-01-15 22:53:33,967 : INFO : Loss (no outliers): 2079.950827063429\tLoss (with outliers): 2015.5849834039236\n", + "2019-01-15 22:55:20,163 : INFO : Loss (no outliers): 2171.618370331101\tLoss (with outliers): 2115.3315119124222\n", + "2019-01-15 22:57:04,070 : INFO : Loss (no outliers): 2023.1451700949387\tLoss (with outliers): 1977.539938148705\n", + "2019-01-15 22:58:48,873 : INFO : Loss (no outliers): 2181.2552613153266\tLoss (with outliers): 2133.391444963182\n", + "2019-01-15 23:00:34,706 : INFO : Loss (no outliers): 1956.658218278371\tLoss (with outliers): 1941.7266125473318\n", + "2019-01-15 23:02:21,701 : INFO : Loss (no outliers): 2406.394155853789\tLoss (with outliers): 2033.5730846367358\n", + "2019-01-15 23:04:06,855 : INFO : Loss (no outliers): 2165.6669305396026\tLoss (with outliers): 2093.7371944475067\n", + "2019-01-15 23:05:54,267 : INFO : Loss (no outliers): 1964.9129956645077\tLoss (with outliers): 1941.4706023380033\n", + "2019-01-15 23:07:35,495 : INFO : Loss (no outliers): 1910.8315535143518\tLoss (with outliers): 1901.4073863518486\n", + "2019-01-15 23:09:20,838 : INFO : Loss (no outliers): 2129.667556398216\tLoss (with outliers): 2011.914949248791\n", + "2019-01-15 23:11:05,876 : INFO : Loss (no outliers): 2250.720052872983\tLoss (with outliers): 2141.4618031358964\n", + "2019-01-15 23:12:53,093 : INFO : Loss (no outliers): 2510.282393395277\tLoss (with outliers): 2369.992514846505\n", + "2019-01-15 23:14:39,010 : INFO : Loss (no outliers): 2271.358575035864\tLoss (with outliers): 2092.840589065305\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-15 23:16:26,633 : INFO : Loss (no outliers): 2101.0331621161545\tLoss (with outliers): 2009.8926551115326\n", + "2019-01-15 23:18:13,670 : INFO : Loss (no outliers): 2668.4500117317184\tLoss (with outliers): 2168.1532193760695\n", + "2019-01-15 23:20:04,996 : INFO : Loss (no outliers): 2161.629736053655\tLoss (with outliers): 1993.2548324506695\n", + "2019-01-15 23:21:52,371 : INFO : Loss (no outliers): 1961.5821979654045\tLoss (with outliers): 1830.5366801526282\n", + "2019-01-15 23:23:40,125 : INFO : Loss (no outliers): 2146.582950878536\tLoss (with outliers): 2084.3624004694666\n", + "2019-01-15 23:25:24,220 : INFO : Loss (no outliers): 2296.735495300956\tLoss (with outliers): 2070.1072585469383\n", + "2019-01-15 23:27:08,597 : INFO : Loss (no outliers): 1962.4322067774845\tLoss (with outliers): 1912.7698208747227\n", + "2019-01-15 23:28:50,503 : INFO : Loss (no outliers): 4282.5845233371065\tLoss (with outliers): 3057.3523936516376\n", + "2019-01-15 23:30:33,627 : INFO : Loss (no outliers): 2725.090510533868\tLoss (with outliers): 2233.8606185902167\n", + "2019-01-15 23:32:15,737 : INFO : Loss (no outliers): 3107.108221904729\tLoss (with outliers): 2478.2236194506636\n", + "2019-01-15 23:34:00,980 : INFO : Loss (no outliers): 2206.6752423797934\tLoss (with outliers): 2061.58541095559\n", + "2019-01-15 23:35:48,921 : INFO : Loss (no outliers): 2118.503883791465\tLoss (with outliers): 1969.6928940332705\n", + "2019-01-15 23:37:36,481 : INFO : Loss (no outliers): 2040.1357254132884\tLoss (with outliers): 1981.1062633522192\n", + "2019-01-15 23:39:21,572 : INFO : Loss (no outliers): 2191.7494610273156\tLoss (with outliers): 2109.2082139892436\n", + "2019-01-15 23:41:07,846 : INFO : Loss (no outliers): 1977.4646414595525\tLoss (with outliers): 1930.1858437590597\n", + "2019-01-15 23:42:51,359 : INFO : Loss (no outliers): 2031.0449028768521\tLoss (with outliers): 1966.2166562143834\n", + "2019-01-15 23:44:35,928 : INFO : Loss (no outliers): 2061.2062795287925\tLoss (with outliers): 2010.846180538925\n", + "2019-01-15 23:46:19,792 : INFO : Loss (no outliers): 2462.531513598999\tLoss (with outliers): 2066.234034020788\n", + "2019-01-15 23:48:01,566 : INFO : Loss (no outliers): 2161.512340473268\tLoss (with outliers): 2113.649708218964\n", + "2019-01-15 23:49:46,550 : INFO : Loss (no outliers): 1951.3731989316366\tLoss (with outliers): 1908.3895118118899\n", + "2019-01-15 23:51:33,660 : INFO : Loss (no outliers): 1879.594947599165\tLoss (with outliers): 1867.0076569474822\n", + "2019-01-15 23:53:15,770 : INFO : Loss (no outliers): 2450.4924983915894\tLoss (with outliers): 2300.432379078362\n", + "2019-01-15 23:54:58,597 : INFO : Loss (no outliers): 2367.818472644495\tLoss (with outliers): 2052.788972483709\n", + "2019-01-15 23:56:40,279 : INFO : Loss (no outliers): 3035.2374806481885\tLoss (with outliers): 2401.877411873179\n", + "2019-01-15 23:58:21,760 : INFO : Loss (no outliers): 2447.5977382584624\tLoss (with outliers): 2039.318854388246\n", + "2019-01-16 00:00:06,365 : INFO : Loss (no outliers): 2482.398097269037\tLoss (with outliers): 2286.911016080207\n", + "2019-01-16 00:01:50,361 : INFO : Loss (no outliers): 2341.963394655978\tLoss (with outliers): 1977.5807660293253\n", + "2019-01-16 00:03:35,190 : INFO : Loss (no outliers): 2163.257582888606\tLoss (with outliers): 2009.2534695876268\n", + "2019-01-16 00:05:16,612 : INFO : Loss (no outliers): 2474.143096071397\tLoss (with outliers): 2258.6005759572868\n", + "2019-01-16 00:07:02,121 : INFO : Loss (no outliers): 2352.0197682275516\tLoss (with outliers): 2225.288105614732\n", + "2019-01-16 00:08:48,341 : INFO : Loss (no outliers): 2356.2264589599117\tLoss (with outliers): 2244.1503717214314\n", + "2019-01-16 00:10:30,819 : INFO : Loss (no outliers): 1988.3394009318413\tLoss (with outliers): 1901.2185027955984\n", + "2019-01-16 00:12:14,582 : INFO : Loss (no outliers): 1975.2612357694854\tLoss (with outliers): 1956.679719575608\n", + "2019-01-16 00:13:57,473 : INFO : Loss (no outliers): 2248.971503688887\tLoss (with outliers): 2065.0538881612624\n", + "2019-01-16 00:15:43,324 : INFO : Loss (no outliers): 2236.2995071294013\tLoss (with outliers): 2050.916982745959\n", + "2019-01-16 00:17:28,465 : INFO : Loss (no outliers): 2250.6683232094724\tLoss (with outliers): 2165.0780360080216\n", + "2019-01-16 00:19:11,337 : INFO : Loss (no outliers): 2099.4312600577005\tLoss (with outliers): 2059.4298535692487\n", + "2019-01-16 00:20:57,327 : INFO : Loss (no outliers): 1808.611317217321\tLoss (with outliers): 1801.9129012271617\n", + "2019-01-16 00:22:38,598 : INFO : Loss (no outliers): 2251.059449639144\tLoss (with outliers): 1976.2420677004118\n", + "2019-01-16 00:24:20,380 : INFO : Loss (no outliers): 2219.345532998361\tLoss (with outliers): 2090.4995759698686\n", + "2019-01-16 00:26:03,689 : INFO : Loss (no outliers): 2433.3368758760944\tLoss (with outliers): 2064.633107541565\n", + "2019-01-16 00:27:44,301 : INFO : Loss (no outliers): 1941.6468412023255\tLoss (with outliers): 1904.47468628058\n", + "2019-01-16 00:29:25,057 : INFO : Loss (no outliers): 2266.0345922836477\tLoss (with outliers): 2133.8929960774008\n", + "2019-01-16 00:31:12,334 : INFO : Loss (no outliers): 2060.4282961672366\tLoss (with outliers): 1957.0458550550352\n", + "2019-01-16 00:33:00,062 : INFO : Loss (no outliers): 2074.702325279596\tLoss (with outliers): 2007.6774089891796\n", + "2019-01-16 00:34:44,639 : INFO : Loss (no outliers): 2120.34455542316\tLoss (with outliers): 2049.3145760242855\n", + "2019-01-16 00:36:28,895 : INFO : Loss (no outliers): 2307.607294618353\tLoss (with outliers): 2027.2362495378634\n", + "2019-01-16 00:38:10,564 : INFO : Loss (no outliers): 2032.4093546891895\tLoss (with outliers): 1997.1569894809143\n", + "2019-01-16 00:39:51,544 : INFO : Loss (no outliers): 2024.2851056415748\tLoss (with outliers): 1952.2859837462447\n", + "2019-01-16 00:41:35,882 : INFO : Loss (no outliers): 2065.9440386715864\tLoss (with outliers): 2050.728597092955\n", + "2019-01-16 00:43:18,746 : INFO : Loss (no outliers): 2035.2450626963496\tLoss (with outliers): 1955.996097987477\n", + "2019-01-16 00:44:58,977 : INFO : Loss (no outliers): 2881.167865286131\tLoss (with outliers): 2323.497561388638\n", + "2019-01-16 00:46:42,742 : INFO : Loss (no outliers): 1970.537916897922\tLoss (with outliers): 1940.461123547\n", + "2019-01-16 00:48:23,795 : INFO : Loss (no outliers): 2567.177668959869\tLoss (with outliers): 2154.1594287256294\n", + "2019-01-16 00:49:59,214 : INFO : Loss (no outliers): 2743.7176536966194\tLoss (with outliers): 2363.1987268604144\n", + "2019-01-16 00:51:40,373 : INFO : Loss (no outliers): 2054.1348232504197\tLoss (with outliers): 1972.8542293417127\n", + "2019-01-16 00:53:20,417 : INFO : Loss (no outliers): 2385.365057530049\tLoss (with outliers): 2196.4575938692483\n", + "2019-01-16 00:55:02,850 : INFO : Loss (no outliers): 1794.4881041633537\tLoss (with outliers): 1785.4983699968816\n", + "2019-01-16 00:56:45,060 : INFO : Loss (no outliers): 1920.6614540269645\tLoss (with outliers): 1904.3188356284627\n", + "2019-01-16 00:58:29,822 : INFO : Loss (no outliers): 2299.3493175160124\tLoss (with outliers): 2177.2064038128105\n", + "2019-01-16 01:00:05,746 : INFO : Loss (no outliers): 2826.992326754467\tLoss (with outliers): 2171.35533729932\n", + "2019-01-16 01:01:46,354 : INFO : Loss (no outliers): 2038.776115446746\tLoss (with outliers): 1985.8967087541569\n", + "2019-01-16 01:03:29,372 : INFO : Loss (no outliers): 2202.6918435107877\tLoss (with outliers): 1928.0511326835299\n", + "2019-01-16 01:05:13,101 : INFO : Loss (no outliers): 1944.4335183875364\tLoss (with outliers): 1904.2165619301913\n", + "2019-01-16 01:06:54,939 : INFO : Loss (no outliers): 2275.8332171515467\tLoss (with outliers): 2205.1177397580936\n", + "2019-01-16 01:08:33,303 : INFO : Loss (no outliers): 1898.4814473285219\tLoss (with outliers): 1872.1516755817668\n", + "2019-01-16 01:10:12,295 : INFO : Loss (no outliers): 2063.547985405738\tLoss (with outliers): 2017.5333738781344\n", + "2019-01-16 01:11:52,743 : INFO : Loss (no outliers): 2016.94684782695\tLoss (with outliers): 1996.36782863261\n", + "2019-01-16 01:13:33,685 : INFO : Loss (no outliers): 2251.245280914596\tLoss (with outliers): 2045.1483609478526\n", + "2019-01-16 01:15:16,473 : INFO : Loss (no outliers): 2081.3163152802085\tLoss (with outliers): 2071.2204380810495\n", + "2019-01-16 01:16:58,430 : INFO : Loss (no outliers): 2085.052251663651\tLoss (with outliers): 2030.3013275623248\n", + "2019-01-16 01:18:41,288 : INFO : Loss (no outliers): 2190.7797342828026\tLoss (with outliers): 2065.89271183006\n", + "2019-01-16 01:20:22,447 : INFO : Loss (no outliers): 2397.382577199723\tLoss (with outliers): 2064.4589463743055\n", + "2019-01-16 01:22:02,951 : INFO : Loss (no outliers): 1868.4149208452948\tLoss (with outliers): 1825.9575780373552\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 01:23:44,127 : INFO : Loss (no outliers): 2343.9775510877125\tLoss (with outliers): 2144.3671549514634\n", + "2019-01-16 01:25:20,817 : INFO : Loss (no outliers): 2213.7521980133315\tLoss (with outliers): 2068.306787091367\n", + "2019-01-16 01:27:03,146 : INFO : Loss (no outliers): 2053.895893791899\tLoss (with outliers): 1937.8326485512866\n", + "2019-01-16 01:28:44,281 : INFO : Loss (no outliers): 2141.105300358069\tLoss (with outliers): 1921.40066058901\n", + "2019-01-16 01:30:25,503 : INFO : Loss (no outliers): 2104.2896627284285\tLoss (with outliers): 2069.3461308451638\n", + "2019-01-16 01:32:00,059 : INFO : Loss (no outliers): 2194.5091361858276\tLoss (with outliers): 2101.121907082148\n", + "2019-01-16 01:33:38,843 : INFO : Loss (no outliers): 2661.5862423570143\tLoss (with outliers): 2314.631507637849\n", + "2019-01-16 01:35:17,347 : INFO : Loss (no outliers): 1824.8246722080955\tLoss (with outliers): 1787.7885347127317\n", + "2019-01-16 01:36:54,564 : INFO : Loss (no outliers): 2111.1179921219923\tLoss (with outliers): 1874.3012080981453\n", + "2019-01-16 01:38:35,819 : INFO : Loss (no outliers): 2151.728024812931\tLoss (with outliers): 2058.152273822566\n", + "2019-01-16 01:40:12,821 : INFO : Loss (no outliers): 2478.8123035546473\tLoss (with outliers): 2231.338641523555\n", + "2019-01-16 01:41:53,503 : INFO : Loss (no outliers): 2185.635809726495\tLoss (with outliers): 2061.3245385978553\n", + "2019-01-16 01:43:34,696 : INFO : Loss (no outliers): 1859.1012629855707\tLoss (with outliers): 1822.5425349890934\n", + "2019-01-16 01:45:15,212 : INFO : Loss (no outliers): 2158.2230549192186\tLoss (with outliers): 2048.05192961261\n", + "2019-01-16 01:46:55,541 : INFO : Loss (no outliers): 2232.763187745373\tLoss (with outliers): 2140.1112088608274\n", + "2019-01-16 01:48:33,582 : INFO : Loss (no outliers): 2660.6999839341697\tLoss (with outliers): 2139.3435429280107\n", + "2019-01-16 01:50:08,930 : INFO : Loss (no outliers): 2231.0076181439513\tLoss (with outliers): 2014.3563470435386\n", + "2019-01-16 01:51:46,516 : INFO : Loss (no outliers): 1915.6092995274828\tLoss (with outliers): 1905.3652898484695\n", + "2019-01-16 01:53:25,287 : INFO : Loss (no outliers): 2020.5057646942726\tLoss (with outliers): 2005.2466479220802\n", + "2019-01-16 01:55:04,460 : INFO : Loss (no outliers): 1983.0080010600966\tLoss (with outliers): 1889.5614479142944\n", + "2019-01-16 01:56:45,901 : INFO : Loss (no outliers): 2425.052483676792\tLoss (with outliers): 2228.0217204222117\n", + "2019-01-16 01:58:24,771 : INFO : Loss (no outliers): 2028.283253594212\tLoss (with outliers): 2005.035739957029\n", + "2019-01-16 02:00:02,906 : INFO : Loss (no outliers): 2227.183370261541\tLoss (with outliers): 2095.677146614923\n", + "2019-01-16 02:01:45,331 : INFO : Loss (no outliers): 2943.2255439930086\tLoss (with outliers): 2567.254028195537\n", + "2019-01-16 02:03:23,431 : INFO : Loss (no outliers): 2251.437830604723\tLoss (with outliers): 2011.96269691936\n", + "2019-01-16 02:04:56,938 : INFO : Loss (no outliers): 2686.678780828495\tLoss (with outliers): 2241.4859900581173\n", + "2019-01-16 02:06:33,430 : INFO : Loss (no outliers): 2414.7521055613583\tLoss (with outliers): 2293.3575295219225\n", + "2019-01-16 02:08:10,982 : INFO : Loss (no outliers): 2206.332266131678\tLoss (with outliers): 2081.1992081523053\n", + "2019-01-16 02:09:55,662 : INFO : Loss (no outliers): 2192.001151085207\tLoss (with outliers): 2126.114455060032\n", + "2019-01-16 02:11:32,704 : INFO : Loss (no outliers): 2142.703757562554\tLoss (with outliers): 2073.855298802793\n", + "2019-01-16 02:13:08,934 : INFO : Loss (no outliers): 2879.0308981633716\tLoss (with outliers): 2349.032496284154\n", + "2019-01-16 02:14:50,268 : INFO : Loss (no outliers): 2217.208990342414\tLoss (with outliers): 2135.256578623091\n", + "2019-01-16 02:16:29,412 : INFO : Loss (no outliers): 1979.6919118647916\tLoss (with outliers): 1880.466812120582\n", + "2019-01-16 02:18:10,614 : INFO : Loss (no outliers): 1810.1679424049619\tLoss (with outliers): 1796.4452189747471\n", + "2019-01-16 02:19:49,612 : INFO : Loss (no outliers): 2349.2582202206763\tLoss (with outliers): 2117.754506020475\n", + "2019-01-16 02:21:31,278 : INFO : Loss (no outliers): 3063.7986868917037\tLoss (with outliers): 2282.7512029662\n", + "2019-01-16 02:23:11,319 : INFO : Loss (no outliers): 2275.9141835834193\tLoss (with outliers): 2167.8653833253497\n", + "2019-01-16 02:24:49,159 : INFO : Loss (no outliers): 2020.7551826488586\tLoss (with outliers): 1982.2319085332283\n", + "2019-01-16 02:26:30,799 : INFO : Loss (no outliers): 2163.556490495988\tLoss (with outliers): 2032.6138740719339\n", + "2019-01-16 02:28:13,167 : INFO : Loss (no outliers): 2068.5621430889832\tLoss (with outliers): 2038.661984496165\n", + "2019-01-16 02:29:51,892 : INFO : Loss (no outliers): 2235.241683355423\tLoss (with outliers): 1990.1878061327984\n", + "2019-01-16 02:31:34,803 : INFO : Loss (no outliers): 1933.0450604239973\tLoss (with outliers): 1877.428114697345\n", + "2019-01-16 02:33:11,164 : INFO : Loss (no outliers): 2253.884030728117\tLoss (with outliers): 2092.2887942876587\n", + "2019-01-16 02:34:51,193 : INFO : Loss (no outliers): 2300.555086611758\tLoss (with outliers): 2164.7553627317257\n", + "2019-01-16 02:36:29,078 : INFO : Loss (no outliers): 2283.0091067711587\tLoss (with outliers): 2052.61041615809\n", + "2019-01-16 02:38:09,232 : INFO : Loss (no outliers): 1851.0226058499275\tLoss (with outliers): 1823.8147859559558\n", + "2019-01-16 02:39:51,051 : INFO : Loss (no outliers): 2352.7414530004735\tLoss (with outliers): 2110.533155045586\n", + "2019-01-16 02:41:23,121 : INFO : Loss (no outliers): 2034.8508313929171\tLoss (with outliers): 1999.2858982439266\n", + "2019-01-16 02:43:00,257 : INFO : Loss (no outliers): 2076.930843112289\tLoss (with outliers): 2008.7053989170015\n", + "2019-01-16 02:44:38,820 : INFO : Loss (no outliers): 2310.6799634804124\tLoss (with outliers): 2062.1003595315624\n", + "2019-01-16 02:46:18,611 : INFO : Loss (no outliers): 2091.008633505684\tLoss (with outliers): 1965.05292942619\n", + "2019-01-16 02:47:55,617 : INFO : Loss (no outliers): 2393.68980048422\tLoss (with outliers): 2195.361920436561\n", + "2019-01-16 02:49:39,015 : INFO : Loss (no outliers): 2190.6153496135653\tLoss (with outliers): 2052.28324903907\n", + "2019-01-16 02:51:19,054 : INFO : Loss (no outliers): 2998.0459082575994\tLoss (with outliers): 2638.468323863154\n", + "2019-01-16 02:52:57,752 : INFO : Loss (no outliers): 2272.9012241801574\tLoss (with outliers): 2159.94574524437\n", + "2019-01-16 02:54:40,573 : INFO : Loss (no outliers): 2371.9288343261233\tLoss (with outliers): 2143.7502035302127\n", + "2019-01-16 02:56:17,975 : INFO : Loss (no outliers): 2559.774078545625\tLoss (with outliers): 2081.1012107004462\n", + "2019-01-16 02:57:58,096 : INFO : Loss (no outliers): 2258.6614820888913\tLoss (with outliers): 2083.724391641194\n", + "2019-01-16 02:59:40,096 : INFO : Loss (no outliers): 2205.9861247495105\tLoss (with outliers): 2187.1502714474673\n", + "2019-01-16 03:01:19,346 : INFO : Loss (no outliers): 1972.5574258948982\tLoss (with outliers): 1893.1686350194148\n", + "2019-01-16 03:03:00,343 : INFO : Loss (no outliers): 2372.5770836709094\tLoss (with outliers): 1997.2071661788398\n", + "2019-01-16 03:04:42,841 : INFO : Loss (no outliers): 2002.1379122622425\tLoss (with outliers): 1982.8882882285084\n", + "2019-01-16 03:06:25,731 : INFO : Loss (no outliers): 2131.619350300841\tLoss (with outliers): 1983.605256844448\n", + "2019-01-16 03:08:05,855 : INFO : Loss (no outliers): 2597.050087626562\tLoss (with outliers): 2363.8948601279267\n", + "2019-01-16 03:09:44,165 : INFO : Loss (no outliers): 1923.099763101275\tLoss (with outliers): 1877.126082093416\n", + "2019-01-16 03:11:23,333 : INFO : Loss (no outliers): 1896.3640102684722\tLoss (with outliers): 1877.7621737597208\n", + "2019-01-16 03:13:05,216 : INFO : Loss (no outliers): 1870.0200599444745\tLoss (with outliers): 1838.747254407967\n", + "2019-01-16 03:14:42,933 : INFO : Loss (no outliers): 2184.5492931843232\tLoss (with outliers): 2088.3115765776283\n", + "2019-01-16 03:16:19,105 : INFO : Loss (no outliers): 2146.708920361885\tLoss (with outliers): 1966.9247432816016\n", + "2019-01-16 03:17:58,164 : INFO : Loss (no outliers): 2338.4464708404753\tLoss (with outliers): 2075.9017017257797\n", + "2019-01-16 03:19:35,564 : INFO : Loss (no outliers): 2451.920634110482\tLoss (with outliers): 2053.6371209845393\n", + "2019-01-16 03:21:12,168 : INFO : Loss (no outliers): 2189.6314979962967\tLoss (with outliers): 1969.9213486935673\n", + "2019-01-16 03:22:54,545 : INFO : Loss (no outliers): 2150.5470593066293\tLoss (with outliers): 2062.9418239488714\n", + "2019-01-16 03:24:30,726 : INFO : Loss (no outliers): 2349.1284573250928\tLoss (with outliers): 2120.870968568742\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 03:26:11,521 : INFO : Loss (no outliers): 2119.101278559414\tLoss (with outliers): 2059.4270452072174\n", + "2019-01-16 03:27:48,050 : INFO : Loss (no outliers): 3521.6914175427187\tLoss (with outliers): 2436.3273863213008\n", + "2019-01-16 03:29:26,576 : INFO : Loss (no outliers): 2182.4455446461925\tLoss (with outliers): 2149.699829776273\n", + "2019-01-16 03:31:02,063 : INFO : Loss (no outliers): 2422.390791633096\tLoss (with outliers): 1922.6665499600158\n", + "2019-01-16 03:32:43,332 : INFO : Loss (no outliers): 2088.2426906492756\tLoss (with outliers): 2004.7046142591066\n", + "2019-01-16 03:34:20,250 : INFO : Loss (no outliers): 2272.2733524907258\tLoss (with outliers): 2052.6087239672293\n", + "2019-01-16 03:35:57,085 : INFO : Loss (no outliers): 2015.1239751640278\tLoss (with outliers): 1992.1546281655103\n", + "2019-01-16 03:37:36,352 : INFO : Loss (no outliers): 1939.1831252302115\tLoss (with outliers): 1931.3598172749896\n", + "2019-01-16 03:39:13,136 : INFO : Loss (no outliers): 2121.6048721932993\tLoss (with outliers): 2048.4606647895253\n", + "2019-01-16 03:40:52,314 : INFO : Loss (no outliers): 1989.5107408287558\tLoss (with outliers): 1943.355507314347\n", + "2019-01-16 03:42:34,597 : INFO : Loss (no outliers): 2096.491629428817\tLoss (with outliers): 2002.8966872727317\n", + "2019-01-16 03:44:15,141 : INFO : Loss (no outliers): 1935.6179113279284\tLoss (with outliers): 1907.2020058469177\n", + "2019-01-16 03:45:49,976 : INFO : Loss (no outliers): 2411.184204882168\tLoss (with outliers): 2092.1515085612336\n", + "2019-01-16 03:47:23,652 : INFO : Loss (no outliers): 2121.735058484159\tLoss (with outliers): 2053.2928342649307\n", + "2019-01-16 03:49:03,991 : INFO : Loss (no outliers): 2055.0360399602528\tLoss (with outliers): 1983.787255703463\n", + "2019-01-16 03:50:41,151 : INFO : Loss (no outliers): 2529.9134848697354\tLoss (with outliers): 2112.0534464715015\n", + "2019-01-16 03:52:22,175 : INFO : Loss (no outliers): 1930.621202926083\tLoss (with outliers): 1910.7492465614903\n", + "2019-01-16 03:53:56,378 : INFO : Loss (no outliers): 2283.8623172098073\tLoss (with outliers): 2073.3087075861035\n", + "2019-01-16 03:55:38,230 : INFO : Loss (no outliers): 2225.2949272810783\tLoss (with outliers): 2055.8375469776365\n", + "2019-01-16 03:57:18,597 : INFO : Loss (no outliers): 2425.6868837265224\tLoss (with outliers): 2207.801779999967\n", + "2019-01-16 03:58:59,557 : INFO : Loss (no outliers): 2778.8887052094196\tLoss (with outliers): 2192.3765115495053\n", + "2019-01-16 04:00:39,248 : INFO : Loss (no outliers): 2206.967569201976\tLoss (with outliers): 2110.072401404521\n", + "2019-01-16 04:02:16,555 : INFO : Loss (no outliers): 2005.7842585155443\tLoss (with outliers): 1967.149475102709\n", + "2019-01-16 04:03:53,132 : INFO : Loss (no outliers): 2063.980317709152\tLoss (with outliers): 2012.6520760932476\n", + "2019-01-16 04:05:31,053 : INFO : Loss (no outliers): 3112.639937340082\tLoss (with outliers): 2375.134903902117\n", + "2019-01-16 04:05:46,589 : INFO : Loss (no outliers): 1321.521323758918\tLoss (with outliers): 1282.9364495345592\n", + "2019-01-16 04:05:46,599 : INFO : saving Nmf object under nmf_with_r.model, separately None\n", + "2019-01-16 04:05:46,601 : INFO : storing scipy.sparse array '_r' under nmf_with_r.model._r.npy\n", + "2019-01-16 04:05:47,781 : INFO : saved nmf_with_r.model\n" + ] + } + ], "source": [ "row = dict()\n", "row['model'] = 'nmf_with_r'\n", @@ -461,9 +1228,131 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:05:48,017 : INFO : loading Nmf object from nmf_with_r.model\n", + "2019-01-16 04:05:48,272 : INFO : loading id2word recursively from nmf_with_r.model.id2word.* with mmap=None\n", + "2019-01-16 04:05:48,273 : INFO : loading _r from nmf_with_r.model._r.npy with mmap=None\n", + "2019-01-16 04:05:48,304 : INFO : loaded nmf_with_r.model\n", + "2019-01-16 04:06:27,119 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 04:06:27,253 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + ] + }, + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.062*\"parti\" + 0.061*\"elect\" + 0.031*\"democrat\" + 0.020*\"republican\" + 0.020*\"vote\" + 0.013*\"liber\" + 0.012*\"candid\" + 0.012*\"conserv\" + 0.011*\"seat\" + 0.010*\"member\"'),\n", + " (1,\n", + " '0.052*\"book\" + 0.040*\"centuri\" + 0.039*\"publish\" + 0.031*\"languag\" + 0.027*\"histori\" + 0.025*\"work\" + 0.023*\"english\" + 0.022*\"king\" + 0.019*\"polit\" + 0.019*\"author\"'),\n", + " (2,\n", + " '0.031*\"armi\" + 0.028*\"divis\" + 0.025*\"regiment\" + 0.022*\"forc\" + 0.020*\"battalion\" + 0.019*\"infantri\" + 0.019*\"command\" + 0.017*\"brigad\" + 0.016*\"gener\" + 0.012*\"corp\"'),\n", + " (3,\n", + " '0.110*\"race\" + 0.059*\"car\" + 0.033*\"engin\" + 0.025*\"lap\" + 0.023*\"driver\" + 0.021*\"ret\" + 0.020*\"ford\" + 0.015*\"finish\" + 0.015*\"motorsport\" + 0.015*\"chevrolet\"'),\n", + " (4,\n", + " '0.130*\"club\" + 0.068*\"cup\" + 0.046*\"footbal\" + 0.044*\"goal\" + 0.032*\"leagu\" + 0.031*\"unit\" + 0.031*\"plai\" + 0.030*\"match\" + 0.026*\"score\" + 0.021*\"player\"'),\n", + " (5,\n", + " '0.041*\"award\" + 0.030*\"best\" + 0.006*\"nomin\" + 0.005*\"actress\" + 0.005*\"year\" + 0.004*\"actor\" + 0.004*\"won\" + 0.004*\"perform\" + 0.003*\"outstand\" + 0.003*\"artist\"'),\n", + " (6,\n", + " '0.087*\"citi\" + 0.013*\"town\" + 0.009*\"popul\" + 0.008*\"area\" + 0.007*\"san\" + 0.006*\"center\" + 0.006*\"airport\" + 0.006*\"unit\" + 0.006*\"locat\" + 0.005*\"municip\"'),\n", + " (7,\n", + " '0.171*\"act\" + 0.021*\"amend\" + 0.018*\"order\" + 0.010*\"ireland\" + 0.009*\"law\" + 0.007*\"court\" + 0.007*\"regul\" + 0.006*\"road\" + 0.006*\"scotland\" + 0.006*\"nation\"'),\n", + " (8,\n", + " '0.064*\"leagu\" + 0.014*\"divis\" + 0.012*\"left\" + 0.011*\"align\" + 0.009*\"basebal\" + 0.008*\"footbal\" + 0.007*\"run\" + 0.007*\"major\" + 0.005*\"home\" + 0.005*\"hit\"'),\n", + " (9,\n", + " '0.086*\"team\" + 0.013*\"championship\" + 0.007*\"nation\" + 0.007*\"race\" + 0.007*\"coach\" + 0.005*\"time\" + 0.004*\"sport\" + 0.004*\"ret\" + 0.004*\"player\" + 0.004*\"match\"'),\n", + " (10,\n", + " '0.100*\"episod\" + 0.055*\"compani\" + 0.021*\"product\" + 0.011*\"produc\" + 0.011*\"televis\" + 0.009*\"role\" + 0.009*\"busi\" + 0.008*\"market\" + 0.008*\"corpor\" + 0.007*\"bank\"'),\n", + " (11,\n", + " '0.050*\"new\" + 0.017*\"york\" + 0.003*\"zealand\" + 0.003*\"jersei\" + 0.002*\"time\" + 0.002*\"radio\" + 0.002*\"broadcast\" + 0.002*\"station\" + 0.002*\"washington\" + 0.002*\"australia\"'),\n", + " (12,\n", + " '0.035*\"final\" + 0.033*\"world\" + 0.030*\"round\" + 0.030*\"championship\" + 0.025*\"win\" + 0.025*\"match\" + 0.021*\"open\" + 0.017*\"won\" + 0.016*\"tournament\" + 0.015*\"event\"'),\n", + " (13,\n", + " '0.020*\"record\" + 0.019*\"band\" + 0.015*\"album\" + 0.007*\"releas\" + 0.007*\"guitar\" + 0.006*\"tour\" + 0.005*\"rock\" + 0.005*\"vocal\" + 0.004*\"plai\" + 0.004*\"live\"'),\n", + " (14,\n", + " '0.096*\"church\" + 0.015*\"cathol\" + 0.012*\"christian\" + 0.010*\"saint\" + 0.010*\"bishop\" + 0.009*\"centuri\" + 0.008*\"build\" + 0.007*\"parish\" + 0.007*\"built\" + 0.007*\"roman\"'),\n", + " (15,\n", + " '0.084*\"presid\" + 0.055*\"minist\" + 0.037*\"prime\" + 0.014*\"govern\" + 0.012*\"gener\" + 0.010*\"governor\" + 0.010*\"nation\" + 0.008*\"council\" + 0.008*\"secretari\" + 0.008*\"visit\"'),\n", + " (16,\n", + " '0.089*\"yard\" + 0.035*\"pass\" + 0.035*\"touchdown\" + 0.028*\"field\" + 0.025*\"run\" + 0.023*\"win\" + 0.022*\"score\" + 0.021*\"quarter\" + 0.017*\"record\" + 0.016*\"second\"'),\n", + " (17,\n", + " '0.042*\"season\" + 0.006*\"plai\" + 0.004*\"coach\" + 0.004*\"final\" + 0.004*\"second\" + 0.004*\"win\" + 0.004*\"record\" + 0.003*\"career\" + 0.003*\"finish\" + 0.003*\"point\"'),\n", + " (18,\n", + " '0.174*\"counti\" + 0.034*\"township\" + 0.014*\"area\" + 0.013*\"statist\" + 0.004*\"texa\" + 0.004*\"ohio\" + 0.004*\"virginia\" + 0.004*\"washington\" + 0.003*\"metropolitan\" + 0.003*\"pennsylvania\"'),\n", + " (19,\n", + " '0.012*\"water\" + 0.010*\"area\" + 0.010*\"speci\" + 0.007*\"larg\" + 0.006*\"order\" + 0.006*\"region\" + 0.006*\"includ\" + 0.005*\"black\" + 0.005*\"famili\" + 0.005*\"popul\"'),\n", + " (20,\n", + " '0.020*\"us\" + 0.015*\"gener\" + 0.014*\"design\" + 0.014*\"model\" + 0.012*\"develop\" + 0.012*\"time\" + 0.012*\"data\" + 0.011*\"number\" + 0.011*\"function\" + 0.011*\"process\"'),\n", + " (21,\n", + " '0.165*\"group\" + 0.023*\"left\" + 0.022*\"align\" + 0.021*\"member\" + 0.017*\"text\" + 0.015*\"bar\" + 0.011*\"order\" + 0.011*\"point\" + 0.010*\"till\" + 0.009*\"stage\"'),\n", + " (22,\n", + " '0.095*\"film\" + 0.009*\"director\" + 0.008*\"star\" + 0.008*\"movi\" + 0.008*\"product\" + 0.008*\"festiv\" + 0.008*\"releas\" + 0.008*\"produc\" + 0.007*\"direct\" + 0.006*\"featur\"'),\n", + " (23,\n", + " '0.107*\"music\" + 0.024*\"perform\" + 0.019*\"piano\" + 0.018*\"song\" + 0.017*\"compos\" + 0.017*\"orchestra\" + 0.017*\"viola\" + 0.012*\"plai\" + 0.011*\"radio\" + 0.011*\"danc\"'),\n", + " (24,\n", + " '0.023*\"septemb\" + 0.023*\"march\" + 0.020*\"octob\" + 0.020*\"juli\" + 0.019*\"june\" + 0.019*\"april\" + 0.019*\"august\" + 0.018*\"januari\" + 0.018*\"novemb\" + 0.017*\"decemb\"'),\n", + " (25,\n", + " '0.078*\"air\" + 0.041*\"forc\" + 0.031*\"aircraft\" + 0.027*\"squadron\" + 0.026*\"oper\" + 0.021*\"unit\" + 0.016*\"base\" + 0.016*\"wing\" + 0.016*\"flight\" + 0.015*\"fighter\"'),\n", + " (26,\n", + " '0.101*\"hous\" + 0.023*\"build\" + 0.021*\"term\" + 0.015*\"member\" + 0.014*\"serv\" + 0.014*\"march\" + 0.014*\"left\" + 0.012*\"congress\" + 0.011*\"hall\" + 0.010*\"street\"'),\n", + " (27,\n", + " '0.123*\"district\" + 0.024*\"pennsylvania\" + 0.019*\"grade\" + 0.016*\"educ\" + 0.015*\"fund\" + 0.014*\"basic\" + 0.013*\"level\" + 0.011*\"student\" + 0.011*\"receiv\" + 0.010*\"tax\"'),\n", + " (28,\n", + " '0.048*\"year\" + 0.007*\"dai\" + 0.005*\"time\" + 0.005*\"ag\" + 0.003*\"month\" + 0.003*\"old\" + 0.003*\"student\" + 0.003*\"includ\" + 0.003*\"later\" + 0.002*\"million\"'),\n", + " (29,\n", + " '0.090*\"line\" + 0.083*\"station\" + 0.054*\"road\" + 0.053*\"railwai\" + 0.036*\"rout\" + 0.030*\"train\" + 0.027*\"oper\" + 0.020*\"street\" + 0.016*\"servic\" + 0.016*\"open\"'),\n", + " (30,\n", + " '0.031*\"park\" + 0.030*\"south\" + 0.030*\"north\" + 0.023*\"west\" + 0.020*\"river\" + 0.020*\"east\" + 0.015*\"area\" + 0.014*\"town\" + 0.013*\"lake\" + 0.013*\"nation\"'),\n", + " (31,\n", + " '0.071*\"women\" + 0.041*\"men\" + 0.027*\"nation\" + 0.023*\"right\" + 0.012*\"countri\" + 0.012*\"intern\" + 0.012*\"athlet\" + 0.011*\"advanc\" + 0.011*\"rank\" + 0.010*\"law\"'),\n", + " (32,\n", + " '0.104*\"linear\" + 0.104*\"socorro\" + 0.025*\"septemb\" + 0.020*\"neat\" + 0.018*\"palomar\" + 0.018*\"octob\" + 0.013*\"decemb\" + 0.013*\"august\" + 0.012*\"anderson\" + 0.012*\"mesa\"'),\n", + " (33,\n", + " '0.089*\"univers\" + 0.011*\"scienc\" + 0.009*\"institut\" + 0.008*\"research\" + 0.008*\"professor\" + 0.006*\"student\" + 0.005*\"technolog\" + 0.005*\"faculti\" + 0.005*\"studi\" + 0.005*\"engin\"'),\n", + " (34,\n", + " '0.064*\"state\" + 0.024*\"unit\" + 0.005*\"court\" + 0.005*\"law\" + 0.004*\"feder\" + 0.003*\"nation\" + 0.003*\"govern\" + 0.002*\"senat\" + 0.002*\"california\" + 0.002*\"constitut\"'),\n", + " (35,\n", + " '0.085*\"colleg\" + 0.019*\"univers\" + 0.014*\"student\" + 0.008*\"campu\" + 0.007*\"institut\" + 0.006*\"educ\" + 0.005*\"hall\" + 0.005*\"program\" + 0.005*\"commun\" + 0.005*\"state\"'),\n", + " (36,\n", + " '0.118*\"class\" + 0.079*\"director\" + 0.053*\"rifl\" + 0.050*\"south\" + 0.048*\"×mm\" + 0.046*\"action\" + 0.045*\"san\" + 0.044*\"actor\" + 0.041*\"angel\" + 0.037*\"lo\"'),\n", + " (37,\n", + " '0.092*\"servic\" + 0.025*\"offic\" + 0.023*\"commun\" + 0.013*\"john\" + 0.012*\"chief\" + 0.011*\"polic\" + 0.011*\"public\" + 0.011*\"british\" + 0.010*\"late\" + 0.010*\"director\"'),\n", + " (38,\n", + " '0.156*\"royal\" + 0.072*\"william\" + 0.068*\"john\" + 0.058*\"corp\" + 0.051*\"lieuten\" + 0.046*\"capt\" + 0.041*\"engin\" + 0.041*\"armi\" + 0.039*\"georg\" + 0.039*\"temp\"'),\n", + " (39,\n", + " '0.042*\"song\" + 0.039*\"album\" + 0.034*\"releas\" + 0.029*\"singl\" + 0.024*\"chart\" + 0.013*\"number\" + 0.011*\"video\" + 0.010*\"love\" + 0.010*\"featur\" + 0.010*\"track\"'),\n", + " (40,\n", + " '0.028*\"time\" + 0.025*\"later\" + 0.023*\"kill\" + 0.019*\"appear\" + 0.018*\"man\" + 0.016*\"death\" + 0.016*\"father\" + 0.015*\"return\" + 0.015*\"son\" + 0.014*\"charact\"'),\n", + " (41,\n", + " '0.110*\"seri\" + 0.016*\"charact\" + 0.016*\"episod\" + 0.015*\"comic\" + 0.013*\"televis\" + 0.012*\"anim\" + 0.011*\"appear\" + 0.009*\"stori\" + 0.009*\"origin\" + 0.009*\"featur\"'),\n", + " (42,\n", + " '0.091*\"born\" + 0.070*\"american\" + 0.022*\"player\" + 0.021*\"footbal\" + 0.020*\"william\" + 0.016*\"actor\" + 0.014*\"politician\" + 0.014*\"singer\" + 0.013*\"john\" + 0.012*\"actress\"'),\n", + " (43,\n", + " '0.072*\"game\" + 0.017*\"player\" + 0.011*\"plai\" + 0.004*\"releas\" + 0.004*\"point\" + 0.004*\"develop\" + 0.004*\"score\" + 0.003*\"video\" + 0.003*\"time\" + 0.003*\"card\"'),\n", + " (44,\n", + " '0.110*\"island\" + 0.007*\"australia\" + 0.007*\"ship\" + 0.007*\"south\" + 0.007*\"sea\" + 0.006*\"bai\" + 0.005*\"coast\" + 0.004*\"pacif\" + 0.004*\"western\" + 0.004*\"british\"'),\n", + " (45,\n", + " '0.029*\"health\" + 0.028*\"studi\" + 0.027*\"research\" + 0.022*\"peopl\" + 0.020*\"human\" + 0.019*\"medic\" + 0.019*\"cell\" + 0.018*\"report\" + 0.018*\"ag\" + 0.017*\"includ\"'),\n", + " (46,\n", + " '0.113*\"school\" + 0.025*\"high\" + 0.014*\"student\" + 0.011*\"educ\" + 0.007*\"grade\" + 0.006*\"public\" + 0.005*\"elementari\" + 0.005*\"primari\" + 0.004*\"pennsylvania\" + 0.004*\"teacher\"'),\n", + " (47,\n", + " '0.050*\"war\" + 0.021*\"german\" + 0.017*\"american\" + 0.016*\"british\" + 0.016*\"world\" + 0.012*\"french\" + 0.010*\"battl\" + 0.010*\"germani\" + 0.009*\"ship\" + 0.009*\"soviet\"'),\n", + " (48,\n", + " '0.174*\"art\" + 0.099*\"museum\" + 0.058*\"paint\" + 0.057*\"work\" + 0.044*\"artist\" + 0.041*\"galleri\" + 0.038*\"exhibit\" + 0.031*\"collect\" + 0.023*\"histori\" + 0.021*\"design\"'),\n", + " (49,\n", + " '0.067*\"peak\" + 0.066*\"kitt\" + 0.066*\"mount\" + 0.066*\"spacewatch\" + 0.065*\"lemmon\" + 0.033*\"survei\" + 0.026*\"octob\" + 0.024*\"septemb\" + 0.015*\"novemb\" + 0.012*\"march\"')]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "nmf_with_r = Nmf.load('nmf_with_r.model')\n", "row.update(get_tm_metrics(nmf_with_r, test_corpus))\n", @@ -482,9 +1371,22341 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:06:27,576 : INFO : using symmetric alpha at 0.02\n", + "2019-01-16 04:06:27,576 : INFO : using symmetric eta at 0.02\n", + "2019-01-16 04:06:27,589 : INFO : using serial LDA version on this node\n", + "2019-01-16 04:06:28,185 : INFO : running online (single-pass) LDA training, 50 topics, 1 passes over the supplied corpus of 4922894 documents, updating model once every 2000 documents, evaluating perplexity every 20000 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-16 04:06:28,910 : INFO : PROGRESS: pass 0, at document #2000/4922894\n", + "2019-01-16 04:06:31,888 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:06:32,429 : INFO : topic #36 (0.020): 0.006*\"new\" + 0.004*\"year\" + 0.004*\"work\" + 0.004*\"hous\" + 0.004*\"railwai\" + 0.003*\"american\" + 0.003*\"state\" + 0.003*\"includ\" + 0.003*\"game\" + 0.003*\"senat\"\n", + "2019-01-16 04:06:32,432 : INFO : topic #19 (0.020): 0.005*\"new\" + 0.004*\"nation\" + 0.004*\"includ\" + 0.003*\"time\" + 0.003*\"year\" + 0.003*\"plai\" + 0.003*\"game\" + 0.003*\"record\" + 0.003*\"work\" + 0.003*\"dai\"\n", + "2019-01-16 04:06:32,433 : INFO : topic #42 (0.020): 0.007*\"socorro\" + 0.006*\"linear\" + 0.005*\"tantra\" + 0.004*\"new\" + 0.003*\"april\" + 0.003*\"time\" + 0.003*\"year\" + 0.003*\"state\" + 0.003*\"march\" + 0.003*\"palomar\"\n", + "2019-01-16 04:06:32,435 : INFO : topic #43 (0.020): 0.005*\"state\" + 0.004*\"includ\" + 0.004*\"nation\" + 0.004*\"film\" + 0.004*\"song\" + 0.003*\"socorro\" + 0.003*\"year\" + 0.003*\"album\" + 0.003*\"univers\" + 0.003*\"linear\"\n", + "2019-01-16 04:06:32,437 : INFO : topic #5 (0.020): 0.004*\"state\" + 0.004*\"new\" + 0.003*\"network\" + 0.003*\"includ\" + 0.003*\"servic\" + 0.003*\"develop\" + 0.003*\"releas\" + 0.003*\"season\" + 0.003*\"nation\" + 0.003*\"program\"\n", + "2019-01-16 04:06:32,442 : INFO : topic diff=42.844707, rho=1.000000\n", + "2019-01-16 04:06:33,175 : INFO : PROGRESS: pass 0, at document #4000/4922894\n", + "2019-01-16 04:06:36,094 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:06:36,618 : INFO : topic #1 (0.020): 0.012*\"music\" + 0.009*\"record\" + 0.007*\"song\" + 0.007*\"album\" + 0.007*\"singl\" + 0.006*\"track\" + 0.006*\"releas\" + 0.005*\"vocal\" + 0.005*\"new\" + 0.004*\"chart\"\n", + "2019-01-16 04:06:36,621 : INFO : topic #33 (0.020): 0.010*\"agassi\" + 0.009*\"price\" + 0.006*\"open\" + 0.006*\"set\" + 0.005*\"year\" + 0.005*\"kaiser\" + 0.005*\"world\" + 0.005*\"trap\" + 0.004*\"rate\" + 0.004*\"inflat\"\n", + "2019-01-16 04:06:36,623 : INFO : topic #15 (0.020): 0.014*\"leagu\" + 0.008*\"counti\" + 0.008*\"footbal\" + 0.007*\"cup\" + 0.006*\"intern\" + 0.006*\"year\" + 0.006*\"tournament\" + 0.006*\"club\" + 0.005*\"town\" + 0.005*\"plai\"\n", + "2019-01-16 04:06:36,625 : INFO : topic #14 (0.020): 0.008*\"school\" + 0.007*\"state\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"design\" + 0.005*\"year\" + 0.005*\"student\" + 0.004*\"compani\" + 0.004*\"includ\" + 0.004*\"program\"\n", + "2019-01-16 04:06:36,627 : INFO : topic #3 (0.020): 0.007*\"new\" + 0.005*\"year\" + 0.004*\"phelp\" + 0.004*\"citi\" + 0.004*\"counti\" + 0.004*\"born\" + 0.003*\"war\" + 0.003*\"gener\" + 0.003*\"american\" + 0.003*\"serv\"\n", + "2019-01-16 04:06:36,634 : INFO : topic diff=0.439294, rho=0.707107\n", + "2019-01-16 04:06:37,367 : INFO : PROGRESS: pass 0, at document #6000/4922894\n", + "2019-01-16 04:06:40,120 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:06:40,645 : INFO : topic #1 (0.020): 0.018*\"music\" + 0.015*\"record\" + 0.010*\"album\" + 0.010*\"song\" + 0.008*\"releas\" + 0.007*\"track\" + 0.007*\"vocal\" + 0.007*\"singl\" + 0.006*\"guitar\" + 0.005*\"chart\"\n", + "2019-01-16 04:06:40,647 : INFO : topic #22 (0.020): 0.016*\"ag\" + 0.014*\"popul\" + 0.012*\"citi\" + 0.012*\"household\" + 0.010*\"famili\" + 0.009*\"censu\" + 0.009*\"femal\" + 0.009*\"group\" + 0.008*\"male\" + 0.008*\"live\"\n", + "2019-01-16 04:06:40,649 : INFO : topic #7 (0.020): 0.009*\"darwin\" + 0.007*\"episod\" + 0.007*\"seri\" + 0.004*\"group\" + 0.004*\"time\" + 0.004*\"watt\" + 0.004*\"function\" + 0.003*\"includ\" + 0.003*\"oper\" + 0.003*\"war\"\n", + "2019-01-16 04:06:40,651 : INFO : topic #24 (0.020): 0.006*\"ship\" + 0.006*\"state\" + 0.006*\"act\" + 0.006*\"report\" + 0.005*\"oper\" + 0.005*\"time\" + 0.005*\"new\" + 0.005*\"compani\" + 0.004*\"unit\" + 0.004*\"year\"\n", + "2019-01-16 04:06:40,652 : INFO : topic #4 (0.020): 0.050*\"school\" + 0.012*\"state\" + 0.011*\"high\" + 0.010*\"citi\" + 0.008*\"district\" + 0.008*\"student\" + 0.008*\"counti\" + 0.006*\"new\" + 0.005*\"primari\" + 0.005*\"street\"\n", + "2019-01-16 04:06:40,658 : INFO : topic diff=0.336302, rho=0.577350\n", + "2019-01-16 04:06:41,292 : INFO : PROGRESS: pass 0, at document #8000/4922894\n", + "2019-01-16 04:06:44,030 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:06:44,561 : INFO : topic #49 (0.020): 0.007*\"samaritan\" + 0.005*\"time\" + 0.004*\"island\" + 0.004*\"mind\" + 0.004*\"capit\" + 0.004*\"number\" + 0.004*\"solomon\" + 0.003*\"gmina\" + 0.003*\"counti\" + 0.003*\"includ\"\n", + "2019-01-16 04:06:44,563 : INFO : topic #0 (0.020): 0.010*\"war\" + 0.009*\"divis\" + 0.009*\"armi\" + 0.008*\"forc\" + 0.007*\"battl\" + 0.007*\"cricket\" + 0.007*\"command\" + 0.006*\"battalion\" + 0.006*\"game\" + 0.006*\"regiment\"\n", + "2019-01-16 04:06:44,565 : INFO : topic #25 (0.020): 0.019*\"div\" + 0.007*\"how\" + 0.007*\"mitsubishi\" + 0.006*\"tel\" + 0.006*\"petra\" + 0.006*\"aviv\" + 0.006*\"mount\" + 0.006*\"group\" + 0.005*\"year\" + 0.005*\"club\"\n", + "2019-01-16 04:06:44,567 : INFO : topic #30 (0.020): 0.012*\"french\" + 0.008*\"elect\" + 0.008*\"conserv\" + 0.008*\"liber\" + 0.007*\"franc\" + 0.006*\"pari\" + 0.005*\"page\" + 0.005*\"art\" + 0.005*\"year\" + 0.005*\"council\"\n", + "2019-01-16 04:06:44,570 : INFO : topic #24 (0.020): 0.009*\"ship\" + 0.007*\"act\" + 0.006*\"state\" + 0.006*\"oper\" + 0.005*\"new\" + 0.005*\"report\" + 0.005*\"time\" + 0.005*\"compani\" + 0.004*\"unit\" + 0.004*\"murder\"\n", + "2019-01-16 04:06:44,576 : INFO : topic diff=0.277660, rho=0.500000\n", + "2019-01-16 04:06:45,265 : INFO : PROGRESS: pass 0, at document #10000/4922894\n", + "2019-01-16 04:06:47,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:06:48,408 : INFO : topic #35 (0.020): 0.016*\"minist\" + 0.009*\"parti\" + 0.009*\"episod\" + 0.006*\"prime\" + 0.006*\"born\" + 0.005*\"march\" + 0.005*\"januari\" + 0.005*\"new\" + 0.005*\"american\" + 0.004*\"seri\"\n", + "2019-01-16 04:06:48,410 : INFO : topic #24 (0.020): 0.016*\"order\" + 0.012*\"regul\" + 0.011*\"ship\" + 0.010*\"amend\" + 0.008*\"act\" + 0.005*\"oper\" + 0.005*\"state\" + 0.005*\"servic\" + 0.004*\"report\" + 0.004*\"new\"\n", + "2019-01-16 04:06:48,412 : INFO : topic #39 (0.020): 0.009*\"servic\" + 0.009*\"unit\" + 0.007*\"univers\" + 0.007*\"air\" + 0.007*\"war\" + 0.007*\"nation\" + 0.007*\"state\" + 0.007*\"presid\" + 0.006*\"gener\" + 0.006*\"depart\"\n", + "2019-01-16 04:06:48,414 : INFO : topic #38 (0.020): 0.013*\"station\" + 0.009*\"state\" + 0.008*\"radio\" + 0.008*\"govern\" + 0.007*\"new\" + 0.007*\"dai\" + 0.006*\"right\" + 0.006*\"isra\" + 0.006*\"unit\" + 0.005*\"nation\"\n", + "2019-01-16 04:06:48,416 : INFO : topic #21 (0.020): 0.007*\"christian\" + 0.006*\"god\" + 0.006*\"church\" + 0.005*\"word\" + 0.005*\"centuri\" + 0.005*\"english\" + 0.005*\"peopl\" + 0.004*\"tradit\" + 0.004*\"movement\" + 0.004*\"religion\"\n", + "2019-01-16 04:06:48,421 : INFO : topic diff=0.243146, rho=0.447214\n", + "2019-01-16 04:06:49,091 : INFO : PROGRESS: pass 0, at document #12000/4922894\n", + "2019-01-16 04:06:51,565 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:06:52,100 : INFO : topic #1 (0.020): 0.022*\"record\" + 0.022*\"album\" + 0.021*\"music\" + 0.013*\"song\" + 0.013*\"releas\" + 0.012*\"track\" + 0.011*\"band\" + 0.010*\"vocal\" + 0.010*\"chart\" + 0.009*\"singl\"\n", + "2019-01-16 04:06:52,102 : INFO : topic #20 (0.020): 0.015*\"ic\" + 0.014*\"dai\" + 0.010*\"bodyguard\" + 0.010*\"ukrainian\" + 0.010*\"save\" + 0.009*\"holm\" + 0.009*\"evict\" + 0.009*\"week\" + 0.008*\"ukrain\" + 0.007*\"honei\"\n", + "2019-01-16 04:06:52,104 : INFO : topic #49 (0.020): 0.012*\"palestinian\" + 0.007*\"time\" + 0.007*\"number\" + 0.006*\"sweden\" + 0.006*\"swedish\" + 0.006*\"poland\" + 0.005*\"note\" + 0.004*\"symbol\" + 0.004*\"gmina\" + 0.004*\"mind\"\n", + "2019-01-16 04:06:52,105 : INFO : topic #23 (0.020): 0.034*\"ret\" + 0.016*\"cancer\" + 0.010*\"vitamin\" + 0.009*\"dow\" + 0.008*\"patient\" + 0.006*\"syrian\" + 0.006*\"leukemia\" + 0.006*\"ducati\" + 0.005*\"associ\" + 0.005*\"disord\"\n", + "2019-01-16 04:06:52,107 : INFO : topic #10 (0.020): 0.010*\"cell\" + 0.009*\"engin\" + 0.007*\"us\" + 0.006*\"model\" + 0.005*\"car\" + 0.005*\"merced\" + 0.005*\"product\" + 0.005*\"effect\" + 0.005*\"benz\" + 0.005*\"acid\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:06:52,113 : INFO : topic diff=0.225180, rho=0.408248\n", + "2019-01-16 04:06:52,836 : INFO : PROGRESS: pass 0, at document #14000/4922894\n", + "2019-01-16 04:06:55,314 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:06:55,847 : INFO : topic #39 (0.020): 0.011*\"servic\" + 0.011*\"unit\" + 0.010*\"air\" + 0.009*\"presid\" + 0.008*\"state\" + 0.007*\"univers\" + 0.007*\"nation\" + 0.007*\"war\" + 0.006*\"militari\" + 0.006*\"serv\"\n", + "2019-01-16 04:06:55,849 : INFO : topic #0 (0.020): 0.019*\"war\" + 0.017*\"armi\" + 0.015*\"battalion\" + 0.013*\"forc\" + 0.012*\"battl\" + 0.011*\"divis\" + 0.010*\"command\" + 0.008*\"attack\" + 0.007*\"regiment\" + 0.007*\"brigad\"\n", + "2019-01-16 04:06:55,850 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.044*\"univers\" + 0.023*\"unit\" + 0.018*\"colleg\" + 0.014*\"texa\" + 0.010*\"new\" + 0.009*\"carolina\" + 0.008*\"activ\" + 0.008*\"inact\" + 0.008*\"california\"\n", + "2019-01-16 04:06:55,852 : INFO : topic #45 (0.020): 0.018*\"art\" + 0.013*\"london\" + 0.011*\"john\" + 0.011*\"born\" + 0.010*\"american\" + 0.009*\"artist\" + 0.007*\"david\" + 0.007*\"director\" + 0.007*\"british\" + 0.006*\"galleri\"\n", + "2019-01-16 04:06:55,854 : INFO : topic #12 (0.020): 0.035*\"elect\" + 0.025*\"parti\" + 0.018*\"member\" + 0.013*\"vote\" + 0.013*\"polit\" + 0.009*\"law\" + 0.009*\"repres\" + 0.008*\"candid\" + 0.008*\"state\" + 0.007*\"nation\"\n", + "2019-01-16 04:06:55,860 : INFO : topic diff=0.218082, rho=0.377964\n", + "2019-01-16 04:06:56,545 : INFO : PROGRESS: pass 0, at document #16000/4922894\n", + "2019-01-16 04:06:58,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:06:59,425 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.045*\"univers\" + 0.023*\"unit\" + 0.016*\"colleg\" + 0.014*\"texa\" + 0.012*\"new\" + 0.011*\"carolina\" + 0.009*\"california\" + 0.008*\"washington\" + 0.008*\"virginia\"\n", + "2019-01-16 04:06:59,427 : INFO : topic #40 (0.020): 0.015*\"bar\" + 0.014*\"text\" + 0.012*\"till\" + 0.010*\"color\" + 0.007*\"africa\" + 0.007*\"coloni\" + 0.007*\"african\" + 0.006*\"europ\" + 0.006*\"studi\" + 0.006*\"shift\"\n", + "2019-01-16 04:06:59,428 : INFO : topic #45 (0.020): 0.016*\"art\" + 0.013*\"london\" + 0.013*\"john\" + 0.012*\"born\" + 0.011*\"american\" + 0.008*\"artist\" + 0.008*\"david\" + 0.007*\"british\" + 0.006*\"galleri\" + 0.006*\"director\"\n", + "2019-01-16 04:06:59,430 : INFO : topic #33 (0.020): 0.012*\"bank\" + 0.009*\"rate\" + 0.009*\"measur\" + 0.008*\"price\" + 0.008*\"cat\" + 0.007*\"currenc\" + 0.007*\"random\" + 0.007*\"stock\" + 0.007*\"breed\" + 0.007*\"monei\"\n", + "2019-01-16 04:06:59,432 : INFO : topic #19 (0.020): 0.008*\"new\" + 0.008*\"nelson\" + 0.008*\"van\" + 0.006*\"stan\" + 0.005*\"dai\" + 0.005*\"time\" + 0.005*\"host\" + 0.005*\"plai\" + 0.005*\"bob\" + 0.005*\"jazz\"\n", + "2019-01-16 04:06:59,438 : INFO : topic diff=0.231194, rho=0.353553\n", + "2019-01-16 04:07:00,071 : INFO : PROGRESS: pass 0, at document #18000/4922894\n", + "2019-01-16 04:07:02,433 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:02,969 : INFO : topic #36 (0.020): 0.032*\"art\" + 0.027*\"design\" + 0.023*\"work\" + 0.014*\"new\" + 0.011*\"museum\" + 0.011*\"york\" + 0.010*\"paint\" + 0.010*\"collect\" + 0.009*\"exhibit\" + 0.008*\"bridg\"\n", + "2019-01-16 04:07:02,971 : INFO : topic #20 (0.020): 0.034*\"dai\" + 0.015*\"nomin\" + 0.015*\"save\" + 0.014*\"evict\" + 0.014*\"fight\" + 0.013*\"contest\" + 0.012*\"ic\" + 0.010*\"win\" + 0.010*\"vote\" + 0.010*\"box\"\n", + "2019-01-16 04:07:02,973 : INFO : topic #23 (0.020): 0.025*\"ret\" + 0.017*\"cancer\" + 0.013*\"patient\" + 0.013*\"syrian\" + 0.007*\"ducati\" + 0.006*\"disord\" + 0.006*\"honda\" + 0.006*\"marvel\" + 0.006*\"diseas\" + 0.005*\"brain\"\n", + "2019-01-16 04:07:02,975 : INFO : topic #21 (0.020): 0.008*\"god\" + 0.006*\"centuri\" + 0.006*\"peopl\" + 0.006*\"word\" + 0.006*\"christian\" + 0.006*\"english\" + 0.005*\"form\" + 0.005*\"languag\" + 0.004*\"church\" + 0.004*\"book\"\n", + "2019-01-16 04:07:02,977 : INFO : topic #40 (0.020): 0.015*\"text\" + 0.014*\"bar\" + 0.010*\"till\" + 0.010*\"color\" + 0.008*\"africa\" + 0.007*\"studi\" + 0.007*\"african\" + 0.006*\"coloni\" + 0.006*\"europ\" + 0.005*\"theori\"\n", + "2019-01-16 04:07:02,983 : INFO : topic diff=0.228150, rho=0.333333\n", + "2019-01-16 04:07:08,307 : INFO : -11.718 per-word bound, 3369.8 perplexity estimate based on a held-out corpus of 2000 documents with 557283 words\n", + "2019-01-16 04:07:08,308 : INFO : PROGRESS: pass 0, at document #20000/4922894\n", + "2019-01-16 04:07:10,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:11,134 : INFO : topic #41 (0.020): 0.022*\"book\" + 0.018*\"publish\" + 0.012*\"new\" + 0.011*\"work\" + 0.010*\"stori\" + 0.008*\"novel\" + 0.008*\"magazin\" + 0.008*\"award\" + 0.007*\"seri\" + 0.007*\"film\"\n", + "2019-01-16 04:07:11,135 : INFO : topic #42 (0.020): 0.020*\"king\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.008*\"centuri\" + 0.008*\"defeat\" + 0.007*\"great\" + 0.007*\"greek\" + 0.006*\"ancient\" + 0.006*\"kingdom\" + 0.006*\"emperor\"\n", + "2019-01-16 04:07:11,138 : INFO : topic #13 (0.020): 0.063*\"state\" + 0.047*\"univers\" + 0.023*\"unit\" + 0.017*\"texa\" + 0.014*\"colleg\" + 0.012*\"new\" + 0.011*\"american\" + 0.009*\"california\" + 0.009*\"carolina\" + 0.008*\"washington\"\n", + "2019-01-16 04:07:11,140 : INFO : topic #31 (0.020): 0.044*\"australian\" + 0.030*\"australia\" + 0.014*\"sydnei\" + 0.013*\"rugbi\" + 0.011*\"chines\" + 0.011*\"wale\" + 0.010*\"south\" + 0.009*\"china\" + 0.009*\"melbourn\" + 0.008*\"year\"\n", + "2019-01-16 04:07:11,142 : INFO : topic #1 (0.020): 0.033*\"album\" + 0.025*\"record\" + 0.020*\"music\" + 0.018*\"releas\" + 0.018*\"song\" + 0.016*\"band\" + 0.013*\"track\" + 0.012*\"singl\" + 0.011*\"chart\" + 0.011*\"guitar\"\n", + "2019-01-16 04:07:11,148 : INFO : topic diff=0.240388, rho=0.316228\n", + "2019-01-16 04:07:11,864 : INFO : PROGRESS: pass 0, at document #22000/4922894\n", + "2019-01-16 04:07:14,273 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:14,811 : INFO : topic #37 (0.020): 0.014*\"releas\" + 0.011*\"song\" + 0.010*\"love\" + 0.006*\"appear\" + 0.006*\"album\" + 0.005*\"time\" + 0.005*\"live\" + 0.005*\"like\" + 0.005*\"man\" + 0.004*\"charact\"\n", + "2019-01-16 04:07:14,812 : INFO : topic #45 (0.020): 0.022*\"born\" + 0.019*\"temp\" + 0.016*\"london\" + 0.016*\"american\" + 0.014*\"jame\" + 0.011*\"john\" + 0.009*\"david\" + 0.009*\"royal\" + 0.009*\"art\" + 0.008*\"british\"\n", + "2019-01-16 04:07:14,814 : INFO : topic #1 (0.020): 0.033*\"album\" + 0.025*\"record\" + 0.020*\"releas\" + 0.019*\"song\" + 0.019*\"music\" + 0.016*\"band\" + 0.015*\"track\" + 0.013*\"singl\" + 0.012*\"chart\" + 0.010*\"guitar\"\n", + "2019-01-16 04:07:14,816 : INFO : topic #28 (0.020): 0.021*\"build\" + 0.018*\"hous\" + 0.016*\"church\" + 0.013*\"built\" + 0.012*\"jpg\" + 0.011*\"file\" + 0.011*\"histor\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.008*\"list\"\n", + "2019-01-16 04:07:14,818 : INFO : topic #12 (0.020): 0.042*\"elect\" + 0.035*\"parti\" + 0.021*\"member\" + 0.017*\"polit\" + 0.015*\"vote\" + 0.011*\"democrat\" + 0.010*\"candid\" + 0.010*\"nation\" + 0.010*\"committe\" + 0.009*\"repres\"\n", + "2019-01-16 04:07:14,823 : INFO : topic diff=0.260981, rho=0.301511\n", + "2019-01-16 04:07:15,490 : INFO : PROGRESS: pass 0, at document #24000/4922894\n", + "2019-01-16 04:07:17,845 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:18,386 : INFO : topic #7 (0.020): 0.015*\"mathemat\" + 0.011*\"space\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"point\" + 0.007*\"theorem\" + 0.007*\"order\" + 0.007*\"group\" + 0.007*\"number\"\n", + "2019-01-16 04:07:18,388 : INFO : topic #22 (0.020): 0.032*\"famili\" + 0.031*\"popul\" + 0.030*\"ag\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"femal\" + 0.018*\"male\" + 0.017*\"citi\" + 0.016*\"censu\" + 0.016*\"live\"\n", + "2019-01-16 04:07:18,391 : INFO : topic #4 (0.020): 0.095*\"school\" + 0.024*\"high\" + 0.021*\"student\" + 0.016*\"colleg\" + 0.016*\"district\" + 0.013*\"educ\" + 0.013*\"citi\" + 0.011*\"state\" + 0.009*\"year\" + 0.009*\"street\"\n", + "2019-01-16 04:07:18,392 : INFO : topic #28 (0.020): 0.022*\"build\" + 0.020*\"hous\" + 0.017*\"church\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.010*\"histor\" + 0.010*\"centuri\" + 0.010*\"file\" + 0.009*\"place\" + 0.008*\"list\"\n", + "2019-01-16 04:07:18,394 : INFO : topic #14 (0.020): 0.011*\"univers\" + 0.011*\"compani\" + 0.010*\"research\" + 0.008*\"scienc\" + 0.008*\"develop\" + 0.008*\"institut\" + 0.007*\"program\" + 0.007*\"manag\" + 0.007*\"public\" + 0.007*\"educ\"\n", + "2019-01-16 04:07:18,401 : INFO : topic diff=0.267148, rho=0.288675\n", + "2019-01-16 04:07:19,139 : INFO : PROGRESS: pass 0, at document #26000/4922894\n", + "2019-01-16 04:07:21,437 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:07:21,980 : INFO : topic #10 (0.020): 0.015*\"engin\" + 0.009*\"cell\" + 0.009*\"vehicl\" + 0.009*\"car\" + 0.007*\"product\" + 0.007*\"model\" + 0.007*\"type\" + 0.006*\"acid\" + 0.006*\"produc\" + 0.006*\"electr\"\n", + "2019-01-16 04:07:21,982 : INFO : topic #18 (0.020): 0.007*\"surfac\" + 0.005*\"magnet\" + 0.005*\"form\" + 0.005*\"imag\" + 0.005*\"light\" + 0.005*\"resist\" + 0.005*\"high\" + 0.005*\"wave\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 04:07:21,984 : INFO : topic #0 (0.020): 0.025*\"armi\" + 0.024*\"war\" + 0.016*\"regiment\" + 0.016*\"forc\" + 0.013*\"battl\" + 0.013*\"command\" + 0.013*\"divis\" + 0.010*\"attack\" + 0.009*\"captain\" + 0.009*\"lieuten\"\n", + "2019-01-16 04:07:21,986 : INFO : topic #37 (0.020): 0.011*\"releas\" + 0.009*\"love\" + 0.009*\"song\" + 0.006*\"appear\" + 0.006*\"man\" + 0.005*\"time\" + 0.005*\"like\" + 0.005*\"live\" + 0.004*\"video\" + 0.004*\"friend\"\n", + "2019-01-16 04:07:21,988 : INFO : topic #35 (0.020): 0.036*\"minist\" + 0.020*\"prime\" + 0.006*\"born\" + 0.006*\"announc\" + 0.006*\"indonesia\" + 0.005*\"seri\" + 0.005*\"chan\" + 0.004*\"indonesian\" + 0.004*\"affair\" + 0.004*\"episod\"\n", + "2019-01-16 04:07:21,993 : INFO : topic diff=0.270564, rho=0.277350\n", + "2019-01-16 04:07:22,643 : INFO : PROGRESS: pass 0, at document #28000/4922894\n", + "2019-01-16 04:07:24,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:25,443 : INFO : topic #9 (0.020): 0.056*\"film\" + 0.019*\"episod\" + 0.017*\"seri\" + 0.017*\"award\" + 0.016*\"best\" + 0.015*\"televis\" + 0.012*\"star\" + 0.010*\"produc\" + 0.009*\"actor\" + 0.009*\"role\"\n", + "2019-01-16 04:07:25,445 : INFO : topic #29 (0.020): 0.032*\"team\" + 0.029*\"leagu\" + 0.028*\"game\" + 0.027*\"plai\" + 0.024*\"season\" + 0.019*\"club\" + 0.018*\"player\" + 0.015*\"match\" + 0.012*\"cup\" + 0.011*\"final\"\n", + "2019-01-16 04:07:25,447 : INFO : topic #16 (0.020): 0.013*\"church\" + 0.012*\"son\" + 0.011*\"di\" + 0.010*\"bishop\" + 0.009*\"lord\" + 0.009*\"marri\" + 0.008*\"daughter\" + 0.008*\"joseph\" + 0.008*\"cathol\" + 0.008*\"father\"\n", + "2019-01-16 04:07:25,449 : INFO : topic #22 (0.020): 0.037*\"popul\" + 0.031*\"famili\" + 0.031*\"ag\" + 0.021*\"household\" + 0.021*\"counti\" + 0.020*\"femal\" + 0.019*\"male\" + 0.018*\"citi\" + 0.018*\"live\" + 0.018*\"peopl\"\n", + "2019-01-16 04:07:25,450 : INFO : topic #45 (0.020): 0.033*\"born\" + 0.014*\"american\" + 0.014*\"london\" + 0.012*\"john\" + 0.011*\"jame\" + 0.011*\"david\" + 0.008*\"temp\" + 0.008*\"michael\" + 0.008*\"british\" + 0.007*\"peter\"\n", + "2019-01-16 04:07:25,456 : INFO : topic diff=0.280272, rho=0.267261\n", + "2019-01-16 04:07:26,133 : INFO : PROGRESS: pass 0, at document #30000/4922894\n", + "2019-01-16 04:07:28,402 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:28,946 : INFO : topic #14 (0.020): 0.013*\"univers\" + 0.012*\"research\" + 0.011*\"compani\" + 0.009*\"develop\" + 0.009*\"institut\" + 0.008*\"scienc\" + 0.007*\"educ\" + 0.007*\"busi\" + 0.007*\"manag\" + 0.007*\"program\"\n", + "2019-01-16 04:07:28,948 : INFO : topic #33 (0.020): 0.020*\"bank\" + 0.015*\"rate\" + 0.011*\"valu\" + 0.010*\"price\" + 0.009*\"measur\" + 0.008*\"factor\" + 0.008*\"format\" + 0.007*\"increas\" + 0.006*\"stock\" + 0.006*\"period\"\n", + "2019-01-16 04:07:28,950 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.041*\"univers\" + 0.022*\"unit\" + 0.016*\"carolina\" + 0.016*\"american\" + 0.015*\"virginia\" + 0.014*\"new\" + 0.013*\"colleg\" + 0.011*\"texa\" + 0.011*\"california\"\n", + "2019-01-16 04:07:28,952 : INFO : topic #10 (0.020): 0.015*\"engin\" + 0.010*\"car\" + 0.008*\"cell\" + 0.008*\"product\" + 0.008*\"vehicl\" + 0.007*\"ga\" + 0.007*\"model\" + 0.007*\"produc\" + 0.007*\"electr\" + 0.006*\"acid\"\n", + "2019-01-16 04:07:28,953 : INFO : topic #23 (0.020): 0.029*\"ret\" + 0.023*\"cancer\" + 0.015*\"patient\" + 0.014*\"marvel\" + 0.011*\"disord\" + 0.010*\"diseas\" + 0.010*\"superman\" + 0.010*\"medic\" + 0.009*\"brain\" + 0.009*\"vol\"\n", + "2019-01-16 04:07:28,960 : INFO : topic diff=0.295752, rho=0.258199\n", + "2019-01-16 04:07:29,569 : INFO : PROGRESS: pass 0, at document #32000/4922894\n", + "2019-01-16 04:07:31,823 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:32,367 : INFO : topic #3 (0.020): 0.028*\"royal\" + 0.026*\"william\" + 0.025*\"john\" + 0.018*\"capt\" + 0.014*\"georg\" + 0.012*\"jame\" + 0.012*\"henri\" + 0.011*\"thoma\" + 0.011*\"edward\" + 0.011*\"charl\"\n", + "2019-01-16 04:07:32,369 : INFO : topic #24 (0.020): 0.025*\"ship\" + 0.008*\"kill\" + 0.008*\"shipbuild\" + 0.007*\"polic\" + 0.006*\"report\" + 0.005*\"order\" + 0.005*\"crew\" + 0.005*\"damag\" + 0.005*\"compani\" + 0.005*\"oper\"\n", + "2019-01-16 04:07:32,372 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.019*\"del\" + 0.016*\"mexico\" + 0.014*\"spanish\" + 0.010*\"santa\" + 0.010*\"lo\" + 0.009*\"juan\" + 0.008*\"francisco\" + 0.008*\"brazil\" + 0.008*\"spain\"\n", + "2019-01-16 04:07:32,374 : INFO : topic #28 (0.020): 0.023*\"build\" + 0.019*\"hous\" + 0.015*\"church\" + 0.014*\"built\" + 0.012*\"file\" + 0.011*\"jpg\" + 0.010*\"histor\" + 0.010*\"svg\" + 0.009*\"centuri\" + 0.009*\"place\"\n", + "2019-01-16 04:07:32,376 : INFO : topic #48 (0.020): 0.060*\"januari\" + 0.054*\"octob\" + 0.052*\"septemb\" + 0.051*\"march\" + 0.049*\"novemb\" + 0.047*\"august\" + 0.046*\"april\" + 0.044*\"juli\" + 0.044*\"june\" + 0.043*\"februari\"\n", + "2019-01-16 04:07:32,382 : INFO : topic diff=0.294107, rho=0.250000\n", + "2019-01-16 04:07:33,061 : INFO : PROGRESS: pass 0, at document #34000/4922894\n", + "2019-01-16 04:07:35,381 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:35,925 : INFO : topic #32 (0.020): 0.033*\"speci\" + 0.012*\"famili\" + 0.011*\"genu\" + 0.010*\"white\" + 0.009*\"black\" + 0.008*\"plant\" + 0.008*\"red\" + 0.008*\"bird\" + 0.006*\"descript\" + 0.006*\"brown\"\n", + "2019-01-16 04:07:35,927 : INFO : topic #35 (0.020): 0.027*\"minist\" + 0.017*\"prime\" + 0.011*\"indonesia\" + 0.011*\"miscarriag\" + 0.009*\"indonesian\" + 0.008*\"bulgarian\" + 0.007*\"emili\" + 0.006*\"elei\" + 0.005*\"born\" + 0.005*\"java\"\n", + "2019-01-16 04:07:35,929 : INFO : topic #43 (0.020): 0.026*\"san\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.014*\"spanish\" + 0.012*\"brazil\" + 0.009*\"santa\" + 0.008*\"lo\" + 0.008*\"spain\" + 0.008*\"francisco\" + 0.008*\"rio\"\n", + "2019-01-16 04:07:35,930 : INFO : topic #26 (0.020): 0.044*\"women\" + 0.037*\"men\" + 0.022*\"japan\" + 0.022*\"olymp\" + 0.019*\"rank\" + 0.017*\"japanes\" + 0.017*\"medal\" + 0.017*\"event\" + 0.015*\"athlet\" + 0.013*\"gold\"\n", + "2019-01-16 04:07:35,932 : INFO : topic #22 (0.020): 0.039*\"popul\" + 0.034*\"ag\" + 0.027*\"famili\" + 0.024*\"household\" + 0.023*\"counti\" + 0.022*\"year\" + 0.020*\"live\" + 0.019*\"femal\" + 0.019*\"peopl\" + 0.018*\"censu\"\n", + "2019-01-16 04:07:35,938 : INFO : topic diff=0.295554, rho=0.242536\n", + "2019-01-16 04:07:36,638 : INFO : PROGRESS: pass 0, at document #36000/4922894\n", + "2019-01-16 04:07:38,997 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:39,542 : INFO : topic #32 (0.020): 0.030*\"speci\" + 0.011*\"famili\" + 0.011*\"white\" + 0.010*\"genu\" + 0.009*\"black\" + 0.009*\"red\" + 0.009*\"plant\" + 0.009*\"bird\" + 0.006*\"flower\" + 0.006*\"brown\"\n", + "2019-01-16 04:07:39,543 : INFO : topic #7 (0.020): 0.013*\"theori\" + 0.012*\"function\" + 0.012*\"space\" + 0.011*\"point\" + 0.011*\"vector\" + 0.009*\"set\" + 0.009*\"mathemat\" + 0.009*\"line\" + 0.007*\"gener\" + 0.007*\"number\"\n", + "2019-01-16 04:07:39,545 : INFO : topic #4 (0.020): 0.109*\"school\" + 0.025*\"student\" + 0.025*\"high\" + 0.020*\"colleg\" + 0.018*\"district\" + 0.017*\"educ\" + 0.012*\"year\" + 0.012*\"state\" + 0.010*\"citi\" + 0.009*\"grade\"\n", + "2019-01-16 04:07:39,547 : INFO : topic #17 (0.020): 0.032*\"race\" + 0.024*\"championship\" + 0.023*\"world\" + 0.012*\"team\" + 0.012*\"event\" + 0.011*\"won\" + 0.011*\"place\" + 0.011*\"time\" + 0.010*\"finish\" + 0.009*\"tour\"\n", + "2019-01-16 04:07:39,548 : INFO : topic #12 (0.020): 0.047*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.015*\"vote\" + 0.015*\"committe\" + 0.013*\"polit\" + 0.012*\"council\" + 0.012*\"democrat\" + 0.010*\"nation\" + 0.010*\"serv\"\n", + "2019-01-16 04:07:39,554 : INFO : topic diff=0.301072, rho=0.235702\n", + "2019-01-16 04:07:40,202 : INFO : PROGRESS: pass 0, at document #38000/4922894\n", + "2019-01-16 04:07:42,458 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:43,005 : INFO : topic #34 (0.020): 0.059*\"canada\" + 0.049*\"canadian\" + 0.032*\"languag\" + 0.019*\"quebec\" + 0.017*\"denmark\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.014*\"ontario\" + 0.013*\"english\" + 0.012*\"singapor\"\n", + "2019-01-16 04:07:43,007 : INFO : topic #40 (0.020): 0.017*\"bar\" + 0.016*\"african\" + 0.015*\"text\" + 0.014*\"africa\" + 0.010*\"till\" + 0.007*\"studi\" + 0.007*\"coloni\" + 0.006*\"color\" + 0.005*\"shift\" + 0.005*\"european\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:07:43,009 : INFO : topic #25 (0.020): 0.022*\"draw\" + 0.021*\"clai\" + 0.020*\"final\" + 0.017*\"def\" + 0.017*\"tournament\" + 0.016*\"open\" + 0.015*\"hard\" + 0.014*\"doubl\" + 0.012*\"titl\" + 0.011*\"runner\"\n", + "2019-01-16 04:07:43,011 : INFO : topic #27 (0.020): 0.025*\"german\" + 0.025*\"russian\" + 0.019*\"germani\" + 0.015*\"russia\" + 0.014*\"soviet\" + 0.014*\"jewish\" + 0.013*\"moscow\" + 0.012*\"israel\" + 0.009*\"polish\" + 0.008*\"rabbi\"\n", + "2019-01-16 04:07:43,012 : INFO : topic #48 (0.020): 0.061*\"octob\" + 0.058*\"januari\" + 0.054*\"march\" + 0.052*\"septemb\" + 0.051*\"novemb\" + 0.049*\"april\" + 0.048*\"august\" + 0.047*\"june\" + 0.046*\"decemb\" + 0.045*\"juli\"\n", + "2019-01-16 04:07:43,018 : INFO : topic diff=0.293284, rho=0.229416\n", + "2019-01-16 04:07:48,367 : INFO : -11.688 per-word bound, 3299.5 perplexity estimate based on a held-out corpus of 2000 documents with 564343 words\n", + "2019-01-16 04:07:48,368 : INFO : PROGRESS: pass 0, at document #40000/4922894\n", + "2019-01-16 04:07:50,697 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:51,245 : INFO : topic #23 (0.020): 0.026*\"spider\" + 0.018*\"medic\" + 0.016*\"cancer\" + 0.015*\"patient\" + 0.013*\"hospit\" + 0.013*\"diseas\" + 0.013*\"medicin\" + 0.012*\"clinic\" + 0.012*\"marvel\" + 0.011*\"ret\"\n", + "2019-01-16 04:07:51,246 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.010*\"emperor\" + 0.009*\"centuri\" + 0.008*\"greek\" + 0.008*\"princ\" + 0.007*\"templ\" + 0.007*\"roman\" + 0.007*\"empir\" + 0.007*\"ancient\" + 0.006*\"son\"\n", + "2019-01-16 04:07:51,248 : INFO : topic #11 (0.020): 0.028*\"state\" + 0.022*\"presid\" + 0.022*\"law\" + 0.021*\"court\" + 0.014*\"act\" + 0.011*\"offic\" + 0.010*\"feder\" + 0.010*\"unit\" + 0.009*\"governor\" + 0.008*\"senat\"\n", + "2019-01-16 04:07:51,250 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"right\" + 0.009*\"countri\" + 0.009*\"station\" + 0.009*\"state\" + 0.009*\"nation\" + 0.009*\"new\" + 0.006*\"radio\" + 0.006*\"unit\" + 0.006*\"union\"\n", + "2019-01-16 04:07:51,252 : INFO : topic #48 (0.020): 0.062*\"octob\" + 0.058*\"januari\" + 0.056*\"septemb\" + 0.055*\"march\" + 0.053*\"novemb\" + 0.052*\"april\" + 0.051*\"august\" + 0.048*\"june\" + 0.048*\"decemb\" + 0.046*\"juli\"\n", + "2019-01-16 04:07:51,259 : INFO : topic diff=0.289450, rho=0.223607\n", + "2019-01-16 04:07:51,872 : INFO : PROGRESS: pass 0, at document #42000/4922894\n", + "2019-01-16 04:07:54,215 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:54,761 : INFO : topic #3 (0.020): 0.027*\"william\" + 0.026*\"john\" + 0.017*\"royal\" + 0.015*\"georg\" + 0.012*\"jame\" + 0.012*\"thoma\" + 0.010*\"robert\" + 0.010*\"henri\" + 0.010*\"edward\" + 0.010*\"sir\"\n", + "2019-01-16 04:07:54,763 : INFO : topic #36 (0.020): 0.049*\"art\" + 0.033*\"work\" + 0.024*\"museum\" + 0.018*\"design\" + 0.017*\"artist\" + 0.017*\"new\" + 0.017*\"paint\" + 0.015*\"collect\" + 0.014*\"exhibit\" + 0.013*\"york\"\n", + "2019-01-16 04:07:54,765 : INFO : topic #16 (0.020): 0.015*\"son\" + 0.015*\"church\" + 0.015*\"di\" + 0.012*\"bishop\" + 0.011*\"marri\" + 0.009*\"daughter\" + 0.008*\"famili\" + 0.008*\"death\" + 0.008*\"cathol\" + 0.008*\"father\"\n", + "2019-01-16 04:07:54,767 : INFO : topic #48 (0.020): 0.062*\"octob\" + 0.060*\"march\" + 0.058*\"januari\" + 0.057*\"novemb\" + 0.056*\"septemb\" + 0.054*\"april\" + 0.052*\"august\" + 0.050*\"decemb\" + 0.049*\"june\" + 0.048*\"juli\"\n", + "2019-01-16 04:07:54,768 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.014*\"famili\" + 0.011*\"white\" + 0.009*\"red\" + 0.009*\"black\" + 0.009*\"plant\" + 0.009*\"genu\" + 0.008*\"bird\" + 0.006*\"brown\" + 0.006*\"blue\"\n", + "2019-01-16 04:07:54,774 : INFO : topic diff=0.279864, rho=0.218218\n", + "2019-01-16 04:07:55,437 : INFO : PROGRESS: pass 0, at document #44000/4922894\n", + "2019-01-16 04:07:57,691 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:07:58,240 : INFO : topic #22 (0.020): 0.039*\"popul\" + 0.036*\"counti\" + 0.035*\"ag\" + 0.024*\"famili\" + 0.024*\"household\" + 0.022*\"year\" + 0.022*\"township\" + 0.020*\"live\" + 0.020*\"town\" + 0.020*\"femal\"\n", + "2019-01-16 04:07:58,242 : INFO : topic #2 (0.020): 0.035*\"german\" + 0.031*\"der\" + 0.021*\"von\" + 0.017*\"und\" + 0.017*\"berlin\" + 0.015*\"die\" + 0.010*\"germani\" + 0.009*\"steel\" + 0.008*\"flight\" + 0.008*\"space\"\n", + "2019-01-16 04:07:58,244 : INFO : topic #5 (0.020): 0.014*\"game\" + 0.010*\"us\" + 0.007*\"develop\" + 0.007*\"base\" + 0.007*\"version\" + 0.007*\"data\" + 0.006*\"network\" + 0.006*\"design\" + 0.006*\"softwar\" + 0.006*\"control\"\n", + "2019-01-16 04:07:58,246 : INFO : topic #41 (0.020): 0.027*\"book\" + 0.025*\"publish\" + 0.015*\"work\" + 0.013*\"new\" + 0.012*\"stori\" + 0.011*\"novel\" + 0.010*\"magazin\" + 0.009*\"writer\" + 0.008*\"edit\" + 0.008*\"award\"\n", + "2019-01-16 04:07:58,248 : INFO : topic #12 (0.020): 0.052*\"elect\" + 0.048*\"parti\" + 0.024*\"member\" + 0.019*\"conserv\" + 0.017*\"labour\" + 0.016*\"democrat\" + 0.015*\"vote\" + 0.013*\"council\" + 0.013*\"polit\" + 0.011*\"liber\"\n", + "2019-01-16 04:07:58,254 : INFO : topic diff=0.273934, rho=0.213201\n", + "2019-01-16 04:07:58,894 : INFO : PROGRESS: pass 0, at document #46000/4922894\n", + "2019-01-16 04:08:01,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:01,741 : INFO : topic #43 (0.020): 0.026*\"san\" + 0.017*\"spanish\" + 0.015*\"mexico\" + 0.014*\"del\" + 0.010*\"juan\" + 0.010*\"spain\" + 0.010*\"brazil\" + 0.010*\"santa\" + 0.010*\"puerto\" + 0.009*\"josé\"\n", + "2019-01-16 04:08:01,743 : INFO : topic #5 (0.020): 0.013*\"game\" + 0.010*\"us\" + 0.007*\"base\" + 0.007*\"develop\" + 0.007*\"data\" + 0.007*\"version\" + 0.007*\"design\" + 0.006*\"network\" + 0.006*\"featur\" + 0.006*\"control\"\n", + "2019-01-16 04:08:01,745 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.030*\"univers\" + 0.023*\"american\" + 0.021*\"new\" + 0.020*\"unit\" + 0.018*\"california\" + 0.013*\"washington\" + 0.012*\"texa\" + 0.011*\"carolina\" + 0.010*\"york\"\n", + "2019-01-16 04:08:01,746 : INFO : topic #47 (0.020): 0.020*\"station\" + 0.017*\"river\" + 0.014*\"line\" + 0.014*\"road\" + 0.013*\"island\" + 0.013*\"north\" + 0.012*\"south\" + 0.012*\"area\" + 0.012*\"railwai\" + 0.010*\"lake\"\n", + "2019-01-16 04:08:01,748 : INFO : topic #4 (0.020): 0.111*\"school\" + 0.030*\"colleg\" + 0.029*\"student\" + 0.025*\"high\" + 0.019*\"educ\" + 0.013*\"year\" + 0.013*\"district\" + 0.010*\"state\" + 0.010*\"citi\" + 0.008*\"grade\"\n", + "2019-01-16 04:08:01,753 : INFO : topic diff=0.265456, rho=0.208514\n", + "2019-01-16 04:08:02,400 : INFO : PROGRESS: pass 0, at document #48000/4922894\n", + "2019-01-16 04:08:04,660 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:05,210 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.010*\"right\" + 0.010*\"nation\" + 0.009*\"countri\" + 0.008*\"state\" + 0.008*\"new\" + 0.007*\"union\" + 0.007*\"station\" + 0.006*\"unit\" + 0.006*\"polit\"\n", + "2019-01-16 04:08:05,212 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.046*\"parti\" + 0.025*\"member\" + 0.017*\"democrat\" + 0.017*\"conserv\" + 0.016*\"vote\" + 0.014*\"polit\" + 0.013*\"council\" + 0.012*\"labour\" + 0.011*\"liber\"\n", + "2019-01-16 04:08:05,214 : INFO : topic #37 (0.020): 0.007*\"love\" + 0.007*\"man\" + 0.006*\"time\" + 0.006*\"appear\" + 0.006*\"releas\" + 0.005*\"charact\" + 0.005*\"like\" + 0.005*\"friend\" + 0.004*\"want\" + 0.004*\"end\"\n", + "2019-01-16 04:08:05,216 : INFO : topic #46 (0.020): 0.052*\"philippin\" + 0.030*\"border\" + 0.023*\"romanian\" + 0.017*\"iraqi\" + 0.017*\"ang\" + 0.016*\"romania\" + 0.015*\"iraq\" + 0.013*\"style\" + 0.013*\"manila\" + 0.012*\"collaps\"\n", + "2019-01-16 04:08:05,218 : INFO : topic #11 (0.020): 0.029*\"state\" + 0.024*\"presid\" + 0.022*\"law\" + 0.020*\"court\" + 0.013*\"act\" + 0.012*\"governor\" + 0.010*\"offic\" + 0.010*\"feder\" + 0.010*\"unit\" + 0.008*\"senat\"\n", + "2019-01-16 04:08:05,224 : INFO : topic diff=0.258795, rho=0.204124\n", + "2019-01-16 04:08:05,824 : INFO : PROGRESS: pass 0, at document #50000/4922894\n", + "2019-01-16 04:08:08,160 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:08,708 : INFO : topic #36 (0.020): 0.053*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.019*\"paint\" + 0.018*\"design\" + 0.017*\"artist\" + 0.016*\"new\" + 0.015*\"exhibit\" + 0.015*\"collect\" + 0.013*\"york\"\n", + "2019-01-16 04:08:08,710 : INFO : topic #40 (0.020): 0.015*\"bar\" + 0.014*\"african\" + 0.013*\"text\" + 0.013*\"africa\" + 0.010*\"till\" + 0.007*\"coloni\" + 0.007*\"studi\" + 0.007*\"color\" + 0.006*\"shift\" + 0.006*\"cultur\"\n", + "2019-01-16 04:08:08,711 : INFO : topic #48 (0.020): 0.059*\"januari\" + 0.059*\"octob\" + 0.059*\"novemb\" + 0.058*\"septemb\" + 0.055*\"april\" + 0.054*\"august\" + 0.054*\"march\" + 0.054*\"june\" + 0.052*\"decemb\" + 0.050*\"juli\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:08:08,713 : INFO : topic #21 (0.020): 0.008*\"word\" + 0.006*\"languag\" + 0.006*\"english\" + 0.006*\"god\" + 0.005*\"centuri\" + 0.005*\"form\" + 0.005*\"christian\" + 0.005*\"tradit\" + 0.005*\"person\" + 0.005*\"peopl\"\n", + "2019-01-16 04:08:08,715 : INFO : topic #49 (0.020): 0.035*\"swedish\" + 0.027*\"poland\" + 0.025*\"sweden\" + 0.018*\"east\" + 0.016*\"alt\" + 0.015*\"gmina\" + 0.014*\"voivodeship\" + 0.013*\"approxim\" + 0.012*\"greater\" + 0.012*\"li\"\n", + "2019-01-16 04:08:08,721 : INFO : topic diff=0.245166, rho=0.200000\n", + "2019-01-16 04:08:09,411 : INFO : PROGRESS: pass 0, at document #52000/4922894\n", + "2019-01-16 04:08:11,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:12,236 : INFO : topic #21 (0.020): 0.007*\"word\" + 0.006*\"languag\" + 0.005*\"centuri\" + 0.005*\"person\" + 0.005*\"english\" + 0.005*\"god\" + 0.005*\"form\" + 0.005*\"tradit\" + 0.005*\"christian\" + 0.005*\"peopl\"\n", + "2019-01-16 04:08:12,238 : INFO : topic #25 (0.020): 0.021*\"final\" + 0.018*\"tournament\" + 0.017*\"round\" + 0.016*\"hard\" + 0.016*\"draw\" + 0.016*\"open\" + 0.016*\"winner\" + 0.015*\"doubl\" + 0.014*\"runner\" + 0.012*\"clai\"\n", + "2019-01-16 04:08:12,240 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.013*\"compani\" + 0.012*\"research\" + 0.011*\"develop\" + 0.009*\"institut\" + 0.009*\"scienc\" + 0.008*\"manag\" + 0.008*\"busi\" + 0.007*\"work\" + 0.007*\"intern\"\n", + "2019-01-16 04:08:12,242 : INFO : topic #0 (0.020): 0.031*\"war\" + 0.029*\"armi\" + 0.020*\"forc\" + 0.017*\"command\" + 0.015*\"battl\" + 0.015*\"regiment\" + 0.015*\"divis\" + 0.011*\"attack\" + 0.010*\"corp\" + 0.010*\"infantri\"\n", + "2019-01-16 04:08:12,244 : INFO : topic #8 (0.020): 0.040*\"district\" + 0.038*\"villag\" + 0.020*\"india\" + 0.018*\"counti\" + 0.018*\"popul\" + 0.018*\"region\" + 0.017*\"indian\" + 0.016*\"provinc\" + 0.016*\"municip\" + 0.014*\"area\"\n", + "2019-01-16 04:08:12,250 : INFO : topic diff=0.238857, rho=0.196116\n", + "2019-01-16 04:08:12,885 : INFO : PROGRESS: pass 0, at document #54000/4922894\n", + "2019-01-16 04:08:15,104 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:15,654 : INFO : topic #10 (0.020): 0.013*\"engin\" + 0.011*\"product\" + 0.010*\"cell\" + 0.009*\"car\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.008*\"model\" + 0.007*\"power\" + 0.007*\"protein\" + 0.007*\"acid\"\n", + "2019-01-16 04:08:15,656 : INFO : topic #2 (0.020): 0.043*\"german\" + 0.028*\"der\" + 0.020*\"von\" + 0.018*\"berlin\" + 0.016*\"und\" + 0.014*\"die\" + 0.014*\"germani\" + 0.009*\"hamburg\" + 0.008*\"launch\" + 0.007*\"steel\"\n", + "2019-01-16 04:08:15,657 : INFO : topic #15 (0.020): 0.038*\"club\" + 0.029*\"unit\" + 0.024*\"town\" + 0.019*\"footbal\" + 0.018*\"cricket\" + 0.015*\"stadium\" + 0.014*\"england\" + 0.014*\"cup\" + 0.012*\"citi\" + 0.012*\"leagu\"\n", + "2019-01-16 04:08:15,660 : INFO : topic #48 (0.020): 0.058*\"april\" + 0.057*\"octob\" + 0.057*\"march\" + 0.056*\"januari\" + 0.055*\"novemb\" + 0.055*\"septemb\" + 0.054*\"februari\" + 0.054*\"june\" + 0.051*\"decemb\" + 0.050*\"august\"\n", + "2019-01-16 04:08:15,662 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.017*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.011*\"francisco\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"spain\" + 0.009*\"puerto\"\n", + "2019-01-16 04:08:15,667 : INFO : topic diff=0.226428, rho=0.192450\n", + "2019-01-16 04:08:16,342 : INFO : PROGRESS: pass 0, at document #56000/4922894\n", + "2019-01-16 04:08:18,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:19,258 : INFO : topic #4 (0.020): 0.114*\"school\" + 0.033*\"colleg\" + 0.029*\"student\" + 0.027*\"high\" + 0.026*\"educ\" + 0.014*\"year\" + 0.011*\"district\" + 0.008*\"state\" + 0.008*\"campu\" + 0.008*\"citi\"\n", + "2019-01-16 04:08:19,260 : INFO : topic #33 (0.020): 0.020*\"bank\" + 0.014*\"rate\" + 0.009*\"valu\" + 0.009*\"market\" + 0.009*\"test\" + 0.008*\"increas\" + 0.008*\"cost\" + 0.008*\"price\" + 0.007*\"time\" + 0.007*\"model\"\n", + "2019-01-16 04:08:19,262 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.040*\"franc\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"jean\" + 0.017*\"de\" + 0.016*\"loui\" + 0.013*\"italian\" + 0.012*\"le\" + 0.010*\"itali\"\n", + "2019-01-16 04:08:19,265 : INFO : topic #0 (0.020): 0.031*\"war\" + 0.029*\"armi\" + 0.019*\"forc\" + 0.017*\"regiment\" + 0.016*\"command\" + 0.015*\"battl\" + 0.014*\"divis\" + 0.013*\"battalion\" + 0.011*\"attack\" + 0.011*\"infantri\"\n", + "2019-01-16 04:08:19,267 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.026*\"univers\" + 0.024*\"american\" + 0.022*\"new\" + 0.022*\"unit\" + 0.018*\"california\" + 0.013*\"texa\" + 0.013*\"washington\" + 0.013*\"york\" + 0.010*\"citi\"\n", + "2019-01-16 04:08:19,273 : INFO : topic diff=0.222330, rho=0.188982\n", + "2019-01-16 04:08:19,935 : INFO : PROGRESS: pass 0, at document #58000/4922894\n", + "2019-01-16 04:08:22,267 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:22,816 : INFO : topic #17 (0.020): 0.039*\"race\" + 0.026*\"championship\" + 0.024*\"world\" + 0.015*\"team\" + 0.012*\"tour\" + 0.012*\"won\" + 0.012*\"event\" + 0.012*\"place\" + 0.011*\"finish\" + 0.011*\"time\"\n", + "2019-01-16 04:08:22,817 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.009*\"plant\" + 0.009*\"red\" + 0.009*\"black\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"flower\" + 0.006*\"known\"\n", + "2019-01-16 04:08:22,820 : INFO : topic #23 (0.020): 0.039*\"medic\" + 0.033*\"hospit\" + 0.019*\"health\" + 0.019*\"spider\" + 0.018*\"patient\" + 0.017*\"medicin\" + 0.017*\"cancer\" + 0.015*\"congenit\" + 0.014*\"diseas\" + 0.014*\"ret\"\n", + "2019-01-16 04:08:22,822 : INFO : topic #2 (0.020): 0.045*\"german\" + 0.026*\"der\" + 0.021*\"von\" + 0.018*\"berlin\" + 0.014*\"und\" + 0.014*\"germani\" + 0.013*\"die\" + 0.012*\"rocket\" + 0.009*\"leipzig\" + 0.009*\"hamburg\"\n", + "2019-01-16 04:08:22,824 : INFO : topic #15 (0.020): 0.036*\"club\" + 0.032*\"unit\" + 0.022*\"town\" + 0.018*\"footbal\" + 0.016*\"cricket\" + 0.014*\"citi\" + 0.013*\"england\" + 0.013*\"cup\" + 0.012*\"stadium\" + 0.011*\"leagu\"\n", + "2019-01-16 04:08:22,830 : INFO : topic diff=0.213522, rho=0.185695\n", + "2019-01-16 04:08:28,099 : INFO : -11.860 per-word bound, 3718.3 perplexity estimate based on a held-out corpus of 2000 documents with 543166 words\n", + "2019-01-16 04:08:28,100 : INFO : PROGRESS: pass 0, at document #60000/4922894\n", + "2019-01-16 04:08:30,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:30,931 : INFO : topic #13 (0.020): 0.053*\"state\" + 0.025*\"univers\" + 0.025*\"american\" + 0.023*\"new\" + 0.022*\"unit\" + 0.016*\"california\" + 0.015*\"texa\" + 0.014*\"york\" + 0.012*\"washington\" + 0.011*\"counti\"\n", + "2019-01-16 04:08:30,933 : INFO : topic #4 (0.020): 0.116*\"school\" + 0.031*\"colleg\" + 0.030*\"student\" + 0.026*\"high\" + 0.025*\"educ\" + 0.014*\"district\" + 0.013*\"year\" + 0.009*\"state\" + 0.009*\"grade\" + 0.008*\"public\"\n", + "2019-01-16 04:08:30,935 : INFO : topic #34 (0.020): 0.073*\"canada\" + 0.050*\"canadian\" + 0.026*\"toronto\" + 0.024*\"languag\" + 0.024*\"korea\" + 0.021*\"ontario\" + 0.019*\"ye\" + 0.018*\"korean\" + 0.016*\"quebec\" + 0.013*\"malaysia\"\n", + "2019-01-16 04:08:30,937 : INFO : topic #29 (0.020): 0.037*\"team\" + 0.031*\"leagu\" + 0.029*\"plai\" + 0.025*\"season\" + 0.021*\"game\" + 0.020*\"player\" + 0.018*\"match\" + 0.017*\"club\" + 0.015*\"cup\" + 0.013*\"score\"\n", + "2019-01-16 04:08:30,939 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.012*\"nation\" + 0.010*\"state\" + 0.009*\"right\" + 0.009*\"countri\" + 0.008*\"new\" + 0.007*\"polit\" + 0.007*\"unit\" + 0.006*\"union\" + 0.006*\"intern\"\n", + "2019-01-16 04:08:30,944 : INFO : topic diff=0.202275, rho=0.182574\n", + "2019-01-16 04:08:31,557 : INFO : PROGRESS: pass 0, at document #62000/4922894\n", + "2019-01-16 04:08:33,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:34,348 : INFO : topic #2 (0.020): 0.045*\"german\" + 0.025*\"der\" + 0.022*\"von\" + 0.021*\"berlin\" + 0.014*\"germani\" + 0.013*\"und\" + 0.012*\"die\" + 0.010*\"van\" + 0.010*\"rocket\" + 0.009*\"launch\"\n", + "2019-01-16 04:08:34,350 : INFO : topic #5 (0.020): 0.014*\"game\" + 0.010*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.007*\"design\" + 0.007*\"base\" + 0.007*\"network\" + 0.006*\"data\" + 0.006*\"user\" + 0.006*\"includ\"\n", + "2019-01-16 04:08:34,352 : INFO : topic #15 (0.020): 0.038*\"club\" + 0.032*\"unit\" + 0.021*\"town\" + 0.020*\"footbal\" + 0.015*\"cricket\" + 0.014*\"citi\" + 0.014*\"stadium\" + 0.014*\"england\" + 0.012*\"cup\" + 0.012*\"leagu\"\n", + "2019-01-16 04:08:34,354 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.025*\"pari\" + 0.021*\"jean\" + 0.020*\"saint\" + 0.016*\"italian\" + 0.016*\"de\" + 0.015*\"loui\" + 0.011*\"le\" + 0.010*\"itali\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:08:34,356 : INFO : topic #49 (0.020): 0.038*\"swedish\" + 0.032*\"poland\" + 0.030*\"sweden\" + 0.026*\"east\" + 0.015*\"gmina\" + 0.015*\"voivodeship\" + 0.014*\"north\" + 0.013*\"west\" + 0.013*\"approxim\" + 0.012*\"south\"\n", + "2019-01-16 04:08:34,362 : INFO : topic diff=0.188249, rho=0.179605\n", + "2019-01-16 04:08:34,935 : INFO : PROGRESS: pass 0, at document #64000/4922894\n", + "2019-01-16 04:08:37,322 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:37,871 : INFO : topic #15 (0.020): 0.038*\"club\" + 0.031*\"unit\" + 0.020*\"footbal\" + 0.020*\"town\" + 0.016*\"cricket\" + 0.014*\"stadium\" + 0.014*\"citi\" + 0.014*\"england\" + 0.012*\"leagu\" + 0.011*\"cup\"\n", + "2019-01-16 04:08:37,873 : INFO : topic #16 (0.020): 0.026*\"church\" + 0.016*\"di\" + 0.014*\"son\" + 0.014*\"bishop\" + 0.013*\"marri\" + 0.010*\"famili\" + 0.009*\"daughter\" + 0.009*\"cathol\" + 0.009*\"born\" + 0.008*\"death\"\n", + "2019-01-16 04:08:37,875 : INFO : topic #34 (0.020): 0.071*\"canada\" + 0.054*\"canadian\" + 0.024*\"toronto\" + 0.024*\"languag\" + 0.021*\"ontario\" + 0.020*\"korea\" + 0.016*\"quebec\" + 0.015*\"korean\" + 0.014*\"ye\" + 0.014*\"montreal\"\n", + "2019-01-16 04:08:37,877 : INFO : topic #29 (0.020): 0.037*\"team\" + 0.030*\"leagu\" + 0.029*\"plai\" + 0.025*\"season\" + 0.019*\"game\" + 0.019*\"club\" + 0.019*\"player\" + 0.017*\"match\" + 0.014*\"cup\" + 0.013*\"footbal\"\n", + "2019-01-16 04:08:37,878 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.027*\"american\" + 0.024*\"new\" + 0.023*\"univers\" + 0.022*\"unit\" + 0.015*\"california\" + 0.015*\"texa\" + 0.014*\"york\" + 0.014*\"washington\" + 0.012*\"counti\"\n", + "2019-01-16 04:08:37,884 : INFO : topic diff=0.182793, rho=0.176777\n", + "2019-01-16 04:08:38,540 : INFO : PROGRESS: pass 0, at document #66000/4922894\n", + "2019-01-16 04:08:40,826 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:41,376 : INFO : topic #18 (0.020): 0.010*\"energi\" + 0.007*\"temperatur\" + 0.007*\"surfac\" + 0.005*\"heat\" + 0.005*\"form\" + 0.005*\"metal\" + 0.005*\"water\" + 0.005*\"light\" + 0.005*\"materi\" + 0.005*\"high\"\n", + "2019-01-16 04:08:41,377 : INFO : topic #27 (0.020): 0.030*\"russian\" + 0.022*\"german\" + 0.020*\"soviet\" + 0.019*\"germani\" + 0.018*\"russia\" + 0.017*\"polish\" + 0.017*\"jewish\" + 0.013*\"israel\" + 0.012*\"moscow\" + 0.010*\"alexand\"\n", + "2019-01-16 04:08:41,379 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.018*\"forc\" + 0.017*\"battl\" + 0.016*\"command\" + 0.013*\"divis\" + 0.013*\"regiment\" + 0.012*\"battalion\" + 0.012*\"attack\" + 0.010*\"militari\"\n", + "2019-01-16 04:08:41,381 : INFO : topic #11 (0.020): 0.028*\"state\" + 0.026*\"law\" + 0.026*\"act\" + 0.023*\"court\" + 0.017*\"presid\" + 0.010*\"offic\" + 0.010*\"amend\" + 0.009*\"governor\" + 0.008*\"feder\" + 0.008*\"unit\"\n", + "2019-01-16 04:08:41,383 : INFO : topic #3 (0.020): 0.029*\"william\" + 0.028*\"john\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.012*\"thoma\" + 0.011*\"sir\" + 0.010*\"edward\" + 0.010*\"henri\" + 0.010*\"robert\" + 0.009*\"british\"\n", + "2019-01-16 04:08:41,388 : INFO : topic diff=0.175462, rho=0.174078\n", + "2019-01-16 04:08:42,079 : INFO : PROGRESS: pass 0, at document #68000/4922894\n", + "2019-01-16 04:08:44,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:45,082 : INFO : topic #40 (0.020): 0.019*\"africa\" + 0.017*\"bar\" + 0.016*\"african\" + 0.014*\"text\" + 0.010*\"till\" + 0.008*\"coloni\" + 0.007*\"color\" + 0.007*\"cultur\" + 0.007*\"south\" + 0.006*\"studi\"\n", + "2019-01-16 04:08:45,084 : INFO : topic #7 (0.020): 0.016*\"function\" + 0.014*\"theori\" + 0.010*\"set\" + 0.010*\"space\" + 0.010*\"group\" + 0.009*\"mathemat\" + 0.009*\"point\" + 0.008*\"number\" + 0.008*\"gener\" + 0.007*\"order\"\n", + "2019-01-16 04:08:45,086 : INFO : topic #42 (0.020): 0.022*\"king\" + 0.013*\"greek\" + 0.012*\"templ\" + 0.011*\"centuri\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"emperor\" + 0.007*\"roman\" + 0.006*\"dynasti\"\n", + "2019-01-16 04:08:45,089 : INFO : topic #25 (0.020): 0.021*\"final\" + 0.020*\"round\" + 0.019*\"tournament\" + 0.019*\"open\" + 0.017*\"winner\" + 0.016*\"doubl\" + 0.015*\"hard\" + 0.014*\"draw\" + 0.013*\"runner\" + 0.012*\"titl\"\n", + "2019-01-16 04:08:45,091 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.019*\"hous\" + 0.014*\"built\" + 0.013*\"church\" + 0.011*\"jpg\" + 0.010*\"street\" + 0.010*\"histor\" + 0.010*\"site\" + 0.009*\"file\" + 0.009*\"centuri\"\n", + "2019-01-16 04:08:45,098 : INFO : topic diff=0.171506, rho=0.171499\n", + "2019-01-16 04:08:45,761 : INFO : PROGRESS: pass 0, at document #70000/4922894\n", + "2019-01-16 04:08:48,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:48,701 : INFO : topic #22 (0.020): 0.039*\"ag\" + 0.038*\"popul\" + 0.035*\"counti\" + 0.027*\"famili\" + 0.026*\"household\" + 0.023*\"township\" + 0.022*\"year\" + 0.022*\"town\" + 0.022*\"femal\" + 0.021*\"live\"\n", + "2019-01-16 04:08:48,703 : INFO : topic #15 (0.020): 0.032*\"club\" + 0.031*\"unit\" + 0.027*\"town\" + 0.018*\"footbal\" + 0.016*\"citi\" + 0.015*\"cricket\" + 0.014*\"england\" + 0.012*\"cup\" + 0.011*\"stadium\" + 0.010*\"leagu\"\n", + "2019-01-16 04:08:48,704 : INFO : topic #33 (0.020): 0.019*\"bank\" + 0.012*\"rate\" + 0.009*\"increas\" + 0.009*\"price\" + 0.009*\"valu\" + 0.008*\"test\" + 0.008*\"market\" + 0.008*\"number\" + 0.007*\"time\" + 0.007*\"cost\"\n", + "2019-01-16 04:08:48,706 : INFO : topic #20 (0.020): 0.048*\"win\" + 0.028*\"contest\" + 0.028*\"fight\" + 0.023*\"dai\" + 0.021*\"week\" + 0.019*\"challeng\" + 0.016*\"elimin\" + 0.016*\"round\" + 0.015*\"decis\" + 0.015*\"safe\"\n", + "2019-01-16 04:08:48,708 : INFO : topic #46 (0.020): 0.046*\"border\" + 0.041*\"philippin\" + 0.037*\"align\" + 0.032*\"style\" + 0.028*\"center\" + 0.026*\"manila\" + 0.015*\"wikit\" + 0.014*\"collaps\" + 0.013*\"font\" + 0.013*\"width\"\n", + "2019-01-16 04:08:48,714 : INFO : topic diff=0.158038, rho=0.169031\n", + "2019-01-16 04:08:49,318 : INFO : PROGRESS: pass 0, at document #72000/4922894\n", + "2019-01-16 04:08:51,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:52,164 : INFO : topic #21 (0.020): 0.008*\"word\" + 0.007*\"languag\" + 0.007*\"centuri\" + 0.005*\"person\" + 0.005*\"tradit\" + 0.005*\"form\" + 0.005*\"peopl\" + 0.005*\"english\" + 0.005*\"god\" + 0.005*\"christian\"\n", + "2019-01-16 04:08:52,166 : INFO : topic #35 (0.020): 0.056*\"minist\" + 0.031*\"prime\" + 0.011*\"affair\" + 0.011*\"indonesia\" + 0.010*\"indonesian\" + 0.009*\"bulgarian\" + 0.009*\"thai\" + 0.007*\"bradi\" + 0.007*\"chi\" + 0.007*\"ani\"\n", + "2019-01-16 04:08:52,168 : INFO : topic #18 (0.020): 0.011*\"energi\" + 0.007*\"wave\" + 0.006*\"temperatur\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"heat\" + 0.005*\"water\" + 0.005*\"light\" + 0.005*\"high\"\n", + "2019-01-16 04:08:52,169 : INFO : topic #27 (0.020): 0.031*\"russian\" + 0.026*\"soviet\" + 0.021*\"german\" + 0.021*\"russia\" + 0.019*\"germani\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"israel\" + 0.011*\"czech\" + 0.011*\"moscow\"\n", + "2019-01-16 04:08:52,171 : INFO : topic #20 (0.020): 0.049*\"win\" + 0.029*\"fight\" + 0.026*\"contest\" + 0.021*\"dai\" + 0.019*\"week\" + 0.018*\"challeng\" + 0.017*\"elimin\" + 0.016*\"decis\" + 0.015*\"round\" + 0.013*\"safe\"\n", + "2019-01-16 04:08:52,177 : INFO : topic diff=0.154211, rho=0.166667\n", + "2019-01-16 04:08:52,845 : INFO : PROGRESS: pass 0, at document #74000/4922894\n", + "2019-01-16 04:08:55,170 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:55,724 : INFO : topic #46 (0.020): 0.044*\"philippin\" + 0.043*\"align\" + 0.041*\"border\" + 0.033*\"style\" + 0.029*\"center\" + 0.022*\"manila\" + 0.016*\"wikit\" + 0.015*\"class\" + 0.013*\"collaps\" + 0.013*\"ambros\"\n", + "2019-01-16 04:08:55,725 : INFO : topic #2 (0.020): 0.047*\"german\" + 0.030*\"der\" + 0.025*\"von\" + 0.019*\"germani\" + 0.019*\"berlin\" + 0.016*\"van\" + 0.014*\"und\" + 0.013*\"die\" + 0.008*\"han\" + 0.008*\"space\"\n", + "2019-01-16 04:08:55,728 : INFO : topic #17 (0.020): 0.044*\"race\" + 0.024*\"championship\" + 0.020*\"world\" + 0.015*\"team\" + 0.013*\"car\" + 0.013*\"finish\" + 0.012*\"time\" + 0.011*\"place\" + 0.011*\"won\" + 0.010*\"point\"\n", + "2019-01-16 04:08:55,729 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.011*\"greek\" + 0.011*\"centuri\" + 0.010*\"templ\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"roman\" + 0.007*\"dynasti\"\n", + "2019-01-16 04:08:55,731 : INFO : topic #22 (0.020): 0.039*\"ag\" + 0.039*\"popul\" + 0.035*\"counti\" + 0.027*\"household\" + 0.027*\"famili\" + 0.023*\"femal\" + 0.022*\"township\" + 0.022*\"year\" + 0.021*\"live\" + 0.021*\"town\"\n", + "2019-01-16 04:08:55,737 : INFO : topic diff=0.144618, rho=0.164399\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:08:56,416 : INFO : PROGRESS: pass 0, at document #76000/4922894\n", + "2019-01-16 04:08:58,697 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:08:59,249 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.011*\"sir\" + 0.010*\"robert\" + 0.010*\"london\" + 0.010*\"british\" + 0.010*\"henri\"\n", + "2019-01-16 04:08:59,251 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.015*\"compani\" + 0.012*\"research\" + 0.011*\"develop\" + 0.010*\"busi\" + 0.010*\"scienc\" + 0.009*\"institut\" + 0.008*\"manag\" + 0.008*\"servic\" + 0.008*\"work\"\n", + "2019-01-16 04:08:59,253 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.020*\"hous\" + 0.014*\"built\" + 0.012*\"church\" + 0.012*\"jpg\" + 0.010*\"centuri\" + 0.010*\"histor\" + 0.010*\"site\" + 0.010*\"file\" + 0.009*\"street\"\n", + "2019-01-16 04:08:59,254 : INFO : topic #44 (0.020): 0.024*\"season\" + 0.022*\"game\" + 0.022*\"team\" + 0.015*\"coach\" + 0.013*\"plai\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"player\" + 0.008*\"record\" + 0.008*\"draft\"\n", + "2019-01-16 04:08:59,256 : INFO : topic #19 (0.020): 0.017*\"radio\" + 0.017*\"new\" + 0.012*\"station\" + 0.012*\"broadcast\" + 0.010*\"channel\" + 0.009*\"dai\" + 0.008*\"bbc\" + 0.008*\"televis\" + 0.008*\"program\" + 0.007*\"time\"\n", + "2019-01-16 04:08:59,261 : INFO : topic diff=0.140324, rho=0.162221\n", + "2019-01-16 04:08:59,845 : INFO : PROGRESS: pass 0, at document #78000/4922894\n", + "2019-01-16 04:09:02,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:02,758 : INFO : topic #17 (0.020): 0.043*\"race\" + 0.025*\"championship\" + 0.021*\"world\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"car\" + 0.011*\"time\" + 0.011*\"place\" + 0.011*\"won\" + 0.011*\"point\"\n", + "2019-01-16 04:09:02,760 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.015*\"compani\" + 0.012*\"research\" + 0.011*\"develop\" + 0.010*\"scienc\" + 0.010*\"busi\" + 0.009*\"institut\" + 0.008*\"manag\" + 0.008*\"work\" + 0.008*\"servic\"\n", + "2019-01-16 04:09:02,762 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.011*\"empir\" + 0.011*\"roman\" + 0.010*\"emperor\" + 0.010*\"centuri\" + 0.009*\"greek\" + 0.009*\"templ\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"dynasti\"\n", + "2019-01-16 04:09:02,764 : INFO : topic #21 (0.020): 0.008*\"word\" + 0.006*\"languag\" + 0.006*\"centuri\" + 0.006*\"god\" + 0.006*\"form\" + 0.006*\"person\" + 0.006*\"tradit\" + 0.005*\"christian\" + 0.005*\"peopl\" + 0.005*\"english\"\n", + "2019-01-16 04:09:02,766 : INFO : topic #15 (0.020): 0.048*\"town\" + 0.032*\"unit\" + 0.028*\"club\" + 0.021*\"citi\" + 0.016*\"cricket\" + 0.015*\"footbal\" + 0.014*\"england\" + 0.010*\"stadium\" + 0.010*\"cup\" + 0.009*\"leagu\"\n", + "2019-01-16 04:09:02,772 : INFO : topic diff=0.141612, rho=0.160128\n", + "2019-01-16 04:09:08,171 : INFO : -11.765 per-word bound, 3481.5 perplexity estimate based on a held-out corpus of 2000 documents with 591003 words\n", + "2019-01-16 04:09:08,172 : INFO : PROGRESS: pass 0, at document #80000/4922894\n", + "2019-01-16 04:09:10,570 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:11,125 : INFO : topic #34 (0.020): 0.072*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.023*\"ye\" + 0.023*\"toronto\" + 0.019*\"korea\" + 0.019*\"languag\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.014*\"singapor\"\n", + "2019-01-16 04:09:11,127 : INFO : topic #12 (0.020): 0.061*\"elect\" + 0.049*\"parti\" + 0.028*\"member\" + 0.017*\"democrat\" + 0.017*\"vote\" + 0.016*\"council\" + 0.015*\"polit\" + 0.012*\"parliament\" + 0.012*\"liber\" + 0.012*\"candid\"\n", + "2019-01-16 04:09:11,129 : INFO : topic #37 (0.020): 0.007*\"charact\" + 0.006*\"man\" + 0.006*\"time\" + 0.006*\"love\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"friend\" + 0.005*\"life\" + 0.004*\"end\" + 0.004*\"later\"\n", + "2019-01-16 04:09:11,131 : INFO : topic #24 (0.020): 0.017*\"ship\" + 0.013*\"polic\" + 0.009*\"kill\" + 0.007*\"report\" + 0.006*\"damag\" + 0.006*\"prison\" + 0.006*\"murder\" + 0.005*\"gun\" + 0.005*\"attack\" + 0.005*\"class\"\n", + "2019-01-16 04:09:11,132 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.010*\"empir\" + 0.010*\"emperor\" + 0.010*\"centuri\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"templ\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"dynasti\"\n", + "2019-01-16 04:09:11,138 : INFO : topic diff=0.137782, rho=0.158114\n", + "2019-01-16 04:09:11,801 : INFO : PROGRESS: pass 0, at document #82000/4922894\n", + "2019-01-16 04:09:14,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:14,679 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.026*\"new\" + 0.026*\"american\" + 0.024*\"univers\" + 0.022*\"unit\" + 0.017*\"york\" + 0.014*\"california\" + 0.012*\"counti\" + 0.012*\"texa\" + 0.012*\"citi\"\n", + "2019-01-16 04:09:14,681 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.020*\"hous\" + 0.014*\"built\" + 0.011*\"church\" + 0.011*\"jpg\" + 0.011*\"centuri\" + 0.010*\"histor\" + 0.010*\"file\" + 0.009*\"site\" + 0.009*\"locat\"\n", + "2019-01-16 04:09:14,683 : INFO : topic #49 (0.020): 0.036*\"east\" + 0.030*\"swedish\" + 0.028*\"west\" + 0.026*\"sweden\" + 0.026*\"poland\" + 0.025*\"north\" + 0.024*\"alt\" + 0.019*\"capit\" + 0.017*\"south\" + 0.014*\"wear\"\n", + "2019-01-16 04:09:14,685 : INFO : topic #46 (0.020): 0.048*\"philippin\" + 0.042*\"align\" + 0.039*\"center\" + 0.037*\"style\" + 0.037*\"border\" + 0.023*\"wikit\" + 0.022*\"class\" + 0.021*\"text\" + 0.016*\"font\" + 0.015*\"manila\"\n", + "2019-01-16 04:09:14,687 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.039*\"franc\" + 0.025*\"pari\" + 0.024*\"italian\" + 0.023*\"saint\" + 0.019*\"jean\" + 0.014*\"itali\" + 0.013*\"loui\" + 0.013*\"de\" + 0.011*\"le\"\n", + "2019-01-16 04:09:14,693 : INFO : topic diff=0.125580, rho=0.156174\n", + "2019-01-16 04:09:15,388 : INFO : PROGRESS: pass 0, at document #84000/4922894\n", + "2019-01-16 04:09:17,703 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:18,255 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.040*\"franc\" + 0.025*\"pari\" + 0.023*\"italian\" + 0.022*\"saint\" + 0.018*\"jean\" + 0.017*\"loui\" + 0.014*\"de\" + 0.014*\"itali\" + 0.011*\"le\"\n", + "2019-01-16 04:09:18,257 : INFO : topic #4 (0.020): 0.141*\"school\" + 0.037*\"colleg\" + 0.032*\"high\" + 0.030*\"student\" + 0.024*\"educ\" + 0.014*\"univers\" + 0.013*\"year\" + 0.011*\"elementari\" + 0.011*\"district\" + 0.009*\"class\"\n", + "2019-01-16 04:09:18,259 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.023*\"award\" + 0.020*\"best\" + 0.019*\"episod\" + 0.019*\"seri\" + 0.015*\"star\" + 0.013*\"role\" + 0.012*\"televis\" + 0.012*\"direct\" + 0.011*\"movi\"\n", + "2019-01-16 04:09:18,261 : INFO : topic #34 (0.020): 0.070*\"canada\" + 0.057*\"canadian\" + 0.021*\"ontario\" + 0.021*\"ye\" + 0.019*\"toronto\" + 0.019*\"languag\" + 0.017*\"korea\" + 0.016*\"malaysia\" + 0.015*\"quebec\" + 0.014*\"korean\"\n", + "2019-01-16 04:09:18,263 : INFO : topic #25 (0.020): 0.029*\"tournament\" + 0.027*\"round\" + 0.025*\"open\" + 0.022*\"winner\" + 0.021*\"final\" + 0.019*\"doubl\" + 0.015*\"runner\" + 0.014*\"hard\" + 0.013*\"seed\" + 0.013*\"titl\"\n", + "2019-01-16 04:09:18,269 : INFO : topic diff=0.123670, rho=0.154303\n", + "2019-01-16 04:09:18,930 : INFO : PROGRESS: pass 0, at document #86000/4922894\n", + "2019-01-16 04:09:21,130 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:21,682 : INFO : topic #5 (0.020): 0.021*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"design\" + 0.008*\"version\" + 0.007*\"data\" + 0.006*\"includ\" + 0.006*\"base\" + 0.006*\"releas\" + 0.006*\"digit\"\n", + "2019-01-16 04:09:21,684 : INFO : topic #18 (0.020): 0.010*\"energi\" + 0.007*\"light\" + 0.007*\"temperatur\" + 0.006*\"wave\" + 0.006*\"water\" + 0.005*\"surfac\" + 0.005*\"materi\" + 0.005*\"high\" + 0.005*\"form\" + 0.005*\"time\"\n", + "2019-01-16 04:09:21,686 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.011*\"empir\" + 0.010*\"centuri\" + 0.009*\"emperor\" + 0.009*\"templ\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"egypt\"\n", + "2019-01-16 04:09:21,687 : INFO : topic #37 (0.020): 0.007*\"charact\" + 0.006*\"man\" + 0.006*\"appear\" + 0.006*\"time\" + 0.006*\"love\" + 0.005*\"like\" + 0.005*\"friend\" + 0.005*\"later\" + 0.004*\"life\" + 0.004*\"end\"\n", + "2019-01-16 04:09:21,689 : INFO : topic #33 (0.020): 0.015*\"bank\" + 0.013*\"rate\" + 0.011*\"increas\" + 0.009*\"market\" + 0.008*\"test\" + 0.008*\"cost\" + 0.007*\"valu\" + 0.007*\"price\" + 0.007*\"time\" + 0.006*\"number\"\n", + "2019-01-16 04:09:21,695 : INFO : topic diff=0.121263, rho=0.152499\n", + "2019-01-16 04:09:22,363 : INFO : PROGRESS: pass 0, at document #88000/4922894\n", + "2019-01-16 04:09:24,697 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:09:25,249 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.040*\"ag\" + 0.038*\"counti\" + 0.029*\"year\" + 0.027*\"township\" + 0.026*\"famili\" + 0.026*\"household\" + 0.025*\"femal\" + 0.025*\"town\" + 0.021*\"live\"\n", + "2019-01-16 04:09:25,250 : INFO : topic #34 (0.020): 0.074*\"canada\" + 0.057*\"canadian\" + 0.024*\"korean\" + 0.022*\"quebec\" + 0.021*\"languag\" + 0.019*\"ontario\" + 0.018*\"ye\" + 0.017*\"korea\" + 0.017*\"malaysia\" + 0.016*\"toronto\"\n", + "2019-01-16 04:09:25,252 : INFO : topic #11 (0.020): 0.031*\"act\" + 0.029*\"court\" + 0.026*\"law\" + 0.025*\"state\" + 0.015*\"presid\" + 0.009*\"governor\" + 0.009*\"offic\" + 0.009*\"feder\" + 0.009*\"case\" + 0.008*\"legal\"\n", + "2019-01-16 04:09:25,254 : INFO : topic #12 (0.020): 0.061*\"elect\" + 0.050*\"parti\" + 0.027*\"member\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.015*\"council\" + 0.014*\"seat\" + 0.014*\"polit\" + 0.013*\"candid\" + 0.013*\"parliament\"\n", + "2019-01-16 04:09:25,256 : INFO : topic #40 (0.020): 0.022*\"bar\" + 0.020*\"africa\" + 0.018*\"african\" + 0.017*\"text\" + 0.013*\"till\" + 0.010*\"color\" + 0.009*\"south\" + 0.008*\"peopl\" + 0.008*\"popul\" + 0.007*\"shift\"\n", + "2019-01-16 04:09:25,263 : INFO : topic diff=0.114220, rho=0.150756\n", + "2019-01-16 04:09:25,923 : INFO : PROGRESS: pass 0, at document #90000/4922894\n", + "2019-01-16 04:09:28,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:28,788 : INFO : topic #40 (0.020): 0.023*\"bar\" + 0.019*\"african\" + 0.019*\"africa\" + 0.017*\"text\" + 0.014*\"till\" + 0.010*\"color\" + 0.009*\"south\" + 0.008*\"peopl\" + 0.007*\"popul\" + 0.007*\"shift\"\n", + "2019-01-16 04:09:28,789 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.011*\"centuri\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"templ\" + 0.008*\"kingdom\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"son\"\n", + "2019-01-16 04:09:28,792 : INFO : topic #45 (0.020): 0.017*\"american\" + 0.015*\"born\" + 0.013*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"peter\" + 0.006*\"jame\" + 0.006*\"richard\" + 0.006*\"robert\"\n", + "2019-01-16 04:09:28,793 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.048*\"parti\" + 0.028*\"member\" + 0.019*\"democrat\" + 0.017*\"vote\" + 0.015*\"council\" + 0.014*\"seat\" + 0.014*\"polit\" + 0.012*\"parliament\" + 0.012*\"candid\"\n", + "2019-01-16 04:09:28,796 : INFO : topic #26 (0.020): 0.038*\"women\" + 0.031*\"olymp\" + 0.029*\"medal\" + 0.027*\"japan\" + 0.026*\"japanes\" + 0.025*\"men\" + 0.021*\"gold\" + 0.021*\"rank\" + 0.020*\"event\" + 0.016*\"athlet\"\n", + "2019-01-16 04:09:28,802 : INFO : topic diff=0.111250, rho=0.149071\n", + "2019-01-16 04:09:29,462 : INFO : PROGRESS: pass 0, at document #92000/4922894\n", + "2019-01-16 04:09:31,721 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:32,279 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"countri\" + 0.010*\"right\" + 0.008*\"polit\" + 0.007*\"support\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"new\"\n", + "2019-01-16 04:09:32,282 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.030*\"work\" + 0.027*\"museum\" + 0.024*\"design\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.014*\"exhibit\" + 0.013*\"architectur\" + 0.013*\"collect\" + 0.013*\"new\"\n", + "2019-01-16 04:09:32,284 : INFO : topic #18 (0.020): 0.009*\"energi\" + 0.006*\"light\" + 0.006*\"temperatur\" + 0.006*\"surfac\" + 0.006*\"materi\" + 0.006*\"wave\" + 0.005*\"water\" + 0.005*\"earth\" + 0.005*\"high\" + 0.005*\"metal\"\n", + "2019-01-16 04:09:32,286 : INFO : topic #46 (0.020): 0.056*\"style\" + 0.053*\"align\" + 0.047*\"center\" + 0.043*\"philippin\" + 0.033*\"text\" + 0.032*\"class\" + 0.032*\"border\" + 0.025*\"wikit\" + 0.013*\"font\" + 0.013*\"collaps\"\n", + "2019-01-16 04:09:32,288 : INFO : topic #33 (0.020): 0.024*\"bank\" + 0.012*\"rate\" + 0.010*\"increas\" + 0.009*\"price\" + 0.008*\"market\" + 0.008*\"test\" + 0.007*\"time\" + 0.007*\"cost\" + 0.007*\"valu\" + 0.006*\"number\"\n", + "2019-01-16 04:09:32,294 : INFO : topic diff=0.102640, rho=0.147442\n", + "2019-01-16 04:09:32,920 : INFO : PROGRESS: pass 0, at document #94000/4922894\n", + "2019-01-16 04:09:35,167 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:35,720 : INFO : topic #35 (0.020): 0.056*\"minist\" + 0.033*\"prime\" + 0.017*\"thai\" + 0.016*\"indonesia\" + 0.013*\"ind\" + 0.011*\"bulgarian\" + 0.011*\"coco\" + 0.010*\"affair\" + 0.009*\"rudd\" + 0.008*\"indonesian\"\n", + "2019-01-16 04:09:35,722 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"compani\" + 0.012*\"research\" + 0.011*\"develop\" + 0.010*\"institut\" + 0.009*\"scienc\" + 0.009*\"busi\" + 0.009*\"manag\" + 0.009*\"work\" + 0.009*\"servic\"\n", + "2019-01-16 04:09:35,724 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.018*\"spanish\" + 0.017*\"del\" + 0.014*\"mexico\" + 0.013*\"spain\" + 0.013*\"santa\" + 0.010*\"juan\" + 0.009*\"lo\" + 0.009*\"francisco\" + 0.009*\"brazil\"\n", + "2019-01-16 04:09:35,726 : INFO : topic #23 (0.020): 0.034*\"ret\" + 0.034*\"medic\" + 0.032*\"hospit\" + 0.023*\"health\" + 0.016*\"patient\" + 0.015*\"diseas\" + 0.014*\"marvel\" + 0.013*\"medicin\" + 0.013*\"treatment\" + 0.011*\"clinic\"\n", + "2019-01-16 04:09:35,728 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.018*\"line\" + 0.018*\"station\" + 0.015*\"railwai\" + 0.014*\"north\" + 0.013*\"road\" + 0.013*\"area\" + 0.012*\"island\" + 0.012*\"south\" + 0.012*\"park\"\n", + "2019-01-16 04:09:35,734 : INFO : topic diff=0.099599, rho=0.145865\n", + "2019-01-16 04:09:36,372 : INFO : PROGRESS: pass 0, at document #96000/4922894\n", + "2019-01-16 04:09:38,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:39,265 : INFO : topic #45 (0.020): 0.019*\"american\" + 0.019*\"born\" + 0.012*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.009*\"bob\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"jame\" + 0.006*\"robert\"\n", + "2019-01-16 04:09:39,267 : INFO : topic #22 (0.020): 0.040*\"ag\" + 0.039*\"popul\" + 0.033*\"counti\" + 0.029*\"male\" + 0.028*\"household\" + 0.026*\"famili\" + 0.026*\"year\" + 0.025*\"femal\" + 0.025*\"township\" + 0.023*\"town\"\n", + "2019-01-16 04:09:39,269 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.018*\"battl\" + 0.018*\"command\" + 0.018*\"forc\" + 0.013*\"militari\" + 0.013*\"regiment\" + 0.012*\"attack\" + 0.012*\"gener\" + 0.010*\"divis\"\n", + "2019-01-16 04:09:39,271 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.023*\"award\" + 0.020*\"episod\" + 0.019*\"best\" + 0.019*\"seri\" + 0.018*\"star\" + 0.014*\"role\" + 0.012*\"movi\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 04:09:39,273 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.021*\"festiv\" + 0.019*\"compos\" + 0.018*\"danc\" + 0.014*\"opera\" + 0.014*\"theatr\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"concert\"\n", + "2019-01-16 04:09:39,280 : INFO : topic diff=0.103563, rho=0.144338\n", + "2019-01-16 04:09:39,943 : INFO : PROGRESS: pass 0, at document #98000/4922894\n", + "2019-01-16 04:09:42,223 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:42,775 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.011*\"theori\" + 0.010*\"group\" + 0.010*\"set\" + 0.010*\"number\" + 0.009*\"space\" + 0.009*\"exampl\" + 0.009*\"point\" + 0.008*\"gener\" + 0.008*\"defin\"\n", + "2019-01-16 04:09:42,777 : INFO : topic #48 (0.020): 0.070*\"march\" + 0.069*\"januari\" + 0.066*\"septemb\" + 0.063*\"octob\" + 0.057*\"juli\" + 0.057*\"august\" + 0.056*\"april\" + 0.055*\"novemb\" + 0.054*\"decemb\" + 0.052*\"june\"\n", + "2019-01-16 04:09:42,778 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.024*\"soviet\" + 0.023*\"russia\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.016*\"israel\" + 0.016*\"germani\" + 0.015*\"german\" + 0.012*\"republ\" + 0.011*\"moscow\"\n", + "2019-01-16 04:09:42,780 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.024*\"award\" + 0.020*\"best\" + 0.020*\"episod\" + 0.019*\"seri\" + 0.018*\"star\" + 0.014*\"role\" + 0.012*\"televis\" + 0.012*\"movi\" + 0.011*\"direct\"\n", + "2019-01-16 04:09:42,782 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.037*\"colleg\" + 0.035*\"student\" + 0.029*\"high\" + 0.025*\"educ\" + 0.014*\"univers\" + 0.013*\"year\" + 0.012*\"district\" + 0.009*\"campu\" + 0.009*\"graduat\"\n", + "2019-01-16 04:09:42,787 : INFO : topic diff=0.095931, rho=0.142857\n", + "2019-01-16 04:09:48,028 : INFO : -11.696 per-word bound, 3317.2 perplexity estimate based on a held-out corpus of 2000 documents with 568966 words\n", + "2019-01-16 04:09:48,028 : INFO : PROGRESS: pass 0, at document #100000/4922894\n", + "2019-01-16 04:09:50,299 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:50,852 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.024*\"award\" + 0.020*\"best\" + 0.020*\"episod\" + 0.020*\"seri\" + 0.019*\"star\" + 0.014*\"role\" + 0.012*\"televis\" + 0.011*\"movi\" + 0.011*\"actor\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:09:50,854 : INFO : topic #33 (0.020): 0.021*\"bank\" + 0.012*\"rate\" + 0.010*\"increas\" + 0.008*\"market\" + 0.008*\"cost\" + 0.008*\"test\" + 0.008*\"price\" + 0.007*\"time\" + 0.006*\"number\" + 0.006*\"result\"\n", + "2019-01-16 04:09:50,856 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.020*\"festiv\" + 0.019*\"compos\" + 0.019*\"string\" + 0.018*\"danc\" + 0.015*\"theatr\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:09:50,858 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.012*\"histor\" + 0.011*\"centuri\" + 0.011*\"jpg\" + 0.010*\"locat\" + 0.010*\"church\" + 0.009*\"site\" + 0.009*\"street\"\n", + "2019-01-16 04:09:50,859 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.027*\"armi\" + 0.019*\"battl\" + 0.018*\"forc\" + 0.017*\"command\" + 0.014*\"rifl\" + 0.013*\"militari\" + 0.013*\"gener\" + 0.011*\"regiment\" + 0.011*\"attack\"\n", + "2019-01-16 04:09:50,865 : INFO : topic diff=0.097009, rho=0.141421\n", + "2019-01-16 04:09:51,565 : INFO : PROGRESS: pass 0, at document #102000/4922894\n", + "2019-01-16 04:09:53,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:54,442 : INFO : topic #44 (0.020): 0.024*\"game\" + 0.023*\"team\" + 0.023*\"season\" + 0.016*\"coach\" + 0.014*\"footbal\" + 0.014*\"plai\" + 0.011*\"player\" + 0.010*\"year\" + 0.010*\"record\" + 0.009*\"yard\"\n", + "2019-01-16 04:09:54,445 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"record\" + 0.025*\"releas\" + 0.021*\"band\" + 0.018*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.012*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:09:54,446 : INFO : topic #32 (0.020): 0.027*\"genu\" + 0.026*\"speci\" + 0.017*\"famili\" + 0.012*\"red\" + 0.011*\"white\" + 0.010*\"plant\" + 0.008*\"black\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.006*\"yellow\"\n", + "2019-01-16 04:09:54,448 : INFO : topic #16 (0.020): 0.027*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.013*\"marri\" + 0.013*\"famili\" + 0.012*\"father\" + 0.012*\"born\" + 0.011*\"bishop\" + 0.011*\"cathol\" + 0.011*\"daughter\"\n", + "2019-01-16 04:09:54,450 : INFO : topic #46 (0.020): 0.058*\"style\" + 0.056*\"class\" + 0.049*\"align\" + 0.046*\"center\" + 0.041*\"philippin\" + 0.035*\"wikit\" + 0.033*\"text\" + 0.032*\"border\" + 0.015*\"width\" + 0.015*\"font\"\n", + "2019-01-16 04:09:54,456 : INFO : topic diff=0.090909, rho=0.140028\n", + "2019-01-16 04:09:55,087 : INFO : PROGRESS: pass 0, at document #104000/4922894\n", + "2019-01-16 04:09:57,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:09:57,855 : INFO : topic #49 (0.020): 0.043*\"east\" + 0.036*\"west\" + 0.033*\"north\" + 0.033*\"swedish\" + 0.031*\"alt\" + 0.027*\"poland\" + 0.025*\"sweden\" + 0.025*\"south\" + 0.018*\"central\" + 0.018*\"voivodeship\"\n", + "2019-01-16 04:09:57,857 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"countri\" + 0.009*\"right\" + 0.009*\"polit\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"new\" + 0.006*\"union\"\n", + "2019-01-16 04:09:57,859 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.053*\"parti\" + 0.027*\"member\" + 0.021*\"democrat\" + 0.018*\"vote\" + 0.014*\"polit\" + 0.013*\"council\" + 0.012*\"seat\" + 0.012*\"republican\" + 0.012*\"term\"\n", + "2019-01-16 04:09:57,861 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.036*\"colleg\" + 0.035*\"student\" + 0.031*\"high\" + 0.026*\"educ\" + 0.016*\"univers\" + 0.014*\"year\" + 0.010*\"district\" + 0.010*\"campu\" + 0.009*\"graduat\"\n", + "2019-01-16 04:09:57,863 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.019*\"del\" + 0.016*\"spanish\" + 0.015*\"santa\" + 0.014*\"spain\" + 0.013*\"mexico\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.009*\"lo\" + 0.009*\"argentina\"\n", + "2019-01-16 04:09:57,869 : INFO : topic diff=0.087738, rho=0.138675\n", + "2019-01-16 04:09:58,502 : INFO : PROGRESS: pass 0, at document #106000/4922894\n", + "2019-01-16 04:10:00,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:01,400 : INFO : topic #34 (0.020): 0.067*\"canada\" + 0.050*\"canadian\" + 0.024*\"korean\" + 0.024*\"korea\" + 0.021*\"malaysia\" + 0.019*\"ontario\" + 0.018*\"languag\" + 0.016*\"toronto\" + 0.015*\"singapor\" + 0.014*\"quebec\"\n", + "2019-01-16 04:10:01,402 : INFO : topic #10 (0.020): 0.016*\"engin\" + 0.012*\"product\" + 0.012*\"cell\" + 0.010*\"car\" + 0.009*\"produc\" + 0.008*\"oil\" + 0.007*\"vehicl\" + 0.007*\"power\" + 0.007*\"model\" + 0.007*\"protein\"\n", + "2019-01-16 04:10:01,404 : INFO : topic #17 (0.020): 0.048*\"race\" + 0.022*\"championship\" + 0.019*\"world\" + 0.018*\"team\" + 0.016*\"car\" + 0.016*\"tour\" + 0.013*\"finish\" + 0.012*\"time\" + 0.012*\"place\" + 0.011*\"won\"\n", + "2019-01-16 04:10:01,405 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.040*\"ag\" + 0.035*\"counti\" + 0.028*\"household\" + 0.026*\"famili\" + 0.024*\"year\" + 0.024*\"femal\" + 0.023*\"male\" + 0.023*\"township\" + 0.023*\"town\"\n", + "2019-01-16 04:10:01,407 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.021*\"danc\" + 0.019*\"festiv\" + 0.019*\"compos\" + 0.013*\"string\" + 0.013*\"theatr\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 04:10:01,413 : INFO : topic diff=0.092836, rho=0.137361\n", + "2019-01-16 04:10:02,011 : INFO : PROGRESS: pass 0, at document #108000/4922894\n", + "2019-01-16 04:10:04,311 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:04,863 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"jpg\" + 0.011*\"centuri\" + 0.011*\"histor\" + 0.010*\"church\" + 0.010*\"site\" + 0.010*\"locat\" + 0.009*\"street\"\n", + "2019-01-16 04:10:04,865 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"countri\" + 0.009*\"polit\" + 0.008*\"right\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 04:10:04,867 : INFO : topic #8 (0.020): 0.050*\"district\" + 0.034*\"villag\" + 0.029*\"india\" + 0.023*\"indian\" + 0.020*\"municip\" + 0.016*\"popul\" + 0.015*\"region\" + 0.015*\"provinc\" + 0.012*\"town\" + 0.011*\"rural\"\n", + "2019-01-16 04:10:04,868 : INFO : topic #35 (0.020): 0.056*\"minist\" + 0.032*\"prime\" + 0.018*\"indonesia\" + 0.017*\"bulgarian\" + 0.014*\"thai\" + 0.012*\"bulgaria\" + 0.009*\"chi\" + 0.009*\"thailand\" + 0.009*\"ind\" + 0.009*\"indonesian\"\n", + "2019-01-16 04:10:04,870 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"compani\" + 0.012*\"research\" + 0.012*\"servic\" + 0.011*\"develop\" + 0.010*\"institut\" + 0.009*\"work\" + 0.009*\"manag\" + 0.009*\"scienc\" + 0.009*\"busi\"\n", + "2019-01-16 04:10:04,875 : INFO : topic diff=0.087886, rho=0.136083\n", + "2019-01-16 04:10:05,467 : INFO : PROGRESS: pass 0, at document #110000/4922894\n", + "2019-01-16 04:10:07,826 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:08,379 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"countri\" + 0.009*\"right\" + 0.008*\"polit\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 04:10:08,381 : INFO : topic #26 (0.020): 0.039*\"women\" + 0.027*\"olymp\" + 0.027*\"medal\" + 0.027*\"japan\" + 0.026*\"men\" + 0.022*\"japanes\" + 0.020*\"event\" + 0.020*\"gold\" + 0.018*\"rank\" + 0.018*\"athlet\"\n", + "2019-01-16 04:10:08,383 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"compani\" + 0.012*\"research\" + 0.012*\"servic\" + 0.011*\"develop\" + 0.010*\"institut\" + 0.009*\"work\" + 0.009*\"manag\" + 0.009*\"scienc\" + 0.009*\"busi\"\n", + "2019-01-16 04:10:08,385 : INFO : topic #20 (0.020): 0.043*\"win\" + 0.032*\"contest\" + 0.024*\"elimin\" + 0.023*\"dai\" + 0.022*\"fight\" + 0.019*\"challeng\" + 0.019*\"semi\" + 0.014*\"week\" + 0.014*\"round\" + 0.013*\"judg\"\n", + "2019-01-16 04:10:08,387 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.011*\"jpg\" + 0.011*\"centuri\" + 0.011*\"histor\" + 0.010*\"site\" + 0.010*\"church\" + 0.010*\"locat\" + 0.009*\"street\"\n", + "2019-01-16 04:10:08,393 : INFO : topic diff=0.085321, rho=0.134840\n", + "2019-01-16 04:10:09,022 : INFO : PROGRESS: pass 0, at document #112000/4922894\n", + "2019-01-16 04:10:11,331 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:11,885 : INFO : topic #19 (0.020): 0.019*\"radio\" + 0.018*\"new\" + 0.014*\"broadcast\" + 0.013*\"station\" + 0.011*\"channel\" + 0.011*\"televis\" + 0.009*\"air\" + 0.008*\"dai\" + 0.008*\"host\" + 0.008*\"program\"\n", + "2019-01-16 04:10:11,887 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.018*\"genu\" + 0.014*\"famili\" + 0.011*\"white\" + 0.011*\"red\" + 0.011*\"plant\" + 0.008*\"black\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"tree\"\n", + "2019-01-16 04:10:11,889 : INFO : topic #49 (0.020): 0.040*\"east\" + 0.039*\"west\" + 0.033*\"swedish\" + 0.032*\"north\" + 0.028*\"sweden\" + 0.027*\"poland\" + 0.025*\"south\" + 0.021*\"alt\" + 0.019*\"region\" + 0.018*\"counti\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:10:11,890 : INFO : topic #29 (0.020): 0.034*\"leagu\" + 0.034*\"team\" + 0.031*\"plai\" + 0.026*\"club\" + 0.024*\"season\" + 0.021*\"cup\" + 0.018*\"player\" + 0.017*\"match\" + 0.016*\"footbal\" + 0.014*\"game\"\n", + "2019-01-16 04:10:11,892 : INFO : topic #0 (0.020): 0.044*\"war\" + 0.029*\"armi\" + 0.018*\"forc\" + 0.017*\"battl\" + 0.016*\"regiment\" + 0.016*\"command\" + 0.014*\"militari\" + 0.012*\"gener\" + 0.012*\"infantri\" + 0.010*\"divis\"\n", + "2019-01-16 04:10:11,898 : INFO : topic diff=0.076981, rho=0.133631\n", + "2019-01-16 04:10:12,551 : INFO : PROGRESS: pass 0, at document #114000/4922894\n", + "2019-01-16 04:10:14,861 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:15,413 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.011*\"countri\" + 0.009*\"right\" + 0.008*\"polit\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"peopl\" + 0.007*\"unit\"\n", + "2019-01-16 04:10:15,415 : INFO : topic #26 (0.020): 0.046*\"women\" + 0.029*\"men\" + 0.027*\"olymp\" + 0.025*\"japan\" + 0.025*\"medal\" + 0.022*\"japanes\" + 0.021*\"event\" + 0.020*\"gold\" + 0.019*\"rank\" + 0.018*\"athlet\"\n", + "2019-01-16 04:10:15,417 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"jpg\" + 0.011*\"centuri\" + 0.010*\"histor\" + 0.010*\"locat\" + 0.010*\"site\" + 0.009*\"church\" + 0.009*\"file\"\n", + "2019-01-16 04:10:15,419 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.038*\"ag\" + 0.032*\"counti\" + 0.028*\"area\" + 0.025*\"household\" + 0.024*\"town\" + 0.024*\"famili\" + 0.023*\"femal\" + 0.022*\"township\" + 0.022*\"year\"\n", + "2019-01-16 04:10:15,421 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.029*\"new\" + 0.026*\"american\" + 0.022*\"unit\" + 0.021*\"univers\" + 0.020*\"york\" + 0.015*\"california\" + 0.013*\"citi\" + 0.012*\"counti\" + 0.012*\"texa\"\n", + "2019-01-16 04:10:15,427 : INFO : topic diff=0.073880, rho=0.132453\n", + "2019-01-16 04:10:16,058 : INFO : PROGRESS: pass 0, at document #116000/4922894\n", + "2019-01-16 04:10:18,422 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:18,975 : INFO : topic #17 (0.020): 0.051*\"race\" + 0.022*\"championship\" + 0.019*\"team\" + 0.016*\"world\" + 0.016*\"tour\" + 0.014*\"car\" + 0.013*\"finish\" + 0.011*\"time\" + 0.011*\"place\" + 0.011*\"point\"\n", + "2019-01-16 04:10:18,977 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.011*\"countri\" + 0.009*\"right\" + 0.008*\"polit\" + 0.007*\"support\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"unit\"\n", + "2019-01-16 04:10:18,979 : INFO : topic #10 (0.020): 0.014*\"engin\" + 0.014*\"cell\" + 0.011*\"product\" + 0.011*\"vehicl\" + 0.008*\"car\" + 0.008*\"acid\" + 0.008*\"type\" + 0.008*\"produc\" + 0.007*\"protein\" + 0.006*\"power\"\n", + "2019-01-16 04:10:18,981 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.037*\"ag\" + 0.033*\"counti\" + 0.028*\"area\" + 0.025*\"household\" + 0.024*\"famili\" + 0.024*\"township\" + 0.023*\"town\" + 0.023*\"femal\" + 0.022*\"year\"\n", + "2019-01-16 04:10:18,983 : INFO : topic #26 (0.020): 0.046*\"women\" + 0.030*\"men\" + 0.026*\"olymp\" + 0.025*\"medal\" + 0.024*\"japan\" + 0.022*\"event\" + 0.021*\"japanes\" + 0.019*\"rank\" + 0.019*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 04:10:18,990 : INFO : topic diff=0.076730, rho=0.131306\n", + "2019-01-16 04:10:19,554 : INFO : PROGRESS: pass 0, at document #118000/4922894\n", + "2019-01-16 04:10:21,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:22,372 : INFO : topic #11 (0.020): 0.028*\"act\" + 0.028*\"law\" + 0.026*\"court\" + 0.022*\"state\" + 0.012*\"case\" + 0.011*\"presid\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.007*\"feder\" + 0.007*\"public\"\n", + "2019-01-16 04:10:22,373 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.048*\"franc\" + 0.025*\"italian\" + 0.023*\"pari\" + 0.022*\"saint\" + 0.018*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 04:10:22,376 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"love\" + 0.005*\"like\" + 0.005*\"friend\" + 0.005*\"later\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:10:22,378 : INFO : topic #39 (0.020): 0.032*\"air\" + 0.024*\"servic\" + 0.020*\"oper\" + 0.020*\"unit\" + 0.019*\"aircraft\" + 0.016*\"airport\" + 0.015*\"forc\" + 0.014*\"navi\" + 0.013*\"flight\" + 0.012*\"marin\"\n", + "2019-01-16 04:10:22,380 : INFO : topic #49 (0.020): 0.041*\"east\" + 0.041*\"west\" + 0.034*\"north\" + 0.032*\"sweden\" + 0.031*\"swedish\" + 0.027*\"south\" + 0.025*\"poland\" + 0.023*\"region\" + 0.021*\"alt\" + 0.018*\"counti\"\n", + "2019-01-16 04:10:22,386 : INFO : topic diff=0.070743, rho=0.130189\n", + "2019-01-16 04:10:27,702 : INFO : -11.559 per-word bound, 3017.0 perplexity estimate based on a held-out corpus of 2000 documents with 561603 words\n", + "2019-01-16 04:10:27,703 : INFO : PROGRESS: pass 0, at document #120000/4922894\n", + "2019-01-16 04:10:30,009 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:30,563 : INFO : topic #45 (0.020): 0.015*\"born\" + 0.015*\"american\" + 0.013*\"john\" + 0.012*\"david\" + 0.009*\"michael\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"jame\" + 0.006*\"robert\" + 0.006*\"richard\"\n", + "2019-01-16 04:10:30,565 : INFO : topic #33 (0.020): 0.014*\"bank\" + 0.012*\"rate\" + 0.010*\"increas\" + 0.009*\"time\" + 0.008*\"million\" + 0.008*\"market\" + 0.008*\"cost\" + 0.007*\"price\" + 0.006*\"number\" + 0.006*\"result\"\n", + "2019-01-16 04:10:30,566 : INFO : topic #15 (0.020): 0.028*\"unit\" + 0.026*\"england\" + 0.020*\"citi\" + 0.019*\"town\" + 0.017*\"cricket\" + 0.016*\"club\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"footbal\" + 0.011*\"stadium\"\n", + "2019-01-16 04:10:30,568 : INFO : topic #27 (0.020): 0.036*\"russian\" + 0.023*\"soviet\" + 0.022*\"russia\" + 0.020*\"germani\" + 0.020*\"jewish\" + 0.020*\"republ\" + 0.016*\"israel\" + 0.015*\"polish\" + 0.013*\"jew\" + 0.013*\"union\"\n", + "2019-01-16 04:10:30,570 : INFO : topic #44 (0.020): 0.028*\"season\" + 0.025*\"game\" + 0.023*\"team\" + 0.016*\"coach\" + 0.014*\"plai\" + 0.013*\"footbal\" + 0.012*\"player\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", + "2019-01-16 04:10:30,575 : INFO : topic diff=0.067357, rho=0.129099\n", + "2019-01-16 04:10:31,188 : INFO : PROGRESS: pass 0, at document #122000/4922894\n", + "2019-01-16 04:10:33,494 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:34,050 : INFO : topic #29 (0.020): 0.033*\"leagu\" + 0.032*\"team\" + 0.030*\"plai\" + 0.029*\"season\" + 0.027*\"club\" + 0.020*\"cup\" + 0.018*\"match\" + 0.017*\"player\" + 0.016*\"footbal\" + 0.015*\"goal\"\n", + "2019-01-16 04:10:34,052 : INFO : topic #5 (0.020): 0.022*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"design\" + 0.007*\"card\" + 0.007*\"version\" + 0.006*\"includ\" + 0.006*\"code\" + 0.006*\"model\" + 0.006*\"digit\"\n", + "2019-01-16 04:10:34,054 : INFO : topic #25 (0.020): 0.038*\"round\" + 0.029*\"tournament\" + 0.026*\"winner\" + 0.024*\"final\" + 0.020*\"open\" + 0.017*\"doubl\" + 0.015*\"runner\" + 0.012*\"singl\" + 0.012*\"draw\" + 0.011*\"hard\"\n", + "2019-01-16 04:10:34,056 : INFO : topic #20 (0.020): 0.043*\"win\" + 0.029*\"contest\" + 0.022*\"dai\" + 0.022*\"fight\" + 0.021*\"elimin\" + 0.016*\"ring\" + 0.016*\"challeng\" + 0.015*\"wrestl\" + 0.013*\"week\" + 0.013*\"round\"\n", + "2019-01-16 04:10:34,058 : INFO : topic #17 (0.020): 0.051*\"race\" + 0.022*\"championship\" + 0.018*\"team\" + 0.017*\"world\" + 0.014*\"car\" + 0.014*\"tour\" + 0.014*\"finish\" + 0.011*\"time\" + 0.010*\"place\" + 0.010*\"won\"\n", + "2019-01-16 04:10:34,064 : INFO : topic diff=0.068308, rho=0.128037\n", + "2019-01-16 04:10:34,707 : INFO : PROGRESS: pass 0, at document #124000/4922894\n", + "2019-01-16 04:10:36,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:37,526 : INFO : topic #41 (0.020): 0.032*\"book\" + 0.029*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"stori\" + 0.011*\"edit\" + 0.011*\"novel\" + 0.010*\"magazin\" + 0.010*\"univers\" + 0.010*\"press\"\n", + "2019-01-16 04:10:37,527 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.030*\"new\" + 0.028*\"american\" + 0.023*\"unit\" + 0.021*\"york\" + 0.018*\"univers\" + 0.014*\"citi\" + 0.013*\"california\" + 0.013*\"counti\" + 0.012*\"texa\"\n", + "2019-01-16 04:10:37,530 : INFO : topic #45 (0.020): 0.015*\"american\" + 0.015*\"born\" + 0.013*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jame\" + 0.006*\"richard\"\n", + "2019-01-16 04:10:37,531 : INFO : topic #40 (0.020): 0.023*\"bar\" + 0.019*\"african\" + 0.019*\"africa\" + 0.014*\"color\" + 0.013*\"till\" + 0.013*\"text\" + 0.010*\"south\" + 0.009*\"coloni\" + 0.008*\"popul\" + 0.008*\"peopl\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:10:37,533 : INFO : topic #49 (0.020): 0.042*\"west\" + 0.042*\"east\" + 0.040*\"north\" + 0.032*\"sweden\" + 0.030*\"swedish\" + 0.030*\"south\" + 0.025*\"region\" + 0.022*\"poland\" + 0.019*\"counti\" + 0.016*\"alt\"\n", + "2019-01-16 04:10:37,539 : INFO : topic diff=0.068287, rho=0.127000\n", + "2019-01-16 04:10:38,168 : INFO : PROGRESS: pass 0, at document #126000/4922894\n", + "2019-01-16 04:10:40,498 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:41,056 : INFO : topic #32 (0.020): 0.030*\"speci\" + 0.013*\"famili\" + 0.013*\"genu\" + 0.011*\"plant\" + 0.010*\"white\" + 0.009*\"red\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"black\"\n", + "2019-01-16 04:10:41,058 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.022*\"hous\" + 0.015*\"built\" + 0.011*\"jpg\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"centuri\" + 0.010*\"locat\" + 0.010*\"site\" + 0.009*\"citi\"\n", + "2019-01-16 04:10:41,061 : INFO : topic #15 (0.020): 0.028*\"unit\" + 0.025*\"england\" + 0.021*\"citi\" + 0.018*\"town\" + 0.017*\"club\" + 0.015*\"cricket\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"stadium\" + 0.012*\"manchest\"\n", + "2019-01-16 04:10:41,062 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.017*\"compani\" + 0.012*\"research\" + 0.012*\"develop\" + 0.010*\"servic\" + 0.010*\"institut\" + 0.010*\"work\" + 0.009*\"manag\" + 0.009*\"busi\" + 0.009*\"intern\"\n", + "2019-01-16 04:10:41,064 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.015*\"famili\" + 0.012*\"bishop\" + 0.012*\"born\" + 0.011*\"father\" + 0.011*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:10:41,070 : INFO : topic diff=0.066217, rho=0.125988\n", + "2019-01-16 04:10:41,700 : INFO : PROGRESS: pass 0, at document #128000/4922894\n", + "2019-01-16 04:10:43,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:44,549 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.039*\"ag\" + 0.038*\"counti\" + 0.026*\"household\" + 0.025*\"famili\" + 0.025*\"town\" + 0.024*\"area\" + 0.023*\"femal\" + 0.022*\"citi\" + 0.022*\"censu\"\n", + "2019-01-16 04:10:44,551 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.027*\"contest\" + 0.025*\"dai\" + 0.022*\"elimin\" + 0.021*\"challeng\" + 0.019*\"fight\" + 0.016*\"wrestl\" + 0.016*\"week\" + 0.014*\"ring\" + 0.013*\"titl\"\n", + "2019-01-16 04:10:44,554 : INFO : topic #31 (0.020): 0.051*\"australia\" + 0.041*\"australian\" + 0.040*\"china\" + 0.034*\"new\" + 0.030*\"chines\" + 0.024*\"zealand\" + 0.023*\"south\" + 0.022*\"hong\" + 0.021*\"kong\" + 0.017*\"melbourn\"\n", + "2019-01-16 04:10:44,556 : INFO : topic #33 (0.020): 0.017*\"bank\" + 0.012*\"rate\" + 0.010*\"increas\" + 0.009*\"time\" + 0.008*\"test\" + 0.008*\"market\" + 0.008*\"million\" + 0.007*\"cost\" + 0.007*\"price\" + 0.006*\"number\"\n", + "2019-01-16 04:10:44,558 : INFO : topic #10 (0.020): 0.015*\"engin\" + 0.014*\"cell\" + 0.010*\"product\" + 0.009*\"car\" + 0.009*\"vehicl\" + 0.008*\"acid\" + 0.008*\"produc\" + 0.007*\"model\" + 0.007*\"type\" + 0.006*\"wheel\"\n", + "2019-01-16 04:10:44,565 : INFO : topic diff=0.065516, rho=0.125000\n", + "2019-01-16 04:10:45,211 : INFO : PROGRESS: pass 0, at document #130000/4922894\n", + "2019-01-16 04:10:47,551 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:48,104 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.027*\"record\" + 0.021*\"band\" + 0.018*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:10:48,106 : INFO : topic #31 (0.020): 0.053*\"australia\" + 0.041*\"australian\" + 0.038*\"china\" + 0.034*\"new\" + 0.028*\"chines\" + 0.025*\"zealand\" + 0.024*\"south\" + 0.021*\"hong\" + 0.021*\"kong\" + 0.016*\"sydnei\"\n", + "2019-01-16 04:10:48,107 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"friend\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"love\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:10:48,110 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.014*\"famili\" + 0.012*\"born\" + 0.012*\"bishop\" + 0.011*\"father\" + 0.011*\"cathol\" + 0.011*\"daughter\"\n", + "2019-01-16 04:10:48,111 : INFO : topic #27 (0.020): 0.034*\"russian\" + 0.025*\"soviet\" + 0.022*\"russia\" + 0.019*\"jewish\" + 0.018*\"republ\" + 0.018*\"polish\" + 0.018*\"germani\" + 0.018*\"israel\" + 0.013*\"union\" + 0.013*\"moscow\"\n", + "2019-01-16 04:10:48,118 : INFO : topic diff=0.061725, rho=0.124035\n", + "2019-01-16 04:10:48,720 : INFO : PROGRESS: pass 0, at document #132000/4922894\n", + "2019-01-16 04:10:50,959 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:51,512 : INFO : topic #14 (0.020): 0.017*\"compani\" + 0.017*\"univers\" + 0.012*\"research\" + 0.012*\"develop\" + 0.011*\"servic\" + 0.010*\"institut\" + 0.009*\"manag\" + 0.009*\"busi\" + 0.009*\"work\" + 0.009*\"scienc\"\n", + "2019-01-16 04:10:51,514 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.045*\"parti\" + 0.028*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.014*\"republican\" + 0.014*\"term\" + 0.014*\"council\" + 0.013*\"candid\" + 0.013*\"polit\"\n", + "2019-01-16 04:10:51,516 : INFO : topic #48 (0.020): 0.073*\"januari\" + 0.068*\"septemb\" + 0.067*\"octob\" + 0.067*\"march\" + 0.063*\"august\" + 0.062*\"juli\" + 0.060*\"novemb\" + 0.060*\"april\" + 0.057*\"decemb\" + 0.056*\"june\"\n", + "2019-01-16 04:10:51,518 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.030*\"high\" + 0.027*\"educ\" + 0.024*\"univers\" + 0.014*\"year\" + 0.009*\"graduat\" + 0.009*\"district\" + 0.008*\"campu\"\n", + "2019-01-16 04:10:51,520 : INFO : topic #27 (0.020): 0.035*\"russian\" + 0.025*\"soviet\" + 0.022*\"russia\" + 0.019*\"jewish\" + 0.018*\"polish\" + 0.018*\"republ\" + 0.017*\"israel\" + 0.017*\"germani\" + 0.013*\"moscow\" + 0.013*\"union\"\n", + "2019-01-16 04:10:51,526 : INFO : topic diff=0.060479, rho=0.123091\n", + "2019-01-16 04:10:52,099 : INFO : PROGRESS: pass 0, at document #134000/4922894\n", + "2019-01-16 04:10:54,363 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:54,915 : INFO : topic #21 (0.020): 0.009*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"centuri\" + 0.006*\"god\" + 0.005*\"mean\" + 0.005*\"peopl\" + 0.005*\"tradit\" + 0.005*\"english\" + 0.005*\"person\"\n", + "2019-01-16 04:10:54,917 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.031*\"armi\" + 0.018*\"forc\" + 0.017*\"command\" + 0.017*\"battl\" + 0.014*\"regiment\" + 0.014*\"militari\" + 0.012*\"gener\" + 0.012*\"divis\" + 0.010*\"soldier\"\n", + "2019-01-16 04:10:54,919 : INFO : topic #43 (0.020): 0.035*\"san\" + 0.018*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"lo\" + 0.010*\"francisco\" + 0.010*\"latin\"\n", + "2019-01-16 04:10:54,921 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.011*\"famili\" + 0.010*\"genu\" + 0.010*\"plant\" + 0.010*\"white\" + 0.009*\"red\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"black\"\n", + "2019-01-16 04:10:54,923 : INFO : topic #8 (0.020): 0.051*\"district\" + 0.033*\"india\" + 0.032*\"villag\" + 0.023*\"indian\" + 0.020*\"municip\" + 0.015*\"popul\" + 0.014*\"provinc\" + 0.012*\"region\" + 0.011*\"town\" + 0.010*\"rural\"\n", + "2019-01-16 04:10:54,929 : INFO : topic diff=0.060713, rho=0.122169\n", + "2019-01-16 04:10:55,568 : INFO : PROGRESS: pass 0, at document #136000/4922894\n", + "2019-01-16 04:10:57,840 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:10:58,394 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"greek\" + 0.013*\"centuri\" + 0.010*\"kingdom\" + 0.009*\"roman\" + 0.009*\"templ\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.007*\"dynasti\" + 0.007*\"princ\"\n", + "2019-01-16 04:10:58,396 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"love\" + 0.005*\"friend\" + 0.005*\"later\" + 0.005*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:10:58,398 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.051*\"parti\" + 0.027*\"member\" + 0.020*\"democrat\" + 0.018*\"vote\" + 0.014*\"council\" + 0.013*\"presid\" + 0.013*\"republican\" + 0.013*\"seat\" + 0.013*\"term\"\n", + "2019-01-16 04:10:58,400 : INFO : topic #44 (0.020): 0.028*\"season\" + 0.027*\"game\" + 0.025*\"team\" + 0.019*\"coach\" + 0.014*\"plai\" + 0.014*\"footbal\" + 0.012*\"player\" + 0.011*\"year\" + 0.009*\"confer\" + 0.009*\"record\"\n", + "2019-01-16 04:10:58,402 : INFO : topic #45 (0.020): 0.015*\"american\" + 0.015*\"born\" + 0.013*\"john\" + 0.011*\"david\" + 0.011*\"michael\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jame\" + 0.006*\"scott\"\n", + "2019-01-16 04:10:58,407 : INFO : topic diff=0.057394, rho=0.121268\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:10:59,040 : INFO : PROGRESS: pass 0, at document #138000/4922894\n", + "2019-01-16 04:11:01,375 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:01,929 : INFO : topic #29 (0.020): 0.036*\"leagu\" + 0.033*\"team\" + 0.032*\"plai\" + 0.029*\"club\" + 0.026*\"season\" + 0.022*\"cup\" + 0.017*\"footbal\" + 0.017*\"match\" + 0.017*\"player\" + 0.015*\"goal\"\n", + "2019-01-16 04:11:01,931 : INFO : topic #20 (0.020): 0.041*\"win\" + 0.027*\"contest\" + 0.023*\"dai\" + 0.020*\"elimin\" + 0.020*\"fight\" + 0.018*\"challeng\" + 0.016*\"wrestl\" + 0.015*\"ring\" + 0.014*\"week\" + 0.014*\"titl\"\n", + "2019-01-16 04:11:01,933 : INFO : topic #19 (0.020): 0.026*\"radio\" + 0.022*\"new\" + 0.018*\"station\" + 0.015*\"broadcast\" + 0.011*\"televis\" + 0.010*\"channel\" + 0.009*\"air\" + 0.008*\"program\" + 0.008*\"dai\" + 0.008*\"host\"\n", + "2019-01-16 04:11:01,935 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.045*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.017*\"jean\" + 0.017*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 04:11:01,936 : INFO : topic #45 (0.020): 0.015*\"american\" + 0.014*\"born\" + 0.013*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jame\" + 0.006*\"scott\"\n", + "2019-01-16 04:11:01,943 : INFO : topic diff=0.056600, rho=0.120386\n", + "2019-01-16 04:11:07,042 : INFO : -11.717 per-word bound, 3365.6 perplexity estimate based on a held-out corpus of 2000 documents with 535260 words\n", + "2019-01-16 04:11:07,043 : INFO : PROGRESS: pass 0, at document #140000/4922894\n", + "2019-01-16 04:11:09,303 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:09,860 : INFO : topic #7 (0.020): 0.015*\"function\" + 0.012*\"number\" + 0.010*\"space\" + 0.010*\"theori\" + 0.009*\"exampl\" + 0.008*\"gener\" + 0.008*\"point\" + 0.008*\"group\" + 0.008*\"set\" + 0.007*\"defin\"\n", + "2019-01-16 04:11:09,863 : INFO : topic #36 (0.020): 0.059*\"art\" + 0.034*\"museum\" + 0.030*\"work\" + 0.025*\"artist\" + 0.024*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.014*\"galleri\" + 0.013*\"collect\" + 0.012*\"new\"\n", + "2019-01-16 04:11:09,864 : INFO : topic #35 (0.020): 0.050*\"acacia\" + 0.042*\"minist\" + 0.028*\"indonesia\" + 0.027*\"prime\" + 0.013*\"indonesian\" + 0.013*\"thai\" + 0.013*\"bulgarian\" + 0.010*\"thailand\" + 0.010*\"sen\" + 0.009*\"mon\"\n", + "2019-01-16 04:11:09,866 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"state\" + 0.013*\"nation\" + 0.010*\"countri\" + 0.009*\"polit\" + 0.008*\"right\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"foreign\"\n", + "2019-01-16 04:11:09,868 : INFO : topic #9 (0.020): 0.072*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.020*\"best\" + 0.019*\"seri\" + 0.016*\"star\" + 0.013*\"role\" + 0.013*\"produc\" + 0.012*\"actor\" + 0.011*\"direct\"\n", + "2019-01-16 04:11:09,874 : INFO : topic diff=0.056482, rho=0.119523\n", + "2019-01-16 04:11:10,508 : INFO : PROGRESS: pass 0, at document #142000/4922894\n", + "2019-01-16 04:11:12,844 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:13,397 : INFO : topic #22 (0.020): 0.044*\"popul\" + 0.039*\"ag\" + 0.039*\"counti\" + 0.028*\"town\" + 0.027*\"household\" + 0.025*\"famili\" + 0.023*\"femal\" + 0.022*\"year\" + 0.022*\"citi\" + 0.021*\"area\"\n", + "2019-01-16 04:11:13,399 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.007*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"earth\" + 0.005*\"us\" + 0.005*\"materi\" + 0.004*\"measur\" + 0.004*\"temperatur\"\n", + "2019-01-16 04:11:13,400 : INFO : topic #26 (0.020): 0.041*\"women\" + 0.029*\"medal\" + 0.028*\"men\" + 0.026*\"olymp\" + 0.025*\"japan\" + 0.021*\"world\" + 0.020*\"japanes\" + 0.020*\"event\" + 0.018*\"championship\" + 0.018*\"rank\"\n", + "2019-01-16 04:11:13,402 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.017*\"compani\" + 0.013*\"research\" + 0.012*\"servic\" + 0.012*\"develop\" + 0.010*\"institut\" + 0.009*\"work\" + 0.009*\"manag\" + 0.009*\"busi\" + 0.009*\"commun\"\n", + "2019-01-16 04:11:13,404 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.018*\"forc\" + 0.017*\"command\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.013*\"regiment\" + 0.012*\"troop\" + 0.012*\"gener\" + 0.011*\"divis\"\n", + "2019-01-16 04:11:13,409 : INFO : topic diff=0.052953, rho=0.118678\n", + "2019-01-16 04:11:14,004 : INFO : PROGRESS: pass 0, at document #144000/4922894\n", + "2019-01-16 04:11:16,330 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:16,884 : INFO : topic #6 (0.020): 0.069*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.018*\"danc\" + 0.018*\"theatr\" + 0.018*\"festiv\" + 0.013*\"opera\" + 0.012*\"plai\" + 0.012*\"piano\" + 0.011*\"orchestra\"\n", + "2019-01-16 04:11:16,886 : INFO : topic #46 (0.020): 0.090*\"class\" + 0.066*\"center\" + 0.063*\"align\" + 0.053*\"style\" + 0.044*\"wikit\" + 0.038*\"philippin\" + 0.037*\"text\" + 0.033*\"right\" + 0.028*\"border\" + 0.023*\"width\"\n", + "2019-01-16 04:11:16,888 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"love\" + 0.005*\"friend\" + 0.005*\"like\" + 0.005*\"later\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:11:16,890 : INFO : topic #15 (0.020): 0.027*\"unit\" + 0.020*\"england\" + 0.020*\"citi\" + 0.018*\"cricket\" + 0.016*\"town\" + 0.013*\"scottish\" + 0.013*\"scotland\" + 0.012*\"club\" + 0.010*\"footbal\" + 0.009*\"west\"\n", + "2019-01-16 04:11:16,892 : INFO : topic #11 (0.020): 0.029*\"law\" + 0.024*\"court\" + 0.024*\"state\" + 0.022*\"act\" + 0.011*\"case\" + 0.010*\"presid\" + 0.010*\"offic\" + 0.009*\"legal\" + 0.008*\"feder\" + 0.007*\"unit\"\n", + "2019-01-16 04:11:16,898 : INFO : topic diff=0.055033, rho=0.117851\n", + "2019-01-16 04:11:17,502 : INFO : PROGRESS: pass 0, at document #146000/4922894\n", + "2019-01-16 04:11:19,893 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:20,446 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.018*\"jean\" + 0.016*\"itali\" + 0.013*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:11:20,448 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"state\" + 0.013*\"nation\" + 0.010*\"countri\" + 0.009*\"polit\" + 0.008*\"right\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 04:11:20,450 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"jpg\" + 0.010*\"street\" + 0.010*\"centuri\" + 0.010*\"hall\" + 0.010*\"site\" + 0.010*\"histor\" + 0.010*\"locat\"\n", + "2019-01-16 04:11:20,452 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.017*\"forc\" + 0.016*\"command\" + 0.016*\"battl\" + 0.015*\"regiment\" + 0.014*\"militari\" + 0.013*\"gener\" + 0.012*\"troop\" + 0.012*\"divis\"\n", + "2019-01-16 04:11:20,455 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.017*\"station\" + 0.016*\"line\" + 0.014*\"road\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.013*\"island\" + 0.013*\"park\" + 0.012*\"north\" + 0.012*\"rout\"\n", + "2019-01-16 04:11:20,461 : INFO : topic diff=0.049763, rho=0.117041\n", + "2019-01-16 04:11:21,062 : INFO : PROGRESS: pass 0, at document #148000/4922894\n", + "2019-01-16 04:11:23,332 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:23,885 : INFO : topic #39 (0.020): 0.035*\"air\" + 0.022*\"oper\" + 0.019*\"aircraft\" + 0.019*\"servic\" + 0.019*\"unit\" + 0.017*\"forc\" + 0.016*\"airport\" + 0.015*\"squadron\" + 0.013*\"navi\" + 0.011*\"flight\"\n", + "2019-01-16 04:11:23,887 : INFO : topic #46 (0.020): 0.093*\"class\" + 0.063*\"center\" + 0.057*\"align\" + 0.053*\"style\" + 0.046*\"wikit\" + 0.039*\"philippin\" + 0.035*\"text\" + 0.034*\"border\" + 0.031*\"right\" + 0.022*\"width\"\n", + "2019-01-16 04:11:23,889 : INFO : topic #15 (0.020): 0.026*\"unit\" + 0.022*\"england\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"town\" + 0.013*\"scotland\" + 0.013*\"scottish\" + 0.011*\"club\" + 0.010*\"counti\" + 0.009*\"footbal\"\n", + "2019-01-16 04:11:23,891 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.020*\"spanish\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.017*\"spain\" + 0.011*\"brazil\" + 0.010*\"santa\" + 0.009*\"carlo\" + 0.009*\"mexican\" + 0.009*\"juan\"\n", + "2019-01-16 04:11:23,892 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.047*\"parti\" + 0.026*\"member\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.014*\"term\" + 0.014*\"presid\" + 0.013*\"polit\" + 0.012*\"serv\"\n", + "2019-01-16 04:11:23,899 : INFO : topic diff=0.052297, rho=0.116248\n", + "2019-01-16 04:11:24,457 : INFO : PROGRESS: pass 0, at document #150000/4922894\n", + "2019-01-16 04:11:26,737 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:11:27,290 : INFO : topic #22 (0.020): 0.043*\"popul\" + 0.041*\"counti\" + 0.039*\"ag\" + 0.027*\"household\" + 0.026*\"town\" + 0.025*\"famili\" + 0.022*\"citi\" + 0.022*\"femal\" + 0.021*\"censu\" + 0.021*\"year\"\n", + "2019-01-16 04:11:27,292 : INFO : topic #15 (0.020): 0.026*\"unit\" + 0.021*\"england\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"town\" + 0.013*\"scottish\" + 0.013*\"scotland\" + 0.011*\"club\" + 0.010*\"counti\" + 0.010*\"footbal\"\n", + "2019-01-16 04:11:27,294 : INFO : topic #8 (0.020): 0.045*\"district\" + 0.033*\"villag\" + 0.033*\"india\" + 0.027*\"indian\" + 0.020*\"municip\" + 0.015*\"provinc\" + 0.015*\"popul\" + 0.014*\"pakistan\" + 0.012*\"region\" + 0.010*\"town\"\n", + "2019-01-16 04:11:27,296 : INFO : topic #33 (0.020): 0.012*\"bank\" + 0.011*\"rate\" + 0.011*\"increas\" + 0.009*\"million\" + 0.008*\"time\" + 0.008*\"cost\" + 0.007*\"market\" + 0.007*\"number\" + 0.007*\"requir\" + 0.007*\"test\"\n", + "2019-01-16 04:11:27,298 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"saint\" + 0.024*\"pari\" + 0.018*\"jean\" + 0.016*\"itali\" + 0.014*\"de\" + 0.012*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 04:11:27,304 : INFO : topic diff=0.050420, rho=0.115470\n", + "2019-01-16 04:11:27,856 : INFO : PROGRESS: pass 0, at document #152000/4922894\n", + "2019-01-16 04:11:30,092 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:30,651 : INFO : topic #39 (0.020): 0.035*\"air\" + 0.021*\"oper\" + 0.019*\"servic\" + 0.018*\"aircraft\" + 0.018*\"unit\" + 0.018*\"forc\" + 0.016*\"navi\" + 0.016*\"airport\" + 0.013*\"squadron\" + 0.012*\"flight\"\n", + "2019-01-16 04:11:30,653 : INFO : topic #34 (0.020): 0.074*\"canada\" + 0.055*\"canadian\" + 0.025*\"ontario\" + 0.019*\"toronto\" + 0.016*\"quebec\" + 0.016*\"malaysia\" + 0.016*\"korea\" + 0.016*\"danish\" + 0.015*\"montreal\" + 0.014*\"korean\"\n", + "2019-01-16 04:11:30,655 : INFO : topic #45 (0.020): 0.014*\"american\" + 0.014*\"john\" + 0.013*\"david\" + 0.013*\"born\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"richard\"\n", + "2019-01-16 04:11:30,656 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.030*\"armi\" + 0.017*\"forc\" + 0.017*\"battl\" + 0.016*\"command\" + 0.015*\"regiment\" + 0.014*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.011*\"troop\"\n", + "2019-01-16 04:11:30,658 : INFO : topic #30 (0.020): 0.047*\"french\" + 0.040*\"franc\" + 0.030*\"jean\" + 0.024*\"saint\" + 0.024*\"italian\" + 0.022*\"pari\" + 0.015*\"itali\" + 0.013*\"pierr\" + 0.013*\"loui\" + 0.013*\"de\"\n", + "2019-01-16 04:11:30,664 : INFO : topic diff=0.048846, rho=0.114708\n", + "2019-01-16 04:11:31,319 : INFO : PROGRESS: pass 0, at document #154000/4922894\n", + "2019-01-16 04:11:33,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:34,168 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"love\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"friend\" + 0.005*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:11:34,171 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.030*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"univers\" + 0.011*\"magazin\" + 0.011*\"press\" + 0.011*\"novel\"\n", + "2019-01-16 04:11:34,173 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"water\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"planet\" + 0.005*\"us\" + 0.005*\"orbit\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:11:34,174 : INFO : topic #34 (0.020): 0.075*\"canada\" + 0.056*\"canadian\" + 0.025*\"ontario\" + 0.020*\"toronto\" + 0.017*\"danish\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.015*\"malaysia\" + 0.014*\"montreal\" + 0.014*\"korean\"\n", + "2019-01-16 04:11:34,176 : INFO : topic #46 (0.020): 0.091*\"class\" + 0.076*\"center\" + 0.072*\"align\" + 0.047*\"style\" + 0.044*\"wikit\" + 0.038*\"philippin\" + 0.033*\"right\" + 0.032*\"text\" + 0.030*\"border\" + 0.023*\"left\"\n", + "2019-01-16 04:11:34,182 : INFO : topic diff=0.048015, rho=0.113961\n", + "2019-01-16 04:11:34,800 : INFO : PROGRESS: pass 0, at document #156000/4922894\n", + "2019-01-16 04:11:37,037 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:37,589 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.026*\"contest\" + 0.023*\"elimin\" + 0.022*\"wrestl\" + 0.017*\"fight\" + 0.017*\"week\" + 0.016*\"dai\" + 0.015*\"challeng\" + 0.014*\"pro\" + 0.013*\"box\"\n", + "2019-01-16 04:11:37,591 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.031*\"germani\" + 0.026*\"der\" + 0.024*\"van\" + 0.023*\"von\" + 0.018*\"berlin\" + 0.014*\"die\" + 0.013*\"johann\" + 0.012*\"und\" + 0.009*\"dutch\"\n", + "2019-01-16 04:11:37,593 : INFO : topic #22 (0.020): 0.045*\"popul\" + 0.044*\"counti\" + 0.039*\"ag\" + 0.028*\"household\" + 0.026*\"town\" + 0.024*\"famili\" + 0.022*\"femal\" + 0.022*\"year\" + 0.022*\"censu\" + 0.022*\"citi\"\n", + "2019-01-16 04:11:37,595 : INFO : topic #45 (0.020): 0.014*\"american\" + 0.014*\"john\" + 0.013*\"born\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jame\" + 0.006*\"jone\"\n", + "2019-01-16 04:11:37,597 : INFO : topic #24 (0.020): 0.022*\"ship\" + 0.017*\"polic\" + 0.011*\"kill\" + 0.010*\"report\" + 0.009*\"gun\" + 0.008*\"damag\" + 0.007*\"crew\" + 0.007*\"attack\" + 0.007*\"boat\" + 0.007*\"prison\"\n", + "2019-01-16 04:11:37,604 : INFO : topic diff=0.048006, rho=0.113228\n", + "2019-01-16 04:11:38,165 : INFO : PROGRESS: pass 0, at document #158000/4922894\n", + "2019-01-16 04:11:40,398 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:40,950 : INFO : topic #44 (0.020): 0.028*\"season\" + 0.027*\"game\" + 0.026*\"team\" + 0.016*\"coach\" + 0.015*\"plai\" + 0.014*\"footbal\" + 0.011*\"year\" + 0.011*\"player\" + 0.009*\"record\" + 0.008*\"basketbal\"\n", + "2019-01-16 04:11:40,952 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.023*\"court\" + 0.022*\"state\" + 0.019*\"act\" + 0.010*\"case\" + 0.010*\"offic\" + 0.009*\"presid\" + 0.009*\"legal\" + 0.008*\"feder\" + 0.008*\"public\"\n", + "2019-01-16 04:11:40,954 : INFO : topic #26 (0.020): 0.039*\"women\" + 0.027*\"japan\" + 0.027*\"men\" + 0.026*\"olymp\" + 0.025*\"medal\" + 0.023*\"world\" + 0.021*\"championship\" + 0.020*\"japanes\" + 0.019*\"event\" + 0.018*\"athlet\"\n", + "2019-01-16 04:11:40,955 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.023*\"paint\" + 0.023*\"design\" + 0.023*\"artist\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.013*\"galleri\" + 0.012*\"new\"\n", + "2019-01-16 04:11:40,957 : INFO : topic #39 (0.020): 0.036*\"air\" + 0.021*\"oper\" + 0.021*\"navi\" + 0.018*\"aircraft\" + 0.018*\"unit\" + 0.018*\"forc\" + 0.018*\"servic\" + 0.016*\"airport\" + 0.014*\"squadron\" + 0.012*\"flight\"\n", + "2019-01-16 04:11:40,964 : INFO : topic diff=0.046278, rho=0.112509\n", + "2019-01-16 04:11:46,068 : INFO : -11.740 per-word bound, 3419.9 perplexity estimate based on a held-out corpus of 2000 documents with 534038 words\n", + "2019-01-16 04:11:46,069 : INFO : PROGRESS: pass 0, at document #160000/4922894\n", + "2019-01-16 04:11:48,348 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:48,905 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.022*\"state\" + 0.018*\"act\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"presid\" + 0.008*\"legal\" + 0.008*\"feder\" + 0.008*\"public\"\n", + "2019-01-16 04:11:48,907 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.032*\"new\" + 0.029*\"american\" + 0.023*\"unit\" + 0.022*\"york\" + 0.016*\"citi\" + 0.015*\"california\" + 0.014*\"counti\" + 0.014*\"univers\" + 0.011*\"texa\"\n", + "2019-01-16 04:11:48,910 : INFO : topic #12 (0.020): 0.061*\"elect\" + 0.047*\"parti\" + 0.027*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.016*\"presid\" + 0.014*\"council\" + 0.013*\"republican\" + 0.012*\"candid\" + 0.012*\"polit\"\n", + "2019-01-16 04:11:48,912 : INFO : topic #21 (0.020): 0.009*\"languag\" + 0.007*\"word\" + 0.006*\"centuri\" + 0.006*\"form\" + 0.005*\"mean\" + 0.005*\"peopl\" + 0.005*\"tradit\" + 0.005*\"english\" + 0.005*\"us\" + 0.005*\"god\"\n", + "2019-01-16 04:11:48,915 : INFO : topic #33 (0.020): 0.011*\"bank\" + 0.011*\"increas\" + 0.010*\"rate\" + 0.009*\"million\" + 0.008*\"time\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.007*\"market\" + 0.007*\"level\"\n", + "2019-01-16 04:11:48,921 : INFO : topic diff=0.046372, rho=0.111803\n", + "2019-01-16 04:11:49,496 : INFO : PROGRESS: pass 0, at document #162000/4922894\n", + "2019-01-16 04:11:51,807 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:52,360 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.013*\"file\" + 0.013*\"jpg\" + 0.011*\"centuri\" + 0.010*\"site\" + 0.010*\"histor\" + 0.010*\"locat\" + 0.010*\"street\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:11:52,362 : INFO : topic #9 (0.020): 0.072*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"role\" + 0.013*\"actor\" + 0.012*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 04:11:52,364 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.025*\"team\" + 0.015*\"coach\" + 0.015*\"plai\" + 0.014*\"footbal\" + 0.011*\"player\" + 0.011*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", + "2019-01-16 04:11:52,366 : INFO : topic #12 (0.020): 0.061*\"elect\" + 0.046*\"parti\" + 0.028*\"member\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.016*\"presid\" + 0.015*\"council\" + 0.013*\"republican\" + 0.013*\"polit\" + 0.012*\"repres\"\n", + "2019-01-16 04:11:52,368 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.026*\"tournament\" + 0.025*\"final\" + 0.025*\"open\" + 0.024*\"winner\" + 0.018*\"draw\" + 0.017*\"doubl\" + 0.016*\"singl\" + 0.015*\"runner\" + 0.014*\"hard\"\n", + "2019-01-16 04:11:52,374 : INFO : topic diff=0.046038, rho=0.111111\n", + "2019-01-16 04:11:52,982 : INFO : PROGRESS: pass 0, at document #164000/4922894\n", + "2019-01-16 04:11:55,272 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:55,828 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 04:11:55,830 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.040*\"franc\" + 0.025*\"jean\" + 0.025*\"saint\" + 0.024*\"pari\" + 0.023*\"italian\" + 0.015*\"itali\" + 0.014*\"de\" + 0.013*\"pierr\" + 0.011*\"loui\"\n", + "2019-01-16 04:11:55,832 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.027*\"record\" + 0.026*\"releas\" + 0.022*\"band\" + 0.017*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:11:55,835 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.029*\"germani\" + 0.026*\"der\" + 0.025*\"van\" + 0.022*\"von\" + 0.019*\"berlin\" + 0.013*\"die\" + 0.012*\"und\" + 0.012*\"johann\" + 0.011*\"dutch\"\n", + "2019-01-16 04:11:55,837 : INFO : topic #23 (0.020): 0.034*\"medic\" + 0.024*\"hospit\" + 0.021*\"health\" + 0.016*\"diseas\" + 0.016*\"medicin\" + 0.014*\"patient\" + 0.013*\"cancer\" + 0.012*\"treatment\" + 0.011*\"clinic\" + 0.011*\"ret\"\n", + "2019-01-16 04:11:55,843 : INFO : topic diff=0.042106, rho=0.110432\n", + "2019-01-16 04:11:56,423 : INFO : PROGRESS: pass 0, at document #166000/4922894\n", + "2019-01-16 04:11:58,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:11:59,261 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.023*\"artist\" + 0.022*\"design\" + 0.021*\"paint\" + 0.016*\"exhibit\" + 0.014*\"collect\" + 0.012*\"galleri\" + 0.011*\"new\"\n", + "2019-01-16 04:11:59,263 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.016*\"di\" + 0.016*\"death\" + 0.014*\"marri\" + 0.014*\"famili\" + 0.013*\"born\" + 0.012*\"father\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:11:59,266 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.013*\"american\" + 0.012*\"born\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"robert\" + 0.008*\"paul\" + 0.007*\"peter\" + 0.007*\"jame\" + 0.006*\"richard\"\n", + "2019-01-16 04:11:59,268 : INFO : topic #49 (0.020): 0.056*\"east\" + 0.054*\"north\" + 0.053*\"west\" + 0.047*\"south\" + 0.044*\"region\" + 0.026*\"swedish\" + 0.022*\"poland\" + 0.021*\"sweden\" + 0.021*\"central\" + 0.019*\"villag\"\n", + "2019-01-16 04:11:59,270 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 04:11:59,276 : INFO : topic diff=0.044959, rho=0.109764\n", + "2019-01-16 04:11:59,809 : INFO : PROGRESS: pass 0, at document #168000/4922894\n", + "2019-01-16 04:12:02,031 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:02,592 : INFO : topic #23 (0.020): 0.034*\"medic\" + 0.023*\"hospit\" + 0.021*\"health\" + 0.016*\"medicin\" + 0.015*\"diseas\" + 0.014*\"patient\" + 0.013*\"clinic\" + 0.012*\"treatment\" + 0.011*\"cancer\" + 0.009*\"drug\"\n", + "2019-01-16 04:12:02,594 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.027*\"contest\" + 0.020*\"elimin\" + 0.020*\"wrestl\" + 0.019*\"week\" + 0.017*\"fight\" + 0.013*\"challeng\" + 0.013*\"dai\" + 0.013*\"titl\" + 0.012*\"final\"\n", + "2019-01-16 04:12:02,596 : INFO : topic #49 (0.020): 0.060*\"east\" + 0.055*\"north\" + 0.053*\"west\" + 0.047*\"south\" + 0.045*\"region\" + 0.027*\"swedish\" + 0.024*\"sweden\" + 0.021*\"poland\" + 0.021*\"central\" + 0.019*\"villag\"\n", + "2019-01-16 04:12:02,597 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.014*\"centuri\" + 0.013*\"emperor\" + 0.012*\"greek\" + 0.011*\"templ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.007*\"roman\" + 0.007*\"princ\" + 0.006*\"dynasti\"\n", + "2019-01-16 04:12:02,599 : INFO : topic #39 (0.020): 0.036*\"air\" + 0.022*\"oper\" + 0.018*\"forc\" + 0.018*\"unit\" + 0.018*\"navi\" + 0.018*\"aircraft\" + 0.016*\"servic\" + 0.015*\"piper\" + 0.015*\"airport\" + 0.013*\"squadron\"\n", + "2019-01-16 04:12:02,606 : INFO : topic diff=0.043325, rho=0.109109\n", + "2019-01-16 04:12:03,150 : INFO : PROGRESS: pass 0, at document #170000/4922894\n", + "2019-01-16 04:12:05,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:05,948 : INFO : topic #21 (0.020): 0.009*\"languag\" + 0.006*\"word\" + 0.006*\"centuri\" + 0.005*\"form\" + 0.005*\"mean\" + 0.005*\"peopl\" + 0.005*\"differ\" + 0.005*\"us\" + 0.005*\"cultur\" + 0.005*\"tradit\"\n", + "2019-01-16 04:12:05,950 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"state\" + 0.022*\"court\" + 0.018*\"act\" + 0.011*\"offic\" + 0.010*\"case\" + 0.008*\"presid\" + 0.008*\"feder\" + 0.008*\"legal\" + 0.008*\"public\"\n", + "2019-01-16 04:12:05,951 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.025*\"contest\" + 0.022*\"wrestl\" + 0.019*\"week\" + 0.019*\"elimin\" + 0.017*\"fight\" + 0.014*\"box\" + 0.014*\"titl\" + 0.013*\"dai\" + 0.013*\"challeng\"\n", + "2019-01-16 04:12:05,953 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.014*\"cell\" + 0.010*\"product\" + 0.008*\"car\" + 0.008*\"type\" + 0.008*\"produc\" + 0.008*\"model\" + 0.008*\"power\" + 0.007*\"vehicl\" + 0.006*\"protein\"\n", + "2019-01-16 04:12:05,955 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.028*\"armi\" + 0.018*\"command\" + 0.016*\"battl\" + 0.016*\"forc\" + 0.016*\"regiment\" + 0.014*\"militari\" + 0.013*\"divis\" + 0.013*\"gener\" + 0.012*\"battalion\"\n", + "2019-01-16 04:12:05,961 : INFO : topic diff=0.042368, rho=0.108465\n", + "2019-01-16 04:12:06,495 : INFO : PROGRESS: pass 0, at document #172000/4922894\n", + "2019-01-16 04:12:08,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:09,343 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.019*\"station\" + 0.016*\"broadcast\" + 0.012*\"televis\" + 0.010*\"channel\" + 0.010*\"host\" + 0.009*\"network\" + 0.009*\"air\" + 0.009*\"program\"\n", + "2019-01-16 04:12:09,345 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.035*\"colleg\" + 0.034*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.024*\"univers\" + 0.020*\"district\" + 0.016*\"year\" + 0.010*\"graduat\" + 0.009*\"state\"\n", + "2019-01-16 04:12:09,346 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.044*\"parti\" + 0.027*\"member\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"presid\" + 0.015*\"council\" + 0.013*\"repres\" + 0.012*\"candid\" + 0.012*\"polit\"\n", + "2019-01-16 04:12:09,348 : INFO : topic #8 (0.020): 0.050*\"district\" + 0.034*\"india\" + 0.030*\"villag\" + 0.028*\"indian\" + 0.019*\"municip\" + 0.017*\"provinc\" + 0.014*\"popul\" + 0.013*\"pakistan\" + 0.011*\"region\" + 0.010*\"rural\"\n", + "2019-01-16 04:12:09,350 : INFO : topic #41 (0.020): 0.033*\"book\" + 0.030*\"publish\" + 0.020*\"work\" + 0.013*\"new\" + 0.012*\"univers\" + 0.012*\"edit\" + 0.012*\"stori\" + 0.011*\"novel\" + 0.011*\"press\" + 0.010*\"writer\"\n", + "2019-01-16 04:12:09,355 : INFO : topic diff=0.042170, rho=0.107833\n", + "2019-01-16 04:12:09,927 : INFO : PROGRESS: pass 0, at document #174000/4922894\n", + "2019-01-16 04:12:12,218 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:12,775 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.031*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.018*\"berlin\" + 0.013*\"dutch\" + 0.013*\"und\" + 0.013*\"die\" + 0.010*\"johann\"\n", + "2019-01-16 04:12:12,777 : INFO : topic #14 (0.020): 0.018*\"compani\" + 0.016*\"univers\" + 0.012*\"develop\" + 0.012*\"research\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.010*\"institut\" + 0.010*\"work\" + 0.009*\"scienc\" + 0.009*\"busi\"\n", + "2019-01-16 04:12:12,779 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.029*\"publish\" + 0.020*\"work\" + 0.013*\"new\" + 0.012*\"univers\" + 0.012*\"novel\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"press\" + 0.010*\"writer\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:12:12,780 : INFO : topic #9 (0.020): 0.072*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.014*\"role\" + 0.013*\"actor\" + 0.012*\"direct\" + 0.012*\"televis\"\n", + "2019-01-16 04:12:12,782 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.029*\"final\" + 0.027*\"tournament\" + 0.025*\"winner\" + 0.025*\"open\" + 0.015*\"doubl\" + 0.015*\"draw\" + 0.015*\"singl\" + 0.015*\"runner\" + 0.011*\"hard\"\n", + "2019-01-16 04:12:12,788 : INFO : topic diff=0.037235, rho=0.107211\n", + "2019-01-16 04:12:13,367 : INFO : PROGRESS: pass 0, at document #176000/4922894\n", + "2019-01-16 04:12:15,605 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:16,159 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.018*\"station\" + 0.015*\"island\" + 0.015*\"area\" + 0.015*\"line\" + 0.015*\"road\" + 0.014*\"park\" + 0.014*\"railwai\" + 0.012*\"lake\" + 0.012*\"rout\"\n", + "2019-01-16 04:12:16,161 : INFO : topic #46 (0.020): 0.106*\"class\" + 0.064*\"align\" + 0.063*\"center\" + 0.046*\"style\" + 0.045*\"wikit\" + 0.038*\"left\" + 0.037*\"philippin\" + 0.035*\"right\" + 0.032*\"text\" + 0.027*\"border\"\n", + "2019-01-16 04:12:16,163 : INFO : topic #48 (0.020): 0.076*\"august\" + 0.073*\"octob\" + 0.073*\"januari\" + 0.072*\"march\" + 0.070*\"juli\" + 0.070*\"septemb\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.064*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 04:12:16,165 : INFO : topic #8 (0.020): 0.052*\"district\" + 0.034*\"india\" + 0.029*\"villag\" + 0.027*\"indian\" + 0.019*\"municip\" + 0.018*\"provinc\" + 0.013*\"popul\" + 0.013*\"pakistan\" + 0.010*\"region\" + 0.010*\"rural\"\n", + "2019-01-16 04:12:16,167 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.033*\"team\" + 0.031*\"plai\" + 0.029*\"club\" + 0.023*\"season\" + 0.022*\"cup\" + 0.019*\"footbal\" + 0.018*\"match\" + 0.017*\"player\" + 0.014*\"goal\"\n", + "2019-01-16 04:12:16,173 : INFO : topic diff=0.042123, rho=0.106600\n", + "2019-01-16 04:12:16,776 : INFO : PROGRESS: pass 0, at document #178000/4922894\n", + "2019-01-16 04:12:19,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:19,729 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.026*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.016*\"spain\" + 0.013*\"santa\" + 0.010*\"brazil\" + 0.010*\"juan\" + 0.009*\"josé\" + 0.009*\"antonio\"\n", + "2019-01-16 04:12:19,732 : INFO : topic #45 (0.020): 0.014*\"american\" + 0.014*\"john\" + 0.012*\"david\" + 0.011*\"born\" + 0.010*\"michael\" + 0.009*\"robert\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:12:19,733 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.023*\"state\" + 0.021*\"court\" + 0.017*\"act\" + 0.012*\"offic\" + 0.010*\"case\" + 0.008*\"legal\" + 0.008*\"feder\" + 0.008*\"justic\" + 0.008*\"presid\"\n", + "2019-01-16 04:12:19,735 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.010*\"theori\" + 0.009*\"exampl\" + 0.008*\"point\" + 0.008*\"space\" + 0.008*\"valu\" + 0.008*\"set\" + 0.007*\"model\" + 0.007*\"group\"\n", + "2019-01-16 04:12:19,738 : INFO : topic #41 (0.020): 0.033*\"book\" + 0.030*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"univers\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"press\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:12:19,744 : INFO : topic diff=0.037512, rho=0.106000\n", + "2019-01-16 04:12:24,957 : INFO : -11.784 per-word bound, 3526.8 perplexity estimate based on a held-out corpus of 2000 documents with 552853 words\n", + "2019-01-16 04:12:24,958 : INFO : PROGRESS: pass 0, at document #180000/4922894\n", + "2019-01-16 04:12:27,245 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:27,798 : INFO : topic #33 (0.020): 0.011*\"increas\" + 0.010*\"rate\" + 0.009*\"bank\" + 0.009*\"million\" + 0.009*\"time\" + 0.007*\"number\" + 0.007*\"market\" + 0.007*\"level\" + 0.007*\"requir\" + 0.007*\"cost\"\n", + "2019-01-16 04:12:27,800 : INFO : topic #27 (0.020): 0.044*\"russian\" + 0.026*\"soviet\" + 0.025*\"russia\" + 0.020*\"jewish\" + 0.018*\"polish\" + 0.016*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"born\" + 0.012*\"czech\"\n", + "2019-01-16 04:12:27,801 : INFO : topic #40 (0.020): 0.027*\"bar\" + 0.024*\"africa\" + 0.020*\"african\" + 0.017*\"till\" + 0.016*\"text\" + 0.015*\"south\" + 0.015*\"color\" + 0.009*\"coloni\" + 0.009*\"agricultur\" + 0.009*\"popul\"\n", + "2019-01-16 04:12:27,803 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.019*\"radio\" + 0.017*\"station\" + 0.015*\"broadcast\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.009*\"host\" + 0.009*\"program\" + 0.009*\"network\" + 0.009*\"air\"\n", + "2019-01-16 04:12:27,805 : INFO : topic #39 (0.020): 0.037*\"air\" + 0.021*\"oper\" + 0.021*\"aircraft\" + 0.019*\"unit\" + 0.019*\"forc\" + 0.015*\"navi\" + 0.015*\"servic\" + 0.013*\"airport\" + 0.013*\"squadron\" + 0.011*\"flight\"\n", + "2019-01-16 04:12:27,811 : INFO : topic diff=0.037531, rho=0.105409\n", + "2019-01-16 04:12:28,421 : INFO : PROGRESS: pass 0, at document #182000/4922894\n", + "2019-01-16 04:12:30,716 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:31,270 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.030*\"final\" + 0.027*\"winner\" + 0.027*\"tournament\" + 0.022*\"open\" + 0.015*\"runner\" + 0.015*\"doubl\" + 0.014*\"singl\" + 0.013*\"draw\" + 0.011*\"clai\"\n", + "2019-01-16 04:12:31,272 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"famili\" + 0.011*\"genu\" + 0.010*\"bird\" + 0.010*\"plant\" + 0.009*\"white\" + 0.007*\"red\" + 0.007*\"black\" + 0.006*\"tree\" + 0.006*\"fish\"\n", + "2019-01-16 04:12:31,274 : INFO : topic #34 (0.020): 0.075*\"canada\" + 0.061*\"canadian\" + 0.028*\"ontario\" + 0.024*\"toronto\" + 0.018*\"malaysia\" + 0.017*\"korea\" + 0.015*\"island\" + 0.015*\"ye\" + 0.014*\"singapor\" + 0.014*\"british\"\n", + "2019-01-16 04:12:31,276 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.023*\"contest\" + 0.023*\"wrestl\" + 0.019*\"fight\" + 0.016*\"titl\" + 0.016*\"elimin\" + 0.015*\"week\" + 0.014*\"box\" + 0.012*\"dai\" + 0.012*\"challeng\"\n", + "2019-01-16 04:12:31,278 : INFO : topic #17 (0.020): 0.054*\"race\" + 0.018*\"championship\" + 0.018*\"team\" + 0.016*\"car\" + 0.014*\"world\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.010*\"driver\" + 0.010*\"won\"\n", + "2019-01-16 04:12:31,284 : INFO : topic diff=0.040293, rho=0.104828\n", + "2019-01-16 04:12:31,873 : INFO : PROGRESS: pass 0, at document #184000/4922894\n", + "2019-01-16 04:12:34,103 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:34,656 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.032*\"new\" + 0.029*\"american\" + 0.022*\"unit\" + 0.021*\"york\" + 0.016*\"citi\" + 0.015*\"california\" + 0.015*\"counti\" + 0.012*\"univers\" + 0.012*\"texa\"\n", + "2019-01-16 04:12:34,658 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.023*\"state\" + 0.022*\"court\" + 0.016*\"act\" + 0.012*\"offic\" + 0.011*\"case\" + 0.008*\"right\" + 0.008*\"legal\" + 0.008*\"public\" + 0.008*\"feder\"\n", + "2019-01-16 04:12:34,660 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.031*\"work\" + 0.024*\"artist\" + 0.023*\"design\" + 0.023*\"paint\" + 0.016*\"exhibit\" + 0.013*\"collect\" + 0.013*\"galleri\" + 0.011*\"new\"\n", + "2019-01-16 04:12:34,662 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.019*\"son\" + 0.017*\"di\" + 0.014*\"marri\" + 0.014*\"famili\" + 0.014*\"father\" + 0.013*\"death\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"cathol\"\n", + "2019-01-16 04:12:34,665 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.031*\"final\" + 0.027*\"tournament\" + 0.026*\"winner\" + 0.021*\"open\" + 0.015*\"runner\" + 0.014*\"singl\" + 0.014*\"doubl\" + 0.013*\"draw\" + 0.011*\"champion\"\n", + "2019-01-16 04:12:34,670 : INFO : topic diff=0.035548, rho=0.104257\n", + "2019-01-16 04:12:35,235 : INFO : PROGRESS: pass 0, at document #186000/4922894\n", + "2019-01-16 04:12:37,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:38,065 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.029*\"soviet\" + 0.027*\"russia\" + 0.018*\"jewish\" + 0.017*\"republ\" + 0.016*\"polish\" + 0.016*\"israel\" + 0.014*\"moscow\" + 0.013*\"born\" + 0.012*\"germani\"\n", + "2019-01-16 04:12:38,067 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.075*\"march\" + 0.074*\"octob\" + 0.074*\"august\" + 0.071*\"januari\" + 0.070*\"juli\" + 0.065*\"june\" + 0.065*\"novemb\" + 0.065*\"april\" + 0.063*\"decemb\"\n", + "2019-01-16 04:12:38,068 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.032*\"new\" + 0.029*\"american\" + 0.021*\"unit\" + 0.021*\"york\" + 0.016*\"citi\" + 0.015*\"california\" + 0.014*\"counti\" + 0.012*\"univers\" + 0.011*\"washington\"\n", + "2019-01-16 04:12:38,071 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.018*\"london\" + 0.015*\"british\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.012*\"sir\" + 0.011*\"royal\" + 0.011*\"thoma\" + 0.011*\"ireland\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:12:38,072 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.019*\"command\" + 0.018*\"forc\" + 0.016*\"battl\" + 0.015*\"divis\" + 0.015*\"gener\" + 0.014*\"militari\" + 0.013*\"regiment\" + 0.010*\"infantri\"\n", + "2019-01-16 04:12:38,079 : INFO : topic diff=0.038786, rho=0.103695\n", + "2019-01-16 04:12:38,610 : INFO : PROGRESS: pass 0, at document #188000/4922894\n", + "2019-01-16 04:12:40,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:41,445 : INFO : topic #1 (0.020): 0.041*\"album\" + 0.028*\"song\" + 0.026*\"record\" + 0.025*\"releas\" + 0.023*\"band\" + 0.017*\"music\" + 0.015*\"singl\" + 0.014*\"track\" + 0.014*\"chart\" + 0.011*\"guitar\"\n", + "2019-01-16 04:12:41,447 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.030*\"publish\" + 0.019*\"work\" + 0.013*\"new\" + 0.012*\"univers\" + 0.012*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.011*\"press\" + 0.011*\"writer\"\n", + "2019-01-16 04:12:41,448 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.038*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.023*\"saint\" + 0.022*\"jean\" + 0.015*\"itali\" + 0.014*\"de\" + 0.012*\"le\" + 0.012*\"pierr\"\n", + "2019-01-16 04:12:41,450 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.013*\"famili\" + 0.012*\"genu\" + 0.010*\"white\" + 0.009*\"plant\" + 0.009*\"bird\" + 0.008*\"black\" + 0.008*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", + "2019-01-16 04:12:41,452 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.021*\"oper\" + 0.021*\"aircraft\" + 0.020*\"forc\" + 0.019*\"unit\" + 0.016*\"servic\" + 0.015*\"airport\" + 0.014*\"squadron\" + 0.014*\"navi\" + 0.011*\"flight\"\n", + "2019-01-16 04:12:41,459 : INFO : topic diff=0.038794, rho=0.103142\n", + "2019-01-16 04:12:42,044 : INFO : PROGRESS: pass 0, at document #190000/4922894\n", + "2019-01-16 04:12:44,320 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:44,878 : INFO : topic #46 (0.020): 0.111*\"class\" + 0.078*\"align\" + 0.062*\"left\" + 0.059*\"center\" + 0.046*\"style\" + 0.046*\"wikit\" + 0.036*\"philippin\" + 0.030*\"text\" + 0.030*\"right\" + 0.028*\"border\"\n", + "2019-01-16 04:12:44,880 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.025*\"town\" + 0.024*\"england\" + 0.020*\"cricket\" + 0.019*\"citi\" + 0.015*\"scotland\" + 0.015*\"scottish\" + 0.011*\"manchest\" + 0.010*\"west\" + 0.009*\"counti\"\n", + "2019-01-16 04:12:44,882 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.016*\"british\" + 0.014*\"georg\" + 0.013*\"jame\" + 0.012*\"sir\" + 0.011*\"royal\" + 0.011*\"thoma\" + 0.011*\"ireland\"\n", + "2019-01-16 04:12:44,884 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.014*\"famili\" + 0.014*\"marri\" + 0.013*\"father\" + 0.013*\"death\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:12:44,885 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.025*\"contest\" + 0.021*\"wrestl\" + 0.017*\"titl\" + 0.017*\"fight\" + 0.015*\"elimin\" + 0.015*\"safe\" + 0.015*\"box\" + 0.013*\"week\" + 0.011*\"challeng\"\n", + "2019-01-16 04:12:44,891 : INFO : topic diff=0.036943, rho=0.102598\n", + "2019-01-16 04:12:45,476 : INFO : PROGRESS: pass 0, at document #192000/4922894\n", + "2019-01-16 04:12:47,841 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:48,402 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"famili\" + 0.011*\"genu\" + 0.010*\"white\" + 0.009*\"plant\" + 0.009*\"bird\" + 0.008*\"black\" + 0.008*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", + "2019-01-16 04:12:48,404 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.049*\"parti\" + 0.025*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.016*\"presid\" + 0.015*\"council\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.012*\"candid\"\n", + "2019-01-16 04:12:48,406 : INFO : topic #46 (0.020): 0.111*\"class\" + 0.075*\"align\" + 0.062*\"left\" + 0.057*\"center\" + 0.046*\"wikit\" + 0.045*\"style\" + 0.040*\"philippin\" + 0.030*\"text\" + 0.029*\"right\" + 0.027*\"border\"\n", + "2019-01-16 04:12:48,407 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.024*\"state\" + 0.023*\"court\" + 0.017*\"act\" + 0.011*\"offic\" + 0.011*\"case\" + 0.009*\"feder\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"justic\"\n", + "2019-01-16 04:12:48,410 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.030*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"univers\" + 0.012*\"novel\" + 0.012*\"edit\" + 0.011*\"press\" + 0.011*\"stori\" + 0.011*\"writer\"\n", + "2019-01-16 04:12:48,416 : INFO : topic diff=0.040764, rho=0.102062\n", + "2019-01-16 04:12:48,958 : INFO : PROGRESS: pass 0, at document #194000/4922894\n", + "2019-01-16 04:12:51,218 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:51,771 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.026*\"men\" + 0.025*\"japan\" + 0.025*\"world\" + 0.024*\"olymp\" + 0.023*\"medal\" + 0.022*\"championship\" + 0.021*\"japanes\" + 0.021*\"event\" + 0.018*\"gold\"\n", + "2019-01-16 04:12:51,773 : INFO : topic #9 (0.020): 0.075*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"direct\" + 0.012*\"actor\" + 0.011*\"televis\"\n", + "2019-01-16 04:12:51,776 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.016*\"british\" + 0.014*\"georg\" + 0.013*\"jame\" + 0.012*\"sir\" + 0.012*\"thoma\" + 0.012*\"royal\" + 0.010*\"ireland\"\n", + "2019-01-16 04:12:51,778 : INFO : topic #35 (0.020): 0.047*\"minist\" + 0.024*\"prime\" + 0.020*\"thailand\" + 0.020*\"indonesia\" + 0.015*\"thai\" + 0.011*\"chan\" + 0.011*\"bulgarian\" + 0.010*\"indonesian\" + 0.010*\"chi\" + 0.009*\"wong\"\n", + "2019-01-16 04:12:51,780 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.029*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"univers\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.010*\"writer\"\n", + "2019-01-16 04:12:51,786 : INFO : topic diff=0.034410, rho=0.101535\n", + "2019-01-16 04:12:52,368 : INFO : PROGRESS: pass 0, at document #196000/4922894\n", + "2019-01-16 04:12:54,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:55,150 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.013*\"american\" + 0.011*\"david\" + 0.011*\"born\" + 0.010*\"michael\" + 0.008*\"robert\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:12:55,152 : INFO : topic #23 (0.020): 0.028*\"medic\" + 0.026*\"health\" + 0.023*\"hospit\" + 0.015*\"diseas\" + 0.014*\"ret\" + 0.013*\"medicin\" + 0.013*\"patient\" + 0.011*\"treatment\" + 0.011*\"cancer\" + 0.011*\"clinic\"\n", + "2019-01-16 04:12:55,154 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"point\" + 0.009*\"group\" + 0.009*\"theori\" + 0.009*\"exampl\" + 0.008*\"space\" + 0.007*\"model\" + 0.007*\"valu\" + 0.007*\"set\"\n", + "2019-01-16 04:12:55,156 : INFO : topic #8 (0.020): 0.052*\"district\" + 0.033*\"india\" + 0.030*\"villag\" + 0.028*\"indian\" + 0.020*\"provinc\" + 0.017*\"municip\" + 0.012*\"popul\" + 0.011*\"pakistan\" + 0.010*\"rural\" + 0.009*\"region\"\n", + "2019-01-16 04:12:55,158 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.030*\"final\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.019*\"open\" + 0.014*\"singl\" + 0.013*\"runner\" + 0.012*\"doubl\" + 0.012*\"detail\" + 0.011*\"draw\"\n", + "2019-01-16 04:12:55,164 : INFO : topic diff=0.033151, rho=0.101015\n", + "2019-01-16 04:12:55,760 : INFO : PROGRESS: pass 0, at document #198000/4922894\n", + "2019-01-16 04:12:58,091 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:12:58,645 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.013*\"centuri\" + 0.011*\"templ\" + 0.010*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.007*\"arab\" + 0.007*\"citi\"\n", + "2019-01-16 04:12:58,647 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.016*\"coach\" + 0.013*\"footbal\" + 0.012*\"year\" + 0.012*\"player\" + 0.010*\"record\" + 0.008*\"career\"\n", + "2019-01-16 04:12:58,649 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"god\" + 0.006*\"form\" + 0.006*\"centuri\" + 0.006*\"mean\" + 0.005*\"peopl\" + 0.005*\"differ\" + 0.005*\"us\" + 0.005*\"cultur\"\n", + "2019-01-16 04:12:58,651 : INFO : topic #48 (0.020): 0.075*\"august\" + 0.072*\"march\" + 0.071*\"octob\" + 0.071*\"septemb\" + 0.070*\"juli\" + 0.068*\"januari\" + 0.067*\"decemb\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"april\"\n", + "2019-01-16 04:12:58,653 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.023*\"saint\" + 0.023*\"pari\" + 0.019*\"jean\" + 0.016*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:12:58,659 : INFO : topic diff=0.035868, rho=0.100504\n", + "2019-01-16 04:13:03,844 : INFO : -11.563 per-word bound, 3025.4 perplexity estimate based on a held-out corpus of 2000 documents with 555696 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:13:03,845 : INFO : PROGRESS: pass 0, at document #200000/4922894\n", + "2019-01-16 04:13:06,126 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:06,680 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.021*\"festiv\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"danc\" + 0.015*\"orchestra\" + 0.015*\"plai\" + 0.014*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 04:13:06,682 : INFO : topic #48 (0.020): 0.074*\"august\" + 0.072*\"octob\" + 0.072*\"march\" + 0.072*\"septemb\" + 0.070*\"januari\" + 0.070*\"juli\" + 0.067*\"decemb\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"april\"\n", + "2019-01-16 04:13:06,684 : INFO : topic #22 (0.020): 0.049*\"counti\" + 0.046*\"popul\" + 0.036*\"town\" + 0.035*\"ag\" + 0.032*\"township\" + 0.025*\"famili\" + 0.025*\"household\" + 0.023*\"citi\" + 0.022*\"censu\" + 0.021*\"commun\"\n", + "2019-01-16 04:13:06,686 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.028*\"soviet\" + 0.027*\"russia\" + 0.018*\"israel\" + 0.018*\"jewish\" + 0.017*\"republ\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.013*\"czech\" + 0.012*\"born\"\n", + "2019-01-16 04:13:06,688 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.028*\"armi\" + 0.019*\"forc\" + 0.019*\"command\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"divis\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.009*\"infantri\"\n", + "2019-01-16 04:13:06,694 : INFO : topic diff=0.033886, rho=0.100000\n", + "2019-01-16 04:13:07,292 : INFO : PROGRESS: pass 0, at document #202000/4922894\n", + "2019-01-16 04:13:09,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:10,066 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.022*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.017*\"itali\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:13:10,068 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.031*\"work\" + 0.026*\"artist\" + 0.022*\"paint\" + 0.022*\"design\" + 0.015*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.012*\"painter\"\n", + "2019-01-16 04:13:10,070 : INFO : topic #22 (0.020): 0.050*\"counti\" + 0.046*\"popul\" + 0.039*\"ag\" + 0.036*\"town\" + 0.030*\"township\" + 0.025*\"household\" + 0.024*\"famili\" + 0.023*\"citi\" + 0.021*\"censu\" + 0.021*\"year\"\n", + "2019-01-16 04:13:10,072 : INFO : topic #40 (0.020): 0.025*\"africa\" + 0.023*\"african\" + 0.022*\"bar\" + 0.016*\"south\" + 0.015*\"till\" + 0.013*\"text\" + 0.012*\"color\" + 0.010*\"agricultur\" + 0.010*\"coloni\" + 0.009*\"peopl\"\n", + "2019-01-16 04:13:10,075 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"love\" + 0.005*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:13:10,081 : INFO : topic diff=0.034190, rho=0.099504\n", + "2019-01-16 04:13:10,687 : INFO : PROGRESS: pass 0, at document #204000/4922894\n", + "2019-01-16 04:13:12,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:13,528 : INFO : topic #49 (0.020): 0.056*\"east\" + 0.053*\"north\" + 0.048*\"region\" + 0.047*\"west\" + 0.045*\"south\" + 0.026*\"swedish\" + 0.024*\"sweden\" + 0.023*\"norwai\" + 0.021*\"central\" + 0.021*\"villag\"\n", + "2019-01-16 04:13:13,530 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.009*\"theori\" + 0.009*\"point\" + 0.009*\"group\" + 0.008*\"exampl\" + 0.008*\"mathemat\" + 0.008*\"space\" + 0.007*\"valu\" + 0.007*\"gener\"\n", + "2019-01-16 04:13:13,532 : INFO : topic #23 (0.020): 0.026*\"medic\" + 0.024*\"health\" + 0.024*\"hospit\" + 0.020*\"ret\" + 0.015*\"diseas\" + 0.013*\"patient\" + 0.012*\"medicin\" + 0.012*\"cancer\" + 0.011*\"treatment\" + 0.011*\"clinic\"\n", + "2019-01-16 04:13:13,533 : INFO : topic #22 (0.020): 0.050*\"counti\" + 0.047*\"popul\" + 0.040*\"ag\" + 0.036*\"town\" + 0.029*\"township\" + 0.025*\"household\" + 0.024*\"famili\" + 0.023*\"citi\" + 0.021*\"censu\" + 0.021*\"year\"\n", + "2019-01-16 04:13:13,535 : INFO : topic #24 (0.020): 0.026*\"ship\" + 0.015*\"polic\" + 0.011*\"kill\" + 0.009*\"gun\" + 0.008*\"attack\" + 0.008*\"report\" + 0.007*\"damag\" + 0.007*\"boat\" + 0.007*\"crew\" + 0.007*\"prison\"\n", + "2019-01-16 04:13:13,541 : INFO : topic diff=0.035826, rho=0.099015\n", + "2019-01-16 04:13:14,167 : INFO : PROGRESS: pass 0, at document #206000/4922894\n", + "2019-01-16 04:13:16,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:17,065 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.010*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"foreign\"\n", + "2019-01-16 04:13:17,067 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.049*\"parti\" + 0.025*\"member\" + 0.020*\"democrat\" + 0.020*\"vote\" + 0.016*\"presid\" + 0.016*\"council\" + 0.015*\"republican\" + 0.013*\"repres\" + 0.013*\"candid\"\n", + "2019-01-16 04:13:17,069 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.026*\"award\" + 0.024*\"best\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.012*\"direct\" + 0.012*\"televis\"\n", + "2019-01-16 04:13:17,072 : INFO : topic #48 (0.020): 0.076*\"octob\" + 0.074*\"august\" + 0.074*\"septemb\" + 0.074*\"march\" + 0.072*\"januari\" + 0.070*\"juli\" + 0.070*\"novemb\" + 0.068*\"decemb\" + 0.066*\"april\" + 0.064*\"june\"\n", + "2019-01-16 04:13:17,074 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"coach\" + 0.015*\"plai\" + 0.012*\"footbal\" + 0.012*\"player\" + 0.012*\"year\" + 0.010*\"record\" + 0.008*\"basketbal\"\n", + "2019-01-16 04:13:17,080 : INFO : topic diff=0.029509, rho=0.098533\n", + "2019-01-16 04:13:17,651 : INFO : PROGRESS: pass 0, at document #208000/4922894\n", + "2019-01-16 04:13:19,958 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:20,516 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"god\" + 0.006*\"mean\" + 0.006*\"centuri\" + 0.005*\"peopl\" + 0.005*\"cultur\" + 0.005*\"differ\" + 0.005*\"us\"\n", + "2019-01-16 04:13:20,518 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.015*\"famili\" + 0.014*\"marri\" + 0.014*\"born\" + 0.013*\"father\" + 0.012*\"death\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:13:20,519 : INFO : topic #23 (0.020): 0.031*\"hospit\" + 0.026*\"medic\" + 0.025*\"health\" + 0.017*\"ret\" + 0.015*\"diseas\" + 0.013*\"patient\" + 0.013*\"children\" + 0.012*\"medicin\" + 0.012*\"cancer\" + 0.011*\"treatment\"\n", + "2019-01-16 04:13:20,522 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"love\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 04:13:20,525 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.032*\"univers\" + 0.029*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"district\" + 0.011*\"graduat\" + 0.009*\"program\"\n", + "2019-01-16 04:13:20,531 : INFO : topic diff=0.034736, rho=0.098058\n", + "2019-01-16 04:13:21,083 : INFO : PROGRESS: pass 0, at document #210000/4922894\n", + "2019-01-16 04:13:23,384 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:23,943 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"love\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:13:23,945 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.024*\"court\" + 0.022*\"state\" + 0.019*\"act\" + 0.011*\"offic\" + 0.010*\"case\" + 0.008*\"justic\" + 0.008*\"feder\" + 0.008*\"legal\" + 0.008*\"public\"\n", + "2019-01-16 04:13:23,947 : INFO : topic #14 (0.020): 0.018*\"compani\" + 0.017*\"univers\" + 0.013*\"research\" + 0.012*\"develop\" + 0.011*\"institut\" + 0.010*\"work\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.009*\"intern\" + 0.009*\"busi\"\n", + "2019-01-16 04:13:23,948 : INFO : topic #49 (0.020): 0.054*\"east\" + 0.052*\"north\" + 0.049*\"region\" + 0.048*\"west\" + 0.045*\"south\" + 0.025*\"swedish\" + 0.022*\"sweden\" + 0.021*\"norwai\" + 0.020*\"central\" + 0.020*\"villag\"\n", + "2019-01-16 04:13:23,950 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.037*\"colleg\" + 0.036*\"student\" + 0.031*\"univers\" + 0.029*\"educ\" + 0.028*\"high\" + 0.015*\"year\" + 0.012*\"district\" + 0.011*\"graduat\" + 0.009*\"program\"\n", + "2019-01-16 04:13:23,956 : INFO : topic diff=0.029127, rho=0.097590\n", + "2019-01-16 04:13:24,536 : INFO : PROGRESS: pass 0, at document #212000/4922894\n", + "2019-01-16 04:13:26,796 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:27,357 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.015*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"francisco\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:13:27,358 : INFO : topic #8 (0.020): 0.049*\"district\" + 0.034*\"india\" + 0.028*\"villag\" + 0.027*\"indian\" + 0.020*\"provinc\" + 0.018*\"municip\" + 0.013*\"http\" + 0.012*\"popul\" + 0.010*\"pakistan\" + 0.010*\"rural\"\n", + "2019-01-16 04:13:27,360 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"nation\" + 0.013*\"state\" + 0.011*\"polit\" + 0.009*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"war\"\n", + "2019-01-16 04:13:27,362 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.022*\"oper\" + 0.022*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.015*\"servic\" + 0.015*\"navi\" + 0.014*\"squadron\" + 0.011*\"base\"\n", + "2019-01-16 04:13:27,364 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"white\" + 0.012*\"famili\" + 0.009*\"genu\" + 0.009*\"plant\" + 0.008*\"bird\" + 0.008*\"black\" + 0.008*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 04:13:27,370 : INFO : topic diff=0.031418, rho=0.097129\n", + "2019-01-16 04:13:27,934 : INFO : PROGRESS: pass 0, at document #214000/4922894\n", + "2019-01-16 04:13:30,211 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:30,770 : INFO : topic #8 (0.020): 0.048*\"district\" + 0.033*\"india\" + 0.027*\"indian\" + 0.027*\"villag\" + 0.020*\"provinc\" + 0.018*\"municip\" + 0.013*\"http\" + 0.012*\"popul\" + 0.010*\"pakistan\" + 0.010*\"rural\"\n", + "2019-01-16 04:13:30,773 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.010*\"brazil\" + 0.009*\"josé\" + 0.009*\"juan\" + 0.009*\"francisco\"\n", + "2019-01-16 04:13:30,775 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.019*\"work\" + 0.014*\"stori\" + 0.013*\"new\" + 0.013*\"univers\" + 0.012*\"edit\" + 0.012*\"novel\" + 0.011*\"press\" + 0.011*\"magazin\"\n", + "2019-01-16 04:13:30,777 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.016*\"british\" + 0.016*\"georg\" + 0.013*\"jame\" + 0.012*\"thoma\" + 0.012*\"royal\" + 0.011*\"sir\" + 0.011*\"henri\"\n", + "2019-01-16 04:13:30,778 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"organ\"\n", + "2019-01-16 04:13:30,784 : INFO : topic diff=0.030167, rho=0.096674\n", + "2019-01-16 04:13:31,374 : INFO : PROGRESS: pass 0, at document #216000/4922894\n", + "2019-01-16 04:13:33,668 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:34,221 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.038*\"colleg\" + 0.036*\"student\" + 0.031*\"educ\" + 0.031*\"univers\" + 0.028*\"high\" + 0.015*\"year\" + 0.012*\"district\" + 0.011*\"graduat\" + 0.009*\"program\"\n", + "2019-01-16 04:13:34,223 : INFO : topic #35 (0.020): 0.048*\"minist\" + 0.028*\"prime\" + 0.021*\"thailand\" + 0.018*\"indonesia\" + 0.017*\"thai\" + 0.014*\"bulgarian\" + 0.012*\"chan\" + 0.012*\"indonesian\" + 0.011*\"chi\" + 0.011*\"vietnam\"\n", + "2019-01-16 04:13:34,225 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.030*\"final\" + 0.028*\"tournament\" + 0.027*\"open\" + 0.019*\"winner\" + 0.014*\"singl\" + 0.012*\"doubl\" + 0.012*\"group\" + 0.012*\"runner\" + 0.012*\"draw\"\n", + "2019-01-16 04:13:34,228 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.011*\"jpg\" + 0.010*\"histor\" + 0.010*\"centuri\" + 0.010*\"locat\" + 0.009*\"site\" + 0.009*\"file\"\n", + "2019-01-16 04:13:34,229 : INFO : topic #23 (0.020): 0.029*\"hospit\" + 0.027*\"medic\" + 0.025*\"health\" + 0.014*\"ret\" + 0.014*\"patient\" + 0.014*\"diseas\" + 0.012*\"children\" + 0.012*\"treatment\" + 0.011*\"medicin\" + 0.011*\"cancer\"\n", + "2019-01-16 04:13:34,235 : INFO : topic diff=0.031833, rho=0.096225\n", + "2019-01-16 04:13:34,774 : INFO : PROGRESS: pass 0, at document #218000/4922894\n", + "2019-01-16 04:13:36,998 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:37,552 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.025*\"soviet\" + 0.025*\"russia\" + 0.019*\"israel\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.016*\"republ\" + 0.015*\"moscow\" + 0.013*\"czech\" + 0.013*\"poland\"\n", + "2019-01-16 04:13:37,554 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.018*\"station\" + 0.016*\"line\" + 0.014*\"island\" + 0.014*\"area\" + 0.013*\"road\" + 0.013*\"railwai\" + 0.013*\"rout\" + 0.012*\"park\" + 0.012*\"north\"\n", + "2019-01-16 04:13:37,556 : INFO : topic #35 (0.020): 0.047*\"minist\" + 0.027*\"prime\" + 0.019*\"thailand\" + 0.018*\"indonesia\" + 0.016*\"thai\" + 0.014*\"bulgarian\" + 0.013*\"chan\" + 0.012*\"indonesian\" + 0.010*\"vietnam\" + 0.010*\"chi\"\n", + "2019-01-16 04:13:37,558 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.076*\"align\" + 0.059*\"left\" + 0.056*\"center\" + 0.050*\"wikit\" + 0.049*\"style\" + 0.040*\"right\" + 0.034*\"philippin\" + 0.027*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:13:37,560 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.013*\"white\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.009*\"genu\" + 0.008*\"black\" + 0.008*\"red\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.006*\"tree\"\n", + "2019-01-16 04:13:37,565 : INFO : topic diff=0.030099, rho=0.095783\n", + "2019-01-16 04:13:42,792 : INFO : -11.809 per-word bound, 3588.7 perplexity estimate based on a held-out corpus of 2000 documents with 558022 words\n", + "2019-01-16 04:13:42,793 : INFO : PROGRESS: pass 0, at document #220000/4922894\n", + "2019-01-16 04:13:45,137 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:45,693 : INFO : topic #0 (0.020): 0.041*\"war\" + 0.028*\"armi\" + 0.020*\"forc\" + 0.019*\"command\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.009*\"soldier\"\n", + "2019-01-16 04:13:45,695 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.073*\"align\" + 0.059*\"center\" + 0.058*\"left\" + 0.049*\"wikit\" + 0.047*\"style\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.026*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:13:45,697 : INFO : topic #27 (0.020): 0.038*\"russian\" + 0.025*\"soviet\" + 0.025*\"russia\" + 0.021*\"israel\" + 0.020*\"polish\" + 0.018*\"jewish\" + 0.015*\"republ\" + 0.015*\"moscow\" + 0.014*\"poland\" + 0.013*\"born\"\n", + "2019-01-16 04:13:45,699 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.028*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.017*\"music\" + 0.017*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:13:45,700 : INFO : topic #22 (0.020): 0.051*\"counti\" + 0.046*\"popul\" + 0.037*\"ag\" + 0.033*\"town\" + 0.027*\"household\" + 0.024*\"citi\" + 0.023*\"famili\" + 0.023*\"township\" + 0.022*\"censu\" + 0.020*\"year\"\n", + "2019-01-16 04:13:45,706 : INFO : topic diff=0.026709, rho=0.095346\n", + "2019-01-16 04:13:46,280 : INFO : PROGRESS: pass 0, at document #222000/4922894\n", + "2019-01-16 04:13:48,618 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:49,176 : INFO : topic #14 (0.020): 0.017*\"compani\" + 0.017*\"univers\" + 0.013*\"research\" + 0.012*\"develop\" + 0.011*\"servic\" + 0.011*\"institut\" + 0.011*\"work\" + 0.010*\"manag\" + 0.009*\"intern\" + 0.009*\"nation\"\n", + "2019-01-16 04:13:49,178 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"white\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.009*\"black\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"red\" + 0.007*\"fish\" + 0.006*\"tree\"\n", + "2019-01-16 04:13:49,180 : INFO : topic #33 (0.020): 0.011*\"bank\" + 0.011*\"million\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.008*\"time\" + 0.008*\"market\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.006*\"result\"\n", + "2019-01-16 04:13:49,183 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.017*\"station\" + 0.016*\"line\" + 0.014*\"area\" + 0.014*\"road\" + 0.013*\"island\" + 0.013*\"railwai\" + 0.012*\"rout\" + 0.012*\"north\" + 0.011*\"park\"\n", + "2019-01-16 04:13:49,185 : INFO : topic #15 (0.020): 0.033*\"unit\" + 0.027*\"town\" + 0.025*\"england\" + 0.024*\"citi\" + 0.021*\"cricket\" + 0.019*\"scotland\" + 0.013*\"scottish\" + 0.011*\"manchest\" + 0.010*\"west\" + 0.009*\"english\"\n", + "2019-01-16 04:13:49,191 : INFO : topic diff=0.031477, rho=0.094916\n", + "2019-01-16 04:13:49,722 : INFO : PROGRESS: pass 0, at document #224000/4922894\n", + "2019-01-16 04:13:52,002 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:52,555 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.024*\"court\" + 0.021*\"state\" + 0.017*\"act\" + 0.011*\"offic\" + 0.011*\"case\" + 0.008*\"legal\" + 0.008*\"feder\" + 0.008*\"justic\" + 0.008*\"public\"\n", + "2019-01-16 04:13:52,557 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"releas\" + 0.028*\"song\" + 0.026*\"record\" + 0.022*\"band\" + 0.017*\"music\" + 0.017*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:13:52,559 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.018*\"di\" + 0.015*\"famili\" + 0.014*\"marri\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"death\" + 0.012*\"daughter\" + 0.011*\"year\"\n", + "2019-01-16 04:13:52,562 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.077*\"march\" + 0.077*\"octob\" + 0.075*\"januari\" + 0.074*\"juli\" + 0.072*\"august\" + 0.071*\"april\" + 0.071*\"june\" + 0.071*\"novemb\" + 0.068*\"decemb\"\n", + "2019-01-16 04:13:52,564 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.026*\"airport\" + 0.022*\"oper\" + 0.020*\"aircraft\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.016*\"squadron\" + 0.015*\"servic\" + 0.015*\"navi\" + 0.011*\"base\"\n", + "2019-01-16 04:13:52,570 : INFO : topic diff=0.030792, rho=0.094491\n", + "2019-01-16 04:13:53,104 : INFO : PROGRESS: pass 0, at document #226000/4922894\n", + "2019-01-16 04:13:55,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:55,915 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.019*\"work\" + 0.013*\"new\" + 0.013*\"stori\" + 0.013*\"univers\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:13:55,916 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.017*\"british\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.012*\"thoma\" + 0.011*\"sir\" + 0.011*\"henri\"\n", + "2019-01-16 04:13:55,918 : INFO : topic #33 (0.020): 0.010*\"bank\" + 0.010*\"million\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.009*\"time\" + 0.008*\"market\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.006*\"result\"\n", + "2019-01-16 04:13:55,919 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.010*\"host\" + 0.009*\"program\" + 0.009*\"air\" + 0.009*\"dai\"\n", + "2019-01-16 04:13:55,921 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"friend\" + 0.004*\"said\" + 0.004*\"love\" + 0.004*\"end\"\n", + "2019-01-16 04:13:55,927 : INFO : topic diff=0.027290, rho=0.094072\n", + "2019-01-16 04:13:56,495 : INFO : PROGRESS: pass 0, at document #228000/4922894\n", + "2019-01-16 04:13:58,741 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:13:59,299 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.027*\"saint\" + 0.023*\"pari\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.010*\"le\" + 0.010*\"loui\"\n", + "2019-01-16 04:13:59,302 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.013*\"stori\" + 0.013*\"univers\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:13:59,304 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.017*\"station\" + 0.016*\"line\" + 0.015*\"road\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.013*\"island\" + 0.012*\"north\" + 0.012*\"park\" + 0.012*\"rout\"\n", + "2019-01-16 04:13:59,305 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.010*\"bank\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.008*\"time\" + 0.008*\"market\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.006*\"year\"\n", + "2019-01-16 04:13:59,307 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"white\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.009*\"black\" + 0.008*\"genu\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 04:13:59,314 : INFO : topic diff=0.027219, rho=0.093659\n", + "2019-01-16 04:13:59,872 : INFO : PROGRESS: pass 0, at document #230000/4922894\n", + "2019-01-16 04:14:02,094 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:02,649 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.013*\"stori\" + 0.013*\"univers\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:14:02,651 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.010*\"bank\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.008*\"time\" + 0.008*\"market\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.006*\"result\"\n", + "2019-01-16 04:14:02,653 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.017*\"station\" + 0.016*\"line\" + 0.016*\"road\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.013*\"island\" + 0.013*\"rout\" + 0.012*\"park\" + 0.012*\"north\"\n", + "2019-01-16 04:14:02,654 : INFO : topic #16 (0.020): 0.028*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.015*\"famili\" + 0.014*\"marri\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"death\" + 0.012*\"daughter\" + 0.011*\"year\"\n", + "2019-01-16 04:14:02,656 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.024*\"court\" + 0.021*\"state\" + 0.017*\"act\" + 0.011*\"offic\" + 0.011*\"case\" + 0.008*\"legal\" + 0.008*\"feder\" + 0.008*\"public\" + 0.008*\"judg\"\n", + "2019-01-16 04:14:02,662 : INFO : topic diff=0.026388, rho=0.093250\n", + "2019-01-16 04:14:03,233 : INFO : PROGRESS: pass 0, at document #232000/4922894\n", + "2019-01-16 04:14:05,514 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:06,069 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.027*\"saint\" + 0.024*\"pari\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.013*\"de\" + 0.011*\"le\" + 0.010*\"loui\"\n", + "2019-01-16 04:14:06,071 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"team\" + 0.017*\"car\" + 0.014*\"championship\" + 0.014*\"finish\" + 0.013*\"ford\" + 0.011*\"driver\" + 0.011*\"tour\" + 0.011*\"win\" + 0.011*\"world\"\n", + "2019-01-16 04:14:06,073 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.028*\"releas\" + 0.026*\"record\" + 0.023*\"band\" + 0.017*\"music\" + 0.016*\"singl\" + 0.013*\"track\" + 0.013*\"chart\" + 0.010*\"guitar\"\n", + "2019-01-16 04:14:06,075 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.031*\"work\" + 0.024*\"artist\" + 0.023*\"design\" + 0.022*\"paint\" + 0.016*\"collect\" + 0.015*\"exhibit\" + 0.012*\"galleri\" + 0.011*\"new\"\n", + "2019-01-16 04:14:06,077 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"friend\" + 0.004*\"end\" + 0.004*\"love\" + 0.004*\"said\"\n", + "2019-01-16 04:14:06,083 : INFO : topic diff=0.026186, rho=0.092848\n", + "2019-01-16 04:14:06,674 : INFO : PROGRESS: pass 0, at document #234000/4922894\n", + "2019-01-16 04:14:08,933 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:09,486 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.011*\"jpg\" + 0.010*\"histor\" + 0.010*\"locat\" + 0.010*\"file\" + 0.010*\"site\" + 0.010*\"centuri\"\n", + "2019-01-16 04:14:09,488 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.050*\"parti\" + 0.025*\"member\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"presid\" + 0.015*\"council\" + 0.013*\"repres\" + 0.013*\"polit\" + 0.012*\"liber\"\n", + "2019-01-16 04:14:09,490 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.046*\"counti\" + 0.036*\"town\" + 0.036*\"ag\" + 0.028*\"citi\" + 0.026*\"household\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.021*\"township\" + 0.020*\"commun\"\n", + "2019-01-16 04:14:09,492 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"end\" + 0.004*\"love\" + 0.004*\"said\"\n", + "2019-01-16 04:14:09,495 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.023*\"aircraft\" + 0.023*\"airport\" + 0.021*\"oper\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.015*\"navi\" + 0.015*\"squadron\" + 0.015*\"servic\" + 0.012*\"flight\"\n", + "2019-01-16 04:14:09,501 : INFO : topic diff=0.028095, rho=0.092450\n", + "2019-01-16 04:14:10,068 : INFO : PROGRESS: pass 0, at document #236000/4922894\n", + "2019-01-16 04:14:12,308 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:12,861 : INFO : topic #35 (0.020): 0.041*\"minist\" + 0.023*\"prime\" + 0.022*\"indonesia\" + 0.021*\"thailand\" + 0.014*\"thai\" + 0.012*\"vietnam\" + 0.012*\"bulgarian\" + 0.012*\"indonesian\" + 0.010*\"chan\" + 0.009*\"cho\"\n", + "2019-01-16 04:14:12,863 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"end\" + 0.004*\"love\" + 0.004*\"said\"\n", + "2019-01-16 04:14:12,865 : INFO : topic #0 (0.020): 0.043*\"war\" + 0.029*\"armi\" + 0.020*\"battl\" + 0.019*\"command\" + 0.018*\"forc\" + 0.014*\"militari\" + 0.014*\"divis\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.011*\"infantri\"\n", + "2019-01-16 04:14:12,867 : INFO : topic #15 (0.020): 0.032*\"unit\" + 0.026*\"england\" + 0.025*\"town\" + 0.021*\"cricket\" + 0.021*\"citi\" + 0.016*\"scotland\" + 0.012*\"scottish\" + 0.012*\"manchest\" + 0.010*\"west\" + 0.010*\"english\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:14:12,869 : INFO : topic #48 (0.020): 0.079*\"octob\" + 0.079*\"march\" + 0.076*\"septemb\" + 0.074*\"juli\" + 0.074*\"januari\" + 0.072*\"april\" + 0.072*\"novemb\" + 0.072*\"august\" + 0.071*\"june\" + 0.069*\"decemb\"\n", + "2019-01-16 04:14:12,876 : INFO : topic diff=0.027988, rho=0.092057\n", + "2019-01-16 04:14:13,441 : INFO : PROGRESS: pass 0, at document #238000/4922894\n", + "2019-01-16 04:14:15,673 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:16,229 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.021*\"contest\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.015*\"champion\" + 0.014*\"match\" + 0.013*\"point\" + 0.013*\"world\"\n", + "2019-01-16 04:14:16,231 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.010*\"bank\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.009*\"time\" + 0.008*\"market\" + 0.007*\"number\" + 0.007*\"requir\" + 0.007*\"cost\" + 0.006*\"year\"\n", + "2019-01-16 04:14:16,233 : INFO : topic #18 (0.020): 0.007*\"light\" + 0.007*\"energi\" + 0.007*\"water\" + 0.007*\"earth\" + 0.006*\"surfac\" + 0.006*\"wind\" + 0.005*\"high\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"wave\"\n", + "2019-01-16 04:14:16,234 : INFO : topic #9 (0.020): 0.072*\"film\" + 0.027*\"award\" + 0.023*\"best\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"direct\" + 0.012*\"televis\" + 0.012*\"actor\"\n", + "2019-01-16 04:14:16,237 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.009*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"war\" + 0.007*\"peopl\" + 0.007*\"unit\"\n", + "2019-01-16 04:14:16,243 : INFO : topic diff=0.029300, rho=0.091670\n", + "2019-01-16 04:14:21,408 : INFO : -11.715 per-word bound, 3360.9 perplexity estimate based on a held-out corpus of 2000 documents with 540245 words\n", + "2019-01-16 04:14:21,409 : INFO : PROGRESS: pass 0, at document #240000/4922894\n", + "2019-01-16 04:14:23,651 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:24,213 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.021*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.011*\"street\" + 0.011*\"file\" + 0.010*\"locat\" + 0.010*\"histor\" + 0.010*\"site\" + 0.010*\"centuri\"\n", + "2019-01-16 04:14:24,215 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.028*\"medal\" + 0.027*\"japan\" + 0.026*\"world\" + 0.026*\"olymp\" + 0.024*\"championship\" + 0.022*\"men\" + 0.020*\"gold\" + 0.020*\"event\" + 0.018*\"japanes\"\n", + "2019-01-16 04:14:24,216 : INFO : topic #46 (0.020): 0.124*\"class\" + 0.071*\"align\" + 0.054*\"center\" + 0.053*\"left\" + 0.052*\"wikit\" + 0.052*\"right\" + 0.051*\"style\" + 0.038*\"philippin\" + 0.028*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:14:24,218 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.009*\"theori\" + 0.009*\"set\" + 0.009*\"valu\" + 0.008*\"point\" + 0.008*\"exampl\" + 0.007*\"method\" + 0.007*\"mathemat\"\n", + "2019-01-16 04:14:24,220 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.027*\"award\" + 0.023*\"best\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"direct\" + 0.012*\"televis\" + 0.012*\"actor\"\n", + "2019-01-16 04:14:24,226 : INFO : topic diff=0.026637, rho=0.091287\n", + "2019-01-16 04:14:24,751 : INFO : PROGRESS: pass 0, at document #242000/4922894\n", + "2019-01-16 04:14:26,960 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:27,517 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.025*\"england\" + 0.023*\"town\" + 0.023*\"citi\" + 0.022*\"cricket\" + 0.015*\"scotland\" + 0.011*\"scottish\" + 0.011*\"manchest\" + 0.010*\"west\" + 0.010*\"english\"\n", + "2019-01-16 04:14:27,519 : INFO : topic #35 (0.020): 0.040*\"minist\" + 0.022*\"thailand\" + 0.021*\"prime\" + 0.020*\"indonesia\" + 0.015*\"vietnam\" + 0.014*\"thai\" + 0.011*\"bulgarian\" + 0.011*\"indonesian\" + 0.010*\"chi\" + 0.010*\"chan\"\n", + "2019-01-16 04:14:27,521 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.024*\"team\" + 0.015*\"coach\" + 0.014*\"plai\" + 0.012*\"footbal\" + 0.012*\"player\" + 0.010*\"year\" + 0.010*\"yard\" + 0.009*\"record\"\n", + "2019-01-16 04:14:27,523 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.028*\"releas\" + 0.027*\"record\" + 0.023*\"band\" + 0.017*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:14:27,525 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"team\" + 0.016*\"car\" + 0.014*\"championship\" + 0.014*\"tour\" + 0.013*\"finish\" + 0.012*\"ford\" + 0.011*\"world\" + 0.011*\"win\" + 0.011*\"stage\"\n", + "2019-01-16 04:14:27,531 : INFO : topic diff=0.026975, rho=0.090909\n", + "2019-01-16 04:14:28,092 : INFO : PROGRESS: pass 0, at document #244000/4922894\n", + "2019-01-16 04:14:30,302 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:30,858 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.015*\"centuri\" + 0.012*\"templ\" + 0.010*\"emperor\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"princ\" + 0.007*\"dynasti\"\n", + "2019-01-16 04:14:30,860 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.024*\"court\" + 0.022*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.011*\"offic\" + 0.008*\"feder\" + 0.008*\"judg\" + 0.008*\"legal\" + 0.008*\"public\"\n", + "2019-01-16 04:14:30,862 : INFO : topic #8 (0.020): 0.047*\"district\" + 0.038*\"india\" + 0.027*\"indian\" + 0.024*\"villag\" + 0.017*\"provinc\" + 0.015*\"municip\" + 0.011*\"iran\" + 0.011*\"khan\" + 0.010*\"popul\" + 0.010*\"pakistan\"\n", + "2019-01-16 04:14:30,864 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"love\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 04:14:30,866 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.022*\"design\" + 0.016*\"exhibit\" + 0.015*\"collect\" + 0.011*\"galleri\" + 0.010*\"new\"\n", + "2019-01-16 04:14:30,872 : INFO : topic diff=0.026410, rho=0.090536\n", + "2019-01-16 04:14:31,357 : INFO : PROGRESS: pass 0, at document #246000/4922894\n", + "2019-01-16 04:14:33,570 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:34,123 : INFO : topic #31 (0.020): 0.052*\"australia\" + 0.044*\"australian\" + 0.042*\"new\" + 0.037*\"chines\" + 0.036*\"china\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.018*\"hong\" + 0.018*\"kong\" + 0.016*\"sydnei\"\n", + "2019-01-16 04:14:34,124 : INFO : topic #22 (0.020): 0.060*\"counti\" + 0.045*\"popul\" + 0.035*\"town\" + 0.034*\"ag\" + 0.033*\"township\" + 0.027*\"citi\" + 0.025*\"household\" + 0.023*\"famili\" + 0.021*\"censu\" + 0.020*\"femal\"\n", + "2019-01-16 04:14:34,127 : INFO : topic #40 (0.020): 0.025*\"africa\" + 0.025*\"bar\" + 0.024*\"african\" + 0.019*\"south\" + 0.015*\"text\" + 0.015*\"till\" + 0.012*\"color\" + 0.010*\"agricultur\" + 0.010*\"popul\" + 0.010*\"coloni\"\n", + "2019-01-16 04:14:34,129 : INFO : topic #16 (0.020): 0.028*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.015*\"famili\" + 0.015*\"marri\" + 0.013*\"born\" + 0.013*\"father\" + 0.013*\"death\" + 0.012*\"daughter\" + 0.012*\"year\"\n", + "2019-01-16 04:14:34,131 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.040*\"franc\" + 0.033*\"italian\" + 0.025*\"saint\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.019*\"jean\" + 0.013*\"de\" + 0.010*\"le\" + 0.010*\"loui\"\n", + "2019-01-16 04:14:34,137 : INFO : topic diff=0.027478, rho=0.090167\n", + "2019-01-16 04:14:34,649 : INFO : PROGRESS: pass 0, at document #248000/4922894\n", + "2019-01-16 04:14:36,821 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:37,375 : INFO : topic #10 (0.020): 0.016*\"engin\" + 0.012*\"product\" + 0.012*\"cell\" + 0.010*\"model\" + 0.009*\"power\" + 0.008*\"type\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.007*\"manufactur\" + 0.007*\"protein\"\n", + "2019-01-16 04:14:37,377 : INFO : topic #34 (0.020): 0.072*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.022*\"toronto\" + 0.018*\"montreal\" + 0.017*\"ye\" + 0.017*\"british\" + 0.016*\"island\" + 0.016*\"quebec\" + 0.015*\"korean\"\n", + "2019-01-16 04:14:37,379 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.040*\"franc\" + 0.033*\"italian\" + 0.026*\"saint\" + 0.023*\"pari\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.010*\"le\" + 0.010*\"loui\"\n", + "2019-01-16 04:14:37,381 : INFO : topic #8 (0.020): 0.050*\"district\" + 0.037*\"india\" + 0.027*\"indian\" + 0.025*\"villag\" + 0.017*\"provinc\" + 0.015*\"municip\" + 0.012*\"iran\" + 0.011*\"rural\" + 0.011*\"khan\" + 0.010*\"pakistan\"\n", + "2019-01-16 04:14:37,383 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"team\" + 0.016*\"car\" + 0.014*\"championship\" + 0.013*\"tour\" + 0.013*\"finish\" + 0.012*\"ford\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"win\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:14:37,388 : INFO : topic diff=0.025825, rho=0.089803\n", + "2019-01-16 04:14:37,948 : INFO : PROGRESS: pass 0, at document #250000/4922894\n", + "2019-01-16 04:14:40,231 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:40,788 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.023*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.011*\"guitar\"\n", + "2019-01-16 04:14:40,790 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.011*\"street\" + 0.010*\"locat\" + 0.010*\"file\" + 0.010*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\"\n", + "2019-01-16 04:14:40,792 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.028*\"armi\" + 0.019*\"command\" + 0.019*\"battl\" + 0.019*\"forc\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.010*\"infantri\"\n", + "2019-01-16 04:14:40,794 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.035*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.023*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.012*\"und\" + 0.012*\"die\" + 0.010*\"netherland\"\n", + "2019-01-16 04:14:40,796 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.006*\"english\" + 0.006*\"god\" + 0.006*\"form\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"centuri\" + 0.005*\"cultur\" + 0.005*\"us\"\n", + "2019-01-16 04:14:40,801 : INFO : topic diff=0.025045, rho=0.089443\n", + "2019-01-16 04:14:41,297 : INFO : PROGRESS: pass 0, at document #252000/4922894\n", + "2019-01-16 04:14:43,523 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:44,079 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.069*\"januari\" + 0.068*\"juli\" + 0.067*\"novemb\" + 0.067*\"decemb\" + 0.066*\"august\" + 0.064*\"june\" + 0.063*\"april\"\n", + "2019-01-16 04:14:44,080 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.010*\"program\" + 0.009*\"host\" + 0.009*\"air\" + 0.009*\"network\"\n", + "2019-01-16 04:14:44,082 : INFO : topic #22 (0.020): 0.058*\"counti\" + 0.046*\"popul\" + 0.034*\"town\" + 0.033*\"ag\" + 0.029*\"township\" + 0.027*\"citi\" + 0.024*\"household\" + 0.023*\"famili\" + 0.021*\"censu\" + 0.021*\"commun\"\n", + "2019-01-16 04:14:44,084 : INFO : topic #25 (0.020): 0.043*\"round\" + 0.030*\"final\" + 0.028*\"tournament\" + 0.025*\"open\" + 0.019*\"winner\" + 0.015*\"runner\" + 0.013*\"draw\" + 0.013*\"singl\" + 0.012*\"doubl\" + 0.012*\"group\"\n", + "2019-01-16 04:14:44,086 : INFO : topic #13 (0.020): 0.052*\"state\" + 0.033*\"new\" + 0.029*\"american\" + 0.022*\"unit\" + 0.022*\"york\" + 0.016*\"citi\" + 0.016*\"california\" + 0.014*\"counti\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 04:14:44,092 : INFO : topic diff=0.024649, rho=0.089087\n", + "2019-01-16 04:14:44,643 : INFO : PROGRESS: pass 0, at document #254000/4922894\n", + "2019-01-16 04:14:47,005 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:47,566 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.011*\"street\" + 0.011*\"locat\" + 0.011*\"histor\" + 0.010*\"file\" + 0.010*\"site\" + 0.009*\"centuri\"\n", + "2019-01-16 04:14:47,567 : INFO : topic #34 (0.020): 0.070*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.021*\"ye\" + 0.017*\"montreal\" + 0.017*\"island\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"korean\"\n", + "2019-01-16 04:14:47,569 : INFO : topic #6 (0.020): 0.065*\"music\" + 0.032*\"perform\" + 0.020*\"festiv\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:14:47,571 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.010*\"program\" + 0.009*\"host\" + 0.009*\"air\" + 0.009*\"dai\"\n", + "2019-01-16 04:14:47,573 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"earth\" + 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.005*\"temperatur\" + 0.005*\"high\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"time\"\n", + "2019-01-16 04:14:47,579 : INFO : topic diff=0.023912, rho=0.088736\n", + "2019-01-16 04:14:48,162 : INFO : PROGRESS: pass 0, at document #256000/4922894\n", + "2019-01-16 04:14:50,468 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:51,024 : INFO : topic #22 (0.020): 0.054*\"counti\" + 0.046*\"popul\" + 0.035*\"town\" + 0.034*\"ag\" + 0.027*\"citi\" + 0.026*\"township\" + 0.024*\"household\" + 0.023*\"famili\" + 0.021*\"censu\" + 0.021*\"commun\"\n", + "2019-01-16 04:14:51,025 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.015*\"centuri\" + 0.010*\"templ\" + 0.010*\"emperor\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.008*\"princ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:14:51,027 : INFO : topic #45 (0.020): 0.014*\"american\" + 0.014*\"john\" + 0.011*\"born\" + 0.010*\"michael\" + 0.010*\"david\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\"\n", + "2019-01-16 04:14:51,029 : INFO : topic #25 (0.020): 0.042*\"round\" + 0.031*\"final\" + 0.030*\"tournament\" + 0.025*\"open\" + 0.022*\"winner\" + 0.017*\"runner\" + 0.013*\"qualifi\" + 0.012*\"draw\" + 0.012*\"doubl\" + 0.012*\"group\"\n", + "2019-01-16 04:14:51,031 : INFO : topic #8 (0.020): 0.048*\"district\" + 0.038*\"india\" + 0.028*\"indian\" + 0.027*\"villag\" + 0.016*\"provinc\" + 0.014*\"municip\" + 0.012*\"pakistan\" + 0.012*\"rural\" + 0.011*\"iran\" + 0.010*\"khan\"\n", + "2019-01-16 04:14:51,037 : INFO : topic diff=0.028393, rho=0.088388\n", + "2019-01-16 04:14:51,611 : INFO : PROGRESS: pass 0, at document #258000/4922894\n", + "2019-01-16 04:14:53,840 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:14:54,394 : INFO : topic #25 (0.020): 0.042*\"round\" + 0.031*\"final\" + 0.030*\"tournament\" + 0.025*\"open\" + 0.022*\"winner\" + 0.016*\"runner\" + 0.012*\"qualifi\" + 0.012*\"doubl\" + 0.012*\"draw\" + 0.012*\"singl\"\n", + "2019-01-16 04:14:54,395 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.019*\"station\" + 0.018*\"road\" + 0.015*\"line\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.012*\"rout\" + 0.012*\"lake\" + 0.012*\"north\"\n", + "2019-01-16 04:14:54,398 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.064*\"style\" + 0.062*\"align\" + 0.054*\"wikit\" + 0.054*\"center\" + 0.044*\"left\" + 0.042*\"right\" + 0.034*\"philippin\" + 0.034*\"text\" + 0.021*\"border\"\n", + "2019-01-16 04:14:54,400 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.014*\"new\" + 0.013*\"univers\" + 0.013*\"stori\" + 0.012*\"edit\" + 0.011*\"press\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:14:54,403 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.029*\"armi\" + 0.020*\"forc\" + 0.019*\"command\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.010*\"soldier\"\n", + "2019-01-16 04:14:54,409 : INFO : topic diff=0.024349, rho=0.088045\n", + "2019-01-16 04:14:59,405 : INFO : -11.651 per-word bound, 3216.0 perplexity estimate based on a held-out corpus of 2000 documents with 531711 words\n", + "2019-01-16 04:14:59,406 : INFO : PROGRESS: pass 0, at document #260000/4922894\n", + "2019-01-16 04:15:01,625 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:02,185 : INFO : topic #31 (0.020): 0.053*\"australia\" + 0.045*\"australian\" + 0.040*\"new\" + 0.036*\"china\" + 0.036*\"chines\" + 0.028*\"zealand\" + 0.025*\"south\" + 0.019*\"hong\" + 0.019*\"kong\" + 0.017*\"melbourn\"\n", + "2019-01-16 04:15:02,186 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.006*\"god\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"english\" + 0.005*\"centuri\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"differ\"\n", + "2019-01-16 04:15:02,188 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.019*\"team\" + 0.018*\"car\" + 0.014*\"championship\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"driver\" + 0.010*\"year\"\n", + "2019-01-16 04:15:02,190 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.011*\"number\" + 0.009*\"point\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"space\" + 0.007*\"group\"\n", + "2019-01-16 04:15:02,192 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.015*\"spain\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"lo\" + 0.009*\"carlo\"\n", + "2019-01-16 04:15:02,198 : INFO : topic diff=0.024014, rho=0.087706\n", + "2019-01-16 04:15:02,723 : INFO : PROGRESS: pass 0, at document #262000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:15:04,927 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:05,482 : INFO : topic #49 (0.020): 0.057*\"north\" + 0.052*\"east\" + 0.050*\"region\" + 0.050*\"west\" + 0.046*\"south\" + 0.028*\"swedish\" + 0.023*\"norwai\" + 0.023*\"norwegian\" + 0.022*\"central\" + 0.021*\"sweden\"\n", + "2019-01-16 04:15:05,484 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.021*\"theatr\" + 0.019*\"festiv\" + 0.019*\"compos\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.012*\"opera\" + 0.011*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 04:15:05,486 : INFO : topic #25 (0.020): 0.042*\"round\" + 0.031*\"final\" + 0.029*\"tournament\" + 0.025*\"open\" + 0.023*\"winner\" + 0.017*\"runner\" + 0.012*\"qualifi\" + 0.012*\"doubl\" + 0.012*\"singl\" + 0.012*\"draw\"\n", + "2019-01-16 04:15:05,488 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.017*\"british\" + 0.015*\"georg\" + 0.012*\"thoma\" + 0.012*\"jame\" + 0.012*\"sir\" + 0.012*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 04:15:05,490 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.033*\"team\" + 0.032*\"plai\" + 0.031*\"club\" + 0.025*\"season\" + 0.024*\"cup\" + 0.021*\"footbal\" + 0.017*\"player\" + 0.017*\"match\" + 0.014*\"goal\"\n", + "2019-01-16 04:15:05,496 : INFO : topic diff=0.023145, rho=0.087370\n", + "2019-01-16 04:15:06,000 : INFO : PROGRESS: pass 0, at document #264000/4922894\n", + "2019-01-16 04:15:08,283 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:08,837 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.038*\"colleg\" + 0.038*\"univers\" + 0.033*\"student\" + 0.031*\"educ\" + 0.028*\"high\" + 0.015*\"year\" + 0.011*\"graduat\" + 0.011*\"district\" + 0.009*\"program\"\n", + "2019-01-16 04:15:08,839 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"white\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.009*\"red\" + 0.008*\"black\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"tree\"\n", + "2019-01-16 04:15:08,841 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.029*\"armi\" + 0.020*\"forc\" + 0.020*\"battl\" + 0.019*\"command\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.010*\"soldier\"\n", + "2019-01-16 04:15:08,843 : INFO : topic #39 (0.020): 0.038*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.014*\"navi\" + 0.014*\"servic\" + 0.013*\"flight\" + 0.012*\"squadron\"\n", + "2019-01-16 04:15:08,845 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.038*\"franc\" + 0.030*\"italian\" + 0.025*\"saint\" + 0.025*\"pari\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"loui\" + 0.014*\"de\" + 0.012*\"le\"\n", + "2019-01-16 04:15:08,851 : INFO : topic diff=0.023425, rho=0.087039\n", + "2019-01-16 04:15:09,330 : INFO : PROGRESS: pass 0, at document #266000/4922894\n", + "2019-01-16 04:15:11,529 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:12,086 : INFO : topic #16 (0.020): 0.028*\"church\" + 0.018*\"son\" + 0.018*\"di\" + 0.016*\"famili\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"death\" + 0.012*\"daughter\" + 0.012*\"year\"\n", + "2019-01-16 04:15:12,087 : INFO : topic #24 (0.020): 0.024*\"ship\" + 0.014*\"polic\" + 0.011*\"kill\" + 0.009*\"gun\" + 0.009*\"boat\" + 0.008*\"crew\" + 0.008*\"attack\" + 0.008*\"damag\" + 0.007*\"report\" + 0.007*\"sail\"\n", + "2019-01-16 04:15:12,089 : INFO : topic #31 (0.020): 0.051*\"australia\" + 0.044*\"australian\" + 0.040*\"new\" + 0.039*\"china\" + 0.035*\"chines\" + 0.027*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.017*\"sydnei\"\n", + "2019-01-16 04:15:12,091 : INFO : topic #14 (0.020): 0.016*\"compani\" + 0.015*\"univers\" + 0.013*\"research\" + 0.013*\"develop\" + 0.011*\"work\" + 0.011*\"institut\" + 0.010*\"servic\" + 0.010*\"intern\" + 0.010*\"manag\" + 0.009*\"busi\"\n", + "2019-01-16 04:15:12,093 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.029*\"armi\" + 0.019*\"forc\" + 0.019*\"battl\" + 0.019*\"command\" + 0.014*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.010*\"attack\"\n", + "2019-01-16 04:15:12,099 : INFO : topic diff=0.024038, rho=0.086711\n", + "2019-01-16 04:15:12,567 : INFO : PROGRESS: pass 0, at document #268000/4922894\n", + "2019-01-16 04:15:14,781 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:15,336 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.070*\"align\" + 0.066*\"center\" + 0.059*\"style\" + 0.056*\"wikit\" + 0.042*\"left\" + 0.039*\"right\" + 0.034*\"philippin\" + 0.031*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:15:15,338 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.013*\"famili\" + 0.012*\"white\" + 0.010*\"plant\" + 0.008*\"red\" + 0.008*\"black\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.006*\"long\"\n", + "2019-01-16 04:15:15,340 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.033*\"team\" + 0.032*\"plai\" + 0.031*\"club\" + 0.026*\"season\" + 0.024*\"cup\" + 0.021*\"footbal\" + 0.018*\"player\" + 0.017*\"match\" + 0.014*\"goal\"\n", + "2019-01-16 04:15:15,342 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.021*\"theatr\" + 0.020*\"festiv\" + 0.018*\"compos\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.013*\"opera\" + 0.011*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 04:15:15,343 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.014*\"championship\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"point\"\n", + "2019-01-16 04:15:15,349 : INFO : topic diff=0.023283, rho=0.086387\n", + "2019-01-16 04:15:15,852 : INFO : PROGRESS: pass 0, at document #270000/4922894\n", + "2019-01-16 04:15:18,081 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:18,635 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.025*\"town\" + 0.024*\"england\" + 0.023*\"citi\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.010*\"english\" + 0.010*\"wale\"\n", + "2019-01-16 04:15:18,636 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"love\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:15:18,639 : INFO : topic #24 (0.020): 0.024*\"ship\" + 0.014*\"polic\" + 0.011*\"kill\" + 0.010*\"gun\" + 0.008*\"boat\" + 0.008*\"crew\" + 0.008*\"attack\" + 0.008*\"damag\" + 0.007*\"prison\" + 0.007*\"report\"\n", + "2019-01-16 04:15:18,640 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.028*\"world\" + 0.026*\"medal\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.023*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.018*\"japanes\" + 0.018*\"athlet\"\n", + "2019-01-16 04:15:18,642 : INFO : topic #8 (0.020): 0.048*\"district\" + 0.038*\"india\" + 0.029*\"indian\" + 0.026*\"villag\" + 0.017*\"provinc\" + 0.012*\"municip\" + 0.012*\"rural\" + 0.011*\"iran\" + 0.011*\"pakistan\" + 0.009*\"khan\"\n", + "2019-01-16 04:15:18,649 : INFO : topic diff=0.021356, rho=0.086066\n", + "2019-01-16 04:15:19,209 : INFO : PROGRESS: pass 0, at document #272000/4922894\n", + "2019-01-16 04:15:21,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:22,002 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.033*\"final\" + 0.029*\"tournament\" + 0.025*\"winner\" + 0.023*\"open\" + 0.018*\"runner\" + 0.012*\"singl\" + 0.012*\"doubl\" + 0.012*\"qualifi\" + 0.012*\"group\"\n", + "2019-01-16 04:15:22,004 : INFO : topic #35 (0.020): 0.040*\"minist\" + 0.034*\"prime\" + 0.020*\"indonesia\" + 0.019*\"thailand\" + 0.016*\"bulgarian\" + 0.013*\"thai\" + 0.013*\"vietnam\" + 0.010*\"chan\" + 0.009*\"indonesian\" + 0.009*\"dart\"\n", + "2019-01-16 04:15:22,006 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.017*\"british\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.012*\"jame\" + 0.012*\"henri\" + 0.012*\"thoma\" + 0.011*\"ireland\"\n", + "2019-01-16 04:15:22,008 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.016*\"centuri\" + 0.012*\"greek\" + 0.010*\"emperor\" + 0.010*\"templ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"ancient\" + 0.008*\"princ\"\n", + "2019-01-16 04:15:22,011 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"theori\" + 0.011*\"number\" + 0.008*\"point\" + 0.008*\"space\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"group\" + 0.007*\"set\"\n", + "2019-01-16 04:15:22,017 : INFO : topic diff=0.022325, rho=0.085749\n", + "2019-01-16 04:15:22,567 : INFO : PROGRESS: pass 0, at document #274000/4922894\n", + "2019-01-16 04:15:24,859 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:25,414 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.045*\"parti\" + 0.026*\"member\" + 0.021*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.015*\"term\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:15:25,416 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.019*\"station\" + 0.017*\"line\" + 0.016*\"road\" + 0.014*\"park\" + 0.014*\"railwai\" + 0.013*\"area\" + 0.013*\"rout\" + 0.012*\"north\" + 0.011*\"lake\"\n", + "2019-01-16 04:15:25,418 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.010*\"bank\" + 0.009*\"increas\" + 0.009*\"time\" + 0.009*\"rate\" + 0.007*\"market\" + 0.007*\"number\" + 0.007*\"cost\" + 0.007*\"requir\" + 0.006*\"product\"\n", + "2019-01-16 04:15:25,420 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.028*\"world\" + 0.025*\"olymp\" + 0.025*\"medal\" + 0.024*\"championship\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"japanes\"\n", + "2019-01-16 04:15:25,422 : INFO : topic #13 (0.020): 0.053*\"state\" + 0.040*\"new\" + 0.027*\"york\" + 0.026*\"american\" + 0.022*\"unit\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"counti\" + 0.012*\"texa\" + 0.012*\"washington\"\n", + "2019-01-16 04:15:25,429 : INFO : topic diff=0.024953, rho=0.085436\n", + "2019-01-16 04:15:25,930 : INFO : PROGRESS: pass 0, at document #276000/4922894\n", + "2019-01-16 04:15:28,152 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:28,710 : INFO : topic #12 (0.020): 0.056*\"parti\" + 0.055*\"elect\" + 0.025*\"member\" + 0.022*\"vote\" + 0.020*\"democrat\" + 0.018*\"presid\" + 0.015*\"term\" + 0.014*\"republican\" + 0.014*\"council\" + 0.012*\"repres\"\n", + "2019-01-16 04:15:28,712 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.034*\"team\" + 0.032*\"plai\" + 0.032*\"club\" + 0.026*\"season\" + 0.023*\"cup\" + 0.022*\"footbal\" + 0.018*\"player\" + 0.016*\"match\" + 0.015*\"goal\"\n", + "2019-01-16 04:15:28,713 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.027*\"world\" + 0.024*\"olymp\" + 0.024*\"medal\" + 0.024*\"championship\" + 0.023*\"event\" + 0.023*\"men\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"rank\"\n", + "2019-01-16 04:15:28,715 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\" + 0.004*\"love\"\n", + "2019-01-16 04:15:28,716 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.014*\"new\" + 0.013*\"univers\" + 0.012*\"stori\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"magazin\" + 0.011*\"novel\"\n", + "2019-01-16 04:15:28,722 : INFO : topic diff=0.023405, rho=0.085126\n", + "2019-01-16 04:15:29,270 : INFO : PROGRESS: pass 0, at document #278000/4922894\n", + "2019-01-16 04:15:31,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:32,089 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.018*\"car\" + 0.017*\"team\" + 0.013*\"championship\" + 0.013*\"tour\" + 0.011*\"miss\" + 0.011*\"finish\" + 0.011*\"driver\" + 0.011*\"grand\" + 0.011*\"year\"\n", + "2019-01-16 04:15:32,091 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.012*\"cell\" + 0.012*\"product\" + 0.010*\"model\" + 0.009*\"power\" + 0.008*\"produc\" + 0.008*\"type\" + 0.007*\"car\" + 0.007*\"vehicl\" + 0.007*\"protein\"\n", + "2019-01-16 04:15:32,094 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.015*\"spain\" + 0.014*\"mexico\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", + "2019-01-16 04:15:32,095 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.038*\"museum\" + 0.030*\"work\" + 0.023*\"paint\" + 0.023*\"artist\" + 0.022*\"design\" + 0.018*\"exhibit\" + 0.016*\"collect\" + 0.013*\"galleri\" + 0.010*\"new\"\n", + "2019-01-16 04:15:32,097 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.011*\"theori\" + 0.010*\"number\" + 0.009*\"gener\" + 0.009*\"group\" + 0.008*\"point\" + 0.008*\"set\" + 0.008*\"space\" + 0.008*\"exampl\" + 0.007*\"model\"\n", + "2019-01-16 04:15:32,102 : INFO : topic diff=0.023572, rho=0.084819\n", + "2019-01-16 04:15:37,064 : INFO : -11.707 per-word bound, 3342.2 perplexity estimate based on a held-out corpus of 2000 documents with 523679 words\n", + "2019-01-16 04:15:37,064 : INFO : PROGRESS: pass 0, at document #280000/4922894\n", + "2019-01-16 04:15:39,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:39,830 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.012*\"cell\" + 0.012*\"product\" + 0.010*\"model\" + 0.008*\"power\" + 0.008*\"produc\" + 0.008*\"type\" + 0.007*\"car\" + 0.007*\"vehicl\" + 0.007*\"design\"\n", + "2019-01-16 04:15:39,832 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.016*\"centuri\" + 0.013*\"greek\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.008*\"roman\" + 0.008*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:15:39,833 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.053*\"parti\" + 0.025*\"member\" + 0.022*\"vote\" + 0.020*\"democrat\" + 0.018*\"presid\" + 0.014*\"council\" + 0.014*\"republican\" + 0.014*\"repres\" + 0.013*\"term\"\n", + "2019-01-16 04:15:39,835 : INFO : topic #18 (0.020): 0.009*\"energi\" + 0.008*\"water\" + 0.007*\"surfac\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"effect\"\n", + "2019-01-16 04:15:39,837 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.027*\"world\" + 0.024*\"olymp\" + 0.024*\"medal\" + 0.023*\"championship\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"japanes\"\n", + "2019-01-16 04:15:39,843 : INFO : topic diff=0.020621, rho=0.084515\n", + "2019-01-16 04:15:40,367 : INFO : PROGRESS: pass 0, at document #282000/4922894\n", + "2019-01-16 04:15:42,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:43,149 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.012*\"product\" + 0.011*\"cell\" + 0.011*\"model\" + 0.008*\"power\" + 0.008*\"type\" + 0.008*\"produc\" + 0.008*\"car\" + 0.007*\"vehicl\" + 0.007*\"design\"\n", + "2019-01-16 04:15:43,151 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.027*\"world\" + 0.024*\"medal\" + 0.024*\"olymp\" + 0.024*\"championship\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"men\" + 0.019*\"japanes\" + 0.018*\"athlet\"\n", + "2019-01-16 04:15:43,152 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.009*\"attack\"\n", + "2019-01-16 04:15:43,154 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.028*\"soviet\" + 0.024*\"jewish\" + 0.024*\"russia\" + 0.021*\"polish\" + 0.018*\"israel\" + 0.015*\"born\" + 0.015*\"moscow\" + 0.014*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 04:15:43,157 : INFO : topic #49 (0.020): 0.056*\"north\" + 0.056*\"east\" + 0.052*\"west\" + 0.049*\"region\" + 0.046*\"south\" + 0.027*\"swedish\" + 0.023*\"central\" + 0.023*\"norwegian\" + 0.022*\"norwai\" + 0.021*\"villag\"\n", + "2019-01-16 04:15:43,163 : INFO : topic diff=0.022734, rho=0.084215\n", + "2019-01-16 04:15:43,642 : INFO : PROGRESS: pass 0, at document #284000/4922894\n", + "2019-01-16 04:15:45,862 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:46,419 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.011*\"theori\" + 0.010*\"number\" + 0.010*\"gener\" + 0.009*\"group\" + 0.008*\"point\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"space\" + 0.007*\"model\"\n", + "2019-01-16 04:15:46,421 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.016*\"centuri\" + 0.012*\"greek\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.008*\"roman\" + 0.008*\"ancient\" + 0.008*\"princ\"\n", + "2019-01-16 04:15:46,424 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.014*\"new\" + 0.013*\"univers\" + 0.012*\"press\" + 0.012*\"edit\" + 0.012*\"stori\" + 0.010*\"magazin\" + 0.010*\"author\"\n", + "2019-01-16 04:15:46,425 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.019*\"forc\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.010*\"soldier\"\n", + "2019-01-16 04:15:46,427 : INFO : topic #5 (0.020): 0.025*\"game\" + 0.010*\"develop\" + 0.010*\"version\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"design\"\n", + "2019-01-16 04:15:46,434 : INFO : topic diff=0.020259, rho=0.083918\n", + "2019-01-16 04:15:46,957 : INFO : PROGRESS: pass 0, at document #286000/4922894\n", + "2019-01-16 04:15:49,234 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:49,788 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.019*\"station\" + 0.018*\"road\" + 0.017*\"line\" + 0.015*\"railwai\" + 0.014*\"park\" + 0.013*\"area\" + 0.013*\"rout\" + 0.012*\"north\" + 0.011*\"lake\"\n", + "2019-01-16 04:15:49,790 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.028*\"soviet\" + 0.024*\"jewish\" + 0.023*\"russia\" + 0.021*\"polish\" + 0.017*\"israel\" + 0.015*\"born\" + 0.014*\"jew\" + 0.014*\"moscow\" + 0.014*\"republ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:15:49,792 : INFO : topic #49 (0.020): 0.059*\"east\" + 0.054*\"north\" + 0.053*\"west\" + 0.052*\"region\" + 0.045*\"south\" + 0.028*\"swedish\" + 0.023*\"central\" + 0.022*\"norwegian\" + 0.021*\"villag\" + 0.021*\"norwai\"\n", + "2019-01-16 04:15:49,794 : INFO : topic #10 (0.020): 0.016*\"engin\" + 0.014*\"cell\" + 0.012*\"product\" + 0.011*\"model\" + 0.008*\"type\" + 0.008*\"power\" + 0.008*\"produc\" + 0.007*\"car\" + 0.007*\"protein\" + 0.007*\"vehicl\"\n", + "2019-01-16 04:15:49,796 : INFO : topic #34 (0.020): 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.023*\"island\" + 0.022*\"ye\" + 0.017*\"vancouv\" + 0.017*\"malaysia\" + 0.015*\"british\" + 0.015*\"montreal\"\n", + "2019-01-16 04:15:49,801 : INFO : topic diff=0.023301, rho=0.083624\n", + "2019-01-16 04:15:50,292 : INFO : PROGRESS: pass 0, at document #288000/4922894\n", + "2019-01-16 04:15:52,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:53,081 : INFO : topic #35 (0.020): 0.033*\"minist\" + 0.026*\"prime\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.013*\"vietnam\" + 0.013*\"bulgarian\" + 0.013*\"chan\" + 0.011*\"thai\" + 0.009*\"indonesian\" + 0.009*\"chi\"\n", + "2019-01-16 04:15:53,083 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"union\"\n", + "2019-01-16 04:15:53,085 : INFO : topic #5 (0.020): 0.024*\"game\" + 0.010*\"version\" + 0.010*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"includ\" + 0.007*\"data\"\n", + "2019-01-16 04:15:53,087 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.025*\"england\" + 0.023*\"citi\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"manchest\" + 0.012*\"test\" + 0.010*\"wale\"\n", + "2019-01-16 04:15:53,089 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.014*\"spain\" + 0.014*\"mexico\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"francisco\" + 0.010*\"brazil\" + 0.010*\"josé\"\n", + "2019-01-16 04:15:53,094 : INFO : topic diff=0.022205, rho=0.083333\n", + "2019-01-16 04:15:53,634 : INFO : PROGRESS: pass 0, at document #290000/4922894\n", + "2019-01-16 04:15:55,786 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:56,343 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.024*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.015*\"titl\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.014*\"elimin\" + 0.014*\"point\" + 0.013*\"week\"\n", + "2019-01-16 04:15:56,345 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.011*\"number\" + 0.011*\"set\" + 0.010*\"theori\" + 0.009*\"point\" + 0.009*\"gener\" + 0.008*\"group\" + 0.008*\"exampl\" + 0.007*\"space\" + 0.007*\"model\"\n", + "2019-01-16 04:15:56,347 : INFO : topic #23 (0.020): 0.027*\"medic\" + 0.024*\"hospit\" + 0.020*\"health\" + 0.014*\"patient\" + 0.013*\"medicin\" + 0.012*\"drug\" + 0.012*\"diseas\" + 0.011*\"treatment\" + 0.011*\"ret\" + 0.010*\"care\"\n", + "2019-01-16 04:15:56,349 : INFO : topic #24 (0.020): 0.026*\"ship\" + 0.013*\"polic\" + 0.011*\"kill\" + 0.010*\"gun\" + 0.008*\"attack\" + 0.008*\"damag\" + 0.008*\"boat\" + 0.007*\"crew\" + 0.007*\"dai\" + 0.006*\"report\"\n", + "2019-01-16 04:15:56,351 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.026*\"american\" + 0.025*\"york\" + 0.022*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.014*\"counti\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 04:15:56,358 : INFO : topic diff=0.021642, rho=0.083045\n", + "2019-01-16 04:15:56,884 : INFO : PROGRESS: pass 0, at document #292000/4922894\n", + "2019-01-16 04:15:59,092 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:15:59,646 : INFO : topic #48 (0.020): 0.076*\"octob\" + 0.075*\"march\" + 0.075*\"septemb\" + 0.074*\"januari\" + 0.071*\"novemb\" + 0.067*\"decemb\" + 0.067*\"august\" + 0.067*\"juli\" + 0.066*\"april\" + 0.065*\"june\"\n", + "2019-01-16 04:15:59,648 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.025*\"award\" + 0.023*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:15:59,649 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.014*\"spain\" + 0.014*\"mexico\" + 0.011*\"santa\" + 0.010*\"brazil\" + 0.010*\"francisco\" + 0.010*\"juan\" + 0.010*\"josé\"\n", + "2019-01-16 04:15:59,651 : INFO : topic #5 (0.020): 0.023*\"game\" + 0.010*\"version\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"includ\" + 0.007*\"releas\" + 0.007*\"softwar\"\n", + "2019-01-16 04:15:59,654 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.040*\"new\" + 0.026*\"american\" + 0.026*\"york\" + 0.022*\"unit\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"counti\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 04:15:59,659 : INFO : topic diff=0.021212, rho=0.082761\n", + "2019-01-16 04:16:00,175 : INFO : PROGRESS: pass 0, at document #294000/4922894\n", + "2019-01-16 04:16:02,400 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:02,955 : INFO : topic #23 (0.020): 0.027*\"medic\" + 0.025*\"hospit\" + 0.022*\"health\" + 0.015*\"patient\" + 0.013*\"medicin\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.012*\"drug\" + 0.011*\"treatment\" + 0.010*\"care\"\n", + "2019-01-16 04:16:02,957 : INFO : topic #39 (0.020): 0.037*\"air\" + 0.024*\"airport\" + 0.023*\"oper\" + 0.022*\"aircraft\" + 0.017*\"unit\" + 0.017*\"forc\" + 0.014*\"navi\" + 0.014*\"servic\" + 0.013*\"squadron\" + 0.012*\"flight\"\n", + "2019-01-16 04:16:02,959 : INFO : topic #8 (0.020): 0.048*\"district\" + 0.038*\"india\" + 0.030*\"indian\" + 0.027*\"villag\" + 0.017*\"provinc\" + 0.012*\"pakistan\" + 0.012*\"rural\" + 0.011*\"iran\" + 0.011*\"khan\" + 0.009*\"sri\"\n", + "2019-01-16 04:16:02,961 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.025*\"soviet\" + 0.023*\"jewish\" + 0.023*\"russia\" + 0.020*\"polish\" + 0.017*\"israel\" + 0.016*\"republ\" + 0.015*\"czech\" + 0.015*\"moscow\" + 0.015*\"born\"\n", + "2019-01-16 04:16:02,964 : INFO : topic #25 (0.020): 0.041*\"round\" + 0.032*\"final\" + 0.030*\"tournament\" + 0.025*\"winner\" + 0.022*\"open\" + 0.017*\"runner\" + 0.013*\"hard\" + 0.012*\"qualifi\" + 0.011*\"doubl\" + 0.011*\"singl\"\n", + "2019-01-16 04:16:02,970 : INFO : topic diff=0.021640, rho=0.082479\n", + "2019-01-16 04:16:03,446 : INFO : PROGRESS: pass 0, at document #296000/4922894\n", + "2019-01-16 04:16:05,702 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:06,259 : INFO : topic #25 (0.020): 0.041*\"round\" + 0.032*\"final\" + 0.030*\"tournament\" + 0.024*\"winner\" + 0.024*\"open\" + 0.016*\"runner\" + 0.013*\"qualifi\" + 0.012*\"hard\" + 0.011*\"doubl\" + 0.011*\"draw\"\n", + "2019-01-16 04:16:06,261 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.026*\"soviet\" + 0.023*\"jewish\" + 0.022*\"russia\" + 0.020*\"polish\" + 0.017*\"israel\" + 0.016*\"czech\" + 0.016*\"republ\" + 0.015*\"born\" + 0.014*\"moscow\"\n", + "2019-01-16 04:16:06,263 : INFO : topic #31 (0.020): 0.053*\"australia\" + 0.044*\"new\" + 0.042*\"australian\" + 0.039*\"china\" + 0.035*\"chines\" + 0.031*\"zealand\" + 0.024*\"south\" + 0.024*\"sydnei\" + 0.017*\"hong\" + 0.016*\"kong\"\n", + "2019-01-16 04:16:06,265 : INFO : topic #23 (0.020): 0.026*\"medic\" + 0.024*\"hospit\" + 0.021*\"health\" + 0.015*\"patient\" + 0.013*\"caus\" + 0.013*\"medicin\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.011*\"drug\" + 0.011*\"treatment\"\n", + "2019-01-16 04:16:06,267 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.027*\"record\" + 0.026*\"releas\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 04:16:06,274 : INFO : topic diff=0.020808, rho=0.082199\n", + "2019-01-16 04:16:06,747 : INFO : PROGRESS: pass 0, at document #298000/4922894\n", + "2019-01-16 04:16:08,925 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:09,480 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.025*\"soviet\" + 0.023*\"jewish\" + 0.022*\"russia\" + 0.019*\"polish\" + 0.017*\"israel\" + 0.015*\"czech\" + 0.015*\"republ\" + 0.015*\"born\" + 0.014*\"moscow\"\n", + "2019-01-16 04:16:09,482 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"mexico\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"brazil\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", + "2019-01-16 04:16:09,484 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.012*\"televis\" + 0.012*\"channel\" + 0.010*\"host\" + 0.009*\"program\" + 0.009*\"air\" + 0.009*\"dai\"\n", + "2019-01-16 04:16:09,485 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.034*\"team\" + 0.033*\"plai\" + 0.032*\"club\" + 0.025*\"season\" + 0.023*\"cup\" + 0.022*\"footbal\" + 0.017*\"player\" + 0.016*\"match\" + 0.015*\"goal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:16:09,487 : INFO : topic #48 (0.020): 0.083*\"march\" + 0.075*\"octob\" + 0.075*\"januari\" + 0.074*\"septemb\" + 0.071*\"novemb\" + 0.069*\"juli\" + 0.068*\"decemb\" + 0.067*\"april\" + 0.067*\"august\" + 0.067*\"june\"\n", + "2019-01-16 04:16:09,493 : INFO : topic diff=0.022787, rho=0.081923\n", + "2019-01-16 04:16:14,603 : INFO : -11.420 per-word bound, 2740.9 perplexity estimate based on a held-out corpus of 2000 documents with 555743 words\n", + "2019-01-16 04:16:14,603 : INFO : PROGRESS: pass 0, at document #300000/4922894\n", + "2019-01-16 04:16:16,855 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:17,414 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.033*\"germani\" + 0.027*\"van\" + 0.025*\"von\" + 0.022*\"der\" + 0.018*\"berlin\" + 0.017*\"dutch\" + 0.013*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:16:17,416 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.028*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.024*\"medal\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"men\" + 0.021*\"athlet\" + 0.019*\"japanes\"\n", + "2019-01-16 04:16:17,418 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"love\" + 0.004*\"end\"\n", + "2019-01-16 04:16:17,419 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.018*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.012*\"ireland\" + 0.012*\"jame\" + 0.012*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 04:16:17,421 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"championship\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"time\" + 0.010*\"ford\" + 0.010*\"tour\" + 0.009*\"seri\"\n", + "2019-01-16 04:16:17,427 : INFO : topic diff=0.020649, rho=0.081650\n", + "2019-01-16 04:16:17,974 : INFO : PROGRESS: pass 0, at document #302000/4922894\n", + "2019-01-16 04:16:20,205 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:20,760 : INFO : topic #24 (0.020): 0.026*\"ship\" + 0.013*\"polic\" + 0.012*\"kill\" + 0.010*\"attack\" + 0.009*\"gun\" + 0.009*\"damag\" + 0.008*\"boat\" + 0.008*\"crew\" + 0.007*\"report\" + 0.007*\"dai\"\n", + "2019-01-16 04:16:20,762 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"love\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 04:16:20,765 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.035*\"final\" + 0.028*\"tournament\" + 0.025*\"open\" + 0.024*\"winner\" + 0.016*\"runner\" + 0.014*\"qualifi\" + 0.011*\"hard\" + 0.011*\"doubl\" + 0.010*\"group\"\n", + "2019-01-16 04:16:20,767 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"increas\" + 0.009*\"time\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"market\" + 0.006*\"number\" + 0.006*\"requir\" + 0.006*\"year\"\n", + "2019-01-16 04:16:20,769 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"god\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.005*\"us\" + 0.005*\"centuri\" + 0.005*\"peopl\"\n", + "2019-01-16 04:16:20,775 : INFO : topic diff=0.019053, rho=0.081379\n", + "2019-01-16 04:16:21,271 : INFO : PROGRESS: pass 0, at document #304000/4922894\n", + "2019-01-16 04:16:23,416 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:23,972 : INFO : topic #48 (0.020): 0.085*\"januari\" + 0.081*\"march\" + 0.075*\"octob\" + 0.074*\"septemb\" + 0.071*\"novemb\" + 0.068*\"june\" + 0.068*\"juli\" + 0.067*\"decemb\" + 0.067*\"august\" + 0.066*\"april\"\n", + "2019-01-16 04:16:23,974 : INFO : topic #27 (0.020): 0.044*\"russian\" + 0.026*\"soviet\" + 0.023*\"jewish\" + 0.022*\"russia\" + 0.022*\"polish\" + 0.017*\"israel\" + 0.016*\"republ\" + 0.015*\"born\" + 0.015*\"czech\" + 0.014*\"moscow\"\n", + "2019-01-16 04:16:23,976 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.013*\"american\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"born\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\"\n", + "2019-01-16 04:16:23,977 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"tour\" + 0.010*\"time\" + 0.010*\"year\"\n", + "2019-01-16 04:16:23,980 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.023*\"court\" + 0.021*\"act\" + 0.021*\"state\" + 0.010*\"case\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"public\" + 0.007*\"judg\" + 0.007*\"feder\"\n", + "2019-01-16 04:16:23,987 : INFO : topic diff=0.020849, rho=0.081111\n", + "2019-01-16 04:16:24,481 : INFO : PROGRESS: pass 0, at document #306000/4922894\n", + "2019-01-16 04:16:26,679 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:27,234 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.025*\"award\" + 0.023*\"episod\" + 0.020*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"movi\"\n", + "2019-01-16 04:16:27,235 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.045*\"parti\" + 0.025*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.015*\"term\" + 0.015*\"council\" + 0.014*\"polit\" + 0.014*\"repres\"\n", + "2019-01-16 04:16:27,237 : INFO : topic #35 (0.020): 0.036*\"minist\" + 0.030*\"prime\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.015*\"vietnam\" + 0.012*\"bulgarian\" + 0.012*\"chan\" + 0.011*\"thai\" + 0.010*\"chi\" + 0.010*\"indonesian\"\n", + "2019-01-16 04:16:27,239 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.018*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.012*\"ireland\" + 0.012*\"jame\" + 0.012*\"thoma\" + 0.011*\"royal\"\n", + "2019-01-16 04:16:27,240 : INFO : topic #34 (0.020): 0.070*\"canada\" + 0.056*\"canadian\" + 0.037*\"flag\" + 0.033*\"ye\" + 0.030*\"island\" + 0.025*\"ontario\" + 0.021*\"toronto\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"defunct\"\n", + "2019-01-16 04:16:27,246 : INFO : topic diff=0.021497, rho=0.080845\n", + "2019-01-16 04:16:27,793 : INFO : PROGRESS: pass 0, at document #308000/4922894\n", + "2019-01-16 04:16:30,045 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:30,601 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.036*\"final\" + 0.028*\"tournament\" + 0.023*\"open\" + 0.022*\"winner\" + 0.015*\"runner\" + 0.014*\"qualifi\" + 0.014*\"group\" + 0.012*\"doubl\" + 0.011*\"singl\"\n", + "2019-01-16 04:16:30,604 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"player\" + 0.007*\"includ\" + 0.007*\"softwar\" + 0.007*\"data\"\n", + "2019-01-16 04:16:30,606 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.018*\"di\" + 0.015*\"famili\" + 0.015*\"marri\" + 0.013*\"born\" + 0.012*\"father\" + 0.012*\"death\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", + "2019-01-16 04:16:30,608 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.024*\"court\" + 0.021*\"act\" + 0.021*\"state\" + 0.011*\"case\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"public\" + 0.007*\"judg\" + 0.007*\"feder\"\n", + "2019-01-16 04:16:30,610 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.045*\"parti\" + 0.025*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.015*\"council\" + 0.015*\"term\" + 0.014*\"polit\" + 0.014*\"repres\"\n", + "2019-01-16 04:16:30,616 : INFO : topic diff=0.020809, rho=0.080582\n", + "2019-01-16 04:16:31,124 : INFO : PROGRESS: pass 0, at document #310000/4922894\n", + "2019-01-16 04:16:33,267 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:33,821 : INFO : topic #31 (0.020): 0.051*\"australia\" + 0.049*\"new\" + 0.039*\"australian\" + 0.037*\"china\" + 0.035*\"chines\" + 0.032*\"zealand\" + 0.028*\"sydnei\" + 0.025*\"south\" + 0.019*\"hong\" + 0.019*\"kong\"\n", + "2019-01-16 04:16:33,823 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"love\" + 0.004*\"end\"\n", + "2019-01-16 04:16:33,825 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.025*\"william\" + 0.020*\"london\" + 0.018*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.012*\"thoma\" + 0.012*\"ireland\" + 0.012*\"henri\" + 0.012*\"jame\"\n", + "2019-01-16 04:16:33,826 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.014*\"cell\" + 0.012*\"product\" + 0.010*\"model\" + 0.008*\"power\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.007*\"protein\" + 0.007*\"car\" + 0.007*\"type\"\n", + "2019-01-16 04:16:33,828 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.018*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.010*\"loui\" + 0.010*\"le\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:16:33,834 : INFO : topic diff=0.020399, rho=0.080322\n", + "2019-01-16 04:16:34,338 : INFO : PROGRESS: pass 0, at document #312000/4922894\n", + "2019-01-16 04:16:36,505 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:37,063 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.015*\"famili\" + 0.015*\"marri\" + 0.013*\"born\" + 0.012*\"father\" + 0.012*\"cathol\" + 0.012*\"death\" + 0.012*\"daughter\"\n", + "2019-01-16 04:16:37,065 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.022*\"contest\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.016*\"elimin\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.014*\"match\" + 0.013*\"week\" + 0.013*\"champion\"\n", + "2019-01-16 04:16:37,066 : INFO : topic #35 (0.020): 0.033*\"minist\" + 0.028*\"prime\" + 0.021*\"thailand\" + 0.017*\"indonesia\" + 0.013*\"vietnam\" + 0.012*\"bulgarian\" + 0.012*\"chan\" + 0.011*\"bangkok\" + 0.010*\"thai\" + 0.010*\"singapor\"\n", + "2019-01-16 04:16:37,068 : INFO : topic #31 (0.020): 0.050*\"australia\" + 0.048*\"new\" + 0.039*\"australian\" + 0.036*\"china\" + 0.034*\"chines\" + 0.031*\"zealand\" + 0.026*\"sydnei\" + 0.024*\"south\" + 0.020*\"hong\" + 0.018*\"kong\"\n", + "2019-01-16 04:16:37,070 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.039*\"new\" + 0.027*\"american\" + 0.026*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.012*\"counti\" + 0.012*\"texa\"\n", + "2019-01-16 04:16:37,075 : INFO : topic diff=0.021371, rho=0.080064\n", + "2019-01-16 04:16:37,601 : INFO : PROGRESS: pass 0, at document #314000/4922894\n", + "2019-01-16 04:16:39,744 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:40,302 : INFO : topic #27 (0.020): 0.046*\"russian\" + 0.026*\"soviet\" + 0.023*\"russia\" + 0.022*\"jewish\" + 0.021*\"polish\" + 0.019*\"born\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.014*\"poland\"\n", + "2019-01-16 04:16:40,304 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"version\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"player\" + 0.007*\"data\" + 0.007*\"design\" + 0.007*\"includ\"\n", + "2019-01-16 04:16:40,305 : INFO : topic #30 (0.020): 0.058*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.018*\"itali\" + 0.017*\"jean\" + 0.013*\"wine\" + 0.012*\"de\" + 0.011*\"loui\"\n", + "2019-01-16 04:16:40,307 : INFO : topic #49 (0.020): 0.062*\"west\" + 0.059*\"north\" + 0.058*\"east\" + 0.057*\"region\" + 0.050*\"south\" + 0.025*\"swedish\" + 0.025*\"central\" + 0.022*\"villag\" + 0.021*\"norwai\" + 0.021*\"norwegian\"\n", + "2019-01-16 04:16:40,309 : INFO : topic #9 (0.020): 0.073*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"direct\" + 0.012*\"produc\"\n", + "2019-01-16 04:16:40,315 : INFO : topic diff=0.020818, rho=0.079809\n", + "2019-01-16 04:16:40,805 : INFO : PROGRESS: pass 0, at document #316000/4922894\n", + "2019-01-16 04:16:42,942 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:43,498 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.038*\"final\" + 0.029*\"tournament\" + 0.021*\"open\" + 0.021*\"winner\" + 0.016*\"group\" + 0.014*\"runner\" + 0.014*\"qualifi\" + 0.011*\"doubl\" + 0.011*\"singl\"\n", + "2019-01-16 04:16:43,499 : INFO : topic #31 (0.020): 0.050*\"australia\" + 0.048*\"new\" + 0.038*\"australian\" + 0.036*\"china\" + 0.034*\"chines\" + 0.031*\"zealand\" + 0.025*\"sydnei\" + 0.025*\"south\" + 0.022*\"hong\" + 0.020*\"kong\"\n", + "2019-01-16 04:16:43,501 : INFO : topic #8 (0.020): 0.046*\"district\" + 0.040*\"india\" + 0.033*\"indian\" + 0.023*\"villag\" + 0.018*\"provinc\" + 0.012*\"iran\" + 0.011*\"pakistan\" + 0.010*\"sri\" + 0.010*\"http\" + 0.010*\"rural\"\n", + "2019-01-16 04:16:43,504 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"god\" + 0.005*\"tradit\" + 0.005*\"us\" + 0.005*\"social\"\n", + "2019-01-16 04:16:43,506 : INFO : topic #48 (0.020): 0.084*\"march\" + 0.080*\"januari\" + 0.075*\"octob\" + 0.075*\"septemb\" + 0.073*\"novemb\" + 0.070*\"juli\" + 0.070*\"decemb\" + 0.069*\"june\" + 0.069*\"april\" + 0.068*\"august\"\n", + "2019-01-16 04:16:43,513 : INFO : topic diff=0.018572, rho=0.079556\n", + "2019-01-16 04:16:43,959 : INFO : PROGRESS: pass 0, at document #318000/4922894\n", + "2019-01-16 04:16:46,183 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:46,739 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"increas\" + 0.009*\"time\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"market\" + 0.007*\"number\" + 0.006*\"year\" + 0.006*\"requir\"\n", + "2019-01-16 04:16:46,741 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.005*\"peopl\" + 0.005*\"us\" + 0.005*\"tradit\" + 0.005*\"god\" + 0.005*\"exampl\"\n", + "2019-01-16 04:16:46,743 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.010*\"air\" + 0.009*\"dai\"\n", + "2019-01-16 04:16:46,744 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.026*\"american\" + 0.026*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.012*\"counti\" + 0.012*\"texa\"\n", + "2019-01-16 04:16:46,746 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.030*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.023*\"medal\" + 0.021*\"event\" + 0.020*\"men\" + 0.018*\"athlet\" + 0.017*\"japanes\"\n", + "2019-01-16 04:16:46,752 : INFO : topic diff=0.019179, rho=0.079305\n", + "2019-01-16 04:16:51,818 : INFO : -11.552 per-word bound, 3003.1 perplexity estimate based on a held-out corpus of 2000 documents with 550903 words\n", + "2019-01-16 04:16:51,819 : INFO : PROGRESS: pass 0, at document #320000/4922894\n", + "2019-01-16 04:16:54,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:54,560 : INFO : topic #40 (0.020): 0.026*\"africa\" + 0.025*\"bar\" + 0.025*\"african\" + 0.018*\"south\" + 0.014*\"till\" + 0.014*\"text\" + 0.012*\"color\" + 0.012*\"coloni\" + 0.010*\"peopl\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:16:54,562 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.030*\"armi\" + 0.023*\"battl\" + 0.019*\"command\" + 0.018*\"forc\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.009*\"soldier\"\n", + "2019-01-16 04:16:54,564 : INFO : topic #8 (0.020): 0.044*\"district\" + 0.040*\"india\" + 0.032*\"indian\" + 0.023*\"villag\" + 0.017*\"provinc\" + 0.012*\"iran\" + 0.011*\"pakistan\" + 0.010*\"rural\" + 0.010*\"http\" + 0.010*\"tamil\"\n", + "2019-01-16 04:16:54,565 : INFO : topic #15 (0.020): 0.028*\"unit\" + 0.025*\"england\" + 0.021*\"cricket\" + 0.021*\"citi\" + 0.018*\"town\" + 0.015*\"scottish\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.010*\"english\" + 0.010*\"wale\"\n", + "2019-01-16 04:16:54,567 : INFO : topic #22 (0.020): 0.060*\"counti\" + 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"ag\" + 0.029*\"citi\" + 0.023*\"household\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.021*\"area\" + 0.020*\"commun\"\n", + "2019-01-16 04:16:54,574 : INFO : topic diff=0.018023, rho=0.079057\n", + "2019-01-16 04:16:55,030 : INFO : PROGRESS: pass 0, at document #322000/4922894\n", + "2019-01-16 04:16:57,240 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:16:57,796 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"number\" + 0.011*\"set\" + 0.009*\"theori\" + 0.009*\"gener\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.007*\"group\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 04:16:57,797 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"increas\" + 0.009*\"time\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"market\" + 0.007*\"year\" + 0.006*\"requir\"\n", + "2019-01-16 04:16:57,799 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.014*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"magazin\"\n", + "2019-01-16 04:16:57,801 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"team\" + 0.033*\"plai\" + 0.032*\"club\" + 0.025*\"season\" + 0.023*\"footbal\" + 0.022*\"cup\" + 0.018*\"player\" + 0.016*\"match\" + 0.015*\"goal\"\n", + "2019-01-16 04:16:57,802 : INFO : topic #49 (0.020): 0.065*\"west\" + 0.064*\"east\" + 0.058*\"north\" + 0.055*\"region\" + 0.054*\"south\" + 0.025*\"swedish\" + 0.025*\"central\" + 0.024*\"villag\" + 0.021*\"norwegian\" + 0.021*\"norwai\"\n", + "2019-01-16 04:16:57,808 : INFO : topic diff=0.019925, rho=0.078811\n", + "2019-01-16 04:16:58,255 : INFO : PROGRESS: pass 0, at document #324000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:17:00,440 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:00,996 : INFO : topic #26 (0.020): 0.030*\"world\" + 0.029*\"women\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.019*\"men\" + 0.018*\"japanes\" + 0.017*\"team\"\n", + "2019-01-16 04:17:00,997 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.014*\"american\" + 0.013*\"born\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\"\n", + "2019-01-16 04:17:01,000 : INFO : topic #48 (0.020): 0.080*\"march\" + 0.078*\"januari\" + 0.074*\"octob\" + 0.074*\"septemb\" + 0.071*\"novemb\" + 0.070*\"april\" + 0.069*\"juli\" + 0.068*\"decemb\" + 0.068*\"june\" + 0.068*\"august\"\n", + "2019-01-16 04:17:01,001 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.023*\"william\" + 0.021*\"london\" + 0.018*\"british\" + 0.014*\"georg\" + 0.014*\"ireland\" + 0.013*\"sir\" + 0.012*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:17:01,004 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.012*\"number\" + 0.011*\"set\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"index\" + 0.008*\"point\" + 0.007*\"space\" + 0.007*\"group\"\n", + "2019-01-16 04:17:01,011 : INFO : topic diff=0.020640, rho=0.078567\n", + "2019-01-16 04:17:01,471 : INFO : PROGRESS: pass 0, at document #326000/4922894\n", + "2019-01-16 04:17:03,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:04,286 : INFO : topic #40 (0.020): 0.027*\"bar\" + 0.027*\"africa\" + 0.025*\"african\" + 0.019*\"south\" + 0.016*\"till\" + 0.015*\"text\" + 0.015*\"color\" + 0.012*\"coloni\" + 0.010*\"peopl\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:17:04,288 : INFO : topic #26 (0.020): 0.030*\"world\" + 0.029*\"women\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.023*\"japan\" + 0.022*\"medal\" + 0.020*\"event\" + 0.018*\"men\" + 0.018*\"japanes\" + 0.017*\"team\"\n", + "2019-01-16 04:17:04,290 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"site\" + 0.010*\"histor\" + 0.009*\"file\" + 0.009*\"place\"\n", + "2019-01-16 04:17:04,292 : INFO : topic #3 (0.020): 0.026*\"john\" + 0.023*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"georg\" + 0.013*\"ireland\" + 0.013*\"sir\" + 0.012*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:17:04,294 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"increas\" + 0.009*\"time\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"number\" + 0.007*\"cost\" + 0.006*\"year\" + 0.006*\"market\" + 0.006*\"requir\"\n", + "2019-01-16 04:17:04,300 : INFO : topic diff=0.018359, rho=0.078326\n", + "2019-01-16 04:17:04,813 : INFO : PROGRESS: pass 0, at document #328000/4922894\n", + "2019-01-16 04:17:07,000 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:07,556 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.015*\"centuri\" + 0.010*\"greek\" + 0.010*\"empir\" + 0.010*\"templ\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 04:17:07,558 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.019*\"work\" + 0.014*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.010*\"magazin\"\n", + "2019-01-16 04:17:07,560 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.005*\"differ\" + 0.005*\"peopl\" + 0.005*\"tradit\" + 0.005*\"centuri\" + 0.005*\"god\"\n", + "2019-01-16 04:17:07,562 : INFO : topic #8 (0.020): 0.044*\"district\" + 0.041*\"india\" + 0.032*\"indian\" + 0.024*\"villag\" + 0.017*\"provinc\" + 0.012*\"pakistan\" + 0.012*\"iran\" + 0.010*\"rural\" + 0.010*\"http\" + 0.009*\"khan\"\n", + "2019-01-16 04:17:07,563 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.019*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"father\" + 0.012*\"death\" + 0.012*\"year\"\n", + "2019-01-16 04:17:07,569 : INFO : topic diff=0.018185, rho=0.078087\n", + "2019-01-16 04:17:08,075 : INFO : PROGRESS: pass 0, at document #330000/4922894\n", + "2019-01-16 04:17:10,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:10,862 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.026*\"england\" + 0.023*\"cricket\" + 0.021*\"citi\" + 0.019*\"town\" + 0.015*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.010*\"wale\" + 0.010*\"english\"\n", + "2019-01-16 04:17:10,864 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.014*\"championship\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.010*\"ford\" + 0.010*\"time\" + 0.010*\"point\"\n", + "2019-01-16 04:17:10,866 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"market\" + 0.006*\"year\" + 0.006*\"requir\"\n", + "2019-01-16 04:17:10,867 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.027*\"soviet\" + 0.023*\"polish\" + 0.022*\"russia\" + 0.020*\"jewish\" + 0.018*\"born\" + 0.016*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.014*\"poland\"\n", + "2019-01-16 04:17:10,869 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.036*\"final\" + 0.029*\"tournament\" + 0.022*\"open\" + 0.021*\"winner\" + 0.016*\"group\" + 0.014*\"runner\" + 0.013*\"qualifi\" + 0.011*\"doubl\" + 0.011*\"singl\"\n", + "2019-01-16 04:17:10,874 : INFO : topic diff=0.018704, rho=0.077850\n", + "2019-01-16 04:17:11,402 : INFO : PROGRESS: pass 0, at document #332000/4922894\n", + "2019-01-16 04:17:13,556 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:14,110 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"number\" + 0.006*\"market\" + 0.006*\"year\" + 0.006*\"requir\"\n", + "2019-01-16 04:17:14,112 : INFO : topic #49 (0.020): 0.064*\"east\" + 0.064*\"west\" + 0.062*\"north\" + 0.060*\"region\" + 0.056*\"south\" + 0.026*\"swedish\" + 0.023*\"villag\" + 0.023*\"central\" + 0.021*\"sweden\" + 0.020*\"district\"\n", + "2019-01-16 04:17:14,114 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.015*\"cell\" + 0.013*\"product\" + 0.010*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"chemic\" + 0.007*\"type\" + 0.007*\"plant\" + 0.007*\"vehicl\"\n", + "2019-01-16 04:17:14,116 : INFO : topic #22 (0.020): 0.055*\"counti\" + 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"ag\" + 0.031*\"citi\" + 0.023*\"famili\" + 0.022*\"household\" + 0.022*\"censu\" + 0.022*\"live\" + 0.021*\"area\"\n", + "2019-01-16 04:17:14,117 : INFO : topic #8 (0.020): 0.044*\"district\" + 0.042*\"india\" + 0.032*\"indian\" + 0.023*\"villag\" + 0.017*\"provinc\" + 0.012*\"pakistan\" + 0.012*\"iran\" + 0.010*\"rural\" + 0.010*\"http\" + 0.009*\"tamil\"\n", + "2019-01-16 04:17:14,123 : INFO : topic diff=0.019880, rho=0.077615\n", + "2019-01-16 04:17:14,591 : INFO : PROGRESS: pass 0, at document #334000/4922894\n", + "2019-01-16 04:17:16,762 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:17,322 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.035*\"team\" + 0.034*\"club\" + 0.034*\"plai\" + 0.025*\"season\" + 0.023*\"footbal\" + 0.022*\"cup\" + 0.017*\"player\" + 0.015*\"match\" + 0.015*\"goal\"\n", + "2019-01-16 04:17:17,324 : INFO : topic #22 (0.020): 0.054*\"counti\" + 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"ag\" + 0.030*\"citi\" + 0.023*\"famili\" + 0.022*\"household\" + 0.022*\"censu\" + 0.022*\"live\" + 0.021*\"area\"\n", + "2019-01-16 04:17:17,326 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"number\" + 0.006*\"market\" + 0.006*\"year\" + 0.006*\"requir\"\n", + "2019-01-16 04:17:17,328 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.022*\"team\" + 0.014*\"plai\" + 0.013*\"coach\" + 0.013*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", + "2019-01-16 04:17:17,330 : INFO : topic #23 (0.020): 0.024*\"hospit\" + 0.022*\"medic\" + 0.019*\"health\" + 0.013*\"ret\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.011*\"caus\" + 0.011*\"cancer\" + 0.011*\"treatment\" + 0.010*\"medicin\"\n", + "2019-01-16 04:17:17,336 : INFO : topic diff=0.017076, rho=0.077382\n", + "2019-01-16 04:17:17,854 : INFO : PROGRESS: pass 0, at document #336000/4922894\n", + "2019-01-16 04:17:20,017 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:20,572 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.020*\"london\" + 0.019*\"british\" + 0.015*\"sir\" + 0.013*\"georg\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"ireland\" + 0.012*\"henri\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:17:20,573 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.015*\"cell\" + 0.013*\"product\" + 0.010*\"model\" + 0.010*\"power\" + 0.008*\"produc\" + 0.008*\"chemic\" + 0.007*\"type\" + 0.007*\"plant\" + 0.007*\"design\"\n", + "2019-01-16 04:17:20,576 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.023*\"spanish\" + 0.015*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.010*\"portugues\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\"\n", + "2019-01-16 04:17:20,578 : INFO : topic #0 (0.020): 0.043*\"war\" + 0.030*\"armi\" + 0.021*\"battl\" + 0.019*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.009*\"soldier\"\n", + "2019-01-16 04:17:20,580 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.019*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"father\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"death\"\n", + "2019-01-16 04:17:20,586 : INFO : topic diff=0.020915, rho=0.077152\n", + "2019-01-16 04:17:21,039 : INFO : PROGRESS: pass 0, at document #338000/4922894\n", + "2019-01-16 04:17:23,213 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:23,768 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.031*\"world\" + 0.029*\"japan\" + 0.027*\"championship\" + 0.025*\"event\" + 0.024*\"olymp\" + 0.021*\"medal\" + 0.019*\"japanes\" + 0.019*\"men\" + 0.017*\"athlet\"\n", + "2019-01-16 04:17:23,769 : INFO : topic #49 (0.020): 0.065*\"west\" + 0.065*\"east\" + 0.063*\"north\" + 0.059*\"region\" + 0.054*\"south\" + 0.024*\"swedish\" + 0.024*\"central\" + 0.023*\"villag\" + 0.021*\"sweden\" + 0.021*\"district\"\n", + "2019-01-16 04:17:23,771 : INFO : topic #31 (0.020): 0.052*\"australia\" + 0.048*\"new\" + 0.044*\"australian\" + 0.038*\"china\" + 0.037*\"chines\" + 0.031*\"zealand\" + 0.023*\"south\" + 0.021*\"sydnei\" + 0.019*\"hong\" + 0.018*\"kong\"\n", + "2019-01-16 04:17:23,772 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.019*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"daughter\" + 0.012*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"death\"\n", + "2019-01-16 04:17:23,774 : INFO : topic #32 (0.020): 0.029*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.008*\"red\" + 0.007*\"black\" + 0.007*\"anim\" + 0.007*\"fish\"\n", + "2019-01-16 04:17:23,780 : INFO : topic diff=0.017905, rho=0.076923\n", + "2019-01-16 04:17:28,956 : INFO : -11.801 per-word bound, 3567.6 perplexity estimate based on a held-out corpus of 2000 documents with 555894 words\n", + "2019-01-16 04:17:28,956 : INFO : PROGRESS: pass 0, at document #340000/4922894\n", + "2019-01-16 04:17:31,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:31,783 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.015*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"air\" + 0.009*\"network\"\n", + "2019-01-16 04:17:31,785 : INFO : topic #40 (0.020): 0.030*\"bar\" + 0.025*\"african\" + 0.025*\"africa\" + 0.018*\"till\" + 0.018*\"text\" + 0.018*\"south\" + 0.017*\"color\" + 0.010*\"black\" + 0.010*\"coloni\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:17:31,787 : INFO : topic #0 (0.020): 0.043*\"war\" + 0.030*\"armi\" + 0.020*\"battl\" + 0.020*\"command\" + 0.018*\"forc\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.009*\"soldier\"\n", + "2019-01-16 04:17:31,788 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.025*\"season\" + 0.022*\"team\" + 0.014*\"plai\" + 0.013*\"coach\" + 0.012*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"yard\" + 0.009*\"record\"\n", + "2019-01-16 04:17:31,790 : INFO : topic #22 (0.020): 0.056*\"counti\" + 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"ag\" + 0.029*\"citi\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.022*\"household\" + 0.021*\"live\" + 0.021*\"area\"\n", + "2019-01-16 04:17:31,796 : INFO : topic diff=0.017891, rho=0.076696\n", + "2019-01-16 04:17:32,276 : INFO : PROGRESS: pass 0, at document #342000/4922894\n", + "2019-01-16 04:17:34,499 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:35,058 : INFO : topic #18 (0.020): 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"water\" + 0.006*\"materi\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"us\" + 0.005*\"form\" + 0.005*\"time\"\n", + "2019-01-16 04:17:35,060 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.010*\"santa\" + 0.010*\"portugues\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 04:17:35,061 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"jpg\" + 0.012*\"locat\" + 0.010*\"site\" + 0.010*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\"\n", + "2019-01-16 04:17:35,063 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.033*\"publish\" + 0.020*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 04:17:35,064 : INFO : topic #23 (0.020): 0.022*\"hospit\" + 0.021*\"medic\" + 0.019*\"health\" + 0.013*\"diseas\" + 0.012*\"patient\" + 0.012*\"ret\" + 0.011*\"drug\" + 0.011*\"caus\" + 0.010*\"treatment\" + 0.010*\"cancer\"\n", + "2019-01-16 04:17:35,071 : INFO : topic diff=0.016890, rho=0.076472\n", + "2019-01-16 04:17:35,539 : INFO : PROGRESS: pass 0, at document #344000/4922894\n", + "2019-01-16 04:17:37,777 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:38,334 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.016*\"broadcast\" + 0.015*\"station\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"air\" + 0.009*\"network\"\n", + "2019-01-16 04:17:38,336 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.028*\"american\" + 0.024*\"york\" + 0.022*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"texa\" + 0.011*\"counti\"\n", + "2019-01-16 04:17:38,338 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.010*\"brazil\" + 0.010*\"portugues\" + 0.009*\"juan\" + 0.009*\"josé\"\n", + "2019-01-16 04:17:38,339 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"war\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 04:17:38,341 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.019*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"death\"\n", + "2019-01-16 04:17:38,348 : INFO : topic diff=0.021378, rho=0.076249\n", + "2019-01-16 04:17:38,816 : INFO : PROGRESS: pass 0, at document #346000/4922894\n", + "2019-01-16 04:17:40,993 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:41,548 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.007*\"bank\" + 0.007*\"cost\" + 0.006*\"year\" + 0.006*\"market\" + 0.006*\"number\" + 0.006*\"product\"\n", + "2019-01-16 04:17:41,550 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.032*\"germani\" + 0.025*\"von\" + 0.025*\"van\" + 0.022*\"der\" + 0.022*\"dutch\" + 0.018*\"berlin\" + 0.013*\"die\" + 0.012*\"netherland\" + 0.012*\"und\"\n", + "2019-01-16 04:17:41,552 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.016*\"broadcast\" + 0.016*\"station\" + 0.012*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"air\" + 0.009*\"network\"\n", + "2019-01-16 04:17:41,553 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.033*\"armi\" + 0.020*\"command\" + 0.020*\"battl\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"divis\" + 0.009*\"offic\"\n", + "2019-01-16 04:17:41,555 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"magazin\"\n", + "2019-01-16 04:17:41,561 : INFO : topic diff=0.018668, rho=0.076029\n", + "2019-01-16 04:17:42,035 : INFO : PROGRESS: pass 0, at document #348000/4922894\n", + "2019-01-16 04:17:44,183 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:44,738 : INFO : topic #40 (0.020): 0.029*\"african\" + 0.027*\"bar\" + 0.026*\"africa\" + 0.019*\"south\" + 0.017*\"till\" + 0.016*\"text\" + 0.016*\"color\" + 0.010*\"black\" + 0.010*\"coloni\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:17:44,740 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.009*\"plant\" + 0.009*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"anim\" + 0.007*\"black\" + 0.006*\"fish\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:17:44,741 : INFO : topic #18 (0.020): 0.007*\"earth\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"water\" + 0.006*\"high\" + 0.006*\"materi\" + 0.006*\"us\" + 0.005*\"form\" + 0.005*\"time\"\n", + "2019-01-16 04:17:44,743 : INFO : topic #30 (0.020): 0.060*\"french\" + 0.044*\"franc\" + 0.029*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.012*\"de\" + 0.012*\"wine\" + 0.012*\"loui\"\n", + "2019-01-16 04:17:44,745 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.016*\"fight\" + 0.014*\"champion\" + 0.013*\"match\" + 0.012*\"world\" + 0.012*\"week\"\n", + "2019-01-16 04:17:44,751 : INFO : topic diff=0.017645, rho=0.075810\n", + "2019-01-16 04:17:45,213 : INFO : PROGRESS: pass 0, at document #350000/4922894\n", + "2019-01-16 04:17:47,378 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:47,933 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.015*\"centuri\" + 0.011*\"greek\" + 0.010*\"kingdom\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"templ\" + 0.008*\"princ\" + 0.008*\"roman\" + 0.007*\"citi\"\n", + "2019-01-16 04:17:47,935 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"london\" + 0.019*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"royal\" + 0.012*\"jame\"\n", + "2019-01-16 04:17:47,936 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.007*\"bank\" + 0.007*\"cost\" + 0.006*\"year\" + 0.006*\"market\" + 0.006*\"number\" + 0.006*\"product\"\n", + "2019-01-16 04:17:47,938 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.038*\"final\" + 0.031*\"tournament\" + 0.020*\"open\" + 0.020*\"winner\" + 0.015*\"group\" + 0.014*\"draw\" + 0.014*\"qualifi\" + 0.013*\"runner\" + 0.013*\"doubl\"\n", + "2019-01-16 04:17:47,939 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.028*\"american\" + 0.023*\"unit\" + 0.023*\"york\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"texa\" + 0.012*\"washington\" + 0.012*\"counti\"\n", + "2019-01-16 04:17:47,945 : INFO : topic diff=0.018439, rho=0.075593\n", + "2019-01-16 04:17:48,427 : INFO : PROGRESS: pass 0, at document #352000/4922894\n", + "2019-01-16 04:17:50,604 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:51,161 : INFO : topic #12 (0.020): 0.064*\"elect\" + 0.046*\"parti\" + 0.023*\"member\" + 0.021*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.015*\"council\" + 0.014*\"repres\" + 0.013*\"polit\" + 0.013*\"hous\"\n", + "2019-01-16 04:17:51,163 : INFO : topic #34 (0.020): 0.072*\"canada\" + 0.061*\"canadian\" + 0.035*\"island\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.017*\"quebec\" + 0.017*\"british\" + 0.017*\"flag\"\n", + "2019-01-16 04:17:51,164 : INFO : topic #35 (0.020): 0.023*\"indonesia\" + 0.019*\"prime\" + 0.019*\"minist\" + 0.018*\"thailand\" + 0.017*\"singapor\" + 0.014*\"chan\" + 0.014*\"vietnam\" + 0.013*\"chi\" + 0.013*\"lee\" + 0.013*\"indonesian\"\n", + "2019-01-16 04:17:51,165 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.016*\"centuri\" + 0.011*\"greek\" + 0.010*\"kingdom\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"templ\" + 0.008*\"princ\" + 0.008*\"roman\" + 0.007*\"citi\"\n", + "2019-01-16 04:17:51,167 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.009*\"juan\" + 0.009*\"francisco\" + 0.009*\"josé\"\n", + "2019-01-16 04:17:51,173 : INFO : topic diff=0.016825, rho=0.075378\n", + "2019-01-16 04:17:51,646 : INFO : PROGRESS: pass 0, at document #354000/4922894\n", + "2019-01-16 04:17:53,915 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:54,470 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.015*\"chart\" + 0.012*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:17:54,473 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.039*\"final\" + 0.032*\"tournament\" + 0.021*\"winner\" + 0.019*\"open\" + 0.016*\"group\" + 0.015*\"qualifi\" + 0.014*\"draw\" + 0.013*\"runner\" + 0.012*\"doubl\"\n", + "2019-01-16 04:17:54,475 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"centuri\" + 0.005*\"us\" + 0.005*\"differ\" + 0.005*\"social\"\n", + "2019-01-16 04:17:54,479 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.016*\"centuri\" + 0.011*\"greek\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"templ\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.007*\"princ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:17:54,481 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.034*\"team\" + 0.033*\"plai\" + 0.032*\"club\" + 0.024*\"footbal\" + 0.024*\"season\" + 0.023*\"cup\" + 0.017*\"player\" + 0.017*\"match\" + 0.016*\"goal\"\n", + "2019-01-16 04:17:54,487 : INFO : topic diff=0.021547, rho=0.075165\n", + "2019-01-16 04:17:54,936 : INFO : PROGRESS: pass 0, at document #356000/4922894\n", + "2019-01-16 04:17:57,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:17:57,759 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.073*\"align\" + 0.059*\"style\" + 0.059*\"left\" + 0.058*\"wikit\" + 0.054*\"center\" + 0.035*\"text\" + 0.034*\"right\" + 0.028*\"philippin\" + 0.026*\"border\"\n", + "2019-01-16 04:17:57,761 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.010*\"point\" + 0.010*\"ford\" + 0.010*\"tour\" + 0.010*\"year\"\n", + "2019-01-16 04:17:57,762 : INFO : topic #30 (0.020): 0.058*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.012*\"loui\" + 0.012*\"de\" + 0.010*\"wine\"\n", + "2019-01-16 04:17:57,764 : INFO : topic #47 (0.020): 0.023*\"river\" + 0.020*\"station\" + 0.018*\"road\" + 0.017*\"line\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.014*\"park\" + 0.012*\"north\" + 0.011*\"lake\"\n", + "2019-01-16 04:17:57,765 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"love\" + 0.004*\"said\"\n", + "2019-01-16 04:17:57,772 : INFO : topic diff=0.019453, rho=0.074953\n", + "2019-01-16 04:17:58,251 : INFO : PROGRESS: pass 0, at document #358000/4922894\n", + "2019-01-16 04:18:00,409 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:00,964 : INFO : topic #11 (0.020): 0.029*\"law\" + 0.021*\"court\" + 0.021*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"right\" + 0.008*\"public\" + 0.007*\"feder\"\n", + "2019-01-16 04:18:00,966 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:18:00,968 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.013*\"und\" + 0.011*\"nazi\"\n", + "2019-01-16 04:18:00,969 : INFO : topic #48 (0.020): 0.079*\"march\" + 0.077*\"januari\" + 0.075*\"octob\" + 0.074*\"septemb\" + 0.072*\"juli\" + 0.072*\"april\" + 0.071*\"june\" + 0.071*\"novemb\" + 0.069*\"august\" + 0.065*\"decemb\"\n", + "2019-01-16 04:18:00,971 : INFO : topic #6 (0.020): 0.066*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.018*\"danc\" + 0.017*\"theatr\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 04:18:00,978 : INFO : topic diff=0.018386, rho=0.074744\n", + "2019-01-16 04:18:05,878 : INFO : -12.071 per-word bound, 4303.9 perplexity estimate based on a held-out corpus of 2000 documents with 543151 words\n", + "2019-01-16 04:18:05,878 : INFO : PROGRESS: pass 0, at document #360000/4922894\n", + "2019-01-16 04:18:08,021 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:08,576 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.020*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.014*\"railwai\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"park\" + 0.012*\"north\" + 0.012*\"lake\"\n", + "2019-01-16 04:18:08,578 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.014*\"cell\" + 0.014*\"product\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.007*\"manufactur\" + 0.007*\"chemic\" + 0.007*\"oil\" + 0.007*\"design\"\n", + "2019-01-16 04:18:08,580 : INFO : topic #5 (0.020): 0.024*\"game\" + 0.010*\"version\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"support\" + 0.007*\"base\" + 0.007*\"player\" + 0.007*\"design\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:18:08,582 : INFO : topic #0 (0.020): 0.041*\"war\" + 0.031*\"armi\" + 0.020*\"forc\" + 0.019*\"command\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"regiment\" + 0.010*\"divis\" + 0.009*\"soldier\"\n", + "2019-01-16 04:18:08,584 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.014*\"brazil\" + 0.011*\"santa\" + 0.011*\"argentina\" + 0.009*\"juan\" + 0.009*\"josé\"\n", + "2019-01-16 04:18:08,591 : INFO : topic diff=0.017481, rho=0.074536\n", + "2019-01-16 04:18:09,070 : INFO : PROGRESS: pass 0, at document #362000/4922894\n", + "2019-01-16 04:18:11,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:11,793 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.016*\"centuri\" + 0.011*\"emperor\" + 0.010*\"greek\" + 0.010*\"empir\" + 0.010*\"kingdom\" + 0.009*\"templ\" + 0.008*\"princ\" + 0.008*\"roman\" + 0.007*\"citi\"\n", + "2019-01-16 04:18:11,795 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.013*\"american\" + 0.011*\"david\" + 0.009*\"born\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"smith\"\n", + "2019-01-16 04:18:11,796 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.013*\"henri\" + 0.012*\"jame\"\n", + "2019-01-16 04:18:11,798 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"year\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"number\" + 0.006*\"requir\"\n", + "2019-01-16 04:18:11,799 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.012*\"loui\" + 0.011*\"wine\"\n", + "2019-01-16 04:18:11,806 : INFO : topic diff=0.017198, rho=0.074329\n", + "2019-01-16 04:18:12,265 : INFO : PROGRESS: pass 0, at document #364000/4922894\n", + "2019-01-16 04:18:14,431 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:14,992 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.021*\"contest\" + 0.019*\"fight\" + 0.017*\"wrestl\" + 0.015*\"titl\" + 0.014*\"championship\" + 0.013*\"elimin\" + 0.013*\"champion\" + 0.013*\"week\" + 0.012*\"pro\"\n", + "2019-01-16 04:18:14,994 : INFO : topic #6 (0.020): 0.065*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.017*\"theatr\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:18:14,996 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"love\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 04:18:14,998 : INFO : topic #30 (0.020): 0.058*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.013*\"loui\" + 0.013*\"de\" + 0.011*\"wine\"\n", + "2019-01-16 04:18:15,000 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.020*\"airport\" + 0.016*\"unit\" + 0.016*\"forc\" + 0.014*\"flight\" + 0.014*\"navi\" + 0.013*\"squadron\" + 0.012*\"servic\"\n", + "2019-01-16 04:18:15,006 : INFO : topic diff=0.016819, rho=0.074125\n", + "2019-01-16 04:18:15,482 : INFO : PROGRESS: pass 0, at document #366000/4922894\n", + "2019-01-16 04:18:17,678 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:18,241 : INFO : topic #35 (0.020): 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.017*\"singapor\" + 0.016*\"prime\" + 0.016*\"minist\" + 0.016*\"vietnam\" + 0.015*\"lee\" + 0.014*\"chan\" + 0.013*\"chi\" + 0.013*\"ind\"\n", + "2019-01-16 04:18:18,243 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.019*\"airport\" + 0.016*\"unit\" + 0.016*\"forc\" + 0.014*\"navi\" + 0.013*\"flight\" + 0.013*\"squadron\" + 0.012*\"servic\"\n", + "2019-01-16 04:18:18,244 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.021*\"design\" + 0.016*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.010*\"photograph\"\n", + "2019-01-16 04:18:18,246 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.011*\"locat\" + 0.011*\"street\" + 0.010*\"site\" + 0.010*\"histor\" + 0.009*\"centuri\" + 0.009*\"file\"\n", + "2019-01-16 04:18:18,247 : INFO : topic #49 (0.020): 0.067*\"region\" + 0.067*\"west\" + 0.065*\"east\" + 0.061*\"north\" + 0.055*\"south\" + 0.042*\"villag\" + 0.025*\"central\" + 0.024*\"swedish\" + 0.021*\"district\" + 0.019*\"northern\"\n", + "2019-01-16 04:18:18,253 : INFO : topic diff=0.016679, rho=0.073922\n", + "2019-01-16 04:18:18,751 : INFO : PROGRESS: pass 0, at document #368000/4922894\n", + "2019-01-16 04:18:20,965 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:21,527 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.028*\"soviet\" + 0.027*\"jewish\" + 0.023*\"russia\" + 0.022*\"israel\" + 0.019*\"jew\" + 0.018*\"polish\" + 0.017*\"ukrainian\" + 0.016*\"born\" + 0.015*\"moscow\"\n", + "2019-01-16 04:18:21,529 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 04:18:21,530 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"light\" + 0.007*\"water\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"materi\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 04:18:21,531 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.051*\"univers\" + 0.038*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.008*\"campu\"\n", + "2019-01-16 04:18:21,533 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"love\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 04:18:21,539 : INFO : topic diff=0.016649, rho=0.073721\n", + "2019-01-16 04:18:22,031 : INFO : PROGRESS: pass 0, at document #370000/4922894\n", + "2019-01-16 04:18:24,187 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:24,745 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"light\" + 0.007*\"water\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"materi\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"effect\" + 0.005*\"time\"\n", + "2019-01-16 04:18:24,747 : INFO : topic #36 (0.020): 0.060*\"art\" + 0.034*\"museum\" + 0.029*\"work\" + 0.022*\"artist\" + 0.022*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.010*\"photograph\"\n", + "2019-01-16 04:18:24,749 : INFO : topic #12 (0.020): 0.062*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.021*\"democrat\" + 0.020*\"presid\" + 0.018*\"vote\" + 0.015*\"council\" + 0.014*\"repres\" + 0.013*\"senat\" + 0.013*\"polit\"\n", + "2019-01-16 04:18:24,751 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"love\"\n", + "2019-01-16 04:18:24,752 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.012*\"und\" + 0.012*\"netherland\" + 0.012*\"die\"\n", + "2019-01-16 04:18:24,758 : INFO : topic diff=0.017421, rho=0.073521\n", + "2019-01-16 04:18:25,231 : INFO : PROGRESS: pass 0, at document #372000/4922894\n", + "2019-01-16 04:18:27,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:27,938 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"light\" + 0.007*\"water\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"materi\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 04:18:27,940 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.015*\"coach\" + 0.014*\"plai\" + 0.012*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"yard\" + 0.009*\"record\"\n", + "2019-01-16 04:18:27,941 : INFO : topic #35 (0.020): 0.021*\"prime\" + 0.019*\"lee\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.016*\"vietnam\" + 0.016*\"singapor\" + 0.016*\"minist\" + 0.014*\"chan\" + 0.013*\"bulgarian\" + 0.013*\"chi\"\n", + "2019-01-16 04:18:27,943 : INFO : topic #25 (0.020): 0.043*\"round\" + 0.040*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"group\" + 0.015*\"draw\" + 0.014*\"runner\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", + "2019-01-16 04:18:27,945 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"bird\" + 0.008*\"red\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"anim\" + 0.006*\"black\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:18:27,950 : INFO : topic diff=0.018452, rho=0.073324\n", + "2019-01-16 04:18:28,386 : INFO : PROGRESS: pass 0, at document #374000/4922894\n", + "2019-01-16 04:18:30,506 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:31,061 : INFO : topic #34 (0.020): 0.073*\"canada\" + 0.059*\"canadian\" + 0.038*\"island\" + 0.027*\"toronto\" + 0.024*\"ontario\" + 0.018*\"british\" + 0.018*\"flag\" + 0.017*\"korean\" + 0.016*\"vancouv\" + 0.015*\"quebec\"\n", + "2019-01-16 04:18:31,063 : INFO : topic #36 (0.020): 0.060*\"art\" + 0.034*\"museum\" + 0.029*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.022*\"design\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.009*\"photograph\"\n", + "2019-01-16 04:18:31,065 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"best\" + 0.020*\"seri\" + 0.017*\"star\" + 0.013*\"role\" + 0.012*\"produc\" + 0.012*\"actor\" + 0.012*\"direct\"\n", + "2019-01-16 04:18:31,066 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.034*\"team\" + 0.033*\"club\" + 0.033*\"plai\" + 0.026*\"cup\" + 0.024*\"footbal\" + 0.024*\"season\" + 0.017*\"player\" + 0.017*\"match\" + 0.015*\"goal\"\n", + "2019-01-16 04:18:31,068 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\" + 0.012*\"jame\"\n", + "2019-01-16 04:18:31,074 : INFO : topic diff=0.016441, rho=0.073127\n", + "2019-01-16 04:18:31,534 : INFO : PROGRESS: pass 0, at document #376000/4922894\n", + "2019-01-16 04:18:33,698 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:34,254 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.018*\"radio\" + 0.015*\"broadcast\" + 0.015*\"station\" + 0.012*\"channel\" + 0.011*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"dai\" + 0.009*\"air\"\n", + "2019-01-16 04:18:34,256 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:18:34,257 : INFO : topic #34 (0.020): 0.073*\"canada\" + 0.059*\"canadian\" + 0.038*\"island\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.018*\"british\" + 0.017*\"flag\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.016*\"malaysia\"\n", + "2019-01-16 04:18:34,259 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"war\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 04:18:34,261 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.022*\"team\" + 0.015*\"coach\" + 0.014*\"plai\" + 0.012*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"basebal\"\n", + "2019-01-16 04:18:34,267 : INFO : topic diff=0.015745, rho=0.072932\n", + "2019-01-16 04:18:34,700 : INFO : PROGRESS: pass 0, at document #378000/4922894\n", + "2019-01-16 04:18:36,847 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:37,404 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"war\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 04:18:37,406 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.014*\"council\" + 0.014*\"senat\" + 0.014*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 04:18:37,407 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.013*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.007*\"oil\" + 0.007*\"acid\" + 0.007*\"vehicl\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:18:37,409 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.013*\"finish\" + 0.012*\"championship\" + 0.012*\"tour\" + 0.010*\"point\" + 0.010*\"grand\" + 0.010*\"year\"\n", + "2019-01-16 04:18:37,411 : INFO : topic #36 (0.020): 0.060*\"art\" + 0.033*\"museum\" + 0.029*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.022*\"design\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.009*\"photograph\"\n", + "2019-01-16 04:18:37,417 : INFO : topic diff=0.014381, rho=0.072739\n", + "2019-01-16 04:18:42,452 : INFO : -11.608 per-word bound, 3121.9 perplexity estimate based on a held-out corpus of 2000 documents with 582400 words\n", + "2019-01-16 04:18:42,453 : INFO : PROGRESS: pass 0, at document #380000/4922894\n", + "2019-01-16 04:18:44,675 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:45,236 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.053*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.029*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"grade\" + 0.009*\"teacher\"\n", + "2019-01-16 04:18:45,238 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.011*\"locat\" + 0.011*\"jpg\" + 0.010*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", + "2019-01-16 04:18:45,240 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"god\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"cultur\" + 0.005*\"differ\" + 0.005*\"centuri\"\n", + "2019-01-16 04:18:45,241 : INFO : topic #14 (0.020): 0.015*\"compani\" + 0.014*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.011*\"work\" + 0.011*\"institut\" + 0.010*\"intern\" + 0.010*\"manag\" + 0.009*\"nation\"\n", + "2019-01-16 04:18:45,243 : INFO : topic #40 (0.020): 0.031*\"bar\" + 0.026*\"africa\" + 0.026*\"african\" + 0.023*\"text\" + 0.023*\"till\" + 0.021*\"south\" + 0.019*\"color\" + 0.010*\"format\" + 0.010*\"black\" + 0.009*\"coloni\"\n", + "2019-01-16 04:18:45,249 : INFO : topic diff=0.016313, rho=0.072548\n", + "2019-01-16 04:18:45,691 : INFO : PROGRESS: pass 0, at document #382000/4922894\n", + "2019-01-16 04:18:47,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:48,492 : INFO : topic #35 (0.020): 0.020*\"singapor\" + 0.019*\"lee\" + 0.019*\"prime\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.015*\"vietnam\" + 0.014*\"chan\" + 0.013*\"minist\" + 0.013*\"bulgarian\" + 0.013*\"thai\"\n", + "2019-01-16 04:18:48,493 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"bank\" + 0.007*\"rate\" + 0.007*\"year\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"number\" + 0.006*\"requir\"\n", + "2019-01-16 04:18:48,496 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.027*\"jewish\" + 0.025*\"soviet\" + 0.022*\"russia\" + 0.020*\"polish\" + 0.020*\"israel\" + 0.018*\"jew\" + 0.015*\"born\" + 0.015*\"moscow\" + 0.014*\"republ\"\n", + "2019-01-16 04:18:48,498 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.034*\"team\" + 0.033*\"plai\" + 0.033*\"club\" + 0.026*\"cup\" + 0.025*\"footbal\" + 0.024*\"season\" + 0.017*\"player\" + 0.016*\"match\" + 0.016*\"goal\"\n", + "2019-01-16 04:18:48,499 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.015*\"del\" + 0.014*\"mexico\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.010*\"francisco\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"juan\"\n", + "2019-01-16 04:18:48,505 : INFO : topic diff=0.014971, rho=0.072357\n", + "2019-01-16 04:18:49,004 : INFO : PROGRESS: pass 0, at document #384000/4922894\n", + "2019-01-16 04:18:51,155 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:51,709 : INFO : topic #22 (0.020): 0.049*\"counti\" + 0.049*\"popul\" + 0.034*\"town\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"household\" + 0.022*\"villag\" + 0.021*\"area\"\n", + "2019-01-16 04:18:51,711 : INFO : topic #39 (0.020): 0.041*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.019*\"airport\" + 0.016*\"unit\" + 0.016*\"forc\" + 0.015*\"navi\" + 0.013*\"squadron\" + 0.013*\"flight\" + 0.013*\"servic\"\n", + "2019-01-16 04:18:51,714 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.035*\"germani\" + 0.027*\"van\" + 0.025*\"von\" + 0.023*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.012*\"und\" + 0.012*\"netherland\" + 0.011*\"die\"\n", + "2019-01-16 04:18:51,715 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"born\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:18:51,717 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.022*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.014*\"council\" + 0.014*\"minist\" + 0.013*\"polit\" + 0.013*\"senat\"\n", + "2019-01-16 04:18:51,723 : INFO : topic diff=0.015375, rho=0.072169\n", + "2019-01-16 04:18:52,171 : INFO : PROGRESS: pass 0, at document #386000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:18:54,321 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:54,876 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.020*\"state\" + 0.017*\"act\" + 0.010*\"case\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"public\" + 0.008*\"right\" + 0.007*\"feder\"\n", + "2019-01-16 04:18:54,878 : INFO : topic #39 (0.020): 0.041*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.018*\"airport\" + 0.016*\"unit\" + 0.016*\"forc\" + 0.015*\"navi\" + 0.014*\"squadron\" + 0.013*\"flight\" + 0.013*\"servic\"\n", + "2019-01-16 04:18:54,879 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.011*\"daughter\" + 0.011*\"bishop\"\n", + "2019-01-16 04:18:54,881 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.038*\"franc\" + 0.029*\"saint\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.018*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 04:18:54,883 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.014*\"council\" + 0.014*\"minist\" + 0.013*\"senat\" + 0.013*\"repres\"\n", + "2019-01-16 04:18:54,888 : INFO : topic diff=0.015137, rho=0.071982\n", + "2019-01-16 04:18:55,315 : INFO : PROGRESS: pass 0, at document #388000/4922894\n", + "2019-01-16 04:18:57,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:18:58,043 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.046*\"australian\" + 0.045*\"new\" + 0.040*\"china\" + 0.038*\"chines\" + 0.030*\"zealand\" + 0.023*\"south\" + 0.019*\"hong\" + 0.018*\"kong\" + 0.016*\"sydnei\"\n", + "2019-01-16 04:18:58,044 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"love\"\n", + "2019-01-16 04:18:58,046 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.020*\"station\" + 0.018*\"road\" + 0.016*\"line\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.013*\"park\" + 0.013*\"rout\" + 0.013*\"lake\" + 0.012*\"north\"\n", + "2019-01-16 04:18:58,048 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"point\" + 0.010*\"win\" + 0.010*\"time\"\n", + "2019-01-16 04:18:58,050 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.026*\"african\" + 0.026*\"africa\" + 0.025*\"text\" + 0.023*\"till\" + 0.021*\"south\" + 0.018*\"color\" + 0.010*\"shift\" + 0.009*\"black\" + 0.009*\"format\"\n", + "2019-01-16 04:18:58,056 : INFO : topic diff=0.015708, rho=0.071796\n", + "2019-01-16 04:18:58,513 : INFO : PROGRESS: pass 0, at document #390000/4922894\n", + "2019-01-16 04:19:00,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:01,307 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.009*\"plant\" + 0.008*\"bird\" + 0.008*\"anim\" + 0.008*\"red\" + 0.008*\"tree\" + 0.007*\"genu\" + 0.007*\"black\"\n", + "2019-01-16 04:19:01,308 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 04:19:01,310 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.034*\"germani\" + 0.027*\"van\" + 0.026*\"von\" + 0.022*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:19:01,312 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:19:01,314 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.014*\"product\" + 0.011*\"cell\" + 0.010*\"model\" + 0.010*\"power\" + 0.009*\"produc\" + 0.007*\"protein\" + 0.007*\"design\" + 0.007*\"car\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:19:01,320 : INFO : topic diff=0.017111, rho=0.071611\n", + "2019-01-16 04:19:01,824 : INFO : PROGRESS: pass 0, at document #392000/4922894\n", + "2019-01-16 04:19:04,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:04,579 : INFO : topic #35 (0.020): 0.027*\"prime\" + 0.018*\"singapor\" + 0.018*\"lee\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"minist\" + 0.016*\"vietnam\" + 0.013*\"chan\" + 0.012*\"chi\" + 0.011*\"thai\"\n", + "2019-01-16 04:19:04,581 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.027*\"africa\" + 0.027*\"african\" + 0.024*\"text\" + 0.021*\"south\" + 0.021*\"till\" + 0.017*\"color\" + 0.010*\"black\" + 0.010*\"shift\" + 0.009*\"coloni\"\n", + "2019-01-16 04:19:04,582 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"jpg\" + 0.011*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"file\"\n", + "2019-01-16 04:19:04,584 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"american\" + 0.012*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:19:04,586 : INFO : topic #36 (0.020): 0.059*\"art\" + 0.033*\"museum\" + 0.029*\"work\" + 0.024*\"paint\" + 0.023*\"design\" + 0.022*\"artist\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.009*\"photograph\"\n", + "2019-01-16 04:19:04,593 : INFO : topic diff=0.017696, rho=0.071429\n", + "2019-01-16 04:19:05,075 : INFO : PROGRESS: pass 0, at document #394000/4922894\n", + "2019-01-16 04:19:07,257 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:07,817 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.011*\"locat\" + 0.011*\"street\" + 0.011*\"jpg\" + 0.011*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", + "2019-01-16 04:19:07,818 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:19:07,820 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.016*\"centuri\" + 0.011*\"emperor\" + 0.010*\"empir\" + 0.010*\"greek\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.008*\"roman\" + 0.008*\"princ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:19:07,822 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.014*\"product\" + 0.013*\"electr\" + 0.011*\"cell\" + 0.011*\"model\" + 0.010*\"power\" + 0.009*\"oil\" + 0.009*\"produc\" + 0.007*\"protein\" + 0.007*\"vehicl\"\n", + "2019-01-16 04:19:07,823 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.007*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 04:19:07,829 : INFO : topic diff=0.014800, rho=0.071247\n", + "2019-01-16 04:19:08,278 : INFO : PROGRESS: pass 0, at document #396000/4922894\n", + "2019-01-16 04:19:10,450 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:11,007 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"district\" + 0.033*\"indian\" + 0.018*\"provinc\" + 0.017*\"villag\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"http\" + 0.010*\"sri\" + 0.009*\"rural\"\n", + "2019-01-16 04:19:11,008 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.011*\"point\" + 0.010*\"time\" + 0.010*\"tour\" + 0.010*\"lap\"\n", + "2019-01-16 04:19:11,010 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.065*\"align\" + 0.061*\"left\" + 0.056*\"style\" + 0.054*\"wikit\" + 0.049*\"center\" + 0.035*\"right\" + 0.034*\"text\" + 0.034*\"border\" + 0.030*\"philippin\"\n", + "2019-01-16 04:19:11,011 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.033*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.025*\"cup\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.017*\"player\" + 0.016*\"match\" + 0.016*\"goal\"\n", + "2019-01-16 04:19:11,013 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.029*\"world\" + 0.025*\"championship\" + 0.024*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.018*\"japanes\"\n", + "2019-01-16 04:19:11,019 : INFO : topic diff=0.016909, rho=0.071067\n", + "2019-01-16 04:19:11,426 : INFO : PROGRESS: pass 0, at document #398000/4922894\n", + "2019-01-16 04:19:13,556 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:14,112 : INFO : topic #6 (0.020): 0.068*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.018*\"festiv\" + 0.017*\"theatr\" + 0.015*\"danc\" + 0.014*\"plai\" + 0.014*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:19:14,114 : INFO : topic #49 (0.020): 0.068*\"region\" + 0.066*\"west\" + 0.064*\"north\" + 0.063*\"east\" + 0.056*\"south\" + 0.039*\"villag\" + 0.024*\"central\" + 0.024*\"administr\" + 0.022*\"swedish\" + 0.022*\"district\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:19:14,115 : INFO : topic #14 (0.020): 0.015*\"compani\" + 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"univers\" + 0.011*\"institut\" + 0.011*\"work\" + 0.011*\"intern\" + 0.010*\"manag\" + 0.009*\"scienc\"\n", + "2019-01-16 04:19:14,117 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"defin\"\n", + "2019-01-16 04:19:14,119 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.020*\"contest\" + 0.020*\"fight\" + 0.016*\"wrestl\" + 0.014*\"match\" + 0.013*\"titl\" + 0.013*\"championship\" + 0.013*\"elimin\" + 0.012*\"week\" + 0.011*\"world\"\n", + "2019-01-16 04:19:14,126 : INFO : topic diff=0.016225, rho=0.070888\n", + "2019-01-16 04:19:18,977 : INFO : -11.687 per-word bound, 3296.8 perplexity estimate based on a held-out corpus of 2000 documents with 517083 words\n", + "2019-01-16 04:19:18,978 : INFO : PROGRESS: pass 0, at document #400000/4922894\n", + "2019-01-16 04:19:21,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:21,656 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.020*\"hospit\" + 0.019*\"health\" + 0.014*\"diseas\" + 0.013*\"ret\" + 0.012*\"patient\" + 0.011*\"medicin\" + 0.010*\"drug\" + 0.010*\"treatment\" + 0.010*\"caus\"\n", + "2019-01-16 04:19:21,658 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.008*\"program\"\n", + "2019-01-16 04:19:21,660 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.028*\"unit\" + 0.022*\"cricket\" + 0.021*\"town\" + 0.019*\"citi\" + 0.017*\"scotland\" + 0.016*\"scottish\" + 0.014*\"manchest\" + 0.012*\"counti\" + 0.012*\"wale\"\n", + "2019-01-16 04:19:21,661 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.033*\"van\" + 0.033*\"germani\" + 0.027*\"dutch\" + 0.025*\"von\" + 0.021*\"der\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 04:19:21,663 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.030*\"armi\" + 0.022*\"forc\" + 0.020*\"command\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.013*\"gener\" + 0.010*\"regiment\" + 0.009*\"divis\" + 0.009*\"troop\"\n", + "2019-01-16 04:19:21,669 : INFO : topic diff=0.016257, rho=0.070711\n", + "2019-01-16 04:19:22,129 : INFO : PROGRESS: pass 0, at document #402000/4922894\n", + "2019-01-16 04:19:24,283 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:24,839 : INFO : topic #49 (0.020): 0.068*\"region\" + 0.067*\"north\" + 0.066*\"west\" + 0.063*\"east\" + 0.059*\"south\" + 0.039*\"villag\" + 0.026*\"district\" + 0.024*\"central\" + 0.023*\"administr\" + 0.021*\"swedish\"\n", + "2019-01-16 04:19:24,841 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.019*\"hospit\" + 0.018*\"health\" + 0.014*\"diseas\" + 0.012*\"ret\" + 0.012*\"patient\" + 0.011*\"medicin\" + 0.010*\"drug\" + 0.010*\"treatment\" + 0.010*\"caus\"\n", + "2019-01-16 04:19:24,842 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.012*\"gun\" + 0.011*\"kill\" + 0.011*\"polic\" + 0.010*\"damag\" + 0.008*\"report\" + 0.008*\"crew\" + 0.008*\"boat\" + 0.008*\"attack\" + 0.007*\"dai\"\n", + "2019-01-16 04:19:24,844 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.021*\"fight\" + 0.021*\"contest\" + 0.015*\"wrestl\" + 0.014*\"match\" + 0.013*\"titl\" + 0.013*\"elimin\" + 0.013*\"championship\" + 0.013*\"week\" + 0.011*\"world\"\n", + "2019-01-16 04:19:24,845 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.005*\"differ\" + 0.005*\"centuri\" + 0.005*\"tradit\" + 0.005*\"god\" + 0.005*\"cultur\"\n", + "2019-01-16 04:19:24,851 : INFO : topic diff=0.014457, rho=0.070535\n", + "2019-01-16 04:19:25,329 : INFO : PROGRESS: pass 0, at document #404000/4922894\n", + "2019-01-16 04:19:27,471 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:28,030 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.039*\"franc\" + 0.028*\"italian\" + 0.026*\"saint\" + 0.024*\"pari\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 04:19:28,032 : INFO : topic #34 (0.020): 0.076*\"canada\" + 0.061*\"canadian\" + 0.039*\"island\" + 0.027*\"ontario\" + 0.022*\"toronto\" + 0.018*\"british\" + 0.016*\"flag\" + 0.016*\"korean\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", + "2019-01-16 04:19:28,035 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.026*\"soviet\" + 0.024*\"russia\" + 0.022*\"jewish\" + 0.021*\"israel\" + 0.021*\"polish\" + 0.016*\"born\" + 0.015*\"republ\" + 0.015*\"czech\" + 0.014*\"poland\"\n", + "2019-01-16 04:19:28,036 : INFO : topic #36 (0.020): 0.059*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.022*\"design\" + 0.018*\"exhibit\" + 0.014*\"collect\" + 0.013*\"galleri\" + 0.009*\"photograph\"\n", + "2019-01-16 04:19:28,038 : INFO : topic #22 (0.020): 0.050*\"counti\" + 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"villag\" + 0.022*\"household\" + 0.020*\"area\"\n", + "2019-01-16 04:19:28,043 : INFO : topic diff=0.015246, rho=0.070360\n", + "2019-01-16 04:19:28,519 : INFO : PROGRESS: pass 0, at document #406000/4922894\n", + "2019-01-16 04:19:30,724 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:31,281 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.021*\"court\" + 0.020*\"state\" + 0.016*\"act\" + 0.013*\"offic\" + 0.010*\"case\" + 0.009*\"legal\" + 0.008*\"public\" + 0.008*\"feder\" + 0.008*\"right\"\n", + "2019-01-16 04:19:31,283 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.024*\"oper\" + 0.022*\"aircraft\" + 0.018*\"airport\" + 0.017*\"unit\" + 0.014*\"forc\" + 0.014*\"flight\" + 0.014*\"navi\" + 0.013*\"squadron\" + 0.012*\"commend\"\n", + "2019-01-16 04:19:31,285 : INFO : topic #34 (0.020): 0.077*\"canada\" + 0.061*\"canadian\" + 0.039*\"island\" + 0.027*\"ontario\" + 0.023*\"toronto\" + 0.018*\"british\" + 0.015*\"korean\" + 0.015*\"flag\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", + "2019-01-16 04:19:31,286 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.065*\"align\" + 0.060*\"left\" + 0.055*\"wikit\" + 0.053*\"style\" + 0.050*\"center\" + 0.037*\"right\" + 0.036*\"philippin\" + 0.034*\"text\" + 0.031*\"border\"\n", + "2019-01-16 04:19:31,288 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.016*\"centuri\" + 0.011*\"emperor\" + 0.011*\"greek\" + 0.011*\"empir\" + 0.009*\"templ\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"princ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:19:31,294 : INFO : topic diff=0.018253, rho=0.070186\n", + "2019-01-16 04:19:31,794 : INFO : PROGRESS: pass 0, at document #408000/4922894\n", + "2019-01-16 04:19:33,927 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:34,484 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.027*\"england\" + 0.025*\"town\" + 0.021*\"citi\" + 0.020*\"cricket\" + 0.016*\"scotland\" + 0.016*\"scottish\" + 0.013*\"manchest\" + 0.011*\"counti\" + 0.010*\"wale\"\n", + "2019-01-16 04:19:34,486 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.021*\"court\" + 0.020*\"state\" + 0.016*\"act\" + 0.013*\"offic\" + 0.010*\"case\" + 0.009*\"legal\" + 0.008*\"public\" + 0.008*\"right\" + 0.008*\"feder\"\n", + "2019-01-16 04:19:34,487 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.011*\"bishop\"\n", + "2019-01-16 04:19:34,489 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"saint\" + 0.023*\"pari\" + 0.023*\"itali\" + 0.017*\"jean\" + 0.017*\"burnei\" + 0.014*\"de\" + 0.011*\"le\"\n", + "2019-01-16 04:19:34,491 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.011*\"royal\"\n", + "2019-01-16 04:19:34,497 : INFO : topic diff=0.017446, rho=0.070014\n", + "2019-01-16 04:19:34,969 : INFO : PROGRESS: pass 0, at document #410000/4922894\n", + "2019-01-16 04:19:37,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:37,607 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.029*\"presid\" + 0.024*\"member\" + 0.018*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.015*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 04:19:37,609 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"space\" + 0.005*\"form\"\n", + "2019-01-16 04:19:37,610 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.046*\"new\" + 0.045*\"australian\" + 0.037*\"china\" + 0.035*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.018*\"hong\" + 0.017*\"kong\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:19:37,612 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.010*\"set\" + 0.010*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"defin\" + 0.007*\"valu\"\n", + "2019-01-16 04:19:37,614 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"war\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.006*\"group\"\n", + "2019-01-16 04:19:37,619 : INFO : topic diff=0.016325, rho=0.069843\n", + "2019-01-16 04:19:38,038 : INFO : PROGRESS: pass 0, at document #412000/4922894\n", + "2019-01-16 04:19:40,153 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:40,708 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.040*\"new\" + 0.027*\"york\" + 0.027*\"american\" + 0.025*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"counti\" + 0.012*\"texa\"\n", + "2019-01-16 04:19:40,710 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.039*\"district\" + 0.035*\"indian\" + 0.019*\"provinc\" + 0.017*\"villag\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"http\" + 0.012*\"sri\" + 0.010*\"tamil\"\n", + "2019-01-16 04:19:40,711 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.011*\"kill\" + 0.010*\"polic\" + 0.009*\"boat\" + 0.008*\"crew\" + 0.008*\"report\" + 0.007*\"attack\" + 0.007*\"dai\"\n", + "2019-01-16 04:19:40,713 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"saint\" + 0.026*\"italian\" + 0.023*\"pari\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"burnei\" + 0.013*\"de\" + 0.012*\"le\"\n", + "2019-01-16 04:19:40,715 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.025*\"russia\" + 0.024*\"soviet\" + 0.022*\"jewish\" + 0.021*\"polish\" + 0.020*\"israel\" + 0.016*\"born\" + 0.015*\"poland\" + 0.014*\"moscow\" + 0.014*\"republ\"\n", + "2019-01-16 04:19:40,721 : INFO : topic diff=0.016153, rho=0.069673\n", + "2019-01-16 04:19:41,148 : INFO : PROGRESS: pass 0, at document #414000/4922894\n", + "2019-01-16 04:19:43,312 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:43,868 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.025*\"act\" + 0.020*\"court\" + 0.019*\"state\" + 0.013*\"offic\" + 0.010*\"case\" + 0.008*\"legal\" + 0.008*\"public\" + 0.008*\"right\" + 0.008*\"feder\"\n", + "2019-01-16 04:19:43,870 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.010*\"set\" + 0.010*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"group\" + 0.007*\"defin\" + 0.007*\"model\" + 0.007*\"valu\"\n", + "2019-01-16 04:19:43,872 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.013*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"yard\" + 0.009*\"record\"\n", + "2019-01-16 04:19:43,873 : INFO : topic #6 (0.020): 0.068*\"music\" + 0.030*\"perform\" + 0.021*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:19:43,875 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.016*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.009*\"host\" + 0.009*\"compani\" + 0.009*\"network\"\n", + "2019-01-16 04:19:43,880 : INFO : topic diff=0.015463, rho=0.069505\n", + "2019-01-16 04:19:44,297 : INFO : PROGRESS: pass 0, at document #416000/4922894\n", + "2019-01-16 04:19:46,479 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:47,036 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.049*\"franc\" + 0.027*\"saint\" + 0.026*\"italian\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.013*\"burnei\" + 0.011*\"le\"\n", + "2019-01-16 04:19:47,038 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"teacher\" + 0.008*\"state\"\n", + "2019-01-16 04:19:47,040 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.013*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:19:47,042 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.028*\"africa\" + 0.025*\"african\" + 0.022*\"text\" + 0.021*\"south\" + 0.020*\"till\" + 0.015*\"color\" + 0.012*\"tropic\" + 0.010*\"cape\" + 0.010*\"coloni\"\n", + "2019-01-16 04:19:47,043 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"brazil\" + 0.014*\"spain\" + 0.010*\"juan\" + 0.009*\"francisco\" + 0.009*\"puerto\" + 0.009*\"josé\"\n", + "2019-01-16 04:19:47,049 : INFO : topic diff=0.014790, rho=0.069338\n", + "2019-01-16 04:19:47,488 : INFO : PROGRESS: pass 0, at document #418000/4922894\n", + "2019-01-16 04:19:49,717 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:50,273 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.028*\"england\" + 0.023*\"town\" + 0.021*\"cricket\" + 0.021*\"citi\" + 0.016*\"scottish\" + 0.016*\"scotland\" + 0.014*\"manchest\" + 0.012*\"counti\" + 0.011*\"wale\"\n", + "2019-01-16 04:19:50,275 : INFO : topic #8 (0.020): 0.044*\"india\" + 0.036*\"district\" + 0.034*\"indian\" + 0.018*\"provinc\" + 0.016*\"villag\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"pradesh\" + 0.012*\"http\" + 0.012*\"tamil\"\n", + "2019-01-16 04:19:50,276 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"teacher\" + 0.008*\"state\"\n", + "2019-01-16 04:19:50,278 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"regiment\" + 0.010*\"divis\" + 0.009*\"soldier\"\n", + "2019-01-16 04:19:50,280 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.049*\"franc\" + 0.027*\"saint\" + 0.025*\"italian\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.013*\"de\" + 0.012*\"burnei\" + 0.011*\"le\"\n", + "2019-01-16 04:19:50,286 : INFO : topic diff=0.015255, rho=0.069171\n", + "2019-01-16 04:19:55,285 : INFO : -11.788 per-word bound, 3535.2 perplexity estimate based on a held-out corpus of 2000 documents with 580844 words\n", + "2019-01-16 04:19:55,286 : INFO : PROGRESS: pass 0, at document #420000/4922894\n", + "2019-01-16 04:19:57,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:19:58,099 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"bishop\" + 0.012*\"daughter\"\n", + "2019-01-16 04:19:58,101 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.030*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:19:58,102 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.029*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", + "2019-01-16 04:19:58,104 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.049*\"franc\" + 0.026*\"saint\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.013*\"de\" + 0.011*\"burnei\" + 0.011*\"le\"\n", + "2019-01-16 04:19:58,105 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.064*\"align\" + 0.058*\"wikit\" + 0.057*\"left\" + 0.056*\"style\" + 0.051*\"center\" + 0.037*\"philippin\" + 0.036*\"right\" + 0.033*\"text\" + 0.028*\"border\"\n", + "2019-01-16 04:19:58,111 : INFO : topic diff=0.014978, rho=0.069007\n", + "2019-01-16 04:19:58,524 : INFO : PROGRESS: pass 0, at document #422000/4922894\n", + "2019-01-16 04:20:00,714 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:01,270 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.011*\"cell\" + 0.010*\"model\" + 0.010*\"power\" + 0.010*\"electr\" + 0.009*\"oil\" + 0.008*\"vehicl\" + 0.008*\"produc\" + 0.007*\"protein\"\n", + "2019-01-16 04:20:01,272 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.029*\"africa\" + 0.025*\"african\" + 0.022*\"south\" + 0.022*\"text\" + 0.020*\"till\" + 0.015*\"color\" + 0.012*\"cape\" + 0.011*\"tropic\" + 0.010*\"coloni\"\n", + "2019-01-16 04:20:01,274 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"bank\" + 0.008*\"rate\" + 0.007*\"year\" + 0.007*\"market\" + 0.007*\"cost\" + 0.006*\"number\" + 0.006*\"compani\"\n", + "2019-01-16 04:20:01,277 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:20:01,278 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.018*\"fight\" + 0.018*\"wrestl\" + 0.018*\"match\" + 0.017*\"contest\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.013*\"champion\" + 0.013*\"elimin\" + 0.012*\"week\"\n", + "2019-01-16 04:20:01,285 : INFO : topic diff=0.015915, rho=0.068843\n", + "2019-01-16 04:20:01,715 : INFO : PROGRESS: pass 0, at document #424000/4922894\n", + "2019-01-16 04:20:03,849 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:04,404 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.013*\"function\" + 0.011*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"group\" + 0.008*\"point\" + 0.008*\"gener\" + 0.007*\"defin\"\n", + "2019-01-16 04:20:04,406 : INFO : topic #25 (0.020): 0.041*\"round\" + 0.040*\"final\" + 0.028*\"winner\" + 0.027*\"tournament\" + 0.021*\"open\" + 0.016*\"group\" + 0.016*\"runner\" + 0.014*\"doubl\" + 0.013*\"singl\" + 0.012*\"qualifi\"\n", + "2019-01-16 04:20:04,407 : INFO : topic #48 (0.020): 0.075*\"octob\" + 0.075*\"septemb\" + 0.075*\"march\" + 0.072*\"april\" + 0.071*\"novemb\" + 0.071*\"januari\" + 0.070*\"august\" + 0.069*\"juli\" + 0.067*\"decemb\" + 0.066*\"june\"\n", + "2019-01-16 04:20:04,410 : INFO : topic #34 (0.020): 0.077*\"canada\" + 0.062*\"canadian\" + 0.042*\"island\" + 0.027*\"ontario\" + 0.026*\"toronto\" + 0.018*\"british\" + 0.016*\"korea\" + 0.015*\"korean\" + 0.015*\"quebec\" + 0.013*\"malaysia\"\n", + "2019-01-16 04:20:04,412 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.045*\"australian\" + 0.045*\"new\" + 0.036*\"china\" + 0.033*\"chines\" + 0.029*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.018*\"hong\" + 0.017*\"kong\"\n", + "2019-01-16 04:20:04,418 : INFO : topic diff=0.015251, rho=0.068680\n", + "2019-01-16 04:20:04,888 : INFO : PROGRESS: pass 0, at document #426000/4922894\n", + "2019-01-16 04:20:07,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:07,579 : INFO : topic #35 (0.020): 0.043*\"prime\" + 0.039*\"singapor\" + 0.025*\"minist\" + 0.018*\"lee\" + 0.015*\"indonesia\" + 0.015*\"ind\" + 0.014*\"vietnam\" + 0.014*\"thailand\" + 0.012*\"kai\" + 0.012*\"chan\"\n", + "2019-01-16 04:20:07,581 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"time\" + 0.012*\"championship\" + 0.011*\"driver\" + 0.010*\"tour\" + 0.010*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 04:20:07,583 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.013*\"damag\" + 0.011*\"kill\" + 0.010*\"gun\" + 0.009*\"polic\" + 0.009*\"report\" + 0.008*\"attack\" + 0.008*\"boat\" + 0.007*\"crew\" + 0.007*\"dai\"\n", + "2019-01-16 04:20:07,584 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:20:07,586 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.013*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", + "2019-01-16 04:20:07,592 : INFO : topic diff=0.014305, rho=0.068519\n", + "2019-01-16 04:20:08,066 : INFO : PROGRESS: pass 0, at document #428000/4922894\n", + "2019-01-16 04:20:10,225 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:10,781 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.015*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.010*\"program\" + 0.010*\"host\" + 0.009*\"compani\" + 0.009*\"network\"\n", + "2019-01-16 04:20:10,783 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.045*\"new\" + 0.045*\"australian\" + 0.036*\"china\" + 0.033*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.017*\"hong\" + 0.017*\"kong\"\n", + "2019-01-16 04:20:10,784 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.019*\"hospit\" + 0.018*\"health\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.010*\"medicin\" + 0.010*\"ret\" + 0.010*\"drug\" + 0.009*\"cancer\"\n", + "2019-01-16 04:20:10,786 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.030*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.010*\"regiment\" + 0.009*\"attack\"\n", + "2019-01-16 04:20:10,787 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 04:20:10,793 : INFO : topic diff=0.014790, rho=0.068359\n", + "2019-01-16 04:20:11,253 : INFO : PROGRESS: pass 0, at document #430000/4922894\n", + "2019-01-16 04:20:13,413 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:13,967 : INFO : topic #18 (0.020): 0.008*\"earth\" + 0.008*\"energi\" + 0.008*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"space\" + 0.005*\"materi\" + 0.005*\"time\"\n", + "2019-01-16 04:20:13,970 : INFO : topic #49 (0.020): 0.066*\"west\" + 0.065*\"north\" + 0.065*\"region\" + 0.064*\"south\" + 0.062*\"east\" + 0.036*\"central\" + 0.034*\"villag\" + 0.024*\"district\" + 0.024*\"western\" + 0.022*\"swedish\"\n", + "2019-01-16 04:20:13,972 : INFO : topic #35 (0.020): 0.040*\"prime\" + 0.036*\"singapor\" + 0.024*\"minist\" + 0.018*\"lee\" + 0.018*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"vietnam\" + 0.013*\"ind\" + 0.011*\"chan\" + 0.011*\"kai\"\n", + "2019-01-16 04:20:13,975 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.035*\"indian\" + 0.034*\"district\" + 0.018*\"provinc\" + 0.015*\"villag\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"http\" + 0.012*\"tamil\" + 0.011*\"sri\"\n", + "2019-01-16 04:20:13,977 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.020*\"hospit\" + 0.018*\"health\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.010*\"medicin\" + 0.009*\"drug\" + 0.009*\"cancer\" + 0.009*\"ret\"\n", + "2019-01-16 04:20:13,984 : INFO : topic diff=0.014952, rho=0.068199\n", + "2019-01-16 04:20:14,461 : INFO : PROGRESS: pass 0, at document #432000/4922894\n", + "2019-01-16 04:20:16,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:17,267 : INFO : topic #29 (0.020): 0.036*\"leagu\" + 0.035*\"team\" + 0.033*\"club\" + 0.033*\"plai\" + 0.024*\"season\" + 0.024*\"footbal\" + 0.023*\"cup\" + 0.018*\"player\" + 0.016*\"goal\" + 0.016*\"match\"\n", + "2019-01-16 04:20:17,269 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"bank\" + 0.007*\"year\" + 0.007*\"rate\" + 0.007*\"market\" + 0.007*\"cost\" + 0.006*\"compani\" + 0.006*\"number\"\n", + "2019-01-16 04:20:17,270 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.058*\"wikit\" + 0.057*\"style\" + 0.057*\"align\" + 0.052*\"center\" + 0.052*\"left\" + 0.038*\"philippin\" + 0.037*\"right\" + 0.031*\"text\" + 0.028*\"border\"\n", + "2019-01-16 04:20:17,272 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.035*\"indian\" + 0.034*\"district\" + 0.018*\"provinc\" + 0.015*\"villag\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"http\" + 0.011*\"tamil\" + 0.011*\"sri\"\n", + "2019-01-16 04:20:17,274 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"differ\" + 0.005*\"tradit\" + 0.005*\"english\" + 0.005*\"god\"\n", + "2019-01-16 04:20:17,280 : INFO : topic diff=0.016325, rho=0.068041\n", + "2019-01-16 04:20:17,796 : INFO : PROGRESS: pass 0, at document #434000/4922894\n", + "2019-01-16 04:20:19,916 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:20,472 : INFO : topic #35 (0.020): 0.037*\"prime\" + 0.033*\"singapor\" + 0.022*\"minist\" + 0.017*\"lee\" + 0.016*\"indonesia\" + 0.014*\"vietnam\" + 0.014*\"thailand\" + 0.011*\"ind\" + 0.011*\"kai\" + 0.011*\"chan\"\n", + "2019-01-16 04:20:20,474 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.046*\"new\" + 0.046*\"australian\" + 0.036*\"china\" + 0.033*\"chines\" + 0.031*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.017*\"kong\" + 0.017*\"hong\"\n", + "2019-01-16 04:20:20,476 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.013*\"function\" + 0.010*\"set\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"point\" + 0.008*\"group\" + 0.008*\"gener\" + 0.007*\"defin\"\n", + "2019-01-16 04:20:20,478 : INFO : topic #47 (0.020): 0.022*\"station\" + 0.022*\"river\" + 0.018*\"line\" + 0.018*\"road\" + 0.015*\"rout\" + 0.015*\"railwai\" + 0.014*\"area\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"north\"\n", + "2019-01-16 04:20:20,479 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:20:20,486 : INFO : topic diff=0.014059, rho=0.067884\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:20:20,883 : INFO : PROGRESS: pass 0, at document #436000/4922894\n", + "2019-01-16 04:20:23,005 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:23,564 : INFO : topic #25 (0.020): 0.041*\"round\" + 0.038*\"final\" + 0.029*\"tournament\" + 0.026*\"winner\" + 0.020*\"open\" + 0.016*\"group\" + 0.014*\"runner\" + 0.014*\"qualifi\" + 0.013*\"doubl\" + 0.012*\"singl\"\n", + "2019-01-16 04:20:23,565 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.046*\"australian\" + 0.046*\"new\" + 0.036*\"china\" + 0.033*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.019*\"kong\" + 0.018*\"sydnei\" + 0.018*\"hong\"\n", + "2019-01-16 04:20:23,567 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"santa\" + 0.009*\"francisco\"\n", + "2019-01-16 04:20:23,568 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"differ\" + 0.005*\"tradit\" + 0.005*\"peopl\" + 0.005*\"english\"\n", + "2019-01-16 04:20:23,570 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.013*\"function\" + 0.010*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"model\"\n", + "2019-01-16 04:20:23,576 : INFO : topic diff=0.013793, rho=0.067729\n", + "2019-01-16 04:20:24,054 : INFO : PROGRESS: pass 0, at document #438000/4922894\n", + "2019-01-16 04:20:26,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:26,802 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.017*\"centuri\" + 0.011*\"empir\" + 0.010*\"greek\" + 0.010*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.008*\"ancient\" + 0.007*\"princ\"\n", + "2019-01-16 04:20:26,804 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"born\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:20:26,805 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.042*\"germani\" + 0.029*\"van\" + 0.025*\"von\" + 0.023*\"dutch\" + 0.022*\"der\" + 0.018*\"berlin\" + 0.012*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", + "2019-01-16 04:20:26,807 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.025*\"russia\" + 0.023*\"soviet\" + 0.022*\"polish\" + 0.021*\"jewish\" + 0.018*\"israel\" + 0.017*\"born\" + 0.016*\"republ\" + 0.016*\"poland\" + 0.014*\"ukrainian\"\n", + "2019-01-16 04:20:26,808 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.039*\"new\" + 0.026*\"york\" + 0.026*\"american\" + 0.024*\"unit\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"counti\" + 0.012*\"texa\"\n", + "2019-01-16 04:20:26,815 : INFO : topic diff=0.014852, rho=0.067574\n", + "2019-01-16 04:20:31,792 : INFO : -11.694 per-word bound, 3312.4 perplexity estimate based on a held-out corpus of 2000 documents with 559309 words\n", + "2019-01-16 04:20:31,793 : INFO : PROGRESS: pass 0, at document #440000/4922894\n", + "2019-01-16 04:20:33,949 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:34,511 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.012*\"damag\" + 0.012*\"kill\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"polic\" + 0.008*\"attack\" + 0.008*\"report\" + 0.007*\"crew\" + 0.006*\"sea\"\n", + "2019-01-16 04:20:34,512 : INFO : topic #34 (0.020): 0.082*\"canada\" + 0.071*\"canadian\" + 0.048*\"island\" + 0.027*\"toronto\" + 0.026*\"ontario\" + 0.019*\"montreal\" + 0.019*\"quebec\" + 0.019*\"british\" + 0.017*\"korea\" + 0.014*\"list\"\n", + "2019-01-16 04:20:34,515 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"god\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"differ\" + 0.005*\"tradit\" + 0.005*\"centuri\"\n", + "2019-01-16 04:20:34,517 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.041*\"germani\" + 0.029*\"van\" + 0.025*\"von\" + 0.023*\"dutch\" + 0.022*\"der\" + 0.018*\"berlin\" + 0.012*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", + "2019-01-16 04:20:34,518 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.013*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.008*\"yard\"\n", + "2019-01-16 04:20:34,524 : INFO : topic diff=0.012874, rho=0.067420\n", + "2019-01-16 04:20:34,978 : INFO : PROGRESS: pass 0, at document #442000/4922894\n", + "2019-01-16 04:20:37,168 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:37,723 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"lap\"\n", + "2019-01-16 04:20:37,725 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.013*\"function\" + 0.010*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"model\"\n", + "2019-01-16 04:20:37,727 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.013*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.008*\"basebal\"\n", + "2019-01-16 04:20:37,728 : INFO : topic #40 (0.020): 0.033*\"bar\" + 0.029*\"africa\" + 0.026*\"african\" + 0.022*\"text\" + 0.021*\"south\" + 0.020*\"till\" + 0.016*\"color\" + 0.011*\"cape\" + 0.011*\"coloni\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:20:37,730 : INFO : topic #30 (0.020): 0.049*\"french\" + 0.043*\"franc\" + 0.026*\"saint\" + 0.026*\"pari\" + 0.026*\"italian\" + 0.018*\"jean\" + 0.018*\"itali\" + 0.015*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:20:37,737 : INFO : topic diff=0.014602, rho=0.067267\n", + "2019-01-16 04:20:38,175 : INFO : PROGRESS: pass 0, at document #444000/4922894\n", + "2019-01-16 04:20:40,352 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:40,909 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.022*\"aircraft\" + 0.016*\"unit\" + 0.015*\"forc\" + 0.013*\"navi\" + 0.013*\"flight\" + 0.012*\"squadron\" + 0.012*\"servic\"\n", + "2019-01-16 04:20:40,911 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.010*\"regiment\" + 0.009*\"soldier\"\n", + "2019-01-16 04:20:40,912 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.007*\"earth\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"materi\" + 0.006*\"us\" + 0.005*\"space\" + 0.005*\"time\"\n", + "2019-01-16 04:20:40,914 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.031*\"unit\" + 0.022*\"cricket\" + 0.022*\"town\" + 0.022*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.011*\"wale\" + 0.011*\"counti\"\n", + "2019-01-16 04:20:40,915 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"fight\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"champion\" + 0.012*\"elimin\" + 0.011*\"world\"\n", + "2019-01-16 04:20:40,921 : INFO : topic diff=0.014710, rho=0.067116\n", + "2019-01-16 04:20:41,390 : INFO : PROGRESS: pass 0, at document #446000/4922894\n", + "2019-01-16 04:20:43,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:44,090 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.020*\"work\" + 0.017*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.011*\"writer\" + 0.011*\"stori\"\n", + "2019-01-16 04:20:44,092 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.017*\"centuri\" + 0.011*\"empir\" + 0.010*\"emperor\" + 0.010*\"greek\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.008*\"templ\" + 0.008*\"ancient\" + 0.007*\"princ\"\n", + "2019-01-16 04:20:44,094 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.030*\"unit\" + 0.022*\"cricket\" + 0.022*\"town\" + 0.022*\"citi\" + 0.016*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.011*\"wale\" + 0.011*\"counti\"\n", + "2019-01-16 04:20:44,096 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.010*\"jpg\" + 0.010*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", + "2019-01-16 04:20:44,097 : INFO : topic #22 (0.020): 0.051*\"counti\" + 0.048*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.026*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.022*\"household\" + 0.020*\"municip\"\n", + "2019-01-16 04:20:44,103 : INFO : topic diff=0.014699, rho=0.066965\n", + "2019-01-16 04:20:44,552 : INFO : PROGRESS: pass 0, at document #448000/4922894\n", + "2019-01-16 04:20:46,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:20:47,312 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.025*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.015*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", + "2019-01-16 04:20:47,313 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.021*\"station\" + 0.017*\"road\" + 0.017*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"area\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:20:47,315 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.020*\"state\" + 0.019*\"act\" + 0.012*\"offic\" + 0.011*\"case\" + 0.008*\"legal\" + 0.008*\"public\" + 0.008*\"right\" + 0.008*\"polic\"\n", + "2019-01-16 04:20:47,317 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"author\" + 0.011*\"writer\" + 0.011*\"stori\"\n", + "2019-01-16 04:20:47,318 : INFO : topic #48 (0.020): 0.080*\"septemb\" + 0.077*\"octob\" + 0.076*\"march\" + 0.075*\"august\" + 0.070*\"novemb\" + 0.070*\"april\" + 0.069*\"juli\" + 0.068*\"januari\" + 0.064*\"decemb\" + 0.063*\"june\"\n", + "2019-01-16 04:20:47,325 : INFO : topic diff=0.014336, rho=0.066815\n", + "2019-01-16 04:20:47,756 : INFO : PROGRESS: pass 0, at document #450000/4922894\n", + "2019-01-16 04:20:49,896 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:50,451 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.029*\"soviet\" + 0.025*\"russia\" + 0.022*\"polish\" + 0.021*\"jewish\" + 0.018*\"israel\" + 0.016*\"born\" + 0.016*\"moscow\" + 0.016*\"republ\" + 0.015*\"poland\"\n", + "2019-01-16 04:20:50,452 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.012*\"damag\" + 0.011*\"kill\" + 0.010*\"gun\" + 0.010*\"boat\" + 0.008*\"report\" + 0.008*\"polic\" + 0.008*\"attack\" + 0.008*\"crew\" + 0.007*\"sea\"\n", + "2019-01-16 04:20:50,454 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.030*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.019*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.010*\"regiment\" + 0.009*\"soldier\"\n", + "2019-01-16 04:20:50,455 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.043*\"parti\" + 0.026*\"member\" + 0.025*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.015*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 04:20:50,457 : INFO : topic #8 (0.020): 0.042*\"india\" + 0.032*\"indian\" + 0.028*\"district\" + 0.017*\"provinc\" + 0.016*\"villag\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.014*\"http\" + 0.012*\"tamil\" + 0.010*\"sri\"\n", + "2019-01-16 04:20:50,463 : INFO : topic diff=0.012810, rho=0.066667\n", + "2019-01-16 04:20:50,901 : INFO : PROGRESS: pass 0, at document #452000/4922894\n", + "2019-01-16 04:20:53,036 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:53,592 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.020*\"station\" + 0.018*\"road\" + 0.017*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"area\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:20:53,593 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.024*\"design\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.018*\"exhibit\" + 0.016*\"collect\" + 0.014*\"galleri\" + 0.010*\"photograph\"\n", + "2019-01-16 04:20:53,595 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.013*\"function\" + 0.010*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"point\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"order\"\n", + "2019-01-16 04:20:53,596 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.017*\"centuri\" + 0.011*\"emperor\" + 0.010*\"empir\" + 0.010*\"greek\" + 0.009*\"roman\" + 0.008*\"templ\" + 0.008*\"kingdom\" + 0.008*\"ancient\" + 0.008*\"princ\"\n", + "2019-01-16 04:20:53,598 : INFO : topic #0 (0.020): 0.041*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"regiment\" + 0.010*\"divis\" + 0.009*\"soldier\"\n", + "2019-01-16 04:20:53,604 : INFO : topic diff=0.014788, rho=0.066519\n", + "2019-01-16 04:20:54,052 : INFO : PROGRESS: pass 0, at document #454000/4922894\n", + "2019-01-16 04:20:56,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:56,762 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.014*\"kill\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.008*\"report\" + 0.008*\"attack\" + 0.008*\"polic\" + 0.007*\"crew\" + 0.007*\"sea\"\n", + "2019-01-16 04:20:56,764 : INFO : topic #4 (0.020): 0.120*\"school\" + 0.055*\"univers\" + 0.043*\"colleg\" + 0.036*\"student\" + 0.029*\"educ\" + 0.027*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.008*\"teacher\"\n", + "2019-01-16 04:20:56,765 : INFO : topic #22 (0.020): 0.051*\"counti\" + 0.049*\"popul\" + 0.035*\"town\" + 0.030*\"citi\" + 0.029*\"ag\" + 0.025*\"villag\" + 0.023*\"censu\" + 0.023*\"famili\" + 0.021*\"household\" + 0.021*\"area\"\n", + "2019-01-16 04:20:56,767 : INFO : topic #40 (0.020): 0.033*\"bar\" + 0.028*\"africa\" + 0.026*\"african\" + 0.022*\"text\" + 0.022*\"south\" + 0.020*\"till\" + 0.015*\"color\" + 0.011*\"coloni\" + 0.010*\"agricultur\" + 0.010*\"cape\"\n", + "2019-01-16 04:20:56,770 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 04:20:56,776 : INFO : topic diff=0.011904, rho=0.066372\n", + "2019-01-16 04:20:57,224 : INFO : PROGRESS: pass 0, at document #456000/4922894\n", + "2019-01-16 04:20:59,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:20:59,934 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.046*\"new\" + 0.045*\"australian\" + 0.036*\"china\" + 0.033*\"chines\" + 0.031*\"zealand\" + 0.024*\"south\" + 0.020*\"hong\" + 0.020*\"kong\" + 0.019*\"sydnei\"\n", + "2019-01-16 04:20:59,935 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"born\" + 0.006*\"jone\"\n", + "2019-01-16 04:20:59,937 : INFO : topic #23 (0.020): 0.023*\"medic\" + 0.021*\"hospit\" + 0.017*\"health\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.011*\"medicin\" + 0.010*\"caus\" + 0.009*\"cancer\" + 0.009*\"treatment\" + 0.009*\"studi\"\n", + "2019-01-16 04:20:59,938 : INFO : topic #4 (0.020): 0.120*\"school\" + 0.054*\"univers\" + 0.042*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.008*\"teacher\"\n", + "2019-01-16 04:20:59,941 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"santa\" + 0.010*\"josé\"\n", + "2019-01-16 04:20:59,948 : INFO : topic diff=0.013713, rho=0.066227\n", + "2019-01-16 04:21:00,356 : INFO : PROGRESS: pass 0, at document #458000/4922894\n", + "2019-01-16 04:21:02,511 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:03,066 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.030*\"england\" + 0.024*\"town\" + 0.021*\"citi\" + 0.020*\"cricket\" + 0.014*\"scottish\" + 0.014*\"scotland\" + 0.014*\"manchest\" + 0.011*\"counti\" + 0.010*\"wale\"\n", + "2019-01-16 04:21:03,068 : INFO : topic #46 (0.020): 0.153*\"class\" + 0.061*\"align\" + 0.060*\"wikit\" + 0.054*\"center\" + 0.052*\"style\" + 0.049*\"left\" + 0.038*\"right\" + 0.033*\"philippin\" + 0.030*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:21:03,069 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.043*\"parti\" + 0.026*\"member\" + 0.024*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.015*\"council\" + 0.015*\"minist\" + 0.013*\"polit\" + 0.013*\"repres\"\n", + "2019-01-16 04:21:03,071 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:21:03,073 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.008*\"oil\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 04:21:03,081 : INFO : topic diff=0.015694, rho=0.066082\n", + "2019-01-16 04:21:08,054 : INFO : -11.485 per-word bound, 2866.0 perplexity estimate based on a held-out corpus of 2000 documents with 545854 words\n", + "2019-01-16 04:21:08,055 : INFO : PROGRESS: pass 0, at document #460000/4922894\n", + "2019-01-16 04:21:10,203 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:10,758 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:21:10,760 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"regiment\" + 0.010*\"order\"\n", + "2019-01-16 04:21:10,762 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.027*\"award\" + 0.022*\"episod\" + 0.020*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.013*\"actor\" + 0.013*\"role\" + 0.012*\"televis\" + 0.012*\"produc\"\n", + "2019-01-16 04:21:10,764 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.014*\"plai\" + 0.014*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:21:10,766 : INFO : topic #4 (0.020): 0.119*\"school\" + 0.052*\"univers\" + 0.039*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.010*\"district\" + 0.009*\"grade\"\n", + "2019-01-16 04:21:10,771 : INFO : topic diff=0.013566, rho=0.065938\n", + "2019-01-16 04:21:11,209 : INFO : PROGRESS: pass 0, at document #462000/4922894\n", + "2019-01-16 04:21:13,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:13,889 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.045*\"new\" + 0.045*\"australian\" + 0.039*\"china\" + 0.035*\"chines\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.020*\"sydnei\" + 0.020*\"hong\" + 0.019*\"kong\"\n", + "2019-01-16 04:21:13,891 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.011*\"locat\" + 0.011*\"street\" + 0.010*\"histor\" + 0.010*\"site\" + 0.010*\"jpg\" + 0.009*\"centuri\" + 0.009*\"church\"\n", + "2019-01-16 04:21:13,893 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.011*\"model\" + 0.010*\"power\" + 0.008*\"produc\" + 0.008*\"oil\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"design\"\n", + "2019-01-16 04:21:13,894 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.010*\"version\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"data\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.007*\"player\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 04:21:13,896 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.011*\"bishop\"\n", + "2019-01-16 04:21:13,902 : INFO : topic diff=0.014490, rho=0.065795\n", + "2019-01-16 04:21:14,319 : INFO : PROGRESS: pass 0, at document #464000/4922894\n", + "2019-01-16 04:21:16,455 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:17,012 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.011*\"power\" + 0.010*\"model\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"oil\" + 0.008*\"vehicl\" + 0.007*\"design\"\n", + "2019-01-16 04:21:17,014 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"love\" + 0.004*\"end\"\n", + "2019-01-16 04:21:17,015 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.012*\"kill\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.009*\"boat\" + 0.008*\"report\" + 0.008*\"crew\" + 0.007*\"attack\" + 0.007*\"sea\" + 0.006*\"polic\"\n", + "2019-01-16 04:21:17,017 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.025*\"prime\" + 0.021*\"lee\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"minist\" + 0.014*\"vietnam\" + 0.012*\"thai\" + 0.011*\"chi\" + 0.011*\"bulgarian\"\n", + "2019-01-16 04:21:17,019 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.006*\"earth\" + 0.006*\"solar\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"space\"\n", + "2019-01-16 04:21:17,026 : INFO : topic diff=0.013093, rho=0.065653\n", + "2019-01-16 04:21:17,455 : INFO : PROGRESS: pass 0, at document #466000/4922894\n", + "2019-01-16 04:21:19,605 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:20,160 : INFO : topic #34 (0.020): 0.080*\"canada\" + 0.066*\"canadian\" + 0.055*\"island\" + 0.028*\"toronto\" + 0.024*\"ontario\" + 0.021*\"ye\" + 0.019*\"quebec\" + 0.018*\"montreal\" + 0.017*\"british\" + 0.014*\"korea\"\n", + "2019-01-16 04:21:20,162 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.023*\"court\" + 0.020*\"state\" + 0.019*\"act\" + 0.011*\"offic\" + 0.011*\"case\" + 0.008*\"public\" + 0.008*\"legal\" + 0.008*\"right\" + 0.008*\"feder\"\n", + "2019-01-16 04:21:20,163 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.044*\"parti\" + 0.026*\"member\" + 0.023*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.015*\"minist\" + 0.015*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 04:21:20,165 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.011*\"daughter\" + 0.011*\"death\"\n", + "2019-01-16 04:21:20,166 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.039*\"new\" + 0.026*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"counti\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:21:20,172 : INFO : topic diff=0.013281, rho=0.065512\n", + "2019-01-16 04:21:20,634 : INFO : PROGRESS: pass 0, at document #468000/4922894\n", + "2019-01-16 04:21:22,791 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:23,347 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.017*\"centuri\" + 0.010*\"emperor\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\" + 0.007*\"princ\"\n", + "2019-01-16 04:21:23,348 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"black\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:21:23,350 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"group\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 04:21:23,354 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.014*\"develop\" + 0.013*\"compani\" + 0.012*\"servic\" + 0.012*\"work\" + 0.011*\"univers\" + 0.011*\"intern\" + 0.011*\"institut\" + 0.011*\"manag\" + 0.009*\"nation\"\n", + "2019-01-16 04:21:23,356 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.045*\"australian\" + 0.044*\"new\" + 0.039*\"chines\" + 0.038*\"china\" + 0.031*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.019*\"hong\" + 0.019*\"kong\"\n", + "2019-01-16 04:21:23,362 : INFO : topic diff=0.014362, rho=0.065372\n", + "2019-01-16 04:21:23,805 : INFO : PROGRESS: pass 0, at document #470000/4922894\n", + "2019-01-16 04:21:25,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:26,490 : INFO : topic #7 (0.020): 0.016*\"number\" + 0.013*\"function\" + 0.009*\"set\" + 0.009*\"point\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.006*\"order\"\n", + "2019-01-16 04:21:26,491 : INFO : topic #23 (0.020): 0.023*\"medic\" + 0.022*\"hospit\" + 0.019*\"health\" + 0.013*\"diseas\" + 0.011*\"medicin\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"treatment\" + 0.009*\"drug\" + 0.009*\"care\"\n", + "2019-01-16 04:21:26,493 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.022*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:21:26,495 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.007*\"earth\" + 0.006*\"light\" + 0.006*\"solar\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:21:26,497 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"love\" + 0.004*\"end\"\n", + "2019-01-16 04:21:26,504 : INFO : topic diff=0.014847, rho=0.065233\n", + "2019-01-16 04:21:26,917 : INFO : PROGRESS: pass 0, at document #472000/4922894\n", + "2019-01-16 04:21:29,033 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:29,589 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"track\" + 0.014*\"chart\" + 0.010*\"vocal\"\n", + "2019-01-16 04:21:29,590 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.015*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.011*\"network\" + 0.010*\"compani\" + 0.009*\"host\"\n", + "2019-01-16 04:21:29,592 : INFO : topic #34 (0.020): 0.079*\"canada\" + 0.064*\"canadian\" + 0.055*\"island\" + 0.028*\"toronto\" + 0.023*\"ontario\" + 0.018*\"quebec\" + 0.017*\"ye\" + 0.017*\"montreal\" + 0.017*\"british\" + 0.013*\"korea\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:21:29,594 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.027*\"russia\" + 0.026*\"soviet\" + 0.020*\"jewish\" + 0.019*\"born\" + 0.019*\"israel\" + 0.019*\"polish\" + 0.016*\"moscow\" + 0.015*\"republ\" + 0.014*\"poland\"\n", + "2019-01-16 04:21:29,595 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.021*\"station\" + 0.019*\"line\" + 0.017*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.013*\"area\" + 0.013*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:21:29,601 : INFO : topic diff=0.013200, rho=0.065094\n", + "2019-01-16 04:21:30,026 : INFO : PROGRESS: pass 0, at document #474000/4922894\n", + "2019-01-16 04:21:32,191 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:32,747 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.017*\"centuri\" + 0.010*\"roman\" + 0.010*\"empir\" + 0.010*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\" + 0.007*\"princ\"\n", + "2019-01-16 04:21:32,748 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"water\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"solar\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:21:32,750 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"public\" + 0.009*\"program\"\n", + "2019-01-16 04:21:32,752 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.026*\"oper\" + 0.023*\"airport\" + 0.022*\"aircraft\" + 0.016*\"unit\" + 0.015*\"forc\" + 0.014*\"navi\" + 0.014*\"squadron\" + 0.013*\"flight\" + 0.012*\"servic\"\n", + "2019-01-16 04:21:32,754 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.023*\"court\" + 0.020*\"state\" + 0.019*\"act\" + 0.011*\"offic\" + 0.010*\"case\" + 0.008*\"public\" + 0.008*\"feder\" + 0.008*\"legal\" + 0.008*\"right\"\n", + "2019-01-16 04:21:32,760 : INFO : topic diff=0.013241, rho=0.064957\n", + "2019-01-16 04:21:33,195 : INFO : PROGRESS: pass 0, at document #476000/4922894\n", + "2019-01-16 04:21:35,344 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:35,901 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"god\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"differ\" + 0.005*\"tradit\"\n", + "2019-01-16 04:21:35,903 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"track\" + 0.014*\"chart\" + 0.010*\"vocal\"\n", + "2019-01-16 04:21:35,904 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.029*\"olymp\" + 0.028*\"world\" + 0.025*\"championship\" + 0.022*\"men\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.021*\"event\" + 0.018*\"gold\" + 0.017*\"athlet\"\n", + "2019-01-16 04:21:35,907 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"born\" + 0.006*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:21:35,908 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.021*\"station\" + 0.018*\"line\" + 0.017*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:21:35,915 : INFO : topic diff=0.013826, rho=0.064820\n", + "2019-01-16 04:21:36,306 : INFO : PROGRESS: pass 0, at document #478000/4922894\n", + "2019-01-16 04:21:38,431 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:38,987 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.033*\"indian\" + 0.030*\"district\" + 0.015*\"provinc\" + 0.015*\"http\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.014*\"villag\" + 0.012*\"www\" + 0.011*\"rural\"\n", + "2019-01-16 04:21:38,988 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.030*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.020*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.009*\"order\"\n", + "2019-01-16 04:21:38,990 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.018*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"lap\"\n", + "2019-01-16 04:21:38,991 : INFO : topic #19 (0.020): 0.019*\"new\" + 0.018*\"radio\" + 0.016*\"station\" + 0.014*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"dai\" + 0.010*\"compani\" + 0.010*\"network\"\n", + "2019-01-16 04:21:38,993 : INFO : topic #35 (0.020): 0.027*\"singapor\" + 0.026*\"prime\" + 0.021*\"lee\" + 0.019*\"indonesia\" + 0.019*\"thailand\" + 0.015*\"minist\" + 0.013*\"vietnam\" + 0.012*\"thai\" + 0.011*\"chi\" + 0.011*\"bulgarian\"\n", + "2019-01-16 04:21:38,999 : INFO : topic diff=0.011960, rho=0.064685\n", + "2019-01-16 04:21:44,109 : INFO : -11.722 per-word bound, 3379.3 perplexity estimate based on a held-out corpus of 2000 documents with 580728 words\n", + "2019-01-16 04:21:44,109 : INFO : PROGRESS: pass 0, at document #480000/4922894\n", + "2019-01-16 04:21:46,370 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:46,929 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\" + 0.010*\"lap\"\n", + "2019-01-16 04:21:46,931 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.023*\"presid\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.015*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", + "2019-01-16 04:21:46,933 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"water\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.005*\"high\" + 0.005*\"solar\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 04:21:46,935 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"london\" + 0.021*\"british\" + 0.014*\"sir\" + 0.013*\"georg\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 04:21:46,937 : INFO : topic #7 (0.020): 0.016*\"number\" + 0.012*\"function\" + 0.009*\"point\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"group\"\n", + "2019-01-16 04:21:46,943 : INFO : topic diff=0.012355, rho=0.064550\n", + "2019-01-16 04:21:47,382 : INFO : PROGRESS: pass 0, at document #482000/4922894\n", + "2019-01-16 04:21:49,589 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:50,145 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"london\" + 0.020*\"british\" + 0.014*\"sir\" + 0.013*\"georg\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:21:50,147 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.028*\"world\" + 0.028*\"olymp\" + 0.025*\"championship\" + 0.023*\"japan\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 04:21:50,149 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.031*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"author\" + 0.011*\"writer\" + 0.011*\"novel\"\n", + "2019-01-16 04:21:50,150 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.014*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"basebal\"\n", + "2019-01-16 04:21:50,152 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.021*\"command\" + 0.020*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.009*\"order\"\n", + "2019-01-16 04:21:50,157 : INFO : topic diff=0.013753, rho=0.064416\n", + "2019-01-16 04:21:50,560 : INFO : PROGRESS: pass 0, at document #484000/4922894\n", + "2019-01-16 04:21:52,714 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:53,270 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.011*\"locat\" + 0.010*\"histor\" + 0.010*\"jpg\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", + "2019-01-16 04:21:53,273 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.006*\"temperatur\" + 0.005*\"high\" + 0.005*\"solar\" + 0.005*\"heat\"\n", + "2019-01-16 04:21:53,275 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.031*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:21:53,277 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.039*\"franc\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.022*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:21:53,279 : INFO : topic #49 (0.020): 0.071*\"north\" + 0.068*\"south\" + 0.067*\"west\" + 0.066*\"east\" + 0.066*\"region\" + 0.039*\"district\" + 0.029*\"central\" + 0.026*\"villag\" + 0.023*\"northern\" + 0.021*\"administr\"\n", + "2019-01-16 04:21:53,285 : INFO : topic diff=0.012470, rho=0.064282\n", + "2019-01-16 04:21:53,756 : INFO : PROGRESS: pass 0, at document #486000/4922894\n", + "2019-01-16 04:21:55,906 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:56,462 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.027*\"soviet\" + 0.026*\"russia\" + 0.020*\"born\" + 0.020*\"jewish\" + 0.018*\"moscow\" + 0.017*\"polish\" + 0.017*\"israel\" + 0.014*\"republ\" + 0.013*\"european\"\n", + "2019-01-16 04:21:56,464 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.023*\"prime\" + 0.021*\"lee\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.015*\"vietnam\" + 0.014*\"minist\" + 0.012*\"thai\" + 0.012*\"bulgarian\" + 0.011*\"kai\"\n", + "2019-01-16 04:21:56,466 : INFO : topic #49 (0.020): 0.070*\"north\" + 0.067*\"region\" + 0.067*\"west\" + 0.067*\"south\" + 0.066*\"east\" + 0.039*\"district\" + 0.029*\"central\" + 0.026*\"villag\" + 0.023*\"northern\" + 0.021*\"administr\"\n", + "2019-01-16 04:21:56,467 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"oil\" + 0.008*\"vehicl\" + 0.008*\"type\"\n", + "2019-01-16 04:21:56,468 : INFO : topic #30 (0.020): 0.047*\"french\" + 0.037*\"franc\" + 0.024*\"pari\" + 0.023*\"italian\" + 0.022*\"saint\" + 0.017*\"jean\" + 0.017*\"itali\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:21:56,475 : INFO : topic diff=0.015579, rho=0.064150\n", + "2019-01-16 04:21:56,918 : INFO : PROGRESS: pass 0, at document #488000/4922894\n", + "2019-01-16 04:21:59,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:21:59,569 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.020*\"hospit\" + 0.019*\"health\" + 0.014*\"diseas\" + 0.011*\"caus\" + 0.010*\"patient\" + 0.010*\"medicin\" + 0.010*\"drug\" + 0.009*\"treatment\" + 0.009*\"children\"\n", + "2019-01-16 04:21:59,571 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.039*\"new\" + 0.026*\"american\" + 0.026*\"york\" + 0.023*\"unit\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"counti\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:21:59,572 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.021*\"command\" + 0.019*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.009*\"order\"\n", + "2019-01-16 04:21:59,574 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.011*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"born\" + 0.006*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:21:59,576 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.011*\"damag\" + 0.011*\"kill\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.008*\"crew\" + 0.008*\"attack\" + 0.007*\"report\" + 0.007*\"sea\" + 0.007*\"sail\"\n", + "2019-01-16 04:21:59,582 : INFO : topic diff=0.013835, rho=0.064018\n", + "2019-01-16 04:22:00,034 : INFO : PROGRESS: pass 0, at document #490000/4922894\n", + "2019-01-16 04:22:02,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:02,735 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"earth\" + 0.006*\"light\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.005*\"high\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"space\"\n", + "2019-01-16 04:22:02,737 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.046*\"australian\" + 0.044*\"new\" + 0.038*\"chines\" + 0.038*\"china\" + 0.030*\"zealand\" + 0.023*\"south\" + 0.019*\"hong\" + 0.019*\"sydnei\" + 0.019*\"kong\"\n", + "2019-01-16 04:22:02,739 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.029*\"england\" + 0.025*\"town\" + 0.022*\"citi\" + 0.021*\"cricket\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.011*\"counti\" + 0.010*\"english\"\n", + "2019-01-16 04:22:02,740 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\" + 0.007*\"princ\"\n", + "2019-01-16 04:22:02,742 : INFO : topic #25 (0.020): 0.052*\"round\" + 0.039*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.015*\"group\" + 0.015*\"qualifi\" + 0.013*\"doubl\" + 0.013*\"draw\" + 0.012*\"runner\"\n", + "2019-01-16 04:22:02,747 : INFO : topic diff=0.011358, rho=0.063888\n", + "2019-01-16 04:22:03,189 : INFO : PROGRESS: pass 0, at document #492000/4922894\n", + "2019-01-16 04:22:05,430 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:05,989 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.012*\"function\" + 0.009*\"point\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"group\"\n", + "2019-01-16 04:22:05,991 : INFO : topic #25 (0.020): 0.052*\"round\" + 0.039*\"final\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.021*\"open\" + 0.015*\"group\" + 0.014*\"qualifi\" + 0.013*\"draw\" + 0.013*\"doubl\" + 0.012*\"runner\"\n", + "2019-01-16 04:22:05,992 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 04:22:05,994 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"london\" + 0.020*\"british\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"jame\"\n", + "2019-01-16 04:22:05,995 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.034*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.019*\"berlin\" + 0.013*\"carl\" + 0.013*\"netherland\" + 0.012*\"str\"\n", + "2019-01-16 04:22:06,001 : INFO : topic diff=0.012094, rho=0.063758\n", + "2019-01-16 04:22:06,427 : INFO : PROGRESS: pass 0, at document #494000/4922894\n", + "2019-01-16 04:22:08,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:09,083 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.012*\"function\" + 0.009*\"point\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"group\"\n", + "2019-01-16 04:22:09,085 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"time\" + 0.008*\"increas\" + 0.008*\"bank\" + 0.008*\"year\" + 0.008*\"compani\" + 0.007*\"rate\" + 0.007*\"limit\" + 0.006*\"market\" + 0.006*\"cost\"\n", + "2019-01-16 04:22:09,086 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.011*\"cathol\" + 0.011*\"daughter\"\n", + "2019-01-16 04:22:09,088 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.021*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"area\" + 0.013*\"park\" + 0.013*\"rout\" + 0.012*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:22:09,089 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.008*\"princ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:22:09,095 : INFO : topic diff=0.012860, rho=0.063628\n", + "2019-01-16 04:22:09,512 : INFO : PROGRESS: pass 0, at document #496000/4922894\n", + "2019-01-16 04:22:11,561 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:12,119 : INFO : topic #34 (0.020): 0.075*\"canada\" + 0.060*\"canadian\" + 0.058*\"island\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.018*\"montreal\" + 0.018*\"british\" + 0.017*\"quebec\" + 0.014*\"korean\" + 0.014*\"korea\"\n", + "2019-01-16 04:22:12,121 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.039*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"open\" + 0.015*\"group\" + 0.014*\"qualifi\" + 0.013*\"doubl\" + 0.013*\"draw\" + 0.012*\"runner\"\n", + "2019-01-16 04:22:12,123 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"god\" + 0.006*\"us\" + 0.005*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"differ\"\n", + "2019-01-16 04:22:12,124 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"genu\" + 0.011*\"famili\" + 0.010*\"white\" + 0.009*\"plant\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 04:22:12,126 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"compani\" + 0.011*\"work\" + 0.011*\"manag\" + 0.011*\"institut\" + 0.011*\"univers\" + 0.011*\"servic\" + 0.011*\"intern\" + 0.009*\"nation\"\n", + "2019-01-16 04:22:12,131 : INFO : topic diff=0.012617, rho=0.063500\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:22:12,526 : INFO : PROGRESS: pass 0, at document #498000/4922894\n", + "2019-01-16 04:22:14,661 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:15,218 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.011*\"street\" + 0.011*\"locat\" + 0.011*\"histor\" + 0.010*\"jpg\" + 0.010*\"site\" + 0.009*\"church\" + 0.009*\"place\"\n", + "2019-01-16 04:22:15,219 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:22:15,221 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.014*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:22:15,224 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.050*\"univers\" + 0.042*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"public\" + 0.009*\"program\"\n", + "2019-01-16 04:22:15,226 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.019*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"compani\" + 0.009*\"host\"\n", + "2019-01-16 04:22:15,233 : INFO : topic diff=0.012269, rho=0.063372\n", + "2019-01-16 04:22:20,175 : INFO : -11.604 per-word bound, 3112.7 perplexity estimate based on a held-out corpus of 2000 documents with 553770 words\n", + "2019-01-16 04:22:20,176 : INFO : PROGRESS: pass 0, at document #500000/4922894\n", + "2019-01-16 04:22:22,292 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:22,849 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.032*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.012*\"die\" + 0.012*\"carl\" + 0.011*\"netherland\"\n", + "2019-01-16 04:22:22,850 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.012*\"cell\" + 0.009*\"model\" + 0.008*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"design\"\n", + "2019-01-16 04:22:22,852 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 04:22:22,854 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.035*\"indian\" + 0.026*\"district\" + 0.015*\"http\" + 0.015*\"provinc\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"villag\" + 0.013*\"www\" + 0.011*\"khan\"\n", + "2019-01-16 04:22:22,857 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.022*\"british\" + 0.022*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"jame\"\n", + "2019-01-16 04:22:22,864 : INFO : topic diff=0.012362, rho=0.063246\n", + "2019-01-16 04:22:23,290 : INFO : PROGRESS: pass 0, at document #502000/4922894\n", + "2019-01-16 04:22:25,432 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:25,988 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.024*\"footbal\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.016*\"match\"\n", + "2019-01-16 04:22:25,990 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"temperatur\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\"\n", + "2019-01-16 04:22:25,992 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.040*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.015*\"group\" + 0.014*\"qualifi\" + 0.013*\"doubl\" + 0.012*\"draw\" + 0.012*\"runner\"\n", + "2019-01-16 04:22:25,993 : INFO : topic #8 (0.020): 0.044*\"india\" + 0.035*\"indian\" + 0.025*\"district\" + 0.015*\"http\" + 0.015*\"provinc\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"villag\" + 0.013*\"www\" + 0.012*\"khan\"\n", + "2019-01-16 04:22:25,995 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.034*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.012*\"die\" + 0.012*\"netherland\" + 0.011*\"und\"\n", + "2019-01-16 04:22:26,001 : INFO : topic diff=0.011492, rho=0.063119\n", + "2019-01-16 04:22:26,449 : INFO : PROGRESS: pass 0, at document #504000/4922894\n", + "2019-01-16 04:22:28,628 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:29,185 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.021*\"court\" + 0.020*\"state\" + 0.018*\"act\" + 0.011*\"offic\" + 0.010*\"case\" + 0.009*\"right\" + 0.009*\"legal\" + 0.008*\"polic\" + 0.008*\"public\"\n", + "2019-01-16 04:22:29,187 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.024*\"wrestl\" + 0.022*\"match\" + 0.018*\"championship\" + 0.016*\"titl\" + 0.016*\"contest\" + 0.016*\"world\" + 0.015*\"fight\" + 0.014*\"champion\" + 0.013*\"team\"\n", + "2019-01-16 04:22:29,188 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"compani\" + 0.011*\"manag\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"institut\" + 0.011*\"intern\" + 0.011*\"univers\" + 0.010*\"organ\"\n", + "2019-01-16 04:22:29,191 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.046*\"australian\" + 0.043*\"new\" + 0.038*\"china\" + 0.035*\"chines\" + 0.030*\"zealand\" + 0.023*\"south\" + 0.019*\"sydnei\" + 0.018*\"hong\" + 0.018*\"kong\"\n", + "2019-01-16 04:22:29,192 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:22:29,200 : INFO : topic diff=0.011985, rho=0.062994\n", + "2019-01-16 04:22:29,578 : INFO : PROGRESS: pass 0, at document #506000/4922894\n", + "2019-01-16 04:22:31,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:32,275 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.024*\"wrestl\" + 0.022*\"match\" + 0.018*\"championship\" + 0.016*\"titl\" + 0.016*\"contest\" + 0.015*\"world\" + 0.014*\"fight\" + 0.014*\"champion\" + 0.013*\"team\"\n", + "2019-01-16 04:22:32,277 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.016*\"famili\" + 0.012*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"cathol\" + 0.011*\"daughter\"\n", + "2019-01-16 04:22:32,278 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.028*\"award\" + 0.022*\"episod\" + 0.022*\"seri\" + 0.021*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.013*\"actor\" + 0.012*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:22:32,280 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.031*\"work\" + 0.023*\"design\" + 0.022*\"artist\" + 0.021*\"paint\" + 0.018*\"exhibit\" + 0.014*\"collect\" + 0.013*\"galleri\" + 0.009*\"photograph\"\n", + "2019-01-16 04:22:32,281 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"god\" + 0.005*\"cultur\" + 0.005*\"english\" + 0.005*\"tradit\"\n", + "2019-01-16 04:22:32,288 : INFO : topic diff=0.011038, rho=0.062869\n", + "2019-01-16 04:22:32,725 : INFO : PROGRESS: pass 0, at document #508000/4922894\n", + "2019-01-16 04:22:34,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:35,374 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.015*\"spain\" + 0.012*\"brazil\" + 0.011*\"francisco\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.009*\"mexican\"\n", + "2019-01-16 04:22:35,376 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.024*\"footbal\" + 0.023*\"cup\" + 0.017*\"player\" + 0.017*\"goal\" + 0.016*\"match\"\n", + "2019-01-16 04:22:35,378 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"data\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"develop\" + 0.008*\"player\" + 0.007*\"user\" + 0.007*\"card\"\n", + "2019-01-16 04:22:35,380 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.011*\"american\" + 0.009*\"michael\" + 0.008*\"jame\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"born\" + 0.006*\"peter\" + 0.006*\"smith\"\n", + "2019-01-16 04:22:35,381 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"cell\" + 0.009*\"model\" + 0.008*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"design\"\n", + "2019-01-16 04:22:35,387 : INFO : topic diff=0.011459, rho=0.062746\n", + "2019-01-16 04:22:35,786 : INFO : PROGRESS: pass 0, at document #510000/4922894\n", + "2019-01-16 04:22:37,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:22:38,481 : INFO : topic #14 (0.020): 0.013*\"research\" + 0.013*\"develop\" + 0.012*\"compani\" + 0.011*\"manag\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.011*\"intern\" + 0.011*\"institut\" + 0.010*\"organ\"\n", + "2019-01-16 04:22:38,482 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"god\" + 0.005*\"english\" + 0.005*\"cultur\" + 0.005*\"exampl\"\n", + "2019-01-16 04:22:38,484 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.026*\"oper\" + 0.022*\"aircraft\" + 0.019*\"airport\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"flight\" + 0.012*\"base\" + 0.012*\"servic\"\n", + "2019-01-16 04:22:38,485 : INFO : topic #25 (0.020): 0.051*\"round\" + 0.040*\"final\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.019*\"open\" + 0.016*\"group\" + 0.015*\"qualifi\" + 0.012*\"doubl\" + 0.012*\"runner\" + 0.011*\"draw\"\n", + "2019-01-16 04:22:38,488 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"francisco\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.009*\"puerto\"\n", + "2019-01-16 04:22:38,495 : INFO : topic diff=0.012041, rho=0.062622\n", + "2019-01-16 04:22:38,915 : INFO : PROGRESS: pass 0, at document #512000/4922894\n", + "2019-01-16 04:22:41,071 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:41,627 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"francisco\" + 0.011*\"mexican\" + 0.010*\"juan\" + 0.010*\"santa\"\n", + "2019-01-16 04:22:41,629 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.034*\"perform\" + 0.020*\"theatr\" + 0.020*\"compos\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"plai\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:22:41,631 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.012*\"kill\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.007*\"sea\" + 0.007*\"attack\" + 0.007*\"crew\" + 0.007*\"dai\" + 0.007*\"report\"\n", + "2019-01-16 04:22:41,634 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"god\" + 0.005*\"differ\" + 0.005*\"english\" + 0.005*\"cultur\"\n", + "2019-01-16 04:22:41,636 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"american\" + 0.009*\"michael\" + 0.008*\"jame\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"born\" + 0.006*\"peter\" + 0.006*\"smith\"\n", + "2019-01-16 04:22:41,643 : INFO : topic diff=0.013702, rho=0.062500\n", + "2019-01-16 04:22:42,064 : INFO : PROGRESS: pass 0, at document #514000/4922894\n", + "2019-01-16 04:22:44,129 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:44,686 : INFO : topic #40 (0.020): 0.031*\"africa\" + 0.030*\"bar\" + 0.026*\"african\" + 0.021*\"south\" + 0.018*\"text\" + 0.018*\"till\" + 0.016*\"color\" + 0.011*\"agricultur\" + 0.009*\"coloni\" + 0.008*\"black\"\n", + "2019-01-16 04:22:44,687 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.026*\"oper\" + 0.022*\"aircraft\" + 0.020*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"flight\" + 0.012*\"base\" + 0.012*\"servic\"\n", + "2019-01-16 04:22:44,689 : INFO : topic #49 (0.020): 0.074*\"north\" + 0.072*\"west\" + 0.066*\"south\" + 0.065*\"east\" + 0.065*\"region\" + 0.038*\"district\" + 0.029*\"central\" + 0.025*\"villag\" + 0.022*\"northern\" + 0.022*\"administr\"\n", + "2019-01-16 04:22:44,691 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"end\"\n", + "2019-01-16 04:22:44,693 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.027*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"counti\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:22:44,700 : INFO : topic diff=0.012587, rho=0.062378\n", + "2019-01-16 04:22:45,098 : INFO : PROGRESS: pass 0, at document #516000/4922894\n", + "2019-01-16 04:22:47,240 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:47,797 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.028*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.022*\"event\" + 0.019*\"athlet\" + 0.018*\"rank\"\n", + "2019-01-16 04:22:47,799 : INFO : topic #25 (0.020): 0.051*\"round\" + 0.040*\"final\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.019*\"open\" + 0.017*\"group\" + 0.016*\"qualifi\" + 0.012*\"runner\" + 0.012*\"doubl\" + 0.012*\"singl\"\n", + "2019-01-16 04:22:47,800 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"god\" + 0.005*\"differ\" + 0.005*\"cultur\" + 0.005*\"exampl\"\n", + "2019-01-16 04:22:47,802 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.018*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:22:47,803 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"father\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"death\"\n", + "2019-01-16 04:22:47,810 : INFO : topic diff=0.012398, rho=0.062257\n", + "2019-01-16 04:22:48,225 : INFO : PROGRESS: pass 0, at document #518000/4922894\n", + "2019-01-16 04:22:50,377 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:50,933 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.029*\"work\" + 0.025*\"design\" + 0.021*\"artist\" + 0.021*\"paint\" + 0.018*\"exhibit\" + 0.015*\"collect\" + 0.013*\"galleri\" + 0.009*\"new\"\n", + "2019-01-16 04:22:50,935 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.011*\"kill\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.008*\"attack\" + 0.007*\"crew\" + 0.007*\"sea\" + 0.007*\"dai\" + 0.007*\"sail\"\n", + "2019-01-16 04:22:50,937 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:22:50,938 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.019*\"compos\" + 0.015*\"festiv\" + 0.015*\"piano\" + 0.014*\"danc\" + 0.014*\"orchestra\" + 0.013*\"opera\" + 0.013*\"plai\"\n", + "2019-01-16 04:22:50,940 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.028*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.022*\"event\" + 0.020*\"athlet\" + 0.018*\"rank\"\n", + "2019-01-16 04:22:50,946 : INFO : topic diff=0.012593, rho=0.062137\n", + "2019-01-16 04:22:55,704 : INFO : -11.515 per-word bound, 2927.0 perplexity estimate based on a held-out corpus of 2000 documents with 548560 words\n", + "2019-01-16 04:22:55,705 : INFO : PROGRESS: pass 0, at document #520000/4922894\n", + "2019-01-16 04:22:57,766 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:22:58,323 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.040*\"franc\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.019*\"jean\" + 0.016*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:22:58,325 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.028*\"england\" + 0.023*\"town\" + 0.022*\"citi\" + 0.020*\"cricket\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.010*\"wale\" + 0.010*\"west\"\n", + "2019-01-16 04:22:58,326 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.027*\"soviet\" + 0.027*\"polish\" + 0.023*\"russia\" + 0.022*\"jewish\" + 0.020*\"born\" + 0.018*\"poland\" + 0.017*\"jew\" + 0.015*\"moscow\" + 0.014*\"israel\"\n", + "2019-01-16 04:22:58,328 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"writer\"\n", + "2019-01-16 04:22:58,329 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.011*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"tom\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"born\" + 0.006*\"peter\"\n", + "2019-01-16 04:22:58,335 : INFO : topic diff=0.010650, rho=0.062017\n", + "2019-01-16 04:22:58,752 : INFO : PROGRESS: pass 0, at document #522000/4922894\n", + "2019-01-16 04:23:00,853 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:01,414 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"compani\" + 0.011*\"institut\" + 0.011*\"intern\" + 0.011*\"manag\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.010*\"nation\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:23:01,416 : INFO : topic #48 (0.020): 0.082*\"octob\" + 0.080*\"march\" + 0.077*\"septemb\" + 0.073*\"juli\" + 0.072*\"januari\" + 0.071*\"august\" + 0.071*\"novemb\" + 0.070*\"decemb\" + 0.069*\"april\" + 0.068*\"june\"\n", + "2019-01-16 04:23:01,418 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.011*\"locat\" + 0.011*\"histor\" + 0.010*\"jpg\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", + "2019-01-16 04:23:01,419 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.032*\"germani\" + 0.026*\"der\" + 0.025*\"von\" + 0.022*\"van\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.016*\"die\" + 0.014*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:23:01,421 : INFO : topic #35 (0.020): 0.021*\"singapor\" + 0.021*\"lee\" + 0.018*\"prime\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.014*\"vietnam\" + 0.013*\"thai\" + 0.013*\"indonesian\" + 0.012*\"chi\" + 0.011*\"asian\"\n", + "2019-01-16 04:23:01,427 : INFO : topic diff=0.015296, rho=0.061898\n", + "2019-01-16 04:23:01,843 : INFO : PROGRESS: pass 0, at document #524000/4922894\n", + "2019-01-16 04:23:03,990 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:04,551 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.041*\"colleg\" + 0.035*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:23:04,553 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.028*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"counti\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:23:04,555 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.005*\"return\" + 0.004*\"stori\" + 0.004*\"end\"\n", + "2019-01-16 04:23:04,556 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.040*\"final\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.020*\"open\" + 0.016*\"group\" + 0.016*\"qualifi\" + 0.012*\"runner\" + 0.012*\"doubl\" + 0.011*\"singl\"\n", + "2019-01-16 04:23:04,558 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.019*\"airport\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.013*\"flight\" + 0.012*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:23:04,564 : INFO : topic diff=0.010272, rho=0.061780\n", + "2019-01-16 04:23:05,014 : INFO : PROGRESS: pass 0, at document #526000/4922894\n", + "2019-01-16 04:23:07,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:07,741 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"return\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\"\n", + "2019-01-16 04:23:07,742 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.015*\"broadcast\" + 0.013*\"channel\" + 0.011*\"televis\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"network\"\n", + "2019-01-16 04:23:07,744 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.013*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.009*\"theori\" + 0.008*\"gener\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"point\" + 0.006*\"defin\"\n", + "2019-01-16 04:23:07,745 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.008*\"templ\" + 0.008*\"kingdom\" + 0.007*\"ancient\"\n", + "2019-01-16 04:23:07,747 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.029*\"perform\" + 0.028*\"piano\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.014*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"danc\" + 0.013*\"opera\" + 0.013*\"song\"\n", + "2019-01-16 04:23:07,753 : INFO : topic diff=0.011864, rho=0.061663\n", + "2019-01-16 04:23:08,161 : INFO : PROGRESS: pass 0, at document #528000/4922894\n", + "2019-01-16 04:23:10,301 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:10,858 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.027*\"soviet\" + 0.025*\"polish\" + 0.023*\"russia\" + 0.022*\"jewish\" + 0.021*\"born\" + 0.017*\"poland\" + 0.017*\"jew\" + 0.015*\"moscow\" + 0.015*\"israel\"\n", + "2019-01-16 04:23:10,860 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"yard\"\n", + "2019-01-16 04:23:10,862 : INFO : topic #34 (0.020): 0.073*\"canada\" + 0.070*\"island\" + 0.061*\"canadian\" + 0.027*\"toronto\" + 0.023*\"ontario\" + 0.017*\"montreal\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.012*\"vancouv\" + 0.012*\"ottawa\"\n", + "2019-01-16 04:23:10,864 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"time\" + 0.008*\"bank\" + 0.008*\"increas\" + 0.008*\"year\" + 0.008*\"compani\" + 0.007*\"rate\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"number\"\n", + "2019-01-16 04:23:10,865 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"templ\" + 0.009*\"princ\" + 0.008*\"kingdom\" + 0.007*\"ancient\"\n", + "2019-01-16 04:23:10,872 : INFO : topic diff=0.010577, rho=0.061546\n", + "2019-01-16 04:23:11,293 : INFO : PROGRESS: pass 0, at document #530000/4922894\n", + "2019-01-16 04:23:13,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:13,995 : INFO : topic #5 (0.020): 0.025*\"game\" + 0.009*\"us\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"window\" + 0.007*\"player\" + 0.007*\"releas\"\n", + "2019-01-16 04:23:13,996 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.021*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:23:13,997 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:23:13,999 : INFO : topic #40 (0.020): 0.030*\"africa\" + 0.029*\"bar\" + 0.026*\"african\" + 0.022*\"south\" + 0.019*\"text\" + 0.017*\"till\" + 0.014*\"color\" + 0.011*\"agricultur\" + 0.009*\"peopl\" + 0.009*\"tropic\"\n", + "2019-01-16 04:23:14,001 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"cell\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"acid\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"protein\"\n", + "2019-01-16 04:23:14,008 : INFO : topic diff=0.013878, rho=0.061430\n", + "2019-01-16 04:23:14,423 : INFO : PROGRESS: pass 0, at document #532000/4922894\n", + "2019-01-16 04:23:16,507 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:17,067 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"cell\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.008*\"acid\" + 0.007*\"vehicl\"\n", + "2019-01-16 04:23:17,069 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.028*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.025*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"rank\"\n", + "2019-01-16 04:23:17,071 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.034*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.025*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:23:17,072 : INFO : topic #49 (0.020): 0.075*\"north\" + 0.071*\"west\" + 0.067*\"east\" + 0.066*\"south\" + 0.066*\"region\" + 0.038*\"district\" + 0.030*\"central\" + 0.025*\"villag\" + 0.023*\"swedish\" + 0.022*\"administr\"\n", + "2019-01-16 04:23:17,074 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.032*\"germani\" + 0.026*\"der\" + 0.025*\"von\" + 0.023*\"van\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.015*\"die\" + 0.014*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:23:17,080 : INFO : topic diff=0.012941, rho=0.061314\n", + "2019-01-16 04:23:17,491 : INFO : PROGRESS: pass 0, at document #534000/4922894\n", + "2019-01-16 04:23:19,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:20,171 : INFO : topic #46 (0.020): 0.125*\"class\" + 0.077*\"align\" + 0.069*\"left\" + 0.055*\"wikit\" + 0.049*\"style\" + 0.046*\"center\" + 0.043*\"right\" + 0.035*\"philippin\" + 0.034*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:23:20,173 : INFO : topic #15 (0.020): 0.033*\"unit\" + 0.028*\"england\" + 0.024*\"citi\" + 0.022*\"town\" + 0.020*\"cricket\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.011*\"wale\" + 0.010*\"counti\"\n", + "2019-01-16 04:23:20,175 : INFO : topic #0 (0.020): 0.041*\"war\" + 0.028*\"armi\" + 0.022*\"command\" + 0.021*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.010*\"offic\" + 0.010*\"regiment\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:23:20,176 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.009*\"theori\" + 0.009*\"exampl\" + 0.008*\"point\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"defin\"\n", + "2019-01-16 04:23:20,178 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"window\"\n", + "2019-01-16 04:23:20,184 : INFO : topic diff=0.011180, rho=0.061199\n", + "2019-01-16 04:23:20,595 : INFO : PROGRESS: pass 0, at document #536000/4922894\n", + "2019-01-16 04:23:22,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:23,264 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.014*\"tour\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 04:23:23,266 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.030*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:23:23,268 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 04:23:23,270 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:23:23,272 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.032*\"germani\" + 0.025*\"von\" + 0.025*\"der\" + 0.023*\"berlin\" + 0.023*\"van\" + 0.019*\"dutch\" + 0.015*\"die\" + 0.013*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:23:23,279 : INFO : topic diff=0.011983, rho=0.061085\n", + "2019-01-16 04:23:23,696 : INFO : PROGRESS: pass 0, at document #538000/4922894\n", + "2019-01-16 04:23:25,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:26,345 : INFO : topic #18 (0.020): 0.008*\"light\" + 0.007*\"water\" + 0.007*\"earth\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"materi\" + 0.006*\"us\" + 0.005*\"time\" + 0.005*\"space\"\n", + "2019-01-16 04:23:26,347 : INFO : topic #21 (0.020): 0.013*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.005*\"god\" + 0.005*\"us\" + 0.005*\"differ\" + 0.005*\"tradit\" + 0.005*\"english\"\n", + "2019-01-16 04:23:26,348 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"area\" + 0.014*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:23:26,350 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.019*\"hospit\" + 0.017*\"health\" + 0.012*\"diseas\" + 0.011*\"caus\" + 0.010*\"ret\" + 0.010*\"drug\" + 0.010*\"patient\" + 0.010*\"medicin\" + 0.009*\"treatment\"\n", + "2019-01-16 04:23:26,351 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"tom\" + 0.006*\"smith\" + 0.006*\"peter\"\n", + "2019-01-16 04:23:26,358 : INFO : topic diff=0.010752, rho=0.060971\n", + "2019-01-16 04:23:31,274 : INFO : -11.875 per-word bound, 3757.0 perplexity estimate based on a held-out corpus of 2000 documents with 546579 words\n", + "2019-01-16 04:23:31,274 : INFO : PROGRESS: pass 0, at document #540000/4922894\n", + "2019-01-16 04:23:33,417 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:33,973 : INFO : topic #40 (0.020): 0.029*\"africa\" + 0.028*\"bar\" + 0.025*\"african\" + 0.022*\"south\" + 0.018*\"text\" + 0.017*\"till\" + 0.013*\"color\" + 0.011*\"agricultur\" + 0.009*\"cape\" + 0.009*\"tropic\"\n", + "2019-01-16 04:23:33,975 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.026*\"soviet\" + 0.025*\"russia\" + 0.022*\"polish\" + 0.021*\"jewish\" + 0.020*\"born\" + 0.016*\"israel\" + 0.015*\"moscow\" + 0.015*\"jew\" + 0.015*\"poland\"\n", + "2019-01-16 04:23:33,976 : INFO : topic #49 (0.020): 0.076*\"north\" + 0.072*\"west\" + 0.069*\"region\" + 0.068*\"south\" + 0.067*\"east\" + 0.038*\"district\" + 0.030*\"central\" + 0.025*\"villag\" + 0.023*\"swedish\" + 0.022*\"administr\"\n", + "2019-01-16 04:23:33,978 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.038*\"final\" + 0.028*\"tournament\" + 0.025*\"winner\" + 0.020*\"open\" + 0.016*\"group\" + 0.015*\"qualifi\" + 0.013*\"singl\" + 0.013*\"doubl\" + 0.013*\"draw\"\n", + "2019-01-16 04:23:33,979 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.025*\"district\" + 0.016*\"http\" + 0.015*\"provinc\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.013*\"www\" + 0.012*\"villag\" + 0.012*\"singh\"\n", + "2019-01-16 04:23:33,985 : INFO : topic diff=0.011523, rho=0.060858\n", + "2019-01-16 04:23:34,364 : INFO : PROGRESS: pass 0, at document #542000/4922894\n", + "2019-01-16 04:23:36,476 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:37,032 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.012*\"kill\" + 0.010*\"gun\" + 0.009*\"boat\" + 0.009*\"damag\" + 0.008*\"sea\" + 0.007*\"attack\" + 0.007*\"dai\" + 0.007*\"island\" + 0.007*\"crew\"\n", + "2019-01-16 04:23:37,034 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.047*\"counti\" + 0.033*\"citi\" + 0.033*\"town\" + 0.029*\"ag\" + 0.029*\"villag\" + 0.024*\"township\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.022*\"district\"\n", + "2019-01-16 04:23:37,035 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.027*\"piano\" + 0.019*\"viola\" + 0.018*\"compos\" + 0.018*\"orchestra\" + 0.017*\"theatr\" + 0.014*\"festiv\" + 0.013*\"opera\" + 0.012*\"danc\"\n", + "2019-01-16 04:23:37,037 : INFO : topic #5 (0.020): 0.025*\"game\" + 0.009*\"us\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 04:23:37,038 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.039*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.030*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:23:37,044 : INFO : topic diff=0.010654, rho=0.060746\n", + "2019-01-16 04:23:37,418 : INFO : PROGRESS: pass 0, at document #544000/4922894\n", + "2019-01-16 04:23:39,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:40,086 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"act\" + 0.022*\"court\" + 0.020*\"state\" + 0.011*\"case\" + 0.010*\"offic\" + 0.010*\"polic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"public\"\n", + "2019-01-16 04:23:40,088 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"yard\" + 0.010*\"year\" + 0.010*\"leagu\"\n", + "2019-01-16 04:23:40,089 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.048*\"australian\" + 0.045*\"new\" + 0.037*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.018*\"sydnei\" + 0.017*\"hong\" + 0.017*\"kong\"\n", + "2019-01-16 04:23:40,091 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"black\"\n", + "2019-01-16 04:23:40,092 : INFO : topic #35 (0.020): 0.019*\"singapor\" + 0.018*\"lee\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.015*\"thai\" + 0.015*\"prime\" + 0.014*\"vietnam\" + 0.012*\"chi\" + 0.012*\"indonesian\" + 0.012*\"asian\"\n", + "2019-01-16 04:23:40,098 : INFO : topic diff=0.011364, rho=0.060634\n", + "2019-01-16 04:23:40,506 : INFO : PROGRESS: pass 0, at document #546000/4922894\n", + "2019-01-16 04:23:42,618 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:43,179 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.021*\"vote\" + 0.021*\"democrat\" + 0.019*\"presid\" + 0.015*\"minist\" + 0.014*\"council\" + 0.014*\"republican\" + 0.013*\"senat\"\n", + "2019-01-16 04:23:43,180 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:23:43,182 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.038*\"final\" + 0.030*\"tournament\" + 0.025*\"winner\" + 0.020*\"open\" + 0.016*\"group\" + 0.015*\"qualifi\" + 0.013*\"doubl\" + 0.013*\"runner\" + 0.012*\"singl\"\n", + "2019-01-16 04:23:43,183 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.034*\"student\" + 0.030*\"educ\" + 0.030*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:23:43,185 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.017*\"road\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:23:43,191 : INFO : topic diff=0.013054, rho=0.060523\n", + "2019-01-16 04:23:43,624 : INFO : PROGRESS: pass 0, at document #548000/4922894\n", + "2019-01-16 04:23:45,854 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:46,412 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"park\" + 0.014*\"rout\" + 0.013*\"area\" + 0.012*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:23:46,414 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"smith\" + 0.006*\"tom\"\n", + "2019-01-16 04:23:46,416 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.012*\"spain\" + 0.012*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\" + 0.010*\"juan\" + 0.010*\"santa\"\n", + "2019-01-16 04:23:46,417 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.021*\"match\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.017*\"titl\" + 0.016*\"championship\" + 0.015*\"team\" + 0.014*\"champion\" + 0.014*\"world\" + 0.013*\"fight\"\n", + "2019-01-16 04:23:46,419 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.047*\"australian\" + 0.044*\"new\" + 0.038*\"china\" + 0.035*\"chines\" + 0.033*\"zealand\" + 0.025*\"south\" + 0.018*\"sydnei\" + 0.017*\"hong\" + 0.017*\"kong\"\n", + "2019-01-16 04:23:46,425 : INFO : topic diff=0.015060, rho=0.060412\n", + "2019-01-16 04:23:46,850 : INFO : PROGRESS: pass 0, at document #550000/4922894\n", + "2019-01-16 04:23:49,062 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:49,616 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.046*\"counti\" + 0.033*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.028*\"villag\" + 0.023*\"famili\" + 0.022*\"township\" + 0.022*\"censu\" + 0.022*\"municip\"\n", + "2019-01-16 04:23:49,618 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:23:49,620 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 04:23:49,621 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.048*\"australian\" + 0.044*\"new\" + 0.038*\"china\" + 0.035*\"chines\" + 0.032*\"zealand\" + 0.025*\"south\" + 0.018*\"sydnei\" + 0.017*\"hong\" + 0.017*\"kong\"\n", + "2019-01-16 04:23:49,623 : INFO : topic #17 (0.020): 0.056*\"race\" + 0.019*\"team\" + 0.019*\"car\" + 0.013*\"tour\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 04:23:49,629 : INFO : topic diff=0.009703, rho=0.060302\n", + "2019-01-16 04:23:50,041 : INFO : PROGRESS: pass 0, at document #552000/4922894\n", + "2019-01-16 04:23:52,212 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:52,768 : INFO : topic #40 (0.020): 0.030*\"bar\" + 0.029*\"africa\" + 0.025*\"african\" + 0.021*\"south\" + 0.019*\"text\" + 0.018*\"till\" + 0.014*\"color\" + 0.010*\"agricultur\" + 0.009*\"peopl\" + 0.008*\"cape\"\n", + "2019-01-16 04:23:52,769 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.078*\"march\" + 0.074*\"septemb\" + 0.072*\"januari\" + 0.070*\"juli\" + 0.070*\"novemb\" + 0.068*\"april\" + 0.067*\"august\" + 0.066*\"decemb\" + 0.066*\"june\"\n", + "2019-01-16 04:23:52,771 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"democrat\" + 0.020*\"presid\" + 0.015*\"minist\" + 0.014*\"council\" + 0.014*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 04:23:52,773 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.045*\"counti\" + 0.034*\"town\" + 0.032*\"citi\" + 0.028*\"ag\" + 0.027*\"villag\" + 0.023*\"famili\" + 0.022*\"district\" + 0.022*\"censu\" + 0.022*\"township\"\n", + "2019-01-16 04:23:52,774 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:23:52,781 : INFO : topic diff=0.013367, rho=0.060193\n", + "2019-01-16 04:23:53,214 : INFO : PROGRESS: pass 0, at document #554000/4922894\n", + "2019-01-16 04:23:55,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:55,949 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.026*\"oper\" + 0.022*\"airport\" + 0.022*\"aircraft\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.014*\"squadron\" + 0.012*\"servic\" + 0.012*\"base\"\n", + "2019-01-16 04:23:55,951 : INFO : topic #33 (0.020): 0.013*\"million\" + 0.009*\"time\" + 0.009*\"compani\" + 0.008*\"bank\" + 0.008*\"year\" + 0.008*\"increas\" + 0.007*\"rate\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"number\"\n", + "2019-01-16 04:23:55,952 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.035*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.024*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:23:55,954 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.045*\"univers\" + 0.038*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.009*\"program\" + 0.008*\"grade\"\n", + "2019-01-16 04:23:55,955 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.023*\"piano\" + 0.019*\"compos\" + 0.016*\"orchestra\" + 0.016*\"theatr\" + 0.015*\"festiv\" + 0.015*\"viola\" + 0.013*\"danc\" + 0.012*\"opera\"\n", + "2019-01-16 04:23:55,962 : INFO : topic diff=0.012266, rho=0.060084\n", + "2019-01-16 04:23:56,359 : INFO : PROGRESS: pass 0, at document #556000/4922894\n", + "2019-01-16 04:23:58,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:23:59,037 : INFO : topic #40 (0.020): 0.031*\"bar\" + 0.028*\"africa\" + 0.025*\"african\" + 0.021*\"text\" + 0.021*\"south\" + 0.020*\"till\" + 0.016*\"color\" + 0.011*\"agricultur\" + 0.008*\"start\" + 0.008*\"peopl\"\n", + "2019-01-16 04:23:59,039 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.070*\"west\" + 0.069*\"east\" + 0.067*\"south\" + 0.065*\"region\" + 0.037*\"district\" + 0.030*\"central\" + 0.024*\"villag\" + 0.023*\"administr\" + 0.022*\"norwegian\"\n", + "2019-01-16 04:23:59,041 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.010*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:23:59,043 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.019*\"hospit\" + 0.017*\"health\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.010*\"caus\" + 0.010*\"cancer\" + 0.010*\"drug\" + 0.010*\"medicin\"\n", + "2019-01-16 04:23:59,045 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.078*\"march\" + 0.075*\"septemb\" + 0.074*\"januari\" + 0.070*\"juli\" + 0.069*\"novemb\" + 0.069*\"april\" + 0.067*\"august\" + 0.067*\"june\" + 0.066*\"decemb\"\n", + "2019-01-16 04:23:59,051 : INFO : topic diff=0.011772, rho=0.059976\n", + "2019-01-16 04:23:59,424 : INFO : PROGRESS: pass 0, at document #558000/4922894\n", + "2019-01-16 04:24:01,610 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:02,168 : INFO : topic #35 (0.020): 0.020*\"lee\" + 0.020*\"singapor\" + 0.020*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"thai\" + 0.015*\"vietnam\" + 0.013*\"prime\" + 0.011*\"asian\" + 0.011*\"indonesian\" + 0.011*\"chi\"\n", + "2019-01-16 04:24:02,170 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.022*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.014*\"area\" + 0.013*\"rout\" + 0.012*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:24:02,172 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.018*\"radio\" + 0.016*\"broadcast\" + 0.015*\"station\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"host\" + 0.010*\"compani\"\n", + "2019-01-16 04:24:02,173 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.015*\"citi\" + 0.014*\"counti\" + 0.014*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 04:24:02,175 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"centuri\" + 0.009*\"church\"\n", + "2019-01-16 04:24:02,180 : INFO : topic diff=0.010745, rho=0.059868\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:24:07,141 : INFO : -11.508 per-word bound, 2912.3 perplexity estimate based on a held-out corpus of 2000 documents with 607034 words\n", + "2019-01-16 04:24:07,142 : INFO : PROGRESS: pass 0, at document #560000/4922894\n", + "2019-01-16 04:24:09,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:09,915 : INFO : topic #24 (0.020): 0.030*\"ship\" + 0.011*\"kill\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.009*\"damag\" + 0.009*\"sea\" + 0.008*\"dai\" + 0.007*\"port\" + 0.007*\"island\" + 0.007*\"attack\"\n", + "2019-01-16 04:24:09,916 : INFO : topic #17 (0.020): 0.056*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.014*\"tour\" + 0.012*\"championship\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"stage\" + 0.010*\"year\"\n", + "2019-01-16 04:24:09,918 : INFO : topic #35 (0.020): 0.020*\"lee\" + 0.020*\"thailand\" + 0.020*\"singapor\" + 0.017*\"indonesia\" + 0.016*\"thai\" + 0.015*\"vietnam\" + 0.013*\"prime\" + 0.012*\"asian\" + 0.011*\"chi\" + 0.011*\"bulgarian\"\n", + "2019-01-16 04:24:09,920 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"light\" + 0.007*\"earth\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"space\" + 0.005*\"materi\"\n", + "2019-01-16 04:24:09,922 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"valu\" + 0.008*\"space\" + 0.007*\"gener\"\n", + "2019-01-16 04:24:09,929 : INFO : topic diff=0.012717, rho=0.059761\n", + "2019-01-16 04:24:10,346 : INFO : PROGRESS: pass 0, at document #562000/4922894\n", + "2019-01-16 04:24:12,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:13,027 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.025*\"design\" + 0.022*\"artist\" + 0.021*\"paint\" + 0.018*\"exhibit\" + 0.015*\"collect\" + 0.013*\"galleri\" + 0.009*\"new\"\n", + "2019-01-16 04:24:13,029 : INFO : topic #40 (0.020): 0.030*\"bar\" + 0.029*\"africa\" + 0.026*\"african\" + 0.022*\"south\" + 0.020*\"text\" + 0.019*\"till\" + 0.015*\"color\" + 0.011*\"agricultur\" + 0.009*\"tropic\" + 0.008*\"coloni\"\n", + "2019-01-16 04:24:13,030 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", + "2019-01-16 04:24:13,032 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.009*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"born\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"smith\"\n", + "2019-01-16 04:24:13,034 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:24:13,041 : INFO : topic diff=0.010386, rho=0.059655\n", + "2019-01-16 04:24:13,407 : INFO : PROGRESS: pass 0, at document #564000/4922894\n", + "2019-01-16 04:24:15,551 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:16,108 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.015*\"council\" + 0.014*\"minist\" + 0.014*\"republican\" + 0.013*\"polit\"\n", + "2019-01-16 04:24:16,109 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.077*\"march\" + 0.075*\"septemb\" + 0.075*\"januari\" + 0.069*\"juli\" + 0.068*\"novemb\" + 0.068*\"april\" + 0.067*\"august\" + 0.067*\"june\" + 0.066*\"decemb\"\n", + "2019-01-16 04:24:16,111 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:24:16,113 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.017*\"radio\" + 0.015*\"broadcast\" + 0.015*\"station\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"compani\" + 0.010*\"network\"\n", + "2019-01-16 04:24:16,114 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.018*\"centuri\" + 0.011*\"emperor\" + 0.011*\"empir\" + 0.011*\"roman\" + 0.010*\"greek\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.007*\"princ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:24:16,120 : INFO : topic diff=0.012574, rho=0.059549\n", + "2019-01-16 04:24:16,522 : INFO : PROGRESS: pass 0, at document #566000/4922894\n", + "2019-01-16 04:24:18,617 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:19,174 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 04:24:19,175 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.024*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:24:19,177 : INFO : topic #33 (0.020): 0.013*\"million\" + 0.009*\"compani\" + 0.009*\"time\" + 0.008*\"bank\" + 0.008*\"year\" + 0.008*\"rate\" + 0.008*\"increas\" + 0.007*\"market\" + 0.007*\"cost\" + 0.006*\"product\"\n", + "2019-01-16 04:24:19,181 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.077*\"march\" + 0.074*\"januari\" + 0.073*\"septemb\" + 0.068*\"novemb\" + 0.068*\"juli\" + 0.066*\"april\" + 0.065*\"august\" + 0.065*\"decemb\" + 0.065*\"june\"\n", + "2019-01-16 04:24:19,182 : INFO : topic #35 (0.020): 0.021*\"lee\" + 0.020*\"singapor\" + 0.019*\"thailand\" + 0.018*\"indonesia\" + 0.015*\"thai\" + 0.014*\"vietnam\" + 0.013*\"prime\" + 0.012*\"asian\" + 0.011*\"chi\" + 0.011*\"indonesian\"\n", + "2019-01-16 04:24:19,189 : INFO : topic diff=0.011473, rho=0.059444\n", + "2019-01-16 04:24:19,575 : INFO : PROGRESS: pass 0, at document #568000/4922894\n", + "2019-01-16 04:24:21,645 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:22,201 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.018*\"hospit\" + 0.018*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.011*\"cancer\" + 0.010*\"patient\" + 0.010*\"caus\" + 0.009*\"drug\" + 0.009*\"medicin\"\n", + "2019-01-16 04:24:22,203 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.028*\"england\" + 0.021*\"scotland\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.020*\"town\" + 0.016*\"scottish\" + 0.013*\"manchest\" + 0.011*\"west\" + 0.010*\"counti\"\n", + "2019-01-16 04:24:22,205 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.034*\"museum\" + 0.029*\"work\" + 0.024*\"design\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.009*\"new\"\n", + "2019-01-16 04:24:22,207 : INFO : topic #47 (0.020): 0.023*\"station\" + 0.023*\"river\" + 0.019*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.014*\"park\" + 0.014*\"area\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:24:22,208 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.026*\"oper\" + 0.023*\"aircraft\" + 0.020*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.014*\"squadron\" + 0.011*\"servic\" + 0.011*\"navi\"\n", + "2019-01-16 04:24:22,215 : INFO : topic diff=0.012614, rho=0.059339\n", + "2019-01-16 04:24:22,566 : INFO : PROGRESS: pass 0, at document #570000/4922894\n", + "2019-01-16 04:24:24,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:25,194 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.025*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:24:25,196 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.044*\"counti\" + 0.033*\"town\" + 0.032*\"citi\" + 0.030*\"ag\" + 0.027*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.022*\"district\" + 0.021*\"area\"\n", + "2019-01-16 04:24:25,198 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"black\"\n", + "2019-01-16 04:24:25,199 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.026*\"oper\" + 0.023*\"aircraft\" + 0.020*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.014*\"flight\" + 0.012*\"servic\" + 0.011*\"navi\"\n", + "2019-01-16 04:24:25,200 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.017*\"radio\" + 0.015*\"station\" + 0.015*\"broadcast\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.010*\"dai\" + 0.010*\"program\" + 0.010*\"network\" + 0.009*\"host\"\n", + "2019-01-16 04:24:25,206 : INFO : topic diff=0.010744, rho=0.059235\n", + "2019-01-16 04:24:25,561 : INFO : PROGRESS: pass 0, at document #572000/4922894\n", + "2019-01-16 04:24:27,640 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:24:28,195 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:24:28,197 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"born\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\"\n", + "2019-01-16 04:24:28,199 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.032*\"indian\" + 0.022*\"district\" + 0.018*\"provinc\" + 0.018*\"iran\" + 0.017*\"http\" + 0.013*\"www\" + 0.013*\"pakistan\" + 0.012*\"villag\" + 0.012*\"islam\"\n", + "2019-01-16 04:24:28,200 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.030*\"oper\" + 0.022*\"aircraft\" + 0.019*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.014*\"squadron\" + 0.011*\"servic\" + 0.011*\"navi\"\n", + "2019-01-16 04:24:28,202 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 04:24:28,207 : INFO : topic diff=0.011698, rho=0.059131\n", + "2019-01-16 04:24:28,625 : INFO : PROGRESS: pass 0, at document #574000/4922894\n", + "2019-01-16 04:24:30,883 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:31,438 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 04:24:31,440 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.025*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:24:31,441 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"histor\" + 0.012*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 04:24:31,443 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"group\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 04:24:31,444 : INFO : topic #11 (0.020): 0.030*\"act\" + 0.025*\"law\" + 0.022*\"court\" + 0.019*\"state\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"polic\" + 0.008*\"amend\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 04:24:31,451 : INFO : topic diff=0.012322, rho=0.059028\n", + "2019-01-16 04:24:31,859 : INFO : PROGRESS: pass 0, at document #576000/4922894\n", + "2019-01-16 04:24:33,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:34,503 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"god\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\"\n", + "2019-01-16 04:24:34,505 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.009*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"born\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\"\n", + "2019-01-16 04:24:34,506 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.034*\"germani\" + 0.025*\"von\" + 0.024*\"der\" + 0.023*\"van\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.013*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:24:34,507 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.031*\"perform\" + 0.021*\"compos\" + 0.018*\"piano\" + 0.016*\"theatr\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.014*\"orchestra\" + 0.013*\"opera\" + 0.013*\"plai\"\n", + "2019-01-16 04:24:34,509 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.029*\"work\" + 0.024*\"design\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.018*\"exhibit\" + 0.015*\"collect\" + 0.013*\"galleri\" + 0.009*\"new\"\n", + "2019-01-16 04:24:34,514 : INFO : topic diff=0.011711, rho=0.058926\n", + "2019-01-16 04:24:34,916 : INFO : PROGRESS: pass 0, at document #578000/4922894\n", + "2019-01-16 04:24:37,068 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:37,623 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 04:24:37,625 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.014*\"product\" + 0.011*\"power\" + 0.011*\"cell\" + 0.009*\"produc\" + 0.009*\"model\" + 0.007*\"design\" + 0.007*\"type\" + 0.007*\"manufactur\" + 0.007*\"protein\"\n", + "2019-01-16 04:24:37,626 : INFO : topic #34 (0.020): 0.075*\"island\" + 0.072*\"canada\" + 0.057*\"canadian\" + 0.027*\"ontario\" + 0.023*\"toronto\" + 0.018*\"british\" + 0.016*\"quebec\" + 0.015*\"montreal\" + 0.015*\"danish\" + 0.013*\"korea\"\n", + "2019-01-16 04:24:37,628 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.019*\"wrestl\" + 0.018*\"contest\" + 0.017*\"team\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.014*\"world\" + 0.013*\"fight\" + 0.013*\"elimin\"\n", + "2019-01-16 04:24:37,629 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.034*\"germani\" + 0.025*\"von\" + 0.024*\"der\" + 0.024*\"van\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.013*\"und\" + 0.012*\"netherland\"\n", + "2019-01-16 04:24:37,635 : INFO : topic diff=0.011259, rho=0.058824\n", + "2019-01-16 04:24:42,536 : INFO : -11.903 per-word bound, 3830.4 perplexity estimate based on a held-out corpus of 2000 documents with 556819 words\n", + "2019-01-16 04:24:42,536 : INFO : PROGRESS: pass 0, at document #580000/4922894\n", + "2019-01-16 04:24:44,718 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:45,275 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.010*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 04:24:45,276 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.017*\"hospit\" + 0.017*\"health\" + 0.013*\"diseas\" + 0.011*\"caus\" + 0.010*\"cancer\" + 0.010*\"patient\" + 0.010*\"drug\" + 0.009*\"medicin\" + 0.009*\"ret\"\n", + "2019-01-16 04:24:45,278 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.030*\"oper\" + 0.023*\"aircraft\" + 0.017*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.014*\"squadron\" + 0.012*\"servic\" + 0.011*\"navi\"\n", + "2019-01-16 04:24:45,280 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.028*\"africa\" + 0.025*\"african\" + 0.022*\"south\" + 0.022*\"text\" + 0.020*\"till\" + 0.015*\"color\" + 0.011*\"agricultur\" + 0.010*\"tropic\" + 0.009*\"cape\"\n", + "2019-01-16 04:24:45,282 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.028*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"direct\" + 0.012*\"televis\"\n", + "2019-01-16 04:24:45,288 : INFO : topic diff=0.010625, rho=0.058722\n", + "2019-01-16 04:24:45,689 : INFO : PROGRESS: pass 0, at document #582000/4922894\n", + "2019-01-16 04:24:47,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:48,344 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.011*\"intern\" + 0.011*\"work\" + 0.011*\"univers\" + 0.011*\"manag\" + 0.011*\"compani\" + 0.011*\"servic\" + 0.010*\"nation\"\n", + "2019-01-16 04:24:48,346 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 04:24:48,348 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"piano\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.014*\"orchestra\" + 0.013*\"opera\" + 0.013*\"plai\"\n", + "2019-01-16 04:24:48,350 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.028*\"born\" + 0.025*\"soviet\" + 0.025*\"russia\" + 0.021*\"polish\" + 0.020*\"jewish\" + 0.015*\"poland\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.014*\"republ\"\n", + "2019-01-16 04:24:48,351 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.033*\"indian\" + 0.021*\"district\" + 0.017*\"provinc\" + 0.017*\"iran\" + 0.017*\"http\" + 0.013*\"www\" + 0.013*\"islam\" + 0.013*\"pakistan\" + 0.011*\"tamil\"\n", + "2019-01-16 04:24:48,357 : INFO : topic diff=0.011150, rho=0.058621\n", + "2019-01-16 04:24:48,722 : INFO : PROGRESS: pass 0, at document #584000/4922894\n", + "2019-01-16 04:24:50,944 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:51,501 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.030*\"oper\" + 0.023*\"aircraft\" + 0.018*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"servic\" + 0.011*\"navi\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:24:51,503 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.014*\"counti\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:24:51,504 : INFO : topic #11 (0.020): 0.027*\"act\" + 0.025*\"law\" + 0.022*\"court\" + 0.019*\"state\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"polic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"public\"\n", + "2019-01-16 04:24:51,506 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.010*\"compani\" + 0.009*\"time\" + 0.008*\"bank\" + 0.008*\"year\" + 0.008*\"increas\" + 0.007*\"rate\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"limit\"\n", + "2019-01-16 04:24:51,507 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"team\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.014*\"world\" + 0.012*\"fight\" + 0.012*\"champion\"\n", + "2019-01-16 04:24:51,513 : INFO : topic diff=0.010711, rho=0.058521\n", + "2019-01-16 04:24:51,890 : INFO : PROGRESS: pass 0, at document #586000/4922894\n", + "2019-01-16 04:24:53,996 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:54,553 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.022*\"itali\" + 0.019*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:24:54,555 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.027*\"africa\" + 0.026*\"african\" + 0.022*\"text\" + 0.021*\"south\" + 0.020*\"till\" + 0.015*\"color\" + 0.011*\"agricultur\" + 0.009*\"tropic\" + 0.008*\"shift\"\n", + "2019-01-16 04:24:54,556 : INFO : topic #4 (0.020): 0.121*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.029*\"educ\" + 0.027*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"degre\"\n", + "2019-01-16 04:24:54,558 : INFO : topic #48 (0.020): 0.079*\"octob\" + 0.077*\"march\" + 0.073*\"septemb\" + 0.071*\"januari\" + 0.069*\"novemb\" + 0.067*\"juli\" + 0.065*\"april\" + 0.064*\"august\" + 0.063*\"decemb\" + 0.063*\"june\"\n", + "2019-01-16 04:24:54,559 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"space\"\n", + "2019-01-16 04:24:54,566 : INFO : topic diff=0.011175, rho=0.058421\n", + "2019-01-16 04:24:54,962 : INFO : PROGRESS: pass 0, at document #588000/4922894\n", + "2019-01-16 04:24:57,068 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:24:57,624 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"stori\"\n", + "2019-01-16 04:24:57,626 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"space\"\n", + "2019-01-16 04:24:57,628 : INFO : topic #40 (0.020): 0.033*\"bar\" + 0.026*\"africa\" + 0.026*\"african\" + 0.023*\"text\" + 0.022*\"south\" + 0.021*\"till\" + 0.016*\"color\" + 0.011*\"agricultur\" + 0.009*\"tropic\" + 0.009*\"shift\"\n", + "2019-01-16 04:24:57,629 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.027*\"world\" + 0.026*\"olymp\" + 0.026*\"men\" + 0.025*\"championship\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"time\"\n", + "2019-01-16 04:24:57,631 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.016*\"broadcast\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.010*\"program\" + 0.010*\"network\" + 0.010*\"host\" + 0.010*\"dai\"\n", + "2019-01-16 04:24:57,636 : INFO : topic diff=0.012930, rho=0.058321\n", + "2019-01-16 04:24:57,990 : INFO : PROGRESS: pass 0, at document #590000/4922894\n", + "2019-01-16 04:25:00,113 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:00,669 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.014*\"tour\" + 0.014*\"stage\" + 0.013*\"hors\" + 0.012*\"championship\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"finish\"\n", + "2019-01-16 04:25:00,671 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"friend\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 04:25:00,673 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.027*\"world\" + 0.026*\"olymp\" + 0.026*\"men\" + 0.024*\"championship\" + 0.023*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.020*\"athlet\" + 0.020*\"rank\"\n", + "2019-01-16 04:25:00,675 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"base\"\n", + "2019-01-16 04:25:00,676 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.011*\"work\" + 0.011*\"manag\" + 0.010*\"compani\" + 0.010*\"nation\"\n", + "2019-01-16 04:25:00,682 : INFO : topic diff=0.012063, rho=0.058222\n", + "2019-01-16 04:25:01,042 : INFO : PROGRESS: pass 0, at document #592000/4922894\n", + "2019-01-16 04:25:03,116 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:03,671 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.010*\"compani\" + 0.009*\"time\" + 0.009*\"year\" + 0.008*\"bank\" + 0.008*\"increas\" + 0.007*\"market\" + 0.007*\"rate\" + 0.006*\"cost\" + 0.005*\"product\"\n", + "2019-01-16 04:25:03,673 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"stori\"\n", + "2019-01-16 04:25:03,675 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.033*\"indian\" + 0.021*\"district\" + 0.017*\"http\" + 0.016*\"provinc\" + 0.015*\"iran\" + 0.013*\"pakistan\" + 0.013*\"www\" + 0.013*\"islam\" + 0.012*\"khan\"\n", + "2019-01-16 04:25:03,677 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.011*\"gun\" + 0.011*\"kill\" + 0.010*\"boat\" + 0.009*\"sea\" + 0.008*\"damag\" + 0.007*\"dai\" + 0.007*\"crew\" + 0.007*\"port\" + 0.007*\"report\"\n", + "2019-01-16 04:25:03,678 : INFO : topic #35 (0.020): 0.027*\"singapor\" + 0.022*\"lee\" + 0.020*\"indonesia\" + 0.016*\"vietnam\" + 0.016*\"thailand\" + 0.015*\"subdistrict\" + 0.014*\"asian\" + 0.013*\"prime\" + 0.011*\"chi\" + 0.010*\"chan\"\n", + "2019-01-16 04:25:03,684 : INFO : topic diff=0.010308, rho=0.058124\n", + "2019-01-16 04:25:04,107 : INFO : PROGRESS: pass 0, at document #594000/4922894\n", + "2019-01-16 04:25:06,256 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:06,812 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.043*\"final\" + 0.027*\"tournament\" + 0.026*\"winner\" + 0.019*\"group\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.013*\"runner\" + 0.012*\"point\" + 0.011*\"singl\"\n", + "2019-01-16 04:25:06,814 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.036*\"germani\" + 0.023*\"von\" + 0.023*\"van\" + 0.023*\"der\" + 0.023*\"berlin\" + 0.018*\"dutch\" + 0.012*\"und\" + 0.012*\"die\" + 0.011*\"netherland\"\n", + "2019-01-16 04:25:06,816 : INFO : topic #47 (0.020): 0.023*\"river\" + 0.023*\"station\" + 0.018*\"road\" + 0.018*\"line\" + 0.015*\"railwai\" + 0.015*\"park\" + 0.014*\"area\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:25:06,817 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.011*\"cell\" + 0.010*\"power\" + 0.009*\"produc\" + 0.008*\"model\" + 0.007*\"type\" + 0.007*\"design\" + 0.007*\"protein\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:25:06,819 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.011*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 04:25:06,825 : INFO : topic diff=0.010841, rho=0.058026\n", + "2019-01-16 04:25:07,208 : INFO : PROGRESS: pass 0, at document #596000/4922894\n", + "2019-01-16 04:25:09,357 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:09,913 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.023*\"der\" + 0.022*\"berlin\" + 0.018*\"dutch\" + 0.012*\"und\" + 0.011*\"die\" + 0.011*\"netherland\"\n", + "2019-01-16 04:25:09,915 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", + "2019-01-16 04:25:09,917 : INFO : topic #36 (0.020): 0.060*\"art\" + 0.037*\"museum\" + 0.029*\"work\" + 0.022*\"design\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.018*\"exhibit\" + 0.015*\"collect\" + 0.015*\"galleri\" + 0.010*\"new\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:25:09,918 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.027*\"world\" + 0.027*\"olymp\" + 0.025*\"men\" + 0.024*\"championship\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"rank\" + 0.019*\"athlet\"\n", + "2019-01-16 04:25:09,919 : INFO : topic #20 (0.020): 0.029*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.018*\"wrestl\" + 0.016*\"team\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"world\" + 0.013*\"fight\" + 0.012*\"defeat\"\n", + "2019-01-16 04:25:09,925 : INFO : topic diff=0.011566, rho=0.057928\n", + "2019-01-16 04:25:10,331 : INFO : PROGRESS: pass 0, at document #598000/4922894\n", + "2019-01-16 04:25:12,517 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:13,076 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.011*\"gun\" + 0.011*\"kill\" + 0.010*\"boat\" + 0.009*\"sea\" + 0.009*\"damag\" + 0.007*\"dai\" + 0.007*\"port\" + 0.007*\"crew\" + 0.007*\"report\"\n", + "2019-01-16 04:25:13,078 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.020*\"compos\" + 0.016*\"piano\" + 0.015*\"orchestra\" + 0.015*\"danc\" + 0.014*\"festiv\" + 0.014*\"opera\" + 0.013*\"plai\"\n", + "2019-01-16 04:25:13,079 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.027*\"world\" + 0.027*\"olymp\" + 0.025*\"men\" + 0.025*\"championship\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"rank\"\n", + "2019-01-16 04:25:13,081 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.076*\"march\" + 0.073*\"septemb\" + 0.071*\"januari\" + 0.068*\"novemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.062*\"april\" + 0.059*\"june\"\n", + "2019-01-16 04:25:13,083 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:25:13,088 : INFO : topic diff=0.012220, rho=0.057831\n", + "2019-01-16 04:25:18,019 : INFO : -11.661 per-word bound, 3237.5 perplexity estimate based on a held-out corpus of 2000 documents with 567104 words\n", + "2019-01-16 04:25:18,020 : INFO : PROGRESS: pass 0, at document #600000/4922894\n", + "2019-01-16 04:25:20,118 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:20,674 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.025*\"season\" + 0.024*\"footbal\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", + "2019-01-16 04:25:20,676 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"black\" + 0.007*\"anim\" + 0.007*\"forest\"\n", + "2019-01-16 04:25:20,678 : INFO : topic #4 (0.020): 0.121*\"school\" + 0.051*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", + "2019-01-16 04:25:20,679 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.022*\"lee\" + 0.018*\"indonesia\" + 0.018*\"thailand\" + 0.016*\"vietnam\" + 0.014*\"asian\" + 0.012*\"subdistrict\" + 0.011*\"chi\" + 0.011*\"prime\" + 0.010*\"thai\"\n", + "2019-01-16 04:25:20,680 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.008*\"confer\"\n", + "2019-01-16 04:25:20,686 : INFO : topic diff=0.010501, rho=0.057735\n", + "2019-01-16 04:25:21,077 : INFO : PROGRESS: pass 0, at document #602000/4922894\n", + "2019-01-16 04:25:23,235 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:23,791 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"version\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:25:23,793 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.021*\"democrat\" + 0.021*\"presid\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"gener\" + 0.013*\"republican\"\n", + "2019-01-16 04:25:23,796 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.007*\"light\" + 0.007*\"earth\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"form\"\n", + "2019-01-16 04:25:23,798 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.027*\"england\" + 0.026*\"town\" + 0.020*\"cricket\" + 0.019*\"citi\" + 0.018*\"scotland\" + 0.016*\"scottish\" + 0.013*\"manchest\" + 0.011*\"english\" + 0.010*\"west\"\n", + "2019-01-16 04:25:23,799 : INFO : topic #27 (0.020): 0.046*\"russian\" + 0.028*\"born\" + 0.026*\"soviet\" + 0.024*\"russia\" + 0.021*\"jewish\" + 0.019*\"polish\" + 0.019*\"ukrainian\" + 0.017*\"republ\" + 0.016*\"moscow\" + 0.014*\"israel\"\n", + "2019-01-16 04:25:23,806 : INFO : topic diff=0.009754, rho=0.057639\n", + "2019-01-16 04:25:24,163 : INFO : PROGRESS: pass 0, at document #604000/4922894\n", + "2019-01-16 04:25:26,308 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:26,863 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.068*\"align\" + 0.059*\"left\" + 0.053*\"wikit\" + 0.052*\"style\" + 0.052*\"right\" + 0.048*\"center\" + 0.035*\"philippin\" + 0.033*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:25:26,865 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"video\" + 0.007*\"softwar\"\n", + "2019-01-16 04:25:26,866 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.023*\"berlin\" + 0.023*\"der\" + 0.017*\"dutch\" + 0.012*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:25:26,868 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"pari\" + 0.026*\"italian\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:25:26,869 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"english\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"god\" + 0.006*\"tradit\"\n", + "2019-01-16 04:25:26,874 : INFO : topic diff=0.011174, rho=0.057544\n", + "2019-01-16 04:25:27,216 : INFO : PROGRESS: pass 0, at document #606000/4922894\n", + "2019-01-16 04:25:29,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:29,858 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.029*\"tournament\" + 0.024*\"winner\" + 0.020*\"group\" + 0.019*\"open\" + 0.015*\"runner\" + 0.015*\"qualifi\" + 0.013*\"point\" + 0.011*\"doubl\"\n", + "2019-01-16 04:25:29,860 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"god\" + 0.006*\"english\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\"\n", + "2019-01-16 04:25:29,862 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:25:29,863 : INFO : topic #18 (0.020): 0.011*\"water\" + 0.007*\"light\" + 0.007*\"earth\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"space\"\n", + "2019-01-16 04:25:29,865 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.011*\"institut\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.011*\"manag\" + 0.010*\"nation\" + 0.010*\"compani\"\n", + "2019-01-16 04:25:29,870 : INFO : topic diff=0.010762, rho=0.057448\n", + "2019-01-16 04:25:30,238 : INFO : PROGRESS: pass 0, at document #608000/4922894\n", + "2019-01-16 04:25:32,344 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:32,901 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.021*\"democrat\" + 0.018*\"minist\" + 0.018*\"vote\" + 0.015*\"council\" + 0.014*\"republican\" + 0.013*\"gener\"\n", + "2019-01-16 04:25:32,902 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.022*\"station\" + 0.017*\"road\" + 0.017*\"line\" + 0.015*\"railwai\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"rout\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:25:32,904 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.029*\"unit\" + 0.025*\"town\" + 0.021*\"cricket\" + 0.019*\"citi\" + 0.019*\"scotland\" + 0.017*\"scottish\" + 0.013*\"manchest\" + 0.011*\"english\" + 0.010*\"west\"\n", + "2019-01-16 04:25:32,906 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"god\" + 0.006*\"us\" + 0.006*\"english\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"cultur\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:25:32,908 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.018*\"centuri\" + 0.011*\"empir\" + 0.011*\"emperor\" + 0.010*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"princ\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:25:32,914 : INFO : topic diff=0.010871, rho=0.057354\n", + "2019-01-16 04:25:33,284 : INFO : PROGRESS: pass 0, at document #610000/4922894\n", + "2019-01-16 04:25:35,417 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:35,973 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.021*\"democrat\" + 0.018*\"minist\" + 0.018*\"vote\" + 0.016*\"council\" + 0.014*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 04:25:35,975 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.027*\"africa\" + 0.026*\"african\" + 0.021*\"south\" + 0.021*\"text\" + 0.020*\"till\" + 0.014*\"color\" + 0.011*\"agricultur\" + 0.010*\"tropic\" + 0.009*\"cape\"\n", + "2019-01-16 04:25:35,976 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.018*\"centuri\" + 0.011*\"emperor\" + 0.011*\"empir\" + 0.010*\"greek\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.008*\"princ\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:25:35,978 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.009*\"francisco\" + 0.009*\"josé\"\n", + "2019-01-16 04:25:35,979 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"exampl\" + 0.010*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"structur\" + 0.007*\"point\" + 0.007*\"valu\"\n", + "2019-01-16 04:25:35,985 : INFO : topic diff=0.009858, rho=0.057260\n", + "2019-01-16 04:25:36,326 : INFO : PROGRESS: pass 0, at document #612000/4922894\n", + "2019-01-16 04:25:38,446 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:39,003 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.022*\"unit\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"counti\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:25:39,004 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.011*\"intern\" + 0.011*\"univers\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"manag\" + 0.010*\"nation\" + 0.010*\"compani\"\n", + "2019-01-16 04:25:39,006 : INFO : topic #39 (0.020): 0.041*\"air\" + 0.031*\"oper\" + 0.024*\"aircraft\" + 0.018*\"airport\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"flight\" + 0.012*\"servic\" + 0.010*\"navi\"\n", + "2019-01-16 04:25:39,007 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"pari\" + 0.027*\"italian\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:25:39,009 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"piano\" + 0.014*\"opera\" + 0.013*\"plai\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:25:39,015 : INFO : topic diff=0.011554, rho=0.057166\n", + "2019-01-16 04:25:39,389 : INFO : PROGRESS: pass 0, at document #614000/4922894\n", + "2019-01-16 04:25:41,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:42,083 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.011*\"compani\" + 0.009*\"time\" + 0.009*\"year\" + 0.008*\"bank\" + 0.008*\"market\" + 0.007*\"increas\" + 0.007*\"rate\" + 0.006*\"cost\" + 0.006*\"trade\"\n", + "2019-01-16 04:25:42,084 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"fish\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"black\" + 0.007*\"red\" + 0.007*\"includ\"\n", + "2019-01-16 04:25:42,086 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"protein\" + 0.007*\"type\" + 0.007*\"design\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:25:42,088 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.024*\"berlin\" + 0.023*\"von\" + 0.022*\"dutch\" + 0.022*\"der\" + 0.012*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:25:42,090 : INFO : topic #18 (0.020): 0.011*\"water\" + 0.007*\"light\" + 0.007*\"earth\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"us\" + 0.006*\"materi\" + 0.005*\"form\" + 0.005*\"time\"\n", + "2019-01-16 04:25:42,097 : INFO : topic diff=0.010087, rho=0.057073\n", + "2019-01-16 04:25:42,461 : INFO : PROGRESS: pass 0, at document #616000/4922894\n", + "2019-01-16 04:25:44,543 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:45,101 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.018*\"radio\" + 0.017*\"station\" + 0.015*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:25:45,102 : INFO : topic #34 (0.020): 0.074*\"island\" + 0.072*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.024*\"korea\" + 0.024*\"ontario\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.015*\"montreal\" + 0.013*\"korean\"\n", + "2019-01-16 04:25:45,105 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"black\" + 0.007*\"red\" + 0.007*\"includ\"\n", + "2019-01-16 04:25:45,106 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"protein\" + 0.007*\"design\" + 0.007*\"manufactur\" + 0.007*\"type\"\n", + "2019-01-16 04:25:45,108 : INFO : topic #18 (0.020): 0.011*\"water\" + 0.007*\"light\" + 0.007*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"us\" + 0.006*\"materi\" + 0.005*\"form\" + 0.005*\"time\"\n", + "2019-01-16 04:25:45,115 : INFO : topic diff=0.012158, rho=0.056980\n", + "2019-01-16 04:25:45,513 : INFO : PROGRESS: pass 0, at document #618000/4922894\n", + "2019-01-16 04:25:47,660 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:48,217 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.023*\"lee\" + 0.020*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asian\" + 0.016*\"vietnam\" + 0.012*\"chan\" + 0.011*\"asia\" + 0.010*\"indonesian\" + 0.010*\"bulgarian\"\n", + "2019-01-16 04:25:48,219 : INFO : topic #46 (0.020): 0.123*\"class\" + 0.072*\"align\" + 0.054*\"center\" + 0.053*\"left\" + 0.052*\"wikit\" + 0.052*\"right\" + 0.049*\"style\" + 0.037*\"philippin\" + 0.031*\"text\" + 0.028*\"border\"\n", + "2019-01-16 04:25:48,220 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.029*\"american\" + 0.025*\"york\" + 0.022*\"unit\" + 0.015*\"citi\" + 0.014*\"california\" + 0.014*\"counti\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:25:48,223 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:25:48,224 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 04:25:48,231 : INFO : topic diff=0.009754, rho=0.056888\n", + "2019-01-16 04:25:53,000 : INFO : -11.502 per-word bound, 2900.9 perplexity estimate based on a held-out corpus of 2000 documents with 528128 words\n", + "2019-01-16 04:25:53,001 : INFO : PROGRESS: pass 0, at document #620000/4922894\n", + "2019-01-16 04:25:55,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:55,696 : INFO : topic #49 (0.020): 0.082*\"north\" + 0.070*\"region\" + 0.068*\"west\" + 0.067*\"south\" + 0.064*\"east\" + 0.045*\"district\" + 0.036*\"northern\" + 0.030*\"central\" + 0.024*\"villag\" + 0.022*\"administr\"\n", + "2019-01-16 04:25:55,697 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:25:55,699 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.013*\"cell\" + 0.013*\"product\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"protein\" + 0.007*\"type\" + 0.007*\"oil\" + 0.007*\"design\"\n", + "2019-01-16 04:25:55,700 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.025*\"william\" + 0.022*\"british\" + 0.021*\"london\" + 0.016*\"ireland\" + 0.013*\"georg\" + 0.013*\"sir\" + 0.012*\"royal\" + 0.012*\"jame\" + 0.011*\"henri\"\n", + "2019-01-16 04:25:55,702 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"unit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:25:55,708 : INFO : topic diff=0.009610, rho=0.056796\n", + "2019-01-16 04:25:56,071 : INFO : PROGRESS: pass 0, at document #622000/4922894\n", + "2019-01-16 04:25:58,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:25:58,755 : INFO : topic #40 (0.020): 0.030*\"bar\" + 0.027*\"africa\" + 0.025*\"african\" + 0.022*\"text\" + 0.022*\"south\" + 0.021*\"till\" + 0.014*\"color\" + 0.011*\"tropic\" + 0.010*\"agricultur\" + 0.008*\"cape\"\n", + "2019-01-16 04:25:58,757 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.018*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"network\" + 0.011*\"program\" + 0.010*\"dai\" + 0.010*\"host\"\n", + "2019-01-16 04:25:58,759 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"histor\" + 0.012*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"place\"\n", + "2019-01-16 04:25:58,761 : INFO : topic #27 (0.020): 0.045*\"russian\" + 0.026*\"born\" + 0.025*\"russia\" + 0.022*\"soviet\" + 0.020*\"polish\" + 0.019*\"jewish\" + 0.017*\"moscow\" + 0.016*\"ukrainian\" + 0.015*\"republ\" + 0.014*\"poland\"\n", + "2019-01-16 04:25:58,762 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.024*\"court\" + 0.020*\"act\" + 0.019*\"state\" + 0.012*\"case\" + 0.009*\"offic\" + 0.009*\"polic\" + 0.009*\"right\" + 0.008*\"order\" + 0.008*\"legal\"\n", + "2019-01-16 04:25:58,768 : INFO : topic diff=0.009233, rho=0.056705\n", + "2019-01-16 04:25:59,120 : INFO : PROGRESS: pass 0, at document #624000/4922894\n", + "2019-01-16 04:26:01,315 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:01,876 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:26:01,878 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"kill\"\n", + "2019-01-16 04:26:01,879 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.031*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.010*\"offic\"\n", + "2019-01-16 04:26:01,880 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.010*\"exampl\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"structur\" + 0.007*\"method\"\n", + "2019-01-16 04:26:01,882 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.022*\"cricket\" + 0.019*\"citi\" + 0.017*\"scotland\" + 0.015*\"scottish\" + 0.013*\"manchest\" + 0.011*\"wale\" + 0.011*\"west\"\n", + "2019-01-16 04:26:01,887 : INFO : topic diff=0.010569, rho=0.056614\n", + "2019-01-16 04:26:02,233 : INFO : PROGRESS: pass 0, at document #626000/4922894\n", + "2019-01-16 04:26:04,324 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:04,883 : INFO : topic #49 (0.020): 0.079*\"north\" + 0.076*\"region\" + 0.068*\"south\" + 0.066*\"west\" + 0.063*\"east\" + 0.044*\"district\" + 0.035*\"northern\" + 0.031*\"central\" + 0.023*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:26:04,885 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"develop\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"video\" + 0.008*\"player\" + 0.008*\"user\"\n", + "2019-01-16 04:26:04,887 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.042*\"counti\" + 0.033*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.027*\"villag\" + 0.023*\"censu\" + 0.023*\"famili\" + 0.022*\"district\" + 0.021*\"household\"\n", + "2019-01-16 04:26:04,888 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.028*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:26:04,890 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.025*\"william\" + 0.022*\"british\" + 0.021*\"london\" + 0.015*\"ireland\" + 0.013*\"georg\" + 0.013*\"sir\" + 0.012*\"jame\" + 0.012*\"royal\" + 0.012*\"henri\"\n", + "2019-01-16 04:26:04,896 : INFO : topic diff=0.008622, rho=0.056523\n", + "2019-01-16 04:26:05,240 : INFO : PROGRESS: pass 0, at document #628000/4922894\n", + "2019-01-16 04:26:07,366 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:07,927 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 04:26:07,929 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"institut\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.011*\"work\" + 0.011*\"manag\" + 0.010*\"nation\" + 0.010*\"scienc\"\n", + "2019-01-16 04:26:07,930 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.018*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"championship\" + 0.012*\"stage\" + 0.011*\"driver\" + 0.011*\"time\" + 0.010*\"year\"\n", + "2019-01-16 04:26:07,933 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"god\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"english\"\n", + "2019-01-16 04:26:07,935 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.012*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:26:07,942 : INFO : topic diff=0.010612, rho=0.056433\n", + "2019-01-16 04:26:08,308 : INFO : PROGRESS: pass 0, at document #630000/4922894\n", + "2019-01-16 04:26:10,397 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:10,955 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"histor\" + 0.011*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 04:26:10,956 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.018*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"program\" + 0.010*\"network\" + 0.010*\"air\" + 0.010*\"dai\"\n", + "2019-01-16 04:26:10,958 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.010*\"develop\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"video\" + 0.007*\"player\"\n", + "2019-01-16 04:26:10,960 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"god\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.005*\"english\"\n", + "2019-01-16 04:26:10,962 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.016*\"health\" + 0.013*\"diseas\" + 0.011*\"ret\" + 0.010*\"caus\" + 0.010*\"patient\" + 0.009*\"studi\" + 0.009*\"treatment\" + 0.009*\"medicin\"\n", + "2019-01-16 04:26:10,968 : INFO : topic diff=0.009202, rho=0.056344\n", + "2019-01-16 04:26:11,351 : INFO : PROGRESS: pass 0, at document #632000/4922894\n", + "2019-01-16 04:26:13,445 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:14,002 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"season\" + 0.024*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 04:26:14,003 : INFO : topic #46 (0.020): 0.120*\"class\" + 0.076*\"align\" + 0.062*\"center\" + 0.054*\"wikit\" + 0.053*\"left\" + 0.049*\"right\" + 0.049*\"style\" + 0.039*\"philippin\" + 0.030*\"text\" + 0.027*\"border\"\n", + "2019-01-16 04:26:14,005 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.041*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.017*\"group\" + 0.017*\"open\" + 0.014*\"runner\" + 0.013*\"qualifi\" + 0.012*\"singl\" + 0.012*\"point\"\n", + "2019-01-16 04:26:14,008 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:26:14,009 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"histor\" + 0.011*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 04:26:14,016 : INFO : topic diff=0.010428, rho=0.056254\n", + "2019-01-16 04:26:14,373 : INFO : PROGRESS: pass 0, at document #634000/4922894\n", + "2019-01-16 04:26:16,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:16,994 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.012*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:26:16,995 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", + "2019-01-16 04:26:16,997 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:26:16,998 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\"\n", + "2019-01-16 04:26:17,000 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.016*\"health\" + 0.012*\"diseas\" + 0.010*\"caus\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.010*\"cancer\" + 0.009*\"treatment\" + 0.009*\"studi\"\n", + "2019-01-16 04:26:17,006 : INFO : topic diff=0.010120, rho=0.056166\n", + "2019-01-16 04:26:17,365 : INFO : PROGRESS: pass 0, at document #636000/4922894\n", + "2019-01-16 04:26:19,410 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:19,966 : INFO : topic #35 (0.020): 0.032*\"lee\" + 0.030*\"singapor\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"asian\" + 0.015*\"vietnam\" + 0.013*\"chi\" + 0.012*\"asia\" + 0.011*\"chan\" + 0.011*\"malaysia\"\n", + "2019-01-16 04:26:19,967 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.009*\"sea\" + 0.009*\"kill\" + 0.009*\"damag\" + 0.009*\"crew\" + 0.008*\"dai\" + 0.007*\"port\" + 0.007*\"island\"\n", + "2019-01-16 04:26:19,969 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"small\" + 0.007*\"forest\"\n", + "2019-01-16 04:26:19,971 : INFO : topic #6 (0.020): 0.064*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.020*\"compos\" + 0.018*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:26:19,973 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.026*\"born\" + 0.024*\"russia\" + 0.021*\"polish\" + 0.021*\"soviet\" + 0.021*\"jewish\" + 0.016*\"moscow\" + 0.015*\"republ\" + 0.014*\"poland\" + 0.014*\"israel\"\n", + "2019-01-16 04:26:19,978 : INFO : topic diff=0.010440, rho=0.056077\n", + "2019-01-16 04:26:20,393 : INFO : PROGRESS: pass 0, at document #638000/4922894\n", + "2019-01-16 04:26:22,521 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:23,079 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:26:23,081 : INFO : topic #2 (0.020): 0.071*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.023*\"berlin\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:26:23,083 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.024*\"york\" + 0.022*\"unit\" + 0.015*\"california\" + 0.015*\"citi\" + 0.014*\"counti\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:26:23,084 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.033*\"indian\" + 0.020*\"district\" + 0.018*\"http\" + 0.014*\"provinc\" + 0.014*\"iran\" + 0.013*\"www\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\"\n", + "2019-01-16 04:26:23,086 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.019*\"compos\" + 0.018*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:26:23,093 : INFO : topic diff=0.009757, rho=0.055989\n", + "2019-01-16 04:26:27,999 : INFO : -11.892 per-word bound, 3799.5 perplexity estimate based on a held-out corpus of 2000 documents with 575869 words\n", + "2019-01-16 04:26:28,000 : INFO : PROGRESS: pass 0, at document #640000/4922894\n", + "2019-01-16 04:26:30,155 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:30,713 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"hospit\" + 0.016*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.011*\"caus\" + 0.010*\"drug\" + 0.010*\"cancer\" + 0.010*\"patient\" + 0.009*\"treatment\"\n", + "2019-01-16 04:26:30,715 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.019*\"compos\" + 0.018*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:26:30,716 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"kill\" + 0.004*\"end\"\n", + "2019-01-16 04:26:30,719 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:26:30,720 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.028*\"unit\" + 0.022*\"cricket\" + 0.020*\"town\" + 0.017*\"citi\" + 0.017*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.012*\"wale\" + 0.011*\"west\"\n", + "2019-01-16 04:26:30,726 : INFO : topic diff=0.011868, rho=0.055902\n", + "2019-01-16 04:26:31,075 : INFO : PROGRESS: pass 0, at document #642000/4922894\n", + "2019-01-16 04:26:33,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:33,761 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.028*\"unit\" + 0.022*\"cricket\" + 0.020*\"town\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.015*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\" + 0.011*\"west\"\n", + "2019-01-16 04:26:33,762 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.019*\"compos\" + 0.018*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:26:33,764 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.012*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"carlo\" + 0.010*\"josé\" + 0.010*\"juan\"\n", + "2019-01-16 04:26:33,766 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:26:33,767 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.011*\"empir\" + 0.010*\"princ\" + 0.010*\"kingdom\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:26:33,774 : INFO : topic diff=0.010678, rho=0.055815\n", + "2019-01-16 04:26:34,148 : INFO : PROGRESS: pass 0, at document #644000/4922894\n", + "2019-01-16 04:26:36,297 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:36,853 : INFO : topic #35 (0.020): 0.032*\"singapor\" + 0.031*\"lee\" + 0.020*\"indonesia\" + 0.019*\"thailand\" + 0.016*\"asian\" + 0.014*\"jakarta\" + 0.014*\"vietnam\" + 0.013*\"asia\" + 0.011*\"chi\" + 0.011*\"bulgarian\"\n", + "2019-01-16 04:26:36,854 : INFO : topic #4 (0.020): 0.122*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:26:36,856 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.045*\"counti\" + 0.033*\"town\" + 0.030*\"citi\" + 0.030*\"villag\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.022*\"municip\" + 0.022*\"district\"\n", + "2019-01-16 04:26:36,857 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:26:36,858 : INFO : topic #44 (0.020): 0.027*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n", + "2019-01-16 04:26:36,864 : INFO : topic diff=0.010810, rho=0.055728\n", + "2019-01-16 04:26:37,223 : INFO : PROGRESS: pass 0, at document #646000/4922894\n", + "2019-01-16 04:26:39,280 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:39,836 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", + "2019-01-16 04:26:39,837 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"protein\" + 0.008*\"acid\" + 0.007*\"design\" + 0.007*\"type\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:26:39,839 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"sea\" + 0.010*\"kill\" + 0.009*\"crew\" + 0.008*\"damag\" + 0.008*\"port\" + 0.008*\"dai\" + 0.007*\"attack\"\n", + "2019-01-16 04:26:39,841 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"histor\" + 0.011*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"place\"\n", + "2019-01-16 04:26:39,843 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.032*\"indian\" + 0.021*\"district\" + 0.018*\"http\" + 0.014*\"provinc\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.013*\"www\" + 0.011*\"islam\" + 0.011*\"sri\"\n", + "2019-01-16 04:26:39,848 : INFO : topic diff=0.010052, rho=0.055641\n", + "2019-01-16 04:26:40,219 : INFO : PROGRESS: pass 0, at document #648000/4922894\n", + "2019-01-16 04:26:42,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:42,812 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.021*\"compos\" + 0.019*\"theatr\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:26:42,813 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.029*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.021*\"medal\" + 0.021*\"event\" + 0.018*\"rank\" + 0.017*\"time\"\n", + "2019-01-16 04:26:42,815 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.047*\"counti\" + 0.033*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.030*\"villag\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.022*\"municip\" + 0.022*\"district\"\n", + "2019-01-16 04:26:42,816 : INFO : topic #35 (0.020): 0.032*\"singapor\" + 0.031*\"lee\" + 0.022*\"thailand\" + 0.020*\"indonesia\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.013*\"jakarta\" + 0.013*\"asia\" + 0.011*\"chan\" + 0.011*\"chi\"\n", + "2019-01-16 04:26:42,818 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.017*\"titl\" + 0.015*\"wrestl\" + 0.014*\"championship\" + 0.014*\"world\" + 0.014*\"match\" + 0.012*\"team\" + 0.012*\"champion\"\n", + "2019-01-16 04:26:42,824 : INFO : topic diff=0.011887, rho=0.055556\n", + "2019-01-16 04:26:43,214 : INFO : PROGRESS: pass 0, at document #650000/4922894\n", + "2019-01-16 04:26:45,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:45,924 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:26:45,926 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"soldier\"\n", + "2019-01-16 04:26:45,927 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 04:26:45,929 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.028*\"unit\" + 0.021*\"cricket\" + 0.020*\"town\" + 0.018*\"citi\" + 0.017*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.011*\"west\"\n", + "2019-01-16 04:26:45,930 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.022*\"berlin\" + 0.022*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:26:45,936 : INFO : topic diff=0.009740, rho=0.055470\n", + "2019-01-16 04:26:46,308 : INFO : PROGRESS: pass 0, at document #652000/4922894\n", + "2019-01-16 04:26:48,481 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:49,038 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.021*\"station\" + 0.018*\"line\" + 0.017*\"road\" + 0.015*\"rout\" + 0.015*\"park\" + 0.015*\"railwai\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:26:49,040 : INFO : topic #46 (0.020): 0.119*\"class\" + 0.083*\"align\" + 0.064*\"style\" + 0.054*\"center\" + 0.054*\"left\" + 0.051*\"wikit\" + 0.051*\"right\" + 0.048*\"text\" + 0.035*\"philippin\" + 0.024*\"border\"\n", + "2019-01-16 04:26:49,042 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"us\" + 0.006*\"mar\" + 0.005*\"space\" + 0.005*\"materi\"\n", + "2019-01-16 04:26:49,043 : INFO : topic #49 (0.020): 0.080*\"north\" + 0.070*\"region\" + 0.069*\"west\" + 0.067*\"south\" + 0.065*\"east\" + 0.044*\"district\" + 0.033*\"central\" + 0.032*\"northern\" + 0.024*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:26:49,044 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.046*\"counti\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.030*\"villag\" + 0.023*\"municip\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.022*\"district\"\n", + "2019-01-16 04:26:49,050 : INFO : topic diff=0.010601, rho=0.055385\n", + "2019-01-16 04:26:49,409 : INFO : PROGRESS: pass 0, at document #654000/4922894\n", + "2019-01-16 04:26:51,572 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:52,129 : INFO : topic #49 (0.020): 0.079*\"north\" + 0.070*\"region\" + 0.069*\"west\" + 0.066*\"south\" + 0.064*\"east\" + 0.044*\"district\" + 0.034*\"central\" + 0.032*\"northern\" + 0.023*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:26:52,130 : INFO : topic #4 (0.020): 0.122*\"school\" + 0.049*\"univers\" + 0.039*\"student\" + 0.038*\"colleg\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:26:52,132 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.027*\"born\" + 0.024*\"russia\" + 0.021*\"polish\" + 0.021*\"soviet\" + 0.021*\"jewish\" + 0.018*\"republ\" + 0.016*\"poland\" + 0.015*\"moscow\" + 0.015*\"israel\"\n", + "2019-01-16 04:26:52,133 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"forest\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.006*\"anim\"\n", + "2019-01-16 04:26:52,135 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:26:52,141 : INFO : topic diff=0.010035, rho=0.055300\n", + "2019-01-16 04:26:52,520 : INFO : PROGRESS: pass 0, at document #656000/4922894\n", + "2019-01-16 04:26:54,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:55,176 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.075*\"septemb\" + 0.074*\"octob\" + 0.070*\"juli\" + 0.068*\"januari\" + 0.067*\"august\" + 0.067*\"novemb\" + 0.065*\"decemb\" + 0.065*\"april\" + 0.063*\"june\"\n", + "2019-01-16 04:26:55,177 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.010*\"soldier\"\n", + "2019-01-16 04:26:55,179 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"hospit\" + 0.017*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.011*\"caus\" + 0.010*\"patient\" + 0.009*\"medicin\" + 0.009*\"treatment\" + 0.009*\"drug\"\n", + "2019-01-16 04:26:55,180 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:26:55,181 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.024*\"artist\" + 0.023*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.014*\"galleri\" + 0.014*\"collect\" + 0.009*\"new\"\n", + "2019-01-16 04:26:55,187 : INFO : topic diff=0.010121, rho=0.055216\n", + "2019-01-16 04:26:55,570 : INFO : PROGRESS: pass 0, at document #658000/4922894\n", + "2019-01-16 04:26:57,670 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:26:58,229 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.028*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:26:58,230 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.072*\"west\" + 0.069*\"region\" + 0.066*\"south\" + 0.065*\"east\" + 0.043*\"district\" + 0.033*\"central\" + 0.031*\"northern\" + 0.023*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:26:58,232 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.023*\"artist\" + 0.023*\"design\" + 0.021*\"paint\" + 0.016*\"exhibit\" + 0.014*\"galleri\" + 0.014*\"collect\" + 0.009*\"new\"\n", + "2019-01-16 04:26:58,234 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.011*\"univers\" + 0.011*\"work\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.010*\"nation\" + 0.010*\"organ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:26:58,235 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.030*\"oper\" + 0.023*\"aircraft\" + 0.019*\"airport\" + 0.016*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.013*\"squadron\" + 0.012*\"servic\" + 0.011*\"base\"\n", + "2019-01-16 04:26:58,241 : INFO : topic diff=0.010368, rho=0.055132\n", + "2019-01-16 04:27:03,241 : INFO : -11.600 per-word bound, 3103.8 perplexity estimate based on a held-out corpus of 2000 documents with 573510 words\n", + "2019-01-16 04:27:03,242 : INFO : PROGRESS: pass 0, at document #660000/4922894\n", + "2019-01-16 04:27:05,411 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:05,972 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.071*\"west\" + 0.069*\"region\" + 0.066*\"south\" + 0.065*\"east\" + 0.044*\"district\" + 0.033*\"central\" + 0.030*\"northern\" + 0.023*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:27:05,973 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.073*\"octob\" + 0.069*\"juli\" + 0.067*\"august\" + 0.067*\"januari\" + 0.065*\"novemb\" + 0.064*\"decemb\" + 0.063*\"april\" + 0.062*\"june\"\n", + "2019-01-16 04:27:05,975 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 04:27:05,976 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"match\" + 0.014*\"world\" + 0.013*\"team\" + 0.012*\"champion\"\n", + "2019-01-16 04:27:05,978 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:27:05,984 : INFO : topic diff=0.009800, rho=0.055048\n", + "2019-01-16 04:27:06,351 : INFO : PROGRESS: pass 0, at document #662000/4922894\n", + "2019-01-16 04:27:08,406 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:08,963 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.020*\"district\" + 0.019*\"http\" + 0.016*\"provinc\" + 0.014*\"iran\" + 0.013*\"www\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.012*\"sri\"\n", + "2019-01-16 04:27:08,965 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.015*\"california\" + 0.015*\"citi\" + 0.013*\"counti\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:27:08,967 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.010*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:27:08,968 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.020*\"winner\" + 0.016*\"open\" + 0.016*\"singl\" + 0.014*\"qualifi\" + 0.013*\"point\" + 0.013*\"runner\"\n", + "2019-01-16 04:27:08,969 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.010*\"regiment\" + 0.010*\"offic\"\n", + "2019-01-16 04:27:08,975 : INFO : topic diff=0.009383, rho=0.054965\n", + "2019-01-16 04:27:09,361 : INFO : PROGRESS: pass 0, at document #664000/4922894\n", + "2019-01-16 04:27:11,530 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:12,086 : INFO : topic #4 (0.020): 0.121*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:27:12,087 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.017*\"health\" + 0.017*\"hospit\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"medicin\" + 0.009*\"treatment\" + 0.009*\"cancer\"\n", + "2019-01-16 04:27:12,089 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.073*\"octob\" + 0.067*\"juli\" + 0.066*\"januari\" + 0.066*\"august\" + 0.064*\"novemb\" + 0.064*\"decemb\" + 0.063*\"april\" + 0.061*\"june\"\n", + "2019-01-16 04:27:12,091 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.010*\"right\" + 0.008*\"legal\" + 0.007*\"justic\"\n", + "2019-01-16 04:27:12,093 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 04:27:12,099 : INFO : topic diff=0.010970, rho=0.054882\n", + "2019-01-16 04:27:12,461 : INFO : PROGRESS: pass 0, at document #666000/4922894\n", + "2019-01-16 04:27:14,516 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:15,072 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.012*\"princ\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:27:15,074 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:27:15,076 : INFO : topic #35 (0.020): 0.033*\"lee\" + 0.026*\"singapor\" + 0.019*\"thailand\" + 0.018*\"vietnam\" + 0.018*\"indonesia\" + 0.015*\"asian\" + 0.013*\"asia\" + 0.011*\"chan\" + 0.011*\"thai\" + 0.011*\"malaysia\"\n", + "2019-01-16 04:27:15,079 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.012*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"carlo\" + 0.010*\"josé\" + 0.010*\"juan\"\n", + "2019-01-16 04:27:15,081 : INFO : topic #39 (0.020): 0.044*\"air\" + 0.029*\"oper\" + 0.023*\"aircraft\" + 0.018*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.013*\"squadron\" + 0.012*\"servic\" + 0.011*\"base\"\n", + "2019-01-16 04:27:15,087 : INFO : topic diff=0.009015, rho=0.054800\n", + "2019-01-16 04:27:15,439 : INFO : PROGRESS: pass 0, at document #668000/4922894\n", + "2019-01-16 04:27:17,614 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:18,170 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.072*\"west\" + 0.067*\"region\" + 0.066*\"south\" + 0.065*\"east\" + 0.045*\"district\" + 0.033*\"central\" + 0.029*\"northern\" + 0.023*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:27:18,171 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.010*\"valu\" + 0.009*\"theori\" + 0.008*\"model\" + 0.008*\"data\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 04:27:18,173 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.016*\"open\" + 0.016*\"singl\" + 0.015*\"point\" + 0.014*\"qualifi\" + 0.012*\"doubl\"\n", + "2019-01-16 04:27:18,174 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:27:18,176 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:27:18,182 : INFO : topic diff=0.009534, rho=0.054718\n", + "2019-01-16 04:27:18,541 : INFO : PROGRESS: pass 0, at document #670000/4922894\n", + "2019-01-16 04:27:20,656 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:21,219 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.068*\"align\" + 0.063*\"style\" + 0.054*\"wikit\" + 0.052*\"center\" + 0.046*\"left\" + 0.044*\"right\" + 0.042*\"text\" + 0.033*\"philippin\" + 0.026*\"border\"\n", + "2019-01-16 04:27:21,221 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.011*\"kill\" + 0.010*\"boat\" + 0.010*\"gun\" + 0.009*\"sea\" + 0.009*\"damag\" + 0.008*\"crew\" + 0.008*\"dai\" + 0.008*\"port\" + 0.007*\"bomb\"\n", + "2019-01-16 04:27:21,223 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.040*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:27:21,225 : INFO : topic #33 (0.020): 0.014*\"compani\" + 0.012*\"million\" + 0.009*\"year\" + 0.008*\"time\" + 0.008*\"market\" + 0.008*\"bank\" + 0.007*\"increas\" + 0.006*\"rate\" + 0.006*\"product\" + 0.006*\"cost\"\n", + "2019-01-16 04:27:21,226 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.029*\"england\" + 0.023*\"town\" + 0.020*\"citi\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.011*\"west\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:27:21,232 : INFO : topic diff=0.008920, rho=0.054636\n", + "2019-01-16 04:27:21,555 : INFO : PROGRESS: pass 0, at document #672000/4922894\n", + "2019-01-16 04:27:23,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:24,148 : INFO : topic #39 (0.020): 0.044*\"air\" + 0.029*\"oper\" + 0.024*\"aircraft\" + 0.017*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.015*\"flight\" + 0.012*\"servic\" + 0.012*\"base\"\n", + "2019-01-16 04:27:24,150 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.012*\"intern\" + 0.011*\"work\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.010*\"nation\" + 0.010*\"project\"\n", + "2019-01-16 04:27:24,151 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.022*\"station\" + 0.019*\"road\" + 0.018*\"line\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:27:24,154 : INFO : topic #49 (0.020): 0.076*\"north\" + 0.072*\"west\" + 0.066*\"south\" + 0.065*\"region\" + 0.065*\"east\" + 0.050*\"district\" + 0.033*\"central\" + 0.029*\"northern\" + 0.022*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:27:24,155 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"valu\" + 0.009*\"model\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"data\" + 0.008*\"set\" + 0.007*\"point\" + 0.007*\"gener\"\n", + "2019-01-16 04:27:24,162 : INFO : topic diff=0.011235, rho=0.054554\n", + "2019-01-16 04:27:24,518 : INFO : PROGRESS: pass 0, at document #674000/4922894\n", + "2019-01-16 04:27:26,626 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:27,183 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.028*\"born\" + 0.024*\"russia\" + 0.022*\"soviet\" + 0.021*\"jewish\" + 0.019*\"polish\" + 0.017*\"republ\" + 0.015*\"moscow\" + 0.015*\"poland\" + 0.014*\"czech\"\n", + "2019-01-16 04:27:27,185 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.020*\"team\" + 0.019*\"car\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.011*\"finish\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"tour\" + 0.011*\"stage\"\n", + "2019-01-16 04:27:27,186 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.012*\"intern\" + 0.011*\"work\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.010*\"project\" + 0.010*\"nation\"\n", + "2019-01-16 04:27:27,188 : INFO : topic #49 (0.020): 0.076*\"north\" + 0.072*\"west\" + 0.067*\"south\" + 0.065*\"region\" + 0.065*\"east\" + 0.051*\"district\" + 0.033*\"central\" + 0.029*\"northern\" + 0.022*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:27:27,189 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.017*\"centuri\" + 0.011*\"princ\" + 0.011*\"greek\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:27:27,196 : INFO : topic diff=0.008671, rho=0.054473\n", + "2019-01-16 04:27:27,558 : INFO : PROGRESS: pass 0, at document #676000/4922894\n", + "2019-01-16 04:27:29,696 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:30,251 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"championship\" + 0.013*\"ford\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"tour\" + 0.010*\"year\"\n", + "2019-01-16 04:27:30,253 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.010*\"host\" + 0.010*\"air\"\n", + "2019-01-16 04:27:30,255 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.065*\"align\" + 0.062*\"style\" + 0.056*\"wikit\" + 0.050*\"center\" + 0.047*\"left\" + 0.044*\"right\" + 0.040*\"text\" + 0.032*\"philippin\" + 0.026*\"border\"\n", + "2019-01-16 04:27:30,257 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"protein\" + 0.008*\"acid\" + 0.007*\"design\"\n", + "2019-01-16 04:27:30,258 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.010*\"offic\"\n", + "2019-01-16 04:27:30,264 : INFO : topic diff=0.009666, rho=0.054393\n", + "2019-01-16 04:27:30,618 : INFO : PROGRESS: pass 0, at document #678000/4922894\n", + "2019-01-16 04:27:32,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:33,353 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.028*\"born\" + 0.024*\"soviet\" + 0.024*\"russia\" + 0.021*\"jewish\" + 0.019*\"polish\" + 0.017*\"republ\" + 0.016*\"moscow\" + 0.015*\"poland\" + 0.014*\"czech\"\n", + "2019-01-16 04:27:33,354 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"american\" + 0.008*\"paul\" + 0.008*\"robert\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"william\"\n", + "2019-01-16 04:27:33,356 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.018*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:27:33,357 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.010*\"forest\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 04:27:33,359 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.010*\"offic\"\n", + "2019-01-16 04:27:33,365 : INFO : topic diff=0.010083, rho=0.054313\n", + "2019-01-16 04:27:38,194 : INFO : -11.806 per-word bound, 3581.3 perplexity estimate based on a held-out corpus of 2000 documents with 570397 words\n", + "2019-01-16 04:27:38,195 : INFO : PROGRESS: pass 0, at document #680000/4922894\n", + "2019-01-16 04:27:40,347 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:40,908 : INFO : topic #33 (0.020): 0.014*\"compani\" + 0.012*\"million\" + 0.009*\"year\" + 0.008*\"time\" + 0.008*\"market\" + 0.008*\"bank\" + 0.008*\"increas\" + 0.007*\"product\" + 0.006*\"rate\" + 0.006*\"cost\"\n", + "2019-01-16 04:27:40,910 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.045*\"new\" + 0.039*\"china\" + 0.036*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.020*\"hong\"\n", + "2019-01-16 04:27:40,911 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"japan\" + 0.023*\"men\" + 0.022*\"medal\" + 0.021*\"event\" + 0.018*\"nation\" + 0.018*\"japanes\"\n", + "2019-01-16 04:27:40,914 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.021*\"wrestl\" + 0.018*\"contest\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.015*\"fight\" + 0.015*\"world\" + 0.014*\"match\" + 0.014*\"team\" + 0.012*\"defeat\"\n", + "2019-01-16 04:27:40,916 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"intern\" + 0.011*\"work\" + 0.010*\"manag\" + 0.010*\"servic\" + 0.010*\"nation\" + 0.010*\"organ\"\n", + "2019-01-16 04:27:40,922 : INFO : topic diff=0.009049, rho=0.054233\n", + "2019-01-16 04:27:41,280 : INFO : PROGRESS: pass 0, at document #682000/4922894\n", + "2019-01-16 04:27:43,378 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:43,937 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.031*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:27:43,939 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.060*\"align\" + 0.060*\"style\" + 0.057*\"wikit\" + 0.047*\"center\" + 0.044*\"left\" + 0.041*\"right\" + 0.040*\"text\" + 0.037*\"philippin\" + 0.026*\"border\"\n", + "2019-01-16 04:27:43,940 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.010*\"offic\"\n", + "2019-01-16 04:27:43,942 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.071*\"west\" + 0.067*\"south\" + 0.065*\"east\" + 0.062*\"region\" + 0.050*\"district\" + 0.032*\"central\" + 0.029*\"northern\" + 0.022*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:27:43,945 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.013*\"park\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:27:43,952 : INFO : topic diff=0.009937, rho=0.054153\n", + "2019-01-16 04:27:44,321 : INFO : PROGRESS: pass 0, at document #684000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:27:46,463 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:47,022 : INFO : topic #35 (0.020): 0.031*\"lee\" + 0.024*\"singapor\" + 0.019*\"thailand\" + 0.018*\"vietnam\" + 0.016*\"asia\" + 0.016*\"indonesia\" + 0.014*\"asian\" + 0.013*\"malaysia\" + 0.012*\"–present\" + 0.011*\"thai\"\n", + "2019-01-16 04:27:47,025 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.071*\"west\" + 0.068*\"south\" + 0.065*\"east\" + 0.062*\"region\" + 0.050*\"district\" + 0.032*\"northern\" + 0.032*\"central\" + 0.022*\"villag\" + 0.021*\"administr\"\n", + "2019-01-16 04:27:47,027 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\"\n", + "2019-01-16 04:27:47,029 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.040*\"franc\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.020*\"jean\" + 0.017*\"itali\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:27:47,031 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:27:47,038 : INFO : topic diff=0.010957, rho=0.054074\n", + "2019-01-16 04:27:47,410 : INFO : PROGRESS: pass 0, at document #686000/4922894\n", + "2019-01-16 04:27:49,538 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:50,095 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.023*\"paint\" + 0.022*\"design\" + 0.022*\"artist\" + 0.017*\"exhibit\" + 0.013*\"galleri\" + 0.013*\"collect\" + 0.009*\"new\"\n", + "2019-01-16 04:27:50,097 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.018*\"district\" + 0.017*\"provinc\" + 0.015*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.012*\"islam\"\n", + "2019-01-16 04:27:50,098 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"space\" + 0.005*\"materi\" + 0.005*\"time\"\n", + "2019-01-16 04:27:50,100 : INFO : topic #40 (0.020): 0.031*\"bar\" + 0.029*\"africa\" + 0.027*\"african\" + 0.022*\"south\" + 0.021*\"text\" + 0.020*\"till\" + 0.015*\"color\" + 0.012*\"tropic\" + 0.010*\"black\" + 0.009*\"agricultur\"\n", + "2019-01-16 04:27:50,103 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.010*\"forest\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 04:27:50,109 : INFO : topic diff=0.007710, rho=0.053995\n", + "2019-01-16 04:27:50,447 : INFO : PROGRESS: pass 0, at document #688000/4922894\n", + "2019-01-16 04:27:52,487 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:53,042 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 04:27:53,044 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.028*\"unit\" + 0.022*\"town\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.016*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\" + 0.011*\"counti\"\n", + "2019-01-16 04:27:53,045 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.014*\"park\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:27:53,047 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.010*\"boat\" + 0.010*\"gun\" + 0.010*\"damag\" + 0.009*\"kill\" + 0.009*\"sea\" + 0.008*\"crew\" + 0.008*\"port\" + 0.008*\"dai\" + 0.007*\"island\"\n", + "2019-01-16 04:27:53,048 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:27:53,054 : INFO : topic diff=0.009538, rho=0.053916\n", + "2019-01-16 04:27:53,430 : INFO : PROGRESS: pass 0, at document #690000/4922894\n", + "2019-01-16 04:27:55,527 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:56,083 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:27:56,084 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.068*\"align\" + 0.059*\"style\" + 0.056*\"wikit\" + 0.046*\"right\" + 0.046*\"center\" + 0.044*\"left\" + 0.038*\"text\" + 0.034*\"philippin\" + 0.025*\"border\"\n", + "2019-01-16 04:27:56,086 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.031*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"writer\" + 0.011*\"author\" + 0.010*\"novel\"\n", + "2019-01-16 04:27:56,087 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"softwar\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.007*\"iec\" + 0.007*\"releas\" + 0.007*\"design\"\n", + "2019-01-16 04:27:56,089 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"berlin\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:27:56,095 : INFO : topic diff=0.010902, rho=0.053838\n", + "2019-01-16 04:27:56,441 : INFO : PROGRESS: pass 0, at document #692000/4922894\n", + "2019-01-16 04:27:58,504 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:27:59,059 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.011*\"divis\" + 0.010*\"regiment\" + 0.010*\"offic\"\n", + "2019-01-16 04:27:59,061 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.018*\"health\" + 0.018*\"hospit\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.011*\"patient\" + 0.010*\"medicin\" + 0.010*\"caus\" + 0.009*\"cancer\" + 0.009*\"treatment\"\n", + "2019-01-16 04:27:59,062 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.011*\"cell\" + 0.011*\"model\" + 0.011*\"power\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"protein\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:27:59,064 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.018*\"forc\" + 0.018*\"airport\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.015*\"flight\" + 0.012*\"base\" + 0.011*\"servic\"\n", + "2019-01-16 04:27:59,066 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 04:27:59,072 : INFO : topic diff=0.010541, rho=0.053760\n", + "2019-01-16 04:27:59,413 : INFO : PROGRESS: pass 0, at document #694000/4922894\n", + "2019-01-16 04:28:01,570 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:02,143 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.052*\"australian\" + 0.045*\"new\" + 0.040*\"china\" + 0.036*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.020*\"sydnei\" + 0.019*\"kong\" + 0.019*\"hong\"\n", + "2019-01-16 04:28:02,145 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"intern\" + 0.011*\"work\" + 0.011*\"servic\" + 0.010*\"manag\" + 0.010*\"organ\" + 0.010*\"nation\"\n", + "2019-01-16 04:28:02,147 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:28:02,148 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.024*\"wrestl\" + 0.020*\"contest\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.015*\"match\" + 0.015*\"fight\" + 0.015*\"team\" + 0.014*\"world\" + 0.013*\"defeat\"\n", + "2019-01-16 04:28:02,150 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.016*\"citi\" + 0.015*\"california\" + 0.014*\"counti\" + 0.012*\"texa\" + 0.011*\"washington\"\n", + "2019-01-16 04:28:02,156 : INFO : topic diff=0.010605, rho=0.053683\n", + "2019-01-16 04:28:02,485 : INFO : PROGRESS: pass 0, at document #696000/4922894\n", + "2019-01-16 04:28:04,565 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:05,119 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.018*\"open\" + 0.014*\"singl\" + 0.014*\"draw\" + 0.014*\"qualifi\" + 0.014*\"point\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:28:05,121 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"card\" + 0.007*\"player\" + 0.007*\"releas\"\n", + "2019-01-16 04:28:05,123 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.040*\"counti\" + 0.035*\"town\" + 0.030*\"citi\" + 0.029*\"villag\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.022*\"district\" + 0.022*\"municip\"\n", + "2019-01-16 04:28:05,125 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.022*\"berlin\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:28:05,126 : INFO : topic #34 (0.020): 0.081*\"canada\" + 0.080*\"island\" + 0.063*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.015*\"british\" + 0.015*\"montreal\" + 0.015*\"vancouv\" + 0.014*\"korea\"\n", + "2019-01-16 04:28:05,132 : INFO : topic diff=0.008854, rho=0.053606\n", + "2019-01-16 04:28:05,486 : INFO : PROGRESS: pass 0, at document #698000/4922894\n", + "2019-01-16 04:28:07,674 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:08,231 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:28:08,232 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.015*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 04:28:08,234 : INFO : topic #34 (0.020): 0.081*\"island\" + 0.081*\"canada\" + 0.064*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.015*\"montreal\" + 0.015*\"vancouv\" + 0.015*\"british\" + 0.014*\"korea\"\n", + "2019-01-16 04:28:08,235 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"said\"\n", + "2019-01-16 04:28:08,237 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.071*\"align\" + 0.057*\"wikit\" + 0.056*\"style\" + 0.047*\"right\" + 0.046*\"center\" + 0.046*\"left\" + 0.037*\"text\" + 0.032*\"philippin\" + 0.024*\"border\"\n", + "2019-01-16 04:28:08,243 : INFO : topic diff=0.011023, rho=0.053529\n", + "2019-01-16 04:28:12,868 : INFO : -11.844 per-word bound, 3677.2 perplexity estimate based on a held-out corpus of 2000 documents with 519586 words\n", + "2019-01-16 04:28:12,869 : INFO : PROGRESS: pass 0, at document #700000/4922894\n", + "2019-01-16 04:28:14,931 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:15,489 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.014*\"singl\" + 0.013*\"qualifi\" + 0.013*\"draw\" + 0.013*\"point\"\n", + "2019-01-16 04:28:15,490 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"space\"\n", + "2019-01-16 04:28:15,492 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.072*\"align\" + 0.057*\"wikit\" + 0.055*\"style\" + 0.048*\"center\" + 0.046*\"right\" + 0.046*\"left\" + 0.037*\"text\" + 0.031*\"philippin\" + 0.024*\"border\"\n", + "2019-01-16 04:28:15,493 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.013*\"piano\" + 0.013*\"opera\"\n", + "2019-01-16 04:28:15,494 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.022*\"saint\" + 0.020*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:28:15,500 : INFO : topic diff=0.009516, rho=0.053452\n", + "2019-01-16 04:28:15,854 : INFO : PROGRESS: pass 0, at document #702000/4922894\n", + "2019-01-16 04:28:17,976 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:18,533 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:28:18,535 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"state\" + 0.012*\"nation\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 04:28:18,536 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"park\" + 0.014*\"rout\" + 0.013*\"area\" + 0.012*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:28:18,538 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.018*\"provinc\" + 0.017*\"district\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.011*\"khan\" + 0.011*\"sri\"\n", + "2019-01-16 04:28:18,539 : INFO : topic #7 (0.020): 0.016*\"iso\" + 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"valu\" + 0.009*\"theori\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"data\"\n", + "2019-01-16 04:28:18,545 : INFO : topic diff=0.008583, rho=0.053376\n", + "2019-01-16 04:28:18,906 : INFO : PROGRESS: pass 0, at document #704000/4922894\n", + "2019-01-16 04:28:21,114 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:21,670 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"american\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:28:21,672 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 04:28:21,674 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.010*\"file\" + 0.009*\"place\"\n", + "2019-01-16 04:28:21,675 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.019*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:28:21,677 : INFO : topic #29 (0.020): 0.036*\"leagu\" + 0.035*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.024*\"season\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:28:21,684 : INFO : topic diff=0.011107, rho=0.053300\n", + "2019-01-16 04:28:22,010 : INFO : PROGRESS: pass 0, at document #706000/4922894\n", + "2019-01-16 04:28:24,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:24,683 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.018*\"station\" + 0.015*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:28:24,684 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 04:28:24,686 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.022*\"member\" + 0.021*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.019*\"minist\" + 0.015*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 04:28:24,688 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.017*\"health\" + 0.016*\"hospit\" + 0.014*\"ret\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"treatment\" + 0.009*\"medicin\" + 0.008*\"cancer\"\n", + "2019-01-16 04:28:24,690 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"ford\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"tour\" + 0.010*\"time\"\n", + "2019-01-16 04:28:24,697 : INFO : topic diff=0.009001, rho=0.053225\n", + "2019-01-16 04:28:25,038 : INFO : PROGRESS: pass 0, at document #708000/4922894\n", + "2019-01-16 04:28:27,100 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:27,656 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.023*\"singapor\" + 0.022*\"–present\" + 0.018*\"thailand\" + 0.017*\"asia\" + 0.017*\"vietnam\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.014*\"malaysia\" + 0.010*\"chan\"\n", + "2019-01-16 04:28:27,657 : INFO : topic #40 (0.020): 0.031*\"bar\" + 0.030*\"africa\" + 0.028*\"african\" + 0.024*\"text\" + 0.023*\"till\" + 0.022*\"south\" + 0.015*\"color\" + 0.013*\"tropic\" + 0.010*\"black\" + 0.010*\"shift\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:28:27,660 : INFO : topic #7 (0.020): 0.014*\"iso\" + 0.014*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"method\" + 0.007*\"gener\"\n", + "2019-01-16 04:28:27,661 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.022*\"berlin\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:28:27,663 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.024*\"season\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:28:27,669 : INFO : topic diff=0.008807, rho=0.053149\n", + "2019-01-16 04:28:28,032 : INFO : PROGRESS: pass 0, at document #710000/4922894\n", + "2019-01-16 04:28:30,158 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:30,716 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.029*\"oper\" + 0.024*\"aircraft\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.012*\"servic\"\n", + "2019-01-16 04:28:30,717 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.030*\"africa\" + 0.028*\"african\" + 0.024*\"text\" + 0.023*\"till\" + 0.022*\"south\" + 0.015*\"color\" + 0.012*\"tropic\" + 0.010*\"shift\" + 0.010*\"black\"\n", + "2019-01-16 04:28:30,720 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.022*\"singapor\" + 0.021*\"–present\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"asia\" + 0.016*\"vietnam\" + 0.016*\"asian\" + 0.014*\"malaysia\" + 0.010*\"thai\"\n", + "2019-01-16 04:28:30,722 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:28:30,724 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 04:28:30,730 : INFO : topic diff=0.010741, rho=0.053074\n", + "2019-01-16 04:28:31,073 : INFO : PROGRESS: pass 0, at document #712000/4922894\n", + "2019-01-16 04:28:33,144 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:33,700 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.030*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.011*\"edit\" + 0.011*\"writer\" + 0.011*\"author\" + 0.010*\"novel\"\n", + "2019-01-16 04:28:33,702 : INFO : topic #15 (0.020): 0.028*\"england\" + 0.028*\"unit\" + 0.024*\"town\" + 0.021*\"cricket\" + 0.021*\"citi\" + 0.016*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"wale\" + 0.011*\"free\"\n", + "2019-01-16 04:28:33,704 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.015*\"match\" + 0.015*\"champion\" + 0.014*\"world\" + 0.014*\"team\"\n", + "2019-01-16 04:28:33,706 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:28:33,708 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.030*\"born\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.021*\"jewish\" + 0.017*\"polish\" + 0.015*\"republ\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.014*\"poland\"\n", + "2019-01-16 04:28:33,713 : INFO : topic diff=0.009659, rho=0.053000\n", + "2019-01-16 04:28:34,098 : INFO : PROGRESS: pass 0, at document #714000/4922894\n", + "2019-01-16 04:28:36,239 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:36,796 : INFO : topic #11 (0.020): 0.024*\"act\" + 0.024*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.007*\"report\"\n", + "2019-01-16 04:28:36,798 : INFO : topic #22 (0.020): 0.052*\"counti\" + 0.047*\"popul\" + 0.032*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.028*\"ag\" + 0.026*\"township\" + 0.023*\"famili\" + 0.022*\"district\" + 0.021*\"municip\"\n", + "2019-01-16 04:28:36,799 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"ireland\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.012*\"royal\"\n", + "2019-01-16 04:28:36,801 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.018*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:28:36,802 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.017*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.008*\"roman\" + 0.007*\"ancient\"\n", + "2019-01-16 04:28:36,807 : INFO : topic diff=0.009349, rho=0.052926\n", + "2019-01-16 04:28:37,161 : INFO : PROGRESS: pass 0, at document #716000/4922894\n", + "2019-01-16 04:28:39,245 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:39,802 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.069*\"align\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.048*\"right\" + 0.047*\"center\" + 0.043*\"left\" + 0.033*\"philippin\" + 0.033*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:28:39,803 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"american\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:28:39,805 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 04:28:39,807 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"ireland\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.012*\"royal\"\n", + "2019-01-16 04:28:39,810 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"japan\" + 0.024*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"gold\"\n", + "2019-01-16 04:28:39,817 : INFO : topic diff=0.010923, rho=0.052852\n", + "2019-01-16 04:28:40,161 : INFO : PROGRESS: pass 0, at document #718000/4922894\n", + "2019-01-16 04:28:42,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:42,788 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"polit\" + 0.010*\"war\" + 0.009*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 04:28:42,789 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"ireland\" + 0.013*\"jame\" + 0.012*\"royal\"\n", + "2019-01-16 04:28:42,791 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 04:28:42,793 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"said\"\n", + "2019-01-16 04:28:42,795 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"file\" + 0.009*\"centuri\"\n", + "2019-01-16 04:28:42,802 : INFO : topic diff=0.008014, rho=0.052778\n", + "2019-01-16 04:28:47,664 : INFO : -11.674 per-word bound, 3267.1 perplexity estimate based on a held-out corpus of 2000 documents with 546778 words\n", + "2019-01-16 04:28:47,665 : INFO : PROGRESS: pass 0, at document #720000/4922894\n", + "2019-01-16 04:28:49,937 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:50,495 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.066*\"align\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.048*\"right\" + 0.046*\"center\" + 0.043*\"left\" + 0.033*\"philippin\" + 0.032*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:28:50,496 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.033*\"born\" + 0.023*\"russia\" + 0.023*\"soviet\" + 0.020*\"jewish\" + 0.016*\"republ\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 04:28:50,498 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.011*\"damag\" + 0.010*\"sea\" + 0.010*\"gun\" + 0.009*\"boat\" + 0.009*\"kill\" + 0.008*\"island\" + 0.008*\"dai\" + 0.008*\"crew\" + 0.007*\"navi\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:28:50,499 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:28:50,500 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"said\"\n", + "2019-01-16 04:28:50,506 : INFO : topic diff=0.009665, rho=0.052705\n", + "2019-01-16 04:28:50,831 : INFO : PROGRESS: pass 0, at document #722000/4922894\n", + "2019-01-16 04:28:52,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:53,433 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.028*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.013*\"point\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.012*\"singl\"\n", + "2019-01-16 04:28:53,435 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.024*\"season\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 04:28:53,436 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"unit\" + 0.015*\"flight\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.011*\"servic\"\n", + "2019-01-16 04:28:53,438 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"file\" + 0.009*\"centuri\"\n", + "2019-01-16 04:28:53,441 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.033*\"born\" + 0.023*\"russia\" + 0.023*\"soviet\" + 0.019*\"jewish\" + 0.016*\"republ\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.015*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 04:28:53,448 : INFO : topic diff=0.009842, rho=0.052632\n", + "2019-01-16 04:28:53,807 : INFO : PROGRESS: pass 0, at document #724000/4922894\n", + "2019-01-16 04:28:55,961 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:56,523 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.013*\"championship\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.010*\"ford\" + 0.010*\"stage\"\n", + "2019-01-16 04:28:56,525 : INFO : topic #33 (0.020): 0.016*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"time\" + 0.008*\"bank\" + 0.008*\"market\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.007*\"rate\"\n", + "2019-01-16 04:28:56,526 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"player\" + 0.008*\"version\" + 0.007*\"data\" + 0.007*\"design\" + 0.007*\"releas\"\n", + "2019-01-16 04:28:56,528 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"cathol\" + 0.012*\"year\" + 0.012*\"born\" + 0.011*\"daughter\"\n", + "2019-01-16 04:28:56,529 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"english\"\n", + "2019-01-16 04:28:56,535 : INFO : topic diff=0.009409, rho=0.052559\n", + "2019-01-16 04:28:56,883 : INFO : PROGRESS: pass 0, at document #726000/4922894\n", + "2019-01-16 04:28:58,991 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:28:59,552 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.027*\"singapor\" + 0.025*\"–present\" + 0.019*\"thailand\" + 0.018*\"indonesia\" + 0.017*\"asia\" + 0.016*\"vietnam\" + 0.016*\"asian\" + 0.014*\"malaysia\" + 0.011*\"thai\"\n", + "2019-01-16 04:28:59,553 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"year\" + 0.011*\"driver\" + 0.010*\"ford\" + 0.010*\"stage\"\n", + "2019-01-16 04:28:59,555 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"intern\" + 0.011*\"work\" + 0.010*\"servic\" + 0.010*\"nation\" + 0.010*\"scienc\" + 0.010*\"organ\"\n", + "2019-01-16 04:28:59,556 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:28:59,558 : INFO : topic #33 (0.020): 0.016*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"time\" + 0.008*\"bank\" + 0.008*\"market\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.007*\"rate\"\n", + "2019-01-16 04:28:59,564 : INFO : topic diff=0.011659, rho=0.052486\n", + "2019-01-16 04:28:59,866 : INFO : PROGRESS: pass 0, at document #728000/4922894\n", + "2019-01-16 04:29:01,942 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:02,499 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"wrestl\" + 0.018*\"contest\" + 0.017*\"match\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.015*\"fight\" + 0.015*\"team\" + 0.014*\"world\" + 0.014*\"champion\"\n", + "2019-01-16 04:29:02,500 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.024*\"olymp\" + 0.024*\"japan\" + 0.023*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 04:29:02,502 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.015*\"piano\" + 0.015*\"danc\" + 0.015*\"plai\" + 0.015*\"orchestra\" + 0.015*\"festiv\" + 0.013*\"opera\"\n", + "2019-01-16 04:29:02,503 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:29:02,504 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.016*\"flight\" + 0.014*\"squadron\" + 0.012*\"servic\" + 0.012*\"base\"\n", + "2019-01-16 04:29:02,510 : INFO : topic diff=0.008761, rho=0.052414\n", + "2019-01-16 04:29:02,855 : INFO : PROGRESS: pass 0, at document #730000/4922894\n", + "2019-01-16 04:29:05,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:05,561 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:29:05,563 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"servic\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"intern\" + 0.011*\"work\" + 0.010*\"organ\" + 0.010*\"nation\" + 0.010*\"manag\"\n", + "2019-01-16 04:29:05,565 : INFO : topic #13 (0.020): 0.052*\"state\" + 0.034*\"new\" + 0.028*\"american\" + 0.023*\"unit\" + 0.023*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.013*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:29:05,567 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.022*\"design\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.014*\"galleri\" + 0.010*\"imag\"\n", + "2019-01-16 04:29:05,569 : INFO : topic #27 (0.020): 0.036*\"russian\" + 0.033*\"born\" + 0.023*\"soviet\" + 0.023*\"russia\" + 0.019*\"jewish\" + 0.016*\"republ\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.014*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 04:29:05,575 : INFO : topic diff=0.011995, rho=0.052342\n", + "2019-01-16 04:29:05,912 : INFO : PROGRESS: pass 0, at document #732000/4922894\n", + "2019-01-16 04:29:07,957 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:08,514 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"wrestl\" + 0.018*\"contest\" + 0.018*\"match\" + 0.018*\"championship\" + 0.017*\"titl\" + 0.015*\"champion\" + 0.014*\"team\" + 0.014*\"fight\" + 0.014*\"world\"\n", + "2019-01-16 04:29:08,516 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"carlo\"\n", + "2019-01-16 04:29:08,518 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"writer\" + 0.011*\"edit\" + 0.010*\"novel\"\n", + "2019-01-16 04:29:08,519 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 04:29:08,521 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"design\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:29:08,527 : INFO : topic diff=0.009194, rho=0.052271\n", + "2019-01-16 04:29:08,878 : INFO : PROGRESS: pass 0, at document #734000/4922894\n", + "2019-01-16 04:29:11,006 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:11,564 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.076*\"septemb\" + 0.073*\"octob\" + 0.070*\"januari\" + 0.068*\"juli\" + 0.067*\"august\" + 0.065*\"novemb\" + 0.064*\"decemb\" + 0.064*\"april\" + 0.063*\"june\"\n", + "2019-01-16 04:29:11,565 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.028*\"england\" + 0.024*\"town\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.014*\"scotland\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.012*\"scottish\" + 0.010*\"west\"\n", + "2019-01-16 04:29:11,566 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.012*\"damag\" + 0.010*\"sea\" + 0.010*\"gun\" + 0.009*\"boat\" + 0.008*\"kill\" + 0.008*\"navi\" + 0.008*\"island\" + 0.008*\"dai\" + 0.007*\"port\"\n", + "2019-01-16 04:29:11,568 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.021*\"act\" + 0.018*\"state\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.008*\"right\" + 0.008*\"legal\" + 0.008*\"public\"\n", + "2019-01-16 04:29:11,569 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 04:29:11,575 : INFO : topic diff=0.011176, rho=0.052200\n", + "2019-01-16 04:29:11,875 : INFO : PROGRESS: pass 0, at document #736000/4922894\n", + "2019-01-16 04:29:13,939 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:14,495 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.019*\"http\" + 0.015*\"provinc\" + 0.015*\"district\" + 0.015*\"pakistan\" + 0.014*\"www\" + 0.014*\"iran\" + 0.011*\"islam\" + 0.011*\"sri\"\n", + "2019-01-16 04:29:14,496 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"year\" + 0.011*\"tour\" + 0.010*\"lap\" + 0.010*\"time\"\n", + "2019-01-16 04:29:14,498 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:29:14,500 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 04:29:14,501 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\"\n", + "2019-01-16 04:29:14,508 : INFO : topic diff=0.009896, rho=0.052129\n", + "2019-01-16 04:29:14,846 : INFO : PROGRESS: pass 0, at document #738000/4922894\n", + "2019-01-16 04:29:16,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:17,545 : INFO : topic #27 (0.020): 0.037*\"russian\" + 0.033*\"born\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.019*\"jewish\" + 0.016*\"republ\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 04:29:17,547 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.022*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.016*\"park\" + 0.015*\"railwai\" + 0.015*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:29:17,549 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"edit\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:29:17,550 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.028*\"england\" + 0.024*\"town\" + 0.020*\"cricket\" + 0.020*\"citi\" + 0.018*\"scotland\" + 0.017*\"wale\" + 0.013*\"manchest\" + 0.012*\"scottish\" + 0.010*\"counti\"\n", + "2019-01-16 04:29:17,552 : INFO : topic #39 (0.020): 0.044*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.016*\"flight\" + 0.014*\"squadron\" + 0.013*\"servic\" + 0.012*\"base\"\n", + "2019-01-16 04:29:17,558 : INFO : topic diff=0.010612, rho=0.052058\n", + "2019-01-16 04:29:22,461 : INFO : -11.711 per-word bound, 3353.3 perplexity estimate based on a held-out corpus of 2000 documents with 572047 words\n", + "2019-01-16 04:29:22,462 : INFO : PROGRESS: pass 0, at document #740000/4922894\n", + "2019-01-16 04:29:24,554 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:25,110 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:29:25,112 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 04:29:25,113 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.020*\"–present\" + 0.020*\"indonesia\" + 0.018*\"thailand\" + 0.017*\"asia\" + 0.016*\"vietnam\" + 0.015*\"asian\" + 0.013*\"malaysia\" + 0.011*\"thai\"\n", + "2019-01-16 04:29:25,115 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:29:25,117 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"cathol\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:29:25,124 : INFO : topic diff=0.008879, rho=0.051988\n", + "2019-01-16 04:29:25,452 : INFO : PROGRESS: pass 0, at document #742000/4922894\n", + "2019-01-16 04:29:27,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:28,092 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.012*\"channel\" + 0.012*\"televis\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:29:28,094 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:29:28,095 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.020*\"winner\" + 0.019*\"group\" + 0.019*\"open\" + 0.014*\"singl\" + 0.013*\"point\" + 0.012*\"qualifi\" + 0.012*\"place\"\n", + "2019-01-16 04:29:28,097 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.018*\"championship\" + 0.017*\"titl\" + 0.014*\"team\" + 0.014*\"fight\" + 0.014*\"world\" + 0.014*\"champion\"\n", + "2019-01-16 04:29:28,098 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"edit\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:29:28,105 : INFO : topic diff=0.008990, rho=0.051917\n", + "2019-01-16 04:29:28,436 : INFO : PROGRESS: pass 0, at document #744000/4922894\n", + "2019-01-16 04:29:30,515 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:31,075 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.075*\"septemb\" + 0.075*\"octob\" + 0.070*\"januari\" + 0.068*\"juli\" + 0.066*\"novemb\" + 0.066*\"august\" + 0.066*\"decemb\" + 0.064*\"april\" + 0.062*\"june\"\n", + "2019-01-16 04:29:31,076 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"us\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"form\"\n", + "2019-01-16 04:29:31,078 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:29:31,080 : INFO : topic #33 (0.020): 0.017*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"market\" + 0.008*\"bank\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.006*\"rate\"\n", + "2019-01-16 04:29:31,082 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.020*\"centuri\" + 0.011*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"dynasti\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\"\n", + "2019-01-16 04:29:31,089 : INFO : topic diff=0.010070, rho=0.051848\n", + "2019-01-16 04:29:31,415 : INFO : PROGRESS: pass 0, at document #746000/4922894\n", + "2019-01-16 04:29:33,529 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:29:34,085 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.018*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.010*\"offic\"\n", + "2019-01-16 04:29:34,087 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.034*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:29:34,089 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.016*\"park\" + 0.015*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"area\" + 0.011*\"north\"\n", + "2019-01-16 04:29:34,091 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.020*\"–present\" + 0.019*\"indonesia\" + 0.019*\"thailand\" + 0.017*\"asia\" + 0.016*\"vietnam\" + 0.015*\"asian\" + 0.013*\"malaysia\" + 0.012*\"thai\"\n", + "2019-01-16 04:29:34,093 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"robert\" + 0.007*\"american\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:29:34,099 : INFO : topic diff=0.008593, rho=0.051778\n", + "2019-01-16 04:29:34,447 : INFO : PROGRESS: pass 0, at document #748000/4922894\n", + "2019-01-16 04:29:36,641 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:37,201 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.034*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:29:37,202 : INFO : topic #27 (0.020): 0.038*\"russian\" + 0.032*\"born\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.017*\"polish\" + 0.016*\"republ\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"czech\"\n", + "2019-01-16 04:29:37,204 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.020*\"centuri\" + 0.011*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"dynasti\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\"\n", + "2019-01-16 04:29:37,205 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.019*\"http\" + 0.015*\"district\" + 0.015*\"provinc\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.014*\"www\" + 0.011*\"sri\" + 0.011*\"islam\"\n", + "2019-01-16 04:29:37,207 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:29:37,213 : INFO : topic diff=0.008283, rho=0.051709\n", + "2019-01-16 04:29:37,542 : INFO : PROGRESS: pass 0, at document #750000/4922894\n", + "2019-01-16 04:29:39,631 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:40,186 : INFO : topic #35 (0.020): 0.031*\"–present\" + 0.026*\"lee\" + 0.022*\"singapor\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.017*\"asia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"malaysia\" + 0.012*\"thai\"\n", + "2019-01-16 04:29:40,188 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.012*\"televis\"\n", + "2019-01-16 04:29:40,190 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.079*\"canada\" + 0.061*\"canadian\" + 0.027*\"toronto\" + 0.027*\"ontario\" + 0.016*\"montreal\" + 0.015*\"quebec\" + 0.015*\"british\" + 0.015*\"vancouv\" + 0.014*\"provinci\"\n", + "2019-01-16 04:29:40,191 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"fish\" + 0.006*\"red\"\n", + "2019-01-16 04:29:40,193 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.011*\"intern\" + 0.011*\"nation\" + 0.011*\"work\" + 0.010*\"scienc\" + 0.010*\"organ\"\n", + "2019-01-16 04:29:40,199 : INFO : topic diff=0.009521, rho=0.051640\n", + "2019-01-16 04:29:40,525 : INFO : PROGRESS: pass 0, at document #752000/4922894\n", + "2019-01-16 04:29:42,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:43,175 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:29:43,177 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.006*\"fish\"\n", + "2019-01-16 04:29:43,179 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.048*\"australian\" + 0.045*\"new\" + 0.041*\"china\" + 0.034*\"chines\" + 0.032*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.018*\"sydnei\"\n", + "2019-01-16 04:29:43,180 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"senat\"\n", + "2019-01-16 04:29:43,181 : INFO : topic #40 (0.020): 0.033*\"bar\" + 0.030*\"africa\" + 0.027*\"african\" + 0.022*\"south\" + 0.022*\"text\" + 0.022*\"till\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.010*\"black\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:29:43,187 : INFO : topic diff=0.010024, rho=0.051571\n", + "2019-01-16 04:29:43,496 : INFO : PROGRESS: pass 0, at document #754000/4922894\n", + "2019-01-16 04:29:45,588 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:46,143 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.060*\"align\" + 0.058*\"wikit\" + 0.054*\"style\" + 0.052*\"center\" + 0.045*\"left\" + 0.041*\"right\" + 0.034*\"text\" + 0.032*\"philippin\" + 0.028*\"border\"\n", + "2019-01-16 04:29:46,144 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.006*\"fish\"\n", + "2019-01-16 04:29:46,146 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.005*\"exampl\"\n", + "2019-01-16 04:29:46,147 : INFO : topic #35 (0.020): 0.028*\"–present\" + 0.027*\"lee\" + 0.022*\"singapor\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.013*\"malaysia\" + 0.012*\"kim\"\n", + "2019-01-16 04:29:46,148 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:29:46,154 : INFO : topic diff=0.008471, rho=0.051503\n", + "2019-01-16 04:29:46,463 : INFO : PROGRESS: pass 0, at document #756000/4922894\n", + "2019-01-16 04:29:48,606 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:49,163 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.049*\"australian\" + 0.045*\"new\" + 0.042*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"sydnei\" + 0.019*\"kong\"\n", + "2019-01-16 04:29:49,165 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.015*\"danc\" + 0.015*\"opera\" + 0.015*\"plai\" + 0.014*\"piano\" + 0.014*\"festiv\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:29:49,166 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:29:49,167 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.030*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.022*\"south\" + 0.022*\"till\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.010*\"black\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:29:49,169 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.019*\"road\" + 0.019*\"line\" + 0.016*\"park\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:29:49,175 : INFO : topic diff=0.008494, rho=0.051434\n", + "2019-01-16 04:29:49,498 : INFO : PROGRESS: pass 0, at document #758000/4922894\n", + "2019-01-16 04:29:51,581 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:52,138 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:29:52,139 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.050*\"australian\" + 0.045*\"new\" + 0.042*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"sydnei\" + 0.019*\"kong\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:29:52,141 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.030*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.022*\"south\" + 0.022*\"till\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.011*\"black\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:29:52,142 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:29:52,143 : INFO : topic #33 (0.020): 0.017*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.006*\"cost\" + 0.006*\"rate\"\n", + "2019-01-16 04:29:52,149 : INFO : topic diff=0.007745, rho=0.051367\n", + "2019-01-16 04:29:57,066 : INFO : -11.815 per-word bound, 3604.2 perplexity estimate based on a held-out corpus of 2000 documents with 586209 words\n", + "2019-01-16 04:29:57,066 : INFO : PROGRESS: pass 0, at document #760000/4922894\n", + "2019-01-16 04:29:59,209 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:29:59,765 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"titl\" + 0.017*\"match\" + 0.017*\"championship\" + 0.014*\"team\" + 0.014*\"fight\" + 0.014*\"world\" + 0.013*\"champion\"\n", + "2019-01-16 04:29:59,767 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.062*\"align\" + 0.059*\"wikit\" + 0.055*\"style\" + 0.052*\"center\" + 0.048*\"left\" + 0.041*\"right\" + 0.034*\"text\" + 0.032*\"philippin\" + 0.027*\"border\"\n", + "2019-01-16 04:29:59,769 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.019*\"state\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:29:59,771 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"american\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"wilson\" + 0.007*\"smith\" + 0.007*\"william\"\n", + "2019-01-16 04:29:59,773 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", + "2019-01-16 04:29:59,779 : INFO : topic diff=0.008143, rho=0.051299\n", + "2019-01-16 04:30:00,129 : INFO : PROGRESS: pass 0, at document #762000/4922894\n", + "2019-01-16 04:30:02,269 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:02,829 : INFO : topic #33 (0.020): 0.017*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"market\" + 0.008*\"time\" + 0.008*\"increas\" + 0.007*\"product\" + 0.006*\"cost\" + 0.006*\"rate\"\n", + "2019-01-16 04:30:02,830 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.005*\"exampl\"\n", + "2019-01-16 04:30:02,832 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"republican\" + 0.013*\"senat\"\n", + "2019-01-16 04:30:02,833 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.024*\"saint\" + 0.018*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 04:30:02,835 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.030*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.022*\"south\" + 0.021*\"till\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.010*\"black\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:30:02,841 : INFO : topic diff=0.008850, rho=0.051232\n", + "2019-01-16 04:30:03,143 : INFO : PROGRESS: pass 0, at document #764000/4922894\n", + "2019-01-16 04:30:05,185 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:05,740 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.019*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:30:05,742 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.028*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.021*\"design\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.013*\"galleri\" + 0.013*\"imag\"\n", + "2019-01-16 04:30:05,744 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"american\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"wilson\" + 0.007*\"smith\" + 0.007*\"william\"\n", + "2019-01-16 04:30:05,746 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"greek\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:30:05,747 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"centuri\" + 0.009*\"jpg\" + 0.009*\"place\"\n", + "2019-01-16 04:30:05,753 : INFO : topic diff=0.008474, rho=0.051164\n", + "2019-01-16 04:30:06,112 : INFO : PROGRESS: pass 0, at document #766000/4922894\n", + "2019-01-16 04:30:08,218 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:08,775 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"greek\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:30:08,777 : INFO : topic #48 (0.020): 0.081*\"march\" + 0.077*\"octob\" + 0.077*\"septemb\" + 0.072*\"januari\" + 0.070*\"novemb\" + 0.070*\"juli\" + 0.069*\"august\" + 0.068*\"decemb\" + 0.067*\"april\" + 0.066*\"june\"\n", + "2019-01-16 04:30:08,779 : INFO : topic #34 (0.020): 0.083*\"island\" + 0.076*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.026*\"toronto\" + 0.018*\"montreal\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"vancouv\" + 0.014*\"korea\"\n", + "2019-01-16 04:30:08,780 : INFO : topic #49 (0.020): 0.075*\"north\" + 0.070*\"west\" + 0.069*\"south\" + 0.067*\"region\" + 0.065*\"east\" + 0.058*\"district\" + 0.033*\"central\" + 0.028*\"northern\" + 0.021*\"administr\" + 0.020*\"villag\"\n", + "2019-01-16 04:30:08,782 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.021*\"berlin\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 04:30:08,787 : INFO : topic diff=0.008925, rho=0.051098\n", + "2019-01-16 04:30:09,123 : INFO : PROGRESS: pass 0, at document #768000/4922894\n", + "2019-01-16 04:30:11,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:11,832 : INFO : topic #22 (0.020): 0.049*\"counti\" + 0.048*\"popul\" + 0.032*\"area\" + 0.031*\"town\" + 0.030*\"villag\" + 0.028*\"citi\" + 0.026*\"ag\" + 0.023*\"district\" + 0.022*\"censu\" + 0.022*\"famili\"\n", + "2019-01-16 04:30:11,833 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.019*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"mexican\" + 0.011*\"brazil\" + 0.010*\"carlo\" + 0.010*\"juan\"\n", + "2019-01-16 04:30:11,835 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 04:30:11,836 : INFO : topic #39 (0.020): 0.046*\"air\" + 0.027*\"oper\" + 0.024*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.015*\"squadron\" + 0.014*\"flight\" + 0.013*\"servic\" + 0.011*\"base\"\n", + "2019-01-16 04:30:11,838 : INFO : topic #24 (0.020): 0.030*\"ship\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"sea\" + 0.008*\"navi\" + 0.008*\"coast\" + 0.008*\"port\" + 0.008*\"island\" + 0.008*\"crew\"\n", + "2019-01-16 04:30:11,844 : INFO : topic diff=0.008742, rho=0.051031\n", + "2019-01-16 04:30:12,165 : INFO : PROGRESS: pass 0, at document #770000/4922894\n", + "2019-01-16 04:30:14,261 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:14,818 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"danc\" + 0.015*\"piano\" + 0.015*\"plai\" + 0.014*\"opera\" + 0.014*\"festiv\" + 0.014*\"orchestra\"\n", + "2019-01-16 04:30:14,820 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 04:30:14,822 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:30:14,823 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"contest\" + 0.020*\"wrestl\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"championship\" + 0.016*\"fight\" + 0.014*\"world\" + 0.013*\"team\" + 0.013*\"champion\"\n", + "2019-01-16 04:30:14,825 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"author\" + 0.012*\"press\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:30:14,831 : INFO : topic diff=0.008778, rho=0.050965\n", + "2019-01-16 04:30:15,166 : INFO : PROGRESS: pass 0, at document #772000/4922894\n", + "2019-01-16 04:30:17,317 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:17,873 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.006*\"fish\" + 0.006*\"tree\"\n", + "2019-01-16 04:30:17,875 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:30:17,877 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.028*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.014*\"imag\" + 0.013*\"galleri\"\n", + "2019-01-16 04:30:17,879 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.028*\"oper\" + 0.023*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.017*\"unit\" + 0.015*\"squadron\" + 0.014*\"flight\" + 0.013*\"servic\" + 0.012*\"base\"\n", + "2019-01-16 04:30:17,881 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.060*\"align\" + 0.058*\"wikit\" + 0.056*\"style\" + 0.053*\"left\" + 0.049*\"center\" + 0.039*\"right\" + 0.032*\"text\" + 0.031*\"philippin\" + 0.031*\"border\"\n", + "2019-01-16 04:30:17,887 : INFO : topic diff=0.010368, rho=0.050899\n", + "2019-01-16 04:30:18,220 : INFO : PROGRESS: pass 0, at document #774000/4922894\n", + "2019-01-16 04:30:20,305 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:20,860 : INFO : topic #33 (0.020): 0.017*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.006*\"rate\" + 0.006*\"cost\"\n", + "2019-01-16 04:30:20,862 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.013*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", + "2019-01-16 04:30:20,863 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 04:30:20,865 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.020*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.012*\"televis\"\n", + "2019-01-16 04:30:20,866 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 04:30:20,873 : INFO : topic diff=0.009056, rho=0.050833\n", + "2019-01-16 04:30:21,200 : INFO : PROGRESS: pass 0, at document #776000/4922894\n", + "2019-01-16 04:30:23,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:23,812 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.047*\"australian\" + 0.045*\"new\" + 0.042*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.019*\"sydnei\"\n", + "2019-01-16 04:30:23,813 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.014*\"father\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", + "2019-01-16 04:30:23,816 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:30:23,817 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.047*\"counti\" + 0.032*\"town\" + 0.031*\"villag\" + 0.031*\"area\" + 0.029*\"citi\" + 0.026*\"ag\" + 0.024*\"district\" + 0.022*\"censu\" + 0.022*\"famili\"\n", + "2019-01-16 04:30:23,820 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.010*\"model\" + 0.010*\"power\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.007*\"type\" + 0.007*\"design\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 04:30:23,826 : INFO : topic diff=0.008802, rho=0.050767\n", + "2019-01-16 04:30:24,170 : INFO : PROGRESS: pass 0, at document #778000/4922894\n", + "2019-01-16 04:30:26,253 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:26,809 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:30:26,811 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 04:30:26,813 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.015*\"iran\" + 0.013*\"district\" + 0.013*\"provinc\" + 0.013*\"pakistan\" + 0.011*\"sri\" + 0.011*\"templ\"\n", + "2019-01-16 04:30:26,814 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.019*\"winner\" + 0.019*\"open\" + 0.016*\"point\" + 0.013*\"qualifi\" + 0.012*\"singl\" + 0.012*\"doubl\"\n", + "2019-01-16 04:30:26,816 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.006*\"black\" + 0.006*\"fish\"\n", + "2019-01-16 04:30:26,822 : INFO : topic diff=0.008977, rho=0.050702\n", + "2019-01-16 04:30:31,444 : INFO : -11.568 per-word bound, 3036.2 perplexity estimate based on a held-out corpus of 2000 documents with 517551 words\n", + "2019-01-16 04:30:31,445 : INFO : PROGRESS: pass 0, at document #780000/4922894\n", + "2019-01-16 04:30:33,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:34,057 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.023*\"william\" + 0.020*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.013*\"ireland\" + 0.013*\"royal\" + 0.012*\"sir\" + 0.012*\"jame\" + 0.012*\"thoma\"\n", + "2019-01-16 04:30:34,058 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:30:34,060 : INFO : topic #33 (0.020): 0.018*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.006*\"cost\" + 0.006*\"rate\"\n", + "2019-01-16 04:30:34,062 : INFO : topic #15 (0.020): 0.028*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.018*\"scotland\" + 0.014*\"wale\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.010*\"counti\"\n", + "2019-01-16 04:30:34,063 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 04:30:34,069 : INFO : topic diff=0.007719, rho=0.050637\n", + "2019-01-16 04:30:34,363 : INFO : PROGRESS: pass 0, at document #782000/4922894\n", + "2019-01-16 04:30:36,432 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:36,987 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 04:30:36,988 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.019*\"winner\" + 0.018*\"open\" + 0.016*\"point\" + 0.012*\"qualifi\" + 0.012*\"singl\" + 0.012*\"doubl\"\n", + "2019-01-16 04:30:36,990 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.012*\"championship\" + 0.011*\"tour\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 04:30:36,991 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"vancouv\" + 0.013*\"korea\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:30:36,993 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"end\"\n", + "2019-01-16 04:30:37,000 : INFO : topic diff=0.009766, rho=0.050572\n", + "2019-01-16 04:30:37,310 : INFO : PROGRESS: pass 0, at document #784000/4922894\n", + "2019-01-16 04:30:39,412 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:39,969 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.019*\"winner\" + 0.018*\"open\" + 0.016*\"point\" + 0.013*\"qualifi\" + 0.012*\"singl\" + 0.012*\"second\"\n", + "2019-01-16 04:30:39,970 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.020*\"citi\" + 0.019*\"cricket\" + 0.019*\"scotland\" + 0.015*\"manchest\" + 0.014*\"scottish\" + 0.014*\"wale\" + 0.010*\"counti\"\n", + "2019-01-16 04:30:39,972 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"design\"\n", + "2019-01-16 04:30:39,974 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"gun\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.009*\"sea\" + 0.009*\"navi\" + 0.008*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:30:39,976 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:30:39,982 : INFO : topic diff=0.009033, rho=0.050508\n", + "2019-01-16 04:30:40,299 : INFO : PROGRESS: pass 0, at document #786000/4922894\n", + "2019-01-16 04:30:42,465 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:43,022 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"gun\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.009*\"sea\" + 0.009*\"navi\" + 0.008*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:30:43,024 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.023*\"york\" + 0.023*\"unit\" + 0.018*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 04:30:43,026 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 04:30:43,027 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.016*\"health\" + 0.016*\"hospit\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"medicin\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.009*\"studi\"\n", + "2019-01-16 04:30:43,028 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:30:43,034 : INFO : topic diff=0.009880, rho=0.050443\n", + "2019-01-16 04:30:43,333 : INFO : PROGRESS: pass 0, at document #788000/4922894\n", + "2019-01-16 04:30:45,450 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:46,009 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 04:30:46,011 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.048*\"australian\" + 0.045*\"new\" + 0.042*\"china\" + 0.035*\"chines\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.020*\"sydnei\"\n", + "2019-01-16 04:30:46,012 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.020*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:30:46,014 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.012*\"street\" + 0.011*\"site\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.009*\"jpg\"\n", + "2019-01-16 04:30:46,015 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.047*\"counti\" + 0.031*\"town\" + 0.031*\"villag\" + 0.029*\"area\" + 0.029*\"citi\" + 0.027*\"ag\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", + "2019-01-16 04:30:46,020 : INFO : topic diff=0.008499, rho=0.050379\n", + "2019-01-16 04:30:46,322 : INFO : PROGRESS: pass 0, at document #790000/4922894\n", + "2019-01-16 04:30:48,422 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:48,979 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.020*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:30:48,981 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 04:30:48,984 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 04:30:48,986 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"nation\" + 0.017*\"rank\"\n", + "2019-01-16 04:30:48,987 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.025*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 04:30:48,994 : INFO : topic diff=0.007824, rho=0.050315\n", + "2019-01-16 04:30:49,343 : INFO : PROGRESS: pass 0, at document #792000/4922894\n", + "2019-01-16 04:30:51,456 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:52,013 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.038*\"museum\" + 0.028*\"work\" + 0.023*\"paint\" + 0.021*\"design\" + 0.021*\"artist\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.014*\"galleri\" + 0.013*\"imag\"\n", + "2019-01-16 04:30:52,015 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.013*\"rout\" + 0.012*\"area\" + 0.012*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:30:52,017 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 04:30:52,018 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.020*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:30:52,020 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"gun\" + 0.010*\"boat\" + 0.010*\"sea\" + 0.009*\"damag\" + 0.009*\"navi\" + 0.009*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:30:52,025 : INFO : topic diff=0.009262, rho=0.050252\n", + "2019-01-16 04:30:52,347 : INFO : PROGRESS: pass 0, at document #794000/4922894\n", + "2019-01-16 04:30:54,490 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:55,050 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.022*\"singapor\" + 0.020*\"vietnam\" + 0.018*\"indonesia\" + 0.018*\"–present\" + 0.016*\"kim\" + 0.015*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"asian\"\n", + "2019-01-16 04:30:55,052 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"method\" + 0.007*\"gener\" + 0.007*\"data\"\n", + "2019-01-16 04:30:55,054 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.012*\"model\" + 0.011*\"power\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"design\" + 0.007*\"car\"\n", + "2019-01-16 04:30:55,056 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.025*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.019*\"berlin\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:30:55,057 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"bird\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.006*\"tree\"\n", + "2019-01-16 04:30:55,063 : INFO : topic diff=0.008453, rho=0.050189\n", + "2019-01-16 04:30:55,386 : INFO : PROGRESS: pass 0, at document #796000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:30:57,501 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:30:58,063 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.020*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 04:30:58,066 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"opera\" + 0.014*\"festiv\" + 0.013*\"piano\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:30:58,067 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.009*\"yard\" + 0.009*\"year\"\n", + "2019-01-16 04:30:58,069 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"said\"\n", + "2019-01-16 04:30:58,071 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.006*\"tree\"\n", + "2019-01-16 04:30:58,077 : INFO : topic diff=0.008378, rho=0.050125\n", + "2019-01-16 04:30:58,383 : INFO : PROGRESS: pass 0, at document #798000/4922894\n", + "2019-01-16 04:31:00,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:00,983 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"opera\" + 0.013*\"piano\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:31:00,985 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.023*\"william\" + 0.021*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"sir\" + 0.012*\"ireland\" + 0.012*\"thoma\" + 0.012*\"jame\"\n", + "2019-01-16 04:31:00,987 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 04:31:00,988 : INFO : topic #40 (0.020): 0.035*\"bar\" + 0.033*\"africa\" + 0.027*\"african\" + 0.023*\"south\" + 0.020*\"text\" + 0.020*\"till\" + 0.016*\"color\" + 0.011*\"black\" + 0.010*\"tropic\" + 0.009*\"agricultur\"\n", + "2019-01-16 04:31:00,989 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 04:31:00,995 : INFO : topic diff=0.010511, rho=0.050063\n", + "2019-01-16 04:31:05,825 : INFO : -11.794 per-word bound, 3550.6 perplexity estimate based on a held-out corpus of 2000 documents with 569617 words\n", + "2019-01-16 04:31:05,826 : INFO : PROGRESS: pass 0, at document #800000/4922894\n", + "2019-01-16 04:31:07,907 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:08,470 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 04:31:08,472 : INFO : topic #40 (0.020): 0.035*\"bar\" + 0.033*\"africa\" + 0.027*\"african\" + 0.024*\"south\" + 0.020*\"text\" + 0.019*\"till\" + 0.016*\"color\" + 0.011*\"black\" + 0.009*\"agricultur\" + 0.009*\"tropic\"\n", + "2019-01-16 04:31:08,473 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.021*\"minist\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 04:31:08,474 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.028*\"unit\" + 0.021*\"town\" + 0.020*\"citi\" + 0.019*\"cricket\" + 0.017*\"scotland\" + 0.016*\"wale\" + 0.015*\"scottish\" + 0.015*\"manchest\" + 0.010*\"english\"\n", + "2019-01-16 04:31:08,476 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.009*\"year\" + 0.009*\"yard\"\n", + "2019-01-16 04:31:08,482 : INFO : topic diff=0.009116, rho=0.050000\n", + "2019-01-16 04:31:08,777 : INFO : PROGRESS: pass 0, at document #802000/4922894\n", + "2019-01-16 04:31:10,905 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:11,463 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.017*\"health\" + 0.016*\"hospit\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"effect\" + 0.009*\"medicin\"\n", + "2019-01-16 04:31:11,464 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.020*\"winner\" + 0.018*\"open\" + 0.018*\"point\" + 0.013*\"qualifi\" + 0.012*\"place\" + 0.011*\"second\"\n", + "2019-01-16 04:31:11,465 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 04:31:11,467 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.012*\"championship\" + 0.012*\"year\" + 0.012*\"tour\" + 0.010*\"time\"\n", + "2019-01-16 04:31:11,468 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.074*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.018*\"quebec\" + 0.018*\"british\" + 0.015*\"montreal\" + 0.014*\"korea\" + 0.014*\"vancouv\"\n", + "2019-01-16 04:31:11,474 : INFO : topic diff=0.008766, rho=0.049938\n", + "2019-01-16 04:31:11,782 : INFO : PROGRESS: pass 0, at document #804000/4922894\n", + "2019-01-16 04:31:13,877 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:14,439 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.043*\"counti\" + 0.033*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.027*\"area\" + 0.027*\"ag\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", + "2019-01-16 04:31:14,440 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"yard\" + 0.009*\"leagu\"\n", + "2019-01-16 04:31:14,442 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 04:31:14,444 : INFO : topic #46 (0.020): 0.153*\"class\" + 0.061*\"align\" + 0.058*\"wikit\" + 0.052*\"left\" + 0.050*\"center\" + 0.050*\"style\" + 0.035*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.028*\"border\"\n", + "2019-01-16 04:31:14,445 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.018*\"health\" + 0.016*\"hospit\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"treatment\" + 0.009*\"effect\" + 0.009*\"medicin\"\n", + "2019-01-16 04:31:14,451 : INFO : topic diff=0.008883, rho=0.049875\n", + "2019-01-16 04:31:14,751 : INFO : PROGRESS: pass 0, at document #806000/4922894\n", + "2019-01-16 04:31:16,816 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:17,377 : INFO : topic #16 (0.020): 0.035*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"cathol\" + 0.012*\"daughter\" + 0.012*\"year\" + 0.012*\"born\"\n", + "2019-01-16 04:31:17,379 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"american\" + 0.008*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:31:17,380 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.018*\"quebec\" + 0.018*\"british\" + 0.015*\"montreal\" + 0.014*\"vancouv\" + 0.014*\"korea\"\n", + "2019-01-16 04:31:17,382 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.023*\"japan\" + 0.021*\"medal\" + 0.021*\"men\" + 0.020*\"event\" + 0.020*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 04:31:17,383 : INFO : topic #14 (0.020): 0.015*\"servic\" + 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"univers\" + 0.012*\"intern\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.010*\"organ\"\n", + "2019-01-16 04:31:17,389 : INFO : topic diff=0.009503, rho=0.049814\n", + "2019-01-16 04:31:17,710 : INFO : PROGRESS: pass 0, at document #808000/4922894\n", + "2019-01-16 04:31:19,804 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:20,360 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.035*\"indian\" + 0.019*\"http\" + 0.015*\"iran\" + 0.014*\"www\" + 0.013*\"provinc\" + 0.013*\"pakistan\" + 0.012*\"district\" + 0.011*\"sri\" + 0.011*\"khan\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:31:20,362 : INFO : topic #48 (0.020): 0.080*\"march\" + 0.078*\"octob\" + 0.075*\"septemb\" + 0.075*\"januari\" + 0.070*\"novemb\" + 0.070*\"juli\" + 0.069*\"decemb\" + 0.069*\"april\" + 0.068*\"august\" + 0.067*\"june\"\n", + "2019-01-16 04:31:20,363 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"yard\"\n", + "2019-01-16 04:31:20,364 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.044*\"final\" + 0.028*\"tournament\" + 0.023*\"group\" + 0.020*\"winner\" + 0.018*\"point\" + 0.018*\"open\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.011*\"second\"\n", + "2019-01-16 04:31:20,366 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.042*\"counti\" + 0.033*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.027*\"area\" + 0.027*\"ag\" + 0.023*\"district\" + 0.023*\"famili\" + 0.022*\"censu\"\n", + "2019-01-16 04:31:20,371 : INFO : topic diff=0.009043, rho=0.049752\n", + "2019-01-16 04:31:20,689 : INFO : PROGRESS: pass 0, at document #810000/4922894\n", + "2019-01-16 04:31:22,760 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:23,315 : INFO : topic #46 (0.020): 0.152*\"class\" + 0.064*\"align\" + 0.058*\"wikit\" + 0.053*\"left\" + 0.051*\"style\" + 0.050*\"center\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.030*\"text\" + 0.027*\"border\"\n", + "2019-01-16 04:31:23,317 : INFO : topic #33 (0.020): 0.019*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"market\" + 0.008*\"bank\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.006*\"new\"\n", + "2019-01-16 04:31:23,319 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"jpg\"\n", + "2019-01-16 04:31:23,320 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:31:23,321 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.043*\"counti\" + 0.033*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.027*\"area\" + 0.026*\"ag\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", + "2019-01-16 04:31:23,327 : INFO : topic diff=0.007460, rho=0.049690\n", + "2019-01-16 04:31:23,643 : INFO : PROGRESS: pass 0, at document #812000/4922894\n", + "2019-01-16 04:31:25,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:26,350 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.034*\"indian\" + 0.019*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"provinc\" + 0.013*\"pakistan\" + 0.012*\"district\" + 0.011*\"sri\" + 0.011*\"islam\"\n", + "2019-01-16 04:31:26,351 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.012*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:31:26,352 : INFO : topic #35 (0.020): 0.033*\"lee\" + 0.021*\"singapor\" + 0.020*\"–present\" + 0.019*\"vietnam\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"kim\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.013*\"asian\"\n", + "2019-01-16 04:31:26,354 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n", + "2019-01-16 04:31:26,356 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.033*\"africa\" + 0.027*\"african\" + 0.024*\"south\" + 0.020*\"till\" + 0.020*\"text\" + 0.017*\"color\" + 0.011*\"black\" + 0.009*\"agricultur\" + 0.009*\"tropic\"\n", + "2019-01-16 04:31:26,363 : INFO : topic diff=0.009135, rho=0.049629\n", + "2019-01-16 04:31:26,679 : INFO : PROGRESS: pass 0, at document #814000/4922894\n", + "2019-01-16 04:31:28,755 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:29,315 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"health\" + 0.016*\"hospit\" + 0.013*\"ret\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.009*\"treatment\" + 0.009*\"medicin\"\n", + "2019-01-16 04:31:29,316 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.011*\"cell\" + 0.009*\"produc\" + 0.007*\"type\" + 0.007*\"vehicl\" + 0.007*\"electr\" + 0.007*\"design\"\n", + "2019-01-16 04:31:29,318 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.020*\"match\" + 0.019*\"wrestl\" + 0.018*\"team\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.013*\"fight\" + 0.013*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 04:31:29,319 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.036*\"museum\" + 0.027*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.014*\"galleri\" + 0.013*\"imag\" + 0.013*\"collect\"\n", + "2019-01-16 04:31:29,321 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.032*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"servic\"\n", + "2019-01-16 04:31:29,327 : INFO : topic diff=0.009084, rho=0.049568\n", + "2019-01-16 04:31:29,639 : INFO : PROGRESS: pass 0, at document #816000/4922894\n", + "2019-01-16 04:31:31,747 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:32,305 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"red\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"tree\"\n", + "2019-01-16 04:31:32,306 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.008*\"valu\" + 0.008*\"method\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 04:31:32,308 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.033*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.014*\"org\" + 0.013*\"provinc\" + 0.013*\"pakistan\" + 0.012*\"district\" + 0.011*\"islam\"\n", + "2019-01-16 04:31:32,309 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.031*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"servic\"\n", + "2019-01-16 04:31:32,311 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"cup\" + 0.025*\"season\" + 0.017*\"match\" + 0.017*\"goal\" + 0.015*\"player\"\n", + "2019-01-16 04:31:32,316 : INFO : topic diff=0.008350, rho=0.049507\n", + "2019-01-16 04:31:32,642 : INFO : PROGRESS: pass 0, at document #818000/4922894\n", + "2019-01-16 04:31:34,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:35,245 : INFO : topic #14 (0.020): 0.015*\"servic\" + 0.014*\"research\" + 0.013*\"develop\" + 0.013*\"intern\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.010*\"organ\"\n", + "2019-01-16 04:31:35,246 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"earth\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"effect\"\n", + "2019-01-16 04:31:35,248 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"direct\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 04:31:35,249 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.019*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.015*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.011*\"north\"\n", + "2019-01-16 04:31:35,252 : INFO : topic #5 (0.020): 0.033*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"design\" + 0.007*\"data\"\n", + "2019-01-16 04:31:35,257 : INFO : topic diff=0.009017, rho=0.049447\n", + "2019-01-16 04:31:40,016 : INFO : -11.505 per-word bound, 2906.4 perplexity estimate based on a held-out corpus of 2000 documents with 539382 words\n", + "2019-01-16 04:31:40,017 : INFO : PROGRESS: pass 0, at document #820000/4922894\n", + "2019-01-16 04:31:42,083 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:42,638 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"us\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"effect\"\n", + "2019-01-16 04:31:42,640 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:31:42,641 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:31:42,643 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:31:42,645 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"health\" + 0.016*\"hospit\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.012*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"studi\" + 0.009*\"effect\"\n", + "2019-01-16 04:31:42,652 : INFO : topic diff=0.007571, rho=0.049386\n", + "2019-01-16 04:31:42,932 : INFO : PROGRESS: pass 0, at document #822000/4922894\n", + "2019-01-16 04:31:44,953 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:45,512 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.040*\"counti\" + 0.032*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.027*\"ag\" + 0.027*\"area\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", + "2019-01-16 04:31:45,514 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.012*\"thoma\" + 0.012*\"jame\" + 0.012*\"ireland\"\n", + "2019-01-16 04:31:45,515 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.048*\"australian\" + 0.045*\"new\" + 0.043*\"china\" + 0.033*\"chines\" + 0.033*\"zealand\" + 0.026*\"south\" + 0.023*\"sydnei\" + 0.021*\"hong\" + 0.020*\"kong\"\n", + "2019-01-16 04:31:45,517 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 04:31:45,519 : INFO : topic #33 (0.020): 0.019*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"market\" + 0.008*\"bank\" + 0.008*\"time\" + 0.008*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.006*\"new\"\n", + "2019-01-16 04:31:45,524 : INFO : topic diff=0.009200, rho=0.049326\n", + "2019-01-16 04:31:45,829 : INFO : PROGRESS: pass 0, at document #824000/4922894\n", + "2019-01-16 04:31:47,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:48,479 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.009*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"method\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 04:31:48,481 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"london\" + 0.021*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", + "2019-01-16 04:31:48,482 : INFO : topic #27 (0.020): 0.037*\"russian\" + 0.031*\"born\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.018*\"polish\" + 0.018*\"jewish\" + 0.018*\"republ\" + 0.015*\"moscow\" + 0.015*\"israel\" + 0.014*\"ukrainian\"\n", + "2019-01-16 04:31:48,484 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.019*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.009*\"mexican\" + 0.009*\"francisco\"\n", + "2019-01-16 04:31:48,485 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.016*\"vancouv\" + 0.016*\"quebec\" + 0.015*\"montreal\" + 0.015*\"korean\"\n", + "2019-01-16 04:31:48,491 : INFO : topic diff=0.007687, rho=0.049266\n", + "2019-01-16 04:31:48,817 : INFO : PROGRESS: pass 0, at document #826000/4922894\n", + "2019-01-16 04:31:50,931 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:51,488 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.012*\"die\" + 0.012*\"netherland\" + 0.012*\"und\"\n", + "2019-01-16 04:31:51,490 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.009*\"construct\"\n", + "2019-01-16 04:31:51,491 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.020*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"mexican\" + 0.010*\"juan\" + 0.009*\"lo\"\n", + "2019-01-16 04:31:51,493 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.010*\"dai\" + 0.009*\"network\"\n", + "2019-01-16 04:31:51,494 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"provinc\" + 0.012*\"pakistan\" + 0.012*\"org\" + 0.011*\"district\" + 0.011*\"sri\"\n", + "2019-01-16 04:31:51,500 : INFO : topic diff=0.007180, rho=0.049207\n", + "2019-01-16 04:31:51,795 : INFO : PROGRESS: pass 0, at document #828000/4922894\n", + "2019-01-16 04:31:53,845 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:54,402 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.015*\"piano\" + 0.014*\"opera\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:31:54,403 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.013*\"royal\"\n", + "2019-01-16 04:31:54,405 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.020*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"area\" + 0.011*\"north\"\n", + "2019-01-16 04:31:54,406 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.028*\"england\" + 0.021*\"citi\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.016*\"scotland\" + 0.014*\"manchest\" + 0.014*\"wale\" + 0.014*\"scottish\" + 0.011*\"counti\"\n", + "2019-01-16 04:31:54,407 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.019*\"match\" + 0.018*\"wrestl\" + 0.018*\"team\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"fight\" + 0.013*\"world\" + 0.012*\"ring\"\n", + "2019-01-16 04:31:54,413 : INFO : topic diff=0.010769, rho=0.049147\n", + "2019-01-16 04:31:54,727 : INFO : PROGRESS: pass 0, at document #830000/4922894\n", + "2019-01-16 04:31:56,794 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:31:57,350 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"royal\"\n", + "2019-01-16 04:31:57,351 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.067*\"align\" + 0.058*\"left\" + 0.057*\"wikit\" + 0.053*\"center\" + 0.049*\"style\" + 0.042*\"text\" + 0.032*\"philippin\" + 0.032*\"right\" + 0.029*\"border\"\n", + "2019-01-16 04:31:57,353 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.030*\"world\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", + "2019-01-16 04:31:57,355 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 04:31:57,356 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"exampl\"\n", + "2019-01-16 04:31:57,363 : INFO : topic diff=0.007603, rho=0.049088\n", + "2019-01-16 04:31:57,674 : INFO : PROGRESS: pass 0, at document #832000/4922894\n", + "2019-01-16 04:31:59,751 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:00,309 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.025*\"winner\" + 0.022*\"group\" + 0.018*\"point\" + 0.017*\"open\" + 0.013*\"place\" + 0.013*\"qualifi\" + 0.011*\"second\"\n", + "2019-01-16 04:32:00,310 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.011*\"model\" + 0.011*\"power\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"type\" + 0.007*\"design\" + 0.007*\"vehicl\" + 0.007*\"electr\"\n", + "2019-01-16 04:32:00,312 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.011*\"roman\" + 0.010*\"greek\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"year\"\n", + "2019-01-16 04:32:00,313 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.019*\"team\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"fight\" + 0.013*\"world\" + 0.012*\"ring\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:32:00,318 : INFO : topic #39 (0.020): 0.044*\"air\" + 0.031*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.011*\"servic\"\n", + "2019-01-16 04:32:00,324 : INFO : topic diff=0.008361, rho=0.049029\n", + "2019-01-16 04:32:00,625 : INFO : PROGRESS: pass 0, at document #834000/4922894\n", + "2019-01-16 04:32:02,629 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:03,185 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"design\"\n", + "2019-01-16 04:32:03,186 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.034*\"africa\" + 0.027*\"african\" + 0.024*\"south\" + 0.020*\"text\" + 0.019*\"till\" + 0.017*\"color\" + 0.010*\"black\" + 0.010*\"agricultur\" + 0.009*\"cape\"\n", + "2019-01-16 04:32:03,188 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.017*\"act\" + 0.013*\"polic\" + 0.012*\"case\" + 0.011*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:32:03,189 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"american\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"richard\" + 0.006*\"peter\"\n", + "2019-01-16 04:32:03,191 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"method\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 04:32:03,197 : INFO : topic diff=0.008174, rho=0.048970\n", + "2019-01-16 04:32:03,482 : INFO : PROGRESS: pass 0, at document #836000/4922894\n", + "2019-01-16 04:32:05,557 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:06,114 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"team\" + 0.033*\"plai\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"match\" + 0.016*\"goal\" + 0.015*\"player\"\n", + "2019-01-16 04:32:06,115 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.063*\"align\" + 0.058*\"wikit\" + 0.056*\"left\" + 0.052*\"center\" + 0.049*\"style\" + 0.043*\"text\" + 0.032*\"philippin\" + 0.031*\"right\" + 0.029*\"border\"\n", + "2019-01-16 04:32:06,116 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", + "2019-01-16 04:32:06,118 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"–present\" + 0.020*\"singapor\" + 0.019*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"malaysia\" + 0.015*\"kim\" + 0.014*\"asia\" + 0.014*\"asian\"\n", + "2019-01-16 04:32:06,119 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"form\"\n", + "2019-01-16 04:32:06,126 : INFO : topic diff=0.008172, rho=0.048912\n", + "2019-01-16 04:32:06,423 : INFO : PROGRESS: pass 0, at document #838000/4922894\n", + "2019-01-16 04:32:08,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:09,058 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"der\" + 0.023*\"von\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:32:09,059 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"match\" + 0.016*\"goal\" + 0.015*\"player\"\n", + "2019-01-16 04:32:09,062 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.010*\"offic\"\n", + "2019-01-16 04:32:09,063 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.041*\"counti\" + 0.032*\"town\" + 0.031*\"villag\" + 0.030*\"citi\" + 0.027*\"ag\" + 0.026*\"area\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", + "2019-01-16 04:32:09,065 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"magazin\"\n", + "2019-01-16 04:32:09,071 : INFO : topic diff=0.008151, rho=0.048853\n", + "2019-01-16 04:32:13,686 : INFO : -11.760 per-word bound, 3469.1 perplexity estimate based on a held-out corpus of 2000 documents with 526359 words\n", + "2019-01-16 04:32:13,686 : INFO : PROGRESS: pass 0, at document #840000/4922894\n", + "2019-01-16 04:32:15,745 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:16,302 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"design\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:32:16,304 : INFO : topic #5 (0.020): 0.033*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"video\" + 0.007*\"data\"\n", + "2019-01-16 04:32:16,305 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.018*\"team\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.014*\"fight\" + 0.013*\"world\" + 0.012*\"ring\"\n", + "2019-01-16 04:32:16,306 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"piano\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.013*\"opera\"\n", + "2019-01-16 04:32:16,308 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", + "2019-01-16 04:32:16,313 : INFO : topic diff=0.008242, rho=0.048795\n", + "2019-01-16 04:32:16,654 : INFO : PROGRESS: pass 0, at document #842000/4922894\n", + "2019-01-16 04:32:18,729 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:19,287 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:32:19,288 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", + "2019-01-16 04:32:19,290 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"form\"\n", + "2019-01-16 04:32:19,292 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"piano\" + 0.015*\"plai\" + 0.013*\"opera\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:32:19,293 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.011*\"cathol\"\n", + "2019-01-16 04:32:19,299 : INFO : topic diff=0.008384, rho=0.048737\n", + "2019-01-16 04:32:19,590 : INFO : PROGRESS: pass 0, at document #844000/4922894\n", + "2019-01-16 04:32:21,563 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:22,120 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"singapor\" + 0.020*\"–present\" + 0.020*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"kim\" + 0.016*\"malaysia\" + 0.014*\"asia\" + 0.014*\"asian\"\n", + "2019-01-16 04:32:22,122 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.028*\"england\" + 0.022*\"citi\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.010*\"counti\"\n", + "2019-01-16 04:32:22,123 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.019*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"mexican\" + 0.010*\"juan\" + 0.010*\"josé\"\n", + "2019-01-16 04:32:22,125 : INFO : topic #16 (0.020): 0.035*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"cathol\"\n", + "2019-01-16 04:32:22,126 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.014*\"park\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:32:22,132 : INFO : topic diff=0.009305, rho=0.048679\n", + "2019-01-16 04:32:22,433 : INFO : PROGRESS: pass 0, at document #846000/4922894\n", + "2019-01-16 04:32:24,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:25,032 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.006*\"us\" + 0.005*\"god\"\n", + "2019-01-16 04:32:25,033 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"method\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 04:32:25,034 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.008*\"teacher\"\n", + "2019-01-16 04:32:25,036 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.010*\"offic\"\n", + "2019-01-16 04:32:25,037 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.017*\"match\" + 0.016*\"goal\" + 0.015*\"player\"\n", + "2019-01-16 04:32:25,043 : INFO : topic diff=0.007826, rho=0.048622\n", + "2019-01-16 04:32:25,340 : INFO : PROGRESS: pass 0, at document #848000/4922894\n", + "2019-01-16 04:32:27,425 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:27,982 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"singapor\" + 0.020*\"–present\" + 0.020*\"vietnam\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"kim\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 04:32:27,983 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"cell\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:32:27,985 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"method\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 04:32:27,986 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.008*\"teacher\"\n", + "2019-01-16 04:32:27,987 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.046*\"new\" + 0.040*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.026*\"south\" + 0.024*\"sydnei\" + 0.020*\"kong\" + 0.018*\"hong\"\n", + "2019-01-16 04:32:27,993 : INFO : topic diff=0.007997, rho=0.048564\n", + "2019-01-16 04:32:28,306 : INFO : PROGRESS: pass 0, at document #850000/4922894\n", + "2019-01-16 04:32:30,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:30,917 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"red\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"tree\"\n", + "2019-01-16 04:32:30,919 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.011*\"patient\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"effect\"\n", + "2019-01-16 04:32:30,922 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"said\"\n", + "2019-01-16 04:32:30,924 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"der\" + 0.023*\"von\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:32:30,925 : INFO : topic #5 (0.020): 0.033*\"game\" + 0.009*\"develop\" + 0.009*\"version\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:32:30,932 : INFO : topic diff=0.014077, rho=0.048507\n", + "2019-01-16 04:32:31,208 : INFO : PROGRESS: pass 0, at document #852000/4922894\n", + "2019-01-16 04:32:33,197 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:33,752 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.019*\"http\" + 0.014*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"khan\" + 0.012*\"provinc\" + 0.011*\"district\" + 0.011*\"singh\"\n", + "2019-01-16 04:32:33,754 : INFO : topic #15 (0.020): 0.028*\"unit\" + 0.027*\"england\" + 0.021*\"citi\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.011*\"counti\"\n", + "2019-01-16 04:32:33,755 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.023*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:32:33,756 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"american\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:32:33,758 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.018*\"forc\" + 0.015*\"battl\" + 0.015*\"regiment\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"lieuten\" + 0.012*\"corp\"\n", + "2019-01-16 04:32:33,764 : INFO : topic diff=0.009127, rho=0.048450\n", + "2019-01-16 04:32:34,070 : INFO : PROGRESS: pass 0, at document #854000/4922894\n", + "2019-01-16 04:32:36,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:36,719 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.023*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:32:36,721 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"method\" + 0.008*\"set\" + 0.007*\"valu\" + 0.007*\"order\" + 0.007*\"gener\"\n", + "2019-01-16 04:32:36,723 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"singapor\" + 0.020*\"vietnam\" + 0.019*\"–present\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"kim\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 04:32:36,724 : INFO : topic #49 (0.020): 0.071*\"north\" + 0.069*\"south\" + 0.067*\"west\" + 0.066*\"region\" + 0.065*\"east\" + 0.055*\"district\" + 0.030*\"central\" + 0.025*\"northern\" + 0.023*\"administr\" + 0.020*\"western\"\n", + "2019-01-16 04:32:36,726 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.018*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"regiment\" + 0.014*\"gener\" + 0.012*\"lieuten\" + 0.012*\"battalion\"\n", + "2019-01-16 04:32:36,731 : INFO : topic diff=0.008057, rho=0.048393\n", + "2019-01-16 04:32:37,015 : INFO : PROGRESS: pass 0, at document #856000/4922894\n", + "2019-01-16 04:32:39,116 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:39,672 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:32:39,674 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:32:39,676 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.014*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:32:39,677 : INFO : topic #40 (0.020): 0.035*\"africa\" + 0.031*\"bar\" + 0.030*\"african\" + 0.025*\"south\" + 0.019*\"till\" + 0.018*\"text\" + 0.017*\"color\" + 0.011*\"cape\" + 0.010*\"black\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:32:39,679 : INFO : topic #33 (0.020): 0.020*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"busi\" + 0.006*\"new\"\n", + "2019-01-16 04:32:39,685 : INFO : topic diff=0.007572, rho=0.048337\n", + "2019-01-16 04:32:39,970 : INFO : PROGRESS: pass 0, at document #858000/4922894\n", + "2019-01-16 04:32:42,081 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:42,639 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.079*\"align\" + 0.074*\"left\" + 0.058*\"wikit\" + 0.049*\"style\" + 0.048*\"center\" + 0.037*\"text\" + 0.034*\"philippin\" + 0.029*\"right\" + 0.027*\"border\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:32:42,640 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 04:32:42,642 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.031*\"oper\" + 0.024*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.012*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:32:42,643 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.011*\"host\" + 0.010*\"program\" + 0.010*\"dai\" + 0.009*\"air\"\n", + "2019-01-16 04:32:42,645 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"der\" + 0.022*\"von\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", + "2019-01-16 04:32:42,651 : INFO : topic diff=0.008478, rho=0.048280\n", + "2019-01-16 04:32:47,414 : INFO : -11.691 per-word bound, 3307.0 perplexity estimate based on a held-out corpus of 2000 documents with 552113 words\n", + "2019-01-16 04:32:47,414 : INFO : PROGRESS: pass 0, at document #860000/4922894\n", + "2019-01-16 04:32:49,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:50,096 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 04:32:50,098 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.027*\"work\" + 0.022*\"artist\" + 0.021*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.013*\"galleri\" + 0.013*\"collect\" + 0.013*\"jpg\"\n", + "2019-01-16 04:32:50,099 : INFO : topic #15 (0.020): 0.027*\"england\" + 0.027*\"unit\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.015*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.011*\"counti\"\n", + "2019-01-16 04:32:50,101 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.077*\"align\" + 0.072*\"left\" + 0.058*\"wikit\" + 0.049*\"style\" + 0.047*\"center\" + 0.036*\"text\" + 0.034*\"philippin\" + 0.029*\"right\" + 0.028*\"border\"\n", + "2019-01-16 04:32:50,103 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"wrestl\" + 0.018*\"match\" + 0.018*\"team\" + 0.018*\"contest\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.013*\"fight\" + 0.012*\"week\" + 0.012*\"world\"\n", + "2019-01-16 04:32:50,109 : INFO : topic diff=0.007100, rho=0.048224\n", + "2019-01-16 04:32:50,402 : INFO : PROGRESS: pass 0, at document #862000/4922894\n", + "2019-01-16 04:32:52,564 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:53,129 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.030*\"perform\" + 0.021*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"piano\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.013*\"opera\" + 0.012*\"orchestra\"\n", + "2019-01-16 04:32:53,130 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.029*\"championship\" + 0.027*\"men\" + 0.026*\"olymp\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"japan\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", + "2019-01-16 04:32:53,132 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.019*\"http\" + 0.014*\"pakistan\" + 0.014*\"www\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"provinc\" + 0.011*\"district\" + 0.010*\"islam\"\n", + "2019-01-16 04:32:53,133 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.038*\"counti\" + 0.034*\"town\" + 0.033*\"villag\" + 0.028*\"citi\" + 0.027*\"ag\" + 0.025*\"area\" + 0.023*\"district\" + 0.022*\"censu\" + 0.022*\"municip\"\n", + "2019-01-16 04:32:53,135 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.018*\"royal\" + 0.014*\"georg\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"sir\" + 0.012*\"henri\"\n", + "2019-01-16 04:32:53,141 : INFO : topic diff=0.008331, rho=0.048168\n", + "2019-01-16 04:32:53,422 : INFO : PROGRESS: pass 0, at document #864000/4922894\n", + "2019-01-16 04:32:55,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:55,974 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.014*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"cell\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"manufactur\" + 0.008*\"type\" + 0.008*\"electr\"\n", + "2019-01-16 04:32:55,976 : INFO : topic #5 (0.020): 0.033*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:32:55,978 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.016*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:32:55,979 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"magazin\"\n", + "2019-01-16 04:32:55,981 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:32:55,988 : INFO : topic diff=0.008736, rho=0.048113\n", + "2019-01-16 04:32:56,301 : INFO : PROGRESS: pass 0, at document #866000/4922894\n", + "2019-01-16 04:32:58,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:32:58,933 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:32:58,935 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.017*\"act\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:32:58,936 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.033*\"born\" + 0.024*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.018*\"polish\" + 0.015*\"republ\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.012*\"poland\"\n", + "2019-01-16 04:32:58,938 : INFO : topic #15 (0.020): 0.027*\"england\" + 0.027*\"unit\" + 0.020*\"citi\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.015*\"scottish\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.012*\"wale\" + 0.011*\"counti\"\n", + "2019-01-16 04:32:58,940 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:32:58,946 : INFO : topic diff=0.007715, rho=0.048057\n", + "2019-01-16 04:32:59,273 : INFO : PROGRESS: pass 0, at document #868000/4922894\n", + "2019-01-16 04:33:01,349 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:01,906 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.016*\"act\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:33:01,908 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.031*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.015*\"flight\" + 0.012*\"wing\" + 0.012*\"base\"\n", + "2019-01-16 04:33:01,910 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.027*\"work\" + 0.023*\"artist\" + 0.021*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.013*\"galleri\" + 0.013*\"jpg\" + 0.013*\"collect\"\n", + "2019-01-16 04:33:01,911 : INFO : topic #25 (0.020): 0.043*\"round\" + 0.043*\"final\" + 0.030*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.019*\"open\" + 0.014*\"point\" + 0.013*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", + "2019-01-16 04:33:01,913 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.019*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"studi\" + 0.009*\"medicin\"\n", + "2019-01-16 04:33:01,918 : INFO : topic diff=0.008509, rho=0.048002\n", + "2019-01-16 04:33:02,238 : INFO : PROGRESS: pass 0, at document #870000/4922894\n", + "2019-01-16 04:33:04,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:04,889 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:33:04,890 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:33:04,892 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.054*\"australian\" + 0.045*\"new\" + 0.040*\"china\" + 0.033*\"chines\" + 0.031*\"zealand\" + 0.026*\"south\" + 0.022*\"kong\" + 0.022*\"sydnei\" + 0.020*\"hong\"\n", + "2019-01-16 04:33:04,894 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.030*\"oper\" + 0.025*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.012*\"wing\" + 0.012*\"base\"\n", + "2019-01-16 04:33:04,895 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.030*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.018*\"open\" + 0.014*\"point\" + 0.013*\"place\" + 0.012*\"runner\" + 0.012*\"qualifi\"\n", + "2019-01-16 04:33:04,902 : INFO : topic diff=0.009148, rho=0.047946\n", + "2019-01-16 04:33:05,207 : INFO : PROGRESS: pass 0, at document #872000/4922894\n", + "2019-01-16 04:33:07,305 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:07,862 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.008*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"materi\" + 0.005*\"earth\" + 0.005*\"time\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:33:07,864 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.031*\"world\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.026*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 04:33:07,865 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:33:07,867 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.010*\"develop\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:33:07,869 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:33:07,874 : INFO : topic diff=0.008373, rho=0.047891\n", + "2019-01-16 04:33:08,174 : INFO : PROGRESS: pass 0, at document #874000/4922894\n", + "2019-01-16 04:33:10,265 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:10,822 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 04:33:10,823 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 04:33:10,825 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"yard\" + 0.010*\"year\" + 0.010*\"basebal\"\n", + "2019-01-16 04:33:10,826 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.014*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.008*\"cell\" + 0.008*\"design\" + 0.008*\"manufactur\" + 0.008*\"type\" + 0.008*\"vehicl\"\n", + "2019-01-16 04:33:10,828 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.023*\"court\" + 0.018*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:33:10,834 : INFO : topic diff=0.008642, rho=0.047836\n", + "2019-01-16 04:33:11,113 : INFO : PROGRESS: pass 0, at document #876000/4922894\n", + "2019-01-16 04:33:13,135 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:13,690 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.010*\"carlo\"\n", + "2019-01-16 04:33:13,691 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.029*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.018*\"open\" + 0.014*\"point\" + 0.014*\"place\" + 0.012*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 04:33:13,694 : INFO : topic #40 (0.020): 0.035*\"africa\" + 0.032*\"bar\" + 0.029*\"african\" + 0.025*\"south\" + 0.020*\"till\" + 0.019*\"text\" + 0.018*\"color\" + 0.010*\"cape\" + 0.010*\"agricultur\" + 0.009*\"black\"\n", + "2019-01-16 04:33:13,695 : INFO : topic #33 (0.020): 0.021*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"busi\" + 0.006*\"new\"\n", + "2019-01-16 04:33:13,696 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.016*\"royal\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.012*\"sir\" + 0.012*\"henri\"\n", + "2019-01-16 04:33:13,704 : INFO : topic diff=0.009605, rho=0.047782\n", + "2019-01-16 04:33:13,995 : INFO : PROGRESS: pass 0, at document #878000/4922894\n", + "2019-01-16 04:33:16,134 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:16,690 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.021*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"opera\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:33:16,692 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.025*\"men\" + 0.023*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 04:33:16,693 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.014*\"actor\" + 0.013*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 04:33:16,694 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"seat\"\n", + "2019-01-16 04:33:16,696 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:33:16,701 : INFO : topic diff=0.007680, rho=0.047727\n", + "2019-01-16 04:33:21,282 : INFO : -11.641 per-word bound, 3194.6 perplexity estimate based on a held-out corpus of 2000 documents with 523414 words\n", + "2019-01-16 04:33:21,283 : INFO : PROGRESS: pass 0, at document #880000/4922894\n", + "2019-01-16 04:33:23,305 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:23,862 : INFO : topic #49 (0.020): 0.072*\"north\" + 0.069*\"south\" + 0.067*\"west\" + 0.066*\"east\" + 0.066*\"region\" + 0.055*\"district\" + 0.030*\"central\" + 0.025*\"northern\" + 0.023*\"administr\" + 0.020*\"villag\"\n", + "2019-01-16 04:33:23,864 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"red\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"tree\"\n", + "2019-01-16 04:33:23,866 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"construct\"\n", + "2019-01-16 04:33:23,867 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.007*\"citi\" + 0.007*\"ancient\"\n", + "2019-01-16 04:33:23,869 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:33:23,875 : INFO : topic diff=0.007765, rho=0.047673\n", + "2019-01-16 04:33:24,181 : INFO : PROGRESS: pass 0, at document #882000/4922894\n", + "2019-01-16 04:33:26,256 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:26,813 : INFO : topic #27 (0.020): 0.037*\"russian\" + 0.036*\"born\" + 0.024*\"russia\" + 0.022*\"soviet\" + 0.020*\"jewish\" + 0.018*\"polish\" + 0.015*\"republ\" + 0.015*\"moscow\" + 0.013*\"israel\" + 0.012*\"poland\"\n", + "2019-01-16 04:33:26,814 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.024*\"area\" + 0.023*\"district\" + 0.022*\"censu\" + 0.022*\"famili\"\n", + "2019-01-16 04:33:26,816 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:33:26,818 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 04:33:26,820 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"host\" + 0.010*\"program\" + 0.009*\"dai\" + 0.009*\"air\"\n", + "2019-01-16 04:33:26,827 : INFO : topic diff=0.008276, rho=0.047619\n", + "2019-01-16 04:33:27,121 : INFO : PROGRESS: pass 0, at document #884000/4922894\n", + "2019-01-16 04:33:29,252 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:29,810 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.031*\"armi\" + 0.023*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"corp\"\n", + "2019-01-16 04:33:29,812 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.016*\"royal\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.012*\"sir\" + 0.012*\"henri\"\n", + "2019-01-16 04:33:29,813 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"year\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"championship\"\n", + "2019-01-16 04:33:29,815 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"gun\" + 0.011*\"sea\" + 0.011*\"navi\" + 0.010*\"boat\" + 0.009*\"kill\" + 0.008*\"island\" + 0.008*\"damag\" + 0.008*\"port\" + 0.007*\"coast\"\n", + "2019-01-16 04:33:29,816 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.020*\"singapor\" + 0.019*\"vietnam\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"kim\" + 0.016*\"thailand\" + 0.015*\"asian\" + 0.014*\"–present\" + 0.013*\"asia\"\n", + "2019-01-16 04:33:29,822 : INFO : topic diff=0.007879, rho=0.047565\n", + "2019-01-16 04:33:30,120 : INFO : PROGRESS: pass 0, at document #886000/4922894\n", + "2019-01-16 04:33:32,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:32,810 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", + "2019-01-16 04:33:32,812 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.025*\"saint\" + 0.024*\"pari\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:33:32,813 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.012*\"year\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"lap\"\n", + "2019-01-16 04:33:32,814 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.020*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"brazil\" + 0.012*\"spain\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.009*\"carlo\"\n", + "2019-01-16 04:33:32,815 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:33:32,821 : INFO : topic diff=0.007974, rho=0.047511\n", + "2019-01-16 04:33:33,102 : INFO : PROGRESS: pass 0, at document #888000/4922894\n", + "2019-01-16 04:33:35,145 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:35,702 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.014*\"festiv\" + 0.014*\"piano\" + 0.013*\"opera\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:33:35,703 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 04:33:35,705 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:33:35,707 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", + "2019-01-16 04:33:35,709 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.069*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.016*\"british\" + 0.015*\"ye\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", + "2019-01-16 04:33:35,716 : INFO : topic diff=0.008885, rho=0.047458\n", + "2019-01-16 04:33:36,005 : INFO : PROGRESS: pass 0, at document #890000/4922894\n", + "2019-01-16 04:33:38,026 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:38,582 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.053*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.035*\"chines\" + 0.033*\"zealand\" + 0.026*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.019*\"hong\"\n", + "2019-01-16 04:33:38,583 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.016*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 04:33:38,585 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.012*\"gun\" + 0.011*\"sea\" + 0.011*\"navi\" + 0.010*\"boat\" + 0.009*\"kill\" + 0.009*\"island\" + 0.008*\"port\" + 0.008*\"damag\" + 0.007*\"vessel\"\n", + "2019-01-16 04:33:38,587 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", + "2019-01-16 04:33:38,589 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.028*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"point\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 04:33:38,595 : INFO : topic diff=0.008203, rho=0.047405\n", + "2019-01-16 04:33:38,883 : INFO : PROGRESS: pass 0, at document #892000/4922894\n", + "2019-01-16 04:33:40,949 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:41,506 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"church\"\n", + "2019-01-16 04:33:41,508 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.020*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"brazil\" + 0.012*\"spain\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"juan\" + 0.009*\"carlo\"\n", + "2019-01-16 04:33:41,510 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"yard\" + 0.009*\"basebal\"\n", + "2019-01-16 04:33:41,512 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"opera\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:33:41,513 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"red\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.006*\"tree\"\n", + "2019-01-16 04:33:41,520 : INFO : topic diff=0.009609, rho=0.047351\n", + "2019-01-16 04:33:41,842 : INFO : PROGRESS: pass 0, at document #894000/4922894\n", + "2019-01-16 04:33:43,929 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:44,485 : INFO : topic #40 (0.020): 0.034*\"africa\" + 0.032*\"bar\" + 0.029*\"african\" + 0.025*\"south\" + 0.019*\"till\" + 0.018*\"text\" + 0.017*\"color\" + 0.012*\"tropic\" + 0.010*\"cape\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:33:44,487 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 04:33:44,488 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"counti\" + 0.035*\"town\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.027*\"ag\" + 0.024*\"area\" + 0.022*\"district\" + 0.022*\"censu\" + 0.021*\"famili\"\n", + "2019-01-16 04:33:44,489 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.026*\"work\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.021*\"design\" + 0.017*\"exhibit\" + 0.014*\"jpg\" + 0.014*\"galleri\" + 0.013*\"collect\"\n", + "2019-01-16 04:33:44,491 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.031*\"armi\" + 0.023*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.011*\"battalion\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:33:44,496 : INFO : topic diff=0.008954, rho=0.047298\n", + "2019-01-16 04:33:44,776 : INFO : PROGRESS: pass 0, at document #896000/4922894\n", + "2019-01-16 04:33:46,855 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:47,412 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"point\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\"\n", + "2019-01-16 04:33:47,413 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.016*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:33:47,416 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.015*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.008*\"manufactur\" + 0.008*\"design\" + 0.007*\"electr\" + 0.007*\"type\"\n", + "2019-01-16 04:33:47,417 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 04:33:47,419 : INFO : topic #40 (0.020): 0.034*\"africa\" + 0.033*\"bar\" + 0.028*\"african\" + 0.025*\"south\" + 0.020*\"till\" + 0.019*\"text\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.010*\"cape\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:33:47,425 : INFO : topic diff=0.008315, rho=0.047246\n", + "2019-01-16 04:33:47,709 : INFO : PROGRESS: pass 0, at document #898000/4922894\n", + "2019-01-16 04:33:49,850 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:50,409 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"gun\" + 0.011*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.008*\"kill\" + 0.008*\"island\" + 0.008*\"port\" + 0.008*\"damag\" + 0.007*\"coast\"\n", + "2019-01-16 04:33:50,411 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.010*\"david\" + 0.009*\"michael\" + 0.008*\"smith\" + 0.008*\"american\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:33:50,413 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 04:33:50,414 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"time\" + 0.010*\"ford\" + 0.010*\"championship\"\n", + "2019-01-16 04:33:50,415 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.041*\"franc\" + 0.029*\"italian\" + 0.024*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:33:50,421 : INFO : topic diff=0.008468, rho=0.047193\n", + "2019-01-16 04:33:55,320 : INFO : -11.833 per-word bound, 3649.2 perplexity estimate based on a held-out corpus of 2000 documents with 591281 words\n", + "2019-01-16 04:33:55,321 : INFO : PROGRESS: pass 0, at document #900000/4922894\n", + "2019-01-16 04:33:57,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:33:58,057 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.006*\"citi\"\n", + "2019-01-16 04:33:58,058 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.017*\"austria\" + 0.012*\"und\" + 0.012*\"netherland\"\n", + "2019-01-16 04:33:58,060 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 04:33:58,062 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.011*\"tour\" + 0.011*\"time\" + 0.010*\"ford\" + 0.010*\"championship\"\n", + "2019-01-16 04:33:58,064 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:33:58,070 : INFO : topic diff=0.009103, rho=0.047140\n", + "2019-01-16 04:33:58,363 : INFO : PROGRESS: pass 0, at document #902000/4922894\n", + "2019-01-16 04:34:00,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:01,095 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 04:34:01,097 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"univers\" + 0.012*\"servic\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"manag\"\n", + "2019-01-16 04:34:01,099 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.010*\"war\" + 0.009*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 04:34:01,100 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"kill\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:34:01,102 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"basebal\" + 0.009*\"record\"\n", + "2019-01-16 04:34:01,109 : INFO : topic diff=0.008504, rho=0.047088\n", + "2019-01-16 04:34:01,391 : INFO : PROGRESS: pass 0, at document #904000/4922894\n", + "2019-01-16 04:34:03,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:04,055 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"construct\"\n", + "2019-01-16 04:34:04,057 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 04:34:04,059 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"kill\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:34:04,062 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.012*\"gun\" + 0.011*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.009*\"island\" + 0.008*\"port\" + 0.008*\"kill\" + 0.008*\"damag\" + 0.007*\"coast\"\n", + "2019-01-16 04:34:04,064 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.006*\"citi\"\n", + "2019-01-16 04:34:04,071 : INFO : topic diff=0.007385, rho=0.047036\n", + "2019-01-16 04:34:04,356 : INFO : PROGRESS: pass 0, at document #906000/4922894\n", + "2019-01-16 04:34:06,421 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:06,978 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.046*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 04:34:06,980 : INFO : topic #33 (0.020): 0.022*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"market\" + 0.008*\"bank\" + 0.008*\"time\" + 0.008*\"product\" + 0.007*\"busi\" + 0.007*\"increas\" + 0.006*\"new\"\n", + "2019-01-16 04:34:06,982 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.013*\"finish\" + 0.012*\"year\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 04:34:06,983 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.005*\"english\"\n", + "2019-01-16 04:34:06,985 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:34:06,991 : INFO : topic diff=0.005601, rho=0.046984\n", + "2019-01-16 04:34:07,287 : INFO : PROGRESS: pass 0, at document #908000/4922894\n", + "2019-01-16 04:34:09,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:34:09,924 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"wrestl\" + 0.017*\"team\" + 0.017*\"match\" + 0.016*\"championship\" + 0.016*\"contest\" + 0.015*\"titl\" + 0.014*\"fight\" + 0.014*\"event\" + 0.012*\"world\"\n", + "2019-01-16 04:34:09,925 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.013*\"georg\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"sir\"\n", + "2019-01-16 04:34:09,927 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.031*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:34:09,928 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"paul\" + 0.007*\"american\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:34:09,930 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 04:34:09,936 : INFO : topic diff=0.006739, rho=0.046932\n", + "2019-01-16 04:34:10,222 : INFO : PROGRESS: pass 0, at document #910000/4922894\n", + "2019-01-16 04:34:12,321 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:12,878 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"jame\" + 0.007*\"paul\" + 0.007*\"smith\" + 0.007*\"american\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:34:12,880 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.069*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.022*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"vancouv\"\n", + "2019-01-16 04:34:12,881 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.036*\"counti\" + 0.031*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.026*\"district\" + 0.024*\"area\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:34:12,884 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:34:12,885 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"tour\" + 0.010*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 04:34:12,892 : INFO : topic diff=0.008660, rho=0.046881\n", + "2019-01-16 04:34:13,184 : INFO : PROGRESS: pass 0, at document #912000/4922894\n", + "2019-01-16 04:34:15,245 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:15,803 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:34:15,804 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"leagu\"\n", + "2019-01-16 04:34:15,805 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.016*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"drug\" + 0.009*\"medicin\" + 0.009*\"cancer\"\n", + "2019-01-16 04:34:15,807 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.036*\"counti\" + 0.031*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.026*\"district\" + 0.024*\"area\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:34:15,809 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.010*\"war\" + 0.009*\"countri\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 04:34:15,815 : INFO : topic diff=0.007022, rho=0.046829\n", + "2019-01-16 04:34:16,102 : INFO : PROGRESS: pass 0, at document #914000/4922894\n", + "2019-01-16 04:34:18,203 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:18,759 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:34:18,761 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:34:18,762 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"sir\"\n", + "2019-01-16 04:34:18,764 : INFO : topic #27 (0.020): 0.037*\"russian\" + 0.037*\"born\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.019*\"polish\" + 0.017*\"jewish\" + 0.016*\"republ\" + 0.014*\"moscow\" + 0.014*\"israel\" + 0.012*\"poland\"\n", + "2019-01-16 04:34:18,766 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.014*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 04:34:18,772 : INFO : topic diff=0.008347, rho=0.046778\n", + "2019-01-16 04:34:19,059 : INFO : PROGRESS: pass 0, at document #916000/4922894\n", + "2019-01-16 04:34:21,139 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:21,695 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:34:21,696 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.027*\"work\" + 0.023*\"artist\" + 0.021*\"paint\" + 0.020*\"design\" + 0.016*\"exhibit\" + 0.016*\"jpg\" + 0.014*\"galleri\" + 0.014*\"collect\"\n", + "2019-01-16 04:34:21,698 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 04:34:21,700 : INFO : topic #1 (0.020): 0.040*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:34:21,702 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"servic\"\n", + "2019-01-16 04:34:21,707 : INFO : topic diff=0.007186, rho=0.046727\n", + "2019-01-16 04:34:21,987 : INFO : PROGRESS: pass 0, at document #918000/4922894\n", + "2019-01-16 04:34:24,044 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:24,601 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.008*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\"\n", + "2019-01-16 04:34:24,603 : INFO : topic #49 (0.020): 0.072*\"district\" + 0.071*\"north\" + 0.065*\"south\" + 0.064*\"west\" + 0.064*\"east\" + 0.062*\"region\" + 0.029*\"central\" + 0.026*\"northern\" + 0.023*\"administr\" + 0.021*\"villag\"\n", + "2019-01-16 04:34:24,605 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.017*\"team\" + 0.017*\"wrestl\" + 0.017*\"contest\" + 0.016*\"championship\" + 0.016*\"match\" + 0.016*\"titl\" + 0.014*\"fight\" + 0.013*\"event\" + 0.013*\"world\"\n", + "2019-01-16 04:34:24,606 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"plant\" + 0.010*\"famili\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 04:34:24,608 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"match\" + 0.016*\"player\" + 0.016*\"goal\"\n", + "2019-01-16 04:34:24,615 : INFO : topic diff=0.006980, rho=0.046676\n", + "2019-01-16 04:34:29,514 : INFO : -11.677 per-word bound, 3274.5 perplexity estimate based on a held-out corpus of 2000 documents with 607127 words\n", + "2019-01-16 04:34:29,515 : INFO : PROGRESS: pass 0, at document #920000/4922894\n", + "2019-01-16 04:34:31,649 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:32,207 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.070*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.015*\"montreal\" + 0.015*\"british\" + 0.015*\"vancouv\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:34:32,208 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.008*\"church\"\n", + "2019-01-16 04:34:32,210 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.020*\"mexico\" + 0.016*\"del\" + 0.012*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 04:34:32,212 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.015*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"electr\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"manufactur\" + 0.008*\"type\" + 0.007*\"design\"\n", + "2019-01-16 04:34:32,213 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:34:32,219 : INFO : topic diff=0.008055, rho=0.046625\n", + "2019-01-16 04:34:32,492 : INFO : PROGRESS: pass 0, at document #922000/4922894\n", + "2019-01-16 04:34:34,578 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:35,135 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.023*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"year\" + 0.011*\"time\" + 0.011*\"tour\" + 0.011*\"ford\" + 0.010*\"championship\"\n", + "2019-01-16 04:34:35,136 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"base\"\n", + "2019-01-16 04:34:35,138 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"team\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.016*\"match\" + 0.015*\"fight\" + 0.013*\"event\" + 0.013*\"world\"\n", + "2019-01-16 04:34:35,139 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"gold\" + 0.018*\"athlet\"\n", + "2019-01-16 04:34:35,141 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.015*\"flight\" + 0.012*\"base\" + 0.011*\"servic\"\n", + "2019-01-16 04:34:35,147 : INFO : topic diff=0.006725, rho=0.046575\n", + "2019-01-16 04:34:35,423 : INFO : PROGRESS: pass 0, at document #924000/4922894\n", + "2019-01-16 04:34:37,512 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:38,069 : INFO : topic #27 (0.020): 0.038*\"russian\" + 0.037*\"born\" + 0.023*\"russia\" + 0.021*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.016*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.012*\"poland\"\n", + "2019-01-16 04:34:38,070 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.012*\"channel\" + 0.012*\"televis\" + 0.010*\"program\" + 0.010*\"host\" + 0.009*\"network\" + 0.009*\"air\"\n", + "2019-01-16 04:34:38,072 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.036*\"chines\" + 0.035*\"zealand\" + 0.027*\"south\" + 0.020*\"kong\" + 0.020*\"sydnei\" + 0.019*\"hong\"\n", + "2019-01-16 04:34:38,074 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"case\" + 0.012*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:34:38,076 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.034*\"new\" + 0.030*\"american\" + 0.023*\"york\" + 0.023*\"unit\" + 0.016*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:34:38,082 : INFO : topic diff=0.008250, rho=0.046524\n", + "2019-01-16 04:34:38,370 : INFO : PROGRESS: pass 0, at document #926000/4922894\n", + "2019-01-16 04:34:40,511 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:41,071 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.016*\"gener\" + 0.012*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:34:41,072 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.023*\"car\" + 0.016*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.012*\"year\" + 0.011*\"time\" + 0.011*\"tour\" + 0.011*\"ford\" + 0.010*\"championship\"\n", + "2019-01-16 04:34:41,074 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.010*\"player\" + 0.009*\"version\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"base\"\n", + "2019-01-16 04:34:41,077 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.024*\"best\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.011*\"role\" + 0.011*\"direct\"\n", + "2019-01-16 04:34:41,078 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"khan\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"singh\"\n", + "2019-01-16 04:34:41,085 : INFO : topic diff=0.008441, rho=0.046474\n", + "2019-01-16 04:34:41,360 : INFO : PROGRESS: pass 0, at document #928000/4922894\n", + "2019-01-16 04:34:43,368 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:43,924 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.044*\"final\" + 0.030*\"tournament\" + 0.027*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.017*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", + "2019-01-16 04:34:43,926 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.019*\"compos\" + 0.019*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.015*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 04:34:43,928 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:34:43,930 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.013*\"gun\" + 0.011*\"navi\" + 0.011*\"sea\" + 0.009*\"boat\" + 0.008*\"island\" + 0.008*\"damag\" + 0.008*\"port\" + 0.007*\"coast\" + 0.007*\"vessel\"\n", + "2019-01-16 04:34:43,932 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n", + "2019-01-16 04:34:43,939 : INFO : topic diff=0.007704, rho=0.046424\n", + "2019-01-16 04:34:44,219 : INFO : PROGRESS: pass 0, at document #930000/4922894\n", + "2019-01-16 04:34:46,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:46,899 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.026*\"work\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.021*\"design\" + 0.017*\"jpg\" + 0.016*\"exhibit\" + 0.014*\"galleri\" + 0.014*\"collect\"\n", + "2019-01-16 04:34:46,901 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\"\n", + "2019-01-16 04:34:46,902 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"legal\"\n", + "2019-01-16 04:34:46,904 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:34:46,905 : INFO : topic #40 (0.020): 0.032*\"africa\" + 0.031*\"bar\" + 0.029*\"african\" + 0.025*\"south\" + 0.020*\"till\" + 0.018*\"color\" + 0.017*\"text\" + 0.012*\"agricultur\" + 0.011*\"tropic\" + 0.010*\"black\"\n", + "2019-01-16 04:34:46,911 : INFO : topic diff=0.008500, rho=0.046374\n", + "2019-01-16 04:34:47,195 : INFO : PROGRESS: pass 0, at document #932000/4922894\n", + "2019-01-16 04:34:49,307 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:49,864 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"construct\"\n", + "2019-01-16 04:34:49,866 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.012*\"thoma\"\n", + "2019-01-16 04:34:49,867 : INFO : topic #1 (0.020): 0.040*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:34:49,869 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:34:49,872 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.023*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"year\" + 0.011*\"time\" + 0.011*\"tour\" + 0.010*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 04:34:49,879 : INFO : topic diff=0.007063, rho=0.046324\n", + "2019-01-16 04:34:50,158 : INFO : PROGRESS: pass 0, at document #934000/4922894\n", + "2019-01-16 04:34:52,275 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:52,832 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.012*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"network\" + 0.009*\"dai\"\n", + "2019-01-16 04:34:52,834 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:34:52,835 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:34:52,838 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"polit\" + 0.010*\"war\" + 0.009*\"countri\" + 0.007*\"union\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 04:34:52,839 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"american\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:34:52,845 : INFO : topic diff=0.007299, rho=0.046274\n", + "2019-01-16 04:34:53,120 : INFO : PROGRESS: pass 0, at document #936000/4922894\n", + "2019-01-16 04:34:55,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:55,766 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.022*\"unit\" + 0.021*\"cricket\" + 0.020*\"town\" + 0.017*\"citi\" + 0.016*\"manchest\" + 0.015*\"scotland\" + 0.015*\"scottish\" + 0.011*\"west\" + 0.011*\"london\"\n", + "2019-01-16 04:34:55,768 : INFO : topic #40 (0.020): 0.033*\"africa\" + 0.030*\"bar\" + 0.029*\"african\" + 0.025*\"south\" + 0.019*\"till\" + 0.017*\"color\" + 0.017*\"text\" + 0.012*\"agricultur\" + 0.011*\"tropic\" + 0.010*\"black\"\n", + "2019-01-16 04:34:55,769 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.023*\"best\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"televis\" + 0.012*\"role\" + 0.012*\"produc\"\n", + "2019-01-16 04:34:55,771 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"servic\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"nation\" + 0.011*\"scienc\" + 0.011*\"work\" + 0.011*\"organ\"\n", + "2019-01-16 04:34:55,772 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"legal\"\n", + "2019-01-16 04:34:55,778 : INFO : topic diff=0.009951, rho=0.046225\n", + "2019-01-16 04:34:56,050 : INFO : PROGRESS: pass 0, at document #938000/4922894\n", + "2019-01-16 04:34:58,056 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:34:58,618 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"electr\" + 0.010*\"produc\" + 0.009*\"cell\" + 0.008*\"type\" + 0.008*\"protein\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:34:58,619 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.016*\"team\" + 0.015*\"match\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.012*\"event\" + 0.012*\"world\"\n", + "2019-01-16 04:34:58,621 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"octob\" + 0.070*\"march\" + 0.066*\"januari\" + 0.064*\"august\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.062*\"decemb\" + 0.062*\"april\" + 0.060*\"june\"\n", + "2019-01-16 04:34:58,622 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.046*\"parti\" + 0.022*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"seat\"\n", + "2019-01-16 04:34:58,624 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"church\"\n", + "2019-01-16 04:34:58,630 : INFO : topic diff=0.007997, rho=0.046176\n", + "2019-01-16 04:35:03,309 : INFO : -11.940 per-word bound, 3929.2 perplexity estimate based on a held-out corpus of 2000 documents with 557685 words\n", + "2019-01-16 04:35:03,310 : INFO : PROGRESS: pass 0, at document #940000/4922894\n", + "2019-01-16 04:35:05,384 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:05,941 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"counti\" + 0.034*\"town\" + 0.031*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.025*\"district\" + 0.024*\"area\" + 0.022*\"censu\" + 0.021*\"famili\"\n", + "2019-01-16 04:35:05,944 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:35:05,946 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:35:05,947 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.071*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.019*\"korean\" + 0.017*\"montreal\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"quebec\"\n", + "2019-01-16 04:35:05,949 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:35:05,954 : INFO : topic diff=0.008375, rho=0.046127\n", + "2019-01-16 04:35:06,221 : INFO : PROGRESS: pass 0, at document #942000/4922894\n", + "2019-01-16 04:35:08,333 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:08,889 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.017*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:35:08,891 : INFO : topic #49 (0.020): 0.072*\"north\" + 0.071*\"district\" + 0.065*\"south\" + 0.064*\"region\" + 0.064*\"west\" + 0.064*\"east\" + 0.031*\"central\" + 0.025*\"northern\" + 0.023*\"administr\" + 0.022*\"villag\"\n", + "2019-01-16 04:35:08,893 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", + "2019-01-16 04:35:08,894 : INFO : topic #27 (0.020): 0.038*\"russian\" + 0.037*\"born\" + 0.024*\"russia\" + 0.023*\"soviet\" + 0.020*\"polish\" + 0.017*\"jewish\" + 0.015*\"moscow\" + 0.015*\"republ\" + 0.013*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 04:35:08,896 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n", + "2019-01-16 04:35:08,902 : INFO : topic diff=0.007871, rho=0.046078\n", + "2019-01-16 04:35:09,192 : INFO : PROGRESS: pass 0, at document #944000/4922894\n", + "2019-01-16 04:35:11,286 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:11,844 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 04:35:11,846 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", + "2019-01-16 04:35:11,848 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"yard\" + 0.009*\"record\"\n", + "2019-01-16 04:35:11,849 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:35:11,851 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.088*\"align\" + 0.079*\"left\" + 0.056*\"wikit\" + 0.051*\"center\" + 0.049*\"style\" + 0.040*\"right\" + 0.031*\"text\" + 0.030*\"philippin\" + 0.027*\"border\"\n", + "2019-01-16 04:35:11,857 : INFO : topic diff=0.007410, rho=0.046029\n", + "2019-01-16 04:35:12,157 : INFO : PROGRESS: pass 0, at document #946000/4922894\n", + "2019-01-16 04:35:14,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:14,767 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"case\" + 0.012*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:35:14,768 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.012*\"televis\"\n", + "2019-01-16 04:35:14,770 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.023*\"car\" + 0.016*\"team\" + 0.012*\"year\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"time\" + 0.011*\"ford\" + 0.010*\"miss\"\n", + "2019-01-16 04:35:14,772 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.012*\"gun\" + 0.012*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.008*\"island\" + 0.008*\"damag\" + 0.007*\"port\" + 0.007*\"vessel\" + 0.007*\"coast\"\n", + "2019-01-16 04:35:14,774 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:35:14,780 : INFO : topic diff=0.006648, rho=0.045980\n", + "2019-01-16 04:35:15,063 : INFO : PROGRESS: pass 0, at document #948000/4922894\n", + "2019-01-16 04:35:17,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:17,729 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 04:35:17,731 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:35:17,733 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.029*\"tournament\" + 0.025*\"winner\" + 0.022*\"open\" + 0.019*\"group\" + 0.017*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 04:35:17,734 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"cell\" + 0.010*\"produc\" + 0.009*\"electr\" + 0.007*\"type\" + 0.007*\"acid\" + 0.007*\"protein\"\n", + "2019-01-16 04:35:17,735 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.013*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:35:17,741 : INFO : topic diff=0.009623, rho=0.045932\n", + "2019-01-16 04:35:18,012 : INFO : PROGRESS: pass 0, at document #950000/4922894\n", + "2019-01-16 04:35:20,044 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:20,604 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"set\" + 0.007*\"point\" + 0.007*\"method\" + 0.007*\"gener\" + 0.007*\"model\"\n", + "2019-01-16 04:35:20,606 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:35:20,607 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:35:20,609 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n", + "2019-01-16 04:35:20,612 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 04:35:20,620 : INFO : topic diff=0.007068, rho=0.045883\n", + "2019-01-16 04:35:20,897 : INFO : PROGRESS: pass 0, at document #952000/4922894\n", + "2019-01-16 04:35:22,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:23,466 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:35:23,468 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.048*\"univers\" + 0.038*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:35:23,470 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:35:23,472 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.022*\"spanish\" + 0.021*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"mexican\" + 0.010*\"josé\" + 0.010*\"juan\"\n", + "2019-01-16 04:35:23,473 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.038*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.025*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\"\n", + "2019-01-16 04:35:23,479 : INFO : topic diff=0.008018, rho=0.045835\n", + "2019-01-16 04:35:23,746 : INFO : PROGRESS: pass 0, at document #954000/4922894\n", + "2019-01-16 04:35:25,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:26,310 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"base\"\n", + "2019-01-16 04:35:26,311 : INFO : topic #31 (0.020): 0.057*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.034*\"chines\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.018*\"sydnei\"\n", + "2019-01-16 04:35:26,313 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:35:26,314 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korean\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", + "2019-01-16 04:35:26,316 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n", + "2019-01-16 04:35:26,321 : INFO : topic diff=0.008304, rho=0.045787\n", + "2019-01-16 04:35:26,598 : INFO : PROGRESS: pass 0, at document #956000/4922894\n", + "2019-01-16 04:35:28,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:29,244 : INFO : topic #14 (0.020): 0.015*\"servic\" + 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.010*\"scienc\"\n", + "2019-01-16 04:35:29,246 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"drug\" + 0.009*\"treatment\" + 0.009*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 04:35:29,248 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:35:29,249 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"citi\"\n", + "2019-01-16 04:35:29,251 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.038*\"russian\" + 0.024*\"russia\" + 0.023*\"soviet\" + 0.019*\"polish\" + 0.017*\"jewish\" + 0.016*\"republ\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.012*\"israel\"\n", + "2019-01-16 04:35:29,258 : INFO : topic diff=0.006346, rho=0.045739\n", + "2019-01-16 04:35:29,555 : INFO : PROGRESS: pass 0, at document #958000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:35:31,632 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:32,195 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:35:32,197 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.038*\"counti\" + 0.035*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.025*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:35:32,198 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"mexico\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.010*\"mexican\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\"\n", + "2019-01-16 04:35:32,200 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"octob\" + 0.068*\"march\" + 0.067*\"august\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.063*\"decemb\" + 0.061*\"april\" + 0.059*\"june\"\n", + "2019-01-16 04:35:32,201 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.018*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.015*\"park\" + 0.014*\"lake\" + 0.013*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:35:32,207 : INFO : topic diff=0.007274, rho=0.045691\n", + "2019-01-16 04:35:36,798 : INFO : -11.907 per-word bound, 3841.0 perplexity estimate based on a held-out corpus of 2000 documents with 536439 words\n", + "2019-01-16 04:35:36,799 : INFO : PROGRESS: pass 0, at document #960000/4922894\n", + "2019-01-16 04:35:38,842 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:39,398 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.016*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:35:39,400 : INFO : topic #46 (0.020): 0.124*\"class\" + 0.080*\"align\" + 0.073*\"left\" + 0.056*\"wikit\" + 0.053*\"style\" + 0.048*\"center\" + 0.042*\"right\" + 0.034*\"text\" + 0.032*\"philippin\" + 0.025*\"border\"\n", + "2019-01-16 04:35:39,401 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"octob\" + 0.069*\"march\" + 0.067*\"januari\" + 0.067*\"august\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.063*\"decemb\" + 0.061*\"april\" + 0.060*\"june\"\n", + "2019-01-16 04:35:39,403 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", + "2019-01-16 04:35:39,404 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:35:39,410 : INFO : topic diff=0.007639, rho=0.045644\n", + "2019-01-16 04:35:39,666 : INFO : PROGRESS: pass 0, at document #962000/4922894\n", + "2019-01-16 04:35:41,734 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:42,296 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"drug\" + 0.009*\"treatment\" + 0.009*\"studi\" + 0.008*\"effect\"\n", + "2019-01-16 04:35:42,298 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"base\"\n", + "2019-01-16 04:35:42,301 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.009*\"exampl\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\" + 0.007*\"model\"\n", + "2019-01-16 04:35:42,302 : INFO : topic #14 (0.020): 0.015*\"servic\" + 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.010*\"organ\"\n", + "2019-01-16 04:35:42,304 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.039*\"born\" + 0.024*\"russia\" + 0.022*\"soviet\" + 0.019*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.012*\"israel\"\n", + "2019-01-16 04:35:42,310 : INFO : topic diff=0.007837, rho=0.045596\n", + "2019-01-16 04:35:42,578 : INFO : PROGRESS: pass 0, at document #964000/4922894\n", + "2019-01-16 04:35:44,610 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:45,167 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.014*\"match\" + 0.014*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 04:35:45,169 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 04:35:45,170 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.024*\"winner\" + 0.020*\"open\" + 0.020*\"group\" + 0.017*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"second\"\n", + "2019-01-16 04:35:45,171 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.019*\"design\" + 0.018*\"jpg\" + 0.017*\"file\" + 0.016*\"exhibit\" + 0.015*\"galleri\"\n", + "2019-01-16 04:35:45,173 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.039*\"born\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.019*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.012*\"israel\"\n", + "2019-01-16 04:35:45,180 : INFO : topic diff=0.008603, rho=0.045549\n", + "2019-01-16 04:35:45,462 : INFO : PROGRESS: pass 0, at document #966000/4922894\n", + "2019-01-16 04:35:47,588 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:48,152 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.015*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:35:48,154 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.017*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:35:48,155 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 04:35:48,157 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:35:48,158 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.016*\"match\" + 0.015*\"team\" + 0.014*\"championship\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 04:35:48,164 : INFO : topic diff=0.008624, rho=0.045502\n", + "2019-01-16 04:35:48,430 : INFO : PROGRESS: pass 0, at document #968000/4922894\n", + "2019-01-16 04:35:50,441 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:50,998 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"term\"\n", + "2019-01-16 04:35:50,999 : INFO : topic #47 (0.020): 0.024*\"station\" + 0.024*\"river\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.015*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:35:51,001 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.047*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:35:51,002 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.075*\"octob\" + 0.069*\"march\" + 0.067*\"januari\" + 0.067*\"august\" + 0.065*\"novemb\" + 0.064*\"juli\" + 0.063*\"decemb\" + 0.062*\"april\" + 0.061*\"june\"\n", + "2019-01-16 04:35:51,003 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.028*\"championship\" + 0.028*\"women\" + 0.025*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 04:35:51,009 : INFO : topic diff=0.007985, rho=0.045455\n", + "2019-01-16 04:35:51,330 : INFO : PROGRESS: pass 0, at document #970000/4922894\n", + "2019-01-16 04:35:53,400 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:53,957 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.014*\"servic\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"organ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:35:53,958 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:35:53,960 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.039*\"born\" + 0.023*\"russia\" + 0.023*\"soviet\" + 0.019*\"polish\" + 0.017*\"jewish\" + 0.015*\"moscow\" + 0.015*\"republ\" + 0.013*\"poland\" + 0.012*\"israel\"\n", + "2019-01-16 04:35:53,961 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.022*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"austria\" + 0.011*\"die\"\n", + "2019-01-16 04:35:53,963 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.022*\"artist\" + 0.021*\"paint\" + 0.020*\"design\" + 0.019*\"jpg\" + 0.017*\"file\" + 0.017*\"exhibit\" + 0.015*\"galleri\"\n", + "2019-01-16 04:35:53,968 : INFO : topic diff=0.007794, rho=0.045408\n", + "2019-01-16 04:35:54,239 : INFO : PROGRESS: pass 0, at document #972000/4922894\n", + "2019-01-16 04:35:56,315 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:56,871 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"robert\" + 0.007*\"american\" + 0.006*\"peter\" + 0.006*\"jone\"\n", + "2019-01-16 04:35:56,873 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.014*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.013*\"intern\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", + "2019-01-16 04:35:56,874 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:35:56,876 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:35:56,877 : INFO : topic #33 (0.020): 0.023*\"compani\" + 0.013*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"product\" + 0.007*\"busi\" + 0.007*\"time\" + 0.007*\"increas\" + 0.007*\"rate\"\n", + "2019-01-16 04:35:56,883 : INFO : topic diff=0.008169, rho=0.045361\n", + "2019-01-16 04:35:57,171 : INFO : PROGRESS: pass 0, at document #974000/4922894\n", + "2019-01-16 04:35:59,240 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:35:59,796 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.025*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", + "2019-01-16 04:35:59,797 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.018*\"malaysia\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"asian\" + 0.015*\"min\" + 0.014*\"vietnam\" + 0.014*\"asia\"\n", + "2019-01-16 04:35:59,799 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.012*\"west\" + 0.011*\"wale\"\n", + "2019-01-16 04:35:59,800 : INFO : topic #47 (0.020): 0.024*\"station\" + 0.024*\"river\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.015*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:35:59,802 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korean\" + 0.015*\"quebec\" + 0.014*\"korea\"\n", + "2019-01-16 04:35:59,808 : INFO : topic diff=0.009439, rho=0.045314\n", + "2019-01-16 04:36:00,078 : INFO : PROGRESS: pass 0, at document #976000/4922894\n", + "2019-01-16 04:36:02,222 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:02,777 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.034*\"chines\" + 0.033*\"zealand\" + 0.025*\"south\" + 0.022*\"kong\" + 0.020*\"hong\" + 0.018*\"sydnei\"\n", + "2019-01-16 04:36:02,779 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.017*\"counti\" + 0.017*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:36:02,780 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"materi\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"form\"\n", + "2019-01-16 04:36:02,782 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:36:02,783 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:36:02,789 : INFO : topic diff=0.009326, rho=0.045268\n", + "2019-01-16 04:36:03,060 : INFO : PROGRESS: pass 0, at document #978000/4922894\n", + "2019-01-16 04:36:05,179 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:05,735 : INFO : topic #47 (0.020): 0.024*\"station\" + 0.024*\"river\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.015*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:36:05,736 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.033*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:36:05,738 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.017*\"counti\" + 0.017*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:36:05,739 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"gener\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:36:05,740 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.022*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"finish\" + 0.011*\"time\" + 0.011*\"hors\" + 0.010*\"championship\"\n", + "2019-01-16 04:36:05,746 : INFO : topic diff=0.007823, rho=0.045222\n", + "2019-01-16 04:36:10,531 : INFO : -11.577 per-word bound, 3056.1 perplexity estimate based on a held-out corpus of 2000 documents with 604162 words\n", + "2019-01-16 04:36:10,532 : INFO : PROGRESS: pass 0, at document #980000/4922894\n", + "2019-01-16 04:36:12,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:13,198 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:36:13,200 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.040*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.022*\"dutch\" + 0.019*\"berlin\" + 0.019*\"der\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"austria\"\n", + "2019-01-16 04:36:13,202 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"sea\" + 0.012*\"gun\" + 0.012*\"navi\" + 0.010*\"boat\" + 0.008*\"island\" + 0.008*\"port\" + 0.007*\"kill\" + 0.007*\"damag\" + 0.007*\"coast\"\n", + "2019-01-16 04:36:13,203 : INFO : topic #48 (0.020): 0.080*\"septemb\" + 0.077*\"octob\" + 0.073*\"march\" + 0.067*\"august\" + 0.067*\"juli\" + 0.067*\"april\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"decemb\"\n", + "2019-01-16 04:36:13,205 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.039*\"born\" + 0.024*\"soviet\" + 0.024*\"russia\" + 0.019*\"polish\" + 0.015*\"jewish\" + 0.015*\"moscow\" + 0.015*\"republ\" + 0.013*\"poland\" + 0.013*\"israel\"\n", + "2019-01-16 04:36:13,211 : INFO : topic diff=0.008558, rho=0.045175\n", + "2019-01-16 04:36:13,469 : INFO : PROGRESS: pass 0, at document #982000/4922894\n", + "2019-01-16 04:36:15,516 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:16,074 : INFO : topic #33 (0.020): 0.023*\"compani\" + 0.013*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"product\" + 0.007*\"time\" + 0.007*\"busi\" + 0.007*\"increas\" + 0.007*\"rate\"\n", + "2019-01-16 04:36:16,075 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.072*\"canada\" + 0.059*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"montreal\" + 0.014*\"korean\" + 0.013*\"korea\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:36:16,077 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:36:16,078 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"studi\" + 0.008*\"effect\"\n", + "2019-01-16 04:36:16,080 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:36:16,086 : INFO : topic diff=0.006498, rho=0.045129\n", + "2019-01-16 04:36:16,348 : INFO : PROGRESS: pass 0, at document #984000/4922894\n", + "2019-01-16 04:36:18,387 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:18,948 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.049*\"new\" + 0.039*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.022*\"kong\" + 0.020*\"hong\" + 0.019*\"sydnei\"\n", + "2019-01-16 04:36:18,949 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.010*\"offic\"\n", + "2019-01-16 04:36:18,951 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"electr\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"type\" + 0.009*\"cell\" + 0.008*\"protein\" + 0.007*\"vehicl\"\n", + "2019-01-16 04:36:18,952 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.025*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:36:18,953 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"quebec\" + 0.014*\"korean\" + 0.013*\"vancouv\"\n", + "2019-01-16 04:36:18,960 : INFO : topic diff=0.007187, rho=0.045083\n", + "2019-01-16 04:36:19,243 : INFO : PROGRESS: pass 0, at document #986000/4922894\n", + "2019-01-16 04:36:21,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:21,865 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.013*\"repres\" + 0.013*\"gener\" + 0.013*\"republican\"\n", + "2019-01-16 04:36:21,867 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.026*\"unit\" + 0.023*\"town\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.012*\"wale\" + 0.012*\"london\"\n", + "2019-01-16 04:36:21,869 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"electr\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.009*\"type\" + 0.008*\"protein\" + 0.007*\"vehicl\"\n", + "2019-01-16 04:36:21,870 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 04:36:21,871 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.010*\"offic\"\n", + "2019-01-16 04:36:21,877 : INFO : topic diff=0.008692, rho=0.045038\n", + "2019-01-16 04:36:22,151 : INFO : PROGRESS: pass 0, at document #988000/4922894\n", + "2019-01-16 04:36:24,195 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:24,752 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.025*\"contest\" + 0.018*\"team\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.015*\"match\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.013*\"elimin\" + 0.011*\"champion\"\n", + "2019-01-16 04:36:24,754 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:36:24,756 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.040*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.025*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:36:24,759 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 04:36:24,760 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.067*\"align\" + 0.065*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.052*\"center\" + 0.037*\"right\" + 0.036*\"philippin\" + 0.033*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:36:24,767 : INFO : topic diff=0.007238, rho=0.044992\n", + "2019-01-16 04:36:25,043 : INFO : PROGRESS: pass 0, at document #990000/4922894\n", + "2019-01-16 04:36:27,097 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:27,653 : INFO : topic #40 (0.020): 0.036*\"bar\" + 0.031*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.023*\"till\" + 0.023*\"south\" + 0.021*\"color\" + 0.011*\"black\" + 0.010*\"tropic\" + 0.009*\"agricultur\"\n", + "2019-01-16 04:36:27,655 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:36:27,657 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.025*\"footbal\" + 0.024*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:36:27,659 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:36:27,660 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.047*\"univers\" + 0.039*\"colleg\" + 0.036*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"grade\"\n", + "2019-01-16 04:36:27,667 : INFO : topic diff=0.008531, rho=0.044947\n", + "2019-01-16 04:36:27,936 : INFO : PROGRESS: pass 0, at document #992000/4922894\n", + "2019-01-16 04:36:29,945 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:30,503 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.025*\"contest\" + 0.018*\"team\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"match\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.013*\"elimin\" + 0.011*\"world\"\n", + "2019-01-16 04:36:30,505 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:36:30,506 : INFO : topic #33 (0.020): 0.023*\"compani\" + 0.013*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"product\" + 0.007*\"busi\" + 0.007*\"time\" + 0.007*\"increas\" + 0.006*\"rate\"\n", + "2019-01-16 04:36:30,507 : INFO : topic #2 (0.020): 0.072*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.020*\"der\" + 0.015*\"netherland\" + 0.012*\"die\" + 0.010*\"austria\"\n", + "2019-01-16 04:36:30,509 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.017*\"centuri\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 04:36:30,514 : INFO : topic diff=0.007491, rho=0.044901\n", + "2019-01-16 04:36:30,781 : INFO : PROGRESS: pass 0, at document #994000/4922894\n", + "2019-01-16 04:36:32,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:33,434 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.009*\"gener\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.008*\"theori\" + 0.008*\"method\" + 0.007*\"point\"\n", + "2019-01-16 04:36:33,435 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"work\" + 0.021*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.020*\"jpg\" + 0.018*\"file\" + 0.017*\"exhibit\" + 0.015*\"galleri\"\n", + "2019-01-16 04:36:33,437 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"organ\"\n", + "2019-01-16 04:36:33,438 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"montreal\" + 0.013*\"vancouv\" + 0.013*\"korean\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:36:33,439 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"group\"\n", + "2019-01-16 04:36:33,445 : INFO : topic diff=0.006794, rho=0.044856\n", + "2019-01-16 04:36:33,743 : INFO : PROGRESS: pass 0, at document #996000/4922894\n", + "2019-01-16 04:36:35,808 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:36,364 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.023*\"singapor\" + 0.021*\"min\" + 0.020*\"kim\" + 0.018*\"malaysia\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"asian\" + 0.015*\"asia\" + 0.015*\"vietnam\"\n", + "2019-01-16 04:36:36,365 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:36:36,366 : INFO : topic #27 (0.020): 0.038*\"born\" + 0.036*\"russian\" + 0.024*\"soviet\" + 0.022*\"russia\" + 0.020*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"poland\" + 0.014*\"moscow\" + 0.014*\"israel\"\n", + "2019-01-16 04:36:36,368 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.047*\"univers\" + 0.038*\"colleg\" + 0.036*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"grade\" + 0.009*\"program\"\n", + "2019-01-16 04:36:36,369 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 04:36:36,375 : INFO : topic diff=0.008007, rho=0.044811\n", + "2019-01-16 04:36:36,644 : INFO : PROGRESS: pass 0, at document #998000/4922894\n", + "2019-01-16 04:36:38,620 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:39,176 : INFO : topic #23 (0.020): 0.015*\"ret\" + 0.015*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 04:36:39,178 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.021*\"london\" + 0.019*\"british\" + 0.014*\"royal\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:36:39,180 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 04:36:39,182 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:36:39,184 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.021*\"mexico\" + 0.017*\"del\" + 0.012*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"mexican\" + 0.010*\"josé\" + 0.010*\"juan\"\n", + "2019-01-16 04:36:39,191 : INFO : topic diff=0.008297, rho=0.044766\n", + "2019-01-16 04:36:43,933 : INFO : -11.717 per-word bound, 3367.4 perplexity estimate based on a held-out corpus of 2000 documents with 592532 words\n", + "2019-01-16 04:36:43,933 : INFO : PROGRESS: pass 0, at document #1000000/4922894\n", + "2019-01-16 04:36:46,032 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:46,589 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.036*\"russian\" + 0.024*\"soviet\" + 0.022*\"russia\" + 0.020*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"israel\" + 0.014*\"moscow\" + 0.014*\"poland\"\n", + "2019-01-16 04:36:46,591 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.013*\"senat\" + 0.013*\"council\"\n", + "2019-01-16 04:36:46,592 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.010*\"organ\"\n", + "2019-01-16 04:36:46,594 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.030*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.012*\"wing\" + 0.011*\"base\"\n", + "2019-01-16 04:36:46,596 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:36:46,602 : INFO : topic diff=0.009109, rho=0.044721\n", + "2019-01-16 04:36:46,878 : INFO : PROGRESS: pass 0, at document #1002000/4922894\n", + "2019-01-16 04:36:49,015 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:49,572 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.019*\"cricket\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"london\" + 0.011*\"wale\"\n", + "2019-01-16 04:36:49,574 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.010*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:36:49,575 : INFO : topic #35 (0.020): 0.032*\"singapor\" + 0.025*\"lee\" + 0.020*\"min\" + 0.019*\"malaysia\" + 0.019*\"kim\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asia\" + 0.015*\"asian\" + 0.014*\"vietnam\"\n", + "2019-01-16 04:36:49,577 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.021*\"london\" + 0.020*\"british\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:36:49,579 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.063*\"align\" + 0.061*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.051*\"center\" + 0.036*\"philippin\" + 0.036*\"right\" + 0.033*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:36:49,584 : INFO : topic diff=0.007865, rho=0.044677\n", + "2019-01-16 04:36:49,838 : INFO : PROGRESS: pass 0, at document #1004000/4922894\n", + "2019-01-16 04:36:51,894 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:52,456 : INFO : topic #22 (0.020): 0.046*\"popul\" + 0.040*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.024*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:36:52,458 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.036*\"russian\" + 0.026*\"soviet\" + 0.021*\"russia\" + 0.020*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.014*\"poland\"\n", + "2019-01-16 04:36:52,459 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:36:52,460 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.022*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"tour\" + 0.010*\"time\"\n", + "2019-01-16 04:36:52,462 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"major\"\n", + "2019-01-16 04:36:52,469 : INFO : topic diff=0.008017, rho=0.044632\n", + "2019-01-16 04:36:52,740 : INFO : PROGRESS: pass 0, at document #1006000/4922894\n", + "2019-01-16 04:36:54,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:55,363 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 04:36:55,365 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.012*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:36:55,366 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.024*\"command\" + 0.021*\"forc\" + 0.016*\"gener\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:36:55,368 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.009*\"releas\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:36:55,369 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.030*\"oper\" + 0.026*\"airport\" + 0.026*\"aircraft\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.011*\"wing\" + 0.011*\"airlin\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:36:55,375 : INFO : topic diff=0.006403, rho=0.044588\n", + "2019-01-16 04:36:55,636 : INFO : PROGRESS: pass 0, at document #1008000/4922894\n", + "2019-01-16 04:36:57,676 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:36:58,232 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"novel\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\"\n", + "2019-01-16 04:36:58,233 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"area\" + 0.012*\"lake\" + 0.010*\"north\"\n", + "2019-01-16 04:36:58,235 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.049*\"new\" + 0.047*\"australian\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.024*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.018*\"hong\"\n", + "2019-01-16 04:36:58,236 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.024*\"winner\" + 0.022*\"open\" + 0.022*\"group\" + 0.020*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 04:36:58,237 : INFO : topic #22 (0.020): 0.046*\"popul\" + 0.040*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.024*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:36:58,244 : INFO : topic diff=0.007786, rho=0.044544\n", + "2019-01-16 04:36:58,518 : INFO : PROGRESS: pass 0, at document #1010000/4922894\n", + "2019-01-16 04:37:00,590 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:01,147 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.021*\"jpg\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"file\" + 0.018*\"exhibit\" + 0.016*\"galleri\"\n", + "2019-01-16 04:37:01,149 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:37:01,151 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.012*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"record\"\n", + "2019-01-16 04:37:01,152 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.048*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.032*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"grade\"\n", + "2019-01-16 04:37:01,153 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"novel\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\"\n", + "2019-01-16 04:37:01,159 : INFO : topic diff=0.008518, rho=0.044499\n", + "2019-01-16 04:37:01,409 : INFO : PROGRESS: pass 0, at document #1012000/4922894\n", + "2019-01-16 04:37:03,443 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:03,999 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"electr\" + 0.009*\"cell\" + 0.009*\"produc\" + 0.009*\"protein\" + 0.009*\"type\" + 0.008*\"vehicl\"\n", + "2019-01-16 04:37:04,001 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.025*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:37:04,003 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.049*\"new\" + 0.047*\"australian\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.023*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.018*\"hong\"\n", + "2019-01-16 04:37:04,004 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.022*\"contest\" + 0.018*\"team\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.012*\"world\" + 0.012*\"elimin\"\n", + "2019-01-16 04:37:04,006 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.026*\"pari\" + 0.026*\"italian\" + 0.021*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.016*\"de\" + 0.012*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 04:37:04,013 : INFO : topic diff=0.007641, rho=0.044455\n", + "2019-01-16 04:37:04,274 : INFO : PROGRESS: pass 0, at document #1014000/4922894\n", + "2019-01-16 04:37:06,359 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:06,915 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:37:06,916 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.013*\"servic\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:37:06,918 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"union\"\n", + "2019-01-16 04:37:06,920 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"london\" + 0.019*\"british\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.011*\"henri\"\n", + "2019-01-16 04:37:06,921 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.016*\"de\" + 0.012*\"le\" + 0.012*\"loui\"\n", + "2019-01-16 04:37:06,928 : INFO : topic diff=0.006664, rho=0.044412\n", + "2019-01-16 04:37:07,181 : INFO : PROGRESS: pass 0, at document #1016000/4922894\n", + "2019-01-16 04:37:09,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:09,751 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.022*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"tour\" + 0.010*\"championship\" + 0.010*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 04:37:09,753 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", + "2019-01-16 04:37:09,754 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.022*\"contest\" + 0.017*\"team\" + 0.017*\"titl\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.012*\"world\" + 0.012*\"elimin\"\n", + "2019-01-16 04:37:09,755 : INFO : topic #22 (0.020): 0.046*\"popul\" + 0.038*\"counti\" + 0.034*\"town\" + 0.033*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.024*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:37:09,757 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.048*\"new\" + 0.047*\"australian\" + 0.039*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.023*\"south\" + 0.021*\"sydnei\" + 0.019*\"kong\" + 0.017*\"hong\"\n", + "2019-01-16 04:37:09,763 : INFO : topic diff=0.007202, rho=0.044368\n", + "2019-01-16 04:37:10,012 : INFO : PROGRESS: pass 0, at document #1018000/4922894\n", + "2019-01-16 04:37:12,001 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:12,557 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.033*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"singh\" + 0.010*\"islam\"\n", + "2019-01-16 04:37:12,558 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.044*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"repres\" + 0.012*\"gener\" + 0.012*\"council\"\n", + "2019-01-16 04:37:12,560 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.022*\"contest\" + 0.017*\"team\" + 0.017*\"titl\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.012*\"elimin\" + 0.012*\"world\"\n", + "2019-01-16 04:37:12,561 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.027*\"unit\" + 0.023*\"town\" + 0.019*\"cricket\" + 0.019*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"wale\" + 0.014*\"manchest\" + 0.013*\"london\"\n", + "2019-01-16 04:37:12,563 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.022*\"dutch\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:37:12,570 : INFO : topic diff=0.007162, rho=0.044324\n", + "2019-01-16 04:37:17,198 : INFO : -11.482 per-word bound, 2860.1 perplexity estimate based on a held-out corpus of 2000 documents with 551011 words\n", + "2019-01-16 04:37:17,199 : INFO : PROGRESS: pass 0, at document #1020000/4922894\n", + "2019-01-16 04:37:19,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:37:19,764 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.017*\"state\" + 0.014*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 04:37:19,766 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"record\"\n", + "2019-01-16 04:37:19,767 : INFO : topic #35 (0.020): 0.028*\"singapor\" + 0.026*\"lee\" + 0.019*\"kim\" + 0.018*\"min\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.016*\"asian\" + 0.015*\"thailand\" + 0.015*\"asia\" + 0.013*\"vietnam\"\n", + "2019-01-16 04:37:19,768 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.021*\"jpg\" + 0.020*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"file\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", + "2019-01-16 04:37:19,770 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.049*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:37:19,776 : INFO : topic diff=0.007806, rho=0.044281\n", + "2019-01-16 04:37:20,078 : INFO : PROGRESS: pass 0, at document #1022000/4922894\n", + "2019-01-16 04:37:22,185 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:22,741 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:37:22,743 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.032*\"africa\" + 0.030*\"african\" + 0.024*\"color\" + 0.024*\"south\" + 0.023*\"till\" + 0.023*\"text\" + 0.012*\"black\" + 0.010*\"tropic\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:37:22,744 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 04:37:22,746 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 04:37:22,747 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:37:22,754 : INFO : topic diff=0.007928, rho=0.044237\n", + "2019-01-16 04:37:23,025 : INFO : PROGRESS: pass 0, at document #1024000/4922894\n", + "2019-01-16 04:37:25,141 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:25,698 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.021*\"act\" + 0.017*\"state\" + 0.014*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 04:37:25,699 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 04:37:25,701 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 04:37:25,702 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:37:25,703 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.025*\"olymp\" + 0.021*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"time\" + 0.018*\"japanes\"\n", + "2019-01-16 04:37:25,709 : INFO : topic diff=0.006928, rho=0.044194\n", + "2019-01-16 04:37:25,990 : INFO : PROGRESS: pass 0, at document #1026000/4922894\n", + "2019-01-16 04:37:28,123 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:28,683 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.029*\"work\" + 0.021*\"jpg\" + 0.020*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.019*\"file\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", + "2019-01-16 04:37:28,684 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 04:37:28,686 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"dutch\" + 0.022*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:37:28,687 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.012*\"navi\" + 0.012*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.009*\"port\" + 0.008*\"island\" + 0.007*\"crew\" + 0.007*\"damag\" + 0.007*\"sail\"\n", + "2019-01-16 04:37:28,689 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:37:28,695 : INFO : topic diff=0.006449, rho=0.044151\n", + "2019-01-16 04:37:28,947 : INFO : PROGRESS: pass 0, at document #1028000/4922894\n", + "2019-01-16 04:37:31,017 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:31,575 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"genu\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 04:37:31,576 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.011*\"model\" + 0.011*\"power\" + 0.011*\"protein\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.009*\"type\" + 0.008*\"vehicl\"\n", + "2019-01-16 04:37:31,578 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"london\" + 0.013*\"manchest\"\n", + "2019-01-16 04:37:31,579 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 04:37:31,580 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:37:31,585 : INFO : topic diff=0.006797, rho=0.044108\n", + "2019-01-16 04:37:31,852 : INFO : PROGRESS: pass 0, at document #1030000/4922894\n", + "2019-01-16 04:37:33,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:34,526 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:37:34,528 : INFO : topic #35 (0.020): 0.028*\"singapor\" + 0.026*\"lee\" + 0.020*\"kim\" + 0.020*\"malaysia\" + 0.019*\"min\" + 0.017*\"asian\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.015*\"asia\" + 0.013*\"vietnam\"\n", + "2019-01-16 04:37:34,529 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"american\" + 0.006*\"harri\"\n", + "2019-01-16 04:37:34,531 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"later\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:37:34,533 : INFO : topic #31 (0.020): 0.057*\"australia\" + 0.049*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.024*\"south\" + 0.021*\"kong\" + 0.020*\"sydnei\" + 0.019*\"hong\"\n", + "2019-01-16 04:37:34,539 : INFO : topic diff=0.008390, rho=0.044065\n", + "2019-01-16 04:37:34,792 : INFO : PROGRESS: pass 0, at document #1032000/4922894\n", + "2019-01-16 04:37:36,868 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:37,425 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 04:37:37,427 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"genu\" + 0.008*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"fish\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:37:37,428 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.026*\"toronto\" + 0.026*\"ontario\" + 0.016*\"montreal\" + 0.015*\"quebec\" + 0.015*\"british\" + 0.014*\"korean\" + 0.013*\"korea\"\n", + "2019-01-16 04:37:37,429 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.022*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"ford\" + 0.011*\"tour\" + 0.011*\"finish\" + 0.010*\"year\" + 0.010*\"time\"\n", + "2019-01-16 04:37:37,431 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 04:37:37,438 : INFO : topic diff=0.006217, rho=0.044023\n", + "2019-01-16 04:37:37,702 : INFO : PROGRESS: pass 0, at document #1034000/4922894\n", + "2019-01-16 04:37:39,719 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:40,277 : INFO : topic #40 (0.020): 0.038*\"bar\" + 0.034*\"africa\" + 0.029*\"african\" + 0.024*\"south\" + 0.023*\"text\" + 0.022*\"till\" + 0.022*\"color\" + 0.014*\"tropic\" + 0.011*\"black\" + 0.010*\"storm\"\n", + "2019-01-16 04:37:40,278 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", + "2019-01-16 04:37:40,280 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.016*\"gener\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:37:40,282 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 04:37:40,283 : INFO : topic #25 (0.020): 0.048*\"final\" + 0.047*\"round\" + 0.027*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.021*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", + "2019-01-16 04:37:40,289 : INFO : topic diff=0.006498, rho=0.043980\n", + "2019-01-16 04:37:40,554 : INFO : PROGRESS: pass 0, at document #1036000/4922894\n", + "2019-01-16 04:37:42,609 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:43,167 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.029*\"women\" + 0.029*\"championship\" + 0.025*\"olymp\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.021*\"men\" + 0.019*\"japanes\" + 0.018*\"time\"\n", + "2019-01-16 04:37:43,168 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.049*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.035*\"chines\" + 0.034*\"zealand\" + 0.024*\"south\" + 0.020*\"kong\" + 0.019*\"sydnei\" + 0.018*\"hong\"\n", + "2019-01-16 04:37:43,170 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:37:43,171 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 04:37:43,173 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.020*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"novel\" + 0.011*\"author\" + 0.010*\"writer\"\n", + "2019-01-16 04:37:43,178 : INFO : topic diff=0.006441, rho=0.043937\n", + "2019-01-16 04:37:43,443 : INFO : PROGRESS: pass 0, at document #1038000/4922894\n", + "2019-01-16 04:37:45,523 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:46,079 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.024*\"season\" + 0.024*\"cup\" + 0.016*\"match\" + 0.016*\"player\" + 0.016*\"goal\"\n", + "2019-01-16 04:37:46,082 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"emperor\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 04:37:46,084 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:37:46,085 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.020*\"act\" + 0.017*\"state\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:37:46,086 : INFO : topic #48 (0.020): 0.074*\"januari\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.072*\"march\" + 0.067*\"novemb\" + 0.066*\"april\" + 0.066*\"decemb\" + 0.065*\"juli\" + 0.064*\"august\" + 0.062*\"june\"\n", + "2019-01-16 04:37:46,092 : INFO : topic diff=0.006741, rho=0.043895\n", + "2019-01-16 04:37:50,896 : INFO : -11.618 per-word bound, 3142.8 perplexity estimate based on a held-out corpus of 2000 documents with 590359 words\n", + "2019-01-16 04:37:50,897 : INFO : PROGRESS: pass 0, at document #1040000/4922894\n", + "2019-01-16 04:37:52,989 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:53,546 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.026*\"unit\" + 0.021*\"town\" + 0.021*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"wale\" + 0.012*\"london\" + 0.012*\"manchest\"\n", + "2019-01-16 04:37:53,548 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 04:37:53,550 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"electr\" + 0.010*\"protein\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"cell\"\n", + "2019-01-16 04:37:53,551 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"championship\" + 0.011*\"finish\" + 0.011*\"tour\" + 0.010*\"year\" + 0.010*\"hors\"\n", + "2019-01-16 04:37:53,553 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.064*\"align\" + 0.059*\"style\" + 0.057*\"wikit\" + 0.056*\"left\" + 0.048*\"center\" + 0.038*\"right\" + 0.036*\"philippin\" + 0.034*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:37:53,559 : INFO : topic diff=0.009322, rho=0.043853\n", + "2019-01-16 04:37:53,818 : INFO : PROGRESS: pass 0, at document #1042000/4922894\n", + "2019-01-16 04:37:55,871 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:56,437 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.016*\"gener\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:37:56,438 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:37:56,439 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.014*\"park\" + 0.013*\"rout\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:37:56,441 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"orchestra\" + 0.013*\"opera\"\n", + "2019-01-16 04:37:56,442 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:37:56,449 : INFO : topic diff=0.007313, rho=0.043811\n", + "2019-01-16 04:37:56,715 : INFO : PROGRESS: pass 0, at document #1044000/4922894\n", + "2019-01-16 04:37:58,795 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:37:59,353 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.020*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:37:59,354 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.033*\"indian\" + 0.020*\"http\" + 0.015*\"iran\" + 0.015*\"www\" + 0.013*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"templ\" + 0.011*\"ali\"\n", + "2019-01-16 04:37:59,356 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.005*\"term\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:37:59,358 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.016*\"titl\" + 0.016*\"match\" + 0.016*\"wrestl\" + 0.016*\"team\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.013*\"elimin\" + 0.012*\"world\"\n", + "2019-01-16 04:37:59,359 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.072*\"januari\" + 0.071*\"march\" + 0.071*\"septemb\" + 0.065*\"novemb\" + 0.064*\"decemb\" + 0.064*\"april\" + 0.064*\"juli\" + 0.064*\"august\" + 0.062*\"june\"\n", + "2019-01-16 04:37:59,365 : INFO : topic diff=0.008300, rho=0.043769\n", + "2019-01-16 04:37:59,638 : INFO : PROGRESS: pass 0, at document #1046000/4922894\n", + "2019-01-16 04:38:01,733 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:02,290 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.020*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"novel\" + 0.011*\"author\" + 0.010*\"writer\"\n", + "2019-01-16 04:38:02,292 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.036*\"russian\" + 0.022*\"soviet\" + 0.021*\"russia\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.016*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 04:38:02,294 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.017*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 04:38:02,295 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.051*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 04:38:02,297 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.027*\"award\" + 0.021*\"episod\" + 0.021*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.014*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:38:02,303 : INFO : topic diff=0.006751, rho=0.043727\n", + "2019-01-16 04:38:02,593 : INFO : PROGRESS: pass 0, at document #1048000/4922894\n", + "2019-01-16 04:38:04,601 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:05,158 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:38:05,159 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"emperor\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:38:05,161 : INFO : topic #24 (0.020): 0.030*\"ship\" + 0.012*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.010*\"damag\" + 0.009*\"boat\" + 0.009*\"port\" + 0.008*\"island\" + 0.007*\"sail\" + 0.007*\"naval\"\n", + "2019-01-16 04:38:05,162 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.018*\"gener\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 04:38:05,164 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"health\" + 0.013*\"hospit\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"studi\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 04:38:05,170 : INFO : topic diff=0.006535, rho=0.043685\n", + "2019-01-16 04:38:05,434 : INFO : PROGRESS: pass 0, at document #1050000/4922894\n", + "2019-01-16 04:38:07,495 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:08,053 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"opera\" + 0.013*\"piano\" + 0.013*\"orchestra\"\n", + "2019-01-16 04:38:08,054 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"contest\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.016*\"titl\" + 0.016*\"team\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.012*\"world\" + 0.012*\"elimin\"\n", + "2019-01-16 04:38:08,056 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.033*\"africa\" + 0.029*\"african\" + 0.025*\"till\" + 0.024*\"text\" + 0.024*\"color\" + 0.023*\"south\" + 0.012*\"tropic\" + 0.011*\"black\" + 0.010*\"storm\"\n", + "2019-01-16 04:38:08,057 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 04:38:08,059 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:38:08,065 : INFO : topic diff=0.007158, rho=0.043644\n", + "2019-01-16 04:38:08,319 : INFO : PROGRESS: pass 0, at document #1052000/4922894\n", + "2019-01-16 04:38:10,302 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:10,859 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.050*\"univers\" + 0.038*\"student\" + 0.037*\"colleg\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", + "2019-01-16 04:38:10,861 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.018*\"gener\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 04:38:10,863 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"carlo\"\n", + "2019-01-16 04:38:10,864 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"tree\" + 0.008*\"genu\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:38:10,865 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.026*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.015*\"scottish\" + 0.012*\"wale\" + 0.012*\"london\" + 0.012*\"manchest\"\n", + "2019-01-16 04:38:10,871 : INFO : topic diff=0.007925, rho=0.043602\n", + "2019-01-16 04:38:11,130 : INFO : PROGRESS: pass 0, at document #1054000/4922894\n", + "2019-01-16 04:38:13,106 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:13,661 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.026*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 04:38:13,663 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.008*\"union\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 04:38:13,664 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.070*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.015*\"montreal\" + 0.014*\"korean\" + 0.014*\"korea\"\n", + "2019-01-16 04:38:13,665 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"form\"\n", + "2019-01-16 04:38:13,667 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.032*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.013*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"templ\"\n", + "2019-01-16 04:38:13,672 : INFO : topic diff=0.007755, rho=0.043561\n", + "2019-01-16 04:38:13,936 : INFO : PROGRESS: pass 0, at document #1056000/4922894\n", + "2019-01-16 04:38:15,944 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:16,502 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", + "2019-01-16 04:38:16,504 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"new\" + 0.049*\"australian\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.020*\"sydnei\" + 0.019*\"kong\" + 0.018*\"hong\"\n", + "2019-01-16 04:38:16,506 : INFO : topic #27 (0.020): 0.038*\"born\" + 0.036*\"russian\" + 0.022*\"soviet\" + 0.021*\"russia\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.015*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 04:38:16,507 : INFO : topic #33 (0.020): 0.024*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"increas\" + 0.007*\"new\"\n", + "2019-01-16 04:38:16,509 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:38:16,516 : INFO : topic diff=0.007301, rho=0.043519\n", + "2019-01-16 04:38:16,775 : INFO : PROGRESS: pass 0, at document #1058000/4922894\n", + "2019-01-16 04:38:18,832 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:19,390 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.038*\"germani\" + 0.029*\"van\" + 0.023*\"berlin\" + 0.022*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", + "2019-01-16 04:38:19,392 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.019*\"road\" + 0.018*\"line\" + 0.016*\"railwai\" + 0.014*\"park\" + 0.014*\"rout\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:38:19,393 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.050*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", + "2019-01-16 04:38:19,394 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:38:19,396 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.070*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.015*\"montreal\" + 0.014*\"korea\" + 0.013*\"korean\"\n", + "2019-01-16 04:38:19,402 : INFO : topic diff=0.006893, rho=0.043478\n", + "2019-01-16 04:38:24,097 : INFO : -11.654 per-word bound, 3222.9 perplexity estimate based on a held-out corpus of 2000 documents with 568602 words\n", + "2019-01-16 04:38:24,098 : INFO : PROGRESS: pass 0, at document #1060000/4922894\n", + "2019-01-16 04:38:26,210 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:26,770 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.025*\"singapor\" + 0.019*\"malaysia\" + 0.018*\"kim\" + 0.018*\"indonesia\" + 0.017*\"vietnam\" + 0.017*\"asian\" + 0.016*\"min\" + 0.016*\"thailand\" + 0.014*\"asia\"\n", + "2019-01-16 04:38:26,772 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"novel\" + 0.011*\"author\" + 0.010*\"writer\"\n", + "2019-01-16 04:38:26,774 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:38:26,775 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.061*\"style\" + 0.061*\"align\" + 0.058*\"wikit\" + 0.052*\"left\" + 0.047*\"center\" + 0.036*\"right\" + 0.036*\"text\" + 0.033*\"philippin\" + 0.024*\"border\"\n", + "2019-01-16 04:38:26,777 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.050*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", + "2019-01-16 04:38:26,783 : INFO : topic diff=0.006410, rho=0.043437\n", + "2019-01-16 04:38:27,039 : INFO : PROGRESS: pass 0, at document #1062000/4922894\n", + "2019-01-16 04:38:29,038 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:29,596 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"octob\" + 0.073*\"januari\" + 0.072*\"septemb\" + 0.067*\"novemb\" + 0.066*\"april\" + 0.065*\"juli\" + 0.065*\"decemb\" + 0.064*\"august\" + 0.062*\"june\"\n", + "2019-01-16 04:38:29,597 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"base\"\n", + "2019-01-16 04:38:29,598 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.070*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.014*\"korean\"\n", + "2019-01-16 04:38:29,600 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 04:38:29,601 : INFO : topic #49 (0.020): 0.071*\"district\" + 0.070*\"north\" + 0.066*\"west\" + 0.065*\"east\" + 0.065*\"south\" + 0.063*\"region\" + 0.036*\"central\" + 0.022*\"villag\" + 0.022*\"provinc\" + 0.022*\"northern\"\n", + "2019-01-16 04:38:29,606 : INFO : topic diff=0.007158, rho=0.043396\n", + "2019-01-16 04:38:29,859 : INFO : PROGRESS: pass 0, at document #1064000/4922894\n", + "2019-01-16 04:38:31,903 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:32,460 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.018*\"hong\"\n", + "2019-01-16 04:38:32,462 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.028*\"oper\" + 0.027*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"wing\" + 0.011*\"base\"\n", + "2019-01-16 04:38:32,463 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.013*\"pakistan\" + 0.012*\"sri\" + 0.012*\"templ\" + 0.011*\"khan\" + 0.011*\"ali\"\n", + "2019-01-16 04:38:32,465 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.019*\"contest\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"team\" + 0.016*\"match\" + 0.016*\"championship\" + 0.012*\"elimin\" + 0.012*\"world\"\n", + "2019-01-16 04:38:32,466 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.017*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:38:32,473 : INFO : topic diff=0.006593, rho=0.043355\n", + "2019-01-16 04:38:32,742 : INFO : PROGRESS: pass 0, at document #1066000/4922894\n", + "2019-01-16 04:38:34,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:35,446 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.060*\"style\" + 0.058*\"align\" + 0.057*\"wikit\" + 0.051*\"left\" + 0.047*\"center\" + 0.035*\"right\" + 0.034*\"text\" + 0.033*\"philippin\" + 0.024*\"border\"\n", + "2019-01-16 04:38:35,448 : INFO : topic #33 (0.020): 0.024*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"busi\" + 0.008*\"product\" + 0.007*\"time\" + 0.007*\"increas\" + 0.007*\"new\"\n", + "2019-01-16 04:38:35,449 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.028*\"work\" + 0.023*\"jpg\" + 0.021*\"paint\" + 0.021*\"artist\" + 0.021*\"file\" + 0.018*\"design\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", + "2019-01-16 04:38:35,451 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 04:38:35,452 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.072*\"januari\" + 0.067*\"april\" + 0.066*\"novemb\" + 0.065*\"decemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.061*\"june\"\n", + "2019-01-16 04:38:35,459 : INFO : topic diff=0.007236, rho=0.043315\n", + "2019-01-16 04:38:35,712 : INFO : PROGRESS: pass 0, at document #1068000/4922894\n", + "2019-01-16 04:38:37,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:38,289 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 04:38:38,291 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.012*\"ford\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"finish\" + 0.010*\"time\" + 0.010*\"year\"\n", + "2019-01-16 04:38:38,292 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"form\" + 0.007*\"word\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 04:38:38,294 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.020*\"kong\" + 0.019*\"sydnei\" + 0.018*\"hong\"\n", + "2019-01-16 04:38:38,295 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:38:38,301 : INFO : topic diff=0.006417, rho=0.043274\n", + "2019-01-16 04:38:38,560 : INFO : PROGRESS: pass 0, at document #1070000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:38:40,613 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:41,168 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.033*\"africa\" + 0.027*\"african\" + 0.025*\"till\" + 0.024*\"text\" + 0.023*\"south\" + 0.023*\"color\" + 0.011*\"black\" + 0.011*\"tropic\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:38:41,170 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.009*\"port\" + 0.008*\"island\" + 0.007*\"crew\" + 0.007*\"coast\"\n", + "2019-01-16 04:38:41,171 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.070*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.016*\"montreal\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.014*\"british\" + 0.014*\"korean\"\n", + "2019-01-16 04:38:41,173 : INFO : topic #49 (0.020): 0.072*\"district\" + 0.070*\"north\" + 0.066*\"west\" + 0.065*\"east\" + 0.065*\"south\" + 0.063*\"region\" + 0.035*\"central\" + 0.022*\"provinc\" + 0.022*\"villag\" + 0.021*\"northern\"\n", + "2019-01-16 04:38:41,174 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"base\"\n", + "2019-01-16 04:38:41,180 : INFO : topic diff=0.006370, rho=0.043234\n", + "2019-01-16 04:38:41,487 : INFO : PROGRESS: pass 0, at document #1072000/4922894\n", + "2019-01-16 04:38:43,539 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:44,096 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.022*\"berlin\" + 0.022*\"der\" + 0.021*\"von\" + 0.021*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:38:44,098 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"treatment\" + 0.008*\"studi\" + 0.008*\"effect\"\n", + "2019-01-16 04:38:44,099 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.030*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", + "2019-01-16 04:38:44,101 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"kingdom\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:38:44,102 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.022*\"station\" + 0.020*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:38:44,108 : INFO : topic diff=0.006947, rho=0.043193\n", + "2019-01-16 04:38:44,364 : INFO : PROGRESS: pass 0, at document #1074000/4922894\n", + "2019-01-16 04:38:46,461 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:47,019 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"serv\"\n", + "2019-01-16 04:38:47,021 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"church\"\n", + "2019-01-16 04:38:47,022 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 04:38:47,024 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.032*\"africa\" + 0.026*\"african\" + 0.024*\"till\" + 0.024*\"text\" + 0.023*\"south\" + 0.023*\"color\" + 0.012*\"black\" + 0.011*\"tropic\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:38:47,026 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.021*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"london\" + 0.011*\"counti\"\n", + "2019-01-16 04:38:47,032 : INFO : topic diff=0.006420, rho=0.043153\n", + "2019-01-16 04:38:47,294 : INFO : PROGRESS: pass 0, at document #1076000/4922894\n", + "2019-01-16 04:38:49,453 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:50,011 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"opera\" + 0.013*\"piano\" + 0.012*\"orchestra\"\n", + "2019-01-16 04:38:50,013 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.022*\"berlin\" + 0.022*\"der\" + 0.021*\"von\" + 0.021*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:38:50,014 : INFO : topic #27 (0.020): 0.038*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.020*\"jewish\" + 0.017*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 04:38:50,016 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 04:38:50,018 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"london\" + 0.012*\"counti\"\n", + "2019-01-16 04:38:50,025 : INFO : topic diff=0.007285, rho=0.043113\n", + "2019-01-16 04:38:50,289 : INFO : PROGRESS: pass 0, at document #1078000/4922894\n", + "2019-01-16 04:38:52,399 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:38:52,958 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"serv\"\n", + "2019-01-16 04:38:52,959 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.011*\"model\" + 0.011*\"power\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"acid\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"protein\"\n", + "2019-01-16 04:38:52,961 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.032*\"africa\" + 0.027*\"african\" + 0.024*\"till\" + 0.023*\"text\" + 0.023*\"south\" + 0.022*\"color\" + 0.012*\"black\" + 0.010*\"tropic\" + 0.010*\"agricultur\"\n", + "2019-01-16 04:38:52,962 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.030*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", + "2019-01-16 04:38:52,964 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 04:38:52,969 : INFO : topic diff=0.006267, rho=0.043073\n", + "2019-01-16 04:38:57,523 : INFO : -11.674 per-word bound, 3268.2 perplexity estimate based on a held-out corpus of 2000 documents with 526083 words\n", + "2019-01-16 04:38:57,524 : INFO : PROGRESS: pass 0, at document #1080000/4922894\n", + "2019-01-16 04:38:59,538 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:00,095 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.011*\"model\" + 0.011*\"power\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"acid\" + 0.008*\"type\" + 0.008*\"protein\" + 0.008*\"vehicl\"\n", + "2019-01-16 04:39:00,096 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"gener\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:39:00,098 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"contest\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"week\"\n", + "2019-01-16 04:39:00,100 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.030*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", + "2019-01-16 04:39:00,102 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.037*\"russian\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.019*\"jewish\" + 0.017*\"polish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", + "2019-01-16 04:39:00,107 : INFO : topic diff=0.006944, rho=0.043033\n", + "2019-01-16 04:39:00,364 : INFO : PROGRESS: pass 0, at document #1082000/4922894\n", + "2019-01-16 04:39:02,413 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:02,970 : INFO : topic #27 (0.020): 0.038*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.020*\"jewish\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"poland\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:39:02,972 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:39:02,974 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"london\" + 0.011*\"counti\"\n", + "2019-01-16 04:39:02,975 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.023*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 04:39:02,976 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"life\"\n", + "2019-01-16 04:39:02,984 : INFO : topic diff=0.006498, rho=0.042993\n", + "2019-01-16 04:39:03,242 : INFO : PROGRESS: pass 0, at document #1084000/4922894\n", + "2019-01-16 04:39:05,293 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:05,849 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"earth\" + 0.005*\"effect\"\n", + "2019-01-16 04:39:05,850 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.017*\"titl\" + 0.016*\"match\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.016*\"team\" + 0.015*\"championship\" + 0.011*\"world\" + 0.011*\"elimin\"\n", + "2019-01-16 04:39:05,852 : INFO : topic #33 (0.020): 0.024*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"new\" + 0.007*\"increas\"\n", + "2019-01-16 04:39:05,854 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"lo\"\n", + "2019-01-16 04:39:05,855 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.068*\"canada\" + 0.059*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"quebec\" + 0.015*\"korean\" + 0.014*\"british\"\n", + "2019-01-16 04:39:05,862 : INFO : topic diff=0.006922, rho=0.042954\n", + "2019-01-16 04:39:06,118 : INFO : PROGRESS: pass 0, at document #1086000/4922894\n", + "2019-01-16 04:39:08,141 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:08,698 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 04:39:08,699 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"gener\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:39:08,701 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.037*\"counti\" + 0.032*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.022*\"censu\" + 0.021*\"district\"\n", + "2019-01-16 04:39:08,702 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.017*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:39:08,704 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"said\"\n", + "2019-01-16 04:39:08,710 : INFO : topic diff=0.007761, rho=0.042914\n", + "2019-01-16 04:39:08,967 : INFO : PROGRESS: pass 0, at document #1088000/4922894\n", + "2019-01-16 04:39:11,031 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:11,592 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.033*\"team\" + 0.028*\"footbal\" + 0.024*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:39:11,593 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.016*\"match\" + 0.016*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"elimin\" + 0.012*\"world\"\n", + "2019-01-16 04:39:11,596 : INFO : topic #33 (0.020): 0.024*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"new\" + 0.007*\"increas\"\n", + "2019-01-16 04:39:11,598 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.074*\"octob\" + 0.073*\"januari\" + 0.072*\"septemb\" + 0.068*\"april\" + 0.067*\"novemb\" + 0.066*\"juli\" + 0.066*\"decemb\" + 0.064*\"august\" + 0.063*\"june\"\n", + "2019-01-16 04:39:11,599 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"japan\" + 0.023*\"men\" + 0.021*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.018*\"japanes\"\n", + "2019-01-16 04:39:11,605 : INFO : topic diff=0.005905, rho=0.042875\n", + "2019-01-16 04:39:11,872 : INFO : PROGRESS: pass 0, at document #1090000/4922894\n", + "2019-01-16 04:39:13,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:14,500 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 04:39:14,502 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 04:39:14,503 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.028*\"footbal\" + 0.024*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:39:14,504 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\"\n", + "2019-01-16 04:39:14,506 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:39:14,513 : INFO : topic diff=0.007889, rho=0.042835\n", + "2019-01-16 04:39:14,765 : INFO : PROGRESS: pass 0, at document #1092000/4922894\n", + "2019-01-16 04:39:16,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:17,346 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"sea\" + 0.012*\"navi\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"damag\" + 0.009*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:39:17,347 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.008*\"set\" + 0.008*\"gener\" + 0.008*\"point\" + 0.007*\"model\" + 0.007*\"valu\" + 0.007*\"theori\" + 0.007*\"method\"\n", + "2019-01-16 04:39:17,349 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.040*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:39:17,351 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"counti\" + 0.033*\"town\" + 0.031*\"villag\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.023*\"municip\" + 0.023*\"area\" + 0.022*\"censu\" + 0.021*\"district\"\n", + "2019-01-16 04:39:17,353 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.031*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.023*\"till\" + 0.023*\"south\" + 0.023*\"color\" + 0.012*\"black\" + 0.011*\"tropic\" + 0.010*\"storm\"\n", + "2019-01-16 04:39:17,359 : INFO : topic diff=0.007428, rho=0.042796\n", + "2019-01-16 04:39:17,611 : INFO : PROGRESS: pass 0, at document #1094000/4922894\n", + "2019-01-16 04:39:19,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:20,177 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 04:39:20,178 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:39:20,180 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"damag\" + 0.009*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.008*\"crew\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:39:20,182 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.049*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:39:20,184 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:39:20,190 : INFO : topic diff=0.006675, rho=0.042757\n", + "2019-01-16 04:39:20,444 : INFO : PROGRESS: pass 0, at document #1096000/4922894\n", + "2019-01-16 04:39:22,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:23,089 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.022*\"kim\" + 0.019*\"malaysia\" + 0.019*\"vietnam\" + 0.018*\"asian\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.015*\"min\" + 0.014*\"asia\"\n", + "2019-01-16 04:39:23,090 : INFO : topic #39 (0.020): 0.052*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"forc\" + 0.017*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.012*\"wing\" + 0.012*\"base\"\n", + "2019-01-16 04:39:23,092 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", + "2019-01-16 04:39:23,094 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.039*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:39:23,096 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.032*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:39:23,101 : INFO : topic diff=0.008547, rho=0.042718\n", + "2019-01-16 04:39:23,386 : INFO : PROGRESS: pass 0, at document #1098000/4922894\n", + "2019-01-16 04:39:25,422 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:25,979 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 04:39:25,980 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.069*\"canada\" + 0.060*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.016*\"korea\" + 0.015*\"korean\" + 0.015*\"quebec\" + 0.014*\"british\" + 0.014*\"montreal\"\n", + "2019-01-16 04:39:25,981 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.008*\"light\" + 0.008*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 04:39:25,982 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.045*\"new\" + 0.044*\"china\" + 0.036*\"chines\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.020*\"sydnei\" + 0.018*\"kong\" + 0.017*\"hong\"\n", + "2019-01-16 04:39:25,983 : INFO : topic #33 (0.020): 0.025*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"new\" + 0.007*\"increas\"\n", + "2019-01-16 04:39:25,991 : INFO : topic diff=0.006743, rho=0.042679\n", + "2019-01-16 04:39:30,711 : INFO : -11.594 per-word bound, 3090.3 perplexity estimate based on a held-out corpus of 2000 documents with 563945 words\n", + "2019-01-16 04:39:30,712 : INFO : PROGRESS: pass 0, at document #1100000/4922894\n", + "2019-01-16 04:39:32,777 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:33,334 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.026*\"unit\" + 0.023*\"town\" + 0.020*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"counti\"\n", + "2019-01-16 04:39:33,336 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:39:33,337 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.022*\"lake\" + 0.019*\"road\" + 0.019*\"line\" + 0.016*\"park\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.012*\"area\" + 0.011*\"north\"\n", + "2019-01-16 04:39:33,339 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.032*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:39:33,340 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"serv\"\n", + "2019-01-16 04:39:33,346 : INFO : topic diff=0.006823, rho=0.042640\n", + "2019-01-16 04:39:33,603 : INFO : PROGRESS: pass 0, at document #1102000/4922894\n", + "2019-01-16 04:39:35,693 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:36,251 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.069*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.016*\"korea\" + 0.015*\"korean\" + 0.015*\"british\" + 0.014*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 04:39:36,252 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:39:36,256 : INFO : topic #49 (0.020): 0.075*\"district\" + 0.073*\"north\" + 0.067*\"south\" + 0.064*\"east\" + 0.062*\"west\" + 0.060*\"region\" + 0.034*\"central\" + 0.028*\"provinc\" + 0.026*\"northern\" + 0.022*\"villag\"\n", + "2019-01-16 04:39:36,257 : INFO : topic #33 (0.020): 0.025*\"compani\" + 0.013*\"million\" + 0.010*\"year\" + 0.010*\"market\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"new\" + 0.007*\"increas\"\n", + "2019-01-16 04:39:36,259 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n", + "2019-01-16 04:39:36,265 : INFO : topic diff=0.007395, rho=0.042601\n", + "2019-01-16 04:39:36,528 : INFO : PROGRESS: pass 0, at document #1104000/4922894\n", + "2019-01-16 04:39:38,654 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:39,216 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.008*\"citi\"\n", + "2019-01-16 04:39:39,218 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"counti\" + 0.033*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.022*\"censu\" + 0.021*\"famili\"\n", + "2019-01-16 04:39:39,219 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.008*\"protein\" + 0.008*\"vehicl\" + 0.008*\"acid\"\n", + "2019-01-16 04:39:39,221 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"genu\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:39:39,223 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"theori\" + 0.007*\"method\"\n", + "2019-01-16 04:39:39,229 : INFO : topic diff=0.008925, rho=0.042563\n", + "2019-01-16 04:39:39,473 : INFO : PROGRESS: pass 0, at document #1106000/4922894\n", + "2019-01-16 04:39:41,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:42,087 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.046*\"new\" + 0.043*\"china\" + 0.035*\"chines\" + 0.031*\"zealand\" + 0.026*\"south\" + 0.021*\"sydnei\" + 0.018*\"kong\" + 0.017*\"hong\"\n", + "2019-01-16 04:39:42,089 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:39:42,090 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.026*\"singapor\" + 0.022*\"kim\" + 0.019*\"vietnam\" + 0.018*\"malaysia\" + 0.018*\"indonesia\" + 0.018*\"asian\" + 0.016*\"thailand\" + 0.015*\"asia\" + 0.014*\"min\"\n", + "2019-01-16 04:39:42,091 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"order\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:39:42,093 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.067*\"align\" + 0.057*\"left\" + 0.056*\"wikit\" + 0.055*\"style\" + 0.045*\"center\" + 0.037*\"right\" + 0.035*\"philippin\" + 0.031*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:39:42,100 : INFO : topic diff=0.007758, rho=0.042524\n", + "2019-01-16 04:39:42,352 : INFO : PROGRESS: pass 0, at document #1108000/4922894\n", + "2019-01-16 04:39:44,348 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:44,906 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 04:39:44,907 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.022*\"town\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"london\" + 0.013*\"manchest\" + 0.012*\"counti\"\n", + "2019-01-16 04:39:44,909 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.008*\"light\" + 0.008*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"us\" + 0.006*\"time\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 04:39:44,911 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.008*\"church\"\n", + "2019-01-16 04:39:44,913 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"group\"\n", + "2019-01-16 04:39:44,920 : INFO : topic diff=0.006731, rho=0.042486\n", + "2019-01-16 04:39:45,164 : INFO : PROGRESS: pass 0, at document #1110000/4922894\n", + "2019-01-16 04:39:47,229 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:47,786 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"order\" + 0.009*\"right\" + 0.008*\"report\"\n", + "2019-01-16 04:39:47,788 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.014*\"festiv\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:39:47,790 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 04:39:47,791 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"princ\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:39:47,793 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"develop\" + 0.013*\"univers\" + 0.012*\"nation\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:39:47,798 : INFO : topic diff=0.007349, rho=0.042448\n", + "2019-01-16 04:39:48,046 : INFO : PROGRESS: pass 0, at document #1112000/4922894\n", + "2019-01-16 04:39:50,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:50,689 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.017*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.012*\"direct\"\n", + "2019-01-16 04:39:50,691 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.015*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:39:50,692 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:39:50,694 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"counti\" + 0.033*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.028*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.022*\"censu\" + 0.021*\"famili\"\n", + "2019-01-16 04:39:50,696 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.009*\"church\"\n", + "2019-01-16 04:39:50,702 : INFO : topic diff=0.007400, rho=0.042409\n", + "2019-01-16 04:39:50,948 : INFO : PROGRESS: pass 0, at document #1114000/4922894\n", + "2019-01-16 04:39:52,988 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:53,549 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:39:53,550 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.039*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:39:53,552 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.068*\"canada\" + 0.059*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.017*\"korea\" + 0.016*\"korean\" + 0.015*\"british\" + 0.014*\"montreal\" + 0.013*\"quebec\"\n", + "2019-01-16 04:39:53,554 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"princ\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:39:53,555 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 04:39:53,562 : INFO : topic diff=0.006926, rho=0.042371\n", + "2019-01-16 04:39:53,820 : INFO : PROGRESS: pass 0, at document #1116000/4922894\n", + "2019-01-16 04:39:55,840 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:56,397 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.005*\"exampl\"\n", + "2019-01-16 04:39:56,398 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:39:56,400 : INFO : topic #33 (0.020): 0.025*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.010*\"market\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"busi\" + 0.007*\"new\" + 0.007*\"time\" + 0.007*\"increas\"\n", + "2019-01-16 04:39:56,401 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"militari\" + 0.016*\"battl\" + 0.016*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:39:56,403 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"royal\" + 0.012*\"henri\"\n", + "2019-01-16 04:39:56,409 : INFO : topic diff=0.007471, rho=0.042333\n", + "2019-01-16 04:39:56,664 : INFO : PROGRESS: pass 0, at document #1118000/4922894\n", + "2019-01-16 04:39:58,765 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:39:59,323 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"number\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"model\" + 0.008*\"point\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"method\"\n", + "2019-01-16 04:39:59,325 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.050*\"univers\" + 0.042*\"colleg\" + 0.036*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:39:59,326 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.005*\"exampl\"\n", + "2019-01-16 04:39:59,328 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:39:59,329 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"kill\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:39:59,335 : INFO : topic diff=0.006776, rho=0.042295\n", + "2019-01-16 04:40:04,034 : INFO : -11.640 per-word bound, 3191.8 perplexity estimate based on a held-out corpus of 2000 documents with 566774 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:40:04,035 : INFO : PROGRESS: pass 0, at document #1120000/4922894\n", + "2019-01-16 04:40:06,163 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:06,724 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.035*\"germani\" + 0.032*\"van\" + 0.024*\"von\" + 0.023*\"dutch\" + 0.022*\"der\" + 0.021*\"berlin\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:40:06,725 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.012*\"novel\" + 0.011*\"author\" + 0.011*\"writer\"\n", + "2019-01-16 04:40:06,727 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.029*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.024*\"japan\" + 0.022*\"men\" + 0.022*\"event\" + 0.019*\"medal\" + 0.018*\"japanes\" + 0.018*\"athlet\"\n", + "2019-01-16 04:40:06,728 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.069*\"canada\" + 0.059*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.017*\"korea\" + 0.016*\"korean\" + 0.015*\"montreal\" + 0.015*\"british\" + 0.013*\"quebec\"\n", + "2019-01-16 04:40:06,729 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.061*\"align\" + 0.056*\"wikit\" + 0.055*\"left\" + 0.053*\"style\" + 0.045*\"center\" + 0.038*\"right\" + 0.036*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:40:06,735 : INFO : topic diff=0.005867, rho=0.042258\n", + "2019-01-16 04:40:07,000 : INFO : PROGRESS: pass 0, at document #1122000/4922894\n", + "2019-01-16 04:40:09,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:09,632 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"london\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:40:09,634 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.019*\"lake\" + 0.018*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.014*\"rout\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:40:09,635 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.061*\"align\" + 0.056*\"wikit\" + 0.054*\"left\" + 0.054*\"style\" + 0.046*\"center\" + 0.038*\"right\" + 0.037*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:40:09,637 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:40:09,639 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"develop\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"organ\"\n", + "2019-01-16 04:40:09,645 : INFO : topic diff=0.007143, rho=0.042220\n", + "2019-01-16 04:40:09,930 : INFO : PROGRESS: pass 0, at document #1124000/4922894\n", + "2019-01-16 04:40:11,998 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:12,555 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"design\" + 0.008*\"cell\" + 0.008*\"protein\" + 0.008*\"vehicl\"\n", + "2019-01-16 04:40:12,556 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.022*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.012*\"direct\"\n", + "2019-01-16 04:40:12,559 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.015*\"match\" + 0.015*\"team\" + 0.015*\"championship\" + 0.011*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 04:40:12,560 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 04:40:12,561 : INFO : topic #35 (0.020): 0.028*\"singapor\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.019*\"indonesia\" + 0.018*\"vietnam\" + 0.017*\"malaysia\" + 0.016*\"asian\" + 0.015*\"thailand\" + 0.015*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 04:40:12,568 : INFO : topic diff=0.008198, rho=0.042182\n", + "2019-01-16 04:40:12,815 : INFO : PROGRESS: pass 0, at document #1126000/4922894\n", + "2019-01-16 04:40:14,885 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:15,441 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:40:15,442 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 04:40:15,444 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.015*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:40:15,446 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.012*\"number\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"model\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 04:40:15,447 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 04:40:15,453 : INFO : topic diff=0.005599, rho=0.042145\n", + "2019-01-16 04:40:15,707 : INFO : PROGRESS: pass 0, at document #1128000/4922894\n", + "2019-01-16 04:40:17,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:18,324 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.015*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:40:18,326 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"counti\" + 0.034*\"town\" + 0.033*\"villag\" + 0.031*\"citi\" + 0.028*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.021*\"censu\" + 0.021*\"famili\"\n", + "2019-01-16 04:40:18,327 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"novel\" + 0.011*\"author\" + 0.011*\"writer\"\n", + "2019-01-16 04:40:18,329 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"open\" + 0.018*\"point\" + 0.014*\"qualifi\" + 0.013*\"place\" + 0.013*\"runner\"\n", + "2019-01-16 04:40:18,331 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.051*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:40:18,336 : INFO : topic diff=0.006347, rho=0.042108\n", + "2019-01-16 04:40:18,594 : INFO : PROGRESS: pass 0, at document #1130000/4922894\n", + "2019-01-16 04:40:20,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:21,195 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.075*\"septemb\" + 0.073*\"octob\" + 0.070*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.065*\"april\" + 0.064*\"decemb\" + 0.064*\"june\" + 0.064*\"august\"\n", + "2019-01-16 04:40:21,197 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.016*\"royal\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:40:21,198 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.035*\"germani\" + 0.031*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.022*\"dutch\" + 0.022*\"berlin\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:40:21,200 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"white\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 04:40:21,203 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.018*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:40:21,208 : INFO : topic diff=0.007135, rho=0.042070\n", + "2019-01-16 04:40:21,455 : INFO : PROGRESS: pass 0, at document #1132000/4922894\n", + "2019-01-16 04:40:23,435 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:23,998 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:40:24,000 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:40:24,002 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:40:24,004 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.051*\"univers\" + 0.043*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:40:24,005 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"direct\" + 0.012*\"televis\"\n", + "2019-01-16 04:40:24,011 : INFO : topic diff=0.006780, rho=0.042033\n", + "2019-01-16 04:40:24,270 : INFO : PROGRESS: pass 0, at document #1134000/4922894\n", + "2019-01-16 04:40:26,422 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:26,984 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 04:40:26,985 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"mass\"\n", + "2019-01-16 04:40:26,987 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.018*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:40:26,989 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.016*\"royal\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:40:26,990 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:40:26,996 : INFO : topic diff=0.007852, rho=0.041996\n", + "2019-01-16 04:40:27,254 : INFO : PROGRESS: pass 0, at document #1136000/4922894\n", + "2019-01-16 04:40:29,336 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:29,892 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"kingdom\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:40:29,894 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:40:29,895 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.032*\"africa\" + 0.028*\"african\" + 0.026*\"text\" + 0.025*\"till\" + 0.025*\"color\" + 0.023*\"south\" + 0.012*\"tropic\" + 0.011*\"black\" + 0.011*\"storm\"\n", + "2019-01-16 04:40:29,897 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 04:40:29,898 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:40:29,904 : INFO : topic diff=0.006881, rho=0.041959\n", + "2019-01-16 04:40:30,156 : INFO : PROGRESS: pass 0, at document #1138000/4922894\n", + "2019-01-16 04:40:32,255 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:32,812 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.019*\"vietnam\" + 0.017*\"indonesia\" + 0.017*\"asian\" + 0.017*\"malaysia\" + 0.016*\"thailand\" + 0.015*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 04:40:32,813 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"yard\"\n", + "2019-01-16 04:40:32,816 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:40:32,817 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.025*\"cup\" + 0.024*\"season\" + 0.017*\"goal\" + 0.017*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:40:32,818 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.018*\"railwai\" + 0.017*\"lake\" + 0.016*\"park\" + 0.014*\"rout\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:40:32,824 : INFO : topic diff=0.010169, rho=0.041922\n", + "2019-01-16 04:40:37,353 : INFO : -11.649 per-word bound, 3212.0 perplexity estimate based on a held-out corpus of 2000 documents with 541592 words\n", + "2019-01-16 04:40:37,354 : INFO : PROGRESS: pass 0, at document #1140000/4922894\n", + "2019-01-16 04:40:39,329 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:39,886 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:40:39,888 : INFO : topic #49 (0.020): 0.077*\"district\" + 0.068*\"north\" + 0.064*\"south\" + 0.063*\"east\" + 0.061*\"region\" + 0.059*\"west\" + 0.034*\"central\" + 0.029*\"provinc\" + 0.024*\"northern\" + 0.022*\"villag\"\n", + "2019-01-16 04:40:39,889 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 04:40:39,890 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.034*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.025*\"cup\" + 0.025*\"season\" + 0.017*\"goal\" + 0.017*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:40:39,892 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.018*\"railwai\" + 0.017*\"lake\" + 0.015*\"park\" + 0.014*\"rout\" + 0.012*\"area\" + 0.011*\"north\"\n", + "2019-01-16 04:40:39,897 : INFO : topic diff=0.006449, rho=0.041885\n", + "2019-01-16 04:40:40,140 : INFO : PROGRESS: pass 0, at document #1142000/4922894\n", + "2019-01-16 04:40:42,147 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:42,702 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.018*\"japanes\"\n", + "2019-01-16 04:40:42,704 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 04:40:42,707 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"centuri\"\n", + "2019-01-16 04:40:42,708 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", + "2019-01-16 04:40:42,709 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.050*\"univers\" + 0.043*\"colleg\" + 0.037*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:40:42,715 : INFO : topic diff=0.007044, rho=0.041849\n", + "2019-01-16 04:40:42,960 : INFO : PROGRESS: pass 0, at document #1144000/4922894\n", + "2019-01-16 04:40:45,023 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:45,581 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"lo\" + 0.010*\"juan\" + 0.010*\"josé\"\n", + "2019-01-16 04:40:45,583 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.024*\"singapor\" + 0.021*\"kim\" + 0.018*\"vietnam\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.016*\"asian\" + 0.016*\"thailand\" + 0.014*\"asia\" + 0.013*\"min\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:40:45,585 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"host\" + 0.011*\"dai\"\n", + "2019-01-16 04:40:45,587 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"minist\" + 0.018*\"vote\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"republican\"\n", + "2019-01-16 04:40:45,588 : INFO : topic #49 (0.020): 0.077*\"district\" + 0.069*\"north\" + 0.064*\"south\" + 0.062*\"east\" + 0.061*\"region\" + 0.058*\"west\" + 0.034*\"central\" + 0.029*\"provinc\" + 0.024*\"northern\" + 0.023*\"villag\"\n", + "2019-01-16 04:40:45,595 : INFO : topic diff=0.005709, rho=0.041812\n", + "2019-01-16 04:40:45,835 : INFO : PROGRESS: pass 0, at document #1146000/4922894\n", + "2019-01-16 04:40:47,882 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:48,440 : INFO : topic #49 (0.020): 0.077*\"district\" + 0.068*\"north\" + 0.064*\"south\" + 0.063*\"east\" + 0.061*\"region\" + 0.058*\"west\" + 0.034*\"central\" + 0.029*\"provinc\" + 0.024*\"northern\" + 0.023*\"villag\"\n", + "2019-01-16 04:40:48,441 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"network\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"dai\"\n", + "2019-01-16 04:40:48,443 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.015*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:40:48,445 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"star\" + 0.006*\"us\" + 0.005*\"time\" + 0.005*\"materi\"\n", + "2019-01-16 04:40:48,447 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.014*\"opera\" + 0.014*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:40:48,454 : INFO : topic diff=0.007274, rho=0.041776\n", + "2019-01-16 04:40:48,714 : INFO : PROGRESS: pass 0, at document #1148000/4922894\n", + "2019-01-16 04:40:50,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:51,505 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.026*\"work\" + 0.025*\"paint\" + 0.025*\"jpg\" + 0.022*\"file\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.016*\"imag\"\n", + "2019-01-16 04:40:51,507 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.022*\"contest\" + 0.016*\"match\" + 0.016*\"fight\" + 0.016*\"team\" + 0.015*\"titl\" + 0.014*\"wrestl\" + 0.014*\"week\" + 0.014*\"championship\" + 0.011*\"champion\"\n", + "2019-01-16 04:40:51,509 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.052*\"australian\" + 0.046*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.026*\"south\" + 0.021*\"sydnei\" + 0.018*\"melbourn\" + 0.018*\"kong\"\n", + "2019-01-16 04:40:51,510 : INFO : topic #33 (0.020): 0.025*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n", + "2019-01-16 04:40:51,512 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:40:51,518 : INFO : topic diff=0.006419, rho=0.041739\n", + "2019-01-16 04:40:51,809 : INFO : PROGRESS: pass 0, at document #1150000/4922894\n", + "2019-01-16 04:40:54,046 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:54,605 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.039*\"franc\" + 0.027*\"pari\" + 0.026*\"italian\" + 0.023*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:40:54,606 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.045*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.013*\"draw\" + 0.013*\"qualifi\" + 0.012*\"place\"\n", + "2019-01-16 04:40:54,608 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 04:40:54,609 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.025*\"lee\" + 0.020*\"kim\" + 0.019*\"vietnam\" + 0.018*\"malaysia\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 04:40:54,611 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"team\" + 0.034*\"plai\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.025*\"season\" + 0.017*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", + "2019-01-16 04:40:54,617 : INFO : topic diff=0.007508, rho=0.041703\n", + "2019-01-16 04:40:54,875 : INFO : PROGRESS: pass 0, at document #1152000/4922894\n", + "2019-01-16 04:40:56,950 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:40:57,507 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:40:57,509 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:40:57,510 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"team\" + 0.033*\"plai\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.025*\"season\" + 0.016*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", + "2019-01-16 04:40:57,512 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"number\" + 0.010*\"set\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"model\" + 0.007*\"group\"\n", + "2019-01-16 04:40:57,513 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"form\" + 0.007*\"word\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 04:40:57,519 : INFO : topic diff=0.006719, rho=0.041667\n", + "2019-01-16 04:40:57,770 : INFO : PROGRESS: pass 0, at document #1154000/4922894\n", + "2019-01-16 04:40:59,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:00,443 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:41:00,444 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.012*\"tour\" + 0.011*\"finish\" + 0.011*\"hors\" + 0.011*\"championship\" + 0.010*\"year\"\n", + "2019-01-16 04:41:00,446 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.013*\"london\" + 0.012*\"west\"\n", + "2019-01-16 04:41:00,450 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"network\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"dai\"\n", + "2019-01-16 04:41:00,452 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:41:00,457 : INFO : topic diff=0.006675, rho=0.041631\n", + "2019-01-16 04:41:00,706 : INFO : PROGRESS: pass 0, at document #1156000/4922894\n", + "2019-01-16 04:41:02,700 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:03,258 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.017*\"match\" + 0.016*\"team\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"wrestl\" + 0.014*\"championship\" + 0.012*\"week\" + 0.011*\"world\"\n", + "2019-01-16 04:41:03,260 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"counti\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.028*\"ag\" + 0.022*\"area\" + 0.022*\"censu\" + 0.021*\"municip\" + 0.021*\"famili\"\n", + "2019-01-16 04:41:03,262 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:41:03,264 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:41:03,265 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n", + "2019-01-16 04:41:03,271 : INFO : topic diff=0.006965, rho=0.041595\n", + "2019-01-16 04:41:03,510 : INFO : PROGRESS: pass 0, at document #1158000/4922894\n", + "2019-01-16 04:41:05,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:06,093 : INFO : topic #48 (0.020): 0.075*\"octob\" + 0.075*\"march\" + 0.075*\"septemb\" + 0.071*\"januari\" + 0.068*\"novemb\" + 0.067*\"juli\" + 0.065*\"august\" + 0.065*\"april\" + 0.065*\"june\" + 0.065*\"decemb\"\n", + "2019-01-16 04:41:06,094 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.015*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"lo\" + 0.009*\"josé\"\n", + "2019-01-16 04:41:06,097 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"counti\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.028*\"ag\" + 0.022*\"area\" + 0.022*\"censu\" + 0.021*\"municip\" + 0.021*\"famili\"\n", + "2019-01-16 04:41:06,098 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.024*\"lee\" + 0.020*\"kim\" + 0.020*\"vietnam\" + 0.019*\"malaysia\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asian\" + 0.014*\"min\" + 0.014*\"asia\"\n", + "2019-01-16 04:41:06,099 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.013*\"qualifi\" + 0.013*\"draw\" + 0.013*\"place\"\n", + "2019-01-16 04:41:06,106 : INFO : topic diff=0.006331, rho=0.041559\n", + "2019-01-16 04:41:10,780 : INFO : -12.231 per-word bound, 4807.3 perplexity estimate based on a held-out corpus of 2000 documents with 589120 words\n", + "2019-01-16 04:41:10,781 : INFO : PROGRESS: pass 0, at document #1160000/4922894\n", + "2019-01-16 04:41:12,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:13,391 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.009*\"island\" + 0.008*\"damag\" + 0.008*\"port\" + 0.008*\"crew\" + 0.008*\"sail\"\n", + "2019-01-16 04:41:13,392 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:41:13,394 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:41:13,396 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:41:13,399 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.014*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:41:13,406 : INFO : topic diff=0.008179, rho=0.041523\n", + "2019-01-16 04:41:13,651 : INFO : PROGRESS: pass 0, at document #1162000/4922894\n", + "2019-01-16 04:41:15,664 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:16,220 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"star\"\n", + "2019-01-16 04:41:16,222 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:41:16,223 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:41:16,224 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"royal\" + 0.018*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:41:16,226 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.017*\"team\" + 0.016*\"match\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"wrestl\" + 0.014*\"championship\" + 0.012*\"week\" + 0.011*\"champion\"\n", + "2019-01-16 04:41:16,233 : INFO : topic diff=0.007340, rho=0.041487\n", + "2019-01-16 04:41:16,489 : INFO : PROGRESS: pass 0, at document #1164000/4922894\n", + "2019-01-16 04:41:18,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:19,087 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"star\"\n", + "2019-01-16 04:41:19,089 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.013*\"navi\" + 0.012*\"gun\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.009*\"island\" + 0.008*\"damag\" + 0.008*\"port\" + 0.008*\"crew\" + 0.007*\"naval\"\n", + "2019-01-16 04:41:19,091 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.025*\"lee\" + 0.020*\"kim\" + 0.019*\"malaysia\" + 0.018*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asian\" + 0.014*\"min\" + 0.014*\"asia\"\n", + "2019-01-16 04:41:19,092 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"number\" + 0.010*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"model\" + 0.007*\"group\"\n", + "2019-01-16 04:41:19,093 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"gener\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:41:19,099 : INFO : topic diff=0.006059, rho=0.041451\n", + "2019-01-16 04:41:19,337 : INFO : PROGRESS: pass 0, at document #1166000/4922894\n", + "2019-01-16 04:41:21,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:21,897 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\"\n", + "2019-01-16 04:41:21,898 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.027*\"jpg\" + 0.026*\"work\" + 0.024*\"paint\" + 0.023*\"file\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.016*\"imag\"\n", + "2019-01-16 04:41:21,900 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.016*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", + "2019-01-16 04:41:21,903 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:41:21,904 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:41:21,910 : INFO : topic diff=0.007550, rho=0.041416\n", + "2019-01-16 04:41:22,151 : INFO : PROGRESS: pass 0, at document #1168000/4922894\n", + "2019-01-16 04:41:24,185 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:24,744 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:41:24,746 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:41:24,747 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:41:24,749 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.037*\"oper\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 04:41:24,750 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.018*\"royal\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.012*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:41:24,756 : INFO : topic diff=0.005821, rho=0.041380\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:41:25,004 : INFO : PROGRESS: pass 0, at document #1170000/4922894\n", + "2019-01-16 04:41:27,020 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:27,578 : INFO : topic #49 (0.020): 0.080*\"district\" + 0.066*\"north\" + 0.063*\"south\" + 0.063*\"region\" + 0.060*\"east\" + 0.059*\"west\" + 0.033*\"central\" + 0.031*\"provinc\" + 0.023*\"villag\" + 0.023*\"northern\"\n", + "2019-01-16 04:41:27,579 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:41:27,580 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.071*\"canada\" + 0.060*\"canadian\" + 0.026*\"ontario\" + 0.026*\"toronto\" + 0.015*\"montreal\" + 0.015*\"quebec\" + 0.015*\"british\" + 0.014*\"korea\" + 0.014*\"korean\"\n", + "2019-01-16 04:41:27,582 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"london\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:41:27,583 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"treatment\" + 0.010*\"medicin\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"cancer\"\n", + "2019-01-16 04:41:27,590 : INFO : topic diff=0.006058, rho=0.041345\n", + "2019-01-16 04:41:27,828 : INFO : PROGRESS: pass 0, at document #1172000/4922894\n", + "2019-01-16 04:41:29,853 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:30,408 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.030*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.015*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:41:30,410 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:41:30,411 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:41:30,412 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.027*\"jpg\" + 0.026*\"work\" + 0.024*\"file\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.016*\"imag\"\n", + "2019-01-16 04:41:30,414 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:41:30,420 : INFO : topic diff=0.006779, rho=0.041310\n", + "2019-01-16 04:41:30,702 : INFO : PROGRESS: pass 0, at document #1174000/4922894\n", + "2019-01-16 04:41:32,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:33,290 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.036*\"oper\" + 0.027*\"airport\" + 0.026*\"aircraft\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.010*\"group\"\n", + "2019-01-16 04:41:33,292 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"championship\"\n", + "2019-01-16 04:41:33,294 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:41:33,295 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"right\" + 0.011*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:41:33,297 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.052*\"left\" + 0.051*\"center\" + 0.036*\"philippin\" + 0.035*\"right\" + 0.031*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:41:33,304 : INFO : topic diff=0.007152, rho=0.041274\n", + "2019-01-16 04:41:33,554 : INFO : PROGRESS: pass 0, at document #1176000/4922894\n", + "2019-01-16 04:41:35,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:36,176 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.030*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.021*\"berlin\" + 0.014*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:41:36,177 : INFO : topic #46 (0.020): 0.144*\"class\" + 0.067*\"align\" + 0.059*\"wikit\" + 0.054*\"style\" + 0.051*\"left\" + 0.051*\"center\" + 0.036*\"philippin\" + 0.034*\"right\" + 0.031*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:41:36,179 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:41:36,180 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.039*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:41:36,182 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.017*\"team\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.012*\"week\" + 0.012*\"champion\"\n", + "2019-01-16 04:41:36,189 : INFO : topic diff=0.006043, rho=0.041239\n", + "2019-01-16 04:41:36,432 : INFO : PROGRESS: pass 0, at document #1178000/4922894\n", + "2019-01-16 04:41:38,478 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:39,035 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.069*\"align\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.052*\"center\" + 0.050*\"left\" + 0.037*\"right\" + 0.036*\"philippin\" + 0.031*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:41:39,036 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.045*\"round\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.019*\"group\" + 0.019*\"open\" + 0.019*\"point\" + 0.013*\"doubl\" + 0.013*\"place\" + 0.013*\"qualifi\"\n", + "2019-01-16 04:41:39,038 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"team\" + 0.033*\"plai\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.016*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", + "2019-01-16 04:41:39,040 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"product\" + 0.009*\"busi\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"industri\"\n", + "2019-01-16 04:41:39,042 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:41:39,048 : INFO : topic diff=0.007540, rho=0.041204\n", + "2019-01-16 04:41:43,700 : INFO : -11.486 per-word bound, 2867.7 perplexity estimate based on a held-out corpus of 2000 documents with 539939 words\n", + "2019-01-16 04:41:43,700 : INFO : PROGRESS: pass 0, at document #1180000/4922894\n", + "2019-01-16 04:41:45,755 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:46,313 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:41:46,314 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"dai\" + 0.011*\"host\"\n", + "2019-01-16 04:41:46,317 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.024*\"lee\" + 0.020*\"kim\" + 0.019*\"malaysia\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.017*\"vietnam\" + 0.015*\"asia\" + 0.015*\"asian\" + 0.014*\"min\"\n", + "2019-01-16 04:41:46,318 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", + "2019-01-16 04:41:46,320 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.040*\"franc\" + 0.027*\"pari\" + 0.026*\"italian\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:41:46,326 : INFO : topic diff=0.007453, rho=0.041169\n", + "2019-01-16 04:41:46,573 : INFO : PROGRESS: pass 0, at document #1182000/4922894\n", + "2019-01-16 04:41:48,662 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:41:49,220 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.032*\"counti\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.022*\"area\" + 0.021*\"municip\" + 0.021*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:41:49,222 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"product\" + 0.009*\"busi\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n", + "2019-01-16 04:41:49,226 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.011*\"boat\" + 0.009*\"island\" + 0.009*\"damag\" + 0.008*\"port\" + 0.008*\"naval\" + 0.008*\"crew\"\n", + "2019-01-16 04:41:49,227 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.036*\"russian\" + 0.025*\"russia\" + 0.021*\"soviet\" + 0.019*\"jewish\" + 0.015*\"polish\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.012*\"poland\"\n", + "2019-01-16 04:41:49,229 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.032*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:41:49,235 : INFO : topic diff=0.005913, rho=0.041135\n", + "2019-01-16 04:41:49,484 : INFO : PROGRESS: pass 0, at document #1184000/4922894\n", + "2019-01-16 04:41:51,507 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:52,064 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.072*\"septemb\" + 0.071*\"march\" + 0.068*\"januari\" + 0.068*\"novemb\" + 0.065*\"juli\" + 0.063*\"august\" + 0.062*\"april\" + 0.062*\"decemb\" + 0.062*\"june\"\n", + "2019-01-16 04:41:52,066 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:41:52,067 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.016*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.010*\"caus\" + 0.010*\"treatment\" + 0.009*\"medicin\" + 0.008*\"cancer\" + 0.008*\"studi\"\n", + "2019-01-16 04:41:52,069 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.017*\"famili\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n", + "2019-01-16 04:41:52,070 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 04:41:52,076 : INFO : topic diff=0.008210, rho=0.041100\n", + "2019-01-16 04:41:52,316 : INFO : PROGRESS: pass 0, at document #1186000/4922894\n", + "2019-01-16 04:41:54,336 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:54,893 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"point\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"valu\"\n", + "2019-01-16 04:41:54,895 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"product\" + 0.009*\"busi\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n", + "2019-01-16 04:41:54,896 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:41:54,898 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.030*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.014*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:41:54,899 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.032*\"villag\" + 0.032*\"counti\" + 0.032*\"citi\" + 0.028*\"ag\" + 0.022*\"area\" + 0.021*\"municip\" + 0.021*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:41:54,904 : INFO : topic diff=0.006134, rho=0.041065\n", + "2019-01-16 04:41:55,153 : INFO : PROGRESS: pass 0, at document #1188000/4922894\n", + "2019-01-16 04:41:57,230 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:41:57,786 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.067*\"align\" + 0.060*\"wikit\" + 0.053*\"center\" + 0.053*\"style\" + 0.050*\"left\" + 0.036*\"right\" + 0.035*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:41:57,788 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"network\"\n", + "2019-01-16 04:41:57,789 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n", + "2019-01-16 04:41:57,791 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:41:57,792 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.041*\"franc\" + 0.027*\"pari\" + 0.027*\"italian\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:41:57,798 : INFO : topic diff=0.006914, rho=0.041030\n", + "2019-01-16 04:41:58,035 : INFO : PROGRESS: pass 0, at document #1190000/4922894\n", + "2019-01-16 04:42:00,112 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:00,671 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.032*\"armi\" + 0.024*\"command\" + 0.021*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:42:00,672 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.012*\"diseas\" + 0.010*\"caus\" + 0.009*\"treatment\" + 0.009*\"patient\" + 0.009*\"medicin\" + 0.008*\"cell\" + 0.008*\"studi\"\n", + "2019-01-16 04:42:00,674 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.013*\"doubl\" + 0.013*\"qualifi\"\n", + "2019-01-16 04:42:00,675 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:42:00,676 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.027*\"ontario\" + 0.025*\"toronto\" + 0.017*\"korea\" + 0.015*\"korean\" + 0.015*\"quebec\" + 0.014*\"british\" + 0.014*\"montreal\"\n", + "2019-01-16 04:42:00,683 : INFO : topic diff=0.006167, rho=0.040996\n", + "2019-01-16 04:42:00,931 : INFO : PROGRESS: pass 0, at document #1192000/4922894\n", + "2019-01-16 04:42:03,026 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:03,589 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", + "2019-01-16 04:42:03,591 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.051*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:42:03,592 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:42:03,594 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"manufactur\"\n", + "2019-01-16 04:42:03,595 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.017*\"royal\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:42:03,601 : INFO : topic diff=0.006165, rho=0.040962\n", + "2019-01-16 04:42:03,850 : INFO : PROGRESS: pass 0, at document #1194000/4922894\n", + "2019-01-16 04:42:05,931 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:06,491 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"health\" + 0.016*\"hospit\" + 0.012*\"diseas\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.009*\"medicin\" + 0.009*\"cancer\"\n", + "2019-01-16 04:42:06,492 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"japan\" + 0.022*\"event\" + 0.021*\"men\" + 0.019*\"medal\" + 0.017*\"japanes\" + 0.017*\"athlet\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:42:06,494 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.019*\"http\" + 0.014*\"www\" + 0.014*\"iran\" + 0.013*\"tamil\" + 0.013*\"pakistan\" + 0.013*\"islam\" + 0.012*\"khan\" + 0.011*\"muslim\"\n", + "2019-01-16 04:42:06,495 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:42:06,497 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.007*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:42:06,503 : INFO : topic diff=0.005660, rho=0.040927\n", + "2019-01-16 04:42:06,739 : INFO : PROGRESS: pass 0, at document #1196000/4922894\n", + "2019-01-16 04:42:08,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:09,290 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"base\" + 0.007*\"data\" + 0.007*\"softwar\"\n", + "2019-01-16 04:42:09,292 : INFO : topic #33 (0.020): 0.027*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n", + "2019-01-16 04:42:09,293 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:42:09,295 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.033*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:42:09,297 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 04:42:09,303 : INFO : topic diff=0.007117, rho=0.040893\n", + "2019-01-16 04:42:09,545 : INFO : PROGRESS: pass 0, at document #1198000/4922894\n", + "2019-01-16 04:42:11,530 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:12,094 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.016*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", + "2019-01-16 04:42:12,096 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.016*\"titl\" + 0.016*\"match\" + 0.016*\"fight\" + 0.016*\"team\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:42:12,098 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.033*\"africa\" + 0.030*\"african\" + 0.028*\"color\" + 0.027*\"text\" + 0.026*\"till\" + 0.023*\"south\" + 0.013*\"cape\" + 0.013*\"black\" + 0.011*\"storm\"\n", + "2019-01-16 04:42:12,099 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.023*\"lee\" + 0.019*\"indonesia\" + 0.019*\"kim\" + 0.017*\"malaysia\" + 0.016*\"thailand\" + 0.016*\"vietnam\" + 0.016*\"min\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 04:42:12,100 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"right\" + 0.009*\"offic\" + 0.009*\"order\" + 0.009*\"report\"\n", + "2019-01-16 04:42:12,106 : INFO : topic diff=0.007145, rho=0.040859\n", + "2019-01-16 04:42:16,820 : INFO : -11.705 per-word bound, 3339.0 perplexity estimate based on a held-out corpus of 2000 documents with 555000 words\n", + "2019-01-16 04:42:16,821 : INFO : PROGRESS: pass 0, at document #1200000/4922894\n", + "2019-01-16 04:42:18,909 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:19,471 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.050*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:42:19,472 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:42:19,474 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.020*\"cricket\" + 0.020*\"town\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.014*\"scotland\" + 0.014*\"london\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 04:42:19,475 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.016*\"royal\" + 0.015*\"georg\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:42:19,477 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.027*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:42:19,484 : INFO : topic diff=0.006896, rho=0.040825\n", + "2019-01-16 04:42:19,726 : INFO : PROGRESS: pass 0, at document #1202000/4922894\n", + "2019-01-16 04:42:21,743 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:22,299 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.009*\"island\" + 0.009*\"damag\" + 0.008*\"port\" + 0.008*\"crew\" + 0.008*\"naval\"\n", + "2019-01-16 04:42:22,301 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"villag\" + 0.031*\"counti\" + 0.031*\"citi\" + 0.028*\"ag\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"municip\" + 0.021*\"censu\"\n", + "2019-01-16 04:42:22,302 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.010*\"commun\" + 0.010*\"organ\"\n", + "2019-01-16 04:42:22,304 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.008*\"point\" + 0.007*\"valu\" + 0.007*\"model\"\n", + "2019-01-16 04:42:22,305 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.019*\"group\" + 0.014*\"doubl\" + 0.013*\"place\" + 0.013*\"qualifi\"\n", + "2019-01-16 04:42:22,311 : INFO : topic diff=0.007388, rho=0.040791\n", + "2019-01-16 04:42:22,557 : INFO : PROGRESS: pass 0, at document #1204000/4922894\n", + "2019-01-16 04:42:24,602 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:25,159 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.016*\"theatr\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 04:42:25,160 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.032*\"armi\" + 0.024*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 04:42:25,162 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.010*\"commun\" + 0.010*\"organ\"\n", + "2019-01-16 04:42:25,163 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.019*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"tamil\" + 0.013*\"pakistan\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.010*\"muslim\"\n", + "2019-01-16 04:42:25,165 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"industri\"\n", + "2019-01-16 04:42:25,170 : INFO : topic diff=0.005416, rho=0.040757\n", + "2019-01-16 04:42:25,413 : INFO : PROGRESS: pass 0, at document #1206000/4922894\n", + "2019-01-16 04:42:27,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:28,023 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.019*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.014*\"lake\" + 0.014*\"park\" + 0.014*\"rout\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 04:42:28,024 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"base\" + 0.007*\"softwar\"\n", + "2019-01-16 04:42:28,025 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.066*\"north\" + 0.064*\"region\" + 0.062*\"east\" + 0.059*\"south\" + 0.058*\"west\" + 0.034*\"central\" + 0.032*\"provinc\" + 0.025*\"villag\" + 0.022*\"counti\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:42:28,027 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.019*\"vote\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 04:42:28,028 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:42:28,034 : INFO : topic diff=0.005370, rho=0.040723\n", + "2019-01-16 04:42:28,273 : INFO : PROGRESS: pass 0, at document #1208000/4922894\n", + "2019-01-16 04:42:30,286 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:30,843 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 04:42:30,844 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.016*\"royal\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.011*\"henri\"\n", + "2019-01-16 04:42:30,846 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.074*\"march\" + 0.072*\"septemb\" + 0.069*\"novemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"august\" + 0.063*\"decemb\" + 0.063*\"april\" + 0.062*\"june\"\n", + "2019-01-16 04:42:30,848 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"industri\"\n", + "2019-01-16 04:42:30,849 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"doubl\" + 0.013*\"qualifi\"\n", + "2019-01-16 04:42:30,856 : INFO : topic diff=0.005875, rho=0.040689\n", + "2019-01-16 04:42:31,099 : INFO : PROGRESS: pass 0, at document #1210000/4922894\n", + "2019-01-16 04:42:33,110 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:33,670 : INFO : topic #49 (0.020): 0.082*\"district\" + 0.066*\"north\" + 0.064*\"region\" + 0.061*\"east\" + 0.058*\"west\" + 0.058*\"south\" + 0.033*\"central\" + 0.032*\"provinc\" + 0.025*\"villag\" + 0.022*\"northern\"\n", + "2019-01-16 04:42:33,672 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"base\" + 0.007*\"data\" + 0.007*\"softwar\"\n", + "2019-01-16 04:42:33,674 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.019*\"road\" + 0.019*\"line\" + 0.018*\"railwai\" + 0.014*\"park\" + 0.014*\"lake\" + 0.014*\"rout\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:42:33,676 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:42:33,677 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"titl\" + 0.016*\"match\" + 0.016*\"fight\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:42:33,682 : INFO : topic diff=0.006477, rho=0.040656\n", + "2019-01-16 04:42:33,927 : INFO : PROGRESS: pass 0, at document #1212000/4922894\n", + "2019-01-16 04:42:36,015 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:36,573 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.037*\"chines\" + 0.034*\"zealand\" + 0.025*\"south\" + 0.020*\"kong\" + 0.020*\"sydnei\" + 0.019*\"hong\"\n", + "2019-01-16 04:42:36,575 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.033*\"africa\" + 0.031*\"african\" + 0.030*\"color\" + 0.028*\"text\" + 0.026*\"till\" + 0.023*\"south\" + 0.013*\"black\" + 0.013*\"cape\" + 0.011*\"storm\"\n", + "2019-01-16 04:42:36,576 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"group\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"model\"\n", + "2019-01-16 04:42:36,578 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:42:36,579 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"network\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"base\" + 0.007*\"data\"\n", + "2019-01-16 04:42:36,585 : INFO : topic diff=0.007350, rho=0.040622\n", + "2019-01-16 04:42:36,829 : INFO : PROGRESS: pass 0, at document #1214000/4922894\n", + "2019-01-16 04:42:38,858 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:39,415 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.025*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.012*\"die\"\n", + "2019-01-16 04:42:39,417 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.032*\"villag\" + 0.032*\"citi\" + 0.030*\"counti\" + 0.028*\"ag\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"censu\"\n", + "2019-01-16 04:42:39,418 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 04:42:39,420 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.026*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 04:42:39,422 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:42:39,428 : INFO : topic diff=0.005845, rho=0.040589\n", + "2019-01-16 04:42:39,667 : INFO : PROGRESS: pass 0, at document #1216000/4922894\n", + "2019-01-16 04:42:41,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:42,223 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"model\" + 0.011*\"power\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"design\" + 0.008*\"manufactur\" + 0.007*\"type\"\n", + "2019-01-16 04:42:42,225 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.009*\"port\" + 0.009*\"island\" + 0.008*\"damag\" + 0.008*\"naval\" + 0.008*\"crew\"\n", + "2019-01-16 04:42:42,226 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"cell\" + 0.009*\"treatment\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"medicin\"\n", + "2019-01-16 04:42:42,227 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:42:42,229 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.034*\"africa\" + 0.030*\"african\" + 0.030*\"color\" + 0.028*\"text\" + 0.027*\"till\" + 0.023*\"south\" + 0.013*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", + "2019-01-16 04:42:42,234 : INFO : topic diff=0.006344, rho=0.040555\n", + "2019-01-16 04:42:42,472 : INFO : PROGRESS: pass 0, at document #1218000/4922894\n", + "2019-01-16 04:42:44,517 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:45,074 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:42:45,075 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.032*\"oper\" + 0.025*\"aircraft\" + 0.025*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:42:45,077 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 04:42:45,078 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.033*\"villag\" + 0.032*\"citi\" + 0.031*\"counti\" + 0.028*\"ag\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"censu\"\n", + "2019-01-16 04:42:45,080 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.040*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:42:45,086 : INFO : topic diff=0.006941, rho=0.040522\n", + "2019-01-16 04:42:49,738 : INFO : -11.798 per-word bound, 3560.7 perplexity estimate based on a held-out corpus of 2000 documents with 533264 words\n", + "2019-01-16 04:42:49,739 : INFO : PROGRESS: pass 0, at document #1220000/4922894\n", + "2019-01-16 04:42:51,783 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:52,347 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.026*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 04:42:52,348 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.034*\"africa\" + 0.031*\"african\" + 0.029*\"color\" + 0.028*\"text\" + 0.026*\"till\" + 0.023*\"south\" + 0.013*\"black\" + 0.012*\"cape\" + 0.010*\"storm\"\n", + "2019-01-16 04:42:52,351 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:42:52,352 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.032*\"oper\" + 0.025*\"aircraft\" + 0.025*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:42:52,354 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"nation\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:42:52,360 : INFO : topic diff=0.007479, rho=0.040489\n", + "2019-01-16 04:42:52,600 : INFO : PROGRESS: pass 0, at document #1222000/4922894\n", + "2019-01-16 04:42:54,742 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:55,302 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.050*\"univers\" + 0.043*\"colleg\" + 0.039*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:42:55,303 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.065*\"north\" + 0.065*\"region\" + 0.061*\"east\" + 0.059*\"south\" + 0.056*\"west\" + 0.034*\"central\" + 0.032*\"provinc\" + 0.025*\"villag\" + 0.022*\"northern\"\n", + "2019-01-16 04:42:55,304 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"right\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:42:55,306 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:42:55,307 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"network\" + 0.007*\"softwar\"\n", + "2019-01-16 04:42:55,313 : INFO : topic diff=0.005852, rho=0.040456\n", + "2019-01-16 04:42:55,557 : INFO : PROGRESS: pass 0, at document #1224000/4922894\n", + "2019-01-16 04:42:57,652 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:42:58,209 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.019*\"thailand\" + 0.019*\"kim\" + 0.018*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thai\" + 0.015*\"asian\" + 0.014*\"min\" + 0.014*\"vietnam\"\n", + "2019-01-16 04:42:58,211 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.050*\"univers\" + 0.043*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 04:42:58,212 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:42:58,214 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", + "2019-01-16 04:42:58,215 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:42:58,221 : INFO : topic diff=0.006966, rho=0.040423\n", + "2019-01-16 04:42:58,494 : INFO : PROGRESS: pass 0, at document #1226000/4922894\n", + "2019-01-16 04:43:00,483 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:01,047 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.012*\"gun\" + 0.011*\"sea\" + 0.011*\"boat\" + 0.009*\"port\" + 0.008*\"island\" + 0.008*\"damag\" + 0.008*\"naval\" + 0.007*\"crew\"\n", + "2019-01-16 04:43:01,048 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.033*\"villag\" + 0.031*\"citi\" + 0.030*\"counti\" + 0.027*\"ag\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"censu\"\n", + "2019-01-16 04:43:01,051 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:43:01,052 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.065*\"north\" + 0.064*\"region\" + 0.061*\"east\" + 0.059*\"south\" + 0.056*\"west\" + 0.033*\"central\" + 0.032*\"provinc\" + 0.025*\"villag\" + 0.023*\"counti\"\n", + "2019-01-16 04:43:01,054 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.027*\"award\" + 0.020*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:43:01,059 : INFO : topic diff=0.006609, rho=0.040390\n", + "2019-01-16 04:43:01,320 : INFO : PROGRESS: pass 0, at document #1228000/4922894\n", + "2019-01-16 04:43:03,438 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:03,998 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.010*\"cell\" + 0.010*\"caus\" + 0.009*\"treatment\" + 0.009*\"patient\" + 0.009*\"cancer\" + 0.008*\"ret\"\n", + "2019-01-16 04:43:03,999 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.034*\"africa\" + 0.030*\"african\" + 0.030*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"south\" + 0.013*\"black\" + 0.012*\"cape\" + 0.010*\"storm\"\n", + "2019-01-16 04:43:04,000 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:43:04,002 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.012*\"model\" + 0.011*\"power\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.008*\"manufactur\" + 0.007*\"type\"\n", + "2019-01-16 04:43:04,003 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.020*\"group\" + 0.018*\"open\" + 0.014*\"doubl\" + 0.013*\"place\" + 0.013*\"qualifi\"\n", + "2019-01-16 04:43:04,015 : INFO : topic diff=0.007597, rho=0.040357\n", + "2019-01-16 04:43:04,258 : INFO : PROGRESS: pass 0, at document #1230000/4922894\n", + "2019-01-16 04:43:06,288 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:06,843 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:43:06,845 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.073*\"septemb\" + 0.073*\"march\" + 0.069*\"novemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"decemb\" + 0.062*\"april\" + 0.062*\"june\"\n", + "2019-01-16 04:43:06,846 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.015*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", + "2019-01-16 04:43:06,849 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.014*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"seri\"\n", + "2019-01-16 04:43:06,850 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.065*\"north\" + 0.063*\"region\" + 0.061*\"east\" + 0.060*\"south\" + 0.057*\"west\" + 0.033*\"central\" + 0.033*\"provinc\" + 0.025*\"villag\" + 0.023*\"counti\"\n", + "2019-01-16 04:43:06,856 : INFO : topic diff=0.007110, rho=0.040324\n", + "2019-01-16 04:43:07,091 : INFO : PROGRESS: pass 0, at document #1232000/4922894\n", + "2019-01-16 04:43:09,137 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:43:09,695 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:43:09,697 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"villag\" + 0.031*\"citi\" + 0.031*\"counti\" + 0.028*\"ag\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"municip\" + 0.021*\"censu\"\n", + "2019-01-16 04:43:09,698 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.039*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.013*\"loui\" + 0.013*\"général\"\n", + "2019-01-16 04:43:09,700 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"like\" + 0.004*\"end\"\n", + "2019-01-16 04:43:09,702 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 04:43:09,708 : INFO : topic diff=0.005867, rho=0.040291\n", + "2019-01-16 04:43:09,946 : INFO : PROGRESS: pass 0, at document #1234000/4922894\n", + "2019-01-16 04:43:12,029 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:12,588 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", + "2019-01-16 04:43:12,589 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"virginia\"\n", + "2019-01-16 04:43:12,590 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.035*\"africa\" + 0.031*\"african\" + 0.029*\"color\" + 0.025*\"text\" + 0.024*\"till\" + 0.024*\"south\" + 0.014*\"black\" + 0.013*\"cape\" + 0.010*\"storm\"\n", + "2019-01-16 04:43:12,592 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"right\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:43:12,593 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:43:12,599 : INFO : topic diff=0.008047, rho=0.040258\n", + "2019-01-16 04:43:12,838 : INFO : PROGRESS: pass 0, at document #1236000/4922894\n", + "2019-01-16 04:43:14,866 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:15,423 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.028*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 04:43:15,425 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:43:15,427 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 04:43:15,428 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:43:15,429 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.007*\"year\" + 0.007*\"ancient\"\n", + "2019-01-16 04:43:15,435 : INFO : topic diff=0.007926, rho=0.040226\n", + "2019-01-16 04:43:15,692 : INFO : PROGRESS: pass 0, at document #1238000/4922894\n", + "2019-01-16 04:43:17,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:18,257 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.019*\"http\" + 0.015*\"www\" + 0.013*\"iran\" + 0.012*\"pakistan\" + 0.012*\"tamil\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.010*\"sri\"\n", + "2019-01-16 04:43:18,258 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"lo\" + 0.010*\"josé\"\n", + "2019-01-16 04:43:18,260 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.014*\"washington\" + 0.011*\"virginia\"\n", + "2019-01-16 04:43:18,261 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", + "2019-01-16 04:43:18,263 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.013*\"driver\" + 0.013*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"seri\"\n", + "2019-01-16 04:43:18,268 : INFO : topic diff=0.006037, rho=0.040193\n", + "2019-01-16 04:43:22,943 : INFO : -11.832 per-word bound, 3646.7 perplexity estimate based on a held-out corpus of 2000 documents with 559741 words\n", + "2019-01-16 04:43:22,943 : INFO : PROGRESS: pass 0, at document #1240000/4922894\n", + "2019-01-16 04:43:24,981 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:25,544 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"point\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"gener\"\n", + "2019-01-16 04:43:25,546 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", + "2019-01-16 04:43:25,547 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.037*\"museum\" + 0.026*\"jpg\" + 0.025*\"work\" + 0.023*\"file\" + 0.021*\"artist\" + 0.020*\"paint\" + 0.020*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:43:25,549 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", + "2019-01-16 04:43:25,550 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.009*\"treatment\" + 0.009*\"ret\" + 0.009*\"medicin\"\n", + "2019-01-16 04:43:25,556 : INFO : topic diff=0.006826, rho=0.040161\n", + "2019-01-16 04:43:25,802 : INFO : PROGRESS: pass 0, at document #1242000/4922894\n", + "2019-01-16 04:43:27,857 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:28,415 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.032*\"villag\" + 0.032*\"citi\" + 0.031*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.022*\"municip\" + 0.021*\"censu\"\n", + "2019-01-16 04:43:28,416 : INFO : topic #27 (0.020): 0.041*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.015*\"moscow\" + 0.014*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.011*\"hungarian\"\n", + "2019-01-16 04:43:28,418 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 04:43:28,419 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"observatori\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\"\n", + "2019-01-16 04:43:28,421 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"year\" + 0.007*\"ancient\"\n", + "2019-01-16 04:43:28,427 : INFO : topic diff=0.005539, rho=0.040129\n", + "2019-01-16 04:43:28,679 : INFO : PROGRESS: pass 0, at document #1244000/4922894\n", + "2019-01-16 04:43:30,830 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:31,391 : INFO : topic #27 (0.020): 0.041*\"born\" + 0.037*\"russian\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.015*\"moscow\" + 0.014*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.011*\"hungarian\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:43:31,393 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:43:31,394 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.040*\"franc\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.019*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:43:31,396 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"year\" + 0.007*\"ancient\"\n", + "2019-01-16 04:43:31,399 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.030*\"oper\" + 0.026*\"airport\" + 0.025*\"aircraft\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 04:43:31,405 : INFO : topic diff=0.006751, rho=0.040096\n", + "2019-01-16 04:43:31,658 : INFO : PROGRESS: pass 0, at document #1246000/4922894\n", + "2019-01-16 04:43:33,744 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:34,302 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", + "2019-01-16 04:43:34,304 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"cathol\"\n", + "2019-01-16 04:43:34,305 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"year\" + 0.007*\"ancient\"\n", + "2019-01-16 04:43:34,307 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.012*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", + "2019-01-16 04:43:34,308 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.037*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.021*\"artist\" + 0.020*\"paint\" + 0.020*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:43:34,314 : INFO : topic diff=0.007528, rho=0.040064\n", + "2019-01-16 04:43:34,552 : INFO : PROGRESS: pass 0, at document #1248000/4922894\n", + "2019-01-16 04:43:36,627 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:37,185 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.030*\"oper\" + 0.026*\"airport\" + 0.026*\"aircraft\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 04:43:37,186 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 04:43:37,187 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.009*\"port\" + 0.009*\"damag\" + 0.008*\"island\" + 0.008*\"fleet\" + 0.008*\"naval\"\n", + "2019-01-16 04:43:37,189 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"point\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"model\" + 0.007*\"method\" + 0.007*\"group\"\n", + "2019-01-16 04:43:37,190 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.015*\"quebec\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.014*\"british\" + 0.014*\"korean\"\n", + "2019-01-16 04:43:37,197 : INFO : topic diff=0.006372, rho=0.040032\n", + "2019-01-16 04:43:37,483 : INFO : PROGRESS: pass 0, at document #1250000/4922894\n", + "2019-01-16 04:43:39,499 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:40,057 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"wing\" + 0.011*\"base\"\n", + "2019-01-16 04:43:40,058 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 04:43:40,060 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"point\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"method\"\n", + "2019-01-16 04:43:40,061 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"base\" + 0.007*\"user\"\n", + "2019-01-16 04:43:40,062 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"right\" + 0.009*\"report\" + 0.008*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:43:40,069 : INFO : topic diff=0.007346, rho=0.040000\n", + "2019-01-16 04:43:40,317 : INFO : PROGRESS: pass 0, at document #1252000/4922894\n", + "2019-01-16 04:43:42,318 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:42,875 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:43:42,876 : INFO : topic #12 (0.020): 0.052*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"conserv\" + 0.017*\"minist\" + 0.014*\"liber\" + 0.013*\"repres\"\n", + "2019-01-16 04:43:42,878 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.019*\"http\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"tamil\" + 0.012*\"iran\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"khan\"\n", + "2019-01-16 04:43:42,879 : INFO : topic #46 (0.020): 0.148*\"class\" + 0.068*\"align\" + 0.061*\"wikit\" + 0.055*\"style\" + 0.053*\"left\" + 0.048*\"center\" + 0.038*\"right\" + 0.032*\"text\" + 0.028*\"philippin\" + 0.023*\"border\"\n", + "2019-01-16 04:43:42,880 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:43:42,887 : INFO : topic diff=0.008120, rho=0.039968\n", + "2019-01-16 04:43:43,123 : INFO : PROGRESS: pass 0, at document #1254000/4922894\n", + "2019-01-16 04:43:45,096 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:45,654 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.016*\"japanes\"\n", + "2019-01-16 04:43:45,657 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:43:45,658 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.038*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.025*\"file\" + 0.021*\"artist\" + 0.020*\"paint\" + 0.020*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:43:45,660 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:43:45,661 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:43:45,667 : INFO : topic diff=0.007942, rho=0.039936\n", + "2019-01-16 04:43:45,915 : INFO : PROGRESS: pass 0, at document #1256000/4922894\n", + "2019-01-16 04:43:47,903 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:48,462 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.019*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:43:48,463 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"union\"\n", + "2019-01-16 04:43:48,465 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.018*\"thailand\" + 0.018*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"thai\" + 0.013*\"min\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:43:48,466 : INFO : topic #12 (0.020): 0.052*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.016*\"conserv\" + 0.014*\"liber\" + 0.013*\"repres\"\n", + "2019-01-16 04:43:48,468 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.009*\"port\" + 0.009*\"damag\" + 0.009*\"island\" + 0.008*\"crew\" + 0.008*\"naval\"\n", + "2019-01-16 04:43:48,474 : INFO : topic diff=0.006989, rho=0.039904\n", + "2019-01-16 04:43:48,718 : INFO : PROGRESS: pass 0, at document #1258000/4922894\n", + "2019-01-16 04:43:50,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:51,263 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:43:51,265 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.032*\"citi\" + 0.031*\"villag\" + 0.030*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.021*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:43:51,266 : INFO : topic #27 (0.020): 0.041*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.021*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.012*\"hungarian\"\n", + "2019-01-16 04:43:51,268 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.034*\"africa\" + 0.031*\"african\" + 0.029*\"color\" + 0.024*\"text\" + 0.024*\"south\" + 0.024*\"till\" + 0.017*\"black\" + 0.011*\"cape\" + 0.010*\"storm\"\n", + "2019-01-16 04:43:51,269 : INFO : topic #12 (0.020): 0.052*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.016*\"conserv\" + 0.013*\"liber\" + 0.013*\"repres\"\n", + "2019-01-16 04:43:51,275 : INFO : topic diff=0.007041, rho=0.039873\n", + "2019-01-16 04:43:55,869 : INFO : -11.630 per-word bound, 3170.2 perplexity estimate based on a held-out corpus of 2000 documents with 547175 words\n", + "2019-01-16 04:43:55,870 : INFO : PROGRESS: pass 0, at document #1260000/4922894\n", + "2019-01-16 04:43:57,932 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:43:58,490 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.037*\"museum\" + 0.029*\"jpg\" + 0.025*\"file\" + 0.025*\"work\" + 0.021*\"artist\" + 0.020*\"paint\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:43:58,491 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.046*\"china\" + 0.038*\"chines\" + 0.033*\"zealand\" + 0.026*\"south\" + 0.021*\"sydnei\" + 0.016*\"kong\" + 0.015*\"melbourn\"\n", + "2019-01-16 04:43:58,493 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"gun\" + 0.010*\"damag\" + 0.009*\"port\" + 0.009*\"island\" + 0.008*\"crew\" + 0.007*\"naval\"\n", + "2019-01-16 04:43:58,495 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:43:58,496 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 04:43:58,503 : INFO : topic diff=0.005924, rho=0.039841\n", + "2019-01-16 04:43:58,740 : INFO : PROGRESS: pass 0, at document #1262000/4922894\n", + "2019-01-16 04:44:00,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:01,364 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.019*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:44:01,365 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:44:01,366 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:44:01,368 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"japanes\"\n", + "2019-01-16 04:44:01,369 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.015*\"conserv\" + 0.013*\"repres\" + 0.013*\"liber\"\n", + "2019-01-16 04:44:01,376 : INFO : topic diff=0.006850, rho=0.039809\n", + "2019-01-16 04:44:01,617 : INFO : PROGRESS: pass 0, at document #1264000/4922894\n", + "2019-01-16 04:44:03,635 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:04,192 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"kilkenni\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"santa\"\n", + "2019-01-16 04:44:04,193 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.010*\"gun\" + 0.009*\"island\" + 0.009*\"port\" + 0.007*\"crew\" + 0.007*\"naval\"\n", + "2019-01-16 04:44:04,195 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"stori\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 04:44:04,197 : INFO : topic #27 (0.020): 0.041*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.021*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.012*\"hungarian\"\n", + "2019-01-16 04:44:04,198 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.009*\"caus\" + 0.009*\"cell\" + 0.009*\"ret\" + 0.009*\"patient\" + 0.009*\"treatment\" + 0.008*\"cancer\"\n", + "2019-01-16 04:44:04,204 : INFO : topic diff=0.006177, rho=0.039778\n", + "2019-01-16 04:44:04,457 : INFO : PROGRESS: pass 0, at document #1266000/4922894\n", + "2019-01-16 04:44:06,511 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:07,069 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.013*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 04:44:07,070 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:44:07,073 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.047*\"new\" + 0.045*\"china\" + 0.037*\"chines\" + 0.033*\"zealand\" + 0.026*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 04:44:07,075 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:44:07,077 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 04:44:07,084 : INFO : topic diff=0.006980, rho=0.039746\n", + "2019-01-16 04:44:07,327 : INFO : PROGRESS: pass 0, at document #1268000/4922894\n", + "2019-01-16 04:44:09,369 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:09,925 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.020*\"contest\" + 0.017*\"titl\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.015*\"match\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:44:09,927 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.020*\"open\" + 0.017*\"doubl\" + 0.014*\"draw\" + 0.014*\"singl\"\n", + "2019-01-16 04:44:09,929 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.015*\"www\" + 0.013*\"pakistan\" + 0.013*\"iran\" + 0.012*\"khan\" + 0.012*\"tamil\" + 0.011*\"islam\" + 0.011*\"ali\"\n", + "2019-01-16 04:44:09,930 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:44:09,933 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:44:09,940 : INFO : topic diff=0.006301, rho=0.039715\n", + "2019-01-16 04:44:10,199 : INFO : PROGRESS: pass 0, at document #1270000/4922894\n", + "2019-01-16 04:44:12,217 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:12,775 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 04:44:12,776 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.015*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 04:44:12,778 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:44:12,780 : INFO : topic #27 (0.020): 0.040*\"born\" + 0.036*\"russian\" + 0.025*\"russia\" + 0.021*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.012*\"czech\"\n", + "2019-01-16 04:44:12,781 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"thailand\" + 0.018*\"kim\" + 0.018*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"thai\" + 0.014*\"vietnam\" + 0.013*\"asia\"\n", + "2019-01-16 04:44:12,787 : INFO : topic diff=0.006945, rho=0.039684\n", + "2019-01-16 04:44:13,029 : INFO : PROGRESS: pass 0, at document #1272000/4922894\n", + "2019-01-16 04:44:15,069 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:15,628 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.023*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:44:15,629 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.016*\"nation\"\n", + "2019-01-16 04:44:15,631 : INFO : topic #48 (0.020): 0.080*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.070*\"januari\" + 0.070*\"juli\" + 0.065*\"novemb\" + 0.065*\"april\" + 0.065*\"june\" + 0.064*\"decemb\" + 0.063*\"august\"\n", + "2019-01-16 04:44:15,632 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.014*\"www\" + 0.013*\"pakistan\" + 0.013*\"iran\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", + "2019-01-16 04:44:15,634 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:44:15,640 : INFO : topic diff=0.006067, rho=0.039653\n", + "2019-01-16 04:44:15,888 : INFO : PROGRESS: pass 0, at document #1274000/4922894\n", + "2019-01-16 04:44:17,945 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:18,502 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:44:18,504 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 04:44:18,506 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.012*\"channel\" + 0.012*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 04:44:18,507 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.077*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.017*\"quebec\" + 0.015*\"montreal\" + 0.014*\"british\" + 0.014*\"korea\" + 0.013*\"korean\"\n", + "2019-01-16 04:44:18,509 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.015*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:44:18,515 : INFO : topic diff=0.005040, rho=0.039621\n", + "2019-01-16 04:44:18,803 : INFO : PROGRESS: pass 0, at document #1276000/4922894\n", + "2019-01-16 04:44:20,891 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:21,448 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 04:44:21,449 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:44:21,451 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.013*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 04:44:21,452 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.025*\"unit\" + 0.023*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"london\" + 0.012*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:44:21,454 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"servic\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", + "2019-01-16 04:44:21,460 : INFO : topic diff=0.007482, rho=0.039590\n", + "2019-01-16 04:44:21,719 : INFO : PROGRESS: pass 0, at document #1278000/4922894\n", + "2019-01-16 04:44:23,759 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:24,315 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"regiment\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\"\n", + "2019-01-16 04:44:24,317 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.010*\"year\" + 0.010*\"market\" + 0.010*\"busi\" + 0.008*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.007*\"industri\"\n", + "2019-01-16 04:44:24,318 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 04:44:24,320 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.012*\"author\" + 0.010*\"histori\" + 0.010*\"novel\"\n", + "2019-01-16 04:44:24,321 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.011*\"ireland\"\n", + "2019-01-16 04:44:24,328 : INFO : topic diff=0.006665, rho=0.039559\n", + "2019-01-16 04:44:29,058 : INFO : -11.568 per-word bound, 3036.1 perplexity estimate based on a held-out corpus of 2000 documents with 579239 words\n", + "2019-01-16 04:44:29,059 : INFO : PROGRESS: pass 0, at document #1280000/4922894\n", + "2019-01-16 04:44:31,149 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:31,707 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:44:31,709 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.012*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 04:44:31,710 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.013*\"wing\"\n", + "2019-01-16 04:44:31,712 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 04:44:31,713 : INFO : topic #46 (0.020): 0.148*\"class\" + 0.062*\"align\" + 0.060*\"wikit\" + 0.053*\"style\" + 0.051*\"left\" + 0.046*\"center\" + 0.039*\"right\" + 0.033*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:44:31,718 : INFO : topic diff=0.007511, rho=0.039528\n", + "2019-01-16 04:44:31,966 : INFO : PROGRESS: pass 0, at document #1282000/4922894\n", + "2019-01-16 04:44:33,965 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:34,522 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 04:44:34,523 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:44:34,525 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:44:34,526 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.008*\"manufactur\"\n", + "2019-01-16 04:44:34,527 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"quebec\" + 0.015*\"montreal\" + 0.014*\"british\" + 0.013*\"korea\" + 0.013*\"korean\"\n", + "2019-01-16 04:44:34,534 : INFO : topic diff=0.006333, rho=0.039498\n", + "2019-01-16 04:44:34,770 : INFO : PROGRESS: pass 0, at document #1284000/4922894\n", + "2019-01-16 04:44:36,779 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:37,335 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:44:37,336 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"wing\" + 0.013*\"base\"\n", + "2019-01-16 04:44:37,338 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"juan\" + 0.010*\"santa\" + 0.009*\"carlo\" + 0.009*\"mexican\"\n", + "2019-01-16 04:44:37,339 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.019*\"open\" + 0.016*\"doubl\" + 0.014*\"draw\" + 0.014*\"singl\"\n", + "2019-01-16 04:44:37,341 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:44:37,346 : INFO : topic diff=0.006603, rho=0.039467\n", + "2019-01-16 04:44:37,592 : INFO : PROGRESS: pass 0, at document #1286000/4922894\n", + "2019-01-16 04:44:39,629 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:40,185 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.012*\"author\" + 0.010*\"writer\" + 0.010*\"histori\"\n", + "2019-01-16 04:44:40,186 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.016*\"player\" + 0.013*\"coach\" + 0.013*\"footbal\" + 0.010*\"year\" + 0.010*\"basebal\" + 0.010*\"leagu\"\n", + "2019-01-16 04:44:40,188 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.035*\"africa\" + 0.031*\"african\" + 0.026*\"color\" + 0.024*\"south\" + 0.024*\"text\" + 0.023*\"till\" + 0.015*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 04:44:40,189 : INFO : topic #46 (0.020): 0.152*\"class\" + 0.061*\"align\" + 0.059*\"wikit\" + 0.053*\"style\" + 0.050*\"left\" + 0.044*\"center\" + 0.041*\"right\" + 0.035*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:44:40,190 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"point\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"model\" + 0.007*\"gener\"\n", + "2019-01-16 04:44:40,197 : INFO : topic diff=0.006454, rho=0.039436\n", + "2019-01-16 04:44:40,447 : INFO : PROGRESS: pass 0, at document #1288000/4922894\n", + "2019-01-16 04:44:42,446 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:43,002 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.016*\"player\" + 0.013*\"coach\" + 0.013*\"footbal\" + 0.010*\"year\" + 0.010*\"basebal\" + 0.010*\"leagu\"\n", + "2019-01-16 04:44:43,003 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"type\" + 0.009*\"vehicl\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:44:43,007 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.051*\"style\" + 0.043*\"center\" + 0.041*\"right\" + 0.040*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:44:43,008 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.066*\"north\" + 0.063*\"east\" + 0.060*\"region\" + 0.057*\"west\" + 0.056*\"south\" + 0.033*\"provinc\" + 0.031*\"central\" + 0.025*\"villag\" + 0.023*\"counti\"\n", + "2019-01-16 04:44:43,010 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"doubl\" + 0.014*\"qualifi\" + 0.013*\"singl\"\n", + "2019-01-16 04:44:43,016 : INFO : topic diff=0.006902, rho=0.039406\n", + "2019-01-16 04:44:43,277 : INFO : PROGRESS: pass 0, at document #1290000/4922894\n", + "2019-01-16 04:44:45,307 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:45,866 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"type\" + 0.009*\"vehicl\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:44:45,867 : INFO : topic #49 (0.020): 0.086*\"district\" + 0.066*\"north\" + 0.063*\"east\" + 0.060*\"region\" + 0.057*\"west\" + 0.056*\"south\" + 0.032*\"provinc\" + 0.031*\"central\" + 0.026*\"villag\" + 0.024*\"counti\"\n", + "2019-01-16 04:44:45,869 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"year\" + 0.010*\"time\"\n", + "2019-01-16 04:44:45,870 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"doubl\" + 0.014*\"qualifi\" + 0.013*\"draw\"\n", + "2019-01-16 04:44:45,872 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.026*\"unit\" + 0.025*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.012*\"manchest\" + 0.011*\"wale\"\n", + "2019-01-16 04:44:45,878 : INFO : topic diff=0.005810, rho=0.039375\n", + "2019-01-16 04:44:46,130 : INFO : PROGRESS: pass 0, at document #1292000/4922894\n", + "2019-01-16 04:44:48,261 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:48,818 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:44:48,820 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.016*\"player\" + 0.013*\"coach\" + 0.013*\"footbal\" + 0.011*\"year\" + 0.010*\"basebal\" + 0.010*\"leagu\"\n", + "2019-01-16 04:44:48,821 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:44:48,823 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"regiment\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\"\n", + "2019-01-16 04:44:48,824 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"damag\" + 0.009*\"island\" + 0.009*\"port\" + 0.008*\"crew\" + 0.007*\"naval\"\n", + "2019-01-16 04:44:48,830 : INFO : topic diff=0.005598, rho=0.039344\n", + "2019-01-16 04:44:49,096 : INFO : PROGRESS: pass 0, at document #1294000/4922894\n", + "2019-01-16 04:44:51,153 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:51,709 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"khan\" + 0.010*\"muslim\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:44:51,711 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.050*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:44:51,712 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:44:51,713 : INFO : topic #33 (0.020): 0.027*\"compani\" + 0.012*\"million\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"industri\"\n", + "2019-01-16 04:44:51,715 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.066*\"north\" + 0.062*\"east\" + 0.060*\"region\" + 0.057*\"west\" + 0.056*\"south\" + 0.032*\"provinc\" + 0.031*\"central\" + 0.026*\"villag\" + 0.023*\"counti\"\n", + "2019-01-16 04:44:51,720 : INFO : topic diff=0.006327, rho=0.039314\n", + "2019-01-16 04:44:51,968 : INFO : PROGRESS: pass 0, at document #1296000/4922894\n", + "2019-01-16 04:44:54,001 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:54,564 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:44:54,565 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 04:44:54,566 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:44:54,568 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"cup\" + 0.026*\"season\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:44:54,569 : INFO : topic #46 (0.020): 0.148*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.055*\"left\" + 0.052*\"style\" + 0.043*\"center\" + 0.041*\"right\" + 0.038*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:44:54,575 : INFO : topic diff=0.006012, rho=0.039284\n", + "2019-01-16 04:44:54,826 : INFO : PROGRESS: pass 0, at document #1298000/4922894\n", + "2019-01-16 04:44:56,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:44:57,407 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.066*\"north\" + 0.062*\"east\" + 0.060*\"region\" + 0.057*\"south\" + 0.057*\"west\" + 0.032*\"provinc\" + 0.031*\"central\" + 0.026*\"villag\" + 0.023*\"counti\"\n", + "2019-01-16 04:44:57,409 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 04:44:57,411 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.019*\"singapor\" + 0.019*\"kim\" + 0.019*\"sun\" + 0.018*\"indonesia\" + 0.017*\"vietnam\" + 0.016*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", + "2019-01-16 04:44:57,413 : INFO : topic #46 (0.020): 0.152*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.052*\"style\" + 0.044*\"center\" + 0.040*\"right\" + 0.038*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:44:57,415 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.016*\"player\" + 0.013*\"coach\" + 0.013*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", + "2019-01-16 04:44:57,422 : INFO : topic diff=0.006452, rho=0.039253\n", + "2019-01-16 04:45:01,923 : INFO : -11.695 per-word bound, 3316.4 perplexity estimate based on a held-out corpus of 2000 documents with 525600 words\n", + "2019-01-16 04:45:01,923 : INFO : PROGRESS: pass 0, at document #1300000/4922894\n", + "2019-01-16 04:45:03,915 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:04,473 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.015*\"match\" + 0.014*\"pro\" + 0.013*\"team\" + 0.012*\"world\"\n", + "2019-01-16 04:45:04,474 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"cup\" + 0.026*\"season\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:45:04,476 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"year\"\n", + "2019-01-16 04:45:04,477 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.066*\"north\" + 0.062*\"east\" + 0.060*\"region\" + 0.057*\"south\" + 0.057*\"west\" + 0.033*\"provinc\" + 0.031*\"central\" + 0.026*\"villag\" + 0.023*\"counti\"\n", + "2019-01-16 04:45:04,479 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:45:04,485 : INFO : topic diff=0.006497, rho=0.039223\n", + "2019-01-16 04:45:04,758 : INFO : PROGRESS: pass 0, at document #1302000/4922894\n", + "2019-01-16 04:45:06,758 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:07,314 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.066*\"north\" + 0.061*\"east\" + 0.058*\"region\" + 0.056*\"south\" + 0.056*\"west\" + 0.032*\"provinc\" + 0.031*\"central\" + 0.026*\"counti\" + 0.026*\"villag\"\n", + "2019-01-16 04:45:07,316 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:45:07,317 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.011*\"ireland\"\n", + "2019-01-16 04:45:07,319 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:45:07,320 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.021*\"artist\" + 0.021*\"paint\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:45:07,326 : INFO : topic diff=0.006558, rho=0.039193\n", + "2019-01-16 04:45:07,577 : INFO : PROGRESS: pass 0, at document #1304000/4922894\n", + "2019-01-16 04:45:09,577 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:10,136 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.035*\"africa\" + 0.032*\"african\" + 0.027*\"color\" + 0.025*\"south\" + 0.024*\"text\" + 0.023*\"till\" + 0.016*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 04:45:10,137 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.011*\"ireland\"\n", + "2019-01-16 04:45:10,139 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:45:10,140 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.065*\"north\" + 0.061*\"east\" + 0.058*\"region\" + 0.056*\"south\" + 0.055*\"west\" + 0.033*\"provinc\" + 0.031*\"central\" + 0.026*\"counti\" + 0.026*\"villag\"\n", + "2019-01-16 04:45:10,142 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:45:10,147 : INFO : topic diff=0.006429, rho=0.039163\n", + "2019-01-16 04:45:10,388 : INFO : PROGRESS: pass 0, at document #1306000/4922894\n", + "2019-01-16 04:45:12,404 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:12,961 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"match\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"pro\" + 0.013*\"elimin\"\n", + "2019-01-16 04:45:12,963 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.019*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"sun\" + 0.017*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"asian\" + 0.013*\"asia\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:45:12,965 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:45:12,966 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"type\" + 0.009*\"produc\" + 0.009*\"vehicl\" + 0.009*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:45:12,967 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:45:12,973 : INFO : topic diff=0.005248, rho=0.039133\n", + "2019-01-16 04:45:13,218 : INFO : PROGRESS: pass 0, at document #1308000/4922894\n", + "2019-01-16 04:45:15,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:15,794 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.016*\"korean\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.015*\"korea\" + 0.014*\"montreal\"\n", + "2019-01-16 04:45:15,796 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"type\" + 0.009*\"produc\" + 0.009*\"vehicl\" + 0.008*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:45:15,797 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.011*\"ireland\"\n", + "2019-01-16 04:45:15,799 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:45:15,800 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.013*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"construct\"\n", + "2019-01-16 04:45:15,807 : INFO : topic diff=0.005041, rho=0.039103\n", + "2019-01-16 04:45:16,066 : INFO : PROGRESS: pass 0, at document #1310000/4922894\n", + "2019-01-16 04:45:18,138 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:18,697 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.010*\"port\" + 0.010*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:45:18,699 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"juan\" + 0.010*\"santa\" + 0.009*\"mexican\" + 0.009*\"josé\"\n", + "2019-01-16 04:45:18,701 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 04:45:18,702 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:45:18,705 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.034*\"africa\" + 0.031*\"african\" + 0.027*\"color\" + 0.025*\"text\" + 0.024*\"south\" + 0.024*\"till\" + 0.016*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 04:45:18,711 : INFO : topic diff=0.006263, rho=0.039073\n", + "2019-01-16 04:45:18,960 : INFO : PROGRESS: pass 0, at document #1312000/4922894\n", + "2019-01-16 04:45:20,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:21,554 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 04:45:21,556 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.012*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:45:21,557 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.020*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"sun\" + 0.017*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", + "2019-01-16 04:45:21,558 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:45:21,560 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"pro\" + 0.012*\"elimin\"\n", + "2019-01-16 04:45:21,566 : INFO : topic diff=0.006434, rho=0.039043\n", + "2019-01-16 04:45:21,818 : INFO : PROGRESS: pass 0, at document #1314000/4922894\n", + "2019-01-16 04:45:23,847 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:24,405 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.012*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:45:24,407 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"point\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"model\" + 0.007*\"valu\" + 0.007*\"method\" + 0.007*\"group\"\n", + "2019-01-16 04:45:24,408 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.010*\"island\" + 0.010*\"port\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:45:24,409 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.021*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:45:24,411 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.065*\"north\" + 0.061*\"east\" + 0.059*\"region\" + 0.056*\"south\" + 0.056*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.026*\"villag\" + 0.025*\"counti\"\n", + "2019-01-16 04:45:24,418 : INFO : topic diff=0.006343, rho=0.039014\n", + "2019-01-16 04:45:24,671 : INFO : PROGRESS: pass 0, at document #1316000/4922894\n", + "2019-01-16 04:45:26,771 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:27,328 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 04:45:27,330 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.049*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:45:27,331 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 04:45:27,333 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.013*\"dai\" + 0.012*\"program\" + 0.010*\"host\" + 0.009*\"air\"\n", + "2019-01-16 04:45:27,334 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", + "2019-01-16 04:45:27,340 : INFO : topic diff=0.006959, rho=0.038984\n", + "2019-01-16 04:45:27,584 : INFO : PROGRESS: pass 0, at document #1318000/4922894\n", + "2019-01-16 04:45:29,589 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:30,145 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 04:45:30,147 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:45:30,148 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:45:30,150 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.012*\"divis\" + 0.012*\"offic\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:45:30,151 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"senat\" + 0.012*\"council\"\n", + "2019-01-16 04:45:30,158 : INFO : topic diff=0.006073, rho=0.038954\n", + "2019-01-16 04:45:34,673 : INFO : -11.802 per-word bound, 3571.2 perplexity estimate based on a held-out corpus of 2000 documents with 529515 words\n", + "2019-01-16 04:45:34,674 : INFO : PROGRESS: pass 0, at document #1320000/4922894\n", + "2019-01-16 04:45:36,668 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:37,225 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.029*\"championship\" + 0.028*\"women\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.019*\"gold\" + 0.018*\"athlet\"\n", + "2019-01-16 04:45:37,227 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"senat\" + 0.012*\"council\"\n", + "2019-01-16 04:45:37,228 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"world\"\n", + "2019-01-16 04:45:37,229 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.009*\"citi\"\n", + "2019-01-16 04:45:37,231 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:45:37,237 : INFO : topic diff=0.006516, rho=0.038925\n", + "2019-01-16 04:45:37,489 : INFO : PROGRESS: pass 0, at document #1322000/4922894\n", + "2019-01-16 04:45:39,571 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:40,129 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.022*\"flight\" + 0.018*\"forc\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:45:40,130 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"construct\"\n", + "2019-01-16 04:45:40,132 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 04:45:40,134 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.025*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:45:40,135 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.012*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 04:45:40,142 : INFO : topic diff=0.007049, rho=0.038895\n", + "2019-01-16 04:45:40,385 : INFO : PROGRESS: pass 0, at document #1324000/4922894\n", + "2019-01-16 04:45:42,424 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:42,982 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.020*\"thailand\" + 0.019*\"singapor\" + 0.019*\"kim\" + 0.019*\"vietnam\" + 0.017*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"sun\" + 0.013*\"asian\" + 0.013*\"asia\"\n", + "2019-01-16 04:45:42,984 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.005*\"jack\"\n", + "2019-01-16 04:45:42,985 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.012*\"senat\" + 0.012*\"council\"\n", + "2019-01-16 04:45:42,987 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:45:42,988 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.064*\"north\" + 0.060*\"east\" + 0.058*\"region\" + 0.057*\"south\" + 0.055*\"west\" + 0.033*\"provinc\" + 0.032*\"central\" + 0.027*\"counti\" + 0.027*\"villag\"\n", + "2019-01-16 04:45:42,994 : INFO : topic diff=0.006453, rho=0.038866\n", + "2019-01-16 04:45:43,235 : INFO : PROGRESS: pass 0, at document #1326000/4922894\n", + "2019-01-16 04:45:45,223 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:45,785 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:45:45,787 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:45:45,789 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.042*\"right\" + 0.042*\"center\" + 0.038*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:45:45,790 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.064*\"north\" + 0.061*\"east\" + 0.058*\"south\" + 0.058*\"region\" + 0.055*\"west\" + 0.033*\"provinc\" + 0.031*\"central\" + 0.027*\"counti\" + 0.027*\"villag\"\n", + "2019-01-16 04:45:45,791 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.018*\"kong\" + 0.016*\"melbourn\"\n", + "2019-01-16 04:45:45,797 : INFO : topic diff=0.006584, rho=0.038837\n", + "2019-01-16 04:45:46,079 : INFO : PROGRESS: pass 0, at document #1328000/4922894\n", + "2019-01-16 04:45:48,102 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:48,660 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:45:48,662 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"titl\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:45:48,663 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"tour\" + 0.011*\"time\" + 0.010*\"win\"\n", + "2019-01-16 04:45:48,665 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:45:48,666 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"type\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:45:48,673 : INFO : topic diff=0.005950, rho=0.038808\n", + "2019-01-16 04:45:48,920 : INFO : PROGRESS: pass 0, at document #1330000/4922894\n", + "2019-01-16 04:45:50,863 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:51,419 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.022*\"kim\" + 0.020*\"thailand\" + 0.019*\"singapor\" + 0.018*\"vietnam\" + 0.016*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"sun\" + 0.013*\"asian\" + 0.012*\"asia\"\n", + "2019-01-16 04:45:51,421 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.062*\"align\" + 0.060*\"wikit\" + 0.053*\"left\" + 0.050*\"style\" + 0.044*\"center\" + 0.041*\"right\" + 0.037*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:45:51,422 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"aircraft\" + 0.027*\"oper\" + 0.025*\"airport\" + 0.021*\"flight\" + 0.018*\"forc\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:45:51,423 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"octob\" + 0.072*\"march\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.063*\"decemb\" + 0.063*\"april\" + 0.062*\"june\"\n", + "2019-01-16 04:45:51,425 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.005*\"jack\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:45:51,431 : INFO : topic diff=0.006743, rho=0.038778\n", + "2019-01-16 04:45:51,676 : INFO : PROGRESS: pass 0, at document #1332000/4922894\n", + "2019-01-16 04:45:53,712 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:54,269 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:45:54,271 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.009*\"carlo\" + 0.009*\"santa\" + 0.009*\"josé\"\n", + "2019-01-16 04:45:54,273 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:45:54,274 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 04:45:54,276 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"construct\"\n", + "2019-01-16 04:45:54,282 : INFO : topic diff=0.006892, rho=0.038749\n", + "2019-01-16 04:45:54,529 : INFO : PROGRESS: pass 0, at document #1334000/4922894\n", + "2019-01-16 04:45:56,573 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:57,129 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:45:57,131 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.025*\"von\" + 0.023*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:45:57,132 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.025*\"file\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:45:57,134 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:45:57,135 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.067*\"januari\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.062*\"april\" + 0.062*\"decemb\" + 0.061*\"june\"\n", + "2019-01-16 04:45:57,141 : INFO : topic diff=0.006228, rho=0.038720\n", + "2019-01-16 04:45:57,377 : INFO : PROGRESS: pass 0, at document #1336000/4922894\n", + "2019-01-16 04:45:59,374 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:45:59,930 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.012*\"work\" + 0.010*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:45:59,932 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.005*\"richard\"\n", + "2019-01-16 04:45:59,933 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.016*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.012*\"program\" + 0.010*\"host\" + 0.010*\"air\"\n", + "2019-01-16 04:45:59,935 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.025*\"file\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:45:59,936 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.012*\"jame\" + 0.012*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:45:59,942 : INFO : topic diff=0.006337, rho=0.038691\n", + "2019-01-16 04:46:00,183 : INFO : PROGRESS: pass 0, at document #1338000/4922894\n", + "2019-01-16 04:46:02,220 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:02,781 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"kill\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 04:46:02,783 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"divis\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\"\n", + "2019-01-16 04:46:02,784 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 04:46:02,786 : INFO : topic #33 (0.020): 0.027*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.006*\"time\" + 0.006*\"industri\"\n", + "2019-01-16 04:46:02,787 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:46:02,793 : INFO : topic diff=0.005925, rho=0.038662\n", + "2019-01-16 04:46:07,494 : INFO : -11.523 per-word bound, 2943.1 perplexity estimate based on a held-out corpus of 2000 documents with 573846 words\n", + "2019-01-16 04:46:07,494 : INFO : PROGRESS: pass 0, at document #1340000/4922894\n", + "2019-01-16 04:46:09,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:10,091 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"intern\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.010*\"organ\"\n", + "2019-01-16 04:46:10,092 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.010*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"group\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 04:46:10,094 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"card\" + 0.007*\"softwar\" + 0.007*\"user\" + 0.007*\"data\"\n", + "2019-01-16 04:46:10,096 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.011*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:46:10,098 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.063*\"north\" + 0.060*\"east\" + 0.059*\"south\" + 0.058*\"region\" + 0.055*\"west\" + 0.034*\"provinc\" + 0.030*\"central\" + 0.027*\"counti\" + 0.027*\"villag\"\n", + "2019-01-16 04:46:10,104 : INFO : topic diff=0.006439, rho=0.038633\n", + "2019-01-16 04:46:10,357 : INFO : PROGRESS: pass 0, at document #1342000/4922894\n", + "2019-01-16 04:46:12,362 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:12,918 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:46:12,919 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 04:46:12,921 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.010*\"boat\" + 0.010*\"island\" + 0.010*\"port\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:46:12,922 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.062*\"north\" + 0.059*\"east\" + 0.057*\"south\" + 0.057*\"region\" + 0.054*\"west\" + 0.034*\"provinc\" + 0.030*\"central\" + 0.029*\"counti\" + 0.026*\"villag\"\n", + "2019-01-16 04:46:12,923 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.009*\"carlo\" + 0.009*\"josé\"\n", + "2019-01-16 04:46:12,929 : INFO : topic diff=0.006044, rho=0.038605\n", + "2019-01-16 04:46:13,170 : INFO : PROGRESS: pass 0, at document #1344000/4922894\n", + "2019-01-16 04:46:15,172 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:46:15,729 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.028*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.020*\"municip\"\n", + "2019-01-16 04:46:15,730 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"friend\"\n", + "2019-01-16 04:46:15,732 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:46:15,734 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", + "2019-01-16 04:46:15,735 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.008*\"kingdom\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:46:15,741 : INFO : topic diff=0.006635, rho=0.038576\n", + "2019-01-16 04:46:15,996 : INFO : PROGRESS: pass 0, at document #1346000/4922894\n", + "2019-01-16 04:46:18,047 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:18,604 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 04:46:18,606 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.020*\"municip\"\n", + "2019-01-16 04:46:18,607 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"kill\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"friend\"\n", + "2019-01-16 04:46:18,609 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:46:18,610 : INFO : topic #48 (0.020): 0.074*\"octob\" + 0.074*\"septemb\" + 0.071*\"march\" + 0.067*\"juli\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"august\" + 0.063*\"april\" + 0.062*\"decemb\" + 0.061*\"june\"\n", + "2019-01-16 04:46:18,618 : INFO : topic diff=0.006444, rho=0.038547\n", + "2019-01-16 04:46:18,869 : INFO : PROGRESS: pass 0, at document #1348000/4922894\n", + "2019-01-16 04:46:20,987 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:21,545 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 04:46:21,547 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"puerto\" + 0.009*\"josé\"\n", + "2019-01-16 04:46:21,548 : INFO : topic #48 (0.020): 0.075*\"octob\" + 0.074*\"septemb\" + 0.071*\"march\" + 0.067*\"juli\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"august\" + 0.063*\"april\" + 0.063*\"decemb\" + 0.062*\"june\"\n", + "2019-01-16 04:46:21,550 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.020*\"open\" + 0.020*\"group\" + 0.019*\"point\" + 0.014*\"qualifi\" + 0.014*\"runner\" + 0.013*\"place\"\n", + "2019-01-16 04:46:21,552 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 04:46:21,558 : INFO : topic diff=0.006036, rho=0.038519\n", + "2019-01-16 04:46:21,814 : INFO : PROGRESS: pass 0, at document #1350000/4922894\n", + "2019-01-16 04:46:23,857 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:24,414 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:46:24,416 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"ag\" + 0.028*\"counti\" + 0.022*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:46:24,417 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.065*\"align\" + 0.060*\"wikit\" + 0.052*\"left\" + 0.051*\"style\" + 0.047*\"center\" + 0.038*\"right\" + 0.036*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:46:24,419 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:46:24,421 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.033*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:46:24,427 : INFO : topic diff=0.006555, rho=0.038490\n", + "2019-01-16 04:46:24,684 : INFO : PROGRESS: pass 0, at document #1352000/4922894\n", + "2019-01-16 04:46:26,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:27,263 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"time\" + 0.010*\"win\"\n", + "2019-01-16 04:46:27,265 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:46:27,267 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:46:27,269 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"friend\"\n", + "2019-01-16 04:46:27,272 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.027*\"town\" + 0.025*\"unit\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.017*\"scotland\" + 0.014*\"scottish\" + 0.014*\"london\" + 0.012*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:46:27,278 : INFO : topic diff=0.007246, rho=0.038462\n", + "2019-01-16 04:46:27,561 : INFO : PROGRESS: pass 0, at document #1354000/4922894\n", + "2019-01-16 04:46:29,622 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:30,179 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.012*\"work\" + 0.010*\"commun\" + 0.010*\"organ\"\n", + "2019-01-16 04:46:30,180 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 04:46:30,183 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"kim\" + 0.019*\"singapor\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"vietnam\" + 0.015*\"malaysia\" + 0.013*\"asian\" + 0.012*\"asia\" + 0.012*\"sun\"\n", + "2019-01-16 04:46:30,184 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.039*\"russian\" + 0.025*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.012*\"israel\" + 0.012*\"poland\"\n", + "2019-01-16 04:46:30,185 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:46:30,191 : INFO : topic diff=0.006296, rho=0.038433\n", + "2019-01-16 04:46:30,447 : INFO : PROGRESS: pass 0, at document #1356000/4922894\n", + "2019-01-16 04:46:32,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:33,068 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.009*\"type\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:46:33,070 : INFO : topic #33 (0.020): 0.028*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:46:33,071 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 04:46:33,073 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"ag\" + 0.028*\"counti\" + 0.023*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:46:33,074 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:46:33,081 : INFO : topic diff=0.006751, rho=0.038405\n", + "2019-01-16 04:46:33,344 : INFO : PROGRESS: pass 0, at document #1358000/4922894\n", + "2019-01-16 04:46:35,419 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:35,977 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.033*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.018*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:46:35,979 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"group\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"gener\"\n", + "2019-01-16 04:46:35,980 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"puerto\" + 0.009*\"josé\"\n", + "2019-01-16 04:46:35,981 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.050*\"australian\" + 0.049*\"new\" + 0.045*\"china\" + 0.034*\"zealand\" + 0.034*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.017*\"kong\" + 0.016*\"melbourn\"\n", + "2019-01-16 04:46:35,983 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:46:35,988 : INFO : topic diff=0.006546, rho=0.038376\n", + "2019-01-16 04:46:40,659 : INFO : -11.736 per-word bound, 3410.8 perplexity estimate based on a held-out corpus of 2000 documents with 572936 words\n", + "2019-01-16 04:46:40,660 : INFO : PROGRESS: pass 0, at document #1360000/4922894\n", + "2019-01-16 04:46:42,707 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:43,263 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"win\"\n", + "2019-01-16 04:46:43,265 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:46:43,266 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"titl\" + 0.017*\"wrestl\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 04:46:43,268 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.010*\"commun\" + 0.010*\"organ\"\n", + "2019-01-16 04:46:43,269 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.025*\"award\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:46:43,275 : INFO : topic diff=0.005844, rho=0.038348\n", + "2019-01-16 04:46:43,544 : INFO : PROGRESS: pass 0, at document #1362000/4922894\n", + "2019-01-16 04:46:45,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:46,172 : INFO : topic #35 (0.020): 0.023*\"lee\" + 0.021*\"kim\" + 0.019*\"singapor\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.017*\"vietnam\" + 0.016*\"min\" + 0.015*\"malaysia\" + 0.013*\"asian\" + 0.012*\"asia\"\n", + "2019-01-16 04:46:46,174 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.023*\"paint\" + 0.023*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:46:46,176 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.027*\"town\" + 0.025*\"unit\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.017*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 04:46:46,177 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:46:46,179 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.011*\"puerto\" + 0.009*\"josé\"\n", + "2019-01-16 04:46:46,185 : INFO : topic diff=0.006643, rho=0.038320\n", + "2019-01-16 04:46:46,429 : INFO : PROGRESS: pass 0, at document #1364000/4922894\n", + "2019-01-16 04:46:48,493 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:49,049 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.031*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"stori\"\n", + "2019-01-16 04:46:49,050 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.039*\"russian\" + 0.025*\"russia\" + 0.021*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.012*\"israel\" + 0.012*\"poland\"\n", + "2019-01-16 04:46:49,052 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:46:49,053 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.007*\"vessel\"\n", + "2019-01-16 04:46:49,055 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 04:46:49,061 : INFO : topic diff=0.006659, rho=0.038292\n", + "2019-01-16 04:46:49,308 : INFO : PROGRESS: pass 0, at document #1366000/4922894\n", + "2019-01-16 04:46:51,318 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:51,875 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.068*\"august\" + 0.068*\"januari\" + 0.068*\"juli\" + 0.066*\"novemb\" + 0.065*\"april\" + 0.063*\"decemb\" + 0.063*\"june\"\n", + "2019-01-16 04:46:51,877 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:46:51,878 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 04:46:51,880 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"design\" + 0.007*\"vehicl\" + 0.007*\"protein\"\n", + "2019-01-16 04:46:51,881 : INFO : topic #33 (0.020): 0.028*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.006*\"time\" + 0.006*\"increas\"\n", + "2019-01-16 04:46:51,887 : INFO : topic diff=0.006692, rho=0.038264\n", + "2019-01-16 04:46:52,138 : INFO : PROGRESS: pass 0, at document #1368000/4922894\n", + "2019-01-16 04:46:54,197 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:54,763 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"jame\"\n", + "2019-01-16 04:46:54,765 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"puerto\" + 0.010*\"mexican\"\n", + "2019-01-16 04:46:54,767 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"mark\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:46:54,768 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.062*\"wikit\" + 0.062*\"align\" + 0.052*\"left\" + 0.050*\"style\" + 0.049*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:46:54,769 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\" + 0.005*\"us\"\n", + "2019-01-16 04:46:54,775 : INFO : topic diff=0.006231, rho=0.038236\n", + "2019-01-16 04:46:55,022 : INFO : PROGRESS: pass 0, at document #1370000/4922894\n", + "2019-01-16 04:46:57,176 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:46:57,733 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.010*\"basebal\"\n", + "2019-01-16 04:46:57,735 : INFO : topic #33 (0.020): 0.028*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.006*\"time\" + 0.006*\"cost\"\n", + "2019-01-16 04:46:57,736 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 04:46:57,738 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:46:57,739 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.065*\"north\" + 0.061*\"east\" + 0.060*\"south\" + 0.058*\"region\" + 0.054*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.027*\"counti\" + 0.027*\"villag\"\n", + "2019-01-16 04:46:57,746 : INFO : topic diff=0.004710, rho=0.038208\n", + "2019-01-16 04:46:57,995 : INFO : PROGRESS: pass 0, at document #1372000/4922894\n", + "2019-01-16 04:47:00,029 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:00,591 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"puerto\" + 0.010*\"mexican\"\n", + "2019-01-16 04:47:00,593 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.050*\"new\" + 0.047*\"china\" + 0.034*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.016*\"kong\" + 0.016*\"queensland\"\n", + "2019-01-16 04:47:00,594 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:47:00,596 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 04:47:00,598 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:47:00,604 : INFO : topic diff=0.006170, rho=0.038180\n", + "2019-01-16 04:47:00,858 : INFO : PROGRESS: pass 0, at document #1374000/4922894\n", + "2019-01-16 04:47:02,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:03,448 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.068*\"januari\" + 0.068*\"juli\" + 0.067*\"august\" + 0.066*\"novemb\" + 0.065*\"april\" + 0.063*\"decemb\" + 0.062*\"june\"\n", + "2019-01-16 04:47:03,449 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.013*\"senat\"\n", + "2019-01-16 04:47:03,451 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.009*\"citi\"\n", + "2019-01-16 04:47:03,452 : INFO : topic #16 (0.020): 0.035*\"church\" + 0.018*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:47:03,453 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"right\" + 0.008*\"offic\" + 0.007*\"legal\"\n", + "2019-01-16 04:47:03,460 : INFO : topic diff=0.005881, rho=0.038152\n", + "2019-01-16 04:47:03,714 : INFO : PROGRESS: pass 0, at document #1376000/4922894\n", + "2019-01-16 04:47:05,757 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:06,315 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.017*\"danc\" + 0.015*\"festiv\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:47:06,316 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 04:47:06,318 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 04:47:06,319 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:47:06,321 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\" + 0.005*\"us\"\n", + "2019-01-16 04:47:06,326 : INFO : topic diff=0.006232, rho=0.038125\n", + "2019-01-16 04:47:06,604 : INFO : PROGRESS: pass 0, at document #1378000/4922894\n", + "2019-01-16 04:47:08,626 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:09,183 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.012*\"council\"\n", + "2019-01-16 04:47:09,185 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.048*\"china\" + 0.034*\"chines\" + 0.032*\"zealand\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.017*\"kong\" + 0.016*\"hong\"\n", + "2019-01-16 04:47:09,186 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.029*\"women\" + 0.028*\"championship\" + 0.028*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 04:47:09,188 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:47:09,189 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.012*\"work\" + 0.010*\"organ\" + 0.010*\"scienc\"\n", + "2019-01-16 04:47:09,195 : INFO : topic diff=0.006149, rho=0.038097\n", + "2019-01-16 04:47:13,917 : INFO : -11.563 per-word bound, 3026.1 perplexity estimate based on a held-out corpus of 2000 documents with 550981 words\n", + "2019-01-16 04:47:13,918 : INFO : PROGRESS: pass 0, at document #1380000/4922894\n", + "2019-01-16 04:47:16,002 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:16,569 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.013*\"hospit\" + 0.012*\"health\" + 0.011*\"patient\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"cell\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.008*\"cancer\"\n", + "2019-01-16 04:47:16,571 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"card\"\n", + "2019-01-16 04:47:16,572 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"tamil\" + 0.011*\"khan\" + 0.010*\"templ\"\n", + "2019-01-16 04:47:16,573 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"vehicl\" + 0.007*\"protein\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:47:16,575 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.036*\"africa\" + 0.031*\"african\" + 0.025*\"text\" + 0.023*\"till\" + 0.023*\"south\" + 0.022*\"color\" + 0.015*\"black\" + 0.011*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 04:47:16,582 : INFO : topic diff=0.004687, rho=0.038069\n", + "2019-01-16 04:47:16,878 : INFO : PROGRESS: pass 0, at document #1382000/4922894\n", + "2019-01-16 04:47:18,918 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:19,477 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 04:47:19,479 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", + "2019-01-16 04:47:19,480 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.010*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.009*\"citi\"\n", + "2019-01-16 04:47:19,482 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"novel\"\n", + "2019-01-16 04:47:19,483 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.020*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.013*\"runner\"\n", + "2019-01-16 04:47:19,490 : INFO : topic diff=0.005129, rho=0.038042\n", + "2019-01-16 04:47:19,735 : INFO : PROGRESS: pass 0, at document #1384000/4922894\n", + "2019-01-16 04:47:21,771 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:22,332 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"tamil\" + 0.011*\"khan\" + 0.011*\"ali\"\n", + "2019-01-16 04:47:22,333 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.020*\"winner\" + 0.020*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.012*\"runner\"\n", + "2019-01-16 04:47:22,335 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.047*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.018*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 04:47:22,336 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.062*\"wikit\" + 0.060*\"align\" + 0.053*\"center\" + 0.050*\"style\" + 0.050*\"left\" + 0.036*\"philippin\" + 0.035*\"right\" + 0.028*\"text\" + 0.027*\"border\"\n", + "2019-01-16 04:47:22,337 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"stori\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\"\n", + "2019-01-16 04:47:22,344 : INFO : topic diff=0.005615, rho=0.038014\n", + "2019-01-16 04:47:22,592 : INFO : PROGRESS: pass 0, at document #1386000/4922894\n", + "2019-01-16 04:47:24,600 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:25,156 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:47:25,157 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\" + 0.005*\"us\"\n", + "2019-01-16 04:47:25,159 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.016*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:47:25,160 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.011*\"number\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"group\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"gener\"\n", + "2019-01-16 04:47:25,161 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 04:47:25,167 : INFO : topic diff=0.005664, rho=0.037987\n", + "2019-01-16 04:47:25,409 : INFO : PROGRESS: pass 0, at document #1388000/4922894\n", + "2019-01-16 04:47:27,380 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:27,935 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 04:47:27,937 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:47:27,938 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.021*\"airport\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:47:27,940 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"offic\" + 0.012*\"regiment\"\n", + "2019-01-16 04:47:27,941 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 04:47:27,948 : INFO : topic diff=0.006477, rho=0.037959\n", + "2019-01-16 04:47:28,198 : INFO : PROGRESS: pass 0, at document #1390000/4922894\n", + "2019-01-16 04:47:30,273 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:30,831 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"friend\"\n", + "2019-01-16 04:47:30,833 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.013*\"republican\" + 0.012*\"council\"\n", + "2019-01-16 04:47:30,834 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 04:47:30,835 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"puerto\"\n", + "2019-01-16 04:47:30,838 : INFO : topic #40 (0.020): 0.038*\"bar\" + 0.035*\"africa\" + 0.031*\"african\" + 0.024*\"text\" + 0.023*\"south\" + 0.023*\"till\" + 0.021*\"color\" + 0.016*\"black\" + 0.011*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 04:47:30,844 : INFO : topic diff=0.006682, rho=0.037932\n", + "2019-01-16 04:47:31,073 : INFO : PROGRESS: pass 0, at document #1392000/4922894\n", + "2019-01-16 04:47:33,047 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:33,603 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:47:33,605 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:47:33,606 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.026*\"unit\" + 0.025*\"town\" + 0.021*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.013*\"london\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 04:47:33,608 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", + "2019-01-16 04:47:33,609 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"fight\" + 0.015*\"team\" + 0.014*\"championship\" + 0.013*\"elimin\" + 0.012*\"champion\"\n", + "2019-01-16 04:47:33,615 : INFO : topic diff=0.005976, rho=0.037905\n", + "2019-01-16 04:47:33,869 : INFO : PROGRESS: pass 0, at document #1394000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:47:35,923 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:36,479 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"win\"\n", + "2019-01-16 04:47:36,481 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.021*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"fight\" + 0.014*\"team\" + 0.014*\"championship\" + 0.013*\"elimin\" + 0.012*\"champion\"\n", + "2019-01-16 04:47:36,482 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:47:36,484 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.029*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 04:47:36,487 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.019*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 04:47:36,493 : INFO : topic diff=0.005627, rho=0.037878\n", + "2019-01-16 04:47:36,742 : INFO : PROGRESS: pass 0, at document #1396000/4922894\n", + "2019-01-16 04:47:38,832 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:39,388 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:47:39,390 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:47:39,391 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"march\" + 0.074*\"octob\" + 0.074*\"juli\" + 0.070*\"august\" + 0.069*\"januari\" + 0.068*\"april\" + 0.066*\"novemb\" + 0.066*\"june\" + 0.064*\"decemb\"\n", + "2019-01-16 04:47:39,393 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 04:47:39,394 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.019*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"sri\" + 0.011*\"khan\" + 0.011*\"singh\" + 0.011*\"tamil\"\n", + "2019-01-16 04:47:39,401 : INFO : topic diff=0.007500, rho=0.037851\n", + "2019-01-16 04:47:39,652 : INFO : PROGRESS: pass 0, at document #1398000/4922894\n", + "2019-01-16 04:47:41,667 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:42,224 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.012*\"republican\" + 0.012*\"senat\"\n", + "2019-01-16 04:47:42,226 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:47:42,227 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.017*\"plai\" + 0.017*\"theatr\" + 0.015*\"danc\" + 0.015*\"festiv\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 04:47:42,230 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"model\" + 0.008*\"type\" + 0.007*\"cell\" + 0.007*\"manufactur\"\n", + "2019-01-16 04:47:42,231 : INFO : topic #35 (0.020): 0.022*\"lee\" + 0.020*\"singapor\" + 0.020*\"kim\" + 0.016*\"indonesia\" + 0.016*\"vietnam\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.013*\"asia\" + 0.013*\"min\" + 0.012*\"asian\"\n", + "2019-01-16 04:47:42,238 : INFO : topic diff=0.005303, rho=0.037823\n", + "2019-01-16 04:47:46,985 : INFO : -11.578 per-word bound, 3057.1 perplexity estimate based on a held-out corpus of 2000 documents with 541362 words\n", + "2019-01-16 04:47:46,986 : INFO : PROGRESS: pass 0, at document #1400000/4922894\n", + "2019-01-16 04:47:49,038 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:49,593 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 04:47:49,595 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 04:47:49,596 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.006*\"mark\"\n", + "2019-01-16 04:47:49,598 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"friend\"\n", + "2019-01-16 04:47:49,599 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:47:49,605 : INFO : topic diff=0.005480, rho=0.037796\n", + "2019-01-16 04:47:49,849 : INFO : PROGRESS: pass 0, at document #1402000/4922894\n", + "2019-01-16 04:47:51,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:52,426 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 04:47:52,428 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.020*\"point\" + 0.020*\"group\" + 0.018*\"open\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.013*\"runner\"\n", + "2019-01-16 04:47:52,430 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"video\"\n", + "2019-01-16 04:47:52,432 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.064*\"north\" + 0.059*\"region\" + 0.059*\"east\" + 0.058*\"south\" + 0.053*\"west\" + 0.032*\"provinc\" + 0.032*\"central\" + 0.028*\"counti\" + 0.028*\"villag\"\n", + "2019-01-16 04:47:52,434 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.027*\"ag\" + 0.027*\"counti\" + 0.024*\"area\" + 0.022*\"famili\" + 0.022*\"municip\" + 0.022*\"censu\"\n", + "2019-01-16 04:47:52,441 : INFO : topic diff=0.005445, rho=0.037769\n", + "2019-01-16 04:47:52,719 : INFO : PROGRESS: pass 0, at document #1404000/4922894\n", + "2019-01-16 04:47:54,766 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:55,324 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 04:47:55,325 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.014*\"montreal\" + 0.014*\"list\" + 0.013*\"ye\"\n", + "2019-01-16 04:47:55,326 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", + "2019-01-16 04:47:55,328 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:47:55,329 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.010*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:47:55,335 : INFO : topic diff=0.005562, rho=0.037743\n", + "2019-01-16 04:47:55,580 : INFO : PROGRESS: pass 0, at document #1406000/4922894\n", + "2019-01-16 04:47:57,601 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:47:58,160 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"jame\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:47:58,161 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.012*\"regiment\"\n", + "2019-01-16 04:47:58,163 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:47:58,164 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", + "2019-01-16 04:47:58,165 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.063*\"wikit\" + 0.057*\"align\" + 0.052*\"center\" + 0.050*\"style\" + 0.047*\"left\" + 0.036*\"philippin\" + 0.032*\"right\" + 0.030*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:47:58,171 : INFO : topic diff=0.005631, rho=0.037716\n", + "2019-01-16 04:47:58,420 : INFO : PROGRESS: pass 0, at document #1408000/4922894\n", + "2019-01-16 04:48:00,488 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:01,048 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 04:48:01,050 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:48:01,052 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.020*\"point\" + 0.020*\"group\" + 0.018*\"open\" + 0.014*\"qualifi\" + 0.013*\"place\" + 0.013*\"runner\"\n", + "2019-01-16 04:48:01,054 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:48:01,055 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.011*\"juan\" + 0.010*\"puerto\"\n", + "2019-01-16 04:48:01,061 : INFO : topic diff=0.005544, rho=0.037689\n", + "2019-01-16 04:48:01,308 : INFO : PROGRESS: pass 0, at document #1410000/4922894\n", + "2019-01-16 04:48:03,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:03,878 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"princ\" + 0.008*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:48:03,880 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 04:48:03,881 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"puerto\"\n", + "2019-01-16 04:48:03,883 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.027*\"ag\" + 0.027*\"counti\" + 0.024*\"area\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:48:03,885 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.021*\"contest\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"team\" + 0.015*\"titl\" + 0.015*\"wrestl\" + 0.013*\"championship\" + 0.013*\"elimin\" + 0.012*\"champion\"\n", + "2019-01-16 04:48:03,891 : INFO : topic diff=0.005505, rho=0.037662\n", + "2019-01-16 04:48:04,137 : INFO : PROGRESS: pass 0, at document #1412000/4922894\n", + "2019-01-16 04:48:06,163 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:06,721 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.008*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:48:06,722 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.064*\"north\" + 0.059*\"east\" + 0.058*\"south\" + 0.058*\"region\" + 0.052*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.029*\"villag\" + 0.028*\"counti\"\n", + "2019-01-16 04:48:06,723 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.024*\"russia\" + 0.021*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.012*\"israel\"\n", + "2019-01-16 04:48:06,725 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:48:06,730 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"royal\"\n", + "2019-01-16 04:48:06,736 : INFO : topic diff=0.006022, rho=0.037635\n", + "2019-01-16 04:48:06,978 : INFO : PROGRESS: pass 0, at document #1414000/4922894\n", + "2019-01-16 04:48:08,982 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:09,539 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.015*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:48:09,541 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.075*\"octob\" + 0.073*\"march\" + 0.072*\"juli\" + 0.070*\"august\" + 0.067*\"april\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"decemb\"\n", + "2019-01-16 04:48:09,543 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.063*\"wikit\" + 0.055*\"align\" + 0.053*\"style\" + 0.051*\"center\" + 0.045*\"left\" + 0.036*\"philippin\" + 0.031*\"right\" + 0.029*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:48:09,545 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:48:09,546 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.024*\"singapor\" + 0.020*\"kim\" + 0.016*\"vietnam\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.016*\"indonesia\" + 0.012*\"asia\" + 0.012*\"asian\" + 0.012*\"min\"\n", + "2019-01-16 04:48:09,553 : INFO : topic diff=0.005682, rho=0.037609\n", + "2019-01-16 04:48:09,783 : INFO : PROGRESS: pass 0, at document #1416000/4922894\n", + "2019-01-16 04:48:11,755 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:12,312 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:48:12,313 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.010*\"juan\" + 0.010*\"puerto\"\n", + "2019-01-16 04:48:12,317 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"servic\" + 0.010*\"scienc\"\n", + "2019-01-16 04:48:12,319 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.063*\"north\" + 0.058*\"east\" + 0.058*\"region\" + 0.057*\"south\" + 0.052*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.030*\"villag\" + 0.028*\"counti\"\n", + "2019-01-16 04:48:12,320 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"repres\" + 0.013*\"seat\"\n", + "2019-01-16 04:48:12,325 : INFO : topic diff=0.006933, rho=0.037582\n", + "2019-01-16 04:48:12,567 : INFO : PROGRESS: pass 0, at document #1418000/4922894\n", + "2019-01-16 04:48:14,623 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:15,180 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.023*\"russia\" + 0.021*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.012*\"israel\" + 0.012*\"poland\"\n", + "2019-01-16 04:48:15,181 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.016*\"fight\" + 0.016*\"match\" + 0.016*\"titl\" + 0.015*\"team\" + 0.015*\"wrestl\" + 0.013*\"championship\" + 0.013*\"elimin\" + 0.013*\"champion\"\n", + "2019-01-16 04:48:15,183 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.076*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"ye\" + 0.014*\"list\" + 0.014*\"montreal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:48:15,184 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.031*\"villag\" + 0.027*\"ag\" + 0.027*\"counti\" + 0.024*\"area\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:48:15,186 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.046*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.008*\"program\"\n", + "2019-01-16 04:48:15,191 : INFO : topic diff=0.006284, rho=0.037556\n", + "2019-01-16 04:48:19,908 : INFO : -11.479 per-word bound, 2855.3 perplexity estimate based on a held-out corpus of 2000 documents with 578558 words\n", + "2019-01-16 04:48:19,909 : INFO : PROGRESS: pass 0, at document #1420000/4922894\n", + "2019-01-16 04:48:21,936 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:22,493 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 04:48:22,495 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"repres\" + 0.013*\"seat\"\n", + "2019-01-16 04:48:22,497 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.046*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.008*\"program\"\n", + "2019-01-16 04:48:22,498 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.023*\"lee\" + 0.022*\"kim\" + 0.016*\"thailand\" + 0.016*\"vietnam\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.013*\"asian\" + 0.012*\"asia\" + 0.012*\"min\"\n", + "2019-01-16 04:48:22,500 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.009*\"type\" + 0.009*\"design\" + 0.008*\"model\" + 0.007*\"protein\" + 0.007*\"acid\"\n", + "2019-01-16 04:48:22,506 : INFO : topic diff=0.006388, rho=0.037529\n", + "2019-01-16 04:48:22,764 : INFO : PROGRESS: pass 0, at document #1422000/4922894\n", + "2019-01-16 04:48:24,803 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:25,361 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:48:25,363 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 04:48:25,365 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"jame\"\n", + "2019-01-16 04:48:25,367 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:48:25,369 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:48:25,375 : INFO : topic diff=0.006004, rho=0.037503\n", + "2019-01-16 04:48:25,608 : INFO : PROGRESS: pass 0, at document #1424000/4922894\n", + "2019-01-16 04:48:27,638 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:28,198 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:48:28,200 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.029*\"italian\" + 0.025*\"pari\" + 0.021*\"itali\" + 0.021*\"saint\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:48:28,202 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.063*\"wikit\" + 0.057*\"align\" + 0.053*\"style\" + 0.050*\"center\" + 0.043*\"left\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.029*\"text\" + 0.027*\"border\"\n", + "2019-01-16 04:48:28,203 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.025*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:48:28,204 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"mark\"\n", + "2019-01-16 04:48:28,210 : INFO : topic diff=0.005791, rho=0.037477\n", + "2019-01-16 04:48:28,463 : INFO : PROGRESS: pass 0, at document #1426000/4922894\n", + "2019-01-16 04:48:30,494 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:31,051 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"counti\" + 0.026*\"ag\" + 0.024*\"area\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:48:31,053 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.062*\"north\" + 0.058*\"east\" + 0.058*\"region\" + 0.056*\"south\" + 0.053*\"west\" + 0.034*\"provinc\" + 0.033*\"central\" + 0.029*\"villag\" + 0.029*\"counti\"\n", + "2019-01-16 04:48:31,054 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 04:48:31,055 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.014*\"list\" + 0.014*\"montreal\" + 0.013*\"korean\"\n", + "2019-01-16 04:48:31,057 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"design\" + 0.008*\"type\" + 0.008*\"model\" + 0.007*\"vehicl\" + 0.007*\"acid\"\n", + "2019-01-16 04:48:31,062 : INFO : topic diff=0.005825, rho=0.037450\n", + "2019-01-16 04:48:31,296 : INFO : PROGRESS: pass 0, at document #1428000/4922894\n", + "2019-01-16 04:48:33,298 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:33,854 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"air\"\n", + "2019-01-16 04:48:33,855 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"island\" + 0.009*\"port\" + 0.008*\"damag\" + 0.008*\"crew\" + 0.008*\"naval\"\n", + "2019-01-16 04:48:33,857 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"mark\"\n", + "2019-01-16 04:48:33,858 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:48:33,859 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.037*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"counti\" + 0.026*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"censu\"\n", + "2019-01-16 04:48:33,865 : INFO : topic diff=0.005820, rho=0.037424\n", + "2019-01-16 04:48:34,135 : INFO : PROGRESS: pass 0, at document #1430000/4922894\n", + "2019-01-16 04:48:36,171 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:36,726 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:48:36,728 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 04:48:36,730 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.010*\"island\" + 0.009*\"port\" + 0.008*\"damag\" + 0.008*\"crew\" + 0.008*\"naval\"\n", + "2019-01-16 04:48:36,733 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.052*\"australian\" + 0.049*\"new\" + 0.046*\"china\" + 0.035*\"chines\" + 0.032*\"zealand\" + 0.028*\"south\" + 0.018*\"sydnei\" + 0.018*\"kong\" + 0.017*\"hong\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:48:36,735 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 04:48:36,742 : INFO : topic diff=0.005628, rho=0.037398\n", + "2019-01-16 04:48:36,995 : INFO : PROGRESS: pass 0, at document #1432000/4922894\n", + "2019-01-16 04:48:39,080 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:39,640 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"busi\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"cost\"\n", + "2019-01-16 04:48:39,641 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"tour\" + 0.010*\"time\"\n", + "2019-01-16 04:48:39,642 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:48:39,644 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\"\n", + "2019-01-16 04:48:39,645 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:48:39,652 : INFO : topic diff=0.006336, rho=0.037372\n", + "2019-01-16 04:48:39,891 : INFO : PROGRESS: pass 0, at document #1434000/4922894\n", + "2019-01-16 04:48:41,872 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:42,428 : INFO : topic #46 (0.020): 0.151*\"class\" + 0.063*\"wikit\" + 0.056*\"align\" + 0.053*\"style\" + 0.049*\"center\" + 0.043*\"left\" + 0.034*\"philippin\" + 0.034*\"right\" + 0.028*\"text\" + 0.027*\"border\"\n", + "2019-01-16 04:48:42,430 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"design\"\n", + "2019-01-16 04:48:42,431 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:48:42,432 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.014*\"battl\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.012*\"offic\"\n", + "2019-01-16 04:48:42,434 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.013*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"servic\" + 0.010*\"scienc\"\n", + "2019-01-16 04:48:42,439 : INFO : topic diff=0.005611, rho=0.037346\n", + "2019-01-16 04:48:42,686 : INFO : PROGRESS: pass 0, at document #1436000/4922894\n", + "2019-01-16 04:48:44,720 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:45,276 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.012*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"island\" + 0.009*\"port\" + 0.008*\"damag\" + 0.008*\"naval\" + 0.008*\"crew\"\n", + "2019-01-16 04:48:45,278 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:48:45,279 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.025*\"oper\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:48:45,281 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 04:48:45,283 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 04:48:45,289 : INFO : topic diff=0.005267, rho=0.037320\n", + "2019-01-16 04:48:45,535 : INFO : PROGRESS: pass 0, at document #1438000/4922894\n", + "2019-01-16 04:48:47,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:48,129 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.014*\"repres\" + 0.013*\"republican\" + 0.013*\"seat\"\n", + "2019-01-16 04:48:48,132 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:48:48,133 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.027*\"point\" + 0.024*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.014*\"place\" + 0.013*\"doubl\" + 0.013*\"qualifi\"\n", + "2019-01-16 04:48:48,135 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.022*\"kim\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.016*\"vietnam\" + 0.015*\"thailand\" + 0.013*\"asian\" + 0.012*\"asia\" + 0.012*\"min\"\n", + "2019-01-16 04:48:48,140 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.025*\"aircraft\" + 0.025*\"oper\" + 0.025*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:48:48,147 : INFO : topic diff=0.005808, rho=0.037294\n", + "2019-01-16 04:48:52,822 : INFO : -11.661 per-word bound, 3237.7 perplexity estimate based on a held-out corpus of 2000 documents with 590769 words\n", + "2019-01-16 04:48:52,823 : INFO : PROGRESS: pass 0, at document #1440000/4922894\n", + "2019-01-16 04:48:54,866 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:55,426 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.062*\"wikit\" + 0.061*\"align\" + 0.052*\"style\" + 0.048*\"center\" + 0.048*\"left\" + 0.033*\"philippin\" + 0.032*\"right\" + 0.028*\"text\" + 0.026*\"border\"\n", + "2019-01-16 04:48:55,428 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 04:48:55,430 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:48:55,431 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:48:55,432 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:48:55,438 : INFO : topic diff=0.007233, rho=0.037268\n", + "2019-01-16 04:48:55,682 : INFO : PROGRESS: pass 0, at document #1442000/4922894\n", + "2019-01-16 04:48:57,864 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:48:58,422 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.012*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:48:58,423 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 04:48:58,425 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.076*\"octob\" + 0.074*\"march\" + 0.072*\"juli\" + 0.069*\"januari\" + 0.068*\"august\" + 0.067*\"june\" + 0.067*\"april\" + 0.067*\"novemb\" + 0.065*\"decemb\"\n", + "2019-01-16 04:48:58,427 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.013*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"award\"\n", + "2019-01-16 04:48:58,428 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.061*\"north\" + 0.058*\"east\" + 0.057*\"region\" + 0.056*\"south\" + 0.053*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.031*\"villag\" + 0.029*\"counti\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:48:58,435 : INFO : topic diff=0.004956, rho=0.037242\n", + "2019-01-16 04:48:58,680 : INFO : PROGRESS: pass 0, at document #1444000/4922894\n", + "2019-01-16 04:49:00,775 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:01,331 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.012*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:49:01,333 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:49:01,335 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.033*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:49:01,337 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.017*\"gold\" + 0.017*\"nation\"\n", + "2019-01-16 04:49:01,338 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.020*\"scotland\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"london\" + 0.013*\"wale\"\n", + "2019-01-16 04:49:01,344 : INFO : topic diff=0.005780, rho=0.037216\n", + "2019-01-16 04:49:01,584 : INFO : PROGRESS: pass 0, at document #1446000/4922894\n", + "2019-01-16 04:49:03,633 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:04,191 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.026*\"kim\" + 0.023*\"singapor\" + 0.018*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"vietnam\" + 0.014*\"thailand\" + 0.014*\"min\" + 0.012*\"asia\"\n", + "2019-01-16 04:49:04,193 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"golf\" + 0.019*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"grand\"\n", + "2019-01-16 04:49:04,194 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:49:04,196 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"jpg\" + 0.033*\"museum\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.019*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:49:04,198 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.012*\"senat\"\n", + "2019-01-16 04:49:04,203 : INFO : topic diff=0.006058, rho=0.037190\n", + "2019-01-16 04:49:04,446 : INFO : PROGRESS: pass 0, at document #1448000/4922894\n", + "2019-01-16 04:49:06,469 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:07,027 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.038*\"russian\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.018*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.012*\"poland\" + 0.012*\"israel\"\n", + "2019-01-16 04:49:07,028 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\"\n", + "2019-01-16 04:49:07,030 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:49:07,031 : INFO : topic #34 (0.020): 0.082*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.027*\"ontario\" + 0.025*\"toronto\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"list\" + 0.014*\"montreal\" + 0.013*\"columbia\"\n", + "2019-01-16 04:49:07,033 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"model\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.007*\"us\"\n", + "2019-01-16 04:49:07,041 : INFO : topic diff=0.007769, rho=0.037165\n", + "2019-01-16 04:49:07,291 : INFO : PROGRESS: pass 0, at document #1450000/4922894\n", + "2019-01-16 04:49:09,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:09,922 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.012*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:49:09,923 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"base\"\n", + "2019-01-16 04:49:09,926 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:49:09,927 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.010*\"busi\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"cost\"\n", + "2019-01-16 04:49:09,929 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:49:09,934 : INFO : topic diff=0.005870, rho=0.037139\n", + "2019-01-16 04:49:10,163 : INFO : PROGRESS: pass 0, at document #1452000/4922894\n", + "2019-01-16 04:49:12,119 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:12,679 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:49:12,681 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.009*\"centuri\"\n", + "2019-01-16 04:49:12,682 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"busi\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"cost\"\n", + "2019-01-16 04:49:12,684 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"light\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:49:12,685 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:49:12,691 : INFO : topic diff=0.006409, rho=0.037113\n", + "2019-01-16 04:49:12,943 : INFO : PROGRESS: pass 0, at document #1454000/4922894\n", + "2019-01-16 04:49:15,016 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:15,573 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.020*\"medal\" + 0.020*\"japan\" + 0.017*\"nation\" + 0.016*\"gold\"\n", + "2019-01-16 04:49:15,574 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"orchestra\" + 0.013*\"opera\"\n", + "2019-01-16 04:49:15,575 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.062*\"wikit\" + 0.059*\"align\" + 0.051*\"style\" + 0.050*\"left\" + 0.048*\"center\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.028*\"text\" + 0.026*\"border\"\n", + "2019-01-16 04:49:15,577 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:49:15,578 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 04:49:15,584 : INFO : topic diff=0.006768, rho=0.037088\n", + "2019-01-16 04:49:15,852 : INFO : PROGRESS: pass 0, at document #1456000/4922894\n", + "2019-01-16 04:49:17,852 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:18,412 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:49:18,414 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.047*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 04:49:18,415 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"scotland\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"wale\"\n", + "2019-01-16 04:49:18,416 : INFO : topic #29 (0.020): 0.042*\"club\" + 0.040*\"leagu\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:49:18,418 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 04:49:18,423 : INFO : topic diff=0.005825, rho=0.037062\n", + "2019-01-16 04:49:18,669 : INFO : PROGRESS: pass 0, at document #1458000/4922894\n", + "2019-01-16 04:49:20,703 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:21,264 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:49:21,265 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"product\" + 0.010*\"busi\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"oper\"\n", + "2019-01-16 04:49:21,267 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 04:49:21,269 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", + "2019-01-16 04:49:21,270 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 04:49:21,276 : INFO : topic diff=0.005945, rho=0.037037\n", + "2019-01-16 04:49:25,979 : INFO : -11.952 per-word bound, 3963.3 perplexity estimate based on a held-out corpus of 2000 documents with 576656 words\n", + "2019-01-16 04:49:25,980 : INFO : PROGRESS: pass 0, at document #1460000/4922894\n", + "2019-01-16 04:49:28,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:28,585 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", + "2019-01-16 04:49:28,587 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:49:28,589 : INFO : topic #29 (0.020): 0.041*\"club\" + 0.040*\"leagu\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:49:28,590 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 04:49:28,592 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:49:28,598 : INFO : topic diff=0.006164, rho=0.037012\n", + "2019-01-16 04:49:28,843 : INFO : PROGRESS: pass 0, at document #1462000/4922894\n", + "2019-01-16 04:49:30,902 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:31,459 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.038*\"town\" + 0.030*\"citi\" + 0.030*\"villag\" + 0.028*\"counti\" + 0.026*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"municip\"\n", + "2019-01-16 04:49:31,460 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.015*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:49:31,463 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 04:49:31,464 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.025*\"kim\" + 0.022*\"singapor\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.015*\"thailand\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.013*\"min\" + 0.012*\"asia\"\n", + "2019-01-16 04:49:31,465 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"studi\"\n", + "2019-01-16 04:49:31,472 : INFO : topic diff=0.007376, rho=0.036986\n", + "2019-01-16 04:49:31,722 : INFO : PROGRESS: pass 0, at document #1464000/4922894\n", + "2019-01-16 04:49:33,700 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:34,257 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"tamil\" + 0.010*\"khan\"\n", + "2019-01-16 04:49:34,258 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"air\"\n", + "2019-01-16 04:49:34,259 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"product\" + 0.010*\"busi\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"oper\"\n", + "2019-01-16 04:49:34,262 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.062*\"wikit\" + 0.061*\"align\" + 0.052*\"style\" + 0.052*\"left\" + 0.047*\"center\" + 0.033*\"philippin\" + 0.033*\"right\" + 0.030*\"text\" + 0.026*\"border\"\n", + "2019-01-16 04:49:34,263 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.008*\"centuri\"\n", + "2019-01-16 04:49:34,270 : INFO : topic diff=0.006338, rho=0.036961\n", + "2019-01-16 04:49:34,516 : INFO : PROGRESS: pass 0, at document #1466000/4922894\n", + "2019-01-16 04:49:36,568 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:37,124 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.060*\"region\" + 0.059*\"north\" + 0.056*\"east\" + 0.054*\"south\" + 0.051*\"west\" + 0.034*\"provinc\" + 0.032*\"villag\" + 0.031*\"central\" + 0.028*\"counti\"\n", + "2019-01-16 04:49:37,125 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"orchestra\" + 0.013*\"opera\"\n", + "2019-01-16 04:49:37,127 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.018*\"jewish\" + 0.017*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"american\"\n", + "2019-01-16 04:49:37,128 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"host\" + 0.010*\"air\"\n", + "2019-01-16 04:49:37,130 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.021*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"championship\" + 0.012*\"champion\" + 0.012*\"elimin\"\n", + "2019-01-16 04:49:37,135 : INFO : topic diff=0.005732, rho=0.036936\n", + "2019-01-16 04:49:37,378 : INFO : PROGRESS: pass 0, at document #1468000/4922894\n", + "2019-01-16 04:49:39,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:39,944 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:49:39,946 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"vehicl\" + 0.007*\"car\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:49:39,947 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"order\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\"\n", + "2019-01-16 04:49:39,948 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:49:39,952 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:49:39,958 : INFO : topic diff=0.007290, rho=0.036911\n", + "2019-01-16 04:49:40,207 : INFO : PROGRESS: pass 0, at document #1470000/4922894\n", + "2019-01-16 04:49:42,262 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:42,818 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.025*\"kim\" + 0.024*\"singapor\" + 0.019*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 04:49:42,819 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.062*\"wikit\" + 0.058*\"align\" + 0.051*\"style\" + 0.051*\"left\" + 0.046*\"center\" + 0.035*\"philippin\" + 0.032*\"right\" + 0.029*\"text\" + 0.027*\"border\"\n", + "2019-01-16 04:49:42,821 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"scotland\" + 0.018*\"citi\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"wale\"\n", + "2019-01-16 04:49:42,822 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"order\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\"\n", + "2019-01-16 04:49:42,825 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:49:42,832 : INFO : topic diff=0.005568, rho=0.036886\n", + "2019-01-16 04:49:43,068 : INFO : PROGRESS: pass 0, at document #1472000/4922894\n", + "2019-01-16 04:49:45,122 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:45,678 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.030*\"citi\" + 0.030*\"villag\" + 0.028*\"counti\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.022*\"municip\"\n", + "2019-01-16 04:49:45,680 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"scotland\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"wale\"\n", + "2019-01-16 04:49:45,682 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", + "2019-01-16 04:49:45,684 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.024*\"kim\" + 0.024*\"singapor\" + 0.019*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.012*\"min\"\n", + "2019-01-16 04:49:45,686 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:49:45,692 : INFO : topic diff=0.005366, rho=0.036860\n", + "2019-01-16 04:49:45,936 : INFO : PROGRESS: pass 0, at document #1474000/4922894\n", + "2019-01-16 04:49:47,927 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:48,486 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.016*\"match\" + 0.015*\"wrestl\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"championship\" + 0.012*\"champion\" + 0.011*\"box\"\n", + "2019-01-16 04:49:48,487 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"version\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:49:48,489 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.033*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"imag\" + 0.019*\"design\" + 0.018*\"exhibit\"\n", + "2019-01-16 04:49:48,491 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"royal\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:49:48,493 : INFO : topic #29 (0.020): 0.041*\"club\" + 0.040*\"leagu\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:49:48,499 : INFO : topic diff=0.006110, rho=0.036835\n", + "2019-01-16 04:49:48,759 : INFO : PROGRESS: pass 0, at document #1476000/4922894\n", + "2019-01-16 04:49:50,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:51,391 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.008*\"centuri\"\n", + "2019-01-16 04:49:51,392 : INFO : topic #39 (0.020): 0.056*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.024*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:49:51,393 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.035*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.010*\"tamil\"\n", + "2019-01-16 04:49:51,396 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.036*\"africa\" + 0.030*\"african\" + 0.026*\"text\" + 0.025*\"south\" + 0.024*\"till\" + 0.022*\"color\" + 0.014*\"black\" + 0.013*\"tropic\" + 0.011*\"storm\"\n", + "2019-01-16 04:49:51,397 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.013*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:49:51,402 : INFO : topic diff=0.007325, rho=0.036811\n", + "2019-01-16 04:49:51,645 : INFO : PROGRESS: pass 0, at document #1478000/4922894\n", + "2019-01-16 04:49:53,681 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:49:54,239 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:49:54,241 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:49:54,242 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"championship\" + 0.012*\"elimin\" + 0.012*\"champion\"\n", + "2019-01-16 04:49:54,244 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"brown\"\n", + "2019-01-16 04:49:54,245 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:49:54,253 : INFO : topic diff=0.006041, rho=0.036786\n", + "2019-01-16 04:49:58,881 : INFO : -11.697 per-word bound, 3319.2 perplexity estimate based on a held-out corpus of 2000 documents with 552764 words\n", + "2019-01-16 04:49:58,882 : INFO : PROGRESS: pass 0, at document #1480000/4922894\n", + "2019-01-16 04:50:00,912 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:01,470 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"union\"\n", + "2019-01-16 04:50:01,471 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:50:01,473 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"oper\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:50:01,474 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.061*\"north\" + 0.059*\"region\" + 0.056*\"east\" + 0.055*\"south\" + 0.052*\"west\" + 0.034*\"provinc\" + 0.032*\"villag\" + 0.030*\"central\" + 0.028*\"counti\"\n", + "2019-01-16 04:50:01,476 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:50:01,481 : INFO : topic diff=0.005593, rho=0.036761\n", + "2019-01-16 04:50:01,731 : INFO : PROGRESS: pass 0, at document #1482000/4922894\n", + "2019-01-16 04:50:03,844 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:04,401 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:50:04,402 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 04:50:04,404 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"stori\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:50:04,407 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 04:50:04,408 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.017*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 04:50:04,415 : INFO : topic diff=0.006443, rho=0.036736\n", + "2019-01-16 04:50:04,662 : INFO : PROGRESS: pass 0, at document #1484000/4922894\n", + "2019-01-16 04:50:06,720 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:07,276 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"democrat\" + 0.018*\"presid\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.014*\"repres\" + 0.013*\"council\"\n", + "2019-01-16 04:50:07,278 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"car\" + 0.007*\"vehicl\"\n", + "2019-01-16 04:50:07,279 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.034*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"american\" + 0.013*\"israel\"\n", + "2019-01-16 04:50:07,280 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.034*\"new\" + 0.033*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:50:07,281 : INFO : topic #29 (0.020): 0.040*\"club\" + 0.040*\"leagu\" + 0.032*\"team\" + 0.032*\"plai\" + 0.028*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:50:07,287 : INFO : topic diff=0.005957, rho=0.036711\n", + "2019-01-16 04:50:07,540 : INFO : PROGRESS: pass 0, at document #1486000/4922894\n", + "2019-01-16 04:50:09,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:10,126 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.066*\"januari\" + 0.065*\"april\" + 0.064*\"august\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 04:50:10,128 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", + "2019-01-16 04:50:10,129 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", + "2019-01-16 04:50:10,131 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.009*\"damag\" + 0.009*\"port\" + 0.008*\"coast\" + 0.008*\"crew\"\n", + "2019-01-16 04:50:10,132 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"point\" + 0.025*\"tournament\" + 0.022*\"winner\" + 0.022*\"group\" + 0.016*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", + "2019-01-16 04:50:10,138 : INFO : topic diff=0.006376, rho=0.036686\n", + "2019-01-16 04:50:10,383 : INFO : PROGRESS: pass 0, at document #1488000/4922894\n", + "2019-01-16 04:50:12,407 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:12,963 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"daughter\" + 0.012*\"born\"\n", + "2019-01-16 04:50:12,965 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 04:50:12,966 : INFO : topic #39 (0.020): 0.054*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.024*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 04:50:12,968 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.018*\"presid\" + 0.016*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 04:50:12,969 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"thoma\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:50:12,975 : INFO : topic diff=0.005140, rho=0.036662\n", + "2019-01-16 04:50:13,220 : INFO : PROGRESS: pass 0, at document #1490000/4922894\n", + "2019-01-16 04:50:15,187 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:15,749 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.010*\"damag\" + 0.009*\"port\" + 0.008*\"coast\" + 0.007*\"crew\"\n", + "2019-01-16 04:50:15,751 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:50:15,752 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 04:50:15,754 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"empir\" + 0.007*\"year\" + 0.007*\"son\"\n", + "2019-01-16 04:50:15,757 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"order\" + 0.009*\"offic\" + 0.009*\"report\"\n", + "2019-01-16 04:50:15,763 : INFO : topic diff=0.005130, rho=0.036637\n", + "2019-01-16 04:50:16,013 : INFO : PROGRESS: pass 0, at document #1492000/4922894\n", + "2019-01-16 04:50:18,045 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:18,604 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:50:18,606 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.060*\"north\" + 0.059*\"region\" + 0.055*\"south\" + 0.054*\"east\" + 0.053*\"west\" + 0.034*\"provinc\" + 0.033*\"villag\" + 0.031*\"central\" + 0.029*\"counti\"\n", + "2019-01-16 04:50:18,607 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.034*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.010*\"tamil\"\n", + "2019-01-16 04:50:18,608 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"cell\" + 0.008*\"treatment\" + 0.008*\"medicin\"\n", + "2019-01-16 04:50:18,609 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.040*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.027*\"season\" + 0.025*\"footbal\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:50:18,615 : INFO : topic diff=0.005794, rho=0.036613\n", + "2019-01-16 04:50:18,867 : INFO : PROGRESS: pass 0, at document #1494000/4922894\n", + "2019-01-16 04:50:20,859 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:21,415 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"cell\" + 0.009*\"studi\"\n", + "2019-01-16 04:50:21,416 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 04:50:21,418 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:50:21,419 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.017*\"scotland\" + 0.014*\"scottish\" + 0.012*\"manchest\" + 0.012*\"london\" + 0.012*\"counti\"\n", + "2019-01-16 04:50:21,421 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"version\" + 0.007*\"video\"\n", + "2019-01-16 04:50:21,428 : INFO : topic diff=0.006758, rho=0.036588\n", + "2019-01-16 04:50:21,674 : INFO : PROGRESS: pass 0, at document #1496000/4922894\n", + "2019-01-16 04:50:23,647 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:24,204 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 04:50:24,206 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.013*\"locat\" + 0.011*\"site\" + 0.010*\"histor\" + 0.009*\"place\" + 0.008*\"construct\" + 0.008*\"centuri\"\n", + "2019-01-16 04:50:24,207 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"order\" + 0.008*\"report\"\n", + "2019-01-16 04:50:24,209 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"golf\" + 0.013*\"driver\" + 0.012*\"year\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.010*\"ford\"\n", + "2019-01-16 04:50:24,210 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:50:24,216 : INFO : topic diff=0.006331, rho=0.036564\n", + "2019-01-16 04:50:24,468 : INFO : PROGRESS: pass 0, at document #1498000/4922894\n", + "2019-01-16 04:50:26,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:27,085 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.029*\"villag\" + 0.028*\"counti\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:50:27,086 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"like\"\n", + "2019-01-16 04:50:27,088 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 04:50:27,089 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 04:50:27,091 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.010*\"mexican\"\n", + "2019-01-16 04:50:27,098 : INFO : topic diff=0.005937, rho=0.036539\n", + "2019-01-16 04:50:31,830 : INFO : -11.693 per-word bound, 3311.8 perplexity estimate based on a held-out corpus of 2000 documents with 582170 words\n", + "2019-01-16 04:50:31,831 : INFO : PROGRESS: pass 0, at document #1500000/4922894\n", + "2019-01-16 04:50:33,899 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:34,456 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.034*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.010*\"tamil\"\n", + "2019-01-16 04:50:34,458 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:50:34,459 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.037*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.021*\"berlin\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:50:34,461 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 04:50:34,462 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 04:50:34,469 : INFO : topic diff=0.006967, rho=0.036515\n", + "2019-01-16 04:50:34,713 : INFO : PROGRESS: pass 0, at document #1502000/4922894\n", + "2019-01-16 04:50:36,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:37,328 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.028*\"villag\" + 0.028*\"counti\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"municip\"\n", + "2019-01-16 04:50:37,330 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 04:50:37,332 : INFO : topic #29 (0.020): 0.040*\"club\" + 0.039*\"leagu\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:50:37,333 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:50:37,334 : INFO : topic #25 (0.020): 0.048*\"final\" + 0.046*\"round\" + 0.024*\"tournament\" + 0.024*\"point\" + 0.023*\"group\" + 0.022*\"winner\" + 0.017*\"open\" + 0.014*\"place\" + 0.012*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 04:50:37,342 : INFO : topic diff=0.006605, rho=0.036491\n", + "2019-01-16 04:50:37,593 : INFO : PROGRESS: pass 0, at document #1504000/4922894\n", + "2019-01-16 04:50:39,628 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:40,190 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.015*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.014*\"moscow\" + 0.013*\"american\"\n", + "2019-01-16 04:50:40,191 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.005*\"like\"\n", + "2019-01-16 04:50:40,193 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.066*\"januari\" + 0.065*\"april\" + 0.065*\"august\" + 0.065*\"novemb\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 04:50:40,194 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.012*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.009*\"damag\" + 0.009*\"port\" + 0.008*\"coast\" + 0.008*\"crew\"\n", + "2019-01-16 04:50:40,197 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", + "2019-01-16 04:50:40,204 : INFO : topic diff=0.005119, rho=0.036466\n", + "2019-01-16 04:50:40,487 : INFO : PROGRESS: pass 0, at document #1506000/4922894\n", + "2019-01-16 04:50:42,514 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:50:43,070 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", + "2019-01-16 04:50:43,072 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 04:50:43,073 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"scottish\" + 0.013*\"london\" + 0.012*\"manchest\" + 0.012*\"counti\"\n", + "2019-01-16 04:50:43,075 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.016*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 04:50:43,076 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 04:50:43,083 : INFO : topic diff=0.006222, rho=0.036442\n", + "2019-01-16 04:50:43,324 : INFO : PROGRESS: pass 0, at document #1508000/4922894\n", + "2019-01-16 04:50:45,408 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:45,965 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.030*\"south\" + 0.028*\"chines\" + 0.022*\"sydnei\" + 0.019*\"kong\" + 0.017*\"hong\"\n", + "2019-01-16 04:50:45,967 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 04:50:45,968 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.012*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"crew\"\n", + "2019-01-16 04:50:45,970 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"american\"\n", + "2019-01-16 04:50:45,971 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"us\" + 0.005*\"like\"\n", + "2019-01-16 04:50:45,977 : INFO : topic diff=0.005388, rho=0.036418\n", + "2019-01-16 04:50:46,237 : INFO : PROGRESS: pass 0, at document #1510000/4922894\n", + "2019-01-16 04:50:48,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:48,916 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.013*\"piano\" + 0.013*\"opera\" + 0.012*\"orchestra\"\n", + "2019-01-16 04:50:48,917 : INFO : topic #34 (0.020): 0.083*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"columbia\"\n", + "2019-01-16 04:50:48,919 : INFO : topic #39 (0.020): 0.054*\"air\" + 0.025*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:50:48,920 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.061*\"region\" + 0.060*\"north\" + 0.056*\"south\" + 0.055*\"east\" + 0.052*\"west\" + 0.034*\"provinc\" + 0.033*\"villag\" + 0.030*\"central\" + 0.027*\"counti\"\n", + "2019-01-16 04:50:48,921 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"crew\"\n", + "2019-01-16 04:50:48,927 : INFO : topic diff=0.007144, rho=0.036394\n", + "2019-01-16 04:50:49,175 : INFO : PROGRESS: pass 0, at document #1512000/4922894\n", + "2019-01-16 04:50:51,229 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:51,786 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"repres\" + 0.013*\"council\"\n", + "2019-01-16 04:50:51,787 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.025*\"south\" + 0.025*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.016*\"black\" + 0.011*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 04:50:51,789 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.008*\"centuri\"\n", + "2019-01-16 04:50:51,790 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:50:51,792 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:50:51,797 : INFO : topic diff=0.005315, rho=0.036370\n", + "2019-01-16 04:50:52,046 : INFO : PROGRESS: pass 0, at document #1514000/4922894\n", + "2019-01-16 04:50:54,011 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:54,568 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 04:50:54,569 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:50:54,571 : INFO : topic #17 (0.020): 0.066*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"golf\" + 0.011*\"ford\" + 0.011*\"tour\"\n", + "2019-01-16 04:50:54,573 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"columbia\"\n", + "2019-01-16 04:50:54,575 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.014*\"american\" + 0.014*\"moscow\"\n", + "2019-01-16 04:50:54,582 : INFO : topic diff=0.005572, rho=0.036346\n", + "2019-01-16 04:50:54,833 : INFO : PROGRESS: pass 0, at document #1516000/4922894\n", + "2019-01-16 04:50:57,004 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:50:57,566 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 04:50:57,568 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.015*\"asian\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.013*\"vietnam\" + 0.012*\"min\"\n", + "2019-01-16 04:50:57,570 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 04:50:57,572 : INFO : topic #39 (0.020): 0.054*\"air\" + 0.025*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.021*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:50:57,573 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:50:57,580 : INFO : topic diff=0.005651, rho=0.036322\n", + "2019-01-16 04:50:57,823 : INFO : PROGRESS: pass 0, at document #1518000/4922894\n", + "2019-01-16 04:50:59,836 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:00,393 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.025*\"tournament\" + 0.024*\"point\" + 0.022*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.013*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", + "2019-01-16 04:51:00,394 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.015*\"israel\" + 0.014*\"american\" + 0.014*\"republ\" + 0.013*\"moscow\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:51:00,396 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.021*\"men\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"japanes\" + 0.017*\"nation\"\n", + "2019-01-16 04:51:00,397 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:51:00,399 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:51:00,405 : INFO : topic diff=0.005185, rho=0.036298\n", + "2019-01-16 04:51:04,991 : INFO : -11.870 per-word bound, 3741.8 perplexity estimate based on a held-out corpus of 2000 documents with 535660 words\n", + "2019-01-16 04:51:04,992 : INFO : PROGRESS: pass 0, at document #1520000/4922894\n", + "2019-01-16 04:51:06,988 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:07,547 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:51:07,548 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.025*\"south\" + 0.024*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.016*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 04:51:07,550 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.021*\"kim\" + 0.016*\"malaysia\" + 0.015*\"asia\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.014*\"thailand\" + 0.013*\"vietnam\" + 0.012*\"min\"\n", + "2019-01-16 04:51:07,551 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\"\n", + "2019-01-16 04:51:07,552 : INFO : topic #17 (0.020): 0.065*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"championship\" + 0.011*\"year\" + 0.011*\"tour\" + 0.011*\"golf\" + 0.010*\"ford\"\n", + "2019-01-16 04:51:07,558 : INFO : topic diff=0.004552, rho=0.036274\n", + "2019-01-16 04:51:07,802 : INFO : PROGRESS: pass 0, at document #1522000/4922894\n", + "2019-01-16 04:51:09,887 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:10,443 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.011*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"crew\"\n", + "2019-01-16 04:51:10,445 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.022*\"airport\" + 0.021*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:51:10,446 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:51:10,448 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"brown\"\n", + "2019-01-16 04:51:10,449 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"effect\"\n", + "2019-01-16 04:51:10,455 : INFO : topic diff=0.005798, rho=0.036250\n", + "2019-01-16 04:51:10,695 : INFO : PROGRESS: pass 0, at document #1524000/4922894\n", + "2019-01-16 04:51:12,729 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:13,286 : INFO : topic #39 (0.020): 0.054*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.022*\"airport\" + 0.021*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:51:13,287 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 04:51:13,289 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:51:13,291 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.013*\"product\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"car\"\n", + "2019-01-16 04:51:13,293 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:51:13,301 : INFO : topic diff=0.006373, rho=0.036226\n", + "2019-01-16 04:51:13,558 : INFO : PROGRESS: pass 0, at document #1526000/4922894\n", + "2019-01-16 04:51:15,679 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:16,235 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 04:51:16,237 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:51:16,239 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"year\" + 0.012*\"daughter\" + 0.012*\"born\"\n", + "2019-01-16 04:51:16,240 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"busi\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 04:51:16,241 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"american\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 04:51:16,247 : INFO : topic diff=0.006711, rho=0.036202\n", + "2019-01-16 04:51:16,488 : INFO : PROGRESS: pass 0, at document #1528000/4922894\n", + "2019-01-16 04:51:18,463 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:19,024 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:51:19,026 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:51:19,027 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 04:51:19,028 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"effect\"\n", + "2019-01-16 04:51:19,029 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.025*\"south\" + 0.024*\"text\" + 0.022*\"till\" + 0.022*\"color\" + 0.016*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 04:51:19,035 : INFO : topic diff=0.007032, rho=0.036179\n", + "2019-01-16 04:51:19,284 : INFO : PROGRESS: pass 0, at document #1530000/4922894\n", + "2019-01-16 04:51:21,327 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:21,885 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:51:21,886 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 04:51:21,888 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.061*\"wikit\" + 0.057*\"align\" + 0.054*\"left\" + 0.052*\"style\" + 0.045*\"center\" + 0.036*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:51:21,890 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"oper\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:51:21,891 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.015*\"manchest\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.011*\"west\"\n", + "2019-01-16 04:51:21,898 : INFO : topic diff=0.005283, rho=0.036155\n", + "2019-01-16 04:51:22,186 : INFO : PROGRESS: pass 0, at document #1532000/4922894\n", + "2019-01-16 04:51:24,218 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:24,774 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:51:24,776 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"francisco\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"brazil\"\n", + "2019-01-16 04:51:24,778 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"said\"\n", + "2019-01-16 04:51:24,780 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.010*\"host\" + 0.010*\"network\"\n", + "2019-01-16 04:51:24,782 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.023*\"airport\" + 0.021*\"forc\" + 0.018*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.013*\"pilot\" + 0.013*\"base\"\n", + "2019-01-16 04:51:24,788 : INFO : topic diff=0.005190, rho=0.036131\n", + "2019-01-16 04:51:25,037 : INFO : PROGRESS: pass 0, at document #1534000/4922894\n", + "2019-01-16 04:51:27,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:27,656 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.071*\"canada\" + 0.060*\"canadian\" + 0.028*\"ontario\" + 0.025*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"korean\" + 0.014*\"list\"\n", + "2019-01-16 04:51:27,658 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"cell\"\n", + "2019-01-16 04:51:27,659 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"brown\"\n", + "2019-01-16 04:51:27,661 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:51:27,662 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 04:51:27,667 : INFO : topic diff=0.005990, rho=0.036108\n", + "2019-01-16 04:51:27,909 : INFO : PROGRESS: pass 0, at document #1536000/4922894\n", + "2019-01-16 04:51:29,933 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:30,490 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"group\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\"\n", + "2019-01-16 04:51:30,491 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:51:30,494 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"us\"\n", + "2019-01-16 04:51:30,495 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.014*\"opera\" + 0.012*\"piano\" + 0.012*\"orchestra\"\n", + "2019-01-16 04:51:30,496 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"servic\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", + "2019-01-16 04:51:30,503 : INFO : topic diff=0.005485, rho=0.036084\n", + "2019-01-16 04:51:30,756 : INFO : PROGRESS: pass 0, at document #1538000/4922894\n", + "2019-01-16 04:51:32,781 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:33,339 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:51:33,341 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"royal\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:51:33,342 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"construct\"\n", + "2019-01-16 04:51:33,344 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:51:33,345 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.036*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"american\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 04:51:33,351 : INFO : topic diff=0.005334, rho=0.036061\n", + "2019-01-16 04:51:37,901 : INFO : -11.636 per-word bound, 3182.9 perplexity estimate based on a held-out corpus of 2000 documents with 517776 words\n", + "2019-01-16 04:51:37,902 : INFO : PROGRESS: pass 0, at document #1540000/4922894\n", + "2019-01-16 04:51:39,915 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:40,473 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.008*\"record\"\n", + "2019-01-16 04:51:40,475 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.017*\"iran\" + 0.016*\"www\" + 0.014*\"sri\" + 0.013*\"pakistan\" + 0.012*\"islam\" + 0.012*\"ali\" + 0.011*\"khan\"\n", + "2019-01-16 04:51:40,477 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n", + "2019-01-16 04:51:40,478 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.039*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.028*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:51:40,480 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.019*\"kim\" + 0.017*\"malaysia\" + 0.016*\"asian\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"asia\" + 0.013*\"–present\" + 0.013*\"vietnam\"\n", + "2019-01-16 04:51:40,486 : INFO : topic diff=0.005705, rho=0.036037\n", + "2019-01-16 04:51:40,742 : INFO : PROGRESS: pass 0, at document #1542000/4922894\n", + "2019-01-16 04:51:42,775 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:43,336 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.030*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"men\" + 0.020*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 04:51:43,337 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"exhibit\" + 0.018*\"design\" + 0.017*\"imag\"\n", + "2019-01-16 04:51:43,339 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.006*\"fish\"\n", + "2019-01-16 04:51:43,340 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"network\" + 0.011*\"host\"\n", + "2019-01-16 04:51:43,342 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"brown\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:51:43,347 : INFO : topic diff=0.005182, rho=0.036014\n", + "2019-01-16 04:51:43,595 : INFO : PROGRESS: pass 0, at document #1544000/4922894\n", + "2019-01-16 04:51:45,608 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:46,167 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\"\n", + "2019-01-16 04:51:46,169 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.018*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 04:51:46,170 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.018*\"malaysia\" + 0.016*\"thailand\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"–present\" + 0.013*\"vietnam\"\n", + "2019-01-16 04:51:46,171 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:51:46,174 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.028*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:51:46,181 : INFO : topic diff=0.005272, rho=0.035991\n", + "2019-01-16 04:51:46,428 : INFO : PROGRESS: pass 0, at document #1546000/4922894\n", + "2019-01-16 04:51:48,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:49,059 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.010*\"ret\" + 0.009*\"effect\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"drug\"\n", + "2019-01-16 04:51:49,060 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:51:49,062 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.052*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", + "2019-01-16 04:51:49,064 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 04:51:49,065 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:51:49,072 : INFO : topic diff=0.006491, rho=0.035968\n", + "2019-01-16 04:51:49,309 : INFO : PROGRESS: pass 0, at document #1548000/4922894\n", + "2019-01-16 04:51:51,325 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:51,881 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"construct\"\n", + "2019-01-16 04:51:51,883 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.036*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:51:51,885 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", + "2019-01-16 04:51:51,886 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 04:51:51,889 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.005*\"brown\"\n", + "2019-01-16 04:51:51,895 : INFO : topic diff=0.005739, rho=0.035944\n", + "2019-01-16 04:51:52,154 : INFO : PROGRESS: pass 0, at document #1550000/4922894\n", + "2019-01-16 04:51:54,143 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:54,707 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 04:51:54,709 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 04:51:54,710 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.020*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"order\"\n", + "2019-01-16 04:51:54,711 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.061*\"wikit\" + 0.053*\"align\" + 0.051*\"style\" + 0.050*\"left\" + 0.048*\"center\" + 0.034*\"philippin\" + 0.034*\"right\" + 0.027*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:51:54,712 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:51:54,718 : INFO : topic diff=0.007002, rho=0.035921\n", + "2019-01-16 04:51:54,954 : INFO : PROGRESS: pass 0, at document #1552000/4922894\n", + "2019-01-16 04:51:56,939 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:51:57,495 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 04:51:57,497 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.028*\"counti\" + 0.028*\"ag\" + 0.027*\"villag\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:51:57,499 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:51:57,500 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.013*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"island\" + 0.008*\"port\" + 0.008*\"damag\" + 0.008*\"crew\" + 0.008*\"coast\"\n", + "2019-01-16 04:51:57,502 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 04:51:57,507 : INFO : topic diff=0.005679, rho=0.035898\n", + "2019-01-16 04:51:57,752 : INFO : PROGRESS: pass 0, at document #1554000/4922894\n", + "2019-01-16 04:51:59,807 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:00,364 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.011*\"patient\" + 0.010*\"drug\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.009*\"studi\"\n", + "2019-01-16 04:52:00,366 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:52:00,367 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 04:52:00,369 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.013*\"opera\" + 0.012*\"piano\" + 0.012*\"orchestra\"\n", + "2019-01-16 04:52:00,371 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.024*\"point\" + 0.020*\"winner\" + 0.020*\"group\" + 0.018*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", + "2019-01-16 04:52:00,377 : INFO : topic diff=0.005726, rho=0.035875\n", + "2019-01-16 04:52:00,626 : INFO : PROGRESS: pass 0, at document #1556000/4922894\n", + "2019-01-16 04:52:02,674 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:03,231 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.011*\"patient\" + 0.010*\"drug\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.009*\"medicin\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:52:03,233 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:52:03,235 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 04:52:03,236 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"car\"\n", + "2019-01-16 04:52:03,238 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"wale\"\n", + "2019-01-16 04:52:03,245 : INFO : topic diff=0.005912, rho=0.035852\n", + "2019-01-16 04:52:03,526 : INFO : PROGRESS: pass 0, at document #1558000/4922894\n", + "2019-01-16 04:52:05,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:06,089 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.022*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:52:06,090 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.061*\"wikit\" + 0.053*\"align\" + 0.051*\"left\" + 0.051*\"style\" + 0.047*\"center\" + 0.035*\"philippin\" + 0.032*\"right\" + 0.027*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:52:06,092 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", + "2019-01-16 04:52:06,093 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.021*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:52:06,095 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.037*\"africa\" + 0.033*\"african\" + 0.027*\"south\" + 0.022*\"text\" + 0.021*\"till\" + 0.021*\"color\" + 0.016*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 04:52:06,101 : INFO : topic diff=0.005602, rho=0.035829\n", + "2019-01-16 04:52:10,742 : INFO : -11.665 per-word bound, 3246.4 perplexity estimate based on a held-out corpus of 2000 documents with 566273 words\n", + "2019-01-16 04:52:10,743 : INFO : PROGRESS: pass 0, at document #1560000/4922894\n", + "2019-01-16 04:52:12,799 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:13,355 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"new\" + 0.051*\"australian\" + 0.046*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.017*\"kong\" + 0.016*\"hong\"\n", + "2019-01-16 04:52:13,357 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:52:13,359 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.018*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 04:52:13,360 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"iran\" + 0.017*\"www\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\"\n", + "2019-01-16 04:52:13,362 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:52:13,368 : INFO : topic diff=0.005039, rho=0.035806\n", + "2019-01-16 04:52:13,640 : INFO : PROGRESS: pass 0, at document #1562000/4922894\n", + "2019-01-16 04:52:15,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:16,306 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:52:16,307 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"drug\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.009*\"treatment\"\n", + "2019-01-16 04:52:16,309 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"busi\" + 0.010*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.007*\"new\" + 0.007*\"industri\" + 0.007*\"trade\"\n", + "2019-01-16 04:52:16,310 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.024*\"singapor\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.017*\"malaysia\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"vietnam\" + 0.013*\"–present\"\n", + "2019-01-16 04:52:16,312 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.036*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:52:16,318 : INFO : topic diff=0.005863, rho=0.035783\n", + "2019-01-16 04:52:16,571 : INFO : PROGRESS: pass 0, at document #1564000/4922894\n", + "2019-01-16 04:52:18,640 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:19,197 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.025*\"point\" + 0.024*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.019*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", + "2019-01-16 04:52:19,198 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.059*\"north\" + 0.058*\"region\" + 0.056*\"south\" + 0.052*\"east\" + 0.050*\"west\" + 0.042*\"counti\" + 0.036*\"provinc\" + 0.035*\"villag\" + 0.029*\"central\"\n", + "2019-01-16 04:52:19,199 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:52:19,201 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 04:52:19,202 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.038*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.028*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:52:19,209 : INFO : topic diff=0.005543, rho=0.035760\n", + "2019-01-16 04:52:19,450 : INFO : PROGRESS: pass 0, at document #1566000/4922894\n", + "2019-01-16 04:52:21,441 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:22,007 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 04:52:22,009 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.013*\"opera\" + 0.012*\"piano\" + 0.011*\"orchestra\"\n", + "2019-01-16 04:52:22,010 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.059*\"north\" + 0.057*\"region\" + 0.056*\"south\" + 0.052*\"east\" + 0.050*\"west\" + 0.043*\"counti\" + 0.036*\"provinc\" + 0.035*\"villag\" + 0.029*\"central\"\n", + "2019-01-16 04:52:22,011 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.072*\"canada\" + 0.059*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.014*\"montreal\" + 0.013*\"list\" + 0.013*\"columbia\"\n", + "2019-01-16 04:52:22,013 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:52:22,019 : INFO : topic diff=0.004753, rho=0.035737\n", + "2019-01-16 04:52:22,263 : INFO : PROGRESS: pass 0, at document #1568000/4922894\n", + "2019-01-16 04:52:24,315 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:24,872 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"organ\"\n", + "2019-01-16 04:52:24,873 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\" + 0.012*\"london\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:52:24,875 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 04:52:24,877 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.020*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", + "2019-01-16 04:52:24,878 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:52:24,884 : INFO : topic diff=0.006685, rho=0.035714\n", + "2019-01-16 04:52:25,121 : INFO : PROGRESS: pass 0, at document #1570000/4922894\n", + "2019-01-16 04:52:27,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:27,684 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.045*\"final\" + 0.025*\"point\" + 0.024*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"runner\"\n", + "2019-01-16 04:52:27,686 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"wrestl\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.017*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:52:27,687 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 04:52:27,689 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:52:27,690 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:52:27,696 : INFO : topic diff=0.005442, rho=0.035692\n", + "2019-01-16 04:52:27,940 : INFO : PROGRESS: pass 0, at document #1572000/4922894\n", + "2019-01-16 04:52:29,963 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:30,521 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:52:30,522 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.008*\"vehicl\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"protein\"\n", + "2019-01-16 04:52:30,524 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", + "2019-01-16 04:52:30,526 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 04:52:30,527 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 04:52:30,533 : INFO : topic diff=0.005489, rho=0.035669\n", + "2019-01-16 04:52:30,778 : INFO : PROGRESS: pass 0, at document #1574000/4922894\n", + "2019-01-16 04:52:32,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:33,361 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", + "2019-01-16 04:52:33,362 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 04:52:33,364 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", + "2019-01-16 04:52:33,365 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.027*\"counti\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.024*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"municip\"\n", + "2019-01-16 04:52:33,367 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 04:52:33,372 : INFO : topic diff=0.007404, rho=0.035646\n", + "2019-01-16 04:52:33,626 : INFO : PROGRESS: pass 0, at document #1576000/4922894\n", + "2019-01-16 04:52:35,661 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:36,219 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.015*\"servic\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.011*\"organ\"\n", + "2019-01-16 04:52:36,221 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.005*\"mark\"\n", + "2019-01-16 04:52:36,222 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 04:52:36,223 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.020*\"malaysia\" + 0.017*\"kim\" + 0.017*\"thailand\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"–present\" + 0.013*\"vietnam\"\n", + "2019-01-16 04:52:36,225 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.025*\"aircraft\" + 0.025*\"oper\" + 0.022*\"airport\" + 0.021*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:52:36,230 : INFO : topic diff=0.006263, rho=0.035624\n", + "2019-01-16 04:52:36,473 : INFO : PROGRESS: pass 0, at document #1578000/4922894\n", + "2019-01-16 04:52:38,509 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:39,068 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"type\" + 0.007*\"protein\"\n", + "2019-01-16 04:52:39,069 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.019*\"wrestl\" + 0.018*\"fight\" + 0.016*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:52:39,071 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.062*\"wikit\" + 0.054*\"style\" + 0.054*\"align\" + 0.050*\"left\" + 0.046*\"center\" + 0.036*\"philippin\" + 0.030*\"right\" + 0.027*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:52:39,072 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:52:39,073 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:52:39,080 : INFO : topic diff=0.005530, rho=0.035601\n", + "2019-01-16 04:52:43,714 : INFO : -11.698 per-word bound, 3322.6 perplexity estimate based on a held-out corpus of 2000 documents with 559899 words\n", + "2019-01-16 04:52:43,715 : INFO : PROGRESS: pass 0, at document #1580000/4922894\n", + "2019-01-16 04:52:45,753 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:46,310 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n", + "2019-01-16 04:52:46,311 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"servic\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.011*\"organ\"\n", + "2019-01-16 04:52:46,313 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.040*\"franc\" + 0.029*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:52:46,314 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:52:46,315 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.052*\"australian\" + 0.050*\"new\" + 0.044*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.016*\"kong\" + 0.015*\"hong\"\n", + "2019-01-16 04:52:46,321 : INFO : topic diff=0.004980, rho=0.035578\n", + "2019-01-16 04:52:46,604 : INFO : PROGRESS: pass 0, at document #1582000/4922894\n", + "2019-01-16 04:52:48,676 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:49,235 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.024*\"tournament\" + 0.023*\"point\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"open\" + 0.016*\"doubl\" + 0.014*\"qualifi\" + 0.014*\"champion\"\n", + "2019-01-16 04:52:49,236 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.017*\"famili\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:52:49,238 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.071*\"canada\" + 0.059*\"canadian\" + 0.028*\"ontario\" + 0.025*\"toronto\" + 0.020*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\" + 0.013*\"columbia\" + 0.012*\"list\"\n", + "2019-01-16 04:52:49,239 : INFO : topic #48 (0.020): 0.076*\"octob\" + 0.076*\"septemb\" + 0.069*\"march\" + 0.066*\"august\" + 0.065*\"juli\" + 0.065*\"januari\" + 0.064*\"april\" + 0.063*\"novemb\" + 0.060*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 04:52:49,240 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:52:49,247 : INFO : topic diff=0.005424, rho=0.035556\n", + "2019-01-16 04:52:49,501 : INFO : PROGRESS: pass 0, at document #1584000/4922894\n", + "2019-01-16 04:52:51,581 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:52,138 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.038*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"khan\" + 0.011*\"singh\"\n", + "2019-01-16 04:52:52,140 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.036*\"russian\" + 0.022*\"russia\" + 0.022*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"american\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 04:52:52,142 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:52:52,144 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.011*\"organ\"\n", + "2019-01-16 04:52:52,145 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.071*\"canada\" + 0.059*\"canadian\" + 0.027*\"ontario\" + 0.025*\"toronto\" + 0.020*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\" + 0.012*\"korean\" + 0.012*\"columbia\"\n", + "2019-01-16 04:52:52,152 : INFO : topic diff=0.006445, rho=0.035533\n", + "2019-01-16 04:52:52,416 : INFO : PROGRESS: pass 0, at document #1586000/4922894\n", + "2019-01-16 04:52:54,478 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:55,035 : INFO : topic #11 (0.020): 0.026*\"act\" + 0.024*\"law\" + 0.023*\"court\" + 0.016*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:52:55,037 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.043*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 04:52:55,039 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:52:55,040 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.023*\"singapor\" + 0.020*\"malaysia\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.016*\"–present\" + 0.015*\"asian\" + 0.015*\"indonesia\" + 0.014*\"asia\" + 0.013*\"vietnam\"\n", + "2019-01-16 04:52:55,041 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.032*\"citi\" + 0.028*\"villag\" + 0.027*\"ag\" + 0.026*\"counti\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:52:55,047 : INFO : topic diff=0.007241, rho=0.035511\n", + "2019-01-16 04:52:55,287 : INFO : PROGRESS: pass 0, at document #1588000/4922894\n", + "2019-01-16 04:52:57,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:52:58,023 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"leagu\"\n", + "2019-01-16 04:52:58,024 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.013*\"opera\" + 0.012*\"piano\" + 0.012*\"orchestra\"\n", + "2019-01-16 04:52:58,026 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.025*\"york\" + 0.019*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:52:58,028 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:52:58,029 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"includ\" + 0.007*\"data\"\n", + "2019-01-16 04:52:58,036 : INFO : topic diff=0.005550, rho=0.035489\n", + "2019-01-16 04:52:58,288 : INFO : PROGRESS: pass 0, at document #1590000/4922894\n", + "2019-01-16 04:53:00,249 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:00,806 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"studi\" + 0.009*\"cell\" + 0.009*\"treatment\" + 0.009*\"caus\"\n", + "2019-01-16 04:53:00,808 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:53:00,810 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:53:00,811 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"american\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 04:53:00,813 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:53:00,818 : INFO : topic diff=0.006311, rho=0.035466\n", + "2019-01-16 04:53:01,066 : INFO : PROGRESS: pass 0, at document #1592000/4922894\n", + "2019-01-16 04:53:03,035 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:03,593 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:53:03,595 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n", + "2019-01-16 04:53:03,597 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.065*\"align\" + 0.064*\"style\" + 0.059*\"wikit\" + 0.050*\"left\" + 0.046*\"center\" + 0.034*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:53:03,598 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:53:03,599 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:53:03,605 : INFO : topic diff=0.006479, rho=0.035444\n", + "2019-01-16 04:53:03,854 : INFO : PROGRESS: pass 0, at document #1594000/4922894\n", + "2019-01-16 04:53:05,820 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:06,376 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.020*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"francisco\"\n", + "2019-01-16 04:53:06,378 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.036*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 04:53:06,379 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.014*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:53:06,381 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 04:53:06,382 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.005*\"scott\"\n", + "2019-01-16 04:53:06,388 : INFO : topic diff=0.005743, rho=0.035422\n", + "2019-01-16 04:53:06,643 : INFO : PROGRESS: pass 0, at document #1596000/4922894\n", + "2019-01-16 04:53:08,655 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:09,213 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.064*\"align\" + 0.064*\"style\" + 0.060*\"wikit\" + 0.049*\"left\" + 0.046*\"center\" + 0.034*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:53:09,216 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.018*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:53:09,217 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", + "2019-01-16 04:53:09,219 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:53:09,220 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:53:09,228 : INFO : topic diff=0.005604, rho=0.035400\n", + "2019-01-16 04:53:09,474 : INFO : PROGRESS: pass 0, at document #1598000/4922894\n", + "2019-01-16 04:53:11,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:12,057 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:53:12,059 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.024*\"act\" + 0.023*\"court\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:53:12,060 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.025*\"counti\" + 0.025*\"york\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:53:12,062 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.010*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:53:12,063 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", + "2019-01-16 04:53:12,069 : INFO : topic diff=0.006429, rho=0.035377\n", + "2019-01-16 04:53:16,754 : INFO : -11.623 per-word bound, 3153.2 perplexity estimate based on a held-out corpus of 2000 documents with 544818 words\n", + "2019-01-16 04:53:16,754 : INFO : PROGRESS: pass 0, at document #1600000/4922894\n", + "2019-01-16 04:53:18,825 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:19,383 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.010*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:53:19,384 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 04:53:19,386 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:53:19,387 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"union\"\n", + "2019-01-16 04:53:19,388 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"medicin\"\n", + "2019-01-16 04:53:19,394 : INFO : topic diff=0.005515, rho=0.035355\n", + "2019-01-16 04:53:19,653 : INFO : PROGRESS: pass 0, at document #1602000/4922894\n", + "2019-01-16 04:53:21,715 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:22,272 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", + "2019-01-16 04:53:22,273 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:53:22,274 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 04:53:22,276 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.009*\"francisco\"\n", + "2019-01-16 04:53:22,277 : INFO : topic #48 (0.020): 0.076*\"octob\" + 0.075*\"septemb\" + 0.071*\"march\" + 0.066*\"januari\" + 0.066*\"august\" + 0.066*\"juli\" + 0.065*\"april\" + 0.065*\"novemb\" + 0.061*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 04:53:22,283 : INFO : topic diff=0.006386, rho=0.035333\n", + "2019-01-16 04:53:22,536 : INFO : PROGRESS: pass 0, at document #1604000/4922894\n", + "2019-01-16 04:53:24,588 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:25,144 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.023*\"tournament\" + 0.023*\"point\" + 0.023*\"winner\" + 0.023*\"open\" + 0.020*\"group\" + 0.016*\"champion\" + 0.016*\"doubl\" + 0.015*\"place\"\n", + "2019-01-16 04:53:25,146 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"protein\" + 0.007*\"type\"\n", + "2019-01-16 04:53:25,147 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.009*\"francisco\"\n", + "2019-01-16 04:53:25,149 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.026*\"counti\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:53:25,150 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:53:25,156 : INFO : topic diff=0.006019, rho=0.035311\n", + "2019-01-16 04:53:25,418 : INFO : PROGRESS: pass 0, at document #1606000/4922894\n", + "2019-01-16 04:53:27,463 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:53:28,020 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.010*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:53:28,022 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:53:28,023 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 04:53:28,025 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", + "2019-01-16 04:53:28,027 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.040*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.013*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:53:28,033 : INFO : topic diff=0.006299, rho=0.035289\n", + "2019-01-16 04:53:28,309 : INFO : PROGRESS: pass 0, at document #1608000/4922894\n", + "2019-01-16 04:53:30,346 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:30,906 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 04:53:30,907 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"host\" + 0.010*\"network\"\n", + "2019-01-16 04:53:30,909 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.018*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", + "2019-01-16 04:53:30,911 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.009*\"treatment\" + 0.009*\"medicin\"\n", + "2019-01-16 04:53:30,913 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"said\"\n", + "2019-01-16 04:53:30,919 : INFO : topic diff=0.005950, rho=0.035267\n", + "2019-01-16 04:53:31,171 : INFO : PROGRESS: pass 0, at document #1610000/4922894\n", + "2019-01-16 04:53:33,195 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:33,752 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"american\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 04:53:33,754 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:53:33,756 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.022*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.012*\"pilot\"\n", + "2019-01-16 04:53:33,758 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"gun\" + 0.010*\"port\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 04:53:33,759 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:53:33,766 : INFO : topic diff=0.006765, rho=0.035245\n", + "2019-01-16 04:53:34,015 : INFO : PROGRESS: pass 0, at document #1612000/4922894\n", + "2019-01-16 04:53:35,991 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:36,547 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"union\"\n", + "2019-01-16 04:53:36,549 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:53:36,550 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"francisco\"\n", + "2019-01-16 04:53:36,552 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 04:53:36,553 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.075*\"septemb\" + 0.070*\"march\" + 0.066*\"august\" + 0.065*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.064*\"april\" + 0.061*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 04:53:36,559 : INFO : topic diff=0.006656, rho=0.035223\n", + "2019-01-16 04:53:36,799 : INFO : PROGRESS: pass 0, at document #1614000/4922894\n", + "2019-01-16 04:53:38,811 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:39,368 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:53:39,370 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\" + 0.012*\"born\"\n", + "2019-01-16 04:53:39,373 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:53:39,374 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", + "2019-01-16 04:53:39,377 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.037*\"africa\" + 0.032*\"african\" + 0.026*\"text\" + 0.025*\"south\" + 0.023*\"till\" + 0.022*\"color\" + 0.016*\"black\" + 0.012*\"tropic\" + 0.012*\"storm\"\n", + "2019-01-16 04:53:39,383 : INFO : topic diff=0.005688, rho=0.035202\n", + "2019-01-16 04:53:39,633 : INFO : PROGRESS: pass 0, at document #1616000/4922894\n", + "2019-01-16 04:53:41,682 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:42,238 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", + "2019-01-16 04:53:42,240 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.008*\"construct\"\n", + "2019-01-16 04:53:42,241 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 04:53:42,243 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"medicin\"\n", + "2019-01-16 04:53:42,244 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"commun\"\n", + "2019-01-16 04:53:42,251 : INFO : topic diff=0.004792, rho=0.035180\n", + "2019-01-16 04:53:42,494 : INFO : PROGRESS: pass 0, at document #1618000/4922894\n", + "2019-01-16 04:53:44,491 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:45,048 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:53:45,049 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.073*\"canada\" + 0.057*\"canadian\" + 0.026*\"toronto\" + 0.026*\"ontario\" + 0.019*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\" + 0.014*\"list\" + 0.012*\"korean\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:53:45,051 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"gun\" + 0.010*\"port\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 04:53:45,052 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 04:53:45,054 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"type\"\n", + "2019-01-16 04:53:45,060 : INFO : topic diff=0.005797, rho=0.035158\n", + "2019-01-16 04:53:49,585 : INFO : -11.632 per-word bound, 3173.4 perplexity estimate based on a held-out corpus of 2000 documents with 564382 words\n", + "2019-01-16 04:53:49,586 : INFO : PROGRESS: pass 0, at document #1620000/4922894\n", + "2019-01-16 04:53:51,586 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:52,146 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.040*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.012*\"al\" + 0.012*\"die\"\n", + "2019-01-16 04:53:52,147 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", + "2019-01-16 04:53:52,149 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.011*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.008*\"construct\"\n", + "2019-01-16 04:53:52,150 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"video\" + 0.007*\"includ\"\n", + "2019-01-16 04:53:52,152 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.087*\"style\" + 0.066*\"align\" + 0.057*\"wikit\" + 0.055*\"left\" + 0.045*\"center\" + 0.033*\"philippin\" + 0.031*\"text\" + 0.030*\"right\" + 0.024*\"border\"\n", + "2019-01-16 04:53:52,157 : INFO : topic diff=0.007480, rho=0.035136\n", + "2019-01-16 04:53:52,405 : INFO : PROGRESS: pass 0, at document #1622000/4922894\n", + "2019-01-16 04:53:54,404 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:54,965 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.037*\"africa\" + 0.031*\"african\" + 0.026*\"text\" + 0.025*\"south\" + 0.024*\"color\" + 0.024*\"till\" + 0.015*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 04:53:54,967 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.055*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.031*\"chines\" + 0.031*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.017*\"kong\" + 0.017*\"hong\"\n", + "2019-01-16 04:53:54,968 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.020*\"gold\" + 0.020*\"japan\" + 0.018*\"athlet\"\n", + "2019-01-16 04:53:54,969 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:53:54,972 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.040*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.012*\"al\" + 0.012*\"die\"\n", + "2019-01-16 04:53:54,979 : INFO : topic diff=0.005477, rho=0.035115\n", + "2019-01-16 04:53:55,229 : INFO : PROGRESS: pass 0, at document #1624000/4922894\n", + "2019-01-16 04:53:57,324 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:53:57,880 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:53:57,881 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:53:57,883 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\" + 0.012*\"born\"\n", + "2019-01-16 04:53:57,885 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.023*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:53:57,887 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"time\"\n", + "2019-01-16 04:53:57,893 : INFO : topic diff=0.007042, rho=0.035093\n", + "2019-01-16 04:53:58,158 : INFO : PROGRESS: pass 0, at document #1626000/4922894\n", + "2019-01-16 04:54:00,279 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:00,836 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"scienc\"\n", + "2019-01-16 04:54:00,838 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 04:54:00,839 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.045*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.022*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:54:00,841 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.020*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"francisco\"\n", + "2019-01-16 04:54:00,843 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.027*\"villag\" + 0.025*\"counti\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:54:00,848 : INFO : topic diff=0.006062, rho=0.035072\n", + "2019-01-16 04:54:01,084 : INFO : PROGRESS: pass 0, at document #1628000/4922894\n", + "2019-01-16 04:54:03,097 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:03,654 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n", + "2019-01-16 04:54:03,656 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 04:54:03,657 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.022*\"airport\" + 0.021*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:54:03,658 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"softwar\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"video\" + 0.007*\"data\"\n", + "2019-01-16 04:54:03,660 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"scienc\"\n", + "2019-01-16 04:54:03,666 : INFO : topic diff=0.006561, rho=0.035050\n", + "2019-01-16 04:54:03,914 : INFO : PROGRESS: pass 0, at document #1630000/4922894\n", + "2019-01-16 04:54:05,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:06,530 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 04:54:06,531 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.075*\"septemb\" + 0.070*\"march\" + 0.066*\"juli\" + 0.066*\"novemb\" + 0.065*\"januari\" + 0.065*\"august\" + 0.064*\"april\" + 0.061*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 04:54:06,533 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.018*\"hospit\" + 0.016*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"medicin\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:54:06,534 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"union\"\n", + "2019-01-16 04:54:06,536 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:54:06,543 : INFO : topic diff=0.006006, rho=0.035028\n", + "2019-01-16 04:54:06,786 : INFO : PROGRESS: pass 0, at document #1632000/4922894\n", + "2019-01-16 04:54:08,838 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:09,396 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 04:54:09,398 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:54:09,399 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.020*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\" + 0.010*\"juan\"\n", + "2019-01-16 04:54:09,401 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"protein\"\n", + "2019-01-16 04:54:09,402 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.054*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.017*\"kong\" + 0.017*\"hong\"\n", + "2019-01-16 04:54:09,408 : INFO : topic diff=0.004558, rho=0.035007\n", + "2019-01-16 04:54:09,683 : INFO : PROGRESS: pass 0, at document #1634000/4922894\n", + "2019-01-16 04:54:11,622 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:12,178 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:54:12,180 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.045*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.022*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:54:12,182 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 04:54:12,183 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 04:54:12,185 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 04:54:12,192 : INFO : topic diff=0.006125, rho=0.034986\n", + "2019-01-16 04:54:12,437 : INFO : PROGRESS: pass 0, at document #1636000/4922894\n", + "2019-01-16 04:54:14,462 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:15,019 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:54:15,021 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:54:15,022 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"minist\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 04:54:15,024 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 04:54:15,027 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"commun\"\n", + "2019-01-16 04:54:15,033 : INFO : topic diff=0.005116, rho=0.034964\n", + "2019-01-16 04:54:15,286 : INFO : PROGRESS: pass 0, at document #1638000/4922894\n", + "2019-01-16 04:54:17,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:17,924 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 04:54:17,925 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.054*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.018*\"kong\" + 0.017*\"hong\"\n", + "2019-01-16 04:54:17,927 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.045*\"franc\" + 0.029*\"pari\" + 0.027*\"italian\" + 0.022*\"saint\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:54:17,928 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", + "2019-01-16 04:54:17,930 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"mexican\" + 0.010*\"josé\" + 0.010*\"juan\"\n", + "2019-01-16 04:54:17,936 : INFO : topic diff=0.005694, rho=0.034943\n", + "2019-01-16 04:54:22,498 : INFO : -11.756 per-word bound, 3457.8 perplexity estimate based on a held-out corpus of 2000 documents with 523906 words\n", + "2019-01-16 04:54:22,499 : INFO : PROGRESS: pass 0, at document #1640000/4922894\n", + "2019-01-16 04:54:24,503 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:25,069 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:54:25,070 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.024*\"counti\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.020*\"municip\"\n", + "2019-01-16 04:54:25,072 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.013*\"million\" + 0.010*\"busi\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:54:25,073 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.012*\"gun\" + 0.012*\"sea\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.008*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 04:54:25,076 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:54:25,082 : INFO : topic diff=0.005873, rho=0.034922\n", + "2019-01-16 04:54:25,332 : INFO : PROGRESS: pass 0, at document #1642000/4922894\n", + "2019-01-16 04:54:27,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:27,933 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\"\n", + "2019-01-16 04:54:27,934 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.006*\"tree\"\n", + "2019-01-16 04:54:27,936 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"effect\"\n", + "2019-01-16 04:54:27,938 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"version\" + 0.009*\"releas\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"video\" + 0.007*\"includ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:54:27,939 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:54:27,945 : INFO : topic diff=0.005041, rho=0.034900\n", + "2019-01-16 04:54:28,178 : INFO : PROGRESS: pass 0, at document #1644000/4922894\n", + "2019-01-16 04:54:30,156 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:30,713 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"year\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 04:54:30,715 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:54:30,716 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:54:30,717 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"winner\" + 0.025*\"tournament\" + 0.024*\"point\" + 0.023*\"open\" + 0.022*\"group\" + 0.016*\"qualifi\" + 0.015*\"place\" + 0.014*\"champion\"\n", + "2019-01-16 04:54:30,719 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:54:30,725 : INFO : topic diff=0.005663, rho=0.034879\n", + "2019-01-16 04:54:30,968 : INFO : PROGRESS: pass 0, at document #1646000/4922894\n", + "2019-01-16 04:54:32,968 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:33,530 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 04:54:33,532 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.044*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:54:33,533 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.077*\"style\" + 0.060*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.043*\"center\" + 0.033*\"right\" + 0.030*\"philippin\" + 0.030*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:54:33,535 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 04:54:33,537 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:54:33,543 : INFO : topic diff=0.005846, rho=0.034858\n", + "2019-01-16 04:54:33,793 : INFO : PROGRESS: pass 0, at document #1648000/4922894\n", + "2019-01-16 04:54:35,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:36,392 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.019*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 04:54:36,393 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.032*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.023*\"area\" + 0.023*\"counti\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:54:36,395 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 04:54:36,396 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.037*\"africa\" + 0.032*\"african\" + 0.027*\"text\" + 0.026*\"south\" + 0.026*\"till\" + 0.025*\"color\" + 0.018*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 04:54:36,397 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.053*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.017*\"kong\" + 0.016*\"hong\"\n", + "2019-01-16 04:54:36,403 : INFO : topic diff=0.005667, rho=0.034837\n", + "2019-01-16 04:54:36,643 : INFO : PROGRESS: pass 0, at document #1650000/4922894\n", + "2019-01-16 04:54:38,614 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:39,172 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:54:39,173 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:54:39,175 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:54:39,176 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\"\n", + "2019-01-16 04:54:39,180 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"red\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"tree\"\n", + "2019-01-16 04:54:39,187 : INFO : topic diff=0.005902, rho=0.034816\n", + "2019-01-16 04:54:39,424 : INFO : PROGRESS: pass 0, at document #1652000/4922894\n", + "2019-01-16 04:54:41,462 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:42,019 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:54:42,021 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.016*\"match\" + 0.015*\"wrestl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.014*\"titl\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 04:54:42,022 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"gener\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:54:42,025 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:54:42,026 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 04:54:42,033 : INFO : topic diff=0.005557, rho=0.034794\n", + "2019-01-16 04:54:42,278 : INFO : PROGRESS: pass 0, at document #1654000/4922894\n", + "2019-01-16 04:54:44,298 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:44,856 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:54:44,858 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"servic\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"commun\"\n", + "2019-01-16 04:54:44,859 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.076*\"septemb\" + 0.073*\"march\" + 0.068*\"juli\" + 0.068*\"novemb\" + 0.067*\"august\" + 0.067*\"januari\" + 0.067*\"april\" + 0.064*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 04:54:44,861 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\"\n", + "2019-01-16 04:54:44,863 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:54:44,869 : INFO : topic diff=0.006201, rho=0.034773\n", + "2019-01-16 04:54:45,115 : INFO : PROGRESS: pass 0, at document #1656000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:54:47,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:47,722 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.052*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.018*\"sydnei\" + 0.016*\"kong\" + 0.016*\"hong\"\n", + "2019-01-16 04:54:47,724 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.041*\"russian\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"american\" + 0.014*\"republ\" + 0.014*\"jewish\" + 0.013*\"moscow\" + 0.012*\"israel\"\n", + "2019-01-16 04:54:47,725 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:54:47,727 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 04:54:47,730 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\"\n", + "2019-01-16 04:54:47,736 : INFO : topic diff=0.006426, rho=0.034752\n", + "2019-01-16 04:54:47,985 : INFO : PROGRESS: pass 0, at document #1658000/4922894\n", + "2019-01-16 04:54:50,072 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:50,631 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:54:50,633 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"church\" + 0.009*\"place\"\n", + "2019-01-16 04:54:50,634 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", + "2019-01-16 04:54:50,636 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:54:50,648 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\"\n", + "2019-01-16 04:54:50,654 : INFO : topic diff=0.005372, rho=0.034731\n", + "2019-01-16 04:54:55,318 : INFO : -11.793 per-word bound, 3547.6 perplexity estimate based on a held-out corpus of 2000 documents with 570602 words\n", + "2019-01-16 04:54:55,319 : INFO : PROGRESS: pass 0, at document #1660000/4922894\n", + "2019-01-16 04:54:57,579 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:54:58,135 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"video\" + 0.007*\"user\" + 0.007*\"design\"\n", + "2019-01-16 04:54:58,137 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.029*\"point\" + 0.025*\"winner\" + 0.024*\"tournament\" + 0.023*\"group\" + 0.022*\"open\" + 0.016*\"qualifi\" + 0.015*\"place\" + 0.014*\"champion\"\n", + "2019-01-16 04:54:58,138 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 04:54:58,139 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.054*\"univers\" + 0.044*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.008*\"campu\"\n", + "2019-01-16 04:54:58,141 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.032*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"counti\" + 0.021*\"famili\" + 0.021*\"censu\" + 0.021*\"municip\"\n", + "2019-01-16 04:54:58,147 : INFO : topic diff=0.006453, rho=0.034711\n", + "2019-01-16 04:54:58,397 : INFO : PROGRESS: pass 0, at document #1662000/4922894\n", + "2019-01-16 04:55:00,434 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:00,992 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"type\"\n", + "2019-01-16 04:55:00,993 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"video\" + 0.007*\"user\" + 0.007*\"data\"\n", + "2019-01-16 04:55:00,995 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.032*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.017*\"gener\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:55:00,997 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:55:00,998 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:55:01,004 : INFO : topic diff=0.005534, rho=0.034690\n", + "2019-01-16 04:55:01,239 : INFO : PROGRESS: pass 0, at document #1664000/4922894\n", + "2019-01-16 04:55:03,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:03,785 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.008*\"medicin\"\n", + "2019-01-16 04:55:03,787 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.013*\"orchestra\" + 0.012*\"opera\"\n", + "2019-01-16 04:55:03,789 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.015*\"london\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 04:55:03,791 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 04:55:03,793 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:55:03,799 : INFO : topic diff=0.004882, rho=0.034669\n", + "2019-01-16 04:55:04,037 : INFO : PROGRESS: pass 0, at document #1666000/4922894\n", + "2019-01-16 04:55:06,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:06,573 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.040*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:55:06,574 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.071*\"style\" + 0.063*\"align\" + 0.059*\"wikit\" + 0.056*\"left\" + 0.042*\"center\" + 0.033*\"right\" + 0.030*\"text\" + 0.030*\"philippin\" + 0.025*\"border\"\n", + "2019-01-16 04:55:06,576 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 04:55:06,577 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", + "2019-01-16 04:55:06,579 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:55:06,586 : INFO : topic diff=0.005805, rho=0.034648\n", + "2019-01-16 04:55:06,826 : INFO : PROGRESS: pass 0, at document #1668000/4922894\n", + "2019-01-16 04:55:08,814 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:09,375 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"counti\" + 0.021*\"censu\" + 0.021*\"famili\" + 0.021*\"municip\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:55:09,376 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 04:55:09,378 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:55:09,379 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"match\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.016*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 04:55:09,381 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.012*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:55:09,386 : INFO : topic diff=0.005815, rho=0.034627\n", + "2019-01-16 04:55:09,631 : INFO : PROGRESS: pass 0, at document #1670000/4922894\n", + "2019-01-16 04:55:11,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:12,251 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 04:55:12,253 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:55:12,254 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"damag\" + 0.008*\"coast\"\n", + "2019-01-16 04:55:12,256 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"effect\"\n", + "2019-01-16 04:55:12,258 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.022*\"dutch\" + 0.019*\"der\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"austria\"\n", + "2019-01-16 04:55:12,264 : INFO : topic diff=0.004273, rho=0.034606\n", + "2019-01-16 04:55:12,503 : INFO : PROGRESS: pass 0, at document #1672000/4922894\n", + "2019-01-16 04:55:14,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:15,064 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.045*\"round\" + 0.029*\"point\" + 0.025*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.022*\"open\" + 0.016*\"qualifi\" + 0.015*\"place\" + 0.013*\"champion\"\n", + "2019-01-16 04:55:15,066 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:55:15,067 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.040*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.028*\"south\" + 0.018*\"sydnei\" + 0.017*\"kong\" + 0.016*\"hong\"\n", + "2019-01-16 04:55:15,070 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"church\" + 0.009*\"place\"\n", + "2019-01-16 04:55:15,072 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:55:15,078 : INFO : topic diff=0.004885, rho=0.034586\n", + "2019-01-16 04:55:15,327 : INFO : PROGRESS: pass 0, at document #1674000/4922894\n", + "2019-01-16 04:55:17,364 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:17,922 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.045*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:55:17,923 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:55:17,925 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"commun\"\n", + "2019-01-16 04:55:17,926 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:55:17,928 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 04:55:17,934 : INFO : topic diff=0.005446, rho=0.034565\n", + "2019-01-16 04:55:18,174 : INFO : PROGRESS: pass 0, at document #1676000/4922894\n", + "2019-01-16 04:55:20,174 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:20,730 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 04:55:20,732 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 04:55:20,734 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 04:55:20,735 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", + "2019-01-16 04:55:20,737 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 04:55:20,744 : INFO : topic diff=0.004906, rho=0.034544\n", + "2019-01-16 04:55:20,996 : INFO : PROGRESS: pass 0, at document #1678000/4922894\n", + "2019-01-16 04:55:23,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:23,635 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"ret\" + 0.008*\"effect\"\n", + "2019-01-16 04:55:23,638 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.037*\"africa\" + 0.032*\"african\" + 0.026*\"south\" + 0.026*\"text\" + 0.026*\"color\" + 0.026*\"till\" + 0.018*\"black\" + 0.012*\"tropic\" + 0.012*\"cape\"\n", + "2019-01-16 04:55:23,640 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:55:23,642 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.069*\"style\" + 0.060*\"wikit\" + 0.059*\"align\" + 0.053*\"left\" + 0.042*\"center\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.029*\"text\" + 0.025*\"border\"\n", + "2019-01-16 04:55:23,643 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.023*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:55:23,649 : INFO : topic diff=0.005763, rho=0.034524\n", + "2019-01-16 04:55:28,232 : INFO : -11.893 per-word bound, 3802.5 perplexity estimate based on a held-out corpus of 2000 documents with 538242 words\n", + "2019-01-16 04:55:28,233 : INFO : PROGRESS: pass 0, at document #1680000/4922894\n", + "2019-01-16 04:55:30,193 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:30,751 : INFO : topic #34 (0.020): 0.082*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"montreal\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.014*\"korean\" + 0.013*\"columbia\"\n", + "2019-01-16 04:55:30,752 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.027*\"villag\" + 0.027*\"area\" + 0.026*\"ag\" + 0.023*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"municip\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:55:30,754 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"stage\" + 0.011*\"championship\"\n", + "2019-01-16 04:55:30,756 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.026*\"airport\" + 0.020*\"forc\" + 0.016*\"unit\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:55:30,757 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.039*\"china\" + 0.032*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.019*\"sydnei\" + 0.016*\"kong\" + 0.016*\"hong\"\n", + "2019-01-16 04:55:30,763 : INFO : topic diff=0.005065, rho=0.034503\n", + "2019-01-16 04:55:31,002 : INFO : PROGRESS: pass 0, at document #1682000/4922894\n", + "2019-01-16 04:55:32,966 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:33,524 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", + "2019-01-16 04:55:33,526 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.045*\"round\" + 0.029*\"point\" + 0.025*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.020*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.014*\"champion\"\n", + "2019-01-16 04:55:33,527 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 04:55:33,529 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"thailand\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"min\" + 0.014*\"vietnam\" + 0.012*\"asian\" + 0.012*\"thai\"\n", + "2019-01-16 04:55:33,530 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.027*\"villag\" + 0.027*\"area\" + 0.026*\"ag\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"municip\"\n", + "2019-01-16 04:55:33,536 : INFO : topic diff=0.005669, rho=0.034483\n", + "2019-01-16 04:55:33,769 : INFO : PROGRESS: pass 0, at document #1684000/4922894\n", + "2019-01-16 04:55:35,742 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:36,299 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:55:36,301 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 04:55:36,302 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.054*\"east\" + 0.053*\"south\" + 0.049*\"west\" + 0.035*\"provinc\" + 0.035*\"villag\" + 0.033*\"counti\" + 0.029*\"central\"\n", + "2019-01-16 04:55:36,304 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 04:55:36,305 : INFO : topic #34 (0.020): 0.082*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"montreal\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.014*\"korean\" + 0.014*\"korea\"\n", + "2019-01-16 04:55:36,312 : INFO : topic diff=0.005385, rho=0.034462\n", + "2019-01-16 04:55:36,588 : INFO : PROGRESS: pass 0, at document #1686000/4922894\n", + "2019-01-16 04:55:38,665 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:39,222 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.009*\"port\" + 0.009*\"island\" + 0.009*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 04:55:39,224 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\"\n", + "2019-01-16 04:55:39,227 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:55:39,228 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 04:55:39,230 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 04:55:39,235 : INFO : topic diff=0.005586, rho=0.034442\n", + "2019-01-16 04:55:39,485 : INFO : PROGRESS: pass 0, at document #1688000/4922894\n", + "2019-01-16 04:55:41,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:42,090 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.015*\"london\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 04:55:42,092 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:55:42,093 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"church\"\n", + "2019-01-16 04:55:42,095 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.005*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 04:55:42,096 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:55:42,102 : INFO : topic diff=0.004439, rho=0.034421\n", + "2019-01-16 04:55:42,346 : INFO : PROGRESS: pass 0, at document #1690000/4922894\n", + "2019-01-16 04:55:44,374 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:44,947 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.033*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.023*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:55:44,948 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.054*\"east\" + 0.053*\"south\" + 0.049*\"west\" + 0.037*\"provinc\" + 0.035*\"villag\" + 0.033*\"counti\" + 0.029*\"central\"\n", + "2019-01-16 04:55:44,950 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:55:44,952 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.009*\"port\" + 0.009*\"island\" + 0.009*\"coast\" + 0.008*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 04:55:44,953 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.025*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 04:55:44,959 : INFO : topic diff=0.004577, rho=0.034401\n", + "2019-01-16 04:55:45,215 : INFO : PROGRESS: pass 0, at document #1692000/4922894\n", + "2019-01-16 04:55:47,271 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:47,828 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:55:47,830 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.054*\"east\" + 0.053*\"south\" + 0.049*\"west\" + 0.037*\"provinc\" + 0.035*\"villag\" + 0.033*\"counti\" + 0.030*\"central\"\n", + "2019-01-16 04:55:47,831 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"stage\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\"\n", + "2019-01-16 04:55:47,833 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:55:47,834 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"scienc\" + 0.011*\"work\" + 0.011*\"organ\"\n", + "2019-01-16 04:55:47,840 : INFO : topic diff=0.004298, rho=0.034381\n", + "2019-01-16 04:55:48,091 : INFO : PROGRESS: pass 0, at document #1694000/4922894\n", + "2019-01-16 04:55:50,170 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:50,727 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"stage\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"championship\"\n", + "2019-01-16 04:55:50,729 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:55:50,730 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.040*\"russian\" + 0.022*\"russia\" + 0.018*\"soviet\" + 0.017*\"american\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 04:55:50,732 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"islam\"\n", + "2019-01-16 04:55:50,733 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 04:55:50,739 : INFO : topic diff=0.005266, rho=0.034360\n", + "2019-01-16 04:55:50,980 : INFO : PROGRESS: pass 0, at document #1696000/4922894\n", + "2019-01-16 04:55:52,989 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:53,555 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 04:55:53,557 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.028*\"point\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.020*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"champion\"\n", + "2019-01-16 04:55:53,559 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", + "2019-01-16 04:55:53,560 : INFO : topic #19 (0.020): 0.020*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"program\" + 0.011*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", + "2019-01-16 04:55:53,562 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"church\"\n", + "2019-01-16 04:55:53,568 : INFO : topic diff=0.006719, rho=0.034340\n", + "2019-01-16 04:55:53,820 : INFO : PROGRESS: pass 0, at document #1698000/4922894\n", + "2019-01-16 04:55:55,863 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:55:56,419 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:55:56,420 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"time\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"stage\"\n", + "2019-01-16 04:55:56,422 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 04:55:56,423 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"match\" + 0.018*\"fight\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 04:55:56,425 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:55:56,432 : INFO : topic diff=0.006124, rho=0.034320\n", + "2019-01-16 04:56:00,998 : INFO : -11.637 per-word bound, 3185.0 perplexity estimate based on a held-out corpus of 2000 documents with 537767 words\n", + "2019-01-16 04:56:00,999 : INFO : PROGRESS: pass 0, at document #1700000/4922894\n", + "2019-01-16 04:56:03,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:03,613 : INFO : topic #35 (0.020): 0.031*\"lee\" + 0.022*\"kim\" + 0.019*\"singapor\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"min\" + 0.013*\"vietnam\" + 0.013*\"–present\" + 0.012*\"asian\"\n", + "2019-01-16 04:56:03,615 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:56:03,616 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.040*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"austria\" + 0.011*\"die\"\n", + "2019-01-16 04:56:03,617 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.037*\"africa\" + 0.033*\"african\" + 0.025*\"till\" + 0.025*\"color\" + 0.025*\"south\" + 0.025*\"text\" + 0.020*\"black\" + 0.013*\"tropic\" + 0.011*\"storm\"\n", + "2019-01-16 04:56:03,619 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:56:03,625 : INFO : topic diff=0.005278, rho=0.034300\n", + "2019-01-16 04:56:03,870 : INFO : PROGRESS: pass 0, at document #1702000/4922894\n", + "2019-01-16 04:56:05,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:06,478 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.023*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:56:06,479 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.012*\"gun\" + 0.012*\"sea\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:56:06,481 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.012*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", + "2019-01-16 04:56:06,482 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 04:56:06,483 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 04:56:06,490 : INFO : topic diff=0.005843, rho=0.034280\n", + "2019-01-16 04:56:06,727 : INFO : PROGRESS: pass 0, at document #1704000/4922894\n", + "2019-01-16 04:56:08,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:09,290 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 04:56:09,291 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.016*\"state\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:56:09,293 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.012*\"gun\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:56:09,294 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.040*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"austria\"\n", + "2019-01-16 04:56:09,296 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:56:09,301 : INFO : topic diff=0.005046, rho=0.034259\n", + "2019-01-16 04:56:09,547 : INFO : PROGRESS: pass 0, at document #1706000/4922894\n", + "2019-01-16 04:56:11,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:12,171 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 04:56:12,173 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.023*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:56:12,174 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 04:56:12,175 : INFO : topic #35 (0.020): 0.031*\"lee\" + 0.021*\"kim\" + 0.019*\"singapor\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.014*\"malaysia\" + 0.013*\"min\" + 0.013*\"vietnam\" + 0.012*\"–present\" + 0.012*\"asian\"\n", + "2019-01-16 04:56:12,177 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"gener\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:56:12,184 : INFO : topic diff=0.005147, rho=0.034239\n", + "2019-01-16 04:56:12,426 : INFO : PROGRESS: pass 0, at document #1708000/4922894\n", + "2019-01-16 04:56:14,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:15,002 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.009*\"josé\"\n", + "2019-01-16 04:56:15,004 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"jame\"\n", + "2019-01-16 04:56:15,006 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.017*\"gener\" + 0.015*\"militari\" + 0.014*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:56:15,009 : INFO : topic #49 (0.020): 0.105*\"district\" + 0.058*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.050*\"south\" + 0.048*\"west\" + 0.038*\"villag\" + 0.038*\"counti\" + 0.036*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 04:56:15,010 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.026*\"ag\" + 0.026*\"villag\" + 0.026*\"area\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"municip\"\n", + "2019-01-16 04:56:15,017 : INFO : topic diff=0.005769, rho=0.034219\n", + "2019-01-16 04:56:15,301 : INFO : PROGRESS: pass 0, at document #1710000/4922894\n", + "2019-01-16 04:56:17,325 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:17,881 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 04:56:17,883 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.040*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 04:56:17,885 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"church\"\n", + "2019-01-16 04:56:17,886 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 04:56:17,888 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:56:17,895 : INFO : topic diff=0.005218, rho=0.034199\n", + "2019-01-16 04:56:18,164 : INFO : PROGRESS: pass 0, at document #1712000/4922894\n", + "2019-01-16 04:56:20,252 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:20,808 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 04:56:20,810 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.027*\"point\" + 0.024*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.020*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"champion\"\n", + "2019-01-16 04:56:20,811 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.027*\"ag\" + 0.026*\"villag\" + 0.026*\"area\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"municip\"\n", + "2019-01-16 04:56:20,814 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 04:56:20,815 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:56:20,821 : INFO : topic diff=0.004959, rho=0.034179\n", + "2019-01-16 04:56:21,068 : INFO : PROGRESS: pass 0, at document #1714000/4922894\n", + "2019-01-16 04:56:23,096 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:23,652 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"design\"\n", + "2019-01-16 04:56:23,653 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:56:23,654 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.020*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 04:56:23,656 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:56:23,657 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.022*\"kim\" + 0.019*\"singapor\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.013*\"min\" + 0.012*\"asian\" + 0.012*\"vietnam\" + 0.012*\"–present\"\n", + "2019-01-16 04:56:23,663 : INFO : topic diff=0.005477, rho=0.034159\n", + "2019-01-16 04:56:23,908 : INFO : PROGRESS: pass 0, at document #1716000/4922894\n", + "2019-01-16 04:56:26,022 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:26,578 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.023*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:56:26,579 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:56:26,581 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"london\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 04:56:26,582 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 04:56:26,584 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 04:56:26,589 : INFO : topic diff=0.004902, rho=0.034139\n", + "2019-01-16 04:56:26,831 : INFO : PROGRESS: pass 0, at document #1718000/4922894\n", + "2019-01-16 04:56:28,830 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:29,387 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"protein\" + 0.008*\"vehicl\" + 0.007*\"car\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:56:29,388 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", + "2019-01-16 04:56:29,390 : INFO : topic #23 (0.020): 0.022*\"hospit\" + 0.021*\"medic\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 04:56:29,391 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 04:56:29,393 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\"\n", + "2019-01-16 04:56:29,399 : INFO : topic diff=0.005028, rho=0.034120\n", + "2019-01-16 04:56:33,999 : INFO : -11.880 per-word bound, 3769.5 perplexity estimate based on a held-out corpus of 2000 documents with 550846 words\n", + "2019-01-16 04:56:34,000 : INFO : PROGRESS: pass 0, at document #1720000/4922894\n", + "2019-01-16 04:56:36,022 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:36,578 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"design\" + 0.007*\"data\"\n", + "2019-01-16 04:56:36,580 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:56:36,581 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"carlo\" + 0.010*\"francisco\"\n", + "2019-01-16 04:56:36,583 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 04:56:36,584 : INFO : topic #23 (0.020): 0.021*\"hospit\" + 0.021*\"medic\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"cell\" + 0.009*\"treatment\" + 0.009*\"ret\" + 0.009*\"studi\"\n", + "2019-01-16 04:56:36,590 : INFO : topic diff=0.004629, rho=0.034100\n", + "2019-01-16 04:56:36,829 : INFO : PROGRESS: pass 0, at document #1722000/4922894\n", + "2019-01-16 04:56:38,761 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:39,319 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.014*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 04:56:39,320 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.012*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.009*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:56:39,322 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.026*\"ag\" + 0.026*\"villag\" + 0.026*\"area\" + 0.023*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"commun\"\n", + "2019-01-16 04:56:39,323 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:56:39,325 : INFO : topic #19 (0.020): 0.020*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"air\"\n", + "2019-01-16 04:56:39,331 : INFO : topic diff=0.005446, rho=0.034080\n", + "2019-01-16 04:56:39,584 : INFO : PROGRESS: pass 0, at document #1724000/4922894\n", + "2019-01-16 04:56:41,618 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:42,174 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"protein\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 04:56:42,175 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:56:42,177 : INFO : topic #49 (0.020): 0.104*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.050*\"south\" + 0.048*\"west\" + 0.038*\"villag\" + 0.037*\"counti\" + 0.036*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 04:56:42,178 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 04:56:42,179 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.013*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:56:42,186 : INFO : topic diff=0.005323, rho=0.034060\n", + "2019-01-16 04:56:42,432 : INFO : PROGRESS: pass 0, at document #1726000/4922894\n", + "2019-01-16 04:56:44,479 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:45,038 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"protein\" + 0.008*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 04:56:45,039 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"seat\"\n", + "2019-01-16 04:56:45,041 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:56:45,042 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"gener\" + 0.015*\"militari\" + 0.014*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:56:45,044 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 04:56:45,050 : INFO : topic diff=0.005383, rho=0.034040\n", + "2019-01-16 04:56:45,297 : INFO : PROGRESS: pass 0, at document #1728000/4922894\n", + "2019-01-16 04:56:47,318 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:47,875 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:56:47,877 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:56:47,878 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"seat\"\n", + "2019-01-16 04:56:47,880 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"gener\" + 0.015*\"militari\" + 0.014*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:56:47,881 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.031*\"women\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"gold\" + 0.018*\"athlet\"\n", + "2019-01-16 04:56:47,887 : INFO : topic diff=0.005117, rho=0.034021\n", + "2019-01-16 04:56:48,142 : INFO : PROGRESS: pass 0, at document #1730000/4922894\n", + "2019-01-16 04:56:50,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:50,789 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 04:56:50,791 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:56:50,792 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 04:56:50,794 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:56:50,795 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:56:50,802 : INFO : topic diff=0.006889, rho=0.034001\n", + "2019-01-16 04:56:51,046 : INFO : PROGRESS: pass 0, at document #1732000/4922894\n", + "2019-01-16 04:56:53,068 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:53,625 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 04:56:53,627 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:56:53,628 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.037*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.019*\"american\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.012*\"poland\"\n", + "2019-01-16 04:56:53,630 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.073*\"canada\" + 0.058*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korean\" + 0.015*\"korea\"\n", + "2019-01-16 04:56:53,631 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:56:53,637 : INFO : topic diff=0.004716, rho=0.033981\n", + "2019-01-16 04:56:53,889 : INFO : PROGRESS: pass 0, at document #1734000/4922894\n", + "2019-01-16 04:56:55,976 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:56,537 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 04:56:56,539 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"francisco\"\n", + "2019-01-16 04:56:56,540 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.061*\"wikit\" + 0.058*\"style\" + 0.058*\"align\" + 0.052*\"left\" + 0.045*\"center\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.027*\"text\" + 0.027*\"border\"\n", + "2019-01-16 04:56:56,541 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.031*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 04:56:56,542 : INFO : topic #23 (0.020): 0.020*\"hospit\" + 0.020*\"medic\" + 0.014*\"health\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.009*\"human\" + 0.009*\"treatment\"\n", + "2019-01-16 04:56:56,548 : INFO : topic diff=0.005334, rho=0.033962\n", + "2019-01-16 04:56:56,823 : INFO : PROGRESS: pass 0, at document #1736000/4922894\n", + "2019-01-16 04:56:58,887 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:56:59,449 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:56:59,451 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", + "2019-01-16 04:56:59,452 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 04:56:59,453 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.046*\"new\" + 0.040*\"china\" + 0.031*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 04:56:59,454 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"hous\"\n", + "2019-01-16 04:56:59,460 : INFO : topic diff=0.005352, rho=0.033942\n", + "2019-01-16 04:56:59,714 : INFO : PROGRESS: pass 0, at document #1738000/4922894\n", + "2019-01-16 04:57:02,162 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:02,722 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"form\" + 0.005*\"materi\"\n", + "2019-01-16 04:57:02,723 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:57:02,725 : INFO : topic #49 (0.020): 0.104*\"district\" + 0.059*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.049*\"south\" + 0.048*\"west\" + 0.038*\"villag\" + 0.038*\"counti\" + 0.035*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 04:57:02,726 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"defeat\"\n", + "2019-01-16 04:57:02,727 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.012*\"politician\"\n", + "2019-01-16 04:57:02,733 : INFO : topic diff=0.005477, rho=0.033923\n", + "2019-01-16 04:57:07,478 : INFO : -11.688 per-word bound, 3299.0 perplexity estimate based on a held-out corpus of 2000 documents with 583661 words\n", + "2019-01-16 04:57:07,479 : INFO : PROGRESS: pass 0, at document #1740000/4922894\n", + "2019-01-16 04:57:09,562 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:10,124 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:57:10,126 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"defeat\"\n", + "2019-01-16 04:57:10,127 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"car\" + 0.007*\"protein\"\n", + "2019-01-16 04:57:10,129 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"australian\" + 0.047*\"new\" + 0.040*\"china\" + 0.032*\"zealand\" + 0.030*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 04:57:10,131 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 04:57:10,137 : INFO : topic diff=0.006664, rho=0.033903\n", + "2019-01-16 04:57:10,391 : INFO : PROGRESS: pass 0, at document #1742000/4922894\n", + "2019-01-16 04:57:12,373 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:12,930 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:57:12,932 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 04:57:12,933 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"elimin\" + 0.012*\"defeat\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:57:12,935 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 04:57:12,936 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:57:12,943 : INFO : topic diff=0.005049, rho=0.033884\n", + "2019-01-16 04:57:13,200 : INFO : PROGRESS: pass 0, at document #1744000/4922894\n", + "2019-01-16 04:57:15,293 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:15,851 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.010*\"novel\" + 0.010*\"author\"\n", + "2019-01-16 04:57:15,852 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.010*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 04:57:15,854 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.063*\"august\" + 0.063*\"juli\" + 0.061*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 04:57:15,855 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"method\" + 0.006*\"point\"\n", + "2019-01-16 04:57:15,856 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:57:15,862 : INFO : topic diff=0.006663, rho=0.033864\n", + "2019-01-16 04:57:16,112 : INFO : PROGRESS: pass 0, at document #1746000/4922894\n", + "2019-01-16 04:57:18,225 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:18,781 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\"\n", + "2019-01-16 04:57:18,782 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:57:18,784 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:57:18,785 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.029*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:57:18,788 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"method\" + 0.006*\"point\"\n", + "2019-01-16 04:57:18,795 : INFO : topic diff=0.004838, rho=0.033845\n", + "2019-01-16 04:57:19,047 : INFO : PROGRESS: pass 0, at document #1748000/4922894\n", + "2019-01-16 04:57:21,094 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:21,654 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.050*\"south\" + 0.049*\"west\" + 0.039*\"villag\" + 0.038*\"counti\" + 0.035*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 04:57:21,655 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:57:21,657 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.023*\"cup\" + 0.016*\"player\" + 0.016*\"match\" + 0.016*\"goal\"\n", + "2019-01-16 04:57:21,658 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.032*\"citi\" + 0.026*\"ag\" + 0.025*\"area\" + 0.025*\"villag\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.021*\"commun\"\n", + "2019-01-16 04:57:21,659 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.019*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 04:57:21,665 : INFO : topic diff=0.004783, rho=0.033826\n", + "2019-01-16 04:57:21,911 : INFO : PROGRESS: pass 0, at document #1750000/4922894\n", + "2019-01-16 04:57:23,916 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:24,476 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:57:24,477 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.029*\"women\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.022*\"japan\" + 0.022*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.020*\"gold\" + 0.018*\"japanes\"\n", + "2019-01-16 04:57:24,479 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 04:57:24,481 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:57:24,482 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.026*\"south\" + 0.024*\"till\" + 0.024*\"color\" + 0.023*\"text\" + 0.020*\"black\" + 0.015*\"tropic\" + 0.014*\"storm\"\n", + "2019-01-16 04:57:24,488 : INFO : topic diff=0.005449, rho=0.033806\n", + "2019-01-16 04:57:24,736 : INFO : PROGRESS: pass 0, at document #1752000/4922894\n", + "2019-01-16 04:57:26,791 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:27,350 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.025*\"point\" + 0.023*\"winner\" + 0.021*\"open\" + 0.019*\"group\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"champion\"\n", + "2019-01-16 04:57:27,351 : INFO : topic #35 (0.020): 0.031*\"lee\" + 0.023*\"kim\" + 0.019*\"singapor\" + 0.018*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.013*\"min\" + 0.013*\"vietnam\" + 0.012*\"thai\" + 0.012*\"asian\"\n", + "2019-01-16 04:57:27,353 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 04:57:27,354 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:57:27,356 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"car\" + 0.007*\"protein\"\n", + "2019-01-16 04:57:27,361 : INFO : topic diff=0.005777, rho=0.033787\n", + "2019-01-16 04:57:27,605 : INFO : PROGRESS: pass 0, at document #1754000/4922894\n", + "2019-01-16 04:57:29,621 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:30,178 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.023*\"kim\" + 0.019*\"thailand\" + 0.019*\"singapor\" + 0.018*\"indonesia\" + 0.017*\"malaysia\" + 0.013*\"min\" + 0.012*\"vietnam\" + 0.012*\"thai\" + 0.011*\"asian\"\n", + "2019-01-16 04:57:30,180 : INFO : topic #48 (0.020): 0.075*\"octob\" + 0.075*\"septemb\" + 0.074*\"march\" + 0.066*\"novemb\" + 0.065*\"januari\" + 0.065*\"april\" + 0.064*\"juli\" + 0.064*\"august\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 04:57:30,182 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 04:57:30,183 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"car\" + 0.007*\"us\"\n", + "2019-01-16 04:57:30,184 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.010*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:57:30,190 : INFO : topic diff=0.005043, rho=0.033768\n", + "2019-01-16 04:57:30,440 : INFO : PROGRESS: pass 0, at document #1756000/4922894\n", + "2019-01-16 04:57:32,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:33,006 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 04:57:33,008 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.032*\"citi\" + 0.026*\"ag\" + 0.025*\"area\" + 0.025*\"villag\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.021*\"commun\"\n", + "2019-01-16 04:57:33,010 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"royal\"\n", + "2019-01-16 04:57:33,011 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", + "2019-01-16 04:57:33,012 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:57:33,018 : INFO : topic diff=0.004307, rho=0.033748\n", + "2019-01-16 04:57:33,276 : INFO : PROGRESS: pass 0, at document #1758000/4922894\n", + "2019-01-16 04:57:35,386 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:35,943 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.025*\"south\" + 0.024*\"color\" + 0.024*\"till\" + 0.023*\"text\" + 0.020*\"black\" + 0.015*\"tropic\" + 0.014*\"storm\"\n", + "2019-01-16 04:57:35,945 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.027*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:57:35,947 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.061*\"wikit\" + 0.057*\"style\" + 0.057*\"align\" + 0.049*\"left\" + 0.045*\"center\" + 0.034*\"right\" + 0.031*\"philippin\" + 0.027*\"text\" + 0.026*\"border\"\n", + "2019-01-16 04:57:35,949 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.010*\"carlo\" + 0.010*\"mexican\" + 0.010*\"juan\"\n", + "2019-01-16 04:57:35,951 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 04:57:35,957 : INFO : topic diff=0.005242, rho=0.033729\n", + "2019-01-16 04:57:40,497 : INFO : -11.529 per-word bound, 2955.1 perplexity estimate based on a held-out corpus of 2000 documents with 540954 words\n", + "2019-01-16 04:57:40,498 : INFO : PROGRESS: pass 0, at document #1760000/4922894\n", + "2019-01-16 04:57:42,487 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:43,045 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:57:43,047 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"form\" + 0.005*\"effect\"\n", + "2019-01-16 04:57:43,048 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"offic\" + 0.010*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:57:43,050 : INFO : topic #13 (0.020): 0.061*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:57:43,051 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.041*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.012*\"han\" + 0.011*\"die\"\n", + "2019-01-16 04:57:43,057 : INFO : topic diff=0.004569, rho=0.033710\n", + "2019-01-16 04:57:43,339 : INFO : PROGRESS: pass 0, at document #1762000/4922894\n", + "2019-01-16 04:57:45,384 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:45,943 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.023*\"kim\" + 0.020*\"singapor\" + 0.019*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"malaysia\" + 0.015*\"thai\" + 0.012*\"vietnam\" + 0.012*\"min\" + 0.012*\"–present\"\n", + "2019-01-16 04:57:45,944 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.050*\"south\" + 0.049*\"west\" + 0.038*\"villag\" + 0.036*\"counti\" + 0.034*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 04:57:45,946 : INFO : topic #13 (0.020): 0.061*\"state\" + 0.034*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:57:45,947 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 04:57:45,949 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 04:57:45,955 : INFO : topic diff=0.005952, rho=0.033691\n", + "2019-01-16 04:57:46,215 : INFO : PROGRESS: pass 0, at document #1764000/4922894\n", + "2019-01-16 04:57:48,296 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:48,853 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.024*\"point\" + 0.021*\"open\" + 0.021*\"winner\" + 0.020*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"champion\"\n", + "2019-01-16 04:57:48,854 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 04:57:48,855 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"town\" + 0.022*\"unit\" + 0.021*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"london\" + 0.013*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 04:57:48,857 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:57:48,858 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", + "2019-01-16 04:57:48,864 : INFO : topic diff=0.004480, rho=0.033672\n", + "2019-01-16 04:57:49,117 : INFO : PROGRESS: pass 0, at document #1766000/4922894\n", + "2019-01-16 04:57:51,115 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:51,674 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"year\"\n", + "2019-01-16 04:57:51,676 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.015*\"kong\" + 0.015*\"melbourn\"\n", + "2019-01-16 04:57:51,678 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.061*\"wikit\" + 0.059*\"style\" + 0.056*\"align\" + 0.049*\"left\" + 0.047*\"center\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.029*\"text\" + 0.026*\"border\"\n", + "2019-01-16 04:57:51,679 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.075*\"octob\" + 0.075*\"septemb\" + 0.068*\"januari\" + 0.067*\"april\" + 0.066*\"novemb\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 04:57:51,680 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:57:51,686 : INFO : topic diff=0.005050, rho=0.033653\n", + "2019-01-16 04:57:51,927 : INFO : PROGRESS: pass 0, at document #1768000/4922894\n", + "2019-01-16 04:57:53,918 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:57:54,475 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 04:57:54,477 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:57:54,478 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.025*\"footbal\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:57:54,479 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 04:57:54,481 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 04:57:54,487 : INFO : topic diff=0.005933, rho=0.033634\n", + "2019-01-16 04:57:54,733 : INFO : PROGRESS: pass 0, at document #1770000/4922894\n", + "2019-01-16 04:57:56,765 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:57:57,322 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", + "2019-01-16 04:57:57,324 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.034*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 04:57:57,325 : INFO : topic #34 (0.020): 0.081*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.026*\"toronto\" + 0.026*\"ontario\" + 0.017*\"british\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 04:57:57,327 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.014*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 04:57:57,329 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 04:57:57,335 : INFO : topic diff=0.005105, rho=0.033615\n", + "2019-01-16 04:57:57,573 : INFO : PROGRESS: pass 0, at document #1772000/4922894\n", + "2019-01-16 04:57:59,614 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:00,171 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.018*\"thailand\" + 0.018*\"indonesia\" + 0.017*\"malaysia\" + 0.015*\"thai\" + 0.013*\"min\" + 0.013*\"vietnam\" + 0.012*\"asian\"\n", + "2019-01-16 04:58:00,172 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:58:00,174 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.050*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.036*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 04:58:00,175 : INFO : topic #13 (0.020): 0.061*\"state\" + 0.034*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:58:00,177 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 04:58:00,183 : INFO : topic diff=0.004964, rho=0.033596\n", + "2019-01-16 04:58:00,452 : INFO : PROGRESS: pass 0, at document #1774000/4922894\n", + "2019-01-16 04:58:02,582 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:03,143 : INFO : topic #34 (0.020): 0.082*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 04:58:03,144 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.014*\"institut\" + 0.013*\"develop\" + 0.013*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 04:58:03,145 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.026*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 04:58:03,147 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:58:03,148 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"form\"\n", + "2019-01-16 04:58:03,154 : INFO : topic diff=0.006788, rho=0.033577\n", + "2019-01-16 04:58:03,402 : INFO : PROGRESS: pass 0, at document #1776000/4922894\n", + "2019-01-16 04:58:05,364 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:05,927 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"form\"\n", + "2019-01-16 04:58:05,929 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.018*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"human\" + 0.009*\"treatment\" + 0.009*\"ret\"\n", + "2019-01-16 04:58:05,931 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"malaysia\" + 0.014*\"thai\" + 0.013*\"min\" + 0.013*\"vietnam\" + 0.012*\"asia\"\n", + "2019-01-16 04:58:05,932 : INFO : topic #13 (0.020): 0.061*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 04:58:05,934 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", + "2019-01-16 04:58:05,940 : INFO : topic diff=0.005953, rho=0.033558\n", + "2019-01-16 04:58:06,196 : INFO : PROGRESS: pass 0, at document #1778000/4922894\n", + "2019-01-16 04:58:08,215 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:08,778 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"damag\" + 0.010*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\"\n", + "2019-01-16 04:58:08,780 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:58:08,782 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"plant\" + 0.011*\"famili\" + 0.009*\"white\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"bird\"\n", + "2019-01-16 04:58:08,783 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.033*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 04:58:08,784 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:58:08,791 : INFO : topic diff=0.004311, rho=0.033539\n", + "2019-01-16 04:58:13,320 : INFO : -11.590 per-word bound, 3083.1 perplexity estimate based on a held-out corpus of 2000 documents with 529118 words\n", + "2019-01-16 04:58:13,321 : INFO : PROGRESS: pass 0, at document #1780000/4922894\n", + "2019-01-16 04:58:15,313 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:15,871 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:58:15,873 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.022*\"open\" + 0.019*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"champion\"\n", + "2019-01-16 04:58:15,874 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:58:15,875 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.022*\"kim\" + 0.020*\"singapor\" + 0.018*\"thailand\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.014*\"thai\" + 0.013*\"vietnam\" + 0.013*\"min\" + 0.012*\"asian\"\n", + "2019-01-16 04:58:15,877 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", + "2019-01-16 04:58:15,882 : INFO : topic diff=0.004893, rho=0.033520\n", + "2019-01-16 04:58:16,137 : INFO : PROGRESS: pass 0, at document #1782000/4922894\n", + "2019-01-16 04:58:18,186 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:18,743 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 04:58:18,744 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.049*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.026*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 04:58:18,746 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 04:58:18,747 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:58:18,749 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.027*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:58:18,754 : INFO : topic diff=0.004949, rho=0.033501\n", + "2019-01-16 04:58:19,007 : INFO : PROGRESS: pass 0, at document #1784000/4922894\n", + "2019-01-16 04:58:21,044 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:21,603 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:58:21,604 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:58:21,606 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 04:58:21,607 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.023*\"point\" + 0.022*\"open\" + 0.021*\"winner\" + 0.019*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"champion\"\n", + "2019-01-16 04:58:21,610 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 04:58:21,618 : INFO : topic diff=0.004501, rho=0.033482\n", + "2019-01-16 04:58:21,885 : INFO : PROGRESS: pass 0, at document #1786000/4922894\n", + "2019-01-16 04:58:23,986 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:24,544 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"fight\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"defeat\"\n", + "2019-01-16 04:58:24,546 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"method\"\n", + "2019-01-16 04:58:24,547 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"daughter\" + 0.012*\"life\" + 0.012*\"born\"\n", + "2019-01-16 04:58:24,549 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.050*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.026*\"high\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 04:58:24,550 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:58:24,557 : INFO : topic diff=0.004677, rho=0.033464\n", + "2019-01-16 04:58:24,838 : INFO : PROGRESS: pass 0, at document #1788000/4922894\n", + "2019-01-16 04:58:26,888 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:27,445 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:58:27,446 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 04:58:27,448 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"senat\"\n", + "2019-01-16 04:58:27,450 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.040*\"africa\" + 0.031*\"african\" + 0.027*\"south\" + 0.023*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.019*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 04:58:27,451 : INFO : topic #34 (0.020): 0.083*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", + "2019-01-16 04:58:27,458 : INFO : topic diff=0.004274, rho=0.033445\n", + "2019-01-16 04:58:27,712 : INFO : PROGRESS: pass 0, at document #1790000/4922894\n", + "2019-01-16 04:58:29,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:30,265 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.039*\"africa\" + 0.031*\"african\" + 0.027*\"south\" + 0.023*\"text\" + 0.023*\"till\" + 0.023*\"color\" + 0.020*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 04:58:30,266 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:58:30,267 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.065*\"align\" + 0.060*\"wikit\" + 0.054*\"style\" + 0.049*\"center\" + 0.046*\"left\" + 0.040*\"right\" + 0.031*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:58:30,269 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:58:30,270 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"includ\" + 0.007*\"design\"\n", + "2019-01-16 04:58:30,276 : INFO : topic diff=0.005179, rho=0.033426\n", + "2019-01-16 04:58:30,533 : INFO : PROGRESS: pass 0, at document #1792000/4922894\n", + "2019-01-16 04:58:32,597 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:33,152 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.030*\"women\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.022*\"japan\" + 0.018*\"gold\" + 0.018*\"athlet\"\n", + "2019-01-16 04:58:33,153 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.064*\"align\" + 0.060*\"wikit\" + 0.054*\"style\" + 0.049*\"center\" + 0.046*\"left\" + 0.040*\"right\" + 0.031*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 04:58:33,155 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:58:33,157 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.040*\"africa\" + 0.031*\"african\" + 0.028*\"south\" + 0.023*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.019*\"black\" + 0.016*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 04:58:33,158 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 04:58:33,163 : INFO : topic diff=0.005419, rho=0.033408\n", + "2019-01-16 04:58:33,418 : INFO : PROGRESS: pass 0, at document #1794000/4922894\n", + "2019-01-16 04:58:35,426 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:35,983 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 04:58:35,985 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"damag\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:58:35,986 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 04:58:35,988 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:58:35,989 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.026*\"ag\" + 0.025*\"area\" + 0.025*\"villag\" + 0.023*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.021*\"commun\"\n", + "2019-01-16 04:58:35,995 : INFO : topic diff=0.004906, rho=0.033389\n", + "2019-01-16 04:58:36,238 : INFO : PROGRESS: pass 0, at document #1796000/4922894\n", + "2019-01-16 04:58:38,273 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:38,831 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.075*\"septemb\" + 0.072*\"march\" + 0.065*\"januari\" + 0.064*\"april\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.063*\"august\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 04:58:38,832 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.021*\"unit\" + 0.021*\"town\" + 0.021*\"cricket\" + 0.016*\"london\" + 0.015*\"citi\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 04:58:38,833 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"senat\"\n", + "2019-01-16 04:58:38,834 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.006*\"peter\" + 0.006*\"tom\"\n", + "2019-01-16 04:58:38,836 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 04:58:38,842 : INFO : topic diff=0.004700, rho=0.033370\n", + "2019-01-16 04:58:39,100 : INFO : PROGRESS: pass 0, at document #1798000/4922894\n", + "2019-01-16 04:58:41,179 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:41,737 : INFO : topic #40 (0.020): 0.041*\"africa\" + 0.039*\"bar\" + 0.031*\"african\" + 0.029*\"south\" + 0.023*\"text\" + 0.022*\"till\" + 0.022*\"color\" + 0.019*\"black\" + 0.016*\"storm\" + 0.013*\"cape\"\n", + "2019-01-16 04:58:41,738 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"damag\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"crew\"\n", + "2019-01-16 04:58:41,740 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"carlo\" + 0.010*\"francisco\"\n", + "2019-01-16 04:58:41,741 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.021*\"car\" + 0.020*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\"\n", + "2019-01-16 04:58:41,743 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"network\" + 0.011*\"host\"\n", + "2019-01-16 04:58:41,748 : INFO : topic diff=0.004545, rho=0.033352\n", + "2019-01-16 04:58:46,347 : INFO : -11.598 per-word bound, 3100.3 perplexity estimate based on a held-out corpus of 2000 documents with 549756 words\n", + "2019-01-16 04:58:46,348 : INFO : PROGRESS: pass 0, at document #1800000/4922894\n", + "2019-01-16 04:58:48,380 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:48,937 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 04:58:48,939 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"energi\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 04:58:48,940 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"damag\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:58:48,942 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:58:48,943 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 04:58:48,950 : INFO : topic diff=0.005280, rho=0.033333\n", + "2019-01-16 04:58:49,214 : INFO : PROGRESS: pass 0, at document #1802000/4922894\n", + "2019-01-16 04:58:51,272 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:51,830 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"carlo\" + 0.010*\"francisco\"\n", + "2019-01-16 04:58:51,831 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.019*\"contest\" + 0.019*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 04:58:51,833 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.023*\"point\" + 0.022*\"open\" + 0.021*\"winner\" + 0.020*\"group\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"champion\"\n", + "2019-01-16 04:58:51,834 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.011*\"port\" + 0.010*\"damag\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:58:51,835 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 04:58:51,842 : INFO : topic diff=0.005413, rho=0.033315\n", + "2019-01-16 04:58:52,098 : INFO : PROGRESS: pass 0, at document #1804000/4922894\n", + "2019-01-16 04:58:54,120 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:54,677 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 04:58:54,679 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.048*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 04:58:54,680 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.012*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 04:58:54,682 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.025*\"area\" + 0.024*\"villag\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.021*\"commun\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:58:54,683 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:58:54,689 : INFO : topic diff=0.005599, rho=0.033296\n", + "2019-01-16 04:58:54,945 : INFO : PROGRESS: pass 0, at document #1806000/4922894\n", + "2019-01-16 04:58:56,981 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:58:57,538 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"port\" + 0.010*\"island\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.009*\"naval\"\n", + "2019-01-16 04:58:57,539 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 04:58:57,541 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:58:57,542 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.012*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 04:58:57,544 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:58:57,550 : INFO : topic diff=0.005033, rho=0.033278\n", + "2019-01-16 04:58:57,793 : INFO : PROGRESS: pass 0, at document #1808000/4922894\n", + "2019-01-16 04:58:59,986 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:00,544 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:59:00,545 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:59:00,547 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 04:59:00,548 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 04:59:00,550 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.034*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:59:00,555 : INFO : topic diff=0.005031, rho=0.033260\n", + "2019-01-16 04:59:00,804 : INFO : PROGRESS: pass 0, at document #1810000/4922894\n", + "2019-01-16 04:59:02,898 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:03,457 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.013*\"sea\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:59:03,459 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.023*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"gold\" + 0.018*\"athlet\"\n", + "2019-01-16 04:59:03,460 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", + "2019-01-16 04:59:03,461 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.058*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.049*\"south\" + 0.048*\"west\" + 0.040*\"villag\" + 0.037*\"counti\" + 0.034*\"provinc\" + 0.030*\"central\"\n", + "2019-01-16 04:59:03,463 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 04:59:03,469 : INFO : topic diff=0.004942, rho=0.033241\n", + "2019-01-16 04:59:03,754 : INFO : PROGRESS: pass 0, at document #1812000/4922894\n", + "2019-01-16 04:59:05,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:06,355 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", + "2019-01-16 04:59:06,356 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.054*\"style\" + 0.048*\"center\" + 0.048*\"left\" + 0.040*\"right\" + 0.033*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", + "2019-01-16 04:59:06,358 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.020*\"wrestl\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.016*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 04:59:06,359 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.019*\"kong\" + 0.018*\"hong\"\n", + "2019-01-16 04:59:06,360 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.023*\"seri\" + 0.020*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 04:59:06,367 : INFO : topic diff=0.005168, rho=0.033223\n", + "2019-01-16 04:59:06,620 : INFO : PROGRESS: pass 0, at document #1814000/4922894\n", + "2019-01-16 04:59:08,687 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:09,245 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"fish\"\n", + "2019-01-16 04:59:09,246 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", + "2019-01-16 04:59:09,248 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.058*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.049*\"south\" + 0.048*\"west\" + 0.039*\"villag\" + 0.037*\"counti\" + 0.034*\"provinc\" + 0.030*\"central\"\n", + "2019-01-16 04:59:09,251 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 04:59:09,252 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.046*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:59:09,259 : INFO : topic diff=0.004958, rho=0.033204\n", + "2019-01-16 04:59:09,513 : INFO : PROGRESS: pass 0, at document #1816000/4922894\n", + "2019-01-16 04:59:11,521 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:12,083 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.023*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:59:12,084 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.018*\"british\" + 0.017*\"montreal\" + 0.016*\"columbia\" + 0.015*\"quebec\" + 0.015*\"korean\"\n", + "2019-01-16 04:59:12,086 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 04:59:12,087 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 04:59:12,089 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"energi\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 04:59:12,095 : INFO : topic diff=0.005605, rho=0.033186\n", + "2019-01-16 04:59:12,352 : INFO : PROGRESS: pass 0, at document #1818000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:59:14,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:14,978 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.027*\"tournament\" + 0.023*\"point\" + 0.022*\"open\" + 0.022*\"winner\" + 0.021*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"champion\"\n", + "2019-01-16 04:59:14,980 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:59:14,982 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.010*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:59:14,983 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.020*\"wrestl\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.016*\"championship\" + 0.016*\"match\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 04:59:14,985 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.021*\"team\" + 0.021*\"car\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\"\n", + "2019-01-16 04:59:14,991 : INFO : topic diff=0.005281, rho=0.033168\n", + "2019-01-16 04:59:19,453 : INFO : -11.648 per-word bound, 3209.1 perplexity estimate based on a held-out corpus of 2000 documents with 503790 words\n", + "2019-01-16 04:59:19,454 : INFO : PROGRESS: pass 0, at document #1820000/4922894\n", + "2019-01-16 04:59:21,414 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:21,971 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"democrat\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.014*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 04:59:21,973 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.021*\"team\" + 0.021*\"car\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\"\n", + "2019-01-16 04:59:21,975 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 04:59:21,977 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 04:59:21,978 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jone\" + 0.006*\"peter\" + 0.006*\"richard\"\n", + "2019-01-16 04:59:21,985 : INFO : topic diff=0.006741, rho=0.033150\n", + "2019-01-16 04:59:22,233 : INFO : PROGRESS: pass 0, at document #1822000/4922894\n", + "2019-01-16 04:59:24,264 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:24,823 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.065*\"align\" + 0.059*\"wikit\" + 0.055*\"style\" + 0.050*\"center\" + 0.048*\"left\" + 0.039*\"right\" + 0.032*\"text\" + 0.031*\"philippin\" + 0.022*\"border\"\n", + "2019-01-16 04:59:24,824 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:59:24,826 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 04:59:24,827 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.022*\"titl\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 04:59:24,828 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 04:59:24,834 : INFO : topic diff=0.005955, rho=0.033131\n", + "2019-01-16 04:59:25,096 : INFO : PROGRESS: pass 0, at document #1824000/4922894\n", + "2019-01-16 04:59:27,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:27,789 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 04:59:27,790 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 04:59:27,791 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 04:59:27,793 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.023*\"point\" + 0.022*\"open\" + 0.022*\"winner\" + 0.021*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"champion\"\n", + "2019-01-16 04:59:27,794 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.022*\"titl\" + 0.018*\"contest\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 04:59:27,800 : INFO : topic diff=0.005242, rho=0.033113\n", + "2019-01-16 04:59:28,060 : INFO : PROGRESS: pass 0, at document #1826000/4922894\n", + "2019-01-16 04:59:30,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:30,739 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.013*\"diseas\" + 0.011*\"ret\" + 0.011*\"cell\" + 0.010*\"caus\" + 0.010*\"cancer\" + 0.009*\"patient\" + 0.009*\"studi\"\n", + "2019-01-16 04:59:30,740 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"american\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 04:59:30,742 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 04:59:30,744 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.034*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 04:59:30,745 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.012*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 04:59:30,751 : INFO : topic diff=0.005841, rho=0.033095\n", + "2019-01-16 04:59:30,999 : INFO : PROGRESS: pass 0, at document #1828000/4922894\n", + "2019-01-16 04:59:33,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:33,610 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.029*\"area\" + 0.028*\"ag\" + 0.023*\"villag\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.021*\"counti\"\n", + "2019-01-16 04:59:33,612 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 04:59:33,613 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.019*\"american\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 04:59:33,615 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.010*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 04:59:33,616 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"daughter\" + 0.012*\"born\"\n", + "2019-01-16 04:59:33,622 : INFO : topic diff=0.003912, rho=0.033077\n", + "2019-01-16 04:59:33,870 : INFO : PROGRESS: pass 0, at document #1830000/4922894\n", + "2019-01-16 04:59:35,884 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:36,442 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.021*\"cricket\" + 0.020*\"town\" + 0.018*\"citi\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:59:36,443 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 04:59:36,444 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 04:59:36,446 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.029*\"area\" + 0.028*\"ag\" + 0.023*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.021*\"counti\"\n", + "2019-01-16 04:59:36,447 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"british\" + 0.017*\"montreal\" + 0.015*\"korea\" + 0.015*\"columbia\" + 0.014*\"quebec\"\n", + "2019-01-16 04:59:36,452 : INFO : topic diff=0.004317, rho=0.033059\n", + "2019-01-16 04:59:36,691 : INFO : PROGRESS: pass 0, at document #1832000/4922894\n", + "2019-01-16 04:59:38,677 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:39,234 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.023*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 04:59:39,236 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.019*\"american\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\"\n", + "2019-01-16 04:59:39,237 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", + "2019-01-16 04:59:39,238 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.033*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 04:59:39,240 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 04:59:39,245 : INFO : topic diff=0.004523, rho=0.033041\n", + "2019-01-16 04:59:39,519 : INFO : PROGRESS: pass 0, at document #1834000/4922894\n", + "2019-01-16 04:59:41,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:42,148 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", + "2019-01-16 04:59:42,150 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 04:59:42,151 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 04:59:42,153 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 04:59:42,154 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.015*\"moscow\" + 0.014*\"republ\"\n", + "2019-01-16 04:59:42,161 : INFO : topic diff=0.006387, rho=0.033023\n", + "2019-01-16 04:59:42,416 : INFO : PROGRESS: pass 0, at document #1836000/4922894\n", + "2019-01-16 04:59:44,399 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:44,957 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.007*\"light\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 04:59:44,959 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 04:59:44,962 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", + "2019-01-16 04:59:44,963 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 04:59:44,964 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.020*\"american\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\"\n", + "2019-01-16 04:59:44,970 : INFO : topic diff=0.005015, rho=0.033005\n", + "2019-01-16 04:59:45,253 : INFO : PROGRESS: pass 0, at document #1838000/4922894\n", + "2019-01-16 04:59:47,317 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:47,873 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.012*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 04:59:47,875 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"ret\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.009*\"cancer\" + 0.009*\"patient\" + 0.009*\"studi\"\n", + "2019-01-16 04:59:47,876 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 04:59:47,878 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.018*\"citi\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 04:59:47,879 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"british\" + 0.017*\"montreal\" + 0.015*\"korea\" + 0.015*\"columbia\" + 0.014*\"quebec\"\n", + "2019-01-16 04:59:47,886 : INFO : topic diff=0.004864, rho=0.032987\n", + "2019-01-16 04:59:52,723 : INFO : -11.868 per-word bound, 3738.2 perplexity estimate based on a held-out corpus of 2000 documents with 595175 words\n", + "2019-01-16 04:59:52,723 : INFO : PROGRESS: pass 0, at document #1840000/4922894\n", + "2019-01-16 04:59:54,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:55,407 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.018*\"citi\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 04:59:55,408 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.028*\"area\" + 0.028*\"ag\" + 0.023*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.021*\"counti\"\n", + "2019-01-16 04:59:55,409 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.010*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 04:59:55,412 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 04:59:55,414 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.046*\"franc\" + 0.028*\"italian\" + 0.027*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:59:55,421 : INFO : topic diff=0.005515, rho=0.032969\n", + "2019-01-16 04:59:55,678 : INFO : PROGRESS: pass 0, at document #1842000/4922894\n", + "2019-01-16 04:59:57,665 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 04:59:58,222 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.006*\"peter\" + 0.006*\"harri\"\n", + "2019-01-16 04:59:58,224 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 04:59:58,225 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.046*\"franc\" + 0.028*\"italian\" + 0.027*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 04:59:58,227 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.028*\"area\" + 0.028*\"ag\" + 0.023*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\"\n", + "2019-01-16 04:59:58,228 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 04:59:58,234 : INFO : topic diff=0.005340, rho=0.032951\n", + "2019-01-16 04:59:58,483 : INFO : PROGRESS: pass 0, at document #1844000/4922894\n", + "2019-01-16 05:00:00,468 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:01,029 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.020*\"american\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:00:01,030 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 05:00:01,031 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"bird\"\n", + "2019-01-16 05:00:01,033 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.018*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:00:01,034 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.018*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.013*\"–present\" + 0.013*\"asia\"\n", + "2019-01-16 05:00:01,040 : INFO : topic diff=0.005429, rho=0.032933\n", + "2019-01-16 05:00:01,298 : INFO : PROGRESS: pass 0, at document #1846000/4922894\n", + "2019-01-16 05:00:03,357 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:03,925 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.048*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.028*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", + "2019-01-16 05:00:03,926 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:00:03,928 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.058*\"north\" + 0.057*\"region\" + 0.051*\"east\" + 0.048*\"south\" + 0.047*\"west\" + 0.041*\"villag\" + 0.036*\"provinc\" + 0.035*\"counti\" + 0.030*\"central\"\n", + "2019-01-16 05:00:03,929 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"titl\" + 0.018*\"wrestl\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 05:00:03,930 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:00:03,938 : INFO : topic diff=0.003886, rho=0.032915\n", + "2019-01-16 05:00:04,192 : INFO : PROGRESS: pass 0, at document #1848000/4922894\n", + "2019-01-16 05:00:06,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:06,759 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.018*\"british\" + 0.017*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.015*\"quebec\"\n", + "2019-01-16 05:00:06,761 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.034*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:00:06,762 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.043*\"final\" + 0.029*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.021*\"open\" + 0.021*\"group\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:00:06,764 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.063*\"align\" + 0.059*\"wikit\" + 0.054*\"style\" + 0.050*\"center\" + 0.049*\"left\" + 0.036*\"right\" + 0.035*\"philippin\" + 0.031*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:00:06,766 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 05:00:06,773 : INFO : topic diff=0.005263, rho=0.032898\n", + "2019-01-16 05:00:07,029 : INFO : PROGRESS: pass 0, at document #1850000/4922894\n", + "2019-01-16 05:00:09,051 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:09,607 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.023*\"point\" + 0.023*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:00:09,609 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 05:00:09,610 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.034*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:00:09,612 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.023*\"dutch\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.016*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:00:09,613 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.058*\"north\" + 0.057*\"region\" + 0.051*\"east\" + 0.048*\"west\" + 0.048*\"south\" + 0.042*\"villag\" + 0.036*\"provinc\" + 0.035*\"counti\" + 0.030*\"central\"\n", + "2019-01-16 05:00:09,620 : INFO : topic diff=0.005535, rho=0.032880\n", + "2019-01-16 05:00:09,874 : INFO : PROGRESS: pass 0, at document #1852000/4922894\n", + "2019-01-16 05:00:11,921 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:12,478 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 05:00:12,480 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:00:12,481 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.023*\"dutch\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.016*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:00:12,483 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:00:12,484 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:00:12,490 : INFO : topic diff=0.004230, rho=0.032862\n", + "2019-01-16 05:00:12,744 : INFO : PROGRESS: pass 0, at document #1854000/4922894\n", + "2019-01-16 05:00:14,758 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:15,316 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.039*\"africa\" + 0.032*\"african\" + 0.029*\"south\" + 0.023*\"text\" + 0.023*\"till\" + 0.023*\"color\" + 0.020*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:00:15,317 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.030*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.018*\"kong\" + 0.018*\"hong\"\n", + "2019-01-16 05:00:15,319 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.047*\"univers\" + 0.043*\"colleg\" + 0.038*\"student\" + 0.028*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:00:15,321 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:00:15,322 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:00:15,328 : INFO : topic diff=0.005254, rho=0.032844\n", + "2019-01-16 05:00:15,590 : INFO : PROGRESS: pass 0, at document #1856000/4922894\n", + "2019-01-16 05:00:17,661 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:18,227 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\"\n", + "2019-01-16 05:00:18,228 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", + "2019-01-16 05:00:18,230 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:00:18,231 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:00:18,233 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.061*\"align\" + 0.060*\"wikit\" + 0.055*\"style\" + 0.051*\"center\" + 0.048*\"left\" + 0.036*\"right\" + 0.035*\"philippin\" + 0.032*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:00:18,239 : INFO : topic diff=0.004670, rho=0.032827\n", + "2019-01-16 05:00:18,484 : INFO : PROGRESS: pass 0, at document #1858000/4922894\n", + "2019-01-16 05:00:20,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:21,040 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"trade\"\n", + "2019-01-16 05:00:21,041 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:00:21,043 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:00:21,044 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", + "2019-01-16 05:00:21,045 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:00:21,051 : INFO : topic diff=0.005077, rho=0.032809\n", + "2019-01-16 05:00:25,587 : INFO : -11.630 per-word bound, 3168.7 perplexity estimate based on a held-out corpus of 2000 documents with 524586 words\n", + "2019-01-16 05:00:25,587 : INFO : PROGRESS: pass 0, at document #1860000/4922894\n", + "2019-01-16 05:00:27,599 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:28,157 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"cancer\" + 0.009*\"studi\"\n", + "2019-01-16 05:00:28,158 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.019*\"american\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.015*\"moscow\" + 0.015*\"jewish\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:00:28,160 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:00:28,161 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:00:28,162 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.017*\"british\" + 0.017*\"montreal\" + 0.015*\"quebec\" + 0.014*\"korea\" + 0.014*\"korean\"\n", + "2019-01-16 05:00:28,168 : INFO : topic diff=0.004798, rho=0.032791\n", + "2019-01-16 05:00:28,428 : INFO : PROGRESS: pass 0, at document #1862000/4922894\n", + "2019-01-16 05:00:30,524 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:31,082 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"senat\"\n", + "2019-01-16 05:00:31,083 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:00:31,085 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:00:31,086 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:00:31,087 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"dutch\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.016*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:00:31,093 : INFO : topic diff=0.004710, rho=0.032774\n", + "2019-01-16 05:00:31,380 : INFO : PROGRESS: pass 0, at document #1864000/4922894\n", + "2019-01-16 05:00:33,453 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:34,010 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\"\n", + "2019-01-16 05:00:34,011 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"dutch\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.016*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:00:34,013 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"crew\" + 0.008*\"coast\"\n", + "2019-01-16 05:00:34,015 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", + "2019-01-16 05:00:34,016 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:00:34,023 : INFO : topic diff=0.004690, rho=0.032756\n", + "2019-01-16 05:00:34,264 : INFO : PROGRESS: pass 0, at document #1866000/4922894\n", + "2019-01-16 05:00:36,292 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:36,849 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 05:00:36,851 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:00:36,853 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.024*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.014*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:00:36,855 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:00:36,856 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"titl\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.015*\"match\" + 0.014*\"championship\" + 0.012*\"team\" + 0.012*\"elimin\" + 0.011*\"world\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:00:36,862 : INFO : topic diff=0.005293, rho=0.032739\n", + "2019-01-16 05:00:37,107 : INFO : PROGRESS: pass 0, at document #1868000/4922894\n", + "2019-01-16 05:00:39,155 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:39,712 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 05:00:39,714 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.074*\"march\" + 0.073*\"septemb\" + 0.071*\"juli\" + 0.069*\"januari\" + 0.068*\"novemb\" + 0.068*\"april\" + 0.067*\"august\" + 0.067*\"june\" + 0.065*\"decemb\"\n", + "2019-01-16 05:00:39,715 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:00:39,717 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:00:39,719 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:00:39,725 : INFO : topic diff=0.004157, rho=0.032721\n", + "2019-01-16 05:00:39,972 : INFO : PROGRESS: pass 0, at document #1870000/4922894\n", + "2019-01-16 05:00:42,033 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:42,593 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:00:42,595 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.074*\"march\" + 0.073*\"septemb\" + 0.071*\"juli\" + 0.069*\"januari\" + 0.068*\"novemb\" + 0.068*\"june\" + 0.068*\"april\" + 0.067*\"august\" + 0.065*\"decemb\"\n", + "2019-01-16 05:00:42,597 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 05:00:42,598 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:00:42,600 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.060*\"align\" + 0.058*\"wikit\" + 0.054*\"style\" + 0.049*\"center\" + 0.048*\"left\" + 0.041*\"philippin\" + 0.036*\"right\" + 0.032*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:00:42,606 : INFO : topic diff=0.005604, rho=0.032703\n", + "2019-01-16 05:00:42,863 : INFO : PROGRESS: pass 0, at document #1872000/4922894\n", + "2019-01-16 05:00:44,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:45,400 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:00:45,401 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:00:45,402 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.056*\"north\" + 0.056*\"region\" + 0.051*\"east\" + 0.048*\"west\" + 0.048*\"south\" + 0.041*\"villag\" + 0.035*\"provinc\" + 0.035*\"counti\" + 0.031*\"central\"\n", + "2019-01-16 05:00:45,404 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:00:45,406 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:00:45,411 : INFO : topic diff=0.004479, rho=0.032686\n", + "2019-01-16 05:00:45,662 : INFO : PROGRESS: pass 0, at document #1874000/4922894\n", + "2019-01-16 05:00:47,741 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:48,300 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:00:48,301 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:00:48,303 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.020*\"kim\" + 0.019*\"singapor\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"min\" + 0.013*\"–present\"\n", + "2019-01-16 05:00:48,305 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:00:48,306 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:00:48,312 : INFO : topic diff=0.005075, rho=0.032669\n", + "2019-01-16 05:00:48,563 : INFO : PROGRESS: pass 0, at document #1876000/4922894\n", + "2019-01-16 05:00:50,578 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:51,134 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"contest\" + 0.018*\"titl\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.015*\"match\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"elimin\" + 0.011*\"world\"\n", + "2019-01-16 05:00:51,136 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.015*\"republican\" + 0.014*\"repres\" + 0.013*\"council\"\n", + "2019-01-16 05:00:51,137 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.025*\"von\" + 0.024*\"dutch\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.015*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:00:51,139 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.037*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.014*\"korean\" + 0.014*\"korea\"\n", + "2019-01-16 05:00:51,142 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:00:51,149 : INFO : topic diff=0.004759, rho=0.032651\n", + "2019-01-16 05:00:51,391 : INFO : PROGRESS: pass 0, at document #1878000/4922894\n", + "2019-01-16 05:00:53,431 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:00:53,989 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:00:53,991 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:00:53,992 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"point\" + 0.020*\"open\" + 0.019*\"group\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:00:53,994 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.045*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:00:53,995 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:00:54,001 : INFO : topic diff=0.005307, rho=0.032634\n", + "2019-01-16 05:00:58,516 : INFO : -11.414 per-word bound, 2728.3 perplexity estimate based on a held-out corpus of 2000 documents with 504919 words\n", + "2019-01-16 05:00:58,517 : INFO : PROGRESS: pass 0, at document #1880000/4922894\n", + "2019-01-16 05:01:00,576 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:01:01,133 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.072*\"canada\" + 0.058*\"canadian\" + 0.037*\"ontario\" + 0.025*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.014*\"korea\" + 0.014*\"korean\"\n", + "2019-01-16 05:01:01,134 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.020*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"ford\" + 0.010*\"tour\"\n", + "2019-01-16 05:01:01,136 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:01:01,137 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.025*\"von\" + 0.024*\"dutch\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.015*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:01:01,139 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:01:01,144 : INFO : topic diff=0.004978, rho=0.032616\n", + "2019-01-16 05:01:01,387 : INFO : PROGRESS: pass 0, at document #1882000/4922894\n", + "2019-01-16 05:01:03,410 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:03,971 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:01:03,972 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:01:03,974 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.049*\"australian\" + 0.045*\"new\" + 0.040*\"china\" + 0.031*\"zealand\" + 0.028*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.016*\"kong\"\n", + "2019-01-16 05:01:03,975 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.013*\"scotland\" + 0.013*\"manchest\" + 0.012*\"scottish\" + 0.012*\"west\"\n", + "2019-01-16 05:01:03,976 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.027*\"area\" + 0.022*\"famili\" + 0.022*\"villag\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.020*\"counti\"\n", + "2019-01-16 05:01:03,982 : INFO : topic diff=0.005025, rho=0.032599\n", + "2019-01-16 05:01:04,232 : INFO : PROGRESS: pass 0, at document #1884000/4922894\n", + "2019-01-16 05:01:06,271 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:06,831 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.036*\"russian\" + 0.021*\"russia\" + 0.019*\"american\" + 0.018*\"polish\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:01:06,832 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:01:06,835 : INFO : topic #14 (0.020): 0.015*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.011*\"organ\"\n", + "2019-01-16 05:01:06,837 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.047*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:01:06,838 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"vietnam\" + 0.013*\"min\" + 0.013*\"–present\" + 0.013*\"asian\"\n", + "2019-01-16 05:01:06,845 : INFO : topic diff=0.006632, rho=0.032582\n", + "2019-01-16 05:01:07,102 : INFO : PROGRESS: pass 0, at document #1886000/4922894\n", + "2019-01-16 05:01:09,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:09,707 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:01:09,708 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.023*\"dutch\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:01:09,710 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:01:09,713 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:01:09,714 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.036*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:01:09,720 : INFO : topic diff=0.006239, rho=0.032564\n", + "2019-01-16 05:01:09,978 : INFO : PROGRESS: pass 0, at document #1888000/4922894\n", + "2019-01-16 05:01:12,039 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:12,600 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.036*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:01:12,601 : INFO : topic #28 (0.020): 0.030*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:01:12,603 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"dai\"\n", + "2019-01-16 05:01:12,605 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.027*\"airport\" + 0.025*\"aircraft\" + 0.019*\"forc\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.015*\"flight\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:01:12,606 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:01:12,612 : INFO : topic diff=0.004917, rho=0.032547\n", + "2019-01-16 05:01:12,901 : INFO : PROGRESS: pass 0, at document #1890000/4922894\n", + "2019-01-16 05:01:15,019 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:15,580 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"paint\" + 0.024*\"work\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:01:15,581 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.013*\"scotland\" + 0.012*\"manchest\" + 0.012*\"scottish\" + 0.012*\"west\"\n", + "2019-01-16 05:01:15,583 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.026*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.021*\"villag\" + 0.021*\"municip\"\n", + "2019-01-16 05:01:15,584 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 05:01:15,585 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:01:15,592 : INFO : topic diff=0.004996, rho=0.032530\n", + "2019-01-16 05:01:15,860 : INFO : PROGRESS: pass 0, at document #1892000/4922894\n", + "2019-01-16 05:01:17,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:18,479 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.026*\"paint\" + 0.024*\"work\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:01:18,480 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.022*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"ford\" + 0.010*\"tour\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:01:18,482 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"effect\" + 0.004*\"form\"\n", + "2019-01-16 05:01:18,483 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.057*\"wikit\" + 0.055*\"style\" + 0.054*\"align\" + 0.046*\"left\" + 0.045*\"center\" + 0.043*\"philippin\" + 0.036*\"right\" + 0.032*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:01:18,484 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:01:18,490 : INFO : topic diff=0.004239, rho=0.032513\n", + "2019-01-16 05:01:18,733 : INFO : PROGRESS: pass 0, at document #1894000/4922894\n", + "2019-01-16 05:01:20,702 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:21,268 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.050*\"australian\" + 0.045*\"new\" + 0.041*\"china\" + 0.031*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 05:01:21,270 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:01:21,271 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 05:01:21,273 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.020*\"kim\" + 0.019*\"singapor\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"min\" + 0.014*\"asian\" + 0.013*\"vietnam\" + 0.013*\"asia\"\n", + "2019-01-16 05:01:21,274 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 05:01:21,280 : INFO : topic diff=0.005065, rho=0.032496\n", + "2019-01-16 05:01:21,530 : INFO : PROGRESS: pass 0, at document #1896000/4922894\n", + "2019-01-16 05:01:23,508 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:24,066 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.008*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:01:24,068 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.050*\"australian\" + 0.046*\"new\" + 0.042*\"china\" + 0.032*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.016*\"kong\"\n", + "2019-01-16 05:01:24,069 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:01:24,071 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.011*\"cell\" + 0.011*\"ret\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"human\" + 0.008*\"studi\"\n", + "2019-01-16 05:01:24,072 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:01:24,078 : INFO : topic diff=0.005360, rho=0.032478\n", + "2019-01-16 05:01:24,328 : INFO : PROGRESS: pass 0, at document #1898000/4922894\n", + "2019-01-16 05:01:26,313 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:26,870 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"car\" + 0.007*\"protein\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:01:26,873 : INFO : topic #28 (0.020): 0.030*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.011*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:01:26,874 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.046*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 05:01:26,876 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"paint\" + 0.024*\"work\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:01:26,877 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:01:26,884 : INFO : topic diff=0.004512, rho=0.032461\n", + "2019-01-16 05:01:31,542 : INFO : -11.650 per-word bound, 3214.3 perplexity estimate based on a held-out corpus of 2000 documents with 590831 words\n", + "2019-01-16 05:01:31,543 : INFO : PROGRESS: pass 0, at document #1900000/4922894\n", + "2019-01-16 05:01:33,566 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:34,126 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.018*\"titl\" + 0.015*\"wrestl\" + 0.014*\"match\" + 0.013*\"championship\" + 0.013*\"team\" + 0.012*\"box\" + 0.012*\"elimin\"\n", + "2019-01-16 05:01:34,127 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:01:34,129 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"materi\"\n", + "2019-01-16 05:01:34,130 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:01:34,131 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:01:34,137 : INFO : topic diff=0.005328, rho=0.032444\n", + "2019-01-16 05:01:34,387 : INFO : PROGRESS: pass 0, at document #1902000/4922894\n", + "2019-01-16 05:01:36,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:36,976 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\"\n", + "2019-01-16 05:01:36,978 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:01:36,979 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jack\"\n", + "2019-01-16 05:01:36,981 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.033*\"ontario\" + 0.026*\"toronto\" + 0.018*\"british\" + 0.016*\"quebec\" + 0.014*\"montreal\" + 0.014*\"columbia\" + 0.014*\"korea\"\n", + "2019-01-16 05:01:36,982 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 05:01:36,988 : INFO : topic diff=0.004505, rho=0.032427\n", + "2019-01-16 05:01:37,240 : INFO : PROGRESS: pass 0, at document #1904000/4922894\n", + "2019-01-16 05:01:39,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:39,830 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.058*\"wikit\" + 0.055*\"style\" + 0.053*\"align\" + 0.046*\"center\" + 0.045*\"left\" + 0.041*\"philippin\" + 0.035*\"right\" + 0.033*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:01:39,832 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:01:39,833 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"titl\" + 0.018*\"fight\" + 0.015*\"wrestl\" + 0.014*\"match\" + 0.013*\"championship\" + 0.013*\"team\" + 0.012*\"box\" + 0.011*\"elimin\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:01:39,835 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"temperatur\"\n", + "2019-01-16 05:01:39,836 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"term\"\n", + "2019-01-16 05:01:39,842 : INFO : topic diff=0.005207, rho=0.032410\n", + "2019-01-16 05:01:40,089 : INFO : PROGRESS: pass 0, at document #1906000/4922894\n", + "2019-01-16 05:01:42,118 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:42,675 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.026*\"paint\" + 0.024*\"work\" + 0.020*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:01:42,676 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.057*\"region\" + 0.055*\"north\" + 0.050*\"east\" + 0.048*\"west\" + 0.048*\"south\" + 0.045*\"villag\" + 0.040*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", + "2019-01-16 05:01:42,678 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.037*\"africa\" + 0.032*\"african\" + 0.027*\"south\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"color\" + 0.019*\"black\" + 0.015*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:01:42,679 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.009*\"network\"\n", + "2019-01-16 05:01:42,680 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:01:42,686 : INFO : topic diff=0.004949, rho=0.032393\n", + "2019-01-16 05:01:42,930 : INFO : PROGRESS: pass 0, at document #1908000/4922894\n", + "2019-01-16 05:01:44,939 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:45,496 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.013*\"power\" + 0.011*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"car\" + 0.007*\"vehicl\" + 0.007*\"oil\"\n", + "2019-01-16 05:01:45,498 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jack\"\n", + "2019-01-16 05:01:45,500 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:01:45,501 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.018*\"titl\" + 0.015*\"wrestl\" + 0.014*\"match\" + 0.013*\"championship\" + 0.012*\"team\" + 0.012*\"box\" + 0.011*\"world\"\n", + "2019-01-16 05:01:45,502 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"us\" + 0.005*\"effect\" + 0.004*\"materi\"\n", + "2019-01-16 05:01:45,508 : INFO : topic diff=0.005295, rho=0.032376\n", + "2019-01-16 05:01:45,755 : INFO : PROGRESS: pass 0, at document #1910000/4922894\n", + "2019-01-16 05:01:47,761 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:48,321 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"market\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:01:48,322 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:01:48,323 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"tour\" + 0.010*\"ford\"\n", + "2019-01-16 05:01:48,328 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.056*\"region\" + 0.055*\"north\" + 0.050*\"east\" + 0.048*\"west\" + 0.047*\"south\" + 0.044*\"villag\" + 0.040*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", + "2019-01-16 05:01:48,329 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:01:48,336 : INFO : topic diff=0.005352, rho=0.032359\n", + "2019-01-16 05:01:48,583 : INFO : PROGRESS: pass 0, at document #1912000/4922894\n", + "2019-01-16 05:01:50,659 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:51,217 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:01:51,218 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.006*\"group\" + 0.006*\"support\"\n", + "2019-01-16 05:01:51,220 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.011*\"organ\"\n", + "2019-01-16 05:01:51,222 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:01:51,224 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:01:51,230 : INFO : topic diff=0.005316, rho=0.032342\n", + "2019-01-16 05:01:51,504 : INFO : PROGRESS: pass 0, at document #1914000/4922894\n", + "2019-01-16 05:01:53,483 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:54,039 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"window\" + 0.007*\"softwar\" + 0.007*\"data\"\n", + "2019-01-16 05:01:54,041 : INFO : topic #28 (0.020): 0.030*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:01:54,043 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.012*\"gun\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:01:54,044 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:01:54,045 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.032*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.014*\"columbia\" + 0.014*\"montreal\" + 0.014*\"korea\"\n", + "2019-01-16 05:01:54,052 : INFO : topic diff=0.003875, rho=0.032325\n", + "2019-01-16 05:01:54,310 : INFO : PROGRESS: pass 0, at document #1916000/4922894\n", + "2019-01-16 05:01:56,395 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:56,952 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 05:01:56,953 : INFO : topic #28 (0.020): 0.030*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:01:56,955 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"tour\" + 0.010*\"ford\"\n", + "2019-01-16 05:01:56,957 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.031*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.014*\"columbia\" + 0.014*\"montreal\" + 0.013*\"korea\"\n", + "2019-01-16 05:01:56,958 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.033*\"world\" + 0.027*\"olymp\" + 0.026*\"championship\" + 0.025*\"men\" + 0.023*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"nation\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:01:56,965 : INFO : topic diff=0.004647, rho=0.032309\n", + "2019-01-16 05:01:57,222 : INFO : PROGRESS: pass 0, at document #1918000/4922894\n", + "2019-01-16 05:01:59,239 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:01:59,795 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.075*\"canada\" + 0.060*\"canadian\" + 0.032*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.014*\"columbia\" + 0.014*\"montreal\" + 0.013*\"korea\"\n", + "2019-01-16 05:01:59,797 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.059*\"wikit\" + 0.056*\"align\" + 0.055*\"style\" + 0.046*\"center\" + 0.046*\"left\" + 0.038*\"philippin\" + 0.036*\"right\" + 0.032*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:01:59,798 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:01:59,799 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:01:59,804 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.036*\"russian\" + 0.022*\"russia\" + 0.020*\"american\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:01:59,810 : INFO : topic diff=0.005189, rho=0.032292\n", + "2019-01-16 05:02:04,434 : INFO : -11.485 per-word bound, 2866.0 perplexity estimate based on a held-out corpus of 2000 documents with 550623 words\n", + "2019-01-16 05:02:04,435 : INFO : PROGRESS: pass 0, at document #1920000/4922894\n", + "2019-01-16 05:02:06,443 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:07,005 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:02:07,007 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.023*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:02:07,009 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.036*\"russian\" + 0.022*\"russia\" + 0.020*\"american\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:02:07,010 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.020*\"kim\" + 0.019*\"singapor\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.014*\"asian\" + 0.014*\"min\" + 0.014*\"vietnam\" + 0.013*\"asia\"\n", + "2019-01-16 05:02:07,012 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"tour\" + 0.009*\"ford\"\n", + "2019-01-16 05:02:07,018 : INFO : topic diff=0.006243, rho=0.032275\n", + "2019-01-16 05:02:07,267 : INFO : PROGRESS: pass 0, at document #1922000/4922894\n", + "2019-01-16 05:02:09,244 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:09,801 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.016*\"univers\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", + "2019-01-16 05:02:09,802 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:02:09,804 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.047*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 05:02:09,805 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:02:09,806 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:02:09,812 : INFO : topic diff=0.005277, rho=0.032258\n", + "2019-01-16 05:02:10,065 : INFO : PROGRESS: pass 0, at document #1924000/4922894\n", + "2019-01-16 05:02:12,044 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:12,602 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:02:12,603 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.056*\"region\" + 0.054*\"north\" + 0.050*\"east\" + 0.047*\"west\" + 0.047*\"south\" + 0.045*\"villag\" + 0.042*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", + "2019-01-16 05:02:12,606 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.039*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:02:12,607 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:02:12,609 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"paint\" + 0.025*\"work\" + 0.021*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:02:12,616 : INFO : topic diff=0.004480, rho=0.032241\n", + "2019-01-16 05:02:12,876 : INFO : PROGRESS: pass 0, at document #1926000/4922894\n", + "2019-01-16 05:02:14,999 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:15,557 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.026*\"area\" + 0.022*\"famili\" + 0.022*\"municip\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.021*\"villag\"\n", + "2019-01-16 05:02:15,559 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:02:15,561 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:02:15,562 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.033*\"world\" + 0.027*\"olymp\" + 0.026*\"championship\" + 0.025*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 05:02:15,564 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:02:15,570 : INFO : topic diff=0.004794, rho=0.032225\n", + "2019-01-16 05:02:15,816 : INFO : PROGRESS: pass 0, at document #1928000/4922894\n", + "2019-01-16 05:02:17,932 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:18,489 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"group\"\n", + "2019-01-16 05:02:18,490 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:02:18,492 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.056*\"region\" + 0.054*\"north\" + 0.050*\"east\" + 0.048*\"west\" + 0.047*\"south\" + 0.046*\"villag\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", + "2019-01-16 05:02:18,493 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:02:18,495 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:02:18,501 : INFO : topic diff=0.004687, rho=0.032208\n", + "2019-01-16 05:02:18,752 : INFO : PROGRESS: pass 0, at document #1930000/4922894\n", + "2019-01-16 05:02:20,821 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:02:21,377 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:02:21,378 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.065*\"align\" + 0.057*\"wikit\" + 0.052*\"left\" + 0.052*\"style\" + 0.048*\"center\" + 0.036*\"philippin\" + 0.034*\"right\" + 0.031*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:02:21,379 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:02:21,381 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"min\" + 0.013*\"asia\"\n", + "2019-01-16 05:02:21,382 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.056*\"region\" + 0.054*\"north\" + 0.050*\"east\" + 0.048*\"west\" + 0.047*\"south\" + 0.046*\"villag\" + 0.042*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", + "2019-01-16 05:02:21,388 : INFO : topic diff=0.004716, rho=0.032191\n", + "2019-01-16 05:02:21,638 : INFO : PROGRESS: pass 0, at document #1932000/4922894\n", + "2019-01-16 05:02:23,628 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:24,192 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:02:24,194 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.045*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:02:24,195 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", + "2019-01-16 05:02:24,197 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:02:24,198 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:02:24,204 : INFO : topic diff=0.004863, rho=0.032174\n", + "2019-01-16 05:02:24,457 : INFO : PROGRESS: pass 0, at document #1934000/4922894\n", + "2019-01-16 05:02:26,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:27,006 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:02:27,008 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.020*\"singapor\" + 0.020*\"kim\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"asia\" + 0.014*\"min\"\n", + "2019-01-16 05:02:27,009 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:02:27,011 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:02:27,012 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", + "2019-01-16 05:02:27,019 : INFO : topic diff=0.005132, rho=0.032158\n", + "2019-01-16 05:02:27,268 : INFO : PROGRESS: pass 0, at document #1936000/4922894\n", + "2019-01-16 05:02:29,285 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:29,844 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.013*\"sea\" + 0.012*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 05:02:29,846 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:02:29,847 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:02:29,848 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:02:29,850 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:02:29,856 : INFO : topic diff=0.005033, rho=0.032141\n", + "2019-01-16 05:02:30,112 : INFO : PROGRESS: pass 0, at document #1938000/4922894\n", + "2019-01-16 05:02:32,166 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:32,724 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:02:32,725 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:02:32,727 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.049*\"australian\" + 0.046*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"hong\"\n", + "2019-01-16 05:02:32,728 : INFO : topic #36 (0.020): 0.053*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.025*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:02:32,730 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:02:32,736 : INFO : topic diff=0.004283, rho=0.032125\n", + "2019-01-16 05:02:37,416 : INFO : -11.825 per-word bound, 3626.9 perplexity estimate based on a held-out corpus of 2000 documents with 583498 words\n", + "2019-01-16 05:02:37,417 : INFO : PROGRESS: pass 0, at document #1940000/4922894\n", + "2019-01-16 05:02:39,492 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:40,049 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 05:02:40,051 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.020*\"american\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:02:40,053 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.049*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"hong\"\n", + "2019-01-16 05:02:40,054 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", + "2019-01-16 05:02:40,056 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:02:40,062 : INFO : topic diff=0.005803, rho=0.032108\n", + "2019-01-16 05:02:40,308 : INFO : PROGRESS: pass 0, at document #1942000/4922894\n", + "2019-01-16 05:02:42,336 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:42,896 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.012*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.009*\"naval\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:02:42,897 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:02:42,899 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:02:42,900 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.010*\"islam\" + 0.010*\"ali\"\n", + "2019-01-16 05:02:42,902 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.026*\"till\" + 0.024*\"color\" + 0.020*\"black\" + 0.013*\"storm\" + 0.011*\"cape\"\n", + "2019-01-16 05:02:42,908 : INFO : topic diff=0.005940, rho=0.032092\n", + "2019-01-16 05:02:43,158 : INFO : PROGRESS: pass 0, at document #1944000/4922894\n", + "2019-01-16 05:02:45,149 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:45,708 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:02:45,709 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:02:45,711 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:02:45,714 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 05:02:45,716 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"ret\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.009*\"patient\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.008*\"human\"\n", + "2019-01-16 05:02:45,722 : INFO : topic diff=0.004801, rho=0.032075\n", + "2019-01-16 05:02:45,964 : INFO : PROGRESS: pass 0, at document #1946000/4922894\n", + "2019-01-16 05:02:47,941 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:48,501 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.027*\"ag\" + 0.026*\"area\" + 0.022*\"censu\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.021*\"villag\"\n", + "2019-01-16 05:02:48,502 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.020*\"american\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:02:48,504 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"hong\"\n", + "2019-01-16 05:02:48,505 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.029*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.014*\"montreal\" + 0.014*\"korean\"\n", + "2019-01-16 05:02:48,506 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:02:48,512 : INFO : topic diff=0.004758, rho=0.032059\n", + "2019-01-16 05:02:48,757 : INFO : PROGRESS: pass 0, at document #1948000/4922894\n", + "2019-01-16 05:02:50,745 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:51,302 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:02:51,303 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:02:51,306 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.016*\"liber\" + 0.013*\"conserv\" + 0.013*\"republican\"\n", + "2019-01-16 05:02:51,307 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.042*\"final\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.019*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:02:51,308 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", + "2019-01-16 05:02:51,314 : INFO : topic diff=0.005422, rho=0.032042\n", + "2019-01-16 05:02:51,564 : INFO : PROGRESS: pass 0, at document #1950000/4922894\n", + "2019-01-16 05:02:53,561 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:54,118 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.067*\"juli\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"august\" + 0.064*\"april\" + 0.063*\"decemb\"\n", + "2019-01-16 05:02:54,120 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:02:54,121 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:02:54,123 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:02:54,124 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:02:54,130 : INFO : topic diff=0.005058, rho=0.032026\n", + "2019-01-16 05:02:54,386 : INFO : PROGRESS: pass 0, at document #1952000/4922894\n", + "2019-01-16 05:02:56,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:57,028 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 05:02:57,030 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.029*\"airport\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"mission\"\n", + "2019-01-16 05:02:57,031 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.019*\"american\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:02:57,033 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.016*\"liber\" + 0.013*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 05:02:57,034 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", + "2019-01-16 05:02:57,040 : INFO : topic diff=0.005582, rho=0.032009\n", + "2019-01-16 05:02:57,270 : INFO : PROGRESS: pass 0, at document #1954000/4922894\n", + "2019-01-16 05:02:59,409 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:02:59,969 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.017*\"player\" + 0.016*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:02:59,971 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.011*\"santa\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", + "2019-01-16 05:02:59,972 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:02:59,974 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.039*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"singh\" + 0.011*\"islam\"\n", + "2019-01-16 05:02:59,975 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:02:59,981 : INFO : topic diff=0.006005, rho=0.031993\n", + "2019-01-16 05:03:00,229 : INFO : PROGRESS: pass 0, at document #1956000/4922894\n", + "2019-01-16 05:03:02,262 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:02,820 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:03:02,821 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:03:02,823 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:03:02,824 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:03:02,826 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.013*\"piano\" + 0.013*\"orchestra\" + 0.012*\"opera\"\n", + "2019-01-16 05:03:02,831 : INFO : topic diff=0.004625, rho=0.031976\n", + "2019-01-16 05:03:03,088 : INFO : PROGRESS: pass 0, at document #1958000/4922894\n", + "2019-01-16 05:03:05,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:05,650 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:03:05,651 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:03:05,654 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"mission\"\n", + "2019-01-16 05:03:05,655 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.011*\"santa\" + 0.010*\"brazil\" + 0.010*\"carlo\"\n", + "2019-01-16 05:03:05,657 : INFO : topic #4 (0.020): 0.131*\"school\" + 0.047*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:03:05,662 : INFO : topic diff=0.004465, rho=0.031960\n", + "2019-01-16 05:03:10,280 : INFO : -11.606 per-word bound, 3118.0 perplexity estimate based on a held-out corpus of 2000 documents with 554344 words\n", + "2019-01-16 05:03:10,281 : INFO : PROGRESS: pass 0, at document #1960000/4922894\n", + "2019-01-16 05:03:12,314 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:12,874 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.068*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.050*\"style\" + 0.049*\"center\" + 0.034*\"philippin\" + 0.030*\"right\" + 0.030*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:03:12,875 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.015*\"championship\" + 0.014*\"match\" + 0.012*\"team\" + 0.012*\"box\" + 0.012*\"champion\"\n", + "2019-01-16 05:03:12,877 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:03:12,879 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:03:12,881 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"asian\" + 0.014*\"vietnam\" + 0.013*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 05:03:12,887 : INFO : topic diff=0.004424, rho=0.031944\n", + "2019-01-16 05:03:13,134 : INFO : PROGRESS: pass 0, at document #1962000/4922894\n", + "2019-01-16 05:03:15,140 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:15,701 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.054*\"region\" + 0.051*\"north\" + 0.049*\"east\" + 0.048*\"villag\" + 0.047*\"south\" + 0.047*\"west\" + 0.042*\"counti\" + 0.034*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:03:15,702 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.039*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"khan\" + 0.011*\"sri\" + 0.011*\"singh\" + 0.011*\"islam\"\n", + "2019-01-16 05:03:15,704 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:03:15,705 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.045*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:03:15,706 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:03:15,712 : INFO : topic diff=0.004436, rho=0.031928\n", + "2019-01-16 05:03:15,951 : INFO : PROGRESS: pass 0, at document #1964000/4922894\n", + "2019-01-16 05:03:17,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:18,501 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.054*\"region\" + 0.052*\"north\" + 0.048*\"east\" + 0.047*\"villag\" + 0.047*\"south\" + 0.047*\"west\" + 0.042*\"counti\" + 0.034*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:03:18,502 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"power\" + 0.013*\"product\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"car\" + 0.007*\"us\"\n", + "2019-01-16 05:03:18,504 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.067*\"align\" + 0.060*\"wikit\" + 0.057*\"left\" + 0.050*\"style\" + 0.049*\"center\" + 0.034*\"philippin\" + 0.030*\"right\" + 0.030*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:03:18,505 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:03:18,508 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:03:18,516 : INFO : topic diff=0.005164, rho=0.031911\n", + "2019-01-16 05:03:18,805 : INFO : PROGRESS: pass 0, at document #1966000/4922894\n", + "2019-01-16 05:03:20,861 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:21,419 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.025*\"area\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.022*\"commun\" + 0.021*\"municip\" + 0.020*\"villag\"\n", + "2019-01-16 05:03:21,420 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.041*\"final\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.019*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:03:21,422 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.023*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 05:03:21,423 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:03:21,424 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"direct\"\n", + "2019-01-16 05:03:21,430 : INFO : topic diff=0.006069, rho=0.031895\n", + "2019-01-16 05:03:21,663 : INFO : PROGRESS: pass 0, at document #1968000/4922894\n", + "2019-01-16 05:03:23,685 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:24,244 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"mission\"\n", + "2019-01-16 05:03:24,246 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.047*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 05:03:24,248 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:03:24,249 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:03:24,251 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:03:24,257 : INFO : topic diff=0.005039, rho=0.031879\n", + "2019-01-16 05:03:24,498 : INFO : PROGRESS: pass 0, at document #1970000/4922894\n", + "2019-01-16 05:03:26,505 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:27,064 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:03:27,065 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 05:03:27,067 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.014*\"million\" + 0.011*\"market\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:03:27,068 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:03:27,069 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"fish\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\"\n", + "2019-01-16 05:03:27,075 : INFO : topic diff=0.004924, rho=0.031863\n", + "2019-01-16 05:03:27,321 : INFO : PROGRESS: pass 0, at document #1972000/4922894\n", + "2019-01-16 05:03:29,294 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:29,851 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 05:03:29,852 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:03:29,854 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:03:29,855 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.066*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.050*\"center\" + 0.050*\"style\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.029*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:03:29,856 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.065*\"april\" + 0.064*\"august\" + 0.064*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:03:29,863 : INFO : topic diff=0.004073, rho=0.031846\n", + "2019-01-16 05:03:30,121 : INFO : PROGRESS: pass 0, at document #1974000/4922894\n", + "2019-01-16 05:03:32,239 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:32,803 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:03:32,805 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:03:32,806 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.005*\"like\" + 0.005*\"term\"\n", + "2019-01-16 05:03:32,808 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.029*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.021*\"der\" + 0.018*\"berlin\" + 0.015*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:03:32,809 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.020*\"american\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:03:32,815 : INFO : topic diff=0.005120, rho=0.031830\n", + "2019-01-16 05:03:33,058 : INFO : PROGRESS: pass 0, at document #1976000/4922894\n", + "2019-01-16 05:03:35,029 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:35,584 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"airport\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.016*\"flight\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:03:35,587 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"cell\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"human\"\n", + "2019-01-16 05:03:35,588 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", + "2019-01-16 05:03:35,589 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"match\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:03:35,591 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:03:35,597 : INFO : topic diff=0.004645, rho=0.031814\n", + "2019-01-16 05:03:35,858 : INFO : PROGRESS: pass 0, at document #1978000/4922894\n", + "2019-01-16 05:03:37,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:38,460 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.058*\"canadian\" + 0.027*\"ontario\" + 0.025*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.014*\"montreal\" + 0.014*\"korea\" + 0.014*\"korean\"\n", + "2019-01-16 05:03:38,461 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:03:38,463 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 05:03:38,464 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 05:03:38,465 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.041*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.019*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:03:38,471 : INFO : topic diff=0.004293, rho=0.031798\n", + "2019-01-16 05:03:43,090 : INFO : -11.711 per-word bound, 3352.9 perplexity estimate based on a held-out corpus of 2000 documents with 579412 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:03:43,091 : INFO : PROGRESS: pass 0, at document #1980000/4922894\n", + "2019-01-16 05:03:45,072 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:45,631 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"fish\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 05:03:45,633 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:03:45,634 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:03:45,636 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.058*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.017*\"british\" + 0.014*\"montreal\" + 0.014*\"quebec\" + 0.014*\"korea\" + 0.014*\"korean\"\n", + "2019-01-16 05:03:45,637 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.032*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.022*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:03:45,643 : INFO : topic diff=0.004627, rho=0.031782\n", + "2019-01-16 05:03:45,900 : INFO : PROGRESS: pass 0, at document #1982000/4922894\n", + "2019-01-16 05:03:47,897 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:48,458 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"type\"\n", + "2019-01-16 05:03:48,459 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:03:48,461 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"mark\" + 0.006*\"tom\"\n", + "2019-01-16 05:03:48,462 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:03:48,463 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.039*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.020*\"american\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:03:48,469 : INFO : topic diff=0.004743, rho=0.031766\n", + "2019-01-16 05:03:48,723 : INFO : PROGRESS: pass 0, at document #1984000/4922894\n", + "2019-01-16 05:03:50,747 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:51,305 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"fish\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 05:03:51,307 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.064*\"april\" + 0.063*\"august\" + 0.062*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:03:51,308 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:03:51,310 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:03:51,311 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:03:51,317 : INFO : topic diff=0.004253, rho=0.031750\n", + "2019-01-16 05:03:51,557 : INFO : PROGRESS: pass 0, at document #1986000/4922894\n", + "2019-01-16 05:03:53,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:54,088 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:03:54,089 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"emperor\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:03:54,092 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:03:54,093 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 05:03:54,095 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"genu\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 05:03:54,102 : INFO : topic diff=0.004151, rho=0.031734\n", + "2019-01-16 05:03:54,361 : INFO : PROGRESS: pass 0, at document #1988000/4922894\n", + "2019-01-16 05:03:56,439 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:56,996 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:03:56,998 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"min\"\n", + "2019-01-16 05:03:56,999 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"version\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:03:57,001 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:03:57,003 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:03:57,009 : INFO : topic diff=0.004603, rho=0.031718\n", + "2019-01-16 05:03:57,264 : INFO : PROGRESS: pass 0, at document #1990000/4922894\n", + "2019-01-16 05:03:59,311 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:03:59,867 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.042*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.020*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:03:59,869 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:03:59,871 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.012*\"royal\"\n", + "2019-01-16 05:03:59,873 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.014*\"chan\"\n", + "2019-01-16 05:03:59,874 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:03:59,880 : INFO : topic diff=0.004640, rho=0.031702\n", + "2019-01-16 05:04:00,167 : INFO : PROGRESS: pass 0, at document #1992000/4922894\n", + "2019-01-16 05:04:02,289 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:02,846 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"year\" + 0.012*\"cathol\" + 0.012*\"born\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:04:02,847 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:04:02,849 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"car\"\n", + "2019-01-16 05:04:02,850 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"airport\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:04:02,852 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.055*\"region\" + 0.052*\"north\" + 0.049*\"villag\" + 0.048*\"east\" + 0.046*\"south\" + 0.046*\"west\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 05:04:02,859 : INFO : topic diff=0.006883, rho=0.031686\n", + "2019-01-16 05:04:03,102 : INFO : PROGRESS: pass 0, at document #1994000/4922894\n", + "2019-01-16 05:04:05,048 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:05,605 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:04:05,607 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.021*\"american\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.013*\"republ\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:04:05,609 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:04:05,610 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.054*\"region\" + 0.052*\"north\" + 0.049*\"villag\" + 0.049*\"east\" + 0.046*\"south\" + 0.046*\"west\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 05:04:05,611 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.042*\"final\" + 0.027*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:04:05,617 : INFO : topic diff=0.004124, rho=0.031670\n", + "2019-01-16 05:04:05,864 : INFO : PROGRESS: pass 0, at document #1996000/4922894\n", + "2019-01-16 05:04:07,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:08,418 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.054*\"region\" + 0.052*\"north\" + 0.049*\"villag\" + 0.049*\"east\" + 0.046*\"west\" + 0.046*\"south\" + 0.040*\"counti\" + 0.034*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 05:04:08,420 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:04:08,421 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"chan\"\n", + "2019-01-16 05:04:08,422 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.065*\"januari\" + 0.065*\"juli\" + 0.064*\"april\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:04:08,423 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.017*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:04:08,429 : INFO : topic diff=0.005484, rho=0.031654\n", + "2019-01-16 05:04:08,692 : INFO : PROGRESS: pass 0, at document #1998000/4922894\n", + "2019-01-16 05:04:10,774 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:11,332 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"car\"\n", + "2019-01-16 05:04:11,333 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asia\" + 0.014*\"asian\" + 0.014*\"vietnam\" + 0.013*\"chan\"\n", + "2019-01-16 05:04:11,335 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.012*\"royal\"\n", + "2019-01-16 05:04:11,336 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:04:11,338 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:04:11,345 : INFO : topic diff=0.006689, rho=0.031639\n", + "2019-01-16 05:04:15,984 : INFO : -11.843 per-word bound, 3673.2 perplexity estimate based on a held-out corpus of 2000 documents with 538101 words\n", + "2019-01-16 05:04:15,984 : INFO : PROGRESS: pass 0, at document #2000000/4922894\n", + "2019-01-16 05:04:17,994 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:18,558 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.021*\"american\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:04:18,560 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.019*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:04:18,561 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:04:18,564 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:04:18,566 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:04:18,572 : INFO : topic diff=0.004208, rho=0.031623\n", + "2019-01-16 05:04:18,836 : INFO : PROGRESS: pass 0, at document #2002000/4922894\n", + "2019-01-16 05:04:20,872 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:21,430 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.019*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:04:21,431 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:04:21,433 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.018*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.012*\"scottish\"\n", + "2019-01-16 05:04:21,434 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"damag\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 05:04:21,436 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:04:21,441 : INFO : topic diff=0.005003, rho=0.031607\n", + "2019-01-16 05:04:21,689 : INFO : PROGRESS: pass 0, at document #2004000/4922894\n", + "2019-01-16 05:04:23,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:24,264 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.025*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:04:24,265 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"pakistan\" + 0.017*\"www\" + 0.015*\"iran\" + 0.013*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.010*\"singh\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:04:24,267 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:04:24,268 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:04:24,269 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:04:24,275 : INFO : topic diff=0.004375, rho=0.031591\n", + "2019-01-16 05:04:24,517 : INFO : PROGRESS: pass 0, at document #2006000/4922894\n", + "2019-01-16 05:04:26,506 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:27,064 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:04:27,065 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:04:27,067 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"type\"\n", + "2019-01-16 05:04:27,068 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"wrestl\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.016*\"titl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 05:04:27,070 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 05:04:27,076 : INFO : topic diff=0.004413, rho=0.031575\n", + "2019-01-16 05:04:27,326 : INFO : PROGRESS: pass 0, at document #2008000/4922894\n", + "2019-01-16 05:04:29,306 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:29,866 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:04:29,868 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:04:29,869 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:04:29,871 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 05:04:29,872 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.021*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:04:29,878 : INFO : topic diff=0.004990, rho=0.031560\n", + "2019-01-16 05:04:30,138 : INFO : PROGRESS: pass 0, at document #2010000/4922894\n", + "2019-01-16 05:04:32,191 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:32,749 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:04:32,750 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.020*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:04:32,753 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:04:32,754 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 05:04:32,756 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:04:32,763 : INFO : topic diff=0.005198, rho=0.031544\n", + "2019-01-16 05:04:33,023 : INFO : PROGRESS: pass 0, at document #2012000/4922894\n", + "2019-01-16 05:04:35,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:35,637 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", + "2019-01-16 05:04:35,638 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:04:35,640 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.033*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 05:04:35,641 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.018*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 05:04:35,642 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:04:35,648 : INFO : topic diff=0.005179, rho=0.031528\n", + "2019-01-16 05:04:35,899 : INFO : PROGRESS: pass 0, at document #2014000/4922894\n", + "2019-01-16 05:04:37,903 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:38,464 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.006*\"support\" + 0.006*\"unit\" + 0.006*\"group\"\n", + "2019-01-16 05:04:38,465 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:04:38,467 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:04:38,468 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 05:04:38,470 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.010*\"port\" + 0.010*\"island\" + 0.008*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 05:04:38,476 : INFO : topic diff=0.005102, rho=0.031513\n", + "2019-01-16 05:04:38,738 : INFO : PROGRESS: pass 0, at document #2016000/4922894\n", + "2019-01-16 05:04:40,814 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:41,370 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:04:41,372 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:04:41,373 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:04:41,375 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.038*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"singh\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:04:41,376 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 05:04:41,382 : INFO : topic diff=0.004085, rho=0.031497\n", + "2019-01-16 05:04:41,678 : INFO : PROGRESS: pass 0, at document #2018000/4922894\n", + "2019-01-16 05:04:43,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:44,346 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.021*\"group\" + 0.020*\"winner\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:04:44,347 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.030*\"citi\" + 0.028*\"ag\" + 0.025*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.020*\"municip\"\n", + "2019-01-16 05:04:44,349 : INFO : topic #39 (0.020): 0.052*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.024*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:04:44,351 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:04:44,352 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:04:44,359 : INFO : topic diff=0.004385, rho=0.031481\n", + "2019-01-16 05:04:49,063 : INFO : -11.631 per-word bound, 3171.3 perplexity estimate based on a held-out corpus of 2000 documents with 559214 words\n", + "2019-01-16 05:04:49,064 : INFO : PROGRESS: pass 0, at document #2020000/4922894\n", + "2019-01-16 05:04:51,098 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:51,656 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.022*\"kim\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"chan\" + 0.014*\"asia\" + 0.013*\"min\" + 0.013*\"vietnam\"\n", + "2019-01-16 05:04:51,658 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"liber\"\n", + "2019-01-16 05:04:51,659 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:04:51,661 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:04:51,663 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"cancer\" + 0.008*\"studi\"\n", + "2019-01-16 05:04:51,669 : INFO : topic diff=0.004359, rho=0.031466\n", + "2019-01-16 05:04:51,921 : INFO : PROGRESS: pass 0, at document #2022000/4922894\n", + "2019-01-16 05:04:53,909 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:54,468 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:04:54,469 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"year\" + 0.012*\"cathol\"\n", + "2019-01-16 05:04:54,471 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:04:54,472 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"car\"\n", + "2019-01-16 05:04:54,474 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.022*\"kim\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.014*\"min\" + 0.014*\"chan\" + 0.014*\"vietnam\"\n", + "2019-01-16 05:04:54,479 : INFO : topic diff=0.004116, rho=0.031450\n", + "2019-01-16 05:04:54,742 : INFO : PROGRESS: pass 0, at document #2024000/4922894\n", + "2019-01-16 05:04:56,793 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:04:57,351 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:04:57,353 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", + "2019-01-16 05:04:57,355 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:04:57,357 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"damag\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"naval\"\n", + "2019-01-16 05:04:57,358 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.047*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 05:04:57,364 : INFO : topic diff=0.005640, rho=0.031435\n", + "2019-01-16 05:04:57,616 : INFO : PROGRESS: pass 0, at document #2026000/4922894\n", + "2019-01-16 05:04:59,750 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:00,313 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:05:00,315 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:05:00,316 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:05:00,318 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", + "2019-01-16 05:05:00,319 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:05:00,326 : INFO : topic diff=0.004901, rho=0.031419\n", + "2019-01-16 05:05:00,574 : INFO : PROGRESS: pass 0, at document #2028000/4922894\n", + "2019-01-16 05:05:02,576 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:03,135 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.055*\"style\" + 0.054*\"left\" + 0.048*\"center\" + 0.037*\"right\" + 0.034*\"philippin\" + 0.031*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:05:03,136 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.037*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"singh\"\n", + "2019-01-16 05:05:03,138 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:05:03,139 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.067*\"juli\" + 0.066*\"april\" + 0.065*\"august\" + 0.065*\"januari\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.062*\"decemb\"\n", + "2019-01-16 05:05:03,141 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:05:03,147 : INFO : topic diff=0.004789, rho=0.031404\n", + "2019-01-16 05:05:03,397 : INFO : PROGRESS: pass 0, at document #2030000/4922894\n", + "2019-01-16 05:05:05,357 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:05,916 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:05:05,917 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:05:05,919 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:05:05,921 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:05:05,922 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:05:05,929 : INFO : topic diff=0.004396, rho=0.031388\n", + "2019-01-16 05:05:06,184 : INFO : PROGRESS: pass 0, at document #2032000/4922894\n", + "2019-01-16 05:05:08,196 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:08,757 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"legal\" + 0.008*\"report\"\n", + "2019-01-16 05:05:08,760 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.039*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:05:08,761 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:05:08,763 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.016*\"asia\" + 0.015*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"min\"\n", + "2019-01-16 05:05:08,764 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.047*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 05:05:08,769 : INFO : topic diff=0.005325, rho=0.031373\n", + "2019-01-16 05:05:09,015 : INFO : PROGRESS: pass 0, at document #2034000/4922894\n", + "2019-01-16 05:05:11,015 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:11,573 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.034*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.015*\"kong\"\n", + "2019-01-16 05:05:11,575 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:05:11,576 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"fight\" + 0.017*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.012*\"team\" + 0.012*\"defeat\" + 0.012*\"world\"\n", + "2019-01-16 05:05:11,578 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:05:11,580 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:05:11,585 : INFO : topic diff=0.005708, rho=0.031357\n", + "2019-01-16 05:05:11,833 : INFO : PROGRESS: pass 0, at document #2036000/4922894\n", + "2019-01-16 05:05:13,858 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:14,417 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", + "2019-01-16 05:05:14,418 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.013*\"year\" + 0.012*\"daughter\"\n", + "2019-01-16 05:05:14,420 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 05:05:14,422 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:05:14,424 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", + "2019-01-16 05:05:14,429 : INFO : topic diff=0.005711, rho=0.031342\n", + "2019-01-16 05:05:14,692 : INFO : PROGRESS: pass 0, at document #2038000/4922894\n", + "2019-01-16 05:05:16,684 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:17,242 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 05:05:17,243 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.010*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:05:17,245 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.010*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"foreign\" + 0.006*\"support\" + 0.006*\"group\"\n", + "2019-01-16 05:05:17,246 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:05:17,247 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.072*\"canada\" + 0.059*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"columbia\" + 0.014*\"korea\" + 0.014*\"montreal\"\n", + "2019-01-16 05:05:17,253 : INFO : topic diff=0.005621, rho=0.031327\n", + "2019-01-16 05:05:21,993 : INFO : -11.668 per-word bound, 3253.6 perplexity estimate based on a held-out corpus of 2000 documents with 596552 words\n", + "2019-01-16 05:05:21,994 : INFO : PROGRESS: pass 0, at document #2040000/4922894\n", + "2019-01-16 05:05:24,085 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:24,643 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:05:24,645 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.022*\"cricket\" + 0.019*\"town\" + 0.016*\"scotland\" + 0.015*\"london\" + 0.015*\"citi\" + 0.014*\"scottish\" + 0.014*\"west\" + 0.013*\"manchest\"\n", + "2019-01-16 05:05:24,646 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.023*\"singapor\" + 0.020*\"kim\" + 0.017*\"malaysia\" + 0.016*\"asia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"chan\"\n", + "2019-01-16 05:05:24,648 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:05:24,649 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.018*\"danc\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:05:24,655 : INFO : topic diff=0.004799, rho=0.031311\n", + "2019-01-16 05:05:24,941 : INFO : PROGRESS: pass 0, at document #2042000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:05:26,972 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:27,529 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:05:27,531 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"group\"\n", + "2019-01-16 05:05:27,533 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:05:27,534 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:05:27,536 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:05:27,542 : INFO : topic diff=0.003943, rho=0.031296\n", + "2019-01-16 05:05:27,790 : INFO : PROGRESS: pass 0, at document #2044000/4922894\n", + "2019-01-16 05:05:29,857 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:30,413 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:05:30,415 : INFO : topic #48 (0.020): 0.072*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.067*\"juli\" + 0.065*\"januari\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.064*\"august\" + 0.064*\"april\" + 0.063*\"decemb\"\n", + "2019-01-16 05:05:30,416 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:05:30,418 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:05:30,419 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:05:30,425 : INFO : topic diff=0.004338, rho=0.031281\n", + "2019-01-16 05:05:30,682 : INFO : PROGRESS: pass 0, at document #2046000/4922894\n", + "2019-01-16 05:05:32,776 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:33,333 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"list\"\n", + "2019-01-16 05:05:33,334 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:05:33,336 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.066*\"align\" + 0.058*\"wikit\" + 0.057*\"left\" + 0.054*\"style\" + 0.046*\"center\" + 0.039*\"philippin\" + 0.035*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:05:33,337 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:05:33,339 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.023*\"columbia\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.014*\"korean\" + 0.014*\"korea\"\n", + "2019-01-16 05:05:33,345 : INFO : topic diff=0.004836, rho=0.031265\n", + "2019-01-16 05:05:33,593 : INFO : PROGRESS: pass 0, at document #2048000/4922894\n", + "2019-01-16 05:05:35,586 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:36,145 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:05:36,146 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:05:36,148 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"championship\" + 0.010*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 05:05:36,149 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 05:05:36,151 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:05:36,157 : INFO : topic diff=0.004982, rho=0.031250\n", + "2019-01-16 05:05:36,418 : INFO : PROGRESS: pass 0, at document #2050000/4922894\n", + "2019-01-16 05:05:38,409 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:38,969 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"cricket\" + 0.022*\"unit\" + 0.018*\"town\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.014*\"citi\" + 0.014*\"west\" + 0.014*\"scottish\" + 0.012*\"manchest\"\n", + "2019-01-16 05:05:38,971 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:05:38,972 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.024*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.019*\"household\"\n", + "2019-01-16 05:05:38,973 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:05:38,975 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:05:38,982 : INFO : topic diff=0.004760, rho=0.031235\n", + "2019-01-16 05:05:39,224 : INFO : PROGRESS: pass 0, at document #2052000/4922894\n", + "2019-01-16 05:05:41,176 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:41,732 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:05:41,733 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:05:41,735 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:05:41,736 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.069*\"align\" + 0.057*\"wikit\" + 0.055*\"left\" + 0.054*\"style\" + 0.048*\"center\" + 0.039*\"philippin\" + 0.036*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:05:41,737 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.012*\"regiment\"\n", + "2019-01-16 05:05:41,743 : INFO : topic diff=0.004743, rho=0.031220\n", + "2019-01-16 05:05:41,999 : INFO : PROGRESS: pass 0, at document #2054000/4922894\n", + "2019-01-16 05:05:44,031 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:44,588 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.068*\"align\" + 0.057*\"wikit\" + 0.055*\"left\" + 0.054*\"style\" + 0.049*\"center\" + 0.040*\"philippin\" + 0.036*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:05:44,589 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.066*\"juli\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.063*\"june\" + 0.063*\"august\" + 0.063*\"april\" + 0.063*\"decemb\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:05:44,591 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:05:44,592 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:05:44,594 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:05:44,600 : INFO : topic diff=0.003980, rho=0.031204\n", + "2019-01-16 05:05:44,849 : INFO : PROGRESS: pass 0, at document #2056000/4922894\n", + "2019-01-16 05:05:46,887 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:47,445 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\"\n", + "2019-01-16 05:05:47,446 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\" + 0.006*\"design\"\n", + "2019-01-16 05:05:47,448 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:05:47,450 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.023*\"columbia\" + 0.023*\"toronto\" + 0.019*\"ye\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 05:05:47,451 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", + "2019-01-16 05:05:47,458 : INFO : topic diff=0.005929, rho=0.031189\n", + "2019-01-16 05:05:47,713 : INFO : PROGRESS: pass 0, at document #2058000/4922894\n", + "2019-01-16 05:05:49,810 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:50,370 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:05:50,371 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.010*\"nation\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"foreign\"\n", + "2019-01-16 05:05:50,373 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:05:50,375 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.022*\"toronto\" + 0.022*\"columbia\" + 0.018*\"ye\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 05:05:50,376 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"list\"\n", + "2019-01-16 05:05:50,382 : INFO : topic diff=0.004770, rho=0.031174\n", + "2019-01-16 05:05:55,033 : INFO : -12.033 per-word bound, 4190.7 perplexity estimate based on a held-out corpus of 2000 documents with 573702 words\n", + "2019-01-16 05:05:55,034 : INFO : PROGRESS: pass 0, at document #2060000/4922894\n", + "2019-01-16 05:05:57,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:05:57,661 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.010*\"award\"\n", + "2019-01-16 05:05:57,663 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.013*\"henri\"\n", + "2019-01-16 05:05:57,664 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.070*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.054*\"style\" + 0.048*\"center\" + 0.038*\"philippin\" + 0.035*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:05:57,666 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:05:57,668 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"senat\"\n", + "2019-01-16 05:05:57,675 : INFO : topic diff=0.005476, rho=0.031159\n", + "2019-01-16 05:05:57,935 : INFO : PROGRESS: pass 0, at document #2062000/4922894\n", + "2019-01-16 05:05:59,999 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:00,563 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.022*\"kim\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"asia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.014*\"thailand\" + 0.013*\"min\"\n", + "2019-01-16 05:06:00,564 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"cricket\" + 0.021*\"unit\" + 0.018*\"town\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.015*\"citi\" + 0.014*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 05:06:00,566 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:06:00,567 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:06:00,568 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:06:00,574 : INFO : topic diff=0.004656, rho=0.031144\n", + "2019-01-16 05:06:00,822 : INFO : PROGRESS: pass 0, at document #2064000/4922894\n", + "2019-01-16 05:06:02,794 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:03,351 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:06:03,353 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"royal\"\n", + "2019-01-16 05:06:03,354 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:06:03,355 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.013*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:06:03,357 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:06:03,363 : INFO : topic diff=0.005289, rho=0.031129\n", + "2019-01-16 05:06:03,609 : INFO : PROGRESS: pass 0, at document #2066000/4922894\n", + "2019-01-16 05:06:05,598 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:06,156 : INFO : topic #49 (0.020): 0.107*\"district\" + 0.054*\"region\" + 0.054*\"villag\" + 0.049*\"north\" + 0.047*\"east\" + 0.047*\"west\" + 0.044*\"south\" + 0.042*\"counti\" + 0.035*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:06:06,158 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:06:06,159 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.013*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:06:06,161 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"studi\" + 0.008*\"medicin\"\n", + "2019-01-16 05:06:06,162 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"damag\" + 0.010*\"port\" + 0.009*\"naval\" + 0.009*\"coast\"\n", + "2019-01-16 05:06:06,168 : INFO : topic diff=0.004259, rho=0.031114\n", + "2019-01-16 05:06:06,436 : INFO : PROGRESS: pass 0, at document #2068000/4922894\n", + "2019-01-16 05:06:08,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:08,940 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:06:08,942 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 05:06:08,943 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.024*\"area\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.021*\"counti\" + 0.019*\"household\"\n", + "2019-01-16 05:06:08,945 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\"\n", + "2019-01-16 05:06:08,947 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:06:08,953 : INFO : topic diff=0.004435, rho=0.031099\n", + "2019-01-16 05:06:09,207 : INFO : PROGRESS: pass 0, at document #2070000/4922894\n", + "2019-01-16 05:06:11,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:11,792 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.018*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:06:11,793 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.058*\"left\" + 0.054*\"style\" + 0.047*\"center\" + 0.039*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:06:11,795 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:06:11,796 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.010*\"carlo\"\n", + "2019-01-16 05:06:11,797 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"asia\" + 0.015*\"vietnam\" + 0.015*\"thailand\" + 0.015*\"asian\" + 0.013*\"min\"\n", + "2019-01-16 05:06:11,804 : INFO : topic diff=0.004621, rho=0.031083\n", + "2019-01-16 05:06:12,038 : INFO : PROGRESS: pass 0, at document #2072000/4922894\n", + "2019-01-16 05:06:13,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:14,505 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.033*\"african\" + 0.031*\"text\" + 0.029*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.020*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:06:14,506 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:06:14,508 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.017*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:06:14,509 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:06:14,511 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:06:14,516 : INFO : topic diff=0.004651, rho=0.031068\n", + "2019-01-16 05:06:14,780 : INFO : PROGRESS: pass 0, at document #2074000/4922894\n", + "2019-01-16 05:06:16,812 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:17,370 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.021*\"kim\" + 0.018*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"thailand\" + 0.015*\"asia\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.013*\"min\"\n", + "2019-01-16 05:06:17,371 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.017*\"pakistan\" + 0.015*\"www\" + 0.015*\"iran\" + 0.013*\"islam\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\"\n", + "2019-01-16 05:06:17,373 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:06:17,374 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.049*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:06:17,375 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"time\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:06:17,381 : INFO : topic diff=0.005812, rho=0.031054\n", + "2019-01-16 05:06:17,631 : INFO : PROGRESS: pass 0, at document #2076000/4922894\n", + "2019-01-16 05:06:19,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:20,175 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:06:20,176 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.032*\"text\" + 0.029*\"south\" + 0.028*\"till\" + 0.025*\"color\" + 0.020*\"black\" + 0.012*\"cape\" + 0.012*\"storm\"\n", + "2019-01-16 05:06:20,178 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\"\n", + "2019-01-16 05:06:20,180 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"contest\" + 0.017*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", + "2019-01-16 05:06:20,181 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.067*\"align\" + 0.057*\"left\" + 0.057*\"wikit\" + 0.054*\"style\" + 0.048*\"center\" + 0.041*\"philippin\" + 0.034*\"right\" + 0.030*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:06:20,187 : INFO : topic diff=0.005262, rho=0.031039\n", + "2019-01-16 05:06:20,436 : INFO : PROGRESS: pass 0, at document #2078000/4922894\n", + "2019-01-16 05:06:22,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:22,951 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.017*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:06:22,953 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:06:22,954 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:06:22,955 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.018*\"malaysia\" + 0.016*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"vietnam\" + 0.015*\"asia\" + 0.015*\"asian\" + 0.014*\"min\"\n", + "2019-01-16 05:06:22,957 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.010*\"juan\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.010*\"carlo\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:06:22,964 : INFO : topic diff=0.005310, rho=0.031024\n", + "2019-01-16 05:06:27,480 : INFO : -11.726 per-word bound, 3387.2 perplexity estimate based on a held-out corpus of 2000 documents with 550745 words\n", + "2019-01-16 05:06:27,480 : INFO : PROGRESS: pass 0, at document #2080000/4922894\n", + "2019-01-16 05:06:29,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:30,095 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.010*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 05:06:30,096 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.013*\"offic\" + 0.012*\"divis\" + 0.012*\"regiment\"\n", + "2019-01-16 05:06:30,098 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 05:06:30,100 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:06:30,102 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:06:30,107 : INFO : topic diff=0.005095, rho=0.031009\n", + "2019-01-16 05:06:30,356 : INFO : PROGRESS: pass 0, at document #2082000/4922894\n", + "2019-01-16 05:06:32,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:32,924 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 05:06:32,925 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", + "2019-01-16 05:06:32,926 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\" + 0.007*\"data\"\n", + "2019-01-16 05:06:32,928 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:06:32,929 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.014*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:06:32,936 : INFO : topic diff=0.005609, rho=0.030994\n", + "2019-01-16 05:06:33,202 : INFO : PROGRESS: pass 0, at document #2084000/4922894\n", + "2019-01-16 05:06:35,283 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:35,845 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 05:06:35,847 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.063*\"align\" + 0.058*\"wikit\" + 0.056*\"left\" + 0.053*\"style\" + 0.047*\"center\" + 0.039*\"philippin\" + 0.033*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:06:35,848 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"galleri\"\n", + "2019-01-16 05:06:35,849 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:06:35,851 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:06:35,857 : INFO : topic diff=0.005006, rho=0.030979\n", + "2019-01-16 05:06:36,111 : INFO : PROGRESS: pass 0, at document #2086000/4922894\n", + "2019-01-16 05:06:38,097 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:38,659 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 05:06:38,661 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:06:38,662 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:06:38,664 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.010*\"juan\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"carlo\"\n", + "2019-01-16 05:06:38,665 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"term\"\n", + "2019-01-16 05:06:38,671 : INFO : topic diff=0.004732, rho=0.030964\n", + "2019-01-16 05:06:38,925 : INFO : PROGRESS: pass 0, at document #2088000/4922894\n", + "2019-01-16 05:06:40,946 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:41,504 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:06:41,505 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"match\" + 0.018*\"fight\" + 0.018*\"wrestl\" + 0.018*\"titl\" + 0.017*\"championship\" + 0.017*\"contest\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"world\"\n", + "2019-01-16 05:06:41,507 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:06:41,508 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 05:06:41,509 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:06:41,516 : INFO : topic diff=0.005721, rho=0.030949\n", + "2019-01-16 05:06:41,762 : INFO : PROGRESS: pass 0, at document #2090000/4922894\n", + "2019-01-16 05:06:43,775 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:44,332 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.016*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:06:44,333 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"galleri\"\n", + "2019-01-16 05:06:44,335 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:06:44,336 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:06:44,338 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\" + 0.007*\"data\"\n", + "2019-01-16 05:06:44,344 : INFO : topic diff=0.005403, rho=0.030934\n", + "2019-01-16 05:06:44,597 : INFO : PROGRESS: pass 0, at document #2092000/4922894\n", + "2019-01-16 05:06:46,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:06:47,270 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"austria\" + 0.011*\"und\"\n", + "2019-01-16 05:06:47,272 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:06:47,273 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.031*\"text\" + 0.030*\"south\" + 0.027*\"till\" + 0.024*\"color\" + 0.021*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:06:47,275 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"galleri\"\n", + "2019-01-16 05:06:47,277 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:06:47,283 : INFO : topic diff=0.005235, rho=0.030920\n", + "2019-01-16 05:06:47,571 : INFO : PROGRESS: pass 0, at document #2094000/4922894\n", + "2019-01-16 05:06:49,682 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:50,239 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.021*\"unit\" + 0.021*\"cricket\" + 0.019*\"town\" + 0.017*\"citi\" + 0.015*\"london\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"run\"\n", + "2019-01-16 05:06:50,241 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:06:50,242 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.017*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.009*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 05:06:50,243 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 05:06:50,244 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", + "2019-01-16 05:06:50,250 : INFO : topic diff=0.005469, rho=0.030905\n", + "2019-01-16 05:06:50,497 : INFO : PROGRESS: pass 0, at document #2096000/4922894\n", + "2019-01-16 05:06:52,431 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:52,988 : INFO : topic #49 (0.020): 0.110*\"district\" + 0.054*\"villag\" + 0.053*\"region\" + 0.049*\"north\" + 0.048*\"east\" + 0.048*\"west\" + 0.044*\"south\" + 0.044*\"counti\" + 0.032*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:06:52,990 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:06:52,992 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.010*\"brazil\" + 0.010*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 05:06:52,993 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.013*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.010*\"naval\" + 0.009*\"damag\" + 0.009*\"coast\"\n", + "2019-01-16 05:06:52,996 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:06:53,002 : INFO : topic diff=0.005126, rho=0.030890\n", + "2019-01-16 05:06:53,265 : INFO : PROGRESS: pass 0, at document #2098000/4922894\n", + "2019-01-16 05:06:55,351 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:06:55,909 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.023*\"singapor\" + 0.019*\"kim\" + 0.019*\"malaysia\" + 0.018*\"thailand\" + 0.016*\"asia\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.013*\"min\"\n", + "2019-01-16 05:06:55,911 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.010*\"piano\"\n", + "2019-01-16 05:06:55,912 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:06:55,913 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.052*\"australian\" + 0.051*\"new\" + 0.039*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:06:55,915 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.016*\"galleri\"\n", + "2019-01-16 05:06:55,922 : INFO : topic diff=0.005450, rho=0.030875\n", + "2019-01-16 05:07:00,576 : INFO : -11.544 per-word bound, 2985.1 perplexity estimate based on a held-out corpus of 2000 documents with 524518 words\n", + "2019-01-16 05:07:00,577 : INFO : PROGRESS: pass 0, at document #2100000/4922894\n", + "2019-01-16 05:07:02,564 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:03,120 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:07:03,122 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.013*\"servic\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"scienc\"\n", + "2019-01-16 05:07:03,124 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", + "2019-01-16 05:07:03,125 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.072*\"march\" + 0.070*\"septemb\" + 0.064*\"novemb\" + 0.064*\"januari\" + 0.063*\"juli\" + 0.062*\"decemb\" + 0.062*\"august\" + 0.061*\"june\" + 0.060*\"april\"\n", + "2019-01-16 05:07:03,127 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.006*\"red\"\n", + "2019-01-16 05:07:03,132 : INFO : topic diff=0.004658, rho=0.030861\n", + "2019-01-16 05:07:03,374 : INFO : PROGRESS: pass 0, at document #2102000/4922894\n", + "2019-01-16 05:07:05,370 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:05,927 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:07:05,928 : INFO : topic #47 (0.020): 0.029*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"mountain\"\n", + "2019-01-16 05:07:05,930 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"episod\" + 0.022*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:07:05,931 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:07:05,932 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:07:05,938 : INFO : topic diff=0.005466, rho=0.030846\n", + "2019-01-16 05:07:06,183 : INFO : PROGRESS: pass 0, at document #2104000/4922894\n", + "2019-01-16 05:07:08,248 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:08,805 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.026*\"till\" + 0.023*\"color\" + 0.020*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:07:08,806 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:07:08,808 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"group\"\n", + "2019-01-16 05:07:08,809 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"servic\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"scienc\"\n", + "2019-01-16 05:07:08,811 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:07:08,817 : INFO : topic diff=0.004559, rho=0.030831\n", + "2019-01-16 05:07:09,063 : INFO : PROGRESS: pass 0, at document #2106000/4922894\n", + "2019-01-16 05:07:11,042 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:11,599 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:07:11,601 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:07:11,603 : INFO : topic #46 (0.020): 0.144*\"class\" + 0.066*\"align\" + 0.061*\"left\" + 0.059*\"wikit\" + 0.051*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.031*\"right\" + 0.027*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:07:11,604 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.071*\"march\" + 0.070*\"septemb\" + 0.063*\"novemb\" + 0.062*\"januari\" + 0.062*\"juli\" + 0.061*\"decemb\" + 0.061*\"august\" + 0.060*\"june\" + 0.059*\"april\"\n", + "2019-01-16 05:07:11,606 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:07:11,612 : INFO : topic diff=0.005505, rho=0.030817\n", + "2019-01-16 05:07:11,853 : INFO : PROGRESS: pass 0, at document #2108000/4922894\n", + "2019-01-16 05:07:13,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:14,407 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:07:14,408 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.012*\"damag\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.009*\"port\" + 0.009*\"island\" + 0.009*\"naval\" + 0.009*\"coast\"\n", + "2019-01-16 05:07:14,409 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.023*\"censu\" + 0.023*\"famili\" + 0.021*\"commun\" + 0.021*\"counti\" + 0.020*\"household\"\n", + "2019-01-16 05:07:14,411 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:07:14,412 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.012*\"regiment\"\n", + "2019-01-16 05:07:14,418 : INFO : topic diff=0.005987, rho=0.030802\n", + "2019-01-16 05:07:14,666 : INFO : PROGRESS: pass 0, at document #2110000/4922894\n", + "2019-01-16 05:07:16,667 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:17,229 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"bank\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:07:17,230 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:07:17,232 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:07:17,234 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.020*\"malaysia\" + 0.020*\"kim\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asia\" + 0.015*\"asian\" + 0.014*\"min\" + 0.014*\"vietnam\"\n", + "2019-01-16 05:07:17,235 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.012*\"time\" + 0.011*\"ford\" + 0.010*\"year\"\n", + "2019-01-16 05:07:17,242 : INFO : topic diff=0.004657, rho=0.030787\n", + "2019-01-16 05:07:17,495 : INFO : PROGRESS: pass 0, at document #2112000/4922894\n", + "2019-01-16 05:07:19,476 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:20,032 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:07:20,034 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.019*\"columbia\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"korean\"\n", + "2019-01-16 05:07:20,035 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:07:20,037 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.021*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", + "2019-01-16 05:07:20,039 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.010*\"work\"\n", + "2019-01-16 05:07:20,045 : INFO : topic diff=0.004805, rho=0.030773\n", + "2019-01-16 05:07:20,313 : INFO : PROGRESS: pass 0, at document #2114000/4922894\n", + "2019-01-16 05:07:22,434 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:22,993 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.007*\"electr\" + 0.007*\"protein\"\n", + "2019-01-16 05:07:22,994 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 05:07:22,996 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 05:07:22,998 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:07:23,000 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:07:23,008 : INFO : topic diff=0.005575, rho=0.030758\n", + "2019-01-16 05:07:23,247 : INFO : PROGRESS: pass 0, at document #2116000/4922894\n", + "2019-01-16 05:07:25,209 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:25,771 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.010*\"bank\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:07:25,773 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:07:25,775 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.011*\"death\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:07:25,776 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.016*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.012*\"ireland\"\n", + "2019-01-16 05:07:25,777 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.006*\"group\"\n", + "2019-01-16 05:07:25,783 : INFO : topic diff=0.003938, rho=0.030744\n", + "2019-01-16 05:07:26,045 : INFO : PROGRESS: pass 0, at document #2118000/4922894\n", + "2019-01-16 05:07:28,108 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:28,666 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:07:28,668 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"west\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.012*\"scottish\"\n", + "2019-01-16 05:07:28,669 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"nation\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\"\n", + "2019-01-16 05:07:28,671 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.012*\"damag\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"naval\" + 0.009*\"coast\"\n", + "2019-01-16 05:07:28,672 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.016*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"royal\" + 0.013*\"ireland\"\n", + "2019-01-16 05:07:28,678 : INFO : topic diff=0.005676, rho=0.030729\n", + "2019-01-16 05:07:33,368 : INFO : -11.507 per-word bound, 2910.2 perplexity estimate based on a held-out corpus of 2000 documents with 560366 words\n", + "2019-01-16 05:07:33,369 : INFO : PROGRESS: pass 0, at document #2120000/4922894\n", + "2019-01-16 05:07:35,377 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:35,935 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.018*\"columbia\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"quebec\" + 0.015*\"korean\"\n", + "2019-01-16 05:07:35,937 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"naval\" + 0.009*\"coast\"\n", + "2019-01-16 05:07:35,938 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.016*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:07:35,940 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", + "2019-01-16 05:07:35,941 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 05:07:35,947 : INFO : topic diff=0.004450, rho=0.030715\n", + "2019-01-16 05:07:36,215 : INFO : PROGRESS: pass 0, at document #2122000/4922894\n", + "2019-01-16 05:07:38,247 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:38,805 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"polit\"\n", + "2019-01-16 05:07:38,806 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:07:38,808 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:07:38,809 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:07:38,811 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.020*\"household\"\n", + "2019-01-16 05:07:38,817 : INFO : topic diff=0.006707, rho=0.030700\n", + "2019-01-16 05:07:39,069 : INFO : PROGRESS: pass 0, at document #2124000/4922894\n", + "2019-01-16 05:07:41,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:41,655 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.010*\"cell\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 05:07:41,656 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"time\" + 0.006*\"light\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:07:41,658 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:07:41,659 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:07:41,660 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"order\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\"\n", + "2019-01-16 05:07:41,667 : INFO : topic diff=0.004512, rho=0.030686\n", + "2019-01-16 05:07:41,913 : INFO : PROGRESS: pass 0, at document #2126000/4922894\n", + "2019-01-16 05:07:43,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:44,486 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:07:44,487 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:07:44,488 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", + "2019-01-16 05:07:44,490 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:07:44,491 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.011*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:07:44,497 : INFO : topic diff=0.004368, rho=0.030671\n", + "2019-01-16 05:07:44,750 : INFO : PROGRESS: pass 0, at document #2128000/4922894\n", + "2019-01-16 05:07:46,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:47,326 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"organ\"\n", + "2019-01-16 05:07:47,328 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.010*\"santa\" + 0.010*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:07:47,330 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:07:47,331 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:07:47,333 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.018*\"town\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"west\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 05:07:47,339 : INFO : topic diff=0.004513, rho=0.030657\n", + "2019-01-16 05:07:47,586 : INFO : PROGRESS: pass 0, at document #2130000/4922894\n", + "2019-01-16 05:07:49,681 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:50,243 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"match\" + 0.019*\"wrestl\" + 0.018*\"contest\" + 0.017*\"championship\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:07:50,245 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.020*\"winner\" + 0.018*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:07:50,246 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 05:07:50,248 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.023*\"censu\" + 0.023*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.020*\"household\"\n", + "2019-01-16 05:07:50,249 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:07:50,255 : INFO : topic diff=0.004793, rho=0.030643\n", + "2019-01-16 05:07:50,503 : INFO : PROGRESS: pass 0, at document #2132000/4922894\n", + "2019-01-16 05:07:52,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:53,087 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:07:53,089 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.018*\"columbia\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"korean\"\n", + "2019-01-16 05:07:53,090 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:07:53,092 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:07:53,094 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:07:53,100 : INFO : topic diff=0.004904, rho=0.030628\n", + "2019-01-16 05:07:53,376 : INFO : PROGRESS: pass 0, at document #2134000/4922894\n", + "2019-01-16 05:07:55,452 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:56,015 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:07:56,017 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"offic\" + 0.012*\"divis\"\n", + "2019-01-16 05:07:56,019 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"construct\"\n", + "2019-01-16 05:07:56,020 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:07:56,022 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:07:56,028 : INFO : topic diff=0.005721, rho=0.030614\n", + "2019-01-16 05:07:56,272 : INFO : PROGRESS: pass 0, at document #2136000/4922894\n", + "2019-01-16 05:07:58,255 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:07:58,813 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:07:58,815 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:07:58,816 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"coast\" + 0.009*\"naval\"\n", + "2019-01-16 05:07:58,820 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"includ\" + 0.007*\"video\"\n", + "2019-01-16 05:07:58,822 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:07:58,828 : INFO : topic diff=0.004224, rho=0.030600\n", + "2019-01-16 05:07:59,084 : INFO : PROGRESS: pass 0, at document #2138000/4922894\n", + "2019-01-16 05:08:01,084 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:01,642 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:08:01,644 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"naval\" + 0.009*\"coast\"\n", + "2019-01-16 05:08:01,645 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.013*\"sir\" + 0.012*\"henri\"\n", + "2019-01-16 05:08:01,647 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.014*\"tour\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.012*\"ford\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"stage\"\n", + "2019-01-16 05:08:01,648 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"protein\"\n", + "2019-01-16 05:08:01,654 : INFO : topic diff=0.004777, rho=0.030585\n", + "2019-01-16 05:08:06,275 : INFO : -11.796 per-word bound, 3556.1 perplexity estimate based on a held-out corpus of 2000 documents with 552425 words\n", + "2019-01-16 05:08:06,276 : INFO : PROGRESS: pass 0, at document #2140000/4922894\n", + "2019-01-16 05:08:08,317 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:08,873 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:08:08,875 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:08:08,876 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:08:08,878 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"group\"\n", + "2019-01-16 05:08:08,881 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:08:08,887 : INFO : topic diff=0.004780, rho=0.030571\n", + "2019-01-16 05:08:09,133 : INFO : PROGRESS: pass 0, at document #2142000/4922894\n", + "2019-01-16 05:08:11,124 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:11,682 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"polit\" + 0.013*\"council\"\n", + "2019-01-16 05:08:11,683 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:08:11,685 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:08:11,686 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", + "2019-01-16 05:08:11,688 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.030*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.012*\"piano\" + 0.011*\"jazz\"\n", + "2019-01-16 05:08:11,694 : INFO : topic diff=0.005009, rho=0.030557\n", + "2019-01-16 05:08:11,995 : INFO : PROGRESS: pass 0, at document #2144000/4922894\n", + "2019-01-16 05:08:14,089 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:14,645 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"light\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:08:14,647 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.035*\"african\" + 0.030*\"text\" + 0.030*\"south\" + 0.026*\"till\" + 0.026*\"color\" + 0.019*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:08:14,648 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:08:14,649 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"columbia\" + 0.017*\"quebec\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.015*\"korean\"\n", + "2019-01-16 05:08:14,651 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:08:14,657 : INFO : topic diff=0.004565, rho=0.030542\n", + "2019-01-16 05:08:14,902 : INFO : PROGRESS: pass 0, at document #2146000/4922894\n", + "2019-01-16 05:08:16,874 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:17,436 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.011*\"daughter\"\n", + "2019-01-16 05:08:17,437 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 05:08:17,439 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:08:17,440 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.070*\"align\" + 0.062*\"left\" + 0.060*\"wikit\" + 0.052*\"style\" + 0.045*\"center\" + 0.037*\"philippin\" + 0.030*\"right\" + 0.027*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:08:17,442 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"light\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:08:17,448 : INFO : topic diff=0.004350, rho=0.030528\n", + "2019-01-16 05:08:17,696 : INFO : PROGRESS: pass 0, at document #2148000/4922894\n", + "2019-01-16 05:08:19,700 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:20,256 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.064*\"villag\" + 0.053*\"region\" + 0.051*\"north\" + 0.047*\"east\" + 0.046*\"west\" + 0.044*\"south\" + 0.042*\"counti\" + 0.036*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:08:20,258 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:08:20,260 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.014*\"tour\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"ford\" + 0.011*\"stage\"\n", + "2019-01-16 05:08:20,261 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:08:20,262 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:08:20,268 : INFO : topic diff=0.004388, rho=0.030514\n", + "2019-01-16 05:08:20,516 : INFO : PROGRESS: pass 0, at document #2150000/4922894\n", + "2019-01-16 05:08:22,509 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:23,076 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:08:23,077 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:08:23,079 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 05:08:23,081 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"henri\"\n", + "2019-01-16 05:08:23,085 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"order\"\n", + "2019-01-16 05:08:23,092 : INFO : topic diff=0.004691, rho=0.030500\n", + "2019-01-16 05:08:23,339 : INFO : PROGRESS: pass 0, at document #2152000/4922894\n", + "2019-01-16 05:08:25,294 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:25,852 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"columbia\" + 0.017*\"quebec\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"korean\"\n", + "2019-01-16 05:08:25,854 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"order\"\n", + "2019-01-16 05:08:25,857 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.011*\"piano\" + 0.011*\"jazz\"\n", + "2019-01-16 05:08:25,858 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"damag\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\"\n", + "2019-01-16 05:08:25,860 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.021*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:08:25,865 : INFO : topic diff=0.005575, rho=0.030486\n", + "2019-01-16 05:08:26,126 : INFO : PROGRESS: pass 0, at document #2154000/4922894\n", + "2019-01-16 05:08:28,192 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:28,748 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.021*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:08:28,750 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"damag\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\"\n", + "2019-01-16 05:08:28,752 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"order\"\n", + "2019-01-16 05:08:28,753 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 05:08:28,754 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"royal\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"sir\" + 0.013*\"henri\"\n", + "2019-01-16 05:08:28,761 : INFO : topic diff=0.004981, rho=0.030471\n", + "2019-01-16 05:08:29,009 : INFO : PROGRESS: pass 0, at document #2156000/4922894\n", + "2019-01-16 05:08:31,019 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:31,576 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 05:08:31,577 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.053*\"australian\" + 0.051*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", + "2019-01-16 05:08:31,579 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:08:31,580 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"match\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.016*\"fight\" + 0.013*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:08:31,582 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.007*\"protein\" + 0.007*\"us\" + 0.007*\"electr\"\n", + "2019-01-16 05:08:31,587 : INFO : topic diff=0.003841, rho=0.030457\n", + "2019-01-16 05:08:31,831 : INFO : PROGRESS: pass 0, at document #2158000/4922894\n", + "2019-01-16 05:08:33,830 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:34,387 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:08:34,389 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"bridg\" + 0.011*\"area\"\n", + "2019-01-16 05:08:34,390 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:08:34,392 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.013*\"offic\"\n", + "2019-01-16 05:08:34,393 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.064*\"juli\" + 0.063*\"januari\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.062*\"june\" + 0.061*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:08:34,400 : INFO : topic diff=0.004466, rho=0.030443\n", + "2019-01-16 05:08:39,022 : INFO : -11.788 per-word bound, 3536.0 perplexity estimate based on a held-out corpus of 2000 documents with 545483 words\n", + "2019-01-16 05:08:39,023 : INFO : PROGRESS: pass 0, at document #2160000/4922894\n", + "2019-01-16 05:08:40,976 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:41,534 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:08:41,536 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:08:41,537 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.033*\"russian\" + 0.023*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.013*\"republ\" + 0.013*\"poland\" + 0.012*\"moscow\"\n", + "2019-01-16 05:08:41,538 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", + "2019-01-16 05:08:41,540 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.022*\"unit\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.014*\"west\" + 0.013*\"wale\" + 0.012*\"scottish\"\n", + "2019-01-16 05:08:41,546 : INFO : topic diff=0.005380, rho=0.030429\n", + "2019-01-16 05:08:41,814 : INFO : PROGRESS: pass 0, at document #2162000/4922894\n", + "2019-01-16 05:08:43,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:44,417 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", + "2019-01-16 05:08:44,418 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:08:44,420 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"henri\"\n", + "2019-01-16 05:08:44,421 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.013*\"regiment\" + 0.013*\"offic\"\n", + "2019-01-16 05:08:44,423 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:08:44,429 : INFO : topic diff=0.004759, rho=0.030415\n", + "2019-01-16 05:08:44,672 : INFO : PROGRESS: pass 0, at document #2164000/4922894\n", + "2019-01-16 05:08:46,729 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:47,292 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.019*\"wrestl\" + 0.018*\"titl\" + 0.018*\"championship\" + 0.018*\"contest\" + 0.015*\"fight\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:08:47,293 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.068*\"villag\" + 0.054*\"region\" + 0.050*\"north\" + 0.048*\"east\" + 0.046*\"west\" + 0.043*\"south\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:08:47,295 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:08:47,296 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.013*\"offic\"\n", + "2019-01-16 05:08:47,298 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"construct\"\n", + "2019-01-16 05:08:47,304 : INFO : topic diff=0.004321, rho=0.030401\n", + "2019-01-16 05:08:47,563 : INFO : PROGRESS: pass 0, at document #2166000/4922894\n", + "2019-01-16 05:08:49,712 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:50,269 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:08:50,270 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:08:50,272 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.068*\"villag\" + 0.054*\"region\" + 0.050*\"north\" + 0.048*\"east\" + 0.045*\"west\" + 0.043*\"south\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:08:50,273 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.021*\"point\" + 0.021*\"winner\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", + "2019-01-16 05:08:50,274 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.017*\"malaysia\" + 0.016*\"asia\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.014*\"min\"\n", + "2019-01-16 05:08:50,280 : INFO : topic diff=0.006373, rho=0.030387\n", + "2019-01-16 05:08:50,524 : INFO : PROGRESS: pass 0, at document #2168000/4922894\n", + "2019-01-16 05:08:52,550 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:53,109 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:08:53,110 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:08:53,112 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.064*\"juli\" + 0.063*\"januari\" + 0.063*\"novemb\" + 0.063*\"august\" + 0.062*\"june\" + 0.061*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:08:53,114 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:08:53,115 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", + "2019-01-16 05:08:53,121 : INFO : topic diff=0.003528, rho=0.030373\n", + "2019-01-16 05:08:53,414 : INFO : PROGRESS: pass 0, at document #2170000/4922894\n", + "2019-01-16 05:08:55,425 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:55,982 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:08:55,984 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"singh\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", + "2019-01-16 05:08:55,985 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.063*\"august\" + 0.062*\"june\" + 0.061*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:08:55,986 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:08:55,987 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.012*\"offic\"\n", + "2019-01-16 05:08:55,994 : INFO : topic diff=0.005107, rho=0.030359\n", + "2019-01-16 05:08:56,245 : INFO : PROGRESS: pass 0, at document #2172000/4922894\n", + "2019-01-16 05:08:58,247 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:08:58,806 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.077*\"align\" + 0.066*\"left\" + 0.057*\"wikit\" + 0.056*\"style\" + 0.044*\"center\" + 0.036*\"philippin\" + 0.033*\"right\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:08:58,808 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.012*\"offic\"\n", + "2019-01-16 05:08:58,809 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:08:58,811 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:08:58,813 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:08:58,820 : INFO : topic diff=0.004647, rho=0.030345\n", + "2019-01-16 05:08:59,066 : INFO : PROGRESS: pass 0, at document #2174000/4922894\n", + "2019-01-16 05:09:01,260 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:01,818 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"singh\" + 0.011*\"sri\"\n", + "2019-01-16 05:09:01,819 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"effect\"\n", + "2019-01-16 05:09:01,821 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:09:01,824 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"sir\"\n", + "2019-01-16 05:09:01,825 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 05:09:01,830 : INFO : topic diff=0.004845, rho=0.030331\n", + "2019-01-16 05:09:02,069 : INFO : PROGRESS: pass 0, at document #2176000/4922894\n", + "2019-01-16 05:09:04,057 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:04,614 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.010*\"organ\"\n", + "2019-01-16 05:09:04,615 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:09:04,617 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.067*\"villag\" + 0.054*\"region\" + 0.049*\"north\" + 0.048*\"east\" + 0.046*\"west\" + 0.043*\"south\" + 0.041*\"counti\" + 0.034*\"provinc\" + 0.026*\"central\"\n", + "2019-01-16 05:09:04,621 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"singh\" + 0.011*\"sri\"\n", + "2019-01-16 05:09:04,622 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.066*\"juli\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.062*\"june\" + 0.062*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:09:04,629 : INFO : topic diff=0.005088, rho=0.030317\n", + "2019-01-16 05:09:04,881 : INFO : PROGRESS: pass 0, at document #2178000/4922894\n", + "2019-01-16 05:09:06,882 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:07,445 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", + "2019-01-16 05:09:07,446 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:09:07,448 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"sir\" + 0.013*\"henri\" + 0.013*\"royal\"\n", + "2019-01-16 05:09:07,450 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:09:07,452 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:09:07,458 : INFO : topic diff=0.004676, rho=0.030303\n", + "2019-01-16 05:09:12,107 : INFO : -11.675 per-word bound, 3270.7 perplexity estimate based on a held-out corpus of 2000 documents with 584211 words\n", + "2019-01-16 05:09:12,108 : INFO : PROGRESS: pass 0, at document #2180000/4922894\n", + "2019-01-16 05:09:14,151 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:14,708 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.076*\"align\" + 0.064*\"left\" + 0.057*\"wikit\" + 0.054*\"style\" + 0.043*\"center\" + 0.040*\"right\" + 0.034*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:09:14,710 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.009*\"port\" + 0.009*\"naval\"\n", + "2019-01-16 05:09:14,711 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.030*\"south\" + 0.030*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.019*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:09:14,713 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:09:14,714 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", + "2019-01-16 05:09:14,720 : INFO : topic diff=0.005540, rho=0.030289\n", + "2019-01-16 05:09:14,973 : INFO : PROGRESS: pass 0, at document #2182000/4922894\n", + "2019-01-16 05:09:17,084 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:17,645 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 05:09:17,646 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.034*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.013*\"poland\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 05:09:17,648 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", + "2019-01-16 05:09:17,649 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 05:09:17,651 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.051*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:09:17,657 : INFO : topic diff=0.003975, rho=0.030275\n", + "2019-01-16 05:09:17,920 : INFO : PROGRESS: pass 0, at document #2184000/4922894\n", + "2019-01-16 05:09:19,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:20,509 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:09:20,511 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.062*\"june\" + 0.061*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:09:20,512 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 05:09:20,514 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:09:20,515 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"time\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:09:20,521 : INFO : topic diff=0.004758, rho=0.030261\n", + "2019-01-16 05:09:20,778 : INFO : PROGRESS: pass 0, at document #2186000/4922894\n", + "2019-01-16 05:09:22,854 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:23,416 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.075*\"align\" + 0.065*\"left\" + 0.057*\"wikit\" + 0.054*\"style\" + 0.043*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:09:23,418 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:09:23,419 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.017*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:09:23,421 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"ireland\" + 0.013*\"henri\"\n", + "2019-01-16 05:09:23,422 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:09:23,429 : INFO : topic diff=0.004038, rho=0.030248\n", + "2019-01-16 05:09:23,679 : INFO : PROGRESS: pass 0, at document #2188000/4922894\n", + "2019-01-16 05:09:25,669 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:26,227 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.010*\"medicin\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\"\n", + "2019-01-16 05:09:26,229 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:09:26,230 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 05:09:26,231 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.023*\"area\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"counti\"\n", + "2019-01-16 05:09:26,233 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:09:26,239 : INFO : topic diff=0.004279, rho=0.030234\n", + "2019-01-16 05:09:26,480 : INFO : PROGRESS: pass 0, at document #2190000/4922894\n", + "2019-01-16 05:09:28,516 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:29,076 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"organ\"\n", + "2019-01-16 05:09:29,077 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.012*\"divis\"\n", + "2019-01-16 05:09:29,078 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.066*\"juli\" + 0.065*\"june\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:09:29,080 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.076*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.020*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.016*\"columbia\" + 0.014*\"korean\"\n", + "2019-01-16 05:09:29,081 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"jazz\" + 0.011*\"opera\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:09:29,088 : INFO : topic diff=0.004166, rho=0.030220\n", + "2019-01-16 05:09:29,342 : INFO : PROGRESS: pass 0, at document #2192000/4922894\n", + "2019-01-16 05:09:31,364 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:31,924 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.010*\"singh\"\n", + "2019-01-16 05:09:31,926 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:09:31,927 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.069*\"villag\" + 0.054*\"region\" + 0.049*\"north\" + 0.047*\"east\" + 0.045*\"west\" + 0.043*\"south\" + 0.041*\"counti\" + 0.034*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:09:31,928 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:09:31,930 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.034*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", + "2019-01-16 05:09:31,936 : INFO : topic diff=0.004667, rho=0.030206\n", + "2019-01-16 05:09:32,200 : INFO : PROGRESS: pass 0, at document #2194000/4922894\n", + "2019-01-16 05:09:34,201 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:34,757 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"match\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.017*\"championship\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.013*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:09:34,758 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 05:09:34,759 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:09:34,761 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.072*\"align\" + 0.063*\"left\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.043*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:09:34,762 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:09:34,768 : INFO : topic diff=0.004404, rho=0.030192\n", + "2019-01-16 05:09:35,057 : INFO : PROGRESS: pass 0, at document #2196000/4922894\n", + "2019-01-16 05:09:37,105 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:37,665 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"jazz\" + 0.012*\"opera\"\n", + "2019-01-16 05:09:37,666 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.020*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.016*\"columbia\" + 0.014*\"korean\"\n", + "2019-01-16 05:09:37,668 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.010*\"order\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"offic\"\n", + "2019-01-16 05:09:37,669 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.014*\"wale\" + 0.013*\"scottish\"\n", + "2019-01-16 05:09:37,670 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.014*\"de\" + 0.011*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:09:37,676 : INFO : topic diff=0.004037, rho=0.030179\n", + "2019-01-16 05:09:37,937 : INFO : PROGRESS: pass 0, at document #2198000/4922894\n", + "2019-01-16 05:09:39,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:40,549 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"divis\" + 0.012*\"offic\"\n", + "2019-01-16 05:09:40,550 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.020*\"commun\" + 0.020*\"counti\" + 0.020*\"household\"\n", + "2019-01-16 05:09:40,552 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.074*\"march\" + 0.073*\"octob\" + 0.065*\"januari\" + 0.065*\"juli\" + 0.064*\"june\" + 0.063*\"august\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:09:40,553 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:09:40,554 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.016*\"fight\" + 0.013*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:09:40,560 : INFO : topic diff=0.004571, rho=0.030165\n", + "2019-01-16 05:09:45,342 : INFO : -11.546 per-word bound, 2990.0 perplexity estimate based on a held-out corpus of 2000 documents with 588507 words\n", + "2019-01-16 05:09:45,342 : INFO : PROGRESS: pass 0, at document #2200000/4922894\n", + "2019-01-16 05:09:47,438 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:47,999 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"medicin\" + 0.009*\"caus\" + 0.008*\"studi\"\n", + "2019-01-16 05:09:48,001 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.070*\"align\" + 0.062*\"left\" + 0.058*\"wikit\" + 0.054*\"style\" + 0.043*\"center\" + 0.039*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:09:48,002 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"divis\" + 0.012*\"offic\"\n", + "2019-01-16 05:09:48,004 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.053*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.032*\"chines\" + 0.032*\"zealand\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:09:48,005 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:09:48,012 : INFO : topic diff=0.005603, rho=0.030151\n", + "2019-01-16 05:09:48,265 : INFO : PROGRESS: pass 0, at document #2202000/4922894\n", + "2019-01-16 05:09:50,258 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:50,815 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.051*\"univers\" + 0.044*\"colleg\" + 0.039*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 05:09:50,817 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"bridg\" + 0.012*\"park\" + 0.011*\"area\"\n", + "2019-01-16 05:09:50,818 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:09:50,819 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.070*\"villag\" + 0.054*\"region\" + 0.048*\"north\" + 0.046*\"east\" + 0.045*\"west\" + 0.042*\"south\" + 0.041*\"counti\" + 0.034*\"provinc\" + 0.026*\"central\"\n", + "2019-01-16 05:09:50,820 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", + "2019-01-16 05:09:50,826 : INFO : topic diff=0.004096, rho=0.030137\n", + "2019-01-16 05:09:51,077 : INFO : PROGRESS: pass 0, at document #2204000/4922894\n", + "2019-01-16 05:09:53,059 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:09:53,617 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.019*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.016*\"columbia\" + 0.014*\"korean\"\n", + "2019-01-16 05:09:53,619 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:09:53,621 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:09:53,622 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"ireland\"\n", + "2019-01-16 05:09:53,624 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"centuri\"\n", + "2019-01-16 05:09:53,629 : INFO : topic diff=0.005828, rho=0.030124\n", + "2019-01-16 05:09:53,893 : INFO : PROGRESS: pass 0, at document #2206000/4922894\n", + "2019-01-16 05:09:55,944 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:56,500 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\" + 0.006*\"point\"\n", + "2019-01-16 05:09:56,502 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"electr\" + 0.007*\"us\"\n", + "2019-01-16 05:09:56,504 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"berlin\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 05:09:56,506 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"medicin\" + 0.009*\"caus\" + 0.008*\"studi\"\n", + "2019-01-16 05:09:56,507 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"order\" + 0.009*\"report\" + 0.008*\"offic\" + 0.008*\"right\"\n", + "2019-01-16 05:09:56,514 : INFO : topic diff=0.004640, rho=0.030110\n", + "2019-01-16 05:09:56,771 : INFO : PROGRESS: pass 0, at document #2208000/4922894\n", + "2019-01-16 05:09:58,841 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:09:59,398 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.013*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:09:59,400 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 05:09:59,401 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:09:59,403 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"return\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 05:09:59,404 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:09:59,410 : INFO : topic diff=0.004623, rho=0.030096\n", + "2019-01-16 05:09:59,655 : INFO : PROGRESS: pass 0, at document #2210000/4922894\n", + "2019-01-16 05:10:01,665 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:02,224 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.025*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.014*\"repres\" + 0.013*\"council\" + 0.013*\"polit\"\n", + "2019-01-16 05:10:02,225 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.030*\"ag\" + 0.030*\"citi\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"counti\"\n", + "2019-01-16 05:10:02,227 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 05:10:02,229 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"poland\"\n", + "2019-01-16 05:10:02,230 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"berlin\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 05:10:02,236 : INFO : topic diff=0.004913, rho=0.030083\n", + "2019-01-16 05:10:02,489 : INFO : PROGRESS: pass 0, at document #2212000/4922894\n", + "2019-01-16 05:10:04,513 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:05,071 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:10:05,072 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 05:10:05,074 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:10:05,076 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.040*\"africa\" + 0.034*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.018*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:10:05,077 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.075*\"march\" + 0.073*\"octob\" + 0.065*\"juli\" + 0.065*\"januari\" + 0.064*\"june\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.063*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:10:05,084 : INFO : topic diff=0.004076, rho=0.030069\n", + "2019-01-16 05:10:05,337 : INFO : PROGRESS: pass 0, at document #2214000/4922894\n", + "2019-01-16 05:10:07,368 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:07,931 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"poland\"\n", + "2019-01-16 05:10:07,934 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"return\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 05:10:07,936 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"studi\"\n", + "2019-01-16 05:10:07,937 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.030*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.020*\"household\"\n", + "2019-01-16 05:10:07,938 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:10:07,944 : INFO : topic diff=0.004223, rho=0.030056\n", + "2019-01-16 05:10:08,195 : INFO : PROGRESS: pass 0, at document #2216000/4922894\n", + "2019-01-16 05:10:10,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:10,737 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.018*\"titl\" + 0.017*\"championship\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.014*\"defeat\" + 0.014*\"team\" + 0.013*\"world\"\n", + "2019-01-16 05:10:10,738 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"gold\" + 0.018*\"athlet\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:10:10,740 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", + "2019-01-16 05:10:10,741 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:10:10,743 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\" + 0.006*\"point\"\n", + "2019-01-16 05:10:10,748 : INFO : topic diff=0.004261, rho=0.030042\n", + "2019-01-16 05:10:11,003 : INFO : PROGRESS: pass 0, at document #2218000/4922894\n", + "2019-01-16 05:10:12,965 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:13,521 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:10:13,523 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 05:10:13,524 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 05:10:13,526 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:10:13,527 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:10:13,533 : INFO : topic diff=0.004860, rho=0.030029\n", + "2019-01-16 05:10:18,154 : INFO : -11.624 per-word bound, 3156.1 perplexity estimate based on a held-out corpus of 2000 documents with 531270 words\n", + "2019-01-16 05:10:18,155 : INFO : PROGRESS: pass 0, at document #2220000/4922894\n", + "2019-01-16 05:10:20,191 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:20,747 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:10:20,748 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:10:20,750 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.051*\"univers\" + 0.044*\"colleg\" + 0.039*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 05:10:20,751 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", + "2019-01-16 05:10:20,753 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 05:10:20,760 : INFO : topic diff=0.003921, rho=0.030015\n", + "2019-01-16 05:10:21,017 : INFO : PROGRESS: pass 0, at document #2222000/4922894\n", + "2019-01-16 05:10:23,129 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:23,685 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", + "2019-01-16 05:10:23,686 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:10:23,688 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 05:10:23,689 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:10:23,691 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"studi\"\n", + "2019-01-16 05:10:23,698 : INFO : topic diff=0.005637, rho=0.030002\n", + "2019-01-16 05:10:23,957 : INFO : PROGRESS: pass 0, at document #2224000/4922894\n", + "2019-01-16 05:10:26,006 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:26,563 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.053*\"australian\" + 0.048*\"new\" + 0.043*\"china\" + 0.032*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", + "2019-01-16 05:10:26,565 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:10:26,566 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:10:26,567 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.025*\"member\" + 0.020*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.015*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"polit\"\n", + "2019-01-16 05:10:26,569 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:10:26,576 : INFO : topic diff=0.005138, rho=0.029988\n", + "2019-01-16 05:10:26,834 : INFO : PROGRESS: pass 0, at document #2226000/4922894\n", + "2019-01-16 05:10:28,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:29,468 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"town\" + 0.022*\"unit\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.016*\"london\" + 0.014*\"wale\" + 0.014*\"west\" + 0.013*\"scottish\"\n", + "2019-01-16 05:10:29,469 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"poland\"\n", + "2019-01-16 05:10:29,472 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:10:29,474 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:10:29,475 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:10:29,481 : INFO : topic diff=0.004660, rho=0.029975\n", + "2019-01-16 05:10:29,730 : INFO : PROGRESS: pass 0, at document #2228000/4922894\n", + "2019-01-16 05:10:31,759 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:32,319 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.010*\"organ\"\n", + "2019-01-16 05:10:32,321 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:10:32,322 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:10:32,324 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.053*\"australian\" + 0.048*\"new\" + 0.043*\"china\" + 0.032*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", + "2019-01-16 05:10:32,325 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"bridg\" + 0.012*\"park\" + 0.012*\"area\"\n", + "2019-01-16 05:10:32,332 : INFO : topic diff=0.004249, rho=0.029961\n", + "2019-01-16 05:10:32,593 : INFO : PROGRESS: pass 0, at document #2230000/4922894\n", + "2019-01-16 05:10:34,635 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:35,198 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"town\" + 0.021*\"unit\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.016*\"london\" + 0.014*\"wale\" + 0.014*\"west\" + 0.013*\"scottish\"\n", + "2019-01-16 05:10:35,200 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"servic\" + 0.010*\"organ\"\n", + "2019-01-16 05:10:35,201 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:10:35,203 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.071*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.053*\"style\" + 0.045*\"center\" + 0.042*\"right\" + 0.037*\"philippin\" + 0.028*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:10:35,204 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:10:35,209 : INFO : topic diff=0.004500, rho=0.029948\n", + "2019-01-16 05:10:35,664 : INFO : PROGRESS: pass 0, at document #2232000/4922894\n", + "2019-01-16 05:10:37,720 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:38,284 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.020*\"commun\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", + "2019-01-16 05:10:38,286 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"servic\" + 0.010*\"organ\"\n", + "2019-01-16 05:10:38,287 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"poland\"\n", + "2019-01-16 05:10:38,288 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\"\n", + "2019-01-16 05:10:38,290 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:10:38,295 : INFO : topic diff=0.004911, rho=0.029934\n", + "2019-01-16 05:10:38,561 : INFO : PROGRESS: pass 0, at document #2234000/4922894\n", + "2019-01-16 05:10:40,599 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:41,156 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:10:41,157 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", + "2019-01-16 05:10:41,158 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"berlin\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:10:41,160 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 05:10:41,161 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:10:41,168 : INFO : topic diff=0.005397, rho=0.029921\n", + "2019-01-16 05:10:41,435 : INFO : PROGRESS: pass 0, at document #2236000/4922894\n", + "2019-01-16 05:10:43,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:44,032 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"gold\" + 0.018*\"athlet\"\n", + "2019-01-16 05:10:44,034 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.014*\"melbourn\" + 0.013*\"kong\"\n", + "2019-01-16 05:10:44,035 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:10:44,037 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", + "2019-01-16 05:10:44,038 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.019*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"columbia\"\n", + "2019-01-16 05:10:44,043 : INFO : topic diff=0.005478, rho=0.029907\n", + "2019-01-16 05:10:44,299 : INFO : PROGRESS: pass 0, at document #2238000/4922894\n", + "2019-01-16 05:10:46,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:46,876 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"bridg\" + 0.012*\"park\" + 0.012*\"area\"\n", + "2019-01-16 05:10:46,878 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 05:10:46,879 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:10:46,881 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.019*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"columbia\"\n", + "2019-01-16 05:10:46,882 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:10:46,888 : INFO : topic diff=0.005245, rho=0.029894\n", + "2019-01-16 05:10:51,506 : INFO : -11.819 per-word bound, 3613.0 perplexity estimate based on a held-out corpus of 2000 documents with 544970 words\n", + "2019-01-16 05:10:51,507 : INFO : PROGRESS: pass 0, at document #2240000/4922894\n", + "2019-01-16 05:10:53,473 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:54,032 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 05:10:54,034 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:10:54,035 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"us\"\n", + "2019-01-16 05:10:54,037 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:10:54,038 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:10:54,045 : INFO : topic diff=0.004932, rho=0.029881\n", + "2019-01-16 05:10:54,303 : INFO : PROGRESS: pass 0, at document #2242000/4922894\n", + "2019-01-16 05:10:56,344 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:56,902 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:10:56,903 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:10:56,905 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:10:56,906 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:10:56,907 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.028*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.021*\"point\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:10:56,913 : INFO : topic diff=0.004313, rho=0.029867\n", + "2019-01-16 05:10:57,157 : INFO : PROGRESS: pass 0, at document #2244000/4922894\n", + "2019-01-16 05:10:59,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:10:59,692 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"politician\"\n", + "2019-01-16 05:10:59,693 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:10:59,696 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:10:59,698 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:10:59,700 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.019*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:10:59,705 : INFO : topic diff=0.004376, rho=0.029854\n", + "2019-01-16 05:10:59,995 : INFO : PROGRESS: pass 0, at document #2246000/4922894\n", + "2019-01-16 05:11:02,100 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:02,657 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:11:02,659 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 05:11:02,660 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"bird\"\n", + "2019-01-16 05:11:02,662 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 05:11:02,663 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.012*\"divis\"\n", + "2019-01-16 05:11:02,669 : INFO : topic diff=0.004120, rho=0.029841\n", + "2019-01-16 05:11:02,929 : INFO : PROGRESS: pass 0, at document #2248000/4922894\n", + "2019-01-16 05:11:04,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:05,491 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.012*\"divis\"\n", + "2019-01-16 05:11:05,493 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 05:11:05,495 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.015*\"vietnam\" + 0.014*\"asia\" + 0.014*\"min\"\n", + "2019-01-16 05:11:05,496 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:11:05,498 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:11:05,504 : INFO : topic diff=0.004692, rho=0.029827\n", + "2019-01-16 05:11:05,758 : INFO : PROGRESS: pass 0, at document #2250000/4922894\n", + "2019-01-16 05:11:07,784 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:08,345 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:11:08,347 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.025*\"color\" + 0.018*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:11:08,348 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:11:08,350 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 05:11:08,351 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.074*\"octob\" + 0.074*\"march\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.063*\"june\" + 0.063*\"novemb\" + 0.063*\"august\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:11:08,358 : INFO : topic diff=0.004754, rho=0.029814\n", + "2019-01-16 05:11:08,611 : INFO : PROGRESS: pass 0, at document #2252000/4922894\n", + "2019-01-16 05:11:10,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:11,149 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"politician\"\n", + "2019-01-16 05:11:11,151 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:11:11,152 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.014*\"tamil\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 05:11:11,153 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.012*\"cell\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"cancer\" + 0.009*\"caus\" + 0.008*\"medicin\"\n", + "2019-01-16 05:11:11,154 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.074*\"octob\" + 0.074*\"march\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.063*\"june\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:11:11,160 : INFO : topic diff=0.005037, rho=0.029801\n", + "2019-01-16 05:11:11,411 : INFO : PROGRESS: pass 0, at document #2254000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:11:13,405 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:13,961 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.032*\"citi\" + 0.029*\"ag\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:11:13,963 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.012*\"cell\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"cancer\" + 0.009*\"caus\" + 0.008*\"medicin\"\n", + "2019-01-16 05:11:13,964 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"poland\"\n", + "2019-01-16 05:11:13,966 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:11:13,967 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.030*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.025*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:11:13,973 : INFO : topic diff=0.004458, rho=0.029788\n", + "2019-01-16 05:11:14,243 : INFO : PROGRESS: pass 0, at document #2256000/4922894\n", + "2019-01-16 05:11:16,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:16,861 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 05:11:16,862 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.022*\"berlin\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:11:16,864 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:11:16,866 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.025*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:11:16,867 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:11:16,873 : INFO : topic diff=0.005973, rho=0.029775\n", + "2019-01-16 05:11:17,139 : INFO : PROGRESS: pass 0, at document #2258000/4922894\n", + "2019-01-16 05:11:19,183 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:19,742 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:11:19,744 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.048*\"univers\" + 0.043*\"colleg\" + 0.040*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 05:11:19,745 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.025*\"town\" + 0.022*\"unit\" + 0.017*\"citi\" + 0.017*\"cricket\" + 0.017*\"scotland\" + 0.015*\"london\" + 0.014*\"west\" + 0.014*\"scottish\" + 0.013*\"wale\"\n", + "2019-01-16 05:11:19,747 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 05:11:19,748 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 05:11:19,754 : INFO : topic diff=0.004407, rho=0.029761\n", + "2019-01-16 05:11:24,361 : INFO : -11.852 per-word bound, 3695.5 perplexity estimate based on a held-out corpus of 2000 documents with 550557 words\n", + "2019-01-16 05:11:24,362 : INFO : PROGRESS: pass 0, at document #2260000/4922894\n", + "2019-01-16 05:11:26,387 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:26,944 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:11:26,945 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"order\" + 0.009*\"right\" + 0.008*\"offic\"\n", + "2019-01-16 05:11:26,946 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:11:26,948 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:11:26,950 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 05:11:26,956 : INFO : topic diff=0.004591, rho=0.029748\n", + "2019-01-16 05:11:27,210 : INFO : PROGRESS: pass 0, at document #2262000/4922894\n", + "2019-01-16 05:11:29,257 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:29,814 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:11:29,815 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:11:29,817 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:11:29,818 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"order\" + 0.009*\"right\" + 0.008*\"offic\"\n", + "2019-01-16 05:11:29,819 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:11:29,826 : INFO : topic diff=0.005230, rho=0.029735\n", + "2019-01-16 05:11:30,078 : INFO : PROGRESS: pass 0, at document #2264000/4922894\n", + "2019-01-16 05:11:32,049 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:32,606 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"port\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:11:32,607 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", + "2019-01-16 05:11:32,609 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:11:32,612 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:11:32,614 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 05:11:32,620 : INFO : topic diff=0.004782, rho=0.029722\n", + "2019-01-16 05:11:32,872 : INFO : PROGRESS: pass 0, at document #2266000/4922894\n", + "2019-01-16 05:11:34,840 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:35,399 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:11:35,400 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:11:35,402 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.014*\"tamil\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 05:11:35,403 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.016*\"malaysia\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.015*\"asian\" + 0.015*\"vietnam\" + 0.014*\"min\" + 0.014*\"asia\"\n", + "2019-01-16 05:11:35,404 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.025*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.023*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.017*\"rank\"\n", + "2019-01-16 05:11:35,411 : INFO : topic diff=0.004738, rho=0.029709\n", + "2019-01-16 05:11:35,655 : INFO : PROGRESS: pass 0, at document #2268000/4922894\n", + "2019-01-16 05:11:37,602 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:38,160 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", + "2019-01-16 05:11:38,162 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:11:38,164 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.025*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 05:11:38,166 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.029*\"ag\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.020*\"counti\" + 0.020*\"commun\" + 0.020*\"household\"\n", + "2019-01-16 05:11:38,167 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.034*\"indian\" + 0.020*\"http\" + 0.017*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"tamil\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 05:11:38,174 : INFO : topic diff=0.004715, rho=0.029696\n", + "2019-01-16 05:11:38,430 : INFO : PROGRESS: pass 0, at document #2270000/4922894\n", + "2019-01-16 05:11:40,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:41,005 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"return\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 05:11:41,007 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"right\" + 0.009*\"order\" + 0.008*\"offic\"\n", + "2019-01-16 05:11:41,008 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.075*\"octob\" + 0.073*\"march\" + 0.067*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.062*\"june\" + 0.062*\"april\" + 0.062*\"august\" + 0.062*\"decemb\"\n", + "2019-01-16 05:11:41,009 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:11:41,011 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"politician\"\n", + "2019-01-16 05:11:41,017 : INFO : topic diff=0.004430, rho=0.029683\n", + "2019-01-16 05:11:41,306 : INFO : PROGRESS: pass 0, at document #2272000/4922894\n", + "2019-01-16 05:11:43,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:43,919 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", + "2019-01-16 05:11:43,920 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:11:43,922 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 05:11:43,924 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:11:43,925 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.025*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.023*\"event\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"rank\"\n", + "2019-01-16 05:11:43,931 : INFO : topic diff=0.005278, rho=0.029670\n", + "2019-01-16 05:11:44,200 : INFO : PROGRESS: pass 0, at document #2274000/4922894\n", + "2019-01-16 05:11:46,281 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:46,838 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.025*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.013*\"council\" + 0.012*\"hous\"\n", + "2019-01-16 05:11:46,839 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 05:11:46,842 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 05:11:46,844 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.013*\"tamil\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 05:11:46,845 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:11:46,851 : INFO : topic diff=0.004951, rho=0.029656\n", + "2019-01-16 05:11:47,115 : INFO : PROGRESS: pass 0, at document #2276000/4922894\n", + "2019-01-16 05:11:49,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:49,744 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:11:49,745 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:11:49,747 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.011*\"work\" + 0.010*\"award\"\n", + "2019-01-16 05:11:49,748 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", + "2019-01-16 05:11:49,750 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 05:11:49,756 : INFO : topic diff=0.004665, rho=0.029643\n", + "2019-01-16 05:11:50,022 : INFO : PROGRESS: pass 0, at document #2278000/4922894\n", + "2019-01-16 05:11:52,082 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:52,639 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.072*\"align\" + 0.063*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.046*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:11:52,640 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"return\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 05:11:52,642 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.010*\"le\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:11:52,643 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.017*\"iran\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.013*\"tamil\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 05:11:52,644 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"method\" + 0.006*\"point\"\n", + "2019-01-16 05:11:52,650 : INFO : topic diff=0.004902, rho=0.029630\n", + "2019-01-16 05:11:57,240 : INFO : -11.635 per-word bound, 3180.7 perplexity estimate based on a held-out corpus of 2000 documents with 541087 words\n", + "2019-01-16 05:11:57,241 : INFO : PROGRESS: pass 0, at document #2280000/4922894\n", + "2019-01-16 05:11:59,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:11:59,816 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 05:11:59,818 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"berlin\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 05:11:59,819 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 05:11:59,821 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.014*\"asia\" + 0.014*\"min\"\n", + "2019-01-16 05:11:59,822 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.016*\"galleri\"\n", + "2019-01-16 05:11:59,828 : INFO : topic diff=0.004717, rho=0.029617\n", + "2019-01-16 05:12:00,089 : INFO : PROGRESS: pass 0, at document #2282000/4922894\n", + "2019-01-16 05:12:02,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:02,706 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:12:02,707 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.038*\"africa\" + 0.033*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.026*\"till\" + 0.024*\"color\" + 0.018*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:12:02,709 : INFO : topic #27 (0.020): 0.060*\"born\" + 0.034*\"russian\" + 0.026*\"american\" + 0.020*\"russia\" + 0.017*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.012*\"republ\" + 0.012*\"israel\" + 0.012*\"moscow\"\n", + "2019-01-16 05:12:02,711 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.065*\"villag\" + 0.050*\"region\" + 0.048*\"north\" + 0.046*\"south\" + 0.046*\"west\" + 0.046*\"east\" + 0.044*\"counti\" + 0.033*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:12:02,712 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:12:02,718 : INFO : topic diff=0.004361, rho=0.029604\n", + "2019-01-16 05:12:02,976 : INFO : PROGRESS: pass 0, at document #2284000/4922894\n", + "2019-01-16 05:12:04,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:05,534 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 05:12:05,536 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.052*\"univers\" + 0.044*\"colleg\" + 0.039*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 05:12:05,537 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:12:05,539 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.065*\"villag\" + 0.050*\"region\" + 0.048*\"north\" + 0.046*\"west\" + 0.046*\"south\" + 0.046*\"east\" + 0.044*\"counti\" + 0.032*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:12:05,542 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"model\" + 0.007*\"gener\" + 0.006*\"method\" + 0.006*\"point\"\n", + "2019-01-16 05:12:05,549 : INFO : topic diff=0.004165, rho=0.029591\n", + "2019-01-16 05:12:05,808 : INFO : PROGRESS: pass 0, at document #2286000/4922894\n", + "2019-01-16 05:12:07,874 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:08,431 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"jack\"\n", + "2019-01-16 05:12:08,432 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"berlin\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 05:12:08,434 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 05:12:08,435 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.013*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 05:12:08,436 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:12:08,442 : INFO : topic diff=0.004267, rho=0.029579\n", + "2019-01-16 05:12:08,686 : INFO : PROGRESS: pass 0, at document #2288000/4922894\n", + "2019-01-16 05:12:10,709 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:11,265 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:12:11,266 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.071*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"quebec\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"korea\"\n", + "2019-01-16 05:12:11,268 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", + "2019-01-16 05:12:11,269 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:12:11,271 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:12:11,276 : INFO : topic diff=0.004263, rho=0.029566\n", + "2019-01-16 05:12:11,528 : INFO : PROGRESS: pass 0, at document #2290000/4922894\n", + "2019-01-16 05:12:13,507 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:14,071 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 05:12:14,073 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:12:14,074 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"right\" + 0.009*\"order\" + 0.008*\"offic\"\n", + "2019-01-16 05:12:14,075 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:12:14,077 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:12:14,083 : INFO : topic diff=0.004584, rho=0.029553\n", + "2019-01-16 05:12:14,336 : INFO : PROGRESS: pass 0, at document #2292000/4922894\n", + "2019-01-16 05:12:16,349 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:16,909 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:12:16,911 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:12:16,912 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 05:12:16,914 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.030*\"world\" + 0.025*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.023*\"event\" + 0.020*\"japan\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.017*\"rank\"\n", + "2019-01-16 05:12:16,915 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.018*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.009*\"ford\"\n", + "2019-01-16 05:12:16,921 : INFO : topic diff=0.005141, rho=0.029540\n", + "2019-01-16 05:12:17,172 : INFO : PROGRESS: pass 0, at document #2294000/4922894\n", + "2019-01-16 05:12:19,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:19,708 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:12:19,709 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:12:19,711 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:12:19,713 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"jack\"\n", + "2019-01-16 05:12:19,715 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:12:19,721 : INFO : topic diff=0.004832, rho=0.029527\n", + "2019-01-16 05:12:19,979 : INFO : PROGRESS: pass 0, at document #2296000/4922894\n", + "2019-01-16 05:12:22,005 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:22,562 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:12:22,563 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:12:22,565 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:12:22,566 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:12:22,567 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:12:22,573 : INFO : topic diff=0.004233, rho=0.029514\n", + "2019-01-16 05:12:22,869 : INFO : PROGRESS: pass 0, at document #2298000/4922894\n", + "2019-01-16 05:12:24,908 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:25,470 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:12:25,472 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:12:25,473 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:12:25,474 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:12:25,475 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.074*\"align\" + 0.060*\"left\" + 0.058*\"wikit\" + 0.058*\"style\" + 0.050*\"center\" + 0.039*\"right\" + 0.035*\"text\" + 0.032*\"philippin\" + 0.023*\"border\"\n", + "2019-01-16 05:12:25,482 : INFO : topic diff=0.005070, rho=0.029501\n", + "2019-01-16 05:12:29,998 : INFO : -11.754 per-word bound, 3455.0 perplexity estimate based on a held-out corpus of 2000 documents with 530462 words\n", + "2019-01-16 05:12:29,999 : INFO : PROGRESS: pass 0, at document #2300000/4922894\n", + "2019-01-16 05:12:31,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:32,541 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.011*\"port\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:12:32,543 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:12:32,544 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 05:12:32,546 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"empir\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:12:32,547 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:12:32,554 : INFO : topic diff=0.004257, rho=0.029488\n", + "2019-01-16 05:12:32,820 : INFO : PROGRESS: pass 0, at document #2302000/4922894\n", + "2019-01-16 05:12:34,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:35,404 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.010*\"award\"\n", + "2019-01-16 05:12:35,405 : INFO : topic #27 (0.020): 0.057*\"born\" + 0.033*\"russian\" + 0.025*\"american\" + 0.019*\"russia\" + 0.017*\"polish\" + 0.017*\"jewish\" + 0.017*\"soviet\" + 0.013*\"israel\" + 0.012*\"poland\" + 0.012*\"moscow\"\n", + "2019-01-16 05:12:35,406 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"port\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:12:35,408 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.018*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.009*\"ford\"\n", + "2019-01-16 05:12:35,409 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"kong\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:12:35,415 : INFO : topic diff=0.004465, rho=0.029476\n", + "2019-01-16 05:12:35,672 : INFO : PROGRESS: pass 0, at document #2304000/4922894\n", + "2019-01-16 05:12:37,709 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:38,266 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"match\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 05:12:38,267 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.008*\"roman\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 05:12:38,269 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:12:38,270 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:12:38,271 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.014*\"pakistan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", + "2019-01-16 05:12:38,277 : INFO : topic diff=0.004752, rho=0.029463\n", + "2019-01-16 05:12:38,538 : INFO : PROGRESS: pass 0, at document #2306000/4922894\n", + "2019-01-16 05:12:40,571 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:41,127 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.018*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:12:41,128 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.021*\"kim\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.016*\"vietnam\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 05:12:41,130 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"pennsylvania\" + 0.011*\"washington\"\n", + "2019-01-16 05:12:41,132 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:12:41,134 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"cultur\" + 0.005*\"tradit\"\n", + "2019-01-16 05:12:41,140 : INFO : topic diff=0.004956, rho=0.029450\n", + "2019-01-16 05:12:41,395 : INFO : PROGRESS: pass 0, at document #2308000/4922894\n", + "2019-01-16 05:12:43,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:43,950 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:12:43,951 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:12:43,954 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.021*\"town\" + 0.021*\"unit\" + 0.017*\"cricket\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.015*\"london\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"wale\"\n", + "2019-01-16 05:12:43,956 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 05:12:43,957 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:12:43,963 : INFO : topic diff=0.005338, rho=0.029437\n", + "2019-01-16 05:12:44,218 : INFO : PROGRESS: pass 0, at document #2310000/4922894\n", + "2019-01-16 05:12:46,184 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:46,740 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 05:12:46,742 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:12:46,743 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 05:12:46,745 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:12:46,746 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"doubl\"\n", + "2019-01-16 05:12:46,752 : INFO : topic diff=0.004747, rho=0.029424\n", + "2019-01-16 05:12:47,013 : INFO : PROGRESS: pass 0, at document #2312000/4922894\n", + "2019-01-16 05:12:49,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:49,654 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", + "2019-01-16 05:12:49,655 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:12:49,657 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"gun\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"boat\" + 0.010*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:12:49,658 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.030*\"world\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.024*\"event\" + 0.020*\"athlet\" + 0.020*\"japan\" + 0.020*\"medal\" + 0.018*\"rank\"\n", + "2019-01-16 05:12:49,659 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\" + 0.012*\"royal\"\n", + "2019-01-16 05:12:49,665 : INFO : topic diff=0.004022, rho=0.029412\n", + "2019-01-16 05:12:49,941 : INFO : PROGRESS: pass 0, at document #2314000/4922894\n", + "2019-01-16 05:12:52,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:52,613 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:12:52,614 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:12:52,616 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:12:52,617 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:12:52,618 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:12:52,624 : INFO : topic diff=0.004650, rho=0.029399\n", + "2019-01-16 05:12:52,878 : INFO : PROGRESS: pass 0, at document #2316000/4922894\n", + "2019-01-16 05:12:54,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:55,417 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"vietnam\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:12:55,418 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.061*\"decemb\" + 0.061*\"april\" + 0.060*\"june\" + 0.060*\"august\"\n", + "2019-01-16 05:12:55,420 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.013*\"finish\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"time\" + 0.011*\"championship\" + 0.011*\"year\" + 0.009*\"ford\"\n", + "2019-01-16 05:12:55,421 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:12:55,423 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"tree\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 05:12:55,429 : INFO : topic diff=0.004485, rho=0.029386\n", + "2019-01-16 05:12:55,705 : INFO : PROGRESS: pass 0, at document #2318000/4922894\n", + "2019-01-16 05:12:57,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:12:58,288 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\"\n", + "2019-01-16 05:12:58,290 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.041*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.020*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:12:58,292 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:12:58,293 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.011*\"jazz\" + 0.011*\"opera\"\n", + "2019-01-16 05:12:58,294 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"servic\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\"\n", + "2019-01-16 05:12:58,300 : INFO : topic diff=0.004875, rho=0.029374\n", + "2019-01-16 05:13:03,196 : INFO : -12.308 per-word bound, 5069.5 perplexity estimate based on a held-out corpus of 2000 documents with 553001 words\n", + "2019-01-16 05:13:03,197 : INFO : PROGRESS: pass 0, at document #2320000/4922894\n", + "2019-01-16 05:13:05,221 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:05,781 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 05:13:05,783 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:13:05,784 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:13:05,787 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:13:05,789 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.030*\"world\" + 0.026*\"men\" + 0.024*\"championship\" + 0.024*\"olymp\" + 0.023*\"event\" + 0.021*\"athlet\" + 0.020*\"japan\" + 0.019*\"medal\" + 0.018*\"rank\"\n", + "2019-01-16 05:13:05,796 : INFO : topic diff=0.004435, rho=0.029361\n", + "2019-01-16 05:13:06,057 : INFO : PROGRESS: pass 0, at document #2322000/4922894\n", + "2019-01-16 05:13:08,058 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:08,614 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:13:08,615 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\"\n", + "2019-01-16 05:13:08,617 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:13:08,619 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:13:08,620 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:13:08,626 : INFO : topic diff=0.004572, rho=0.029348\n", + "2019-01-16 05:13:08,915 : INFO : PROGRESS: pass 0, at document #2324000/4922894\n", + "2019-01-16 05:13:10,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:11,480 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 05:13:11,481 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", + "2019-01-16 05:13:11,483 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"cathol\" + 0.012*\"born\"\n", + "2019-01-16 05:13:11,484 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 05:13:11,485 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:13:11,492 : INFO : topic diff=0.005355, rho=0.029336\n", + "2019-01-16 05:13:11,762 : INFO : PROGRESS: pass 0, at document #2326000/4922894\n", + "2019-01-16 05:13:13,799 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:14,355 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.072*\"align\" + 0.057*\"wikit\" + 0.057*\"left\" + 0.055*\"style\" + 0.047*\"center\" + 0.039*\"right\" + 0.034*\"text\" + 0.031*\"philippin\" + 0.025*\"border\"\n", + "2019-01-16 05:13:14,357 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.053*\"univers\" + 0.045*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:13:14,358 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 05:13:14,359 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.048*\"north\" + 0.047*\"east\" + 0.046*\"south\" + 0.045*\"west\" + 0.044*\"counti\" + 0.032*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:13:14,360 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:13:14,367 : INFO : topic diff=0.004315, rho=0.029323\n", + "2019-01-16 05:13:14,633 : INFO : PROGRESS: pass 0, at document #2328000/4922894\n", + "2019-01-16 05:13:16,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:17,260 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:13:17,261 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"stage\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:13:17,263 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"jazz\"\n", + "2019-01-16 05:13:17,264 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.021*\"kim\" + 0.021*\"singapor\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"vietnam\" + 0.015*\"asian\" + 0.015*\"asia\" + 0.013*\"min\"\n", + "2019-01-16 05:13:17,266 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.022*\"town\" + 0.020*\"unit\" + 0.017*\"scotland\" + 0.017*\"cricket\" + 0.016*\"citi\" + 0.016*\"london\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 05:13:17,271 : INFO : topic diff=0.004308, rho=0.029311\n", + "2019-01-16 05:13:17,546 : INFO : PROGRESS: pass 0, at document #2330000/4922894\n", + "2019-01-16 05:13:19,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:20,160 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 05:13:20,162 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:13:20,164 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:13:20,165 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:13:20,167 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:13:20,173 : INFO : topic diff=0.005455, rho=0.029298\n", + "2019-01-16 05:13:20,432 : INFO : PROGRESS: pass 0, at document #2332000/4922894\n", + "2019-01-16 05:13:22,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:22,993 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\"\n", + "2019-01-16 05:13:22,995 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.069*\"align\" + 0.059*\"wikit\" + 0.055*\"left\" + 0.055*\"style\" + 0.046*\"center\" + 0.038*\"right\" + 0.033*\"text\" + 0.032*\"philippin\" + 0.025*\"border\"\n", + "2019-01-16 05:13:22,996 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 05:13:22,999 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:13:23,001 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:13:23,006 : INFO : topic diff=0.004955, rho=0.029285\n", + "2019-01-16 05:13:23,263 : INFO : PROGRESS: pass 0, at document #2334000/4922894\n", + "2019-01-16 05:13:25,242 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:25,799 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.020*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:13:25,800 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.062*\"april\" + 0.062*\"august\" + 0.062*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:13:25,801 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"design\"\n", + "2019-01-16 05:13:25,803 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 05:13:25,804 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"ali\"\n", + "2019-01-16 05:13:25,810 : INFO : topic diff=0.004775, rho=0.029273\n", + "2019-01-16 05:13:26,070 : INFO : PROGRESS: pass 0, at document #2336000/4922894\n", + "2019-01-16 05:13:28,059 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:28,616 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 05:13:28,617 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:13:28,619 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", + "2019-01-16 05:13:28,621 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.039*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.027*\"color\" + 0.026*\"text\" + 0.024*\"till\" + 0.021*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", + "2019-01-16 05:13:28,622 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:13:28,628 : INFO : topic diff=0.004267, rho=0.029260\n", + "2019-01-16 05:13:28,884 : INFO : PROGRESS: pass 0, at document #2338000/4922894\n", + "2019-01-16 05:13:30,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:31,477 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", + "2019-01-16 05:13:31,479 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:13:31,480 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"point\" + 0.006*\"group\"\n", + "2019-01-16 05:13:31,482 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.020*\"episod\" + 0.020*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:13:31,483 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"design\"\n", + "2019-01-16 05:13:31,489 : INFO : topic diff=0.004412, rho=0.029248\n", + "2019-01-16 05:13:35,993 : INFO : -11.577 per-word bound, 3054.6 perplexity estimate based on a held-out corpus of 2000 documents with 538409 words\n", + "2019-01-16 05:13:35,994 : INFO : PROGRESS: pass 0, at document #2340000/4922894\n", + "2019-01-16 05:13:38,007 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:38,564 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.052*\"univers\" + 0.045*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:13:38,566 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:13:38,567 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.048*\"north\" + 0.046*\"east\" + 0.046*\"south\" + 0.044*\"west\" + 0.043*\"counti\" + 0.033*\"provinc\" + 0.027*\"central\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:13:38,568 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:13:38,570 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 05:13:38,577 : INFO : topic diff=0.003934, rho=0.029235\n", + "2019-01-16 05:13:38,854 : INFO : PROGRESS: pass 0, at document #2342000/4922894\n", + "2019-01-16 05:13:40,909 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:41,471 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"point\" + 0.006*\"group\"\n", + "2019-01-16 05:13:41,473 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\"\n", + "2019-01-16 05:13:41,474 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 05:13:41,476 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:13:41,477 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:13:41,483 : INFO : topic diff=0.006778, rho=0.029223\n", + "2019-01-16 05:13:41,734 : INFO : PROGRESS: pass 0, at document #2344000/4922894\n", + "2019-01-16 05:13:43,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:44,265 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 05:13:44,266 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:13:44,268 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.012*\"cell\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"medicin\" + 0.009*\"caus\" + 0.008*\"effect\"\n", + "2019-01-16 05:13:44,269 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.011*\"islam\"\n", + "2019-01-16 05:13:44,270 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.065*\"align\" + 0.059*\"wikit\" + 0.055*\"style\" + 0.053*\"left\" + 0.046*\"center\" + 0.040*\"right\" + 0.033*\"philippin\" + 0.032*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:13:44,277 : INFO : topic diff=0.004685, rho=0.029210\n", + "2019-01-16 05:13:44,542 : INFO : PROGRESS: pass 0, at document #2346000/4922894\n", + "2019-01-16 05:13:46,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:47,094 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:13:47,096 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:13:47,098 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:13:47,100 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"sir\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 05:13:47,101 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.068*\"januari\" + 0.066*\"juli\" + 0.066*\"novemb\" + 0.064*\"april\" + 0.064*\"august\" + 0.063*\"june\" + 0.063*\"decemb\"\n", + "2019-01-16 05:13:47,108 : INFO : topic diff=0.004732, rho=0.029198\n", + "2019-01-16 05:13:47,356 : INFO : PROGRESS: pass 0, at document #2348000/4922894\n", + "2019-01-16 05:13:49,408 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:49,967 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:13:49,969 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:13:49,971 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:13:49,973 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:13:49,974 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.020*\"commun\" + 0.020*\"household\" + 0.020*\"counti\"\n", + "2019-01-16 05:13:49,980 : INFO : topic diff=0.003993, rho=0.029185\n", + "2019-01-16 05:13:50,274 : INFO : PROGRESS: pass 0, at document #2350000/4922894\n", + "2019-01-16 05:13:52,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:52,890 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:13:52,892 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.052*\"univers\" + 0.046*\"colleg\" + 0.039*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:13:52,893 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.016*\"squadron\" + 0.015*\"flight\" + 0.014*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:13:52,894 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.026*\"color\" + 0.026*\"text\" + 0.024*\"till\" + 0.022*\"black\" + 0.013*\"cape\" + 0.012*\"storm\"\n", + "2019-01-16 05:13:52,896 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:13:52,901 : INFO : topic diff=0.004690, rho=0.029173\n", + "2019-01-16 05:13:53,160 : INFO : PROGRESS: pass 0, at document #2352000/4922894\n", + "2019-01-16 05:13:55,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:55,746 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.062*\"villag\" + 0.053*\"region\" + 0.048*\"north\" + 0.046*\"east\" + 0.046*\"south\" + 0.045*\"west\" + 0.043*\"counti\" + 0.033*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:13:55,747 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.025*\"championship\" + 0.023*\"event\" + 0.020*\"japan\" + 0.020*\"medal\" + 0.020*\"athlet\" + 0.017*\"rank\"\n", + "2019-01-16 05:13:55,749 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.009*\"church\"\n", + "2019-01-16 05:13:55,751 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"cancer\"\n", + "2019-01-16 05:13:55,753 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:13:55,758 : INFO : topic diff=0.004087, rho=0.029161\n", + "2019-01-16 05:13:56,005 : INFO : PROGRESS: pass 0, at document #2354000/4922894\n", + "2019-01-16 05:13:57,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:13:58,507 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:13:58,508 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:13:58,510 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.011*\"award\"\n", + "2019-01-16 05:13:58,511 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:13:58,512 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.019*\"open\" + 0.019*\"point\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:13:58,518 : INFO : topic diff=0.005366, rho=0.029148\n", + "2019-01-16 05:13:58,780 : INFO : PROGRESS: pass 0, at document #2356000/4922894\n", + "2019-01-16 05:14:00,738 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:01,297 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.044*\"china\" + 0.034*\"chines\" + 0.034*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", + "2019-01-16 05:14:01,298 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"ali\"\n", + "2019-01-16 05:14:01,300 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.010*\"author\"\n", + "2019-01-16 05:14:01,301 : INFO : topic #34 (0.020): 0.106*\"island\" + 0.070*\"canada\" + 0.059*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.016*\"korean\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:14:01,303 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:14:01,310 : INFO : topic diff=0.004754, rho=0.029136\n", + "2019-01-16 05:14:01,560 : INFO : PROGRESS: pass 0, at document #2358000/4922894\n", + "2019-01-16 05:14:03,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:04,082 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:14:04,083 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.009*\"air\"\n", + "2019-01-16 05:14:04,085 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.018*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.016*\"team\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:14:04,086 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.012*\"divis\"\n", + "2019-01-16 05:14:04,087 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"ali\"\n", + "2019-01-16 05:14:04,094 : INFO : topic diff=0.004216, rho=0.029123\n", + "2019-01-16 05:14:08,634 : INFO : -11.713 per-word bound, 3357.0 perplexity estimate based on a held-out corpus of 2000 documents with 549560 words\n", + "2019-01-16 05:14:08,635 : INFO : PROGRESS: pass 0, at document #2360000/4922894\n", + "2019-01-16 05:14:10,657 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:11,214 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.026*\"men\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.023*\"event\" + 0.020*\"japan\" + 0.020*\"medal\" + 0.020*\"athlet\" + 0.017*\"rank\"\n", + "2019-01-16 05:14:11,216 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:14:11,217 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 05:14:11,218 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:14:11,220 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"design\"\n", + "2019-01-16 05:14:11,225 : INFO : topic diff=0.005136, rho=0.029111\n", + "2019-01-16 05:14:11,488 : INFO : PROGRESS: pass 0, at document #2362000/4922894\n", + "2019-01-16 05:14:13,529 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:14,089 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"town\" + 0.020*\"unit\" + 0.019*\"cricket\" + 0.018*\"scotland\" + 0.017*\"citi\" + 0.016*\"london\" + 0.016*\"scottish\" + 0.013*\"west\" + 0.012*\"wale\"\n", + "2019-01-16 05:14:14,090 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:14:14,092 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.007*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"high\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"temperatur\"\n", + "2019-01-16 05:14:14,093 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.022*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:14:14,095 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"player\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"design\"\n", + "2019-01-16 05:14:14,100 : INFO : topic diff=0.004796, rho=0.029099\n", + "2019-01-16 05:14:14,359 : INFO : PROGRESS: pass 0, at document #2364000/4922894\n", + "2019-01-16 05:14:16,382 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:16,963 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"design\"\n", + "2019-01-16 05:14:16,965 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:14:16,967 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:14:16,968 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"town\" + 0.020*\"unit\" + 0.020*\"cricket\" + 0.018*\"scotland\" + 0.016*\"citi\" + 0.016*\"scottish\" + 0.015*\"london\" + 0.013*\"west\" + 0.013*\"manchest\"\n", + "2019-01-16 05:14:16,969 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:14:16,975 : INFO : topic diff=0.004194, rho=0.029086\n", + "2019-01-16 05:14:17,245 : INFO : PROGRESS: pass 0, at document #2366000/4922894\n", + "2019-01-16 05:14:19,300 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:14:19,857 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:14:19,859 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.025*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:14:19,860 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:14:19,862 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 05:14:19,863 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.030*\"south\" + 0.025*\"color\" + 0.025*\"text\" + 0.023*\"till\" + 0.021*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:14:19,869 : INFO : topic diff=0.004662, rho=0.029074\n", + "2019-01-16 05:14:20,127 : INFO : PROGRESS: pass 0, at document #2368000/4922894\n", + "2019-01-16 05:14:22,174 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:22,731 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:14:22,733 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"effect\" + 0.004*\"form\"\n", + "2019-01-16 05:14:22,735 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:14:22,736 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.016*\"team\" + 0.015*\"championship\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:14:22,737 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"order\" + 0.008*\"right\" + 0.008*\"offic\"\n", + "2019-01-16 05:14:22,743 : INFO : topic diff=0.003698, rho=0.029062\n", + "2019-01-16 05:14:22,994 : INFO : PROGRESS: pass 0, at document #2370000/4922894\n", + "2019-01-16 05:14:24,977 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:25,541 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"town\" + 0.020*\"unit\" + 0.020*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.016*\"london\" + 0.015*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 05:14:25,542 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.062*\"villag\" + 0.053*\"region\" + 0.048*\"north\" + 0.047*\"east\" + 0.045*\"south\" + 0.044*\"counti\" + 0.044*\"west\" + 0.032*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 05:14:25,544 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.023*\"group\" + 0.020*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:14:25,545 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.019*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 05:14:25,546 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"direct\" + 0.011*\"produc\"\n", + "2019-01-16 05:14:25,552 : INFO : topic diff=0.004457, rho=0.029050\n", + "2019-01-16 05:14:25,807 : INFO : PROGRESS: pass 0, at document #2372000/4922894\n", + "2019-01-16 05:14:27,867 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:28,426 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:14:28,427 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.011*\"medicin\" + 0.009*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"cancer\"\n", + "2019-01-16 05:14:28,428 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", + "2019-01-16 05:14:28,430 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:14:28,431 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 05:14:28,437 : INFO : topic diff=0.005013, rho=0.029037\n", + "2019-01-16 05:14:28,712 : INFO : PROGRESS: pass 0, at document #2374000/4922894\n", + "2019-01-16 05:14:30,683 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:31,239 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.029*\"south\" + 0.025*\"text\" + 0.025*\"color\" + 0.023*\"till\" + 0.022*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:14:31,240 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:14:31,242 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.072*\"align\" + 0.063*\"left\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.044*\"center\" + 0.039*\"right\" + 0.035*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:14:31,243 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.012*\"ali\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", + "2019-01-16 05:14:31,247 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:14:31,254 : INFO : topic diff=0.004296, rho=0.029025\n", + "2019-01-16 05:14:31,511 : INFO : PROGRESS: pass 0, at document #2376000/4922894\n", + "2019-01-16 05:14:33,555 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:34,111 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:14:34,113 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:14:34,115 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:14:34,116 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:14:34,117 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"town\" + 0.020*\"unit\" + 0.020*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.016*\"london\" + 0.015*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:14:34,123 : INFO : topic diff=0.004391, rho=0.029013\n", + "2019-01-16 05:14:34,385 : INFO : PROGRESS: pass 0, at document #2378000/4922894\n", + "2019-01-16 05:14:36,536 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:37,093 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:14:37,094 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.073*\"octob\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.064*\"decemb\" + 0.063*\"april\" + 0.063*\"august\" + 0.063*\"june\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:14:37,095 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.019*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 05:14:37,096 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:14:37,098 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:14:37,103 : INFO : topic diff=0.004497, rho=0.029001\n", + "2019-01-16 05:14:41,753 : INFO : -11.568 per-word bound, 3036.3 perplexity estimate based on a held-out corpus of 2000 documents with 564354 words\n", + "2019-01-16 05:14:41,753 : INFO : PROGRESS: pass 0, at document #2380000/4922894\n", + "2019-01-16 05:14:43,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:44,355 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.022*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:14:44,356 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"town\" + 0.020*\"unit\" + 0.020*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.016*\"london\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:14:44,358 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", + "2019-01-16 05:14:44,360 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:14:44,361 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:14:44,367 : INFO : topic diff=0.004821, rho=0.028989\n", + "2019-01-16 05:14:44,627 : INFO : PROGRESS: pass 0, at document #2382000/4922894\n", + "2019-01-16 05:14:46,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:47,275 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:14:47,276 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.062*\"villag\" + 0.052*\"region\" + 0.048*\"north\" + 0.047*\"east\" + 0.045*\"south\" + 0.044*\"counti\" + 0.043*\"west\" + 0.032*\"provinc\" + 0.029*\"central\"\n", + "2019-01-16 05:14:47,278 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.050*\"univers\" + 0.044*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:14:47,279 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", + "2019-01-16 05:14:47,280 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:14:47,286 : INFO : topic diff=0.004443, rho=0.028976\n", + "2019-01-16 05:14:47,537 : INFO : PROGRESS: pass 0, at document #2384000/4922894\n", + "2019-01-16 05:14:49,575 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:50,135 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.035*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:14:50,136 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.012*\"ali\"\n", + "2019-01-16 05:14:50,139 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"cricket\" + 0.022*\"town\" + 0.020*\"unit\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.016*\"london\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:14:50,140 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:14:50,142 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:14:50,148 : INFO : topic diff=0.003983, rho=0.028964\n", + "2019-01-16 05:14:50,410 : INFO : PROGRESS: pass 0, at document #2386000/4922894\n", + "2019-01-16 05:14:52,451 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:53,009 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:14:53,010 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.052*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:14:53,012 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:14:53,013 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:14:53,014 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.010*\"medicin\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\"\n", + "2019-01-16 05:14:53,020 : INFO : topic diff=0.004398, rho=0.028952\n", + "2019-01-16 05:14:53,283 : INFO : PROGRESS: pass 0, at document #2388000/4922894\n", + "2019-01-16 05:14:55,270 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:55,825 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:14:55,827 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:14:55,828 : INFO : topic #34 (0.020): 0.103*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", + "2019-01-16 05:14:55,829 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.016*\"team\" + 0.013*\"champion\" + 0.012*\"defeat\"\n", + "2019-01-16 05:14:55,830 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:14:55,836 : INFO : topic diff=0.004553, rho=0.028940\n", + "2019-01-16 05:14:56,101 : INFO : PROGRESS: pass 0, at document #2390000/4922894\n", + "2019-01-16 05:14:58,120 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:14:58,676 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.023*\"till\" + 0.023*\"color\" + 0.021*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:14:58,678 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:14:58,679 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:14:58,681 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:14:58,682 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", + "2019-01-16 05:14:58,688 : INFO : topic diff=0.003773, rho=0.028928\n", + "2019-01-16 05:14:58,942 : INFO : PROGRESS: pass 0, at document #2392000/4922894\n", + "2019-01-16 05:15:00,941 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:01,503 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.012*\"tamil\" + 0.012*\"sri\" + 0.011*\"islam\"\n", + "2019-01-16 05:15:01,506 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 05:15:01,507 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:15:01,509 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:15:01,510 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:15:01,515 : INFO : topic diff=0.004834, rho=0.028916\n", + "2019-01-16 05:15:01,779 : INFO : PROGRESS: pass 0, at document #2394000/4922894\n", + "2019-01-16 05:15:04,027 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:04,590 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:15:04,592 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.069*\"align\" + 0.061*\"left\" + 0.059*\"wikit\" + 0.053*\"style\" + 0.044*\"center\" + 0.038*\"right\" + 0.033*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:15:04,593 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.024*\"color\" + 0.021*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:15:04,595 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:15:04,596 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:15:04,602 : INFO : topic diff=0.004141, rho=0.028904\n", + "2019-01-16 05:15:04,858 : INFO : PROGRESS: pass 0, at document #2396000/4922894\n", + "2019-01-16 05:15:06,861 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:07,419 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"championship\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"year\"\n", + "2019-01-16 05:15:07,420 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", + "2019-01-16 05:15:07,421 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:15:07,423 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:15:07,424 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.013*\"year\" + 0.012*\"daughter\"\n", + "2019-01-16 05:15:07,430 : INFO : topic diff=0.004133, rho=0.028892\n", + "2019-01-16 05:15:07,690 : INFO : PROGRESS: pass 0, at document #2398000/4922894\n", + "2019-01-16 05:15:09,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:10,271 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:15:10,272 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.013*\"champion\" + 0.012*\"defeat\"\n", + "2019-01-16 05:15:10,274 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:15:10,275 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 05:15:10,276 : INFO : topic #34 (0.020): 0.103*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.017*\"british\" + 0.016*\"korean\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", + "2019-01-16 05:15:10,282 : INFO : topic diff=0.004845, rho=0.028880\n", + "2019-01-16 05:15:14,842 : INFO : -11.643 per-word bound, 3198.9 perplexity estimate based on a held-out corpus of 2000 documents with 540912 words\n", + "2019-01-16 05:15:14,843 : INFO : PROGRESS: pass 0, at document #2400000/4922894\n", + "2019-01-16 05:15:16,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:17,391 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:15:17,393 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.030*\"world\" + 0.026*\"olymp\" + 0.026*\"men\" + 0.025*\"championship\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"rank\"\n", + "2019-01-16 05:15:17,394 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:15:17,396 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 05:15:17,397 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.023*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:15:17,403 : INFO : topic diff=0.003563, rho=0.028868\n", + "2019-01-16 05:15:17,669 : INFO : PROGRESS: pass 0, at document #2402000/4922894\n", + "2019-01-16 05:15:19,747 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:20,303 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.009*\"air\"\n", + "2019-01-16 05:15:20,304 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:15:20,306 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.067*\"align\" + 0.061*\"left\" + 0.059*\"wikit\" + 0.053*\"style\" + 0.044*\"center\" + 0.037*\"right\" + 0.034*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:15:20,307 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"championship\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"year\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:15:20,309 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:15:20,315 : INFO : topic diff=0.005193, rho=0.028855\n", + "2019-01-16 05:15:20,572 : INFO : PROGRESS: pass 0, at document #2404000/4922894\n", + "2019-01-16 05:15:22,585 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:23,141 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:15:23,143 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:15:23,145 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:15:23,146 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:15:23,148 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"method\"\n", + "2019-01-16 05:15:23,155 : INFO : topic diff=0.003970, rho=0.028843\n", + "2019-01-16 05:15:23,417 : INFO : PROGRESS: pass 0, at document #2406000/4922894\n", + "2019-01-16 05:15:25,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:25,995 : INFO : topic #34 (0.020): 0.101*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.017*\"british\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", + "2019-01-16 05:15:25,997 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:15:25,998 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:15:26,000 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.028*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:15:26,003 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 05:15:26,009 : INFO : topic diff=0.004432, rho=0.028831\n", + "2019-01-16 05:15:26,265 : INFO : PROGRESS: pass 0, at document #2408000/4922894\n", + "2019-01-16 05:15:28,277 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:28,838 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 05:15:28,840 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.011*\"servic\"\n", + "2019-01-16 05:15:28,841 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.065*\"april\" + 0.064*\"june\" + 0.064*\"decemb\" + 0.063*\"august\"\n", + "2019-01-16 05:15:28,843 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:15:28,844 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:15:28,850 : INFO : topic diff=0.004418, rho=0.028820\n", + "2019-01-16 05:15:29,100 : INFO : PROGRESS: pass 0, at document #2410000/4922894\n", + "2019-01-16 05:15:31,002 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:31,559 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:15:31,560 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"term\" + 0.005*\"tradit\"\n", + "2019-01-16 05:15:31,562 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 05:15:31,563 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"method\"\n", + "2019-01-16 05:15:31,565 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:15:31,571 : INFO : topic diff=0.004306, rho=0.028808\n", + "2019-01-16 05:15:31,826 : INFO : PROGRESS: pass 0, at document #2412000/4922894\n", + "2019-01-16 05:15:33,786 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:34,344 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:15:34,345 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:15:34,347 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:15:34,348 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.061*\"villag\" + 0.052*\"region\" + 0.047*\"east\" + 0.046*\"north\" + 0.044*\"south\" + 0.044*\"west\" + 0.043*\"counti\" + 0.032*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:15:34,349 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.014*\"royal\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\"\n", + "2019-01-16 05:15:34,355 : INFO : topic diff=0.004769, rho=0.028796\n", + "2019-01-16 05:15:34,613 : INFO : PROGRESS: pass 0, at document #2414000/4922894\n", + "2019-01-16 05:15:36,674 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:37,231 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.012*\"ali\" + 0.011*\"sri\" + 0.011*\"islam\"\n", + "2019-01-16 05:15:37,233 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:15:37,234 : INFO : topic #34 (0.020): 0.101*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"montreal\" + 0.014*\"korea\" + 0.014*\"quebec\"\n", + "2019-01-16 05:15:37,236 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:15:37,237 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:15:37,243 : INFO : topic diff=0.004177, rho=0.028784\n", + "2019-01-16 05:15:37,505 : INFO : PROGRESS: pass 0, at document #2416000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:15:39,550 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:40,109 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.029*\"airport\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:15:40,110 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:15:40,113 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:15:40,114 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.043*\"final\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.020*\"open\" + 0.020*\"winner\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"doubl\"\n", + "2019-01-16 05:15:40,115 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:15:40,121 : INFO : topic diff=0.004065, rho=0.028772\n", + "2019-01-16 05:15:40,393 : INFO : PROGRESS: pass 0, at document #2418000/4922894\n", + "2019-01-16 05:15:42,381 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:42,940 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"team\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:15:42,941 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:15:42,943 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 05:15:42,944 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:15:42,946 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:15:42,951 : INFO : topic diff=0.004532, rho=0.028760\n", + "2019-01-16 05:15:47,630 : INFO : -11.635 per-word bound, 3181.4 perplexity estimate based on a held-out corpus of 2000 documents with 561255 words\n", + "2019-01-16 05:15:47,631 : INFO : PROGRESS: pass 0, at document #2420000/4922894\n", + "2019-01-16 05:15:49,694 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:50,252 : INFO : topic #34 (0.020): 0.102*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.016*\"british\" + 0.015*\"korean\" + 0.014*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", + "2019-01-16 05:15:50,253 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\"\n", + "2019-01-16 05:15:50,254 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:15:50,255 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.020*\"russia\" + 0.019*\"polish\" + 0.019*\"jewish\" + 0.018*\"soviet\" + 0.015*\"israel\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", + "2019-01-16 05:15:50,257 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.023*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"asian\" + 0.015*\"vietnam\" + 0.013*\"hong\"\n", + "2019-01-16 05:15:50,262 : INFO : topic diff=0.004891, rho=0.028748\n", + "2019-01-16 05:15:50,529 : INFO : PROGRESS: pass 0, at document #2422000/4922894\n", + "2019-01-16 05:15:52,568 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:53,124 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"us\" + 0.008*\"releas\" + 0.007*\"player\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:15:53,126 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:15:53,127 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.014*\"piano\" + 0.014*\"orchestra\" + 0.012*\"opera\"\n", + "2019-01-16 05:15:53,129 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:15:53,130 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:15:53,136 : INFO : topic diff=0.004946, rho=0.028736\n", + "2019-01-16 05:15:53,385 : INFO : PROGRESS: pass 0, at document #2424000/4922894\n", + "2019-01-16 05:15:55,392 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:55,950 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"fleet\"\n", + "2019-01-16 05:15:55,951 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"open\" + 0.021*\"group\" + 0.020*\"winner\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"doubl\"\n", + "2019-01-16 05:15:55,953 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:15:55,954 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:15:55,955 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:15:55,961 : INFO : topic diff=0.003987, rho=0.028724\n", + "2019-01-16 05:15:56,244 : INFO : PROGRESS: pass 0, at document #2426000/4922894\n", + "2019-01-16 05:15:58,179 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:15:58,735 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.068*\"juli\" + 0.067*\"novemb\" + 0.066*\"april\" + 0.065*\"june\" + 0.065*\"august\" + 0.064*\"decemb\"\n", + "2019-01-16 05:15:58,737 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"act\" + 0.021*\"court\" + 0.016*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 05:15:58,738 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:15:58,739 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:15:58,741 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:15:58,747 : INFO : topic diff=0.004509, rho=0.028712\n", + "2019-01-16 05:15:58,999 : INFO : PROGRESS: pass 0, at document #2428000/4922894\n", + "2019-01-16 05:16:01,019 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:01,575 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.019*\"design\" + 0.019*\"imag\" + 0.017*\"exhibit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:16:01,577 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"ali\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"sri\"\n", + "2019-01-16 05:16:01,578 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 05:16:01,580 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"protein\" + 0.007*\"us\" + 0.007*\"ga\"\n", + "2019-01-16 05:16:01,581 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"team\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:16:01,587 : INFO : topic diff=0.004202, rho=0.028701\n", + "2019-01-16 05:16:01,846 : INFO : PROGRESS: pass 0, at document #2430000/4922894\n", + "2019-01-16 05:16:03,904 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:04,463 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"team\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:16:04,464 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.047*\"univers\" + 0.043*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:16:04,465 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.024*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.011*\"cape\"\n", + "2019-01-16 05:16:04,467 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:16:04,468 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.068*\"align\" + 0.059*\"wikit\" + 0.058*\"left\" + 0.054*\"style\" + 0.047*\"center\" + 0.036*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:16:04,474 : INFO : topic diff=0.004362, rho=0.028689\n", + "2019-01-16 05:16:04,732 : INFO : PROGRESS: pass 0, at document #2432000/4922894\n", + "2019-01-16 05:16:06,681 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:07,241 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:16:07,242 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:16:07,243 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.062*\"villag\" + 0.051*\"region\" + 0.046*\"east\" + 0.046*\"north\" + 0.045*\"west\" + 0.044*\"south\" + 0.042*\"counti\" + 0.032*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:16:07,245 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", + "2019-01-16 05:16:07,246 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.024*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.011*\"cape\"\n", + "2019-01-16 05:16:07,252 : INFO : topic diff=0.004643, rho=0.028677\n", + "2019-01-16 05:16:07,507 : INFO : PROGRESS: pass 0, at document #2434000/4922894\n", + "2019-01-16 05:16:09,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:10,004 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.019*\"design\" + 0.019*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:16:10,006 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.030*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:16:10,007 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:16:10,011 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:16:10,014 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.067*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.053*\"style\" + 0.047*\"center\" + 0.036*\"right\" + 0.033*\"philippin\" + 0.029*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:16:10,020 : INFO : topic diff=0.004786, rho=0.028665\n", + "2019-01-16 05:16:10,273 : INFO : PROGRESS: pass 0, at document #2436000/4922894\n", + "2019-01-16 05:16:12,253 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:12,809 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:16:12,811 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:16:12,812 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.069*\"juli\" + 0.068*\"januari\" + 0.067*\"novemb\" + 0.066*\"june\" + 0.066*\"april\" + 0.066*\"august\" + 0.065*\"decemb\"\n", + "2019-01-16 05:16:12,813 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.023*\"color\" + 0.022*\"black\" + 0.012*\"storm\" + 0.011*\"cape\"\n", + "2019-01-16 05:16:12,814 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:16:12,820 : INFO : topic diff=0.003731, rho=0.028653\n", + "2019-01-16 05:16:13,079 : INFO : PROGRESS: pass 0, at document #2438000/4922894\n", + "2019-01-16 05:16:15,158 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:15,716 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:16:15,717 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.022*\"open\" + 0.020*\"winner\" + 0.020*\"group\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:16:15,719 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:16:15,720 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:16:15,723 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.020*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.016*\"scotland\" + 0.016*\"citi\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.013*\"wale\"\n", + "2019-01-16 05:16:15,729 : INFO : topic diff=0.004939, rho=0.028642\n", + "2019-01-16 05:16:20,299 : INFO : -11.508 per-word bound, 2912.3 perplexity estimate based on a held-out corpus of 2000 documents with 547313 words\n", + "2019-01-16 05:16:20,300 : INFO : PROGRESS: pass 0, at document #2440000/4922894\n", + "2019-01-16 05:16:22,298 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:22,855 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:16:22,856 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:16:22,858 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", + "2019-01-16 05:16:22,859 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:16:22,860 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:16:22,866 : INFO : topic diff=0.004760, rho=0.028630\n", + "2019-01-16 05:16:23,126 : INFO : PROGRESS: pass 0, at document #2442000/4922894\n", + "2019-01-16 05:16:25,166 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:25,722 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 05:16:25,724 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 05:16:25,725 : INFO : topic #34 (0.020): 0.100*\"island\" + 0.072*\"canada\" + 0.062*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"british\" + 0.014*\"korean\" + 0.014*\"korea\" + 0.014*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 05:16:25,727 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.017*\"thailand\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.013*\"hong\"\n", + "2019-01-16 05:16:25,728 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.011*\"award\"\n", + "2019-01-16 05:16:25,734 : INFO : topic diff=0.004121, rho=0.028618\n", + "2019-01-16 05:16:25,995 : INFO : PROGRESS: pass 0, at document #2444000/4922894\n", + "2019-01-16 05:16:27,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:28,535 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"april\" + 0.066*\"novemb\" + 0.065*\"august\" + 0.064*\"june\" + 0.063*\"decemb\"\n", + "2019-01-16 05:16:28,538 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:16:28,539 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:16:28,541 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.013*\"orchestra\" + 0.012*\"opera\"\n", + "2019-01-16 05:16:28,542 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:16:28,548 : INFO : topic diff=0.004893, rho=0.028606\n", + "2019-01-16 05:16:28,803 : INFO : PROGRESS: pass 0, at document #2446000/4922894\n", + "2019-01-16 05:16:30,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:31,390 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:16:31,391 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"hong\"\n", + "2019-01-16 05:16:31,393 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:16:31,394 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.056*\"left\" + 0.052*\"style\" + 0.046*\"center\" + 0.036*\"philippin\" + 0.035*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:16:31,395 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.052*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:16:31,401 : INFO : topic diff=0.004235, rho=0.028595\n", + "2019-01-16 05:16:31,670 : INFO : PROGRESS: pass 0, at document #2448000/4922894\n", + "2019-01-16 05:16:33,695 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:34,252 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:16:34,253 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"malaysia\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"hong\"\n", + "2019-01-16 05:16:34,255 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", + "2019-01-16 05:16:34,256 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:16:34,258 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"artist\" + 0.021*\"paint\" + 0.020*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:16:34,263 : INFO : topic diff=0.003654, rho=0.028583\n", + "2019-01-16 05:16:34,565 : INFO : PROGRESS: pass 0, at document #2450000/4922894\n", + "2019-01-16 05:16:36,613 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:37,172 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 05:16:37,174 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.011*\"year\" + 0.010*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 05:16:37,175 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:16:37,177 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:16:37,178 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 05:16:37,184 : INFO : topic diff=0.004635, rho=0.028571\n", + "2019-01-16 05:16:37,440 : INFO : PROGRESS: pass 0, at document #2452000/4922894\n", + "2019-01-16 05:16:39,460 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:40,019 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:16:40,020 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"award\" + 0.011*\"scienc\"\n", + "2019-01-16 05:16:40,021 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:16:40,023 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:16:40,024 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"compos\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:16:40,030 : INFO : topic diff=0.004730, rho=0.028560\n", + "2019-01-16 05:16:40,285 : INFO : PROGRESS: pass 0, at document #2454000/4922894\n", + "2019-01-16 05:16:42,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:42,831 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.029*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 05:16:42,833 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"us\" + 0.007*\"protein\"\n", + "2019-01-16 05:16:42,834 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:16:42,835 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.063*\"align\" + 0.059*\"wikit\" + 0.055*\"left\" + 0.053*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:16:42,838 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.021*\"singapor\" + 0.017*\"kim\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.014*\"hong\"\n", + "2019-01-16 05:16:42,844 : INFO : topic diff=0.004796, rho=0.028548\n", + "2019-01-16 05:16:43,099 : INFO : PROGRESS: pass 0, at document #2456000/4922894\n", + "2019-01-16 05:16:45,113 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:45,672 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 05:16:45,674 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:16:45,675 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:16:45,679 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"compos\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:16:45,681 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:16:45,687 : INFO : topic diff=0.004146, rho=0.028537\n", + "2019-01-16 05:16:45,940 : INFO : PROGRESS: pass 0, at document #2458000/4922894\n", + "2019-01-16 05:16:47,967 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:48,527 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.029*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:16:48,528 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"sail\"\n", + "2019-01-16 05:16:48,529 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.055*\"left\" + 0.053*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:16:48,531 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 05:16:48,532 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:16:48,538 : INFO : topic diff=0.004231, rho=0.028525\n", + "2019-01-16 05:16:53,090 : INFO : -11.459 per-word bound, 2814.3 perplexity estimate based on a held-out corpus of 2000 documents with 559586 words\n", + "2019-01-16 05:16:53,091 : INFO : PROGRESS: pass 0, at document #2460000/4922894\n", + "2019-01-16 05:16:55,073 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:55,630 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.054*\"left\" + 0.054*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.031*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:16:55,632 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\"\n", + "2019-01-16 05:16:55,633 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:16:55,634 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.016*\"fight\" + 0.016*\"team\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:16:55,635 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:16:55,641 : INFO : topic diff=0.004046, rho=0.028513\n", + "2019-01-16 05:16:55,908 : INFO : PROGRESS: pass 0, at document #2462000/4922894\n", + "2019-01-16 05:16:57,961 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:16:58,518 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.025*\"tournament\" + 0.021*\"open\" + 0.020*\"winner\" + 0.019*\"group\" + 0.017*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:16:58,519 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:16:58,521 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:16:58,522 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", + "2019-01-16 05:16:58,524 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:16:58,530 : INFO : topic diff=0.003501, rho=0.028502\n", + "2019-01-16 05:16:58,781 : INFO : PROGRESS: pass 0, at document #2464000/4922894\n", + "2019-01-16 05:17:00,796 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:01,353 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.030*\"italian\" + 0.024*\"pari\" + 0.022*\"itali\" + 0.020*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:17:01,354 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:17:01,355 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.066*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.053*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.035*\"right\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:17:01,358 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"sail\"\n", + "2019-01-16 05:17:01,359 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:17:01,365 : INFO : topic diff=0.003964, rho=0.028490\n", + "2019-01-16 05:17:01,621 : INFO : PROGRESS: pass 0, at document #2466000/4922894\n", + "2019-01-16 05:17:03,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:04,266 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.012*\"ali\" + 0.012*\"khan\" + 0.011*\"sri\"\n", + "2019-01-16 05:17:04,268 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"ret\" + 0.013*\"health\" + 0.012*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 05:17:04,269 : INFO : topic #34 (0.020): 0.100*\"island\" + 0.072*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.017*\"british\" + 0.015*\"montreal\" + 0.015*\"korean\" + 0.014*\"korea\" + 0.014*\"quebec\"\n", + "2019-01-16 05:17:04,271 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.020*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 05:17:04,272 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:17:04,278 : INFO : topic diff=0.004369, rho=0.028479\n", + "2019-01-16 05:17:04,531 : INFO : PROGRESS: pass 0, at document #2468000/4922894\n", + "2019-01-16 05:17:06,497 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:07,055 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.031*\"italian\" + 0.024*\"pari\" + 0.023*\"itali\" + 0.020*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:17:07,056 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"market\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:17:07,059 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"group\"\n", + "2019-01-16 05:17:07,060 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"union\"\n", + "2019-01-16 05:17:07,062 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:17:07,068 : INFO : topic diff=0.004926, rho=0.028467\n", + "2019-01-16 05:17:07,322 : INFO : PROGRESS: pass 0, at document #2470000/4922894\n", + "2019-01-16 05:17:09,312 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:09,869 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"scienc\" + 0.011*\"servic\"\n", + "2019-01-16 05:17:09,870 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.026*\"text\" + 0.023*\"till\" + 0.022*\"black\" + 0.022*\"color\" + 0.012*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:17:09,872 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.024*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", + "2019-01-16 05:17:09,873 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.067*\"juli\" + 0.067*\"august\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"april\" + 0.063*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:17:09,875 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:17:09,881 : INFO : topic diff=0.004068, rho=0.028456\n", + "2019-01-16 05:17:10,141 : INFO : PROGRESS: pass 0, at document #2472000/4922894\n", + "2019-01-16 05:17:12,165 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:12,721 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:17:12,722 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.070*\"align\" + 0.064*\"left\" + 0.058*\"wikit\" + 0.051*\"style\" + 0.045*\"center\" + 0.036*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:17:12,723 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.061*\"villag\" + 0.051*\"region\" + 0.047*\"east\" + 0.047*\"north\" + 0.045*\"west\" + 0.044*\"south\" + 0.039*\"counti\" + 0.032*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:17:12,725 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:17:12,726 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.014*\"piano\" + 0.013*\"orchestra\" + 0.011*\"opera\"\n", + "2019-01-16 05:17:12,732 : INFO : topic diff=0.003602, rho=0.028444\n", + "2019-01-16 05:17:12,987 : INFO : PROGRESS: pass 0, at document #2474000/4922894\n", + "2019-01-16 05:17:15,018 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:15,575 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:17:15,577 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"fish\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:17:15,579 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:17:15,581 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:17:15,584 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:17:15,591 : INFO : topic diff=0.003717, rho=0.028433\n", + "2019-01-16 05:17:15,895 : INFO : PROGRESS: pass 0, at document #2476000/4922894\n", + "2019-01-16 05:17:18,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:18,570 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 05:17:18,572 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:17:18,573 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.050*\"univers\" + 0.043*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:17:18,575 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"sail\"\n", + "2019-01-16 05:17:18,576 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:17:18,582 : INFO : topic diff=0.004517, rho=0.028421\n", + "2019-01-16 05:17:18,835 : INFO : PROGRESS: pass 0, at document #2478000/4922894\n", + "2019-01-16 05:17:20,877 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:21,434 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"us\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:17:21,435 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"scienc\" + 0.010*\"servic\"\n", + "2019-01-16 05:17:21,437 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.018*\"match\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"defeat\"\n", + "2019-01-16 05:17:21,438 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:17:21,440 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:17:21,445 : INFO : topic diff=0.004419, rho=0.028410\n", + "2019-01-16 05:17:25,958 : INFO : -11.662 per-word bound, 3239.5 perplexity estimate based on a held-out corpus of 2000 documents with 538662 words\n", + "2019-01-16 05:17:25,958 : INFO : PROGRESS: pass 0, at document #2480000/4922894\n", + "2019-01-16 05:17:27,916 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:28,473 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:17:28,475 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:17:28,476 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:17:28,477 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", + "2019-01-16 05:17:28,479 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.011*\"cell\" + 0.011*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 05:17:28,484 : INFO : topic diff=0.003827, rho=0.028398\n", + "2019-01-16 05:17:28,742 : INFO : PROGRESS: pass 0, at document #2482000/4922894\n", + "2019-01-16 05:17:30,743 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:31,300 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:17:31,302 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.017*\"kim\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"thailand\" + 0.015*\"hong\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.014*\"kong\"\n", + "2019-01-16 05:17:31,303 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:17:31,304 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:17:31,306 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:17:31,312 : INFO : topic diff=0.004356, rho=0.028387\n", + "2019-01-16 05:17:31,566 : INFO : PROGRESS: pass 0, at document #2484000/4922894\n", + "2019-01-16 05:17:33,586 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:34,143 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:17:34,144 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.016*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:17:34,147 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:17:34,148 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:17:34,150 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:17:34,156 : INFO : topic diff=0.004388, rho=0.028375\n", + "2019-01-16 05:17:34,408 : INFO : PROGRESS: pass 0, at document #2486000/4922894\n", + "2019-01-16 05:17:36,410 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:36,967 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.023*\"color\" + 0.023*\"black\" + 0.012*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:17:36,968 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.019*\"wrestl\" + 0.017*\"match\" + 0.017*\"fight\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:17:36,970 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.069*\"align\" + 0.065*\"left\" + 0.057*\"wikit\" + 0.051*\"style\" + 0.045*\"center\" + 0.035*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:17:36,972 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:17:36,973 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"area\" + 0.021*\"commun\" + 0.021*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:17:36,980 : INFO : topic diff=0.003686, rho=0.028364\n", + "2019-01-16 05:17:37,241 : INFO : PROGRESS: pass 0, at document #2488000/4922894\n", + "2019-01-16 05:17:39,253 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:39,817 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 05:17:39,819 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:17:39,821 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:17:39,822 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:17:39,825 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"area\" + 0.021*\"commun\" + 0.021*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:17:39,831 : INFO : topic diff=0.004695, rho=0.028352\n", + "2019-01-16 05:17:40,086 : INFO : PROGRESS: pass 0, at document #2490000/4922894\n", + "2019-01-16 05:17:42,048 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:42,605 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:17:42,607 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:17:42,608 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"stage\"\n", + "2019-01-16 05:17:42,610 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:17:42,611 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:17:42,618 : INFO : topic diff=0.004140, rho=0.028341\n", + "2019-01-16 05:17:42,868 : INFO : PROGRESS: pass 0, at document #2492000/4922894\n", + "2019-01-16 05:17:44,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:45,423 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:17:45,425 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:17:45,426 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:17:45,428 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 05:17:45,429 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"program\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"network\"\n", + "2019-01-16 05:17:45,436 : INFO : topic diff=0.003947, rho=0.028330\n", + "2019-01-16 05:17:45,712 : INFO : PROGRESS: pass 0, at document #2494000/4922894\n", + "2019-01-16 05:17:47,712 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:48,270 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.032*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.019*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:17:48,272 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.012*\"pilot\"\n", + "2019-01-16 05:17:48,274 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.019*\"wrestl\" + 0.017*\"match\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"titl\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"champion\"\n", + "2019-01-16 05:17:48,275 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:17:48,277 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:17:48,283 : INFO : topic diff=0.003906, rho=0.028318\n", + "2019-01-16 05:17:48,553 : INFO : PROGRESS: pass 0, at document #2496000/4922894\n", + "2019-01-16 05:17:50,539 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:51,096 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:17:51,097 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"malaysia\" + 0.016*\"kim\" + 0.015*\"hong\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.014*\"asia\"\n", + "2019-01-16 05:17:51,099 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\"\n", + "2019-01-16 05:17:51,102 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:17:51,103 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:17:51,111 : INFO : topic diff=0.003857, rho=0.028307\n", + "2019-01-16 05:17:51,366 : INFO : PROGRESS: pass 0, at document #2498000/4922894\n", + "2019-01-16 05:17:53,333 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:17:53,891 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:17:53,892 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\"\n", + "2019-01-16 05:17:53,893 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.052*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.037*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:17:53,895 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.034*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:17:53,897 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:17:53,903 : INFO : topic diff=0.004886, rho=0.028296\n", + "2019-01-16 05:17:58,475 : INFO : -11.734 per-word bound, 3407.0 perplexity estimate based on a held-out corpus of 2000 documents with 559841 words\n", + "2019-01-16 05:17:58,476 : INFO : PROGRESS: pass 0, at document #2500000/4922894\n", + "2019-01-16 05:18:00,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:01,046 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:18:01,049 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"tradit\" + 0.005*\"cultur\"\n", + "2019-01-16 05:18:01,051 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.052*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.037*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:18:01,052 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.029*\"italian\" + 0.024*\"pari\" + 0.021*\"itali\" + 0.019*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"le\" + 0.012*\"loui\"\n", + "2019-01-16 05:18:01,054 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"wale\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 05:18:01,060 : INFO : topic diff=0.004378, rho=0.028284\n", + "2019-01-16 05:18:01,346 : INFO : PROGRESS: pass 0, at document #2502000/4922894\n", + "2019-01-16 05:18:03,337 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:03,894 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.073*\"align\" + 0.063*\"left\" + 0.057*\"wikit\" + 0.049*\"style\" + 0.046*\"center\" + 0.040*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:18:03,895 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", + "2019-01-16 05:18:03,897 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"studi\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:18:03,899 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:18:03,900 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.029*\"italian\" + 0.024*\"pari\" + 0.021*\"itali\" + 0.019*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 05:18:03,908 : INFO : topic diff=0.003228, rho=0.028273\n", + "2019-01-16 05:18:04,155 : INFO : PROGRESS: pass 0, at document #2504000/4922894\n", + "2019-01-16 05:18:06,178 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:06,735 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 05:18:06,737 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.016*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 05:18:06,738 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.018*\"point\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:18:06,740 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:18:06,741 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", + "2019-01-16 05:18:06,747 : INFO : topic diff=0.004838, rho=0.028262\n", + "2019-01-16 05:18:07,007 : INFO : PROGRESS: pass 0, at document #2506000/4922894\n", + "2019-01-16 05:18:08,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:09,540 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:18:09,541 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:18:09,542 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"unit\" + 0.019*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 05:18:09,544 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:18:09,546 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.029*\"italian\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.018*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:18:09,552 : INFO : topic diff=0.004120, rho=0.028250\n", + "2019-01-16 05:18:09,811 : INFO : PROGRESS: pass 0, at document #2508000/4922894\n", + "2019-01-16 05:18:11,769 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:12,327 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"jone\"\n", + "2019-01-16 05:18:12,328 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.012*\"pilot\"\n", + "2019-01-16 05:18:12,329 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", + "2019-01-16 05:18:12,330 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 05:18:12,332 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:18:12,337 : INFO : topic diff=0.004245, rho=0.028239\n", + "2019-01-16 05:18:12,584 : INFO : PROGRESS: pass 0, at document #2510000/4922894\n", + "2019-01-16 05:18:14,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:15,091 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", + "2019-01-16 05:18:15,093 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:18:15,094 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"hong\" + 0.014*\"asian\" + 0.014*\"vietnam\" + 0.014*\"asia\"\n", + "2019-01-16 05:18:15,095 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:18:15,096 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"union\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:18:15,102 : INFO : topic diff=0.004047, rho=0.028228\n", + "2019-01-16 05:18:15,360 : INFO : PROGRESS: pass 0, at document #2512000/4922894\n", + "2019-01-16 05:18:17,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:17,950 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.065*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 05:18:17,952 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 05:18:17,953 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"studi\"\n", + "2019-01-16 05:18:17,955 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.006*\"unit\" + 0.006*\"group\"\n", + "2019-01-16 05:18:17,956 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"piano\" + 0.012*\"orchestra\" + 0.012*\"opera\"\n", + "2019-01-16 05:18:17,962 : INFO : topic diff=0.004116, rho=0.028217\n", + "2019-01-16 05:18:18,219 : INFO : PROGRESS: pass 0, at document #2514000/4922894\n", + "2019-01-16 05:18:20,213 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:20,777 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.006*\"unit\" + 0.006*\"group\"\n", + "2019-01-16 05:18:20,779 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.029*\"italian\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.019*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 05:18:20,781 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 05:18:20,782 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 05:18:20,783 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:18:20,789 : INFO : topic diff=0.003495, rho=0.028205\n", + "2019-01-16 05:18:21,058 : INFO : PROGRESS: pass 0, at document #2516000/4922894\n", + "2019-01-16 05:18:23,125 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:23,685 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:18:23,686 : INFO : topic #23 (0.020): 0.016*\"hospit\" + 0.016*\"medic\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.010*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"studi\"\n", + "2019-01-16 05:18:23,687 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.072*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.046*\"center\" + 0.044*\"right\" + 0.034*\"philippin\" + 0.033*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:18:23,688 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.015*\"scottish\" + 0.014*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:18:23,691 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:18:23,697 : INFO : topic diff=0.004084, rho=0.028194\n", + "2019-01-16 05:18:23,961 : INFO : PROGRESS: pass 0, at document #2518000/4922894\n", + "2019-01-16 05:18:25,984 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:26,541 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"report\" + 0.008*\"offic\" + 0.008*\"legal\" + 0.008*\"right\"\n", + "2019-01-16 05:18:26,543 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:18:26,544 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.017*\"match\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"champion\"\n", + "2019-01-16 05:18:26,546 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"hong\" + 0.015*\"vietnam\" + 0.015*\"kong\" + 0.014*\"asian\"\n", + "2019-01-16 05:18:26,547 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.038*\"russian\" + 0.023*\"american\" + 0.020*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.012*\"israel\" + 0.012*\"poland\"\n", + "2019-01-16 05:18:26,552 : INFO : topic diff=0.004062, rho=0.028183\n", + "2019-01-16 05:18:30,962 : INFO : -11.474 per-word bound, 2843.8 perplexity estimate based on a held-out corpus of 2000 documents with 521463 words\n", + "2019-01-16 05:18:30,964 : INFO : PROGRESS: pass 0, at document #2520000/4922894\n", + "2019-01-16 05:18:32,941 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:33,501 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 05:18:33,502 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"hong\" + 0.015*\"vietnam\" + 0.015*\"kong\" + 0.014*\"asian\"\n", + "2019-01-16 05:18:33,504 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 05:18:33,505 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:18:33,506 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:18:33,512 : INFO : topic diff=0.005472, rho=0.028172\n", + "2019-01-16 05:18:33,782 : INFO : PROGRESS: pass 0, at document #2522000/4922894\n", + "2019-01-16 05:18:35,864 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:36,427 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:18:36,429 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:18:36,430 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 05:18:36,431 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"public\"\n", + "2019-01-16 05:18:36,433 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 05:18:36,440 : INFO : topic diff=0.004982, rho=0.028161\n", + "2019-01-16 05:18:36,698 : INFO : PROGRESS: pass 0, at document #2524000/4922894\n", + "2019-01-16 05:18:38,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:39,284 : INFO : topic #20 (0.020): 0.030*\"win\" + 0.021*\"contest\" + 0.017*\"wrestl\" + 0.016*\"match\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.013*\"elimin\" + 0.012*\"world\"\n", + "2019-01-16 05:18:39,286 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"championship\"\n", + "2019-01-16 05:18:39,288 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"hong\" + 0.015*\"kong\" + 0.015*\"vietnam\" + 0.014*\"asian\"\n", + "2019-01-16 05:18:39,289 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:18:39,291 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", + "2019-01-16 05:18:39,298 : INFO : topic diff=0.003947, rho=0.028149\n", + "2019-01-16 05:18:39,552 : INFO : PROGRESS: pass 0, at document #2526000/4922894\n", + "2019-01-16 05:18:41,508 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:42,066 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"london\" + 0.018*\"cricket\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:18:42,067 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"public\"\n", + "2019-01-16 05:18:42,068 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:18:42,071 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:18:42,073 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"ireland\"\n", + "2019-01-16 05:18:42,080 : INFO : topic diff=0.004487, rho=0.028138\n", + "2019-01-16 05:18:42,383 : INFO : PROGRESS: pass 0, at document #2528000/4922894\n", + "2019-01-16 05:18:44,417 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:18:44,974 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:18:44,976 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", + "2019-01-16 05:18:44,978 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.072*\"align\" + 0.061*\"left\" + 0.057*\"wikit\" + 0.051*\"style\" + 0.047*\"center\" + 0.042*\"right\" + 0.034*\"philippin\" + 0.031*\"text\" + 0.021*\"border\"\n", + "2019-01-16 05:18:44,979 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:18:44,980 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\"\n", + "2019-01-16 05:18:44,986 : INFO : topic diff=0.004055, rho=0.028127\n", + "2019-01-16 05:18:45,238 : INFO : PROGRESS: pass 0, at document #2530000/4922894\n", + "2019-01-16 05:18:47,300 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:47,857 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:18:47,859 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.064*\"villag\" + 0.051*\"region\" + 0.046*\"east\" + 0.045*\"west\" + 0.044*\"north\" + 0.042*\"south\" + 0.040*\"counti\" + 0.031*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:18:47,860 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"protein\"\n", + "2019-01-16 05:18:47,862 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:18:47,863 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.017*\"kim\" + 0.017*\"hong\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"kong\" + 0.015*\"vietnam\" + 0.014*\"asian\"\n", + "2019-01-16 05:18:47,870 : INFO : topic diff=0.004729, rho=0.028116\n", + "2019-01-16 05:18:48,121 : INFO : PROGRESS: pass 0, at document #2532000/4922894\n", + "2019-01-16 05:18:50,126 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:50,682 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.013*\"elimin\" + 0.012*\"world\"\n", + "2019-01-16 05:18:50,683 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:18:50,686 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.019*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:18:50,687 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.029*\"italian\" + 0.024*\"pari\" + 0.021*\"itali\" + 0.019*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:18:50,688 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.024*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:18:50,694 : INFO : topic diff=0.003986, rho=0.028105\n", + "2019-01-16 05:18:50,959 : INFO : PROGRESS: pass 0, at document #2534000/4922894\n", + "2019-01-16 05:18:53,078 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:53,635 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.038*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.011*\"cape\"\n", + "2019-01-16 05:18:53,636 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:18:53,638 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:18:53,639 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.024*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.019*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:18:53,640 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:18:53,646 : INFO : topic diff=0.005178, rho=0.028094\n", + "2019-01-16 05:18:53,893 : INFO : PROGRESS: pass 0, at document #2536000/4922894\n", + "2019-01-16 05:18:55,882 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:56,446 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:18:56,448 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:18:56,449 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:18:56,451 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:18:56,453 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"associ\"\n", + "2019-01-16 05:18:56,459 : INFO : topic diff=0.004268, rho=0.028083\n", + "2019-01-16 05:18:56,716 : INFO : PROGRESS: pass 0, at document #2538000/4922894\n", + "2019-01-16 05:18:58,730 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:18:59,288 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:18:59,289 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.037*\"indian\" + 0.024*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", + "2019-01-16 05:18:59,290 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"stage\" + 0.010*\"championship\"\n", + "2019-01-16 05:18:59,292 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.021*\"theatr\" + 0.018*\"festiv\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:18:59,293 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.020*\"singapor\" + 0.017*\"hong\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"kim\" + 0.016*\"kong\" + 0.016*\"malaysia\" + 0.015*\"vietnam\" + 0.014*\"asian\"\n", + "2019-01-16 05:18:59,298 : INFO : topic diff=0.004183, rho=0.028072\n", + "2019-01-16 05:19:04,048 : INFO : -12.125 per-word bound, 4466.6 perplexity estimate based on a held-out corpus of 2000 documents with 566664 words\n", + "2019-01-16 05:19:04,048 : INFO : PROGRESS: pass 0, at document #2540000/4922894\n", + "2019-01-16 05:19:06,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:06,609 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"includ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:19:06,611 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:19:06,612 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:19:06,614 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"associ\"\n", + "2019-01-16 05:19:06,616 : INFO : topic #47 (0.020): 0.027*\"station\" + 0.025*\"river\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:19:06,622 : INFO : topic diff=0.004120, rho=0.028061\n", + "2019-01-16 05:19:06,881 : INFO : PROGRESS: pass 0, at document #2542000/4922894\n", + "2019-01-16 05:19:08,879 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:09,438 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:19:09,439 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:19:09,440 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"associ\"\n", + "2019-01-16 05:19:09,442 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", + "2019-01-16 05:19:09,443 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"ret\" + 0.008*\"treatment\"\n", + "2019-01-16 05:19:09,449 : INFO : topic diff=0.004108, rho=0.028050\n", + "2019-01-16 05:19:09,712 : INFO : PROGRESS: pass 0, at document #2544000/4922894\n", + "2019-01-16 05:19:11,723 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:12,280 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"materi\"\n", + "2019-01-16 05:19:12,281 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:19:12,283 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:19:12,286 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.018*\"london\" + 0.018*\"cricket\" + 0.018*\"scotland\" + 0.017*\"citi\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:19:12,287 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:19:12,294 : INFO : topic diff=0.004372, rho=0.028039\n", + "2019-01-16 05:19:12,546 : INFO : PROGRESS: pass 0, at document #2546000/4922894\n", + "2019-01-16 05:19:14,528 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:15,085 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:19:15,087 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.024*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.019*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"runner\"\n", + "2019-01-16 05:19:15,088 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:19:15,090 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:19:15,092 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:19:15,098 : INFO : topic diff=0.004455, rho=0.028028\n", + "2019-01-16 05:19:15,344 : INFO : PROGRESS: pass 0, at document #2548000/4922894\n", + "2019-01-16 05:19:17,342 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:17,900 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:19:17,901 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 05:19:17,903 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:19:17,904 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.037*\"russian\" + 0.022*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.012*\"israel\" + 0.012*\"republ\"\n", + "2019-01-16 05:19:17,905 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"associ\"\n", + "2019-01-16 05:19:17,911 : INFO : topic diff=0.004523, rho=0.028017\n", + "2019-01-16 05:19:18,161 : INFO : PROGRESS: pass 0, at document #2550000/4922894\n", + "2019-01-16 05:19:20,108 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:20,666 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:19:20,668 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:19:20,669 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", + "2019-01-16 05:19:20,670 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:19:20,672 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.020*\"itali\" + 0.020*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 05:19:20,679 : INFO : topic diff=0.004212, rho=0.028006\n", + "2019-01-16 05:19:20,942 : INFO : PROGRESS: pass 0, at document #2552000/4922894\n", + "2019-01-16 05:19:22,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:23,458 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 05:19:23,460 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:19:23,462 : INFO : topic #47 (0.020): 0.027*\"station\" + 0.024*\"river\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:19:23,463 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 05:19:23,464 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:19:23,470 : INFO : topic diff=0.004417, rho=0.027995\n", + "2019-01-16 05:19:23,771 : INFO : PROGRESS: pass 0, at document #2554000/4922894\n", + "2019-01-16 05:19:25,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:26,270 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.023*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"japanes\"\n", + "2019-01-16 05:19:26,272 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:19:26,275 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:19:26,276 : INFO : topic #47 (0.020): 0.027*\"station\" + 0.025*\"river\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:19:26,277 : INFO : topic #34 (0.020): 0.098*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.018*\"korean\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", + "2019-01-16 05:19:26,284 : INFO : topic diff=0.004501, rho=0.027984\n", + "2019-01-16 05:19:26,531 : INFO : PROGRESS: pass 0, at document #2556000/4922894\n", + "2019-01-16 05:19:28,518 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:29,074 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.047*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.028*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:19:29,076 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:19:29,077 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.023*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 05:19:29,079 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.024*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 05:19:29,080 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:19:29,086 : INFO : topic diff=0.004672, rho=0.027973\n", + "2019-01-16 05:19:29,349 : INFO : PROGRESS: pass 0, at document #2558000/4922894\n", + "2019-01-16 05:19:31,407 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:31,964 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:19:31,965 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.023*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:19:31,966 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"right\"\n", + "2019-01-16 05:19:31,969 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:19:31,970 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.038*\"africa\" + 0.036*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.028*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", + "2019-01-16 05:19:31,975 : INFO : topic diff=0.003859, rho=0.027962\n", + "2019-01-16 05:19:36,703 : INFO : -11.716 per-word bound, 3363.2 perplexity estimate based on a held-out corpus of 2000 documents with 594711 words\n", + "2019-01-16 05:19:36,704 : INFO : PROGRESS: pass 0, at document #2560000/4922894\n", + "2019-01-16 05:19:38,734 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:39,293 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:19:39,294 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.037*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", + "2019-01-16 05:19:39,295 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:19:39,297 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:19:39,299 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 05:19:39,305 : INFO : topic diff=0.005792, rho=0.027951\n", + "2019-01-16 05:19:39,557 : INFO : PROGRESS: pass 0, at document #2562000/4922894\n", + "2019-01-16 05:19:41,565 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:42,123 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"festiv\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:19:42,124 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.027*\"winner\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.019*\"open\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:19:42,126 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.019*\"medal\" + 0.017*\"japanes\" + 0.017*\"athlet\"\n", + "2019-01-16 05:19:42,128 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:19:42,130 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:19:42,136 : INFO : topic diff=0.004007, rho=0.027940\n", + "2019-01-16 05:19:42,391 : INFO : PROGRESS: pass 0, at document #2564000/4922894\n", + "2019-01-16 05:19:44,381 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:44,939 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:19:44,941 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.071*\"septemb\" + 0.069*\"octob\" + 0.068*\"januari\" + 0.066*\"juli\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.063*\"june\" + 0.062*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 05:19:44,942 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:19:44,946 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:19:44,947 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:19:44,953 : INFO : topic diff=0.003770, rho=0.027929\n", + "2019-01-16 05:19:45,204 : INFO : PROGRESS: pass 0, at document #2566000/4922894\n", + "2019-01-16 05:19:47,214 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:47,771 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.018*\"scotland\" + 0.018*\"london\" + 0.017*\"citi\" + 0.017*\"cricket\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:19:47,772 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:19:47,774 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"world\"\n", + "2019-01-16 05:19:47,775 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:19:47,776 : INFO : topic #34 (0.020): 0.098*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"korean\" + 0.015*\"montreal\" + 0.015*\"british\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", + "2019-01-16 05:19:47,782 : INFO : topic diff=0.004081, rho=0.027918\n", + "2019-01-16 05:19:48,047 : INFO : PROGRESS: pass 0, at document #2568000/4922894\n", + "2019-01-16 05:19:50,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:50,693 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:19:50,695 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.071*\"septemb\" + 0.070*\"octob\" + 0.068*\"januari\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.062*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 05:19:50,696 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:19:50,698 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"space\"\n", + "2019-01-16 05:19:50,699 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", + "2019-01-16 05:19:50,705 : INFO : topic diff=0.004706, rho=0.027907\n", + "2019-01-16 05:19:50,958 : INFO : PROGRESS: pass 0, at document #2570000/4922894\n", + "2019-01-16 05:19:53,018 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:53,577 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.022*\"american\" + 0.020*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:19:53,579 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"materi\"\n", + "2019-01-16 05:19:53,580 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"area\" + 0.020*\"peopl\" + 0.020*\"household\"\n", + "2019-01-16 05:19:53,582 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.027*\"winner\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.019*\"open\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:19:53,583 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"naval\" + 0.009*\"coast\" + 0.009*\"fleet\" + 0.009*\"gun\"\n", + "2019-01-16 05:19:53,589 : INFO : topic diff=0.003540, rho=0.027896\n", + "2019-01-16 05:19:53,841 : INFO : PROGRESS: pass 0, at document #2572000/4922894\n", + "2019-01-16 05:19:55,846 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:56,404 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", + "2019-01-16 05:19:56,405 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:19:56,407 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:19:56,409 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 05:19:56,411 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 05:19:56,418 : INFO : topic diff=0.004353, rho=0.027886\n", + "2019-01-16 05:19:56,677 : INFO : PROGRESS: pass 0, at document #2574000/4922894\n", + "2019-01-16 05:19:58,658 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:19:59,217 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:19:59,219 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:19:59,220 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", + "2019-01-16 05:19:59,222 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.017*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:19:59,223 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.064*\"villag\" + 0.052*\"region\" + 0.045*\"east\" + 0.044*\"west\" + 0.044*\"north\" + 0.042*\"south\" + 0.039*\"counti\" + 0.031*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:19:59,230 : INFO : topic diff=0.004271, rho=0.027875\n", + "2019-01-16 05:19:59,490 : INFO : PROGRESS: pass 0, at document #2576000/4922894\n", + "2019-01-16 05:20:01,520 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:02,083 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:20:02,085 : INFO : topic #47 (0.020): 0.026*\"station\" + 0.026*\"river\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:20:02,086 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.036*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:20:02,088 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:20:02,089 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:20:02,096 : INFO : topic diff=0.004104, rho=0.027864\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:20:02,387 : INFO : PROGRESS: pass 0, at document #2578000/4922894\n", + "2019-01-16 05:20:04,371 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:04,928 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.018*\"london\" + 0.017*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 05:20:04,930 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:20:04,932 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"fleet\" + 0.009*\"gun\"\n", + "2019-01-16 05:20:04,935 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:20:04,937 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:20:04,944 : INFO : topic diff=0.004021, rho=0.027853\n", + "2019-01-16 05:20:09,526 : INFO : -11.591 per-word bound, 3084.5 perplexity estimate based on a held-out corpus of 2000 documents with 543005 words\n", + "2019-01-16 05:20:09,527 : INFO : PROGRESS: pass 0, at document #2580000/4922894\n", + "2019-01-16 05:20:11,558 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:12,115 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.012*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 05:20:12,116 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.010*\"novel\"\n", + "2019-01-16 05:20:12,118 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:20:12,119 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.023*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.016*\"nation\"\n", + "2019-01-16 05:20:12,120 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"area\" + 0.020*\"peopl\" + 0.020*\"household\"\n", + "2019-01-16 05:20:12,126 : INFO : topic diff=0.004697, rho=0.027842\n", + "2019-01-16 05:20:12,387 : INFO : PROGRESS: pass 0, at document #2582000/4922894\n", + "2019-01-16 05:20:14,424 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:14,982 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.026*\"winner\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:20:14,983 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", + "2019-01-16 05:20:14,985 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:20:14,986 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.016*\"nation\"\n", + "2019-01-16 05:20:14,987 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.025*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:20:14,994 : INFO : topic diff=0.004201, rho=0.027832\n", + "2019-01-16 05:20:15,254 : INFO : PROGRESS: pass 0, at document #2584000/4922894\n", + "2019-01-16 05:20:17,312 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:17,873 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.012*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.009*\"ret\" + 0.008*\"medicin\"\n", + "2019-01-16 05:20:17,875 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.023*\"japan\" + 0.022*\"event\" + 0.019*\"medal\" + 0.017*\"athlet\" + 0.016*\"japanes\"\n", + "2019-01-16 05:20:17,876 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"winner\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 05:20:17,878 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"singapor\" + 0.020*\"hong\" + 0.019*\"kim\" + 0.019*\"kong\" + 0.016*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"vietnam\" + 0.014*\"asian\"\n", + "2019-01-16 05:20:17,879 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.072*\"septemb\" + 0.072*\"octob\" + 0.069*\"januari\" + 0.067*\"juli\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.063*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 05:20:17,884 : INFO : topic diff=0.004130, rho=0.027821\n", + "2019-01-16 05:20:18,138 : INFO : PROGRESS: pass 0, at document #2586000/4922894\n", + "2019-01-16 05:20:20,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:20,662 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:20:20,664 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:20:20,665 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.065*\"align\" + 0.060*\"wikit\" + 0.055*\"left\" + 0.052*\"style\" + 0.045*\"center\" + 0.043*\"right\" + 0.033*\"philippin\" + 0.032*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:20:20,666 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:20:20,668 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\" + 0.007*\"valu\"\n", + "2019-01-16 05:20:20,674 : INFO : topic diff=0.004457, rho=0.027810\n", + "2019-01-16 05:20:20,935 : INFO : PROGRESS: pass 0, at document #2588000/4922894\n", + "2019-01-16 05:20:22,976 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:23,536 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.017*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.015*\"british\"\n", + "2019-01-16 05:20:23,537 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 05:20:23,539 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:20:23,540 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:20:23,541 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"fleet\" + 0.009*\"naval\" + 0.009*\"gun\"\n", + "2019-01-16 05:20:23,547 : INFO : topic diff=0.003981, rho=0.027799\n", + "2019-01-16 05:20:23,816 : INFO : PROGRESS: pass 0, at document #2590000/4922894\n", + "2019-01-16 05:20:25,871 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:20:26,433 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:20:26,435 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:20:26,436 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.019*\"squadron\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:20:26,437 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.045*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:20:26,439 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.015*\"british\"\n", + "2019-01-16 05:20:26,445 : INFO : topic diff=0.005673, rho=0.027789\n", + "2019-01-16 05:20:26,686 : INFO : PROGRESS: pass 0, at document #2592000/4922894\n", + "2019-01-16 05:20:28,664 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:29,221 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.019*\"squadron\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:20:29,223 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.025*\"winner\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.019*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:20:29,224 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:20:29,226 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:20:29,228 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:20:29,234 : INFO : topic diff=0.004366, rho=0.027778\n", + "2019-01-16 05:20:29,487 : INFO : PROGRESS: pass 0, at document #2594000/4922894\n", + "2019-01-16 05:20:31,488 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:32,047 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:20:32,048 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:20:32,049 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.012*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\"\n", + "2019-01-16 05:20:32,051 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.026*\"winner\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.019*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:20:32,053 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.019*\"squadron\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:20:32,059 : INFO : topic diff=0.003969, rho=0.027767\n", + "2019-01-16 05:20:32,322 : INFO : PROGRESS: pass 0, at document #2596000/4922894\n", + "2019-01-16 05:20:34,355 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:34,911 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.018*\"london\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.017*\"scotland\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 05:20:34,912 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:20:34,914 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:20:34,915 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.064*\"villag\" + 0.052*\"region\" + 0.046*\"west\" + 0.045*\"east\" + 0.043*\"north\" + 0.041*\"south\" + 0.040*\"counti\" + 0.031*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:20:34,916 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.010*\"histori\"\n", + "2019-01-16 05:20:34,922 : INFO : topic diff=0.003328, rho=0.027756\n", + "2019-01-16 05:20:35,189 : INFO : PROGRESS: pass 0, at document #2598000/4922894\n", + "2019-01-16 05:20:37,272 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:37,829 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:20:37,830 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.036*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:20:37,831 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:20:37,832 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.017*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.015*\"british\"\n", + "2019-01-16 05:20:37,834 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:20:37,839 : INFO : topic diff=0.004177, rho=0.027746\n", + "2019-01-16 05:20:42,581 : INFO : -11.400 per-word bound, 2701.8 perplexity estimate based on a held-out corpus of 2000 documents with 584827 words\n", + "2019-01-16 05:20:42,582 : INFO : PROGRESS: pass 0, at document #2600000/4922894\n", + "2019-01-16 05:20:44,626 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:45,187 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.026*\"till\" + 0.024*\"color\" + 0.023*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", + "2019-01-16 05:20:45,189 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:20:45,190 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.063*\"villag\" + 0.051*\"region\" + 0.046*\"west\" + 0.045*\"east\" + 0.043*\"north\" + 0.041*\"south\" + 0.040*\"counti\" + 0.031*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:20:45,191 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.011*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:20:45,193 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"singapor\" + 0.021*\"hong\" + 0.021*\"kim\" + 0.020*\"kong\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.013*\"asian\"\n", + "2019-01-16 05:20:45,199 : INFO : topic diff=0.005073, rho=0.027735\n", + "2019-01-16 05:20:45,468 : INFO : PROGRESS: pass 0, at document #2602000/4922894\n", + "2019-01-16 05:20:47,547 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:48,109 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:20:48,110 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:20:48,112 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:20:48,113 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 05:20:48,114 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.028*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", + "2019-01-16 05:20:48,120 : INFO : topic diff=0.003729, rho=0.027724\n", + "2019-01-16 05:20:48,409 : INFO : PROGRESS: pass 0, at document #2604000/4922894\n", + "2019-01-16 05:20:50,352 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:50,909 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 05:20:50,910 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"red\"\n", + "2019-01-16 05:20:50,911 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"base\"\n", + "2019-01-16 05:20:50,913 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.019*\"squadron\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:20:50,915 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:20:50,920 : INFO : topic diff=0.003695, rho=0.027714\n", + "2019-01-16 05:20:51,187 : INFO : PROGRESS: pass 0, at document #2606000/4922894\n", + "2019-01-16 05:20:53,178 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:53,734 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:20:53,736 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:20:53,737 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.024*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:20:53,738 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"effect\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 05:20:53,739 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"red\"\n", + "2019-01-16 05:20:53,745 : INFO : topic diff=0.003708, rho=0.027703\n", + "2019-01-16 05:20:53,999 : INFO : PROGRESS: pass 0, at document #2608000/4922894\n", + "2019-01-16 05:20:55,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:56,534 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.066*\"align\" + 0.058*\"wikit\" + 0.055*\"left\" + 0.053*\"style\" + 0.045*\"right\" + 0.045*\"center\" + 0.033*\"text\" + 0.032*\"philippin\" + 0.023*\"border\"\n", + "2019-01-16 05:20:56,536 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:20:56,538 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:20:56,539 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"red\"\n", + "2019-01-16 05:20:56,541 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:20:56,548 : INFO : topic diff=0.004251, rho=0.027692\n", + "2019-01-16 05:20:56,801 : INFO : PROGRESS: pass 0, at document #2610000/4922894\n", + "2019-01-16 05:20:58,785 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:20:59,351 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.022*\"hong\" + 0.021*\"kong\" + 0.020*\"singapor\" + 0.020*\"kim\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.013*\"asian\" + 0.013*\"asia\"\n", + "2019-01-16 05:20:59,352 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.069*\"januari\" + 0.069*\"juli\" + 0.067*\"august\" + 0.066*\"novemb\" + 0.066*\"june\" + 0.065*\"april\" + 0.064*\"decemb\"\n", + "2019-01-16 05:20:59,354 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:20:59,356 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", + "2019-01-16 05:20:59,357 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:20:59,363 : INFO : topic diff=0.003829, rho=0.027682\n", + "2019-01-16 05:20:59,619 : INFO : PROGRESS: pass 0, at document #2612000/4922894\n", + "2019-01-16 05:21:01,580 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:02,140 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:21:02,141 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:21:02,143 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:21:02,145 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:21:02,146 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.069*\"januari\" + 0.069*\"juli\" + 0.068*\"august\" + 0.066*\"novemb\" + 0.066*\"june\" + 0.065*\"april\" + 0.065*\"decemb\"\n", + "2019-01-16 05:21:02,152 : INFO : topic diff=0.004265, rho=0.027671\n", + "2019-01-16 05:21:02,406 : INFO : PROGRESS: pass 0, at document #2614000/4922894\n", + "2019-01-16 05:21:04,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:04,905 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:21:04,907 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:21:04,908 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:21:04,909 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"squadron\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:21:04,911 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.006*\"unit\"\n", + "2019-01-16 05:21:04,916 : INFO : topic diff=0.005152, rho=0.027661\n", + "2019-01-16 05:21:05,186 : INFO : PROGRESS: pass 0, at document #2616000/4922894\n", + "2019-01-16 05:21:07,238 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:07,795 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.044*\"univers\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", + "2019-01-16 05:21:07,796 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.023*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"tamil\" + 0.010*\"com\"\n", + "2019-01-16 05:21:07,797 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.062*\"villag\" + 0.052*\"region\" + 0.046*\"west\" + 0.044*\"east\" + 0.044*\"north\" + 0.041*\"south\" + 0.040*\"counti\" + 0.032*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:21:07,798 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"japan\" + 0.024*\"men\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"japanes\"\n", + "2019-01-16 05:21:07,800 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:21:07,805 : INFO : topic diff=0.004408, rho=0.027650\n", + "2019-01-16 05:21:08,055 : INFO : PROGRESS: pass 0, at document #2618000/4922894\n", + "2019-01-16 05:21:10,020 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:10,576 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"red\"\n", + "2019-01-16 05:21:10,577 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 05:21:10,579 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 05:21:10,580 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.016*\"match\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:21:10,582 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:21:10,587 : INFO : topic diff=0.003481, rho=0.027639\n", + "2019-01-16 05:21:15,115 : INFO : -11.567 per-word bound, 3034.4 perplexity estimate based on a held-out corpus of 2000 documents with 519744 words\n", + "2019-01-16 05:21:15,116 : INFO : PROGRESS: pass 0, at document #2620000/4922894\n", + "2019-01-16 05:21:17,118 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:17,675 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 05:21:17,677 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:21:17,678 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"miss\"\n", + "2019-01-16 05:21:17,681 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:21:17,683 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:21:17,690 : INFO : topic diff=0.003895, rho=0.027629\n", + "2019-01-16 05:21:17,963 : INFO : PROGRESS: pass 0, at document #2622000/4922894\n", + "2019-01-16 05:21:20,026 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:20,582 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:21:20,584 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:21:20,586 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.019*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:21:20,587 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:21:20,588 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.020*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:21:20,595 : INFO : topic diff=0.005335, rho=0.027618\n", + "2019-01-16 05:21:20,843 : INFO : PROGRESS: pass 0, at document #2624000/4922894\n", + "2019-01-16 05:21:22,859 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:23,416 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"korea\"\n", + "2019-01-16 05:21:23,418 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.029*\"south\" + 0.029*\"text\" + 0.027*\"color\" + 0.026*\"till\" + 0.022*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 05:21:23,420 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:21:23,421 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.028*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", + "2019-01-16 05:21:23,423 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"space\" + 0.005*\"materi\"\n", + "2019-01-16 05:21:23,430 : INFO : topic diff=0.004283, rho=0.027608\n", + "2019-01-16 05:21:23,684 : INFO : PROGRESS: pass 0, at document #2626000/4922894\n", + "2019-01-16 05:21:25,674 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:26,230 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"hong\" + 0.022*\"singapor\" + 0.022*\"kong\" + 0.020*\"kim\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"asia\" + 0.015*\"thailand\" + 0.014*\"asian\"\n", + "2019-01-16 05:21:26,232 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.025*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:21:26,233 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"contest\" + 0.017*\"titl\" + 0.016*\"match\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.013*\"team\" + 0.013*\"champion\" + 0.013*\"world\"\n", + "2019-01-16 05:21:26,235 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:21:26,236 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 05:21:26,242 : INFO : topic diff=0.004424, rho=0.027597\n", + "2019-01-16 05:21:26,509 : INFO : PROGRESS: pass 0, at document #2628000/4922894\n", + "2019-01-16 05:21:28,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:29,129 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"space\" + 0.005*\"materi\"\n", + "2019-01-16 05:21:29,131 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:21:29,132 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.006*\"red\"\n", + "2019-01-16 05:21:29,134 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:21:29,135 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.022*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:21:29,141 : INFO : topic diff=0.003945, rho=0.027587\n", + "2019-01-16 05:21:29,447 : INFO : PROGRESS: pass 0, at document #2630000/4922894\n", + "2019-01-16 05:21:31,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:32,096 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 05:21:32,098 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:21:32,099 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:21:32,101 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:21:32,102 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:21:32,109 : INFO : topic diff=0.004756, rho=0.027576\n", + "2019-01-16 05:21:32,362 : INFO : PROGRESS: pass 0, at document #2632000/4922894\n", + "2019-01-16 05:21:34,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:34,975 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:21:34,976 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"protein\"\n", + "2019-01-16 05:21:34,978 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:21:34,979 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.040*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"tamil\" + 0.011*\"khan\"\n", + "2019-01-16 05:21:34,980 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:21:34,986 : INFO : topic diff=0.004627, rho=0.027566\n", + "2019-01-16 05:21:35,245 : INFO : PROGRESS: pass 0, at document #2634000/4922894\n", + "2019-01-16 05:21:37,343 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:37,899 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.025*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:21:37,901 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.020*\"der\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.010*\"die\"\n", + "2019-01-16 05:21:37,902 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:21:37,904 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.017*\"london\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", + "2019-01-16 05:21:37,905 : INFO : topic #39 (0.020): 0.052*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.017*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:21:37,911 : INFO : topic diff=0.005134, rho=0.027555\n", + "2019-01-16 05:21:38,178 : INFO : PROGRESS: pass 0, at document #2636000/4922894\n", + "2019-01-16 05:21:40,221 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:40,778 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:21:40,779 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.020*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:21:40,781 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:21:40,782 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:21:40,783 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.047*\"east\" + 0.047*\"west\" + 0.045*\"north\" + 0.041*\"south\" + 0.038*\"counti\" + 0.031*\"provinc\" + 0.030*\"central\"\n", + "2019-01-16 05:21:40,789 : INFO : topic diff=0.003974, rho=0.027545\n", + "2019-01-16 05:21:41,049 : INFO : PROGRESS: pass 0, at document #2638000/4922894\n", + "2019-01-16 05:21:43,046 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:43,603 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.006*\"red\"\n", + "2019-01-16 05:21:43,604 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.009*\"ret\" + 0.009*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 05:21:43,605 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.017*\"london\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 05:21:43,607 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 05:21:43,608 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.026*\"saint\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:21:43,614 : INFO : topic diff=0.004180, rho=0.027535\n", + "2019-01-16 05:21:48,195 : INFO : -11.670 per-word bound, 3258.7 perplexity estimate based on a held-out corpus of 2000 documents with 541033 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:21:48,196 : INFO : PROGRESS: pass 0, at document #2640000/4922894\n", + "2019-01-16 05:21:50,192 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:50,748 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:21:50,750 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:21:50,751 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:21:50,753 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:21:50,754 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.016*\"korean\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"korea\"\n", + "2019-01-16 05:21:50,760 : INFO : topic diff=0.003564, rho=0.027524\n", + "2019-01-16 05:21:51,020 : INFO : PROGRESS: pass 0, at document #2642000/4922894\n", + "2019-01-16 05:21:53,047 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:53,605 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 05:21:53,606 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:21:53,608 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:21:53,609 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.023*\"singapor\" + 0.023*\"hong\" + 0.022*\"kong\" + 0.019*\"kim\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.013*\"asian\"\n", + "2019-01-16 05:21:53,611 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:21:53,617 : INFO : topic diff=0.004620, rho=0.027514\n", + "2019-01-16 05:21:53,872 : INFO : PROGRESS: pass 0, at document #2644000/4922894\n", + "2019-01-16 05:21:55,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:56,466 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"right\"\n", + "2019-01-16 05:21:56,467 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:21:56,469 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"countri\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 05:21:56,470 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:21:56,471 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"histori\"\n", + "2019-01-16 05:21:56,478 : INFO : topic diff=0.004462, rho=0.027503\n", + "2019-01-16 05:21:56,735 : INFO : PROGRESS: pass 0, at document #2646000/4922894\n", + "2019-01-16 05:21:58,791 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:21:59,347 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.024*\"hong\" + 0.023*\"singapor\" + 0.023*\"kong\" + 0.019*\"kim\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"asia\" + 0.014*\"thailand\" + 0.013*\"vietnam\"\n", + "2019-01-16 05:21:59,349 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:21:59,351 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:21:59,354 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 05:21:59,356 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:21:59,363 : INFO : topic diff=0.003274, rho=0.027493\n", + "2019-01-16 05:21:59,612 : INFO : PROGRESS: pass 0, at document #2648000/4922894\n", + "2019-01-16 05:22:01,601 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:02,162 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.053*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.030*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:22:02,163 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"countri\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 05:22:02,165 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.006*\"red\"\n", + "2019-01-16 05:22:02,167 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.075*\"canada\" + 0.063*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"korea\"\n", + "2019-01-16 05:22:02,168 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.013*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:22:02,174 : INFO : topic diff=0.003600, rho=0.027482\n", + "2019-01-16 05:22:02,431 : INFO : PROGRESS: pass 0, at document #2650000/4922894\n", + "2019-01-16 05:22:04,416 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:04,974 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:22:04,976 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.030*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:22:04,977 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:22:04,979 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:22:04,980 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.065*\"align\" + 0.057*\"left\" + 0.056*\"wikit\" + 0.052*\"style\" + 0.045*\"center\" + 0.044*\"right\" + 0.033*\"philippin\" + 0.032*\"text\" + 0.022*\"border\"\n", + "2019-01-16 05:22:04,987 : INFO : topic diff=0.004375, rho=0.027472\n", + "2019-01-16 05:22:05,246 : INFO : PROGRESS: pass 0, at document #2652000/4922894\n", + "2019-01-16 05:22:07,289 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:07,849 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"space\" + 0.005*\"effect\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:22:07,850 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"area\" + 0.020*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:22:07,851 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:22:07,853 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:22:07,854 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.021*\"centuri\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:22:07,860 : INFO : topic diff=0.004777, rho=0.027462\n", + "2019-01-16 05:22:08,115 : INFO : PROGRESS: pass 0, at document #2654000/4922894\n", + "2019-01-16 05:22:10,098 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:10,654 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:22:10,655 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.024*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:22:10,657 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:22:10,658 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"space\" + 0.005*\"effect\"\n", + "2019-01-16 05:22:10,659 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:22:10,666 : INFO : topic diff=0.004003, rho=0.027451\n", + "2019-01-16 05:22:10,950 : INFO : PROGRESS: pass 0, at document #2656000/4922894\n", + "2019-01-16 05:22:12,906 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:13,463 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.026*\"saint\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:22:13,465 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"bank\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:22:13,466 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:22:13,468 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:22:13,469 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:22:13,475 : INFO : topic diff=0.003725, rho=0.027441\n", + "2019-01-16 05:22:13,730 : INFO : PROGRESS: pass 0, at document #2658000/4922894\n", + "2019-01-16 05:22:15,745 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:16,308 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.012*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:22:16,309 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:22:16,311 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.025*\"saint\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:22:16,312 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:22:16,314 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:22:16,320 : INFO : topic diff=0.004254, rho=0.027431\n", + "2019-01-16 05:22:20,915 : INFO : -11.644 per-word bound, 3200.6 perplexity estimate based on a held-out corpus of 2000 documents with 553662 words\n", + "2019-01-16 05:22:20,916 : INFO : PROGRESS: pass 0, at document #2660000/4922894\n", + "2019-01-16 05:22:22,888 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:23,448 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:22:23,450 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"base\"\n", + "2019-01-16 05:22:23,451 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:22:23,454 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.012*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:22:23,456 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"wale\" + 0.012*\"west\"\n", + "2019-01-16 05:22:23,463 : INFO : topic diff=0.004518, rho=0.027420\n", + "2019-01-16 05:22:23,735 : INFO : PROGRESS: pass 0, at document #2662000/4922894\n", + "2019-01-16 05:22:25,816 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:26,375 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"sri\"\n", + "2019-01-16 05:22:26,377 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:22:26,378 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:22:26,380 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 05:22:26,382 : INFO : topic #34 (0.020): 0.098*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"quebec\" + 0.016*\"montreal\" + 0.016*\"korean\" + 0.015*\"british\" + 0.015*\"korea\"\n", + "2019-01-16 05:22:26,387 : INFO : topic diff=0.004817, rho=0.027410\n", + "2019-01-16 05:22:26,633 : INFO : PROGRESS: pass 0, at document #2664000/4922894\n", + "2019-01-16 05:22:28,597 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:29,155 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 05:22:29,156 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:22:29,158 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.012*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:22:29,160 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:22:29,161 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.073*\"align\" + 0.058*\"left\" + 0.055*\"wikit\" + 0.051*\"style\" + 0.048*\"right\" + 0.045*\"center\" + 0.034*\"philippin\" + 0.031*\"text\" + 0.021*\"border\"\n", + "2019-01-16 05:22:29,167 : INFO : topic diff=0.004199, rho=0.027400\n", + "2019-01-16 05:22:29,424 : INFO : PROGRESS: pass 0, at document #2666000/4922894\n", + "2019-01-16 05:22:31,443 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:32,002 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:22:32,003 : INFO : topic #4 (0.020): 0.131*\"school\" + 0.044*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 05:22:32,005 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:22:32,007 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:22:32,008 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:22:32,013 : INFO : topic diff=0.004205, rho=0.027390\n", + "2019-01-16 05:22:32,266 : INFO : PROGRESS: pass 0, at document #2668000/4922894\n", + "2019-01-16 05:22:34,310 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:34,866 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:22:34,868 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:22:34,869 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:22:34,871 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:22:34,872 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 05:22:34,878 : INFO : topic diff=0.003773, rho=0.027379\n", + "2019-01-16 05:22:35,134 : INFO : PROGRESS: pass 0, at document #2670000/4922894\n", + "2019-01-16 05:22:37,075 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:37,632 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:22:37,633 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:22:37,635 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.015*\"jewish\" + 0.015*\"polish\" + 0.013*\"moscow\" + 0.012*\"israel\" + 0.012*\"republ\"\n", + "2019-01-16 05:22:37,636 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"austria\"\n", + "2019-01-16 05:22:37,638 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.045*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:22:37,643 : INFO : topic diff=0.004396, rho=0.027369\n", + "2019-01-16 05:22:37,892 : INFO : PROGRESS: pass 0, at document #2672000/4922894\n", + "2019-01-16 05:22:39,894 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:40,452 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"austria\"\n", + "2019-01-16 05:22:40,453 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.044*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:22:40,454 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"effect\"\n", + "2019-01-16 05:22:40,455 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:22:40,456 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:22:40,462 : INFO : topic diff=0.003269, rho=0.027359\n", + "2019-01-16 05:22:40,724 : INFO : PROGRESS: pass 0, at document #2674000/4922894\n", + "2019-01-16 05:22:42,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:43,307 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:22:43,308 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.015*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.012*\"republ\"\n", + "2019-01-16 05:22:43,311 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:22:43,312 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:22:43,314 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"town\" + 0.022*\"unit\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", + "2019-01-16 05:22:43,321 : INFO : topic diff=0.005146, rho=0.027349\n", + "2019-01-16 05:22:43,584 : INFO : PROGRESS: pass 0, at document #2676000/4922894\n", + "2019-01-16 05:22:45,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:46,151 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:22:46,153 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"town\" + 0.022*\"unit\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", + "2019-01-16 05:22:46,154 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:22:46,155 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.008*\"naval\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:22:46,157 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:22:46,162 : INFO : topic diff=0.004724, rho=0.027338\n", + "2019-01-16 05:22:46,410 : INFO : PROGRESS: pass 0, at document #2678000/4922894\n", + "2019-01-16 05:22:48,451 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:49,007 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:22:49,008 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:22:49,009 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:22:49,011 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 05:22:49,013 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:22:49,019 : INFO : topic diff=0.004406, rho=0.027328\n", + "2019-01-16 05:22:53,523 : INFO : -11.628 per-word bound, 3165.1 perplexity estimate based on a held-out corpus of 2000 documents with 543069 words\n", + "2019-01-16 05:22:53,524 : INFO : PROGRESS: pass 0, at document #2680000/4922894\n", + "2019-01-16 05:22:55,514 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:56,072 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.016*\"imag\"\n", + "2019-01-16 05:22:56,074 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:22:56,075 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 05:22:56,076 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 05:22:56,078 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:22:56,083 : INFO : topic diff=0.004097, rho=0.027318\n", + "2019-01-16 05:22:56,362 : INFO : PROGRESS: pass 0, at document #2682000/4922894\n", + "2019-01-16 05:22:58,316 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:22:58,875 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:22:58,876 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"space\" + 0.005*\"effect\"\n", + "2019-01-16 05:22:58,878 : INFO : topic #34 (0.020): 0.098*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\"\n", + "2019-01-16 05:22:58,879 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.023*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:22:58,881 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.022*\"town\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", + "2019-01-16 05:22:58,886 : INFO : topic diff=0.005249, rho=0.027308\n", + "2019-01-16 05:22:59,138 : INFO : PROGRESS: pass 0, at document #2684000/4922894\n", + "2019-01-16 05:23:01,088 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:01,644 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.064*\"villag\" + 0.050*\"region\" + 0.046*\"east\" + 0.046*\"west\" + 0.045*\"north\" + 0.041*\"south\" + 0.040*\"counti\" + 0.031*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:23:01,646 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"mark\"\n", + "2019-01-16 05:23:01,647 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"effect\"\n", + "2019-01-16 05:23:01,648 : INFO : topic #4 (0.020): 0.131*\"school\" + 0.045*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:23:01,650 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:23:01,656 : INFO : topic diff=0.004138, rho=0.027298\n", + "2019-01-16 05:23:01,911 : INFO : PROGRESS: pass 0, at document #2686000/4922894\n", + "2019-01-16 05:23:03,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:04,445 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:23:04,446 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:23:04,448 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 05:23:04,449 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:23:04,450 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.023*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:23:04,456 : INFO : topic diff=0.004042, rho=0.027287\n", + "2019-01-16 05:23:04,704 : INFO : PROGRESS: pass 0, at document #2688000/4922894\n", + "2019-01-16 05:23:06,873 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:07,430 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:23:07,432 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 05:23:07,433 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"space\"\n", + "2019-01-16 05:23:07,435 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.052*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.012*\"queensland\"\n", + "2019-01-16 05:23:07,437 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"pilot\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:23:07,443 : INFO : topic diff=0.003864, rho=0.027277\n", + "2019-01-16 05:23:07,702 : INFO : PROGRESS: pass 0, at document #2690000/4922894\n", + "2019-01-16 05:23:09,750 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:10,308 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", + "2019-01-16 05:23:10,310 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.006*\"bird\" + 0.006*\"red\"\n", + "2019-01-16 05:23:10,312 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:23:10,313 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"time\" + 0.010*\"championship\"\n", + "2019-01-16 05:23:10,314 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:23:10,320 : INFO : topic diff=0.003792, rho=0.027267\n", + "2019-01-16 05:23:10,569 : INFO : PROGRESS: pass 0, at document #2692000/4922894\n", + "2019-01-16 05:23:12,592 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:13,148 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:23:13,150 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:23:13,151 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:23:13,153 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.045*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:23:13,155 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"union\"\n", + "2019-01-16 05:23:13,161 : INFO : topic diff=0.003757, rho=0.027257\n", + "2019-01-16 05:23:13,414 : INFO : PROGRESS: pass 0, at document #2694000/4922894\n", + "2019-01-16 05:23:15,381 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:15,941 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"mark\"\n", + "2019-01-16 05:23:15,943 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:23:15,944 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:23:15,946 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"space\"\n", + "2019-01-16 05:23:15,947 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:23:15,953 : INFO : topic diff=0.004716, rho=0.027247\n", + "2019-01-16 05:23:16,200 : INFO : PROGRESS: pass 0, at document #2696000/4922894\n", + "2019-01-16 05:23:18,196 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:18,754 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 05:23:18,755 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:23:18,757 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"set\" + 0.009*\"theori\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"valu\" + 0.007*\"method\"\n", + "2019-01-16 05:23:18,758 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:23:18,759 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", + "2019-01-16 05:23:18,766 : INFO : topic diff=0.005049, rho=0.027237\n", + "2019-01-16 05:23:19,020 : INFO : PROGRESS: pass 0, at document #2698000/4922894\n", + "2019-01-16 05:23:20,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:21,551 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:23:21,553 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:23:21,555 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.025*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:23:21,557 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.025*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:23:21,558 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:23:21,564 : INFO : topic diff=0.004555, rho=0.027227\n", + "2019-01-16 05:23:26,179 : INFO : -11.872 per-word bound, 3747.0 perplexity estimate based on a held-out corpus of 2000 documents with 556717 words\n", + "2019-01-16 05:23:26,180 : INFO : PROGRESS: pass 0, at document #2700000/4922894\n", + "2019-01-16 05:23:28,200 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:28,757 : INFO : topic #34 (0.020): 0.097*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\"\n", + "2019-01-16 05:23:28,758 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.039*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:23:28,760 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.044*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:23:28,761 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 05:23:28,763 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:23:28,769 : INFO : topic diff=0.004117, rho=0.027217\n", + "2019-01-16 05:23:29,017 : INFO : PROGRESS: pass 0, at document #2702000/4922894\n", + "2019-01-16 05:23:31,066 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:23:31,627 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:23:31,628 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.065*\"august\" + 0.063*\"april\" + 0.063*\"decemb\"\n", + "2019-01-16 05:23:31,629 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:23:31,630 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"area\" + 0.021*\"counti\" + 0.020*\"household\"\n", + "2019-01-16 05:23:31,632 : INFO : topic #34 (0.020): 0.097*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\"\n", + "2019-01-16 05:23:31,637 : INFO : topic diff=0.003848, rho=0.027206\n", + "2019-01-16 05:23:31,894 : INFO : PROGRESS: pass 0, at document #2704000/4922894\n", + "2019-01-16 05:23:33,833 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:34,393 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:23:34,395 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:23:34,396 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.085*\"align\" + 0.074*\"left\" + 0.055*\"wikit\" + 0.048*\"style\" + 0.043*\"center\" + 0.042*\"right\" + 0.030*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:23:34,398 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"human\"\n", + "2019-01-16 05:23:34,399 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:23:34,405 : INFO : topic diff=0.004287, rho=0.027196\n", + "2019-01-16 05:23:34,690 : INFO : PROGRESS: pass 0, at document #2706000/4922894\n", + "2019-01-16 05:23:36,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:37,224 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", + "2019-01-16 05:23:37,225 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"theori\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"method\"\n", + "2019-01-16 05:23:37,227 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:23:37,228 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.024*\"winner\" + 0.022*\"point\" + 0.021*\"group\" + 0.017*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:23:37,230 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:23:37,236 : INFO : topic diff=0.004205, rho=0.027186\n", + "2019-01-16 05:23:37,478 : INFO : PROGRESS: pass 0, at document #2708000/4922894\n", + "2019-01-16 05:23:39,428 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:39,989 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"gun\" + 0.009*\"damag\" + 0.008*\"sail\"\n", + "2019-01-16 05:23:39,991 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:23:39,993 : INFO : topic #35 (0.020): 0.025*\"kong\" + 0.024*\"lee\" + 0.024*\"hong\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.015*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", + "2019-01-16 05:23:39,994 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:23:39,996 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", + "2019-01-16 05:23:40,001 : INFO : topic diff=0.003502, rho=0.027176\n", + "2019-01-16 05:23:40,256 : INFO : PROGRESS: pass 0, at document #2710000/4922894\n", + "2019-01-16 05:23:42,242 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:42,799 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:23:42,800 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.022*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:23:42,802 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:23:42,803 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"khan\" + 0.013*\"tamil\" + 0.012*\"sri\" + 0.011*\"islam\"\n", + "2019-01-16 05:23:42,805 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:23:42,811 : INFO : topic diff=0.004323, rho=0.027166\n", + "2019-01-16 05:23:43,049 : INFO : PROGRESS: pass 0, at document #2712000/4922894\n", + "2019-01-16 05:23:44,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:45,560 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"program\" + 0.012*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:23:45,561 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.008*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 05:23:45,563 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:23:45,564 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:23:45,566 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:23:45,572 : INFO : topic diff=0.004190, rho=0.027156\n", + "2019-01-16 05:23:45,833 : INFO : PROGRESS: pass 0, at document #2714000/4922894\n", + "2019-01-16 05:23:47,915 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:48,478 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"tamil\" + 0.013*\"khan\" + 0.012*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 05:23:48,480 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:23:48,482 : INFO : topic #48 (0.020): 0.079*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.067*\"januari\" + 0.067*\"juli\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.064*\"august\" + 0.063*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 05:23:48,483 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"citi\"\n", + "2019-01-16 05:23:48,485 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"champion\" + 0.013*\"team\" + 0.012*\"world\"\n", + "2019-01-16 05:23:48,490 : INFO : topic diff=0.004432, rho=0.027146\n", + "2019-01-16 05:23:48,747 : INFO : PROGRESS: pass 0, at document #2716000/4922894\n", + "2019-01-16 05:23:50,741 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:51,303 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"champion\" + 0.013*\"team\" + 0.012*\"world\"\n", + "2019-01-16 05:23:51,305 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.043*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.027*\"color\" + 0.027*\"till\" + 0.023*\"black\" + 0.012*\"cape\" + 0.012*\"storm\"\n", + "2019-01-16 05:23:51,307 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:23:51,308 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:23:51,310 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.072*\"septemb\" + 0.072*\"octob\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 05:23:51,316 : INFO : topic diff=0.004427, rho=0.027136\n", + "2019-01-16 05:23:51,579 : INFO : PROGRESS: pass 0, at document #2718000/4922894\n", + "2019-01-16 05:23:53,593 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:23:54,150 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"citi\"\n", + "2019-01-16 05:23:54,152 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:23:54,154 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.044*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:23:54,155 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.008*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 05:23:54,157 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.012*\"republ\" + 0.012*\"politician\"\n", + "2019-01-16 05:23:54,163 : INFO : topic diff=0.003792, rho=0.027126\n", + "2019-01-16 05:23:58,568 : INFO : -11.583 per-word bound, 3068.7 perplexity estimate based on a held-out corpus of 2000 documents with 510301 words\n", + "2019-01-16 05:23:58,569 : INFO : PROGRESS: pass 0, at document #2720000/4922894\n", + "2019-01-16 05:24:00,503 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:01,061 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", + "2019-01-16 05:24:01,062 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 05:24:01,064 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"champion\" + 0.013*\"team\" + 0.012*\"world\"\n", + "2019-01-16 05:24:01,065 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.022*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:24:01,067 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:24:01,073 : INFO : topic diff=0.003827, rho=0.027116\n", + "2019-01-16 05:24:01,324 : INFO : PROGRESS: pass 0, at document #2722000/4922894\n", + "2019-01-16 05:24:03,390 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:03,948 : INFO : topic #9 (0.020): 0.065*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"movi\" + 0.011*\"televis\"\n", + "2019-01-16 05:24:03,949 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:24:03,952 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.022*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:24:03,953 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.024*\"hong\" + 0.024*\"kong\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.015*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.013*\"asian\" + 0.013*\"vietnam\"\n", + "2019-01-16 05:24:03,954 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.010*\"regiment\"\n", + "2019-01-16 05:24:03,960 : INFO : topic diff=0.003421, rho=0.027106\n", + "2019-01-16 05:24:04,209 : INFO : PROGRESS: pass 0, at document #2724000/4922894\n", + "2019-01-16 05:24:06,199 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:06,756 : INFO : topic #35 (0.020): 0.025*\"hong\" + 0.025*\"lee\" + 0.025*\"kong\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.015*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.013*\"asian\" + 0.013*\"vietnam\"\n", + "2019-01-16 05:24:06,758 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.006*\"union\" + 0.006*\"group\"\n", + "2019-01-16 05:24:06,759 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:24:06,760 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:24:06,762 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 05:24:06,767 : INFO : topic diff=0.003376, rho=0.027096\n", + "2019-01-16 05:24:07,031 : INFO : PROGRESS: pass 0, at document #2726000/4922894\n", + "2019-01-16 05:24:09,096 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:09,658 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:24:09,660 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.079*\"align\" + 0.067*\"left\" + 0.056*\"wikit\" + 0.048*\"style\" + 0.044*\"right\" + 0.044*\"center\" + 0.031*\"philippin\" + 0.029*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:24:09,662 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:24:09,663 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.071*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.017*\"korea\" + 0.015*\"british\" + 0.015*\"montreal\"\n", + "2019-01-16 05:24:09,664 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:24:09,671 : INFO : topic diff=0.005083, rho=0.027086\n", + "2019-01-16 05:24:09,930 : INFO : PROGRESS: pass 0, at document #2728000/4922894\n", + "2019-01-16 05:24:11,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:12,500 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.025*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:24:12,501 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 05:24:12,503 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n", + "2019-01-16 05:24:12,504 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:24:12,507 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.023*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:24:12,513 : INFO : topic diff=0.004313, rho=0.027077\n", + "2019-01-16 05:24:12,766 : INFO : PROGRESS: pass 0, at document #2730000/4922894\n", + "2019-01-16 05:24:14,766 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:15,322 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:24:15,324 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:24:15,325 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:24:15,327 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:24:15,328 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 05:24:15,335 : INFO : topic diff=0.004626, rho=0.027067\n", + "2019-01-16 05:24:15,623 : INFO : PROGRESS: pass 0, at document #2732000/4922894\n", + "2019-01-16 05:24:17,614 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:18,171 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 05:24:18,173 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.064*\"august\" + 0.064*\"decemb\" + 0.064*\"june\" + 0.062*\"april\"\n", + "2019-01-16 05:24:18,174 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:24:18,175 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.043*\"china\" + 0.033*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:24:18,177 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:24:18,183 : INFO : topic diff=0.003976, rho=0.027057\n", + "2019-01-16 05:24:18,436 : INFO : PROGRESS: pass 0, at document #2734000/4922894\n", + "2019-01-16 05:24:20,402 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:20,960 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 05:24:20,961 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"gun\" + 0.009*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 05:24:20,963 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.043*\"china\" + 0.033*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:24:20,965 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:24:20,966 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"counti\" + 0.021*\"township\" + 0.020*\"household\"\n", + "2019-01-16 05:24:20,972 : INFO : topic diff=0.004820, rho=0.027047\n", + "2019-01-16 05:24:21,219 : INFO : PROGRESS: pass 0, at document #2736000/4922894\n", + "2019-01-16 05:24:23,198 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:23,757 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"gun\" + 0.009*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 05:24:23,758 : INFO : topic #35 (0.020): 0.027*\"hong\" + 0.027*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", + "2019-01-16 05:24:23,760 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:24:23,762 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:24:23,763 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.071*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.017*\"korea\" + 0.015*\"british\" + 0.015*\"montreal\"\n", + "2019-01-16 05:24:23,768 : INFO : topic diff=0.003657, rho=0.027037\n", + "2019-01-16 05:24:24,027 : INFO : PROGRESS: pass 0, at document #2738000/4922894\n", + "2019-01-16 05:24:26,029 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:26,585 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 05:24:26,587 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.071*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.022*\"toronto\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.015*\"british\" + 0.015*\"montreal\"\n", + "2019-01-16 05:24:26,588 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:24:26,590 : INFO : topic #35 (0.020): 0.027*\"hong\" + 0.027*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", + "2019-01-16 05:24:26,592 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:24:26,598 : INFO : topic diff=0.003904, rho=0.027027\n", + "2019-01-16 05:24:31,187 : INFO : -11.721 per-word bound, 3375.4 perplexity estimate based on a held-out corpus of 2000 documents with 540880 words\n", + "2019-01-16 05:24:31,188 : INFO : PROGRESS: pass 0, at document #2740000/4922894\n", + "2019-01-16 05:24:33,195 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:33,752 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:24:33,754 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.010*\"regiment\"\n", + "2019-01-16 05:24:33,755 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:24:33,756 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.066*\"juli\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.064*\"decemb\" + 0.063*\"june\" + 0.062*\"april\"\n", + "2019-01-16 05:24:33,758 : INFO : topic #9 (0.020): 0.065*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"movi\" + 0.011*\"televis\"\n", + "2019-01-16 05:24:33,764 : INFO : topic diff=0.004021, rho=0.027017\n", + "2019-01-16 05:24:34,023 : INFO : PROGRESS: pass 0, at document #2742000/4922894\n", + "2019-01-16 05:24:36,079 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:36,636 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:24:36,637 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:24:36,639 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:24:36,641 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"gun\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.008*\"naval\"\n", + "2019-01-16 05:24:36,642 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:24:36,648 : INFO : topic diff=0.004851, rho=0.027007\n", + "2019-01-16 05:24:36,908 : INFO : PROGRESS: pass 0, at document #2744000/4922894\n", + "2019-01-16 05:24:38,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:39,464 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 05:24:39,465 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"commun\"\n", + "2019-01-16 05:24:39,467 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:24:39,469 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:24:39,470 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"protein\"\n", + "2019-01-16 05:24:39,476 : INFO : topic diff=0.004642, rho=0.026997\n", + "2019-01-16 05:24:39,728 : INFO : PROGRESS: pass 0, at document #2746000/4922894\n", + "2019-01-16 05:24:41,792 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:42,348 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 05:24:42,350 : INFO : topic #4 (0.020): 0.131*\"school\" + 0.044*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"grade\"\n", + "2019-01-16 05:24:42,351 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:24:42,352 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"commun\"\n", + "2019-01-16 05:24:42,354 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.013*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:24:42,360 : INFO : topic diff=0.003835, rho=0.026988\n", + "2019-01-16 05:24:42,616 : INFO : PROGRESS: pass 0, at document #2748000/4922894\n", + "2019-01-16 05:24:44,655 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:45,212 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.042*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.027*\"till\" + 0.026*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:24:45,213 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.004*\"temperatur\"\n", + "2019-01-16 05:24:45,215 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:24:45,216 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"grand\"\n", + "2019-01-16 05:24:45,217 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.017*\"london\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:24:45,224 : INFO : topic diff=0.004404, rho=0.026978\n", + "2019-01-16 05:24:45,476 : INFO : PROGRESS: pass 0, at document #2750000/4922894\n", + "2019-01-16 05:24:47,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:48,040 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 05:24:48,041 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:24:48,043 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", + "2019-01-16 05:24:48,045 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:24:48,046 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"commun\"\n", + "2019-01-16 05:24:48,052 : INFO : topic diff=0.004210, rho=0.026968\n", + "2019-01-16 05:24:48,315 : INFO : PROGRESS: pass 0, at document #2752000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:24:50,314 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:50,873 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"royal\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:24:50,874 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"commun\"\n", + "2019-01-16 05:24:50,876 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:24:50,878 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:24:50,879 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:24:50,886 : INFO : topic diff=0.003842, rho=0.026958\n", + "2019-01-16 05:24:51,144 : INFO : PROGRESS: pass 0, at document #2754000/4922894\n", + "2019-01-16 05:24:53,132 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:53,689 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.019*\"democrat\" + 0.018*\"presid\" + 0.018*\"vote\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", + "2019-01-16 05:24:53,690 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.073*\"align\" + 0.064*\"left\" + 0.056*\"wikit\" + 0.049*\"style\" + 0.044*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:24:53,692 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.017*\"london\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:24:53,693 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:24:53,696 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 05:24:53,703 : INFO : topic diff=0.004625, rho=0.026948\n", + "2019-01-16 05:24:53,951 : INFO : PROGRESS: pass 0, at document #2756000/4922894\n", + "2019-01-16 05:24:55,974 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:56,532 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"commun\"\n", + "2019-01-16 05:24:56,534 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:24:56,536 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.024*\"township\" + 0.023*\"counti\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.020*\"household\"\n", + "2019-01-16 05:24:56,538 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.072*\"align\" + 0.063*\"left\" + 0.056*\"wikit\" + 0.049*\"style\" + 0.044*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:24:56,540 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.044*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"grade\"\n", + "2019-01-16 05:24:56,546 : INFO : topic diff=0.003870, rho=0.026939\n", + "2019-01-16 05:24:56,825 : INFO : PROGRESS: pass 0, at document #2758000/4922894\n", + "2019-01-16 05:24:58,799 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:24:59,356 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:24:59,358 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:24:59,359 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", + "2019-01-16 05:24:59,361 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:24:59,363 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 05:24:59,370 : INFO : topic diff=0.004146, rho=0.026929\n", + "2019-01-16 05:25:04,005 : INFO : -12.099 per-word bound, 4385.8 perplexity estimate based on a held-out corpus of 2000 documents with 559668 words\n", + "2019-01-16 05:25:04,006 : INFO : PROGRESS: pass 0, at document #2760000/4922894\n", + "2019-01-16 05:25:06,262 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:06,821 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"counti\" + 0.023*\"township\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"household\"\n", + "2019-01-16 05:25:06,823 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:25:06,825 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:25:06,826 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:25:06,827 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.042*\"africa\" + 0.037*\"african\" + 0.032*\"south\" + 0.029*\"text\" + 0.027*\"till\" + 0.026*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:25:06,833 : INFO : topic diff=0.004673, rho=0.026919\n", + "2019-01-16 05:25:07,103 : INFO : PROGRESS: pass 0, at document #2762000/4922894\n", + "2019-01-16 05:25:09,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:09,723 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:25:09,724 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"commun\"\n", + "2019-01-16 05:25:09,726 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"mark\" + 0.006*\"richard\"\n", + "2019-01-16 05:25:09,727 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:25:09,729 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:25:09,735 : INFO : topic diff=0.004278, rho=0.026909\n", + "2019-01-16 05:25:09,991 : INFO : PROGRESS: pass 0, at document #2764000/4922894\n", + "2019-01-16 05:25:12,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:12,560 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.064*\"villag\" + 0.051*\"region\" + 0.045*\"north\" + 0.044*\"east\" + 0.044*\"west\" + 0.041*\"counti\" + 0.040*\"south\" + 0.030*\"provinc\" + 0.027*\"central\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:25:12,561 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"protein\"\n", + "2019-01-16 05:25:12,563 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:25:12,564 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.019*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:25:12,566 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:25:12,572 : INFO : topic diff=0.003926, rho=0.026900\n", + "2019-01-16 05:25:12,833 : INFO : PROGRESS: pass 0, at document #2766000/4922894\n", + "2019-01-16 05:25:14,827 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:15,385 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"commun\"\n", + "2019-01-16 05:25:15,387 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 05:25:15,388 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"air\"\n", + "2019-01-16 05:25:15,390 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"japanes\"\n", + "2019-01-16 05:25:15,391 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.064*\"villag\" + 0.051*\"region\" + 0.045*\"north\" + 0.045*\"east\" + 0.044*\"west\" + 0.040*\"counti\" + 0.040*\"south\" + 0.030*\"provinc\" + 0.026*\"central\"\n", + "2019-01-16 05:25:15,396 : INFO : topic diff=0.003515, rho=0.026890\n", + "2019-01-16 05:25:15,660 : INFO : PROGRESS: pass 0, at document #2768000/4922894\n", + "2019-01-16 05:25:17,667 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:18,227 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.012*\"model\" + 0.011*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:25:18,228 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"sail\"\n", + "2019-01-16 05:25:18,230 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.014*\"scottish\" + 0.014*\"scotland\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:25:18,231 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 05:25:18,233 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:25:18,239 : INFO : topic diff=0.004583, rho=0.026880\n", + "2019-01-16 05:25:18,483 : INFO : PROGRESS: pass 0, at document #2770000/4922894\n", + "2019-01-16 05:25:20,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:20,949 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.020*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 05:25:20,950 : INFO : topic #35 (0.020): 0.029*\"kong\" + 0.029*\"hong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asia\"\n", + "2019-01-16 05:25:20,952 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:25:20,953 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.031*\"text\" + 0.027*\"till\" + 0.026*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:25:20,955 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.066*\"juli\" + 0.066*\"januari\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.064*\"decemb\" + 0.063*\"april\"\n", + "2019-01-16 05:25:20,961 : INFO : topic diff=0.004817, rho=0.026870\n", + "2019-01-16 05:25:21,221 : INFO : PROGRESS: pass 0, at document #2772000/4922894\n", + "2019-01-16 05:25:23,261 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:23,818 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"human\"\n", + "2019-01-16 05:25:23,819 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.043*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"grade\" + 0.010*\"state\"\n", + "2019-01-16 05:25:23,821 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.012*\"divis\"\n", + "2019-01-16 05:25:23,822 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"exampl\" + 0.007*\"method\" + 0.007*\"group\"\n", + "2019-01-16 05:25:23,824 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 05:25:23,831 : INFO : topic diff=0.004576, rho=0.026861\n", + "2019-01-16 05:25:24,079 : INFO : PROGRESS: pass 0, at document #2774000/4922894\n", + "2019-01-16 05:25:26,089 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:26,646 : INFO : topic #35 (0.020): 0.029*\"kong\" + 0.029*\"hong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.017*\"malaysia\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asia\"\n", + "2019-01-16 05:25:26,647 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:25:26,649 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:25:26,651 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.017*\"medic\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", + "2019-01-16 05:25:26,652 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:25:26,659 : INFO : topic diff=0.003593, rho=0.026851\n", + "2019-01-16 05:25:26,908 : INFO : PROGRESS: pass 0, at document #2776000/4922894\n", + "2019-01-16 05:25:28,846 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:29,410 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:25:29,412 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:25:29,414 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:25:29,415 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"citi\" + 0.035*\"town\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.023*\"censu\" + 0.022*\"township\" + 0.020*\"household\"\n", + "2019-01-16 05:25:29,418 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"sail\"\n", + "2019-01-16 05:25:29,423 : INFO : topic diff=0.003976, rho=0.026841\n", + "2019-01-16 05:25:29,684 : INFO : PROGRESS: pass 0, at document #2778000/4922894\n", + "2019-01-16 05:25:31,709 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:32,267 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:25:32,268 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:25:32,270 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.067*\"align\" + 0.059*\"left\" + 0.056*\"wikit\" + 0.051*\"style\" + 0.044*\"center\" + 0.039*\"right\" + 0.035*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:25:32,271 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 05:25:32,273 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:25:32,279 : INFO : topic diff=0.004125, rho=0.026832\n", + "2019-01-16 05:25:36,782 : INFO : -11.584 per-word bound, 3070.4 perplexity estimate based on a held-out corpus of 2000 documents with 531248 words\n", + "2019-01-16 05:25:36,782 : INFO : PROGRESS: pass 0, at document #2780000/4922894\n", + "2019-01-16 05:25:38,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:39,324 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:25:39,326 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", + "2019-01-16 05:25:39,327 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:25:39,329 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"grade\" + 0.010*\"state\"\n", + "2019-01-16 05:25:39,330 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.063*\"villag\" + 0.050*\"region\" + 0.046*\"north\" + 0.045*\"east\" + 0.045*\"west\" + 0.041*\"south\" + 0.040*\"counti\" + 0.030*\"provinc\" + 0.026*\"central\"\n", + "2019-01-16 05:25:39,336 : INFO : topic diff=0.003258, rho=0.026822\n", + "2019-01-16 05:25:39,592 : INFO : PROGRESS: pass 0, at document #2782000/4922894\n", + "2019-01-16 05:25:41,602 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:42,158 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.017*\"medic\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", + "2019-01-16 05:25:42,160 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:25:42,162 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:25:42,164 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:25:42,165 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 05:25:42,171 : INFO : topic diff=0.003799, rho=0.026812\n", + "2019-01-16 05:25:42,460 : INFO : PROGRESS: pass 0, at document #2784000/4922894\n", + "2019-01-16 05:25:44,452 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:45,010 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 05:25:45,012 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:25:45,013 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", + "2019-01-16 05:25:45,014 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:25:45,016 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 05:25:45,022 : INFO : topic diff=0.004307, rho=0.026803\n", + "2019-01-16 05:25:45,271 : INFO : PROGRESS: pass 0, at document #2786000/4922894\n", + "2019-01-16 05:25:47,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:47,896 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:25:47,898 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"model\" + 0.012*\"product\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:25:47,899 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:25:47,901 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.020*\"centuri\" + 0.012*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:25:47,902 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.044*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"grade\" + 0.009*\"state\"\n", + "2019-01-16 05:25:47,908 : INFO : topic diff=0.004931, rho=0.026793\n", + "2019-01-16 05:25:48,165 : INFO : PROGRESS: pass 0, at document #2788000/4922894\n", + "2019-01-16 05:25:50,165 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:50,729 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 05:25:50,730 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.012*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:25:50,732 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:25:50,734 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:25:50,735 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.010*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:25:50,742 : INFO : topic diff=0.003501, rho=0.026784\n", + "2019-01-16 05:25:51,003 : INFO : PROGRESS: pass 0, at document #2790000/4922894\n", + "2019-01-16 05:25:53,018 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:53,574 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:25:53,576 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:25:53,577 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:25:53,578 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.010*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:25:53,581 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:25:53,587 : INFO : topic diff=0.004015, rho=0.026774\n", + "2019-01-16 05:25:53,847 : INFO : PROGRESS: pass 0, at document #2792000/4922894\n", + "2019-01-16 05:25:55,827 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:56,386 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.063*\"align\" + 0.057*\"wikit\" + 0.056*\"left\" + 0.051*\"style\" + 0.043*\"center\" + 0.037*\"right\" + 0.036*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:25:56,387 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.036*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.021*\"township\" + 0.020*\"household\"\n", + "2019-01-16 05:25:56,389 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.020*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:25:56,391 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:25:56,393 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:25:56,398 : INFO : topic diff=0.004191, rho=0.026764\n", + "2019-01-16 05:25:56,662 : INFO : PROGRESS: pass 0, at document #2794000/4922894\n", + "2019-01-16 05:25:58,754 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:25:59,312 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"citi\" + 0.036*\"town\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.021*\"township\" + 0.020*\"household\"\n", + "2019-01-16 05:25:59,313 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 05:25:59,314 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:25:59,316 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:25:59,317 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:25:59,323 : INFO : topic diff=0.005167, rho=0.026755\n", + "2019-01-16 05:25:59,603 : INFO : PROGRESS: pass 0, at document #2796000/4922894\n", + "2019-01-16 05:26:01,650 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:02,207 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.069*\"januari\" + 0.067*\"juli\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.064*\"decemb\" + 0.064*\"april\"\n", + "2019-01-16 05:26:02,209 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.017*\"medic\" + 0.014*\"health\" + 0.013*\"cell\" + 0.013*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"human\"\n", + "2019-01-16 05:26:02,210 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:26:02,212 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"program\" + 0.012*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 05:26:02,213 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:26:02,219 : INFO : topic diff=0.004517, rho=0.026745\n", + "2019-01-16 05:26:02,472 : INFO : PROGRESS: pass 0, at document #2798000/4922894\n", + "2019-01-16 05:26:04,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:05,039 : INFO : topic #35 (0.020): 0.029*\"hong\" + 0.028*\"kong\" + 0.023*\"singapor\" + 0.023*\"lee\" + 0.018*\"kim\" + 0.018*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asia\" + 0.014*\"asian\" + 0.014*\"min\"\n", + "2019-01-16 05:26:05,040 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:26:05,042 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:26:05,043 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:26:05,046 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.069*\"januari\" + 0.067*\"juli\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.064*\"decemb\" + 0.063*\"april\"\n", + "2019-01-16 05:26:05,052 : INFO : topic diff=0.003798, rho=0.026736\n", + "2019-01-16 05:26:09,705 : INFO : -11.769 per-word bound, 3489.0 perplexity estimate based on a held-out corpus of 2000 documents with 547662 words\n", + "2019-01-16 05:26:09,705 : INFO : PROGRESS: pass 0, at document #2800000/4922894\n", + "2019-01-16 05:26:11,716 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:12,278 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"us\"\n", + "2019-01-16 05:26:12,279 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:26:12,281 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.019*\"airport\" + 0.019*\"forc\" + 0.018*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:26:12,282 : INFO : topic #35 (0.020): 0.029*\"hong\" + 0.028*\"kong\" + 0.023*\"singapor\" + 0.023*\"lee\" + 0.018*\"kim\" + 0.018*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asia\" + 0.014*\"asian\" + 0.014*\"min\"\n", + "2019-01-16 05:26:12,286 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:26:12,292 : INFO : topic diff=0.004193, rho=0.026726\n", + "2019-01-16 05:26:12,551 : INFO : PROGRESS: pass 0, at document #2802000/4922894\n", + "2019-01-16 05:26:14,597 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:15,154 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"group\"\n", + "2019-01-16 05:26:15,156 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:26:15,157 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"dai\" + 0.004*\"return\"\n", + "2019-01-16 05:26:15,158 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:26:15,161 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.018*\"democrat\" + 0.018*\"vote\" + 0.018*\"presid\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 05:26:15,168 : INFO : topic diff=0.004661, rho=0.026717\n", + "2019-01-16 05:26:15,418 : INFO : PROGRESS: pass 0, at document #2804000/4922894\n", + "2019-01-16 05:26:17,423 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:17,980 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 05:26:17,982 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.017*\"cricket\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:26:17,983 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", + "2019-01-16 05:26:17,984 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.018*\"presid\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 05:26:17,986 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.064*\"villag\" + 0.049*\"region\" + 0.046*\"north\" + 0.045*\"east\" + 0.044*\"west\" + 0.041*\"south\" + 0.039*\"counti\" + 0.032*\"provinc\" + 0.026*\"central\"\n", + "2019-01-16 05:26:17,993 : INFO : topic diff=0.003909, rho=0.026707\n", + "2019-01-16 05:26:18,248 : INFO : PROGRESS: pass 0, at document #2806000/4922894\n", + "2019-01-16 05:26:20,268 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:20,825 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"flag\" + 0.016*\"korean\" + 0.015*\"korea\"\n", + "2019-01-16 05:26:20,827 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.022*\"counti\" + 0.021*\"household\" + 0.020*\"area\"\n", + "2019-01-16 05:26:20,829 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 05:26:20,830 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.065*\"villag\" + 0.049*\"region\" + 0.046*\"north\" + 0.045*\"east\" + 0.044*\"west\" + 0.041*\"south\" + 0.039*\"counti\" + 0.032*\"provinc\" + 0.026*\"central\"\n", + "2019-01-16 05:26:20,831 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:26:20,837 : INFO : topic diff=0.004108, rho=0.026698\n", + "2019-01-16 05:26:21,135 : INFO : PROGRESS: pass 0, at document #2808000/4922894\n", + "2019-01-16 05:26:23,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:23,745 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.013*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:26:23,746 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.069*\"januari\" + 0.067*\"juli\" + 0.065*\"august\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.063*\"decemb\"\n", + "2019-01-16 05:26:23,748 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"wrestl\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:26:23,749 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.012*\"israel\"\n", + "2019-01-16 05:26:23,750 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:26:23,756 : INFO : topic diff=0.003836, rho=0.026688\n", + "2019-01-16 05:26:24,015 : INFO : PROGRESS: pass 0, at document #2810000/4922894\n", + "2019-01-16 05:26:26,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:26,632 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:26:26,633 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:26:26,635 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:26:26,636 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.021*\"centuri\" + 0.011*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:26:26,638 : INFO : topic #35 (0.020): 0.028*\"hong\" + 0.028*\"kong\" + 0.023*\"singapor\" + 0.023*\"lee\" + 0.018*\"malaysia\" + 0.018*\"kim\" + 0.016*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 05:26:26,645 : INFO : topic diff=0.003882, rho=0.026679\n", + "2019-01-16 05:26:26,906 : INFO : PROGRESS: pass 0, at document #2812000/4922894\n", + "2019-01-16 05:26:28,898 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:29,454 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:26:29,456 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:26:29,457 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:26:29,459 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.044*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:26:29,460 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.010*\"countri\" + 0.008*\"peopl\" + 0.006*\"unit\" + 0.006*\"group\" + 0.006*\"union\"\n", + "2019-01-16 05:26:29,466 : INFO : topic diff=0.004215, rho=0.026669\n", + "2019-01-16 05:26:29,727 : INFO : PROGRESS: pass 0, at document #2814000/4922894\n", + "2019-01-16 05:26:31,715 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:32,273 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.015*\"montreal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:26:32,274 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", + "2019-01-16 05:26:32,276 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"ireland\" + 0.013*\"jame\" + 0.013*\"thoma\"\n", + "2019-01-16 05:26:32,277 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"unit\" + 0.006*\"group\" + 0.006*\"support\"\n", + "2019-01-16 05:26:32,280 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", + "2019-01-16 05:26:32,286 : INFO : topic diff=0.003548, rho=0.026660\n", + "2019-01-16 05:26:32,551 : INFO : PROGRESS: pass 0, at document #2816000/4922894\n", + "2019-01-16 05:26:34,601 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:35,161 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", + "2019-01-16 05:26:35,163 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:26:35,164 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.061*\"align\" + 0.058*\"wikit\" + 0.055*\"left\" + 0.051*\"style\" + 0.045*\"center\" + 0.037*\"philippin\" + 0.035*\"right\" + 0.030*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:26:35,167 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.044*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:26:35,168 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.017*\"match\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:26:35,174 : INFO : topic diff=0.005509, rho=0.026650\n", + "2019-01-16 05:26:35,431 : INFO : PROGRESS: pass 0, at document #2818000/4922894\n", + "2019-01-16 05:26:37,456 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:38,015 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:26:38,017 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:26:38,019 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:26:38,020 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:26:38,021 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.064*\"villag\" + 0.050*\"region\" + 0.046*\"north\" + 0.045*\"east\" + 0.044*\"west\" + 0.042*\"south\" + 0.039*\"counti\" + 0.032*\"provinc\" + 0.026*\"central\"\n", + "2019-01-16 05:26:38,027 : INFO : topic diff=0.004500, rho=0.026641\n", + "2019-01-16 05:26:42,672 : INFO : -11.915 per-word bound, 3861.1 perplexity estimate based on a held-out corpus of 2000 documents with 562817 words\n", + "2019-01-16 05:26:42,672 : INFO : PROGRESS: pass 0, at document #2820000/4922894\n", + "2019-01-16 05:26:44,716 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:45,274 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:26:45,275 : INFO : topic #35 (0.020): 0.028*\"hong\" + 0.027*\"kong\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.022*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\" + 0.014*\"asian\"\n", + "2019-01-16 05:26:45,277 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.071*\"septemb\" + 0.070*\"januari\" + 0.068*\"juli\" + 0.066*\"june\" + 0.066*\"novemb\" + 0.065*\"august\" + 0.064*\"decemb\" + 0.064*\"april\"\n", + "2019-01-16 05:26:45,278 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.012*\"model\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:26:45,280 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:26:45,287 : INFO : topic diff=0.003487, rho=0.026631\n", + "2019-01-16 05:26:45,561 : INFO : PROGRESS: pass 0, at document #2822000/4922894\n", + "2019-01-16 05:26:47,650 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:48,209 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:26:48,210 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:26:48,212 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:26:48,213 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 05:26:48,214 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"jone\"\n", + "2019-01-16 05:26:48,221 : INFO : topic diff=0.004295, rho=0.026622\n", + "2019-01-16 05:26:48,465 : INFO : PROGRESS: pass 0, at document #2824000/4922894\n", + "2019-01-16 05:26:50,385 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:50,942 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:26:50,944 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"produc\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:26:50,947 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:26:50,948 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"base\"\n", + "2019-01-16 05:26:50,949 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"jone\"\n", + "2019-01-16 05:26:50,955 : INFO : topic diff=0.004298, rho=0.026612\n", + "2019-01-16 05:26:51,208 : INFO : PROGRESS: pass 0, at document #2826000/4922894\n", + "2019-01-16 05:26:53,179 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:53,735 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:26:53,737 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"squadron\" + 0.019*\"airport\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.012*\"base\" + 0.012*\"fly\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:26:53,738 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:26:53,740 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:26:53,741 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:26:53,747 : INFO : topic diff=0.004486, rho=0.026603\n", + "2019-01-16 05:26:53,997 : INFO : PROGRESS: pass 0, at document #2828000/4922894\n", + "2019-01-16 05:26:55,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:56,553 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.011*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:26:56,554 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", + "2019-01-16 05:26:56,556 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:26:56,557 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.069*\"januari\" + 0.068*\"juli\" + 0.066*\"novemb\" + 0.066*\"june\" + 0.065*\"august\" + 0.064*\"decemb\" + 0.063*\"april\"\n", + "2019-01-16 05:26:56,559 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"khan\"\n", + "2019-01-16 05:26:56,564 : INFO : topic diff=0.004559, rho=0.026593\n", + "2019-01-16 05:26:56,829 : INFO : PROGRESS: pass 0, at document #2830000/4922894\n", + "2019-01-16 05:26:59,087 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:26:59,651 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:26:59,652 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"base\"\n", + "2019-01-16 05:26:59,653 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:26:59,656 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:26:59,657 : INFO : topic #35 (0.020): 0.028*\"hong\" + 0.027*\"kong\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asia\" + 0.013*\"asian\"\n", + "2019-01-16 05:26:59,664 : INFO : topic diff=0.003906, rho=0.026584\n", + "2019-01-16 05:26:59,917 : INFO : PROGRESS: pass 0, at document #2832000/4922894\n", + "2019-01-16 05:27:01,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:02,445 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.025*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 05:27:02,447 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:27:02,449 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"squadron\" + 0.018*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.012*\"base\" + 0.012*\"fly\"\n", + "2019-01-16 05:27:02,451 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.073*\"align\" + 0.067*\"left\" + 0.056*\"wikit\" + 0.048*\"style\" + 0.046*\"center\" + 0.036*\"philippin\" + 0.032*\"right\" + 0.028*\"text\" + 0.026*\"border\"\n", + "2019-01-16 05:27:02,452 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:27:02,459 : INFO : topic diff=0.003994, rho=0.026575\n", + "2019-01-16 05:27:02,755 : INFO : PROGRESS: pass 0, at document #2834000/4922894\n", + "2019-01-16 05:27:04,770 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:05,326 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:27:05,327 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.031*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.023*\"color\" + 0.023*\"black\" + 0.015*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:27:05,329 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.027*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.018*\"athlet\" + 0.017*\"rank\"\n", + "2019-01-16 05:27:05,330 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"squadron\" + 0.019*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.017*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:27:05,332 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:27:05,338 : INFO : topic diff=0.003592, rho=0.026565\n", + "2019-01-16 05:27:05,606 : INFO : PROGRESS: pass 0, at document #2836000/4922894\n", + "2019-01-16 05:27:07,869 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:08,431 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 05:27:08,433 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", + "2019-01-16 05:27:08,434 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 05:27:08,435 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", + "2019-01-16 05:27:08,437 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.022*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:27:08,442 : INFO : topic diff=0.003710, rho=0.026556\n", + "2019-01-16 05:27:08,691 : INFO : PROGRESS: pass 0, at document #2838000/4922894\n", + "2019-01-16 05:27:10,710 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:11,267 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:27:11,269 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:27:11,270 : INFO : topic #35 (0.020): 0.028*\"hong\" + 0.027*\"kong\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asia\" + 0.014*\"asian\"\n", + "2019-01-16 05:27:11,271 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.022*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:27:11,272 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 05:27:11,279 : INFO : topic diff=0.004098, rho=0.026547\n", + "2019-01-16 05:27:15,933 : INFO : -11.456 per-word bound, 2809.3 perplexity estimate based on a held-out corpus of 2000 documents with 565771 words\n", + "2019-01-16 05:27:15,934 : INFO : PROGRESS: pass 0, at document #2840000/4922894\n", + "2019-01-16 05:27:17,988 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:18,552 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:27:18,553 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.023*\"point\" + 0.021*\"group\" + 0.019*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.011*\"won\"\n", + "2019-01-16 05:27:18,556 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:27:18,557 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:27:18,559 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"base\"\n", + "2019-01-16 05:27:18,565 : INFO : topic diff=0.003477, rho=0.026537\n", + "2019-01-16 05:27:18,832 : INFO : PROGRESS: pass 0, at document #2842000/4922894\n", + "2019-01-16 05:27:20,833 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:21,390 : INFO : topic #35 (0.020): 0.027*\"hong\" + 0.027*\"lee\" + 0.027*\"kong\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 05:27:21,391 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"korean\" + 0.016*\"montreal\" + 0.015*\"ye\"\n", + "2019-01-16 05:27:21,393 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:27:21,394 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"construct\"\n", + "2019-01-16 05:27:21,396 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"airport\" + 0.019*\"squadron\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:27:21,402 : INFO : topic diff=0.003726, rho=0.026528\n", + "2019-01-16 05:27:21,662 : INFO : PROGRESS: pass 0, at document #2844000/4922894\n", + "2019-01-16 05:27:23,663 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:24,220 : INFO : topic #35 (0.020): 0.027*\"hong\" + 0.027*\"kong\" + 0.027*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 05:27:24,222 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:27:24,223 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:27:24,225 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:27:24,226 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:27:24,232 : INFO : topic diff=0.003908, rho=0.026519\n", + "2019-01-16 05:27:24,498 : INFO : PROGRESS: pass 0, at document #2846000/4922894\n", + "2019-01-16 05:27:26,516 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:27,074 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"pari\" + 0.027*\"italian\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:27:27,075 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.007*\"set\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:27:27,077 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:27:27,078 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"danish\" + 0.011*\"die\"\n", + "2019-01-16 05:27:27,079 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:27:27,085 : INFO : topic diff=0.003882, rho=0.026509\n", + "2019-01-16 05:27:27,346 : INFO : PROGRESS: pass 0, at document #2848000/4922894\n", + "2019-01-16 05:27:29,328 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:29,885 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"danish\" + 0.011*\"die\"\n", + "2019-01-16 05:27:29,887 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:27:29,888 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.025*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:27:29,890 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.071*\"januari\" + 0.068*\"juli\" + 0.066*\"june\" + 0.066*\"novemb\" + 0.065*\"august\" + 0.064*\"decemb\" + 0.063*\"april\"\n", + "2019-01-16 05:27:29,891 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.010*\"divis\"\n", + "2019-01-16 05:27:29,897 : INFO : topic diff=0.004647, rho=0.026500\n", + "2019-01-16 05:27:30,155 : INFO : PROGRESS: pass 0, at document #2850000/4922894\n", + "2019-01-16 05:27:32,142 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:32,697 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:27:32,699 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:27:32,701 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:27:32,702 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:27:32,704 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:27:32,710 : INFO : topic diff=0.004014, rho=0.026491\n", + "2019-01-16 05:27:32,974 : INFO : PROGRESS: pass 0, at document #2852000/4922894\n", + "2019-01-16 05:27:34,968 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:35,525 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:27:35,526 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.074*\"canada\" + 0.058*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.019*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", + "2019-01-16 05:27:35,528 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.028*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.019*\"episod\" + 0.016*\"star\" + 0.012*\"produc\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:27:35,530 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"coast\" + 0.009*\"port\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:27:35,531 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", + "2019-01-16 05:27:35,538 : INFO : topic diff=0.004530, rho=0.026481\n", + "2019-01-16 05:27:35,801 : INFO : PROGRESS: pass 0, at document #2854000/4922894\n", + "2019-01-16 05:27:37,774 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:38,330 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:27:38,332 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", + "2019-01-16 05:27:38,334 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:27:38,335 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.062*\"villag\" + 0.050*\"region\" + 0.045*\"east\" + 0.044*\"north\" + 0.044*\"counti\" + 0.042*\"west\" + 0.040*\"south\" + 0.032*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:27:38,337 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"host\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:27:38,342 : INFO : topic diff=0.003821, rho=0.026472\n", + "2019-01-16 05:27:38,809 : INFO : PROGRESS: pass 0, at document #2856000/4922894\n", + "2019-01-16 05:27:40,801 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:41,359 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"set\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\" + 0.007*\"group\"\n", + "2019-01-16 05:27:41,361 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"tree\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:27:41,363 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:27:41,365 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.010*\"regiment\"\n", + "2019-01-16 05:27:41,368 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:27:41,374 : INFO : topic diff=0.003284, rho=0.026463\n", + "2019-01-16 05:27:41,639 : INFO : PROGRESS: pass 0, at document #2858000/4922894\n", + "2019-01-16 05:27:43,624 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:44,182 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"host\" + 0.012*\"program\" + 0.012*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:27:44,183 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"area\"\n", + "2019-01-16 05:27:44,185 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.011*\"islam\" + 0.011*\"khan\" + 0.011*\"tamil\"\n", + "2019-01-16 05:27:44,186 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.019*\"squadron\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:27:44,188 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 05:27:44,194 : INFO : topic diff=0.003291, rho=0.026454\n", + "2019-01-16 05:27:48,973 : INFO : -11.697 per-word bound, 3320.0 perplexity estimate based on a held-out corpus of 2000 documents with 571303 words\n", + "2019-01-16 05:27:48,974 : INFO : PROGRESS: pass 0, at document #2860000/4922894\n", + "2019-01-16 05:27:51,010 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:51,567 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:27:51,569 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:27:51,571 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.028*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.019*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.011*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:27:51,572 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:27:51,574 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:27:51,580 : INFO : topic diff=0.004562, rho=0.026444\n", + "2019-01-16 05:27:51,840 : INFO : PROGRESS: pass 0, at document #2862000/4922894\n", + "2019-01-16 05:27:53,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:27:54,405 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.076*\"align\" + 0.070*\"left\" + 0.057*\"wikit\" + 0.049*\"style\" + 0.045*\"center\" + 0.035*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:27:54,407 : INFO : topic #48 (0.020): 0.079*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.071*\"januari\" + 0.066*\"juli\" + 0.066*\"novemb\" + 0.064*\"august\" + 0.064*\"june\" + 0.064*\"decemb\" + 0.062*\"april\"\n", + "2019-01-16 05:27:54,408 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.021*\"contest\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.016*\"match\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:27:54,409 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"hous\"\n", + "2019-01-16 05:27:54,411 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:27:54,416 : INFO : topic diff=0.004206, rho=0.026435\n", + "2019-01-16 05:27:54,671 : INFO : PROGRESS: pass 0, at document #2864000/4922894\n", + "2019-01-16 05:27:56,685 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:27:57,242 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:27:57,243 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:27:57,244 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"servic\" + 0.010*\"award\"\n", + "2019-01-16 05:27:57,246 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:27:57,247 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:27:57,254 : INFO : topic diff=0.003505, rho=0.026426\n", + "2019-01-16 05:27:57,512 : INFO : PROGRESS: pass 0, at document #2866000/4922894\n", + "2019-01-16 05:27:59,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:00,065 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.024*\"winner\" + 0.022*\"point\" + 0.021*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:28:00,067 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:28:00,069 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.011*\"empir\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:28:00,071 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:28:00,072 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"work\" + 0.011*\"servic\" + 0.010*\"award\"\n", + "2019-01-16 05:28:00,078 : INFO : topic diff=0.004782, rho=0.026417\n", + "2019-01-16 05:28:00,327 : INFO : PROGRESS: pass 0, at document #2868000/4922894\n", + "2019-01-16 05:28:02,302 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:02,858 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 05:28:02,859 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:28:02,860 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"fleet\"\n", + "2019-01-16 05:28:02,861 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"championship\"\n", + "2019-01-16 05:28:02,863 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:28:02,869 : INFO : topic diff=0.004153, rho=0.026407\n", + "2019-01-16 05:28:03,133 : INFO : PROGRESS: pass 0, at document #2870000/4922894\n", + "2019-01-16 05:28:05,142 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:05,699 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.019*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 05:28:05,701 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.032*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:28:05,702 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.018*\"citi\" + 0.017*\"cricket\" + 0.017*\"scotland\" + 0.017*\"london\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.014*\"wale\"\n", + "2019-01-16 05:28:05,704 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:28:05,705 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.013*\"polic\" + 0.010*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:28:05,711 : INFO : topic diff=0.004096, rho=0.026398\n", + "2019-01-16 05:28:05,960 : INFO : PROGRESS: pass 0, at document #2872000/4922894\n", + "2019-01-16 05:28:07,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:08,479 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:28:08,480 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.030*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.018*\"squadron\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:28:08,482 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 05:28:08,484 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.029*\"kong\" + 0.028*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asian\" + 0.014*\"vietnam\"\n", + "2019-01-16 05:28:08,486 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:28:08,492 : INFO : topic diff=0.003803, rho=0.026389\n", + "2019-01-16 05:28:08,754 : INFO : PROGRESS: pass 0, at document #2874000/4922894\n", + "2019-01-16 05:28:10,833 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:11,391 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:28:11,393 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:28:11,395 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:28:11,397 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 05:28:11,398 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.070*\"januari\" + 0.066*\"novemb\" + 0.066*\"juli\" + 0.065*\"june\" + 0.064*\"decemb\" + 0.064*\"august\" + 0.063*\"april\"\n", + "2019-01-16 05:28:11,405 : INFO : topic diff=0.004062, rho=0.026380\n", + "2019-01-16 05:28:11,658 : INFO : PROGRESS: pass 0, at document #2876000/4922894\n", + "2019-01-16 05:28:13,689 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:14,248 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.030*\"kong\" + 0.028*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.017*\"thailand\" + 0.016*\"malaysia\" + 0.014*\"asian\" + 0.014*\"indonesia\" + 0.014*\"vietnam\"\n", + "2019-01-16 05:28:14,250 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.021*\"area\" + 0.021*\"counti\" + 0.021*\"household\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:28:14,252 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"tamil\" + 0.011*\"islam\"\n", + "2019-01-16 05:28:14,253 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\"\n", + "2019-01-16 05:28:14,256 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 05:28:14,265 : INFO : topic diff=0.003658, rho=0.026371\n", + "2019-01-16 05:28:14,523 : INFO : PROGRESS: pass 0, at document #2878000/4922894\n", + "2019-01-16 05:28:16,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:17,178 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.030*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"squadron\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:28:17,179 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:28:17,181 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"danish\"\n", + "2019-01-16 05:28:17,184 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:28:17,185 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:28:17,191 : INFO : topic diff=0.005584, rho=0.026361\n", + "2019-01-16 05:28:21,924 : INFO : -11.849 per-word bound, 3689.4 perplexity estimate based on a held-out corpus of 2000 documents with 574477 words\n", + "2019-01-16 05:28:21,925 : INFO : PROGRESS: pass 0, at document #2880000/4922894\n", + "2019-01-16 05:28:23,969 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:24,534 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:28:24,536 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:28:24,537 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:28:24,539 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.012*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:28:24,540 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:28:24,546 : INFO : topic diff=0.003605, rho=0.026352\n", + "2019-01-16 05:28:24,804 : INFO : PROGRESS: pass 0, at document #2882000/4922894\n", + "2019-01-16 05:28:26,829 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:27,390 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"form\" + 0.005*\"us\"\n", + "2019-01-16 05:28:27,391 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:28:27,392 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:28:27,394 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.025*\"black\" + 0.024*\"till\" + 0.021*\"color\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:28:27,395 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:28:27,401 : INFO : topic diff=0.004363, rho=0.026343\n", + "2019-01-16 05:28:27,664 : INFO : PROGRESS: pass 0, at document #2884000/4922894\n", + "2019-01-16 05:28:29,662 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:30,219 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.027*\"olymp\" + 0.023*\"medal\" + 0.022*\"japan\" + 0.022*\"men\" + 0.022*\"event\" + 0.018*\"athlet\" + 0.016*\"gold\"\n", + "2019-01-16 05:28:30,221 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:28:30,222 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", + "2019-01-16 05:28:30,224 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"pari\" + 0.026*\"italian\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:28:30,225 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:28:30,232 : INFO : topic diff=0.004537, rho=0.026334\n", + "2019-01-16 05:28:30,543 : INFO : PROGRESS: pass 0, at document #2886000/4922894\n", + "2019-01-16 05:28:32,547 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:33,109 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.016*\"medic\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"cancer\" + 0.008*\"studi\"\n", + "2019-01-16 05:28:33,110 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.016*\"championship\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"box\"\n", + "2019-01-16 05:28:33,112 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:28:33,113 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:28:33,114 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"set\" + 0.007*\"valu\" + 0.007*\"method\" + 0.007*\"group\"\n", + "2019-01-16 05:28:33,120 : INFO : topic diff=0.003716, rho=0.026325\n", + "2019-01-16 05:28:33,373 : INFO : PROGRESS: pass 0, at document #2888000/4922894\n", + "2019-01-16 05:28:35,385 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:35,942 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:28:35,944 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.017*\"council\" + 0.013*\"repres\" + 0.012*\"senat\"\n", + "2019-01-16 05:28:35,945 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.016*\"gold\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:28:35,947 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"group\"\n", + "2019-01-16 05:28:35,950 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.011*\"busi\" + 0.011*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:28:35,956 : INFO : topic diff=0.003774, rho=0.026316\n", + "2019-01-16 05:28:36,217 : INFO : PROGRESS: pass 0, at document #2890000/4922894\n", + "2019-01-16 05:28:38,223 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:38,780 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.027*\"text\" + 0.025*\"black\" + 0.024*\"till\" + 0.022*\"color\" + 0.013*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 05:28:38,781 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.016*\"championship\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 05:28:38,782 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\"\n", + "2019-01-16 05:28:38,784 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.073*\"align\" + 0.065*\"left\" + 0.058*\"wikit\" + 0.048*\"style\" + 0.047*\"center\" + 0.037*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:28:38,785 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:28:38,790 : INFO : topic diff=0.003466, rho=0.026307\n", + "2019-01-16 05:28:39,040 : INFO : PROGRESS: pass 0, at document #2892000/4922894\n", + "2019-01-16 05:28:41,050 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:41,607 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:28:41,608 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"octob\" + 0.071*\"septemb\" + 0.070*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.062*\"april\"\n", + "2019-01-16 05:28:41,609 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:28:41,612 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.028*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:28:41,613 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:28:41,619 : INFO : topic diff=0.004730, rho=0.026298\n", + "2019-01-16 05:28:41,881 : INFO : PROGRESS: pass 0, at document #2894000/4922894\n", + "2019-01-16 05:28:43,877 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:44,434 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:28:44,435 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.070*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.062*\"april\"\n", + "2019-01-16 05:28:44,437 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", + "2019-01-16 05:28:44,439 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:28:44,441 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.011*\"empir\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:28:44,447 : INFO : topic diff=0.003596, rho=0.026288\n", + "2019-01-16 05:28:44,706 : INFO : PROGRESS: pass 0, at document #2896000/4922894\n", + "2019-01-16 05:28:46,753 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:47,316 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.011*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.009*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:28:47,317 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.029*\"kong\" + 0.028*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.014*\"vietnam\"\n", + "2019-01-16 05:28:47,319 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:28:47,320 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:28:47,321 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:28:47,327 : INFO : topic diff=0.004441, rho=0.026279\n", + "2019-01-16 05:28:47,578 : INFO : PROGRESS: pass 0, at document #2898000/4922894\n", + "2019-01-16 05:28:49,597 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:50,157 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:28:50,158 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.010*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:28:50,160 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.071*\"align\" + 0.063*\"left\" + 0.058*\"wikit\" + 0.049*\"style\" + 0.046*\"center\" + 0.036*\"right\" + 0.035*\"philippin\" + 0.028*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:28:50,161 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:28:50,162 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"pari\" + 0.027*\"italian\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:28:50,168 : INFO : topic diff=0.003442, rho=0.026270\n", + "2019-01-16 05:28:54,719 : INFO : -11.640 per-word bound, 3192.3 perplexity estimate based on a held-out corpus of 2000 documents with 560330 words\n", + "2019-01-16 05:28:54,720 : INFO : PROGRESS: pass 0, at document #2900000/4922894\n", + "2019-01-16 05:28:56,717 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:28:57,276 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:28:57,277 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"form\" + 0.004*\"us\"\n", + "2019-01-16 05:28:57,279 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.011*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:28:57,280 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.016*\"scotland\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:28:57,282 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:28:57,288 : INFO : topic diff=0.004229, rho=0.026261\n", + "2019-01-16 05:28:57,543 : INFO : PROGRESS: pass 0, at document #2902000/4922894\n", + "2019-01-16 05:28:59,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:00,088 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:29:00,090 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"ali\" + 0.012*\"tamil\" + 0.012*\"islam\"\n", + "2019-01-16 05:29:00,092 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:29:00,094 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:29:00,095 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 05:29:00,102 : INFO : topic diff=0.003805, rho=0.026252\n", + "2019-01-16 05:29:00,359 : INFO : PROGRESS: pass 0, at document #2904000/4922894\n", + "2019-01-16 05:29:02,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:02,898 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:29:02,899 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:29:02,901 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.016*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:29:02,902 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.019*\"airport\" + 0.019*\"squadron\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:29:02,904 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:29:02,910 : INFO : topic diff=0.003427, rho=0.026243\n", + "2019-01-16 05:29:03,162 : INFO : PROGRESS: pass 0, at document #2906000/4922894\n", + "2019-01-16 05:29:05,182 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:05,742 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 05:29:05,743 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:29:05,746 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"group\"\n", + "2019-01-16 05:29:05,747 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:29:05,750 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:29:05,757 : INFO : topic diff=0.003794, rho=0.026234\n", + "2019-01-16 05:29:06,012 : INFO : PROGRESS: pass 0, at document #2908000/4922894\n", + "2019-01-16 05:29:08,214 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:08,772 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:29:08,773 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:29:08,776 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 05:29:08,778 : INFO : topic #3 (0.020): 0.033*\"william\" + 0.031*\"john\" + 0.019*\"british\" + 0.017*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"royal\"\n", + "2019-01-16 05:29:08,779 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:29:08,785 : INFO : topic diff=0.004080, rho=0.026225\n", + "2019-01-16 05:29:09,079 : INFO : PROGRESS: pass 0, at document #2910000/4922894\n", + "2019-01-16 05:29:11,095 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:11,652 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:29:11,654 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:29:11,657 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:29:11,658 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 05:29:11,659 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.009*\"naval\"\n", + "2019-01-16 05:29:11,665 : INFO : topic diff=0.003424, rho=0.026216\n", + "2019-01-16 05:29:11,919 : INFO : PROGRESS: pass 0, at document #2912000/4922894\n", + "2019-01-16 05:29:13,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:14,442 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:29:14,444 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.039*\"african\" + 0.031*\"south\" + 0.028*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.013*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 05:29:14,447 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:29:14,449 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:29:14,450 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:29:14,456 : INFO : topic diff=0.004348, rho=0.026207\n", + "2019-01-16 05:29:14,712 : INFO : PROGRESS: pass 0, at document #2914000/4922894\n", + "2019-01-16 05:29:16,798 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:29:17,360 : INFO : topic #4 (0.020): 0.140*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:29:17,362 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.063*\"august\" + 0.062*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 05:29:17,364 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:29:17,365 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:29:17,367 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.010*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:29:17,372 : INFO : topic diff=0.004136, rho=0.026198\n", + "2019-01-16 05:29:17,636 : INFO : PROGRESS: pass 0, at document #2916000/4922894\n", + "2019-01-16 05:29:19,649 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:20,208 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.016*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 05:29:20,209 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:29:20,210 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:29:20,212 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.016*\"www\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"ali\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", + "2019-01-16 05:29:20,213 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:29:20,219 : INFO : topic diff=0.004061, rho=0.026189\n", + "2019-01-16 05:29:20,466 : INFO : PROGRESS: pass 0, at document #2918000/4922894\n", + "2019-01-16 05:29:22,408 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:22,967 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:29:22,968 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:29:22,969 : INFO : topic #4 (0.020): 0.140*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:29:22,971 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.016*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 05:29:22,972 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.041*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"point\" + 0.020*\"open\" + 0.020*\"group\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:29:22,978 : INFO : topic diff=0.004133, rho=0.026180\n", + "2019-01-16 05:29:27,398 : INFO : -11.786 per-word bound, 3531.0 perplexity estimate based on a held-out corpus of 2000 documents with 520513 words\n", + "2019-01-16 05:29:27,399 : INFO : PROGRESS: pass 0, at document #2920000/4922894\n", + "2019-01-16 05:29:29,344 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:29,905 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:29:29,907 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 05:29:29,909 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 05:29:29,911 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:29:29,912 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.009*\"naval\"\n", + "2019-01-16 05:29:29,918 : INFO : topic diff=0.003864, rho=0.026171\n", + "2019-01-16 05:29:30,173 : INFO : PROGRESS: pass 0, at document #2922000/4922894\n", + "2019-01-16 05:29:32,190 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:32,748 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.011*\"dai\" + 0.010*\"air\"\n", + "2019-01-16 05:29:32,750 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:29:32,751 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", + "2019-01-16 05:29:32,753 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.031*\"south\" + 0.027*\"text\" + 0.025*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:29:32,755 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.019*\"british\" + 0.016*\"korean\" + 0.016*\"flag\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:29:32,761 : INFO : topic diff=0.003709, rho=0.026162\n", + "2019-01-16 05:29:33,016 : INFO : PROGRESS: pass 0, at document #2924000/4922894\n", + "2019-01-16 05:29:35,051 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:35,610 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.062*\"august\" + 0.062*\"june\" + 0.062*\"decemb\" + 0.061*\"april\"\n", + "2019-01-16 05:29:35,612 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"dai\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:29:35,613 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:29:35,614 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:29:35,616 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.041*\"round\" + 0.025*\"tournament\" + 0.022*\"winner\" + 0.022*\"point\" + 0.020*\"open\" + 0.020*\"group\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:29:35,622 : INFO : topic diff=0.003505, rho=0.026153\n", + "2019-01-16 05:29:35,874 : INFO : PROGRESS: pass 0, at document #2926000/4922894\n", + "2019-01-16 05:29:37,856 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:38,413 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.032*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.016*\"asian\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"asia\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:29:38,414 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 05:29:38,416 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:29:38,417 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:29:38,418 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.021*\"peopl\" + 0.020*\"area\"\n", + "2019-01-16 05:29:38,424 : INFO : topic diff=0.003661, rho=0.026144\n", + "2019-01-16 05:29:38,670 : INFO : PROGRESS: pass 0, at document #2928000/4922894\n", + "2019-01-16 05:29:40,608 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:41,165 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:29:41,167 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:29:41,168 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.043*\"north\" + 0.043*\"east\" + 0.041*\"west\" + 0.041*\"counti\" + 0.038*\"south\" + 0.032*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:29:41,169 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:29:41,171 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.063*\"june\" + 0.062*\"decemb\" + 0.061*\"april\"\n", + "2019-01-16 05:29:41,177 : INFO : topic diff=0.004211, rho=0.026135\n", + "2019-01-16 05:29:41,429 : INFO : PROGRESS: pass 0, at document #2930000/4922894\n", + "2019-01-16 05:29:43,406 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:43,962 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"point\" + 0.020*\"group\" + 0.020*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:29:43,963 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:29:43,964 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:29:43,965 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:29:43,969 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:29:43,975 : INFO : topic diff=0.004179, rho=0.026126\n", + "2019-01-16 05:29:44,234 : INFO : PROGRESS: pass 0, at document #2932000/4922894\n", + "2019-01-16 05:29:46,306 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:46,871 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.015*\"team\" + 0.015*\"titl\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:29:46,873 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:29:46,874 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", + "2019-01-16 05:29:46,875 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"danish\"\n", + "2019-01-16 05:29:46,877 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"electr\" + 0.010*\"model\" + 0.009*\"design\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:29:46,884 : INFO : topic diff=0.004160, rho=0.026118\n", + "2019-01-16 05:29:47,129 : INFO : PROGRESS: pass 0, at document #2934000/4922894\n", + "2019-01-16 05:29:49,145 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:49,701 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"market\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:29:49,702 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.065*\"align\" + 0.060*\"wikit\" + 0.059*\"left\" + 0.050*\"style\" + 0.045*\"center\" + 0.036*\"philippin\" + 0.033*\"right\" + 0.027*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:29:49,704 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.020*\"peopl\" + 0.020*\"area\"\n", + "2019-01-16 05:29:49,705 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"studi\"\n", + "2019-01-16 05:29:49,706 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:29:49,711 : INFO : topic diff=0.004373, rho=0.026109\n", + "2019-01-16 05:29:49,996 : INFO : PROGRESS: pass 0, at document #2936000/4922894\n", + "2019-01-16 05:29:52,017 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:52,574 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"british\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.016*\"montreal\" + 0.016*\"quebec\"\n", + "2019-01-16 05:29:52,575 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:29:52,576 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.019*\"forc\" + 0.018*\"airport\" + 0.018*\"squadron\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.013*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:29:52,578 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:29:52,579 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:29:52,586 : INFO : topic diff=0.003608, rho=0.026100\n", + "2019-01-16 05:29:52,834 : INFO : PROGRESS: pass 0, at document #2938000/4922894\n", + "2019-01-16 05:29:54,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:29:55,344 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:29:55,346 : INFO : topic #3 (0.020): 0.031*\"william\" + 0.031*\"john\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"henri\" + 0.014*\"royal\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\"\n", + "2019-01-16 05:29:55,348 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.031*\"kong\" + 0.027*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\" + 0.014*\"asia\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:29:55,349 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:29:55,351 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"version\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 05:29:55,356 : INFO : topic diff=0.003821, rho=0.026091\n", + "2019-01-16 05:29:59,848 : INFO : -11.627 per-word bound, 3163.9 perplexity estimate based on a held-out corpus of 2000 documents with 510300 words\n", + "2019-01-16 05:29:59,849 : INFO : PROGRESS: pass 0, at document #2940000/4922894\n", + "2019-01-16 05:30:01,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:02,401 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:30:02,402 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\" + 0.014*\"asia\"\n", + "2019-01-16 05:30:02,404 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:30:02,406 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:30:02,407 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 05:30:02,413 : INFO : topic diff=0.004181, rho=0.026082\n", + "2019-01-16 05:30:02,670 : INFO : PROGRESS: pass 0, at document #2942000/4922894\n", + "2019-01-16 05:30:04,689 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:05,246 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.043*\"north\" + 0.042*\"east\" + 0.042*\"counti\" + 0.041*\"west\" + 0.037*\"south\" + 0.032*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:30:05,248 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.030*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\" + 0.014*\"asia\"\n", + "2019-01-16 05:30:05,249 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:30:05,251 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:30:05,253 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.025*\"color\" + 0.024*\"black\" + 0.024*\"till\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:30:05,259 : INFO : topic diff=0.003827, rho=0.026073\n", + "2019-01-16 05:30:05,512 : INFO : PROGRESS: pass 0, at document #2944000/4922894\n", + "2019-01-16 05:30:07,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:08,085 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 05:30:08,087 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:30:08,089 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:30:08,091 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"electr\" + 0.010*\"model\" + 0.009*\"design\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"protein\"\n", + "2019-01-16 05:30:08,092 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:30:08,098 : INFO : topic diff=0.004152, rho=0.026064\n", + "2019-01-16 05:30:08,353 : INFO : PROGRESS: pass 0, at document #2946000/4922894\n", + "2019-01-16 05:30:10,342 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:10,898 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 05:30:10,900 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.031*\"kong\" + 0.027*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.015*\"asian\" + 0.015*\"malaysia\" + 0.014*\"asia\"\n", + "2019-01-16 05:30:10,901 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.015*\"team\" + 0.015*\"match\" + 0.014*\"titl\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:30:10,903 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"red\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 05:30:10,904 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.063*\"villag\" + 0.051*\"region\" + 0.044*\"north\" + 0.043*\"counti\" + 0.042*\"east\" + 0.041*\"west\" + 0.037*\"south\" + 0.032*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:30:10,910 : INFO : topic diff=0.003357, rho=0.026055\n", + "2019-01-16 05:30:11,184 : INFO : PROGRESS: pass 0, at document #2948000/4922894\n", + "2019-01-16 05:30:13,178 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:13,738 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:30:13,740 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:30:13,741 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.070*\"canada\" + 0.059*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.018*\"british\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 05:30:13,743 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.013*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:30:13,744 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.018*\"london\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\"\n", + "2019-01-16 05:30:13,751 : INFO : topic diff=0.004077, rho=0.026047\n", + "2019-01-16 05:30:14,019 : INFO : PROGRESS: pass 0, at document #2950000/4922894\n", + "2019-01-16 05:30:16,045 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:16,603 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:30:16,605 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:30:16,606 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.011*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:30:16,608 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.019*\"airport\" + 0.019*\"forc\" + 0.018*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:30:16,610 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:30:16,615 : INFO : topic diff=0.004356, rho=0.026038\n", + "2019-01-16 05:30:16,873 : INFO : PROGRESS: pass 0, at document #2952000/4922894\n", + "2019-01-16 05:30:18,885 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:19,443 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:30:19,445 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", + "2019-01-16 05:30:19,446 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:30:19,448 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:30:19,449 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.044*\"north\" + 0.043*\"east\" + 0.042*\"counti\" + 0.041*\"west\" + 0.038*\"south\" + 0.031*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:30:19,456 : INFO : topic diff=0.003995, rho=0.026029\n", + "2019-01-16 05:30:19,726 : INFO : PROGRESS: pass 0, at document #2954000/4922894\n", + "2019-01-16 05:30:21,736 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:22,297 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.028*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", + "2019-01-16 05:30:22,298 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.071*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.019*\"british\" + 0.018*\"korean\" + 0.017*\"quebec\" + 0.017*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 05:30:22,300 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:30:22,301 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"time\" + 0.012*\"finish\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 05:30:22,303 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:30:22,309 : INFO : topic diff=0.004223, rho=0.026020\n", + "2019-01-16 05:30:22,578 : INFO : PROGRESS: pass 0, at document #2956000/4922894\n", + "2019-01-16 05:30:24,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:25,176 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", + "2019-01-16 05:30:25,177 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.012*\"ali\" + 0.011*\"islam\" + 0.011*\"khan\"\n", + "2019-01-16 05:30:25,179 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:30:25,180 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"new\" + 0.055*\"australian\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"south\" + 0.031*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:30:25,181 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 05:30:25,187 : INFO : topic diff=0.004030, rho=0.026011\n", + "2019-01-16 05:30:25,437 : INFO : PROGRESS: pass 0, at document #2958000/4922894\n", + "2019-01-16 05:30:27,445 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:28,009 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.044*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", + "2019-01-16 05:30:28,011 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.028*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:30:28,012 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.010*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:30:28,013 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:30:28,015 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:30:28,021 : INFO : topic diff=0.003514, rho=0.026003\n", + "2019-01-16 05:30:32,720 : INFO : -11.632 per-word bound, 3173.6 perplexity estimate based on a held-out corpus of 2000 documents with 584590 words\n", + "2019-01-16 05:30:32,721 : INFO : PROGRESS: pass 0, at document #2960000/4922894\n", + "2019-01-16 05:30:34,748 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:35,306 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:30:35,308 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:30:35,309 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 05:30:35,311 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:30:35,312 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"match\" + 0.015*\"championship\" + 0.014*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"box\"\n", + "2019-01-16 05:30:35,318 : INFO : topic diff=0.004549, rho=0.025994\n", + "2019-01-16 05:30:35,612 : INFO : PROGRESS: pass 0, at document #2962000/4922894\n", + "2019-01-16 05:30:37,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:38,203 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"danish\"\n", + "2019-01-16 05:30:38,204 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:30:38,206 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.013*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:30:38,207 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.022*\"winner\" + 0.022*\"point\" + 0.020*\"group\" + 0.020*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:30:38,208 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.062*\"june\" + 0.061*\"august\" + 0.061*\"april\" + 0.061*\"decemb\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:30:38,214 : INFO : topic diff=0.003629, rho=0.025985\n", + "2019-01-16 05:30:38,467 : INFO : PROGRESS: pass 0, at document #2964000/4922894\n", + "2019-01-16 05:30:40,409 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:40,966 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.062*\"june\" + 0.062*\"august\" + 0.061*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:30:40,967 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.010*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:30:40,969 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.064*\"align\" + 0.060*\"wikit\" + 0.058*\"left\" + 0.049*\"style\" + 0.045*\"center\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:30:40,970 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:30:40,973 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:30:40,979 : INFO : topic diff=0.004412, rho=0.025976\n", + "2019-01-16 05:30:41,247 : INFO : PROGRESS: pass 0, at document #2966000/4922894\n", + "2019-01-16 05:30:43,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:43,785 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:30:43,786 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.035*\"russian\" + 0.028*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", + "2019-01-16 05:30:43,788 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:30:43,789 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.021*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"danish\"\n", + "2019-01-16 05:30:43,790 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.062*\"june\" + 0.062*\"august\" + 0.061*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:30:43,795 : INFO : topic diff=0.003461, rho=0.025967\n", + "2019-01-16 05:30:44,039 : INFO : PROGRESS: pass 0, at document #2968000/4922894\n", + "2019-01-16 05:30:46,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:46,636 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:30:46,637 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:30:46,638 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"household\" + 0.020*\"township\" + 0.020*\"counti\"\n", + "2019-01-16 05:30:46,640 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"carlo\"\n", + "2019-01-16 05:30:46,641 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", + "2019-01-16 05:30:46,647 : INFO : topic diff=0.004441, rho=0.025959\n", + "2019-01-16 05:30:46,919 : INFO : PROGRESS: pass 0, at document #2970000/4922894\n", + "2019-01-16 05:30:49,030 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:49,587 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:30:49,588 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:30:49,590 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", + "2019-01-16 05:30:49,592 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:30:49,594 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:30:49,601 : INFO : topic diff=0.004040, rho=0.025950\n", + "2019-01-16 05:30:49,863 : INFO : PROGRESS: pass 0, at document #2972000/4922894\n", + "2019-01-16 05:30:51,920 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:52,479 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"household\" + 0.021*\"counti\" + 0.020*\"peopl\"\n", + "2019-01-16 05:30:52,481 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:30:52,483 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.017*\"london\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"wale\" + 0.012*\"scottish\"\n", + "2019-01-16 05:30:52,485 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.054*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"south\" + 0.031*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"western\"\n", + "2019-01-16 05:30:52,486 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:30:52,492 : INFO : topic diff=0.003239, rho=0.025941\n", + "2019-01-16 05:30:52,737 : INFO : PROGRESS: pass 0, at document #2974000/4922894\n", + "2019-01-16 05:30:54,722 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:55,279 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.018*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:30:55,281 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:30:55,282 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", + "2019-01-16 05:30:55,284 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 05:30:55,285 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 05:30:55,291 : INFO : topic diff=0.003981, rho=0.025933\n", + "2019-01-16 05:30:55,540 : INFO : PROGRESS: pass 0, at document #2976000/4922894\n", + "2019-01-16 05:30:57,566 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:30:58,124 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:30:58,125 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"ireland\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\"\n", + "2019-01-16 05:30:58,127 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:30:58,128 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"time\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:30:58,130 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 05:30:58,136 : INFO : topic diff=0.003880, rho=0.025924\n", + "2019-01-16 05:30:58,397 : INFO : PROGRESS: pass 0, at document #2978000/4922894\n", + "2019-01-16 05:31:00,435 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:00,994 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"israel\" + 0.012*\"republ\" + 0.012*\"moscow\"\n", + "2019-01-16 05:31:00,996 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:31:00,997 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.018*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:31:00,998 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", + "2019-01-16 05:31:01,000 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"work\"\n", + "2019-01-16 05:31:01,006 : INFO : topic diff=0.003657, rho=0.025915\n", + "2019-01-16 05:31:05,527 : INFO : -11.820 per-word bound, 3614.6 perplexity estimate based on a held-out corpus of 2000 documents with 552644 words\n", + "2019-01-16 05:31:05,527 : INFO : PROGRESS: pass 0, at document #2980000/4922894\n", + "2019-01-16 05:31:07,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:08,283 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"bank\" + 0.012*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:31:08,284 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 05:31:08,287 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:31:08,288 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"team\" + 0.033*\"plai\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", + "2019-01-16 05:31:08,290 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"ireland\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\"\n", + "2019-01-16 05:31:08,296 : INFO : topic diff=0.004119, rho=0.025906\n", + "2019-01-16 05:31:08,553 : INFO : PROGRESS: pass 0, at document #2982000/4922894\n", + "2019-01-16 05:31:10,643 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:11,200 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:31:11,202 : INFO : topic #29 (0.020): 0.039*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.033*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", + "2019-01-16 05:31:11,203 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"work\"\n", + "2019-01-16 05:31:11,204 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.021*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:31:11,206 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.044*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:31:11,211 : INFO : topic diff=0.003528, rho=0.025898\n", + "2019-01-16 05:31:11,464 : INFO : PROGRESS: pass 0, at document #2984000/4922894\n", + "2019-01-16 05:31:13,468 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:14,024 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.021*\"group\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:31:14,026 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.045*\"africa\" + 0.039*\"african\" + 0.032*\"south\" + 0.028*\"text\" + 0.027*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.012*\"tropic\" + 0.011*\"storm\"\n", + "2019-01-16 05:31:14,027 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.061*\"wikit\" + 0.060*\"align\" + 0.057*\"left\" + 0.050*\"style\" + 0.044*\"center\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.028*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:31:14,028 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 05:31:14,030 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"ireland\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\"\n", + "2019-01-16 05:31:14,036 : INFO : topic diff=0.004199, rho=0.025889\n", + "2019-01-16 05:31:14,298 : INFO : PROGRESS: pass 0, at document #2986000/4922894\n", + "2019-01-16 05:31:16,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:16,899 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:31:16,900 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:31:16,901 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:31:16,903 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", + "2019-01-16 05:31:16,905 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.013*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", + "2019-01-16 05:31:16,911 : INFO : topic diff=0.004200, rho=0.025880\n", + "2019-01-16 05:31:17,202 : INFO : PROGRESS: pass 0, at document #2988000/4922894\n", + "2019-01-16 05:31:19,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:19,735 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", + "2019-01-16 05:31:19,736 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.027*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.018*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:31:19,738 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"valu\" + 0.007*\"set\" + 0.007*\"point\" + 0.007*\"group\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:31:19,740 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:31:19,741 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.015*\"titl\" + 0.015*\"wrestl\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.011*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:31:19,748 : INFO : topic diff=0.004098, rho=0.025872\n", + "2019-01-16 05:31:20,026 : INFO : PROGRESS: pass 0, at document #2990000/4922894\n", + "2019-01-16 05:31:22,219 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:22,807 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 05:31:22,809 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:31:22,811 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:31:22,812 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"year\" + 0.009*\"stage\"\n", + "2019-01-16 05:31:22,813 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:31:22,819 : INFO : topic diff=0.003557, rho=0.025863\n", + "2019-01-16 05:31:23,075 : INFO : PROGRESS: pass 0, at document #2992000/4922894\n", + "2019-01-16 05:31:25,135 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:25,701 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:31:25,703 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:31:25,704 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.021*\"group\" + 0.021*\"winner\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:31:25,705 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.030*\"kong\" + 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"asia\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asian\"\n", + "2019-01-16 05:31:25,707 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:31:25,713 : INFO : topic diff=0.003708, rho=0.025854\n", + "2019-01-16 05:31:25,985 : INFO : PROGRESS: pass 0, at document #2994000/4922894\n", + "2019-01-16 05:31:28,039 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:28,602 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 05:31:28,604 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.044*\"africa\" + 0.038*\"african\" + 0.032*\"south\" + 0.030*\"text\" + 0.027*\"color\" + 0.027*\"till\" + 0.024*\"black\" + 0.012*\"storm\" + 0.012*\"shift\"\n", + "2019-01-16 05:31:28,605 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:31:28,606 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.015*\"titl\" + 0.015*\"wrestl\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.012*\"champion\" + 0.011*\"elimin\"\n", + "2019-01-16 05:31:28,608 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:31:28,614 : INFO : topic diff=0.004211, rho=0.025846\n", + "2019-01-16 05:31:28,872 : INFO : PROGRESS: pass 0, at document #2996000/4922894\n", + "2019-01-16 05:31:30,926 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:31,483 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.045*\"africa\" + 0.039*\"african\" + 0.033*\"south\" + 0.029*\"text\" + 0.027*\"color\" + 0.027*\"till\" + 0.024*\"black\" + 0.011*\"storm\" + 0.011*\"shift\"\n", + "2019-01-16 05:31:31,484 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.070*\"canada\" + 0.059*\"canadian\" + 0.023*\"toronto\" + 0.022*\"ontario\" + 0.019*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:31:31,485 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\" + 0.020*\"area\"\n", + "2019-01-16 05:31:31,487 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.018*\"vote\" + 0.018*\"democrat\" + 0.015*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", + "2019-01-16 05:31:31,488 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"form\" + 0.005*\"effect\"\n", + "2019-01-16 05:31:31,494 : INFO : topic diff=0.004209, rho=0.025837\n", + "2019-01-16 05:31:31,749 : INFO : PROGRESS: pass 0, at document #2998000/4922894\n", + "2019-01-16 05:31:33,735 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:34,292 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.070*\"canada\" + 0.059*\"canadian\" + 0.023*\"toronto\" + 0.023*\"ontario\" + 0.019*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:31:34,293 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 05:31:34,295 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:31:34,297 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:31:34,298 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.033*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", + "2019-01-16 05:31:34,304 : INFO : topic diff=0.003045, rho=0.025828\n", + "2019-01-16 05:31:38,899 : INFO : -11.520 per-word bound, 2937.3 perplexity estimate based on a held-out corpus of 2000 documents with 539462 words\n", + "2019-01-16 05:31:38,900 : INFO : PROGRESS: pass 0, at document #3000000/4922894\n", + "2019-01-16 05:31:40,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:41,448 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.020*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:31:41,449 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.054*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.031*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:31:41,450 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:31:41,452 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.015*\"wrestl\" + 0.015*\"titl\" + 0.015*\"match\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.012*\"elimin\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:31:41,453 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.022*\"town\" + 0.018*\"citi\" + 0.017*\"cricket\" + 0.017*\"london\" + 0.016*\"scotland\" + 0.013*\"wale\" + 0.013*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:31:41,458 : INFO : topic diff=0.003103, rho=0.025820\n", + "2019-01-16 05:31:41,721 : INFO : PROGRESS: pass 0, at document #3002000/4922894\n", + "2019-01-16 05:31:43,738 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:44,297 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"organ\" + 0.010*\"servic\"\n", + "2019-01-16 05:31:44,298 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.022*\"point\" + 0.021*\"group\" + 0.021*\"winner\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:31:44,300 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 05:31:44,301 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.015*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", + "2019-01-16 05:31:44,303 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"work\"\n", + "2019-01-16 05:31:44,308 : INFO : topic diff=0.003683, rho=0.025811\n", + "2019-01-16 05:31:44,578 : INFO : PROGRESS: pass 0, at document #3004000/4922894\n", + "2019-01-16 05:31:46,631 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:47,189 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:31:47,191 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:31:47,192 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.061*\"align\" + 0.060*\"wikit\" + 0.058*\"left\" + 0.050*\"style\" + 0.049*\"center\" + 0.034*\"right\" + 0.032*\"philippin\" + 0.028*\"text\" + 0.026*\"border\"\n", + "2019-01-16 05:31:47,194 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:31:47,196 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.013*\"henri\" + 0.013*\"thoma\"\n", + "2019-01-16 05:31:47,202 : INFO : topic diff=0.003526, rho=0.025803\n", + "2019-01-16 05:31:47,458 : INFO : PROGRESS: pass 0, at document #3006000/4922894\n", + "2019-01-16 05:31:49,497 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:50,059 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:31:50,061 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:31:50,062 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:31:50,064 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 05:31:50,065 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.054*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.031*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:31:50,071 : INFO : topic diff=0.003704, rho=0.025794\n", + "2019-01-16 05:31:50,330 : INFO : PROGRESS: pass 0, at document #3008000/4922894\n", + "2019-01-16 05:31:52,269 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:52,826 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:31:52,828 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:31:52,829 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.018*\"citi\" + 0.018*\"london\" + 0.017*\"cricket\" + 0.016*\"scotland\" + 0.014*\"wale\" + 0.013*\"manchest\" + 0.013*\"west\"\n", + "2019-01-16 05:31:52,831 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:31:52,833 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.016*\"indonesia\" + 0.016*\"asia\" + 0.015*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"asian\"\n", + "2019-01-16 05:31:52,839 : INFO : topic diff=0.003736, rho=0.025786\n", + "2019-01-16 05:31:53,103 : INFO : PROGRESS: pass 0, at document #3010000/4922894\n", + "2019-01-16 05:31:55,162 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:55,718 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"organ\" + 0.010*\"award\"\n", + "2019-01-16 05:31:55,719 : INFO : topic #8 (0.020): 0.054*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.018*\"pakistan\" + 0.015*\"www\" + 0.014*\"iran\" + 0.012*\"ali\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 05:31:55,721 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.027*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:31:55,722 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.015*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", + "2019-01-16 05:31:55,723 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:31:55,729 : INFO : topic diff=0.003191, rho=0.025777\n", + "2019-01-16 05:31:55,994 : INFO : PROGRESS: pass 0, at document #3012000/4922894\n", + "2019-01-16 05:31:58,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:31:58,582 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.016*\"station\" + 0.015*\"dai\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:31:58,583 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.018*\"citi\" + 0.018*\"london\" + 0.017*\"cricket\" + 0.016*\"scotland\" + 0.013*\"wale\" + 0.013*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 05:31:58,585 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:31:58,586 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.010*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:31:58,587 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"island\" + 0.011*\"boat\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"sail\"\n", + "2019-01-16 05:31:58,596 : INFO : topic diff=0.003137, rho=0.025768\n", + "2019-01-16 05:31:58,890 : INFO : PROGRESS: pass 0, at document #3014000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:32:00,914 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:01,475 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:32:01,476 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:32:01,477 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.023*\"point\" + 0.022*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:32:01,479 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.011*\"role\" + 0.011*\"televis\"\n", + "2019-01-16 05:32:01,481 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:32:01,487 : INFO : topic diff=0.003897, rho=0.025760\n", + "2019-01-16 05:32:01,741 : INFO : PROGRESS: pass 0, at document #3016000/4922894\n", + "2019-01-16 05:32:03,718 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:04,279 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:32:04,281 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 05:32:04,282 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.020*\"centuri\" + 0.010*\"roman\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:32:04,284 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:32:04,286 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:32:04,292 : INFO : topic diff=0.004275, rho=0.025751\n", + "2019-01-16 05:32:04,553 : INFO : PROGRESS: pass 0, at document #3018000/4922894\n", + "2019-01-16 05:32:06,518 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:07,075 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:32:07,076 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"citi\" + 0.036*\"town\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.020*\"area\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:32:07,077 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.065*\"villag\" + 0.051*\"region\" + 0.044*\"east\" + 0.043*\"north\" + 0.042*\"west\" + 0.039*\"counti\" + 0.038*\"south\" + 0.033*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:32:07,079 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:32:07,080 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:32:07,086 : INFO : topic diff=0.004331, rho=0.025743\n", + "2019-01-16 05:32:11,644 : INFO : -11.655 per-word bound, 3225.6 perplexity estimate based on a held-out corpus of 2000 documents with 542016 words\n", + "2019-01-16 05:32:11,645 : INFO : PROGRESS: pass 0, at document #3020000/4922894\n", + "2019-01-16 05:32:13,638 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:14,196 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\"\n", + "2019-01-16 05:32:14,198 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.016*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.013*\"henri\"\n", + "2019-01-16 05:32:14,200 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:32:14,201 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:32:14,203 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"ret\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:32:14,209 : INFO : topic diff=0.003674, rho=0.025734\n", + "2019-01-16 05:32:14,472 : INFO : PROGRESS: pass 0, at document #3022000/4922894\n", + "2019-01-16 05:32:16,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:17,093 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.053*\"australian\" + 0.052*\"new\" + 0.045*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.032*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:32:17,095 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 05:32:17,097 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.011*\"daughter\"\n", + "2019-01-16 05:32:17,098 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:32:17,100 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:32:17,106 : INFO : topic diff=0.003294, rho=0.025726\n", + "2019-01-16 05:32:17,364 : INFO : PROGRESS: pass 0, at document #3024000/4922894\n", + "2019-01-16 05:32:19,351 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:19,908 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.022*\"toronto\" + 0.022*\"ontario\" + 0.019*\"korean\" + 0.018*\"british\" + 0.018*\"korea\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 05:32:19,909 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"match\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:32:19,910 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.022*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:32:19,912 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 05:32:19,913 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:32:19,919 : INFO : topic diff=0.004852, rho=0.025717\n", + "2019-01-16 05:32:20,182 : INFO : PROGRESS: pass 0, at document #3026000/4922894\n", + "2019-01-16 05:32:22,168 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:22,725 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:32:22,727 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.036*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:32:22,728 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.018*\"london\" + 0.015*\"scotland\" + 0.013*\"wale\" + 0.013*\"manchest\" + 0.013*\"west\"\n", + "2019-01-16 05:32:22,729 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 05:32:22,731 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:32:22,736 : INFO : topic diff=0.004184, rho=0.025709\n", + "2019-01-16 05:32:22,996 : INFO : PROGRESS: pass 0, at document #3028000/4922894\n", + "2019-01-16 05:32:24,985 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:25,543 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", + "2019-01-16 05:32:25,544 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.063*\"decemb\" + 0.063*\"june\" + 0.063*\"april\" + 0.063*\"august\"\n", + "2019-01-16 05:32:25,546 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:32:25,547 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.006*\"union\"\n", + "2019-01-16 05:32:25,548 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:32:25,554 : INFO : topic diff=0.003700, rho=0.025700\n", + "2019-01-16 05:32:25,823 : INFO : PROGRESS: pass 0, at document #3030000/4922894\n", + "2019-01-16 05:32:27,801 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:28,358 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:32:28,360 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"organ\" + 0.010*\"award\"\n", + "2019-01-16 05:32:28,361 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:32:28,363 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:32:28,364 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 05:32:28,370 : INFO : topic diff=0.004446, rho=0.025692\n", + "2019-01-16 05:32:28,624 : INFO : PROGRESS: pass 0, at document #3032000/4922894\n", + "2019-01-16 05:32:30,644 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:31,200 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:32:31,201 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:32:31,203 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.016*\"georg\" + 0.014*\"sir\" + 0.013*\"ireland\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:32:31,204 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:32:31,205 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:32:31,212 : INFO : topic diff=0.002962, rho=0.025683\n", + "2019-01-16 05:32:31,485 : INFO : PROGRESS: pass 0, at document #3034000/4922894\n", + "2019-01-16 05:32:33,552 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:34,108 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.016*\"indonesia\" + 0.015*\"asia\" + 0.014*\"malaysia\" + 0.014*\"thailand\" + 0.013*\"asian\"\n", + "2019-01-16 05:32:34,110 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 05:32:34,112 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.015*\"dai\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:32:34,113 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:32:34,114 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:32:34,120 : INFO : topic diff=0.004655, rho=0.025675\n", + "2019-01-16 05:32:34,368 : INFO : PROGRESS: pass 0, at document #3036000/4922894\n", + "2019-01-16 05:32:36,321 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:36,878 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:32:36,879 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:32:36,881 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"politician\"\n", + "2019-01-16 05:32:36,882 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"richard\"\n", + "2019-01-16 05:32:36,883 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.035*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:32:36,890 : INFO : topic diff=0.004718, rho=0.025666\n", + "2019-01-16 05:32:37,154 : INFO : PROGRESS: pass 0, at document #3038000/4922894\n", + "2019-01-16 05:32:39,147 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:39,705 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.016*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 05:32:39,706 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.034*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"politician\"\n", + "2019-01-16 05:32:39,707 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:32:39,709 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"jone\"\n", + "2019-01-16 05:32:39,710 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:32:39,716 : INFO : topic diff=0.003779, rho=0.025658\n", + "2019-01-16 05:32:44,338 : INFO : -11.649 per-word bound, 3212.5 perplexity estimate based on a held-out corpus of 2000 documents with 565028 words\n", + "2019-01-16 05:32:44,339 : INFO : PROGRESS: pass 0, at document #3040000/4922894\n", + "2019-01-16 05:32:46,372 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:46,932 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"jone\"\n", + "2019-01-16 05:32:46,933 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:32:46,935 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:32:46,936 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:32:46,938 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.018*\"minist\" + 0.015*\"council\" + 0.013*\"polit\" + 0.013*\"republican\"\n", + "2019-01-16 05:32:46,943 : INFO : topic diff=0.003881, rho=0.025649\n", + "2019-01-16 05:32:47,189 : INFO : PROGRESS: pass 0, at document #3042000/4922894\n", + "2019-01-16 05:32:49,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:49,708 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:32:49,709 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:32:49,711 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.018*\"london\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:32:49,712 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", + "2019-01-16 05:32:49,713 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"leagu\"\n", + "2019-01-16 05:32:49,719 : INFO : topic diff=0.005174, rho=0.025641\n", + "2019-01-16 05:32:49,990 : INFO : PROGRESS: pass 0, at document #3044000/4922894\n", + "2019-01-16 05:32:52,048 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:52,605 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:32:52,607 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:32:52,608 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:32:52,610 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:32:52,612 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.012*\"servic\" + 0.011*\"organ\"\n", + "2019-01-16 05:32:52,619 : INFO : topic diff=0.003905, rho=0.025633\n", + "2019-01-16 05:32:52,872 : INFO : PROGRESS: pass 0, at document #3046000/4922894\n", + "2019-01-16 05:32:54,917 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:55,478 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"citi\" + 0.036*\"town\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.020*\"household\" + 0.020*\"area\"\n", + "2019-01-16 05:32:55,479 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.043*\"africa\" + 0.037*\"african\" + 0.033*\"south\" + 0.030*\"text\" + 0.027*\"till\" + 0.027*\"color\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.012*\"storm\"\n", + "2019-01-16 05:32:55,481 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:32:55,483 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\"\n", + "2019-01-16 05:32:55,484 : INFO : topic #2 (0.020): 0.059*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:32:55,490 : INFO : topic diff=0.004660, rho=0.025624\n", + "2019-01-16 05:32:55,755 : INFO : PROGRESS: pass 0, at document #3048000/4922894\n", + "2019-01-16 05:32:57,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:32:58,311 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"mountain\"\n", + "2019-01-16 05:32:58,312 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:32:58,314 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.018*\"korean\" + 0.018*\"british\" + 0.017*\"korea\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 05:32:58,316 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:32:58,317 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:32:58,324 : INFO : topic diff=0.003698, rho=0.025616\n", + "2019-01-16 05:32:58,587 : INFO : PROGRESS: pass 0, at document #3050000/4922894\n", + "2019-01-16 05:33:00,625 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:01,186 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.060*\"align\" + 0.059*\"wikit\" + 0.054*\"left\" + 0.048*\"style\" + 0.046*\"center\" + 0.035*\"right\" + 0.033*\"philippin\" + 0.027*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:33:01,188 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\"\n", + "2019-01-16 05:33:01,189 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:33:01,190 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:33:01,191 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.025*\"saint\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:33:01,197 : INFO : topic diff=0.003631, rho=0.025607\n", + "2019-01-16 05:33:01,470 : INFO : PROGRESS: pass 0, at document #3052000/4922894\n", + "2019-01-16 05:33:03,464 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:04,021 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.016*\"medic\" + 0.015*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:33:04,022 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:33:04,024 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:33:04,025 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:33:04,027 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", + "2019-01-16 05:33:04,033 : INFO : topic diff=0.003894, rho=0.025599\n", + "2019-01-16 05:33:04,306 : INFO : PROGRESS: pass 0, at document #3054000/4922894\n", + "2019-01-16 05:33:06,297 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:06,853 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.032*\"kong\" + 0.023*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"asia\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"thailand\" + 0.013*\"asian\"\n", + "2019-01-16 05:33:06,855 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"dai\" + 0.014*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:33:06,856 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"match\" + 0.014*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"elimin\"\n", + "2019-01-16 05:33:06,858 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:33:06,859 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:33:06,864 : INFO : topic diff=0.003373, rho=0.025591\n", + "2019-01-16 05:33:07,131 : INFO : PROGRESS: pass 0, at document #3056000/4922894\n", + "2019-01-16 05:33:09,373 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:09,931 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"saint\" + 0.026*\"pari\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:33:09,933 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:33:09,934 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:33:09,935 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"servic\" + 0.011*\"organ\"\n", + "2019-01-16 05:33:09,937 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:33:09,942 : INFO : topic diff=0.004361, rho=0.025582\n", + "2019-01-16 05:33:10,198 : INFO : PROGRESS: pass 0, at document #3058000/4922894\n", + "2019-01-16 05:33:12,170 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:12,728 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:33:12,730 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 05:33:12,731 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"dai\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:33:12,732 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:33:12,734 : INFO : topic #40 (0.020): 0.053*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.034*\"text\" + 0.030*\"south\" + 0.030*\"color\" + 0.030*\"till\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 05:33:12,740 : INFO : topic diff=0.003678, rho=0.025574\n", + "2019-01-16 05:33:17,489 : INFO : -12.016 per-word bound, 4142.0 perplexity estimate based on a held-out corpus of 2000 documents with 579504 words\n", + "2019-01-16 05:33:17,489 : INFO : PROGRESS: pass 0, at document #3060000/4922894\n", + "2019-01-16 05:33:19,568 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:20,125 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:33:20,126 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:33:20,128 : INFO : topic #40 (0.020): 0.053*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.033*\"text\" + 0.030*\"south\" + 0.030*\"color\" + 0.030*\"till\" + 0.025*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 05:33:20,129 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:33:20,131 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.015*\"dai\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:33:20,138 : INFO : topic diff=0.003505, rho=0.025565\n", + "2019-01-16 05:33:20,402 : INFO : PROGRESS: pass 0, at document #3062000/4922894\n", + "2019-01-16 05:33:22,392 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:22,950 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:33:22,951 : INFO : topic #8 (0.020): 0.053*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.018*\"www\" + 0.017*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.012*\"ali\" + 0.012*\"islam\" + 0.012*\"sri\"\n", + "2019-01-16 05:33:22,953 : INFO : topic #4 (0.020): 0.140*\"school\" + 0.042*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.035*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:33:22,954 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:33:22,955 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:33:22,961 : INFO : topic diff=0.003149, rho=0.025557\n", + "2019-01-16 05:33:23,258 : INFO : PROGRESS: pass 0, at document #3064000/4922894\n", + "2019-01-16 05:33:25,244 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:25,802 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.065*\"villag\" + 0.053*\"region\" + 0.044*\"east\" + 0.043*\"north\" + 0.042*\"counti\" + 0.041*\"west\" + 0.037*\"south\" + 0.033*\"provinc\" + 0.027*\"central\"\n", + "2019-01-16 05:33:25,803 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", + "2019-01-16 05:33:25,805 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:33:25,807 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:33:25,808 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:33:25,814 : INFO : topic diff=0.004163, rho=0.025549\n", + "2019-01-16 05:33:26,082 : INFO : PROGRESS: pass 0, at document #3066000/4922894\n", + "2019-01-16 05:33:28,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:28,660 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.026*\"saint\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:33:28,662 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:33:28,664 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:33:28,665 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.068*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 05:33:28,666 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"servic\" + 0.010*\"organ\"\n", + "2019-01-16 05:33:28,672 : INFO : topic diff=0.004735, rho=0.025540\n", + "2019-01-16 05:33:28,925 : INFO : PROGRESS: pass 0, at document #3068000/4922894\n", + "2019-01-16 05:33:30,868 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:31,427 : INFO : topic #40 (0.020): 0.052*\"bar\" + 0.041*\"africa\" + 0.035*\"african\" + 0.033*\"text\" + 0.031*\"south\" + 0.029*\"till\" + 0.029*\"color\" + 0.025*\"black\" + 0.014*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 05:33:31,429 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.042*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.034*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:33:31,431 : INFO : topic #2 (0.020): 0.059*\"german\" + 0.035*\"germani\" + 0.029*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:33:31,432 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"group\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:33:31,433 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.015*\"dai\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:33:31,439 : INFO : topic diff=0.004288, rho=0.025532\n", + "2019-01-16 05:33:31,709 : INFO : PROGRESS: pass 0, at document #3070000/4922894\n", + "2019-01-16 05:33:33,724 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:34,280 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:33:34,281 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:33:34,283 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.071*\"septemb\" + 0.067*\"januari\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.062*\"august\" + 0.062*\"decemb\" + 0.062*\"june\" + 0.061*\"april\"\n", + "2019-01-16 05:33:34,284 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.012*\"polit\"\n", + "2019-01-16 05:33:34,287 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.030*\"kong\" + 0.023*\"lee\" + 0.022*\"singapor\" + 0.021*\"kim\" + 0.015*\"malaysia\" + 0.015*\"asia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\"\n", + "2019-01-16 05:33:34,292 : INFO : topic diff=0.003958, rho=0.025524\n", + "2019-01-16 05:33:34,553 : INFO : PROGRESS: pass 0, at document #3072000/4922894\n", + "2019-01-16 05:33:36,557 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:37,113 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:33:37,115 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.070*\"septemb\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.062*\"august\" + 0.062*\"decemb\" + 0.061*\"june\" + 0.061*\"april\"\n", + "2019-01-16 05:33:37,116 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.016*\"pakistan\" + 0.012*\"ali\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", + "2019-01-16 05:33:37,117 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.018*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 05:33:37,118 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"korea\" + 0.018*\"korean\" + 0.018*\"british\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:33:37,123 : INFO : topic diff=0.004402, rho=0.025516\n", + "2019-01-16 05:33:37,384 : INFO : PROGRESS: pass 0, at document #3074000/4922894\n", + "2019-01-16 05:33:39,368 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:39,925 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:33:39,927 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:33:39,928 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", + "2019-01-16 05:33:39,929 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.070*\"septemb\" + 0.066*\"januari\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.062*\"august\" + 0.062*\"decemb\" + 0.061*\"june\" + 0.061*\"april\"\n", + "2019-01-16 05:33:39,931 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.015*\"asia\" + 0.015*\"malaysia\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\"\n", + "2019-01-16 05:33:39,937 : INFO : topic diff=0.004203, rho=0.025507\n", + "2019-01-16 05:33:40,198 : INFO : PROGRESS: pass 0, at document #3076000/4922894\n", + "2019-01-16 05:33:42,193 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:42,751 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"servic\" + 0.010*\"organ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:33:42,752 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 05:33:42,754 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:33:42,756 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:33:42,757 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", + "2019-01-16 05:33:42,763 : INFO : topic diff=0.003651, rho=0.025499\n", + "2019-01-16 05:33:43,026 : INFO : PROGRESS: pass 0, at document #3078000/4922894\n", + "2019-01-16 05:33:45,008 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:45,565 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"construct\"\n", + "2019-01-16 05:33:45,567 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:33:45,568 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:33:45,570 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:33:45,571 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.063*\"align\" + 0.058*\"wikit\" + 0.051*\"left\" + 0.048*\"center\" + 0.047*\"style\" + 0.039*\"right\" + 0.036*\"philippin\" + 0.025*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:33:45,577 : INFO : topic diff=0.004124, rho=0.025491\n", + "2019-01-16 05:33:50,241 : INFO : -11.986 per-word bound, 4055.9 perplexity estimate based on a held-out corpus of 2000 documents with 561924 words\n", + "2019-01-16 05:33:50,242 : INFO : PROGRESS: pass 0, at document #3080000/4922894\n", + "2019-01-16 05:33:52,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:52,784 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:33:52,786 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:33:52,787 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.069*\"canada\" + 0.057*\"canadian\" + 0.025*\"toronto\" + 0.021*\"ontario\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:33:52,789 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:33:52,790 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.026*\"saint\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:33:52,796 : INFO : topic diff=0.004075, rho=0.025482\n", + "2019-01-16 05:33:53,057 : INFO : PROGRESS: pass 0, at document #3082000/4922894\n", + "2019-01-16 05:33:55,041 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:55,598 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.025*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:33:55,600 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.012*\"polit\"\n", + "2019-01-16 05:33:55,601 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:33:55,603 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 05:33:55,605 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.045*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.022*\"point\" + 0.022*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:33:55,611 : INFO : topic diff=0.004574, rho=0.025474\n", + "2019-01-16 05:33:55,880 : INFO : PROGRESS: pass 0, at document #3084000/4922894\n", + "2019-01-16 05:33:57,870 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:33:58,427 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.010*\"regiment\"\n", + "2019-01-16 05:33:58,429 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:33:58,431 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:33:58,433 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:33:58,434 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:33:58,440 : INFO : topic diff=0.004033, rho=0.025466\n", + "2019-01-16 05:33:58,699 : INFO : PROGRESS: pass 0, at document #3086000/4922894\n", + "2019-01-16 05:34:00,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:01,290 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.022*\"ontario\" + 0.017*\"british\" + 0.017*\"korea\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:34:01,292 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:34:01,295 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", + "2019-01-16 05:34:01,296 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.065*\"villag\" + 0.052*\"region\" + 0.043*\"east\" + 0.043*\"north\" + 0.041*\"counti\" + 0.041*\"west\" + 0.037*\"south\" + 0.033*\"provinc\" + 0.027*\"municip\"\n", + "2019-01-16 05:34:01,298 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:34:01,304 : INFO : topic diff=0.003715, rho=0.025458\n", + "2019-01-16 05:34:01,576 : INFO : PROGRESS: pass 0, at document #3088000/4922894\n", + "2019-01-16 05:34:03,593 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:04,155 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 05:34:04,156 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:34:04,158 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.017*\"medic\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:34:04,159 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", + "2019-01-16 05:34:04,161 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:34:04,167 : INFO : topic diff=0.003613, rho=0.025449\n", + "2019-01-16 05:34:04,464 : INFO : PROGRESS: pass 0, at document #3090000/4922894\n", + "2019-01-16 05:34:06,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:07,007 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"dai\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:34:07,008 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"republican\" + 0.012*\"polit\"\n", + "2019-01-16 05:34:07,010 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"set\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:34:07,011 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", + "2019-01-16 05:34:07,013 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.034*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:34:07,019 : INFO : topic diff=0.004493, rho=0.025441\n", + "2019-01-16 05:34:07,270 : INFO : PROGRESS: pass 0, at document #3092000/4922894\n", + "2019-01-16 05:34:09,245 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:09,801 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:34:09,803 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.029*\"kong\" + 0.023*\"lee\" + 0.020*\"singapor\" + 0.020*\"kim\" + 0.016*\"min\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"asia\" + 0.014*\"thailand\"\n", + "2019-01-16 05:34:09,804 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.012*\"market\" + 0.012*\"busi\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.007*\"new\"\n", + "2019-01-16 05:34:09,805 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"republican\" + 0.013*\"senat\"\n", + "2019-01-16 05:34:09,807 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:34:09,813 : INFO : topic diff=0.003593, rho=0.025433\n", + "2019-01-16 05:34:10,075 : INFO : PROGRESS: pass 0, at document #3094000/4922894\n", + "2019-01-16 05:34:12,002 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:12,558 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"puerto\"\n", + "2019-01-16 05:34:12,560 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:34:12,561 : INFO : topic #2 (0.020): 0.058*\"german\" + 0.035*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:34:12,563 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"harri\" + 0.006*\"richard\"\n", + "2019-01-16 05:34:12,564 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:34:12,570 : INFO : topic diff=0.003628, rho=0.025425\n", + "2019-01-16 05:34:12,829 : INFO : PROGRESS: pass 0, at document #3096000/4922894\n", + "2019-01-16 05:34:14,846 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:15,403 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:34:15,405 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:34:15,406 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:34:15,408 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 05:34:15,410 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:34:15,416 : INFO : topic diff=0.004133, rho=0.025416\n", + "2019-01-16 05:34:15,696 : INFO : PROGRESS: pass 0, at document #3098000/4922894\n", + "2019-01-16 05:34:17,758 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:18,315 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 05:34:18,316 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"harri\" + 0.006*\"richard\"\n", + "2019-01-16 05:34:18,318 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:34:18,319 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.034*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:34:18,320 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:34:18,326 : INFO : topic diff=0.004891, rho=0.025408\n", + "2019-01-16 05:34:22,740 : INFO : -11.692 per-word bound, 3308.5 perplexity estimate based on a held-out corpus of 2000 documents with 515508 words\n", + "2019-01-16 05:34:22,740 : INFO : PROGRESS: pass 0, at document #3100000/4922894\n", + "2019-01-16 05:34:24,652 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:25,208 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:34:25,209 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.034*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:34:25,211 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"unit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:34:25,212 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:34:25,214 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:34:25,219 : INFO : topic diff=0.003643, rho=0.025400\n", + "2019-01-16 05:34:25,495 : INFO : PROGRESS: pass 0, at document #3102000/4922894\n", + "2019-01-16 05:34:27,551 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:28,107 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.011*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 05:34:28,109 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:34:28,111 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:34:28,112 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.007*\"new\"\n", + "2019-01-16 05:34:28,114 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"dai\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 05:34:28,119 : INFO : topic diff=0.003717, rho=0.025392\n", + "2019-01-16 05:34:28,391 : INFO : PROGRESS: pass 0, at document #3104000/4922894\n", + "2019-01-16 05:34:30,467 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:31,024 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.022*\"ontario\" + 0.019*\"quebec\" + 0.017*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:34:31,026 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.025*\"unit\" + 0.022*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"wale\"\n", + "2019-01-16 05:34:31,027 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:34:31,028 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.049*\"left\" + 0.047*\"center\" + 0.047*\"style\" + 0.038*\"right\" + 0.035*\"philippin\" + 0.025*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:34:31,029 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:34:31,035 : INFO : topic diff=0.003400, rho=0.025384\n", + "2019-01-16 05:34:31,296 : INFO : PROGRESS: pass 0, at document #3106000/4922894\n", + "2019-01-16 05:34:33,300 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:33,856 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.008*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:34:33,858 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"lo\"\n", + "2019-01-16 05:34:33,859 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:34:33,861 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.022*\"ontario\" + 0.018*\"quebec\" + 0.017*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:34:33,862 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 05:34:33,868 : INFO : topic diff=0.003943, rho=0.025375\n", + "2019-01-16 05:34:34,133 : INFO : PROGRESS: pass 0, at document #3108000/4922894\n", + "2019-01-16 05:34:36,143 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:36,700 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:34:36,701 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:34:36,703 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:34:36,705 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.042*\"univers\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:34:36,707 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.050*\"left\" + 0.047*\"style\" + 0.046*\"center\" + 0.039*\"right\" + 0.034*\"philippin\" + 0.025*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:34:36,713 : INFO : topic diff=0.003734, rho=0.025367\n", + "2019-01-16 05:34:36,977 : INFO : PROGRESS: pass 0, at document #3110000/4922894\n", + "2019-01-16 05:34:38,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:39,500 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.066*\"juli\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.062*\"april\" + 0.062*\"june\"\n", + "2019-01-16 05:34:39,502 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.030*\"text\" + 0.030*\"south\" + 0.028*\"color\" + 0.028*\"till\" + 0.024*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:34:39,504 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"group\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 05:34:39,506 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:34:39,507 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:34:39,513 : INFO : topic diff=0.004046, rho=0.025359\n", + "2019-01-16 05:34:39,769 : INFO : PROGRESS: pass 0, at document #3112000/4922894\n", + "2019-01-16 05:34:41,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:42,284 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:34:42,286 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:34:42,287 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.064*\"villag\" + 0.053*\"region\" + 0.045*\"east\" + 0.045*\"north\" + 0.041*\"counti\" + 0.041*\"west\" + 0.037*\"south\" + 0.031*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:34:42,288 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:34:42,289 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"oper\" + 0.007*\"new\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:34:42,295 : INFO : topic diff=0.003860, rho=0.025351\n", + "2019-01-16 05:34:42,555 : INFO : PROGRESS: pass 0, at document #3114000/4922894\n", + "2019-01-16 05:34:44,557 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:45,115 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:34:45,117 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.010*\"servic\" + 0.010*\"award\"\n", + "2019-01-16 05:34:45,118 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.053*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:34:45,119 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:34:45,120 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.027*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:34:45,126 : INFO : topic diff=0.004280, rho=0.025343\n", + "2019-01-16 05:34:45,415 : INFO : PROGRESS: pass 0, at document #3116000/4922894\n", + "2019-01-16 05:34:47,440 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:47,996 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:34:47,997 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:34:47,999 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"ret\" + 0.008*\"treatment\"\n", + "2019-01-16 05:34:48,002 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:34:48,004 : INFO : topic #2 (0.020): 0.058*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:34:48,010 : INFO : topic diff=0.003511, rho=0.025335\n", + "2019-01-16 05:34:48,274 : INFO : PROGRESS: pass 0, at document #3118000/4922894\n", + "2019-01-16 05:34:50,292 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:50,850 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"beach\"\n", + "2019-01-16 05:34:50,851 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.036*\"russian\" + 0.028*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.014*\"polish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.012*\"republ\"\n", + "2019-01-16 05:34:50,852 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.061*\"align\" + 0.059*\"wikit\" + 0.051*\"left\" + 0.048*\"style\" + 0.047*\"center\" + 0.039*\"right\" + 0.034*\"philippin\" + 0.026*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:34:50,854 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:34:50,856 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:34:50,862 : INFO : topic diff=0.003323, rho=0.025327\n", + "2019-01-16 05:34:55,360 : INFO : -11.658 per-word bound, 3230.6 perplexity estimate based on a held-out corpus of 2000 documents with 526172 words\n", + "2019-01-16 05:34:55,361 : INFO : PROGRESS: pass 0, at document #3120000/4922894\n", + "2019-01-16 05:34:57,308 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:34:57,865 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.012*\"ali\" + 0.011*\"khan\" + 0.011*\"islam\"\n", + "2019-01-16 05:34:57,867 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:34:57,868 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:34:57,870 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:34:57,871 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 05:34:57,877 : INFO : topic diff=0.003837, rho=0.025318\n", + "2019-01-16 05:34:58,137 : INFO : PROGRESS: pass 0, at document #3122000/4922894\n", + "2019-01-16 05:35:00,154 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:00,718 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"red\"\n", + "2019-01-16 05:35:00,719 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.010*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:35:00,721 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:35:00,722 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:35:00,724 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"beach\"\n", + "2019-01-16 05:35:00,731 : INFO : topic diff=0.003736, rho=0.025310\n", + "2019-01-16 05:35:01,003 : INFO : PROGRESS: pass 0, at document #3124000/4922894\n", + "2019-01-16 05:35:03,000 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:03,558 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:35:03,559 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\"\n", + "2019-01-16 05:35:03,563 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:35:03,564 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:35:03,566 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:35:03,572 : INFO : topic diff=0.004453, rho=0.025302\n", + "2019-01-16 05:35:03,827 : INFO : PROGRESS: pass 0, at document #3126000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:35:05,817 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:06,375 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:35:06,377 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", + "2019-01-16 05:35:06,379 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.053*\"left\" + 0.049*\"style\" + 0.046*\"center\" + 0.037*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.023*\"border\"\n", + "2019-01-16 05:35:06,380 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:35:06,381 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\"\n", + "2019-01-16 05:35:06,386 : INFO : topic diff=0.004416, rho=0.025294\n", + "2019-01-16 05:35:06,634 : INFO : PROGRESS: pass 0, at document #3128000/4922894\n", + "2019-01-16 05:35:08,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:09,344 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:35:09,346 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:35:09,347 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:35:09,349 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:35:09,350 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:35:09,361 : INFO : topic diff=0.003583, rho=0.025286\n", + "2019-01-16 05:35:09,610 : INFO : PROGRESS: pass 0, at document #3130000/4922894\n", + "2019-01-16 05:35:11,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:12,196 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:35:12,198 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.006*\"group\"\n", + "2019-01-16 05:35:12,199 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:35:12,201 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:35:12,202 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:35:12,208 : INFO : topic diff=0.003642, rho=0.025278\n", + "2019-01-16 05:35:12,466 : INFO : PROGRESS: pass 0, at document #3132000/4922894\n", + "2019-01-16 05:35:14,617 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:15,177 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:35:15,178 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:35:15,179 : INFO : topic #40 (0.020): 0.049*\"bar\" + 0.042*\"africa\" + 0.037*\"african\" + 0.031*\"text\" + 0.031*\"south\" + 0.027*\"color\" + 0.027*\"till\" + 0.025*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:35:15,181 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:35:15,182 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:35:15,188 : INFO : topic diff=0.003950, rho=0.025270\n", + "2019-01-16 05:35:15,455 : INFO : PROGRESS: pass 0, at document #3134000/4922894\n", + "2019-01-16 05:35:17,543 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:18,106 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"beach\"\n", + "2019-01-16 05:35:18,107 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:35:18,109 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"genu\" + 0.007*\"red\"\n", + "2019-01-16 05:35:18,110 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"wale\"\n", + "2019-01-16 05:35:18,111 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:35:18,117 : INFO : topic diff=0.003811, rho=0.025262\n", + "2019-01-16 05:35:18,397 : INFO : PROGRESS: pass 0, at document #3136000/4922894\n", + "2019-01-16 05:35:20,400 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:20,958 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"red\"\n", + "2019-01-16 05:35:20,960 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:35:20,961 : INFO : topic #42 (0.020): 0.029*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:35:20,962 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.064*\"villag\" + 0.052*\"region\" + 0.045*\"east\" + 0.044*\"north\" + 0.040*\"west\" + 0.040*\"counti\" + 0.038*\"south\" + 0.032*\"provinc\" + 0.028*\"central\"\n", + "2019-01-16 05:35:20,964 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:35:20,970 : INFO : topic diff=0.003719, rho=0.025254\n", + "2019-01-16 05:35:21,234 : INFO : PROGRESS: pass 0, at document #3138000/4922894\n", + "2019-01-16 05:35:23,242 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:23,798 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:35:23,800 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:35:23,801 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:35:23,803 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"cathol\"\n", + "2019-01-16 05:35:23,805 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:35:23,810 : INFO : topic diff=0.004121, rho=0.025246\n", + "2019-01-16 05:35:28,456 : INFO : -11.582 per-word bound, 3065.3 perplexity estimate based on a held-out corpus of 2000 documents with 568819 words\n", + "2019-01-16 05:35:28,457 : INFO : PROGRESS: pass 0, at document #3140000/4922894\n", + "2019-01-16 05:35:30,442 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:31,009 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"counti\"\n", + "2019-01-16 05:35:31,012 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:35:31,014 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:35:31,016 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"islam\"\n", + "2019-01-16 05:35:31,017 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:35:31,023 : INFO : topic diff=0.003235, rho=0.025238\n", + "2019-01-16 05:35:31,327 : INFO : PROGRESS: pass 0, at document #3142000/4922894\n", + "2019-01-16 05:35:33,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:33,945 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:35:33,947 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.018*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:35:33,948 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:35:33,950 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 05:35:33,951 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:35:33,957 : INFO : topic diff=0.004453, rho=0.025230\n", + "2019-01-16 05:35:34,220 : INFO : PROGRESS: pass 0, at document #3144000/4922894\n", + "2019-01-16 05:35:36,272 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:36,829 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"set\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:35:36,831 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.018*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:35:36,832 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"men\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:35:36,834 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:35:36,835 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:35:36,841 : INFO : topic diff=0.003622, rho=0.025222\n", + "2019-01-16 05:35:37,094 : INFO : PROGRESS: pass 0, at document #3146000/4922894\n", + "2019-01-16 05:35:39,020 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:39,577 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:35:39,579 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.045*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.013*\"council\" + 0.013*\"polit\" + 0.012*\"repres\"\n", + "2019-01-16 05:35:39,580 : INFO : topic #2 (0.020): 0.059*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:35:39,582 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:35:39,584 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:35:39,589 : INFO : topic diff=0.004750, rho=0.025214\n", + "2019-01-16 05:35:39,843 : INFO : PROGRESS: pass 0, at document #3148000/4922894\n", + "2019-01-16 05:35:41,831 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:42,394 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:35:42,396 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", + "2019-01-16 05:35:42,398 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:35:42,399 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"drug\"\n", + "2019-01-16 05:35:42,400 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:35:42,406 : INFO : topic diff=0.004070, rho=0.025206\n", + "2019-01-16 05:35:42,664 : INFO : PROGRESS: pass 0, at document #3150000/4922894\n", + "2019-01-16 05:35:44,650 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:45,206 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"stage\"\n", + "2019-01-16 05:35:45,207 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:35:45,208 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:35:45,210 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:35:45,212 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:35:45,218 : INFO : topic diff=0.004073, rho=0.025198\n", + "2019-01-16 05:35:45,487 : INFO : PROGRESS: pass 0, at document #3152000/4922894\n", + "2019-01-16 05:35:47,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:48,088 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:35:48,090 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:35:48,091 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 05:35:48,093 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"mark\"\n", + "2019-01-16 05:35:48,096 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:35:48,102 : INFO : topic diff=0.003723, rho=0.025190\n", + "2019-01-16 05:35:48,368 : INFO : PROGRESS: pass 0, at document #3154000/4922894\n", + "2019-01-16 05:35:50,421 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:50,986 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:35:50,988 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:35:50,990 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 05:35:50,992 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", + "2019-01-16 05:35:50,993 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:35:51,000 : INFO : topic diff=0.004245, rho=0.025182\n", + "2019-01-16 05:35:51,272 : INFO : PROGRESS: pass 0, at document #3156000/4922894\n", + "2019-01-16 05:35:53,398 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:53,963 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.030*\"text\" + 0.028*\"south\" + 0.026*\"till\" + 0.026*\"color\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 05:35:53,965 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:35:53,967 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", + "2019-01-16 05:35:53,968 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"union\" + 0.006*\"support\" + 0.006*\"group\"\n", + "2019-01-16 05:35:53,969 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:35:53,975 : INFO : topic diff=0.005325, rho=0.025174\n", + "2019-01-16 05:35:54,245 : INFO : PROGRESS: pass 0, at document #3158000/4922894\n", + "2019-01-16 05:35:56,358 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:35:56,915 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:35:56,917 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.014*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"year\"\n", + "2019-01-16 05:35:56,918 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.029*\"kong\" + 0.028*\"lee\" + 0.024*\"kim\" + 0.019*\"singapor\" + 0.018*\"malaysia\" + 0.015*\"min\" + 0.014*\"asia\" + 0.014*\"indonesia\" + 0.013*\"thailand\"\n", + "2019-01-16 05:35:56,920 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:35:56,922 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:35:56,928 : INFO : topic diff=0.003436, rho=0.025166\n", + "2019-01-16 05:36:01,813 : INFO : -11.949 per-word bound, 3952.8 perplexity estimate based on a held-out corpus of 2000 documents with 608660 words\n", + "2019-01-16 05:36:01,814 : INFO : PROGRESS: pass 0, at document #3160000/4922894\n", + "2019-01-16 05:36:03,898 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:04,457 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 05:36:04,458 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 05:36:04,459 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"area\"\n", + "2019-01-16 05:36:04,461 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:36:04,462 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.043*\"univers\" + 0.042*\"colleg\" + 0.040*\"student\" + 0.033*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:36:04,468 : INFO : topic diff=0.004264, rho=0.025158\n", + "2019-01-16 05:36:04,725 : INFO : PROGRESS: pass 0, at document #3162000/4922894\n", + "2019-01-16 05:36:06,782 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:07,339 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:36:07,340 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:36:07,342 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:36:07,344 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 05:36:07,345 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"polit\" + 0.013*\"republican\"\n", + "2019-01-16 05:36:07,352 : INFO : topic diff=0.004264, rho=0.025150\n", + "2019-01-16 05:36:07,620 : INFO : PROGRESS: pass 0, at document #3164000/4922894\n", + "2019-01-16 05:36:09,669 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:10,227 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:36:10,229 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:36:10,230 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:36:10,231 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:36:10,233 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:36:10,238 : INFO : topic diff=0.004483, rho=0.025142\n", + "2019-01-16 05:36:10,535 : INFO : PROGRESS: pass 0, at document #3166000/4922894\n", + "2019-01-16 05:36:12,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:13,085 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:36:13,087 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.020*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"min\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"thailand\"\n", + "2019-01-16 05:36:13,089 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", + "2019-01-16 05:36:13,090 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"santa\" + 0.009*\"carlo\"\n", + "2019-01-16 05:36:13,091 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"roman\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:36:13,098 : INFO : topic diff=0.004618, rho=0.025134\n", + "2019-01-16 05:36:13,355 : INFO : PROGRESS: pass 0, at document #3168000/4922894\n", + "2019-01-16 05:36:15,373 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:15,937 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", + "2019-01-16 05:36:15,939 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:36:15,940 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.030*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.020*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"min\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"thailand\"\n", + "2019-01-16 05:36:15,942 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.006*\"support\"\n", + "2019-01-16 05:36:15,943 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"london\" + 0.020*\"town\" + 0.017*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.011*\"manchest\"\n", + "2019-01-16 05:36:15,948 : INFO : topic diff=0.003892, rho=0.025126\n", + "2019-01-16 05:36:16,211 : INFO : PROGRESS: pass 0, at document #3170000/4922894\n", + "2019-01-16 05:36:18,219 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:18,775 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"town\" + 0.034*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.021*\"peopl\" + 0.019*\"area\"\n", + "2019-01-16 05:36:18,776 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.034*\"african\" + 0.031*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.026*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:36:18,778 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 05:36:18,779 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 05:36:18,780 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"santa\" + 0.009*\"carlo\"\n", + "2019-01-16 05:36:18,786 : INFO : topic diff=0.003725, rho=0.025118\n", + "2019-01-16 05:36:19,044 : INFO : PROGRESS: pass 0, at document #3172000/4922894\n", + "2019-01-16 05:36:21,010 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:21,566 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:36:21,568 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:36:21,570 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:36:21,571 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:36:21,573 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:36:21,580 : INFO : topic diff=0.003694, rho=0.025110\n", + "2019-01-16 05:36:21,841 : INFO : PROGRESS: pass 0, at document #3174000/4922894\n", + "2019-01-16 05:36:23,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:24,462 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"london\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:36:24,464 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:36:24,466 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:36:24,468 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 05:36:24,469 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:36:24,476 : INFO : topic diff=0.003595, rho=0.025102\n", + "2019-01-16 05:36:24,733 : INFO : PROGRESS: pass 0, at document #3176000/4922894\n", + "2019-01-16 05:36:26,751 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:27,312 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"santa\" + 0.009*\"lo\"\n", + "2019-01-16 05:36:27,314 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:36:27,316 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 05:36:27,318 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.014*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", + "2019-01-16 05:36:27,320 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:36:27,326 : INFO : topic diff=0.003186, rho=0.025094\n", + "2019-01-16 05:36:27,594 : INFO : PROGRESS: pass 0, at document #3178000/4922894\n", + "2019-01-16 05:36:29,599 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:30,157 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:36:30,158 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:36:30,160 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.018*\"korean\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.014*\"montreal\"\n", + "2019-01-16 05:36:30,161 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"japan\" + 0.022*\"men\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.016*\"nation\"\n", + "2019-01-16 05:36:30,163 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.013*\"council\" + 0.013*\"polit\" + 0.013*\"republican\"\n", + "2019-01-16 05:36:30,169 : INFO : topic diff=0.003753, rho=0.025086\n", + "2019-01-16 05:36:34,825 : INFO : -11.412 per-word bound, 2724.1 perplexity estimate based on a held-out corpus of 2000 documents with 574007 words\n", + "2019-01-16 05:36:34,826 : INFO : PROGRESS: pass 0, at document #3180000/4922894\n", + "2019-01-16 05:36:36,830 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:37,395 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"area\"\n", + "2019-01-16 05:36:37,396 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:36:37,398 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.035*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.017*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:36:37,399 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:36:37,401 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:36:37,407 : INFO : topic diff=0.003870, rho=0.025078\n", + "2019-01-16 05:36:37,658 : INFO : PROGRESS: pass 0, at document #3182000/4922894\n", + "2019-01-16 05:36:39,588 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:40,146 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"khan\" + 0.011*\"islam\"\n", + "2019-01-16 05:36:40,147 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:36:40,149 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.066*\"villag\" + 0.051*\"region\" + 0.043*\"north\" + 0.043*\"east\" + 0.042*\"counti\" + 0.040*\"west\" + 0.037*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", + "2019-01-16 05:36:40,150 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:36:40,151 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:36:40,157 : INFO : topic diff=0.003832, rho=0.025071\n", + "2019-01-16 05:36:40,419 : INFO : PROGRESS: pass 0, at document #3184000/4922894\n", + "2019-01-16 05:36:42,445 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:43,004 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:36:43,006 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:36:43,008 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 05:36:43,010 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.070*\"canada\" + 0.057*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.015*\"korea\" + 0.014*\"montreal\"\n", + "2019-01-16 05:36:43,013 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:36:43,018 : INFO : topic diff=0.003793, rho=0.025063\n", + "2019-01-16 05:36:43,270 : INFO : PROGRESS: pass 0, at document #3186000/4922894\n", + "2019-01-16 05:36:45,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:45,832 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.019*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:36:45,833 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", + "2019-01-16 05:36:45,835 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:36:45,836 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:36:45,837 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.014*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:36:45,843 : INFO : topic diff=0.003696, rho=0.025055\n", + "2019-01-16 05:36:46,106 : INFO : PROGRESS: pass 0, at document #3188000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:36:48,107 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:48,670 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:36:48,672 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:36:48,674 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.031*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.027*\"color\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:36:48,675 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:36:48,676 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 05:36:48,682 : INFO : topic diff=0.003307, rho=0.025047\n", + "2019-01-16 05:36:48,931 : INFO : PROGRESS: pass 0, at document #3190000/4922894\n", + "2019-01-16 05:36:50,869 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:51,429 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:36:51,430 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:36:51,432 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"stage\"\n", + "2019-01-16 05:36:51,433 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 05:36:51,435 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"histori\" + 0.010*\"novel\"\n", + "2019-01-16 05:36:51,442 : INFO : topic diff=0.003557, rho=0.025039\n", + "2019-01-16 05:36:51,740 : INFO : PROGRESS: pass 0, at document #3192000/4922894\n", + "2019-01-16 05:36:53,751 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:54,309 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"set\" + 0.007*\"group\"\n", + "2019-01-16 05:36:54,311 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.059*\"wikit\" + 0.054*\"align\" + 0.049*\"style\" + 0.047*\"left\" + 0.044*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.028*\"text\" + 0.026*\"border\"\n", + "2019-01-16 05:36:54,313 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:36:54,314 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.070*\"canada\" + 0.057*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.017*\"british\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:36:54,316 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:36:54,324 : INFO : topic diff=0.003990, rho=0.025031\n", + "2019-01-16 05:36:54,590 : INFO : PROGRESS: pass 0, at document #3194000/4922894\n", + "2019-01-16 05:36:56,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:57,152 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"khan\" + 0.011*\"islam\"\n", + "2019-01-16 05:36:57,154 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:36:57,156 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:36:57,157 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:36:57,159 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:36:57,165 : INFO : topic diff=0.003235, rho=0.025023\n", + "2019-01-16 05:36:57,414 : INFO : PROGRESS: pass 0, at document #3196000/4922894\n", + "2019-01-16 05:36:59,342 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:36:59,898 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"human\" + 0.008*\"caus\" + 0.008*\"studi\" + 0.008*\"effect\"\n", + "2019-01-16 05:36:59,900 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\"\n", + "2019-01-16 05:36:59,901 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:36:59,903 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:36:59,904 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:36:59,912 : INFO : topic diff=0.003471, rho=0.025016\n", + "2019-01-16 05:37:00,169 : INFO : PROGRESS: pass 0, at document #3198000/4922894\n", + "2019-01-16 05:37:02,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:02,713 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 05:37:02,715 : INFO : topic #44 (0.020): 0.032*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:37:02,716 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:37:02,718 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.027*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:37:02,719 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.013*\"channel\" + 0.011*\"network\" + 0.011*\"host\" + 0.011*\"program\"\n", + "2019-01-16 05:37:02,726 : INFO : topic diff=0.003623, rho=0.025008\n", + "2019-01-16 05:37:07,208 : INFO : -11.509 per-word bound, 2913.6 perplexity estimate based on a held-out corpus of 2000 documents with 515963 words\n", + "2019-01-16 05:37:07,209 : INFO : PROGRESS: pass 0, at document #3200000/4922894\n", + "2019-01-16 05:37:09,423 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:09,981 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:37:09,983 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:37:09,984 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"base\"\n", + "2019-01-16 05:37:09,986 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:37:09,987 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"west\"\n", + "2019-01-16 05:37:09,993 : INFO : topic diff=0.004275, rho=0.025000\n", + "2019-01-16 05:37:10,255 : INFO : PROGRESS: pass 0, at document #3202000/4922894\n", + "2019-01-16 05:37:12,276 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:12,834 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"area\"\n", + "2019-01-16 05:37:12,835 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:37:12,837 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.044*\"north\" + 0.043*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", + "2019-01-16 05:37:12,838 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:37:12,840 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:37:12,846 : INFO : topic diff=0.003675, rho=0.024992\n", + "2019-01-16 05:37:13,109 : INFO : PROGRESS: pass 0, at document #3204000/4922894\n", + "2019-01-16 05:37:15,105 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:15,663 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:37:15,664 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.047*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"point\" + 0.021*\"group\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:37:15,665 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.035*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:37:15,667 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.065*\"villag\" + 0.050*\"region\" + 0.043*\"north\" + 0.043*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", + "2019-01-16 05:37:15,668 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.070*\"canada\" + 0.057*\"canadian\" + 0.023*\"toronto\" + 0.023*\"ontario\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:37:15,674 : INFO : topic diff=0.003859, rho=0.024984\n", + "2019-01-16 05:37:15,928 : INFO : PROGRESS: pass 0, at document #3206000/4922894\n", + "2019-01-16 05:37:17,909 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:18,466 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", + "2019-01-16 05:37:18,467 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:37:18,470 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:37:18,472 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 05:37:18,473 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:37:18,479 : INFO : topic diff=0.003490, rho=0.024977\n", + "2019-01-16 05:37:18,739 : INFO : PROGRESS: pass 0, at document #3208000/4922894\n", + "2019-01-16 05:37:20,748 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:21,307 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:37:21,308 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"polit\" + 0.012*\"repres\"\n", + "2019-01-16 05:37:21,310 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.059*\"wikit\" + 0.053*\"align\" + 0.050*\"style\" + 0.046*\"left\" + 0.044*\"center\" + 0.036*\"philippin\" + 0.033*\"right\" + 0.028*\"text\" + 0.027*\"border\"\n", + "2019-01-16 05:37:21,313 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"wale\"\n", + "2019-01-16 05:37:21,316 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.043*\"north\" + 0.042*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", + "2019-01-16 05:37:21,322 : INFO : topic diff=0.003409, rho=0.024969\n", + "2019-01-16 05:37:21,593 : INFO : PROGRESS: pass 0, at document #3210000/4922894\n", + "2019-01-16 05:37:23,644 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:24,202 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", + "2019-01-16 05:37:24,203 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:37:24,205 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:37:24,206 : INFO : topic #36 (0.020): 0.053*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:37:24,208 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:37:24,213 : INFO : topic diff=0.003691, rho=0.024961\n", + "2019-01-16 05:37:24,471 : INFO : PROGRESS: pass 0, at document #3212000/4922894\n", + "2019-01-16 05:37:26,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:27,044 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"japan\" + 0.018*\"time\" + 0.018*\"athlet\"\n", + "2019-01-16 05:37:27,045 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", + "2019-01-16 05:37:27,047 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:37:27,048 : INFO : topic #35 (0.020): 0.034*\"hong\" + 0.032*\"kong\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.019*\"singapor\" + 0.016*\"malaysia\" + 0.014*\"min\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.013*\"asia\"\n", + "2019-01-16 05:37:27,050 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:37:27,056 : INFO : topic diff=0.003376, rho=0.024953\n", + "2019-01-16 05:37:27,313 : INFO : PROGRESS: pass 0, at document #3214000/4922894\n", + "2019-01-16 05:37:29,270 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:29,827 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"puerto\"\n", + "2019-01-16 05:37:29,829 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:37:29,830 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"set\" + 0.007*\"group\"\n", + "2019-01-16 05:37:29,831 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:37:29,834 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.035*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:37:29,840 : INFO : topic diff=0.003734, rho=0.024945\n", + "2019-01-16 05:37:30,099 : INFO : PROGRESS: pass 0, at document #3216000/4922894\n", + "2019-01-16 05:37:32,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:32,632 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", + "2019-01-16 05:37:32,634 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:37:32,635 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:37:32,637 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:37:32,638 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"puerto\"\n", + "2019-01-16 05:37:32,644 : INFO : topic diff=0.003947, rho=0.024938\n", + "2019-01-16 05:37:32,939 : INFO : PROGRESS: pass 0, at document #3218000/4922894\n", + "2019-01-16 05:37:34,945 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:35,502 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.066*\"villag\" + 0.049*\"region\" + 0.043*\"north\" + 0.042*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", + "2019-01-16 05:37:35,503 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"islam\"\n", + "2019-01-16 05:37:35,505 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:37:35,506 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:37:35,508 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 05:37:35,513 : INFO : topic diff=0.003296, rho=0.024930\n", + "2019-01-16 05:37:40,012 : INFO : -11.631 per-word bound, 3171.9 perplexity estimate based on a held-out corpus of 2000 documents with 544444 words\n", + "2019-01-16 05:37:40,012 : INFO : PROGRESS: pass 0, at document #3220000/4922894\n", + "2019-01-16 05:37:42,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:42,575 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:37:42,577 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:37:42,578 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.010*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:37:42,580 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.020*\"london\" + 0.017*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 05:37:42,581 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:37:42,587 : INFO : topic diff=0.003520, rho=0.024922\n", + "2019-01-16 05:37:42,838 : INFO : PROGRESS: pass 0, at document #3222000/4922894\n", + "2019-01-16 05:37:44,761 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:45,319 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:37:45,320 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:37:45,322 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:37:45,323 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:37:45,324 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:37:45,331 : INFO : topic diff=0.003981, rho=0.024915\n", + "2019-01-16 05:37:45,594 : INFO : PROGRESS: pass 0, at document #3224000/4922894\n", + "2019-01-16 05:37:47,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:48,147 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"puerto\"\n", + "2019-01-16 05:37:48,149 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 05:37:48,150 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:37:48,152 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:37:48,153 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.013*\"henri\"\n", + "2019-01-16 05:37:48,159 : INFO : topic diff=0.003699, rho=0.024907\n", + "2019-01-16 05:37:48,430 : INFO : PROGRESS: pass 0, at document #3226000/4922894\n", + "2019-01-16 05:37:50,459 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:51,019 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:37:51,020 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:37:51,021 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.059*\"wikit\" + 0.052*\"style\" + 0.051*\"align\" + 0.045*\"center\" + 0.044*\"left\" + 0.036*\"philippin\" + 0.031*\"right\" + 0.028*\"border\" + 0.028*\"text\"\n", + "2019-01-16 05:37:51,023 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.044*\"univers\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:37:51,024 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"set\" + 0.007*\"group\"\n", + "2019-01-16 05:37:51,030 : INFO : topic diff=0.003893, rho=0.024899\n", + "2019-01-16 05:37:51,292 : INFO : PROGRESS: pass 0, at document #3228000/4922894\n", + "2019-01-16 05:37:53,343 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:53,905 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:37:53,906 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:37:53,907 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.044*\"univers\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:37:53,908 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"return\"\n", + "2019-01-16 05:37:53,910 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:37:53,916 : INFO : topic diff=0.004092, rho=0.024891\n", + "2019-01-16 05:37:54,176 : INFO : PROGRESS: pass 0, at document #3230000/4922894\n", + "2019-01-16 05:37:56,104 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:56,660 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:37:56,662 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 05:37:56,663 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.032*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.019*\"singapor\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"min\" + 0.014*\"indonesia\" + 0.013*\"asia\"\n", + "2019-01-16 05:37:56,665 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.038*\"africa\" + 0.034*\"african\" + 0.031*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.027*\"color\" + 0.022*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 05:37:56,666 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.066*\"villag\" + 0.051*\"region\" + 0.043*\"north\" + 0.042*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", + "2019-01-16 05:37:56,672 : INFO : topic diff=0.004138, rho=0.024884\n", + "2019-01-16 05:37:56,929 : INFO : PROGRESS: pass 0, at document #3232000/4922894\n", + "2019-01-16 05:37:58,940 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:37:59,505 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", + "2019-01-16 05:37:59,506 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.031*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.019*\"singapor\" + 0.016*\"malaysia\" + 0.015*\"min\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.013*\"asia\"\n", + "2019-01-16 05:37:59,509 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:37:59,510 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:37:59,512 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:37:59,517 : INFO : topic diff=0.003907, rho=0.024876\n", + "2019-01-16 05:37:59,790 : INFO : PROGRESS: pass 0, at document #3234000/4922894\n", + "2019-01-16 05:38:01,846 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:02,404 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"citi\" + 0.035*\"town\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"counti\"\n", + "2019-01-16 05:38:02,406 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:38:02,408 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.016*\"station\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:38:02,410 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:38:02,412 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:38:02,419 : INFO : topic diff=0.004536, rho=0.024868\n", + "2019-01-16 05:38:02,677 : INFO : PROGRESS: pass 0, at document #3236000/4922894\n", + "2019-01-16 05:38:04,641 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:05,199 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"tree\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:38:05,200 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:38:05,201 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.013*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 05:38:05,203 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:38:05,205 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:38:05,211 : INFO : topic diff=0.003355, rho=0.024861\n", + "2019-01-16 05:38:05,477 : INFO : PROGRESS: pass 0, at document #3238000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:38:07,493 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:08,050 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:38:08,052 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.023*\"winner\" + 0.021*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:38:08,053 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:38:08,055 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"khan\"\n", + "2019-01-16 05:38:08,057 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:38:08,062 : INFO : topic diff=0.003924, rho=0.024853\n", + "2019-01-16 05:38:12,608 : INFO : -11.518 per-word bound, 2932.6 perplexity estimate based on a held-out corpus of 2000 documents with 563650 words\n", + "2019-01-16 05:38:12,609 : INFO : PROGRESS: pass 0, at document #3240000/4922894\n", + "2019-01-16 05:38:14,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:15,168 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"tree\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:38:15,170 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.016*\"station\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:38:15,172 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:38:15,173 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 05:38:15,174 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:38:15,180 : INFO : topic diff=0.003984, rho=0.024845\n", + "2019-01-16 05:38:15,436 : INFO : PROGRESS: pass 0, at document #3242000/4922894\n", + "2019-01-16 05:38:17,459 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:18,016 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:38:18,018 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"wale\"\n", + "2019-01-16 05:38:18,019 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:38:18,020 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", + "2019-01-16 05:38:18,021 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:38:18,027 : INFO : topic diff=0.004019, rho=0.024838\n", + "2019-01-16 05:38:18,320 : INFO : PROGRESS: pass 0, at document #3244000/4922894\n", + "2019-01-16 05:38:20,301 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:20,861 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", + "2019-01-16 05:38:20,862 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:38:20,864 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 05:38:20,865 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:38:20,866 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:38:20,872 : INFO : topic diff=0.004121, rho=0.024830\n", + "2019-01-16 05:38:21,144 : INFO : PROGRESS: pass 0, at document #3246000/4922894\n", + "2019-01-16 05:38:23,138 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:23,696 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"tree\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:38:23,698 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"magazin\"\n", + "2019-01-16 05:38:23,700 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:38:23,701 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.017*\"korean\" + 0.016*\"british\" + 0.015*\"korea\" + 0.014*\"montreal\"\n", + "2019-01-16 05:38:23,702 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.058*\"wikit\" + 0.054*\"align\" + 0.050*\"style\" + 0.049*\"center\" + 0.041*\"left\" + 0.035*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.026*\"border\"\n", + "2019-01-16 05:38:23,710 : INFO : topic diff=0.003980, rho=0.024822\n", + "2019-01-16 05:38:23,958 : INFO : PROGRESS: pass 0, at document #3248000/4922894\n", + "2019-01-16 05:38:25,932 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:26,490 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:38:26,492 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:38:26,494 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:38:26,495 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:38:26,496 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:38:26,505 : INFO : topic diff=0.003005, rho=0.024815\n", + "2019-01-16 05:38:26,757 : INFO : PROGRESS: pass 0, at document #3250000/4922894\n", + "2019-01-16 05:38:28,685 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:29,246 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:38:29,248 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", + "2019-01-16 05:38:29,250 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 05:38:29,251 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.070*\"octob\" + 0.065*\"januari\" + 0.065*\"august\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:38:29,252 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", + "2019-01-16 05:38:29,258 : INFO : topic diff=0.003551, rho=0.024807\n", + "2019-01-16 05:38:29,517 : INFO : PROGRESS: pass 0, at document #3252000/4922894\n", + "2019-01-16 05:38:31,519 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:32,077 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 05:38:32,078 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:38:32,080 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", + "2019-01-16 05:38:32,081 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 05:38:32,083 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:38:32,089 : INFO : topic diff=0.003775, rho=0.024799\n", + "2019-01-16 05:38:32,334 : INFO : PROGRESS: pass 0, at document #3254000/4922894\n", + "2019-01-16 05:38:34,290 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:34,848 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:38:34,850 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.024*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"muslim\" + 0.010*\"khan\"\n", + "2019-01-16 05:38:34,851 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:38:34,852 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:38:34,854 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.066*\"august\" + 0.065*\"januari\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.064*\"april\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:38:34,859 : INFO : topic diff=0.003741, rho=0.024792\n", + "2019-01-16 05:38:35,106 : INFO : PROGRESS: pass 0, at document #3256000/4922894\n", + "2019-01-16 05:38:37,038 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:37,595 : INFO : topic #36 (0.020): 0.052*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:38:37,596 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:38:37,598 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:38:37,599 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"human\" + 0.008*\"studi\"\n", + "2019-01-16 05:38:37,601 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.034*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.023*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"nation\" + 0.017*\"time\"\n", + "2019-01-16 05:38:37,609 : INFO : topic diff=0.003207, rho=0.024784\n", + "2019-01-16 05:38:37,873 : INFO : PROGRESS: pass 0, at document #3258000/4922894\n", + "2019-01-16 05:38:39,878 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:40,435 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:38:40,437 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:38:40,439 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:38:40,440 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:38:40,442 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:38:40,448 : INFO : topic diff=0.003737, rho=0.024776\n", + "2019-01-16 05:38:44,958 : INFO : -12.074 per-word bound, 4312.7 perplexity estimate based on a held-out corpus of 2000 documents with 542671 words\n", + "2019-01-16 05:38:44,958 : INFO : PROGRESS: pass 0, at document #3260000/4922894\n", + "2019-01-16 05:38:47,008 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:47,573 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:38:47,575 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"ret\" + 0.008*\"human\" + 0.008*\"studi\"\n", + "2019-01-16 05:38:47,577 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:38:47,578 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:38:47,580 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.010*\"pilot\"\n", + "2019-01-16 05:38:47,585 : INFO : topic diff=0.003467, rho=0.024769\n", + "2019-01-16 05:38:47,850 : INFO : PROGRESS: pass 0, at document #3262000/4922894\n", + "2019-01-16 05:38:49,892 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:50,449 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"mean\" + 0.005*\"like\"\n", + "2019-01-16 05:38:50,450 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:38:50,452 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:38:50,453 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:38:50,455 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:38:50,462 : INFO : topic diff=0.003991, rho=0.024761\n", + "2019-01-16 05:38:50,718 : INFO : PROGRESS: pass 0, at document #3264000/4922894\n", + "2019-01-16 05:38:52,744 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:53,300 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 05:38:53,302 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:38:53,304 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", + "2019-01-16 05:38:53,305 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:38:53,306 : INFO : topic #36 (0.020): 0.052*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:38:53,312 : INFO : topic diff=0.004607, rho=0.024754\n", + "2019-01-16 05:38:53,571 : INFO : PROGRESS: pass 0, at document #3266000/4922894\n", + "2019-01-16 05:38:55,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:56,093 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"us\"\n", + "2019-01-16 05:38:56,094 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"mountain\"\n", + "2019-01-16 05:38:56,095 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:38:56,097 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.010*\"novel\"\n", + "2019-01-16 05:38:56,098 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:38:56,104 : INFO : topic diff=0.003852, rho=0.024746\n", + "2019-01-16 05:38:56,387 : INFO : PROGRESS: pass 0, at document #3268000/4922894\n", + "2019-01-16 05:38:58,327 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:38:58,886 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"muslim\" + 0.010*\"khan\"\n", + "2019-01-16 05:38:58,888 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:38:58,890 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:38:58,891 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:38:58,893 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:38:58,900 : INFO : topic diff=0.003400, rho=0.024739\n", + "2019-01-16 05:38:59,176 : INFO : PROGRESS: pass 0, at document #3270000/4922894\n", + "2019-01-16 05:39:01,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:01,751 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:39:01,752 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.022*\"point\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:39:01,754 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.065*\"villag\" + 0.051*\"region\" + 0.044*\"counti\" + 0.042*\"north\" + 0.041*\"east\" + 0.039*\"west\" + 0.037*\"south\" + 0.033*\"provinc\" + 0.029*\"municip\"\n", + "2019-01-16 05:39:01,757 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.020*\"london\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", + "2019-01-16 05:39:01,759 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:39:01,765 : INFO : topic diff=0.004146, rho=0.024731\n", + "2019-01-16 05:39:02,034 : INFO : PROGRESS: pass 0, at document #3272000/4922894\n", + "2019-01-16 05:39:04,032 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:04,588 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.007*\"order\"\n", + "2019-01-16 05:39:04,590 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:39:04,592 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:39:04,593 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:39:04,594 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.030*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:39:04,600 : INFO : topic diff=0.003808, rho=0.024723\n", + "2019-01-16 05:39:04,861 : INFO : PROGRESS: pass 0, at document #3274000/4922894\n", + "2019-01-16 05:39:06,854 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:07,411 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:39:07,413 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.022*\"point\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:39:07,415 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:39:07,417 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"member\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:39:07,418 : INFO : topic #36 (0.020): 0.053*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:39:07,424 : INFO : topic diff=0.003654, rho=0.024716\n", + "2019-01-16 05:39:07,686 : INFO : PROGRESS: pass 0, at document #3276000/4922894\n", + "2019-01-16 05:39:10,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:10,570 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"church\"\n", + "2019-01-16 05:39:10,571 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.027*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 05:39:10,573 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 05:39:10,574 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:39:10,575 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.068*\"august\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.065*\"januari\" + 0.064*\"april\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:39:10,581 : INFO : topic diff=0.003340, rho=0.024708\n", + "2019-01-16 05:39:10,859 : INFO : PROGRESS: pass 0, at document #3278000/4922894\n", + "2019-01-16 05:39:12,924 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:13,480 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:39:13,482 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:39:13,483 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:39:13,484 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 05:39:13,485 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:39:13,491 : INFO : topic diff=0.004444, rho=0.024701\n", + "2019-01-16 05:39:18,225 : INFO : -11.768 per-word bound, 3487.4 perplexity estimate based on a held-out corpus of 2000 documents with 561574 words\n", + "2019-01-16 05:39:18,226 : INFO : PROGRESS: pass 0, at document #3280000/4922894\n", + "2019-01-16 05:39:20,282 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:20,839 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"lake\" + 0.015*\"rout\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:39:20,841 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.068*\"august\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.064*\"april\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:39:20,843 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"car\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:39:20,844 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:39:20,846 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 05:39:20,852 : INFO : topic diff=0.004002, rho=0.024693\n", + "2019-01-16 05:39:21,117 : INFO : PROGRESS: pass 0, at document #3282000/4922894\n", + "2019-01-16 05:39:23,115 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:23,672 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.016*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:39:23,673 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"titl\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:39:23,675 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:39:23,676 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.030*\"text\" + 0.029*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.023*\"black\" + 0.013*\"cape\" + 0.011*\"storm\"\n", + "2019-01-16 05:39:23,679 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:39:23,685 : INFO : topic diff=0.003653, rho=0.024686\n", + "2019-01-16 05:39:23,963 : INFO : PROGRESS: pass 0, at document #3284000/4922894\n", + "2019-01-16 05:39:25,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:26,530 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"member\"\n", + "2019-01-16 05:39:26,532 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"cell\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 05:39:26,533 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"grade\"\n", + "2019-01-16 05:39:26,535 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:39:26,536 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:39:26,543 : INFO : topic diff=0.003982, rho=0.024678\n", + "2019-01-16 05:39:26,811 : INFO : PROGRESS: pass 0, at document #3286000/4922894\n", + "2019-01-16 05:39:28,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:29,362 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", + "2019-01-16 05:39:29,364 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"cell\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", + "2019-01-16 05:39:29,365 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.016*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:39:29,367 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"grand\"\n", + "2019-01-16 05:39:29,368 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:39:29,374 : INFO : topic diff=0.004554, rho=0.024671\n", + "2019-01-16 05:39:29,643 : INFO : PROGRESS: pass 0, at document #3288000/4922894\n", + "2019-01-16 05:39:31,659 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:32,217 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"car\" + 0.008*\"vehicl\" + 0.007*\"us\"\n", + "2019-01-16 05:39:32,219 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"cell\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.008*\"ret\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:39:32,220 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:39:32,222 : INFO : topic #35 (0.020): 0.035*\"kong\" + 0.030*\"hong\" + 0.028*\"lee\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"vietnam\"\n", + "2019-01-16 05:39:32,224 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.016*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:39:32,230 : INFO : topic diff=0.003532, rho=0.024663\n", + "2019-01-16 05:39:32,484 : INFO : PROGRESS: pass 0, at document #3290000/4922894\n", + "2019-01-16 05:39:34,501 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:35,059 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:39:35,061 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.015*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:39:35,062 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 05:39:35,063 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:39:35,064 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:39:35,070 : INFO : topic diff=0.004048, rho=0.024656\n", + "2019-01-16 05:39:35,331 : INFO : PROGRESS: pass 0, at document #3292000/4922894\n", + "2019-01-16 05:39:37,363 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:37,923 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:39:37,924 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:39:37,925 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:39:37,927 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.037*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\"\n", + "2019-01-16 05:39:37,928 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.044*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:39:37,934 : INFO : topic diff=0.003406, rho=0.024648\n", + "2019-01-16 05:39:38,234 : INFO : PROGRESS: pass 0, at document #3294000/4922894\n", + "2019-01-16 05:39:40,321 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:40,882 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.021*\"counti\" + 0.020*\"peopl\"\n", + "2019-01-16 05:39:40,883 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:39:40,886 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:39:40,887 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.030*\"text\" + 0.029*\"south\" + 0.026*\"till\" + 0.024*\"color\" + 0.022*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", + "2019-01-16 05:39:40,889 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.030*\"hong\" + 0.027*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"vietnam\"\n", + "2019-01-16 05:39:40,894 : INFO : topic diff=0.004304, rho=0.024641\n", + "2019-01-16 05:39:41,157 : INFO : PROGRESS: pass 0, at document #3296000/4922894\n", + "2019-01-16 05:39:43,157 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:43,715 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.058*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"ye\" + 0.015*\"korea\"\n", + "2019-01-16 05:39:43,717 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", + "2019-01-16 05:39:43,718 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:39:43,720 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"time\" + 0.009*\"grand\"\n", + "2019-01-16 05:39:43,722 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.011*\"patient\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:39:43,727 : INFO : topic diff=0.003676, rho=0.024633\n", + "2019-01-16 05:39:43,991 : INFO : PROGRESS: pass 0, at document #3298000/4922894\n", + "2019-01-16 05:39:45,984 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:46,543 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:39:46,544 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"grade\" + 0.009*\"teacher\"\n", + "2019-01-16 05:39:46,546 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:39:46,547 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"player\" + 0.007*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:39:46,548 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.010*\"swedish\" + 0.010*\"die\"\n", + "2019-01-16 05:39:46,554 : INFO : topic diff=0.003653, rho=0.024626\n", + "2019-01-16 05:39:51,321 : INFO : -11.845 per-word bound, 3680.0 perplexity estimate based on a held-out corpus of 2000 documents with 546533 words\n", + "2019-01-16 05:39:51,322 : INFO : PROGRESS: pass 0, at document #3300000/4922894\n", + "2019-01-16 05:39:53,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:39:53,921 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 05:39:53,922 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"car\" + 0.008*\"vehicl\" + 0.007*\"us\"\n", + "2019-01-16 05:39:53,924 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"grand\"\n", + "2019-01-16 05:39:53,925 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:39:53,927 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:39:53,933 : INFO : topic diff=0.003712, rho=0.024618\n", + "2019-01-16 05:39:54,203 : INFO : PROGRESS: pass 0, at document #3302000/4922894\n", + "2019-01-16 05:39:56,198 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:56,754 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:39:56,756 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.032*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:39:56,758 : INFO : topic #29 (0.020): 0.037*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:39:56,759 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:39:56,761 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 05:39:56,767 : INFO : topic diff=0.003388, rho=0.024611\n", + "2019-01-16 05:39:57,030 : INFO : PROGRESS: pass 0, at document #3304000/4922894\n", + "2019-01-16 05:39:59,018 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:39:59,575 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:39:59,576 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:39:59,577 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 05:39:59,579 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:39:59,580 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"grade\" + 0.009*\"teacher\"\n", + "2019-01-16 05:39:59,586 : INFO : topic diff=0.003252, rho=0.024603\n", + "2019-01-16 05:39:59,844 : INFO : PROGRESS: pass 0, at document #3306000/4922894\n", + "2019-01-16 05:40:01,863 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:02,422 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:40:02,423 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:40:02,426 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:40:02,427 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"group\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\"\n", + "2019-01-16 05:40:02,430 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:40:02,436 : INFO : topic diff=0.003241, rho=0.024596\n", + "2019-01-16 05:40:02,700 : INFO : PROGRESS: pass 0, at document #3308000/4922894\n", + "2019-01-16 05:40:04,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:05,262 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:40:05,263 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:40:05,265 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.071*\"canada\" + 0.059*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"ye\" + 0.016*\"korean\"\n", + "2019-01-16 05:40:05,266 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"car\" + 0.007*\"us\"\n", + "2019-01-16 05:40:05,268 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:40:05,273 : INFO : topic diff=0.003289, rho=0.024589\n", + "2019-01-16 05:40:05,534 : INFO : PROGRESS: pass 0, at document #3310000/4922894\n", + "2019-01-16 05:40:07,519 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:08,076 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:40:08,077 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:40:08,078 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:40:08,080 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:40:08,081 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\" + 0.011*\"khan\"\n", + "2019-01-16 05:40:08,086 : INFO : topic diff=0.003844, rho=0.024581\n", + "2019-01-16 05:40:08,342 : INFO : PROGRESS: pass 0, at document #3312000/4922894\n", + "2019-01-16 05:40:10,329 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:10,887 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:40:10,889 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:40:10,890 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:40:10,892 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:40:10,893 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 05:40:10,900 : INFO : topic diff=0.004657, rho=0.024574\n", + "2019-01-16 05:40:11,159 : INFO : PROGRESS: pass 0, at document #3314000/4922894\n", + "2019-01-16 05:40:13,114 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:13,669 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:40:13,671 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 05:40:13,672 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:40:13,674 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:40:13,675 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.014*\"pakistan\" + 0.013*\"iran\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\" + 0.010*\"khan\"\n", + "2019-01-16 05:40:13,681 : INFO : topic diff=0.004647, rho=0.024566\n", + "2019-01-16 05:40:13,931 : INFO : PROGRESS: pass 0, at document #3316000/4922894\n", + "2019-01-16 05:40:15,868 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:16,425 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"titl\" + 0.017*\"wrestl\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.011*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:40:16,426 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:40:16,428 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.006*\"union\" + 0.006*\"unit\"\n", + "2019-01-16 05:40:16,429 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.060*\"wikit\" + 0.055*\"align\" + 0.047*\"style\" + 0.047*\"left\" + 0.047*\"center\" + 0.033*\"philippin\" + 0.032*\"right\" + 0.026*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:40:16,430 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:40:16,436 : INFO : topic diff=0.003597, rho=0.024559\n", + "2019-01-16 05:40:16,705 : INFO : PROGRESS: pass 0, at document #3318000/4922894\n", + "2019-01-16 05:40:18,737 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:19,301 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 05:40:19,303 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", + "2019-01-16 05:40:19,305 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\" + 0.010*\"khan\"\n", + "2019-01-16 05:40:19,308 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:40:19,309 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"order\"\n", + "2019-01-16 05:40:19,315 : INFO : topic diff=0.003147, rho=0.024551\n", + "2019-01-16 05:40:23,936 : INFO : -11.542 per-word bound, 2982.2 perplexity estimate based on a held-out corpus of 2000 documents with 544637 words\n", + "2019-01-16 05:40:23,937 : INFO : PROGRESS: pass 0, at document #3320000/4922894\n", + "2019-01-16 05:40:25,921 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:26,483 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"member\"\n", + "2019-01-16 05:40:26,484 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"medicin\"\n", + "2019-01-16 05:40:26,486 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.006*\"union\" + 0.006*\"unit\"\n", + "2019-01-16 05:40:26,488 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 05:40:26,489 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.011*\"daughter\"\n", + "2019-01-16 05:40:26,496 : INFO : topic diff=0.003388, rho=0.024544\n", + "2019-01-16 05:40:26,764 : INFO : PROGRESS: pass 0, at document #3322000/4922894\n", + "2019-01-16 05:40:28,812 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:29,370 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"grade\"\n", + "2019-01-16 05:40:29,371 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:40:29,373 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:40:29,374 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:40:29,376 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 05:40:29,382 : INFO : topic diff=0.003868, rho=0.024537\n", + "2019-01-16 05:40:29,640 : INFO : PROGRESS: pass 0, at document #3324000/4922894\n", + "2019-01-16 05:40:31,695 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:32,257 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.009*\"church\"\n", + "2019-01-16 05:40:32,259 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:40:32,261 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.006*\"group\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:40:32,262 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:40:32,264 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:40:32,270 : INFO : topic diff=0.003250, rho=0.024529\n", + "2019-01-16 05:40:32,534 : INFO : PROGRESS: pass 0, at document #3326000/4922894\n", + "2019-01-16 05:40:34,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:35,067 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.047*\"style\" + 0.046*\"center\" + 0.032*\"philippin\" + 0.031*\"right\" + 0.026*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:40:35,069 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:40:35,071 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", + "2019-01-16 05:40:35,072 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:40:35,073 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.026*\"till\" + 0.024*\"color\" + 0.023*\"black\" + 0.013*\"cape\" + 0.013*\"storm\"\n", + "2019-01-16 05:40:35,079 : INFO : topic diff=0.003447, rho=0.024522\n", + "2019-01-16 05:40:35,340 : INFO : PROGRESS: pass 0, at document #3328000/4922894\n", + "2019-01-16 05:40:37,372 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:37,930 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:40:37,931 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.070*\"august\" + 0.069*\"juli\" + 0.065*\"april\" + 0.064*\"june\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.060*\"decemb\"\n", + "2019-01-16 05:40:37,934 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:40:37,935 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", + "2019-01-16 05:40:37,936 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 05:40:37,943 : INFO : topic diff=0.003736, rho=0.024515\n", + "2019-01-16 05:40:38,207 : INFO : PROGRESS: pass 0, at document #3330000/4922894\n", + "2019-01-16 05:40:40,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:40,797 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 05:40:40,799 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:40:40,800 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"port\" + 0.011*\"island\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", + "2019-01-16 05:40:40,802 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.069*\"august\" + 0.068*\"juli\" + 0.065*\"april\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:40:40,803 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"commun\" + 0.022*\"household\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:40:40,809 : INFO : topic diff=0.004056, rho=0.024507\n", + "2019-01-16 05:40:41,073 : INFO : PROGRESS: pass 0, at document #3332000/4922894\n", + "2019-01-16 05:40:43,106 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:43,667 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:40:43,668 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 05:40:43,670 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.013*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", + "2019-01-16 05:40:43,671 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"commun\" + 0.022*\"household\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 05:40:43,673 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:40:43,678 : INFO : topic diff=0.003936, rho=0.024500\n", + "2019-01-16 05:40:43,938 : INFO : PROGRESS: pass 0, at document #3334000/4922894\n", + "2019-01-16 05:40:45,988 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:46,553 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.066*\"villag\" + 0.052*\"region\" + 0.043*\"counti\" + 0.041*\"north\" + 0.040*\"east\" + 0.038*\"west\" + 0.036*\"south\" + 0.031*\"provinc\" + 0.028*\"municip\"\n", + "2019-01-16 05:40:46,554 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.066*\"align\" + 0.059*\"wikit\" + 0.056*\"left\" + 0.047*\"style\" + 0.045*\"center\" + 0.034*\"right\" + 0.032*\"philippin\" + 0.026*\"text\" + 0.025*\"list\"\n", + "2019-01-16 05:40:46,555 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", + "2019-01-16 05:40:46,557 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", + "2019-01-16 05:40:46,558 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.030*\"hong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.013*\"asia\" + 0.013*\"indonesia\" + 0.013*\"chines\"\n", + "2019-01-16 05:40:46,564 : INFO : topic diff=0.003914, rho=0.024492\n", + "2019-01-16 05:40:46,825 : INFO : PROGRESS: pass 0, at document #3336000/4922894\n", + "2019-01-16 05:40:48,845 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:49,403 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\" + 0.010*\"khan\"\n", + "2019-01-16 05:40:49,405 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.005*\"like\"\n", + "2019-01-16 05:40:49,407 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:40:49,408 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"church\"\n", + "2019-01-16 05:40:49,409 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.017*\"design\" + 0.017*\"exhibit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:40:49,415 : INFO : topic diff=0.003139, rho=0.024485\n", + "2019-01-16 05:40:49,673 : INFO : PROGRESS: pass 0, at document #3338000/4922894\n", + "2019-01-16 05:40:51,634 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:52,192 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:40:52,194 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.058*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:40:52,195 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:40:52,196 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:40:52,198 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.007*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:40:52,205 : INFO : topic diff=0.003624, rho=0.024478\n", + "2019-01-16 05:40:56,791 : INFO : -11.552 per-word bound, 3002.7 perplexity estimate based on a held-out corpus of 2000 documents with 548076 words\n", + "2019-01-16 05:40:56,791 : INFO : PROGRESS: pass 0, at document #3340000/4922894\n", + "2019-01-16 05:40:58,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:40:59,392 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.022*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", + "2019-01-16 05:40:59,394 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"group\" + 0.008*\"theori\" + 0.007*\"point\"\n", + "2019-01-16 05:40:59,395 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:40:59,397 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.017*\"design\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:40:59,398 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:40:59,404 : INFO : topic diff=0.003474, rho=0.024470\n", + "2019-01-16 05:40:59,667 : INFO : PROGRESS: pass 0, at document #3342000/4922894\n", + "2019-01-16 05:41:01,744 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:02,302 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:41:02,303 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:41:02,305 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:41:02,308 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:41:02,309 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.030*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.014*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", + "2019-01-16 05:41:02,316 : INFO : topic diff=0.003130, rho=0.024463\n", + "2019-01-16 05:41:02,623 : INFO : PROGRESS: pass 0, at document #3344000/4922894\n", + "2019-01-16 05:41:04,605 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:05,167 : INFO : topic #29 (0.020): 0.040*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.029*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:41:05,168 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:41:05,171 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"march\" + 0.072*\"octob\" + 0.070*\"august\" + 0.069*\"juli\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"april\" + 0.064*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:41:05,172 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:41:05,174 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:41:05,180 : INFO : topic diff=0.003619, rho=0.024456\n", + "2019-01-16 05:41:05,456 : INFO : PROGRESS: pass 0, at document #3346000/4922894\n", + "2019-01-16 05:41:07,518 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:08,076 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 05:41:08,077 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"ye\" + 0.015*\"korean\" + 0.015*\"korea\"\n", + "2019-01-16 05:41:08,079 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"car\" + 0.007*\"us\"\n", + "2019-01-16 05:41:08,080 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.021*\"men\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 05:41:08,082 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 05:41:08,087 : INFO : topic diff=0.003803, rho=0.024448\n", + "2019-01-16 05:41:08,342 : INFO : PROGRESS: pass 0, at document #3348000/4922894\n", + "2019-01-16 05:41:10,622 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:11,181 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:41:11,183 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 05:41:11,184 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:41:11,186 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:41:11,188 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:41:11,194 : INFO : topic diff=0.003464, rho=0.024441\n", + "2019-01-16 05:41:11,471 : INFO : PROGRESS: pass 0, at document #3350000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:41:13,442 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:13,999 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:41:14,000 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:41:14,002 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 05:41:14,003 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.069*\"august\" + 0.068*\"juli\" + 0.066*\"januari\" + 0.065*\"april\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:41:14,005 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"group\" + 0.008*\"theori\" + 0.007*\"point\"\n", + "2019-01-16 05:41:14,011 : INFO : topic diff=0.003761, rho=0.024434\n", + "2019-01-16 05:41:14,274 : INFO : PROGRESS: pass 0, at document #3352000/4922894\n", + "2019-01-16 05:41:16,281 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:16,837 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.069*\"august\" + 0.069*\"juli\" + 0.066*\"januari\" + 0.066*\"april\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:41:16,839 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"jewish\" + 0.018*\"soviet\" + 0.015*\"polish\" + 0.015*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 05:41:16,840 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\"\n", + "2019-01-16 05:41:16,842 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:41:16,843 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.026*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", + "2019-01-16 05:41:16,850 : INFO : topic diff=0.004088, rho=0.024427\n", + "2019-01-16 05:41:17,126 : INFO : PROGRESS: pass 0, at document #3354000/4922894\n", + "2019-01-16 05:41:19,165 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:19,722 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", + "2019-01-16 05:41:19,723 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"london\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"west\"\n", + "2019-01-16 05:41:19,725 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 05:41:19,726 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:41:19,728 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:41:19,734 : INFO : topic diff=0.004255, rho=0.024419\n", + "2019-01-16 05:41:19,988 : INFO : PROGRESS: pass 0, at document #3356000/4922894\n", + "2019-01-16 05:41:21,936 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:22,493 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"lake\" + 0.015*\"rout\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:41:22,495 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", + "2019-01-16 05:41:22,496 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.013*\"channel\" + 0.011*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", + "2019-01-16 05:41:22,498 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:41:22,499 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.005*\"like\"\n", + "2019-01-16 05:41:22,505 : INFO : topic diff=0.003501, rho=0.024412\n", + "2019-01-16 05:41:22,767 : INFO : PROGRESS: pass 0, at document #3358000/4922894\n", + "2019-01-16 05:41:24,807 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:25,364 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", + "2019-01-16 05:41:25,365 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"time\"\n", + "2019-01-16 05:41:25,367 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"network\" + 0.011*\"host\" + 0.011*\"program\"\n", + "2019-01-16 05:41:25,368 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:41:25,370 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.048*\"new\" + 0.043*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:41:25,375 : INFO : topic diff=0.003655, rho=0.024405\n", + "2019-01-16 05:41:30,037 : INFO : -11.798 per-word bound, 3560.4 perplexity estimate based on a held-out corpus of 2000 documents with 583751 words\n", + "2019-01-16 05:41:30,038 : INFO : PROGRESS: pass 0, at document #3360000/4922894\n", + "2019-01-16 05:41:32,067 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:32,625 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"group\" + 0.007*\"point\" + 0.007*\"theori\"\n", + "2019-01-16 05:41:32,626 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:41:32,628 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.025*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:41:32,629 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:41:32,630 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.026*\"lee\" + 0.021*\"singapor\" + 0.017*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", + "2019-01-16 05:41:32,636 : INFO : topic diff=0.004241, rho=0.024398\n", + "2019-01-16 05:41:32,898 : INFO : PROGRESS: pass 0, at document #3362000/4922894\n", + "2019-01-16 05:41:34,892 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:35,448 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.018*\"wrestl\" + 0.017*\"contest\" + 0.016*\"championship\" + 0.015*\"fight\" + 0.015*\"team\" + 0.011*\"world\" + 0.011*\"defeat\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:41:35,450 : INFO : topic #29 (0.020): 0.039*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:41:35,452 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:41:35,453 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.019*\"railwai\" + 0.015*\"lake\" + 0.015*\"rout\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:41:35,454 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"london\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 05:41:35,460 : INFO : topic diff=0.003368, rho=0.024390\n", + "2019-01-16 05:41:35,729 : INFO : PROGRESS: pass 0, at document #3364000/4922894\n", + "2019-01-16 05:41:37,714 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:38,271 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 05:41:38,273 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.006*\"fish\"\n", + "2019-01-16 05:41:38,274 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.018*\"wrestl\" + 0.017*\"contest\" + 0.016*\"championship\" + 0.015*\"fight\" + 0.015*\"team\" + 0.011*\"defeat\" + 0.011*\"world\"\n", + "2019-01-16 05:41:38,275 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 05:41:38,277 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.019*\"railwai\" + 0.015*\"lake\" + 0.015*\"rout\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 05:41:38,283 : INFO : topic diff=0.003428, rho=0.024383\n", + "2019-01-16 05:41:38,563 : INFO : PROGRESS: pass 0, at document #3366000/4922894\n", + "2019-01-16 05:41:40,624 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:41,181 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:41:41,182 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:41:41,185 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:41:41,186 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"power\" + 0.012*\"model\" + 0.011*\"product\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.008*\"car\" + 0.008*\"electr\" + 0.007*\"us\"\n", + "2019-01-16 05:41:41,188 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:41:41,194 : INFO : topic diff=0.005163, rho=0.024376\n", + "2019-01-16 05:41:41,455 : INFO : PROGRESS: pass 0, at document #3368000/4922894\n", + "2019-01-16 05:41:43,441 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:43,997 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:41:43,999 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.036*\"germani\" + 0.023*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:41:44,000 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.011*\"daughter\"\n", + "2019-01-16 05:41:44,002 : INFO : topic #29 (0.020): 0.039*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:41:44,004 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"march\" + 0.072*\"octob\" + 0.070*\"juli\" + 0.069*\"august\" + 0.067*\"januari\" + 0.066*\"april\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:41:44,011 : INFO : topic diff=0.003450, rho=0.024369\n", + "2019-01-16 05:41:44,325 : INFO : PROGRESS: pass 0, at document #3370000/4922894\n", + "2019-01-16 05:41:46,375 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:46,933 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.021*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:41:46,935 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.007*\"legal\"\n", + "2019-01-16 05:41:46,936 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:41:46,938 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", + "2019-01-16 05:41:46,939 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"group\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\"\n", + "2019-01-16 05:41:46,945 : INFO : topic diff=0.003787, rho=0.024361\n", + "2019-01-16 05:41:47,218 : INFO : PROGRESS: pass 0, at document #3372000/4922894\n", + "2019-01-16 05:41:49,302 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:49,858 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.071*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.022*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.015*\"montreal\"\n", + "2019-01-16 05:41:49,859 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:41:49,860 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"doubl\"\n", + "2019-01-16 05:41:49,862 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:41:49,863 : INFO : topic #31 (0.020): 0.073*\"australia\" + 0.057*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:41:49,869 : INFO : topic diff=0.004039, rho=0.024354\n", + "2019-01-16 05:41:50,134 : INFO : PROGRESS: pass 0, at document #3374000/4922894\n", + "2019-01-16 05:41:52,121 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:52,678 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:41:52,679 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:41:52,681 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"match\" + 0.018*\"titl\" + 0.018*\"wrestl\" + 0.016*\"contest\" + 0.016*\"championship\" + 0.015*\"fight\" + 0.015*\"team\" + 0.011*\"defeat\" + 0.011*\"world\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:41:52,682 : INFO : topic #31 (0.020): 0.073*\"australia\" + 0.058*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:41:52,683 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:41:52,689 : INFO : topic diff=0.003611, rho=0.024347\n", + "2019-01-16 05:41:52,955 : INFO : PROGRESS: pass 0, at document #3376000/4922894\n", + "2019-01-16 05:41:55,310 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:55,869 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:41:55,871 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:41:55,872 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:41:55,874 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:41:55,875 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"direct\"\n", + "2019-01-16 05:41:55,881 : INFO : topic diff=0.003471, rho=0.024340\n", + "2019-01-16 05:41:56,155 : INFO : PROGRESS: pass 0, at document #3378000/4922894\n", + "2019-01-16 05:41:58,184 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:41:58,743 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", + "2019-01-16 05:41:58,744 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:41:58,745 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.007*\"electr\" + 0.007*\"car\" + 0.007*\"us\"\n", + "2019-01-16 05:41:58,747 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:41:58,748 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"township\" + 0.022*\"household\" + 0.022*\"commun\" + 0.021*\"counti\"\n", + "2019-01-16 05:41:58,754 : INFO : topic diff=0.003483, rho=0.024332\n", + "2019-01-16 05:42:03,391 : INFO : -11.606 per-word bound, 3116.3 perplexity estimate based on a held-out corpus of 2000 documents with 560516 words\n", + "2019-01-16 05:42:03,392 : INFO : PROGRESS: pass 0, at document #3380000/4922894\n", + "2019-01-16 05:42:05,424 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:05,986 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.039*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.025*\"black\" + 0.024*\"color\" + 0.012*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:42:05,987 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.063*\"align\" + 0.060*\"wikit\" + 0.053*\"left\" + 0.051*\"style\" + 0.045*\"center\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.028*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:42:05,988 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.070*\"villag\" + 0.052*\"region\" + 0.044*\"counti\" + 0.040*\"north\" + 0.040*\"east\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.027*\"municip\"\n", + "2019-01-16 05:42:05,989 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.035*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.010*\"khan\"\n", + "2019-01-16 05:42:05,992 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"exhibit\" + 0.017*\"imag\" + 0.016*\"design\"\n", + "2019-01-16 05:42:05,999 : INFO : topic diff=0.003449, rho=0.024325\n", + "2019-01-16 05:42:06,257 : INFO : PROGRESS: pass 0, at document #3382000/4922894\n", + "2019-01-16 05:42:08,277 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:08,835 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"titl\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.016*\"contest\" + 0.015*\"championship\" + 0.015*\"fight\" + 0.014*\"team\" + 0.012*\"event\" + 0.011*\"world\"\n", + "2019-01-16 05:42:08,837 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"township\" + 0.022*\"household\" + 0.022*\"commun\" + 0.022*\"counti\"\n", + "2019-01-16 05:42:08,839 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.070*\"villag\" + 0.052*\"region\" + 0.045*\"counti\" + 0.040*\"north\" + 0.040*\"east\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.027*\"municip\"\n", + "2019-01-16 05:42:08,840 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.024*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:42:08,841 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"coast\" + 0.008*\"fleet\"\n", + "2019-01-16 05:42:08,847 : INFO : topic diff=0.003687, rho=0.024318\n", + "2019-01-16 05:42:09,099 : INFO : PROGRESS: pass 0, at document #3384000/4922894\n", + "2019-01-16 05:42:11,049 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:11,605 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:42:11,606 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.010*\"khan\"\n", + "2019-01-16 05:42:11,608 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"citi\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.013*\"wale\"\n", + "2019-01-16 05:42:11,609 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"men\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"time\"\n", + "2019-01-16 05:42:11,610 : INFO : topic #29 (0.020): 0.039*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 05:42:11,616 : INFO : topic diff=0.003882, rho=0.024311\n", + "2019-01-16 05:42:11,885 : INFO : PROGRESS: pass 0, at document #3386000/4922894\n", + "2019-01-16 05:42:13,916 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:14,474 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"construct\"\n", + "2019-01-16 05:42:14,476 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", + "2019-01-16 05:42:14,477 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:42:14,479 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.039*\"africa\" + 0.036*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.026*\"till\" + 0.025*\"black\" + 0.025*\"color\" + 0.012*\"storm\" + 0.012*\"cape\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:42:14,480 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.063*\"align\" + 0.060*\"wikit\" + 0.051*\"left\" + 0.051*\"style\" + 0.045*\"center\" + 0.035*\"right\" + 0.032*\"philippin\" + 0.027*\"text\" + 0.025*\"border\"\n", + "2019-01-16 05:42:14,486 : INFO : topic diff=0.003665, rho=0.024304\n", + "2019-01-16 05:42:14,749 : INFO : PROGRESS: pass 0, at document #3388000/4922894\n", + "2019-01-16 05:42:16,799 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:17,362 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.032*\"hong\" + 0.026*\"lee\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.014*\"thailand\" + 0.014*\"min\" + 0.014*\"indonesia\" + 0.013*\"chines\"\n", + "2019-01-16 05:42:17,363 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.065*\"align\" + 0.059*\"wikit\" + 0.052*\"left\" + 0.051*\"style\" + 0.044*\"center\" + 0.036*\"right\" + 0.032*\"philippin\" + 0.027*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:42:17,365 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.010*\"sri\"\n", + "2019-01-16 05:42:17,367 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:42:17,368 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:42:17,374 : INFO : topic diff=0.004348, rho=0.024296\n", + "2019-01-16 05:42:17,643 : INFO : PROGRESS: pass 0, at document #3390000/4922894\n", + "2019-01-16 05:42:19,682 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:20,243 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:42:20,245 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"exhibit\" + 0.017*\"imag\" + 0.017*\"design\"\n", + "2019-01-16 05:42:20,247 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"citi\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.013*\"wale\"\n", + "2019-01-16 05:42:20,248 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.017*\"wrestl\" + 0.016*\"contest\" + 0.016*\"championship\" + 0.016*\"fight\" + 0.014*\"team\" + 0.012*\"event\" + 0.012*\"world\"\n", + "2019-01-16 05:42:20,249 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.022*\"toronto\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.015*\"british\" + 0.015*\"montreal\" + 0.015*\"korean\"\n", + "2019-01-16 05:42:20,255 : INFO : topic diff=0.003487, rho=0.024289\n", + "2019-01-16 05:42:20,532 : INFO : PROGRESS: pass 0, at document #3392000/4922894\n", + "2019-01-16 05:42:22,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:23,092 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"township\" + 0.022*\"commun\" + 0.022*\"household\" + 0.021*\"counti\"\n", + "2019-01-16 05:42:23,094 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:42:23,096 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\"\n", + "2019-01-16 05:42:23,098 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", + "2019-01-16 05:42:23,099 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.006*\"group\"\n", + "2019-01-16 05:42:23,106 : INFO : topic diff=0.003375, rho=0.024282\n", + "2019-01-16 05:42:23,390 : INFO : PROGRESS: pass 0, at document #3394000/4922894\n", + "2019-01-16 05:42:25,452 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:26,009 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 05:42:26,010 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", + "2019-01-16 05:42:26,012 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:42:26,014 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:42:26,015 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:42:26,021 : INFO : topic diff=0.003563, rho=0.024275\n", + "2019-01-16 05:42:26,308 : INFO : PROGRESS: pass 0, at document #3396000/4922894\n", + "2019-01-16 05:42:28,288 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:28,847 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.073*\"octob\" + 0.069*\"juli\" + 0.068*\"august\" + 0.067*\"januari\" + 0.066*\"april\" + 0.066*\"novemb\" + 0.064*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:42:28,848 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:42:28,850 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:42:28,852 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\"\n", + "2019-01-16 05:42:28,853 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:42:28,861 : INFO : topic diff=0.003922, rho=0.024268\n", + "2019-01-16 05:42:29,139 : INFO : PROGRESS: pass 0, at document #3398000/4922894\n", + "2019-01-16 05:42:31,169 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:31,726 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.014*\"edit\" + 0.014*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", + "2019-01-16 05:42:31,727 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:42:31,729 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:42:31,730 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.042*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:42:31,731 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:42:31,737 : INFO : topic diff=0.003889, rho=0.024261\n", + "2019-01-16 05:42:36,379 : INFO : -11.828 per-word bound, 3635.0 perplexity estimate based on a held-out corpus of 2000 documents with 570126 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:42:36,380 : INFO : PROGRESS: pass 0, at document #3400000/4922894\n", + "2019-01-16 05:42:38,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:38,975 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.069*\"villag\" + 0.051*\"region\" + 0.044*\"counti\" + 0.040*\"east\" + 0.040*\"north\" + 0.037*\"west\" + 0.034*\"south\" + 0.032*\"provinc\" + 0.026*\"municip\"\n", + "2019-01-16 05:42:38,976 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"citi\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"west\"\n", + "2019-01-16 05:42:38,978 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 05:42:38,979 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"construct\"\n", + "2019-01-16 05:42:38,981 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.007*\"vehicl\" + 0.007*\"type\" + 0.007*\"us\" + 0.007*\"electr\"\n", + "2019-01-16 05:42:38,987 : INFO : topic diff=0.003543, rho=0.024254\n", + "2019-01-16 05:42:39,247 : INFO : PROGRESS: pass 0, at document #3402000/4922894\n", + "2019-01-16 05:42:41,277 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:41,834 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.042*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:42:41,835 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:42:41,837 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.023*\"ontario\" + 0.021*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.014*\"korean\"\n", + "2019-01-16 05:42:41,838 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 05:42:41,840 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", + "2019-01-16 05:42:41,847 : INFO : topic diff=0.003912, rho=0.024246\n", + "2019-01-16 05:42:42,120 : INFO : PROGRESS: pass 0, at document #3404000/4922894\n", + "2019-01-16 05:42:44,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:44,685 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.039*\"africa\" + 0.036*\"african\" + 0.028*\"south\" + 0.028*\"text\" + 0.024*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.013*\"cape\"\n", + "2019-01-16 05:42:44,686 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.017*\"kim\" + 0.015*\"malaysia\" + 0.014*\"chines\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\"\n", + "2019-01-16 05:42:44,688 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", + "2019-01-16 05:42:44,689 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:42:44,690 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.068*\"august\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"april\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 05:42:44,696 : INFO : topic diff=0.004093, rho=0.024239\n", + "2019-01-16 05:42:44,959 : INFO : PROGRESS: pass 0, at document #3406000/4922894\n", + "2019-01-16 05:42:46,971 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:47,533 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:42:47,535 : INFO : topic #20 (0.020): 0.030*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"titl\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"fight\" + 0.015*\"team\" + 0.012*\"defeat\" + 0.011*\"world\"\n", + "2019-01-16 05:42:47,536 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", + "2019-01-16 05:42:47,538 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:42:47,539 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"construct\"\n", + "2019-01-16 05:42:47,545 : INFO : topic diff=0.003264, rho=0.024232\n", + "2019-01-16 05:42:47,791 : INFO : PROGRESS: pass 0, at document #3408000/4922894\n", + "2019-01-16 05:42:49,780 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:50,340 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", + "2019-01-16 05:42:50,342 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.023*\"ontario\" + 0.022*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.014*\"korean\"\n", + "2019-01-16 05:42:50,344 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:42:50,345 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"royal\"\n", + "2019-01-16 05:42:50,346 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:42:50,352 : INFO : topic diff=0.003285, rho=0.024225\n", + "2019-01-16 05:42:50,612 : INFO : PROGRESS: pass 0, at document #3410000/4922894\n", + "2019-01-16 05:42:52,582 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:53,139 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:42:53,141 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.010*\"train\"\n", + "2019-01-16 05:42:53,142 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:42:53,144 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 05:42:53,146 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.017*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", + "2019-01-16 05:42:53,152 : INFO : topic diff=0.003548, rho=0.024218\n", + "2019-01-16 05:42:53,408 : INFO : PROGRESS: pass 0, at document #3412000/4922894\n", + "2019-01-16 05:42:55,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:56,004 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:42:56,006 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 05:42:56,008 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:42:56,010 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:42:56,011 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:42:56,017 : INFO : topic diff=0.003032, rho=0.024211\n", + "2019-01-16 05:42:56,284 : INFO : PROGRESS: pass 0, at document #3414000/4922894\n", + "2019-01-16 05:42:58,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:42:58,875 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"tree\"\n", + "2019-01-16 05:42:58,876 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", + "2019-01-16 05:42:58,878 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\" + 0.007*\"electr\"\n", + "2019-01-16 05:42:58,879 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:42:58,880 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.024*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.013*\"cape\"\n", + "2019-01-16 05:42:58,887 : INFO : topic diff=0.003708, rho=0.024204\n", + "2019-01-16 05:42:59,156 : INFO : PROGRESS: pass 0, at document #3416000/4922894\n", + "2019-01-16 05:43:01,191 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:01,748 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.007*\"legal\"\n", + "2019-01-16 05:43:01,750 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.009*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:43:01,751 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.046*\"counti\" + 0.040*\"east\" + 0.039*\"north\" + 0.037*\"west\" + 0.035*\"south\" + 0.032*\"provinc\" + 0.027*\"municip\"\n", + "2019-01-16 05:43:01,752 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.017*\"exhibit\" + 0.017*\"design\"\n", + "2019-01-16 05:43:01,754 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:43:01,760 : INFO : topic diff=0.003061, rho=0.024197\n", + "2019-01-16 05:43:02,030 : INFO : PROGRESS: pass 0, at document #3418000/4922894\n", + "2019-01-16 05:43:04,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:04,561 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:43:04,562 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:43:04,563 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", + "2019-01-16 05:43:04,565 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:43:04,567 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.010*\"train\"\n", + "2019-01-16 05:43:04,573 : INFO : topic diff=0.003527, rho=0.024190\n", + "2019-01-16 05:43:09,244 : INFO : -11.635 per-word bound, 3181.4 perplexity estimate based on a held-out corpus of 2000 documents with 577071 words\n", + "2019-01-16 05:43:09,245 : INFO : PROGRESS: pass 0, at document #3420000/4922894\n", + "2019-01-16 05:43:11,398 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:11,955 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 05:43:11,956 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 05:43:11,958 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.006*\"group\"\n", + "2019-01-16 05:43:11,960 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.011*\"model\" + 0.009*\"produc\" + 0.007*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:43:11,961 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:43:11,968 : INFO : topic diff=0.003543, rho=0.024183\n", + "2019-01-16 05:43:12,265 : INFO : PROGRESS: pass 0, at document #3422000/4922894\n", + "2019-01-16 05:43:14,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:14,866 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", + "2019-01-16 05:43:14,867 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.017*\"kim\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"chines\" + 0.014*\"thailand\" + 0.013*\"min\"\n", + "2019-01-16 05:43:14,869 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"empir\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:43:14,870 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"swedish\" + 0.011*\"die\"\n", + "2019-01-16 05:43:14,872 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:43:14,878 : INFO : topic diff=0.004163, rho=0.024175\n", + "2019-01-16 05:43:15,134 : INFO : PROGRESS: pass 0, at document #3424000/4922894\n", + "2019-01-16 05:43:17,158 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:17,719 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:43:17,720 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:43:17,722 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.025*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:43:17,725 : INFO : topic #40 (0.020): 0.049*\"bar\" + 0.039*\"africa\" + 0.037*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.025*\"till\" + 0.024*\"color\" + 0.024*\"black\" + 0.014*\"storm\" + 0.013*\"cape\"\n", + "2019-01-16 05:43:17,726 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.068*\"august\" + 0.068*\"juli\" + 0.068*\"januari\" + 0.065*\"april\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:43:17,733 : INFO : topic diff=0.003697, rho=0.024168\n", + "2019-01-16 05:43:17,991 : INFO : PROGRESS: pass 0, at document #3426000/4922894\n", + "2019-01-16 05:43:20,032 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:20,588 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:43:20,589 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.069*\"align\" + 0.060*\"left\" + 0.058*\"wikit\" + 0.048*\"style\" + 0.043*\"center\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.026*\"text\" + 0.024*\"border\"\n", + "2019-01-16 05:43:20,590 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.013*\"wale\"\n", + "2019-01-16 05:43:20,593 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"player\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:43:20,594 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", + "2019-01-16 05:43:20,600 : INFO : topic diff=0.003568, rho=0.024161\n", + "2019-01-16 05:43:20,870 : INFO : PROGRESS: pass 0, at document #3428000/4922894\n", + "2019-01-16 05:43:22,878 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:23,435 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.007*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:43:23,437 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:43:23,438 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.032*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"commun\" + 0.022*\"household\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", + "2019-01-16 05:43:23,440 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.038*\"africa\" + 0.036*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.025*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.014*\"storm\" + 0.014*\"cape\"\n", + "2019-01-16 05:43:23,442 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.020*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:43:23,447 : INFO : topic diff=0.003487, rho=0.024154\n", + "2019-01-16 05:43:23,724 : INFO : PROGRESS: pass 0, at document #3430000/4922894\n", + "2019-01-16 05:43:25,823 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:26,386 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.021*\"von\" + 0.020*\"dutch\" + 0.019*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", + "2019-01-16 05:43:26,388 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:43:26,389 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 05:43:26,391 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 05:43:26,392 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 05:43:26,398 : INFO : topic diff=0.003218, rho=0.024147\n", + "2019-01-16 05:43:26,659 : INFO : PROGRESS: pass 0, at document #3432000/4922894\n", + "2019-01-16 05:43:28,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:29,227 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:43:29,228 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 05:43:29,231 : INFO : topic #31 (0.020): 0.070*\"australia\" + 0.058*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.036*\"zealand\" + 0.031*\"chines\" + 0.031*\"south\" + 0.021*\"sydnei\" + 0.018*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:43:29,232 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"construct\"\n", + "2019-01-16 05:43:29,235 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:43:29,240 : INFO : topic diff=0.002789, rho=0.024140\n", + "2019-01-16 05:43:29,504 : INFO : PROGRESS: pass 0, at document #3434000/4922894\n", + "2019-01-16 05:43:31,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:32,052 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", + "2019-01-16 05:43:32,053 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"pari\" + 0.026*\"italian\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:43:32,055 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"defeat\" + 0.011*\"world\"\n", + "2019-01-16 05:43:32,056 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 05:43:32,057 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", + "2019-01-16 05:43:32,063 : INFO : topic diff=0.003760, rho=0.024133\n", + "2019-01-16 05:43:32,322 : INFO : PROGRESS: pass 0, at document #3436000/4922894\n", + "2019-01-16 05:43:34,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:34,865 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:43:34,867 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:43:34,868 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:43:34,870 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:43:34,872 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:43:34,877 : INFO : topic diff=0.003046, rho=0.024126\n", + "2019-01-16 05:43:35,143 : INFO : PROGRESS: pass 0, at document #3438000/4922894\n", + "2019-01-16 05:43:37,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:37,721 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.041*\"colleg\" + 0.041*\"univers\" + 0.039*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:43:37,722 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:43:37,724 : INFO : topic #31 (0.020): 0.069*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:43:37,725 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:43:37,726 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:43:37,733 : INFO : topic diff=0.004165, rho=0.024119\n", + "2019-01-16 05:43:42,312 : INFO : -11.859 per-word bound, 3715.0 perplexity estimate based on a held-out corpus of 2000 documents with 530873 words\n", + "2019-01-16 05:43:42,313 : INFO : PROGRESS: pass 0, at document #3440000/4922894\n", + "2019-01-16 05:43:44,347 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:44,910 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.014*\"won\"\n", + "2019-01-16 05:43:44,911 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", + "2019-01-16 05:43:44,913 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:43:44,914 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.072*\"march\" + 0.072*\"octob\" + 0.068*\"juli\" + 0.068*\"august\" + 0.068*\"januari\" + 0.066*\"april\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 05:43:44,916 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.025*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:43:44,922 : INFO : topic diff=0.003905, rho=0.024112\n", + "2019-01-16 05:43:45,200 : INFO : PROGRESS: pass 0, at document #3442000/4922894\n", + "2019-01-16 05:43:47,226 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:47,783 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"henri\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 05:43:47,784 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 05:43:47,786 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:43:47,787 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:43:47,789 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", + "2019-01-16 05:43:47,797 : INFO : topic diff=0.003573, rho=0.024105\n", + "2019-01-16 05:43:48,065 : INFO : PROGRESS: pass 0, at document #3444000/4922894\n", + "2019-01-16 05:43:50,122 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:50,681 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\" + 0.015*\"british\" + 0.015*\"korean\"\n", + "2019-01-16 05:43:50,683 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", + "2019-01-16 05:43:50,684 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:43:50,686 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", + "2019-01-16 05:43:50,687 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:43:50,694 : INFO : topic diff=0.003000, rho=0.024098\n", + "2019-01-16 05:43:50,960 : INFO : PROGRESS: pass 0, at document #3446000/4922894\n", + "2019-01-16 05:43:52,955 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:53,512 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:43:53,513 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"republican\" + 0.013*\"repres\" + 0.013*\"council\"\n", + "2019-01-16 05:43:53,515 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:43:53,516 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 05:43:53,518 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", + "2019-01-16 05:43:53,524 : INFO : topic diff=0.003692, rho=0.024091\n", + "2019-01-16 05:43:53,803 : INFO : PROGRESS: pass 0, at document #3448000/4922894\n", + "2019-01-16 05:43:55,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:56,310 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:43:56,311 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:43:56,313 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.014*\"won\"\n", + "2019-01-16 05:43:56,314 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.031*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:43:56,316 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.025*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.014*\"storm\" + 0.014*\"cape\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:43:56,321 : INFO : topic diff=0.004065, rho=0.024084\n", + "2019-01-16 05:43:56,601 : INFO : PROGRESS: pass 0, at document #3450000/4922894\n", + "2019-01-16 05:43:58,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:43:59,177 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:43:59,178 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", + "2019-01-16 05:43:59,179 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 05:43:59,181 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"network\" + 0.011*\"program\"\n", + "2019-01-16 05:43:59,182 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.072*\"villag\" + 0.050*\"region\" + 0.043*\"counti\" + 0.040*\"east\" + 0.039*\"north\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.027*\"municip\"\n", + "2019-01-16 05:43:59,189 : INFO : topic diff=0.003612, rho=0.024077\n", + "2019-01-16 05:43:59,467 : INFO : PROGRESS: pass 0, at document #3452000/4922894\n", + "2019-01-16 05:44:01,546 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:02,108 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"network\" + 0.011*\"program\"\n", + "2019-01-16 05:44:02,109 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.023*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.015*\"chines\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\"\n", + "2019-01-16 05:44:02,111 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:44:02,112 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:44:02,113 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"train\"\n", + "2019-01-16 05:44:02,119 : INFO : topic diff=0.003822, rho=0.024070\n", + "2019-01-16 05:44:02,399 : INFO : PROGRESS: pass 0, at document #3454000/4922894\n", + "2019-01-16 05:44:04,427 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:04,984 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.014*\"won\"\n", + "2019-01-16 05:44:04,985 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:44:04,987 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"time\"\n", + "2019-01-16 05:44:04,988 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:44:04,989 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:44:04,994 : INFO : topic diff=0.003939, rho=0.024063\n", + "2019-01-16 05:44:05,253 : INFO : PROGRESS: pass 0, at document #3456000/4922894\n", + "2019-01-16 05:44:07,219 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:07,777 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:44:07,778 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.014*\"ye\"\n", + "2019-01-16 05:44:07,780 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:44:07,781 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 05:44:07,782 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.031*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:44:07,788 : INFO : topic diff=0.003466, rho=0.024056\n", + "2019-01-16 05:44:08,065 : INFO : PROGRESS: pass 0, at document #3458000/4922894\n", + "2019-01-16 05:44:10,066 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:10,622 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.041*\"colleg\" + 0.040*\"univers\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:44:10,623 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:44:10,625 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"poland\"\n", + "2019-01-16 05:44:10,626 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:44:10,627 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"cell\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:44:10,633 : INFO : topic diff=0.003260, rho=0.024049\n", + "2019-01-16 05:44:15,170 : INFO : -11.565 per-word bound, 3029.0 perplexity estimate based on a held-out corpus of 2000 documents with 558133 words\n", + "2019-01-16 05:44:15,171 : INFO : PROGRESS: pass 0, at document #3460000/4922894\n", + "2019-01-16 05:44:17,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:17,745 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 05:44:17,747 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:44:17,749 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", + "2019-01-16 05:44:17,750 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.064*\"align\" + 0.058*\"wikit\" + 0.057*\"left\" + 0.049*\"style\" + 0.043*\"center\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.029*\"list\" + 0.027*\"text\"\n", + "2019-01-16 05:44:17,751 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:44:17,758 : INFO : topic diff=0.003098, rho=0.024042\n", + "2019-01-16 05:44:18,028 : INFO : PROGRESS: pass 0, at document #3462000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:44:19,993 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:20,550 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:44:20,552 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:44:20,553 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:44:20,555 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 05:44:20,556 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.023*\"lee\" + 0.022*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.014*\"thailand\"\n", + "2019-01-16 05:44:20,562 : INFO : topic diff=0.003408, rho=0.024035\n", + "2019-01-16 05:44:20,835 : INFO : PROGRESS: pass 0, at document #3464000/4922894\n", + "2019-01-16 05:44:22,811 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:23,370 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.014*\"montreal\" + 0.014*\"korean\"\n", + "2019-01-16 05:44:23,371 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"london\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.013*\"wale\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 05:44:23,374 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:44:23,375 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:44:23,376 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:44:23,382 : INFO : topic diff=0.003027, rho=0.024028\n", + "2019-01-16 05:44:23,663 : INFO : PROGRESS: pass 0, at document #3466000/4922894\n", + "2019-01-16 05:44:25,673 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:26,231 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.010*\"khan\"\n", + "2019-01-16 05:44:26,232 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:44:26,234 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:44:26,235 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.031*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:44:26,237 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.008*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"natur\" + 0.007*\"tree\"\n", + "2019-01-16 05:44:26,243 : INFO : topic diff=0.004159, rho=0.024022\n", + "2019-01-16 05:44:26,518 : INFO : PROGRESS: pass 0, at document #3468000/4922894\n", + "2019-01-16 05:44:28,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:29,083 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:44:29,084 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:44:29,086 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.055*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.019*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:44:29,087 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.023*\"ontario\" + 0.023*\"toronto\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"korean\" + 0.014*\"montreal\"\n", + "2019-01-16 05:44:29,088 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:44:29,094 : INFO : topic diff=0.003736, rho=0.024015\n", + "2019-01-16 05:44:29,352 : INFO : PROGRESS: pass 0, at document #3470000/4922894\n", + "2019-01-16 05:44:31,340 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:31,898 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:44:31,900 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 05:44:31,901 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:44:31,903 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:44:31,904 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.010*\"author\" + 0.010*\"stori\"\n", + "2019-01-16 05:44:31,910 : INFO : topic diff=0.003311, rho=0.024008\n", + "2019-01-16 05:44:32,216 : INFO : PROGRESS: pass 0, at document #3472000/4922894\n", + "2019-01-16 05:44:34,201 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:34,758 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:44:34,760 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:44:34,762 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", + "2019-01-16 05:44:34,764 : INFO : topic #20 (0.020): 0.030*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"team\" + 0.016*\"fight\" + 0.015*\"week\" + 0.015*\"championship\" + 0.012*\"defeat\"\n", + "2019-01-16 05:44:34,765 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:44:34,771 : INFO : topic diff=0.003411, rho=0.024001\n", + "2019-01-16 05:44:35,025 : INFO : PROGRESS: pass 0, at document #3474000/4922894\n", + "2019-01-16 05:44:36,946 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:37,502 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"pilot\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:44:37,504 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:44:37,505 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.016*\"park\" + 0.014*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:44:37,507 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:44:37,508 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.013*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\"\n", + "2019-01-16 05:44:37,514 : INFO : topic diff=0.003940, rho=0.023994\n", + "2019-01-16 05:44:37,784 : INFO : PROGRESS: pass 0, at document #3476000/4922894\n", + "2019-01-16 05:44:39,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:40,358 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"natur\" + 0.007*\"tree\"\n", + "2019-01-16 05:44:40,359 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:44:40,361 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:44:40,362 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:44:40,363 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:44:40,369 : INFO : topic diff=0.003485, rho=0.023987\n", + "2019-01-16 05:44:40,644 : INFO : PROGRESS: pass 0, at document #3478000/4922894\n", + "2019-01-16 05:44:42,646 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:43,203 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:44:43,205 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:44:43,207 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:44:43,208 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.014*\"lake\" + 0.014*\"rout\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:44:43,209 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:44:43,216 : INFO : topic diff=0.003943, rho=0.023980\n", + "2019-01-16 05:44:48,018 : INFO : -11.985 per-word bound, 4054.1 perplexity estimate based on a held-out corpus of 2000 documents with 594315 words\n", + "2019-01-16 05:44:48,019 : INFO : PROGRESS: pass 0, at document #3480000/4922894\n", + "2019-01-16 05:44:50,096 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:50,655 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:44:50,656 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:44:50,658 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\"\n", + "2019-01-16 05:44:50,660 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", + "2019-01-16 05:44:50,661 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:44:50,668 : INFO : topic diff=0.003695, rho=0.023973\n", + "2019-01-16 05:44:50,944 : INFO : PROGRESS: pass 0, at document #3482000/4922894\n", + "2019-01-16 05:44:52,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:53,467 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:44:53,469 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:44:53,470 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:44:53,472 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:44:53,473 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:44:53,480 : INFO : topic diff=0.003714, rho=0.023966\n", + "2019-01-16 05:44:53,757 : INFO : PROGRESS: pass 0, at document #3484000/4922894\n", + "2019-01-16 05:44:55,803 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:56,367 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.018*\"london\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", + "2019-01-16 05:44:56,369 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:44:56,370 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 05:44:56,372 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 05:44:56,373 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.037*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:44:56,379 : INFO : topic diff=0.003184, rho=0.023959\n", + "2019-01-16 05:44:56,649 : INFO : PROGRESS: pass 0, at document #3486000/4922894\n", + "2019-01-16 05:44:58,629 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:44:59,186 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.042*\"africa\" + 0.038*\"african\" + 0.029*\"south\" + 0.026*\"text\" + 0.026*\"black\" + 0.024*\"color\" + 0.024*\"till\" + 0.015*\"storm\" + 0.014*\"cape\"\n", + "2019-01-16 05:44:59,187 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:44:59,189 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.023*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.014*\"montreal\"\n", + "2019-01-16 05:44:59,191 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:44:59,193 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 05:44:59,199 : INFO : topic diff=0.003260, rho=0.023953\n", + "2019-01-16 05:44:59,469 : INFO : PROGRESS: pass 0, at document #3488000/4922894\n", + "2019-01-16 05:45:01,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:02,058 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:45:02,059 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:45:02,061 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:45:02,063 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.033*\"town\" + 0.033*\"citi\" + 0.032*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\" + 0.021*\"counti\"\n", + "2019-01-16 05:45:02,064 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:45:02,071 : INFO : topic diff=0.003558, rho=0.023946\n", + "2019-01-16 05:45:02,333 : INFO : PROGRESS: pass 0, at document #3490000/4922894\n", + "2019-01-16 05:45:04,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:04,917 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.042*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.026*\"black\" + 0.026*\"text\" + 0.024*\"till\" + 0.024*\"color\" + 0.014*\"storm\" + 0.013*\"cape\"\n", + "2019-01-16 05:45:04,918 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:45:04,920 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:45:04,921 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"natur\"\n", + "2019-01-16 05:45:04,923 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:45:04,930 : INFO : topic diff=0.002983, rho=0.023939\n", + "2019-01-16 05:45:05,205 : INFO : PROGRESS: pass 0, at document #3492000/4922894\n", + "2019-01-16 05:45:07,227 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:07,787 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:45:07,788 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.020*\"nation\" + 0.019*\"athlet\"\n", + "2019-01-16 05:45:07,790 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:45:07,791 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:45:07,793 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:45:07,800 : INFO : topic diff=0.004230, rho=0.023932\n", + "2019-01-16 05:45:08,056 : INFO : PROGRESS: pass 0, at document #3494000/4922894\n", + "2019-01-16 05:45:10,031 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:10,587 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:45:10,589 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", + "2019-01-16 05:45:10,591 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.010*\"ali\" + 0.010*\"sri\"\n", + "2019-01-16 05:45:10,593 : INFO : topic #6 (0.020): 0.056*\"music\" + 0.030*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"danc\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 05:45:10,594 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:45:10,600 : INFO : topic diff=0.004349, rho=0.023925\n", + "2019-01-16 05:45:10,871 : INFO : PROGRESS: pass 0, at document #3496000/4922894\n", + "2019-01-16 05:45:13,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:13,651 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", + "2019-01-16 05:45:13,653 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:45:13,654 : INFO : topic #20 (0.020): 0.030*\"win\" + 0.018*\"contest\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.014*\"week\" + 0.011*\"world\"\n", + "2019-01-16 05:45:13,656 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:45:13,657 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 05:45:13,663 : INFO : topic diff=0.004208, rho=0.023918\n", + "2019-01-16 05:45:13,968 : INFO : PROGRESS: pass 0, at document #3498000/4922894\n", + "2019-01-16 05:45:16,022 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:16,581 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\"\n", + "2019-01-16 05:45:16,583 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 05:45:16,584 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"royal\"\n", + "2019-01-16 05:45:16,585 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:45:16,586 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.017*\"imag\" + 0.017*\"galleri\"\n", + "2019-01-16 05:45:16,593 : INFO : topic diff=0.003907, rho=0.023911\n", + "2019-01-16 05:45:21,157 : INFO : -11.619 per-word bound, 3146.3 perplexity estimate based on a held-out corpus of 2000 documents with 553249 words\n", + "2019-01-16 05:45:21,158 : INFO : PROGRESS: pass 0, at document #3500000/4922894\n", + "2019-01-16 05:45:23,148 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:23,706 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", + "2019-01-16 05:45:23,707 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:45:23,709 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"car\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:45:23,710 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 05:45:23,711 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:45:23,718 : INFO : topic diff=0.003616, rho=0.023905\n", + "2019-01-16 05:45:23,997 : INFO : PROGRESS: pass 0, at document #3502000/4922894\n", + "2019-01-16 05:45:26,027 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:26,603 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:45:26,605 : INFO : topic #9 (0.020): 0.065*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.010*\"movi\"\n", + "2019-01-16 05:45:26,606 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:45:26,608 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:45:26,609 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.017*\"exhibit\" + 0.017*\"imag\" + 0.017*\"design\"\n", + "2019-01-16 05:45:26,615 : INFO : topic diff=0.003282, rho=0.023898\n", + "2019-01-16 05:45:26,881 : INFO : PROGRESS: pass 0, at document #3504000/4922894\n", + "2019-01-16 05:45:28,816 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:29,373 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.009*\"josé\"\n", + "2019-01-16 05:45:29,375 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:45:29,376 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:45:29,378 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:45:29,379 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"order\"\n", + "2019-01-16 05:45:29,385 : INFO : topic diff=0.003202, rho=0.023891\n", + "2019-01-16 05:45:29,638 : INFO : PROGRESS: pass 0, at document #3506000/4922894\n", + "2019-01-16 05:45:31,560 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:32,120 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:45:32,121 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 05:45:32,122 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:45:32,123 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.023*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", + "2019-01-16 05:45:32,124 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:45:32,130 : INFO : topic diff=0.003885, rho=0.023884\n", + "2019-01-16 05:45:32,374 : INFO : PROGRESS: pass 0, at document #3508000/4922894\n", + "2019-01-16 05:45:34,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:34,789 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.010*\"ali\" + 0.010*\"sri\"\n", + "2019-01-16 05:45:34,791 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.037*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:45:34,793 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.017*\"exhibit\" + 0.017*\"design\"\n", + "2019-01-16 05:45:34,795 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.015*\"team\" + 0.015*\"wrestl\" + 0.014*\"championship\" + 0.013*\"week\" + 0.011*\"defeat\"\n", + "2019-01-16 05:45:34,796 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:45:34,802 : INFO : topic diff=0.004229, rho=0.023877\n", + "2019-01-16 05:45:35,071 : INFO : PROGRESS: pass 0, at document #3510000/4922894\n", + "2019-01-16 05:45:37,119 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:37,675 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:45:37,676 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.033*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.026*\"township\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"commun\" + 0.023*\"counti\" + 0.021*\"household\"\n", + "2019-01-16 05:45:37,678 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.069*\"juli\" + 0.067*\"august\" + 0.067*\"januari\" + 0.065*\"june\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 05:45:37,679 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:45:37,681 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:45:37,686 : INFO : topic diff=0.003503, rho=0.023870\n", + "2019-01-16 05:45:37,967 : INFO : PROGRESS: pass 0, at document #3512000/4922894\n", + "2019-01-16 05:45:40,027 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:40,584 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:45:40,586 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"team\" + 0.014*\"championship\" + 0.013*\"week\" + 0.011*\"defeat\"\n", + "2019-01-16 05:45:40,587 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:45:40,589 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.010*\"sri\"\n", + "2019-01-16 05:45:40,590 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.018*\"berlin\" + 0.015*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:45:40,595 : INFO : topic diff=0.004745, rho=0.023864\n", + "2019-01-16 05:45:40,862 : INFO : PROGRESS: pass 0, at document #3514000/4922894\n", + "2019-01-16 05:45:42,912 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:43,468 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"bank\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:45:43,469 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.028*\"till\" + 0.027*\"text\" + 0.026*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:45:43,471 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:45:43,473 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"said\" + 0.004*\"dai\"\n", + "2019-01-16 05:45:43,474 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:45:43,482 : INFO : topic diff=0.002886, rho=0.023857\n", + "2019-01-16 05:45:43,746 : INFO : PROGRESS: pass 0, at document #3516000/4922894\n", + "2019-01-16 05:45:45,790 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:46,349 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:45:46,351 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:45:46,353 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:45:46,354 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:45:46,355 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 05:45:46,361 : INFO : topic diff=0.002975, rho=0.023850\n", + "2019-01-16 05:45:46,647 : INFO : PROGRESS: pass 0, at document #3518000/4922894\n", + "2019-01-16 05:45:48,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:49,310 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.017*\"contest\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.013*\"week\" + 0.011*\"defeat\"\n", + "2019-01-16 05:45:49,311 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"tree\"\n", + "2019-01-16 05:45:49,313 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:45:49,317 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 05:45:49,318 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:45:49,324 : INFO : topic diff=0.004004, rho=0.023843\n", + "2019-01-16 05:45:53,808 : INFO : -11.546 per-word bound, 2990.9 perplexity estimate based on a held-out corpus of 2000 documents with 552972 words\n", + "2019-01-16 05:45:53,809 : INFO : PROGRESS: pass 0, at document #3520000/4922894\n", + "2019-01-16 05:45:55,733 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:56,290 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"tamil\"\n", + "2019-01-16 05:45:56,291 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.017*\"contest\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.013*\"week\" + 0.011*\"defeat\"\n", + "2019-01-16 05:45:56,292 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:45:56,294 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:45:56,295 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"championship\"\n", + "2019-01-16 05:45:56,301 : INFO : topic diff=0.004174, rho=0.023837\n", + "2019-01-16 05:45:56,562 : INFO : PROGRESS: pass 0, at document #3522000/4922894\n", + "2019-01-16 05:45:58,522 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:45:59,080 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:45:59,081 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:45:59,082 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.042*\"east\" + 0.041*\"west\" + 0.040*\"counti\" + 0.039*\"north\" + 0.037*\"south\" + 0.031*\"provinc\" + 0.030*\"municip\"\n", + "2019-01-16 05:45:59,084 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.013*\"thoma\"\n", + "2019-01-16 05:45:59,086 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:45:59,092 : INFO : topic diff=0.004059, rho=0.023830\n", + "2019-01-16 05:45:59,390 : INFO : PROGRESS: pass 0, at document #3524000/4922894\n", + "2019-01-16 05:46:01,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:46:01,978 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.042*\"east\" + 0.040*\"west\" + 0.040*\"counti\" + 0.039*\"north\" + 0.037*\"south\" + 0.030*\"provinc\" + 0.030*\"municip\"\n", + "2019-01-16 05:46:01,979 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\"\n", + "2019-01-16 05:46:01,982 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:46:01,984 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 05:46:01,985 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:46:01,992 : INFO : topic diff=0.003459, rho=0.023823\n", + "2019-01-16 05:46:02,267 : INFO : PROGRESS: pass 0, at document #3526000/4922894\n", + "2019-01-16 05:46:04,320 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:04,876 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:46:04,878 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.014*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"ford\" + 0.010*\"championship\"\n", + "2019-01-16 05:46:04,879 : INFO : topic #5 (0.020): 0.025*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:46:04,881 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"week\" + 0.011*\"defeat\"\n", + "2019-01-16 05:46:04,882 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:46:04,889 : INFO : topic diff=0.003916, rho=0.023816\n", + "2019-01-16 05:46:05,164 : INFO : PROGRESS: pass 0, at document #3528000/4922894\n", + "2019-01-16 05:46:07,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:07,765 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"nation\" + 0.019*\"athlet\"\n", + "2019-01-16 05:46:07,767 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.019*\"broadcast\" + 0.017*\"station\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", + "2019-01-16 05:46:07,768 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:46:07,769 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:46:07,771 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:46:07,778 : INFO : topic diff=0.003771, rho=0.023810\n", + "2019-01-16 05:46:08,047 : INFO : PROGRESS: pass 0, at document #3530000/4922894\n", + "2019-01-16 05:46:10,041 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:10,599 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"tamil\"\n", + "2019-01-16 05:46:10,600 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.058*\"align\" + 0.057*\"wikit\" + 0.053*\"left\" + 0.051*\"style\" + 0.044*\"center\" + 0.038*\"right\" + 0.032*\"philippin\" + 0.030*\"list\" + 0.029*\"text\"\n", + "2019-01-16 05:46:10,601 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 05:46:10,603 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:46:10,605 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.018*\"exhibit\" + 0.017*\"design\"\n", + "2019-01-16 05:46:10,611 : INFO : topic diff=0.003032, rho=0.023803\n", + "2019-01-16 05:46:10,888 : INFO : PROGRESS: pass 0, at document #3532000/4922894\n", + "2019-01-16 05:46:12,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:13,477 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"natur\" + 0.007*\"forest\"\n", + "2019-01-16 05:46:13,479 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:46:13,480 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 05:46:13,481 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.071*\"march\" + 0.071*\"octob\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.063*\"june\" + 0.062*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:46:13,483 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:46:13,488 : INFO : topic diff=0.004783, rho=0.023796\n", + "2019-01-16 05:46:13,761 : INFO : PROGRESS: pass 0, at document #3534000/4922894\n", + "2019-01-16 05:46:15,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:16,309 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"natur\"\n", + "2019-01-16 05:46:16,310 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.071*\"villag\" + 0.051*\"region\" + 0.042*\"east\" + 0.040*\"west\" + 0.040*\"counti\" + 0.040*\"north\" + 0.036*\"south\" + 0.031*\"provinc\" + 0.031*\"municip\"\n", + "2019-01-16 05:46:16,311 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 05:46:16,312 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.016*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"order\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"offic\"\n", + "2019-01-16 05:46:16,314 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.023*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"nation\" + 0.019*\"athlet\"\n", + "2019-01-16 05:46:16,320 : INFO : topic diff=0.003294, rho=0.023789\n", + "2019-01-16 05:46:16,587 : INFO : PROGRESS: pass 0, at document #3536000/4922894\n", + "2019-01-16 05:46:18,585 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:19,141 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.010*\"pilot\"\n", + "2019-01-16 05:46:19,143 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:46:19,144 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"offic\" + 0.011*\"divis\" + 0.010*\"regiment\"\n", + "2019-01-16 05:46:19,146 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.012*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:46:19,147 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.022*\"lee\" + 0.021*\"singapor\" + 0.016*\"malaysia\" + 0.016*\"kim\" + 0.014*\"asia\" + 0.014*\"chines\" + 0.014*\"indonesia\" + 0.014*\"thailand\"\n", + "2019-01-16 05:46:19,153 : INFO : topic diff=0.003656, rho=0.023783\n", + "2019-01-16 05:46:19,418 : INFO : PROGRESS: pass 0, at document #3538000/4922894\n", + "2019-01-16 05:46:21,395 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:21,953 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:46:21,954 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:46:21,955 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.008*\"beach\"\n", + "2019-01-16 05:46:21,957 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:46:21,958 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", + "2019-01-16 05:46:21,965 : INFO : topic diff=0.003400, rho=0.023776\n", + "2019-01-16 05:46:26,715 : INFO : -11.322 per-word bound, 2559.9 perplexity estimate based on a held-out corpus of 2000 documents with 561799 words\n", + "2019-01-16 05:46:26,717 : INFO : PROGRESS: pass 0, at document #3540000/4922894\n", + "2019-01-16 05:46:28,701 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:29,259 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:46:29,261 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:46:29,262 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 05:46:29,264 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:46:29,265 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"union\"\n", + "2019-01-16 05:46:29,273 : INFO : topic diff=0.003641, rho=0.023769\n", + "2019-01-16 05:46:29,541 : INFO : PROGRESS: pass 0, at document #3542000/4922894\n", + "2019-01-16 05:46:31,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:32,092 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:46:32,094 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 05:46:32,096 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", + "2019-01-16 05:46:32,097 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:46:32,098 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.066*\"align\" + 0.057*\"left\" + 0.056*\"wikit\" + 0.051*\"style\" + 0.044*\"center\" + 0.037*\"right\" + 0.031*\"philippin\" + 0.030*\"text\" + 0.030*\"list\"\n", + "2019-01-16 05:46:32,104 : INFO : topic diff=0.003424, rho=0.023762\n", + "2019-01-16 05:46:32,379 : INFO : PROGRESS: pass 0, at document #3544000/4922894\n", + "2019-01-16 05:46:34,366 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:34,923 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:46:34,925 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.015*\"montreal\" + 0.015*\"korean\"\n", + "2019-01-16 05:46:34,926 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:46:34,927 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.036*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:46:34,928 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:46:34,934 : INFO : topic diff=0.004084, rho=0.023756\n", + "2019-01-16 05:46:35,193 : INFO : PROGRESS: pass 0, at document #3546000/4922894\n", + "2019-01-16 05:46:37,160 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:37,717 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 05:46:37,718 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:46:37,720 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 05:46:37,721 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:46:37,722 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.033*\"town\" + 0.033*\"citi\" + 0.032*\"ag\" + 0.028*\"township\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"counti\" + 0.021*\"household\"\n", + "2019-01-16 05:46:37,729 : INFO : topic diff=0.002945, rho=0.023749\n", + "2019-01-16 05:46:38,004 : INFO : PROGRESS: pass 0, at document #3548000/4922894\n", + "2019-01-16 05:46:40,054 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:40,611 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:46:40,613 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:46:40,615 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:46:40,616 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"order\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", + "2019-01-16 05:46:40,618 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 05:46:40,623 : INFO : topic diff=0.003773, rho=0.023742\n", + "2019-01-16 05:46:40,926 : INFO : PROGRESS: pass 0, at document #3550000/4922894\n", + "2019-01-16 05:46:42,993 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:43,550 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.010*\"regiment\"\n", + "2019-01-16 05:46:43,552 : INFO : topic #5 (0.020): 0.024*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"player\" + 0.007*\"includ\"\n", + "2019-01-16 05:46:43,554 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:46:43,555 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:46:43,557 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", + "2019-01-16 05:46:43,564 : INFO : topic diff=0.003424, rho=0.023736\n", + "2019-01-16 05:46:43,830 : INFO : PROGRESS: pass 0, at document #3552000/4922894\n", + "2019-01-16 05:46:45,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:46,426 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"coast\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:46:46,428 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:46:46,430 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.010*\"regiment\"\n", + "2019-01-16 05:46:46,431 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:46:46,432 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:46:46,439 : INFO : topic diff=0.004336, rho=0.023729\n", + "2019-01-16 05:46:46,710 : INFO : PROGRESS: pass 0, at document #3554000/4922894\n", + "2019-01-16 05:46:48,701 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:49,258 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"point\" + 0.006*\"group\"\n", + "2019-01-16 05:46:49,259 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.040*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 05:46:49,260 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:46:49,262 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:46:49,263 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:46:49,268 : INFO : topic diff=0.003602, rho=0.023722\n", + "2019-01-16 05:46:49,539 : INFO : PROGRESS: pass 0, at document #3556000/4922894\n", + "2019-01-16 05:46:51,600 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:52,164 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:46:52,166 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"car\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:46:52,168 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:46:52,170 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 05:46:52,171 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:46:52,178 : INFO : topic diff=0.003256, rho=0.023716\n", + "2019-01-16 05:46:52,452 : INFO : PROGRESS: pass 0, at document #3558000/4922894\n", + "2019-01-16 05:46:54,458 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:46:55,021 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:46:55,022 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:46:55,024 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:46:55,027 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:46:55,029 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.042*\"east\" + 0.041*\"north\" + 0.040*\"counti\" + 0.039*\"west\" + 0.037*\"south\" + 0.031*\"municip\" + 0.031*\"provinc\"\n", + "2019-01-16 05:46:55,035 : INFO : topic diff=0.003435, rho=0.023709\n", + "2019-01-16 05:46:59,728 : INFO : -11.678 per-word bound, 3276.3 perplexity estimate based on a held-out corpus of 2000 documents with 559699 words\n", + "2019-01-16 05:46:59,729 : INFO : PROGRESS: pass 0, at document #3560000/4922894\n", + "2019-01-16 05:47:01,754 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:02,312 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:47:02,313 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:47:02,316 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 05:47:02,317 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.019*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:47:02,319 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"coast\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:47:02,325 : INFO : topic diff=0.003498, rho=0.023702\n", + "2019-01-16 05:47:02,595 : INFO : PROGRESS: pass 0, at document #3562000/4922894\n", + "2019-01-16 05:47:04,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:05,152 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", + "2019-01-16 05:47:05,153 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:47:05,155 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.028*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.027*\"color\" + 0.026*\"black\" + 0.014*\"storm\" + 0.013*\"format\"\n", + "2019-01-16 05:47:05,156 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"week\" + 0.012*\"defeat\"\n", + "2019-01-16 05:47:05,157 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 05:47:05,163 : INFO : topic diff=0.003320, rho=0.023696\n", + "2019-01-16 05:47:05,437 : INFO : PROGRESS: pass 0, at document #3564000/4922894\n", + "2019-01-16 05:47:07,461 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:08,018 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:47:08,020 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:47:08,021 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.012*\"order\" + 0.010*\"polic\" + 0.010*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\"\n", + "2019-01-16 05:47:08,023 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"said\" + 0.004*\"return\"\n", + "2019-01-16 05:47:08,024 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:47:08,030 : INFO : topic diff=0.004416, rho=0.023689\n", + "2019-01-16 05:47:08,309 : INFO : PROGRESS: pass 0, at document #3566000/4922894\n", + "2019-01-16 05:47:10,339 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:10,894 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"week\" + 0.012*\"defeat\"\n", + "2019-01-16 05:47:10,896 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:47:10,897 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:47:10,898 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.072*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.065*\"august\" + 0.064*\"june\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:47:10,899 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.026*\"color\" + 0.025*\"black\" + 0.014*\"storm\" + 0.013*\"format\"\n", + "2019-01-16 05:47:10,905 : INFO : topic diff=0.004355, rho=0.023682\n", + "2019-01-16 05:47:11,181 : INFO : PROGRESS: pass 0, at document #3568000/4922894\n", + "2019-01-16 05:47:13,358 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:13,915 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 05:47:13,917 : INFO : topic #24 (0.020): 0.038*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"coast\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:47:13,919 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:47:13,920 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:47:13,922 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:47:13,927 : INFO : topic diff=0.003883, rho=0.023676\n", + "2019-01-16 05:47:14,197 : INFO : PROGRESS: pass 0, at document #3570000/4922894\n", + "2019-01-16 05:47:16,174 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:16,732 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:47:16,733 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.013*\"cell\" + 0.012*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:47:16,735 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", + "2019-01-16 05:47:16,736 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:47:16,738 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.036*\"russian\" + 0.023*\"american\" + 0.023*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:47:16,743 : INFO : topic diff=0.003186, rho=0.023669\n", + "2019-01-16 05:47:17,013 : INFO : PROGRESS: pass 0, at document #3572000/4922894\n", + "2019-01-16 05:47:19,021 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:19,582 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\" + 0.010*\"stage\"\n", + "2019-01-16 05:47:19,584 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:47:19,586 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.026*\"singapor\" + 0.022*\"lee\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.014*\"indonesia\" + 0.014*\"chines\" + 0.014*\"asia\" + 0.014*\"thailand\"\n", + "2019-01-16 05:47:19,588 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:47:19,589 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 05:47:19,597 : INFO : topic diff=0.003788, rho=0.023662\n", + "2019-01-16 05:47:19,894 : INFO : PROGRESS: pass 0, at document #3574000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:47:21,885 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:22,442 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:47:22,444 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.019*\"nation\" + 0.019*\"athlet\"\n", + "2019-01-16 05:47:22,446 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:47:22,448 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:47:22,449 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:47:22,456 : INFO : topic diff=0.003418, rho=0.023656\n", + "2019-01-16 05:47:22,726 : INFO : PROGRESS: pass 0, at document #3576000/4922894\n", + "2019-01-16 05:47:24,739 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:25,297 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:47:25,298 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.016*\"korean\" + 0.016*\"quebec\" + 0.016*\"korea\"\n", + "2019-01-16 05:47:25,299 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"week\" + 0.011*\"defeat\"\n", + "2019-01-16 05:47:25,301 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 05:47:25,303 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.008*\"citi\" + 0.008*\"church\"\n", + "2019-01-16 05:47:25,309 : INFO : topic diff=0.003328, rho=0.023649\n", + "2019-01-16 05:47:25,574 : INFO : PROGRESS: pass 0, at document #3578000/4922894\n", + "2019-01-16 05:47:27,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:28,044 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:47:28,045 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:47:28,048 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:47:28,049 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:47:28,051 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.008*\"treatment\" + 0.008*\"caus\" + 0.008*\"studi\"\n", + "2019-01-16 05:47:28,057 : INFO : topic diff=0.003831, rho=0.023643\n", + "2019-01-16 05:47:32,807 : INFO : -11.580 per-word bound, 3060.7 perplexity estimate based on a held-out corpus of 2000 documents with 592401 words\n", + "2019-01-16 05:47:32,808 : INFO : PROGRESS: pass 0, at document #3580000/4922894\n", + "2019-01-16 05:47:34,866 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:35,423 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"defeat\" + 0.011*\"week\"\n", + "2019-01-16 05:47:35,425 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"order\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", + "2019-01-16 05:47:35,426 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.029*\"text\" + 0.027*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.016*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 05:47:35,428 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:47:35,429 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"coast\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 05:47:35,435 : INFO : topic diff=0.003875, rho=0.023636\n", + "2019-01-16 05:47:35,716 : INFO : PROGRESS: pass 0, at document #3582000/4922894\n", + "2019-01-16 05:47:37,722 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:38,283 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.022*\"vote\" + 0.021*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:47:38,284 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.024*\"singapor\" + 0.022*\"lee\" + 0.020*\"kim\" + 0.015*\"malaysia\" + 0.015*\"chines\" + 0.014*\"asia\" + 0.014*\"indonesia\" + 0.014*\"thailand\"\n", + "2019-01-16 05:47:38,285 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 05:47:38,287 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:47:38,288 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.075*\"villag\" + 0.050*\"region\" + 0.042*\"east\" + 0.041*\"north\" + 0.039*\"west\" + 0.038*\"counti\" + 0.037*\"south\" + 0.030*\"provinc\" + 0.030*\"municip\"\n", + "2019-01-16 05:47:38,293 : INFO : topic diff=0.003509, rho=0.023629\n", + "2019-01-16 05:47:38,557 : INFO : PROGRESS: pass 0, at document #3584000/4922894\n", + "2019-01-16 05:47:40,541 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:41,097 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:47:41,098 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:47:41,100 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 05:47:41,101 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.004*\"materi\"\n", + "2019-01-16 05:47:41,103 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"order\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", + "2019-01-16 05:47:41,108 : INFO : topic diff=0.003752, rho=0.023623\n", + "2019-01-16 05:47:41,372 : INFO : PROGRESS: pass 0, at document #3586000/4922894\n", + "2019-01-16 05:47:43,359 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:43,916 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:47:43,917 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.004*\"materi\"\n", + "2019-01-16 05:47:43,919 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.012*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:47:43,920 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.024*\"singapor\" + 0.022*\"lee\" + 0.019*\"kim\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"chines\" + 0.014*\"asia\" + 0.014*\"japanes\"\n", + "2019-01-16 05:47:43,922 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"order\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", + "2019-01-16 05:47:43,928 : INFO : topic diff=0.004076, rho=0.023616\n", + "2019-01-16 05:47:44,200 : INFO : PROGRESS: pass 0, at document #3588000/4922894\n", + "2019-01-16 05:47:46,259 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:46,817 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.024*\"singapor\" + 0.022*\"lee\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"asia\" + 0.015*\"chines\" + 0.014*\"japanes\"\n", + "2019-01-16 05:47:46,819 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:47:46,821 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.021*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:47:46,822 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:47:46,823 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.025*\"http\" + 0.019*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.011*\"ali\" + 0.011*\"khan\" + 0.011*\"islam\" + 0.011*\"com\"\n", + "2019-01-16 05:47:46,830 : INFO : topic diff=0.003030, rho=0.023610\n", + "2019-01-16 05:47:47,095 : INFO : PROGRESS: pass 0, at document #3590000/4922894\n", + "2019-01-16 05:47:49,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:49,649 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.015*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:47:49,651 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", + "2019-01-16 05:47:49,652 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.012*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:47:49,654 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:47:49,655 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:47:49,661 : INFO : topic diff=0.003499, rho=0.023603\n", + "2019-01-16 05:47:49,933 : INFO : PROGRESS: pass 0, at document #3592000/4922894\n", + "2019-01-16 05:47:51,958 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:52,520 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 05:47:52,522 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.012*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:47:52,523 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:47:52,525 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"coast\" + 0.010*\"port\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", + "2019-01-16 05:47:52,527 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:47:52,534 : INFO : topic diff=0.004798, rho=0.023596\n", + "2019-01-16 05:47:52,792 : INFO : PROGRESS: pass 0, at document #3594000/4922894\n", + "2019-01-16 05:47:54,781 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:55,342 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"june\" + 0.063*\"januari\" + 0.063*\"novemb\" + 0.061*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:47:55,344 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:47:55,345 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"said\" + 0.004*\"return\"\n", + "2019-01-16 05:47:55,347 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.013*\"ret\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"treatment\" + 0.008*\"caus\" + 0.008*\"studi\"\n", + "2019-01-16 05:47:55,349 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:47:55,355 : INFO : topic diff=0.003809, rho=0.023590\n", + "2019-01-16 05:47:55,624 : INFO : PROGRESS: pass 0, at document #3596000/4922894\n", + "2019-01-16 05:47:57,600 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:47:58,158 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", + "2019-01-16 05:47:58,159 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.012*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:47:58,160 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:47:58,162 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:47:58,163 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"korea\" + 0.016*\"quebec\"\n", + "2019-01-16 05:47:58,168 : INFO : topic diff=0.003185, rho=0.023583\n", + "2019-01-16 05:47:58,438 : INFO : PROGRESS: pass 0, at document #3598000/4922894\n", + "2019-01-16 05:48:00,435 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:00,993 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"june\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.062*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:48:00,994 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:48:00,995 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"tradit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:48:00,997 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"ford\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 05:48:00,999 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 05:48:01,006 : INFO : topic diff=0.003563, rho=0.023577\n", + "2019-01-16 05:48:05,566 : INFO : -11.613 per-word bound, 3131.9 perplexity estimate based on a held-out corpus of 2000 documents with 539970 words\n", + "2019-01-16 05:48:05,567 : INFO : PROGRESS: pass 0, at document #3600000/4922894\n", + "2019-01-16 05:48:07,558 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:08,114 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.064*\"januari\" + 0.062*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:48:08,116 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", + "2019-01-16 05:48:08,117 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:48:08,118 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 05:48:08,120 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 05:48:08,126 : INFO : topic diff=0.004003, rho=0.023570\n", + "2019-01-16 05:48:08,407 : INFO : PROGRESS: pass 0, at document #3602000/4922894\n", + "2019-01-16 05:48:10,464 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:11,021 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.063*\"align\" + 0.056*\"wikit\" + 0.056*\"left\" + 0.051*\"style\" + 0.046*\"center\" + 0.036*\"list\" + 0.035*\"right\" + 0.032*\"text\" + 0.031*\"philippin\"\n", + "2019-01-16 05:48:11,022 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:48:11,024 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.064*\"januari\" + 0.062*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:48:11,025 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:48:11,027 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"montreal\" + 0.015*\"quebec\"\n", + "2019-01-16 05:48:11,034 : INFO : topic diff=0.004021, rho=0.023564\n", + "2019-01-16 05:48:11,291 : INFO : PROGRESS: pass 0, at document #3604000/4922894\n", + "2019-01-16 05:48:13,252 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:13,809 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.020*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 05:48:13,810 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:48:13,813 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:48:13,815 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:48:13,817 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:48:13,823 : INFO : topic diff=0.003401, rho=0.023557\n", + "2019-01-16 05:48:14,095 : INFO : PROGRESS: pass 0, at document #3606000/4922894\n", + "2019-01-16 05:48:16,160 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:16,717 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:48:16,719 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:48:16,720 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:48:16,721 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.016*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 05:48:16,723 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:48:16,728 : INFO : topic diff=0.003450, rho=0.023551\n", + "2019-01-16 05:48:17,000 : INFO : PROGRESS: pass 0, at document #3608000/4922894\n", + "2019-01-16 05:48:18,977 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:19,535 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:48:19,537 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"said\" + 0.004*\"return\"\n", + "2019-01-16 05:48:19,539 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:48:19,540 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"car\"\n", + "2019-01-16 05:48:19,541 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.045*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"itali\" + 0.021*\"saint\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 05:48:19,548 : INFO : topic diff=0.004676, rho=0.023544\n", + "2019-01-16 05:48:19,824 : INFO : PROGRESS: pass 0, at document #3610000/4922894\n", + "2019-01-16 05:48:21,803 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:22,359 : INFO : topic #15 (0.020): 0.038*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.018*\"scotland\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"west\"\n", + "2019-01-16 05:48:22,361 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"coast\" + 0.010*\"port\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.008*\"sail\"\n", + "2019-01-16 05:48:22,363 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:48:22,364 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.072*\"villag\" + 0.050*\"region\" + 0.041*\"east\" + 0.040*\"north\" + 0.038*\"west\" + 0.038*\"counti\" + 0.036*\"south\" + 0.030*\"municip\" + 0.030*\"provinc\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:48:22,366 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 05:48:22,372 : INFO : topic diff=0.002877, rho=0.023538\n", + "2019-01-16 05:48:22,639 : INFO : PROGRESS: pass 0, at document #3612000/4922894\n", + "2019-01-16 05:48:24,616 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:25,173 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:48:25,174 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.022*\"winner\" + 0.018*\"open\" + 0.016*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:48:25,176 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:48:25,177 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"version\" + 0.007*\"includ\"\n", + "2019-01-16 05:48:25,179 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.021*\"event\" + 0.019*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:48:25,184 : INFO : topic diff=0.003498, rho=0.023531\n", + "2019-01-16 05:48:25,455 : INFO : PROGRESS: pass 0, at document #3614000/4922894\n", + "2019-01-16 05:48:27,493 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:28,052 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", + "2019-01-16 05:48:28,054 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:48:28,056 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:48:28,058 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.019*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:48:28,060 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:48:28,066 : INFO : topic diff=0.003864, rho=0.023525\n", + "2019-01-16 05:48:28,346 : INFO : PROGRESS: pass 0, at document #3616000/4922894\n", + "2019-01-16 05:48:30,398 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:30,958 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:48:30,960 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.019*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:48:30,961 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:48:30,962 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.010*\"regiment\"\n", + "2019-01-16 05:48:30,964 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:48:30,969 : INFO : topic diff=0.003421, rho=0.023518\n", + "2019-01-16 05:48:31,232 : INFO : PROGRESS: pass 0, at document #3618000/4922894\n", + "2019-01-16 05:48:33,240 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:33,799 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:48:33,801 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:48:33,802 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:48:33,803 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:48:33,804 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.023*\"singapor\" + 0.021*\"lee\" + 0.020*\"kim\" + 0.016*\"min\" + 0.016*\"indonesia\" + 0.015*\"chines\" + 0.015*\"malaysia\" + 0.015*\"japanes\"\n", + "2019-01-16 05:48:33,810 : INFO : topic diff=0.003943, rho=0.023512\n", + "2019-01-16 05:48:38,257 : INFO : -11.650 per-word bound, 3213.9 perplexity estimate based on a held-out corpus of 2000 documents with 499043 words\n", + "2019-01-16 05:48:38,258 : INFO : PROGRESS: pass 0, at document #3620000/4922894\n", + "2019-01-16 05:48:40,190 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:40,747 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.017*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:48:40,748 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:48:40,750 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"construct\"\n", + "2019-01-16 05:48:40,751 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"version\" + 0.007*\"includ\"\n", + "2019-01-16 05:48:40,752 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.023*\"singapor\" + 0.021*\"lee\" + 0.019*\"kim\" + 0.016*\"min\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"japanes\"\n", + "2019-01-16 05:48:40,758 : INFO : topic diff=0.003803, rho=0.023505\n", + "2019-01-16 05:48:41,053 : INFO : PROGRESS: pass 0, at document #3622000/4922894\n", + "2019-01-16 05:48:43,068 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:43,626 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.072*\"villag\" + 0.051*\"region\" + 0.040*\"east\" + 0.040*\"north\" + 0.038*\"west\" + 0.037*\"counti\" + 0.036*\"south\" + 0.030*\"provinc\" + 0.029*\"municip\"\n", + "2019-01-16 05:48:43,627 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 05:48:43,629 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:48:43,630 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.067*\"align\" + 0.061*\"left\" + 0.056*\"wikit\" + 0.052*\"style\" + 0.044*\"center\" + 0.034*\"list\" + 0.033*\"right\" + 0.033*\"text\" + 0.030*\"philippin\"\n", + "2019-01-16 05:48:43,631 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.017*\"titl\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"week\" + 0.011*\"defeat\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:48:43,637 : INFO : topic diff=0.003193, rho=0.023499\n", + "2019-01-16 05:48:43,906 : INFO : PROGRESS: pass 0, at document #3624000/4922894\n", + "2019-01-16 05:48:45,949 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:46,509 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"magazin\"\n", + "2019-01-16 05:48:46,511 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:48:46,512 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:48:46,514 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 05:48:46,515 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.008*\"sail\"\n", + "2019-01-16 05:48:46,521 : INFO : topic diff=0.004525, rho=0.023492\n", + "2019-01-16 05:48:46,815 : INFO : PROGRESS: pass 0, at document #3626000/4922894\n", + "2019-01-16 05:48:48,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:49,433 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.031*\"hong\" + 0.023*\"singapor\" + 0.021*\"lee\" + 0.019*\"kim\" + 0.016*\"indonesia\" + 0.015*\"min\" + 0.015*\"malaysia\" + 0.015*\"chines\" + 0.015*\"japanes\"\n", + "2019-01-16 05:48:49,434 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.041*\"colleg\" + 0.039*\"univers\" + 0.039*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"teacher\" + 0.009*\"state\"\n", + "2019-01-16 05:48:49,436 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 05:48:49,437 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.008*\"sail\"\n", + "2019-01-16 05:48:49,438 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:48:49,444 : INFO : topic diff=0.004274, rho=0.023486\n", + "2019-01-16 05:48:49,716 : INFO : PROGRESS: pass 0, at document #3628000/4922894\n", + "2019-01-16 05:48:51,657 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:52,215 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:48:52,216 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 05:48:52,218 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:48:52,219 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 05:48:52,221 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:48:52,228 : INFO : topic diff=0.003700, rho=0.023479\n", + "2019-01-16 05:48:52,513 : INFO : PROGRESS: pass 0, at document #3630000/4922894\n", + "2019-01-16 05:48:54,538 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:55,101 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.017*\"british\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", + "2019-01-16 05:48:55,103 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"jazz\"\n", + "2019-01-16 05:48:55,105 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:48:55,106 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:48:55,107 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"car\"\n", + "2019-01-16 05:48:55,113 : INFO : topic diff=0.003292, rho=0.023473\n", + "2019-01-16 05:48:55,382 : INFO : PROGRESS: pass 0, at document #3632000/4922894\n", + "2019-01-16 05:48:57,499 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:48:58,056 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:48:58,058 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:48:58,059 : INFO : topic #48 (0.020): 0.082*\"septemb\" + 0.076*\"octob\" + 0.073*\"march\" + 0.065*\"juli\" + 0.064*\"august\" + 0.064*\"januari\" + 0.062*\"novemb\" + 0.062*\"june\" + 0.061*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:48:58,060 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"khan\"\n", + "2019-01-16 05:48:58,062 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.008*\"studi\"\n", + "2019-01-16 05:48:58,068 : INFO : topic diff=0.003655, rho=0.023466\n", + "2019-01-16 05:48:58,340 : INFO : PROGRESS: pass 0, at document #3634000/4922894\n", + "2019-01-16 05:49:00,320 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:00,878 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.045*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.022*\"winner\" + 0.019*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:49:00,880 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"kill\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:49:00,881 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:49:00,884 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:49:00,885 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"khan\"\n", + "2019-01-16 05:49:00,891 : INFO : topic diff=0.003433, rho=0.023460\n", + "2019-01-16 05:49:01,155 : INFO : PROGRESS: pass 0, at document #3636000/4922894\n", + "2019-01-16 05:49:03,054 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:03,611 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:49:03,612 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.065*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.053*\"style\" + 0.043*\"center\" + 0.034*\"list\" + 0.033*\"right\" + 0.032*\"text\" + 0.031*\"philippin\"\n", + "2019-01-16 05:49:03,615 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:49:03,616 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:49:03,618 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:49:03,623 : INFO : topic diff=0.003999, rho=0.023453\n", + "2019-01-16 05:49:03,900 : INFO : PROGRESS: pass 0, at document #3638000/4922894\n", + "2019-01-16 05:49:05,879 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:06,438 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:49:06,439 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:49:06,441 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:49:06,442 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.040*\"student\" + 0.038*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", + "2019-01-16 05:49:06,444 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:49:06,451 : INFO : topic diff=0.003180, rho=0.023447\n", + "2019-01-16 05:49:10,915 : INFO : -12.137 per-word bound, 4505.3 perplexity estimate based on a held-out corpus of 2000 documents with 528580 words\n", + "2019-01-16 05:49:10,916 : INFO : PROGRESS: pass 0, at document #3640000/4922894\n", + "2019-01-16 05:49:12,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:13,494 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:49:13,495 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:49:13,497 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:49:13,498 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:49:13,499 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"car\" + 0.007*\"us\"\n", + "2019-01-16 05:49:13,505 : INFO : topic diff=0.003986, rho=0.023440\n", + "2019-01-16 05:49:13,781 : INFO : PROGRESS: pass 0, at document #3642000/4922894\n", + "2019-01-16 05:49:15,839 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:16,399 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.063*\"align\" + 0.057*\"left\" + 0.057*\"wikit\" + 0.056*\"style\" + 0.043*\"center\" + 0.035*\"list\" + 0.032*\"right\" + 0.032*\"text\" + 0.031*\"philippin\"\n", + "2019-01-16 05:49:16,400 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.023*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:49:16,402 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 05:49:16,403 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:49:16,404 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:49:16,411 : INFO : topic diff=0.003369, rho=0.023434\n", + "2019-01-16 05:49:16,690 : INFO : PROGRESS: pass 0, at document #3644000/4922894\n", + "2019-01-16 05:49:18,707 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:19,265 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.026*\"till\" + 0.024*\"color\" + 0.024*\"black\" + 0.014*\"cape\" + 0.013*\"storm\"\n", + "2019-01-16 05:49:19,266 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 05:49:19,267 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.020*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:49:19,268 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.021*\"event\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:49:19,270 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.024*\"singapor\" + 0.021*\"lee\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"chines\" + 0.015*\"min\" + 0.015*\"japanes\"\n", + "2019-01-16 05:49:19,276 : INFO : topic diff=0.003350, rho=0.023427\n", + "2019-01-16 05:49:19,559 : INFO : PROGRESS: pass 0, at document #3646000/4922894\n", + "2019-01-16 05:49:21,641 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:22,198 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", + "2019-01-16 05:49:22,199 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", + "2019-01-16 05:49:22,200 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:49:22,203 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:49:22,204 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:49:22,209 : INFO : topic diff=0.004418, rho=0.023421\n", + "2019-01-16 05:49:22,468 : INFO : PROGRESS: pass 0, at document #3648000/4922894\n", + "2019-01-16 05:49:24,429 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:24,993 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:49:24,995 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:49:24,997 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:49:24,998 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", + "2019-01-16 05:49:25,000 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:49:25,006 : INFO : topic diff=0.003492, rho=0.023415\n", + "2019-01-16 05:49:25,268 : INFO : PROGRESS: pass 0, at document #3650000/4922894\n", + "2019-01-16 05:49:27,235 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:27,792 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.054*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:49:27,794 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.061*\"align\" + 0.056*\"wikit\" + 0.056*\"left\" + 0.056*\"style\" + 0.043*\"center\" + 0.037*\"list\" + 0.032*\"right\" + 0.031*\"philippin\" + 0.031*\"text\"\n", + "2019-01-16 05:49:27,795 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 05:49:27,796 : INFO : topic #15 (0.020): 0.037*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"west\"\n", + "2019-01-16 05:49:27,797 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:49:27,803 : INFO : topic diff=0.003859, rho=0.023408\n", + "2019-01-16 05:49:28,094 : INFO : PROGRESS: pass 0, at document #3652000/4922894\n", + "2019-01-16 05:49:30,078 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:30,636 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.072*\"villag\" + 0.051*\"region\" + 0.041*\"east\" + 0.039*\"north\" + 0.038*\"west\" + 0.038*\"counti\" + 0.036*\"south\" + 0.030*\"provinc\" + 0.030*\"municip\"\n", + "2019-01-16 05:49:30,638 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", + "2019-01-16 05:49:30,639 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.013*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"car\"\n", + "2019-01-16 05:49:30,640 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:49:30,642 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:49:30,648 : INFO : topic diff=0.003109, rho=0.023402\n", + "2019-01-16 05:49:30,917 : INFO : PROGRESS: pass 0, at document #3654000/4922894\n", + "2019-01-16 05:49:32,881 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:33,439 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"order\" + 0.009*\"right\"\n", + "2019-01-16 05:49:33,441 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:49:33,443 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:49:33,444 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", + "2019-01-16 05:49:33,445 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 05:49:33,451 : INFO : topic diff=0.003256, rho=0.023395\n", + "2019-01-16 05:49:33,725 : INFO : PROGRESS: pass 0, at document #3656000/4922894\n", + "2019-01-16 05:49:35,727 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:36,293 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", + "2019-01-16 05:49:36,295 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"seat\" + 0.013*\"repres\"\n", + "2019-01-16 05:49:36,297 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"order\" + 0.009*\"right\"\n", + "2019-01-16 05:49:36,298 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:49:36,299 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:49:36,306 : INFO : topic diff=0.003986, rho=0.023389\n", + "2019-01-16 05:49:36,591 : INFO : PROGRESS: pass 0, at document #3658000/4922894\n", + "2019-01-16 05:49:38,602 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:39,160 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"medicin\"\n", + "2019-01-16 05:49:39,161 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 05:49:39,163 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", + "2019-01-16 05:49:39,164 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.023*\"singapor\" + 0.022*\"lee\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"indonesia\" + 0.015*\"japanes\" + 0.015*\"thailand\"\n", + "2019-01-16 05:49:39,165 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"islam\" + 0.011*\"ali\"\n", + "2019-01-16 05:49:39,172 : INFO : topic diff=0.003858, rho=0.023383\n", + "2019-01-16 05:49:43,816 : INFO : -11.773 per-word bound, 3499.2 perplexity estimate based on a held-out corpus of 2000 documents with 550731 words\n", + "2019-01-16 05:49:43,817 : INFO : PROGRESS: pass 0, at document #3660000/4922894\n", + "2019-01-16 05:49:45,825 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:46,383 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.072*\"villag\" + 0.051*\"region\" + 0.041*\"east\" + 0.039*\"north\" + 0.038*\"west\" + 0.037*\"counti\" + 0.035*\"south\" + 0.030*\"municip\" + 0.029*\"provinc\"\n", + "2019-01-16 05:49:46,385 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.023*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:49:46,386 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.017*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:49:46,387 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"servic\" + 0.010*\"award\"\n", + "2019-01-16 05:49:46,388 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:49:46,394 : INFO : topic diff=0.003841, rho=0.023376\n", + "2019-01-16 05:49:46,677 : INFO : PROGRESS: pass 0, at document #3662000/4922894\n", + "2019-01-16 05:49:48,770 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:49,327 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:49:49,329 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"islam\" + 0.011*\"ali\"\n", + "2019-01-16 05:49:49,331 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:49:49,332 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:49:49,333 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"nation\" + 0.019*\"athlet\"\n", + "2019-01-16 05:49:49,339 : INFO : topic diff=0.003215, rho=0.023370\n", + "2019-01-16 05:49:49,621 : INFO : PROGRESS: pass 0, at document #3664000/4922894\n", + "2019-01-16 05:49:51,644 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:52,202 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"effect\"\n", + "2019-01-16 05:49:52,203 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.022*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.015*\"malaysia\" + 0.015*\"chines\" + 0.015*\"japanes\" + 0.015*\"indonesia\" + 0.014*\"thailand\"\n", + "2019-01-16 05:49:52,205 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.032*\"south\" + 0.030*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:49:52,207 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:49:52,208 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:49:52,215 : INFO : topic diff=0.004808, rho=0.023363\n", + "2019-01-16 05:49:52,477 : INFO : PROGRESS: pass 0, at document #3666000/4922894\n", + "2019-01-16 05:49:54,417 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:54,978 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:49:54,980 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 05:49:54,982 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 05:49:54,984 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:49:54,986 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"magazin\" + 0.011*\"author\"\n", + "2019-01-16 05:49:54,993 : INFO : topic diff=0.003919, rho=0.023357\n", + "2019-01-16 05:49:55,261 : INFO : PROGRESS: pass 0, at document #3668000/4922894\n", + "2019-01-16 05:49:57,248 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:49:57,807 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 05:49:57,808 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.025*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", + "2019-01-16 05:49:57,809 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:49:57,811 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 05:49:57,812 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.023*\"von\" + 0.023*\"van\" + 0.021*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.013*\"swedish\" + 0.012*\"netherland\" + 0.011*\"sweden\"\n", + "2019-01-16 05:49:57,818 : INFO : topic diff=0.003537, rho=0.023351\n", + "2019-01-16 05:49:58,081 : INFO : PROGRESS: pass 0, at document #3670000/4922894\n", + "2019-01-16 05:50:00,023 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:00,583 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 05:50:00,584 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"seat\"\n", + "2019-01-16 05:50:00,586 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"defeat\" + 0.011*\"world\"\n", + "2019-01-16 05:50:00,587 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:50:00,589 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:50:00,598 : INFO : topic diff=0.002975, rho=0.023344\n", + "2019-01-16 05:50:00,898 : INFO : PROGRESS: pass 0, at document #3672000/4922894\n", + "2019-01-16 05:50:02,952 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:03,514 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", + "2019-01-16 05:50:03,516 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:50:03,518 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:50:03,519 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 05:50:03,521 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"order\" + 0.008*\"right\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:50:03,527 : INFO : topic diff=0.003075, rho=0.023338\n", + "2019-01-16 05:50:03,797 : INFO : PROGRESS: pass 0, at document #3674000/4922894\n", + "2019-01-16 05:50:05,800 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:06,357 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.023*\"black\" + 0.013*\"format\" + 0.013*\"storm\"\n", + "2019-01-16 05:50:06,358 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:50:06,360 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.024*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:50:06,362 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"pilot\"\n", + "2019-01-16 05:50:06,363 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", + "2019-01-16 05:50:06,369 : INFO : topic diff=0.003676, rho=0.023332\n", + "2019-01-16 05:50:06,674 : INFO : PROGRESS: pass 0, at document #3676000/4922894\n", + "2019-01-16 05:50:08,687 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:09,246 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 05:50:09,247 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:50:09,249 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:50:09,250 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"order\"\n", + "2019-01-16 05:50:09,252 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.008*\"damag\"\n", + "2019-01-16 05:50:09,259 : INFO : topic diff=0.003521, rho=0.023325\n", + "2019-01-16 05:50:09,539 : INFO : PROGRESS: pass 0, at document #3678000/4922894\n", + "2019-01-16 05:50:11,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:12,127 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"type\" + 0.008*\"us\"\n", + "2019-01-16 05:50:12,129 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", + "2019-01-16 05:50:12,130 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.066*\"align\" + 0.057*\"wikit\" + 0.056*\"style\" + 0.056*\"left\" + 0.047*\"center\" + 0.035*\"list\" + 0.032*\"text\" + 0.031*\"right\" + 0.029*\"philippin\"\n", + "2019-01-16 05:50:12,131 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:50:12,132 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.025*\"group\" + 0.023*\"point\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", + "2019-01-16 05:50:12,138 : INFO : topic diff=0.003843, rho=0.023319\n", + "2019-01-16 05:50:16,814 : INFO : -11.785 per-word bound, 3527.9 perplexity estimate based on a held-out corpus of 2000 documents with 577804 words\n", + "2019-01-16 05:50:16,814 : INFO : PROGRESS: pass 0, at document #3680000/4922894\n", + "2019-01-16 05:50:18,816 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:19,372 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:50:19,374 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:50:19,375 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.024*\"group\" + 0.023*\"point\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", + "2019-01-16 05:50:19,377 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:50:19,379 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:50:19,384 : INFO : topic diff=0.003417, rho=0.023313\n", + "2019-01-16 05:50:19,665 : INFO : PROGRESS: pass 0, at document #3682000/4922894\n", + "2019-01-16 05:50:21,665 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:22,223 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:50:22,225 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:50:22,227 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"west\" + 0.014*\"scottish\" + 0.013*\"wale\"\n", + "2019-01-16 05:50:22,228 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:50:22,229 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 05:50:22,236 : INFO : topic diff=0.003645, rho=0.023306\n", + "2019-01-16 05:50:22,505 : INFO : PROGRESS: pass 0, at document #3684000/4922894\n", + "2019-01-16 05:50:24,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:25,063 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:50:25,065 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"empir\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:50:25,066 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"pilot\"\n", + "2019-01-16 05:50:25,067 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:50:25,069 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.018*\"design\" + 0.017*\"imag\"\n", + "2019-01-16 05:50:25,075 : INFO : topic diff=0.003473, rho=0.023300\n", + "2019-01-16 05:50:25,346 : INFO : PROGRESS: pass 0, at document #3686000/4922894\n", + "2019-01-16 05:50:27,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:50:27,918 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"danc\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.011*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 05:50:27,919 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:50:27,921 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.070*\"villag\" + 0.052*\"region\" + 0.040*\"east\" + 0.040*\"north\" + 0.038*\"west\" + 0.037*\"counti\" + 0.036*\"south\" + 0.030*\"municip\" + 0.029*\"provinc\"\n", + "2019-01-16 05:50:27,922 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.024*\"group\" + 0.023*\"point\" + 0.022*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", + "2019-01-16 05:50:27,924 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.032*\"south\" + 0.030*\"chines\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:50:27,930 : INFO : topic diff=0.003049, rho=0.023294\n", + "2019-01-16 05:50:28,205 : INFO : PROGRESS: pass 0, at document #3688000/4922894\n", + "2019-01-16 05:50:30,241 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:30,799 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:50:30,800 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:50:30,802 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:50:30,803 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.018*\"design\" + 0.017*\"imag\"\n", + "2019-01-16 05:50:30,804 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:50:30,811 : INFO : topic diff=0.003030, rho=0.023287\n", + "2019-01-16 05:50:31,076 : INFO : PROGRESS: pass 0, at document #3690000/4922894\n", + "2019-01-16 05:50:33,081 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:33,641 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"defeat\" + 0.011*\"world\"\n", + "2019-01-16 05:50:33,642 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.010*\"muslim\"\n", + "2019-01-16 05:50:33,644 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", + "2019-01-16 05:50:33,646 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.024*\"group\" + 0.023*\"point\" + 0.022*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", + "2019-01-16 05:50:33,647 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:50:33,654 : INFO : topic diff=0.003944, rho=0.023281\n", + "2019-01-16 05:50:33,928 : INFO : PROGRESS: pass 0, at document #3692000/4922894\n", + "2019-01-16 05:50:35,969 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:36,527 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.042*\"round\" + 0.025*\"tournament\" + 0.024*\"group\" + 0.023*\"point\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", + "2019-01-16 05:50:36,529 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 05:50:36,530 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"west\" + 0.013*\"wale\"\n", + "2019-01-16 05:50:36,531 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:50:36,533 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 05:50:36,539 : INFO : topic diff=0.003420, rho=0.023275\n", + "2019-01-16 05:50:36,815 : INFO : PROGRESS: pass 0, at document #3694000/4922894\n", + "2019-01-16 05:50:38,812 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:39,369 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:50:39,370 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.033*\"hong\" + 0.021*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.016*\"chines\" + 0.016*\"japanes\" + 0.014*\"indonesia\" + 0.014*\"asia\"\n", + "2019-01-16 05:50:39,371 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.026*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:50:39,374 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.069*\"villag\" + 0.052*\"region\" + 0.040*\"east\" + 0.039*\"north\" + 0.038*\"west\" + 0.036*\"counti\" + 0.035*\"south\" + 0.029*\"municip\" + 0.029*\"provinc\"\n", + "2019-01-16 05:50:39,375 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", + "2019-01-16 05:50:39,381 : INFO : topic diff=0.003842, rho=0.023268\n", + "2019-01-16 05:50:39,642 : INFO : PROGRESS: pass 0, at document #3696000/4922894\n", + "2019-01-16 05:50:41,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:42,173 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 05:50:42,174 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:50:42,175 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.036*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.018*\"design\" + 0.017*\"imag\"\n", + "2019-01-16 05:50:42,177 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"form\"\n", + "2019-01-16 05:50:42,178 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.032*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:50:42,184 : INFO : topic diff=0.004169, rho=0.023262\n", + "2019-01-16 05:50:42,450 : INFO : PROGRESS: pass 0, at document #3698000/4922894\n", + "2019-01-16 05:50:44,473 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:45,029 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:50:45,030 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.017*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:50:45,032 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"kill\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:50:45,033 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"valu\" + 0.007*\"point\"\n", + "2019-01-16 05:50:45,034 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.033*\"hong\" + 0.022*\"singapor\" + 0.021*\"lee\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"japanes\" + 0.014*\"indonesia\" + 0.014*\"asia\"\n", + "2019-01-16 05:50:45,040 : INFO : topic diff=0.003648, rho=0.023256\n", + "2019-01-16 05:50:49,630 : INFO : -11.536 per-word bound, 2968.9 perplexity estimate based on a held-out corpus of 2000 documents with 542697 words\n", + "2019-01-16 05:50:49,631 : INFO : PROGRESS: pass 0, at document #3700000/4922894\n", + "2019-01-16 05:50:51,645 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:52,202 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:50:52,204 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:50:52,206 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:50:52,207 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:50:52,209 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:50:52,215 : INFO : topic diff=0.003385, rho=0.023250\n", + "2019-01-16 05:50:52,531 : INFO : PROGRESS: pass 0, at document #3702000/4922894\n", + "2019-01-16 05:50:54,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:55,157 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.017*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:50:55,158 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:50:55,160 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:50:55,161 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.075*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 05:50:55,162 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"muslim\"\n", + "2019-01-16 05:50:55,168 : INFO : topic diff=0.002960, rho=0.023243\n", + "2019-01-16 05:50:55,455 : INFO : PROGRESS: pass 0, at document #3704000/4922894\n", + "2019-01-16 05:50:57,508 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:50:58,065 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"muslim\"\n", + "2019-01-16 05:50:58,067 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:50:58,068 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:50:58,070 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"seat\" + 0.013*\"repres\"\n", + "2019-01-16 05:50:58,071 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.030*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.026*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 05:50:58,078 : INFO : topic diff=0.004100, rho=0.023237\n", + "2019-01-16 05:50:58,353 : INFO : PROGRESS: pass 0, at document #3706000/4922894\n", + "2019-01-16 05:51:00,351 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:00,909 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.024*\"von\" + 0.023*\"van\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.013*\"swedish\" + 0.012*\"netherland\" + 0.012*\"sweden\"\n", + "2019-01-16 05:51:00,911 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.026*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:51:00,912 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:51:00,915 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"ford\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:51:00,917 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.033*\"kong\" + 0.022*\"lee\" + 0.022*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"japanes\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:51:00,923 : INFO : topic diff=0.003503, rho=0.023231\n", + "2019-01-16 05:51:01,195 : INFO : PROGRESS: pass 0, at document #3708000/4922894\n", + "2019-01-16 05:51:03,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:03,722 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.017*\"design\" + 0.017*\"imag\"\n", + "2019-01-16 05:51:03,724 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.026*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:51:03,726 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 05:51:03,728 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:51:03,729 : INFO : topic #48 (0.020): 0.080*\"septemb\" + 0.075*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.065*\"august\" + 0.064*\"januari\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.062*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:51:03,736 : INFO : topic diff=0.003273, rho=0.023224\n", + "2019-01-16 05:51:04,019 : INFO : PROGRESS: pass 0, at document #3710000/4922894\n", + "2019-01-16 05:51:06,016 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:06,574 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:51:06,575 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.033*\"kong\" + 0.022*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"japanes\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:51:06,576 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:51:06,578 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.016*\"medic\" + 0.014*\"health\" + 0.014*\"cell\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 05:51:06,579 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"empir\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:51:06,585 : INFO : topic diff=0.003571, rho=0.023218\n", + "2019-01-16 05:51:06,875 : INFO : PROGRESS: pass 0, at document #3712000/4922894\n", + "2019-01-16 05:51:08,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:09,494 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"manchest\"\n", + "2019-01-16 05:51:09,496 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", + "2019-01-16 05:51:09,497 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:51:09,499 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.014*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:51:09,500 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"muslim\"\n", + "2019-01-16 05:51:09,506 : INFO : topic diff=0.003854, rho=0.023212\n", + "2019-01-16 05:51:09,777 : INFO : PROGRESS: pass 0, at document #3714000/4922894\n", + "2019-01-16 05:51:11,786 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:12,347 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:51:12,349 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.063*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.053*\"style\" + 0.046*\"center\" + 0.034*\"list\" + 0.031*\"philippin\" + 0.030*\"text\" + 0.030*\"right\"\n", + "2019-01-16 05:51:12,350 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:51:12,353 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.033*\"kong\" + 0.022*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.016*\"japanes\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"thailand\"\n", + "2019-01-16 05:51:12,354 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:51:12,360 : INFO : topic diff=0.003372, rho=0.023206\n", + "2019-01-16 05:51:12,627 : INFO : PROGRESS: pass 0, at document #3716000/4922894\n", + "2019-01-16 05:51:14,974 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:15,540 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 05:51:15,542 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.016*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"damag\"\n", + "2019-01-16 05:51:15,543 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 05:51:15,545 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:51:15,546 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"muslim\"\n", + "2019-01-16 05:51:15,552 : INFO : topic diff=0.003938, rho=0.023199\n", + "2019-01-16 05:51:15,831 : INFO : PROGRESS: pass 0, at document #3718000/4922894\n", + "2019-01-16 05:51:17,888 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:18,445 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 05:51:18,446 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", + "2019-01-16 05:51:18,447 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 05:51:18,450 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:51:18,451 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.022*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"japanes\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:51:18,457 : INFO : topic diff=0.003619, rho=0.023193\n", + "2019-01-16 05:51:23,158 : INFO : -11.618 per-word bound, 3144.1 perplexity estimate based on a held-out corpus of 2000 documents with 572472 words\n", + "2019-01-16 05:51:23,159 : INFO : PROGRESS: pass 0, at document #3720000/4922894\n", + "2019-01-16 05:51:25,199 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:25,758 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:51:25,760 : INFO : topic #39 (0.020): 0.052*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"train\"\n", + "2019-01-16 05:51:25,761 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:51:25,763 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 05:51:25,764 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.014*\"health\" + 0.014*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.008*\"activ\"\n", + "2019-01-16 05:51:25,770 : INFO : topic diff=0.004406, rho=0.023187\n", + "2019-01-16 05:51:26,050 : INFO : PROGRESS: pass 0, at document #3722000/4922894\n", + "2019-01-16 05:51:28,086 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:28,645 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:51:28,646 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.017*\"design\" + 0.017*\"imag\"\n", + "2019-01-16 05:51:28,647 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:51:28,649 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"town\" + 0.031*\"ag\" + 0.031*\"citi\" + 0.027*\"famili\" + 0.025*\"counti\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"township\" + 0.021*\"household\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:51:28,650 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.062*\"align\" + 0.057*\"wikit\" + 0.053*\"left\" + 0.053*\"style\" + 0.045*\"center\" + 0.034*\"list\" + 0.030*\"philippin\" + 0.030*\"text\" + 0.029*\"right\"\n", + "2019-01-16 05:51:28,655 : INFO : topic diff=0.003183, rho=0.023181\n", + "2019-01-16 05:51:28,937 : INFO : PROGRESS: pass 0, at document #3724000/4922894\n", + "2019-01-16 05:51:30,928 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:31,486 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:51:31,488 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"henri\" + 0.013*\"royal\" + 0.013*\"thoma\"\n", + "2019-01-16 05:51:31,489 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"manchest\"\n", + "2019-01-16 05:51:31,492 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:51:31,494 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.024*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:51:31,500 : INFO : topic diff=0.003334, rho=0.023174\n", + "2019-01-16 05:51:31,762 : INFO : PROGRESS: pass 0, at document #3726000/4922894\n", + "2019-01-16 05:51:33,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:34,222 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 05:51:34,223 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"type\" + 0.007*\"us\"\n", + "2019-01-16 05:51:34,224 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.036*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:51:34,226 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:51:34,228 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:51:34,233 : INFO : topic diff=0.003467, rho=0.023168\n", + "2019-01-16 05:51:34,546 : INFO : PROGRESS: pass 0, at document #3728000/4922894\n", + "2019-01-16 05:51:36,553 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:37,110 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:51:37,111 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:51:37,112 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:51:37,114 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.009*\"damag\"\n", + "2019-01-16 05:51:37,116 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 05:51:37,122 : INFO : topic diff=0.003786, rho=0.023162\n", + "2019-01-16 05:51:37,404 : INFO : PROGRESS: pass 0, at document #3730000/4922894\n", + "2019-01-16 05:51:39,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:39,941 : INFO : topic #48 (0.020): 0.080*\"septemb\" + 0.075*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.065*\"august\" + 0.065*\"june\" + 0.064*\"novemb\" + 0.064*\"januari\" + 0.062*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:51:39,942 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:51:39,943 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:51:39,945 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:51:39,946 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.059*\"align\" + 0.057*\"wikit\" + 0.053*\"left\" + 0.052*\"style\" + 0.046*\"center\" + 0.034*\"list\" + 0.031*\"philippin\" + 0.030*\"text\" + 0.029*\"right\"\n", + "2019-01-16 05:51:39,951 : INFO : topic diff=0.004275, rho=0.023156\n", + "2019-01-16 05:51:40,228 : INFO : PROGRESS: pass 0, at document #3732000/4922894\n", + "2019-01-16 05:51:42,281 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:42,839 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:51:42,841 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 05:51:42,842 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:51:42,843 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:51:42,845 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.011*\"muslim\"\n", + "2019-01-16 05:51:42,851 : INFO : topic diff=0.003943, rho=0.023150\n", + "2019-01-16 05:51:43,121 : INFO : PROGRESS: pass 0, at document #3734000/4922894\n", + "2019-01-16 05:51:45,176 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:45,734 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"henri\" + 0.013*\"royal\" + 0.013*\"thoma\"\n", + "2019-01-16 05:51:45,736 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.031*\"south\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:51:45,739 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"men\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 05:51:45,740 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"iran\" + 0.013*\"tamil\" + 0.013*\"sri\" + 0.011*\"islam\" + 0.011*\"khan\"\n", + "2019-01-16 05:51:45,742 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.008*\"studi\"\n", + "2019-01-16 05:51:45,749 : INFO : topic diff=0.003661, rho=0.023143\n", + "2019-01-16 05:51:46,047 : INFO : PROGRESS: pass 0, at document #3736000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:51:48,111 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:48,670 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:51:48,671 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:51:48,673 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"week\" + 0.011*\"defeat\"\n", + "2019-01-16 05:51:48,674 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.032*\"kong\" + 0.022*\"lee\" + 0.022*\"singapor\" + 0.017*\"kim\" + 0.016*\"malaysia\" + 0.016*\"japanes\" + 0.015*\"asia\" + 0.015*\"chines\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:51:48,675 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:51:48,681 : INFO : topic diff=0.003237, rho=0.023137\n", + "2019-01-16 05:51:48,962 : INFO : PROGRESS: pass 0, at document #3738000/4922894\n", + "2019-01-16 05:51:51,011 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:51,570 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 05:51:51,572 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:51:51,573 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:51:51,575 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.029*\"text\" + 0.026*\"till\" + 0.025*\"black\" + 0.025*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:51:51,576 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:51:51,582 : INFO : topic diff=0.003231, rho=0.023131\n", + "2019-01-16 05:51:56,277 : INFO : -11.368 per-word bound, 2643.8 perplexity estimate based on a held-out corpus of 2000 documents with 570062 words\n", + "2019-01-16 05:51:56,277 : INFO : PROGRESS: pass 0, at document #3740000/4922894\n", + "2019-01-16 05:51:58,298 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:51:58,855 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:51:58,856 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.020*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:51:58,858 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.032*\"south\" + 0.031*\"chines\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:51:58,860 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.029*\"text\" + 0.026*\"till\" + 0.025*\"black\" + 0.024*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:51:58,862 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:51:58,869 : INFO : topic diff=0.003503, rho=0.023125\n", + "2019-01-16 05:51:59,153 : INFO : PROGRESS: pass 0, at document #3742000/4922894\n", + "2019-01-16 05:52:01,175 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:01,734 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:52:01,735 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:52:01,737 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.020*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:52:01,738 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:52:01,740 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 05:52:01,745 : INFO : topic diff=0.002959, rho=0.023119\n", + "2019-01-16 05:52:02,003 : INFO : PROGRESS: pass 0, at document #3744000/4922894\n", + "2019-01-16 05:52:03,975 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:04,531 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.031*\"south\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:52:04,533 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:52:04,534 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.059*\"wikit\" + 0.057*\"align\" + 0.051*\"style\" + 0.050*\"left\" + 0.045*\"center\" + 0.034*\"list\" + 0.031*\"philippin\" + 0.030*\"text\" + 0.030*\"right\"\n", + "2019-01-16 05:52:04,536 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"type\" + 0.008*\"us\"\n", + "2019-01-16 05:52:04,537 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"georg\" + 0.015*\"london\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\"\n", + "2019-01-16 05:52:04,544 : INFO : topic diff=0.003253, rho=0.023113\n", + "2019-01-16 05:52:04,828 : INFO : PROGRESS: pass 0, at document #3746000/4922894\n", + "2019-01-16 05:52:06,873 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:07,429 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 05:52:07,431 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", + "2019-01-16 05:52:07,432 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:52:07,433 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:52:07,435 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 05:52:07,441 : INFO : topic diff=0.003014, rho=0.023106\n", + "2019-01-16 05:52:07,723 : INFO : PROGRESS: pass 0, at document #3748000/4922894\n", + "2019-01-16 05:52:09,739 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:10,295 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:52:10,297 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"produc\"\n", + "2019-01-16 05:52:10,298 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.023*\"point\" + 0.020*\"winner\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:52:10,300 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:52:10,301 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:52:10,307 : INFO : topic diff=0.003167, rho=0.023100\n", + "2019-01-16 05:52:10,572 : INFO : PROGRESS: pass 0, at document #3750000/4922894\n", + "2019-01-16 05:52:12,590 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:13,147 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:52:13,148 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 05:52:13,150 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.010*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 05:52:13,151 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 05:52:13,153 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:52:13,158 : INFO : topic diff=0.003403, rho=0.023094\n", + "2019-01-16 05:52:13,430 : INFO : PROGRESS: pass 0, at document #3752000/4922894\n", + "2019-01-16 05:52:15,405 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:15,964 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:52:15,966 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.075*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.015*\"montreal\" + 0.014*\"quebec\"\n", + "2019-01-16 05:52:15,967 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:52:15,968 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:52:15,970 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:52:15,976 : INFO : topic diff=0.003688, rho=0.023088\n", + "2019-01-16 05:52:16,292 : INFO : PROGRESS: pass 0, at document #3754000/4922894\n", + "2019-01-16 05:52:18,387 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:18,944 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:52:18,945 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.029*\"text\" + 0.029*\"south\" + 0.026*\"till\" + 0.026*\"black\" + 0.025*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:52:18,947 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"time\"\n", + "2019-01-16 05:52:18,948 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:52:18,949 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:52:18,955 : INFO : topic diff=0.004295, rho=0.023082\n", + "2019-01-16 05:52:19,233 : INFO : PROGRESS: pass 0, at document #3756000/4922894\n", + "2019-01-16 05:52:21,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:21,751 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"june\" + 0.063*\"januari\" + 0.062*\"novemb\" + 0.061*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:52:21,753 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.020*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:52:21,754 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"time\"\n", + "2019-01-16 05:52:21,756 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"manchest\"\n", + "2019-01-16 05:52:21,757 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:52:21,762 : INFO : topic diff=0.004148, rho=0.023076\n", + "2019-01-16 05:52:22,041 : INFO : PROGRESS: pass 0, at document #3758000/4922894\n", + "2019-01-16 05:52:24,058 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:24,616 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:52:24,617 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", + "2019-01-16 05:52:24,618 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", + "2019-01-16 05:52:24,620 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:52:24,621 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:52:24,627 : INFO : topic diff=0.003339, rho=0.023069\n", + "2019-01-16 05:52:29,222 : INFO : -11.721 per-word bound, 3376.0 perplexity estimate based on a held-out corpus of 2000 documents with 530450 words\n", + "2019-01-16 05:52:29,223 : INFO : PROGRESS: pass 0, at document #3760000/4922894\n", + "2019-01-16 05:52:31,273 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:31,830 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 05:52:31,831 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.069*\"villag\" + 0.052*\"region\" + 0.039*\"north\" + 0.039*\"east\" + 0.038*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.030*\"municip\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:52:31,832 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 05:52:31,833 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"town\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", + "2019-01-16 05:52:31,834 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"defeat\" + 0.011*\"week\"\n", + "2019-01-16 05:52:31,840 : INFO : topic diff=0.004094, rho=0.023063\n", + "2019-01-16 05:52:32,126 : INFO : PROGRESS: pass 0, at document #3762000/4922894\n", + "2019-01-16 05:52:34,148 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:34,706 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:52:34,707 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:52:34,708 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", + "2019-01-16 05:52:34,710 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:52:34,711 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"time\"\n", + "2019-01-16 05:52:34,717 : INFO : topic diff=0.003791, rho=0.023057\n", + "2019-01-16 05:52:34,989 : INFO : PROGRESS: pass 0, at document #3764000/4922894\n", + "2019-01-16 05:52:36,929 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:37,489 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"defeat\" + 0.011*\"week\"\n", + "2019-01-16 05:52:37,491 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:52:37,492 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 05:52:37,494 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.058*\"wikit\" + 0.058*\"align\" + 0.051*\"style\" + 0.047*\"left\" + 0.045*\"center\" + 0.035*\"list\" + 0.032*\"right\" + 0.032*\"philippin\" + 0.029*\"text\"\n", + "2019-01-16 05:52:37,495 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:52:37,501 : INFO : topic diff=0.003250, rho=0.023051\n", + "2019-01-16 05:52:37,776 : INFO : PROGRESS: pass 0, at document #3766000/4922894\n", + "2019-01-16 05:52:39,782 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:40,343 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:52:40,345 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.032*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"counti\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", + "2019-01-16 05:52:40,348 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.009*\"gun\" + 0.009*\"naval\"\n", + "2019-01-16 05:52:40,349 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 05:52:40,350 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"park\"\n", + "2019-01-16 05:52:40,357 : INFO : topic diff=0.003390, rho=0.023045\n", + "2019-01-16 05:52:40,622 : INFO : PROGRESS: pass 0, at document #3768000/4922894\n", + "2019-01-16 05:52:42,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:43,169 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:52:43,171 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:52:43,172 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"park\"\n", + "2019-01-16 05:52:43,174 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.009*\"naval\" + 0.009*\"gun\"\n", + "2019-01-16 05:52:43,175 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.032*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"counti\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", + "2019-01-16 05:52:43,182 : INFO : topic diff=0.003964, rho=0.023039\n", + "2019-01-16 05:52:43,471 : INFO : PROGRESS: pass 0, at document #3770000/4922894\n", + "2019-01-16 05:52:45,512 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:46,069 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"piano\" + 0.012*\"orchestra\" + 0.012*\"opera\"\n", + "2019-01-16 05:52:46,071 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:52:46,072 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:52:46,074 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", + "2019-01-16 05:52:46,075 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", + "2019-01-16 05:52:46,081 : INFO : topic diff=0.003471, rho=0.023033\n", + "2019-01-16 05:52:46,371 : INFO : PROGRESS: pass 0, at document #3772000/4922894\n", + "2019-01-16 05:52:48,453 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:49,014 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:52:49,016 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", + "2019-01-16 05:52:49,017 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:52:49,019 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:52:49,020 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"us\"\n", + "2019-01-16 05:52:49,027 : INFO : topic diff=0.004072, rho=0.023027\n", + "2019-01-16 05:52:49,315 : INFO : PROGRESS: pass 0, at document #3774000/4922894\n", + "2019-01-16 05:52:51,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:51,931 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.058*\"wikit\" + 0.057*\"align\" + 0.051*\"style\" + 0.047*\"left\" + 0.045*\"center\" + 0.035*\"list\" + 0.033*\"philippin\" + 0.031*\"right\" + 0.029*\"text\"\n", + "2019-01-16 05:52:51,933 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", + "2019-01-16 05:52:51,934 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", + "2019-01-16 05:52:51,935 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.015*\"montreal\" + 0.014*\"quebec\"\n", + "2019-01-16 05:52:51,937 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:52:51,943 : INFO : topic diff=0.002860, rho=0.023020\n", + "2019-01-16 05:52:52,225 : INFO : PROGRESS: pass 0, at document #3776000/4922894\n", + "2019-01-16 05:52:54,226 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:54,783 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:52:54,785 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.012*\"republ\"\n", + "2019-01-16 05:52:54,786 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", + "2019-01-16 05:52:54,788 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:52:54,789 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.032*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"tamil\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"muslim\"\n", + "2019-01-16 05:52:54,795 : INFO : topic diff=0.003161, rho=0.023014\n", + "2019-01-16 05:52:55,105 : INFO : PROGRESS: pass 0, at document #3778000/4922894\n", + "2019-01-16 05:52:57,080 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:52:57,647 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.011*\"coast\" + 0.010*\"damag\" + 0.009*\"gun\" + 0.009*\"naval\"\n", + "2019-01-16 05:52:57,649 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", + "2019-01-16 05:52:57,651 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.032*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"tamil\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"muslim\"\n", + "2019-01-16 05:52:57,654 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.006*\"point\"\n", + "2019-01-16 05:52:57,655 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 05:52:57,661 : INFO : topic diff=0.003326, rho=0.023008\n", + "2019-01-16 05:53:02,212 : INFO : -11.954 per-word bound, 3966.1 perplexity estimate based on a held-out corpus of 2000 documents with 522799 words\n", + "2019-01-16 05:53:02,213 : INFO : PROGRESS: pass 0, at document #3780000/4922894\n", + "2019-01-16 05:53:04,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:04,736 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:53:04,738 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:53:04,740 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 05:53:04,741 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.075*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", + "2019-01-16 05:53:04,743 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.059*\"align\" + 0.058*\"wikit\" + 0.051*\"style\" + 0.049*\"left\" + 0.044*\"center\" + 0.035*\"list\" + 0.032*\"philippin\" + 0.031*\"right\" + 0.029*\"text\"\n", + "2019-01-16 05:53:04,749 : INFO : topic diff=0.003654, rho=0.023002\n", + "2019-01-16 05:53:05,034 : INFO : PROGRESS: pass 0, at document #3782000/4922894\n", + "2019-01-16 05:53:07,056 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:07,613 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:53:07,615 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:53:07,616 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.042*\"round\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.023*\"point\" + 0.021*\"winner\" + 0.020*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:53:07,618 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 05:53:07,619 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.054*\"australian\" + 0.052*\"new\" + 0.043*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:53:07,626 : INFO : topic diff=0.003539, rho=0.022996\n", + "2019-01-16 05:53:07,916 : INFO : PROGRESS: pass 0, at document #3784000/4922894\n", + "2019-01-16 05:53:09,882 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:10,440 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:53:10,441 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"servic\" + 0.010*\"award\"\n", + "2019-01-16 05:53:10,443 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.075*\"canada\" + 0.064*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", + "2019-01-16 05:53:10,444 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:53:10,446 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"citi\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:53:10,451 : INFO : topic diff=0.003535, rho=0.022990\n", + "2019-01-16 05:53:10,716 : INFO : PROGRESS: pass 0, at document #3786000/4922894\n", + "2019-01-16 05:53:12,715 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:13,272 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 05:53:13,274 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:53:13,275 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 05:53:13,276 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:53:13,278 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 05:53:13,283 : INFO : topic diff=0.003185, rho=0.022984\n", + "2019-01-16 05:53:13,568 : INFO : PROGRESS: pass 0, at document #3788000/4922894\n", + "2019-01-16 05:53:15,825 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:16,381 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"contest\" + 0.017*\"match\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"week\" + 0.012*\"defeat\"\n", + "2019-01-16 05:53:16,383 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.066*\"august\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.063*\"januari\" + 0.062*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:53:16,385 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.041*\"round\" + 0.026*\"tournament\" + 0.024*\"group\" + 0.023*\"winner\" + 0.023*\"point\" + 0.020*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:53:16,386 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 05:53:16,388 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"opera\" + 0.012*\"piano\" + 0.012*\"orchestra\"\n", + "2019-01-16 05:53:16,393 : INFO : topic diff=0.003143, rho=0.022978\n", + "2019-01-16 05:53:16,686 : INFO : PROGRESS: pass 0, at document #3790000/4922894\n", + "2019-01-16 05:53:18,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:19,225 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"candid\" + 0.013*\"repres\"\n", + "2019-01-16 05:53:19,227 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:53:19,228 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 05:53:19,229 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:53:19,231 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", + "2019-01-16 05:53:19,236 : INFO : topic diff=0.002690, rho=0.022972\n", + "2019-01-16 05:53:19,521 : INFO : PROGRESS: pass 0, at document #3792000/4922894\n", + "2019-01-16 05:53:21,537 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:22,094 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"candid\" + 0.013*\"repres\"\n", + "2019-01-16 05:53:22,096 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:53:22,097 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"studi\" + 0.008*\"treatment\"\n", + "2019-01-16 05:53:22,099 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:53:22,101 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:53:22,108 : INFO : topic diff=0.003002, rho=0.022966\n", + "2019-01-16 05:53:22,388 : INFO : PROGRESS: pass 0, at document #3794000/4922894\n", + "2019-01-16 05:53:24,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:24,935 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", + "2019-01-16 05:53:24,937 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:53:24,938 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"candid\" + 0.013*\"repres\"\n", + "2019-01-16 05:53:24,939 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:53:24,941 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:53:24,948 : INFO : topic diff=0.003235, rho=0.022960\n", + "2019-01-16 05:53:25,222 : INFO : PROGRESS: pass 0, at document #3796000/4922894\n", + "2019-01-16 05:53:27,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:27,762 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:53:27,763 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:53:27,765 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:53:27,766 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:53:27,768 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:53:27,773 : INFO : topic diff=0.003439, rho=0.022954\n", + "2019-01-16 05:53:28,062 : INFO : PROGRESS: pass 0, at document #3798000/4922894\n", + "2019-01-16 05:53:30,129 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:30,687 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"church\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:53:30,689 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:53:30,691 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 05:53:30,692 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 05:53:30,694 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 05:53:30,699 : INFO : topic diff=0.004186, rho=0.022948\n", + "2019-01-16 05:53:35,339 : INFO : -11.847 per-word bound, 3683.8 perplexity estimate based on a held-out corpus of 2000 documents with 566539 words\n", + "2019-01-16 05:53:35,340 : INFO : PROGRESS: pass 0, at document #3800000/4922894\n", + "2019-01-16 05:53:37,377 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:37,936 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 05:53:37,937 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"centuri\"\n", + "2019-01-16 05:53:37,939 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.068*\"villag\" + 0.052*\"region\" + 0.039*\"north\" + 0.037*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.029*\"municip\"\n", + "2019-01-16 05:53:37,941 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"georg\" + 0.015*\"london\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 05:53:37,942 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:53:37,949 : INFO : topic diff=0.003776, rho=0.022942\n", + "2019-01-16 05:53:38,228 : INFO : PROGRESS: pass 0, at document #3802000/4922894\n", + "2019-01-16 05:53:40,217 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:40,773 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:53:40,775 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.006*\"point\"\n", + "2019-01-16 05:53:40,776 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.012*\"tamil\" + 0.011*\"khan\"\n", + "2019-01-16 05:53:40,778 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", + "2019-01-16 05:53:40,780 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:53:40,786 : INFO : topic diff=0.003974, rho=0.022936\n", + "2019-01-16 05:53:41,104 : INFO : PROGRESS: pass 0, at document #3804000/4922894\n", + "2019-01-16 05:53:43,084 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:43,641 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:53:43,643 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"ford\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:53:43,644 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:53:43,646 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"tamil\"\n", + "2019-01-16 05:53:43,647 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:53:43,653 : INFO : topic diff=0.003474, rho=0.022930\n", + "2019-01-16 05:53:43,934 : INFO : PROGRESS: pass 0, at document #3806000/4922894\n", + "2019-01-16 05:53:45,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:46,478 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.026*\"winner\" + 0.023*\"group\" + 0.022*\"point\" + 0.019*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:53:46,479 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:53:46,482 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:53:46,486 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:53:46,488 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:53:46,494 : INFO : topic diff=0.003125, rho=0.022923\n", + "2019-01-16 05:53:46,785 : INFO : PROGRESS: pass 0, at document #3808000/4922894\n", + "2019-01-16 05:53:48,849 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:49,415 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.067*\"august\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.063*\"januari\" + 0.062*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:53:49,417 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.051*\"new\" + 0.043*\"china\" + 0.032*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:53:49,419 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.020*\"cricket\" + 0.019*\"london\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:53:49,420 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"develop\" + 0.010*\"award\"\n", + "2019-01-16 05:53:49,421 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:53:49,427 : INFO : topic diff=0.003471, rho=0.022917\n", + "2019-01-16 05:53:49,701 : INFO : PROGRESS: pass 0, at document #3810000/4922894\n", + "2019-01-16 05:53:51,678 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:52,236 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.032*\"town\" + 0.031*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"counti\" + 0.022*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:53:52,237 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:53:52,239 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:53:52,240 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"develop\" + 0.010*\"award\"\n", + "2019-01-16 05:53:52,241 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 05:53:52,247 : INFO : topic diff=0.003287, rho=0.022911\n", + "2019-01-16 05:53:52,527 : INFO : PROGRESS: pass 0, at document #3812000/4922894\n", + "2019-01-16 05:53:54,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:55,127 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.067*\"villag\" + 0.053*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.030*\"municip\" + 0.030*\"provinc\"\n", + "2019-01-16 05:53:55,129 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:53:55,131 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:53:55,132 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"fight\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"week\"\n", + "2019-01-16 05:53:55,133 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.010*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"group\"\n", + "2019-01-16 05:53:55,139 : INFO : topic diff=0.004471, rho=0.022905\n", + "2019-01-16 05:53:55,434 : INFO : PROGRESS: pass 0, at document #3814000/4922894\n", + "2019-01-16 05:53:57,507 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:53:58,066 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:53:58,068 : INFO : topic #25 (0.020): 0.043*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.023*\"group\" + 0.022*\"point\" + 0.020*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:53:58,069 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.032*\"town\" + 0.031*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"household\" + 0.020*\"peopl\"\n", + "2019-01-16 05:53:58,071 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:53:58,072 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.068*\"villag\" + 0.052*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.030*\"municip\" + 0.030*\"provinc\"\n", + "2019-01-16 05:53:58,079 : INFO : topic diff=0.003576, rho=0.022899\n", + "2019-01-16 05:53:58,342 : INFO : PROGRESS: pass 0, at document #3816000/4922894\n", + "2019-01-16 05:54:00,314 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:00,872 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:54:00,874 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.057*\"wikit\" + 0.057*\"align\" + 0.050*\"style\" + 0.049*\"left\" + 0.043*\"center\" + 0.034*\"list\" + 0.034*\"philippin\" + 0.030*\"right\" + 0.028*\"text\"\n", + "2019-01-16 05:54:00,875 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", + "2019-01-16 05:54:00,876 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:54:00,877 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.011*\"coast\" + 0.011*\"gun\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 05:54:00,883 : INFO : topic diff=0.003456, rho=0.022893\n", + "2019-01-16 05:54:01,161 : INFO : PROGRESS: pass 0, at document #3818000/4922894\n", + "2019-01-16 05:54:03,143 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:03,701 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:54:03,703 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:54:03,705 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", + "2019-01-16 05:54:03,706 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.023*\"american\" + 0.022*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 05:54:03,707 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:54:03,713 : INFO : topic diff=0.003355, rho=0.022887\n", + "2019-01-16 05:54:08,276 : INFO : -11.500 per-word bound, 2896.3 perplexity estimate based on a held-out corpus of 2000 documents with 558249 words\n", + "2019-01-16 05:54:08,277 : INFO : PROGRESS: pass 0, at document #3820000/4922894\n", + "2019-01-16 05:54:10,255 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:10,811 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.039*\"african\" + 0.029*\"south\" + 0.026*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:54:10,812 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:54:10,815 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.058*\"wikit\" + 0.057*\"align\" + 0.049*\"style\" + 0.048*\"left\" + 0.043*\"center\" + 0.034*\"list\" + 0.034*\"philippin\" + 0.031*\"right\" + 0.027*\"text\"\n", + "2019-01-16 05:54:10,816 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", + "2019-01-16 05:54:10,818 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"georg\" + 0.015*\"london\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\"\n", + "2019-01-16 05:54:10,824 : INFO : topic diff=0.002664, rho=0.022881\n", + "2019-01-16 05:54:11,105 : INFO : PROGRESS: pass 0, at document #3822000/4922894\n", + "2019-01-16 05:54:13,056 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:13,611 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 05:54:13,613 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", + "2019-01-16 05:54:13,614 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.058*\"align\" + 0.057*\"wikit\" + 0.049*\"style\" + 0.048*\"left\" + 0.043*\"center\" + 0.034*\"philippin\" + 0.034*\"list\" + 0.031*\"right\" + 0.027*\"text\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:54:13,616 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:54:13,617 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.011*\"island\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"port\" + 0.011*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:54:13,623 : INFO : topic diff=0.003562, rho=0.022875\n", + "2019-01-16 05:54:13,891 : INFO : PROGRESS: pass 0, at document #3824000/4922894\n", + "2019-01-16 05:54:15,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:16,466 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:54:16,467 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 05:54:16,468 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:54:16,470 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:54:16,472 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"church\"\n", + "2019-01-16 05:54:16,478 : INFO : topic diff=0.003339, rho=0.022869\n", + "2019-01-16 05:54:16,754 : INFO : PROGRESS: pass 0, at document #3826000/4922894\n", + "2019-01-16 05:54:18,753 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:19,313 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 05:54:19,314 : INFO : topic #48 (0.020): 0.079*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.068*\"juli\" + 0.067*\"august\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:54:19,316 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"star\" + 0.005*\"temperatur\" + 0.005*\"effect\"\n", + "2019-01-16 05:54:19,317 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"sea\" + 0.015*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"gun\" + 0.011*\"port\" + 0.011*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:54:19,319 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 05:54:19,326 : INFO : topic diff=0.003509, rho=0.022863\n", + "2019-01-16 05:54:19,615 : INFO : PROGRESS: pass 0, at document #3828000/4922894\n", + "2019-01-16 05:54:21,660 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:22,220 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.022*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:54:22,221 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:54:22,222 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:54:22,224 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.057*\"wikit\" + 0.057*\"align\" + 0.048*\"style\" + 0.047*\"left\" + 0.043*\"center\" + 0.034*\"philippin\" + 0.033*\"list\" + 0.032*\"right\" + 0.027*\"text\"\n", + "2019-01-16 05:54:22,226 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\"\n", + "2019-01-16 05:54:22,231 : INFO : topic diff=0.004061, rho=0.022858\n", + "2019-01-16 05:54:22,549 : INFO : PROGRESS: pass 0, at document #3830000/4922894\n", + "2019-01-16 05:54:24,568 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:25,126 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 05:54:25,127 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:54:25,129 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"return\" + 0.004*\"friend\"\n", + "2019-01-16 05:54:25,131 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 05:54:25,132 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:54:25,138 : INFO : topic diff=0.003180, rho=0.022852\n", + "2019-01-16 05:54:25,413 : INFO : PROGRESS: pass 0, at document #3832000/4922894\n", + "2019-01-16 05:54:27,391 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:27,949 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.022*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"lap\"\n", + "2019-01-16 05:54:27,951 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 05:54:27,952 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 05:54:27,954 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:54:27,955 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 05:54:27,961 : INFO : topic diff=0.003019, rho=0.022846\n", + "2019-01-16 05:54:28,241 : INFO : PROGRESS: pass 0, at document #3834000/4922894\n", + "2019-01-16 05:54:30,221 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:30,780 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:54:30,782 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.068*\"juli\" + 0.067*\"august\" + 0.065*\"januari\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.062*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:54:30,783 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:54:30,784 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:54:30,785 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.026*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.024*\"color\" + 0.015*\"storm\" + 0.014*\"tropic\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:54:30,791 : INFO : topic diff=0.003696, rho=0.022840\n", + "2019-01-16 05:54:31,066 : INFO : PROGRESS: pass 0, at document #3836000/4922894\n", + "2019-01-16 05:54:33,009 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:33,566 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 05:54:33,567 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"township\" + 0.023*\"commun\" + 0.023*\"counti\" + 0.022*\"household\"\n", + "2019-01-16 05:54:33,568 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"texa\" + 0.012*\"washington\"\n", + "2019-01-16 05:54:33,569 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:54:33,571 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"ford\" + 0.011*\"lap\" + 0.011*\"year\"\n", + "2019-01-16 05:54:33,577 : INFO : topic diff=0.003491, rho=0.022834\n", + "2019-01-16 05:54:33,864 : INFO : PROGRESS: pass 0, at document #3838000/4922894\n", + "2019-01-16 05:54:35,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:36,429 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", + "2019-01-16 05:54:36,430 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.067*\"villag\" + 0.052*\"region\" + 0.038*\"north\" + 0.038*\"counti\" + 0.037*\"east\" + 0.037*\"west\" + 0.034*\"south\" + 0.031*\"municip\" + 0.030*\"provinc\"\n", + "2019-01-16 05:54:36,432 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.067*\"juli\" + 0.067*\"august\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.061*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:54:36,433 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"township\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"household\"\n", + "2019-01-16 05:54:36,435 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"star\"\n", + "2019-01-16 05:54:36,441 : INFO : topic diff=0.003114, rho=0.022828\n", + "2019-01-16 05:54:41,061 : INFO : -11.942 per-word bound, 3935.8 perplexity estimate based on a held-out corpus of 2000 documents with 554886 words\n", + "2019-01-16 05:54:41,062 : INFO : PROGRESS: pass 0, at document #3840000/4922894\n", + "2019-01-16 05:54:43,091 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:43,650 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 05:54:43,651 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", + "2019-01-16 05:54:43,653 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:54:43,655 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:54:43,656 : INFO : topic #35 (0.020): 0.034*\"hong\" + 0.034*\"kong\" + 0.024*\"kim\" + 0.023*\"lee\" + 0.020*\"singapor\" + 0.017*\"japanes\" + 0.015*\"malaysia\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:54:43,662 : INFO : topic diff=0.003037, rho=0.022822\n", + "2019-01-16 05:54:43,947 : INFO : PROGRESS: pass 0, at document #3842000/4922894\n", + "2019-01-16 05:54:45,946 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:46,505 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"fight\" + 0.017*\"contest\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", + "2019-01-16 05:54:46,506 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.015*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 05:54:46,508 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 05:54:46,509 : INFO : topic #35 (0.020): 0.035*\"hong\" + 0.034*\"kong\" + 0.023*\"kim\" + 0.023*\"lee\" + 0.021*\"singapor\" + 0.017*\"japanes\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:54:46,510 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 05:54:46,516 : INFO : topic diff=0.003260, rho=0.022816\n", + "2019-01-16 05:54:46,780 : INFO : PROGRESS: pass 0, at document #3844000/4922894\n", + "2019-01-16 05:54:48,768 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:49,325 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"march\" + 0.073*\"octob\" + 0.067*\"juli\" + 0.067*\"august\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.062*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:54:49,327 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", + "2019-01-16 05:54:49,328 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.015*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:54:49,329 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:54:49,331 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.020*\"imag\" + 0.018*\"exhibit\" + 0.018*\"design\"\n", + "2019-01-16 05:54:49,337 : INFO : topic diff=0.003355, rho=0.022810\n", + "2019-01-16 05:54:49,606 : INFO : PROGRESS: pass 0, at document #3846000/4922894\n", + "2019-01-16 05:54:51,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:52,148 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:54:52,149 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:54:52,151 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.017*\"gold\" + 0.017*\"athlet\"\n", + "2019-01-16 05:54:52,153 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 05:54:52,154 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.023*\"group\" + 0.022*\"point\" + 0.019*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:54:52,161 : INFO : topic diff=0.004341, rho=0.022804\n", + "2019-01-16 05:54:52,444 : INFO : PROGRESS: pass 0, at document #3848000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:54:54,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:55,024 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:54:55,026 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:54:55,028 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:54:55,029 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:54:55,030 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:54:55,037 : INFO : topic diff=0.003412, rho=0.022798\n", + "2019-01-16 05:54:55,328 : INFO : PROGRESS: pass 0, at document #3850000/4922894\n", + "2019-01-16 05:54:57,373 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:54:57,931 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:54:57,932 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:54:57,934 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 05:54:57,935 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 05:54:57,936 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", + "2019-01-16 05:54:57,942 : INFO : topic diff=0.002922, rho=0.022792\n", + "2019-01-16 05:54:58,219 : INFO : PROGRESS: pass 0, at document #3852000/4922894\n", + "2019-01-16 05:55:00,231 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:00,789 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.023*\"group\" + 0.022*\"point\" + 0.019*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:55:00,790 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.032*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"islam\"\n", + "2019-01-16 05:55:00,791 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"township\" + 0.022*\"household\"\n", + "2019-01-16 05:55:00,793 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:55:00,794 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 05:55:00,799 : INFO : topic diff=0.003129, rho=0.022786\n", + "2019-01-16 05:55:01,104 : INFO : PROGRESS: pass 0, at document #3854000/4922894\n", + "2019-01-16 05:55:03,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:03,611 : INFO : topic #13 (0.020): 0.053*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.023*\"counti\" + 0.017*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 05:55:03,613 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:55:03,615 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.038*\"univers\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:55:03,616 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"plai\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:55:03,618 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 05:55:03,623 : INFO : topic diff=0.003314, rho=0.022780\n", + "2019-01-16 05:55:03,895 : INFO : PROGRESS: pass 0, at document #3856000/4922894\n", + "2019-01-16 05:55:05,933 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:06,490 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.068*\"juli\" + 0.067*\"august\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 05:55:06,491 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"oper\" + 0.007*\"new\"\n", + "2019-01-16 05:55:06,494 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.017*\"korean\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.014*\"quebec\"\n", + "2019-01-16 05:55:06,496 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 05:55:06,497 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 05:55:06,503 : INFO : topic diff=0.003661, rho=0.022774\n", + "2019-01-16 05:55:06,790 : INFO : PROGRESS: pass 0, at document #3858000/4922894\n", + "2019-01-16 05:55:08,811 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:09,369 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\"\n", + "2019-01-16 05:55:09,371 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:55:09,372 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.012*\"und\"\n", + "2019-01-16 05:55:09,373 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 05:55:09,375 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:55:09,382 : INFO : topic diff=0.003066, rho=0.022768\n", + "2019-01-16 05:55:13,772 : INFO : -11.650 per-word bound, 3213.2 perplexity estimate based on a held-out corpus of 2000 documents with 509194 words\n", + "2019-01-16 05:55:13,773 : INFO : PROGRESS: pass 0, at document #3860000/4922894\n", + "2019-01-16 05:55:16,019 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:16,577 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.039*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.013*\"tropic\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:55:16,579 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:55:16,580 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"star\"\n", + "2019-01-16 05:55:16,581 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 05:55:16,583 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"jame\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\"\n", + "2019-01-16 05:55:16,588 : INFO : topic diff=0.003295, rho=0.022763\n", + "2019-01-16 05:55:16,867 : INFO : PROGRESS: pass 0, at document #3862000/4922894\n", + "2019-01-16 05:55:18,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:19,443 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"township\" + 0.023*\"counti\" + 0.022*\"household\"\n", + "2019-01-16 05:55:19,444 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:55:19,446 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", + "2019-01-16 05:55:19,448 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.038*\"univers\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:55:19,449 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:55:19,455 : INFO : topic diff=0.003378, rho=0.022757\n", + "2019-01-16 05:55:19,738 : INFO : PROGRESS: pass 0, at document #3864000/4922894\n", + "2019-01-16 05:55:21,740 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:22,305 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:55:22,307 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:55:22,309 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:55:22,311 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 05:55:22,313 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.039*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 05:55:22,319 : INFO : topic diff=0.003810, rho=0.022751\n", + "2019-01-16 05:55:22,602 : INFO : PROGRESS: pass 0, at document #3866000/4922894\n", + "2019-01-16 05:55:24,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:25,152 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 05:55:25,154 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:55:25,155 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:55:25,156 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 05:55:25,158 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:55:25,163 : INFO : topic diff=0.003235, rho=0.022745\n", + "2019-01-16 05:55:25,438 : INFO : PROGRESS: pass 0, at document #3868000/4922894\n", + "2019-01-16 05:55:27,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:28,025 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:55:28,027 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:55:28,029 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:55:28,030 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.043*\"colleg\" + 0.039*\"univers\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:55:28,032 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", + "2019-01-16 05:55:28,037 : INFO : topic diff=0.003372, rho=0.022739\n", + "2019-01-16 05:55:28,306 : INFO : PROGRESS: pass 0, at document #3870000/4922894\n", + "2019-01-16 05:55:30,286 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:30,844 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", + "2019-01-16 05:55:30,845 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:55:30,847 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.013*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 05:55:30,849 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 05:55:30,850 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 05:55:30,856 : INFO : topic diff=0.003451, rho=0.022733\n", + "2019-01-16 05:55:31,159 : INFO : PROGRESS: pass 0, at document #3872000/4922894\n", + "2019-01-16 05:55:33,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:33,792 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:55:33,794 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:55:33,795 : INFO : topic #35 (0.020): 0.034*\"hong\" + 0.033*\"kong\" + 0.023*\"lee\" + 0.022*\"kim\" + 0.020*\"singapor\" + 0.016*\"japanes\" + 0.016*\"malaysia\" + 0.016*\"chines\" + 0.015*\"asian\" + 0.014*\"indonesia\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:55:33,797 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 05:55:33,798 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.075*\"septemb\" + 0.073*\"octob\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.062*\"june\" + 0.060*\"april\" + 0.060*\"decemb\"\n", + "2019-01-16 05:55:33,804 : INFO : topic diff=0.003506, rho=0.022727\n", + "2019-01-16 05:55:34,084 : INFO : PROGRESS: pass 0, at document #3874000/4922894\n", + "2019-01-16 05:55:36,121 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:36,677 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.064*\"align\" + 0.057*\"wikit\" + 0.051*\"left\" + 0.047*\"style\" + 0.041*\"center\" + 0.033*\"list\" + 0.033*\"philippin\" + 0.033*\"right\" + 0.028*\"text\"\n", + "2019-01-16 05:55:36,678 : INFO : topic #35 (0.020): 0.034*\"hong\" + 0.033*\"kong\" + 0.023*\"lee\" + 0.022*\"kim\" + 0.020*\"singapor\" + 0.016*\"japanes\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"asian\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:55:36,680 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:55:36,681 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:55:36,683 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", + "2019-01-16 05:55:36,688 : INFO : topic diff=0.003430, rho=0.022721\n", + "2019-01-16 05:55:36,970 : INFO : PROGRESS: pass 0, at document #3876000/4922894\n", + "2019-01-16 05:55:38,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:39,554 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", + "2019-01-16 05:55:39,556 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.013*\"sweden\"\n", + "2019-01-16 05:55:39,558 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:55:39,559 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"gold\" + 0.017*\"athlet\"\n", + "2019-01-16 05:55:39,560 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.038*\"univers\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:55:39,567 : INFO : topic diff=0.003464, rho=0.022716\n", + "2019-01-16 05:55:39,851 : INFO : PROGRESS: pass 0, at document #3878000/4922894\n", + "2019-01-16 05:55:41,855 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:42,413 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 05:55:42,415 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"township\" + 0.022*\"household\"\n", + "2019-01-16 05:55:42,416 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:55:42,418 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:55:42,423 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:55:42,430 : INFO : topic diff=0.003364, rho=0.022710\n", + "2019-01-16 05:55:47,250 : INFO : -11.881 per-word bound, 3771.9 perplexity estimate based on a held-out corpus of 2000 documents with 573001 words\n", + "2019-01-16 05:55:47,251 : INFO : PROGRESS: pass 0, at document #3880000/4922894\n", + "2019-01-16 05:55:49,370 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:49,931 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"theori\" + 0.007*\"group\"\n", + "2019-01-16 05:55:49,933 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", + "2019-01-16 05:55:49,935 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.067*\"villag\" + 0.051*\"region\" + 0.038*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.034*\"south\" + 0.031*\"municip\" + 0.031*\"provinc\"\n", + "2019-01-16 05:55:49,936 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 05:55:49,938 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 05:55:49,943 : INFO : topic diff=0.003779, rho=0.022704\n", + "2019-01-16 05:55:50,216 : INFO : PROGRESS: pass 0, at document #3882000/4922894\n", + "2019-01-16 05:55:52,200 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:52,758 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:55:52,759 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"network\"\n", + "2019-01-16 05:55:52,761 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"counti\" + 0.022*\"township\" + 0.022*\"household\"\n", + "2019-01-16 05:55:52,762 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.067*\"align\" + 0.056*\"left\" + 0.056*\"wikit\" + 0.046*\"style\" + 0.040*\"center\" + 0.033*\"philippin\" + 0.032*\"right\" + 0.032*\"list\" + 0.027*\"text\"\n", + "2019-01-16 05:55:52,763 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.017*\"jewish\" + 0.014*\"poland\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:55:52,768 : INFO : topic diff=0.003199, rho=0.022698\n", + "2019-01-16 05:55:53,044 : INFO : PROGRESS: pass 0, at document #3884000/4922894\n", + "2019-01-16 05:55:54,997 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:55,554 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"township\" + 0.022*\"household\"\n", + "2019-01-16 05:55:55,555 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 05:55:55,556 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 05:55:55,558 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.025*\"black\" + 0.023*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:55:55,559 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 05:55:55,564 : INFO : topic diff=0.003479, rho=0.022692\n", + "2019-01-16 05:55:55,847 : INFO : PROGRESS: pass 0, at document #3886000/4922894\n", + "2019-01-16 05:55:57,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:55:58,391 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.067*\"align\" + 0.056*\"wikit\" + 0.056*\"left\" + 0.046*\"style\" + 0.041*\"center\" + 0.033*\"philippin\" + 0.032*\"right\" + 0.032*\"list\" + 0.028*\"text\"\n", + "2019-01-16 05:55:58,392 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 05:55:58,396 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"fight\" + 0.017*\"contest\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", + "2019-01-16 05:55:58,397 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"theori\" + 0.007*\"group\"\n", + "2019-01-16 05:55:58,398 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.033*\"hong\" + 0.023*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.016*\"chines\" + 0.016*\"malaysia\" + 0.016*\"japanes\" + 0.014*\"asian\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:55:58,404 : INFO : topic diff=0.002878, rho=0.022686\n", + "2019-01-16 05:55:58,674 : INFO : PROGRESS: pass 0, at document #3888000/4922894\n", + "2019-01-16 05:56:00,654 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:01,211 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 05:56:01,212 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:56:01,214 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.016*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:56:01,215 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:56:01,217 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 05:56:01,223 : INFO : topic diff=0.003154, rho=0.022680\n", + "2019-01-16 05:56:01,513 : INFO : PROGRESS: pass 0, at document #3890000/4922894\n", + "2019-01-16 05:56:03,488 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:04,045 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"fight\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.017*\"contest\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", + "2019-01-16 05:56:04,046 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 05:56:04,048 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:56:04,049 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 05:56:04,051 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:56:04,057 : INFO : topic diff=0.003554, rho=0.022675\n", + "2019-01-16 05:56:04,320 : INFO : PROGRESS: pass 0, at document #3892000/4922894\n", + "2019-01-16 05:56:06,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:06,875 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.043*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 05:56:06,877 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:56:06,880 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", + "2019-01-16 05:56:06,882 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.028*\"text\" + 0.028*\"south\" + 0.025*\"black\" + 0.025*\"till\" + 0.024*\"color\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:56:06,883 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.016*\"match\"\n", + "2019-01-16 05:56:06,889 : INFO : topic diff=0.004013, rho=0.022669\n", + "2019-01-16 05:56:07,158 : INFO : PROGRESS: pass 0, at document #3894000/4922894\n", + "2019-01-16 05:56:09,125 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:09,688 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 05:56:09,690 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"jack\" + 0.006*\"peter\" + 0.006*\"tom\"\n", + "2019-01-16 05:56:09,691 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"gold\" + 0.017*\"athlet\"\n", + "2019-01-16 05:56:09,693 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:56:09,695 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"town\" + 0.021*\"unit\" + 0.021*\"london\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.012*\"wale\" + 0.012*\"manchest\" + 0.012*\"scottish\"\n", + "2019-01-16 05:56:09,701 : INFO : topic diff=0.003231, rho=0.022663\n", + "2019-01-16 05:56:09,968 : INFO : PROGRESS: pass 0, at document #3896000/4922894\n", + "2019-01-16 05:56:11,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:12,527 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.020*\"soviet\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.014*\"poland\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:56:12,528 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:56:12,531 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.032*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:56:12,532 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:56:12,535 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:56:12,541 : INFO : topic diff=0.003585, rho=0.022657\n", + "2019-01-16 05:56:12,820 : INFO : PROGRESS: pass 0, at document #3898000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:56:14,883 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:15,444 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"movi\" + 0.011*\"televis\"\n", + "2019-01-16 05:56:15,445 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:56:15,447 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 05:56:15,448 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"group\" + 0.007*\"theori\"\n", + "2019-01-16 05:56:15,450 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 05:56:15,457 : INFO : topic diff=0.003434, rho=0.022651\n", + "2019-01-16 05:56:20,126 : INFO : -11.729 per-word bound, 3394.7 perplexity estimate based on a held-out corpus of 2000 documents with 552505 words\n", + "2019-01-16 05:56:20,127 : INFO : PROGRESS: pass 0, at document #3900000/4922894\n", + "2019-01-16 05:56:22,134 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:22,691 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:56:22,693 : INFO : topic #35 (0.020): 0.035*\"hong\" + 0.034*\"kong\" + 0.023*\"lee\" + 0.021*\"kim\" + 0.021*\"singapor\" + 0.017*\"chines\" + 0.016*\"japanes\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asian\"\n", + "2019-01-16 05:56:22,694 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:56:22,696 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 05:56:22,697 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", + "2019-01-16 05:56:22,703 : INFO : topic diff=0.003080, rho=0.022646\n", + "2019-01-16 05:56:22,988 : INFO : PROGRESS: pass 0, at document #3902000/4922894\n", + "2019-01-16 05:56:24,982 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:25,542 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.066*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.049*\"style\" + 0.043*\"center\" + 0.034*\"right\" + 0.032*\"list\" + 0.032*\"philippin\" + 0.029*\"text\"\n", + "2019-01-16 05:56:25,544 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"space\" + 0.005*\"effect\"\n", + "2019-01-16 05:56:25,545 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", + "2019-01-16 05:56:25,547 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 05:56:25,548 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.016*\"match\"\n", + "2019-01-16 05:56:25,554 : INFO : topic diff=0.003527, rho=0.022640\n", + "2019-01-16 05:56:25,824 : INFO : PROGRESS: pass 0, at document #3904000/4922894\n", + "2019-01-16 05:56:27,837 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:28,393 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:56:28,395 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 05:56:28,396 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 05:56:28,398 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 05:56:28,399 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 05:56:28,406 : INFO : topic diff=0.003371, rho=0.022634\n", + "2019-01-16 05:56:28,728 : INFO : PROGRESS: pass 0, at document #3906000/4922894\n", + "2019-01-16 05:56:31,083 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:31,641 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:56:31,643 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 05:56:31,644 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:56:31,645 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:56:31,647 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"ford\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:56:31,652 : INFO : topic diff=0.003872, rho=0.022628\n", + "2019-01-16 05:56:31,927 : INFO : PROGRESS: pass 0, at document #3908000/4922894\n", + "2019-01-16 05:56:33,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:34,499 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"theori\" + 0.007*\"group\"\n", + "2019-01-16 05:56:34,501 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 05:56:34,503 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:56:34,505 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"space\" + 0.005*\"effect\"\n", + "2019-01-16 05:56:34,506 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:56:34,512 : INFO : topic diff=0.004135, rho=0.022622\n", + "2019-01-16 05:56:34,785 : INFO : PROGRESS: pass 0, at document #3910000/4922894\n", + "2019-01-16 05:56:36,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:37,345 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:56:37,346 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:56:37,348 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", + "2019-01-16 05:56:37,349 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.022*\"american\" + 0.021*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:56:37,351 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.006*\"red\"\n", + "2019-01-16 05:56:37,357 : INFO : topic diff=0.003776, rho=0.022617\n", + "2019-01-16 05:56:37,641 : INFO : PROGRESS: pass 0, at document #3912000/4922894\n", + "2019-01-16 05:56:39,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:40,176 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 05:56:40,178 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:56:40,181 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 05:56:40,183 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:56:40,185 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 05:56:40,191 : INFO : topic diff=0.003582, rho=0.022611\n", + "2019-01-16 05:56:40,470 : INFO : PROGRESS: pass 0, at document #3914000/4922894\n", + "2019-01-16 05:56:42,471 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:43,029 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"march\" + 0.072*\"octob\" + 0.065*\"juli\" + 0.065*\"januari\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.061*\"june\" + 0.060*\"april\" + 0.059*\"decemb\"\n", + "2019-01-16 05:56:43,032 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:56:43,035 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:56:43,036 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 05:56:43,037 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.037*\"russian\" + 0.023*\"russia\" + 0.021*\"american\" + 0.021*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 05:56:43,043 : INFO : topic diff=0.003040, rho=0.022605\n", + "2019-01-16 05:56:43,326 : INFO : PROGRESS: pass 0, at document #3916000/4922894\n", + "2019-01-16 05:56:45,372 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:45,931 : INFO : topic #23 (0.020): 0.016*\"hospit\" + 0.016*\"medic\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 05:56:45,932 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", + "2019-01-16 05:56:45,934 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:56:45,935 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.016*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:56:45,937 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:56:45,942 : INFO : topic diff=0.003911, rho=0.022599\n", + "2019-01-16 05:56:46,216 : INFO : PROGRESS: pass 0, at document #3918000/4922894\n", + "2019-01-16 05:56:48,153 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:48,710 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.023*\"black\" + 0.022*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 05:56:48,712 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:56:48,713 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.065*\"align\" + 0.056*\"wikit\" + 0.051*\"left\" + 0.050*\"style\" + 0.043*\"center\" + 0.037*\"list\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.031*\"text\"\n", + "2019-01-16 05:56:48,715 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 05:56:48,716 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", + "2019-01-16 05:56:48,722 : INFO : topic diff=0.003602, rho=0.022593\n", + "2019-01-16 05:56:53,301 : INFO : -11.669 per-word bound, 3256.6 perplexity estimate based on a held-out corpus of 2000 documents with 549255 words\n", + "2019-01-16 05:56:53,301 : INFO : PROGRESS: pass 0, at document #3920000/4922894\n", + "2019-01-16 05:56:55,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:55,860 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:56:55,862 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.033*\"kong\" + 0.024*\"lee\" + 0.021*\"kim\" + 0.021*\"singapor\" + 0.017*\"chines\" + 0.016*\"japanes\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 05:56:55,863 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 05:56:55,864 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:56:55,865 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:56:55,871 : INFO : topic diff=0.003016, rho=0.022588\n", + "2019-01-16 05:56:56,138 : INFO : PROGRESS: pass 0, at document #3922000/4922894\n", + "2019-01-16 05:56:58,074 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:56:58,631 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:56:58,632 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.011*\"piano\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:56:58,634 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.072*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"korean\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.015*\"montreal\" + 0.015*\"korea\"\n", + "2019-01-16 05:56:58,635 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.065*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.050*\"style\" + 0.046*\"center\" + 0.036*\"list\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.032*\"text\"\n", + "2019-01-16 05:56:58,637 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 05:56:58,643 : INFO : topic diff=0.003373, rho=0.022582\n", + "2019-01-16 05:56:58,911 : INFO : PROGRESS: pass 0, at document #3924000/4922894\n", + "2019-01-16 05:57:00,849 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:01,406 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:57:01,408 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", + "2019-01-16 05:57:01,409 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:57:01,411 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", + "2019-01-16 05:57:01,412 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:57:01,419 : INFO : topic diff=0.003551, rho=0.022576\n", + "2019-01-16 05:57:01,707 : INFO : PROGRESS: pass 0, at document #3926000/4922894\n", + "2019-01-16 05:57:03,664 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:04,224 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.064*\"align\" + 0.057*\"wikit\" + 0.052*\"left\" + 0.049*\"style\" + 0.045*\"center\" + 0.036*\"list\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.031*\"text\"\n", + "2019-01-16 05:57:04,225 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.012*\"tamil\" + 0.011*\"ali\"\n", + "2019-01-16 05:57:04,226 : INFO : topic #23 (0.020): 0.016*\"hospit\" + 0.016*\"medic\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 05:57:04,228 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 05:57:04,229 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:57:04,235 : INFO : topic diff=0.003267, rho=0.022570\n", + "2019-01-16 05:57:04,517 : INFO : PROGRESS: pass 0, at document #3928000/4922894\n", + "2019-01-16 05:57:06,509 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:07,069 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:57:07,070 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:57:07,072 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:57:07,073 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", + "2019-01-16 05:57:07,075 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:57:07,081 : INFO : topic diff=0.003169, rho=0.022565\n", + "2019-01-16 05:57:07,357 : INFO : PROGRESS: pass 0, at document #3930000/4922894\n", + "2019-01-16 05:57:09,438 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:10,004 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:57:10,006 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:57:10,007 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.014*\"ireland\" + 0.013*\"henri\" + 0.013*\"thoma\"\n", + "2019-01-16 05:57:10,011 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", + "2019-01-16 05:57:10,013 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:57:10,019 : INFO : topic diff=0.003834, rho=0.022559\n", + "2019-01-16 05:57:10,329 : INFO : PROGRESS: pass 0, at document #3932000/4922894\n", + "2019-01-16 05:57:12,388 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:12,952 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", + "2019-01-16 05:57:12,954 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:57:12,956 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:57:12,957 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 05:57:12,959 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.036*\"east\" + 0.036*\"west\" + 0.034*\"south\" + 0.032*\"municip\" + 0.032*\"provinc\"\n", + "2019-01-16 05:57:12,965 : INFO : topic diff=0.003512, rho=0.022553\n", + "2019-01-16 05:57:13,238 : INFO : PROGRESS: pass 0, at document #3934000/4922894\n", + "2019-01-16 05:57:15,527 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:16,084 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.031*\"town\" + 0.030*\"citi\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"household\" + 0.022*\"township\"\n", + "2019-01-16 05:57:16,086 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 05:57:16,087 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", + "2019-01-16 05:57:16,089 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"wing\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:57:16,091 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:57:16,097 : INFO : topic diff=0.004011, rho=0.022547\n", + "2019-01-16 05:57:16,383 : INFO : PROGRESS: pass 0, at document #3936000/4922894\n", + "2019-01-16 05:57:18,460 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:19,019 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:57:19,020 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:57:19,022 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:57:19,024 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 05:57:19,027 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 05:57:19,033 : INFO : topic diff=0.003695, rho=0.022542\n", + "2019-01-16 05:57:19,318 : INFO : PROGRESS: pass 0, at document #3938000/4922894\n", + "2019-01-16 05:57:21,355 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:21,913 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:57:21,914 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.031*\"town\" + 0.030*\"citi\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.022*\"counti\" + 0.022*\"township\"\n", + "2019-01-16 05:57:21,915 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:57:21,917 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.031*\"south\" + 0.028*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:57:21,918 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.018*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"republican\"\n", + "2019-01-16 05:57:21,924 : INFO : topic diff=0.003941, rho=0.022536\n", + "2019-01-16 05:57:26,605 : INFO : -11.632 per-word bound, 3174.7 perplexity estimate based on a held-out corpus of 2000 documents with 554601 words\n", + "2019-01-16 05:57:26,606 : INFO : PROGRESS: pass 0, at document #3940000/4922894\n", + "2019-01-16 05:57:28,603 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:29,162 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.031*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.017*\"japanes\" + 0.016*\"chines\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.014*\"indonesia\"\n", + "2019-01-16 05:57:29,163 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:57:29,165 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:57:29,166 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:57:29,168 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", + "2019-01-16 05:57:29,175 : INFO : topic diff=0.003089, rho=0.022530\n", + "2019-01-16 05:57:29,450 : INFO : PROGRESS: pass 0, at document #3942000/4922894\n", + "2019-01-16 05:57:31,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:32,032 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", + "2019-01-16 05:57:32,033 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:57:32,035 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\" + 0.007*\"point\"\n", + "2019-01-16 05:57:32,036 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.024*\"http\" + 0.019*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"ali\" + 0.012*\"khan\" + 0.012*\"com\"\n", + "2019-01-16 05:57:32,038 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"festiv\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 05:57:32,043 : INFO : topic diff=0.003874, rho=0.022525\n", + "2019-01-16 05:57:32,331 : INFO : PROGRESS: pass 0, at document #3944000/4922894\n", + "2019-01-16 05:57:34,366 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:34,928 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:57:34,929 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"republican\"\n", + "2019-01-16 05:57:34,931 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:57:34,932 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", + "2019-01-16 05:57:34,933 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:57:34,939 : INFO : topic diff=0.003136, rho=0.022519\n", + "2019-01-16 05:57:35,229 : INFO : PROGRESS: pass 0, at document #3946000/4922894\n", + "2019-01-16 05:57:37,249 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:37,808 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.032*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:57:37,809 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:57:37,811 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 05:57:37,812 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\" + 0.007*\"point\"\n", + "2019-01-16 05:57:37,814 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:57:37,819 : INFO : topic diff=0.003576, rho=0.022513\n", + "2019-01-16 05:57:38,089 : INFO : PROGRESS: pass 0, at document #3948000/4922894\n", + "2019-01-16 05:57:40,113 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:40,680 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:57:40,682 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:57:40,683 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:57:40,684 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.031*\"kong\" + 0.024*\"lee\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.017*\"japanes\" + 0.016*\"malaysia\" + 0.016*\"chines\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 05:57:40,686 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:57:40,691 : INFO : topic diff=0.002859, rho=0.022507\n", + "2019-01-16 05:57:40,970 : INFO : PROGRESS: pass 0, at document #3950000/4922894\n", + "2019-01-16 05:57:42,965 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:43,522 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:57:43,524 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:57:43,525 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 05:57:43,527 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:57:43,529 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", + "2019-01-16 05:57:43,536 : INFO : topic diff=0.003274, rho=0.022502\n", + "2019-01-16 05:57:43,821 : INFO : PROGRESS: pass 0, at document #3952000/4922894\n", + "2019-01-16 05:57:45,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:46,438 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.034*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.012*\"ali\" + 0.011*\"com\"\n", + "2019-01-16 05:57:46,440 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 05:57:46,441 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"port\" + 0.012*\"island\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 05:57:46,443 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:57:46,444 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.072*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 05:57:46,450 : INFO : topic diff=0.003605, rho=0.022496\n", + "2019-01-16 05:57:46,726 : INFO : PROGRESS: pass 0, at document #3954000/4922894\n", + "2019-01-16 05:57:48,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:49,308 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"includ\"\n", + "2019-01-16 05:57:49,309 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"com\"\n", + "2019-01-16 05:57:49,310 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 05:57:49,312 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:57:49,313 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:57:49,319 : INFO : topic diff=0.003488, rho=0.022490\n", + "2019-01-16 05:57:49,610 : INFO : PROGRESS: pass 0, at document #3956000/4922894\n", + "2019-01-16 05:57:51,620 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:52,178 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:57:52,180 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 05:57:52,181 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"gold\"\n", + "2019-01-16 05:57:52,183 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"ford\" + 0.011*\"finish\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:57:52,185 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 05:57:52,192 : INFO : topic diff=0.003343, rho=0.022485\n", + "2019-01-16 05:57:52,494 : INFO : PROGRESS: pass 0, at document #3958000/4922894\n", + "2019-01-16 05:57:54,470 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:57:55,029 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.012*\"mountain\" + 0.011*\"area\"\n", + "2019-01-16 05:57:55,031 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 05:57:55,032 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 05:57:55,034 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:57:55,038 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", + "2019-01-16 05:57:55,044 : INFO : topic diff=0.003176, rho=0.022479\n", + "2019-01-16 05:57:59,614 : INFO : -11.472 per-word bound, 2841.0 perplexity estimate based on a held-out corpus of 2000 documents with 536722 words\n", + "2019-01-16 05:57:59,615 : INFO : PROGRESS: pass 0, at document #3960000/4922894\n", + "2019-01-16 05:58:01,654 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:58:02,216 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.032*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:58:02,218 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:58:02,219 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:58:02,220 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 05:58:02,222 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 05:58:02,228 : INFO : topic diff=0.003431, rho=0.022473\n", + "2019-01-16 05:58:02,501 : INFO : PROGRESS: pass 0, at document #3962000/4922894\n", + "2019-01-16 05:58:04,556 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:05,115 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:58:05,116 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"finish\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"time\"\n", + "2019-01-16 05:58:05,118 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:58:05,119 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.024*\"russia\" + 0.020*\"american\" + 0.020*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:58:05,123 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:58:05,128 : INFO : topic diff=0.003233, rho=0.022468\n", + "2019-01-16 05:58:05,397 : INFO : PROGRESS: pass 0, at document #3964000/4922894\n", + "2019-01-16 05:58:07,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:08,006 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.024*\"russia\" + 0.021*\"american\" + 0.020*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.013*\"poland\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", + "2019-01-16 05:58:08,007 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.029*\"text\" + 0.025*\"till\" + 0.024*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:58:08,008 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.016*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:58:08,010 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:58:08,011 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"mountain\" + 0.011*\"area\"\n", + "2019-01-16 05:58:08,016 : INFO : topic diff=0.002755, rho=0.022462\n", + "2019-01-16 05:58:08,290 : INFO : PROGRESS: pass 0, at document #3966000/4922894\n", + "2019-01-16 05:58:10,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:10,877 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.013*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:58:10,878 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"championship\" + 0.016*\"contest\" + 0.015*\"titl\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", + "2019-01-16 05:58:10,880 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.060*\"april\" + 0.060*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 05:58:10,881 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:58:10,882 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:58:10,888 : INFO : topic diff=0.003608, rho=0.022456\n", + "2019-01-16 05:58:11,154 : INFO : PROGRESS: pass 0, at document #3968000/4922894\n", + "2019-01-16 05:58:13,106 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:13,663 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.025*\"color\" + 0.024*\"till\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:58:13,665 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"finish\" + 0.010*\"year\" + 0.010*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 05:58:13,666 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:58:13,667 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 05:58:13,668 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"member\"\n", + "2019-01-16 05:58:13,674 : INFO : topic diff=0.003197, rho=0.022451\n", + "2019-01-16 05:58:13,939 : INFO : PROGRESS: pass 0, at document #3970000/4922894\n", + "2019-01-16 05:58:15,955 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:16,513 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.021*\"unit\" + 0.021*\"london\" + 0.021*\"town\" + 0.021*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:58:16,514 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", + "2019-01-16 05:58:16,516 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:58:16,517 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:58:16,519 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:58:16,526 : INFO : topic diff=0.003265, rho=0.022445\n", + "2019-01-16 05:58:16,795 : INFO : PROGRESS: pass 0, at document #3972000/4922894\n", + "2019-01-16 05:58:18,778 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:19,336 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 05:58:19,337 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"port\" + 0.012*\"island\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"beach\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:58:19,338 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 05:58:19,340 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:58:19,342 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"unit\"\n", + "2019-01-16 05:58:19,348 : INFO : topic diff=0.002914, rho=0.022439\n", + "2019-01-16 05:58:19,616 : INFO : PROGRESS: pass 0, at document #3974000/4922894\n", + "2019-01-16 05:58:21,627 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:22,187 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:58:22,189 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 05:58:22,190 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:58:22,191 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.030*\"town\" + 0.030*\"citi\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.022*\"counti\" + 0.021*\"peopl\"\n", + "2019-01-16 05:58:22,193 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", + "2019-01-16 05:58:22,199 : INFO : topic diff=0.003433, rho=0.022434\n", + "2019-01-16 05:58:22,462 : INFO : PROGRESS: pass 0, at document #3976000/4922894\n", + "2019-01-16 05:58:24,492 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:25,049 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.022*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", + "2019-01-16 05:58:25,050 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:58:25,052 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 05:58:25,054 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 05:58:25,055 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.025*\"color\" + 0.024*\"till\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:58:25,061 : INFO : topic diff=0.003897, rho=0.022428\n", + "2019-01-16 05:58:25,339 : INFO : PROGRESS: pass 0, at document #3978000/4922894\n", + "2019-01-16 05:58:27,374 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:27,931 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.021*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:58:27,932 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 05:58:27,933 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.071*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.017*\"quebec\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.016*\"british\" + 0.016*\"montreal\"\n", + "2019-01-16 05:58:27,935 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:58:27,936 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 05:58:27,942 : INFO : topic diff=0.002877, rho=0.022422\n", + "2019-01-16 05:58:32,649 : INFO : -11.583 per-word bound, 3067.6 perplexity estimate based on a held-out corpus of 2000 documents with 581518 words\n", + "2019-01-16 05:58:32,650 : INFO : PROGRESS: pass 0, at document #3980000/4922894\n", + "2019-01-16 05:58:34,651 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:35,208 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.011*\"park\" + 0.011*\"mountain\" + 0.011*\"area\"\n", + "2019-01-16 05:58:35,210 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.051*\"style\" + 0.043*\"center\" + 0.035*\"list\" + 0.033*\"philippin\" + 0.031*\"right\" + 0.030*\"text\"\n", + "2019-01-16 05:58:35,211 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:58:35,213 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:58:35,214 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:58:35,220 : INFO : topic diff=0.003199, rho=0.022417\n", + "2019-01-16 05:58:35,528 : INFO : PROGRESS: pass 0, at document #3982000/4922894\n", + "2019-01-16 05:58:37,520 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:38,080 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:58:38,081 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:58:38,083 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", + "2019-01-16 05:58:38,084 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.068*\"villag\" + 0.050*\"region\" + 0.040*\"north\" + 0.039*\"east\" + 0.038*\"counti\" + 0.038*\"west\" + 0.036*\"south\" + 0.032*\"municip\" + 0.032*\"provinc\"\n", + "2019-01-16 05:58:38,085 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.026*\"color\" + 0.024*\"till\" + 0.023*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 05:58:38,092 : INFO : topic diff=0.003405, rho=0.022411\n", + "2019-01-16 05:58:38,360 : INFO : PROGRESS: pass 0, at document #3984000/4922894\n", + "2019-01-16 05:58:40,370 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:40,927 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:58:40,928 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 05:58:40,930 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:58:40,933 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:58:40,935 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.044*\"center\" + 0.035*\"list\" + 0.034*\"philippin\" + 0.031*\"right\" + 0.030*\"text\"\n", + "2019-01-16 05:58:40,942 : INFO : topic diff=0.003394, rho=0.022406\n", + "2019-01-16 05:58:41,211 : INFO : PROGRESS: pass 0, at document #3986000/4922894\n", + "2019-01-16 05:58:43,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:43,831 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", + "2019-01-16 05:58:43,832 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.039*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 05:58:43,835 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 05:58:43,837 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 05:58:43,838 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"championship\"\n", + "2019-01-16 05:58:43,843 : INFO : topic diff=0.004505, rho=0.022400\n", + "2019-01-16 05:58:44,098 : INFO : PROGRESS: pass 0, at document #3988000/4922894\n", + "2019-01-16 05:58:46,110 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:46,667 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 05:58:46,669 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.032*\"jpg\" + 0.032*\"museum\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 05:58:46,670 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 05:58:46,672 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.071*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"quebec\" + 0.017*\"korean\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"korea\"\n", + "2019-01-16 05:58:46,673 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:58:46,678 : INFO : topic diff=0.003506, rho=0.022394\n", + "2019-01-16 05:58:46,964 : INFO : PROGRESS: pass 0, at document #3990000/4922894\n", + "2019-01-16 05:58:48,997 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:49,555 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.010*\"year\" + 0.010*\"championship\"\n", + "2019-01-16 05:58:49,557 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"com\"\n", + "2019-01-16 05:58:49,558 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:58:49,559 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:58:49,562 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", + "2019-01-16 05:58:49,568 : INFO : topic diff=0.002505, rho=0.022389\n", + "2019-01-16 05:58:49,842 : INFO : PROGRESS: pass 0, at document #3992000/4922894\n", + "2019-01-16 05:58:51,847 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:52,405 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:58:52,406 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:58:52,408 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.021*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:58:52,409 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 05:58:52,411 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:58:52,416 : INFO : topic diff=0.003123, rho=0.022383\n", + "2019-01-16 05:58:52,690 : INFO : PROGRESS: pass 0, at document #3994000/4922894\n", + "2019-01-16 05:58:54,700 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:55,266 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 05:58:55,268 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.030*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"township\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"counti\"\n", + "2019-01-16 05:58:55,269 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:58:55,271 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 05:58:55,273 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:58:55,279 : INFO : topic diff=0.003943, rho=0.022377\n", + "2019-01-16 05:58:55,538 : INFO : PROGRESS: pass 0, at document #3996000/4922894\n", + "2019-01-16 05:58:57,501 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:58:58,060 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:58:58,062 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.034*\"russian\" + 0.022*\"russia\" + 0.022*\"american\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 05:58:58,064 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:58:58,065 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:58:58,067 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.039*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:58:58,073 : INFO : topic diff=0.002691, rho=0.022372\n", + "2019-01-16 05:58:58,320 : INFO : PROGRESS: pass 0, at document #3998000/4922894\n", + "2019-01-16 05:59:00,282 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:00,846 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 05:59:00,848 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 05:59:00,850 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 05:59:00,851 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.021*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 05:59:00,852 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:59:00,858 : INFO : topic diff=0.003790, rho=0.022366\n", + "2019-01-16 05:59:05,550 : INFO : -11.463 per-word bound, 2822.0 perplexity estimate based on a held-out corpus of 2000 documents with 564993 words\n", + "2019-01-16 05:59:05,551 : INFO : PROGRESS: pass 0, at document #4000000/4922894\n", + "2019-01-16 05:59:07,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:08,202 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.014*\"sir\" + 0.014*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 05:59:08,204 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:59:08,205 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"match\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.017*\"contest\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 05:59:08,206 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 05:59:08,208 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 05:59:08,214 : INFO : topic diff=0.003626, rho=0.022361\n", + "2019-01-16 05:59:08,473 : INFO : PROGRESS: pass 0, at document #4002000/4922894\n", + "2019-01-16 05:59:10,453 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:11,011 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 05:59:11,013 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:59:11,014 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"islam\" + 0.011*\"com\"\n", + "2019-01-16 05:59:11,016 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:59:11,017 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.071*\"villag\" + 0.049*\"region\" + 0.040*\"north\" + 0.039*\"east\" + 0.038*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.031*\"municip\"\n", + "2019-01-16 05:59:11,023 : INFO : topic diff=0.003106, rho=0.022355\n", + "2019-01-16 05:59:11,281 : INFO : PROGRESS: pass 0, at document #4004000/4922894\n", + "2019-01-16 05:59:13,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:13,812 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"network\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"program\"\n", + "2019-01-16 05:59:13,813 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:59:13,815 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.023*\"lee\" + 0.020*\"kim\" + 0.020*\"singapor\" + 0.017*\"japanes\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"indonesia\" + 0.015*\"asian\"\n", + "2019-01-16 05:59:13,817 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:59:13,819 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 05:59:13,825 : INFO : topic diff=0.003223, rho=0.022350\n", + "2019-01-16 05:59:14,089 : INFO : PROGRESS: pass 0, at document #4006000/4922894\n", + "2019-01-16 05:59:16,216 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:16,778 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:59:16,780 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.039*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 05:59:16,781 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:59:16,782 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.030*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"township\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"counti\"\n", + "2019-01-16 05:59:16,784 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 05:59:16,789 : INFO : topic diff=0.003214, rho=0.022344\n", + "2019-01-16 05:59:17,094 : INFO : PROGRESS: pass 0, at document #4008000/4922894\n", + "2019-01-16 05:59:19,095 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:19,655 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.023*\"group\" + 0.023*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:59:19,656 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 05:59:19,658 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.042*\"colleg\" + 0.039*\"univers\" + 0.039*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 05:59:19,659 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:59:19,660 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", + "2019-01-16 05:59:19,666 : INFO : topic diff=0.002933, rho=0.022338\n", + "2019-01-16 05:59:19,944 : INFO : PROGRESS: pass 0, at document #4010000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:59:21,979 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:22,542 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"senat\" + 0.013*\"council\"\n", + "2019-01-16 05:59:22,544 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:59:22,545 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:59:22,546 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:59:22,547 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"rout\" + 0.016*\"railwai\" + 0.012*\"lake\" + 0.011*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:59:22,553 : INFO : topic diff=0.003744, rho=0.022333\n", + "2019-01-16 05:59:22,834 : INFO : PROGRESS: pass 0, at document #4012000/4922894\n", + "2019-01-16 05:59:24,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:25,364 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 05:59:25,366 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 05:59:25,367 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:59:25,368 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.024*\"till\" + 0.024*\"black\" + 0.024*\"color\" + 0.014*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 05:59:25,370 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.030*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"township\" + 0.022*\"household\" + 0.021*\"counti\"\n", + "2019-01-16 05:59:25,377 : INFO : topic diff=0.002622, rho=0.022327\n", + "2019-01-16 05:59:25,666 : INFO : PROGRESS: pass 0, at document #4014000/4922894\n", + "2019-01-16 05:59:27,722 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:28,279 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.023*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 05:59:28,281 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 05:59:28,283 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 05:59:28,284 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 05:59:28,285 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.030*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.022*\"township\" + 0.021*\"counti\"\n", + "2019-01-16 05:59:28,291 : INFO : topic diff=0.003559, rho=0.022322\n", + "2019-01-16 05:59:28,556 : INFO : PROGRESS: pass 0, at document #4016000/4922894\n", + "2019-01-16 05:59:30,560 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:31,120 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\" + 0.006*\"forest\"\n", + "2019-01-16 05:59:31,122 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", + "2019-01-16 05:59:31,124 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:59:31,126 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 05:59:31,127 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 05:59:31,133 : INFO : topic diff=0.002963, rho=0.022316\n", + "2019-01-16 05:59:31,412 : INFO : PROGRESS: pass 0, at document #4018000/4922894\n", + "2019-01-16 05:59:33,493 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:34,055 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.012*\"lake\" + 0.011*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 05:59:34,057 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 05:59:34,058 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 05:59:34,060 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 05:59:34,061 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 05:59:34,068 : INFO : topic diff=0.003198, rho=0.022311\n", + "2019-01-16 05:59:38,823 : INFO : -11.554 per-word bound, 3007.3 perplexity estimate based on a held-out corpus of 2000 documents with 600312 words\n", + "2019-01-16 05:59:38,824 : INFO : PROGRESS: pass 0, at document #4020000/4922894\n", + "2019-01-16 05:59:40,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:41,418 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 05:59:41,419 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:59:41,421 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", + "2019-01-16 05:59:41,422 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 05:59:41,423 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 05:59:41,429 : INFO : topic diff=0.004344, rho=0.022305\n", + "2019-01-16 05:59:41,691 : INFO : PROGRESS: pass 0, at document #4022000/4922894\n", + "2019-01-16 05:59:43,657 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:44,217 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"viru\" + 0.008*\"human\" + 0.008*\"ret\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 05:59:44,219 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:59:44,220 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:59:44,222 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"march\" + 0.073*\"octob\" + 0.066*\"juli\" + 0.065*\"august\" + 0.063*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 05:59:44,224 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\" + 0.006*\"forest\"\n", + "2019-01-16 05:59:44,230 : INFO : topic diff=0.003587, rho=0.022299\n", + "2019-01-16 05:59:44,485 : INFO : PROGRESS: pass 0, at document #4024000/4922894\n", + "2019-01-16 05:59:46,464 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:47,020 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 05:59:47,021 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 05:59:47,023 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 05:59:47,025 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:59:47,026 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:59:47,031 : INFO : topic diff=0.003232, rho=0.022294\n", + "2019-01-16 05:59:47,294 : INFO : PROGRESS: pass 0, at document #4026000/4922894\n", + "2019-01-16 05:59:49,348 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:49,904 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.021*\"american\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.017*\"polish\" + 0.014*\"israel\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", + "2019-01-16 05:59:49,906 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.022*\"township\" + 0.021*\"counti\"\n", + "2019-01-16 05:59:49,907 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:59:49,908 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 05:59:49,909 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 05:59:49,915 : INFO : topic diff=0.003249, rho=0.022288\n", + "2019-01-16 05:59:50,171 : INFO : PROGRESS: pass 0, at document #4028000/4922894\n", + "2019-01-16 05:59:52,129 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:52,684 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 05:59:52,686 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", + "2019-01-16 05:59:52,687 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 05:59:52,689 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 05:59:52,690 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.013*\"khan\" + 0.012*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", + "2019-01-16 05:59:52,696 : INFO : topic diff=0.004109, rho=0.022283\n", + "2019-01-16 05:59:52,967 : INFO : PROGRESS: pass 0, at document #4030000/4922894\n", + "2019-01-16 05:59:54,939 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:55,497 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 05:59:55,498 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 05:59:55,500 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 05:59:55,501 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 05:59:55,502 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", + "2019-01-16 05:59:55,508 : INFO : topic diff=0.003352, rho=0.022277\n", + "2019-01-16 05:59:55,770 : INFO : PROGRESS: pass 0, at document #4032000/4922894\n", + "2019-01-16 05:59:57,721 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 05:59:58,278 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 05:59:58,280 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 05:59:58,282 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.018*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 05:59:58,284 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 05:59:58,286 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 05:59:58,292 : INFO : topic diff=0.003098, rho=0.022272\n", + "2019-01-16 05:59:58,581 : INFO : PROGRESS: pass 0, at document #4034000/4922894\n", + "2019-01-16 06:00:00,537 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:01,094 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:00:01,095 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:00:01,096 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:00:01,098 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:00:01,099 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:00:01,105 : INFO : topic diff=0.002948, rho=0.022266\n", + "2019-01-16 06:00:01,383 : INFO : PROGRESS: pass 0, at document #4036000/4922894\n", + "2019-01-16 06:00:03,411 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:03,968 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 06:00:03,970 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.025*\"http\" + 0.019*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"islam\" + 0.011*\"com\"\n", + "2019-01-16 06:00:03,971 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.021*\"american\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.018*\"jewish\" + 0.013*\"israel\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", + "2019-01-16 06:00:03,973 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 06:00:03,974 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:00:03,980 : INFO : topic diff=0.003181, rho=0.022261\n", + "2019-01-16 06:00:04,249 : INFO : PROGRESS: pass 0, at document #4038000/4922894\n", + "2019-01-16 06:00:06,197 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:06,753 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:00:06,755 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:00:06,756 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.070*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"municip\" + 0.038*\"east\" + 0.037*\"counti\" + 0.036*\"west\" + 0.035*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:00:06,757 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", + "2019-01-16 06:00:06,759 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:00:06,765 : INFO : topic diff=0.002843, rho=0.022255\n", + "2019-01-16 06:00:11,277 : INFO : -11.681 per-word bound, 3284.3 perplexity estimate based on a held-out corpus of 2000 documents with 556207 words\n", + "2019-01-16 06:00:11,278 : INFO : PROGRESS: pass 0, at document #4040000/4922894\n", + "2019-01-16 06:00:13,258 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:13,820 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:00:13,821 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"senat\"\n", + "2019-01-16 06:00:13,822 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:00:13,824 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.070*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"municip\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:00:13,825 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 06:00:13,831 : INFO : topic diff=0.003086, rho=0.022250\n", + "2019-01-16 06:00:14,096 : INFO : PROGRESS: pass 0, at document #4042000/4922894\n", + "2019-01-16 06:00:16,078 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:16,635 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.016*\"match\" + 0.016*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 06:00:16,637 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 06:00:16,639 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.014*\"ireland\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 06:00:16,640 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:00:16,642 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 06:00:16,648 : INFO : topic diff=0.003135, rho=0.022244\n", + "2019-01-16 06:00:16,943 : INFO : PROGRESS: pass 0, at document #4044000/4922894\n", + "2019-01-16 06:00:19,013 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:19,569 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"colleg\" + 0.040*\"univers\" + 0.040*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:00:19,571 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:00:19,572 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n", + "2019-01-16 06:00:19,574 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"championship\"\n", + "2019-01-16 06:00:19,576 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.057*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.021*\"sydnei\" + 0.018*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:00:19,581 : INFO : topic diff=0.004099, rho=0.022239\n", + "2019-01-16 06:00:19,851 : INFO : PROGRESS: pass 0, at document #4046000/4922894\n", + "2019-01-16 06:00:21,863 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:22,422 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.040*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", + "2019-01-16 06:00:22,424 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:00:22,425 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:00:22,427 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:00:22,428 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"piano\" + 0.012*\"opera\" + 0.012*\"orchestra\"\n", + "2019-01-16 06:00:22,434 : INFO : topic diff=0.003048, rho=0.022233\n", + "2019-01-16 06:00:22,704 : INFO : PROGRESS: pass 0, at document #4048000/4922894\n", + "2019-01-16 06:00:24,695 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:25,253 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.042*\"africa\" + 0.039*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.025*\"till\" + 0.024*\"black\" + 0.024*\"color\" + 0.012*\"storm\" + 0.011*\"cape\"\n", + "2019-01-16 06:00:25,254 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:00:25,256 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\"\n", + "2019-01-16 06:00:25,257 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 06:00:25,258 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.057*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.018*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:00:25,264 : INFO : topic diff=0.003276, rho=0.022228\n", + "2019-01-16 06:00:25,531 : INFO : PROGRESS: pass 0, at document #4050000/4922894\n", + "2019-01-16 06:00:27,530 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:28,087 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"championship\"\n", + "2019-01-16 06:00:28,089 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:00:28,091 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:00:28,092 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:00:28,093 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.018*\"polish\" + 0.018*\"soviet\" + 0.018*\"jewish\" + 0.013*\"poland\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:00:28,099 : INFO : topic diff=0.003614, rho=0.022222\n", + "2019-01-16 06:00:28,372 : INFO : PROGRESS: pass 0, at document #4052000/4922894\n", + "2019-01-16 06:00:30,518 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:31,075 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:00:31,077 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.020*\"counti\"\n", + "2019-01-16 06:00:31,078 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:00:31,080 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:00:31,081 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:00:31,087 : INFO : topic diff=0.003074, rho=0.022217\n", + "2019-01-16 06:00:31,382 : INFO : PROGRESS: pass 0, at document #4054000/4922894\n", + "2019-01-16 06:00:33,386 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:33,947 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.042*\"round\" + 0.027*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:00:33,948 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\"\n", + "2019-01-16 06:00:33,950 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.013*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 06:00:33,951 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:00:33,952 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 06:00:33,959 : INFO : topic diff=0.003325, rho=0.022211\n", + "2019-01-16 06:00:34,244 : INFO : PROGRESS: pass 0, at document #4056000/4922894\n", + "2019-01-16 06:00:36,255 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:36,812 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.034*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.018*\"jewish\" + 0.018*\"polish\" + 0.018*\"soviet\" + 0.013*\"israel\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", + "2019-01-16 06:00:36,814 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:00:36,815 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:00:36,817 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:00:36,818 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"march\" + 0.074*\"octob\" + 0.068*\"juli\" + 0.066*\"august\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.063*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:00:36,824 : INFO : topic diff=0.003044, rho=0.022206\n", + "2019-01-16 06:00:37,113 : INFO : PROGRESS: pass 0, at document #4058000/4922894\n", + "2019-01-16 06:00:39,182 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:39,742 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"senat\"\n", + "2019-01-16 06:00:39,744 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 06:00:39,746 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:00:39,748 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 06:00:39,749 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", + "2019-01-16 06:00:39,755 : INFO : topic diff=0.002755, rho=0.022200\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:00:44,536 : INFO : -11.765 per-word bound, 3481.5 perplexity estimate based on a held-out corpus of 2000 documents with 580761 words\n", + "2019-01-16 06:00:44,537 : INFO : PROGRESS: pass 0, at document #4060000/4922894\n", + "2019-01-16 06:00:46,609 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:47,170 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.042*\"africa\" + 0.039*\"african\" + 0.031*\"south\" + 0.028*\"text\" + 0.024*\"till\" + 0.024*\"black\" + 0.023*\"color\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", + "2019-01-16 06:00:47,171 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 06:00:47,174 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", + "2019-01-16 06:00:47,175 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:00:47,177 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.018*\"exhibit\" + 0.018*\"design\" + 0.018*\"imag\"\n", + "2019-01-16 06:00:47,183 : INFO : topic diff=0.003195, rho=0.022195\n", + "2019-01-16 06:00:47,440 : INFO : PROGRESS: pass 0, at document #4062000/4922894\n", + "2019-01-16 06:00:49,477 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:50,033 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:00:50,035 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:00:50,036 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.051*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:00:50,037 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.070*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"municip\" + 0.037*\"counti\" + 0.037*\"west\" + 0.034*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:00:50,039 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"men\" + 0.020*\"japan\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 06:00:50,045 : INFO : topic diff=0.003470, rho=0.022189\n", + "2019-01-16 06:00:50,304 : INFO : PROGRESS: pass 0, at document #4064000/4922894\n", + "2019-01-16 06:00:52,244 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:52,800 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.017*\"navi\" + 0.016*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.008*\"fleet\"\n", + "2019-01-16 06:00:52,801 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 06:00:52,804 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 06:00:52,805 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:00:52,807 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"piano\" + 0.011*\"orchestra\"\n", + "2019-01-16 06:00:52,813 : INFO : topic diff=0.003277, rho=0.022184\n", + "2019-01-16 06:00:53,065 : INFO : PROGRESS: pass 0, at document #4066000/4922894\n", + "2019-01-16 06:00:55,056 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:55,614 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:00:55,616 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:00:55,617 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\"\n", + "2019-01-16 06:00:55,618 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:00:55,620 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 06:00:55,625 : INFO : topic diff=0.003213, rho=0.022178\n", + "2019-01-16 06:00:55,874 : INFO : PROGRESS: pass 0, at document #4068000/4922894\n", + "2019-01-16 06:00:57,879 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:00:58,438 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 06:00:58,439 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:00:58,441 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:00:58,442 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 06:00:58,444 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", + "2019-01-16 06:00:58,450 : INFO : topic diff=0.003254, rho=0.022173\n", + "2019-01-16 06:00:58,709 : INFO : PROGRESS: pass 0, at document #4070000/4922894\n", + "2019-01-16 06:01:00,791 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:01,352 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:01:01,354 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 06:01:01,355 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.016*\"match\" + 0.016*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 06:01:01,357 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:01:01,359 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:01:01,365 : INFO : topic diff=0.004148, rho=0.022168\n", + "2019-01-16 06:01:01,623 : INFO : PROGRESS: pass 0, at document #4072000/4922894\n", + "2019-01-16 06:01:03,620 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:01:04,182 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:01:04,183 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", + "2019-01-16 06:01:04,185 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", + "2019-01-16 06:01:04,186 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.066*\"juli\" + 0.065*\"august\" + 0.065*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:01:04,187 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.070*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.038*\"counti\" + 0.037*\"west\" + 0.036*\"municip\" + 0.035*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:01:04,193 : INFO : topic diff=0.003155, rho=0.022162\n", + "2019-01-16 06:01:04,452 : INFO : PROGRESS: pass 0, at document #4074000/4922894\n", + "2019-01-16 06:01:06,473 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:07,032 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", + "2019-01-16 06:01:07,033 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:01:07,034 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:01:07,036 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:01:07,037 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", + "2019-01-16 06:01:07,043 : INFO : topic diff=0.002999, rho=0.022157\n", + "2019-01-16 06:01:07,298 : INFO : PROGRESS: pass 0, at document #4076000/4922894\n", + "2019-01-16 06:01:09,265 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:09,832 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.030*\"kong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.018*\"malaysia\" + 0.016*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.014*\"asia\"\n", + "2019-01-16 06:01:09,833 : INFO : topic #48 (0.020): 0.073*\"octob\" + 0.072*\"septemb\" + 0.071*\"march\" + 0.064*\"juli\" + 0.064*\"august\" + 0.063*\"januari\" + 0.062*\"novemb\" + 0.060*\"april\" + 0.060*\"june\" + 0.058*\"decemb\"\n", + "2019-01-16 06:01:09,835 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 06:01:09,836 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.011*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:01:09,837 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 06:01:09,844 : INFO : topic diff=0.003949, rho=0.022151\n", + "2019-01-16 06:01:10,086 : INFO : PROGRESS: pass 0, at document #4078000/4922894\n", + "2019-01-16 06:01:12,075 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:12,630 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.016*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.008*\"beach\"\n", + "2019-01-16 06:01:12,632 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.072*\"septemb\" + 0.071*\"march\" + 0.064*\"juli\" + 0.063*\"august\" + 0.063*\"januari\" + 0.061*\"novemb\" + 0.060*\"april\" + 0.059*\"june\" + 0.058*\"decemb\"\n", + "2019-01-16 06:01:12,633 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 06:01:12,635 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:01:12,637 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.036*\"municip\" + 0.034*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:01:12,643 : INFO : topic diff=0.003852, rho=0.022146\n", + "2019-01-16 06:01:17,482 : INFO : -11.808 per-word bound, 3585.2 perplexity estimate based on a held-out corpus of 2000 documents with 532711 words\n", + "2019-01-16 06:01:17,483 : INFO : PROGRESS: pass 0, at document #4080000/4922894\n", + "2019-01-16 06:01:19,485 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:20,046 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"russia\" + 0.020*\"american\" + 0.018*\"soviet\" + 0.018*\"jewish\" + 0.018*\"polish\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.013*\"israel\"\n", + "2019-01-16 06:01:20,048 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.022*\"household\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.020*\"peopl\"\n", + "2019-01-16 06:01:20,050 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:01:20,051 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", + "2019-01-16 06:01:20,052 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.030*\"kong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.018*\"malaysia\" + 0.016*\"chines\" + 0.016*\"japanes\" + 0.015*\"indonesia\" + 0.014*\"thailand\"\n", + "2019-01-16 06:01:20,058 : INFO : topic diff=0.003572, rho=0.022140\n", + "2019-01-16 06:01:20,313 : INFO : PROGRESS: pass 0, at document #4082000/4922894\n", + "2019-01-16 06:01:22,322 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:22,881 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:01:22,882 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"human\" + 0.008*\"studi\"\n", + "2019-01-16 06:01:22,883 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.011*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 06:01:22,884 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", + "2019-01-16 06:01:22,886 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 06:01:22,891 : INFO : topic diff=0.003214, rho=0.022135\n", + "2019-01-16 06:01:23,150 : INFO : PROGRESS: pass 0, at document #4084000/4922894\n", + "2019-01-16 06:01:25,209 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:25,765 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.024*\"http\" + 0.018*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"com\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:01:25,767 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.021*\"cricket\" + 0.021*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 06:01:25,768 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:01:25,769 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"quebec\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"korean\"\n", + "2019-01-16 06:01:25,771 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:01:25,778 : INFO : topic diff=0.003713, rho=0.022130\n", + "2019-01-16 06:01:26,077 : INFO : PROGRESS: pass 0, at document #4086000/4922894\n", + "2019-01-16 06:01:28,071 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:28,629 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:01:28,631 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.016*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.008*\"fleet\"\n", + "2019-01-16 06:01:28,633 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:01:28,634 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 06:01:28,636 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:01:28,642 : INFO : topic diff=0.002954, rho=0.022124\n", + "2019-01-16 06:01:28,894 : INFO : PROGRESS: pass 0, at document #4088000/4922894\n", + "2019-01-16 06:01:30,821 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:31,379 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 06:01:31,381 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.007*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:01:31,382 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", + "2019-01-16 06:01:31,383 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n", + "2019-01-16 06:01:31,384 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", + "2019-01-16 06:01:31,391 : INFO : topic diff=0.003335, rho=0.022119\n", + "2019-01-16 06:01:31,645 : INFO : PROGRESS: pass 0, at document #4090000/4922894\n", + "2019-01-16 06:01:33,662 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:34,225 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 06:01:34,226 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:01:34,228 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:01:34,230 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:01:34,232 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.058*\"align\" + 0.055*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.039*\"list\" + 0.039*\"center\" + 0.033*\"philippin\" + 0.031*\"border\" + 0.031*\"right\"\n", + "2019-01-16 06:01:34,238 : INFO : topic diff=0.003461, rho=0.022113\n", + "2019-01-16 06:01:34,489 : INFO : PROGRESS: pass 0, at document #4092000/4922894\n", + "2019-01-16 06:01:36,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:37,043 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.057*\"align\" + 0.055*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.039*\"list\" + 0.038*\"center\" + 0.033*\"philippin\" + 0.031*\"border\" + 0.031*\"right\"\n", + "2019-01-16 06:01:37,045 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:01:37,046 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:01:37,047 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:01:37,049 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:01:37,055 : INFO : topic diff=0.002936, rho=0.022108\n", + "2019-01-16 06:01:37,301 : INFO : PROGRESS: pass 0, at document #4094000/4922894\n", + "2019-01-16 06:01:39,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:39,866 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"swedish\" + 0.013*\"netherland\" + 0.012*\"sweden\"\n", + "2019-01-16 06:01:39,868 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.039*\"african\" + 0.039*\"africa\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.023*\"black\" + 0.022*\"color\" + 0.014*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 06:01:39,869 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.051*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:01:39,871 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", + "2019-01-16 06:01:39,873 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:01:39,879 : INFO : topic diff=0.003203, rho=0.022102\n", + "2019-01-16 06:01:40,133 : INFO : PROGRESS: pass 0, at document #4096000/4922894\n", + "2019-01-16 06:01:42,086 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:42,651 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:01:42,653 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:01:42,655 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:01:42,656 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.020*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 06:01:42,658 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:01:42,664 : INFO : topic diff=0.003672, rho=0.022097\n", + "2019-01-16 06:01:42,911 : INFO : PROGRESS: pass 0, at document #4098000/4922894\n", + "2019-01-16 06:01:44,851 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:45,408 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:01:45,409 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 06:01:45,412 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:01:45,413 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.021*\"men\" + 0.021*\"event\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:01:45,414 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:01:45,420 : INFO : topic diff=0.003595, rho=0.022092\n", + "2019-01-16 06:01:50,038 : INFO : -11.480 per-word bound, 2856.6 perplexity estimate based on a held-out corpus of 2000 documents with 559783 words\n", + "2019-01-16 06:01:50,039 : INFO : PROGRESS: pass 0, at document #4100000/4922894\n", + "2019-01-16 06:01:52,062 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:52,619 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.076*\"canada\" + 0.059*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"korea\" + 0.014*\"korean\"\n", + "2019-01-16 06:01:52,620 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.024*\"http\" + 0.018*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"islam\" + 0.011*\"sri\"\n", + "2019-01-16 06:01:52,622 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 06:01:52,624 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:01:52,625 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"damag\"\n", + "2019-01-16 06:01:52,631 : INFO : topic diff=0.003305, rho=0.022086\n", + "2019-01-16 06:01:52,884 : INFO : PROGRESS: pass 0, at document #4102000/4922894\n", + "2019-01-16 06:01:54,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:55,423 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"time\"\n", + "2019-01-16 06:01:55,424 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:01:55,426 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.012*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", + "2019-01-16 06:01:55,427 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 06:01:55,428 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:01:55,436 : INFO : topic diff=0.003344, rho=0.022081\n", + "2019-01-16 06:01:55,689 : INFO : PROGRESS: pass 0, at document #4104000/4922894\n", + "2019-01-16 06:01:57,678 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:01:58,236 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 06:01:58,238 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:01:58,239 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:01:58,241 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:01:58,242 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:01:58,248 : INFO : topic diff=0.003742, rho=0.022076\n", + "2019-01-16 06:01:58,508 : INFO : PROGRESS: pass 0, at document #4106000/4922894\n", + "2019-01-16 06:02:00,592 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:01,155 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 06:02:01,156 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:02:01,157 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:02:01,159 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:02:01,160 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"oper\" + 0.007*\"new\"\n", + "2019-01-16 06:02:01,166 : INFO : topic diff=0.003073, rho=0.022070\n", + "2019-01-16 06:02:01,422 : INFO : PROGRESS: pass 0, at document #4108000/4922894\n", + "2019-01-16 06:02:03,444 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:04,005 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 06:02:04,006 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"match\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.013*\"team\" + 0.013*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 06:02:04,008 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.055*\"align\" + 0.055*\"wikit\" + 0.052*\"left\" + 0.050*\"style\" + 0.039*\"center\" + 0.038*\"list\" + 0.034*\"philippin\" + 0.032*\"right\" + 0.031*\"border\"\n", + "2019-01-16 06:02:04,010 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:02:04,011 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 06:02:04,018 : INFO : topic diff=0.003443, rho=0.022065\n", + "2019-01-16 06:02:04,271 : INFO : PROGRESS: pass 0, at document #4110000/4922894\n", + "2019-01-16 06:02:06,250 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:06,811 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:02:06,813 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.021*\"london\" + 0.020*\"cricket\" + 0.020*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\" + 0.012*\"west\"\n", + "2019-01-16 06:02:06,814 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.014*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:02:06,815 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", + "2019-01-16 06:02:06,816 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"group\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"method\"\n", + "2019-01-16 06:02:06,823 : INFO : topic diff=0.003788, rho=0.022059\n", + "2019-01-16 06:02:07,105 : INFO : PROGRESS: pass 0, at document #4112000/4922894\n", + "2019-01-16 06:02:09,057 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:09,617 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 06:02:09,618 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.012*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", + "2019-01-16 06:02:09,619 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"finish\"\n", + "2019-01-16 06:02:09,621 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.014*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:02:09,622 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:02:09,629 : INFO : topic diff=0.002688, rho=0.022054\n", + "2019-01-16 06:02:09,884 : INFO : PROGRESS: pass 0, at document #4114000/4922894\n", + "2019-01-16 06:02:11,924 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:12,480 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 06:02:12,481 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 06:02:12,483 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:02:12,485 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.024*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.016*\"chines\" + 0.016*\"japanes\" + 0.015*\"thailand\" + 0.015*\"indonesia\"\n", + "2019-01-16 06:02:12,486 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:02:12,492 : INFO : topic diff=0.003186, rho=0.022049\n", + "2019-01-16 06:02:12,753 : INFO : PROGRESS: pass 0, at document #4116000/4922894\n", + "2019-01-16 06:02:14,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:15,308 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.016*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.010*\"naval\" + 0.009*\"gun\"\n", + "2019-01-16 06:02:15,310 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:02:15,312 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.034*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.020*\"soviet\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.014*\"poland\"\n", + "2019-01-16 06:02:15,313 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:02:15,314 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:02:15,321 : INFO : topic diff=0.003309, rho=0.022043\n", + "2019-01-16 06:02:15,576 : INFO : PROGRESS: pass 0, at document #4118000/4922894\n", + "2019-01-16 06:02:17,598 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:18,156 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.066*\"august\" + 0.065*\"juli\" + 0.063*\"januari\" + 0.062*\"april\" + 0.061*\"novemb\" + 0.060*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:02:18,157 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.017*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:02:18,159 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.016*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.010*\"naval\" + 0.009*\"gun\"\n", + "2019-01-16 06:02:18,160 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"jone\"\n", + "2019-01-16 06:02:18,161 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:02:18,167 : INFO : topic diff=0.003244, rho=0.022038\n", + "2019-01-16 06:02:22,848 : INFO : -11.625 per-word bound, 3158.8 perplexity estimate based on a held-out corpus of 2000 documents with 580578 words\n", + "2019-01-16 06:02:22,849 : INFO : PROGRESS: pass 0, at document #4120000/4922894\n", + "2019-01-16 06:02:24,838 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:25,395 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.029*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"township\" + 0.022*\"household\"\n", + "2019-01-16 06:02:25,396 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"contest\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.015*\"fight\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 06:02:25,397 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"aircraft\" + 0.025*\"oper\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:02:25,399 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:02:25,400 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"new\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:02:25,406 : INFO : topic diff=0.003276, rho=0.022033\n", + "2019-01-16 06:02:25,667 : INFO : PROGRESS: pass 0, at document #4122000/4922894\n", + "2019-01-16 06:02:27,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:28,245 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"new\"\n", + "2019-01-16 06:02:28,246 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.011*\"islam\"\n", + "2019-01-16 06:02:28,248 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:02:28,250 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 06:02:28,252 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.056*\"align\" + 0.055*\"wikit\" + 0.049*\"left\" + 0.049*\"style\" + 0.039*\"center\" + 0.038*\"list\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.030*\"border\"\n", + "2019-01-16 06:02:28,257 : INFO : topic diff=0.003177, rho=0.022027\n", + "2019-01-16 06:02:28,503 : INFO : PROGRESS: pass 0, at document #4124000/4922894\n", + "2019-01-16 06:02:30,553 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:31,111 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:02:31,112 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"ret\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:02:31,113 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.010*\"naval\" + 0.009*\"gun\"\n", + "2019-01-16 06:02:31,115 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:02:31,116 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.016*\"match\" + 0.015*\"fight\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 06:02:31,122 : INFO : topic diff=0.003480, rho=0.022022\n", + "2019-01-16 06:02:31,374 : INFO : PROGRESS: pass 0, at document #4126000/4922894\n", + "2019-01-16 06:02:33,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:33,939 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.056*\"align\" + 0.055*\"wikit\" + 0.049*\"style\" + 0.049*\"left\" + 0.039*\"center\" + 0.038*\"list\" + 0.034*\"right\" + 0.034*\"philippin\" + 0.030*\"border\"\n", + "2019-01-16 06:02:33,941 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.014*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:02:33,943 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:02:33,944 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", + "2019-01-16 06:02:33,946 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 06:02:33,952 : INFO : topic diff=0.003331, rho=0.022017\n", + "2019-01-16 06:02:34,203 : INFO : PROGRESS: pass 0, at document #4128000/4922894\n", + "2019-01-16 06:02:36,209 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:36,770 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 06:02:36,772 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.017*\"kim\" + 0.017*\"malaysia\" + 0.016*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.015*\"asian\"\n", + "2019-01-16 06:02:36,774 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", + "2019-01-16 06:02:36,777 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:02:36,778 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:02:36,784 : INFO : topic diff=0.003627, rho=0.022011\n", + "2019-01-16 06:02:37,032 : INFO : PROGRESS: pass 0, at document #4130000/4922894\n", + "2019-01-16 06:02:39,154 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:39,716 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"finish\" + 0.011*\"time\" + 0.011*\"year\"\n", + "2019-01-16 06:02:39,717 : INFO : topic #6 (0.020): 0.056*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"piano\" + 0.012*\"opera\" + 0.011*\"orchestra\"\n", + "2019-01-16 06:02:39,718 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:02:39,719 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 06:02:39,721 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.055*\"wikit\" + 0.055*\"align\" + 0.049*\"style\" + 0.048*\"left\" + 0.039*\"center\" + 0.038*\"list\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.030*\"border\"\n", + "2019-01-16 06:02:39,727 : INFO : topic diff=0.002911, rho=0.022006\n", + "2019-01-16 06:02:39,974 : INFO : PROGRESS: pass 0, at document #4132000/4922894\n", + "2019-01-16 06:02:41,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:42,543 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\"\n", + "2019-01-16 06:02:42,545 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"gun\" + 0.009*\"damag\"\n", + "2019-01-16 06:02:42,546 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 06:02:42,548 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:02:42,549 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:02:42,555 : INFO : topic diff=0.003789, rho=0.022001\n", + "2019-01-16 06:02:42,807 : INFO : PROGRESS: pass 0, at document #4134000/4922894\n", + "2019-01-16 06:02:44,828 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:45,386 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:02:45,388 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:02:45,389 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"piano\" + 0.012*\"opera\" + 0.012*\"orchestra\"\n", + "2019-01-16 06:02:45,391 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", + "2019-01-16 06:02:45,392 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:02:45,398 : INFO : topic diff=0.002814, rho=0.021995\n", + "2019-01-16 06:02:45,698 : INFO : PROGRESS: pass 0, at document #4136000/4922894\n", + "2019-01-16 06:02:47,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:48,307 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.010*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 06:02:48,308 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:02:48,310 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:02:48,313 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\"\n", + "2019-01-16 06:02:48,315 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:02:48,323 : INFO : topic diff=0.003133, rho=0.021990\n", + "2019-01-16 06:02:48,575 : INFO : PROGRESS: pass 0, at document #4138000/4922894\n", + "2019-01-16 06:02:50,545 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:51,103 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 06:02:51,104 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:02:51,106 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.039*\"africa\" + 0.039*\"african\" + 0.031*\"south\" + 0.027*\"text\" + 0.025*\"black\" + 0.023*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 06:02:51,108 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 06:02:51,109 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", + "2019-01-16 06:02:51,115 : INFO : topic diff=0.003293, rho=0.021985\n", + "2019-01-16 06:02:55,673 : INFO : -11.739 per-word bound, 3419.1 perplexity estimate based on a held-out corpus of 2000 documents with 519009 words\n", + "2019-01-16 06:02:55,674 : INFO : PROGRESS: pass 0, at document #4140000/4922894\n", + "2019-01-16 06:02:57,657 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:02:58,216 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.020*\"japan\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 06:02:58,218 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:02:58,220 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", + "2019-01-16 06:02:58,222 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 06:02:58,223 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:02:58,229 : INFO : topic diff=0.003379, rho=0.021979\n", + "2019-01-16 06:02:58,487 : INFO : PROGRESS: pass 0, at document #4142000/4922894\n", + "2019-01-16 06:03:00,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:01,005 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:03:01,007 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 06:03:01,009 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 06:03:01,011 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.022*\"township\"\n", + "2019-01-16 06:03:01,013 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:03:01,019 : INFO : topic diff=0.003408, rho=0.021974\n", + "2019-01-16 06:03:01,282 : INFO : PROGRESS: pass 0, at document #4144000/4922894\n", + "2019-01-16 06:03:03,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:03,869 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:03:03,870 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.055*\"wikit\" + 0.053*\"align\" + 0.050*\"style\" + 0.047*\"left\" + 0.039*\"center\" + 0.038*\"list\" + 0.033*\"philippin\" + 0.033*\"right\" + 0.030*\"border\"\n", + "2019-01-16 06:03:03,872 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 06:03:03,874 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"friend\"\n", + "2019-01-16 06:03:03,875 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:03:03,881 : INFO : topic diff=0.003370, rho=0.021969\n", + "2019-01-16 06:03:04,158 : INFO : PROGRESS: pass 0, at document #4146000/4922894\n", + "2019-01-16 06:03:06,160 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:06,718 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.034*\"russian\" + 0.021*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 06:03:06,719 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:03:06,721 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.069*\"villag\" + 0.051*\"region\" + 0.038*\"east\" + 0.037*\"north\" + 0.036*\"municip\" + 0.036*\"counti\" + 0.035*\"west\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:03:06,722 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", + "2019-01-16 06:03:06,723 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"qualifi\" + 0.014*\"place\" + 0.012*\"won\"\n", + "2019-01-16 06:03:06,729 : INFO : topic diff=0.003692, rho=0.021963\n", + "2019-01-16 06:03:06,988 : INFO : PROGRESS: pass 0, at document #4148000/4922894\n", + "2019-01-16 06:03:08,985 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:09,541 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 06:03:09,543 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"friend\"\n", + "2019-01-16 06:03:09,545 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.039*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.024*\"black\" + 0.023*\"till\" + 0.023*\"color\" + 0.015*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 06:03:09,546 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"qualifi\" + 0.014*\"place\" + 0.012*\"won\"\n", + "2019-01-16 06:03:09,547 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:03:09,553 : INFO : topic diff=0.003747, rho=0.021958\n", + "2019-01-16 06:03:09,818 : INFO : PROGRESS: pass 0, at document #4150000/4922894\n", + "2019-01-16 06:03:11,905 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:12,467 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", + "2019-01-16 06:03:12,469 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"airport\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:03:12,470 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 06:03:12,472 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:03:12,473 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:03:12,481 : INFO : topic diff=0.003093, rho=0.021953\n", + "2019-01-16 06:03:12,740 : INFO : PROGRESS: pass 0, at document #4152000/4922894\n", + "2019-01-16 06:03:14,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:15,326 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.014*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", + "2019-01-16 06:03:15,327 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.014*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:03:15,329 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"ret\" + 0.008*\"treatment\"\n", + "2019-01-16 06:03:15,330 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.067*\"juli\" + 0.067*\"august\" + 0.066*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.061*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:03:15,331 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"gun\" + 0.009*\"damag\"\n", + "2019-01-16 06:03:15,337 : INFO : topic diff=0.002957, rho=0.021948\n", + "2019-01-16 06:03:15,604 : INFO : PROGRESS: pass 0, at document #4154000/4922894\n", + "2019-01-16 06:03:17,864 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:18,428 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 06:03:18,429 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.069*\"villag\" + 0.051*\"region\" + 0.038*\"east\" + 0.037*\"north\" + 0.036*\"municip\" + 0.035*\"counti\" + 0.035*\"west\" + 0.034*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:03:18,431 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.014*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:03:18,433 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.014*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", + "2019-01-16 06:03:18,434 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"event\" + 0.020*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 06:03:18,440 : INFO : topic diff=0.003349, rho=0.021942\n", + "2019-01-16 06:03:18,700 : INFO : PROGRESS: pass 0, at document #4156000/4922894\n", + "2019-01-16 06:03:20,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:21,263 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:03:21,264 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.012*\"west\"\n", + "2019-01-16 06:03:21,266 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 06:03:21,267 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.014*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:03:21,268 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 06:03:21,274 : INFO : topic diff=0.002700, rho=0.021937\n", + "2019-01-16 06:03:21,522 : INFO : PROGRESS: pass 0, at document #4158000/4922894\n", + "2019-01-16 06:03:23,460 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:24,021 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.014*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\"\n", + "2019-01-16 06:03:24,023 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:03:24,025 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:03:24,027 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.013*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:03:24,029 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.034*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"poland\"\n", + "2019-01-16 06:03:24,035 : INFO : topic diff=0.003557, rho=0.021932\n", + "2019-01-16 06:03:28,556 : INFO : -11.655 per-word bound, 3225.2 perplexity estimate based on a held-out corpus of 2000 documents with 541298 words\n", + "2019-01-16 06:03:28,557 : INFO : PROGRESS: pass 0, at document #4160000/4922894\n", + "2019-01-16 06:03:30,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:31,092 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.013*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", + "2019-01-16 06:03:31,094 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 06:03:31,095 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.039*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.024*\"black\" + 0.023*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 06:03:31,096 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:03:31,098 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"republican\"\n", + "2019-01-16 06:03:31,104 : INFO : topic diff=0.003167, rho=0.021926\n", + "2019-01-16 06:03:31,395 : INFO : PROGRESS: pass 0, at document #4162000/4922894\n", + "2019-01-16 06:03:33,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:34,005 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:03:34,006 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 06:03:34,008 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:03:34,009 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.014*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 06:03:34,010 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.013*\"henri\"\n", + "2019-01-16 06:03:34,016 : INFO : topic diff=0.002832, rho=0.021921\n", + "2019-01-16 06:03:34,276 : INFO : PROGRESS: pass 0, at document #4164000/4922894\n", + "2019-01-16 06:03:36,371 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:36,931 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.013*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:03:36,933 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", + "2019-01-16 06:03:36,935 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.029*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"household\" + 0.021*\"township\"\n", + "2019-01-16 06:03:36,936 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.017*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 06:03:36,937 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 06:03:36,944 : INFO : topic diff=0.003217, rho=0.021916\n", + "2019-01-16 06:03:37,204 : INFO : PROGRESS: pass 0, at document #4166000/4922894\n", + "2019-01-16 06:03:39,192 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:39,750 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.056*\"align\" + 0.055*\"wikit\" + 0.048*\"style\" + 0.047*\"left\" + 0.040*\"center\" + 0.037*\"list\" + 0.035*\"right\" + 0.034*\"philippin\" + 0.029*\"text\"\n", + "2019-01-16 06:03:39,752 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", + "2019-01-16 06:03:39,753 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 06:03:39,754 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:03:39,756 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", + "2019-01-16 06:03:39,761 : INFO : topic diff=0.003281, rho=0.021911\n", + "2019-01-16 06:03:40,026 : INFO : PROGRESS: pass 0, at document #4168000/4922894\n", + "2019-01-16 06:03:42,023 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:42,582 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:03:42,584 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", + "2019-01-16 06:03:42,585 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"best\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:03:42,587 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 06:03:42,588 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"event\" + 0.020*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 06:03:42,594 : INFO : topic diff=0.003224, rho=0.021905\n", + "2019-01-16 06:03:42,862 : INFO : PROGRESS: pass 0, at document #4170000/4922894\n", + "2019-01-16 06:03:44,850 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:45,408 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.014*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 06:03:45,411 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", + "2019-01-16 06:03:45,412 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.014*\"poland\" + 0.013*\"republ\"\n", + "2019-01-16 06:03:45,414 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:03:45,415 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:03:45,421 : INFO : topic diff=0.003680, rho=0.021900\n", + "2019-01-16 06:03:45,667 : INFO : PROGRESS: pass 0, at document #4172000/4922894\n", + "2019-01-16 06:03:47,623 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:48,180 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", + "2019-01-16 06:03:48,182 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:03:48,183 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:03:48,185 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"montreal\" + 0.015*\"korea\"\n", + "2019-01-16 06:03:48,187 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.040*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.018*\"presid\" + 0.016*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 06:03:48,193 : INFO : topic diff=0.002970, rho=0.021895\n", + "2019-01-16 06:03:48,452 : INFO : PROGRESS: pass 0, at document #4174000/4922894\n", + "2019-01-16 06:03:50,498 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:51,058 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:03:51,060 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:03:51,063 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 06:03:51,064 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"township\" + 0.022*\"counti\" + 0.022*\"household\"\n", + "2019-01-16 06:03:51,066 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:03:51,072 : INFO : topic diff=0.002840, rho=0.021890\n", + "2019-01-16 06:03:51,328 : INFO : PROGRESS: pass 0, at document #4176000/4922894\n", + "2019-01-16 06:03:53,323 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:53,881 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 06:03:53,883 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:03:53,884 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.017*\"sea\" + 0.015*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 06:03:53,886 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.067*\"juli\" + 0.066*\"august\" + 0.065*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:03:53,887 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.014*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:03:53,893 : INFO : topic diff=0.003172, rho=0.021884\n", + "2019-01-16 06:03:54,159 : INFO : PROGRESS: pass 0, at document #4178000/4922894\n", + "2019-01-16 06:03:56,282 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:03:56,842 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:03:56,843 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.015*\"manchest\" + 0.015*\"scottish\" + 0.013*\"west\"\n", + "2019-01-16 06:03:56,844 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.014*\"israel\" + 0.013*\"republ\"\n", + "2019-01-16 06:03:56,846 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:03:56,847 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", + "2019-01-16 06:03:56,853 : INFO : topic diff=0.002926, rho=0.021879\n", + "2019-01-16 06:04:01,527 : INFO : -11.527 per-word bound, 2951.8 perplexity estimate based on a held-out corpus of 2000 documents with 561362 words\n", + "2019-01-16 06:04:01,527 : INFO : PROGRESS: pass 0, at document #4180000/4922894\n", + "2019-01-16 06:04:03,550 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:04,108 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"township\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"household\"\n", + "2019-01-16 06:04:04,109 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.024*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 06:04:04,111 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:04:04,112 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 06:04:04,113 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.015*\"scottish\" + 0.015*\"manchest\" + 0.013*\"west\"\n", + "2019-01-16 06:04:04,119 : INFO : topic diff=0.002738, rho=0.021874\n", + "2019-01-16 06:04:04,374 : INFO : PROGRESS: pass 0, at document #4182000/4922894\n", + "2019-01-16 06:04:06,322 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:06,881 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 06:04:06,883 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:04:06,884 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:04:06,885 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"airport\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 06:04:06,887 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 06:04:06,892 : INFO : topic diff=0.003216, rho=0.021869\n", + "2019-01-16 06:04:07,155 : INFO : PROGRESS: pass 0, at document #4184000/4922894\n", + "2019-01-16 06:04:09,135 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:04:09,692 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:04:09,693 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.038*\"east\" + 0.037*\"north\" + 0.036*\"west\" + 0.035*\"counti\" + 0.035*\"municip\" + 0.034*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:04:09,695 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.024*\"lee\" + 0.022*\"singapor\" + 0.018*\"malaysia\" + 0.018*\"kim\" + 0.017*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.015*\"thailand\"\n", + "2019-01-16 06:04:09,696 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 06:04:09,698 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 06:04:09,703 : INFO : topic diff=0.003308, rho=0.021863\n", + "2019-01-16 06:04:09,970 : INFO : PROGRESS: pass 0, at document #4186000/4922894\n", + "2019-01-16 06:04:12,040 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:12,597 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.031*\"south\" + 0.026*\"text\" + 0.024*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 06:04:12,598 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", + "2019-01-16 06:04:12,599 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.023*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 06:04:12,602 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 06:04:12,603 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"township\" + 0.022*\"household\"\n", + "2019-01-16 06:04:12,609 : INFO : topic diff=0.002942, rho=0.021858\n", + "2019-01-16 06:04:12,914 : INFO : PROGRESS: pass 0, at document #4188000/4922894\n", + "2019-01-16 06:04:15,015 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:15,577 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:04:15,579 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:04:15,580 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 06:04:15,582 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:04:15,583 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.038*\"east\" + 0.038*\"north\" + 0.036*\"west\" + 0.035*\"counti\" + 0.034*\"municip\" + 0.034*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:04:15,590 : INFO : topic diff=0.003303, rho=0.021853\n", + "2019-01-16 06:04:15,847 : INFO : PROGRESS: pass 0, at document #4190000/4922894\n", + "2019-01-16 06:04:17,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:18,405 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:04:18,407 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.018*\"malaysia\" + 0.018*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.015*\"thailand\"\n", + "2019-01-16 06:04:18,408 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.009*\"josé\" + 0.009*\"mexican\"\n", + "2019-01-16 06:04:18,409 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"tree\"\n", + "2019-01-16 06:04:18,410 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:04:18,416 : INFO : topic diff=0.002783, rho=0.021848\n", + "2019-01-16 06:04:18,670 : INFO : PROGRESS: pass 0, at document #4192000/4922894\n", + "2019-01-16 06:04:20,593 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:21,155 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:04:21,157 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 06:04:21,159 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:04:21,161 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"august\" + 0.063*\"novemb\" + 0.063*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 06:04:21,163 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 06:04:21,170 : INFO : topic diff=0.003058, rho=0.021843\n", + "2019-01-16 06:04:21,440 : INFO : PROGRESS: pass 0, at document #4194000/4922894\n", + "2019-01-16 06:04:23,485 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:24,044 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 06:04:24,046 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:04:24,048 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 06:04:24,049 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:04:24,050 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:04:24,056 : INFO : topic diff=0.004027, rho=0.021837\n", + "2019-01-16 06:04:24,311 : INFO : PROGRESS: pass 0, at document #4196000/4922894\n", + "2019-01-16 06:04:26,263 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:26,822 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:04:26,824 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.018*\"malaysia\" + 0.018*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.014*\"thailand\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:04:26,825 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.009*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:04:26,826 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 06:04:26,828 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:04:26,834 : INFO : topic diff=0.003490, rho=0.021832\n", + "2019-01-16 06:04:27,101 : INFO : PROGRESS: pass 0, at document #4198000/4922894\n", + "2019-01-16 06:04:29,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:29,696 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.022*\"unit\" + 0.019*\"town\" + 0.019*\"cricket\" + 0.016*\"scotland\" + 0.015*\"citi\" + 0.015*\"scottish\" + 0.015*\"manchest\" + 0.013*\"west\"\n", + "2019-01-16 06:04:29,698 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:04:29,700 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:04:29,702 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 06:04:29,703 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"jame\" + 0.015*\"sir\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.013*\"henri\"\n", + "2019-01-16 06:04:29,709 : INFO : topic diff=0.004517, rho=0.021827\n", + "2019-01-16 06:04:34,201 : INFO : -11.612 per-word bound, 3131.1 perplexity estimate based on a held-out corpus of 2000 documents with 531635 words\n", + "2019-01-16 06:04:34,202 : INFO : PROGRESS: pass 0, at document #4200000/4922894\n", + "2019-01-16 06:04:36,145 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:36,704 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"best\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:04:36,705 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 06:04:36,706 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:04:36,708 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 06:04:36,709 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 06:04:36,716 : INFO : topic diff=0.002979, rho=0.021822\n", + "2019-01-16 06:04:36,990 : INFO : PROGRESS: pass 0, at document #4202000/4922894\n", + "2019-01-16 06:04:38,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:39,553 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 06:04:39,556 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:04:39,558 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:04:39,559 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:04:39,560 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:04:39,566 : INFO : topic diff=0.003367, rho=0.021817\n", + "2019-01-16 06:04:39,831 : INFO : PROGRESS: pass 0, at document #4204000/4922894\n", + "2019-01-16 06:04:41,845 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:42,401 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.021*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.016*\"scotland\" + 0.015*\"citi\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.013*\"west\"\n", + "2019-01-16 06:04:42,403 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.058*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:04:42,404 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.042*\"round\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.020*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 06:04:42,405 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:04:42,407 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 06:04:42,413 : INFO : topic diff=0.003447, rho=0.021811\n", + "2019-01-16 06:04:42,675 : INFO : PROGRESS: pass 0, at document #4206000/4922894\n", + "2019-01-16 06:04:44,681 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:45,237 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.069*\"villag\" + 0.051*\"region\" + 0.041*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.036*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:04:45,239 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"boat\" + 0.012*\"port\" + 0.012*\"island\" + 0.011*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 06:04:45,240 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:04:45,241 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"octob\" + 0.074*\"march\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.067*\"august\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.063*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 06:04:45,243 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 06:04:45,250 : INFO : topic diff=0.003402, rho=0.021806\n", + "2019-01-16 06:04:45,523 : INFO : PROGRESS: pass 0, at document #4208000/4922894\n", + "2019-01-16 06:04:47,581 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:48,138 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 06:04:48,139 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.030*\"town\" + 0.027*\"famili\" + 0.024*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.022*\"township\"\n", + "2019-01-16 06:04:48,140 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:04:48,141 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", + "2019-01-16 06:04:48,142 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:04:48,148 : INFO : topic diff=0.004327, rho=0.021801\n", + "2019-01-16 06:04:48,425 : INFO : PROGRESS: pass 0, at document #4210000/4922894\n", + "2019-01-16 06:04:50,455 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:51,017 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 06:04:51,019 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.006*\"group\"\n", + "2019-01-16 06:04:51,020 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 06:04:51,021 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.019*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 06:04:51,022 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.025*\"black\" + 0.025*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.015*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 06:04:51,029 : INFO : topic diff=0.002820, rho=0.021796\n", + "2019-01-16 06:04:51,288 : INFO : PROGRESS: pass 0, at document #4212000/4922894\n", + "2019-01-16 06:04:53,259 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:53,815 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 06:04:53,817 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"democrat\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 06:04:53,818 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"london\" + 0.022*\"unit\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.014*\"west\"\n", + "2019-01-16 06:04:53,820 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:04:53,822 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:04:53,827 : INFO : topic diff=0.002963, rho=0.021791\n", + "2019-01-16 06:04:54,128 : INFO : PROGRESS: pass 0, at document #4214000/4922894\n", + "2019-01-16 06:04:56,113 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:56,671 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.059*\"canadian\" + 0.023*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"montreal\" + 0.015*\"korea\"\n", + "2019-01-16 06:04:56,672 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:04:56,675 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:04:56,677 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 06:04:56,678 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:04:56,684 : INFO : topic diff=0.003175, rho=0.021786\n", + "2019-01-16 06:04:56,949 : INFO : PROGRESS: pass 0, at document #4216000/4922894\n", + "2019-01-16 06:04:58,921 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:04:59,479 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:04:59,480 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:04:59,482 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.013*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:04:59,483 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 06:04:59,484 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:04:59,491 : INFO : topic diff=0.003571, rho=0.021780\n", + "2019-01-16 06:04:59,760 : INFO : PROGRESS: pass 0, at document #4218000/4922894\n", + "2019-01-16 06:05:01,792 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:02,349 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:05:02,350 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:05:02,352 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 06:05:02,354 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.012*\"regiment\"\n", + "2019-01-16 06:05:02,355 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:05:02,361 : INFO : topic diff=0.003474, rho=0.021775\n", + "2019-01-16 06:05:06,956 : INFO : -11.703 per-word bound, 3333.7 perplexity estimate based on a held-out corpus of 2000 documents with 580529 words\n", + "2019-01-16 06:05:06,957 : INFO : PROGRESS: pass 0, at document #4220000/4922894\n", + "2019-01-16 06:05:08,947 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:09,505 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 06:05:09,506 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.015*\"jame\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:05:09,508 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.067*\"villag\" + 0.050*\"region\" + 0.040*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.035*\"west\" + 0.035*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:05:09,509 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.020*\"point\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:05:09,510 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.022*\"household\" + 0.022*\"commun\" + 0.021*\"township\"\n", + "2019-01-16 06:05:09,516 : INFO : topic diff=0.004024, rho=0.021770\n", + "2019-01-16 06:05:09,782 : INFO : PROGRESS: pass 0, at document #4222000/4922894\n", + "2019-01-16 06:05:11,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:12,325 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 06:05:12,326 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 06:05:12,328 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.025*\"oper\" + 0.025*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:05:12,329 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:05:12,331 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 06:05:12,336 : INFO : topic diff=0.003526, rho=0.021765\n", + "2019-01-16 06:05:12,593 : INFO : PROGRESS: pass 0, at document #4224000/4922894\n", + "2019-01-16 06:05:14,549 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:15,106 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 06:05:15,107 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 06:05:15,109 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"intern\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:05:15,110 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.060*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:05:15,112 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.075*\"septemb\" + 0.075*\"octob\" + 0.069*\"juli\" + 0.067*\"januari\" + 0.067*\"august\" + 0.066*\"june\" + 0.065*\"novemb\" + 0.063*\"april\" + 0.062*\"decemb\"\n", + "2019-01-16 06:05:15,118 : INFO : topic diff=0.002685, rho=0.021760\n", + "2019-01-16 06:05:15,375 : INFO : PROGRESS: pass 0, at document #4226000/4922894\n", + "2019-01-16 06:05:17,397 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:17,963 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"harri\"\n", + "2019-01-16 06:05:17,964 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.013*\"sweden\"\n", + "2019-01-16 06:05:17,966 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", + "2019-01-16 06:05:17,967 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.060*\"australian\" + 0.054*\"new\" + 0.040*\"china\" + 0.037*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:05:17,968 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\"\n", + "2019-01-16 06:05:17,974 : INFO : topic diff=0.002760, rho=0.021755\n", + "2019-01-16 06:05:18,225 : INFO : PROGRESS: pass 0, at document #4228000/4922894\n", + "2019-01-16 06:05:20,195 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:20,754 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", + "2019-01-16 06:05:20,755 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:05:20,757 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", + "2019-01-16 06:05:20,758 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:05:20,759 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:05:20,765 : INFO : topic diff=0.002526, rho=0.021749\n", + "2019-01-16 06:05:21,037 : INFO : PROGRESS: pass 0, at document #4230000/4922894\n", + "2019-01-16 06:05:23,073 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:23,629 : INFO : topic #11 (0.020): 0.022*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:05:23,630 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.058*\"wikit\" + 0.058*\"align\" + 0.050*\"style\" + 0.047*\"left\" + 0.042*\"center\" + 0.036*\"list\" + 0.034*\"philippin\" + 0.032*\"right\" + 0.030*\"text\"\n", + "2019-01-16 06:05:23,632 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"harri\"\n", + "2019-01-16 06:05:23,633 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:05:23,634 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:05:23,640 : INFO : topic diff=0.003176, rho=0.021744\n", + "2019-01-16 06:05:23,898 : INFO : PROGRESS: pass 0, at document #4232000/4922894\n", + "2019-01-16 06:05:25,837 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:26,396 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", + "2019-01-16 06:05:26,398 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.035*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:05:26,400 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"friend\" + 0.004*\"return\"\n", + "2019-01-16 06:05:26,401 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.058*\"wikit\" + 0.057*\"align\" + 0.050*\"style\" + 0.047*\"left\" + 0.041*\"center\" + 0.036*\"list\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.030*\"text\"\n", + "2019-01-16 06:05:26,403 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:05:26,409 : INFO : topic diff=0.003357, rho=0.021739\n", + "2019-01-16 06:05:26,675 : INFO : PROGRESS: pass 0, at document #4234000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:05:28,743 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:29,301 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"exampl\"\n", + "2019-01-16 06:05:29,302 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.026*\"black\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 06:05:29,304 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:05:29,305 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"championship\" + 0.010*\"ford\"\n", + "2019-01-16 06:05:29,307 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.022*\"counti\" + 0.022*\"household\" + 0.021*\"peopl\"\n", + "2019-01-16 06:05:29,312 : INFO : topic diff=0.004295, rho=0.021734\n", + "2019-01-16 06:05:29,565 : INFO : PROGRESS: pass 0, at document #4236000/4922894\n", + "2019-01-16 06:05:31,610 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:32,168 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:05:32,169 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"poland\" + 0.014*\"israel\"\n", + "2019-01-16 06:05:32,171 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:05:32,172 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"cathol\"\n", + "2019-01-16 06:05:32,173 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.026*\"text\" + 0.026*\"black\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", + "2019-01-16 06:05:32,179 : INFO : topic diff=0.003956, rho=0.021729\n", + "2019-01-16 06:05:32,482 : INFO : PROGRESS: pass 0, at document #4238000/4922894\n", + "2019-01-16 06:05:34,480 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:35,039 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:05:35,040 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.023*\"london\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 06:05:35,041 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.027*\"olymp\" + 0.026*\"championship\" + 0.024*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 06:05:35,043 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:05:35,044 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.021*\"point\" + 0.021*\"group\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:05:35,050 : INFO : topic diff=0.003384, rho=0.021724\n", + "2019-01-16 06:05:39,717 : INFO : -11.679 per-word bound, 3278.6 perplexity estimate based on a held-out corpus of 2000 documents with 541210 words\n", + "2019-01-16 06:05:39,718 : INFO : PROGRESS: pass 0, at document #4240000/4922894\n", + "2019-01-16 06:05:41,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:42,265 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:05:42,267 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"singh\"\n", + "2019-01-16 06:05:42,268 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:05:42,269 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", + "2019-01-16 06:05:42,270 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 06:05:42,276 : INFO : topic diff=0.002788, rho=0.021719\n", + "2019-01-16 06:05:42,535 : INFO : PROGRESS: pass 0, at document #4242000/4922894\n", + "2019-01-16 06:05:44,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:45,092 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.027*\"till\" + 0.025*\"black\" + 0.025*\"color\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 06:05:45,094 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"direct\"\n", + "2019-01-16 06:05:45,096 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:05:45,098 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:05:45,099 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"cathol\"\n", + "2019-01-16 06:05:45,106 : INFO : topic diff=0.002906, rho=0.021713\n", + "2019-01-16 06:05:45,362 : INFO : PROGRESS: pass 0, at document #4244000/4922894\n", + "2019-01-16 06:05:47,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:47,940 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.070*\"villag\" + 0.050*\"region\" + 0.038*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:05:47,941 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:05:47,942 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"direct\"\n", + "2019-01-16 06:05:47,944 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:05:47,945 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:05:47,952 : INFO : topic diff=0.003259, rho=0.021708\n", + "2019-01-16 06:05:48,210 : INFO : PROGRESS: pass 0, at document #4246000/4922894\n", + "2019-01-16 06:05:50,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:50,793 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:05:50,795 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:05:50,796 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"damag\"\n", + "2019-01-16 06:05:50,798 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.038*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:05:50,799 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.013*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 06:05:50,805 : INFO : topic diff=0.003201, rho=0.021703\n", + "2019-01-16 06:05:51,067 : INFO : PROGRESS: pass 0, at document #4248000/4922894\n", + "2019-01-16 06:05:53,083 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:53,639 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"cathol\"\n", + "2019-01-16 06:05:53,640 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 06:05:53,642 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 06:05:53,643 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:05:53,644 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 06:05:53,650 : INFO : topic diff=0.003451, rho=0.021698\n", + "2019-01-16 06:05:53,920 : INFO : PROGRESS: pass 0, at document #4250000/4922894\n", + "2019-01-16 06:05:55,930 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:56,488 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:05:56,489 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"new\"\n", + "2019-01-16 06:05:56,490 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 06:05:56,492 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.020*\"democrat\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", + "2019-01-16 06:05:56,493 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 06:05:56,499 : INFO : topic diff=0.002935, rho=0.021693\n", + "2019-01-16 06:05:56,756 : INFO : PROGRESS: pass 0, at document #4252000/4922894\n", + "2019-01-16 06:05:58,652 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:05:59,210 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:05:59,212 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", + "2019-01-16 06:05:59,213 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:05:59,214 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"counti\" + 0.022*\"household\" + 0.021*\"peopl\"\n", + "2019-01-16 06:05:59,216 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", + "2019-01-16 06:05:59,222 : INFO : topic diff=0.003384, rho=0.021688\n", + "2019-01-16 06:05:59,485 : INFO : PROGRESS: pass 0, at document #4254000/4922894\n", + "2019-01-16 06:06:01,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:02,025 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 06:06:02,027 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:06:02,028 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"khan\" + 0.011*\"singh\"\n", + "2019-01-16 06:06:02,029 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.027*\"till\" + 0.026*\"black\" + 0.025*\"color\" + 0.014*\"tropic\" + 0.014*\"storm\"\n", + "2019-01-16 06:06:02,030 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:06:02,036 : INFO : topic diff=0.003499, rho=0.021683\n", + "2019-01-16 06:06:02,294 : INFO : PROGRESS: pass 0, at document #4256000/4922894\n", + "2019-01-16 06:06:04,267 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:04,822 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:06:04,824 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", + "2019-01-16 06:06:04,825 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:06:04,827 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:06:04,828 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:06:04,834 : INFO : topic diff=0.003411, rho=0.021678\n", + "2019-01-16 06:06:05,112 : INFO : PROGRESS: pass 0, at document #4258000/4922894\n", + "2019-01-16 06:06:07,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:07,707 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:06:07,709 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:06:07,710 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.023*\"japan\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:06:07,712 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 06:06:07,713 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.022*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.015*\"wrestl\" + 0.015*\"defeat\" + 0.015*\"titl\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"world\"\n", + "2019-01-16 06:06:07,719 : INFO : topic diff=0.004628, rho=0.021673\n", + "2019-01-16 06:06:12,340 : INFO : -11.601 per-word bound, 3106.6 perplexity estimate based on a held-out corpus of 2000 documents with 547621 words\n", + "2019-01-16 06:06:12,340 : INFO : PROGRESS: pass 0, at document #4260000/4922894\n", + "2019-01-16 06:06:14,326 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:14,883 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:06:14,885 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:06:14,886 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:06:14,887 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:06:14,888 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:06:14,894 : INFO : topic diff=0.003004, rho=0.021668\n", + "2019-01-16 06:06:15,168 : INFO : PROGRESS: pass 0, at document #4262000/4922894\n", + "2019-01-16 06:06:17,252 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:17,809 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.013*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:06:17,811 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.061*\"align\" + 0.056*\"wikit\" + 0.053*\"left\" + 0.048*\"style\" + 0.039*\"center\" + 0.035*\"list\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:06:17,813 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.065*\"januari\" + 0.065*\"juli\" + 0.063*\"august\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:06:17,814 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 06:06:17,816 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 06:06:17,822 : INFO : topic diff=0.002581, rho=0.021662\n", + "2019-01-16 06:06:18,120 : INFO : PROGRESS: pass 0, at document #4264000/4922894\n", + "2019-01-16 06:06:20,118 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:20,675 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:06:20,676 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", + "2019-01-16 06:06:20,678 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.013*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:06:20,679 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.062*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.048*\"style\" + 0.040*\"center\" + 0.035*\"right\" + 0.035*\"list\" + 0.033*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:06:20,682 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 06:06:20,689 : INFO : topic diff=0.003241, rho=0.021657\n", + "2019-01-16 06:06:20,947 : INFO : PROGRESS: pass 0, at document #4266000/4922894\n", + "2019-01-16 06:06:22,933 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:23,490 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.036*\"univers\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:06:23,492 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:06:23,493 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:06:23,495 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 06:06:23,496 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.068*\"villag\" + 0.050*\"region\" + 0.040*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:06:23,502 : INFO : topic diff=0.003384, rho=0.021652\n", + "2019-01-16 06:06:23,756 : INFO : PROGRESS: pass 0, at document #4268000/4922894\n", + "2019-01-16 06:06:25,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:26,289 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:06:26,290 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:06:26,292 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:06:26,293 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:06:26,295 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:06:26,300 : INFO : topic diff=0.003574, rho=0.021647\n", + "2019-01-16 06:06:26,568 : INFO : PROGRESS: pass 0, at document #4270000/4922894\n", + "2019-01-16 06:06:28,607 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:29,163 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", + "2019-01-16 06:06:29,165 : INFO : topic #11 (0.020): 0.022*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:06:29,166 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:06:29,168 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:06:29,170 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 06:06:29,176 : INFO : topic diff=0.003085, rho=0.021642\n", + "2019-01-16 06:06:29,445 : INFO : PROGRESS: pass 0, at document #4272000/4922894\n", + "2019-01-16 06:06:31,457 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:32,017 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", + "2019-01-16 06:06:32,018 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.018*\"itali\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:06:32,020 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"cathol\"\n", + "2019-01-16 06:06:32,021 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:06:32,022 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.063*\"align\" + 0.056*\"wikit\" + 0.054*\"left\" + 0.048*\"style\" + 0.041*\"center\" + 0.034*\"list\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:06:32,028 : INFO : topic diff=0.003433, rho=0.021637\n", + "2019-01-16 06:06:32,298 : INFO : PROGRESS: pass 0, at document #4274000/4922894\n", + "2019-01-16 06:06:34,305 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:34,865 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:06:34,866 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", + "2019-01-16 06:06:34,868 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:06:34,870 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:06:34,871 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.068*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:06:34,877 : INFO : topic diff=0.003981, rho=0.021632\n", + "2019-01-16 06:06:35,123 : INFO : PROGRESS: pass 0, at document #4276000/4922894\n", + "2019-01-16 06:06:37,043 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:37,600 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"israel\"\n", + "2019-01-16 06:06:37,601 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:06:37,603 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:06:37,604 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"counti\" + 0.022*\"household\" + 0.021*\"peopl\"\n", + "2019-01-16 06:06:37,605 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:06:37,611 : INFO : topic diff=0.002997, rho=0.021627\n", + "2019-01-16 06:06:37,889 : INFO : PROGRESS: pass 0, at document #4278000/4922894\n", + "2019-01-16 06:06:39,842 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:40,401 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"defeat\" + 0.013*\"team\" + 0.012*\"world\"\n", + "2019-01-16 06:06:40,402 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", + "2019-01-16 06:06:40,404 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:06:40,405 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", + "2019-01-16 06:06:40,408 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:06:40,414 : INFO : topic diff=0.003662, rho=0.021622\n", + "2019-01-16 06:06:44,844 : INFO : -11.624 per-word bound, 3157.0 perplexity estimate based on a held-out corpus of 2000 documents with 516807 words\n", + "2019-01-16 06:06:44,844 : INFO : PROGRESS: pass 0, at document #4280000/4922894\n", + "2019-01-16 06:06:46,823 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:47,381 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", + "2019-01-16 06:06:47,383 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.007*\"oper\"\n", + "2019-01-16 06:06:47,384 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.014*\"swedish\" + 0.013*\"sweden\"\n", + "2019-01-16 06:06:47,386 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:06:47,387 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.009*\"treatment\"\n", + "2019-01-16 06:06:47,394 : INFO : topic diff=0.003354, rho=0.021617\n", + "2019-01-16 06:06:47,677 : INFO : PROGRESS: pass 0, at document #4282000/4922894\n", + "2019-01-16 06:06:49,727 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:50,285 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"point\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.006*\"method\"\n", + "2019-01-16 06:06:50,286 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 06:06:50,288 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", + "2019-01-16 06:06:50,289 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 06:06:50,290 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.026*\"till\" + 0.025*\"black\" + 0.024*\"color\" + 0.014*\"tropic\" + 0.013*\"storm\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:06:50,296 : INFO : topic diff=0.003845, rho=0.021612\n", + "2019-01-16 06:06:50,554 : INFO : PROGRESS: pass 0, at document #4284000/4922894\n", + "2019-01-16 06:06:52,487 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:53,045 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:06:53,047 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 06:06:53,048 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.033*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", + "2019-01-16 06:06:53,050 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:06:53,051 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:06:53,058 : INFO : topic diff=0.003071, rho=0.021607\n", + "2019-01-16 06:06:53,336 : INFO : PROGRESS: pass 0, at document #4286000/4922894\n", + "2019-01-16 06:06:55,330 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:55,890 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"jame\" + 0.015*\"london\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:06:55,891 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 06:06:55,892 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:06:55,893 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", + "2019-01-16 06:06:55,895 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 06:06:55,901 : INFO : topic diff=0.003292, rho=0.021602\n", + "2019-01-16 06:06:56,151 : INFO : PROGRESS: pass 0, at document #4288000/4922894\n", + "2019-01-16 06:06:58,087 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:06:58,643 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"forest\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 06:06:58,645 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", + "2019-01-16 06:06:58,646 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:06:58,648 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.006*\"method\"\n", + "2019-01-16 06:06:58,650 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:06:58,656 : INFO : topic diff=0.003238, rho=0.021597\n", + "2019-01-16 06:06:58,951 : INFO : PROGRESS: pass 0, at document #4290000/4922894\n", + "2019-01-16 06:07:00,991 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:01,547 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", + "2019-01-16 06:07:01,549 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 06:07:01,551 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 06:07:01,554 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.072*\"octob\" + 0.072*\"march\" + 0.063*\"januari\" + 0.062*\"novemb\" + 0.062*\"juli\" + 0.062*\"august\" + 0.062*\"april\" + 0.059*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:07:01,556 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:07:01,562 : INFO : topic diff=0.003589, rho=0.021592\n", + "2019-01-16 06:07:01,838 : INFO : PROGRESS: pass 0, at document #4292000/4922894\n", + "2019-01-16 06:07:03,903 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:04,463 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 06:07:04,464 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:07:04,466 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.021*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", + "2019-01-16 06:07:04,467 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.072*\"octob\" + 0.072*\"march\" + 0.063*\"januari\" + 0.062*\"novemb\" + 0.062*\"juli\" + 0.062*\"august\" + 0.062*\"april\" + 0.059*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:07:04,469 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 06:07:04,475 : INFO : topic diff=0.003255, rho=0.021587\n", + "2019-01-16 06:07:04,730 : INFO : PROGRESS: pass 0, at document #4294000/4922894\n", + "2019-01-16 06:07:06,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:07,266 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:07:07,267 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.019*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:07:07,268 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 06:07:07,270 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:07:07,271 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.072*\"octob\" + 0.072*\"march\" + 0.063*\"januari\" + 0.063*\"august\" + 0.062*\"juli\" + 0.062*\"novemb\" + 0.062*\"april\" + 0.059*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:07:07,277 : INFO : topic diff=0.003009, rho=0.021582\n", + "2019-01-16 06:07:07,539 : INFO : PROGRESS: pass 0, at document #4296000/4922894\n", + "2019-01-16 06:07:09,527 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:10,088 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"group\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:07:10,090 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 06:07:10,092 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 06:07:10,093 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:07:10,094 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:07:10,100 : INFO : topic diff=0.002819, rho=0.021577\n", + "2019-01-16 06:07:10,362 : INFO : PROGRESS: pass 0, at document #4298000/4922894\n", + "2019-01-16 06:07:12,364 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:12,923 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 06:07:12,924 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.021*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", + "2019-01-16 06:07:12,926 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"said\"\n", + "2019-01-16 06:07:12,927 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"exhibit\" + 0.018*\"design\" + 0.018*\"imag\"\n", + "2019-01-16 06:07:12,928 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.062*\"align\" + 0.056*\"wikit\" + 0.053*\"left\" + 0.049*\"style\" + 0.041*\"center\" + 0.034*\"right\" + 0.033*\"list\" + 0.031*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:07:12,934 : INFO : topic diff=0.003263, rho=0.021572\n", + "2019-01-16 06:07:17,670 : INFO : -11.602 per-word bound, 3107.7 perplexity estimate based on a held-out corpus of 2000 documents with 566318 words\n", + "2019-01-16 06:07:17,671 : INFO : PROGRESS: pass 0, at document #4300000/4922894\n", + "2019-01-16 06:07:19,801 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:20,362 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 06:07:20,363 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:07:20,365 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 06:07:20,367 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.021*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 06:07:20,369 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:07:20,375 : INFO : topic diff=0.002601, rho=0.021567\n", + "2019-01-16 06:07:20,639 : INFO : PROGRESS: pass 0, at document #4302000/4922894\n", + "2019-01-16 06:07:22,677 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:23,234 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:07:23,235 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.014*\"tropic\" + 0.014*\"storm\"\n", + "2019-01-16 06:07:23,236 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.013*\"port\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 06:07:23,238 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 06:07:23,239 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:07:23,246 : INFO : topic diff=0.003239, rho=0.021562\n", + "2019-01-16 06:07:23,510 : INFO : PROGRESS: pass 0, at document #4304000/4922894\n", + "2019-01-16 06:07:25,470 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:26,027 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:07:26,029 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 06:07:26,031 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:07:26,032 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", + "2019-01-16 06:07:26,033 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:07:26,040 : INFO : topic diff=0.002827, rho=0.021557\n", + "2019-01-16 06:07:26,306 : INFO : PROGRESS: pass 0, at document #4306000/4922894\n", + "2019-01-16 06:07:28,301 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:28,858 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.013*\"port\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 06:07:28,860 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 06:07:28,862 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.027*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:07:28,863 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 06:07:28,864 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:07:28,871 : INFO : topic diff=0.003067, rho=0.021552\n", + "2019-01-16 06:07:29,136 : INFO : PROGRESS: pass 0, at document #4308000/4922894\n", + "2019-01-16 06:07:31,130 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:31,690 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"group\"\n", + "2019-01-16 06:07:31,691 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:07:31,693 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.064*\"januari\" + 0.063*\"juli\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.062*\"april\" + 0.059*\"june\" + 0.059*\"decemb\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:07:31,695 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"right\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 06:07:31,696 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.016*\"fight\" + 0.015*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.013*\"world\"\n", + "2019-01-16 06:07:31,702 : INFO : topic diff=0.002758, rho=0.021547\n", + "2019-01-16 06:07:31,973 : INFO : PROGRESS: pass 0, at document #4310000/4922894\n", + "2019-01-16 06:07:33,990 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:34,547 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.014*\"council\" + 0.014*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:07:34,549 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:07:34,550 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:07:34,552 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:07:34,554 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.021*\"london\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 06:07:34,560 : INFO : topic diff=0.003154, rho=0.021542\n", + "2019-01-16 06:07:34,808 : INFO : PROGRESS: pass 0, at document #4312000/4922894\n", + "2019-01-16 06:07:36,762 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:37,319 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", + "2019-01-16 06:07:37,320 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:07:37,321 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:07:37,323 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.031*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.020*\"japanes\" + 0.019*\"chines\" + 0.019*\"kim\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"asian\"\n", + "2019-01-16 06:07:37,324 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:07:37,330 : INFO : topic diff=0.003074, rho=0.021537\n", + "2019-01-16 06:07:37,634 : INFO : PROGRESS: pass 0, at document #4314000/4922894\n", + "2019-01-16 06:07:39,677 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:40,236 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"mexican\"\n", + "2019-01-16 06:07:40,238 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:07:40,239 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:07:40,241 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.040*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:07:40,242 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:07:40,248 : INFO : topic diff=0.003490, rho=0.021532\n", + "2019-01-16 06:07:40,519 : INFO : PROGRESS: pass 0, at document #4316000/4922894\n", + "2019-01-16 06:07:42,499 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:43,057 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"mexican\"\n", + "2019-01-16 06:07:43,058 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"cancer\" + 0.009*\"treatment\"\n", + "2019-01-16 06:07:43,060 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 06:07:43,062 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.022*\"counti\" + 0.021*\"peopl\"\n", + "2019-01-16 06:07:43,063 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.019*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:07:43,069 : INFO : topic diff=0.003815, rho=0.021527\n", + "2019-01-16 06:07:43,327 : INFO : PROGRESS: pass 0, at document #4318000/4922894\n", + "2019-01-16 06:07:45,333 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:45,892 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.040*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:07:45,894 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", + "2019-01-16 06:07:45,896 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"church\"\n", + "2019-01-16 06:07:45,897 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.034*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 06:07:45,900 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.006*\"citi\"\n", + "2019-01-16 06:07:45,906 : INFO : topic diff=0.003122, rho=0.021522\n", + "2019-01-16 06:07:50,677 : INFO : -11.691 per-word bound, 3306.8 perplexity estimate based on a held-out corpus of 2000 documents with 558366 words\n", + "2019-01-16 06:07:50,678 : INFO : PROGRESS: pass 0, at document #4320000/4922894\n", + "2019-01-16 06:07:52,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:53,258 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:07:53,260 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.065*\"januari\" + 0.063*\"juli\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.061*\"april\" + 0.060*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:07:53,261 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.020*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", + "2019-01-16 06:07:53,263 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.013*\"port\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.008*\"damag\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:07:53,264 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"confer\"\n", + "2019-01-16 06:07:53,271 : INFO : topic diff=0.002651, rho=0.021517\n", + "2019-01-16 06:07:53,545 : INFO : PROGRESS: pass 0, at document #4322000/4922894\n", + "2019-01-16 06:07:55,555 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:56,112 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 06:07:56,113 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:07:56,115 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.036*\"univers\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 06:07:56,116 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:07:56,117 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.008*\"bai\"\n", + "2019-01-16 06:07:56,123 : INFO : topic diff=0.003032, rho=0.021512\n", + "2019-01-16 06:07:56,398 : INFO : PROGRESS: pass 0, at document #4324000/4922894\n", + "2019-01-16 06:07:58,415 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:07:58,973 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"jazz\"\n", + "2019-01-16 06:07:58,975 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"cancer\"\n", + "2019-01-16 06:07:58,976 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:07:58,978 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"confer\"\n", + "2019-01-16 06:07:58,981 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:07:58,987 : INFO : topic diff=0.002980, rho=0.021507\n", + "2019-01-16 06:07:59,258 : INFO : PROGRESS: pass 0, at document #4326000/4922894\n", + "2019-01-16 06:08:01,227 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:01,783 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.065*\"januari\" + 0.064*\"juli\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.060*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:08:01,785 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.012*\"manchest\" + 0.012*\"scottish\"\n", + "2019-01-16 06:08:01,786 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", + "2019-01-16 06:08:01,788 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:08:01,789 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.038*\"east\" + 0.037*\"west\" + 0.037*\"north\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:08:01,794 : INFO : topic diff=0.003845, rho=0.021502\n", + "2019-01-16 06:08:02,065 : INFO : PROGRESS: pass 0, at document #4328000/4922894\n", + "2019-01-16 06:08:04,108 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:04,664 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"confer\"\n", + "2019-01-16 06:08:04,665 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:08:04,667 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:08:04,668 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.022*\"winner\" + 0.020*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:08:04,669 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"gener\" + 0.008*\"model\" + 0.007*\"group\" + 0.007*\"point\" + 0.007*\"theori\"\n", + "2019-01-16 06:08:04,675 : INFO : topic diff=0.003415, rho=0.021497\n", + "2019-01-16 06:08:04,930 : INFO : PROGRESS: pass 0, at document #4330000/4922894\n", + "2019-01-16 06:08:06,961 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:07,519 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.022*\"counti\" + 0.021*\"peopl\"\n", + "2019-01-16 06:08:07,521 : INFO : topic #11 (0.020): 0.022*\"law\" + 0.020*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", + "2019-01-16 06:08:07,522 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.036*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:08:07,523 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:08:07,525 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:08:07,530 : INFO : topic diff=0.003290, rho=0.021492\n", + "2019-01-16 06:08:07,788 : INFO : PROGRESS: pass 0, at document #4332000/4922894\n", + "2019-01-16 06:08:09,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:10,377 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.039*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:08:10,378 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:08:10,380 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:08:10,381 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:08:10,382 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"match\" + 0.017*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.013*\"world\"\n", + "2019-01-16 06:08:10,388 : INFO : topic diff=0.002779, rho=0.021487\n", + "2019-01-16 06:08:10,649 : INFO : PROGRESS: pass 0, at document #4334000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:08:12,631 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:13,190 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:08:13,192 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:08:13,193 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.038*\"east\" + 0.037*\"west\" + 0.037*\"north\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:08:13,195 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:08:13,196 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.066*\"align\" + 0.056*\"wikit\" + 0.051*\"left\" + 0.048*\"style\" + 0.043*\"center\" + 0.038*\"right\" + 0.034*\"list\" + 0.032*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:08:13,202 : INFO : topic diff=0.003913, rho=0.021482\n", + "2019-01-16 06:08:13,471 : INFO : PROGRESS: pass 0, at document #4336000/4922894\n", + "2019-01-16 06:08:15,457 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:16,019 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.065*\"align\" + 0.056*\"wikit\" + 0.051*\"left\" + 0.049*\"style\" + 0.043*\"center\" + 0.038*\"right\" + 0.034*\"list\" + 0.033*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:08:16,021 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:08:16,024 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.012*\"manchest\" + 0.012*\"scottish\"\n", + "2019-01-16 06:08:16,025 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:08:16,026 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", + "2019-01-16 06:08:16,032 : INFO : topic diff=0.003739, rho=0.021477\n", + "2019-01-16 06:08:16,303 : INFO : PROGRESS: pass 0, at document #4338000/4922894\n", + "2019-01-16 06:08:18,280 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:18,836 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 06:08:18,838 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"high\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:08:18,839 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.014*\"swedish\" + 0.013*\"sweden\"\n", + "2019-01-16 06:08:18,840 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:08:18,842 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 06:08:18,847 : INFO : topic diff=0.002777, rho=0.021472\n", + "2019-01-16 06:08:23,474 : INFO : -11.566 per-word bound, 3031.8 perplexity estimate based on a held-out corpus of 2000 documents with 549941 words\n", + "2019-01-16 06:08:23,475 : INFO : PROGRESS: pass 0, at document #4340000/4922894\n", + "2019-01-16 06:08:25,480 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:26,038 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.021*\"japanes\" + 0.020*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.016*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"asia\"\n", + "2019-01-16 06:08:26,040 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"servic\"\n", + "2019-01-16 06:08:26,041 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:08:26,043 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", + "2019-01-16 06:08:26,044 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"north\" + 0.011*\"area\"\n", + "2019-01-16 06:08:26,050 : INFO : topic diff=0.002943, rho=0.021467\n", + "2019-01-16 06:08:26,313 : INFO : PROGRESS: pass 0, at document #4342000/4922894\n", + "2019-01-16 06:08:28,287 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:28,844 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:08:28,846 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 06:08:28,847 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 06:08:28,849 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:08:28,851 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.038*\"east\" + 0.037*\"west\" + 0.037*\"north\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:08:28,857 : INFO : topic diff=0.002929, rho=0.021462\n", + "2019-01-16 06:08:29,122 : INFO : PROGRESS: pass 0, at document #4344000/4922894\n", + "2019-01-16 06:08:31,130 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:31,688 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 06:08:31,690 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:08:31,691 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:08:31,693 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"mexican\"\n", + "2019-01-16 06:08:31,695 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:08:31,700 : INFO : topic diff=0.003073, rho=0.021457\n", + "2019-01-16 06:08:31,958 : INFO : PROGRESS: pass 0, at document #4346000/4922894\n", + "2019-01-16 06:08:33,962 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:34,522 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:08:34,523 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.077*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.021*\"ye\" + 0.017*\"british\" + 0.016*\"korean\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 06:08:34,525 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", + "2019-01-16 06:08:34,526 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:08:34,527 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:08:34,533 : INFO : topic diff=0.002931, rho=0.021452\n", + "2019-01-16 06:08:34,787 : INFO : PROGRESS: pass 0, at document #4348000/4922894\n", + "2019-01-16 06:08:36,738 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:37,295 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 06:08:37,297 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:08:37,299 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", + "2019-01-16 06:08:37,301 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"north\" + 0.011*\"area\"\n", + "2019-01-16 06:08:37,302 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 06:08:37,309 : INFO : topic diff=0.003152, rho=0.021447\n", + "2019-01-16 06:08:37,565 : INFO : PROGRESS: pass 0, at document #4350000/4922894\n", + "2019-01-16 06:08:39,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:40,090 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:08:40,091 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 06:08:40,094 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 06:08:40,095 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:08:40,097 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:08:40,102 : INFO : topic diff=0.003111, rho=0.021442\n", + "2019-01-16 06:08:40,363 : INFO : PROGRESS: pass 0, at document #4352000/4922894\n", + "2019-01-16 06:08:42,350 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:42,908 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"dai\" + 0.004*\"friend\"\n", + "2019-01-16 06:08:42,909 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:08:42,910 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.072*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.063*\"august\" + 0.063*\"april\" + 0.061*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:08:42,913 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:08:42,914 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"piano\" + 0.012*\"orchestra\" + 0.012*\"jazz\"\n", + "2019-01-16 06:08:42,920 : INFO : topic diff=0.003094, rho=0.021437\n", + "2019-01-16 06:08:43,188 : INFO : PROGRESS: pass 0, at document #4354000/4922894\n", + "2019-01-16 06:08:45,214 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:45,773 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:08:45,774 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"jazz\"\n", + "2019-01-16 06:08:45,775 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.024*\"lee\" + 0.021*\"japanes\" + 0.020*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\"\n", + "2019-01-16 06:08:45,777 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:08:45,778 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:08:45,785 : INFO : topic diff=0.002725, rho=0.021432\n", + "2019-01-16 06:08:46,048 : INFO : PROGRESS: pass 0, at document #4356000/4922894\n", + "2019-01-16 06:08:48,005 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:48,568 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.036*\"russian\" + 0.022*\"american\" + 0.022*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:08:48,570 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:08:48,571 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", + "2019-01-16 06:08:48,573 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 06:08:48,575 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", + "2019-01-16 06:08:48,582 : INFO : topic diff=0.003638, rho=0.021427\n", + "2019-01-16 06:08:48,852 : INFO : PROGRESS: pass 0, at document #4358000/4922894\n", + "2019-01-16 06:08:50,810 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:51,369 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"dai\"\n", + "2019-01-16 06:08:51,370 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:08:51,371 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.039*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:08:51,373 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", + "2019-01-16 06:08:51,375 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"park\"\n", + "2019-01-16 06:08:51,382 : INFO : topic diff=0.003146, rho=0.021423\n", + "2019-01-16 06:08:56,037 : INFO : -11.626 per-word bound, 3159.8 perplexity estimate based on a held-out corpus of 2000 documents with 547641 words\n", + "2019-01-16 06:08:56,038 : INFO : PROGRESS: pass 0, at document #4360000/4922894\n", + "2019-01-16 06:08:58,028 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:08:58,586 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:08:58,587 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.008*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:08:58,589 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 06:08:58,591 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.036*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:08:58,592 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.012*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:08:58,597 : INFO : topic diff=0.003368, rho=0.021418\n", + "2019-01-16 06:08:58,871 : INFO : PROGRESS: pass 0, at document #4362000/4922894\n", + "2019-01-16 06:09:00,887 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:01,448 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.067*\"villag\" + 0.050*\"region\" + 0.038*\"counti\" + 0.038*\"east\" + 0.038*\"west\" + 0.037*\"north\" + 0.033*\"south\" + 0.033*\"municip\" + 0.032*\"provinc\"\n", + "2019-01-16 06:09:01,449 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 06:09:01,451 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"wing\" + 0.012*\"base\"\n", + "2019-01-16 06:09:01,452 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:09:01,453 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:09:01,459 : INFO : topic diff=0.002691, rho=0.021413\n", + "2019-01-16 06:09:01,713 : INFO : PROGRESS: pass 0, at document #4364000/4922894\n", + "2019-01-16 06:09:03,658 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:04,216 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:09:04,218 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", + "2019-01-16 06:09:04,219 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"dai\" + 0.004*\"friend\"\n", + "2019-01-16 06:09:04,220 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.036*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:09:04,222 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:09:04,227 : INFO : topic diff=0.003681, rho=0.021408\n", + "2019-01-16 06:09:04,521 : INFO : PROGRESS: pass 0, at document #4366000/4922894\n", + "2019-01-16 06:09:06,504 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:07,061 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.039*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.013*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\"\n", + "2019-01-16 06:09:07,063 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.067*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.038*\"east\" + 0.038*\"west\" + 0.033*\"south\" + 0.033*\"municip\" + 0.031*\"provinc\"\n", + "2019-01-16 06:09:07,065 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 06:09:07,067 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 06:09:07,069 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"park\"\n", + "2019-01-16 06:09:07,075 : INFO : topic diff=0.003637, rho=0.021403\n", + "2019-01-16 06:09:07,342 : INFO : PROGRESS: pass 0, at document #4368000/4922894\n", + "2019-01-16 06:09:09,380 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:09,937 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 06:09:09,939 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 06:09:09,940 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:09:09,942 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.069*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.050*\"style\" + 0.042*\"center\" + 0.040*\"right\" + 0.032*\"list\" + 0.031*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:09:09,943 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", + "2019-01-16 06:09:09,949 : INFO : topic diff=0.002781, rho=0.021398\n", + "2019-01-16 06:09:10,219 : INFO : PROGRESS: pass 0, at document #4370000/4922894\n", + "2019-01-16 06:09:12,146 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:12,705 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.028*\"till\" + 0.028*\"color\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 06:09:12,706 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 06:09:12,708 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.036*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:09:12,709 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:09:12,711 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", + "2019-01-16 06:09:12,717 : INFO : topic diff=0.003654, rho=0.021393\n", + "2019-01-16 06:09:12,993 : INFO : PROGRESS: pass 0, at document #4372000/4922894\n", + "2019-01-16 06:09:14,940 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:15,497 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:09:15,499 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:09:15,501 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 06:09:15,504 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.039*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:09:15,506 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", + "2019-01-16 06:09:15,512 : INFO : topic diff=0.003457, rho=0.021388\n", + "2019-01-16 06:09:15,770 : INFO : PROGRESS: pass 0, at document #4374000/4922894\n", + "2019-01-16 06:09:17,739 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:18,298 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:09:18,300 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.013*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", + "2019-01-16 06:09:18,301 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.070*\"align\" + 0.055*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.041*\"center\" + 0.039*\"right\" + 0.031*\"list\" + 0.031*\"philippin\" + 0.027*\"text\"\n", + "2019-01-16 06:09:18,302 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:09:18,304 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 06:09:18,310 : INFO : topic diff=0.002818, rho=0.021383\n", + "2019-01-16 06:09:18,563 : INFO : PROGRESS: pass 0, at document #4376000/4922894\n", + "2019-01-16 06:09:20,710 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:21,266 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.069*\"align\" + 0.055*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.042*\"center\" + 0.039*\"right\" + 0.032*\"philippin\" + 0.031*\"list\" + 0.027*\"text\"\n", + "2019-01-16 06:09:21,268 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\" + 0.004*\"friend\"\n", + "2019-01-16 06:09:21,269 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:09:21,271 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:09:21,273 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 06:09:21,279 : INFO : topic diff=0.002475, rho=0.021378\n", + "2019-01-16 06:09:21,551 : INFO : PROGRESS: pass 0, at document #4378000/4922894\n", + "2019-01-16 06:09:23,563 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:24,126 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.036*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:09:24,127 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\"\n", + "2019-01-16 06:09:24,129 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:09:24,130 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"draw\"\n", + "2019-01-16 06:09:24,132 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:09:24,137 : INFO : topic diff=0.003117, rho=0.021374\n", + "2019-01-16 06:09:28,695 : INFO : -11.481 per-word bound, 2858.3 perplexity estimate based on a held-out corpus of 2000 documents with 538361 words\n", + "2019-01-16 06:09:28,696 : INFO : PROGRESS: pass 0, at document #4380000/4922894\n", + "2019-01-16 06:09:30,836 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:31,400 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"servic\"\n", + "2019-01-16 06:09:31,401 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.065*\"januari\" + 0.063*\"novemb\" + 0.063*\"juli\" + 0.061*\"august\" + 0.061*\"april\" + 0.060*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:09:31,402 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", + "2019-01-16 06:09:31,404 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 06:09:31,405 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:09:31,412 : INFO : topic diff=0.002966, rho=0.021369\n", + "2019-01-16 06:09:31,682 : INFO : PROGRESS: pass 0, at document #4382000/4922894\n", + "2019-01-16 06:09:33,643 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:34,202 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:09:34,204 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.023*\"household\" + 0.022*\"year\" + 0.021*\"counti\"\n", + "2019-01-16 06:09:34,206 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"theori\" + 0.007*\"point\"\n", + "2019-01-16 06:09:34,207 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:09:34,209 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:09:34,216 : INFO : topic diff=0.003482, rho=0.021364\n", + "2019-01-16 06:09:34,481 : INFO : PROGRESS: pass 0, at document #4384000/4922894\n", + "2019-01-16 06:09:36,408 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:36,964 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:09:36,966 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"support\"\n", + "2019-01-16 06:09:36,967 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:09:36,969 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:09:36,970 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:09:36,976 : INFO : topic diff=0.002948, rho=0.021359\n", + "2019-01-16 06:09:37,252 : INFO : PROGRESS: pass 0, at document #4386000/4922894\n", + "2019-01-16 06:09:39,193 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:39,754 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:09:39,756 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:09:39,758 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"theori\" + 0.007*\"point\"\n", + "2019-01-16 06:09:39,760 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 06:09:39,761 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:09:39,769 : INFO : topic diff=0.003253, rho=0.021354\n", + "2019-01-16 06:09:40,037 : INFO : PROGRESS: pass 0, at document #4388000/4922894\n", + "2019-01-16 06:09:42,072 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:42,628 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", + "2019-01-16 06:09:42,630 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.022*\"japanes\" + 0.020*\"singapor\" + 0.020*\"chines\" + 0.018*\"kim\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\"\n", + "2019-01-16 06:09:42,631 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"draw\"\n", + "2019-01-16 06:09:42,632 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.067*\"villag\" + 0.051*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.037*\"west\" + 0.037*\"east\" + 0.033*\"south\" + 0.033*\"municip\" + 0.031*\"provinc\"\n", + "2019-01-16 06:09:42,633 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:09:42,639 : INFO : topic diff=0.003070, rho=0.021349\n", + "2019-01-16 06:09:42,911 : INFO : PROGRESS: pass 0, at document #4390000/4922894\n", + "2019-01-16 06:09:44,907 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:45,469 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 06:09:45,470 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.022*\"year\" + 0.021*\"counti\"\n", + "2019-01-16 06:09:45,471 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:09:45,473 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"singh\" + 0.011*\"khan\"\n", + "2019-01-16 06:09:45,474 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.020*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.012*\"scottish\"\n", + "2019-01-16 06:09:45,481 : INFO : topic diff=0.002598, rho=0.021344\n", + "2019-01-16 06:09:45,792 : INFO : PROGRESS: pass 0, at document #4392000/4922894\n", + "2019-01-16 06:09:47,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:48,394 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"oper\" + 0.007*\"servic\"\n", + "2019-01-16 06:09:48,395 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"construct\"\n", + "2019-01-16 06:09:48,398 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"jazz\"\n", + "2019-01-16 06:09:48,399 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:09:48,401 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:09:48,407 : INFO : topic diff=0.004290, rho=0.021339\n", + "2019-01-16 06:09:48,693 : INFO : PROGRESS: pass 0, at document #4394000/4922894\n", + "2019-01-16 06:09:50,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:51,269 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:09:51,271 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:09:51,273 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.042*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.028*\"color\" + 0.028*\"till\" + 0.024*\"black\" + 0.012*\"tropic\" + 0.012*\"storm\"\n", + "2019-01-16 06:09:51,274 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:09:51,275 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", + "2019-01-16 06:09:51,281 : INFO : topic diff=0.003411, rho=0.021335\n", + "2019-01-16 06:09:51,544 : INFO : PROGRESS: pass 0, at document #4396000/4922894\n", + "2019-01-16 06:09:53,528 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:54,086 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.012*\"texa\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:09:54,087 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:09:54,089 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 06:09:54,090 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.039*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"singh\" + 0.011*\"sri\"\n", + "2019-01-16 06:09:54,092 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.065*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.049*\"style\" + 0.042*\"center\" + 0.038*\"right\" + 0.035*\"list\" + 0.031*\"philippin\" + 0.026*\"text\"\n", + "2019-01-16 06:09:54,097 : INFO : topic diff=0.002680, rho=0.021330\n", + "2019-01-16 06:09:54,370 : INFO : PROGRESS: pass 0, at document #4398000/4922894\n", + "2019-01-16 06:09:56,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:09:56,977 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.008*\"type\"\n", + "2019-01-16 06:09:56,979 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 06:09:56,981 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"jazz\"\n", + "2019-01-16 06:09:56,983 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:09:56,984 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:09:56,990 : INFO : topic diff=0.003160, rho=0.021325\n", + "2019-01-16 06:10:01,734 : INFO : -11.622 per-word bound, 3152.7 perplexity estimate based on a held-out corpus of 2000 documents with 582150 words\n", + "2019-01-16 06:10:01,735 : INFO : PROGRESS: pass 0, at document #4400000/4922894\n", + "2019-01-16 06:10:03,796 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:04,354 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.015*\"israel\" + 0.015*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:10:04,356 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:10:04,357 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:10:04,359 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"tour\" + 0.013*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:10:04,360 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", + "2019-01-16 06:10:04,366 : INFO : topic diff=0.003167, rho=0.021320\n", + "2019-01-16 06:10:04,632 : INFO : PROGRESS: pass 0, at document #4402000/4922894\n", + "2019-01-16 06:10:06,634 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:07,191 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 06:10:07,192 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 06:10:07,193 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"group\"\n", + "2019-01-16 06:10:07,195 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 06:10:07,196 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 06:10:07,202 : INFO : topic diff=0.003387, rho=0.021315\n", + "2019-01-16 06:10:07,455 : INFO : PROGRESS: pass 0, at document #4404000/4922894\n", + "2019-01-16 06:10:09,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:10,004 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:10:10,006 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:10:10,007 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.072*\"align\" + 0.060*\"left\" + 0.055*\"wikit\" + 0.048*\"style\" + 0.041*\"center\" + 0.037*\"right\" + 0.034*\"list\" + 0.031*\"philippin\" + 0.026*\"text\"\n", + "2019-01-16 06:10:10,013 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.043*\"africa\" + 0.038*\"african\" + 0.031*\"south\" + 0.030*\"text\" + 0.028*\"color\" + 0.028*\"till\" + 0.025*\"black\" + 0.012*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 06:10:10,014 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:10:10,020 : INFO : topic diff=0.003302, rho=0.021310\n", + "2019-01-16 06:10:10,276 : INFO : PROGRESS: pass 0, at document #4406000/4922894\n", + "2019-01-16 06:10:12,233 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:12,789 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:10:12,790 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.014*\"sweden\"\n", + "2019-01-16 06:10:12,792 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.066*\"villag\" + 0.051*\"region\" + 0.040*\"north\" + 0.038*\"counti\" + 0.037*\"west\" + 0.037*\"east\" + 0.033*\"south\" + 0.033*\"municip\" + 0.032*\"provinc\"\n", + "2019-01-16 06:10:12,793 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", + "2019-01-16 06:10:12,794 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:10:12,800 : INFO : topic diff=0.003289, rho=0.021306\n", + "2019-01-16 06:10:13,063 : INFO : PROGRESS: pass 0, at document #4408000/4922894\n", + "2019-01-16 06:10:15,040 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:15,605 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", + "2019-01-16 06:10:15,608 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:10:15,609 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.071*\"octob\" + 0.071*\"septemb\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:10:15,611 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:10:15,615 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:10:15,621 : INFO : topic diff=0.003106, rho=0.021301\n", + "2019-01-16 06:10:15,895 : INFO : PROGRESS: pass 0, at document #4410000/4922894\n", + "2019-01-16 06:10:17,906 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:18,466 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.014*\"sweden\" + 0.014*\"swedish\" + 0.014*\"netherland\"\n", + "2019-01-16 06:10:18,468 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:10:18,469 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:10:18,471 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:10:18,473 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:10:18,480 : INFO : topic diff=0.002798, rho=0.021296\n", + "2019-01-16 06:10:18,745 : INFO : PROGRESS: pass 0, at document #4412000/4922894\n", + "2019-01-16 06:10:20,739 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:21,298 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.011*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:10:21,300 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:10:21,301 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"jazz\"\n", + "2019-01-16 06:10:21,302 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"vehicl\"\n", + "2019-01-16 06:10:21,304 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 06:10:21,310 : INFO : topic diff=0.003357, rho=0.021291\n", + "2019-01-16 06:10:21,580 : INFO : PROGRESS: pass 0, at document #4414000/4922894\n", + "2019-01-16 06:10:23,663 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:24,220 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", + "2019-01-16 06:10:24,221 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.076*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.019*\"ye\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korea\"\n", + "2019-01-16 06:10:24,223 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.031*\"high\" + 0.029*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:10:24,224 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.032*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", + "2019-01-16 06:10:24,225 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:10:24,231 : INFO : topic diff=0.003804, rho=0.021286\n", + "2019-01-16 06:10:24,486 : INFO : PROGRESS: pass 0, at document #4416000/4922894\n", + "2019-01-16 06:10:26,514 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:27,074 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", + "2019-01-16 06:10:27,076 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"year\" + 0.021*\"peopl\"\n", + "2019-01-16 06:10:27,077 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 06:10:27,079 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 06:10:27,080 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:10:27,086 : INFO : topic diff=0.002941, rho=0.021281\n", + "2019-01-16 06:10:27,392 : INFO : PROGRESS: pass 0, at document #4418000/4922894\n", + "2019-01-16 06:10:29,396 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:29,953 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:10:29,955 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.011*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:10:29,957 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:10:29,958 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 06:10:29,959 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:10:29,966 : INFO : topic diff=0.002798, rho=0.021277\n", + "2019-01-16 06:10:34,651 : INFO : -11.542 per-word bound, 2981.9 perplexity estimate based on a held-out corpus of 2000 documents with 568233 words\n", + "2019-01-16 06:10:34,652 : INFO : PROGRESS: pass 0, at document #4420000/4922894\n", + "2019-01-16 06:10:36,715 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:37,275 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.023*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:10:37,277 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", + "2019-01-16 06:10:37,278 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"singh\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:10:37,279 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"town\" + 0.023*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"west\" + 0.012*\"scottish\" + 0.012*\"manchest\"\n", + "2019-01-16 06:10:37,280 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.074*\"align\" + 0.057*\"left\" + 0.054*\"wikit\" + 0.052*\"style\" + 0.046*\"center\" + 0.035*\"list\" + 0.035*\"right\" + 0.031*\"text\" + 0.030*\"philippin\"\n", + "2019-01-16 06:10:37,286 : INFO : topic diff=0.002599, rho=0.021272\n", + "2019-01-16 06:10:37,562 : INFO : PROGRESS: pass 0, at document #4422000/4922894\n", + "2019-01-16 06:10:39,629 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:40,188 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", + "2019-01-16 06:10:40,190 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:10:40,192 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:10:40,193 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.023*\"japanes\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.019*\"chines\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"malaysia\"\n", + "2019-01-16 06:10:40,194 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:10:40,200 : INFO : topic diff=0.003375, rho=0.021267\n", + "2019-01-16 06:10:40,465 : INFO : PROGRESS: pass 0, at document #4424000/4922894\n", + "2019-01-16 06:10:42,455 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:43,014 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:10:43,016 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", + "2019-01-16 06:10:43,017 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", + "2019-01-16 06:10:43,018 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.011*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:10:43,020 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"year\" + 0.021*\"peopl\"\n", + "2019-01-16 06:10:43,025 : INFO : topic diff=0.002828, rho=0.021262\n", + "2019-01-16 06:10:43,308 : INFO : PROGRESS: pass 0, at document #4426000/4922894\n", + "2019-01-16 06:10:45,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:45,931 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:10:45,933 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:10:45,934 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:10:45,936 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.021*\"command\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:10:45,937 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"forest\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:10:45,944 : INFO : topic diff=0.002663, rho=0.021257\n", + "2019-01-16 06:10:46,216 : INFO : PROGRESS: pass 0, at document #4428000/4922894\n", + "2019-01-16 06:10:48,308 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:48,868 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:10:48,870 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:10:48,871 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:10:48,873 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:10:48,874 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.037*\"west\" + 0.037*\"east\" + 0.034*\"municip\" + 0.033*\"provinc\" + 0.032*\"south\"\n", + "2019-01-16 06:10:48,880 : INFO : topic diff=0.003352, rho=0.021253\n", + "2019-01-16 06:10:49,138 : INFO : PROGRESS: pass 0, at document #4430000/4922894\n", + "2019-01-16 06:10:51,159 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:51,718 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.021*\"command\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:10:51,720 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:10:51,721 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"servic\" + 0.007*\"new\"\n", + "2019-01-16 06:10:51,724 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.024*\"lee\" + 0.023*\"japanes\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.019*\"chines\" + 0.014*\"indonesia\" + 0.014*\"malaysia\" + 0.014*\"thailand\"\n", + "2019-01-16 06:10:51,725 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"year\" + 0.021*\"peopl\"\n", + "2019-01-16 06:10:51,733 : INFO : topic diff=0.003068, rho=0.021248\n", + "2019-01-16 06:10:52,001 : INFO : PROGRESS: pass 0, at document #4432000/4922894\n", + "2019-01-16 06:10:53,986 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:54,547 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:10:54,549 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"year\" + 0.021*\"peopl\"\n", + "2019-01-16 06:10:54,550 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"church\"\n", + "2019-01-16 06:10:54,552 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", + "2019-01-16 06:10:54,553 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:10:54,559 : INFO : topic diff=0.002714, rho=0.021243\n", + "2019-01-16 06:10:54,822 : INFO : PROGRESS: pass 0, at document #4434000/4922894\n", + "2019-01-16 06:10:56,836 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:10:57,399 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", + "2019-01-16 06:10:57,401 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.037*\"east\" + 0.037*\"west\" + 0.033*\"municip\" + 0.033*\"south\" + 0.033*\"provinc\"\n", + "2019-01-16 06:10:57,402 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:10:57,404 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.074*\"align\" + 0.058*\"left\" + 0.055*\"wikit\" + 0.052*\"style\" + 0.046*\"center\" + 0.035*\"right\" + 0.034*\"list\" + 0.030*\"text\" + 0.029*\"philippin\"\n", + "2019-01-16 06:10:57,405 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.012*\"orchestra\" + 0.010*\"jazz\"\n", + "2019-01-16 06:10:57,411 : INFO : topic diff=0.003070, rho=0.021238\n", + "2019-01-16 06:10:57,668 : INFO : PROGRESS: pass 0, at document #4436000/4922894\n", + "2019-01-16 06:10:59,623 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:00,181 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:11:00,183 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"singh\" + 0.011*\"sri\"\n", + "2019-01-16 06:11:00,184 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"fleet\"\n", + "2019-01-16 06:11:00,186 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.034*\"russian\" + 0.026*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"israel\" + 0.014*\"poland\" + 0.013*\"republ\"\n", + "2019-01-16 06:11:00,187 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.020*\"match\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:11:00,193 : INFO : topic diff=0.002736, rho=0.021233\n", + "2019-01-16 06:11:00,453 : INFO : PROGRESS: pass 0, at document #4438000/4922894\n", + "2019-01-16 06:11:02,468 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:03,024 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:11:03,025 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.037*\"counti\" + 0.037*\"east\" + 0.037*\"west\" + 0.033*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:11:03,026 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"cancer\"\n", + "2019-01-16 06:11:03,028 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:11:03,029 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 06:11:03,035 : INFO : topic diff=0.003348, rho=0.021229\n", + "2019-01-16 06:11:07,628 : INFO : -11.705 per-word bound, 3338.8 perplexity estimate based on a held-out corpus of 2000 documents with 556923 words\n", + "2019-01-16 06:11:07,628 : INFO : PROGRESS: pass 0, at document #4440000/4922894\n", + "2019-01-16 06:11:09,649 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:10,208 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.034*\"russian\" + 0.025*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"israel\" + 0.014*\"poland\" + 0.014*\"republ\"\n", + "2019-01-16 06:11:10,209 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.012*\"orchestra\" + 0.010*\"jazz\"\n", + "2019-01-16 06:11:10,210 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:11:10,212 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.055*\"new\" + 0.041*\"china\" + 0.037*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:11:10,213 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.043*\"africa\" + 0.039*\"african\" + 0.032*\"south\" + 0.028*\"text\" + 0.027*\"color\" + 0.027*\"till\" + 0.025*\"black\" + 0.012*\"cape\" + 0.012*\"storm\"\n", + "2019-01-16 06:11:10,218 : INFO : topic diff=0.002502, rho=0.021224\n", + "2019-01-16 06:11:10,526 : INFO : PROGRESS: pass 0, at document #4442000/4922894\n", + "2019-01-16 06:11:12,587 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:13,146 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:11:13,147 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 06:11:13,148 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.023*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:11:13,150 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.012*\"orchestra\" + 0.011*\"jazz\"\n", + "2019-01-16 06:11:13,151 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.011*\"singl\"\n", + "2019-01-16 06:11:13,157 : INFO : topic diff=0.003384, rho=0.021219\n", + "2019-01-16 06:11:13,408 : INFO : PROGRESS: pass 0, at document #4444000/4922894\n", + "2019-01-16 06:11:15,369 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:15,928 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 06:11:15,929 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:11:15,930 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:11:15,932 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.041*\"colleg\" + 0.040*\"student\" + 0.037*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:11:15,933 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"town\" + 0.023*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.013*\"wale\" + 0.013*\"scottish\" + 0.013*\"west\"\n", + "2019-01-16 06:11:15,939 : INFO : topic diff=0.003372, rho=0.021214\n", + "2019-01-16 06:11:16,197 : INFO : PROGRESS: pass 0, at document #4446000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:11:18,183 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:18,739 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:11:18,741 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:11:18,742 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 06:11:18,744 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:11:18,745 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.024*\"town\" + 0.023*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.013*\"west\"\n", + "2019-01-16 06:11:18,751 : INFO : topic diff=0.003340, rho=0.021209\n", + "2019-01-16 06:11:19,017 : INFO : PROGRESS: pass 0, at document #4448000/4922894\n", + "2019-01-16 06:11:21,151 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:21,709 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:11:21,711 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", + "2019-01-16 06:11:21,712 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:11:21,714 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:11:21,716 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.023*\"lee\" + 0.023*\"japanes\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.018*\"chines\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"asian\"\n", + "2019-01-16 06:11:21,722 : INFO : topic diff=0.004072, rho=0.021205\n", + "2019-01-16 06:11:21,999 : INFO : PROGRESS: pass 0, at document #4450000/4922894\n", + "2019-01-16 06:11:24,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:24,583 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", + "2019-01-16 06:11:24,584 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.064*\"august\" + 0.063*\"april\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 06:11:24,586 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", + "2019-01-16 06:11:24,587 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:11:24,590 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.004*\"materi\"\n", + "2019-01-16 06:11:24,596 : INFO : topic diff=0.002937, rho=0.021200\n", + "2019-01-16 06:11:24,859 : INFO : PROGRESS: pass 0, at document #4452000/4922894\n", + "2019-01-16 06:11:26,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:27,398 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:11:27,399 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:11:27,401 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:11:27,402 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:11:27,403 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.024*\"lee\" + 0.023*\"japanes\" + 0.020*\"kim\" + 0.019*\"singapor\" + 0.018*\"chines\" + 0.015*\"malaysia\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 06:11:27,409 : INFO : topic diff=0.002788, rho=0.021195\n", + "2019-01-16 06:11:27,680 : INFO : PROGRESS: pass 0, at document #4454000/4922894\n", + "2019-01-16 06:11:29,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:30,286 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 06:11:30,287 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:11:30,289 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:11:30,290 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.072*\"align\" + 0.056*\"left\" + 0.056*\"wikit\" + 0.052*\"style\" + 0.047*\"center\" + 0.038*\"right\" + 0.035*\"list\" + 0.031*\"philippin\" + 0.031*\"text\"\n", + "2019-01-16 06:11:30,292 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:11:30,297 : INFO : topic diff=0.003452, rho=0.021190\n", + "2019-01-16 06:11:30,584 : INFO : PROGRESS: pass 0, at document #4456000/4922894\n", + "2019-01-16 06:11:32,633 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:33,189 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", + "2019-01-16 06:11:33,191 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 06:11:33,192 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:11:33,194 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.008*\"fleet\"\n", + "2019-01-16 06:11:33,195 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:11:33,201 : INFO : topic diff=0.003855, rho=0.021186\n", + "2019-01-16 06:11:33,462 : INFO : PROGRESS: pass 0, at document #4458000/4922894\n", + "2019-01-16 06:11:35,473 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:36,047 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.016*\"thoma\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"ireland\" + 0.013*\"henri\"\n", + "2019-01-16 06:11:36,048 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.014*\"israel\" + 0.014*\"republ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:11:36,049 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:11:36,051 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:11:36,052 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.064*\"august\" + 0.063*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 06:11:36,058 : INFO : topic diff=0.002902, rho=0.021181\n", + "2019-01-16 06:11:40,617 : INFO : -11.404 per-word bound, 2709.0 perplexity estimate based on a held-out corpus of 2000 documents with 559145 words\n", + "2019-01-16 06:11:40,618 : INFO : PROGRESS: pass 0, at document #4460000/4922894\n", + "2019-01-16 06:11:42,603 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:43,167 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:11:43,169 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:11:43,170 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:11:43,171 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"singl\"\n", + "2019-01-16 06:11:43,172 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.014*\"israel\" + 0.014*\"republ\"\n", + "2019-01-16 06:11:43,178 : INFO : topic diff=0.003353, rho=0.021176\n", + "2019-01-16 06:11:43,444 : INFO : PROGRESS: pass 0, at document #4462000/4922894\n", + "2019-01-16 06:11:45,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:45,935 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:11:45,936 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"pakistan\" + 0.016*\"www\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\"\n", + "2019-01-16 06:11:45,937 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:11:45,939 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 06:11:45,942 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 06:11:45,948 : INFO : topic diff=0.003684, rho=0.021171\n", + "2019-01-16 06:11:46,221 : INFO : PROGRESS: pass 0, at document #4464000/4922894\n", + "2019-01-16 06:11:48,203 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:48,763 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 06:11:48,765 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 06:11:48,766 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", + "2019-01-16 06:11:48,767 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.023*\"unit\" + 0.023*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.016*\"citi\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", + "2019-01-16 06:11:48,769 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", + "2019-01-16 06:11:48,774 : INFO : topic diff=0.002563, rho=0.021167\n", + "2019-01-16 06:11:49,046 : INFO : PROGRESS: pass 0, at document #4466000/4922894\n", + "2019-01-16 06:11:51,074 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:51,631 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.024*\"lee\" + 0.022*\"japanes\" + 0.020*\"kim\" + 0.020*\"singapor\" + 0.018*\"chines\" + 0.015*\"malaysia\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 06:11:51,633 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:11:51,634 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", + "2019-01-16 06:11:51,636 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:11:51,637 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:11:51,643 : INFO : topic diff=0.003078, rho=0.021162\n", + "2019-01-16 06:11:51,939 : INFO : PROGRESS: pass 0, at document #4468000/4922894\n", + "2019-01-16 06:11:53,968 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:54,526 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:11:54,527 : INFO : topic #34 (0.020): 0.083*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.017*\"korea\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"quebec\"\n", + "2019-01-16 06:11:54,528 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"match\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 06:11:54,530 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:11:54,531 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:11:54,537 : INFO : topic diff=0.003015, rho=0.021157\n", + "2019-01-16 06:11:54,806 : INFO : PROGRESS: pass 0, at document #4470000/4922894\n", + "2019-01-16 06:11:56,788 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:11:57,345 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"product\" + 0.011*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:11:57,347 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", + "2019-01-16 06:11:57,348 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.018*\"melbourn\" + 0.015*\"queensland\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:11:57,349 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 06:11:57,351 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", + "2019-01-16 06:11:57,356 : INFO : topic diff=0.003001, rho=0.021152\n", + "2019-01-16 06:11:57,617 : INFO : PROGRESS: pass 0, at document #4472000/4922894\n", + "2019-01-16 06:11:59,593 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:00,151 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:12:00,152 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", + "2019-01-16 06:12:00,153 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"scotland\" + 0.016*\"citi\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", + "2019-01-16 06:12:00,155 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:12:00,156 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 06:12:00,163 : INFO : topic diff=0.003038, rho=0.021148\n", + "2019-01-16 06:12:00,553 : INFO : PROGRESS: pass 0, at document #4474000/4922894\n", + "2019-01-16 06:12:02,520 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:03,081 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.075*\"align\" + 0.063*\"left\" + 0.056*\"wikit\" + 0.050*\"style\" + 0.047*\"center\" + 0.038*\"right\" + 0.034*\"list\" + 0.030*\"text\" + 0.030*\"philippin\"\n", + "2019-01-16 06:12:03,082 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.062*\"august\" + 0.062*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", + "2019-01-16 06:12:03,083 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\"\n", + "2019-01-16 06:12:03,084 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.043*\"africa\" + 0.038*\"african\" + 0.032*\"south\" + 0.029*\"text\" + 0.029*\"color\" + 0.027*\"till\" + 0.024*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", + "2019-01-16 06:12:03,085 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:12:03,091 : INFO : topic diff=0.003359, rho=0.021143\n", + "2019-01-16 06:12:03,367 : INFO : PROGRESS: pass 0, at document #4476000/4922894\n", + "2019-01-16 06:12:05,378 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:05,939 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:12:05,940 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"match\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:12:05,942 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:12:05,944 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 06:12:05,945 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:12:05,951 : INFO : topic diff=0.003250, rho=0.021138\n", + "2019-01-16 06:12:06,221 : INFO : PROGRESS: pass 0, at document #4478000/4922894\n", + "2019-01-16 06:12:08,235 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:08,792 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"church\"\n", + "2019-01-16 06:12:08,793 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\"\n", + "2019-01-16 06:12:08,795 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.065*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.033*\"municip\" + 0.032*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:12:08,796 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:12:08,797 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 06:12:08,803 : INFO : topic diff=0.003926, rho=0.021134\n", + "2019-01-16 06:12:13,544 : INFO : -11.550 per-word bound, 2998.9 perplexity estimate based on a held-out corpus of 2000 documents with 586840 words\n", + "2019-01-16 06:12:13,545 : INFO : PROGRESS: pass 0, at document #4480000/4922894\n", + "2019-01-16 06:12:15,600 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:16,158 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:12:16,159 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 06:12:16,161 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:12:16,162 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"thoma\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 06:12:16,163 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.065*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"west\" + 0.037*\"counti\" + 0.033*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:12:16,169 : INFO : topic diff=0.003378, rho=0.021129\n", + "2019-01-16 06:12:16,450 : INFO : PROGRESS: pass 0, at document #4482000/4922894\n", + "2019-01-16 06:12:18,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:19,093 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.006*\"group\" + 0.006*\"support\"\n", + "2019-01-16 06:12:19,094 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:12:19,096 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 06:12:19,097 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:12:19,098 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 06:12:19,104 : INFO : topic diff=0.003094, rho=0.021124\n", + "2019-01-16 06:12:19,375 : INFO : PROGRESS: pass 0, at document #4484000/4922894\n", + "2019-01-16 06:12:21,405 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:21,966 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.009*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:12:21,967 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"year\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 06:12:21,969 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:12:21,970 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:12:21,972 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 06:12:21,978 : INFO : topic diff=0.003722, rho=0.021119\n", + "2019-01-16 06:12:22,249 : INFO : PROGRESS: pass 0, at document #4486000/4922894\n", + "2019-01-16 06:12:24,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:24,785 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:12:24,787 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:12:24,788 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"cancer\"\n", + "2019-01-16 06:12:24,790 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:12:24,791 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 06:12:24,797 : INFO : topic diff=0.003464, rho=0.021115\n", + "2019-01-16 06:12:25,050 : INFO : PROGRESS: pass 0, at document #4488000/4922894\n", + "2019-01-16 06:12:26,991 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:27,548 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", + "2019-01-16 06:12:27,550 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", + "2019-01-16 06:12:27,551 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:12:27,552 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"year\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", + "2019-01-16 06:12:27,554 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 06:12:27,560 : INFO : topic diff=0.003950, rho=0.021110\n", + "2019-01-16 06:12:27,827 : INFO : PROGRESS: pass 0, at document #4490000/4922894\n", + "2019-01-16 06:12:29,793 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:30,350 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 06:12:30,352 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.034*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 06:12:30,353 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:12:30,355 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"church\"\n", + "2019-01-16 06:12:30,356 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:12:30,362 : INFO : topic diff=0.002985, rho=0.021105\n", + "2019-01-16 06:12:30,628 : INFO : PROGRESS: pass 0, at document #4492000/4922894\n", + "2019-01-16 06:12:32,684 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:33,242 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"church\"\n", + "2019-01-16 06:12:33,244 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:12:33,246 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 06:12:33,248 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"protein\"\n", + "2019-01-16 06:12:33,249 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", + "2019-01-16 06:12:33,255 : INFO : topic diff=0.003115, rho=0.021101\n", + "2019-01-16 06:12:33,557 : INFO : PROGRESS: pass 0, at document #4494000/4922894\n", + "2019-01-16 06:12:35,575 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:36,132 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:12:36,134 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:12:36,135 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.057*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:12:36,136 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:12:36,138 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:12:36,143 : INFO : topic diff=0.003015, rho=0.021096\n", + "2019-01-16 06:12:36,403 : INFO : PROGRESS: pass 0, at document #4496000/4922894\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:12:38,359 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:38,916 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 06:12:38,918 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 06:12:38,919 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.057*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:12:38,920 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:12:38,921 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:12:38,927 : INFO : topic diff=0.003405, rho=0.021091\n", + "2019-01-16 06:12:39,197 : INFO : PROGRESS: pass 0, at document #4498000/4922894\n", + "2019-01-16 06:12:41,261 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:41,819 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:12:41,821 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:12:41,822 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:12:41,824 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:12:41,825 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.062*\"april\" + 0.062*\"decemb\" + 0.062*\"june\"\n", + "2019-01-16 06:12:41,830 : INFO : topic diff=0.004120, rho=0.021087\n", + "2019-01-16 06:12:46,414 : INFO : -11.851 per-word bound, 3693.5 perplexity estimate based on a held-out corpus of 2000 documents with 535739 words\n", + "2019-01-16 06:12:46,415 : INFO : PROGRESS: pass 0, at document #4500000/4922894\n", + "2019-01-16 06:12:48,430 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:48,988 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", + "2019-01-16 06:12:48,990 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"materi\"\n", + "2019-01-16 06:12:48,991 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:12:48,993 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.070*\"align\" + 0.060*\"left\" + 0.056*\"wikit\" + 0.050*\"style\" + 0.044*\"center\" + 0.038*\"right\" + 0.033*\"list\" + 0.032*\"philippin\" + 0.030*\"text\"\n", + "2019-01-16 06:12:48,995 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\" + 0.004*\"friend\"\n", + "2019-01-16 06:12:49,001 : INFO : topic diff=0.003611, rho=0.021082\n", + "2019-01-16 06:12:49,280 : INFO : PROGRESS: pass 0, at document #4502000/4922894\n", + "2019-01-16 06:12:51,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:51,894 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.049*\"region\" + 0.038*\"north\" + 0.038*\"east\" + 0.038*\"west\" + 0.036*\"counti\" + 0.033*\"municip\" + 0.033*\"south\" + 0.030*\"provinc\"\n", + "2019-01-16 06:12:51,896 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 06:12:51,897 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 06:12:51,899 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 06:12:51,900 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"space\"\n", + "2019-01-16 06:12:51,908 : INFO : topic diff=0.003149, rho=0.021077\n", + "2019-01-16 06:12:52,181 : INFO : PROGRESS: pass 0, at document #4504000/4922894\n", + "2019-01-16 06:12:54,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:54,766 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", + "2019-01-16 06:12:54,768 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:12:54,770 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:12:54,771 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"world\"\n", + "2019-01-16 06:12:54,775 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.036*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 06:12:54,782 : INFO : topic diff=0.003089, rho=0.021072\n", + "2019-01-16 06:12:55,049 : INFO : PROGRESS: pass 0, at document #4506000/4922894\n", + "2019-01-16 06:12:57,091 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:12:57,648 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 06:12:57,649 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 06:12:57,650 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:12:57,652 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 06:12:57,653 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 06:12:57,659 : INFO : topic diff=0.003348, rho=0.021068\n", + "2019-01-16 06:12:57,928 : INFO : PROGRESS: pass 0, at document #4508000/4922894\n", + "2019-01-16 06:12:59,962 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:00,521 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.017*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"naval\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"fleet\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:13:00,522 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", + "2019-01-16 06:13:00,523 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:13:00,526 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.029*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"piano\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.011*\"opera\"\n", + "2019-01-16 06:13:00,527 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"citi\" + 0.009*\"place\"\n", + "2019-01-16 06:13:00,534 : INFO : topic diff=0.005142, rho=0.021063\n", + "2019-01-16 06:13:00,800 : INFO : PROGRESS: pass 0, at document #4510000/4922894\n", + "2019-01-16 06:13:02,769 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:03,331 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", + "2019-01-16 06:13:03,333 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 06:13:03,335 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 06:13:03,336 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.028*\"text\" + 0.027*\"color\" + 0.025*\"till\" + 0.023*\"black\" + 0.014*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 06:13:03,337 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:13:03,343 : INFO : topic diff=0.003016, rho=0.021058\n", + "2019-01-16 06:13:03,604 : INFO : PROGRESS: pass 0, at document #4512000/4922894\n", + "2019-01-16 06:13:05,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:06,156 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", + "2019-01-16 06:13:06,157 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:13:06,159 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:13:06,160 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 06:13:06,161 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:13:06,167 : INFO : topic diff=0.002920, rho=0.021054\n", + "2019-01-16 06:13:06,431 : INFO : PROGRESS: pass 0, at document #4514000/4922894\n", + "2019-01-16 06:13:08,432 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:08,992 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", + "2019-01-16 06:13:08,993 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:13:08,995 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"peopl\"\n", + "2019-01-16 06:13:08,996 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:13:08,997 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", + "2019-01-16 06:13:09,004 : INFO : topic diff=0.003465, rho=0.021049\n", + "2019-01-16 06:13:09,278 : INFO : PROGRESS: pass 0, at document #4516000/4922894\n", + "2019-01-16 06:13:11,286 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:11,842 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"world\"\n", + "2019-01-16 06:13:11,844 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"columbia\" + 0.016*\"korean\"\n", + "2019-01-16 06:13:11,845 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:13:11,847 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:13:11,848 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.026*\"lee\" + 0.022*\"japanes\" + 0.019*\"kim\" + 0.019*\"singapor\" + 0.018*\"chines\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"asia\"\n", + "2019-01-16 06:13:11,854 : INFO : topic diff=0.003145, rho=0.021044\n", + "2019-01-16 06:13:12,117 : INFO : PROGRESS: pass 0, at document #4518000/4922894\n", + "2019-01-16 06:13:14,149 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:14,709 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:13:14,711 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.030*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:13:14,712 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", + "2019-01-16 06:13:14,714 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", + "2019-01-16 06:13:14,715 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.027*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:13:14,721 : INFO : topic diff=0.002510, rho=0.021040\n", + "2019-01-16 06:13:19,487 : INFO : -11.595 per-word bound, 3094.0 perplexity estimate based on a held-out corpus of 2000 documents with 562596 words\n", + "2019-01-16 06:13:19,488 : INFO : PROGRESS: pass 0, at document #4520000/4922894\n", + "2019-01-16 06:13:21,642 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:22,199 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:13:22,201 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"record\" + 0.025*\"releas\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:13:22,203 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:13:22,205 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:13:22,207 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", + "2019-01-16 06:13:22,213 : INFO : topic diff=0.003267, rho=0.021035\n", + "2019-01-16 06:13:22,475 : INFO : PROGRESS: pass 0, at document #4522000/4922894\n", + "2019-01-16 06:13:24,458 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:25,015 : INFO : topic #2 (0.020): 0.059*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:13:25,016 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:13:25,017 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"sir\" + 0.015*\"thoma\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:13:25,019 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 06:13:25,020 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:13:25,026 : INFO : topic diff=0.002480, rho=0.021031\n", + "2019-01-16 06:13:25,302 : INFO : PROGRESS: pass 0, at document #4524000/4922894\n", + "2019-01-16 06:13:27,285 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:27,841 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:13:27,843 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.018*\"railwai\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.012*\"bridg\" + 0.011*\"area\"\n", + "2019-01-16 06:13:27,844 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:13:27,845 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.069*\"align\" + 0.061*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.044*\"center\" + 0.036*\"right\" + 0.034*\"list\" + 0.033*\"philippin\" + 0.030*\"text\"\n", + "2019-01-16 06:13:27,846 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"defeat\" + 0.012*\"world\"\n", + "2019-01-16 06:13:27,852 : INFO : topic diff=0.003313, rho=0.021026\n", + "2019-01-16 06:13:28,120 : INFO : PROGRESS: pass 0, at document #4526000/4922894\n", + "2019-01-16 06:13:30,141 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:30,700 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.040*\"east\" + 0.039*\"north\" + 0.039*\"west\" + 0.036*\"counti\" + 0.034*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", + "2019-01-16 06:13:30,701 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.029*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\"\n", + "2019-01-16 06:13:30,702 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 06:13:30,703 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 06:13:30,704 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:13:30,711 : INFO : topic diff=0.003488, rho=0.021021\n", + "2019-01-16 06:13:30,971 : INFO : PROGRESS: pass 0, at document #4528000/4922894\n", + "2019-01-16 06:13:32,974 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:33,531 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:13:33,533 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:13:33,534 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 06:13:33,536 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", + "2019-01-16 06:13:33,537 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:13:33,543 : INFO : topic diff=0.002976, rho=0.021017\n", + "2019-01-16 06:13:33,818 : INFO : PROGRESS: pass 0, at document #4530000/4922894\n", + "2019-01-16 06:13:35,844 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:36,406 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:13:36,408 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:13:36,409 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.067*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.062*\"april\" + 0.062*\"august\" + 0.061*\"decemb\" + 0.060*\"june\"\n", + "2019-01-16 06:13:36,411 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.037*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 06:13:36,413 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"sir\" + 0.015*\"thoma\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:13:36,420 : INFO : topic diff=0.003299, rho=0.021012\n", + "2019-01-16 06:13:36,695 : INFO : PROGRESS: pass 0, at document #4532000/4922894\n", + "2019-01-16 06:13:38,761 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:39,323 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:13:39,325 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"korean\" + 0.016*\"quebec\" + 0.015*\"columbia\"\n", + "2019-01-16 06:13:39,326 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.029*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.014*\"piano\" + 0.012*\"orchestra\" + 0.011*\"opera\"\n", + "2019-01-16 06:13:39,327 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:13:39,328 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:13:39,334 : INFO : topic diff=0.003486, rho=0.021007\n", + "2019-01-16 06:13:39,611 : INFO : PROGRESS: pass 0, at document #4534000/4922894\n", + "2019-01-16 06:13:41,638 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:42,196 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 06:13:42,198 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:13:42,200 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.058*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:13:42,201 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:13:42,203 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:13:42,209 : INFO : topic diff=0.003328, rho=0.021003\n", + "2019-01-16 06:13:42,468 : INFO : PROGRESS: pass 0, at document #4536000/4922894\n", + "2019-01-16 06:13:44,410 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:44,969 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"cancer\"\n", + "2019-01-16 06:13:44,971 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:13:44,973 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.020*\"point\" + 0.020*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.011*\"singl\"\n", + "2019-01-16 06:13:44,974 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.015*\"citi\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 06:13:44,976 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"includ\"\n", + "2019-01-16 06:13:44,982 : INFO : topic diff=0.002916, rho=0.020998\n", + "2019-01-16 06:13:45,243 : INFO : PROGRESS: pass 0, at document #4538000/4922894\n", + "2019-01-16 06:13:47,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:47,796 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.029*\"hong\" + 0.025*\"lee\" + 0.024*\"japanes\" + 0.019*\"singapor\" + 0.019*\"chines\" + 0.019*\"kim\" + 0.014*\"malaysia\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 06:13:47,798 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:13:47,799 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:13:47,800 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 06:13:47,801 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"year\"\n", + "2019-01-16 06:13:47,807 : INFO : topic diff=0.003381, rho=0.020993\n", + "2019-01-16 06:13:52,532 : INFO : -11.595 per-word bound, 3093.7 perplexity estimate based on a held-out corpus of 2000 documents with 563337 words\n", + "2019-01-16 06:13:52,533 : INFO : PROGRESS: pass 0, at document #4540000/4922894\n", + "2019-01-16 06:13:54,562 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:55,123 : INFO : topic #35 (0.020): 0.029*\"kong\" + 0.029*\"hong\" + 0.025*\"lee\" + 0.024*\"japanes\" + 0.019*\"singapor\" + 0.019*\"kim\" + 0.018*\"chines\" + 0.014*\"malaysia\" + 0.014*\"asian\" + 0.014*\"indonesia\"\n", + "2019-01-16 06:13:55,124 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:13:55,125 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korea\" + 0.017*\"british\" + 0.016*\"korean\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", + "2019-01-16 06:13:55,127 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:13:55,128 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.058*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:13:55,134 : INFO : topic diff=0.003400, rho=0.020989\n", + "2019-01-16 06:13:55,411 : INFO : PROGRESS: pass 0, at document #4542000/4922894\n", + "2019-01-16 06:13:57,421 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:13:57,981 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:13:57,982 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", + "2019-01-16 06:13:57,983 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 06:13:57,985 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:13:57,987 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:13:57,993 : INFO : topic diff=0.003037, rho=0.020984\n", + "2019-01-16 06:13:58,270 : INFO : PROGRESS: pass 0, at document #4544000/4922894\n", + "2019-01-16 06:14:00,291 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:00,855 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.020*\"point\" + 0.020*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:14:00,856 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:14:00,859 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.029*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.014*\"piano\" + 0.012*\"orchestra\" + 0.012*\"opera\"\n", + "2019-01-16 06:14:00,860 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.063*\"april\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.061*\"june\"\n", + "2019-01-16 06:14:00,861 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:14:00,868 : INFO : topic diff=0.002983, rho=0.020980\n", + "2019-01-16 06:14:01,169 : INFO : PROGRESS: pass 0, at document #4546000/4922894\n", + "2019-01-16 06:14:03,165 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:03,722 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:14:03,724 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", + "2019-01-16 06:14:03,725 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 06:14:03,727 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"sir\" + 0.015*\"thoma\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:14:03,728 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.041*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.026*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.012*\"storm\"\n", + "2019-01-16 06:14:03,734 : INFO : topic diff=0.003088, rho=0.020975\n", + "2019-01-16 06:14:04,018 : INFO : PROGRESS: pass 0, at document #4548000/4922894\n", + "2019-01-16 06:14:06,074 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:06,631 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.068*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.051*\"style\" + 0.042*\"center\" + 0.037*\"right\" + 0.037*\"list\" + 0.033*\"philippin\" + 0.029*\"text\"\n", + "2019-01-16 06:14:06,633 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.013*\"republican\"\n", + "2019-01-16 06:14:06,634 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:14:06,635 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:14:06,636 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:14:06,642 : INFO : topic diff=0.003474, rho=0.020970\n", + "2019-01-16 06:14:06,936 : INFO : PROGRESS: pass 0, at document #4550000/4922894\n", + "2019-01-16 06:14:08,985 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:09,542 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:14:09,544 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.039*\"east\" + 0.039*\"north\" + 0.039*\"west\" + 0.038*\"counti\" + 0.034*\"south\" + 0.032*\"municip\" + 0.029*\"provinc\"\n", + "2019-01-16 06:14:09,545 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"peopl\"\n", + "2019-01-16 06:14:09,546 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.067*\"align\" + 0.058*\"left\" + 0.057*\"wikit\" + 0.051*\"style\" + 0.042*\"center\" + 0.037*\"right\" + 0.037*\"list\" + 0.033*\"philippin\" + 0.029*\"text\"\n", + "2019-01-16 06:14:09,547 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 06:14:09,553 : INFO : topic diff=0.003570, rho=0.020966\n", + "2019-01-16 06:14:09,831 : INFO : PROGRESS: pass 0, at document #4552000/4922894\n", + "2019-01-16 06:14:11,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:12,446 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 06:14:12,448 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:14:12,449 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", + "2019-01-16 06:14:12,451 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:14:12,452 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", + "2019-01-16 06:14:12,459 : INFO : topic diff=0.003346, rho=0.020961\n", + "2019-01-16 06:14:12,726 : INFO : PROGRESS: pass 0, at document #4554000/4922894\n", + "2019-01-16 06:14:14,742 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:15,298 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"korea\" + 0.016*\"korean\" + 0.015*\"quebec\" + 0.015*\"north\"\n", + "2019-01-16 06:14:15,300 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.057*\"australian\" + 0.054*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:14:15,301 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"year\"\n", + "2019-01-16 06:14:15,302 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.025*\"japanes\" + 0.024*\"lee\" + 0.019*\"chines\" + 0.019*\"singapor\" + 0.019*\"kim\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asian\"\n", + "2019-01-16 06:14:15,305 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:14:15,311 : INFO : topic diff=0.003463, rho=0.020956\n", + "2019-01-16 06:14:15,562 : INFO : PROGRESS: pass 0, at document #4556000/4922894\n", + "2019-01-16 06:14:17,477 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:18,039 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 06:14:18,040 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", + "2019-01-16 06:14:18,042 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 06:14:18,043 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 06:14:18,044 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:14:18,050 : INFO : topic diff=0.003152, rho=0.020952\n", + "2019-01-16 06:14:18,327 : INFO : PROGRESS: pass 0, at document #4558000/4922894\n", + "2019-01-16 06:14:20,375 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:20,932 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:14:20,934 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", + "2019-01-16 06:14:20,935 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.071*\"septemb\" + 0.071*\"octob\" + 0.065*\"januari\" + 0.063*\"april\" + 0.062*\"novemb\" + 0.062*\"juli\" + 0.061*\"august\" + 0.060*\"decemb\" + 0.059*\"june\"\n", + "2019-01-16 06:14:20,937 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:14:20,938 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:14:20,944 : INFO : topic diff=0.003321, rho=0.020947\n", + "2019-01-16 06:14:25,560 : INFO : -11.723 per-word bound, 3379.4 perplexity estimate based on a held-out corpus of 2000 documents with 548987 words\n", + "2019-01-16 06:14:25,561 : INFO : PROGRESS: pass 0, at document #4560000/4922894\n", + "2019-01-16 06:14:27,573 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:28,131 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"year\"\n", + "2019-01-16 06:14:28,133 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.026*\"japanes\" + 0.024*\"lee\" + 0.019*\"chines\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asian\"\n", + "2019-01-16 06:14:28,134 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.025*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 06:14:28,136 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:14:28,137 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", + "2019-01-16 06:14:28,143 : INFO : topic diff=0.003355, rho=0.020943\n", + "2019-01-16 06:14:28,412 : INFO : PROGRESS: pass 0, at document #4562000/4922894\n", + "2019-01-16 06:14:30,397 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:30,956 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 06:14:30,957 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.026*\"japanes\" + 0.023*\"lee\" + 0.019*\"singapor\" + 0.018*\"chines\" + 0.018*\"kim\" + 0.015*\"asia\" + 0.014*\"thailand\" + 0.014*\"indonesia\"\n", + "2019-01-16 06:14:30,959 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:14:30,961 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:14:30,962 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:14:30,970 : INFO : topic diff=0.003155, rho=0.020938\n", + "2019-01-16 06:14:31,249 : INFO : PROGRESS: pass 0, at document #4564000/4922894\n", + "2019-01-16 06:14:33,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:33,793 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:14:33,794 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:14:33,796 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.065*\"align\" + 0.058*\"wikit\" + 0.057*\"left\" + 0.051*\"style\" + 0.042*\"center\" + 0.037*\"right\" + 0.037*\"list\" + 0.033*\"philippin\" + 0.029*\"text\"\n", + "2019-01-16 06:14:33,797 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:14:33,800 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.013*\"senat\"\n", + "2019-01-16 06:14:33,806 : INFO : topic diff=0.003258, rho=0.020934\n", + "2019-01-16 06:14:34,089 : INFO : PROGRESS: pass 0, at document #4566000/4922894\n", + "2019-01-16 06:14:36,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:36,692 : INFO : topic #18 (0.020): 0.011*\"water\" + 0.007*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", + "2019-01-16 06:14:36,694 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 06:14:36,695 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:14:36,696 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", + "2019-01-16 06:14:36,698 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:14:36,704 : INFO : topic diff=0.003567, rho=0.020929\n", + "2019-01-16 06:14:36,986 : INFO : PROGRESS: pass 0, at document #4568000/4922894\n", + "2019-01-16 06:14:39,011 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:39,569 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"sir\" + 0.015*\"thoma\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", + "2019-01-16 06:14:39,571 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"method\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 06:14:39,572 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.039*\"west\" + 0.039*\"east\" + 0.038*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", + "2019-01-16 06:14:39,573 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:14:39,574 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", + "2019-01-16 06:14:39,580 : INFO : topic diff=0.002921, rho=0.020924\n", + "2019-01-16 06:14:39,883 : INFO : PROGRESS: pass 0, at document #4570000/4922894\n", + "2019-01-16 06:14:41,852 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:42,412 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:14:42,413 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.075*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.017*\"korean\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.015*\"montreal\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:14:42,415 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:14:42,416 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"west\" + 0.039*\"north\" + 0.039*\"east\" + 0.038*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", + "2019-01-16 06:14:42,417 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:14:42,423 : INFO : topic diff=0.003156, rho=0.020920\n", + "2019-01-16 06:14:42,696 : INFO : PROGRESS: pass 0, at document #4572000/4922894\n", + "2019-01-16 06:14:44,812 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:45,374 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"jewish\" + 0.016*\"polish\" + 0.013*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:14:45,376 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:14:45,377 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:14:45,379 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 06:14:45,381 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 06:14:45,386 : INFO : topic diff=0.003323, rho=0.020915\n", + "2019-01-16 06:14:45,657 : INFO : PROGRESS: pass 0, at document #4574000/4922894\n", + "2019-01-16 06:14:47,701 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:48,258 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:14:48,259 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:14:48,260 : INFO : topic #0 (0.020): 0.032*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:14:48,262 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:14:48,263 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.026*\"japanes\" + 0.024*\"lee\" + 0.018*\"singapor\" + 0.018*\"chines\" + 0.018*\"kim\" + 0.015*\"asia\" + 0.014*\"thailand\" + 0.014*\"asian\"\n", + "2019-01-16 06:14:48,268 : INFO : topic diff=0.002824, rho=0.020911\n", + "2019-01-16 06:14:48,533 : INFO : PROGRESS: pass 0, at document #4576000/4922894\n", + "2019-01-16 06:14:50,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:51,091 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:14:51,092 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.026*\"japanes\" + 0.023*\"lee\" + 0.018*\"singapor\" + 0.018*\"chines\" + 0.018*\"kim\" + 0.015*\"asia\" + 0.014*\"thailand\" + 0.014*\"asian\"\n", + "2019-01-16 06:14:51,094 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:14:51,095 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:14:51,096 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:14:51,102 : INFO : topic diff=0.003249, rho=0.020906\n", + "2019-01-16 06:14:51,372 : INFO : PROGRESS: pass 0, at document #4578000/4922894\n", + "2019-01-16 06:14:53,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:14:53,918 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:14:53,920 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:14:53,922 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:14:53,923 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", + "2019-01-16 06:14:53,925 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 06:14:53,932 : INFO : topic diff=0.003628, rho=0.020901\n", + "2019-01-16 06:14:58,587 : INFO : -11.551 per-word bound, 2999.7 perplexity estimate based on a held-out corpus of 2000 documents with 547928 words\n", + "2019-01-16 06:14:58,588 : INFO : PROGRESS: pass 0, at document #4580000/4922894\n", + "2019-01-16 06:15:00,580 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:01,144 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.053*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:15:01,146 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.020*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:15:01,147 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:15:01,149 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.011*\"naval\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"fleet\"\n", + "2019-01-16 06:15:01,151 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:15:01,158 : INFO : topic diff=0.002694, rho=0.020897\n", + "2019-01-16 06:15:01,437 : INFO : PROGRESS: pass 0, at document #4582000/4922894\n", + "2019-01-16 06:15:03,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:03,977 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"peopl\"\n", + "2019-01-16 06:15:03,979 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 06:15:03,980 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.013*\"polit\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:15:03,981 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:15:03,983 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"ret\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:15:03,988 : INFO : topic diff=0.003488, rho=0.020892\n", + "2019-01-16 06:15:04,255 : INFO : PROGRESS: pass 0, at document #4584000/4922894\n", + "2019-01-16 06:15:06,331 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:06,887 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:15:06,889 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.013*\"polit\"\n", + "2019-01-16 06:15:06,890 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", + "2019-01-16 06:15:06,891 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"protein\"\n", + "2019-01-16 06:15:06,893 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", + "2019-01-16 06:15:06,899 : INFO : topic diff=0.003337, rho=0.020888\n", + "2019-01-16 06:15:07,173 : INFO : PROGRESS: pass 0, at document #4586000/4922894\n", + "2019-01-16 06:15:09,161 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:09,719 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:15:09,720 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:15:09,722 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:15:09,723 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:15:09,724 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:15:09,730 : INFO : topic diff=0.002976, rho=0.020883\n", + "2019-01-16 06:15:10,010 : INFO : PROGRESS: pass 0, at document #4588000/4922894\n", + "2019-01-16 06:15:12,020 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:12,579 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"method\" + 0.007*\"gener\" + 0.007*\"point\"\n", + "2019-01-16 06:15:12,580 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"servic\"\n", + "2019-01-16 06:15:12,581 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.029*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.012*\"opera\" + 0.012*\"orchestra\"\n", + "2019-01-16 06:15:12,583 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"match\" + 0.019*\"fight\" + 0.018*\"contest\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.014*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"defeat\"\n", + "2019-01-16 06:15:12,584 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.041*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.026*\"text\" + 0.026*\"color\" + 0.026*\"till\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 06:15:12,590 : INFO : topic diff=0.003175, rho=0.020879\n", + "2019-01-16 06:15:12,857 : INFO : PROGRESS: pass 0, at document #4590000/4922894\n", + "2019-01-16 06:15:14,866 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:15,426 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.065*\"april\" + 0.064*\"juli\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.062*\"decemb\" + 0.061*\"june\"\n", + "2019-01-16 06:15:15,427 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:15:15,429 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:15:15,430 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"ret\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:15:15,431 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.036*\"univers\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", + "2019-01-16 06:15:15,437 : INFO : topic diff=0.002774, rho=0.020874\n", + "2019-01-16 06:15:15,716 : INFO : PROGRESS: pass 0, at document #4592000/4922894\n", + "2019-01-16 06:15:17,716 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:18,274 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 06:15:18,275 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 06:15:18,277 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"pilot\"\n", + "2019-01-16 06:15:18,278 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 06:15:18,280 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:15:18,286 : INFO : topic diff=0.003460, rho=0.020870\n", + "2019-01-16 06:15:18,547 : INFO : PROGRESS: pass 0, at document #4594000/4922894\n", + "2019-01-16 06:15:20,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:21,065 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:15:21,067 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:15:21,068 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:15:21,069 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:15:21,070 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:15:21,075 : INFO : topic diff=0.003015, rho=0.020865\n", + "2019-01-16 06:15:21,368 : INFO : PROGRESS: pass 0, at document #4596000/4922894\n", + "2019-01-16 06:15:23,317 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:23,875 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:15:23,877 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:15:23,878 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:15:23,880 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:15:23,881 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:15:23,888 : INFO : topic diff=0.003246, rho=0.020861\n", + "2019-01-16 06:15:24,158 : INFO : PROGRESS: pass 0, at document #4598000/4922894\n", + "2019-01-16 06:15:26,275 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:26,832 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:15:26,834 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:15:26,835 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:15:26,837 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"montreal\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"korea\"\n", + "2019-01-16 06:15:26,838 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.026*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.024*\"black\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 06:15:26,844 : INFO : topic diff=0.003079, rho=0.020856\n", + "2019-01-16 06:15:31,709 : INFO : -11.694 per-word bound, 3313.7 perplexity estimate based on a held-out corpus of 2000 documents with 598187 words\n", + "2019-01-16 06:15:31,710 : INFO : PROGRESS: pass 0, at document #4600000/4922894\n", + "2019-01-16 06:15:33,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:34,393 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:15:34,395 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", + "2019-01-16 06:15:34,396 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:15:34,397 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.064*\"april\" + 0.064*\"august\" + 0.064*\"juli\" + 0.063*\"novemb\" + 0.062*\"decemb\" + 0.061*\"june\"\n", + "2019-01-16 06:15:34,399 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", + "2019-01-16 06:15:34,405 : INFO : topic diff=0.003322, rho=0.020851\n", + "2019-01-16 06:15:34,681 : INFO : PROGRESS: pass 0, at document #4602000/4922894\n", + "2019-01-16 06:15:36,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:37,267 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:15:37,269 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:15:37,270 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.015*\"pakistan\" + 0.011*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 06:15:37,271 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.072*\"march\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.064*\"april\" + 0.064*\"august\" + 0.064*\"juli\" + 0.063*\"novemb\" + 0.062*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 06:15:37,273 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 06:15:37,280 : INFO : topic diff=0.002959, rho=0.020847\n", + "2019-01-16 06:15:37,546 : INFO : PROGRESS: pass 0, at document #4604000/4922894\n", + "2019-01-16 06:15:39,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:40,093 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.072*\"march\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.065*\"april\" + 0.065*\"august\" + 0.063*\"novemb\" + 0.062*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 06:15:40,095 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:15:40,096 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:15:40,097 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:15:40,098 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:15:40,104 : INFO : topic diff=0.002981, rho=0.020842\n", + "2019-01-16 06:15:40,377 : INFO : PROGRESS: pass 0, at document #4606000/4922894\n", + "2019-01-16 06:15:42,395 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:42,954 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 06:15:42,956 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:15:42,958 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:15:42,960 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 06:15:42,962 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.069*\"align\" + 0.061*\"left\" + 0.055*\"wikit\" + 0.050*\"style\" + 0.043*\"center\" + 0.037*\"right\" + 0.036*\"list\" + 0.034*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:15:42,968 : INFO : topic diff=0.002973, rho=0.020838\n", + "2019-01-16 06:15:43,230 : INFO : PROGRESS: pass 0, at document #4608000/4922894\n", + "2019-01-16 06:15:45,207 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:15:45,764 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:15:45,766 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.023*\"von\" + 0.023*\"van\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:15:45,769 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", + "2019-01-16 06:15:45,770 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"uss\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\"\n", + "2019-01-16 06:15:45,772 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:15:45,778 : INFO : topic diff=0.003008, rho=0.020833\n", + "2019-01-16 06:15:46,044 : INFO : PROGRESS: pass 0, at document #4610000/4922894\n", + "2019-01-16 06:15:48,082 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:48,640 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.026*\"color\" + 0.025*\"text\" + 0.025*\"till\" + 0.024*\"black\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", + "2019-01-16 06:15:48,642 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.022*\"presid\" + 0.020*\"minist\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"polit\"\n", + "2019-01-16 06:15:48,643 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.011*\"uss\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\"\n", + "2019-01-16 06:15:48,645 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:15:48,647 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\" + 0.008*\"studi\"\n", + "2019-01-16 06:15:48,654 : INFO : topic diff=0.003567, rho=0.020829\n", + "2019-01-16 06:15:48,936 : INFO : PROGRESS: pass 0, at document #4612000/4922894\n", + "2019-01-16 06:15:50,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:51,528 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"servic\"\n", + "2019-01-16 06:15:51,529 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:15:51,531 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:15:51,533 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\" + 0.013*\"west\"\n", + "2019-01-16 06:15:51,535 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"time\" + 0.017*\"nation\"\n", + "2019-01-16 06:15:51,540 : INFO : topic diff=0.003860, rho=0.020824\n", + "2019-01-16 06:15:51,800 : INFO : PROGRESS: pass 0, at document #4614000/4922894\n", + "2019-01-16 06:15:53,836 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:54,394 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"time\" + 0.017*\"nation\"\n", + "2019-01-16 06:15:54,395 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:15:54,397 : INFO : topic #0 (0.020): 0.032*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:15:54,399 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.014*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:15:54,400 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.067*\"align\" + 0.059*\"left\" + 0.056*\"wikit\" + 0.050*\"style\" + 0.042*\"center\" + 0.036*\"right\" + 0.036*\"list\" + 0.033*\"philippin\" + 0.027*\"text\"\n", + "2019-01-16 06:15:54,406 : INFO : topic diff=0.002922, rho=0.020820\n", + "2019-01-16 06:15:54,686 : INFO : PROGRESS: pass 0, at document #4616000/4922894\n", + "2019-01-16 06:15:56,696 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:15:57,253 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", + "2019-01-16 06:15:57,255 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:15:57,256 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"base\"\n", + "2019-01-16 06:15:57,258 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"type\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:15:57,259 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 06:15:57,265 : INFO : topic diff=0.002825, rho=0.020815\n", + "2019-01-16 06:15:57,540 : INFO : PROGRESS: pass 0, at document #4618000/4922894\n", + "2019-01-16 06:15:59,554 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:00,113 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", + "2019-01-16 06:16:00,114 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:16:00,115 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.035*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 06:16:00,117 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:16:00,118 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"royal\"\n", + "2019-01-16 06:16:00,124 : INFO : topic diff=0.002840, rho=0.020811\n", + "2019-01-16 06:16:04,713 : INFO : -11.788 per-word bound, 3537.2 perplexity estimate based on a held-out corpus of 2000 documents with 539484 words\n", + "2019-01-16 06:16:04,714 : INFO : PROGRESS: pass 0, at document #4620000/4922894\n", + "2019-01-16 06:16:06,718 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:07,277 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.026*\"text\" + 0.025*\"color\" + 0.025*\"till\" + 0.023*\"black\" + 0.014*\"storm\" + 0.012*\"cape\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:16:07,279 : INFO : topic #0 (0.020): 0.032*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:16:07,281 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"time\" + 0.017*\"nation\"\n", + "2019-01-16 06:16:07,282 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"servic\"\n", + "2019-01-16 06:16:07,284 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.009*\"francisco\"\n", + "2019-01-16 06:16:07,290 : INFO : topic diff=0.002414, rho=0.020806\n", + "2019-01-16 06:16:07,611 : INFO : PROGRESS: pass 0, at document #4622000/4922894\n", + "2019-01-16 06:16:09,637 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:10,197 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 06:16:10,198 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:16:10,200 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:16:10,202 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 06:16:10,204 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:16:10,210 : INFO : topic diff=0.003513, rho=0.020802\n", + "2019-01-16 06:16:10,478 : INFO : PROGRESS: pass 0, at document #4624000/4922894\n", + "2019-01-16 06:16:12,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:13,040 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.027*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:16:13,042 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:16:13,043 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:16:13,044 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.042*\"africa\" + 0.036*\"african\" + 0.032*\"south\" + 0.026*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 06:16:13,045 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"pilot\"\n", + "2019-01-16 06:16:13,051 : INFO : topic diff=0.003317, rho=0.020797\n", + "2019-01-16 06:16:13,310 : INFO : PROGRESS: pass 0, at document #4626000/4922894\n", + "2019-01-16 06:16:15,333 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:15,892 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.066*\"januari\" + 0.064*\"juli\" + 0.064*\"april\" + 0.063*\"august\" + 0.063*\"novemb\" + 0.062*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:16:15,894 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.011*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", + "2019-01-16 06:16:15,895 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:16:15,897 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:16:15,898 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 06:16:15,904 : INFO : topic diff=0.003028, rho=0.020793\n", + "2019-01-16 06:16:16,174 : INFO : PROGRESS: pass 0, at document #4628000/4922894\n", + "2019-01-16 06:16:18,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:18,755 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"portugues\"\n", + "2019-01-16 06:16:18,756 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:16:18,758 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:16:18,759 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 06:16:18,761 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"uss\" + 0.009*\"gun\"\n", + "2019-01-16 06:16:18,766 : INFO : topic diff=0.003254, rho=0.020788\n", + "2019-01-16 06:16:19,026 : INFO : PROGRESS: pass 0, at document #4630000/4922894\n", + "2019-01-16 06:16:20,959 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:21,516 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"time\" + 0.017*\"athlet\"\n", + "2019-01-16 06:16:21,518 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:16:21,519 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", + "2019-01-16 06:16:21,520 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.043*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.026*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"black\" + 0.014*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 06:16:21,522 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", + "2019-01-16 06:16:21,527 : INFO : topic diff=0.003246, rho=0.020784\n", + "2019-01-16 06:16:21,782 : INFO : PROGRESS: pass 0, at document #4632000/4922894\n", + "2019-01-16 06:16:23,712 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:24,270 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"pierr\"\n", + "2019-01-16 06:16:24,271 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:16:24,273 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:16:24,274 : INFO : topic #49 (0.020): 0.088*\"district\" + 0.068*\"villag\" + 0.050*\"region\" + 0.039*\"west\" + 0.039*\"east\" + 0.039*\"north\" + 0.036*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", + "2019-01-16 06:16:24,275 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:16:24,281 : INFO : topic diff=0.003046, rho=0.020779\n", + "2019-01-16 06:16:24,555 : INFO : PROGRESS: pass 0, at document #4634000/4922894\n", + "2019-01-16 06:16:26,556 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:27,113 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", + "2019-01-16 06:16:27,114 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:16:27,116 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:16:27,117 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", + "2019-01-16 06:16:27,118 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:16:27,124 : INFO : topic diff=0.003379, rho=0.020775\n", + "2019-01-16 06:16:27,392 : INFO : PROGRESS: pass 0, at document #4636000/4922894\n", + "2019-01-16 06:16:29,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:29,932 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:16:29,934 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:16:29,936 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:16:29,937 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"time\" + 0.018*\"athlet\"\n", + "2019-01-16 06:16:29,939 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n", + "2019-01-16 06:16:29,945 : INFO : topic diff=0.003227, rho=0.020770\n", + "2019-01-16 06:16:30,221 : INFO : PROGRESS: pass 0, at document #4638000/4922894\n", + "2019-01-16 06:16:32,262 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:32,820 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:16:32,822 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.012*\"regiment\"\n", + "2019-01-16 06:16:32,824 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:16:32,826 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:16:32,827 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:16:32,833 : INFO : topic diff=0.002899, rho=0.020766\n", + "2019-01-16 06:16:37,337 : INFO : -11.756 per-word bound, 3459.3 perplexity estimate based on a held-out corpus of 2000 documents with 547193 words\n", + "2019-01-16 06:16:37,337 : INFO : PROGRESS: pass 0, at document #4640000/4922894\n", + "2019-01-16 06:16:39,275 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:39,832 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:16:39,833 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.075*\"canada\" + 0.065*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"korean\" + 0.015*\"korea\"\n", + "2019-01-16 06:16:39,835 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:16:39,836 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.070*\"align\" + 0.063*\"left\" + 0.056*\"wikit\" + 0.049*\"style\" + 0.042*\"center\" + 0.036*\"list\" + 0.034*\"right\" + 0.032*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:16:39,838 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 06:16:39,848 : INFO : topic diff=0.003337, rho=0.020761\n", + "2019-01-16 06:16:40,128 : INFO : PROGRESS: pass 0, at document #4642000/4922894\n", + "2019-01-16 06:16:42,197 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:42,757 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", + "2019-01-16 06:16:42,759 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:16:42,760 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:16:42,762 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:16:42,763 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", + "2019-01-16 06:16:42,768 : INFO : topic diff=0.003117, rho=0.020757\n", + "2019-01-16 06:16:43,036 : INFO : PROGRESS: pass 0, at document #4644000/4922894\n", + "2019-01-16 06:16:45,047 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:45,605 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:16:45,607 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", + "2019-01-16 06:16:45,608 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:16:45,610 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:16:45,611 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:16:45,617 : INFO : topic diff=0.003020, rho=0.020752\n", + "2019-01-16 06:16:45,886 : INFO : PROGRESS: pass 0, at document #4646000/4922894\n", + "2019-01-16 06:16:47,867 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:48,427 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:16:48,429 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:16:48,430 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:16:48,431 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.071*\"septemb\" + 0.070*\"octob\" + 0.066*\"januari\" + 0.063*\"juli\" + 0.063*\"april\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.060*\"june\" + 0.059*\"decemb\"\n", + "2019-01-16 06:16:48,433 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 06:16:48,438 : INFO : topic diff=0.002921, rho=0.020748\n", + "2019-01-16 06:16:48,734 : INFO : PROGRESS: pass 0, at document #4648000/4922894\n", + "2019-01-16 06:16:50,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:51,257 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"park\"\n", + "2019-01-16 06:16:51,259 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.068*\"align\" + 0.061*\"left\" + 0.055*\"wikit\" + 0.049*\"style\" + 0.043*\"center\" + 0.035*\"list\" + 0.034*\"right\" + 0.032*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:16:51,260 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", + "2019-01-16 06:16:51,262 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"uss\"\n", + "2019-01-16 06:16:51,263 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:16:51,270 : INFO : topic diff=0.002951, rho=0.020743\n", + "2019-01-16 06:16:51,547 : INFO : PROGRESS: pass 0, at document #4650000/4922894\n", + "2019-01-16 06:16:53,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:54,252 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"product\" + 0.010*\"bank\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:16:54,254 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", + "2019-01-16 06:16:54,256 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:16:54,257 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:16:54,259 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.035*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", + "2019-01-16 06:16:54,264 : INFO : topic diff=0.004031, rho=0.020739\n", + "2019-01-16 06:16:54,533 : INFO : PROGRESS: pass 0, at document #4652000/4922894\n", + "2019-01-16 06:16:56,540 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:57,099 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:16:57,101 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:16:57,102 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", + "2019-01-16 06:16:57,104 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"senat\"\n", + "2019-01-16 06:16:57,105 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.071*\"septemb\" + 0.069*\"octob\" + 0.065*\"januari\" + 0.063*\"juli\" + 0.063*\"april\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.060*\"june\" + 0.058*\"decemb\"\n", + "2019-01-16 06:16:57,112 : INFO : topic diff=0.003376, rho=0.020735\n", + "2019-01-16 06:16:57,373 : INFO : PROGRESS: pass 0, at document #4654000/4922894\n", + "2019-01-16 06:16:59,323 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:16:59,881 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:16:59,882 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"dai\"\n", + "2019-01-16 06:16:59,884 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:16:59,885 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.043*\"africa\" + 0.037*\"african\" + 0.032*\"south\" + 0.028*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"cape\"\n", + "2019-01-16 06:16:59,886 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:16:59,892 : INFO : topic diff=0.003418, rho=0.020730\n", + "2019-01-16 06:17:00,153 : INFO : PROGRESS: pass 0, at document #4656000/4922894\n", + "2019-01-16 06:17:02,121 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:02,677 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:17:02,679 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:17:02,680 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.013*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"uss\"\n", + "2019-01-16 06:17:02,682 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 06:17:02,683 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:17:02,689 : INFO : topic diff=0.003016, rho=0.020726\n", + "2019-01-16 06:17:02,947 : INFO : PROGRESS: pass 0, at document #4658000/4922894\n", + "2019-01-16 06:17:04,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:17:05,467 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:17:05,468 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 06:17:05,470 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.026*\"toronto\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.016*\"korea\" + 0.016*\"korean\" + 0.015*\"quebec\"\n", + "2019-01-16 06:17:05,472 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:17:05,473 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.037*\"russian\" + 0.025*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:17:05,479 : INFO : topic diff=0.002841, rho=0.020721\n", + "2019-01-16 06:17:10,062 : INFO : -11.553 per-word bound, 3003.9 perplexity estimate based on a held-out corpus of 2000 documents with 547388 words\n", + "2019-01-16 06:17:10,063 : INFO : PROGRESS: pass 0, at document #4660000/4922894\n", + "2019-01-16 06:17:12,084 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:12,641 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", + "2019-01-16 06:17:12,642 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", + "2019-01-16 06:17:12,644 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 06:17:12,645 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:17:12,647 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"manufactur\"\n", + "2019-01-16 06:17:12,654 : INFO : topic diff=0.003107, rho=0.020717\n", + "2019-01-16 06:17:12,918 : INFO : PROGRESS: pass 0, at document #4662000/4922894\n", + "2019-01-16 06:17:14,899 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:15,457 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.032*\"kong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.020*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.014*\"asia\" + 0.014*\"asian\"\n", + "2019-01-16 06:17:15,459 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:17:15,460 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:17:15,461 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.039*\"east\" + 0.039*\"north\" + 0.039*\"west\" + 0.037*\"counti\" + 0.034*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", + "2019-01-16 06:17:15,462 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:17:15,469 : INFO : topic diff=0.002766, rho=0.020712\n", + "2019-01-16 06:17:15,748 : INFO : PROGRESS: pass 0, at document #4664000/4922894\n", + "2019-01-16 06:17:17,794 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:18,352 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:17:18,354 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"press\" + 0.014*\"new\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.010*\"author\"\n", + "2019-01-16 06:17:18,355 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:17:18,356 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:17:18,358 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:17:18,364 : INFO : topic diff=0.002919, rho=0.020708\n", + "2019-01-16 06:17:18,639 : INFO : PROGRESS: pass 0, at document #4666000/4922894\n", + "2019-01-16 06:17:20,620 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:21,178 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:17:21,179 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"piano\" + 0.012*\"opera\" + 0.012*\"orchestra\"\n", + "2019-01-16 06:17:21,181 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:17:21,182 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.037*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:17:21,185 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:17:21,191 : INFO : topic diff=0.003146, rho=0.020703\n", + "2019-01-16 06:17:21,453 : INFO : PROGRESS: pass 0, at document #4668000/4922894\n", + "2019-01-16 06:17:23,809 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:24,368 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"time\" + 0.010*\"championship\"\n", + "2019-01-16 06:17:24,369 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"unit\"\n", + "2019-01-16 06:17:24,371 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 06:17:24,372 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:17:24,373 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"press\" + 0.014*\"new\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.010*\"author\"\n", + "2019-01-16 06:17:24,379 : INFO : topic diff=0.003090, rho=0.020699\n", + "2019-01-16 06:17:24,644 : INFO : PROGRESS: pass 0, at document #4670000/4922894\n", + "2019-01-16 06:17:26,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:27,256 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.042*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.029*\"color\" + 0.028*\"text\" + 0.027*\"till\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:17:27,258 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.019*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:17:27,259 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:17:27,260 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.014*\"militari\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", + "2019-01-16 06:17:27,262 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"london\" + 0.019*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"west\"\n", + "2019-01-16 06:17:27,267 : INFO : topic diff=0.002720, rho=0.020695\n", + "2019-01-16 06:17:27,557 : INFO : PROGRESS: pass 0, at document #4672000/4922894\n", + "2019-01-16 06:17:29,529 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:30,086 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"fleet\"\n", + "2019-01-16 06:17:30,087 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 06:17:30,089 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:17:30,090 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.019*\"group\" + 0.019*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:17:30,091 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", + "2019-01-16 06:17:30,098 : INFO : topic diff=0.002743, rho=0.020690\n", + "2019-01-16 06:17:30,359 : INFO : PROGRESS: pass 0, at document #4674000/4922894\n", + "2019-01-16 06:17:32,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:32,936 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"materi\"\n", + "2019-01-16 06:17:32,937 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:17:32,938 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", + "2019-01-16 06:17:32,940 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.028*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:17:32,941 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:17:32,947 : INFO : topic diff=0.003358, rho=0.020686\n", + "2019-01-16 06:17:33,219 : INFO : PROGRESS: pass 0, at document #4676000/4922894\n", + "2019-01-16 06:17:35,239 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:35,796 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:17:35,798 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.033*\"hong\" + 0.028*\"japanes\" + 0.023*\"lee\" + 0.020*\"singapor\" + 0.018*\"chines\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.014*\"asian\" + 0.014*\"asia\"\n", + "2019-01-16 06:17:35,799 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:17:35,801 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", + "2019-01-16 06:17:35,803 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.070*\"align\" + 0.065*\"left\" + 0.056*\"wikit\" + 0.048*\"style\" + 0.042*\"center\" + 0.035*\"list\" + 0.034*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", + "2019-01-16 06:17:35,808 : INFO : topic diff=0.003015, rho=0.020681\n", + "2019-01-16 06:17:36,092 : INFO : PROGRESS: pass 0, at document #4678000/4922894\n", + "2019-01-16 06:17:38,124 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:38,682 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.075*\"canada\" + 0.064*\"canadian\" + 0.026*\"toronto\" + 0.026*\"ontario\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.016*\"korean\"\n", + "2019-01-16 06:17:38,683 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.040*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.020*\"minist\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:17:38,685 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:17:38,686 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.022*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", + "2019-01-16 06:17:38,687 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", + "2019-01-16 06:17:38,693 : INFO : topic diff=0.002679, rho=0.020677\n", + "2019-01-16 06:17:43,300 : INFO : -11.839 per-word bound, 3663.4 perplexity estimate based on a held-out corpus of 2000 documents with 564993 words\n", + "2019-01-16 06:17:43,301 : INFO : PROGRESS: pass 0, at document #4680000/4922894\n", + "2019-01-16 06:17:45,289 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:45,845 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\"\n", + "2019-01-16 06:17:45,847 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:17:45,848 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:17:45,851 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:17:45,852 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:17:45,858 : INFO : topic diff=0.003307, rho=0.020672\n", + "2019-01-16 06:17:46,143 : INFO : PROGRESS: pass 0, at document #4682000/4922894\n", + "2019-01-16 06:17:48,156 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:48,713 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"softwar\" + 0.007*\"video\"\n", + "2019-01-16 06:17:48,715 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"campu\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:17:48,716 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", + "2019-01-16 06:17:48,717 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:17:48,719 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.012*\"divis\"\n", + "2019-01-16 06:17:48,726 : INFO : topic diff=0.003182, rho=0.020668\n", + "2019-01-16 06:17:48,993 : INFO : PROGRESS: pass 0, at document #4684000/4922894\n", + "2019-01-16 06:17:50,961 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:51,519 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"air\"\n", + "2019-01-16 06:17:51,520 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 06:17:51,522 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"robert\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", + "2019-01-16 06:17:51,524 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\" + 0.010*\"championship\"\n", + "2019-01-16 06:17:51,526 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 06:17:51,532 : INFO : topic diff=0.003182, rho=0.020664\n", + "2019-01-16 06:17:51,816 : INFO : PROGRESS: pass 0, at document #4686000/4922894\n", + "2019-01-16 06:17:53,900 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:54,462 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", + "2019-01-16 06:17:54,464 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.021*\"minist\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:17:54,466 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"church\" + 0.009*\"place\"\n", + "2019-01-16 06:17:54,468 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:17:54,469 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\" + 0.010*\"championship\"\n", + "2019-01-16 06:17:54,475 : INFO : topic diff=0.003261, rho=0.020659\n", + "2019-01-16 06:17:54,752 : INFO : PROGRESS: pass 0, at document #4688000/4922894\n", + "2019-01-16 06:17:56,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:17:57,381 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.028*\"color\" + 0.027*\"text\" + 0.026*\"till\" + 0.024*\"black\" + 0.013*\"cape\" + 0.013*\"storm\"\n", + "2019-01-16 06:17:57,382 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.018*\"chines\" + 0.016*\"thailand\" + 0.014*\"asia\" + 0.014*\"malaysia\"\n", + "2019-01-16 06:17:57,383 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 06:17:57,385 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.017*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:17:57,386 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:17:57,392 : INFO : topic diff=0.003197, rho=0.020655\n", + "2019-01-16 06:17:57,673 : INFO : PROGRESS: pass 0, at document #4690000/4922894\n", + "2019-01-16 06:17:59,673 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:00,231 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:18:00,233 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:18:00,236 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.027*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:18:00,238 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 06:18:00,239 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:18:00,246 : INFO : topic diff=0.003055, rho=0.020650\n", + "2019-01-16 06:18:00,512 : INFO : PROGRESS: pass 0, at document #4692000/4922894\n", + "2019-01-16 06:18:02,492 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:03,051 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 06:18:03,052 : INFO : topic #27 (0.020): 0.055*\"born\" + 0.036*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:18:03,054 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.018*\"chines\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.013*\"malaysia\"\n", + "2019-01-16 06:18:03,056 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 06:18:03,057 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", + "2019-01-16 06:18:03,063 : INFO : topic diff=0.002865, rho=0.020646\n", + "2019-01-16 06:18:03,344 : INFO : PROGRESS: pass 0, at document #4694000/4922894\n", + "2019-01-16 06:18:05,362 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:05,921 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.026*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 06:18:05,922 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.018*\"www\" + 0.016*\"iran\" + 0.014*\"pakistan\" + 0.013*\"khan\" + 0.012*\"com\" + 0.012*\"sri\" + 0.011*\"islam\"\n", + "2019-01-16 06:18:05,924 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:18:05,925 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.016*\"match\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:18:05,927 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.028*\"color\" + 0.026*\"till\" + 0.024*\"black\" + 0.013*\"cape\" + 0.012*\"storm\"\n", + "2019-01-16 06:18:05,933 : INFO : topic diff=0.003572, rho=0.020642\n", + "2019-01-16 06:18:06,202 : INFO : PROGRESS: pass 0, at document #4696000/4922894\n", + "2019-01-16 06:18:08,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:08,731 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.064*\"april\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.063*\"june\" + 0.060*\"decemb\"\n", + "2019-01-16 06:18:08,732 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:18:08,735 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"gener\" + 0.014*\"militari\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.012*\"divis\"\n", + "2019-01-16 06:18:08,736 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"time\"\n", + "2019-01-16 06:18:08,738 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", + "2019-01-16 06:18:08,744 : INFO : topic diff=0.003514, rho=0.020637\n", + "2019-01-16 06:18:09,043 : INFO : PROGRESS: pass 0, at document #4698000/4922894\n", + "2019-01-16 06:18:11,021 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:11,580 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", + "2019-01-16 06:18:11,581 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.022*\"unit\" + 0.020*\"london\" + 0.019*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"wale\" + 0.013*\"west\"\n", + "2019-01-16 06:18:11,583 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"park\" + 0.009*\"church\" + 0.009*\"place\"\n", + "2019-01-16 06:18:11,585 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"order\"\n", + "2019-01-16 06:18:11,587 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", + "2019-01-16 06:18:11,593 : INFO : topic diff=0.003293, rho=0.020633\n", + "2019-01-16 06:18:16,209 : INFO : -11.707 per-word bound, 3344.3 perplexity estimate based on a held-out corpus of 2000 documents with 560019 words\n", + "2019-01-16 06:18:16,210 : INFO : PROGRESS: pass 0, at document #4700000/4922894\n", + "2019-01-16 06:18:18,222 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:18,780 : INFO : topic #49 (0.020): 0.088*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.038*\"west\" + 0.038*\"north\" + 0.036*\"counti\" + 0.036*\"provinc\" + 0.033*\"south\" + 0.032*\"municip\"\n", + "2019-01-16 06:18:18,781 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 06:18:18,783 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"commun\" + 0.025*\"censu\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.020*\"live\"\n", + "2019-01-16 06:18:18,786 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:18:18,788 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"user\" + 0.007*\"video\"\n", + "2019-01-16 06:18:18,794 : INFO : topic diff=0.002694, rho=0.020628\n", + "2019-01-16 06:18:19,066 : INFO : PROGRESS: pass 0, at document #4702000/4922894\n", + "2019-01-16 06:18:21,095 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:21,651 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"portugues\"\n", + "2019-01-16 06:18:21,653 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 06:18:21,654 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"stage\" + 0.010*\"ford\"\n", + "2019-01-16 06:18:21,655 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.036*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:18:21,659 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"swedish\" + 0.013*\"netherland\" + 0.012*\"sweden\"\n", + "2019-01-16 06:18:21,664 : INFO : topic diff=0.003409, rho=0.020624\n", + "2019-01-16 06:18:21,933 : INFO : PROGRESS: pass 0, at document #4704000/4922894\n", + "2019-01-16 06:18:23,900 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:24,457 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 06:18:24,459 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.027*\"color\" + 0.026*\"till\" + 0.024*\"black\" + 0.013*\"cape\" + 0.013*\"storm\"\n", + "2019-01-16 06:18:24,460 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", + "2019-01-16 06:18:24,461 : INFO : topic #35 (0.020): 0.035*\"kong\" + 0.033*\"hong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.018*\"chines\" + 0.015*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"asia\"\n", + "2019-01-16 06:18:24,464 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:18:24,470 : INFO : topic diff=0.003208, rho=0.020620\n", + "2019-01-16 06:18:24,746 : INFO : PROGRESS: pass 0, at document #4706000/4922894\n", + "2019-01-16 06:18:26,747 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:27,304 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"pilot\"\n", + "2019-01-16 06:18:27,306 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:18:27,308 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:18:27,309 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.027*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.013*\"cape\" + 0.013*\"storm\"\n", + "2019-01-16 06:18:27,311 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:18:27,317 : INFO : topic diff=0.003337, rho=0.020615\n", + "2019-01-16 06:18:27,574 : INFO : PROGRESS: pass 0, at document #4708000/4922894\n", + "2019-01-16 06:18:29,562 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:30,121 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"titl\" + 0.015*\"wrestl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", + "2019-01-16 06:18:30,123 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", + "2019-01-16 06:18:30,124 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:18:30,125 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:18:30,127 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 06:18:30,132 : INFO : topic diff=0.002776, rho=0.020611\n", + "2019-01-16 06:18:30,397 : INFO : PROGRESS: pass 0, at document #4710000/4922894\n", + "2019-01-16 06:18:32,357 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:32,914 : INFO : topic #35 (0.020): 0.035*\"kong\" + 0.034*\"hong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.018*\"chines\" + 0.015*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"asia\"\n", + "2019-01-16 06:18:32,915 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 06:18:32,917 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.019*\"minist\" + 0.019*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", + "2019-01-16 06:18:32,918 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:18:32,920 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.006*\"red\"\n", + "2019-01-16 06:18:32,926 : INFO : topic diff=0.003339, rho=0.020607\n", + "2019-01-16 06:18:33,191 : INFO : PROGRESS: pass 0, at document #4712000/4922894\n", + "2019-01-16 06:18:35,241 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:35,797 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:18:35,798 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.071*\"octob\" + 0.070*\"septemb\" + 0.068*\"januari\" + 0.065*\"juli\" + 0.064*\"april\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.063*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 06:18:35,800 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", + "2019-01-16 06:18:35,802 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:18:35,804 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.010*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:18:35,810 : INFO : topic diff=0.003173, rho=0.020602\n", + "2019-01-16 06:18:36,088 : INFO : PROGRESS: pass 0, at document #4714000/4922894\n", + "2019-01-16 06:18:38,075 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:38,632 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", + "2019-01-16 06:18:38,633 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"user\" + 0.007*\"video\"\n", + "2019-01-16 06:18:38,635 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:18:38,636 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:18:38,637 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 06:18:38,643 : INFO : topic diff=0.003366, rho=0.020598\n", + "2019-01-16 06:18:38,912 : INFO : PROGRESS: pass 0, at document #4716000/4922894\n", + "2019-01-16 06:18:40,894 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:41,453 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"human\"\n", + "2019-01-16 06:18:41,454 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.032*\"ye\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\"\n", + "2019-01-16 06:18:41,455 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.027*\"color\" + 0.026*\"till\" + 0.024*\"black\" + 0.012*\"cape\" + 0.012*\"storm\"\n", + "2019-01-16 06:18:41,457 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"dai\"\n", + "2019-01-16 06:18:41,458 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:18:41,464 : INFO : topic diff=0.002869, rho=0.020593\n", + "2019-01-16 06:18:41,738 : INFO : PROGRESS: pass 0, at document #4718000/4922894\n", + "2019-01-16 06:18:43,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:44,283 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.040*\"east\" + 0.039*\"west\" + 0.037*\"north\" + 0.036*\"counti\" + 0.034*\"provinc\" + 0.034*\"south\" + 0.032*\"municip\"\n", + "2019-01-16 06:18:44,285 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", + "2019-01-16 06:18:44,287 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:18:44,288 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:18:44,290 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:18:44,297 : INFO : topic diff=0.002623, rho=0.020589\n", + "2019-01-16 06:18:48,999 : INFO : -11.903 per-word bound, 3830.0 perplexity estimate based on a held-out corpus of 2000 documents with 552948 words\n", + "2019-01-16 06:18:49,000 : INFO : PROGRESS: pass 0, at document #4720000/4922894\n", + "2019-01-16 06:18:50,987 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:18:51,543 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:18:51,545 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:18:51,546 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:18:51,547 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"human\"\n", + "2019-01-16 06:18:51,549 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:18:51,555 : INFO : topic diff=0.002901, rho=0.020585\n", + "2019-01-16 06:18:51,840 : INFO : PROGRESS: pass 0, at document #4722000/4922894\n", + "2019-01-16 06:18:53,852 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:54,412 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:18:54,414 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:18:54,416 : INFO : topic #31 (0.020): 0.071*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.027*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 06:18:54,418 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.019*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", + "2019-01-16 06:18:54,419 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 06:18:54,426 : INFO : topic diff=0.003322, rho=0.020580\n", + "2019-01-16 06:18:54,739 : INFO : PROGRESS: pass 0, at document #4724000/4922894\n", + "2019-01-16 06:18:56,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:18:57,352 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:18:57,353 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:18:57,355 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 06:18:57,357 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.010*\"magazin\"\n", + "2019-01-16 06:18:57,358 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 06:18:57,364 : INFO : topic diff=0.003250, rho=0.020576\n", + "2019-01-16 06:18:57,621 : INFO : PROGRESS: pass 0, at document #4726000/4922894\n", + "2019-01-16 06:18:59,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:00,171 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:19:00,172 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:19:00,174 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:19:00,176 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.031*\"ye\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 06:19:00,177 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:19:00,183 : INFO : topic diff=0.002716, rho=0.020572\n", + "2019-01-16 06:19:00,459 : INFO : PROGRESS: pass 0, at document #4728000/4922894\n", + "2019-01-16 06:19:02,427 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:02,987 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:19:02,988 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 06:19:02,990 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.067*\"align\" + 0.060*\"left\" + 0.057*\"wikit\" + 0.047*\"style\" + 0.043*\"center\" + 0.037*\"list\" + 0.037*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", + "2019-01-16 06:19:02,991 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 06:19:02,992 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"wale\"\n", + "2019-01-16 06:19:02,998 : INFO : topic diff=0.003487, rho=0.020567\n", + "2019-01-16 06:19:03,263 : INFO : PROGRESS: pass 0, at document #4730000/4922894\n", + "2019-01-16 06:19:05,202 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:05,758 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:19:05,760 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.040*\"east\" + 0.038*\"west\" + 0.037*\"north\" + 0.036*\"counti\" + 0.034*\"provinc\" + 0.034*\"municip\" + 0.033*\"south\"\n", + "2019-01-16 06:19:05,762 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.008*\"forest\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 06:19:05,763 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:19:05,764 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:19:05,771 : INFO : topic diff=0.003032, rho=0.020563\n", + "2019-01-16 06:19:06,041 : INFO : PROGRESS: pass 0, at document #4732000/4922894\n", + "2019-01-16 06:19:07,992 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:08,549 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"scott\"\n", + "2019-01-16 06:19:08,550 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"wale\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:19:08,552 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:19:08,554 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:19:08,555 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", + "2019-01-16 06:19:08,561 : INFO : topic diff=0.003218, rho=0.020559\n", + "2019-01-16 06:19:08,819 : INFO : PROGRESS: pass 0, at document #4734000/4922894\n", + "2019-01-16 06:19:10,764 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:11,322 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"park\" + 0.009*\"church\" + 0.009*\"place\"\n", + "2019-01-16 06:19:11,323 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"wale\"\n", + "2019-01-16 06:19:11,327 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 06:19:11,328 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.008*\"bai\"\n", + "2019-01-16 06:19:11,329 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.043*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.026*\"color\" + 0.025*\"till\" + 0.023*\"black\" + 0.012*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 06:19:11,335 : INFO : topic diff=0.002770, rho=0.020554\n", + "2019-01-16 06:19:11,590 : INFO : PROGRESS: pass 0, at document #4736000/4922894\n", + "2019-01-16 06:19:13,566 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:14,122 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 06:19:14,124 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 06:19:14,125 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.040*\"east\" + 0.037*\"west\" + 0.037*\"north\" + 0.037*\"counti\" + 0.034*\"provinc\" + 0.033*\"municip\" + 0.033*\"south\"\n", + "2019-01-16 06:19:14,127 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 06:19:14,128 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"term\" + 0.005*\"tradit\"\n", + "2019-01-16 06:19:14,134 : INFO : topic diff=0.002946, rho=0.020550\n", + "2019-01-16 06:19:14,390 : INFO : PROGRESS: pass 0, at document #4738000/4922894\n", + "2019-01-16 06:19:16,385 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:16,946 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 06:19:16,947 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.066*\"align\" + 0.060*\"left\" + 0.057*\"wikit\" + 0.046*\"style\" + 0.042*\"center\" + 0.037*\"list\" + 0.035*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", + "2019-01-16 06:19:16,949 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", + "2019-01-16 06:19:16,951 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:19:16,952 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"portugues\" + 0.010*\"josé\" + 0.010*\"juan\"\n", + "2019-01-16 06:19:16,958 : INFO : topic diff=0.003089, rho=0.020546\n", + "2019-01-16 06:19:21,516 : INFO : -11.383 per-word bound, 2670.1 perplexity estimate based on a held-out corpus of 2000 documents with 548469 words\n", + "2019-01-16 06:19:21,517 : INFO : PROGRESS: pass 0, at document #4740000/4922894\n", + "2019-01-16 06:19:23,580 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:24,145 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:19:24,147 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:19:24,148 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"term\" + 0.005*\"tradit\"\n", + "2019-01-16 06:19:24,149 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:19:24,152 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.010*\"bridg\"\n", + "2019-01-16 06:19:24,159 : INFO : topic diff=0.002965, rho=0.020541\n", + "2019-01-16 06:19:24,438 : INFO : PROGRESS: pass 0, at document #4742000/4922894\n", + "2019-01-16 06:19:26,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:27,003 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.019*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", + "2019-01-16 06:19:27,004 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:19:27,006 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"mission\"\n", + "2019-01-16 06:19:27,007 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.037*\"west\" + 0.036*\"north\" + 0.036*\"counti\" + 0.034*\"provinc\" + 0.033*\"municip\" + 0.033*\"south\"\n", + "2019-01-16 06:19:27,009 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"term\" + 0.005*\"tradit\"\n", + "2019-01-16 06:19:27,016 : INFO : topic diff=0.003055, rho=0.020537\n", + "2019-01-16 06:19:27,284 : INFO : PROGRESS: pass 0, at document #4744000/4922894\n", + "2019-01-16 06:19:29,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:29,789 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:19:29,790 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"championship\" + 0.010*\"stage\"\n", + "2019-01-16 06:19:29,793 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.065*\"august\" + 0.064*\"april\" + 0.063*\"june\" + 0.062*\"decemb\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:19:29,794 : INFO : topic #35 (0.020): 0.036*\"kong\" + 0.034*\"hong\" + 0.030*\"japanes\" + 0.021*\"lee\" + 0.019*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.014*\"malaysia\"\n", + "2019-01-16 06:19:29,796 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:19:29,803 : INFO : topic diff=0.003493, rho=0.020533\n", + "2019-01-16 06:19:30,067 : INFO : PROGRESS: pass 0, at document #4746000/4922894\n", + "2019-01-16 06:19:32,103 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:32,658 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:19:32,660 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"forest\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\"\n", + "2019-01-16 06:19:32,662 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:19:32,663 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:19:32,664 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:19:32,671 : INFO : topic diff=0.002639, rho=0.020528\n", + "2019-01-16 06:19:32,963 : INFO : PROGRESS: pass 0, at document #4748000/4922894\n", + "2019-01-16 06:19:35,033 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:35,591 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.067*\"juli\" + 0.065*\"august\" + 0.065*\"novemb\" + 0.064*\"april\" + 0.063*\"june\" + 0.063*\"decemb\"\n", + "2019-01-16 06:19:35,592 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:19:35,594 : INFO : topic #31 (0.020): 0.070*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.027*\"chines\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:19:35,595 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.028*\"ye\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.017*\"korea\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.016*\"montreal\"\n", + "2019-01-16 06:19:35,596 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:19:35,603 : INFO : topic diff=0.003351, rho=0.020524\n", + "2019-01-16 06:19:35,920 : INFO : PROGRESS: pass 0, at document #4750000/4922894\n", + "2019-01-16 06:19:37,962 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:38,520 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:19:38,522 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 06:19:38,524 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 06:19:38,525 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.025*\"color\" + 0.025*\"till\" + 0.022*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", + "2019-01-16 06:19:38,526 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"vehicl\"\n", + "2019-01-16 06:19:38,533 : INFO : topic diff=0.002991, rho=0.020520\n", + "2019-01-16 06:19:38,800 : INFO : PROGRESS: pass 0, at document #4752000/4922894\n", + "2019-01-16 06:19:40,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:41,365 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.010*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:19:41,366 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:19:41,368 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.019*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 06:19:41,369 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 06:19:41,371 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.014*\"swedish\" + 0.013*\"netherland\" + 0.013*\"sweden\"\n", + "2019-01-16 06:19:41,376 : INFO : topic diff=0.002509, rho=0.020515\n", + "2019-01-16 06:19:41,636 : INFO : PROGRESS: pass 0, at document #4754000/4922894\n", + "2019-01-16 06:19:43,573 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:44,133 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:19:44,134 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.066*\"align\" + 0.059*\"left\" + 0.058*\"wikit\" + 0.047*\"style\" + 0.041*\"center\" + 0.037*\"list\" + 0.035*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", + "2019-01-16 06:19:44,136 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 06:19:44,137 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.019*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"poland\"\n", + "2019-01-16 06:19:44,138 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 06:19:44,144 : INFO : topic diff=0.002716, rho=0.020511\n", + "2019-01-16 06:19:44,396 : INFO : PROGRESS: pass 0, at document #4756000/4922894\n", + "2019-01-16 06:19:46,371 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:46,929 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 06:19:46,930 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"term\" + 0.005*\"like\"\n", + "2019-01-16 06:19:46,932 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.014*\"swedish\" + 0.013*\"netherland\" + 0.013*\"sweden\"\n", + "2019-01-16 06:19:46,933 : INFO : topic #35 (0.020): 0.037*\"kong\" + 0.035*\"hong\" + 0.030*\"japanes\" + 0.021*\"lee\" + 0.019*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.014*\"malaysia\"\n", + "2019-01-16 06:19:46,934 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.010*\"portugues\" + 0.010*\"juan\" + 0.010*\"josé\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:19:46,940 : INFO : topic diff=0.003260, rho=0.020507\n", + "2019-01-16 06:19:47,202 : INFO : PROGRESS: pass 0, at document #4758000/4922894\n", + "2019-01-16 06:19:49,203 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:49,759 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"gener\" + 0.014*\"militari\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.012*\"offic\"\n", + "2019-01-16 06:19:49,761 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", + "2019-01-16 06:19:49,763 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.010*\"portugues\" + 0.010*\"juan\" + 0.010*\"josé\"\n", + "2019-01-16 06:19:49,764 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 06:19:49,765 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:19:49,772 : INFO : topic diff=0.002877, rho=0.020502\n", + "2019-01-16 06:19:54,302 : INFO : -11.882 per-word bound, 3774.5 perplexity estimate based on a held-out corpus of 2000 documents with 532166 words\n", + "2019-01-16 06:19:54,302 : INFO : PROGRESS: pass 0, at document #4760000/4922894\n", + "2019-01-16 06:19:56,331 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:56,887 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:19:56,889 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:19:56,890 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:19:56,892 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:19:56,894 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 06:19:56,900 : INFO : topic diff=0.002783, rho=0.020498\n", + "2019-01-16 06:19:57,178 : INFO : PROGRESS: pass 0, at document #4762000/4922894\n", + "2019-01-16 06:19:59,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:19:59,722 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", + "2019-01-16 06:19:59,724 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:19:59,725 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.018*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", + "2019-01-16 06:19:59,726 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.010*\"portugues\" + 0.010*\"juan\" + 0.010*\"josé\"\n", + "2019-01-16 06:19:59,728 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\" + 0.010*\"stage\"\n", + "2019-01-16 06:19:59,735 : INFO : topic diff=0.003709, rho=0.020494\n", + "2019-01-16 06:20:00,001 : INFO : PROGRESS: pass 0, at document #4764000/4922894\n", + "2019-01-16 06:20:01,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:02,477 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:20:02,479 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:20:02,481 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:20:02,482 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:20:02,483 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.049*\"region\" + 0.040*\"east\" + 0.038*\"north\" + 0.037*\"west\" + 0.037*\"counti\" + 0.034*\"south\" + 0.033*\"municip\" + 0.032*\"provinc\"\n", + "2019-01-16 06:20:02,489 : INFO : topic diff=0.003414, rho=0.020489\n", + "2019-01-16 06:20:02,753 : INFO : PROGRESS: pass 0, at document #4766000/4922894\n", + "2019-01-16 06:20:04,753 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:05,312 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:20:05,313 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:20:05,315 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:20:05,316 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:20:05,317 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:20:05,323 : INFO : topic diff=0.003141, rho=0.020485\n", + "2019-01-16 06:20:05,593 : INFO : PROGRESS: pass 0, at document #4768000/4922894\n", + "2019-01-16 06:20:07,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:08,151 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.071*\"align\" + 0.066*\"left\" + 0.056*\"wikit\" + 0.046*\"style\" + 0.041*\"center\" + 0.035*\"list\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:20:08,152 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"mission\"\n", + "2019-01-16 06:20:08,154 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", + "2019-01-16 06:20:08,155 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:20:08,156 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:20:08,162 : INFO : topic diff=0.002783, rho=0.020481\n", + "2019-01-16 06:20:08,415 : INFO : PROGRESS: pass 0, at document #4770000/4922894\n", + "2019-01-16 06:20:10,399 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:20:10,955 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:20:10,956 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:20:10,958 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.011*\"boat\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", + "2019-01-16 06:20:10,960 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"portugues\" + 0.010*\"josé\"\n", + "2019-01-16 06:20:10,961 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", + "2019-01-16 06:20:10,967 : INFO : topic diff=0.002720, rho=0.020477\n", + "2019-01-16 06:20:11,245 : INFO : PROGRESS: pass 0, at document #4772000/4922894\n", + "2019-01-16 06:20:13,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:13,792 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 06:20:13,793 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:20:13,795 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"like\" + 0.005*\"term\"\n", + "2019-01-16 06:20:13,797 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", + "2019-01-16 06:20:13,798 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"royal\"\n", + "2019-01-16 06:20:13,804 : INFO : topic diff=0.003336, rho=0.020472\n", + "2019-01-16 06:20:14,116 : INFO : PROGRESS: pass 0, at document #4774000/4922894\n", + "2019-01-16 06:20:16,134 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:16,697 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", + "2019-01-16 06:20:16,699 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:20:16,700 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.023*\"ye\" + 0.019*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.015*\"british\"\n", + "2019-01-16 06:20:16,702 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.014*\"swedish\" + 0.013*\"netherland\" + 0.013*\"sweden\"\n", + "2019-01-16 06:20:16,703 : INFO : topic #31 (0.020): 0.069*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.028*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 06:20:16,709 : INFO : topic diff=0.002958, rho=0.020468\n", + "2019-01-16 06:20:16,987 : INFO : PROGRESS: pass 0, at document #4776000/4922894\n", + "2019-01-16 06:20:18,951 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:19,512 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:20:19,513 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"stage\"\n", + "2019-01-16 06:20:19,515 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:20:19,516 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", + "2019-01-16 06:20:19,518 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.028*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 06:20:19,524 : INFO : topic diff=0.002958, rho=0.020464\n", + "2019-01-16 06:20:19,797 : INFO : PROGRESS: pass 0, at document #4778000/4922894\n", + "2019-01-16 06:20:21,768 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:22,325 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.065*\"august\" + 0.065*\"novemb\" + 0.064*\"april\" + 0.062*\"june\" + 0.062*\"decemb\"\n", + "2019-01-16 06:20:22,327 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 06:20:22,329 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 06:20:22,330 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:20:22,332 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", + "2019-01-16 06:20:22,337 : INFO : topic diff=0.003323, rho=0.020459\n", + "2019-01-16 06:20:26,868 : INFO : -11.995 per-word bound, 4081.9 perplexity estimate based on a held-out corpus of 2000 documents with 542830 words\n", + "2019-01-16 06:20:26,869 : INFO : PROGRESS: pass 0, at document #4780000/4922894\n", + "2019-01-16 06:20:28,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:29,407 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:20:29,409 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:20:29,410 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:20:29,411 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"portugues\" + 0.010*\"josé\"\n", + "2019-01-16 06:20:29,412 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.033*\"hong\" + 0.029*\"japanes\" + 0.021*\"lee\" + 0.021*\"singapor\" + 0.019*\"chines\" + 0.017*\"kim\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"malaysia\"\n", + "2019-01-16 06:20:29,418 : INFO : topic diff=0.003318, rho=0.020455\n", + "2019-01-16 06:20:29,687 : INFO : PROGRESS: pass 0, at document #4782000/4922894\n", + "2019-01-16 06:20:31,709 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:32,269 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"scott\" + 0.006*\"richard\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:20:32,271 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", + "2019-01-16 06:20:32,272 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", + "2019-01-16 06:20:32,274 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.033*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.010*\"teacher\"\n", + "2019-01-16 06:20:32,275 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.022*\"ye\" + 0.018*\"quebec\" + 0.018*\"korean\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 06:20:32,280 : INFO : topic diff=0.003332, rho=0.020451\n", + "2019-01-16 06:20:32,557 : INFO : PROGRESS: pass 0, at document #4784000/4922894\n", + "2019-01-16 06:20:34,552 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:35,110 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", + "2019-01-16 06:20:35,111 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"scott\" + 0.006*\"richard\"\n", + "2019-01-16 06:20:35,113 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.068*\"align\" + 0.063*\"left\" + 0.057*\"wikit\" + 0.047*\"style\" + 0.041*\"center\" + 0.034*\"list\" + 0.034*\"right\" + 0.031*\"philippin\" + 0.028*\"text\"\n", + "2019-01-16 06:20:35,114 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.037*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", + "2019-01-16 06:20:35,115 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:20:35,121 : INFO : topic diff=0.002949, rho=0.020447\n", + "2019-01-16 06:20:35,393 : INFO : PROGRESS: pass 0, at document #4786000/4922894\n", + "2019-01-16 06:20:37,401 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:37,958 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 06:20:37,959 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", + "2019-01-16 06:20:37,960 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.065*\"august\" + 0.065*\"novemb\" + 0.063*\"april\" + 0.062*\"decemb\" + 0.062*\"june\"\n", + "2019-01-16 06:20:37,962 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:20:37,966 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", + "2019-01-16 06:20:37,973 : INFO : topic diff=0.002849, rho=0.020442\n", + "2019-01-16 06:20:38,225 : INFO : PROGRESS: pass 0, at document #4788000/4922894\n", + "2019-01-16 06:20:40,147 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:40,703 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.010*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", + "2019-01-16 06:20:40,704 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.011*\"wing\"\n", + "2019-01-16 06:20:40,705 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.025*\"commun\" + 0.022*\"household\" + 0.021*\"live\" + 0.021*\"peopl\"\n", + "2019-01-16 06:20:40,707 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.025*\"till\" + 0.025*\"color\" + 0.022*\"black\" + 0.014*\"cape\" + 0.012*\"storm\"\n", + "2019-01-16 06:20:40,708 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", + "2019-01-16 06:20:40,715 : INFO : topic diff=0.003313, rho=0.020438\n", + "2019-01-16 06:20:40,995 : INFO : PROGRESS: pass 0, at document #4790000/4922894\n", + "2019-01-16 06:20:42,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:43,540 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.038*\"north\" + 0.037*\"west\" + 0.036*\"counti\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", + "2019-01-16 06:20:43,541 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"scott\"\n", + "2019-01-16 06:20:43,543 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"ford\" + 0.010*\"championship\"\n", + "2019-01-16 06:20:43,545 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:20:43,546 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:20:43,552 : INFO : topic diff=0.003266, rho=0.020434\n", + "2019-01-16 06:20:43,822 : INFO : PROGRESS: pass 0, at document #4792000/4922894\n", + "2019-01-16 06:20:45,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:46,422 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"scott\"\n", + "2019-01-16 06:20:46,423 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:20:46,425 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:20:46,427 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 06:20:46,428 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:20:46,435 : INFO : topic diff=0.003274, rho=0.020429\n", + "2019-01-16 06:20:46,702 : INFO : PROGRESS: pass 0, at document #4794000/4922894\n", + "2019-01-16 06:20:48,756 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:49,312 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.018*\"www\" + 0.016*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"com\" + 0.011*\"islam\"\n", + "2019-01-16 06:20:49,314 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", + "2019-01-16 06:20:49,316 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:20:49,317 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 06:20:49,318 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:20:49,324 : INFO : topic diff=0.003146, rho=0.020425\n", + "2019-01-16 06:20:49,595 : INFO : PROGRESS: pass 0, at document #4796000/4922894\n", + "2019-01-16 06:20:51,538 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:52,096 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:20:52,097 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:20:52,099 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"forest\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\"\n", + "2019-01-16 06:20:52,101 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.022*\"black\" + 0.013*\"cape\" + 0.012*\"storm\"\n", + "2019-01-16 06:20:52,103 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", + "2019-01-16 06:20:52,110 : INFO : topic diff=0.003106, rho=0.020421\n", + "2019-01-16 06:20:52,392 : INFO : PROGRESS: pass 0, at document #4798000/4922894\n", + "2019-01-16 06:20:54,401 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:20:54,961 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"vehicl\"\n", + "2019-01-16 06:20:54,963 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.020*\"ye\" + 0.020*\"korean\" + 0.018*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 06:20:54,964 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.026*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"wing\"\n", + "2019-01-16 06:20:54,966 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 06:20:54,967 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.066*\"align\" + 0.061*\"left\" + 0.058*\"wikit\" + 0.047*\"style\" + 0.042*\"center\" + 0.034*\"list\" + 0.034*\"right\" + 0.030*\"philippin\" + 0.029*\"text\"\n", + "2019-01-16 06:20:54,973 : INFO : topic diff=0.003046, rho=0.020417\n", + "2019-01-16 06:20:59,650 : INFO : -11.732 per-word bound, 3402.3 perplexity estimate based on a held-out corpus of 2000 documents with 558379 words\n", + "2019-01-16 06:20:59,651 : INFO : PROGRESS: pass 0, at document #4800000/4922894\n", + "2019-01-16 06:21:01,672 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:02,233 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 06:21:02,235 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.018*\"japan\" + 0.018*\"nation\"\n", + "2019-01-16 06:21:02,237 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"term\"\n", + "2019-01-16 06:21:02,238 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.027*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 06:21:02,240 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:21:02,246 : INFO : topic diff=0.003289, rho=0.020412\n", + "2019-01-16 06:21:02,510 : INFO : PROGRESS: pass 0, at document #4802000/4922894\n", + "2019-01-16 06:21:04,490 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:05,048 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:21:05,050 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.033*\"hong\" + 0.029*\"japanes\" + 0.021*\"singapor\" + 0.021*\"lee\" + 0.019*\"chines\" + 0.017*\"kim\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"malaysia\"\n", + "2019-01-16 06:21:05,051 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", + "2019-01-16 06:21:05,052 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.020*\"korean\" + 0.019*\"ye\" + 0.018*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 06:21:05,053 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", + "2019-01-16 06:21:05,059 : INFO : topic diff=0.002831, rho=0.020408\n", + "2019-01-16 06:21:05,325 : INFO : PROGRESS: pass 0, at document #4804000/4922894\n", + "2019-01-16 06:21:07,368 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:07,927 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:21:07,928 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 06:21:07,930 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:21:07,931 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.027*\"south\" + 0.027*\"text\" + 0.025*\"till\" + 0.024*\"color\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 06:21:07,933 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:21:07,939 : INFO : topic diff=0.002881, rho=0.020404\n", + "2019-01-16 06:21:08,211 : INFO : PROGRESS: pass 0, at document #4806000/4922894\n", + "2019-01-16 06:21:10,223 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:10,779 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 06:21:10,781 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 06:21:10,782 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"contest\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"defeat\"\n", + "2019-01-16 06:21:10,783 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:21:10,785 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:21:10,791 : INFO : topic diff=0.002921, rho=0.020400\n", + "2019-01-16 06:21:11,064 : INFO : PROGRESS: pass 0, at document #4808000/4922894\n", + "2019-01-16 06:21:13,077 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:13,634 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.015*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", + "2019-01-16 06:21:13,635 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.010*\"naval\" + 0.009*\"damag\"\n", + "2019-01-16 06:21:13,637 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:21:13,638 : INFO : topic #22 (0.020): 0.051*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.024*\"commun\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.021*\"live\"\n", + "2019-01-16 06:21:13,639 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", + "2019-01-16 06:21:13,647 : INFO : topic diff=0.003589, rho=0.020395\n", + "2019-01-16 06:21:13,928 : INFO : PROGRESS: pass 0, at document #4810000/4922894\n", + "2019-01-16 06:21:15,955 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:16,514 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:21:16,517 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"korean\" + 0.019*\"ye\" + 0.018*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 06:21:16,518 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", + "2019-01-16 06:21:16,520 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:21:16,521 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"mission\"\n", + "2019-01-16 06:21:16,530 : INFO : topic diff=0.002587, rho=0.020391\n", + "2019-01-16 06:21:16,801 : INFO : PROGRESS: pass 0, at document #4812000/4922894\n", + "2019-01-16 06:21:18,777 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:19,339 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", + "2019-01-16 06:21:19,341 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"right\" + 0.009*\"offic\" + 0.009*\"report\" + 0.007*\"legal\"\n", + "2019-01-16 06:21:19,343 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:21:19,344 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:21:19,345 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.027*\"text\" + 0.027*\"south\" + 0.025*\"till\" + 0.023*\"color\" + 0.022*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", + "2019-01-16 06:21:19,352 : INFO : topic diff=0.003809, rho=0.020387\n", + "2019-01-16 06:21:19,622 : INFO : PROGRESS: pass 0, at document #4814000/4922894\n", + "2019-01-16 06:21:21,613 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:22,169 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.015*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", + "2019-01-16 06:21:22,171 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.034*\"hong\" + 0.031*\"japanes\" + 0.026*\"singapor\" + 0.021*\"lee\" + 0.019*\"chines\" + 0.017*\"kim\" + 0.014*\"indonesia\" + 0.014*\"malaysia\" + 0.014*\"thailand\"\n", + "2019-01-16 06:21:22,172 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.010*\"park\" + 0.009*\"citi\" + 0.009*\"church\"\n", + "2019-01-16 06:21:22,173 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:21:22,174 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"korean\" + 0.019*\"quebec\" + 0.018*\"ye\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 06:21:22,180 : INFO : topic diff=0.004143, rho=0.020383\n", + "2019-01-16 06:21:22,447 : INFO : PROGRESS: pass 0, at document #4816000/4922894\n", + "2019-01-16 06:21:24,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:25,346 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:21:25,348 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.065*\"januari\" + 0.064*\"august\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.063*\"april\" + 0.062*\"decemb\" + 0.061*\"june\"\n", + "2019-01-16 06:21:25,349 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:21:25,351 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.004*\"materi\"\n", + "2019-01-16 06:21:25,353 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"like\" + 0.005*\"term\"\n", + "2019-01-16 06:21:25,358 : INFO : topic diff=0.002678, rho=0.020378\n", + "2019-01-16 06:21:25,625 : INFO : PROGRESS: pass 0, at document #4818000/4922894\n", + "2019-01-16 06:21:27,654 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:28,210 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:21:28,212 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\"\n", + "2019-01-16 06:21:28,213 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", + "2019-01-16 06:21:28,215 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", + "2019-01-16 06:21:28,216 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:21:28,222 : INFO : topic diff=0.002842, rho=0.020374\n", + "2019-01-16 06:21:32,792 : INFO : -11.683 per-word bound, 3288.4 perplexity estimate based on a held-out corpus of 2000 documents with 567663 words\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:21:32,793 : INFO : PROGRESS: pass 0, at document #4820000/4922894\n", + "2019-01-16 06:21:34,777 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:35,335 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:21:35,337 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:21:35,338 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.065*\"januari\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.063*\"juli\" + 0.063*\"april\" + 0.061*\"decemb\" + 0.061*\"june\"\n", + "2019-01-16 06:21:35,339 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:21:35,340 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", + "2019-01-16 06:21:35,346 : INFO : topic diff=0.003386, rho=0.020370\n", + "2019-01-16 06:21:35,616 : INFO : PROGRESS: pass 0, at document #4822000/4922894\n", + "2019-01-16 06:21:37,562 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:38,121 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:21:38,123 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:21:38,125 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"vehicl\"\n", + "2019-01-16 06:21:38,126 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:21:38,127 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"ye\" + 0.018*\"quebec\" + 0.018*\"korean\" + 0.016*\"montreal\" + 0.016*\"british\"\n", + "2019-01-16 06:21:38,133 : INFO : topic diff=0.003257, rho=0.020366\n", + "2019-01-16 06:21:38,408 : INFO : PROGRESS: pass 0, at document #4824000/4922894\n", + "2019-01-16 06:21:40,423 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:40,981 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.024*\"commun\" + 0.023*\"household\" + 0.022*\"peopl\" + 0.021*\"live\"\n", + "2019-01-16 06:21:40,982 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"fly\"\n", + "2019-01-16 06:21:40,985 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:21:40,986 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.039*\"east\" + 0.038*\"north\" + 0.037*\"west\" + 0.036*\"counti\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:21:40,988 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:21:40,993 : INFO : topic diff=0.003144, rho=0.020362\n", + "2019-01-16 06:21:41,301 : INFO : PROGRESS: pass 0, at document #4826000/4922894\n", + "2019-01-16 06:21:43,292 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:43,855 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", + "2019-01-16 06:21:43,856 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.033*\"hong\" + 0.030*\"japanes\" + 0.025*\"singapor\" + 0.023*\"lee\" + 0.018*\"chines\" + 0.016*\"kim\" + 0.014*\"indonesia\" + 0.014*\"malaysia\" + 0.014*\"thailand\"\n", + "2019-01-16 06:21:43,858 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:21:43,859 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", + "2019-01-16 06:21:43,861 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:21:43,867 : INFO : topic diff=0.003319, rho=0.020357\n", + "2019-01-16 06:21:44,154 : INFO : PROGRESS: pass 0, at document #4828000/4922894\n", + "2019-01-16 06:21:46,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:46,762 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.015*\"swedish\" + 0.014*\"netherland\" + 0.013*\"sweden\"\n", + "2019-01-16 06:21:46,763 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 06:21:46,765 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:21:46,767 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", + "2019-01-16 06:21:46,768 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:21:46,774 : INFO : topic diff=0.002690, rho=0.020353\n", + "2019-01-16 06:21:47,041 : INFO : PROGRESS: pass 0, at document #4830000/4922894\n", + "2019-01-16 06:21:49,067 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:49,627 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:21:49,628 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:21:49,630 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:21:49,632 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", + "2019-01-16 06:21:49,634 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"includ\"\n", + "2019-01-16 06:21:49,640 : INFO : topic diff=0.003060, rho=0.020349\n", + "2019-01-16 06:21:49,908 : INFO : PROGRESS: pass 0, at document #4832000/4922894\n", + "2019-01-16 06:21:51,929 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:52,492 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:21:52,493 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.022*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:21:52,495 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:21:52,496 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:21:52,498 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:21:52,505 : INFO : topic diff=0.003268, rho=0.020345\n", + "2019-01-16 06:21:52,767 : INFO : PROGRESS: pass 0, at document #4834000/4922894\n", + "2019-01-16 06:21:54,792 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:55,349 : INFO : topic #49 (0.020): 0.088*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.039*\"east\" + 0.038*\"north\" + 0.037*\"west\" + 0.036*\"counti\" + 0.033*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:21:55,351 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:21:55,352 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", + "2019-01-16 06:21:55,354 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.010*\"park\" + 0.009*\"church\" + 0.009*\"citi\"\n", + "2019-01-16 06:21:55,355 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:21:55,361 : INFO : topic diff=0.002977, rho=0.020341\n", + "2019-01-16 06:21:55,636 : INFO : PROGRESS: pass 0, at document #4836000/4922894\n", + "2019-01-16 06:21:57,559 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:21:58,117 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:21:58,118 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 06:21:58,120 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.018*\"japan\" + 0.018*\"time\"\n", + "2019-01-16 06:21:58,122 : INFO : topic #48 (0.020): 0.072*\"march\" + 0.072*\"septemb\" + 0.072*\"octob\" + 0.065*\"januari\" + 0.063*\"novemb\" + 0.063*\"august\" + 0.062*\"juli\" + 0.062*\"april\" + 0.061*\"decemb\" + 0.059*\"june\"\n", + "2019-01-16 06:21:58,123 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:21:58,129 : INFO : topic diff=0.003646, rho=0.020336\n", + "2019-01-16 06:21:58,405 : INFO : PROGRESS: pass 0, at document #4838000/4922894\n", + "2019-01-16 06:22:00,390 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:00,948 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", + "2019-01-16 06:22:00,950 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", + "2019-01-16 06:22:00,951 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"counti\" + 0.021*\"peopl\"\n", + "2019-01-16 06:22:00,952 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:22:00,953 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:22:00,959 : INFO : topic diff=0.003035, rho=0.020332\n", + "2019-01-16 06:22:05,590 : INFO : -11.489 per-word bound, 2874.7 perplexity estimate based on a held-out corpus of 2000 documents with 566920 words\n", + "2019-01-16 06:22:05,591 : INFO : PROGRESS: pass 0, at document #4840000/4922894\n", + "2019-01-16 06:22:07,592 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:08,150 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", + "2019-01-16 06:22:08,152 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", + "2019-01-16 06:22:08,153 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 06:22:08,156 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:22:08,157 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", + "2019-01-16 06:22:08,163 : INFO : topic diff=0.003179, rho=0.020328\n", + "2019-01-16 06:22:08,432 : INFO : PROGRESS: pass 0, at document #4842000/4922894\n", + "2019-01-16 06:22:10,403 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:10,960 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:22:10,962 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", + "2019-01-16 06:22:10,963 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:22:10,964 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:22:10,966 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 06:22:10,972 : INFO : topic diff=0.003021, rho=0.020324\n", + "2019-01-16 06:22:11,244 : INFO : PROGRESS: pass 0, at document #4844000/4922894\n", + "2019-01-16 06:22:13,268 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:13,828 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.038*\"africa\" + 0.033*\"african\" + 0.029*\"text\" + 0.026*\"south\" + 0.026*\"till\" + 0.025*\"color\" + 0.023*\"black\" + 0.015*\"tropic\" + 0.014*\"storm\"\n", + "2019-01-16 06:22:13,829 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:22:13,830 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"portugues\" + 0.010*\"josé\"\n", + "2019-01-16 06:22:13,831 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"ye\" + 0.018*\"korean\" + 0.017*\"quebec\" + 0.016*\"montreal\" + 0.016*\"korea\"\n", + "2019-01-16 06:22:13,833 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:22:13,839 : INFO : topic diff=0.002444, rho=0.020319\n", + "2019-01-16 06:22:14,119 : INFO : PROGRESS: pass 0, at document #4846000/4922894\n", + "2019-01-16 06:22:16,211 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:16,771 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", + "2019-01-16 06:22:16,772 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"life\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 06:22:16,773 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:22:16,775 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:22:16,777 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 06:22:16,783 : INFO : topic diff=0.002827, rho=0.020315\n", + "2019-01-16 06:22:17,058 : INFO : PROGRESS: pass 0, at document #4848000/4922894\n", + "2019-01-16 06:22:19,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:19,635 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:22:19,637 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"ye\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\"\n", + "2019-01-16 06:22:19,638 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.015*\"swedish\" + 0.014*\"netherland\" + 0.014*\"sweden\"\n", + "2019-01-16 06:22:19,640 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 06:22:19,641 : INFO : topic #48 (0.020): 0.073*\"octob\" + 0.072*\"march\" + 0.071*\"septemb\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.062*\"april\" + 0.062*\"juli\" + 0.060*\"decemb\" + 0.059*\"june\"\n", + "2019-01-16 06:22:19,647 : INFO : topic diff=0.002841, rho=0.020311\n", + "2019-01-16 06:22:19,929 : INFO : PROGRESS: pass 0, at document #4850000/4922894\n", + "2019-01-16 06:22:21,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:22,501 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:22:22,503 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:22:22,504 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:22:22,506 : INFO : topic #48 (0.020): 0.073*\"octob\" + 0.072*\"march\" + 0.071*\"septemb\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.062*\"april\" + 0.061*\"juli\" + 0.060*\"decemb\" + 0.059*\"june\"\n", + "2019-01-16 06:22:22,507 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.013*\"father\" + 0.012*\"daughter\"\n", + "2019-01-16 06:22:22,513 : INFO : topic diff=0.002851, rho=0.020307\n", + "2019-01-16 06:22:22,803 : INFO : PROGRESS: pass 0, at document #4852000/4922894\n", + "2019-01-16 06:22:24,717 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:25,274 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", + "2019-01-16 06:22:25,275 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:22:25,277 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:22:25,278 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"product\" + 0.011*\"bank\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:22:25,279 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", + "2019-01-16 06:22:25,285 : INFO : topic diff=0.003099, rho=0.020303\n", + "2019-01-16 06:22:25,548 : INFO : PROGRESS: pass 0, at document #4854000/4922894\n", + "2019-01-16 06:22:27,524 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:28,080 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", + "2019-01-16 06:22:28,082 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:22:28,083 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 06:22:28,085 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:22:28,086 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.040*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:22:28,092 : INFO : topic diff=0.003174, rho=0.020299\n", + "2019-01-16 06:22:28,354 : INFO : PROGRESS: pass 0, at document #4856000/4922894\n", + "2019-01-16 06:22:30,338 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:30,896 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.018*\"japan\" + 0.018*\"time\"\n", + "2019-01-16 06:22:30,898 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.008*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 06:22:30,899 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.006*\"citi\"\n", + "2019-01-16 06:22:30,901 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:22:30,902 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:22:30,908 : INFO : topic diff=0.003192, rho=0.020294\n", + "2019-01-16 06:22:31,188 : INFO : PROGRESS: pass 0, at document #4858000/4922894\n", + "2019-01-16 06:22:33,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:33,739 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:22:33,740 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:22:33,743 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", + "2019-01-16 06:22:33,745 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:22:33,746 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:22:33,752 : INFO : topic diff=0.003016, rho=0.020290\n", + "2019-01-16 06:22:38,407 : INFO : -11.393 per-word bound, 2689.0 perplexity estimate based on a held-out corpus of 2000 documents with 577823 words\n", + "2019-01-16 06:22:38,408 : INFO : PROGRESS: pass 0, at document #4860000/4922894\n", + "2019-01-16 06:22:40,390 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:40,948 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:22:40,949 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:22:40,951 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"life\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 06:22:40,952 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.028*\"famili\" + 0.027*\"town\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", + "2019-01-16 06:22:40,953 : INFO : topic #41 (0.020): 0.040*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:22:40,959 : INFO : topic diff=0.003486, rho=0.020286\n", + "2019-01-16 06:22:41,234 : INFO : PROGRESS: pass 0, at document #4862000/4922894\n", + "2019-01-16 06:22:43,189 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:43,745 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", + "2019-01-16 06:22:43,746 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.040*\"west\" + 0.039*\"east\" + 0.038*\"north\" + 0.036*\"counti\" + 0.033*\"municip\" + 0.032*\"south\" + 0.031*\"provinc\"\n", + "2019-01-16 06:22:43,748 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:22:43,749 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", + "2019-01-16 06:22:43,750 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:22:43,756 : INFO : topic diff=0.002933, rho=0.020282\n", + "2019-01-16 06:22:44,015 : INFO : PROGRESS: pass 0, at document #4864000/4922894\n", + "2019-01-16 06:22:45,955 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:46,513 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:22:46,515 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", + "2019-01-16 06:22:46,516 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:22:46,518 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", + "2019-01-16 06:22:46,519 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:22:46,525 : INFO : topic diff=0.003500, rho=0.020278\n", + "2019-01-16 06:22:46,794 : INFO : PROGRESS: pass 0, at document #4866000/4922894\n", + "2019-01-16 06:22:48,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:49,393 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.007*\"high\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:22:49,394 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:22:49,398 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.072*\"align\" + 0.072*\"left\" + 0.055*\"wikit\" + 0.046*\"style\" + 0.039*\"center\" + 0.035*\"list\" + 0.032*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", + "2019-01-16 06:22:49,399 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.032*\"kong\" + 0.031*\"japanes\" + 0.023*\"singapor\" + 0.023*\"lee\" + 0.018*\"chines\" + 0.017*\"kim\" + 0.015*\"malaysia\" + 0.014*\"indonesia\" + 0.014*\"thailand\"\n", + "2019-01-16 06:22:49,400 : INFO : topic #41 (0.020): 0.040*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", + "2019-01-16 06:22:49,406 : INFO : topic diff=0.003310, rho=0.020274\n", + "2019-01-16 06:22:49,687 : INFO : PROGRESS: pass 0, at document #4868000/4922894\n", + "2019-01-16 06:22:51,728 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:52,285 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:22:52,287 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.071*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.018*\"ye\" + 0.018*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 06:22:52,288 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:22:52,290 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.036*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", + "2019-01-16 06:22:52,291 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:22:52,298 : INFO : topic diff=0.003291, rho=0.020269\n", + "2019-01-16 06:22:52,569 : INFO : PROGRESS: pass 0, at document #4870000/4922894\n", + "2019-01-16 06:22:54,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:55,131 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", + "2019-01-16 06:22:55,132 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.018*\"japan\" + 0.017*\"time\"\n", + "2019-01-16 06:22:55,133 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:22:55,135 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\"\n", + "2019-01-16 06:22:55,136 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.030*\"text\" + 0.027*\"till\" + 0.026*\"south\" + 0.025*\"color\" + 0.023*\"black\" + 0.015*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 06:22:55,142 : INFO : topic diff=0.003226, rho=0.020265\n", + "2019-01-16 06:22:55,424 : INFO : PROGRESS: pass 0, at document #4872000/4922894\n", + "2019-01-16 06:22:57,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:22:57,975 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:22:57,977 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", + "2019-01-16 06:22:57,978 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.039*\"west\" + 0.039*\"east\" + 0.038*\"north\" + 0.036*\"counti\" + 0.033*\"municip\" + 0.032*\"south\" + 0.030*\"provinc\"\n", + "2019-01-16 06:22:57,980 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.036*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", + "2019-01-16 06:22:57,981 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.016*\"swedish\" + 0.014*\"sweden\" + 0.013*\"netherland\"\n", + "2019-01-16 06:22:57,986 : INFO : topic diff=0.002728, rho=0.020261\n", + "2019-01-16 06:22:58,258 : INFO : PROGRESS: pass 0, at document #4874000/4922894\n", + "2019-01-16 06:23:00,229 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:00,788 : INFO : topic #22 (0.020): 0.051*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.028*\"town\" + 0.028*\"famili\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", + "2019-01-16 06:23:00,789 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.040*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:23:00,791 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"base\"\n", + "2019-01-16 06:23:00,792 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:23:00,794 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 06:23:00,800 : INFO : topic diff=0.003258, rho=0.020257\n", + "2019-01-16 06:23:01,069 : INFO : PROGRESS: pass 0, at document #4876000/4922894\n", + "2019-01-16 06:23:03,025 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:03,583 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", + "2019-01-16 06:23:03,584 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.032*\"ag\" + 0.029*\"citi\" + 0.028*\"famili\" + 0.028*\"town\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", + "2019-01-16 06:23:03,586 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", + "2019-01-16 06:23:03,589 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"base\"\n", + "2019-01-16 06:23:03,591 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", + "2019-01-16 06:23:03,596 : INFO : topic diff=0.002770, rho=0.020253\n", + "2019-01-16 06:23:03,891 : INFO : PROGRESS: pass 0, at document #4878000/4922894\n", + "2019-01-16 06:23:05,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:06,345 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", + "2019-01-16 06:23:06,347 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:23:06,350 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:23:06,351 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.018*\"time\" + 0.017*\"japan\"\n", + "2019-01-16 06:23:06,353 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.016*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", + "2019-01-16 06:23:06,360 : INFO : topic diff=0.003075, rho=0.020249\n", + "2019-01-16 06:23:11,095 : INFO : -11.824 per-word bound, 3626.0 perplexity estimate based on a held-out corpus of 2000 documents with 551294 words\n", + "2019-01-16 06:23:11,096 : INFO : PROGRESS: pass 0, at document #4880000/4922894\n", + "2019-01-16 06:23:13,141 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:13,698 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:23:13,700 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.071*\"march\" + 0.070*\"septemb\" + 0.062*\"januari\" + 0.062*\"juli\" + 0.062*\"novemb\" + 0.062*\"august\" + 0.061*\"april\" + 0.061*\"decemb\" + 0.059*\"june\"\n", + "2019-01-16 06:23:13,701 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"base\"\n", + "2019-01-16 06:23:13,702 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", + "2019-01-16 06:23:13,705 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"award\" + 0.011*\"develop\" + 0.010*\"associ\"\n", + "2019-01-16 06:23:13,711 : INFO : topic diff=0.003169, rho=0.020244\n", + "2019-01-16 06:23:13,980 : INFO : PROGRESS: pass 0, at document #4882000/4922894\n", + "2019-01-16 06:23:16,042 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:23:16,600 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 06:23:16,601 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", + "2019-01-16 06:23:16,603 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.033*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"district\"\n", + "2019-01-16 06:23:16,604 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 06:23:16,605 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"time\" + 0.017*\"japan\"\n", + "2019-01-16 06:23:16,611 : INFO : topic diff=0.003338, rho=0.020240\n", + "2019-01-16 06:23:16,865 : INFO : PROGRESS: pass 0, at document #4884000/4922894\n", + "2019-01-16 06:23:18,847 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:19,406 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.056*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.032*\"south\" + 0.032*\"zealand\" + 0.026*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", + "2019-01-16 06:23:19,407 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", + "2019-01-16 06:23:19,408 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.020*\"winner\" + 0.019*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", + "2019-01-16 06:23:19,410 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 06:23:19,412 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.040*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:23:19,417 : INFO : topic diff=0.002851, rho=0.020236\n", + "2019-01-16 06:23:19,679 : INFO : PROGRESS: pass 0, at document #4886000/4922894\n", + "2019-01-16 06:23:21,659 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:22,219 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.008*\"human\" + 0.008*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 06:23:22,220 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.016*\"pakistan\" + 0.016*\"www\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\"\n", + "2019-01-16 06:23:22,221 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:23:22,222 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 06:23:22,224 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"base\"\n", + "2019-01-16 06:23:22,230 : INFO : topic diff=0.002476, rho=0.020232\n", + "2019-01-16 06:23:22,519 : INFO : PROGRESS: pass 0, at document #4888000/4922894\n", + "2019-01-16 06:23:24,873 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:25,433 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:23:25,434 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.016*\"swedish\" + 0.014*\"sweden\" + 0.014*\"netherland\"\n", + "2019-01-16 06:23:25,438 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"year\"\n", + "2019-01-16 06:23:25,440 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.008*\"human\" + 0.008*\"caus\" + 0.008*\"treatment\"\n", + "2019-01-16 06:23:25,441 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"order\"\n", + "2019-01-16 06:23:25,448 : INFO : topic diff=0.003760, rho=0.020228\n", + "2019-01-16 06:23:25,727 : INFO : PROGRESS: pass 0, at document #4890000/4922894\n", + "2019-01-16 06:23:27,774 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:28,332 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:23:28,334 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", + "2019-01-16 06:23:28,336 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"associ\"\n", + "2019-01-16 06:23:28,338 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"quebec\" + 0.017*\"ye\" + 0.017*\"korea\" + 0.017*\"korean\" + 0.016*\"montreal\"\n", + "2019-01-16 06:23:28,339 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 06:23:28,346 : INFO : topic diff=0.002942, rho=0.020224\n", + "2019-01-16 06:23:28,613 : INFO : PROGRESS: pass 0, at document #4892000/4922894\n", + "2019-01-16 06:23:30,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:31,178 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"vehicl\"\n", + "2019-01-16 06:23:31,179 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"district\"\n", + "2019-01-16 06:23:31,181 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:23:31,182 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.020*\"soviet\" + 0.020*\"russia\" + 0.018*\"polish\" + 0.015*\"jewish\" + 0.015*\"poland\" + 0.014*\"republ\" + 0.012*\"moscow\"\n", + "2019-01-16 06:23:31,183 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.008*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", + "2019-01-16 06:23:31,189 : INFO : topic diff=0.003131, rho=0.020220\n", + "2019-01-16 06:23:31,462 : INFO : PROGRESS: pass 0, at document #4894000/4922894\n", + "2019-01-16 06:23:33,520 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:34,081 : INFO : topic #35 (0.020): 0.033*\"japanes\" + 0.033*\"kong\" + 0.032*\"hong\" + 0.023*\"lee\" + 0.022*\"singapor\" + 0.018*\"chines\" + 0.017*\"kim\" + 0.015*\"japan\" + 0.014*\"malaysia\" + 0.014*\"indonesia\"\n", + "2019-01-16 06:23:34,083 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"japan\" + 0.017*\"time\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:23:34,084 : INFO : topic #40 (0.020): 0.051*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.031*\"text\" + 0.028*\"till\" + 0.027*\"south\" + 0.026*\"color\" + 0.023*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 06:23:34,085 : INFO : topic #48 (0.020): 0.073*\"octob\" + 0.071*\"march\" + 0.071*\"septemb\" + 0.063*\"novemb\" + 0.063*\"januari\" + 0.062*\"juli\" + 0.062*\"august\" + 0.061*\"april\" + 0.061*\"decemb\" + 0.059*\"june\"\n", + "2019-01-16 06:23:34,086 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.056*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.033*\"south\" + 0.026*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", + "2019-01-16 06:23:34,092 : INFO : topic diff=0.003495, rho=0.020215\n", + "2019-01-16 06:23:34,363 : INFO : PROGRESS: pass 0, at document #4896000/4922894\n", + "2019-01-16 06:23:36,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:36,934 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.020*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 06:23:36,935 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 06:23:36,936 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\"\n", + "2019-01-16 06:23:36,938 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", + "2019-01-16 06:23:36,939 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", + "2019-01-16 06:23:36,945 : INFO : topic diff=0.002734, rho=0.020211\n", + "2019-01-16 06:23:37,222 : INFO : PROGRESS: pass 0, at document #4898000/4922894\n", + "2019-01-16 06:23:39,289 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:39,846 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 06:23:39,848 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"japan\" + 0.017*\"nation\"\n", + "2019-01-16 06:23:39,849 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 06:23:39,852 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", + "2019-01-16 06:23:39,853 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 06:23:39,859 : INFO : topic diff=0.002856, rho=0.020207\n", + "2019-01-16 06:23:44,425 : INFO : -11.407 per-word bound, 2715.7 perplexity estimate based on a held-out corpus of 2000 documents with 546421 words\n", + "2019-01-16 06:23:44,426 : INFO : PROGRESS: pass 0, at document #4900000/4922894\n", + "2019-01-16 06:23:46,434 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:46,993 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", + "2019-01-16 06:23:46,994 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"japan\" + 0.017*\"nation\"\n", + "2019-01-16 06:23:46,995 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:23:46,997 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.016*\"swedish\" + 0.014*\"netherland\" + 0.014*\"sweden\"\n", + "2019-01-16 06:23:46,998 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"servic\"\n", + "2019-01-16 06:23:47,004 : INFO : topic diff=0.002838, rho=0.020203\n", + "2019-01-16 06:23:47,302 : INFO : PROGRESS: pass 0, at document #4902000/4922894\n", + "2019-01-16 06:23:49,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:49,876 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", + "2019-01-16 06:23:49,878 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:23:49,879 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.025*\"unit\" + 0.022*\"london\" + 0.019*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", + "2019-01-16 06:23:49,880 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.011*\"port\" + 0.011*\"boat\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"fleet\" + 0.009*\"gun\"\n", + "2019-01-16 06:23:49,882 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", + "2019-01-16 06:23:49,887 : INFO : topic diff=0.002917, rho=0.020199\n", + "2019-01-16 06:23:50,163 : INFO : PROGRESS: pass 0, at document #4904000/4922894\n", + "2019-01-16 06:23:52,140 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:52,695 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", + "2019-01-16 06:23:52,697 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"servic\"\n", + "2019-01-16 06:23:52,698 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:23:52,699 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", + "2019-01-16 06:23:52,701 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.024*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", + "2019-01-16 06:23:52,707 : INFO : topic diff=0.003139, rho=0.020195\n", + "2019-01-16 06:23:52,983 : INFO : PROGRESS: pass 0, at document #4906000/4922894\n", + "2019-01-16 06:23:54,987 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:55,544 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:23:55,545 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", + "2019-01-16 06:23:55,546 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.040*\"east\" + 0.039*\"west\" + 0.038*\"north\" + 0.037*\"counti\" + 0.033*\"south\" + 0.033*\"municip\" + 0.029*\"provinc\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:23:55,548 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 06:23:55,549 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 06:23:55,555 : INFO : topic diff=0.003067, rho=0.020191\n", + "2019-01-16 06:23:55,828 : INFO : PROGRESS: pass 0, at document #4908000/4922894\n", + "2019-01-16 06:23:57,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:23:58,383 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 06:23:58,385 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 06:23:58,387 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"quebec\" + 0.017*\"ye\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"montreal\"\n", + "2019-01-16 06:23:58,388 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:23:58,389 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 06:23:58,395 : INFO : topic diff=0.003361, rho=0.020187\n", + "2019-01-16 06:23:58,659 : INFO : PROGRESS: pass 0, at document #4910000/4922894\n", + "2019-01-16 06:24:00,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:24:01,170 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", + "2019-01-16 06:24:01,171 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", + "2019-01-16 06:24:01,173 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", + "2019-01-16 06:24:01,175 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 06:24:01,176 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", + "2019-01-16 06:24:01,182 : INFO : topic diff=0.003295, rho=0.020182\n", + "2019-01-16 06:24:01,443 : INFO : PROGRESS: pass 0, at document #4912000/4922894\n", + "2019-01-16 06:24:03,413 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:24:03,972 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.039*\"west\" + 0.038*\"north\" + 0.037*\"counti\" + 0.033*\"south\" + 0.033*\"municip\" + 0.029*\"provinc\"\n", + "2019-01-16 06:24:03,974 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.014*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", + "2019-01-16 06:24:03,975 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", + "2019-01-16 06:24:03,976 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", + "2019-01-16 06:24:03,977 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 06:24:03,983 : INFO : topic diff=0.003338, rho=0.020178\n", + "2019-01-16 06:24:04,250 : INFO : PROGRESS: pass 0, at document #4914000/4922894\n", + "2019-01-16 06:24:06,256 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:24:06,812 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", + "2019-01-16 06:24:06,814 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", + "2019-01-16 06:24:06,815 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.014*\"player\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", + "2019-01-16 06:24:06,817 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", + "2019-01-16 06:24:06,819 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", + "2019-01-16 06:24:06,825 : INFO : topic diff=0.002677, rho=0.020174\n", + "2019-01-16 06:24:07,086 : INFO : PROGRESS: pass 0, at document #4916000/4922894\n", + "2019-01-16 06:24:09,022 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:24:09,579 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\"\n", + "2019-01-16 06:24:09,580 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:24:09,583 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.039*\"west\" + 0.038*\"north\" + 0.037*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.029*\"provinc\"\n", + "2019-01-16 06:24:09,585 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\"\n", + "2019-01-16 06:24:09,586 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", + "2019-01-16 06:24:09,592 : INFO : topic diff=0.002973, rho=0.020170\n", + "2019-01-16 06:24:09,869 : INFO : PROGRESS: pass 0, at document #4918000/4922894\n", + "2019-01-16 06:24:11,923 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:24:12,482 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", + "2019-01-16 06:24:12,483 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", + "2019-01-16 06:24:12,484 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 06:24:12,486 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.012*\"scottish\"\n", + "2019-01-16 06:24:12,487 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.036*\"club\" + 0.035*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:24:12,492 : INFO : topic diff=0.003718, rho=0.020166\n", + "2019-01-16 06:24:17,164 : INFO : -11.794 per-word bound, 3550.7 perplexity estimate based on a held-out corpus of 2000 documents with 582002 words\n", + "2019-01-16 06:24:17,165 : INFO : PROGRESS: pass 0, at document #4920000/4922894\n", + "2019-01-16 06:24:19,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:24:19,745 : INFO : topic #27 (0.020): 0.055*\"born\" + 0.034*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"poland\" + 0.014*\"republ\" + 0.013*\"moscow\"\n", + "2019-01-16 06:24:19,746 : INFO : topic #48 (0.020): 0.071*\"octob\" + 0.070*\"septemb\" + 0.069*\"march\" + 0.062*\"decemb\" + 0.062*\"januari\" + 0.062*\"novemb\" + 0.062*\"juli\" + 0.061*\"august\" + 0.060*\"april\" + 0.058*\"june\"\n", + "2019-01-16 06:24:19,748 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", + "2019-01-16 06:24:19,749 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.013*\"henri\"\n", + "2019-01-16 06:24:19,751 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.020*\"point\" + 0.020*\"winner\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", + "2019-01-16 06:24:19,756 : INFO : topic diff=0.003724, rho=0.020162\n", + "2019-01-16 06:24:20,023 : INFO : PROGRESS: pass 0, at document #4922000/4922894\n", + "2019-01-16 06:24:22,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", + "2019-01-16 06:24:22,561 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"includ\"\n", + "2019-01-16 06:24:22,563 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", + "2019-01-16 06:24:22,565 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.011*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"gun\" + 0.009*\"fleet\"\n", + "2019-01-16 06:24:22,566 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.070*\"septemb\" + 0.069*\"march\" + 0.062*\"januari\" + 0.062*\"decemb\" + 0.062*\"novemb\" + 0.061*\"juli\" + 0.061*\"august\" + 0.060*\"april\" + 0.057*\"june\"\n", + "2019-01-16 06:24:22,569 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", + "2019-01-16 06:24:22,575 : INFO : topic diff=0.003063, rho=0.020158\n", + "2019-01-16 06:24:24,935 : INFO : -11.515 per-word bound, 2926.5 perplexity estimate based on a held-out corpus of 894 documents with 240978 words\n", + "2019-01-16 06:24:24,936 : INFO : PROGRESS: pass 0, at document #4922894/4922894\n", + "2019-01-16 06:24:25,882 : INFO : merging changes from 894 documents into a model of 4922894 documents\n", + "2019-01-16 06:24:26,443 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.007*\"legal\"\n", + "2019-01-16 06:24:26,445 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", + "2019-01-16 06:24:26,447 : INFO : topic #40 (0.020): 0.052*\"bar\" + 0.038*\"africa\" + 0.033*\"text\" + 0.033*\"african\" + 0.031*\"till\" + 0.029*\"color\" + 0.026*\"south\" + 0.023*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", + "2019-01-16 06:24:26,448 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.012*\"scottish\"\n", + "2019-01-16 06:24:26,450 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "2019-01-16 06:24:26,456 : INFO : topic diff=0.003897, rho=0.020154\n", + "2019-01-16 06:24:26,465 : INFO : saving LdaState object under lda.model.state, separately None\n", + "2019-01-16 06:24:26,680 : INFO : saved lda.model.state\n", + "2019-01-16 06:24:26,732 : INFO : saving LdaModel object under lda.model, separately ['expElogbeta', 'sstats']\n", + "2019-01-16 06:24:26,732 : INFO : storing np array 'expElogbeta' to lda.model.expElogbeta.npy\n", + "2019-01-16 06:24:26,812 : INFO : not storing attribute dispatcher\n", + "2019-01-16 06:24:26,814 : INFO : not storing attribute id2word\n", + "2019-01-16 06:24:26,815 : INFO : not storing attribute state\n", + "2019-01-16 06:24:26,828 : INFO : saved lda.model\n" + ] + } + ], "source": [ "row = dict()\n", "row['model'] = 'lda'\n", @@ -503,9 +23724,135 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2019-01-16 06:24:27,064 : INFO : loading LdaModel object from lda.model\n", + "2019-01-16 06:24:27,070 : INFO : loading expElogbeta from lda.model.expElogbeta.npy with mmap=None\n", + "2019-01-16 06:24:27,077 : INFO : setting ignored attribute dispatcher to None\n", + "2019-01-16 06:24:27,078 : INFO : setting ignored attribute id2word to None\n", + "2019-01-16 06:24:27,078 : INFO : setting ignored attribute state to None\n", + "2019-01-16 06:24:27,079 : INFO : loaded lda.model\n", + "2019-01-16 06:24:27,079 : INFO : loading LdaState object from lda.model.state\n", + "2019-01-16 06:24:27,173 : INFO : loaded lda.model.state\n", + "2019-01-16 06:24:41,257 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 06:24:41,452 : INFO : CorpusAccumulator accumulated stats from 2000 documents\n" + ] + }, + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.033*\"war\" + 0.028*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"'),\n", + " (1,\n", + " '0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"'),\n", + " (2,\n", + " '0.062*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.015*\"swedish\" + 0.014*\"netherland\" + 0.014*\"sweden\"'),\n", + " (3,\n", + " '0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"royal\" + 0.013*\"henri\"'),\n", + " (4,\n", + " '0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.033*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"campu\"'),\n", + " (5,\n", + " '0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"'),\n", + " (6,\n", + " '0.061*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.014*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"'),\n", + " (7,\n", + " '0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.009*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"'),\n", + " (8,\n", + " '0.048*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.013*\"sri\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.012*\"tamil\"'),\n", + " (9,\n", + " '0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"'),\n", + " (10,\n", + " '0.020*\"engin\" + 0.013*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"vehicl\"'),\n", + " (11,\n", + " '0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.007*\"legal\"'),\n", + " (12,\n", + " '0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"'),\n", + " (13,\n", + " '0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"'),\n", + " (14,\n", + " '0.027*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"'),\n", + " (15,\n", + " '0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.012*\"scottish\"'),\n", + " (16,\n", + " '0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"'),\n", + " (17,\n", + " '0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"championship\" + 0.011*\"year\"'),\n", + " (18,\n", + " '0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"'),\n", + " (19,\n", + " '0.022*\"radio\" + 0.020*\"new\" + 0.019*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"'),\n", + " (20,\n", + " '0.035*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"defeat\"'),\n", + " (21,\n", + " '0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"term\"'),\n", + " (22,\n", + " '0.051*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"counti\"'),\n", + " (23,\n", + " '0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"'),\n", + " (24,\n", + " '0.037*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"fleet\"'),\n", + " (25,\n", + " '0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.020*\"point\" + 0.020*\"winner\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"'),\n", + " (26,\n", + " '0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\" + 0.017*\"nation\"'),\n", + " (27,\n", + " '0.056*\"born\" + 0.034*\"russian\" + 0.026*\"american\" + 0.020*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"poland\" + 0.014*\"republ\" + 0.013*\"moscow\"'),\n", + " (28,\n", + " '0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"'),\n", + " (29,\n", + " '0.039*\"leagu\" + 0.036*\"club\" + 0.035*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"'),\n", + " (30,\n", + " '0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"'),\n", + " (31,\n", + " '0.067*\"australia\" + 0.058*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.032*\"south\" + 0.027*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"'),\n", + " (32,\n", + " '0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.006*\"tree\"'),\n", + " (33,\n", + " '0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"'),\n", + " (34,\n", + " '0.085*\"island\" + 0.073*\"canada\" + 0.065*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.016*\"british\"'),\n", + " (35,\n", + " '0.034*\"kong\" + 0.034*\"japanes\" + 0.033*\"hong\" + 0.023*\"lee\" + 0.021*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.015*\"japan\" + 0.014*\"indonesia\" + 0.014*\"thailand\"'),\n", + " (36,\n", + " '0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"'),\n", + " (37,\n", + " '0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"'),\n", + " (38,\n", + " '0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"'),\n", + " (39,\n", + " '0.050*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"'),\n", + " (40,\n", + " '0.052*\"bar\" + 0.038*\"africa\" + 0.033*\"text\" + 0.033*\"african\" + 0.031*\"till\" + 0.029*\"color\" + 0.026*\"south\" + 0.023*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"'),\n", + " (41,\n", + " '0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"'),\n", + " (42,\n", + " '0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"year\"'),\n", + " (43,\n", + " '0.033*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"'),\n", + " (44,\n", + " '0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.014*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"'),\n", + " (45,\n", + " '0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"jone\"'),\n", + " (46,\n", + " '0.133*\"class\" + 0.062*\"align\" + 0.060*\"left\" + 0.056*\"wikit\" + 0.046*\"style\" + 0.043*\"center\" + 0.035*\"right\" + 0.032*\"philippin\" + 0.032*\"list\" + 0.026*\"text\"'),\n", + " (47,\n", + " '0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"'),\n", + " (48,\n", + " '0.072*\"octob\" + 0.070*\"septemb\" + 0.069*\"march\" + 0.062*\"decemb\" + 0.062*\"januari\" + 0.062*\"novemb\" + 0.061*\"juli\" + 0.061*\"august\" + 0.060*\"april\" + 0.058*\"june\"'),\n", + " (49,\n", + " '0.093*\"district\" + 0.066*\"villag\" + 0.047*\"region\" + 0.039*\"east\" + 0.039*\"west\" + 0.038*\"north\" + 0.036*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.029*\"provinc\"')]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "lda = LdaModel.load('lda.model')\n", "row.update(get_tm_metrics(lda, test_corpus))\n", @@ -523,18 +23870,178 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
coherencel2_normmodelperplexitytopicstrain_time
0-2.8141357.265412nmf975.740399[(24, 0.131*\"mount\" + 0.129*\"lemmon\" + 0.129*\"...4394.560518
1-2.4366507.268837nmf_with_r985.570926[(49, 0.112*\"peak\" + 0.111*\"kitt\" + 0.111*\"mou...26451.927848
2-2.5144697.371544lda4727.075546[(35, 0.034*\"kong\" + 0.034*\"japanes\" + 0.033*\"...8278.891060
\n", + "
" + ], + "text/plain": [ + " coherence l2_norm model perplexity \\\n", + "0 -2.814135 7.265412 nmf 975.740399 \n", + "1 -2.436650 7.268837 nmf_with_r 985.570926 \n", + "2 -2.514469 7.371544 lda 4727.075546 \n", + "\n", + " topics train_time \n", + "0 [(24, 0.131*\"mount\" + 0.129*\"lemmon\" + 0.129*\"... 4394.560518 \n", + "1 [(49, 0.112*\"peak\" + 0.111*\"kitt\" + 0.111*\"mou... 26451.927848 \n", + "2 [(35, 0.034*\"kong\" + 0.034*\"japanes\" + 0.033*\"... 8278.891060 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "tm_metrics" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================\n", + "nmf\n", + "====================\n", + "\n", + "(24, '0.131*\"mount\" + 0.129*\"lemmon\" + 0.129*\"peak\" + 0.127*\"kitt\" + 0.127*\"spacewatch\" + 0.065*\"survei\" + 0.037*\"octob\" + 0.031*\"septemb\" + 0.023*\"css\" + 0.023*\"catalina\"')\n", + "\n", + "(32, '0.196*\"linear\" + 0.195*\"socorro\" + 0.045*\"septemb\" + 0.039*\"neat\" + 0.035*\"palomar\" + 0.032*\"octob\" + 0.024*\"kitt\" + 0.024*\"peak\" + 0.024*\"spacewatch\" + 0.023*\"anderson\"')\n", + "\n", + "(8, '0.331*\"align\" + 0.270*\"left\" + 0.071*\"right\" + 0.040*\"text\" + 0.035*\"style\" + 0.022*\"center\" + 0.013*\"bar\" + 0.009*\"till\" + 0.008*\"bgcolor\" + 0.008*\"color\"')\n", + "\n", + "(27, '0.186*\"district\" + 0.027*\"pennsylvania\" + 0.022*\"grade\" + 0.017*\"fund\" + 0.017*\"educ\" + 0.017*\"basic\" + 0.016*\"level\" + 0.014*\"oblast\" + 0.014*\"rural\" + 0.013*\"tax\"')\n", + "\n", + "(48, '0.103*\"art\" + 0.066*\"museum\" + 0.040*\"paint\" + 0.035*\"work\" + 0.026*\"artist\" + 0.024*\"galleri\" + 0.022*\"exhibit\" + 0.019*\"collect\" + 0.015*\"histori\" + 0.013*\"jpg\"')\n", + "\n", + "(11, '0.122*\"new\" + 0.043*\"york\" + 0.009*\"zealand\" + 0.007*\"jersei\" + 0.006*\"american\" + 0.006*\"time\" + 0.006*\"australia\" + 0.005*\"radio\" + 0.005*\"press\" + 0.005*\"washington\"')\n", + "\n", + "(20, '0.008*\"us\" + 0.006*\"gener\" + 0.006*\"model\" + 0.006*\"data\" + 0.006*\"design\" + 0.005*\"time\" + 0.005*\"function\" + 0.005*\"number\" + 0.005*\"process\" + 0.005*\"exampl\"')\n", + "\n", + "(28, '0.074*\"year\" + 0.022*\"dai\" + 0.012*\"time\" + 0.008*\"ag\" + 0.006*\"month\" + 0.006*\"includ\" + 0.006*\"follow\" + 0.005*\"later\" + 0.005*\"old\" + 0.005*\"student\"')\n", + "\n", + "(38, '0.033*\"royal\" + 0.025*\"john\" + 0.025*\"william\" + 0.016*\"lieuten\" + 0.013*\"georg\" + 0.012*\"offic\" + 0.012*\"jame\" + 0.011*\"sergeant\" + 0.011*\"major\" + 0.010*\"charl\"')\n", + "\n", + "(19, '0.012*\"area\" + 0.011*\"river\" + 0.010*\"water\" + 0.004*\"larg\" + 0.004*\"region\" + 0.004*\"lake\" + 0.004*\"power\" + 0.004*\"high\" + 0.004*\"bar\" + 0.004*\"form\"')\n", + "\n", + "\n", + "====================\n", + "nmf_with_r\n", + "====================\n", + "\n", + "(49, '0.112*\"peak\" + 0.111*\"kitt\" + 0.111*\"mount\" + 0.111*\"spacewatch\" + 0.109*\"lemmon\" + 0.055*\"survei\" + 0.044*\"octob\" + 0.041*\"septemb\" + 0.026*\"novemb\" + 0.021*\"march\"')\n", + "\n", + "(32, '0.194*\"linear\" + 0.193*\"socorro\" + 0.047*\"septemb\" + 0.038*\"neat\" + 0.034*\"palomar\" + 0.034*\"octob\" + 0.025*\"decemb\" + 0.024*\"august\" + 0.023*\"anderson\" + 0.023*\"mesa\"')\n", + "\n", + "(48, '0.112*\"art\" + 0.063*\"museum\" + 0.037*\"paint\" + 0.036*\"work\" + 0.028*\"artist\" + 0.026*\"galleri\" + 0.025*\"exhibit\" + 0.020*\"collect\" + 0.015*\"histori\" + 0.014*\"design\"')\n", + "\n", + "(4, '0.093*\"club\" + 0.049*\"cup\" + 0.033*\"footbal\" + 0.031*\"goal\" + 0.022*\"leagu\" + 0.022*\"unit\" + 0.022*\"plai\" + 0.022*\"match\" + 0.018*\"score\" + 0.015*\"player\"')\n", + "\n", + "(27, '0.159*\"district\" + 0.031*\"pennsylvania\" + 0.025*\"grade\" + 0.021*\"educ\" + 0.019*\"fund\" + 0.018*\"basic\" + 0.017*\"level\" + 0.015*\"student\" + 0.014*\"receiv\" + 0.014*\"tax\"')\n", + "\n", + "(17, '0.095*\"season\" + 0.014*\"plai\" + 0.010*\"coach\" + 0.009*\"final\" + 0.009*\"second\" + 0.008*\"win\" + 0.008*\"record\" + 0.008*\"career\" + 0.008*\"finish\" + 0.007*\"point\"')\n", + "\n", + "(40, '0.009*\"time\" + 0.008*\"later\" + 0.007*\"kill\" + 0.006*\"appear\" + 0.005*\"man\" + 0.005*\"death\" + 0.005*\"father\" + 0.005*\"return\" + 0.005*\"son\" + 0.004*\"charact\"')\n", + "\n", + "(20, '0.008*\"us\" + 0.006*\"gener\" + 0.005*\"design\" + 0.005*\"model\" + 0.005*\"develop\" + 0.005*\"time\" + 0.004*\"data\" + 0.004*\"number\" + 0.004*\"function\" + 0.004*\"process\"')\n", + "\n", + "(19, '0.009*\"water\" + 0.008*\"area\" + 0.008*\"speci\" + 0.005*\"larg\" + 0.004*\"order\" + 0.004*\"region\" + 0.004*\"includ\" + 0.004*\"black\" + 0.004*\"famili\" + 0.004*\"popul\"')\n", + "\n", + "(38, '0.044*\"royal\" + 0.020*\"william\" + 0.019*\"john\" + 0.016*\"corp\" + 0.014*\"lieuten\" + 0.013*\"capt\" + 0.012*\"engin\" + 0.011*\"armi\" + 0.011*\"georg\" + 0.011*\"temp\"')\n", + "\n", + "\n", + "====================\n", + "lda\n", + "====================\n", + "\n", + "(35, '0.034*\"kong\" + 0.034*\"japanes\" + 0.033*\"hong\" + 0.023*\"lee\" + 0.021*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.015*\"japan\" + 0.014*\"indonesia\" + 0.014*\"thailand\"')\n", + "\n", + "(23, '0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"')\n", + "\n", + "(47, '0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"')\n", + "\n", + "(14, '0.027*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"')\n", + "\n", + "(39, '0.050*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"')\n", + "\n", + "(17, '0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"championship\" + 0.011*\"year\"')\n", + "\n", + "(4, '0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.033*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"campu\"')\n", + "\n", + "(8, '0.048*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.013*\"sri\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.012*\"tamil\"')\n", + "\n", + "(2, '0.062*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.015*\"swedish\" + 0.014*\"netherland\" + 0.014*\"sweden\"')\n", + "\n", + "(11, '0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.007*\"legal\"')\n", + "\n", + "\n" + ] + } + ], "source": [ "for row_idx, row in tm_metrics.iterrows():\n", " print('='*20)\n", @@ -555,17 +24062,6 @@ "\n", "Moreover, NMF can be very flexible on RAM usage due to sparsity option, which leaves only small amount of elements in inner matrices." ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "lines_to_next_cell": 2 - }, - "outputs": [], - "source": [ - "\n" - ] } ], "metadata": { From 3f1af1d54615cf8e20fdca9e8ae01a92f945d9ff Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Wed, 16 Jan 2019 12:14:11 +0300 Subject: [PATCH 139/144] [skip ci] Remove disclaimer --- docs/notebooks/nmf_wikipedia.ipynb | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/docs/notebooks/nmf_wikipedia.ipynb b/docs/notebooks/nmf_wikipedia.ipynb index 706c00dad7..192873da16 100644 --- a/docs/notebooks/nmf_wikipedia.ipynb +++ b/docs/notebooks/nmf_wikipedia.ipynb @@ -24056,12 +24056,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "`DISCLAIMER: this section will be edited when run on full corpus`\n", - "\n", "As we can see, NMF can be significantly faster than LDA without sacrificing quality of topics too much (or not sacrificing at all)\n", "\n", "Moreover, NMF can be very flexible on RAM usage due to sparsity option, which leaves only small amount of elements in inner matrices." ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From 38143a9a97f2660a756d610f9576a3befaad5331 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Wed, 16 Jan 2019 20:05:31 +0300 Subject: [PATCH 140/144] Add RAM usage stats --- docs/notebooks/nmf_wikipedia.ipynb | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/docs/notebooks/nmf_wikipedia.ipynb b/docs/notebooks/nmf_wikipedia.ipynb index 192873da16..3440bd342d 100644 --- a/docs/notebooks/nmf_wikipedia.ipynb +++ b/docs/notebooks/nmf_wikipedia.ipynb @@ -23955,6 +23955,16 @@ "tm_metrics" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### RAM Usage:\n", + "- nmf: 100-150Mb\n", + "- nmf_with_r: 3-9Gb\n", + "- lda: 100Mb" + ] + }, { "cell_type": "code", "execution_count": 20, From 72a02dba53f6e64b54ad3ad068509b3f72ab7f3b Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Wed, 16 Jan 2019 20:19:27 +0300 Subject: [PATCH 141/144] Native 20-newsgroups and additional text --- docs/notebooks/nmf_tutorial.ipynb | 1043 ++++++++++++++++------------- 1 file changed, 581 insertions(+), 462 deletions(-) diff --git a/docs/notebooks/nmf_tutorial.ipynb b/docs/notebooks/nmf_tutorial.ipynb index 9623d92f4f..e94e63549a 100644 --- a/docs/notebooks/nmf_tutorial.ipynb +++ b/docs/notebooks/nmf_tutorial.ipynb @@ -33,45 +33,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Training" + "## Preprocessing" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", - " return f(*args, **kwds)\n" - ] - } - ], + "outputs": [], "source": [ - "%load_ext line_profiler\n", - "%load_ext autoreload\n", - "\n", - "%autoreload 2\n", - "\n", - "import time\n", - "\n", "import logging\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", + "import time\n", "from numpy.random import RandomState\n", "from sklearn import decomposition\n", "from sklearn.cluster import MiniBatchKMeans\n", - "from sklearn.datasets import fetch_20newsgroups\n", "from sklearn.datasets import fetch_olivetti_faces\n", "from sklearn.decomposition.nmf import NMF as SklearnNmf\n", "from sklearn.linear_model import LogisticRegressionCV\n", "from sklearn.metrics import f1_score\n", "from sklearn.model_selection import ParameterGrid\n", "\n", + "import gensim.downloader as api\n", "from gensim import matutils\n", "from gensim.corpora import Dictionary\n", "from gensim.models import CoherenceModel, LdaModel\n", @@ -94,6 +79,8 @@ "metadata": {}, "outputs": [], "source": [ + "newsgroups = api.load('20-newsgroups')\n", + "\n", "categories = [\n", " 'alt.atheism',\n", " 'comp.graphics',\n", @@ -102,11 +89,54 @@ " 'sci.space'\n", "]\n", "\n", - "trainset = fetch_20newsgroups(subset='train', categories=categories, random_state=42)\n", - "testset = fetch_20newsgroups(subset='test', categories=categories, random_state=42)\n", - "\n", - "train_documents = [preprocess_string(doc) for doc in trainset.data]\n", - "test_documents = [preprocess_string(doc) for doc in testset.data]" + "categories = {\n", + " name: idx\n", + " for idx, name\n", + " in enumerate(categories)\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "random_state = RandomState(42)\n", + "\n", + "trainset = np.array([\n", + " {\n", + " 'data': doc['data'],\n", + " 'target': categories[doc['topic']],\n", + " }\n", + " for doc\n", + " in newsgroups\n", + " if doc['topic'] in categories\n", + " and doc['set'] == 'train'\n", + "])\n", + "random_state.shuffle(trainset)\n", + "\n", + "testset = np.array([\n", + " {\n", + " 'data': doc['data'],\n", + " 'target': categories[doc['topic']],\n", + " }\n", + " for doc\n", + " in newsgroups\n", + " if doc['topic'] in categories\n", + " and doc['set'] == 'test'\n", + "])\n", + "random_state.shuffle(testset)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "train_documents = [preprocess_string(doc['data']) for doc in trainset]\n", + "test_documents = [preprocess_string(doc['data']) for doc in testset]" ] }, { @@ -118,18 +148,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 16:31:00,119 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2019-01-11 16:31:00,658 : INFO : built Dictionary(25279 unique tokens: ['angu', 'bb', 'carri', 'demonstr', 'dragon']...) from 2819 documents (total 435328 corpus positions)\n", - "2019-01-11 16:31:00,710 : INFO : discarding 18198 tokens: [('angu', 2), ('edu', 1785), ('line', 2748), ('lussmyer', 1), ('organ', 2602), ('subject', 2819), ('write', 1743), ('absood', 4), ('deragatori', 3), ('indistinct', 3)]...\n", - "2019-01-11 16:31:00,711 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2019-01-11 16:31:00,725 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['bb', 'carri', 'demonstr', 'dragon', 'exactli']...)\n" + "2019-01-16 20:07:39,675 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2019-01-16 20:07:40,035 : INFO : built Dictionary(25279 unique tokens: ['actual', 'assum', 'babbl', 'batka', 'batkaj']...) from 2819 documents (total 435328 corpus positions)\n", + "2019-01-16 20:07:40,065 : INFO : discarding 18198 tokens: [('batka', 1), ('batkaj', 1), ('beatl', 1), ('ccmail', 3), ('dayton', 4), ('edu', 1785), ('inhibit', 1), ('jbatka', 1), ('line', 2748), ('organ', 2602)]...\n", + "2019-01-16 20:07:40,065 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2019-01-16 20:07:40,074 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['actual', 'assum', 'babbl', 'burster', 'caus']...)\n" ] } ], @@ -147,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -168,7 +198,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Training\n", + "## Training\n", "\n", "The API works in the way similar to [Gensim.models.LdaModel](https://radimrehurek.com/gensim/models/ldamodel.html).\n", "\n", @@ -182,23 +212,23 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 16:31:02,942 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-11 16:31:03,492 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n" + "2019-01-16 20:08:57,128 : INFO : Loss (no outliers): 426.47238078342497\tLoss (with outliers): 426.47238078342497\n", + "2019-01-16 20:09:05,447 : INFO : Loss (no outliers): 408.54246082951744\tLoss (with outliers): 408.54246082951744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.95 s, sys: 0 ns, total: 1.95 s\n", - "Wall time: 1.97 s\n" + "CPU times: user 1min 24s, sys: 126 ms, total: 1min 24s\n", + "Wall time: 1min 24s\n" ] } ], @@ -208,16 +238,16 @@ "nmf = GensimNmf(\n", " corpus=train_corpus,\n", " chunksize=1000,\n", - " num_topics=5,\n", + " num_topics=100,\n", " id2word=dictionary,\n", " passes=5,\n", " eval_every=10,\n", - " minimum_probability=0,\n", + " minimum_probability=0,2\n", " random_state=42,\n", " use_r=False,\n", " lambda_=1000,\n", " kappa=1,\n", - " sparse_coef=3,\n", + " sparse_coef=0,\n", ")" ] }, @@ -230,25 +260,35 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[(0,\n", - " '0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"believ\" + 0.020*\"exist\" + 0.019*\"atheism\" + 0.016*\"religion\" + 0.013*\"christian\" + 0.013*\"religi\" + 0.013*\"peopl\" + 0.012*\"argument\"'),\n", + "[(31,\n", + " '0.106*\"know\" + 0.093*\"kill\" + 0.038*\"said\" + 0.032*\"like\" + 0.027*\"sai\" + 0.027*\"murder\" + 0.024*\"time\" + 0.023*\"go\" + 0.018*\"mayb\" + 0.017*\"look\"'),\n", + " (75,\n", + " '0.056*\"said\" + 0.052*\"sai\" + 0.025*\"went\" + 0.024*\"shout\" + 0.022*\"go\" + 0.017*\"car\" + 0.017*\"let\" + 0.015*\"right\" + 0.015*\"live\" + 0.014*\"look\"'),\n", + " (43,\n", + " '0.058*\"bit\" + 0.039*\"displai\" + 0.035*\"program\" + 0.031*\"color\" + 0.024*\"read\" + 0.020*\"file\" + 0.019*\"time\" + 0.018*\"save\" + 0.018*\"chang\" + 0.018*\"us\"'),\n", + " (69,\n", + " '0.046*\"peopl\" + 0.022*\"happen\" + 0.019*\"think\" + 0.017*\"start\" + 0.015*\"build\" + 0.015*\"look\" + 0.015*\"come\" + 0.014*\"mamma\" + 0.013*\"woman\" + 0.012*\"stop\"'),\n", + " (47,\n", + " '0.050*\"data\" + 0.038*\"ftp\" + 0.037*\"avail\" + 0.025*\"imag\" + 0.018*\"file\" + 0.016*\"inform\" + 0.015*\"directori\" + 0.015*\"contact\" + 0.015*\"archiv\" + 0.015*\"space\"'),\n", " (1,\n", - " '0.055*\"imag\" + 0.054*\"jpeg\" + 0.033*\"file\" + 0.024*\"gif\" + 0.021*\"color\" + 0.019*\"format\" + 0.015*\"program\" + 0.014*\"version\" + 0.013*\"bit\" + 0.012*\"us\"'),\n", - " (2,\n", - " '0.053*\"space\" + 0.034*\"launch\" + 0.024*\"satellit\" + 0.017*\"nasa\" + 0.016*\"orbit\" + 0.013*\"year\" + 0.012*\"mission\" + 0.011*\"data\" + 0.010*\"commerci\" + 0.010*\"market\"'),\n", - " (3,\n", - " '0.022*\"armenian\" + 0.021*\"peopl\" + 0.020*\"said\" + 0.018*\"know\" + 0.011*\"sai\" + 0.011*\"went\" + 0.010*\"come\" + 0.010*\"like\" + 0.010*\"apart\" + 0.009*\"azerbaijani\"'),\n", - " (4,\n", - " '0.024*\"graphic\" + 0.017*\"pub\" + 0.015*\"mail\" + 0.013*\"data\" + 0.013*\"ftp\" + 0.012*\"send\" + 0.011*\"imag\" + 0.011*\"rai\" + 0.010*\"object\" + 0.010*\"com\"')]" + " '0.024*\"rocket\" + 0.022*\"centaur\" + 0.019*\"proton\" + 0.014*\"model\" + 0.011*\"com\" + 0.011*\"engin\" + 0.009*\"oper\" + 0.009*\"stage\" + 0.009*\"feet\" + 0.008*\"pad\"'),\n", + " (18,\n", + " '0.055*\"bike\" + 0.018*\"rider\" + 0.017*\"yalcin\" + 0.017*\"onur\" + 0.016*\"motorcycl\" + 0.013*\"differ\" + 0.012*\"ride\" + 0.012*\"counterst\" + 0.008*\"mot\" + 0.008*\"rtsg\"'),\n", + " (13,\n", + " '0.023*\"like\" + 0.015*\"time\" + 0.015*\"ride\" + 0.013*\"sun\" + 0.012*\"dog\" + 0.012*\"evid\" + 0.011*\"ether\" + 0.009*\"need\" + 0.009*\"look\" + 0.009*\"conclus\"'),\n", + " (25,\n", + " '0.033*\"bike\" + 0.024*\"greec\" + 0.024*\"minor\" + 0.022*\"greek\" + 0.020*\"right\" + 0.015*\"mile\" + 0.011*\"point\" + 0.011*\"insur\" + 0.009*\"religion\" + 0.008*\"turkei\"'),\n", + " (8,\n", + " '0.094*\"com\" + 0.022*\"nntp\" + 0.022*\"host\" + 0.009*\"repli\" + 0.008*\"sun\" + 0.007*\"ibm\" + 0.006*\"distribut\" + 0.005*\"east\" + 0.005*\"dseg\" + 0.005*\"bnr\"')]" ] }, - "execution_count": 6, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -266,23 +306,23 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 16:31:03,649 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-16 20:09:05,534 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] }, { "data": { "text/plain": [ - "-1.6698708891486376" + "-3.8676579012372256" ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -304,16 +344,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "56.99992543062592" + "1537.0045919142308" ] }, - "execution_count": 8, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -333,48 +373,45 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "From: aa229@Freenet.carleton.ca (Steve Birnbaum)\n", - "Subject: Re: rejoinder. Questions to Israelis\n", - "Reply-To: aa229@Freenet.carleton.ca (Steve Birnbaum)\n", - "Organization: The National Capital Freenet\n", - "Lines: 27\n", + "From: spl@ivem.ucsd.edu (Steve Lamont)\n", + "Subject: Re: RGB to HVS, and back\n", + "Organization: University of Calif., San Diego/Microscopy and Imaging Resource\n", + "Lines: 18\n", + "Distribution: world\n", + "NNTP-Posting-Host: ivem.ucsd.edu\n", "\n", + "In article zyeh@caspian.usc.edu (zhenghao yeh) writes:\n", + ">|> See Foley, van Dam, Feiner, and Hughes, _Computer Graphics: Principles\n", + ">|> and Practice, Second Edition_.\n", + ">|> \n", + ">|> [If people would *read* this book, 75 percent of the questions in this\n", + ">|> froup would disappear overnight...]\n", + ">|> \n", + ">\tNot really. I think it is less than 10%.\n", "\n", - "In a previous article, ohayon@jcpltyo.JCPL.CO.JP (Tsiel Ohayon) says:\n", + "Nah... I figure most people would be so busy reading that they wouldn't\n", + "have *time* to post. :-) :-) :-)\n", "\n", - ">I agree with all you write except that Terrorist orgs. were not shelling\n", - ">Israel from the Golan Heights in 1982, but rather from Lebanon. The Golan\n", - ">Heights have been held by Israel since 1967, and therefore the PLO could\n", - ">not have been shelling Israel from there, unless there is something I am\n", - ">not aware of.\n", - "\n", - "Oops...small mistake. Thanks for mentioning it. I just read on\n", - "the.Israel.line that a village just got shelled by terrorists last week \n", - "and some children were killed. I guess the terrorists must have gotten by\n", - "the security zone. Just think at how much more shelling would be \n", - "happening if the security zone weren't there.\n", - "L8r...\n", - "\n", - " Steve\n", + "\t\t\t\t\t\t\tspl\n", "-- \n", - "------------------------------------------------------------------------------\n", - "| Internet: aa229@freenet.carleton.ca Fidonet: 1:163/109.18 |\n", - "| Mossad@qube.ocunix.on.ca |\n", - "| <> |\n", + "Steve Lamont, SciViGuy -- (619) 534-7968 -- spl@szechuan.ucsd.edu\n", + "San Diego Microscopy and Imaging Resource/UC San Diego/La Jolla, CA 92093-0608\n", + "\"Until I meet you, then, in Upper Hell\n", + "Convulsed, foaming immortal blood: farewell\" - J. Berryman, \"A Professor's Song\"\n", "\n", - "Topics: [(0, 0.23671633439138084), (3, 0.3195468735417666), (4, 0.44373679206685274)]\n" + "Topics: [(6, 0.0006829123814417761), (8, 0.0339936178620312), (23, 0.026664664006601103), (24, 0.03137830013292132), (26, 0.10830591900869159), (30, 0.012741960871727066), (32, 0.009153232662528448), (41, 0.28029402285348615), (44, 0.020603570714518495), (45, 0.005148183199969697), (46, 0.008630306396864984), (49, 0.032893262022578106), (51, 0.0013443202466471697), (68, 0.0050745025123350475), (69, 0.06345416496154094), (73, 0.005894374017751842), (76, 0.00951008791775525), (83, 0.01748317077945112), (91, 0.07721359683489294), (92, 0.19793981556741636), (95, 0.05159601504884954)]\n" ] } ], "source": [ - "print(testset.data[0])\n", + "print(testset[0]['data'])\n", "print(\"Topics: {}\".format(nmf[test_corpus[0]]))" ] }, @@ -387,7 +424,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": { "lines_to_next_cell": 2 }, @@ -396,13 +433,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Word: low\n", - "Topics: [(1, 0.27833206789570997), (2, 0.7216679321042901)]\n" + "Word: actual\n", + "Topics: [(0, 0.011785506706927991), (1, 0.057685032805057455), (2, 0.007426013081166645), (3, 0.04155996013527836), (5, 0.022509912861435964), (6, 0.040365072299587364), (8, 0.011943210545655216), (10, 0.017667696731828456), (11, 0.017283043303432995), (12, 0.030601338714917336), (13, 0.0440437996824471), (14, 0.013603516474464852), (16, 0.06876354497228125), (18, 0.003615217435673311), (20, 0.03929691855807725), (21, 0.030644453799129976), (22, 0.029787809033199924), (23, 0.026217059459006056), (26, 0.05178518457303864), (27, 0.00608361614698074), (32, 0.02468574130516948), (33, 0.009882157863511754), (35, 0.039221966204555626), (37, 0.05160932953888611), (39, 0.002535706496840385), (41, 0.02109647797129182), (42, 0.014270686388955239), (46, 0.0023539940450063024), (48, 0.005399153523392092), (49, 0.005226906810197849), (50, 0.013219119900964953), (54, 0.022326295409228186), (55, 0.011269235799342811), (57, 0.040216869591692295), (59, 0.001832786546605227), (62, 0.0023876417468913966), (65, 0.0013132868098296737), (66, 0.005779061934683635), (70, 0.016218931550795155), (72, 0.017967386653475838), (80, 0.005246006017057054), (81, 0.005474943216546645), (83, 0.0041541967445725145), (84, 0.0019149716216973064), (85, 0.004634527794970411), (88, 0.01032666891535383), (89, 0.00042854723862315215), (91, 0.0062681081341637536), (94, 0.012358778897115664), (95, 0.054978224385855805), (97, 0.012734383623140883)]\n" ] } ], "source": [ - "word = dictionary[11]\n", + "word = dictionary[0]\n", "print(\"Word: {}\".format(word))\n", "print(\"Topics: {}\".format(nmf.get_term_topics(word)))" ] @@ -416,7 +453,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": { "lines_to_next_cell": 2 }, @@ -435,17 +472,17 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "<7081x5 sparse matrix of type ''\n", - "\twith 1839 stored elements in Compressed Sparse Column format>" + "<7081x100 sparse matrix of type ''\n", + "\twith 131362 stored elements in Compressed Sparse Column format>" ] }, - "execution_count": 12, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -456,14 +493,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Density: 0.05194181612766558\n" + "Density: 0.18551334557265922\n" ] } ], @@ -480,17 +517,17 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "<5x819 sparse matrix of type ''\n", - "\twith 3489 stored elements in Compressed Sparse Row format>" + "<100x819 sparse matrix of type ''\n", + "\twith 16626 stored elements in Compressed Sparse Row format>" ] }, - "execution_count": 14, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -501,14 +538,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Density: 0.852014652014652\n" + "Density: 0.20300366300366302\n" ] } ], @@ -525,7 +562,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -535,7 +572,7 @@ "\twith 0 stored elements in Compressed Sparse Row format>" ] }, - "execution_count": 16, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -546,7 +583,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -577,7 +614,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": { "lines_to_next_cell": 2 }, @@ -603,7 +640,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": { "lines_to_next_cell": 2 }, @@ -620,8 +657,8 @@ "def get_tm_f1(model, train_corpus, X_test, y_train, y_test):\n", " X_train = np.zeros((len(train_corpus), model.num_topics))\n", " for bow_id, bow in enumerate(train_corpus):\n", - " for topic_id, word_count in model.get_document_topics(bow):\n", - " X_train[bow_id, topic_id] = word_count\n", + " for topic_id, factor in model.get_document_topics(bow):\n", + " X_train[bow_id, topic_id] = factor\n", "\n", " log_reg = LogisticRegressionCV(multi_class='multinomial')\n", " log_reg.fit(X_train, y_train)\n", @@ -646,8 +683,8 @@ " W = model.get_topics().T\n", " H = np.zeros((model.num_topics, len(test_corpus)))\n", " for bow_id, bow in enumerate(test_corpus):\n", - " for topic_id, word_count in model.get_document_topics(bow):\n", - " H[topic_id, bow_id] = word_count\n", + " for topic_id, factor in model.get_document_topics(bow):\n", + " H[topic_id, bow_id] = factor\n", "\n", " pred_factors = W.dot(H)\n", " pred_factors /= pred_factors.sum(axis=0)\n", @@ -711,7 +748,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": { "scrolled": true }, @@ -720,184 +757,184 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 16:31:13,241 : INFO : using symmetric alpha at 0.2\n", - "2019-01-11 16:31:13,242 : INFO : using symmetric eta at 0.2\n", - "2019-01-11 16:31:13,244 : INFO : using serial LDA version on this node\n", - "2019-01-11 16:31:13,253 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2019-01-11 16:31:13,254 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2019-01-11 16:31:14,389 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:14,394 : INFO : topic #0 (0.200): 0.006*\"like\" + 0.005*\"com\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"armenian\" + 0.004*\"peopl\" + 0.004*\"host\" + 0.004*\"new\" + 0.003*\"univers\" + 0.003*\"said\"\n", - "2019-01-11 16:31:14,396 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"like\" + 0.004*\"time\" + 0.004*\"space\" + 0.004*\"thing\" + 0.003*\"peopl\" + 0.003*\"world\"\n", - "2019-01-11 16:31:14,397 : INFO : topic #2 (0.200): 0.008*\"space\" + 0.007*\"peopl\" + 0.006*\"com\" + 0.004*\"like\" + 0.004*\"israel\" + 0.004*\"right\" + 0.004*\"year\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"univers\"\n", - "2019-01-11 16:31:14,400 : INFO : topic #3 (0.200): 0.006*\"peopl\" + 0.005*\"armenian\" + 0.005*\"isra\" + 0.005*\"com\" + 0.005*\"univers\" + 0.004*\"israel\" + 0.004*\"said\" + 0.004*\"time\" + 0.004*\"like\" + 0.004*\"know\"\n", - "2019-01-11 16:31:14,405 : INFO : topic #4 (0.200): 0.006*\"know\" + 0.006*\"com\" + 0.005*\"peopl\" + 0.005*\"god\" + 0.005*\"like\" + 0.005*\"time\" + 0.004*\"univers\" + 0.003*\"bike\" + 0.003*\"space\" + 0.003*\"think\"\n", - "2019-01-11 16:31:14,409 : INFO : topic diff=1.652643, rho=1.000000\n", - "2019-01-11 16:31:14,411 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2019-01-11 16:31:15,552 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:15,561 : INFO : topic #0 (0.200): 0.007*\"imag\" + 0.006*\"com\" + 0.006*\"like\" + 0.004*\"graphic\" + 0.004*\"think\" + 0.004*\"know\" + 0.004*\"us\" + 0.004*\"look\" + 0.004*\"univers\" + 0.004*\"host\"\n", - "2019-01-11 16:31:15,563 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.005*\"imag\" + 0.004*\"graphic\" + 0.004*\"file\" + 0.004*\"like\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-11 16:31:15,564 : INFO : topic #2 (0.200): 0.011*\"space\" + 0.006*\"peopl\" + 0.006*\"com\" + 0.005*\"nasa\" + 0.005*\"like\" + 0.004*\"think\" + 0.004*\"year\" + 0.004*\"univers\" + 0.004*\"right\" + 0.003*\"new\"\n", - "2019-01-11 16:31:15,568 : INFO : topic #3 (0.200): 0.009*\"armenian\" + 0.007*\"israel\" + 0.007*\"peopl\" + 0.007*\"isra\" + 0.004*\"time\" + 0.004*\"think\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"com\" + 0.004*\"arab\"\n", - "2019-01-11 16:31:15,570 : INFO : topic #4 (0.200): 0.008*\"god\" + 0.006*\"peopl\" + 0.006*\"know\" + 0.006*\"com\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"christian\" + 0.004*\"believ\" + 0.004*\"islam\"\n", - "2019-01-11 16:31:15,571 : INFO : topic diff=0.843360, rho=0.707107\n", - "2019-01-11 16:31:17,006 : INFO : -8.006 per-word bound, 257.1 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-11 16:31:17,007 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2019-01-11 16:31:17,895 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-11 16:31:17,902 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"version\" + 0.005*\"look\" + 0.004*\"us\" + 0.004*\"think\" + 0.004*\"graphic\" + 0.004*\"univers\"\n", - "2019-01-11 16:31:17,903 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.006*\"file\" + 0.005*\"imag\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"program\" + 0.004*\"softwar\" + 0.004*\"jpeg\" + 0.004*\"graphic\"\n", - "2019-01-11 16:31:17,904 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.008*\"launch\" + 0.007*\"nasa\" + 0.005*\"com\" + 0.005*\"year\" + 0.004*\"satellit\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"orbit\"\n", - "2019-01-11 16:31:17,905 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.007*\"israel\" + 0.006*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"said\" + 0.004*\"know\" + 0.004*\"kill\" + 0.004*\"time\"\n", - "2019-01-11 16:31:17,907 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.007*\"peopl\" + 0.006*\"know\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"islam\" + 0.005*\"believ\" + 0.005*\"like\" + 0.005*\"think\" + 0.005*\"thing\"\n", - "2019-01-11 16:31:17,908 : INFO : topic diff=0.682542, rho=0.577350\n", - "2019-01-11 16:31:17,909 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2019-01-11 16:31:18,768 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:18,779 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.007*\"like\" + 0.007*\"com\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"look\" + 0.004*\"nntp\" + 0.004*\"us\" + 0.004*\"think\"\n", - "2019-01-11 16:31:18,782 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"imag\" + 0.004*\"like\" + 0.004*\"graphic\" + 0.004*\"program\"\n", - "2019-01-11 16:31:18,784 : INFO : topic #2 (0.200): 0.017*\"space\" + 0.007*\"nasa\" + 0.007*\"launch\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"com\" + 0.005*\"new\" + 0.004*\"like\" + 0.004*\"satellit\" + 0.004*\"peopl\"\n", - "2019-01-11 16:31:18,788 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"said\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-11 16:31:18,790 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"think\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"know\" + 0.005*\"com\" + 0.005*\"univers\"\n", - "2019-01-11 16:31:18,792 : INFO : topic diff=0.461220, rho=0.455535\n", - "2019-01-11 16:31:18,803 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2019-01-11 16:31:19,572 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:19,581 : INFO : topic #0 (0.200): 0.008*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.005*\"know\" + 0.005*\"graphic\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"think\"\n", - "2019-01-11 16:31:19,583 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.005*\"host\" + 0.005*\"graphic\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"univers\" + 0.005*\"bike\" + 0.004*\"program\" + 0.004*\"data\"\n", - "2019-01-11 16:31:19,585 : INFO : topic #2 (0.200): 0.018*\"space\" + 0.009*\"nasa\" + 0.006*\"orbit\" + 0.006*\"launch\" + 0.005*\"year\" + 0.005*\"com\" + 0.004*\"new\" + 0.004*\"like\" + 0.004*\"moon\" + 0.004*\"satellit\"\n", - "2019-01-11 16:31:19,586 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.005*\"jew\" + 0.005*\"arab\" + 0.005*\"said\" + 0.005*\"right\" + 0.004*\"kill\"\n", - "2019-01-11 16:31:19,588 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"atheist\" + 0.005*\"thing\" + 0.005*\"know\" + 0.005*\"like\"\n", - "2019-01-11 16:31:19,589 : INFO : topic diff=0.436518, rho=0.455535\n", - "2019-01-11 16:31:20,627 : INFO : -7.754 per-word bound, 215.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-11 16:31:20,628 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2019-01-11 16:31:21,282 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-11 16:31:21,288 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.008*\"com\" + 0.007*\"like\" + 0.006*\"version\" + 0.005*\"file\" + 0.005*\"know\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"nntp\" + 0.005*\"look\"\n", - "2019-01-11 16:31:21,291 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-11 16:31:21,292 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.009*\"nasa\" + 0.008*\"launch\" + 0.006*\"orbit\" + 0.006*\"satellit\" + 0.005*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"like\" + 0.004*\"mission\"\n", - "2019-01-11 16:31:21,294 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-11 16:31:21,296 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.005*\"know\" + 0.005*\"thing\" + 0.005*\"like\"\n" + "2019-01-16 20:09:54,949 : INFO : using symmetric alpha at 0.2\n", + "2019-01-16 20:09:54,950 : INFO : using symmetric eta at 0.2\n", + "2019-01-16 20:09:54,952 : INFO : using serial LDA version on this node\n", + "2019-01-16 20:09:54,957 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-16 20:09:54,961 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2019-01-16 20:09:56,078 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:09:56,083 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.005*\"new\" + 0.005*\"peopl\" + 0.004*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"nntp\" + 0.004*\"armenian\" + 0.004*\"host\"\n", + "2019-01-16 20:09:56,087 : INFO : topic #1 (0.200): 0.007*\"com\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"god\" + 0.004*\"univers\" + 0.004*\"said\" + 0.004*\"host\"\n", + "2019-01-16 20:09:56,090 : INFO : topic #2 (0.200): 0.005*\"time\" + 0.005*\"like\" + 0.005*\"com\" + 0.005*\"israel\" + 0.005*\"space\" + 0.005*\"univers\" + 0.004*\"peopl\" + 0.004*\"islam\" + 0.004*\"host\" + 0.004*\"isra\"\n", + "2019-01-16 20:09:56,092 : INFO : topic #3 (0.200): 0.008*\"com\" + 0.006*\"jpeg\" + 0.006*\"imag\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"file\" + 0.005*\"host\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"graphic\"\n", + "2019-01-16 20:09:56,096 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"space\" + 0.006*\"com\" + 0.005*\"armenian\" + 0.004*\"know\" + 0.004*\"nasa\" + 0.003*\"right\" + 0.003*\"like\" + 0.003*\"point\" + 0.003*\"time\"\n", + "2019-01-16 20:09:56,098 : INFO : topic diff=1.649469, rho=1.000000\n", + "2019-01-16 20:09:56,099 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2019-01-16 20:09:57,122 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:09:57,127 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"space\" + 0.005*\"new\" + 0.005*\"armenian\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"time\" + 0.004*\"nntp\" + 0.004*\"turkish\"\n", + "2019-01-16 20:09:57,131 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.007*\"com\" + 0.006*\"know\" + 0.006*\"like\" + 0.006*\"think\" + 0.005*\"god\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"thing\" + 0.004*\"univers\"\n", + "2019-01-16 20:09:57,134 : INFO : topic #2 (0.200): 0.007*\"israel\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"islam\" + 0.005*\"like\" + 0.005*\"time\" + 0.005*\"univers\" + 0.005*\"state\" + 0.004*\"god\" + 0.004*\"know\"\n", + "2019-01-16 20:09:57,137 : INFO : topic #3 (0.200): 0.011*\"imag\" + 0.009*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.005*\"program\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\"\n", + "2019-01-16 20:09:57,137 : INFO : topic #4 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"space\" + 0.005*\"know\" + 0.005*\"nasa\" + 0.004*\"com\" + 0.004*\"right\" + 0.004*\"like\" + 0.003*\"said\" + 0.003*\"armenia\"\n", + "2019-01-16 20:09:57,138 : INFO : topic diff=0.848670, rho=0.707107\n", + "2019-01-16 20:09:58,364 : INFO : -8.075 per-word bound, 269.6 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-16 20:09:58,365 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2019-01-16 20:09:59,107 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-16 20:09:59,111 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"space\" + 0.005*\"new\" + 0.005*\"turkish\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"armenian\" + 0.004*\"time\"\n", + "2019-01-16 20:09:59,112 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"said\" + 0.004*\"moral\" + 0.004*\"time\"\n", + "2019-01-16 20:09:59,113 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"peopl\" + 0.005*\"state\" + 0.005*\"univers\" + 0.005*\"islam\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"arab\"\n", + "2019-01-16 20:09:59,114 : INFO : topic #3 (0.200): 0.011*\"com\" + 0.009*\"graphic\" + 0.009*\"imag\" + 0.007*\"file\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"softwar\" + 0.005*\"us\" + 0.005*\"like\"\n", + "2019-01-16 20:09:59,116 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"space\" + 0.008*\"peopl\" + 0.006*\"turkish\" + 0.005*\"launch\" + 0.004*\"nasa\" + 0.004*\"year\" + 0.004*\"turkei\" + 0.004*\"armenia\" + 0.004*\"know\"\n", + "2019-01-16 20:09:59,120 : INFO : topic diff=0.663292, rho=0.577350\n", + "2019-01-16 20:09:59,122 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2019-01-16 20:09:59,938 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:09:59,943 : INFO : topic #0 (0.200): 0.007*\"com\" + 0.007*\"space\" + 0.005*\"new\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"turkish\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"nntp\"\n", + "2019-01-16 20:09:59,944 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"god\" + 0.006*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", + "2019-01-16 20:09:59,944 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"univers\"\n", + "2019-01-16 20:09:59,946 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"com\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"jpeg\" + 0.005*\"nntp\" + 0.005*\"univers\"\n", + "2019-01-16 20:09:59,947 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.011*\"space\" + 0.008*\"peopl\" + 0.006*\"nasa\" + 0.006*\"turkish\" + 0.005*\"launch\" + 0.004*\"year\" + 0.004*\"armenia\" + 0.004*\"said\" + 0.004*\"orbit\"\n", + "2019-01-16 20:09:59,947 : INFO : topic diff=0.431707, rho=0.455535\n", + "2019-01-16 20:09:59,948 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2019-01-16 20:10:00,736 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:10:00,741 : INFO : topic #0 (0.200): 0.008*\"space\" + 0.007*\"com\" + 0.006*\"new\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"year\" + 0.004*\"nntp\" + 0.004*\"host\" + 0.004*\"time\"\n", + "2019-01-16 20:10:00,742 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", + "2019-01-16 20:10:00,742 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.007*\"jew\" + 0.006*\"peopl\" + 0.006*\"arab\" + 0.006*\"islam\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-16 20:10:00,743 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.010*\"com\" + 0.008*\"file\" + 0.008*\"graphic\" + 0.007*\"program\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.005*\"nntp\"\n", + "2019-01-16 20:10:00,746 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"space\" + 0.009*\"peopl\" + 0.005*\"turkish\" + 0.005*\"said\" + 0.005*\"nasa\" + 0.005*\"know\" + 0.004*\"armenia\" + 0.004*\"year\" + 0.004*\"like\"\n", + "2019-01-16 20:10:00,747 : INFO : topic diff=0.436104, rho=0.455535\n", + "2019-01-16 20:10:01,838 : INFO : -7.846 per-word bound, 230.1 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-16 20:10:01,838 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2019-01-16 20:10:02,446 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-16 20:10:02,452 : INFO : topic #0 (0.200): 0.008*\"space\" + 0.007*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"orbit\" + 0.004*\"dod\" + 0.004*\"host\"\n", + "2019-01-16 20:10:02,453 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", + "2019-01-16 20:10:02,455 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.009*\"isra\" + 0.008*\"jew\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.005*\"state\" + 0.005*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-16 20:10:02,457 : INFO : topic #3 (0.200): 0.011*\"imag\" + 0.010*\"com\" + 0.010*\"graphic\" + 0.008*\"file\" + 0.007*\"program\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"nntp\" + 0.005*\"univers\"\n", + "2019-01-16 20:10:02,457 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.009*\"space\" + 0.008*\"peopl\" + 0.005*\"said\" + 0.005*\"launch\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.005*\"nasa\" + 0.004*\"turkei\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 16:31:21,298 : INFO : topic diff=0.443066, rho=0.455535\n", - "2019-01-11 16:31:21,300 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2019-01-11 16:31:21,938 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:21,943 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.006*\"bike\" + 0.005*\"know\" + 0.005*\"bit\" + 0.005*\"univers\" + 0.005*\"version\"\n", - "2019-01-11 16:31:21,948 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"host\" + 0.006*\"imag\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.004*\"dod\" + 0.004*\"like\"\n", - "2019-01-11 16:31:21,951 : INFO : topic #2 (0.200): 0.019*\"space\" + 0.009*\"nasa\" + 0.007*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"com\" + 0.004*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\"\n", - "2019-01-11 16:31:21,955 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-11 16:31:21,957 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"moral\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.005*\"thing\"\n", - "2019-01-11 16:31:21,958 : INFO : topic diff=0.358030, rho=0.414549\n", - "2019-01-11 16:31:21,960 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2019-01-11 16:31:22,899 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:22,907 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.007*\"like\" + 0.006*\"host\" + 0.006*\"nntp\" + 0.005*\"univers\" + 0.005*\"know\" + 0.005*\"bike\" + 0.005*\"version\" + 0.005*\"bit\"\n", - "2019-01-11 16:31:22,909 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"program\"\n", - "2019-01-11 16:31:22,910 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.007*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.004*\"com\" + 0.004*\"satellit\" + 0.004*\"like\"\n", - "2019-01-11 16:31:22,911 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-11 16:31:22,913 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-11 16:31:22,914 : INFO : topic diff=0.324722, rho=0.414549\n", - "2019-01-11 16:31:23,767 : INFO : -7.702 per-word bound, 208.3 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-11 16:31:23,768 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2019-01-11 16:31:24,223 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-11 16:31:24,230 : INFO : topic #0 (0.200): 0.009*\"imag\" + 0.009*\"com\" + 0.008*\"like\" + 0.006*\"file\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.005*\"bit\" + 0.005*\"know\"\n", - "2019-01-11 16:31:24,231 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.007*\"imag\" + 0.006*\"file\" + 0.006*\"graphic\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.004*\"program\"\n", - "2019-01-11 16:31:24,233 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.010*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"satellit\" + 0.006*\"year\" + 0.005*\"new\" + 0.004*\"com\" + 0.004*\"gov\" + 0.004*\"moon\"\n", - "2019-01-11 16:31:24,235 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"know\" + 0.005*\"right\"\n", - "2019-01-11 16:31:24,236 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"exist\" + 0.006*\"believ\" + 0.006*\"com\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-11 16:31:24,238 : INFO : topic diff=0.325847, rho=0.414549\n", - "2019-01-11 16:31:24,240 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2019-01-11 16:31:24,958 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:24,965 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.005*\"know\" + 0.005*\"univers\" + 0.005*\"version\"\n", - "2019-01-11 16:31:24,967 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.006*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"file\" + 0.005*\"graphic\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-11 16:31:24,970 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"com\"\n", - "2019-01-11 16:31:24,972 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-11 16:31:24,973 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"com\" + 0.006*\"exist\" + 0.006*\"thing\"\n", - "2019-01-11 16:31:24,975 : INFO : topic diff=0.263752, rho=0.382948\n", - "2019-01-11 16:31:24,977 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2019-01-11 16:31:25,548 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:25,553 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"know\" + 0.005*\"bit\" + 0.005*\"version\"\n", - "2019-01-11 16:31:25,555 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"like\"\n", - "2019-01-11 16:31:25,557 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"gov\" + 0.004*\"earth\"\n", - "2019-01-11 16:31:25,559 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-11 16:31:25,560 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-11 16:31:25,562 : INFO : topic diff=0.243481, rho=0.382948\n", - "2019-01-11 16:31:26,343 : INFO : -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-11 16:31:26,344 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2019-01-11 16:31:26,793 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-11 16:31:26,802 : INFO : topic #0 (0.200): 0.009*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"file\" + 0.006*\"jpeg\" + 0.006*\"version\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-11 16:31:26,803 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.006*\"file\" + 0.005*\"host\" + 0.005*\"bike\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-11 16:31:26,805 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.004*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-11 16:31:26,809 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"kill\" + 0.005*\"right\" + 0.005*\"know\"\n", - "2019-01-11 16:31:26,811 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.007*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"atheist\"\n", - "2019-01-11 16:31:26,812 : INFO : topic diff=0.246485, rho=0.382948\n", - "2019-01-11 16:31:26,813 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2019-01-11 16:31:27,509 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:27,514 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.008*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"bit\" + 0.006*\"bike\" + 0.006*\"file\" + 0.006*\"univers\" + 0.006*\"know\"\n" + "2019-01-16 20:10:02,458 : INFO : topic diff=0.423402, rho=0.455535\n", + "2019-01-16 20:10:02,461 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2019-01-16 20:10:03,139 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:10:03,145 : INFO : topic #0 (0.200): 0.009*\"space\" + 0.007*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.004*\"nasa\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"time\"\n", + "2019-01-16 20:10:03,146 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"time\" + 0.005*\"atheist\"\n", + "2019-01-16 20:10:03,147 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.007*\"jew\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.006*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.005*\"state\" + 0.004*\"univers\"\n", + "2019-01-16 20:10:03,148 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.009*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"host\" + 0.005*\"univers\" + 0.005*\"jpeg\" + 0.005*\"nntp\"\n", + "2019-01-16 20:10:03,150 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.008*\"space\" + 0.005*\"said\" + 0.005*\"nasa\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"launch\" + 0.004*\"turkei\"\n", + "2019-01-16 20:10:03,151 : INFO : topic diff=0.333963, rho=0.414549\n", + "2019-01-16 20:10:03,151 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2019-01-16 20:10:03,843 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:10:03,848 : INFO : topic #0 (0.200): 0.011*\"space\" + 0.008*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"nasa\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"host\"\n", + "2019-01-16 20:10:03,849 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.010*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"atheist\"\n", + "2019-01-16 20:10:03,850 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"state\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-16 20:10:03,851 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.009*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"softwar\" + 0.005*\"host\" + 0.005*\"nntp\"\n", + "2019-01-16 20:10:03,852 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"space\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"like\" + 0.004*\"year\" + 0.004*\"nasa\"\n", + "2019-01-16 20:10:03,854 : INFO : topic diff=0.334135, rho=0.414549\n", + "2019-01-16 20:10:04,852 : INFO : -7.786 per-word bound, 220.6 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-16 20:10:04,853 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2019-01-16 20:10:05,391 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-16 20:10:05,396 : INFO : topic #0 (0.200): 0.011*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.005*\"nasa\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"satellit\"\n", + "2019-01-16 20:10:05,397 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"believ\"\n", + "2019-01-16 20:10:05,397 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.009*\"jew\" + 0.007*\"peopl\" + 0.007*\"arab\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-16 20:10:05,398 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"com\" + 0.009*\"file\" + 0.007*\"program\" + 0.006*\"softwar\" + 0.006*\"us\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"mail\"\n", + "2019-01-16 20:10:05,399 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.006*\"said\" + 0.006*\"space\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"year\" + 0.005*\"know\"\n", + "2019-01-16 20:10:05,400 : INFO : topic diff=0.321527, rho=0.414549\n", + "2019-01-16 20:10:05,401 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2019-01-16 20:10:06,054 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:10:06,059 : INFO : topic #0 (0.200): 0.012*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"orbit\" + 0.006*\"nasa\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"host\"\n", + "2019-01-16 20:10:06,059 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"moral\" + 0.005*\"time\" + 0.005*\"atheist\"\n", + "2019-01-16 20:10:06,060 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-16 20:10:06,061 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.008*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"jpeg\" + 0.005*\"softwar\"\n", + "2019-01-16 20:10:06,062 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.006*\"said\" + 0.005*\"armenia\" + 0.005*\"space\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.004*\"year\" + 0.004*\"know\"\n", + "2019-01-16 20:10:06,062 : INFO : topic diff=0.255652, rho=0.382948\n", + "2019-01-16 20:10:06,066 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2019-01-16 20:10:06,715 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:10:06,720 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"nasa\" + 0.006*\"bike\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.005*\"univers\" + 0.004*\"year\" + 0.004*\"host\" + 0.004*\"nntp\"\n", + "2019-01-16 20:10:06,721 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.010*\"com\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.005*\"believ\"\n", + "2019-01-16 20:10:06,723 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"jewish\"\n", + "2019-01-16 20:10:06,724 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.008*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"nntp\"\n", + "2019-01-16 20:10:06,725 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.004*\"year\" + 0.004*\"turkei\"\n", + "2019-01-16 20:10:06,726 : INFO : topic diff=0.256253, rho=0.382948\n", + "2019-01-16 20:10:07,714 : INFO : -7.754 per-word bound, 215.8 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-16 20:10:07,715 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2019-01-16 20:10:08,248 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-16 20:10:08,254 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"nasa\" + 0.006*\"new\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.004*\"like\"\n", + "2019-01-16 20:10:08,255 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"time\"\n", + "2019-01-16 20:10:08,256 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.010*\"isra\" + 0.009*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"state\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"war\"\n", + "2019-01-16 20:10:08,258 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"softwar\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"mail\"\n", + "2019-01-16 20:10:08,259 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"like\"\n", + "2019-01-16 20:10:08,259 : INFO : topic diff=0.249831, rho=0.382948\n", + "2019-01-16 20:10:08,260 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2019-01-16 20:10:08,887 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:10:08,892 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.007*\"nasa\" + 0.006*\"orbit\" + 0.005*\"new\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.004*\"host\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-11 16:31:27,516 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.007*\"imag\" + 0.006*\"bike\" + 0.006*\"host\" + 0.006*\"univers\" + 0.005*\"nntp\" + 0.005*\"graphic\" + 0.005*\"file\" + 0.005*\"dod\" + 0.004*\"ride\"\n", - "2019-01-11 16:31:27,518 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.010*\"nasa\" + 0.008*\"orbit\" + 0.007*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"satellit\" + 0.004*\"moon\" + 0.004*\"mission\" + 0.004*\"gov\"\n", - "2019-01-11 16:31:27,520 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"said\" + 0.005*\"jew\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-11 16:31:27,523 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.007*\"believ\" + 0.006*\"moral\" + 0.006*\"islam\" + 0.006*\"atheist\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"thing\"\n", - "2019-01-11 16:31:27,525 : INFO : topic diff=0.203454, rho=0.357622\n", - "2019-01-11 16:31:27,527 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2019-01-11 16:31:28,154 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-11 16:31:28,161 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"like\" + 0.007*\"imag\" + 0.006*\"nntp\" + 0.006*\"host\" + 0.006*\"univers\" + 0.006*\"bike\" + 0.006*\"bit\" + 0.006*\"file\" + 0.006*\"know\"\n", - "2019-01-11 16:31:28,162 : INFO : topic #1 (0.200): 0.012*\"com\" + 0.009*\"imag\" + 0.006*\"graphic\" + 0.006*\"bike\" + 0.005*\"host\" + 0.005*\"file\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"data\" + 0.004*\"dod\"\n", - "2019-01-11 16:31:28,164 : INFO : topic #2 (0.200): 0.020*\"space\" + 0.011*\"nasa\" + 0.008*\"orbit\" + 0.006*\"launch\" + 0.006*\"year\" + 0.005*\"new\" + 0.005*\"gov\" + 0.005*\"moon\" + 0.005*\"satellit\" + 0.004*\"earth\"\n", - "2019-01-11 16:31:28,166 : INFO : topic #3 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"israel\" + 0.007*\"isra\" + 0.006*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"arab\" + 0.005*\"right\" + 0.005*\"kill\"\n", - "2019-01-11 16:31:28,168 : INFO : topic #4 (0.200): 0.012*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"moral\" + 0.006*\"believ\" + 0.006*\"islam\" + 0.006*\"thing\" + 0.006*\"com\" + 0.006*\"atheist\" + 0.005*\"exist\"\n", - "2019-01-11 16:31:28,170 : INFO : topic diff=0.197044, rho=0.357622\n", - "2019-01-11 16:31:28,953 : INFO : -7.671 per-word bound, 203.8 perplexity estimate based on a held-out corpus of 819 documents with 114901 words\n", - "2019-01-11 16:31:28,954 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2019-01-11 16:31:29,480 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-11 16:31:29,487 : INFO : topic #0 (0.200): 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\" + 0.007*\"jpeg\" + 0.007*\"file\" + 0.006*\"color\" + 0.006*\"nntp\" + 0.006*\"version\" + 0.006*\"host\" + 0.006*\"bit\"\n", - "2019-01-11 16:31:29,491 : INFO : topic #1 (0.200): 0.013*\"com\" + 0.008*\"imag\" + 0.006*\"graphic\" + 0.005*\"file\" + 0.005*\"bike\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"univers\" + 0.004*\"softwar\" + 0.004*\"like\"\n", - "2019-01-11 16:31:29,492 : INFO : topic #2 (0.200): 0.021*\"space\" + 0.011*\"nasa\" + 0.008*\"launch\" + 0.007*\"orbit\" + 0.006*\"year\" + 0.006*\"satellit\" + 0.005*\"new\" + 0.005*\"gov\" + 0.004*\"earth\" + 0.004*\"moon\"\n", - "2019-01-11 16:31:29,496 : INFO : topic #3 (0.200): 0.012*\"armenian\" + 0.009*\"peopl\" + 0.008*\"israel\" + 0.007*\"isra\" + 0.007*\"turkish\" + 0.006*\"jew\" + 0.005*\"said\" + 0.005*\"right\" + 0.005*\"kill\" + 0.005*\"know\"\n", - "2019-01-11 16:31:29,500 : INFO : topic #4 (0.200): 0.013*\"god\" + 0.009*\"peopl\" + 0.008*\"think\" + 0.006*\"islam\" + 0.006*\"believ\" + 0.006*\"exist\" + 0.006*\"com\" + 0.006*\"moral\" + 0.006*\"thing\" + 0.005*\"atheist\"\n", - "2019-01-11 16:31:29,503 : INFO : topic diff=0.199886, rho=0.357622\n", - "2019-01-11 16:31:34,449 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:31:54,227 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-11 16:31:55,748 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-11 16:32:25,865 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:32:53,144 : INFO : Loss (no outliers): 649.0195116826302\tLoss (with outliers): 283.79283673090316\n", - "2019-01-11 16:33:06,446 : INFO : Loss (no outliers): 647.4714335359723\tLoss (with outliers): 259.34385662677363\n", - "2019-01-11 16:33:59,992 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:34:01,718 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-11 16:34:02,199 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-11 16:34:23,796 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:34:28,714 : INFO : Loss (no outliers): 664.2587451342605\tLoss (with outliers): 292.573434788099\n", - "2019-01-11 16:34:29,888 : INFO : Loss (no outliers): 694.0054656336422\tLoss (with outliers): 270.1267548866487\n", - "2019-01-11 16:35:05,368 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:35:07,682 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-11 16:35:08,964 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-11 16:35:37,303 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:36:05,788 : INFO : Loss (no outliers): 605.9468876779079\tLoss (with outliers): 528.606847384382\n", - "2019-01-11 16:36:18,045 : INFO : Loss (no outliers): 649.6265035917708\tLoss (with outliers): 506.41785404328454\n", - "2019-01-11 16:37:07,113 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:37:08,485 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-11 16:37:08,945 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-11 16:37:31,055 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:37:36,904 : INFO : Loss (no outliers): 612.3767701408726\tLoss (with outliers): 536.5799048889135\n", - "2019-01-11 16:37:38,238 : INFO : Loss (no outliers): 658.7207435252591\tLoss (with outliers): 517.3334320906341\n", - "2019-01-11 16:38:12,206 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:38:15,856 : INFO : Loss (no outliers): 601.7403891154748\tLoss (with outliers): 601.7403891154748\n", - "2019-01-11 16:38:17,422 : INFO : Loss (no outliers): 563.7898130712905\tLoss (with outliers): 563.7898130712905\n", - "2019-01-11 16:38:53,879 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:39:25,301 : INFO : Loss (no outliers): 601.1386883470619\tLoss (with outliers): 601.1386883470619\n", - "2019-01-11 16:39:41,012 : INFO : Loss (no outliers): 569.52868309707\tLoss (with outliers): 569.52868309707\n", - "2019-01-11 16:40:24,997 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:40:26,202 : INFO : Loss (no outliers): 605.9590769629461\tLoss (with outliers): 605.9590769629461\n", - "2019-01-11 16:40:26,619 : INFO : Loss (no outliers): 572.0459011956622\tLoss (with outliers): 572.0459011956622\n", - "2019-01-11 16:40:48,923 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-11 16:40:58,602 : INFO : Loss (no outliers): 605.4685741189123\tLoss (with outliers): 605.4685741189123\n", - "2019-01-11 16:41:00,411 : INFO : Loss (no outliers): 578.3308322440762\tLoss (with outliers): 578.12465083152\n", - "2019-01-11 16:41:30,706 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-16 20:10:08,893 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.011*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"moral\" + 0.005*\"atheist\" + 0.005*\"time\"\n", + "2019-01-16 20:10:08,895 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.011*\"isra\" + 0.009*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"think\" + 0.004*\"peac\"\n", + "2019-01-16 20:10:08,897 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.010*\"graphic\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"softwar\" + 0.005*\"host\" + 0.005*\"jpeg\"\n", + "2019-01-16 20:10:08,900 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.004*\"greek\" + 0.004*\"year\"\n", + "2019-01-16 20:10:08,902 : INFO : topic diff=0.204473, rho=0.357622\n", + "2019-01-16 20:10:08,902 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2019-01-16 20:10:09,532 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-16 20:10:09,538 : INFO : topic #0 (0.200): 0.014*\"space\" + 0.008*\"com\" + 0.008*\"nasa\" + 0.007*\"bike\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"host\" + 0.004*\"nntp\"\n", + "2019-01-16 20:10:09,539 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.010*\"com\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"atheist\"\n", + "2019-01-16 20:10:09,540 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.009*\"jew\" + 0.008*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.004*\"jewish\"\n", + "2019-01-16 20:10:09,541 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.008*\"program\" + 0.007*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"need\"\n", + "2019-01-16 20:10:09,542 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.005*\"turkei\" + 0.004*\"time\"\n", + "2019-01-16 20:10:09,542 : INFO : topic diff=0.206188, rho=0.357622\n", + "2019-01-16 20:10:10,493 : INFO : -7.735 per-word bound, 213.0 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-16 20:10:10,494 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2019-01-16 20:10:10,990 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-16 20:10:10,995 : INFO : topic #0 (0.200): 0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.007*\"nasa\" + 0.005*\"new\" + 0.005*\"orbit\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"univers\" + 0.004*\"like\"\n", + "2019-01-16 20:10:10,996 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"time\"\n", + "2019-01-16 20:10:10,997 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.011*\"isra\" + 0.010*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"state\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"jewish\"\n", + "2019-01-16 20:10:10,998 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.010*\"file\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"softwar\" + 0.006*\"univers\" + 0.006*\"us\" + 0.005*\"mail\" + 0.005*\"host\"\n", + "2019-01-16 20:10:10,998 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"know\" + 0.004*\"greek\" + 0.004*\"year\"\n", + "2019-01-16 20:10:10,999 : INFO : topic diff=0.203500, rho=0.357622\n", + "2019-01-16 20:10:15,719 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:10:26,490 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", + "2019-01-16 20:10:27,246 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", + "2019-01-16 20:10:47,825 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:11:02,035 : INFO : Loss (no outliers): 677.513414250545\tLoss (with outliers): 279.46611421992964\n", + "2019-01-16 20:11:09,040 : INFO : Loss (no outliers): 669.590857352226\tLoss (with outliers): 259.2467646189499\n", + "2019-01-16 20:11:41,754 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:11:42,726 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", + "2019-01-16 20:11:43,033 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", + "2019-01-16 20:11:58,355 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:12:01,493 : INFO : Loss (no outliers): 692.6547711302494\tLoss (with outliers): 287.76899186681857\n", + "2019-01-16 20:12:02,130 : INFO : Loss (no outliers): 695.4958681211045\tLoss (with outliers): 268.2945499450434\n", + "2019-01-16 20:12:27,345 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:12:29,083 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", + "2019-01-16 20:12:29,882 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", + "2019-01-16 20:12:50,781 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:13:06,065 : INFO : Loss (no outliers): 639.6176167237056\tLoss (with outliers): 511.0048240200623\n", + "2019-01-16 20:13:13,389 : INFO : Loss (no outliers): 637.4050783690045\tLoss (with outliers): 498.7006582634081\n", + "2019-01-16 20:13:46,326 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:13:47,224 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", + "2019-01-16 20:13:47,507 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", + "2019-01-16 20:14:02,082 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:14:05,741 : INFO : Loss (no outliers): 651.3812921174149\tLoss (with outliers): 518.2309924867346\n", + "2019-01-16 20:14:06,801 : INFO : Loss (no outliers): 647.9339449244935\tLoss (with outliers): 509.8204986004983\n", + "2019-01-16 20:14:30,871 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:14:32,642 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", + "2019-01-16 20:14:33,477 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", + "2019-01-16 20:14:53,828 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:15:13,520 : INFO : Loss (no outliers): 542.2256187627806\tLoss (with outliers): 542.2256187627806\n", + "2019-01-16 20:15:23,484 : INFO : Loss (no outliers): 624.7035238321835\tLoss (with outliers): 624.6056240734391\n", + "2019-01-16 20:15:53,641 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:15:54,609 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", + "2019-01-16 20:15:54,913 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", + "2019-01-16 20:16:10,160 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-16 20:16:15,070 : INFO : Loss (no outliers): 547.1203901181682\tLoss (with outliers): 547.1203901181682\n", + "2019-01-16 20:16:16,263 : INFO : Loss (no outliers): 633.6243596382214\tLoss (with outliers): 633.3634284766107\n", + "2019-01-16 20:16:37,995 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] } ], @@ -907,6 +944,9 @@ "train_dense_corpus = matutils.corpus2dense(train_corpus, len(dictionary))\n", "test_dense_corpus = matutils.corpus2dense(test_corpus, len(dictionary))\n", "\n", + "trainset_target = [doc['target'] for doc in trainset]\n", + "testset_target = [doc['target'] for doc in testset]\n", + "\n", "# LDA metrics\n", "row = dict()\n", "row['model'] = 'lda'\n", @@ -914,7 +954,7 @@ " lambda: LdaModel(**fixed_params)\n", ")\n", "row.update(get_tm_metrics(\n", - " lda, train_corpus, test_corpus, test_dense_corpus, trainset.target, testset.target,\n", + " lda, train_corpus, test_corpus, test_dense_corpus, trainset_target, testset_target,\n", "))\n", "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", "\n", @@ -926,7 +966,7 @@ " lambda: sklearn_nmf.fit((train_dense_corpus / train_dense_corpus.sum(axis=0)).T)\n", ")\n", "row.update(get_sklearn_metrics(\n", - " sklearn_nmf, train_dense_corpus, test_dense_corpus, trainset.target, testset.target,\n", + " sklearn_nmf, train_dense_corpus, test_dense_corpus, trainset_target, testset_target,\n", "))\n", "tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)\n", "\n", @@ -942,14 +982,21 @@ " )\n", " )\n", " row.update(get_tm_metrics(\n", - " model, train_corpus, test_corpus, test_dense_corpus, trainset.target, testset.target,\n", + " model, train_corpus, test_corpus, test_dense_corpus, trainset_target, testset_target,\n", " ))\n", " tm_metrics = tm_metrics.append(pd.Series(row), ignore_index=True)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Result table" + ] + }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -988,182 +1035,182 @@ " \n", " \n", " 5\n", - " -1.578766\n", - " 0.534648\n", - " 7.189315\n", + " -1.675162\n", + " 0.527186\n", + " 7.167811\n", + " gensim_nmf\n", + " 24.738141\n", + " [(0, 0.035*\"com\" + 0.030*\"world\" + 0.030*\"like...\n", + " 3.742604\n", + " 1.0\n", + " 3.0\n", + " 1.0\n", + " \n", + " \n", + " 3\n", + " -1.693074\n", + " 0.625267\n", + " 7.035608\n", " gensim_nmf\n", - " 21.362023\n", - " [(0, 0.033*\"peopl\" + 0.025*\"wai\" + 0.020*\"come...\n", - " 6.051217\n", + " 2479.600679\n", + " [(0, 0.012*\"com\" + 0.012*\"armenian\" + 0.011*\"w...\n", + " 21.181466\n", " 1.0\n", + " 0.0\n", + " 1.0\n", + " \n", + " \n", + " 13\n", + " -1.695379\n", + " 0.675373\n", + " 7.183766\n", + " gensim_nmf\n", + " 48.768942\n", + " [(0, 0.025*\"armenian\" + 0.023*\"peopl\" + 0.021*...\n", + " 6.074569\n", + " 100.0\n", " 3.0\n", " 1.0\n", " \n", " \n", " 9\n", - " -1.794092\n", - " 0.656716\n", - " 7.156244\n", + " -1.670903\n", + " 0.694030\n", + " 7.131332\n", " gensim_nmf\n", - " 47.461725\n", - " [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli...\n", - " 7.138979\n", + " 46.644076\n", + " [(0, 0.031*\"armenian\" + 0.021*\"peopl\" + 0.020*...\n", + " 4.689899\n", " 10.0\n", " 3.0\n", " 1.0\n", " \n", " \n", - " 7\n", - " -1.414224\n", - " 0.676439\n", - " 7.049381\n", + " 1\n", + " NaN\n", + " 0.698827\n", + " 6.929583\n", + " sklearn_nmf\n", + " 2404.189918\n", + " NaN\n", + " 6.833197\n", + " NaN\n", + " NaN\n", + " NaN\n", + " \n", + " \n", + " 11\n", + " -1.711411\n", + " 0.698827\n", + " 7.059604\n", " gensim_nmf\n", - " 2282.487980\n", - " [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli...\n", - " 40.696380\n", - " 10.0\n", + " 2460.213716\n", + " [(0, 0.017*\"armenian\" + 0.016*\"peopl\" + 0.015*...\n", + " 29.622293\n", + " 100.0\n", " 0.0\n", " 1.0\n", " \n", " \n", " 4\n", - " -1.669871\n", - " 0.687100\n", - " 7.153144\n", + " -1.712103\n", + " 0.700959\n", + " 7.174119\n", " gensim_nmf\n", - " 57.018363\n", - " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 2.146432\n", + " 55.361718\n", + " [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*...\n", + " 1.243323\n", " 1.0\n", " 3.0\n", " 0.0\n", " \n", " \n", " 8\n", - " -1.669871\n", - " 0.687100\n", - " 7.153144\n", + " -1.712103\n", + " 0.700959\n", + " 7.174119\n", " gensim_nmf\n", - " 57.018363\n", - " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.783175\n", + " 55.361718\n", + " [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*...\n", + " 1.149419\n", " 10.0\n", " 3.0\n", " 0.0\n", " \n", " \n", " 12\n", - " -1.669871\n", - " 0.687100\n", - " 7.153144\n", + " -1.712103\n", + " 0.700959\n", + " 7.174119\n", " gensim_nmf\n", - " 57.018363\n", - " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 1.551693\n", + " 55.361718\n", + " [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*...\n", + " 1.238548\n", " 100.0\n", " 3.0\n", " 0.0\n", " \n", " \n", - " 13\n", - " -1.667488\n", - " 0.697228\n", - " 7.152395\n", - " gensim_nmf\n", - " 55.952863\n", - " [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be...\n", - " 11.442065\n", - " 100.0\n", - " 3.0\n", - " 1.0\n", - " \n", - " \n", - " 1\n", - " NaN\n", - " 0.698294\n", - " 6.929583\n", - " sklearn_nmf\n", - " 2404.189934\n", - " NaN\n", - " 12.725958\n", - " NaN\n", - " NaN\n", - " NaN\n", - " \n", - " \n", " 2\n", - " -1.651645\n", - " 0.702026\n", - " 7.058824\n", + " -1.702542\n", + " 0.711087\n", + " 7.060992\n", " gensim_nmf\n", - " 2546.872355\n", - " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 4.569918\n", + " 2473.714343\n", + " [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*...\n", + " 2.377610\n", " 1.0\n", " 0.0\n", " 0.0\n", " \n", " \n", " 6\n", - " -1.651645\n", - " 0.702026\n", - " 7.058824\n", + " -1.702542\n", + " 0.711087\n", + " 7.060992\n", " gensim_nmf\n", - " 2546.872355\n", - " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 3.548277\n", + " 2473.714343\n", + " [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*...\n", + " 2.500768\n", " 10.0\n", " 0.0\n", " 0.0\n", " \n", " \n", " 10\n", - " -1.651645\n", - " 0.702026\n", - " 7.058824\n", + " -1.702542\n", + " 0.711087\n", + " 7.060992\n", " gensim_nmf\n", - " 2546.872355\n", - " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 5.154133\n", + " 2473.714343\n", + " [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*...\n", + " 2.569788\n", " 100.0\n", " 0.0\n", " 0.0\n", " \n", " \n", - " 11\n", - " -1.713672\n", - " 0.706290\n", - " 7.056277\n", - " gensim_nmf\n", - " 2537.297631\n", - " [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be...\n", - " 47.084092\n", - " 100.0\n", - " 0.0\n", - " 1.0\n", - " \n", - " \n", - " 3\n", - " -1.344381\n", - " 0.707356\n", - " 7.031241\n", + " 7\n", + " -1.663787\n", + " 0.750000\n", + " 7.040535\n", " gensim_nmf\n", - " 2312.883868\n", - " [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said...\n", - " 40.528818\n", - " 1.0\n", + " 2287.018000\n", + " [(0, 0.022*\"armenian\" + 0.015*\"peopl\" + 0.014*...\n", + " 22.575536\n", + " 10.0\n", " 0.0\n", " 1.0\n", " \n", " \n", " 0\n", - " -1.787503\n", - " 0.759062\n", - " 7.007890\n", + " -1.755650\n", + " 0.765458\n", + " 7.002725\n", " lda\n", - " 1975.152992\n", - " [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"...\n", - " 16.263741\n", + " 1939.575701\n", + " [(0, 0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike...\n", + " 16.050437\n", " NaN\n", " NaN\n", " NaN\n", @@ -1174,55 +1221,55 @@ ], "text/plain": [ " coherence f1 l2_norm model perplexity \\\n", - "5 -1.578766 0.534648 7.189315 gensim_nmf 21.362023 \n", - "9 -1.794092 0.656716 7.156244 gensim_nmf 47.461725 \n", - "7 -1.414224 0.676439 7.049381 gensim_nmf 2282.487980 \n", - "4 -1.669871 0.687100 7.153144 gensim_nmf 57.018363 \n", - "8 -1.669871 0.687100 7.153144 gensim_nmf 57.018363 \n", - "12 -1.669871 0.687100 7.153144 gensim_nmf 57.018363 \n", - "13 -1.667488 0.697228 7.152395 gensim_nmf 55.952863 \n", - "1 NaN 0.698294 6.929583 sklearn_nmf 2404.189934 \n", - "2 -1.651645 0.702026 7.058824 gensim_nmf 2546.872355 \n", - "6 -1.651645 0.702026 7.058824 gensim_nmf 2546.872355 \n", - "10 -1.651645 0.702026 7.058824 gensim_nmf 2546.872355 \n", - "11 -1.713672 0.706290 7.056277 gensim_nmf 2537.297631 \n", - "3 -1.344381 0.707356 7.031241 gensim_nmf 2312.883868 \n", - "0 -1.787503 0.759062 7.007890 lda 1975.152992 \n", + "5 -1.675162 0.527186 7.167811 gensim_nmf 24.738141 \n", + "3 -1.693074 0.625267 7.035608 gensim_nmf 2479.600679 \n", + "13 -1.695379 0.675373 7.183766 gensim_nmf 48.768942 \n", + "9 -1.670903 0.694030 7.131332 gensim_nmf 46.644076 \n", + "1 NaN 0.698827 6.929583 sklearn_nmf 2404.189918 \n", + "11 -1.711411 0.698827 7.059604 gensim_nmf 2460.213716 \n", + "4 -1.712103 0.700959 7.174119 gensim_nmf 55.361718 \n", + "8 -1.712103 0.700959 7.174119 gensim_nmf 55.361718 \n", + "12 -1.712103 0.700959 7.174119 gensim_nmf 55.361718 \n", + "2 -1.702542 0.711087 7.060992 gensim_nmf 2473.714343 \n", + "6 -1.702542 0.711087 7.060992 gensim_nmf 2473.714343 \n", + "10 -1.702542 0.711087 7.060992 gensim_nmf 2473.714343 \n", + "7 -1.663787 0.750000 7.040535 gensim_nmf 2287.018000 \n", + "0 -1.755650 0.765458 7.002725 lda 1939.575701 \n", "\n", " topics train_time lambda_ \\\n", - "5 [(0, 0.033*\"peopl\" + 0.025*\"wai\" + 0.020*\"come... 6.051217 1.0 \n", - "9 [(0, 0.034*\"god\" + 0.023*\"exist\" + 0.022*\"beli... 7.138979 10.0 \n", - "7 [(0, 0.017*\"god\" + 0.011*\"exist\" + 0.011*\"beli... 40.696380 10.0 \n", - "4 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 2.146432 1.0 \n", - "8 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.783175 10.0 \n", - "12 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 1.551693 100.0 \n", - "13 [(0, 0.035*\"god\" + 0.030*\"atheist\" + 0.021*\"be... 11.442065 100.0 \n", - "1 NaN 12.725958 NaN \n", - "2 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 4.569918 1.0 \n", - "6 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 3.548277 10.0 \n", - "10 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 5.154133 100.0 \n", - "11 [(0, 0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"be... 47.084092 100.0 \n", - "3 [(0, 0.016*\"peopl\" + 0.012*\"wai\" + 0.009*\"said... 40.528818 1.0 \n", - "0 [(0, 0.010*\"com\" + 0.008*\"imag\" + 0.008*\"like\"... 16.263741 NaN \n", + "5 [(0, 0.035*\"com\" + 0.030*\"world\" + 0.030*\"like... 3.742604 1.0 \n", + "3 [(0, 0.012*\"com\" + 0.012*\"armenian\" + 0.011*\"w... 21.181466 1.0 \n", + "13 [(0, 0.025*\"armenian\" + 0.023*\"peopl\" + 0.021*... 6.074569 100.0 \n", + "9 [(0, 0.031*\"armenian\" + 0.021*\"peopl\" + 0.020*... 4.689899 10.0 \n", + "1 NaN 6.833197 NaN \n", + "11 [(0, 0.017*\"armenian\" + 0.016*\"peopl\" + 0.015*... 29.622293 100.0 \n", + "4 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.243323 1.0 \n", + "8 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.149419 10.0 \n", + "12 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.238548 100.0 \n", + "2 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.377610 1.0 \n", + "6 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.500768 10.0 \n", + "10 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.569788 100.0 \n", + "7 [(0, 0.022*\"armenian\" + 0.015*\"peopl\" + 0.014*... 22.575536 10.0 \n", + "0 [(0, 0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike... 16.050437 NaN \n", "\n", " sparse_coef use_r \n", "5 3.0 1.0 \n", + "3 0.0 1.0 \n", + "13 3.0 1.0 \n", "9 3.0 1.0 \n", - "7 0.0 1.0 \n", + "1 NaN NaN \n", + "11 0.0 1.0 \n", "4 3.0 0.0 \n", "8 3.0 0.0 \n", "12 3.0 0.0 \n", - "13 3.0 1.0 \n", - "1 NaN NaN \n", "2 0.0 0.0 \n", "6 0.0 0.0 \n", "10 0.0 0.0 \n", - "11 0.0 1.0 \n", - "3 0.0 1.0 \n", + "7 0.0 1.0 \n", "0 NaN NaN " ] }, - "execution_count": 27, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1231,24 +1278,68 @@ "tm_metrics.sort_values('f1')" ] }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best NMF's topics\n" + ] + }, + { + "data": { + "text/plain": [ + "[(0,\n", + " '0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*\"said\" + 0.013*\"know\" + 0.008*\"went\" + 0.008*\"sai\" + 0.007*\"like\" + 0.007*\"apart\" + 0.007*\"come\" + 0.007*\"azerbaijani\"'),\n", + " (1,\n", + " '0.074*\"jpeg\" + 0.032*\"file\" + 0.031*\"gif\" + 0.028*\"imag\" + 0.024*\"color\" + 0.017*\"format\" + 0.014*\"qualiti\" + 0.013*\"convert\" + 0.013*\"compress\" + 0.013*\"version\"'),\n", + " (2,\n", + " '0.030*\"imag\" + 0.014*\"graphic\" + 0.012*\"data\" + 0.010*\"file\" + 0.010*\"pub\" + 0.010*\"ftp\" + 0.010*\"avail\" + 0.008*\"format\" + 0.008*\"program\" + 0.008*\"packag\"'),\n", + " (3,\n", + " '0.015*\"god\" + 0.012*\"atheist\" + 0.009*\"believ\" + 0.009*\"exist\" + 0.008*\"atheism\" + 0.007*\"peopl\" + 0.007*\"religion\" + 0.006*\"christian\" + 0.006*\"israel\" + 0.006*\"religi\"'),\n", + " (4,\n", + " '0.028*\"space\" + 0.019*\"launch\" + 0.013*\"satellit\" + 0.009*\"orbit\" + 0.008*\"nasa\" + 0.007*\"year\" + 0.006*\"mission\" + 0.006*\"new\" + 0.006*\"commerci\" + 0.005*\"market\"')]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(\"Best NMF's topics\")\n", + "tm_metrics.iloc[2].topics" + ] + }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LDA topics\n" + ] + }, { "data": { "text/plain": [ "[(0,\n", - " '0.020*\"god\" + 0.017*\"atheist\" + 0.012*\"believ\" + 0.011*\"exist\" + 0.011*\"atheism\" + 0.009*\"religion\" + 0.008*\"christian\" + 0.008*\"peopl\" + 0.007*\"religi\" + 0.007*\"argument\"'),\n", + " '0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.007*\"nasa\" + 0.005*\"new\" + 0.005*\"orbit\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"univers\" + 0.004*\"like\"'),\n", " (1,\n", - " '0.043*\"jpeg\" + 0.042*\"imag\" + 0.026*\"file\" + 0.019*\"gif\" + 0.017*\"color\" + 0.015*\"format\" + 0.012*\"program\" + 0.011*\"version\" + 0.010*\"bit\" + 0.010*\"us\"'),\n", + " '0.011*\"god\" + 0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"time\"'),\n", " (2,\n", - " '0.029*\"space\" + 0.019*\"launch\" + 0.013*\"satellit\" + 0.009*\"nasa\" + 0.009*\"orbit\" + 0.007*\"year\" + 0.007*\"mission\" + 0.006*\"data\" + 0.006*\"commerci\" + 0.006*\"market\"'),\n", + " '0.013*\"israel\" + 0.011*\"isra\" + 0.010*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"state\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"jewish\"'),\n", " (3,\n", - " '0.016*\"armenian\" + 0.015*\"peopl\" + 0.014*\"said\" + 0.013*\"know\" + 0.008*\"went\" + 0.007*\"sai\" + 0.007*\"like\" + 0.007*\"apart\" + 0.007*\"come\" + 0.007*\"azerbaijani\"'),\n", + " '0.012*\"imag\" + 0.010*\"graphic\" + 0.010*\"file\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"softwar\" + 0.006*\"univers\" + 0.006*\"us\" + 0.005*\"mail\" + 0.005*\"host\"'),\n", " (4,\n", - " '0.015*\"graphic\" + 0.011*\"pub\" + 0.009*\"mail\" + 0.009*\"data\" + 0.008*\"ftp\" + 0.008*\"imag\" + 0.008*\"send\" + 0.007*\"rai\" + 0.006*\"packag\" + 0.006*\"object\"')]" + " '0.020*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"know\" + 0.004*\"greek\" + 0.004*\"year\"')]" ] }, "execution_count": 25, @@ -1257,19 +1348,39 @@ } ], "source": [ - "tm_metrics.iloc[2].topics" + "print('LDA topics')\n", + "tm_metrics.iloc[0].topics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Gensim NMF clearly beats sklearn implementation both in terms of speed and quality\n", + "- LDA is still significantly better in terms of quality, though interpretabiliy of topics and speed are clearly worse then NMF's" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Sklearn wrapper" + "## Olivietti faces + Gensim NMF\n", + "NMF algorithm works not only with texts, but with all kinds of stuff!\n", + "\n", + "Let's run our model with other factorization algorithms and check out the results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sklearn wrapper\n", + "We need that wrapper to compare Gensim NMF with other factorizations on images" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 26, "metadata": { "lines_to_next_cell": 2 }, @@ -1313,16 +1424,9 @@ " return self.nmf.get_topics()" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Olivietti faces + Gensim NMF" - ] - }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -1342,9 +1446,9 @@ "\n", "Dataset consists of 400 faces\n", "Extracting the top 6 Eigenfaces - PCA using randomized SVD...\n", - "done in 0.169s\n", + "done in 0.239s\n", "Extracting the top 6 Non-negative components - NMF (Sklearn)...\n", - "done in 0.804s\n", + "done in 0.825s\n", "Extracting the top 6 Non-negative components - NMF (Gensim)...\n" ] }, @@ -1352,22 +1456,37 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-10 18:28:47,510 : INFO : Loss (no outliers): 7.324016609008711\tLoss (with outliers): 7.324016609008711\n" + "2019-01-16 20:16:45,760 : INFO : Loss (no outliers): 5.445814094922526\tLoss (with outliers): 5.445814094922526\n", + "2019-01-16 20:16:45,763 : INFO : Loss (no outliers): 5.445814094922526\tLoss (with outliers): 5.445814094922526\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done in 6.213s\n", + "Extracting the top 6 Independent components - FastICA...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.7/site-packages/sklearn/decomposition/fastica_.py:118: UserWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n", + " warnings.warn('FastICA did not converge. Consider increasing '\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "done in 3.300s\n", - "Extracting the top 6 Independent components - FastICA...\n", - "done in 0.373s\n", + "done in 0.299s\n", "Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...\n", - "done in 1.056s\n", + "done in 0.925s\n", "Extracting the top 6 MiniBatchDictionaryLearning...\n", - "done in 1.852s\n", + "done in 2.195s\n", "Extracting the top 6 Cluster centers - MiniBatchKMeans...\n", - "done in 0.123s\n", + "done in 0.082s\n", "Extracting the top 6 Factor Analysis components - FA...\n" ] }, @@ -1375,7 +1494,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.6/site-packages/sklearn/decomposition/factor_analysis.py:228: ConvergenceWarning: FactorAnalysis did not converge. You might want to increase the number of iterations.\n", + "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.7/site-packages/sklearn/decomposition/factor_analysis.py:228: ConvergenceWarning: FactorAnalysis did not converge. You might want to increase the number of iterations.\n", " ConvergenceWarning)\n" ] }, @@ -1383,7 +1502,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "done in 0.245s\n" + "done in 0.227s\n" ] }, { @@ -1398,7 +1517,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYZXlVJbp+EZGRY2VNQA2AVIE44vD66Sdgg9jYymd3q/haoXEAbFtxeOrDVhxea7XayhMbBUekbUsFQduRhlYcq1ucwemhlIJSIkUVNWUNmZWVmRFx3h/nrIgd6+y9z4nKuDdf4l7fF9+Ne+85v/Obzrl77bF1XYdCoVAoFAqLwcqF7kChUCgUCh/IqB/aQqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIyR/a1toLWmtd8Hevc9x1i+zwXLTWvqi19s7W2lnbzw80yHpstNbe3Vr78dbaY5xjn9Ja+9nW2vuGebm7tfbrrbXnt9ZWneO/eWj3F5czmtH1b2qt3XQhrn2hMcz7DUu+5nXDdV+wxGve2Fq7ZcZxV7XWXtla+5vW2unW2l2ttbe11l7RWjvYWnvksKd/KGnj3w7je8bw/iZz72y21k601v6stfb9rbWP3L9Rju7T6O+WfbrWoaG9b9in9j64tXZDa+2DnO9ub639yH5cZz/QWvvk1tofDHvkfa21726tHZxx3nNba7/YWnvPcO7NrbVva60d3Y9+re3h2M8B8F75bMP8/yYATwFw2/l26nzRWrsWwI8CeC2AFwJ46ML2aOG4EcCr0K/nxwL4jwCe2lr72K7rTgNAa+1rALwcwG8BeAmAvwdwOYBPBfDDAO4F8MvS7hcOr5/eWruy67q7FzwOxZcv+Xr/2HEb+nv4by90Ryxaa8cB/CGALQAvA3AzgCvQ7/XPA/CtXdfd2Vr7FQDPaa19Tdd1Z52mvhD9vv+f5rO/APClw//HATwJwBcBeFFr7au7rgt/uPeIp8j7XwTw5wBuMJ+d2adrnRmu9559au+DAXwrgN9w2vx0ACf26TrnhdbaxwH4VfTPsW9G3++XAbgKwPMnTn8J+n31EvT3wf+Ofsyf1Fp7Rne+CSe6rkv/ALwAQAfgg6eO/f/LH4BPGvr8zy50X5Yw1g7Ad8hnzx8+/+zh/dPRP6ReGbTxBAAfLZ89ZWjjTcPrV17osV7geT54Adb1hgs97iWM80YAt0wc80XDfHyM810D0Ib/P3s47tnOcdcN98C3m89uAvAW59gDAH4OwCaAj1/QuG8B8Jo9HL/U/SfXftYwr//0Qu+XiX7+CoC/BLBqPvuSoe8fOXHuI53PeO5Tz7dv+2aj9VTHrbUjrbUfHlSUJwdq/lRPPdVa+6TW2m+21h5orZ1qrb25tfYkOeam1tpbWmuf0lr7k9bag621t7fWnm2OuRH9DQQAvzlc68bhu+e21n6rtXbn0J8/ba2NJJ3W2lpr7SWttb9qrT00HP+rrbUPM8c8srX2I621W1trZwZVw5dIO1e31n5iUGGcaa3d1lp7Y2vtUQ9vlmfjj4fXDx5eXwLgHgBf7x3cdd3fdl33F/Lx89E/aP4dgH/AtEQIIDYhDKqnTj776tbaOwZVzYnW2ltlLXepjltrzxja/ozW2g+0Xn14V2vtNa21y6TtR7bWXtdau39o+8eH87ZVh8kYbmytvbf1qvbfa62dBvDdw3dz91DXWvuO1tpXtV6d/0Br7X82UUm21laH424b9vNNeow59lmttd8f5uu+1tovtdY+VI7hPfKs1qtBTw99/IRhX3/ncK17hnEeNefuUh233Gx0g8x1ei8Mxz1zuG8faq39bWvtS/WYAFcMr7frF92A4e0b0e/zL3Da+AL0P8o/OXWxruvOodembAD4qpl93De01l7fWntXa+3pbVCDAvi24bsvHPbRncOeeltr7Xly/kh13Fp7aetNS09s/bP11LAvv7G11pK+PAv9DxgA/I5Z/ycP3+9SHbfWXjR8//GttZ8f7pHbW2tfO3z/r1prfz5c/w9bax/jXPM5rbU/Gu6HE8N8PHpizo4A+BQAr++6btN89Tr0z7HPyM7vuu5O52M+R7ev3Vp7dGvttcM9dKb1z/Y3tNYuz9rfi+p4tbWmx291XbeVnPOj6FXONwB4K4Bnolfn7kJr7V+gp/tvAvD5w8cvQb+wH9113T+Yw58A4BUAvgvAXQC+FsB/a619WNd17wLw7QDeBuCVAL4CwJ8A4CQ+Hr2k+lL00u3TAfyX1trhruusneH1AD4LwPehV5ccGo69BsDNrVdlvQXA4WFs7wbwaQB+uLV2sOu67x/a+SkAjwPwdeh/rK4a5uBIMmf7geuH13tbb3v9ZAC/1HXdLBV6620azwHw613Xva+19hoA39ha+/Cu696xHx1srX0egP+M/gHyO+jn8qOx81DN8Ar0D9XnAfhQ9D+Cm9gtDPwCgI8C8I0A3gXg/wDw/ZiPS9Hvg+8B8E0ATg+fz91DQL+X/xrAVwNYR6/G+uVhr9LscsPQ/ssB/BqAjwPwBu3M8MB7E3rV/3MAHEM/d29pvYngVnM4VWb/CcBJ9PPzhuFvDb2W6sOHY+5AIIBhxxxk8XkAvhLAO4Z+zboXWmsfDuB/oH8OPBfAweH4Y+jXLsMfDa+vb629FD0LPaUHdV13trX2OgD/rrV2Rdd195ivPx/A73Vd986Ja7GtO1prbwXwiXOOXwAegf758f8A+CsAHO/16Pflu4b3nwzgp1pr613X3TjRZkN/X/wY+rX/bADfiZ5dvy445/cB/F8Avhe9ip0C+dsnrvUa9NqKH0a/Z76ntfYI9Krm/4TenPc9AH6xtfZE/ji2HRPXq9Grbi9Dv89/e9jnDwbX+xD0e3tXv7que6C19h4AHzHRXw+fNLzaZ97rAVwJ4MUAbgVwNYB/jv43IsYMOv4C9PTZ+3ujc9x1w/sPRf8g+npp75XDcS8wn70LwG/KccfR/5B+n/nsJgDnADzRfPYo9DfqN5nPPmW4xjOSca2gX5hXA/hz8/k/G879quTc/4B+ozxRPn/10Oe14f3JrJ19Upd06Dfu2rDYTx42xikA16L/ce8AfNce2vzc4Zx/Y9ayA/DSPeyX6+TzG/rttv3+BwD8yURbNwG4ybx/xtD2T8hxPzCsB1WInzoc97ly3Bum9sVw3I3DcZ85cZy7h8y6vBPAAfPZv4ZRRaG3kZ8E8CNy7ksgqmP0P1Dv5N4aPrt+uB9e7twjjzeffcbQ3m/IdX4BwLvN++sg96Yc/4nDPNvrzb0XXju8P2qOeSyAs5hQHQ/HfstwbIeeab512FOXyXEfPxzzZeazJw+ffamzv0aqY/P96wCcPp/7M2n7FgSqY/QP8w7Ap83cfz8F4A/N54eG87/BfPZSmHt6+KwB+BsAb5i4Tqg6Rq9l+BHz/kXDsV9vPltHb8d9CMBjzOd8znzC8P4y9M+tH5JrfMiw5i9K+sjn9ujeHvbKm/a4Po9Drx357zJfZwF8yV7Xey+q42cPm9j+fU1y/CcMHftv8vnP2TettSeiZ6mvHVRbawNzfhC9NPV0Of+dnZFKu667A71UPvKIUwxqk9e11m5F/zA6B+CL0f+QEHxIvzpp6lnonTPeLX1+M3pph9LTHwP4utarSD8qU9GYPq7aNltrc9bom4axnEY/Z+cAfHrXde+bca6H5wO4H8AvAUDXdX+NfryfP7M/c/DHAD629R6enzKofubiTfL+/0XPkK4a3j8ZvfCl3tI/h/k4h54178LMPUT8eterIW0/gZ29+lEAjgL4WTnv9XLNowD+CYCf6XaYMLquezeA38WO5E38Tdd1f2fe3zy8vlmOuxnAY2buy+vQz+ebAfx789Xce+EpAP5HZ5ho12uqfnfq2sOx34Z+3r4Y/Q/LlegZz9tba1eZ4/4YvaBp1cdfiN5B6GfmXMugoX8WxAfsvlf3oiGcwoNd1+l6obX2YW2IHED/43MOPVv39p+H7Xun6389/hIznp0PA1Q3o+sd094N4C+7rrMOtdyXjx1en4Ze26e/BX83/OlvwULQWrsUvVB+Ev1+A7A9X28D8E2tta9se/BM38tD8+1d171V/t6VHH/N8HqHfP5+eU975Y9h58HFv3+J/oayuAdjnMEEdW+tHQPw6wA+BsA3oF/UjwfwX9E/pIkrAdzTDd66AR6FftG1vxQq2OfnoF+wr0evcrm1tfYtEz9Wvyltfks2rgH/dRjL/wbgEV3XfXTXdfSsvBv9D/DjZrSD1trV6FV/bwJwsLV2Wevtnz+P3lbxzDntzMBPAvgy9ALZmwHc01r7hTYvPEz3AL01uQeuAXBCfuSA8d7LcGe329azlz20l356/dL3l6N/6Hse/bdjrG5XL9CzyedrAEahXRaDeviN6KMOntftNhfNvReugT//s9ek67rbu677sa7rXth13fXoVdiPRm+asfgJAE9pfVjKOvr78Je7rttrmN9jkURRDHt117hn7t85GNmjh/vwNwB8GPox/1P0+++1mFJd9tjsuu5++Wzy2fkw4e21aF/y+vwteAvG++mJGP8WeNfzbKVXwP/dGGEQat+EXhv4qV3X6f58NnrP5m9GL+S9d8rODezNRrtXcIM+Cr00Q1wlxzFk5BvRbyKF56b/cPAU9D82T+u67i380JFC7wJwxWBzi35s70YvQHx18P1fA9ts+ysAfEXrnVaejz705k70tgsPXwrgEvN+Diu9reu6t3pfdF230XqHon8+2MymQgg+D/2D998Mf4rno/+xiUA78Lp8vusmGaTDVwF41eBI8KnobbY/g/7H93xwG4DLW2sH5MdW914Gj8nM3UNzwXvkKvTMAua9xYmhP1c7bVyNmQ+Rh4PBxv8z6NV6n9CNbaOz7gX0Y/Xmfy9rsgtd1/1ga+3bMba/vQa97fELAPwZ+gftpBOUResdFj8Ool0QvA/9D51+th/w9t/T0AsWn2Xv99bagX265oUGfwueh95MolAhweKv0TP8j4TRZA3C8Qch11Dy2IPofYU+CsAnd113sx7Tdd3t6NXjL2qtfQT68NHvRC8Y/XjU9iJ/aP8I/Wb5HAwemwM+R477a/T2io/suu6lC+wPVZPbD97hAf+ZctyvoWcrX4zYeeZXAfyfAN4z/JhOYlC/flNr7UXoY/Wy4/YbL0Vvj/puOA/E1tr1AC7pes/j56OPNXyB085LADy7tXZJ13UPBNf6++H1SejtP/wh+tSoc13XnQDwM621T8BOTOP54A/QCwvPxm61rO69vWLuHpqLv0Bvk/pc9E5OxHPtQV3XnWqtvQ3A57TWbuh2HEceB+Cp2JuT117xcvQP+Kd1ux2uiLn3wu+jj8c+yh/r1tpj0dt90x+nQTV8pzBptNauQe+0tot1dl13a2vtN9CrVD8aPWseqWGT6x0A8EPon4+vjI4bVKKugLsgePvvUegdjBYJCueHF3yd/4Ve+/b4rusi5ywXXdc92Fr7TQDPba19l9FGPRf9s+C/Z+cPz6ifRS9MP6vruj+Zcc2/Qm8a/HIkz3Rgbz+0Hzt4jSneau1GphM3t9Z+GsC3D6rSt6E3WP+r4ZCt4biutfYV6L0x19EP9i70ku5T0d/AL99DPyP8HnqJ6Adba9+K3jb2fw/XutT0+7dbaz8P4OXDg+C30MfVPR29Qf0m9B54z0HvFf296IWFo+hVOk/ruu4zBz3/b6BX69yM/ub4TPSqjV/bh/HMRtd1/6u19uJhTB+B3tnnPUNfnoleqHjewF4+Cr0Tzk3aTmvtEHqb3L9GLL39MfqEBy8b1v0M+lCJXarV1tqPAngA/QP4DvQOD1+AfZibrut+rbX2uwB+dNiz7xr6zFCCzFM+w6w9tId+3jvsn29urT2AfuwfD+DfOof/B/QqrTe2PvvRMfTakfvQawL2Ha2156IPb/ku9GaEJ5uv3zvY2ybvheH470Av6Pxaa+1l6DUeN2Ce6vgLAHxJa+216AX4B9Hvl69Fr/H6Qeecn0B/710P4Hu9Z9SAS8y4LkG//1+I3ub55V3XvW1G/5aF30EvmL2qtfZt6B1GvwX9HI4ywe0jbkZ/z3xxa+0U+jl/h6PdOC90XXdP60OS/nPrkw69Gf0z4tHovat/peu6zM/iW9CrnX+6tfYq7Hjfv6brum1v5NaHnv0QgE/suu4Ph49fjd5p8FvRmwDsXn9P10dfXIWe8f40+n2+if65chi5lu+8vY479DZBe9x15twj6FWk96A3LL8BwL+A49GJXpJ4I3a8025Br7Z5ijnmJvgB5rcAuNG8d72O0f/Q/yl6qelv0T9EboDxhh2OW0Ovg/8b9JvqTvShCR9qjrkc/UPm3cMxd6C/Eb5m+P4getXoXw5jvx/9j9DzpuZ8L39wElYkxz4Vve3sNvQ//Pegf7h/Pnp7/fcNm+dxwfkr6H+gb5q4zkcOa3VyOP7FOs/omfNNw7ydGebxewEcl/W+ybx/xjDeTwn2qN17jxz2zwPos179JHYSeYwSH0h7N6L/IfG+m7uHRusCx6sXvbT9HehVT6eHMX8EnIQV6IWc3x+Ouw/9Tf+hcsxNkHvEXPeL5fMbhs/XvP6Z772/G0w76b0g9+WfDuv9d+i1FzdiOmHFhw/t/yl69eI59Hv45wD8k+Ccw8Mches9zBXHszUc/2foNQRpgoN9uG9vQe51/K7gu09Dn1HqNHr16peh11g9ZI6JvI43gmvdPKO/Xzn0eWNo+8nD55HX8WPk/D/A2Ov9w4ZjP18+/0z02bseQC9UvRPAf9G9HvTzmeid8x4a9sj3ADgkx7CPTzaf3Z7s9W8YjjmK/gf5r9A/2+4bxvU5U/1iOMTS0Fr79+hVmNd1XbdfKcIKhUm01n4APVu5opu2VRcKhcK+YJE2WrTW/iV63fWfoZcYn4Y+NOBn60e2sEi0PrvRpeg1Cuvo2eCXAXhZ/cgWCoVlYqE/tOip/2ehdy46ij6TxivR68ELhUXiFPo47yegV+O/G3288csuZKcKhcI/PixddVwoFAqFwj8mVOH3QqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFohFO0PtXGhtrTtw4AC2tvpcAXz1bMQrK/3vP9NHrq6u7vqcr/YYPUdTT2apKKeOnXPu+bQ/dfxe+7jX8cy5XgYeq2uZzY0e23Ud7rjjDtx///2jg48ePdpddtll2+d47epn+mr3zNQ5EfZrjfcytxHm+Fbsh/+Ft05R29F3+rn9nv/zebC5ubnr/cbGRng9orWGkydP4syZM6OJPXbsWHfFFVdst8v22P5U/7Jr7uXz8z12P8+9UNjLfoz2kPdZtG7efc3ngP1Nue+++/Dggw8udEKX+UOLxz3ucTh58iQA4NSpPqkINz6PAYD19T5N7pEjfcax48eP73p/9Oh2rWocPtxnBTt4sE88dODAgV1t8dV74Opn0Q88X+13eq4KA3Zx9TvbXtamd070as+JBJPoc85ZdsycHw59aPJcrqcdtz5Iz507h6/7Os0N3+P48eN44QtfiLNnz+5qj2tux8D15nvuD57D723/Dh06tOs770dZP4/2TjTnFnv5UWY7KphGDyL+oNhz+FnUZ68vUz+AfG+vpz9megzX78yZnegq/v/QQ32K7Pvv79PZ8jlx77337noP9HsF2L1Xf/u3f3s0FgC4/PLL8eIXv3i7nRMn+tzzfP7YfrFdnVtvnqLniq5ldv+cDynIhE6F9oHrEe3zrL3snCkBKyNXVvCxx6hgxLUCxvtL9x/3h32+8ZnB35Rjx47hJ39yT2mwHxZKdVwoFAqFwgKxNEbbdR3OnTu3LTV6KhxVKxMRI7P/R8xP2amnbpzD2iLMOSeS7CLpNLvOXDWnd91I2rbzHbWvbWSqnOj6U+q/CFtbWzh16lS4L7y2ud4ZE5xi4myD33uMNpqnbMw6Dm88eqwy1jkq3YhBzFmHSKPBNjk3ViOlx+p7j3XzfD1H58i+J6vhZ9Yk5WFzc3P0vPGeO5Hq0dMARBql6J729p2ud3ZvzWW9mdZl6tw5rHsvz8joXlCtCDC+1/hKNsrfDctOtT0F27daLH5GDcqhQ4f2xcQyhWK0hUKhUCgsEBec0c5xlIlsp/a7KTtkZv+MruMx3bkseI4tIxqnx0r0O2XFnlSX9SHqRyQlRhJn1p6yEytZ6jxmUmXXdbvset7c6zWt/dbCs53zVe36kd1V27HvI62B7WP03ltDnVO1lep1MzYU3Sues4junUgz4Nlo1f5OBqo2QmCHqSiUedq54Tl8PXv2bMpo7fnaR/3f9lPnze5fMqtIg5attWoFzge6773nUcS2iTksNfNB0XambLPe+KP1Vmbr9Sm6F9RXwILtTe2b/UIx2kKhUCgUFoj6oS0UCoVCYYFYmuoY2O2UQLWPVcfMVRlbtYWq+VQNmIVbRCqizAliKl43Uzcr5jhBRdebExIUqQj34uAQqaotIvVLpqJSlXGmRuu6DmfPnt1eU8/sMKWG47F2v2mYUKQO9PaO9j9S4XrqbVVjZk4d0R6JVIaeuUCPiVTk3lh1XqecjoCxapeOJ2p+sMdETleZqpf7YGNjI+1X13WpKprQNeR+0FdgHLKm4T7Retn/pxwM9xIGo2PwEKmQveeqtheFPM5RO6vq1lsDjZeOzBDZ80fDliLHOmDsULdoFKMtFAqFQmGBWKoz1Obm5rYE6wVNK2uKHJy8BAuUMPmdSpweK4kcp+YE9EehIZlTylRbHhuemxDBGxel7MiRwTt3bqjTHGabhbooa9jc3EyZvw0j8foQObTo/mByCmAnmQU/0z2TZSSLGDQ/z/a3BtZr6IllAFNJDZSVepoUzjHfa/IOb+9oAhAdg+eEx3GQwZI16Dx6jDa6Xz1Gq/O2sbExeb9loW56n0fPFLt3+L/Ok66Tx/wyVm0/t2NS7YeXMEQxN6mF5+wVafV0vFnIm+cwZ8c3h9GqlsQmrND9FDlbedqEveyd/UAx2kKhUCgUFoilMtqNjQ2XmSg0dZ+m1cvCeyK7ipeOSyX6KNwjC39RGwLh5VJVSTVish5jj1iqNydTaRqz9Ipz7ckeo4uSKRBZCNLa2lrKoltrozRsHluM2vdYScRoNRXoHOavDNNj8V5YCoCR34LdS5o+UW2zug881h3dE8rYbP91DjQ0x9v3DMGasu96oTpMsajnZGFEUcrEOfC0VTpf3Bf6av/XOY00TXPC/XROvTAo3SN8P8WS7XWIyGZv+6vPXu4HL6XpVApT3TvePvC0FfbVMlq91/T5w2OnQgeXgWK0hUKhUCgsEEv3OiY8L8nIYzhjtCpRRhK5J73rZ5k3JjFlZ5uTbJ1QlpixU7UBRazV9juyt2Z25MjLNfNU1uuo5JoluZib2q21FnokWug1o2QUQLz+ZCssYuHZK5XBaP+9qjOUsGnDJKJkJN4YdU/q/rf94Gf0qtbXjJVENlplVhZcF2WGHLd3X/Ez9im69+z95LHcKWaS+TTomHX9+Z4aECD2Oo60ZJ6WSu3cfPXskVp8gcewDfXetojYbqQt8+aE66NFXDgP9tiIxWeMnWPVV46bx9p5jDzUFd7nc7yl9xPFaAuFQqFQWCCWymi7rhvZYKzUo56hlJqm0pt536n05EltkSdilqJOpSgrdUZ9VHYVsZQsFjLzpIsQMT9tK4ufU7bl2WGj+LzINm3/t9eJpMzWGlZXV7elW882F3l/Z8w/imsla+Dnug/tZ8rIeQ77atdSPe7VRquv9tgoveVeJPNof3nerYTGG3JulFnZ//md2tX46jEMZZGel7j2V9OTRvDirT0PW64pr8lynGRxmT0y0qxltnMdT2SPt2NVm2wW1z/lC5LdG8pkVfvjxRbrZ1F8uMdAo5J3hOcbwr5xz0S1i+0enZO7YBEoRlsoFAqFwgKxVEbbWht5utnk7ypBqk1JPd/YJrAjqSjbUfuEZxdg+zxXr+vZP/X6WXL8iH3O6eOU3TPL2BTFwmX2VpUcI9uwxVSSdI1ds+1OeSpaqMTqxeVqu8rEbB8iFjIngbpC/QlUk2L/V82GMllrw43WV22nWR95LFm2SvUeg448odmGahfsuTquqNSf1w7X4rLLLgMAPPjggwB23/PEnIIURBSjb/+P7MXKJu3/0VrOYYsKZav2emrXjMr+ZftAi3vouL2Y2MiDPIqR9fqkGhx6mJ8+fXp0TqTdyVi++lboXNk50QIXy2K2xWgLhUKhUFgg6oe2UCgUCoUFYqmqY2CcjIKGbCB3HQfG6iwLNaKrak3DfIDYsM9+UJVtz1GVqqpyPGP+VMJszomXzCMqjqBOWJmjUeRENscJIgrEt3OiamzPAUSvr/M2VRTA+962F4WAUT1FFaRdlyj8JVK12uup6m5O/Vu9nqom1TnKjiNKjBGp+O31qIrWfcA5sSo8VeWyLzxG7z3P0UiTuasKz66lOoixr+yj95x44IEHAOy+B7JEK1tbW7NCzHS/qkObdepRs4KdQ2+stm1VHev976ljVZWqjmee6nhu8hnCCyvT55k+f7yUiKr6VnOD3pN2XFNJfTLob4v3O7FsJyiiGG2hUCgUCgvE0hhtaw0HDhwYJWfwHAOikBJlkWwXGDtBqaSnBnMgTrmnxnwrTStzUgnJY7RRcv1IyvYM/jreLMnBlBNKFkwfBX2rtJpJ9xqCosd5x2YpGFtrWFlZGSVAyEKMTp06BWDMBOw5UbIBHkPJm+favaMSv4akeVqEyKFM18NjtKpRiPahXRd+R+bANnhv3Hvvvbve2//5SscVtsHxKCsHxkkcdA68FKO6J/me6+exEnV66bouZTxe6ldv7/AzLzRL+xLdu3r/eGw4SmOYFQGIHIyU2dpz2P5USkTvvtOQxCghi/fc0eQavI+4pvzcMloi0tR4mgEtPBGlJ7V9zIp+LBLFaAuFQqFQWCCWaqNdXV0NdfBALF1ktgR1154KF8mS/VPKoUTmSZaU5NVmmgVcq9QbBY57cxIVR9DQDC8dYZT6kcgSkOu8euEVU+foXFlou1OS5erq6mjslk1xrJSSlfVm4Q8qNfMYbcM7VxNUZIlFNPmCSvrKFoGxvZttsM9aVN3T9qgmiHNyauRLAAAgAElEQVREtuqF93A8tIcq687CvSJmpuzLXkdDrDj3HuthH+lLof4K2pfNzc004YqGn02xR++YKDWrp92ZSoXppQuNipZo+Iud26gEoYYMzgkJip5vdu7ZF+5nfdX9budTGWtU+MIr7BD12bsn9F7IEuXsJ4rRFgqFQqGwQCw9BWNkw7D/q5SsdhqPiUXlwlRS8hLDR4nU1ROSY7CgVBpJtBYRC1AbjSf96jjUQ9FKlpQc1YtVJVqVdLP+qy3Nm0ediyyRwJxjCNpo2SdN8QbsMJ8o6bpti1CJVz2qtaiATSqvHsOa9FxZA7AjgavfAN/ff//9AHYzWl7z2LFju8ahfgvsu5fkQNm2JqC349J7S5O4KLO2rELLk0X3emYT5nWiMnD2OtbWO6UR4Tx5Nl89l/3XAgqejTYrcQj4XvqRd3Zkf/fGofDSd+o+m0r276VvVN8X3VN2TlQLwWOUdXNcdn9EhRXYhiYVssfqPRelK7XH2vEso1ReMdpCoVAoFBaIpZfJo1Tl2e+UlSob8aRbtZHyOy3mrQnDvWO8MnW2bSCW6KJ0iraParfT62UsTyVKZbJW0lNJ8uGkEtS+ZjHMupaqEchiZK0Em0mWKysrI9sVxwnszKWOnfD6wM/Uy5QMj9+T2Xral8gr3Iv/03hZsjhN3O+VcGNMt3r78r2X5nJueTS7L9Q/IfKQztL2KRtRBm3XeSqO1vMWV03M+vr6ZGF1ZTdeHDivRUamffM88lVboNoPvtrrKcOcKjLifacs1PPViAofqAaN52SpbaMCGJ52Ua97ySWX7PpeS98BYw9le29beOdERVsyfwxiKn5/v1CMtlAoFAqFBWLpmaGiBO5AHHdHeDp3lUjIPi6//HIAO9KUJ71feumlAMYxVVkWGfVw1OxOntQexXXpdbxYSJUYldGqHQbwy3oBOxKrJmq39j+2r7HFnr2a4JxodhxlD570O8dW21rD+vr6tgaCfbD7IGL4OufeOZrQXm2pXrlBLc49h70rk6X3JeGVhlOPVGUnXGtvz6pnqu5dL4uaMnHV+hCerVD3iGYC4qt3PdUUEZ7tWe/XyG4J7PiFZCxSGTjvD2VtHmtW/wQ+f44fPw5gZ328WE7NsqRewN5ejYo+6Bjs+VGhkEjjYcelvgZqb818bPiezxddJ+uLwHbp5c7X++67b9f4Mg1RpAnNfi8OHjy4lFjaYrSFQqFQKCwQS2W0VnKIivR6n6nE4ZWto+TI8lrqrUvJ3MucQumJUpuyOGv3Uolb7WrWg1P7q68R67LSuzLlqNRdZgPSuEO2r7mlLThmHuN5+iqislje3CuLX19fTzNDtda2z1FmC4yz0ajknTFNtkfth7I3T2ugXqxsn/uP/WGsqu2LMv3IGxQYe54qy9Lv7f5U5h8xGC9uVz3Iyb45Bs6V3auaPUpZMfvGjFT2OnoPRBoVe6w9JovBX1tb274O++B52kexsdpXe75qHIhIA+G1rz4N6vFrv1MtzJx9zvb1fvfigxX6TIpi8m17vO/ZF9WkkPXbOdN7m/NK34S77roLgB9Xrb8l2X2l82TzYC8SxWgLhUKhUFgg6oe2UCgUCoUFYunOUErdrUolCh3wigkQVDVcccUVAMbqUYV12FGXdVVTqTOJ/UydDzSA3zPARynQCC8RvaqXsoQIisjJSwPGPQcKjsNz5lCoE9ecMCJND5gVFWC/tHSfXRddb1Wbc62pirL/c6xaFpGv7BdNDBbsP1XGfKXKWB3E7HU03aDnaKaqVQ3viUI1gJ354fV0z3iFPbj+dObhsbfeeuuucdFJxar/dK+yLe4v7iW7bhy7mkZUhW3nJko474GOdIQ6vvEYYEctqQ6bnpOaqopVPeql/yPmqo69/a33rC3KoX2M0hhGBV3s9bgOGm6j62Xhqby98dAMYfeqOsXpuHhfeftb3+tvjF0DLQKyLBSjLRQKhUJhgVgao6WbfeZE4CXx57n2cyvBqsFdnUQ0aN5LMB0V0/bKsUVu9lFRdQtPmrZtZXOiDgxRknH7vzrfRE4fFlEaRXX6yooMqDTqMdUs8UEEW64Q2C2VRkWnlZ0ypAvYCTvQuY0c2+w4eCz7dOWVV+7qE/thg/WjVI8q4du9FCUD0eICbNs67LBvUSIYLxxC2+d1qTHKQp6UQWnqT7JSL20j29FE+8ps7f9eOJyCjJb3smop7P+q0eLYvZKA7Jc6CUXJWrwEDOpgGN2n3hg1FMhLjaqaNB2vPvdsHyOtnl7XS6OoTkha0MFLAKLavCjZjg1F1Ge+PuOjNKz2syoqUCgUCoXCBwCWymjPnTs3koRs0L66dkehLVZCU8ZK6ZN2qYw5eenYbN+ILNGCSodZubooibgyZyu9R0xZbXNzJMvIluWl/CPUbuixbpXE9XpecLtXyCGTLLuu254XDRuybSszJquLEi945yhb9BKAKGPhOtCG6dlbdQ8qG9EAf3vOVElFL4xExxqlh7TjZ7u0R6udkgzdK5wdpQfVxBhecpUoWcOccLKM0WobXnEB9UvQufaS3eg1lSkrI5tjE1RNl2c7V38S1SJkKW11n+nzzzJafYZEe9ULk5rad4R3P0XFBby0lKqJ0hSgXhKZqWfholCMtlAoFAqFBWKpXse2JFFmm1NGkXn4qe0qKojspWuLiqgTnsQcpU1UVmclZpVUVVrUYH2vPFZUFs3r45T0GUm29tqRndzzLFRpPpIaPQ9zYspWwlJ53rnAzrwog+V7z5OTrFMlX11D73pqU9J0imrLtOeoxkTZoZbE846NbHSe/0JkL1Qbqm0vShOqDNOORdNS0mNVbWUeu/OStQC+1kn7OFVQ4OzZs2FyGPu/PpO0Xa+4iK5lpLXIEvPoXlHbqf1M7zFqBJTNeX3J7ntg97qoP4lXps5eV/+PjrHwUkzqvotSP9rzvSQU9pxMy2ivtUgUoy0UCoVCYYFYehytSiqetBOxRa80WSTRR2zYwouTtdf30o6plKReul6b2gcv5tH7HhgXsidU6rXzqPahyGaaFXZQSTzyQgbGjCxi1J59PCogYUGP9cyzWz1E1SbrlebKyp8B48TtHiPXmMvMVq92fT3XK6ZOphyx0ygW2/6veyfb30S03yKve/uZMuZIg2P7EvkxeKUDuaZkzlN75+zZs6EWwUP0vJmTLnbK1mjbjdry7gntk+4VL6oiKkhBRCUevT7MScGqcxo9O7zra190Lrz1mutV7eUlyLRVi0Ax2kKhUCgUFoilMlomh59znH1V+6onVWm7KlF6ElFkR9FzrDSqGWDUw069Ar1rqz1X4SWv97zuvPfeeFQqVHu2nc+IhUYMx7aj140KIET9jkBWEnkz2jFFMXxeDLZqGlTazRhGVAggK4jhxToC4wTqnrZANRtzbIBahk0ZtNdnZfHKKLPx6bHa50x7oRoiMnmP/UX+AxG6rptkvVG/outGTCjb83PhaZqUgU15Oev/QGwLzva33tuqSfES9kfPg8gOq//bdj2Pbz1GfyfmrLXVxJSNtlAoFAqFixz1Q1soFAqFwgKxVNXx6upqqq7gZ5FaJnNsmlID70WVoypEqzpmSEgUBuOpqiP1ovZ5TqiOjsNLAalzG6lwMvWP9jlTy0ypbLzvtY9T6pvNzc1tJxuG7Ng+asC+jt1z5phyhNDQkqzmb+S45yXpIDQtII+1NWyjfazfE17iEg2NiFIx2vN5jqa5i8wD9n91DFPVceZUFN3jngMVce7cucn9kyXAUJNKdm39TM1Zc1KJRmaYzMGR0PtG18sLDYycL7N1iZzfdP7s++g5oOdkzxBVK2frps/NqI923GzPOjg+HPX+XlGMtlAoFAqFBWJpjLa1hgMHDqQOJhnbtfBSk00xijmSJqFSnHWA0uB2dQ7wwjsit/epUBp7rpcM3fZjTjiJYo6T0pwg9Lnaguw6XdeFrGRrawtnz57dltqZ0MGT3nWd1WnJslJNeBBpD7L0nVEygGicQOxQR8Zu0zcqY4oc3CJnJTtOth8lLgHGCRDUOUqdpOy+UycyPcbT9uj9pO89tqXtnz17djINo17bS1gQhRx6JT2j59he2FH07OLYs7ArXpdrGmmi5mAvzqVZ4o+pcLJIw+EdQ+h1vFCdqeepdx1Pm7dIFKMtFAqFQmGBWCqjXVlZGenivRCNLEBcz4mk88jlO7N7RGE9XimwKK2i2jbsZ2p3iNhPxoYjO4hlaspCtP0oRMQ7NpI0M5tYlrRBx5GFX9lrWRbI8Xnl1gi9tmdTn0pNl2lFpjQm3niylHDAeL3ssdE+iEInLHhfsbC5Jj3w0pJGZRDVJuilYIzKoXlJLrSgBvuYJRrhGvLcU6dOTZbKi+5xO+ZMKwXszZdBj/M+i/aQp9nSe1XtkV4YTKSdip5HHluMwnm89J3ROPV9ZqOPtHtTIZEW2e+HPqeL0RYKhUKh8AGApXodr6zsJI7X0k16nEUmoahdbYppZNJUlO4rK6asEpfXxlQ6u4wtUmrnqxY/92y0kWfyXuytkbf2Xlj3HExpL+w1eG0mq7dzEWkY5iRq10LiEePPkl1EjNpLM6dMST3Hs2TyUeIAby9xTnQusqQrmro0kvy9VKP8P3r1EsBwHDxG7chZGtQ5KRhba1hbW9veM94aRM+IyIvV9m8qUX/GNKOoA28tleFF93R2nYg5e8/gKFGF7lW7lnO8piNMMdfMRqtzkvn46JiXkawCKEZbKBQKhcJCsVRG68VceWzx4aQxm5OGbaqtOYm0I7tmZiOKkl9Hyfg9NkxJX2M6vVJhkZTreTECvpQ4Nff28yg5eZa03LPFRGvYdR22tra254XshPY8ADh+/DiAnTVTmyXZjxcrqfaoiHF46QYzTUZ0HWUWau/KPLqjmEQvPalK7bq/OSe24DfTQEap7yKv9+yYOfeGplzUknseo2W/p2IhW2sjhpx5MSsyD9WI8UfPMvu/rmmWolDZdbTuXvpWvmpKTK9gA6HsWp+Fnr+BpoGMtJaZrVaPmfJrsIjyBGS27jnt7geK0RYKhUKhsEAsjdHSc5T2MM8DUW06c+13QGzL2kucW1QI3suYQkSs1POMjmyXe5EsKZFrbKedx4ih6feeNBd5EWbeelGM5xztQfQ+A+NMyWxtv2m3VQmczCjLJqVQBrqXmEHPk1PZn3rpenajaF9HHtNZQQLuEY2VtYyWc6ol1vRenGKBtv0sFlLtt1EMpNUUsL86Bx66rsPGxsYo7t177szxNo7GOGUP9eytGfOyx9k+RuVAvb4qo9VY/CxjU/TMUBuql2NA9/NUrLn9TPeVMmh7rs6f3k+eZ7QXHbAMO20x2kKhUCgUFoj6oS0UCoVCYYFYqup4Y2NjlM7MqksidZG6b3uqgChl2xyVrqrsVI2VJRLQOpqqrrHtz3Esio7TOeCrlx5QnZ40CUGkBrTX3ktaMz03SgTuOaDMAfeOqjqt6jhyvNBEFXOcYKIQgEwNPJW4wJ7Pfmuyhuw6+sr9FoVs2OvofuBcMGGFVR2rU9Ill1wCwHcMBB6eM4mnotR1031uVZSeajK6t7quw+bm5shJLXPmi5Ltz9mzkTNhljowQhZWxPXXZ4s9h2umz6YoKYT3bNRnoDpheXVd9VkVhft415uaa7uOU+Fk2flZsp5FoBhtoVAoFAoLxFJTMK6vr4+kHC+gPwoUz6SPyFlHJTCPDXuOJPa9ZbRqnI8C+20ChaikmsJz7oj6GCXUttfWeYzYR+YEEb23jG0qeF/nDBgzwinJcmtrK1wfwC9paNvNwnqU7Uyl8/Q+ixLn2z6SLfKV0PkhA7H/s09koZo+0XOKI1ONNBiaitEeS4eziEFp3y2itfQS0ROaNlQdXGyhBb32VGjPysrK9vnetedqmrKUflEIkM61/Uz3nTqBesxM7zUN2fG0ITwmKgPoMWy9h72wKB2DpqxVLUjEwu0xet+oY5Pn9BntA2+evVCjZbDaYrSFQqFQKCwQF6xMnhc6o2EIijkBziqJZe7wUVq5jJ2qrYJ2T0prDJ3w0vVloRj2OMswovCBaLwWKjlOhRNYRGElHqJxzLHn2rCBKclSWZvdJzomZQVZSsQoDCFKNGIxxWStHZlMVkNospR4ykqUnWjIhudPoNBxWolf9+pUEpmMIU5pjIDYvqbJNLxnwpxkJ3zuEMqYLSK73V7Sqnp9i6B7U9mbbZPrEhV69+411QpEdmOvj/oZ2+J6eMlOojVUNuyF+UTJOzQFp90HmtSEfdHxeto3ve6iUYy2UCgUCoUFYqkpGGkv4f+Ar+PPWG8E1dNPFRew50S2YI/Rqs1FGS3ZaOZZqRKdpk+zNrrIlqm2GSupKdvYS1FyHWd0bGav1HHOYcVTfdnc3BxJ9Za96WfKfr0E9FES8ki6zvahsjbaBK09lhK3Xk/X0ib5V29qthsl/7eIWK8G/3sl6HQPaaIUj+XrfRu92nVTG6wypjmF2jMvU45T7cPZOZkGg9AEDnP9MOy5kfexx7Yj1hsVJrF90+vN2d96jKY95auX+EO1KjrOKZux7VNUetF+93ASHGVFbRaBYrSFQqFQKCwQS7fRRrY0YH7haC/NXBSHlXkyz9XPezaMiDFnnsORvVj7kcXgKsvO7BAq7Xrp5/T6me3N66v9TFlWllhd+zqVRu/cuXMjLYi1D2lavijNnOeVGXmSZyxF51TZA/vjecuyAILaX717gsxBbXFkGJkdlO1rykXVDFjofGlJvYiF2/bUNqfsxDIeZbAcl37uMSd73Sn/Db3XMtty5Lnu7d8orjiLo83syYAfo6rzQC0F94enaYhKKep+80oREvyM+5j98Ly4o3tNtQj6zLZjJ/S5nWk2FFFbFva5U17HhUKhUChc5Fgao11ZWcH6+vooG45FlFBa2WgmvU7p6fdiy6CkZ5mTsmotOB7FyNljo2w/nj05YmbR9e05yhKjJPneXEXZnTzMSaQ+59wpu5buA8s8vKIBFpwLby014xjZgsZGegnb9RiV2j0mo+eQxWXn0G4fxbN6TE33jjJ3shKPyaitW9u080hEdnG10XqZqDgHypw8O6zu47Nnz4b7lM8d1QDMeYYovGxSqhXRvT/HBhhpfrIiI2qX9BhtVBCC+5vvVQNhz4mul8VER34y0T607elvQNQPb1wR7LrtxU9lP1GMtlAoFAqFBWLpNlplU55EEdlkMwlmytvY87yN4mjVBmjtbOpZF43DY5pqm9XYSE+C1TmIvKgzpq7j0zY89h3ZpbzPp7yKM7vuHKjXceax7pWas7D278gmq2vqxWBHWbCUHdo14H66++67d/U/yooD7OwN5hw+duzYrr7pOL3YYmWFamfL/BYiBu3Zk/VcjYH1NES0MSqzVRutF/88NwextcN59vbouRJpIOz/6sEd7SXPZyPy1leWDOysg66d9s2eE2VzUnhrSUQ2be/+jZ4v3ngUURY7j/1G11Vvfi8rV/Q8WzSK0RYKhUKhsEDUD22hUCgUCgvEUhNWrK2tjVzOPXVMpD6YY/yOEit4KtcoGbWqkK3qmKqbKXWITaOozjtRIvA5qdD02L0EXEcOB177RKQW9tYtSozhIUotmUHDlWyfNO2aqpo0WB4Yq/c09V1W0jFLhGKv5yX5P3nyJIAdNWmWNpHXjhyL1MnHqtO1TB7bUEejLF2ohoToPrDXU9WhhvV4phj+z1edE091TNgEIJnz4/r6errf1HQS3R+Zoxmh+8HbJ9H9kjlDcV2OHj0KYEflznnz+hOllI2c/DLHSr7q9Wwfo0QskdnBSx6jUPVvFk401Xfbjn1f4T2FQqFQKFzkWKoz1MrKyohFZM4UU04K3jmKLORkKrm2d31lA3SVp0RGSdPrl6bPi1zzs8QOc4z5UViHfu8xNXVKiJzM7HW94vPZdbO+euDe0TAc256mN9RjvP2mzkKR85OGe3ljjlKL2oQPmsBBQ1q8uY3Kr81Jxajtc2/qvrApH7UMX8T2MyfGKIzDS0SvjFaTJ2jCDNsnqynKGK1NwUjY95qKMysEQETXmxNWOMVks/N5Lp3idFx2n6jWK9L2ZA5buu+U/XtsUVloVJzeS/3pOWbac6Jr2+vo/vCS+dhj54Qwni+K0RYKhUKhsEAs1UYL5HaIiBFFtlr7mb6Pwl88t35NMhDZw/R8+53abi37IXNUW5WOx2OGas+NpN4syXvk/p61GUmuno1L29H25kijGYvous5lot75ni3WnuOlYNT+q22JoRVeEvQocN/bq2oTzQoC6Li4d9TuqtezfVTmHCXTsHMSlQzU8KnsfooKmnssVRlsxGg9pmbv172mYMx8Q4iIXXmYCif0bPlRaGAWlqIhM+p34V0n0rZkyfinNGdZoY3oOaN9nbPvs35o++ojoNot+90cTdp+ohhtoVAoFAoLxAVjtJ4XmSJKWJEFr0fJLTzpNJK0tWSXlXpUOiPUFuilB4xSoqmN0JNKlX1k0qDaxqJycJmX8NT6eLaZqeQWmT1nCltbW6lncpSqLUsGoSwnKtuV2XcVUdA8MPbupAep7l3PpqT2dO5N7Zs3BrXFRiUFbTvcs7pH5uxVnWstJmAZre7RKNG9Z1O1zCzbR13XjebR3p+ZRz3PV0T21ankLUDMvLJ+qBZEU3LqcV570XMh85eJWD6/t/MYzUWkXbSf677VvnoMdyoiIruf7PqV13GhUCgUChc5lspordexlx5sio16NqWo9NIcZqteoGQJ2jfPnqNpFFXizGzP6kkalcKz/0dSl2dfURuWSoXRWDxENrlMSoxswFNex5kn58bGRsrAtW2uJdcnS2+o2okojZ61i0Ye3cosPe9sBcdDW6rtjxai0LXNbHOEelpG9kT7md4/2r7nT6AMLbK3Wq9j9YdQtu2xrb0W+mYsLbDDAD2N05woBx3rHO1QdK6WPoxsml77upe8c6IIj0hL4THaKMVk5tE7FamQpXzVccxZ4+ge8Epwemlwi9EWCoVCoXCRY6lxtKurqyNJ30oTyhKUharU630WlVJT70l7bmTX82x3UWk7ZbhZbKKeq6zFkxKJyOvZYsq2HbEUe71Iysu8xefaaLxj9uL9552jGo1o/b12iKgAu9orbftTsZceo+Vn3CNZLCSPJRPj9bRPno02W+eoz1EMdqQZ8hgUEcXRZgXN1Y7rFfzOkuBH0HssY/FRDLbFlDYqism2/09lkfL2AaG26znML9JozfHi17nwvNyja0ce+RaRB/Gccny6ZzPNgD6fM23efqIYbaFQKBQKC0T90BYKhUKhsEAs1RmK6dCAXG2h6ipV6XoqQ20nSnDuhQbpuWpE98JSVA04R/2rtT0j9aznYKJtzQkY1zFHTmVePyI1lqcOjkIb5iS5IDI1IJ1ZItNCNuYs6bvWo9W9pM5ynppMr6uqL3uOzoPuBzU/2PZ5jvaZ8O6DKBUe4Tl56XWixBie+jYKbYrCfGx/o4QVuha2/ei9gmYrwHeQUQefKHWo9xyIzCW6pt7ejxwNs/tS50sTs3hJJ9Tpaur5av/XfRXVCvf6r+kzdc7mJLLJzE/arranIV32f+sIWc5QhUKhUChc5Fh6woo5SQyislWZ5DXHWUOvR3hJte17L0g6StPnhYxEIUCR0d7rYxSi4bnMq+NCFAriOXtoYHgUrpKF6kRp6Dw3+zlYWVnBoUOHRgzTC7dRpqX7IEtcoqFAKilniUQI9lFZMhCn0ePeUWc5r4+aZEITMFgWoWONQoQseL6OWdPZKfO17UXMxrvuVNpTj1nrXjx06FDqvHfgwIHta6vmyf6vbG0viQ+i8BvveroX1SnTKySh7egz0WN1+mzQ8UTPWW8uovSdnkZDtVPR89VzhFVkzoY65qg4iHVM9cIwi9EWCoVCoXCRY+kJK4g5qcoiG1pmz4tcyZUB2GtH6QY9N3tlsPxO3cWzQH6FSmBZekMvvMbruz13qgyf1y+VQrPUgjqOyL6bpYfL9kFrbVeqOe/aKs2qtJ4VV59KVOAlJ/dKDHrn2n5wj0QhDNq2HU90DFmwFoIHdlhiZCv3wuWILD2fhV03zrGupdoCLTuN0qAqQ/fYltUERDa81vqCAjzf0zjx/tD5UCabpf+bstFynTyoXdqzcTItrO4hDV+z8xQVHIiYc5YIKGO/0TlZEh9FlIZ0TmGH6Lmj9ljbB/u8LkZbKBQKhcJFjqUmrFhbWxuxVK8EXeT9p3YqYMwsIo9aTTQB7Eg1yj6U/XhJB9RmopJy5tUYedJ57CWSBrUt28copWBkz/Zs3hlDiM4hpuxW9rMsKF/B8ynd2+Mj71hNXGGZGRmR2qGi9crShUbaFs/rWEsfZmxB119ZikrtWZpITS2apdFTT+s5DDfSCESFAoCxbTYq7JFpiKYYrU2zd+TIEQDAqVOnRmPeSxrFKW9YvZctq1KtlyZ/UO0MMJ539aHItHyRXTUqbpCNR+H5E2hZyehZ5RXpmEpc492DhGoXqUWwz0N+Z5PFFKMtFAqFQuEix9IZrTJLKxFFHnSRF5s9JmJrRJSM2x67l5ityLvQS9s4VVIv86qO0tqpfcVjhhELzmLh5jJa7zOvL3YMmdfmVBzt6urqSPK3Niy1a2m7XvuallPTHGaI7HiZp7XOvzJNzqMd1+HDh3e1p0U5PA0KoWs15XVq29G54LkaG5mlAI1YqtUY8X8yVx7DV55rbZy637LE8IzBth7K2h6vHXnaZnGtytKi1KyeNkfnWm3ZnjaEUE2Hxwgjph4xQU9LpXZX1SDaezryaYji372Y7zkx0To+tQkra7XaBK57xdEWCoVCofABhKUy2vX19ZHtx8Y4ESrhK/PLsjtFDCbzfFVpSpm1jsO+6ufaL9tOlA1JvUO9cyNbree5GjGZaAxeXGPEUj3WP8VovbnXWMiM0TKO1rPNar+V6ankbRkY24vKiUW+AhaapDySsi3UzpatB/sb2beyTFhTfgtqM/bGyv6r98DA3TkAACAASURBVK8tdafXU18Ktbfac5XB6jkc39GjR7fP4XrR3pp5s66srODIkSMjT2We611Lmb5nM526/7PMUJHGScfnxcQSuu+89Y/uw4jBec9VXUsvhl0RZYCKch1YTLFLT0Ok2gT1zLb7W/MdlNdxoVAoFAofAFgao11ZWcHBgwfDcnbAmNkRKgF5RaCjdjPJU+2fUUHkrC/aVlbWKYovjVijdx21Bc/JFzrlsZwhsj16XqAqQc85h9jc3AyZI1nJnBg7zacb2YstNJZTz/VYiXr70vYTZeMBxntC7V5esXidwznxzERkz9d5tBJ/tK/VZqfZnux3fFUmy/c21lcZrZ6jHtq2T9YGF+1lfe4Qtg9kORyT5g/2EJXHI1RrkK1TpK3ysop59mn7udeHqM+RzwYQs09l995zLjpW2876OoeN65wqy+erjcHXe60YbaFQKBQKHwCoH9pCoVAoFBaIpTtDqarXGtXVMSpyUvJSuEWq4zkG+KkAdc85RdUwqury2o+cAzK1SeQan/U5Kh4QOcNkjlQanpCFL02p0SzUiStLtca9k4WyaLtZMnKFpv3TJANeKIMGxatTiqeiVtOHXkfTeNr/pwoCeM4wuh5R+UfPSU3bUNWxpzpU5z6+8t5QRyfbnqqb+V7Dm7w5seE7CiasUAeZY8eObR/D5BXq8KOJNrw1nXp2zEm+7zkLatuRc50m1/HmKVJfzwnzixwCvXtd96ZXXjJCZOLzUksSUZiUqo69ogL23FIdFwqFQqFwkWOpjPbgwYOjhAJW2ohKMWUSR1Q4Ogo+94LAle1GBYu9c7zi2cBuyVNZcJRUwZM81blKWZcXbhT1Ub/PygASUQC+l3xibuiT7ZOdv8xhxM6nxxo1mUVUeswLnVIHnyiRhTdPXiiGbdv2W6+njlOZA1UUCpSFIE1pFrKUg5Gzi4YEeeFEeh+po5O9V9R5Lbr3vBKLXJeDBw+mCVbW1tZG2gLLqsmaNXkG+6ls2I41cmSMHNEsouecdx9Fx2bpOzXESJlldm/osyO6judAFWkXszKgEaZCt+wxqmVShgvEJUsXjWK0hUKhUCgsEBcsBaNXZkxLfilLzNL1KUPSBOZZSTBNdqAJMzx75FTYSxbKErGQLMk/EaWF8yTmiDGr9O3ZaHXsymQ9pqZ9Vgk2Y5Pnzp2bDFXRpAlZyUMis9Gr5K3hZVHIjm1X99Uc5q+2et13Xv/1nKk9ZBGtj/de95dqiLSv3rmamEJttja0RtMf6r72WNBeigBQk0bWyj7YkA/aazXdY5aUgYi0BlHyC3tMVJhiTigLkT3XNAxO51jfe9eIEqJ4RTqihC/6vPZYajS+TIOiYVE8hmudhffYPVQ22kKhUCgULnIstfA7PQABv3wUJR8tX6detJl3XFRI2isjpl6SatfLkm2rh3Tk4Wk/i46ZSo3mjVP76JWcigq+RzYhr29Tr1677EsWTE9Ye1gk1XZdtyttn2dXURaidlYvBWPkZazlyjL2pqkD1fvYMo3Ia1oZjmW2yg7OR/qOtCN2TiKWz35o8glvPtXLWK/jnRP5OKiGwH5m75ssYcXhw4dHa+qlYHzwwQcB+N6qQJ7eMFqfLOlN5BHvPQ/0vszGq9fRxBHRsySz0UbRItmzWMcR2fuzc9VD3/OXIWONbLN2rT3NYzHaQqFQKBQuciyV0QLj9GlWytG0dlFKRgu1Iej7TJomou+8GK7IDpElEY9sSpFtyZPaIo/eOXGiiswrWCVnHY/X56lYOy8OVb1MM/vs1tYWzpw5s90nSq7WQ1W9SnVdMru+aj3Uc1ntlPa7yIalzNqOf45XNqEMJkrXl9m9ovhtL5adc8HvyE55rqZItGug8cjKcL20jZ7HKzAu0mD3jpbw29ramvRY5/k8l3Y8+39k2/NilCObcsR0M1tmVADFs0vrMXu5L6P0iV463GiPqMYjY+xT/fHYt0KfQ979xPtWmSzX09po91Kecz9RjLZQKBQKhQViqV7HKysrI69ja4/SWMio6LkneU3ZatUeZ/+PvAu9eE2VhKIyZvYclSSzzEyKiP2o1OvZOyLv4kwKjyTlOZKztpGxb0/TMMVqdT9YadrGVNp21TaXMVsyL832RQZt92q0ZloowO4t1Raol+lcL1rb52wfRN6fGaNV3wb1X4g8iu3/atvWtc7YndpkPV8OMha7TpnXqk0cz3Zt4XfdO7reXny92jvn7PlozBoV4GmAvHHZV28/RrG2URu2r3quPiu8Z7E+R6PnnqchiPqm2kC7D5TtKqPVknjeOV3XTWb32g8Uoy0UCoVCYYGoH9pCoVAoFBaIpSesINTxyUJDgAiqJrKUiHqsqrG8VH6RE0+W3jBylfecYKbUv3up9RrVyvQcaqJiBnOSXOwlyUHURqaaikIMIrTWRvvBS75PtZGqK71QrchJSPcO1aQM/7CIEvV7BSOiOVQThWfeUFXalEOdPScqtKFmFftZVBhAv/cKBKjKVa/rhcuxr7bGrPdq/7f3XKY6PnDgwMjkY/eOOkjxVcc6JwWjIqvXSkTPn8wpMlKxe85C2n6kuraqX12XaE1t21H4oLbpOUNFZi597xUIUIdNTcXozYkt0lHhPYVCoVAoXORYesKKOen/KFmpQ4l3TpT0YSoJPzAuIxWVe/MkS5WMVLL0zon6GiWJ8K4TSV+eZBkdmzlSRM4cWZgMMRVMbz/3JOOMlaysrGzvBy/5RBQ2RiaWOZhof9mux2AJtkf2EznwefuAiNJ5eqklo72jbdrraWk1Ta+o6fSAcYiOMlv93DLaKJwkSphg+8b5JAtRJuulQZ0DatJ0z3ilAZXRcu9kyXWm2FuUrMFrI0tKoc+iKOzFCyuM+hA5ogHT2giPLUd7UtvIHLeicEIvbJLrocxVnwWWBWfJjxaJYrSFQqFQKCwQS2W0NoGzSh3AuCwVj1FWmiW0V6idxQsN0rCXKL2ivd4UG83sukSWAk0R2aIz+0IUAqKY496uffXmZKpPnm0us/Xa9mwpNK+/EaOltMtE9l76xsjOrnvG2ta03zYo3l7HsqCIlahPgm0rkux1/3nrojZTHqsJ4b2wq4jJask7OycazqPz6rG/6N6LQjYs5pZds5o0tmP7rcxIWbVXCtFLl+nBG3PklzDHVjjlK+FdJ3r+REkwgDj0TO8R7/wo5HLKhgtMM1pPE2FDtewxmuDGwmpbykZbKBQKhcJFjqUnrNi+sKS5s5+p15i1A9njgNjrT6U4r6yTJsjQtH1zWFckeVkmM1VqLmPDDyeYOpIg54xH7TmaXCErlBx5a3sJ9r20c5lt1yYd0HWz/3PPaGEDj3lEKQkJTbDgSfGRpsF6NdoxWkTM1huX2p/Uduul0dPvdH69c6JkE8pwvXSKeo7XvvZDUyPqHGmieL0mEHvi81o2UY7XB56viQ7UxueliyV070SsTv+3x0aJJex3nn9ChLlewJk3+F6iDRQZc9XPI+aq+9x7rkbnepEa/I729+y5s58oRlsoFAqFwgKxVEZ78ODB1JNPJWBNFq22JmDMsCIvTS9mMIJKQllc6xy2GMXARfGsni1Irx9Jp/a7SHKOmI137FSKOQu1+WQSbWT7ydrmsdRweN7nfNVCAWRGp06dmux/FG/q2RZ1H0Te6BbKhjLbc7Tfon3v2Vuj8Xj3RMRko9J3HtSOp/suixrQPeTF1CsDzLQsPJfte+fQy5jfKZPl88feJ5EGTZlnlm4w8tLW7+13e7m3dU9EzywvNaam54yKaHjpNKN7OYrqAMbP2il/BiCOIdY94/1eaEGRRaMYbaFQKBQKC8QFK/zuxVRFUqcygDmZc6J4Rk9q08wv6lHoMRkiKpvn2TtU6oyyCHl2ZL2eMsyswLhK2TpOe65KzJEU7EnOKuVrHGcWjzxlo7Xnen3Q4gEq3XqsgZ7I2qcoltiuC/dMZN8nPJYa7QPvHGUQkfbD8wbVggBarF3L2dlzlMlquTyNebeY8li1axAVDlF7tedNO9fnwNurnje4akqU0XraMGViyvj1HrT9VW2VMksvJlZ9TaJ9Z8+fu69tH6NyeFFZyDnQ/eCNL9L2eZqNyMclast+Zp8XZaMtFAqFQuEiR/3QFgqFQqGwQFywogKe67WqatWhxHOmIFS1EKlNs8BxVaHMcb5SzHHnn4J3vKqZsgQSUTtz+hGlKNM599QxURiHp1rO1DtenzY3N1NVYZSwXFVFNnhd0zTqnOq4vGQQVDfqOd668DOqJNVRz1MpqvMgEalcrSpXTSPsK9vU5BPeZ1pMIHPk070ShbF5iVlUBc058tY62m8R1tbWRuGEnilCnWu0wIGd80j9r/PiqdajvUJ4fYzSJ6o63h4XpapUE5W376acn+YUiIjUv4QXdqNrGz3XvXM8lbS+j/bkolGMtlAoFAqFBWLpjDZL7q6SZZZQ2rYLxEm2M0TSoLJgL9FCJGFq2/a7KQnckyynwgS8+dRxRXOROVJEYQT6vb12lJYyC1uZg67rsLGxEUrxwHj+1aHOG4emTSTzm5PuUsMDoqQWnmNT5BDItizrjsJedM49hxZ1nFFmy+9tyBMLKfAYDX+Iws30f9uXyMlQ+2vHqfeePUe1FVbboeBzR+fPcwCMkiN4zxRdw6hvfLXzqN+pRiMqAuAdm52TJenw2vdCdaacPe052r5qJOcw2uje80LgIi1bFOLptdN13cNKCrRXFKMtFAqFQmGBWGp4DxC7mnvHqDTvSTtTbuFT5eXsMZFU7IUEeTYR+94L0ckYmf3es83o2PVzL7wnuo5KmJlEN8cOFiXiiF69Y+cgSxkXpRnUPeSFligbjDQCnsQfsTUyQyt1K8vWNJFazs7rv0L75tnZ9FWTT1gbrRZSmEqjZ1mTrrOye4+h6RyrZkoTZwBjG/eBAwcmnydq+8uYWJQAwfPPiDRZmuQk86HQsWY+CFmaRj1X1y7SgnhzEmnutM0srEifvdF7e45qefTZ74X0aR8y+6v6cJSNtlAoFAqFDwC0vXrEPuwLtXYngL9fysUKFyse13XdI/XD2juFGai9U3i4cPfOfmJpP7SFQqFQKPxjRKmOC4VCoVBYIOqHtlAoFAqFBaJ+aAuFQqFQWCDqh7ZQKBQKhQViaXG06+vr3ZEjR8Kya0Cc/SiLRZsTsxmdG7U1B1PtL8rJLJqb/b5eVIosWzddP43fy+KRW2vY2NjA5ubmaBEuu+yy7tprrx2N1RtzlJtVY2SzMWXl+qY+mxMfPoVsLc9nnfdzjzyc0mLevRnlxdX3tu+ah3dzcxMnTpzAqVOnRp1aXV3tDhw4MIqFnZN3O8v2lmVIOl88nNjy/cbUvj7fe+Hh9idrU/MBeHHJXiH7M2fOYGNjY6G18pb2Q3vkyBE8/elP3057p/Uu7WeaCo/neCm1eANFCcCzJOhT8NJ+aXt6nSzYnNAb2UsLpudGAevej1iUpjFC9qOpCQP0FdhJfHDy5EkA40T0l156KYDdiRHuu+8+AMD999+//dldd93l9u+aa67BjTfeuL0P9Gax12R7fM/0gkwgYc/RdqJav3PSv02lg/M+i5KQeAJJlqzDvvf2t+6ZLBXfnBq50fWm7i1NZADs3K/R6/Hjx0dtnzhxAgBw5513Auj33Ste8Qr3muvr67juuuvw6Ec/eld7x44d2z7miiuuAAAcPnx419g0DaWXDESTf0TCm1eLWdd7zrNK10X3h/dDFK1/VjRjqjCEl7wjSpmrr5pQB4ifUXOShrCdI0eO7LoO9wnvffsZnzX33HMP3v72t7vX3k+U6rhQKBQKhQViqSkYW2thonFgrE4kMmlGMaUOtFJUpO6do46JVOAe+4n6qMd4bEL7kpUaI/Q7bTdKEO4hYnWe5BypbqxESdgk8Xw/pTLN2D2Zhe6hTNLX8l1TZb68El0RO81U+pHaMSuWEKXLi/qcHUM8HFWu7t05Kf+yUo6aOlPni6zSMlBNITqlTjxy5EjKyKgNi+6tTFs1NVZv7iOtQaSlsP9HaU61bQtlkNF8zVlLTXtoz4n6FqXStfeTzl+UmtM7R+eN60mGa+8n3TMrKyv7quKOUIy2UCgUCoUFYumMVhNoe3YPsp1IwvR0+5FknNk9Iokokubs/5EDBV8pVXntRg46mYPBlMQ8xzasDMcrMK3HRs5FGevWPp0+fRrA7rJ0uqZnz54NWXrX9YXftZ+WFatdOCrMndkUI5bgJS+PkpJnTjK63hH7zWzmU446HqOdYrIeU9dx7oXR6rkZC4vKQGrpQK+g+RxG21rD+vr6yIeDbAfYWV8ew32lLM4rX6latqlk/La/kV3f2wdTDnsPxwclY9BsT23mc0pfRjbZ7Fwt7DLn3ozs1TyXNnf7nGAJSq71+vp6MdpCoVAoFC521A9toVAoFAoLxNJUx631NSGpPvRqrxJqCCc81aKqClVdpu3bNiOHBW3Dq7kZ1XLN3N6nnKzmOCVpXdXMgUbbUzWwV1OX51DdwlcNZ8hc86MQIU9Fo33x0Frb3j/22jZUhyrG6FpZbcop1ZbnQBOpjiPnJfsZ5zQye3hzEamM9T7y1H+6J1WVy71sv9M5iFR53vUy5ycdQxRqpHvHqv+0j1k9WqqOOcajR48C2K061vq2qpr2nlVcI/ZL76UsZEsxZXqx/0dhVplqdeq54+0tVafr8867n6ZCgDL1ttaqnXLc8tol2D5/a6zJiqrjSy65BEAfGlaq40KhUCgULnIsldEeOHBgVkV7lQY1FMST0JTpRd9niJw3bJvqGEOJO2tfHcCiBBUeE4j6EiWwsO1E7EAz63iSM+ecTJGfe4xW21VHEbZhE1bMCf0gWmu7pFJv7N5YLDS0wIL9jALts2xCESPzJHLV1GiSA4/16N4houQXto9RGIyOy2O00fiUcXh9jpg64e23qZCzzBFpdXU1ZbQHDx4cMRkmrgB2WBuvqevtaV2UwXKPR+GLmdNY5ATlOdJF8++NP3pGTK0tMA6pjJyhPAdBb1/Z/njaF+2T3oPec46f2eQ5wM6ccF2pxQB2EtjwebK2tlaMtlAoFAqFix1LY7QrKys4dOhQKt1GYS+Z3UvbU9f8KBzHnqu2Ol4nS/fFPlJSVnis1EvS4Y3BSoLsg0p0c/KwKtNUu6uXICSS0JUVe9K92kkz+6GXhzSCDQuL+h2FQen3nuYh2iMqxdt1iVhBxqyjkCPd93askS9DlLbP9pFSuzJaHY+336IwEe2rXYPIX4KYs9YE2/VstGQqqonwQL8QJrxgukUyWx4DjJ8HvLc9zZo+m6jpicac2Wh1L6n2CBjfL1Eolb0O78fI5yDzL1HNnTLcLOQtCgnK/HLUTq73lZd2Vf0xIp8LhvnY//m6l3Co80Ex2kKhUCgUFoil22gjKR6Ik7xT2vHYgkpYKkGq9GslpSg4fw6mkg54UC9QjlNTANpkF2oL1utkHqqR/YvI7GsR6/Kg68aUiyrBetJvltJRx6Rj9hitjiNi99o2ME7Fx/bV+9QeE7ERbz9MJZDw2M9U6sXIU9b+HxXYUMZhj5maP02mD4w1G2qvzOzjyob4XotaWNj7Kdo/TMF42WWXAcD2q9VEqW1WP8/srMp2I/trpuHSzzlv1qeB862FDvTcjAVH1+f62+eO2lupHVEvZE9DxHM0yb/u/8y+GyWnseNW/xiOXftsx88+kdEeOnRoKay2GG2hUCgUCgvEUlMwrq6uhtIjMPZOjVicldopmUb2qIw5aR/03DlskVCpzUqWUV9UevMkyyi+TNmXhXq3aswf55WpES2DYruR53Jmm9P2WDbPYwRqxzlz5swsVmvbsX1QRsH37BNZtmVgas+PCgV4cYEq0aunpdqcbHuRvVvtkvb/Ka9cbx/ofKlXuGfDizzUeU/ylWvrzafet6ox8OKRef/SQ9QWEdDr6L2WxdGurq7i0ksvxeWXXw5gp2Sj7YPedzoHc2LVI01Dxt4IPUf9JGxftPyj7iHbtt4LUWlHXQPvO42r1fcW+vzUuHGPaere0eebt76qsdEcDWzfeh1z/u655x4AxWgLhUKhUPiAwNIYbdd1uyQ0SihWUqWUzOMixmntK9S5U5pR9qhS9ZyE7ZG3nP3MJqW2r9q2h0ha9MoBal+U1Xtsi6xDE7OrHcyT1CMvWo7H2o2IKfsKWWUmlWaspOs6nDt3biTxW+bHfnFMLABPyVULwANjL2y1LSrsGlNKpvcqbT48hnvUs5lGHsQcg1f+L7Kdq8bDts3rRcyCx3qsVJnTAw88AGDnHuW8ejZabZ995JxYtqrzpx7xnGc7LtVeMHOYh5WVFRw7dmybybIP9hmi95AWqPDiwKOCILounqdtZDNnPzg/dm7ZBz7n2P+or8DO+qvmJvLAt3OizxeuD6/Ptuw9EfnfqD3fY6ne74G9ThZxos9k1RDZuaeN/s4779w+p+JoC4VCoVC4yFE/tIVCoVAoLBBLVR1bByGqE/kK7KgNSOU1bRrVSF5gNaH1K6MCBfY7bYvX95JSqxpMnV68GplUu2goEs+NnKXsMQSvq323x6k6S1P+RW7xtl0N/s4SMajTCNPbcQ00RMl+ZmtH3nfffaO22e7GxsZ2H6j+tXuHqk2qOu+44w4AY9WxPYefUSXIdvmq47L7gGtKJxvdo3xv1aQ0c+ieUVW4F96jajCdP1WDe/1Xhxp1YrNzcu+99wLYmb8TJ04A2FEdc87s3lE1qTq8cc7snFCVx/m6+uqrd7XlqTnVISxzZqEzFNunCtkrEKDj4LPEq4nLeVanJM4HXz0HMFXHqrmBc2sLH6hqXeeW12d/7LiiZC76bPH2t5o7NDTRqtN1r+oc2b5FUDV+ZGaz/6vann1Xc5v9jnswM1ntJ4rRFgqFQqGwQCyV0XrhGBaUNlXi4+fKDIG49BKlUHWusMepA4Ea6Slh2hReEQvV0AAvfEnZtTJPj9EqC1UXecJzvlKWo45M6rgBjBOBqyZApVVgh+WQGbGvZLYcj5Vo1XFifX09ZCZd1+3qO9eLLBYAbr31VgBjBsY+acA/MGawypR1XJYBUCLmdThWvjLVH/cuMHbs0ZA0T+LX/aYMTxM72HVhvzWch+Pke6tJ4P90Frnrrrt2fa7OWXbfKcvS/ewlDdExR+Xx7B7VtKdd14WJYtbW1nDllVdur4NliYSGoUWaDfv84nyQ+fNY3X9cLzJ3YOd5QpatDk5cc2pLbL8jJyxNrsKxA3HBk+g5BIwTYKijIF/t+qmWkvPK+5QOioRdR/bVJpKw49bUibb/PEbT1er9ZcH79/DhwxXeUygUCoXCxY6lJqywafQofVhJT8Ms+B0lO09Ci2yVUVk5K7VRUqV0ynMp/XpJB5Q5KiumpGSl9ig9G6F2CXucSqqU0nSuLFPjGNkHSpKats2zf+kc63p5RRTYJ0r1vB7fayC57X9UBs6C4T2cC7ZPOywAvO9979t1Tc5HlEjAXlvT6KkNOwtH0CQTaqeyc66aE5XelVHZPmopt6hcmV1L3b8cH5kGr+OxEn6noRlRqUd7PfVtUKZm9xDvF37G9pSNW1byyEc+EsDukL0onG51dRXHjx8f2Ry9kCbOC9mojt0ysve///27jlXWRqbLNbfaELXVq92Q31MrYudBWRyfkcri7GeqJfCS7QN+AgmOQxk8x2u1StxHOge8F/nee/bzM7J8rhM1RPwNsOUNOVYtfch55P7wQp547ePHjxejLRQKhULhYsfSy+RRuqAUYqUJ2jdUQlGWaqXXyFYRpbvzvBdVsqR0nZVUU6iXoZfYgVD7E213mr7Pjkel0yzJgkronFdNiODZvHWuNXCdc+N5/6k0qing7DnsNyXzruvShBUbGxvbLIfStbUtKltXtuol7NfEAapxUFujl0ZPNRpqz/W8WyMWr4nbvf7r9ZXJeX3kuep5rQligHFSi6gMpTJQex2+auIZL12fakrUruZ50/J+sZ64kbaIZfJU02DnXr2LI2/Zu+++e/sc2rD5mbZBeOkU2VdNZ6maNbu/1VOYY3/MYx4DYIf92jnmXGrf1AfF86on1NOf4yY7Zd+BHXbP71QrQabLPlp2qvZVrj/niNor6+XOOdD7ihpJTWLkHfuIRzwiLbO4XyhGWygUCoXCArFURnv48OGR96SN4VO9vNp41AsQGCfxVyamzM9K4Or9yeuSmXkpGNXmq/ZXSr9W8oq836I4QyuVst/qnamMxjJaTaZ91VVXAdiRKGlXyVLwsc9aeorvrZ1N7bbqMWilXu2/PTcrNn769OltiZnjsGPWuWU/eYx6HwPjkmMad6pMzNq0NGZU2Rr3qmWYyhj0ul4h86h4t8eYgd3zoHGyakP3ikpwrXgu11B9BDSuExh7dkdl8myf2Q73qlfuT6/D9m2Kyaw85erq6mhPeuUyo0IdZK3cf7YP7Dfb5Ryrd7N9Zul9p3HNXA8vx4BCPZjt3qGtUlN86lx7bFyfmxxXVgBDY3w1baO+f8QjHrF9rt57mtqW59i1iYrQ6HPd3nfq43Ds2LHQK3s/UYy2UCgUCoUFYqmF3w8ePLgtoZBVWUZDiYiSDz3D1G5k7Z8qRVFKopTCY3k96+mmbVx55ZW7XlXiBMbsTPtEtmAlvWuvvXbXWCnt0pNObU5WkiU4b8rMNGG4HTttFddccw0A4LbbbgOwY2fxbGe0hag3KKV6zqNdA87pVAktb91sSbXMRnvmzJmRjcmOWTNmafFsL5ORMiMyf7XN6jrZ/kdMWu1wwM7aqeZC7fv2OuqJqpnH1EbrMUxel7Yza2u0bdn2r7/++l19Uhbm2b80Gxf3gcZzsx+2XS0oruzSai9Uq7SyshLundYa1tbWto/lPrH3J9dDSymqJ7G999lvjRVXdsR7w3rnsq9qI+c6eXtV7Yg8lveyeucCY3uk2mSVAXqF5lXrEhWOsNfRXAJ6fz3qUY8CsJv133777bvmRH1rPJ+AaM41Jtd6dK9+BQAAIABJREFUbxPWG7wyQxUKhUKhcJFj6WXyKG1QSrQSiuaLVTuhSlPAjlT0hCc8AcAOe6R0zVevxB6vw5g4Xu/xj388gJ2sOJS2gLFdQzMl8XMv64l6cmr+Tq+oukqOXnYdOz7bvhbTVqmQTNfGo3INyDqe9KQnAdiJXbz55pt3jdOOXfuibMUyXPXsbK2FsZCtNRw4cGAkIXu2F0r66i2peY0tqAX5kA/5kF3n/sM//AOAnfy71karEj+hRa3tmNS2rHY89VEA4uxBKoV72h7N4sTrc+55HWvf1DhNnss9xL6rZ6ftP+eJ9xH3F+8zMl77v9rBuXd079r/rdf4FKNVb3ovrpWx2GSf6llrNU3qY6B2T/Xwtiye88S9oxoOjX+353C+9Tng5WOOvIw15torS8p9pNneCO9+Uk2D7h3uRy8unXPwQR/0QbvO4bNXNSleOzoe77nDOeAxR48erTjaQqFQKBQudtQPbaFQKBQKC8RSVcfnzp0bpR+zhmyqD3iMlnGjKsKq8Gj8p3qPhm+qOqh6oDrDqmM0NaGmyPOSM2gYj6p7bdk3QlUmVGeqI40XMM4+8rrqQKEhQvZYQh0LqMbi9ayjBtvRcCmq5BniwCT+tl0bbmGvSzWQVRmqG//W1lbqlLC2tjZSa9o55hpRTanJBjwHM6o/qa567GMfCwB473vfu+s4TVkIjFVZXHc6L9FJJQvr4ByomtuqozXRioZBqFrQQlPQqbOhps60fdRSh+ooxD5btZym3KNpgvfmO97xDgC77yfub03MoQU47FqrY1imOl5ZWcHRo0e3nZK8Upu6V7iH1Lxlx6qORJr0n69eaBuhJh7OsZd2UtOY6vOG62/NDvxfTTlamESdpICdZ4I+O/S6dn9reJKGPqlZwK6BljFUp1Wujf294LH6qiYmOy72jePLnDD3E8VoC4VCoVBYIJaasOLo0aPbUpYnvWtANb/TAHsb/kDJhI4rKnlRWuNxVnrnsSrtauJsz8FAJdrIAQnYkcbUSUDDecgWrJOMlrjjdSkpc3yWsWlYDSU7LRhA5malUrre05GFzJaOYQwNsZK6SsiawF+ZLjAu0Tfl0NJaGyXWt/PEPaLhIRoCYJkftR9cB8vs7bkaDgOMSwHSWUydlbzkKpqQX51U7H7j/HvJ8IExw/AKjHMuyLaVQdvrkVnoe2oyyPa4BpZ1sT3OBfekhltoMnvbR90z7LPd0+oEs7a2NslK2A5fPWc+XlvDQTgHVhvGe5rncqyayEadJIFxghINX/S0E3oOny9RYgfbnoa6afIZvvcS9mvYHNeOmkR7T0eF5dXZimtln8Ua8kTw+lw3LyEH+6LlVL054fnsU1ZicT9RjLZQKBQKhQVi6QkrKD1QGrGhJVFCAk3Cbm19/E5LNKlUqhKybZ+SHK9L+5oGkNs+KGPhe0pTGStRu4fa7rxi2hr6op97Be31O55DxuEln9BECLfccguAnTknu7PnaEiD9pHfW7sL14nrce7cuZCVbG1t7QoN8wrWE5T0eS1NEqFlFW1f1G5M26KnfeGxbJd9UpujBedDE5SozdQrDKCaEy2TpzZN2x6ZPyV+9lGle9sOtTqazpPswUsJSPbBueee0YQMlmFo4gsNEWLf7X2r5fY2NzfTZCfnzp0b3VuWTXEvs99RClHbby0eon4kWtDB7lXdG1E6T7su+swgy1Y2Z+dBk/qzr8qYvRJ7fCZyDpjEh/Pm3XssgsDraEiVFpvwyk7yXJsi0fbZPkPYN84Fn/maetHuHQ2DyjRp+4litIVCoVAoLBBL9zpWfbhXOkttmZSeKJnY1GSEFnEnVLqxdj1KScp2VEq17E1tperJScnfSvzKOjQFmtqI7LnqbaoedR67U1bK9vi5Su52fFHhcrUfeUHgWqpQGa1NIk5YKXqKlajN0Z6rCRU0wJ6fW9atkn5U7J5sQftkX5W1qQ0PGHt/KpPl/rbaiUgLovZ23VO2HU3UrxoI20dNhKBsh3Oh33tzw3tR73nrv6Ce98ryVQtgx273eWZna62NbKV2z2t6Rs6PvSavo+dwL+qzQ0tfeikkNVGC2uitdkKfVbyH6VPB9552Qp87+nzl2nr2VtUocO65z72kE9SUqZZF718vnaLuUfWut9dTLQ+hCYDsunmpJMtGWygUCoXCRY6lMdqtrS08+OCD25Ke2ieB3UXAgbFXHKUqj2GoPVdTohFWglbpSaVeL35SS4Bp2jyNQwXGTC+KGdQ0gsDYzqEsWBOH2z5orLLOkZbRsu1rUnxlv5Y5qcSqkrMnefLaVuKfy2hVMgbGe0djVTVG2n6mpRbV7u6ljNMSdNwrnB+v2L2WS1TtgEri9n9NHajlvjypXBm02kO1hKAF2+V3UZ+9YhZqc1Q2Ys/ROGDet+olnMWJZ2XytPC7x8TVnqr2XI9haqJ+vR8zqAZL50VTtQLjghPUDpHRWl8HQvMQWA9/21fPn4DH0P5J7YdqUuy6sA88h3tH09WqPd5ej/Ppac7sWGwfIu99Xl+1nECcynZRKEZbKBQKhcICsTRGS2hpMK8As9oH1WZmbXOq26dUox6cyq4s1G4TZcGx7bDflDDJsmmf8OxeyvQIlSitnUUlSC3PxmO9klpqn/YyXen1I29mjY3zJEEeq+vmsS7VJqyurk7G0Sojs9Ku2pbVVq4szv6v7FS1B9q2/U6ZsybDtx6P/IzekZT8lRVZqNexN29en22faDtTdu+xQN4DWqRA7w3dl/Z/zVamcdzePajt6d71srNZjUOmDWFBEzsuO3bVoHGsuqa2D8pGlXlFpSJtH/R5p2vtFWyg5oZ7iMzW29+6ZqpR0XhWj2Hqs0Pt/l6hEO5z1dhpaUz73NF1j/aKl9NAS69qMRoL9YAuG22hUCgUCh8AqB/aQqFQKBQWiKWqjre2tkYhO1blQ6ofORh4TjVRQL86FHj1QbWWo6rNvIT9qqpjwLga4LPUe+ocEqmUbZ9UVcw5YtvWoYWfRTVz1cHKQufPc7bS9zrXqgpXVZyFdTiJVDhUG2d9UNWqJjXwnO9s+8DO/lNnGC/pgKZ0nJNogZ9F9YHptGHVcbpGqjaN9pQ9Vh3FqHbUpADAuAiDmj2i0BR7jO4HXRM7PlVjEpxHT0WtzjxTCQc2Nja296AW47Dt6Dg07MVeR80O+szQufBU1VH6TH21x9Dpks8dzhPXzT53qBLWVJv67FWnIttHTS2bIbr/s2ewHqN90/3tzUmU9tILQYrU9otGMdpCoVAoFBaIpTtDeWEP0XcaLuBJTBEDi6QrzxlGWZsa4r3raUowDdL2wgc86dy2SdjraXiFpqP0wh/U0UyZonW2UkThIl5oBqHzpEkIPJavOHv2bOqU4F3XXidyANPSXNbhSEMJtGCEl95S+xOFlWkpN/u/ln6z4WO277YPUbKBORK6sm9lK3a/aRELDVdStu+xySixCN9766Zz4oUP6TkeM1LQGUrD1TwnJULHpKUQbR80XEjDRrw9r2vpaSMUqinhc0efN/Z6Gl5DRAUcvD6qVkL3nZf4g/DC4ux1vfXTZ68+d2xfoz3C55/nVOYdO2cfnS+K0RYKhUKhsEAsndGqq7mVMChZ0N7gFSS2xwFj1qZpv/Rc+z5KCaahNJYlULLUQgTK2mwflfVENgtluvbaWmpKi61bqY0SXZQgQ6VSL7VclB5Or2+/U3d7JnHwkgSotiJLOsDvla1ZSVkT5GuhbE1laY/VUmBRyjqP0WhKTH31GKayYU1z6IW8afiOhvd4yQc0qYqWyfOYhZbJ01A3TerhYcrmaOdR7z1Ne0h4c2K/y9jg5ubmKN1mltJxLz4UUQIHXQ9vH0R2XsLOE/co7etaTIXr4iXX0TVTButp4XisaiN03FZDpCk3NbxP7w0vBWOkhcuSnUTF6D2fHk3icfLkyWK0hUKhUChc7Fgqo+26blvK0qLQwFg6V/tAluZMJX1lMp5EpNKoerF5TFOTnqtnryedeknQvXMyD0tNVEEJUxOD2//V2zhialZ6nJLuPA/cCDq+jNEeOHBg0ntUbaZee8rEtci4Z+OJPA8zhhGV7NM19jQ2et0oNZ5tT4sGqJ1yTqkvts+SZ2QgXoIU7iEyXE296THoyCNav/e8+FVjotoWTxM1Z8xd12Fzc3OUWMQr86iaBsKbY2VT2hftozdP0b3m3WPUoHFdyFzpG8LShyxvCOywNq6vjk/3kr0e54s2YU3A4Wkb2R77xGd8ZA+3n6s2MXtGEcpkowQp3v1tS4QWoy0UCoVC4SLHUsvkbW5ujmwLnqSqKeM0hsueE8UZKlRyBsYSnkqh6gEJ7EhL6pXppYWL+hilz/PSuSlD1lg4T7pX+3eW+sz23X43Zd+14+McaJkstevZ62TxmIqu63bF2Wr5P/tZFH/Hvtm0bFpo217Pa9NbU+8724b9XFmp2ma1eLhtfyp+NrPva1+5hxmLyfUCxhoate/qGLz7LbonvTXnZ1osIWtTGcqUdsUer/cCEMd9ap+8hPZq79QCFZ4WTucuKiZg7eV6b504cWLX69133w1gdwL9yE+A16edWp9/9hi2Ry9n7lVqRbzCHgSf8frs8mzC+hyLNFSehohzE0Vz2LXms4rzNeUbsl8oRlsoFAqFwgKxNEbLclUq7Vr7kGaJUYlMYyTtsSphRizVSj1R8XSNibQSMyU8j33YvnkMQ+MZKQFm5d8I9RzUmEQvm5DOl0rXWZmsrLC3gtfTWEv1APdgtQqZzW1raytk97a/Guep9htPIs7sQHZ8XkYyPSZLnE8Jn1K1amq85PU6d7qHVHvhaXu4DuqNznOtB25UUEGziamN3X5H6Lx62eB07FlhCW3XzlN03ubmJk6dOrXN3j0vYGWw1n5rP9+LL4PuO6+ghu5jPg+8mFEyV7XJ3n777QCAe+65B8BuLY9mBCOijHt2PtW/gnuHxVPUDmr/5ysZeXQdz19Cn8lznx3AWCOgzwJgZ940C+CiUYy2UCgUCoUFon5oC4VCoVBYIJYa3tNaC5M2ADtqZLqFq+rDq6OpNVapgtBwgTn1M9V1nUZ2q0qiOkKdRlTV4Rn6taakOiMQnupYE2drmjGbGD6q7alOPpoMwx6joUAaHuHVTo2KP3hqIK1dO4Wtra2Ryss6p6iTUOTE5YHzNZVAxEtOrmnetB9eSjwvQTqwsy/s3tGEAdH+9lSnPJahIFRdqyMi97vtg65v5FBloQ5gc5LJ87PMuUqhqt7MvLG1tYXTp09v7zOeq2kv7XdRQgcvNSYRJTfx1kVNNrqHOBd02AHGZpk777wTAHDbbbcB2EkO4yX/1z2pyV08pyEtVqIpJXmOdYBS50J9rkXPSnts9MzwHOn0d4Hg2qrjnj2W8/TAAw+UM1ShUCgUChc7lp6wIgpQB3yGBYwlMc9VXqVEdQ/3UhWyPWWwfE/JzJagI1Si1RR/XjknSn+8jjJaL/hdA8NVsvVCG5TFTzFaKyWqxBq99xLRa0hDlqaP0AIIGbIE6sRU8pE50quuredIpcwyYjBWGzK3AIFlk7pHtTyihv145Qsp4ZMh3XHHHaO+6fXUiWdOOJEeO0eboFAnRu86XhrQCFtbWzh16tS2MxEddGyfphwbCXu9qJRilNDFaqnUaUfDh7he73//+0fj4d6n8xOZLGH3aBRGGCUDsc9VLYChpUS5l+z9FIXiKMP1tDDah+h5Y+c12ptRyVT7v03mU4y2UCgUCoWLHEu30arElyUsUDsh4YVoqA1BJTK1VwI77IDMQu1hHjNTO5QmpOe4LFvgd2QuDDWwtjFgXBLPG4dK8Z49V5MNKAPQObMMSm3QOgcem4xCgdRW7CWYmCtNrq2tjex4tg9Taf8ydqWskMj2ZsQoVeNg7chcb4ZIXHvttQCAq6++enuMwG6WoqxAk1vwOrw+U/XZc9ke7fj8nCzPrktUYlHv24xx6vXnfB5pCAhP4+GFeSm6rsPZs2e397OGOAE7c6p7nq9Zcvq5+9hLVaglCXn/66t3PdWceaFa+mzQ+1PZo6YrBXb2apTs32ofVTOnWjf2XbUzQPy8juzL9rsoBM5j6loKc1koRlsoFAqFwgKxVEa7uroapj0Exh5nkU7f0+0TUUFur9wTP4tYo2ebpRSmCaw1cbdlCeptzFf1MvTsEAQlVfaRiTOU6dhjCJ2/LHBcGY2+egnWp5INeJ7YavvNWElrDSsrK6P18faBeqZnSSmm9k6W2F7B66rHo2UYZJvXX389AOCxj30sgJ3SZ7yu9YhlOxrQrwyNc8FUebY92vM0+QDbtonotbSaanCUlWQsL/IAt/tgys6mY7HtzbHrb21t4aGHHholCcmS/KsviHrc2+8ir3n1qbAaLj5XNAmN2rbts8rzaQF2azBsG/ZYXkfXh6/UdNi9w/5ynXkd9j0rLsLxcG702aisHBinUYxKK2Zl8iIma9eI17RFMspGWygUCoXCRY4L5nWcMdqoqLYn7fI79eSld6F6Etu4L36mMY8q+Wfl2FRy1UTXXh+i2F6Oz0pgWvA96rvH1DQ+VFmDFwtJiV9tzSq5e2xCbcKaas6zi9h9EDEU2tm8dHb2GO+9fp7ZaHWeNJbUK6quEjLtodoWsLNm3Jt8ryUere1KJXo9RrUhXmL4SIPhjVNjbokoRZ5XOi5io55mQO1sUREFC/U+z0qdce/YQt+A750dedh7vhrRM0LZohYfsWPTPcI55vPCS8Wpz0jrA6B95LG6V/Q+JKO1+07tqNS6aBvenBCaF0HX1M4Jj1Vbve5VOyeqVYyea57Wwa5pMdpCoVAoFC5yLJXRAmNPNE+yVElFE6dbiVkLsdOWoLZLMlkrtamkrcWt1dYAjCVYzVbk2a7UNqtQrzzPlql9U4nPMhC1VehcRwXvvc+iDERZknc911s3/WyqoMCZM2dGjNaLj9P25zAkZWJeGS99TymdDNBjLsBu6Zq2UiaC57la/MHadZVZqLSuHti25B33BGMeGZfJ9+yHzUDEPqkmRdmo5zmsnvdRZIFdK92rOi6PBavt7fTp05OMVu2E9jmgzFUZp9pS7bX1XH0eeHHnGgGhzyiusbWZal+5Tnyd4wcRZT7TvAHAzh7k8zTKYmf9CdQ/QddOy+ZZNs7/tViGeld7tvWo0EVWfGROsZT9RDHaQqFQKBQWiKUy2q2trbAYNTC28emr52HL/8lo1WbLV2XF9v8of7F6zQFjm4h6uHnxhey/9oXg9b1i0pTwKC0qE1RmbfukHqNRgWQvFlJLg+k4vcxQkYTpwSsGHdlKuq7DuXPnRjGjmeeovmbezeq9qGNWD1/8f+2dS48bx5aEky3pGloYhiEb8G7+/68yZj0wIEs2IKFfdzGIZvTHiCRtmBzozolNd5P1yKzKqj5xHnHWMdYnBtlqvr0R96+//rrWOrJh1jkyHrbWkdWIWegn41wptqpsYjFZ6ePq/NrW63Yb82uZuLuG8/R0JBbRmOiOBQvucdqtHY/Rskbex0UWyjXv+9DbRe1xgS0rfQz8yXeZs24yf60r1ULr/CmGSa9Uy2RP71VmaTN+nHJsmK/C68eMdt9G67lVPSQPKLPFdzrn9DhMm7zBYDAYDP4DMP9oB4PBYDC4Iv7PBCuElIjDZCi5OJQs4C43ClJQuL+V1KzVhQjoSkrlRK1Fk9wi7oahK43uCpZhOOj+aS7jJIWmsdBVuUsMYrINXeE76b0mDJ6SoS5xQfpxHx4etvelibzvxA127kY/DxNP1jpeUwpk0D3nyVH6XS5cQvt6EsyHDx9e/ZTrWMeX25fJWWsd3YtKdpKbuyUB+ncM47SGFKmchG56rbt0L5rIRRPC5/7nQNcx3wc+N6Elw/G4Pq5UKtfAuaYSvbVePxN89+lvzSO1/WvhLLqS6cJOY9W2LHnzMdIFzXKfFppZq4tZcEypjLG1LEzJpRQQ+fr1603cx8NoB4PBYDC4Im7KaB8eHk6Eq1PSUAvi08peqzfGZjA/MVomNDR5yCTULYuIJQBk2H4eNtxmcXYS7mZLNVlkOhatVv7u25D1JXaqc+tak23/FaH9XSLSrlVfA1PzUzIFf5K9J7EEWrS0qpNoRxs3kzb8fGIdSlISw2TSmoTc1zqVx5PYBYVSuC78d52XyWQpoSXJciY0j85ap0mGZEEpYac1g2DJkH/nzLCx3MfHx/X58+cT2VOfH1n13wHHy3Xn429lT/SC+H0hk2W5DZM0/bOWHNlkatN8+KzsZCn5HkhCLH5MHsfRSgV93M0LkiQ/0zM9ghWDwWAwGHzjuBmjVYkGLUr3wZM1NZaTrEPKb7GZe7Kc6a8ng5ZlxnKctY6xMQpICM6CydA5X47dLb0mvr+TwuN4GVduhev+HZnsTpyfceNLxPgviaFye57bj9vaJbb4jZ+TsTgeK8XqWrs45hc4dD6uHcVXdR4vt9HzIWbr64rzWes1e0xlST72xGR0fLIPYed50Pm43sho/XzteFwP6b4JT09PW1by9PT0ck1TiZ3mrHFzHadytfaOoqcj5R5QvlHbttaUfhy+P1l+49dGa6e1huP7LjVu4LzIZN2joXXM9c2YdConSiw+jXWX08MSqJSLwrwVf69cE8NoB4PBYDC4Im7KaB8eHk4as6cs4HNwC0X7U7qLMdtkEZGNJlEL/9xBy0txNVl4Kb7Smlozsy9ZWLRYZZkny7plBjOGIaSWd7TqeazEJpsM4rnG3Oe24fc7GUjGkIQU122MludMQiJNxi6ta4FMT+dXVrCyhD3Oqviq4rlai82Dkxpj0+vD5gZiy2udMj7Guy6JpTMWfAljYIb6LgudDS92EGNhbM5bYLYWbQJlANc6XfNJptHhY6VXqjUGcLZIlkZhh7S+NR+KNFwiQqPvKDHKfBYfOxtrtBaC6X3BdxJZb/IU8Vnju4veubWOz5Z7E4bRDgaDwWDwjeOmjPbp6emEmbmVeM5CTbESftaE85MoNeMp59rY+fnEUpvF7+dhvK6xRmUUuiXIOHFrhJyy8VoW3k70vUmfCSk+2qQXG0NI+CvZf7tsaaE1CEjMmWuytWtM64CSnxRod7asWKB+iklqX+3jjQEYX2NTC3pyUv4CLX+2jHSPDY/XhNp3md8t7t48Ov5da4mZGK57gnYx/oeHh5dtxWi8wUdr1NGy99McWqs9sUmX4mTtOD0OqTb306dPr34yrsy2mX48vufOZUj7PMT89ZOMPbW6Y2OKtg5Sfo5ARsv16Pucyzb2nAfNQ/cg1Q5fA8NoB4PBYDC4Im7GaA+HQ2xknBSUmsLMrsWZQOuMdXipRlXWLVnRrkawidYn0fJLawVTDFWftWYGiTW2Bt8ca2LD55jEriZWoOWc6tk4lvv7+y2jPRwOJ3HRFJcmo2gt8BzMiuS+qZkFM3abEllSw2LLRv0t1ScJxa91ZGCuZONj1tgUb3Wmxgxi5i/sMv/J4slk2cw7bSNwXe+axWssO68L7/H79+9r7Pj5+Xk9Pj6etOf050nfMS7dROrTXPiMUSRfLRLXOnosqH7UPEJrHe8hvSC6h1o7u1aUnA+bqKRGC2ze3mrM/XdmTXM+WqOugMbnhs+cvk9eJW1Dj8qutvzWGEY7GAwGg8EVMf9oB4PBYDC4Im7qOr67u6uC1mudBufpIkyJOH58/yk0KbG1ji6Mtk9Ks6ebSS4VukdYXuJzpTtWyQM6r7sok3vPt6XLLZ1H82vp9rvjtu93yVCt1CZdk79SNtKaFax16rJv5UiezNHO3YQxPDlF55PLjq7jJBTfkkO0DuX+dVEKyihSPJ5uYC/VoeuYpUipJKiFCijuksqyuN54v1JCE0MUTQBkF97YhRzoOk6C92wEwuS99G7hc0c3KV2sft9UzuXuZD8mE538uHQda6w//vjjyT5c17rflI1Nz57ea0y+03VkktRax7XKdb5z/wpM2GsSukkIhmFBXnO/9ixP8v2uiWG0g8FgMBhcETcv72kC/msdrTQmOxC78gA/n4PJEGlfMrIkIdeSApio40kCFPfm3M+10fNtmyD8jtFSEEOfp1ZnwqUtBH3b9jMhlcw0SL6Tng63bpvIPa+bz5WMi8yczMyPrfEzkY3lKb52yILEYLk2fX2rLERWOdcfC/pdOpEMgiUSYtJ+DyhuwKQeNijwddAkRluCk2/TJC0v8XQcDof6rpD8op5ByhL63Hh9ds8jWRSZWGuFt9bxmmlMuseaA5Pl1jquFa5jMsFUrsKESiZDJaGexmSFJE9K+VOWwLUGHD7ntg7S+6IlW7I0yROg6PG6v7+fNnmDwWAwGHzruBmjvbu7W999991WqJtsjWUCiY22wnEyjRRvbYyFMSAveKYlx3IXWYJJfKPJGbZyprQvBRJSfKGNTZ/rGLRs1zpt8Nxa36UyGY6llRP5d968YCc68Pz8/HJtU2kYywE4Prb9c7TyKjJ/XwdkfBqbmIfG49eEsSrF4sQSk6gKRSx4PkqNOgti3JrxrXT/KVHIv3lP/TqfK4tKogpNVGPX+D2x3l2bvN9///3lnBqLl0FpbhQb2Umi8l3V1p2urWL5ax3vh8YgxkVRCH/f6XmnRCbFTvz+Ny+Y5kOPR8q70DpjKVBqIdoEODRGbatnxNtBNuGV1tTEf2c5EUvh0rvYmfrEaAeDwWAw+MZx08bvb968ebF6ZCElS7WJJSRxhp0lu9apv94ZDb8TY6GFk86hfShILom0lOFLZtFkFNO+ZNtkJ87uyCzIzFggvwNjcYkRtjgus0L9fGRG7969247H43BJTrHJJabzcJxCux+UlFvreJ9bof2uBZ3YDe9husbMFNYYGK8W/JrQK6G/Gavz+JvmSpZF4ReN3ffVWCimsGsdqOvFZ57s3s/TnoGEx8fHV54IioOsdby2Yj5keikvgWta49U9JiP3sUqogW35GIdPko+MpzLb3UEG26o6dA+c+ekzZmQzszc9s2KsvI449ChmAAASTklEQVTMlNbfaSxswJFixXy/8PqxXZ9vewsW6xhGOxgMBoPBFXFTRrvW0UKV1eF+elpH9PWnzLMm7yZrh4zMrTbFvT5+/LjWOlpAsuaTuDfHwLjOJbWiZDuMPTtzIutuTRk825DHJ4NtcZA0vxajTXVozcrdxZGFc+z67u7uxKpN8p1kROl+tHPSA0A25cyI8eJWD5pqIVnfSmaWpPCaqL/ALFQfE7fVPBJbZP0k73eLRTrIehl/9etOhtayxNMa0vFaazrt9+XLl5d5aO7euEEMjF4qPh/J00RPCvfR/D58+PCyj55Hvfu43lIrP95fiuKzaYKDng16J8TyXZaS2dQ6RmuI4mNh0wyyyHS/Wh0yr31qA8i6Wd1brvO1cuOBidEOBoPBYPCN46aM1i2LVIfFrESy1RS7ZUurphCVstZkOcoKlAUkxZaUrUYr/Vz7ujRush1amInRyFpr9a3OZFp2KzMTGQ/xfZk1Swbj598xCh/z38XhcHh1z1m77L+3+H5TZXI0hatkiTeRf8ZZk5oUY1esvd2pV7XY5c4qZzZmq43071rmMBlnynLmumJlQKqNbbXlqaFIqnNu81f9PllPap2m+6G/2WQg5Rh41vxavb7ds5x/+umntdZav/zyy6tteP+dYTKnhexafztTp4oTrxG9cqkmWuxeY6H3JXkXyeZ1Xo2DzeT9s9YYIHlyWKtOJajde8krTYbRDgaDwWDwjePmMdqd/q5iJS1OmOoMedymJJPiu2SnZC6ywHyMzVJtcR3flgyp6cgmbeWUidig82lMul5e8+ZwS71dYzKnXZs8brNrk+fna5alWiyyvtot1tamrCmEJZzLzvQsSTIathNLsbKm59rqxv3cKTbu80mZsWRb5xTX/DuxnOYhYhN5/51Mdqf+dW6MqZaV+Rc7j4k01rWN2I6zRbFAPcuM1aaM3lab3toneku4n3/+ea11ZLaKZXIN+1rVu6F5JTQfaR77PFqLzV39PrOatY3eIazf9X0EPiNSwNJPaT5zrr4vtb1TLT7XQctn8bn7O2QY7WAwGAwG3zjmH+1gMBgMBlfEzV3HdJ96UoKnwDt2UmjCTr5wrez+UdE6XcVsbuDuiiSm7udlEslap+5yQvNj84G1Tt3Jze2TxLabG30n7s0yEiatNfF+Py5dx0wuciQJTuJwOKx3796dJDek4vWWLLYDryWvX0oWYftCrWMmD+1aE7bQRXIht0YNOxEPgQIiQjofE7RaIh1b+/k2TO7ZrUe6/7ie0z6UodwJwx8Oh/Wvf/3rJMHIS2f0jPEY+jyNhdvq+AwHMDFxrd4uU2CLON+W95vr3o9J9zYT3bjOfF8mtGksKkliEwD/naJEFAtiE4e1TkVhzsm5rtUTpVrZnuOSENw/iWG0g8FgMBhcETdvk7drxC5rk+U8O0bb5BKZTKFjeXq6rDJZUbTSKUPG3/14tOZSKzCWLrSSmVTQz+JsJhP5+ZgMRcFuJq2k0okmJt4YvY+J7DclL5H1XtIujy2uktwgsUv8IUtsY2C7t/QdhUOSQArZGdfObowC2aHmrfuUSpB4fjb89nNoTJTRE7PVM8Jkn7VOr09LtkmlWvRW8LndMbWdMLy8IRq3PA9JFKYl5CThGl67ti3bGPrcNAY+U0laks+h5qF7KUaYhGS0L0vcuJb8WUmtIf28mucuGUrHYFIpn+O1TpMw6dlIzybnda4UzsfkpVSTDDUYDAaDwTeOm8ZoJYe21mlR81pHC5wSbsny9mP6T1lLSpmntJdbYJTyYwutVHDvFnyaR2rhxvKNJAPm59s1U6Yk3a6BOuNqZLgUTV/rlC0wfpVKKhgX5fwY7/XjJ6F24vn5+ZUoQYpXnpNwS0IiLe7J5t366aIDFBkho9V4PDbHtdq8IKlpRmtCTpbgrIztwyiiQa+P/65xk9Hyc9+XTKzF2VITdIo1tDIfB+eXcHd3t96/f3/SJnHXirJ5ZBwpN2Kt3ujArwVbELIUjI1K1joyV/3UPhRp8Hlx/GS0uxg6y3fYjEFj13vWj9dEJ8SGKU7h+7Z8ldTEot0vvoN9Xvz/cysMox0MBoPB4Iq4aYz269evL5ZKygKmcAOzFxmX9M9aY3LGHzwOwUw+CjykWEJrrcYsvZR1TOF7Mr1kQdPCb00FkoXGDFjGBJklnObOBtC7pgmMCbUM5rTNuVjJ8/PzSTZjYsiNASarvRXYX3KNm3ymPtcYfa1yzsw2Zm7CWqdNuRkzYxwqNcZmq7Zd/KtJjLJ5d2ILvJ5c1/Q6OchKmM/gniSN3zPyW9axGC3fOz7ntg74d7ovqUk7z7/W6zlLIIPt3HQMxcfdg0IJSQqjqG1jYnzp+fM5CM7GtS3FdnaiMa0RBGO1qe0kM5OZhd4yitc6jePz2fRnInkNb4FhtIPBYDAYXBE3Y7SPj4/r06dPLxYlpevWOloxsppk5WifFIeixd9AC3StUwbBuIS2dcuSGYJkDYmp0+JizHnXVo7tsJoUXmIW2kdxlJQ1S5AtNmvYLULGbZvsoR+Dcmlv3749K6XHNmuX1FXz7yQzx9gOGedOBrA1LGesybcho6O3JUnG8TyXSBXy2WjrMNVPtlitnhE9E4kZtPnRO+LnYVxvF0dmPeYlWcf6nk3p/ZyMB+6yclPMkOP0Y/va1/yZOcz62rTe6J1gHoZDzxbfc/RoJG9Py/1oni4/7rk8Ajbk8O+a545ekXQetulLHsL0/jzXovOfwDDawWAwGAyuiJvGaO/v718sL1kzbm3IEiHTILNwK1LfsUavWX7OoBnz1dhaNrCfW+Mns0hZh5wPGdQuRkSWRdaTajEZL2Sm9E7snxZlq5t1C73VQgq8Vg6N4ePHj2fjJrxuPueUQe24JIbZ7keKD3Es/JlYENcB2VBrhOBz5TYtG9nPzfUgsMXkWqdtEll7Tcabsrh5nzlGnzefH8bh9XdiP85odzHa77///mQNpnikxsn2eIlNpRr09HfK0mesUvdU1zblhpDttqxgf78xw5bPAN8t6XzUH2gNX/x3vjP8Pvn8Ux18y+9IOShk4rxv1GVY6zSmrqYT18Yw2sFgMBgMroj5RzsYDAaDwRVxU9fx4+PjiQCCi3vLdUyXrX6m1HxKIjKdnqITyU3AbejqchclkwGY/JASGZhQ0JIvUrJME2Sn69hdYUxz53HpSvJryLR9uoFYPuWfMemBLtBz5Tu7hJY3b96cSAfSJb7W0U1FAYvkJqdbikkjdEcmURDe/50rUWOgu5TXNiVsNTczkVzVLWGLJWn+HUVc2G85oQmWcN6pvIeuaIYwfG20RhcJd3d3USaQ7w0/nkD3aUqaYQIQXd4ppKF3nicCOpIUK7dJ4iY+jt1nbYzpnUW38i4MQPe85teEU1IIgfedz2gSSGkSqSkUxONMMtRgMBgMBv8BuCmjfXh4OAl2O1R0LesvCZevlVkpA9+NRTpYvNySrtzi1/h3lvFar61DWkyttVVKsKBV1hJ4XPKRzIzF//qeDHSt00QWso8kYcdrq/PxXqeSIBcWaZalvCFMCPM578qP/O+UDEUrndcvJcMQrfzKrx+/a8wslaA1uUiuJZ93K+RnU4kdo6VwBRl2KrfgvSDbS14FgQlbSRiB353D3d1dFf9fqzNKJlImwX6+KygowrmvdUyC0rtDAhV8t6T5tbKr5Gngc8ix78oKyWiZwJcEbFh+2bbdvXfa+k7QGHUN6IHkuvfjXVoW+k9hGO1gMBgMBlfETRltaoK9EwRnS6hdUT5T2ZnGnyxwxqwY06R0mG/TROQvKbdoMo6pZGLXJsq3TZJy52KzHLNvw9ZTZKDJkm2MLVm/ul/6uYuTyBuyY5a0UJskZ2IJtPDZAqzdNwet6CSnyPura0xvTGInjOMydp/ET+j1YLvEXXyf27Qys11zCbLRVNLH44ntsbFDErlIbRcJrR02LEltLAWdS0Iv8qj5dhonz894pM7r23PNU4glCZdoG42Fz2F6TzQRHb4jub3Ph7FTnVfXyFsxao58tvU5mW7yhrCciOssrW9dEzLmVHKZ5BmnvGcwGAwGg28cN22T9/j4eCLx51YVi9XJLGS5+D76TFaTLD9ZU+eEDNbqsatkRXFMLdPWLf0mdE9LKhWBMxZEy30n18ZYzyUiBwJZ8CVZx22bFLujdbuTh1RROQX0UwPxlF3s+7hXheymtS/ctSJskphN/GKtI1uTp4TrLcWR03V3NI+Hj6nFW3cxWqJ5LXxsZD27+CjFBVqVgDMnehq+fv1a17I8aWQ5SbKQ42ZjEs8V0fn03iHzYhMIeeXWOt53Plv0IiVxHcY9dS3UXCDdS15L5mikdwu9EY2he4s/CnGwAQLXu6+d5mXhO9jnx3cjr33ycpDRvnnzZhjtYDAYDAbfOm7KaNc6WkCpAS/jn7IgZXl9/PhxrfW62bCOxwwzSpal+CctY8Zddxa4PtM8aEWlhuYt22/XgJlWmaxAZsT6+chyyXZYR+fj4XzIFJK13dh8Y8XpuOfgc9gx5HN1x37e1raQTEZw1t1Ez4Ukb8hYL632JPXYmAXXEq16H3+TiUzSjC1eyGchVQ+Qme3i4gLvW5If9O/9eLuaXt/v4eGhsjv/nTkkvF/OaJn/0OLR3spP0DuL8WeK7ft9+eGHH9Zap5UYLaa+VvfYNO9IusZ81jQPslUfN9vg8Sczp/2ztlaFlE8g0EOTPIeJTd8Cw2gHg8FgMLgibsZon56e1pcvX15iFbIEPRbELEwyS1lPqUa1xSH0t0S3kz++CcJTrDodl5Zyq3d0nGuT52MkSxDIAFIGHxktGVxieVQt4jFTFiiZbGMGCZ7duFOGuru7OxFo9yxmnrPVDie2eGnTeMc5RajEtlqbRP5MY2xMkus9ZWVqW2Zypoz15nXh+VPGOvMVWHNLT4ofh/eLPxNzvkQZSvuyGULyAAlsoJCOL0apGlhBbJWZvcn70pq3JwU8fcc4e2vP6N+1zPEdqN6ka6DnPtXC8jM+rzqm2HlqwNI8D7usao2teSj93cDj7ur3/0kMox0MBoPB4IqYf7SDwWAwGFwRN3Ud//HHHy+u4xSMpvuj9Wf0lHKBbojmlk1uMroYmCTirtzWB5bu2VRszkQdJiOkxBqWv9CVlnr0Npco3SbNTZiOwdKHNO7m7kvp9hT62OH5+X97GbOpQJJw031okm5JopBj4DFS0hhLwZhwksp7kkDEbhyau4+bbjgmVqVSNLo+uR6SyD/P25pNJJcun722lvw4TGTh8ZP7drd+HW/fvj0Rnk8CGCx7olvW56r7r8RMCkhw7aQkNb1vvHTJz+f47bffXp1Xx6D8YCqTo2RpEz3xtdrcvlyjSTSkJRMqfJekEeWK5zpmX+TkBqZbmddi1//4FqU9aw2jHQwGg8HgqrgZo318fFx//vnni/UmK8NTvFtxtCwl/u3bkiXIulESgSCryrfRWFj0nZJFmEbf2u+5ld0YjLATI2A5Da8Bk0l8WyY/tcSTlBxBBsFyppSw1VrrseRhrb1ARRrL/f39ybl93GSQlDVM5UpMKGrNBZKFzsYXZLKas8+TZQ1kFFonlzQ+4LOSEkvI+OgRuKTRQmt5mNgpz9eEUpwF6Z7qmvBapzHuWC5xOBxi60Bus9bpmmwC/n5ubaP3ChlfkiqkBCO9LyqPSe8DJoj6+8yPyd99rFxLyfvCd1IrK9xJv+qnEsboKfTrrXk0D1Hy2DABkM9iSmal9+DNmzeTDDUYDAaDwbeOmzYVuL+/P7FQdw3EKaeYZLhkcX/+/PnVPq2EJaX1M72fpQCOJP+XzpvacDX2S4s2MafWGDsJ3tP6bNdgJ8XYGm+n8qVzEoyMV/nYLonVSnQgxQUFipuQxe1KZ3i92BYtrZM2110DAt6P1gLxkvZvHFNqD9mkJFvpRpoXn8mdFCfPx3glPR2+D5l68zL4XBmfTjgcDuvdu3cn12fXSIHMKDFaPn9ktpRo9TlrTTaZztRyrz0fEvFJUrNN7CF5hAjefzJYfe7iQbpumjtFgxhvdQEQ/c4GDswJ8Wulbekx4fySSFETRrkWhtEOBoPBYHBFHG7V+PZwOPzPWuu/b3KywbeK/3p+fv6ZH87aGVyAWTuDv4u4dv5J3Owf7WAwGAwG/x8xruPBYDAYDK6I+Uc7GAwGg8EVMf9oB4PBYDC4IuYf7WAwGAwGV8T8ox0MBoPB4IqYf7SDwWAwGFwR8492MBgMBoMrYv7RDgaDwWBwRcw/2sFgMBgMroh/AzTr7vmTURJJAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYZXlVJbp+EZGRY2VNQA2AVIE44vD66Sdgg9jYymd3q/haoXEAbFtxeOrDVhxea7XayhMbBUekbUsFQduRhlYcq1ucwemhlIJSIkUVNWUNmZWVmRFx3h/nrIgd6+y9z4nKuDdf4l7fF9+Ne+85v/Obzrl77bF1XYdCoVAoFAqLwcqF7kChUCgUCh/IqB/aQqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIyR/a1toLWmtd8Hevc9x1i+zwXLTWvqi19s7W2lnbzw80yHpstNbe3Vr78dbaY5xjn9Ja+9nW2vuGebm7tfbrrbXnt9ZWneO/eWj3F5czmtH1b2qt3XQhrn2hMcz7DUu+5nXDdV+wxGve2Fq7ZcZxV7XWXtla+5vW2unW2l2ttbe11l7RWjvYWnvksKd/KGnj3w7je8bw/iZz72y21k601v6stfb9rbWP3L9Rju7T6O+WfbrWoaG9b9in9j64tXZDa+2DnO9ub639yH5cZz/QWvvk1tofDHvkfa21726tHZxx3nNba7/YWnvPcO7NrbVva60d3Y9+re3h2M8B8F75bMP8/yYATwFw2/l26nzRWrsWwI8CeC2AFwJ46ML2aOG4EcCr0K/nxwL4jwCe2lr72K7rTgNAa+1rALwcwG8BeAmAvwdwOYBPBfDDAO4F8MvS7hcOr5/eWruy67q7FzwOxZcv+Xr/2HEb+nv4by90Ryxaa8cB/CGALQAvA3AzgCvQ7/XPA/CtXdfd2Vr7FQDPaa19Tdd1Z52mvhD9vv+f5rO/APClw//HATwJwBcBeFFr7au7rgt/uPeIp8j7XwTw5wBuMJ+d2adrnRmu9559au+DAXwrgN9w2vx0ACf26TrnhdbaxwH4VfTPsW9G3++XAbgKwPMnTn8J+n31EvT3wf+Ofsyf1Fp7Rne+CSe6rkv/ALwAQAfgg6eO/f/LH4BPGvr8zy50X5Yw1g7Ad8hnzx8+/+zh/dPRP6ReGbTxBAAfLZ89ZWjjTcPrV17osV7geT54Adb1hgs97iWM80YAt0wc80XDfHyM810D0Ib/P3s47tnOcdcN98C3m89uAvAW59gDAH4OwCaAj1/QuG8B8Jo9HL/U/SfXftYwr//0Qu+XiX7+CoC/BLBqPvuSoe8fOXHuI53PeO5Tz7dv+2aj9VTHrbUjrbUfHlSUJwdq/lRPPdVa+6TW2m+21h5orZ1qrb25tfYkOeam1tpbWmuf0lr7k9bag621t7fWnm2OuRH9DQQAvzlc68bhu+e21n6rtXbn0J8/ba2NJJ3W2lpr7SWttb9qrT00HP+rrbUPM8c8srX2I621W1trZwZVw5dIO1e31n5iUGGcaa3d1lp7Y2vtUQ9vlmfjj4fXDx5eXwLgHgBf7x3cdd3fdl33F/Lx89E/aP4dgH/AtEQIIDYhDKqnTj776tbaOwZVzYnW2ltlLXepjltrzxja/ozW2g+0Xn14V2vtNa21y6TtR7bWXtdau39o+8eH87ZVh8kYbmytvbf1qvbfa62dBvDdw3dz91DXWvuO1tpXtV6d/0Br7X82UUm21laH424b9vNNeow59lmttd8f5uu+1tovtdY+VI7hPfKs1qtBTw99/IRhX3/ncK17hnEeNefuUh233Gx0g8x1ei8Mxz1zuG8faq39bWvtS/WYAFcMr7frF92A4e0b0e/zL3Da+AL0P8o/OXWxruvOodembAD4qpl93De01l7fWntXa+3pbVCDAvi24bsvHPbRncOeeltr7Xly/kh13Fp7aetNS09s/bP11LAvv7G11pK+PAv9DxgA/I5Z/ycP3+9SHbfWXjR8//GttZ8f7pHbW2tfO3z/r1prfz5c/w9bax/jXPM5rbU/Gu6HE8N8PHpizo4A+BQAr++6btN89Tr0z7HPyM7vuu5O52M+R7ev3Vp7dGvttcM9dKb1z/Y3tNYuz9rfi+p4tbWmx291XbeVnPOj6FXONwB4K4Bnolfn7kJr7V+gp/tvAvD5w8cvQb+wH9113T+Yw58A4BUAvgvAXQC+FsB/a619WNd17wLw7QDeBuCVAL4CwJ8A4CQ+Hr2k+lL00u3TAfyX1trhruusneH1AD4LwPehV5ccGo69BsDNrVdlvQXA4WFs7wbwaQB+uLV2sOu67x/a+SkAjwPwdeh/rK4a5uBIMmf7geuH13tbb3v9ZAC/1HXdLBV6620azwHw613Xva+19hoA39ha+/Cu696xHx1srX0egP+M/gHyO+jn8qOx81DN8Ar0D9XnAfhQ9D+Cm9gtDPwCgI8C8I0A3gXg/wDw/ZiPS9Hvg+8B8E0ATg+fz91DQL+X/xrAVwNYR6/G+uVhr9LscsPQ/ssB/BqAjwPwBu3M8MB7E3rV/3MAHEM/d29pvYngVnM4VWb/CcBJ9PPzhuFvDb2W6sOHY+5AIIBhxxxk8XkAvhLAO4Z+zboXWmsfDuB/oH8OPBfAweH4Y+jXLsMfDa+vb629FD0LPaUHdV13trX2OgD/rrV2Rdd195ivPx/A73Vd986Ja7GtO1prbwXwiXOOXwAegf758f8A+CsAHO/16Pflu4b3nwzgp1pr613X3TjRZkN/X/wY+rX/bADfiZ5dvy445/cB/F8Avhe9ip0C+dsnrvUa9NqKH0a/Z76ntfYI9Krm/4TenPc9AH6xtfZE/ji2HRPXq9Grbi9Dv89/e9jnDwbX+xD0e3tXv7que6C19h4AHzHRXw+fNLzaZ97rAVwJ4MUAbgVwNYB/jv43IsYMOv4C9PTZ+3ujc9x1w/sPRf8g+npp75XDcS8wn70LwG/KccfR/5B+n/nsJgDnADzRfPYo9DfqN5nPPmW4xjOSca2gX5hXA/hz8/k/G879quTc/4B+ozxRPn/10Oe14f3JrJ19Upd06Dfu2rDYTx42xikA16L/ce8AfNce2vzc4Zx/Y9ayA/DSPeyX6+TzG/rttv3+BwD8yURbNwG4ybx/xtD2T8hxPzCsB1WInzoc97ly3Bum9sVw3I3DcZ85cZy7h8y6vBPAAfPZv4ZRRaG3kZ8E8CNy7ksgqmP0P1Dv5N4aPrt+uB9e7twjjzeffcbQ3m/IdX4BwLvN++sg96Yc/4nDPNvrzb0XXju8P2qOeSyAs5hQHQ/HfstwbIeeab512FOXyXEfPxzzZeazJw+ffamzv0aqY/P96wCcPp/7M2n7FgSqY/QP8w7Ap83cfz8F4A/N54eG87/BfPZSmHt6+KwB+BsAb5i4Tqg6Rq9l+BHz/kXDsV9vPltHb8d9CMBjzOd8znzC8P4y9M+tH5JrfMiw5i9K+sjn9ujeHvbKm/a4Po9Drx357zJfZwF8yV7Xey+q42cPm9j+fU1y/CcMHftv8vnP2TettSeiZ6mvHVRbawNzfhC9NPV0Of+dnZFKu667A71UPvKIUwxqk9e11m5F/zA6B+CL0f+QEHxIvzpp6lnonTPeLX1+M3pph9LTHwP4utarSD8qU9GYPq7aNltrc9bom4axnEY/Z+cAfHrXde+bca6H5wO4H8AvAUDXdX+NfryfP7M/c/DHAD629R6enzKofubiTfL+/0XPkK4a3j8ZvfCl3tI/h/k4h54178LMPUT8eterIW0/gZ29+lEAjgL4WTnv9XLNowD+CYCf6XaYMLquezeA38WO5E38Tdd1f2fe3zy8vlmOuxnAY2buy+vQz+ebAfx789Xce+EpAP5HZ5ho12uqfnfq2sOx34Z+3r4Y/Q/LlegZz9tba1eZ4/4YvaBp1cdfiN5B6GfmXMugoX8WxAfsvlf3oiGcwoNd1+l6obX2YW2IHED/43MOPVv39p+H7Xun6389/hIznp0PA1Q3o+sd094N4C+7rrMOtdyXjx1en4Ze26e/BX83/OlvwULQWrsUvVB+Ev1+A7A9X28D8E2tta9se/BM38tD8+1d171V/t6VHH/N8HqHfP5+eU975Y9h58HFv3+J/oayuAdjnMEEdW+tHQPw6wA+BsA3oF/UjwfwX9E/pIkrAdzTDd66AR6FftG1vxQq2OfnoF+wr0evcrm1tfYtEz9Wvyltfks2rgH/dRjL/wbgEV3XfXTXdfSsvBv9D/DjZrSD1trV6FV/bwJwsLV2Wevtnz+P3lbxzDntzMBPAvgy9ALZmwHc01r7hTYvPEz3AL01uQeuAXBCfuSA8d7LcGe329azlz20l356/dL3l6N/6Hse/bdjrG5XL9CzyedrAEahXRaDeviN6KMOntftNhfNvReugT//s9ek67rbu677sa7rXth13fXoVdiPRm+asfgJAE9pfVjKOvr78Je7rttrmN9jkURRDHt117hn7t85GNmjh/vwNwB8GPox/1P0+++1mFJd9tjsuu5++Wzy2fkw4e21aF/y+vwteAvG++mJGP8WeNfzbKVXwP/dGGEQat+EXhv4qV3X6f58NnrP5m9GL+S9d8rODezNRrtXcIM+Cr00Q1wlxzFk5BvRbyKF56b/cPAU9D82T+u67i380JFC7wJwxWBzi35s70YvQHx18P1fA9ts+ysAfEXrnVaejz705k70tgsPXwrgEvN+Diu9reu6t3pfdF230XqHon8+2MymQgg+D/2D998Mf4rno/+xiUA78Lp8vusmGaTDVwF41eBI8KnobbY/g/7H93xwG4DLW2sH5MdW914Gj8nM3UNzwXvkKvTMAua9xYmhP1c7bVyNmQ+Rh4PBxv8z6NV6n9CNbaOz7gX0Y/Xmfy9rsgtd1/1ga+3bMba/vQa97fELAPwZ+gftpBOUResdFj8Ool0QvA/9D51+th/w9t/T0AsWn2Xv99bagX265oUGfwueh95MolAhweKv0TP8j4TRZA3C8Qch11Dy2IPofYU+CsAnd113sx7Tdd3t6NXjL2qtfQT68NHvRC8Y/XjU9iJ/aP8I/Wb5HAwemwM+R477a/T2io/suu6lC+wPVZPbD97hAf+ZctyvoWcrX4zYeeZXAfyfAN4z/JhOYlC/flNr7UXoY/Wy4/YbL0Vvj/puOA/E1tr1AC7pes/j56OPNXyB085LADy7tXZJ13UPBNf6++H1SejtP/wh+tSoc13XnQDwM621T8BOTOP54A/QCwvPxm61rO69vWLuHpqLv0Bvk/pc9E5OxHPtQV3XnWqtvQ3A57TWbuh2HEceB+Cp2JuT117xcvQP+Kd1ux2uiLn3wu+jj8c+yh/r1tpj0dt90x+nQTV8pzBptNauQe+0tot1dl13a2vtN9CrVD8aPWseqWGT6x0A8EPon4+vjI4bVKKugLsgePvvUegdjBYJCueHF3yd/4Ve+/b4rusi5ywXXdc92Fr7TQDPba19l9FGPRf9s+C/Z+cPz6ifRS9MP6vruj+Zcc2/Qm8a/HIkz3Rgbz+0Hzt4jSneau1GphM3t9Z+GsC3D6rSt6E3WP+r4ZCt4biutfYV6L0x19EP9i70ku5T0d/AL99DPyP8HnqJ6Adba9+K3jb2fw/XutT0+7dbaz8P4OXDg+C30MfVPR29Qf0m9B54z0HvFf296IWFo+hVOk/ruu4zBz3/b6BX69yM/ub4TPSqjV/bh/HMRtd1/6u19uJhTB+B3tnnPUNfnoleqHjewF4+Cr0Tzk3aTmvtEHqb3L9GLL39MfqEBy8b1v0M+lCJXarV1tqPAngA/QP4DvQOD1+AfZibrut+rbX2uwB+dNiz7xr6zFCCzFM+w6w9tId+3jvsn29urT2AfuwfD+DfOof/B/QqrTe2PvvRMfTakfvQawL2Ha2156IPb/ku9GaEJ5uv3zvY2ybvheH470Av6Pxaa+1l6DUeN2Ce6vgLAHxJa+216AX4B9Hvl69Fr/H6Qeecn0B/710P4Hu9Z9SAS8y4LkG//1+I3ub55V3XvW1G/5aF30EvmL2qtfZt6B1GvwX9HI4ywe0jbkZ/z3xxa+0U+jl/h6PdOC90XXdP60OS/nPrkw69Gf0z4tHovat/peu6zM/iW9CrnX+6tfYq7Hjfv6brum1v5NaHnv0QgE/suu4Ph49fjd5p8FvRmwDsXn9P10dfXIWe8f40+n2+if65chi5lu+8vY479DZBe9x15twj6FWk96A3LL8BwL+A49GJXpJ4I3a8025Br7Z5ijnmJvgB5rcAuNG8d72O0f/Q/yl6qelv0T9EboDxhh2OW0Ovg/8b9JvqTvShCR9qjrkc/UPm3cMxd6C/Eb5m+P4getXoXw5jvx/9j9DzpuZ8L39wElYkxz4Vve3sNvQ//Pegf7h/Pnp7/fcNm+dxwfkr6H+gb5q4zkcOa3VyOP7FOs/omfNNw7ydGebxewEcl/W+ybx/xjDeTwn2qN17jxz2zwPos179JHYSeYwSH0h7N6L/IfG+m7uHRusCx6sXvbT9HehVT6eHMX8EnIQV6IWc3x+Ouw/9Tf+hcsxNkHvEXPeL5fMbhs/XvP6Z772/G0w76b0g9+WfDuv9d+i1FzdiOmHFhw/t/yl69eI59Hv45wD8k+Ccw8Mches9zBXHszUc/2foNQRpgoN9uG9vQe51/K7gu09Dn1HqNHr16peh11g9ZI6JvI43gmvdPKO/Xzn0eWNo+8nD55HX8WPk/D/A2Ov9w4ZjP18+/0z02bseQC9UvRPAf9G9HvTzmeid8x4a9sj3ADgkx7CPTzaf3Z7s9W8YjjmK/gf5r9A/2+4bxvU5U/1iOMTS0Fr79+hVmNd1XbdfKcIKhUm01n4APVu5opu2VRcKhcK+YJE2WrTW/iV63fWfoZcYn4Y+NOBn60e2sEi0PrvRpeg1Cuvo2eCXAXhZ/cgWCoVlYqE/tOip/2ehdy46ij6TxivR68ELhUXiFPo47yegV+O/G3288csuZKcKhcI/PixddVwoFAqFwj8mVOH3QqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFohFO0PtXGhtrTtw4AC2tvpcAXz1bMQrK/3vP9NHrq6u7vqcr/YYPUdTT2apKKeOnXPu+bQ/dfxe+7jX8cy5XgYeq2uZzY0e23Ud7rjjDtx///2jg48ePdpddtll2+d47epn+mr3zNQ5EfZrjfcytxHm+Fbsh/+Ft05R29F3+rn9nv/zebC5ubnr/cbGRng9orWGkydP4syZM6OJPXbsWHfFFVdst8v22P5U/7Jr7uXz8z12P8+9UNjLfoz2kPdZtG7efc3ngP1Nue+++/Dggw8udEKX+UOLxz3ucTh58iQA4NSpPqkINz6PAYD19T5N7pEjfcax48eP73p/9Oh2rWocPtxnBTt4sE88dODAgV1t8dV74Opn0Q88X+13eq4KA3Zx9TvbXtamd070as+JBJPoc85ZdsycHw59aPJcrqcdtz5Iz507h6/7Os0N3+P48eN44QtfiLNnz+5qj2tux8D15nvuD57D723/Dh06tOs770dZP4/2TjTnFnv5UWY7KphGDyL+oNhz+FnUZ68vUz+AfG+vpz9megzX78yZnegq/v/QQ32K7Pvv79PZ8jlx77337noP9HsF2L1Xf/u3f3s0FgC4/PLL8eIXv3i7nRMn+tzzfP7YfrFdnVtvnqLniq5ldv+cDynIhE6F9oHrEe3zrL3snCkBKyNXVvCxx6hgxLUCxvtL9x/3h32+8ZnB35Rjx47hJ39yT2mwHxZKdVwoFAqFwgKxNEbbdR3OnTu3LTV6KhxVKxMRI7P/R8xP2amnbpzD2iLMOSeS7CLpNLvOXDWnd91I2rbzHbWvbWSqnOj6U+q/CFtbWzh16lS4L7y2ud4ZE5xi4myD33uMNpqnbMw6Dm88eqwy1jkq3YhBzFmHSKPBNjk3ViOlx+p7j3XzfD1H58i+J6vhZ9Yk5WFzc3P0vPGeO5Hq0dMARBql6J729p2ud3ZvzWW9mdZl6tw5rHsvz8joXlCtCDC+1/hKNsrfDctOtT0F27daLH5GDcqhQ4f2xcQyhWK0hUKhUCgsEBec0c5xlIlsp/a7KTtkZv+MruMx3bkseI4tIxqnx0r0O2XFnlSX9SHqRyQlRhJn1p6yEytZ6jxmUmXXdbvset7c6zWt/dbCs53zVe36kd1V27HvI62B7WP03ltDnVO1lep1MzYU3Sues4junUgz4Nlo1f5OBqo2QmCHqSiUedq54Tl8PXv2bMpo7fnaR/3f9lPnze5fMqtIg5attWoFzge6773nUcS2iTksNfNB0XambLPe+KP1Vmbr9Sm6F9RXwILtTe2b/UIx2kKhUCgUFoj6oS0UCoVCYYFYmuoY2O2UQLWPVcfMVRlbtYWq+VQNmIVbRCqizAliKl43Uzcr5jhBRdebExIUqQj34uAQqaotIvVLpqJSlXGmRuu6DmfPnt1eU8/sMKWG47F2v2mYUKQO9PaO9j9S4XrqbVVjZk4d0R6JVIaeuUCPiVTk3lh1XqecjoCxapeOJ2p+sMdETleZqpf7YGNjI+1X13WpKprQNeR+0FdgHLKm4T7Retn/pxwM9xIGo2PwEKmQveeqtheFPM5RO6vq1lsDjZeOzBDZ80fDliLHOmDsULdoFKMtFAqFQmGBWKoz1Obm5rYE6wVNK2uKHJy8BAuUMPmdSpweK4kcp+YE9EehIZlTylRbHhuemxDBGxel7MiRwTt3bqjTHGabhbooa9jc3EyZvw0j8foQObTo/mByCmAnmQU/0z2TZSSLGDQ/z/a3BtZr6IllAFNJDZSVepoUzjHfa/IOb+9oAhAdg+eEx3GQwZI16Dx6jDa6Xz1Gq/O2sbExeb9loW56n0fPFLt3+L/Ok66Tx/wyVm0/t2NS7YeXMEQxN6mF5+wVafV0vFnIm+cwZ8c3h9GqlsQmrND9FDlbedqEveyd/UAx2kKhUCgUFoilMtqNjQ2XmSg0dZ+m1cvCeyK7ipeOSyX6KNwjC39RGwLh5VJVSTVish5jj1iqNydTaRqz9Ipz7ckeo4uSKRBZCNLa2lrKoltrozRsHluM2vdYScRoNRXoHOavDNNj8V5YCoCR34LdS5o+UW2zug881h3dE8rYbP91DjQ0x9v3DMGasu96oTpMsajnZGFEUcrEOfC0VTpf3Bf6av/XOY00TXPC/XROvTAo3SN8P8WS7XWIyGZv+6vPXu4HL6XpVApT3TvePvC0FfbVMlq91/T5w2OnQgeXgWK0hUKhUCgsEEv3OiY8L8nIYzhjtCpRRhK5J73rZ5k3JjFlZ5uTbJ1QlpixU7UBRazV9juyt2Z25MjLNfNU1uuo5JoluZib2q21FnokWug1o2QUQLz+ZCssYuHZK5XBaP+9qjOUsGnDJKJkJN4YdU/q/rf94Gf0qtbXjJVENlplVhZcF2WGHLd3X/Ez9im69+z95LHcKWaS+TTomHX9+Z4aECD2Oo60ZJ6WSu3cfPXskVp8gcewDfXetojYbqQt8+aE66NFXDgP9tiIxWeMnWPVV46bx9p5jDzUFd7nc7yl9xPFaAuFQqFQWCCWymi7rhvZYKzUo56hlJqm0pt536n05EltkSdilqJOpSgrdUZ9VHYVsZQsFjLzpIsQMT9tK4ufU7bl2WGj+LzINm3/t9eJpMzWGlZXV7elW882F3l/Z8w/imsla+Dnug/tZ8rIeQ77atdSPe7VRquv9tgoveVeJPNof3nerYTGG3JulFnZ//md2tX46jEMZZGel7j2V9OTRvDirT0PW64pr8lynGRxmT0y0qxltnMdT2SPt2NVm2wW1z/lC5LdG8pkVfvjxRbrZ1F8uMdAo5J3hOcbwr5xz0S1i+0enZO7YBEoRlsoFAqFwgKxVEbbWht5utnk7ypBqk1JPd/YJrAjqSjbUfuEZxdg+zxXr+vZP/X6WXL8iH3O6eOU3TPL2BTFwmX2VpUcI9uwxVSSdI1ds+1OeSpaqMTqxeVqu8rEbB8iFjIngbpC/QlUk2L/V82GMllrw43WV22nWR95LFm2SvUeg448odmGahfsuTquqNSf1w7X4rLLLgMAPPjggwB23/PEnIIURBSjb/+P7MXKJu3/0VrOYYsKZav2emrXjMr+ZftAi3vouL2Y2MiDPIqR9fqkGhx6mJ8+fXp0TqTdyVi++lboXNk50QIXy2K2xWgLhUKhUFgg6oe2UCgUCoUFYqmqY2CcjIKGbCB3HQfG6iwLNaKrak3DfIDYsM9+UJVtz1GVqqpyPGP+VMJszomXzCMqjqBOWJmjUeRENscJIgrEt3OiamzPAUSvr/M2VRTA+962F4WAUT1FFaRdlyj8JVK12uup6m5O/Vu9nqom1TnKjiNKjBGp+O31qIrWfcA5sSo8VeWyLzxG7z3P0UiTuasKz66lOoixr+yj95x44IEHAOy+B7JEK1tbW7NCzHS/qkObdepRs4KdQ2+stm1VHev976ljVZWqjmee6nhu8hnCCyvT55k+f7yUiKr6VnOD3pN2XFNJfTLob4v3O7FsJyiiGG2hUCgUCgvE0hhtaw0HDhwYJWfwHAOikBJlkWwXGDtBqaSnBnMgTrmnxnwrTStzUgnJY7RRcv1IyvYM/jreLMnBlBNKFkwfBX2rtJpJ9xqCosd5x2YpGFtrWFlZGSVAyEKMTp06BWDMBOw5UbIBHkPJm+favaMSv4akeVqEyKFM18NjtKpRiPahXRd+R+bANnhv3Hvvvbve2//5SscVtsHxKCsHxkkcdA68FKO6J/me6+exEnV66bouZTxe6ldv7/AzLzRL+xLdu3r/eGw4SmOYFQGIHIyU2dpz2P5USkTvvtOQxCghi/fc0eQavI+4pvzcMloi0tR4mgEtPBGlJ7V9zIp+LBLFaAuFQqFQWCCWaqNdXV0NdfBALF1ktgR1154KF8mS/VPKoUTmSZaU5NVmmgVcq9QbBY57cxIVR9DQDC8dYZT6kcgSkOu8euEVU+foXFlou1OS5erq6mjslk1xrJSSlfVm4Q8qNfMYbcM7VxNUZIlFNPmCSvrKFoGxvZttsM9aVN3T9qgmiHNyauRLAAAgAElEQVREtuqF93A8tIcq687CvSJmpuzLXkdDrDj3HuthH+lLof4K2pfNzc004YqGn02xR++YKDWrp92ZSoXppQuNipZo+Iud26gEoYYMzgkJip5vdu7ZF+5nfdX9budTGWtU+MIr7BD12bsn9F7IEuXsJ4rRFgqFQqGwQCw9BWNkw7D/q5SsdhqPiUXlwlRS8hLDR4nU1ROSY7CgVBpJtBYRC1AbjSf96jjUQ9FKlpQc1YtVJVqVdLP+qy3Nm0ediyyRwJxjCNpo2SdN8QbsMJ8o6bpti1CJVz2qtaiATSqvHsOa9FxZA7AjgavfAN/ff//9AHYzWl7z2LFju8ahfgvsu5fkQNm2JqC349J7S5O4KLO2rELLk0X3emYT5nWiMnD2OtbWO6UR4Tx5Nl89l/3XAgqejTYrcQj4XvqRd3Zkf/fGofDSd+o+m0r276VvVN8X3VN2TlQLwWOUdXNcdn9EhRXYhiYVssfqPRelK7XH2vEso1ReMdpCoVAoFBaIpZfJo1Tl2e+UlSob8aRbtZHyOy3mrQnDvWO8MnW2bSCW6KJ0iraParfT62UsTyVKZbJW0lNJ8uGkEtS+ZjHMupaqEchiZK0Em0mWKysrI9sVxwnszKWOnfD6wM/Uy5QMj9+T2Xral8gr3Iv/03hZsjhN3O+VcGNMt3r78r2X5nJueTS7L9Q/IfKQztL2KRtRBm3XeSqO1vMWV03M+vr6ZGF1ZTdeHDivRUamffM88lVboNoPvtrrKcOcKjLifacs1PPViAofqAaN52SpbaMCGJ52Ua97ySWX7PpeS98BYw9le29beOdERVsyfwxiKn5/v1CMtlAoFAqFBWLpmaGiBO5AHHdHeDp3lUjIPi6//HIAO9KUJ71feumlAMYxVVkWGfVw1OxOntQexXXpdbxYSJUYldGqHQbwy3oBOxKrJmq39j+2r7HFnr2a4JxodhxlD570O8dW21rD+vr6tgaCfbD7IGL4OufeOZrQXm2pXrlBLc49h70rk6X3JeGVhlOPVGUnXGtvz6pnqu5dL4uaMnHV+hCerVD3iGYC4qt3PdUUEZ7tWe/XyG4J7PiFZCxSGTjvD2VtHmtW/wQ+f44fPw5gZ328WE7NsqRewN5ejYo+6Bjs+VGhkEjjYcelvgZqb818bPiezxddJ+uLwHbp5c7X++67b9f4Mg1RpAnNfi8OHjy4lFjaYrSFQqFQKCwQS2W0VnKIivR6n6nE4ZWto+TI8lrqrUvJ3MucQumJUpuyOGv3Uolb7WrWg1P7q68R67LSuzLlqNRdZgPSuEO2r7mlLThmHuN5+iqislje3CuLX19fTzNDtda2z1FmC4yz0ajknTFNtkfth7I3T2ugXqxsn/uP/WGsqu2LMv3IGxQYe54qy9Lv7f5U5h8xGC9uVz3Iyb45Bs6V3auaPUpZMfvGjFT2OnoPRBoVe6w9JovBX1tb274O++B52kexsdpXe75qHIhIA+G1rz4N6vFrv1MtzJx9zvb1fvfigxX6TIpi8m17vO/ZF9WkkPXbOdN7m/NK34S77roLgB9Xrb8l2X2l82TzYC8SxWgLhUKhUFgg6oe2UCgUCoUFYunOUErdrUolCh3wigkQVDVcccUVAMbqUYV12FGXdVVTqTOJ/UydDzSA3zPARynQCC8RvaqXsoQIisjJSwPGPQcKjsNz5lCoE9ecMCJND5gVFWC/tHSfXRddb1Wbc62pirL/c6xaFpGv7BdNDBbsP1XGfKXKWB3E7HU03aDnaKaqVQ3viUI1gJ354fV0z3iFPbj+dObhsbfeeuuucdFJxar/dK+yLe4v7iW7bhy7mkZUhW3nJko474GOdIQ6vvEYYEctqQ6bnpOaqopVPeql/yPmqo69/a33rC3KoX2M0hhGBV3s9bgOGm6j62Xhqby98dAMYfeqOsXpuHhfeftb3+tvjF0DLQKyLBSjLRQKhUJhgVgao6WbfeZE4CXx57n2cyvBqsFdnUQ0aN5LMB0V0/bKsUVu9lFRdQtPmrZtZXOiDgxRknH7vzrfRE4fFlEaRXX6yooMqDTqMdUs8UEEW64Q2C2VRkWnlZ0ypAvYCTvQuY0c2+w4eCz7dOWVV+7qE/thg/WjVI8q4du9FCUD0eICbNs67LBvUSIYLxxC2+d1qTHKQp6UQWnqT7JSL20j29FE+8ps7f9eOJyCjJb3smop7P+q0eLYvZKA7Jc6CUXJWrwEDOpgGN2n3hg1FMhLjaqaNB2vPvdsHyOtnl7XS6OoTkha0MFLAKLavCjZjg1F1Ge+PuOjNKz2syoqUCgUCoXCBwCWymjPnTs3koRs0L66dkehLVZCU8ZK6ZN2qYw5eenYbN+ILNGCSodZubooibgyZyu9R0xZbXNzJMvIluWl/CPUbuixbpXE9XpecLtXyCGTLLuu254XDRuybSszJquLEi945yhb9BKAKGPhOtCG6dlbdQ8qG9EAf3vOVElFL4xExxqlh7TjZ7u0R6udkgzdK5wdpQfVxBhecpUoWcOccLKM0WobXnEB9UvQufaS3eg1lSkrI5tjE1RNl2c7V38S1SJkKW11n+nzzzJafYZEe9ULk5rad4R3P0XFBby0lKqJ0hSgXhKZqWfholCMtlAoFAqFBWKpXse2JFFmm1NGkXn4qe0qKojspWuLiqgTnsQcpU1UVmclZpVUVVrUYH2vPFZUFs3r45T0GUm29tqRndzzLFRpPpIaPQ9zYspWwlJ53rnAzrwog+V7z5OTrFMlX11D73pqU9J0imrLtOeoxkTZoZbE846NbHSe/0JkL1Qbqm0vShOqDNOORdNS0mNVbWUeu/OStQC+1kn7OFVQ4OzZs2FyGPu/PpO0Xa+4iK5lpLXIEvPoXlHbqf1M7zFqBJTNeX3J7ntg97qoP4lXps5eV/+PjrHwUkzqvotSP9rzvSQU9pxMy2ivtUgUoy0UCoVCYYFYehytSiqetBOxRa80WSTRR2zYwouTtdf30o6plKReul6b2gcv5tH7HhgXsidU6rXzqPahyGaaFXZQSTzyQgbGjCxi1J59PCogYUGP9cyzWz1E1SbrlebKyp8B48TtHiPXmMvMVq92fT3XK6ZOphyx0ygW2/6veyfb30S03yKve/uZMuZIg2P7EvkxeKUDuaZkzlN75+zZs6EWwUP0vJmTLnbK1mjbjdry7gntk+4VL6oiKkhBRCUevT7MScGqcxo9O7zra190Lrz1mutV7eUlyLRVi0Ax2kKhUCgUFoilMlomh59znH1V+6onVWm7KlF6ElFkR9FzrDSqGWDUw069Ar1rqz1X4SWv97zuvPfeeFQqVHu2nc+IhUYMx7aj140KIET9jkBWEnkz2jFFMXxeDLZqGlTazRhGVAggK4jhxToC4wTqnrZANRtzbIBahk0ZtNdnZfHKKLPx6bHa50x7oRoiMnmP/UX+AxG6rptkvVG/outGTCjb83PhaZqUgU15Oev/QGwLzva33tuqSfES9kfPg8gOq//bdj2Pbz1GfyfmrLXVxJSNtlAoFAqFixz1Q1soFAqFwgKxVNXx6upqqq7gZ5FaJnNsmlID70WVoypEqzpmSEgUBuOpqiP1ovZ5TqiOjsNLAalzG6lwMvWP9jlTy0ypbLzvtY9T6pvNzc1tJxuG7Ng+asC+jt1z5phyhNDQkqzmb+S45yXpIDQtII+1NWyjfazfE17iEg2NiFIx2vN5jqa5i8wD9n91DFPVceZUFN3jngMVce7cucn9kyXAUJNKdm39TM1Zc1KJRmaYzMGR0PtG18sLDYycL7N1iZzfdP7s++g5oOdkzxBVK2frps/NqI923GzPOjg+HPX+XlGMtlAoFAqFBWJpjLa1hgMHDqQOJhnbtfBSk00xijmSJqFSnHWA0uB2dQ7wwjsit/epUBp7rpcM3fZjTjiJYo6T0pwg9Lnaguw6XdeFrGRrawtnz57dltqZ0MGT3nWd1WnJslJNeBBpD7L0nVEygGicQOxQR8Zu0zcqY4oc3CJnJTtOth8lLgHGCRDUOUqdpOy+UycyPcbT9uj9pO89tqXtnz17djINo17bS1gQhRx6JT2j59he2FH07OLYs7ArXpdrGmmi5mAvzqVZ4o+pcLJIw+EdQ+h1vFCdqeepdx1Pm7dIFKMtFAqFQmGBWCqjXVlZGenivRCNLEBcz4mk88jlO7N7RGE9XimwKK2i2jbsZ2p3iNhPxoYjO4hlaspCtP0oRMQ7NpI0M5tYlrRBx5GFX9lrWRbI8Xnl1gi9tmdTn0pNl2lFpjQm3niylHDAeL3ssdE+iEInLHhfsbC5Jj3w0pJGZRDVJuilYIzKoXlJLrSgBvuYJRrhGvLcU6dOTZbKi+5xO+ZMKwXszZdBj/M+i/aQp9nSe1XtkV4YTKSdip5HHluMwnm89J3ROPV9ZqOPtHtTIZEW2e+HPqeL0RYKhUKh8AGApXodr6zsJI7X0k16nEUmoahdbYppZNJUlO4rK6asEpfXxlQ6u4wtUmrnqxY/92y0kWfyXuytkbf2Xlj3HExpL+w1eG0mq7dzEWkY5iRq10LiEePPkl1EjNpLM6dMST3Hs2TyUeIAby9xTnQusqQrmro0kvy9VKP8P3r1EsBwHDxG7chZGtQ5KRhba1hbW9veM94aRM+IyIvV9m8qUX/GNKOoA28tleFF93R2nYg5e8/gKFGF7lW7lnO8piNMMdfMRqtzkvn46JiXkawCKEZbKBQKhcJCsVRG68VceWzx4aQxm5OGbaqtOYm0I7tmZiOKkl9Hyfg9NkxJX2M6vVJhkZTreTECvpQ4Nff28yg5eZa03LPFRGvYdR22tra254XshPY8ADh+/DiAnTVTmyXZjxcrqfaoiHF46QYzTUZ0HWUWau/KPLqjmEQvPalK7bq/OSe24DfTQEap7yKv9+yYOfeGplzUknseo2W/p2IhW2sjhpx5MSsyD9WI8UfPMvu/rmmWolDZdbTuXvpWvmpKTK9gA6HsWp+Fnr+BpoGMtJaZrVaPmfJrsIjyBGS27jnt7geK0RYKhUKhsEAsjdHSc5T2MM8DUW06c+13QGzL2kucW1QI3suYQkSs1POMjmyXe5EsKZFrbKedx4ih6feeNBd5EWbeelGM5xztQfQ+A+NMyWxtv2m3VQmczCjLJqVQBrqXmEHPk1PZn3rpenajaF9HHtNZQQLuEY2VtYyWc6ol1vRenGKBtv0sFlLtt1EMpNUUsL86Bx66rsPGxsYo7t177szxNo7GOGUP9eytGfOyx9k+RuVAvb4qo9VY/CxjU/TMUBuql2NA9/NUrLn9TPeVMmh7rs6f3k+eZ7QXHbAMO20x2kKhUCgUFoj6oS0UCoVCYYFYqup4Y2NjlM7MqksidZG6b3uqgChl2xyVrqrsVI2VJRLQOpqqrrHtz3Esio7TOeCrlx5QnZ40CUGkBrTX3ktaMz03SgTuOaDMAfeOqjqt6jhyvNBEFXOcYKIQgEwNPJW4wJ7Pfmuyhuw6+sr9FoVs2OvofuBcMGGFVR2rU9Ill1wCwHcMBB6eM4mnotR1031uVZSeajK6t7quw+bm5shJLXPmi5Ltz9mzkTNhljowQhZWxPXXZ4s9h2umz6YoKYT3bNRnoDpheXVd9VkVhft415uaa7uOU+Fk2flZsp5FoBhtoVAoFAoLxFJTMK6vr4+kHC+gPwoUz6SPyFlHJTCPDXuOJPa9ZbRqnI8C+20ChaikmsJz7oj6GCXUttfWeYzYR+YEEb23jG0qeF/nDBgzwinJcmtrK1wfwC9paNvNwnqU7Uyl8/Q+ixLn2z6SLfKV0PkhA7H/s09koZo+0XOKI1ONNBiaitEeS4eziEFp3y2itfQS0ROaNlQdXGyhBb32VGjPysrK9vnetedqmrKUflEIkM61/Uz3nTqBesxM7zUN2fG0ITwmKgPoMWy9h72wKB2DpqxVLUjEwu0xet+oY5Pn9BntA2+evVCjZbDaYrSFQqFQKCwQF6xMnhc6o2EIijkBziqJZe7wUVq5jJ2qrYJ2T0prDJ3w0vVloRj2OMswovCBaLwWKjlOhRNYRGElHqJxzLHn2rCBKclSWZvdJzomZQVZSsQoDCFKNGIxxWStHZlMVkNospR4ykqUnWjIhudPoNBxWolf9+pUEpmMIU5pjIDYvqbJNLxnwpxkJ3zuEMqYLSK73V7Sqnp9i6B7U9mbbZPrEhV69+411QpEdmOvj/oZ2+J6eMlOojVUNuyF+UTJOzQFp90HmtSEfdHxeto3ve6iUYy2UCgUCoUFYqkpGGkv4f+Ar+PPWG8E1dNPFRew50S2YI/Rqs1FGS3ZaOZZqRKdpk+zNrrIlqm2GSupKdvYS1FyHWd0bGav1HHOYcVTfdnc3BxJ9Za96WfKfr0E9FES8ki6zvahsjbaBK09lhK3Xk/X0ib5V29qthsl/7eIWK8G/3sl6HQPaaIUj+XrfRu92nVTG6wypjmF2jMvU45T7cPZOZkGg9AEDnP9MOy5kfexx7Yj1hsVJrF90+vN2d96jKY95auX+EO1KjrOKZux7VNUetF+93ASHGVFbRaBYrSFQqFQKCwQS7fRRrY0YH7haC/NXBSHlXkyz9XPezaMiDFnnsORvVj7kcXgKsvO7BAq7Xrp5/T6me3N66v9TFlWllhd+zqVRu/cuXMjLYi1D2lavijNnOeVGXmSZyxF51TZA/vjecuyAILaX717gsxBbXFkGJkdlO1rykXVDFjofGlJvYiF2/bUNqfsxDIeZbAcl37uMSd73Sn/Db3XMtty5Lnu7d8orjiLo83syYAfo6rzQC0F94enaYhKKep+80oREvyM+5j98Ly4o3tNtQj6zLZjJ/S5nWk2FFFbFva5U17HhUKhUChc5Fgao11ZWcH6+vooG45FlFBa2WgmvU7p6fdiy6CkZ5mTsmotOB7FyNljo2w/nj05YmbR9e05yhKjJPneXEXZnTzMSaQ+59wpu5buA8s8vKIBFpwLby014xjZgsZGegnb9RiV2j0mo+eQxWXn0G4fxbN6TE33jjJ3shKPyaitW9u080hEdnG10XqZqDgHypw8O6zu47Nnz4b7lM8d1QDMeYYovGxSqhXRvT/HBhhpfrIiI2qX9BhtVBCC+5vvVQNhz4mul8VER34y0T607elvQNQPb1wR7LrtxU9lP1GMtlAoFAqFBWLpNlplU55EEdlkMwlmytvY87yN4mjVBmjtbOpZF43DY5pqm9XYSE+C1TmIvKgzpq7j0zY89h3ZpbzPp7yKM7vuHKjXceax7pWas7D278gmq2vqxWBHWbCUHdo14H66++67d/U/yooD7OwN5hw+duzYrr7pOL3YYmWFamfL/BYiBu3Zk/VcjYH1NES0MSqzVRutF/88NwextcN59vbouRJpIOz/6sEd7SXPZyPy1leWDOysg66d9s2eE2VzUnhrSUQ2be/+jZ4v3ngUURY7j/1G11Vvfi8rV/Q8WzSK0RYKhUKhsEDUD22hUCgUCgvEUhNWrK2tjVzOPXVMpD6YY/yOEit4KtcoGbWqkK3qmKqbKXWITaOozjtRIvA5qdD02L0EXEcOB177RKQW9tYtSozhIUotmUHDlWyfNO2aqpo0WB4Yq/c09V1W0jFLhGKv5yX5P3nyJIAdNWmWNpHXjhyL1MnHqtO1TB7bUEejLF2ohoToPrDXU9WhhvV4phj+z1edE091TNgEIJnz4/r6errf1HQS3R+Zoxmh+8HbJ9H9kjlDcV2OHj0KYEflznnz+hOllI2c/DLHSr7q9Wwfo0QskdnBSx6jUPVvFk401Xfbjn1f4T2FQqFQKFzkWKoz1MrKyohFZM4UU04K3jmKLORkKrm2d31lA3SVp0RGSdPrl6bPi1zzs8QOc4z5UViHfu8xNXVKiJzM7HW94vPZdbO+euDe0TAc256mN9RjvP2mzkKR85OGe3ljjlKL2oQPmsBBQ1q8uY3Kr81Jxajtc2/qvrApH7UMX8T2MyfGKIzDS0SvjFaTJ2jCDNsnqynKGK1NwUjY95qKMysEQETXmxNWOMVks/N5Lp3idFx2n6jWK9L2ZA5buu+U/XtsUVloVJzeS/3pOWbac6Jr2+vo/vCS+dhj54Qwni+K0RYKhUKhsEAs1UYL5HaIiBFFtlr7mb6Pwl88t35NMhDZw/R8+53abi37IXNUW5WOx2OGas+NpN4syXvk/p61GUmuno1L29H25kijGYvous5lot75ni3WnuOlYNT+q22JoRVeEvQocN/bq2oTzQoC6Li4d9TuqtezfVTmHCXTsHMSlQzU8KnsfooKmnssVRlsxGg9pmbv172mYMx8Q4iIXXmYCif0bPlRaGAWlqIhM+p34V0n0rZkyfinNGdZoY3oOaN9nbPvs35o++ojoNot+90cTdp+ohhtoVAoFAoLxAVjtJ4XmSJKWJEFr0fJLTzpNJK0tWSXlXpUOiPUFuilB4xSoqmN0JNKlX1k0qDaxqJycJmX8NT6eLaZqeQWmT1nCltbW6lncpSqLUsGoSwnKtuV2XcVUdA8MPbupAep7l3PpqT2dO5N7Zs3BrXFRiUFbTvcs7pH5uxVnWstJmAZre7RKNG9Z1O1zCzbR13XjebR3p+ZRz3PV0T21ankLUDMvLJ+qBZEU3LqcV570XMh85eJWD6/t/MYzUWkXbSf677VvnoMdyoiIruf7PqV13GhUCgUChc5lspordexlx5sio16NqWo9NIcZqteoGQJ2jfPnqNpFFXizGzP6kkalcKz/0dSl2dfURuWSoXRWDxENrlMSoxswFNex5kn58bGRsrAtW2uJdcnS2+o2okojZ61i0Ye3cosPe9sBcdDW6rtjxai0LXNbHOEelpG9kT7md4/2r7nT6AMLbK3Wq9j9YdQtu2xrb0W+mYsLbDDAD2N05woBx3rHO1QdK6WPoxsml77upe8c6IIj0hL4THaKMVk5tE7FamQpXzVccxZ4+ge8Epwemlwi9EWCoVCoXCRY6lxtKurqyNJ30oTyhKUharU630WlVJT70l7bmTX82x3UWk7ZbhZbKKeq6zFkxKJyOvZYsq2HbEUe71Iysu8xefaaLxj9uL9552jGo1o/b12iKgAu9orbftTsZceo+Vn3CNZLCSPJRPj9bRPno02W+eoz1EMdqQZ8hgUEcXRZgXN1Y7rFfzOkuBH0HssY/FRDLbFlDYqism2/09lkfL2AaG26znML9JozfHi17nwvNyja0ce+RaRB/Gccny6ZzPNgD6fM23efqIYbaFQKBQKC0T90BYKhUKhsEAs1RmK6dCAXG2h6ipV6XoqQ20nSnDuhQbpuWpE98JSVA04R/2rtT0j9aznYKJtzQkY1zFHTmVePyI1lqcOjkIb5iS5IDI1IJ1ZItNCNuYs6bvWo9W9pM5ynppMr6uqL3uOzoPuBzU/2PZ5jvaZ8O6DKBUe4Tl56XWixBie+jYKbYrCfGx/o4QVuha2/ei9gmYrwHeQUQefKHWo9xyIzCW6pt7ejxwNs/tS50sTs3hJJ9Tpaur5av/XfRXVCvf6r+kzdc7mJLLJzE/arranIV32f+sIWc5QhUKhUChc5Fh6woo5SQyislWZ5DXHWUOvR3hJte17L0g6StPnhYxEIUCR0d7rYxSi4bnMq+NCFAriOXtoYHgUrpKF6kRp6Dw3+zlYWVnBoUOHRgzTC7dRpqX7IEtcoqFAKilniUQI9lFZMhCn0ePeUWc5r4+aZEITMFgWoWONQoQseL6OWdPZKfO17UXMxrvuVNpTj1nrXjx06FDqvHfgwIHta6vmyf6vbG0viQ+i8BvveroX1SnTKySh7egz0WN1+mzQ8UTPWW8uovSdnkZDtVPR89VzhFVkzoY65qg4iHVM9cIwi9EWCoVCoXCRY+kJK4g5qcoiG1pmz4tcyZUB2GtH6QY9N3tlsPxO3cWzQH6FSmBZekMvvMbruz13qgyf1y+VQrPUgjqOyL6bpYfL9kFrbVeqOe/aKs2qtJ4VV59KVOAlJ/dKDHrn2n5wj0QhDNq2HU90DFmwFoIHdlhiZCv3wuWILD2fhV03zrGupdoCLTuN0qAqQ/fYltUERDa81vqCAjzf0zjx/tD5UCabpf+bstFynTyoXdqzcTItrO4hDV+z8xQVHIiYc5YIKGO/0TlZEh9FlIZ0TmGH6Lmj9ljbB/u8LkZbKBQKhcJFjqUmrFhbWxuxVK8EXeT9p3YqYMwsIo9aTTQB7Eg1yj6U/XhJB9RmopJy5tUYedJ57CWSBrUt28copWBkz/Zs3hlDiM4hpuxW9rMsKF/B8ynd2+Mj71hNXGGZGRmR2qGi9crShUbaFs/rWEsfZmxB119ZikrtWZpITS2apdFTT+s5DDfSCESFAoCxbTYq7JFpiKYYrU2zd+TIEQDAqVOnRmPeSxrFKW9YvZctq1KtlyZ/UO0MMJ539aHItHyRXTUqbpCNR+H5E2hZyehZ5RXpmEpc492DhGoXqUWwz0N+Z5PFFKMtFAqFQuEix9IZrTJLKxFFHnSRF5s9JmJrRJSM2x67l5ityLvQS9s4VVIv86qO0tqpfcVjhhELzmLh5jJa7zOvL3YMmdfmVBzt6urqSPK3Niy1a2m7XvuallPTHGaI7HiZp7XOvzJNzqMd1+HDh3e1p0U5PA0KoWs15XVq29G54LkaG5mlAI1YqtUY8X8yVx7DV55rbZy637LE8IzBth7K2h6vHXnaZnGtytKi1KyeNkfnWm3ZnjaEUE2Hxwgjph4xQU9LpXZX1SDaezryaYji372Y7zkx0To+tQkra7XaBK57xdEWCoVCofABhKUy2vX19ZHtx8Y4ESrhK/PLsjtFDCbzfFVpSpm1jsO+6ufaL9tOlA1JvUO9cyNbree5GjGZaAxeXGPEUj3WP8VovbnXWMiM0TKO1rPNar+V6ankbRkY24vKiUW+AhaapDySsi3UzpatB/sb2beyTFhTfgtqM/bGyv6r98DA3TkAACAASURBVK8tdafXU18Ktbfac5XB6jkc39GjR7fP4XrR3pp5s66srODIkSMjT2We611Lmb5nM526/7PMUJHGScfnxcQSuu+89Y/uw4jBec9VXUsvhl0RZYCKch1YTLFLT0Ok2gT1zLb7W/MdlNdxoVAoFAofAFgao11ZWcHBgwfDcnbAmNkRKgF5RaCjdjPJU+2fUUHkrC/aVlbWKYovjVijdx21Bc/JFzrlsZwhsj16XqAqQc85h9jc3AyZI1nJnBg7zacb2YstNJZTz/VYiXr70vYTZeMBxntC7V5esXidwznxzERkz9d5tBJ/tK/VZqfZnux3fFUmy/c21lcZrZ6jHtq2T9YGF+1lfe4Qtg9kORyT5g/2EJXHI1RrkK1TpK3ysop59mn7udeHqM+RzwYQs09l995zLjpW2876OoeN65wqy+erjcHXe60YbaFQKBQKHwCoH9pCoVAoFBaIpTtDqarXGtXVMSpyUvJSuEWq4zkG+KkAdc85RdUwqury2o+cAzK1SeQan/U5Kh4QOcNkjlQanpCFL02p0SzUiStLtca9k4WyaLtZMnKFpv3TJANeKIMGxatTiqeiVtOHXkfTeNr/pwoCeM4wuh5R+UfPSU3bUNWxpzpU5z6+8t5QRyfbnqqb+V7Dm7w5seE7CiasUAeZY8eObR/D5BXq8KOJNrw1nXp2zEm+7zkLatuRc50m1/HmKVJfzwnzixwCvXtd96ZXXjJCZOLzUksSUZiUqo69ogL23FIdFwqFQqFwkWOpjPbgwYOjhAJW2ohKMWUSR1Q4Ogo+94LAle1GBYu9c7zi2cBuyVNZcJRUwZM81blKWZcXbhT1Ub/PygASUQC+l3xibuiT7ZOdv8xhxM6nxxo1mUVUeswLnVIHnyiRhTdPXiiGbdv2W6+njlOZA1UUCpSFIE1pFrKUg5Gzi4YEeeFEeh+po5O9V9R5Lbr3vBKLXJeDBw+mCVbW1tZG2gLLqsmaNXkG+6ls2I41cmSMHNEsouecdx9Fx2bpOzXESJlldm/osyO6judAFWkXszKgEaZCt+wxqmVShgvEJUsXjWK0hUKhUCgsEBcsBaNXZkxLfilLzNL1KUPSBOZZSTBNdqAJMzx75FTYSxbKErGQLMk/EaWF8yTmiDGr9O3ZaHXsymQ9pqZ9Vgk2Y5Pnzp2bDFXRpAlZyUMis9Gr5K3hZVHIjm1X99Uc5q+2et13Xv/1nKk9ZBGtj/de95dqiLSv3rmamEJttja0RtMf6r72WNBeigBQk0bWyj7YkA/aazXdY5aUgYi0BlHyC3tMVJhiTigLkT3XNAxO51jfe9eIEqJ4RTqihC/6vPZYajS+TIOiYVE8hmudhffYPVQ22kKhUCgULnIstfA7PQABv3wUJR8tX6detJl3XFRI2isjpl6SatfLkm2rh3Tk4Wk/i46ZSo3mjVP76JWcigq+RzYhr29Tr1677EsWTE9Ye1gk1XZdtyttn2dXURaidlYvBWPkZazlyjL2pqkD1fvYMo3Ia1oZjmW2yg7OR/qOtCN2TiKWz35o8glvPtXLWK/jnRP5OKiGwH5m75ssYcXhw4dHa+qlYHzwwQcB+N6qQJ7eMFqfLOlN5BHvPQ/0vszGq9fRxBHRsySz0UbRItmzWMcR2fuzc9VD3/OXIWONbLN2rT3NYzHaQqFQKBQuciyV0QLj9GlWytG0dlFKRgu1Iej7TJomou+8GK7IDpElEY9sSpFtyZPaIo/eOXGiiswrWCVnHY/X56lYOy8OVb1MM/vs1tYWzpw5s90nSq7WQ1W9SnVdMru+aj3Uc1ntlPa7yIalzNqOf45XNqEMJkrXl9m9ovhtL5adc8HvyE55rqZItGug8cjKcL20jZ7HKzAu0mD3jpbw29ramvRY5/k8l3Y8+39k2/NilCObcsR0M1tmVADFs0vrMXu5L6P0iV463GiPqMYjY+xT/fHYt0KfQ979xPtWmSzX09po91Kecz9RjLZQKBQKhQViqV7HKysrI69ja4/SWMio6LkneU3ZatUeZ/+PvAu9eE2VhKIyZvYclSSzzEyKiP2o1OvZOyLv4kwKjyTlOZKztpGxb0/TMMVqdT9YadrGVNp21TaXMVsyL832RQZt92q0ZloowO4t1Raol+lcL1rb52wfRN6fGaNV3wb1X4g8iu3/atvWtc7YndpkPV8OMha7TpnXqk0cz3Zt4XfdO7reXny92jvn7PlozBoV4GmAvHHZV28/RrG2URu2r3quPiu8Z7E+R6PnnqchiPqm2kC7D5TtKqPVknjeOV3XTWb32g8Uoy0UCoVCYYGoH9pCoVAoFBaIpSesINTxyUJDgAiqJrKUiHqsqrG8VH6RE0+W3jBylfecYKbUv3up9RrVyvQcaqJiBnOSXOwlyUHURqaaikIMIrTWRvvBS75PtZGqK71QrchJSPcO1aQM/7CIEvV7BSOiOVQThWfeUFXalEOdPScqtKFmFftZVBhAv/cKBKjKVa/rhcuxr7bGrPdq/7f3XKY6PnDgwMjkY/eOOkjxVcc6JwWjIqvXSkTPn8wpMlKxe85C2n6kuraqX12XaE1t21H4oLbpOUNFZi597xUIUIdNTcXozYkt0lHhPYVCoVAoXORYesKKOen/KFmpQ4l3TpT0YSoJPzAuIxWVe/MkS5WMVLL0zon6GiWJ8K4TSV+eZBkdmzlSRM4cWZgMMRVMbz/3JOOMlaysrGzvBy/5RBQ2RiaWOZhof9mux2AJtkf2EznwefuAiNJ5eqklo72jbdrraWk1Ta+o6fSAcYiOMlv93DLaKJwkSphg+8b5JAtRJuulQZ0DatJ0z3ilAZXRcu9kyXWm2FuUrMFrI0tKoc+iKOzFCyuM+hA5ogHT2giPLUd7UtvIHLeicEIvbJLrocxVnwWWBWfJjxaJYrSFQqFQKCwQS2W0NoGzSh3AuCwVj1FWmiW0V6idxQsN0rCXKL2ivd4UG83sukSWAk0R2aIz+0IUAqKY496uffXmZKpPnm0us/Xa9mwpNK+/EaOltMtE9l76xsjOrnvG2ta03zYo3l7HsqCIlahPgm0rkux1/3nrojZTHqsJ4b2wq4jJask7OycazqPz6rG/6N6LQjYs5pZds5o0tmP7rcxIWbVXCtFLl+nBG3PklzDHVjjlK+FdJ3r+REkwgDj0TO8R7/wo5HLKhgtMM1pPE2FDtewxmuDGwmpbykZbKBQKhcJFjqUnrNi+sKS5s5+p15i1A9njgNjrT6U4r6yTJsjQtH1zWFckeVkmM1VqLmPDDyeYOpIg54xH7TmaXCErlBx5a3sJ9r20c5lt1yYd0HWz/3PPaGEDj3lEKQkJTbDgSfGRpsF6NdoxWkTM1huX2p/Uduul0dPvdH69c6JkE8pwvXSKeo7XvvZDUyPqHGmieL0mEHvi81o2UY7XB56viQ7UxueliyV070SsTv+3x0aJJex3nn9ChLlewJk3+F6iDRQZc9XPI+aq+9x7rkbnepEa/I729+y5s58oRlsoFAqFwgKxVEZ78ODB1JNPJWBNFq22JmDMsCIvTS9mMIJKQllc6xy2GMXARfGsni1Irx9Jp/a7SHKOmI137FSKOQu1+WQSbWT7ydrmsdRweN7nfNVCAWRGp06dmux/FG/q2RZ1H0Te6BbKhjLbc7Tfon3v2Vuj8Xj3RMRko9J3HtSOp/suixrQPeTF1CsDzLQsPJfte+fQy5jfKZPl88feJ5EGTZlnlm4w8tLW7+13e7m3dU9EzywvNaam54yKaHjpNKN7OYrqAMbP2il/BiCOIdY94/1eaEGRRaMYbaFQKBQKC8QFK/zuxVRFUqcygDmZc6J4Rk9q08wv6lHoMRkiKpvn2TtU6oyyCHl2ZL2eMsyswLhK2TpOe65KzJEU7EnOKuVrHGcWjzxlo7Xnen3Q4gEq3XqsgZ7I2qcoltiuC/dMZN8nPJYa7QPvHGUQkfbD8wbVggBarF3L2dlzlMlquTyNebeY8li1axAVDlF7tedNO9fnwNurnje4akqU0XraMGViyvj1HrT9VW2VMksvJlZ9TaJ9Z8+fu69tH6NyeFFZyDnQ/eCNL9L2eZqNyMclast+Zp8XZaMtFAqFQuEiR/3QFgqFQqGwQFywogKe67WqatWhxHOmIFS1EKlNs8BxVaHMcb5SzHHnn4J3vKqZsgQSUTtz+hGlKNM599QxURiHp1rO1DtenzY3N1NVYZSwXFVFNnhd0zTqnOq4vGQQVDfqOd668DOqJNVRz1MpqvMgEalcrSpXTSPsK9vU5BPeZ1pMIHPk070ShbF5iVlUBc058tY62m8R1tbWRuGEnilCnWu0wIGd80j9r/PiqdajvUJ4fYzSJ6o63h4XpapUE5W376acn+YUiIjUv4QXdqNrGz3XvXM8lbS+j/bkolGMtlAoFAqFBWLpjDZL7q6SZZZQ2rYLxEm2M0TSoLJgL9FCJGFq2/a7KQnckyynwgS8+dRxRXOROVJEYQT6vb12lJYyC1uZg67rsLGxEUrxwHj+1aHOG4emTSTzm5PuUsMDoqQWnmNT5BDItizrjsJedM49hxZ1nFFmy+9tyBMLKfAYDX+Iws30f9uXyMlQ+2vHqfeePUe1FVbboeBzR+fPcwCMkiN4zxRdw6hvfLXzqN+pRiMqAuAdm52TJenw2vdCdaacPe052r5qJOcw2uje80LgIi1bFOLptdN13cNKCrRXFKMtFAqFQmGBWGp4DxC7mnvHqDTvSTtTbuFT5eXsMZFU7IUEeTYR+94L0ckYmf3es83o2PVzL7wnuo5KmJlEN8cOFiXiiF69Y+cgSxkXpRnUPeSFligbjDQCnsQfsTUyQyt1K8vWNJFazs7rv0L75tnZ9FWTT1gbrRZSmEqjZ1mTrrOye4+h6RyrZkoTZwBjG/eBAwcmnydq+8uYWJQAwfPPiDRZmuQk86HQsWY+CFmaRj1X1y7SgnhzEmnutM0srEifvdF7e45qefTZ74X0aR8y+6v6cJSNtlAoFAqFDwC0vXrEPuwLtXYngL9fysUKFyse13XdI/XD2juFGai9U3i4cPfOfmJpP7SFQqFQKPxjRKmOC4VCoVBYIOqHtlAoFAqFBaJ+aAuFQqFQWCDqh7ZQKBQKhQViaXG06+vr3ZEjR8Kya0Cc/SiLRZsTsxmdG7U1B1PtL8rJLJqb/b5eVIosWzddP43fy+KRW2vY2NjA5ubmaBEuu+yy7tprrx2N1RtzlJtVY2SzMWXl+qY+mxMfPoVsLc9nnfdzjzyc0mLevRnlxdX3tu+ah3dzcxMnTpzAqVOnRp1aXV3tDhw4MIqFnZN3O8v2lmVIOl88nNjy/cbUvj7fe+Hh9idrU/MBeHHJXiH7M2fOYGNjY6G18pb2Q3vkyBE8/elP3057p/Uu7WeaCo/neCm1eANFCcCzJOhT8NJ+aXt6nSzYnNAb2UsLpudGAevej1iUpjFC9qOpCQP0FdhJfHDy5EkA40T0l156KYDdiRHuu+8+AMD999+//dldd93l9u+aa67BjTfeuL0P9Gax12R7fM/0gkwgYc/RdqJav3PSv02lg/M+i5KQeAJJlqzDvvf2t+6ZLBXfnBq50fWm7i1NZADs3K/R6/Hjx0dtnzhxAgBw5513Auj33Ste8Qr3muvr67juuuvw6Ec/eld7x44d2z7miiuuAAAcPnx419g0DaWXDESTf0TCm1eLWdd7zrNK10X3h/dDFK1/VjRjqjCEl7wjSpmrr5pQB4ifUXOShrCdI0eO7LoO9wnvffsZnzX33HMP3v72t7vX3k+U6rhQKBQKhQViqSkYW2thonFgrE4kMmlGMaUOtFJUpO6do46JVOAe+4n6qMd4bEL7kpUaI/Q7bTdKEO4hYnWe5BypbqxESdgk8Xw/pTLN2D2Zhe6hTNLX8l1TZb68El0RO81U+pHaMSuWEKXLi/qcHUM8HFWu7t05Kf+yUo6aOlPni6zSMlBNITqlTjxy5EjKyKgNi+6tTFs1NVZv7iOtQaSlsP9HaU61bQtlkNF8zVlLTXtoz4n6FqXStfeTzl+UmtM7R+eN60mGa+8n3TMrKyv7quKOUIy2UCgUCoUFYumMVhNoe3YPsp1IwvR0+5FknNk9Iokokubs/5EDBV8pVXntRg46mYPBlMQ8xzasDMcrMK3HRs5FGevWPp0+fRrA7rJ0uqZnz54NWXrX9YXftZ+WFatdOCrMndkUI5bgJS+PkpJnTjK63hH7zWzmU446HqOdYrIeU9dx7oXR6rkZC4vKQGrpQK+g+RxG21rD+vr6yIeDbAfYWV8ew32lLM4rX6latqlk/La/kV3f2wdTDnsPxwclY9BsT23mc0pfRjbZ7Fwt7DLn3ozs1TyXNnf7nGAJSq71+vp6MdpCoVAoFC521A9toVAoFAoLxNJUx631NSGpPvRqrxJqCCc81aKqClVdpu3bNiOHBW3Dq7kZ1XLN3N6nnKzmOCVpXdXMgUbbUzWwV1OX51DdwlcNZ8hc86MQIU9Fo33x0Frb3j/22jZUhyrG6FpZbcop1ZbnQBOpjiPnJfsZ5zQye3hzEamM9T7y1H+6J1WVy71sv9M5iFR53vUy5ycdQxRqpHvHqv+0j1k9WqqOOcajR48C2K061vq2qpr2nlVcI/ZL76UsZEsxZXqx/0dhVplqdeq54+0tVafr8867n6ZCgDL1ttaqnXLc8tol2D5/a6zJiqrjSy65BEAfGlaq40KhUCgULnIsldEeOHBgVkV7lQY1FMST0JTpRd9niJw3bJvqGEOJO2tfHcCiBBUeE4j6EiWwsO1E7EAz63iSM+ecTJGfe4xW21VHEbZhE1bMCf0gWmu7pFJv7N5YLDS0wIL9jALts2xCESPzJHLV1GiSA4/16N4houQXto9RGIyOy2O00fiUcXh9jpg64e23qZCzzBFpdXU1ZbQHDx4cMRkmrgB2WBuvqevtaV2UwXKPR+GLmdNY5ATlOdJF8++NP3pGTK0tMA6pjJyhPAdBb19l4/X6pPeg95zjZzZ5DrAzJ1xXajGAnQQ2fJ6sra0Voy0UCoVC4WLH0hjtysoKDh06lEq3UdhLZvfS9tQ1PwrHseeqrY7XydJ9sY+UlBUeK/WSdHhjsJIg+6AS3Zw8rMo01e7qJQiJJHRlxZ50r3bSzH7o5SGNYMPCon5HYVD6vad5iPaISvF2XSJWkDHrKORI970da+TLEKXts32k1K6MVsfj7bcoTET7atcg8pcg5qw1wXY9Gy2ZimoiPNAvhAkvmG6RzBaIQ7R4b3uaNX02UdMTjTmz0epe4jlemtOI8Xv7nudHPgeZf4lq7pThZiFvUUhQ5pejdnK9r7y0q+qPEflcMMwH2LHN87O9hEOdD4rRFgqFQqGwQCzdRhtJ8UCc5J3SjscWVMJSCVKlXyspRcH5czCVdMCDeoFynJoC0Ca7UFuwXifzUI3sX0RmX4tYlwddN6ZcVAnWk36zlI46Jh2zx2h1HBG717aBcSo+tq/ep/aYiI14+2EqgYTHfqZSL0aesvb/qMCGMg57zNT8aTJ9YKzZUHtlZh9XNsT3WtTCwt5P0f5hCsbLLrsMALZfrSZKbbP6eWZnVbYb2V8zDZd+znmzPg2cby10oOfaIi2R1ijS9tnnjtpbqR1RL2RPQ8RzNMm/7v/Mvhslp7HjVv8Yjl37bMdPJsvXQ4cOLYXVFqMtFAqFQmGBWGoKxtXV1VB6BMbeqRGLs1I7JdPIHpUxJ+2DnjuHLRIqtVnJMuqLSm+eZBnFlyn7slDvVo3547wyNaJlUGw38lzObHPaHsvmeYxA7ThnzpyZxWptO7YPyij4nn0iy7YMTO35UaEALy5QJXr1tFSbk20vsnerXdL+P+WV6+0DnS/1CvdseJGHOu9JvnJtvfnU+1Y1Bl48Mu9feojaIgJ6Hb3Xsjja1dVVXHrppbj88ssB7JRstH3Q+07nYE6seqRpyNgboeeon4Tti5Z/1D1k29Z7ISrtqGvgfadxtfreQp+fGjfuMU3dO/p889ZXNTaao4HtW69jzt8999wDoBhtoVAoFAofEFgao+26bpeERgnFSqqUknlcxDitfYV2AEozyh5Vqp6TsD3ylrOf2aTU9lXb9hBJi145QO2LsnqPbZF1aGJ2tYN5knrkRcvxWLsRMWVfIavMpNKMlXRdh3Pnzo0kfsv82C+OiQXgKblqAXhg7IWttkWFXWNKyfRepc2Hx3CPejbTyIOYY/DK/0W2c9V42LZ5vYhZ8FiPlSpzeuCBBwDs3KOcV89Gq+2zj5wTy1Z1/tQjnvNsx6XaC2YO87CysoJjx45tM1n2wT5D9B7SAhVeHHhUEETXxfO0jdaM/eD82LllH/icY/+jvgI766+am8gD386JPl+4Prw+27L3ROR/o/Z8j6V6vwf2OlnEiT6TVUNk5542+jvvvHP7nIqjLRQKhULhIkf90BYKhUKhsEAsVXVsHYSoTuQrsKM2IJXXtGlUI3mB1YTWr4wKFNjvtC1e30tKrWowdXrxamRS7aKhSDw3cpayxxC8rvbdHqfqLE35F7nF23Y1+DtLxKBOI0xvxzXQECX7ma0ded99943aZrsbGxvbfaD61+4dqjap6rzjjjsAjFXH9hx+RpUg2+WrjsvuA64pnWx0j/K9VZPSzKF7RlXhXniPqsF0/lQN7vVfHWrUic3Oyb333gtgZ/5OnDgBYEd1zDmze0fVpOrwxjmzc0JVHufr6quv3tWWp+ZUh7DMmYXOUGyfKmSvQICOg88SryYu51mdkjgffPUcwFQdq+YGzq0tfKCqdZ1bXp/9seOKkrnos8Xb32ru0NBET52uIU/sk+1bBFXjR2Y2+7+q7dl3NbfZ77gHM5PVfqIYbaFQKBQKC8RSGa0XjmFBaVMlPn6uzBCISy9RClXnCnucOhCokZ4Spk3hFbFQDQ3wwpeUXSvz9BitslB1kSc85ytlOerIpI4bwDgRuGoC1LEG2GE5ZEbsK5ktx2MlWnWcWF9fD5lJ13W7+s71IosFgFtvvRXAmIGxTxrwD4wZrDJlHZdlAJSIeR2Ola9M9ce9C4wdezQkzZP4db8pw9PEDnZd2G8N5+E4+d5qEvg/nUXuuuuuXZ+rc5bdd8qydD97SUN0zFF5PLtHNe1p13Vhopi1tTVceeWV2+tgWSKhYWiRZsM+vzgfZP48Vvcf14vMHdh5npBlq4MT15zaEtvvyAlLk6tw7EBc8CR6DgHjBBjqKMhXu36qpeS88j6lgyJh15F9tYkk7Lg10YTtP4/RdLV6f1nw/j18+HCF9xQKhUKhcLFjqQkrbBo9Sh9W0tMwC35Hyc6T0CJbZVRWzkptlFQpnfJcSr9e0gFljsqKKSlZqT1Kz0aoXcIep5IqpTSdK8vUOEb2gZKkpm3z7F86x7peXhEF9olSPa/H9xpIbvsflYGzYHgP54Lt0w4LAO973/t2XZPzESUSsNdWm5LasLNwBE0yoTZVO+eqOVHpXRmV7aOWcovKldm11P3L8ZFp8DoeK+F3GpoRlXq011PfBmVqdg/xfuFnbE/ZuGUlj3zkIwHsDtmLwulWV1dx/Pjxkc3RC2nivJCN6tgtI3v/+9+/61hlbWS6XHOrDVFbvdoN+T21InYelMXxGakszn6mWgIv2T7gJ5DgOJTBc7xWq8R9pHPAe5HvvWc/PyPL5zpRQ8TfAFvekGPV0oecR+4PL+SJ1z5+/Hgx2kKhUCgULnYsvUwepQtKIVaaoH1DJRRlqVZ6jWwVUbo7z3tRJUtK11lJNYV6GXqJHQi1P9F2p+n77Hgijz4vyYJK6JxXTYjg2bx1rjVwnXPjef+pNKop4Ow57Dcl867r0oQVGxsb2yyH0rW1LSpbV7bqJezXBBuqcVBbo5dGTzUaas/1vFsjFq+J273+6/WVyXl95Lnqea0JYoBxUouoDKUyUHsdLfOWpetTTYna1TxvWt4v1hM30haxTJ5qGuzcq3dx5C179913b59DGzY/0zYIL50i+6rpLFWzZve3egpz7I95zGMA7LBfO8ecS+2b+qB4XvWEevpz3GSn7Duww+75nWolyHTZR8tO1b7K9eccUXtlvdw5B3pfUSOpSYy8Yx/xiEekZRb3C8VoC4VCoVBYIJbKaA8fPjzynrQxfKqXVxuPegEC4yT+ysSU+VkJXL0/eV0yMy8Fo9p81f5K6ddKXpH3WxRnaKVS9lu9M5XRWEarybSvuuoqADsSJe0qWQo+9llLT/G9tbOp3VY9Bq3Uq/2352bFxk+fPr0tMXMcdsw6t+wnj1HvY2BcckzjTpWJWZuWxowqW+NetQxTGYNe1ytkHhXv9hgzsHseNE5WbeheUQmuFc/lGqqPgMZ1AmPP7qhMnu0z2+Fe9cr96XXYvk0xmZWnXF1dHe1Jr1xmVKiDrJX7z/aB/Wa7nGP1brbPLL3vNK6Z8HIMKNSD2e4d2io1xafOtcfG9bnJcWUFMDTGV9M26vtHPOIR2+fqvaepbXmOXZuoCI0+1+19pz4Ox44dC72y9xPFaAuFQqFQWCCWWvj94MGD2xIKWZVlNJSIKPnQM0ztRtb+qVIUpSRKKTyW17OebtrGlVdeuetVJU5gzM60T2QLVtK79tprd42V0i496dTmZCVZgvOmzEwThtux01ZxzTXXAABuu+02ADt2Fs92RluIeoNSquc82jXgnE6V0PLWzZZUy2y0Z86cGdmY7Jg1Y5YWz/YyGSkzIvNX26yuk+1/xKTVDgfsrJ1qLtS+b6+jnqiaeUxttB7D5HVpO7O2RtuWbf/666/f1SdlYZ79S7NxcR9oPDf7YdvVguLKLq32QrVKKysr4d5prWFtbW37WO4Te39yPbSUonoS23uf/dZYcWVHvDesdy77qjZyrhP3jFcuk+CxvJfVOxcY2yPVJqsM0Cs0r1qXqHCEvY7mEtD761GPehSA3az/9ttv3zUn6lvj+QREc64xudZ7m7DefdErxwAAIABJREFU4JUZqlAoFAqFixxLL5NHaYNSopVQNF+s2glVmgJ2pKInPOEJAHbYI6Vrvnol9ngdxsTxeo9//OMB7GTFobQFjO0amimJn3tZT9STU/N3ekXVVXL0suvY8dn2tZi2SoVkujYelWtA1vGkJz0JwE7s4s0337xrnHbs2hdlK1ZCV8/O1loYC9law4EDB0YSsmd7oaSv3pKa19iCWpAP+ZAP2XXuP/zDPwDYyb9rbbQq8RNa1NqOSW3LasdTHwUgzh6kUrin7dEsTrw+557XsfZNjdPkudxD7Lt6dtr+c554H3F/8T4j47X/qx2ce0f3rv3feo1PMVr1pvfiWhmLTfapnrVW06Q+Bmr3VA9vy+I5T9w7quHQ+Hd7DudbnwNePubIy1hjrr2ypNxHmu2N8O4n1TTo3uF+9OLSOQcf9EEftOscPntVk+K1o+Pxojg4Bzzm6NGjFUdbKBQKhcLFjvqhLRQKhUJhgViq6vjcuXOj9GPWkE31AY/RMm5URVgVHo3/VO/R8E1VB1UPVGdYdYymJtQUeV5yBg3jUXWvLftGqMqE6kx1pPECxtlHXlcdKDREyB5LqGMB1Vi8nnXUYDsaLkWVPEMcmMTftmvDLex1qQayKkN149/a2kqdEtbW1kZqTTvHXCOqKTXZgOdgRvUn1VWPfexjAQDvfe97dx2nKQuBsSqL607nJTqpZGEdnANVc1t1tCZa0TAIVQtaaAo6dTbU1Jm2j1rqUB2F2GerltOUezRN8N58xzveAWD3/cT9rYk5tACHXWt1DMtUxysrKzh69Oi2U5JXalP3CveQmrfsWNWRSJP+89ULbSPUxMM59tJOahpTfd5w/a3Zgf+rKUcLk2gKUGDnmaDPDr2u3d+ahlRDn9QsYNdAyxiq0yrXxv5e8Fh9jdKW2r5xfJkT5n6iGG2hUCgUCgvEUhNWHD16dFvK8qR3Dajmdxpgb8MfKJnQcUUlL0prPM5K7zxWpV1NnO05GKhEGzkgATvSmDoJaDgP2YJ1ktESd7wuJWWOzzI2DauhRKsFA8jcrFRK13s6spDZ0jGMoSFWUlcJWRP4K9MFxiX6phxaWmsjCdXOE/eIOkBoCIBlftR+cB0ss7fnajgMMC4FSGcxdVbykqtoQn51UrH7jfPvJcMHxgzDKzDOuSDbVgZtr0dmoe+pySDb4xpY1sX2OBfckxpuocnsbR91z7DPdk+rE8za2tokK2E7fPWc+XhtDQfhHFhtGO9pnsuxaiIbdZIExglKNHzR007oOXy+RIkdbHsa6qbJZzR1IbCzzho2x7WjJtHe01FheXW24lrZZ7GGPBG8PtfNS8jBvmg5VW9OeD77lJVY3E8Uoy0UCoVCYYFYesIKSg+URmxoSZSQQJOwW1sfv9MSTSqVqoRs2ycr4XVpX9MActsHZSx8T2kqYyVq91DbnVdMW0Nf9HOvoL1+x3PIOLzkE5oI4ZZbbgGwM+dkd/YcDWnQPvJ7a3fhOnE9zp07F7KSra2tXaFhXsF6gpI+r6VJIrSsou2L2o1pW/S0LzyW7bJPanO04HxoghK1mXqFAVRzomXy1KZp2yPzp8TPPqp0b9uhVkfTeZI9eCkByT4499wzmpDBMgxNfKEhQuy7vW+13N7m5maa7OTcuXOje8uyKe5l9jtKIWr7rcVD1I9ECzrYvap7I0rnaddFnxlk2crm7DxoUn/2VRmzV2KP7XMOmMSH8+bdeyyCoAk3bDlDOy6v7CTPtSkSbZ/tM4R9Y1/5zNfiHHbvaBhUpknbTxSjLRQKhUJhgVi617Hqw73SWWrLpPREycSm0SO0iDuhiaWtXY9SkrIdlVIte1NbqXpyUvK3Er+yDk2BpjYie656m2rSBo/dKStle/xcJXc7vqhwudqPvCBwLVWojNYmESesFD3FStTmaM/VhAoaYM/PLetWST8qdm9tV7ZP9lVZm9rwgLH3pzJZ7m+rnYi0IGpv1z1l29FE/aqBsH3URAjKdjgX+r03N7wX9Z63/gvqea8sX7UAdux2n2d2ttbayFbq7Xm1ldtr2uPsmLgX9dmhpS+9FJKaKEFt9FY7oc8q3sP0qeB7Tzuhzx19vnJtbR/Vw19tpNznXtIJaspUy6L3r5dOUfeoetfb66mWh9AEQXbdvFSSZaMtFAqFQuEix9IY7dbWFh588MFtSU/tk8DuIuDA2CuOUpXHMNSeqynRCCtBq/SkUq8XP6klwDRtnsahAmOmF8UMahpBYGznUBasicNtHzRWWedIy2jZ9jUpvrJfy5xUYlXJ2ZM8eW0r8c9ltCoZA+O9o7GqGiNtP9NSi2p391LGaQk67hXOj1fsXsslqnZAU3Ha/zV1oJb78qRyZdBqD9USghZsl99FffaKWajNUdmIPUfjgHnfqpdwFieelcnTwu8eE9c5VHuuxzA1Ub/ejxlUg6XzoqlagXHBCWqHyGitr4OOS5+jqmHz/Al4DO2f1H6oJsWuC/vAc7h3NF2t2uPt9TifnubMjsX2IfLe5/VVywnEqWwXhWK0hUKhUCgsEEtjtISWBvMKMKt9UG1m1janun1KNerBqezKQu02URYc2w77TQmTLJv2Cc/upUyPUInS2llUgtTybDzWSno6T5oBRj0GMy/nKDbOkwR5rK6bx7pUm7C6ujoZR6uMzEq7altWW7myOPu/slPVHmjb9jtlzpoM33o88jN6R1LyV1ZkoV7H3rx5fbZ9ou1M2b3HAnkPaJECvTd0X9r/NVuZxnF796C2p3vXy85mNQ6ZNoQFTey47NhVg8ax6praPigbVeYVlYq0fdDnna61V7CBmhvuITJbb3/rmqlGReNZPYapzw61+3uFQrjPVWOnpTHtc0fXPdorXk4DLb2qxWgs1AO6bLSFQqFQKHwAoH5oC4VCoVBYIJaqOt7a2hqF7FiVD6l+5GDgOdVEAf3qUODVB9Vajqo28xL2q6qOAeNqgM9S76lzSKRStn1SVbEmArcOLfwsqpmrDlYWOn+es5W+17lWVbiq4iysw0mkwqHaOOuDqlY1qYHnfMf+UuXE/afOMF7SAU3pOCfRAj+L6gPTacOq43SNVG0a7Sl7rDqKUe2oSQGAcREGNXtEoSn2GN0PuiZ2fKrGJDiPnopanXmmEg5sbGxs70EtxmHb0fXWsBd7HTU76DND58JTVUfpM/XVHkOnSz53OE9cN/vcoUpYU23qs1edimwfNbVshuj+z57Beoz2Tfe3NydR2ksvBClS2y8axWgLhUKhUFgglu4M5YU9RN9puIAnMUUMLJKuPGcYZW1qiPeupynBNEjbS7btSee2TcJeT8MrNB2lF/6gjmbKFK2zlSIKF/FCMwidJ01C4LF8xdmzZ1OnBO+69jqRA5iW5rIOR+o4pwUjvPSW2p8orExLudn/tfSbDR+z/bF9iJINzJHQlX0rW7H7TYtYaLiSsn2PTUaJRfjeWzedEy98SM/xmJGCzlAaruY5KUUJELQUou2Dhgtp2Ii353UtPW2EQjUlfO7o88ZeT8NriKiAg9dH1UrovrOJP/T+9cLi7HW99dNnrz53bF+jPcLnn+dU5h07Zx+dL4rRFgqFQqGwQCyd0aqruZUwKFnQ3qASuB4HjFmbpv3Sc+37KCWYhtJYlkDJUgsRKGuzfVTWE9kslOnaa2upKS22bqU2SnSR7UmlUi+1XJQeTq9vv1N3eyZxyJIEWE1Exmg3NzdHbM1KypogXwtlaypLe6yWAotS1nmMRlNi6qvHMJUNa5pDL+RNw3c0vMdLPqBJVbRMnscstEyehrppUg8PUzZHO49672naQ8KbE/tdxgY3NzdH6TazlI578aGIEjjoenj7ILLzEnaeuEdpX9diKlwXL7mOrpnakb0UjDxWtRE6bqsh0pSbGt6n94aXgjHSwmXJTqJi9J6GQpN4nDx5shhtoVAoFAoXO5bKaLuu25aytCg0MJbO1T6QpTlTSV+ZjCcRqTSqXmwe09Sk5+rZ60mnXhJ075zMw1ITVVDC1MTg9n/1No6YmpUep6Q7zwM3go4vY7QHDhyY9B5Vm6nXnjJxLTLu2Xgiz8OMYUQl+3SNPY2NXjdKjWfb06IBaqecU+qL7bPkGRmIlyCFe4gMV1Nvegw68ojW7z0vftWYqLbF00TNGXPXddjc3BwlFvHKPKqmgfDmWNmU9kX76M1TdK959xg1aFwXMlf6hrD0IcsbAjusjeur4+NaakF4YOeZQZuwJuDwtI1sj33iM96zh+vnqk3MnlGEMtkoQYp3f9sSocVoC4VCoVC4yLHUMnmbm5sj24InqWrKOI3hsudEcYYKlZyBsYSnUqh6QAI70pJ6ZXpp4aI+RunzvHRuypA1Fs6T7tX+naU+s323303Zd+34OAdaJkvtevY6WTymouu6XXG2Wv7PfhbF37FvNi2bFtq21/Pa9NbU+862YT9XVqq2WS0ebtufip/N7PvaV+5hxmJyvYCxhkbtuzoG736L7klvzfmZFkvI2lSGMqVdscfrvQDEcZ/aJy+hvXrsaoEKTwuncxcVE7D2cr23Tpw4AQC4++67d723CfQjPwFen3Zqff7ZY9gevZy5V6kV8Qp7EHzG67PLi8zQ51ikofI0RJybKJrDrjWfVZy3Kd+Q/UIx2kKhUCgUFoilMVqWq1Jp19qHNEuMSmQaI2mPVQkzYqlW6omKp2tMpJWYKeF57MP2zWMYGs9ICTAr/0ao56DGJHrZhHS+VLrOymRlhb0VvJ7GWqoHuAerVchsbltbWyG7t/3VOE+133gScWYHsuPzMpLpMVnifEr4lKpVU+Mlr9e50z2k2gtP28N1UG90nms9cKOCCppNTG3s9jtC59XLBqdjzwpLaLt2nqLzNjc3cerUqW327nkBK4O19lv7+V58GXTfeQU1dB/zeeDFjJKxqk329ttvBwDcc889AHZreTQjGBFl3LPzqf4V3DssnqJ2UPs/X8nIo+t4/hL6TJ777ADGGgF9FgA786ZZABeNYrSFQqFQKCwQ9UNbKBQKhcICsdTwntZamLQB2FEj0y1cVR9eHU2tsUoVhIYLzKmfqa7rNLJbVRLVEeo0oqoOz9CvNSXVGYHwVMeaOFvTjNnE8FFtT3Xy0WQY9hgNBdLwCK92alT8wVMDae3aKWxtbY1UXtY5RZ2EIicuD5yvqQQiXnJyTfOm/fBS4nkJ0oGdfWH3jiYMiPa3pzrlsQwFoepaHRG5320fdH0jhyoLdQCbk0yen2XOVQpV9Wbmja2tLZw+fXp7n/FcTXtpv9OxqardG0uU3MRbFzXZ6B7iXNBhBxibZe68804AwG233QZgJzmMl/xf96Tee57TkBYr0ZSSPMc6QKlzoT7XomelPTZ6ZniOdPq7QHBt1XHPHst5euCBB8oZqlAoFAqFix1LT1gRBagDPsMCxkZ0z1VepUR1D/dSFbI9ZbB8T8nMlqAjVKLVFH9eOSdKf7yOMlov+F0Dw1Wy9UIblMVPMVorJarEGr33EtFrSEOWpo/QAggZsgTqxFTykTnSq66t50ilzDJiMFYbMrcAgWWTuke1PKKG/XjlCynhkyHdcccdo77p9dSJZ044kR47R5ugUCdG7zpeGtAIW1tbOHXq1LYzER10bJ+mHBsJe72olGKU0MVqqdRpR8OHuF7vf//7R+Ph3qfzE5ksYfdoFEao/VAtFjAugKGlRLmX7P0UheIow/W0MNqH6Hlj5zXam1HJVPu/TeZTjLZQKBQKhYscS7fRqsSXJSxQOyHhhWioDUElMrVXAjvsgMxC7WEeM1M7lCak57gsW+B3ZC4MNbC2MWBcEs8bh0rxnj1Xkw0oA9A5swxKbdA6Bx6bjEKB1FbsJZiYK02ura2N7Hi2D1Np/zJ2payQyPZmxChV42DtyFxvhkhce+21AICrr756e4zAbpairECTW/A6vD5T9dlz2R7t+PycLM+uS1RiUe/bjHHq9ed8HmkICE/j4YV5Kbquw9mzZ7f3s4Y4AeMyibqGWXL6ufvYS1WoJQl5/+urdz3VnHmhWvps0PtT2aOmKwV29mqU7N9qH1Uzp1o39l21M0D8vNb72gvpikLgPKaupTCXhWK0hUKhUCgsEEtltKurq2HaQ2DscRbp9D3dPhEV5PbKPfGziDV6tllKYZrAWhN3W5ag3sZ8VS9Dzw5BUFJlH5k4Q5mOPYbQ+csCx5XR6KuXYH0q2YDnia2234yVtNawsrIyWh9vH6hnepaUYmrvZIntFbyuejxahkG2ef311wMAHvvYxwLYKX3G61qPWLajAf3K0DgXTJVn26M9T5MPsG2biF5Lq6kGR1lJxvIiD3C7D6bsbDoW294cu/7W1hYeeuihUZKQLMm/+oKox739LvKaV58Kq+Hic0WT0Kht2z6rPJ8WYLcGw7Zhj+V1dH34Sk2H3TvsL9eZ12Hfs+IiHA/nRp+NysqBcRrFqLRiViYvYrJ2jbSQwsbGRtloC4VCoVC42HHBvI4zRhsV1fakXX6nnrz0LlRPYhv3xc805lEl/6wcm0qumuja60MU28vxWQlMC75HffeYmsaHKmvwYiEp8autWSV3j02oTVhTzXl2EbsPIoZCO5uXzs4e473XzzMbrc6TxpJ6RdVVQqY9VNsCdtaMe5PvtcSjtV2pRK/HqDbESwwfaTC8cWrMLRGlyPNKx0Vs1NMMqJ0tKqJgod7nWakz7h1b6BvwvbMjD3vPVyN6Rihb1OIjdmy6RzjHfF54qTj1GWl9ALSPPFb3it6HZLR236kdlVoXbcObE0LzIuia2jnhsWqr171q50S1itFzzdM62DUtRlsoFAqFwkWOpTJaYOyJ5kmWKqlo4nQrMWshdtoS1HZJJmulNpW0tbi12hqAsQSr2Yo825XaZhXqlefZMrVvKvFZBqK2Cp3rqOC991mUgShL8q7neuumn00VFDhz5syI0Xrxcdr+HIakTMwr46XvKaWTAXrMBdgtXdNWykTwPFeLP1i7rjILldbVA9uWvOOeYMwj4zL5nv2wGYjYJ9WkKBv1PIfV8z6KLLBrpXtVx+WxYLW9nT59epLRqp3QPgeUuSrjVFuqvbaeq88DL+5cIyD0GcU1tjZT7SvXia9z/CCizGeaNwDY2YN8nkZZ7Kw/gfon6Npp2TzLxvm/FstQ72rPth4VusiKj8wplrKfKEZbKBQKhcICsVRGu7W1FRajBsY2Pn31PGz5Pxmt2mz5qqzY/h/lL1avOWBsE1EPNy++kP3XvhC8vldMmhIepUVlgsqsbZ/UYzQqkOzFQmppMB2nlxkqkjA9eMWgI1tJ13U4d+7cKGY08xzV18y7Wb0X/7/2zqW3kStZwkmqZaMXhmG0bXh3//+vMmY9MCB320A3REqzuAgx9FXkIW00OZAnY0NJrMc5VadKGfmI5JyZ4Vt1ivWJQXY1396I+9dff62qExtmnSPjYVUnViNmoU/GuVJsVdnEYrLSx9X5NQffp2N+XSbuquE8PR2JRXRMdMWCBfc4rdaOx2hZI+/jIgvlmvd96O2i9rjAlpU+Bn7yXeasm8xf60q10Dp/imHSK9Vlsqf3KrO0GT9OOTbMV+H14zvUt9F67qoekgeU2eIrnXN6HKZN3mAwGAwG/wDMP9rBYDAYDK6I/5pghZAScZgMJReHkgXc5UZBCgr3dyU1Vb0QAV1JqZyoa9Ekt4i7YehKo7uCZRgOun86l3GSQtNY6KpcJQYx2Yau8JX0XicMnpKhLnFB+nEPh8PyvnQi7ytxg5W70c/DxJOq0zWlQAbdc54cpZ/lwiW0ryfBfPjw4dWnXMc6vty/TM6qOrkXlewkN3eXBOjfMYzTNaRI5SR002vdpXvRiVywnMWfmUuEKgS6jvk+8LkJXTIcj+vjSqVyHTjXVKJX9fqZ4LtPv2seqe1fF86iK5ku7DRWbcuSNx8jXdAs9+F70F3InZgFx5TKGLuWhZckl3758uUm7uNhtIPBYDAYXBE3ZbSHw2EjXJ2ShrogPq3sqr4xNoP5idEyoaGTh0xC3bKIaJ2RYft52HCbxdlJuJst1WRR6li0Wvmzb0PWl9ipzq1rTbb9V4T2V4lIq1Z9HZian0o++En2nsQSaNHSqk6iHd24mbTh5xPrUJKSGCaT1iTkXrWVx5PYBYVSuC78Z52XyWQpoSXJciZ0Hp2qbZIhWVBK2OmaQbBkyL9zZtix3OPxWJ8+fdrInvr8yKr/Djherjsff1f2RC+I3xcyWZbbpAQjymhynXUytWk+fFZWspR8DyQhFj8mj+PoSgV93J0XJEl+UhJzlUj3NTGMdjAYDAaDK+JmjFYlGrQo3QdP1tSxnGQdUn6LzdyT5UzrhgxalhnLcapOsTEKSAjOgsnQOV+O3S29Tnx/JYXH8TKu3BWu+3dksitxfsaNLxHjvySGyu15bj9u1y6xi9/4ORmL47FSrK5rF8f8AofOx7Wj+KrO423y9HyI2fq64nyqXrPHVJbkY09MRscn+xBWngedj+uNjNbP1x2P6yHdN+Hp6WnJSp6enl6uaSqx05w1bq7jVK7WvaPo6Ui5B5Rv1LZda0o/Dt+fLL/xa6O107WG4/suNW7gvMhk3aPBsjE+g4z/+z1ILD6NdZXTwxKolIvCvBV/r1wTw2gHg8FgMLgibspoD4fDpjF7ygI+B7dQtD+luxizTRYR2WgStfC/O2h5Ka4mCy/FV7qm1szsSxYWLVZZ5smy7jKDGcMQUss7WvU8VmKTnQziucbc57bh9ysZSMaQhBTX7Rgtz5mERDoZu7SuBTI9nV9ZwcoS9jir4quK52otdh6c1BibXh82NxBbrtoyPsa7LomlMxZ8CWNghvoqC50NL1YQY2G83Vtgdi3aBMoAVm3XfJJpdPhY6ZXqGgM4WyRLo7BDWt+aD0UaLhGh0XeUGGU+i4+djTW6FoLpfcF3Ellv8hTxWeO7i965qtOz5d6EYbSDwWAwGLxx3JTRPj09bZiZW4nnLNQUK+HfOuH8JErNeMq5NnZ+PrHUzuL38zBe17FGZRS6Jcg4cdcIOWXjdVl4K9H3TvpMSPHRTnqxYwgJfyX7b5UtLXQNAhJz5prs2jWmdUDJTwq0O1tWLFCfYpLaV/t4YwDG19jUgp6clL9Ay58tI91jw+N1Qu2rzO8u7t55dPy7riVmYrjuCVrF+A+Hw8u2YjTe4KNr1NFl76c5dK32xCZdipO14/Q4pNrcjx8/vvpkXJltM/14fM+dy5D2eYj565OMPbW6Y2OKbh2k/ByBjJbr0fc5l23sOQ+ah+5Bqh2+BobRDgaDwWBwRdyM0e52u9jIOCkodQozqxZnAq0z1uGlGlVZt2RFqxrBTrQ+iZZfWiuYYqj6W9fMILHGrsE3x5rY8DkmsaqJFWg5p3o2juXx8XHJaHe73SYumuLSZBRdCzwHsyK5b2pmwYzdToksqWGxZaN+l+qThOKrTgzMlWx8zBqb4q3O1JhBzPyFVeY/WTyZLJt5p20ErutVs3iNZeV14T1+//59Gzt+fn6u4/G4ac/pz5O+Y1y6E6lPc+EzRpF8tUisOnksqH7UeYSqTveQXhDdQ62dVStKzodNVFKjBTZv72rM/WdmTXM+WqOugMbnhs+cvk9eJW1Dj8qqtvzWGEY7GAwGg8EVMf9oB4PBYDC4Im7qOt7v962gddU2OE8XYUrE8eP7p9BJiVWdXBjdPinNnm4muVToHmF5ic+V7lglD+i87qJM7j3fli63dB7Nr0u3Xx23+36VDNWV2qRr8lfKRrpmBVVbl31XjuTJHN25O2EMT07R+eSyo+s4CcV3ySFah3L/uigFZRQpHk83sJfq0HXMUqRUEtSFCijuksqyuN54v1JCE0MUnQDIKryxCjnQdZwE79kIhMl76d3C545uUrpY/b6pnMvdyX5MJjr5cek61lh/+OGHzT5c17rflI1Nz57ea0y+03VkklTVaa1yna/cvwIT9joJ3SQEw7Agr7lfe5Yn+X7XxDDawWAwGAyuiJuX93QC/lUnK43JDsSqPMDP52AyRNqXjCxJyHVJAUzU8SQBintz7ufa6Pm2nSD8itFSEEN/T63OhEtbCPq23WdCKpnpIPlOejrcuu1E7nndfK5kXGTmZGZ+bI2fiWwsT/G1QxYkBsu16etbZSGyyrn+WNDv0olkECyREJP2e0BxAyb1sEGBr4NOYrRLcPJtOknLSzwdu92ufVdIflHPIGUJfW68PqvnkSyKTKxrhVd1umYak+6x5sBkuarTWuE6JhNM5SpMqGQyVBLq6ZiskORJKX/KEriuAUfVNrmrKxFMJX30WrI0yROg6PF6fHycNnmDwWAwGLx13IzR7vf7+vbbb5dC3WRrLBNIbLQrHCfTSPHWjrEwBuQFz7TkWO4iSzCJb3Ryhl05U9qXAgkpvtCNTX/XMWjZVm0bPHet71KZDMfSlRP5d968YCU68Pz8/HJtU2kYywE4Prb9c3TlVWT+vg7I+DQ2MQ+Nx68JY1WKxYklJlEViljwfJQadRbEuDXjW+n+U6KQv/Oe+nU+VxaVRBU6UY1V4/fEeldt8n7//feXc2osXgaluVFsZCWJyndVt+50bbUuqqp+/vnnV2MQ46IohL/v9LxTIpNiJ37/Oy+Y5kOPR8q70DpjKVBqIdoJcGiM2lbXwttBcl707iQPGz2Oqam7/+5wpj4x2sFgMBgM3jhu2vj97u7uxeqRhZQs1U4sIYkzrCzZqq2/3hkNvxNjoYWTzqF9KEguibSU4Utm0ckopn3JtslOnN2RWZCZsUB+BcbiEiPs4rjMCvXzkRnd398vx+NxuCSn2MklpvNwnEJ3PygpV3W6z12h/aoFnTKVeQ/TNWamsMbAeLXg14ReCf3OWJ3H3zRXsiwKv2jsvq/GwnjbqnWgrhefebJ7Pw/v5YqRHI/HV54IioNUna6trguZXspL4JrWeHWPych97swQZhxc1z5JPjKeymx3BxlsV9Whe+DMT38d/89dAAASVElEQVRjRjYze9MzK8bK68hMaf2exsJ7m2LFfL8wj4Ht+nzbW7BYxzDawWAwGAyuiJsy2qqThSqrw/30tI7o60+ZZ528m6wdMjK32hT3enh4qKqTBSSLMol7cwyM61xSK0q2w9izMyey7q4pg2cb8vhksF0cJM2vi9GmOrTOyl3FkYVz7Hq/32+s2iTfSUaU7kd3TnoAyKacGTFe3NWDplpI1reS6SUpvE7UX2AWqo+J22oeiS2yfpL3u4tFOsh6GX/1606G1mWJpzWk43Wt6bTf58+fX+ahuXvjBjEwMaJORjN5muhJ4T6a34cPH1720fOodx/Xm95R/q6iN4yi+Hyv+t/o2aB3QizfZSmZTa1jdA1RfCxsmkEWme5XV4fMa5/aALJuVveW67wqNx6YGO1gMBgMBm8cN2W0blmkOixmJZKtptgt6646haiUtcaYiCwgKbakbDVa6efa16Vxk+3QwkyMRtZaV9/qTKbLbmVmIuMhvi+zZslg/PwrRuFj/rvY7Xav7jlrl/3nLr7fqTI5OoWrZIl3Iv+MsyY1KcauWHu7Uq/qYpcrq5zZmF1tpH/XZQ6TcaYsZ64rVgak2tiutjw1FEl1zt38Vb9P1pNap+l+6Hc2GUg5Bp41X9XXt3uW848//lhVVb/88surbXj/nWEyp4XsWr87U6eKE68RvXKpJlpxVI2F3pfkXeTcdV6Ng83k/W9dY4DkyWGtOpWgVu8lrzQZRjsYDAaDwRvHzWO0K/1dxUq6OGGqM+RxOyWZFN8lOyVzkQXmY+wsVWbUJR1eMqRORzZpKzP7cwWdT2PS9fKaN4db6t01JnNatcnjNqs2eX6+zrJUi0XWV7vF2rUp6xTCEs5lZ3qWJBkN24mldlydnmtXN+7nTrFxn0/KjCXbOqe45t+J5XQeIjaR95/JZFfqX+fGmGpZmX+x8phIY13biO04WxQL1LPMioKU0dvVpnftE70l3E8//VRVJ2arWCbXsK9Vxm3pldB8lNHs89B3XdvRVKussTgTrzq9Q1i/6/sIfEakgKVPaT5zrr4vtb1TLT7XQZfPUpVVpIbRDgaDwWDwxjH/aAeDwWAwuCJu7jqm+9STEjwF3rGSQhNW8oVV2f2jonW6itncwN0VSUzdz8skkqqtu5zQ/Nh8oGrrTu6E75PYdudGX4l7s4yESWudeL8fl65jJhc5kgQnsdvt6v7+fpPckIrXu2SxFXgtef1SsgjbF2odM3lo1ZqwC10kF3LXqGEl4iFQQERI52OCVpdIx9Z+vg2Te1brke4/rue0D2UoV8Lwu92uvvnmm02CkZfB6BnjMfT3NBZuq+MzHMDExKq+XabAFnG+Le83170fk+5t7sN15vt2wisqSdL999JEhucYTmFSns+PojDn5Fyr+kSprmzPcUkI7mtiGO1gMBgMBlfEzdvkrRqxM2jPlPnEUjq5RCZT6Fieni6rTFYUrXTKkPFnPx6tudQKjJZkVzKTCvpZnM1kIj8fk6FkTdO6ZlmJ/9yJiXeM3sdE9puSl8h6L2mXxxZXSW6QWCX+kCV2Y2C7t/QdhUOSQArZGdfOaowC2aHmrfuUSpB4fjb89nNoTJTRE7PVM8Jkn6rt9emSbVKpFr0VfG5XTG0lDC9viMYtz0MShekScpJwDa9dty3bGPrcNAY+U0mqks+h5qF7KUaYhGS0L0vcuJb8WUmtIf28mucqGUrHYFIpn+OqbRImPRvp2eS8zpXC+Zi8lGqSoQaDwWAweOO4aYxWcmhVW4myqpMFTgm3ZHn7Mf1T1pJS5int5RYYpfzYQisV3LsFn+aRWrixfCPJgPn5Vs2UKUm3aqDOuBoZLkXTq7ZsgfGrVFLBuCjnx3ivHz8JtRPPz8+vRAlSvPKchFsSEuninmzerU8vdaDICBmtxuOxOa7VzguSmmZ0TcjJEpyVsX0YRTTo9fGfNW4yWv7d9yUT6+JsqQk6xRq6Mh8H55ew3+/r/fv3mzaJq1aUnUfGkXIjqjIb9WNVbVsQshSMjUqqTsxVn9qHIg0+L46fjHYVQ2f5DpsxaOx6z/rxOtEJsWGKU/i+Xb5KamLR3S++g31e/P9zKwyjHQwGg8HgirhpjPbLly+bVlQOCjcwe5FxSf9b15ic8QePQzCTjwIPKZbQtVaj7FzKOqbwPZlesqBp4XdNBZKFxgxYxgSZJZzmzgbQq6YJjAl1Gcxpm3Oxkufn5002Y2LIHQNMVntXYH/JNe7kM/V3jdHXKufMbGPmJlRtm3IzZsY4VGqMzVZtq/hXJzHK5t2JLfB6cl3T6+QgK2E+g3uSNH7PyO+yjsVouxZ4adw8VmLizJno4uyMpVedBDLYzk3HUHzcPSiUkKQwito2JsaXnj+fg+BsnFnU9MKkvIuuEQRjtantJDOTmYXeZRRXbeP4fDb9mUhew1tgGO1gMBgMBlfEzRjt8Xisjx8/vliUlK6rOlkxsppk5WifFIeixd+BFmjVlkEwLqFt3bJkhiBZQ2LqtLgYc161lWM7rE4KLzEL7aM4SsqaJcgWO2vYLULGbTvZQz8G5dLevXt3VkqPbdYuqavm70lmjrEdMs6VDGDXsJyxJt+GjI7eliQZx/NcIlXIZ6Nbh6v6ScZk9YzomUjMoJsfvSN+Hsb1VnFk1mNeknWs79mU3s/JeOAqKzfFDDlOP7avfc2fmcOsr03rjd4J5mE49GzxPcdrmhh75ynrPF1+3HN5BGzI4d91nrvUsJ3nYZu+5CFM789zLTq/BobRDgaDwWBwRdw0Rvv4+PhiecmacWtDlgiZBpmFW5H6jjV6neXnDJoxX42tywb2c2v8ZBYp65DzIYNaxYjIssh6Ui0m44XMlF6J/dOi7Opm3ULvaiEFXiuHxvDw8HA2bsLr5nNOGdSOS2KY3f1I8SGOhZ+JBXEdkA11jRB8rtymy0b2c3M9CGwxWbVtk8jaazLelMXN+8wx+rz5/DAOr98T+3FGu4rRfvfdd5s1mOKRGifb4yU2lWrQ0+8pS5+xSt1TXduUG0K222UF+/uNGbZ8BvhuSeej/kDX8MV/5jvD75PPP9XBd/kdKQeFHgfeN+oyVG1j6mo6cW0Mox0MBoPB4IqYf7SDwWAwGFwRN3UdH4/HjQCCi3vLdUyXrT5Taj4lEZlOT9GJ5CbgNnR1uYuSyQBMfkiJDEyj75IvUrJMJ8hO17G7wpjmzuPSleTXkGn7dAOxfMr/xqQHukDPle+sElru7u420oF0iVed3FQUsFj1xKWbtxNISaIgvP8rV6LGQHcpr21K2OrczERyVXcJWyxJ8+8o4sJ+ywmdYAnnncp76IpmCMPXRtfoImG/30eZQL43/HgC3acpaYYJQHR5p5CG3nmeCOhIUqzcJomb+DhWf2PpWSrz69zKqzAA3fOaXyeckkIIvO98RpNASieRmkJBPM4kQw0Gg8Fg8A/ATRnt4XDYBLsdKrqW9ZeEy6syK2Xgu2ORDhYvd0lXbvFr/CvLuOq1dUiLqWttlRIsaJV1CTwu+UhmxuJ/fU8GWrVNZCH7SBJ2vLY6H+91KglyYZHOspQ3hAlhPudV+ZH/npKhaKXz+qVkGKIrv/Lrx+86ZpZK0Dq5SK4ln3dXyM+mEitGS+EKMuxUbsF7QbaXvAoCE7aSMAK/O4f9ft+K/1f1jJKJlEmwn+8KCopw7lWnJCi9OyRQwXdLml9XdpU8DXwOOfZVWSEZLRP4koANyy+7bVfvnW59J2iMugb0QHLd+/EuLQv9WhhGOxgMBoPBFXFTRpuaYK8EwdkSalWUz1R2pvEnC5wxK8Y0KR3m23Qi8peUW3QyjqlkYtUmyrdNknLnYrMcs2/D1lNkoMmS7Rhbsn51v/S5ipPIG7JilrRQO0nOxBI68Xuy1BWDohWd5BR5f3WN6Y1J7IRxXMbuk/gJvR5sl7iK73Obrsxs1VyCbDSV9PF4Ynts7JBELlLbRUJrhw1LUhtLQeeS0Is8ar6dxsnzMx6p8/r2XPMUYknCJdpGY+FzmN4TnYgO35Hc3ufD2KnOq2vkrRg1Rz7b+juZbvKGsJyI6yytb10TMuZUcpnkGae8ZzAYDAaDN46btsk7Ho8biT+3qlisTmYhy8X30d9kNcnykzV1Tsigqo9dJSuKY+oybd3S74TuaUmlInDGgmi5r+TaGOu5RORAIAu+JOu42ybF7mjdruQhVVROybjUQDxlF/s+7lUhu2FMlg0Dklehk8TsxC+qTmxNnhKutxRHTtfd0Xk8/PiMv5I9pG2IzmvhYyPrWcVHKS7QVQk4c6Kn4cuXL+1alieNLCdJFnLcbEziuSI6n947ZF5sAiGvXNXpvvPZohcpiesw7qlroeYC6V7yWjJHI71b6I3oGLq3+KMQBxsgcL372um8LHwH+/z4buS1T14OMtpVbsjXxDDawWAwGAyuiJsy2qqTBZQa8NLylgUpy+vh4aGqXjcb1vGYYUbJshT/pGXMuOvKAtffNA9aUamheZftt2rATKtMVmDHvnzOlFoTWOvn4+F8yBSStd2x+Y4Vp+Oeg89hxZDP1R37ebu2hWQygrPuTvRcSPKGjPXSak9Sjx2z4FqiVe/j72QikzRjFy/ks5CqB8jMVnFxgfctyQ/69368VU2v73c4HFp25z8zh4T3yxkt8x+6eLS38hP0zmL8mWL7fl++//77qtpWYnQx9aqtx4b3kvclXWM+a5oH2aqPm23w+MnMaf9bt1aFlE8g0EOTPIeJTQ+jHQwGg8HgjeNmjPbp6ak+f/78EquQJeixIGZhklnKeko1ql0cQr9LdDvFzDpBeIpVp+PSUu7qHR3n2uT5GMkSBDKAlMFHRksGl1geVYt4zJQFSibbMYMEz25cKUPt9/uNQLtnMfOcXe1wYouXNo13nFOESmyra5PIzzTGjklyvaesTG3LTM6Usd55XXj+lLHOfAXW3NKT4sfh/eJnYs6XKENpXzZDSB4ggQ0U0vHFKFUDS88SM3uT96Vr3p4U8PQd65q79oz+XZc5vgLVmzQ/Pfdkqb4tP8mKxc5TA5bO87DKqtbYOg+lj5HHnRjtYDAYDAb/AMw/2sFgMBgMroibuo7/+OOPF9dxEqqg+6Prz+gp5QLdEJ1bNrnJ6GJgkoi7crs+sHTPpmJzJuowGSEl1rD8ha601KO3c4nSbdK5CdMxWPqQxt25+1K6PYU+Vnh+/v9exmwqkCTcdB86SbckUcgx8BgpaYylYEw4SeU9SSBiNQ7N3cdNNxwTq1IpGl2fXA9J5J/n7ZpNJJcun71uLflxmMjC4yf37Wr9Ot69e7cRnk8CGCx7olvW56r7r8TMLmktuWuZfOWlS34+x2+//fbqvDoG5QdTmRwlSzvRE1+rnduXazSJhnTJhArfJWlEueK5jtkXObmB6VbmtVj1P76FWEXVMNrBYDAYDK6KmzHa4/FYf/7554v1JivDU7y74mhZSvzdtyVLkHWjJAJBVpVvo7Gw6DslizCNvmu/51Z2x2CElRgBy2l4DZhM4tsy+alLPEnJEZ0sYSrLOtdajyUPVWuBijSWx8fHzbl93GSQlDVM5UpMKOqaCyQLnY0vyGQ1Z58nyxrIKLROLml8wGclJZaQ8dEjcEmjha7lYWKnPF8nlOIsSPdU14TXOo1xxXKJ3W4XWwdym6rtmuwE/P3c2kbvFTK+JFVICUZ6X1Qek94HTBD195kfkz/7WLmWkveF76SurHAl/apPJYzRU+jXW/PoPETJY8MEQD6LKZmV3oO7u7tJhhoMBoPB4K3jpk0FHh8fNxbqqoE45RSTDJcs7k+fPr3apythSWn9TO9nKYAjyf+l86Y2XB37pUWbmFPXGDsJ3tP67K7BSoqxa7ydypfOSTAyXuVjuyRWK9GBFBcUKG5CFrcqneH1Ylu0tE66ua4aEPB+dC0QL2n/xjGl9pCdlGRXupHmxWdyJcXJ81Fgn54O34dMvfMy+FwZn07Y7XZ1f3+/uT6rRgpkRonR8vkjs6VEq89Za7KT6Uwt97rnQyI+SWq2E3tIHiGC958MVn938SBdN82dokGMt7oAiH5mAwfmhPi10rb0mHB+SaSoE0a5FobRDgaDwWBwRexu1fh2t9v9u6r+dZOTDd4q/u/5+fkn/nHWzuACzNoZ/F3EtfM1cbN/tIPBYDAY/C9iXMeDwWAwGFwR8492MBgMBoMrYv7RDgaDwWBwRcw/2sFgMBgMroj5RzsYDAaDwRUx/2gHg8FgMLgi5h/tYDAYDAZXxPyjHQwGg8Hgiph/tIPBYDAYXBH/AZKP8fDLJfmhAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1408,7 +1527,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZVlVJTrWjSDJnmxEILWe2FVpWSoqFFgqoKVoodhSYodSvlempU+xF7WepCgq8ik2SIkNIqJiL/YgaIqIHXZlB9hk8lAyIUmyjcgu4u76sc+MO+84c8y1zo0bEfvgHN93v3PPbla3115njdm2aZpQKBQKhUJh+dg51w0oFAqFQqEwhvrRLhQKhUJhS1A/2oVCoVAobAnqR7tQKBQKhS1B/WgXCoVCobAlqB/tQqFQKBS2BN0f7dbaU1prU2vt1tba5XTu6OrcNWeshVuK1tpjW2vXtNZ26PhDV2P2lHPUtMIhYPVefP45qnta/a3V31p7cWvtejp2/er6nxTl/c7q/KtFPfz34oE27rTW/qK19lV0/JNba69qrb21tXZXa+2NrbVfaq19nLvG1pz3GhiHa3ptOZdY9e15h1ymei7+7/pDquv8VXlPO6Ty3mu1Lv5fwbkbW2s/cBj1HAZaax/ZWvvD1Tx9c2vtO1pr9x+89zGttVe01m5qrd3eWntta+3Jh9Guoxtc+wAAXwvgUB7evwI8FsDTAXwLgF13/AYAHwrgH89BmwqHh6dgfn9ecA7b8PTW2ounabp34No7AHxya+2SaZrusIOttXcD8JjV+QgvBPB8OnbTQH2fA+AhAE79YLXWvhTA92Aes2cDOAbgPQF8PICPAvCbA+VuG74JwB+31r57mqY3HFKZH0rffxHAXwK4xh2755DqumdV3/9/SOW9F+Z18RVBmY8HcMsh1XNaaK09HPN8fCmAb8Dc7mcDeBCAzxu49+UAfhfA52Mew88A8KLW2tFpmn70dNq2yY/2ywF8SWvtOdM0veV0Kv3XjGma7gHwh+e6HYWtx8sBPA7A1QC+b+D63wLwMQA+DfMPseHJAK4H8CYAR4L7/mWapoPM168C8KJpmo7TsV+apun/dsd+G8APsURqqWit3X/1Dg9hmqY/b639OYAvA/BFh9EGfh6ttXsAvG30OW3Sh2mOvnVW1qtpmv7sbNQziG8G8A8APnOappMAXtlamwA8v7X2HdM0/U1y72cBOAHgk6Zpumt17OWttQ8C8LkATutHe5MX5VtWn/+zd2Fr7T+uRAN3ttaOtdZe2Vr7j3TNC1tr/9xa+6DW2u+11o631v6+tfaFI43Z5P7W2ru31n5iJaq4ZyW2+5Tgus9srb2utXZ3a+2vWmuf2Fq7trV2rbvm/Nbac1prf73q342ttV9prb2Pu+YazLtJALjPRFarc/vE4621r26t3dtauzJoz9+21l7qvl/YWntWa+261T3Xtda+YWTBa61d1Fr79tbaP67G4MbW2s+31h7krtnkuT28tfaalejo9a21j1+d/4o2i2Nvb629tLX2QLp/aq09c9Xuf17d/6rW2sPoutZa+/JV2fe21m5orT23tXZpUN63tNa+dDUed7TWfre19n7BGHxqm8Vdx9us7vnZRmK6Vdtf3Fr7jNba363G4bWttQ9311yLmZ1+WNsTR167Ovfg1tqPtVmcds+q3b/aWnvn3jPaEH8C4JcAfENr7cKB6+8C8HOYf6Q9ngzgxwEcWmjE1tojAbw/ABbHXwHgxuieaZp2o+OuzIe31t7SWvuF1tr5yXUf2Fr75dbaLau59futtY+gax7RWvs5N/9e31r71tbaBXTdta21V7fWntBa+/M2/zh+0erc8LwD8BIAn83lnw201l7SWvuH1tqjV3P/LgDPWJ373FWbb1q1/09ba59F96+Jx1fryInW2nu31l62ekeua619XWutJW35OAC/sfr6e+7dedTq/D7xeGvtC1fnH9HmtcrW269cnX9Ca+0vV/X/UWvtA4M6n9Ra++PVO3/LajzepTNmFwL4aAAvWf1gG34KwEkAn5jdD+A8zOz6bjp+G9xvbmvtAa2157XW3rRaK97SWnt566iFME1T+odZDDhhFg88a9WYd1udO7o6d427/gMwLxB/CuCJmHf2f7I69oHuuhcCuB3A32FmCx+D+SWfAHzkQLuG7gfwbwC8FcBfYxbZfSxm8dwugE90133M6tgvYRbTfB6AfwLwZgDXuuseAOCHMYs7HgPgUzCzmFsAPHh1zbuurpkAfBiARwF41OrcQ1fHn7L6/i6YJ8IXUf8+ZHXdp7mx/j0AN2Petf9nzGKbuwF8Z2eszgPwGsziyP9v1dcnAvghAO9zwOf2t5hFPx+3atfdAL4TwK9gFnd+/uq6n6G2TJhZ3e8D+GQATwLw+lW/rnDXfevq2ueuntmXA7hzVdcOlXc9gJdhfpmeCOA6zLvko+66L1xd+4LV830S5rlzHYBL3HXXA3jjqu9PBPAJAP4cwK0ALltd8+8B/BlmkeSjVn//fnXutwC8AcBnA3g0gP8K4AcAPLQ3p0f/Vv34FgDvt5o7T3PnXgzgerr++tXxx66uf9fV8UetynpPANcCeHVQzzMxz71TfwPte/rq2e/Q8d8GcBzAVwP4tyNrzur74zCL738AwBFqn197PhjzHH/16tk9HsAvY16zPsRd92mYyccnYH6HvwjzZuIl1I5rMa8d12Gez48F8AGbzLvVtQ9fXf9RhzUHoucrzr1kNXffuOrnYwE8wj2n/4F5PfgYzO/cSazWptU156/a7ufYt6+u+yvMa9FHY1aDTJiZqWrnA1bXTwC+AHvvzsWr8zcC+IHgnX09gK9b1fOjq2Pfhvn9+/TV+L8B83rt58eXYV7Tnw/gvwD4TAB/v7r2wqSdD1vV8SnBuX8C8OOd5/HBmNfN52BWEV0B4IsB3OfLxLxZ/hcA/w3zWvGpAL4bwAen5Q9MiKdg70f7itUEeMHqXPSj/XNwC9zq2KUA3g7gF9yxF2L9B/b+mBfvHxxo19D9AH4Esw7uSrr/twD8hfv+Gsw/7M0dsx/Oa5N2HAFwIeZF5cvd8WtW9/IL/FC4H23Xlj+g674b80bg/qvvT17d92i67hsA3AvgnZM2fv7q3k9Mrtn0uT3aHfsA7L1c/qX5rtVE5YX2bQAuojG5D8A3r75fgXmhfSG18XO4H6vvfw/gfu7YE1fH/9Pq+8WYd7kvoPLefTV2X+aOXb8a98vdMVt0P8sduxb0I7c6fieAL+3N39P5W7XlW1b///jqGT1g9T370W6r/5+2Ov48AL+v+rOqJ/p7r077fsPKpeP/FsD/duW8DTN7eRxd9xTsrTmfvXpG3yTGwa89r8S8ETuP3s+/wyyWj9raMK9jn4N5gb/Snbt2dexhou503rnj98P8I/f1Z2g+XI/8R3sC8LGdMnZW4/DjAP7IHVc/2vt+oFfj+AYAv9yp5+NW9354cE79aH+NO3Ye5vfzbqw2n6vjn7669pGr75dh3sA9L5iDJwB8YdLGj1qV9djg3GsB/NrAM/lPmO2XbK7fDeBz6Jp/APCtmz7vjfRI0zS9HTOb+tzW2r8Tlz0awK9O03Sru+92zDvex9C1x6dp+h133T2YH/wpkWWbLdRP/W16P+ZJ8usAbqNyXgbgA1trl7bWjmBemH9+Wo3mqrw/xbx73ofW2qevxDG3Yp4AxzD/MKgx6eFFAB5lYpFV+z4TM0s13dPHYd4tv4b68XLMi8KjkvIfB+DGaZp+Oblmk+d2bJqmV7nvr1t9vmLaL056HeaF4CF0/69P03TM1XM9Zr2ZGdg8CvPLyVbKL8E83tye35qm6T73/a9WnzYPPhTzBuQnaOzetGrjo6m8P5imyRvEcHkZ/gTAV7fWntpae/9MXGhorR2heb7Je/l0zHPvq3sXrub2iwE8ubV2HmZpw4s6t70AwCPo702de65CYKw2zYZYH4T5+T0TwF9gllS9rLUWqd2+DPMm8anTND09q3Alen4MgJ8FsOueccNs9PRod+2lbVYz/SPmzeF9mH+sGoD3pqKvn6bpL0S1vXln/b4P86bxqk4fsrXudHB8mqaXBfW9T2vtZ1prb8b8Xt2HefMyuo79mv2zmlt/g7F3ZFOYSB3TbHR5HYC/mabpn901tgb9m9XnR2AmU/zO/9Pqj9/5Q0Nr7X0xz8M/xSzN+RjMEoIXtNae6C79EwBf0Fr72tbaB4++9wcx/ngO5p39M8T5KzDvMBg3AricjkWWgvdg3t2htfZQzBPp1N/q2ND9K7wzZuX/ffT37NX5KwG8E+YfvrcG5e0zumutPQHAT2PevX8WgEdiXshuono3wS9g/uE3fePjVu32C+o7A3i3oB9/7PqhcCVmMUyGTZ7brf7LtGe9zM/DjvO4RIaMb8GsKrC2gNszTdMJrMTodO/b6bttdKxe0ye/Auvj9/5YH7t95bmN08jzfRLmjc7XYGaV/9Ja+8bOC/lKatM3DtRjbfsnzNKkpzayHxB4EWbx/tMBXIR5Lme4YZqm19Jfz4jpfAjr5WmaTk7T9Kppmv7nNE0fDeA9MP/YPb2RSylmFdS/APj5Tn3APCeOYFb/8DP+fwFc7p7Bj2Jmcd+LeUF9BGbxpbXdI3onDL1553EXAKnTHljrTgdrdgSttcswvw/vg3nD9+GYx+EnMDbPT6429R689h4WonWlt9bYO/9qrM+H90a+XlrZPB+BeZ7xc2d8B2b10CdN0/Rr0zS9Ypqm/4FZdfi97rqrMW+Kr8b8A/+W1tqzW2KzAWxmPQ4AmKbpztbat2Fm3M8OLnk7gAcHxx+Mzc3534x5IvGxTXAzZj3os5I6bJcZGQs9CPtdEz4DwD9M0/QUO9Baux/Wf0iGMU3TsdbaL2IWBT4d8273n6Zp+n132c2Yd5ifLoq5PqnibQD+Q6cZh/nceniQOGYbC3spHox59w7glATiSvRfGsbNq8+n+PIclLvTxpim6a2YfwC+eCWN+jzMbj83Afhf4rarAVzivm86x795Vc/XD7TvDa21P8LsuvkLXrJyiLgZ8YIXtefNrbUfxuwK9t7Y24QCs+75BwFc21r7qGmaQiO2FW7FLMr+fgjpwTRNu6sF8ZMwi9W/x8611t5fNXGkHwO4AvN7qHAYa51C1IePwLxJ/uRpml5rB1dr2TsC7J3/LMxqDAZvODxej/k34f0wu9MBAFprF2OWJPxQp+73B/AakjoC89z+1NbaZdM03bra9HwNgK9prb075rX9mZjtPqRk6aAimOcB+ArsWZR7/C6AxzfnD9pauwTAEzDriIaxYnCv7V6Y4zcxi0f/Ztozv19Da+21AD6ttXaNichbax+CWe/pf7QvxPxAPZ6MdXcZ23VfgLEfhRcB+JzW2sdiNtDiDdFvYl7E7pym6XV8cwcvB/AZrbUnTNP0K+KaQ3tuA3h8a+0iE5GvGMWjMOvKgFlUfi/mDdIr3X1PwjxnN23PazA/g/eapunHDtzq/bgH+39o1zBN0+sBfH2bPRrkpml13YGx+uH7fgBfgjH3nO/ALH167unUmyBSOaC19pBpmiLmap4X/KP8L5gNp34HwO+sfrhD5rva+P4egA8E8GeTtka/P+Z39T46/hRx/WmjtfZgzAxQPudDWus2gXkcnBqHNns4PP4M1+vXxTOJV2GWbrzHNE0/tcmN0zQdb629EvOa+W3ux/czMM8dtYYabgTwQW32yfa/FY/EvA6t/R5M03QdgGe11j4PHYJ1oB/taZruaa09A/MumPHNmOX4r2ytPQvzLu9rMU8SJVI/k/hGzDucV7XWnouZkV6OeWDeY5omiyr1dMw/br/YWvtBzCLzazA/AL8A/CbmIBXPAfCrmHXhXwISGWO2rgaAr2yt/QZmcVL2Ur4S8876RzBP6B+n8z+B2crwla2178RsOXkeZsvfT8S8Yz6OGC8G8N8B/NRKSvJHmH9wPhbAd682AWfzud2F2W/x2ZgX0W/CvPN9DjDbTqz6+HWttWOYbRLeF/Mm8dVwurQRTNN0e2vtqwF8/0qE/BuYdYzvglkPeu00TWG0sAR/C+CLWmtPwhwo5w7Mc+UVmJ/V6zAviJ+Eeb69fMPyN8W3Y7bIfQxm2weJaZp+AbNK5kzhVQD+W2vtymmabnbH/7q19grMz/M6zHYGj8csqv6ZaZrWAnhM03RDa+2xmC3P7YdbMdCvWNX9stbaj2AWbb8TZmveI9M0PW2apttaa3+I+b28ATP7/XzsqWbOBB65+nxVetXZxe9hVsk9f7WWX4p5rXwLZu+XM4XXYV5P/5/Vu30vgL/zNi6HgdUa8jQA39lauwqzDdMdmJ/zRwL4jWmafi4p4hsxrzU/2Vp7PvaCq7x4mqa/totaa1+AmcR+2DRNf7Q6/H2Y19yXru69B7Nl+KcAOLUJWBHFn8Es/TuG2Tr+fTBLnSROJ6DBjyIQO0zT9L8x745vB/BjmH987gTwmGma/vI06jsQVgvBwzH/yH0rZkvt/4V5cfttd91vYRZPvy9mkcjXAvhKzAvxba7IH8IswngS5h3X4zGzUX8NMP+gPw+zm8UfYDY6yNq5i9ll7V0wG0L9A52/D/OP7A9hXpx/HfOPw+dhZpIyKtbq3set+m33Pg/zgvb21TVn87m9CPMP73NXdd0E4D+vDB0N34B5Ef4vmMfyaav7Pj5hURLTND0f8+bm32Hu269j3pQdxWwQtSmehXmj9cOYn+3zMVuI/hnmDdLPYZ5HHwrgs6dpeqko51Cw+nH8rjNZxwZ4Keax+AQ6/g2YN6TPwLyJ+WnM4/M0rPuPn8JKLP5YzJuga5vws53m4ByPwCwa/d5VHd+DWVzpfzA/E7MO8fsxG7rdCOCp493bGJ8A4E/5nT6XWG18Pg3z8/h5zJv278M8b89kvTdgHutHYn4mf4L5+ZyJur4Xs0X/f8C8Vv4aZnI2Yc9oUN37x5jXnodiXiu+CfPa+9/p0h3M7Lu5e38C81pzKWad9c9inpdXY3+ck1dhFt//JOY17gkAvni1Vkk0ZyxdILTW3hWzWf4zp2n65nPdnncEtDnIzDOnaeoG6SlsL1prL8TskvPR57ot5xIrHfoNAL5qmqYfOdftKWw/DtOtYKuxchn5Lszizbdhtmr9GsxGAT98DptWKGwjvgnA37XWHt5RC72j42rMXimHZUtR+FeO+tHew0nM1srPxWyhfAyz3ue/KuOXQqEQY5qm69ocqveww7duG+7BHEiJjVcLhQOhxOOFQqFQKGwJtiKzTqFQKBQKhfrRLhQKhUJha1A/2oVCoVAobAkWZYh24YUXTpdddtmhlOXzNHDOht730XJPp02ne210/iD3nM61BxmL02mD2V+84Q1veNs0TfvibF9++eXTQx7yEOzs7By4bVyP/58/R+4dPbfJPQexQdnknpH6RtuUjdkmY3GYdjc33HDD2ty56KKL9q07NndsLgHAkSNH9n3aOT4erTv8eTpYShlnCpvM903m6u7ubvh54sSJbj2G6667bm3unAss6kf7sssuw9VXX31aZdjLdN555506dvTo3E1+GXvfPdS5kRdSbRKyFzxqg7qXFxL+jNqhFhT16ctS47bJWKhr7VlF9Zw8OUcTfPSjH70W8euqq67CT//0T5967vaZPUt7ca1c+7QX2f9/3333hdfyIuDBCwFfw/X7e3qLTbaxUPVH1/Xq82NhUH3n43av7zcf43r5u7/nMH68r7nmmrW5Y+uOlX//+98fAHDRRReduubiiy8GAFx66aUAgEsuueTUvQBw4YVzVNALLtiLzmlz+X73m8N58w+7fWb9Uu/hyLtm5WbvnFpnemVG5XObszr4XVCbY39d9L74a6P3197be++dY08dOzYHXjt+fA4eedNNN+377uux52V48pOfnEYaPFso8XihUCgUCluCRTHtw0DEDBUDVTvCTRhp1gZ1zQjT7t07ArUT9udG4Xe8tgPNyh9F1m/e6fbG/H73u98pdhNJGxSr4J27R0+Mq9hzVsYIs+LvPDd9m3vjPyLiV0ybpRJR21T9/PyiY9aPjK1Z39WYny6mado3JpE0o8d4uY0eVl5PdZO9p4qVH2Q9iNqm6uN6s7mjnqGvg99LnmfZPOBr+DnZZ7b28/pgUhXPtFmatqk04kxjWa0pFAqFQqEg8Q7HtFm/Gx2LjEZ66DHhTQzfsuOjRiuRjnkTbHqP32GrHeiITYC6NtOdG0w3GMGYtj1b3lH78lgHZhgxNlMsL7q3x1ZPx+hqZPevDPl8O3p9ztp4OjpmZa9g8P1jNm7POJOQnA6icg/yTo++Y5swudMxbouem2KvPduaTZCtByx5GZFC2T3KnsR/7+nXo98CtT4sBcW0C4VCoVDYEtSPdqFQKBQKW4J3GPE4Gxx4sYsyQui5VQF9t4lNXL0ybCpK28SIbcTwzaAMX6Ix6RmRZOWOtJ2fj3cHY7TWcOTIkbVnHbWJ251BuSSx6CwS1SlDGS57xH2Lz0dQYzkixj4dMblyRxsRx4/MHXuWmXvdYeIgRnfZPcrVa8Qlk8dpxOVLqWMyd8GDGMD2rs3WKgOPQWZ4x3OH30EWm0dtUGPufy94rpu72FJQTLtQKBQKhS3BOwzTVhGLgL2dOl+jdsAZ0zbwDi4yQGIcJFrWCA7CYjdh5dF3YDyoS9Zm+xyJKNUrd2dnJ50HPcYbBW9QgVdUYJbIYK/HREeYz8iYKhaRsWgVvCULssLH7JPHgPvP//s2snFZxlzPtAuYaqtvwyYGqUoKOMK0Vb0R2I1KzZlI8tGTuG0iNRyJSthzv80kZEpSNuLyxcdHJIlLQzHtQqFQKBS2BO8wTNvYdObqo3a6vNvP7uXjkf6oFxrSkAXiUDtgFWIvujfbzY6wVn9PxiD4mozlqnqyYCijDL61tiZV8ff0XK6y0Il8TrHMjKWrcJ/R2PRiW4+4/I3o47n9qo1ZvyxUpKovczHi/trxKJQsYxP2d7rgPil7gU1sDrLj6prMVoPbplwzI8mOamuGnnvYiN59E+mckj5lkitro83RTUIvR2F4l4Bi2oVCoVAobAm2nmlbGDoLvMFB+gHNOEcsJVVAFi4rY9qZ3tMwqgcfsQhWOsxoN7tJgJRefVnbOPSp6peXICiJSARj2cxMo3YqewQl3QB0cgyzLM2SFfCOncuImChbwWdBY1S4V8WWI9bMSTnsk5m4L2/kGfagxj6SuCh99yZW8qcLJU3gtgB6/jJrNowk5cn04FlSGX/vSKhdZb0eJbdR6+kmzyMbx9412Rjxe8PvQnbPQfpxNlBMu1AoFAqFLcHWMm3bGTHDZkbn/2eryoxZKSj9eLQbU2HwIutOZbU7gl5g+0ynNLrDjqAYdsToFBtkSUWmO8/QWsPOzs6QtatibJF+TYXA5TYaI808D4x5c18ji3Nm4fycfOpZro/bllnHs75YPcPM4lj5z48wFJUwJAKP9dnUNarQx0oiEl2r2hslG4mYrQd7XUTgZ5tJJJTO3trGKWr9PT1r/uid5rbxOmrjOSJRVBIsf8zqtd+LzN7nbNpKHATFtAuFQqFQ2BJsHdPm3b2ysh2xAFdMMdMxMjPMAs6rz4gNsr61p+OOduC2e+V+RhbnPT0/M8fMwllFLvP9Y2mA2kF71sYsYsTiPdOrGUtQjDdj2sZsbafOu3q2JvfnTO9tn3ffffe+doxYc/PniC+qspAd8Z9lHEQCEs0dxfrVeAJ7z8CzPH/NmWLcfv7x87fv9hlJG3rW1Zmty2jfIhsQ9nlnVh55R/TeS7ZxAPaeB9fH7Dzrg/LosXEdWce5D5nHiNVzwQUXANh7F6P5faYT0xwUxbQLhUKhUNgS1I92oVAoFApbgq0Qj0cuWEpcnYkPORgElx8ZkyjjChUWL2oLi/4isaIyOFJGS5nIaUTU3gsFOGJExAFtMreuzKXHn/fit03czux6vicK0sFGN+wW4kWdLL7lMeX555MLsHj8nnvuAQDcddddAIDjx4+v3cMifN8337bMWI7HgMWm3h2SXWEYmSueCnZhyAzf2B2O7/H9t/utXhs/VhUdlmuO1WPupABw/vnnAwAuvPBCAMBFF10EYF0U7KFcvFjFkgXZ4cA1hsxdMHN7VOitL5HaQqkIrQwTPUduYkoMzmPvnwGrIkYM31glwIaPbMjs/7fPEo8XCoVCoVA4ELaOaRuUuX+U4IANftTONtqZ2k6PXWzsWmNJkQsO7x7Vbi+6p8caNgn7F7k1qN2jcvXx7WF3O78b9tf6Onh3HLFabiM/Y88QI0zTlIaK7Rm2ZYyN7+X2jxgxGmxuMuOK6lZuXJn0SQWPyQIBqefNDB/oJ97h9y0K5qJcjLhP/hxLqphZHpZBWsS+7P02AyaWuESSA16LOJSmIXLfylzugL11x9en3MCsH9b2kYQhXF/k8sXnrF8mUTp27Njatdwm6wdLIyKJE0uZRqSCitlb2yJJEktEimkXCoVCoVA4ELaCaftdX6ZL9tdGO1ClF2Lm63edapfMO0O/G2OGzawsCjCgQkAyi4nYoGLdI/pdLo/doaJdJveZdY6ZGwy7UUSshtuvAptkiJ6lCgKSMUOGGi/W4/lzqh5DlvyjF9Y0uqbn2hW5/DCzGQkaxOPJes+IffIYG9NSNhZRG5hZR7rNTdhRaw1HjhxZm7+mxwbWpTwcvjaSSFi/TRKl7CLY5sbfy/PMWGw0l0zfzuUZqzQbiosvvvjUPfyc2T5CuR76//k58/OPbIT43baxVi51EZQ9iY2RP6Yke7x2RW2qhCGFQqFQKBQOhK1g2n73bTsx3vkyqxlJcKB0mBE7U5bfrMfx9/COPdPfsv5RhU3MrFQZvOP1VsrWXt5pKp3wSFhQHiu/S+adNe/gIxbdC4/oYWFMeV74clXfVJhbf07NHWY8nmnbeNu9zASieckSHNYXZgkOVHCVLAAMM7cRC2weY2aOrKtXqTX9vSPPWOl5I5bL9/Tgxy7zIrHnq9h/ZJnP7w5Ll6J227uj3r9IWschOnksjWn7+kzPbfXxOsDPx89vmzssFeA+RJIkXiPNGp/Xd28vw/Op59ED7L1z1ndluR95Gxm8xGUJKKZdKBQKhcKWYCuYtt9t8a4BHGMlAAAgAElEQVRa7b6j3b1iESrtpj/X8wuP/HN5d8w7z0gvrdrI/Yp2r7z7ts9M18PsSLG1LNWl0rv7+rifNhY9/21/jR/jCF4vGemqeIeubBo8mOn09GjmQwysSzgii19uI4+DzX221PYsQ4XW5eefvRNZKF8Gz1WWHChpim8Dh8llVuqfhbIn4f4flGmbTpstxKN2q7kS+Wur5Bg8N+3di9YDnl8skfBl29zj+eDZMbed30dlL6DsMXwZym878lqx/vAne+tEftpclrKw9+3nelmXH0larM/KFuZcoZh2oVAoFApbgmVtIQiZTkTpFDPWxKxR6ZQ8o+vpiTLrWmYTXH8UMUxZN7K1qr+Xy1OW31GkILXjZB2+3+XatWzpmeklbSxsp8tM0hDplkb0rK01tNbW9OsRu1SWy4ZMr2q6sVtuuQUAcMcddwBYt+4F9piPstCNpBjMupiBRmPMTIrZErPbKLqZgedfZNnMkdx4PI2p2pj49rGu1mD9s/ng50Hkz+4RWbNHtiYKrTUcPXo09f9VPtb8vPw91q7bb7993/eRyHFWLs9RG9tMusDlqaQ3/hq2v+C5at8jHTMzbPZvjiQW9m4oWwpra2Qdz+u2srHw17B3hJXLkixg3d7nsCLtHRaKaRcKhUKhsCVYJNNmNu13UsrKWcX5BbT1aqT3BOIdNl/DjDGyNFV+xRlzYCkA7/ayyFvcz5G4yKp+tjz3O2zuX+bTy2CJCPt4Zv7amQX7NE2YpmmNmUZSGjWW0dhau+68804AwM033wxgXY9766237rse2GMTD3jAAwDsWaFanzNfciV5iSzOmUFzXGWWPkU6dAOPAUtIPLgfbFltY+bHxMbArIVtjLL4/Cq2unpHDgJfX+QbrN53ZVsD7EkkWDLBcctt3KI2sM0Bv59+bK0t7BfOzDSzh2A7DJZYRXYxBo4WZ+ejFKfcFpNcsd2Jb6uVd8kllwAAbrrpJgB789zq9/VxDHPWaVt7ojWyJ+E5VyimXSgUCoXClqB+tAuFQqFQ2BIsUjxuYIMnQLt7sEGTF3eo4BMGFiP6+lRQC3YliES3yr0lEqkr1wsDi8sisZhKpxcZL7ErB4vQ7DNKr8cJCFg8H4kXe+kbo4AJkTuGggVX4aQVGVi8b/X4e018+/a3vx3AXkhIM4qxNlqf7TgAXHrppQDWA0ZYGVFADn7ubOiUubVwP1gEGCWHYPEni3kjkTOrGaw+mw9WJqsD/DkrgwN0cB2+H5FrlP8eqQxGYHOHxy1yO7N1ZiR9I48lh8fkoB1Rm+3ZmYrF6o9SZdo5C1Oq3BX981D9YeOuKAmQweozsf/Is1RuVPa+2bzwY2T3XHHFFQD2xOW33XbbvjZaO3xfrT/8TkRrcaYuXQKKaRcKhUKhsCVYJNNm9pIZpfDOLWIiyi2DDagiwyB1rx0fMfJSYf6i3aYyDDJErhDWZzvHLkBRmEfbpao0jnatMccoIAOnJbXxtN0xSz88WEIRGZ4oY6wIrTXc7373W2PYUcAKFV7S4J+p3WPGL8yOrAxmsxHMIImlQ75/kcuTb1NkiMkhIbkNNlejBB6KKWbhYNlokN2RbIzY9ctfy/3h9zgytDSosKz+uk2Mh8yIkeuJXPGUFCNyT7R22jhYO+27McLoPWGjO7vHwO+rb4uNP7PjKCCLcrmMngOwf23h953rt7UjSuTCLrRXXnnlvraxkaNvkx1j6UM0Vmy4qRIU+e+HaeB4JlBMu1AoFAqFLcEimbYhCl/JO16lc46CgagUnCr4CbC+u2M9UaZj5DbzjjAKkMKw+tnlhJmQh3LBipglMzpmPlkiDyXtiJg2jxfraKO2ZQkVGMa0ufzIFY/dWwys/wLWGbYxDdNLZ3p3dmuzfnByBD9X7Rqlx492/Sx9Us89Os9SIGZCkQ6S9Z4qxGaWUpUlGNzfSJLE847PR4x+FLu7u2vuVN4+gd83+27XRFJBZrgcoIUlJH6M1XqjwqdGbeSQvla/lxb10oTyfPB1sH0NB1nJbImYxbLOWUmcfH02d8x2hPsErAenUalGo1TOI3Yx5wLFtAuFQqFQ2BIsmmlHQep7CS6y3R0zDt69ZveoIAcRC1RJMGyHa/dGVrXMJnjnG+l5FRNhXXNkG6CkDBykJrJ07+mI/XNTz4nr9yyQd8NZcBWrIwvLyclWVKKD6B4uVyWmiXbsBraqtznsmY9izcwCI8bNY6xsKKLkNioQS+bpwEGQouQ53A7FwkckV8pq3OADf/TmiodJaaI5aOD2sgV4tu6oIERcz4jFO3siRO+0gdmlrTfGUH0b+F3gZxqtO72wrNF4qsQ7Kt1qFo5arTv+O4fNjYLS+PqjPisp6LlCMe1CoVAoFLYEi2bamf+l0r1GiT2YRar0k9GuTlmWj+y+mIkyW/JtVClAVf0ZG+AdaJTmTiWS57IypqX0rpHVpdLVZuPIu+NR3bZHZM3L82okCQyXr3b3kY5RSVEi63HuI6fXzMLYKkmHkvz4cvk5Z7YNSsrFiRaiuaWkJtl3ljqwBGbEriRDa3NqzmwdsDrYXoP93D2DU/ON64ms35lNcjjO7F1Q+lq71+ul2d5CvQsR6+Q5w6w9sq1RqVKVx00kuVJtiuYqS4NUmN4o3DH3cylYVmsKhUKhUChILJppG7KoTIpF+92S2uFmumx1L9cftZFZLOtvoshhylpU7RB9m5WOntvud+cqGH6UkIKhrJOVnjorg3f40XMbaRPfE0kkeuUpFgCsR+Vie4HIf56hbAEi9tJra5b0I9Mp+jr8OZ6zzECiqG18zsaALXYjP12un/uSSb02kYyMYJom7O7ursU7yKRZSmIU2XFk0ez8vf79ZOkYSzeyMvkZWps4UUnWJrW+RTp0totQ9j/+fuXRwDZLUb/4nVDrn/+fpXUqJWjU/vLTLhQKhUKhcCDUj3ahUCgUCluCrRCPeyiXFDZ+iESAyiAnc5XpiZ4jEWBk3ODbHhl1KDGVEl9nAe6VgU5mnKdErBHUWGdqB2Vgxy4ekTiby1CI7s1cyBRG+s45i6MEDgrZ/GN3QA5yEYkcVW55QxZkh0PSKlefKJwkP39WGWS5v1WQi2zsVejbwxBfnjx5MnUxZHc9ns+RYVgWoCi6NwrqpFwAo/zdBms/5+m2PlhSjgjK2IvP+7axASI//2h+s8Ewr5nRvFPr2Yi6hNcs9Tvi28IqyqWgmHahUCgUCluCRTFtc73IjFV4h8af2e62x0i4Dn+NYojW1ihgBQfdZ3e1zOiKj2dQO/ksNSf3ncvIWC3vlhXTjgxCeBy5bVEoR9VGhu9fxsLUM+Tv0f3q2k2SC2QGeioghiFidCp8qQqBGUlp+Hmo+oE8aE9UX+aeNmIUys+yxwY3xTRN+5i2IVoHeP3JAuiwRK3X50gyxWWxRCQaW3tm9mkGaNEzHU2OkbFXO2eMm93g/LhyuFdmwOpZ+/95rVcGav5/TvCkDIw92IhtKSimXSgUCoXClmBxTPvo0aOndlAcDhHQbCvTR424dvE9BuV6wzpMz86UHmokLF5PlxS1kZk9s6eILal+MTvKXOi4jIxpK7e7Xlhaj03CCfJzitqpWHPE2Hs62IwZqGcXpT9kHR+7xm0S6IHbGAXK4XKZVdjcicaE51vGWgw9thyxJe6HChpzOox7mtZTc0b9UcFUovmbvQ98LUPpa5WNg79WSWeidYClmj0bl2hd5fU6S8lr13CCEHapzGxS+N3O7CJYP831Zyw6kzadSxTTLhQKhUJhS7Aopg3Mu09mpBlbUvpJvyPchAn4Mvn/qJ7IQpLvVdf4fqlgAyO6F94tqgQFfsfY039mwVz4np6FfXR/T8/n/+ekKQqtNdl+317V90inrZivKiuqTzG4qD9s/8DHMymGQdkaRLpvTn/KOlOWiPj/mXEr5phJadR4ZvXxuI7ODwULrnKQcJX8nCLLfGVzoOZhdI3SOUeskgOJqPUhKo/HVAV98uVwPXfeeScA4OKLL16rz8Dr50iIYtVmQzTOUVhrX1/EotU7vxQU0y4UCoVCYUuwOKYNrPsvRlaVrMfNdurKunWTtmS6S1WfskaNUtr1rDaz+thqlOuL2JliCMpKNmoT9ycbV+6z0u9FTMXQ86/292eWpIo1RzoxxY42sbJV90Q7eaXLzPShzDAVW8osgPldy/R4KrTuiPSkx1oiWwRGFur0oDC2DcTPgOcVs0vzfTZLbX9tjxlm75hB+c/795h9nTlBUWRDwWOoni2f9/WwbpsZt6/jwgsvDPvJcQmyOavsSaJ7rM/2fFSK20i6xsl0loJltaZQKBQKhYLEopj2NE24995716IP8TUetkPjeyL20vMnje5VbMwQRSZiJqoYz4iuZJNoP5H+0R+PmImy/M502SpqUU9nF9Wrvkf96flL+v6ZdWikx+fdNp+P6ukxkKgfPb1tVIbydFDPNipXHY88HQwcNcuutfGLrKLZD5ctgjlFbNTG7N3jYz19+OnA1xulhbRx4EQ7I54uSgKxyfuiGKl/lvbsOHGLIWL2yu9cjW22zlm/+N0zxu2vURbmI8+yNw+iMhSDjyzuOZnIYcyvw0Qx7UKhUCgUtgT1o10oFAqFwpZgceLxkydPpuE+lZELizKioAPKcGXEbYeRBVdhseBI2EIVzKCXfzgqnzES0pMN+zJDkGys/fEILFJTrma+TRyuUMG7fEWBRFhNoj69+wkbrGziqsRzpGf85+vmYBMqkERULovD1WfUFhaTR6oJfi95jFj9ELn89Fw2IwMrPneYYsvd3d01F1PfBjX+1v7MZUk990wczmPGYnH7Hs0dE4tbWFFWtUShgtU7nanAuPzo/fHXAXuichsTm2ebqEmUGJzb6qHCX7MayB87TEPHw0Qx7UKhUCgUtgSLYtqtNezs7KSp0ZidqAQhmauA2kFlOyvFBKJdv2Latttjgx3fXuV2krEKZj7cz4gtqfrYzSFzE1Gf0Tj32C23y5czGnjh5MmTazvqyF1QJSng/kXHVCCWKNynHeM5wozAG1FyMg5Vvn8nuPyee1AW1lYFlPD19Vz8mHFnRoaqnsgFp2eQdrrIjD7V2BrUfI6g3pcooAwboPHn+eeff+oec2vieccSK3+PzTced2VE6+fO8ePH97XRjMvMrSt6b3mdYYO+bA3ujW0k0eF1Tr0rWeCppaGYdqFQKBQKW4JFMW1g3i1lbg3+OmCPtWbY1DUpC8jBn7yL9f+PuotFdfOOkNmr7zfvGpWeMNvJM3tifaXfNasAKSPjqJjqJoFTIkzThBMnTqzt2DOXtVEbh+gc79CZ3fj/VR85iJC/1liTfZpeMGLC/J6owChWv5Xpy+E5y2VFUhp+puxyZMhsN9RcjVyLuG0HDVvKMFsaTlMZSRd6rD9CFuTII3o/uS0sffL1Hjt2DMAei2Xdtj3jSy+99NQ9xro5fK2tL5wIxbtvWX3WpgsuuGDftVa2f/4shWT3QEYWCEaN/cg48nubSXaWptsupl0oFAqFwpZgUUzbW/8CuZN85BRvZUTl+nuV5XlkAcxsidksW/tGbRthBIqFsS4m6l9PN5vVryzLOSRiVB/vRLltUVCNzII+aodHT6dljClqi283z5nMApzZHeuF1fzw/3P5zLw8izUWbMzH2IyxJfuMxlZJMbg9nmmzJIVtAqJ5wM+Qg1Fw2ZldAfchegbKnuSwrMdt3nDf/Tzh58ttyTxdlL2NskSP6mH2asfvvvvuU/fYczU2bHPIyjXW7O+xczavrAyTllh91gfTY/vyDTYWVn4UXMfKHfFSAeJ3sRekKhpHfl+t7ZlHhd2zSUrgs4Fi2oVCoVAobAkWxbSBeVcz4seoElCwXsqjF7aUWVV0Tlmv+zKZYbPfasZilS6W2+Z3oLwTtO9cRsZUVajVTB/OVtjKWj47d1hMe5r2p1fMJC5cV6aXVLv4TXSa3HdOh+lhjMfYErOmiNUqxsZsMAvL2JMGZbpFDmur2uGhrIWje5j1qzSVp4vMNsDGn637ud1RiNDROAYRq1Q+0NE4cchZFU7W+00bs7a67Rwz0UiHztIZleDH29+odKU9m4Ho2Iikxdpv/WJdNvczKndp1uTFtAuFQqFQ2BIsimm31nDeeeet+fBlPtdKj+d3wr20kCM7N2UBGrVNRRnK9IRcj7KIzNiLSuQR6ZZYUsDlZTtexcrULtrXx0w78+1W5St4ps1MJSpb7dyjqGYqAl7PQwBYjyVgzCNibRwBTenMI2mQ8gvfBCNxEHhsla4xe0d6Uac28ZE+LPCzjJJIeJbK7eS2KebJ70mkT7V5wM+BxzaaOxzVzu6xddXrtJV9h8H6yxETgT2/bKuXv9u13puA+6W8B7I5rCRL0XxjHbaVz98jpr00q3FDMe1CoVAoFLYEi2PaR48eHYo1rXSNkfWwSjbPejXezfpzimFnu2Quj5lWZimf7aj5XuXzaJ+RL7vSQyprykjf1tP1ZBHRenrR6JrezneaptSSlHfQysYh0t8rv3lm3L4sxbDt0/xafZrCSy65BMBeVKmLL74YwJ5u26x3PVti/9xNmKi119qgbA6iuarsPVQd0b18TWZXcKYYNiNqI3sNqLkTRW9U35VEzLdBlW/3ehZr99gcURLG6J1g2Jy1eRH5U9v/dg37ZUe2LSoGuFp/opgD7BXDYxVFC1TeH1Ekw6XpsBnFtAuFQqFQ2BLUj3ahUCgUCluCxYnHd3Z2UnGOgUVmmesQ369clKLrlbhwxDAsCuMHxOJx5cYyEgKRE5GwK0ZkiMZ9VS4mUepRJT7K3LnYDUU9g0zs3wtjuru7m6bzzETZWbmbfI9UAkpdYaJNE4X7YxZq0j5NPG6icPsEgDvuuGNf+SwuV6oIX59PIgGsq0f8PSpdaS+RSIQRVcu5EldGYlYOKMKGlJF7Uy8YSLQecOAd5WKYJWPhdScScav1hkXeyo3Ugw1sI0M75VKqwkNHwYq4DfxeZ8l0VJCVaP1eqkFaMe1CoVAoFLYEi2LawHooUztm6AW7GAnMktXN9SnDqYz58u63Z+QTldszvvH1smsF79ztfGRswYYgzMqj3TLvaFXKy8hoZROmvUm6Q2uXaptvd8aOozKjaxXzyYK69D6B9TCP9p2Zj2fGxtTtGmPeZqyWjQlLAZQLTmScx1Ku3tio8fHXbGIsddjIWCwHLuH3I1pvlFujgZ9/ZgzFhqiRq1Lk7hqVFc03JY1hBhq9ixyghF3PPNjVjw16M7dFlv6woW/GtHthaCPJbOZyfC5RTLtQKBQKhS3BIpl2L3WiP6eCdmT3ZC4JjJ7rRaTz5Ws4dWHkxqV01yNp4tj1QrmyZboebochkyQwy2C9V6bTHnEtymwNFLJgF6y35/ZGerteUJisjT1mHzEDZkvMWqI5y2Nq84HTeWbBSZSthiEL88jtUKEpfRv5+4j9Ct9zphhQpE9llyQOTZwxbRVEhd/xKICNQbkcRsk/bJ1Rz9LXo56Hcs3yZTGjV8F2/Diq951Dx0ZJb5R0UDFuf79y1YzWwZ7dyrlGMe1CoVAoFLYEi2baveui7xljU/qnTIfBekC+Jtpp886Pd+dR8H1lxRkFRvHnfbnZjtO3w//f09tku0zFypm5+v97TGuE5Sp4nfYIG+NdfyQh6KU9zZDZPfi2+efCYSNVMhi29vblsX1CFrCC+6WCXURpKpUtg3pnPHoMO9Khjwb1OV1Ez4XDy2Y6UYMKY2pQel1/rWKKdg9bs/t7mMmPhDPmuaqCC/l72FuFJTuRRFG9p4pNR1Dzwc9VlvqoVJ3Rmr80q3FDMe1CoVAoFLYEi2LaxrLZ3zgKZad0vJm/L99riHRYfC1fk+0EeYerEoVErFL5TRtG6lMJPSKm3bO+H2E3I7ph5eeZWVKzBCFj2sayeaceWaPz2DIj9cyALe/5WkbUfvUMozSbPEciH14g1rf2WFNkFd1jIMbkRnT13G/DJpKzkSRBZxr8vkZ1czjTaGyVFbdis5GlNFtxq3nny+e2WRl23Ic+ZZbMbVSW7x69FLCRDp2vVaw2WiO5rWo99/Uw++f0yZFdSSQRXQKKaRcKhUKhsCVYFNM2pjSiS+hZlEa+3SphyCb6tEyHxW3hXR23zdfDVsK9YP8ZC+A2Rwx8NH1jJhVQOudMp63YeGYVPcK0uX/RtYpFqLYBe7tt3pErK9uoXr6Hd/mRXlKx5ohd2P3sL8vH77rrrn3no7Yo692Mafd81SNf+aw/qr6zjchPm9kXv9uRBXjPLiJKWsHR7Pg5ZQl2+L0Zsa6O2u/bFHk6MKNnRPXx2qg8UVgC4I+xbp7XxGyds3FliVJkpT6y1p8LFNMuFAqFQmFLUD/ahUKhUChsCRYlHgfyQAwRDuIGwiLMLNygEnGzmM+XyYYs7PoQuUJwrmUDh0/cJPSpMp6Ljqn+ZLm4DereyABFBSeJQp+y2Dp7xtM04eTJk+m16v7MGE6Ne6YKMKjnoMT0/n82LsuC7JibGBuN2dxRYvPoHIsTVSIb32dW6XA++eg97r3bZ8vobBQ2Tj3DLY/RIB1RDnueM/xs2YjS/2/P3cLbZgGUegaAypjNt43LZfFyZDzHomcWeUdGbIxe6F1/TInDMwO/pYnFDcW0C4VCoVDYEiyOaU/TlIbS5F3jiDFMb1c/EsSjxzz8PcxOlTTA7yJ5p8sGUBmL5XoUi44M7PhaDoWZuU4xNmGsyiDNM4cRdzc+n7mqsbGNYhUePRc1ZpORQYt9WshJZrNRuFflLhi5AipGY99VvcC6sZpyF4zAbIgNrrKAOQYVTGNpTJsNmbL3g+/phdvM5qoKu2luW1lQF36XDX594nNcBksHI6My/s5zKJPw8TXKxdFfo9biiGkrV8Ys4BC/82qMzhWKaRcKhUKhsCVY1BbC9JKGjPmonXmkm1EMuueyFNWrnPUjnXaPVWRuabwTZYf/DGon6sdEMWvlVuF351mSD3W8p/fmeqNre4ElRph41N6McasgNwxm3oB228uC4TDjVZKQaL5xm409KJ23v+YgzJbnjkq36p+pcq9kKVEkSVgC2D3P+mxjHJ0zKNsT66sPTct6YUsGxM8wY832bFnyl62rvTkb3ctSh0wPbVChVTOpp5o7WUIcXq9ZsmSfUcKQEVuac4Fi2oVCoVAobAkWxbQtjCnvwvzuVoUAzAKkqAAYvKNiq1dgT3fEuzhlbeuvVXrviC332B8z1cgym3W2meWvQaXTVDvtqM1KtzVSL6egjAKy2GcUztbj5MmTa4w0sofoSQgyHSxfowJmZPcaa4r0aXbP8ePH95WvJC9R+YqlZ7YNm4D7Ye+IShEajSezZ5YGRcxnSbA1SYUqBfbGJ7PeBvbGKWLN/N6Phv/017BUKwoepBguS8BGJJg8Jj5sKr97fC2vp5HUy6DsPiLJFb9rZucRzX+WcqikTecKxbQLhUKhUNgSLIppA/NOTOlZAW11yGwissRUjJCZdqRX5bIU447awDvdEf9ztYMf8Wc2ZDv8zM88QqQPN6hwoCPXsH/6SJIR1b4TJ06s+cBHfv89q/FM5zdi/8DtjxgnEDODCy64AMCefpOZQqQH52fJITdZ8hJZj/MzZe+FkZC0amwitqQ+s4QhSwRLPCIrZOXbzeNnzNz/n7FkXxawPr9V6FO/dlg9/OzYhiaqX4VpZSv5LIkKl8VhRqOQqyr0Lr8r0bGDeEksbS4W0y4UCoVCYUuwSKbNOm2vU2Br1xHWymDdprJk5rr9vcxuIh0c16OC8Ufo+UJHfuEqstuI/ovL591lFIRftSnSV7HOOrMaN2xivWlMmy1mN2HaETNUuj7+nvlcM9PiZxv5lRrjVt4Kvg8qKQL7zUb2F8xalE1A5NURzf2on9m7se1MmxFZuvP7YH00XW/0vpikxT7tWr4nYqJsiR9Z5BuUZbndk9XHvtUqamAEnjNsI2D3enumno81+2L7/9lafATK9uVco5h2oVAoFApbgkUx7dYajhw5InemwN5uivUmIxbLERvy9/baBuiIPdEOtMfoMqat9N+RVTQzOcW0o3K4zTyOkY2A0ndm0c1YamI7eGbYkVX8iIXzNE249957U2t0NTeU5by/33bsPevxEelJZpGrImCxLs7fw3o7ZdsQpRo0JmflWvrOTWweFGuO2qpiB2yiY1wyIgkIr1m9yGgeNkfsOZkOmq2+fX0qQl4mSeJrmGlnERh5XnM/IpskFRlNpYj1/eF47IpxR+dG1pJM8rYEFNMuFAqFQmFLUD/ahUKhUChsCRYlHgdmkYRK6ADshQtU4pXoHmWIocIKRu40LALKjMpGk5pEAWB6xhyR2LwXAnBEZaCCuah2RG3isfFGLr1gKpl7EBvUqH7cfffda8FwIje3npFfFIo0a6eCmqPW98idilUd3OdM1aHalD1/5YbE8yILkMJJbVQiB3+MxyZz2dxWsBsTr2tsbGXGh4AOzcki7yxk6IiLY0+0PbIOKBe/aE1jtQuHf+X5ERmV8dio46qcHkZcWM8lltWaQqFQKBQKEoti2maIlu1sjEmx6X5mOKN2j/yZuWswi8iCayhjB8Uuonb3jMsiA6vMoMpf5/9XbDBLFMBt4qA0UZAaNr5iph3Vw0yht1s+ceJEGs6WwUww6yu77fHxyOhqNHFM1EZlPBaxCTa2UeVHLl/KEElJofz/KkxqxpZVgpDTceFcOtgVTwUlyZ6phd1k6YyXZvUSaERrI0vJlLtqZOTIxnDsqps9f2bAHCCFDdL8tdxGdvWKxvEg4XpVQJtzjWLahUKhUChsCRbHtI8ePXqKTUc7UHN9yPTD/riV64/x90xXqpJxGEbCWXKbFLuNyleBLCI9Ie+keSefjUkvNGnEgHq67ChIjUqWMIJMzzlNUypJ8HUrNp6x/V5CFUOWyKNXv7+f3VqYiXgGwgFSDMomIJoHiolEbmJRu/33TIKg7EdGAgAp98eDsKhzARe9xZEAACAASURBVGunsWZ7JzjsKLA37pzYgiVWPvSpgdeXLKAIS8sYyp3T/8/vP7u4RbBrzMXQ+mk6bvvMwpj2WLs/twky6d8SUEy7UCgUCoUtweKY9v3vf/81RhKFw1QWxZHFpGI4zETYKjaCCtnod2O9nVpkpazaxmVE+kIlZdgkjKmyNI0YlkpikOm0+Vplje3buElIy9bmtK6sw8pSmDJGxqmXylS1zUMFsomuUfpjP+8Va1W67ai+3j2Rp4OaKyO6+h7Tjp4B61C3LSALt5eZY5Togi3QjVnbO+bv4XVHzZnIpkEFD7LjkdcMW8MrL51IkmTHjGlb/44dOwZgj2ln1uP8rmfvRg++X8qOZSkopl0oFAqFwpZgcUw72sn5JOoG5S+dsZZeMoyMYSlLY9921UaVSCPySVblbhJ6lS0/o91mr7yMASu2yUwo2r2qEIHRmPBz6dkNeKYd6dWUZewmUHYDURu5HhXeM3uWI/77ShrTk8B4MAvP/KZZyqU+R5i2YuuZPzCnGs0kFktjSR42R639Zq8DrKdMVcw3sxtRoWIz9qm8OgyRF4HyA8+s4jlsro2FMWw7HoWwVvPN67JPB7yOlU67UCgUCoXCgbA4pn306NGUgSg/xRHral8PXwPkumxloR2xyqhf0T1R/9S5Eaalvkc6yB7D4XZEEhD+rnTd/pzyd46Sw6hIYhmUr6r/n9lEJolRvu4j0Z+UZTk/j8wyX1mpe4alGCi/C1GUtV4kssxHvpc2dBPbEK4v6h+PQSZls2tNB7y0qFbAHqtkFg2sz01OXMOR//z/I++JQUXA43ozO4jIK8Ef98+avR/Malx5R0T6cOWBcDpeBNFaZVhadL7lzeRCoVAoFAoh6ke7UCgUCoUtwaLE40CcrMGLJ9itiI1RTOQUiRxZDKq+e5GTCkGZGb/0jIcio6We6G8krCgjMzwabXNmBKYC6o+EPuVrs/aPXAvM/WTRrA8swSoVFg1GahMlPuY+Ru4ho0ltomAuSj1hYtFI9Mwi1E2SJShRZzR3VJjMkYApPI4qYUkmruTnxWqBqJwliscNNkdNVAyszytlAOtF4WpMeZyigEZKXdVzkwT0/IryW9szsnXa+m7f2f0tUnP2wuduYjgWqfKUK9tSsNyZXCgUCoVCYR8WxbTN5UsFPQHWGQfv6qMddS+YBhvqRMlG+BreCUfBTjj0YOZmpVwslGFYxM56AVpGoHbnI23l9kRQyQSi55b1udd+G3uf+s9YCbsQRkZwqly1q48MEVWwnpGwuVmACl+/v4e/q3GL2IsyRIrcetQ1KriLanfUtmy+KQM3uzYywNokzPC5Ars/AXt9VSlsI+mCgd0dWYLkmTavm73xilwa+TsbKHoJgmLabICWsVwV+GdEKqD648dESVeXguXO5EKhUCgUCvuwKKZtsJ1OpHvhHajt0LJ7lEuCQe0Y/T0qNGPGfG2nqQJwjCQMYWlDVh9DhaaM0GNrWbCLkeAno6w5Shuo2siYpmkoKAg/yxG3lh4yCQ+7WmVtVOOj3Fz8/715zmX58hSzjuaOuqb36aESx2RMT6UNje7ZJMzsUuDtL5SEb2SclItpNqYqQBIjWkNUwg5m3L6Pxr7Z9oR12VGwpawtfI+S7LBrYSZ9WBqW2apCoVAoFAprWBzT3tnZ6VpSA3u7IdNPsjN+xsrUNRGL4XMZe+C2mTSA9TSRhewmyT18GdEx1bYsbSQHrTFEFtWjYf6i4ypITbRrZk+BDNM0heESI8kLWz+PpOLL9MK+H9GxTeZZTxoUJcpR4UP5noj58FiMJJlQYSR7ffBQ0qcR+wU1z/3c5Tl62KzpIPrTTcAhO1XY5kgyxetbNndVgBpeq6L308rltrLVuLceZ2txdU8UZEfprjcJqsJzJ/Iu4PKWFgq3mHahUCgUCluCRTFtsx733/0nsLcjYgtJtkqO7lHJ4FWAfWBMx8ffuS1sVWn1eStm5TuumHfGBkd22Kp8FcIv0/cqvVGW1II/o36yX3VmdT1NU+gvGrEKZp6sJ4zGSSHzPOjppyMdtLKdyFJzqoQJzISz0K6KnWdtVDr0jIWyX+yIlIbfjZ7ftv9/E4Y9YjXM9g9n2rLY+mZrV+aBwvpZXn+i90ilymV2mSV/YT00p9X0667pslmHzQlSRuI3KI+KjBnzOx75aZ+tZ3tQFNMuFAqFQmFLsCimDcw7oZGECrxTsl1ktjvme+3TGEqWWKNnMRvpXpiR8G42YnQH8YHuWXpH9/R21MoHktsN6B3pSFtH/LUjC88IkYVzZg+hpCdRf0Ys1xW4r5tYghuyKGejbDkqW1mNZ37a2dyIvvtnau+pPUtOohKVwW0aYdFZIhpGaw2ttbU2jTxTQ6QbPaxUkR7WD+/TbeBIfzZHjPmaZM+/R0r3r+IpRLYNdq+xaGbgnmlzCk7Wh3O7IkkZl8/no3KURDFi2tyWpVmRL6s1hUKhUCgUJOpHu1AoFAqFLcGixOM7Ozs477zz1hIfROb4Jvawa0w0pAx5gD3xkBL9WVleJBTlII7uyQzR2G0jEo+zSEuJZCLRoBL9ZGLKXsAXFdwhOsb1j7jDKHFoZBAyGiDjyJEjqXqhlwQhEgX3cutmRowMviYSV7PrizJAi9zbeP6q/NYjhpaMKOCQMrTjuZSJY3vGev7/XlKbqL2jCUO8q+lIACPlOhQZlyoD2MOAF5NzsiQWH1tu8ciFkkXLaq06iOuXv4fF40oUHb2jmYtf9N2D6xlx81yaWNywzFYVCoVCoVBYw6KYdmsN55133touy++glKuX7aRsF5mlI2TDMGYOflfGrIWNYaIdKNetmEHketFjyyMsQBnqRO50vANVRlMjGGHW3H42BPGsbBODEDMm4nIiiQQzt5G+qh05f4+MvLhcnteRUZmxsxGmrYKn9IzL/LlNQjcq1qmMmaK52gsiFIV2Va4+kZRmkxC7dj67RklYWJrgmTa3wZ7pmXIl4nG588479303dhslx1BrBa+R0dzhsrifEdPuSXQy16+e21aWWjmaK6r8pWLZrSsUCoVCoXAKi2LawLwDYhbrd2UqCAC7A2Q79Z47VRZekllM5hLDCUOYzURuVKy3G2Ha6lzG2hVbMfTcqyJkrlM9fWQW5GAUni1Fuu1s7FR96rmo8I6Rq5LNA6W3jfR2LOFR4UazaxQz7QWpidqapR5V7opRWXyOx3FEkjRqw6GORdf4dSfqqzFEfi+MWWfuRtzuHts8U4jCiirYWHBAlizIEq/bp4NIyqrWRv5N8M+cXQqVRPMgbp7nCsW0C4VCoVDYErQlhWprrd0E4I3nuh2FxePdpml6oD9Qc6cwiJo7hYNibe6cCyzqR7tQKBQKhYJGiccLhUKhUNgS1I92oVAoFApbgvrRLhQKhUJhS1A/2oVCoVAobAkW5ad9ySWXTFdeeWUa1arnxxxBRaRSxw9S1si1fPyw/QA38T/u1Z2d7/mOZ762yj8y81nmaGCve93r3sZWnBdeeOF02WWXpX06CEb6Fn3Pytqk3oPcuxSMxKAfeTd7qVNH4lQbbrjhhrW5c/nll09XXXVV0pN1nInnsck7d6ZwEMPk04maeBj1bbJu9z4BHYPjTW9609rcORdY1I/2Ax/4QDzjGc/AFVdcAQC49NJLAQAXX3zxqWsuuOACAMD5558PYD2oQfQQODQkB7JX4R49VMD8KCcyn1OLThYAxsCBWfh6D/VDmIUEVAEqssAVvHHinOYWcMISFPhj9tzsu93DuXiBvWAhd9xxx77Phz3sYWvuOZdddhmuvvrqtf6dLrhPnNs7C5fZW2ijgDO9gCV8L7AeAEYFMMkCSRhGkr+oRXNko9ELHsOf/n9LjsHJJuzZjCTmuOaaa9bmzkMe8hC8+MUvluPm/+dzHKo1Gqde0COuI7pmZGxHN+1ZGNtNCA0/Q3U+C1rE37nM7F6VPz7qnx3jhCVRzu/jx48D2Jtvds1Tn/rURbgFlni8UCgUCoUtwaKYtiUMsZ0zsxtgj/lw6DreuUVMm3diUapCLqu3A+31x0Olv8zKZ5ac1c+700xywFCMMWKDvTGJmASnKzXYczQGbjtgX45JV/y5sw3VZ05asMn8GJGAMFi64Y9l7LhXtgoVehDwGEWhXVX9BxERj4Tl7OHkyZNr4+jfG35WvdS5/n/1TmXMe2Q8ehhhzaNMm9vlr1HzLZPsqHNcZpSAR6XLjZ6JSp4zIoXM0pGeSxTTLhQKhUJhS7Aopg3MDIIN0Xy6O5Wc3cAs2v/PAfOV3iTTaStkOh+1u8sSN/BuXyVWyMq379b/SA9q6AXj9/WxlIMTI0Ts3J6hGkeToERSDtZdnk3ws7I+8ZhGLEDN0ew8M+leSlN/jNs8ksBhNInKiFRo5D3iPrP067DevU0wTRNOnDhxag5m9WZ6aHWt+hx5pspOYeS5ZNJHdQ8f38TAchO9u2LlvHb5MlTazoiVG7JEUv57ZrORrdPnAsW0C4VCoVDYEtSPdqFQKBQKW4JFicdba/tyIrN7DaDFUSbCiHLGmgGTfbJ4PHPFUsYWo0Y/EUbE40osFon0WRzG5Uf3KNGpMkjzYip+LuwWxXUAfZVEJGq3tpnrGIsvzwb4GSk3qkhEyMY2SnzoxaJs0GbX2Lhkea3V90yE2xN/RqLWURefESMfNhSKjEPPtCHQNE3Y3d0dEouq8YqMyZSqg1VOfN6f6xkIRuuAtVuJjSNjOYMSqY+4i/K7MWJMp/oTqUvUHBmZZ+odidbigxgdn00U0y4UCoVCYUuwKKYN7LFtII6IZuAdkjnHG5s2x3j/v11jn8qhP9rZqx1vFuREuXpkLl+93WlkaMfH+HMk6IB9t10/7/79M7Bz7Jpnnxy8xt/DrJzd+jIDKzZ4O5tgqYWh5wLkzyl2HrFYky6wAVzEApQUiM9HrEPNa36/ovmmAqWMuMooKdCIJOmw4dccX88mTCt7T1gyNeJW2WPamaGWHVOM1GPEeCxqc9bGTQIO9YzmIpcvG1de3/jeqPzR/vp7l8a4i2kXCoVCobAlWBzTBnJ3I3ZjMlZnYTCPHTu27xPYC0vHTNvu5R1bpN9QyNybmD0ay4x2qOwyxH3ntll/o7FQIfoiNzjVP8USgD0WaAFRODRpZFfA93KbI6mKYiRLQsQIGHaup9v0/9v4sCtcxpZUIJ4siAe7xKjQu75/KvSo0kdmelcl8Yn6eSZdb6J3MZJmqJCw2TrB48FzPQqYY1Cunpmkj3XLI3NU2ejw8cj1UzHtqF/KBoife+SmypIc9T17Fqr+pQVQybC8VbBQKBQKhUKIRTJtQ7QrYhZn+uo777wTwB7Dtu/+GruHGTdblXuG2GPazKKBPeZp4TdtZ81BQvzurmfFy6zZM23uh50bSaCgwMzehxC18eTwohdeeCGAdQkGsLdjZp22sjwHlqdL2hQqIIZhJNiFCpOaBYNQ7WB7haiNXKbNIZNW+WMs0VGhPiNm3+uvx9lgQVmYXkBLvgyRrQn3X0neIutxwyZhTJWkY8S2hfuh2pHNNW7/SMAc9Rnpq9lDiOddJBXiYywxyKRBhtMJJXsmUEy7UCgUCoUtweKY9jRNa1bCkXWt0mVb+kZvPc4MWum2D8JM2brXH1M7QLbU9teo3TKzG99W66t9nq2we7wD9SxDwcbJmDWzDGPvvvxNQiqeK0RMRLES5d/qoayEmQH7c5n+0deXhVq18lUsA/8/sxcV3ta/z/xuK6YXscHTeU8ztNZO/UVt8f+zBGqTULEjiUL4HoPSE2feFr22R1C6bKW/9m3q2TZkbWH2bM84Ys3sncI6/KjvjJF3kPu3FCyrNYVCoVAoFCQWx7R3dnbS3Tjvuo1psxWy6Veje5itKv9mYH1Xyjts00tFbEL5OmdWlbyr4x1pZgl+Jhj2JZdcAmD/eLJlOeulM12mjf1tt922795Ir2esewmWnb1IcRnTZqth9tf1YH2nsjTO9JKqjVlaT2bULBHxdbB9gmr7iG6YmSrHUPD387pwWIzbIqJlUHpUlkhEnidK8pb5XDOTVvMhSlvM7xSP8SZSgcyXnOeX8sbxNkJK2slST7OhiJg2t5+lAdlarBLxRDYNvYQ/5wrFtAuFQqFQ2BLUj3ahUCgUCluCRYnHW2v78mlHySoi1wpgz80qEneo5AQsluLzwLrxmIlxTOwy4qpibckSX3A9vaAnfkw4UMkmYnIrz9pmIumLLroIwJ5Y3IvHlfifkQVisDYr9zFfz4i7yZmCEuMqI5jMEI1FqhzKFVgPEWtzhcWhfmxZdMqqG+5LJOq2e20ecH/s/fL9UHOW64lE3SpIibUjEqlaORdffDGAPaPTKIjPQcBBY3y5LPLtBWryx1g8roI5ZSoIDtgUzR37n9cZdrPzc6eX23sk+QcHvGL1o3dPtf/tvTcxOLupRqGQGbzWR4aP/B7ZPFZjE/WxDNEKhUKhUCgcCItj2kePHk2NBDiAg3cR8sf9DkqxYd6ZReH+eDfMblXRDpvbYuXa7s5Yq9/R2e5UudMo4xUux7fJdq123rMl24Eaa7n00kv3fbdx5R2qr1sZ2ERBDtigho08rK2+HhtTZudnCsxy/TGek0pq48Fzh8tiZgSsMwA29ovcBUdTgEZsiZ+lnTNJi8GzTn5m7J6TGb7ZOSWtiRKUMAtjxm3vpGd0m8KvDVa3DyjD7JHfe3ZV8n1RnyNs0mBzxOYMM0Z/TiX0MfjnoYxHFTuPpJBsiKbYtD9mLrqn88xUSNxI2sVSAJZcZGl/l+ZqWky7UCgUCoUtwaKYNjDv9LIEEbbr4R2i7aSioAPK9UHpCb1e1XaPzKRspxjpo3hnZm01hm3t8aySE2lYG1QozCgEKoeVNLZs9UR66csvvxwAcOWVV+67hnXcUfAYZgzMQvwuWjE6TljhGR0z1DOl07Y+Z7tu1jEqPbt/9uy+Yv3g8LaRG40KCWnPMnKFsbZwmNzIPchg5Vi5XG/EIJWrj0oj6t9F5cLG4+vH1e6x+WSfnMbUI3IdU5imCSdOnDh1LYcDBvbCIrN0iZmch3KnU2kiPfjcSIAhlQRIhfD09yjXKB6/aN4ZeL5HgaAie4FNwTYbPGcjV1P+DWApUeQmtjRXL0Mx7UKhUCgUtgSLY9p+l8hMC1jfkStr20xHYfcwS46Cq9hum/V4mX61F8TAmEEUAMYYPOtzWUoQBYDhseHEJZGlqekuTT/IO27eifu2sM7M6rMx85IElVyCdWiRzuxM7XjtOXCfs/q43Sz58CyGGQGPkyGS0ihrdWtrFFiE2T9LdCJmr9I2qmAi/lp7psZCmT1xvb48FY4zkz6whMLabvPN12Nt2cTzgFmgH2PuGzPfLI2w8uZgKUN2r7Ij8f3iOcg688wCXJ1jlh6tOyyhGLEA5zV4E3DSluwZZGPs25iFZz1bYaFHUUy7UCgUCoUtweKYdqQ7jXbJKqVj5H9n9xuzsl2V+Xkau+VPoB9uL9qFMQuzNtmOky0XgXULWfZxZIbv9e68k1W6nshf1vRPb3vb2/Zdw8zH70RZR24snaUbUZpCZnCZ/zFbJR+WPy5bb1u7I50gW8KzxwG3LfJNZ6kGxxTw48SsiN8Be15+LHg+WRn8LkQhd1USCbbuj8JzWnnmecA+t5H+0p6psWY7xywpsnDm7/Y+W33ROmHX9kKe7u7uSotwYN12xq7lcYokEr1UuZHFNj93fg4sAfR95XINLCHz5fN7yG2KLLNVWGiWqnkcJJYEQ+nZleU70A8/HHm6GMpPu1AoFAqFwoGwOKbdWjvly8c7ekCzBuVz7WE7v1tvvRUAcPPNN+/7NIbtWSzrljn5iMHvxtgamaMYGUPwVq/MoGwMTBrATNvvNll3ZEyOJQt+N2l9tGNWj+3gWefkpQ+WRMQYllmgP+hBDwKwx7wjf0krlxlWZOHMel3/XBQy1mxg5suW69Hzt3axXtWutc/IQp8ttG3cOLoWsPfcWVpj10TpV61cxew5Qpafu+w3zWlsef77eqy8yy67DMDee8QsyuvwTf9t/bPx4vnn5wGvA1FiCO4X28NkVteWMITfcf9OsxSD7WAi/3J+x5jtsZ2CX+eUnQr32dfHltC8FkZ+21YuzxUG9wFYl6hYf3n9jsbe1hDuB/fbr3NRuk6PSNph5Sq7jsj/nJ9LMe1CoVAoFAoHwuKY9smTJ0/tqGzXl+kbmCkYIvZy0003AQBuueWWfWUZyzU2aWzA121s0nZuxgxs12rsyZfLftK8842YAbMv/q7iSvu2cfSkjKkyw+Jd8Vvf+lYA8W7TdstvfOMbAewxrfd8z/cEsMfAfLm8e2VL5Cim9iYRibIIZQaWRLBO1N9r15gU4YorrgCw9/xtzFm6AuzNCZtv1mcryyQ+fh6wBTszOPv0z1/pLvl8xAb5HuV3HtVn42ifNiYGGytLwwrsjY/1/aqrrgKw9668+c1vXmujYp3qu8dI+k7LedBjtR7sTcISCg97pu/0Tu90qj5g732xORZFA2RfdJYO+bWK72F9dMRQrU5m4SzpifT8rBdm33jWsXsw07Z+RNEbDWwzYetLFHnNwB4GvBZHkhjFxpeCYtqFQqFQKGwJ6ke7UCgUCoUtwaLE49M04b777lsL6u5Fcxzcgo07TDxl4jcAuP322wEAb3/720/VA6yL2k0s4sW6bNRhIkB22vcGHCbq47SW1p9IlKaC3qtAH14UyKItq8/GjY3LgHXRlgrMwkYZ/loT1Vk/bJxvvPHGtXusbZyC0cqKwgmy+mIEbPzlwcFmOIBMZPhofTT1CIv1bJ5ZP7wKgg2z2JiH02D6NnCoThZ5etGjMhpjcXFkpMlqFxaDZulXea5y29mI0veZyzdVgs0h+/R9t3vZ4IjfK4+R4CqWqMjut3qi0K32fFlsnInFbT2xUME8PgYfNpWNSu2dtrJsfPz7wu6aarwi9YhSi/BaGa0h/J2Tmfj67FnZWPCcsfE1VaWfd6zqsLGwuWOqlUgNyHNUBffx7T6XKYEzFNMuFAqFQmFLsEimbYjcD2wXpNLdsWEIsJ5AgxkWp7SL2J7t/Kxcu8baGAWDiAKG+HqjHWEW1MQjYmdsQGPt4MAgHip4CO/wozSiNhZ2rbFQY6dRkBKVxCLa8bIB1ciO155HZFjHhjIqwYFnsWzEyMFPrO+cQAbYe842Hjb/jGFFzz9ztQLiZDPWRgMHj2GXQD8PmL3YGFuZETtnYzl2WWLDNC8tsjliLMn6aczRDJL82ETuP1F/o/O9e32f2LjTzwM2AFRuVb4Mc320PrPb4AMe8AAA62l5/f82n41NcqjgyEXS2mD3suFrFGo3Y57AujGgr9uu5XSu/K77vnNqZVtn7F20eRmlZba5w4bKNt5RGlkDrzuc2tn3JzJMXQKKaRcKhUKhsCVYFNNm2G4rMv9ntse6Jr9TtJ0Z63SMHdluy9hF5CbCzId3iFHYVHY/4tCDXtdjOz8VFIQZnr9XJUDh834HqpLe2702nrybBtaDXNjzsZ1ulCiCdczshsJhIn35UUAZhrntWHnGkrye0MDPhQMs+HtY12bfjT0x2/TBVTiAiEEFzPFtMrD+kd34/DXMgLl/kcSFpS+sF40SofSSvtj7xqzJl2P3mgTDGLZ9+v7ZfGPJBNu1+HG2d5klLwq7u7updMv6wOzLnkcUpIN1u3z8gQ984L62RWkvOQESryGR3YhyMWUpmr+HpYO8PkQBZ1QCnCydp4EDsLB0jscbWH/O7C4avW88f3k8I7c0fpaVMKRQKBQKhcKBsCimvbOzgwsuuCB1buegBswM2Ara/89BAFh/yGwXWN9lsV48Sv7RCyAS6XoMyspRpaOLyrH+cdCJqD7Wf6p++90zB2/hsKwRY1F6IbaK9mxqk8D90zTh5MmTp55pVB+PIUtPImtXbr+xRxWII5JIsBUvMyvPAtU5ldzEt19JZ5j5+O887qzTzNI5qrSk7L0QMUj+ZIt63xclDeB5bTri6FxPpz1Nk0z7C6wzUvtkqYOXKnAfea6rsY7uVQmLonWA5zOz9ijULs8hZU3uwfY3LN2K3kWWMlp/WGpnbY3uVR4WkW6d1wx+xlEApxFJwblEMe1CoVAoFLYEi2LarTWcf/75aVJzlUqw9x1Y37GzP2PESJUfZmY9zuXZjtD0dRzm1NejGAG33bdRWZjzOGZ6d97F8g7V73iZBdpulW0BsjSr3Lao3yr9YQbWlfuxYV9xLt92+b7dPCfY6lT5Qvu+qfC1UcpGTsLA7JXDznIfAc3w2CceWNe38vsV2YjwfFJhRQ1R4hiDtUVZuvt6VD8jiRxbBWdsaZomnDhxYu1djiRFzNA45oIfJ7ZZiPoW9cvXx37zLAXK5pvSaUdeJD2GHYWLZoki2x6wfhrQUhK2i4jGJLIb8IgSfHC5/B5HNiIjoW/PJYppFwqFQqGwJVgc0z5y5MiaNawH68BUUHe/c2L2ZZ/KyjZipEpnnkXNsX6YpaR9mu4t0tGqSGU8FlEb+V72Q498OnlseCcfRddSaUrZ4jPyJecyeNef6c5GwNdGul/WqylLXd8+3plzYoWo/axD53GKpDg8N40xsoeDZ44sVeCxVlIV3y+21LfvkYU7M2xDFMGQ26P8zu24YqP+Gn5uUZIY9oboJX2wtQeI1xQl/ePPSKrAjFNFP4zWEG4/21D4WBYcEZElVFG/lH82z+vouEoCxLEd/D1ssxHZj6i2cr09tu6P8XuspGC+bZnt0bnEslpTKBQKhUJBon60C4VCoVDYEixKPA7Mog8WY0buH1FYPX9P5rbDRh0sDvFgcRgHG8jcGgycsIPDpvp7lFicxUWR2IjvUaFDub3+HhYrZmJKfk4s/ovE2iqYSyYOs/GKwn722ubL44QQHMgmMoJR461Em5HrCBsrKbWM/1+FhowCcSj1CCNT4fB7xWJDb5yj3AHtOKuOov7xvax2itRb/J3V8iU9lgAAIABJREFUD5FoeiS/uonGVUARf2xEzM73sCiW1x2+PjrGoWLZ3dL/z8GWWJ2QuYkpUXCmMrC2qRDF/lkqFVG2Bisow7soqQk/C1YzZIGues/8bKOYdqFQKBQKW4LFMe2dnZ21RBfZ7pUNQDKmzYZoyqAlCwrCAVk4kYBvI+8izZgock1gRqDYU8TOVLAGTlfqwePV23FHO3BuMwe6idJ5qkQEUUAL7s8mQQ4iwyDlAsXP2NejDAO5X1yHL5fbHRm/cN1sVMSBeXw9PaPMDJwSlcc6Sh+qGIhKTJExbWXIF92jpDKRVIjHPmNw0zSd+lNtUO3l4/5ZMxvm9SYzkuNnyoaQkdEkG/Oxq1fkljY6V6L3SUm11Hrkr1EJntQY+WM9aWRm4KvcFKP3qRKGFAqFQqFQOC0sjmkDeZB/Tlmndv3RrpuZL+9Io92d0oNzwH5fP+8eeXcX7eR5V6eCnURtjHb5vl6rZ5Pk8OrT/68YHuuro/YzIpeSrA0KHBYxgrlNRSlE+XsvUEnP3QqIg1kA8dxlhm1gXbZ/1irsr3q2mfSBmXYkNeEQwowRpsL2EJnrHI+1tYnd3zbRhzJOnjy5JjXLWKia81l6TaVfjwLYKNbKz9qXlemufRnZu6zYf6YP53J5XkeBp5Tened5NJ6ZC5uCctnLWPTpzKcziWLahUKhUChsCRbHtH2KvMj6sBfIPtIXMqNWQVYiFqOu5R2b16HzDo31J1x21Ab+zm2PWKx9cqq6KHGDsRTeFavda6Zr5p22CoUaHduE0Y/olvh5+XYrnTi3O9phq2sya3UlIciYAgdvUfPBQ9k9MDOJGD/bgKiEDT6hDCfLOAymy/MtGkfV9uy5GZS0w+7f3d2VqW0BHW6Xj59OIA5/rwqmlHnW8JxkBp95c6j3XUlrgPW1lscgS95j88vsfPi9jdZilQAne/5KqpEFHDIoCea5RjHtQqFQKBS2BItj2t6Kk30TAR2gfyRUn9pVsl4lY8B8L1s9+jbx7j5KxWhgv0XWi7MvdLQzZD2/IfPBVCwps5pW/pEsUYj6ybolZpYRGzgd681ol+x9W4F1iU5m7ZwxDyD3ETWwBCQaW56TmV5asf0RqYliq5kdAYfFVUlGIvT8p6MxY10zJ1WJ5pmBw7Fm7eL3M5qLzHS5nkx/r75HY927J2qHsuJWXhJRecouJZJ2Ka+LzEaE5wqvHfwuZvYlLH2MPIaUTUoWQla9C0vBslpTKBQKhUJBYnFM+8iRI2u7sMjfVyWniFLYcQJ50/mqyGjRjo13urzL97uxSy65ZN+1zJLt3ohN2DWcZIR3lZ5dsMUlj4UhCqTP1vEKka5Z7V4N/rtK58jWsJ4ZZ2k7DwPMJtgX1reL/WWV9CZizYrFRJ4HbGvAEp6RqE/sy8vtiBgkMyB+PtE9pv9mvbhKyOPRY9qRtEO9nyPSmZGIaNm7wIyT35/IhkL5e/ckI9E93P4R/2KW5GRSABV5jevPpA82dw2ZTRLPNzUWmUSJ59AmNlAj0iBOorMUFNMuFAqFQmFLUD/ahUKhUChsCRYlHm+t4ejRo9KQwv8fJTLw92Sh83pm/5nxA4uErX4TFfL9gDYM8200kb2JmI4fP77vO4uRfJl2r9VrbWEjnMjtxa4x4x5WO0RtZfE7l8uitqjvKqxpZgQ2IibvBXEB9sbLxMhZEBAWNbN4nL9H845FzCwe93M4c+3zZXqwqJ6N/FQgkAzsCujnN9enxjEKKaxCu/LzysS+KhCLP27XjiSZ8dcDsasSi5pZFRWF2o0S0PhyMxG4CtmZGUKqBCRZQBFlCKbCDWeuczZuNuaZqoPnRs940h9TYUsjNzGDWg+yd39pBmiGZbaqUCgUCoXCGhbFtA2Z8YuB2QQbaEUuX+yiophcFChFpdPjNvv6eFfJ9XpjMtudHjt2bN/nKFMA9tg5u1FFO2w7ZjtsdoPKAiMow6pst8wss+eeAqyzjRGmPWK8Zs/BpBjMNrLQicySmE37eaCM7thAzM+3LHiG6hcbzkRt8ddlyUbYfSpii0rawG0bYTzqe+Qm1DN0y8IPZzA3U3620XNhAy1uf8Z8e8Zl2bUqoEgkxeDnwqFDIwNRu4aD6mSuUczkR9xSWRKWJWs6KKIyeu5iUVszQ8pziWLahUKhUChsCRbFtKdpwr333rsWStHvnFTYObXr8/cz28uCMnB9XI+VaTtUr/NjdmK7OdMbR8EUeJe6CcM28K5RsdmsjQqRTpuZIwfdiEJf2njxtRGjY71uxp5baxvv0tn1jvWUvk4VHlWF0QXW+8wMOxpzxZaYMUYBgOxaCw2pgghlIWmVG02k32NpF7tQRvrrXlrcSJffCzQTuQuqYEERWmvY2dmRCSmidirWHKV1VfYhWeASxfJUemEPm2eWEMc+o3nHKT55HmTrgpIY2bpqkiy/zkbvmO+ncqn01/D3LJytksbwWpm5pRXTLhQKhUKhcCAsimkDe2wbiBmiCkyQWTf2dsWZ7oJ3p7w7zpLRc32MiL0cxq6OJQgZy2CmxXpwZjfAulSjl0DEl8fnRoIdjCak2NnZGSpXSV5GLFdVsBVj0942oBeiNWIdrDPlYEJ8r28DSzyYgWZBPFjiYXMomt/KelzNA/9OchAhFQI1em5sr5I9L2aII+8Vj1fEvpS1cxbyUlm9ZyxWMWyTwEWM36R9ltbVPpXkBdCBflh6E1m8M8NmCRuHnPbXGpRu20vpDMreg5+Xr4MlOophR1IOQzHtQqFQKBQKB8LimDawvuv2O3XenaoUciP+rEoPPrKzyqyGeffN10Rsgi2NbaepEh1EzIctQbnsLGGIstSP9IU9ppolbVHW0IqNAOu75QzMgCI2o5hpxAyZSRubMfbCOnpv28BsQfkvR2OrrGy5Xb4N7Eus9NGe+bClr/KfzzwP+F3g8/5eZmUqHHCkB7fxtLYqjwRfjrL65r7dd999a+31Y658w3neRuM0moAi0uPzXDGmzeFmgb25x8+BJRQ9/X7U9shanZMlqTSyUchlK49DMLMHRxRSWOmwIwkJvz8qdHVkD8FtXAqKaRcKhUKhsCVYFNM2fTbrRIzVAOu7LbVrzHaTyvpURWvy16jvkc7XYDtg1hNH6TztWt7FWn8jv2qO2sV+mWzpHrWb+55F0VLJE9Rn1BZVf6Rb2kSnze2P9JLMqNmPOmKx9lzMEpd1vXY+YwZqd++lKZzMhudipOtjtq/sLqIYBtY2q1dFs/PeDDzGKuJb9A7yGHO0viyVZi9ZSxR5K5qLDGPaLAmLopup79F6pOxvRnygOTUvSyQiCYzFabB+8DONpA4qhoCKMeHngYotYe2488471+5hmwCVmCTqXy9CWWRRr3z8la7b/x/1eQkopl0oFAqFwpZgcUx7d3dXxgrPoHaz2TWGjMGxHkpZJ/udGvv/sjUvW2r7c7aT5msynSOzYfafZH9hYJ3pKEvWzOJUMZ1NrNUZvh3MjHsxs3u7cm63spz348RW4cxImGFncfJ5V8/syf+vJEmRBbjVbRIppZtl33j/P7MJZtqZry2PH7MnX5aKIWCI3lulW8yY1yY+/sa0WYrh77FnxfYv0fNg8LxTbDJLJ6zWQC+RuO222wCsp8jkvvv5bfOXP9m2IIofYXEnjFFzFMdsbVH5CgxZBDa1vkT6adaZs+QiWr9Zfz9iS3M2UUy7UCgUCoUtQf1oFwqFQqGwJVicePyee+6RxlHAuoiUxdZRMBBfPqANg0bu4XZE4nh2a7C2sdgwCpDBokYei8htRImNTFzKIt2oTWz4oxJkRG3ZJHBFzzAoElONBGBpreHIkSPSSA7QgSR4zL2YVLmH9cKxRn1SKpUoYEXPvSWqR4WtzVQro+kHIxEhi/fZkIvH2R9j40JWVWwSeMQQGdj1XBo9sjp7qVKjd1AluuF3mkW2/n8ORsJiZX/exNW33HILgHWjRoNfB2yNsE8lHrc2+nXC6lPJjSIRN8+RnvFi5EK3iXhcqaKy4DuZgeASUEy7UCgUCoUtwaKYNrBnFALEBhoMZQQ1EkDA1+nri3ZqBwk+YuXaDpQTK9hO1R/jHb0KcpGln+O2RYEfVPIFDk3ILhrAOqtUO9PMBYeRSTm4P+r+kydPrgUYidrNn8zA/Zgrlxhm5ZG7GO/8eW5aG31AFnYL5EQykRGjwa5RoVYjNsPGi8z+OOiJv1b1k8uOkj4wo84C8yhJC8+zLOnDCNPOwleqdL7qmUbXcrlWX8S0s5Sfqj67x5jvrbfeuq/cKFgVz2M/F7O2AusGZzxXeG75c0rqxBKmaF1VrnNZshmVYCWSICnp5lJQTLtQKBQKhS3B4ph2a02m6wPiRO58v/+MzvHOjPUdUWL5KBGJR+TyZeDQg9aviGnbtZwYIAsrybtXLisKVMCsSO0ms90mM/hR3XNWbxa4v6d/3d3dXRsv/9yYaSomFOnBmbWybjvS37Ibn9I5R8Fc/NwA1m0OfMAhFdyEA2WwKyCw7t7CbCWyQWBWzu8k6+F9ffxOj+jUVaKIbJ5lUp/o2t3d3bXyovflIOuOaluWtIKZNEtY2DbAl8NBaFToUGDPPUwlDMpYp5KwZDYU7BaogriosMdR27LET2p+c72RPUQx7UKhUCgUCqeFxTHtnZ29ZPScxg/QjDfTmSrdB+ttI0aqmD3v2KIAGdZuK//222/fV6bvF1/LTIeDrHgw01aBMiLdktLnK/2hv0btSEekHQojOqYI0zSd0msD68kzRhCVz1b2/Mks19fH7FglWImYr6VV5PZH3gMqDCuPNbMbYJ0lWbnG+COmrQJhZKF9+V5+1zKr4Z6Xwog9RM8C2DPtzF5EtSWz42Dw8cyqn99dftZeqseSNn6XLbxoNBZ2LQdm4bKzd1rZfXipUBaMyJeVPS8VOCezfVLPLQuHvYl3zNlEMe1CoVAoFLYEi2Pau7u7awzb70DZulHpXlTZgGaKI7s7ZjqsP/b/cyhCVaYvV4GlAZHeVTFf2/n6+hTjUZaY2e6c2x7tynssLCqLdWYjO95Mn6p8M5klRSFilZ8599W3n70gmD31UjVG9UWSJqX/5HuNPY9Y5GZ+9SouAN+bsTIlGcvmW89yO0OWXtEkNGwPEcUm4O8ZG+sxahUnwB9j1spM2883lWLWPs2a3NtL8BxViObfqDQgS26kdNeZflrZPEWsWa0ZI6GrlcfAuUYx7UKhUCgUtgSLY9reT5sjLQF6h5TpQtTuXVk9++tY18w73MjCfSRg/qbgMiJfcsWSo2T0SleqGNeIdeWm1t4eGZNX0aEiKAttVQcwJnFRrJzZcsRimVVk0dMUe7XjHCnPl6us0lnnGElp2MKdJRXRPcwYVdTArH89X2b/v3pf1fzz6M0dbw8Rsb+eRG+EaRvYyjuyOeE0u3xNNLY8z3i+2af5cQN7axWvuZwgJYoWyKyZ2xbFLlDpVfkdjKSTvNYq3XbEtDfRS2fSuiWgmHahUCgUCluC+tEuFAqFQmFLsCjx+DRNOHHixFoQAC9eMXFO5L5iZfhP/38kyo7u9WI2M9qwe6x+Fh/7e5R45TDE5BmU4VNmWNMT2UbuPL0ANxEylx7/PcphvImaQRmOAVo0l7WBy91ENMsGOcpAMEoUYefYgCpSA7G4mvvJbfTPOArw4suPDJAikXnU1ki1wiLu3rzw7ebv7OoTBUUanaNRUCdfL4+lUiNF604vDGv0jnEQn0wszuXZteY2yOJr74JlLl69oE7RPFDGceozaz+HSWXVnj+mjGeztd/AzyJ6NnzPJmq+s4FltaZQKBQKhYLEopj27u4u7r777rV0kd74wY6xkY9yGfAYddvwjEG5emWJKQzG0q1c+x4xnsNg4dwGNtTwO161a2WDKjZi8tcol5Ys/aYKxBElJOBEBJnbjiELz8qGWSp5QZTgomeIFCVW6SEy4GKDKTYIsmu9oY4dYyM1Zn+RVMigUt5GUIlomJVlkgv17mWSix7T8shc8aJrW2tDkhY1poaDvMcRq+QAKUq6EUn42GiR545/1mboxow7WjN82f5cz5XNg98Tq0elzozeefVOjgRm6Rk1AqdnUHs2sKzWFAqFQqFQkFgk07ZdVuScbzsyxeoydx0VBITZtGc7HBbT9EGs1/Vt5F047y4jXb3VYwxqE31xzwUnYn8qzGfkusRQO+lMn8xQTDVyzbHxUiEWre6dnZ2hXTYzhBFWpuwisnuUzpXnhw92wfNNsQcfzIdtGZiVcf+iUJvcpqx+ZtbMfFmH758ph99UTDvTZTIzzUJQjjJfz7SjZCbZGHI53O7MfdLX5+cB95nDGUd2JSxJUmFsI1c2fu4q0Ew0d5SefyRgEjNqtS74c7y+8DoUhXblMgyRZIdZeLl8FQqFQqFQOBAWxbSnacI999yzZkEbMV8VQtOXFf0fYSQYvmLaBr8rtzYZ++Zdqw+iYGC2xIwzs2hky04VbCO6384xC8x0s1y+0m1loS85uQHrtPwxkz5kTNvKZOmJh9pBq7CfERTLYx2k/99YsbU/Y38sDeDECuzN4MHvjfKw8LByObgKszZvV8Ljw6xP6V99u3kcs/eZGSuzz0y6xjrhEURj2/M0iNYQte4wI7X57ftuc0W9Nzx3gfV0sYzIbsTAXgRK9xytq+r5RLp6lUyJ383I/kL1XdnWRH1Xkp3MXqbCmBYKhUKhUDgQFsW0Tadtuz3b/UT6O2aIrEfzUDveER2Z7VqZYTMD8nVYm+wa3rlHuiVmqRzGj60qI99HlS5yRFcb7Yp9uyJdlvrMwkByW5SOC1gPB8spRzPYeHnWwfp65bcd9VWB++ElJJYK0cJG2ndjUVnyF2a4UYIIBj931n9G9gos2WG2HPlxqwQRSuIT9U+Fr4zsMJRFeWZpzsc2sRGJWOVobIcRnTYfZ/YJrD8PQ+ahoazGM5sNpfNlph31v5ciM5IacphUHhsVgtf/r1LPZugx7MwDYWkopl0oFAqFwpZgcUz7zjvvXGO3xlD8MaW/3UT30vv05atdcsQqOQIa69Mi/V0vaYWy8o7aqBIRRL6IvCtmRBaavIPnejPbAK4/SxRg+lv73IRpZ762Bh7jSC+p9GaqDA9O22qfxrwjTwF+loo1Rc+DnwPHCbDjEWtSOr3IT5+TWVi6XNbDRyy9FyXOELFc9Z5m71MmmfDw71NUnnovVRwHf0xZWfM76J8BJ/JQfc4SuSj/6Wy+MbPOJHE9C/De2hK1ma+N4kMom5NM4qJicbA3ErC+ri0Ny2xVoVAoFAqFNSyKaU/TnB7PmHVkDWn6QDvGrDbzK1Us2ZD5fSpfawNHDvLlM9OOWA3H1+ZdKjMs33aVxs/GL2JnyrqWrdajPvR02ZkuqMewPZu2Y8YYo3R9XDY/U98fHg9mPBHrY6tWxdajvkfxmv09kS6TmS17IkRsWUUgY71xZKXMFvqMSJJg880YNrfR4C3ODYpRMfvPvD8Uw46YdmZhbjAff363o1S2qk4lMYjawCyWr+P/fbn8vCIJX2ZhzujFAlf6at+Pw4zmqOIG+Lb2JBfRPFCxOCIJCpdXftqFQqFQKBQOhPrRLhT+T3vnruS2kgTRplzZa+//f9ba15ehmAisoSip7mFmNciZ0RAReRy+QKAJNMnOeoYQwkV4KfM4KVO4Ck4qMyrTw9g0oeMKh9Ako8ruqfKaat9r3ZcCLGpsLCzgjq3GqNrdsW2fM+coMxZNaa4JgzIfuQAXZdpiigVNt0zv6tuqQB1yHMdv90ofW9/f9+/f5XgLZe7jOXOmQJWSVeZjBqQxVaqPg0V2+udTx1vLF4fh7VSQZXIN9X3snpvGvNa9CdMFYKrv2/Q95WNXstjRy5iq1Cg3rjNm8akAS9+uf28ZcMvvAougKFz61JTSyOsxpXy9BxatcsGzKtXQpbBOwXKc5yqQj7jgw68mSjuEEEK4CC+ttEuZ9EL6pVZLhTO4aEr/KHbFQToMZHDNEFSDg6JWc6W8agXclSOVoRszVXW//0wxgF0TFX6GjlL9bhwuUJAFdKZCDLtANHU89ZxrKamaTFARsmSnK+m61p+5Wde9AizrMRvKrPXnPDhrhkpHcYF1DJ5UapDziUpLqUAGiNbjuqVKUnOH1pMpfcupQT5+jxo8juOulGs/rgtcchaDtfZlNs+U33SNPKbWlbviQR0XlMs5pEpK0yrkgrzU56m5w7niCkT19zrrhrKUsUyyK5s6/Xa+WpGVKO0QQgjhIry00i56cZVaoTEdaCqhSbjSPVMa0BUuUeULuQLlqk6lvdR9+qp2fsr+Xpfqo1b29IPW8ZhCN5X3cw1ClC/Irb5ZeESVclTWjGeg0mbjljMFJJzqU/EEVN91PJd6psZU1LxXYz9bBMLFWqzlS/mqFENaffi5WFxF+Yadb1vNuzNFkHgcZzFQHMex3t7efs89dV12JVSnOb9T1spKw236WNfSsTYu5Y8WJRXz4uIFOP/78WgV5G8I993H5EruKoVNOMbJ6ulS9Pi7PVkForRDCCGE8BSXVdoVCVwKjavIqTiDW0GpsosFVQUVqVK+u/ahfdWqFHsfO1eXSjUTKgblH+Lxne9WHc+1J2Uxj7X+nDf6DamwJ6X9DOq6uPKK6rPSr859TQqO17LmFct+9n24uUoF0pW2a43JsSqcUpyaMzgLgmuZqJpocEyTNYXfJzcflKJXr5HjONbPnz/vtlHFiNz3cTrOWf/pVJLUxSv09zhl77Jm1HNn43/62AoV8c33cO7QcjSVQt6VsVXzw0WPu8/b9+sefzVR2iGEEMJFuITS7iudihovX3blM5YiUj5BlyfpIoCVImX7Qb6ucCU1XS5uf49TsWoF6l6bHjtfDv2VapXuooInawCjXGvbyafN557xaffj0l9b+2Vufz/3LmrXKbdJ0TkrTS/36fZPVdvZzclJLe2UlfJpU/0zinxSJi7PeVJAtIw4JfSsIqrIcRcL0u9P15djcHnfLm5gsmaprAF3bBePsqsFobaZzu0zvzsunoiWJH5H1JhodVBKm/UheE3U5+O1nupDfAVR2iGEEMJFuITS7lCZUb3WbferuBWnWxH21azzsUyr1l1VM6UYpoYnap+qlSBXiHy+r0CV334t7x+f8oJdQ4zpeGwQonzHfG2ncnYwz7vGSX/amejxGmdZepQyKBgh6+IH+nOMzHUtFHm/w22V0naq3GVL9PHWLRuFkCmq21kWVFVCZ2mp+fFsdkFV05vGwJgMzgfVrII4n/mkZnk9XMyJ2o/LLVcxBu5zTD5856ufagrssmEmS4KbO1NEvVPn/J2bqve9J6bmM4jSDiGEEC5C/rRDCCGEi3A58zjNh2WumlKwCppPzphodkXqpxQVd1wV4DCV/lP0gCSaD2nSVM0sHO489uM5c+zU7IHvZRMNmsLXug9Ae2/qRR2DAYj12VQJVx67bhnENqU31XFoHleBbzzemWu2K/5AU7c6jy7gSRW7cEFDLJta9Gu6K4ihAtPOpuq9Z36UiXwt7YJgYKYzG09jcKlKhXJN7UoUK9cKf8emoLJd4Nkj5/aZYlUufVS5G1yBlEcKzjj3Y3/sjvMqRGmHEEIIF+FySrtgIBNXwn0V64IbuOpTrRJdWhMDUqaAECpr3vb97FokTkFe9VwFBnEcKpVtF4jkUtD653LKocPAqvrsLKpSKX3qPR9F7ZdNWtSqnwVeuFJ3jS/6tjx3tGao49EiMbFT2kwX6+eTqpnBRbQS9Od2KT8qQIyKxzUMmRrw7IKmnuE4jlMNPHjtJiuQKyvM19XjXUGoMw0uGICqzpP7reJ1mr6Dzjqj5seuhLQbR7/v2uWqazEF8Hb6dmeK0nwlUdohhBDCRbis0qYvtFJvlC/QNQ+gElLFIdyqzvni+vFc+UWqM75fPSZKvTCtalpluuIdhSvuoPZ/plFAjbdUrWtK39OyHmnF+Qx1zJpDdf37dXHlV9kasYr9qPQWzjOq2v45qXyZEjX5GKfUnk6PT+DxnNqcrDS0GEyWF6q/R0pRFlRCH1H84na7nVJUVJN1XWoOqW0Lfla+rr7Tuzabar6x9a9LV+3HYZwP55CyAHIOujE+UhDK/Xb2+86H7WIe1P75e9ePMxVeeQWitEMIIYSLcFmlTYVD5dMLPrhmD/QPKZ82/Z7FpCaoGrgiVP7P90DFQWWn/IRTQ5CO8mXzPfTDqjKmXNFzVTw1DDnbevJZGKWuijOwbSOzFlTRhpqDdXumoUKdWyo5Z/Hp73GRsoUqxVvHoZWJc0jFeTh/5xT5TusClZx6r/Mbf1R07+12W9++fbPxHZ2dT1bFIDhFPZ1Hl7Xgjr/W/Vx0WQPKCnmm0Aufd1aZXVnT/pyLXp+UNn/rd6WF1fhrWxXncaapyFcSpR1CCCFchMsq7YJRyNOqy/nGuGrtK8NaOVOFP1K4nyrzs30kTukoX5bzYXE7tR+nFKbSrnWd3Ip68mV+luKuMVTkej8HNV4qKiptFdXrYib4HqVealvXYEPFQ7h55aJ7+/2d5eWMwuL1V9eL13+XabGW9+vTEvNsGdO1fn3+qcwwFSn9x/X7MMVhOGuCOh6tcoyHUD5t52N+JCKb55DfdRVlvUNZks4qbBVR7xqEPPK7+khsSHzaIYQQQniKyyttrkhrpdsjZF20K1eRSmWwIhobkkwVnMjfWrE9krfKFS794PSxqvcQFU1O/xMV65SP/Ld8SlTV/f4uF1X5/vla+bbpT+vnluqcapLvXctHjXN+K6W9y/9V18VlOjiF3b8brokFVeCUWeEsZu/hdrvZHOXO2QYra+0b3fC7oGJO6L/lXFLVxtxYp/ibs9ZAZXFx8+FMJs9OYatMnl1zpUc4E2mePO0QQgghPEX+tEMIIYSLcHnzOM1HyiTlygieKVc3mb/Udn1MLvXhs83kNIs9Yl525jiV8sPHrmBKf41jmoLl+NzfMpNXGuFa9z3DnTmZjUP6fZa0hJnhAAACTklEQVQC5flTrpx6joFH6lzs5tmZ/saFSxtTAUFunp8JfHLbqEAumo/fE3DmeHt7G0sI13hdv3nlXqCJ27kgVLEVd574vVQpX+q1tXTjIJey6IIKp98uZ/pW19QF67pb3lfHeYQpPfJMqdivJEo7hBBCuAiXV9pcoasVmluRufQG9VytuhgAovZdq1UGq50tYPBRnEldoJKi0p6KRlCF8riqMAK3cYVups/zWSgFV2lgLExS1/LHjx//em8v6sNgu9p2KkXJdDAe11mN+ms75T0pbVqqGBDX77sUJqalTYVgplSvwpW2fCTgcuI4frXlPBPgxLk9HZtzmtu6795a9+eY15bFadTxdkFz6jW3r8n6sCtFOgWTuWvpigpNx38m5Wv6Hr0qrz26EEIIIfzm8kq7YMrC1JrTrbLOrLBd83blJ6Ky5vE+otGB4ozvh+fLrZZd04G17ksA8riTP8o931X7Z/guH6XGUH5u+poLpSqYvlX7UC1A+R6XSsZiHuq9TuEpv6xLE3IFLPgZ+zZs+qLmPQtkFJM6cwVAPqqMae1jUtrqe97HUijl66BSVKU0XSlfZTXZKXr1eKdOH7GAOZWsLAhum6k41hQr8V7UeaC16VWI0g4hhBAuwu2VSrTdbrd/1lr/++pxhJfnv8dx/Kc/kbkTTpK5E57lbu58BS/1px1CCCEET8zjIYQQwkXIn3YIIYRwEfKnHUIIIVyE/GmHEEIIFyF/2iGEEMJFyJ92CCGEcBHypx1CCCFchPxphxBCCBchf9ohhBDCRfg/EGh77FDt/XgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZVlVJTrWjcgusiEbEUitJ3ZVWpaKCgWWCmgpWii2lNihlO+VaelT7EWpJwmKinyKDVJig4ipYi/2IGiKiB12ZQfYZPJQMiFJsouI7CLurh97z7jzjjPH3OvceyPuPjjH993v3LOb1e2111ljtm0YBhQKhUKhUFg+tg67AYVCoVAoFPpQP9qFQqFQKGwI6ke7UCgUCoUNQf1oFwqFQqGwIagf7UKhUCgUNgT1o10oFAqFwoZg9ke7tfaU1trQWru9tXYFnTs6nbv2rLVwQ9Fae2xr7drW2hYdf+g0Zk85pKYVDgDTe/GFh1T3MP2t1N9au661diMdu3G6/idFeb8znX+NqIf/ruto41Zr7S9aa19Dxz+1tfbq1trbWmt3t9be1Fr7pdbaJ7hrbM15n45xuHauLYeJqW8vOOAy1XPxfzceUF0XTuU97YDKe59pXfy/gnM3t9Z+4CDqOQi01j66tfaH0zx9S2vtO1prF3Te+5jW2itba7e01u5srb2utfbkg2jX0TWufQCArwdwIA/vXwEeC+AZAL4FwLY7fhOADwfwj4fQpsLB4SkY358XHWIbntFau24Yhvs6rr0LwKe21i4dhuEuO9haew8Aj5nOR3gxgBfSsVs66vs8AA8BcOYHq7X25QC+B+OYPRfACQDvDeATAXwMgN/sKHfT8EwAf9xa++5hGN54QGV+OH3/RQB/CeBad+zeA6rr3qm+//+AynsfjOviK4MyHw/gtgOqZ19orT0c43x8GYCnY2z3cwE8CMAXdNz7CgC/C+ALMY7hZwF4SWvt6DAMP7qftq3zo/0KAF/WWnveMAxv3U+l/5oxDMO9AP7wsNtR2Hi8AsDjAFwD4Ps6rv8tAB8H4DMw/hAbngzgRgBvBnAkuO9fhmHYy3z9GgAvGYbhJB37pWEY/m937LcB/BBLpJaK1toF0zvchWEY/ry19ucAvgLAlxxEG/h5tNbuBfD23ue0Th+GMfrWOVmvhmH4s3NRTye+GcA/APjsYRhOA3hVa20A8MLW2ncMw/A3yb2fA+AUgE8ZhuHu6dgrWmsfAuDzAezrR3udF+Vbps//OXdha+0/TqKB4621E621V7XW/iNd8+LW2j+31j6ktfZ7rbWTrbW/b619cU9j1rm/tfaerbWfmEQV905iu08Lrvvs1trrW2v3tNb+qrX2ya2161tr17trLmytPa+19tdT/25urf1Ka+393DXXYtxNAsD9JrKazu0Sj7fWvra1dl9r7aqgPX/bWnuZ+36stfac1toN0z03tNae3rPgtdYubq19e2vtH6cxuLm19vOttQe5a9Z5bg9vrb12Eh29obX2idP5r2qjOPbO1trLWmsPpPuH1tqzp3b/83T/q1trD6PrWmvtK6ey72ut3dRae35r7bKgvG9prX35NB53tdZ+t7X2AcEYfHobxV0n26ju+dlGYrqp7de11j6rtfZ30zi8rrX2ke6a6zGy049oO+LI66dzD26t/VgbxWn3Tu3+1dbau849ozXxJwB+CcDTW2vHOq6/G8DPYfyR9ngygB8HcGChEVtrjwTwgQBYHH8lgJuje4Zh2I6OuzIf3lp7a2vtF1prFybXfXBr7Zdba7dNc+v3W2sfRdc8orX2c27+vaG19q2ttYvouutba69prT2htfbnbfxx/JLpXPe8A/BSAJ/L5Z8LtNZe2lr7h9bao6e5fzeAZ03nPn9q8y1T+/+0tfY5dP+KeHxaR0611t63tfby6R25obX2Da21lrTlEwD8xvT199y786jp/C7xeGvti6fzj2jjWmXr7VdP55/QWvvLqf4/aq19cFDnk1prfzy987dN4/FuM2N2DMDHAnjp9INt+CkApwF8cnY/gPMxsut76PgdcL+5rbUHtNZe0Fp787RWvLW19oo2oxbCMAzpH0Yx4IBRPPCcqTHvMZ07Op271l3/QRgXiD8F8ESMO/s/mY59sLvuxQDuBPB3GNnCx2F8yQcAH93Rrq77AfwbAG8D8NcYRXYfj1E8tw3gk911Hzcd+yWMYpovAPBPAN4C4Hp33QMA/DBGccdjAHwaRhZzG4AHT9e8+3TNAOAjADwKwKOmcw+djj9l+v5uGCfCl1D/Pmy67jPcWP8egFsx7tr/M0axzT0AvnNmrM4H8FqM4sj/b+rrEwH8EID32+Nz+1uMop9PmNp1D4DvBPArGMWdXzhd9zPUlgEjq/t9AJ8K4EkA3jD160p33bdO1z5/emZfCeD4VNcWlXcjgJdjfJmeCOAGjLvko+66L56ufdH0fJ+Ece7cAOBSd92NAN409f2JAD4JwJ8DuB3A5dM1/x7An2EUST5q+vv307nfAvBGAJ8L4NEA/iuAHwDw0Lk53fs39eNbAHzANHee5s5dB+BGuv7G6fhjp+vffTr+qKms9wZwPYDXBPU8G+PcO/PX0b5nTM9+i47/NoCTAL4WwL/tWXOm74/DKL7/AQBHqH1+7flQjHP8NdOzezyAX8a4Zn2Yu+4zMJKPT8L4Dn8Jxs3ES6kd12NcO27AOJ8fC+CD1pl307UPn67/mIOaA9HzFedeOs3dN039fCyAR7jn9D8wrgcfh/GdO41pbZquuXBqu59j3z5d91cY16KPxagGGTAyU9XOB0zXDwC+CDvvziXT+ZsB/EDwzr4BwDdM9fzodOzbML5/nzmN/xsxrtd+fnwFxjX9hQD+C4DPBvD307XHknY+bKrj04Jz/wTgx2eex4diXDefh1FFdCWALwVwvy8T42b5XwD8N4xrxacD+G4AH5qW3zEhnoKdH+0rpwnwoulc9KP9c3AL3HTsMgDvAPAL7tiLsfoDewHGxfsHO9rVdT+AH8Gog7uK7v8tAH/hvr8W4w97c8fsh/P6pB1HABzDuKh8pTt+7XQvv8APhfvRdm35A7ruuzFuBC6Yvj95uu/RdN3TAdwH4F2TNn7hdO8nJ9es+9we7Y59EHZeLv/SfNc0UXmhfTuAi2lM7gfwzdP3KzEutC+mNn4e92P6/vcAznPHnjgd/0/T90sw7nJfROW95zR2X+GO3TiN+xXumC26n+OOXQ/6kZuOHwfw5XPzdz9/U1u+Zfr/x6dn9IDpe/aj3ab/nzYdfwGA31f9meqJ/t5npn2/YeXS8X8L4H+7ct6Okb08jq57CnbWnM+dntEzxTj4tedVGDdi59P7+XcYxfJRWxvGdezzMC7wV7lz10/HHibqTuedO34exh+5bzxL8+FG5D/aA4CPnyljaxqHHwfwR+64+tHe9QM9jeMbAfzyTD2fMN37kcE59aP9de7Y+Rjfz3swbT6n4585XfvI6fvlGDdwLwjm4CkAX5y08WOmsh4bnHsdgF/reCb/CaP9ks31ewB8Hl3zDwC+dd3nvZYeaRiGd2BkU5/fWvt34rJHA/jVYRhud/fdiXHH+xi69uQwDL/jrrsX44M/I7Jso4X6mb9178c4SX4dwB1UzssBfHBr7bLW2hGMC/PPD9NoTuX9Kcbd8y601j5zEsfcjnECnMD4w6DGZA4vAfAoE4tM7ftsjCzVdE+fgHG3/FrqxyswLgqPSsp/HICbh2H45eSadZ7biWEYXu2+v376fOWwW5z0eowLwUPo/l8fhuGEq+dGjHozM7B5FMaXk62UX4pxvLk9vzUMw/3u+19NnzYPPhzjBuQnaOzePLXx0VTeHwzD4A1iuLwMfwLga1trT22tfWAmLjS01o7QPF/nvXwGxrn3tXMXTnP7OgBPbq2dj1Ha8JKZ214E4BH09+aZe65GYKw2jIZYH4Lx+T0bwF9glFS9vLUWqd2+AuMm8anDMDwjq3ASPT8GwM8C2HbPuGE0enq0u/ayNqqZ/hHj5vB+jD9WDcD7UtE3DsPwF6LauXln/b4f46bx6pk+ZGvdfnByGIaXB/W9X2vtZ1prb8H4Xt2PcfPSu479mv0zza2/Qd87si5MpI5hNLq8AcDfDMPwz+4aW4P+zfT5URjJFL/z/zT98Tt/YGitvT/GefinGKU5H4dRQvCi1toT3aV/AuCLWmtf31r70N73fi/GH8/DuLN/ljh/JcYdBuNmAFfQschS8F6Muzu01h6KcSKd+ZuOdd0/4V0xKv/vp7/nTuevAvAuGH/43haUt8vorrX2BAA/jXH3/jkAHolxIbuF6l0Hv4Dxh9/0jY+b2u0X1HcF8B5BP/7Y9UPhKoximAzrPLfb/Zdhx3qZn4cd53GJDBnfilFVYG0Bt2cYhlOYxOh07zvou210rF7TJ78Sq+P3gVgdu13luY1Tz/N9EsaNztdhZJX/0lr7ppkX8lXUpm/qqMfa9k8YpUlPbWQ/IPASjOL9ZwC4GONcznDTMAyvo785I6YLIayXh2E4PQzDq4dh+J/DMHwsgPfC+GP3jEYupRhVUP8C4Odn6gPGOXEEo/qHn/H/C+AK9wx+FCOL+16MC+ojMIovre0e0TthmJt3HncDkDrtjrVuP1ixI2itXY7xfXg/jBu+j8Q4Dj+Bvnl+etrUe/Dae1CI1pW5tcbe+ddgdT68L/L10srm+QiM84yfO+M7MKqHPmUYhl8bhuGVwzD8D4yqw+91112DcVN8DcYf+Le21p7bEpsNYD3rcQDAMAzHW2vfhpFxPze45B0AHhwcfzDWN+d/C8aJxMfWwa0Y9aDPSeqwXWZkLPQg7HZN+CwA/zAMw1PsQGvtPKz+kHRjGIYTrbVfxCgKfAbG3e4/DcPw++6yWzHuMD9TFHNjUsXbAfyHmWYc5HObw4PEMdtY2EvxYIy7dwBnJBBXYf6lYdw6fT7Fl+eg3J3WxjAMb8P4A/ClkzTqCzC6/dwC4H+J264BcKn7vu4c/+apnm/saN8bW2t/hNF18xe8ZOUAcSviBS9qz1taaz+M0RXsfbGzCQVG3fMPAri+tfYxwzCERmwTbscoyv5+COnBMAzb04L4KRjF6t9j51prH6ia2NOPDlyJ8T1UOIi1TiHqw0dh3CR/6jAMr7OD01r2zgB75z8HoxqDwRsOjzdg/E34AIzudACA1tolGCUJPzRT9wcCeC1JHYFxbn96a+3yYRhunzY9Xwfg61pr74lxbX82RrsPKVnaqwjmBQC+CjsW5R6/C+DxzfmDttYuBfAEjDqibkwM7nWzF+b4TYzi0b8ZdszvV9Baex2Az2itXWsi8tbah2HUe/of7WMYH6jHk7HqLmO77ovQ96PwEgCf11r7eIwGWrwh+k2Mi9jxYRhezzfP4BUAPqu19oRhGH5FXHNgz60Dj2+tXWwi8olRPAqjrgwYReX3Ydwgvcrd9ySMc3bd9rwW4zN4n2EYfmzPrd6Ne7H7h3YFwzC8AcA3ttGjQW6apuv2jOmH7/sBfBn63HO+A6P06fn7qTdBpHJAa+0hwzBEzNU8L/hH+V8wGk79DoDfmX64Q+Y7bXx/D8AHA/izQVujX4DxXb2fjj9FXL9vtNYejJEByud8QGvdOjCPgzPj0EYPh8ef5Xr9ung28WqM0o33Gobhp9a5cRiGk621V2FcM7/N/fh+Fsa5o9ZQw80APqSNPtn+t+KRGNehld+DYRhuAPCc1toXYIZg7elHexiGe1trz8K4C2Z8M0Y5/qtaa8/BuMv7eoyTRInUzya+CeMO59WttedjZKRXYByY9xqGwaJKPQPjj9svttZ+EKPI/FqMD8AvAL+JMUjF8wD8KkZd+JeBRMYYrasB4Ktba7+BUZyUvZSvwriz/hGME/rH6fxPYLQyfFVr7TsxWk6ej9Hy95Mx7phPIsZ1AP47gJ+apCR/hPEH5+MBfPe0CTiXz+1ujH6Lz8W4iD4T4873ecBoOzH18Rtaaycw2iS8P8ZN4mvgdGk9GIbhztba1wL4/kmE/BsYdYzvhlEPev0wDGG0sAR/C+BLWmtPwhgo5y6Mc+WVGJ/V6zEuiJ+Ccb69Ys3y18W3Y7TIfQxG2weJYRh+AaNK5mzh1QD+W2vtqmEYbnXH/7q19kqMz/MGjHYGj8coqv6ZYRhWAngMw3BTa+2xGC3P7YdbMdCvmup+eWvtRzCKtt8FozXvkWEYnjYMwx2ttT/E+F7ehJH9fiF2VDNnA4+cPl+dXnVu8XsYVXIvnNbyyzCulW/F6P1ytvB6jOvp/zO92/cB+Dtv43IQmNaQpwH4ztba1RhtmO7C+Jw/GsBvDMPwc0kR34RxrfnJ1toLsRNc5bphGP7aLmqtfRFGEvsRwzD80XT4+zCuuS+b7r0Xo2X4pwE4swmYiOLPYJT+ncBoHf9+GKVOEvsJaPCjCMQOwzD8b4y74zsB/BjGH5/jAB4zDMNf7qO+PWFaCB6O8UfuWzFaav8vjIvbb7vrfgujePr9MYpEvh7AV2NciO9wRf4QRhHGkzDuuB6PkY36a4DxB/0FGN0s/gCj0UHWzm2MLmvvhtEQ6h/o/P0Yf2R/COPi/OsYfxy+ACOTlFGxpnsfN/Xb7n0BxgXtHdM15/K5vQTjD+/zp7puAfCfJ0NHw9MxLsL/BeNYPm267xMTFiUxDMMLMW5u/h3Gvv06xk3ZUYwGUeviORg3Wj+M8dm+EKOF6J9h3CD9HMZ59OEAPncYhpeJcg4E04/jd53NOtbAyzCOxSfR8adj3JA+C+Mm5qcxjs/TsOo/fgaTWPyxGDdB1zfhZzuMwTkegVE0+r1THd+DUVzpfzA/G6MO8fsxGrrdDOCp/d1bG58E4E/5nT5MTBufz8D4PH4e46b9+zDO27NZ700Yx/qRGJ/Jn2B8Pmejru/FaNH/HzCulb+GkZwN2DEaVPf+Mca156EY14pnYlx7/ztduoWRfTd3709gXGsuw6iz/lmM8/Ia7I5z8mqM4vufxLjGPQHAl05rlURzxtIFQmvt3TGa5T97GIZvPuz2vDOgjUFmnj0Mw2yQnsLmorX2YowuOR972G05TEw69JsAfM0wDD9y2O0pbD4O0q1gozG5jHwXRvHm2zFatX4dRqOAHz7EphUKm4hnAvi71trDZ9RC7+y4BqNXykHZUhT+laN+tHdwGqO18vMxWiifwKj3+a/K+KVQKMQYhuGGNobqPejwrZuGezEGUmLj1UJhTyjxeKFQKBQKG4KNyKxTKBQKhUKhfrQLhUKhUNgY1I92oVAoFAobgkUZoh07dmy4/PLLD6Qsn6eBczbMfe8tdz9t2u+10fm93LOfa/cyFvtpg9lfvPGNb3z7MAy74mxfccUVw0Me8hBsbW3tuW1cj/+fP3vu7T23zj17sUFZ556e+nrblI3ZOmNxkHY3N91008rcufjii3etOzZ3bC4BwJEjR3Z92jk+Hq07/LkfLKWMs4V15vs6c3V7ezv8PHXq1Gw9hhtuuGFl7hwGFvWjffnll+Oaa67ZVxn2Mp1//vlnjh09OnaTX8a57x7qXM8LqTYJ2QsetUHdywsJf0btUAuK+vRlqXFbZyzUtfasonpOnx6jCT760Y9eifh19dVX46d/+qfPPHf7zJ6lvbhWrn3ai+z/v//++8NreRHw4IWAr+H6/T1zi022sVD1R9fN1efHwqD6zsftXt9vPsb18nd/z0H8eF977bUrc8fWHSv/ggsuAABcfPHFZ6655JJLAACXXXYZAODSSy89cy8AHDs2RgW96KKd6Jw2l887bwznzT/s9pn1S72HPe+alZu9c2qdmSszKp/bnNXB74LaHPvrovfFXxu9v/be3nffGHvqxIkx8NrJk2PwyFtuuWXXd1+PPS/Dk5/85DTS4LlCiccLhUKhUNgQLIppHwQiZqgYqNoRrsNIszaoa3qY9ty9PVA7YX+uF37HazvQrPxeZP3mne7cmJ933nln2E0kbVCsgnfuHnNiXMWeszJ6mBV/57np2zw3/j0ifsW0WSoRtU3Vz88vOmb9yNia9V2N+X4xDMOuMYmkGXOMl9voYeXNqW6y91Sx8r2sB1HbVH1cbzZ31DP0dfB7yfMsmwd8DT8n+8zWfl4fTKrimTZL09aVRpxtLKs1hUKhUCgUJN7pmDbrd6NjkdHIHOaY8DqGb9nxXqOVSMe8Dta9x++w1Q60xyZAXZvpzg2mG4xgTNueLe+ofXmsAzP0GJsplhfdO8dW92N01bP7V4Z8vh1zfc7auB8ds7JXMPj+MRu3Z5xJSPaDqNy9vNO979g6TG4/xm3Rc1Psdc62Zh1k6wFLXnqkUHaPsifx3+f069FvgVofloJi2oVCoVAobAjqR7tQKBQKhQ3BO414nA0OvNhFGSHMuVUB824T67h6ZVhXlLaOEVuP4ZtBGb5EYzJnRJKV29N2fj7eHYzRWsORI0dWnnXUJm53BuWSxKKzSFSnDGW47B73LT4fQY1ljxh7P2Jy5Y7WI47vmTv2LDP3uoPEXozusnuUq1ePSyaPU4/Ll1LHZO6CezGAnbs2W6sMPAaZ4R3PHX4HWWwetUGNuf+94Llu7mJLQTHtQqFQKBQ2BO80TFtFLAJ2dup8jdoBZ0zbwDu4yACJsZdoWT3YC4tdh5VH34H+oC5Zm+2zJ6LUXLlbW1vpPJhjvFHwBhV4RQVmiQz25phoD/PpGVPFIjIWrYK3ZEFW+Jh98hhw//l/30Y2LsuY69l2AVNt9W1YxyBVSQF7mLaqNwK7Uak5E0k+5iRu60gNe6ISzrnfZhIyJSnrcfni4z2SxKWhmHahUCgUChuCdxqmbWw6c/VRO13e7Wf38vFIfzQXGtKQBeJQO2AVYi+6N9vN9rBWf0/GIPiajOWqerJgKL0MvrW2IlXx98y5XGWhE/mcYpkZS1fhPqOxmYtt3ePy16OP5/arNmb9slCRqr7MxYj7a8ejULKMddjffsF9UvYC69gcZMfVNZmtBrdNuWZGkh3V1gxz7mE9evd1pHNK+pRJrqyNNkfXCb0cheFdAoppFwqFQqGwIdh4pm1h6CzwBgfpBzTj7LGUVAFZuKyMaWd6T0OvHrzHIljpMKPd7DoBUubqy9rGoU9Vv7wEQUlEIhjLZmYatVPZIyjpBqCTY5hlaZasgHfsXEbERNkKPgsao8K9KrYcsWZOymGfzMR9eT3PcA5q7COJi9J3r2Mlv18oaQK3BdDzl1mzoScpT6YHz5LK+Ht7Qu0q6/UouY1aT9d5Htk4zl2TjRG/N/wuZPfspR/nAsW0C4VCoVDYEGws07adETNsZnT+f7aqzJiVgtKPR7sxFQYvsu5UVrs9mAtsn+mUenfYERTDjhidYoMsqch05xlaa9ja2uqydlWMLdKvqRC43EZjpJnngTFv7mtkcc4snJ+TTz3L9XHbMut41herZ5hZHCv/+R6GohKGROCxPpe6RhX6WElEomtVe6NkIxGz9WCviwj8bDOJhNLZW9s4Ra2/Z86aP3qnuW28jtp49kgUlQTLH7N67fcis/c5l7YSe0Ex7UKhUCgUNgQbx7R5d6+sbHsswBVTzHSMzAyzgPPqM2KDrG+d03FHO3DbvXI/I4vzOT0/M8fMwllFLvP9Y2mA2kF71sYsosfiPdOrGUtQjDdj2sZsbafOu3q2JvfnTO9tn/fcc8+udvRYc/Nnjy+qspDt8Z9l7EUCEs0dxfrVeAI7z8CzPH/N2WLcfv7x87fv9hlJG+asqzNbl96+RTYg7PPOrDzyjph7L9nGAdh5Hlwfs/OsD8qjx8a1Zx3nPmQeI1bPRRddBGDnXYzm99lOTLNXFNMuFAqFQmFDUD/ahUKhUChsCDZCPB65YClxdSY+5GAQXH5kTKKMK1RYvKgtLPqLxIrK4EgZLWUipx5R+1wowB4jIg5ok7l1ZS49/rwXv63jdmbX8z1RkA42umG3EC/qZPEtjynPP59cgMXj9957LwDg7rvvBgCcPHly5R4W4fu++bZlxnI8Biw29e6Q7ArDyFzxVLALQ2b4xu5wfI/vv91v9dr4sarooFxzrB5zJwWACy+8EABw7NgxAMDFF18MYFUU7KFcvFjFkgXZ4cA1hsxdMHN7VJhbXyK1hVIRWhkmeo7cxJQYnMfePwNWRfQYvrFKgA0f2ZDZ/2+fJR4vFAqFQqGwJ2wc0zYoc/8owQEb/KidbbQztZ0eu9jYtcaSIhcc3j2q3V50zxxrWCfsX+TWoHaPytXHt4fd7fxu2F/r6+DdccRquY38jD1DjDAMQxoqds6wLWNsfC+3v8eI0WBzkxlXVLdy48qkTyp4TBYISD1vZvjAfOIdft+iYC7KxYj75M+xpIqZ5UEZpEXsy95vM2BiiUskOeC1iENpGiL3rczlDthZd3x9yg3M+mFt70kYwvVFLl98zvplEqUTJ06sXMttsn6wNCKSOLGUqUcqqJi9tS2SJLFEpJh2oVAoFAqFPWEjmLbf9WW6ZH9ttANVeiFmvn7XqXbJvDP0uzFm2MzKogADKgQks5iIDSrW3aPf5fLYHSraZXKfWeeYucGwG0XEarj9KrBJhuhZqiAgGTNkqPFiPZ4/p+oxZMk/5sKaRtfMuXZFLj/MbHqCBvF4st4zYp88xsa0lI1F1AZm1pFucx121FrDkSNHVuav6bGBVSkPh6+NJBLWb5NEKbsItrnx9/I8MxYbzSXTt3N5xirNhuKSSy45cw8/Z7aPUK6H/n9+zvz8IxshfrdtrJVLXQRlT2Jj5I8pyR6vXVGbKmFIoVAoFAqFPWEjmLbffdtOjHe+zGp6EhwoHWbEzpTlN+tx/D28Y8/0t6x/VGETMytVBu94vZWytZd3mkon3BMWlMfK75J5Z62ssiNdbY/FvIUx5Xnhd9CqbyrMrT+n5g4zHs+0bbztXmYC0bxkCQ7rC7MEByq4ShYAhplbjwU2jzEzR9bVq9Sa/t6eZ6z0vBHL5Xvm4Mcu8yKx56vYf2SZz+8OS5eidtu7o96/SFrHITp5LI1p+/pMz2318TrAz8fPb5s7LBXgPkSSJF4jzRqf13dvL8Pzac6jB9h556zvynI/8jYyeInLElBMu1AoFAqFDcFGMG2/2+Jdtdp9R7t7xSJU2k1/bs4vPPLP5d0x7zzEE5R3AAAgAElEQVQjvbRqI/cr2r3y7ts+M10PsyPF1rJUl0rv7uvjftpYKB1XVI8f4wheLxnpqniHrmwaPJjpzOnRzIcYWJVwRBa/3Eaegzb32VLbswwVWpeff/ZOZKF8GTxXWXKgpCm+DRwml1mpfxbKnoT7v1embTptthCP2q3mSuSvrZJj8Ny0dy9aD3h+sUTCl21zj+eDZ8fcdn4flb2AssfwZSi/7chrxfrDn+ytE/lpc1nKwt63n+tlXX4kabE+K1uYw0Ix7UKhUCgUNgTL2kIQMp2I0ilmrIlZo9IpeUY3pyfKrGuZTXD9UcQwZd3I1qr+Xi5PWX5HkYLUjpN1+H6Xa9eypWeml7SxsJ0uM0lDpFvq0bO21tBaW9GvR+xSWS4bMr2q6cZuu+02AMBdd90FYNW6F9hhPspCN5JiMOtiBhqNMTMpZkvMbqPoZgaef5FlM0dy4/E0pmpj4tvHulqD9c/mg58HkT+7R2TNHtmaKLTWcPTo0dT/V/lY8/Py91i77rzzzl3feyLHWbk8R21sM+kCl6eS3vhr2P6C56p9j3TMzLDZvzmSWNi7oWwprK2RdTyv28rGwl/D3hFWLkuygFV7n4OKtHdQKKZdKBQKhcKGYJFMm9m030kpK2cV5xfQ1quR3hOId9h8DTPGyNJU+RVnzIGlALzbyyJvcT974iKr+tny3O+wuX+ZTy+DJSLs45n5a2cW7MMwYBiGFWYaSWnUWEZja+06fvw4AODWW28FsKrHvf3223ddD+ywiQc84AEAdqxQrc+ZL7mSvEQW58ygOa4yS58iHbqBx4AlJB7cD7astjHzY2JjYNbCNkZZfH4VW129I3uBry/yDVbvu7KtAXYkEiyZ4LjlNm5RG9jmgN9PP7bWFvYLZ2aa2UOwHQZLrCK7GANHi7PzUYpTbotJrtjuxLfVyrv00ksBALfccguAnXlu9fv6OIY567StPdEaOSfhOSwU0y4UCoVCYUNQP9qFQqFQKGwIFikeN7DBE6DdPdigyYs7VPAJA4sRfX0qqAW7EkSiW+XeEonUleuFgcVlkVhMpdOLjJfYlYNFaPYZpdfjBAQsno/Ei3PpG6OACZE7hoIFV+GkFRlYvG/1+HtNfPuOd7wDwE5ISDOKsTZan+04AFx22WUAVgNGWBlRQA5+7mzolLm1cD9YBBglh2DxJ4t5I5EzqxmsPpsPViarA/w5K4MDdHAdvh+Ra5T/HqkMemBzh8ctcjuzdaYnfSOPJYfH5KAdUZvt2ZmKxeqPUmXaOQtTqtwV/fNQ/WHjrigJkMHqM7F/z7NUblT2vtm88GNk91x55ZUAdsTld9xxx642Wjt8X60//E5Ea3GmLl0CimkXCoVCobAhWCTTZvaSGaXwzi1iIsotgw2oIsMgda8d7zHyUmH+ot2mMgwyRK4Q1mc7xy5AUZhH26WqNI52rTHHKCADpyW18bTdMUs/PFhCERmeKGOsCK01nHfeeSsMOwpYocJLGvwztXvM+IXZkZXBbDaCGSSxdMj3L3J58m2KDDE5JCS3weZqlMBDMcUsHCwbDbI7ko0Ru375a7k//B5HhpYGFZbVX7eO8ZAZMXI9kSuekmJE7onWThsHa6d9N0YYvSdsdGf3GPh99W2x8Wd2HAVkUS6X0XMAdq8t/L5z/bZ2RIlc2IX2qquu2tU2NnL0bbJjLH2IxooNN1WCIv/9IA0czwaKaRcKhUKhsCFYJNM2ROErecerdM5RMBCVglMFPwFWd3esJ8p0jNxm3hFGAVIYVj+7nDAT8lAuWBGzZEbHzCdql0qZybpMv4vn8WIdbdS2LKECw5g2lx+54rF7i4H1X8AqwzamYXrpTO/Obm3WD06O4OeqXaP0+NGun6VP6rlH51kKxEwo0kGy3lOF2MxSqrIEg/sbSZJUqNvoea7rprO9vb3iTuXtE/h9s+92TSQVZIbLAVpYQuLHWK03Knxq1EYO6Wv1e2nRXJpQng++Drav4SArmS0Rs1jWOSuJk6/P5o7ZjnCfgNXgNCrVaJTKuccu5jBQTLtQKBQKhQ3Bopl2FKR+LsFFtrtjxsG71+weFeQgYoF8LVuN2r2RVS2zCd75RnpexURY1xzZBigpAwepiSzd53TE/rmp58T1exbIu+EsuIrVkYXl5GQrKtFBdA+XqxLTRDt2A1vV2xz2zEexZmaBEePmMVY2FFFyGxWIJfN04CBIUfIcbodi4T2SK2U1bvCBP+bmiodJaaI5aOD2sgV4tu6oIERcT4/FO3siRO+0gdmlrTfGUH0b+F3gZxqtO3NhWaPxVIl3elL1chlq3fHfOWxuFJTG1x/1WUlBDwvFtAuFQqFQ2BAsmmln/pdK9xol9mAWqdJPRrs6ZVnes/tiJspsybdRpQBV9WdsgHegUZo7lUiey8qYltK7RlaXSlebjSPvjnt12x6RNS/Pq54kMFy+2t1HOkYlRYmsx7mPnF4zC2OrJB1K8uPL5eec2TYoKRcnWojmlpKaZN9Z6sASmB67kgytjak5s3XA6mB7DfZz9wxOzTeuJ7J+ZzbJ4Tizd0Hpa+1er5dmewv1LkSsk+cMs/bItkalSlUeN5HkSrUpmqssDVJheqNwx9zPpWBZrSkUCoVCoSCxaKZtyKIyKRbtd0tqh5vpstW9XH/URmaxrL+JIocpa1G1Q/RtVjp6brvfnatg+FFCCoayTlZ66qwM3uFHz62nTXxPJJGYK0+xAGA1KhfbC0T+8wxlCxCxl7m2Zkk/Mp2ir8Of4znLDCSK2sbnbAzYYjfy0+X6uS+Z1GsdyUgPhmHA9vb2SryDTJqlJEaRHUcWzc7f699Plo6xdCMrk5+htYkTlWRtUutbpENnuwhl/+PvVx4NbLMU9YvfCbX++f9ZWqdSgkbtLz/tQqFQKBQKe0L9aBcKhUKhsCHYCPG4h3JJYeOHSASoDHIyV5k50XMkAoyMG3zbI6MOJaZS4usswL0y0MmM85SINYIa60ztoAzs2MUjEmdzGQrRvZkLmUJP3zlncZTAQSGbf+wOyEEuIpGjyi1vyILscEha5eoThZPk588qgyz3twpykY29Cn17EOLL06dPpy6G7K7H8zkyDMsCFEX3RkGdlAtglL/bYO3nPN3WB0vKEUEZe/F53zY2QOTnH81vNhjmNTOad2o961GX8Jqlfkd8W1hFuRQU0y4UCoVCYUOwKKZtrheZsQrv0Pgz293OMRKuw1+jGKK1NQpYwUH32V0tM7ri4xnUTj5Lzcl95zIyVsu7ZcW0I4MQHkduWxTKUbWR4fuXsTD1DPl7dL+6dp3kApmBngqIYYgYnQpfqkJgRlIafh6qfiAP2hPVl7mn9RiF8rOcY4PrYhiGXUzbEK0DvP5kAXRYojbX50gyxWWxRCQaW3tm9mkGaNEz7U2OkbFXO2eMm93g/LhyuFdmwOpZ+/95rVcGav5/TvCkDIw92IhtKSimXSgUCoXChmBxTPvo0aNndlAcDhHQbCvTR/W4dvE9BuV6wzpMz86UHqonLN6cLilqIzN7Zk8RW1L9YnaUudBxGRnTVm53c2FpPdYJJ8jPKWqnYs0RY5/TwWbMQD27KP0h6/jYNW6dQA/cxihQDpfLrMLmTjQmPN8y1mKYY8sRW+J+qKAx+2Hcw7CamjPqjwqmEs3f7H3gaxlKX6tsHPy1SjoTrQMs1ZyzcYnWVV6vs5S8dg0nCGGXyswmhd/tzC6C9dNcf8aiM2nTYaKYdqFQKBQKG4JFMW1g3H0yI83YktJP+h3hOkzAl8n/R/VEFpJ8r7rG90sFG+jRvfBuUSUo8DvGOf1nFsyF75mzsI/un9Pz+f85aYpCa02237dX9T3SaSvmq8qK6lMMLuoP2z/w8UyKYVC2BpHum9Ofss6UJSL+f2bcijlmUho1nll9PK6980PBgqvsJVwlP6fIMl/ZHKh5GF2jdM4Rq+RAImp9iMrjMVVBn3w5XM/x48cBAJdccslKfQZeP3tCFKs2G6JxjsJa+/oiFq3e+aWgmHahUCgUChuCxTFtYNV/MbKqZD1utlNX1q3rtCXTXar6lDVqlNJuzmozq4+tRrm+iJ0phqCsZKM2cX+yceU+K/1exFQMc/7V/v7MklSx5kgnptjROla26p5oJ690mZk+lBmmYkuZBTC/a5keT4XW7ZGezLGWyBaBkYU63SuMbQPxM+B5xezSfJ/NUttfO8cMs3fMoPzn/XvMvs6coCiyoeAxVM+Wz/t6WLfNjNvXcezYsbCfHJcgm7PKniS6x/psz0eluI2ka5xMZylYVmsKhUKhUChILIppD8OA++67byX6EF/jYTs0vidiL3P+pNG9io0ZoshEzEQV4+nRlawT7SfSP/rjETNRlt+ZLltFLZrT2UX1qu9Rf+b8JX3/zDo00uPzbpvPR/XMMZCoH3N626gM5emgnm1UrjoeeToYOGqWXWvjF1lFsx8uWwRzitiojdm7x8fm9OH7ga83Sgtp48CJdno8XZQEYp33RTFS/yzt2XHiFkPE7JXfuRrbbJ2zfvG7Z4zbX6MszHue5dw8iMpQDD6yuOdkIgcxvw4SxbQLhUKhUNgQ1I92oVAoFAobgsWJx0+fPp2G+1RGLizKiIIOKMOVHrcdRhZchcWCPWELVTCDufzDUfmMnpCebNiXGYJkY+2PR2CRmnI1823icIUK3uUrCiTCahL16d1P2GBlHVclniNzxn++bg42oQJJROWyOFx9Rm1hMXmkmuD3kseI1Q+Ry8+cy2ZkYMXnDlJsub29veJi6tugxt/an7ksqeeeicN5zFgsbt+juWNicQsryqqWKFSweqczFRiXH70//jpgR1RuY2LzbB01iRKDc1s9VPhrVgP5Ywdp6HiQKKZdKBQKhcKGYFFMu7WGra2tNDUasxOVICRzFVA7qGxnpZhAtOtXTNt2e2yw49ur3E4yVsHMh/sZsSVVH7s5ZG4i6jMa5zl2y+3y5fQGXjh9+vTKjjpyF1RJCrh/0TEViCUK92nHeI4wI/BGlJyMQ5Xv3wkuf849KAtrqwJK+PrmXPyYcWdGhqqeyAVnziBtv8iMPtXYGtR8jqDelyigDBug8eeFF1545h5za+J5xxIrf4/NNx53ZUTr587Jkyd3tdGMy8ytK3pveZ1hg75sDZ4b20iiw+uceleywFNLQzHtQqFQKBQ2BIti2sC4W8rcGvx1wA5rzbCua1IWkIM/eRfr/+91F4vq5h0hs1ffb941Kj1htpNn9sT6Sr9rVgFSesZRMdV1AqdEGIYBp06dWtmxZy5rvTYO0TneoTO78f+rPnIQIX+tsSb7NL1gxIT5PVGBUax+K9OXw3OWy4qkNPxM2eXIkNluqLkauRZx2/YatpRhtjScpjKSLsyx/ghZkCOP6P3ktrD0ydd74sQJADsslnXb9owvu+yyM/cY6+bwtba+cCIU775l9VmbLrrool3XWtn++bMUkt0DGVkgGDX2PePI720m2VmabruYdqFQKBQKG4JFMW1v/QvkTvKRU7yVEZXr71WW55EFMLMlZrNs7Ru1rYcRKBbGupiof3O62ax+ZVnOIRGj+ngnym2LgmpkFvRROzzmdFrGmKK2+HbznMkswJndsV5YzQ//P5fPzMuzWGPBxnyMzRhbss9obJUUg9vjmTZLUtgmIJoH/Aw5GAWXndkVcB+iZ6DsSQ7KetzmDffdzxN+vtyWzNNF2dsoS/SoHmavdvyee+45c489V2PDNoesXGPN/h47Z/PKyjBpidVnfTA9ti/fYGNh5UfBdazcHi8VIH4X54JURePI76u1PfOosHvWSQl8LlBMu1AoFAqFDcGimDYw7mp6/BhVAgrWS3nMhS1lVhWdU9brvkxm2Oy3mrFYpYvltvkdKO8E7TuXkTFVFWo104ezFbayls/OHRTTHobd6RUziQvXlekl1S5+HZ0m953TYXoY4zG2xKwpYrWKsTEbzMIyzkmDMt0ih7VV7fBQ1sLRPcz6VZrK/SKzDbDxZ+t+bncUIrQ3jkHEKpUPdDROHHJWhZP1ftPGrK1uO8dMNNKhs3RGJfjx9jcqXemczUB0rEfSYu23frEum/sZlbs0a/Ji2oVCoVAobAgWxbRbazj//PNXfPgyn2ulx/M74bm0kD07N2UBGlkYqihDmZ6Q61EWkRl7UYk8It0SSwq4vGzHq1iZ2kX7+phpZ77dqnwFz7SZqURlq517FNVMRcCb8xAAVmMJGPOIWBtHQFM680gapPzC10FPHAQeW6VrzCRmc1Gn1vGRPijws4ySSHiWyu3ktinmye9JpE+1ecDPgcc2mjsc1c7usXXV67SVfYfB+ssRE4Edv2yrl7/btd6bgPulvAeyOawkS9F8Yx22lc/fI6a9NKtxQzHtQqFQKBQ2BItj2kePHu2KNa10jZH1sEo2z3o13s36c4phZ7tkLo+ZVmYpn+2o+V7l82ifkS+70kMqa8pI3zan68kios3pRaNr5na+wzCklqS8g1Y2DpH+XvnNM+P2ZSmGbZ/m1+rTFF566aUAdqJKXXLJJQB2dNtmvevZEvvnrsNErb3WBmVzEM1VZe+h6oju5Wsyu4KzxbAZURvZa0DNnSh6o/quJGK+Dap8u9ezWLvH5oiSMEbvBMPmrM2LyJ/a/rdr2C87sm1RMcDV+hPFHGCvGB6rKFqg8v6IIhkuTYfNKKZdKBQKhcKGoH60C4VCoVDYECxOPL61tZWKcwwsMstch/h+5aIUXa/EhT2GYVEYPyAWjys3lp4QiJyIhF0xIkM07qtyMYlSjyrxUebOxW4o6hlkYv+5MKbb29tpOs9MlJ2Vu873SCWg1BUm2jRRuD9moSbt08TjJgq3TwC46667dpXP4nKlivD1+SQSwKp6xN+j0pXOJRKJ0KNqOSxxZSRm5YAibEgZuTfNBQOJ1gMOvKNcDLNkLLzuRCJutd6wyFu5kXqwgW1kaKdcSlV46ChYEbeB3+ssmY4KshKt30s1SCumXSgUCoXChmBRTBtYDWVqxwxzwS56ArNkdXN9ynAqY768+50z8onKnTO+8fWyawXv3O18ZGzBhiDMyqPdMu9oVcrLyGhlHaa9TrpDa5dqm293xo6jMqNrFfPJgrrMfQKrYR7tOzMfz4yNqds1xrzNWC0bE5YCKBecyDiPpVxzY6PGx1+zjrHUQSNjsRy4hN+PaL1Rbo0Gfv6ZMRQbokauSpG7a1RWNN+UNIYZaPQucoASdj3zYFc/NujN3BZZ+sOGvhnTngtDG0lmM5fjw0Qx7UKhUCgUNgSLZNpzqRP9ORW0I7snc0lgzLleRDpfvoZTF0ZuXEp33ZMmjl0vlCtbpuvhdhgySQKzDNZ7ZTrtHteizNZAIQt2wXp7bm+kt5sLCpO1cY7ZR8yA2RKzlmjO8pjafOB0nllwEmWrYcjCPHI7VGhK30b+3mO/wvecLQYU6VPZJYlDE2dMWwVR4Xc8CmBjUC6HUfIPW2fUs/T1qOehXLN8WczoVbAdP47qfefQsVHSGyUdVIzb369cNaN1cM5u5bBRTLtQKBQKhQ3Bopn23HXR94yxKf1TpsNgPSBfE+20eefHu/Mo+L6y4owCo/jzvtxsx+nb4f+f09tku0zFypm5+v/nmFYPy1XwOu0eNsa7/khCMJf2NENm9+Db5p8Lh41UyWDY2tuXx/YJWcAK7pcKdhGlqVS2DOqd8Zhj2JEOvTeoz34RPRcOL5vpRA0qjKlB6XX9tYop2j1sze7vYSbfE86Y56oKLuTvYW8VluxEEkX1nio2HUHNBz9XWeqjUnVGa/7SrMYNxbQLhUKhUNgQLIppG8tmf+MolJ3S8Wb+vnyvIdJh8bV8TbYT5B2uShQSsUrlN23oqU8l9IiY9pz1fQ+76dENKz/PzJKaJQgZ0zaWzTv1yBqdx5YZqWcGbHnP1zKi9qtnGKXZ5DkS+fACsb51jjVFVtFzDMSYXI+unvttWEdy1pMk6GyD39eobg5nGo2tsuJWbDaylGYrbjXvfPncNivDjvvQp8ySuY3K8t1jLgVspEPnaxWrjdZIbqtaz309zP45fXJkVxJJRJeAYtqFQqFQKGwIFsW0jSn16BLmLEoj326VMGQdfVqmw+K28K6O2+brYSvhuWD/GQvgNkcMvDd9YyYVUDrnTKet2HhmFd3DtLl/0bWKRai2ATu7bd6RKyvbqF6+h3f5kV5SseaIXdj97C/Lx+++++5d56O2KOvdjGnP+apHvvJZf1R95xqRnzazL363IwvwObuIKGkFR7Pj55Ql2OH3pse6Omq/b1Pk6cCMnhHVx2uj8kRhCYA/xrp5XhOzdc7GlSVKkZV6z1p/GCimXSgUCoXChqB+tAuFQqFQ2BAsSjwO5IEYIuzFDYRFmFm4QSXiZjGfL5MNWdj1IXKF4FzLBg6fuE7oU2U8Fx1T/clycRvUvZEBigpOEoU+ZbF19oyHYcDp06fTa9X9mTGcGvdMFWBQz0GJ6f3/bFyWBdkxNzE2GrO5o8Tm0TkWJ6pENr7PrNLhfPLRezz3bp8ro7Ne2DjNGW559AbpiHLY85zhZ8tGlP5/e+4W3jYLoDRnAKiM2XzbuFwWL0fGcyx6ZpF3ZMTGmAu9648pcXhm4Lc0sbihmHahUCgUChuCxTHtYRjSUJq8a+wxhpnb1fcE8ZhjHv4eZqdKGuB3kbzTZQOojMVyPYpFRwZ2fC2HwsxcpxjrMFZlkOaZQ4+7G5/PXNXY2EaxCo85FzVmk5FBi31ayElms1G4V+UuGLkCKkZj31W9wKqxmnIXjMBsiA2usoA5BhVMY2lMmw2ZsveD75kLt5nNVRV209y2sqAu/C4b/PrE57gMlg5GRmX8nedQJuHja5SLo79GrcUR01aujFnAIX7n1RgdFoppFwqFQqGwIVjUFsL0koaM+aideaSbUQx6zmUpqlc560c67TlWkbml8U6UHf4zqJ2oHxPFrJVbhd+dZ0k+1PE5vTfXG107F1iih4lH7c0Ytwpyw2DmDWi3vSwYDjNeJQmJ5hu32diD0nn7a/bCbHnuqHSr/pkq90qWEkWShCWA3fOszzbG0TmDsj2xvvrQtKwXtmRA/Awz1mzPliV/2bo6N2eje1nqkOmhDSq0aib1VHMnS4jD6zVLluwzShjSY0tzGCimXSgUCoXChmBRTNvCmPIuzO9uVQjALECKCoDBOyq2egV2dEe8i1PWtv5apfeO2PIc+2OmGllms842s/w1qHSaaqcdtVnptnrq5RSUUUAW+4zC2XqcPn16hZFG9hBzEoJMB8vXqIAZ2b3GmiJ9mt1z8uTJXeUryUtUvmLpmW3DOuB+2DuiUoRG48nsmaVBEfNZEmxNUqFKgZ3xyay3gZ1xilgzv/e94T/9NSzVioIHKYbLErAeCSaPiQ+byu8eX8vraST1Mii7j0hyxe+a2XlE85+lHCpp02GhmHahUCgUChuCRTFtYNyJKT0roK0OmU1ElpiKETLTjvSqXJZi3FEbeKfb43+udvA9/syGbIef+ZlHiPThBhUOtOca9k/vSTKi2nfq1KkVH/jI73/OajzT+fXYP3D7I8YJxMzgoosuArCj32SmEOnB+VlyyE2WvETW4/xM2XuhJyStGpuILanPLGHIEsESj8gKWfl28/gZM/f/ZyzZlwWszm8V+tSvHVYPPzu2oYnqV2Fa2Uo+S6LCZXGY0Sjkqgq9y+9KdGwvXhJLm4vFtAuFQqFQ2BAskmmzTtvrFNjatYe1Mli3qSyZuW5/L7ObSAfH9ahg/BHmfKEjv3AV2a1H/8Xl8+4yCsKv2hTpq1hnnVmNG9ax3jSmzRaz6zDtiBkqXR9/z3yumWnxs438So1xK28F3weVFIH9ZiP7C2YtyiYg8uqI5n7Uz+zd2HSmzYgs3fl9sD6arjd6X0zSYp92Ld8TMVG2xI8s8g3Kstzuyepj32oVNTACzxm2EbB7vT3TnI81+2L7/9lavAfK9uWwUUy7UCgUCoUNwaKYdmsNR44ckTtTYGc3xXqTHovliA35e+faBuiIPdEOdI7RZUxb6b8jq2hmcoppR+Vwm3kcIxsBpe/Mopux1MR28MywI6v4HgvnYRhw3333pdboam4oy3l/v+3Y56zHe6QnmUWuioDFujh/D+vtlG1DlGrQmJyVa+k717F5UKw5aquKHbCOjnHJiCQgvGbNRUbzsDliz8l00Gz17etTEfIySRJfw0w7i8DI85r7EdkkqchoKkWs7w/HY1eMOzrXs5ZkkrcloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8TgwiiRUQgdgJ1ygEq9E9yhDDBVWMHKnYRFQZlTWm9QkCgAzZ8wRic3nQgD2qAxUMBfVjqhNPDbeyGUumErmHsQGNaof99xzz0ownMjNbc7ILwpFmrVTQc1R63vkTsWqDu5zpupQbcqev3JD4nmRBUjhpDYqkYM/xmOTuWxuKtiNidc1NrYy40NAh+ZkkXcWMrTHxXFOtN2zDigXv2hNY7ULh3/l+REZlfHYqOOqnDn0uLAeJpbVmkKhUCgUChKLYtpmiJbtbIxJsel+Zjijdo/8mblrMIvIgmsoYwfFLqJ2zxmXRQZWmUGVv87/r9hgliiA28RBaaIgNWx8xUw7qoeZwtxu+dSpU2k4WwYzwayv7LbHxyOjq97EMVEblfFYxCbY2EaVH7l8KUMkJYXy/6swqRlbVglC9uPCuXSwK54KSpI9Uwu7ydIZL82aS6ARrY0sJVPuqpGRIxvDsatu9vyZAXOAFDZI89dyG9nVKxrHvYTrVQFtDhvFtAuFQqFQ2BAsjmkfPXr0DJuOdqDm+pDph/1xK9cf4++ZrlQl4zD0hLPkNil2G5WvAllEekLeSfNOPhuTudCkEQOa02VHQWpUsoQeZHrOYRhSSYKvW7HxjO3PJVQxZIk85ur397NbCzMRz0A4QIpB2QRE80AxkchNLGq3/55JEJT9SE8AIOX+uBcWdRiwdhprtneCw44CO+Qh7toAACAASURBVOPOiS1YYuVDnxp4fckCirC0jKHcOf3//P6zi1sEu8ZcDK2fpuO2zyyM6Rxr9+fWQSb9WwKKaRcKhUKhsCFYHNO+4IILVhhJFA5TWRRHFpOK4TATYavYCCpko9+Nze3UIitl1TYuI9IXKinDOmFMlaVpxLBUEoNMp83XKmts38Z1Qlq2NqZ1ZR1WlsKU0TNOc6lMVds8VCCb6BqlP/bzXrFWpduO6pu7J/J0UHOlR1c/x7SjZ8A61E0LyMLtZeYYJbpgC3Rj1vaO+Xt43VFzJrJpUMGD7HjkNcPW8MpLJ5Ik2TFj2ta/EydOANhh2pn1OL/r2bsxB98vZceyFBTTLhQKhUJhQ7A4ph3t5HwSdYPyl85Yy1wyjIxhKUtj33bVRpVII/JJVuWuE3qVLT+j3eZceRkDVmyTmVC0e1UhAqMx4ecyZzfgmXakV1OWsetA2Q1EbeR6VHjP7Fn2+O8racycBMaDWXjmN81SLvXZw7QVW8/8gTnVaCaxWBpL8rA5au03ex1gNWWqYr6Z3YgKFZuxT+XVYYi8CJQfeGYVz2FzbSyMYdvxKIS1mm9el70f8DpWOu1CoVAoFAp7wuKY9tGjR1MGovwUe6yrfT18DZDrspWFdsQqo35F90T9U+d6mJb6Hukg5xgOtyOSgPB3pev255S/c5QcRkUSy6B8Vf3/zCYySYzyde+J/qQsy/l5ZJb5ykrdMyzFQPldiKKszUUiy3zk59KGrmMbwvVF/eMxyKRsdq3pgJcW1QrYYZXMooHVucmJazjyn/+/5z0xqAh4XG9mBxF5Jfjj/lmz94NZjSvviEgfrjwQ9uNFEK1VhqVF51veTC4UCoVCoRCifrQLhUKhUNgQLEo8DsTJGrx4gt2K2BjFRE6RyJHFoOq7FzmpEJSZ8cuc8VBktDQn+usJK8rIDI9625wZgamA+j2hT/narP091wJjP1k06wNLsEqFRYOR2kSJj7mPkXtIb1KbKJiLUk+YWDQSPbMIdZ1kCUrUGc0dFSazJ2AKj6NKWJKJK/l5sVogKmeJ4nGDzVETFQOr80oZwHpRuBpTHqcooJFSV825SQJ6fkX5re0Z2Tptfbfv7P4WqTnnwueuYzgWqfKUK9tSsNyZXCgUCoVCYRcWxbTN5UsFPQFWGQfv6qMd9VwwDTbUiZKN8DW8E46CnXDowczNSrlYKMOwiJ3NBWjpgdqd97SV2xNBJROInlvW57n229j71H/GStiFMDKCU+WqXX1kiKiC9fSEzc0CVPj6/T38XY1bxF6UIVLk1qOuUcFdVLujtmXzTRm42bWRAdY6YYYPC+z+BOz0VaWwjaQLBnZ3ZAmSZ9q8bs6NV+TSyN/ZQNFLEBTTZgO0jOWqwD89UgHVHz8mSrq6FCx3JhcKhUKhUNiFRTFtg+10It0L70Bth5bdo1wSDGrH6O9RoRkz5ms7TRWAoydhCEsbsvoYKjRlhDm2lgW76Al+0suao7SBqo2MYRi6goLws+xxa5lDJuFhV6usjWp8lJuL/39unnNZvjzFrKO5o66Z+/RQiWMypqfShkb3rBNmdinw9hdKwtczTsrFNBtTFSCJEa0hKmEHM27fR2PfbHvCuuwo2FLWFr5HSXbYtTCTPiwNy2xVoVAoFAqFFSyOaW9tbc1aUgM7uyHTT7IzfsbK1DURi+FzGXvgtpk0gPU0kYXsOsk9fBnRMdW2LG0kB60xRBbVvWH+ouMqSE20a2ZPgQzDMIThEiPJC1s/96Tiy/TCvh/RsXXm2Zw0KEqUo8KH8j0R8+Gx6EkyocJIzvXBQ0mfeuwX1Dz3c5fn6EGzpr3oT9cBh+xUYZsjyRSvb9ncVQFqeK2K3k8rl9vKVuPeepytxdU9UZAdpbteJ6gKz53Iu4DLW1oo3GLahUKhUChsCBbFtM163H/3n8DOjogtJNkqObpHJYNXAfaBPh0ff+e2sFWl1eetmJXvuGLeGRvs2WGr8lUIv0zfq/RGWVIL/oz6yX7VmdX1MAyhv2jEKph5sp4wGieFzPNgTj8d6aCV7USWmlMlTGAmnIV2Vew8a6PSoWcslP1ie6Q0/G7M+W37/9dh2D1Ww2z/cLYti61vtnZlHiisn+X1J3qPVKpcZpdZ8hfWQ3NaTb/umi6bddicIKUnfoPyqMiYMb/jkZ/2uXq2e0Ux7UKhUCgUNgSLYtrAuBPqSajAOyXbRWa7Y77XPo2hZIk15ixmI90LMxLezUaMbi8+0HOW3tE9cztq5QPJ7Qb0jrSnrT3+2pGFZ4TIwjmzh1DSk6g/PZbrCtzXdSzBDVmUs162HJWtrMYzP+1sbkTf/TO199SeJSdRicrgNvWw6CwRDaO1htbaSpt6nqkh0o0eVKpID+uH9+k2cKQ/myPGfE2y598jpftX8RQi2wa711g0M3DPtDkFJ+vDuV2RpIzL5/NROUqiGDFtbsvSrMiX1ZpCoVAoFAoS9aNdKBQKhcKGYFHi8a2tLZx//vkriQ8ic3wTe9g1JhpShjzAjnhIif6sLC8SinIQR/dkhmjsthGJx1mkpUQykWhQiX4yMeVcwBcV3CE6xvX3uMMocWhkENIbIOPIkSOpemEuCUIkCp7LrZsZMTL4mkhcza4vygAtcm/j+avyW/cYWjKigEPK0I7nUiaOnTPW8//PJbWJ2tubMMS7mvYEMFKuQ5FxqTKAPQh4MTknS2LxseUWj1woWbSs1qq9uH75e1g8rkTR0TuaufhF3z24nh43z6WJxQ3LbFWhUCgUCoUVLIppt9Zw/vnnr+yy/A5KuXrZTsp2kVk6QjYMY+bgd2XMWtgYJtqBct2KGUSuF3NsuYcFKEOdyJ2Od6DKaKoHPcya28+GIJ6VrWMQYsZEXE4kkWDm1tNXtSPn75GRF5fL8zoyKjN21sO0VfCUOeMyf26d0I2KdSpjpmiuzgURikK7KlefSEqzTohdO59doyQsLE3wTJvbYM/0bLkS8bgcP35813djt1FyDLVW8BoZzR0ui/sZMe05iU7m+jXntpWlVo7miip/qVh26wqFQqFQKJzBopg2MO6AmMX6XZkKAsDuANlOfc6dKgsvySwmc4nhhCHMZiI3Ktbb9TBtdS5j7YqtGObcqyJkrlNz+sgsyEEvPFuKdNvZ2Kn61HNR4R0jVyWbB0pvG+ntWMKjwo1m1yhmOhekJmprlnpUuStGZfE5HsceSVKvDYc6Fl3j152or8YQ+b0wZp25G3G759jm2UIUVlTBxoIDsmRBlnjd3g8iKataG/k3wT9zdilUEs29uHkeFoppFwqFQqGwIWhLCtXWWrsFwJsOux2FxeM9hmF4oD9Qc6fQiZo7hb1iZe4cBhb1o10oFAqFQkGjxOOFQqFQKGwI6ke7UCgUCoUNQf1oFwqFQqGwIagf7UKhUCgUNgSL8tO+9NJLh6uuuiqNajXnxxxBRaRSx/dSVs+1fPyg/QDX8T+eqzs7P+c7nvnaKv/IzGeZo4G9/vWvfztbcR47dmy4/PLL0z7tBT19i75nZa1T717uXQp6YtD3vJtzqVN74lQbbrrpppW5c8UVVwxXX3110pNVnI3nsc47d7awF8Pk/URNPIj61lm35z4BHYPjzW9+88rcOQws6kf7gQ98IJ71rGfhyiuvBABcdtllAIBLLrnkzDUXXXQRAODCCy8EsBrUIHoIHBqSA9mrcI8eKmB+lBOZz6lFJwsAY+DALHy9h/ohzEICqgAVWeAK3jhxTnMLOGEJCvwxe2723e7hXLzATrCQu+66a9fnwx72sBX3nMsvvxzXXHPNSv/2C+4T5/bOwmXOLbRRwJm5gCV8L7AaAEYFMMkCSRh6kr+oRbNnozEXPIY//f+WHIOTTdiz6UnMce21167MnYc85CG47rrr5Lj5//kch2qNxmku6BHXEV3TM7a9m/YsjO06hIafoTqfBS3i71xmdq/KHx/1z45xwpIo5/fJkycB7Mw3u+apT33qItwCSzxeKBQKhcKGYFFM2xKG2M6Z2Q2ww3w4dB3v3CKmzTuxKFUhlzW3A53rj4dKf5mVzyw5q593p5nkgKEYY8QG58YkYhKcrtRgz9EYuO2AfTkmXfHnzjVUnzlpwTrzo0cCwmDphj+WseO5slWo0L2AxygK7arq34uIuCcs5xxOnz69Mo7+veFnNZc61/+v3qmMefeMxxx6WHMv0+Z2+WvUfMskO+oclxkl4FHpcqNnopLn9Eghs3Skh4li2oVCoVAobAgWxbSBkUGwIZpPd6eSsxuYRfv/OWC+0ptkOm2FTOejdndZ4gbe7avECln59t36H+lBDXPB+H19LOXgxAgRO7dnqMbRJCiRlIN1l+cS/KysTzymEQtQczQ7z0x6LqWpP8Zt7kng0JtEpUcq1PMecZ9Z+nVQ7946GIYBp06dOjMHs3ozPbS6Vn32PFNlp9DzXDLpo7qHj69jYLmO3l2xcl67fBkqbWfEyg1ZIin/PbPZyNbpw0Ax7UKhUCgUNgT1o10oFAqFwoZgUeLx1tqunMjsXgNocZSJMKKcsWbAZJ8sHs9csZSxRa/RT4Qe8bgSi0UifRaHcfnRPUp0qgzSvJiKnwu7RXEdwLxKIhK1W9vMdYzFl+cC/IyUG1UkImRjGyU+9GJRNmiza2xcsrzW6nsmwp0Tf0ai1l4Xnx4jHzYUioxDz7Yh0DAM2N7e7hKLqvGKjMmUqoNVTnzen5szEIzWAWu3EhtHxnIGJVLvcRfld6PHmE71J1KXqDnSM8/UOxKtxXsxOj6XKKZdKBQKhcKGYFFMG9hh20AcEc3AOyRzjjc2bY7x/n+7xj6VQ3+0s1c73izIiXL1yFy+5nankaEdH+PPnqAD9t12/bz798/AzrFrnn1y8Bp/D7NyduvLDKzY4O1cgqUWhjkXIH9OsfOIxZp0gQ3gIhagpEB8PmIdal7z+xXNNxUopcdVRkmBeiRJBw2/5vh61mFa2XvCkqket8o5pp0ZatkxxUg9eozHojZnbVwn4NCc0Vzk8mXjyusb3xuV39tff+/SGHcx7UKhUCgUNgSLY9pA7m7EbkzG6iwM5okTJ3Z9Ajth6Zhp2728Y4v0GwqZexOzR2OZ0Q6VXYa479w26280FipEX+QGp/qnWAKwwwItIAqHJo3sCvhebnMkVVGMZEmIGAHDzs3pNv3/Nj7sCpexJRWIJwviwS4xKvSu758KPar0kZneVUl8on6eTdeb6F2MpBkqJGy2TvB48FyPAuYYlKtnJulj3XLPHFU2Onw8cv1UTDvql7IB4uceuamyJEd9z56Fqn9pAVQyLG8VLBQKhUKhEGKRTNsQ7YqYxZm++vjx4wB2GLZ999fYPcy42arcM8Q5ps0sGthhnhZ+03bWHCTE7+7mrHiZNXumzf2wcz0JFBSY2fsQojaeHF702LFjAFYlGMDOjpl12sryHFieLmldqIAYhp5gFypMahYMQrWD7RWiNnKZNodMWuWPsURHhfqMmP1cfz3OBQvKwvQCWvJliGxNuP9K8hZZjxvWCWOqJB09ti3cD9WObK5x+3sC5qjPSF/NHkI87yKpEB9jiUEmDTLsJ5Ts2UAx7UKhUCgUNgSLY9rDMKxYCUfWtUqXbekbvfU4M2il294LM2XrXn9M7QDZUttfo3bLzG58W62v9nmuwu7xDtSzDAUbJ2PWzDKMvfvy1wmpeFiImIhiJcq/1UNZCTMD9ucy/aOvLwu1auWrWAb+f2YvKrytf5/53VZML2KD+3lPM7TWzvxFbfH/swRqnVCxPYlC+B6D0hNn3hZzbY+gdNlKf+3bNGfbkLWF2bM944g1s3cK6/CjvjN63kHu31KwrNYUCoVCoVCQWBzT3traSnfjvOs2ps1WyKZfje5htqr8m4HVXSnvsE0vFbEJ5eucWVXyro53pJkl+Nlg2JdeeimA3ePJluWsl850mTb2d9xxx657I72ese4lWHbORYrLmDZbDbO/rgfrO5WlcaaXVG3M0noyo2aJiK+D7RNU23t0w8xUOYaCv5/XhYNi3BYRLYPSo7JEIvI8UZK3zOeambSaD1HaYn6neIzXkQpkvuQ8v5Q3jrcRUtJOlnqaDUXEtLn9LA3I1mKViCeyaZhL+HNYKKZdKBQKhcKGoH60C4VCoVDYECxKPN5a25VPO0pWEblWADtuVpG4QyUnYLEUnwdWjcdMjGNilx5XFWtLlviC65kLeuLHhAOVrCMmt/KsbSaSvvjiiwHsiMW9eFyJ/xlZIAZrs3If8/X0uJucLSgxrjKCyQzRWKTKoVyB1RCxNldYHOrHlkWnrLrhvkSibrvX5gH3x94v3w81Z7meSNStgpRYOyKRqpVzySWXANgxOo2C+OwFHDTGl8si37lATf4Yi8dVMKdMBcEBm6K5Y//zOsNudn7uzOX27kn+wQGvWP3o3VPtf3vvTQzObqpRKGQGr/WR4SO/RzaP1dhEfSxDtEKhUCgUCnvC4pj20aNHUyMBDuDgXYT8cb+DUmyYd2ZRuD/eDbNbVbTD5rZYuba7M9bqd3S2O1XuNMp4hcvxbbJdq533bMl2oMZaLrvssl3fbVx5h+rrVgY2UZADNqhhIw9rq6/HxpTZ+dkCs1x/jOekktp48NzhspgZAasMgI39InfB3hSgEVviZ2nnTNJi8KyTnxm752SGb3ZOSWuiBCXMwphx2zvpGd268GuD1e0DyjB75PeeXZV8X9RnD5s02ByxOcOM0Z9TCX0M/nko41HFziMpJBuiKTbtj5mL7n6emQqJG0m7WArAkoss7e/SXE2LaRcKhUKhsCFYFNMGxp1eliDCdj28Q7SdVBR0QLk+KD2h16va7pGZlO0UI30U78ysrcawrT2eVXIiDWuDCoUZhUDlsJLGlq2eSC99xRVXAACuuuqqXdewjjsKHsOMgVmI30UrRscJKzyjY4Z6tnTa1uds1806RqVn98+e3VesHxzeNnKjUSEh7VlGrjDWFg6TG7kHGawcK5frjRikcvVRaUT9u6hc2Hh8/bjaPTaf7JPTmHpErmMKwzDg1KlTZ67lcMDATlhkli4xk/NQ7nQqTaQHn+sJMKSSAKkQnv4e5RrF4xfNOwPP9ygQVGQvsC7YZoPnbORqyr8BLCWK3MSW5uplKKZdKBQKhcKGYHFM2+8SmWkBqztyZW2b6SjsHmbJUXAV222zHi/Tr84FMTBmEAWAMQbP+lyWEkQBYHhsOHFJZGlqukvTD/KOm3fivi2sM7P6bMy8JEEll2AdWqQzO1s7XnsO3OesPm43Sz48i2FGwONkiKQ0ylrd2hoFFmH2zxKdiNmrtI0qmIi/1p6psVBmT1yvL0+F48ykDyyhsLbbfPP1WFvW8TxgFujHmPvGzDdLI6y8OVjKkN2r7Eh8v3gOss48swBX55ilR+sOSyh6LMB5DV4HnLQlewbZGPs2ZuFZz1VY6F4U0y4UCoVCYUOwOKYd6U6jXbJK6Rj539n9xqxsV2V+nsZu+ROYD7cX7cKYhVmbbMfJlovAqoUs+zgyw/d6d97JKl1P5C9r+qe3v/3tu65h5uN3oqwjN5bO0o0oTSEzuMz/mK2SD8ofl623rd2RTpAt4dnjgNsW+aazVINjCvhxYlbE74A9Lz8WPJ+sDH4XopC7KokEW/dH4TmtPPM8YJ/bSH9pz9RYs51jlhRZOPN3e5+tvmidsGvnQp5ub29Li3Bg1XbGruVxiiQSc6lyI4ttfu78HFgC6PvK5RpYQubL5/eQ2xRZZquw0CxV89hLLAmG0rMry3dgPvxw5OliKD/tQqFQKBQKe8LimHZr7YwvH+/oAc0alM+1h+38br/9dgDArbfeuuvTGLZnsaxb5uQjBr8bY2tkjmJkDMFbvTKDsjEwaQAzbb/bZN2RMTmWLPjdpPXRjlk9toNnnZOXPlgSEWNYZoH+oAc9CMAO8478Ja1cZliRhTPrdf1zUchYs4GZL1uuR8/f2sV6VbvWPiMLfbbQtnHj6FrAznNnaY1dE6VftXIVs+cIWX7ust80p7Hl+e/rsfIuv/xyADvvEbMor8M3/bf1z8aL55+fB7wORIkhuF9sD5NZXVvCEH7H/TvNUgy2g4n8y/kdY7bHdgp+nVN2KtxnXx9bQvNaGPltW7k8VxjcB2BVomL95fU7GntbQ7gf3G+/zkXpOj0iaYeVq+w6Iv9zfi7FtAuFQqFQKOwJi2Pap0+fPrOjsl1fpm9gpmCI2Mstt9wCALjtttt2lWUs19iksQFft7FJ27kZM7Bdq7EnXy77SfPON2IGzL74u4or7dvG0ZMypsoMi3fFb3vb2wDEu03bLb/pTW8CsMO03vu93xvADgPz5fLulS2Ro5ja60QkyiKUGVgSwTpRf69dY1KEK6+8EsDO87cxZ+kKsDMnbL5Zn60sk/j4ecAW7Mzg7NM/f6W75PMRG+R7lN95VJ+No33amBhsrCwNK7AzPtb3q6++GsDOu/KWt7xlpY2KdarvHj3pOy3nwRyr9WBvEpZQeNgzfZd3eZcz9QE774vNsSgaIPuis3TIr1V8D+ujI4ZqdTILZ0lPpOdnvTD7xrOO3YOZtvUjit5oYJsJW1+iyGsG9jDgtTiSxCg2vhQU0y4UCoVCYUNQP9qFQqFQKGwIFiUeH4YB999//0pQdy+a4+AWbNxh4ikTvwHAnXfeCQB4xzvecaYeYFXUbmIRL9Zlow4TAbLTvjfgMFEfp7W0/kSiNBX0XgX68KJAFm1ZfTZubFwGrIq2VGAWNsrw15qozvph43zzzTev3GNt4xSMVlYUTpDVFz1g4y8PDjbDAWQiw0fro6lHWKxn88z64VUQbJjFxjycBtO3gUN1ssjTix6V0RiLiyMjTVa7sBg0S7/Kc5XbzkaUvs9cvqkSbA7Zp++73csGR/xeefQEV7FERXa/1ROFbrXny2LjTCxu64mFCubxMfiwqWxUau+0lWXj498XdtdU4xWpR5RahNfKaA3h75zMxNdnz8rGgueMja+pKv28Y1WHjYXNHVOtRGpAnqMquI9v92GmBM5QTLtQKBQKhQ3BIpm2IXI/sF2QSnfHhiHAagINZlic0i5ie7bzs3LtGmtjFAwiChji6412hFlQE4+InbEBjbWDA4N4qOAhvMOP0ojaWNi1xkKNnUZBSlQSi2jHywZUPTteex6RYR0byqgEB57FshEjBz+xvnMCGWDnOdt42PwzhhU9/8zVCoiTzVgbDRw8hl0C/Txg9mJjbGVG7JyN5dhliQ3TvLTI5oixJOunMUczSPJjE7n/RP2Nzs/d6/vExp1+HrABoHKr8mWY66P1md0GH/CABwBYTcvr/7f5bGySQwVHLpLWBruXDV+jULsZ8wRWjQF93XYtp3Pld933nVMr2zpj76LNyygts80dNlS28Y7SyBp43eHUzr4/kWHqElBMu1AoFAqFDcGimDbDdluR+T+zPdY1+Z2i7cxYp2PsyHZbxi4iNxFmPrxDjMKmsvsRhx70uh7b+amgIMzw/L0qAQqf9ztQlfTe7rXx5N00sBrkwp6P7XSjRBGsY2Y3FA4T6cuPAsowzG3HyjOW5PWEBn4uHGDB38O6Nvtu7InZpg+uwgFEDCpgjm+TgfWP7Mbnr2EGzP2LJC4sfWG9aJQIZS7pi71vzJp8OXavSTCMYdun75/NN5ZMsF2LH2d7l1nyorC9vZ1Kt6wPzL7seURBOli3y8cf+MAH7mpblPaSEyDxGhLZjSgXU5ai+XtYOsjrQxRwRiXAydJ5GjgAC0vneLyB1efM7qLR+8bzl8czckvjZ1kJQwqFQqFQKOwJi2LaW1tbuOiii1Lndg5qwMyAraD9/xwEgPWHzHaB1V0W68Wj5B9zAUQiXY9BWTmqdHRROdY/DjoR1cf6T9Vvv3vm4C0cljViLEovxFbRnk2tE7h/GAacPn36zDON6uMxZOlJZO3K7Tf2qAJxRBIJtuJlZuVZoDqnkpv49ivpDDMf/53HnXWaWTpHlZaUvRciBsmfbFHv+6KkATyvTUccnZvTaQ/DINP+AquM1D5Z6uClCtxHnutqrKN7VcKiaB3g+cysPQq1y3NIWZN7sP0NS7eid5GljNYfltpZW6N7lYdFpFvnNYOfcRTAqUdScJgopl0oFAqFwoZgUUy7tYYLL7wwTWquUgnOfQdWd+zszxgxUuWHmVmPc3m2IzR9HYc59fUoRsBt921UFuY8jpnenXexvEP1O15mgbZbZVuALM0qty3qt0p/mIF15X5s2Fecy7ddvm83zwm2OlW+0L5vKnxtlLKRkzAwe+Wws9xHQDM89okHVvWt/H5FNiI8n1RYUUOUOMZgbVGW7r4e1c9IIsdWwRlbGoYBp06dWnmXI0kRMzSOueDHiW0Wor5F/fL1sd88S4Gy+aZ02pEXyRzDjsJFs0SRbQ9YPw1oKQnbRURjEtkNeEQJPrhcfo8jG5Ge0LeHiWLahUKhUChsCBbHtI8cObJiDevBOjAV1N3vnJh92aeyso0YqdKZZ1FzrB9mKWmfpnuLdLQqUhmPRdRGvpf90COfTh4b3slH0bVUmlK2+Ix8ybkM3vVnurMe8LWR7pf1aspS17ePd+acWCFqP+vQeZwiKQ7PTWOM7OHgmSNLFXislVTF94st9e17ZOHODNsQRTDk9ii/czuu2Ki/hp9blCSGvSHmkj7Y2gPEa4qS/vFnJFVgxqmiH0ZrCLefbSh8LAuOiMgSqqhfyj+b53V0XCUB4tgO/h622YjsR1Rbud45tu6P8XuspGC+bZnt0WFiWa0pFAqFQqEgUT/ahUKhUChsCBYlHgdG0QeLMSP3jyisnr8nc9thow4Wh3iwOIyDDWRuDQZO2MFhU/09SizO4qJIbMT3qNCh3F5/D4sVMzElPycW/0VibRXMJROH2XhFYT/n2ubL44QQHMgmMoJR461Em5HrCBsrKbWM/1+FhowCcSj1CCNT4fB7xWJDb5yj3AHtOKuOov7xvax2itRb/J3VD5FoEVLyJwAAIABJREFUuie/uonGVUARf6xHzM73sCiW1x2+PjrGoWLZ3dL/z8GWWJ2QuYkpUXCmMrC2qRDF/lkqFVG2Bisow7soqQk/C1YzZIGu5p75uUYx7UKhUCgUNgSLY9pbW1sriS6y3SsbgGRMmw3RlEFLFhSEA7JwIgHfRt5FmjFR5JrAjECxp4idqWANnK7Ug8drbscd7cC5zRzoJkrnqRIRRAEtuD/rBDmIDIOUCxQ/Y1+PMgzkfnEdvlxud2T8wnWzUREH5vH1zBllZuCUqDzWUfpQxUBUYoqMaStDvugeJZWJpEI89hmDG4bhzJ9qg2ovH/fPmtkwrzeZkRw/UzaEjIwm2ZiPXb0it7TeuRK9T0qqpdYjf41K8KTGyB+bk0ZmBr7KTTF6nyphSKFQKBQKhX1hcUwbyIP8c8o6teuPdt3MfHlHGu3ulB6cA/b7+nn3yLu7aCfPuzoV7CRqY7TL9/VaPeskh1ef/n/F8FhfHbWfEbmUZG1Q4LCIEcxtKkohyt/nApXMuVsBcTALIJ67zLANrMv2z1qF/VXPNpM+MNOOpCYcQpjRw1TYHiJzneOxtjax+9s6+lDG6dOnV6RmGQtVcz5Lr6n061EAG8Va+Vn7sjLdtS8je5cV+8/04Vwuz+so8JTSu/M8j8Yzc2FTUC57GYvez3w6myimXSgUCoXChmBxTNunyIusD+cC2Uf6QmbUKshKxGLUtbxj8zp03qGx/oTLjtrA37ntEYu1T05VFyVuMJbCu2K1e810zbzTVqFQo2PrMPoe3RI/L99upRPndkc7bHVNZq2uJAQZU+DgLWo+eCi7B2YmEeNnGxCVsMEnlOFkGQfBdHm+ReOo2p49N4OSdtj929vbMrUtoMPt8vH9BOLw96pgSplnDc9JZvCZN4d635W0Blhda3kMsuQ9Nr/Mzoff22gtVglwsuevpBpZwCGDkmAeNoppFwqFQqGwIVgc0/ZWnOybCOgA/T2h+tSukvUqGQPme9nq0beJd/dRKkYD+y2yXpx9oaOdIev5DZkPpmJJmdW08o9kiULUT9YtMbOM2MB+rDejXbL3bQVWJTqZtXPGPIDcR9TAEpBobHlOZnppxfZ7pCaKrWZ2BBwWVyUZiTDnPx2NGeuaOalKNM8MHI41axe/n9FcZKbL9WT6e/U9Guu5e6J2KCtu5SURlafsUiJpl/K6yGxEeK7w2sHvYmZfwtLHyGNI2aRkIWTVu7AULKs1hUKhUCgUJBbHtI8cObKyC4v8fVVyiiiFHSeQN52viowW7dh4p8u7fL8bu/TSS3ddyyzZ7o3YhF3DSUZ4V+nZBVtc8lgYokD6bB2vEOma1e7V4L+rdI5sDeuZcZa28yDAbIJ9YX272F9WSW8i1qxYTOR5wLYGLOHpifrEvrzcjohBMgPi5xPdY/pv1ourhDwec0w7knao97NHOtMTES17F5hx8vsT2VAof+85yUh0D7e/x7+YJTmZFEBFXuP6M+mDzV1DZpPE802NRSZR4jm0jg1UjzSIk+gsBcW0C4VCoVDYENSPdqFQKBQKG4JFicdbazh69Kg0pPD/R4kM/D1Z6Lw5s//M+IFFwla/iQr5fkAbhvk2msjeREwnT57c9Z3FSL5Mu9fqtbawEU7k9mLXmHEPqx2itrL4nctlUVvUdxXWNDMC6xGTzwVxAXbGy8TIWRAQFjWzeJy/R/OORcwsHvdzOHPt82V6sKiejfxUIJAM7Aro5zfXp8YxCimsQrvy88rEvioQiz9u1/YkmfHXA7GrEouaWRUVhdqNEtD4cjMRuArZmRlCqgQkWUARZQimwg1nrnM2bjbmmaqD58ac8aQ/psKWRm5iBrUeZO/+0gzQDMtsVaFQKBQKhRUsimkbMuMXA7MJNtCKXL7YRUUxuShQikqnx2329fGukuv1xmS2Oz1x4sSuz16mAOywc3ajinbYdsx22OwGlQVGUIZV2W6ZWeacewqwyjZ6mHaP8Zo9B5NiMNvIQicyS2I27eeBMrpjAzE/37LgGapfbDgTtcVflyUbYfepiC0qaQO3rYfxqO+Rm9CcoVsWfjiDuZnys42eCxtocfsz5jtnXJZdqwKKRFIMfi4cOjQyELVrOKhO5hrFTL7HLZUlYVmypr0iKmPOXSxqa2ZIeZgopl0oFAqFwoZgUUx7GAbcd999K6EU/c5JhZ1Tuz5/P7O9LCgD18f1WJm2Q/U6P2YntpszvXEUTIF3qeswbAPvGhWbzdqoEOm0mTly0I0o9KWNF18bMTrW62bsubW29i6dXe9YT+nrVOFRVRhdYLXPzLCjMVdsiRljFADIrrXQkCqIUBaSVrnRRPo9lnaxC2Wkv55Lixvp8ucCzUTugipYUITWGra2tmRCiqidijVHaV2VfUgWuESxPJVe2MPmmSXEsc9o3nGKT54H2bqgJEa2rpoky6+z0Tvm+6lcKv01/D0LZ6ukMbxWZm5pxbQLhUKhUCjsCYti2sAO2wZihqgCE2TWjXO74kx3wbtT3h1nyei5PkbEXg5iV8cShIxlMNNiPTizG2BVqjGXQMSXx+d6gh30JqTY2trqKldJXnosV1WwFWPT3jZgLkRrxDpYZ8rBhPhe3waWeDADzYJ4sMTD5lA0v5X1uJoH/p3kIEIqBGr03NheJXtezBB73iser4h9KWvnLOSlsnrPWKxi2CaBixi/Sfssrat9KskLoAP9sPQmsnhnhs0SNg457a81KN22l9IZlL0HPy9fB0t0FMOOpByGYtqFQqFQKBT2hMUxbWB11+136rw7VSnkevxZlR68Z2eVWQ3z7puvidgEWxrbTlMlOoiYD1uCctlZwhBlqR/pC+eYapa0RVlDKzYCrO6WMzADitiMYqYRM2QmbWzG2Avr6L1tA7MF5b8cja2ysuV2+TawL7HSR3vmw5a+yn8+8zzgd4HP+3uZlalwwJEe3MbT2qo8Enw5yuqb+3b//fevtNePufIN53kbjVNvAopIj89zxZg2h5sFduYePweWUMzp96O2R9bqnCxJpZGNQi5beRyCmT04opDCSocdSUj4/VGhqyN7CG7jUlBMu1AoFAqFDcGimLbps1knYqwGWN1tqV1jtptU1qcqWpO/Rn2PdL4G2wGznjhK52nX8i7W+hv5VXPULvbLZEv3qN3c9yyKlkqeoD6jtqj6I93SOjptbn+kl2RGzX7UEYu152KWuKzrtfMZM1C7ey9N4WQ2PBcjXR+zfWV3EcUwsLZZvSqanfdm4DFWEd+id5DHmKP1Zak055K1RJG3ornIMKbNkrAoupn6Hq1Hyv6mxweaU/OyRCKSwFicBusHP9NI6qBiCKgYE34eqNgS1o7jx4+v3MM2ASoxSdS/uQhlkUW98vFXum7/f9TnJaCYdqFQKBQKG4LFMe3t7W0ZKzyD2s1m1xgyBsd6KGWd7HdqthtWMaD5uD+n7s10jsyG2X+S/YWBVaajLFkzi1PFdNaxVmf4djAznouZPbcr53Yry3k/TmwVzoyEGXYWJ5939cye/P9KkhRZgFvdJpFSuln2jff/M5tgpp352vL4MXvyZakYAobovVW6xYx5rePjb0ybpRj+HntWbP8SPQ8GzzvFJrN0wmoN9BKJO+64A8Bqikzuu5/fNn/5k20LovgRFnfCGDVHcczWFpWvwJBFYFPrS6SfZp05Sy6i9Zv19z22NOcSxbQLhUKhUNgQ1I92oVAoFAobgsWJx++9915pHAWsikhZbB0FA/HlA9owqOcebkckjlduLCw2jAJksKiRxyJyG1FiIxOXskg3ahMb/qgEGVFb1glcMWcYFImpegKwtNZw5MgRaSQH6EASPOZeTKrcw+bCsUZ9UiqVKGDFnHtLVI8KW5upVnrTD0YiQp7nbMjF4+yPsXEhqyrWCTxiiAzs5lwaPbI651KlRu+gSnTD7zSLbP3/HIyExcr+vImrb7vtNgCrRo0Gvw7YGmGfSjxubfTrhNWnkhtFIm6eI3PGi5EL3TricaWKyoLvZAaCS0Ax7UKhUCgUNgSLYtrAjlEIEBtoMJQRVE8AAV+nry/aqe0l+IiVaztQTqxgO1V/jHf0KshFln6O2xYFflDJFzg0IbtoAKusUu1MMxccRibl4P6o+0+fPr0SYCRqN38yA/djrlximJVH7mK88+e5aW30AVnYLZATyURGjAa7RoVajdgMGy8y+2Npkb9W9ZPLjpI+MKPOAvMoSQvPsyzpQw/TzsJXqnS+6plG13K5Vl/EtLOUn6o+u8eY7+23376r3ChYFc9jPxeztgKrBmc8V3hu+XNK6sQSpmhdVa5zWbIZlWAlkiAp6eZSUEy7UCgUCoUNweKYdmtNpusD4kTufL//jM7xzoz1HVFi+SgRiYdvI+/mOPSg9Sti2nYtJwbIwkry7pXLigIVMCtSu8lst8kMvlf3nNWbBe6f079ub2+vjJd/bsw0FROK9ODMWlm3Helv2Y1P6ZyjYC5+bgCrNgc+4JAKbsKBMtgVEFh1b2G2EtkgMCvnd5L18L4+fqd7dOoqUUQ2zzKpT3Tt9vb2SnnR+7KXdUe1LUtawUyaJSxsG+DL4SA0KnQosOMephIGZaxTSVgyGwp2C1RBXFTY46htWeInNb+53sgeoph2oVAoFAqFfWFxTHtraycZPafxAzTjzXSmSvfBetuIkSpmzzu2KECGtdvKv/POO3eV6fvF1zLT4SArHsy0VaCMSLek9PlKf+ivUTvSHmmHQo+OKcIwDGf02sBq8oweROWzlT1/Msv19TE7VglWIuZraRW5/ZH3gArDymPN7AZYZUlWrjH+iGmrQBhZaF++l9+1zGp4zkuhxx5izgLYM+3MXkS1JbPjYPDxzKqf311+1l6qx5I2fpctvGg0FnYtB2bhsrN3Wtl9eKlQFozIl5U9LxU4J7N9Us8tC4e9jnfMuUQx7UKhUCgUNgSLY9rb29srDNvvQNm6UeleVNmAZoo9uztmOqw/9v9zKEJVpi9XgaUBkd5VMV/b+fr6FONRlpjZ7pzbHu3K51hYVBbrzHp2vJk+VflmMkuKQsQqP3Puq28/e0Ewe5pL1RjVF0malP6T7zX23GORm/nVq7gAfG/GypRkLJtvc5bbGbL0iiahYXuIKDYBf8/Y2ByjVnEC/DFmrcy0/XxTKWbt06zJvb0Ez1GFaP71SgOy5EZKd53pp5XNU8Sa1ZrRE7paeQwcNoppFwqFQqGwIVgc0/Z+2hxpCdA7pEwXonbvyurZX8e6Zt7hRhbuPQHz1wWXEfmSK5YcJaNXulLFuHqsK9e19vbImLyKDhVBWWirOoA+iYti5cyWIxbLrCKLnqbYqx3nSHm+XGWVzjrHSErDFu4sqYjuYcaoogZm/ZvzZfb/q/dVzT+Pubnj7SEi9jcn0eth2ga28o5sTjjNLl8TjS3PM55v9ml+3MDOWsVrLidIiaIFMmvmtkWxC1R6VX4HI+kkr7VKtx0x7XX00pm0bgkopl0oFAqFwoagfrQLhUKhUNgQLEo8PgwDTp06tRIEwItXTJwTua9YGf7T/x+JsqN7vZjNjDbsHqufxcf+HiVeOQgxeQZl+JQZ1syJbCN3nrkANxEylx7/PcphvI6aQRmOAVo0l7WBy11HNMsGOcpAMEoUYefYgCpSA7G4mvvJbfTPOArw4suPDJAikXnU1ki1wiLuuXnh283f2dUnCorUO0ejoE6+Xh5LpUaK1p25MKzRO8ZBfDKxOJdn15rbIIuvvQuWuXjNBXWK5oEyjlOfWfs5TCqr9vwxZTybrf0GfhbRs+F71lHznQssqzWFQqFQKBQkFsW0t7e3cc8996yki/TGD3aMjXyUy4BHr9uGZwzK1StLTGEwlm7l2veI8RwEC+c2sKGG3/GqXSsbVLERk79GubRk6TdVII4oIQEnIsjcdgxZeFY2zFLJC6IEF3OGSFFilTlEBlxsMMUGQXatN9SxY2ykxuwvkgoZVMrbCCoRDbOyTHKh3r1McjHHtDwyV7zo2tZal6RFjalhL+9xxCo5QIqSbkQSPjZa5Lnjn7UZujHjjtYMX7Y/N+fK5sHvidWjUmdG77x6J3sCs8wZNQL7M6g9F1hWawqFQqFQKEgskmnbLityzrcdmWJ1mbuOCgLCbNqzHQ6Lafog1uv6NvIunHeXka7e6jEGtY6+eM4FJ2J/Ksxn5LrEUDvpTJ/MUEw1cs2x8VIhFq3ura2trl02M4QeVqbsIrJ7lM6V54cPdsHzTbEHH8yHbRmYlXH/olCb3KasfmbWzHxZh++fKYffVEw702UyM81CUPYyX8+0o2Qm2RhyOdzuzH3S1+fnAfeZwxlHdiUsSVJhbCNXNn7uKtBMNHeUnr8nYBIzarUu+HO8vvA6FIV25TIMkWSHWXi5fBUKhUKhUNgTFsW0h2HAvffeu2JBGzFfFULTlxX9H6EnGL5i2ga/K7c2GfvmXasPomBgtsSMM7NoZMtOFWwjut/OMQvMdLNcvtJtZaEvObkB67T8MZM+ZEzbymTpiYfaQauwnxEUy2MdpP/fWLG1P2N/LA3gxArszeDB743ysPCwcjm4CrM2b1fC48OsT+lffbt5HLP3mRkrs89MusY64R5EYzvnaRCtIWrdYUZq89v33eaKem947gKr6WIZkd2Igb0IlO45WlfV84l09SqZEr+bkf2F6ruyrYn6riQ7mb1MhTEtFAqFQqGwJyyKaZtO23Z7tvuJ9HfMEFmP5qF2vD06Mtu1MsNmBuTrsDbZNbxzj3RLzFI5jB9bVUa+jypdZI+uNtoV+3ZFuiz1mYWB5LYoHRewGg6WU45msPHyrIP19cpvO+qrAvfDS0gsFaKFjbTvxqKy5C/McKMEEQx+7qz/jOwVWLLDbDny41YJIpTEJ+qfCl8Z2WEoi/LM0pyPrWMjErHK3tgOPTptPs7sE1h9HobMQ0NZjWc2G0rny0w76v9cisxIashhUnlsVAhe/79KPZthjmFnHghLQzHtQqFQKBQ2BItj2sePH19ht8ZQ/DGlv11H9zL36ctXu+SIVXIENNanRfq7uaQVyso7aqNKRBD5IvKumBFZaPIOnuvNbAO4/ixRgOlv7XMdpp352hp4jCO9pNKbqTI8OG2rfRrzjjwF+Fkq1hQ9D34OHCfAjkesSen0Ij99TmZh6XJZDx+x9LkocYaI5ar3NHufMsmEh3+fovLUe6niOPhjysqa30H/DDiRh+pzlshF+U9n842ZdSaJm7MAn1tbojbztVF8CGVzkklcVCwO9kYCVte1pWGZrSoUCoVCobCCRTHtYRjT4xmzjqwhTR9ox5jVZn6liiUbMr9P5Wtt4MhBvnxm2hGr4fjavEtlhuXbrtL42fhF7ExZ17LVetSHOV12pguaY9ieTdsxY4xRuj4um5+p7w+PBzOeiPWxVati61Hfo3jN/p5Il8nMlj0RIrasIpCx3jiyUmYLfUYkSbD5Zgyb22jwFucGxaiY/WfeH4phR0w7szA3mI8/v9tRKltVp5IYRG1gFsvX8f++XH5ekYQvszBnzMUCV/pq34+DjOao4gb4ts5JLqJ5oGJxRBIULq/8tAuFQqFQKOwJ9aNdKBQKhf/T3rkrua0kQbQpV/ba+/+ftfb1ZSgmAmsoSqp7mFkNcmY0REQehy8QaAJNsrOe4SK8lHmclClcBSeVGZXpYWya0HGFQ2iSUWX3VHlNte+17ksBFjU2FhZwx1ZjVO3u2LbPmXOUGYumNNeEQZmPXICLMm0xxYKmW6Z39W1VoA45juO3e6WPre/v+/fvcryFMvfxnDlToErJKvMxA9KYKtXHwSI7/fOp463li8PwdirIMrmG+j52z01jXuvehOkCMNX3bfqe8rErWezoZUxVapQb1xmz+FSApW/Xv7cMuOV3gUVQFC59akpp5PWYUr7eA4tWueBZlWroUlinYDnOcxXIR1zw4VcTpR1CCCFchJdW2qVMeiH9UqulwhlcNKV/FLviIB0GMrhmCKrBQVGruVJetQLuypHK0I2Zqrrff6YYwK6JCj9DR6l+Nw4XKMgCOlMhhl0gmjqees61lFRNJqgIWbLTlXRd68/crOteAZb1mA1l1vpzHpw1Q6WjuMA6Bk8qNcj5RKWlVCADROtx3VIlqblD68mUvuXUIB+/Rw0ex3FXyrUf1wUuOYvBWvsym2fKb7pGHlPryl3xoI4LyuUcUiWlaRVyQV7q89Tc4VxxBaL6e511Q1nKWCbZlU2dfjtfrchKlHYIIYRwEV5aaRe9uEqt0JgONJXQJFzpnikN6AqXqPKFXIFyVafSXuo+fVU7P2V/r0v1USt7+kHreEyhm8r7uQYhyhfkVt8sPKJKOSprxjNQabNxy5kCEk71qXgCqu86nks9U2Mqat6rsZ8tAuFiLdbypXxViiGtPvxcLK6ifMPOt63m3ZkiSDyOsxgojuNYb29vv+eeui67EqrTnN8pa2Wl4TZ9rGvpWBuX8keLkop5cfECnP/9eLQK8jeE++5jciV3lcImHONk9XQpevzdnqwCUdohhBBCeIrLKu2KBC6FxlXkVJzBraBU2cWCqoKKVCnfXfvQvmpVir2PnatLpZoJFYPyD/H4znerjufak7KYx1p/zhv9hlTYk9J+BnVdXHlF9VnpV+e+JgXHa1nzimU/+z7cXKUC6UrbtcbkWBVOKU7NGZwFwbVMVE00OKbJmsLvk5sPStGr18hxHOvnz59326hiRO77OB3nrP90Kknq4hX6e5yyd1kz6rmz8T99bIWK+OZ7OHdoOZpKIe/K2Kr54aLH3eft+3WPv5oo7RBCCOEiXEJp95VORY2XL7vyGUsRKZ+gy5N0EcBKkbL9IF9XuJKaLhe3v8epWLUCda9Nj50vh/5KtUp3UcGTNYBRrrXt5NPmc8/4tPtx6a+t/TK3v597F7XrlNuk6JyVppf7dPunqu3s5uSklnbKSvm0qf4ZRT4pE5fnPCkgWkacEnpWEVXkuIsF6fen68sxuLxvFzcwWbNU1oA7totH2dWCUNtM5/aZ3x0XT0RLEr8jaky0OiilzfoQvCbq8/FaT/UhvoIo7RBCCOEiXEJpd6jMqF7rtvtV3IrTrQj7atb5WKZV666qmVIMU8MTtU/VSpArRD7fV6DKb7+W949PecGuIcZ0PDYIUb5jvrZTOTuY513jpD/tTPR4jbMsPUoZFIyQdfED/TlG5roWirzf4bZKaTtV7rIl+njrlo1CyBTV7SwLqiqhs7TU/Hg2u6Cq6U1jYEwG54NqVkGcz3xSs7weLuZE7cfllqsYA/c5Jh++89VPNQV22TCTJcHNnSmi3qlz/s5N1fveE1PzGURphxBCCBchf9ohhBDCRbiceZzmwzJXTSlYBc0nZ0w0uyL1U4qKO64KcJhK/yl6QBLNhzRpqmYWDnce+/GcOXZq9sD3sokGTeFr3QegvTf1oo7BAMT6bKqEK49dtwxim9Kb6jg0j6vANx7vzDXbFX+gqVudRxfwpIpduKAhlk0t+jXdFcRQgWlnU/XeMz/KRL6WdkEwMNOZjacxuFSlQrmmdiWKlWuFv2NTUNku8OyRc/tMsSqXPqrcDa5AyiMFZ5z7sT92x3kVorRDCCGEi3A5pV0wkIkr4b6KdcENXPWpVokurYkBKVNACJU1b/t+di0SpyCveq4CgzgOlcq2C0RyKWj9cznl0GFgVX12FlWplD71no+i9ssmLWrVzwIvXKm7xhd9W547WjPU8WiRmNgpbaaL9fNJ1czgIloJ+nO7lB8VIEbF4xqGTA14dkFTz3Acx6kGHrx2kxXIlRXm6+rxriDUmQYXDEBV58n9VvE6Td9BZ51R82NXQtqNo9937XLVtZgCeDt9uzNFab6SKO0QQgjhIlxWadMXWqk3yhfomgdQCaniEG5V53xx/Xiu/CLVGd+vHhOlXphWNa0yXfGOwhV3UPs/0yigxluq1jWl72lZj7TifIY6Zs2huv79urjyq2yNWMV+VHoL5xlVbf+cVL5MiZp8jFNqT6fHJ/B4Tm1OVhpaDCbLC9XfI6UoCyqhjyh+cbvdTikqqsm6LjWH1LYFPytfV9/pXZtNNd/Y+telq/bjMM6Hc0hZADkH3RgfKQjlfjv7fefDdjEPav/8vevHmQqvvAJR2iGEEMJFuKzSpsKh8ukFH1yzB/qHlE+bfs9iUhNUDVwRKv/ne6DioLJTfsKpIUhH+bL5HvphVRlTrui5Kp4ahpxtPfksjFJXxRnYtpFZC6poQ83Buj3TUKHOLZWcs/j097hI2UKV4q3j0MrEOaTiPJy/c4p8p3WBSk691/mNPyq693a7rW/fvtn4js7OJ6tiEJyins6jy1pwx1/rfi66rAFlhTxT6IXPO6vMrqxpf85Fr09Km7/1u9LCavy1rYrzONNU5CuJ0g4hhBAuwmWVdsEo5GnV5XxjXLX2lWGtnKnCHyncT5X52T4Sp3SUL8v5sLid2o9TClNp17pObkU9+TI/S3HXGCpyvZ+DGi8VFZW2iup1MRN8j1Ivta1rsKHiIdy8ctG9/f7O8nJGYfH6q+vF67/LtFjL+/VpiXm2jOlavz7/VGaYipT+4/p9mOIwnDVBHY9WOcZDKJ+28zE/EpHNc8jvuoqy3qEsSWcVtoqodw1CHvldfSQ2JD7tEEIIITzF5ZU2V6S10u0Rsi7alatIpTJYEY0NSaYKTuRvrdgeyVvlCpd+cPpY1XuIiian/4mKdcpH/ls+Jarqfn+Xi6p8/3ytfNv0p/VzS3VONcn3ruWjxjm/ldLe5f+q6+IyHZzC7t8N18SCKnDKrHAWs/dwu91sjnLnbIOVtfaNbvhdUDEn9N9yLqlqY26sU/zNWWugsri4+XAmk2ensFUmz6650iOciTRPnnYIIYQQniJ/2iGEEMJFuLx5nOYjZZJyZQTPlKubzF9quz4ml/rw2WZymsUeMS87c5xK+eFjVzClv8YxTcFyfO5vmckrjXCt+57hzpzMxiH9PkulRqCNAAACTklEQVSB8vwpV049x8AjdS528+xMf+PCpY2pgCA3z88EPrltVCAXzcfvCThzvL29jSWEa7yu37xyL9DE7VwQqtiKO0/8XqqUL/XaWrpxkEtZdEGF02+XM32ra+qCdd0t76vjPMKUHnmmVOxXEqUdQgghXITLK22u0NUKza3IXHqDeq5WXQwAUfuu1SqD1c4WMPgozqQuUElRaU9FI6hCeVxVGIHbuEI30+f5LJSCqzQwFiapa/njx49/vbcX9WGwXW07laJkOhiP66xG/bWd8p6UNi1VDIjr910KE9PSpkIwU6pX4UpbPhJwOXEcv9pynglw4tyejs05zW3dd2+t+3PMa8viNOp4u6A59Zrb12R92JUinYLJ3LV0RYWm4z+T8jV9j16V1x5dCCGEEH5zeaVdMGVhas3pVllnVtiuebvyE1FZ83gf0ehAccb3w/PlVsuu6cBa9yUAedzJH+We76r9M3yXj1JjKD83fc2FUhVM36p9qBagfI9LJWMxD/Vep/CUX9alCbkCFvyMfRs2fVHzngUyikmduQIgH1XGtPYxKW31Pe9jKZTydVApqlKarpSvsprsFL16vFOnj1jAnEpWFgS3zVQca4qVeC/qPNDa9CpEaYcQQggX4fZKJdput9s/a63/ffU4wsvz3+M4/tOfyNwJJ8ncCc9yN3e+gpf60w4hhBCCJ+bxEEII4SLkTzuEEEK4CPnTDiGEEC5C/rRDCCGEi5A/7RBCCOEi5E87hBBCuAj50w4hhBAuQv60QwghhIuQP+0QQgjhIvwfRv576ZYnjfUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1418,7 +1537,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu8ZVV15/ubp6qokkJeEsD4AIQQBEVeIggYDKBe29ix0xGTaMeY7phOd2Inxo7GtJrWdDSJ0XtDvDEPrxpNxzy04wsFUUTeIPJQUAQlooDytKAoqMdZ94+1vnv99m+vs885RUHV1jk+n/qcOnuvNR9jjDnP+I055hilaRpVqlSpUqVKlXZ8mtveA6hUqVKlSpUqLY3qH+1KlSpVqlRpRqj+0a5UqVKlSpVmhOof7UqVKlWqVGlGqP7RrlSpUqVKlWaE6h/tSpUqVapUaUZo0T/apZSXl1KaUso9pZQ94ruV3XdvethGOKNUSjm5lPKmUspcfL5/x7OXb6ehVdoG1K2LV2ynvpvu30T/pZQPlFJuis9u6p7/uwXa+1z3/fkL9JP/PrCEMc6VUq4spfz2wHfHl1L+vpTy7VLKxlLKulLKZaWUN5dSHrsoAx5GKqWcW0o5dxu2985Syie3VXtdmzdNkc3o3zbs77ZSyl9so7b26vbFwwe+u7iU8qlt0c9DpVLKL5VSLiyl3FFKebCU8s1SyrtLKY9bwrsv6PTou927N5dS/ncp5ce3xdhWLuPZ3ST9jqTXbouOfwjoZElvlPQWSfP2+a2Sjpd043YYU6VtRy9Xu37esx3H8MZSygeaptm4hGfvlfTTpZRHN01zLx+WUvaT9BPd90P0Xknvjs9uX0J/L5X0WEnv8g9LKa+W9MeSPifp9yR9Q9Iukp4p6VckHSPp/1pC+w8X/do2bu9tkr5RSnl20zSf20ZtvkjSavv9XZJWSHrlNmo/6fmS7t5Gbe2ldl+8QdLV8d0vS9qyjfp5qPQYSWepld89kg6V9D8kPaeUcljTNPcv8u4lkv4fSXdK2l/S70q6uHv3locysOX80T5L0q+XUt7RNM13H0qnP8zUNM2Dki7e3uOoNPN0lqTnqN2o/2wJz58t6TRJP6P2DzH0Mkk3SbpZ7caf9J2mabZGX39b0vt9cyulPFvtH+z/u2ma34znP1lK+UNJP7sVfW0zaprm2m3c3q2llI9Jeo1aQ2VbtPkl/72Usk7SyqXKqZSyutuHltrfFcsc4lZR0zRfeST6WQo1TfMn8dHnSym3SPo/kp4t6RNT3n3fwLtXSrpSrcH15w9lbMs5035L9/P3FnuwlHJsKeUzpZT7SinrSynnlFKOjWfe27nHjiylfKGUcn8p5eullF9dymCW834p5YBSygdLKbd37oorSykvGnju50opXy2lPFBKuaaU8sJ0l5VS1pRS3lFK+XI3v9tKKR8rpRxiz7xJrTUpSZvcXVXCPV5KeU3nInzMwHiuLaX8i/2+cynlbZ2rZmP38/UlXPAL8GttKeWtpZQbOx7cVkr551LKPvbMcuR2TOc+2lBK+Vop5d903/9Wad1360op/1JK+ZF4vyml/EE37m93759XSjkiniullN/s2t5YSrm1lHJGKWXXgfbeUkr5jY4f95ZSPl9KOWyAB/+utC64+0t73POPpZQnxjM3ldbF/JJSynUdHy4vpZxoz5yrFp2eUHp35Lndd/uWUt5XSrml4/OtpZSPl1L2XkxGy6TL1G4gry+l7LyE5zdI+ie1f6SdXibpbyVtS3fqMyQ9VVK6439H0h3dzwlqmmZ90zTvjbYW1fnSHkU13Xo9o7QuzTs6Oe4e7b2qk+uGUsrdnWxfZN/neqftny6te/SuTnfeWUpZUUp5einl/E5PvlJKee7A1P5e0nNLKU9YEgO3IXVrfnMp5Snder5P0vu7755fSvlUtxesL+2e9xu5n5Rwj5dSfrXjydGllH/o1tx3SilvL6XsNGUsh0i6rvv1b23tvKT7fsw9Xkp5Xvf980spf9PJ665Syh+V9vjlmaWUi7r1fE0p5ScH+jy1k+l93b9PlFKevJXsvLP7uXlbvFtKObSU8tHS/l16oJTyrVLKhxZtqWmaqf/UugEbSQepdRU8KGm/7ruV3XdvsucPV7tBfFHSv1dr2V/WffY0e+69ktapFeIr1aKAv+vae/YSxrWk9yU9QdL3JH1ZrcvuuWpdmvOSXmjPndZ99n/UuoN+Ua3r7hZJ59pzu0n6a0kvUbtxv0gtirlb0r7dM4/vnmkknSDpOEnHdd/t333+8u73x6l1Cf1azO/o7rmfMV5/Qa3w/5ukUyS9XtIDkt6+CK92knShpPVqXTyndbL5K0mHbKXcrpX0CknP68b1gKS3S/qYpH/TfbdO0j/EWBq1qO4CST8t6XRJX+vmtac997+6Z8/oZPabku7r+pqL9m6S9GlJL+zG/k217reV9tyvds++p5Pv6Wp155uSHm3P3STpX7u5/3tJL5D0JbUust27Zw6VdIWkq5CtpEO7786WdL2kX5D0LLXI8S8k7b+YTi/1XzePt0g6rNOd19p3H5B0Uzx/U/f5yd3zj+8+P65r60BJ50o6f6CfP1Cre6N/SxjfGzvZu5xWdrr0wWXMc0k6382r6WT5Z2o9EL/e9fc+e+4X1G6ab1CLlp6v9rjvl+2ZczW+3mn7Jkl/qnbtvLn77M86HXqFWh39gto1tlfM40e651+xrXQg2p+QnX331k7mN6o1lp4t6Vndd/+14+vzJP1kx4v7Zft599xtkv5iYC19rePlqZJ+v/vsdVPGuUbtums6HWHtPKb7/mJJn7Lnn2dyfVvH+7d1n72z4/0vds9dLOn76tZo9/6/6+b+T2r3hhdJulTt8c5jl8jbFd24j5B0kVq0vGoZ7+4k6cfV7os3q9vjJBW1+8wF3Th/otPPv1u03SV0/HL1f7T3VLt5vccWVf7R/ifZBtd9tqukuyR92D57ryb/wK5Wu0D/cgnjWtL7kv6mE9Jj4v2zJV1pv1+o9g97sc/4w3nulHGskLSz2jPB37TP39S9uzKe31/2R9vGclE89061hsDq7veXde89K557vaSNkvaeMsZXdO++cMozy5Xbs+yzw9Uv4hX2+Z9K2hSfNWrR1trgySZJb+5+31OtcfjeGONLcx7d71+XLSS1f2wbSc/sft9F7YJ+T7R3QMe7/2af3dTxfQ/77JiuvZ+3z87VwEap1rD4jaUs6q39143lLd3//7aT0W7d79P+aJfu/6/tPn+XpAsWmk/Xz9C/gxYZ35m0a5/t0737hwPPDxoFS9V59X9Y3xfPnaH2D3yx369YZOznaviPdurOFd3nJw6sg18caPdmLWFf20p9GNTF7ru3dmN65SJtlI7/b5b03fhuoT/ar4vnPiPp6kX6OaR796UD3y30R/td8dy13efH2GfHdp+d3v0+1/H8k/Euf8PeukTe3md6f6Gm7LMD737Z3r1O0o/Zd4/vPn/OcuW9rCtfTdPcpRZN/YeycCTcsyR9vGmae+y9dZI+qtaacLq/seCMpj1nuV7SyGVZ2gj10b/lvq9W8J+U9P1o59OSnlZK2bWUskLtxvzPTcfRrr0vqrXyxqiU8uJSyiWllHvUWu7r1f5h2NrowPdLOq6UchBzlvRzalEqZ0/PU2uZXRjzOEvSKrUW60L0HEm3NU3z0SnPLEdu65umOc9+/2r38zNN02yJz1eqDUhy+mTTNOutn5vULtjju4+OU2uhZpTy36vld47n7KZpNtnv13Q/0YPj1RogHwze3dyN8VnR3kVN03jgTbY3jS6T9JrODfvUUkpZ7IXOzep6vpx1+Ua1uveaxR7sdPsDkl7WuTFPV+cqnULvkfT0+HfzIu/8qJYWrKZSyr5qDbbRP1vny9X5PGe8Rq0hzxHQZZKOKKX8Wec2XcqxAnRm/P5Vtevg/PhMar17Sber5cuClHvdUnRnGfSRgf4e37mdv6We/78nae88VliAhvi9lDWyXBri/V1N01wen0k97w9T+4fxA6E769TqQa75hegktd7SX1G7j51VStllie+ernbvealaI/PsUsrju+9uk/RtSX9SSvnlUsqBS2xzq+5pv0OtZf8/F/h+T7UR0km3SdojPhuKSHxQrTtCpZT9Nbmg91/q+x3tLek/ZDtqA2KkNtJvL7WbwPcG2hsLuiul/JSkD6m1nH5e0jPUbmS3R7/LoQ+r/cPPeeNzunH7hrq3pP0G5nGpzWMheoyk7ywyhuXI7R7/pemjl1MefJ58GQpk/K7aowLGohxP0zSb1bnR49274ncMHfrlPPkzmuTfUzXJu7H2zHBainxPV2vo/He10bHfKaW8YZE/xOfEmN6whH4Y2zfUepNeVSJ+YAF6v1r3/hslrVWry9Po1qZpLo9/iwUxrVEvA+hOtag3N/U71BsDfxXfLVfnF9OD90v6z2rX7Kcl3VVK+XDsKQvRkG4vtA6G9GSDpEct0kfOM43TraX5pmnG9rbuD9gn1Lu2T1YrA/bFpej6EL+3dg+cRkO8X2yvYc1/UJN8PVXT98sRNU3zpaZpLmya5q/UHqc8TdJ/XOK7X2ma5uKmaT6o9mhnL7UBmuxlP6l2j/hjSTeUUm4opfzyYu0uJ3qcgdxX2ijPt6sXsNNdkvYd+HxfLf/awC1qFSk/Ww7dqfas6W1T+tisVphDwUL7SPqW/f4SSTc0TfNyPiilrNLkH5IlU9M060spH1F7pvFGtZbZN5qmucAeu1Mt6n/xAs3cNKWLOyQ9ZZFhbEu5LUb7LPAZhgWbwb6SRhGl3UbzGE1uFosRQSAv9/aMFrrutGzqNsf/Ium/dN6oX1S7Kd4u6f9d4LVXSnq0/b5cHX9z18/vLmF815dSLlF7fvlh96xsQ7pTYeg1TbO5lHKepNNKKTvxB67bvC6X2vutA+1src5PUOdpeLekd5c258Rz1O5jH1L7h/zhpD01ecUpKfe6r22jvpuBz56s1p3/s03T/BMfllK2a/T+NiTW/KslnTfw/QPLbbBpmutKKevVHhUv9907Sps/4SD77OuSXtoZ9EeojS/461LKN5op1wOX/Ue7o3dJ+i31EeVOn5f0/GL3QUspj5b0U2rPXpZM3cK+fNEHp9On1LoovtI0zYaFHiqlXC7pZ0opb8JFXko5Wu25p//R3lmT0YMv0+R1Gaz8R2lpfxTer1aAz1UboJUG0afUBofd1zTNV/PlRegsSS8ppfxU0zQfW+CZbSa3JdDzSylrcZF3SOc4tedvUusq36jWQDrH3jtdrc4udzwXqpXBQc3kdYytpQc1/od2gpqm+Zqk3y3tjYYFjabuua2mpmluKaX8udrgq6Vc+/kjtd6nMx5Kv1No6MiBfs9Wa0Dnla8heig6P5W6448PlTbS/eG63yypPf5Q62H4x0XG9FD3uuUQRwOjY6VSymq1x3IPJ/m++HDSNWqN3yc3TfOn26LB7u/BWm1Fjo3SJmU5SOP7mSSpaZp5SVeUNhHRy9TuFdv2j3bTNA+WUv6npL8c+PrNaiNuzymlEOn3O2qVZCGX+sNJb1DrTjuvlHKGWut8D7WMeVLTNGSVeqPaP24fKaX8pVpXxpvUuoc9Ocqn1CapeIekj6s9C/91hatMbbCEJL26lHKmpC2LLMpz1CrZ36hV6L+N7z8o6ZfU8vXtaiOXd1Ib+ftCST/dLHzh/wOS/pOk/915SS5R+wfnuZLe2W2Ij6TcNqg9G/pjtWeOv6/2rOkdUhs70c3xdZ1l+0m1yOAtks7XlDuSQ9Q0zbpSymsk/XnnQj5TbWDa49S6IM9tmmYwW9gUulbSr5VSTle7iO9VqyufUSurr6rdEP+tWn07a5ntL5feqvbc7SfUngMvSE3TfFjtkczDRedJ+qVSymOapgHxqGmac0opr5X01tJmxHq/WiS9RtLBao209eqR4UPR+Qnq1vW9aqOAv9f1+TI9/LJ5itp1NIT4thddrXa/+SM7unm1ejfzw0XfVrvWf6GU8jW10eo3RgzJQ6amabaUUv6rpH/sYhf+WS363lftGfX1TdMsaLR23qi/V+vt2KjWLf7bav9+/H/23K+oBbEnNE1zSffZx9UHNt+rNvjut9Tq9ju7Z45Ve0PmH9TuH6vUut03ahFQsrVIW93AXyPpx/zDpmmuLqWcrPaqyPvURiVeLOknmqa56iH0t1XUNM23SinHqP0D/L/UXr+4Uy1D32fPnV1KwT39EbVXhl6t9o/+963Jv1Ib7PAKtRb6ZWrRaAZ6fFytMH+ta6N0/xYa53xp00z+ttpAqBvi+00dCn+t2s35ALVKcKPaP2ILLrbu3ed0c/uV7uedaq8b3NU980jK7f3d2M9QaxxdJuklXaAj9Hq1LuVfVcvDO7v3XtdZpsuipmneXUq5Wa3O/rxa3f+O2qOTK7diDm9TG3j412oDwT6v1gi6Qq2BtJ9aY+9rkn6haZp/WaCdbUJN09xZSvlTtXq+velf1LofXyBbY5LUNM0flVIukPQq9evxAbV8+pDaKOUt3bNbrfML0AVqjYCXqb26eYtag/aNy5/isugFag26cx/mfpZMTdNsKKX8W7XX1j6o7tZN9/MhJf9YpN9NpZT/qBYknKN2Hf6c2j+Q27qvj5Q2oc/vqgdDt6o12hZLxXup2j+ixGB8S+3NmT+JI6U5tV5W39svVnvV87+rNTK/pdbD9IdN0xDE+Z1uLK9RCx42qDWknt80zTWaQlyFqDRAXaTfDZL+oGmaN2/v8fwgUGmTzPxB0zSLJumpNLtUSnmv2vvgp27vsWxvKqVcq/Zmyv/Y3mOpNPv0UJD2DxSVUh6l9l7xZ9QGbj1JraV0v1o0ValSpaXT70u6rpRyzCN8VrtDUYdm91Eb8Fap0kOm+ke7py1qzzvOUBuhvF6t6/Rnm6YZugpVqVKlBahpmm+WNlXvtk7fOmv0KLWJRB6OKP1KP4RU3eOVKlWqVKnSjNDWJFepVKlSpUqVKm0Hqn+0K1WqVKlSpRmh+ke7UqVKlSpVmhHaoQLRdt5552b33Sfz1K9Y0ScbI4c+Z/GrVq2SJM3Pz4/9Pu2dlStXjn2+ZcuWsc/9nJ/vaG/Tpk1j787NzY397p/lmDZv3jz2vRPP5hjoP+fC8z423mWMSUP1Bxgb/WT7yTOn5A3EPJ14hnZzXtmf/z95ccMNN9zRNM1Ynu21a9c2u++++2j8yXOf2047tSV/4RO/b9y4cWJsjJt3aY8x8e6DD7aJnly2fMfcVq9ePdYGn/s7jAl+M6Yco/OcZxkD3+XYU8+9PcZCP4yJd3yMfMY8Uofol3foY6if5Bs8cj2AJ7RPf7kWnSdDOihJt95664Tu7Lbbbs2+++47GtMDD7QZLtes6dNo0zdzYbxD6x9K2TFe3sk9bGjfyXUCf+iPsXq7uVdBj3pUm4Rsw4Y+MWTuY4x5aEz5O8/QHv3Ce8bqY4QXKZ/cE9ET5yvtoTPMh99dz5LWrl0rqedJro0hPsL7+fl53XPPPVq/fv22LOCy1bRD/dHefffd9cpXTmYU9MWIoH7kR9p1l8J+9KMfPfacP4vQ77nnnrHP77vvPknDf/Ryk8zFSj+uMLSDotx/f5u0aeed28yBKKwrZP5R8PH7GHfddVdJ43+0efbOO+8c64cxrlu3TpK0yy59cRoWXxo0GE20tdtuu0mS1q8fFeUaPZOL5bGPfezY57Qh9bxn3CwSFsYdd9wxNmaplwObwve+19Y8OP300ycyfu2xxx561atepb322mtsPvBN6jdh5oJM99hjj7Ex+cb0/e+3eXWQ4ROf2OZauOuuNg/M3nvvPdamb0aMhfEjO4g24Y2PgX5p/9577x2bAzKVej4hK/jP54yDNpy++922dsuBBx44Nnfms++++07Mi/mkjiKfPffcc2wcrElJuuWWW8Y+Q94333zz2Pwf97jHjd75zne+M/YO7TImZEL//gz6BY9f97rXTejOPvvsozPOOGOkD+i3j+Fb32ozGbN35FiQresOczrkkEMkSd/+9rcl9XJg/KzXpz71qaN3v/a1NrPt4x/fFoX6ylfalPm5/wztjaxpdJ9n0beDDz549A76xPyQO/OBf+ibr8/9999fknT77W1Bt69//etjn9PfN77xjYl3WO/w7zGPaet3wPurrmrzOaH/3ncab6yVww8/XJJ09919crUf//G28OL5558/1j57MzLCmJAm98ZddtlFb3jDkmv4POxU3eOVKlWqVKnSjNAOhbQXIkeVoAcsNdAyBJp0tMz7oCOsSCxdfmJ1YvlKvZWPhZbWHu9MQyI8kz9BHdmn1KNXngW9Y+k7asNKxlrFesXSxlp3txhWKlYp/KIN2qd/lwH/h9d5HECbbr3S7vXXXz/2HRY81q2jMlAgvE6k6tQ0jTZs2DCaY7rCpR6V/OiPtmWNQWbwAs8ASFGSbrvtNkk9moPX6ANtMlZHn/wfZMUzzIP+3AMCskB2X/3qcJ2MQw89dPR/eMjcQZX0y1oBOaLTknTEEUdI6tESunPQQW0xoi9/+cuSem+E1MsZPtEfz6IPoGZ0Vur5hY7QH8+C7FmrTqx1EBzzTXe91PMU3tDPEK1evVpPetKTRrqJxwKeeHvIJY8GGK+7s0G0IM2nPKWtGfOFL3xh7N3jj2/LyF95ZZ9NF36gM/vs0xbGc2+C1OuhJN16a5tOArm88IUvlNTrLG3ddNNNo3eQJXsESBuZwvOLL27r0PgavOGGG8beOe64trz51Ve3xczQN8Yu9fsM+x37GvrGWPHauVeA+SFL5M8z6DlrVZI+/vGPS+r3H/jH+mEcjs5pl7V45513Lnjcsj2oIu1KlSpVqlRpRmgmkLafE2UgC99hXWL1+TtYTlj8eVbKu7zjyICzD6xirDyeHbLAsE5Be/zE0s1AGqm31Jkf/dJ+Bkn5GTooAAQCbxKZ+vkXc8xzVw/IkHq06MFL9MP4GWP26/Nj7ow1g7AYhyOsRDMul6S5uTntvPPOYx4BaRy55zk3v2N9M24/t6Nv0AI8BEVg/SMvLHqpR3nMiTZon3E4Wrr22rY4HHqGLuEdQA4+T/pEzzjjQ69BE7zj73LOyrPMLxG+6xv9cc4KLzLewuMgIJB0nkvyLHrI51KP8vFMZHAU55LO+6T0ZDk98MADuu6660ZjS6+WjxuCX6BofnfPTsYfwGs+Z21xFuwonf8j9+uuu05Sv6aOOuooSdIXv/jF0TusIeTxoQ99SFIv0xtvbCtKHnDAAaN3kBleP8bG3BkzyBtELvVy/td/bcMEvvnNb0qSDjvsMEn9ubzHbPB/+MW7GSQ55KVh/OgGiJr54sFwrwrrknWEl4E1wtp0/UC/2Oc2btw4sa9sT6pIu1KlSpUqVZoRqn+0K1WqVKlSpRmhmXCPO+E+wbWI+wOXBq5Hd83h2sNVmi7vvHPrV7EIROKzvO6E64s2pT6oAVcw3+ESynu7PkbcyLhr8qoF/XtQGTzBxcTYmA+8cp4wNub3Yz/WlkXHTYZLEjcp33s7uNbyri+BPLjWpN6VRbBIXrsaujKVrrJpLirc43lH1d2suMRwI0LwmMAtD35BlrwLf/JOMuN39yhuSPiPGx7ePuEJTxh7V+r5hNvVg6GkXg89IImAGdrLK37oN27YnL80eVzBWkEe7nrGTc31HQLQuF7DmI888khJfRCT1PMHPUefM9DPrz/hhmcMeVQFP/04Bp7i7p0WiDY/P68NGzaM+ITL1I+E4AtuVp5hTLhofa4Q/IA/yAse8C7uZWkymDDX+Je+9CVJ44GPyB1XPv0RGEaw1zHHHDN65/LL2wJsmUOC/QeeMkb2C2nyqiz9ZkCcX/1Ez9gzeId1xVpnHL6vPulJTxrjAXvgJz7xCUnSk5/8ZEnj+w7j5zPkhUzyqMKfQT7777//2Lre3lSRdqVKlSpVqjQjNHNIG0ssr1NhkWK5+7UdrDmsO1ATzyZq8qAbrHis40wgwLse8EQAA5Y7FjDWK2MeCrrCEgUZgJb4HovUkw7QT6I+rGP696sXIEhQF+/QH7/zDkEgUo+WMlsT/TA/gmik3kKHt1jpWLXpOZH6IBQs+aHAJqdSykRSDQ+sS15ifSNLdIgAGqnXlbwGAiLMACRPeoKXAn0geIirRegM3gdpMhgOdIHc4QVjlnp+J0oGjeP54MoRyEvq9Rue8C7PIB+SXUjSfvvtJ6lHVLRBQBi/gwZB3FIvU+QDz/1KmSRdc801o//jscgkNchpWqVC+pkWpFZK0erVq0ftgqY9GA+9Ys4nnniipB5Zw2sSqUg9D9E7kDReBJDcJZdcImlcpvCDwEQQY14FnZbd7IorrpDU6yz7jV/5Yr3luuTKVe47BJlJPf95F0TNO4zZ36Fv2mNNk9yHwDT0njlIvTcms5mxz+RVRKnXSeaT13GRObKQJq8W3n777fXKV6VKlSpVqlRp+TRzSBsLM5M0YIUN5awF5XEWhnWF5YklzDnHUB5a2sNiz8QOQ9dDMnkLKGnozCzP3SHmhzWZKErqETVjyLPMTEXoc8wzLCjTWTqyz/PBzD3N/Pw8OVMsMkaQbF4fkyYRPYhxIZqbmxs9wzueuCSvnYFssP7zXan3xsBbdARrnN+Ri8s0E9OQjCLn6siAxCfIBWTHGWfy0b+Dl3wHouPMGeTAWafUn53Dk0xOAy9AKj4GdAhdTH1jfiBuHyvfJfKBj55yFYSacRjT9AFesK4yKYnT3NycVq9ePeoHT4gnbsq4F1A4Y6AfP/PlO86SL7vsMkm9HuD5AE27roIQ0T94Tf9DtQDQb3SI9uE/iNeTOqWXBoSPzvA9uoNXwMeCfqe3k/m4x4L9BISfa44rZfzu19PQmUy6RH95Tu7ts46YD23g5cqrrtJ48qChehHbi3ackVSqVKlSpUqVptJMIG1PCoI1lcU9sB6JoHVLPSu8YFVlJDZWmZ8TYfnnGRJoM5NueD9eJUbqrdWhoh9YrYwJaxlrH0ufcbhVnv1mopI8p5Z65MQ5VBYbgUfMy89dsxITz2Q0qccGwC/e5Z1EZY7imWsWNRmipmm0adOmkSeEuTvCgg/pvVgoRanUI2wQCPxBPnxOm27l49nIQiTIhza8mhT84Wd0MAwLAAAgAElEQVR6GUD2jrSQO3NFZ0BwWUACFCdNng9yTkl/Q14TUMtQkQwfz1C0/0JR3MyHdevRvEOpJqUeTcMrj4dYqKLaQn3vvffeI76AUN17Bt+JUL700ksl9Z43xu/7APrFOS28RD6gWcbKc9JkBTPeyRsIHhfDs+hxFs9h/3He5q0NvDPpeWGMfosEBI1u4FGgP9a/e5KyP/ZXYhjYvzN5lr+bqJe9i7E5skd3kBP7GHEW6BDeFWly71uzZs1gFbftRRVpV6pUqVKlSjNCM4G0/YwRCxArjt/zvMujRbPOKhYUVn+eNU+ro5t3rLHc/CwWqxgrDyuNZ7Hu3OLl7CbvffMO/YICHWmB2BgDiIH2sbz9riHt0g/WJee79JNlPqXJu9wZ0TpU3zaRTpYNhM9DEeJZVGSIuKfN+8jAvSacY4FAQG6ZHnUoXSrP5hj4HNTpZ5quR9KkTOGfR/Vn+lDaBc1wDu9jRN7oNXPGg5B3ux0N0jd8A+mAyojqdc9VIimIyGnGMy2NKXxjLF7ExOfr/SyElofqaTPGjO8YoqZptHnz5hEiZB/wNZ2pW5ElenzqqadKks4666zRO+g0CJRns0Qq68kLXWRaUW6tMEbk796Hpz3taZJ6fnCWjYzZd9wjwZiI1mbu6fFg7/Co/ozWRk5Z1MmJ/QSvAvEV8Drvpfsd7/TgoUvsIZlOWerlzrN4P9BR1oRH7sN7v01U05hWqlSpUqVKlZZNM4G0nbC2sKCw3EBRnJFgVUq9xZRn21mGjp9+fsG7eQcR6xVL1S2xjPjMc3F+ugcBSxqEQXugwixi4Cg972fyO1Zz3mn3frA0mQeWKNbmUBEN2oF/zCNLMjq6gfc8QxvIYuiedp57gf4Woi1btozaSw+M1FvX8BaZZsENt9T5jLly1gu6QM+GzmozY1fewccb4HqAXOAPqCLLUTqKBa3k+TseFngCmvKMUVlSEpmh3/Tn64nxc2sBHcVLAOLOYhNSjwyZF2uF+TF2l4HfoR0iZOFeDvjI+KdltJqfn9e99947Gjdn9o4U84YJnjF08/zzz5c0fsbMHNE7UCQ85kYGbbinIPMN5D1j2vI1jbzhIXqNntPW4YcfPnpnoXLBINP0wLkHE54wbnjD/DIzo9TvY7wLr7P0KF4H1x1kSoQ58mbPQt/cA8Q8uCWR65W/H76e0Ekvi+qy2d5UkXalSpUqVao0I1T/aFeqVKlSpUozQjPnHs/kKbg70s3j7mrcJeluxW2Dy4lgGL+2g8sHty1uFNrEXeouoEzviBsna0l7oAv/xw2DWwh3Gy6bTCso9YFauI2yYAluU9xnUs8/3F+4nphvFgVxV2GmD8TlxbuZKEPqeZw1snGXZ4pRadLl7EcCSU3TaH5+fiLlqbv1cYWhM7gncTVmgKLUy52+kYcXp5D6a0Je9AFXHzzGtYibknF4YBLPoDO4vnHVoReeDIfPMmEN+sA4+NwD33C7cv0oa7+j357kgqMMdIPfGRPzg0f+LrwgLS66SsAbOjTkEkeWGRTEenNZ51qbRjvttJOe+MQnTiRt8eMd1g5yzkJCuMAJ5JN6Hc+0xnmNj+AuH+tpp50mqb9axhwJmEK/XQ/RVeTLOxxfMB4P+oP/zA89T93lKpgHdvoVNakvtMNRH3vi0LFcyiX309yzfX7IlmQxHMuQXtePNzMZDe2zn7GvemGedIXXNKaVKlWqVKlSpa2imUDaQ8lVMm1kWrWORPL6B2gJhJJlIt0KxLrLRCU8m0USvL+8LpWJHnxeieD5HRSWpRMd2fNMXlXA0sby9EAdPkt+ZUAYlrhfMaNv+Ie1Txvwaig4K8so0j/zc0seXgxd6UlasWKFdt1115FVT/CNo69MWJHXSzKA0AnkB/JNDw9BMH4Vi/EyBr6DL4ceeujEnOEtc+edLDXq76ArWboSpM18hpKe8CxeE7w2IEb6B8VIvY5A8JMxIX9Q/BBq5h30LAO8POiQMYCOWIOMPYMZpck0n9OKzWzYsEHXXnvtiAe5biTp6KOPltR7JJhrXl3zZD6sB3iXZVZTp/yaGylPQdZesMXH5oFazJE0qYl00XcPzmTOFOZAJ+EBwYvZttQHIvIdyBsdGroGiZchyxRn0Bx7mafched4s1ivjIN3XA8IaMuiJnn1zAu9ELSGhyILI21vqki7UqVKlSpVmhGaCaTtaCnPYLHYMs2cn/WAynmHqzZYX5le0q10UBGIIM89ORd1pA0iSITFeRHWHRaiNFnik/74ifWKJe8FHOAJvMCixtLme0/ekGUps6hJWunOTyx1xgQP8oqbI6wswcnPvEo1lEJ2KC1q0ooVK7T77rtPnLc6qgRVcKYHmsgkDX4Gh2WOVY81j0xBhrTl/TF+PuMn+sc5ohdyQR6ZWhf5PP3pT5fUowGp133Gim6CzuiPc+Mrr7xy9C46T/pS9Ao+wnMvkUh78DHXJGMFLXthD/SIz3iGz0Flnuwir4MxX7wB1113naTxdJl5lW2al2Z+fl7r168f6Qzj9zNbZIUewyf4xhrws0/Ge84550jqk6yccsopkqTPfvazknp+ZpyE1J/9gwzRO8bq8RDwP69ionfsHY4c0VHGzzOsCfQazxLIW5K++MUvSuplBb8YB3LyWJTUL87fs0AKPHHvA3pGulK8EUccccTYO75+4RdyweuBzpCW1vnIfoM+rV+/vhYMqVSpUqVKlSotn2YCaQ9ZoCBBzok42xlKVICFluUG+QkC4/uhQhdYgIwFJMTnfo6CNZkpSGkXdOOoMssrgppAJCDuofNdrGIQW6Y8Zcye+AHEgCVKP6Bo5gM/PRI8o98ZSxZEGYrcZoxYw+kdcLTE2LB8/fwuCbSUhVTcA4MeIFOSTDDOlJfU6wjjg29Y9SAt0MRQVDfonLFwTkeaSfRP6pNYZMQvsiSJh3taMhIffQBRo3d4BXx+oHG8MPAIJAKadfmjm4ybc050N4uouJ5DoH7eQW7IwOWG3rLmWQuMEd64fsM/aJqXZuXKldprr71GkdqgTi8cg85ksiX4ha762TmolPNwxveZz3xGUo8Y0SFH6awPdB+Zfu5zn5PU88/jRtADxo93gDGSapXobn8GfUbPn/GMZ0jqkb57Z6Bjjz127BnGCPLmc4+op33WFd44dASvJ7rlcoSfn//85yX1Osk6S6+N1PP8mGOOkTSZppnfHZ0jQ48FqdHjlSpVqlSpUqVl00wgbSesKyxbLKZMDerIN88Fsfay5B9WniMDrFY+A6Vkakq3sLOMZiINzm+w/qQegWYBeSxFfnIG5BGZICzmwzzTQ+FoCQsd6zwjphk7n7ulCdrIUoMZ2ewoAIsahMh3mZp0qFwplvS0O7erVq3SPvvsM3Hm5zwA1REhy/kdYwDdDd0rzbvcIEL6QX6e5jGLYOBF4Dx6KL0sugO/QFr8PP744yWNF6YAsYEmQQ+gZ3QVvePOrTQZBQ0v0DP454Ub8pYA8qH/LKHplGU0c72io75mssgD65m1ibfN9SOL1kwrrbhlyxbdfffdE+jfx5B5IRaKDHf5U1yEOWXcxoUXXiipP1e96KKLRu+iZ+wHIN2MJ/C0vxQMgafIAd6ed955ksbjb7JgC/2de+65kvq9BbTs+SEyJwbz42ybPcy9ZxljwE/WOu/yu8uNyP0sfYxM0A/Ps8FcM11zpnT1uJIs4bzLLrvUM+1KlSpVqlSp0vJp5pA2yAerDqso77F6hCSWWEZXgpKyCINbaliRILjMtDR0pxcLNyMyQRlY9B5djTWKhYlFyDv0z3NuYTP+vNOLFZv31KUeUYH2QCa8m1nDHGklGsLCTXTuCDILudAvUexY+H5uTfvMY9q5EmfaIBEsZ9cD5gZqpk+s8aH7xBkjwRkb8qFN+vW7uFkYAv6jD0NoArSU54TwlPNQvzeNLBkT/SFT0B9j8+If8IebDMwHtD5UIpExgWLhHygskbbfkgDR8UyWjUSHpyFj1ulRRx01NgeXX8aesNaHiIxo6AVry5E274Oeyf6VcRe+H7BWkQ88RQ6gV87SXb9B8vCLOXKOfO211471L0mf/vSnJfU8ZUysNRA945D69YY+ZSY0eIAMPZqbMXJvGv2jH87q/fZAImnmzFpE/6+//vqx+UuThZGyyAl3rX1+rEHaZT7ME1l4LAr8Y2x33nnn1NKujzRVpF2pUqVKlSrNCM0E0vZI6UTNWMBYc3zvZ5lY5plBB+sViwrL2KNQs6QkBAID0fn5LZYa7ZOZKrOdDZ0tZfF5ojsTxbr16mcv3g8/mcPQ2SkWZka4M58sJyj1FjWWPBYwVj9z8XMi5JVxA0SEwit/J0uAesR0UtM02rRp02j8jNHRC3JHdqBHeIwuOVrOqFos9Izmz/N9qecpfGIsnDUzRtfvq6++WlKvqyA7+uNzzwUPgdxAsUSLZ5Y7PCP+TmbTgxfM15EI7dEPz8J70Bv67fEliY7gBbpLrIavN1AZCB/5XX755ZIm17fUo9uhyPKkUopWrVo10l/0zGWZ9/V5lrFxn/nkk08evUNOcc7keYf9IBGj62rmFqdfIr9ZN44qkSX7AfOgH+TjHjf2KuIseBfUmvecXQ9YN6B0UDQIm35c3/JeuH8n9XrBvIcyTcIvPCusa3jh80P3GCv7Wubrd/1Ir+aGDRuWlMP+kaKKtCtVqlSpUqUZofpHu1KlSpUqVZoRmgn3uAcT4b7LUpmZQGUo+UimIsXFjEvWg20g3DSZppB+cBd5ABWuS/rDhYa7DRfgkCs436X/TLbh7+L2yqCRdIv5GHFlce0MdyKuYdxY6QL1duEB88urYJ7Qgv/jKuQYA7nhQnYXPq6sLLiyEK1cuXLCLe4uUz6Dx8gOFy1JQjztIm5PgrlIHEE5QHjK5x6IhKxw+dEGsuVdv75HSsYsuoJucl3NA7VwC+IezUQvzCH1UepdjrhSCYDLUpPOe4KwCHzCxQivke1Qqk0+o194gIzho695eIDcWM/oDGvTg7IySG5aIBpBjKwFZMjRhDRZMhJZMiYSl1xyySUTc0WWrC1c0ugFz7lcWI+sQ1zqmdKXUqFSf7TCnDPREFem/PM8wuB3xkz/uLxJuiL1eoV80UmOCEh968cjyJUgQvSKvSuvVvo1VVzcyIKxom/07yWIPWDT+0Gv4YmneIanBMPVgiGVKlWqVKlSpa2imUDaTljkWExYnqAILFC3WrHWQAJYiFjUIBKQsKMYrKwMHuNz+nU0kVeJQBW8w+eMw8fIT9rDws6AIB8jPGD8WXQEJOdBJM985jPHxgRfGRv8JRjDUTPz4Tv6J1gDlODBRJn8BkSVAR7eD14GkOO0a0ClFM3NzU0UJBhCbIwrPQNDwSboUQbkYY2DnrJ4htTLAWSafMPb4QFPBNdwFQ6ZgexA1SByqfdegDBAciTkoMgISJTvpZ5PzC/TTGapU0k6++yzx8YEWs5COSAVJ7wPqQ/oDG351SLkBiLlihH6wNpw7xrtwvNpXprNmzfrrrvuGvEPHfJrlfAOVM9+gO7Tn/MWGTIXdB5dyQA7D/ZkLBlAxzwYh19zIzgti7Gwpo488siJNkHnjJtn8dYRoIa+exEVxs06ZT4E4MEzlyX7GelY4Qm6xHzYh5yfyD89BimLoWujjIH5wd/jjjtO0vjVsmz3wAMPnJpC+ZGmirQrVapUqVKlGaGZQNqOELPcJBZaJhAZKlKQSTVAcImA3HrNMxBQBFYYlptfwUnLmTaYB+PwpBMQ7WPtY63nVS+3/JgP78IjziWxbt1KTgQNL0AtiQr8ulUWa6H/hRC41J+Ng15AePCEdx1tZBEBt9iT5ubmtHbt2tH4QXI+Z5AYskRmfM47fq4O+gZJcbaXvGA+Q6iCc2JkBkpCdz3NI0kzkGVeLctiHN53yp0kPiAU0LKvDVAXOskYufLD2b2nPgVZZQlWEP3FF1889g7IWJpct/SfV6jcq8I64Zk8h0U33VOSpVl9D0niuiDpYDMpjc8hz9cZJ2Uqh66dZTIa1hYyxCNx4oknjt4FCfIsOkKBF/Yf92ahe+mNY6yscWQq9eVCGTf6B6LPAj/ufQCF5/zYo/AweepT5MI5NLE69ItskbXHe6CbXmDH5wA/PbYh9xDGDz+Rqyccgrfo9w033DB2pXd7U0XalSpVqlSp0ozQTCBtLyqBNYmFtlDxAkd5WFtYznnmShsZhShNIkOs1UwR6GNMtE8bWJxYk35+izXMuRQWbp7Z089QBDDWeRY5AX16mbscG/MjijJTsbolCmX6TyxgxuxFVOgPqzwjjPP8WposATotleCWLVt07733juYIrx3F0ifWNe1mRPNQ0RLmwnfIGORIP34Gh04mD4llwIviyAE50H6iNTwf3k+iFX6Hl+kR8WheEPZhhx021n4mlWGs3j7Ind8pgEHp0UyF6/NKD07e3PBob3SSMSQvhgrzIEvWckZSO61evVoHHnjgSGee9axnSerPTqWeH/AdPWC/yWImUl+MAkQKX/DWsE7gH9H4PgZ4SLvwC3n5WT0endwr8PjA06F4mPT+EfmdRU48GQp8R8/pl/2AyG2XJd9lfBExGnhpILxFUs/HvNECD+DV0E2e5H0WB3KPBWudPXhaLM32oIq0K1WqVKlSpRmhHQppl1JUSplAVJ7KDmSTZQ051+AM060tP6OUJqNRsfJ5x5EIZ0qZrhLLHSvPzxgzjSnvZLS6n70wFsaGhUu7WezEC8vTLv1m+VIsbo+kzvuRIF14gEVP2kSPcIafjG2onKI0fv6VqWOZD+PI6GGp53Gi/iFqmkYbN24cyYl2HCHixcBih5cgUc5xhwqHoG+0AapF7zxyGeI8LosyZOpG2pTG75hKPd8y7aOfsbFe0KEsjQghU6J7pV5G8AQEyRrAg+BoA/2FJ6AmZAq6AWn6fWd4wrwynW2mxJV6RJ2R5XhB8KC5ZwcZ8p3f1EjasmWL1q1bN0Kd9Odn2pw7w49E/8zHvSb0CZKG7yeddJKkPg0rvCYmwMcAv1hz8In16t4A9qosTAMC58zevU88AyEz1jt6xhrxe+HIGYQLL5gvnw/lSoCYO+spCxn5PW3QMnsIPIDPGeEv9WuDMYCe8T7wu+sO6X/xPtx44421YEilSpUqVapUafm0QyHtpmkGLRo/T83IURBOlrJ0dI4lloXXsR6zTJyjSizNLBzCmEAm/g7tZBEOfgd5+zk4CAOLEHQJOsLiph9Hg8yZn7zL2R9WpKMz5pyFSEA+WKAgfr9/DNrLu51ZfMSRPZ/BPyzpjHj1c374w7teyCNpbm5Oa9asGY0TPrplj8ywsrGk4Qvj9XN1EBT8Rk5kz8rzNLfYmVsWIAAJZLEGaVLPkCk8AE15NDTfITvaB4nkGbCfE+Y97SxUQz/uSWDO8Dp5zrxAcY5YQXvoUCL9jO719vPWAvNND5bUyy31bIjm5+d1//33j/pEXq4HeDHwPGVsDXr72c9+dvQOazV1HlSJ3Cgb6d4Fxp8Z+JApa9z3ucyeh5xAjuw7WfzI22XdX3DBBZJ6z0GWCpUm9xDO2UHgeC48vohnGSs8Qv7IAF45T1JXGVPeF/c1CDpn3VI2lDUCH31vZC3Drz333HNsDtubKtKuVKlSpUqVZoTqH+1KlSpVqlRpRmjHwfxTaCitKK4RXCF5NcYDmnA14UbDpYV7jTZwAQ4VKMElg1sMlx+uFE9jmoU6MplLJs7wPpkrrh7c4gSXMB53I+MuxO3r7frv7nJkzpnchHYXOkqQJq+s4YbL4B+vaQ7f4Bdut6yR64QM4Ym7vZLm5ua08847T/DJjyBwG6YrGL7hsnWXHDqDezSv7fGTgJmhYL9MdcuVswwyk3qdpF3kDw+Qg/eT9YVJaoKe0y/uRXePZtpX3IW4PhmPB2eiM4yF8dNuphBlTfoY+Q6+ceUHt6wnHkKWuDYvvfTSsXkzRg+ERM9wL3tAU9L8/Lzuu+++kQuUsbnOE4CVSTaywI8noclrjZkSd2htQZmoBDcy47juuuskjbueMwAVuVAIh7F58Bn6nEU+CLRjHOwdfkyGruRxWAYmulzQHQLqsn43/aUL3OeFu5+xc3Tw4he/WJL0pS99aeId0v+ecMIJkvp1xZiH9kZPXbwjFQ2pSLtSpUqVKlWaEZoJpO2oGYsokXWmyXRUhpXEM1m2EWs2i4JIk8kAsJbpfyi4IxNwYFGnJe/Ba1yXYAwLFexgfo4cMuELz9IPbXpgTQY4gSCYF2Omf+cncwXpZHnFvNYlTSJWxpYpOJ0YC2ObFgxCcpUseOJBjMgStJIpSUHaBK9IPSohgArrm0AtghzxHGDRS30ax0zVSVsZECf1MuIz5JzBVh4QROAXCIR3QCL87uVcIdYC8kZnkR1XCz35CfMAjaEjrBG+h9+eAhcdYX6sSWRLf+5JygRKyDgDvNxDwpqm3bza5LRq1Srtu+++E8lg3PvDOGkHHaFPPAUf/ehHR++cdtppkqTzzjtv7FlQJWODT1y3knq9yqIypDGlLb9OlYWJ2FNYn+imI3sQL+2ybrKUKbwmXavU6y97A/qAroLwPREQ3reLLrpI0mQBFq5FIn8P0mSPyHSmoGY8ME5ZPIXrb/RLUCBzkcb3SaldGzUQrVKlSpUqVaq0bNpxzIcp5GklsdSwvrGgsmiAo+VMS8e7WKQgOc6/3CrH6sprXFi4jMet/Dwf5hlQDBavnxPSLqgIC5HfsSZBPH5uTftY7MwHLwRIyL0BWKvwj7FlGlh45EkjMhELFnB6OxxBYoVnMhqe5aefGaasvdBBUilFO+2006jPTP8q9bIEvaAzWNtY327dw0OQKHJGLqAxklwMXaeiX1AMCJg2XVfRA8afZ9uHHnqopP7qkdTLAXSWeocugSa8NCNjJEkMenDZZZdJ6tGSe7vyDDPLR/I9Pzl/lfq1wfxAt+gHsmEtSv16YT5ZrhZE6frN+qR9rlUN0aZNm/S9731vJGva9bP43CPwyhx77LGSen7h7ZD65Cl5FY81jGyJAXE+pcchr96hdx7vw5zzainrk/3Pz93z6hjyZ4z0wz5x9NFHj95lX+GaGwlo8CTBq6G0ufCJ8YPOScRDohn31qHHoGXWL14B+qMkrdTrKPEQrG10iRLF7pHDi4bOf/e7351a2vWRpoq0K1WqVKlSpRmhHRppY+n4GQPWIsgvUR7WpkcsYs1xtoJViUWFBZcJNKTJKGQQAmgJ694jgLEm/VzO2+Ks0y1QKM9+ObukfyxfRwFYxVi+WJfwiihiR528k6UQGSM8yYQG0iRyzBSkWK1+Zg8yRD4gB8Y0zZLNqNRpxFiwpB0FgmhArcgu5eHnecgblE97nD/yO2dxQ7qDzEAGyIWxumeHMYLk4RMIiIIKnuwEGSIXxgTyyPKefu5OQgwi2ukHJMSzHj2bKSBBoXgh8laBo0/GxryYJzxAFp7qlfNizmLxnC1U5tP7hjwGIImbBxAo189iWe9Ei7M+0Ov0Ckk9zzg3Zl2kd4617F6mHO/VV18tqUfJectD6vWXn7SXaZt9P2UstAcPkTFtZbS11MsfZM1+wLPsO56aN8/B8QrAA9pELyhCI03edKANbhoQNe7zy5sVrAV4DyrH0yP1f1voZ+XKlTtU0ZCKtCtVqlSpUqUZoR0aaWMhDpXKzJJyoDAsT7e0swA632HdJdr0d7EseZd+6DfPgKTe0kuUPlRcBGI+mbKRMeWZk5/BYPXnPUZQAVarI3+sbs6MGDPnUvSLBQoS87FipTPP5K9b5ZwpwSfGzBlTRo06wS8vLZpUStHKlStH74Py/Sw2I/N5JqPUh0oXpqeDczV4wLtepCNjJtIjwlmsW/mg/yy+AE9Blc4nxpAlWdER3mUcficVpEg/IFzQIbwfKnfI/OjnqKOOkjQZpex6gAwYP/NljLzjkdvnn3++pF6v4SPn1KAx532mGfXCMUnz8/PasGHDSA6sAV/TjJuYAvjCT9aAe9xAd3nDJNdJplOWen7nLQ5uPOB9cA8YyBAPCwiXNtALj7/BM0AsQd6oAfnCT7+njUcC/eNcP8sVn3jiiaN30A14wlpjrMj0c5/73FhbUs830Dpj4V28NB7vwR5Pv6wBEH56v5wX9LMjoWypIu1KlSpVqlRpZmiHRtqQW1tYhpybZHlNLF23CBcqjoG1h1U7VBwBRADiwgrLjFFD98JBclmQBCvPLbhsJ+96Z8SzewNA0vAiiz3k/XSpPwfKM3raZw6cNfr88v55ZoBjXn6mDaLmWaxwPAh4QzwCGESQ7wxR0zR68MEHR2NCH/y8GERAZCp8AVVwjujxAvSJzsAveE5/jN89IPCJd0FytIFee/Q4fOcdIsJBGcjUUSAojLGAlpAZ6AUU7UgbuSM75k7/oCm/p4oseefII4+U1Jee5Fn00WWamb5AOKxN5umR1LSfqDajxv1MGP3OQjxDNDc3p9WrV4/WDXLyuBjmdO6550rqzz2zIImXyuQ7PBMgYNYFsgU9+9k/fEKHsqgIe5fPmTly/s1dcpA8svY8BLmvoH/pJWCP9LgBIr1ZI8QAICf0jz6kXn/hAWuOKG70AU8CY3aCx8iYNnnW/15wZp0Z7Rgjz/o7qWerVq3aodB2RdqVKlWqVKnSjFD9o12pUqVKlSrNCM2Ee3zI9UyQQCaowK3jQUu43nA54yYl+AnXF8FFnkiE/viJy482cJP69RBcsjkWd2n6u1Lv1s9kHrjsaB83jbsccRMSPJQ1wJmfB/cQrJEFFXC/4ZYj0MVdxriCcaHiEsZdxe8ecAcPGBsuO9yKzMfnRT+Z8GUaoQfw2q9vIX+uTeEmRl5c43J3Hm5Kxo0ccG3Cr1NOOUVS7wr1vrMYCnKhHw/yg0+MLQvV8K671BdKMsL1IIJwslCF1CdVIcEMRzlZk9mJdrkGh4sTXYInuMBxo0o9/5Alru8MiPP1RPvwgCtGebzhwUTwABf3UIv2MGkAACAASURBVPCnP/uoRz1qNM5MByz16+MFL3iBpJ5fyAPXrAfDQQRhEiiG+zqvSrl+M17GwJri9+OPP35sHFKvo+gGekXaVPZRTx4EITN4mEU/2Ftcd9CRPMpjX8gEUdJkEGMGQPIuY2XskvSFL3xBUn9kw97IfNFVT8iCG561hl7gUof3HmjJXgzP65WvSpUqVapUqdJW0Uwgbbd4sWyxRLMMIBbT0JUYAiZAMSBhrC4Qtr+bSIP+sASxnkHtPgYIVAaK4adboJkwIK+N5by87GVeO8PChVdYt34dBVScQRcgasaRqFrqERvXj7DKeRb++hUWrFZQZ5ZLzRKo0qTHYCgZDdQ0jTZt2jSaDzJ1C5ngRRAhFjlIgTkPpezkqg+o1ZNoSH0wkQd5JS8TeR9zzDGS+jSQPkZkChJh7iA6DwjKZ0FN8Bw+EmDlwUtZipN3+cm83UtEEgtStsIjEHF6ttxLg9zxarEGM02sBx2CQDMNbAZrub6hk8jLvWdJXPkC9WfJUanXQQKb8ASwHwx5iuA3RTbYIwiEzCA5D7ri/7wDv2gTr4AH2KGTBASCQPHEgDodLefewPUsPofnXKsjGY/UywrkC1pmXeH58YIx6Dzjz9TCyIk1yLylycBGvEToM+Pw632ZmpZ24SuBhZ42F08c+nDllVfW0pyVKlWqVKlSpeXTTCBtJ6x3rDksM85iMv2i1FuYINC00LH2QDMgSKlHSVmwHuuRcQyV/sMCpH0s60w+4O3THj9BD1jNvANCkSav/ICKaCMTqfi8QPtY7CAvEPBQwhmsVdpIVIuMPIlDnkcjL+aHZT9UIICxDJ0XOjVNM+IBY3OPBOODP8iSM0euGXHdROqRL8gHOTCmvLrmcknPAGiGtuAPiEGavAIF0mHuIGxHjul1Qn95l/mCULwEJGeimaCFeeP58OtPXD8CycML9BB9QP+Ro/MHnaSNLAXpv6csmV+iRIqbSP36Z+0znyGi2AyyzCuUUq//8D3jYFg/jsg4c2UMjJc58w5tuYfnpJNOGhsjPGAc6I73h6zQO9Yh8qF9j7sA9dMeiWwYM94b5u3FOEhmkgl4jjvuOEl9ghT3SoFs0RW8EMgQryRtezwT3g32b+YHn5EfHj+p14NM05rJcdzrSbwU7a5du3bMg7K9accZSaVKlSpVqlRpKu3QSBvrZqg0Z6Z75KwMy8zPUXgni5vzOWgPi9TPVfNZzkiy/KYTFh/WKqgpi5r42SKWLu/QLpZ0JuLwc6lMgo/VCo9AmN4fli78YsygIsaIVe7FRrD2sejhHzxhrM6bRKaMLRPbODLO83b/LqmUolWrVo0sddCLo/Ms/0lZRc4AM+GD1CN/kOZCpVkz2lbqeQt/svgGz7oskRVjoF/Oj4n8xUsg9cgZRJ0JTED28MaT3oD6eJY28FgxRs4LpR61gk7gdSbT4PzVvQ/IG9TEWkPPaMs9M4li4UkW3nAPGeuU+bn+DtHc3NwoQjoL4Eg96soYD7wORIQ7qkT38jw19YL9YShSPxMK8UzeapAmCxLxO1H+rMtnP/vZo3dA1rSHLrH28PzwvaNY1gJ8hyecCbMPecGQLFrCGsw0psjUz+xpH+8GiBjPGDcQhmKF8Big+3yOzK+44orRO/DNddL/Bm1vqki7UqVKlSpVmhHaoZH2kHWTaSWx2LFesVodYYFKsFJBebyb9/38nIgxZOrEvJPoZx5Y2/kdEYtYx26VY1FiAeZ5bqa19DPNjLxmnh796m1LvRXplrrU85d5YxG7LDxKV+qRVCJ8v5/MO1jsmRaUnx6ljFWe1v4Qzc/P68EHHxzJEIToaUWzbCtnoHhlGJOff2KJJ3pFDnxPkQmPHmf8oBOQJ2fnWXzGnwVFMFbQa3pVpB7loRNZyAPkAYry6FrkAloCDXLHFx11WRIDwGecE8I/ZDCEgNEVdJRoZLwQeBKGSlxmrgR0kv49Sp05MvfF4iGkyYIXnu4zcwUkikY/hsrf8hn7UJalJabB70+DJpkzXgVkmHua1K9p9Ap5oFOZolSavMVBv/CSfv0OPJQpndmHkA8y9f0iU5zCC37iYUJnWGdSr3fsUXk+/YxnPEPSOB+RF3NnfvTH/N2rwrpxr8KORBVpV6pUqVKlSjNCOzTShhzFZrEN0CNWHp+7lYS1hUWGhZsRzFhjjmI42+NZUARWHsjLo2uxBLHiGDOolvn4uR1WOVYy88hSjKBCP59n/Jn5LIuP+Dt4GbBsM7qbsQ6VOmWM3G3EGod/eddY6uUEAgYBMc8sDuLfZZnChaiUMkIMtO8olvb4DFQMX0AgzgvmjR5ghWcUMV4G924QaQu/0Atkyr1WnzPtcT6XtwqGiqaAytFJ5g7P6Z/71d4fepseEHQInvntCGSF/PN8FR5krIOPH+9A3jcG3XqEM2sOufn6lHpZDBUmAZFOi4eYn5/X+vXrJ0q1useFvePoo4+W1HtL6JNzVb8/jxxA/bSPV4b5JGKVevQN/9FN9qGhGBD0GbnzbsapDMUIceYL35E3Y0Qufj7N3HMfZT3xPfop9eibZ9B39mTaz5LLUo+gie9AxrxDrgQneMCzmVkQXvm84JcXGcncG9uTKtKuVKlSpUqVZoRmAmm7ZQgCSMsJi2ooAhyrNMtAYkljZdK253UGDWXUNu9iTXp/fIZ1jJWWd1P9bBHUQvvMA+uVNvOeuPdN+4wN5JttSD2yZ2xYnpzzgpZowzOLgTroB1lkWdSh8qF8BsLLCHc/y8zMXouV5tywYcPo/cx/LfUoAnknEgQB+zvIgzmjI6A7EPHQnEFf6BCoBllzXjcUIZtRrvCAs0bPwAdyYy3AAzwtyAnk4DkM0CPGAopJZOFomfZBWLzLnV+8N/Tv/My7vOgF98XxzngEcK41+mdM6JKfu7IW4OM0pLRixQrttttuE3fkHTWjG5deeqmkXl+JUwCZupcGPud+kxH0eCj85gEyzZgPxoic/BYBOpo8pH32G9/fssYAawL+MT/m4nfXU39Zc5TOHPKM0R66AV+ZB/sQ59c+P9YttyEYMzcb2NM8LiZjaeB95in39cQ6BX3fd999E7E/25Mq0q5UqVKlSpVmhOof7UqVKlWqVGlGaCbc4064D3FhZABalnr0d9JtiFsHVwluFQ8I4TtcZbiLcbtlwQtp8loD7eHmT1eQ1LsHCSbBDZVJPXAnDRXP4DoDbjfGMZTEg3ksFESUxTTcPZrXtZgfY+VZDyaCj8ggS05mURVvf8hlmkRylUy/6oRbkHZwOWc5SneFIWdcf4wfV2cm7PGSsMgfnjJnXI3IeqikJLqZgYD079cSKdOYaSwp/YhLkH48MAhZUW4T1yPzQIfc7ZvXIEnmQUAVY2N+PlauyCEneI2MaZvAP38GFzTy49l0j0r9/sD4/epf0oYNG3T11VePjjPgsV8xZAzwFh6ybtETD77EzY5MPSWn8wBX8Jlnnjn6jqtwecWTowd0yI9WuA6WZUORMYGxXpgEneAIg/XIfsezPOcufHjMT9ZcrlM/BsxCO6QxZb70k0VWpP5ogjbQa+aXRW98zhnMyjvM04+1WEdDR4M7AlWkXalSpUqVKs0IzRzSzuAGLESsWFCsW6BYv3lZnsAmLFLQraPYoRSg0mRAlVtjiTix5jJVo3sDsGCx7rE4GVsmOXH0kmU9E5UNJSWhHSxQfmfsoBr47dYzn+U1kfQoOKLDYs+UjZnyFWTk42ZMXh50aD4bN24cjWEorShz4hmQIddZCPJyfmUhE+QCek5vhusJMspAHfofSviRJVjhO94T+ObyR+4ZxMbv6B965wF9rB/0C2SSyNTXDuuEdkFa6CrBRnzuAV18hlcIbwBrge8vuuii0TvJ6wxEI2jLk6skgp+WxnTNmjU69NBDR+9wtciTwuT1RuQE3+A5OiX1vMUrA2q86qqrJPUyvOCCCyT1iNvbZz+jRGomc/H9kMApAmAZG/2gOy7bLGvJ2DKQLz1x/ll6eCDWhF9Ly7KarA3mw3pjn3CUTvvIggRAmVzKA5dpl/XDVT1+Z4xDKWTRmWkBsNuDKtKuVKlSpUqVZoRmAmn7OWeiRiwxrEosJz9P5TusR9rIohxYan42hrWNJZYpPLGmhxAillqWWczkLj62pCyvl8UmpN4STLQOsqINt0CxWvOaGzyAZ1jTbi2D7EBQWOMgH7531Jnl9EADXDnKhBnSJKL3BAhD1DTNSD7w1j0gyJK5gWwYNzxwDwiIh2tbvIvcQXLoh6cx5ToYckEemfjD3wFF0l/ydiiNLWsAWeLV4BnXFWkckeZVSfpJr4CnMUVmyIX+QU3wPhPoSL3un3zyyZL6hBhZiMXXWab9RE6c7yILX0/8H130WIOk+fl53X///SMe0J6jPMaFPFgn/E5RDr/exvjwPKSXJJOS+PUmZMR3rPFMYOJJneALKBbUTP+gS/fSHHXUUZL6tXXKKadI6gtoZBwEHhJpshQrewTn0+yJIGKp133GhvchCwjxrusq8udKGfqd+5t7VfBMMDbGnB5N339THo997GMn1tD2pIq0K1WqVKlSpRmhmUDaQ2eyWO95fsxPRwZ5HojVBRLM82o/a8woZ8aC5Y017f1hbYNWQIxYy/Tn5+5Eg3KmiPXK5/QPYnCewAu8C7SRZUwdLRPFi6WZY+VZ+vEiA3kelMUE4J9b9PAHHoAKOO9LT4KPe+j8bohKKSN9AFU7YkuvBWNgriBhR4ZY9cwZmWWcBP14kh2QQBZH4EwRObmXIdOighr4mclQpL68IQgbvpGAA70HvfgZHf1xpsmZH2NDV52PpCCFx1ncBBQIHym36O8yJpAqqDwjxKUe8bCukAlR68zH9Ts9V9OKP2zevFl33HHHRIleZC5NIsP0puWNBKlHnKBw+IOOZDyOo2bWQSLPTH7k+wB9Z2Ei2ufs3OcFCmYNE0vAemXN8JyfaeNpox9QMSg9U+F6e7RDDAD6lx43TyVL7AnP4BGlX2TgHjnWC2M85JBDJPWR6Oiq7y3s6Yzx1ltvnZoG95GmirQrVapUqVKlGaGZQNpOoIgsHAJiGColiCWexRGwdPmesx+Pds1zuoxCpV+3xGiXsfKTc2TG7mfnEBY16AK0BlIA8XpkNu1hVWJZZ4pQJyzn9FhkeT369Xlj6fIM/AN9DqWMBL3AxyyTirw8Qpy+p0WN+7ObNm0azSNRtNTzFKQBMkEfMl5B6ufNWRj6kLcUQH+O8HIsvIOHgvNB9+wkwkKWpCBF1kceeeTY3KVeDpxpci6eaTM9whl9Av3lbYWhGArGggwZP2gGj096v6Ren9F9+Ios6M/Pd9FJxpTlUrN8rX/HGKfp0JYtW3T33XdPnMX6PnDCCSdI6lEYc8bzBRIfyoWQRV/87rE0GR8h9RHxuc8hyxNPPFFSr3dSH/XOT9ArMqZ9nxeExwNkm3ew0Wv38KCDFKJhDec9al8TeFIyDod1xH6Qt3OkXi7oE/qQnlPfq+A97V9zzTVjzzJm11H4xHdr1qwZi3PZ3rTjjKRSpUqVKlWqNJVmDml7BLQ0iWKxzDyKE8Iiw6pKy4zzIj/j5lyDfvPsd4iwEnknIxQzo5TUIwOsR6xU+uNzrFgfI3PnO9AMVjHjcQSc6JvfM7sR/HUUCo+xyuEfz4AO3XrNghvMl/axvP2+JFY588psSklbtmwZWe5pjUu9LJEDcuFMjM/9XC3vbyYSBhFx39hlCpKmHyx45p7Z4aT+nDhvHoCOGSOIT+oRNF4f5M7cmcPQ+TSoNe/4gjozi6AT/dEuHgX0I+MifF6cT2ZuAfeQQegz+sC8ssiFE54ozvn9dkfSTjvtpP322280BnTfZYmuMzfGja4MxangTcjykBBFU0DGfh6OTF03pF5eIHuPikcezIPxw2t0hlgHqddRvoO36Cq6m+OQep3BW4KHhbXMz6GbMfACHUG/03PqSDv3RIjfWd/EY0iTWQ4zkyY/8UpJ/dm430DwWJvtTRVpV6pUqVKlSjNC9Y92pUqVKlWqNCM0c+7xhQgXzFDBiEwCgssFt0oW4/D0hbihcL3gvsPNgmt6qJgFLqAshjDkasEtlckUmFemZfQrWJlWkvZxRQ5dZUoXFnPm2Uy56pQFPDKBAW6locQP8I/5csWIttwNm67SoSIpEIFojI12PIAqA/NwoeMaI0DI3fqZjIEx4ILLetse5HPqqadK6pOsEPxHm7j7XHcyZSLu3Qx4dJewu8qlXs95N+Xk7tEMeORYiTaZn+sB7lcCH3GToqPwJouCSD2fuMpI0BzEOIbqUiMDXJ5cJcO16u/gakb+flUpaW5uTqtXrx7tB7iTKbwh9foKD7M4RgYO+neZbCZrpMMflz08hf+sH55lrpdccsnoHY4EkCmBtRCBaZ54Cp1HV9BfxpqBqe7Cz+RUjJ80o0PJqtA93PKsBeRE+5laWur5yBEE+oVs2ROHUu6y9lIGQ1e5aJc1Njc3t0MVDalIu1KlSpUqVZoRmnmknSkBM9mBNJmCkp8El2C5YS37hX4ISxCkgOVFf0MJ57NcaAZZuPWWV7mwqLFmM1mIo1jGkMErWJNDCQQSbWLh0gbPwldHvfzfLVFpEsm5hZ0omd+x9HnXg+UY21ISG6xYsUJ77rnnCEVg7Q+VWc0kNARugbRc/lxvyqIspEDlc5Cpl5QEefBdJpDIEoBSrxs8A2/5HCTk8qBPklowfpAwKApd8qAixo/+gXwIcEJPXL8zsAr9og1kCIr261ZZ6jGTXpDcwwOs0H30CX2nfCO8cZ5kIZdMAOS0ceNG3XzzzSOdIQGMr89MaoJsKYfJtSdPu8kYQO7wnXfZl1jznhQEHhLgCDJFh1ivyFjq+cyaon3kxLu+FtlHWPeMn/SyiWqdMiESXi7Gxvx9DWbKXWQJX+mf+fq77CvIknUL39jzXb8zcDmDWeEVHj8fC+vogAMOGLzGur2oIu1KlSpVqlRpRmjmkXYSlqNf8cBaA7lhqXHmg7WfJQylSXSU13byOo/3g3XGeRRWHu/42QuoD+sea4/5YJnSj1/2zytkWRJyKI0pc8ZSh1+gGcaW5/H+HZYu56CgMS+0APEdfIR/WLOZKMGJd7ywRtKWLVv0/e9/fyJJi4+bucAnzv7gOe96mse8+kYbWObwGhTgZ9okvsiCJ5ma1M8JmT/9cJ6LToLK/PoQ6DU9SFl2EOQ1dM4P+gPp4FGAf454kEPOh3fRd3TKUQrP5rk7z7DeHOUyXniSpU25MuWU553umUqam5vT2rVrR3JgLH4OnmVdGR/v5PVOqZcd6wPvDONlzYPsQfpSr5u0z3f8Tps+L/az9AqwTvEGIB+pXwvIG7kgJ/YDrgB68Q/kwrN4WkDyQ1fx8pot/WcRnYzDkHoPGTzIxC/oAzol9XpArATf0T/8832CvuHb7bffXtOYVqpUqVKlSpWWTz9wSBsU6BYoFl+m88OSAjlg1XnEYibC4BnO2bDA/KwkC8dnxC+WnFt3eWaChZjJTXjOrXIs0Ewjyljpxz0IiY4z7WOmQPQI4Ey4QX9ZxtHRICgwkyowv6GkNcgBq3haBCflFRkn7fhNAMYLn+AH4x9KJIPlD5KmfWSI5Q6/XKa0w5k2CB5PBKjZI47hA2gIHoB4QPhDyYOQC2NBhzKRhCMREAjoBSTFWR9oaiiyGUK2yB29Y76+NpAhckEf0lswhNIg5MaYQfjusWCueD6mtbdixQrtuuuuoznDa5Cy1J+548Vgn0GW9O39HHHEEZJ6hAuiRofgYyYrknpespektxDZespOzoH5DH1GH0g76rcN0D34T7vIJ1PR+r6a5+GuV1K/xn2MObYsloLuIFPXHeSRsUHEFeRa9PZZx/TLuoJnvp4o8OJjzLPx7UkVaVeqVKlSpUozQj9wSBtk4OkrEw1jQSUq40xo6PwWix2LG4sUS9gjgDnXwrpLCx5k58gx02Pyk7YyatjRWd4ZZ2yJbt3izbShzIN3Mxrez9BpBzRI+5km08+BsIqzzCbvIJuh1K68Oy1pP3dtkT9eFEfazImzflAtc+cdR5W0B6LK9KLw68orr5wYU8YNEO2M3PN8X+rPIdFF0qRyLs7Yhu7643GhX9AEXhn0z+eXkb/wBn1DLn4TAJ6iXyCgLP7Bma3rEmgIRE9/mWfBPU+cxSMn9Jyx87ufJ2eEe95/d9q0aZNuv/32kfyf+9znTsyZ8/lMKwyfmKOvMeZGdD98Iaqe/pCtR3UjD+SPVwZ5MD+PVkcOWZgIuWS8itTrNx6X3H94h4hsL1RDf7nuUzfd+5B399FN+HrooYdKkr7yla9IGl/z8GDozNnb9P7hPdHw8CaLmQzlo4DHW7ZsmVra9ZGmirQrVapUqVKlGaEfOKSNZe3oJYt7gGawMjPq2i01/p/l5vgcC9TviGJh8x3nNPSHted3UbNUJVYelmlGvg9FAGNpggJ4B8vU71pmFjhQAGPCwh4qZJ8RoPSDxZtn9/4dvM5CC5mhTeqtX5Cql2tM2rJli9atWzfiCxa8n9/hGQC5MSe8FvTjVrVnj5J6xIX8sfbRKfeApLckC2yARB3RgejRN9BlnnUP5RJIBIoeZDSvF1xgfsgZRJJFIBxBwjeQFjoDrylqgd77zQrmldnA6I+x+g0E0BLtwROI+Xi5Wj4jktrvMyetWbNGBx100CgD2sc+9jFJ0lFHHTV6hv2ECPAsIML3nJFKkyVRMxPj8ccfL0k688wzJfUoU+q9VBmfwr3tzJQnTcY5sP/krQLfG1mjqb/pDcySpFIvS7wNRJjDc/ofymFBv3n3HoQ9FMeSRV/y5g5ten/EEbDWmHvefPA1SJ870jm2U0XalSpVqlSp0ozQDxzShhyJ5h27LJGHtZ85Z6XemgSRYi3n2Y8jxCxjiKWd+bz9DC4tS6xi2ucd+nHvARYmCGuhzGv+Dt6ALN8ImmW+jNlLDsKDjLzkGSxUt3jzLA7vALIArbklj/WbOdyHaOXKldp7770nzi79HfiUWZGQP/LwcafXAH4wJhAibToizTzb8AfUwvf+DmOAP6AW5JH5AqTJ81oi3ZkHNwDSuyL18kamzCfvuXuMCDwAFYP+iffIcqXuIWGsoFgQN20NlZGlv7xTy0/m5+sJzwFrYMgz4WO64oorRnsGMvc794w70RfjPPbYYyWNl3gE+RPvAA9ZA9wEAOX6HWjOWvnJ2JgPe4x7JOgPnUGGIF70z6O84Tt7A/PMmzTov9c8YB7I/bLLLht7Bz0bypnBuxkrgFcFD5Z7B0888URJfeY/9jt4TttDt1boB/2Cn3nDwtv1+KhppZgfaapIu1KlSpUqVZoRqn+0K1WqVKlSpRmhH1j3+FDauQwwyKAYyN2VmQQE9wqumKHrSLSPiw73DW4wXDXupqQfxpiJ+gmOyrKbUu/Soj+eYUy04YEqzINncYtm8gOulLjrMUtK4r4k2IfxeJAM7+Oqw9XJmHBpeRAYLqkM4FuImqaZcJl5cFIG8+HGYyyZLlPq5YyOwBfaov2hxCXwh/b4SfIH3K+euAb5k+ABdyHtElDj/cBndAZ3PPLIxCIeiJZu5Dz+yetx3h46Q2lMnoE3pOt0PYd/BAIRtMa7jMP1AJ7Av0xswnrzY4IMLvXUnUNUShnNB73Aze98yDXMmFhPPm7S2NI3c87UraxPHyNyyH3sggsuGBvjUIDdCSecMNY/Y2Pt+V4Fnziy4aoh8siAQddV+IWcDz744LG2cOEPFSqiXd5hTbKX+HEMxPFBloRFH4eKNyGfTOnL2Ljqhjvex8iz69atG7xiub2oIu1KlSpVqlRpRugHFmkPEVYwVjI/QXtYtR44gZWYFjWWG206qsw0nrSBRYi17kEWWLagMAJnaBfLOq+CSZOBE4wRq5jxOFpaKBAtCx8MJbsA0fAZQWRYyQTeff3rXx+9s1DBBtBSpiyVep4jl6UEg9AOaMIDg0DqXBnKwCD46Ggpr9OBGkG8yAk+eWnOLBebwT5Y+542FznAwwzYyyIUUq8zBDxxLQnK4DlHS8yDsWbKU+TmiI7AMoKSQIiZRhe9cwTMs8gU+bMmrrnmGkl9OUt/h37hNSgNlATi9/aZx1K8NCA50NfQGLKQCvJizyAITOp5y7voDoiX9UrCkvPOO2/0LkF8eAOZI54vgr98r+L/PMtYkQN65oFaIF70luBP1gL8w6PEnCTp/PPPl9Svo/RY0p/vOzyLFwp9zkBc9N7XPOuSMcJ7ZM1e6Z4y9Iv9LtE/Xg8vDpNBa7vuumsNRKtUqVKlSpUqLZ9+qJB2EtYT1h9ow4txYLWBKkAcoEsu73MWJPWWH1YxZzx5HurJRzI9ItY5qCXPyR29ZDnFPG+nP7eSGSNWf14Xo/30KPg7jD89CqANt3jTKvYzcqlHdH6WRT9DxTGSmqbRgw8+OHE+7cg90yxiZed5pfOW9kAimTCHc2lS1foVHJ4BucEX0MXJJ58sqU9oIvWomfM69CDTKPoZW55HZ+nC1AvXVTwR8IB2E7X4dST0GG+AewqkyZSrfqbOO6DmHBsJOjwpDrrP2HINDBWSQTeRz7QUuMRCMG7Wop+NMl4QJzJlbCQF8TXGuJAvOslP3sUT4t6sPMtGHqwPvFj+XBZqgfgdHXJZ0l56AWiXhC94QPwaXHoBswhIlhP2fthPMxlW7nd+xY71yprAEwIvGI/zJD1GUO53XgI0E1zVM+1KlSpVqlSp0lbRDzXSxorLVKR+XozVtlAqQiw5T4OXUYycofIsbTqiA8HzHZZ8IoWh8pGMNy14LE8+98QIGVnOmJlXJmxx5IMnYigZibftCS2wsLFo03Lld7eIHSX7fKZRtutWfpbmxKpH/lkeVZo8R8tUsVn8w3mR8QmgWXjBfEDpUo+SkSHIHd2hDfc+cIYJyiOa96lPfaqkydK0Hs1Ne5ma1lFGjjETzsAbUKifYUrj5/wk4GAMoKZMp+pn6LSfQi8q+AAAIABJREFUZRXhFTJyfWEMrKehVJrQ/Py8HnjggYm0vOiFNJkoBj1jHllCU5pMbsTvPJO3CDyNKbLiO/QBrxqR7R6fgCxJruOoWOr1wvc3ZEh78J3fiRN42tOeJkm6+OKLR+/m3Fm78DGLgfi82PtoI9eXzyvnl6lIuYGQBWSkyZtC6fFD1tPK/pZSpn7/SFNF2pUqVapUqdKM0A810sbKAoH5GTOEVYzVjZU3dLcSwtKk3TzjAb34+RefMQYsQc7ZQGt5fu3v5jkulu9Qej8sauaFdco7jAOL2M8tsYqx5LFwsWqxkh0NYrFnKtKMrHY0zdgygn+ImqbR5s2bRxYxYxgqcIDcMzI6U8X6ZwvFI8AXIk4dnWHVw4c8A+Rs23UIVML5OqiJ9kFn3OP2OSLfjKWgDfpz5INHh3Hzk/7hkY8xbzbwHXqWZ9mexhS0xDwYMzxCfu4VArGRvnKhojMeJ4Gs8zx8iEopWrFixUiv0Qf3FIHqGCd883gEaVx/mb8jW6lf25RqJcbAcwowF9Yl64S4CNLAXnTRRaN3QLzsM+gIYx1KB5x37TNtMfrA957OGK8Zc8ZTlV4736sWKpHK2NEV+OwR6ZmHgLHTPnwduqlC+8gY/ch0vT5+L55SkXalSpUqVapUadn0Q420ISz3vD8p9VZkoqbMmuPohfexGjn/xLrDEvY7ljwDOsriGyBurGdH6XmGDqrA0sdq90IZWTAeqzXLSYIs/byXQiEgEizSjMj0spYLlYnEOuanIyLQLGMYOueCiACmH9rxWAPQY6IXxoncHA2AUrOYDO8gH87VPMo7PRDwFCTAeFyWoBfuWvM7/dE+6Enq5U47PIu8ibo95ZRTJI3fJc77yyAS+mH+/hy6QL9ZEpRzSvjo7z7lKU+RNIma+cna8PlRWGOhsrEgSD+rB6mnTg6RZ9KTev4xVqlfl+gXz+SZrI+biGvGnVm+iJPhrNk9YelxyfaRoe9VIHWQ6NOf/nRJvZwym6PU71HIKAsgZUZGR+nshayj9Dqkp8zfz3LBWcQp82L4vIiRyFiNjDOSJsvE5tk2a9P5yH7mWSjz9sb2pIq0K1WqVKlSpRmh+ke7UqVKlSpVmhGq7nFNBqm4Kw0XEG4kAiPSreeur3TX8Q7uG9w67vrBXYR7inYJgMorEp7gPlOc5tUyXPzuNsogsqxdDTEvnx9BRLiRCNjJMXsACi403F4LudTdDYUbOa+uDdH8/Lzuv//+EW+zZrY0yQ9cc1kcxQPomBvjy0Ia9MfYXHdwqR500EFjc8MFjUz9ag6uVBJg4N7LVLguD9zfzCd1lGeRsbt9eRd+ZdBkHqNIfWAYuoL+wdcs/oL7V5oMjiQdJ1fbho5A4DnzgkeMiXXlMmc9ZYGaaZTveMGQTDKDDJE77xBcJk3WNYeYI2sY+XtSENrnO9zkJBIheA1eSJNpZXFXo9eMY6h2NDqPbDM9K7rjAYLsRcg3iw1lMKDU76PwGrc8PMk624zdn+WYiTFxLIQsPHgNuSyUZAde+TsZiLZp06bqHq9UqVKlSpUqLZ8q0h4gD17CKsX6SgSCBe+WGIgjA6mw+kCqHtSR12QyWIpx0JajQT7D0sxAJ8bqlnxey8oym6Ab2vZgIvrBegXJZVIVD3jJknhJQwkyMmnMULlVp1LKqB+sfEexBP7Ay0wsk2UIfVy8C39AOMgUZOCFB3jWE9N4m4lQpR5FwP9MZAI686tlyJC5gl5JUYqeMS9P2cjc6RcPwlVXXSWpR/rovdTzj/ZApCCvTE3pAWKZSITykegQCNKvW0HwFv5l4gyfF+2hM9O8NAuRjxuPBHKgzywk4zoPikU30CGuT5GwhuAyD0zNdLbIh4DRoeBM5E4AHHNPNOnIn70OvhMgSFAbOoSOOUrPtKmM8fDDD5fUX0fz64J4EFgbyJS9A94MJYSC5/CV+RKgxnp2XU3PDWstE7H4vNiLdyR07VSRdqVKlSpVqjQjVJG2Edaen8Hk1Ye8EgMNWXdYhiCdRNFu/WMF8ywWNf1iHYMg/IwuUw9iNXtSC+9X6s+KeCZLfsID5u/IB5TJnLNIB2jEUXWelWfKVSxffy6TnUxLYzo3N6fVq1ePnqVdv6qWiRVSliAFTyTDZ5kUgjPYLGHoCXroB6SRRRJ41mXJ+RxyAZFkwQhHdMgb1Ayyz0IRtOUpQpkH5SG5zkfyDtAavJKka6+9VlKPxpgn/YNKMxGJ1KOi1Hdkwzzd2+XvSz0izes6jpYyZW3q3xC598LnIfXrIz1SnKeDtN0bxDPMBR4jY5AqRYe80AfrDaTLd+wLXPlyPUAu6CR6cckll0iSTjrppIl5oWfMnX68pK3Pz5Eva4t50i/n+rQ1lCgHnc+YGvrJhClSLwP2MWSaHji8FNJ4eWB/Nr01vp+jR0NxNjsCVaRdqVKlSpUqzQhVpG3kCBvK9JVYjZzFgDKGkC+oFXSEZYoVS3SpE89i7YEiMhJ9KBlEpuPEIs2CJdLkWU+W0WPstIWFL/WoP4veM6Ys9+mUiTmy3KJbzTyzlKT+8/Pz2rBhw4hfQ+kJ8ww7y61mDILUIxksf+ScRQoY21DkKm1wXgzCAvH4OXime2Us8IKkKyQc8TENpamUelR28MEHSxr3PmTKTviFdwBd9UQ5yIo5wxtQNGPFY+E3HfDSJEqiTcZGxL3Un4Pn+SN8hWfTaJruzM3Naeeddx6MT4Hge5aHZPyZYEaaLODBXnLeeedJ6ktLgkg9RSgIHvm4p0Pq+ejn+OmN8++kHnX62TnEfpDfpb559HWWc4XHyDb3B6mXJTqTRWBoEw8XPJJ6PaZ4C7pKm7yDt0iajIdJ2fK7z4v5DHk1dwSqSLtSpUqVKlWaEapIexHCesOqzzuinAm6RQillYc1Tho+P2fL+7+gQM4NQYEgX0c+nB2CaHiW/rGe/bwVCzOLPGBVZpq/obKe+QzvgvS8gEPOMyPd8860jzH7HaKmabRp06YJ5JbFGvwzvBdZDtDvvsKzPLsERWCNg4RcprTDGXPeRaV0ppc7ZM5ZkIZ+QLOOykD0oBfQGZHHIFPu04JUpB6NEc2NnDOGw9FspqlF/iDGTFHrHiV0MQvEZKS1n9WiT3nXNiO3hxAkerZYac6FCllAoNQ8A2X86LrffqBN5nrppZdK6tcr/MPL4ciYftgrWNvoAzrFGbE0GbOBLDPXhHuf4C17U8ajgLA5H0enpMlStugFPGctePQ4suPd9ELSPvLyO/6sJ/YM1iDzpQ1Hxnnenbdw4IXzhGd2NIQNVaRdqVKlSpUqzQhVpL1EynOaRCJ+loXljNWNxc2zoCW3yrGoaRfUkpmJsOw9Wh0LN89fM9LY0RljxDrPAijMl8/dYsWSxmrmd8bkkb9Q3jffGppWXnFubk5r164d8W/oTDsjsPPu+BBiy4IJjIG5w5/MCiX1cs8yg2Qk4z6teyRAwZltDNTEux7pTDugJGRL/5yZ06bHM4BSEinCA8bs59J4f9CnzEOAroCMPfo7zwnxYMBP+ne5ZcY9UGEiO0fLQzESi9G0M0z4lOgZpAvKc29Q3jxAd2gL7wUy9jkTYU4GNiK/8cqwP/hNgPR8ZVbAofWTeSiQIWfZ3EgZujePTtJPnmkzDl9PedMAbwM6Ai+4w+6xG/9/e3fWa1talo3/3k21ULQB7IgvIohg0ZcggRAiYjTxwBMP/AJ+Br+Ah577DTw0BjQERPqugKIVgkLyP1FEmgqNNLtZ7wH5zXGta461qIJdVWv93+c6WXvOOcYznm48+77u9iy/C33eWz/vXvvZnKVhyGsvKhbTXlhYWFhYuCRY/2kvLCwsLCxcEiz1+OMEVVc7eaW6ulXb1EVUMx0+MnNcsEN7VJutvsyCEdTtnVqTOpjaShKHmeMUoe1wRXXneXspHameqKM6ycqeU5nxdchHJ+nfw3nq8ZOTk/npT396eM5e2I5nUZlSDXad7VThU8UxbbjGPjBv+p+qZypTY+560NTLqcJV5EGIHTWefrz3ve+dmZlXv/rVh3tc22lEuyiLObFfZmZe9apXzcymhmVK6TAaiUFyrObCnrHPpLHkLJUJLjpNqXm137WVJgPr0Q5v9hsVa4a6efe8A+c5osF5jkcdvuRaaT85oma/qXytqbFbD2aGThaS7RvTV77ylZk5riH+qU996nCP9r3/9iiVM1V6mjqcI+loOrM52ErCZF2orWe2ddWGue4iOulgZ6zexXZqtS/svzx3jMt+51jXIWd57nQYn73k3XDPeSrxK1eunBsy+GRjMe2FhYWFhYVLgsW0HyfaIcnfZEukYpImSZc0R6okvc5srFU7HDa6nCeJP5mkRB9nScuYUaYBJR2T2JP1z2wSPSaZoVMYIom2y2Fim5k21W8kXe1jTy359hjz3rNwcnJybkKWTgpDCu/yo5le1vyT/DuxB5ifTEKjfX2wD8z5XtpcoVfmpwtVcHxKVonRYnmYjedhJBhqaoWkuMSg9I1DnOQqe+FI5hhjNFf2oWQYqRXqRCn2hT76nPOISXt/jNN+5pCUDpD9nj4Wpv1YwGG0QyW9a8nW9QsDbo1BlyndS/vrXDBm93TRm/zO/n3FK14xM1sYlfnZ29/2kz3ZSY881zhnjrVzndKXM12mZ20NkrPSemmTVio1HNaw0/92uGq+T71Xtdtn5Xk4OTm5UKlMF9NeWFhYWFi4JFhM+xdES17JRDCrLlbQdtwMM8A0SN1sOx1K4vtkL2xLbFZt2yEdZ7rMttHpYzMg9q8sotEJMTqxPul2Ly2jOdFGh+TspRPsPu7hypUrc/fddx/a006ySu15dpcl3Xtu97dLs2It5i2Zj3u70IE1tebJfLAFzKqZJ9aUjAejM+9ddET7e8Vu2GL5MOgrho9F5/42B52Klg3XvdKmpsbFfrJX3dv7PDU/xp4JhfLaLj4xs71H1ilD8c7CeSVgsUf96rHvQQEPsB/89ZwuSzqzaTg6gQlNBb+YtPnqkzW0R8y/9z+1Adi3fWve7BVzcl7CpPZhMQ7vfGpA2MjtY3u2w/paIzOzaZn4ZHQSn8cSTmoPufe8M+Wx+Nk8FVhMe2FhYWFh4ZLgykXS1V+5cuV/ZubnZ/9f+H8dv3lycnKqgsLaOwuPEWvvLPwiONo3TxUu1H/aCwsLCwsLC2djqccXFhYWFhYuCdZ/2gsLCwsLC5cE6z/thYWFhYWFS4L1n/bCwsLCwsIlwYWK037mM5958oIXvOAofjHjJsXLig3kSNfZhdLBzj1iETsbl1hLn/dihT1P3Gffk/HA4gVl6hHvJyZQPGXGYBqjvnYbZxVvz9+6NF1nN8rn6Ys4YHPT93SO4Gy/Yx17TfKeziDVGcvMScYsdzv+fu1rX/tWe3Lef//9JxkXfqexl70sv98bc8ev+60zY52XJ928uGevH92HzrMMe32EztV93rjP2iP9ez937zdz1PO6h87/3PkI9troOfnqV796tHceeOCBk4x33nte79fO7Odc2Jvb7l/3u9+BmeN18LzzYpL95l3rDGWdwyD/3e16D88qRbs35h67Nvfm0W/OpM5Yt/du9Dx23gV/cx/oo+/6HIfz1nrmZzHnP/zhDy9EAvIL9Z/285///Pnbv/3bw4TaQJkMQMIGaRcV7PCfjlSHGZSvgIGCGZJpeFEljvCf68c+9rHDvS972ctmZkuU0IUBvCC5UTptZV9rU0hoMbP9ZyaZhXs7TaJx539u+m/epMKU3lKiArWY8zfoYgISc7zjHe+YmS3dZV6rXWOXTlXyg1w3c6DQhXFJqmD9Mj0n+E2Shr/+678+Cs951rOeNX/1V391dO+dgr3YdZUd2tYjk3iYF/d24RjIRDl9MPV/yPZW3qP9rn3uENOG5+eBr98OT2vms7/5PnVxlD4IJXux5pm8pv8T8E5IxGHfZ5pY1571Hvm8V+jFX9e87nWvO9o7z3ve8+Zv/uZvDvcbRwq51ttelJjHfjUH+Z+/RB7mq4V18+T91ebMdo5JRgISzVjLTHbiHn8lSHHtHgnqBDX9n7hEKV0bPMfTaUU9T18z4ZD79c0ZKPGLfSCJTdZidzZp157U1075m/d4byWVsib+ZvIgSOH67/7u745+f6qw1OMLCwsLCwuXBBeKad+6dWu+973vHRLdKxeIXSdITCRoafGwwGSiX//612dmk7awu9/+7d+emU0ixsTf8IY3HO4ltWKRJFGSIqlP+b28hiT4pS99aWa2ZPWk50wr2oyj1YYk3T1GR3LHpJULJLlTG6cKSjtS9GHymJBx+T6Lm7RaXBEF69UpV2dm/vIv/3JmZj796U/PzCb1m1/3JNvo0n7NOp4MkLZbBddmDHsrUx5ijc1Ie21TFdplNK1ds4pEl3Fs1WmrDVPl2Axbn13bpWhnNubUJRmtYad9TNZsLozDc8xfPgewJSxWX+2VLjqTz2wz0x5u3bo13/3ud4/McjRJOTYszrtkTyabBOusn52a09p6jzK1sOdp12/66MzK9ML6Yi5pvMybtpKJmu8u59uMu/uTz/Z+Gq+zw3qkNsC52Wuor5i1uaFJndm0Ws4+zFqffZ+mSuOzpt6RXNuZ0+9MF4Oa2TdhPVVYTHthYWFhYeGS4EIx7XvvvXde+tKXHmyXpJ+UDJX7e+ELXzgzm02ErVmi/ZTQtEMS8/lf//VfD8+d2aQ89tyZTeLDGtmUSZXs37QDCfe8/e1vn5mZr33ta6faSJt22/9IgiTRN77xjTOzbw/3nbErhUd6ZpdP5otBs6uBknXGbc7SyYvWgdT95S9/eWY26ZkPQTpyfO5znzvVx7e85S0zs7EOWo8vfOELh3swBn8fi7PSnUDaMknq7aBjXTCudqyZ2VhlM90uZpLs2Vr6DaPyec/JDOMx313IpR0F95yY2lEQI9lzNuu+tBMj7DHIdobzXG16D7KPbUNv5zL7PLU0PfZ27EqcnJycYlXWNPeb88b7QUtmfbo4TMK8e7e11XZp+3zmuNykfaWftHapPfNOa1fhGAy8bd7Znvn2nusTDZu5T60JJo1Zmy/veJcmzjmg/aQFUAzkrH2RfXE+G59zVT9y79AC2kPOIePpUqeXAYtpLywsLCwsXBKs/7QXFhYWFhYuCS6Uevzk5GRu3LhxULNQbWRMHbXUI488MjOb2oPaitOKe2c2dRC1NLUOFTq1uDbS8Y2DRMcxUglSFWetX6olfaPO4SjmuZ43M/Pggw/OzOZcQdWnr+1IQxU0s6m0OISory1cg/NXqt+ooznJvfjFLz7VFoc+96aD0Lvf/e6Z2eaJSlA4F/NGOm+85CUvmZlNTaldz6HaSxWr8ehT1lh+ImAcqeLUX/N/lkMaNWOqK/Vbe6mWnDmulZztcZzpMC5qw+wjFV+r2633nroXOj6+4449L9WixkrVaT/b796NvZAfY+6QLKrPduzL9rsvHZqVKs5Wh5+nHr927do84xnPOLy3npdqXSGS9ry1bSfDvVhr62GdXNPPSTMJdbv58RzPtZfSvEXF/PGPf3xmtnXy3K79nnCutglHP/ZMIO1851rmuT0HWGY9Y+4wLucd1Tfn1pnt/BR+ax+4tkPssn1qeOvnvDGv5zkqXjQspr2wsLCwsHBJcKGY9sxpSY5Dw2tf+9rDd5gviemzn/3szGyhBKQv987MvOlNb5qZY6caEjpGiDUnA+a89ZrXvGZmNvaHyXs+5jqzOYJohzRMEiSBJhP9yle+cuo77ZGSMSsSfzIt/SYtap8DynmJGDipkU5JpiReUnkye33EjkjSX/ziF0+1lQ6EJGzz12wQ67COM9vcc9xJCfqJwFmZkGa2vYI92WfGbp2S+dhnxmY9OBl2ZrSZbc60bx2aye05hmnvrIxre45oHXrV4Yr9juQc6Fs7X3XCob3kMR1K1Cw92aD7WzPRIVqpket+p6agcfv27fnBD35weLZ5ojGa2fZgO2ZJhqT/qU3RB4542OxXv/rVmdnYn3fLuzez7YNeO3upnbBmtvWgpXNu0kpaD9qtmWNHNH1tDYJzIkNbe5yebw6sS2ohvd++6/BRe9lZRluYferzE2vvRDEz2/roW+9dz71MWEx7YWFhYWHhkuDCMe2Tk5MDI2GjEVI0s0lqpGzMhvRIgkppEhtmEyU1a+MjH/nIzBynLJ3ZpGF9aAZKGs9wqle96lUzs9my2U8w4g9/+MMzs9nY81qSJ1szJvr6179+ZjYNA2l95jhhgDnB9LHbPbZBUtcGKVX7pNlM86dPbFfu/dSnPjUzG6PPBAakY2yDHwEpGVNJBknbQPrfC6d5IpDSN7aAvVh3c2BOOzxt5pjZ2G/28F5ayc41j4VhWD4nq9SHTryClfvrnrTV+g7D6XSWnad/5jjHfNvKrSUWt9fXTiLToT7Jzl1jXTqMq9PCzswRa+7c1onbt2/PT37yk8Oc27/J8rzn9oExek/4pOTewYZbi4SZGjP2nik7/db+OEJevVvOyJntffde0m5Zwz0man70u9MkO6s8LzVunbZU+x1GusfsteOzc7XD+fI8sC7tB+GcsDY0ftlH7ZiTJ+sseSKwmPbCwsLCwsIlwYVi2rdu3ZpHH330IDFJtJGMlJTFQ5pUh0X7nPYo9hPSHCm5C3uQVLNoBZZH8nRNX5t2QqxUX0j5pDzjS2kPAzXW97znPaf6Snrcs2U1o/J8f/Ux54S3OC0Ae5r2u6BIshn/Jn23FE4i1tbMpokglZsDvgfmL30DfNf24zuNrqCWttNmw12xDYvZY3ud1MT8eM6eVzeNRNuYO8FMekPrWxdjoBXopCd7hTDatuh57bU+s62vfdWJUfp5GXmg/WbPntdVoLL9LiBkD51X5auro52FW7duHdmP8x0wp95ZGrhOdpRs2bnzu7/7uzOzeUIbj/Nhb8xti/UuOx+8T7kPmvnau+zj3v9MdmMNaQM6nanxuDe1Z/rvO3vE9/ZWnnN9BoNxGYO9m1oa7XZ6WIzbuFLb5Z3Tf0m4pHruok6XAYtpLywsLCwsXBJcOKb9/e9//yiFXxYC8FuyuJmNPfzDP/zDzGwlJWc2CYw0xT5N4sVySagpTfquiyB0zGNK8p7nO97rDz/88MzsJ613De94fcLGSIqkzIxDZ/8mvXZf9+IyMXUSPcbdDJv0nMVNSP3Gh6X7TDrOVKukffeaI2VESdFpq2dTJP3vsdk7Ae0aY2okjL9jadtrfK8ucHtINxOwh5LFYob6ZO06BW8ykE552x7n7tWf9HDuwietOei6yjPbWraXcJeghPzs2i7r6POeLbNjybvohDFkGlPnxJ73e+PatWvz7Gc/+0hjlIy0Y8EVKLIv/J5zi43TkmnXeKTy1Eb2kdbAGOU5cD6Yx72iFn1mOCvMH5+emeMIEO11+VNIrQkfHay1/SK6oMzMcWSDazsV6p6/hP3rt46ttpdSk+Rcsy40FN6frqt9GbCY9sLCwsLCwiXBhWLa99xzz7z4xS8+SEOS4qc0RNLDVnlTYmjYWbIl9/C0JEGT+tjDMfH0XO0YaCAdt1ZgZvPeZNPCXnlRYgrp5cjDvcseknwx4rS3A8nZvPG+55GujWQixtos2XM7jjHZOrurOe4iA+Y5140kbw6wTWssTj01KJiP+UrmfidhXvQ3198eae/Wjts2vvQebraHvXSRgmQvfjM/rjH/NC3JzvXfc+whz2/bYrIz+8n4MBusKUuyNoxdu/ro3i5BOnPMzs25/bfXR3PbZTa7FGTaJTveN/d+48aNG/Pf//3fh/aMOb2erYv1N2/G0Rnsst8Yoj7xh+niLxmB0sVQaNOsU6/bzLb3PFdfzIF9kXunz1hz6R7veBewmZl5//vfPzPb+2/e7At7ODMZti27tXL6Y9zpK8Tu3u+IcRl/5ocA39GmdZGRzOtx0bGY9sLCwsLCwiXB+k97YWFhYWHhkuBCqcd/8pOfzNe+9rWDWz71aKrKqII/8YlPzMymJuqkHRwQZjYVDzUVVYm/VExUQFTRM5uThZAEv1EF+ZwqJyok/ea0QtXOGYsTVj6bCqiTHlARSyOYzj3URA899NCpuTFXVD/pWAPUVdT91HycZLSRNcapO/WNesoaUP9lLdyuX9tOKtpIxxf3GCvHnjsN49C3TD7ScE2bMSBVtObDPjZWKrkOr5k5dubq0C8qz1x/17SKW7v63M5sM9s7YW9QT3pn2pktn+1ee9bnVtOm+r9D5jrhz15q1w790541OK/OeoeW7eHq1atz3333HZnH8h5z6czoxCj6sLf+0E6Y0KGAM1uCJ+Yiv3WYZZqgeoyve93rZmZzvDX3qYbvtLnOTc+zd/bqaduLxuWz+etkNflvzzV/zkpnhvMmz2L3Gqd7rYU+p2m0Q/7c4znttHsZsJj2wsLCwsLCJcGFYtr33XffPPjggwenhFe84hUzc7qAh1SZHM5IUpwh9oL3JTfgENHJGjiOkSozbOONb3zjzGyObtixz3vaAFIkBtzMjTYgpWTtkY5JvPrIcULb6bClFB+G7xrSqudnKT2OOa7BYjmgSMuYbBmM1TX62kkvkmFZF2N3jYQTkqpwLJzZmApNwXmM6pdBO4al9G0fNePtUoWd2nNmm5fem+6xLsma7Yl2GuJk1qlKZ7Z91oy6Hbg6jGzmOLRQG80o08GqGZV2fd9MOx2D2mmoHbp6HvI3/TbX2K+2MsWm9TJv56WtvHXr1nzve987cqjK9ozRWaRPnf43E3vYy/rb2iXz8/nPf/7U55njsr5dWtT48nneXSFewsNoQjpR1Mw2P+519nFmtZ/3isPoAzbcTN/+z3nsUsNdklVCLefORz/60cO9zqjeB73v94obuccc+//DHF0mLKa9sLCwsLBwSXChmDaJl1SEXWLKMxvTaPtTl3hMuOfP//zPZ2bmc5/73MxsDFVKT9JeSpOYjgLsZ6Xhy5KSwqhoCtrWqO8k+5lN4jX2Lkrvs/DuqA3DAAAgAElEQVSxDH9ib29bI9sOtkSjMLOxVwVIsHT+BOYRw0gWgDkJ05LI5n3ve9/MbNJt2u70H8Nm5zdua52Mq0Oknugk/3sFVTzbnHaCD8wEg8w+dtiOz+bU/KSWBpvoJBfNbpMtnxV65V6/75XmtDcwxrPK16adEJOxZzqpjs/9/cw2j553ll1yL1EKdF+NL9loFww5L43p9evX5znPec65SXacEdqjtbMPOmXtzDbPbfPXLrZnH+z5KbRWoUMx8x7XsGFbf/O/F0KrPevsTMKSzYm+ptbTGSgczTXOB89JBu7s81szffubhmHPL0Z7ZxXRyT72+2JfeM+eKO3dE4nFtBcWFhYWFi4JLhTTht///d+fmc2Dea/wOgm3GVuXlpvZPMAxbKycfZqky06c6UXZPNyDXZK8SbcZnI/Rknh9JtW2p+TM5llOeiRBGx/pn/ScbMmzzYE2OmXkXh/ZlGkz3INhkoDTzstblB0aWyLpdunTmU3rIM2sxBVtp9pLjNBFNO4U2tabCXL6GjCm9pjVRl7fRTd87hKTyc5da32a4e/B2nRCltbe7Hlm2089t8bTyVBmNm2PfYW9tPf9XiEPLNk7557WQu2thXegPX73Uoh2spM9XwC4efPmfOc73zm0o4/J9vXPeWD/dvKbTH5kftpTGePlxW0N0hbbc2v9uziLcsIzm4avvbe9U7RzGYVhzPrmXTNvxmNu9zzBMW5nhXPPGZkaC3vCeaPPnmOejTvXTR+7WItzx7U5j8bs/wvviP9TWmN6GbCY9sLCwsLCwiXBhWPat2/fPpTdhLRHkVJJaD5jBthLFr4gjWpH+lCMgORG+sryeiQxkiZPSUyAxJ0sVt+ApEsCJEVmnHY/m0RNivT8thfObBJoe22Tos1N2k61Zw66nOdrXvOamdlKoKbtTB9J2p5jrvzNFJgf/OAHZ2aTsLEL0nmX7pzZioiYt7RV/TLYS5V5Fs66ppkpdpPe48Zm/fu57eGc13ZBg2ZN6bvRhRpof8xxM/y0/fZ7Y+/YH/qYduVmwfpmDuwL/cq9ajwYHYbahSsy4sK+dm2zaPttr3xsF23Zw5UrV+batWtH5UlT60P7Zk+y55sX70R6c7vHtdL7dinLjvXe+w26jGf+bk/otznWx70IDV7igBWLDLEPnAvO25ltr+iDcw+rZZfe84ehsei0uZ6/V2ykNW7WyRlszfPd0Bd7Ul+0v+cD1Rq4i4bFtBcWFhYWFi4JLhTTvnnz5nzrW986YgppWyJty/714Q9/eGY29so2nLalT37ykzOzMW7tYc28H0mOmRSfhKZP7S1MckybH5bgr/aavaRGwVibpfPIJB3vlQolpXYBAhI9j/BksZ6nbxiEdt/5znfOzGbnT1utsdIumN/2ME1vdWyIhE1i7+en7dbck3iTkf4yME+edZ69s9F2Wuvf8aAz2z5ru2oz72RYJH/7jRao918ykI6H1p72+zm5DzoOv+ON7aHUIJi39nA+y5Z+XvvmSPvGkMze+mNUzdb3ogrs7z0t01nQzl6mNetu/2Jwokr436RdnU3Xd+Zdu9hrv78z23vhvTF2WsKODJjZyndiuPZbl7TEuGeOfQi8w6I5vKeek1ne+PfoP9Zujjqnwcx2LnsOL3V97giLZOnOJn5L4Bxyz168vv3kfbJ39rJEXlSGDYtpLywsLCwsXBJcKKZ9cnIyP/3pTw9smfSXdhvSsMxoriVNkgzf9a53He4h3ZEASfOPPPLIzGwe1Jhx2uy0i3GSHjFDtujMUEbydC+pjjTp3mSvna2I1MzbmsRJwiepZn9J7iTRjmtMjQUG1VqB9uJO34B+Hmkf83744YdnZmP2qTUwJ1gYCfiVr3zlzBxnj5rZNCG8UTMW/k7gLIadfXCNflt/a2dd9uKLzY85xVY6JjX74VrPca177aVkdFird0PfOn7V98l8MC3Pa3t7e+hmX7oUqHv89d6lhsRzjBmTbBtj2rTd03Z370xnpZs59ifYY/3Z/n333Xe4Rn/Tpt2MF8v0/puDXH/M0G/eOfOCiYv5ToZn/J2zn/bK2DOPuHnXB+eB94gGLNmrdl2DtfpsTu2tzA/R2jnt915KraffzJ9x2lNn5SCf2faiPZIa0USe3/3edBQA5Fm8mPbCwsLCwsLCHcH6T3thYWFhYeGS4MKpx2/cuHFQs3JsSNUzFRP1jRJ21FYc0ziqzWxqG04PndaP+oZjWIZtUMnpy16SgZnTairJRTpcgzpJX9MJghqaSvNDH/rQqb616otDysyWipQ61l8qKM4jqaakIutQG+qrLnKRTjn63+Eg+kaFlip812jX81xrDFSFM1vxgA5z+UXRyUVaPU0V2GkzZ44LT1DBtfNLOghSi9pvVJsd7pZoB6ouWWpv5lr2undomb+el/vbOlD/er9a5Z7Oa9awyzV2AY82Icxs+6tLwrZjX4Zotaq4k9X4Ph3SOklPF9xI3HXXXfOrv/qrp1SxDevtPbeW1sfc5po6T4zFHulUzHsmCGcT0x3VvWu9g5m4xH52Vpkf76l1SnW174yHaU3f3MuBK9/Bfp+otO0h50GaOpi4jMNvnVTKc3PvdGpf7TPDnecAaQ2czZ0QKE0rntOhaxcFi2kvLCwsLCxcElwopn333XfP//k//+cguWGB6XBwVklJUpFrpf+c2SRciT04NmEMLf0nsEVSHEkNSybBpzQp/MNztUtCxDqTrXtOhzyQnknUHF/SKatDPPRNOthOa5ogWWP2YJ7dkwkZOKuYT89vRzGajWyPFMwBjbROu5JhYpiHe7MPjxXJ2Myp9joEp0OlZo6LfnQ6WcyqC4vk2Dqkx7iwiL3nNTvGjuy3ZJL2Uae6TJYys81tOrF1+Ja+dAhOalo6hat97hrP9TeZfZey9LcTmqQmoUPJnAv9/GSqXVTkvHSV0ph6jv7m+2JOvUvWBWOzLhluZO912GiHLpq3LFjjOa0ls3e7GFA+m7bKPeZFn9PpqkMvnWM0fxx9sdncU+aptRo+0yzmO2FcZ2kf9NXZsVfEx7jaSc64UzNrHP3/RicIyj3aZXEvGhbTXlhYWFhYuCS4UEybTbvTLaaUjM2RoKQCJUW+9rWvnZnNnjuzsVgM8Y1vfOPMHEurf/ZnfzYzM3//939/uNc1+kJSa9tmSpNnJcJoO2Ha3bWrj9IIvv/975+ZTSLGltLO8ra3ve3UnJAqu9hJ2lsxEDY60mvbJUnGf/AHf3C4lyRK+u4QHAwl08F2QgxszT00Jim1GzNmlSz8sWKvyIixtbTdNrO8tsNNjFH72spiDI0uHNFlMWeObZdnFfTIcLq8f2abL/Nvjvdsv67FsLAw71n7ImQ73Ufvadu6085r7NrvtJL6lozOb9bHHLftfi9VaRek2cOVK1fmrrvuOszFXgESz8Ie7QPj6NDAvEf4pjUzb+7tQiIzZycqoRmzHhmS2f4ObMvem07FOrPNs+fpG5+hTkWbmgTttX+Hfmg758Q66ANG7R5tOP/sv5ntbPI8bdBk0Eqkfbq1qfa371vTM7Pt4/RTukhYTHthYWFhYeGS4EIx7Zs3b843v/nNg2ck78uUDElV2B7GSYrFqlNSl6aUh3InRCEls4O/5S1vOdwrRae+kERf9KIXzcwmKaZU9sd//Mczs3k/kxClBiT9p+cnO7uiAuzib3jDG06Nj+QtgUnORbY3s0n6mE960JImzRO2RhIm8WJgH/3oRw/3ktylheXhiilgEMkGrZv2SezmAsvJVI40Bm3H+2WRts+Z43Kkydi6eADW0J7sbSef2ST/fl6XV00bo7X0nE5+AXu2RdfSVvR49C2TRxi7PmEpzWozEqIL0Wi/E8x0YqK8x1/vNja+V7bWvtV+J+/wNxmWeWx78h6uXLkyV69ePcyje9NHoxPXGJO53kuJ274M3iWfvXN7iXmcKxgwm7Pywp32Na/xHjpLvHPWX1KXmeN0ocbpHp/5rzhLZ7Z9rT3nW7//e8lVulys89N+oFnKtKnaETnjPDBufU37tP9LMHZt+Nze6zPHqX0vGhbTXlhYWFhYuCS4UEz7+vXr87znPe8gEfLUTmbQMZpswJgvD+O0o5HWSN3Yw6c//emZ2exEpK9kiGzm2CUGzA6l7WRCpEi/kRpf97rXzcwm8WYfJfEnJRsHtk76I4mmrce4SJX6Snrs1JQzGzPoVKcYuLk3R2nnxURoIdLOlX1Nj3rfSR1rvdjF9go76L/xYQ6/LNo+jJEaezK2s+41tvZtSGbQsaf27Hml/7SHzboWszIXuR7NqNu22B7OmR+gNQdtc9Rm2ur3SnxmG56HJe4VN2lNT3uxJ2M1Zn0yXnvKnKWWpsuF7hWGADZtz/ZO5D4xFjkfrLO52Cv12N7a9ow975xhv83UmsYvj4H577S5+Y6Zh/b8ZpvvMsMzx6l1u7gMDYs1SE2S/WVOOnrEOZRRMl1ExDzSGDjX9Cs1mPa8NowDezaGvXPOPrdn2jM8IwXa1+WiYTHthYWFhYWFS4ILx7Sf+9znHlgmCSqlbhISCdNnEimm8Pa3v/1wD3bXHtLuJVmTfNNLmTTHboJVkkDZVXikz2ySZRfHYLdmd0/bKQmXXYsUi53L/OY60u3MxvrN18c//vGZ2SRtc5IswLO7NCLJ1xroR9qJPJunPvubOWoGNLP5HmAKNCR7DBU6djcjAu4E9M+8mZO03zbjPCt2swuuzGzMpuPBuzhC2rwxkM4dYE73bL6YnPdEH/ka8JT1ezLfzsDWvg0da57Q79wbM8clQvd+M05r0DbhvYxooP/6tsf8m7mnX0zjxo0b8z//8z8HprgXT91ZFNvb3bhynjpqo736vY98aVJTQDOg3/ri/KEJ+8xnPnO4h89O7+eev2SSru0oCe+jddL39E8QF+0aY+/zL1lsx45j1tay38HcQ2dlXOxCLHnu+E0ftK+ve2vdGpeLhsW0FxYWFhYWLgnWf9oLCwsLCwuXBBdKPX5ycjK3b98+SjmYDkhUzFS/nRLSveptz2zqKKok9wpZogqkFk9VGnUdtVE7NkgVmo4uGcKTffu93/u9mdmcK9IhREiFcAaqnq4l3cnxZzb1m/aosKjf9I2z28ymru6av1Tf1FPmIh1ChHhQV3e6Vur5TBZB3faKV7zi1PM5Ae6pUvXXuO60uqrVd9Y6Q1Q64Uo7zFGz6X+uvT3TSUf691SLdtEP6jtr2TWsE55D/Wld7D99SxW/sVNpmoOek0zMox3Po3Jsx7R2iJvZnIXc2ylkOVylCpfqtsPSwL35fSewSZVpQz3tHvteutd22KSy1Yfc895V+5ijWafopFrPM4RK2zg6hav3NNXV7rd/+6ywZ5x/eY2xOyvtVepl65bmn7NqvLepL9NQm1vttrnE+rfzZH7nLPEc95jf/P+iQzOp9M0jB8PzioJcu3bt3P3zZGMx7YWFhYWFhUuCC8e0f/rTnx4VyUiWJ7Sqk8aT6jBTThkzMx/4wAdmZnNccK0kK6RafzP0gmSNJWM8XcYxHVCwlpZaO3zmzW9+8+EeoVVYSadw7QQpf/Inf3K491/+5V9mZpO6P//5z596nr974RMcWiSPMS5/O2XkzLGzkL51isBkHeatk4RgHeZ3L5StWeCdQrNmeyrDWjrZQ7Nl95qfdKDSHrbU4WHtfJPXQBf92AuJauexZtzW0udkFVhLO9p1mGBqv8yB53mfeu9gXskg/dahS10qNjVJ/Q502J31yrkzJ97L1n4lbt++fSr8cs8BtjV5rf3xbKGMeQ+G2O9Up8lMhzHvUCeHkVQJU03nUu1ith022OU+8zdaxy6J2SmYk2lbd0lVnHf2kPMotWj2Ge2D9TdH9ornp3bQGnmfOtkOp90sFtXlYc1r77s8v9tJ8tatW6e0YU81FtNeWFhYWFi4JLhQTPvatWvzjGc84yBtkVqTGbTkxG5H2pOoIG1+pMguguFeyQhIihnyJbxACBQbDBs0iTfDhEjHpFPPI5nq23ve857DPaR7kmDbePSDFP3BD37wcC+71Fn3dtrJfJ52myW9+tWvPjXuZIMkXYlnsGVhXJ6XtlO2/w9/+MMzs9md9IN2IxmddfBs9qg7hWat9kfaRpu9tt3WZ9fthUbZs81AsbR8Hi1TF2rosqLJKjudaDM82oIOc8nndZrOLr6RGgbz1oVKzJ/n6mvawzuZh+f5vn0EZrb3pxNjdGGS7LM1Na7U+jQkV4EuQDGz+ZQYYxedwZJzjxq/fpkH68M3pDUWM8fpkr2ntIPen3xfWrOB6bYmLFOfdnigz70eHTKVz3Pu0KJJdepsPC+Nrbkwfz7TsqYGxLr0/rO/PTf3Zdv+nfX2RSd3SmS62fM0NU82FtNeWFhYWFi4JLhQTPvWrVvz/e9//yAJkpLSk5T0wwv5rOD5ZNq+I7VhcFgkaRVbTztKFysgTX72s5+dmU3KTFbZ6fw6kT3JMNlLew2zyX/oQx+amU2y9zwahZnNNma+jAf7Jy1nec33vve9p/rIVobJ66s22ItmjsuTtpcwhp+MzvNoN/TZXHUq2ZnNNqX/ewlYfhm057K/ZyVQmdmYQBe6sGfTDurf+m8fW8OOfJg5TvzThRz2yisCNtBpdLWF6SXzbY9sz29/iNyr1rntuTQsGNGeV7k5aYbtXuPNd/4sltsahj1/Atjztm+4BlNL73FrZu68Y+bP37R9the6/aUtfTSf+TxjwQw72Q7tWjJE/TeH+tRagT2NRCeqac3bXplV5yTtgr80CM6O9B6nwcOsseN+V/ye75N3zJjNr3PcPkktDU2FuZHq2VnZ/hk55kztu8fEnyospr2wsLCwsHBJcKGY9szPJFVsSwxdelVicV32EgMm9ft9ZrP/8B4nTXb6RUwU48722YlIXJgnr+tkBiRA0hwJkeRpPMlASM4tCZLcMVTSZCbhJ51iYX/6p386M8f243e/+92He0ignqcv+k6T8Bd/8RczM/Oxj33scC+pm4RrTl7zmtfMzBZrnvGSnqP/1kJ61j17Mqn84YcfnpnN5+BOwfrr/14cc9uHsZS2r+0VATGnJHZ7pL1ekxW6tr13Yc97vMtptj0ai+iiENkXe8gexTZbszBz2rs+2++4XSwxbbX6ijF2Cc28Ftg39bFt9fqYDKu1asmkGuK0teMdyLnvtKLmWt+My5k1s61RR5i0VsN7RHs4s2mcPA8Lb8/p1NJ03gHnQbNm6zOzvQPWw7ljvPrMryB9A/iymAtnmHtoyvIckNuhfZJaw6PvWUbUudypSAFrzvepyxb76/8R+yLPnTsdpXKnsZj2wsLCwsLCJcGFY9q3b98+2EpIfS95yUsOv5PyZfUhkZLgSNYZp00C85tsaZgAKZPUl56C7iVN/vM///PMbNIYSTDZDQn0DW94w8xsXtWeQ1rNOE1MlL24E/e7Vn9Sen3lK195am7EfDfDT6ZK0tUuyZokjxH/4z/+48ycZmdYMjs4FqBsKek9S3ZiDFi452C17F5pe/RM7Wf85Z0A5mueuixh9g9bao/VzkaX0n/HXNMGYZVdljLv7+xWzazSA9jeM++u0TfMa88D1jXGZ296XhZ7AP3Xnrlwj33o+xyf98j4sCJzpR+5D4y1NQpt798rhGItf15Gq5OTkwPrMuZk5/YyJq3fGBt7bt7jmeZYG1ik88h7hAVm+11sxnmDdaavgfnWf/u7c1qkjbk1Km0vdg54Tt7bRWacC85GGsWMrLG/urxqs1vznJqrjs8/K6tinhOd5c4adLGbvXKc7rn//vuPNF5PJRbTXlhYWFhYuCRY/2kvLCwsLCxcElwczj8/U9E8+uijB/U4tV+qK6laOEZwqKJ2oaZMlRw1HocPqo63ve1tM7MlLnBdpgaknqZOoZanTqEWy3rank1dLEXnRz/60cM4Z06rOKnSpDb1mwQs1Of6qu1sj/qb2ojajcouVU3G4552UqJepNpPMFdI9NChGFR6WfPb3EpKo//WmNoqncA8m1p5r6jILwPtUfcaR6rKup60z0wrVGh7RUGoJY3ROnQBj1SLeg61nb5JDtGq4fy3NXQNdSlV814f7dVUYWYb+pjqZe8aNS+1uPGaP/dkGJRnU3F2LfAOMcr2rFc7iu09R7vGft7euXr16jz96U8/zDV1dr6f/u3980zr1WrfnI+um64v9rd1ylBRTl3mwXisUzukJair+3nmNp0KjYtJz7XOOfu8U+LObGdj18jWd/txr9CP52ifOtx4nUv6lc8zn+a8i7mkg7F5cxY5S5yRxpWhbOC3H/3oR0fphJ9KLKa9sLCwsLBwSXChmPbdd989v/Zrv3ZgcKTZdNgSEtLFMTh1kNSSOZD8MnRsZuZ973vfzGzSGOe1LGqBAZDupEQVTkXSzVSrHciviAnpUd8y9ILEzklOKBSpkQMIKTnD0kjFWABmj+GRGNO5hyOQ/uvTO97xjpnZ5hU4mcxspTcVG+lQKfOdEq/nkY71DdvgTCLZwszGPDiWcPq5U2gnq70wqw4LwxA6gc6ehofkb227nOde8hF7vkOtOuVpOj76LpnhzLYu1t8aZ1iV/e05tEzat0f3nPM8zx5ybxe9SZhzc9Nz4HMySOt+FnNsh7uZ4wQj5zkS3bx5c771rW8d5stezz7QkjhDrH9q5WZOp9DUXxov+9gYPQ+bTCc275b2vf/Gox/J7N3fa9dlLrOAizFq195w5mLRtGt5FmtH+9qg0WnHwZntbGjnRe+9c1xfM9mSEFDX0ox0ueRcA3PrnfP8LoySaM3BKs25sLCwsLCw8AvhQjHtW7dunUoZRxpLu2oXXCfFtmSdbv9YOdshSSoLg8wchyzNbKFkIK0oSRh7yRSEpMdOjEACNYZkjuzdpMSHHnpoZjZpkoRLqkzm22krXesvJp7sjA2JpC4hCyk2GePM6fnEsLoQCrs0TUUyFWugXXPv3r3Sf74zJ+elF/1F0GEnJOtcF7auZg1YRieu2Eu7aB4wRM/1vCz6gIFiGmfZljN8yzx1yFWHPe2VqfQc9+iLNo1/L+GMds1FjiPbTjZoTrTR9njI/YdJdwlVe6VTACceS/pJBUPsM+yMpmzmOBWopEodxpepdq2vsfXcYs/emzxDnEVYLF8QfcP0c8zOFdcIC9UG7dxeGJVrukSmd4HmLUMasdY+73zfIW4z2/vuHtpBWkhzZG1pDWdmPve5z83McXER2jtncbLnTrVMI9p+JokusLJKcy4sLCwsLCz8QrhwTPvRRx89Kji/V6yAxMcrkNTKmzxtjn4jFZMiu/AA6TmlfJIn6T6L3Gd/Upr0HXaq//pKIma3ntmkVIz0k5/85MxskmKX+UttgD5KXILNYNPKXmYKQiwIG/+nf/qnmdlsy+nRnP3LPphjTAI7kI4xEzG4BgugwVDeU6pSWoGZbT20l4Uu7iSaoSXjsQcxaPPWJSz30ph2+1iaa9qOO7NpFZph25Pt3T+z7S/7wP7qZDHWIO27nfrSPb3vk2m0pzdG1cy3C4rMbGvY82k/93MT3nl/W4ORbL0ZfacsTly9enXuv//+w7rv+ZyANeyzxPOyD8bmvW8PdnOAZWYJyy6J673xuYsBzWys1TpI5ayv5j77QZtg3q1Z+zg4f9JXyFjNExZrX5ibveifLppiv/Mm7zTHM8f+Cf46Z4wv95v3yfqbv69+9aunnrOXcCbt6RcJi2kvLCwsLCxcElwopn316tW59957D5Jhp1ac2SSiZjYdu5lSaxfU6HhPthKSb6bf7EIkWCuW7vuUyjFQzNdzsMj2aJzZJE6SJQlYcfpO0ceWP3Nsf8YYzI3xpG2x43K173k5B9m/mU0CtQbseWxopNgsnuDZriG5Y7LmIr1TOzZ5L5byTqBLc6Zd2nf2VXswG6N9kKwZe+k92mU3U5PUbLgLlGABGQnQRT8wLeyv343cB/axdjutpGsz8qJt48aRXrvZRmof2rO8Ixz0OeekvfB7vXy/5xtgrru4ROLk5OTU87x7yb7YdrWjfWP3OdlZawWx106tSaOU2pOOfdcn13Z60ZltDmnLuhRr+7zMbD4sfmutkPY9L7VQ/FL01XPsP2divk/G4TvzapzYeafKndlYv/axZHPufM+11kfnakeB7KVGfqLOmTuFxbQXFhYWFhYuCS4U075y5crcc889hyxjpNgsjkFCYj8hqZHQOkvXzCaJtU2JRyapj9TPNjRzXMid5KaPpL2Ukj0PGya5uafLPM5sHpckTFJ52pLz95ResRbPI/mSIrv84cxWWhQrPqt0IWk5pXOSfHuYNoNIKdncd0Yvc+XeXGtSvTj3JypW0rP3ihe0tzY2h1V0oYG0nWIpHZvcduNkop2Vrxnwnpd6x5t37L02XZf7zrXW35xb970iI/ZR5z3ozFR7pUK9C+0N3yVJE+agr+3sabkWXfb05+2dK1euHJ7jbzJt7yEtmT1vvc1bzknHs7PXgv7bJ+lr0OU8eX53HHWOy7z7rTUwXe53ZluH1kIan/HQRibTblbeEQF7seSdK8D7ZLzmaq9sLT8bfXBm8gmwbnmWtT+Bdvfeo8uCxbQXFhYWFhYuCS4U07558+Z8+9vfPrBZ0tCe9C0/OWmLbUbGsszNzZZM8sdwsHLt78Wxksy0257tex6LPMwxUZKf9kmE2ceWbEn5yXATxj1zbKM3PnYqbaWErXwnBsGGTZo1vr3c4zQRmERrDvwl+eeYO992e0VnvnJza04eS8ztL4K2kSZb6r1nDrucZ+eXnjleD/cac+fHntn2ir40O3dP9hGTsR7t8W0t97zVOzc35tjMJNFZ4rTbmgpsKplWs/223e6x5taEuabbyHewveHb7yNx9erVedrTnnZmlMfMcVy+sdE6ffaznz31fY6hY92tofdyLy96l9dse/7ePqCdMR+dAa2Z98zGsNsHwPuK4fuc9l5jp/Vs3yGfU4Ogv+aaD03bp/Unc/wZvvoAACAASURBVGlo19w4Mzv2OiOHOuJkbz9fNlz+ESwsLCwsLPw/gvWf9sLCwsLCwiXBhVKPP+1pT5uHHnpoPvOZz8zMcajEzKY+oeagGnnLW94yM5sqJtWaHECo8/ylqqF+e+SRR2Zm5pWvfOXhXipsahaOFNTzVGipAhLq5RqqJX2m8s5UpPpL9UzN1qFt1EXpEEJN5LsOWeHclQlTOgyMyqlDwV784hefmoeZTe2epetmjgsH7DlltXqc6tb4MmyHmss9T3QqwVYR5r/bhNJlAO2DTLLTaT2pVs2TfZfjoiamhrRnXNvpRfOedszyPZWq/bGnjrVHjavV2KmubnV7hz+5xzhTNd1OV63y9n3PXV6rb63ST6eidoY7b+/cunVrvvvd7x7eCfemQ5M93ylTveudsGlmM5NZB/1zbYeLZWir94MK2r3W0HjSTNYFY7Rh3tyb5hi/OTM4r3K4cw5Zt0zT2qY7Z7G9xGQggdLM5vhqTpxd9pdxdqrame287qRBbUpKlbg+dTKa80pt7pWEvkhYTHthYWFhYeGS4EIx7R/84AfzkY985CBxYohZhpKERNoizWIeSlu+9rWvPboHYxdoTyIk1b3+9a+fmY1xz2ySH9aM6ZPcOlh/ZmPQQhGEepEE21FnZmNqmLakHZxLSIzGmUyrw6g8R/pPITpZcpQUrn1/tdWJDJI1k7ZJ5V2+kUScz+Mo6BqJU4wDe0rpHdtq7coTBfsg2VI7yumnue75ygQj2BBNQSdo2RtPswZ71r3mK53y2vHorJArfc4wmnYAaybZpRuzvXas6rA4+zyZHZxVmlMfMzyxS7JiUp2QI0Pf9KXTWO7hrrvuml/5lV85rKH1SU0YRovN0jx5x7ugx8zmZGVsHRLZ79ZesRnasnZiNb50lqPlsWdbw6fNTADjXNHHs5Kr7BX/6DAt4zAHzjDn38y2ltqxN5wZxuNzvoucYo2nHVRbozSz7cVm2r0nU5vb5VYvGhbTXlhYWFhYuCS4UEz72rVr88ADDxwxhbe+9a2Ha97znvfMzJbOj7RFusSIU+IlVbFtd/pIkiAJbi/ZRRehb/thglROclZerst8ZmjZxz/+8ZmZeelLXzozWzhaJyHo5Bczx3ZoEjCNAbak7Wynw3JI2trAllN6VYgArAGJu21pM5sk63nWD5vZs2ViUMqgSvBwp2Ed9jQgHSbTrBawp+x/26x7X/fnmY2t2JudjML65PPbxtupTq2DPZMsw7g6pKwLOSQL7OIeHbZlL+2taWsoOulJFyHJ/usDTRxGtBfKdlb61z3cvn17fvKTnxz8Rbx77K8z2x7UP3ZafcD+035PU4hV6os5EIraoVoz2/uHybcWDTJ8y7Pth05Y4wzbS8xDa2ZdaNNci+VmOFVrZewdfXIepF3aPc4Vv9kzNHCdYGtmO9vtM+tjrprFzxz7MqQGJ3HR2XViMe2FhYWFhYVLggvHtJ/73OcelY1Mz+W3ve1tM7PZpTESrGwvnSAGgtW5pj1ZOxH9zLEERprD/rFZXp4zG6vUb/auTjeqzzObtOg79mi2YNjzBG8Jswt4tIQ/s3mFk1YxOQyHpG1Osq+AzZCs2cq0sZeWEXO0Bt1u2uqxG/OYNvI7iU6ZmP4JzSYwHaymS/6l1sO9HbWA8XTaz7zGHGJwnnOe16v97Bo2RePBjJN1+q295K1Pe6LPbHuv2bj11uaePbyv6RSye4yyy3R6Xtts99Lmtrf/WTg5OTm8PxhdzjUtWXs799mRzxEFYx6cSf7aKz4nK6QV8V2npvUu5H7rkpiZ6CfbyD7Svrk2NZQzx9qTTO2q3x2J0p72+Tx9MD730k4qyGQsNA0z2znQaXutgfMn97f/Q9qW3T4beziv3O5TicW0FxYWFhYWLgkuFNO+66675gUveMHB9kwKYvuZ2WL/oFnEq1/96pnZT4fJToIpkKD8Thoj7c3M/OEf/uHMnF3gnS0opTsMx7U9Hv1IqZb0qN1OpYj56Fsyex7nPOl5rbaWwPczm52xNRUk9/bMzRhQfaFRMJ9td017m3tca47aVp+sioTeHtV3Gm3HTztrx+F36kzSeHs0z2yaj7bJtmd4om187rVOHSOd1/RvxtPRE2ljxBy7nGJ75CaLbabjty7CsMdimr10yUzv8d74OnVsx9HuxdW2pmQPJycnc/PmzaOyqKkFal8Cc9olTDPtJibaMcnmxfM6Xe/Mxmhp/ewl9nxnSo6ry5oaO+brnjw7zLe/0jX3e5oRPOAafTMe+8Aap4+IPWgOzKN5bT+M1LLad56nXc/F2vdSPzdbfiw5Hy4aw4bFtBcWFhYWFi4JLhTT/tGPfjSf//znD0wEe03JqW1JJEESPBabWXFauiPxYpXuIVklk+Dl3IwEa+XtmFI5+yPJljROIiQhprTnHt/t2UgT7b08s0mg7NXuxZ5yXKRSzF2fjMN8tvSeMBf62kVcktl30XvjxI6sKzv2zCZlYwzpMX8nQdrvrFwz++UlZzaG43vzmdK59T6ryIP5S4/jLlpjX7hGW3lPF2jpfW7uO0442zFm7Mm6uycZXbPMZtjY0p49WbvG15Ec+rbXR9d2Wc/2HZg5Xo+9/QvXr1+fZz3rWYf50v/cb7QYnV3Ms2UU24uft7fbht1Fc3JNMerWQPmM0efZ6NneIc/zPto7tIMz2xph451Lor26MwLGmdH7W1/NeXqrO1/49bBDOzuMx3NTG2X9ebDru3OWNjTXoAs7/f8Bi2kvLCwsLCxcEqz/tBcWFhYWFi4JLpR6/MqVK3PPPfcc1CuSHLzpTW86XENlKlShnT32EvdTm1DNUUN1KlKqFOFWM8ep86h8qFuohiRQmdnUNdqjYhd6pY10POF4RkVH7da1eKlL9xxDjL1VndR9qWqSIMWcuIYajCqKCjedl4yLCtJ4heF1mEj2XwhHqwypInPdfGfePOdOo0OUUpXa+4oa0R7yuz7mmKnv/EZ92ClD07Sy52iWOE/l3E5dxtGmlz31/1lpPveSq3Rhik4S031P1br5sb+YwIy7zQJ57VmpJ/2e6uUOzTvP8ejGjRvzjW9847Df9MW5MbOpv62l98Gz7SHXzWzr4Z2WHKj3kHMgE394D8F70ili90Jb9du1rmEKy/XTf06x5sBfe9N595KXvORwL1V9h0/53vjTOdNvxmM//Md//Mepa/ecT9tprs9Kz0uT4p1Qiz/jGc845Yj5VGMx7YWFhYWFhUuCC8W0T05O5sc//vFBclIiM6UlJTg5MEgOgoWRBDP8g/TGySGl4ZktUQGmkI4apEjtdyJ70l6GiQGWjpF2ubm9kqMk0W7f52ZTeQ3puBMkGEN+rx3PyzSle8jnWg/rZK59j01nqAfpn5SsL9aCg0syDGEv5i8LD9xJGFuXv8zfmq12Kk/YS1xyVpiTNd0rQ6n9ZgrmPJkvZqv9TkaS186cZr5dIIIDWIdxJVNthzdt7JVXbbRTWTNg+zCZTTvjdcEN71GOs8Ps9tINZ59+4zd+46Dtsm7pDEfr51nYsrBKz8vUp66l8TBv9nWnWk3WbF+ZU++2e9thdea4ME3PF4ad+6P7YB90YpQuEjOzzX9rdFzbhT1mjkO8vAvm3Hw6kzMlKc1hryUnNlrYXyRUK7U0/b5873vfu1DhX4tpLywsLCwsXBJcKKY98zPpjHRHokobRUtqJNAO6UiGIgRKUoF3vvOdMzPz9re/fWZmPvGJT8zMxvq+/OUvH93bDICkizFmcXjSdifdF8aBOWZKwJZkzUEX7mD7ycT9pFF/9Q3rS3s0kBy1k/a7hPFmecQuvNLhG/qYBUo8x9wI1aP92Au3wjb0PyX2OwlzvZfaEPNo1mKuu095b4d0WeMuR5h2cCzInuliJtrMebI3mxU3E9b3vLfTovqcfZo5rbnSnnFoF9Nq23aylH63vbf6jp3m8zoE1G/ep70wuE6Gc17I18nJyfzoRz86si1nv2mAsL1Ov2uuU4vn3fVeSBIlBKuLAXknZubIhuo98R5qI/dba0m8p/aU5+Q8udY86bNzNZnuzGlNgmusu7/2o897SZGMxxw7450Txpdr4Dfr3Xb487QpPw/Nrme2OdlL2vNUYjHthYWFhYWFS4ILxbRv3749P/zhDw9SlgQCbNszmyc2qYs0RAonfaeE9sUvfnFmNklWIQ3sknRP2ktWSZrrZCcYOLaRheVf+9rXzsyWclVfXEOqS/tnp8tsOxgJv4sPzGysCAtToER6U0hbFulxj4XPbOyZLS+1AhiD+SOds0dZm/T2JgVjLMbnXmuTz5FS0XPOSjTzy6Il6bT5Wg+MpBOHGAfWlPuuvajdY55aazNzXIyj7cPsktln+6nTYbbtXF/TS9m+M2b7oe2Tyfywce03wzMGGqW0DZs/4+vP5iLZYBe68NxOKZv7u1MTn1do5eTkZG7dunUYs72aqZBb42LOO2Vsvk/OIu3qi3k5K5plZmPs/GKM3fnn3vS/wP6lPtVnfcWS0z/FmrnHnPIfsc+6sMzMttc917ltfNY20ym3d3j7iNib/d7NHBeDcn46M/bszr9M0Q/3PvvZzz4zmuOpwGLaCwsLCwsLlwQXR3yYn0l5DzzwwMH7WNnLZIwtxWE4PmN5ydigWZE0m1glSTHt09oh3ZGK22s47TakeiwGuzQO0mayCSwcK2lP87Yt7cVpAymZpLhn2+44Y1J5x8jTOqRN0Dz5TvvmVdt5T3t+mk993StOjyGQktPm90Qi7VtdBKWZgXkz1r14Tt9hHF3Occ/b2vxgjObYXORzOv66U6+a87al793T19oPyVR95972APeOYlN7LMf70vPVqUpntv1kDVpT5fl7Wo7HUoIRrKV+Z3SH/emZ5ofWjjYv+81u28UwupSkdyz9cPS3C8iYH/sS857ZzhsaAgy4vbjzObQBrvU8mgO/63Oexdh+l291hnUhj3y239rTvMuuplbA/Fl/71wX70n8Ml7f9sG3v/3tczU1TzYW015YWFhYWLgkuFBM+8c//vF8+ctfnje/+c0zs9l10pOV5Ewy5FWNnWNuaYMgtbEPSajvL0b/tre9bWZmPvKRjxzuJb2xp7zuda+bmU2ybnv4zCahtQ2WdEkiTQmUFNkSffeDZH8e0zY3HS+dZe46hph07HvagT3btzFbCwyY171r0zcAM6Ux6FKTxp/sXOw7aRvD38PVq1fnvvvuO/J6/kWQ0nnHVp+VyY20n6y5PZe1hTn2Gs8cl5Bs26U2cj2sYTONtkdCaoma4XhOlytNxuPd6rj2Zs97Nvtmy60NcE/uA9fog7+t9UjNFXifzsr4pk/Xrl079EmuB+949sHcmReREns2Znu9Y+tbQyEvRL4vNFMdr+85tDb5PO3TFHZxE/OWdunWtHRmOnvUfs+CPp1L4ktf+tKpvnZhl5lNU9D+CJ1/Qp/zferMeN7FzhOQ6OIlcJ6tW9/S/t4Fg55KXJyeLCwsLCwsLJyLC8W0r169Ovfee++BKWLGGZNMMiRNtvcz1py5wOXEFqfdMXkka3bclO6wFBJuM3k2n7R56JN+v+pVr5qZmU996lMzs9my0mZG8sNajb1jRzHs9MjVjr4Zjz6R2nnjzxxn2mobLUmeJMqTe2bLodz2QlK4OUtNgjF3ycEeg77ObBK1vp4n7d6+ffuXZtl7JR6ti7abRWIb9kf2oa/pspudk3xm23vuMQfNItNTuu3R2ujyp+2hvdc3DNL+9jf3d9t+95hJIlmOPdHj884bQ/ax51Gf2naaDNJ42p68h3vvvXde/vKXH1gzDV9qdjpCovMKWJ/0lMZAvVv2dmdpownLGG/zwT5No9PxzOl/Q5PmvdQX7bs2/X38Jkqmy3oal+fvlZ5l5/YO6HufKTPHa9fx9M5OWsL04NcnPkj2le/34uvbFq1P+g75Du7F+D8Wn4gnC4tpLywsLCwsXBKs/7QXFhYWFhYuCS6UelxpTqphqtQsItGhDx0CQy2WIVJUu9Qp1ERUJRyofE7VI5Vcq6cefPDBU8+VSGVmc45zrd+ofLSVqq12CPNcbVBt+z1Vz102kmOL5+0VpqB271SLVEKSx1DppUrtRS960cxsIXPtaEX1nWYI7VNT6ou5kvghTQbuP8uhKsG0Anul/X4eqBVTFd3JRjrspMPbUoVvPuxZajdqS89LRx2mAM9rR6C9QiL2hL61A1AnhkhVcd9LxWl82sh57PSoPmuj1fL5/E5SYh/bh3sOY/ZKmxfMQZsDEtbgvDSmN27cmP/6r/86epdzP7Wa1Rlhr1v3Pccwe998UYt3GtZMRtRrp2/ucb69/OUvP9zj3aFSdq259X3ORYdYec87zXCvbbZDxS4JkrV1ZqUpzD1tTrIP/W7usoyod8D7o133Wq98N9rRrNXie9dZD2t53333reQqCwsLCwsLC48fF0d8mJ9JOD/+8Y+PSu2lpIZVdlKQLiXI+WtmKwhCEuPM1Q4TmGMWeid56oO+kTyx9JQIhWWRQEnW/ro2Q8I4UbTDDEasLSw6S4F6HmmZNOlvS7Ezx4kQpDHkkKJvzTTzGo4zzf70R7nNfJ51Mq4OmUkNyeMpPC9sp+fv8SRc6JKTeX+HdHXYk/VJp5tmrV2YZC8kqlOSdhnKdv7aQzNgz7UGND3Zbs9Bt5Xah9Z4dFhYOxmlxqWdyrTVezedsnq+OnnR3nra650ucw80fJ2KNhOXNKuzD1ozloVEjIm2Sn+VkrRX3JMhX1ixeXd2tJNrrpc9YxzeJe+nNvOs8huWrM+0A/puvKlxowHtgj7m3LX5PO+ndt1jb/Y4c+/QHNojXRJ4z9mwCzD9vO9njsvH/vCHP1ylORcWFhYWFhYePy4U075+/fo885nPPEhXpLBkeSRBbM9n0hZpLFmea7BZth7hDSR4kmHa0NnctMdu3CXk8h5SKQmTjYw0iSWljblDLFxDambzZWtOls52hLViFSR3c6WQSPa7mQgtA5ahP6nt6NSm2mIH09dkdJ1Uo0OltJUMK8M9fh6uXLkyd91111FSkE5Wkt81+/J5r8Sf/nYSkvPCm3qMbHFYBK1Nsl3tdfKRTnqSrML+dk8zEXvIGu6Fb2mjw7nMRdoCu0Rm97lTn+Y8t4222/Je5Tx24p+2L7Z9eWZ7t8xthzgmbt26NY8++uihL3vJWvrdZettP5jsWxfQ0f+HH3741Ljsj9SedZpmc+t7eyeZvXOAbVzYKw1ia/oS7VPjrOz9ne+nM8ieNOfu1RbtYD5HO67xrnexk4TneQfbh6OLucyc7dNynq+L+43nuc997m7inqcKi2kvLCwsLCxcElwopg2k2b0yhKTpthe31/iezY+ERjLUlqQqpOTPfOYzh3vay1lfpDjsYgYzG2NPKTifj63vFabATkmRmAIWwB6fEi+G3WwCOyL5ZlpGrLgleHPy0pe+9NT3yXppM4yPpIt9QGoDPE8fsTDalLQfQTPfPdac196+ffvI/pl7p/0gzkLarzy70y9qF1PQZrJ0c2teejztgZ7Ptp99bvtwamnaltfe2+2xn9eflQIU020v75mNpbRGwrV+N1epcWlbfadCdU8mD+p3wHNaS5T9sffbG3kP169fn2c/+9mHa/Zssfa6OfSXbdY7kf02Vv3sgjHW2J51BsxsmrsuhkLLpY18x8yPOfS81pqk34gx2t9YOa90fTMnxrnXnrnWN+PPaBzvZWuFtEUr2OlUZ7a5Nm+dBGfP7vxYC8bk2WKvp0/ISq6ysLCwsLCw8LhxoZi2VJS8K7G79KrsMpMkQOyVpJuSESmZhE5Sw0Bf/epXz8yWji/jJUld7iEJkjjFlKfHOamNbVdMt3Y7Dn1m897ESLvUKMmUTdv12ce2g5o/bSbDbDu/PkuFSrPQfgA5T2fFx5KO92LJsTD2t2aoKZVbY3Pfns6JK1euzNWrVw+MYe+eLthwVunIvYIhXTBC+81yM7a3C2how1zbq2mL7eIY+nyeRzaG1qUY/bXvrWWy6r1Y8XyetU3NVXuLW+e2LWsjbehYtzlphu1v7tX26u59bg1Sq9IasD0/Bbh69ercf//9B9tre8FnH5ohOpu6/zk249dej7H9PGa2ufSd9w+z9p7mu9ce4Na7tRepEWtNm7FLVWzcxpBr2eU1MWtz0hqSmU2z5jmt1TC+80rdGvNj8Xl5rAw5r2uP+StXrpybI+LJxmLaCwsLCwsLlwQXimkrr0j64iGJsc5sdgwSdGfW4X3INjOzMQE2HmxZG2ISSX9pt2FbapsOqVIf014MpH2e5/rqb/YRuo8kbXHnnpP2L9IyyRrrJ6Vi+HsZw0jYzXiwNvaqtEt2/Ly2ukBCxnRaH31oyd33WTCkSww+luxmXWow58maWZezsiMlEz2rSIV+t8072zQv7YFvrNhERkd0QZKzMkXt2U6bHfurT62Ryed0GVHf9/hmtv2LQZ3lWb/ncXuWPbqz36U9ubMe9udue+aYsZ2Hk5OTuXXr1pF/Re43+5+WKffVzPaepNbE2dBjtJe6PG1qA/Tftd4f73jnb5jZzklzh4k657q858x2njpvMHrtykNh7yS77b3YPiPyNeQapBYzx0ej2D5JuVedL3lGPJGwbvfcc88qzbmwsLCwsLDw+LH+015YWFhYWLgkuFDq8WvXrs1znvOcg6MEtU4W1qDieeihh2ZmUxdR53L/TxVQFxZodSsVEdVWqsc7gYBrqHMyIQJQXVH9UBtRLfk9HZ6on/YKNMxsYV2em84k1JHUaxxqqKX2nHHMFxV2OoDNbCoo/cj+tFMUdZh7uohC/pv5wryZgz1VtTGam6yrvoerV68exthFTGY2dep5tZVnTqvkOlFIh351usxUI/u39aFibee7nKd2COs0vXvoECvPsz7a1NdUrVMpm6ez6hzvOfRQ87fJo5NcpNpaH7pudtf6ziQl2vWu76mTcx6yT3sJZRo3b96c73znO4c+UPvnmDt0qFXNVMEZ5sns1qlbf14a3ZlNTW0tvS9txkp1vDnz3mjjLNPHzOYs5tkc3JwhPd7f/M3fPNzrGk6l7bSpbes2c+zQ1/vN3Ou7ENeZ40QvXdTkseAsB9Kck64//+ijj567f55sLKa9sLCwsLBwSXChmPbJycncuHHjINUKjcqQL6zr3/7t32bmOFEFiW0vGQQ2R4LC4ElqX//610+1MbNJ6Jg9iYxEjQklU/3CF74wMzNvfetbZ2ZjoJwslLZMyRELM2btkQxJoCTr1D60w1FLpHupAT2HlAwkalLsnrOU56WjWbbVGoWEuehkF9Y8n0Ma7jXeg4Ih0EUy8v5ms82isp0O5WknJf3tcpjZbwyE1qZTXubzsFIspYt8dCKLfI5rjdP35rFTcSYyWUuOo/sxc1wC0W/+dpKNnBNz4dp+Tqdk3euje+3zTtixd/95jkQ0NPor/WeW2/WMV77ylTOzMVL9ty/2UnbqdztCtqOitMp5LQ1bhym2RmlmY7GcWc86q/JsdK0+/M7v/M7MbGeYs7fLe85se9+YaR2cp322zGxr53m0EcaBlbemZ+Z4TZthd+hj3t+Ot408M43LXr377ruXI9rCwsLCwsLC48eFYto3btyYb3zjG0cpQzPcqJOakAAlZGmWPrMxW7+9613vmplNmvut3/qtmZn5oz/6o5mZ+fSnP324l/SGNWKKEhm0jWlmY6muIT2++c1vnpmZD3zgAzOzn6qxExZ0AgnScrJm7ZDOhXwJ4xCmknZ+c6FvJN1OzOJzJnMxZuFw2jBXJHxsJJ9tfM2ojG+vsINn5z7Yw9WrV4+KVuyFN3Vhg7bXps2xQ4bY1ds+bl+kVgj76sIaXdSkC2DktX7rJELJGLpggj6by2a8e4lSrA9Njra63GKOay/V5MzGxH2fYUn2ub9dItG+Tubf89O22b0kLq1V2ZtjuOuuu+bXf/3XD3se+8t+08J5pnPIPfb6y172ssM97LGderb3uP295zfQSWjMlzMm7cXabU1Il5pMX4BObWufOU87FXJqz1pThOGy73ep0OyDd8zzOyFMl7F9LOi00TPHWsez4P+cmeMyvK1RfKqxmPbCwsLCwsIlwYVi2lJRdqL7lECxVHZakh/vSuwvJSdSm2tIomxX2txL4sGznN2GZN3SfbJAzL09yzuBBIl0ZrPPaKfZGCaHESXTIp1il83KSYxpLzZv5tpn7bOdmk9FVfLa9Oyc2eZtzzYMxmdcJG4MNqXl9qQ/z+v7ypUrc8899xyVksw+mAfz0sU+9oCltKdye4B36dHsb3vGtm0u+4jpatfnLoCSbK3LdtqTnTilmf7MtpZZRCLHvefV37brti13sZPUVjSLabh3r4iKdtouirUnm/bvvdKiDaU5u6Ru7jf2WWsnSoUWz3rkunSK2C4X2+dEnnP8HzD6Tq7jnU+m3SmHO9LE55wLY/be9dq6tsuL5jVYv/57xzuJzMymVXCuWLvUys2c9op/MpCFV1or+MADD5wbvfFkYzHthYWFhYWFS4ILxbSvX78+z3/+8w8SNOknWax0nuwkJDSf2XN5l89skiYplXRMMm1pOb04MdF+vr5h4CkZ6ksXhuAJqkAJ25mxz2ysSLvYOFupVIXJmt3bKTdbwt9LfcpG2t6h7W2Z9vfs98zGjkjrXeBh5uwiEvqYNvPGHovduyZt2nvep/3Mn/e8mWN2imG3N6+/yWK6QAg2a+32Ykb7eW2HZ19LVtlxsdJnmvMuzZks9qwCK22v3Ist7pKYXeRkbw2MvW2NZ92bzzEn7nVtx0HnM/fs+I3bt2/P//7v/x4x99Y+zGzngffR2WLvZ2EdZwV7uHWxRzo1cu7v1jz1+8jmnFqiziVhPK1RwoxnNo0BjWKXyLW25ji1AX2ta1rzl/5F+sjfpn1GnL15z+NFpmvu9xb0bc/vwpjtwYsUoz2zmPbCwsLCwsKlwYVi2jdu3Jj//M//PEjjexmwSIaklFWrZQAABdtJREFUYNIkD+mOA53Z2KprSFdYpSw/JNL0FsSo2Z8++clPzswmaZMMM2ZQgRBSHumYrYQNK6V/zybls8m71u+dVSvnwNi7yAf7UcZN/vu///up9tveSlo1Z8k+zR+J3Rxpo0tE5v2YCobfZfD2bIJZIu88XL169dAHbGYvnvksG2xrKnIMHVPb/gMYSErlHSfdmfA6fnrmtAYlf+viEmlj63jp9lOwV/QxmX3Gou712ZzkPGKM+uq3Ln3bkQ/5POh4Y4wnGZ17fOfzWbHLeW171u/h7rvvnhe+8IWH98aezH3QBTpca84x1dS0KI5hnrpEsH5jlanh68xw5ocvj8JB52VV9Js96czK9WhtT0cgeJ53PH0R+l0DZ4h5zOc5x8yjz87iZtipFeiMj9DvaGpxOp/C3rmQbc9s+9t7c/PmzVWac2FhYWFhYeHxY/2nvbCwsLCwcElwodTj165dmwceeOCgEqJmSQcNKl8qkU42QM2SiUQ4glBxu4bavIsK7NUqprbWLrUYFdCDDz54uIf6pmtVU6lxPMkwB6o0ajiOGmfVkN0r4KFP1HDmhlNeqp46TKgLRnS4WKrjXavP1qJVkKly6qIlzAnUgJ6bKvUuwpEOJo0rV67M9evXD/fs9cmc9TU99lRxtwNO32POW4U7c6zaNIedOCfDdoyxC7i0k1HORacR1QfPazV5rstZqU870Uemze20ob3PW/2be6fDwTzHvXtmhn6udeoQw70EKl2ffA8c0bzbnp1qXfNiLMZmbXtvzWzvLnNFJzSCdiTMPpgvZ4bziAo3neW0e1YRDu8/J7ZEpy+mRu5zKVXT2m+HQ3ORTnmgXX3s86WTveTZb89Yp7Pms4st5XP10Zx0quQcTxcJuihYTHthYWFhYeGS4EIx7ZmfSTmdDGTPYYvU6Fps+hWveMXMbJLUzCb5c2IjSXU4xV4KzWavJN8OwUoHDd91iJJ7O3HBzOZ0R+IkWXOKc6++pyaBU0cXVDAn7Qgzc8wg27HKnHS6wfxO/5sttwNe9sE1+tKahD1ns2Zye7h69ercc889R1J2si/9tjc6DMR6pWTdiTzsRfPXYWQpsbfDVCc/2Qsp0bd2eOuUqDkXGFonJumymnsFPLBAz+2Sk9Y9+9hOXl3K0v7ucWZftdvFbrrcZ4655wDsqXTKata3lyI02//JT35yVDozx9xpVo2Rc2eXR937Th/M11mFRHKM2uiiH1isM21mc4azZ4RRtoaimWm2+8gjj5waVyd1Si3kWYWYOMR1MquZ7V3G4NvJtDVZqWF0Jva4Hg/Ma5d5zXHpizP5m9/85uNKp/pEYzHthYWFhYWFS4ILxbRv37493//+948KvKd7PunHX8yGlEoiSqmVDYdkyKZN4m1GkHYbyVrYjrpYAgntE5/4xOEekmYngegiI3t2aWN1bYfNdGjGzHEygy6JSRLO1K7mgHTeYWMkebb1ZDFdAMGcYBLGlUlx9JEtru19vRY5F9rNVIONk5OTOTk5OTPpycw2P/rX/d5Lv9rMve3GXYwh16XTblqH9p1IJtL26E620hqRvXFpr1Ov7vkntIan7ZP+ZpIha9fhW61JaLvhzHHZQ2gNRmq9Osyx07T287O9Dkvbw/Xr1+fZz3724byRbCnbdyaY2/atMbepPTP+Ljvr3TPG9peYOfYXaPtwFzCZ2c4Mz/XXO/7www/PzOlQWkzdeFqT2YmuMgmJvhmf8bi3kwjNHGsXjLNLDxtXniF8gM5L+PNY4d3oUrszx6GRT3/601ca04WFhYWFhYXHjyvn2XqebFy5cuV/Zub/e6r7sXDh8ZsnJyenMu+svbPwGLH2zsIvgqN981ThQv2nvbCwsLCwsHA2lnp8YWFhYWHhkmD9p72wsLCwsHBJsP7TXlhYWFhYuCRY/2kvLCwsLCxcEqz/tBcWFhYWFi4J1n/aCwsLCwsLlwTrP+2FhYWFhYVLgvWf9sLCwsLCwiXB+k97YWFhYWHhkuD/AoQQ9pkQinkUAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bflZ1/n9nXsrlVRSqTFVlaQy0dANKo6oYNsMCgERBBUFGSRit6FBRUQUFEg0IlMz+BBpcEhDDCqoIA7MeQyjA4PIHMhQpKgpNWSshJru6j/W/p79ns9+37X3OffcumdXvd/nOc8+ew2/ea39+77jmKZJjUaj0Wg0zj4OLncDGo1Go9Fo7Ib+0W40Go1GY0/QP9qNRqPRaOwJ+ke70Wg0Go09Qf9oNxqNRqOxJ+gf7Uaj0Wg09gRbf7THGC8ZY0xjjLePMa7DufOrcy+/ZC3cU4wxPnyM8fIxxgGOv3A1Zi+5TE1rnAJWz8VnXaa6p9XfRv1jjNeMMW7DsdtW1/+Lorz/vDr/40U9/HvNDm08GGP83BjjbyTnPmSM8a/GGL85xnh4jPHOMcZPjTFeMcZ49tYBuIQYY7xujPG6UyzvG8YY33ta5a3KvG1hbg7/TrG+u8cY33xKZd24ei/+zuTcfx1jfP9p1HNaGGN81hjjZ8cY7x1jvG2M8aNjjPffcs/HjDH+xRjjTav73jDG+MYxxg2n0abzx7j2Gkl/S9IXnUbFTwJ8uKSXSfr7ki6E43dJ+hBJb7wMbWqcHl6i+fl51WVsw8vGGK+ZpunhHa59l6RPHGNcPU3Tu3xwjPECSR+2Op/hWyV9C47du0N9ny7p2ZK+KR4cY3yBpK+R9J8lfYmkN0l6hqQ/JOkvSfogSX9sh/IvFT7nlMv7KklvGmN8xDRN//mUyvyTkq4M379J0jlJLz2l8omPlfS2UyrrRs3vxTdI+nmc+4uSHjulei4aY4yv07wmv0rSX9e8Tj9Y0lVbbv0czYT470q6TdL7r/5/8Rjjd0/T9N6LaddxfrR/UNJfGWN8/TRN91xMpU9mTNP0kKT/ernb0dh7/KCkF2t+UX/jDtf/kKSPkvSnNf8QG5+h+cVyu+YXP3HHNE0nWa9/Q9Krp2l6jw+MMT5C8w/2P5ym6fNx/feOMb5C0p85QV2nhmmafvmUy7trjPEfJH2h5o3KaZT5P+L3McY7JZ3fdZ7GGFeu3kO71vezx2ziiTBN0y89HvXsgjHGh0v6fEl/bJqmyP7/4w63/8VpmuLG9kfGGG+W9AOaN1ypxGtnTNO0+KeZUUyS/g9JD0r6xnDu/Orcy3HPH5D0w5LevbrntZL+AK75Vkm/Ken3SPoxSe+R9OuSPntbm457v6QXSfp2zQzhIUk/J+lPJtf9OUm/Kum3JP2CpD8h6XWSXheueaqkr5f0i6v+3S3pP0h6/3DNy1fjcuRvde6Fq+8vWX3/QkkPS7ohac8vS/qe8P0qzbu+N6/uebOkvyPpYIfxerqkr9TM8B9atfvfSrr5hPP2QZJ+UtJ7Jb1e0h9fnf/rmn8E3inpeyQ9C/dPkr581e7fXN3/o5J+N64bmh+a16/6epekV0p6ZlLe35f0V1fj8S5JPyLptydj8Kc0b5jeI+ntkv61pOfjmtskvUbSp0j6ldU4/LSkPxyueV0yv69bnbtF0rdJunM1zndpftBv2mVd77j23efvXs3jVeHcayTdVvTpVZJei3Ov18wCXifpx7N6TtC+P7i69/fg+PdLequkpxyjrK1rXrNUa9L8vL5S0n2rv9dIuhblfd5qXt+rmT3+tMK7QJvPu8v+RM0ShwdWa+cbNG9yfr+kH1+tk1+S9NHFuntM0vNOaw2g/I25C+e+UtKjkn6H5uf53ZK+Y3XuY1dzcveq/b+g+Tk6QBl3S/rm8P2zV2Py+yR9p+Zn7g5JX7s0t5oZ58Z7UdKnrM7/V0nfH67/mNX5j5X0z1bz9YCkr9bMZP+QpP+i+Xn+BUl/JKnzI1fj8+7V33+S9AE7jOl3SvqlU5yj61Z9+cJw7BrNUpLbNb8r7tG8GX/fxbJ2qOwlq8reV/PD85CkF6zObfxoS/qdqwfiZyR9kuad/U+tjv2ucN23an6x/4pmtvBRmncgk6SP2KFdO90v6XmaXxS/qFlk99GaX14XJP2JcN1HrY79u9Ui+UzNors7dfQhvkbSP9X8Uv8wzTunH1otqFtW19y6umaS9L9rFql88OrcC3X0R/u5mh/oz0H/ft/quj8dxvrHJN0v6a9J+qOaX16/Jelrt4zVUzT/wD4o6UtXff0kSf9Eq83GCebtlyV9luYH68fcDs0bmD++OvdOSd+JtkyaF+lPaH4RfrLmH477JV0frvsHq2tfuZqzz9f80P2Yjr6wJ80/Sj+g+aX9SZpf7G/QzD74onnVan4/WfPaebOkq8N1t0n6jVXfP0nSx0n6H5pf1Neurvltkn5W0v/03Er6batzPyTp1yR9mqQP1cwcv1nSC0/xBeAf7d++WjtfFM4t/Wh/+Or6W1fHP3hV1v+i+kf7yzWvvcO/Hdr3stXcx3k6v1pL336Mfu605rX+YX2zZqnDiyX9lVV93xau+zTNP2BfJukjVuvgizQzI1/zOuU/2rdJ+jrNz84rVse+cbWGPkvzGv0xzc/YjejHs1bXf9ZprQGUvzF34dxXrub8jZrVmx8h6UNX5/7yalw/RtIfWY3Fe7RJwqof7devxvIjNW/8JklfvNDOp2p+7qbVGvGzc8PqfPWj/WbNvz0ftfqcNG+afkXze/pjVve+Q2GTpvVm6d9ofjf8SUn/XTN5e/aWMb1T0r9crbe7Vuvmf0r6xBPO0Seu2v1x4dg/17zZ+Qua3xV/atWv37tY1g6VvUTrH+3rNb+8XhUeKv5o/xuFF9zq2DM175C+Kxz7Vm3+wF6p+QH9xzu0a6f7Ne/Q7hWYrOaX68+F7z+p+Yd9hGP+4XzdQjvOaWYD75L0+eH4y1f3nsf1L1T40Q5t+S+47hs0bwSuXH3/jNV9H4rr/o5mBlIyOc0vlUlhk5Jcc9x5+9Bw7Hdq/RCfC8e/TtIjODZpZkFPx5g8IukVq+/Xa94cfiva+Onsx+r7r0u6Ihz7pNXxP7T6/gzND/SrUN6LVmP318Kx21bjfl049kGr8j41HHudkhel5o3FXz3Jg73rnwID1vzgPyDpmtX3pR/tsfr/i1bHv0nST1T9Uc6KJm1jAtL3udxw7ObVvV+RXJ9uCnZd81r/sH4brnul5h/4Eb7/7Ja2v075jzbXzs+ujkcJjJ+Dz0zKvV07vNdOuB7Stbg695WrNr10SxljNf6vkHQPzlU/2l+M635Y0s9vqcds+9OTc9WP9jfhul9eHf+gcOwPrI598ur7wWrMvxf3+jfsKxfaeKCZwL1T8+b/kzVvBP/d6vjHHHN+rtW8afo5Hd3IvkHSPzjufB/L5Wuapgc0s6k/P8b434rLPlTSf5ym6e3hvndK+veamWnEe6ZgnDHNepZfk/R8H1tZqB/+Hfd+zRP/vZLegXJ+QNLvGmM8c4xxTvOL+d9Oq9Fclfczmnd5RzDG+LNjjP82xni75h3Yg5p/GKox2YZXS/rgMcb7us+aRfXfOa11Tx+jmQH+JPrxg5Ku0LxjrfBiSXdP0/TvF645zrw9OE3Tj4bvv7r6/OFpmh7D8fOaDZIivneapgdDPbdpfmA/ZHXogzVLB2il/K80jzfb80PTND0Svv/C6tPr4EM0b0C+HWN3+6qNH4ry/ss0TdHwhuUt4ackfeEY4/PGGB84xhjbbhhjnMM6P85z+TLNa+8Lt124WtuvkfQZY4ynaH4ZvXrLba/SLAKOf7dvuec52s1YTWOMWzRv2A7/wnN+3DX/n/D9FzRv5G9eff8pSb97Zcn7kWOMbQZFEd+H77+q+Tn4cRyTZukeca/mcSnBd90ua+cY+O6kvlvHGP9sjPEWrcf/SyTdNMa4docys/He5Rk5LrKxf2Capp/GMWk99r9ds8TzNVg779S8DvjME0Pzc/UJ0zR9xzRNP6iZDLxB0hfv2vDVc/adkm6Q9OemaYpGyT8l6S+NMf7WGOP37vrcn8RP++s17+z/XnH+es3iBOJuzXL9iMwi8SHNYhSNMV6ozQf6hbvev8JNkv48y9FsECPNg3mj5pfAW5PyjhjdjTE+XtJ3aBbNfKpm/d3v1/xQPnXj7t3wXZp/+D9j9f3Fq3bHF+pNkl6Q9OO/h35UuEGzGGYJx5m3t8cv09p6mfPh4xyXzJDxHs2qArdFbM80TY9qJUbHvQ/guzc6rvem1ecPa3P8PlCbY3ekvLBx2mV+P1nzRudvaraOvWOM8WVbHsjXok1ftkM9btubNEuTPm+M8awdbnm1ZvH+yzTbOXzHluvvmqbpp/G3zYjpqVrPgXG/ZtbLl/p9Wm8G/gnOHXfNb1sHr5b0f2t+Zn9A0gNjjO/CO6VCtrar5yBbJ++V9LQtdbCf3JyeFBemaTryblv9gP0nrUXbH655Dvxe3GWtZ+N90nfgErKx3/au8TP/7doc14/Uwvty9cP6ds1r/5fC8Uc1GxP+nl0avSKD/0LSH5b08dM0/QoueanmTfFLNasl7xljfM0YY3EMj2M97oa/e2Xl+bVaT3DEA5qNcYhbdHy3gTs1LyQeOw7u16xr+qqFOh7VPJk3JedvlvSW8P1TJL1hmqaX+MAY4wpt/pDsjGmaHhxjfLdmndvLNIuB3zRN00+Ey+7XzPr/bFHMbQtV3KfZEGUJpzlv23BzccwbC78MbtFs3CPp8EVzgzZfFttw/+rzJbG8gMrd6dhYvRw/V9LnrqRRn6n5pXivpP+3uO2lkq4O34+7xl+xqudv79C+Xxtj/DfN+svvipKVU8T9wkZvmqZHxxg/KumjxhhP8Q/c6kX405I0xvi4pJyTrvkNrCQN3yLpW8Ycc+LFmt9j36H5h/xS4nptujgRfNe9/pTqnpJjH6BZnP9npmn6Nz44xris1vunCD/zX6DZ0JX4rS33/5Jm9VmGC8XxQ6ykJK/SrEv/hGmafozXrCSZf1PS3xxjvEjzOv9yzXYFL6vKPvaP9grfpNlK+O8n535E0sdGf9AxxtWSPl6z7mVnrB7sn9564TK+X7N49JemBf+4McZPS/rTY4yXW0Q+xvh9micu/mhfpflHPuIztOku413+07Tbj8KrJX36GOOjNRstcEP0/ZqNw949TdOv8uYt+EFJnzLG+Phpmv5Dcc2pzdsO+NgxxtMtIl8xnQ/WrH+TZlH5w5o3SK8N932y5jV73Pb8pOY5eN9pmr7txK0+iod09Id2A9M0vV7S3x5jfLYWNk2r606MaZruHGP8I83GV7u4/Xy1ZunTKy+m3gVkKgfX+0OaN9B0+cpwMWt+ESv1x3eMMf6gLp1/s6RDxvV8zd4KS2262HfdcWDVwKFaaYxxpWa13KVEfC9eSvyC5s3vB0zT9HUnuP+7JX3NGOMDp2n6BemQNPxRzWLtbXilZhL2qdM0Uby/gWma3izpq8YYn6ktBOtEP9rTND00xvh7kv5xcvoVmi1uXzvGsKXf39K8SCqR+qXEl2kWp/3oGOOVmnfn12kemPeZpslRpV6m+cftu8cY/1izyPzlmsXDcWf1/ZqDVHy9ZleeD9L8siRjsb/nF4wxvk/SY1seytdqXmT/TPOC/uc4/+2arQxfO8b4Ws2WjE/RbPn7JzRbNb5HOV4j6f+S9C9XUpL/pvkH56MlfcPqhfh4ztt7Jf3gGONrNOsc/65mXdPXS7PtxKqPXzzGeFCzTcIHaN4k/rg2dWmLmKbpnWOML5T0j1Yi5O/TbJj2XM0iyNdN03Rc38lflvQ5Y4xP1mxk8i7Na+WHNc/Vr2p+IX6C5vX2g8cs/7j4Ss2BID5Msx64xDRN36VZJXOp8KOS/sIY44Zpmsx4NE3Ta8cYXyTpK8ccEevVmpn0UyX9r5o3aQ9qzQwvZs1vYPVcv0uzm9BbV3V+hi793PwOzc9RxvguF35e8/vmq4Pq5gu0FjNfKvym5mf908YYr9fMKt8IG5KLxjRNj40x/rKkf72yXfi3mtn3LZo9en5tmqalTes3aza4+54xxpdofr9/jmZ1zV/wRWOMF2t+P33qNE3fuTr2stW13yzpLWOMaHtxz+oH2kTxOzWz+gc1i+3fX9I/XOrbSZm2JP1/mo1f3i8enKbp58fsmP7lmv1Vh+bd/4dN0/Q/L6K+E2GapreMMT5I8w/wP9DsfnG/ZkvxbwvX/dAYw+Lp79ZscPAFmn/03xGK/CeajR0+S/MO/ac0s1EaevxHzRKJz1mVMVZ/VTsvjDnM5N/QbAj1Bpx/ZMXCv0jzy/lFmif6jZp/xMqHbXXvi1d9+0urz/s1u109sLrm8Zy3V6/a/krNm6Of0uyrGcXef0ezSPmzNY/h/av7vhjGHDthmqZvGWPcrnnNfqrmtX+HZtXJz52gD1+l2fDwn2o2WPkRzZugn9W8QXqB5s3e6yV92jRN33OCOnbGNE33jzmC08svZT074ns0ix8/TuEZk6Rpmr56jPETmv2l/Tz+luZx+g7NVsqPra498Zov8BOaX7ifodl1807NG9pSFHlK+DjNG7rXXeJ6dsY0Te8dY3yCZre1b9fK62b1+Y8uYb2PjDH+T80k4bWan8M/p9nI9LTr+u4xB/T521qTobs0b9oWQ/GuVJYfIen/0fwev1Lzs/1iiLoPNEtZo82KI/p99uov4lvCsR/V/C560aqMN0r63GmaGIHwCOwK0UgwxrhV84/3l0/T9IrL3Z4nAsYcE/nLp2n6ksvdlsalwxjjWzX7g3/k5W7L5cYY45c1e6Z86eVuS2P/cTFM+wmFMcbTNPsV/7Bmw6330Wwk8B7NbKrRaOyOvyvpV8YYH/Q462rPFFZs9mbNBm+NxkWjf7TXeEyzvuOVmi2UH9QsOv0z0zRlrlCNRqPANE1vHnMmu8wj48mEp2kOJHIprPQbT0K0eLzRaDQajT3BSYKrNBqNRqPRuAzoH+1Go9FoNPYE/aPdaDQajcae4EwZol111VXTtdfuEqf+eHDc/W2fvH6pjOr8rtdU52xjsC1XwC5lHafM4+QmYLnGtu+SdOFC7mJ9cHCwcY//ZzlveMMb7pum6Uic7Wc84xnT9ddvRpLN5uU462HbGmHbsnHk+Ffzs1TOLvX4mMeY9VRjf9x6qmure7N6t/Uvu4frwdc89thjG2VUtjp33nlnunZuuGEditpr8dy5dZBDt9fn+Lk0Tm6ny+N39icr39c8+uijR777fGwDrzl//vyR7xl8D6/12MaxYL/Yn6od8dy2+X/kkUc26uUYsB2co9j+6l1yHNx1110ba+dy4Ez9aF977bV66UtPP6LgFVdcIUl6ylOekn56kn1d9iD4kwvT35fu8YOw9KBnC07afOHzwY/H3H7D9RqxbJfLFwcfJrY53sMfnYcfnmNd+EHxg5cd84Pne57+9Kdv1O9rYzmS9PEf//EbEb+uu+46fd7nfd7GQ/nUp65j71955ZWS1uPiT1/ztKfNkRXjOPp/jqXH38fdP85fBMeW45jVY7j87DxfsNUPCOc89sPz4Pa7LD8j/h6v4cuzQrzO5fAH1/V4rmN9Dz300JFjv/Vbv3Xk893vfveR77FO/iC+/OUv31g7N954o172spcdXvuMZzzjSD+l9bh7Y3j11XMEW68ZtzH21X3xfHj9PfOZz5Qkvec979mox+A7ievL8xXfAy7P8D3uz7vetRlNmc8C1xLb8453rONM+ZqrrrrqSJtc31vf+tYj36XNZ9nt9/EHH5yT/733vXPEaa8LaT22fBbuvvvuI2XF9e8x99i4jF02sES2di4HWjzeaDQajcae4Ewx7UsFsiUybyNjzWSalSgoY82ur2LpsR7u/FgfxTuxPrJvsqOMnbF8HmeZsT7vViupgxF36xXz8aeZSpyT44i2pmnSI488siESjG3wbp7zUkk34v3VfPt4xnLJSM3KzAhdT2T2LodztyQKZn8qKYrbEfvrtrgMsyUzFNcb2+hx9DHW6zI9l3GNuVwyHrYtMrJKmsFnIROP76oSeOSRRzYYo+crttuMzed8bTaX/p/XuB8+/qxnzRLXyITJWm+77TZJ0vOedzRV99vetg7ZTQmBWTHfC3GNuj+uz2PttrjfVlvGe5/znDk9+L33zqnTLYV45zvfeeSe2EYf8/POT6spXGYczwceeOBIf7xG+FxF6Zrb4mchk1TuG5ppNxqNRqOxJ3jCMu1Mx+xdpHecZIaZAUrGvqV61x/robEI2VOmJya4M1wyfGEZrifrQ2U0VLG1TJJANsP+Vn2K97iszPCEbJx6tohpmlIdazaXlXSB45W1z8yDc0pmGsEyyOhifTQI8r2UnsS5JJPzuajjjfVEFkudKecsM/4hY6N0g8yYEq1Yj+91m6zLXALX29I1u+Kxxx47bK+ZWxwLzp37bobo85Hl+dobb7xRknT//YcJz44cN6u1XUcs3+vq1ltvlSTdd999ktaMNMLj7ja5/S7f/YpjbP26x8s6ZZfvdniN+fpYro/5Wq8pf958882H95j5uj6Pl+0SPEZuq/Xi8R6+A92fTBrgdesxqQz89inIWDPtRqPRaDT2BP2j3Wg0Go3GnuAJKx6PIhK6clEUsot41KBBQ+YSxXsqcXnW3sr1imLL+J3iaLaNxkyx/CVXsuy6CBrWUJy9i4iS4rdsbGicVeHChQul6D475j5TrB6NX2iURNUKjc2iKJhrY5sIOiu3WqvZ/bynMmaMoMqG99L1KLaRa6Zyi8vWDg3RPG6ux+JMaS06rcZm19gGFWyIRgO72B/XbXGuVQ/Pfe5zJUlvf/ucDySKni3Sdvtdnr9TFB3v9fjY+MqidqoeYlwLi9L5vHhsqXqJ/fK1NJ7zve53XEOuz2Ph8n3c4xld0VwuxdV8D/jeJaNg94NjFdVCHh+K1lnmtnfLWUIz7Uaj0Wg09gRPWKYdQRclo4pIFXddZOlktUvBLnxvxQiyoBrVjm+JpXPnWbkyZbtW4zhR1Cq3LbrvRJZbsT26SkUjqW2BX9gm/2Xl8/9YHoOuxHY7iIavoVGVj9NgLLabu/wlyYH7bHbCcXM9S/dyvS25J3IdUNpEo6J4PxkpGTADacRrvEbMimhgF9vF9USWdrFGRNM06cKFCxvPdGwDA++4ThtWeUye//znH95jVyfPpZm163E/7JrlsqTNAFD33HOPpPV6c1kRLs9rlmNpw7HMOJNr0mNO5r3kLkgjM0sOogTB5VsywSBLhpl9XEMeJ4893e4yMOBT1e99QjPtRqPRaDT2BE9Ypp0F1aAOkzvrLEjINobNe+P/DExB3emSbpv9IFvK9FJVaNVd4iJX37NgHnTBqnTasV66DvGeTOrB8pZChFZYcsFisB1/xqAaDljhMaVO2/dQzxvPVdKLTPdPXaLZjNdwFmYyuhnFMigFypg2+8MxySQMvGebm1icU4ampS6TZUjr+XCfybSze04Ct4kBZiLIIt1Hz4GDgkibLl6UniyF/TWTpgSCUrTYRq9VM1Lrc7k+otSEQUzsvmXWTF13bKN185wX98uSBl8Xy92GLOQqsYt7IEO7Evvk6mU00240Go1GY0/whGXaEd4BkvGSeZDNxHMVy8uslKkbpW5viWFX1oxk0ZleaslymmVST0hGXYVvjf/z3kr/GlGxjEyXuWQDsA1L4V5pKU3WHJmJWR7tFHyNmU4WGndbu7NAKVWwDupFI4v2XPoeJsLJrIYNMjZaC/tzyTvCqNbdEpuhVGhpfVMKUK3742KMoXPnzm1YSMd+WOLB8KK+NtPfmml6bH3Oc8l7trHCbaB0xG286aabJEnXXHPNRj2+x9bpbrP76Xsyhux15XNm1P4ek4ucFVTv1X1CM+1Go9FoNPYETwqmbXhHSx2cd9RMZhD/ZwjUJZDFkvEs+XZXbKVKVJLVUyXaiP1asvSO9WRW32TaFcPJjpOdUz8Z9W20FzjJrjjeU0kTaD2eWS7TJ5SpEf096ma3SWeyBB68xuUtxRrgPHBus8QdbGPln08pSqyH+nX2i+2Ix2gPUVkvR/AZpHRgFx1nhjGGrrzyyg0Pjujv66Qe1GVbb52NsceWul/6Ip8WaC/g8XnLW94iaW3ZHm02mOqT6UnNlrMQuD5Hf+yLlRg8nmiddqPRaDQajUuGJxXT5q7SoEVzBHVs3O1715rpTquEGUuMZ1vCjkznTV29d76sJ+6SyaCq1JlklLENlT5yiRnTp5w63Aha3y8lIBljaIxRJkKR1vpZ6v6YYCEyLOqHyXTJzpfayHWR6Zq3+TzTwjn+T593stdsXZoF2rc3RiKLiMyX1s58fsi0l6QCLDNj/lV5nMc4jku+u4TXDp+FKPW58847j9zj8m2hbXbp9JTS2gKaFvK8x3Nw2gzV9XtuLSWI40TLco8/bTn8TERLcOvB77rrLknHi4R4mqikRU9UNNNuNBqNRmNP0D/ajUaj0WjsCZ5U4nGKGGm4sos7lWGxqQ02oijN4joGZ6DIO6IysqLYPDNe8v/uVxX0JIo4ORb+pHg0M9TwMfazSkIS2+C2OogDXWaWVAdxjDNE8XgWhKQKt0rRX7wnMxqU1iJG35sF4ojtktYiR5aVrTcanlGNEMuwGJSidRqx+XxURfBY5QYZ1wXF8VVwjUzdxMAsXF+7qEJc/lKil+OGqczUKFl+a88hA5hkQWi8xrl+GW70jW98o6S1e5W0XoteX/6sDFWlzTFzfW6j64uqA5+jCsX9oZrBBnnSOhQpc4y7rF0Cqfge993jS1WWtGkEyPqy5zcLXLPvaKbdaDQajcae4EnBtKtwh9zlLxkyMFgHDcLiDpsMxLtWMrxoEOKdIN2cyM4z9yCGAnUZZH8xyQANnKoxySQNPsZd8RI7qoK4MExoZvBEo68KNiiq+kOpgpmAmU/GYlgeGTbHb0ka4DUSGRz75TmrwufS2DC2kW477geTckS4fLMYskGyZ2nN7CuGzWcljgklRxyvzO2uSs7jejND0uOkXDw4ODhikJW5fDnNps95Dv3JgD2xDb7G4/OCF7xA0pqhuuwY9tRj7L7587777jvSjshm/T9O0o/AAAAgAElEQVQlX2bENpK7+eabD+8xO6X7I0M/33LLLZLWwVdi+90Wv184p/G94L5bUuEyLAVgUJ8IjjFTcWbpQ72u6ZZ2HEPFs4Zm2o1Go9Fo7AmecEw7CztaJU8ni8oSbDC5A1ksw1hKm7px6lIz3SLbViFro49510rG651odg915ZXePY4nE2EQTKYSr6WOyWNCXWe8lvVWyCQlsQwy0ui+IuUBPWgXwLSKBvX88Zg/zUQ8H5mOm9ISSkSyNrIetyFzYWMZWUpUaZOhZCE9aRNAKc3S81S5UrreWFYV4IjuSJkucxd3oIODA1111VWHc+p6IiM1WzXMDD2n1l/HNnh+b7jhBknrNWNm7b5arxyfFx/jO8o6ZbtZuR3xGkq1zEC93v2ekI7q0aX1WJoJX3fddZLWDDuuJbNWjw3XkOuJwVzcH4+J2+/+OuSqn9FYH4NU+RqmxY3JRizJ85i4H5RYLL13zhqaaTcajUajsSd4wjHtzGqYOycmdF9KVuDdbxVIxDu4yLy8syU7Y71kQPEcdZtVSsh4DeE2mQ3ENvqYd8vWh5HVkLXFcnzOZTBpRmyjd9uUJDBwRmRllIjskppzKSyhmU2l46VUJYJW3GyjEVlMhaWALLQOp36YYx2v5XhRisGAObH8pTC58by0Xt8eC9p1UKIU583rgIE+mGQntrEKy0sWnSW12TWda7SHcBuzJEDVfHsszLiltS7b7WdQFQZxiTYnZMsMEZpJu170ohdJWuvGeY/rj4k8qNv1HLo/b3rTm470Mz4zZq1m2mybWXy0OGfCG9fHoEGuP87BHXfcIWmtm/dzbGadBdnxNS7P/fC12Tv4rKOZdqPRaDQae4InHNPeBWTjDL8YdTBknN5Jk4HHHRstY8n+mOYvXss20m+VoRulTRbo/pjN0BJY2gwRat0SrZMz9lnpztwf76Yjy/Gu2ztd77A9jpnvbWV7cBzEdtPS+zTCHtIHN/MH9dxZmmEG5uPRUpZ+62y7xymuUfphU4LEOYzrjrYMle48shdKbpiClmw09o8+tkzi43vjPYw/QKnMUhpWYynZzLlz53TNNdccts3PeGS+9Bv2OnZbrPvNEt54HsxMXRb9i+OYe2zNYq1fp67eFtSx7uc+97mSNu0D/AyaPcc6fc5tY/wBs/O4dpgwxP21vtr1RtsR66y9funBwXZFi3qPOZO0+LjrWbIM57vpYtO6Xg400240Go1GY0/wpGTahnd73qEygpS03sV5F+l7GFA/7uRpeUufUe8IIyvzDpeWkJVOPbJEMi3uOJl6NN5D3bl3vHffffeR49HK1DokW2a6rd55e/ccd6+0Uve9RKbLZBsrnD9/fqfIR7RHuBhQF5zZQ5CJ0Oo1SwWaRbGT1uskxgXw/xXzXPIE4LyQNTMJSSyfemjOj+ct6kFdD33jrQ/NUuAyLST7l+nODTLTDNM06cKFC4dja8vi2AbPmde++2xWbmYapQx+D5jdUf9txkgdtLRm5W63r3ne854nab0OYn2W4FDS5+Nue6ZjpiSBFu9ZsiWPk8F3GH3YpfXc+V3hT4+Vy6APdmyT15XLspQjs1WhZCdLuCPtV7KRZtqNRqPRaOwJnpRM21F5GM852xna4tLskanrvEPMYlx750fr8Sy+MmMxUw9JBhR3imTftHSlJbK0qb+nHtLtMcOO95qBmA184Ad+oKS1Xvy22247MjaxbbQO3cWSmnG4M4wxjjDtJYvzzNd5V7h9ZlheF57/OI603nbfaT+w5JNsmKX52swegjYUZMkZIybjIMOmpba0aaVLGwqD1uSxfNoAML1s1CdXUeGMLBoZWfgSLly4oAcffHAj3W60sqZHhFmx3xmUNsX2uC2/+Iu/eOQaW3ubAWfR1Ly+zI7NQLOIYfRftzTLjDjzBGFEPMYuYJSzKA1wfXyXuG2MH5GNid+vjGpHiYa0Hje339d4jPicxTZU1v9tPd5oNBqNRuOSoX+0G41Go9HYEzwpxOMWp7zwhS+UtBYb2Z2iCmAhbYpxLb6xuIhiRGlTlG1YBMSA/rGcShzO+iMs4qHxEkVDS8YWNHRzfzLRndtv0aC/Wyzme6I7Cl0sKvFrFiBjl4QkYwydO3duI7xsbDdF88eB59trx/3w9yrhirTuqw1pPB8WPWZzSiOyKuSutCmurgKzZEFIWAbFoAy2EcG0tAwNSXeurP0WqVahUGN7Of+7BN/ZxZVnmiY9/PDDh2JWil2ltXja4lwmp8jeAx4zq4ss3rUxmeff/Yv1+bm3KoWuZQwSIq3Hx211EBKPj+tzCNTYXrp6UhWRjbHnn2oR1+v+eMziPRbDM6iTj1PUL20a3Bp+j9N4N4IqFQaLOeuhSyOaaTcajUajsSfYW6btnd9S6EnDu0MG/WeKRIYXjGDwe4YvjTvQijV79+odYeZSQkMgGvNkwVzIMBi4Itt5VvX4Xu/gszI8BmYBDKJAA6zYbqYLJeI80pAlM76JmKbpsJ1ZchEaw1UsLN5LQyMG4uH8ZOvA7XdZnK/IVCq3KSNbmwx16+9kTQyRK63Hgv2gkVEW0pMSEK8HuvzF/tGgi0aGlBrFflBywM/MtYj3VrCkJrY/C93qte8xdJ+z4EDuC9NPmml7XNz3yEgpjbFBKMOXRtdJzoPBNRQlfO4PpT5my0wyElNzuh5fw/CibnPWRhqvOeiKy6Chn7SWgNCIkXOdBVdxfXyPZ4GnznqglWbajUaj0WjsCfaWaWe6vQregTlAgXdi3tXRXScyLepvDe9MM9ZGVuZz3t1lgTgYppQsgmwptpE7Q7LlTN9GHSl19zfeeKOkXNdI16J7771X0nrHnbk/0c2tcuOJ4TnNdLxTX3LfmaZJjz322IZrRxZsxeUxoEdma1C5m5HdkuXG9lf6fJbhfkibgSoYoCMLY8vQtExlyCBCsR7OKZlOHHuPKQNiMKwkxyGWw2AdVdrNeI76VyOzdaiC01S4cOHC4bpw/97v/d7v8Pwtt9wiac3C/e7wPLg+2y3E9vqY17bH1GPssYi2NJ53s1lKwvysxXVASQfn1gk34ruMjN1s1vp3j30mffC11As///nPlyT9+q//uqSj82N9u10m3Q+6fmWpit1G12MbJdvO+Bmh21psN1MD8z0rNdNuNBqNRqNxSthbpn0x8E6MDCtzwKdVrZkBQ2HG3VkVZpH1ZYkbiCr5Q2Ta1J1X1rRZ8AYmUmASC1rJZ6iYT9xhU8dM/X62s2Zwmm2hKB977LGNIDWxXkogmLjDiOycrJjlk/1nEhCPjz+5hmIZnLsq+UyUSPh/Mp5tKS2z/vic55+2D7FNZLP0dFiaL4YxXZKccf4ZiGOXsLRLbTl37pye+cxnHo6xWV+2DjguZn/0oJA29cKed0sizKyZ6lTaXL++1qzdUo7Izj0ODP/LlMCRnVtKRskUbTfIUOM5jr+t5bN3zFvf+tYj/bPHgcfKY8AQzNKa2XsMmNTEyKRd1Vqp3oNnGc20G41Go9HYEzxhmDbZ3ZJPr3dmVZrITNdsUAe8ZDVKNsYdYZb0g8yjCkmZseYseUl2PruGVr1kLdlOlBa/7l8WnpO6eDKrjNEzHOIu9gvUS8d7OA9ug/tu1hLbQJsF7thpCxDZUiWlWEq0QXYe9d3SpgQktpHlcg1lVta0tPW17F8Wpteo9INMlBNRhY/MwtlW9h30IY7PINfM0vvACUPuueceSXn6W0szPF5m2O6H2XkcW79f+Hy4DKfbNIOM7fcx30OfaPoZxz4yvWY1JhGuj2C8iMzWgLY61oebEcfQrlw77h/DAfueOAdVymH3N/Pn9zUeC+rMs3sy6elZQjPtRqPRaDT2BHvPtKuoSFmKRO6gzWKY+jGySlquUl9IfV48Rp9XBufPoqiRgZLZZayFelWyJeq0qr7GezM/Z4P3eKfN9HcZKvaZsU5a4e+id6JeP5vLSjeaWY8b9H0mfDzzL6YEh5HxMubjvjMiGllFdj/18NQ9Zqk5mb6VVuxRgkAGR/ZCa/UMlQQrW5dsI+cxkySxnqW1M02THnroocO+k8HF+12e7SE81tbNxjYw2hvHkuNmi2pp7bdsuO/2fY7R01gfbSgcnyLaQRiMhUDPCs+hPW+iNIDjTT9q9zuLe8DnyP2jBCGzU8iSicS2xbmmdJP1ZtLJJQnRWUAz7Uaj0Wg09gT9o91oNBqNxp5g78XjFDFZFJOF0KTojcYImWjO4hReS3eXKKqhCxTDClpsFOuh6w1FqxQFZaJ1l1ElGcncymgYVgWlyESqVRjJzAVnWwhKBtuIx7JgLdvgcmnIFUEDGoY5ldZzV41ptZakTVEfxycL6UrXNxokZeLeKl821wXF5vF/rmMGaIkiTiYRYS5siquP42rI6+I5to1zkBmvsX8ZpmnSI488cjjH7p9FwtJmohAbrRkuPwZXsXuTRc5Ui1BUa7cnaR0ulAFfOIcxkA1DD1vETkM4u3lJm8ZrXndV8JPYbxr90mjN7cgSIzGMqPvJxChxHVjMz/XNcMFRlUPXsSphUfYubvF4o9FoNBqNi8LeM21jyR2ITLAyvsqMH7gzq1LVZe4mZCt0KcrcUCqjIrY1Y9ruH43jMoMg9ofhU1n2kqEGmU7G6KogGtsMvGIbdoF31kvpPH2Oc2mGFRM30IiLQSho5Ji54DCoS8WIIzinTEuYSXYqlsz6oiSB48PUs5mxHI3hmPK0kk7FcwzTahwnyAXbnq3RKk1uxDRNevTRRw/H1sZSMTmGGadDZd56662S1mzS9ZhdS+v1xMQaDK5iJhzDbzJ8resxQ3XZMRmHj/laM1Nf47ZF9y6fs4Gb15LbxHdiZPZuf5We1GVkBnCU0nA9ZKFIHVrZ/WLAFxqWxvK49vnO2iXQ1VlBM+1Go9FoNPYETximXelIl64x6LoQmQHZEnWOmauP72F4SQbqWAqQwvYz2EbcTfocky5w55kl46hYH9sT+7fkVpWVFceErm0MTpOFg8120MQYQ2OM1AWPoI45C6pjeMzYlqrvUe/OcTJrjaEnq3tYTyUdiG1juli64kVdn8H1zLHOAo1QOkOGSqadzUUVRChz22KfvWYYCCjeSwa1FCjjwoULevDBBw/Hy6wzMm23wczU+m6mto1uYma07r8Zt93DOPbRjYvuhy7DCTey95wZtlmqx+fOO+88Uk+086BUkP2ji1tcQ2SvZKgeG0sLpLWumtI/zrHriW31ePIdSQlf9p6opIJZ248j2bscaKbdaDQajcaeYO+ZduVgH1kT9XLcoXPXl+mAqyQJRmbt6nus22EowCxlIa2TK4v3WB91igzP6vpjfQyiYZC1ZKEvjSpsahZWkuNncAecMfpd4IQhZPmxDbR2pX6Y4WylTdboT0pRsoAMHONKL54lODCY1CRjEWSyXO9kE1n4XK556gvj8xTZZCyXqUYZCjWWSwZJ25BMklDZTLj82C9Kt44DM+xoCc60l26fmSOftXg/289QpGbGZvjS9gA1Xn9RauPQn77Xlt6UTESJm5l7lrZV2kyZGe09DNoNuAyPSQwa4/FzX72+XUZmcc4++xqubwaGkdbPgue0kihFbJPEXm400240Go1GY0+w90ybCTQyP1b681W72EwPzmuo28z0oWSNmQU276F+hvpC9iUeJzun3yIt4LNyyJbYxkxfWKWAZJ/iNWRHZFZLPr277Hg515F90WebDDsLl8r+e7efJRqQjs4Ld/FMR5lJJFhu5Re+BM4lUzJGHSPXJseCaURjeW6bWWhldRuZHfXq2fqKdcRraNdhxsWwnbH9u/raHhwcHPbVjDXrM62sbcls6UP0taYnA625q9Cx0uazS12264+skn3mM54lLmKcBuq2rUd2PbF/hu8lA87sFDx+nsM77rhD0noNUaIYJRdeR9U7K5NgMrkI37NLCaaW7CwuJ5ppNxqNRqOxJ9h7pl3pYLMITkw0QDaTMW2WmyWSj+2Q1rs6WkwvRbUis6b/ItsYGR31qZQ6eNccWQ7b6DHKWDn7V1noVzruWJ7ZRxWRKM5bVf4uoL+ptLmbZoKITG/PueJ6I7uMZXDnT5aURY7j2DGiE+c2ghIJJorJpAOUOtF7IGP4ld/3LpHr+OxVVsOZPQMZZBWdMJZzHFASF59xM04zXj6XZKSxXdXzQpZnVhjLNeOmlMHSgLi+acFuVkz9e0yVaTC9KqMFusz4DFq/bckNdcoeT1uvx/J8jfXd1m0zyUiWGMf1MTKfy4i+5C4v+rNHZNEiM1uMs4Rm2o1Go9Fo7An6R7vRaDQajT3B3ovHDbqoZMZEFIdXAVMyUCxOB/8oSqE7AUVMmWjT5boNFk/RmChz+arCVlK0GcVGlfiTCVcyV6wqbCHFl1loV4rfqwQSsZzKNS8DE65EFxbmUac7EwNlxGNMxsL2ZmJkGvcwIQVDKsZ6LD6sEsYsJceoDJCywD10R6xEuEt5lL2u2U+uw1h+JerOVCBVKFKuu8wQbSlUbCznkUce2XiOsrpsOPXCF75Q0np8LIqOome6S9HIj0ZgmaEok4442YfLjs8Ew4bavYqi7mzt0HiVLliZu6BhEbevZUKUOG82xuM9lbjcn7EcG7O5LTfffLOk9TqMz7zHnElgoipCWg65fNbQTLvRaDQajT3BE45pZ7tuGl0xyAkDiGSpCyuWbmSskjtqfy4lCqmuWdr9kVHRECRja94Nky2TzVRBUeI57sKzsJUc86XgHcaSG18FGn9l4V7JqH1tltiA7a9cRoyMNbNt7HsWurWSYmRrlEZCZNqZdKYC53sp7aXHk25hXKvxXq6RKu1mHBP2nWOTrbuldbsNmesaje7e8pa3SJLe533eR9KaAUcpjcsxe6RrGkN1xvmxsZX75GeaazgGuvE5BxJxuTTyilJBvivoRuXvbk+sj4lB+B7IDFNdX2Uky9C7cU69NixlsFSDgW2iMaDni4zeyCRknTCk0Wg0Go3GqeAJw7QNurlIm8zGoB53KXBJ5RaW7dSop7WeiHrqLMwnmXwVWCTqshhsoGpbbDvrqxJ6ZEFKtrncZPdwJ1/pi7LUlsa29Kvnzp3baFOc8yqMrMcy22FTp01d/9I8kXFWIXCjDo66WIYGzXS0VeIMtjlzyeK5KlRoxlipA+b4MuiFtJkApdKlx3toR8C1tKRv3UUvaZ023YKyJCl0hbzrrrskrdNGxrl0wBCzPDNBSmkyWwr32efMED0G1lfHEKEuP6belNYsluE+Y/leEwx56xCrnh/rpGO5ZrzWF/t9x/Cp8X9LJjxn1lMvJXphQBu/Tzk38V3sdcYEL1zXmS1K67QbjUaj0WhcFJ5wTDtjPNR3MzACA5pkTJvMh4nXlyxXKwvpzKqWLIXsokoJKa13qQwakum/jEraQLaWSS64K68Sh2SowqZGVCE9MzBhSBZa1eWZkVTSi0wCYjD4A/W7cU45V1XAmkxKw3VnFkYL+HiMulKGxM2so70maEXO/mWJN6oQtFw78V4GZjFoUxFZM6UzfPYy+4XjsqQxxuG4eTyXgp1wPhxA5NnPfvbhPWagbp9ZsVmy2089rrSeD3/SLsVjcPfddx/pQ2y359b1uSyz52oc4j0c6xjMxVIGgpbZkWn7nKUQZPIMNBMTlFBCYT27591lZuuNa4gBgfYJzbQbjUaj0dgTPOGYNlmztLkr9qd3uN6RZpay9HH1jo1+wHF3VzE56qXiebeXTIo6bu8MvROO5yqL2cwPlLpZSgXIcrOEIVWI16wdZjFV0hTqomP5lIhkMNOmHjz2mbp22jp4dx/bwN29zzHhidfQEtujFXyWMMSWvmTHLp9SogiGJKUnApOesK+xTZyPJetx6rL96THKLJy3eR5k+mmmoKWkJ5Oq7IIxhs6fP39YN1OnRjDpC/2A47xwrdD33izSjDWOceXT73eL/bfNLqW11biPWbfte6xHju8qP7PWybuNUXctreeL1te7ILMrob0F/cKtd4+SBB+j/zlTIMd3jMeEtk5cMyfxMrhcaKbdaDQajcae4AnHtDO2XKVhIwOp0mFGkLVyFy1t6oyYFo4pIqX1rtG7Y7ImMv4I6hsZ9N/3Rn2UrzGzpyU1LVvj7tXHmDTFyKJbVQkpdknNmenVK3DHnFmwc9dNBp75jFMHT30053ipr/RFzvrFe6kfjuyF11LiwTHO9HhVWzO2WflJV+MYnwf61LJ+I65psnHq3zMpzUlASUHmyeC5c/v8DPh47CvjNNx3332SNhNr0Co63kMJFf3B41p1u613d3233XbbkfNxbF1ulkTkUsJ9Z7wIj4UlCfEdY9ZtaZQZNxN82BI9nqOtRmYHYbSfdqPRaDQajVPBE5ZpZxa5jO/N3XMWmWib/zIj7kibKd3or0if2Fj3NlaZsUBaPVfW6pE1UadERmcs+doyhWHlUx7LITvi+MY2kxnuYunJujM/T88/I1Jl6TYZW55jSracWdlXkdEy63pa3rotPp7NB6UkXGe8J/N0qKK1ZbHWq8hr9EPOGAsty8noszGhpS/blkkDjoNpmvToo49uSJdi+z2m7iMts40opTNzZjpPepww+pm0ue4sNatyFEjSDTfcIGnNYs2e3Xb6b7vvlwOu12N00003SdqUUkYJpsfrnnvukbReK5ZceG48ntLaYp9rtrL74f9nEc20G41Go9HYE/SPdqPRaDQae4IzJR53KMrTcHjPkn7QqIoiYn6PoAiOwS8ykQoN3RgyMBN1Gwx6kiVfYFuqellmPEc3l6rMCLpiUfxPgytp01CLrkW7GGVdrNiKbkVL42NQBVCFQs3c3Co3OrpEZSJ812NxYeX6F4+5jRbD0g0pUzNUyR4oNo/rgXPke6uEPBEW89PAkkFrooqJrlP+XHIPOw7s8sVnK0tAQjUPr41hRf2/XbpsQOX2M2BKFHVbxOv5d/3+/vznP7/sD11O+WxlIXAvVsVwXPBZe8Mb3iBp7a7GUKjSejzp4kVDv/jeeeCBByRt/gYsicuX1HxnAc20G41Go9HYE5wppi3NO6KTMG2y57iTq8I4crdvZhJ3agbT0JGBeGcYz9FAiMZXMegE2T6Z1S5pPcngq0AW8ZrKXYdjlIWFNdg/9yXWx4AVlUFXJg3I2n8SVAlUaOCUrT+OD9uWGZ3xGEOCZm5VZL6UUGQSEDJtuiFVYUZjWzJXsqzsrPyK6Wb1kdmYeZM9Zal1q/ClFwsbovH5yVyj2AY/91lYXj8HZtBcDwxRajeneK+ZovvKNJtxXq6//npJ6/Fy2+hqGo29dkl3e1xUz3Z2jBIqG6bZiC6ud68VSyHs2mWGzXC+sXw+03z24rydVYZtNNNuNBqNRmNPcOaY9sWyqaVEGkxHSfeJLLgK9aBsn+/xDlha76ypc6HuN7vHn94lU3ee6cMrF68qvWO8n7py7oD9maUNJIOj7jQLcEMmR+aV6bSpfz8pKFVgko9MF1/pev1JFrULWG8MNELmyT7TnTCCiSKWQroa1K8TmeSKbolVCtJMN8ikFtTrZml0KZk47ZCTY4wjEr4sQQ3dzvw8xDCi0pr1SdJ111135Bxdyuy6xBSe0lp/S/sav7Ps5hTTbNINjUGXXE9873gs7Q7mz4thm7sw7eoc11Lsg/9ncBVKRmP9Hi8/Y5X7aIcxbTQajUajceo4U0x7mqYT7/CW7qustqkvzgKMVCncqKPN9ODe+WYpEaWju2gybVoAV2FGYz+OY6VOJk2GvRSkhOPH9HdLVvFVgvld5u+00uhVlvNZ26hrJRz8gTYCUp7qM/ueje0So67g8YnBJbaB880Qv7xOWvcxS9cZzy8F2aEVOfXIWeKVLN3qaWCaJj3yyCMb6yvTaXOcrIPN5to6alqNu6xbbrnlyHeydmm9Nl2G2bvfE5mHhpN/uI1OG2pkKXoZaMr9sP576dnje9SoUvbGY9vS+WZzbV0203hSwimtn4WlxET7hmbajUaj0WjsCc4U0z4NZGyJuzXqgKk3jrswWoVSL0WdXLyGOnIej2yGx5iS0X3IknRU1sFZ4gPeQyvxysoyY88Mk0ldZyyrsmw3Mr18ZaF9saikCbQQz+rkPJiNMRSqtBmKMltfUi7ZcXm+91Ixgyq9Kuc0Y0uVnp/2EVm6VYYFpURpKdTqacNMm1KGpZCqHh/rgG25HefSrNh99DX223bY0SxRDZ+XyuMlskrrt++4444jbfU9lgpEnTbr43No9rq0Dqv0tUtJjnwNdfROpZlJPd1uX+PxtW47S815qaU0lwPNtBuNRqPR2BOcKaZtK86LYRXZjoo7fkYIImteslImI8l2k2TLlSV2tE71MVq08zPTj1O3XDGfbAdapXNkP7MkGgb1RJlOc9tON4sotgvzOQmqNJRGptNmu61Hoy426vXIKivEdWBmU+nBTztyFRkN11s2l9vawIQYsf9VNKtKSiTlEpBLAbY3sjwm7rCul6w1SsLMAK2rdp/f933fV9LaFzmT0th7xPVSEuY5iNbqTtvJxC1uU2Z3wWeZ3zNJolHprJnII1rFW7pAjwD3y/12m2O6UuunrbO3xMLjxmQ7Wdv2WZdtNNNuNBqNRmNP0D/ajUaj0WjsCc6UeFy6eEOBpZB5VdAHGr9khjMGxchZwpAq/GYVXjSeY8jVSiScBSGhmI0BYZYCz1QiyCzPdSZmy7CL8RLLz+qpEqBcLCj6zerZ5ppGQ7X4nWEV2R8mXInHGOqWoS+jARITj1RrNkvKwnWW5ZTnd/9vd7eq/KV1UhnlZcFVHg+R5vnz5w/HMQvwxLmq3CmzxCq8xmJxrw9fF0XtDl9qUbBF7QzlGROU0CCLbls+zqAvsTy6mlLUHvNb0xCVaqcsoYv7/pznPOdIeV6HbquPZ+Ppa7J3IFE9E/uMZtqNRqPRaOwJzhTTvpjgKgaTQkg1eyTb8840M4LxDrsKRhLrWDLIivVkgTiqYBMMZxjv9Y6WO3eGF11yYWGyDAVomkkAACAASURBVBq+RdCorDIyyxhS5gYkbbq2xDYspSU9CY6zxrZdSwlBtu5obEUJTDReYh99jskn4vgx9KTnskoKE+e0GlOyxCgNYLvJZhggJo4J1yalEEuSskuFg4ODIwFH3NdYr8eM0hO+H6IExEZVvsaGWb6W4xPH2PXYuIwJNVxWTDJC5lsldHGZ0towjOzV/bMRncv6jd/4DREu323yvVmYUa/N2267TdJmkiafdwCVaIjG8bLE4O67795o0xMZzbQbjUaj0dgTnCmmfRrIgjPwnHdzDGOZMdEqwEfFnmM9lTsVmY+0maaPARdcfqZLq8KIsl9Z0JAqCcNSQBMyxV2YUJXSsgp0E48Z21ynLhYnCd5CvVpkzZxLswqGvo394vxS4pGNNdkw3ak4blFfXEkxyIiztUMdttcD9b5xXPlcZnp91vd44MKFCxvPa2TNlMqZmZPVmiFKm+8Z6njNHLPQtR5bs3UHTHG9TjYS7/HzQt08n+X4jJmp09XP9VuKYx1zfCYp1bS+mojrjakwuf7cX+vYM1sKX+v6rr32WklHWfkTGc20G41Go9HYEzzhmPZSGFPqofiZsVgG0KcOOGMEDONHC90lZsrdMfuTBXPhMfYrswA3qtCTDN8aUbWfbDoyrIo5URoQWQCZ3KVm2ruAY0jr+4ytM30n+5yFe6W0hqwm2jgwiEscw3httg4qNraEKhAK12gWhIV6dQYPoSX84wGHMXWdtJiWapsWM1/32XpcadP+wOd83CzWeuP4rPmeN7/5zZI2Q5EaWRutW3bwEbfRYx/14E5a4nLMcPkeyPTulYfBUsIYPi98J7t/toqPdViKZf37zTffLGmtHzfM1qWj1u5PFDTTbjQajUZjT3CmmPYYQ2OMU9ll72K5XIXyjDBb8A7UfpJmBJl1N3V59r+ktW3Uf3rH6V0+28hQfWRT8ZqK9cU2kmEb23T38Zh3/1WKxsySmjos6rRje1jPEtMeY+jcuXOnllSkAnXySyE9ObaVD36m8/Xa8HxzbUZ9q9cXWaDbtrTOvSaq+SYjivWwPq7JbH24PvfLbadv8eOJCxcu6D3veU+Z4lbaZJFkpj5uFi2t3xFmvkwgYoad6YQ9d77WLJ32AtHq3f+7HCcoMaP32McUoLYkd3mUCnFdZMx+W9yGeE8V1yBKKKT12D3rWc86PHb//fdLWvt4Z5bs0hOTXUc00240Go1GY09wppi2NO9ouRvLEl1sQ7yuirrFsjJfW+p2qNv2Z2wzk3pUrDIyEO5Wqcskm4mshveSabHM2MbKF5rHl9LrGbREz+agij7GBCzxmixJSoZ4/vFi3MZSUhZeUyVlkGorfo5bvI7+q2TUVfQxaXN9UZLgzygVqnSWGUPlddQX8zm6HJGrpmk60uYli3lKL+hzHSUvliKYAVu6QP9p63FjwgtGFTMonckilJGdG/4edb70BDErZyrOpXnZ9qyd5FnMmL317+6HJQdMQvNERzPtRqPRaDT2BGeKaVsvaVxM3NhMT1jt+MhQIqg7IpvM9JL0w+YOm3pEqY5LXcX1jags2Ssr8niMDJF648yHfRv7y6QPRpUCNLPcp/X90o59jKErrrhi61xfKmSRxajj5TVLVv30gV9KS1qtRbLoLD5AFXOe9Wb94xxyzBlbINZTfV4OkGnvAj/TmdeDwfjxTEfp82a3EdbfGrwny3lArxX6zzPmQwSf6V3iej8ez1i0dKfthqUBUQr0ZEAz7Uaj0Wg09gT9o91oNBqNxp7gTInHpVn0seSkv0uAknivtCker0KTZmXT8KtKkhBBNx2Lwx0UoEp/GI8ticNjm6W12I3uKJXbWLzHbYnhEKVlsShRiVbj8SpNYeUCFtuwFKwjXnvu3LnL4jIkrdsW3WloSEcR9y7zX4UZzQzeaAhWGQpm97JtlVFbbMu2/mTi+CphyL6CBmnxGXOAEBtI2WjMa4QBWu68887De6lGYopW1h//p6pp6V3CeaZhnbEUavVSqjbi2qkC77CtT3Q00240Go1GY09wJpl2teuPOIlxGl2hyLyz0J2VqxUNtKIxxLZEF0spMg2yZiNjpGRW3FlnO+EqoAwZdmaIVu2wl8KYGjQqI9PLpCq7JibJ3AUfL2QshsaFVcrWOLYeb/aZxkRLQWjYpiVXR56jq2HGqnlt5S62Cy7XfGVgiM3jgIxbku677z5J67mzqxVdvRygJUqS3AYHO3FgFrP0LGWqGSfdNZkSNEo3mLDF9bJNlshFgzsGxGECpiXJ2ElAg1um83yyoJl2o9FoNBp7gjPHtA8ODsqgJ7xOqvUpSy5f3HEycEIM98ny6UaRMWLuhsmAMrbMnSyZ21LyjCr1Illzpv+q3N2qICv8X6r1kllaPdZLJp/ptJeSs0RM03RZgnNIy2FlGYJ2KRxrZV9B/XCWmpUsmW2iq0wsx/XEtZ+1I+sXJT38nrklnUV2dNqsn4ya7xem6IxrnxK9F7zgBUeuyaQCXl8V473xxhs37vH82t6mSifrzxhW1K5qDMPKwCwx1CqDUx3neeXzfxbX0OOBZtqNRqPRaOwJzhTTtuU4WeVSaMhdLBe58ydLrph4PEd2QYYSd30MyOJdqhlWxsDJoCvr7SW9IZNNEHGsKubONmZhM8kG/cm5yNJscv4qKUQEreMzOL3i5QrSkdVLZutxo1QjstuMDUcwjGaEmZbLs7UyE9Qs6cO3BSCS6ueGz0IW6OYsBFN5vBDDkkrr94FZrcEwtNJ67By6k1InryHrnuM9TlnJlKBM1hLL9dqwVOCGG26QtF4XTiwS16XPMeWo+2mdd2yj4Ws5Ro3taKbdaDQajcae4EwxbWnerVNvcxI9ZdzJVwybYTepz8nu9c6UOuiMoZAtM4xpZDxMilGFiMyseXmO+v4szKSv9Q7b9ft75cMeseQHHtuRXWsseQoshd8kpmnSww8/vLMf/2kj61+VOINeClGyU/U1kzrxHqOyNM/8dSlp2TansXym7WTbM6b9ZNVDStIDDzwgaT2mtn3J1jXnjFIas/V4r9mrJSxM9+vPGDbVFu2eF99rduzvfi9E+xUyacalWHpem2GfHM20G41Go9HYE5w5pi1tWhovRVQylhgWEyh4V8moYJl+uvJJJqvN9ISs3/qgJV/rXSNTxeu4K68iVcU+MEEIJQe7MFWygCUWXemyKU3J6l3y+87aczmwZClNnX/lex3/pw7TLCpj2rQS5xqhHUZWRpUON4uiVlmJ8znj8xbb8mQE+27Gax1wltaT0jrPh1l6ZM1ve9vbjpTnZ/ruu+8+Un9ky07IwfmnRCR7xqv3nO+9GL/3Ro1m2o1Go9Fo7An6R7vRaDQajT3BmROPLwW1j//T9WlJPE4Rt7/bkIK5sjOxLsXylQgynqP4kKEH4z029KiC+y+J441qbHg+wvVuE7Fmxnn8zvHLxNUcC4ps45jQwGkJlzOwiuuXNsPRSptr1PAYx7FnYBzPD1U5cf6rULSsL1NBcK6qhCVRpEp1BcNY8p4ns0h8F2TBVTzPnn8bnlHkbFcsaW1U5nF3Tm6L2m0IF0XfNiK7FHN0HLG4+/lkS/5xEjTTbjQajUZjT3DmmPYSy43/00BrVzYWr6VLhHexWbALGvMspax0m2iQQWOyjC1t+8xCYFasn+wpazPDiFYsPQtVWgXZWJJ6MG0gw5ku1bkPjC0LzMPQoGTYWfARS3/IsKswt1ItdarWcDxWITMCJJOuXM6eDAFULgacFzNlac2OzUD5TvF3p/+Mx+655x5J0vXXXy9Juv322yWtWexZNAxshr07mmk3Go1Go7EnOHNMW1rWxZJ5Ms3mUnnbwpZmQUjMeMgEGQwlc6ciwyXjXupXlWCD12f1VeO3VF+lq89Y0zbXniW3tErfamQuU0vuYLGPBwcHZ4rduS2W5FBKkiWbMdvymPoeSkRiWZV9xzbmHY9VST4yVzY+P1XwosYylkIyM62m15CR2QvccccdktYs3e5gmYtpY3/Rs9hoNBqNxp7gTDHtMYbOnz+f6t6MKjXdLuERGb6U9y4xBAe3IONe0nEzMAJ1mVlQjYqNM5FIZlFfBUbJdthk1tRHUwqRhef0OVoRZ/1jWyubgDiPDOiwjSmcFf3cNtBaOK4pSi8qiUtcq9RzV/YeS/YfVWAesun4fyVxaZwMWbhXp7t02E8nEHEglfi8OOCKpYN8Lq0fd2hSac3gK52ybSkyr4jG5UEz7Uaj0Wg09gRnjmmfO3euTP0YQZayZLFcMWwyOe9Is9R1BnWOmTUv22RWSQaaWcXT0pjns3spmSCzynT1FRum1IH6yniNd99L6SKJJetnllH5yFf37cq0L1dSEfpgZ+Pm8WFoXYY8jeycIS45t0sJQ8iwl3zs2Y/jzHtjO6Lemok6qKf2PNlCPN7j9JrWhz/3uc+VtPb1jnNrhu1yfI2fbX+eVkhShi2uPF4aNZppNxqNRqOxJzhTTFvSEQvgXVJzkqFmuhkmAqF/LK2eI1gercYz5mOQcfMzslyeq/STGVMlW64swGMbq6ht3En7eByHyhaA85TN2zbWnOnqn2jgesysuT1ntqWghCWTSGQJb+I9me6Zz4TZHll0lD61fvPSw6zZftge/5tuuunI+Tgvfjf5GjNu+21n7yraw1xzzTVHyvVn5kXjdcVEJYziZsYvbdrBZDYTjWU00240Go1GY0/QP9qNRqPRaOwJzqR4nP9HcV4VOMRimyX3LQaSoJiX4ux4zrAYnsFJlq6h21bm6lOJ3auAKTG4xrbALBkq8RTFs1nADIq4dgkAUxmgVGqAeA8NrS4W1bgsiZ4vJaK4mevZ5yguj2NhESbvtajb8+R7szCWdP3xfHOuG48PPB82PKNKzyLn66677vAehin1fPvT4vL43rn11luP1OukIhaT33zzzZKku+66S1KusrIbmp8ft+PZz362pKPvDovOLVLvdXV8NNNuNBqNRmNPcKaY9hjjMByltGYTSwlDyGIZ7i+iYtqxftZHlycGxsgYNxNFVC5gSwk8tgXMWBoTukq5nsiwmE6RzIoGaPHeKjVnlszEqCQkDG8aQeZ72qx3W5pX6fFnAjQmc/1eS2bVcSyq1LJcB57LyNL5rBltbHY24Hlg2GYz8OxdZfh5tCGaWa6DsEjSnXfeKWnNrJn61ak7r732Wklr1i5J73znOyWt3dG8Nu0+5nujsdwuYacby2im3Wg0Go3GnuBMMW0HyKB+NXOJIfM8Dgtj4JClYBdVGsUq7WY8R1cyBrmIO+OKcfJ71s8q8QA/I1tmGxkwpXIBy+qpwozGdmVSjPg969fj5fK1lOb1OKlfLwWYdMSIUhq71niuGAjjtAJjNB5/2LWL7z0fj8zXjNbz7EBQnn8zbDPveMzluAymKXZZ0fXT7Juui9aLu4wotfE6bhevk6OZdqPRaDQae4JxlkIQjjHulfQbl7sdjTOPF0zT9Kx4oNdOY0f02mmcFBtr53LgTP1oNxqNRqPRqNHi8Uaj0Wg09gT9o91oNBqNxp6gf7QbjUaj0dgT9I92o9FoNBp7gjPlp33ttddOt9xyy6FPdBYxjMnS6U+cpXqjj6Ov8Xf6a0f/4CrtJKOQZX6HLG/JN5G+zrx2F39h1rMU6atKOl/FD4/XZeVl3zN/5+razCe78hW/884776MV51VXXTXZb3Qbqmh2lS/5xeJijD13SWG6dGxXbLt36fy2udylrVX62l3KW8ozwHX++te/fmPtXH311dOznvWs8t6lcqvzJ0H2fFbXHKeeXa6tyj3OvFc5CI7blqoMln+SOTjOWPA9cPvtt2+sncuBM/Wjfcstt+hVr3rVYZB6O/zbwV9aD7oDzvvzHe94h6S1I38MRsGAKL7GAQqYCztLGOEwj3wJ+N54j9vrY0zg4PPxZVOFFa2Cj8QxMRiAw98d5jIGRqg2Msy5m+Up56L2eDqJQfZQMdSpP32NQyzGH2i3n8FDvvRLv3TDPefaa6/VS1/6Uh4+ArfXYRe9vjw+bpPbEu9hCFyO39KmzajyjS8FDzpOQJRtmxGu2ayt3KRlL09upj1uVWjaLH8zy2K+Zn+P1zDEr+fJAUHiHHjcvDYdcvNDPuRDNtbOTTfdpK/4iq84vCdLkuN5YQIVho6NY1OtGT7bx9mQs+xdfqB2ISU8V5Ub+8d1xDW7S7+W2rbUjuxevqtjWzhefJ/Her2e+V743M/93DPhFtji8Uaj0Wg09gRnimkfHBzoqquuOtzNmQnFXZB31dzdG2TV8f8sfGgsw2VHFks2aRGs09x5pxaZARkvd5FZuFSyEyaK8D0uO/bbLMLjZWbqMsm4pbWUgfUz8QrZQqzHY2PGYzbOtJLxHqomjKW0mwwhe1JQ7UKmk4WSZbsosj9OmNNdrmU6Wn5fEj1W67p6RrJ63V+G3M3ur9Kt+jOTKFFCxEQ1RpbUhP0iS49lMHlNJpmK5V1xxRWH/cjUcpVkjddmYn22v1pTSyoB10tmH0E2WSVXiu+d6j3K0LdLUhqOAdd5nIttoY+53rKQ0qy3Cm0djzHxE/sX72HSntNWl10szlZrGo1Go9FolDhzTPupT33q4c452+GQeVTpNeNxs0ozUAe/966LwfedUi6W5128g+G7jb437jaZTMT1cLccd6Bktr6W+jrqx6U1i2AZlCxEds1dN5m9P6mvjv3i2Ps4WXzsB3XXlGRk+s/T2uluS3dqLNk0VDrtXYyWyOiNjNmTrSwlm9lm8Mg+xPor48VMr2tUDI4pZ8nIs2MZq411SDm7i9fEpBk8t8QQI86dO7eR/jLOC59l1pOtUY5txSozCQzXV8UQMx0654yMNGOVTIzEPmTfK6nPkl7a5VNixWcxS8u8zcA2k0ZV/avsDPi/dNTG5SygmXaj0Wg0GnuC/tFuNBqNRmNPcKbE42MMXXnllYfiLoslMiMlGmTZ5SszsrFbmK+14RZFQcwDG6+xKNvGVnQpiS5RBsVSFN9EYzmKg/jdZWSi58ooZhfDLYrmaBBEIz1p0xiH9dMlR6oN26h+yETTu7i3bOtf/H+be0lcb5URI0VoFLdFVEY+S/7LnMvj+J5SLMu2xnVX+TxT/ZSJRakaoMg7c/nyc0SXQoMi6vg/n0UjE19yzWwzRIvrZJf8476GovRMnFu5yNHgKY5T5c60JHqujBWXDCAr//jjqKSqNZS5q1b1VaL9TGxduYllba+ejcqVNpZPt7CzgmbajUaj0WjsCc4c077iiis2GFGEGRldoAwzwrvvvvvwGF2sXH7GjuN5ab3b8rXeNZORZvd752vDNu/2bQiX7ZLJUqq2RhawzeAtY5ZkR2R4ZI6xPu7CyUYzZuy2kPFERhWvi226mJ1uZnRlcLe9FFmLzJOGdOzHEnhtZnS1za0qC1xTuUYtsZkq2ASfmewe1le5zkUGyYAVZPbZXDPwEJm2ERk3Wec2Q7R4bfb+yYzTlvoh1ZIHjqnbHceTrlaVVCsz8qKEoIqumJ07Cbg2q/5m126TCmQsnWNOLBlPEjT0kzbH/jTG6DTRTLvRaDQajT3BmWTaDHUZ2bR3Pd750hWHulNpk/lu2zlFJnScUINso+G2kC3HXaZ3277X/aC+LgvEwJ1ntZvN9Lscv1304BWr5L2ZNMKSELMCMqGs/ovRLS3p5iq3t0yPxnGqxi22v9K5LTE6ut4xQMVSPH6yy0pqElnFtudpKZZ/9Sww3GhkuS6f631p3TGsJOfU90YGXrmjLYHXxP5VwWYySZRRuU/tEpiFUqDKjTPWS+lI5XKY5QTgfGfhmdlGopK8ZPYQbFv1bl6ycWE9x7H7WHovLEkMzwKaaTcajUajsSc4U0xbmnc11F1lzMC7VOuLzeCilfNp4CT6DDIp6j3NuKN+l0zHrIKBAzwmcYdd7dy5m6x0+I8nuKOnJW2mb1vSd27Dki6Tu/ul0JBkOJWuO7aRun6yPkqU4jWURFSBS7K20nqc/Yz3WhpCvTGDqxxn7F0+7UCy8siI2Y5YTiXhqfSj0nLwkwoe+1gfQ+BmoYgrVOtgKfzmtnWX6WIriQvLyAKy8PljWRmbpS3FLsGKPBZcZ9U4ZvVxbDie2TjyuVrKOliVf1bQTLvRaDQajT3BmWLa0zTp0Ucf3dAjxl2Rfa7ta21mTSaSWWI+XuCu0f2x/7nbnFlkc4dLH84sFGWW1jJiydL9coMhXyOOY0dAZOVVoTO5o850fpXOfSmxxjaL1SysKcPIGmbjtEWQtvtpG1kyHcYbqKyWT4Ista7Xqj0o6LdtZOzMdh7+dBm0A8iwC1tamhePT8Um+c6K7WacicpPP7OlqOwHlkKfVvdUVv9L97A9SxKLzGaCZW6T4FAqma2/Kt1mVl8ldeK6y0Lt7uJxcDnQTLvRaDQajT3BmdtKPProoxusM1qPc+fkHdN9990nKQ/s7x04WVIVrD6z5r0Ytu76lyxZq50ud5VuY0yzSR9osldfG8fx8ZY+bEOWAKHSWe0Cr4vIvmgnUOm5luaHEg+eX9Krkq1ku3yeY3mZTq5iHly71K3GY/Tpp1XxkiSE0gGz6Wc+85mSjib0oLSjSg2ZeTqY7ToqIH2+owTB53bRS44xdP78+UX/5iphCMcvSrVYHsfUyKzsK8nbkgcKr91FT7wtOuBSwpCq3EoaJW36pFOnXSWuiaiSfrAdsR6C9Wa+/0vxQi4nmmk3Go1Go7En6B/tRqPRaDT2BGdKPD5Nky5cuHAocnL+67e+9a2H19x///2SpHvvvVfSpssKRXRSHZCAonaL1LJQhNvER5koikZxFm1ZvBNF3Bb5ud0MrkFRZBTdxXKkTaOlrF8U6zG3+OUKKJAZgR1HPOUxf/rTny5pbawUz1XGL64nitTpYlWJczMxI9UhFMUt9atS3WTufQzlaxwnOAQN6pj8JRsTGpXRuMzn47PItUksqRcMP0d298yCrlTJJSqMMUqjpfg/x5rGslHMygAldJ/KDG2NKhgMVQGZeLzqx5IBWuUCxXdYpjIwqF7K1D+8Z1swnyy4CueUKqNM/M9nfCmo1C7v9suJZtqNRqPRaOwJzhzTfvjhhw93s9lu0kywCtloROMXg6zVTH4pFCFdYQwaDGVuLazPjMD1RsMZM0O2lUzf7mKRQbL97rvvufrqqyUdZQkux+2mgRBdWOIccExc35IBIftVIdtZHwduS2awRWZDFkGGGNtQBcQwMqbNNlQSnoydMzQtw5jG9ei1QHcagxKezCWGc8p+Rgbp/12v167HzeucxmYR24KGxDFxOV6rDLrkdZaFS91FSuOATpV0Q1q/d/zM8rlZck/kmDK9b5aa0+Uz0AvnODPYozSGz3JsI8e0YrE+HtvI55PvKkoApfU647U0tONnrK8KQLQksaBBm9dqFrBn27N+udFMu9FoNBqNPcGZYtoXLlzQe9/73g2mat2VtHYjYdrL6667TlK+63Y53i2TATFIQ2TtZqS+l3Bb466TwU6o07zmmmuOtFXaDCbgna+Zo9m5y85co8x4GBQg09vQ9YIMgbv/LLmJ20p2m4Vp9fgdJ9DLcXSyYwwdHBxs9CcLgcvwodTBZfVVrjEVY5Tq9J1LwYMowfFYkwnFsXWdLp/18jMLDVkxONpYSJvscpcQq6yvcoPLAsNUoWItQWL/pfU6q9J4ZmDd8Zl3HXTfpAtgpgen3Y3fKVzfWRKgKvUn1wnvj6CkInsmKFHhs5AFGtmW+MSfWTAf2tL4/Rbf9dtAdp7ZM2V69fg9Y+JM2nTW0Ey70Wg0Go09wZli2tK8y1nagXpXxdCg3nU94xnPOHJeWu/0rGPxTtc7dVqGZoFLuLOlFWxso3eL3JUzOUbUSzNRgvtJVmFkVqrUJfreTC/v8ph4xWDYxqhbsrTDTMTXeC6ypCYeC5fzjne8Q9twEp02WVccJwYBocRliYlWerSKTUXwWn7GtUNbBn+vLLPjtZ7DbaEoYxsrC3faamR68CqoC9fOEvMhE86YXWUVTSv2OI5V6NAKBwcHh3V6XUcJCMenSmkaJUn+n0kydgl6kul0M2T9ogSJYxzHlu8OPstuU5aIqUqew7GIY1JZgJ8Gq82eQb63q1SwmSQxC0Z0FtBMu9FoNBqNPcGZYtrTNOmxxx47ZAyZHtT/07/QTCTTmVLv6Gvp78mEBBG0so1tlo5af1N35Z0bd57XX3/9Rr/cZ7eB+vEbbrhB0lHr+CoE5Lve9S5Jm+FMY3n0Ua90nFEq4HLdNu7C3bbYRlp2XnvttZLWY1+lXTwOpmkq/UulTSkJ9XTVLjxeSzZOlhHXB/tEq+EsMUGViMJjaduNpTSild6QiTey/lQJUrIxcTnuM6UQWTwC/+9PS22WQlPSNqSqJ7JO6piXbCmmadJDDz10ONa+Nq5fPrv0YsmSg/DcSSRHlLgsheysyueznkmfqIemPzPHOsLXeH17XWShmbkmaTNReescB1l9XDtL91Ay2tbjjUaj0Wg0ToQzxbTHGDp37twGQ4k7SO+UrLum/7J38A888MDhPYxm5bSeZNhGxmKpH6Klbra7o67UFpK+Nup1ycYNShbcz1if9dNMrOB7XG/GOt1XSwqoS6cePvaPZbht9C2V1vNS6UovlmlP03QoqZGO6lGNyto5lhGvk+roUh5jrx2PW9YP6sYomYi7f44TmW6WCMVtIVNkvIOMrZEF0ueerD2WY9C2gZKMqJflerPk4KabbpK0+VzHfpD50J4kS69YRTKL8LpxvywFytJs0mKZzDCzadiWMCazfqdUiO3I/LQpUWQkxsw+xaAEhP3LYgrQnqjyl479qlJ8Ug9PuwVpc2wpQTIy2wY+81U0t+ya43ggPB5opt1oNBqNxp7gTDFtad4lUX+U7YK4MzOb9I468/P0ruv5z3/+keM/8zM/I2lTrxuP0T/cvtbekcY2UpdDHVmUAlT3GLR4dh8yy3Pqv12vj0cLcdfnc4z4XSzFuwAAIABJREFUZLjNjvke2+K+33rrrUfKz/yPK4Zw2nF9OX7Z2uE5MtA4Bmy31xd9rzN7CM/DNn1dZM30w6bVaxYlkKykYqCZbo56drIlsvWsfLbZx9/2trdJyr0xvO68rrz+nvOc50iSbrzxxsN7aB1Of3BG2cquqWKdu9zMDz1j7paScC35fOwr1xOfT+qNI/gMkQEbcb1XORZoA5ClHnbbLLXz+5VW7JkvOdtEKU3GtCvGzXc1I0VKm3Eh/O7PLNwrL4Il9szn5DixJR4PNNNuNBqNRmNP0D/ajUaj0WjsCc6UeHyaJj366KMbAeejCMgiEItiKab08SiysSjkec97nqS1aPuuu+6StBkaNIpkKEKlS1QW7N//x5SisR4jirjdLwarp6grC+3pe+lq5k+Lk6KoyONEwz6PFcW9WVhYink9bm9/+9uP1C/VLhenLXriuGVGZVl4RWm9ZmK7aTzm9rMfmcEejckMivGiqJVicYrzMhemysiGazcL08rAJZ5DukztEmDC5VPEGkXPvsb1uI0Wj9udMAYT8nNCw04aLWWqkMwIkzg4ONDTnva0jWcsc43i/Lsf/oxzSfUex5ABTZYSXrCvRpaa02B/PI7ZfLgtVcKdJXdIurtRRZmpwJg8xcZ/DLaSBWah6sNt9vGooqJqiO/v7JmgaiJTX1xONNNuNBqNRmNPcKaYtpSHvoy7rczlSZLuueeeI9dmrhD33XefpPXO0K5fDPrv3X4sz+ycxiU0NsvaZlQuC9KmSwrZoHeM7n+UBtDQhe4ZNvaJ/TKLcLt9zjtff8/64h272TkZvtlNTLjgtvmTrlKnBe7qs7SXVYCULIAEd/MG5zJz0SGL5FhmBk80kKHRV2Z0RYbm/jCcpJ+n2Be3iWvH3xmaNoJGQ26H6/E6ycLCeq34HgcassFnbGOVkIJsMEuLWqUrZXlPecpTDqVPWVhUho+lMZnri++BSiLA59PjFNvIe2kAmYV4rhK20IAvSvi2hSLl+Yz5GpVBWmaQStDAlu5qsR+USnq9+Z0YJQlGFcY0G0cmyzlraKbdaDQajcae4Ewx7TGGnvrUp27seO06Iq13nJX+lIElpDUjdLlm5WTJS/o710N2ZF1Q3N0y4QB3sbwuA/U3Los6Z2lzR+hdq9vs0Kdxh+37fY37wbCF1LFLm2z/9ttvP1J/tpvmLvxS6YmWwldWqSqNLNwr+0/XH+qtsyAkXDPUwWWuRdSdkmHHMSYbq1KCMvhJ/L9KmsLUkBHUtzOYSuZi5rF1PV5DlmRleleDwW/IdjNdfRYWlRhjaIyxES41PmN0kayYeyYBIeunHUe27gy2yWsnc98iK3b7fY/1xnEsmAjFoK53KZkOJR2UTmVheisbIeqa41rlnFKCkIWz5fuTktLMhZIBoC4mpOqlQDPtRqPRaDT2BGeKaUvzToi7We8QpU3LRLLlLNyed2+0wDXT9Y6K+uP4Py3ayezjbpL3VHqcuIOrLEwN7nizkIcMZmDWkiUzoN7O/WJaUbcnMmWfs+76OAH1LyZ5wi7gGERpRqVTJlPIwr3SWrwKGRtZFFk/2WOWVjFjC7Es6jalOlAE2TPZTKyPVvdZsg+jCsRCZpkFsmCCCDNtH1+y2K1sEciaYhsyRkrYa2VJ0lZ5JXAdH2dOqeteYs2UiFRlRtCy3e+DLHyyWbHnmxKWjG3SLoH2D5lHhee9SrjDecrWNqWBRhb6NPO2iddkZS1JGc8Cmmk3Go1Go7EnOFNMe4yh8+fPH1qQUkcXQSblHZm/Z5Z/TIrh77wn7tSYfpL66ixRxEmSX2xj2Ea2+6uSVXhMbAme+ZLTL5K7YyaElzZDK/o7LfvjPVUCktP20+buO9slV9a11MlFVFa7tNhd2uVXftQRDM9bWfHG9V2F6vS1S6yzSk+6lDSBnhNV6NhsTMigySAzZsSxoA498wdm3dvY0sHBwcZcxn5RkpdZHbOv1TqjNCFbd5Xvtpkq2Wy8h/NCaUlsM1k4x5bzteSNEW1m4vEsVgITunCdZ++5bVKOLBQ0k8xwvjI/7crC/KygmXaj0Wg0GnuCM8e0n/KUp2zsbDIWSl2rP61XyaxP6WPJXWum87N19bbd1i4WhpUfpbRdf+KdPq284z20vPT3pUQYlXV6xdLiPdRPLemryagv1e51qdxKmlH5b0ub9g8si4whs2CurNQzO4Ztkccyn2TqBTkPle45/k8bBoNsNra/itpHLCW1cFuZ8jZj2gRZVJYed8n63bCEb6k/ZHnULWdzybVIDwDWt3Qv683858laPad+Z/hdlkWO8720aVmKMMh+VEla4ru4si3g+zyTnnAOqzHKpAFs2y52OM20G41Go9FoXBT6R7vRaDQajT3BmRKPS7OIg/mao4GD3RVoTEYRUwzZed111x25l3lsq8AZlxq7uCbQmITBN6TNEKjMWbwklq8MQmgsE0VTFs2xPAZKiKgSoSypBY7jcuEAGZmolKgSTyzVt2uwjnicLoaxrfHaOF4MgMJc7FnQCaMST+8S+pJqEAadyNYq12Ilxs7q47WZ8SLrq4zKsn65PI7jEmh0mZVn0GAwE49XQWBYluc/ulVWyVC4ZuOc07WTSTn8GZOxVONOQ77MLY1ujwbXdZzryqXLx6nCjHNdPZ+VmDz+z/frkgst33001rzcaKbdaDQajcae4GxtITTvgJYMW5gSz0k/uIuNxg9MYGHWykAVxwkSchxwx+22xTZWIU3JdCgliOWTifjTLC3u5Cu3NLKobA4YVKUKC5qVS8Mj4yTGebz2iiuu2GBwmbuJUTHDWB/nzqhSJGZjQHcTM5NsDuiCQhccGj5JmwaUlQFcBraNLli7MNQq+UIV9CX2I1vPBJ9PSnT8HGUskM/GUh1uE91I4/2sm2O8Swrbbez5OO2Pa8jPN9OIMix05iZGVryUztXgO4nzk7lgVaFdK1fKTNpRBalZkrhUkr3M4I3vQCYLutxopt1oNBqNxp7gTDHtg4MDXXnllYe7HzPhGEiCQfcdiMXfzbyjXto7S++YGEiErHIpsfy2cKMRdCWjLjhza9nm1pCFTd1WL4OhSCcLAENkO+mITLfEnfQuTG5Xxj3GOFwru4QnNLaNeXbPNh19bAPnmwF6soQKRqUvjm1mMBAzroqhZq5M7DPD3JqtxftZL+vLmDaZ3bY0qdLmWuWYLCWK2EV6ZlsIvg+ycLZerwwSsrRmeG1lY5Ilx6DUhFKVKKFgIBymKc7mo0rgUblIZYFytiVGWQqOVUkQMhfEatyWkppULplcu3GdsPzWaTcajUaj0TgRztQWwoH7uauzDlXaTPJBVul7o77YLKEKCVrtLjNUjDiC4T2dGpRtjGVsY75M/B77Uumd3A4zr8hqzfpPw1Ke1r0MIiGt++c2VWEgd7EWrXBwcLCRwD5L5MLyjSyQCJloZQmcWeFuCzqSsRe2lbrszOKcOnJew7ZnVspMmuP67LkR+2BpFkN7Uv9Kr4ZYTpUAg0F94j2ZZCJiyX5h2xo6d+7cYX/c5yhdoNW7x5YhXTO2zO+UArDMeK56TpioJpbDeanKjO1n//gu9POUBTuppAKuL9rrVOuZ857ZDLCt9F7gXGTlUzK29M7fZgdxudBMu9FoNBqNPcGZY9qPPfbY4W41292ZqXm3752Yrcl97b333nt4j8sxw6B+ythFT10x4mhhSN9DWoIu+TNvgxlRZMhLjC22LTIsMmyPa5XidMlnlddkSSaYVMD1VKxAOl7IQWmee+pTszYQVQKCWDdZJP3Xs/SnlWUsGX3mCWDwmsyOgEzb81zpULN+UkLh8j1fUXLl/7fpd7OYAqy70tlnz5nr8Vqlz3o2vxVTzUCpQ2RfTI1a+VxH6QLnmeWyvdkz5vbzOcmeDc87n0NKB7OUwJTssA9ZUpNKL1xJEmIbPZ6ey10Tu7ANsawlyVaVqCR79quQzmcFzbQbjUaj0dgTnCmmfXBwoKc//emHuzHvdCJDtLW4I555x+QdrneG11xzzeE93LVTt2RQ35bdS1hfHS3cvSvOLDyltY7nOFaJtKiPO2zXZ2kD63PbbrrppsNjDzzwwJFyKoa95OvLCFK03M70bdvSOp4U0zTp4YcfPmSGWYS5Ss+5JAFhX8gis4hxBpkWfb4z3T8TZ/heSoXivLDdjIDF/scx4VohM80SRdCehOu9ShG6dG5JB02pSeW7nPkD78KSbEvDcrNEFx5TPoeZ/zyfoUpylPnVU4JDO4XMv53sle3IIpTRToA2QoyvkD1P/KR+Oo4jy+V7m3OcvX8qPXQWW6KySaEfepwTvpd3SQb1eKKZdqPRaDQae4L+0W40Go1GY09wpsTj586d0zOe8YyNQPdZwoFrr71W0trgzPfYPSyKOFgORVoU52Q5ammU4Ppp7BOvdb0WodNN4zhiF7Y5gnmUaSxF1zNJuvHGGyWtDdJovMTvGVhfdJGJ5+M1DGxTGTXFdu8qQreYU1qLCLPgKpWIdinfdGUAdJwEJR4PGozFNjIPfGWol4kcfW3l4piB4kMaETK/cbyG4n+uQ9YR7zEqN6j4DC4ZX2VlLfWzwpJxlrTpskj1RaYaYJ2V21hmhEVxdPU9tpvuVDTO9T1LoXY51lX41ljOLiFijUzlGcugMWNWX2XwmAVzqcKYLoU7rkToZwXNtBuNRqPR2BOcqS3ENE165JFHDneI3jnFXRmDp9jg7I477pC0GVBEWu+quLszvJPKDBmY3MNlMSRpFhjBzJY7QeM4RlhkEUvBABiOMdspeox9rRmw67GhXxZmtHL1YEKUjC3RxcdzkqVs3BYmlTg4ONhgCkuGdLsE9qiCMbCMjC2xLUtJWHgPQ6Au9Yfr6zguKjTkZEKXjEFmIWKlOshPFl6U9ywliqBUhhKxzAiMWBoTJyk6TjhbPz9M9LMUfKQy1Mvureaf75s4TjYEdduqACkRVWpR1m9EKQoTkFQhieM9lYEb31VLoVcpGVsyCq2M5SoDtVjucYM7PV5opt1oNBqNxp7gTDFtac22pTzUZuUKYVewt7/97RtlUs/NHVoVgF5a7/TMmhkMwGVlIQ+5u6MU4B3veMfhPdx9c7fH8H4xmAulAd4Bu992g8rSBl533XWS1ozBbWKSkaU0qZWuLHP1oUsWGWQWcOZidryZToxjS5a35NZSpaFcCodYJZ2h9CaeoyTCn57bONYMwHESVIxkSW/JsSBTze6lRIWsOQuKw2egYtZZop9dpDVjDB0cHGzYGGQhacnQ3BZKquK1HFPqw5dsXKq0q5l7KiWGZMtL4VIZcraSOmTSALp+ehz93o7vb9po+DtthrL1VgU4Yj+zMMR8hyylPq1Cn54VNNNuNBqNRmNPcKaYtnVLZKpXX3314TVkIN7lecd2yy23SJLuv//+w3ts6W1452fWR5YUd11m8L62Cjpxww03HN7DpAvcEWa6de7ct4XSizvsGEgm1uOxcX/ch9hXw2PMnae/R90dw8G6XF6bBacwc/cc0Fo6Szm5K6L1eBa0o/IEILJAC2RslQXzLuEy3edsl08dHq/JLOBPK0CNtDnmbuuSxMKo9IZxvbPvVb0R2/TgGchqd5FCuE2ZxT4lfOzbkrSDa4d9z3SxZPa0nKfUIbbN0kbaixiZdXVmhxKvzdYY3xG0rfAzvksSHdpjZMl7uO44rllQJ0ryqpS6meRqlwBTlwNnqzWNRqPRaDRKnDmmHUNReteX6TeqnbOPx1B+TNNI3ZXvMduM9TEZO1kE9TnSmvl6p0m2ZP149Js2rFtiUgTqD7Nk9FWCkoyR0KKcoRstnXB7Ipsnk6Yvb8Zkma60snTOUjLuolMaY+iKK67Y0PktJWGo9J3ZTp0JQahHy/xKySbIjjK2RIbhZ8EWwdmcsl+0BKceL1oRU8dMm43s2SMLrJhPFp5zmx58Fwt7tmMJWSKXCks+yZUlOPsT104VEpZlZf2p/Iu9PuiZIq3n3cmUDEoQMymNy7WtDKWPmTX5thChS9b3BMeP0rzYbs7Tkg66slfh99ivyr7jrKCZdqPRaDQae4IzxbQvXLigBx98cEMXG3dblZ6WUaCsi5Y2I1L5HBm364lMhDt+30PL9si0XY7b5La6Xuq84/++hoyj2q3HNlXRrdx/WojGflA35/ZEXb1h1u3ymKjEbY07fo5x5e8c2Q2TjGxDpr/OfK63fcaxJVvgtUzGkO3yqRM7DtOmdXW262dkOvreV/VKm8yKEpHsmahsMyrr8UwvuY0lL+kYOQdLvuRLCV2MMYbOnz+/sfaXrMeNLE4DzxHVusui93HOPD+ZFLJqG79n7eK7g+uMuvyTovIwOc77gO/Ean1k9SwlpqmOtfV4o9FoNBqNE+FMMe1pmvTYY48d7uoyS1PG1bUvsnU8Zg5R5+1j1sX6HCME+bosBjDZOq1Ho3W1GY7bb/bsXV604jaqHajLX4p2xQho3ElnVrys12V4PK3TzuKx+//oKy6tx8BtjOPrCGusl+N6McjYWYaKLSyxiCoK3P/f3rn0xnFsSThJaWHchQTJmvX8/5818M6GHwIEGzYkchZGiIdfR2QXZVnsvojY9KsqKysrqzrjPOLwOEcimnf57Ix2TWUpnR4/fZcs0ehUpujzS6+zreSr1TXk97sxSf7PXb4zfZrMoZ/vj0Saq80UaTzbS1HHrlQm84nJrJNewNyXqm9UhZv76JmoayVLH62BzpLEvOmnaOsTtNJMpFiJpJXhcu+TxYXHn3iKX5rzqT7toiiKoii+CP3TLoqiKIorwcWZx//666+TNI1pzpPJVSZoZ9Je68HMO9uRyZepWAwymWZkmbJpbtNxdRwnRUlhDpr1Jvgdy8ztAkXYLgUSXBk/itRo3ylkM793KWapzCIFb9Y6DdxjmpAzET5FXEXytxRrmUhBKClIZYJjnORMnTgMg+94rXfpWzQjuj6mQMpU2GO2mQIcZWJlUYiJc8VNuN0E51ASHpnb8DxSsNSXgv12Y30ubWuC45/KQgqzLW3DwFtK387romeVgkcVCKpXF5RH03mSBHX3FQu5nJu77jduw/K1s68u2HPCiRUlWd4d6DJ4qsjTv40y7aIoiqK4ElwU0xaYyuFSRlg4gat5V2SEZT25ChMznAFWZPQUxVcA3Dw+A3LUlxRkNM81lWIU83Grv7TyPCefOH9LTIsiL7MdjaMCXjRGLrUs9fEp1odz+PTp0/ZcXdnHc31MxRxSeo0L8kmBR6lk6+wrS2U6EZdzkpe7MUmBaMmK4vrIMp5H06xmu0cC+Hj9krjGfL8rTzvbv7293aaQJZa/6wPv4WRdEiabZYoX23ABompXAWl6RtI6OUHxIG2joNIde2aBIoHWuV1pTqalMqh23ht8RvI6OXndJDiVgtgm0r3/3CjTLoqiKIorwUUxbfm0BZfKQeaZUm9mkRAxQa7Y1ZbYslaXTrCAYhf8PEEmzxW8VrNOTpArTrILFiGZ78/JSDoRj5SeoX2Zfje31W8sAuJWsfTRk6k8RbI04cWLF9sV9C7VavbJMTaKPdAisrOApAIRstY4JqLrz21capFA1kSxEMFZTVLRh125w+TDJrvZyYEeud6Jae/YOe+Fc2k7Nzc3cU7Oc6FvP8lkzvepDKTacrEojBfgNXTWGabe6b5kLM/sI58dZNy7+5JWmRQjMq2eZK98rrlnvsD7k2Pi/Nbn0utcWtcRAZbnRJl2URRFUVwJLoppr/X3Koe+sLkCpQ9bqyL5U13ErN5ThF6rLMqZzpWVtmXUM1eXLpqbPiQxejF/x7CEJJThojhTFC+FOVwUPtlL8jW5yHNZJrhKdlG8rp2JnV/yCOSXFFzRB1pA5r6zjy6GIjFsMR79PhkQrSKJxc59yHiE9+/fr7X2EbnJsqLzdv5wshX2iWIero+paIrzpafo6x0z5lwkW3Lys0+J8uZxdpHy9NeyYJDrd8qQoEVkXpfE9vi9E57i80x9dNaGZDHS8ybNxwlmouziP3YCNq5NZ/U8F5uyY81HcCTO4jlRpl0URVEUV4KLY9prZdY5wZWY8ouVN+1K1ok16LP2oc/bRYDqlcXiHbMXK9IKl0xE0Z3azm1Dhqc+0w8296GPiSv9ydLVNzJ3WRSc1Cq3UV/EuLWPjj8ZZCoXSlb2pUyboKUiHcN9dtKJjFhlPikjp+fx6H98CvsjjkSyJvbk4hM4j5kPTGY0+619aIU6Iv+YYlF2ubYpJsEV7eA5nxu329vbkzgSV66RfdhFI1MSlHPyCHtNPmBn1aJ/mGPAyOy5LY+rbWlBmOeX/M/J8ue25XOAY+/2JdM+EhH+lHvtSC73c+Kye1cURVEUxWdcHNOe+ZLOV0W1LX0WWxbmPowO1+ryp59+Wms9+MN3TJt+QbKlmdtNXyZVx5g/Oc+HVoZzRRlc3wSyqNlHrnjVRrIkTHamlaiUltRuWgnPMUiFAVxO5FNWx/f39+vjx48nLGO2l/KZd8yb8RXJV+rUmi4lv5OMbjJ/FsThdWfJ1gkXNzC3dbnEnM/0V7tsBleGcrbl+kY9hR2r1dxJ5+eOxXvcRcozdkb91/inQi/zeClP2t0vjEdgX/W82d1XKU5gV9aTx5VV0FmfmDnDLJYjpVuT8qPgzi89d4TJrsu0i6IoiqL4KuifdlEURVFcCS7OPP7x48et6YIC9kcEMmjSFChNytSwuY3qQSvYikFfv/3228m5sBYuUwlc7d10HgzyoXTgbCOlrszgMv2mICKleFDcg6l08zcK3CRJ1PmeQUMUBPmnRR92rhWaJdk3tw9N6JcmtPBPQTMrrwfn7lqnroAkfiJMU/e5VCYGU83vnEylO4e1TuvQ71wV9/d/F5vZpRKxn7uiL/yOr3x2OZOwtmUAKs3k7h7TueveZnChu5fTPSEwPW1uQ1eE+uyCAFkIhPeTSzEUkgwwn3POtM7rw3REV/DpUnHZvSuKoiiK4jMuiml/+vRpffjw4fPK6e3bt2stnyxPNsd0hrmaZNoKV6Dcbn6vADelaZFlqq0pm8qVrgseW+sxWybjZYqHVq/qj8rvTXDlK6jvbjX55s2bR8fhqlXHm33VKlivCkhjOpoL7mGAE5nsU4uETNzd3Z2soOeqmelaLCnoAtOOMqtLFWI4B5bxTCmHrggDGXBiMzuBG7aRSjbOvpER696YFjIy7Z0FRxKmbN+Vo6XFZScVTDaZCog44SFaBlL62Lwvea10zinYb7bHAkwpEHGeH60zelYwEM6dV7J+cjsnrCWwDXd+vKYpdc7NtyNyuc+BMu2iKIqiuBJcFNNe6+9VE1fOr169+vw7fclK46JvRCIra2WRf66EtUJ0fiL5tN+9e/doW5bOm2D6kfoqzDQ1Cb2kFT0lKWfaDn1VlC2kcMH8LUlq0qfpiifo+rBEJ48x908pXv+0YMj9/f1WFGet05QbSrnu2J1ARkim+E/TvFKpUvbD9TWxCLLBuS+tJqk07K7YDNunZWkej/dvYtwTSTyDTH4ybfrmee85sL9unCiYk/ri2qFfPBUFmv1PhUL4zFrrweLAObQrzcrCNGSkat+xWJ4zX53IDr9LqX4UiHJjkUrRHmHGvNa74k1l2kVRFEVRfBEuimkrilOrPr26aEetghTdzKLtr1+//rwPS26KYVF+kX7jtR5Wmmrvhx9+WGs9RGI7aUBB/ReLpl9NLH2ttX799ddH/U+FARxrZmQnWQZ97A70h+v8ZGFw4gM6d8mxUhZ2Mh9GyJJZu1KDXwNu7pyTd3SMPRURIIuax9N3ap/iFo5NUZ6Sc4YM1W3DtgQKmrjvEtNxRXSSBCqtAHPu8P4l+9sxH4J+a8c6+Zrw8uXLk+huN3/JCBm34QqrMCI+yQ5P/zStgfQF8xk5z1/nmiyKE7SskGnzHplzikw++YddoSLOM7Yp7ERP6PfW73MeOIvU7Ks7r0tl2EKZdlEURVFcCS6Oad/d3X1evTIaca3TVZBWj5O1rvWYVWpbMkB9LyaufVy+548//vio/Z9//vnR8eeqjPnAzH12UZXM3ZRPngU91PY8P0ZFkw04P6ljNPN4Om+N67Q+KFJeUeP6zBX9ZA4a41TG8d+S/HSyqMkX53KSiRQ9TJa21sP1lgVCv5G1TbbG3FZG2XNOPQU7nyY1Bej/dnPnHLNyxUZSwY1deVRCY0SG7Vin7pOdlUllXXnu81rSmsDIbMHFw7Df9GVTE2H2IekDOOuCKw8723KlYM/Jh7prSHAb9nk+B5L1IckDu/tX/U9xEc7aQZCdT6QSsJeCMu2iKIqiuBJcFNO+u7tbHz58+Lw60up4sjwxv6Qy5lZHLE1JnzaZ1lyJ6tj0g5KlOR8c2SwZt1Peok+TkeHO502VISGVrpt946uOpyIrLs9V7Wgb+s55TrMd+ua+ZVGNlMfqChsIiZUnP+Fc5Ss/XuOUxnqOLcdJ23JsnQ/uXC6qi9Cm7gALxzgfelJPEzjOR3K8mb89x5VsKOVgzzHSfavXcz7tFy9enFgQJtNm3AgtY84CQs0IxgcwNsTlJJMlc5+pcsh7ipaDI0V0hFR2c4LzIJWEnaAVkNebr9NCwvNK8T/u3kjZEO7/oky7KIqiKIqvgotj2r///vvnlY4il/W61kMUN9nxzhfClZ+Ytj5TjWwye/mZ5GPmqt6VZEyR39qGrGn+xlen+XsUbiwEWg7ouyR7myt6MjqNm/zWjvkkVvstmTbzs8minf8uaaYnnfXp46QPnbnQu2vLTAce/4jWdVIQc7mvjGQWk0yxDxPp2jrLRWIt5/TFd+07v7XeO7W0cxCLnUybJSVpLWM+81qn1yyxOxfBzPZTtPUuIvycVvvclvchrYMus4JxKRojWj+nJYbMN1lKhZ21w1kQ3fmule+B3X20a+85cVm9KYqiKIoion/aRVEURXEluDjz+B9//HESnDLLXiq9SNvIbEuzxwzqYCqA9kkBIlOYhVKgFO43kWkxAAAMv0lEQVRPJhqdz1qngUFPKYrxrUtB8niukAfTXOROYOqZCyIRUvDcv4nkgtiZAFPgHMfJmYJlkk0CPM70nNw9TBdzwUTsAwNqGAC31oP5Xa9JWnOaDGnmpTws++X6pFcWqhCcAIza573oTOAM6DuXInd/fx9L6a51Kt50Tt52rZyCmVxCuwIlyU0x+8Hjcdx29xqDvPhM3D2HUmlbdzyeVwqa2wmcpN927i1hd42FJP97Kbis3hRFURRFEXFRTPv+/n79+eefJ/KPs/iHgtK42qe4ylxhKeVGzI/iJ2LWTu6TDCsVeN+l4HDlyfSWeWyCQSpfW+6TQTcaR726lS5Tl8i0dS4zACWlhTwHkpiKu5aJYSfGNecdA3QYROZYLK93KiAz9yFbTcGElB+d7xPD4r7zO17DI7KZbGMXECSk4D+xX96Tc59dUBz7znthnt8UCJl9YJEOd114LQVa6ZwwC1/TmM/2uQ/nnwsmozWSFh2XXpWsjEdSpVJfGXB3JOBScJK7tIiyfWcV4Pwu0y6KoiiK4otwcUx7rpbF4MSU13oorMGUFPpZ52pLqzqlb9E/xLJ9zk8kPzj9gkydWus0lYPC9i5th+ybpT/ptzziC2ZfXdnAxLDp25xI4iSUl5x9pGXiOUHWwtcdQ3DSo/N7ty/HSWPs/IUcp+RXc6wspe1QKGPnD9c9QiuEY82OIbr+uIIoTC17yvmRaTsZ0zQ3HW5ubtbLly8/i+Goj7M9WvKYtudYGeNrnHDM7OMUgEnXLBWumUixGk6mmcfjs3FXIpZpaWTAvAY7UEzIlRNN6WFMt5zHS75yFnxxqZopze65UaZdFEVRFFeCi1pC3N3dPfLZ6v30aWs1rFdGvQpzdZT8dVOgfy0f3a1iD/ru7du3a62HFZp87M6XqYIaAtn07CNZkfpGyUat+OdqmQyOq3Kdg4tSVvssNUpfp5NcZWQuywU6gZsd4/lWSIVDXBR28medk4ydIAujT33Og8Tg2HfHlpK/k4x3Hi9Ju5LJOctVksekT9vJ55K9kGE52VyWK2WMimPaR/zrt7e36z//+c/J88GVlCQj3LFo+rnTnGGfJ3RuKabBScSekwie+9Dqx3nA2AZnFeKcTBkW8zhsN5XQnGOWLBW0Erh9aDlMsRuz/zuhn+fEZfWmKIqiKIqIi2LaglZw8lnNFa8YttgjfXDOF8OV0vSRr3UqbzlX7GRH9JFpn8nOZBlI0bz0G8/9ueLVtiwJOFfRLip4tslc9rnPq1evHv2WxPhdlGoaE+c7vYSocYIralfogIyQzG1XrOCcP9qx5iSzuItlSIUTyBQc80mlbo/k3JIZ6nNi0WudWnDIDtWfaXHjOCWG7ax0R/QAbm9v13fffXfCsF2+Pn3xnM/zOKlEZdILmEiyufS3ukhpsst5nvP3tU5z31OpVOeXTpkUu4yKNN9S27OvyWJBhj3nG5k1552LUqff+1tqSRxBmXZRFEVRXAkukmmzsMYsGCKGrchyMW2WEpwg46BPUexdbc5IUbFmrZLJ6FnYfq0H1TbmkYrxupUbfTpk3qnYyVo5qnIqX82+z9+Sj4fszPnQ6X8l055M7BJ82Qk8R6fGxTFOvuW5b1JWSmpQqZ21Tst4zuMeYf0JPGenuJaO536bxyWrnu3zM1mbOx4L0YglUv3MbXsOt7e3J+xr9lv3MHO56XN2WSRp7qSykWud3mOpUIzLn+fzjox7tsFnUopL2PnJac3YWdXY3s4fPb9nv+dnWjRdPBO33cVsJEvFpaBMuyiKoiiuBP3TLoqiKIorwUWax4kpOiBztV5lypYZRObzGZSS0goYfCFT0TTrMH1J26h9fZ6maJnzdTyay53YibAL4pif53YM4qGZyNUHTikrOl8WN3BCKanmtzOPX1owx1rZ9LczcVOAZXe9knk0maDnb8m0vUs/SbKLyTw73/P6pDS1tU7nBs29nI+zPzSHp9rLLsWMJmPdgwpMm31083aHm5ubKIu5lndLzePo3p59SHKbHCd3XY4GPDrXA+/tXREOtsvAw1TgY25DV6HggsxSwC2xS9E7ZxafZu10P+0Kr5zb97lRpl0URVEUV4KrYNpzFSSGLeESMV0xbgZYrXUajKBtKEXqVn9cpbJ9rvpnO2L9v/zyy1rrIWjOpQJRejAFOrmUmCT9x/NxqRBccTItxaXTkGElOdBLZNcTu7S2cyADSuUx3T6pJOx8z+C0lIo13yf2ugt8S6ldlIQ8IjCRAiKdRGRKJXMBTyxAk0p0zqCzI6IqR89nrdP7gpYBsX03tpwTPMcdo+N50Fro0qn4vGPhkgl+l1K/3L3M51h63rjn3Dk51t1847xK/ZjbnEsX2x2nTLsoiqIoii/CVTDtCfm3lZ6lFa6+dwUIXCnMuQ0Z9/SJiMFrNU9RBTF99WetB/EW+bYp5uLE8Ck5yZU193FpQlyBUr7VWR8o0pBKAk62oG0pYOFSb64JbqVOH3YSh3ACJhoPXheyGabmrZULNTjmSDbG9nfSlwKZYyrv6X5LY+KOl+YZ/ZNzvlEml2lQX0O4Zye5udbDNeIY63uXHkSrxa6sZurDufKQLoaCfXNFMYhzvu2dYJKQ0vecNSDFUnAMnBWKvnq27Z6r6dx3fv6dKNFzoky7KIqiKK4EV8e0tboTixXDlUCKY9VJYJ7MwIkqqD35p/Wb/NQs2bnWY//v/I2rdLe6c7Ko87NbZZKVk2GzCMjcP60mKeLhCoakba6Vae+KByT2mDIS5j7nIrTnfGFkeWJjO+GKxFbo35vvee1YYGH2nSUZUzS0i5JP8473hmPaap8WnSOlH8/h5uZm60elUAnFbsjEZ39pmRJ2cqZOknOt0+fA3IeZH8nysit3+ZQ4lSTheuS8iDTPvxZr5tyk39/JmJ6TWn0ulGkXRVEUxZXg6pi2IB+2XuXbJkNYKxdb4PeukAejRrWyVqENHn/u//3336+11nr//v2jV7ei18qPRVK4qtxFXZLRM29xl9OZChO4VaYYQ/J/Xyvc2GrM6J8+x2bWOm5x2PkJvyZc2cvkq6eFwZXzTJaqJFU5v+M9wOM5ps2o8a+dpbCLEmb8gfqie4ulOx2SNOguqjtFoDMGYfYxZaLQ8jZ/42ti2u582FaSRJ3bJB+6K4Qi7ORYJ9zzlVYGHqdMuyiKoiiKr46rZdr0E8mfI+Y7mUHy19Av5Pwb2obsQnni+v3169ef96EVgGVEnXoSlcno09Lvu5W8LAXcxkUnc6WZCr7vokYTc7g27KwKSTGOc8pZGy5tpe784SyEQYuSi7GgFSj5RXeR52T0tPg45S3ORTLJL4XU0HYFV3hfJLVBVxiHcyPdL/Ozy+Ff6zSC3vmnWSKV5zXz2XkdzhUKcWPNvu6KzaS4AX7vMg9Sqcwj+dRsj3EYu213UffPgTLtoiiKorgS9E+7KIqiKK4EV2seFyizKXOfk+xk3WcGNjjTjVK6mDYlU42O7wLRBKb2qM1pSlM76qtM6jof7asAuGmmoqgCU9dckJTak/kzteXSuJLJ7FLMwE9FSgmc7+liYLrbkUIelwi6mVzRlLX8+aXrnVIc3W8Cx3NX/OPfmG8vX76M9ajne5pOmYL5FMnWXZEUpm/Ofq7lhYzYf5rqd2I3nMe8Du76J3dYEpOZ7SXBK56Dc3Oy/SMSu+cKlOxShI+0/y1xWb0piqIoiiLi6pk22bMY72RGDFRgesEuICQl42v1peAvMeO5P0sHvnv37tHneRz9JrEYCmFIPMYxXwW4CVr9a0y0bzrH2V4qWDKPx9+ulWELTFnaSRo6ucq19sIy1xSol4K9NM/XOhVc4Zx5SmlOYZc+mObZ10z1evny5VZwY2671mngmRNm4j7CkZKPTlzEfT/nW2LF6Tm31ilr5WtKAZzHoYXPiUcJHFu90mKRUl6filQwhJYRx7RbMKQoiqIoin+E/xqmnVJx5nv+ds6/Nn+TH5rFRVyBEgou8Hhi02/evPm8D/vv0rTWeljxTnat71iCT312vh+uqMmSdgIW/y2iKinFZyedyBX7uSIGc9tLSwE7AlfAg2wyiVG4+UErl5DEfVw7OynXL4EkTNO1XiuzV706HyzZcBJT2flb+bwhi3USuEkalkWPZrvJP7y7xzn+6TnrxiSNNcfziCQp4a7buZSy+XuKPbgUlGkXRVEUxZXg5pJW/Tc3Nz+ttf7vuftRXDz+9/7+/n/mF507xUF07hRfipO58xy4qD/toiiKoigyah4viqIoiitB/7SLoiiK4krQP+2iKIqiuBL0T7soiqIorgT90y6KoiiKK0H/tIuiKIriStA/7aIoiqK4EvRPuyiKoiiuBP3TLoqiKIorwf8DHCl7g6HbwdAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1428,7 +1547,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXu0ddlZ1vmsc75b3S9JVSoJkKAgNoi2tigXCWmFCAQCCgIql3i/BUWHOrolahLReIO0o1FRkHuIgBe0QZHQTRSERhCxY8dIgFRSJFVJ1VdV+SpV9V3P6j/Wfs55z2+/79x7f/WFdDzvM8YZ++y115przrnmWut93us0z7MajUaj0fjvHXsf7A40Go1Go/HLgX7hNRqNRuNEoF94jUaj0TgR6Bdeo9FoNE4E+oXXaDQajROBfuE1Go1G40Tgul540zS9fJqmeZqmj7pRHZmm6U3TNL3pRrX3wcI0TS9ezc2LP4DnePk0Tb//A9V+Y4xpmr5qmqbf+UE47wtXayv7+5obfK69aZpela3jaZq+ZpqmtXimaZrOTNP0immafnyapvdN03RpmqZfnKbpH03T9D8m+0+r3+dpml56g/v/6YO5in/fdIPO9zmr9n7jDWrvJdM0vTLZ/mtW5/nCG3GeG4Fpmr5ymqa3TdN0cZqmt0zT9PLraOPeaZoeXY3tEz8A3ZQknfpANdz4gOLlWq7dN3+Q+3FS8VWSfkzSP/sgnf+1kv4ltv3SDT7HnqS/vPr/TZt2nqbpNkk/KOnXS/oGSV8j6UlJHy3pSyW9UdI9OOxTJX3k6v8vl/QDz7TTAf9B0ieF7x8m6XtX/Yrnee8NOt+Prc73X29Qey+R9Aot/Y34hdV5fu4GnecZYZqmPy3pb0t6taR/J+mlkr5lmqZr8zx/xw5NvU7SpQ9AF4+hX3iNxocefnGe5//7g90J4H+X9D9JetE8z/8hbP+3kr5pmqbfkRzzFZKuaHmhvmyapjvneX78RnRmnucLkg7nKGijfmGbuZumaZJ0ap7nK1ue7/F4vg8U5nl++pfjPNtgmqabJL1K0jfM8/ya1eY3TdP0Akmvnabp9fM8H2zRzkskfa6kP6dFWPrAYZ7nnf+0MIxZ0keFbW/SIuV8uqSfkfSUpP8i6Xckx3+JpLdqeaP/v5J+x+r4N2G/e1YT8K7Vvm+V9IeLvrxI0vdJer+k85L+rqSbsO/Nkv6GpLdLurz6/GpJe2GfF6/ae5mkr5f0yOrvOyXdmfTvuyRdkPS4pG+X9Pmr41+MfX+nloX61Grf75X0Edjn/tV5vkSLpPikpJ+W9FswzzP+3sQ5Tvr59yQ9sJrHByR9h6SzYZ/PlPQTkp6W9L7VXH4M2vE1/kxJP7va9z9J+s1ahKe/JulBSY9K+lZJt4RjX7jq6x+X9HVaJOunJH2/pBfiPKe1SLb3r67T/avvp5P2/oik16zO+7ik/0PShyVz8Icl/WdJF1fX8x9Juhv7zKvz/MnV2nhCywP743CNOP/fuvrtV0n656uxXZT0ztV1PnU991kyBo/5D27Y70+t1tqjqzn5cUmfiX1OSfqrkn4xzMmPSfrk1W8c4yzplatjv0bSHNr6cElXJf1vO4zlZi33zb9YradZ0h+5EfNUnO+jVud4efH7I1qeNX9C0ttW4/mM1W9/c7Xen1hd2x+S9Btw/Oes2v+NYdtPa2G9L12tvadWn5+1oa9/O5n7969++zWr718Y9v8nWp6Nn6KF2T4t6S2SfpukSdJf0HLP+7lzF853Rgubf5uW58MvadEinN7Qz89a9eWTsP1zV9s/YYvrcpMW1vqnwxx+Ivb5LZJ+RNJjqzn8eUlfe13r4DoXz8uVv/Ae1PIC+9LVIn7jauHE/T5d0oGWB9NLV229c3Xsm8J+t0v6b6vf/tDquL8l6Zqkr0z68s7VQnmJpFdqeVB+K27wH9XyMvyq1WL4ai03+9eG/V68au/tWqTWl0j6ytUi+jbMw49quWlfIem3a1ExPiC88CT90dW2b5b02ZK+WMsL7e2Sbgv73S/pHZJ+StIXrhbAf1ot1DtX+3ysFoHiP0v6xNXfxw6u1V2rhXx+tah+m6TfLekf+9yra3Vtdb1eJun3rBbVw5Kej2v8kKQ3a3kpf46WG+s9kr5R0res5uGrtEjufzMc+8LVHDwQrv3vW133n9Pxl9l3aVk3r1nN/6tW7X1X0t79q/0/SwtjeETrgtNfXx3/tav2fp8WIeonJe2H/dzev1nNwxeurtHPa/XS0qKye1DLg8zz/ytXv71NywPnCyR92moev1PSmWfysE7G/Ie1rOfDP+z3dZJ+/+paf6akv6/lnvuMsM9f1vIA/8pVX18m6a9Ieunq909Zneubwjifv/qNL7wvX+37W3cYy+9dHfMFkvYlvVvSv78R81Scb5sX3ru03FtfpOV584LVb9++6u+LV/P0z7U8Dz46HF+98H5J0v+j5Z77LC1qv4tKhLJw3EdIer2Wl4/n/hNWv1UvvEe1PHu/fHWen1pd37+j5SX3WVqEw6ckfXM4dtKiHn9C0v+6Gvef0UIcvm3DnP7ZVV9uw/Zfsdr+FVtcl9dqeZbtK3nhSXq2jgSjl0r6n1dr++uvax1c5+J5ufIX3hUsgnu1PEj/Qtj277U8JCOr+kSBqUj6i6uF8dE49zeuFucp9OUbsN9Xr879q1bfv2y134uS/S5Lunf1/cWr/fhy+/pVf6bV989Y7fcl2O9fK7zwJN2qhTF9M/b7yNV5vypsu1+LFHNX2PYbV+39Hsz1j215rV6zmodfP9jnp7U8rE+hf1ckfV1yjX9F2PayVf9+GG3+M0lvD99fuNqP194P1j+AG/pVaO+Vq+2/Fu29Cfv5Jnxe2O+apL+E/Xzezw/b5tU8xJfvF662fzKu03eivWev9nvZ9dxTW15Ljzn7S1mkFlvcKUn/l6R/Grb/oKTvGZzLLO9VyW984X31at9fucNYfkjLQ/rM6vvfWrXx0du2sePcbfPCe5/AfpL99rUwol+S9FfD9uqF97SkD0+u4Z/ccJ6/Lelisr164c0KrFMLU5+1CMxT2P4PJT0Rvpul/U6c549suh5aNDpXk+13ro790xvG+PFaXuqfjDmML7wXr7b9ilFb2/7d6LCEt83z/DZ/mef5vVpUAB8hSdM07Uv6BEn/ZA663XnRqd+Ptj5TiwT+9mmaTvlPi/T9LC1MJ+J78P0fa7nZf1No7x2Sfhzt/ZAWFRo9g2hAf7Oks5Kes/r+SVoepP80OW/EJ2lhq6/HeR/QooZ4Efb/iXmeH8N5pdUcXgdeIumn5nn+T9mP0zTdIuk3SPrueZ6vevs8z2/XIpx8Gg75uXmefzF8f+vq899gv7dK+rCVLSSC1/7fa3l42MHA8/GdOM7f2Z9/he+cr8/Qsg44/z+pRarl/L9xPm632Xb+z2tRD/71aZr+0DRNH71hf0nLPRH7lcxXhq/Rch8d/sVrN03TJ0zT9APTNL1Hyxq9okUy/pjQxk9J+tyVx+WnTNN0Zpv+3ghM0/R8Lezzu+d5vrza/G2rzy/fcOyE+dq/gV37t7j3fM7PnqbpR6dpelSL5uGSpOfr+HxWePM8zw/4yzzP92thT9d7P1d47zzPPxO++778oXn15gjbb52m6c7V98/UwqC+P3kuSotj0Q3Hap3/A0nfMc/zjw92fYsW0863TNP0u6dpet4zOe+NfuE9mmy7JOnc6v9na3m5vCfZj9vu1fIwuoK/7139/qwNx/v780N7L0jas4Gd7XEs9iDyWJ4r6bF53aidjUOSfjg598dvOu88zzzvrniWxh58d2lRazyY/PaQpLuxjQ+Ey4Ptp7RIxBHVtfd18vnYn4fwu7HpOnn+f17r83+bdr/uKVYPlc/QItW/VtLPrVzu/9joOC32i9inr9iwvyS9Y57nn45//mHlMPDDWoSsV2gRJD5Bi7o6juGvaGH/n6/FdvfIKnyA87sN/EB/wZb7f5mWZ8+/mKbpztXD95e02Py/dMNL/w/o+Hz9t+vob4W1e2Capt+iReX3Hi3X5jdrmc+3abt7ctMz8UZhl/tSOn5/3L7qU5xXC7W8P3jO/ZWHboTXUDZ24/dJ+jgtzi1eA7esfrt1mqbbpUPS9Fu1mHW+UdK7pmn62esNY/nl9tJ8RMtkPif57TlaGJhxXgs7/FNFW1zoz9Giw47fpUUv7/berkU/n+H+YnuFByXdNU3Tabz0OLbzq8+Xo3/GEzued1c8oqOXSYbHtKgM7kt+u0/jRXs9qK79z67+9/nu0/IyiH2Jv28Lz/9LtH7zx9+fMVbM98tXD+xfp+WF8/emabp/nud/XRz2uVo0B8bbn2E3PlvLA+x3zfNsIcFMPvb1spYX82unabpv1Y+v0/Ig/L07nvNHtNgIP1eL6nQT/FKv5uTTVIdCfJ+O1oq0mBluFOZk2+/Sour84nmer3njNE2jF8GHEs5ruS9eUvw+Epb9PPs4HfcctfbtLYNjP1bLOv355Lc3anluf5gkzYvX7+dN03Rai8DxFyX982mafjW0TRvxy/rCm+f52jRNPyXpC6dpepVVW9M0/WYtuu34wvtBLQb1d67e8pvwRTp+s32JlpvwJ0N7X6DF2+mteub4CS3s5Qt0XI35Jdjvx7W81D5qnudv043BJS3sZBv8kKRXTtP06+Z5/s/8cZ7nJ6dp+o+SftfqmlyTDpnCJ2tx3LmR4LX/FC0L+ydWv/+71eeXaPEiNPwQftOO53ujlnXwEfM8v/G6eryOS1q8y1Ks2N7PTtP0Z7Qwkl+j4uE+z/Obs+3PADevPg+FsGma/gctD4r7iz48JOkbp2n6XC191TzPV6dpOtBgnOH4B6Zp+g5Jf2yapjfMx8MS3IfPn+f5+6Zp+k2SfrUWr+HvxW7ntLCpr1Bxned5ttf0Lxdu1qLGPHwZTtP0Mq1rGm40Lkk6PU3TfnzRfgDwg1o8U/fnef7JTTsDb9LybPu9Ov7C+1ItTkj/cXDs39fioR3xSVrsgn9Ci+3xGFbE4semaXq1lhf0x+iIiW6FD0Yc3l/W8hD+vmma/oEWl/lX60hlZbxOizfjj07T9DotjO4WLTfLp87z/HnY/7Onafpbq7Z/0+o83x5siq/XQqP/z2mavlaLZ9AZSb9Si+PF58/z/NS2g5jn+Y3TNP2YpH8wTdOztag4vlirB0bY78I0TX9O0t+dpukeLQ++92lhXZ+mxeniu7Y97wpvkfTHp2n6Yi0s6Il5nivVzuu0eAv+8LRk43izFtXy50n6o/M8P6FFYvoBLXr8v6fF0ebVq35+7Y5924TbdPzav1bL3H27JM3z/F+maXqDpFetbAk/ruVG+IuS3rDrC2Ke51+YpulvSPr6aZo+RkuYwUUtrvSfIemb5nn+kR3H8BZJnzpN0+doWbePaJFW/46k79Yite5rYfVXtR3ruVF4oxa73Xeu7pvnabmW74w7TdP0/VoeSD+jRV30G7TMx9eH3d6ixc73xtU+75rnOVN9S4tw+tGSfmSapm/QolZ9Usv99aWSfq0WdvYVWgSQvzHP8zvZyDRN/1LSF0zT9Cd2uR8/gPhBSX9Q0j9crcuP0+LNyOfVjcZbtKh9/+w0TT8i6Uplh3+G+AEtQsb3T9P0dVpU8ntanNZeKumPzfOcsrx5np+apuk1WuzW79VR4PkXa3EOOrTVT9P03ZJ++zzPd66O/QUd1+BomqZbV//+zMqvQ9M0fZEW4fdfaiFEt2vxIn1s1dfdcD2eLhrE4SX73q8QHrDa9ru1vMA2xeHdpeWB/XYtuuf3agkF+KqkLy/S4rr6fi1qrywO75wWF3fHAD6qxXj/Kh15fb541d6nF2N+Ydh2j6Q3aJFyHIf3ecrj8D5bi+rnghbX4LdpCVP4WMzVdyZzeMxbTot671+tzrvmqZgcf68W76wHV/P4gBYngVEc3r9QEYeHbS9UEhu2mtND70Gtx+E9vJqHH5D0kTj2jBbHjHdoYSrvUB2Hx/P6+nH+v0yLFPrkao38Vy0P9w8L+8ySvqYY38vDtl+tZR0+tfrtW1dz/G1aQiye0rK2/q2Wm/wZe5eNxpzs5/vroha72Bdpcfr5+bDPn9ei/Xh0dc3/m6S/pOOeui/SImlf0iAOD9ftK1fr6MJqrf2iFtvLx69+Py/p3wz6bq/BL71R87Zqd6s4vOK3P79agw76/lQtD9vvD/uUcXjFuYZu9Vp8Hb5pte+BtojDw/G3rvb7X7D9Favt94Vtp7QEff+X1Zp5fHXdX6sQSzvo65/S8vJyrPTvT/b5Jx7DoJ3MS/PXro59x6pv79Hy8iu9zkd/drH/kMW05G37Fi3us5k+uPH/A0zT9EItgssfmuf5huQvbDQajV3Q1RIajUajcSLQL7xGo9FonAh8yKs0G41Go9HYBs3wGo1Go3Ei0C+8RqPRaJwI9Auv0Wg0GicCOwWe7+/vz6dPnz787pR3e3t7a9v29/fTffx9uxy5x5HZG71tky1ydGyFUR936T/33ebYbY8ZjWGXPlbtePvBwcFam76m8dpeuHBBTz/99NqJ77jjjvnee+89bMef29iQb9Q+HwjwvNezrokb0cYu7Wfn4306um+re5uf2XMibnvggQd0/vz5tRPcdttt8z333KOrV5f82NeuLYlHvIaqbaO+ZX14Js8mY5d1eD3n8THVuhudf9M9vs2+zwTZs5rn4XPm1Kn1V5TfLb5up06d0sMPP6wLFy5snNCdXnhnzpzRC1/4wsMTnTlzZq1Tt966BMvfdtttx37zvn5hZovf4EORD8e4qP2/F3w1gRGc+OriemJjf3mTxHHE32Ob8cJk+3K/bJ/qZnQf4/mqm56f2cLzsezLE088sdb2Lbcs6Rl9zU+dOqXXv/71a2OQpHvvvVeve93r9P73v1+SdPny5bU+VA+t0cuR/a72HT0Qsofvtufl5zYvD27neUb3hn/L1rUR1+0254/7e41yzfq+9b5R8PW9ffPNNx/77k8f43US9z137iiH8otf/OJ0PPfcc49e85rX6Pz5Je2p16LXkiQ9/vhSKP3SpUvHxuZzZs8qb3Mf/L16AcY55/X2MXwObSOQ8gGeHUMCwfazY7mu3DcKDhF8no6evdV4CLfle97nz9p98sknjx377Gc/W5J09uxRulm+Y+6880698pWvLPsV0SrNRqPRaJwI7MTwpmk6lIKkI6kjvn1vumnJNUuJakTfK0mkkt6jZLKLBEJkjCr2Nf5OCatSh2T9uB6VSSUhVhJl1ldKaZQCM/Ukx+nrZ6ns6aefLvu6t7c3VL1mEnLGMjlP27Coba7DpmMrFp9pFKo+b7MOq3XHNuP/vDd4vtgmJXdqAUbMxdfZ153ny47xPhUryObc7Ud2Wa2dg4MDXblyZa3dyBTIWshyM/BaVVqikUbkRpg2RpqeiiFuYu2xnU3P04hN2rURg+Va5Pmz53c152aDkcUbfrd4rNeuXdtaBdsMr9FoNBonAtfF8K5cuXL4XTpiddK6PrxCpmuuJEX+7vPHdiqpcmSs5veRpFUxvEqSjFJMdezI3pjp1yN43tjXikFYCs7sjxwPJXDbXKJUbXgcm6Tqq1evHh7vz20kZDKt7FpyLqs+xWMpkVbXJ5OEaQ/hvnGN8ty7MP5NTHUbtptpAbJzxPNUTGk0J5VWImNI7PeZM2eG83D16tW154JZQOyvt/n5wzWfrR2y1mqesu0+ZrTOjOr+2MbOt8nGnp3X+3oOvCb5nI3n974V6+V6j+D9yeue2Q55jOfI2y9eXModxveJ7bTxWdIMr9FoNBqNgH7hNRqNRuNEYOcCsNExwc4q0WnFKk27LZtGjwz1lcqSKk2qw+IxlSt+hkoduE3MThWWsI3bO+l7ZTSPv1VOEVQrj8bDPlJtGfepVMJ0Nc/aG8FOK1Y5Zf1ne7u4Qldq6kptmf3GY41tnFYyVa9ROZpsClPIzlO5w49CGYhsLnjsphCG7NhqXKO5N06dOjV0eIoqTTtORZUmVXFUn2Uu8Qy9qEwPVdjKNmPOzCIGQz1G13K0JmM/Ijx2qwCpyqSKU1qfN6rmt1HzV33MwLFznFZpxneM/3cIw9mzZ1ul2Wg0Go1GxM4M79q1a2uB59FpJb6JpfWwhFFAZmXcJKvZJsPCLg4hDLbNpA0aizc5HGQB1ZT0K2k0/rZJcsmkT4YYMKCW/cjaY1tkepvaISyl+xpmjIj9Zp+yOa+uR8XaRoy4kkiz82UONNI4C8gmZ5iMKW8KS8k0C5tYR5UFKW6rWE92jdiXyu19FJ6wyXEnrh1L9tFlnZoDn9tB6iMthPvPpBibHERGbWXz5LEymN+fWagGn01VwoNRyBbnxp/cHo/nb9X5MtZere9sTugUx3VmdhoD0v2+yd4Hm9AMr9FoNBonAjszvHmeD9++fitHVldJ52QXmdt9FbBIqTlKJJU0Sck0Mgr/Rtd4SlMjO0XFbvh77C9ZDffNJC2OkzrvzKZCCdLXZxu7TyWh+jOmgrJ+fWS/jGO9dOnS2lyMpOdKqh0x0+sJ8q+u4QibgnozSZvModJ2ZAH6nCeu1W36Wm3fhcFkbvi0hTGFHu1rGTYxvCtXruipp56SdMTa/F1aZyQVIx3ZEXdheJtYhecgPht5P/qTzC5qUbwPn6vbrDuGI5gt+dP3r7/HY7jvyEbNPlXMjkw2jtXHeB+mHnRfpSMbrp9FzfAajUaj0QCuy0vTb1amEfPv8XMbSZu2LL/l/d1ve39mUkwVmOnvUarY5GlJFhXbrzwTR+nPRslaszFE0F5KKZpesfF//rZNgHP1Pba/bRsRBwcHunTp0qHEmF0XnqOyOWb2UaPyZsvY4ab0UFli7mrfbWyulf1jlHqp8jLdZlw+hmya6cNinysPX1+bTJp2O5TSeY9EluB14GfINtoB2+wuXLgg6XiaO7MYMwEG23OuszFmmflj37LrwvNwXUf/Bv+fJV2Pn/Fa+r6v7k/6PWQe7H5uer78aYYc2RPtft6nSl6wi0cxGW7sr9vxeHlPxLXkteM+Xrp0aWuW1wyv0Wg0GicCO6cWO3Xq1JoOOtp16BG4rRQl1d6YlKYyKYYxJdvE7hGUQEaeXWSJPE9m46DkTakmi0kjw+Oc33777ce2x3N7G6+BJaNRLA3n032PEiuPGaVDs5ROiW6X1FhZ3BDHUsUtVn2K5+P5Wd4m6y/XWdbmpgS8nLfM/pdpHaR1z7u4D9cv7bHb2E8rphfXG5mD+3z33XeX47KU7n7HZwhx7do1PfHEE2u2u8yuYxZY3Vsjr8lNNvasrI3BdZHZLekdyXsqK51Ge7xRraHYR66NKqXYKAG0/TS4pui9GfvoueA+mae3QS0Y5zPGXHKdXbp0qePwGo1Go9GI2JnhnTt3bk0iidKZJQLD+3h7pt+nl2QVA5RltbCkaKmPkmOUAnhMZVsjS419MCodemZnZP/JvIyMKXtfz7nn0Z+WorOyTbSfMiFrtIF4W9SLx89M8nIffOwmPfo8z2sSaew32T89OjNv1+p6V4wvniPziovtj+y/VQaPzLOPki61ASP7L20n1CgYkQFUCcA3lbiKfay8gX3Ns4TDFXu3FiKuD//mtXPTTTeVUvrBwYHe//73HzI8z3mMzTKzY2YOz4H7HYvQVvehwbnPNAtkTf7M7gmufd9/lV02nptrlG1lCbXpnen5oh19pP3iM95zlnltMq6wiqfOMhfxfuK9F/vldfCsZz3rcN9meI1Go9FoBPQLr9FoNBonAjupNB2SYLWAVRV2s43/m9bedtttktaD1CNFpwqRAYrcnqkWrNIkbfdnVN/xGDocZM4qDFLfFBSfqXyMKmwgqoP9/x133CFpfa6pYsiSOldBqQw8jXPhz8cee0zS0bxlKhoGjUa1MeHk0TSKZ+pCupgzWfA2advoCp2pZKu0TXTXzyprV2rWzBmncqiqnLPiHHPdMVSCfY/7MAibqs5RWjo6y7j90TX2vr5eDh9wm9HhiSrtm266qVSJ22nF97ZVWvGersIBrPL3cyjeJ97Hn3T2oot8dAzydaEpxWvWv8c+csyVKjNLOF2pXUehNVRZUj3qe8PPlrgPw578zPfnyCmschjkfS2tm5d8rNdOVjeTc92B541Go9FoADsxvP39fd16662Hb326xkvSXXfdJelIEvA+llQsVWROFpQuqiTVUaqw1O/z2XhtycrSYHSjtoRgtkTHhyxMgK6wZE1VheDYjtun9MSAVOmI4d15552SjiRVuglnjhWUlja57kvrLNPtWdKyNBUdBXjs/v7+MJn2lStXho4AZpVkRJVjCMcQUYXHjEowkWGNjPqjkjFxDLGdSqKvHBAiKhf6jClXknwVbjMy+FOSz1h2Vd7Ga8b3ZJY0OGpiqn5cu3ZNjz/++Bqzi9eS69YODbxv4nPHzy3fY74P/d2fnoP3ve99h8f6PuD94b75+rjPcR9qrOhQlYUnVQkWuLai85LXoJ8rZLB0iIv7+tlkDZOfr/5Op6PYR2qFqD2KSb/5nGbFev4exxW1ee200mg0Go1GwDMKS/Bb36xOOpKsNpX9iJKBQZsQA6Uzl39uYwAq7XQR1JnTTTmGCXg8VRAnJbEocWxKppqVp2F4gMdDG+Eo9Q7tLpQGM9sUC/Z6DrIgbM91dFkf2RquXLmy1v9o4/A2n4uhHkZcUyxHVQXVZinu/L/HSBtnZlOpArG9PjK7QpWkmdchu5ZViAEZS1yrnEfbr9gGWVvcVqU/y9LgVUyZ7cdkz2YSvv6j9FAHBwd66qmn1q5LHLOfQd523333HRu7t/u7JN1zzz3HjjV78T5meJ7H+MxiiSKyGn9//PHHD4/hdWaKLz9Xo52UDLtK8ZatMe/j8ZjRUgsXfQfon0FNneeI5Zfi+DwnDB/xvmbFcV/P06OPPnpsX6+7GE7iY9zuk08+OUx6EdEMr9FoNBonAjszvNOnTx++7S0ZRNsTU+DQtpV5MXIfepVZcqAHVDyGnmn0ECJLiKiCbaO0ZOmL9jiDDDALOK2SxPoz9pG2uSpNlKXBLLkzz0vWGPuYza20rufPJHsfu4nhPf3004fXy1Jt3N9SHK8dU42NgtU9L2QoWUo72vW2SQDNvpBIrTq9AAAgAElEQVThZd6gVTAvg8izlG8M5mWZpqzkivehTcrgWo2oihQzxVWWUsrwOLjeI0Pys8Nr8YknnigZ3jzPunbt2loQeVZGx2zGzyR/99qKc2FtlD+ZHIOsNt6DLLnl9sneIqOsvJDf8573HDsmS5LBtU8P4syD3cdwbjxes7WoJaFXuMfM52xWtofaNq4dthnPzfuHGq0IJiu/cOFCJ49uNBqNRiNi5zi8s2fPHkpJlhiihFCVhKi8iuL/lpIsnVHapJ3JfZLWC0BSuogSAG0BRJbOhhIdx0tPwngspXLaDLPktdzX7dN2ZAkrS4pLVsBkslnhR9poyE6ivp/XY8SMrl27pieffPLwOpjhRe2AQabjT5ZTif9Teq48FbMYS0rLGUs3aMtkHFzmCWlptUo/xc+4xqoiuFWMXUS0mcW+s3BmFptIrQfXQ2YzIbseraXMrjyyw+zt7a2NPY6Zzx2mjbO3phmMdHStbAvyuuP88N6L53MbXpv0ms28tfnd8/Tud79bUm4rZDJsrhV6V8a++RjvQy/0OC4ySMY3k4Xa5iatxxfzmew+x+d35TFaaffitsgym+E1Go1GoxFwXTY8JpTNMkMwYS0T10b4rW6piF49bp8ePdKRVEHbHSXiyCR8PrIyI7OlVJlcyEKMOE5mn/F3syXGm8U+WYJi/BolsSjtWtqkd97I9urj6WFFm1WWLaOax4h5nnXx4sW16xOlPbZDiTsrqkn7p68LGbnHEc9H5s14ISbBjf12X1iY121F9szYxYrhuW+RRZO5bpNphczNXnHWzFBqjszKDIhsl0w8k7irbDNZ8VAy1KtXr24s5eTr4Xi4aDtk/Ba9DX0vZOuXWhJ6Yj/00EOSjrNDw9fb4+B54tohK/Matdek41Az8N6i9272HGCcL+292TOZzzPOiZ+958+fl3T8meX1RS0HmfsoCxU1FZ6zhx9+eO2Y6HnbcXiNRqPRaATsxPCYDzGzV1G6q7IIZDYHs5n777//WPvPec5zJEnvfe97JR2XhFhGx+0zM0qULhmbw5jAzKvMzIfsoyrqGaVPev/Ry+yRRx6RlHskmeWSVTOfXJYVxn148MEHJR1Jvffee6+ko3mVjmwcPo9ZCSWn2MdR1hTC2gFKZ1mOPII2yWjDo+Tp+WC2niwTha8hs0a8613vknTkzRYzCZHJc34yrQfXelVoNBsfPSDJWDPvXLZL7zkfayYb42gp2ZvduA16NErrmhja3lkGJ+4bbayjLD0XL15cY8Rxnqi9MNvw2HjPR/jZ4XYZx2h2G1ku++pj6T0bvTTdntd5pQXLCsAylpFrKsupy1yhtN0xxpbnjueh3wOvbTzPm9/85mPt+nlTxaNmYCxufO7QnnjLLbd0HF6j0Wg0GhH9wms0Go3GicBOKk2DKqAsUS4NokwaHY+xOuqBBx6QdKRGsfqEKh+r36QjKk8VJg31mQqVbsF0247Uu1JlMvyBapF4HhqLSc0zo76Nw+7bc5/7XEnrRvGoQmPCV6uAbfhlIm/paE7pUky1dVTH0cljk+NBHGuW6qtKHk41VFbqySoXf7djA9U5WZLlKi2cx5WlmGMgO6vJR0cVqvnpMl+VD4r951xwTqJKh6nqGCbAZOzxGnj+mGbP48kcnjwXvAc9Ts9JVO9tKnvDsb3//e8fJqP2fW71s9OGuZ9ZqScG0bv/VKfFtFYGkyJ4frjvKA0iEw9k5XP8bKSTHB2qGIISx85nBFXP8TnAcACWV/M4MxViTCKQgQ6G8Ty+pn5us49Z0nfP9bYOK1IzvEaj0WicEOzM8A4ODtYkkihdMIh6E7uRjqRxb7N0ycBPv9Hj257JVM1i6IiSBamSpVlCyRjeKB1TbD9zIqBkxcKYlpqj9Om54Hy5z3QBjv1y/2P4RhxDJhHRgcPn9XYmipbWpa8Rwzs4ONClS5eOlQaRjruJM0wjS97stjhWM1SvJY+DDgJZkDXTGLHIZXSm4XrzbywWGu8JlioyyGizNUYHAwbQe81kqdPYhvvKZMVxzVahGWSW0dHB/WXZnqqkjbS+Bq9du1aunWmatL+/f3hPZ0nk2RdrRuj0FZkpWSydy8gAs/RtZO8jlsNk7h4HNWUZmyGzMxiWEhMz+xnh9W2Nme+REUtj2BDXqK91TDriNeHzeFxkqfE5x1RsnjcmA8jCYEbJJCo0w2s0Go3GicDOgeenTp1ae+tmSVwpxdAlN0uQy+Sibt9u+1kiZdoTLZnYHTlLCUaJlMHymas/SxRVYQlGHB8DtCvbVJZU1dISyx3ZLpe593sfS0ss9WEpNx7D4FumgiMDlNYDmDcFDscgVf8fJW7PC5mCx+7+Z1JllaiYqeUiW6P9z2B6oyxtG+eJQczZ+mafGRaTpcHj/UMGzusTz8fgeMPrg6WV4rFMf0e3/7gOaJNkonj/nrmwV4kbIlyWrGLEsb8ObWIQv/eNNjavvYzpxjaz1H9VmjCm2YttstSP708zILOzUXIEXw/a1DO2Zpbk9eVnBu1/8b71/DAZNX0V3I8s2QS1DV6bWXkgrl//xqLcmdZjFJJToRleo9FoNE4EdrbhnTp1ak2yjxKw38Qsx0Mvovh2tkRgL65KevZbP5NmaOvwJxOmSuvealUanSi9kNFVSaQzfXKWpDeOO9qxDHqf0uOKhW3jeRmUXEmw0Z5GOwXtDZn+3chK4mSY53nNOzPzYqNXIT3GshJFVSB2lYA8/sa1yvUXbW9kvgzMzTxuK1ZGBpZdS9qVaBunN1vsi+8BnpfJsaP0XJWwYhB7lh6K9nqyg8jwaFvdlPx3nue15AtZELkZAjUxvp8yLQS9FVkKi17D0rpdlmm0uIZjX3zfmXHR3hhReS5zvjJbLjUk2bNQOu5P4WPMjDmurMC1UaV3ZN8zb3Qey9RzmSdp1GRsevYYzfAajUajcSKwc3mgc+fOrb2NszIzlMZpV4ishrYSxgdtU7aFtgZ6tWVMovqeSTH0zqskn0zSYPFEf2dBy2hToW7bbJq20VFKHZZmMjIGy1gk2rwsJWa2Kc5JBtt/jSz+qrJxMnVZ1BZQEqzSnGWeg5xjstcsdo/t+Rgyi7i+qRWomH7mDUgmTAY76huL7NKzc+S5yu9M4B2vH9lMlTIrS+sWkyBXNmCnFmPcZNYHXmeuzZE9lgmZeb2ykmYGtQVZcnRfD68VMzszLH9mzxAyYT5vsmMYT+p7mJqtTDtALQHvBT+zslSDnHPag6MdleuJ92J2jBHTqTXDazQajUYjYGcbXvS2s8QWGRKlMIN2pPi739SM+aG0mb3Fq+TUtHnEOA5mbGDR0Ow81DXT3kTPtMjW6MFlWKKjBB7HY0nKc8JxZZlWGGfIWJ7Ms5SMhUVizfyyMjTZuTPs7++vMbtsrpkQnOsgY2m8DqN4QPaVWgjaZzKPW3oH2/6SsUJqN2jzov0xs4kbnAuWi4rtk+3wWmb2EfaJ9sWsj7znaJvM+rhNhhWOk8V3M5CtcX3Ea0mbUlZqqTo2yzwkrT8non2Ma8XPH++TFbZlUugqK0/mNUnWSe1N9mz0c8Z9YuJ2ruUsIXhWXi2OIdNKeZvtjF6rLKkWzxmvWzO8RqPRaDQC+oXXaDQajROBnevhXblyZU3NkqWb4m80TkYX5colmUbPTBVH5woGAFONE3+rHB4YFBvbpepyk/owtu+++DxM8RPVH+4D1XpUu3J+s75ULr/ZPFId5nlz3zMVBqtwZ3A9PFZqzxyDqnR0WaqxShW7yc09tktVJl3+Y1ts19eM9d2i+i5z9Ijf6TySqfurMJgsHIbB41wjVMNlaj6u4yocIh5D1aa/Z6rIzDlmpJba29tbU+/R2SyCzwEfE58Ddh6hCp3OU1UoQBwrnfUYFhH/t0qTz6ZsnbhPrCJu0LSRhewYfN5lz9NKdc21NFIr81k5CpJnvVKqULPUiUzQ0KnFGo1Go9EArqs8UOWSL627UVNCyIJrKQ1VpUOy8imURJk2jOnD4jE0vJJ9ZGWPqorX/MwS5VbBoiyJEeeAjjyUckfG/8rBJXN0MSgZc/6ywNbMvZ1wWILHwfRhse2qnVFJocxVPdsef6e0WlWvz66l14YdD8jEM0cQzjfHkzlN0WmEyJKZjwLn2Teer2pj5BRElsl7IUsFxrkfuZZP06S9vb01B42szAzDN+iaH/tthsV7ioy0cmaJ26pwiAiv+SzpfjxPfDZa01NpCehwF39nv1nSKNMO8TlKVmhsk5SBayZLg1edh04ymWYprq92Wmk0Go1GI2Bnhre3t5cW8jNY3JC2roy9sQTOJpflzJ2ebvRkM1GKoa2m0nVHqbqyDZG9ZW3yGAYncwzSOgNyeAITD9NeI9WMhdJ5JqUzaHkU4FoFd1eYpmmYdNZtV2mgaNsbnXMTm4qglEy7QuwH3c39G1lCZFEMhuf6rmxrcV/avJjSLPaRdr9R2Z0K1byOUuixrFfl9p+N4+zZs0OGd+rUqUOtg9d+TEJMGy7TjmVam6o8WJUgPAOfZ1Xx3dhH3lu0z2XJ0Zk0mvZsJhWI4+D5q+LVUh3+xDY2hf9Itd05W1sMI+E9E8/jbX5+3nLLLVuHuTTDazQajcaJwM4Mz/p0KZfYKFlTEs2kpurtTBtKJqWRyVUSUJRUKIkaTKuTSRVsn3pqMttsHPRaYsHRuA9L/VCnnwU6V0H4RmVTivvSPpdJ9Nz34OBgYxFP9jd6zXGeqKvP+lCtnZEtxeBvPF+2n212TErsT16frK9VouvMZlglJ+b2mN7P+2wK1M7GO0ruzX3ZR2oDOJ7YD5YUGjEF7+859dxHFkdGVaVzi9eSxU15T3OOM/sYwWPjc4ee5L7+TC4R02hRc8B1TVtlZhOvguP9bMmuC23S1HBlz2L2jdd9lDiEbdCTPNNgxfJOzfAajUaj0QjYuQCsJXUp1wEz4XNlH8ve2JvsBmRz8ZiRflgaJ65l33aRRJhGJ/NEqmwCZBgZS6NUa4ZBD6vMA46MovJKjNsooVY69Xh89PocSep7e3triaGzIo5MXUfvssxr0qg8H40Rq+XnKC0dC6Ka2WWMm+fk9RgxSl7n7P6J45XWY8FoI6q8hrM+ct1nzIXswwyFnsZZrGDGhImoVYp9iLauak4ZRxjjI6tCtWQ5o9R/ZLO8x+M8uS9mJv70GnJ5tJhGK3vGxnGweHFcS7RBW5viubfWKLI0+mVQS8Dn6yhVH5/XIxZWlRbKxu8+3X333ZI2lyWLaIbXaDQajROBnTOtXLt2bc0zcGRzqOKH4vZqn8xGxP2pU64KZmZSM7O+jDI3VPEvlrDI8OL+lv5ZuNLfzRoyaZe2OpYFyrwPszIzEaN4IrJPMr2MXce+jBjetWvX1hh5JnFzPZDpjeIwK5vTqGzTJmYXpWhfO19TfmbxUpxDStG0dWQevowVZeaTrD1KzVUsVwRt31UcYzwvmSQ1Ghky1ldhb29Pt9566yEjGbHCyo6YsVkyuszWGI/NCvNWNlYjzpMZHLUDd955pyTp9ttvXxsfCwozETftj5nWhiXZmAh+G49yo4rpjfvy/q3sqfG3ysudGVeko3liIdtt0Ayv0Wg0GicC/cJrNBqNxonAddXDy4y4Bh0/aNDO3MUrdRTp7UhdlrnJxjaj+7upvak3EyRn1aWrOnGVWixzIqAR3MZ9jz86R1QqJapORsHKNBZXiafjb1RXV2mCsrFvcg2epmlN5RyPoSqMDkGZezP7RaP3SKXFfZhWjao66UgdVak2eY2zPtDlf6SeHqVGi21GtSvP53FUbWX3MdfIKHkwj+exo9CWUUIAY29vTzfddNPhnGcOKNU6qMwXWb/o5MFxZGYRg+f1OrjrrrvKMd9xxx2SpGc/+9mSjtZUVCNWTnh0CBqFi9BBrAqHif9XtTN5veJ1q1LL8Vpkicd97zOoPDPPeG59n952222dWqzRaDQajYidnVYODg7WXEWj1EnDfCUpZkHdm5Ls8hzxf0r2dDnOKkL708ZwpyrKJEhvY/Vg9jFjFAxKZgmOzAhPJrwp7CIyPUqfm4J6Y/8JSmvxWnMcmwLPT58+vRbUn0l7nJcqcfdoHJV786gkUlVqJa4DMjsGDWdp0bIk61nfsmS+WZJl7lPNQRUGM0qdVrE+9iNzE6cLO+/5bI3FZ0i1Bvf29nTu3LlDN3SX1Ypr0fNP7Ub1HJKOM/e4TxXSkJULY7o798OOFf6MffGx/o3p9iLDY9hBlcg6e3ZyPfO6mGFmznq8Fkx1yPHHdg06nmShGpUmqQrlyfp2+vTpZniNRqPRaETszPAuX768VgIls8NUTGQbnf2mNF7sU/adkmgWeO7UOu9+97slSQ899NCxNiy9x23WG/uzShMVpSbq7OkmnrnZVimRRomGeexIsq5QpVcyspAAYySlOwFwZfuI7dFlfZtyVJQUq/GMEo/TDsPCsNJ6KjEG/ke2a7j/TM9EmweTmkdUts+MeW9K2syg6cweR3ZWFQSN7fB8I+3ANoVEY/unT59eC+uJ689zSzYxsnFtKiDKezCzI9GG66BxrhNpvTwQ0xD691gImsHiVbo42p9jf82IOSfZs5HX2+fzuOj3EDVdtBVXWresVFuVjDrTKHD9OiHKNmiG12g0Go0TgZ29NK9du3YokWT2CkoIlLBHCWsJekttkyCU5XN8TCy26PRcZnQPPvigJOnRRx89dl7vF8GCqJVHWlY81jBztOSVSbv09qs8FrOyRWSDlFBHUjrnvPJkjGCi6QojBhj7XSV+zhjrpiDhbUoiVd+3SZjt+ff1yaRmsvHKrp2tc7djW47tzbT7ZMy1sofQWzS7JpvswKNjaNvPmCTX5ujenqZJ586dO7ynWXIstkPbJvuSsUwyHt6PPm9M+RUTF0vrQdCZRyJZGK8LPcDjMZUHpMftY2LJJPeNXuDe7nHFvlNDxrJkI+0HGSwTH2Rao+p+5bqI56FWZRstgdEMr9FoNBonAjszvFOnTpVeZ9I6g9skRcdjuM/IThX7I60zO6fx8e+PP/744TGWgszg6JWZsZkqvqtKthqlGBbkpOTL1D/SkWTFFG2W0mh3GvW1sqlEVMwrk1SNLKHtyIa3v7+/xmpiu5vSQY1SolXxgiPvr6qkVJXSLh7DY+kVGFF5f3IOshhOziel5iydk/9n2juyqFHB3qpY7YgpVet7lFKq8syOmKZJZ86cWdMoZVoUMi3GnmW2IHrYVs+UeH/ynmbMo9lOZB/WMvk3f2dcZnb9o20u9pG+BXFOqBWybZCpzSJz5VwY3tdteS6yotXuC++JLB1Z5SFNjUm8bmR9o+cO0Qyv0Wg0GicCO5cHOn369Jqkuo3HpZHZ8KosCdn5pbwkPeOiLLUwfkk6knwtiTjjCSWTaPdjImF/p1RmSTIWp7QXpjMq3HfffZKOsjDce++9ko5YaWyHpT08Hvctk4wraXnEJIzKwy+T0rnPpkKMXj9SXT4q20YGFvtAhmvJsGJrmXRZrVF680rrdgPa7FhqJrZXeYNWCY+zcdE+Qsk/trNN+SH+znuRDL9ifvG8m2zyVV+qGM69vT2dPXv2cK7JriL4G4+J14Vsxs8Q2qfI/GJfqXlhIvospo5e2lU8YOwLM0bxumRlo2zvJfurnmHxf4/d53OfWJA2erL7/01zkZUjYizgKA4vy/rTDK/RaDQajYCdGV604Y1sQZWXV2afqd7OtBFlhR/N5MzSqLNnMUfpSBJ51rOeJelIt03bR/R4sg3Q25iVhXpx90daZ3Jmet7Hn5EVGu4LbQX0fIrXYpPtM/PSZE47zv02Hn2jjAdmd4zTzDy2KhaRscLKE5FMiJ/xf3qmca6ZVSceS+k1sxXRlkFGSY/PiKr8VRXTx3Nn46lKP2X7Mh/rKOtNluu0QqZJGK2dM2fOrLGdbeLH6ImZZc0hw6vi1TKPS193Ft21ViA+Q8x8fC1532de75yTytaV2TWp3ao8e+P6Zv5NerlWGo7Y18qmm3lZ037J65g9C/iM2sZ7/3B8W+/ZaDQajcaHMPqF12g0Go0TgZ3DEqR1apoFnhuV23FU6/CYSjWSpethuRaqHzI1qFN8Pe95zzt2HqqnbPSVpPPnz0s6Ck63qoJpyOg8E89n1aadU2hYjyoaGqErF98s1KAKJajSRMU+jFJkxT7Hc0ZV5KZE1aO1k6ln3a6UB9m7Pe/Dsk0jl+jKWWRUodzHO6TFKnWfl9Xss75UoRR0I4+o0oON0sfRaaW6BzMnoEoNmqk0qSKv7ues/zEUaKTSPHv27OHcZiYVrl+3y7UeVZo0f1Alx+D4eH8y4JsYOZN5DdmUEsMdYtuxD0a1rrPUeVTnGqOwL65Fq2GrBBtZEnNWKacjVzzG/c3ShWXni/9HVe22as1meI1Go9E4Edg5eXSUCjJHhk3SRMY+mKaLoCE1sjUm3CVLyEpfWKK65557JOmw7Ailp8jw/D+dV5jw2JJKZHg2TjNNj5G5zFOCIxtkG3HuqlQ+NDyPXH0ZPsAAeJ4zni+DHQ8oMUZUiWQz6ZVjZZA45y9L22RUqYmY3Df+z/U1SkdHKZhS9Ch0gm1wfY0M95XjmM+bMbyqeHDlVBBROTbRKSj+T+eEDC4Aa83IKIFCVah2FHhOpkd2mGmpqiB7PqsyDYYdWnwd/CzxMdnzdMR+K3AuuG/Gzsi0DN5Hvo+ze4drZaSF4LWsktdniQ4iw+uwhEaj0Wg0Aq7LhkeJO9Ol035QJZOW8gKLcd9Mh85jq0BjSySZ+6wDwn2MJUj3I4YWOISBackqSST2lZIjpWim5Int+7NKpJ3p6SmRsk9ZyZTKflElc5XWi2uOpCyHtHgOMqZFG0eVMHcb2wPdtslq4lgqKT1jtWSUTN/FJLuxXd4bDEMY2ShpGxwlEeC2alxVku7sPGw728YUdqN1sclWTEzTtJbOKl5LXocsdIGo2GCWHpDwPmQ8FUuM7VXagThWg2EnVWq+rGwYx1fZz7NivtQgcD1kNvFNbH1k3x+FWfG7NXy+J7oAbKPRaDQawM6B5/v7+2XiXO8j1XrjTP++qVBgZZfJsCkJafyNTMgsztJNlM4sXbode+dVjDIrbFqlhcqCVG0z9G9VsPIo+J8FesnwtvEGzIp3GiwTNYLXDm1Ro2vJMWfaAbKUKm1XNo4qiJa2zsjELAEzDZ097hhcHPchG6+k9cxLL7NBZeMetUdGm7G4yj42KgFVJYmu7FzSOovaJj0UPa4zm3dl96XNO+t/pYlxG9GbclPppey8nBcmK8g8Ej0e9olaIrcZ16qPZTowerJn2igyPKO6V+L/VXKEjBXyeVlpsrJncUwu0Ayv0Wg0Go2AnW148U2apWuihFh5/URUZVIoLTHpadyX+1SFOaX19GD2vLTXppM7x7IZ9AalXYZ6+WijYsoyJqLObHhmDEzASuacMekqVobplrJUVps8JbOSLFWsJZExvIjKZkJpOkqItOuR8Y3swFlSYPczfsaUb2RcTAic2SarEihkFJTI4/9MD1XFvEWQpVXMLs5ndU15bTOPy4rhcSzZMZtKS+3t7R1LUi4dX4u0S1HjQnYTQUZPzUiWKJnMy/Z+aqXi3Hof2+V9T9O2x7FL68y6KjGWzQnj4jj38Z7gOvN3rovsnq9KPlUFYeMxvF95TeLcZ/bsTfG/RjO8RqPRaJwI7MzwDg4O1t7gWfFRekeNPLY2FZmkPc7sRzpiRSyBQW+9KAFYannf+94n6YjhPfzww5KOsqnceeedh8dYqmBRSPfR57P0FkvKkK1VfY3sgMyBdiB/moXG+a6YHdl2ZiugvbGyicV2Yp+38bbLzpehsiNl2ypJkXORsSfaNDg/cX0yMwSzSZDxx9845ipWLNp9zGaYSajKTMFzR1TbM69A2oToMZslAOb3ah3GbZGpjBje6dOn1543kXn7OvgeI/NnkeeI6rrQZhjLd9FuzedNxmao0aGXZvasIrOrPK8z5mpwHGRPWUJtPjOoOeHzLhtPVRYo037xWGoj4rX2PeF9q2w3GZrhNRqNRuNEoF94jUaj0TgR2Dm12KYK26amVfBmFsBcuVFXAZMxXZjd962GpNNKdj66llvF8Mgjj0iSHnvsMUlHdeukI6Op1QI2QDOJbFZjimpOOjh4e6bSpBqKtbv8GcfHMVfJAOIxlUpwFBLCfa5evbq1ipLOBdlYK2SqrypMowq6jts2JWLOzsdEzwx0jv2gAwUTg3stZQ5IvHZEtT32IVNDxn5l93RVBT5ToVbzRWeJzGll5LARER2eRg5IlXt7pkKvKtFTbZip1ZyO0NeOakmGqcTf+Nxh3cUsxKSqIzmav8pRx9/5DJGOnnOszckwHDv8RdMN1cfVuo+ONd6nSnDhaxz7U6U93AbN8BqNRqNxInBdTitGlqDZb3wyPEogo0DQKuVTZtSnVEwnFroWx22WqOhwQElMOpLk7CTCJMFx39hGPA/btVTDiusZ6NjAwNAoPVesoCoTE7EpkDu7/tsyPKcXy8YVz8V2yfizedqUfHYUMF1Vec76aPB6jzQKPIYsmg5Q8Xy8TzKnGIKhBGTTlNYzp7Mq1CALh6BrPB0psjRb7OsovGJvb0/nzp07bIf3k3TEUtyeNSRVIoU4bq5xH+txZdoDPpP8fPD5fX9GBmQnOfaFzChzWqlSizHBeZbgmm2NtB4MR8ju8dhG7Cu1a1XikLjeqEkgo6XTVta3c+fOdXmgRqPRaDQidrbhXb58eagzZXB1VS4o01NXEjylKRdUjeBv1jFnkh4lKkseliKY8ktaZzzex5IIwwji+BhgykS3RtSlezyUcBiGwPCE2KeqeCxd6+O2Sg+fSbmUUC9fvrzRFsO+ZdJsFbJQ2aKkmrWOjqlsXJSes9RplP4NsrVdkLmJ8zr7vCzfk9lWKfVXKZ4yuxbvcSZWHtlCqXXINA600Yy0Dvv7+7r99tvX+hbnflNB1Mw+WzFfsmgfG0hsQcwAACAASURBVFP/+Tf7EJAZuY+Z9ssaHaYY9L7R/h/nIILrKyv1RH8Ks07OX3zOEWTM/rSGK5ZQ8/lY/ojXIILagZiIQFpPFC2t36+dWqzRaDQaDWBnhnflypW1khSZXtySAKWKrMRLFTRJidssJgaA2luK0gSZZpa2i5LWyDOoSsdEG0dWsJGSDQNyKdVIR8zOJYyY0Jr2mSxJLYNhq4TK2W9VMdJ4rTLGMApu3tvbOzzGcxulS0qCtCduCmqPY6qY3ciGQ7bmsca1UyVdYHmgCP62ySM2SvNcG5V9O0uondnYuW/cj+eO30f2ONrsmMJqdE/QBpVhb29Pt9xyy9q1jV7NZHhVebC4fvlM8jFmL9SMROZ1/vx5SevJwumRGuezKkLsdjPPbPehso9WKdRie97X5xmxdf9Pj3IyPT5nY7+ZSIP3YnyuUlNBzVaWyJ/PpG29u6VmeI1Go9E4Ibguhmcwfk46kmxoR9jktSnVHm5+u5vhjRKJGpR8onRGXTm9Jrex+xiUErcpAOp9PZ4srogxMmR2TMmTJfUmwxvZ4yhhU7LL7KuUzrex37k9lviQjq6Hx0ob1C7pyOjhmXmZVrFlXMOj8xBVWaw4LjIKsul4LBMZVwVgs/JXo3YjMtsKmR3ZWjymKno68s6sYh4zOLUY0/jF54DvYcbjxTbieLI+VBqFLD7ODIjxvywLlCUeZ0J79jXa8nmsr4PHyT6OimRX5a/iPcjnJr3dq9jVeO6szFX8PW5n/KqvqZ+N/oznqdIHboNmeI1Go9E4EdiZ4UU7TSZNGJQUjKwMPGM6qhI8zHIiHSV4tq2riluJuuYq4fTIe43joe55lBGD+ndmQMjmkXZN2hNGpYXYZ9psMrtPVQ6G12LkpTmCbXi0SUXpspImq9I/8X+yP7KobMwsqeI5zQpMVuDcjthU5VnHPkebGzUlVeHczGOxap+sPevrptJScX3SrsTvWYmwbb3qjHme17xmIxMiK6rKzUSwX1wzVUYkSXrooYckSQ8++KCkuuRPnCf3m5oEg6WGpKP55vjoaUk/hDgHfka4/ZHXpEHNCL3Bs4ws7nfFJDPNWVWKi3HGmSdxbKO9NBuNRqPRCLguhue3PmNPpPXSHVUuzUxqropMVvY59ynuY8mAXj6xbTI7S3AsURGPoccRbTgjpkeJt2KhGVgSiftm2QuY55HsJsuHSBsdS+aMcqhGJrbJjsd5ilIu7bujYpMVKi/NzM5I9lexwZHdh9qAUR8rhjdiWtW4soK8RtWHKktGHF+VF7MqTxT7v8nOkzG8rOQTYd8Bek9Hu7yZh8fo+55agcxTlLkZKztWjMNzvl3b8FxijF6b8Zq73/7kc8HPrBjb5n3JBitbbsbwzEzp3crnXtY+86Fao+ZPe8lL6x7KPDYrisvzkOll9z7X7S4xr83wGo1Go3Ei0C+8RqPRaJwIXJdKk+quTCVHNc3IlTRTjWVt0HFDOlIz0ODPUhTRMYQqnyq5aZaGqHK5pUoh0uxKdTlSbVL9QPUrS4yMqqUz3CNT1RlUNdJpIispFDFSy8Wq1gw1kY7URFVbozRaBo35VKNkKjSeh1XM43qha/Wmckqx31Tnb+NEUrnvVxWoR2Ou1PCjMAg6WDFoOe5rVOstnoeq8itXrpTq8HmedenSpcM+ZEm+Wc2bqliq+bN9qZql80qc48pRi/ftKLkDHbey5wCfJ1wjfKZkFdb5TLSDDUMppPXrYtUwA8CZhlE6UslS/TpS81cOTkaWipIqzV0coJrhNRqNRuNEYCeGZ9dyv90zhwZKiJuKu8Zt2ds8Q/ydaXro5JG5v1M6oxF3lOaokpar0ANpXSKl9JkF3LN0ED/N7GyQjpIWnW8455lkVAVxkuFlSb/Z5wxMLZbNkyVDj6VyoMhQsYMqKXY8ppIqyd6yfRlSkpW74bbK2D6SWCuHo2ztVIkTKuN+llqKKZ7IMLL7t7rns2uTlcYZMbwrV64crvVRmAPZM/sb7+3KSY4ML2OHTDThdIdmQnReif2mg52fA6NizhmzjvtmLKo6xufNNCY8lpoYMv54LDUiTFKfOXYx7KUqyRTZNe/pc+fOdVhCo9FoNBoROzO8M2fOrAVQRvC3yvYQJWNKZf6NabMsGUQ2w+BQspgsdIKShs9TfcZ9KUlRanffszRhdNP19kwiZ7JWj9n69yotWjyWdkUGfcdjeA04voz1ZgHOlaQ1z7MODg7KROHSuj6fyNgMrwvdtY2MmZORkIlnrt7V/BiZLaKy73KuyDAyUHrOgvGZsKFi3hlbIyuoyt5kx1BTUyXYjvtU3yMODg508eLFMk0h22b/Yt+2Yc9cK9n1onbG7vnuo9lovG84p77/HbCdpUnkWmACcu4Xt7PskL9bS8TkFREMDyCTdd+ze7UqyeR+jGyUfNbTHyHuG6/Ttgmkm+E1Go1G40TguhgemVh8Y1NPvU2ZFkonlaSb6XMrexVtENFziCyA3kosbyGt67mrYPiR3aJKD5bZfdgXSo6U0rKA6sqji/aYuA9/83ljol4j86qtGJ5teEwMHftNBkrpkZJdRBW8P2JkTMRb2fKyJNsMVuZ6z1jhJhZtZGyNv7Fvo+KaVTB+xqhZ3mZkm2b/Oa7RPVHZ/TIcHBzoqaeeOjw3U9BJdQFYni/zmuS15DGZV7NtWk5pyELQDh63RibuwwB0Mzyzp5EHLG3GvBfiGHwNmayav8e0ZSxlxTXCxB6xP/SUZRrJ7Bpz7dAjlj4EEe7jNgkpDs+39Z6NRqPRaHwIY2eGd+rUqTVJMbNXbPIU2yaRLGOqsqTOWaxUtj1KQmSmlDIyBlSljqriDeN+jL/JbFE8hrFULHNE/Xs2n2yfcx9ZL5lK5TEYJa3MVlRJ6nt7e7r55puHiaZp/+JntqY4p1UKruzYKnl3taY8jvgbNRpZ0mCuryo9nZExIaNieJviH2M/KL3H8dNmQwk/u38rb92KbUl5YdZqDLbhGdZyjOL6fH9UacNiH5iYmWsqS5hNr0UmtuZcxz5wzbDvWbm1Kv7XGNm3DTLMbB1yzGT2lW0v/lYl5R6xeDI8jneTxqxteI1Go9FoBDwjhpexHktfLNcziqmibaaSZrK3fZZpIu6zjeRbJXeODKgqtVPZIEZxhpVEF9kPddn0tCLzy7zmaBukFBgl+8ozkcw1K2UUpcJRIuxpmtbsi1G6ZjwkvdoyW0RldzHI8KNEStbC65BJjVwHFcPMEjJvcy/w+8i7sOpjdSxjUrMY1cp2R6l9pFGoSoNl9jPj9OnTQ4b3xBNPlOs59tPt2sY9YjOjzErxe1YQmN6q7pNtdrFsDs/Hdea+Zh7sfp7ymUj7efZsrM5Hu1/mg+ExVyXNMk/9iuFRwzFKRG+N1SgLFYtsX758eask5FIzvEaj0WicEPQLr9FoNBonAjupNA2qD2LgItVpVHFlKsDKqE8VRubePKoLVp3P/a+S9zL5aXVuqVaDZCofqnqoFsvS9FDNlwVibgLVHTRIR3CcdGwYqTS3AdWpUfVDNa7nwN8z9+aqAjirmWeG86q2HYO6R44AVKWMnAt4vipUZ1R/b+QUxP/p9EOHCgbcx315vUc1+yq16qhWIE0Om8ISLl26tJaSL3OW4xqic1GWhNjgvDHdVRYwzWcht8fQJpow2EerNrM5rpJzjMKg+Fzjes4c06r7s3Ik2yZJPtd75jjk/vtdMgqD2SXxONEMr9FoNBonAjs7rZw+fXqNiUUphsZauq6PqtRSitnGRbVKXzQKRqTUTGkzkzo3Je2tjMoRlELIYKLjTVWNnYHmWWqfqg+UXDOmZDDcIWMDnLdNAaAx8DxbBw5qZWJspprLWGblAk82m1Xqrhj4qDQJtQ8jg3wcfzwf13vmtFCFANHBKksTVyV8pmt51GhwHVTB8llIABly5QwU2zWuXbs2DNOIyaWzUKNKO8CyVpmji49hKAad2iI4/3ZW8Rr22o0MxedhIvNR0noyOqMK98pQOatlmgYyKzqrjO5fMkemaMuYq/fxfPE5niU1qBLcb4NmeI1Go9E4EbguG96o1E8l9dPFNx5D11piZAuoCmFSas+Ocbt2jR8FhlfMjucZletgUCzZ24jhUWIdhRhQsmfA6YjtUKIn04sMjxLcKHn0NE3a399fm7cs6NlrhKVWsmPIdKvwiSwQuNIokHFlNryM/cXtGbi+eC1HKbiq9bdN0dCqyCaDiSM22eIzGzWDydl+JqWP0sXF9vf29tbssgxFitvcJ9rJMls+1zHtl96ehbRULGbEZmhX5HMtMmE+M6pg8pHdjyXbqhRn0nrJIt+LVYmz7HyZT0I8f6YxoeaKttFRCaNpmtqG12g0Go1GxE4Mb56XQoyUTCNG0mr8PUoV1N/Sm9CfZETxGEoVtMdE/Tj11LQNZcmrKVlTt7xN4CM9Sul9mCWrpuRDCY/6eGld324GOwrmZHvsq1lWliw2pkyqbAm2/44C9GnDcr+9VmwniXNNzUEVXJt5mdI7s8IunokZtrFtVm1XGoXRPPL60t5EW9VIQ8NrMhr3pmD87Nh4DUZtx8TkTL4Qx2RQ05IVca08kMmI/D0mUPd64/xUXo0eQ9zX4/Cn13uWgIK+CWRCmZ2M15u2W6dHi+Py/5uYnp9LWQLvLDF8RHwW87ldrZl43XzuyDab4TUajUajEbAzw4veVJn3UqUX55s6HmtpwhI8ddv0Xopve0puLKszknyq+KSRTYPSMvu0jd2H+2YsdNtUZlmcIW0olWdfZs9gG9scs610tb+/X86fdDR+SqRkfFmx26qMCtlZFrtFNrNNjBj34TrfJs7UyGzhBtkaWRlTQMX/KyZHO0xcY7SzVDbqzEuzsjeOvE85Bxlsw2Ox48yOaPA5kMUMG1XMYRV7Jh2tRc+Hv7t9XxeX/pGOSgZ5HCwSS7t9HEelhai8auNvvHfdNzO8qG2j/Zxzw7mISb35LK60fPGYKlG723Lf4j3Ptbi3t9cMr9FoNBqNiJ29NA8ODtYkyPh2ZYwXpb1MJ+tjGMPH7AVVf6SaLUVpogIl65FXWZWlZFSupWIDo7IgHDM9FCm9xTF4H2aMGcXhkYV4H5ZZiaCNYOSlube3pzNnzqwxryi5VnFCBu10WTtMaktPvoxFVUnLaUuO59l0TTPbpFGx9gzUQlRlW6KkX60RsoERU/Jv9H5l8u/4G9sfedhVWU4qzPO8lmUorm9eZ9/3TBCd2f8rL0Z/mgllWUXMhPzd7buYa2RrZngs9bWNpmeTxifzDq0YHr21471dxd9R23HhwoVj45VqDRa9T7PsM4bboz0ze55uE3NNNMNrNBqNxolAv/AajUajcSKwc2qxs2fPDgNWM9WXNK6nZbB2lcH6R1FFxLpQNFLT0B3/rxxrMsO8URn+sxRP1bHGyKGCqXvods3Qg/g7VTRU1YycjejOTTVjFsC/TfJor51qfUh1GjCmAIuqrMpYTfVapp6k+pHpuzIHJAbEUv2dJchlXzbVe4zbq+rkVLtlTitZ2EHsewbOJ++NLAxnlAYq/h5BddemcIeLFy+W6cJiO6wTWTm1xd+saqzCOdxWVh+Tqk2rMjNnDKswmWgiqvjisdK6yrxKlZbNI++1aj1kSSuoYnb7drThPEvramTD48wchjgut+H5zGpTZmaRdlppNBqNRiNgZ4Z35syZw7dvlsw57ivVJUmyEiiWIsz0KL1kRvDKwYHSezSuWkqpys5k46qkcUraGcPb5DLvY2MAaFXduXJWiVIajdRki9k1oJG4SgEW5yRz9hilFjt79uwaC8iM7Bwr2Vm8/nR0Iuv076NUbxwjJdWMSYySN8e2sj6xL9uEJZDJM4Qmc6ioXPW5X6b9IHPleUYssUrSkI1vG8cDhkNl52byhoo5ZKXMXJaHzJjrInPu4H3qdeH7KeKOO+441v8s4URsM2JTeAi1VXGfKlnGKNUXtWB2UiGzi2zOc8tgeWrbskQHfhZTI5eVf+OzqJNHNxqNRqMB7MTw7FpOl9UokfhNXKXnGbnEV6WDKqlDOpIM6CJPSTX2kVJDVVqGY4/7VLa8EdulRMW5iOevkgTTbThzS6ddpwqsz0IZjIphZkmKjU0JgLNg5U3ppKr+st9MIcU2RjbIar2N7M3VOsjsmlkpnKyPme2Y98Y2dr+RvS1im7CfKqVdtlYJrpl4rcnWDg4OhuWBrly5ssYGsxRzZAre1+wjhinRpmWm5QQYTIYdx1klN/Y+ZnhZajHe7yOmwrVI+1hlc4//b0p8YIYb22fSevpI+Hdry6ScRcdxZ+uRoSZVeroIPtu7AGyj0Wg0GsC0i/5zmqaHJb3jA9edxn8HeME8z/dwY6+dxhbotdO4XqRrh9jphddoNBqNxocqWqXZaDQajROBfuE1Go1G40SgX3iNRqPROBHoF16j0Wg0TgR2isO75ZZb5rvuuqsslBnB+CDGhGQlSaq4p20ca3Zxvqn23VSEchfc6D5XxzyTcWdxUYy74vcsM0r8fPjhh/XEE0+sTdZdd901P+95z1uLzcpi67btU7at+qzm4Hr33fb7M8UoNu0Dcb5NcX7ZPVrd21Vb2baDgwM99NBDevzxx9d2OnPmzHzzzTevrZlRzNmm2MAM/7078DFWeNscuDfqvNu0WWXMyjI8xWwsFy5c0NNPP72xszu98O666y694hWv0KOPPnqsc9kAGBjttFmsxSStB1UzUHEU9FpdvCqNUzymqmG3zUt5E7JA903njzdw9ZBnyp1tXgKcC9bfktYDP5l+zcGpcfx33XWXJOm+++6TtKROevWrX53Ox/Of/3x9z/d8z+E6uPvuuyXlKZiYbsiBrP6MqZgc7OptTMzL+cqSHm+qSB9TWVU1DEe1DTddbx4zCtBnnxiIHLHpZZmt5SodGBNHxJRu/t+Jk53ogMngYxA2f7ty5Yq+7Mu+LO3vzTffrBe96EW68847Jenw03XqpKN1xLqBVV3JeO7q+2h7VQdxk/A+amOE0bNiE3Z5+VdEpfq+zfhGQi7HwfWX1TV1YoD3ve99kpa0Z294wxvKfhxrf6u9Go1Go9H4EMdODO/g4ECXLl1ak0gjW9skIWSMhGmGdlHjVIl4d5GeqvNsg0r9miWerhLlZsdsKtOyqR/ZsSPw+KoKfGRXTDM0SijsNizZM/ly1k+mRMpSy7EMDD8rhhS3VdcjwyaGv8t5tlkHFdtkAuJs7WxbCTpjC0zJV10bab2MTlXKKkvNFZnYaG739vaGasuK8Wyjxq80IiMV4KZrOlKtPhNmV2mlsvHxfPw+SpLPZ1aV9D3O+6Znb6bBqK4bWWGWqq9KRTlCM7xGo9FonAjsxPCkRbK09JyVl2Dphk1OBdm+RmXAzLaNJA+2tUkqGpXnoPSyjU57W0eQjBWM+jQaQ+wb2xj11dtYtDSziTJR7yiJ6zRNqZSeSWeVPYyJbeP/tOV5323W3fVoFMi8yOxY8iU7D9fqqFAqy7Fk9sWqjzwfv2f3BpO+j+4vM7qKTWXJo7OyViNp3+sn7pc5PO1yb7N8TYWRTb+6L0es8Jk41rDv1XljO9fjeMLrvIlZxn3Zl9H63nSerJQZiyJv0g4c6+NWezUajUaj8SGOfuE1Go1G40RgJ5XmPC91qajSjGAdPGNUy4rIjJs+P7dX6sER9d7kaDIyJm9SE47GkzkYbDpv9dsmddU2bYyMvVV8XDyPVUFW30WHpurYkVs1+0n1oNWWsQbXE088IWk9ZIFhFqP6e1wz26iTeS2je338rM4Zz8s24/nopML6ZP4+6iPrh43ioug6zvCi7Pqxj5VaaqR2H8VjVn2Lx/B49iFT83J+tlHbsd8VRuri6nqMnEg2mX2y8VWq012cmqrwjswkUZlBqrp8EdWxo2vtEJRdVLbN8BqNRqNxIrBzWMLTTz+9VlU6gpJgxeziG3tbt9kR89olMHNT5P+IaVFKySoNsw26kG9jcOa2TePKJMmKqWTnoYRM5ppJkAwBGDmtzPOsg4ODtb5lgdM+Bxmdg98vXLhwuK//929mepUb/2gNVQHgmRt15X6ehU6wOrpR3SNxTuioQ1ZNJ5bYDtcdwwMyKZ3MjgHnThwQz+djHHLi9cAq8FGK3+Y+jYhOKxXriGOvki1kIS2VBmbkmFI5q43Ce0aOWtzX2PYZuEsWopHGiWu1YmejcIEq4DxziKNTVBbCUp0nhja100qj0Wg0GgE72/AuX7685vId39hVyiNLE5mL6ki3G7ePpBiC59vGxlW5xkZkLtbZ+TIpfRf39woVo9wGFTvJ+lBJ4Nl8R/YxGsPVq1fX3OyzwHOmMzOLe/zxx499SkfphcwCmRKNKcfidaEduWLg0XWeNi2vK38f2UW8D9cZWWi0UbL/tFX6e7beyPAoYfMzjpXpwfxp1h1TPXkcZn98BmQaoVE6tQzR9Ty7pzfZ7DwHsS+cHzKeKrwjQ5XnM7M9eb7drr+PfBS2sSsStIWT+fMz7mNsst1tYl5xnyzEwH3j/bSNL8YmxpyhGV6j0Wg0TgSekZempYGYSoi2E7/lvd0SZGZzqmxPlfSW/bYNU6lY30i62ZQOiNJ6lpiZ+24jxZBRUnKsGGc2HvdjE6OWxl60HEe05Y3m58qVK4eMxOsgs+s4OayZ3WOPPSZJOn/+vKTjDM//mxUx0bTb8u+RmXifyr7ndW22Ix0lLHaiZDKizAZRpWkzoperdOR5GvtLe6bHZRYc1xg9Rf1JhufxZUmd+elxk3FGeN9bb71V0tGcZBqOKrA9A5MWGPGYKkk4WVy8L6u0c1W6sHi+6h6mjYvjiO2NkmNwXEZlB85A5kqWm3kUcw422Rtjf7yOeG/7e+ahv+l5mr0vdvE2J5rhNRqNRuNEYGcvzcuXLx+Tkr2d/1uyYrkOv7Gz8kDGJg+uzCONUhr106MUP8YoJoh69oqFjhhe5fGU2Qgq/TfnM2N4lY2IXnNxHiuvKOrlM+9TM4VLly4NvcguXrx4uK+ZStQOuD2zFjMdMzx/2m4X96EnJxkRGWD8v0rTZcaSsQLDZWm83d8zOwUTMtMblew0/s99PE6PK6Yyq2LzKC1nNjzep0wfyHs/tkdvTdplYn+8LcZSjdjK/v5+GeMrrd9LVdxiXPObGNY2NrxK+8Q54VjiPrzHM+1KlYS/6kf8n+t7FJvKYypfiOxacBzVOCM2sVAjrtEsvWN7aTYajUajEbBz8mjbYqTc45KMwBKcbR4s1BiPqT6pL4+SeJU0eBvprEo8nZWdoEdqZZfLJBT3jXPDfkQppZLOGSeVZRuoJEbaqiIrMHMg+/V5Mq9K2nJHXprzPOvatWtrdr8s84XZi5kcEzHHtcNrR9sQ48ciW2ORWMa0uW9RG0F7BOeFtusIegGyuKXHnV0X2iAZAxlBJlcVY77jjjuOfZfWrzvnM1vD3ua+vve975V0dJ3uvffeY23Evnk8p06dKteOk0dvwxgM2ouyGDBeI167Km4tbjM4bxkDqgpdV8+FeHzloTqKGeV8ZnPAPlaMjsfaphs1NNRgcc2M4oArzRmvX2zvepJjN8NrNBqNxolAv/AajUajcSKws0pTWqeuUTVAN+Y777xT0pGrMl2i4zFWrfCTlDhTF9p5gcZ9u2/7Mx5D4zBVtJlaqgpKHaWHqtzeK6cZ6UgdYBWw59Of3r6NExDdjzPHGqufPH+Vym40J1FlmeHg4GBYg8zbGFztefGYs7Vz++23H2uLxnWrBLMAbaoW3Q+vsxgITnWn58NrNQu3oEqscipiUtzYB6rDDJ93VC/M82YVJs0LmUpzFAoUt8dzM72aQ0Zo1oiI81WZH6Zp0pkzZ9acbEaJ4enkNXKEqxJPVOEJcYxGpdKM9wvvVbrts+/xPFTdb6PGy2oOjvqeHVupXT2vXkPZPpUT0Ciwnk6GfPbH9mPf2mml0Wg0Go2AnRnetWvX1oISo3RpBmJp0t9pKB0FoVbsxm1Eo76lb0scdOOmdCOtS0mWohlKESUhSvZVgHtmmOU8mZXQvdbjlI6kbjMXf5LhZYyL7KwKrM2cjTxfPh/DOzImOTJGG/M86+rVq2myaINB4nRzHyU7ppOANQr+dB/tGCKtB3VXIQ4xDKJy7aYxP0qcPIbXgawtXlPea2TnPm9kTx7z3XffLUl69rOfLUl61rOeJeno3sxYiNv3teD9lKVoq8Jt/MlkAxFud5qmIcM7d+7cmrNHbC9LUB37MAo54nmzIHWer0rAzHUY+7MpMTLZoXT0rOO9tU26M7fLcYzu0yqxBbUPvicjw6vCyKog/fg/WS7DFDIGlzkXbkIzvEaj0WicCOycWuzg4GBNVxvf8mQglDIyKafSC1NaG73RLR0x4XAWZH3XXXdJOpKSLNnb5sCEppwDaT1lGu10WUgDJWHPlccd7VCeA/eVtlAzQLq4S+u2J8+bv3vckSnTzZ3Mhbaq2N42Sa8dzsIg/NhvS/ucd+/rc2epvngM7UYeR2R4nA9f/0cffVTSEbPLguMp2TNpcOwjQ1X8SWk2c80me/b5zd68LszepKN5et7znidJ+vAP//Bj+zL1V7SJM7Cd95Pvlch6q0DmipVKR/Pl9vb394cM7/Tp02u2rywtHW2ro1CjTYVYRy7/tP9WLDFjMwx7cN98HcyepPVrVPkBZOkJNyXl2CalIbUsvgZMPZe1V2m/ov2+uo/YpyyN3CgRQYVmeI1Go9E4EdjZhndwcLBmi8qCD1mwkvaCqKemtxL3ZRBkZjOkhEDWGCVut2+piemhnKQ4S4VExlPZ9CJ7Iqvx+WnvjOzJbM9SuZkKkxezbExEVe4kC4738WQh9FzMvM6yIqTEPM+6dOnSWoqqzI7IlGW+PkxOHH9joHSVaDgL7iWbjRqL2HYcKwP1ySDiMWTNDBZnGZ3Mw5fr+Z577pF0ZJ+zJiD+//znP//YJ8eXpVSjLdLn47qL2gizNKZ1M5hsQDpaO/Hei5RCaAAAIABJREFUGDG8vb29oT2HXr+8HhVziCCDrNJsxd/4SXaYsXV66/qTtv3Yp0qzMCqRQ7ZbJfIYld5hW0yiEdc557zyRo7nq7xQR+PyOorzti3La4bXaDQajROBnRleVg4iSldkCLTlWfqMUnRkX1KexkrKpSbaQShNZ3FqZGu0DVlqyXTNlIpoB8qkZo+DcU+0d8Z5sLTndp042d5zLNMSpWOmHavKw0T9OxkSPRgzFudxRS/XTanFWLA0XmP313PH2E2vnejNyrk1fF1se6IHqLSeyotzytRj0np8n89Lb7MIxoJ6DqxJoAdkxiS4ZliOKGPePs+73vWuY+26rSwhNMsdVTF9GQuh1mNUFJlxkadPnx5qCPb399dsd5mnKL0J+XzItDbsv/dlusKsUCq9aMmiMttTFQeXMTzes2Rt1FhEzRIZMzVmmbd2leKrSrQeWTvtekwenj0buGZ4TbJjq8TW26AZXqPRaDROBHZieDGBq5RLPpaaGcs2yu5gKcXSuKUGSpmZ3Ye6Xks4lExHen9LD7SLuT/SkZ3Ckk6VnNbbI1urvFDNYBhfFPtgZkfd+UMPPSTpSFKOkpa989yux0FpKurffT3MQmh3ya41Wd82cXjuC+100no8kufNNk7bMzPvWa8NJy62p+UjjzxybFxx7XitWiIls2M5JWk9ww1ZKFl17Avj/dwnruvIvBnD5/aZ2SW7B+lB6PN4DL4WDz/88OGxz33uc4+173F5e7SfGm7f7NPzx+K0URLP1lW1fvb29lKbKPeRjtYGNSTsazyG97LvNbLQ7BnCZxXtflkfs6T7EaPisZtsh3EO6dlJ7VSW7aiy61VeqdHr2WP2+vLzlPdIRGWrY6aVzBY6ytpUoRleo9FoNE4Edo7Du3bt2uEblZKxdBSf4zgh2lh8TBan5GPf/e53Szqy2ZixWCKNkgLjnlhOxVJnZJSUXslULAk7Liv+5k8yq8ozKY6dc0FJb5s8f2YFHoPZQpRyzHIsJb31rW+VJN13332SjuY1SnH0xjMr8fXKdPZkuyMpXVrmznPt80RJ2NKi+0e7kb/HY3yt3v72t0uS3vnOd0paLwdEW2Q8nyVRz+2DDz4o6cgTMsa4eZ6Y0YUSdlY01v2mLc+fWaYN2nd8fs5Nxrw5R5TAfZ/Fa0Ym/I53vEPSkUbh4z/+44+NWzpiRPSIZkxfXN/UAB0cHGy0/7IsWQTjeyvP5KyALW1bBtlMlns29jFuz/L1VkVhRxmLGMdMOy+90zN7HM9jjGxf2zBkKWdXvAf8XB/lbq28aDPmOvLa34RmeI1Go9E4EegXXqPRaDROBHYOS7h69epaBeoIU14HxDLpcWawpYOG3bXppus2IjWnkdVqIfcxSz/jc5ta01mB7smxfYPqJ9N3nzeOj2pVf7LvcVwMFo3u23E7VVzxN6sBPK9WCX/kR36kpOMJhxnWUaUAy9yDo3NHpZY6ODjQxYsXD9VcWbopBuRTneH+x9ACq52tyrT6hGoVX6+oirMTjOfwPe95z7E+Z84WTJ5rhxpfd6uCvYalI5Ueyx5xzhmgK60nUPfaYRjGyCGAaievD6u4s3uDajyHNnjcL3jBCw6PobqQwfgebwxW5297e3sbVZocV9zGJOfcTvVxnAeaW9hG5qxCpxSq17ISQ1Sd0tGGIRRxn02OGlS1x32y0JXYx1EyZ46Dz5+onqQzHJ+vdCiUjuacfRyVc/I8xbXT5YEajUaj0Qi4LqcVppuK0qVZg9/QlPpGBVItxdppgRIRJXLp6G1fFQ3NCpcyKLVKIRSlKDroWEqpEplGFpJJbnF71sdKUrXURJffTDo2y/C8UdrNzmeGRCM5r7m0Hiw6clo5ODjQU089tVaoNzJTS9q+hnagYHhAlNLdHgOiydb9GVktk0Yz2XaWWIHGdYZreFyR4VXpwVgGKUtLx3ExhIUJHuJvDKgnC7QzTpSiff0990w07TlzuEfcxiQMlet8RHT5Hzk8Xb16dVj4lfew98mclQwm8a6Cu5n4PgPT4jGAOrZrVMmPs7JkVWoxaiHiOuB9XoVFZKEaVaov9jlzfCMLZCKPeD+x/7z3OK+xv3G9bZPAXmqG12g0Go0TgusKPPfb2BJSlGLMhCxdWGI0y8h0v5YSLH0zMJJuzVnpHRZKjMG71TFu38ey4GdWvJHSH12+LeVE92faD8wobNNgm3EODEqbZAdxfGQdtqcSWYgBmZ3Pw6DpuO9Igo/Y29tbmzfbwKSjdWRbna+Hz0lbh7Selo1zTCYWmRfDBBj4naUJo7TvtcPSQpHhV2WuqvnKSib5GM8F28yC4w3eI7bpZv3wvp5r2/kYSjNKPF7Z+OOcuD2Pb39/f6OUThaX2ZPJSEagjdP943NmFKjNcACGKWXlepgWrCo5JtWJxau0WnHNUgtVhUNk88jUf9W8ZteMdkaONyvRVCXFzsIVqlJJ26AZXqPRaDROBHb20jx16tRQeqL3HcvXZKl3KOlSEhglHK6KNbKNrHij2zWj4GeUlij5ZkGicXu0M9JuaQk4K+nDOaBk5Tbcx0zyotTEPtMrNfaJEiRZXGSuI08qYm9vTzfddNMa24geWzwH15DnNHpaUtfv9vxJ9hH7z/atdaiSlku11589PM3wIippnGszszMxVRntmhlLo52Z9nO3YWSJoKtyXplUzbVCexNtLlW/Rzh16tQwMTPbYR+MLG0Xt5HJ0X6VHVulyMpSjFHDxGdGZluv5pYMKN7T9B2oCt3Guas8OQ1qFrJrwHVN+9xIk5XZFXle2v2maWovzUaj0Wg0Ina24bkYo79Lx9/GlUcY49OiFMVkwGQO1KFnJWqqsiaUcqUjKZ82O3+yjEo8xuOiHnmUxofMiqmYqGuPxxD0sGJS19gO9f6U+DLpjOelNBqlXDKSkRebGR6PyWyP7ANTSmXpoejJWUn2sY8cMz06mdJMWk+qbdud05H52sa1w7VfSa8sRBu3cc0wgXKWmJleiJwLI84VvfCYQiuL7eO4qrW7SUqv4OTRVdqp2E5l5xvZ9irWQttaFq9WsZlRmjDGiHJc8ZiK2RFZ3B8ZFTUN2XWqtBBElg6Rdjeef8Tqq8K52Xgz789meI1Go9FoBDyj5NGZVFFJIJTss2SglKQoRWR6cjI5Ssv0MpSOJF/bMiyl+zMrckkmmWXhiMdkUjrtPtT/xzkZZWzgvrFfEZxX2jmzYpjMqFAVkcx+qyR7tz8qexKPJ9Miw4+2T46JdlLG/sR1SHulx0ybZ7Q9UUPheDTGPGZr1H1kkmUyuzgnVWyo+1QlJJbq+FIek9l/OZ/MqhOvdVY6KraR2cCya1xJ6fM8a57nYZJ1o7pPMntV9ZzZxIirPmZtjrQojNXLylFVWo+qr5n2K3u+xO2xbd6DlddkhsqzkuMeXT/afbPn3yhh9iY0w2s0Go3GiUC/8BqNRqNxIrBzWEKWxiXS6EoVx4DMqFqq0iZtk+yU6tXKpT0GwzKg3eooH+sA+NhH9okG2ZHh2fuwVh/3zVJKVS7ym+rOZftSPRUdHyonj8pFO+vTJtXC3t5eWYNQWnfBp7GdFanj/xwjVZiZEbxSjfg6Ub0X9/Hc2dHJyILW6RRBlSYdLLI+VudnEvG4D1E5BmT7GEx4kKm02F6l2orHMsxhm6BzX1M/J0aJhanK3CZIeVNfMpVrlUZtdE8wZIqJn6P5hfX82JeqQnk8hteMc5I5E9HBpUrdlrVLlS2vxchZpqpnmCU4d7+ffvrpTi3WaDQajUbEdTmt0LCZSaQ07lPSjlKFmdamVDSZa3GV6oau2VEC8Daf184qTl6dGUotkVYGfyYajlIVA+iZwsiIbIrS2SYpLY6PUiHZVObiTDf3KuQgC3+oKkYT8zwfSueZMZ7ODRVDjX3gtaoC5reRAMm0/BlTdbldp/hikmUGbse+MYn0NiVRKobC5MiZg1XlQLZNKIBBzUym0SBTpvMNS8DE3+J9tU0Cg4hRmMPIQYt94DgqZGEJFcPLmBDvEzrace3GbTxv5cyWXVM+R7PySkaVWLq6Npn2o+rLNs9vY5v7ddM6z9AMr9FoNBonAjvb8CIyt1BK/UwwPdI5U1qt2FQmXVIiYNqeKEnY7mMpnYmfs2TOBu2Nll4rt2Fpnf0xPVTGuOgGXrHdTNIj26mYXeb+TFsopfUs0ey2jGGapsP2zJqyteM5ZRLiURFaFq7lvpmETymWa4gJyKUjds7k1B6PxxcZHtkH2RJZb+yHf/P4qr5Gu/CooGhsYxtUyYOzYHyDzC5bH7yPNqWHyjQBGcPjPqN2qn5ze8Y2Ks0Cr0+cJ4YsMcSDz6y4LUsWkfU58x2o7G5cd3HfCiPbYfVs3yZhQBXeZWTj8txcvnx56zXdDK/RaDQaJwLXxfCoq8+CrPlp+5UlniyNVhbUKm3nkVTp6rOkqmZYlorpJeV+RAm/YpuU7GjziO1TGjRLyJiEURVINDLPvkrqrIK0s3YoMY90+XFONknpnovoYcVzVAyf8yite2ky0HyUJKHypON6iEzTa8Zz5xRiZPwZA6I9lskMeL3ib1zH3B6P4RrclHYrC47m3G9Kkpy1zzajxoTsdsQsoocmx8r2Ks/EzG7F8W/63EZLwPPF+yFj/9K6ViLel0whyL7Q/pedr0oXVqWPk9Y9lbcJ0t+Ulmy0dvh828a+mmlENqEZXqPRaDROBK6rAKxBbyNp3eOMHnb2jLRHZAST3VLnPWJ4lXeUt/u80npBUXrYuW9ZbBP7wHRUWd8qm4r75v5kdj9KrGQs7F88piquyFRdsX1LdqM0Tzxmm9RLbJM2r3huJtUdJZyuJMGK3WberJXUSik39sVrgwVoGUua9Y3emPzMUr75PNFuUZ2HXrmbtBIZw6PETe/qGCvGhNaOY2W8YVYWxr9dunRpo3aAXq4ZK6QGpEqr5Taz75V9LoLXks+F7NnosVIbwTR4UaPAe7iKUWU/sn5zDlgCKuujr3PljTp6FlOzkT2/q3tg5LFLRryNt/Hh+bbes9FoNBqND2FcVwFYSjFRQtgUH5JJzZUXJu0Wo7c+pWN67UUbnu0ulkR9rKVof2alawxKPJyTzBvM0t4dd9whaT0RdVYg032t7C7ZfG9KwJpJ9mTi28TdUHKf57nUp+/t7encuXOHY7StK5bR8TnNeA2yiizTCjPqVDa8bMwca8U0paM142tJZmeMbIVcm7SXxnvDY7bWwWvG48xsVsyO4jY4zswmxfVMO73HmyWC9n1DO2ZWNop2o/39/aGkPk3TGnvPniFGtX6zjB3VPUVkTLiybWZ2yypGmM/EuB7IBnl/jgrc0sOT331d4tql5sqovIQzj2l672+TcHrT/I0Sam/yHTh2vq32ajQajUbjQxz9wms0Go3GicB1VTyniiJTp1DtULnkxn2qelpGZtCk6oJVvqlOlNZrlmUGZmnsCEKVElNzRQrufa3q8Xk4Fw5TkI7UmwzuJkaqhSoAPVO7VmEPI3d0qltGaqlpmnTTTTcd7svA47jN1y6GLEhjFRnHXAXZZ2q8yvXan1ZBS+tV0OmkkqmYqW6lKmtTWrd4PoYyZNef14p1BKnKza4ZQ48yVSbPR/XnKPCc6eO2UUnRES3eYzQpVM4koxRslUnFGM1x5WyRBZGzHicdQ2IbdFZhOAJTGWbhSQxoZ1B89vzmM5H3+ihUo1pf2TOG6fUqB6ttrvU2aIbXaDQajROBnRne6dOn1ySDTEKoytpkCUS3NThmqXf4G6V198OhB/HcVXqmLLkzHQ5oxGXbUUonw7Ojhr+7b5Hhuv1MwokYpdShlOvrljE8gq7tGUOiq/o21zFeB8LXyvPi9smEMkmb7KIKzYgOL5UETIcUO6pIR9eOgd9G5lpuCZ4Jp5naLluXbsfnsXaC91dcb27HfeU6cJujAO7KWcVzE5k5mTcl+0y7w+fApsDzLFQj02pUTmSj9GZVCi465Y0YHtuiE1j83+uBn7yfIioHNIY6xfHxmCrRwTapvvh7luqsCs3YJnGIUbG1eAznYOQst9b/rfZqNBqNRuNDHNeVWowSSPb2JUYJoLkPMdLzV0G8dLmNEiklLUrlPl+WWowMj5Kw94v2OIZVmOXcfffdkvLAXKYbo7TJ4PHMlXlTOMIolKEqLXS9gefzPOvKlStr7ClL6s1rSYk0C5inLSCedxMq+5ivU0ySwJIutMuMrgdteVUQb3Yswy1ob840JmTy3u61ldkKDa5r2p0jW2NatWrf+NzIEieMwgGuXLlS3uvSOrOqEiZnzGWT+/woleEmu19WgovMl33KyihlrDb2eWSjNHhduJbjtirMY5uyS+x7VTw728Y5yTRLVerEbdAMr9FoNBonAtfF8ChtxDdsJWHTA2kkkVYBoJSM4jH8jZJDljz6/Pnzko5sRPR4ivYmSt9Mhs0yQW47jsN9pbecGUSW+DVjfxHZNdg2SD6TXCvPzhEjj9dvkx2PwamRqVA6p20tS3LL6821ybnP7EgEbZ5ZSix659K+mNm1K9s3NSbx+tG+dOHCBUlH2oGRpxrnmF6bWXkvjp3rMAu0pxaFtuJRgoptpfSrV68OSwBlgd5ZHzJ7Fc9dPXey9UJ2RuYT+0P2RKaVeWlSs8T7cWQn5b1mm66vYZZCsbqfKlv1yPbK654Viq6KR/MaZOs7BuO3Da/RaDQajYCdGV6MtRpJiFXMTCZpVdI5jxl5WlEHTJ1+ZHj2wmSqKkrTZoLSukTDJK6Mpcm85si03D5tK9K6fp1jHzHmbTzfeIxRFRjNksXSq2wbWx7jiDLGVXlYjlAdw9i+zG6ZeX3F37N4Rd4Dlp6z5N7cl9eUdhHH+sV9yFS9ZrOSSRVb4nUaleri+iPDi9etSu7ONRPXR3a9Rja8mDx6m9i9ijlk65ftjOLvjMoXYfSdcYkej5nWKLUYE3QzkfYoTtLXkh7Go6Te1bxRU5Kx9uqYkQ8Gr+kozVsWh7ktmuE1Go1G40RgJ4a3t7ens2fPlsloM2zz5q4k+VEczOEAwOyqAqmZxF0l/rX0nMXS0QuP3nrsu7TurVZlWsmk5kq3XcW8xHY22UmyRMr06KyuXzxnZA6V1D3Psy5evLgmzWYSIpNqc55GCWvdJ9r7skKdHDMZn6XpLKk3GRDj/0YMjzYujjNLzMzrzmKhkRXyGvC606aSlcFipg2OM/PSpKbGyJ4TzNyxKQ7vypUrawmUM5tu5fk6sr9tShqdoWKzlYYkgvNEG15W7NafZOW002bPELJA3rej53g1n0Z2bBV3t02cLs8zKut1PdetGV6j0Wg0TgSuqzwQ8+CNil1uU5KE+1R51EYSCW1ZlLTjMSymaVjH7u2xaCxtdQYl3iw2jV5RLPmTebGNcjNGZL/TU7AqGhvHz/mq7FuZ7TVKjJuyKIyyvFSxlP7M7KOVbYG5Tsko4j6V7YEeuXFfXlPa52KbVfkfzq3XVhxfxayq8lvSOmPI2G1sMx7LDDJcm9vY0avYtIz1ZragDNeuXSvnLTu+8tKNqNgZ2cXI9mRUsWFZTlWys8ouH/epYlK5PYvhq+zOGapcyNuwqsp+uY0tj8dU8xv/j/PWXpqNRqPRaAT0C6/RaDQaJwI7J48+derUGiWOBmca76lKsHonbqdqhYHTVVB51v4mpwvpiP7HlFHSkUqTxuT4vx0YGJbw/7V3Lj1yG0sWzm4ZkgFZCy9mPf//Z836AoYfsCHJ3V2zmdOK/nhOJCnjLu5UHKDRVSwymclMknHiSZfj2kedT0mIqTZwapfkRLKrSL7Wt2vM63am+ndCp9JMzgo8voaGMAShjimlJDoDOnOkJNgVDGHgeas6RepNqbs1JiV1dqnFGJzO0BY6ybgEBFRTSi2f3MgrmPic686li9s5fznnpZ36s1NpdkkLmFrMqQtTaATP1+FMUnWB+yRVpisPpHmnGvKMSjOlMnTqQl0vne/MWuF40ri6RAfEzszhvp9Jg9gVE0gYhjcYDAaDu8Blhvf+/Xsb3CjQINtJhoKTbHjeeiydALp9nauvIMcDhikILkmxJG2yqJRGZ62jI0By9qnXhgxSSCVt6n6pLIgrEinsJFQGjLsxd3h4eFiPj48HacxdYzJetu+kWPdb/Z3SNT/X85B9OAlVbOmXX355s49LWqBtKgfE4r6JLdTf1H9pEqiNcKnlyNbIejWGuu5TmqvEguu+7EvnWMM5fv/+fWQCLy8vb8ISeN4OZ5he0m50Aeh8nqX7pc4l9yXDF+oxTGyf0tQ5sC/UrjFxRG0vhTQ5DR37ndLddQH8KZjcrSWyzwlLGAwGg8EAuMzw3r17dyj73rmMdumCeAylSdpQzuhsUyHIWpBTv2kclOQkPdVgXrUraThJIl1RxaRDT2EDax11+GQsjsHSjip0AaBn02t1gec720ANTHc2vE46dn114LEsyeNK4jAQXOvCha/Ihqd29J1rsjI8nVv/maxc56W9sYLrQG25YqHpmFQct94bnB/2sQsEFpI2x4URXAlp4fVxoTjuuPr/SvAzj+kYnpDCE9xvya7sQj4IJr5w/g3JDtY9o5OtLj0HroQY7N4JFWdsoZNabDAYDAaDgO8qD3Qm5RclIDKf+samNJng2BM9kch8KBHXbcmLUd8rw0t2CoFMopPSGTxaA5s5Lo7jjITKviVpyQWep0KwHc54fcnDN+nq19rbfd3Y6RWZJFTa5epnMlSWu3HehWR4+q/fa4ICeXRyjXL9dfbmVPiXdto6Lmcnq+cRXJA8tSvd/btL8dSlpbviOchiuy69WUoXdiYN1S642tnjko3LsbcUOM973DFhXiemo0vJsuv5mIjCaWY4rmRndrZcam2uBJynPrt7gvfR09PTBJ4PBoPBYFDxjwrAdpKbQGnWxWztpLvu7X3FK1PQPkwtpb5pu4uHSnGGlM6c5MPxJG9Ntw/botTkGFNK0UZvvbWOTImMycUKsi9npCxJ5/IydDFgyQMuXZPuN6Zeqh6J9MqlV6NLDJ6kVV1LMbsacyjvzLQ2eS269G1J4nfloRJ70vl0TWpfKeEzhmsXa1nbYFuuFNRZybzGcbI0Uj13mv/O7s+1Q4bCOMm1fLxlbcP9ntLcuTkU6HFLeyzXjCvBlGL4Oq9JxrpxX5eWjustxex13rpp7Tjv6vp/GN5gMBgMBgX/yIYndHFRyZ7UMSBup93ijBdTZ6fgsUkf75hXYreM03OxNPxO3X2XvSLZsTqbSvJyZeaP2l9KT51XlktSvLORMAbJeRlyPjq73w5sv2bPYTxpyi7iMvswW4+Yneujzql9EpN1sVXaJlamPvJ7HRfLwAhcK87rWWuCrIYMovOuddoAjktITMmhs48lr0Ler512IGkJdN5ql2UhVvbDsfmdR2dnh6MPAeeOdmA3nvRMdLGwXMe8/532IMXL7mJl3XlSzOJa3679MLzBYDAYDALmhTcYDAaDu8B3JY9Oqp+1chC54Gh7SltDGu9Uf6TaVDm5FF2k/3Rp5hjcWEmh6VTgHAHY107tmpxSkkrVuZanQG669dbPDO7tjOJOvbFTVzgVBfuQ0Dk3dcmh67GuXhgrdneu7KplqG1SLSpdmFMJaZ9ff/11rXUce1JB1v6mZME61qWHYgV1rk31uR7L68jxOJVgCmHpUs+dcS4juoBtjSnVmHP3NO/h5DDh1K5ynNF5qVLtVL+8Lml73ZaehantM3Bzyfs+JYZ3Jo4UaJ62u/aSKrOGlSWzyxkMwxsMBoPBXeASw3t8fFwfP358lQhlxK3GXAY1XnFNFehMkFyy6zYyIkkETmpKTjCdCzNZ7S6o8owkeSaVFqX1lJqrno9Sp0D2ViVWStxnjNRElwD4drutp6en1/E45k0pXeA1duma6NDA7xpPXatKLMBEA3TbrufjumL7DLtY61ilvLL/ej6XmJfaBzIHF0JDNksJm2nW6vgSQz4z/+mecPPmpPTkeHC73dbXr18PKdgqUybr69If1nZr/xLLcE5evHaJpXUaD64zp/1Kz5fdta6fmTy+K0e0C4PidpeUIe3bhaIkBzUmeKjb6j0+TiuDwWAwGBRctuF9+PDhVWJVyiTZAtbKLuVdap9d2iRKKtUFO7k+U8Kr+1EvrP9MyVRZHYs2umDa2laVBmkrTOOu0hkZHb9Twuz04rTPObtJSpHE8VX2xWvbSf+32209Pz8fUiM5G0dCV+QyBT1X3T/Px+tAm5fOV1PM6Te1K8bI8IEK2vt2gbkuLIHSeRf+w2vM+0mJrV1YQgqV4Ry7MlG7MAhn66/lbzqGV9mcS9+n3xkq44r4uvZdv5NNr4JrhfdhvedTsHjH0oQUUN+VGNu16+aN6cbS8+VMmrCdjdT9lmx3LryjaqyG4Q0Gg8FgUPBd5YEkVUjyrVIMA3BT6isnIaRigNpXHmkuHRVTIHU6dB3PYq70nnPJYimd7Wwerg/U2dPG47axjc4rUVIaAzS7IN9U4FPnd56EZ9I2CZLSta9LLZbsLbwGnadoSiKgMUsrUY9huR6u68pmaNfReme5no41USpnQgCnWdilFKtzKo0L053xXnHMi/2nxK912QW6c+2687AI7V9//RXXEdeO5vDTp0+v+/AeTiWr3DkSe+kYF8eamHeda9rSEnt2GowUaN75SuzSwZ1N+n6mrdoHjmOXjKRuo21aa9clj67P62F4g8FgMBgU/COGp5ikKu3Ri+xMyXZ6vFEySIUr18olVzqGR/ue2qcHntNts9Bi8jB1ti5K58nzs35mIVNKQilt0FpHr8xkV3W/UaJzyWKJWuCVkKcdpX+X1igVNXX2WK4V2gB03cTiamFWgQxLDI82t9o+2xXrcEWF6UnL7106qmSbVPvOI5dSMmMEKYFXOy1ZKL8zZrHuQ49SjqHet/Tw/vr1a2R4Ly8v6/PnzwdP2+q5J5bJ0kFduq4UH5ZsTY6tpTG7Y9J5WZKprh1eOx7TxfZkLyx6AAAP2klEQVSmZ2Gye7s+Ju1U+u5+o4ams1HSK9PZa5nW7Xa7DcMbDAaDwaDicvLoKsWzUKZ+X+toD6N0Xt/YzjZT92FsnSuB8TogMDHHTCRN0CuPev9afoTeWGzL2W5SH+mt6aSzJGW6GJS6vbZDm12XjDkxiMQKKqo9IzG85+fn9ccffxy0AjUubpdFopNIU7JtjV0sR6V66j5kZ2J2juEJapcMz7FU3guUWsnI6v5kWLTHuRJG1fOxjp1sXeNzLESgnflMHF6StqvHrPpUx7zz0tTvvOZrfWPl7G+nNUhrOvWjMuHE8DoGlGxZXNedjYv3J2M3XYyywLXk2O/OGzM9J9w+SWPX7cuYR/oh1M/VrjkMbzAYDAaDgssMr+pLyaLW8pL7WkcWU4/ZvZ359ndemqlsirOXJdaUspq4dijh8BiXaYVeTF1cHEuSsPglmZ2LL3N56Gp/HMsmUsmP+pvmfMfwfv/998N1E+NbK7PyLpYz2RjpvejiI5nxROMRs9daqkyfdjfa8rq55DFJOq/zkop2cl6cDS9lnSH7qbGDjF/T+cjwnHZA6433Cq9R3Vfbdragp6enA2Oo7ek+0Vpk1p6u5E7nJel+r2OjzVbjcgwoPQc6O3xiVCl20GmyBK7vnc287pO8Rc8wq5QjuX6mxiRpQVwfnp6ehuENBoPBYFAxL7zBYDAY3AUuqzRfXl4OaqSqlpJTgDOmr+UdNBjkTBpNl9WqYqLKJQWGO8caqr1S+EDdxu9UMZypkp4cTyroyECVmVQ2zmmF6gdu/57gW6fWoUqzSx798vLyJiRA66M6AlANnlKxufRJbJfbnWokhWnw2Hodf/rppzf7MuUc53it7Fou8H5ypayo0tS66BKPM3SF4+yOpYo4qcfqb3SvZ4CwS75c+9ippZ6fn2OKtLW+BaFLPau1w/mpSA4Zae3X/dO8pLZrO3TTZ99cuFBSZbJv7plFBzSqMl0yCa5nhn05U0pneqjfnUqTa8RVNec1caaZHYbhDQaDweAucJnhrXV8c1dJnC7+lMrcW5kuvZQ8k2Rc9yXTS4VM1+rdsNfy0hnZGAPsKd268+0kbVc+hftQAtJ2sqO1cqo2V8wzhQR05U7onLBjeJ8/fz6kKnOS906K7QKzyd670kKcMzqrdNAxYnx05qhshknKOR8p5ZgbRwrvccHxnNOUss2xXrKArvgq2+fada7l1FCccS2nE1ZN6s1A9sT0HJshsyO7dY4vZEdJm+LAZ0dilPU8rqRXPcaFjZwN83Gp+lIbqXxQxS443d2DZHhkdnXcLunGOK0MBoPBYFBwieHdbrc3b1NKRGu9dVFf6/imTvpdt01ve0piVXpOKb4oiXSB7qlcS22TUnOSdJxUlVImUVqu40pB4/zuGGySHDsde2IZyd2//lbZQMfw/vzzz9f+y/5SGV6ypdL1u0tvRhdrahwcoxSz+/nnn9da39iBK5CaylHR1b9KpAyJoD2kC/blXArsW2VPyZWckrGzTXEb59iVjWLC5t24XV925Xuenp4O4TV1zLJxy59A59Tcks1XJAbUMTw+B/h863CWjVSktcK5diE7HB+1BGdS9X1P35MGq7ZJjRXDiFxi/07bsMMwvMFgMBjcBS7b8Orb1CVKTil9qEOvbKZjEWsdbQ1OIk1eeU6qkNRHaaZLnyXs9nXeVNyHnpb8v9bRBpkkIBcASmkvBY93nmScC1cqh2WiPnz4EK/d7XZbX758OaTI+u233173YaoresBpbTkbHvtLmyMTE9TPssOJ4akNXuO1slTZ2S1oI+zWF3GG1a7VF0V2yXZrv+r6cPNcz08v0bW+jYslkjTHzg7j7GWdduDLly+Hua59YJmmlFS+S1x8tkBrBTUsvPZd4DlBz996/C4A3Y0vsUGy9s4Ox+dL91xlO9zHsWB6mXOtuuQZPGZseIPBYDAYAP/Ihuf04bSZCJ3ko7c5PZIoCemNzvisihTbVvtK6YHehl0iVqa1oQ7dsVBKSbs0YfUzkx9zO9OiVSQvTaHOUWeDrPvWYyTZ639nw1ObksSddxtjJvW/KyZMe5RAVqh+1xhObRPD02/Oe43tUrJnvGQXw8m2UjxYd0wqCFu3UUrfxWOt9XYuu7YquI3FdtP9vNbbGN5dHB7PV++XxPC6kl9c86mMjVsP6X7vWGFiaVxL7jolzUtKCF0/k9GlckFu21lW6pC87V15t+Tr4Tx8qeV6fHwchjcYDAaDQcVlhlfftK7Y5WvDkBB3yW/XOup8U1HSKqWR7ZHhdWyNeneN7Uw8TLI7OkmS40h6alfkkLrtFI/jJDBeY7JUlzUl2TVpy1vrWJLl8fGxZTN///33oVROZRcaI2OqWNyT7dZ+C5x3ZuKp7dJ2yOtTrzUlUM6HGJ6T7IUz5Y4Iepcm+4zbN3mSOu/DnZ3H2W64vsXsWDLJ9V9SemXeDvUa0QZePyfG4LLYpNjg5J3p7OQcT4qbdPsK9BLvYipTnKl77pD97bw1Xb8T03Pj4jM32f3q/cRnIVmgs/86z81heIPBYDAYFMwLbzAYDAZ3ge8KS2CV3wqpTbRPCvx0NZgSXU5pbdY6quDoxn8lXVNyba/npnqA7TsVG9UBVGE62k61LgPRu2S+VLfu3JMdeKwL3Obxz8/PUbVwu93W58+fX/vfVROnGldtukS9SQXDBAj8XvvAcdA93DkT0VlFfZVzUZ1Lpn3jGjmT6skF+dfxuLmkExZNEK4eHlWYvCdcTUpdAx3La8GExBVn1uLtdlvPz8/R+av2gc4rOqeeQ04tmZJUqE9dUHwK4j+jYkvmgy7RQQqDOhOWcCaESkhB412Cj10Ig1NF8rkmdPU+nRPUqDQHg8FgMCi4zPDevXt3MH67RLLaR9IjE+e64HFhl3y0cy1mol4XwpDcgwlXJZ1Sc0oMXaX0JOnQUOsCTneJtJ0xPgXj01XfjTUlp3WSOK/Fzp3+6enpIDG6sARK6wIDp2v/aNxX3+RYQ2eZtY4Jd2lAZ/hI/cyK9GIzru9OSq3gHLtwEQbOO8YicBvLOAmOtSfW0SVHJst1DGytt9eE6dseHh5a1/fK8DjXtX8pibQLzaHzTnJicWMWroSUpGNSELlr12lEUttknWf6ymdVKjHlQgw4L64yOY/hs5Bz4ByUvielmDAMbzAYDAZ3gUsM7/Hxcf3444+vkmJXkFP7kOHJbbtKm5Q0UgkenmOtbMMTJBlUKVYSB1MhpfNVpFCGVCLF9Y2STup715cUiNqBEq1jheob59gFbicm2YFMvEpuTFFFqY/JxGt7vA5kRJ2NgxIjWWNdn8keQUm0C5QVkqt3PZbhMAI1Kc7up/8MJmeYgps/ruOOxatvSgie3PxdOsGq3dhpCNI81W1k5UyyXZlqShnGfV0oBtdZl3iCx/D7lZI7u/u9s+HR3uhKS3HfZMtzSetTkujEGus2XmvOdb132P4Eng8Gg8FgAFy24dXgYupb1/omVYgh6C0sZtd53XTBtAlJ/92lxqG0nAJBHVJAJqUmJ6UlifGMl1RKJeU84BIr7BLo0r5HCZbejrWdM/aF2+32+lfH5WxB+u3jx49rrW92OMfwmPg3pc/69OnT4Vh6WpL50+68Vk5L16WUSl6AnfefwDkj43bzXwvyuv/O7ivQ1kmvWhf8n7yPeU86z1Wxzx3De3l5OXjIVltnsruSgXf3SVq/HcNL37sUewSZnnue7tpzfd+lBTvjpZm0U46tcd/krek8O/md2h1XUuiKZkkYhjcYDAaDu8Alhvfw8LAeHx9j2qY3Df+f9KW3Me0J8mqrSKVdugS21EtTAnZ66sSAkr66tst9KZ1d8bBKyWrXOibUZruU8F2ZjmQjcNck2cA4x11KuB3D+/r1a2sv1ZpgeRmm/qosYye90kOxrlWy2mTTq3bLpFFICZRdn5y3aR13nWuyM10L/RcLdmWP+D8lR+/imWg/dR5yrlxLPdadh7bOzg4j+92V9lJ5mV0KM/XFjeMMw6PXtmP6SUvE/dx5iOSlXD9fYZspNtT5JrCvydOS16/eG/wtsUF3npQyrcMwvMFgMBjcBb7LhkcpxiWfTTEzLvZnty/3S/2q/ym1u6SxSX/c2Q6TVJY8TSvIel2mEiGVxuH4nN4//dYVfEys+kyxyDMSlrQDPL56X6mfKhmj35SEuMvO4+Lsar9dZhx62HE96PfaR9oGOZcu8wkztjBerbNdM8G12pdd0zE8ZjnSfx3rMvsQ6Z5keae1jvYyMuXOC7mLl3X9qe25/pNl0HvTeQU7j8O1jrGpnYcqvcGdBzufjRyP+57KDxHuuZS8js8wv513putrWk+d5iyx3jP2bWrBzmAY3mAwGAzuAvPCGwwGg8Fd4LLTyrt37w503VFKqT6oitMxVQVDo3dy8e6qe9MxhM4FnQs2g67dvkz7lNzSnXqE7fF6Mdi7tsPrRvUh+1P3TaoLV9uOhnpWHz+DM8GfVF3UfnMeGHQqp5a6dgSFvaRgaqc+pJpTlc/p1u8CpqnS1HepGqWGXevbvcCwh4Tad6o09V190/mcSpMOXLyPOicCrj+NgU5obnxJ7eWSo9d7fue04uo4CnSC2jlB1M9c+ylBe0VSxXHM9Tqlfa6o8fgsORMillSX7jqm5xivTRfSQOxUuO48nZrXhUxM4PlgMBgMBgWXnVZ++OGHgwODSwaaKoM7piIp1bVXt3eOE5TWaER2aYjY/i6Y1P2WAsOdOzKZlaRbx6KSoZkSqwt05vgYnO0YrDOy1/bZVv2tXouzkpaTSBm8L5C91bFqW7oudDKpLIOOOXIAITNywfYCK2pr3VX3dzFT9U37pHAO5wTGEANur30kw+N5Gbjr0qCl9H6OKTHg/IxE7xKmdwzn+fk5BrS7c+zKadVzp1AZHtMxosSMziTPSGOofUiMqkt4kMK6umN4XjIuMjzX/51jjZs3PuMTc67bajD8MLzBYDAYDAou2/DkXp6QgkMpiVdJW2/1mmbI7dslsE3SSud6m9zBnXSWxpXY55kAUDIJZ8+i5Egp9IxkQ7bj7Fyp7FDqR933jA3idrutl5eXgy3AScCJzXYphXhu2ta6NUtXcgaru1RmTEtGm56zqTEImgzPreGU2k3fXUIA3ie02dF+Vm2KlOCTq3ldB64obD2P0x7Qnb+mnSP0G9ebSxPHsXcu8bt7J5X+qtixmStwLI7rOj3fusDzHTqfiF3Sii5MqUvGwfOcCVJn+1eega/Hnt5zMBgMBoP/YDxceTs+PDz8a631P/++7gz+H+C/b7fbf3HjrJ3BCczaGXwv7NohLr3wBoPBYDD4T8WoNAeDwWBwF5gX3mAwGAzuAvPCGwwGg8FdYF54g8FgMLgLzAtvMBgMBneBeeENBoPB4C4wL7zBYDAY3AXmhTcYDAaDu8C88AaDwWBwF/hf3asN9Ef9kmAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXuYbdtZ1vnOqtr73O+XnOQEEoGILd4bVARCuhtiwiWCoIAixLsoCPiojy2oAaER5dI+jTZq5CYXEVSwQSKhmygIIggKdMQEkhwSOJec+2Xvqr131ew/5nqrvvrN7xtzrn12SMca7/PUs2qtNeeYY44x5ljf+12HcRzV0dHR0dHx3zt23tsd6Ojo6Ojo+LVA/8Hr6Ojo6DgT6D94HR0dHR1nAv0Hr6Ojo6PjTKD/4HV0dHR0nAn0H7yOjo6OjjOBq/rBG4bhtcMwjMMwfNC16sgwDG8ahuFN16q99xaGYXjFZmxe8R68xmuHYfhj76n2O9oYhuELhmH4/e+F6750s7ayvy+7xtfaGYbhddk6Hobhy4ZhmMUzDcNwfhiGzx2G4ceGYXhqGIaDYRjeNgzDPx6G4bclxw+b78dhGD7+Gvf/YxpjFf9ef42u9wmb9j70GrX3ymEYvjj5/DdtrvOp1+I61wLDMHzeMAxvHYZhfxiGNw/D8NqV5/3VYRh+ehiGx4dhuDgMw1uGYfhbwzDc9p7q6957quGO9yheq2nuvuG93I+zii+Q9KOS/sV76fpfIelf4bN3XeNr7Ej6G5v/37R08DAMt0h6g6TfLunrJX2ZpOckvUzSZ0p6o6R7cNpHSfp1m/8/S9L3P99OB/xHSR8e3r9Y0ndt+hWv88g1ut6Pbq73X69Re6+U9Lma+hvxS5vrvOUaXed5YRiGL5T0VZK+RNK/k/Txkr5xGIbDcRz/ycLpt0v6p5LerGmtfKikvy7pIzd/1xz9B6+j430PbxvH8T+8tzsB/B+S/kdJLx/H8T+Gz/+tpNcPw/DJyTmfLemyph/U1wzDcPs4jk9ei86M4/i0pOMxCtqoX1ozdsMwDJL2xnG8vPJ6T8brvacwjuPFX4vrrMEwDDdIep2krx/H8Us3H79pGIaXSPqKYRi+bRzHo+r8cRz/Mj764WEYjiR91TAMHzyO43+75p0ex3HrP00MY5T0QeGzN2mScj5G0k9LuiDp5yV9cnL+p0v6BUkHkv5fSZ+8Of9NOO4eTdLir2yO/QVJf6roy8slfY+kZyU9JunvSboBx94o6SslvV3Spc3rF0naCce8YtPeayR9naRHN3/fKun2pH/fLulpSU9K+hZJn7Q5/xU49vdrWqgXNsd+l6T3xzHv2Fzn0zVJis9J+ilJH4lxHvH3Jo5x0s+/L+mdm3F8p6R/Ium6cMyrJP24pIuSntqM5QejHc/xqyT9582xPyPpd2kSnv43SQ9KelzSN0m6KZz70k1f/6ykr9EkWV+Q9H2SXorrnNMk2b5jM0/v2Lw/l7T3pyV96ea6T0r6vyS9OBmDPyXpv0ja38znP5Z0J44ZN9f585u18YymDftDMEcc/2/afPfrJf3Lzb3tS/rlzTzvXc1zltyD7/lPLBz3+Zu19vhmTH5M0qtwzJ6kL5f0tjAmPyrp92y+4z2Okr54c+6XSRpDW+8n6Yqk/32Le7lR03PzvZv1NEr609dinIrrfdDmGq8tvn9U017z5yS9dXM/H7v57m9v1vszm7n9QUm/A+d/wqb9Dw2f/ZQm1vvxm7V3YfP66oW+flUy9s9uvvtNm/efGo7/bk1740doYrYXNbGm/0XSIOmvanrmve/cgeud18Tm36ppf3iXJi3CuYV+vnrTlw/H55+4+fzDrmKeXrs59wPDZ6+R9BOb9fKMpr3xL13VOrjKxeNO8QfvQU0/YJ+5WcRv3CyceNzHSDrStDF9/KatX96c+6Zw3K2S/tvmuz+5Oe/vSDqU9HlJX355s1BeKemLNW2U34QH/Ec0/Rh+wWYxfJGmh/2rw3Gv2LT3dk1S6yslfd5mEX0zxuFHNpPwuZJ+ryYV4zuFHzxJf2bz2TdI+jhJn7aZtLdLuiUc9w5JD0j6SUmfqukh+pnNQr19c8xv1CRQ/BdJv3vz9xsbc3XHZiE/JukLN/f9GZpUCbdsjnnVZlzfuFlcf0jSL0p6t6T7MccPSfo5TT/Kn6DpwXpY0j+S9I2bcfgCTZL73w7nvnQzBu8Mc/9HN/P+Fp3+Mft2TevmSzfj/7pNe9+etPeOzfGv1sQYHtVccPpbm/O/etPeH9UkRP2EpN1wnNv7N5tx+NTNHP2iNj9amlR2D2rayDz+H7j57q2aNpxPkfTRm3H8Vknnr+Y5S+bS9/ynNK3n4z8c9zWS/thmrl8l6f/U9Mx9bDjmb2jaPD5v09fXSPqbkj5+8/1HbK71+nCf92++4w/eZ22O/Z+3uJc/vDnnUyTtSvpVSf/+WoxTcb01P3i/ounZ+oOa9puXbL77lk1/X7EZp3+paT94WTi/+sF7l6Sf1fTMvVqT2m9fiVAWznt/Sd+m6cfHY/9hm++qH7zHNe29n7W5zk9u5vfvavqRe7Um4fCCpG8I5w6a1OPPSPpfN/f9FzQRh29eGNO/uOnLLfj8Azaff/bKudnTJAB9pKZn7XvDdx+i6dn9x5qe3Y+R9DmS/uZVrYOrXDyvVf6DdxmL4F5NG+lfDZ/9e02bZGRVv1tgKpL+2mZhvAzX/kebxbmHvnw9jvuizbV//eb9H9kc9/LkuEuS7t28f8XmOP64fd2mP8Pm/cdujvt0HPcDCj94km7WxJi+Acf9us11vyB89g5JTyhIYJr02qOkP4Sx/tGVc/Wlm3H47Y1jfkrTZr2H/l2W9DXJHH9A+Ow1m/79ENr8F5LeHt6/dHMc594b6x/HA/06tPfFm89/C9p7E47zQ/iicNyhpL+O43zdTwqfjZtxiD++n7r5/Pdgnr4V7d29Oe41V/NMrZxL33P2l7JITba4PUn/j6R/Hj5/g6R/1riWWd7rku/4g/dFglS+4l5+UNMmfX7z/u9s2njZ2ja2HLs1P3hPCewnOW5XEyN6l6QvD59XP3gXJb1fMod/fuE6XyVpP/m8+sEbFVinJqY+ahKYh/D5P5T0THhvlvb7cZ0/vTQfmjQ6V5LPb9+c+4Ur5uU+rOPvUdDMadrfD7XANtf+XeuwhLeO4/hWvxnH8RFNKoD3l6RhGHYlfZik7x6DbnecdOrvQFuv0iSBv30Yhj3/aZK+79LEdCL+Gd7/U00P++8M7T0g6cfQ3g9qUqH9bpxPA/rPSbpO0gs27z9c00T88+S6ER+uia1+G677Tk1qiJfj+B8fx/EJXFfajOFV4JWSfnIcx5/JvhyG4SZJv0PSd47jeMWfj+P4dk3CyUfjlLeM4/i28P4XNq//Bsf9gqQXb2whEZz7f69p87CDgcfjW3Ge37M//xrvOV4fq2kdcPx/QpNUy/F/43jabrN2/B/TpB78W8Mw/MlhGF62cLyk6ZmI/UrGK8OXaXqOjv/i3A3D8GHDMHz/MAwPa1qjlyX9T5I+OLTxk5I+ceNx+RHDMJxf099rgWEY7tfEPr9zHMdLm4+/efP6WQvnDhiv3WvYtX+LZ8/X/LhhGH5kGIbHNWkeDiTdr9PjWeHnxnF8p9+M4/gOTezpap/nCo+M4/jT4b2fyx8cN78c4fObh2G4ffP+VZq0VN+X7IvS5Fj0nsSjmtbwyzUxy4+U9C+GYfBv03/avH7XMAyfPAzDXc/nYtf6B+/x5LMDSddv/r9b04/Lw8lx/OxeTYNwGX/ftfmeN87z/f7+0N5LkvZsYGd7vJeDzavv5YWSnhjnRu3sPiTph5Jr/+al647jyOtui7vU9uC7Q5Na48Hku4ck3YnPuCFcany+p0kijqjm3vPk67E/D+F7Y2mePP6/qPn436Lt5z3FZlP5WE1S/VdIesvG5f5zWudp8rqLffrsheMl6YFxHH8q/vmLjcPAD2kSsj5XkyDxYZrU1fEe/qYm9v9Jmmx3j27CBzi+a+AN/SUrj/8jmvae7x2G4fbN5vsuTTb/z1z40f/jOj1e19KxYfYMDMPwkZpUfg9rmpvfpWk836p1z+TSnnitsM1zKZ1+Pm7d9CmOq4Xa1g/ME5J2Nx66EV5D2b2fwjiOVzZr+EfGcfxaTYzuVZpMPxrH8ec0mT9ukvQdkh4ZhuFHh2H48KrNFn6tvTQf1TSYL0i+e4EmBmY8pokdfn7RFhf6CzTpsON7adLLu723a9LPZ3hH8XmFByXdMQzDOfzo8d4e27y+Fv0zntnyutviUZ38mGR4QpMq4b7ku/u0YtFuiWru//Pmf1/vPk0/BrEv8fu18Pi/UvOHP37/vLFhvp+12bB/q6YfnL8/DMM7xnH8geK0T9SkOTDe/jy78XGaNrA/MI6jhQQz+djXS5p+mL9iGIb7Nv34Gk0b4R/e8po/rMlG+ImaVKdL8I96NSYfrToU4nt0slakycxwrTAmn/0BTarOTxvH8dAfPl+m8f8jPKbpuXhl8X1LWPZ+9iE67Tlq7dubr6I/Ft6OY7zHcXyDpDdsvEI/UpMq9QeGYXi/cRy32j9/TX/wxnE8HIbhJyV96jAMr7NqaxiG36VJtx1/8N6gyaD+yxvV6BL+oE4/bJ+u6SH8idDep2jydvoFPX/8uCb28ik6rcb8dBz3Y5p+1D5oHMdv1rXBgSZ2sgY/KOmLh2H4reM4/hd+OY7jc8Mw/CdJf2AzJ4fSMVP4PZocd64lOPcfoSlG6sc33/+7zeuna/IiNLwJv2nL671R0zp4/3Ec33hVPZ7jQNIN1Zcbtvefh2H4C5oYyW9SsblvJNhriRs3r8dC2DAM/4MmZvKOog8PSfpHwzB8oqa+ahzHKxsX8fI+w/nvHIbhn0j6nGEYvmM8HZbgPnzSOI7fMwzD75T0GzR5DX8XDrteE5v6bBXzPI6jvaZ/rXCjJjXm8Y/hMAyv0VzTcK1xIOncMAy78Yf2PYA3aPJM3R3H8SeWDgbepGlv+8M6/YP3mZqckP5Tcs4SbLL4JX4xTiEZbxyG4R5NTj0v1pZxj++NOLy/oWkT/p5hGP6BJpf5L9GJysr4Wk3ejD8yDMPXamJ0N2l6WD5qHMffh+M/bhiGv7Np+3durvMtwab4bZq88/7vYRi+WpOX43lJH6jJ8eKTxnG8sPYmxnF84zAMPyrpHwzDcLcmFcenabNhhOOeHobhL0n6e5uJ+gFNEuP92kiy4zh++9rrbvBmSX92GIZP07QwnhnrmJWv1eQt+EPDlI3j5zSpln+fpD+zkZD+miab5fcNw/D3NTnafMmmn1+9Zd+WcItOz/1XaBq7b5GkcRx/fhiG75D0uo0t4cc0qeX+mqTv2PYHYhzHXxqG4Sslfd0wDB+sKcxgX5Mr/cdKev04jj+85T28WdJHDcPwCZrW7aOaWNXflfSdmtSnu5pY/RWtYz3XCm/UZLf71s1z8yJNc/nL8aBhGL5P04b005q8gH+HpvH4unDYmzXZ+d64OeZXxnHMVN/SJJy+TFMs1ddrUqs+p+n5+kxJv0UTO/tsTQLIV47j+MtsZBiGfyXpU4Zh+HPbPI/vQbxB0p+Q9A836/JDNHkzcr+61nizJrXvXxyG4YclXa7s8M8T369JyPi+YRi+RhPD2tHktPbxkj5nHMeU5Y3jeGEYhi/VZLd+RCeB55+myTno2FY/DMN3Svq94zjevnl/vyYV5Xdo2sN2NPlR/AVNP57/enPcF0r6bZp8BH5Fkzbor2jShBz7i6zG1Xi6qBGHlxz7DoXwgM1nn6HpB2wpDu8OTRv22zXpnh/RFArwBUlfXq4ppudZTWqvLA7vek0u7o4BfFyT8f51OvH6fMWmvY8p7vml4bN7NhP2jE7i8H6f8ji8j9Ok+nlak2vwWzWFKfxGjNW3JmN4yltOk3rvX2+uO/NUTM6/V5N31oObcXynJieBVhze96qIw8NnL1USG7YZ02PvQc3j8N69GYfvl/TrcO55TY4ZD2hiKg+ojsPjdT1/HP8/oulBem6zRv6rps39xeGYUdKXFff32vDZb9C0Di9svvumzRh/s6YQiwua1ta/1fSQP2/vstY9J8f5+drXZBf7g5qcfn4xHPOXNWk/Ht/M+X/TlOUieuq+XJOX34EacXiYt8/brKOnN2vtbZo8q3/z5vvHJP2bRt/tNfiZ12rcNu2uisMrvvvLmzXooO+P0vTD8H3hmDIOr7jW1y3095ymkJBHNQkIi3F4OP/mzXF/BZ9/7ubz+8Jne5L+0mat7Gvay35GkzB6U6ufm/M/X9OPlmOl/1hyzHf7Hjbvb9k8L7+ok9jkn9n048Zw3EdritV1LPavaiIvH7DUr+zPLvbvsximvG3fqMl99hffy93pKDAMw0s1CS5/chzHa5K/sKOjo2Mb9GoJHR0dHR1nAv0Hr6Ojo6PjTOB9XqXZ0dHR0dGxBp3hdXR0dHScCfQfvI6Ojo6OM4H+g9fR0dHRcSawVeD57bffPt53333a3Z3SIzrlXbQD+v+joynm8PDwsPk+nsPXKqVeK9Xeuty77WMzuyY/ez62z23O5bHsc3YP2bxkx+7s7My+86u/86vnPLZ56dKUlu/y5Smpx5UrV/T000/rwoULs0557axZB/6sWhdr5qe65/cGfi3s5K1rvLft9F5DcS78f9xLHnvsMT377LOzCRuGYdzZ2Tk+lvtPvEZc00tYWlfbPPNrxnjpmKV9r4XWPsD3a9qvjm2dey32bc5f61mPr/v7+7p06dLijW31g3fffffp9a9/ve68885TnfTmJUn7+1Nqu6efflqSdOHClCzh2WefPfXqzVI62TD96g1vaRPm//HY1uDzMz9Avg+fG++LGzQ3ZSL2i+3FTT4iXq9aHNUD7XuI/1c/fP7+3Llzx59dd911pz47f35Knn/99VOO2XvuuWd2zUcemTK+PfDAlBHu8ccf1zd+4zem/fPaeeaZKfWd14HXiyRdvHhRknRwMOVr5rrwa0vAWis0RVQPd+sHlses/Tw7ploPa7B2Q8het7lu68fB/8c1GOHPvZbi/zfffLMk6cYbb9SXf/mXz0+WtLe3pzvvvPN43/G5e3sn29ctt9wyu4Z0smayZ8+f+RivuzXj5O+uXLlyqi1+v/RZbD9bs37efQyf7ezH3/D4+HUboYDn+L2vl7XBPhrcb+L33KO8Hrz/eE+I4+vr+Dfk4OBA/+E/rCsC31WaHR0dHR1nAlsxvGEYtLu7O2NclpCkk19dSz5+bUmTS9IKJZMoXVRS5RrplcyrYgvxM37H62SSVtWXbZjDklQWJaBK4qYEGfsV5zC7rpm6JTDpRGK78cYpX/HTTz/dZFRHR0ezcYt9WMua4zlLqpCWWorMbg3DW6v+aqGlWub3bNf3no1F1T7P5TogO1nT5/i+mrc1LHtJ6yFN6/jWW289Zm/URkjSTTfddOozt8tnO7u2v/OYcs/K1mqltVmz70RmGq+bva++q/aDeJ9keNX+2lq7vC8ysrjHeOyXNAjx+hX79Fz7fdQEZWO+Vg3cGV5HR0dHx5nAVgzPCTitX81sXWZ4fq0kuEyyN/yrXrGclr2KbWZ9XGvnWSPZs+8tSbI6piWlLzGJNdIzGUxLAvNntE1YwjKbk0707DfcMFWQqdi2rzmO40xizHTz1T36NUrIz8f+VtkcWvYqjhlZQmts1zoRZAyPEjW1Itn5VZ9435EtLDGUbWyT1CR4TcX/uUYz7Ozs6KabbpoxO9vtpJM16LXh9cpxajlJkRVy74p+B2yjYsmZo47vnUwvs61X+xudyLJnp2J4a2yTnEP3eY1mY+k5juvN48a1yD5H0Ja/t7e32lmpM7yOjo6OjjOB/oPX0dHR0XEmcFVOK6bcDCOQ5k4rRstZgeqAJfVU5rRAus7XTG2zZFxdow6rrpc5gSw5VmS0nGohxjS11LK8L6p1srALGu55P/G+qGK+7rrrVjvX+DWuk8oBiPfcir+q1LcZlkIKWirNSk2dqXM4R9X6zuLVlhx41riaVyqm7PPKyaNlkuCaqcY+e+a9X7TmaWdnRzfccMOxCt0OKrfeeuvxMXZy4Hq1aiybN85D5eiShR5UTmwthxCPE507uC6iGq9Se1Z7Sewj1YHVvGTq2Eot3VK/L4U/ZPdX3YePcZvZOPqYS5cudaeVjo6Ojo6OiK0Y3s7Ojm688cbZr3KUECgNWdIi88tCGeJ1IlpshhJP5WodpYolY76RMcml8ISsj5R8KlfflmSfhRJk98J24jkcq+z++EoX7UyCtOS9t7e3mIlhDRNquenH6/qa8Zgq6D5jQBUDaTk80QGD7CZruzXP2X22mL5ROSRkxy6FUrRCQyqnjMwBpXLrz7CNO/8wDNrb2ztmcbfffrsk6bbbbjt1jHTirMLwBO83WUjTkual5dy15MQR33tcqI1yX1tzyXVM5upXMsKsz9toWar9Zk2gu+eLe3K2h7gPdkwy/L6VQOTw8LAzvI6Ojo6OjoitbXjnzp2bMYRMQqCO3iliYjoYw5+tTSmWSWkVqzm+0SD5VPYO9j2zFRGVzSgeTxbC+6zsQvE7HkPJuxV2QekvC++wNOawAx9L6TPOG1M8nTt37nkxPM53ZYOIc9m6p/h+iV1JtVt6psGoWEFm61iTH7AC75l2IL7GY5eYXsZg6PJdJWXIQpF8LiX6NXbUmJSA8L5j251TjMUQmYohev7N/DK2zjXOMASPeWb/Wwptys6p7GFmMxlLWxP2QFT7GfeUqG2rNBWVnTHbQ3wffuWxWWB9FXpk7ZFfY5/cXtyTltAZXkdHR0fHmcBWDE+afpEpGUQbHJmdU1JVSaRjO/zljteMn7ekZ77P9OJVqp1WECk9HCuJnjr2+Bkl2Eqaju1Seq5eW55Wfo22NvbRgbtuzx5wlvgsRcUUP0YrCDri6OiomT7Mknbl5ZWNLftgVOxwm2z6RuYhVr3P7muNx2g8Lmu/YnaWqqMEzPVdsZ/M+9Dn0MuYXrxLgeKxjSpt3VoMw6Drr7/+2GZ31113neqrNA809/h43VJjIc21TR5D99dtMk2iVNseqf2K984xJIvh+o/trE38HMekmvcqIbU0X6NM+Oxzzd7iuvNn3kvIWFtsuPL+zNLIGc8995yk6bel2/A6Ojo6OjoCtmZ4WcxOlGJsq/OrywQ98cQTp17N+KR5zFdl28rsY5R8KC0x5ZA0lzx8TuWZGL9bik9peUCS/dJGlHmuWsqk1GmptFU+w6DEn7ECluYxfIzvy8fFdqMtpJWm7ejoqJzrCErALfsb2+P4V/bgDJWXZuZxybVZed5m7VFqb4Hsmeu95WnJNcs+eq4zj8tY4zDeZzYXFduhVL5GC5Fhd3dXN9100zHDi96ZvJav4XvjPUZtFFkYtSVVirHsO7JY30/UiCztZ96XMoZHNlbtVZl/A+1yPpb7XuxTZTv23pGVY6rYn9toeWny+pwbe+bG67idJd+BiM7wOjo6OjrOBLZOHn1wcHD8y01pSpKeeuopSTou9Pnoo49Kkh566CFJeeFP2gLJYigRRanADM4eW5Y47NHFuJx4jF+ZzHVNVfYq3iXLDMDsD+4Ts0xE9uRj/Jn11VFvLZ2MZybhs09+tQQWS/3QZkcmYc+4OI6en8hClrzGOLZrPPhacUPM9lPF8LWyWDAuiuwmgjZNHus5jeuj8nisYgfjGFYMshXXWsVbUsPgtZPZmeiBzXWfJXDnM9LSemyzDnZ2dnTzzTcfMzs/83Gumf0pZv+J95F5M9MuybWfMdjKxs5xis+0n9kqG1XmacxxIrMnw8xseD6GXpO+3+jtSpsdNTz+3owr7gccL+6F3PciluKb4zPha8e9vTO8jo6Ojo6OgP6D19HR0dFxJrCVSvPo6EgHBwfH1NVqSzumSNLjjz8uSXrsscckSe9617skSU8++aSk3DnCajp/Z1WLP6c6ItJo03SrO6yms0rTn8faWZXappWWx6DqhSqGljMGKb1VHL5+VPP63j1ufvXYePyoUon3RzUE1RSev3g9jxNrc1n9a3VSvPYa54txHHV4eDhTS2ZqwyVVZjynUvlU77MKzZUjQOa8xO8q545WeqilzyOqVE9Uu2XjWKnduHbiustUf/E6WcAxx5Hu9a3UXHE8W4myb7jhhmO1u9dodnyV1ioLevb5Ho8slECap7vKQDVd5mDne/WzxoQb2Xh5bqp0d3TgyGpF0hTkZ5j1LKX5c86g/Cp0LOsjVfRcf7HfWYhbRFyPng/v8duEGnWG19HR0dFxJrC108rFixePf1EtfUSm8PDDD0uSHnzwQUknzIRSU5YAmhKif8kpBWQSo1kmJUdKn9KJtOL2zAot1VjKyKRYg4lgKdnH+6skahqvLflJc/bsV7NCGnOjZEfplqEZDMeQ5sHCdjaik0JW8TyGXVRS+jiO2t/fbzpbVC7/ZFWZa3nFsFtJBTynNMy3EuguVcPOJFS2XyW0XhOqwfcZS6zc7avQlsjwKg1Gi+EZDORm4t8swDmOZ7V2dnd3dfvttx+vPUv2cZziWo5jQEYSx9H99DF0SOIznWmAyP64VuO+waQBlZYjXsd7QuXMwfvN0u4xdMlj5X0vK9fDufC5DJOK45lpN+L1MqccOgplAeY8x32L4Q/daaWjo6OjoyNga4Z3+fLlY4nBLMR2O+nEdmcmQruRpYCoN/b/DmlgELl19llaK0pYbsuuq5YK43HufxW07tcsaJQgw2NoQ4Yq+Xa8RsXGyCwyiYhJnfmeyV3j/5TOLO3adujEAbFPPufixYvlOHntkG1EVkuGQ2bfKkLLY6uEuVFypQ2jslO0yjYZZJQZCyULMSr39Ph/y87DfpEJM3yITCzaVKoyUQw9iGNCKZ3zZ2TJGFqp8Yzd3V3dcsstZYJz6WT9+tlmOIURUxpaa+JzaGNiurI1aeM4LzEwm8+u151tky2Ww7XvNnzfmW2NJZMMMvxMK1GFtHjP9+fZ/bHArY/xfca9n/uN59Qs3iw0C1Z3O7fccstiWsPj+1p1VEdHR0dHx/s4tmZ4R0dHM2/KaMOzBML0XdQNZ2m0tvW4i/+zgCBtRNn1aBdhgckISlaV15QR2ZO9uAZ4AAAgAElEQVTHgB5wtBlkemiyDPfDDNqSUJRweH9VyqfYR0tSHgOOjduIjMz/uw+XL19u2vBacx7vYckGldmrGFRNm3Fme+I5ZAWZ/bcKVm4lV16yJ3ENZfZt3nvFouL16JnKZzFroyoHVHmYSnMv5zUey9RYtLQDTh5N78LIhCoW7eeEmgpp7jlePWOtgGkyX66h2B+3W3mS3nPPPac+l07YbNxjI3ysxzGe6z7Q7u8xoLd4vFfen9eMj/W9xDRvvlcG35NRmulJdXJoX9d7S5YwwPdz2223dYbX0dHR0dERcVWpxfwrb5tblKbJHihlMrZOmuuSaYPg+ygNULqkJxXLg8T/KxaTSdqUfHldFj/M+uh7d58oQUYJ18f6utRl01Mp2mFsm+C4WlrKEvb6O99P1LNLOVN2/6M3bcXwjo6OdPny5VmfMsmMEnZVdDXeA+2gtFdmrMBg/F2WwsyoPPaouWglACYTasWZVsl0W166FcwWmAg4zjWTv5MpZ3NQecry2c/S7RmttbOzs6PrrrvumBn4WYjsyeuKacfcBz8TGUszS3F7fvaoFYj9q2x3rZhK7meMv82SK/u59HxkWod4v3HN0rbKfS3TTjFxO+3/fvW9xPSE1GB4vqilqjwx43d89TjEa0cv9LWxeJ3hdXR0dHScCVyVlybtL/HXNf4SSyeSD6WYqCu2JG8Jy7ps6pyZuFSaMzhLHJReop7a/adNgFJ0lF4oHVcSBSWg2J7v2czYHq1Glgz3xS9+saQTScu6fEuhjOmRTmIhfT1LWry/6HFZZVZhzGJkkmRrlQ1Gmubj0qVLMxaTFdUkAzYyFk+bmueSxSg9f5n9z8cyi02r2Gm29qXcs5PfVQmueVz8n0yCNuss0Tk9VJlgndqC2DevUY5JVsy1Vb6L7RNxTluxVFmx4giPAzUHzOAR++92zPB8fTI8Hxft1/6Onpxcw5HNxP1EOplDP9Pvfve7JZ2Oda20HbQ3ZgyP4xTte9I8Li/eD7VPRmV/lE5YqK/LWGUyaWmutfPvh1+zPd/99hq1LXYNOsPr6Ojo6DgT2LoAbOZ9FqUY/4pTSuf7zOvIzO5lL3uZpBOJ6ud//uclSffee6+k05IK2ZOlI0oZsd+WDFg6iLFHMf+m/6ftjhJ9FktDxmCp2W3dcccdp95H+H7cvtmar+/vo4RvCcoM8kM/9EMlnUiQzqKS5UC1pOx2K9uYdDIP0VZTSenDMGhvb28WoxNBplgxxtiHpVJItHnEc2PplngMJdXIuOiFxzjMeL8G1wQ9Yb0Osz5WnqtkcXE8KxskPah9TmQCPpeMmAwq88zm88PnKrPXVpk9MjBzSNQmeUyrIq5GfC7dHz+fZgqPPPLIqet5H3KJM2mePSR6HkrzEkyxj/TarjyLpXkGKdq2aJ+L7JoskOvLcxjnkvPrPntfp203PkO+9v3333/qej7G++6LXvSi43O4TzOuOttPmCFpG3SG19HR0dFxJtB/8Do6Ojo6zgS2VmlmqZkitaTqw5TedDYLZbA6wA4aL3nJSyRJb3vb2ySd0F2rQyONZpJWq4fuvvtuSSfqicww72OtrmRwdbwOVUeVo4GNq5Ga03HG1zWdZ5Ls2Eerbdw3qyOtcqA6SZpXlb/vvvsknagafvZnf3Z2Do3idJLIgtWt9oqOFS2VZuaOnKXRogqMhvLMbb9yoGHgapZEvOpzFtJSJe3NHEAMurfz1c9PptL2vTJlVis1V1Wyiu7wWQLvKp0bwzziOVXfqnuJfVoTMGx1uOe/lUarqubuZzxLLeZzfB8Mincb0XGCjk6+dzuCZQ5W3Hd8LkNnMqe8KqE6VZtxL64SONAhKTrYeR9w8n/35a677pJ08gzS0U+aO4gxBM3zFufAexOfcYPB8/FefR+ttHREZ3gdHR0dHWcCV+W0wiSu8dfX/1PS9a89QxDi/5ZA7GxBKcafx7Ypwb3whS887qc0T5wbzyEoaUeJ21LJUtC6P8/Sk5G1uX1LKvG+fD4DPH0fNqC7jczV9wUveIGkOll2ViqHZYLc16zoJh12Wq7lwzBoZ2dnxoTi8VXCbErAceypZaAzFJldFnhM6ZnSa1wHvOeK2WX3VRWcZdB4K2k5xzdjVQxKZ1+zJOwGS8mQTWWSOK9Xlb2JazRbtxW8duj8k4U2MQSDCQGio5b/9/NHN36mHItzwT3ETl9ef9ZaZWXCyEgYWhC1KL6vmIJNmjszGfEevOd6DOyUwwT+2d5Ihx2/2rGQ+1Hst1kuw8mygrO+DvdLFlbOQpGiA9capyepM7yOjo6OjjOCq7LhMSAzs3Fk9r34PkskbLd5SyCWGMzaLDlE25qlB7rv29aVBcxW/ffnDMzNQDd9ujjH6zGFk6U/uhzHc9yOJUdLOm7DOnVK5HEsHO5gNuhjo5RrsDwQbXeW6KIdhmnUKuYsnUhhVbkZaW6HoLRJFhr/93ceWwa9ZmyKyQkoYTOZedYeGVa2Zmj3oJaAtss4jkt2sVaAezbG8X7IALP7M2jTjXPAQq9GlY5PmocsLGFnZ+eY0TEJg3TCQFj02HtLDBpnH2iXZPB1xsyqxOx236ctKvaFQem0Tcf9jSkGzZpoz8zWN9cZE+u77zH8iomfWbTae0dmO64ST3sueL8RZObUoMX7oh1zZ2enF4Dt6Ojo6OiI2Dq12JUrV45/oWnLk+aSNdkGPaLisZZ8LEVQMnAbsSSFQYnL0hmLPEp1oU/D181K11CCr5IIMy1W/K4qFhol4MqzzmNx5513njo32qYo2dNGSI/S2K77VCVdjue0mEl277F8UCUhx2tVDDwLsq5KIFHya5WWYhLnbH1wrdCumHla0jZZeYeyLFHsC8egleg8Sw4e+9gKkmcbPDZrm+u6Sg4cx4Zj3UoebRsemVf09vPzzTmjVigyB2sDyKyqfsRnjEyIQeWZNoIlb/ze2hqv95gqi+ySWgGumex5IrPznmxmF/dTP99mz/R6prd65oXqZ4LFt+mlGtvhe14nntMq6ryEzvA6Ojo6Os4Erip5NCXvzGPLIMPLvCYpvTC2qmJG8Vzrui31MeYtSlrUIVepkDJ7DCUqSjqUvOOxBtmiJcs4JmRa/s7vKVHGNEtMUkzpj+l74jlMLebXrCTLNrFUvt81c0kGvoalkV1S6qu82uJ1yRazZM/+n9+1EiiTnXGdcyyyIrW0GTO2KUuKnbHNeP1sDpjWrWJ4LZtJZTuMYFqt3d3dJsO7/vrrZ9558Xmh5sjt014dGQltqnymaDPMCuVWqex4nHTyDHHcvTdS4xOvXZUsIsuJc+55pjcm/R0yHwyyacbpGlkaPO9F1H647aht43pjGrRsTKiBa2kHiM7wOjo6OjrOBLZieM544F9Y/xpn0f0swWOpgomUpbmnIe0SzAgRpQxLIn6tYn+indESiPXVlrz8yiKb0pwlLdllMmnQ161sd/Ecf+bxYrYZ2tay0kI8htJhlEapf6fHql8j+yBTOHfu3KK31BpvKkp3lF4zNkObE5lPNqfVdat4QKkuD9VKss3xX7KlxXPJXKtyQRGUmjk2S7bW+Mq+ZcmqORbVGG1TZokYhmH2/GdezVU5ozVlm+h1zPGKY11lvKmK4MZz6HHtZ8t7WBxbf0YvVGqWmBg8tlut1dbe4f3SvgJVBp54f9QoVYnB4xzQ54P+Gz43s58uJZnP0BleR0dHR8eZQP/B6+jo6Og4E9hapXn+/PmZU0FUwdDZguq1LFWMYXUE6XOm8jNMm0nfqYqLTh3+n44Z7itrw8V2+Z5qsEzlYzpuN2DWznMbsSIyE7tS9UPVaRybSi3VMrBXKh+PTZYMl1XLl9SVOzs7x+dnKbk4dlSJcLwiKscnvmb1wqq5bCUApqq0VXetUgdW8xRRhTtQjZMlxeY5dJZaoxbNHFtiv7L7yo7h9+zLddddV64fO8u5PTqzSSdmEdaW43OSXYNu7px3ptuLoCqTTkZxDqqAc5/jvsc+WqXpc7lmOU9x3VVrhOreGEJFNT4de7ivR1CVXSW8zsA9n+t+zV61Bp3hdXR0dHScCWydWiwmcW05P1CKYbBllJbIjig1t4ySFYsxMyHTi31zXxyASsNwFgBMhsV+ZAHVTJVGt+AsqJ2hCnS3XlNhm9IamV2WhsjtMGg0k6YYirENMnbRkvCl3LFhKZ0V+7aG4WWlVgxKrTTeZ88EGSlZUyW1x3bI5FvhAew/jfsVC64+y/oewXO2SYMWU9gtJR73emPJHGnOIjIHJylPMVilh6MDXuaIxueRe1d2Pe+FWfLm2GbWHrVqVYLweC6TSNDpJ4YJMNk6S5hlCdx5f1UYUZaWjk43Hmsy5vgM8VnbBp3hdXR0dHScCVxV8mjqrTN2wWSgZEjRzZR6WkpYLQmBbIaspkpzFL+jpJe568b7j8eSNWUBu5TObcvze9rCsmOYyDZLR2aQOXIsMtsUww7Mequ2s37v7u429epZgHMrQJ/zngVm83qtAHNpO4bHdSHN55/rOisfxc9oM6qYXrxeFY7QSmVWMceWO3c15nzW47mtZAIVsnRkS2uHJaBabNOgG31mM67e87nNUqMxfIg2qCzhhcOhqvCkmEaL7JKMh4kwsmK+1JC4H0wMLc2LqpLZkfHFZ9HHVLZqIwuDoMaKpbqyZyLa+XrgeUdHR0dHR8DWDO/o6KgpKVK6tARAxhLZRaYj5zUjWuVMyM4yqdP/00uKnqPUrUdQD870UWvgYoosuRH76HbtwUlbHgOeI1qsQzpt16wYMplMlkqoCjSOGIZBu7u7M/YU77nFIuL7VvBwle6stQ4y5hjbitJjlvxAqr3bpDlj5HXZVhxHPxtkv2SaWVFXethWdsBWID8ZZUuSrhJOt2yvmbd2hmEYZn3KPJPZPu1wLVZbgV6UUjsAO/YnrilrTZi6jB7Z0WuSti3OoZlWxvjdB7Myanq8PuI5PsYJrM2mvVeQ8cU9ZI1WTcoTanu+3FcmvojwvUZtV2d4HR0dHR0dAVsnj44ML/NEYiof2qks5cTSHvQao7TEGJrMhkc2UyVQjt9Rh20JJfMMqjxGq/i8LB6G42bp5e6775Z0OtGt+0RJuPLaazG8ynYUWYilvKqwZDb2HKdz5841WV7m4Zt5X9HDriWBV0y+1W+jio8jm4mSffxfmhcR9fssDo/3ntmk43Xjd5V3cBYbRrbHAqMtG0vFqmnHyiTqbcq1MOZxHMfF88gGMg/fqnxXplGoknkzkTFZljQfh8pr24xFOhl/731+3m03s5d41CxxrcSip/FYjmc8h3Z5P/cuSxTPoSc5k0mzH5lXaBXvm3kh+/8YJx2RpSejlmV/f3+1p3hneB0dHR0dZwJbZ1rZ2dlp2o+oX+evepbQlLEmZC2USFsJjCsvzXgOSwjRXpXZ4aqYM+rHM5sE++/r+j7ttRU9I5kVocoGkjG8yrOOtqrMS5MsgOwky6oTWW3L0+7o6Kj0qpTmUnMVa5gxkooBVYwvnlvF7rU8IWlj8DrI7JmV92dlC88S8nKsaf/LxqRKEl3ZEiM4ri37aZU5poqRje1WCYbZ/v7+/vHz4TGP98eSMWZPtNdHVPtM1cf4PfcDZmnJxsnFaH1dMzvay+JY0B7G+eb14vFVH2nbjRmlaIOmnY/7QLwetRuMSc3GkWux8tjPnsHIMrsNr6Ojo6OjI6D/4HV0dHR0nAlsHZawu7tbGnWleVBglgZIykMQSIUz5xGpnU6pSnYcrx9T6WTts95fPIY0vap1lqk/rMp0X6zC8Dl2XpFOwjisiqmcBVh5Pf7PPlOluUaVxTayQFNWna9gp6eILGkBx3BN6qrKmej51I1rJVawGsjGdr/PVHRVgnGaBDKVJlX1bJ8Bz9k9U7XZUjERlZoyS+tVjVvLcYj3WfXh8PBw5gCXOVBxH/Cz3nLUqkwnWTJnnlslDffnVmPG7zyXfv4fe+wxSSf7Q2YWqUxFHNP4fHrvqNThfh8daxgewNRfraTidCaqEh7EPleJDjz2DDfKrnNwcNBVmh0dHR0dHRFXFXhOSTWT9gxKTa1yNhWYPidKMWRcDIh0X13yJx7LRNNMlBzdu90Hptip3GGzxMOW4Cz1vfvd75Y0TxAd269SlrUcBCoJu8WUKkcDspNs7FsB+hE7OzvNfpOBMrg6c3uvnB6qJAYR1ZjyfeYIwKTkXG9rUn5xHrJ7oQRP1pZpMKgNqJ4vaiUycMxbacmWUnVl/Yiso2J54zjq0qVLx89jtg8YnHcy7zgvTOnF8aKWI0smwHFwW247aj3osOd9wM4rnNPYvvvEskfUhsUxZKC7USUVz9rjGm2tmWpvqhxtYjscm4qVxjGIz2tneB0dHR0dHQFXVR6olRYocx2PaAW7LrkHZymgqmKdlgIsFUY7hhmd7S/33XefJOnOO+88dd2of3ffLDGytAdTFznUQDqRSKmz9+dmfpkUwzGuUhll7vaVpMr38fzK7Tizm2RSfzXvwzBob29vphXIglAN9jOzH1UpndiP1vXont4qvcRktlVKu1YgbFWMNGN4S2nWMjs6A3Or+6rSsMXrVqw3e345ji0b4ZrQiNj+wcHBLMg69tvPJVlbZaeL5zP8hPa5zH7OceFzSVtb/M734XAE7wdGy85IdkNGFsMvfA7DOWLqMul0WALHgIkWaEeN+xOfjcqvIc4B2Tr3nax0Gu17Le0A0RleR0dHR8eZwFUFntNDKEok9Mqsgp7jL3IlUS8lP46wxOOgctvD/LlZnSTdcccdkqSXvvSlkqQXvehFkk4Yn6WbyNKYeosMj95gkS263w6GZTCp7YvRFub/zVCrFGZZoGsmFS2BrJ220YzVk0G2rjcMU/LoKug6+6wqExWv00qTtXRuZbtjSqbsHEqZLdtGxaQqZpnZ8LwebBPyusg0GO5bVUiZiYczm0qVbi1LdFAFuBOZFN6yxxnjOJUk8xjQBhXbZjD1Gt+BykuWe1dWmNVjTVtUNrbuv1/J9LMUZmSZLFnl1yzxhTVKlT9ApoWoNEp8tr3u4rzRRuf2OceZZydRpbSL362120V0htfR0dHRcSawdfLoK1euzDwQo1RAqaXyJoq/2BV78XUqbzbp5NfeemkzLbMpshDphMmZwUX2F69z2223ze6RyaHdFst3RBZHexw9+5hUVjqR5N1updtm8uL4XYVMQso80aS2dxbtF5cvX15M4lol7I2opPIq5Vh2bpUIOmNrFcPK7GdkM4zZyrxZK88zMuNMmnb7lqgttfu913urdE0Vu2WmEZ/FyrbWisNbi2yuKxtldhwZUGa3ruzXWR9oq6tes5JQvjbL5Th+lsVqpRNbnb2zDbKzuMYYP+j7oQYrK83Ddcd9x/ueS4/F87lnsSwZPTCleRL+pZJdsY8xiXj8PNPM+Fg+c2vQGV5HR0dHx5nAVgzv6OhIzz777KyETERlf6tK1KedKpKeZh6gZnZmRJUNL4tPMTuztxSltcj8mCSaki510TH+xnE2ttU98sgjkk68QB999NFTx8X7Mtw3v3oOWpJxZV/KskSQwa7xnqM96+LFi029+s7OTpkxJP5feSRmzLQ6tmJ4GVur4hYz0KOPpXiyJL6VRydtQxmT8BjTVszSVpEVkKmS5ZAht+JoK7t5tu5amXAqLMUKur2dnZ2ZdihqNar+Vesgu4fKlmvEOWW8r1+9t7hv9heQ5iVwvL9YG5XFtVYlitwWGV4cEzM3lwGyN7o1V+5bvC+uN+9jbt/vvS6iZoFjTYaXZYehBqkqpJ2VaovatpZ/R0RneB0dHR0dZwJbM7xLly7Nov0zW9BS5o5WQU6+pxdTlKpZRJHMKLMZWnrxuZaWfB1LMzG3pb0uraNnvk1LPpbAYz/M7B588EFJJ7p8Su3xHLdLmxq9tDJplPrvyi6TlfqpkMWXsQ8HBwcl47SXJvvQih9c4yFY2fOqNuK5lURKaTMr9eN+V1lmWrktGcPEmKfMhuNjvFYo8cdxoNZhibXHZ5Q2+EqDkaHykDXiOJLhL7U/jmOT6XNN85gs5yw/82vFHCMTMjtj7l7vC2Z8kZncc889kqQXv/jFkk40S9676JktzUuZ0VfBffL1vD9Jcybn77yXmY3GefK1fV0yLa6HjHkZfI6yckQsnEzv1jXxunFfWUJneB0dHR0dZwL9B6+jo6Oj40zgqsISWP02CxOoUowx8Jj/R5DOmm5HhxBTewa8U2UaVU9WC9hZhIZSv8bg8XvvvffUZ1ZlWKVk9YT7ExNB2zXZziosA8L7y/pfBdTS4SH23+26jww8jahSYrWcTDIX8JZqIVNpZQkIKtVVptJsJaOO71vpobiOuR6ye6pSb/nzLLSAqsvq/qL6nffDgGP2J6Iq8bQmgQOvu5QYOkNLlZo5KbSSR1+5ciUtFcP26FTmVyYnlk72BKo9K5NAVnqHKk2uoeioYpWiP3P7dl7zvhb3Kqs7bX7xXuLn3X22KjVezypLf2cnFoY0RViVyTXCuWkljmeQPB3uWhXWWdIoS8LOcJG9vb2ePLqjo6OjoyNi6+TRh4eHpTtv/L8KEm6ltamOrZK6xutULrCZsdpSjANALT1ROouB5w888MCpzywtuV06EUQWSsNz5UwSnUiYtHkp1VOUtKqQECa4za5HSa5yJMm+a4WaOHk0pedMql9K+dTSDiw5q2TOPZVzRyvYnmyzFZDN9qt1XbG3eC4l2awcUaUd4P21+lox5xazqxySMoZXFTDNcHR0pAsXLpSla6R5oWT2KVvfVSKAKhwhMhOPqZkJxyVLIuB27AznV4ZSRVd/OraY4bldaiNiMVezPY+N+0qtULweWa/bZShaloi62tsZ5hWZJZNv0GHI12cS6zgGV65c6Qyvo6Ojo6MjYmsb3uHh4SxhaUSV9HMpsDSew/dsIysLUumYs7I27rclK7drKYrv43UspdAmQOk5k5pou3GblsSidMbwB6NK+RRBaYilRVqpxbYJGmb7S8gCz+P1ltKCZderAs/5PmOU1Zqh1LzG5sXrZeEStKm1yhBVoOYiY0/UcvCYNUyPbbVselWAO8cvC+9YSoMXr2EGRPuZNLcPcS5pp5NOGBVTYdEG1Rpjliyi3TyOrZ9z2+rdnsMG/KzHsfZ31kL51X2ky3+W8ICpt7g/ZD4RfmWQd8Vos3YN2ueyAH7OH5l6vAcyU+6RLXSG19HR0dFxJrC1De/o6KhMshs/o52C30dUQa5snx49sf2qMGFWPofJRw1LaWZ2MZmzdef0BmNZEEudWdkMg55V9qaK5YhsI+R1aP9rMaUq0XHGPqr0WpQO471sk7SV53gM4hxQaqwKiLbSQxFVEvPYPu2lTMSbMTzOA217WUJ1sr+sT7weWVllO4zwZ2TTtANmtjBiqfxSPKb6PEv6vqYsENtiKru4dvy88Hn3dTKtFG1aTBfHvSx6UVclkXhstK1zHNy+Pb8zO6P7aHbI9bbm2TBbY3IMtxEL0JpBMnk9kWnbuN7opZntjVWBaY5RvC/3aU1aOqIzvI6Ojo6OM4HtRXTN9bqt9FBkb2tKu1QJqLNUT5bKfE6V2idKZNQXM02QpaosmTNjqShxMy4n/m+7HG13jM+J7fh+KiZhtMr2EJnETUZHG0t2zpo5je1HG57HOErAlRdeKwas8qwjsvJH9AyrGF9me+I6Z1qw2J8sNi+euyZezeCY81mMx1RaDmoAtmH8a6TppWLFWd+WYjjjd1nCbM4/U1ZlMZz0AOSc+llnKsL4WcXeGZ8rnewnTBrP5M5ZqS/fK9eKP8/SkjEBtLVULAuVabJ8DtNIVsmeY9/4XHlfy+x/1T7D9Rbvi3v+Wh8CqTO8jo6Ojo4zgq0ZXtSlx88MSlSVZJBJlbSL8H1mw6Oungwvkxot4dDj0nYA69QtgUnzWDpmdnGfmN0guw7tfT42nsNSRYy3on4+091XZWKqmLv4GZO4MiuMNC+vc/78+Wa2jHEcm1k/lgqlZhqFpTgurrtsjMlqWxqFilGSicX13bKzxHMzSbXK/lEVx43HZKw8HpvZaZds7hnTq7JycOwzdh3HuppLe4fTjpmVUWKfuN7iOdyrON/+3OwianzM3FgeqrLTSifPvW1mDz/8sKST2F4nlY7ep2RF9A73PuR9KbI1fuZXejlGLQuZXeVHkWmlaPvmvpcl5V6KgcwySdFf4/DwsMfhdXR0dHR0RPQfvI6Ojo6OM4GtVZpO5CrNqaU0d/U1GACcpQdrqcPia7yeabIpNh1PskDwSmVmlabDA6JqwVTfr3RdpjOGVZuxXVN7Jpb191HdxmBYhlIwDVFUBfhYVtCukiXHMalqwmWJezN111LwdMsBhf2m63PW7yXX5MrxSZoHvfLes4BqquQZpMxA53jsUiB4lj5saTwzt/6ldGtVgu0MVI+ucSyhOjEzRXA+WuEJ4zjq4OBgpt6P98kE6ZUqOJtLt8v9jI4iUX1p546HHnpI0tzUkCXlcL/ttMJAbKs4o5rQe4KPifuKdDpoPPZZOlFh2tnG3zFMIVNp0pxEB5TMOY/OKlXAeSu9G50Bs/AOPk+XLl3qKs2Ojo6Ojo6IrSue7+/vH/+aWtqITIjOFTRyZ+7BlEhp8KXrdyy9Q5dvGkyNKAFQ+iNzpDFbmrMBMjyemzmtsDpx5bySgS7SNC5nCYcNOva0HEaqY1ouwJE5VJKWk0dXjiHxmmRRZAzxXqvAaDJWOknE7ypX6NZabSWLjm3F65CxrnH557i3nCKMKt0Zz82C15ecVFqJoLlmONeZu308pmKPR0dHeu65506Vg5FOrwM/jyyfxXvPUgwabt+fswRP5nThPpi1sY/xGn7e3Rc7vlB7kzlWVaWFzOIyByuGUjF5vc9dEyrGJNJMNSbNyw9VzmaZZqla51kIivvr6zz99NOrQqOkzvA6Ojo6Os4Iriq1GIuu+pddyhmOz5Pa7u20hxh0wY16a1/HkoClFlrP2qkAACAASURBVNvhLCFFCYC6ewap+zXq7MkUfM/uE+0U8f79PyVGSzW+73hfDHC3dOZXSjRRx02GyvtkoHU8p7KBZAyP0n8reHgYhlNFPrOg7qXCq1kqrhbTyfqfub4ztVRViqf6LJ6blUipwgB4TstOViV+NuJ6YPB7xc7X3B/HomVr4/PDtZSldYtrsZrDw8NDPf3007OEEXHfqRK0V+MVv2P/mGLO14vlwrwH+hwnebZtj+EK8XpVWjj3PUsiQS0BA7KztcMAc+4dfvW+EOGx5VjT38DMM/5fpQXzuoxMuUpzR41VxuDi3rg6gf2qozo6Ojo6Ot7HcVWpxfwrbIkh/sovFRvMgmz561xJemZAMQDU7dNryBII2U38zv0mI3Jfs9RcTJhcld7IPAmr0kmZBG7JjR5VTIKb2RvdJ44JJdcsKJZ6d7KR6O3Ke23p0W3D87Geg8hqaf9gu7QNRbRshxUyG128jpGxNYJSexZ4XjEtMrFW4vEqiL2Vbq1idi3WUwWvZ+fQZsP1lmkUaMNd8hTd39+fPeuRRbGsDBleZnOtUhj6+aCXbmQmZnTcK9wnM73ob8CEzPQ7aDFhv1ZewZkXNT0fqxRzmc3wnnvukTRPC0ZtWDyXc5ml2ZPyhNr00+AemXnXxrHvXpodHR0dHR0BVxWH51/WzJ5EVuRf/VZJFLI+SpH+1beE9Pjjjx9/5xiTyrbg60eG52MtKTLRrJGVA6nYGQtCZunPKK14/Iw4jtS/0wZKz844ZiwlUjG8zGOtYlFZomHGy7VS/AzDoHPnzs2k5Sg1+54p6bY8UGP7sS9rbF1VcdhWaRKC7KblacljqrRKGcOjlExbePy+xcbi55l3aObNGJE9Z1VqNj5Xmc04soKWl+bFixePj/VzGZ9P29eq55MxnvE72u74PZ+neKyfGxZ+NbOLqb5oZ3T/uc5b+w7ToPm994FMy8L9lXtGvG/vKx5P2+yoFciSllND5vvkORkLZZHqVrHq7Hqd4XV0dHR0dARsxfDM7vyLbYkl6qkZZU+PO0o10rKkS6kt2pGYGNV98is9I2MfqwwbWSJTSjSUgBmXl0mrLOVhZHpqStqM2WO2m2hHpfcZM1S0PBbJDujBGMeEn7UyHgzDcCq5tMc+Mm8WpmTxTkrt/D97T0S2WDE8sphWsuqMlWXvYztVppVWXBy91/hMtGzilR0wWweZLSg7t2WPq2xSWVaOOE6tTEsHBwczBhSfo2pcsgTZvB6fP9qnvEZjBhTb8OwNThZjRBs1S/jQozTbT2nLp52bSZ0j+Pzz8yzLDeeQ64HxwHEOuOdWWpcWw6M2J9NC0EO1J4/u6Ojo6OgAtmZ4R0dHM8+9KJGYaVB6rlhbRGU7qaL94/8s3+MsBv48SgC0LdDzqMUkKmmZ3kWZrchgbE3L842eltSTs2yINM+/l2VWIWh7rTKYZEU3Y17PJRse+xv7bUmUXmW0v2RFPCuPRCOzhXEsK9tX5nHL8WnZGoxqDVUZULJjKGFnXqGcs8p+nrHTykuTr1nGGno5UrMQtSxkKDFGk7BmiZ6QER4PMy+2lcX/xvaze+N+E+3NfsZs46JGKys8zfhlziX3EGmuuTLWlKliHCG9MrPMMfS05Fj7vffZzJOdWVjMcrNsR2TeLAyd/U4wN3C34XV0dHR0dAD9B6+jo6Oj40zgqgLPqbZzaIB0klB6KWA2c6Ou1EOm6TYaRxXq3XffPd0IgpVJqyM1p2qPbtSZAbVyGqC6kK76bCce20pETPrPshxWHVulEg3qDBY16AiTBVTzPhnwGlUYrJi8v7/fTPGzs7Mzc+aISb4drMu5pJoogoG47C/vL1NpVuqQlgNHtZ4z1WZVEbxKcNxK+VWpQ7PQjarivZGVa6nCe6p0f/H/KlF3liicz3zL2Wgcp4rnbtfrLksoXCUa93WyMBiaaBhGka0/98EqR7fLvaSVoJ3zHp3xjCU1OMOVMgckqurpWBhVzRy3KkwgUzVy/fJ+M3U4j7H6mCrcDGvTiUV0htfR0dHRcSawtdPKlStXZk4FWfocls1ppZ8iY6wS1maJqSuJ1NKLjdjRPZgSD427mbRJBweyJUpCmeGZEralmCzdmiUduz2bOfOVzC+eW0mHdNKIyFKjSTnDY4DpwcFB02llZ2dn5iodJTlKnJljA1Gx5Epr0Cr1Q4m+lcS5Yk1GnH9qA2ior9KFZf3mWGT9WApLWApMz46h5iRLHMEUXa0iry3GSAzDVFjY2gyGOEVUaQqz9GDVM8xjMybsMfWzzUKs2TlkcD6H6QOz+/Ex1LxwPqJWhyFZ3IPJSiMYYsD3LDUk1c8gnZcyJzCjcnhaU1JoDTrD6+jo6Og4E9ia4e3v788YXtQBO7EzJeFM4jFoa2AKHEs1vl4sc88yHbR5WWqKabxoD2H6sUy3TdsWA359D7RrSSdpesiSfGyW6svXtq3O92zGSmYX+8rAX95DFozvvpAxMKA+CzSNgbQtaWt3d3fmIh2lS48/g23JHCLoyl+5a7fSk7H9yuYW+91KMJ19z3YiWvbuFvuL183GvcWaWv2J31XJxLPAc7rmVwHpWbs7O3V5oJ2dHd18882nygFJecmvytaZ2Qp5L3xuyCCidoPPEp+TTFtELRBd++0LkdkmMzYb75v3IJ3sDSxZ5j0lK8xrZEklYj9aNrZKQ+LrZwm8uf+4Tyz/Fq+9lGQiQ2d4HR0dHR1nAlszvBhczKTO0smvO9N20XuupZOtEiZn0jWvZ5Zg6ckSQmR4lhYqr6yMIdF7iYG/ZBhZup7KWzNjlCzHYWnNTM+skWV94rnscyvAmemNKMEyODa2G4teVgzPqcUYRB5ZW+U9xqDhOI5V4HnF9DJwjbbKHBFVsoSWnWIpSD2bF75mKcWIyvZJ+1ycA94HmV6WxKBKUs5jo30pSy1WYXd3VzfffPPsfjIJv3oemXQ5HsvCpNROtYLIva+wEGvmKc1gbrKlLLVYlUS5sjtnCQjoV9BK5GEwWYGfe2qw4hpe8sEwMjsq15n7TK0b/5emOV3L9jrD6+jo6Og4E7gqL01LSUx+Ks3j3lhslJID/5dqCcGvUQKqSt+QGUWGR6mMKZgyKTZL4SXN4/Iy3T0LSlK6zZK8VvdhydHM1e+zuC+ONaXEOCaUrJjaxyw+SpAsdtmy4Tm1GK+X3TMZHkuwZJ5hZC1VqamIKml5ZQdqnVul4IqoUn4ZrbR0VbLotSmVYl+rZOmxPTKkFsOrkhG3NCa0+x0eHjbLGcXE49na4XNotNZBvHbWX6bNiuuODI8FrlkaJ37HGL2Wx6qvU9lquVdmcX/UCvi55T4e+8K0czFRc3wf11+Vmq16L839CVjQmmkf433F/aIzvI6Ojo6OjoCrSh5Nb8OMXdCrJ7Yhnf7Fpn69Kk2RFaekVw+ltsyrjN5rVSHGjEnQHkd7WMumUpVOIpuTThgdC71Sp+02s7ivKgF0lRg29p92BTO8eH+WbmM8UWX/GoZBu7u7x9cma4v36PZ8b0y2G214lPop6a6xcW2TCLo61mjFuFXtc+1kdpjWuFbX4TFr2CifDXpntpJH85Vxrq3sLHt7e6VX6c7Ojm688caZTSqOvT0c77zzzlPttlh7ldGn8tKM16vKkNmTlP4B8Xr0CreWJtsz3T7XRrXOMy9UsrVWGTSyQWp8WKItm1N61RtZoV0+T0ySb6//bG1EprzGFix1htfR0dHRcUbQf/A6Ojo6Os4Etk4ePY7jsSorc3s2FbWxtTKqR7pbJUCtUmNFSuxzq0TJGfydVQdWLZimM/Qg9oWOOpWqKTPmGjSOU20Z//crVZxUMbXqfNEo73uITisEax16rKIhn+EdR0dHi44eVK9ldfxYK4/qo0wFV9Vr4/y0wmEqZ5Us8Dy7NylXuy+hpbas1KAtx5rKZX1NYH2l0qzaiv9zTbYcXSqnnwzDMGhvb2+mio9J630+VYB0lmulljMqtWE8jqq9NeD4M3QrC7up1N2s2ZntlWuTlMfrcX+rUia29h3OJfefbO1w7Vf1BWP7cfzWPm+d4XV0dHR0nAlcVWoxuuDGX186czDAOAuQZMC5JY+YEFnKy2jQ0cWvlICjJOJ23QcznTUOD1XZGRpN43GU7Cy9MMQgpk6qjvGr28oCQKvgZCaijXPAdujAw0rH8bs1Uq6dVowseNj37PlxP1spxujKz4BpSs8Zy1hKQtuSmiv2zntvofV9lQiakn12XTKriq1lLt9G5diRBZ5X7vVZarHMwWUphIRMP84LmUiVCDqCzKNiU1lCgmp/4/4Q3zPsyfdbOclk7VSslEw2Xof7Jl/juFdOK0z9xevGc3ldhhZk6837WmTtsf04f5VD0hp0htfR0dHRcSawFcM7OjrSwcFBKQVIc0nHUrtdzTM7giUASmW+DqWzzKZC1/7Wrz4lrErnHEH2x8KjbCtLo0TWRvaWlfhhAlgWj2RgaOxrVcTRjCnaKC3BkTHR3vnkk08en5MFuLfGPbI8so14bwy5YOq3jOH53iglt4J6KSGuKTvCY2l/2yahbZW+q5XajPakzHZTMTreX8ay6R5OZpcxyuo6LbsfQxVa62YcRx0cHJxKOBHblea2LWsinILPz1g8h+ENtPtRcxGfF4Zk8bosJh2P9bNNJpm51lfzzD5mJca4vrkPMNRAOp0IPr7Sfr4mPIXpHlsFBGivZ6B71A4wAX30DVhCZ3gdHR0dHWcCV+WlWem8pXnwJJkeU8dIc8ndx5JFZQHaboesoOWZ5j7yWBYlza5j6YheUh4DluSJ7dML0QzP/YgMjza7ihllQbgsVcT0RLyH+B3tmWQwWSHdmFy3lVpsd3d3lmous3V6DD0uLFSZpULyMbQD87jM5kB2EPtMVGVnsvtdOmaN7YFsrAp4z/pKplWxtSzNH4OWqzb4fzymVcCXzwnTeEUcHR1pf39/5h0e2YU/Y2JmpsDKEiVnNsGszSxxOm1rfLayfcd9qBLsZ3NZeSGyiHRmy3d7ZHi0z8fPaLujxsf3EPdxeld7f6sKAsf+Vmsme569T0bv/h543tHR0dHREbA1wxuGYSbdRKmfDI42ryxBbmVzqOI3ok2vSsRMaSLT91s6MuugvjpKnZR4yKzogRklEnqQ+rWKO4vfUeJZKvkR+8+4QjLyLKaOcThuN9P3G5kHXIadnZ1mDBiTR3NOPSZR0q5YEtdOZjOk9NhK01ShOiazFVZ9rmyI2/QpY5QVw+OaytJRVXa+zI7Kvq6Jsds2TvHg4OB4vvycZONE24/HwlqOu+666/gclv0hS+JeFfcsMqHsGOn03LvfmddqvH4E54He01UB5PhZ5sEpzbVw2b2zXWp+WiXNqJnJ9mLOAffRbN1Tm9e9NDs6Ojo6OoCtGZ49NaW5FC2dSA30uKPHU/xVtm6eXjxMAN1iT5QMWqV3yHRc8p6lL6LkU3k4VSWFsgKw1H+TnUamVEnSZJpZiSZmRaFHl6XdVtYUeqFlY2JEKbBl04reVJkdpsq4QxtrlmnHoI2L0nvGLKqsJVmsXRV/l92vUcV1so1s7CqWVHkYZ31ssVy+J8uprpNlvqhiA7PSNWynxfjGcSpLRtvumkTJXPvR05Ilt7wPxWOkXItS2brIMGNbtF8TmXcwnxNq0Krk5bG/3KN4bubhy+vTqzbzRuc+xr5n88Y+eW90PJ7vN9oZuR9cuXKle2l2dHR0dHRE9B+8jo6Ojo4zga0Dzy9cuKBnn312OhlqBGmuimMi5ixQ2qoFt8tgzkz9ZZBGk/rb0SFSb6p2qG7N3JANGqmpUqSKNYJBvUwtlKVbq5LfUrUaVSdUtzCxLiu+x+/oyEGVTTbXa5w8hmGqeM45zFR/VPVS7ZUFnlOVxarSmbqwcs/PQiay/mZtZOB3HC86BmShE1Xfs+OYHq5SbWZtVarT6tzWsexPhpa6M7a7t7c3U2nHc+gYUaX8i8+01WfeI/jcZPXbDAZ620zAxOwxFR/HgWFX3O/i/wyrqJITZM551frO9tUqNIgqx8yBkI52fJ4z8xafV6ph/XlMOsCUaGtDEqTO8Do6Ojo6zgiuiuE5DCFztjBb8y+1JRxK65FdVNV8KfFkqWmYcNhgCq7I8Fg1nEZqtxUlfDIfv9L1n+wt/k+mRWmU/cjGogp0zRgex7NKsCtpNqd0s86C1cnwW+WBLKUvBVD7WKkOds7SkRlk5Z7jVnkYMkc6bLRKTa1xr69YE9dSxkaXUoll483xq1J9ZYxsyZEmc8CpXNYrRhH/j0yp5cxx/vz5Waq5TDtAVkaWEdmM1wq1QZzvLL0V+8BxyhLd06HF77nuMk0PHbr4fcaUs9R/0sn+5+/ttBPB57RK+xf3fjoM8jpuK2OF1Xr2/cb9nfdz/vz51WEuneF1dHR0dJwJbM3wLl26VAYnS/Niqv61J9OL59DlnZJOFTArzaUzShdGltaIdj+DrvjZvVY2riy4km2QGbHESBwLMi3aChgIH88l+6RrdpQ+GUjPsIQWE2P6uG2QMZTKtTyzcXEs+b5yyZbqdFat8IFKoue5rVRfRMsex+stscOIKvyA11uTQq2FpdCJVtqrtTa8yPAy937Pu/eBiuFl9jjasmiL8vqOLMN7A1MYVrbD2E4VwuC+Rm0N1y2ZamZnNjgvfDa4d2Ygo2OSjCzwnAk1uK/HeeMxtM8x3Cz+X6URbKEzvI6Ojo6OM4Fhm1/HYRjeLemB91x3Ov47wEvGcbyHH/a107ECfe10XC3StUNs9YPX0dHR0dHxvoqu0uzo6OjoOBPoP3gdHR0dHWcC/Qevo6Ojo+NMoP/gdXR0dHScCWwVh3fDDTeMt912W1kgUZrHB1VOMfHzpXIZVXxP67ttchuuLS2RYU25mG1KyazFNuescUxqZUiR8jipLDbxmWee0cWLF2edu/XWW8d77713lrElxpxlZViya2cZNtaslaztNWids808XM08r3l+lr7b0hO72WbruWbMZitDEuPX9vb29PDDD+upp56adeD6668fb7rppmaWmaX127q/tWunheezh1yLNboGbHcppnRNn1rrgK9Z3DY/y47h+2x/uHz5sg4PDxcnYasfvFtvvVWf8RmfcRwY+cQTT0g6nSDVG1oM2s6QVb2tKjMzYDaeu1RlOQuK5fVaKZCWUP3gZSl+qj4zaLXVF/Y5uz6vVy2q7MeGaXsMB93GsXcQvOf66OhI3/3d360M99xzj77yK79SDz/8sCTpySeflCQ988wzx8c89dRTp9rztXztLFEAkwhUNceyNGFV3Tj+8GZB9zx3TRJprju2n6UW46bBecoSDvMYnlulAIuoEl47MDgKuVxfcT+QpDvvvFPS6cDtO+64Q5J09913S5oqkX/+53/+rB/SlPrq1a9+9XGfmOwh9qH6seVeIs3TkDFpRGsul1JZrUnbxn2gVbWc56z9XKoFkewHj+dzXFt7SJX2sJXo3s+6Cwf4vV9ZyT6eH1OVPfLII7P7ztBVmh0dHR0dZwJbVzx39WFpnr5JylVVUpulsbQHJS2ymozhLZWIWFMCZQ3YF5bpaJVRqZhdlnqpYoVr+koJrirjE9ui5Mb7sjQdpXRKea3k0eM46vLly7NzsrWzxEBa6ciYpqlKyRXPWSutL30WP99mnsgoMoZXsbUslVk2L622sjHhs9eat+oZYKmc+AwyyXcrQXd1nex8ttPaF56PGnJNf6vrVRqYLDl6tTbWJkuOyDRJ8fpZu3ye/Ixm12e6M+5r1ErEY7i/cZ3FPnLtDMOwWg3cGV5HR0dHx5nAVgxvHEcdHh7O2EBWRodJezMjtUE7DBO/UmrO2BolucpAu/RZbCtKMVXJE36fMTwmb2X7mc2gKk66BpXRuNVWVRbInzO5dOu6Fa5cuTJrJ7PDMKkz11nsP4vcrnEiqlDZUjL76JIRv1Xih1JzCz6HxUkzhzGj0sBUtsmM4VWJn9eUWeI5TFouzYssX7lyZXH9VLbPrH9rEmQvOei0UDnQrFl/TILP1yzBtVElsc+e7bV7R8vpkNetWFy8TmUzNDLWXdlNs32HCbPHcVzNuDvD6+jo6Og4E+g/eB0dHR0dZwJbqTSHYTj+k/K4KapYqMKk+7g0r0DOyrlrXL8r9dAaV1/jatRhlTE5C7uonHKyGnpLDg2tGJrKdZiqwayWVuU6TZVR/C6+b6mJrly5cnxN1vWLbVf9zVRZ7oNVH1ejCl4KLclUzXxP9U223ip38JY6zGPC2oZUbWYhJjyW95upQ1uOIRGZyp73TpVmVn/xueeekyTF+N4MwzDMxrr1TFdhSS3nNbbVUjlXartWnOKSynxNKMNS7FymLtxmP6ucDTNzQtWPJQe7lumGyJwgqeaPZrYldIbX0dHR0XEmsHVYQnQ2aTlo0PXezI7VcLPPfCwdXujMEtEKpuT7tYwnkxqWJGD2Nf5v5kqmx89jO5V7eJXFIH7mvrJ6OasLS6eDx+MxRhbY2sqAQhwdHenSpUvHjguW7P0a+7mUcSVzIqkM/tuw9ioQPd5nxc4rh6T4f5zfeL2WE0lVvZ7B11mYgL/j/BstplQ9P9n9sVI4tRzuh1l9/CzrP2F2t1QVPXt9PmhVr6+w5pngGLbWDh2AtgmhWRqLbP4zjUFsw2upFejOc/gcZftq9Txxz4rXdF/4XLXQGV5HR0dHx5nA1ja8vb29Uj8uzVmYpT6/OnA5BjD7O7LAKlwhSvFLNpssUJbSsaUHB8i2WBODHg1Ktb6HrP9+71faMKW5pFPZ0jL39CUW4O/jODKtVnWfmQTpfrek9HEcdenSpWMm6ZRiUeon03b7ZoWtoH7aaNZIoFkf46vbyOaFa5HzFMfW55NBVmECWZgP0zP5c7/PbKEMB6jSxsX3mV033hfvn//H97QdZmEJnv9W0oJhGHTu3LmS8cd7MypbVMa8uYdU6Qlb+WQru1WW3IFrpGJ68bNK68HrZVoirjuy+Djn7lOVaIA2veyZr0JbGNIQj8mC0mN/4ueZZqTb8Do6Ojo6OgK2Zng7OzszqTYLlCRbu/nmmyWdMLtowyPDoS3P78kE4zkM5jQyxkLpkgyCErFUezwatMdFhlfdj189JpnUTOmT1/e9xL5GSVpaZ8fyMUz4SsmylVIoevBm7e/v7x8zO7/GvlY2xzVp1SitV0lwM4/iKjGu28rWql+9rskCbrrppuNzyPAq213mVUkmx+S6tNPF9ugJaVQJyOO5FbwuW+dQWs+ClGnD29/fL69thsd5WWNba3lp8hkjw+I+F1Gl6cpYk8Fnt2KYmRalSkfGShSZ1qZ6X9nr43dLazTev+eSe6HXajZfbs/nVH3K5q3SQrXQGV5HR0dHx5nAVXlp0hYVSzf4V7xiMxkTWxs35l/0zEvPoHcjpbfYN8Z3UXrJbHiVxNWKM+RnVbLszDZpVHY5S+9RIopSc7wP6tszvbf74Pkys8g8urK4okrqPjw81DPPPKOnn35a0om9NDIT9tvwuGW2lCqlXMWIM/tYdT8ZK+T4+zvaaSNzJStaSgidjUkVo5jNLefKLJTMhetfmj+fVUq5qGUxaNfhWohjYu2Kj7148eKiDY+xllnqv0rzwnUd/+dzSZtaS6tRrTffK+2Y2Tm0z8d1ubS/VV7D8Z6JKkF0RLXO6KUZz+W8+Dv3yefGvdH/c0227PY+x8/GNnb6zvA6Ojo6Os4EtmZ40jwmJ0oSjI1gqZBM4qmSK1e69Chd2lZimxklhszmQEm6Yj7xnCqzQiVxZXFKlJ6zjAG8nj+zxGNmZGbnIrzR25E2FErOrVhBfse2WjGXaxieCz22YrPM8Fj41XMc7WPsN0G2E8eYa5Jjndke6FXm/lcMI/aNa7FibZEJ0SuTzJi21+y6fiY4nmv6yrWZPRu01VHyzrzzbMONDLaVkPvo6GjGHFslY8zeGAO7Jj62sq217pmsKbsX2tm4drOxrbL/VLG8mYcnNRfcZ+PaqQoM09aW7Vn0auacZIm9fewtt9ySXtf7W4THx+duqp3PjsvQGV5HR0dHx5lA/8Hr6Ojo6DgT2FqlGVULmUqEdc6qKtZZPa0qyNbfm8JGlabVNFZz2UDvYxkOIc0DPn0/VmFlqs4qHMGgaimqIioDt8fIar6oWvC9W2VmZ48nn3xS0olKyKpNq7qkuZqlUn9kxmOrgm699dZTbWShAVmdq1Yao+eee26WUiwLKPX8ek7vuOOOU+/j/DOhQRUekoWn+DP3xfNPtWt06/e8UD3N9bEmxRON+ZlzBNXeVFNlaemqMfCc+ploJSKuVFqZYxGfdb96zWZqP5/vdbuUAPjw8HBmiohzSTUXE1x4XWfzUtVhpAouS99WBWQbrbR0dFZpOcdU805TSrbvVEmrs2D2pXp4rfSLVd1F7nuxj3QM83z5mc+SVmf7TpUwgegMr6Ojo6PjTOCqGB6RMRO6bRPxF5nBtJT+LGH72tG12MZOv952222STiSF22+//dRrPJ9GZEsmlkwjKC1RyqAkkjFYunJT0jJrk6SnnnpKkvT4449Lkh555BFJJ0ZcBm7H8XRfyX4ZIhLHsZLgzQroWBQ/q5IjRxweHurJJ5887jdDD6QT5uH5uPvuuyVJd95556n+Rmbq/nl+fc8+x6/uoxmydLKu3CeuN/cxnuNjuA7oEFCNQQZKwJkTGDUXVQB8/N+vHhuPlV993Sy9mz/z/fK9WbB0sgb93HgNua8+Jz5XPsbf7e/vL6aHqgK34z0ylSHTFLYYntlSxWrjudQCUYvTSkdWBVWzrfiZ22WqMbLELISGTJ7pwzKnFc83X1muZ5sSY9kcVCnFqJXIrhOfp7UJvjvD6+jo6Og4E7iqsISWLp1u2mQGDCyU5lIj7Vf+3teJzIR2FkvlluwzvbHZE8McqIePthtLYT7W7cW+SHNpMR5LN2czC9+32Vz87Fd/9VclSQ8++KCkE4bnvmXSZ2XX9KulpihJ/x+4jQAAIABJREFU+j4okXousnQ+HovIfpdseHSnjynYLKW73/fee++p+3EfzealExZ41113nbo3Mr8sSYLHkOuMjC+6RjMQ2+f6nCzwnKBGwce2yrnwfry+rdGIoRo+1t/5HNpnfS+RefkzahC8Hv15PMfj5HniGvV9xnljOxcuXGgGEO/s7DRt0Ay1qNIexmvQtlgFamfsnWkIPWdez1WYTGyPWjDPT8a4qv2mlTaQgfp+9ZqlRi3Cc+c9yW0xHGFNMu6WnZGhM2RytMnGY/xdK6Uh0RleR0dHR8eZwNYMbxiGmf42816iTpvSRGRPlJLJ6Kqku/F6lkDo1Zil66E0xtRfDC6O7VSBnrTpZB6QDCy29OTXKDVbSjaze+yxxySdjJsl7qykiMfC41gVEc2CRs0KqiD5LN3amgKM4zjqypUrMyk6Mjx6XFqaNXuh16Z0wnTM8JiAIPOaNZiyjAySzEWaFzX1evY80cNTmqdJog2FTCMrdulzzNLNbGm7ip95nHxftCVnJa+Yjo7XNzuM640aErLEbA4YnPzkk0+WNs6dnR1df/31Mxt+HCcmvGBQNYP94725X7TDt5IJ8D6qgs3V/Uh1Mo4sXRc9y5n8I0t4USUN8B7J8lHxWO8z9LSlBitL80etE23TmZcmGSyTPsT9lEndl4oDR3SG19HR0dFxJrAVw7OUTkkoeh8yTolSnu1nkeGxjAnboJdhVnqF3mtka1FKYwkZeoEa8T1jAC2tmA1QwsqS6zLOi4mUoy7dn7nde+65R9IJk6G3YJS46VFFluvvo1TENEtkP63SJbEA7JIunZ5hmTcr7RK+N9979Lg1s+E9ex1Qss+SlnNuee+ZhM9YNmoYotTs+eb1oqdj7HO00zAJu9d+K6E27VleZ5UXdLQdM90Vk1NnpbM4blEal+ZxtdLcE7JlwxuG4RTDo/dnbCdLJRj7kDE82rqWbHnxWL8ybVtWpopMi8w+K/Xldcb9hftcllqM7ZIVtjxJ6e2czSFR3U8VBxhRPfPZOZlGoTO8jo6Ojo6OgKtieJaALG1mSVyZtYReWVmRS0sVL3zhCyWd2JPMoizZR5sRpcmqBH3mnVWV3MnioWy7cF+yDC7x3CxGxNexZO/4rszG4XY9Bu6LGY3H13MQPeAeeughSSdj7r7YLkgJP7Zv6YlMNvM6y0qULBWZ9bEsexP7VXkV+h7jmFsy9Jj6+j7G8/7www9LOh2vxmM9ln6fFfOlhOs+us+RLbGPWcykNF+zcawZT0Y2RdtObIf2OHreObYzPovUJLAwJ5lNdj+06boftkNLc7Zx+fLlMg5vZ2dH58+fn62d+OxT60QbbmYvo78B2RSZWGTezKzkefHzmmUxYckgtk+/A+lkTZLZua+0WUd7LLOykJ1nnpYGY2HpM5B5wXq/4XPl9eY24rxRE2NUha8znDt3rntpdnR0dHR0RGzF8FyI0bA9LmNClupoN8rKsvtX/v7775ckfeAHfuCpNiwRWZ+clcBwX5hD01JtlmGDGQ7o/RMle9oIyULooRTZEz1JmUcyi6VhCREWsLTE84IXvODU5/E7f/YBH/ABkk5Yzlve8pZTYyadjLWlTNoksiwntBu04mGOjo506dKlmaQd7ZYcd0vLrZgzwvfkfpgVZnNqWMKlHTC7nsfD0jLtPhnjotdfXBvSPFcstQax/4wDrexm0jyzi9cdtRDRnu5r2+vU92mtS2YzNviZ+5qxK0v7PueWW25pZqI5PDw8PjaLG6PtjKw5K5XlMfUz5LVCLVRW9Nnnel/x+xe96EWSTrQpcd+p8q7Sdp15PZMBsU9ZxhLav+gVnGkUaLP38+I16zbsARzvz/32enq/93s/SSfPzwMPPCDpdGYf3iu1Rr5+5mUf19NSlp7j+1t1VEdHR0dHx/s4+g9eR0dHR8eZwFYqTQeAMoFp5rRiSk8DLSsRSyeqo5e85CWSTgylNqq3wgeoFqjShEX6W1W6plt4VH/RSFuV9siCYlnChwHhrYBjg4G0vod3v/vdp9qQ5s4RVu+yqvA73/nO43PcLlVjvk6mZqFzT8uwfHR0pGeffXYWkhHVKXQIcmoxliqK48QUT1axMBG1247rjmouBppnCXJZsorq6kxVazUr1xvTtWXhIlYdMekCrxvXKt3C/er2W9WhfawdEPwcU82bOWN4Tn2/fPayUlBWdy2VB5JqtW4LVBfH9e159vpiQL7vw23EOaXJhipGz0dMCO9x4vPJvSvOZRUET8cTI44hVedcD1lYwlKwvfcypo+TTtYzVaZ+9ryWbVqR5k4/3M895zG9H1Wxa6udS53hdXR0dHScEWzttHL+/PlZ0clohLT0QucRpgmLgdl2APGvuqV0SvSWuDKjtaUIBuRmabSyz+L9ZO7oBgNwmSYoS/VVFXispHVpHoBJ47ElR7oCx3MsUbHckcferufS3PXar3RDzqTwmIZsKaUSy83EcAr2xVKdx8frIjqRsIgqEw7QiSFK+GRYTDFlNhpZIRkly6lkDhosO0NXbLfP5AzSvGSRr+djsoB6Ot/4eeFY+B7iHLD4ru+Hic4jfB2yQr9niZl4bT6vGXZ2dnTjjTceMzL3KUuJxjR+dAjJwjfoqMXkEQxBkOYJsT2nnicGs0dUCfV93Rg6U4VOkeltU4ybrCoLJme/uS9k4WX+zho6JifnGo59otMRHYYy7UBkqD0soaOjo6OjI+CqAs9pr4oSqX+ZaS8i44oSiaUzS4aWSBgAzES20olEwABNptOJkh0ZqsHSK5GFUgKlyy8lothHSs22GVSptOJ3fO8xbwW4siCrbaFk2ZHtWKoko2SAc8aQPE+t1GIOHqbdIM6B23OAMsNROI7xf9pWPS5mSJTW47FViZXMbZs2FSYRoP0q6xtLobDETJSamX7OQbyZrdjwfDDNFpkEg3uleYC5x43hRZHp0W7p+WPKvGjvyUrFVLBmifaxyExoq2Mia6YtjPdCG6efBYYrZdoI+gywbFfGTPieWpT4TLgd96Gay4zpM2lAVrpMOr1X0TbI63sMGDIWz6ENlNqBOCYM5+J+k9moqU1r+Q4QneF1dHR0dJwJbMXwjo6OdOHCheNfVkuZWZkZBmhTNxslROqWLT2QVWRprpjqyOdWaZykuZ3NfWVy4iiRVSVw6J3FwM14LhkR07BFRknvLybHNUs0Yl8p8XgsfD3OkTQfYwacU7rOrn10dLToacf5yqRL2gdYLDYr28QgeL+nTSUydc5pxfDi57RXmc34lYHv2b1SKq/swPEYFknmHGfPk9cZA55pZ8xKPrFv7rv7EeegSifI9ZaN/ZriwdYs0Y4c9wEyOyZqMDJvbd8LbZ20B2faCLL1Krg8Xseg1iZLHkAthME9MzuOWikWHs6eQdorqYWih2w8l57KlY9EnDc+E1zX/jxqdeg/ceXKlW7D6+jo6OjoiNjahndwcDBLTRR/XWkraXkiGmRjlIDj9aXTkhbbYxkL2vJi+/RWtK2IHlfSvGQIJQreb1ZKhAmgLS1nEhGZY1XKZKmkCfuS9TmiSpVFO2rsWxUTxD5k3rUZe6LHpd8zrVrrXsi01xTzNBg3FuOZ/L+ZnOMgzUrN/KJ0Tdsz7dhZ6SWDHqNmbS0mTYZVJQLPbIa0w1T2nyyVnc/1vFFTE1OmZUmIWwxvf3+/ZFPxHjkGBtdzPIdroiqNlaXgoj2MXtzRk5QelkyO7utEb9bMyzOiFZNG2zTZGm36sR3uJ/RZyLy2+dzQV8LjnWkEl/aSrBwV73MNOsPr6Ojo6DgT2IrhGZQQszLvlF5Z3j3+KleFCfl9lrHBYDyK37PcTQSLHDpuLXqdsn1K52SlLYbHTAr2eMqKHDI2hmNO5txih5lHpJR7u1bJXFtxUpQcMwzDoN3d3RnLaK0DHpNlPqEUm62veG4EC26S8dB+Jp1I38wqQu/MOLaMYVrKtJGtb5/j63P+I5PwddzvShuQsQf3hXGGlUdhvB5thyxiHO0wXM9LZaWOjo5m6zrT2lCTxLmN88I9KbMrxtfMd8CgZil7JvgMsSxVZh+ttF6c/yxWcMmzk17C8TuPDf0PmFUp9jUWgo7nVt7JESyhRft9SzPTGV5HR0dHRwfQf/A6Ojo6Os4EtlZp7u7uNlWaVq1QbUL306haYCVjo1J3ZOoPBrJWIQ3SCT22atGqTIZORLUFVZp0wW0Zl5lCihXj/X106qB6a6vgSqhgGIaQuVlnqqrYRkvltDZ56+7u7ixlWVTB8B7pLk4VVOwf22WqokrVmV2PDgdR5cO6gXZs8iuvK82rlTPUhOqvbK7ZNyKOo/+vVJctNTXVX1SZZ3XXqDbkWqKqK34X1V+tNXblypWZg0Y8niEdTAzeqt9HtV1W1Z3Xo3qdDilZG3Qe8fPvz6nOk3LHwNhGlUIttsN1VdXSi8dQJez33B+y54kmmirdXzyfJikm587CrrZxRDM6w+vo6OjoOBPYOnn07u7uTArMJLNKsuKvvXQinWchC7z+0meUKukKLp1IE5aw/GqpPUvBQ0mKEgmlpyyYl84jDKqM0hOlf0rYVYBw7AOZHiX7VhA2pd2MxVFK39nZKRmUE0vTgSeyWq4r3mOWmshSsdvj/FcJAzK0WIxhJscyOpRe43XN8MhM2H72PNE9vNKCxDABSsdGlhSB77l+uc7XlNuig0s212z3/PnzzbCEw8PDNEGDkc3VElprNfbNaJUlY7B6xp6YJMFzxrJNWfmrJYe+TINRpSVjP7KyZJVTEcc5czqr9jsjC0XiOdx3MtYbEyn0iucdHR0dHR0BVxWWkLmkHjcIexzZRObi63OYtqpyhc8kUtoIKSHEYE4f6ySxDMTMXOYNshDq8LMAbZbjsDsypeWMUVaFHyl9xr5SUl4TWkAmziDRzJ7aSkCQYW9vbxYukqXEIrvlWGTrjjaG1nojyM54X1mBY/fb12US68hCWHyU91ndfzwnC8mIn2c2wyy9VbyvLPH4kqS8JmUWpfXWddzvm2++edEOzsKl2TVp711j7+GzxfYz9kT2UtnFMrbOdGdVQWqpZlpkoa1E4ARTi7VSGrZYd3UNhqbxmcyOtaaGe2/2DGZhSp3hdXR0dHR0BGzN8HZ2dkoJ3N/HV36eSaS0MVUeg5kNovIYpbTckrgtXVTp0GL7ZI6VLS+CAZ+W8MwwmWIsHlsFjxpVaZvsGGONV2Xl1ZjZJGi/rNrb29ubedFFVk99PttvFeKsEh5UhWDj/7RF8vv4OQu9ei5pD3b5Julk7VXFSVt2UrMCBjTTgzSOPVPnsdQKxzcbT7IdPnste1ZVrDTTYPgZuP766xfXMJlQfKar9Fm8r4gqQQPXVObVXO1zvF6WKJlasFZCjbUMK1vfXFcsROzrx4QA1LK1SpjFz+OxS/4O8Rz2jSw/0ybS1tnSXBGd4XV0dHR0nAlclQ3PyFLTVHFP1S+4NI/NY+wepfWWR6LBBK0Zo2Q5opbthn1ZSuqa9ZHJfOmxGlNYUcKuSpa0GF7FlLLYFtogKelnqZmWbB8R9vBtsXiuncpuFSX7pVI0LNDZ8kzNUrxJp+2/Xuu2wzrxr9PEOabTzCW2W8U4et45X/EYt2fboT93SrMsVpDeeEaVji3rA1lhxvwZR1aVwcnK6zhxewvjOB7/xevEe6Z9jOmtsjW/NrF4a98xqMGi13A8xvPD8kRZ20ue1hVLjceSCXEdZomZqfWotB+ZbY0xnERWjoievNybM0/SbeLvjvu99RkdHR0dHR3vg7iq8kCUoqINwL/ELL9uSSSTfJjpgF49lVQT/6d+mLFPUbJz7JQlrEpaywpMMoaGyamzOKxKMqWNJZZPiawitrcm80mVyJpSb1amoyrjlNnpyP6OjuoCsDs7O7rxxhuPGQnLSMV2Kskwkza5JiobA0sOSXOPNBZizRimmZwZl+0fd999t6ST4sFRivVcVlI513CmWfC8e12zEGxm4/B3ZpBVCZZ4f5U9qWWnrRgSMwzF58k2zlZZK8PaAYO2r3gtPvdk7VE7wGeqyrSSMbxq3dFLN57DONIqMXfG8NhnsvbMzsh9moyf15XmbJwaH2oAMs/byt8hY37MrMIMVrzveOySV3iGzvA6Ojo6Os4E+g9eR0dHR8eZwNYqzUuXLjXVX5W7LutsneoEHBio0qyCO2O7VE/w+rF6eaUuZNhAhFVXrGFFtaSRBdZTZcZgy8yFmU4/7luVJioD1XoMw4jtUP1AtUdUW6114HF/r7/++llAe2bArhIb0Dkiu3a1/rI0SlWqLwax2xElfub2rMK89957Jc1rw8X7qFR/LbWs++h1x5R5DFOI1/F9VK7lmVqKYIgOVYWx/1yzdHHPnFasnrrhhhsWwxKqxADx/yzVWuxvVi+ucgypXuM5fKXpI6ZTYx/oEJShSlnHFGZZKkeqlLkesueX7fl6Hs9WQDj3YtZqbDk8VQ52vJeItUnrIzrD6+jo6Og4E7iqsAS6UWdGSBpRW2EJZIpVKQyW15Hm0hmlP7cZGR6rUlcJpyMsrdoN3U4LVRhGlGb9naX0J5544lSfmNIsg++Dxvc14QgciyyFESW2rKq0lDOkyp0/wk4rZkRO1B2N75VWgAwpcyaqAs/JgGL/OWdk+Gbxmeu8z7XzBRlklOyrsIMqTVyWyowMwvdr9mlHrFZ7DBvIrk+pn+E9S45F8Rwek5XKic4erSDro6Oj2TmZs4XH31qczImM51SJALi3ZCEG3Dt4bhyD6vnLEnIbvDbDkxh6kDGhKhlHVm7L8DF0cKE2Ij5PvDbHNUudR60TnaZaaSzpILkGneF1dHR0dJwJbF0e6LrrrpulV4r2gyotWCu4sgqQrFzMs4DDrGSEdCLpRbsdy5ZYSre0bKkmSlw+h4HGld0pBh5bknKfKOGb6bVKYND+ZwZByU+qA2pbUlOVIo1tZIGmxs7OTimlD8Og8+fPlwl0Yx+qxM+ZlJelrYp9Yx+zZL4MLTGzI9OT5tI559DzEpMIMOlxZTtkGEE81u0z4S/tZ/Ge6W5Pm5GfiWgTZUhGVY6KZYriOexHZnuntmYbW3SWbKHSDnD+477UYroRma2LTIt2eqbviv/Tlsb+ZJ9VYVa0C7aCsdckY6/svFXC8cjWyOCYFCL7vaDmpUqd2Np3tkFneB0dHR0dZwJb2/CGYZillWnpcatSIVGqoL64klJanp6UOChdRPg6Zna20Zi9WYqKdhjad2KQeHadyPDIWHwdS/JkfvE+yA4YQJ15iZIRcZ4yGx5ZhtFKYbam/EdsJ3ppZvPC/nPtZIG5VRq66vs4b/R8pOfb/9feufW2cWxLuEXaFhLAdoBgP5///7P2Y5AgcQIksGJbPA8bJS19U7VmqI3zkMNVgECRnOnp7rlw1bpUuwJ99VuMq8aG1/L3hOZbVjrnS+NUW58+fXraV9cbPRfyMLiFbjUHFElgEbFjh4w3JkbrQAbBeXRF31WIYo/ldcLF6Trls6pe34yL83wzln+EWXDeumdjGq/zmJGVpaWlnNeGGd7Vg7BWL5lGhpXEE+pnqTi98xKlpcGE+v412ZnCMLzBYDAY3ARelaXJGiBXi8GYE62lI8voMFOsy0RizIGWaScLpH0l/cPFZOtnjBUxW8rFOOhnT9lFbh6T77yrWUvnp5OUIptK1mg9DhlXZwGrDk/zpbiYW+xU7TLj1cWHWSeUMuv0fY0dkhUmJlyPp2tEWZEpQ9WxXS5VRetdbbv4n7Yhs9Q8Vo8CGSuzhDWvmosaO9ZnPG7H9FLtJmOGLiO3stDOQ3C5XOK1WT9L8V+hE2Ym00vLlq21fUYkVtNJbzHO55gL22cmO6+h6v1S+5wDjteJlSePSZIPq98dXUSWx3bo9q3n5ajM2DC8wWAwGNwErs7SPJ1OG9bUZU2mbZxlwG1oVTrmRd91qtuobWsfWdL0dTNLr4IZnLRiXE2NrC5lxck656KeNWbIsTOuxfFVprRnfTo/OS23VAvpzpvw7du3aLEpw5eit12MlXDC48y0ZC1lqpOq/Scr13lx51LnUOeK8RHn9eB54L3B49c+8ni83l12Xl1U1bXLuG9VRNH/KRPbZdNxntKSQt1iqF0Nqp479IzU85KuWzI+l6Wb1EvIorqlrHjdkynV/cnodO5Y81b357XSxcWEpLDD8bi4Js/ZEWUnMuTksXPLUaX33XHS+3bfw1sOBoPBYPAPxquyNDtljWTFJsur7iMcXfbdfZYyeOoxWN0vpkdViZrRJ6uZSh5c5sYpbchaVtxHr90+1J9LMUSXPUnFhmQ9O0srzZ+zoBlX6BQPjmhpJguUFmJlgKmWLmkQHomT6lXno2ZiUhGCmqpOs5PnmWwp1WfWfuta5OLFgssKVbtpGRznMeFc69rtdFO7TMg6LlfHVs91p7SiP9du7QP7ma4DHttty/lx/U/eKd63az2fQ95LnfeG2diMy/I5VM8llwdKz21X/8uYKI/Lcbp9eA5cZqdArxO9Ik4/mfqpRzAMbzAYDAY3gfnBGwwGg8FN4OqklfP5vEmCqG4CJiGkVaUr2F5KF3ZyQanQlGn0LmlF7inKdXHpEjcutUsXlis8VjtKO+fqvkJ9n4RsmdBxREqI7uUuZTqVIxxJLe62UdKKkiJc8XsSyGXigUtaSatT0y3qXOmd7N3eWOkC6tK1ea54bziXE122wp4Lv7ZP9/gRQXcWhrPkoLrqdC71GfvknhMsir+/v29l6c7n86bY2m1PtzqL651bMi2905XDpEQkPqPqPnJ/6x7QcbgSuhuP9mGiDc9pTbRLsmNMynLSYkxEYlmZm/skGNEtf5WSDeked/uksosOw/AGg8FgcBN4VeE5U3G7BQRpATkhYFq46dUxCVoNtDx43LWyiDKFc6tVrcSWFDRORd71eGQDsp6cpb2XaEILz1mHe8Kybh75/pqAcMc2tTyQkn+OlEbQOnfLwiQRX1r0rsg2Bb3Jpt24uNQOC7VdMa+7Fus+vJbqOJJ8m+tbSvbh9aA+u3PMe5tjOMKCta0rPSCbevfuXUwvv1wu69u3b3Gx39qflLLuGH5ieHzvliUT9pLk3FJmnNtO4JpM0UnJ1fcuiUR9oEfLsSdeg2RTaXGAug3nlXPfCYcQbh8naH1UUHoY3mAwGAxuAlcxvMvlPwsx8tfUWU11n7XycjPdNmzfWXGMmdFqopWx1rYwktZrirmstV12KMVfOosjlRo45uKsMDcuV4zP43UMLDG6I1Z1PQdd4fn5fH6KYzC9v34m7MVn62e0KlPxvbNmGbNVG0ojd7EbgRa+6yMt7VTU7yTfUjyT+7rrm2LVe8etx2F8mcd1DI/3T7etvCc1ntWxRmfFO89S6qeLrTLuSxbFUgDHvNJyNq7shnFYxdt4rzvhBY6D8ntu/BQcZ/vu/Kf7JXnbHGtnzLjL32Bfk2i0KyfiogNHMAxvMBgMBjeBqxne169fW4HWPSHhxFjcZ3tMr27TxWrWemkFJEsySTHV/2k1EU7CKlnWAovXXf9pcaXM1vq/s8JcW+479r1jV8w2TBDLW2tr4a+1laRKIgap7bW2jIgxzs4aTJmqLg7DOdY27vwz45bMguPulqWiV4DyTfW7xPCSbJT7jkXyjoWmGDXnqs6j+nZkeSA9d7rs0r1nhbvmUyF+ipvWfRmD7jwbBI+juXAx3iQwzyxKFw9MuQ+8N8jmKxJzZny225bv3XMuiRU4OBY4MbzBYDAYDApeJR7N5UfqLy4zv5LUj6uHShZ2PX5CkrGhtVY/o4VLgV4n4prkeTjOLr6QsgK75XoSszvCfshGjghBC12skOfyfD7v1lJpW8XHKlMma2F8zMXA2C+KRws6/3UZHYHL5KQs3rW2QuDO0q39qf09KnpbLe40ri5TmrV7jPdw326R0rTsltuH8RZm9Cl+u9bz+Vdf9yz0x8fHyJTZn4ouhsdazT2h5G7B5BSv6mpd+Yyq3g5B1ybnmPJxOp5bHqibg7qvQ8qCd/uk+mnB1b2muC/hmKuQzr3DMLzBYDAY3AReJR6dMuPW2qqidAzhKLq4H60zWk2udotxllQXUy1ttp8sOzcnaUFT+s5djIDt00p0c6M5Zs1UsvTdZykztotJHFHL0NxTqaa2Q4adaoEcUkxXbb9///5pWy7/lJbAcQxP3gDOsatTS5Zuiuk5uDhY3bd+Tg8Ms5DJEv7444+nfZNSEpf+qdu5RY9rn3X8Ot9ie9rmy5cvu5nNKRO3jmnPi+I+S9t29ZH0wOypi9RtyJbTM6xuy+tZ+7iYKo/HvvHZ4u6nvblxuRrsI8fjGF7y6jH+uLc47sTwBoPBYDAomB+8wWAwGNwEXuXSJBV27kLR9STt49LoOzFbHZvgPizidoFa0t8kkOrEnJO0WOqXGw/peifRxjXaUqGrS0tnG13xsEtkcX1zad17c1G3p9i2K8yl6y25c+s2OldMpKILqLrVfvzxx7XWs3uNKd9aB8+57+TS5Kr1SmapSG6oJP1Vx5fcXXqt4ssCU/7VHl22WpexXhcU9aYANV2btX2OS6/qR01aYXnI5XLZTUpLEmD1s9eETFx5FftWX+vxUoiB+661LSGhWH13/ln8nsoT6r4MR3DfTlqMbl3eT+55kNzK3f1LV+WRJCn2tf4m7WEY3mAwGAxuAlczPAm5ruUlsWRxJqFiZ02xHW7DBBT3a84EAyYPuOBqSvl1xcNpGRi+d5ZmKubmttXaSam3LDR1AfVUAtLNX2qvExnYS+OuOJ1O67vvvjvE8Lh8U9dukuViAoULapOBsABY10dN9dZSLrRWk0xdPY5A2bMk3+T6z23duFjYnEpZ3L2RCs3JKFziQWIUmleVItS+Vc/CXsJT521I5Q1dcldtPx23tuHYIxPcyJDdPc3nDpdKquxZfdAckoXqfLnjsXQieXEq0j3Ne8VdOxR54Ny7PvKa5Ku7F7r+72EY3mAwGAxuAq+K4dHIYj2IAAAS2UlEQVSfWi0fWpf0Wzs2kOJwKRW7E3FNqdG1z0zbTv5/FxcjOyMTkpXmGB4tny5dl+LKtKy7eCet3FQI6pZoSuUjjs272GuKoZzP5/Xhw4fNWKuMFhkerb0uPsPFLRlj0bmuMbZff/11rfUcq2Nxd02ZFxT3YnyPS6/U6zAV/KZygXpvaE5YnMx9nRwZ2ajmlQsSayx1rNqGDIJjcuNh3En3hCusdgX6xN3d3Xr79m0sOVlrW+xOBuwKwXncvRR5lwdAMflOJo7xZp5Dxq1qv1MZFFlUve7SsmCcI1cGkYQv+FrbZmlOKsPoRAu6MgvuI7x9+3ZieIPBYDAYVFwtLfbmzZunX30noMy4G+MFnTSNQGaX2NVaWyuly1oS9J2s8pRFV62XvWy5bly0Puj3d8ejRU0WygxZt28qbHaWbLKQUrypHrvGPFM7p9PpRZaerh2xjPoZLUGKeXdCB8ywpKVY5/X3339fa720wut4GGtZaystpu/03sUdKT/GGDGv2ZrBqPb0md53GYscF2M4lNCr9zFZiI5HdlXvQQoCMCtTcm51XF28klAML8WXtU1Fykg+wgSSVJorItc8UWrOjY+sMMWsK5IMWGJelR3y/JKpqj/Vg0ZvhPrI+8vNI5+5FHBwjJNxxsTsHLuu/R+GNxgMBoNBwdUM7927dxvB0moh0NpjNlaXJcXXJOrqfPe0XjqLgVJI7KsTNKUl4phVbbPuyzgi5Zm6uUlxTM6FE2Tdq5Or85gWlOxEv7lQZhqDPr+/v39qTyyjijn/9ddfa63nWI8T8a59rf1JmWC8DsR+1nq2qH/77be11tYCdULUOrb6n2TiXLyKi7jyelObbgkjskQyfSezRRm0FKd1rF3j4flMi9jWz8TsJOOmV3ffCnuZdx1jZtuuva7+d89L4+Yp3cOac8eE3BI+dTxumR4u05QkxpzXjfFlZhI7VkjhcT4/O4a3l9HrvG6J/SWh7fp/ZaPD8AaDwWAwKLiK4Z1Op/X9999vWIUTH02/9i7jydV01M8ZF3RWWqq36eo4GK+gleFqqdLyQIxVVsuI+8ri5nFd/I9xTCrIOAtISItHCu4ccM7Zp8o+mEF4ZJkO1hVVhlezBWt7XR0Ux8gsL8bcarxOWZo//fTTi20o6uuWllKfKrut39dxOfHkOh5awK7+U/1WG7S0XayacSaqs1CRpX6WvC2O7fCeVvsudsd9hL04zPl8bmNqZE/sp6vd28tA7LK2+RnnxymvJIHpIx6eBMb6j4go04Pl+pjmhMzLHY/XM5+rLt8gxXQ70eiU/dxhGN5gMBgMbgKvYnj8RXWZQcyoc8umEEklQb/oTgGFrI8WETOF1tr629mWQ1dfttY2LliPl5ZlSfU+bjzJUnVMlixQr+pbZxml2J2LFXVWP3G5XNaXL1+e9pHqRrX+xQg0P4oFdfV4iYnyvOtc16Vwfv7557XWWr/88sta6zljlLWjdZ7EhljDydiH4pH1M7JBshLHZJkFqv6L8VHT04Exww8fPrx4/eGHHzZ9okeB7NQp+2gb1gx2LLR6MPaUVng9V+uf2YRJKaSLBaV+umcLM251XOYsuLgcwYxIx1yTByZpXTokvc/6PjGtpGRzZKkfxjndPgIZsjtvzC49nU4TwxsMBoPBoGJ+8AaDwWBwE/ivXJoubZwUnynynWuTQVwhlSnU7/YCzy5dly6rI/JJQgreMjmntrsn3uoKwekyoxvRuTB4PLXbSQpxvpJLsyZw0J3aFRFfLpf18PCwKequrjL9TzelXGNu6R32W/2ja1nva9IK5bOYRs10/rWeXYdytzKhyi31JLCPSaC7XocM/Ov4kjhjEXn9nyVC6rPGQzfsWs/3r1zOR9x+dPPqPa9N59K8ZlkfurvqmOk+Tft0Ls10/bpkOYF96e4xujf5vKMMXt0/Jc3x3nPi0UmI2bns6TJNzzl3PPYlCWu4ZdeS69aVf9HdPoXng8FgMBgAVxee119Tx2ZSAXBXPEx0Ka9r+aQFiqeqjyz25f/1PVO963ZkqrR0UkmFay9JJLkljJJEUpJdq+MgQ0nF8nWbVHjuEobISLqU6Mvlsr5+/frEUFjSUP/XqxgdWZRbfJSWKVk7xbjX2iZY1eVr6rauMJtL32g8To5sj3XwWnLiuhwXC9vruHhv6XjqI68tNyc8fndPkimme8Rddzo/796927XSk9h2/T+VJ3TlO12yTG3DMSEelwljTrZLSJ6YCp6rlPjmkuVSGQT7cyRJJu1T+8xnsO7fJAbf9ak71/SUHLl2nvY9tNVgMBgMBv9wXB3Du7+/3xQa1/hY8vEeEYkVmH7eWYhpWYlkqdZ2ybi4nEUnBE0LryvmJBNi+y7ukwo9U8zKsUMyIjI9x0LIOsloXAyvzltieZfLZf3999+b4mcnAMxjHzkfjJkk1lnPi+bn48ePa61tartKC+o+KQap+JhLLee4UvmLs1IpqC3WriJ9zVGNb9KyZ+xb5R9kZHVfsl96Qep1wGuD58nJ7SWZLQeVJSRBdQfn+dg7XloY152XVCDdFZGzAJ/jcXGx1Dc+E924+HxJzN+l/B85L9yOvwfyqux5+2ofeI90z/wj5VDEMLzBYDAY3ASujuHd39/H5UAqWIhNodxq5SZLKsU4nBQOF+CkTFNnsaQMKMcoOosqIcX3Oimj9B3jCS7+R2swxTGqZZ+ypZih5pZmqqy6Y3gPDw9P7ep8uThMYrPd+djLtGVh8FrPrEyfUbZLFnktIk+xO0ql1Xlixmay9Bkbr9syNs193HlJzIvSYnVOGKvVe3ohOhFmeko4zroN46YOl8tlffv2bcM6OxFxzotjponN8PpzXpsUS0tx+tpv9pnH6Tw9ibm6mFvKdk/vK7rsz/q+XqsU1KbEmMvQT8+dtJBv/f9IdjgxDG8wGAwGN4GrGd7pdHqy+mQhdtlX9N87P39ieKk+xmUisSaQx3ExNTKdTqYsZX3x+07oOInV8nvXB2ZlCkestMSUXAxvb04cKzxiaT0+Pr6I4Yk1ddmMXGDYHUfbkDUdqTkSw6MkFq9ZJ+bM80u262JcHftNSJl8zLx0cUGyMdZyuuWdOqF212b9jOxTcUYX1xRcth/x+Pi4Pn/+vFmayHlEUmzLsU56f9J9WfshMPOQWeE8hutLuj+dB+uol8jF4xIr5HaufT6z6Jmpz2KKrx+J3fF4vFccK+S13uUOEMPwBoPBYHATeFUdHjO23LIw+pWXxcOlhDo2wF/wru7PfVaPI3Q1NLT+u0UukyJEZ0mmGOFem3UcKQOuq6lLn3eWZKrZcrHQFOtweHx8XH/++ecmluba0ysXWXXjI7NPFi9jUbVdshm16frI4+k6l/C0Y5yaS7JDHk9w13d6dd4RXsdkdKybq9cUayGT8o7zRrAmjNe7Ex6vLGDPQ8BrsHoAeL5ZU9tdo0kBid4OpxAipDizOx4ZD+PlnceM6JYAS4pY3X2b7mGyNpehz8VcyYKFTrGG4+HCt3UbjfXh4WEY3mAwGAwGFfODNxgMBoObwKvKEpKczlrbsgOuleUEeVM5AAOjbmVwuoPYpyMp7SzMdSLVqWgzuWGOpMp2cmR0f7FPHI9L+U7F6+54dFkxLZ0JCRUuIYRg4bkSRlw6PYP6XOvNzS1dsrr+6Mp0ySROsiyNh0H0tLZhl7Sk/lNovSuyTcd35SJ0acp1mUQEqqsx3QNd4gP7r3tcc+LcycIR0QIehwlxtZ0ULnD3q54dLKtyiUfsfyqCT6VA9f/kdneF9NdKGTq3K92QXXF5SpLidU6B9foZj8fkHPfc4b1Hd3w9b84dfhTD8AaDwWBwE7iK4a318tdZVkwN0NN6ZSB2jxmtldN3XXIMLV5a9o7h0WpKFq8L5qc+Mn3X9TXt6ywustm9lc5dAgqRSipqeyo1IZN0zJKJAW/evGlTnx8fH6MkWx1zWk7EjZUWIq87jYcWeP1MY9KSO11qOftKUWp33jXfKRmrk7BK36XElPq/W0alvrqSBrbLflCsvf7PgmO+d/tcIz3YlcGIafC+Z4KIu36TpJgTVhB4D6WEty5Jhp6yTiorySx24hV8rlBg2rFFnocknUiBj7pNSgp0TCxdb6k8yuF8Ph+WFxuGNxgMBoObwNUMz1nX9ddXv/hkSa6IN4EWFi2HLl5FC8+VGNDap4XllhRKy87we6HOSbJeWTTfxcdojdEy7vZNkm0VnL89WbK1fKp6VxJxOp02jL9azRyTtpX1zljeWs/SVLRmGUPmIqVrbWWnkgBwPX9koWQ8HRsg+2OpTieSkJafccXjYrUUuGaBvfNkMI6UhNxdPIvxed4rlQ24ou+9spZOqiyVfPA5UPvg4l61LS6z5Z476fy4c5ni4LxPu/hvKi3gnNfj7MX7an/YHtvguezi6UcK3fU/46g8bh0XY5FHflOEYXiDwWAwuAm8KobHX9T6iy2Lk0yPFki1DFjgS2uGMYIKZoWmzCCOoeubs5ZoudHSZt/r+Gh9MrvIzUknQuvG38mE0VpzFhHPQVp6pR4nxfkcJFqgbXQu6zlNArLsf7XIacHTumR8tooVU5g5SXA5CSvKkHFh2y5bjtc1xRkci2ZcTsfReOqCsGJy+o5i0fqcBfa132Q9ZAldPD1lEu/t30mvPT4+bu7teu3wenXx5bpvPR6Xz2L8nIzCtdvFurlP8rx0Rf2prS7jUuDzJzHwipQVmjI+K+ih4blw4+B8XrMk2P39/cTwBoPBYDCoeJW0GH/9K/YEap1cVMpWk2XQZRfSSiODcBYXBUqT5VUt37RNqv+p6DIT6+fOguwWlq2fO+aVYgXdEi8cB/veSXPtZdrd3d1tZKcckoCsq/1hrRdZImN39ZyK8eiV16req2ZwredMTo1DgrmsFXWSSxxz8npUpsxzRcZKAWzXb73n+Bxj5vWWXuv4UmYfmZLzelwTf2FGrBOCTpmC2reefzIP9ZOMzyF5IzrGleLivPfqcdmH9Pw5svwRn3fXZM/yXnR9TZn4R56NaRvG2XnM2rcjGIY3GAwGg5vA1TG8tbYWnRNmZjykW8aE+6YaM1fbQotU7cuic/G4Tn0ljTOxzCPWxV6WnmMAKSMt1d84lRbG45JKR/1/L7PTWZ+Vhez50rm8iFsIWK9icown1XlkO2RCSfmn/s+YlxZx1Ws9/qdPn160yz6S3dRtk2gw4TKKGSsia3OLuFJhhXOg5XvqArdCUvRwosHsd1KS6e79TmnlcrmsL1++PF07HTtMma8u1p3GSLgYe3rucJHaeh+zT3vXgfsuvXd95Pk4woxS7I6qVGR89bPEYF0+ApkyMy+dZ4ueqmF4g8FgMBgA84M3GAwGg5vAq1yagnMJJhcSk1hcAWhKJhG6ZBkeXy4X59Lck09yoqR0jdCFkKh43SYFhF2adSp+pnuIroZu3yMp02yPbXWu4T1psbrmmVvnSqDrisXc9fyrnT0BcO1bkzsEut3lylTSRz3ex48fXxyXEmOpmFlzUL9LK4XXa4elM3TdurXmnKh7bUN9da52yoGlgmNXtkJ35/v37zftCzwPnVvqcrmsh4eHjXxbLVZOqe8sbXGC05ovXnd0j9c+8h7inLpnFPvIuXX3WCdR5j53Rd3JTenaTolVSTrRXQepDfes6mTH0riOCJonDMMbDAaDwU3gv0pa6dLpyRAo6qx07rqNS8Bwx62gdSwLTtYfGcBaW8ZAFsD0ZIeUFtwVYtLCFyjqmtqpfXXSTMKRonHuQ6RzUd8zeLyXYu6sz2op6xxSQowJIrUsQfuz3IXs3SV3JMEDJrPUfn/48OFFH/XdkSWMaB3TQnVMKDG5IynfvO60KntamXqt5/syiTo7SSkWaDMxKSVtub6m7z5//rxhRC55LS0P5I5NLwOTSjQOnq/6f2JPlOir/6e57STFhOS9STJiFfyuE6vmPZGWP+oShwR6ZhyDTc9P98zU3LrStj0MwxsMBoPBTeBVDI/sphNIZXo4FxZda7u44J60lLPskpXslhJhbEigxedSblMcLJVQ1M9o6ZBpOl96Klalv99ZTcln7/rI9PcUR3UMr7KPztJyfnpX9MribZYpVIbHgnPNpVLtk8Rd/SwV18pL4KTFFOdLIgIdWJDdxWn2ZNv0ffWYkMFpvnjdicHU+VQ7LDvgkkkujppEEVxJD2NAX79+PZxefoTV7rGp+h3PB58PfJa545Fx7xVUuzYEFytM7fHadV4UPitSwXv9P5UyCcmLVPdhW0cK+lNbFZ1c3B6G4Q0Gg8HgJnB3TdHe3d3dz2utf//fdWfw/wD/c7lc/sUP59oZHMBcO4PXwl47xFU/eIPBYDAY/FMxLs3BYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE5gfvMFgMBjcBOYHbzAYDAY3gfnBGwwGg8FNYH7wBoPBYHATmB+8wWAwGNwE/hf30Xu0T8opqgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1438,7 +1557,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmUZFld57+/3Koqs/atu+kamm4WW8WtZVPURkXguCGgyBkZ6EGlXUZHxxlcBgU8uB9hEEXbjbYVBVFxY4AewLZtBRVZBaFZuummt+qqrsqqzKyqzMq888d934ibv7gvMiIzIjIi7vdzTp6X78Zbbry47737/f1+93cthAAhhBBi3JnY7goIIYQQg0AvPCGEEEWgF54QQogi0AtPCCFEEeiFJ4QQogj0whNCCFEEHb/wzOzbzOxWMztuZufM7LNm9pdm9ox+VlBsH2Z2o5kFM/ucmbW0FTN7WfV5MLOppPxOM7txE+d7RHWs65KylyfnCGZ2sWp7v2dml2/ye/2ImT17k/veYma3dbjtWN4zZvYU95ucM7OPmdnPmNkut62Z2XeZ2bvM7KSZrVTt6Y1m9rU1x/9/1XH/e4/r/QhX77q/W3p0vqur4z2vR8d7XHU/7HXlO6vz/EQvzrNVzOzZ1e/7qapeb+9i30eY2a+b2XurdhXM7NJe1W1q400AM/thAK8B8PsAfgXAIoBHAvgmAF8HoOMvJEaOJQCXAfhaAO9yn70AwFkAe1z5swCc2cS57gPwFQA+nfnsqwCsApgG8AUAXgHgy83smhDCWpfn+REAtwH4i03UsSMKuWd+GMC/ApgF8HQALwPwKMR2ATObBPBGxPbwBwBeC+AhAP8JwHcAeJeZHQghzPOAZnYM8fqgOs5relhftq+U9wC4EcANSdlm2m6OO6vzfbJHx3sc4jX+Xayv44XqPHf16Dxb5TkAvgjAPyK2jW64utr/36r9v76nNQshbPiHeCHfUvPZRCfH6NUfgB2DPF/Jf4gPgs8BeCeAG91nXwVgrdomAJjqUx1enjs+gO+pyj9/E8e8E8AfbbI+twC4rYPtxvaeAfCU6to/1ZW/vio/WK2/tFp/Ts1xngZg1pX9ZLXPW6vlY/t8bQKAV27Xteyyrt9X1ffYdtWhw3pOJP+/D8DbN7nvf6u+76W9qlunJs2DAO7PfRCS3rWZXVdJ0K+pTDcLlRnjNzKmjleY2fvN7IyZnTCzd5vZk9w2NJ0828x+x8weBPBA9dljzOwtlbnovJndZWZvdqa1I2b2W2Z2j5ldMLOPm9mLO/nC1b6vM7O7q33vNrM/NLMdyTbPMLP3VNJ7vvrOn+eOc4uZ3VZt+8Fq2w+Y2RPNbMrMft7M7jOzhyyaEOeSfWmC+QEze1X1XZfM7G/N7BGdfI8ecROA55hZ2lt7AYB/QHx5rMOcSTNpF08yszdUv/m9ZvZrZrYz2a7FpNkG9nCnk/0fb2Z/VpnMzpnZJ6rruyvZ5k4AVwD4rsSEldb1S6p2dTI5xk9mvuNTq/a7ZGb/bmbPcpsUd88gqj0AeJSZzQD4MQBvDSH8ec11uDmEsOSKXwjgo4gqnOvbgkWz2jura/khM7sA4EXVZz9afX7KzE6b2T+a2dPc/i0mTWua+h5vZv9UtZ/bzexFG9Tl+wD8ZrV6d9J2L7WMSdPMftGi+f/q6jssVffl86vPX1Sdd6H6/Ap3PjOzHzSzj1Rt5biZ3WBm+za6bqF7i0vX+5rZPlv/fH7AzG42s0e1268jkyaAfwHwQjP7DIC/CiHcvsH2fwTgTwG8DsATAPwMgDkA1yXbXA7g1YgKYg7A8wHcamZfHkL4iDveawG8DcB/AcAH5FsBnALw/QBOVMf7RlR+SYt27tsA7EJUCXcgml1+08x2hBBeW1d5MzsA4J8QH1qvBPBhAEcBPBPADIALFv0wbwXwbgDfCWA3gJ8FcJuZfWkI4Z7kkI9CNGv9HIAFAL8M4K+rv6nqunx+tc1xAC9xVfpJAB8E8F+revw8gJvN7AtDCCt136OH/Dnib/ltAP64ekl9B4D/iWie6pQ/BPAnAJ6NaIJ5OeJv+LIO9p00M6Bp0vwpxAfjvyfbPBzxOt2IaGr9QsS2dxUAPnSeBeD/AvhQdX4AeBAAzOwJiAruUwB+FLFtPhrAF7u6PBLR1PYLiG3vxwC82cyuDiF8qtqmqHum4spqeRrR/LYfsY13hJk9EcDnAfiJEMInzew9iB2TnwghrHZ6nB7zWMT78mcRVfuDVfkViGbQzyI+E54F4O1m9vUhhL/b4JiHEDuRv1od88UAfs/M/iOE8J6aff4C8fq+BMC3JvU4CWCyZh8D8GYAv4X4zPlhADeZ2RcC+EoA/wvxt34N4r35Ncm+rwbwA9XyXYj3+c8B+AIzu3YrL7Ue8euIpu+XIrpADiPWf2+7nTqVmY9BfOiH6u8E4oPraW6766rPf8uV/29E/8tjao4/ifjg/wSA1yTlT6mO9xa3/eGq/Fvb1PmnAZwH8GhX/jtV/WtNcIiNexXAl7XZ5n2ItvmppOxKACsAXpWU3VKVXZWUfWtV/3e6Y/4FgDuS9UdU230M66X+k6vy7+6V1K/5jjcC+Fz1/02oTBMAnovo29uLjMkRUfXdmGkXr3DH/1sAt2e+73VJGY/v//4DwCPb1N2qNvV8RNPrIVe/FpMmgFsB3A1nZnPb8Pd8dFJ2tGovP1XCPZOc42lVHfYC+HbEztwHqm2+s9rm6V20t9dV3/nyav366hjP6GMbrzVpAnhvVZ+2ZnPEDsNU1X7elJRfXR3/eUnZG6uyr0jKZgHMA/i1Dc6TNWkidmgCYkeBZb9YlT3XtdOAqPjnkvKXVOWXJG13DcBL3Hm+vtvfA12aNN2+tSZNxE7pz3d7zI5MmiH2Tr8MwLWIb/kPIvZo3mFmL83s8qdu/Y1Vo3gCCyqT0N+Z2UkAFxEfIo9B7OF53uLWTwL4DIBfNLPvNbNHZ/Z5BoB/BnCHRdPhVGW6eQdiD+sL2nzlpwH41xDCB3IfWjQ7XoPYuC+yPIRwB6Kj9Vq3y+0hhM8k6x+vlu9w230cwDGrpEzCn4WkRxVC+EfEXr53wLelMlNMJX91PcMcNwF4qsWIqRcgqpZunftvdesfQVRlnfAkAI8H8ETEF+4iosq9hBuY2V4z+yUz+zSiI38FsedqiEqtFovm2icDeENoNbN5PhlCaAQihBCOIyrzhydlJdwz76jqMI+oJP4O0QrQNRZdBc8D8O7QtI68CfF3bGvWzLTrTi1XnfCJEMJ/ZM75RDN7m5kdR3wprgD4auR/C8+pkCi5qr19Bp3fC93wtuQ8xxEV/m0hhMVkGz6PaK15OuI98wZ3TW9F/D1SJbhd/CuAF5vZj5vZNZaJIs/R8bCEEMJqCOHWEMJLQwhPRTQTfQTAyyoTYMoDNeuXA4CZXYNoVloA8N1oPsw+hKb5JeU+V5cA4BsQew+/AOB2M/uMmX1/stlRxB9mxf29ufr8UJuvewjxhVLHAcQGcV/ms/sRTaEpp9z6cpvyKbSaKPz1ZFm3YfkvxPprkYuGrOPdiN/3RxFviJu6PDcQI/RSLgDYkdsww7+FEN4XQviXEMKbEaMdrwTwP5JtXo/YC/41xPbxeAA/WH2Wa1cpBxDvh3a/O/HfA4jfZd05CrhnfrCqw2MB7A4hfEsI4bPVZ3dXyyvQGd+C+Bu8xcz2m9n+qvwdAJ5pLhTfcW2mzr2i5R43s6sQA7lmEc1+X4F4Hd6NjdsZ0GH76QGrIYSzrmwZ9c8jnv9otfwc1l/TZcT7td2zc1BcjxgBfT1iROcDZvYrlsQE5Nh0TyiEcK+Z/S6i/ffRiD4LcgmifyVdBwD23J6D2EN9dkh8UNVD4HTudJnzfwbACyo19CWI8vd1ZnZnCOFtiD3a4wDqxvJ8os3Xo3+jjlNVnXLjQy5FvkFvhUtqyj7Y5XH+BvHGJBc63TGEsGZmb0C0+x8HcHOX5+4pIYQHzOwEKv9a1dCfCeDlIYRGKLuZfVGHhzyFaMbZ1Ni+ThjDe+b2EML7arZ9X1WvbwHw2zXbpFDF/Ub153kuYjh+jn/D+nbdS1quI2Jnazdi9OkJFprZ7j7VYdCcrJZPQbSkeB7MlA2Uyrr0EgAvMbMrEdvHzyG6WmpjAjpSeGZ2Wc1HV1dLH432XLf+PMSHyT9X67OIZoBGYzKzr8MmJH2IfBDNnv5jq+Xbq/rdVSkD/+d7Pik3A3iCmX1JzTkXEW+y70jNglWk01ci+nl6ybenkt3MngzgGOIYoo4JIZx018AHOmzE7yO+NF8Zti+IAECjTR5G8+bbgaiMfe/+uszuFxCd9Q0qs9JtAJ5vLjpyC/XLMa73jD/HMmJQxjeb2XNy25jZN5jZrJkdRTSn/hXieE//dz/amDVDCGd9XTut5yZhtHLDnWFmj0UM1Okn7KBuuX1uwM1o+gpz7eCzGx1gkIQQ7ggh/BKA29Fsy1k6VXj/bmbvRDSp3IHopP5GRPPRn4YQ/IDHbzSzX0H14kB8496U+D3ejhh2fKOZvR7RD/HTaPZm22JmX4zYS34TovNyEvHBdhHRrADE6KLvBPAPZvZqxN7pHOIN/dUhhGe2OcWrAfxnAO80s1cimqEOIyqI76tu/J9G9En9rZm9DrHH9wpEf8avdvI9umAPgL80sxsAHEE0SX0SiVnRzH4PwAtDCL30X6yj8kttykfTA55oZquInbQrEJXmKmIEGkII82b2XgA/Zmb3Iar0FyGv2D4G4KvN7JsRH6YnQgh3Ikad/j2A95jZryKadK4C8KUhhB/qsr6l3TM5fgFRSb7J4tCPv0G0fhxDVKzPRjRjfhfis+jVIYS/z9T9DxB78lc5X/h2cTNipPQfmdlrEL/PK9D/gd8fq5Y/ZGZ/jPjbdWvl2ZAQwsfM7P8A+O3qRf4PiC/bhyPGN7w2hPBPdftXJt9rqtUDiBHW316tvzeE8LlquxcjBio9OYTwz1XZBGK7AIAvrZbfbGanAdwfQrit2u59iH7vjyKq0KcittP2iQo6iWxBvEn/GjEE93x1gg8gSsqZZLvrEHsGX4PYW1tAbOC/AWCXO+YPIT4IziE6IJ+KqIxuSbZ5CvIDXI8iZm64HVHCPoT4oHq62+4A4k18B6L9+Tjij/cjHXzno4immPuqfe+uzrkj2eYZiCrrHOKL7q8AfJ47zi1wA5XRjEb8Hlf+ciQRj8l2PwDgVYhqZgnxRXul2/dGVK6aXv0hidJss826OldldyIfpfmo3L6Z63Jd5vj8WwNwL+LD8wmZ6/o2xCEJxxFDl7+p2u8pyXZXV+1gqfosreuXVcc+Xf2uHwfw4+1+z5rvPLb3TN05atqHIUbKvhvRbLyC2JH4E8SXKBAf2p8CYDXHeEx1vpf3sn1Xx94oSvOdNZ89v7qW5xE7xM9BDDT6uGtnuSjNT9Wca8NoRkSz3b1oqv1LUR+leTGz//0AfteVPaPa/6tc+YuqdraEeE99FNE/ftkGdWQ0ae7veZntnpSU7Wyz79uT7V5VtZt5xHvmQwC+f6PrZ9XOPcHigOHXI4Y1f2qDzcUGWBxcfgeA7w0h1PkvxAije0aIwaHZEoQQQhSBXnhCCCGKoKcmTSGEEGJYkcITQghRBHrhCSGEKAK98IQQQhRBV4OUZ2dnw/79+zfesA3Mi5zmR/ZlPnfyZvyM3IfH6uQY7bbxn8n3mb8G8/PzWFpa8smve9J2xHhz+vRptR2xKerajqerF97+/ftx/fXXb75WCZOTzfzIU1OxGjMzMwCAiYmJddusrsYsVmtrG0/BVPciypWzjEse3y9z25TKhQvN9Jvnz59f99nU1BRuuimfU7qXbUeMJzfccEO2XG1HbERd2/HIpCmEEKII+pZ3cSOo2oCmoltZiXl/vbIjVFfe5Jl+RjoxZXrVVqf0NjpOSaS/ia6TEGKUkMITQghRBNum8FK8kvMBJzlFtxHtlIZXdHXKTmqllVTN8f+LFy82lrpmg4XWEFpJ0v/9fSNLhigdKTwhhBBFoBeeEEKIIhgKk6YPRuHSl+eGBtCk400xPoglHQZRF6ziPxdNcteKQUb8bGVlZeiHbaSmv40Ypu/Cek9PTwNoDuHZuXMnAGDHjh2NbTnMh/twnfA3pCsh95vSTL28vAygORxlcXGxJ99HiO1ACk8IIUQRDIXCI+xx+iCWTvbp1XYiT27wP/9n7387g1a80qGqoSLyqgfYOKNP7juzjEqICohLKqOtXIdUrbH+LONy165dAIDdu3cDAGZnZxv7UP35Jan7nkDzezGpgF9S4Z0+fbqxz/z8fDdfr2ek5923b9+21EGMFlJ4QgghimCoFJ4YXnI+PJZR3YQQBqLwUjUzNzcHoKl4uKQSovKjUuISWO/XzUG1RtUDNJXOuXPn1i2XlpbWfc5r4vcHWq0NrIevc/pd+T253Lt377ollR7QvAZUdjwu1S3Pnw4nIVTr/vtR2fFznhcA7r33XgDAyZMnMUhOnDjR+F8KT3SCFJ4QQogikMITHeEj+9L/BzVQnyom7c2zjKqIS+/jyqknKiAfxeiVa5owm0ruzJkz65ZUafQL5nyFXtn5yEvWOa0j609Fxe/O2QNYTuWXHq/Oh0dFRzWai0ati5Ame/bsafx/5MgRAM1rQ1XYL7zvWIhOkcITQghRBFJ4oiOoglJ/T0719QMqHq/m0nrV1YkqgArMT2mU7uPHf/K7ptGcPA5VFNd9FGhuvkefyo5wH79Mj+9TiHnVmPoMfRm/D8t5DXht0n1ZRrXGutIP6aNT07pQffZb4TFCNK2DEJ0ghSeEEKIIpPBER/hxbUBTBVB9LC8v98WPx2OePXt23RJoqgvWzyswP7lw6s/yfj/u4xVZqtZYRiVUF7WZKkluW5cNiMdn3VIV7cf5eYWay3ziVZnfl78b900Vmc++UufDazc5cidTc20FqtzLLrusL8cX44sUnhBCiCLQC08IIUQRyKQpuiI1afJ/muDW1tY2NXfhRtAk2O8wdJo2fdLl3GB1bkNz4cLCwrr1buA+Dz300LpzAK0D2jkMguf3A8XTbbmvH/g+6nBIhhDdIoUnhBCiCKTwREf4pMlAMziBimRtbW2kp1bKDVnYDtJhHkyQzOvOwBZukwbwCCHaI4UnhBCiCKTwREfQR5SGo9cNbB4m/GDvbiaAHSboj+NyK/D3GtVr8f73vx8AcM0112xzTUS/6NfQltFs8UIIIUSXSOGJjsipN590eGZmpi9RmiQ3ENzDevokzv2s16gxqsqOfPjDHwYghSe6Z7RbvhBCCNEhUniiI6gKUpu6V1G7du3qqXrg+D76CnNT73CMHKMYuQ+jGUddzYgmnGj20KFDANZbHTaazFeMFn1LS9eXowohhBBDhhSe6Aiqq5wvrF9RfxwXx558rhfPTCNpwmVgfXYUMR4wQpXtgdltgPWTAgtRhxSeEEKIIpDCEx1BxZTms6Tiov9sdXW1J7Z3Kkb67nh81iE9B//3k8SK8WFtbQ1nz55t5BHltEDpmEQpPNEJUnhCCCGKQC88IYQQRSCTpugITpXDJdAM/afpcWpqqicDvHkMmjBp4qRpc25urrEtt9mxY8eWzyuGk9XVVczPzzemT6LZeliSfYvtZWZmpuOAOSk8IYQQRSCFh2bwxTAmPx4WeI3ScH+qPQ4JmJiY6EnQChWeV5W5CVnF+LO2tobFxUWcOHECAHDq1CkAwLFjx7azWmJI6MaqJIUnhBCiCKTwIGW3WajsUoXXS3bt2tXT44nR5OLFizh16lRD2R04cABA03csyoTPm+np6Y5VnhSeEEKIIpDCE12RpvfyU+8oga/oB8vLy7jzzjuxuLgIoOnDve+++xrbXHnllQA0DVSJSOEJIYQQDik80RWpn45RkxwDNzk5qR626DkXLlzAHXfc0Whv9LmnaeToz9N4zHJIo7al8IQQQogEKTyxZdjT6tekjUKsra21+Ij37NmzTbURw8BmosKl8IQQQhSBXnhCCCGKQCZNsWlowuRyZWVFZk3RFyYmJloCE06ePNn4/6qrrhp0lcQ2w2dNN/NwSuEJIYQogmIUXurw5nQzUiPdw2sHtF6/c+fOrftciF4wMTGBnTt3Nu5hKr1U4YlyWVpa6vi5I4UnhBCiCMZe4bE3mIawKln05mGi6BT2rqTwRL+YmppqUXhpW+Q9rfR25XDhwoXG/1J4QgghREIxCm9lZWWbazIepL1q9qpY1k2KHyE6xczWtStaa86dO9coY29/dnZ2sJUTI4UUnhBCiCIYe4Unn1JvoIpLIzOpmlkmhSf6QQgBa2trLW0rbYunT58GIIUn2iOFJ4QQogj0whNdEUJo/F28eBEXL17ExMQEJiYmpPBEX1hbW8PS0lJjfXV1Faurq5iZmWn8nT59uqHyhKhDLzwhhBBFoBeeEEKIIhj7oBXRGziwNw0CovkyHewrk2b3TE9PA2heWyVGWE8IAefPn8fMzAyA5vyLZ86caWzDa6gB6P2B13MY0zL6YSvtkMITQghRBFJ4oiPYo0sVHnvay8vL21KnUYW9ZYbQezWSDu5fWFgYXMWGFDPD9PQ0zp8/DwDYuXMngPVK+P777wcA7N+/HwBw5MiRAddyvBlmq0M3M59L4QkhhCgCKTzRETmF58suXrw4VLb9YYH+JSpi+qJ27NixrjyXFJksLi4CGC7fyaCgwuN1YcKDtGf/wAMPAAAOHz4MANizZw+AphoUApDCE0IIUQhSeKIjOlF4mh6oCVUd0FRyVHC8blynwqNiSfdlGZdpZGIpTE1N4fDhww0VxzaW+o7p6+Q2VHgPe9jDAHTn5xGjxerqaseWD7UCIYQQRSCFJ9ri/SZpT4qRW+xpLy8vF+ljypEqXe9z8lGZ7ZIiU+1RJXK9pOmupqencezYMZw4cQJA8/qkvk5OD0Sld9dddwFoXvODBw8CkE+vdKTwhBBCFIEUnmgLe9G5LCD8n8vz58/Lh1eRu06EKoPXluPLeO1y19D/DiUxMzODyy67DB/96EcB5CNVvT+Zy1OnTgFo/gZzc3ONffg/1bMYf6TwhBBCFIEUnsiSjq0Dmn66VK141SEfXmdQ0dF3R4VBv1zqn/MqukSmp6fxsIc9rDF+kf66NPLS53rk9WJ7LPn6iSZSeEIIIYpALzwhhBBFIJOmyEKzkTep5YIxaO5UarHuOHfu3LqlyDM5OYmDBw9i7969AID5+XkA64dz0KTph3z4aa3S9jnotsp7SkEy24cUnhBCiCKQwhPrYK83VW1APmSe25Q0CFpsH0wMnQugYkCLV3oMbPFp3dKyfpLWkUqedWNKOTE4pPCEEEIUgboYYh2+9+yHJ+SGJRAl6BX95NixYwCAhx56CMD6tsjB/F7R+eTbg1B1Kan1g+fmsJTdu3cPtC5CCk8IIUQhSOGJdfhoNvaiO1F4Jaa9EoPjyJEjAJpqLm2Ldf4wPwVTGsVJv18/8APfgabKlO9u+5DCE0IIUQTqaggATV8DVZufgsUrvXQbjb0Tg2D//v0AgF27dgFo+sLaQauDV3ppWT/geVO/NielFduHFJ4QQogikMITAFrH3XlFl0ts7D+TD0/0E2YoueSSSwAA99xzT+Mznxw6N+5ukHCiXjFcSOEJIYQoAr3whBBCFIFMmgJA0zzpTZo0V9LkyQS46f/cRwPPxSDg8IQHHnig5TPfBr1pc9ADz8VwoSeUEEKIIpDCK5jcEIM6Rcf1dCobP4RhampKPWjRd6jw0tRcnDKIeGWXGyYgykO/vhBCiCKQwisYqjag2QOmwqOyo6LjervBvkqZJAYBU4sdPHiwUcZ2WmdhGHfLQ+77KSFEK1J4QgghikBd8gLxU/+kZVxSyS0tLa1bpqrQ089kvEJ4OCEs0JwyiBYKKh4OAKf1YVxVT843yXuZCbPr1kediYmJjhW8FJ4QQogikMIrEPrj0jRhVHT0hVDRcX1xcRHAelXoU4l109MSYqswxRgAHD9+HEAzWpMqhu2R6+n0QONETq3R18lr4K04Xv2mpNHYw8709LQUnhBCCJEihVcg9MOlEZd1io7b5KIzqfDkuxPbzdGjRwE02y1Vi1+WlNSZFhx+d677yZ1TSw8TdM/Nza3bl/ucOXOm39XuGik8IYQQwiGFVxBerS0sLDQ+4//sIVPxsZyqMO1J+Uk1u+lpCdFL6M+77777ADQniaX1ge2ypEwr3mfXCbTaMIsSfZ68bpzE9uzZsz2r52bxv20nlPPrCyGEKBq98IQQQhSBTJoFQfMkhyXQbJn+T1OF35amjtR8QJMCTZo7duyQSVNsKw9/+MMBNNvxZsxeJcMAFm/65XVsl3hi0DDAZnJyUkErQgghRIoUXgEwEIVL9n5ThcfPqOy4jR9cng5S5WdSeGJY2L9/P4CmEuHgayU274664JV0AuhhoZtAJCk8IYQQRaBuzxjD3hjVGgeV+yEIaRmHLLCHTJs+B+ymqZk4GLWkUG8x3LAtUtmxvSo5wtZIrUHDQjpgvtOk4HpSCSGEKAIpvDGGvTIqPR+dmQ4e9YPSqfB8lGbqC+H//GxcphsRow8HnrONjmvS6H4zzPd0+mySwhNCCCESpPDGEK/svHrj52lCaK/kGJ3FJaMvU7s5e9Hk/PnzLVGdQmwHHKMlxhequuXl5Y6fO1J4QgghikAKb0xIezgbKTyqtJzCo++Oyo69KK6n+LFNy8vLHdvShRBi0EjhCSGEKAK98IQQQhSBTJpjQjrEgGZJv6TZkybNNOSY5k2WMUiFJkrum5osvUlzdXVVJk0hxNAihSeEEKIIpPBGnNxUPyyjkmPACddzA8VZxn39TMcaXC6EGHWk8IQQQhSBFN6IQsXFBNDptB0+LZj35eWg78378Ehu2h8qRvnthBCjgBSeEEKIIpDCG1F8mrA05ZcfPO7T7tSVA02fnY/O5PRAaWSm9w2amdSeEGJokcITQghRBFJ4I4aPysz55ajKvIJrt76Rz47KL53slf4+1sGPyxNCiGFCCk8IIUQRqEs+IlCNUU35aMp202N04lfjcVIFB7ROoJkeyyeWVqYVIcQwI4UnhBCiCPTCE0IIUQQyaY4IHIbghxR4E2RaxiXNkd5syfLcZzSQ2RKvAAAUBUlEQVRNdjIAXWZMIUQ/SZ9VW0lvKIUnhBCiCKTwhhyfCDo3TY/HKzquMwCFKi5Va3XHYzmX6QD3HTt2rDuOglaEEP0gVXV+6rJukMITQghRBFJ4Q0rdMIOcz66u3E/x49ODpQPF/fm4rx/ETh9ijsnJyayPTwgheoUUnhBCCLEB1s1b0sweBPDZ/lVHjAFXhBCO+EK1HdEBajtis2TbjqerF54QQggxqsikKYQQogj0whNCCFEEeuEJIYQoAr3whBBCFEFX4/BmZ2fD/v37W8qZDQQA5ufn133ms3z49bTM54DUmK7R4/Tp01haWmr54SYnJ8P09HQjYwKXzNYCAHv37uW2g6iqGDLq2k7dc0e0xwck+qxJue3qttno2N2Qe677XL7dvgPq2o6nqxfe/v37cf3117eU33bbbY3/b731VgDAzMwMAODAgQMAgKNHjzaOkS6B5oOOy127dgEAdu7c2U31xBBwww03ZMunpqZw+eWX4+TJkwCaybAf97jHNba59tprATQHyIuyqGs7dc8d0R1MGsH0gJxbM00m4ZPTs2PKF5xPRJEmrPDJK/y6f5kBzc4t7/m5uTkAzY4w3wUbUdd2PDJpCiGEKIKepBY7c+ZM43/2Gqjw/FQ0PrFxrkymzPEjhIDl5eWWJNjs0QFSdkL0E7qRqNpyroM6c6dXa175pdtsZBZtl7Q+d9xeIoUnhBCiCHqi8JaWllrK/ASidUov/cxvK8aHEAJWVlZafATy0woxWPjsrZvkGWh9BtcprnTaHu/3qztvemxfB58Yut1E15tBbxYhhBBFoBeeEEKIItiSSZPSNTdHmjdhthuH58NVZdIcP2jS9I5t/dZCDJbcfJgePtP9M573L8deMwgt3cZvy224T+rOqqtDv54LetoIIYQogi0pPA5ByME3tFd2uaAV78zUlEXjRwgBFy9ebPQYOQRh9+7d21ktIUQGrwLTjEgAsGfPHgDrrXtUcnWD1/m+SDNzcR//zO+XtU8KTwghRBFsSeHx7ZuGljOslD0D9uTb5UjLpakR48fq6mpLT04KT4jRJfXBtfMJpqTD2E6dOgWg1WfYr3eBFJ4QQogi6MnA89TOypRi3gbMciq+XGqxXASnGC/YVtgONPBciLKYnZ1tKaPS67eVTwpPCCFEEWxJSlG1cQk0o3nYc/fb5KI02dv3kUBivDCzhnqn705z3wlRLl7tLS4uAujfBAJSeEIIIYpgSwqPEXeczBNojs/gtC9cZ4+eE79ysleg80n+xGhjZo2eG1V9mqlBCDF+MPLSTw0GtI7B9lMY9RopPCGEEEWgF54QQogi2JJJ88EHHwQAnD17tlFGUyZNllyy3M+ELsrAzDA5OdkwWbBdKFBJiPHGz3WXc2PQzOmHtbWbs28z6K0jhBCiCLak8BYWFgCsdzAySIVLDk/wqcVSx2WaTDS3DZc+XZkYHcwMMzMzjd/w8OHDAPKDUIUQ4wOf57Tm5Kw6frqhXArKntSlp0cTQgghhpQtKTw/yDz9nz15PxGsn0AQaNppuQ+HKXAfTRc0+pgZduzY0fj9H/nIR25zjYQQw4JXf0oeLYQQQmyBLSk876cDWv1stMFycDpttLmBhXy78zOfhqxf6WZE/2GUJtX6sWPHtrlGQohhpV9R/FJ4QgghimBLCo9TtqeRdlR2HE9BVcY3tp/oD2iqQh+tSV8eFaSiM0cXJo6+9NJLAShptNg6qcVHfn7RCVJ4QgghimBLCo8KLE0ETQXnx14QH5EJNJUbe/1MMK0sHOMDozQ5/k6IrSJVJ7pFCk8IIUQRbEnh3XXXXQDWT+9Dvx5VG5d+XEUa2cn9mW9TjB+Tk5PYs2ePfmPRF2hR4nOF0eCdTD9FS5KPIRDjhxSeEEKIItALTwghRBH0JLVYaqbiVEE0U9KkyWEIDFZJA1Jk5hp/JiYmMDc31whIEmKrpMMS/BAmPme8SZPDpYBmgJ1MmeUghSeEEKIItqTwmAD47rvvbpRRyTFkmD0s9qZIOvDYpxIT4wenB9q3b992V0WMCemwBKYupOqrG7LAoDoxGvB3TYMcPbk0lXVI4QkhhCiCLSk8srS01PL/7t27AbT2uLievpXPnDkDoOnvY6qyfiUQFYNnYmICO3fu1ISvoi/weUJ/XDe9fjG88HdMfbFbSTGpN4oQQogi6InCS+2rtLmmqg9oRk3RT5ezpVPR8W2u1GLjw9TUFA4dOrTd1RBjTicDzcXoQMtgGknrFV43lkApPCGEEEXQE4W3uLjY+N+Pu2NKMSo7Kr10DI3/TNMAjR/T09O47LLLtrsaQogRwCv1dJ3/+0nGO0EKTwghRBH0PEqT8K1LhUc7q58YNv2MSm9Q0Zk+clT0F42zFEJ0gp9sIF33n3WDFJ4QQogi0AtPCCFEEfTEpHnw4MHG/5/+9KdbyoCm+ZBmrTQwhSbMdBb0fsKhEzzfoM4rhBCiHr4n+E5g8GOamnIrrhEpPCGEEEXQE2mTm/KFoaM+SMUHqACtg9L7QZpMlv9L2QkhxPDgk37nAlTqEoN3ghSeEEKIIuiJxEn9cVR0fpogvqn9MAVgMOHqaa9AKcvEuJEOrdlKD1iI7YTvBaYSy1nj+G7ZTIISKTwhhBBF0BOFx6mAgKZ68oPHfbRNGnWTSzfWazTVkBhn0vatqXFEr/GWOq6n1gQfp+Gf57lEH/64/l1Ai2H6vtjKe0JvASGEEEXQE4WXvnEPHDgAoPlG5tve21vTnoFPMC2E6I5U1fE+ktITvYLPeLatnJ/YR1TWKbycKvQR8zwPj5lLRbkZpPCEEEIUQU8U3sLCQuN/2lyZzcRHZ/qegv9fCLE1qOx8b3wrSXfF+EDrWyfjkOsS7Of8aBs9x7tRZjy+9wsCW5s+TgpPCCFEEeiFJ4QQogh6YtKcm5tr/H/PPfcAaDVl0szClGM0eQJNiaqhA0L0Dt5zuq9ECk2ZuSQgHpoUBz13qA+82ooZM0V3ghBCiCLo+bCEQ4cOrfvMpxjLoZ7oxvielhCdomAVkaPdMAFPJ4PIN0OdyvTTyfUq0b/eMEIIIYqg5/Pj7Nu3D0DTV7e0tASgtScgNdcdUnaiU3woN9P9MRx9eXl5eyrWI/i9pFw3B68b20GqnnLTtwGtqSFz6cO6GcLgz1dX3uv3hN46QgghiqDnCo/RNEwxxjd0GpUJrO+dqac2/qyurmJ+fr5hARD9w/fSvf+DvfVRTT0ma8fm8In7qfBSFVWnqHwSAx5jMwPQc5Nx8zidRI62O95GSOEJIYQogp4rPLJz5851S6Yfy/kP1GMbf9bW1nD27FkpvAHgx7Xm0jONMjkfnp4hG0NVRmvbZtQZrQVc5qwEW0kVuZk22k2k6HjcAUIIIcQG9E3hedJJYkXvGJXxeWtrazh37tzAMzaUQpqJwmel8Nd6XKYPSn2T/C6KB2jF33N+km6ub4ZRS/wvhSeEEKIIBqbwRG+pGyczrKytrTXGZIrN4/1xVDk530dd9gr6ckaFiYkJzMzMNPz/VHGpkuV35Xcb9vthkHhlVzJSeEIIIYpALzwhhBBFIJNmj/Cmpn6FTNOUyZnlc6YbnnuYAllCCFhZWVHQyhapC9vODeb1bYPmvlEL7DCzRnsHWhMLp9DES/MnUxwOEz7Vm8yvg0MKTwghRBFI4fWIul51ik/1xJ42y336tRwcyO+Pmfba2av1k+9uN2aGCxcuAAB27dq1zbUZTfxvyfVUAXmFz3Ve+1EjhIDV1dWGMmL7Tq0EfiiGV8LDpPR4z3LJ32VY7tNxRgpPCCFEEUjhDYCNQsi5Pjs721JGO78PKffHyvl2fPj5MPj2Tp06BUAKr9ekKftGffqfOrzPLl336dT8/cBtU6W3XYqKw3NorRmXRACjgBSeEEKIIpDCGyB10XG5Xqnf1is9v8xN4sgle46dREb2U/2ZGc6ePdu344vxxMwwMTHR0q7T9kyVxDL6NL11JRftSR/aoJVxuyTOoj9I4QkhhCgCKbwBwN5nne+OpDb8OiVH5UdfRM7uzx4jl+zd+kkbc2O3+oWZYXp6ulH/zUz0uF3kImB5TUctee4owrZDdZazlHiF59Ugf69UTdVZPgat9IZpvOy4M/xPGyGEEKIHSOH1CK/icv4F9uS4jR+7l/b0NhpDV6f4gGbEms9q4rPApHXsd/YN+mH4febn5wEABw4c6Ot5t4JX10DTByS/y/aRm9DW33c+ijnX5n3kM5ebUXj+/Iq4HE6k8IQQQhSBXnhCCCGKQCbNHuHNkmmqo5zDPLdPztxC6kyOuTnOuG06VCE9fs7sOggTTGrSXFxcBDDcJk1eHwWmbC8hhEZ6MaA5YDu9J9im+Vv5VGO51GLch9tyeEIuAbzHuzCY9ox15P04TCnNhBSeEEKIQpDC6zE5xeV7nXVKK1VZ3JYOdA5SrQthzgW8+NRiuUTTg4JTvPB7LCwsAFif0FgzMoscDHhie64b5gM075t226THBVotMHX3SS4QzZ9PQSvDjRSeEEKIIpDC6zG5aYJox/cTV3o/Q06l+QHa3t+XSwjt6+BTjJFB9kInJiYwMzPTUHTsrZ87d66xjRSeyEHrAO8j768DWqfa8tYUrud83V6dpecF8sNTaHmpU53y3Q0nUnhCCCGKQApvANRN9UO10y5lko8k8wPScwOg61TgdqbxmpiYwOzsbOM7swecJpPeu3dvY1shyOTkJHbv3t3w+6blhPcQy2gtqIvETP/3aeK6SSrgLTFiuNGTRQghRBFI4Q2AtFcJtNr329n7OSmsjxxjL9RHYgKtCq/TMX39hH4Yfp8zZ84AaE6GCTT9IhxnJQSZnJxstB0/Hg9ojXimovPKL1WFfsysj7gc14l0S0YKTwghRBFI4Q05qQJK2bVrF4BmbzSn9MiwJDqemJho6WmnPW76aKTwmvjoXJ8Y3EcaAq1RwaNOCAEXLlxoiYRMfb3eZ8d1qsL0WITXjmND6cvjNU4jiMV4IIUnhBCiCKTwRhT2Pqn00jF13p9R58sbJGaGqamplp536r/klEGHDx8efAWHgFyOU+KzgpQUFbi6uoqFhQXs2bMHQOsYu7SM1gG2L94fufGx/J9WFLZN3ltUlMqaMj5I4QkhhCgCvfCEEEIUgUyaI4qfsiZd9yYYmsH88IhBYmaYnp5u1I3L1DRHExVNm/v27RtwLbeXnMnZmy7rgpPG2ewWQsDy8nJL4E46bGD37t0AWk2ZXOZS8PGazc3NAWiaNhnEwvVxubY+aUVdkvn0Mz5XfPDPqCKFJ4QQogik8EYUH4ad4lOKtRuyMEiYQBpo9qLT+lOJlpp4N5ek2FPiYOgQAlZWVlqCsHLtmoqEbYntLZdAne2M6oVKj0ErDIDZTstIL+H39VaWXEJttkE+Z3KTVI8iUnhCCCGKQApvxGCPlbRLtJwLxd5u/PQtqY+KvXIhUkII69ow23Xa9v194NOEUamk7Y3KjX4+Kj0mMV9cXATQTIgwTPfRZqi7v1LV5lU0r82oKzsihSeEEKII1KUeEXxUpk8tlWMYe6Q+0i7tmXvfI30OfqJcURZmBjNr+H3pW0tT0NXdDz5NHRULgJbJiKnwWO4jPv30RKOGT82WmzZsXJRcHVJ4QgghikAKb8TwPbBcRF9ujNuw4CfkTL8PP6Oyk8ITKVReXKbtwkcks+34RNOpH4vqj5GvjNKkkvTj80Zd4RHec95qVAJSeEIIIYpACm8IyNnNqdz8uCIfjZYbH8Ne7jBPD9NuWiN+Nsz1F4MjhNAYiwc0FVeq1qjK6Hej4qN6Y3luSiGfjYX7+ChNbg+Mz9i80pDCE0IIUQR64QkhhCgCmTQHAM0oNNX5+enaBZf4UGJvwuQyTTk16qbAEp3poj1ra2uNNu7N/EAzAIWmzVzaLGD9veFnR+e2PhE15+GjKRUATp06BaDcNHijihSeEEKIIpDC6zFezaX/++AUKrt2gz39vn4fP0h7lKkbGCvKhqnFfNtP7xuqMd4HTABN1cZlu1R8bH9Ui5yeKneP8Thnz55ddz612eFGCk8IIUQRSOH1mJxq84Nf6/xwuclQ2x0XGP3pYnwybCHq4H3DNp9LE0alxaEE3NYPOQBa1R59gvTpMYl0Dj9MyCs+MZxI4QkhhCgCKbwek/Ph+V6gt/P7qM0UH8npJ7IcxgTR3dDOf9nO3yLKxSs9oBmdOT8/D6Cp0ljuU40BrdHAVG1+8lP68tLt/T3r27GU3nCiJ4oQQogikMLrEb63mFMuVGm5CSw7hT1VRYOJ0knTezGy0vvyOHaOacIYzZmykb+cSaRTf7OfXNn74b2yFMOBFJ4QQogikMLbIr53SNXWLiE0YW/QL3P7j4vPTohekd4vVFScMojrVHj0qaX7MMrT+9a9aqNvL7Xi0K/nt/UZXh566KHGPrp3tx8pPCGEEEWgF54QQogikElzi2zFpMn13Px1fk44mUOEWE96v/D+4FAFLhnEQtNmbv7FuuFCDFLJ3csMkjl48OC6unjXQ3rM06dPr/tMDB4pPCGEEEUghbdF2PvzwxLSnt1Gas0PV0j/H/WpfoQYBFRufhgAg1cYeJLee7x3qeS8dcYrv/Se9lMLMQ2Z3zan5qT0tg8pPCGEEEUghdcjfG8tVXx1ii6n7IiUnRCd4xOz+2TRXKb+OD9Y3PvseEw/8Wy6D+9tDofgIHUqznYTM3MSWSWRGBxSeEIIIYrAulESZvYggM/2rzpiDLgihHDEF6rtiA5Q2xGbJdt2PF298IQQQohRRSZNIYQQRaAXnhBCiCLQC08IIUQR6IUnhBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUgV54QgghikAvPCGEEEXw/wEFTx+xW19p+wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYZFlZ5t8vt6rKrL2reqFraLqbhlYYF2RxBxEBGQUBWUYYaUFt1JHRYQbFUQEfQB1HGWBAW1HaBhREQVSGZQDbphUXRPalaXql6a2qq7KqMqsqszLP/HHuG3Hyi3MjIzIjIiPivL/nyedmnLuduHHuvef9vu98x0IIEEIIIcadia2ugBBCCDEI9MITQghRBHrhCSGEKAK98IQQQhSBXnhCCCGKQC88IYQQRdDxC8/MfsjMrjOze8zslJndamZ/aWZP7GcFxdZhZlebWTCzr5pZS1sxs5dV64OZTSXlt5jZ1Rs43wOqY12RlL08OUcws7NV2/tDM7twg9/r58zsaRvc91ozu77DbcfynjGzx7jf5JSZfd7MftXMdrhtzcyeY2YfNrMjZrZctae3m9n31Bz//1XH/S89rvcDXL3r/q7t0fkur4737B4d7+HV/bDblW+vzvOLvThPLzCzZ5jZp83stJndbGa/YGbW4b7/0cw+ZWZnzOxOM3uNmc31ol5T628CmNmLALwWwB8B+C0ACwAuBfAfADwWwPt7URkxlCwCuADA9wD4sFv3owBOANjlyp8K4PgGznUngG8D8JXMuu8EsAJgGsDXA3gFgG8xs4eFEFa7PM/PAbgewLs2UMeOKOSeeRGAfwEwC+AJAF4G4IGI7QJmNgng7Yjt4Y8BvB7AfQD+HYBnAPiwme0LIczzgGZ2CPH6oDrOa3tYX7avlI8BuBrAVUnZRtpujluq8325R8d7OOI1fhPW1vFMdZ7benSeTWFmTwbwDgC/i9hGHgnglYjt5GXr7PtjiPfMmwD8dwCXAXhVtfyBTVcuhLDuH+KFfHfNuolOjtGrPwDbBnm+kv8QHwRfBfAhAFe7dd8JYLXaJgCY6lMdXp47PoAfr8q/bgPHvAXAWzdYn2sBXN/BdmN7zwB4THXtH+fK31yV768+/3L1+ek1x3k8gFlX9tJqn/dWy4f2+doEAK/cqmvZZV1fWNX30FbVocN6fgHAB1zZqwGcYttos+/tAN7vyp5bfe/HbrZunZo09wO4K7ciJL1rM7uiktbfXZluTlZmjDdkTB2vMLNPmNlxMztsZh8xs29129B08jQz+wMzuxfA3dW6B5nZuytz0Wkzu83M3ulMawfN7PfM7I5KHn/RzH6yky9c7ftGM7u92vd2M3uLmW1LtnmimX2sMunMV9/5we4415rZ9dW2n6y2/Tcze5SZTZnZqyvZfp9FE+Jcsi9NMD9tZr9TfddFM/sbM3tAJ9+jR1wD4OlmNpuU/SiAjyK+PNZgzqSZtItvNbO3Vb/518zsdWa2PdmuxaTZBvZwp5P9H2Fmf27RZHbKzL5UXd8dyTa3ALgIwHMSE1Za12+s2tWR5BgvzXzHx1Xtd9HMPmtmT3WbFHfPIKo9AHigmc0AeDGA94YQ/qLmOnwwhLDoip8H4HOIKpyftwQz+0cz+1B1LT9lZmcAPL9a9/PV+qNmdszM/t7MHu/2bzFpWjTl3li11X+o2s8NZvb8deryQkTFBAC3J233fMuYNM3sNyya/y+vvsNidV8+t1r//Oq8J6v1F7nzmZn9jJl9pmor95jZVWa2Z516XgbgcgBvdaveAmA7oiWgbt9DAA4BeJ9bRWvIU5Ntv97M/srM7k3a8jva1Q3o0KQJ4J8BPM/MbgLwnhDCDets/1YAfwbgjYhy9lcBzAG4ItnmQgCvQVQQc4hv8evM7FtCCJ9xx3s94kX4T4gXDYg9wKMAfgrA4ep4T0Lll7Ro574ewA5ElXAz4sX+XTPbFkJ4fV3lzWwfgH9AfGi9EsCnAZwL4CkAZgCcseiHeS+AjwB4FoCdAH4NwPVm9k0hhDuSQz4Q0az1KgAnAfxPAH9V/U1V1+Xrqm3uAfASV6WXAvgkgB+r6vFqAB80s4eEEJbrvkcP+QvE3/KHAPxJ9ZJ6BoD/hmie6pS3APhTAE9DNMG8HPE3bGvmqJi06AKgSfOXEB+Mn022uT/idboa0dT6EMS2dwkAPnSeCuD/AvhUdX4AuBcAzOyRiAruRgA/j9g2LwPwDa4ulyKa2n4dse29GMA7zezyEMKN1TZF3TMVF1fLY4jmt72IbbwjzOxRAB4M4BdDCF82s48hdkx+MYSw0ulxesxDEe/LX0NU7fdW5RchmkFvRXwmPBXA+83se0MIf7vOMc9B7ET+dnXMnwTwh2b2hRDCx2r2eRfi9X0JgCcn9TgCYLJmHwPwTgC/h/jMeRGAa8zsIQC+HdFkuAOxLb8FwHcn+74GwE9Xyw8j3uevAvD1ZvboUO9GeEi1/KwrvwHAWcR7tw7+xkuu/Ey1fCgQX8aIbfurAK5EvAaHEN0F7elQoj4I8aEfqr/DiA+ux7vtrqjW/54r/x/Vl3lQzfEnER/8XwLw2qT8MdXx3u22P1CVP7lNnX8FwGkAl7nyP6jqX2uCQ2zcKwC+uc02H0e0zU8lZRcDWAbwO0nZtVXZJUnZk6v6f8gd810Abk4+P6Da7vNIzGAAvqMqf0EvTRGZ73g1gK9W/1+DytQA4JmIvr3dyJgcEVXf1Zl28Qp3/L8BcEPm+16RlPH4/u8LAC5tU3er2tRzEU2v57j6tZg0AVyHaFKZbXNc/p6XJWXnVu3ll0q4Z5JzPL6qw24AP4zYmfu3aptnVds8oYv29sbqO19Yfb6yOsYT+9jGa02aAP6xqk9bszlih2Gqaj/vSMovr47/7KTs7VXZtyVlswDmAbxunfNkTZqIHZqA2FFg2W9UZc907TQgKv65pPwlVfl5SdtdBfASd57vXe/3QFTAAcADMusOA3jDOt9xHsAfu7LHV8f8VPX5ENtft793RybNEHun3wzg0Yhv+U8i9mg+YGa/nNnlz9zntyM2ikeyoDIJ/a2ZHUF88y9XF/rBaOXd7vMRADcB+A0z+4lKRnueCOCfANxs0XQ4VZluPoDYw2rX03g8gH8JIfxbbqVFs+PDEBv3WZaHEG4G8PeI1ynlhhDCTcnnL1bLD7jtvgjgUNWDSfnzkPSoQgh/j9i78Q74tlRmiqnkr65nmOMaAI8zs/MRzZnvCSF069x/r/v8GURV1gnfCuARAB6F+MJdQFS553EDM9ttZr9pZl9B7BUuI/ZcDVGp1WLRXPsdAN4WWs1sni+HEBqBCCGEexCV+f2TshLumQ9UdZhHVBJ/i2gF6BqLroJnA/hIaFpH3oH4O7Y1a2badaeWq074UgjhC5lzPsrM3mdm9yC+FJcBfBfyv4XnaEiUXNXebkLn90I3NMyDVTs9iuiDXki24fOI1ponIN4zb3PX9DrE3yNVgr3mdQB+xMx+0sz2V6r/9YjXmM/AuxCff//LzF5gZpd2evCOhyWEEFZCCNeFEH45hPA4RDPRZwC8rDIBptxd8/lCADCzhyGalU4CeAGaD7NPoWl+SbnT1SUA+D5ElfXrAG4ws5vM7KeSzc5F/GGW3d87q/XntPm65yBe0Dr2ITaIOzPr7kI0haYcdZ+X2pRPodVE4a8ny7oNy38e1l6LXDRkHR9B/L4/j3hDXNPluYEYoZdyBsC23IYZ/jWE8PEQwj+HEN6JaL64GMB/TbZ5M2Iv+HWI7eMRAH6mWpdrVyn7EO+Hdr878d8DiN9lzTkKuGd+pqrDQwHsDCH8YAjh1mrd7dXyInTGDyL+Bu82s71mtrcq/wCAp5gLxXc8OlPnXtFyj5vZJYiBXLOIZr9vQ7wOH8H67QzosP30gJUQwglXtoT65xHPf261/CrWXtMlxPu13bOTx17TvqvO9R7kv3vKqxA7qb+L2En7KIC/RHwp3wkAlch4LKIF5bcA3GjRL/qCdY7dsQ+vhRDC18zsTYj238sQfRbkPET/SvoZANhzezpiD/VpIfFBVQ+BY7nTZc5/E4AfrdTQNwL4zwDeaGa3hBDeh3ix7gFQN5bnS22+Hv0bdRyt6nR+Zt35WP9H7Zbzaso+2eVx/hrxxiRn6jb0hBBWzextiHb/ewB8sMtz95QQwt1mdhiVf63yKz4FwMtDCI1QdjP79x0e8ihiD3JDY/s6YQzvmRtCCB+v2fbjVb1+EMDv12yTQhX3hurP80zEUPUc/4q17bqXtFxHxM7WTsTo08MsNLOdfarDoDlSLR+DaEnx3JspI2zDDwGQWsguQ3zffL7diUMIpwE838xejKg4b0eM7nwRgD9JtvsygOdaHB/8TYhBTm8ys5tCGx9qRwrPzC6oWXV5tfTRaM90n5+N+DD5p+rzLKJEbTQmM3ssNiDpQ+STaPb0H1ot31/V77ZKGfg/3/NJ+SCAR5rZN9accwHxJntGaha0GOn07Yh+nl7yw5YM/Daz70C0Y9c5uLOEEI64a+ADHdbjjxBfmq8MWxdEAKDRJg+gefNtQ1TGvnd/RWb3M4jO+gaVWel6xJtoR2afjdQvx7jeM/4cS4hBGT9gZk/PbWNm32dms2Z2LqI59T2I4z39311oY9YMIZzwde20nhuE0coNd4aZPRQxUKefsIO66fa5Dh9E01eYawe31u1YmfK/BOA5btVzEevfUUc5hHA0hPDpEMJRRKvNKuJYTr/dagjhE4gBdECzLWfpVOF91sw+hGhSuRnRSf2kqiJ/FkLwAx6fZGa/herFgRiFd03i93g/4hv5ajN7M6If4lfQ7M22xcy+AbGX/A7EiLpJxAfbWUSzAhCji54F4KNm9hrEH2EO8Yb+rhDCU9qc4jUAfgTAh8zslYhmqAOICuKF1Y3/K4g+qb8xszci9vhegejP+O1OvkcX7ALwl2Z2FYCDiCapLyMxK5rZHwJ4Xgihl/6LNVSNeUM+mh7wKDNbQeykXYSoNFcQI9AQQpg3s38E8GIzuxNRpT8fecX2eQDfZWY/gPgwPRxCuAXxpvk7AB8zs99GNOlcAuCbQgg/22V9S7tncvw6opJ8h8WhH3+NaP04hKhYn4Zo+noO4rPoNSGEv8vU/Y8BvMTMLnG+8K3ig4iR0m81s9cifp9XoP8Dv6mOftbM/gTxt+vWyrMuIYTPm9n/BvD71Yv8o4gvq/sjxje8PoTwD20O8VIA7zKz1yNGeD8CMTDmN0MIVI8ws1cB+AXEICUOnXkSohr8HGLb+34APwHgJ+jbtRhN/WpEv/dXECO3fxzR5Hrtel+uk0imFyKGF9+KGMW1gChXXwJgJtnuCsSewXcj9tZOIjbwNwDY4Y75s4gPglOI43ceV1X22mSbxyA/wPVcxLf9DYjRgvchPqie4Lbbh3gT31xdjHsQf7yf6+A7n4toirmz2vf26pzbkm2eiKiyTiG+6N4D4MHuONfCDVRGMxrxx135y5FEPCbb/TSA30FUM4uIL9qL3b5Xo3LV9OoPSZRmm23W1LkquwX5KM0H5vbNXJcrMsfn3yqAryE+PB+Zua7vQxyScA+A/4NofgoAHpNsd3nVDhardWldv7k69rHqd/0igF9o93vWfOexvWfqzlHTPgyxd/8RRLPxMmJH4k8RX6JAfGjfCMBqjvGg6nwv72X7ro69XpTmh2rWPbe6lqcRO8RPRww0+qJrZ7kozRtrzvX+Dur7KsT2T7V/PuqjNM9m9r8LwJtc2ROr/b/TlT+/ameLiPfU5xD94xd0UM9nVdflTHUPvBQu4QKakaTnJ2Xfh2g9O1n9XQfg+91+FyL6+b5c1e0IYsDU965XL6sO0BMsDhh+M2JY843rbC7WweLg8psRezd1/gsxwuieEWJwaLYEIYQQRaAXnhBCiCLoqUlTCCGEGFak8IQQQhSBXnhCCCGKQC88IYQQRdDVIOXZ2dmwd+/e9TdsA/Mip/mRfZm53Mkb8TNyHx6rk2O028avk+8zfw3m5+exuLjok1/3pO2I8ebYsWNqO2JD1LUdT1cvvL179+LKK6/ceK0SJieb+ZGnpmI1ZmZmAAATExNrtllZiVmsVlfrpmBqUvciypWzjEse3y9z25TKmTPN9JunT59es25qagrXXJPPKd3LtiPGk6uuuipbrrYj1qOu7Xhk0hRCCFEEfcu7uB5UbUBT0S0vx7y/XtkRqitv8kzXkU5MmV611Sm99Y5TEulvouskhBglpPCEEEIUwZYpvBSv5HzASU7RrUc7peEVXZ2yk1ppJVVz/P/s2bONpa7ZYKE1hFaS9H9/38iSIUpHCk8IIUQR6IUnhBCiCIbCpOmDUbj05bmhATTpeFOMD2JJh0HUBav49aJJ7loxyIjrlpeXh37YRmr6W49h+i6s9/T0NIDmEJ7t27cDALZt29bYlsN8uA8/E/6GdCXkflOaqZeWlgA0h6MsLCz05PsIsRVI4QkhhCiCoVB4hD1OH8TSyT692k7kyQ3+5//s/W9l0IpXOlQ1VERe9QDrZ/TJfWeWUQlRAXFJZbSZ65CqNdafZVzu2LEDALBz504AwOzsbGMfqj+/JHXfE2h+LyYV8EsqvGPHjjX2mZ+f7+br9Yz0vHv27NmSOojRQgpPCCFEEQyVwhPDS86HxzKqmxDCQBReqmbm5uYANBUPl1RCVH5USlwCa/26OajWqHqAptI5derUmuXi4uKa9bwmfn+g1drAevg6p9+V35PL3bt3r1lS6QHNa0Blx+NS3fL86XASQrXuvx+VHdfzvADwta99DQBw5MgRDJLDhw83/pfCE50ghSeEEKIIpPBER/jIvvT/QQ3Up4pJe/Msoyri0vu4cuqJCshHMXrlmibMppI7fvz4miVVGv2COV+hV3Y+8pJ1TuvI+lNR8btz9gCWU/mlx6vz4VHRUY3molHrIqTJrl27Gv8fPHgQQPPaUBX2C+87FqJTpPCEEEIUgRSe6AiqoNTfk1N9/YCKx6u5tF51daIKoALzUxql+/jxn/yuaTQnj0MVxc8+CjQ336NPZUe4j1+mx/cpxLxqTH2Gvozfh+W8Brw26b4so1pjXemH9NGpaV2oPvut8BghmtZBiE6QwhNCCFEEUniiI/y4NqCpAqg+lpaW+uLH4zFPnDixZgk01QXr5xWYn1w49Wd5vx/38YosVWssoxKqi9pMlSS3rcsGxOOzbqmK9uP8vELNZT7xqszvy9+N+6aKzGdfqfPhtZscuZOpuTYDVe4FF1zQl+OL8UUKTwghRBHohSeEEKIIZNIUXZGaNPk/TXCrq6sbmrtwPWgS7HcYOk2bPulybrA6t6G58OTJk2s+dwP3ue+++9acA2gd0M5hEDy/Hyiebst9/cD3UYdDMoToFik8IYQQRSCFJzrCJ00GmsEJVCSrq6sjPbVSbsjCVpAO82CCZF53BrZwmzSARwjRHik8IYQQRSCFJzqCPqI0HL1uYPMw4Qd7dzMB7DBBfxyXm4G/16hei0984hMAgIc97GFbXBPRL/o1tGU0W7wQQgjRJVJ4oiNy6s0nHZ6ZmelLlCbJDQT3sJ4+iXM/6zVqjKqyI5/+9KcBSOGJ7hntli+EEEJ0iBSe6AiqgtSm7lXUjh07eqoeOL6PvsLc1DscI8coRu7DaMZRVzOiCSeaPeeccwCstTqsN5mvGC36lpauL0cVQgghhgwpPNERVFc5X1i/ov44Lo49+VwvnplG0oTLwNrsKGI8YIQq2wOz2wBrJwUWog4pPCGEEEUghSc6goopzWdJxUX/2crKSk9s71SM9N3x+KxDeg7+7yeJFePD6uoqTpw40cgjymmB0jGJUniiE6TwhBBCFIFeeEIIIYpAJk3REZwqh0ugGfpP0+PU1FRPBnjzGDRh0sRJ0+bc3FxjW26zbdu2TZ9XDCcrKyuYn59vTJ9Es/WwJPsWW8vMzEzHAXNSeEIIIYpACg/N4IthTH48LPAapeH+VHscEjAxMdGToBUqPK8qcxOyivFndXUVCwsLOHz4MADg6NGjAIBDhw5tZbXEkNCNVUkKTwghRBFI4UHKbqNQ2aUKr5fs2LGjp8cTo8nZs2dx9OjRhrLbt28fgKbvWJQJnzfT09MdqzwpPCGEEEUghSe6Ik3v5afeUQJf0Q+WlpZwyy23YGFhAUDTh3vnnXc2trn44osBaBqoEpHCE0IIIRxSeKIrUj8doyY5Bm5yclI9bNFzzpw5g5tvvrnR3uhzT9PI0Z+n8ZjlkEZtS+EJIYQQCVJ4YtOwp9WvSRuFWF1dbfER79q1a4tqI4aBjUSFS+EJIYQoAr3whBBCFIFMmmLD0ITJ5fLyssyaoi9MTEy0BCYcOXKk8f8ll1wy6CqJLYbPmm7m4ZTCE0IIUQTFKLzU4c3pZqRGuofXDmi9fqdOnVqzXoheMDExge3btzfuYSq9VOGJcllcXOz4uSOFJ4QQogjGXuGxN5iGsCpZ9MZhougU9q6k8ES/mJqaalF4aVvkPa30duVw5syZxv9SeEIIIURCMQpveXl5i2syHqS9avaqWNZNih8hOsXM1rQrWmtOnTrVKGNvf3Z2drCVEyOFFJ4QQogiGHuFJ59Sb6CKSyMzqZpZJoUn+kEIAaurqy1tK22Lx44dAyCFJ9ojhSeEEKII9MITXRFCaPydPXsWZ8+excTEBCYmJqTwRF9YXV3F4uJi4/PKygpWVlYwMzPT+Dt27FhD5QlRh154QgghikAvPCGEEEUw9kErojdwYG8aBETzZTrYVybN7pmengbQvLZKjLCWEAJOnz6NmZkZAM35F48fP97YhtdQA9D7A6/nMKZl9MNW2iGFJ4QQogik8ERHsEeXKjz2tJeWlrakTqMKe8sMofdqJB3cf/LkycFVbEgxM0xPT+P06dMAgO3btwNYq4TvuusuAMDevXsBAAcPHhxwLcebYbY6dDPzuRSeEEKIIpDCEx2RU3i+7OzZs0Nl2x8W6F+iIqYvatu2bWvKc0mRycLCAoDh8p0MCio8XhcmPEh79nfffTcA4MCBAwCAXbt2AWiqQSEAKTwhhBCFIIUnOqIThafpgZpQ1QFNJUcFx+vGz1R4VCzpvizjMo1MLIWpqSkcOHCgoeLYxlLfMX2d3IYK7373ux+A7vw8YrRYWVnp2PKhViCEEKIIpPBEW7zfJO1JMXKLPe2lpaUifUw5UqXrfU4+KrNdUmSqPapEfi5puqvp6WkcOnQIhw8fBtC8Pqmvk9MDUenddtttAJrXfP/+/QDk0ysdKTwhhBBFIIUn2sJedC4LCP/n8vTp0/LhVeSuE6HK4LXl+DJeu9w19L9DSczMzOCCCy7A5z73OQD5SFXvT+by6NGjAJq/wdzcXGMf/k/1LMYfKTwhhBBFIIUnsqRj64Cmny5VK151yIfXGVR09N1RYdAvl/rnvIoukenpadzvfvdrjF+kvy6NvPS5Hnm92B5Lvn6iiRSeEEKIItALTwghRBHIpCmy0GzkTWq5YAyaO5VarDtOnTq1ZinyTE5OYv/+/di9ezcAYH5+HsDa4Rw0afohH35aq7R9Drqt8p5SkMzWIYUnhBCiCKTwxBrY601VG5APmec2JQ2CFlsHE0PnAqgY0OKVHgNbfFq3tKyfpHWkkmfdmFJODA4pPCGEEEWgLoZYg+89++EJuWEJRAl6RT85dOgQAOC+++4DsLYtcjC/V3Q++fYgVF1Kav3guTksZefOnQOti5DCE0IIUQhSeGINPpqNvehOFF6Jaa/E4Dh48CCApppL22KdP8xPwZRGcdLv1w/8wHegqTLlu9s6pPCEEEIUgboaAkDT10DV5qdg8Uov3UZj78Qg2Lt3LwBgx44dAJq+sHbQ6uCVXlrWD3je1K/NSWnF1iGFJ4QQogik8ASA1nF3XtHlEhv7dfLhiX7CDCXnnXceAOCOO+5orPPJoXPj7gYJJ+oVw4UUnhBCiCLQC08IIUQRyKQpADTNk96kSXMlTZ5MgJv+z3008FwMAg5PuPvuu1vW+TboTZuDHnguhgs9oYQQQhSBFF7B5IYY1Ck6fk6nsvFDGKamptSDFn2HCi8N8z927Niabbyyyw0TEOWhX18IIUQRSOEVDFUb0OwBU+FR2VHR8XO7wb5KmSQGAVOL7du3r1G2uLgIoN5HN+6Wh9z3U0KIVqTwhBBCFIG65AXip/5Jy7ikkmPPmctUFXr6mYxXCA8nhAWaUwbRQkHFwwHgtD6Mq+rJ+SZ5LzNhdt3nUWdiYqJjBS+FJ4QQogik8AqE/rg0TRgVHX12VHT8vLCwAGCtKvSpxLrpaQmxWZhiDADuueceAMD8/DyApophe+TndHqgcSKn1ujr5DXwVhyvflPSaOxhZ3p6WgpPCCGESJHCKxD64dKIyzpFx21y0ZlUePLdia3m3HPPBdBst1QtfllSUmdacPjd+dlP7pxaepige25ubs2+3Of48eP9rnbXSOEJIYQQDim8gvBq7eTJk411/J89ZCo+llMVpj0pP6lmNz0tIXoJ/Xl33nkngOYksbQ+sF2WlGnF++w6gVYbZlGiz5PXjdltTpw40bN6bhT/23ZCOb++EEKIotELTwghRBHIpFkQNE9yWALNlun/NFX4bWnqSM0HNCnQpLlt2zaZNMWWcv/73x9Asx1vxOxVMgxg8aZfXsd2iScGDQNsJicnFbQihBBCpEjhFQADUbhk7zdVeFxHZcdt/ODydJAq10nhiWFh7969AJpKhIOvldi8O+qCV9IJoIeFbgKRpPCEEEIUgbo9Ywx7Y1RrHFTuhyCkZRyywB4ybfocsJumZuJg1JJCvcVww7ZIZcf2quQImyO1Bg0L6YD5TpOC60klhBCiCKTwxhj2yqj0fHRmOnjUD0qnwvNRmqkvhP9z3bhMNyJGHw48Zxsd16TR/WaY7+n02SSFJ4QQQiRI4Y0hXtl59cb1aUJor+QYncUloy9Tuzl70eT06dMtUZ1CbAUcoyXGF6q6paWljp87UnhCCCGKQApvTEh7OOspPKq0nMKj747Kjr0ofk7xY5uWlpY6tqULIcSgkcITQghRBHrhCSGEKAKZNMeEdIgBzZJ+SbMnTZppyDHNmyxjkApNlNw3NVl6k+bKyopMmkKIoUUKTwghRBFI4Y04ual+WEY5lLU6AAAU60lEQVQlx4ATfs4NFGcZ9/UzHWtwuRBi1JHCE0IIUQRSeCMKFRcTQKfTdvi0YN6Xl4O+N+/DI7lpf6gY5bcTQowCUnhCCCGKQApvRPFpwtKUX37wuE+7U1cONH12PjqT0wOlkZneN2hmUntCiKFFCk8IIUQRSOGNGD4qM+eXoyrzCq7d5/V8dlR+6WSv9PexDn5cnhBCDBNSeEIIIYpAXfIRgWqMaspHU7abHqMTvxqPkyo4oHUCzfRYPrG0Mq0IIYYZKTwhhBBFoBeeEEKIIpBJc0TgMAQ/pMCbINMyLmmO9GZLlufW0TTZyQB0mTGFEP0kfVZtJr2hFJ4QQogikMIbcnwi6Nw0PR6v6PiZAShUcalaqzsey7lMB7hv27ZtzXEUtCKE6AepqvNTl3WDFJ4QQogikMIbUuqGGeR8dnXlfoofnx4sHSjuz8d9/SB2+hBzTE5OZn18QgjRK6TwhBBCiHWwbt6SZnYvgFv7Vx0xBlwUQjjoC9V2RAeo7YiNkm07nq5eeEIIIcSoIpOmEEKIItALTwghRBHohSeEEKII9MITQghRBF2Nw5udnQ179+5tKWc2EACYn59fs85n+fCf0zKfA1JjukaPY8eOYXFxseWHm5ycDNPT042MCVwyWwsA7N69m9sOoqpiyKhrO3XPHdEeH5DosybltqvbZr1jd0Puue5z+Xb7DqhrO56uXnh79+7FlVde2VJ+/fXXN/6/7rrrAAAzMzMAgH379gEAzj333MYx0iXQfNBxuWPHDgDA9u3bu6meGAKuuuqqbPnU1BQuvPBCHDlyBEAzGfbDH/7wxjaPfvSjATQHyIuyqGs7dc8d0R1MGsH0gJxbM00m4ZPTs2PKF5xPRJEmrPDJK/xn/zIDmp1b3vNzc3MAmh1hvgvWo67teGTSFEIIUQQ9SS12/Pjxxv/sNVDh+alofGLjXJlMmeNHCAFLS0stSbDZowOk7IToJ3QjUbXlXAd15k6v1rzyS7dZzyzaLml97ri9RApPCCFEEfRE4S0uLraU+QlE65Reus5vK8aHEAKWl5dbfATy0woxWPjsrZvkGWh9BtcprnTaHu/3qztvemxfB58Yut1E1xtBbxYhhBBFoBeeEEKIItiUSZPSNTdHmjdhthuH58NVZdIcP2jS9I5t/dZCDJbcfJgePtP9M573L8deMwgt3cZvy224T+rOqqtDv54LetoIIYQogk0pPA5ByME3tFd2uaAV78zUlEXjRwgBZ8+ebfQYOQRh586dW1ktIUQGrwLTjEgAsGvXLgBrrXtUcnWD1/m+SDNzcR//zO+XtU8KTwghRBFsSuHx7ZuGljOslD0D9uTb5UjLpakR48fKykpLT04KT4jRJfXBtfMJpqTD2I4ePQqg1WfYr3eBFJ4QQogi6MnA89TOypRi3gbMciq+XGqxXASnGC/YVtgONPBciLKYnZ1tKaPS67eVTwpPCCFEEWxKSlG1cQk0o3nYc/fb5KI02dv3kUBivDCzhnqn705z3wlRLl7tLSwsAOjfBAJSeEIIIYpgUwqPEXeczBNojs/gtC/8zB49J37lZK9A55P8idHGzBo9N6r6NFODEGL8YOSlnxoMaB2D7acw6jVSeEIIIYpALzwhhBBFsCmT5r333gsAOHHiRKOMpkyaLLlkuZ8JXZSBmWFycrJhsmC7UKCSEOONn+su58agmdMPa2s3Z99G0FtHCCFEEWxK4Z08eRLAWgcjg1S45PAEn1osdVymyURz23Dp05WJ0cHMMDMz0/gNDxw4ACA/CFUIMT7weU5rTs6q46cbyqWg7Eldeno0IYQQYkjZlMLzg8zT/9mT9xPB+gkEgaadlvtwmAL30XRBo4+ZYdu2bY3f/9JLL93iGgkhhgWv/pQ8WgghhNgEm1J43k8HtPrZaIPl4HTaaHMDC/l25zqfhqxf6WZE/2GUJtX6oUOHtrhGQohhpV9R/FJ4QgghimBTCo9TtqeRdlR2HE9BVcY3tp/oD2iqQh+tSV8eFaSiM0cXJo4+//zzAShptNg8qcVHfn7RCVJ4QgghimBTCo8KLE0ETQXnx14QH5EJNJUbe/1MMK0sHOMDozQ5/k6IzSJVJ7pFCk8IIUQRbErh3XbbbQDWTu9Dvx5VG5d+XEUa2cn9mW9TjB+Tk5PYtWuXfmPRF2hR4nOF0eCdTD9FS5KPIRDjhxSeEEKIItALTwghRBH0JLVYaqbiVEE0U9KkyWEIDFZJA1Jk5hp/JiYmMDc31whIEmKzpMMS/BAmPme8SZPDpYBmgJ1MmeUghSeEEKIINqXwmAD49ttvb5RRyTFkmD0s9qZIOvDYpxIT4wenB9qzZ89WV0WMCemwBKYupOqrG7LAoDoxGvB3TYMcPbk0lXVI4QkhhCiCTSk8sri42PL/zp07AbT2uPg5fSsfP34cQNPfx1Rl/UogKgbPxMQEtm/frglfRV/g84T+uG56/WJ44e+Y+mI3k2JSbxQhhBBF0BOFl9pXaXNNVR/QjJqiny5nS6ei49tcqcXGh6mpKZxzzjlbXQ0x5nQy0FyMDrQMppG0XuF1YwmUwhNCCFEEPVF4CwsLjf/9uDumFKOyo9JLx9D4dZoGaPyYnp7GBRdcsNXVEEKMAF6pp5/5v59kvBOk8IQQQhRBz6M0Cd+6VHi0s/qJYdN1VHqDis70kaOiv2icpRCiE/xkA+lnv64bpPCEEEIUgV54QgghiqAnJs39+/c3/v/KV77SUgY0zYc0a6WBKTRhprOg9xMOneD5BnVeIYQQ9fA9wXcCgx/T1JSbcY1I4QkhhCiCnkib3JQvDB31QSo+QAVoHZTeD9Jksvxfyk4IIYYHn/Q7F6BSlxi8E6TwhBBCFEFPJE7qj6Oi89ME8U3thykAgwlXT3sFSlkmxo10aM1mesBCbCV8LzCVWM4ax3fLRhKUSOEJIYQogp4oPE4FBDTVkx887qNt0qibXLqxXqOphsQ4k7ZvTY0jeo231PFzak3wcRr+eZ5L9OGP698FtBim74vNvCf0FhBCCFEEPVF46Rt33759AJpvZL7tvb017Rn4BNNCiO5IVR3vIyk90Sv4jGfbyvmJfURlncLLqUIfMc/z8Ji5VJQbQQpPCCFEEfRE4Z08ebLxP22uzGbiozN9T8H/L4TYHFR2vje+maS7Ynyg9a2Tcch1CfZzfrT1nuPdKDMe3/sFgc1NHyeFJ4QQogj0whNCCFEEPTFpzs3NNf6/4447ALSaMmlmYcoxmjyBpkTV0AEhegfvOd1XIoWmzFwSEA9NioOeO9QHXm3GjJmiO0EIIUQR9HxYwjnnnLNmnU8xlkM90fXxPS0hOkXBKiJHu2ECnk4GkW+EOpXpp5PrVaJ/vWGEEEIUQc/nx9mzZw+Apq9ucXERQGtPQGquO6TsRKf4UG6m+2M4+tLS0tZUrEfwe0m5bgxeN7aDVD3lpm8DWlND5tKHdTOEwZ+vrrzX7wm9dYQQQhRBzxUeo2mYYoxv6DQqE1jbO1NPbfxZWVnB/Px8wwIg+ofvpXv/B3vro5p6TNaOjeET91PhpSqqTlH5JAY8xkYGoOcm4+ZxOokcbXe89ZDCE0IIUQQ9V3hk+/bta5ZMP5bzH6jHNv6srq7ixIkTUngDwI9rzaVnGmVyPjw9Q9aHqozWto2oM1oLuMxZCTaTKnIjbbSbSNHxuAOEEEKIdeibwvOkk8SK3jEq4/NWV1dx6tSpgWdsKIU0E4XPSuGv9bhMH5T6JvldFA/Qir/n/CTd/LwRRi3xvxSeEEKIIhiYwhO9pW6czLCyurraGJMpNo73x1Hl5Hwfddkr6MsZFSYmJjAzM9Pw/1PFpUqW35Xfbdjvh0HilV3JSOEJIYQoAr3whBBCFIFMmj3Cm5r6FTJNUyZnls+ZbnjuYQpkCSFgeXlZQSubpC5sOzeY17cNmvtGLbDDzBrtHWhNLJxCEy/Nn0xxOEz4VG8yvw4OKTwhhBBFIIXXI+p61Sk+1RN72iz36ddycCC/P2baa2ev1k++u9WYGc6cOQMA2LFjxxbXZjTxvyU/pwrIK3x+5rUfNUIIWFlZaSgjtu/USuCHYnglPExKj/csl/xdhuU+HWek8IQQQhSBFN4AWC+EnJ9nZ2dbymjn9yHl/lg5344PPx8G397Ro0cBSOH1mjRl36hP/1OH99mln306NX8/cNtU6W2VouLwHFprxiURwCgghSeEEKIIpPAGSF10XK5X6rf1Ss8vc5M4csmeYyeRkf1Uf2aGEydO9O34YjwxM0xMTLS067Q9UyWxjD5Nb13JRXvShzZoZdwuibPoD1J4QgghikAKbwCw91nnuyOpDb9OyVH50ReRs/uzx8gle7d+0sbc2K1+YWaYnp5u1H8jEz1uFbkIWF7TUUueO4qw7VCd5SwlXuF5NcjfK1VTdZaPQSu9YRovO+4M/9NGCCGE6AFSeD3Cq7icf4E9OW7jx+6lPb31xtDVKT6gGbHms5r4LDBpHfudfYN+GH6f+fl5AMC+ffv6et7N4NU10PQBye+ydeQmtPX3nY9izrV5H/nM5UYUnj+/Ii6HEyk8IYQQRaAXnhBCiCKQSbNHeLNkmuoo5zDP7ZMzt5A6k2NujjNumw5VSI+fM7sOwgSTmjQXFhYADLdJk9dHgSlbSwihkV4MaA7YTu8Jtmn+Vj7VWC61GPfhthyekEsA7/EuDKY9Yx15Pw5TSjMhhSeEEKIQpPB6TE5x+V5nndJKVRa3pQOdg1TrQphzAS8+tVgu0fSg4BQv/B4nT54EsDahsWZkFjkY8MT2XDfMB2jeN+22SY8LtFpg6u6TXCCaP5+CVoYbKTwhhBBFIIXXY3LTBNGO7yeu9H6GnErzA7S9vy+XENrXwacYI4PshU5MTGBmZqah6NhbP3XqVGMbKTyRg9YB3kfeXwe0TrXlrSn8nPN1e3WWnhfID0+h5aVOdcp3N5xI4QkhhCgCKbwBUDfVD9VOu5RJPpLMD0jPDYCuU4FbmcZrYmICs7Ozje/MHnCaTHr37t2NbYUgk5OT2LlzZ8Pvm5YT3kMso7WgLhIz/d+niesmqYC3xIjhRk8WIYQQRSCFNwDSXiXQat9vZ+/npLA+coy9UB+JCbQqvE7H9PUT+mH4fY4fPw6gORkm0PSLcJyVEGRycrLRdvx4PKA14pmKziu/VBX6MbM+4nJcJ9ItGSk8IYQQRSCFN+SkCihlx44dAJq90ZzSI8OS6HhiYqKlp532uOmjkcJr4qNzfWJwH2kItEYFjzohBJw5c6YlEjL19XqfHT9TFabHIrx2HBtKXx6vcRpBLMYDKTwhhBBFIIU3orD3SaWXjqnz/ow6X94gMTNMTU219LxT/yWnDDpw4MDgKzgE5HKcEp8VpKSowJWVFZw8eRK7du0C0DrGLi2jdYDti/dHbnws/6cVhW2T9xYVpbKmjA9SeEIIIYpALzwhhBBFIJPmiOKnrEk/exMMzWB+eMQgMTNMT0836sZlapqjiYqmzT179gy4lltLzuTsTZd1wUnjbHYLIWBpaaklcCcdNrBz504AraZMLnMp+HjN5ubmADRNmwxi4edxubY+aUVdkvl0HZ8rPvhnVJHCE0IIUQRSeCOKD8NO8SnF2g1ZGCRMIA00e9Fp/alES028m0tS7ClxMHQIAcvLyy1BWLl2TUXCtsT2lkugznZG9UKlx6AVBsBspWWkl/D7eitLLqE22yCfM7lJqkcRKTwhhBBFIIU3YrDHStolWs6FYm81fvqW1EfFXrkQKSGENW2Y7Tpt+/4+8GnCqFTS9kblRj8flR6TmC8sLABoJkQYpvtoI9TdX6lq8yqa12bUlR2RwhNCCFEE6lKPCD4q06eWyjGMPVIfaZf2zL3vkT4HP1GuKAszg5k1/L70raUp6OruB5+mjooFQMtkxFR4LPcRn356olHDp2bLTRs2LkquDik8IYQQRSCFN2L4Hlguoi83xm1Y8BNypt+H66jspPBECpUXl2m78BHJbDs+0XTqx6L6Y+QrozSpJP34vFFXeIT3nLcalYAUnhBCiCKQwhsCcnZzKjc/rshHo+XGx7CXO8zTw7Sb1ojrhrn+YnCEEBpj8YCm4krVGlUZ/W5UfFRvLM9NKeSzsXAfH6XJ7YHxGZtXGlJ4QgghikAvPCGEEEUgk+YAoBmFpjo/P1274BIfSuxNmFymKadG3RRYojNdtGd1dbXRxr2ZH2gGoNC0mUubBay9N/zs6NzWJ6LmPHw0pQLA0aNHAZSbBm9UkcITQghRBFJ4PcarufR/H5xCZddusKff1+/jB2mPMnUDY0XZMLWYb/vpfUM1xvuACaCp2rhsl4qP7Y9qkdNT5e4xHufEiRNrzqc2O9xI4QkhhCgCKbwek1NtfvBrnR8uNxlqu+MCoz9djE+GLUQdvG/Y5nNpwqi0OJSA2/ohB0Cr2qNPkD49JpHO4YcJecUnhhMpPCGEEEUghddjcj483wv0dn4ftZniIzn9RJbDmCC6G9r5L9v5W0S5eKUHNKMz5+fnATRVGst9qjGgNRqYqs1PfkpfXrq9v2d9O5bSG070RBFCCFEEUng9wvcWc8qFKi03gWWnsKeqaDBROml6L0ZWel8ex84xTRijOVPW85cziXTqb/aTK3s/vFeWYjiQwhNCCFEEUnibxPcOqdraJYQm7A36ZW7/cfHZCdEr0vuFiopTBvEzFR59auk+jPL0vnWv2ujbS6049Ov5bX2Gl/vuu6+xj+7drUcKTwghRBHohSeEEKIIZNLcJJsxafJzbv46PyeczCFCrCW9X3h/cKgClwxioWkzN/9i3XAhBqnk7mUGyezfv39NXbzrIT3msWPH1qwTg0cKTwghRBFI4W0S9v78sIS0Z7eeWvPDFdL/R32qHyEGAZWbHwbA4BUGnqT3Hu9dKjlvnfHKL72n/dRCTEPmt82pOSm9rUMKTwghRBFI4fUI31tLFV+dosspOyJlJ0Tn+MTsPlk0l6k/zg8W9z47HtNPPJvuw3ubwyE4SJ2Ks93EzJxEVkkkBocUnhBCiCKwbpSEmd0L4Nb+VUeMAReFEA76QrUd0QFqO2KjZNuOp6sXnhBCCDGqyKQphBCiCPTCE0IIUQR64QkhhCgCvfCEEEIUgV54QgghikAvPCGEEEWgF54QQogi0AtPCCFEEeiFJ4QQogj+PyYUScC3mCiHAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1448,7 +1567,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4XfdZ3/v97aPhSLIs28KS5TlTISQ3lJb0oeVSCKU0TaFl6AMUKA2QC5SWcmm5LU0TCJAytYShJaFtKLlQCJd5CDSE4QZKuSm0oSQMSYhtKbIl25Is2bIGSzpn3T/W/u79ns96f+vsLcux3fP7Po+eo733Wr/1m9Za7/B937d0XaeGhoaGhob/1TF5ujvQ0NDQ0NDw4UB74TU0NDQ0bAm0F15DQ0NDw5ZAe+E1NDQ0NGwJtBdeQ0NDQ8OWQHvhNTQ0NDRsCTxjX3illFeWUrrpvz+T/P5J4fdPDd+/pZRy+CqvebiU8pbw+ZPDNfzvwVLKL5dS/sJVXuMzSyn/+CrPfd20D9s2Oe5u9PmJab9/vZTyf5ZS9ibnbBj7gv15ZSnlSyvfd6WUu5dp75mI6X66/+nuxzII6//Kp7svGaZzyvsq+/fJ1+h6P15Ked+1aGva3teVUv5m8v23l1IuXqvrPBmUUm4spbyhlPJbpZSz0/n8+CXOv66U8m9KKcdLKRdLKf+zlPK5T2WfPxwYfXA+Q3BW0t+V9Fp8//emv/Hh/S2Svvcqr/VZkh5Lvv9Hkn5PUpF0u6R/JunXSikf03XdfUte4zMlfaqkN1xlH5fBt0n6BfXrfEDSX5b0zZK+ppTy17qu+0A4tjb2Mbxy2vZ/xPe/JOkvSjp+FX1uePI4rn7+73m6O1LBt0j6gfD5VZK+TNL/LmktfP/H1+h6r5G05xq1JUlfJ+lt6u+tiO+X9DPX8DpPBgfVPyPfLenXJf2tRU8spRRJvyjpz0r6F5I+KOnzJP0/pZSu67qfvPbd/fDg2fDC+xlJX1RK+YZuGiVfStkl6W9L+mn1D90Zuq676pu867rfr/z0J13XvcsfSim/L+lPJb1c0puu9nofBtwb+y3pZ0op3y/pdyT9ZCnlz3pOR8a+NLquOyHpxLVq71qilLIiqXRdd+Xp7suiKKVsl3SlWzBLRNd1T0h616YHPk2Y3qOz+7SU8vLpf//bIutSStk5HeOi1/vg8r1cHl3XHZV09MNxrQXw/q7r9ktSKeXTtcQLT9JfkfTJkv5O13U/Pv3uHaWUuyT9q1LKTy26F59peMaaNAN+RNJd6qU/47PU9/2neTBNmsG88xWllG+equhnSim/WEq5HecuatazJrQ9nHtzKeXflVI+UEo5X0o5Wkr5sVLKbbFv6qWu24LZ5jDaeOP03Cemf3+klLIT139OKeWXSimPl1KOlFK+oZSy0Fp2Xfenkl4v6SWSPmVs7KWU50yv/+C0P/eWUr53+ts7JX2SpE8IY3nn9LeBSbOUsr2U8vrpdS5N/75++jD3Mcus1eeXUn6jlHJiOg+/X0r5exzvtL1/WUr5+lLKfZIuSXrptA9fkxz/uun63bjIfIbzvryU8gdT88/JUsoPllJuwjH/sJTy/5VSHpmO612llL+BYzwHX1VK+c5SyjFJT0i6Iczrx5dSfrSU8lgp5Vgp5ftKKatJG68M372llHJ/KeVjSyn/ZTrGPy2lfGUylk+dzufFUsoHSymv4n314UIp5eXTsXzGtA+nJB2Z/vZR03k4XEq5UEq5p/RmuOvRxgaT5vS8rpTyJaWUb5vu79OllJ8rpRzapD8Pqteevizs+x+Y/rbBpFlKWZ3+/trp/jtaSjlXSvn5UspNpZRDpZSfma7jkVLK1ybXe/60/yen6/E/uGcyPMkXkk2f/xnfv139s/jPhf69crrvz5VSHp3+f+DmeKbg2aDhHZH0W+rNmv9l+t0XS/pZSY8v0c4/V6/ZfKl68953SfpP6iWZzTApvd/MJs1vlXRevdpv3CTp4vQ6JyTdKumfSPqvpZSP6rruonpTzs2SXirJPoAnpN7mPu3fTepfSO+Z9vNvSdrh46b4WUk/JOm7JX2GpG9SL1n+0CITIemXJX2PpE9Qb+4YoJTyHEm/Ox3nN6jXaO+U9GnTQ75K/fytSPqK6XdjJtH/W9Lnqp+735b0l9SbS54r6Qtw7CJr9VxJPyXp2yWtqzfXvrmUsqvruh/QRrxS0r3qTVHnpv//OUlfrmD+Lr3292WSfqLrutMjY9mAUsq3q1/r75P0f0m6Tf0avriU8pe6rrOZ7m5Jb5Z0WP299xmS3lZK+etd170dzf4L9Wb0L1c/x9E39COS3irps9WbLl8n6bSkb9ykq9dL+jH1a//Nkr5E0ptKKe/vuu7/nY7lo9WbpH9X0uer33uvlbRP/Tw/XfgB9ffb35Hkl/tt6tfyJySdkfR89fP2v2mx+/obJf2m+v1xm6R/Lektkv7ayDmvkPSr6vfwt02/e2iT67xK0u+rv09uV3/fvkXSLeotWG9Ufw+8oZTyB13X/YYklVKeK+m/qb+3/5GkU5K+SNIvlFJe0XXdrywwxquB9+slfO9n0Isl/Y9Syl9R/8z5Lkn/WP2e/mhJNzxF/Xry6LruGflP/Sbs1G/iL1V/Q69KOiTpiqS/qn5Td5I+NZz3FkmHw+e7p8e8E+1/3fT7W8N3hyW9JXx2+/x3RtIrNun/iqQ7psd/Fvp3f3L8N6vfaB870ubrpu19Cb5/r6R3JGN+VaWdndPf3zQy9h9WL1DcOtKfd0r67ZG1u3v6+cXTz6/Dca+Zfv+SZdcKv0/U32z/QdIf4LdO0jFJu/C91/YTw3d/c/rdx2+2XpjrNUnfgO8/YdrWZ27S53dI+vlk7d6t3vSazes34fu3SfpA0sYrMY5O0suwD05J+vfhux9TL7DtDt8dUv/CPVybhyfzL+zrbclvL5/+9tYF2tmm3j/eSXph+P7HJb0vfP6o6TG/UtmPN21ynQclvTn5/tslXQyfV6ftvVfSJHz/xun3Xxe+26H+GRfvyR+d7t19uM5vSXrXEvP76dzXmxz/2dwrYW90kr42zNexp2JPPFX/ng0mTUn6SfU352dI+kL1Gy7VTEbwy/j83unfOxc49x+o18peql7Ce7t6H9gnxYNKKX9/qtI/rv6l/KHpTx+5wDU+TdLvdYv50n4Jn/9Qi43DKNO/Y2aPT5P0tq7rji3Rbg1/efr3P+F7f/4kfL/pWpVSXlBKeWsp5QFJl6f/XqV8rt/edd2F+EXXde9UT4r4ivD1V0h6T7fR77kZ/qr6l9ePllK2+Z96yfys5mNXKeXPl1LeVkp5SP3+uDw9P+vzz3XTp0oCrv97tdj6n++mmpw08/V9AOd+vKRf7rrufDjuuHqNexSllJU4B2VBM/uC+NnkeqtTc+H7p6bEy+q1L2mxey6bR2m5e2kRvKPruqgd27w609C6rrsk6T71QrLxcvVa7TnsrXeoN8uv6qnB29T7WN9YSnnp1Pz69yV9zvR3j+X3JB2amppfQVPyMxHPihde13Vn1Zug/q56c+aPYgMtgkfw2er5IpvmA13X/ffpv/+s3qxyr6Tv9AGllK9WL7n9mnoJ6S9obgtf5Br7JS1Kf8/Gsszm9001xqJcpj+bwb4sXu9B/G6MrlUp5Tr1D7aPkfT1kj5RvTDyH9ULRkRtnG+S9LdLKftL75B/uTayBxfBgenfD2r+4vW/vernUaWUO9QLaTdJ+mr1Jt2XqheesrUbW5tsfrJxE5mZlnvnkKSHk+M2M9tJ/fji+L9hgXMWRTYf36Vey3iLpL+u/p77/Olvi9wPT+aZsAw475dGvvceX1G/V75cw331Leqf3Uv5mRfF9OX7OeotF7+r3grwGkmvnh5yfHrcr6h/Fj5P0s9LOlVK+ZVSyouein5dCzwbfHjGD6uXyCbqJ/lpQ9d1XSnlT9RrnMbnS/r1ruv+ib+Y+sEWxUn1foQPB+z0/u2RY65lf/xguUUbqfK34PdF8RfVO88/seu62RhKPT6xpin9sHo/zCvVPzzOqzcjLYNT07+fpvyF4t9frt4P9rld180EiVLK7kq7TxcL7rjmL/GIgwuc+xXaGCZ0LawDRjYfnyfpP3RdZ1+aSikfcQ2v+bSh67q1Usqj6p9531057ORTeP0/UO+Dfo6kXeotAV+ofh1+Jxz345J+vPSxvZ+iXgn4JfVm9Wccnk0vvF/V1Dnddd0fPZ0dmZpqXqSN1PvdGpI2viQ5/Qn1G4h4h6TXlD627w+uSUcTlFJeoF5a+331Prga3iHps0sph6YmrQxPaBgHmeG3pn8/X9K/DN9/4fTvWD8y+CVx2V9MST/LUK/Vdd1jpZQfVf+gvk69n2jZWMRfVW/iubPrul8dOS7r859R7+t7JgW2v0vSK0opu23WnDIXP0GbxFV2Xff+D0P/JM1ixXYpzOcU2T13rVG7h6813q7eivHebokwjGuJbhpnXErZod6184tRYAvHnZX086WUj5T0HaWU66/iXnrK8ax54XU90+3p0uxeOPXLST3L8ovVs5H+aTjm7ZL+WSnl1erNAJ+iPlaQ+GNJton/d/VO7veql+K+QH1A++vV+xM+Qv1D/CunG2pZPLf02RVWpv3+JPUsxJPqNY0xLeIb1fsrf6eU8q3qTXa3SXp513VfFMbyVaWUz1OvuZ3NHnpd1/1hKeWtkl431cJ+R72W9lr1L5n38pxN8DvqhYvvL6V8o/qg4tdMx7VvybbeqLkfr2bO3FVKydbyg13X/c9SyndI+rfTm/031RM87lDvn3vz1G/2a+r9dj9cSvku9abDb1Lv530muRZer37f/kop5V+rN5W+Vr1J8+lkaW7A1MryDkmvKn3IwWH1Gt+fGz3x2uCPJb2slPIK9ebfh7uu+9Am51wNXq3eF/zOUsob1e+VG9WHFN3add0gpCSi9PF3q5L+/PSrl5U+vOexruveEY67Xz3Z62+E716r/p4/rl5b+2r1mv/nhGO+XT3z9zenx92pnr39rmfiy056Fr3wnmZ8X/j/aUnvl/QFXde9NXz/zerpuF+rfpP9pnp6871o683qfXvfOj3+iHo245lSyieof+B8vXrfz0OSfkNDevCi+OfTf5en/f4j9X6VH9zsBdp13eHpy/L16s1+10l6QL2t3vgO9eSAN09//03V6eCvVD8XX6opu2t6/jctO6iu606UUj5LvQ/np6Ztfa96n8dm1Hy29Z5SygfUPwTeXTnsJvXEKeL7Jf3DrutePTVx/4Ppv049lfzX1YdzqOu6PyqlfKH6ffIL6gWEr1dv6vzkZfr8VKLruj+exnn9K/UWlQfUr9PL9cwzU32lpH+rvn/r6gkeXyzpvz7F1/2n6oWjn1Kv6f27aV+uKbquu7eU8nHqWazfoV4APqleGF4kBOnN2miK/tbp3/erZ6oa29QLxRF71d/3h9Q/O35Z0mtAYnuX+v3+2epfxA+pF/yZFesZgzIu5Dc0/K+NqVb2J5L+j67rfvDp7s8zEVOS0Acl/VLXdV/2dPenoeFq0V54DVsSU9PO89VrmM+X9HyGLmxVlFL+jXqz8TH1CRS+RtLHSnpp13XveTr71tDwZNBMmg1bFa9Sb979gHrzdHvZzbGq3oR2UL05/XfVJ3doL7uGZzWahtfQ0NDQsCXwTGKHNTQ0NDQ0PGVoL7yGhoaGhi2B9sJraGhoaNgSWIq0srq62u3Zs8eZs7Vjxw5J0mQyf29u25Y32SdGyDH2W/Z75ndc5JgaeKw/Z/3yd5u1H3/nsZuNN2tnfX19tK9j19vs+6xPtTnI+r6ysjL7+8gjj+jxxx8fHLRv377u4MGDunKlr+956VIfWuhxZf3zvnL7/H5sHMvMce36V3NMth61OeSxY3uLv13L8S1zr2TX5Ti8pmtrfZUZr3m8jp8T27f35RDH9s7evXu7/fv3z9bd7fmvJF2+fHnDNdmnsXW5Gh7DZucusk5Xs4Y1eG5im2x/7L4hNutbNu7amOM9vtm5/Jy16eeBv1tZWdFjjz2mCxcubDqhS73wdu3apZe97GWzz3fe2ScVv/HGeQ7T66+/fkNn/FL0oDl4Sdq9e/eGc4w4IGm+meNL1RvdE+Nj/dk3RWybNw6P9XXGHu61h5bbdr/i/91ufEHEv3FD8sb1C+Lixb4sGh8q/puNg+Nb5KHMdcpePl4Ht3Po0CF993fnaf8OHDig7/me79EDDzwgSTp6tC8MffbsPP7de8W47rrrJEn79vXJU/xw9N94DvtXu2HjmH2Ox8rPcU4NfsfPPjeuP1/C3COc6zjH7JP77znIHnS8Lq/D/R/HwGMWedH6nPPn+wILFy70hNdHH31UknTqVJ9O1HtXkvbs2SNJuuOOPo/5wYMH9Z3fOcvFvgE33XSTXv3qV8+eE48/3ic9+tCH5slNjh8/vuEaPoaCVfbS9TEeM1/UnOs4D5xjztPYg5pt+TpxPXiPGe6b+7Rz584N14j/533jNn2deN9xf9WehdlLy3PAsT/xRJ8VLbuv/J3XwH3zHvL3cVw33HDDhrHv3btXP/3Tg1rgKZpJs6GhoaFhS2ApDa/rOl26dGkgIUSNqyZFGmMSKaUZSpeZuZQSMKWITNLisbW/mVaYSf3SULMcM/24DbfJ77M+UDvw75bsovQ8JjHGcy09xf5T++B6ZRq6cfbs2er8dF2nixcvzrSAxx7rU+1Z+ot9qEnC7kvcB/7OUiq1RCPrN+efn404JmrUlGqpxUtDKwPXh9ePoDmXx/r3sXvDfaRWYFiazvrPezJqrosim1fv13Pnzi10vvd5ROyL15daq4/xeOI+cB+4Z2kBYVsRNYtPhprFivdYXHOaiaN1I2s7js/H1vqW7Tc+Nz2ftedbbJP7fOw9YbhdP4uoYfr5EK8Tn1tSby1Y1CzdNLyGhoaGhi2BpTW8K1eujGoQlLR27eqraFCaiG97SuWUYtxWpnnFvklDSWTM1kypv+a/yI6lRE9k9n5KjOxrPIeaMeeAkl82J57Xmo8ijsnrURunv4/rlvl3ar6z9fV1Xbx4cebXsVYR14faEuF9sbo6r8/p/3ufUWuqacrZsdREMr+zJU731VpCjbARQS3dWEQC5p70X2s+mWZb80myr1F78l7xd5wTa+hxfDVrwBiByNexD/fChQtV60EpRTt37hzMW7QO8N6iLzXTZrwHN9PseS/G9o0azyCuKbX12v0/RlriX1q/Mr88nzfU2uJYyDeoaW2ZtYD+Ns5RZv2gtsbreTxxrb3XvUeXIf80Da+hoaGhYUugvfAaGhoaGrYElk4e3XXdwLka1dqaA56quE1Q0tD0RhMCTY3RnMK+1MIFoqpP1d6ohSvw/1kbNbNl/D/74vHSRMzzs880+2amRtKS/T0dxLF9EkPGYp8452tra1XnsU2akVwTz419oInCffGecbiC1FOSpTnNPduTte9tDqWpxWYdUs2luUmPZIuM4l8DTVsG1yl+x998z5iqH+8njp2mRtLEIxmDJibD4/J8R6KLzZJeW89RjWATr+PwgQsXLlT3zmQy0e7duwf3S9yLNZM/zWvRzFYLlfJ+q5kA43f+WyP3xDF5v/kvwwSyZyeffbU5yohe3iPZ8ywiziPN374un818pmVj9jg5Jw5di+Bzc5F42ugiWNSs2TS8hoaGhoYtgaU1vFLKQFLIsmXUHOaWRDNpz1KjJVBKtaS5xmN8Xbdv6cbSZkZlp0RP6SJep+YcrhEBMgqz+2pnK6XSOCckiXg8pAXTiRz/z2BOSr1jznjS0v03amgeo8d18eLFKvFgfX1d58+fHyUGUfPxWloidMCp/0pzjcOajtu1dEnyRRZqUnOcex/GfcB18Hg8Lz4nIy3VSB3cdxmhy+Pz9TjuqPX6fLZHDc/XjWtKskKN5h+vxznICEnx+nEuIvmntnes4TGMILPAcI97frim0lADISWeVpu4prWwK96PcW55P/KcDItm1vGcRAISNUjee5lFwb9xH9dCqLK9yv3FZ2e8n2rZX3ivRFKW59FWnWUyyDQNr6GhoaFhS+CqCsDWAqelOl2bWlX0AdAfQj8I3+AZ9ZYaiaW3zH/APvgca4OUauIxlGJqwfIZHZl+t1p+TGmeTosasa9LiS9qlB4HpVr3nZT2+H8fWws4jb6iLG1bDaUUTSaTgbaRrYslt/3790vqU0vFv9EHYAmempzXn769zIdDSjnHlWlrXFPv9+ycWrqpWgD6WPouhiF4nHG/+Rj/xnV3X71nYpgHNbma5ho1G8+x9x39imfOnJG0UZOmhhy1f8Ia3unTpzf0LUsTxjSF1D7j/mXQM++LMa4Ctc1auNCYRYSg35xzEK9Ha0jGA/A4GLTuc+nDjn2k1csWhZqvLbbP9aEWHPeb9xW1Qs5V3N9er9o8jqFpeA0NDQ0NWwJXpeHxDZ5pF377WrqwVG5pM55DWy99DZbKMnuupYUaO8+/R+nSUiClFJ9riTRKFVEqieOrBaBHabXm9/G4LAFFzcUaniUrt+HAbc5FvJ4lYWuwHg+l9EwatG/G7Dmy0OJ1Mm12M1YVpdjYB2p2ng9/Ty0uginG/JnBxbH/mQ9LmrMObXmIa8sEyUzb5d+zBNDcb5RQvT9if6hRkeGX7T9Ky7wnybiLa0b/L6051Pj5f2m+TtSus/RQPubSpUtVFqETGtDXFS0U9CnV+hTXheueacsRGauZ6z/GYmRCZD7v+CzL2qk9sxiMLc2fc7R6+Xs+l6T53vH9T/+b7x9auOJc+L6l9cNzE/vI37g3My3O52c+yM3QNLyGhoaGhi2BpTQ829It+fJtH+G3rhl11hz8vZMHS/O3PNMjuf2x1GOWRIwawzOTLv0bpTSOIYJpyTJJTtoo+fg3j8Nam/+6P9G/wFgj2rr919pQvJ59XfT7WNOj5B/H5fWyNGiNsuY7iNfZjG22trY2SD9kaTP2k2nC6HvINC7uRaYkyvZqLU2T97f3aLQOuJ24f7PrZexTakubJS+XhgxLg9p6PMfXo7brv54z3ztR4qaGQt+41yKuG9nH7pv3tyX+6Kunn3kM3jv0qUWrSy0FG+M0s7hP731qgfTPxb3v9afvLmODGn4G+txaMudFkjq7r/RdxnXxfcRjjcxixnnks7LGwJSG/j9aqbz+8Xq03nk+6feN9zx9j4smjpaahtfQ0NDQsEWwlIa3srKivXv3ziS6TDqjhOC3sbU4MsSkeQFZZvmoxb5FCcgaiH+z1EqNMpNE3DdK1llmAvpSKHFTsosSNyVHH0NJO2Of0kdDCcvSYpTs6Cu0tMT4qChxuw9u3xKxpfOsj5Rut23bNmpP77puNmbPfYznyrQVab5eXusIFxetxUPSNxC1Ws8ZY/bop4twu/SljmXa8RipKVAbZRxY7Hct7tMScpyzmh/O4/H4jh07NhifQW2b/qYYC0lNghoYfUZxjBlbl3DSej87/Dyw5hDH77F6zt3PjAFL36bPoT/Mbcf9QP+7r+t7zYhaFe9d33/cZxkrmEmwa0ne47lkOtaYy1nB2Vp2KzLzYwHnWnw2fYjROsICtrZO8fmW3Yu81xdB0/AaGhoaGrYE2guvoaGhoWFLYGmT5o033jhT201/jyYYBgdbrWaF66h6P/LII31nENztY0hqiWYJtseA7SxQ1qYEmmTpQI20ZY/R7dGU5LkwoqmO5lY67Gv1+eJvPpdUaq+F510amiVoos3MrobXyeO55ZZbJM3NEdEMytCCsSSupJWTIi8NHfMMxfD50bxB5zZJMUxhFU2aNu1EspA0Xn+RpCGaI7NkDB4XQ1toNuL3sd8eu8fnfWCTUkYt91h9jr/3fPq+i/PpY5iyjOEkx48fn53DdH6+B2lmzBKqZ6nxiK7rdOnSpdk4fJ14j/FZ5OcPCVDRdHrzzTdvuI7braXkOnny5OxYkjqYni4LTzFqtfR8TiS8eBweq+fNptqDBw9KGpqPpfne8HiYqs/7ILqXGHJWS8bttuKeZpJ398X3Wfas9N5zX32O3VxZPcNFErTX0DS8hoaGhoYtgaXDEuIbnaQSaS552Alpxzjp41l1b39naWaRAEM61X1sTXqX5pItgxwtTWTB3JZE2J6lDUp4UUqrpZ1icHRWwsjtk6LvORorvcLrk8wQUavUbVKIpeEoDTJsZNeuXaMa3o4dO2ZjdZ+yhLwkW1A7i+QVt0eNjhIoiSnxGM9pTYuO8G9MEu4+Z1XEaymqSEDJEhCQpMDrZBYMVmUnocpjYNVxaa7he2782WtsDT/ugwMHDmxoz1YB//UaRU3Sc+1xnD17tiq5l1K0srIyO9Z9iPeYtUrf9/5LYlpWWozaufvJpAuRkMJjuD5j5YFq1eRNwonPGLfr56rXwRqQLTtMsRe/c//5TGR4WZwflnjy3vVe8TijRulz3Ucmns8sJtT+SIpyW35mS8Pn2VjicaJpeA0NDQ0NWwJLaXjbtm3TgQMHBn6TSFG2JEApjMlIM2mOCZ8ZMMnExrFdhhawIGLUQi3hkB7MNDZZGiImnrakygDtLBjS4+P16buU5tKe55YSPX0D8XpMbOvPlpIstUd/FinTTJLN9Efx2Jgqq6bhXblyRadOnUp9uAb9OfaZeI6zfhveK543SvRjCbMZgkGLQ9RmTpw4IWmoHVGLjxIpEwzUEiyMlTmpFRb1GOL9xMTWDCOyVO75zPww9KNS245zwnCRD33oQxva8rFRI6Nv2lpihitXrujkyZOz/mYJAV74whduGDvLWVETj2P0sZ5Ln+PnArVdab7u1ALpY4v3qefyIz7iIzYcy/sy+sn9m+8Fa3ZM3OA9HJ9htUTWbsttR821Fl7jcbpv2V6lP9tzzqD/OI+03ngv+p659dZbN4whHhvvp1YAtqGhoaGhIWApDW/79u06cOCA3vOe90jKmUGWMPwWr5WX91s//t9SC1MjWVqi/0eaS428XsbKMiwtHD16dMP3lryypNi+JksI2cdl5hF9inEcZEnVii3GfrsP1iw8B2TERfjaTGHEeY6Bxz6W0nhM7kvQ57kIDh06JGk+X1mBTBYE9rGZJu65tI/Rn8mIjIw+g4Vw6WP12DNt3VKx27C07DmJUjrbJQtwrNQTLRiXMiwTAAAgAElEQVQMimZfY3veq5TSWWIoSvhk8ho+x/MbmXbUpn3dhx9+WNIw+YQ09Gfu3bu3Gnx++fJlnThxYqCpmKEY4TFRA88sStR8+Zds7qwQMFmsPDYrzMxA/Yceemg2Tin3V/le9VqRheq/0frhY91X7xGWRYt7h9wA7wOzcnnPZAk26LPzGmRJxD1W+r5Z0ii+Y3jtRdLTGU3Da2hoaGjYEli6PNBkMhloKFFCMChRWcqz9JlJpP5racKSj9lemSZBTYcxRpGBZtx+++2S5tKQP1vDswQU424sfVmj82dLupSmx0rmMKaK7LP4f2rMLLfkttz3CM+554KFdq1txfH4WMYk+XOU0j32yMaqMe2clo4sr8z3aHgd2O/oM7aUT79IjfkWfXiM87Q0S/ZuTGHlOWWcqaVXpr+ShhoQkymPpdXyvmIpF1pDstg93wtMqG4p3ufG+XSffK7XwO1nbEDfEywZk/naDPchsmjH/DBra2uDFFVRaydHgL6hLOG0/+8xen7I+MyKxzLZutfUx/resGUm/p++Q8+P5ys+s+Lek4YMcq8X49iy6/gczxvZ6dKc9elzfezznvc8SfN94TWPz3FyIMgSzlJD+nxrox6vx+G5se9Smq/bgw8+OBtX8+E1NDQ0NDQELB2Ht3PnzgHbML5da2xJssuiJuBjrdn5WEsVPtZv+cgKs1TJBL1jMTv0qdx2222S5lpC5iuiT4ixYmPlghirxzIZPjZKZ/6/+2Ap1Gw2X89acOyfz7G2ZgmL0mGUJH29LCZQmkufWQJnr8uZM2dGsyC4zEvsY9TqPC/0QRmWpmOGDH9nCdG+Ds+T58Xj8XxJcwaY94avbykzY8Sy7ExmQZByDY++FM8BmY+ZT5xsSSbmjfPOe43ZK4wsNtHj++AHP7jh+v7eVo+M9czsM1zrGF/ouY5J5cfKvEwmk0HsV5b1x2Mie9LnRJ+3tRSPzb95vT1ffi7FUmT0dZNp7X5EKwr9Vd6zHof7E+MVWQrH+50s0IwJywwrzA7F5NLxO+9r3++2pLivHm8cn8d+5513SprvlXvuuUfS/H6O+4DJsb1OHp/HE+9Ba89HjhyR1JdIG7OSRDQNr6GhoaFhS2ApDW9tbU2PPfbY7E1Nn5ePkYal4ulPiG9kS2eWqFjM8P7775c0lyaihH/48GFJc0mBRU5pY5fm0rnbY7xN5odjTAslfYPsojhmg/nhPM6YD5MsRkvclqJc+NXnRH+jr/eBD3xA0tzW/aIXvUjSXJLNtGzGdXncWcFOa9Uxa8pYppXt27fPxup2ooZE5p7n3/31/oi+FI/VsV9mBnpvktGVFVclg9N7hZpf1kfvL18vK3/l9pmPlT5EI34ma83zxTmKfhFr4/SXM4aUGV+koV+HuUmtFT/wwAOzcxgfS6mdBValoY9wbW2tquFdvnxZDz300MCyFPcOfc5uixlJotXAx3i9WezUfTObOz7nfN/7O/r0GQsrzbkI9LvZt+e9m/nyyQolgziLi+N60wfq9Yj3rJ+17373uzf02fPm/ljju++++2bneq45j5577jtpbolhvCxzxkYwC8yZM2cWZmo2Da+hoaGhYUugvfAaGhoaGrYEljJprq+v64knnpip11ZRo8mO1aJt+rDD1uapaAp88YtfLGmuEts8ZxXfprm7775b0kZzIUsGWY23udLmvBgoazXdJj6bLGwedd+i2ZWBpB6fx0VzVTzXZggm0GZZlUhWsGnWc2JTkufE/fE50VRj57ePZXkYm5ljwLH7T5MmTWkxNMQmBc8tzbvEysrKzBTj/sZzfG3/ZQLZzATHUkcMkWFSWZuC429McMDrZMluPbfezzaze+/GPnqeOA63RbJHlvCAaZrYx2hu87E2F9Gk6bXkWGIfvEdq6f3iunFf18xRWViR9+/ly5erJs21tTWdOnVKd91114axRqJWnDNpvh4kosT9YHKFx2/znE2crBSekdg8Vt9z9957r6T5vMUxec1MtvBc+v5xP+J1/Hzx/e859TOllsQiXtsmbo+X+ywS0d73vvdJmrsISDjydWyGjc8599F99jFMjhFNtm7XJlKf6/n0Poz3k8/3uM6cOTNwG9XQNLyGhoaGhi2BpTS8Uoomk8mgMGf29rUmZEnEkpxDAKxlSXNpzO2QcPBxH/dxkuZSU9SELBFYamHhV0sOkYBiajrLZzCZdLwOwyyMGpklShzWHNxX98kSOB3CcU7c7kte8hJJc8krI0cYXp+P/MiP3DAXnj9fJ0qfTJkWE0LH8UTCEANbr7/++lF6cNd1g3CRMU3IqCVBjv11CAtLrlC6jMQJX4fhGh5DllbNY3WyApbIinvGsDZg5z2JR4bXNNLfGXTPwFyPJxJ5PGZqZ15jhkNkRUNJIGPx4qgpUVN1ux6P5yimzIp7RurnvEZ4WllZ0f79+2fX8XMnkh/cH881tVsSKaT5c8CaiMdGcofnK66FtTKvpefNmkmW6ICJDTxPtgr4+pG8ZlCj8zF+VjLFYhyf7zFqZVkydo/Hz6ha+IXXIN5fvp7Xwsf4e183WgcYMmOrk8kz7mNWTs79fuyxx1p5oIaGhoaGhoirSi1mqcWSSrSlk5IcNTlpmNZImksA1NJsc2bJj6gVMKktNS1SYz2G2A7LwZDOG9thILCvZ0kkoz9bMmTwOmnjmcTKZMHWZDjP8XrWwuhvZPHSTDNnGiX69rL0Su7/ddddVy1x47AEFurNyqf4GjUtNn5m2Z9aYuYsqbfBEkje157TKKX72gxw5hji99TKuJ/tm6YkLA2lZY7XbWd9ZGonpvfjHot99DwySJlaSgTTQXEt4n5j+NJYWMKuXbv00R/90bP94HmKfaC1hnPAlIPS3L/ve5f+UN438R7zsfTDe24zmjwD8q3ZuW9cH2lYtNWfuf4eQ1Z4mqV3eP/HsByf7+eYj7GGz/s23os+xtfxM4XFcmMfWcCY1gFrznFvMDH4448/PprwIqJpeA0NDQ0NWwJLaXhd1+nKlSsz6YJBuNJQirCN2Z/p85I2lmqX5hKB3+CUoqKWYYmOKbGYZDdKZ+6TpSJKdFkpepYOsQ2fhWA9hoxJ6nbJzvJ4olTItFC1oGxqsrEPlnpYLJJaYzyH5T88Ln8fpWqu6VhqKCctsNSXafpMbmswUD/6AJgmrhbkb0RfLkvssB9Z+RFqwrxelmSbDEGmljK7jam/Yv9rBU25Z+Nv9BVxbd332Ff+xiLC/j3uAwbSs4gnkwrHdmNR2rECuJPJZKbZ2Y8d94ktPJ5/+ivJLYjgPcZ5yvY1Gbc1f3DUPLzevu/NDvexnq+4p+jPdl88HiYgj885Fif2b2QyRx8u/ZfWPmts7fgMYVkvam/Zs9998lyQR+Hrxfs4Bpz7umPPnoim4TU0NDQ0bAkszdLcvn37TKq2VBWlJsZSUXthzFE81rBkQDu8Ec+tsSaZPDYrGmvthRKIpYqMYUXJlJJcVs7CEo/b83WZPDqy8zzHTC3k8XhePf6o4cVyPbF9luSJUjp9Ngb9MnHufWxMXVRj2q2vr+vChQsDLSeL52LZGtrnoyZAnwmlcxapjRoepX2uYVbkkholtaksLR01YbfBgqnuYxaHx1RvLGyasV1rWhrj5aJGQWsLmZeZhkR2q7UD+puyBNdx7LW9s7a2ptOnTw/iIuM9XUuFx9+jtkn2L1mttBJlxU59jO+BqHVwzPbZWcPzXJoRydJGsW/cbx47GauZpcfPEGvGNR6ANF8770X6CMl2zdaslqKRfY/X4b7zuLyOWXxh9pzeDE3Da2hoaGjYEljah3fx4sXZm5v26whLCpSOqIHF3wz6nihFxM+UJijpsciqNMwQYwmB2me8Dn2THjsLv2Y+DkoglLDpO4h9oF+TPkv3MWpelKRqcx8lLf/G2CP7SZi0OBvzZkUY19fXZ+1npUmotVJjyLQZg76TLONN7VyCmVAyXy59aZ4f/x79zEx67DX0se5TpoV6T9J3wj0U9zf9vUyozATuY4nOqdGSrRz7zxhIj9dWgiwbRqY9EVeuXNHp06dn7ZJDIM3XwZpIjdkb++1+1cqdUeOLe4dMXltnmBkkMr2t2flcs6npf4tWD2am8v1IDZN9loYMX4/d/jL66aS5VcXt+BjHjJLhG5/jZG5mMcLx3AhaZMh3iM8qPjcX9d9JTcNraGhoaNgiaC+8hoaGhoYtgaVJKzt27BiYUaIJhg5fJnXO6pIxGDm2Jw2JMNEsQQIAzazua0Yi8LH+bLU5o6vTAUuzEOvJxTREPDczAfN7mxLorM6IFPEa8RjSghlgHcfH2li1mlnR3GIHfY3wErG+vq6LFy8OEnNnZmOOmbT3zIRBEybHONa3mgnV6xXN0zQxknzhc6K5jd/R1EjiU9yrpNl7X9HknIUG0fxJcxRDXOJ4aHZlX+MaMESGAe1ZuAGvPWaWWl9f30BCyYK7mW7K42Cqv9gXmxu9J73OJJPRvBbbZ0A+w0QiEc3HMEjezx1/H/cqza5ZwoY4zsxkS1eNyStOChLnkaFgvv89J7xuvB5/I+EpWwOmn8sqt0sbn6fur829Z8+ebanFGhoaGhoaIpbW8LZt2zagz8aUWZSKSDSgAz1+ZymCKbiMTLqsJXVmEGSseE7nqqUwahJZsKPPpQRCSThqLm7f0jg1vYxgwYTPJKuwX/F6NZIPpaAoaVFTtdTrvmeaC6nJV65c2bTEC4kBcR49Vgb5+5qsah37W7Mo8G825lppJ38fE/Ja0rQmwRI4bEuqazG0dmT7juVZnBqLCcDjPePr8b5iouuMXOD1oHTO/R8tCtSiqcGS3BQRE1nX9o6fOyZ9MGQnjolkIhLgMg2PyRXc1liyjFq5MCZPiPsjEpmkuTbFdG5xPbjnGbrCOY2f3a4JJ0z270TXER6H++p9xWcy94M03AckEFLrjnA7XlOW/YrPPa9PfEZuRpib9XGhoxoaGhoaGp7lWDosYW1tbZQeTr8L004xrU08tuZjYALb+Dan38O/WXqitCsNC1TWAiQjrH1QsmLKpcyWTj8PS8i47YxaTsmFx2Y+UfpMqCFlWnFNYnWfLSVmKaWin3Qs8PzSpUszv5/pz1EipWRNDS/Tnhk6wL1DjS/zOdTOtbQZ/TD0ETGkIPOL0SdMjW/sfvIcsDSW+2EpPUvCTQmbfrgs/RXnjX7gMVBD472YaXBZ2jFiMplodXV1ULg2ak8MXWHYRhZ47v4xFRbXi88faT7/1P6s2WXXM7yvSP0f03zIVaBfMVsnf8cEDr4Hs9RpvO+pfZJ/kIVS8T4ysucOEwSwDBG173gdr+0NN9wwSwS+GZqG19DQ0NCwJbCUhme2lN/6TAQsDaVWf6bGF23CDNampMvP8W3P4EMmHXWi6AimyaoxPaOUznRGLJ7IMcQAUBYudd8YhJ2lBaol1K1p0PE6HB8LtsbrMcAzK9YobfSbkBEb084RKysr2rdv38wPk6WbYho1rlPG0qQ/lD40fo7zSYmUPk77POKYa2nHONfRX8PkxDVNi+OM7VGTdJv26UV/DJM3M92akc2Jj2VwNy0ZEfSpeC+xPEzcG7SYjBUOXllZ0fXXXz87Niu3xcByBjJnabT47MiSOEh5kDX3CgPCGRwtDbUzJlowIt/Ax9Ifavh7txX7xRSGZjUypWIWPG5QA2PawjGfvkFNOc6vtfUaKzxj7tOvvH///tH9s6EvCx3V0NDQ0NDwLMdVlQfyG5sJU6VhDBOl1kyb8f9ZRDFLRRTbjLDGZanc0m1mH6fUyri/zN9DTcsStiWuWnHFeCzH5XiYO+64Q9JGyY7MJsYKsfRL5v9jYlbGVmXzS7+CkZXpYCzYWBHPyWSiHTt2zPpGTS+OmVomC4pGaY6aB5l28fo8lxo9fU7eU9FXxNRVZC16zuNaev2pSdRKPEU/CX0z9Ol5TqKf8dixY5Lm1g2yqcd8opulXst81NSMasmqM+0/K5ibYdu2bXrOc54jSXrve98raSMfwP/3+izSLuP5qLVzz2SWBSZz5/XiujCGkloJtZ14TSZzZqmvsfSO9OG6jRMnTkjKE+s7+b3vbc4J09RlIEM6Y1l73vw3zpeUvy987KFDh2Z9aOWBGhoaGhoaApbS8CaTiXbt2jXzF/ht7MKM0txO7KKW9PPQjh3/T5aeUStcKQ01D2cPoFQd/TD+f610jCWIeB36YViUljFNUWqiJsT4P5cNya7HjAdkHWYZEMj6o9bJNuLYyf4aKwvDpLtjcXhmadK3lrFneU3OccbYyvxRcTw8Xhr6dbyXWDgz2ztM3lsrMRNRYzzy+6x4sNujhkmtLRsPNTnGXEatjky6ms8mnsNEyWSw+nPU5jM/cg1d1+nChQuzfebyNg888MDsGGvU/murU+3+jP3LyjJF0E/G/8dz+byxJSNeh34+syj5zJLmWh/vF+4LWn6k+b5yX91HP6NZ2kqa+4QZ8+g+0qeWMXzJjCefI+5/72cWVuY9ErVeWy48N8ePH18oKbzUNLyGhoaGhi2C9sJraGhoaNgSWJq0cvny5VkQsh2b0aRpM4oJGazjxMSybjd+xxRITDCaJRx2n6hqZ9WR3UeDFbatMkcyjlVsJutlgKvNOll6NJolbH7JTIw0B9jEwBRGWXJkBv/TtMkA9Dg+n8vrZEQehg/QzBNRStHKysogjCML0CfNnSbajPBEUykd5pn5znvCpmWSVLK6ge4jne3eO97vWcAxK6pndRCljXvH/7eJ2SYnmn2jWYqJi2mGJOEqzmct3GUsHZnNUTRd0RwaQfP0rl27Riuenzt3bjaeLIDZ96qfA/7LxPBj6cEYAkKTZ5bSjvXwxhLrk7jHoO7M5Mfgca4lqf4xjMD72SZUmwBt0nRb3lOxPRJ4TAZkEHs0U3M/072RpWjjM4nPTb9jMpPlkSNHJPVz3EgrDQ0NDQ0NAUtpeGtrazpz5syAuGGCijQMVKxJjFHDq6W+yipAx+MjmMyUTvYoiVj6Y7Cov8+kdBJNfC6lFlN9s+BhBppbwrPEFaUYlspxG06h43nOgmVJUojSP/tGUHpm0t1MM4+aQk1KdwJgj8sSd9wvtYrzDOeI5B6SRRjawvRnWRolVitn4tp4PVohfB1Lz94XcY8yNRUd8tQ+LUXHY71XPE4mrY7Jdalpuf+2EpD+HueEVcW5/7JgZVoD2HeG2ETUSmVFmLTitfbYozbgNXz44YclDZ8RWfkYjrG2LtZg495mCq5aKEO8rrUVhky47yYDxtSDXiumKvPzzWPwGkdrm59F7ouf09SisrAUErbcN483s2D4Oyac5rM47gNqwkwblpGb3Df/jYlPNkPT8BoaGhoatgSWTi32+OOPbyi8J21MP8WUQQalikyyoyZXC9Bkn+J16ffx5xik6v77O59rScHSRJQc6D+olfgxolbgsTN1GrXSTOv1X1KJqWnE+eZ16OfLpE8G6HMes7RXRuaDzGAtLx6bFVelD2Cs2C3bqRXGzMIqGELCsAhfJ2qh3hOW8Hl9+zqyuaW/l32ixizN953/MlwkS9dk0M9EbTe7v7J1icf6+rGPnDeDvvcM9mOfP3++WsTTSeu5d2K/aT3hNTMfHn2PPHcsqLpWNofaRuyjNTy37zW19pQVq2Zw+E033SRpbo3yc8Bj8fHZOGwd8vPac+FnS7xOLZyMiHPExPNMsJD5ctkOC2xnliUfEwsdj1mtIpqG19DQ0NCwJbA0S3N9fX0QEJz5qyitkXmXSZW1tFD0U0VJkrZsSyLWPjOpiX4pt2dWU8bs9P+ZfspShu3uLDES+8AyQZ4jS3hRWmRiWX+m1uZzorbAgFKfQ+k8SsEZYy9eP9MGWFZpTJJ3iRfPMdOIxXaovVDai2ByaCbbHUs8XWPY0scSr0t/H9c0W3+muWNfKd1GFrF/8x4xo45M0iiB0/qQjSO2Hf0xtYTq1JDifiMz0agFcse+MdlzBrPDrYm4L5EVXGNlM0H3WAkephx0+1mJMWum9DGRARtBDZLlyfzZiSikuVbIlHLeU2SURg2T+/vo0aOShr5bp+iK7TNlIpN/ZIHnTO/HcfG9Ef9PhnctDV9sj1a9RdA0vIaGhoaGLYGlU4vt3LlzJhmSoRaRJTXOfne7EZTCxtJb0Rfovjkux5K3bd/S3N7t9mxLt/3bUk2U6CjJeVyWuKm5Zv44t+e+WJJ3X7NEym6H5Yjo78piqcjgYjqsCEphZOdRY+L8SL0kOZY8eu/evYNUcHEfuH+UFBeJsan5J7luGbswMhyljb6B2IY0X+/jx49v6BvTRmVMO/+1dE5GmvuR+UW4V+jvi310XyztZ7F6cU7iPUpmb016zmI4yTblXoptxb3u69WeFevr6zp37pzuuusuSfnesYZArYlaRbwG++C9w3Re1Jjj9Ti2LGbP8POFMXuLlLZhSSGykTPeQW3+vYd8jv2Bsd/eo74e+5r51xlbyzngfRbbG/Pfxr7GcWSxgJuhaXgNDQ0NDVsCS7M0L168OEhymrHm/HanVMlkp9IwrqaWLDqLySDTjmWCrM1lkipjd3yux8fip/E69FtZQrEUE6934MABScNitNRcsqTY9AnQL5cViqW0RP9b5sOjnzQrgstzsgwRYxre6urqbE6tqWYFJOnL49plRVwpxXLM1KKkYdyf++b1shQdi6vSz2Jp3ddjceR4TbIWa4m6IzxPbs/joB8m0/AYB+U2aKGJ9y9Zuotky2CMLY/JNBjGuO3cubO6d1yWzLAvL94vtLDUio7GsdJfxecL24o+dmqBboPJ3uOaUrPjuRnb2fvJViG36+sw5jb2kVmfrMnZ/+i2YikrMpR5ffoS4/iYPYecDPcjrsFmRZjpo5SGcZNjliWiaXgNDQ0NDVsCS2daefTRRwdlbsYYVpmfx20ZzCHHDA38HG3p1Hx4rKWMmBfTfbJ0aW0wGy/7Tf8B2V+WOuOc0Kfi6/mYaEPn9ciGomaZMfBqjMuMWWXUipBSAovXYfaSzWzppZQBmzWuJTUCFn8cK2dTYxfWLADxGK/LzTffLEk6ePDghj5mzFRq+syLGGP3GEvHvKxcrziP1FSpbYxlEKGfKWO8sa8GrSzcB3Fv8TeOh8zieKwtGaWUTTU8a9rWwCN3gBlpmIN0kbJkfFbRhxf9srXcvdQaI/vQhZ69z3x9lnyK1gFfk35ExthlfAoyie+8884N12c8oDQst8b7lSzNuA/cb+5VImqFLM3E55n3ZvbMsgbbcmk2NDQ0NDQA7YXX0NDQ0LAlsDRp5cKFC4Mg7KzKLk2KNSdy/D/NgUwLxgTB0jDlkVVtExAy1Ztquc0TPiYrc8OgUdJpfS6dy/FY98mUdifzpclTGgaLM6SAJJNoQq2lB6vRx7M5YUBzZp6gWe/y5cujFc/j3snIFhwbnd6Z6Zz7imP1/GWppUjBJonA189MWUxpF6u+ey4M98HmmVqoRJa+7ZZbbpE0N+MdO3Zsw3iy8lAkqxgkNpBkEvtSM0dlJIJa2imW18nu22girlHTSynavn37zNzG8jbSMAGF55/XyWj0JGgx1Mf3ZXQ9kEzmthg+FK/nfr/whS+UNH9u2hRo8lw0aZIcUwvVYVKDCJsw3RZNmfFZxWc7n2/e52PpBEkg8/5nIH/WDolbWZiXXULRjLtIaIfUNLyGhoaGhi2CpVOLXbp0aaahWOqMYMJVpn7KAkBj+9IwtMESQUZdpcbI8jNG1EJJfqkVGo3SBrUPSoUkQER6cCz3Is0lKgavZ0QASkvsa5YGjcGvLHdTk6TjeKgdUDuM/3dfL1y4MNr2+vr6TEonKSJ+R82nFgISj+XYamEcEZSWWfA1I5EwaS+d624zrr/XgWm5SETwdWIyX0vlPtcUcmp22TwaNa0705hrqbi41rFNhrvw3sho/SQEjSWP9vVIcIhrWksDRqp8ZgnhvmNQt9cgavrsgz/bauM9FEkkXju3471kQl0WyuV58viYNpAWtBhiwLlhSaMs7aLX1ZoqLRYkPmVhSnxWcT9mxYqZEpBB7FnhZj9rb7rppqbhNTQ0NDQ0RCztw3viiSdmb3u/YaNUwcBySpGZT83YrLSHpaWMyk7NixJfDD2w9MLyGNY+stJFbs/+HtvZ/dd9d1txfJb62Fe3ZekkSylV88PQrzWmedX8jlkoQ1YoNZ6TBftGyXSMHlxKGWifmVTPPeRzFglpobZRkyBju9T0KPlHyd7/t3XDa+g19pxEf4/3iPex94rbYHmqqFF6Lnyukxcw5VwEx0OJm/uQySHidWta9tg610pJLZMCaqxd36fR1850gNRIsmK3nAdq9GOFSxmm5DVmm/FZQl4BC08zqDuOkYmS7X9z32xFcrLp+Js1uiNHjmzoY6alMZ0eU8zVLFxZHw2fw9Jmccz0edI6EMGA+X379jUNr6GhoaGhIWIpDc8FPGm3zvxjfnNTk8tssrWyMPSHkE0Xr8frktWYaYX02dRSMsX+0k/hvtg+zrJE8Xr+6+tYW6B2EvtP/2WtjEbGfKKm5z6NSfZk2XKuokbGtF1jLE1flyy6mL6NzMOaFhv7QG285oPMtDWut/tGn030PVmD92+WqCnhR6adpXGWEqLvLrN6uD1rf7wHmPBAqvvQ6G8cSxixmf80u+f5mdpAJq3HBNfZ+N3Ozp07Z1YaM6Gj35psvpovKF6D1hKyglk+LKalI4vac0otMV6PlhWyzs2mzAoOGz6XyZ1tLYj73vNF5iiTR2dsV+9vlszinGWl4WqM0uzZT02ZrPSs4LDvz6jVjhWXjWgaXkNDQ0PDlsDSGt727dtH0/VQamSiYktlUUujpkgfgN/olmaiNEsphRqJpZoohbJsSo1FFLUHS+mUdJlWi+Xt4zE19mFmD/eYKSX7OvSBRWmXffO5LM+R+TMy/2X8PUpaY3647PzHH3+8Gr8o1UuPUKvOSrxYC2M6LV4vamuUwi3Vug22KWKJ0ekAACAASURBVA0LVvoY7ykm7JXmkrv3la0APjbT0g1qT2QDR4Ysz2F8H8u2eM9k/o/N/L7Z3iETtpaEWRr6T8cwmUy0a9eumWZi303UhDa7NrXp2B/6nvyX/vl4j/kZxOK3XMu4pizTRD+j/bPZPGWldeL4Mna6++hzvb99DNnbsf+0dnh+mX4tY97SR+n2s7JOZMjymUWfbGzXf1vy6IaGhoaGBmDpArCrq6szSYusM2kuRdDWT79RlOxqEqLbYptRyvA5ZPnQP5dJCEZMQhr7Gq9jicMJbKmtkUmaabA1phOlm3h+LXMNpZyo9TIpLeck891QUqW2kWlx1nJiYuuaxN51ndbX1weSWMYUpZRMdle8Bv1vbHeRWDDGbtWSmUvzeTIrk1JsVjiVUrH9frX4zzi+mkWB/qasCLPX35oKtfexJL/U6DiGzILBc5mNJgMLD2cwd4D++mzvMIkzj42McjK6DVppsuw5fgaywKz3F+Mnpfkzysd4XZjoOsZhsrQOkzi7r/fff7+kjb5Vt++96nNYRDbC68EyVG6LvtC4D5x0nRmYmEQ87hc+85lpJWNmu09RY17EyiQ1Da+hoaGhYYugvfAaGhoaGrYEliat7NixY1BPLjpUrY6zui1Nf5kzl5RemjKzmk82MZK+bVXY14sqMR3OJJFkaahIcMjqucW+ZTXU6MjOiBRGjeJbowVHer9NBjTzug3TleMakDDEispZUCxrc5VSqkmH3Q+axiLcP6b2Yoq5zOlNYgtNWZn5jiZlVhc3IjXcv9Ex788ZEYCmHK+3+8SwhdhHpoWqBX5nhJda2E2tZpw0DFVhAuis9iFNmLUwoyytF1MAZvBzx/0l2SNes5aAIgtL4G+8T3ivZfdpLV1fllaL5mmbGkm08jMtHus++tgs/EXaOJ+eb6cuZDrCLJmz98bJkyc3tMuUiQ6Wj7X03Ee6WUisiXvMx9BU7zW2WT6uG+/xRlppaGhoaGgAliat7Nq1ayYZmF6dUeJryY6NsVIvDGyn5hWvZ6nBzmh/toTCtFRSPSCW2kKkPTN5L1MHsdpvBKU/JtgmbVwalufxnJOskBF+MqKONCS6eP3iOCixktoepVxK1aWUavCw9w6DecfICpT2suTRlBCZiolWg2gdIG2bGjEJV9IwtVdtn8d5IqWbmmuNpBP7liU0j32O94T/b2KFx8EUZiRYSMOq7Fwn9zUG8LPqdq3US1xratc7duyo7h0fR+JblkyCoVJcn9iHbD9Jw+BratnZGGvEpyy0ieEpJKJlKcwcbE+rl587YwQr7wO3G+n80sb97WBuj8cWO2q57kckAZGw5X0Yn6PSRpIQA/b913PNfRfbtVXr4sWLTcNraGhoaGiIWErD2759u2677baZFHD48GFJG30cTJtEO3iWVLqWLJh+iyytESV4BtNaMopSBjUqfmayX2ku+bjfli4YmEnpTZpLdpaELQFRmsoSQNv+bpu5JSuW+Ihz4nmjBEcKdRYawvQ/pO5HzYWB4mOpxbZv365Dhw4NtJ2omT700EMbzqklzs78sZk/MfaX6yUNtUC35bXjZ0l68MEHJc0lW1of3FaUfP2b++D9wLRRDA2R5nuR2g2Do2MSafeXPilqMpyjOB6mQaPVIGou9CtxLrJyPvRrjvl+u67boF1lmonhdjy3HHvc89QUqIFTa4v3mNeXFhEGs9tPJ83X3WtFC4P3ZrQA8XnG8AD6neP9Z199zdJD/580Xxf3hWFWTP4QNX0+x2pl3eJaMzEA3w/ZPU8f3traWtPwGhoaGhoaIpZmaU4mk5m2YckuSs0f+tCHJOWJiaWNb+VZJyAlW2qhjyjz+1hKIdPJ3zNhbmynJhUwIFSaSziWnlmOhOVHopRWC5glOzQy3zx/tUS/TBMVtSFLkFm7cfzxe6ZZY2JoS7RZaQ+v27lz56oBoGTaWTKMUrq12dreiW0RNYuCr2OJP/pJua+8j2vFPaW5xE3rA9chrj+lY+8vWjSYQFearz/ZugZ9u9JwL/pcz0Vk9BIsSmuwPFRWpJQ+cEr4GUsz3ou1+3EymWj37t0DP0/UvJmInUHWHEfsH9P10fITtRiD9yetN1nyCs+P9znb4rzF/nK+fAy5A/HeoEWBCc/t24vXI/ubKdnou457iWkc6RP3+DJfKJ+JtYQb0jAIf1HtTmoaXkNDQ0PDFsFVxeHVCiVKQ18KJdKMVRh9QLE9MsXc1okTJ2bnUpOrpb7JYnbIqPP39vtlqXfuvvtuSXP/G+OJLL2YzSfNNQf/Ri3IUmjsI31olpbo+7CElWkhtI8z4XCWhJnlYLwGYynToiZUk7ZWVla0b9++QYxd7ANj9KgBs1SJNNQGqb2PJSmmds7Cxv7s/SANU5SxjUzStmTNfec5p3Uii1Nimi7upcw/xn3GJOxMZhzHTO2H91kE/Tq1VGNZH+O+re0dP3fIJI4+drLAPW+MOcxKS1GrJQM70/DIkrS/zGOw9hT9ZJ5/7y/2kQzm+H9b1Vg+h7FvY3Ps+XIpoSwujrHBZPYyzjiLM7RGyfjGLGE8We5si4zSeI6xe/fuUR9wRNPwGhoaGhq2BK4qefRYXJmlFUreZPtlMTQ8lnEcfus//PDDs2NZ4JHMN1+P38d2yRDKMjlYk2K8FbPNWLLL/GOeJ/pQsmSunEe3H1lf0jBBdOwjs03QDxBBaZeZV+jX4P/dRi2WamVlRTfccMNMEiarNV6bfaKvMCIrGeTrSUPtPSseXMsy4+8zZqfjk+jroDYXv6P/mlpzFv/J5Mr0FTHzSzyH/kxqlFlpIbIaaW3J4st8PrVRSt1x/XjMWPJfa3jutzWI6GOvlVHKCg0bXhfGp9IvSkZmbJdr5/vfyJJVU2tmvF/UXJmthsxit2+LUwStW14fn+P9HRm+zMLkY+lDZgateB36JMmuz3gA5DnYz+h7wf2Shj7jG264oWl4DQ0NDQ0NEUtpeOvr67p48eJAWooSiaUVSmEsfZJJS9bCKF2a1WRJMuZvs0RgacnMLUsk7msW48bMB5SworRGNhTt3/QrRInE42AsDf0KUdvxtY8cOSJpmIHA0lqmMdNvxTgfasURZIMyNihKUrTNj9nSXTzYY84KWnr9jx07JmlYZJXxZXGMlgQZF+nfs7EyDs1+V/Yxak/0dbK0U+b3ZT5Sfm+wUKY030/0u9K/nWlI3HceFy0aUTsiy5FMu0wrZNynQYZk1resXFOGyWQymy9L/2NsVpbr8eeMHU72NDkK3pdREzJoLWFmkkxb89zSd+e+Zr78Ws5Y3v9xPuljp+WH/mdpeE8z44k/U8PN5oT7PvNRUtPPCvXGNuJctAKwDQ0NDQ0NFbQXXkNDQ0PDlsBSJk2pV7dZ9iGaMmgOsqrqc0hVlYYEBtKmrbYznZb7E69Tc15ngbI18x1TDcV2qdLTLJKFGHBct9xyy4b2fWw0odp8xzAEUqdJh48gzT2rNm8w9IMOb8/VWOLmyWQyalroum5gto7rwlRrHjuD1LMQE5pvGJjL46WhScd9I/EknlOrgp1Rrg2aGz1HXmMSobI5ZIJmUuej6cz9ZUV69tXfxwBulhRioLn/xnll2jEGnGfpw7jPxghPXdfp4sWLs/1hs2EcM9ONMTWWEauJ857l84BJJGL/fK8eP358wzke8wMPPLDh3Ngeq7N7Dd1mVsmd6Ql9jv9mZam43iTYZGQwPgfoEmA4USTl8J4gGYip1GI7NNEyAD6um//P8I5F0DS8hoaGhoYtgaUDz1dWVmaSVUYpZvoYShNZADOlEwbiGiSiSHMJh+nOSNzIEg6Tgk/pMEp0lAbZJxIBInnBkps1h4MHD0qaS0IMLpXmWoelGZIjKLVHkoxhjdjX9bGk6ktD6dbjYNBtFtLg/TBW3NVge5EI4PU3KYGkEZ8bz2EoA0MNSEyKDnoG0dLJno2LZCVqPNn8UHPj5yxBruH2mByY65UFcDMdmMlf3pvey/FcH8u/7EfUCkl+qY0zWhaYxmv37t2p5SHCmgJLgknDvcJQDCZhiO1Qa2GC7qwM2tGjRyXNSWXU0n1ODDFhGjKS17L70n3yuV4HponLrG38jlpaliTB94t/I3GMhJ64d2h1qKVUjM91hosxaXQWVsZScJcvXx4tLRXRNLyGhoaGhi2BpX14KysrM4kho8TT9+Q0YLFYX/xdGlL7KRlayjBtPEoV/u3QoUOShqU8Mr8IA0tpezZIjZXq9mMWp40Sh1P5MP0PtbbYR/qR3DdSpzP/HwuK0pdCKS22T2mX4RZZ8t0YGrBZADGTLMe947F5nWOCAWm+h6IUywK5LJdCKT1q6AzP8HxYW2a6KGm+LvTDWOvMKPrUNmqa3ZjFxPuMgbpsUxr61FhiiFp2lsqMFgNL/lk5ImOzFGNRg6NWvXfv3tGQltXV1YFmaktJ/M6Fn5m8OStn4z54vjyXnmM+y+Kc2HfHwP+atSj2xXNJrYTrFfvIlHn0c2d7h2m5mJQ/O4fJnFlWiZyFCJ5r8Pke9wETevgYJvCIVj0Gzrfk0Q0NDQ0NDcBSGp4LMdZYRtL8zWz76n333SdpqJFEKYAMQEtAlCYyG7ff/JYEqJlkGp6PtfTFBM1MoCoNC8qyDQamx/FRkqMfxp+zZLj065DVxIBNaRjUnaXIitfn+bFdapbRJ0H/2VjgcClFpZRZ/3296IexdG6NmJqKz43joK+YvhRaFDI/GRMAWHvxPozr4n5bWq/5jMeYxGQfs5Bu1LypWbP9zHdBbZDX83zSChL7QKsH28o0WI6P90L0hVJbG0ta4JSGhq0r9vXG9sii9jHeW9EXRKsGNQV/730Q0/r5fqeflFp0XB+zTP3X91ItlWLso9v3b7QOZAnDmWydloWM9Vwrs2WQDR+tYl4j+sB5z8V1djt+rnqP+Fxbe7L0ftbAmw+voaGhoaEBWDq12Pnz52dvUybZlYZJei2ZMOVXxsiirZmMzkzqoF+MZXTYD2kYJ2Ipw9oGWZzx2mQ2sbhmxgql5MtEwFmMGzUhSmf0lUXpmYw+xrgYWZolSuf0b0Rtx6zSU6dOSeqlsTEtb2VlZZBmKEtr5HWw1BcZgdJGaY+sLvotavFr0lB65vpkPgf+5nG4zyyUKQ33by0xN7VUaeg7o+aasULJlqXPmuxg7ovYN85NFu9F7YJ7gOkFI3zf7NmzZ9SHt3PnzoHGGPcBNTprY+5TVgCYTEP60r1OnuuY0pCJoLl2maWHcZ+0MHmOo6/QzzMmpTboC82sUkzCTs023hMsHsxnPdvI/L98BjJVZJyTWpozcyW8P+L95DmJZbyahtfQ0NDQ0BBwVcmj/WbNSkRQcmeZB0vrWYkI/yXDjj6QjNnH0j5MnBylS/pM+DmLdWI8DKV2lgvKygPRR0htJ0qsjOdjYl6y9+KcUHKlL5QSbewDi+K6z56j6APx3EZNZTNJi7E60V9BppalPMZ1RSmWfgJqMdn8GPRp0ddF7Tr2rbZnOD5pKKUy3ot7KV6PFhPPOaXzeA79jJS0x9jBNe3G88gY3KwdajnUEiLc3maJx7dt2zbIKhI1b5bCom8tKw/GWEA+Q2rr4/5GUGumBSj2kVwE3jORkeg96RjKmmVnzGJCPgOtOFlpMVq0qIVmliYWnuZ1ssxF7i/bZ/mtrGRWLAm3WQznbHwLHdXQ0NDQ0PAsR3vhNTQ0NDRsCTyp5NFGVCdp8rGZzlRvB6JH8x3NUaT423xAU1c8huq7QXOVlJuqYluseSbNTSM1p67BgNDsWJofaEaKfTEYvEladOyrzyX5hnMUCQ80P9FcmZlo7FyP6Y42M0uRih/H6d9MDrAZikSRSGLJzE3SfG7dx6z/TGjOuaAJMo6VZk+ekznmue9qBK54f9HsRrNUlsqOc8G9U/tdmpuLaqSYLLEA9xUJUL7XTUKShkHdTJVGdF03MJXF8BuSHrJahgTr0nleaA53G9HUyDnl3GZEMRKaSDjJ6sX5OjfffPOG6/A+y4KvGbrE8J6M8FRLWlEzi0fQ1EgTN03tUn3uWd8v7g8ShcYIT0TT8BoaGhoatgSWTh4dJZaMZuw37f333y9pTqf1m9sUdkssUj2djc+xtMbgxHgupWZKM1ECqtGQqeVkpWTokGcAsCWWKKWTDMESMwzUjH3y2EmWoWM9C6EwKJVnJAK35++oZfM4ab7+puSPpRVz8HBGHjEsuTG4loSZrN8ZAUOqlw+S5nNnbYP70GsZ22QSXUryWYJcgw5/HpNJ3kwSzjYyZz2TR7P6Nq0wcd/xGJLCPP6Y9o2WERIaSEyI58SUg7X9U0rRZDIZaGuRqu/nyYMPPrjhGNLeM83bYJiSx0gLlDTXQJiYIUtawXNqCa55b3vs8Tfe70yPlwWRG0x0TqJaHDvvK4Z7Zc9+g9XsaTGL804ik98PhufTwfoRTiawd+/eRlppaGhoaGiIWNqHN5lMBum6og/A/jW/qU2n9We/iTM/TLTJSsMinj4uaocMqiS9NSt6SmmZtHdfP0paTCxLnw3DBKIElCVejm15fNFOTR8ENTr6DuK5lCCpQVqqzvwbTEvGvkbN1dKZNa8xKd3Xo881SnhMuOtjmDYunsOwk5o2a8Q1pTbuvlkyzejvtRIrtTCFeCxT8dUS8cYx0KdC2jvXOP7Ge4HaoucuBlR7j7DgsOdiTIOlRsH9FZ8TTlrgvbNIAmAmXY9Jlt0e/a5+zvi5FMOFqAmTPu+2aAGI7XgurQHxeRDXkqncfB/SZ5hphzUtmn7g2Eemqqsl48hKS3lv0F9KDS+zftSKx9J3KQ2tD94PTMIeUxAykcL6+vrCCaSbhtfQ0NDQsCVwVT48MnWygoV+q9vOSikmMrbIxPHb2hIQmYNRImWyU/otMkkr+iwiOK4Y7FhjVvkvg8qj1GQJkemaxvrjubB0xoTaWVkYjoMSKyX8zJ9GP6b77jZiWZi7775b0kYWWE3Smkwm2r1794CNFTUFpnwjA5FStDQs2kofB7WdjF3GYHXPNf3C8dpkY9aC+6Vh8Dv3uUGpOo6HLEZK2PF3prmiZuF5ZFHR2FeDgfTU9KShRsLiwZnvxlaa2Mda0oLJZKLrrrtukLg4jjnbT/HafC7FsRnUfHjvxX3He4vlz7LSNSwlRGsHA93jb7xX6ZMcS0/o8dCHlyXlqKVoZEFga1lxfGTVk9fgv3Hd3B610Vqihfibk5rUnucZmobX0NDQ0LAlsLSGt7KyMvB5xfgUJhu2lGFfnm2xjseTpNtuu03SULqkpkempzRMKUTfSubjqMWleDw+h0Uws77Rl0ZtQZpLS7UCoD42S0PEYpHUMFl4Mv7f16MWkjE7yUz0dalhxPhJzluUwonJZKIdO3YMpPMsybbB+EtLdHFdKJWTlccxx/5TA/Jn7sNMo6wl9SbjN37n6zBNHMtDRamZaemYPJprEI8lC5PpwbI0YRyzJWzGUkXWXC0Oj+y8qAnST9t13aiGt7q6OtDW4jwyobCTR1MLiNqAtUyPkVYbWlmy+Dj/5vmwRavmt5fme8XWEvp/47OqVpy6Fp8Z72nuHX7mPo/HcI7JRs+Kx7KQsveK18Tfx+v6OcNnvJFZxbI0ai0Or6GhoaGhIWApDe/SpUs6evTowF8S/Tq037qA3wMPPNBfMEmYyhIutQS9ltaiFOBYHPotfEzGeCITidIBmXBxrAbZjGRNRUmyloWhVhA0jp2fyRLM4rEoAbGki8+JfSQztVacMma58XeWam+88cY0e0PsFxmLsd+MAaREn/ktyYolW9f7MfOpkM1Kjdv7Ou4hSrHus+ciy+JDTYr7nJJ9lrScviFK63He6YPkmlK7zvxxtcTjWRka+q89PvvpfWxk2vna0RJU0/DW19f1xBNPDEpUZf4jawpZjFnsWzyfe5EZQmgpyfrgsXnesmKu1LjJIM8YsLZmeA4ZB1rzVcfr1MpgGXGOyELnHvH9RNa6NJ97a3TU7N1mfF/U1od+/Miu9fMhS4K/GZqG19DQ0NCwJdBeeA0NDQ0NWwJLmTQnk4l27do1U7Ntwjhy5Mi8QVBun/Oc50iS3ve+90maq6HPe97zZufce++9kuZmAf81Jd7mNjqX4/X8G6uwM0A8nm/1nKZN1raL59NcSGcuTV3xNzqwSbjJSCQ0u9C8l5lfGYZAQkVm7qFJjs5rBohK0u23376hnWiyJJweiuaUuJakQNO0ndXDo6mN9fFqhJ04Vq4lg4czGjVN6e6j1zKaGJluinvGcN+juZzUchJQGPIiDU2aNL9lTn+DZmT2I0NGYIhteT5jKJLvvbimY4SnWPHcyOrrkUTiucwqnjMMhuE6fg75eRev7/ZIAPE5dIFIwwQQ/JwlpKfJnjXnGJYV+8g9Q5JettbczzSZsrZjNDV6PSIxTJrvM+7deGytDp/nKHMrZIStzdA0vIaGhoaGLYGrqnhOYoKJKdJcGuKb+SUveYmkOXklkh8skdaqE1PLiZoX0zWRvs3jpKFzmIlyfb3YD46HfSKFOV6vlibMny01ZQ7nmvRMaTdKhbWUaQwijppEjXjgNhxWktHtLdmdOXOmqgl0Xaf19fVB8uOo1bJqtPeFpfWshIz33vHjxzecm1Gga21wLinlxnOsUTFgloSEKPlyj9ZSfWVaAclDnKOx9FAkqXCcLOMizdeDZBxqpRlJisHDBkkZ0vzeivfCGLV827Zts3vP58a9RhKFCRRMVhA1PIc3+VnElG8ea7Yu1F5JksuSHfu5xQBzkpWyJNXuC0ta1arNRzApNYljUXtikgJq4hx/rPxOcg8tMxmRkMewtFlGsLOlIN6DLSyhoaGhoaEhYCkNb21tTY888sjsrcvgzghLJqSVvuAFL5C0UfJ2AOj73/9+SXPpzFKSJTlL/JmkaKqrr2vbcJbqyaAETwk4+v0YwE7KLf00MTm2x0FNi8GjsY+UkmrpqCgRsd/SXLJkqrZMC60Vj3XoQZyjw4cPS5on7r3zzjur5X+6rtOVK1cG/sU4HkuLx44dS8duaT1K3Jb2XMqF0nmt9JM0LInkc0nfjn2kT43+Wa9lFqBfo9UzNVK8Xi2ZNzW8OCfZ+krDpL7008Qx089DbSfuA/peSZFnKS1pGPJx/fXXb1rihdT4rFAuU1+5Te+TLKSFloRagdTMP80E2WN+UrfH8Coms4/3ELVLPneyBA7sL60pYxo5tXGG2fhYr0Fm8aG1i1rpmLWNPviswLXHEzkfLOJcQ9PwGhoaGhq2BMoyQXullBOSjmx6YMNWxl1d193ML9veaVgAbe80XC3SvUMs9cJraGhoaGh4tqKZNBsaGhoatgTaC6+hoaGhYUugvfAaGhoaGrYE2guvoaGhoWFLYKk4vH379nUHDx4clKqJcPwE46xYMDWCxJnNPo+hduy1aOPJ4lq0W5ubRdoeO4a/MYYny/PHa5dS9Oijj+r8+fODgKUbb7yxu/XWW9PinYZ/Y2wRs788GcQ2OEb+HcOimR1ie7W1YpmgRTB2j/A6tb+LnFu7Xoyl4vrU4umyuXd81fbt23XmzBmdO3duMPmrq6vdddddN2g39omxrVncZTaORX9b9NzsPqkdu8h+42/L3AO1e3qZZ8bV4GrGx2xXRva+YA7NsecOsdQL78CBA3rDG94wSxrstE4x1ZcDB51izEGHDObNan7xgcfvxx66PGbsJq/9xvQ28abmovEm54LF8TEg059ZayyCAaycCwerZomgmR4o61P8PrbLFGq1JNYRsWL7D/3QDw1+l/qq9j/xEz8xS1F2//33D8bufXTixAlJ8+BkpgeLgbKsdM51qCWllebByXxYMtg2zhPTqfEhkq0pE1cz0Nifs2B8rm9tn8e1ZSV3Xrf2Nx7LtphKLdZ5c5IFn+uAYCc6qCV2kOZB2M997nP1pje9afC71CeX+PRP//RZkgnWiJPm6cEOHDiw4dpMXhAfoHxwcq+PPXdqtQyXSmSMxObZ3mH9S+5JzmmWOo/PrrG0i7XUgLWq7NmcsPr6mILExCC1xBGxX35OOCnD+fPn9da3vjXtN9FMmg0NDQ0NWwJLaXhS/7ZmJe0oIdKkScmU38fza+ZQSlNRqqlpgQYrYMdjaxhToznOmiSSVRGmVsiyRJn0SYmHyarHzAZMg8brZOmoWPWbUlmWNDi2N2YmmUwms7I61ELi2GrmQrcdNT5KiLWyJlm/eL2aZhzngGtHKZZ7Waon86Y25bYz6wAT/3Jfx73D1F7UEqjJZHNDDZnji/BccOxMi5Zp5rFi+5g74tKlS4Pq7kxSHfvL+9PItBlft5YgO9uXtJosYx6ktsRnR7zHaEGihsf1iJ9537Pv2TODv9UsW0ypFvs2lj6Q/akl4Wdy7KyvXq9l3AtNw2toaGho2BJYSsMrpWj79u2jdmv66PiXSW+lud+PSXRr0vmYD6+mcWVSRaYxxs/xupQYaQenBhjPpYa3iN2ffo8x8kgN1NbGnMmUbpnolcUx4/+9buvr61VJd319XefPnx8kTM78R7QKUGvOfFz+jtoMyRFZGSX6Tmo+ndg+9xu1p7jf6G/lHqIUHzU8Sun00WSEnlqScmouYyWaeK61K0rx0tyHR62X/uasKLL9cY8++mjV/9V1fWkpJ3k2MmtDzXc7ZkXh2LkfMv81x1izuGTEGu6vTLNjH7nuNa0wjolJnIkxzYgJ7TN/du0c3ldG7dkpDf3MfrZk5CO2s5nFLqJpeA0NDQ0NWwLthdfQ0NDQsCWwtElzZWVl1KxWM2XahBmppIZNFawTRrNAzREdj6GZIKOjk2hA5z5NaWPt10xMmTnUajvJF2NEh1ocztga1CjMdOhHMkYtdKJGmpCGppKMEh2xvr4+qGAc56lGz/e8ZQSBGj2b1GiatrJ+10Ia4jk09dEsnlHLa8QJElDcZjQF1Srbj5n5SSzgmD3PrmkWXQmc41pYR9yrrv3nMBKOlySG+H/35eLFi1XTE7IfoAAAIABJREFU1JUrV3Tq1KmZSTQz0bEyOGv+jbk2fI7JeFyfbM43Cy0aC0+oxSkuEv5QI89lbdeIR2Pj4jG1sI7s+VR7JtViIqX5M7DW7lhISzRtLkoaahpeQ0NDQ8OWwFIaXtd1WltbG2hPUbJnMKs1Ojun/TkGqzNwlRTVGq07gyU9SrVRKvQxrIpMRGmKki4d8mPEAx7rv9Zys6rVHHNN+s0oxpwfzgml3/gb+0ziSwRDAbquq0paJjzVCCmxPWqBnpdMe2YFZkvp1pY45rGQkxphI9MKYoaQ2rFx7NJQeqWm4nWKxCBaITh//H2z9rLxZqEh/Otjsqrz/r81PX/2+DLrQC2QPkPXdbp48eKs/Wz/co/XiDpx/dlOrcr2WMILhrTQypGF0NSSJIxlFKpZKMYISJ4TkkeYVCJ7/tFyQeJYpuFx/kj6ypJkGJ4/ktkyslFGMlw0A03T8BoaGhoatgSWDjxfX18faDFRqrEG5wDjkydPSppLhkxVFP/P9GNZCAOvV6PaU6qxBiDNJVEfW0sllfluakGc1BzGgoc9F9R2M6m5Jo3X/JAZfOwY1ZdS31iaNYMa3pikVUrR6urqoJ04Zo/VUp7XPQspMJzG6oYbbpA019o9Hs7PWOol943hMdmxbtdaDFONZam+avC6UFuM1zFq+zqm2WKKNJ/jPnr/uY9xDbwX6dP1nPj3eE/62t4Ptua4724/hhXUNNcMthxQ844asv/v9GNOLcYAbe+XeI7nKUtSIeVhA3xW8JnFvSwN0+AxFCjbm0xOUPOTZVYD/9/r78+cv8yCYdBvmllmeG7NR00Og6RZqkGm2/OzMbvnee3V1dWm4TU0NDQ0NERclQ+PQYJR2rM/zowtS5O0AY9pM/SHjaWH4pudWqelm0wiZftjmbpp72fgKX1dWSqzWpq17HoG7exMOGsJLGoFtTRuXgsmq83arbG/stRF1pivXLky6otZW1sb1d6pAVt7oUTq60nz5MP0qVnCH0ufRQ2I0jk1c6meHIEMyyite4yeQ0uvlPC9BtEaQf8b19vjj5pLLR2d26LvON5D1s54T7oNa3jRB88989BDD0maPwsiE9Pw+U76vGvXrlHrQCml6jeV5nvCGp7H6rn0vPl3aeOcxf7XUn9lPjyyCOl7j3uHlhz/9X7gvSEN57CmhWaJmT1fft75r+eAVqLYb/rhWIXCv2dp9+hPpeUkMvQNjm9s7nkP7tixY+H0Yk3Da2hoaGjYEljah7e2tjbQFDIfAP1uYxKJpTDah+mvyGK3WLaEyOJkfA59HfSXZFoaJY4a4yra0i21eJzukz9bwouSC1mR9HO6DUtrtfRB0nxN3H6W+NWgxsLYuCw1V2RTbhYP471jf07cO/RxeF2sBdx8882S5lqNNB8//a6eD7efsfTolzC4D6PG5X57HNQKMsm3lmKLfaM/UBqWueFfaylRc3E79KG5rx5P5sPzd0zUzD0b9xuTyTNpdOa78bFe4z179lTZ0r4+Nf04T+4DNTmXMPOe8WeeLw0ZiPRRZ/B+cFu0qmSavueHCbTHNKDN2IuZhkMNi9a2TCussV15PXIypOEzyHuXFoeoWUffszRku2aJu6kFbt++vfnwGhoaGhoaIpbW8KQhaylKdJZ4/Bamz8Fv4ihdbVYCx293SxW2a8fvfA41SyNKaewLpZpMS9ksHq6WeDhejxIXM2xEvxml2ZptPYulqWVj8Tizsk6Uwsl2zcbNOd+2bVtV0uq6TleuXBnEcWUsNvfTEuJtt90maS4ZRg3V5zBLhvek94rHFbU1g0mPuYZj/gFfd2wtaz4hj8/nuG9RC7Gm4nOove3fv3/Qp1oMHaVnJn2W6tYVWwloWZDm97L77TXx9c3YjnuDbNqxbBmTyUQ7d+6cHet2oi/XVoBDhw6lfWJMYBwTfWljvm6DFh9ffywziPvPeEWykj1fUj22jfe4xxfn2Me6fd9XfKaMJbpnpiwi7h3Gffq6zGAVNUHfA+RA0Mcf70HzQ2KfW6aVhoaGhoaGgPbCa2hoaGjYElg6LCHWPLNJwFRmaViFliaYLHGxv6Mz2tdhUG9U+W1CJcWaZItoOqN5zn2upeKJ39XICXTuR5Otz3FfaSrxOKMzt+YsJrKafv7O12Ng81hdKtarM7KUbayVNUaGMUhQysxpNvkcOHBAknTTTTdV++294HO4D2y281w4QF2am5hqSardRjSD0nTN8WREAJJ7SMpx3/03S+Zrkxmv78DdbH+TFMGkEJ6T06dPz851OzTNMaF3HKevQ/OUx5MlqTY85+fOnRtNn7d79+7Z2nndvC8k6ZZbbpE0J6f4mNi+lLtD/J2vf+rUqQ3Xz5IvMBzJ966PZfpCaW5+ZuILkmQyYhjdEF5LPzP9ewzuZyiB/7Kt+Pz2+rr/vEe4D+KaMq0f94rnIjNFe528V0xQ81rE/RbXUBqvw0k0Da+hoaGhYUvgqlKL0bkbpQpLr5b26GjO3sSWNGopb+hAjVKTj4mBsLGN7LP7a0nBUoslSAZsxv6TQk4nL4NjpWESZGq0GbWYc0ASCc/NEgBnCZ/jGGIfLfVT0qqVi4m/+bsLFy5UpXRXPOc8Zsl1qfkeO3ZsQx/juLwX6Rg33L5T3GWpl4ga8Uqaz4ulVJIF3MeocZvgYUna82XplsHjkRDidj1O/6U2EKV0ltt6+OGHJc0Dwn2vuO9Ry2b4ideClPY4Pn9Hy4zXxCSDqA0woH5Mw9u2bZv2798/mx9fx/MnzdfD93ScD2mo6UnzPcF1odXIY4/7gGVtqL1kFhGGSHgvkUiVpdszSNf3Z2vpcXy+tvvmz76fPC5bCaRhgoua5pT13etDSwkTVEQri/vtPc8QHiNqvW4nhg+1sISGhoaGhoaAq0otZskto+D6LU97PlMUZQUys5RB8ffM/+ffSKtn0tgoUdK+b6mQqXey6zCEola0NEooTIrNNFQZ/bnm+6z5EjN/HH0FPof+rng9Sre8frS/Uxobo++vra3psccem0n53h/RH0vp3NKqJVFK7bGfTEtGv5zPjX5S+4ColdNyEfcBQwjsZ/QcW2KNVg9fp1ZYlFJ83Af0RXpOvJesPUW/k7978MEHN8yNJXkGhkfpmHvRWgl9OfGeZxiC++Y95TmxRiXNpXzfl48++mi1gLCfOwzFiGvpNfN+Io3e8xf3G/2f9L8x6XX0HTE5NNN3ZRYta1b2N956662S5s8bXz9ex+PwHLKUmPehz4lB69SwPC6vg8cfNcpaEVxfh2nJ4t51H3xdWhKyefT8HDx4UNL8/mIyjuxZ5X195syZ5sNraGhoaGiIWErDW1lZ0Z49ewYSQ/SF8E3LAM3MNmypgiw/MpKYkidDLUA8akDWLiiBMAVP9DlQwzKi/TuOJWqULIjJv1m5HvrwLJlaeue5mWRXK7lCSVaa+0OYYNjSWFbglGndsqBuo+s6Xbp0aTb3J06c2DCeeE1qMe6Dr5f5KWrMYWpRGVPQffI6ZUmVDbLvuM+oaUpzbcbasfeQtUOuZbw3mIyamj1TQElDSZrJCZieLivCy3F4fzCVW2zX4Jpkwezuo+fg8ccfr/rwDDIi41q6n9ZqmZCCzNWsXbdHbSpjIUe/tTQs4+M1jTwAll6ihcmWgOgrJEfAzwGue3Z/0pfG+yt7VtH/y/X3fNIaJg3nliW6OIZ4Hf/mtWXSgthHJgo/efJk0/AaGhoaGhoiltLwSinatWvXIPVS1PDI4iLLL/P7MTEq2X+UvKP0zPQ4TO2UFam1FOF+20/hPlk7iBoSS3hYennggQc2XNdtZXFRkZ0U28wYXUwKXSuvlElNXAMmuq6VGJGGjFlrbVkskufJ4zp79mxVSr9y5YpOnz49kNwyv020zUvzufR8RV+e14G2frdhf49TTkUt1P3m3vR8MWF3/M3Svv0h1hLdt+jD8351bJH7YL+F199zE9mHbtcMS8a5+vfoM2YZJd6nHq/nJvr/7Gcic7FWiFQapsyiRuE9EdOgZSnSanGck8lEe/bsma2X7404x/RhWYthTFhcf1qfatoz/VrSfL9ZG6NW7fmzBpv10exZ+v+ihmdGp/1+vi4T0We+fD4b6NPzuOP+dt9YQs3rz7jXLPk7nz/em97v8bnj/jIWkmkr47PT95Hvm7Nnzy4UAyw1Da+hoaGhYYtgaQ1v+/btg7Ii0b5KJiJ9TH7bZ7EmfvPbls2CnNQApbnEY4nR2hv9B1ErtHRkqeGOO+6QNPQVUqqV5pIPM18YLEsT+0DNgcmkIxiHQsmHMYRRy6aNnn6AzJ/BMh2UjH1s9Lm5D07ufM8991SZdo7Do8YQfQD333+/pKH/gP2NTFGfb6mP8Xj+3RpenFeWL2GSXftnowZEH6H7fPvtt0vK4/AYc8ZyOmT+xrWwxeDee++VNJ83r4PbsAYozefNY/c9YW3DfbT2EDWKe+65R5L0h3/4h5Lm/izuoSzhsK/rsfPejEmxfW3P4549e6os3+3bt+vgwYMD3130W3LfkV+Q+a253m7PWi4zCUW4Xc+lnylM3B21UMbHem49Ls+P97I03xNey+c///mS5s8olv6ybzzOifvvfUWWbhZn6rlw/30OLU/RsuT7kuvkPeO+xvuXfm0+G30dM1ql+bPX9+W+fftGSzhFNA2voaGhoWFLYCkNz1I6JaOozVBaok8lY2laarBmZ0nx8OHDG86l/8R9kuYSiCUUliGKNmB/Z6mAPoGssC1LbWRFKCOi5kK/JUvaZHNi7cLteE7clr+3lhV9hsyWQG3b34/5pihtM1Yp9t/axZgdfffu3fqYj/kYHT9+XNJcq87KA9kvyjyoWYYYlpnxX+8D+iSjf4ylVawB+RhrVVm+T86BtUX79LJcqtbKqOGRARelZrfr+8p7lJJ97KPH42PcrrVRr7WvG32id91114ZjfA94LqxBxL3jvVhjMrvvWQaZsfJTxsrKim644YbZGDN/HPctszb59zhPHOPRo0c3nGtNhRlZpI2+uThGrx2zQ0lzbcbr4mPjnpTyefLzi0xl/o2WLO8Va9O0ftRKQcXx0H9paw7vt9hXzzlZwhmzmZmjvJ89nljs2SC7/vTp05syfI2m4TU0NDQ0bAm0F15DQ0NDw5bA0ibNs2fPDhKkRtIF0zRZBaejOZqlSMRgIlSr6Vlgs9Vk98XmDpopY7CyzREsO8T0ZBE0c5K+S9p+NGmR4ktTnVX+LG2X1XabU2rJgyMZgyY0mm7HStl4Hpn+iunXpLm5weMYq3i+c+dOveAFLxikXIokGP7mObcZzaalaJ52oDHTpj3vec/b0AZp5NJ8b3qObVryepgKHokONnvdd999kuZ7komgs/Rg7iPN7v5Lk740vxdqaehMcIjzTrKXr+uxswSQxxLHakKA5/FFL3qRJOk973mPpDwkgGvP6uhZ0Hc0jdVIK5PJRKurq7O5yBJV8H5nWZ0smYS/8/7yfel1sPk99sNgCj4Sk7yvo6mNpmaGlMT7yGAKPl/X5zCdV+yHr2P3gf/atO01jnPiazuExHvG12GijXgvknzIkky+ju8raZg2ku8PPn/id7EcUUse3dDQ0NDQELB0WMLq6upMmrKEEDU8S01+y5M+nZV/YIBxzbnKpMuxHb7h6ZiPYOA8rzOm6VGTZNFDjz+jTLuvTGWVpUNjqRVfh2SFrEwH54slRLIk3NQC3J7niEHr0lBzKaVUJa3JZKKdO3cOEinHfns+rMmZKGGpkuEWsT/U5D0Oj/Huu++WtFGj9D72enB/uY/Rcc7AZpKlPL4s/Rk1amoF/t39ibBVwhqmCRWkrUvDkjWkfPt+MzkoSvieH5+TFU5l330d7+9aCrNI+vB9GdOu1TQ8lyTzvPh68bnjufNYaEFg2kBpmEyC97DHzsQX0vC+oNbh8cVnlfvC0lJMDB6vw+eN+0Kylp/FcR+QUMXSZiRPxd9odfK+ZsLtSLBy+0wP5nnmHpLmWqfHxecHLYVxLrIEJJuhaXgNDQ0NDVsCS2l4k8lEO3b8/+2d2ZId1ZWGV5VKQmDscARmEDjcOMKXfv8n8QPQtmTAzWQwCEk19IXjq/PXl2tn1SGiL9xn/Tc1nMyde8yzxn892dhXU3JFynPC4l5RUtv2kR64x2HP2Ya/2V36x+V0sh1+WoPoipMiNTtBG1h6zz6u+uLE0OyjpU6HYlvjSsnIn1l68vgTLlbr1InsI9cw1r20hLOzs7q4uNhIl3sFK611mmC2altMEy1iRZGUPgdLx9ZQutByF4VNv2vOQf6febbP274b0jsy8RggpfMZ2m+XHmOaJp859pT3ZfaN+cS/ZRKArm/2TTsVqStDZEtGBzQ8tKbOAsPcWmv2Hk0tEj+VUyNSc6jaakY5Fp/pFZF2tk+/neLEfsznoBU6uZ+fjBfrTd7rorjsHebRpNn5HBdb5sztpZeZBpG54Yx2RB60Z0uZrQMJ2uHn48ePR8MbDAaDwSBxdAHYm5ubXeJaJBIXXrWfLCUhE0C7/NAeBZeTqVelVtJ34yRUR5K6X1XbUhv+P89Ds00p0ZGptMHzTe6c7bmgqSXJrhSQo0EdFcj4O02Zn07yBSvqMPeh++yHH3641ab31hLJ1GSz9De1NCRP+9BckskFR/Mz0yk5mTuTlZ14jfRqLaZLijY1HpK3NYyk4KK/9v9yj+mpqg7Ssq0tLncDct8xJ45q3CsB5f1Fn1mLzs+8Ktjc4fLysr7++uvbax0lXnVYOxc9drvp43LEK9fST89B7v0V3aH3tTXOqm1pHdbOUeNVW3o7/jblW+eP49n031HBK600x8HeMaFDZ+mytstzmEdHRVcd5o//eR0dhe8xMr5JPB8MBoPBIHC0hvfzzz9vfBIpkdjnZEmr8/uZcJn2LSl09lxLFY5mcvmJqoOUYh8N/XD+WrYH7I+xFNWRR9Oeo7HcRvbF82eNdm9uVkV3HcFYtZVU+dt9S5/bqgxRh6urq/r+++9v8+a6QqKWfNEQ7IdLSZsxOT/JUmxX1NX9db6Q/Sf5HPYQGp4L5abE6VxJ+3CQ2mkzc53wM7Gf0FR5DuuReXHW/v2TNfUcVR3Wg/3UlcbJMWRfTOPFT/c52+N5e6Wlbm5u6s2bN7dzjPSf/TatlaMou0hLl3+yxsMZ95nIe2zJskaSmgnX0n/mhT1E35MIHF8a/7NVijadY1m1pf9C03J5oFxLE90D9pnPV66pc4dX9HFdzqi1P0fQ53vHY/7mm2/GhzcYDAaDQeJoDe/y8nKpkVVtpX0XLO38cS4ZZM3E2kxKdpb6bVvvfASWjl0Y01GoVdsyFo4ctKaZJWWcZ7eak5TOrCFbs9vzedgm7yi9PW3Qdn5HrqW2Y3aZt956a9kvl5ZKOz5As6O/FMi0xpBSuv1tLuZqAuX0PbivXh9rSlWHdYdkmefhW+t8G7aEON/PZOy5D+w7dq4TSD9jV/Q4n2/tKqV0nwFrhfazZzuOBmY+TY6d1zKOzz77bOkfvrm5qZcvX258bbmHvKc7jc5wybJ8XtVhTruIRNaBdXe0Lsj9wD0umOu9k/Pg8l9ca82He9JPyriYf1/DfuvmyNqfz7rfYVXb6HDHbey9s7y/PEe5RvS7s4jch9HwBoPBYHASmC+8wWAwGJwEjjJpVv1b5XSSdargNu2ZyHYvjB7YJOKEzbzepjjTajmcO/tmMyVOcTur83+YtFaUWza/5Wf01aYE2uhC5m1+8rg7c4sDDHi+w/s7s7LNXjazdLUIk6h3FXjw6NGj+vWvf71J4s32MCG5ErfNaGm24R6uNWmw562jU7MJmL95XqaYUHnZQUveQ53p1KYd9401SAc97fA8zLwE9Jimrmp7FvjMQUYOEEjYlEabzHc3j157zldXadsmyMvLy93Ag4uLi03gWPbBc2rTWxdQZdcF15oQugtAcfqTn+9UjRyzUyccRJbn0sQSNouyN50S4nby+bgOHLxSdVgjJ+zb3Oz3e97jd7Lv6foE/B5injtyfObr22+/3U2JSoyGNxgMBoOTwNEa3qNHjzZO9pQQrHF0oa95Xf7ugJeV9tZJpP6fpYmUuJ3suNKiuirSlooc2GBtND9zCQ+kQCSjdHybwNhz4SCGLoncGthKc87nANq11NYl47uvHS4vL+ubb765HTNaTCaRr8iUWbsumZj2rK2tqm/nvS5F4gAkWwly/FzLmlFKZi91hnPjwCprgKlRdtXCqw4Uan/+85+rquovf/nL7WcuP4PG8pBkbxNF2GLTBXQBPuPcuNxSamisW6YA3Uc8bi0jz4uJ552G4sraea33ts/L3jzRrjWwLsCK5zlYyH9nCpWDlqxFs8+7QCX6yHpYWyflJc+00w9MjmHrUI7PQYyr1LQOngveC043qzpoxEmGvkeIkRgNbzAYDAYngaPJo58+fXpLr0Rodue3cXj73re7tZZVsrrDxfPZlqxXWlvV1kdniXePnLbz63RtZH+caG5pEOm9C39faZDWJDvpuCPtzf932o4lRSQ8U6dVbcPt99b49evX9fz589swdBLQs/SOKbFAl/4AnOxq0m1L8en3sXRO+2gOXJslUBg/2ovTIfZSPkwabf9Pt2d59iqVAW3gT3/60+09EEub8Nz+804L7vxI2Sc/v2qbbuGUE/Z/NzdJvrDy4d3c3NT19fXmDOR7wPvXifNOOcnfvQ+8/7qEaa+dQ/5tBcvnOIbAhPdpWQI+l7bWdL422vNeZc+g4T179uz2Hs4l7bq0kDW81Nrdh5XVq/NrMk9Ou+n2Du9GSmV99dVXo+ENBoPBYJD4RRoednfobrI0iaPjLGGvSFartj66h9iA7f9D4kAD68hH/Ww/t0uOXpWMcQSkaYmqDhKcKaW4hjnKe6xZrajE9rRr9x10Gp6jslY+w67cCf1/++2320gs2nv58uWGsJlir9yfzzZ4dvoN7G/z3/x0dFvV1tdA39C4WYOuMK8LijpRu1sXj8ulUawJds9B8rWvKp+HxG7fnaMcTRGY16wI3U2Wnr+b0MG0UTn3aMr8fP369e66P3nyZGN1yPFYe/Sadu8Qa7rWROxb7awoputDa3N5qoR9+MwbftnOZ7w6n/6Z+8DvQvukeQ9RXDjHjBXP/zdJR/Z1RaG3R7BtH7WjX9k76a9lf+0R0a8wGt5gMBgMTgJHaXjX19f1888/30otSAFJc+QoJUfeWdPb+8waXSel8T8XnMX2zM/U1kwaa8nSFEb5HEdaOqKUe1KyW9EAIXlRDiY1ZfcVODrTz8g+2C5uSajL97FmxLx2kX0e654PD7BnGHNHibXKV+z8S5YmLemvCG3zWpevoU+mZso+uiCqfSq5p5CkV36fh2h4+F3Yz0jl5OV1xYoz9zT7aL9jPs+5mvZvWWPOe+ij92w3J+yrFy9ebNozzs7O7kRp0j4+nKqDVmuNyu+Zzl9pLaqLzs1xJJyfyxnvCibznnRuJfd0VGf20fmdZd90V3qHdbFG2Y3HkbX0ydaBLi/XPmi/D/i886M7j5Y92kW7ogmj4T19+nSXuD4xGt5gMBgMTgJH5+Gdn59vpCYie6q2bAL2bXRamn1oK5s66HLBALZgfnbajaPlzJqBJJSSlqPAzFbhqNTUbF0yyHOBxJLSIPO38jd2kaSGowE9lu5/XQmebCMlKfuzKBDc4fLysr799tvbdvDddWNeRd52+8G+OxeStE8vNQD7C1gHxgObSUrCSQqenzlqt9MK2d8u9OnitBT3rDpI5ybDJsKOIrl///vfb++x9umzwLjcZo7dGr39XV1JGbQ2R/R1OWLEAWTk7UpKv7m5qVevXt22i3UgNQWiWV10dhXxW3V/fu+eFYW9w/+s3dofnP21XxZNpYsk9f+sla8sTPmZ38HMfbe/AXuS/rscUXfOVxHkq6jN/H3VLmuQkdLkvHJOnj59+iDrUtVoeIPBYDA4EcwX3mAwGAxOAkeZNM/OzurRo0e36iOOc1TkqoPqickKVd/miq5qdT6napvcaDqvqoOJyqTNJsztQq9NR4X63tX560K48+9VHcD83UmpJu/NOXLSMPfYlNERQa+cxntqv0OwHebctbkKmd8DqSz0P4mgMQPy8w9/+MOd9h28UnUwDzpIytXTuS6d+vQfUxyfYS6kjTTZY/5bBRowngwYsXnfYN74mX20ObxLzci+dn1jTn7/+99X1TZcvKta7bNn02AmnnfpG3lvdw+/f/LJJ1X17/fEyqRJsBzt/fWvf62qqk8//fT2GpMWMCYTNXeE03YTOICrM/Ov6OFc2y6fl6bjqsO7kvnr0qHsAnJf7f7JdbIZGvA8zmKeac4J+5iz6Pl1oE+Cz0zC3ZlsV+TRXENfc+7sVrqPeDwxGt5gMBgMTgK/KC0BKQYpLZMCVyG+6Yiv6svMAGsxDntPDW+VnO7E95QeTTdkLa2Tak1r1WkMOa68Fw3YWg3aL/OX2qMT2LnHGp8ptRKrSvF2Ymd/HfptzSLn0cS1q9JAPPPZs2e3YfTWWLMdNBMkUNplDroQfGvrlog7TdjJ6CYpQALvyHxZUwcgcTYyWIHAEqRlrmUO+H+n4bm81ip4oaPb497UUKsOAQldipDPr1N4vOZV95fmoc2cR+acvrx582Y3aOX169ebMP6sdA1FnTUga/pdorSDLawRdcTpDobyPNG3TitkfR0IQp87OjL+x9lA81mVwcr2/I5kr7AeneWBfcxcmIyhs7b5jK1KC3UBiybl4F7G21GmcW0XhLfCaHiDwWAwOAkcnZZwdXW1IZJNycfUV04sBHmP/QOW9Bzyn/c6PWBV8ielCpNHW+JCckj7tCUbl6WxtJhSohOabdP2nOVn9MmFZ2mzs92bwmdVCDTHt5JquzVeXXN9fb20pT9+/Lg+/PDD27F7zbMP1srRCjuaOGug9rHu+TFXhNkujdLttxxX9g3JOH2T/sx+ZrQQNP0MwcafaIsJfaXtXEsTZYK/AAAgAElEQVT6SP9dtNWJ/bnvPI+2lDiZuepwXvyTPnWam8ttnZ+fLzW8q6ur+u677+qjjz660//0CfosWdtEK8xnOJTfpWj2Spwxp/bDoZF0RAho8raiAPZMlszyO4/5t4Whex77irVifE7ZyLPoBHfmhvnbI0lf0Z6tKNvyOX7f7dHimVD9of67qtHwBoPBYHAi+EUFYFeJ4nxetSUWNiH0nU6IvshahSW/TuK21mZ/UCYCu3SIE2WR1lKCNHmqtRD7PlIisVaGtMTzuzItpjLjp+3WXSK/PwN7xSTt+1oV+c25d9Tkng+Pe+2/7GiUXMDUc54wBRZ98t97hXldwJaxd4QA9p2ZDNvaWtXW78e62HdLZHPuOycwu4/28WYfuIY5YF5t0ejm1We7o9sDq+RhRxJ3/qzUXO6T1H2Wu9I07oN9uR2FGfe4v7aE5Lqwf9E26JvfYamt2dLD36wH+yHXkj5AeOBoYO/vfIfwHFtG+NsUelVbTdLXrEqq5e8ug+TPU7O1v897lr+T2MGxFz/88MO9757bPjzoqsFgMBgM/sNxdB5eag2rfK+qrY/BpKcPJfvMe/aiypwT5pIYKT1ainE5k67cBBKVaaGQ8FZ2+aqtP8SSnjWvqm1+oaOXVr6Wqq0ERF+RJPckbvrkSNmOos1awF4+zM3NTV1eXt5GIhK12/ke6QNajfuQY13lA3lvdvNkaZV8PPYDzyNatOogaTvCjfXB35j7m3l3Yc8VTVyOxZK0o1v3SIpX1gBbDXIf2I/lCMY9Hx7zZpot51RlH9OfuZLSIY9G4+b85Bxz3m2JMVF3rv+qqCn9tk83ix+jrdsK4LzQrsQYlgv64ijePGNEezJmxsk10Kx1xYNtKWPObWHo6Mis4Xmfd+fc59OaXpcXuCp/5L9zj9pPv1dayhgNbzAYDAYngaM0PKR00BVGdJkKPkPy2bO1OhrTUmV3r5kukEC4luemJsE9XIu0hsRjAuocF33jHqRZJD2kwPSLINHRF7fFnGauItKeSWr3Ip7AfT7QThpc5SCtSjRVHSStnPO9Ip5vv/32htQ5pX6exRxaK7MPqsPKt9oVyLQk776zH2D2qKr67LPPqupQ5uj999+vqgNjCOjmCWYi1pbnIcVzT2pP9oGvJPA8ly5hRR+dQ2f/VvccrrXEnT4V+62tGVnLqtrmj+4V8YQ8mn2GVSX9Y/bZ05eVP5t28+cq15D/c8arDuefMdIX1hZi5owdcIQ37wUicR1hnn1gLdHSOCPOdcw5trXJpduwVuRa8pxVHqbfr3sapTU8v8MSttCsiKertuf/of67qtHwBoPBYHAiODpK894GVVQTCcj+o86nBlZ8fi5ZX3U3cqpqyybiApp5vyO7XNA0tTTbzi1VWIJMflEzali7cd5Utue+dMwx2feubyttsLPdg9U87uXQ3Bdpd3FxsfGxpF/EvJHMof2YXWSYpT7WlPlzTlrVVoK31oHmlZI9Pjq0DEumSO0dGwz3/PGPf6yqbU4dvsLcq6uIR2sLuebME5+hFZidoysA6+hqwH6wFpRzYP+L8w2zTZ7N3L569WopqV9fX9fLly83/sOMhDWbB/3sclx9j7UJRwuzR/NMMyYz6/DTEeBVh3cI/8N358KsORZrTc5fdKHUPBuOPuU59J15zJJX1pRtBVgVzfZYczz+f3fvio2liyhnbjPKeArADgaDwWAQmC+8wWAwGJwEjg5ayRDQvYAJq7GmFkusEldtcuiSKzFrOLDFZXqyfIoDaDwO0+h0fbQjln5gckizq1MlVvRrXQKonfp27nfOfgf/2CzQUYvZPLmq/pxz4me/9dZbuyWI2D/Zfken5urrTn7PftvJjhnFycJdSoMrfvOTcWHSJCG8ak2Dh9mLn10gFz+pTs61ppwiIKZqG4Rh0xImtAzVZp4InHDqwl5QkwNOVmWvuqrVNvs7ACafQ7vM7W9+85s2KZx+Xl1dbRLlO3L3lVm0S0uwidxpMXzOOqU53ITz3Jsm2uxXwoQKq9Jj3Xi8r53q0gUvAfrK/sI877JF+ZyOLDzbStiEuTq/Xek0f6fYLN6Rctid9RCMhjcYDAaDk8AvSktAqqAkR0oZlgj9ze1v9PyfpUiTxHYhzNZ8rMUgXaTD3AmXJgm2FJ1wIqSdpR1Ztp33/r8prrLdFT2TJa+UuKxROLF5T/p0wral9ByD273PeXx9fb2Zixwz6+yACUuIXQCCKdasNXf9Z92Ryj3HSPapSbDnV0WDkZa7AA0XEkUjQuJ2YEg+2wFc1vwyaMdBKg5aYD67AARL4Sb07lI4uhJF+XcX8MT9GZS1sg7c3NzcCYjq1vK+dJouLcUBWdZu97SplTUKbb0LsHIwDBYE0lWSUgy4oLHPrlMmMrDGhYBNuNERXjiNw0n3flflmvvdZ+tLZyWyBmuav84ywz1JrzdBK4PBYDAYBI5OSyAJtGpbSLXqfgLoLlndkq/DxTv7O1jR1jhcPTUuJDskoFUIbEdDtCJXtYbR2bjpyyqpMm34tGPfpLUQ/s4QbWu5lpo6smCP2QVVu8R0a2l7khZ+GPwXbj9hKdOFeVNCXCVkO2m9S2B1uoul584/Zj+LtSQXBs0+EQZuWjLOEWPIZGWkfvsGrbHkvPusOe0CWMPp2rXfdM+n4lQWE8Z3yfjZ7t7euby83JC+51qufNv2ueZ+8xmzzw6tqSM69761T8/UgFWHOUWz4yfpKqb+qtqSk9sKxhzQx9RCGQftO+Vkr+QX8BzxHBemzb6uCk/v+ffv873meWJdWK+Mz7gPo+ENBoPB4CTwi8oD2Sab3/IuqmpfV+en6JILqw5SRFJ8VfUFZ1c0Op0U49IuwNpU5yu01LwqTptjWY3PUXMpxazKHbl4rPuX7dDH1Vx0WoGlsT3aHvd/T8O7vr6uH374YZOom9dbW7a0zNhTil0RYruNTsvwmjJvltY7bQ2J2z68jlCdz1xw1YVYLRlnHw3Gzb3dXrXvbkVWkGtsMgZrep20bi3Ke5d708pCn9JXs+eHubq6un12F51ngotV9GIXpes2VhRYnZ8cbZx9wBhNI1h1OI9Z1qbqYGlCE8tzaq3PPnyfwY6WDNj36SLW2TdboRgPfXWB1mw/ffpV233dEV5YY/V7NdeTyN6u5Nd9GA1vMBgMBieBo8sDnZ+fbyLHOmnP0vNeWSDb+u0n2POLrSIf/XnnZ1z5qTofl6VKP2cvis3+MWt01orzd0dyrnKcOr/WKr8RpAToQqqWbh3xWbUthXJ+fr6U0s/OzurJkye32loXkYbPYZWPhRSdeUPWfD3HLnba9c+lXbrIVwBJMD5T5+F1uVR+pnNS9yLf3AfmzVRTSUfWad55rYuHJpx/5fzMbnw+n96TrDl5gd09exG+UIsxxo6qrPNlZh9W+WR5j32azpPr9r5Lb1kz6koYucQTml0X7Ypmw722FnEPBNSJVcS6LRf53vEcsIecK8p+74pIryLLu+hqv6tW+Xj4O/N/qfVOeaDBYDAYDAJHaXjX19d3pEIk7Y5FxX4E0JXAsAZkG7ClqI4hxBK+IxSz32ZHWBEyp+Rjv4QLIe5JMSufjUv/pMRqolfnk3kse+VVnHfT+UJWPhvgyL9sh37vlQci0s7+g1xL+4esKdjvk89eWQFYd/uZsj3npaGROOqs6rDnVxok4+n8jGiHjjq1X7iLDvYZ87hTY7blwpHT1tJyPvnMjCE+t51FweV2rDnl3qUUVhaHva8ALDlmrE/2gfm2ZYQ2+X/ueUdy299rf3nHYmKLlllaOn/sKqI0ScoNNCpbwfZYR7CI+Jy6MHSXH+noTP5eFWWu2u4RW1v2LCcr7d7v22wfK8uQRw8Gg8FgIMwX3mAwGAxOAkenJVxdXW2oXTLpeeWEXKniVVuz3CrApaPCscptYtku2MLmR0wkDtzIe1Zh2TaddsnRTn+gDf7f1Y3CRGXTiU1zXaVjz7nHDTpThk00ns80Lbj9vdDy6+vr+vHHHzdJ3Umy7er0DjToEkxtNnF4tk09HakzbdAXUie6feBUHNpjPLT1/Pnz23scln9f5fFuLW0q97hzLen/qobeQ8zvzHWuT36edQztksDsy/PpT64F7WZaycqk+ejRo3r33Xfriy++uPP/nCfa49x0yelVd03D3osOTnHyeJ7PVdAQ9/JO7Ez8DhYx1WGuC2ZOr5WDppwek/23CdHmyi7dwuZXnse1rGnXrve1gwA7t0jncsjxODgx278vpeXOPQ+6ajAYDAaD/3AcTR59fX19+w2NlJfhxquk51UQS9XWeX9fKHFKAw5aMTGvn5F9sMRtSTWdy9Yk7Yi1FJP34si2BLtXldn/cwDHirItx+prvBZd+LvD0i0d5rzaqb9HHfTmzZv68ssvbyVRSJhzzE4iBw56yHscMAEckt052dE4+GkNq5MqTeHEHkKzcOh/1VYzZXymJdsjx6aP1mBtnag6nEsHuqysIQnmCYneBNp7dFROFnbAS869922SQxvn5+f1q1/96nY8trZUHbRKAoOAtakuiMTJ+/xtzSstWR6Hq5lzT4bTv//++1V1SCanb5yFLjCNJGunMqBhmVy6O0/AAWOUqcoz7XQh+srYbcnIYEC/2332Og3egXQ+ex53jisrxe+9exKj4Q0Gg8HgJHB04vnFxcWtdOtv4ao+MTVhTaKqD3Wu2iYuIk2k1GRfU+fTqLobJu6ClfZ10EcSQvfG4bBZFxHNz/hJEid9tjZadZBULSU9hPLLmrHnxFpx3mNJ3iWUulIimQy76tfr16/r+fPn9cknn1RVLy2vksdXa5z9dUi5E2c7vyZSsZN7CZkHH3744e3vSOP0n5+sLRJxzhPSOBoKfhnTRXVnA2mWvlpb7HxqhO+bms1EBB11nzUVa92d1ruyPjjdJt8Tvufq6mqp4Z2dndWjR482KSC5h1b+f/vJu/1pKwr70NRbe+TRToPoqMyc5sK6sKd4d6R/DK2Qa7EwOLXJMQs5J7Z60RbPyXn0XNCeS/44MbzqsAetTa/Kk2U7tm7QV+akI3BPbXR8eIPBYDAYBI7W8B4/frwpdpnak/0CXVn3qrtSuulyVknQaFyUpq/alnRBwjZ5dUf15Ugk+wpTEkHCsYTr6EnmIqVB+2xc1qKTPr/++uuq2kpA9oe4xEzeY83O0tte+SOTutrPlb/nGqw0PMijkdzQcrqILSfk25+Y5XPQ9r2Wlsq7yETmLNvL59IPCnTm75YyaR9/dtKf8UxTeqGJWQLuNCGfCdpwsnyCs2BrhzW7fN59+8ARrXmt59xJyvkc+5feeeedpR/m/Py83n333dszSMHcbGOVKG06rdxv1ipMcLDy7VVtk7h91tDEUnviWkch2++Xmgu/f/zxx1VV9be//e3OtS7blO8n3iErDZa9mtoq+8klhBwNClIb5d3HmFfv8Y5Y398Te9GZmXBO/0fDGwwGg8EgcHSU5ps3b24lBr7BkxLH1D7A39wpxSD5WfJxZGdXZsdSJdqffQ5d8UnnJdFuV07FdENIcPzfml1qvfTJGiQS1h6htiMg0UZsh885sd/HErhz7vJ/wBJjlyfT+XVWfphHjx7Vb3/72yWhbcJ0YJbeU+Miio17WBdHm3U0eKwHn7Ee9AkJMn14Js/1/ur8Yi4kyxx57Tq/j3PCTPjMvbkGaHb0xdGNXoO8dxVBukddBzjH7DPGjRae+9/Rhe+8886SNLzq3/PLuGgvNUbadlkga1EdebQ1OVtROqsFe8M5fFzblVFyjiCaKn3qclN5Dn5l9qr3H3spx2dfmue886nRR+fEOgK308ad92cfXleWzXsfqwfraJrJqoOGl1aWvb2TGA1vMBgMBieBo8mjX758ubGLp1SFtocm0kVjVd2VECxp2m5szS8lBDNfZLRa1VYirzpIEUjAlib4u2Mi4SfjXOWMdVKzNTkkOdvL81r77uibC+lmX112aGVDz/54HLRPH7uCj/yPPj19+nS3YOmnn366yYfr8oacw2TrQPbbhOKWyuk/a573OucHKdqsEqmFImF7r6Iddr4bM2qsiqx2fhiXhXGRXD7P8kC06zwyn6cux8lruvI3Jex7t7bBHHXRgKk9r6R0/L98jqaHdl912CtoGfZtgdSerAmbdHtFZp5YEcJ3a8n8uLQQoI2MDue9ZV+93wsd0wqg/6y3GXHy3WELgrVSr1Fqv47fcPFq0LFs0TeXQePazK9kf3V5pPdhNLzBYDAYnASO9uG9evVqE5HUMZLw0xF39iMl/O1u6X3Ft1bVs1NUHaSA9OmYLcP+OPsMq7YSiJkv/PyuXIfLsyDxOp+tasukYbv1XgHYVeRT57sD1kKZG+5FGkwJz7kyr169Wmp4FxcX9cEHH2y0tJRmkdyQ5pxP1q0LOUxEpDFG7rX/NMfOnLp4J/fwd+blraJAeT7jS62Q9lclrIA/r6pNzmvn06i6a8H4/PPPq+qwd549e1ZVW19ex93IeqzKKnV7yFqBLT8dfy5rzbm8vr7ejbS7uLjYnJscsy0R5up0zm32k7n1+8zRuh0P66qMlqM3qw7vGUfnYi3qYgesjfOTuXU/ck/ZGsA5dSHa3Kvcw/o4h9TWuIxGBtbobFHKz22NcsSs3wlVh/XPPbqXl5wYDW8wGAwGJ4H5whsMBoPBSeBok+bl5eWGmihVcBNLm3Kn7YSqkjtR1eHvGSRj57Bpe7pAF8xgPM/UTiairtqaA1YJrnYQ57Um5nWF4BwXfUOldxLvqoRSgnYdyMNaOIQ722OcTsrvSKofCqjpqg7jyiAC2nvvvfeqakuN1QUTQb2EKY42GLMTtLPPrKmTtjE9dYE1XnfWwfRdXZkWh59jzjEdXRcY5PBt2rSZsmobnILJzAEwXei8iQbsgnBQS/bN5ZYA85dmWAe17SUPs29cdTvToRyQYfMkc5ppKatK7cDE8LlPHGDFXFPCyMTZXft285hEIz9zJXUHs5jkO/u/ClrpSn75ne53lEvD5Zq6XZvy974D/M7nHtY6XVL00Xv0IRgNbzAYDAYngaPTEn766acNmW8m2dq5jrRs6S21p1VZCSQFS6ZdSoNDn9EgTIqc9/s5jMNSTdcXazcmyM3P0T5MfmwtLSVIpH6HBXvcHXWa6Z8cfu7yLXmPQ4k953uBPPeFCd/c3GwoinJcK03YWlVKimjraAxOXDUlGp/nfLBW3qvd82jP9FOE13eBIKbnMkGzKedISM7/WcO2ZSElYP7HzxVJehfy7SAzg32ZWoFptkwq4AK42f/V3wkoDQHaTAZbrILIHGDXJZ47lcUBYX7HVG1J1pljznpXEsznZNV+pz3b2sU6rAj3u/HZctXNBXPrdjPtJUFqR9XhLFtzXlGq+feqw3iTkKDqrqbcUddNeaDBYDAYDAJHaXhXV1f1r3/9a5PYmtKAJWqkZyTwTnKkPb7VkTLsP3JCaAJJwJrDnr8KrNIEEk5ktWSySgWo2oa9W7Nz4mvVXWLUhKXPPTJf+1uc9N+Fv3vOPc7UXDu/3gqUeEEi7CjF0AAYM1o6ScXWGPL3jz766M61q2T17Ctzxn5L7S/b7vbO7373u6raag4uS5TPXFk5TPXVXWMNhrboc1e2ifbsM/YeSu3JUrkJvLt0BVNzAZOBp4bHPfl+WEnpZ2dn9eTJk02YfVoHVnvRJBmpKTiFxBq903nSImLLh/1xjDXvccoWsFUgtSanoax863uxEvateo1dKDjbdyqBaQpz7/jd6PeNySzymlW6lUs0ZV/AQ1MSqkbDGwwGg8GJ4Ggf3vfff7+hXkopxknUSFFILXvRhZYaupIu9MPPww9hiW5PijVBLuhs3EjYjvZzVKPpohKrIrX26WW7hrVE0wTl7/ZROmm687mZPBh4PbMPXUJph4uLi1upnHuyvIj9Iu5fR1zr6FwkwhUhwJ4faRWRBm1YfmYiXhfiTHgdrB04WhLtMX9nThiv/T4pNZvc3ePx3uz8cbaQOIKwK8jpki4+8+nrt+Xip59+2pXUMzrcPrCqw/yb8IH90FG+rZL5vfddBLlqW3gYuK383GQF9sN3MQrWeGwF6ej23BfT+Tn6uCstRV/s9wWdtcUl1Drqsqq7ZBPMkyM6V4QHVb0vfEVab4yGNxgMBoOTwFEa3uXlZX333XebUhFpF0eqs73a0ZJ7uRMmSnZEWkpxJm21tGy7NePo2nNkVUrN9l3YTm2JJDWLVZFIwN+dPRyYOshSaEp4zk+x5NxpsKuIsRWlUdVBMkxC5ZWUjg/PY01txkVvrRF733X/QxtzSRr7gbv2Hb3I2qZWyD2dr67qoEF0FFa2OrjNjo7KfbFvnHXJSEtrDj4T7OvOV23fkHO4utxb++5WJYxyf9N/zu2rV6+WUvrNzc2d4sId6TXao7Vp+kkUbVfya1WI1cTsad0wWbktS6DzVTuX1v3Id4mtGqZK9PPy71XR7T36Mz/PGuQeEbSf4/er84ETzu1+SORq5m0PtdhgMBgMBoGjmVayPJDzo6oOErZJZtECOn+VJWDbdS35pS/AuR8mU7UmVrWWUswykRLJfQTW3XP8PPfRkn1Kg9YCLfG4qOKe5OpIws7vY9+ay9F0UrV9KT///PODbekuslp1yD9z1OpK283+cC2SPITPXq9cezN3eE55bvp97BN25GMXsWh/orVEr3VK6ascVfvLci2dT+Z7nLuXc2KNwevOPV2OKhI343R0Zhfl6EjlDjCtMG8muK46rKHPB+8dLAmdBmRt0L7Vzn/tM+0905WWciSno0CtwSb8jrC1oDufYGX12mNp8n5eacN7mr7njT2afnuvgQseM58Zo2DLzOvXr8eHNxgMBoNBYr7wBoPBYHAS+EXk0YT4Wu2sOpiSCF6B4BWzEAnoHU0P7Zk42WHPXcXzVYJ2lyZgE5+d/E48zXa62nVVWzNVmiVWJgWbJzpTloNJ7JztTK0dFVI+l3s6cmzG4YrXXfL1imC4A2Ypm8GTEsupFjaj0Yc0b9gEgvns448/rqotJVKXOmGTI/uP56bZ1aY4nkvQSJdY7/Qdm/Vt+kkTp01WHWlAXle1dTU40Io++1xlnxyswlxwjnMNnLLAHNAnznyuhc/rXtAK1GLd+rvfJgBw6lG+O3i/4LpgHuxy6GjC7J5wYntHNuDE7FX9vY460VSGKyLqfBc7aMl9dbqCx1jVpx/kdfmO9HvH13QmVCfUu6+sUb7fnPw+ieeDwWAwGAhHJ55nVesuaMXko0h1fIND9ptO9hX5MNIkDmmc1SmRIK3uhfa6j5YILGFZys1nWgpzIAD9yefzPztbV1Q8+bwV/ZQJoHM+wYqCp5M+rcm5LM1etfRM9t4r8fL48eONxp1zjDSHVcDBFYyx2zvsOyeCQzn24sWLO+PL9v23pfWOuHaVYgJyjzpYxUEDlm5zH3gvOlm6066dEuQySzy3S1q21E+7aG3d+bImwXO8FqSd5Jx0tFYGaQmcf7TODH6w5g2coJ0WBe5nbr/66qs71xKA5/dD1eHd5HPv4JsumMxWmz1yZe8Jr78pubp0qK4MVP7dJbo7dcsBNk6tqDrsY6879Hdd6TSXcWM/+F2Z6+aE9sePH+8G4NwZ84OuGgwGg8HgPxxHaXhV//5GX0mQVQdJ22VNkO6ePXt25//ZjjUPE7F2dmNLzaYA6+ioVr4ta5hd0UGH3tre74Kgea+lP0tenS3aY7Z20CWR2z+CRGRpsPNROvnb/s0MBWfM6Vvdo0R7/fr1hn4o/Tr4wdhDLhXSJcrSB/eftSMcnX7n85wg6+c59SCvNeWSfZy5Hm7HmpWtE3mvfVLWAroQczQXlztiTvao9fifi+Py8x//+Medz3PsaES2/LjQcv6eWtoKl5eX9dVXX91qYKCzULik1MqaU7VdF5OV+95MT3GawMo/1lmJfJa6c5Rjz3vdJ9o38UaO1WfSCe/ZZmfdyraAi7BmX4HfUbYa5WfM/aoYcs4J+yC/H0bDGwwGg8EgcLSGd319vfEBpB3exRkdGUZycRcZZIkEm/BDylgAS+umAMrf7yvX00VlrQq/rkhks11rVl2UlO+3nd0S/15EqaV/J9inRutk3qR8yja7hGpHSnbAMoA/tosQZH3RytAmeCZ9yn57zVY+XBLS8Q9WbX0O9qV2UqPHaB9RFzVLv12Q1wnOnV9zVWrFa5pz4mu9R+0XzjWwZO+56YibrckBkxd0nyV13Sra7s2bN/XixYvbd0s3ZvvFaJeocSxLHei/NXsXzu3eP94jjsBOrMooea/unWUnr+8RtluD9xkxEXXXN/sMvQ/2Cq+yXk4q7/zbHgfvI0dfJ9hX3VyvMBreYDAYDE4CR2t4Vdtv45QKiMhZkbniY8lvZb69O99S1TZariviaKqfvMZY2dlXOU45jlWhxYeWmM9rnXOS0qKjzqzRMZ+ddGP6n5UElOvo8kbW4rs8QO+Dy8vLeyl+rFUnmFt8QdjqkdK7QqLst85nkv1lHOTnVVV98cUXd8bR5TJ5nCutiTlG6kytydF4zvfyvu+i9KzBrNbH/c32HclryT9/X/mXGEPS+3nszklljdLf4/30448/LjW8q6ur+v777zfzmBoe/WGM7BHmAt9Q9tvX+P+djwus4gBW65T9XRUE7sjRHVdgbdDWofzceZirkj/5PPfN7529fec5sHWoi2w2XZytK/Yl55gzE2DIoweDwWAwCByl4SFp7YFvb6Qk+1SQArMdJHoXnbSmQiRPSiTWXuz76qKbnMNkP4XLguRnJqd1DmFXCqXzf7lP2Z8cl1ksVmwknY/SkpClw/S52EZvP5Ovy/szWvc+SWtPm6E9k0azV2DsyHGs5sW+ji5PCb/e8+fPq2prJegYa1yUeFXEN9fDmoKldlsWOm3NUWtmZbFvuWoraduHYk2sG/OKlJ28vKrD+hAVel9h5W4ce9YBInztH8v3gDUO+7jo2wcffHuhmy4AAAQCSURBVLBpf1Xix+Vt9t4hjrjdy3GkPfYxfevG71JObteR13sWFkd8uuByXmN/ny1b3o9V2/e3mZi6aHXaQZPjWkf+YuXJsWeZoI40u8NoeIPBYDA4CcwX3mAwGAxOAkeTR19fX2/MURl2jGpNkqbNhJhG0pxGqLjpckwb1QU8+B6r3F3wis1gq9pcHR2ZAxoYh82iCY/DfbeKns9ehQXbnJhmslU1dJswOkJWj9ch2WmKdm20+5I/z87ONkTJXUi8E5Vd2yzvsanHJuZVIm3Vln7s888/v/P8h5D5rtJgcm4djr5K6vd+yHtcI80VyPN5Xn+bmpxg39HSsbYmmWAsea5MMkGfONeYotP9YOKBvaAvSOtBVzvPJl67VLoUDO8RruHdZTdFd7b9LrHbIM+VTZl+jzp4Ku/3HDux3nVB87NV2kMXJOh7jkmlshuEvnueM4H/yy+/bMeBCbMjvHB6ypBHDwaDwWAgHB208s9//nPjyOxClC01rkqVVB2+sV1exNK7A1GqDhIA99jp3jlKLbU4PNfO66qtJteFdOffXYV102A5gTYlMWtjdoavksvzWmulDinec3Bbsu/GZQ15L3n4+vq6fvzxx1trQFcF+7333quq7R5ibbk3NWUHVVgSdqh3px2Y7Nb7LcdkTctaU0cAbekVOCClI/m9j6Ta2lzCATUOIugSga3BsQZOzs7zbS3HWqmJgKu2GtcePRR7JzWDqp4I3GkIaKp7JNtcQ1/yfZbjSA21o4FLuCRU9pfnMsdOqdmzeqysBA746vqyIqtICsVVGbJVKlpalqwdrggV8mywTqt0JVKTcu6xCqwoG/cwGt5gMBgMTgJH+/C6END8VubbHCkcqcxSc6cpuFgnkhZSBG2mtEH79lN1ocvuo6Vnh4undLYqk7FKzM17TZ9j7awryGpNjp8mV/WYsm8OlbaG3BWn9NgdSp9r7cKYe0U8KfHiOego2BwGbv9IN0/un23/aIm5xquUAj83E93xS60okdxWXuPQeUvtnX8MrPx9/L+7Z1Vihedx3jp/nMfDHNDH9OVag3DR2E5Dsr/q/Px8aR2Alm4vjcdExTzTZXtyn5sa0UTwfnfk3NhiYG2988ftvTcTeY+1I55nggNruHntqji2x5LPsxbod9aeb9x7yO/MTDHwNbZ+cd7SOuIz0Gm1K4yGNxgMBoOTwNl9VFB3Lj47+5+q+u//u+4M/h/gv25ubt73P2fvDB6A2TuDX4p27xhHfeENBoPBYPCfijFpDgaDweAkMF94g8FgMDgJzBfeYDAYDE4C84U3GAwGg5PAfOENBoPB4CQwX3iDwWAwOAnMF95gMBgMTgLzhTcYDAaDk8B84Q0Gg8HgJPC/hCA8QMOmBncAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXuUZedZ3vl8VV3d1d2SWuq2utW6+6KA7Yw9zEBCYIgJyxBjhltWFnGAEIM9mEASkoknIQ4QA+Ya7gQMgwkeiDGL+32MCcRc4hDIcLEM2MaSWrduSS2p1VJfSt1dteePfZ6z3/rt99tVpy1bUup71qp16pyz97e/297nvTzv+5au69TQ0NDQ0PA/Opae7g40NDQ0NDR8JNB+8BoaGhoadgTaD15DQ0NDw45A+8FraGhoaNgRaD94DQ0NDQ07Au0Hr6GhoaFhR+AZ/YNXSnl1KaWb/f2V5PuXhe9fHj5/aynl2GVe81gp5a3h/SeHa/jvgVLKr5VS/tplXuNzSin/52We+8ZZH3Ztcdyt6POTs37/Zinln5VSrkzO2TT2bfbn1aWUL6l83pVSbl2kvWciZvvpvqe7H4sgrP+rn+6+ZJjNKe+r7O+Tn6Lr/WQp5X1PRVuz9l5fSvms5PNvKaWsPVXX+VBQSnlFKeUnSil3llLOl1I+WEr5vlLKoW2c+6LZse8tpZwppRwvpfx8KeXFH4m+f7gw+dB8BuEJSf9A0tfg8384+44P72+Q9D2Xea3PlfR48vk/lfSHkoqkGyX9K0n/qZTy0q7r7lrwGp8j6eWSvvMy+7gIvlnSL6lf68OS/qakr5f0laWUv9113QfCsbWxT+HVs7b/Az7/VUl/Q9KJy+hzw4eOE+rn/46nuyMVfIOkHwzvXyvpNZL+N0nr4fM/f4qu99WS9j9FbUnS6yX9ivp7K+L7Jf3cU3idDwVfrl6p+TpJxyR99Oz/Tyul/M9d152fOPeV6tfiRyT9iaRD6p95f1BK+fiu627/cHb8w4Vnyw/ez0n6wlLK13azSPlSyl5Jf1fSz6p/6M7Rdd1l3+Rd1/1x5au/6Lru9/2mlPLHkv5S0iskvflyr/cRwJ2x35J+rpTy/ZLeLemnZxu/kybHvjC6rjsp6eRT1d5TiVLKsqTSdd2lp7sv20UpZUXSpW6bmSK6rntS0u9veeDThNk9Or9PSymvmP3737azLqWUPbMxbvd6H1y8l4uj67p7Jd37kbjWNvCa2X1o/HYp5S5Jv65euP2JiXPf2nXdt8cPSim/JeluSf9E0pc+1Z39SOAZbdIM+HFJt6iXOIzPVd//n+XBNGkG887rSilfX0o5UUp5rJTyy6WUG3Huds161oRWwrnXllJ+qJTygVLKuVLKvTOTwg2xb+o10xuC2eYY2viB2blPzl5/vJSyB9d/binlV2fmhrtLKV9bStnWenZd95eS3iTpJZI+ZWrspZTnzq7/wKw/d5ZSvmf23bskvUzSJ4axvGv23cikWUpZKaW8aXadC7PXN80e5j5mkbV6VSnlt0opJ2fz8MellH/I8c7a+8ZSylfNbvgLkj5u1oevTI5/42z9rtnOfIbzvrSU8qellLVSysOllB8ppRzEMf+4lPJfSymPzsb1+6WUz8AxnoMvL6V8WynluKQnJV0d5vXjSylvK6U8PjM3fW8pZTVp49Xhs7eWUu4rpXxMKeV3Z2P8y1LKlyVjeflsPtdKbwp7Le+rjxRKb5rrSimfOevDI+ofvCqlfPRsHo6V3mx3R+lNcVehjU0mzdl5XSnli0sp3zzb36dKKb9QSjm6RX8ekHRE0mvCvv/B2XebTJqllNXZ918z23/3llLOllJ+sZRysJRytJTyc7N1vLuU8s+T671g1v+HZ+vx/3HPZMCPnfGHs9cbku/iuQ8nnz0q6U6eW3rz7vtm8/9oKeUPSin/+1b9ezrwbNHw7pb0O+rNmr87++yLJP28pDMLtPOv1Ws2X6LevPcdkv6jpE/exrlLpfeb2aT5TZLOSfrlcMxBSWuz65yUdL2kfyHpv5RSPrrrujX1ppxrJX2cJPsAnpSk2QP23bN23iTpPbN+frak3T5uhp+X9KOSvkvSZ6o3Vdw7+2w7+DVJ3y3pEyX9ZnZAKeW5kv5gNs6vVa/R3izp02aHfLn6+VuW9LrZZ1Mm0f9H0uepn7vfk/QJkv6NpOdJ+nwcu521ep6kn5H0LZI21Jtr31JK2dt13Q9qM16t/mZ9vaSzs/9/Qb2kOjd/l177e42kn+q67tTEWDahlPIt6tf6eyX9X+ofCm+S9FdLKZ/QdZ3NdLdKeot6E9Mu9Wv3K6WUT++67h1o9t+of0B9qfo5jr6hH5f0dkl/R73p8o2STkn6t1t09Sr1kv13qzdtf7GkN5dS3t913X+ejeVF6k3SfyDpVer33tdIOqB+np8u/KD6++3vS/KP+w3q1/KnJD0m6QXq5+1/0vbu638r6bfV748bJH27pLdK+tsT57xS0m+o38PfPPvswS2u81pJf6z+PrlR/X37VknXqbdg/YD6e+A7Syl/2nXdb0lSKeV5kv6b+nv7n0p6RNIXSvqlUsoru6779W2MMeJls9e/WPA8lVKOqDeL/kb47DXq7+c3SvqvkvZJeqn6Z9gzD13XPWP/1G/CTv0m/hL1N/SqpKOSLkn6VPWbupP08nDeWyUdC+9vnR3zLrT/+tnn14fPjqlX5/3e7fPvMUmv3KL/y5Jumh3/uejffcnxX6/ef/ExE22+cdbeF+Pz2yW9Mxnzayvt7Jl9/+aJsf+YeoHi+on+vEvS702s3a2z93919v6NOO6rZ5+/ZNG1wvdL6n9AfljSn+K7TtJxSXvxudf2k8JnnzX77OO3Wi/M9bqkr8Xnnzhr63O26PM7Jf1isnZ/pN70ms3r1+HzX5H0gaSNV2McnaS/hX3wiKT/O3z2E+oFtn3hs6Pqf3CP1ebhQ/kL+3pX8t0rZt+9fRvt7FLvH+8kvTB8/pOS3hfef/TsmF+v7MeDW1znAUlvST7/Fklr4f3qrL3bJS2Fz39g9vnrw2e71T/j4j35ttnePYDr/I6k319wjq9Wb0b+k9iXBc7/WfXPg1vCZ2+R9O4Px574cPw9W0yakvTT6m/Oz5T0Beo3XKqZTODX8N6O15u3ce5XqNfKPk69hPcO9T6wl8WDSin/aGbWOqP+R/me2VcftY1rfJqkP+y250v7Vbx/r7Y3DqPMXqd8Qp8m6Ve6rju+QLs1/M3Z63/E537/Mny+5VqVUm4rpby9lHK/pIuzv9cqn+t3dHDSd133LvWkiNeFj18n6T3dZr/nVvhU9T9ebyul7PKfesn8CQ1jVynlfy2l/Eop5UH1++Pi7Pysz7/QzZ4qCbj+t2t763+um2ly0tzX9wGc+/GSfq3runPhuBPqNe5JlFKW4xyUbZrZt4mfT663OjMXvn9mSryoQQPZzj2XzaO02L20Hbyz67qoHdu8OtfQuq67IOku9UKy8Qr1Wu1Z7K13qjfLr2obKKXsVq8FH5L099GX7Zz/deqtCa/ruu7u8NUfSvrrpZTvKqV8Sum5Fc9YPGt+8Lque0K9CeofqDdnvm3RRZP0KN7bRLidTfOBruv+++zv/1VvVrlT0rf5gFLKP1Evuf0n9Zvjr6l/eGz3GockbZf+no1lW5t/Bt9UUyzKRfqzFWzi4PUewPfG5FqVUq5Q/2B7qaSvkvRJ6oWR/6BeMCJq43yzpL9bSjlUSrlF/QOG5tCtcHj2+kENP7z+u1L9PKqUcpN6Ie2gesf/J8z6/A7laze1Ntn8ZOMmMjMt985RSQ8lx21ltpP68cXxf+02ztkusvn4DvVa2Vslfbr6e+5Vs++2cz98KM+ERcB5vzDxuff4svq98qUa76tvUP/83tLPPGvnJ9RzID6z67qFzJmllH+mfh1f33Xd2/D1D6s3tX6S+ufeo6WUny7wtz9T8Gzx4Rk/pl4iW1L/g/O0oeu6rpTyF+o1TuNVkn6z67p/4Q9mfrDt4mFt4Ux+CmGn9+9NHPNU9scPluu0mSp/Hb7fLv6GeiLTJ3VdNx9Dqccn1jSlH1Pvh3m1+ofHOfVmpEXwyOz105T/oPj7V6j3g31e13VzQaKUsq/S7tNVu+uEhh/xiCPbOPd12hwm9FRYB4xsPv6epB/uus6+NJVSnvMUXvNpQ9d166WU0+qfed9VOWxELokopRT1QuBnSfrsrut+d+r45PzXzq79jV3XfUfSxw31oRjfX/r4vleoF0LeprHV5mnHs+0H7zc0c053XfdnT2dHZqaaF2sz9X6fxqSNL05Of1JSpvq/U9JXlz6270+fko4mKKXcpl4q/mP1Prga3inp75RSjs5MWhme1DgOMsPvzF5fJekbw+dfMHud6kcG/0hc9Acz0s9nL9JI13WPl1Lepv5BfYV6P9GisYi/oZ7McXPXdb8xcVzW57+i3tf3TAps/31Jryyl7LNZc8Zc/ERtEVfZdd37PwL9kzR/mO9VmM8ZsnvuqUbtHn6q8Q71VozbuwXCMAL+vfp77PNnlqlto5TyKkk/JOn7uq776q2O77ruEfVm/U9UL4g84/Cs+sHreqbb06XZvXDml5N6luUXSXqRpH8ZjnmHpH9VSnmDeobbp6iPFST+XNLBUso/kvTf1Tu5b1cvSX2++oD2N6n3JzxH/UP8y2Zm3UXxvFLKx6sn0FyrXup6jXrJ8PMmfERSz2B7paR3l1K+Sb3J7gZJr+i67gvDWL68lPL31GtuT2QPva7r3ltKebukN860sHer19K+Rv2PzKKBrO9WL1x8fynl36oPKv7q2bgOLNjWD2jw49XMmXtLKdlafrDruj8ppXyrpH9fSvko9ay/NfVm409VT274z+pNPpck/Vgp5TvUmw6/Tr2f95nkXniT+n3766WUb1dvKv0a9SbNp5OluQkzK8s7Jb229CEHx9Q/aP+Xj8Dl/1zS3yqlvFK9+fehruvu2eKcy8Eb1PuC31VK+QH1e+Ua9SFF13ddNwopMWb3xZer39P3zJ4DxoPdLGFG6UOezkr6oa7rvmL22cvVWz/+UNLbce55C+SlD2M6qV5IOqmeDPQqBd/kMwnPqh+8pxnfG/4/Jen96qWmt4fPv149E+qfq7fD/7Z6evOdaOst6n173zQ7/m71bMbHZtLRm9T7pQ6pf8j8lgab/6L417O/i7N+/5l6e/yPbPUD2nXdsdlGf5N6s98Vku6X9IvhsG9VTw54y+z731adDv5q9XPxJep/nI7Pzv+6RQfVdd3JUsrnqjef/Mysre9R7/PYiprPtt5TSvmApMe7rvujymEH1ROniO+X9I+7rnvDzMT9FbO/Tj2V/DfVh3Oo67o/K6V8gfp98kvqBYSvUm8G+uRF+vzhRNd1fz6L8/p36i0q96tfp1eoZ38+k/Bl6rWYb1X/Y/zL6oXR//Jhvu6/VP9D8jPqNb0fmvXlKUXXdXeWUj5WPYv1W9ULwA+rF4a3CkH69NnrlyV9i/0t6gXi5fD9y9XHGP91jclK71f/wyb1LpEvUn9vX6n+PvwRXcY9/ZFAmRbwGxr+x8dMK/sLSf9H13U/8nT355mIGUnog5J+teu61zzd/WlouBy0H7yGHYsZk+wF6qXRF0h6AUMXdipKKd+nXrI/rj6BwldK+hhJH9d13Xuezr41NFwumkmzYSfjterNux9Qb55uP3YDVtWb0I6oN6f/gfrkDu3HruFZi6bhNTQ0NDTsCDyTmGENDQ0NDQ0fNrQfvIaGhoaGHYH2g9fQ0NDQsCOwEGlldXW1279/v7Nka/fu3ZKkpaXhd3PXrrzJPilCjqnvtvrefeExi/gmeWytzfjZVu3H73nsVuPN2tnY2Jjs69T1tvo861NtDrK+Ly8vz18fffRRnTlzZnTQgQMHuiNHjmh9va+S8+STfdIIjyvrn/eV2+fnU+NYZI5r17+cY7L1qM0hj53aW/zuqRzfIvdKdl2Ow2vqtb506dLoOn5OrKz0pRCn9s6VV17ZHTp0aL7ubs+vknTx4sVN12SfptblcngMW527nXW6nDWswXMT22T7U/cNsVXfsnHXxhzv8a3O5fusTT8P/Nny8rIef/xxnT9/fssJXegHb+/evXrZy142n7ibb+4Til9zzZC/9KqrrtrUGf8oetAcvCTt27dvNKj43gP0Zo4/qt7onhgf6/e+KWLbvHF4rK8z9XCvPbTctvsV/3e78QcivsYNyRv3woU+7nxtrS+JxoeKX7NxcHx8MPHa/C5+H398vA5u7+jRo/qu78pT/h0+fFjf/d3frePH+9SK99zTJ6V44okh9t17xbjiiiskSQcO9IlT/HD0azyH/avdsPHG8jkeK9/HOTUoePAYfx/Xn3PLPcK5jnPMPvm6noPtPOh4He7/OAYes50fWp9z7lxfXOH8+Z7sevr0aUnSI4/0qUS9dyVp//79kqSbbupzmB85ckTf9m3zPOybcPDgQb3hDW+YPyfOnOkTHnkPSdKJEyc2XcPH+L7JBEbvXx/jMfOHmnMd58GvfA5lgldtb/q9rxPXg/eY4b65T74P4rPR1+N942N8nXjfcX/VnoXZj5bngGOncJvtN6+B++Y95M/jPXH11VdvGvuVV16pn/3ZUR3wFM2k2dDQ0NCwI7CQhtd1nS5dujT/FbaUEaWKmhRpZBLpvDOQZihdZuZSSsCUIjJJi8fWXjOJLpP6pbFmOWX6cRtuP9MW3Af2n+Pds6evCBOl5ymJMZ6bjYXaB9cr09CNJ554ojo/XddpbW1NZ8+elSQ9/nifn9nSnzTWeGsmmbgPKOFSSzSyfnP++d7Xj3uYGjWlWmrx8XyupdeH14+gOZfH+vupe4MWBs6rpems/7wno+a6XXBepWG/ej9sdb73eUTsi9eXWquP8XjiPnAfuGdptWFbETWLT4aaxYr3WFxzWmOidSOCzwVpWLta37L9xj1iDYt7NWuT+5yaZLZHPVZfhxqmnw/xOj7WiG62rdA0vIaGhoaGHYHL0vDon8s0E//a793bV9CgNBF/7SmVU4pxW9R62DdprGlN2Zop9df8F9mxW2l8mXZIiZF9jedQM+YcUPLL5sTzWvNRZNJgbZz+PK5b5ouo+c42Nja0trY29+tYq4jrQ22J8L5YXR1qc/p/7zNKojVNOTuWmkjmd7bE6b5aS6gRNiKopRvbkYC5J/1qzSfTbDmemg83ak/eK/6MbdhPF8dXswZMEYh8Hftwz58/X7UelFK0Z8+e0bxF6wDvLfpSM23GezDTQGNbvBdj+0aNZ5D51Pi+tv8ianNK61fmo+bzxuPJtF5aA0gQonUvziv9bZyjzPpBbY1aoscT15rPgUXIP03Da2hoaGjYEWg/eA0NDQ0NOwILJ4/uum7kXI1qbc0BT1XcJihpbHqjCYFtRnMK+1ILF4iqPlV7oxauwP+zNmpmy/g/++LxksTA87P3NPtmpkbSkumIjmOiA93tTcU+cc7X19erzmObNCO5Jp4b+0AThfviPeNwBamnJEsDzT3bk7XPbRKhqcVmHVLNpcEMZtq7kVH8a6Bpy+A6xc/4ne8ZU/Xj/VQLg6jRxCMZgyYmw+PyfEeiSzRLSoPZs0awidfxPJ4/f766d5aWlrRv377R/RL3Yi0Uh+a1aGarhUp5v9VMgPEzmvpI7oljovmdZs/s2Uk3S22OMqKX90j2PIvI5oTPAz6bOc/ZmD1ezon3UASfm1Pm8IzIt12zZtPwGhoaGhp2BBbW8Eop1cwK8bNaEK+lm0zas4RoCZRSLWmu8Rhf1+1burG0mVHZGXhK6SKT1ulopqQzFXjsc00IIBElzglJIh4PacHZnPjaDOak1DvljCct3a9RQ/N1vAZra2tV4sHGxobOnTs3SQyi5uO1dDIDB5z6VRqkRWs6btfSJckXWQKCmuPc+zDObS2RgufF52SkpRqpg/suI3R5fL4exx21XtLR+Z7jimtaIyuQmh+vxzkgkYfzEOcikn9qe8caHsMIMgsM97jnh2sqjTUQUuKnsgzVwq5I6ohzW6P417JTxWO20mA8J5GAxEBz3nu1cUrjfVwLocr2KvcXxzkV2mTwXomkLM+jrTqLZJBpGl5DQ0NDw47AZRWArdHqpTpdm1pO9AEw+JSaFX/Bs3x41EgsvWX+A/bB760NUqqJ7VKKqQXLT6X4MWr5MaUhnRY1Yl+3lj4qjotSrftOSnv838fSb0ENOh6zHft5KUVLS0sjbSNbF0tuhw4dktSnloqv1vikQYKnJuf1p28v81eQUs5xZdoa19T7PTunlm6qFoA+lb6LYQj0B8VjPAdcd/fVeyaGeVCTq2muUbPxHPs+pl/xsccek7RZk6ZFJGr/hDW8U6dObepblibMfWE4jccR9y+DnnlfTHEVqG3WwoWmLCIE/eacg3g9WkMyHoDHwaB1v2ZhZfRf03drZPc+E13UwjrifmOYD/cftVRprCkvgqbhNTQ0NDTsCFyWhkcJK2oX1pL862vpwlK5pYp4Dm299DUweD3+2ltaqLHz/H2ULi2B0nficy2RZtcxaP+upe+KY6b053FZAoqaizU8S1Zuw4HbtG3H61kS9jg9HkrpmTRo34zZc2Shxetk2uyUtldKGSXijX2gZuf58OfU4iKYYszvGVwc+5/5sKSBdWiNJa4tEyR7H3ue/H2WAJr7jRKq90fsDzUq70OeG/tIHwrvyRobOp5DvzYtJZn/jBoStessPZSPuXDhQpVF6IQG9HVFCwV9SmzLx8Z14bp7bms+tYzVzPWfqhDBhMicNz7LYns1FiP3fZwT3/+0evlzPpekYe/4/q8lk6aFK86F26X1w3MS+8jvuDczLc7nT/kga2gaXkNDQ0PDjsBCGp5t6f71t7QcmU+Gf3XNqLPm4M+dPFgafuWZHsntM04vShWMh6oxPDPp0t9RSuMYIpiWLGOMsY/+zuOw1uZX9yf6Fxhr5HHx1X6tKAn5M/p9rOlR8o/j8npZGrRGWfMdxOtsxTZbX1+f95ssuthPpgmLNdNiX+IYuBeZkijbq7U0TUxwHa0Dbifu3+x6GfuU2tJWyculMcPSoLYez/H1qO361XPmeydK3NRU6Bv3WsR182f0A3t/W1OPvnr3IdMyCe8d+tSi1aWWgo1xmlncp/c+tUD65+Le9/rTd5exQQ0/A31uLZnzdpI6u69eF69HXBffRzzWyBiQnEc+K7lHszJofqWVyusfr+c+sn36feNc0fe43cTRUtPwGhoaGhp2CBbS8JaXl3XllVfOJbpMOqOEYCmMMTpRMrBWwfIw805W4kikQQPxr7ylVmqUGZPUfaPUwvi4eM0aM5GSXTyXkqOPscTj14x9Sh8h/TOWFqNkR1+hpSUmbI4St+fN7VsitnROm35sP8bZTNnTu66bS/ae+xjPlWkr0rBeXusIFxetxUPSNxC1Ws8ZY/bop4twu/SlTmXa8RipKVAbpb8k9rsW92kJOc4Zx+xzmAnFxXgzUNumvynGQlKToAZGn1EcY8bWJZy03s8OPw8ic5AWF8+5+5kxYOnb9Dn0h7ntuB/of/d1fa8ZUavivev7j/ssYwUzCXYtyXs81+eQwepxZhaT2rO2VtIsFnCmpkXLj/dDtI64Pc+1rVN8vsU5qnEitoOm4TU0NDQ07Ai0H7yGhoaGhh2BhU2a11xzzVxtN/09I0zY3GC1mhWuo+rtdhjc7WNIaolmCbbHgO0sUNamBJpk6UCNZAX2iaYkj8GIpjqaW+mwr9Xni9/5XFKpvRaed2lsliBFOjO7Gl4nj+e6666TNJgjohmUoQVTSVxJKydFXho75hmK4fOjecPj9zyRFMMUVtGkaRNPJAtJ0/UXSRqiOTJL8utxMbQlM9HHz2O/mQbP+8AmpYxa7rH6HH/u+Xz00UclbZ5PH8OUZQyKPnHixPwcpvPzPUgzY5ZQ3e1evHixSj7ouk4XLlwYJVCI9xifRTbFkwAVTafXXnvtpuuQTs/76OGHH54fS1IH09Nl4SlGrZaez4mEF4/DY/W82VR75MgRSeNQEGnYGyQauU3vg4x4QnMhU7Z5XuOeZpJ3X899yp6V3nvuq8+55pprNvUn3iPbSdBeQ9PwGhoaGhp2BBYOS4gU5iz5qSUPS0t2jFsizaRaVs+1NLOdAEM61X1sTXqXBsmWQY6UIKMkZukrkkOkcaCuEaW0WtopBkdnJYzcPin6nqOp0iu8/lTZm1qYhUkhloajNMiwkb17905qeLt3756P1X2K+4BSM2njXoNIXmF6OGrglkBJTInHeE5rWnQE9zETdWdVxGspqjjXWQICkhR4ncyCwXRN3N8eA6uOS4OG77nxe6+xNfy4Dw4fPrypPVsF/Oo1ipokQ5vOnDkzST5YWloaka3iPWat0ve9X0lMy0qLUTtnaj4/36JmwoBprs9UeaBaNXlbxeIzy+3yuWoNyJYdptiLn5G04vYZ0hPnhyWevHe9VzzO+Dz0ue4jE89nFhNqfyRFuS0/s6Xx3E8lHieahtfQ0NDQsCOwkIa3a9cuHT58eC5h+1c+UpSZmLmWjDSzwzLhMwMmmdg4tsvQAhZEjFooKcUMVs8CTS1VcHyWVBmgnfkjWACSfoxI27a057mlRE/fQLweE9v6vbU1S2nRn0XKNIP9mf4oHmusrKxUNbxLly7pkUceSX24Bkur2GfiOba2EftteK943ijRTyXMZggGLQ5Rmzl58qSksXZELT5KpEwwUEuwMFXmpFZY1GOIa8HE1gwjslTu+cz8MPSjUtuOc8LQoHvuuWdTW/Svxs+8ttYSM6yvr+uRRx6Z9zdLCPDCF75w09hZzoqaeByjj/Vc+hxrkr5foybs/6kF0scW71PP5XOe85xNx3qveFzRT+7vfC9Ys2PiBu/hyKeoJbJ2W247hlLUwms8Tvct26v0Z3vOGfQfwxJovfFe9D1z/fXXbxpDPDbeT60AbENDQ0NDQ8BCGt7KyoqOHDmi22+/XdI4sNTHSMOveGbLljaziZhklglRLS3R/yMNUqOvx6SjUyyp++67b9PnlryypNi+JksIWWuyfZ8+xTgOFjR1G5nW4367D9YsPAdkxEX42kxhRMZdDDzmejEAnX7BeCw1likcPXpU0jBfWYFMFgQMEZtsAAAgAElEQVT2sZYuoxTrubSP0e/JiKTPUxqnb6OP1WPPtHVLxV4nS8uekyils12yAKdKPdGCwaBo9jW2571KKZ0lhqKETyav4XM8v9GfRW3a133ooYckjZNPSON7/corr6wGn1+8eFEnT54caSpmKEbQMmFNLLMo0aLAV7K5s0LAvKdqSaTj/wzUf/DBB+fjlHJ/le9VrxVZqPTLxWPdV+8R31f07cXx8NlkVi6LR2cJNuiz8xpkScQ9Vvq+WdIo/sbw2ttJT2c0Da+hoaGhYUdg4fJApZS5fZUFOyPoO7GU5/eZROrXBx54QNIgIZrtNVUqwpoOY4yi3d248cYbJQ3SkN9bw7MEFONuLH1Zo/N7S7qUpqdK5jCmypJK1AqozTBZrSU8t+W+R3jOPRcstGttK47HxzImye+jlM74yV27dlVjZJyWjiyvzPdoeB3Y7+gztpRPv0iN+RZ9eIzztDRL9m5MYeU59fwzTihbf2pATKZcK+YpDfvK/SZrLitsy1Rs9FEztVScT/fJ53oN3H7GBvQ9wZIxma/NcB8ii3bKD7O+vj5KURXj8GoFRBkPFzV/7wmP0fNDxmdWPJbJ1r2mPtb3hi0z8X/6Dj0/nq/4zGLhVTLIvV6MY8uu43M8b4wDlgbWp8/1sc9//vMlDfvCax6f43w+kyVMNmw839qox+txeG7su5SGNfTvxMbGRvPhNTQ0NDQ0RCwch7e6ujqyG8df1xpbkr68qAn4WNuJfaylCh9raT7GYVmqZIJeSkBZWRhLGjfccIOkQUvIfEX0CTFWbKpcEGP1WCbDx0bpzP+7D5ZC7avyObb/x/75HGtrlrAoHUa2lK+XxQTGYzNGl6Xc06dPT2ZBcJmX2Meo1Xle6IMyfJ2YIcOfuV/2dZj153nhfEkDA4zJvC1lZgWHvTd9jCXrmhYvjf1vZNSR+Rg1CTItud/IDoztcF9FKVnKYxM9jg9+8IObruvPbfXIWM/MPsO1jvGFjHlcW1ubLPOytLQ0KqOVZf3xmMieZJYRabg/PDZrdn5meb78XIqlyOjrJtPa/YhWFPqrvGc9DmtNMV7R7ZD9SRZoxoT1vPN5zRjS+JzzZ97Xftb62eu+erxxfB77zTffLGnYK3fccYek4X6Oa8Dk2F4nj4+Zk6RBe7777rsl9QWjp5KPRzQNr6GhoaFhR2AhDW99fV2PP/74/FeePi8fI41LxdOfEH+RLZ1ZomIxQ7MpLU1ECf/YsWOSBkmBRU5pY5cG6dztMd4m88MwpoUFJo2sGCp9GPT7eJwxHyZZjJa4LUX5WL9Gf6Pn+AMf+ICkwdb94he/WNI412EcM+O6PG76KKVBq44s06lMKysrK/OxWgKP/gpmoPEcur/eH1ED8rUd+2W/r/cmGV1ZcdXoC5KGvcI9LI3Zhe6br5eVv3L7MedofKXvMr4na83zxTmKfhFr4/SXM4aUfkdp7Nfx3nXfrRXff//983Oy+NjYBgusSsPzwHO7vr5e1fAuXryoBx98cBTHGvcOfc5uy3vGz4E4tz7G682YU8/Tvffeu+m9NNz3jDfmfRvn1lwE+t2s2XnvZr58skLJIM7i4rjezHWZlTrzs/aP/uiPNvXZ97/7Y43vrrvump/rueY8+hnFfSeNfe/MY5xlPWIWmFOnTm2bqdk0vIaGhoaGHYH2g9fQ0NDQsCOwkElzY2NDTz755Nw0YRU1OkpZLdqmDztsbQKKpkCb2mies4pv09ytt94qabOTlSWDrMbbXGlzXgyUtZru69pkYfMowy6kcSCpx+dx0VwVTZruI5O1sqxKJK3YNGszgU1JnhP3x+dEggdNJCwPYzNSJKC4/zRp0pQWg8yjSUEam3eJ5eXluSnG/Y3n+Np+ZQLZzATHUkcMkWFS2UOHDo2+Y4IDXidLduu59X62md17N/bR88RxuC2SPbKEB0zTxD5Gc5uPNXGHJk2vJccS++A9UkvvF9eN+9rXpzkqS1Dg/TtVHsipxW655ZZN18vCBAyvB4koESZXePw2z9nESQJKRmLzveV77s4775Q0DiORhjUz2cJzyfs1XsfPF9//nlObNmtJLOK1beL2eLnPIgnw/e9/v6TBRcBQDV/HIRZxXt1H99nHMDlGNNn6OW0Tqc/1nESTN8+PRDomSqihaXgNDQ0NDTsCC2l4pRQtLS2NCnNmv77WhCyJWBpzkLe1LGmQxtwOCQcf+7EfK2mQmqImZInAUgsLv1pyiFKTqeksn+HrewzxOllC6XhdklmixGHNwX11nyyB0yEc58TtvuQlL5E0SF4ZOcLw+nzUR33Uprnw/Pk6UfpkyjSPw/Pm8cQAd2qzV1111SQ9uOu6UbjIlCZk1JIgxz44hIUlVyhdRuKEr8NwDSZUiKQjj9X7mCWyWD5KGrQBWzB8vahtSsOaRpIMg+4ZmOvxRG3HY6Z25jVmOETss69NAhmLF0fNmZoqNTzPUUyZFfeM1M95jfC0vLysQ4cOza/j504kP7g/nmtqtyRSSMNzwJqIx8ZAbc9XXAtbNbyWJKBkiQ6Y2MDzZKuArx/JawY1Oh/j+5EpFuP4fI9RK8uSsXusfkZxLRksH+8vX8/z5nXy575utA4wZMZWJ5Nn3MesnJz7/fjjj7fyQA0NDQ0NDRELpxaLRWD9Kx+DnhlIGDU5aZzWSBokAGpptjmz5EfUCpjUlpqWX2PQLf0fLAdDOm9sh6m2DEsilryi1GTJkMHrpI1nEiuTBVuT4TzH61k7pL+RxUszzZxplFg6JWoD9CtdccUV1RI3LgDLQr1Z+RRfu6bFxvcs+1NLzOx+Z5KgpWNSopnWK16bAc4cQ/ycWhn3s33TlIRjfy0tc7xuO+sjUzsxvR/3mDRed/rlqKVEMB0U1yLuN4YvTYUl7N27Vy960Yvm+8HzFPtAaw3ngCkHpcG/73uX/lDeN/Ee87H0wzMheQafa83OfeP6SOOirX7P9fcYssLTLL3D+z+G5fh8P8d8jDV83rfxXvQxvo6fKSyoG/vIElzUKK05x73BxOBnzpyZTHgR0TS8hoaGhoYdgYU0vK7rdOnSpbl0wSBcaSxF2Mbs9/R5SZtLtUuDROBfcEpR0V9hiY4psZhkN0pn7pOlopoGFCUtlg5hyRqmSsqYpG7XEg5LCkWpkGmhONfUYGJfGfTKYpHUGuM5LP/BBMdRquaaTqWGWl9f1+nTp+ftZZo+k9saDNSPPgCmiSNbixpwZM+yxA77kZUfoSbM62VJtpngmamlzG5j6q/Yf7Ik/TmTO8fv6Cvi2rqt2Fd+xyLC/j7uAwbSs4hnlvSd1pV9+/ZNFsBdWlqaa3b2Y8d9QmYl/ZXkFkTwHuM8ZfuajNuaPzhqHl5v3/dmh/tYz1fcU7QkuS8eD+/P+JxjcWJ/RyZztNowQbe1zxpbOz5DWNbLc8N5zIq5ci4YnB81Sbfj+bxw4cLksyeiaXgNDQ0NDTsCC7M0V1ZW5lK1paooNTGWitoLY47isUbNrmvEc2usSSaPzYrGWitj+ilLFRnDipIpJbmsnIUlHrfn6zJ5dGTneY6ZWojpgTz+qOHFcj2xfZbkyRLN0sdFv0ycex8bUxfVmHYbGxs6f/78SMvJ4rlYtob2+agJcK9QOmeR2qjhUdp3n1geKM4JNUpqU1PlgTx3boMFU93HLA6Pqd4Yn5SxXWtaGscZ9wGtLdQoMw2J7FZrB/Q3ZQmu49hre2d9fX1T+igfF+/pWio8fh+1TbJ/yWpl2q7smeXPfA9ErYNjts/OGp7HY0YkSxvFvnG/eewZY9XwMX6GWDOu8QCkYe28F+kjJNs1W7NaisYsPpM+b8+jx+V1zOILs+f0VmgaXkNDQ0PDjsDCPry1tbUROy/LoGBJgf4LamDxO4O+J0oR8T2lCUp6LLIqjTPEWEKg9hmvQ9+kJSomVc58HJRAKGHTdxD7QL8mfZbuY5Q+KUnV5j6TmphVwn4SJi3OxrxVEcau6+btZ6VJqLVSY8i0GYO+EzJu2ecpkD2b+XLJIPX8+PvoZ2bSYzIg3adMC/Ua0XdCf3Dc3/T3MqEyE7jHNSBjlRot2cqx/26PbGtbCbJsGG53Ko7q0qVLmzIlkUMgDetgTaTG7I39dr+4PmTCZixTMnmtcVPzjkxvj8Hnmk1N/1u0ejAzle9HapjsszRm+Hrs9pfRTycNVhW342McM0qGb3yOk7mZxQjHcyPIkeD+jlohn5vb9d9JTcNraGhoaNghaD94DQ0NDQ07AguTVnbv3j1SO6MJhg5fJnXO6pIxGDm2J42JMNEsQQIAacJWfzMSAc0pVpszujodsDQLuQ2m78rOzUzA/NymBDqrMyJFvEY8hrRgmqvi+Nxvf8dq2Fn9Pzvoa4SXCJNWmJg7MxtzzKS9ZyYMmjA5xqm+1UyoTKMkjU2MtbCHaG7jZzQP0rQ5lXjc+4om5yw0iOZPXm+qojvnhGsc14AhMhxHRqjgtbfaO5GEkgV3M92Ux8FUf7EvNjd6T3qdSSajeS22z4B8holEIpqPYZC8nztZcgSaXbOEDXGc8RlCU7LHY/KKk4LEeWQomO9/t8vrxmcxvyPhKVsDpp/LKrdLm5+n7q/NvWfOnGmpxRoaGhoaGiIW1vB27do1os/GlFmUikg0oAM9fsZyHEQmXTLA3GBgbqx4TueqpTBqElmwo8+lBGKpgymGYvuWxqnpZQQLJnwmWYX9iterkXwoBUVJi5qqpV73PdNcSGy4dOnSliVeSAyI8+ix0oHNuYhSZY3yTw0lS5JA7YVah19jQl5LmtYkWAKHbcV2amEJ1LgyWrr3r1NjMQF4vGd8Pd5XTHSdkQu8HpTOuf+jRYFaNNeL5KaISEuv7R0/d0z6YMhOHBPJRCTUZBqe9zhTvk0ly6iVC2PyhLg/IpFJGrQpa2JM1C6NK7kzdKVWZT62a8KJySk+x4muIzynJmx5X/GZnD13uQ9IIKTWHeF2fH2SseJzj5aDqZAWoml4DQ0NDQ07AguHJayvr0/Sw+l3YdopprWJx9Z8DExgG3/N6S/wd5bKKe1Kg62eQb2UfCMsrVKyYsolI16Pfh6WkHHbGbW81g/6QuO59Jm4rVoZHKkusbrPlhKzlFLRTzoVeH7hwoW538/05zhvlKz9HenHWXLd2t6hxpf5HHgu0xtFPwx9RAwpyPxi9AlTm566nzwHTN7tflhKz5Jwsz3Ob5b+ivNGP/AUqKG5jSwBsJGlHSOWlpa0uro6KlwbtSeGrjD0Jws8d/+YCovrxeePNMy/x+T2bRnJrmd4X5H6P6X51KwC9Itla8kEDr4Hs9RpTLNI7ZP8gyyUivegkT13mCDA4/FepfYdr+O1vfrqq+eJwLdC0/AaGhoaGnYEFtLwzJbyrz4TAUtjiaeWnifahBmsTcmU7+OvPaV/Jh2NBUsNpsmqMT2jlM50RiyeyDHEAFAWLnXfGISdJYDOCorGPmaJmym50ddGbVgaB3hmxRqlzX4TMmJj2jlieXlZBw4cmPthsnRTTKPGdcpYmvSH0ofG91HqpERKH6d9HnHMTDtWS5IQ/TVMTkzGI31FsY/cmx6n27RPL/pjmLyZvikjmxMyVf2+ZsmI7TKBN8vDRNBiMlU4eHl5WVddddX82KzcFgPLmVouS6NVsxxQE800cO4VlmlicHQ83+cy0YIR+QYsQstnoT93W7FfTGEYWY3S2Fee9YUaGP3bUz59g5pynF/6CskKz5j79CsfOnRocv9s6su2jmpoaGhoaHiW47LKA/kXmwlTpXEME6XWTJthDEnG4GM/CGtclsotcWX2cUqtlHwzfw/t0ZawLXHViitKY7+lx+UUPzfeeKOkzZIdmU2MFWLpl8z/x8SsHmeWWsxgzCP9MBmD0Br+VBHPpaUl7d69e943anpxzNQyWVA0SnPUPLbSZjKJm34rj9V7KvqKmLqKrEXPeVxL7xVqErUST9FPQh8afXqek+hnPH78uKTBukE2Nfd35hOfYkzGc+NntO5MldsyqJHVsGvXLj33uc+VJN1+++2SNt9X/t/rkxXirY2lltaKeyazLDCZO68X14UxlNRKqO3EazKZM0t9TaV3ZJyz2zh58qSkPLG+k9/73uacZAnoCTKkaYWRhnnza5wvKf+98LFHjx6d96GVB2poaGhoaAhYSMNbWlrS3r175/4C/xq7MKM02Ild1JJ+Htqx4/+1rAu1wpXSWPNw9gBK1dEP4/9rpWMsQcTr0A/DorS1EvWxXUtLjP9z2ZDsesx4QNZhlgGBPgdqnWwj9pHstqmyMEy6OxVLZZYmfWsZe5bX5BxnjK3MHxXHw+OlsV/He4mFM7O9w+S9tRIzETXGIz/PigczJrCmtWXjoSZXY4nGz6gp02cTz2GiZDJY/T5q85kfuYau63T+/Pn5PnN5m/vvv39+jDVqv9rqVLs/Y/+yskwR9JPx/3gunzcx6TWLpkaWoTR+ZkmD1sf7hfuClh9p2Ffuq/voZzRLW0mDT5gxj+4jfWoZK5TMeFoN4v6nn7zmK45ary0XnpsTJ05sKym81DS8hoaGhoYdgvaD19DQ0NCwI7AwaeXixYvzIGQ7NqNJ02YUJyhlHSebTKKTlY5ZpkBigtEs4bD7RFU7q47sPhqssG2VOZJxrGIzWS9NgDbrZOnRaJaw+SUzMdIcYBNDRvGO/ZDGwf80bTIAPY6PKdlo4srMbR47zTwRpRQtLy+PwjiyAH3S3GmizQhPNJXSYZ6Z77wnbFomSYXJBWIf6Wz33vF+j/uboQVTdRClzXvH/9vcbZMTzb7RLMXExTRDknAV57MW7jKVjszmKJquaA6NoHl67969kxXPz549Ox9PFsDse9XPAb8yMfxUejCuE02eWUo71sNj/c04dhL3GNSdmfwYPM61JNU/hhF4P9uEahOgTZpuy3sqtkcCj02PDGKPZmruZ7o3shRtTFHG56Z/YzKT5d133y2pn+NGWmloaGhoaAhYSMNbX1/XY489NiJumKAijQMVaxJjlIBrqa+yCtDx+AhKCnSyR0nE0h+rB/tzS+mZ9mHt0OdSajHVNwseZqC5JTxLXFGKYakct+EUOp7nLFiWJIUo/bNvBAOpmXQ308yjplCT0p0A2ONy/+N+qVWcZ5hKJPeQLMLQFqY/y9IosVo5E9dmyXzZR0vP3hdxjzI1FR3y1D4tRcdjvVc8Tiatjpo/NS3331YC0t+zZOxMr1Wj8MdrkyDEBAgZKaRWKivCpBWvtccetQGv4UMPPSSpXuk+7k+OsbYu1mDjuUy9VwtliHNibYUhE+67yYAx2YTXiqnK/HzzGLzG0drmZ5H74uc0tagsLIWELffN481SpvkzJpzmszjuA2rC3LMZucl982tMfLIVmobX0NDQ0LAjsHBqsTNnzsw1EksmMf0UUwYZlCoyyY6aXC1Ak32K16Xfx+9jkKp9Z5R0KSnE97bRkwZPTYyJTeMxTEtFrTRKTZSKSCWmphHnmyna6G/MqOUM0OcxWdorI/NBZrCWF8eaFVelD2Cq2C2D02uFMbOwCoaQMCzC14laqPeEJXxe376O2GcmJeA+MKgxS8O+8yvL9mTpmgz6majtZvcXx2OwdE3sI+fNoO89g58d586dqxbxdNJ63hOx37Se8JrU2qWx77EWTpGhVjaHz5DYR2t47pvX1NpTVqyaweEHDx6UNFij/BzwWHx8vI7HbuuQ59xz4WdLvE4tnIyI1g8mnmeChcyXy3YYZpFZlnxMLHQ8ZbWKaBpeQ0NDQ8OOwMIszY2NjVFAcOavorRG5l0mVdbSQtFPFSUv2rItiVj7zKQmXs/tmdWUMTv9v79jAlYGpkeJhBKwJSCPxxJelBaZWNbvqbX5nKgtMKDU52TSuUGmmkHtMwtwp/09g0u8eI6ZRiy2Q+2FJVAimByayXanEk/XGLb0scTr0t/H0k8sMSON09yxr5RuI4vY33mPmFFHJmlcUybUzsYR246WhVpCdbIc434jM9GY0pCywOna/jE73JqI+xJZwTVWNhN0T5XgqaUczEqM2UpEHxMZsBHUPlmezO+diEIatEKmlGMZIr9GDZO+YzPn6bt1iq74HVMmMvlHFnjO9H4cF3834v9keNfS8MX2aNXbDpqG19DQ0NCwI7BwarE9e/bMJUMy1CKypMbZ9243glLYVHor+gLdN8flWPK27Vsa7N1uz9qa7d+WajKfGjVYS9zUXDMWqttzXyzJu69ZImW3w3JE9HdlsVRkcDEdVgSlMLLzqDFxfqR+naaSR1955ZWjVHBxH7h/tcKvU6B/kuyvzJdnjY6xjdE3ENuQhvU+ceLEpr4xbVTGtPOrpXP6e92PzC/CvUJ/X+yj+2JpP4vVi3MS71Eye2vScxbDSbYp91JsK2NITqWlO3v2rG655RZJ+d6xhkCtiVpF7He836Rh73idmLYv3tO+Hu/7LGWe4ecLY/a2U9qGJYXIRvZr1PCY8s199R7yOfYHSsM+sgZL/sGUf52xtZyDLIY4Y7NGZLHX5GlwHafQNLyGhoaGhh2BhVmaa2troySnGWsuY+FJYxaONI6rqSWLzmIyyLRjmSBrc5mkytgdn+vxRWmJvgFKZZZQKE1J0uHDhyWNi9HWmGSxb4zDoV+OrKrYF4P+t6wEDP2kWRFcnkOtbysNb3V1dRMrL/Yp9oG+PK5dVsSVWgTHTC1KGsf9uW9eL0vRsbgq/SyW1n09FkeO1yRrkT68zOfleXJ7Hgf9MJmGxzgot0ELTbx/Gb+4SLYMvmYZUQzGuO3Zs2fShxc1c/vy4v1CTatWdDSOlX5/Pl/YVvSxM6kz4xcztjo1O2ZTytjO3k+2Crlda3qMuY19ZNYna3LW3txWLGVFpiqvT19iHB+z55CTQf+gtHUR5qz4LuMmp/y/RNPwGhoaGhp2BBbOtHL69OlRmZupIou041JDkcY55BinxvfRlk7NpxbjFvNiuk+WLq0NElHaINOS/g9mA4lzQp+Kr+djog2d12PRVjIiMwZellUinjtVSoNFSCmBxeswe0mWP5RtW2LM4muoEdA6MFXOpsYurFkA4jFel2uvvVaSdOTIkU19zJipZPIxL2KM3WMsHfOycr2iT4KaKrWNzPdBLYB+XmrtzI4Uz+H9lLEd+R3HQ2ZxPNaWjFLKlhqeNW1r4JE7QLY0c5BupywZn1UsxZOVqKEPinFrkX140003SRr2mc9hyadoHfB4yLxljF3GpyCT+Oabb950fcYDSuNya7xf+RyK+8D95l4lolbI0kx8nnlvZs8sa7Atl2ZDQ0NDQwPQfvAaGhoaGnYEFiatnD9/fhSEnVXZpUmx5kSO/9McyLRgTBAsjVMeWdU2ASFTvamW26ToY7IyNwwaJT3X59K5HI91n44fPy5pXJU5oxQzpMAgySSaUEk8IEU7Mw3Scc+A5sw8QbPelPOYeycjW9SCTbNgZ4P7imP1/GXlYVimiSQC0tSlcdkZmg9pRop9sHmGJsWp9G3XXXedpMGM571DslKWyqyWwIGEl7hmtSB19jWuRc1EPlVeh3O9trZWpaaXUrSysjI3t7G8jTROQOH553UyGj0JWjQB+76MrgcGmLsthg/F67nfL3zhCyUNz02bAk2eiyZNkmNqoTpMahBhE6bboikzPlv4bKcJ2/s8I9gwRMJ98f739SPZiO2QuJWFhNglFM242wntkJqG19DQ0NCwQ7BwarELFy7Mg24tdUbEX29pnPopCwCN7Uvj0AZK+pnjmcQJlk8hASL2pVZoNEob1D4oSZEAER3csdxL/I7B6xkRgHT7WjHUOF5K1EycW5OkpXqiV2qH8X/39fz585Ntb2xszKV0kiLiZwwSJ1EnC5Tm2GphHBEkHLDgKwk80jhpL53rWSFLrwOvUyttFPeLpWKfa22Uml02j0ZN68405loqrqkk1Qx3ocbk99FyQkLQVPJoX5cEh7imbpsEFFLlM0sI9zqDur0GMZkAE2t4n7kEk/dQlrTe7Xgv2dKThXJx7pg2kBa0GGJg+FyWNMrSLnp9ramSSMg5i/uB652RvuLn0ni/eQ54j2SFm/2sPXjwYNPwGhoaGhoaIhb24T355JNzycC/sFGqYNAwpcjMp2bUSnvwFz2jslPzosQXQw8svbA8hrWPrHSR27MfznZ2v7rvbiuOzxIctTK3ZekkSylV88PQ15YlRaaPhhpNFsqQFUqN52TBvp6vM2fOTNKDSykj7TOT6pmcwOdsJ6SF2kZNgozt0i9CyTRK9v7f1g2voSV7nxv9Pd4jlrDdV7dhDY8FieNc+B4wHZ4p5yJq46FWWCsQHK9b07Kn1jnbXxzX5cDX9H0aNUamA2T4UFbslvPAsJCpwqUMU/Ias834LCGvgIWnGdQdx8hUbPa/uW+2CjjZdPzOGp2TR9eKrsb+8h6s+efi86mWzNnnsLRZHDN9ntQWIxgwf+DAgabhNTQ0NDQ0RCyk4bmAJ31cUUJkCR9qcplNtlYWhv4QS8BZORNK+kyUnGmFDCKupWSKx9JP4b5Yemf6IGlcFNTXsbZA7ST2n/7LWhmNjC1FTY/SWibZk2VbY3jGa0ZpdysNjyy6WDyYzENqGZkPktp4zQeZaWtcbyZ+ZhCzNGjw/s4SNSX8yLTznmApISaczqwebs973/PFlFKZ5l3zqfj6UwkjtvKfZvc8QW0gk9Zjguts/G5nz5498/vITOjotyabr+YLitegtYSpsNxflvWSxixqzym1xHg9ar703ZpNmRUcNnyu94GfB7YWxH3v+bIVwHuSyaMztqv3N0tm1fZWbK9WuDt79lNTJis9K2lmv2jUaqeKy0Y0Da+hoaGhYUdgYQ1vZWVlMl0PpUbGGFkqi1oaNUVqLf5FtzQzFcdB1pqlpSiFsmwKJRH6jqTN6XeycVkiydI0keFJ6Tmzh3vMlJJ9HfrAorRLzc7nsjxH5s+gxkRtMUpamcRWw8bGhs6cOTNapygB10qPUKvOSrx1qi4AACAASURBVLxYC6uVbfE5UVujFG6p1m2wTWlcsJLWBybslQbJ3fvKPigWAs6kVGpPZANHhizPoX+XZVtqidDjOTW/b7Z3uA9qSZiluv80w9LSkvbu3TvXTOy7iffaVtemNh37Q9+TX+mfj/eYn0Esfsu1jGvKMk20gtk/m81TVlonji9jp7uPPtf728eQvR377zlh8nqmX4v7nM8xt8FCtNEXSmY2n1n0ycZ2/dqSRzc0NDQ0NAALF4BdXV2dS1qWFOKvr6UI2vrpN4pSZU1CtBTNNqOU4XPI8mFMVSYhGDEJaexrvI4lDsfM8fpug5kR4rVZVJXvs9I7tcw1lHKi1suktJyTzHdDSZXaRsam9PpE6a/Gluq6ThsbGyNJLGOKcqxkd8Vr0P/GdqlFT0mkLPWSzRfjrSjFZoVTKRXb71eLrYzjo7bLuaFvJYK+G2rvU0l+qdFxDFnMKM9lNpoMkbk65QuMCYKzjDScQ7Iyszg1Mro9Jvrjsn3gZyALzPq6jJ+M7foYrwsTXdtPLI1L6zCJs+fvvvvuk7TZt+r2vVd9DovIRvh5yTJUtT0U18BJ15mBiUnE4zrzmc9MKxkz232KGvNUDOem/m7rqIaGhoaGhmc52g9eQ0NDQ8OOwMKkld27d4/qyUWHqtVxVreliTFz5pLSS1NmVvPJNbKsJtuZb1XY14sqMUkyU2lsjJrJjCZH9y0z2ZL2nBEpjBrFl1Rq0pRjX2jmdRumK8c1IGGIFZWzoFjW5iqlVJMOux80jUW4fwxPYIq5zOlNYkstiDz2jyZlVhc3IjXc39Ex7/cZEYCmHK+3+8SwhdhHpoWqVRXPCC+85xgOQ1OaNA5VYQJokhpiH0jGYphRltYr1nObCkvYvXv3vL/ZPNF8xmTHWVgCv+N9wnstM83W0vXV0mrFY21qJNHKz7R4rPvoY7PwF2kzacXzbTcME18wOYc07I2HH354U7tMmehg+UjmY6o8ry2JNXGP+ZiaG8Nm+bhuvMcbaaWhoaGhoQFYmLSyd+/euWRgenVGia8lPTamSr0wsJ0ByPF6lhrsjPZ7SyhMSxWvw/eUxiLtmcl7mTqI1X4jSEZggm3SxuNYWTm5piVmyVXpACbRxesXx0GJldT2LCmyMSWle+8wmHcq+JnSXpY8mhIiUzGR5BOtA6RtUyMm4UoaJNsalZ2kifgZtQySZDIN1n3jPUGtNN4T/t/ECo+DKcxIsJDGVdm5Tu5rDOCnJG9w/8W1pna9e/fu6t7xcSS+TSWT4HMoSx6d7SdpHHxNLTu2x2cU1zQLbWJ4CvdolsLMwfa0evm5M0Ww8j5wu5HOL23e3w7m9nhssSN5xv2IJCAStrwPGaoVw3xIEPIr0/BFDc7t2qq1trbWNLyGhoaGhoaIhTS8lZUV3XDDDXMp4NixY5I2+ziYNol2cPrNsu8YbElJLEpA9PsxmNaSUZQyWBySGpalpqgVWpJxvy1dMDCT0ps0SHaWhC0BUZrKgnltf7dmYcnK43GbmVZACY4U6qxMB/2YpO5ntP6YTq4maa2srOjo0aMjbSdqpg8++OCmc2qJs+M5Hn/mT4yfc72kceC52/La8b0kPfDAA5KG/eA+0j8SJV9/5z54PzBtFENDpGEvUrthcHRMIu3+0idFTYaJleN4mAaNVoOoudCvxLnIyvnUNLEMXddt0q4yzcRwO55b+nijFkpNgRo4tbbseUCLCIPZ7aeThnX3WtHCkBVI5fPM6+0+0e8c7z/76muWHvr/pGGe3BeGWTH5Q9zDLLJcK+Ac15rhNfx9yO75rDRb0/AaGhoaGhoCFmZpLi0tzVPgWLKLUvO9994rKU9MLI2TEktjKdlSC5lXmd/HUgqZTv6cCXNjOzWpgAGh0iDhWHpmORIGukYprRYwS1ZblJo9f7VEv0wTFbUhS5A1dpnHH8fHNGtMDG2JNivt4XU7e/ZsNQCUTDtrqlFKNzttStrnOUbNouDrZInHua+8j6mRRAnZUqylcqZkI1szXpN7kxYNJtCVhvWvJeSlb1ca70Wf67mIjF4i24txnEypFcdFbaom4Uvjue+6rno/Li0tad++fSM/T9S8mYidQdYcR+wf0/XR8hP9lQbvT1pvsoB9zw+TVzC4Ot7LZKjTZ0juQLw3aFFgwnP79uL1yP5mSjZah+Kznwk06BPPEp2TPU0tMEuO7/2dJezYCk3Da2hoaGjYEbisODyDMUjSWDqiRJqxCllSiH4Elu84efLk/FxqcrTD8zW2R0adP7ffL0u9c+utt0oa/G9ul5K/tWBpkIKoFRhMbRT7Rg2VMV2W4jIthPZxJhzOkjDTn2iJayplWtSEatLW8vKyDhw4MO8bk1LHflKrdZ9YqkQaWxKovWfpyAxq5z7X8+T33g/SOEUZ28gkbUvW3Heec1onsjglpuniXpryjxlkZzKZcRwztR/eZxH069RSjWV9jPt2KrXYysrKiEkcmalkgXveGHOY7TdqtfT/ZhoeWZL2l3kM1p6in8z3kNeBfSSDOf5vHz7L5zD2bWqOPV8uJZTFxTE2mMxexhlnafCsUTK+MUsYT5Y72yKjNJ5j7Nu3b0urkNE0vIaGhoaGHYHLSh5NyTHaZDOmkc+Vch9BLUsBWUz+1X/ooYfmxzJLCplvvh4/l8aM0lrZDmlzQldps98q9tGSXfSbuY8eD30oWTJXS33uk9uPrC9pnCBaGvsRqEFmPkxKu8y8Qs2d/7uNWizV8vKyrr766rkkTFZrvDb7RF9hRFYyyNeTxtp7Vjy4lmXGn2fMTu8H+jq8bvE6bo/+a+9J+rqitGupnHuI/sA4d9Siec+xP1l8GZl2jIeKe9XnUxvN2HQGj5lK/usCsO63NYjog66VUaLWHuG1Ynwq/aJkZMZ2yTb2/W9kyaqpNTPeL2quzFZDZrHbt8UpgtYtr4/P8f6ODF9mYfKx9CEzg1a8Dn2SjGvNeADkOdjP6Ge0+yWNfcZXX3110/AaGhoaGhoiFtLwNjY2tLa2NtJQokTCLCzMqZnFBFEKo3RpVpMlyZi/zRKBpSVf1xKJ+5oVOfSxljwoYUVpjWwo2r/JYosSCX2QZIFSAorXvueeexRBaTrTmOm3YpwPteIIskGpsWexe36dsqXbD2NpNito6fU/fvy4pHGRVcaXxTFaEmRcpL/Pxso4NPtd/Z5lo6RhbukrzjQfg/lIDWq0U6xQ+l2ZCSXTkLjvPC6yQqN2RJYjmXaZVsi4T2M7DMksrjPD0tLSfB4t/U+xWVmuJ/Nx0V/N7C/0X0VNyGCMGzOTZNqa55a+O7IPY39rOWN5/8f5pI+9xiCN5/CeZsYTv6eGm80J933mo6SmnxXqjW3EuWgFYBsaGhoaGipoP3gNDQ0NDTsCC5k0pV7dZrLYaMqgOYgEFFJVpTGBwaYQ0tJttojXY/XwmvM6C5Stme+Yaii2SxXfc5AlVzY4ruuuu25T++5PNKHafFIjC9Acl9GDSXPPqs0bNjOQVs+5mkrcvLS0NGla6LpuFCAc14Wp1rx2DFLPQkxovmFgrs+JY6dJx6YrhhHEc2rJrzPKtUFzI03qTDydzWEsoxNfvR+i6cz9ZkV6mj/9eQzgZoJ2Bpr7NSPWcA/RDBpNuNxnU4Snruu0trY23x82G8YxM90YU2MZkXxGkhKfB0wiEfvne/XEiRObzvGY77///k3nxvZYnd1r6DazSu5MT8iwhKwsFdebBJuMDMY1pEuA4USRlEMzO8lAJCHGdmiiZQB8XDf/z/CO7aBpeA0NDQ0NOwILB54vLy+PCnRm2hrLmkwFMFM6YSCuQSKKNEhHDswkxZ/O3ng9UvAtvVhyiBIdpUH2iaEN0enqUAJrDkeOHJE0SEJZgDPp7yRHUGqPJBnDGjFp9lk6KlL+fSyJFXTSS3lR3xoYxBuJAF5/kxJIGvG58Rxek6EGLMkSr895oJM9Gxfn0vNhjSebH9KzOddZglyD7TMhAI+Lx5BIZfIXwxPiuT6Wr+xH1AoZ1sFxM6G3NE7jtW/fvtTyEOF7giXBpPFeYeA8kzDEdqi1MEF3VgbNKRTvvvvuTcdSa44pDd1Ht0PyGkNoYp/cjteBaeIyaxufb0zVmCVJ8P3i70gcI6EnS+TPRO60OMXnOsNFmDQ6CytjKbiLFy9OlpaKaBpeQ0NDQ8OOwMI+vOXl5ZHEELUZSzaWdJwGLBbri99LY2o/JUNLGaaNR6nC3x09elTSuJRH5hehZE8/H9PaRNiPQLq+22DQrzSk8iE1mlpb7CP9SB4zqdN+jf4/pnWj5J2VhbFkR2mXaZwyankMf9gqgJjJrqPE7bF5nVkuyHsoSrEskMtyKZTSo8TNoFqvj7VlpouShnWhH8ZaZ0bR531CjYe08cxi4n1Gny7blMY+NfoxqWVnqcxoMfD+yMoRGbUUY/QhSWOt+sorr5wMaVldXR1R720pkYb1d+FnFtmNoTPsg+fLc+k55rMszol9dwz8r/kSY194Dxtcr9hHhpDQz53tHd7/TMo/dQ6fAyw8nfmZmQja4PM9avK+p9kXz7XXJFr1GDjfkkc3NDQ0NDQAC2l4LsRYYxlJY7/RXXfdJWmskUQpgEw3S5OUJrJk1f7l93fUTDINz8da+mKCZiZQlQapxP4ltsHA9Dg+SnL0w/h9lgyX/af0lGlK1jKY6oeMtegHYsA02YhZmSX6z6YCh0spKqWMyulEP4ylc2vE1FR8bhwHfcX0pdCikPnJmADA2ov3YVwXBp7XfMZTTGKyjymJR8sCNWu2n/kuqA3yep5PWkFiH8i4Y1uZBsvxUSuIGh79iFNJC5zS0MhY1Cwa7X77fvXeir4gphCsWUK8D2JaP9/v9JNSi47rY+uQX30vedzue2QxsmSUz6F1IEsYzmTrtCwsUmbLIBs+MiSZlDyz5sU2YjvmL3hNfa6tPVl6v+g3bz68hoaGhoaGgIVTi507d27+a0rGmjRmSVkCYMqvjJHFooq18vLx15x+MUpetK1L4zgRSxnWNsjijNekjZvFNTNWKCVfJgLOYtyoCVE6o68sSrtk9DHGxYh9ZKLmmn8jajtmxrpw63Oe85xJLW95eXmUZihLa+R1sNQXGYHSZmmPGijLidTi1+K5NY0o8znwO1/XfWahTGkcw1RLzE0tVRr7zqi5ZqxQpnuiz5rs4IxdSwmeezbzM9aSRmdpvQzfN/v375/04e3Zs2dkPcn2gTU6a2PuU1YAmExD+tK9Tp7rmNKQ+41rl1l6GPdJC5PnOPoK/SxkUmqDvtDMKsV7m5ptvCdYPJjP+prmL2kUn819QUtA/J/9Nzvd+yOzIvq7J598sml4DQ0NDQ0NEZeVPNrSUlYigpI7yzxYWs9KRPiVDDv6QDJmn6WxmoaSJR+tsRmzWCfGw1Bqp4aZlQeij5DaTpRYWUqDiXnJ3ssK81KCZ6Hd6LOg78vr5z57jqIPhGWbVlZWtpS0GKsTfYJkalnKY+xhlGJrycmpvWVJnenToq+L2nXsG+eUEnFW6okFTLNyKbwe/V/MYMQ1iO1Rc2Q2mIwdXNNuPI+Mwc3aqWk5jGGN7W2VeHzXrl3zcVGTyK5B3xr919I4FpCxlX7Pe939jaDWTAtQ7CPj7XjPREai96RjKGuWnSmLCfkMfEZmpcVo0aIWmlmaWHi65suNFgVmivI5LL8VnxO+TiwJt1UM53x82zqqoaGhoaHhWY72g9fQ0NDQsCPwISWPNqI6SUe/TQmmejsQPZoYaI4ixd/mA5q64jFU342Mes0QBiZKzcIfPOaaU9dgQGg81qD5gWak2Bd+x6rYNLHFc0m+4RxFwgPJODSVZSYaO9djuqOtzFKk4se94+9MDrD5lESRSGLJzE3SMLfuY9Z/JjTnXNAEGcdKUyPNoJljnibSGoEr3l80u9EslZn5ORfcO7XvpcFcVCPFZIkFuK9YJd33ekydx6Bupkojuq4bmb0ifZ+kB3+Xpc8yWJfOx9Ac7vFEUyPnlHObEcWY8Jl7KKsX5+tce+21m67D+yxbW6byYnhPRnhiYDvNoVNJ0mlqpImbpnZpPPc08zPUQRoThaYIT0TT8BoaGhoadgQWTh4dJZaMZuxf2vvuu0/SQKe1NGEKuyWWeA4DgH2OpTUGJ0pjTcjf1ajG2Xd0xGfSGaWwWgBwpMoarDDuY0nWiZR/EmeYFoiO9SyEwqBUTqpxbM+fUcvmcdKw/qbkT6UVc/BwRh4xLLkxIJeEmazf2TrHc1k+SBrmztoGHfRey9gmk+hSU80S5Bp0+Nek9GyOSazJyh0ZTOnF6tu0bMR9x2NICvP4H3roofk5tIyQ0OBz4nh9Tkw5WNs/pRQtLS2NwiciVd/PkwceeGDTMaTtZ5q3wVSCHiMtUNK4ajwJV1mZMGo4TDnHZ5c0tkzwfq89W+L1DJZ2IlFNqhPbfE9OJXAwWM2eFrM47yQy+ffB8Hw6WD+OMaatbKSVhoaGhoaGgIV9eEtLS6N0V9EHYP+af6lNp/V7/xJnfhimjmIRTx8XtcNa0C5TIEUJgNIyae++fpS0mFiWfh6GCUQJKFJqI9y+v492apY7oUZH30E8l/RfapCWqrOA4+gXiWDgsTRIZ9a8pqR0X48+1yjhMeGu55A+13gOU4vVtFkjrim1cffNkmlGf6emQC000zQZuuI9U0vEG8dAnwpp71zj+B3vBWqLnrsYUO09woLDDODPNFhqFNxf8TnhpAXeO9tJAMyk6zHJstuj39XPGT+XohZHTZjautuiBSC2w3uYz4O4luQT+D6kzzDTDmtaNP3AWSFo+rxYNDYrLcVC17zPplI2ek2pXTP9njROUOJzmYQ9piBkKMPGxsa2E0g3Da+hoaGhYUdgYR/eysrKiKmTFSz0r7qTtlKKiYwtMnH8a20JiMzBKJEy2Sn9FpmkFX0WERxX1MwonZA9x6DyKDVZQswSrtb647mw1MSE2llZGI6jVtLDfcv8aWS1ue9uI5aFufXWWyVtZoHVJK2lpaVNLE4W2Yz9YnowBqlnabuo0dNfUCvJEsfs63uu6ReO1yYbszbH0jj4nfvcoFQdx0MWIyXs+D2tHdQsPI8sKhr7ajCQ3t/HdaNGwmK7me/GVprYx1rSgqWlJV1xxRWjxMVxzNR8DVoUyMiN51Dz4b0X9x3vLZY/y0rXsJQQ+8ZA9/gd71VaGqbSE3o89OFRa4vt8DsWBLaVJUuSQOal3/s1S0fmvtKfyUT48TsnNak9zzM0Da+hoaGhYUdgYQ1vaWlp5POK8SlMNuxfbvvybIs1w0aSbrjhBklj6ZKaniWDyORhSiGy1+j7iMdQKvJ4fA6LYGZ9oy+N2oI0SNK1AqA+NktDxMKstTQ90T/i/309SsYZs5PMRF+XGkaMn+S8RSmcWFpa0u7du6vFT2MfDMZfWqKLWialciajpY8g9r+mbXIfZhplLak309XFz3wdpokjWzhKzWTpMnk01yAeSxYm04NlacI4ZqYy8+eRNVeLwyM7L2qCXodYLHZKw1tdXR3FhsV59Jj9rDCDk1pA1AasZdJfTqsB/XXx2v7O82GLVs1vLw17xfuY/t+oATFZs1GLz4z3NPcO33Ofx2M4x2SjZ8VjWUjZe8V+OX8er+vnDP2ZRmYVy9KotTi8hoaGhoaGgIU0vAsXLujee+8d+UuixE37rQv43X///f0Fk4SpZIBRW6LUHKUAS3L0W/gYSwFRGiATidJB5g+gVE42I/0AWUwdpaNaQdA4Vr7P4ol4PCUg2sndj9hHMlOZqcLHxiw3/sxS7TXXXJNmb4j9omYX+80YQEr0tBrEsdUykHg/Zj4VasnUuL2v496hFOs+ey6yhNPUpLjPKdlnScvpG6K0HuedPsgaGzgrR+Sx1hKPZ2Vo6L/2+Myc9LGRaUfG6sbGRlXD29jY0JNPPjkqURXnmHF9WYxZ7Fs8n3uRGUJoKcn64LF53vx91PR4L5FBnsVw2srE5xj5Exl7ltlyWOrJyHx4LPHD+4msdWmYe2t01OzdZvy9qK0P/fiRXRsLv0rbY/gaTcNraGhoaNgRaD94DQ0NDQ07AguZNE0ttxnRJoy77757fgxNbs997nMlSe973/skDWro85///Pk5d955p6TBLOBXU+JtbrOZLZI7rDb7O1Zhp1kinm/1nKZN1raTxjR0q+l05tLUFb9jUDQJNxmJhGYXmvcy8ytDMkioyMw9NMkxFZf7GJ3HN95446ZjosmSMOGJ5pS4lqRA07Sd1cOjqc3joCkmI/cwQS3DILLExu4bTenuo+cpmhiZbop7ho75aC4ntZwEFIa8SGOTJs1vmdPfyGqkZe8jMgJDbMvzGUORfO/FNZ0iPK2uro7M/Fl9PZJISGaJ+43hOV5nv/c5JJdIg9mOBBA/u6YIIazRyfXJ3D0kK3Fus1Rz3DO8p5nwI35HchxDDHzd+Fz1erD2oPcZ9248tlaHz3OUuRVqBQOm0DS8hoaGhoYdgYUrnp8/f35ETDAxRRqcrPxlfslLXiJpIK9E8oMlUqaXYZqmTPOi85v0bWoH0tg5zES5vl6s7p1JGvFzUpjj9WppwhiomTmct5KejSgV1lKmMYg4ahI14oHbcFhJ1EL9nSW706dPV6Wtruu0sbExSn4c22PKN+8LS+tZCRnvvRMnTmwaK8MVjKwNziX3TjzHGpXbJaGKYTmxPWrPTFJAYpQ0TqTNytpT6aFIUuGcs4xL/IzEJmqlGUmKqawMkjKk4d6K98IUtXx5eXl+7/ncuNdIorB2Rk0oangOb2J1bWo12bqwHBRJcg6HiPeln1sMMOczJEtS7XZY0qpWbT6CSalp4YnPNCYpoCbO8cfK7yT38NnLOYrH0JpDImMk2NlSEO/BFpbQ0NDQ0NAQsJCGt76+rlOnTs3f+39LM9JYiyCt9LbbbpO0WfJ2AOj73/9+SYN0Zsnev/6W+DNJ0XZ2X5d25ExKowRPST8GHNMvxkTD9NPE5NgeBzUtBo9GKZ1SUi0dFSUi9lsaJH3PVRb0zTAEFr906EGco2PHjkka6Oc33XRTtfxP13W6dOnSaB7jeLxmx48fT8fuccS1tLTnUi70BVADixI3SyIx8Dybc/rU6J/1WmYB+jVaPVMjxevVknlTw4tzkq1v7BsTDWfBygwip7YT9wF9r6TIs5SWNA75uOqqq7Ys8cKC0FmhXKa+8jneJ3FufSwtCVlC9jiuCCbInvKTes38vKS2Th+iNH5ukerPEJOsv7VSVplGTm2cYTY+1muQJVigtYtaaWZto4+SnIWs/FnkfGQp4zI0Da+hoaGhYUegLBK0V0o5KenuLQ9s2Mm4peu6a/lh2zsN20DbOw2Xi3TvEAv94DU0NDQ0NDxb0UyaDQ0NDQ07Au0Hr6GhoaFhR6D94DU0NDQ07Ai0H7yGhoaGhh2BheLwDhw40B05cmRUqibC8ROMs2LB1AgSZ7Z6P4XasU9FGx8qnop2a3OznbanjuF3jOHJ8vzx2qUUnT59WufOnRsFLF1zzTXd9ddfnxbvNBj/xFicWp7ORRDb4Bj5OoXtZnaI7dXWimWCtoOpe4TXqb0uci4RY6m4PrV4umzuY9aXxx57TGfPnh1N/urqanfFFVeM2o19Y2xrFnc5NZ6tvtvuudl9Ujt2O/uN3y1yD9Tu6UWeGZeDyxkfs10Z2e8Fix5PPXeIhX7wDh8+rO/8zu+cJw12WqeY6suBg04x5qBDBvNmNb/4wOPnUw9dHjN149a+m0pHxkXjTc4Fi+NjQKbfs9ZYBANYORe1NEHSOD1Q1qf4eWyXKdRqSawjYsX2H/3RHx19L/VV7X/qp35qnqLsvvvuG43d++jkyZOShuBkpgeLgbKsdM51qCWlzcbISt1ZuiamU+NDJFtTJq5moDGT+sZzub7c51nFcwbQM8C59hr7WGuLacukIcmCz3VAsBNI1BI7SEMQ9vOe9zy9+c1vHn0v9QkTPuMzPmPeHmvESUN6sMOHD2+6NpMXxAco5457feq5U6tlmN0fNXDfZXuHqd64JzmnWeo8PrvYxyx5NFGryp7NCauvTylIrNnIRAeZouTnhPfguXPn9JM/+ZNpv4lm0mxoaGho2BFYSMOTNidxzRLX0qRJyZSfx/Nr5lBKU1GqqWmBBitgx2NrmFKjOc6aJJJVEaZWyLJEmfRJiYcla6bMBqykzutk6ahY9ZtSWZY0OLY3ZSZZWlqal9XxubEPWQXuCJbRiZ+5v7WyJlm/uKbuC7XEOAdcO0qx3MtSPZk3tSm3nVkHWAaK+zqOpWZaZMqvKdMWNWSOL8JzwbEzLVqmmceK7VPuiIsXL46quzNJdewv708jM8X6urUE2dm+pNVkEfMgtSU+O+K60YJEDY/rEd/zvmffs2fGVub9LNWXQStHZrFgf3hPeD6ZHDvrK+/57aBpeA0NDQ0NOwILaXilFK2srEzaremj4yuT3kqD349JdGvS+ZQPr6ZxZVJFpjHG9/G6lBin7OA8lxreduz+9HtMkUdqoLY25UymdMtEryyWGf/3um1sbFQl3Y2NDZ07d26UMDlqOfQ9Unuf8nH5M/o8SI7IyijRd1IrFxXb536j9hT3G/2t3EOU4qOGRymdPpqM0FNLUs4+TpVo4rnWrijFS4MPj1ov/c1ZUWT7406fPl31H3VdX1rKSZ6NzNpQ891OWVE4du6HzH/NMdYsLhmxhhpjptmxj1z3mlYYx8QkzsQU8YoJ7TN/du0c3ldG7dkpjf3bfrZk5CO20wrANjQ0NDQ0AO0Hr6GhoaFhR2Bhk+by8vKkWa1myrQJ02aPSGu2qYJ1wmgWqDmi4zE0E2QOfBINSE6gKW2q/ZqJKTOHWm0n+WKK6FCLw5lagxqFmQ79SMaohU7USBPS2FSSUaIjNjY2RhWM4zzV6Pmet4wgkJnlYhs0ZWYmGZqca+ax2A6d6iTLZH1k30hAcZtxLDXiyZSZn8QCjplmquhK4BzXwjoiKHdyuQAAIABJREFUOcK1/xxGwvGSxBD/dztra2tV09SlS5f0yCOPzE2imYmOlcFJtplybfgck/G4PtmcbxVaNBWeUCNZbCf8oUaey9quEY+mxsVjamEd2fOp9kyqxURKwzOw1u5USEs0bW6XNNQ0vIaGhoaGHYGFNLyu67S+vj7SnqJkz2BWa3R2Tvt9DFZn4CopqjVadwZLepRqo1ToY1gVmYjSFCVdOuSniAc81q/WcrOq1RxzTfrNKMacH84JKx/H79hnEl8iSAvuuq4qaZnwVCOkxPaoBTJcIF6DFZgtpVtbqkn62VhrhI1MK4gZQmrHxrFLY+mVmorXKRKDaIXg/PH7rdrLxpuFhvDVx2RV5z0u30/+zuPLrAO1QPoMXddpbW1trklm+5d7nBpftv5sp1ZleyrhBcNraOXIQmhqSRKmMgrVLBTUnqJ1wHNA6wcTLmTPP1ouSBzLNDzOH0lfWZIMw/Pne55Er2zd4vvtZqBpGl5DQ0NDw47AwoHnGxsbIy0mSjXW4Bxg/PDDD0saJEOmKor/M/1YFsLA69Wo9pRqrAFIg8/Bx1oSyijXRk3CyiSQWh+p2VHbzSj6NWm85ofM4GOnqL6U+qbSrBnU8KYkrVKKVldXR+3EMXuslvK87llIgeE0VldffbWkQcvweDg/U6mX3DeGx2THul1rMUw1Fq+zVd5Nrwu1xXgdo7avY5otn08J3330/nMf4xp4L9Kn6znx9/Ge9LW9H2zNcd/dfgwrqGmuGWw5oOYdNWT/f8UVV0gaUosxQNv7JZ7jecqSVEh52AC1Fj6zuJelcRo8hgJle5PJCWp+ssxq4P+ZMo/zl1kwDPpNM8sMz635qMlhkDRPNch0e342Zvc8r726uto0vIaGhoaGhojL8uExSDBKe/bHmbFlaZI24Clthv6wqfRQ/GWn1mnpJpNI2X5NW5PG9n4GntLXNZU+J0s/Vrsu7exMOGsJLGoFtTRuXgsmq83arbG/stRF1pgvXbo06YtZX18f+THjulADtvZCidTXk4bkw9RiLekbWRotakCUzqmZS2PtjwxftxWldY/Rc2jplRK+24rWCPrfuN4ef9Rcauno3BZ9x/EesnbGe9JtWMOLPnjumQcffFDS8CyITEzD5zvp8969eyetA6WUqt9UGvaE191j9Vx63uK+iHMW+19L/ZX58MgipO897h1acvzq/UAtURrPYU0LzRIze778vPOr54BWotjvWno9+vSytHv0p9JyEhn6Bsc3Nfe8B3fv3r3t6iVNw2toaGho2BFY2Ie3vr4+0hQyHwD9blMSiaUw2ofpr8hit1i2hMjiZHwOfR30l2QJpylx1BhX0ZZuqcXjdJ/83hJelFzIiiSLyW1YWqulD5KGNeG5GegnYWxclporsim3iofxWO3PiXuHPg6vi7WAa6+9VtKg1UjD+Blz5Plw+xlLj34Jg/swalzut+8BagWZ5FtLscW+0R8ojcvc8NVaStRc3A59aO6rx5P58PwZEzVzz8b9xmTyTBqd+W58rNd4//79k0mAl5eXR5p+nCf3gZqcS5h5z/g9z5fGDMTtJCf2fnBbtKpkmj7vd77PNKCt2IuZhkMNi9a2TCukdkb2sc8lJ0MaP4O8d2lxiJp19D1L4xRj2fgYEzj1PCOahtfQ0NDQsCOwsIYnjVlLUaKzxMPYHCawjdLVViVw/OtuqcJ27fiZz6FmaUQpjX2hVJNpKVvFw9FPFyUSSkmUApmoOX7GYqS1bCBZSRFqox5nVtaJUjjZrtm4Oee7du2q+mG6rtOlS5dGcVwZi839tIR4ww03SBokwyjR+Rz6Zb0nvVc8rqitGUx6zDWc8g/4usyWksUN0S/h8fkc9y1qIdZUfA61t0OHDo36VIuho/+USZ9jvyk120pAy4I03Mvut9fE1zdjO4Js2qlsGUtLS1pdXZ0f6z0Wfbm2Ahw9ejTtE2MC45joS5vydRu0+Pj6U5lB3H/3m/eA5y3OVy22jfe4xxfvPx/r9n1f8ZkyleiembKIuHcY9+nr8p6ImqDvAXIg6OOP9yAz+ixUdHfbRzY0NDQ0NDyL0X7wGhoaGhp2BBYOS4g1z2wSMJVZGtR0kgcYwBzp1qzbZHOEr8Og3qjy24RKijXJFtF0Vqt0XUvFEz+rkRPo3I8mW5/jvtZMJdGZW3MW05SR1fTzZ74eA06nTAFZQmEpT9nGJMTbcR6ToJSZ02zyOXz4sCTp4MGD1X57L/gc7gOb7TwXkfBC0w7TQ7mNaAal6ZrjyYgAJPeQlGPzoNvKkvnaZMY2Hbib7W9WFWdSCM/JqVOn5ue6HZrmmNA7jtPXoXnKa+JxZaQsz/nZs2cn0+ft27dvnlzApkHvC0m67rrrJA3r62Ni+1LuDvFnvv4jjzyy6fpZ8gXej753fSzTF0qD+ZmJL0iSyYhhdEN4Lb2H/X0M7mcogV/ZVnx+e33df88j9332nGBaP+4Vz0VmivY6ea+YoOa1iPstrqE0XYeTaBpeQ0NDQ8OOwGWlFqNzN0oVll4t7dHRnP0SW9KopbyhAzVKTT4mBsLGNrL37q8lBUstliAZsBn7Twp5jSIbJRImQfb1SIvPKL616tQ8N0sAnCV8jmOIfbTUT0mrVi4mfufPzp8/X5XSXfGc85gl16WmePz48U19jOPyXszIIrF9p7jLUi8RNeKVNMyLpVSSBdzHqHFbg7Mk7fmydMvg8UgIcbsep1+pDUQpneW2HnroIUlDQLjvFfc9atkMP/FakNIe18jn0DLjNTHJIGoDDKif0vB27dqlgwcPzufH14lar9fD93ScD2ms6UnDnuC60Grkscd9wLI21F4yiwhDJLyXSKTK0u0Z3pMk9llLj+Pztd03v/f95HHZSiCNE1zUNKes714fWkqYoMLP2dhv73mG8GRwOzF8qKUWa2hoaGhoCLis1GKW3DIKrn/lac9niqKsQGaWMih+nxUu9Xek1TNpbJQoad+3VMjUO9l1GEJRK1oaJRQmxWYaqsynR98nQ0FqZTsi6CvwOfR3xetRuqX/ItrfKY1N0ffX19f1+OOPz6V874/oj6V0bmnVkiil9thPpiWjX87nRj+pfUDUymm5iPuAIQT2M3qOLbFGq4evUyssSik+7gP6Ij0n3kv+3NqKNGhUDzzwwKa5sSTPwPAoHXMvWiuhLyeutdeU+8F7ynMS+2gp3/fl6dOnqwWEzR3wXvR8xrX0mnk/kUbveYr7jf5P+t+Y9Dr6jpgcmum7MouWNSv7G6+//npJw/PG14/X8Tg8hywl5n3oc2LQOjUsj8vr4PFHjbJWBNfXYVqyuHc9T15/WhKyefT8HDlyRNJwfzEYP/7GMMTkscceaz68hoaGhoaGiIU0vOXlZe3fv38kMURfCH9pGaCZ2YYtVdB3Q0aSX2tBkLFdSs1RA7J2QQmEKXiiz8HfsY/R/h3HEjVKFsTka1auhz48S6ZkZ/ncTLKrBWRSkpUGfwgTDFsaywqcMq1bFtRtdF2nCxcuzOf+5MmTkgZtJF6zpsX4epmfosYcphaVlf5xn7xOU/uL7DvuM2qa0qDNWDv2HrJ2yLWM9waTUVOzp3VEGkvSTE7AsktZEV76r7w/mMottmtwTTK/n/voOThz5kzVh2d4rO5LXEv301otE1KQuZq16/aoTWW+5ei3lsZlfPwciM9Gll6ihcmaa/QVkiPg5wBTf2X3J31pvL+yZxX9v1x/+mvjnPDeYokujztq2bQOWGtn0oLYRyYKf/jhh5uG19DQ0NDQELGQhldK0d69e0epl6IUQ18TWX6Z34+JUcn+o+QdpWfGozFNV1ak1lKE+20/hftk7SBqSCzhYenl/vvv33Rdt5XFRUV2UmwzY3QxKXStvBIlv/gZNUcWq8x8bmTMWmvLYpE8Tx7XE088UZXSL126pFOnTo0kt8xvE23z0jjJbvTleR2YnsltOPbJKaeiFup+c296vliYOH5nydb+EEvA7lv04Xm/OrbIfbDfwuvvuYnsQ2ufZlgyztXfR58xyyjxPvV4PTcx7oyMWCagNjILTSwTFcftPRHToGUp0mpxnEtLS9q/f/98vXxvxDmmD8taDGPC4vrT+kRNxPNGv5Y07DdrOtSqvQ+swWZ9NHuW/r+o4ZnRab8fr0t2cuyj14GsYybUj/vbfWOqPt6TGQ+AzFWWFPN+j88d95exkExbGZ+dvo983zzxxBPbTiDdNLyGhoaGhh2BhTW8lZWVUVmRLGsKo/xZbiSLNfEvv23ZLBFBDVAaJB5LjNbe6D+IWqGlPEsNN910k6Sxr5BSrTRIPpbCaTtmWZrYB2oOTCYdwTgUSj6MIcx8BUxszLI3WVFcg5Kxj40+N/fByZ3vuOOOKtPOcXjU2mPM2X333Sdp7D9gfyNTlGVgvBd9jr+3hhfXhcmomWTX/tmoAdFH6D7feOONkvI4PMacsZwOmb9xLTyuO++8c1P/vQ5uwxqgNMybx+5xWttwH609RI3ijjvukCS9973vlTT4s7iHsoTDvq7HznszJsX2tT2P+/fvr7J8V1ZWdOTIkfk4mJQ49sEgvyDzW3O93Z61XN4DEW7Xc+lnChN3Ry2UzzHPrcfl+bEGIw17wmv5ghe8QNLwjGLpL/vG45y4/95XZOlmcaYeu/vvc2h5ipYl35ceDzU+9zXev/Rr89no65jRKg3PXt+XBw4cmCzhFNE0vIaGhoaGHYGFNDxL6ZSMotRMaYk+lYylaanBmp0lxWPHjm06l/4T90kaJBBLKCxDFG3A/sxSAX0CWWFbltrIilBGRM2FfkuWtMnmxNqF2/GcuC1/bi0r+gyZLYHatj+f8k1R2s7iYdx/axdTdvR9+/bppS99qU6cOCFp0Kqz8kD2izKPYJYhhmVm/Op9QJ9k9I+xtIo1IB9jrSrL98k5sC/NPr0sl6q1Mmp4ZMBFqdnt+r7yHqVkH/vo8fgYt2ttlGzH6BO95ZZbNh3je8BzYQ0i7h3vxRqTmTlDY/tT5aeM5eVlXX311fMxZv447luvN5mCcZ44xnvvvXfTudZUmJFF2uybi2P02jE7VOyv18XHMk9qNk9+fpGpzNdoyWL+WPr7svyvtVyaXltbc3i/xb56/5ElnDGbmTnK+9njiblvDbLrT506tSXD12gaXkNDQ0PDjkD7wWtoaGho2BFY2KT5xBNPjBKkRtIF0zRZBaejOarRJGIwEarV9Cyw2Wqy+2KV3H2kyi8N5giWHWJ6sgiaOUnfJW0/mrRI8WXJIqv8Wdouq+02p9SSB0eSC01oNN1OlbLxPDL9FdOvSYO5weOYqni+Z88e3XbbbaOUS5EEw+885zaj2bQUzdMONPYYPe+33XbbpjZI55bGFdZtWvJ6mAoeiQ42e911112Shj3JRNBZejD3kWZ3v9KkLw33Qi0NnQkOcd5J9uLcsASQxxLHakLA85//fEnSi1/8YknSe97zHkl5SADXntXRs6DvaBqrkVZc8dxzkSWqoFuCJZmyMmGeZ+8vH+N1sPnd/Yr9Ywo+EpO8r6OpjaZmhpTE+8hgCj6m7/Lce7yxH76O3Qd+tWnbaxznxNd2CIn3jK/DRBvxXiT5kCWZfB3fV9I4bSR/P/j8iZ/FckQteXRDQ0NDQ0PAwmEJq6urc2nKEkLU8Cw1+Vee9Oms/AMDjLdyrkYJKCuaGK9Ph3DsL8sPsdROpulRk2TRQ48/o0y7r0xllaVDY6kVX4dkhaxMB+eLJUSyJNzUAtwepdvohKfmUkqpSlpLS0vas2fPXHJkAdU4H9bkTJSwVMlwi9gfkjmsLXuMt956q6TNGiVp+9xf7mN0nDOwmWQpawdZ+jNq1NQK/L33R4StEtYw3WfS1qVxyRpSvn2/mRwUJXzPj8/JCqey776O93cthVkkffi+jGnXahqeS5J5Xny9zLLksdCCwLSB0jiZBO9hjz1LOcf7glqHxxefVe4LS0sxMXi8Dp837gvJWn4Wx31AQhVLm5E8Fb+j1cn7mgm3I8HK7TM9mOeZe0gatM5aOSBaCuNcZAlItkLT8BoaGhoadgQW0vAspdO++v+3d27LcVxHl06QoEjJssMO25IoOTy68KXf/0n8ABqLsiyPLMk6kcShMReOD73wVe4CoIi5+Kdz3TTQXbVrn6oqjytTcuVN7YTFvaKktu3b7u6w52zDb3aX/kHCynB6J4dag+iKk3KsE7SBpffs46ovTgzNPlrqdCi2Na7UrPwb17e9vEt4d7Fap05kHzmGse6lJZydndX5+fkm3HmvYKW1ThPMVm1JjdEiVhRJ6XOwdGwNpQstd1HY9LvmHOT3zLN93vbdkN6RiccAKZ3f0H679BjTNPmeY095X2bf2Gf4t0wC0PXNfjKnInVliGzJ6ICGx1p3Fhjm1lqzCZRTi8Ta4NSI1ByqtppRjsX39IpIO9un305x6gin0Qqd3M8n48V6k+e6KC57h3k0aXZex8WWuef20stMg8jcYCHpiDxoz5YyWwcSTnV79uzZaHiDwWAwGCQeXQD2cDjsEtcikbjwqv1kKQmZANrlh/YouJxMvSq1kr4b2ne5IZe3SKnBhV4BUgvXQ7NNKdGRqUhRXN/kztmeC5pakuxKATka1FGBjL/TlPl0ki9YUYe5D91vP/zww602vbeWSKYmm6W/qaUhedqH5pJMLjiav5lOycncmazsxGukV2sxXVK0qfGQvK1hJAUX/bX/l3NMT1V1lJZtbXG5G5D7zpGEPqcjWvD+os+sRednXhVs7nB1dVX//ve/NxHYuZasnYseu93UvB3xyrH002XCcs9aS1+V5LLGWbUtNM3aOWq86mh98qcp3zp/HNem/44KXmmlOQ72jgkdOkuXtV2uwzzSt9RCXSzY6+gofI+R8U3i+WAwGAwGgUdreG/evNn4JFIisc/Jklbn9zPhMu1bUujsuZYqHM3k8hNVRynFPhr64fy1bM/XtR3cOX15HWttezlC9MXzZ412b25WRXddWqRqK6laozXlTzeuvVyY6+vr+v7772/z5rpCopZ80RDsh0stkzE5P8lSLFJh9tH9db6Q/Sd5HfYQGp4L5abE6VxJ+3CQ2mkzc53wM7Gf0FS5DuuReXHW/v3JmnqOqo7rYR+bNZfUEukLe9aak/uc7XG9vdJSNzc3dXl5eTvHSP/Zb9NaOYqyi7R0+SdrPDzffE/kObZkWSNJzYRj6T/zwh6i70kEji+N+8ZWKdp0jmXVlv6L547LA+VamugesM98f+WaOnd4RR/X5Yxa+3MEfT53POZvvvlmfHiDwWAwGCQereFdXV0tNbKqrbTvgqWdP84lg6yZWJtJyc5SvyPTOh+BpWMXxnQUatW2jAVSk/2O9C1LyjjPztGTJqbOczzmjvXBsE3eUXp72qDt/I5cS23H7DLPnz9f9sulpdKOD9Ds6C8FMq0xpJRuf5t9xSZQTt+D+2rfpzWlqqNUCcky84ZvrfNt2BLifD+Tsec+cJShc51A+hm7osd5fWtXHXmw/c2c4/2e7TgamPk0OXYeyzg+++yzpX/45uamXr9+vfG15R7ynu40OsMly/J6Vcc57SISWQfW3dG61jjzHBfM9d7JeXD5L471/uac9JMyLubfx7Dfujmy9ud73c/1qu2znU8zsHTw/vIc5Ro50vsxGA1vMBgMBieBeeENBoPB4CTwKJNm1X9VTidZpwpu056JbPfC6IFNIk7YzONtijOtlsO5s282U+IUt7M6v8OktaLcsvktf3OtKVf37ULmbX7yuDtziwMMnHTbpVjYGW0ToMdXtV3Tt2/fLgMPnj59Wr/+9a83SbzZntNCnJTMsWm2wezkul2eW9DRqdkEzP9cL1NMqLzsJHLvoc50atOO+8YapIOedrgeZl4CekxTV7W9F/jNQUYOEEjYlEabzHc3j1577q+u0rZNkFdXV7uBB+fn55vAseyD59RmtS6gyq4L7x0HnnT3p10NJkvoku2dOuEgsrwvTSxhsyh70ykhbievj+vAwStVxzUyqYTNzX6+5zl+Jvucrk/AzyHmuSPHz3p4eylRidHwBoPBYHASeLSG9/Tp042TPSUEaxxd6Gsel3874GWlvXUSqb+zNJESt5MdV1pUV0XaUpEDG6yN5m8u4YGmgmTUJcXamctcOIihSyK3BrbSnPM6gHYtteW4TE21J2VdXV3VN998s6n6nEnkTmlx1eoumZj2rK2tqm/nuS5FYkokPrsq6RzLmlFKZi91hvvGgVXWAFOj7KqFVx0p1P76179WVdXf/va3299cfsZUX3vJ3iaKsMWmC+gC/MZ943JLqaGxbpkCdB/xuLWMvF9MPO80FFfWzmO9t32/7M2T05NsHciAEK7nYCH/nylUDgy0Fs33XaASfWQ9rK2T8pL3tNMPTI5h61COz31dpaZ18FzwXHC6WdVRI+ba33777S4hRmI0vMFgMBicBB5NHv3ixYtbeiVCszu/jcPb997u1lpWyeoOF89rW7JeaW1VWx+dJd49ctrOr9O1kf0xTZOlQaT3Lvx9pUFak+yk4460N7/vtB1Likh4pk6r2obb763xxcVFvXr16jYMnURafFFVW0os0KU/ACe7mnTb2lv6OCyd075LC2UJFMaP9mIKtr2UD9NR2f/T7VmuvUplQBv4y1/+cnsOxNKM2X5Y+7eyz50fKfvk61dt0y2ccsL+7+YmtYKVDw9KQ98D+Rzw/nX6kFNO8m/vA++/LmHaa+eQf1vB8jqOITDhfVqWgH1pttZ0vjba815lz6DhvXz58vYckt6ZG5cWsoaXWvuKZm2l8eWcME9Ou+n2DvOVhWxHwxsMBoPBIPCLNDzs7kgDSSjr6DjbyVckq1VbH91DbMD2/yFxoIF15KO+tq/bJUevSsY4AtK0RFXbJHVLf8xRnmPNakUltqddu++g0/AclbXyGXblTuj/u+++20Zi0d7r1683hM1YCzg/r21w7fQb2A/n//l0dFvVVvKkb2jcTmbPPrqgqBO1u3XxuFwaxZpgdx0Xq3Vh5aqjxM5vrK2jHE0RmMesCN1Nlp5/m9DBtFE592jKaBuXl5e76/7OO+9srA45HmuPXtPuGbJKkLa1ZkW3lce6XJTLUyXsw2fe8Mt2/vjV/enP3Ad+FjpynecQxYVzzHlf5vcm6ci+rsqP7RFs20ft6Ff2TvprGc8eEf0Ko+ENBoPB4CTwKA3vcDjUmzdvbqUWpICkOXKUkstjWNPb+80aXSel8Z0LzmJ75jO1NZPGWrI0hVFex5GWjijlnJTsVjRASCqUg+lKr5j2x9GZvkb2wXZxS0Jdvo81I+a1i+zzWPd8eIA9QzHK9IV6TzhfsfMvWeK1pL8itM1jXb7GUY0Zpem1s/TfRenS3srv8xAND02I/YxUTl5e7hP6kLmn2Uf7HfN6ztW0f8sac55DH71nuzlhX33xxReb9oyzs7M7UZq0//nnn98eg1Zrjcp7qvNXWouyJuRxJJyfyz3eFUzmOencSs7pqM7so/MzyxHNXekd1sUaZTceR9bSJ1sHurxc+6Dty+3iLUxSvoodyD2FJoyG9+LFi13i+sRoeIPBYDA4CTw6D+/JkycbqYmIu6otm4B9G52WZh/ayqYOulwwgC2Yz067sW3ZrBlIQilpOQrM2f6OSk3N1iWDPBdILCn50IeVv7GLJDUcDeixdN91JXiyjZSk7M+6ublZ9ufq6qq+/fbb23bQ9LJv7JlVDl23H+y7Yz2s3TqnL4/lGNaB6xNBmpJwkoLnb47a7bRC9rdZOFycluKeVUfpnDbQBoiwo0juP/7xj9tzrH36XmBcbjPHbo1+FXGX10Frc0RflyNGHEBG3q6k9Jubm3r79u1tu1hEkmmFaFYXnV1F/Fbdn9+7Z0Vh73jsaPP2B2d/7ZdFU+kiSVdR2WaQ6Sww1sqZf+a+29+APUn/XY6ou89XffX65/VWZP/A92bVMeeV++TFixcPsi5VjYY3GAwGgxPBvPAGg8FgcBJ4lEnz7Oysnj59eqs+4jhHRa46mhYw/fCbzRVd1eq8TtU2udF0XlVHE5XpoEyY24Vem44K9b2r89eFcOf/qzqA+beDIvbIe5007OroK6qfbM/t7qn9DsF2mHPX5ipkfg+kstD/JILGDMjnn//85zvtO3il6mgedJCUq6dzXJe0jjmK3zAX0kaa7DH/rQINGE/OhYMFbIbiWD6zjzaHd6kZ2deub8zJn/70pzvXpc9d1Wo+bcoCmXjepW9kn7tz+PuTTz6pqv+ablcmTYLlaO/vf/97VR2JL6qO6+sxmai5I5y2m8ABXJ2Z36Y42ndtu7xemo6rjs9K5q9Lh1rVp1xRjuU62QwNuB73Yt7TzCN7lnvRpBAO9Enwm0m4O5PtijyaY+hrzp3dSvcRjydGwxsMBoPBSeAXpSWYlDaTAv3m5w2ejvj8nnYT1mIc9p4a3qo6uhPfU3o03ZC1NCd5Zp+QvjqNIceV51rLRXoiIIH5S+3RCeycY43PlFqJVaV4O7Gzvw79tmaR82ji2lVpIK758uXL2zB6a6zZDlIdmhXtMgddCL61dUvvnSbswCNXgsZR3pH5sqYOSOkqYBNYkkTZOQdI0Z2G5/JaDhrZo9vjXCR54H7sJTo7hafTdu4rzUObOY/sY/pyeXm5G7RycXGxCeP3MyX7R/+t6XeJ0tZqrRF1xOkmOPA8EYjSaYW+h+kTfe7oyPgOrZ17ZFUGK9sziQR7hfVwubeq4z5mLkzG0FnbfI+tSgt1AYsm5eBcxttRpnFsF4S3wmh4g8FgMDgJPDot4fr6ekMkm5KPqa+cWAjyHPsHLOnZjp3nWkpflfxJqcLk0ZyDtITkkPZpSzYuS2NpMaVEjqUN27Q9Z/kbfXLhWdrsbPem8FkVAs3xraTabo1XxxwOh6Ut/dmzZ/Xhhx/ejt1rnn1wsjNaYUcTZw3UPlZrpnuE2Za0veZV21D1pFWrOkrG6ZvkNxfetBaCVphC7M1jAAAgAElEQVRk1fgTnRRNn2k715I+0n8+vZYmRM/54TdbSjqpnfvFn/Sp09xcbuvJkydLDe/6+rq+++67+uijj+70P32CvpesbaIV5jVsHXIpmr0SZ8yp/XBoJB0RApq8k8gBeyY1cD/zONcWhu567Cs0OcbnlI28F9035ob52yNJX9GerSjb8jp+3u3R4plQ/aH+u6rR8AaDwWBwIvhFBWBXieL8XrUlFjYh9J1OSKK3JGrJr5O4nTxuG3AmArt0iBNlkdZSgjRdzirirpNIrJUhLXH9LtHaVGZ82m69p7l43hyFlj43+75WRX5z7h01uefDA/ZfdjRKLmDqOU+YAos++X/vx6otPRLrwNiRJDufsX269rGmD89+P9aFY2jj66+/vnP9/A3t0H20jzf7wDHMAfNqi0Y3r763O7o9sEoediRx589KzeU+Sd33cleaZlXktisp5HPdX1tCcl3Yv+wR+uZnWGprtvTwP+vBfsi1pA9EvTsa2Ps7nyFcx5YR/uf3zofrZ6HXcI9q0GWQ/Htqtn5ee8/yfxI7OPbihx9+eNCzp2o0vMFgMBicCB6dh5dawyrfq2rrYzDp6UPJPvOcjnjaEjeSgEtipPRoKcblTLpyE0hUpoVCwnN0Y8L+EEt61ryqtvmFjl5a+VqqthIQfUWS3JO46ZPnoKNosxawlw9zc3NTl5eXt5GIRNh1vkf6gFbj6LIc6yofyHuzmydLq+TjsR+4XkY5Imk7wo31wd+Y+5t5d2HPFU1cjsWSNNexlaUjKV5ZA2w1yH1gP5YjGE1InNdh3kwi7Zyq7GP6M1dS+tnZWb3zzju3UbPcPznH3O+2xJioO9d/VdSUftu3m8WP0dbpE205L7QrMYblgr4QxYvmmvcY0Z6MmXFyDDRrXfFgW8qYc1sYOjoya3je59197vvTml6XF7gqf+T/c4/aT39xcTF5eIPBYDAYJB6l4d3c3LRaQUpaLlPBb0g+e7bWFauAbeoJM11YAjYDQ57DsUhrSDwmoM5x0TfOQZpF0kMKTL8IEh19cVvMaeYVIe2ZpHYv4gnc5wPtpMFVDpLt8NkWklbO+V4Rz3fffXdD9pxSP/1hDq2V2QfVYeVb7QpkWpJ339kPMHtUVX322WdVtS1zBGMI6OYJZiLWlus5nyy1J/vALYF3eUouYUUfnTdp/1Z3HY61xJ0+FfutrRlZy6ra5o/uFfE8HA719u3bjW81/WMu22T/5F7xVjODeJ74PgmMuf8ZI31hbSFmztgBR3jzXCAS1xHm2QfWEi2Ne8S5jjnHtja5dBvWilxL5muVh7myMGS7juR0XEf3HLeFZkU8XbUuO/QQjIY3GAwGg5PAo6M0721QRTWRgOw/6nxqwNqGJciUSDJyqmrLJuICmnm+I7tc0DS1NNvOLVVYgkx+UTNqWLtx3lS2576sJNZOWwMrbbCz3ZtBwfO4l0NzX6Td+fn5xseSfhHzRjKH9mN2kWGW+lhT5s85aVVbCZ5j+R7/SUr2sL/QN0umSO0dGwztfPrpp1W1zamj7dyrXjv7+5yPWXWcJ/N6mp2jKwDbRbNWbQtx5jkr/4vzDbNNrs2cvH37dimp39zc1Js3bzb+w4yENZuHrRtd3pg1e0cvY1Fgj+Y9zZhYb1uFHAFedXyG8B2+O3Ot5lisNTl/0TmWeW84+pTr0HfmMUteWVO2FWBVNNtjzfH4++7cFRtLF1HO3KYWPwVgB4PBYDAIzAtvMBgMBieBRwetZAjoXsCE1VhTiyVWias2OXTJlZg1HNjiMj1ZPsUBNB6HaXS6PtoR6yTiNLs6VWJFv9YlgNqpb+d+5+x38I/NAh21mE0Vq+rPOSe+9vPnz3dLELF/sv2OTs3V1538nv3mN5vNnCzcpTS44jefjAuTJgnh3ZiZY8xefHbOfPpGdXKOxdRNfwiIqTruGdPCsV6Y0DJUm3kicMKpC3tBTQ44WZW96qpW2+zvAJi8Du0yt7/5zW/apHD6eXV1tQlE6cjdV2bRLi3BJnKnxfA765TmcBPOc26aaLNfCZOEr8zI3Xi8r53q0gUvAfrK/iKFxmWL8joO4HFb+TzwnKzu36502sp072dk1XEf2Z31EIyGNxgMBoOTwC9KS0Cq+N3vfldVd6UMS4R+c/uNnt9ZijRJbBfCbM3HWgzSRUpPTrg0SbCl6IQTIe0s7ciy7bz396a4ynZX9EyWvFI6doCLAx32pM9VmSUHlHTt3uc8PhwOm7nIMbPOlnQtIXYBCKZYs9bc9Z91Ryr3HCPZpybBnl8VDUZa7gI0XFoHjQiJ24EheW0HcFnzy6AdB6k4aIH57AIQLIXz6YCK7v61huaE444wIIOyVtYBnjvWSPfIz91Wl5bigKwViXinTa2sUWjrXYCVg2EIFiFdJSnFgAsa+951ykQG1rgQsAk3OsILkxQ46d4FdnPN/eyz9aXTCq3Bmuavs8xwTtLrTdDKYDAYDAaBR6cl3NzcbMK48y19HwF0l6xuydfh4p39HaxoaxyunhoX0gkS0CoEtqMhWpGrWsPo/BH0ZZVUmX4Y2rFv0loI/2eItrVcS017vgL33/b4Lhw9i1TuFfG8vr6+DeN2+wlLmS7M25WjskTqpPUugdXpLpaeO/+YaY2sJdlfl30iDNy0ZNxHjCGTlZH6kbBtOenuJ99r9NGpG9ZwunbtN93zqTiVxYTxXTJ+tru3d66urjak77mWK9+2y1DlfvM9Zp+dCwBnW9639l+ZGrDqOKf4hvkkkd7UX1VbcnJbwZgD+phaKOOgffsK90p+Ac8R13Fh2uzrqvD0nn//Pt9r3k+sC+uV8Rn3YTS8wWAwGJwEflF5INtk8y3voqr2dXV+ii65sOooRSTFV1Uv4a9odDopxqVdgLWpzldoqXlVnDbHshqfo+ZSinGRWkvcbiv7Sjv0cTUXnVZgaWyPtsf939PwDodD/fjjj5tE3Tze2rKlZeYkpdgVIbbb6LQMrynzZmm909aQuBmHC2amBsD94oKr9MnaaNdHg3G7LFb+bd/diqwg19hkDN53nbRuLcp7l3PTykKf0lez54fJwtPeJ9mHFVF3ZyVy5KHHvLpfq457Am2cfcAYTSNYddwjWdam6mhpwv+Wa4nWZ03LPi5bcbrx2ffpItbZN1uhGA99dYHWbD99+tn3rpTZSmP1czXXk8he782HYDS8wWAwGJwEHl0e6MmTJxspo5P2LD3vlQWyrd9+gj2/2Cry0b93fsaVn6rzcTnnw9fpaIGA/WPW6KwV59+O5LSEbakqf1vlN4LsqwupWrp1xGfVthTKkydPllL62dlZPXv27FZb6yLS8Dms8rGQojNvyP5P+5DtK+r659IuXeQrgCQYn6nz8Ozj667pnFRH6eZ13QfmzVRTSUfWad55rIuHJpx/Zfq4bny+P70nWXPyArtz9iJ8D4dDvX79euNLy/u082VmH1b5ZHmOfZomc+72vktvWTPqShjxLKFdfGxdtCuajUnC/XyFgDqxili35SKfO54D9pBzRdnvXRHpVWR5F13tZ9UqHw9/Z36XecZTHmgwGAwGg8CjNDzKdAAk7Y5FxX4E0JXAsAZkG7ClqI4hxH4QRyhmv82OsCJkTsnHfgkXQtyTYuxHssTd5ZeZ6NX5ZG57r7yK8244J7XWlc8GOPIv22H+9soDEWln/0Gu5X3aq/0+ee2OuSXbt58p23NeGhqJo86qjnt+pUHy2fkZ0Q4ddWq/cBcd7HvM406N2ZaLldYLcj75zYwhvm87i4LL7Vhzyr1LSaQsDrtXAPb58+e3Pq4uOpz5tmWEY/g+97wjuVf3qaPI829btMzS0vljVxGlSVJuoFH5WbHHOoJFxPeprSFdfqR9hvy/Kspctd0jvif3LCcr7d7P22w//aSThzcYDAaDQWBeeIPBYDA4CTw6LeH6+npD+ZVJzysn5EoVr9qa5VYBLh0VjlVuE8t2wRY2P2IiceBGnrMKy7bptEuOdvoDbfB9R9ODicqmE5vmukrHnnOPG3SmDJtoPJ9pWnD7e6Hlh8Ohfvrpp01Sd5Jsuzq9Aw26BFObTRyebVNP9s9mQfpC6kS3D5yKY1MP/7969er2HIfl31d5vFtLm2o97lxL+u/ggYeY331P5Prk71nH0C4JzL5cn/7kWtBuppWsTJpPnz6t999//7ZeIEjTIO05LcB7Pk3D3osOTnHyeN6fq6AhzuWZ2Jn4HSxiqsNcF8ycXisHTZniLvtvE6LNlV26hc2vXI9jWdOuXe9rBwF2bpHO5ZDjcXBi1d11GZPmYDAYDAaBR5NHHw6H2zc0Ul6GG6+SnldBLFVb5/19ocQpDThoxcS8vkb2wRK3JdWUIK1J2hFrKSbPxZFtCdbJ6x1dkzXiVWBAtm0t0w7mLvzZgRQrQuCcVzv196iDLi8v66uvvrqVRCFhzjE7iXwVvJTnOGACOCS7c7KjcfBpDauTKk3hxB5CI3fof9VWM2V8piXbI8emj9ZgbZ2oOt6XDnSxRL9Hwo1Eb9LgPToqJws74CXn3vv28vJyGfD05MmT+tWvfnU7Vltbqo5aJYFBwETqeQ5z6OR9/rfmlZYsP8dczZxzMpz+j3/8Y1Udk8npEykFfh5UHZOsncqAhmVy6e5+Ag4Yo0xV3tNOF6KvjN2WjAwG9Jz43us0eAfS+d7zuHNcWSl+79mTGA1vMBgMBieBRyeen5+f30q3fgtX9YmpCWsSVX0yaNU2cRFpIqUm+5o6n0bV3TBxF6y0r4M+khC6Nw6HzbqIaP7GJ0mc9NnaaNVRUrWU9BDKL2vGnhNrxXmO0xNM59SVEkn6s1W/Li4u6tWrV/XJJ59U1V1pGdgvtiK9TinWa2brgGm8UotAKnZyLyHz4MMPP7z9G82U/vPJ2iIR5zwhjaNx4Zdxgd7u3kCapa/WFjufGuH7pmZz4V+XOMo5sJ/ZqS2JlfXBRA75nPA5GRvQtf/06dNNiZzcQyv/v/3k3f60FYV9aOqtPfJop0F0VGZOc2E87CmeHekfQyvkWCwMTm3q/LJ+DrC2tMV1ch49F8ybS/7YD5h9o0+mMnN5smzH1g36ypx0BO6pjY4PbzAYDAaDwKM1vGfPnm2KXab2ZF9WV9a96q4kYoLkVRI0Ghel6au2JV2QsC35dEUHHYlkTTMlESQcS7iOnmQuUvKxz8ZlLTrpk+KQloDsD3GJmTzHmp2lt73yR/Zj2s+Vf+carDS8w+FQP/zww63khpbTRWwxRq8Tv2f5HLR9r6Wl8k4CZs6yvbwu/aBAZ/5tKZP28Wen1k5fnGzPHOxJwMD3BMc4WT5h4mHAHCDhdwWcrSk5mTjHZ58afXWScmp41jrfe++9pR/myZMn9f7779/egxTMTR/VKlHadFq536xVmOBg5dur2iZx+15D20ntiWNXBNAdiQB/f/zxx1VV9fnnn9851mWb8vnEM2SlwbJXU1tlP7mEkKNBQZ7LnmDMq+d4R6zv98RedCbtp192NLzBYDAYDAKPjtK8vLy8lRh4gycljql9gN/cKcUg+VnycWRnV2bHUiXan30OXfFJ5yWltOlzTDeEBMf31uxSaqZP1iCRsPYIte1LQxuxHT7nxH4fS+DOufP5VVuJscuT6fw6Kz/M06dP67e//e2S0DaBlGlpnf9T4yKKjXNYF0ebdTR47C9HG9MnJMj04Zk81/urK2nlQrL42Lx2bjvbt/8K2C9XddTs6AtjtoTdkSKvIkj3qOsA97FztdA0cv/TB6T19957b0kaXvXf+WVcaPWpMdK2ywJZi+riBazJrajGcm+zN5zDx7i6MkrsSdYSTZU+dbmpXAe/MvvY+4+5zvHZl+aIzs6iQB+dE+sI3E4bd96ffXhdWTY/e7k3WEdHalcd90xaWfb2TmI0vMFgMBicBB5NHv369euNXTylKrQ9NBHnYHQlhSyl2m5szS8lBDNfpHRcdZQgsqQMUgQSsKUJ/u+YSPhknNZ8OmaXFfEzkpzt5d2xLn7qQrrZV5cdWtnQ8xqWfGmfPnYFH/mOPr148WK3YOmnn366yYfr8oacw2RNJPttQnH7aug/a96NmXORos0qkVoo+8j+CbTDzndjRo1VkdXOD+OyMC5+yu9ZHoh2nUfm+6nLcfKarvxNCfve0Tacu9dFA6b2vJLS8f/yO5oe2n3Vca+gZdi3BVJ7siZs0m1rhV3/VoTw3VoyHy4tBGgjo8N5ntlXb5++91aC9We9zYiTzw5bEKyVeg7SMuT4DeZtVYg2z6EvLn/EsZlfyf7qyrjdh9HwBoPBYHASeLQP7+3bt5uIpI6RhE+XwLFdPOG3u6X3Fd9aVc8aUbXNI6nasmXYH2efYdVROnLenTkcfXzXRzM5OJ+tasukYbv1XgHYVeRT57sD1kKZG85FAuuisvjt7du3Sw3v/Py8Pvjgg42WltIskhvSnPPJunUhhwk/EWPkXPtPc+zMqfco5/B/5uWtokC5PuNLrZD2VyWsgH+vqk3Oa+fTqLpr2fjyyy+r6rh3Xr58WVVbX17H3ch62I8Kuj1krcCWn44/l7VGgzgcDruRdufn55v7JsdsS4S5Op1zm/1kbv08c7Rup5msymg5erPquCf5dLRuFztgbZxP5naPp9LWAO5TF6LNvco5rI9zSG2NS8sZsEZni1L+bmuUI2b9TKg6rn/u0b285MRoeIPBYDA4CcwLbzAYDAYngUebNK+urjZldFIFN7G0KXfaTqgquRNVHf6eQTJ2Dpu2pwt0wQzG9eyUNhF11dYcsEpwtYM4jzUxrysE57joGyq9k3hXJZQSDrsHDujIdhwM4aT8jqT6oYCaLseVfaA9yHRNjdUFE0G9hCmONhizE7Szz6ypk7YxcXeBNV531sGJ1GnyMwkCa2mHfZcmQL+dusD1bKas2ganYDJzAEwXOm+iAZuYHNSSfesImvP7nEcHte0lD7NvXIop06EckGHzJHOaro1VpXZgYvjcJ05doH1KGJk4u2vfKQwm0cjfbMp0MItJvrP/q6CVruSXn+l+RtFnzkmTqtu1KX/vHeBnPuew1plmRB+dBvMQjIY3GAwGg5PAo9MSfv755w2ZbybZ2rmOtGzpLbWnVVkJJAVLpp1G6dBnNAiTIldtgwZMhWSppuuLtRsT5ObvaB+WdK2lpQSJ1O+wYI+7o04z/ZPDz50Qmuc4lNhS4l4gz31hwjc3NxuKohzXShO2VpWSIto6GoMTV02Jxu85H8yDUxc6OiraM/0U4fVdIIivZ4JmU86RkJzfWcO2ZSElYL7jc0WS3oV8m9bNAQjsy9QKTLNlKi4XwK1aF7TtcHZ2Vu+8885tO2gzGWxh7cXBZN3+BV5nB4T5GVO1tToxx9zrXUkw3yer9jvt2dYu1sFaYxeQtrJcdXPB3LrdTHtJkNpRdbyXrTmvKNX8d9VxvLTlsltVx/slrV5THmgwGAwGg8CjNLzr6+v68ccfN4mtKQ1YokYCQgLv7Li0x1sdKcP+IyeEJpAErDlwPVMOJVZpAgknsloyWaUCVG3D3q3ZOfG1au0PsfS5R+Zrf4uT/rvwd8+5x9mVdXpISDAlXpAIO0oxNABTU5FUbI0h//7oo4/uHLtKVs++Mmfst9T+8tguxeQPf/hDVW01B5clynZWVg7TrXXH2KdGW/S5K9tk+i4n9rsETNVWKjdhRJeuYM0OmAy80/Dy+bCS0iGtd5h9WgdWJcZMkpGaglNIbEFwOk+mX9jyYX8cY81znLIFrJWm1uQ0lJVvfS9WgnNXmldaB/z8ciqB08ty7/jZ6OeNySzymFW6lUs0ZV/AQ1MSqkbDGwwGg8GJ4NE+vO+//35DvZRSjJOokaKQWvaiCy01dCVd6Ievhx/CEt2eFGuCXNDZuJGwHe3nqEbTRSVWRWrt08t2DWuJpgnKv+2jdNJ053MzeTDwemYfuoTSDufn57dSOedksUtTUdnX0RHXOjoXiXBFCNBF6YFVRFquhSVSxuNCqQmvg7UDR0uiPebfzAnjtd8npWaTu3s83pudP455smbXkX4zdmt/ubZVd339tlz8/PPPu5J6Rod7X2QfrI2zHzrKt1Uy/31FkPOYVYHhzkJjsgL7SbuisdZ4bAXp6PaA709byOh7V1rK8RLe1521xSXUOuqyqrtkE8yTKdlsLcjrdL7wFWm9MRreYDAYDE4Cj9Lwrq6u6rvvvttI3GkXR5OzvdrRknu5E7TnvCukipTiTNpqadl2a8bRtefIqpSaLb3aTm0JKDWLVZFIwP+dPRyY+NkaWEp4zk+x5NxpsKuIsRWlUdVRMkSSu7i4WErp+PA81tRmXPTWUrL3XfcdJM748jzWzk9qjchFT1Mr5JzOV1d11CA6CiuPw212dFTui33jrEtGWlpz8D3Bvt6LJHVkLPutG4M1e/rkSOnc3/Q/tcOVlH5zc3OnuHBHeo32aG2afhJF25X8WhFjr8pT0d88x5Yl0PmqnUvrfuR1bNVgDjvflv9fFd3eoz/z9WxB8XOu0yxNoch6OR84QbucY+27i1zNvO2hFhsMBoPBIPBoppUsD2QJqOooYZtkFi2g81dZArZd15Jf+gKc+2FSV2tiVetyFWaZ6Apxrgisu+v4N9qgj5bsUxq0FmjNy0UV9yRXRxJ2fh/71lyOppOq7Ut58+bNg23pLrJadcw/c9TqStvN/nAskjyEz16vXHszd3hOuW76fdx/Rz52EYv2J1pL9FqnlL7KUaWvzgPLYxxB6KhERzL72lXbPEA0iy5HFYmbcTo6s4tydKRyB5hWmDcTXFcd19D+eZ47WBI6DcjaoH2r9LXrP8d4z3SlpRzJ6SjQvahgPyPuK7KaWFm99liavJ/po8fX+beB/f7s0fTteg1c8JjrZYyCLTMXFxfjwxsMBoPBIDEvvMFgMBicBH4ReTQhvlY7q46mJIJXIHjFLEQCekfTQ3smTrYjs6t4vkrQ7tIEbOKzk9+Jp9lOV7uuamumSrOETbU2F3RjcDDGKqS8M7V2VEh5Xc7pyLFdBZ52u8R9B8fsmRUwS9kM3iW9mviXY+hDmjdsAsF89vHHH1fVlhKpS52wyZH9x3XT7GpTHNclaKRLrHf6js36Nv2kidOkuh1pQB5XtQ62cI1FEz1kn0w4zFxwH+camPSYOaBP3PO5Fr5f94JWnHje1WCzC8WBDa4QXnV8vjD+lcuhowlzSpET27uUFofcr+rv5draHO3xgi6Fy2bXVRBYrsWqRuOK+DqfkX7u+JjOhOqEeveVNcrnm5PfJ/F8MBgMBgPh0YnnWdW6C1ox+ShSHW9wyH7Tyb4iH0aaxCGNszolEqTUvdBe99ESgSWs7pwVway1TvqT1+c7O1tXVDx5vRX9FNKSKzwnVhQ8nfRpTc6JxnvV0jPZe6/Ey7Nnz5ZJvVVHaQ6rgKmPXKIpx8i+cyI4lGNffPHFnfFl+/7f0npqBU6rWdFh5R51sIqDBizd5j6wxuVw7U67dkqQyyw50KFL83C7aG3d/WVNwhok80faSc4JGvke+S9pCdz/aJ0ZvNYlbWefGGtaFNhvnPP111/fOZYAvO75wLOJPeOEcNAFk9lqs0eu7D3h9TclV5cOtdqrnbXA1i8HYXkMue/Yx1536O+60mku48Y8+lmZ6+aE9mfPnu0G4NwZ84OOGgwGg8HgfzgepeFV/feNvpIgq7blQ5AUkO5evnx55/tsx5qHiVg7u7GlZlOAdXRUK9+WNcyu6KBDb23vd0HQPNeh15a8Olu0x2ztoEsit5TJmlga7HyUTv62fzNDsxlzarl7lGgXFxcb+qH06+AHQ1tzqRDTD2Uf3H/WjnB0+p3Xc4Ksr+f0mDzWlEv2ceZ6uJ1V4VwTAufflvBXpWyqjpqLS3MxJ05tyfvB4fzW1v71r39V1V0tm7/RiFZJ69246Ot9tGJff/31rQYG8p42ob3nCXTPDtbFZOU+N9NTnCawCtfPPprggHnp7qMce7a7skKZeCPH6nvSCe/Zpi0KbstjSW1tle7l8XYlk5j7VTHknBP2Qb4fRsMbDAaDwSDwaA3vcDhsfABJvYRUadsvEiLJxV1kkCUSJEfbyRMrjYvr0ceOxPW+cj1dVNaq8Ku1qo4I2lpTFyXl821nt8S/F1Fq6d8J9qnROpl3RQjcJVQ7UrIDlgH8Lo68rTquL1oZ2gRjpE/Zb6/ZyodLQjr+waqtz8G+1E5q9BjtI+qiZum3C/I6wbnza7pPtgp05Oi2BniPrrRGXzvH2+0Zn7MiHO8ifF326M2bN0st7/Lysr744otbzb8bs/1i9IWocXy5Hei/NXsXzu2eP94jjsDujvUceq/u3ctOXt8jbPc963uk8zuuyoE5RsKWtQ6sl6OQO/+2x8HzyNHXCfZVN9crjIY3GAwGg5PAozW8qu3bOKUCInJWZK7Yx1PKcaSWpQxHy3VFHG3rzmOMlZ19j3KHcawKLT60xHzVukxPR8i7Ig822epe+ysJKNfR5Y2sxXd5gN4HV1dX91L8WKtOMLf4grDVs2e6QqLst85nkv1lHOTnVVX985//vDMOr3E3zpXWxBwjdabW5Had7+V930XpWYNZrY/7m+13kbweL31C87J/iXFmhKTH7pxU1ij9Pd5PP/3001LDu76+ru+//34T1ZjPEPrDGNkjzEVHa+Vj/H3n4wKrOIDVOmV/VwWBuz18nza4IrxO2A9v31r2w2NdRXZ3+85zYOtQR55vujhbV+xLzjFnJsCQRw8Gg8FgEHiUhoektQfe3i4gyVvemkTVUaI3ma01FaSzTmoC9n110U3OYbKfwqU/8rdVMU9Lb9mvzv/lPvl6SLFmsVixkXQ+SktClv7S52Ibvf1MPi7Pz2jd+yStPW3G845EyJ6DsaPLAQNeb/u8UpvBr/fq1as7bdlf0pWWuq+Ib66HtQHvWVsYOm3N/jazsnSRn5a07UNxfmA35hUpO3l5Vcf1wX+/KqzcrXVaaPbKA11cXHk+BKMAAAQUSURBVGz8Y/kcsMZhHxd9++CDDzbtr0r8uLzN3jPEeWl7OY60xz6mb934XcrJ7Tryes/CYiuYCy7nMfb32bLV+X/9/DYTUxetTjtochyLtYB3A77YHHv6azvS7A6j4Q0Gg8HgJDAvvMFgMBicBB5NHn04HDbmqAw7RrUmSdNmQkwjaU4jVNx0OaaN6gIeSKZ18jDX7YJXViH9DnHvaIEc0MA4bBZNeBxu0yp61ZpKyvOJWSLNUqtq6DZhdISswE5qTNRp0nZttPuSP8/OzjYhyl1IvBOVOSYrqwMHVXTzkW0nWDNC1r/88ss7138Ima/3XZeW4BSdVVK/90Oe4xpp/O9k5uy/x+kABL7vgllYW5NMuJZe1TF9xOYw7mtM0d0exZx3H7VYmq672nk28dql0pEw20zLMTy77KbYq3W5chvkfWUyDpurHTyV5/tck3W4Lmj+tkp76IIEfY6P2UulshuEvnueM4H/q6++aseBCbMjvHB6ypBHDwaDwWAgPDpo5T//+c/GkdmFKFtqXJUqqTq+sV1exI5aB6JUHSUAzrHTvXOUWmpxuK6d11VbTW6l8XUUZA5scTiwv8+/rdVag+hSKSyxWmPtKKUMS/bduFzeZi95+HA41E8//XRrDeiqYP/+97+vqu0eYm05NzVlB1W4MvtKe0+Yusz7LcdkTctaU0cAbekVWMLvSH67UO6EtbmEA2ocRNAlAruSu4mtO63QWo61UhMBV201rj16KPaOK893RODMKdYANNU9km2OoS/5PMtxZHpPRwOXcEmo7C/XZY6djpDPAVs9VlaCLtDOfVlZtroSXavq5aAjIrB2uCJUyLZZp1W6EqlJOfdYBVaUjXsYDW8wGAwGJ4FH+/C6ENB8K/M2Rwo3mWv3lncpIYCkhRRhqpps336qLnTZfbT0bL9PSmerMhn2IXU+ys7PktftCrJak7Mfay/FYVXCwxpyV5zSY3eaRa61C2PuFfG8ubm5DS/PcXUUbPeVJurmyf0zdRVaYq7xKqXA181Ed/xSK0okt5XHOHTeUru1q8TK32fatcSqxArX437Lc63Bci6aHX1MX641CBeN7TQk+6uePHmytA5AS7eXxmMyda7pItW5z02NaCJ4PztybmwxeIg/bu+5meh8hd6rJjiwhpvHropjeyx5bWuBtiitSKartnvIz8xMMfAxtn5xv6V1xPdAp9WuMBreYDAYDE4CZ/dRQd05+Ozs/1TV//5/153B/wf4Xzc3N3/0l7N3Bg/A7J3BL0W7d4xHvfAGg8FgMPifijFpDgaDweAkMC+8wWAwGJwE5oU3GAwGg5PAvPAGg8FgcBKYF95gMBgMTgLzwhsMBoPBSWBeeIPBYDA4CcwLbzAYDAYngXnhDQaDweAk8H8Bk2kng7eBvJAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1554,7 +1673,7 @@ "\n", " ('Non-negative components - NMF (Gensim)',\n", " NmfWrapper(\n", - " chunksize=3,\n", + " chunksize=1,\n", " eval_every=400,\n", " passes=1,\n", " sparse_coef=0,\n", @@ -1634,8 +1753,8 @@ "text_representation": { "extension": ".py", "format_name": "percent", - "format_version": "1.1", - "jupytext_version": "0.8.3" + "format_version": "1.2", + "jupytext_version": "0.8.6" } }, "kernelspec": { @@ -1653,7 +1772,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.2" } }, "nbformat": 4, From 7cf80e1ebdf4edaf925aa2c8a4827148c48eed19 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Thu, 17 Jan 2019 14:25:27 +0300 Subject: [PATCH 142/144] Truncate outputs --- docs/notebooks/nmf_wikipedia.ipynb | 22838 +-------------------------- 1 file changed, 3 insertions(+), 22835 deletions(-) diff --git a/docs/notebooks/nmf_wikipedia.ipynb b/docs/notebooks/nmf_wikipedia.ipynb index 3440bd342d..c528ce6c0f 100644 --- a/docs/notebooks/nmf_wikipedia.ipynb +++ b/docs/notebooks/nmf_wikipedia.ipynb @@ -493,268 +493,7 @@ "text": [ "2019-01-15 19:33:21,875 : INFO : Loss (no outliers): 2186.768444126956\tLoss (with outliers): 2186.768444126956\n", "2019-01-15 19:34:49,514 : INFO : Loss (no outliers): 2298.434152045061\tLoss (with outliers): 2298.434152045061\n", - "2019-01-15 19:35:44,330 : INFO : Loss (no outliers): 2101.875741413195\tLoss (with outliers): 2101.875741413195\n", - "2019-01-15 19:36:46,957 : INFO : Loss (no outliers): 2437.6297291776878\tLoss (with outliers): 2437.6297291776878\n", - "2019-01-15 19:37:54,953 : INFO : Loss (no outliers): 5519.767671122511\tLoss (with outliers): 5519.767671122511\n", - "2019-01-15 19:38:49,448 : INFO : Loss (no outliers): 1986.1839688880361\tLoss (with outliers): 1986.1839688880361\n", - "2019-01-15 19:39:44,683 : INFO : Loss (no outliers): 2870.5244901331134\tLoss (with outliers): 2870.5244901331134\n", - "2019-01-15 19:40:21,521 : INFO : Loss (no outliers): 1993.3453896080728\tLoss (with outliers): 1993.3453896080728\n", - "2019-01-15 19:40:53,500 : INFO : Loss (no outliers): 2205.748001914049\tLoss (with outliers): 2205.748001914049\n", - "2019-01-15 19:41:25,713 : INFO : Loss (no outliers): 2429.0247933673186\tLoss (with outliers): 2429.0247933673186\n", - "2019-01-15 19:41:55,625 : INFO : Loss (no outliers): 2266.175764417108\tLoss (with outliers): 2266.175764417108\n", - "2019-01-15 19:42:26,839 : INFO : Loss (no outliers): 2095.631662579894\tLoss (with outliers): 2095.631662579894\n", - "2019-01-15 19:42:50,142 : INFO : Loss (no outliers): 1921.1287544934391\tLoss (with outliers): 1921.1287544934391\n", - "2019-01-15 19:43:17,461 : INFO : Loss (no outliers): 2010.7079024020422\tLoss (with outliers): 2010.7079024020422\n", - "2019-01-15 19:43:40,896 : INFO : Loss (no outliers): 1978.7980803732323\tLoss (with outliers): 1978.7980803732323\n", - "2019-01-15 19:44:03,550 : INFO : Loss (no outliers): 1944.6897116245455\tLoss (with outliers): 1944.6897116245455\n", - "2019-01-15 19:44:23,397 : INFO : Loss (no outliers): 1946.8806206931488\tLoss (with outliers): 1946.8806206931488\n", - "2019-01-15 19:44:50,191 : INFO : Loss (no outliers): 2493.7293178207674\tLoss (with outliers): 2493.7293178207674\n", - "2019-01-15 19:45:09,354 : INFO : Loss (no outliers): 2433.0069057525757\tLoss (with outliers): 2433.0069057525757\n", - "2019-01-15 19:45:40,159 : INFO : Loss (no outliers): 2072.453266200233\tLoss (with outliers): 2072.453266200233\n", - "2019-01-15 19:46:02,276 : INFO : Loss (no outliers): 2139.1683569146144\tLoss (with outliers): 2139.1683569146144\n", - "2019-01-15 19:46:20,269 : INFO : Loss (no outliers): 2144.724120339241\tLoss (with outliers): 2144.724120339241\n", - "2019-01-15 19:46:37,988 : INFO : Loss (no outliers): 1998.2843321884393\tLoss (with outliers): 1998.2843321884393\n", - "2019-01-15 19:46:56,095 : INFO : Loss (no outliers): 2090.966456621198\tLoss (with outliers): 2090.966456621198\n", - "2019-01-15 19:47:15,145 : INFO : Loss (no outliers): 2166.4222440991807\tLoss (with outliers): 2166.4222440991807\n", - "2019-01-15 19:47:33,272 : INFO : Loss (no outliers): 2474.090096536888\tLoss (with outliers): 2474.090096536888\n", - "2019-01-15 19:47:51,610 : INFO : Loss (no outliers): 1947.7844465300134\tLoss (with outliers): 1947.7844465300134\n", - "2019-01-15 19:48:14,540 : INFO : Loss (no outliers): 2629.759922673377\tLoss (with outliers): 2629.759922673377\n", - "2019-01-15 19:48:32,385 : INFO : Loss (no outliers): 2082.4114552940564\tLoss (with outliers): 2082.4114552940564\n", - "2019-01-15 19:48:52,093 : INFO : Loss (no outliers): 2648.43046470688\tLoss (with outliers): 2648.43046470688\n", - "2019-01-15 19:49:09,789 : INFO : Loss (no outliers): 2065.7928859603503\tLoss (with outliers): 2065.7928859603503\n", - "2019-01-15 19:49:28,446 : INFO : Loss (no outliers): 3702.34412587855\tLoss (with outliers): 3702.34412587855\n", - "2019-01-15 19:49:45,559 : INFO : Loss (no outliers): 2173.9779388497004\tLoss (with outliers): 2173.9779388497004\n", - "2019-01-15 19:50:04,426 : INFO : Loss (no outliers): 2402.801546260597\tLoss (with outliers): 2402.801546260597\n", - "2019-01-15 19:50:26,401 : INFO : Loss (no outliers): 1956.979190578151\tLoss (with outliers): 1956.979190578151\n", - "2019-01-15 19:50:43,993 : INFO : Loss (no outliers): 2208.6966954058944\tLoss (with outliers): 2208.6966954058944\n", - "2019-01-15 19:51:12,904 : INFO : Loss (no outliers): 2418.113439862798\tLoss (with outliers): 2418.113439862798\n", - "2019-01-15 19:51:30,263 : INFO : Loss (no outliers): 2291.6256839739613\tLoss (with outliers): 2291.6256839739613\n", - "2019-01-15 19:51:47,009 : INFO : Loss (no outliers): 2118.0443608020955\tLoss (with outliers): 2118.0443608020955\n", - "2019-01-15 19:52:04,089 : INFO : Loss (no outliers): 2330.0927909478132\tLoss (with outliers): 2330.0927909478132\n", - "2019-01-15 19:52:20,933 : INFO : Loss (no outliers): 1992.1996701963217\tLoss (with outliers): 1992.1996701963217\n", - "2019-01-15 19:52:38,204 : INFO : Loss (no outliers): 2012.4311154144034\tLoss (with outliers): 2012.4311154144034\n", - "2019-01-15 19:53:04,116 : INFO : Loss (no outliers): 2043.4364061756064\tLoss (with outliers): 2043.4364061756064\n", - "2019-01-15 19:53:21,117 : INFO : Loss (no outliers): 1920.6746096891684\tLoss (with outliers): 1920.6746096891684\n", - "2019-01-15 19:53:38,438 : INFO : Loss (no outliers): 2968.485970694836\tLoss (with outliers): 2968.485970694836\n", - "2019-01-15 19:53:55,569 : INFO : Loss (no outliers): 2229.115117338747\tLoss (with outliers): 2229.115117338747\n", - "2019-01-15 19:54:12,738 : INFO : Loss (no outliers): 2844.7994703396785\tLoss (with outliers): 2844.7994703396785\n", - "2019-01-15 19:54:29,325 : INFO : Loss (no outliers): 2297.796858709306\tLoss (with outliers): 2297.796858709306\n", - "2019-01-15 19:54:48,296 : INFO : Loss (no outliers): 2395.5653842072984\tLoss (with outliers): 2395.5653842072984\n", - "2019-01-15 19:55:04,057 : INFO : Loss (no outliers): 2270.0621119980483\tLoss (with outliers): 2270.0621119980483\n", - "2019-01-15 19:55:19,113 : INFO : Loss (no outliers): 2078.203361673363\tLoss (with outliers): 2078.203361673363\n", - "2019-01-15 19:55:34,401 : INFO : Loss (no outliers): 2444.23534127694\tLoss (with outliers): 2444.23534127694\n", - "2019-01-15 19:55:50,178 : INFO : Loss (no outliers): 2085.387655386939\tLoss (with outliers): 2085.387655386939\n", - "2019-01-15 19:56:05,979 : INFO : Loss (no outliers): 1916.2297574816928\tLoss (with outliers): 1916.2297574816928\n", - "2019-01-15 19:56:22,742 : INFO : Loss (no outliers): 2004.4330028226395\tLoss (with outliers): 2004.4330028226395\n", - "2019-01-15 19:56:38,568 : INFO : Loss (no outliers): 2249.1530983767757\tLoss (with outliers): 2249.1530983767757\n", - "2019-01-15 19:56:58,569 : INFO : Loss (no outliers): 2061.4591017434504\tLoss (with outliers): 2061.4591017434504\n", - "2019-01-15 19:57:14,847 : INFO : Loss (no outliers): 4481.5077104404345\tLoss (with outliers): 4481.5077104404345\n", - "2019-01-15 19:57:31,034 : INFO : Loss (no outliers): 2015.3613528476214\tLoss (with outliers): 2015.3613528476214\n", - "2019-01-15 19:57:47,213 : INFO : Loss (no outliers): 2093.349337256775\tLoss (with outliers): 2093.349337256775\n", - "2019-01-15 19:58:03,245 : INFO : Loss (no outliers): 2095.740375030526\tLoss (with outliers): 2095.740375030526\n", - "2019-01-15 19:58:19,472 : INFO : Loss (no outliers): 2170.4657403319343\tLoss (with outliers): 2170.4657403319343\n", - "2019-01-15 19:58:37,661 : INFO : Loss (no outliers): 2027.0118155305347\tLoss (with outliers): 2027.0118155305347\n", - "2019-01-15 19:58:53,902 : INFO : Loss (no outliers): 2190.1967614175705\tLoss (with outliers): 2190.1967614175705\n", - "2019-01-15 19:59:09,531 : INFO : Loss (no outliers): 1963.9853017506318\tLoss (with outliers): 1963.9853017506318\n", - "2019-01-15 19:59:25,127 : INFO : Loss (no outliers): 2408.1625688732515\tLoss (with outliers): 2408.1625688732515\n", - "2019-01-15 19:59:40,194 : INFO : Loss (no outliers): 2175.3497990977057\tLoss (with outliers): 2175.3497990977057\n", - "2019-01-15 19:59:56,391 : INFO : Loss (no outliers): 1978.3659487931416\tLoss (with outliers): 1978.3659487931416\n", - "2019-01-15 20:00:11,442 : INFO : Loss (no outliers): 1926.2410623263413\tLoss (with outliers): 1926.2410623263413\n", - "2019-01-15 20:00:27,077 : INFO : Loss (no outliers): 2144.81532264611\tLoss (with outliers): 2144.81532264611\n", - "2019-01-15 20:00:42,227 : INFO : Loss (no outliers): 2256.0538427763504\tLoss (with outliers): 2256.0538427763504\n", - "2019-01-15 20:00:58,279 : INFO : Loss (no outliers): 2523.6626217457324\tLoss (with outliers): 2523.6626217457324\n", - "2019-01-15 20:01:13,805 : INFO : Loss (no outliers): 2284.934108882083\tLoss (with outliers): 2284.934108882083\n", - "2019-01-15 20:01:29,510 : INFO : Loss (no outliers): 2099.57856606908\tLoss (with outliers): 2099.57856606908\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 20:01:45,266 : INFO : Loss (no outliers): 2666.3962088879025\tLoss (with outliers): 2666.3962088879025\n", - "2019-01-15 20:02:00,497 : INFO : Loss (no outliers): 2165.137588891874\tLoss (with outliers): 2165.137588891874\n", - "2019-01-15 20:02:16,696 : INFO : Loss (no outliers): 1972.0358673389883\tLoss (with outliers): 1972.0358673389883\n", - "2019-01-15 20:02:32,239 : INFO : Loss (no outliers): 2152.4675346391805\tLoss (with outliers): 2152.4675346391805\n", - "2019-01-15 20:02:48,213 : INFO : Loss (no outliers): 2305.3854992392526\tLoss (with outliers): 2305.3854992392526\n", - "2019-01-15 20:03:03,684 : INFO : Loss (no outliers): 1976.8036563918954\tLoss (with outliers): 1976.8036563918954\n", - "2019-01-15 20:03:19,195 : INFO : Loss (no outliers): 4285.08225597681\tLoss (with outliers): 4285.08225597681\n", - "2019-01-15 20:03:34,742 : INFO : Loss (no outliers): 2572.933168490674\tLoss (with outliers): 2572.933168490674\n", - "2019-01-15 20:03:50,751 : INFO : Loss (no outliers): 3034.3577330312214\tLoss (with outliers): 3034.3577330312214\n", - "2019-01-15 20:04:06,486 : INFO : Loss (no outliers): 2218.2587897623275\tLoss (with outliers): 2218.2587897623275\n", - "2019-01-15 20:04:22,296 : INFO : Loss (no outliers): 2123.456322463456\tLoss (with outliers): 2123.456322463456\n", - "2019-01-15 20:04:37,788 : INFO : Loss (no outliers): 2051.773742131734\tLoss (with outliers): 2051.773742131734\n", - "2019-01-15 20:04:52,851 : INFO : Loss (no outliers): 2181.4833371533646\tLoss (with outliers): 2181.4833371533646\n", - "2019-01-15 20:05:08,368 : INFO : Loss (no outliers): 2002.8663302434986\tLoss (with outliers): 2002.8663302434986\n", - "2019-01-15 20:05:23,822 : INFO : Loss (no outliers): 2037.7302920629747\tLoss (with outliers): 2037.7302920629747\n", - "2019-01-15 20:05:38,695 : INFO : Loss (no outliers): 2052.1156933135944\tLoss (with outliers): 2052.1156933135944\n", - "2019-01-15 20:05:54,122 : INFO : Loss (no outliers): 2461.36130149438\tLoss (with outliers): 2461.36130149438\n", - "2019-01-15 20:06:09,611 : INFO : Loss (no outliers): 2155.3989955416323\tLoss (with outliers): 2155.3989955416323\n", - "2019-01-15 20:06:25,065 : INFO : Loss (no outliers): 1952.4147586222464\tLoss (with outliers): 1952.4147586222464\n", - "2019-01-15 20:06:40,847 : INFO : Loss (no outliers): 1885.8867914800614\tLoss (with outliers): 1885.8867914800614\n", - "2019-01-15 20:06:56,786 : INFO : Loss (no outliers): 2459.2929019818935\tLoss (with outliers): 2459.2929019818935\n", - "2019-01-15 20:07:12,747 : INFO : Loss (no outliers): 2316.705204536451\tLoss (with outliers): 2316.705204536451\n", - "2019-01-15 20:07:27,549 : INFO : Loss (no outliers): 3036.863634348683\tLoss (with outliers): 3036.863634348683\n", - "2019-01-15 20:07:42,961 : INFO : Loss (no outliers): 2455.151197682014\tLoss (with outliers): 2455.151197682014\n", - "2019-01-15 20:07:57,810 : INFO : Loss (no outliers): 2490.054132471113\tLoss (with outliers): 2490.054132471113\n", - "2019-01-15 20:08:12,728 : INFO : Loss (no outliers): 2336.4047244489407\tLoss (with outliers): 2336.4047244489407\n", - "2019-01-15 20:08:28,749 : INFO : Loss (no outliers): 2179.5989183109004\tLoss (with outliers): 2179.5989183109004\n", - "2019-01-15 20:08:44,108 : INFO : Loss (no outliers): 2461.706391962741\tLoss (with outliers): 2461.706391962741\n", - "2019-01-15 20:09:00,228 : INFO : Loss (no outliers): 2365.6353840460347\tLoss (with outliers): 2365.6353840460347\n", - "2019-01-15 20:09:15,583 : INFO : Loss (no outliers): 2343.5429149713927\tLoss (with outliers): 2343.5429149713927\n", - "2019-01-15 20:09:30,846 : INFO : Loss (no outliers): 1994.7834598806644\tLoss (with outliers): 1994.7834598806644\n", - "2019-01-15 20:09:45,323 : INFO : Loss (no outliers): 1985.2582510724305\tLoss (with outliers): 1985.2582510724305\n", - "2019-01-15 20:10:00,686 : INFO : Loss (no outliers): 2250.758590244882\tLoss (with outliers): 2250.758590244882\n", - "2019-01-15 20:10:16,107 : INFO : Loss (no outliers): 2209.1325050359874\tLoss (with outliers): 2209.1325050359874\n", - "2019-01-15 20:10:31,587 : INFO : Loss (no outliers): 2257.8356476256295\tLoss (with outliers): 2257.8356476256295\n", - "2019-01-15 20:10:47,609 : INFO : Loss (no outliers): 2112.307623329112\tLoss (with outliers): 2112.307623329112\n", - "2019-01-15 20:11:03,469 : INFO : Loss (no outliers): 1814.563697781184\tLoss (with outliers): 1814.563697781184\n", - "2019-01-15 20:11:19,052 : INFO : Loss (no outliers): 2068.9098468449147\tLoss (with outliers): 2068.9098468449147\n", - "2019-01-15 20:11:33,341 : INFO : Loss (no outliers): 2125.07783751409\tLoss (with outliers): 2125.07783751409\n", - "2019-01-15 20:11:49,368 : INFO : Loss (no outliers): 2439.391330828543\tLoss (with outliers): 2439.391330828543\n", - "2019-01-15 20:12:04,149 : INFO : Loss (no outliers): 1951.114276515775\tLoss (with outliers): 1951.114276515775\n", - "2019-01-15 20:12:20,207 : INFO : Loss (no outliers): 2267.916793351458\tLoss (with outliers): 2267.916793351458\n", - "2019-01-15 20:12:36,292 : INFO : Loss (no outliers): 2066.859352598067\tLoss (with outliers): 2066.859352598067\n", - "2019-01-15 20:12:51,563 : INFO : Loss (no outliers): 2098.3135748693153\tLoss (with outliers): 2098.3135748693153\n", - "2019-01-15 20:13:06,489 : INFO : Loss (no outliers): 2152.584134875688\tLoss (with outliers): 2152.584134875688\n", - "2019-01-15 20:13:22,074 : INFO : Loss (no outliers): 2296.7691231599874\tLoss (with outliers): 2296.7691231599874\n", - "2019-01-15 20:13:37,519 : INFO : Loss (no outliers): 2035.5700241344382\tLoss (with outliers): 2035.5700241344382\n", - "2019-01-15 20:13:52,476 : INFO : Loss (no outliers): 2033.672534465499\tLoss (with outliers): 2033.672534465499\n", - "2019-01-15 20:14:07,204 : INFO : Loss (no outliers): 2070.0586151735874\tLoss (with outliers): 2070.0586151735874\n", - "2019-01-15 20:14:20,839 : INFO : Loss (no outliers): 2036.8592767801051\tLoss (with outliers): 2036.8592767801051\n", - "2019-01-15 20:14:35,709 : INFO : Loss (no outliers): 2867.7428926616735\tLoss (with outliers): 2867.7428926616735\n", - "2019-01-15 20:14:50,583 : INFO : Loss (no outliers): 1978.547877519986\tLoss (with outliers): 1978.547877519986\n", - "2019-01-15 20:15:05,937 : INFO : Loss (no outliers): 2547.220123427753\tLoss (with outliers): 2547.220123427753\n", - "2019-01-15 20:15:20,664 : INFO : Loss (no outliers): 2751.7396088333926\tLoss (with outliers): 2751.7396088333926\n", - "2019-01-15 20:15:36,195 : INFO : Loss (no outliers): 2057.2845680338582\tLoss (with outliers): 2057.2845680338582\n", - "2019-01-15 20:15:52,237 : INFO : Loss (no outliers): 2387.500801468013\tLoss (with outliers): 2387.500801468013\n", - "2019-01-15 20:16:07,254 : INFO : Loss (no outliers): 1798.2039090334483\tLoss (with outliers): 1798.2039090334483\n", - "2019-01-15 20:16:21,313 : INFO : Loss (no outliers): 1939.7203479980851\tLoss (with outliers): 1939.7203479980851\n", - "2019-01-15 20:16:35,732 : INFO : Loss (no outliers): 2263.0302370227573\tLoss (with outliers): 2263.0302370227573\n", - "2019-01-15 20:16:51,669 : INFO : Loss (no outliers): 2812.8479816387676\tLoss (with outliers): 2812.8479816387676\n", - "2019-01-15 20:17:06,166 : INFO : Loss (no outliers): 2049.762990668461\tLoss (with outliers): 2049.762990668461\n", - "2019-01-15 20:17:22,082 : INFO : Loss (no outliers): 2192.4810430767907\tLoss (with outliers): 2192.4810430767907\n", - "2019-01-15 20:17:37,288 : INFO : Loss (no outliers): 1948.9968854033923\tLoss (with outliers): 1948.9968854033923\n", - "2019-01-15 20:17:52,463 : INFO : Loss (no outliers): 2304.3096592210754\tLoss (with outliers): 2304.3096592210754\n", - "2019-01-15 20:18:07,453 : INFO : Loss (no outliers): 1904.946144281785\tLoss (with outliers): 1904.946144281785\n", - "2019-01-15 20:18:23,184 : INFO : Loss (no outliers): 2077.8642527671304\tLoss (with outliers): 2077.8642527671304\n", - "2019-01-15 20:18:37,326 : INFO : Loss (no outliers): 2006.4553764078535\tLoss (with outliers): 2006.4553764078535\n", - "2019-01-15 20:18:50,838 : INFO : Loss (no outliers): 2148.9969618882965\tLoss (with outliers): 2148.9969618882965\n", - "2019-01-15 20:19:06,507 : INFO : Loss (no outliers): 2093.216862213798\tLoss (with outliers): 2093.216862213798\n", - "2019-01-15 20:19:21,671 : INFO : Loss (no outliers): 2081.394108651288\tLoss (with outliers): 2081.394108651288\n", - "2019-01-15 20:19:37,643 : INFO : Loss (no outliers): 2196.1838910086412\tLoss (with outliers): 2196.1838910086412\n", - "2019-01-15 20:19:53,089 : INFO : Loss (no outliers): 2398.6558489037293\tLoss (with outliers): 2398.6558489037293\n", - "2019-01-15 20:20:06,880 : INFO : Loss (no outliers): 1876.4374327554517\tLoss (with outliers): 1876.4374327554517\n", - "2019-01-15 20:20:21,285 : INFO : Loss (no outliers): 2335.697807093508\tLoss (with outliers): 2335.697807093508\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 20:20:36,418 : INFO : Loss (no outliers): 2218.6290864612797\tLoss (with outliers): 2218.6290864612797\n", - "2019-01-15 20:20:52,090 : INFO : Loss (no outliers): 2067.5063020513276\tLoss (with outliers): 2067.5063020513276\n", - "2019-01-15 20:21:07,207 : INFO : Loss (no outliers): 2147.2024532449054\tLoss (with outliers): 2147.2024532449054\n", - "2019-01-15 20:21:22,404 : INFO : Loss (no outliers): 2108.3236711395657\tLoss (with outliers): 2108.3236711395657\n", - "2019-01-15 20:21:37,427 : INFO : Loss (no outliers): 2203.6092122069194\tLoss (with outliers): 2203.6092122069194\n", - "2019-01-15 20:21:52,556 : INFO : Loss (no outliers): 2661.3869623246674\tLoss (with outliers): 2661.3869623246674\n", - "2019-01-15 20:22:07,120 : INFO : Loss (no outliers): 1830.1280505307882\tLoss (with outliers): 1830.1280505307882\n", - "2019-01-15 20:22:22,658 : INFO : Loss (no outliers): 2108.8037415375165\tLoss (with outliers): 2108.8037415375165\n", - "2019-01-15 20:22:38,870 : INFO : Loss (no outliers): 2162.9891805304687\tLoss (with outliers): 2162.9891805304687\n", - "2019-01-15 20:22:54,035 : INFO : Loss (no outliers): 2479.4613687161814\tLoss (with outliers): 2479.4613687161814\n", - "2019-01-15 20:23:08,728 : INFO : Loss (no outliers): 2209.922812401383\tLoss (with outliers): 2209.922812401383\n", - "2019-01-15 20:23:24,279 : INFO : Loss (no outliers): 1865.8067822040966\tLoss (with outliers): 1865.8067822040966\n", - "2019-01-15 20:23:39,375 : INFO : Loss (no outliers): 2155.168226208941\tLoss (with outliers): 2155.168226208941\n", - "2019-01-15 20:23:54,409 : INFO : Loss (no outliers): 2236.1601296608396\tLoss (with outliers): 2236.1601296608396\n", - "2019-01-15 20:24:08,386 : INFO : Loss (no outliers): 2662.2338060731036\tLoss (with outliers): 2662.2338060731036\n", - "2019-01-15 20:24:23,623 : INFO : Loss (no outliers): 2219.306463853555\tLoss (with outliers): 2219.306463853555\n", - "2019-01-15 20:24:38,839 : INFO : Loss (no outliers): 1923.6489925835724\tLoss (with outliers): 1923.6489925835724\n", - "2019-01-15 20:24:55,004 : INFO : Loss (no outliers): 2023.0377756708835\tLoss (with outliers): 2023.0377756708835\n", - "2019-01-15 20:25:10,330 : INFO : Loss (no outliers): 1992.9664608543167\tLoss (with outliers): 1992.9664608543167\n", - "2019-01-15 20:25:26,186 : INFO : Loss (no outliers): 2418.1076145977595\tLoss (with outliers): 2418.1076145977595\n", - "2019-01-15 20:25:40,944 : INFO : Loss (no outliers): 2033.5660170783033\tLoss (with outliers): 2033.5660170783033\n", - "2019-01-15 20:25:57,159 : INFO : Loss (no outliers): 2229.8465539334566\tLoss (with outliers): 2229.8465539334566\n", - "2019-01-15 20:26:12,378 : INFO : Loss (no outliers): 2948.245852669164\tLoss (with outliers): 2948.245852669164\n", - "2019-01-15 20:26:28,215 : INFO : Loss (no outliers): 2256.5781228194505\tLoss (with outliers): 2256.5781228194505\n", - "2019-01-15 20:26:42,728 : INFO : Loss (no outliers): 2690.477883749342\tLoss (with outliers): 2690.477883749342\n", - "2019-01-15 20:26:57,291 : INFO : Loss (no outliers): 2410.087418977127\tLoss (with outliers): 2410.087418977127\n", - "2019-01-15 20:27:11,975 : INFO : Loss (no outliers): 2203.65813250494\tLoss (with outliers): 2203.65813250494\n", - "2019-01-15 20:27:28,093 : INFO : Loss (no outliers): 2157.2818007155156\tLoss (with outliers): 2157.2818007155156\n", - "2019-01-15 20:27:43,310 : INFO : Loss (no outliers): 2150.1036522234763\tLoss (with outliers): 2150.1036522234763\n", - "2019-01-15 20:27:58,879 : INFO : Loss (no outliers): 2777.2329628772645\tLoss (with outliers): 2777.2329628772645\n", - "2019-01-15 20:28:15,150 : INFO : Loss (no outliers): 2224.9325521668043\tLoss (with outliers): 2224.9325521668043\n", - "2019-01-15 20:28:29,773 : INFO : Loss (no outliers): 1986.8886800713692\tLoss (with outliers): 1986.8886800713692\n", - "2019-01-15 20:28:44,116 : INFO : Loss (no outliers): 1813.356320784782\tLoss (with outliers): 1813.356320784782\n", - "2019-01-15 20:28:58,551 : INFO : Loss (no outliers): 2347.6006690184818\tLoss (with outliers): 2347.6006690184818\n", - "2019-01-15 20:29:13,638 : INFO : Loss (no outliers): 3072.49531246201\tLoss (with outliers): 3072.49531246201\n", - "2019-01-15 20:29:28,460 : INFO : Loss (no outliers): 2282.4662001870274\tLoss (with outliers): 2282.4662001870274\n", - "2019-01-15 20:29:43,470 : INFO : Loss (no outliers): 2027.3439410917824\tLoss (with outliers): 2027.3439410917824\n", - "2019-01-15 20:29:57,001 : INFO : Loss (no outliers): 2166.296306277143\tLoss (with outliers): 2166.296306277143\n", - "2019-01-15 20:30:12,957 : INFO : Loss (no outliers): 2075.275659704001\tLoss (with outliers): 2075.275659704001\n", - "2019-01-15 20:30:27,391 : INFO : Loss (no outliers): 2096.3886039644935\tLoss (with outliers): 2096.3886039644935\n", - "2019-01-15 20:30:42,498 : INFO : Loss (no outliers): 1920.9363430310136\tLoss (with outliers): 1920.9363430310136\n", - "2019-01-15 20:30:56,775 : INFO : Loss (no outliers): 2265.750740866037\tLoss (with outliers): 2265.750740866037\n", - "2019-01-15 20:31:10,755 : INFO : Loss (no outliers): 2283.066575832404\tLoss (with outliers): 2283.066575832404\n", - "2019-01-15 20:31:25,124 : INFO : Loss (no outliers): 2329.677807113983\tLoss (with outliers): 2329.677807113983\n", - "2019-01-15 20:31:40,131 : INFO : Loss (no outliers): 1856.07163677902\tLoss (with outliers): 1856.07163677902\n", - "2019-01-15 20:31:54,054 : INFO : Loss (no outliers): 2223.853816825839\tLoss (with outliers): 2223.853816825839\n", - "2019-01-15 20:32:07,515 : INFO : Loss (no outliers): 2047.0349348166026\tLoss (with outliers): 2047.0349348166026\n", - "2019-01-15 20:32:21,971 : INFO : Loss (no outliers): 2086.6505023542836\tLoss (with outliers): 2086.6505023542836\n", - "2019-01-15 20:32:37,440 : INFO : Loss (no outliers): 2307.9295543888566\tLoss (with outliers): 2307.9295543888566\n", - "2019-01-15 20:32:51,939 : INFO : Loss (no outliers): 2113.023701226936\tLoss (with outliers): 2113.023701226936\n", - "2019-01-15 20:33:06,866 : INFO : Loss (no outliers): 2383.1578108521408\tLoss (with outliers): 2383.1578108521408\n", - "2019-01-15 20:33:22,336 : INFO : Loss (no outliers): 2209.869238370659\tLoss (with outliers): 2209.869238370659\n", - "2019-01-15 20:33:37,370 : INFO : Loss (no outliers): 2995.9884874718828\tLoss (with outliers): 2995.9884874718828\n", - "2019-01-15 20:33:53,357 : INFO : Loss (no outliers): 2277.0694666905806\tLoss (with outliers): 2277.0694666905806\n", - "2019-01-15 20:34:06,688 : INFO : Loss (no outliers): 2372.397456096066\tLoss (with outliers): 2372.397456096066\n", - "2019-01-15 20:34:21,006 : INFO : Loss (no outliers): 2244.1391819876894\tLoss (with outliers): 2244.1391819876894\n", - "2019-01-15 20:34:36,386 : INFO : Loss (no outliers): 2265.3350048883867\tLoss (with outliers): 2265.3350048883867\n", - "2019-01-15 20:34:50,856 : INFO : Loss (no outliers): 2232.6292499617584\tLoss (with outliers): 2232.6292499617584\n", - "2019-01-15 20:35:05,861 : INFO : Loss (no outliers): 1954.7005716114727\tLoss (with outliers): 1954.7005716114727\n", - "2019-01-15 20:35:20,428 : INFO : Loss (no outliers): 2365.994610099451\tLoss (with outliers): 2365.994610099451\n", - "2019-01-15 20:35:36,003 : INFO : Loss (no outliers): 2014.8666398839368\tLoss (with outliers): 2014.8666398839368\n", - "2019-01-15 20:35:50,981 : INFO : Loss (no outliers): 2129.5829155757474\tLoss (with outliers): 2129.5829155757474\n", - "2019-01-15 20:36:04,882 : INFO : Loss (no outliers): 2599.477478658058\tLoss (with outliers): 2599.477478658058\n", - "2019-01-15 20:36:19,796 : INFO : Loss (no outliers): 1950.9384189453465\tLoss (with outliers): 1950.9384189453465\n", - "2019-01-15 20:36:34,222 : INFO : Loss (no outliers): 1912.3906993012026\tLoss (with outliers): 1912.3906993012026\n", - "2019-01-15 20:36:49,145 : INFO : Loss (no outliers): 1876.4119242408226\tLoss (with outliers): 1876.4119242408226\n", - "2019-01-15 20:37:02,012 : INFO : Loss (no outliers): 2194.146039559361\tLoss (with outliers): 2194.146039559361\n", - "2019-01-15 20:37:16,010 : INFO : Loss (no outliers): 2142.872259897956\tLoss (with outliers): 2142.872259897956\n", - "2019-01-15 20:37:29,859 : INFO : Loss (no outliers): 2335.16065803965\tLoss (with outliers): 2335.16065803965\n", - "2019-01-15 20:37:44,224 : INFO : Loss (no outliers): 2450.7102286205104\tLoss (with outliers): 2450.7102286205104\n", - "2019-01-15 20:37:58,876 : INFO : Loss (no outliers): 2193.610565482956\tLoss (with outliers): 2193.610565482956\n", - "2019-01-15 20:38:13,902 : INFO : Loss (no outliers): 2160.5832343665825\tLoss (with outliers): 2160.5832343665825\n", - "2019-01-15 20:38:27,956 : INFO : Loss (no outliers): 2370.318919459298\tLoss (with outliers): 2370.318919459298\n", - "2019-01-15 20:38:42,366 : INFO : Loss (no outliers): 2121.3190034300746\tLoss (with outliers): 2121.3190034300746\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 20:38:57,095 : INFO : Loss (no outliers): 3288.809547158024\tLoss (with outliers): 3288.809547158024\n", - "2019-01-15 20:39:11,926 : INFO : Loss (no outliers): 2176.222127214424\tLoss (with outliers): 2176.222127214424\n", - "2019-01-15 20:39:26,728 : INFO : Loss (no outliers): 2427.777087295175\tLoss (with outliers): 2427.777087295175\n", - "2019-01-15 20:39:42,147 : INFO : Loss (no outliers): 2077.3103752487814\tLoss (with outliers): 2077.3103752487814\n", - "2019-01-15 20:39:55,930 : INFO : Loss (no outliers): 2269.811128442968\tLoss (with outliers): 2269.811128442968\n", - "2019-01-15 20:40:09,148 : INFO : Loss (no outliers): 2026.9840475664098\tLoss (with outliers): 2026.9840475664098\n", - "2019-01-15 20:40:22,996 : INFO : Loss (no outliers): 1929.413824110674\tLoss (with outliers): 1929.413824110674\n", - "2019-01-15 20:40:37,383 : INFO : Loss (no outliers): 2092.8577121320673\tLoss (with outliers): 2092.8577121320673\n", - "2019-01-15 20:40:51,804 : INFO : Loss (no outliers): 1997.651881209576\tLoss (with outliers): 1997.651881209576\n", - "2019-01-15 20:41:04,551 : INFO : Loss (no outliers): 2118.796087459352\tLoss (with outliers): 2118.796087459352\n", - "2019-01-15 20:41:18,012 : INFO : Loss (no outliers): 1940.4340262424746\tLoss (with outliers): 1940.4340262424746\n", - "2019-01-15 20:41:32,414 : INFO : Loss (no outliers): 2228.7767317245234\tLoss (with outliers): 2228.7767317245234\n", - "2019-01-15 20:41:47,283 : INFO : Loss (no outliers): 2125.2035839964396\tLoss (with outliers): 2125.2035839964396\n", - "2019-01-15 20:42:01,988 : INFO : Loss (no outliers): 2048.1912085828053\tLoss (with outliers): 2048.1912085828053\n", - "2019-01-15 20:42:17,250 : INFO : Loss (no outliers): 2210.7356428557596\tLoss (with outliers): 2210.7356428557596\n", - "2019-01-15 20:42:31,618 : INFO : Loss (no outliers): 1937.508428202434\tLoss (with outliers): 1937.508428202434\n", - "2019-01-15 20:42:45,876 : INFO : Loss (no outliers): 2311.1126676352483\tLoss (with outliers): 2311.1126676352483\n", - "2019-01-15 20:42:59,553 : INFO : Loss (no outliers): 2222.1263359943605\tLoss (with outliers): 2222.1263359943605\n", - "2019-01-15 20:43:11,776 : INFO : Loss (no outliers): 2421.8579544845015\tLoss (with outliers): 2421.8579544845015\n", - "2019-01-15 20:43:25,430 : INFO : Loss (no outliers): 2511.4438944752555\tLoss (with outliers): 2511.4438944752555\n", - "2019-01-15 20:43:38,698 : INFO : Loss (no outliers): 2206.150254855201\tLoss (with outliers): 2206.150254855201\n", - "2019-01-15 20:43:52,974 : INFO : Loss (no outliers): 2003.0109362552587\tLoss (with outliers): 2003.0109362552587\n", - "2019-01-15 20:44:07,153 : INFO : Loss (no outliers): 2053.0991645173576\tLoss (with outliers): 2053.0991645173576\n", - "2019-01-15 20:44:20,718 : INFO : Loss (no outliers): 3089.4188610302836\tLoss (with outliers): 3089.4188610302836\n", + "==Truncated==\n", "2019-01-15 20:44:23,913 : INFO : Loss (no outliers): 1322.9664709183141\tLoss (with outliers): 1322.9664709183141\n", "2019-01-15 20:44:23,928 : INFO : saving Nmf object under nmf.model, separately None\n", "2019-01-15 20:44:24,625 : INFO : saved nmf.model\n" @@ -936,268 +675,7 @@ "text": [ "2019-01-15 20:54:05,363 : INFO : Loss (no outliers): 2179.9524465227146\tLoss (with outliers): 2102.354108449905\n", "2019-01-15 20:57:12,821 : INFO : Loss (no outliers): 2268.3200929871823\tLoss (with outliers): 2110.928651253909\n", - "2019-01-15 20:59:52,789 : INFO : Loss (no outliers): 2085.180592763644\tLoss (with outliers): 2041.9026850333144\n", - "2019-01-15 21:02:30,113 : INFO : Loss (no outliers): 2425.552273660531\tLoss (with outliers): 2299.4821139504706\n", - "2019-01-15 21:05:12,256 : INFO : Loss (no outliers): 6084.043369634124\tLoss (with outliers): 4478.896745443016\n", - "2019-01-15 21:07:48,126 : INFO : Loss (no outliers): 1973.2165098776484\tLoss (with outliers): 1962.300562304653\n", - "2019-01-15 21:10:15,332 : INFO : Loss (no outliers): 2887.7707165814063\tLoss (with outliers): 2253.0207462068242\n", - "2019-01-15 21:12:26,921 : INFO : Loss (no outliers): 1968.718319794589\tLoss (with outliers): 1958.061798839886\n", - "2019-01-15 21:14:36,474 : INFO : Loss (no outliers): 2194.9202571270434\tLoss (with outliers): 2068.932739723485\n", - "2019-01-15 21:16:47,847 : INFO : Loss (no outliers): 2415.127845138794\tLoss (with outliers): 2074.316209581205\n", - "2019-01-15 21:18:56,413 : INFO : Loss (no outliers): 2257.0844608023053\tLoss (with outliers): 2060.5719235627234\n", - "2019-01-15 21:21:05,191 : INFO : Loss (no outliers): 2084.6706357231747\tLoss (with outliers): 2010.0949638061447\n", - "2019-01-15 21:23:12,672 : INFO : Loss (no outliers): 1902.8630275714875\tLoss (with outliers): 1890.494518456072\n", - "2019-01-15 21:25:15,142 : INFO : Loss (no outliers): 1998.7615484999944\tLoss (with outliers): 1921.6172475248275\n", - "2019-01-15 21:27:14,960 : INFO : Loss (no outliers): 1961.3697076503272\tLoss (with outliers): 1940.0928518678604\n", - "2019-01-15 21:29:13,432 : INFO : Loss (no outliers): 1931.9322377546441\tLoss (with outliers): 1867.4093361871219\n", - "2019-01-15 21:31:15,075 : INFO : Loss (no outliers): 1939.1672202329862\tLoss (with outliers): 1909.9725464663768\n", - "2019-01-15 21:33:16,845 : INFO : Loss (no outliers): 2519.286448638766\tLoss (with outliers): 2233.0886003129567\n", - "2019-01-15 21:35:17,028 : INFO : Loss (no outliers): 2414.8201830134103\tLoss (with outliers): 2153.8557217276802\n", - "2019-01-15 21:37:17,201 : INFO : Loss (no outliers): 2045.8709908690112\tLoss (with outliers): 1909.2981607172303\n", - "2019-01-15 21:39:18,762 : INFO : Loss (no outliers): 2122.8839691590474\tLoss (with outliers): 2102.3883739429994\n", - "2019-01-15 21:41:18,660 : INFO : Loss (no outliers): 2138.126797966693\tLoss (with outliers): 2058.806925665995\n", - "2019-01-15 21:43:17,518 : INFO : Loss (no outliers): 1997.5080344764633\tLoss (with outliers): 1944.4887747431048\n", - "2019-01-15 21:45:12,371 : INFO : Loss (no outliers): 2095.7334155043977\tLoss (with outliers): 2049.379734576901\n", - "2019-01-15 21:47:04,010 : INFO : Loss (no outliers): 2149.6600322008603\tLoss (with outliers): 2073.7386388708333\n", - "2019-01-15 21:49:01,126 : INFO : Loss (no outliers): 2470.139566277072\tLoss (with outliers): 2260.6092366698426\n", - "2019-01-15 21:50:56,900 : INFO : Loss (no outliers): 1927.8449170405847\tLoss (with outliers): 1897.9393713551628\n", - "2019-01-15 21:52:50,504 : INFO : Loss (no outliers): 2608.8692122260272\tLoss (with outliers): 2304.1021028876203\n", - "2019-01-15 21:54:41,495 : INFO : Loss (no outliers): 2092.4300776662612\tLoss (with outliers): 1999.6409920657431\n", - "2019-01-15 21:56:33,360 : INFO : Loss (no outliers): 2646.201870920937\tLoss (with outliers): 2311.803149369392\n", - "2019-01-15 21:58:29,204 : INFO : Loss (no outliers): 2061.9355152633475\tLoss (with outliers): 1929.920614503226\n", - "2019-01-15 22:00:20,400 : INFO : Loss (no outliers): 3988.0537788649362\tLoss (with outliers): 2787.5412041605387\n", - "2019-01-15 22:02:13,907 : INFO : Loss (no outliers): 2159.924324983838\tLoss (with outliers): 2000.2754354054916\n", - "2019-01-15 22:04:08,926 : INFO : Loss (no outliers): 2404.592015280603\tLoss (with outliers): 2192.2681312138443\n", - "2019-01-15 22:06:01,249 : INFO : Loss (no outliers): 1950.6610892531653\tLoss (with outliers): 1907.5694416034921\n", - "2019-01-15 22:07:49,572 : INFO : Loss (no outliers): 2204.276842879244\tLoss (with outliers): 1947.79276179934\n", - "2019-01-15 22:09:46,386 : INFO : Loss (no outliers): 2405.6839161614757\tLoss (with outliers): 2132.1869341726183\n", - "2019-01-15 22:11:37,418 : INFO : Loss (no outliers): 2290.5177911800392\tLoss (with outliers): 2165.9260088647625\n", - "2019-01-15 22:13:28,123 : INFO : Loss (no outliers): 2087.0729955533006\tLoss (with outliers): 1962.1441973385922\n", - "2019-01-15 22:15:19,464 : INFO : Loss (no outliers): 2326.2709210915064\tLoss (with outliers): 2119.1028169383026\n", - "2019-01-15 22:17:11,378 : INFO : Loss (no outliers): 1987.025167789374\tLoss (with outliers): 1890.6673160058203\n", - "2019-01-15 22:19:02,981 : INFO : Loss (no outliers): 2051.963478257352\tLoss (with outliers): 1909.3108001359658\n", - "2019-01-15 22:20:57,100 : INFO : Loss (no outliers): 2017.241569576191\tLoss (with outliers): 1978.6116779269723\n", - "2019-01-15 22:22:46,270 : INFO : Loss (no outliers): 1910.6372517422606\tLoss (with outliers): 1894.112980581178\n", - "2019-01-15 22:24:35,489 : INFO : Loss (no outliers): 3088.1290116976797\tLoss (with outliers): 2425.5056588271373\n", - "2019-01-15 22:26:27,342 : INFO : Loss (no outliers): 2210.2498032279714\tLoss (with outliers): 2133.118813907129\n", - "2019-01-15 22:28:15,050 : INFO : Loss (no outliers): 2837.427134377107\tLoss (with outliers): 2298.6046210757363\n", - "2019-01-15 22:30:05,363 : INFO : Loss (no outliers): 2314.3169647900477\tLoss (with outliers): 2083.41850817411\n", - "2019-01-15 22:31:56,844 : INFO : Loss (no outliers): 2376.24008782355\tLoss (with outliers): 2290.1383160246673\n", - "2019-01-15 22:33:46,595 : INFO : Loss (no outliers): 2244.32931408162\tLoss (with outliers): 2225.8994886968853\n", - "2019-01-15 22:35:39,893 : INFO : Loss (no outliers): 2069.7579152028893\tLoss (with outliers): 2011.8345152150891\n", - "2019-01-15 22:37:30,547 : INFO : Loss (no outliers): 2449.7462514582267\tLoss (with outliers): 2203.583885476976\n", - "2019-01-15 22:39:12,815 : INFO : Loss (no outliers): 2076.004878884584\tLoss (with outliers): 2020.1863263907983\n", - "2019-01-15 22:41:00,110 : INFO : Loss (no outliers): 1907.4739742892227\tLoss (with outliers): 1849.7155030895956\n", - "2019-01-15 22:42:44,497 : INFO : Loss (no outliers): 1997.0010750210204\tLoss (with outliers): 1949.3980047817279\n", - "2019-01-15 22:44:31,884 : INFO : Loss (no outliers): 2231.2668122160576\tLoss (with outliers): 2013.2590351021133\n", - "2019-01-15 22:46:21,524 : INFO : Loss (no outliers): 2047.802123841274\tLoss (with outliers): 1993.0855797990812\n", - "2019-01-15 22:48:08,591 : INFO : Loss (no outliers): 4512.653445133931\tLoss (with outliers): 3316.2992105314493\n", - "2019-01-15 22:50:00,348 : INFO : Loss (no outliers): 2000.4981020198509\tLoss (with outliers): 1927.9984182372727\n", - "2019-01-15 22:51:44,668 : INFO : Loss (no outliers): 2083.065907476992\tLoss (with outliers): 1996.6958618321803\n", - "2019-01-15 22:53:33,967 : INFO : Loss (no outliers): 2079.950827063429\tLoss (with outliers): 2015.5849834039236\n", - "2019-01-15 22:55:20,163 : INFO : Loss (no outliers): 2171.618370331101\tLoss (with outliers): 2115.3315119124222\n", - "2019-01-15 22:57:04,070 : INFO : Loss (no outliers): 2023.1451700949387\tLoss (with outliers): 1977.539938148705\n", - "2019-01-15 22:58:48,873 : INFO : Loss (no outliers): 2181.2552613153266\tLoss (with outliers): 2133.391444963182\n", - "2019-01-15 23:00:34,706 : INFO : Loss (no outliers): 1956.658218278371\tLoss (with outliers): 1941.7266125473318\n", - "2019-01-15 23:02:21,701 : INFO : Loss (no outliers): 2406.394155853789\tLoss (with outliers): 2033.5730846367358\n", - "2019-01-15 23:04:06,855 : INFO : Loss (no outliers): 2165.6669305396026\tLoss (with outliers): 2093.7371944475067\n", - "2019-01-15 23:05:54,267 : INFO : Loss (no outliers): 1964.9129956645077\tLoss (with outliers): 1941.4706023380033\n", - "2019-01-15 23:07:35,495 : INFO : Loss (no outliers): 1910.8315535143518\tLoss (with outliers): 1901.4073863518486\n", - "2019-01-15 23:09:20,838 : INFO : Loss (no outliers): 2129.667556398216\tLoss (with outliers): 2011.914949248791\n", - "2019-01-15 23:11:05,876 : INFO : Loss (no outliers): 2250.720052872983\tLoss (with outliers): 2141.4618031358964\n", - "2019-01-15 23:12:53,093 : INFO : Loss (no outliers): 2510.282393395277\tLoss (with outliers): 2369.992514846505\n", - "2019-01-15 23:14:39,010 : INFO : Loss (no outliers): 2271.358575035864\tLoss (with outliers): 2092.840589065305\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-15 23:16:26,633 : INFO : Loss (no outliers): 2101.0331621161545\tLoss (with outliers): 2009.8926551115326\n", - "2019-01-15 23:18:13,670 : INFO : Loss (no outliers): 2668.4500117317184\tLoss (with outliers): 2168.1532193760695\n", - "2019-01-15 23:20:04,996 : INFO : Loss (no outliers): 2161.629736053655\tLoss (with outliers): 1993.2548324506695\n", - "2019-01-15 23:21:52,371 : INFO : Loss (no outliers): 1961.5821979654045\tLoss (with outliers): 1830.5366801526282\n", - "2019-01-15 23:23:40,125 : INFO : Loss (no outliers): 2146.582950878536\tLoss (with outliers): 2084.3624004694666\n", - "2019-01-15 23:25:24,220 : INFO : Loss (no outliers): 2296.735495300956\tLoss (with outliers): 2070.1072585469383\n", - "2019-01-15 23:27:08,597 : INFO : Loss (no outliers): 1962.4322067774845\tLoss (with outliers): 1912.7698208747227\n", - "2019-01-15 23:28:50,503 : INFO : Loss (no outliers): 4282.5845233371065\tLoss (with outliers): 3057.3523936516376\n", - "2019-01-15 23:30:33,627 : INFO : Loss (no outliers): 2725.090510533868\tLoss (with outliers): 2233.8606185902167\n", - "2019-01-15 23:32:15,737 : INFO : Loss (no outliers): 3107.108221904729\tLoss (with outliers): 2478.2236194506636\n", - "2019-01-15 23:34:00,980 : INFO : Loss (no outliers): 2206.6752423797934\tLoss (with outliers): 2061.58541095559\n", - "2019-01-15 23:35:48,921 : INFO : Loss (no outliers): 2118.503883791465\tLoss (with outliers): 1969.6928940332705\n", - "2019-01-15 23:37:36,481 : INFO : Loss (no outliers): 2040.1357254132884\tLoss (with outliers): 1981.1062633522192\n", - "2019-01-15 23:39:21,572 : INFO : Loss (no outliers): 2191.7494610273156\tLoss (with outliers): 2109.2082139892436\n", - "2019-01-15 23:41:07,846 : INFO : Loss (no outliers): 1977.4646414595525\tLoss (with outliers): 1930.1858437590597\n", - "2019-01-15 23:42:51,359 : INFO : Loss (no outliers): 2031.0449028768521\tLoss (with outliers): 1966.2166562143834\n", - "2019-01-15 23:44:35,928 : INFO : Loss (no outliers): 2061.2062795287925\tLoss (with outliers): 2010.846180538925\n", - "2019-01-15 23:46:19,792 : INFO : Loss (no outliers): 2462.531513598999\tLoss (with outliers): 2066.234034020788\n", - "2019-01-15 23:48:01,566 : INFO : Loss (no outliers): 2161.512340473268\tLoss (with outliers): 2113.649708218964\n", - "2019-01-15 23:49:46,550 : INFO : Loss (no outliers): 1951.3731989316366\tLoss (with outliers): 1908.3895118118899\n", - "2019-01-15 23:51:33,660 : INFO : Loss (no outliers): 1879.594947599165\tLoss (with outliers): 1867.0076569474822\n", - "2019-01-15 23:53:15,770 : INFO : Loss (no outliers): 2450.4924983915894\tLoss (with outliers): 2300.432379078362\n", - "2019-01-15 23:54:58,597 : INFO : Loss (no outliers): 2367.818472644495\tLoss (with outliers): 2052.788972483709\n", - "2019-01-15 23:56:40,279 : INFO : Loss (no outliers): 3035.2374806481885\tLoss (with outliers): 2401.877411873179\n", - "2019-01-15 23:58:21,760 : INFO : Loss (no outliers): 2447.5977382584624\tLoss (with outliers): 2039.318854388246\n", - "2019-01-16 00:00:06,365 : INFO : Loss (no outliers): 2482.398097269037\tLoss (with outliers): 2286.911016080207\n", - "2019-01-16 00:01:50,361 : INFO : Loss (no outliers): 2341.963394655978\tLoss (with outliers): 1977.5807660293253\n", - "2019-01-16 00:03:35,190 : INFO : Loss (no outliers): 2163.257582888606\tLoss (with outliers): 2009.2534695876268\n", - "2019-01-16 00:05:16,612 : INFO : Loss (no outliers): 2474.143096071397\tLoss (with outliers): 2258.6005759572868\n", - "2019-01-16 00:07:02,121 : INFO : Loss (no outliers): 2352.0197682275516\tLoss (with outliers): 2225.288105614732\n", - "2019-01-16 00:08:48,341 : INFO : Loss (no outliers): 2356.2264589599117\tLoss (with outliers): 2244.1503717214314\n", - "2019-01-16 00:10:30,819 : INFO : Loss (no outliers): 1988.3394009318413\tLoss (with outliers): 1901.2185027955984\n", - "2019-01-16 00:12:14,582 : INFO : Loss (no outliers): 1975.2612357694854\tLoss (with outliers): 1956.679719575608\n", - "2019-01-16 00:13:57,473 : INFO : Loss (no outliers): 2248.971503688887\tLoss (with outliers): 2065.0538881612624\n", - "2019-01-16 00:15:43,324 : INFO : Loss (no outliers): 2236.2995071294013\tLoss (with outliers): 2050.916982745959\n", - "2019-01-16 00:17:28,465 : INFO : Loss (no outliers): 2250.6683232094724\tLoss (with outliers): 2165.0780360080216\n", - "2019-01-16 00:19:11,337 : INFO : Loss (no outliers): 2099.4312600577005\tLoss (with outliers): 2059.4298535692487\n", - "2019-01-16 00:20:57,327 : INFO : Loss (no outliers): 1808.611317217321\tLoss (with outliers): 1801.9129012271617\n", - "2019-01-16 00:22:38,598 : INFO : Loss (no outliers): 2251.059449639144\tLoss (with outliers): 1976.2420677004118\n", - "2019-01-16 00:24:20,380 : INFO : Loss (no outliers): 2219.345532998361\tLoss (with outliers): 2090.4995759698686\n", - "2019-01-16 00:26:03,689 : INFO : Loss (no outliers): 2433.3368758760944\tLoss (with outliers): 2064.633107541565\n", - "2019-01-16 00:27:44,301 : INFO : Loss (no outliers): 1941.6468412023255\tLoss (with outliers): 1904.47468628058\n", - "2019-01-16 00:29:25,057 : INFO : Loss (no outliers): 2266.0345922836477\tLoss (with outliers): 2133.8929960774008\n", - "2019-01-16 00:31:12,334 : INFO : Loss (no outliers): 2060.4282961672366\tLoss (with outliers): 1957.0458550550352\n", - "2019-01-16 00:33:00,062 : INFO : Loss (no outliers): 2074.702325279596\tLoss (with outliers): 2007.6774089891796\n", - "2019-01-16 00:34:44,639 : INFO : Loss (no outliers): 2120.34455542316\tLoss (with outliers): 2049.3145760242855\n", - "2019-01-16 00:36:28,895 : INFO : Loss (no outliers): 2307.607294618353\tLoss (with outliers): 2027.2362495378634\n", - "2019-01-16 00:38:10,564 : INFO : Loss (no outliers): 2032.4093546891895\tLoss (with outliers): 1997.1569894809143\n", - "2019-01-16 00:39:51,544 : INFO : Loss (no outliers): 2024.2851056415748\tLoss (with outliers): 1952.2859837462447\n", - "2019-01-16 00:41:35,882 : INFO : Loss (no outliers): 2065.9440386715864\tLoss (with outliers): 2050.728597092955\n", - "2019-01-16 00:43:18,746 : INFO : Loss (no outliers): 2035.2450626963496\tLoss (with outliers): 1955.996097987477\n", - "2019-01-16 00:44:58,977 : INFO : Loss (no outliers): 2881.167865286131\tLoss (with outliers): 2323.497561388638\n", - "2019-01-16 00:46:42,742 : INFO : Loss (no outliers): 1970.537916897922\tLoss (with outliers): 1940.461123547\n", - "2019-01-16 00:48:23,795 : INFO : Loss (no outliers): 2567.177668959869\tLoss (with outliers): 2154.1594287256294\n", - "2019-01-16 00:49:59,214 : INFO : Loss (no outliers): 2743.7176536966194\tLoss (with outliers): 2363.1987268604144\n", - "2019-01-16 00:51:40,373 : INFO : Loss (no outliers): 2054.1348232504197\tLoss (with outliers): 1972.8542293417127\n", - "2019-01-16 00:53:20,417 : INFO : Loss (no outliers): 2385.365057530049\tLoss (with outliers): 2196.4575938692483\n", - "2019-01-16 00:55:02,850 : INFO : Loss (no outliers): 1794.4881041633537\tLoss (with outliers): 1785.4983699968816\n", - "2019-01-16 00:56:45,060 : INFO : Loss (no outliers): 1920.6614540269645\tLoss (with outliers): 1904.3188356284627\n", - "2019-01-16 00:58:29,822 : INFO : Loss (no outliers): 2299.3493175160124\tLoss (with outliers): 2177.2064038128105\n", - "2019-01-16 01:00:05,746 : INFO : Loss (no outliers): 2826.992326754467\tLoss (with outliers): 2171.35533729932\n", - "2019-01-16 01:01:46,354 : INFO : Loss (no outliers): 2038.776115446746\tLoss (with outliers): 1985.8967087541569\n", - "2019-01-16 01:03:29,372 : INFO : Loss (no outliers): 2202.6918435107877\tLoss (with outliers): 1928.0511326835299\n", - "2019-01-16 01:05:13,101 : INFO : Loss (no outliers): 1944.4335183875364\tLoss (with outliers): 1904.2165619301913\n", - "2019-01-16 01:06:54,939 : INFO : Loss (no outliers): 2275.8332171515467\tLoss (with outliers): 2205.1177397580936\n", - "2019-01-16 01:08:33,303 : INFO : Loss (no outliers): 1898.4814473285219\tLoss (with outliers): 1872.1516755817668\n", - "2019-01-16 01:10:12,295 : INFO : Loss (no outliers): 2063.547985405738\tLoss (with outliers): 2017.5333738781344\n", - "2019-01-16 01:11:52,743 : INFO : Loss (no outliers): 2016.94684782695\tLoss (with outliers): 1996.36782863261\n", - "2019-01-16 01:13:33,685 : INFO : Loss (no outliers): 2251.245280914596\tLoss (with outliers): 2045.1483609478526\n", - "2019-01-16 01:15:16,473 : INFO : Loss (no outliers): 2081.3163152802085\tLoss (with outliers): 2071.2204380810495\n", - "2019-01-16 01:16:58,430 : INFO : Loss (no outliers): 2085.052251663651\tLoss (with outliers): 2030.3013275623248\n", - "2019-01-16 01:18:41,288 : INFO : Loss (no outliers): 2190.7797342828026\tLoss (with outliers): 2065.89271183006\n", - "2019-01-16 01:20:22,447 : INFO : Loss (no outliers): 2397.382577199723\tLoss (with outliers): 2064.4589463743055\n", - "2019-01-16 01:22:02,951 : INFO : Loss (no outliers): 1868.4149208452948\tLoss (with outliers): 1825.9575780373552\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 01:23:44,127 : INFO : Loss (no outliers): 2343.9775510877125\tLoss (with outliers): 2144.3671549514634\n", - "2019-01-16 01:25:20,817 : INFO : Loss (no outliers): 2213.7521980133315\tLoss (with outliers): 2068.306787091367\n", - "2019-01-16 01:27:03,146 : INFO : Loss (no outliers): 2053.895893791899\tLoss (with outliers): 1937.8326485512866\n", - "2019-01-16 01:28:44,281 : INFO : Loss (no outliers): 2141.105300358069\tLoss (with outliers): 1921.40066058901\n", - "2019-01-16 01:30:25,503 : INFO : Loss (no outliers): 2104.2896627284285\tLoss (with outliers): 2069.3461308451638\n", - "2019-01-16 01:32:00,059 : INFO : Loss (no outliers): 2194.5091361858276\tLoss (with outliers): 2101.121907082148\n", - "2019-01-16 01:33:38,843 : INFO : Loss (no outliers): 2661.5862423570143\tLoss (with outliers): 2314.631507637849\n", - "2019-01-16 01:35:17,347 : INFO : Loss (no outliers): 1824.8246722080955\tLoss (with outliers): 1787.7885347127317\n", - "2019-01-16 01:36:54,564 : INFO : Loss (no outliers): 2111.1179921219923\tLoss (with outliers): 1874.3012080981453\n", - "2019-01-16 01:38:35,819 : INFO : Loss (no outliers): 2151.728024812931\tLoss (with outliers): 2058.152273822566\n", - "2019-01-16 01:40:12,821 : INFO : Loss (no outliers): 2478.8123035546473\tLoss (with outliers): 2231.338641523555\n", - "2019-01-16 01:41:53,503 : INFO : Loss (no outliers): 2185.635809726495\tLoss (with outliers): 2061.3245385978553\n", - "2019-01-16 01:43:34,696 : INFO : Loss (no outliers): 1859.1012629855707\tLoss (with outliers): 1822.5425349890934\n", - "2019-01-16 01:45:15,212 : INFO : Loss (no outliers): 2158.2230549192186\tLoss (with outliers): 2048.05192961261\n", - "2019-01-16 01:46:55,541 : INFO : Loss (no outliers): 2232.763187745373\tLoss (with outliers): 2140.1112088608274\n", - "2019-01-16 01:48:33,582 : INFO : Loss (no outliers): 2660.6999839341697\tLoss (with outliers): 2139.3435429280107\n", - "2019-01-16 01:50:08,930 : INFO : Loss (no outliers): 2231.0076181439513\tLoss (with outliers): 2014.3563470435386\n", - "2019-01-16 01:51:46,516 : INFO : Loss (no outliers): 1915.6092995274828\tLoss (with outliers): 1905.3652898484695\n", - "2019-01-16 01:53:25,287 : INFO : Loss (no outliers): 2020.5057646942726\tLoss (with outliers): 2005.2466479220802\n", - "2019-01-16 01:55:04,460 : INFO : Loss (no outliers): 1983.0080010600966\tLoss (with outliers): 1889.5614479142944\n", - "2019-01-16 01:56:45,901 : INFO : Loss (no outliers): 2425.052483676792\tLoss (with outliers): 2228.0217204222117\n", - "2019-01-16 01:58:24,771 : INFO : Loss (no outliers): 2028.283253594212\tLoss (with outliers): 2005.035739957029\n", - "2019-01-16 02:00:02,906 : INFO : Loss (no outliers): 2227.183370261541\tLoss (with outliers): 2095.677146614923\n", - "2019-01-16 02:01:45,331 : INFO : Loss (no outliers): 2943.2255439930086\tLoss (with outliers): 2567.254028195537\n", - "2019-01-16 02:03:23,431 : INFO : Loss (no outliers): 2251.437830604723\tLoss (with outliers): 2011.96269691936\n", - "2019-01-16 02:04:56,938 : INFO : Loss (no outliers): 2686.678780828495\tLoss (with outliers): 2241.4859900581173\n", - "2019-01-16 02:06:33,430 : INFO : Loss (no outliers): 2414.7521055613583\tLoss (with outliers): 2293.3575295219225\n", - "2019-01-16 02:08:10,982 : INFO : Loss (no outliers): 2206.332266131678\tLoss (with outliers): 2081.1992081523053\n", - "2019-01-16 02:09:55,662 : INFO : Loss (no outliers): 2192.001151085207\tLoss (with outliers): 2126.114455060032\n", - "2019-01-16 02:11:32,704 : INFO : Loss (no outliers): 2142.703757562554\tLoss (with outliers): 2073.855298802793\n", - "2019-01-16 02:13:08,934 : INFO : Loss (no outliers): 2879.0308981633716\tLoss (with outliers): 2349.032496284154\n", - "2019-01-16 02:14:50,268 : INFO : Loss (no outliers): 2217.208990342414\tLoss (with outliers): 2135.256578623091\n", - "2019-01-16 02:16:29,412 : INFO : Loss (no outliers): 1979.6919118647916\tLoss (with outliers): 1880.466812120582\n", - "2019-01-16 02:18:10,614 : INFO : Loss (no outliers): 1810.1679424049619\tLoss (with outliers): 1796.4452189747471\n", - "2019-01-16 02:19:49,612 : INFO : Loss (no outliers): 2349.2582202206763\tLoss (with outliers): 2117.754506020475\n", - "2019-01-16 02:21:31,278 : INFO : Loss (no outliers): 3063.7986868917037\tLoss (with outliers): 2282.7512029662\n", - "2019-01-16 02:23:11,319 : INFO : Loss (no outliers): 2275.9141835834193\tLoss (with outliers): 2167.8653833253497\n", - "2019-01-16 02:24:49,159 : INFO : Loss (no outliers): 2020.7551826488586\tLoss (with outliers): 1982.2319085332283\n", - "2019-01-16 02:26:30,799 : INFO : Loss (no outliers): 2163.556490495988\tLoss (with outliers): 2032.6138740719339\n", - "2019-01-16 02:28:13,167 : INFO : Loss (no outliers): 2068.5621430889832\tLoss (with outliers): 2038.661984496165\n", - "2019-01-16 02:29:51,892 : INFO : Loss (no outliers): 2235.241683355423\tLoss (with outliers): 1990.1878061327984\n", - "2019-01-16 02:31:34,803 : INFO : Loss (no outliers): 1933.0450604239973\tLoss (with outliers): 1877.428114697345\n", - "2019-01-16 02:33:11,164 : INFO : Loss (no outliers): 2253.884030728117\tLoss (with outliers): 2092.2887942876587\n", - "2019-01-16 02:34:51,193 : INFO : Loss (no outliers): 2300.555086611758\tLoss (with outliers): 2164.7553627317257\n", - "2019-01-16 02:36:29,078 : INFO : Loss (no outliers): 2283.0091067711587\tLoss (with outliers): 2052.61041615809\n", - "2019-01-16 02:38:09,232 : INFO : Loss (no outliers): 1851.0226058499275\tLoss (with outliers): 1823.8147859559558\n", - "2019-01-16 02:39:51,051 : INFO : Loss (no outliers): 2352.7414530004735\tLoss (with outliers): 2110.533155045586\n", - "2019-01-16 02:41:23,121 : INFO : Loss (no outliers): 2034.8508313929171\tLoss (with outliers): 1999.2858982439266\n", - "2019-01-16 02:43:00,257 : INFO : Loss (no outliers): 2076.930843112289\tLoss (with outliers): 2008.7053989170015\n", - "2019-01-16 02:44:38,820 : INFO : Loss (no outliers): 2310.6799634804124\tLoss (with outliers): 2062.1003595315624\n", - "2019-01-16 02:46:18,611 : INFO : Loss (no outliers): 2091.008633505684\tLoss (with outliers): 1965.05292942619\n", - "2019-01-16 02:47:55,617 : INFO : Loss (no outliers): 2393.68980048422\tLoss (with outliers): 2195.361920436561\n", - "2019-01-16 02:49:39,015 : INFO : Loss (no outliers): 2190.6153496135653\tLoss (with outliers): 2052.28324903907\n", - "2019-01-16 02:51:19,054 : INFO : Loss (no outliers): 2998.0459082575994\tLoss (with outliers): 2638.468323863154\n", - "2019-01-16 02:52:57,752 : INFO : Loss (no outliers): 2272.9012241801574\tLoss (with outliers): 2159.94574524437\n", - "2019-01-16 02:54:40,573 : INFO : Loss (no outliers): 2371.9288343261233\tLoss (with outliers): 2143.7502035302127\n", - "2019-01-16 02:56:17,975 : INFO : Loss (no outliers): 2559.774078545625\tLoss (with outliers): 2081.1012107004462\n", - "2019-01-16 02:57:58,096 : INFO : Loss (no outliers): 2258.6614820888913\tLoss (with outliers): 2083.724391641194\n", - "2019-01-16 02:59:40,096 : INFO : Loss (no outliers): 2205.9861247495105\tLoss (with outliers): 2187.1502714474673\n", - "2019-01-16 03:01:19,346 : INFO : Loss (no outliers): 1972.5574258948982\tLoss (with outliers): 1893.1686350194148\n", - "2019-01-16 03:03:00,343 : INFO : Loss (no outliers): 2372.5770836709094\tLoss (with outliers): 1997.2071661788398\n", - "2019-01-16 03:04:42,841 : INFO : Loss (no outliers): 2002.1379122622425\tLoss (with outliers): 1982.8882882285084\n", - "2019-01-16 03:06:25,731 : INFO : Loss (no outliers): 2131.619350300841\tLoss (with outliers): 1983.605256844448\n", - "2019-01-16 03:08:05,855 : INFO : Loss (no outliers): 2597.050087626562\tLoss (with outliers): 2363.8948601279267\n", - "2019-01-16 03:09:44,165 : INFO : Loss (no outliers): 1923.099763101275\tLoss (with outliers): 1877.126082093416\n", - "2019-01-16 03:11:23,333 : INFO : Loss (no outliers): 1896.3640102684722\tLoss (with outliers): 1877.7621737597208\n", - "2019-01-16 03:13:05,216 : INFO : Loss (no outliers): 1870.0200599444745\tLoss (with outliers): 1838.747254407967\n", - "2019-01-16 03:14:42,933 : INFO : Loss (no outliers): 2184.5492931843232\tLoss (with outliers): 2088.3115765776283\n", - "2019-01-16 03:16:19,105 : INFO : Loss (no outliers): 2146.708920361885\tLoss (with outliers): 1966.9247432816016\n", - "2019-01-16 03:17:58,164 : INFO : Loss (no outliers): 2338.4464708404753\tLoss (with outliers): 2075.9017017257797\n", - "2019-01-16 03:19:35,564 : INFO : Loss (no outliers): 2451.920634110482\tLoss (with outliers): 2053.6371209845393\n", - "2019-01-16 03:21:12,168 : INFO : Loss (no outliers): 2189.6314979962967\tLoss (with outliers): 1969.9213486935673\n", - "2019-01-16 03:22:54,545 : INFO : Loss (no outliers): 2150.5470593066293\tLoss (with outliers): 2062.9418239488714\n", - "2019-01-16 03:24:30,726 : INFO : Loss (no outliers): 2349.1284573250928\tLoss (with outliers): 2120.870968568742\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 03:26:11,521 : INFO : Loss (no outliers): 2119.101278559414\tLoss (with outliers): 2059.4270452072174\n", - "2019-01-16 03:27:48,050 : INFO : Loss (no outliers): 3521.6914175427187\tLoss (with outliers): 2436.3273863213008\n", - "2019-01-16 03:29:26,576 : INFO : Loss (no outliers): 2182.4455446461925\tLoss (with outliers): 2149.699829776273\n", - "2019-01-16 03:31:02,063 : INFO : Loss (no outliers): 2422.390791633096\tLoss (with outliers): 1922.6665499600158\n", - "2019-01-16 03:32:43,332 : INFO : Loss (no outliers): 2088.2426906492756\tLoss (with outliers): 2004.7046142591066\n", - "2019-01-16 03:34:20,250 : INFO : Loss (no outliers): 2272.2733524907258\tLoss (with outliers): 2052.6087239672293\n", - "2019-01-16 03:35:57,085 : INFO : Loss (no outliers): 2015.1239751640278\tLoss (with outliers): 1992.1546281655103\n", - "2019-01-16 03:37:36,352 : INFO : Loss (no outliers): 1939.1831252302115\tLoss (with outliers): 1931.3598172749896\n", - "2019-01-16 03:39:13,136 : INFO : Loss (no outliers): 2121.6048721932993\tLoss (with outliers): 2048.4606647895253\n", - "2019-01-16 03:40:52,314 : INFO : Loss (no outliers): 1989.5107408287558\tLoss (with outliers): 1943.355507314347\n", - "2019-01-16 03:42:34,597 : INFO : Loss (no outliers): 2096.491629428817\tLoss (with outliers): 2002.8966872727317\n", - "2019-01-16 03:44:15,141 : INFO : Loss (no outliers): 1935.6179113279284\tLoss (with outliers): 1907.2020058469177\n", - "2019-01-16 03:45:49,976 : INFO : Loss (no outliers): 2411.184204882168\tLoss (with outliers): 2092.1515085612336\n", - "2019-01-16 03:47:23,652 : INFO : Loss (no outliers): 2121.735058484159\tLoss (with outliers): 2053.2928342649307\n", - "2019-01-16 03:49:03,991 : INFO : Loss (no outliers): 2055.0360399602528\tLoss (with outliers): 1983.787255703463\n", - "2019-01-16 03:50:41,151 : INFO : Loss (no outliers): 2529.9134848697354\tLoss (with outliers): 2112.0534464715015\n", - "2019-01-16 03:52:22,175 : INFO : Loss (no outliers): 1930.621202926083\tLoss (with outliers): 1910.7492465614903\n", - "2019-01-16 03:53:56,378 : INFO : Loss (no outliers): 2283.8623172098073\tLoss (with outliers): 2073.3087075861035\n", - "2019-01-16 03:55:38,230 : INFO : Loss (no outliers): 2225.2949272810783\tLoss (with outliers): 2055.8375469776365\n", - "2019-01-16 03:57:18,597 : INFO : Loss (no outliers): 2425.6868837265224\tLoss (with outliers): 2207.801779999967\n", - "2019-01-16 03:58:59,557 : INFO : Loss (no outliers): 2778.8887052094196\tLoss (with outliers): 2192.3765115495053\n", - "2019-01-16 04:00:39,248 : INFO : Loss (no outliers): 2206.967569201976\tLoss (with outliers): 2110.072401404521\n", - "2019-01-16 04:02:16,555 : INFO : Loss (no outliers): 2005.7842585155443\tLoss (with outliers): 1967.149475102709\n", - "2019-01-16 04:03:53,132 : INFO : Loss (no outliers): 2063.980317709152\tLoss (with outliers): 2012.6520760932476\n", - "2019-01-16 04:05:31,053 : INFO : Loss (no outliers): 3112.639937340082\tLoss (with outliers): 2375.134903902117\n", + "==Truncated==\n", "2019-01-16 04:05:46,589 : INFO : Loss (no outliers): 1321.521323758918\tLoss (with outliers): 1282.9364495345592\n", "2019-01-16 04:05:46,599 : INFO : saving Nmf object under nmf_with_r.model, separately None\n", "2019-01-16 04:05:46,601 : INFO : storing scipy.sparse array '_r' under nmf_with_r.model._r.npy\n", @@ -1383,22317 +861,7 @@ "2019-01-16 04:06:27,589 : INFO : using serial LDA version on this node\n", "2019-01-16 04:06:28,185 : INFO : running online (single-pass) LDA training, 50 topics, 1 passes over the supplied corpus of 4922894 documents, updating model once every 2000 documents, evaluating perplexity every 20000 documents, iterating 50x with a convergence threshold of 0.001000\n", "2019-01-16 04:06:28,910 : INFO : PROGRESS: pass 0, at document #2000/4922894\n", - "2019-01-16 04:06:31,888 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:06:32,429 : INFO : topic #36 (0.020): 0.006*\"new\" + 0.004*\"year\" + 0.004*\"work\" + 0.004*\"hous\" + 0.004*\"railwai\" + 0.003*\"american\" + 0.003*\"state\" + 0.003*\"includ\" + 0.003*\"game\" + 0.003*\"senat\"\n", - "2019-01-16 04:06:32,432 : INFO : topic #19 (0.020): 0.005*\"new\" + 0.004*\"nation\" + 0.004*\"includ\" + 0.003*\"time\" + 0.003*\"year\" + 0.003*\"plai\" + 0.003*\"game\" + 0.003*\"record\" + 0.003*\"work\" + 0.003*\"dai\"\n", - "2019-01-16 04:06:32,433 : INFO : topic #42 (0.020): 0.007*\"socorro\" + 0.006*\"linear\" + 0.005*\"tantra\" + 0.004*\"new\" + 0.003*\"april\" + 0.003*\"time\" + 0.003*\"year\" + 0.003*\"state\" + 0.003*\"march\" + 0.003*\"palomar\"\n", - "2019-01-16 04:06:32,435 : INFO : topic #43 (0.020): 0.005*\"state\" + 0.004*\"includ\" + 0.004*\"nation\" + 0.004*\"film\" + 0.004*\"song\" + 0.003*\"socorro\" + 0.003*\"year\" + 0.003*\"album\" + 0.003*\"univers\" + 0.003*\"linear\"\n", - "2019-01-16 04:06:32,437 : INFO : topic #5 (0.020): 0.004*\"state\" + 0.004*\"new\" + 0.003*\"network\" + 0.003*\"includ\" + 0.003*\"servic\" + 0.003*\"develop\" + 0.003*\"releas\" + 0.003*\"season\" + 0.003*\"nation\" + 0.003*\"program\"\n", - "2019-01-16 04:06:32,442 : INFO : topic diff=42.844707, rho=1.000000\n", - "2019-01-16 04:06:33,175 : INFO : PROGRESS: pass 0, at document #4000/4922894\n", - "2019-01-16 04:06:36,094 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:06:36,618 : INFO : topic #1 (0.020): 0.012*\"music\" + 0.009*\"record\" + 0.007*\"song\" + 0.007*\"album\" + 0.007*\"singl\" + 0.006*\"track\" + 0.006*\"releas\" + 0.005*\"vocal\" + 0.005*\"new\" + 0.004*\"chart\"\n", - "2019-01-16 04:06:36,621 : INFO : topic #33 (0.020): 0.010*\"agassi\" + 0.009*\"price\" + 0.006*\"open\" + 0.006*\"set\" + 0.005*\"year\" + 0.005*\"kaiser\" + 0.005*\"world\" + 0.005*\"trap\" + 0.004*\"rate\" + 0.004*\"inflat\"\n", - "2019-01-16 04:06:36,623 : INFO : topic #15 (0.020): 0.014*\"leagu\" + 0.008*\"counti\" + 0.008*\"footbal\" + 0.007*\"cup\" + 0.006*\"intern\" + 0.006*\"year\" + 0.006*\"tournament\" + 0.006*\"club\" + 0.005*\"town\" + 0.005*\"plai\"\n", - "2019-01-16 04:06:36,625 : INFO : topic #14 (0.020): 0.008*\"school\" + 0.007*\"state\" + 0.005*\"new\" + 0.005*\"univers\" + 0.005*\"design\" + 0.005*\"year\" + 0.005*\"student\" + 0.004*\"compani\" + 0.004*\"includ\" + 0.004*\"program\"\n", - "2019-01-16 04:06:36,627 : INFO : topic #3 (0.020): 0.007*\"new\" + 0.005*\"year\" + 0.004*\"phelp\" + 0.004*\"citi\" + 0.004*\"counti\" + 0.004*\"born\" + 0.003*\"war\" + 0.003*\"gener\" + 0.003*\"american\" + 0.003*\"serv\"\n", - "2019-01-16 04:06:36,634 : INFO : topic diff=0.439294, rho=0.707107\n", - "2019-01-16 04:06:37,367 : INFO : PROGRESS: pass 0, at document #6000/4922894\n", - "2019-01-16 04:06:40,120 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:06:40,645 : INFO : topic #1 (0.020): 0.018*\"music\" + 0.015*\"record\" + 0.010*\"album\" + 0.010*\"song\" + 0.008*\"releas\" + 0.007*\"track\" + 0.007*\"vocal\" + 0.007*\"singl\" + 0.006*\"guitar\" + 0.005*\"chart\"\n", - "2019-01-16 04:06:40,647 : INFO : topic #22 (0.020): 0.016*\"ag\" + 0.014*\"popul\" + 0.012*\"citi\" + 0.012*\"household\" + 0.010*\"famili\" + 0.009*\"censu\" + 0.009*\"femal\" + 0.009*\"group\" + 0.008*\"male\" + 0.008*\"live\"\n", - "2019-01-16 04:06:40,649 : INFO : topic #7 (0.020): 0.009*\"darwin\" + 0.007*\"episod\" + 0.007*\"seri\" + 0.004*\"group\" + 0.004*\"time\" + 0.004*\"watt\" + 0.004*\"function\" + 0.003*\"includ\" + 0.003*\"oper\" + 0.003*\"war\"\n", - "2019-01-16 04:06:40,651 : INFO : topic #24 (0.020): 0.006*\"ship\" + 0.006*\"state\" + 0.006*\"act\" + 0.006*\"report\" + 0.005*\"oper\" + 0.005*\"time\" + 0.005*\"new\" + 0.005*\"compani\" + 0.004*\"unit\" + 0.004*\"year\"\n", - "2019-01-16 04:06:40,652 : INFO : topic #4 (0.020): 0.050*\"school\" + 0.012*\"state\" + 0.011*\"high\" + 0.010*\"citi\" + 0.008*\"district\" + 0.008*\"student\" + 0.008*\"counti\" + 0.006*\"new\" + 0.005*\"primari\" + 0.005*\"street\"\n", - "2019-01-16 04:06:40,658 : INFO : topic diff=0.336302, rho=0.577350\n", - "2019-01-16 04:06:41,292 : INFO : PROGRESS: pass 0, at document #8000/4922894\n", - "2019-01-16 04:06:44,030 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:06:44,561 : INFO : topic #49 (0.020): 0.007*\"samaritan\" + 0.005*\"time\" + 0.004*\"island\" + 0.004*\"mind\" + 0.004*\"capit\" + 0.004*\"number\" + 0.004*\"solomon\" + 0.003*\"gmina\" + 0.003*\"counti\" + 0.003*\"includ\"\n", - "2019-01-16 04:06:44,563 : INFO : topic #0 (0.020): 0.010*\"war\" + 0.009*\"divis\" + 0.009*\"armi\" + 0.008*\"forc\" + 0.007*\"battl\" + 0.007*\"cricket\" + 0.007*\"command\" + 0.006*\"battalion\" + 0.006*\"game\" + 0.006*\"regiment\"\n", - "2019-01-16 04:06:44,565 : INFO : topic #25 (0.020): 0.019*\"div\" + 0.007*\"how\" + 0.007*\"mitsubishi\" + 0.006*\"tel\" + 0.006*\"petra\" + 0.006*\"aviv\" + 0.006*\"mount\" + 0.006*\"group\" + 0.005*\"year\" + 0.005*\"club\"\n", - "2019-01-16 04:06:44,567 : INFO : topic #30 (0.020): 0.012*\"french\" + 0.008*\"elect\" + 0.008*\"conserv\" + 0.008*\"liber\" + 0.007*\"franc\" + 0.006*\"pari\" + 0.005*\"page\" + 0.005*\"art\" + 0.005*\"year\" + 0.005*\"council\"\n", - "2019-01-16 04:06:44,570 : INFO : topic #24 (0.020): 0.009*\"ship\" + 0.007*\"act\" + 0.006*\"state\" + 0.006*\"oper\" + 0.005*\"new\" + 0.005*\"report\" + 0.005*\"time\" + 0.005*\"compani\" + 0.004*\"unit\" + 0.004*\"murder\"\n", - "2019-01-16 04:06:44,576 : INFO : topic diff=0.277660, rho=0.500000\n", - "2019-01-16 04:06:45,265 : INFO : PROGRESS: pass 0, at document #10000/4922894\n", - "2019-01-16 04:06:47,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:06:48,408 : INFO : topic #35 (0.020): 0.016*\"minist\" + 0.009*\"parti\" + 0.009*\"episod\" + 0.006*\"prime\" + 0.006*\"born\" + 0.005*\"march\" + 0.005*\"januari\" + 0.005*\"new\" + 0.005*\"american\" + 0.004*\"seri\"\n", - "2019-01-16 04:06:48,410 : INFO : topic #24 (0.020): 0.016*\"order\" + 0.012*\"regul\" + 0.011*\"ship\" + 0.010*\"amend\" + 0.008*\"act\" + 0.005*\"oper\" + 0.005*\"state\" + 0.005*\"servic\" + 0.004*\"report\" + 0.004*\"new\"\n", - "2019-01-16 04:06:48,412 : INFO : topic #39 (0.020): 0.009*\"servic\" + 0.009*\"unit\" + 0.007*\"univers\" + 0.007*\"air\" + 0.007*\"war\" + 0.007*\"nation\" + 0.007*\"state\" + 0.007*\"presid\" + 0.006*\"gener\" + 0.006*\"depart\"\n", - "2019-01-16 04:06:48,414 : INFO : topic #38 (0.020): 0.013*\"station\" + 0.009*\"state\" + 0.008*\"radio\" + 0.008*\"govern\" + 0.007*\"new\" + 0.007*\"dai\" + 0.006*\"right\" + 0.006*\"isra\" + 0.006*\"unit\" + 0.005*\"nation\"\n", - "2019-01-16 04:06:48,416 : INFO : topic #21 (0.020): 0.007*\"christian\" + 0.006*\"god\" + 0.006*\"church\" + 0.005*\"word\" + 0.005*\"centuri\" + 0.005*\"english\" + 0.005*\"peopl\" + 0.004*\"tradit\" + 0.004*\"movement\" + 0.004*\"religion\"\n", - "2019-01-16 04:06:48,421 : INFO : topic diff=0.243146, rho=0.447214\n", - "2019-01-16 04:06:49,091 : INFO : PROGRESS: pass 0, at document #12000/4922894\n", - "2019-01-16 04:06:51,565 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:06:52,100 : INFO : topic #1 (0.020): 0.022*\"record\" + 0.022*\"album\" + 0.021*\"music\" + 0.013*\"song\" + 0.013*\"releas\" + 0.012*\"track\" + 0.011*\"band\" + 0.010*\"vocal\" + 0.010*\"chart\" + 0.009*\"singl\"\n", - "2019-01-16 04:06:52,102 : INFO : topic #20 (0.020): 0.015*\"ic\" + 0.014*\"dai\" + 0.010*\"bodyguard\" + 0.010*\"ukrainian\" + 0.010*\"save\" + 0.009*\"holm\" + 0.009*\"evict\" + 0.009*\"week\" + 0.008*\"ukrain\" + 0.007*\"honei\"\n", - "2019-01-16 04:06:52,104 : INFO : topic #49 (0.020): 0.012*\"palestinian\" + 0.007*\"time\" + 0.007*\"number\" + 0.006*\"sweden\" + 0.006*\"swedish\" + 0.006*\"poland\" + 0.005*\"note\" + 0.004*\"symbol\" + 0.004*\"gmina\" + 0.004*\"mind\"\n", - "2019-01-16 04:06:52,105 : INFO : topic #23 (0.020): 0.034*\"ret\" + 0.016*\"cancer\" + 0.010*\"vitamin\" + 0.009*\"dow\" + 0.008*\"patient\" + 0.006*\"syrian\" + 0.006*\"leukemia\" + 0.006*\"ducati\" + 0.005*\"associ\" + 0.005*\"disord\"\n", - "2019-01-16 04:06:52,107 : INFO : topic #10 (0.020): 0.010*\"cell\" + 0.009*\"engin\" + 0.007*\"us\" + 0.006*\"model\" + 0.005*\"car\" + 0.005*\"merced\" + 0.005*\"product\" + 0.005*\"effect\" + 0.005*\"benz\" + 0.005*\"acid\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:06:52,113 : INFO : topic diff=0.225180, rho=0.408248\n", - "2019-01-16 04:06:52,836 : INFO : PROGRESS: pass 0, at document #14000/4922894\n", - "2019-01-16 04:06:55,314 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:06:55,847 : INFO : topic #39 (0.020): 0.011*\"servic\" + 0.011*\"unit\" + 0.010*\"air\" + 0.009*\"presid\" + 0.008*\"state\" + 0.007*\"univers\" + 0.007*\"nation\" + 0.007*\"war\" + 0.006*\"militari\" + 0.006*\"serv\"\n", - "2019-01-16 04:06:55,849 : INFO : topic #0 (0.020): 0.019*\"war\" + 0.017*\"armi\" + 0.015*\"battalion\" + 0.013*\"forc\" + 0.012*\"battl\" + 0.011*\"divis\" + 0.010*\"command\" + 0.008*\"attack\" + 0.007*\"regiment\" + 0.007*\"brigad\"\n", - "2019-01-16 04:06:55,850 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.044*\"univers\" + 0.023*\"unit\" + 0.018*\"colleg\" + 0.014*\"texa\" + 0.010*\"new\" + 0.009*\"carolina\" + 0.008*\"activ\" + 0.008*\"inact\" + 0.008*\"california\"\n", - "2019-01-16 04:06:55,852 : INFO : topic #45 (0.020): 0.018*\"art\" + 0.013*\"london\" + 0.011*\"john\" + 0.011*\"born\" + 0.010*\"american\" + 0.009*\"artist\" + 0.007*\"david\" + 0.007*\"director\" + 0.007*\"british\" + 0.006*\"galleri\"\n", - "2019-01-16 04:06:55,854 : INFO : topic #12 (0.020): 0.035*\"elect\" + 0.025*\"parti\" + 0.018*\"member\" + 0.013*\"vote\" + 0.013*\"polit\" + 0.009*\"law\" + 0.009*\"repres\" + 0.008*\"candid\" + 0.008*\"state\" + 0.007*\"nation\"\n", - "2019-01-16 04:06:55,860 : INFO : topic diff=0.218082, rho=0.377964\n", - "2019-01-16 04:06:56,545 : INFO : PROGRESS: pass 0, at document #16000/4922894\n", - "2019-01-16 04:06:58,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:06:59,425 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.045*\"univers\" + 0.023*\"unit\" + 0.016*\"colleg\" + 0.014*\"texa\" + 0.012*\"new\" + 0.011*\"carolina\" + 0.009*\"california\" + 0.008*\"washington\" + 0.008*\"virginia\"\n", - "2019-01-16 04:06:59,427 : INFO : topic #40 (0.020): 0.015*\"bar\" + 0.014*\"text\" + 0.012*\"till\" + 0.010*\"color\" + 0.007*\"africa\" + 0.007*\"coloni\" + 0.007*\"african\" + 0.006*\"europ\" + 0.006*\"studi\" + 0.006*\"shift\"\n", - "2019-01-16 04:06:59,428 : INFO : topic #45 (0.020): 0.016*\"art\" + 0.013*\"london\" + 0.013*\"john\" + 0.012*\"born\" + 0.011*\"american\" + 0.008*\"artist\" + 0.008*\"david\" + 0.007*\"british\" + 0.006*\"galleri\" + 0.006*\"director\"\n", - "2019-01-16 04:06:59,430 : INFO : topic #33 (0.020): 0.012*\"bank\" + 0.009*\"rate\" + 0.009*\"measur\" + 0.008*\"price\" + 0.008*\"cat\" + 0.007*\"currenc\" + 0.007*\"random\" + 0.007*\"stock\" + 0.007*\"breed\" + 0.007*\"monei\"\n", - "2019-01-16 04:06:59,432 : INFO : topic #19 (0.020): 0.008*\"new\" + 0.008*\"nelson\" + 0.008*\"van\" + 0.006*\"stan\" + 0.005*\"dai\" + 0.005*\"time\" + 0.005*\"host\" + 0.005*\"plai\" + 0.005*\"bob\" + 0.005*\"jazz\"\n", - "2019-01-16 04:06:59,438 : INFO : topic diff=0.231194, rho=0.353553\n", - "2019-01-16 04:07:00,071 : INFO : PROGRESS: pass 0, at document #18000/4922894\n", - "2019-01-16 04:07:02,433 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:02,969 : INFO : topic #36 (0.020): 0.032*\"art\" + 0.027*\"design\" + 0.023*\"work\" + 0.014*\"new\" + 0.011*\"museum\" + 0.011*\"york\" + 0.010*\"paint\" + 0.010*\"collect\" + 0.009*\"exhibit\" + 0.008*\"bridg\"\n", - "2019-01-16 04:07:02,971 : INFO : topic #20 (0.020): 0.034*\"dai\" + 0.015*\"nomin\" + 0.015*\"save\" + 0.014*\"evict\" + 0.014*\"fight\" + 0.013*\"contest\" + 0.012*\"ic\" + 0.010*\"win\" + 0.010*\"vote\" + 0.010*\"box\"\n", - "2019-01-16 04:07:02,973 : INFO : topic #23 (0.020): 0.025*\"ret\" + 0.017*\"cancer\" + 0.013*\"patient\" + 0.013*\"syrian\" + 0.007*\"ducati\" + 0.006*\"disord\" + 0.006*\"honda\" + 0.006*\"marvel\" + 0.006*\"diseas\" + 0.005*\"brain\"\n", - "2019-01-16 04:07:02,975 : INFO : topic #21 (0.020): 0.008*\"god\" + 0.006*\"centuri\" + 0.006*\"peopl\" + 0.006*\"word\" + 0.006*\"christian\" + 0.006*\"english\" + 0.005*\"form\" + 0.005*\"languag\" + 0.004*\"church\" + 0.004*\"book\"\n", - "2019-01-16 04:07:02,977 : INFO : topic #40 (0.020): 0.015*\"text\" + 0.014*\"bar\" + 0.010*\"till\" + 0.010*\"color\" + 0.008*\"africa\" + 0.007*\"studi\" + 0.007*\"african\" + 0.006*\"coloni\" + 0.006*\"europ\" + 0.005*\"theori\"\n", - "2019-01-16 04:07:02,983 : INFO : topic diff=0.228150, rho=0.333333\n", - "2019-01-16 04:07:08,307 : INFO : -11.718 per-word bound, 3369.8 perplexity estimate based on a held-out corpus of 2000 documents with 557283 words\n", - "2019-01-16 04:07:08,308 : INFO : PROGRESS: pass 0, at document #20000/4922894\n", - "2019-01-16 04:07:10,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:11,134 : INFO : topic #41 (0.020): 0.022*\"book\" + 0.018*\"publish\" + 0.012*\"new\" + 0.011*\"work\" + 0.010*\"stori\" + 0.008*\"novel\" + 0.008*\"magazin\" + 0.008*\"award\" + 0.007*\"seri\" + 0.007*\"film\"\n", - "2019-01-16 04:07:11,135 : INFO : topic #42 (0.020): 0.020*\"king\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.008*\"centuri\" + 0.008*\"defeat\" + 0.007*\"great\" + 0.007*\"greek\" + 0.006*\"ancient\" + 0.006*\"kingdom\" + 0.006*\"emperor\"\n", - "2019-01-16 04:07:11,138 : INFO : topic #13 (0.020): 0.063*\"state\" + 0.047*\"univers\" + 0.023*\"unit\" + 0.017*\"texa\" + 0.014*\"colleg\" + 0.012*\"new\" + 0.011*\"american\" + 0.009*\"california\" + 0.009*\"carolina\" + 0.008*\"washington\"\n", - "2019-01-16 04:07:11,140 : INFO : topic #31 (0.020): 0.044*\"australian\" + 0.030*\"australia\" + 0.014*\"sydnei\" + 0.013*\"rugbi\" + 0.011*\"chines\" + 0.011*\"wale\" + 0.010*\"south\" + 0.009*\"china\" + 0.009*\"melbourn\" + 0.008*\"year\"\n", - "2019-01-16 04:07:11,142 : INFO : topic #1 (0.020): 0.033*\"album\" + 0.025*\"record\" + 0.020*\"music\" + 0.018*\"releas\" + 0.018*\"song\" + 0.016*\"band\" + 0.013*\"track\" + 0.012*\"singl\" + 0.011*\"chart\" + 0.011*\"guitar\"\n", - "2019-01-16 04:07:11,148 : INFO : topic diff=0.240388, rho=0.316228\n", - "2019-01-16 04:07:11,864 : INFO : PROGRESS: pass 0, at document #22000/4922894\n", - "2019-01-16 04:07:14,273 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:14,811 : INFO : topic #37 (0.020): 0.014*\"releas\" + 0.011*\"song\" + 0.010*\"love\" + 0.006*\"appear\" + 0.006*\"album\" + 0.005*\"time\" + 0.005*\"live\" + 0.005*\"like\" + 0.005*\"man\" + 0.004*\"charact\"\n", - "2019-01-16 04:07:14,812 : INFO : topic #45 (0.020): 0.022*\"born\" + 0.019*\"temp\" + 0.016*\"london\" + 0.016*\"american\" + 0.014*\"jame\" + 0.011*\"john\" + 0.009*\"david\" + 0.009*\"royal\" + 0.009*\"art\" + 0.008*\"british\"\n", - "2019-01-16 04:07:14,814 : INFO : topic #1 (0.020): 0.033*\"album\" + 0.025*\"record\" + 0.020*\"releas\" + 0.019*\"song\" + 0.019*\"music\" + 0.016*\"band\" + 0.015*\"track\" + 0.013*\"singl\" + 0.012*\"chart\" + 0.010*\"guitar\"\n", - "2019-01-16 04:07:14,816 : INFO : topic #28 (0.020): 0.021*\"build\" + 0.018*\"hous\" + 0.016*\"church\" + 0.013*\"built\" + 0.012*\"jpg\" + 0.011*\"file\" + 0.011*\"histor\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.008*\"list\"\n", - "2019-01-16 04:07:14,818 : INFO : topic #12 (0.020): 0.042*\"elect\" + 0.035*\"parti\" + 0.021*\"member\" + 0.017*\"polit\" + 0.015*\"vote\" + 0.011*\"democrat\" + 0.010*\"candid\" + 0.010*\"nation\" + 0.010*\"committe\" + 0.009*\"repres\"\n", - "2019-01-16 04:07:14,823 : INFO : topic diff=0.260981, rho=0.301511\n", - "2019-01-16 04:07:15,490 : INFO : PROGRESS: pass 0, at document #24000/4922894\n", - "2019-01-16 04:07:17,845 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:18,386 : INFO : topic #7 (0.020): 0.015*\"mathemat\" + 0.011*\"space\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"point\" + 0.007*\"theorem\" + 0.007*\"order\" + 0.007*\"group\" + 0.007*\"number\"\n", - "2019-01-16 04:07:18,388 : INFO : topic #22 (0.020): 0.032*\"famili\" + 0.031*\"popul\" + 0.030*\"ag\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"femal\" + 0.018*\"male\" + 0.017*\"citi\" + 0.016*\"censu\" + 0.016*\"live\"\n", - "2019-01-16 04:07:18,391 : INFO : topic #4 (0.020): 0.095*\"school\" + 0.024*\"high\" + 0.021*\"student\" + 0.016*\"colleg\" + 0.016*\"district\" + 0.013*\"educ\" + 0.013*\"citi\" + 0.011*\"state\" + 0.009*\"year\" + 0.009*\"street\"\n", - "2019-01-16 04:07:18,392 : INFO : topic #28 (0.020): 0.022*\"build\" + 0.020*\"hous\" + 0.017*\"church\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.010*\"histor\" + 0.010*\"centuri\" + 0.010*\"file\" + 0.009*\"place\" + 0.008*\"list\"\n", - "2019-01-16 04:07:18,394 : INFO : topic #14 (0.020): 0.011*\"univers\" + 0.011*\"compani\" + 0.010*\"research\" + 0.008*\"scienc\" + 0.008*\"develop\" + 0.008*\"institut\" + 0.007*\"program\" + 0.007*\"manag\" + 0.007*\"public\" + 0.007*\"educ\"\n", - "2019-01-16 04:07:18,401 : INFO : topic diff=0.267148, rho=0.288675\n", - "2019-01-16 04:07:19,139 : INFO : PROGRESS: pass 0, at document #26000/4922894\n", - "2019-01-16 04:07:21,437 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:07:21,980 : INFO : topic #10 (0.020): 0.015*\"engin\" + 0.009*\"cell\" + 0.009*\"vehicl\" + 0.009*\"car\" + 0.007*\"product\" + 0.007*\"model\" + 0.007*\"type\" + 0.006*\"acid\" + 0.006*\"produc\" + 0.006*\"electr\"\n", - "2019-01-16 04:07:21,982 : INFO : topic #18 (0.020): 0.007*\"surfac\" + 0.005*\"magnet\" + 0.005*\"form\" + 0.005*\"imag\" + 0.005*\"light\" + 0.005*\"resist\" + 0.005*\"high\" + 0.005*\"wave\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 04:07:21,984 : INFO : topic #0 (0.020): 0.025*\"armi\" + 0.024*\"war\" + 0.016*\"regiment\" + 0.016*\"forc\" + 0.013*\"battl\" + 0.013*\"command\" + 0.013*\"divis\" + 0.010*\"attack\" + 0.009*\"captain\" + 0.009*\"lieuten\"\n", - "2019-01-16 04:07:21,986 : INFO : topic #37 (0.020): 0.011*\"releas\" + 0.009*\"love\" + 0.009*\"song\" + 0.006*\"appear\" + 0.006*\"man\" + 0.005*\"time\" + 0.005*\"like\" + 0.005*\"live\" + 0.004*\"video\" + 0.004*\"friend\"\n", - "2019-01-16 04:07:21,988 : INFO : topic #35 (0.020): 0.036*\"minist\" + 0.020*\"prime\" + 0.006*\"born\" + 0.006*\"announc\" + 0.006*\"indonesia\" + 0.005*\"seri\" + 0.005*\"chan\" + 0.004*\"indonesian\" + 0.004*\"affair\" + 0.004*\"episod\"\n", - "2019-01-16 04:07:21,993 : INFO : topic diff=0.270564, rho=0.277350\n", - "2019-01-16 04:07:22,643 : INFO : PROGRESS: pass 0, at document #28000/4922894\n", - "2019-01-16 04:07:24,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:25,443 : INFO : topic #9 (0.020): 0.056*\"film\" + 0.019*\"episod\" + 0.017*\"seri\" + 0.017*\"award\" + 0.016*\"best\" + 0.015*\"televis\" + 0.012*\"star\" + 0.010*\"produc\" + 0.009*\"actor\" + 0.009*\"role\"\n", - "2019-01-16 04:07:25,445 : INFO : topic #29 (0.020): 0.032*\"team\" + 0.029*\"leagu\" + 0.028*\"game\" + 0.027*\"plai\" + 0.024*\"season\" + 0.019*\"club\" + 0.018*\"player\" + 0.015*\"match\" + 0.012*\"cup\" + 0.011*\"final\"\n", - "2019-01-16 04:07:25,447 : INFO : topic #16 (0.020): 0.013*\"church\" + 0.012*\"son\" + 0.011*\"di\" + 0.010*\"bishop\" + 0.009*\"lord\" + 0.009*\"marri\" + 0.008*\"daughter\" + 0.008*\"joseph\" + 0.008*\"cathol\" + 0.008*\"father\"\n", - "2019-01-16 04:07:25,449 : INFO : topic #22 (0.020): 0.037*\"popul\" + 0.031*\"famili\" + 0.031*\"ag\" + 0.021*\"household\" + 0.021*\"counti\" + 0.020*\"femal\" + 0.019*\"male\" + 0.018*\"citi\" + 0.018*\"live\" + 0.018*\"peopl\"\n", - "2019-01-16 04:07:25,450 : INFO : topic #45 (0.020): 0.033*\"born\" + 0.014*\"american\" + 0.014*\"london\" + 0.012*\"john\" + 0.011*\"jame\" + 0.011*\"david\" + 0.008*\"temp\" + 0.008*\"michael\" + 0.008*\"british\" + 0.007*\"peter\"\n", - "2019-01-16 04:07:25,456 : INFO : topic diff=0.280272, rho=0.267261\n", - "2019-01-16 04:07:26,133 : INFO : PROGRESS: pass 0, at document #30000/4922894\n", - "2019-01-16 04:07:28,402 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:28,946 : INFO : topic #14 (0.020): 0.013*\"univers\" + 0.012*\"research\" + 0.011*\"compani\" + 0.009*\"develop\" + 0.009*\"institut\" + 0.008*\"scienc\" + 0.007*\"educ\" + 0.007*\"busi\" + 0.007*\"manag\" + 0.007*\"program\"\n", - "2019-01-16 04:07:28,948 : INFO : topic #33 (0.020): 0.020*\"bank\" + 0.015*\"rate\" + 0.011*\"valu\" + 0.010*\"price\" + 0.009*\"measur\" + 0.008*\"factor\" + 0.008*\"format\" + 0.007*\"increas\" + 0.006*\"stock\" + 0.006*\"period\"\n", - "2019-01-16 04:07:28,950 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.041*\"univers\" + 0.022*\"unit\" + 0.016*\"carolina\" + 0.016*\"american\" + 0.015*\"virginia\" + 0.014*\"new\" + 0.013*\"colleg\" + 0.011*\"texa\" + 0.011*\"california\"\n", - "2019-01-16 04:07:28,952 : INFO : topic #10 (0.020): 0.015*\"engin\" + 0.010*\"car\" + 0.008*\"cell\" + 0.008*\"product\" + 0.008*\"vehicl\" + 0.007*\"ga\" + 0.007*\"model\" + 0.007*\"produc\" + 0.007*\"electr\" + 0.006*\"acid\"\n", - "2019-01-16 04:07:28,953 : INFO : topic #23 (0.020): 0.029*\"ret\" + 0.023*\"cancer\" + 0.015*\"patient\" + 0.014*\"marvel\" + 0.011*\"disord\" + 0.010*\"diseas\" + 0.010*\"superman\" + 0.010*\"medic\" + 0.009*\"brain\" + 0.009*\"vol\"\n", - "2019-01-16 04:07:28,960 : INFO : topic diff=0.295752, rho=0.258199\n", - "2019-01-16 04:07:29,569 : INFO : PROGRESS: pass 0, at document #32000/4922894\n", - "2019-01-16 04:07:31,823 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:32,367 : INFO : topic #3 (0.020): 0.028*\"royal\" + 0.026*\"william\" + 0.025*\"john\" + 0.018*\"capt\" + 0.014*\"georg\" + 0.012*\"jame\" + 0.012*\"henri\" + 0.011*\"thoma\" + 0.011*\"edward\" + 0.011*\"charl\"\n", - "2019-01-16 04:07:32,369 : INFO : topic #24 (0.020): 0.025*\"ship\" + 0.008*\"kill\" + 0.008*\"shipbuild\" + 0.007*\"polic\" + 0.006*\"report\" + 0.005*\"order\" + 0.005*\"crew\" + 0.005*\"damag\" + 0.005*\"compani\" + 0.005*\"oper\"\n", - "2019-01-16 04:07:32,372 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.019*\"del\" + 0.016*\"mexico\" + 0.014*\"spanish\" + 0.010*\"santa\" + 0.010*\"lo\" + 0.009*\"juan\" + 0.008*\"francisco\" + 0.008*\"brazil\" + 0.008*\"spain\"\n", - "2019-01-16 04:07:32,374 : INFO : topic #28 (0.020): 0.023*\"build\" + 0.019*\"hous\" + 0.015*\"church\" + 0.014*\"built\" + 0.012*\"file\" + 0.011*\"jpg\" + 0.010*\"histor\" + 0.010*\"svg\" + 0.009*\"centuri\" + 0.009*\"place\"\n", - "2019-01-16 04:07:32,376 : INFO : topic #48 (0.020): 0.060*\"januari\" + 0.054*\"octob\" + 0.052*\"septemb\" + 0.051*\"march\" + 0.049*\"novemb\" + 0.047*\"august\" + 0.046*\"april\" + 0.044*\"juli\" + 0.044*\"june\" + 0.043*\"februari\"\n", - "2019-01-16 04:07:32,382 : INFO : topic diff=0.294107, rho=0.250000\n", - "2019-01-16 04:07:33,061 : INFO : PROGRESS: pass 0, at document #34000/4922894\n", - "2019-01-16 04:07:35,381 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:35,925 : INFO : topic #32 (0.020): 0.033*\"speci\" + 0.012*\"famili\" + 0.011*\"genu\" + 0.010*\"white\" + 0.009*\"black\" + 0.008*\"plant\" + 0.008*\"red\" + 0.008*\"bird\" + 0.006*\"descript\" + 0.006*\"brown\"\n", - "2019-01-16 04:07:35,927 : INFO : topic #35 (0.020): 0.027*\"minist\" + 0.017*\"prime\" + 0.011*\"indonesia\" + 0.011*\"miscarriag\" + 0.009*\"indonesian\" + 0.008*\"bulgarian\" + 0.007*\"emili\" + 0.006*\"elei\" + 0.005*\"born\" + 0.005*\"java\"\n", - "2019-01-16 04:07:35,929 : INFO : topic #43 (0.020): 0.026*\"san\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.014*\"spanish\" + 0.012*\"brazil\" + 0.009*\"santa\" + 0.008*\"lo\" + 0.008*\"spain\" + 0.008*\"francisco\" + 0.008*\"rio\"\n", - "2019-01-16 04:07:35,930 : INFO : topic #26 (0.020): 0.044*\"women\" + 0.037*\"men\" + 0.022*\"japan\" + 0.022*\"olymp\" + 0.019*\"rank\" + 0.017*\"japanes\" + 0.017*\"medal\" + 0.017*\"event\" + 0.015*\"athlet\" + 0.013*\"gold\"\n", - "2019-01-16 04:07:35,932 : INFO : topic #22 (0.020): 0.039*\"popul\" + 0.034*\"ag\" + 0.027*\"famili\" + 0.024*\"household\" + 0.023*\"counti\" + 0.022*\"year\" + 0.020*\"live\" + 0.019*\"femal\" + 0.019*\"peopl\" + 0.018*\"censu\"\n", - "2019-01-16 04:07:35,938 : INFO : topic diff=0.295554, rho=0.242536\n", - "2019-01-16 04:07:36,638 : INFO : PROGRESS: pass 0, at document #36000/4922894\n", - "2019-01-16 04:07:38,997 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:39,542 : INFO : topic #32 (0.020): 0.030*\"speci\" + 0.011*\"famili\" + 0.011*\"white\" + 0.010*\"genu\" + 0.009*\"black\" + 0.009*\"red\" + 0.009*\"plant\" + 0.009*\"bird\" + 0.006*\"flower\" + 0.006*\"brown\"\n", - "2019-01-16 04:07:39,543 : INFO : topic #7 (0.020): 0.013*\"theori\" + 0.012*\"function\" + 0.012*\"space\" + 0.011*\"point\" + 0.011*\"vector\" + 0.009*\"set\" + 0.009*\"mathemat\" + 0.009*\"line\" + 0.007*\"gener\" + 0.007*\"number\"\n", - "2019-01-16 04:07:39,545 : INFO : topic #4 (0.020): 0.109*\"school\" + 0.025*\"student\" + 0.025*\"high\" + 0.020*\"colleg\" + 0.018*\"district\" + 0.017*\"educ\" + 0.012*\"year\" + 0.012*\"state\" + 0.010*\"citi\" + 0.009*\"grade\"\n", - "2019-01-16 04:07:39,547 : INFO : topic #17 (0.020): 0.032*\"race\" + 0.024*\"championship\" + 0.023*\"world\" + 0.012*\"team\" + 0.012*\"event\" + 0.011*\"won\" + 0.011*\"place\" + 0.011*\"time\" + 0.010*\"finish\" + 0.009*\"tour\"\n", - "2019-01-16 04:07:39,548 : INFO : topic #12 (0.020): 0.047*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.015*\"vote\" + 0.015*\"committe\" + 0.013*\"polit\" + 0.012*\"council\" + 0.012*\"democrat\" + 0.010*\"nation\" + 0.010*\"serv\"\n", - "2019-01-16 04:07:39,554 : INFO : topic diff=0.301072, rho=0.235702\n", - "2019-01-16 04:07:40,202 : INFO : PROGRESS: pass 0, at document #38000/4922894\n", - "2019-01-16 04:07:42,458 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:43,005 : INFO : topic #34 (0.020): 0.059*\"canada\" + 0.049*\"canadian\" + 0.032*\"languag\" + 0.019*\"quebec\" + 0.017*\"denmark\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.014*\"ontario\" + 0.013*\"english\" + 0.012*\"singapor\"\n", - "2019-01-16 04:07:43,007 : INFO : topic #40 (0.020): 0.017*\"bar\" + 0.016*\"african\" + 0.015*\"text\" + 0.014*\"africa\" + 0.010*\"till\" + 0.007*\"studi\" + 0.007*\"coloni\" + 0.006*\"color\" + 0.005*\"shift\" + 0.005*\"european\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:07:43,009 : INFO : topic #25 (0.020): 0.022*\"draw\" + 0.021*\"clai\" + 0.020*\"final\" + 0.017*\"def\" + 0.017*\"tournament\" + 0.016*\"open\" + 0.015*\"hard\" + 0.014*\"doubl\" + 0.012*\"titl\" + 0.011*\"runner\"\n", - "2019-01-16 04:07:43,011 : INFO : topic #27 (0.020): 0.025*\"german\" + 0.025*\"russian\" + 0.019*\"germani\" + 0.015*\"russia\" + 0.014*\"soviet\" + 0.014*\"jewish\" + 0.013*\"moscow\" + 0.012*\"israel\" + 0.009*\"polish\" + 0.008*\"rabbi\"\n", - "2019-01-16 04:07:43,012 : INFO : topic #48 (0.020): 0.061*\"octob\" + 0.058*\"januari\" + 0.054*\"march\" + 0.052*\"septemb\" + 0.051*\"novemb\" + 0.049*\"april\" + 0.048*\"august\" + 0.047*\"june\" + 0.046*\"decemb\" + 0.045*\"juli\"\n", - "2019-01-16 04:07:43,018 : INFO : topic diff=0.293284, rho=0.229416\n", - "2019-01-16 04:07:48,367 : INFO : -11.688 per-word bound, 3299.5 perplexity estimate based on a held-out corpus of 2000 documents with 564343 words\n", - "2019-01-16 04:07:48,368 : INFO : PROGRESS: pass 0, at document #40000/4922894\n", - "2019-01-16 04:07:50,697 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:51,245 : INFO : topic #23 (0.020): 0.026*\"spider\" + 0.018*\"medic\" + 0.016*\"cancer\" + 0.015*\"patient\" + 0.013*\"hospit\" + 0.013*\"diseas\" + 0.013*\"medicin\" + 0.012*\"clinic\" + 0.012*\"marvel\" + 0.011*\"ret\"\n", - "2019-01-16 04:07:51,246 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.010*\"emperor\" + 0.009*\"centuri\" + 0.008*\"greek\" + 0.008*\"princ\" + 0.007*\"templ\" + 0.007*\"roman\" + 0.007*\"empir\" + 0.007*\"ancient\" + 0.006*\"son\"\n", - "2019-01-16 04:07:51,248 : INFO : topic #11 (0.020): 0.028*\"state\" + 0.022*\"presid\" + 0.022*\"law\" + 0.021*\"court\" + 0.014*\"act\" + 0.011*\"offic\" + 0.010*\"feder\" + 0.010*\"unit\" + 0.009*\"governor\" + 0.008*\"senat\"\n", - "2019-01-16 04:07:51,250 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"right\" + 0.009*\"countri\" + 0.009*\"station\" + 0.009*\"state\" + 0.009*\"nation\" + 0.009*\"new\" + 0.006*\"radio\" + 0.006*\"unit\" + 0.006*\"union\"\n", - "2019-01-16 04:07:51,252 : INFO : topic #48 (0.020): 0.062*\"octob\" + 0.058*\"januari\" + 0.056*\"septemb\" + 0.055*\"march\" + 0.053*\"novemb\" + 0.052*\"april\" + 0.051*\"august\" + 0.048*\"june\" + 0.048*\"decemb\" + 0.046*\"juli\"\n", - "2019-01-16 04:07:51,259 : INFO : topic diff=0.289450, rho=0.223607\n", - "2019-01-16 04:07:51,872 : INFO : PROGRESS: pass 0, at document #42000/4922894\n", - "2019-01-16 04:07:54,215 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:54,761 : INFO : topic #3 (0.020): 0.027*\"william\" + 0.026*\"john\" + 0.017*\"royal\" + 0.015*\"georg\" + 0.012*\"jame\" + 0.012*\"thoma\" + 0.010*\"robert\" + 0.010*\"henri\" + 0.010*\"edward\" + 0.010*\"sir\"\n", - "2019-01-16 04:07:54,763 : INFO : topic #36 (0.020): 0.049*\"art\" + 0.033*\"work\" + 0.024*\"museum\" + 0.018*\"design\" + 0.017*\"artist\" + 0.017*\"new\" + 0.017*\"paint\" + 0.015*\"collect\" + 0.014*\"exhibit\" + 0.013*\"york\"\n", - "2019-01-16 04:07:54,765 : INFO : topic #16 (0.020): 0.015*\"son\" + 0.015*\"church\" + 0.015*\"di\" + 0.012*\"bishop\" + 0.011*\"marri\" + 0.009*\"daughter\" + 0.008*\"famili\" + 0.008*\"death\" + 0.008*\"cathol\" + 0.008*\"father\"\n", - "2019-01-16 04:07:54,767 : INFO : topic #48 (0.020): 0.062*\"octob\" + 0.060*\"march\" + 0.058*\"januari\" + 0.057*\"novemb\" + 0.056*\"septemb\" + 0.054*\"april\" + 0.052*\"august\" + 0.050*\"decemb\" + 0.049*\"june\" + 0.048*\"juli\"\n", - "2019-01-16 04:07:54,768 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.014*\"famili\" + 0.011*\"white\" + 0.009*\"red\" + 0.009*\"black\" + 0.009*\"plant\" + 0.009*\"genu\" + 0.008*\"bird\" + 0.006*\"brown\" + 0.006*\"blue\"\n", - "2019-01-16 04:07:54,774 : INFO : topic diff=0.279864, rho=0.218218\n", - "2019-01-16 04:07:55,437 : INFO : PROGRESS: pass 0, at document #44000/4922894\n", - "2019-01-16 04:07:57,691 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:07:58,240 : INFO : topic #22 (0.020): 0.039*\"popul\" + 0.036*\"counti\" + 0.035*\"ag\" + 0.024*\"famili\" + 0.024*\"household\" + 0.022*\"year\" + 0.022*\"township\" + 0.020*\"live\" + 0.020*\"town\" + 0.020*\"femal\"\n", - "2019-01-16 04:07:58,242 : INFO : topic #2 (0.020): 0.035*\"german\" + 0.031*\"der\" + 0.021*\"von\" + 0.017*\"und\" + 0.017*\"berlin\" + 0.015*\"die\" + 0.010*\"germani\" + 0.009*\"steel\" + 0.008*\"flight\" + 0.008*\"space\"\n", - "2019-01-16 04:07:58,244 : INFO : topic #5 (0.020): 0.014*\"game\" + 0.010*\"us\" + 0.007*\"develop\" + 0.007*\"base\" + 0.007*\"version\" + 0.007*\"data\" + 0.006*\"network\" + 0.006*\"design\" + 0.006*\"softwar\" + 0.006*\"control\"\n", - "2019-01-16 04:07:58,246 : INFO : topic #41 (0.020): 0.027*\"book\" + 0.025*\"publish\" + 0.015*\"work\" + 0.013*\"new\" + 0.012*\"stori\" + 0.011*\"novel\" + 0.010*\"magazin\" + 0.009*\"writer\" + 0.008*\"edit\" + 0.008*\"award\"\n", - "2019-01-16 04:07:58,248 : INFO : topic #12 (0.020): 0.052*\"elect\" + 0.048*\"parti\" + 0.024*\"member\" + 0.019*\"conserv\" + 0.017*\"labour\" + 0.016*\"democrat\" + 0.015*\"vote\" + 0.013*\"council\" + 0.013*\"polit\" + 0.011*\"liber\"\n", - "2019-01-16 04:07:58,254 : INFO : topic diff=0.273934, rho=0.213201\n", - "2019-01-16 04:07:58,894 : INFO : PROGRESS: pass 0, at document #46000/4922894\n", - "2019-01-16 04:08:01,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:01,741 : INFO : topic #43 (0.020): 0.026*\"san\" + 0.017*\"spanish\" + 0.015*\"mexico\" + 0.014*\"del\" + 0.010*\"juan\" + 0.010*\"spain\" + 0.010*\"brazil\" + 0.010*\"santa\" + 0.010*\"puerto\" + 0.009*\"josé\"\n", - "2019-01-16 04:08:01,743 : INFO : topic #5 (0.020): 0.013*\"game\" + 0.010*\"us\" + 0.007*\"base\" + 0.007*\"develop\" + 0.007*\"data\" + 0.007*\"version\" + 0.007*\"design\" + 0.006*\"network\" + 0.006*\"featur\" + 0.006*\"control\"\n", - "2019-01-16 04:08:01,745 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.030*\"univers\" + 0.023*\"american\" + 0.021*\"new\" + 0.020*\"unit\" + 0.018*\"california\" + 0.013*\"washington\" + 0.012*\"texa\" + 0.011*\"carolina\" + 0.010*\"york\"\n", - "2019-01-16 04:08:01,746 : INFO : topic #47 (0.020): 0.020*\"station\" + 0.017*\"river\" + 0.014*\"line\" + 0.014*\"road\" + 0.013*\"island\" + 0.013*\"north\" + 0.012*\"south\" + 0.012*\"area\" + 0.012*\"railwai\" + 0.010*\"lake\"\n", - "2019-01-16 04:08:01,748 : INFO : topic #4 (0.020): 0.111*\"school\" + 0.030*\"colleg\" + 0.029*\"student\" + 0.025*\"high\" + 0.019*\"educ\" + 0.013*\"year\" + 0.013*\"district\" + 0.010*\"state\" + 0.010*\"citi\" + 0.008*\"grade\"\n", - "2019-01-16 04:08:01,753 : INFO : topic diff=0.265456, rho=0.208514\n", - "2019-01-16 04:08:02,400 : INFO : PROGRESS: pass 0, at document #48000/4922894\n", - "2019-01-16 04:08:04,660 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:05,210 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.010*\"right\" + 0.010*\"nation\" + 0.009*\"countri\" + 0.008*\"state\" + 0.008*\"new\" + 0.007*\"union\" + 0.007*\"station\" + 0.006*\"unit\" + 0.006*\"polit\"\n", - "2019-01-16 04:08:05,212 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.046*\"parti\" + 0.025*\"member\" + 0.017*\"democrat\" + 0.017*\"conserv\" + 0.016*\"vote\" + 0.014*\"polit\" + 0.013*\"council\" + 0.012*\"labour\" + 0.011*\"liber\"\n", - "2019-01-16 04:08:05,214 : INFO : topic #37 (0.020): 0.007*\"love\" + 0.007*\"man\" + 0.006*\"time\" + 0.006*\"appear\" + 0.006*\"releas\" + 0.005*\"charact\" + 0.005*\"like\" + 0.005*\"friend\" + 0.004*\"want\" + 0.004*\"end\"\n", - "2019-01-16 04:08:05,216 : INFO : topic #46 (0.020): 0.052*\"philippin\" + 0.030*\"border\" + 0.023*\"romanian\" + 0.017*\"iraqi\" + 0.017*\"ang\" + 0.016*\"romania\" + 0.015*\"iraq\" + 0.013*\"style\" + 0.013*\"manila\" + 0.012*\"collaps\"\n", - "2019-01-16 04:08:05,218 : INFO : topic #11 (0.020): 0.029*\"state\" + 0.024*\"presid\" + 0.022*\"law\" + 0.020*\"court\" + 0.013*\"act\" + 0.012*\"governor\" + 0.010*\"offic\" + 0.010*\"feder\" + 0.010*\"unit\" + 0.008*\"senat\"\n", - "2019-01-16 04:08:05,224 : INFO : topic diff=0.258795, rho=0.204124\n", - "2019-01-16 04:08:05,824 : INFO : PROGRESS: pass 0, at document #50000/4922894\n", - "2019-01-16 04:08:08,160 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:08,708 : INFO : topic #36 (0.020): 0.053*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.019*\"paint\" + 0.018*\"design\" + 0.017*\"artist\" + 0.016*\"new\" + 0.015*\"exhibit\" + 0.015*\"collect\" + 0.013*\"york\"\n", - "2019-01-16 04:08:08,710 : INFO : topic #40 (0.020): 0.015*\"bar\" + 0.014*\"african\" + 0.013*\"text\" + 0.013*\"africa\" + 0.010*\"till\" + 0.007*\"coloni\" + 0.007*\"studi\" + 0.007*\"color\" + 0.006*\"shift\" + 0.006*\"cultur\"\n", - "2019-01-16 04:08:08,711 : INFO : topic #48 (0.020): 0.059*\"januari\" + 0.059*\"octob\" + 0.059*\"novemb\" + 0.058*\"septemb\" + 0.055*\"april\" + 0.054*\"august\" + 0.054*\"march\" + 0.054*\"june\" + 0.052*\"decemb\" + 0.050*\"juli\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:08:08,713 : INFO : topic #21 (0.020): 0.008*\"word\" + 0.006*\"languag\" + 0.006*\"english\" + 0.006*\"god\" + 0.005*\"centuri\" + 0.005*\"form\" + 0.005*\"christian\" + 0.005*\"tradit\" + 0.005*\"person\" + 0.005*\"peopl\"\n", - "2019-01-16 04:08:08,715 : INFO : topic #49 (0.020): 0.035*\"swedish\" + 0.027*\"poland\" + 0.025*\"sweden\" + 0.018*\"east\" + 0.016*\"alt\" + 0.015*\"gmina\" + 0.014*\"voivodeship\" + 0.013*\"approxim\" + 0.012*\"greater\" + 0.012*\"li\"\n", - "2019-01-16 04:08:08,721 : INFO : topic diff=0.245166, rho=0.200000\n", - "2019-01-16 04:08:09,411 : INFO : PROGRESS: pass 0, at document #52000/4922894\n", - "2019-01-16 04:08:11,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:12,236 : INFO : topic #21 (0.020): 0.007*\"word\" + 0.006*\"languag\" + 0.005*\"centuri\" + 0.005*\"person\" + 0.005*\"english\" + 0.005*\"god\" + 0.005*\"form\" + 0.005*\"tradit\" + 0.005*\"christian\" + 0.005*\"peopl\"\n", - "2019-01-16 04:08:12,238 : INFO : topic #25 (0.020): 0.021*\"final\" + 0.018*\"tournament\" + 0.017*\"round\" + 0.016*\"hard\" + 0.016*\"draw\" + 0.016*\"open\" + 0.016*\"winner\" + 0.015*\"doubl\" + 0.014*\"runner\" + 0.012*\"clai\"\n", - "2019-01-16 04:08:12,240 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.013*\"compani\" + 0.012*\"research\" + 0.011*\"develop\" + 0.009*\"institut\" + 0.009*\"scienc\" + 0.008*\"manag\" + 0.008*\"busi\" + 0.007*\"work\" + 0.007*\"intern\"\n", - "2019-01-16 04:08:12,242 : INFO : topic #0 (0.020): 0.031*\"war\" + 0.029*\"armi\" + 0.020*\"forc\" + 0.017*\"command\" + 0.015*\"battl\" + 0.015*\"regiment\" + 0.015*\"divis\" + 0.011*\"attack\" + 0.010*\"corp\" + 0.010*\"infantri\"\n", - "2019-01-16 04:08:12,244 : INFO : topic #8 (0.020): 0.040*\"district\" + 0.038*\"villag\" + 0.020*\"india\" + 0.018*\"counti\" + 0.018*\"popul\" + 0.018*\"region\" + 0.017*\"indian\" + 0.016*\"provinc\" + 0.016*\"municip\" + 0.014*\"area\"\n", - "2019-01-16 04:08:12,250 : INFO : topic diff=0.238857, rho=0.196116\n", - "2019-01-16 04:08:12,885 : INFO : PROGRESS: pass 0, at document #54000/4922894\n", - "2019-01-16 04:08:15,104 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:15,654 : INFO : topic #10 (0.020): 0.013*\"engin\" + 0.011*\"product\" + 0.010*\"cell\" + 0.009*\"car\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.008*\"model\" + 0.007*\"power\" + 0.007*\"protein\" + 0.007*\"acid\"\n", - "2019-01-16 04:08:15,656 : INFO : topic #2 (0.020): 0.043*\"german\" + 0.028*\"der\" + 0.020*\"von\" + 0.018*\"berlin\" + 0.016*\"und\" + 0.014*\"die\" + 0.014*\"germani\" + 0.009*\"hamburg\" + 0.008*\"launch\" + 0.007*\"steel\"\n", - "2019-01-16 04:08:15,657 : INFO : topic #15 (0.020): 0.038*\"club\" + 0.029*\"unit\" + 0.024*\"town\" + 0.019*\"footbal\" + 0.018*\"cricket\" + 0.015*\"stadium\" + 0.014*\"england\" + 0.014*\"cup\" + 0.012*\"citi\" + 0.012*\"leagu\"\n", - "2019-01-16 04:08:15,660 : INFO : topic #48 (0.020): 0.058*\"april\" + 0.057*\"octob\" + 0.057*\"march\" + 0.056*\"januari\" + 0.055*\"novemb\" + 0.055*\"septemb\" + 0.054*\"februari\" + 0.054*\"june\" + 0.051*\"decemb\" + 0.050*\"august\"\n", - "2019-01-16 04:08:15,662 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.017*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.011*\"francisco\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"spain\" + 0.009*\"puerto\"\n", - "2019-01-16 04:08:15,667 : INFO : topic diff=0.226428, rho=0.192450\n", - "2019-01-16 04:08:16,342 : INFO : PROGRESS: pass 0, at document #56000/4922894\n", - "2019-01-16 04:08:18,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:19,258 : INFO : topic #4 (0.020): 0.114*\"school\" + 0.033*\"colleg\" + 0.029*\"student\" + 0.027*\"high\" + 0.026*\"educ\" + 0.014*\"year\" + 0.011*\"district\" + 0.008*\"state\" + 0.008*\"campu\" + 0.008*\"citi\"\n", - "2019-01-16 04:08:19,260 : INFO : topic #33 (0.020): 0.020*\"bank\" + 0.014*\"rate\" + 0.009*\"valu\" + 0.009*\"market\" + 0.009*\"test\" + 0.008*\"increas\" + 0.008*\"cost\" + 0.008*\"price\" + 0.007*\"time\" + 0.007*\"model\"\n", - "2019-01-16 04:08:19,262 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.040*\"franc\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"jean\" + 0.017*\"de\" + 0.016*\"loui\" + 0.013*\"italian\" + 0.012*\"le\" + 0.010*\"itali\"\n", - "2019-01-16 04:08:19,265 : INFO : topic #0 (0.020): 0.031*\"war\" + 0.029*\"armi\" + 0.019*\"forc\" + 0.017*\"regiment\" + 0.016*\"command\" + 0.015*\"battl\" + 0.014*\"divis\" + 0.013*\"battalion\" + 0.011*\"attack\" + 0.011*\"infantri\"\n", - "2019-01-16 04:08:19,267 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.026*\"univers\" + 0.024*\"american\" + 0.022*\"new\" + 0.022*\"unit\" + 0.018*\"california\" + 0.013*\"texa\" + 0.013*\"washington\" + 0.013*\"york\" + 0.010*\"citi\"\n", - "2019-01-16 04:08:19,273 : INFO : topic diff=0.222330, rho=0.188982\n", - "2019-01-16 04:08:19,935 : INFO : PROGRESS: pass 0, at document #58000/4922894\n", - "2019-01-16 04:08:22,267 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:22,816 : INFO : topic #17 (0.020): 0.039*\"race\" + 0.026*\"championship\" + 0.024*\"world\" + 0.015*\"team\" + 0.012*\"tour\" + 0.012*\"won\" + 0.012*\"event\" + 0.012*\"place\" + 0.011*\"finish\" + 0.011*\"time\"\n", - "2019-01-16 04:08:22,817 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.009*\"plant\" + 0.009*\"red\" + 0.009*\"black\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"flower\" + 0.006*\"known\"\n", - "2019-01-16 04:08:22,820 : INFO : topic #23 (0.020): 0.039*\"medic\" + 0.033*\"hospit\" + 0.019*\"health\" + 0.019*\"spider\" + 0.018*\"patient\" + 0.017*\"medicin\" + 0.017*\"cancer\" + 0.015*\"congenit\" + 0.014*\"diseas\" + 0.014*\"ret\"\n", - "2019-01-16 04:08:22,822 : INFO : topic #2 (0.020): 0.045*\"german\" + 0.026*\"der\" + 0.021*\"von\" + 0.018*\"berlin\" + 0.014*\"und\" + 0.014*\"germani\" + 0.013*\"die\" + 0.012*\"rocket\" + 0.009*\"leipzig\" + 0.009*\"hamburg\"\n", - "2019-01-16 04:08:22,824 : INFO : topic #15 (0.020): 0.036*\"club\" + 0.032*\"unit\" + 0.022*\"town\" + 0.018*\"footbal\" + 0.016*\"cricket\" + 0.014*\"citi\" + 0.013*\"england\" + 0.013*\"cup\" + 0.012*\"stadium\" + 0.011*\"leagu\"\n", - "2019-01-16 04:08:22,830 : INFO : topic diff=0.213522, rho=0.185695\n", - "2019-01-16 04:08:28,099 : INFO : -11.860 per-word bound, 3718.3 perplexity estimate based on a held-out corpus of 2000 documents with 543166 words\n", - "2019-01-16 04:08:28,100 : INFO : PROGRESS: pass 0, at document #60000/4922894\n", - "2019-01-16 04:08:30,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:30,931 : INFO : topic #13 (0.020): 0.053*\"state\" + 0.025*\"univers\" + 0.025*\"american\" + 0.023*\"new\" + 0.022*\"unit\" + 0.016*\"california\" + 0.015*\"texa\" + 0.014*\"york\" + 0.012*\"washington\" + 0.011*\"counti\"\n", - "2019-01-16 04:08:30,933 : INFO : topic #4 (0.020): 0.116*\"school\" + 0.031*\"colleg\" + 0.030*\"student\" + 0.026*\"high\" + 0.025*\"educ\" + 0.014*\"district\" + 0.013*\"year\" + 0.009*\"state\" + 0.009*\"grade\" + 0.008*\"public\"\n", - "2019-01-16 04:08:30,935 : INFO : topic #34 (0.020): 0.073*\"canada\" + 0.050*\"canadian\" + 0.026*\"toronto\" + 0.024*\"languag\" + 0.024*\"korea\" + 0.021*\"ontario\" + 0.019*\"ye\" + 0.018*\"korean\" + 0.016*\"quebec\" + 0.013*\"malaysia\"\n", - "2019-01-16 04:08:30,937 : INFO : topic #29 (0.020): 0.037*\"team\" + 0.031*\"leagu\" + 0.029*\"plai\" + 0.025*\"season\" + 0.021*\"game\" + 0.020*\"player\" + 0.018*\"match\" + 0.017*\"club\" + 0.015*\"cup\" + 0.013*\"score\"\n", - "2019-01-16 04:08:30,939 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.012*\"nation\" + 0.010*\"state\" + 0.009*\"right\" + 0.009*\"countri\" + 0.008*\"new\" + 0.007*\"polit\" + 0.007*\"unit\" + 0.006*\"union\" + 0.006*\"intern\"\n", - "2019-01-16 04:08:30,944 : INFO : topic diff=0.202275, rho=0.182574\n", - "2019-01-16 04:08:31,557 : INFO : PROGRESS: pass 0, at document #62000/4922894\n", - "2019-01-16 04:08:33,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:34,348 : INFO : topic #2 (0.020): 0.045*\"german\" + 0.025*\"der\" + 0.022*\"von\" + 0.021*\"berlin\" + 0.014*\"germani\" + 0.013*\"und\" + 0.012*\"die\" + 0.010*\"van\" + 0.010*\"rocket\" + 0.009*\"launch\"\n", - "2019-01-16 04:08:34,350 : INFO : topic #5 (0.020): 0.014*\"game\" + 0.010*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.007*\"design\" + 0.007*\"base\" + 0.007*\"network\" + 0.006*\"data\" + 0.006*\"user\" + 0.006*\"includ\"\n", - "2019-01-16 04:08:34,352 : INFO : topic #15 (0.020): 0.038*\"club\" + 0.032*\"unit\" + 0.021*\"town\" + 0.020*\"footbal\" + 0.015*\"cricket\" + 0.014*\"citi\" + 0.014*\"stadium\" + 0.014*\"england\" + 0.012*\"cup\" + 0.012*\"leagu\"\n", - "2019-01-16 04:08:34,354 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.025*\"pari\" + 0.021*\"jean\" + 0.020*\"saint\" + 0.016*\"italian\" + 0.016*\"de\" + 0.015*\"loui\" + 0.011*\"le\" + 0.010*\"itali\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:08:34,356 : INFO : topic #49 (0.020): 0.038*\"swedish\" + 0.032*\"poland\" + 0.030*\"sweden\" + 0.026*\"east\" + 0.015*\"gmina\" + 0.015*\"voivodeship\" + 0.014*\"north\" + 0.013*\"west\" + 0.013*\"approxim\" + 0.012*\"south\"\n", - "2019-01-16 04:08:34,362 : INFO : topic diff=0.188249, rho=0.179605\n", - "2019-01-16 04:08:34,935 : INFO : PROGRESS: pass 0, at document #64000/4922894\n", - "2019-01-16 04:08:37,322 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:37,871 : INFO : topic #15 (0.020): 0.038*\"club\" + 0.031*\"unit\" + 0.020*\"footbal\" + 0.020*\"town\" + 0.016*\"cricket\" + 0.014*\"stadium\" + 0.014*\"citi\" + 0.014*\"england\" + 0.012*\"leagu\" + 0.011*\"cup\"\n", - "2019-01-16 04:08:37,873 : INFO : topic #16 (0.020): 0.026*\"church\" + 0.016*\"di\" + 0.014*\"son\" + 0.014*\"bishop\" + 0.013*\"marri\" + 0.010*\"famili\" + 0.009*\"daughter\" + 0.009*\"cathol\" + 0.009*\"born\" + 0.008*\"death\"\n", - "2019-01-16 04:08:37,875 : INFO : topic #34 (0.020): 0.071*\"canada\" + 0.054*\"canadian\" + 0.024*\"toronto\" + 0.024*\"languag\" + 0.021*\"ontario\" + 0.020*\"korea\" + 0.016*\"quebec\" + 0.015*\"korean\" + 0.014*\"ye\" + 0.014*\"montreal\"\n", - "2019-01-16 04:08:37,877 : INFO : topic #29 (0.020): 0.037*\"team\" + 0.030*\"leagu\" + 0.029*\"plai\" + 0.025*\"season\" + 0.019*\"game\" + 0.019*\"club\" + 0.019*\"player\" + 0.017*\"match\" + 0.014*\"cup\" + 0.013*\"footbal\"\n", - "2019-01-16 04:08:37,878 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.027*\"american\" + 0.024*\"new\" + 0.023*\"univers\" + 0.022*\"unit\" + 0.015*\"california\" + 0.015*\"texa\" + 0.014*\"york\" + 0.014*\"washington\" + 0.012*\"counti\"\n", - "2019-01-16 04:08:37,884 : INFO : topic diff=0.182793, rho=0.176777\n", - "2019-01-16 04:08:38,540 : INFO : PROGRESS: pass 0, at document #66000/4922894\n", - "2019-01-16 04:08:40,826 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:41,376 : INFO : topic #18 (0.020): 0.010*\"energi\" + 0.007*\"temperatur\" + 0.007*\"surfac\" + 0.005*\"heat\" + 0.005*\"form\" + 0.005*\"metal\" + 0.005*\"water\" + 0.005*\"light\" + 0.005*\"materi\" + 0.005*\"high\"\n", - "2019-01-16 04:08:41,377 : INFO : topic #27 (0.020): 0.030*\"russian\" + 0.022*\"german\" + 0.020*\"soviet\" + 0.019*\"germani\" + 0.018*\"russia\" + 0.017*\"polish\" + 0.017*\"jewish\" + 0.013*\"israel\" + 0.012*\"moscow\" + 0.010*\"alexand\"\n", - "2019-01-16 04:08:41,379 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.018*\"forc\" + 0.017*\"battl\" + 0.016*\"command\" + 0.013*\"divis\" + 0.013*\"regiment\" + 0.012*\"battalion\" + 0.012*\"attack\" + 0.010*\"militari\"\n", - "2019-01-16 04:08:41,381 : INFO : topic #11 (0.020): 0.028*\"state\" + 0.026*\"law\" + 0.026*\"act\" + 0.023*\"court\" + 0.017*\"presid\" + 0.010*\"offic\" + 0.010*\"amend\" + 0.009*\"governor\" + 0.008*\"feder\" + 0.008*\"unit\"\n", - "2019-01-16 04:08:41,383 : INFO : topic #3 (0.020): 0.029*\"william\" + 0.028*\"john\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.012*\"thoma\" + 0.011*\"sir\" + 0.010*\"edward\" + 0.010*\"henri\" + 0.010*\"robert\" + 0.009*\"british\"\n", - "2019-01-16 04:08:41,388 : INFO : topic diff=0.175462, rho=0.174078\n", - "2019-01-16 04:08:42,079 : INFO : PROGRESS: pass 0, at document #68000/4922894\n", - "2019-01-16 04:08:44,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:45,082 : INFO : topic #40 (0.020): 0.019*\"africa\" + 0.017*\"bar\" + 0.016*\"african\" + 0.014*\"text\" + 0.010*\"till\" + 0.008*\"coloni\" + 0.007*\"color\" + 0.007*\"cultur\" + 0.007*\"south\" + 0.006*\"studi\"\n", - "2019-01-16 04:08:45,084 : INFO : topic #7 (0.020): 0.016*\"function\" + 0.014*\"theori\" + 0.010*\"set\" + 0.010*\"space\" + 0.010*\"group\" + 0.009*\"mathemat\" + 0.009*\"point\" + 0.008*\"number\" + 0.008*\"gener\" + 0.007*\"order\"\n", - "2019-01-16 04:08:45,086 : INFO : topic #42 (0.020): 0.022*\"king\" + 0.013*\"greek\" + 0.012*\"templ\" + 0.011*\"centuri\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"emperor\" + 0.007*\"roman\" + 0.006*\"dynasti\"\n", - "2019-01-16 04:08:45,089 : INFO : topic #25 (0.020): 0.021*\"final\" + 0.020*\"round\" + 0.019*\"tournament\" + 0.019*\"open\" + 0.017*\"winner\" + 0.016*\"doubl\" + 0.015*\"hard\" + 0.014*\"draw\" + 0.013*\"runner\" + 0.012*\"titl\"\n", - "2019-01-16 04:08:45,091 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.019*\"hous\" + 0.014*\"built\" + 0.013*\"church\" + 0.011*\"jpg\" + 0.010*\"street\" + 0.010*\"histor\" + 0.010*\"site\" + 0.009*\"file\" + 0.009*\"centuri\"\n", - "2019-01-16 04:08:45,098 : INFO : topic diff=0.171506, rho=0.171499\n", - "2019-01-16 04:08:45,761 : INFO : PROGRESS: pass 0, at document #70000/4922894\n", - "2019-01-16 04:08:48,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:48,701 : INFO : topic #22 (0.020): 0.039*\"ag\" + 0.038*\"popul\" + 0.035*\"counti\" + 0.027*\"famili\" + 0.026*\"household\" + 0.023*\"township\" + 0.022*\"year\" + 0.022*\"town\" + 0.022*\"femal\" + 0.021*\"live\"\n", - "2019-01-16 04:08:48,703 : INFO : topic #15 (0.020): 0.032*\"club\" + 0.031*\"unit\" + 0.027*\"town\" + 0.018*\"footbal\" + 0.016*\"citi\" + 0.015*\"cricket\" + 0.014*\"england\" + 0.012*\"cup\" + 0.011*\"stadium\" + 0.010*\"leagu\"\n", - "2019-01-16 04:08:48,704 : INFO : topic #33 (0.020): 0.019*\"bank\" + 0.012*\"rate\" + 0.009*\"increas\" + 0.009*\"price\" + 0.009*\"valu\" + 0.008*\"test\" + 0.008*\"market\" + 0.008*\"number\" + 0.007*\"time\" + 0.007*\"cost\"\n", - "2019-01-16 04:08:48,706 : INFO : topic #20 (0.020): 0.048*\"win\" + 0.028*\"contest\" + 0.028*\"fight\" + 0.023*\"dai\" + 0.021*\"week\" + 0.019*\"challeng\" + 0.016*\"elimin\" + 0.016*\"round\" + 0.015*\"decis\" + 0.015*\"safe\"\n", - "2019-01-16 04:08:48,708 : INFO : topic #46 (0.020): 0.046*\"border\" + 0.041*\"philippin\" + 0.037*\"align\" + 0.032*\"style\" + 0.028*\"center\" + 0.026*\"manila\" + 0.015*\"wikit\" + 0.014*\"collaps\" + 0.013*\"font\" + 0.013*\"width\"\n", - "2019-01-16 04:08:48,714 : INFO : topic diff=0.158038, rho=0.169031\n", - "2019-01-16 04:08:49,318 : INFO : PROGRESS: pass 0, at document #72000/4922894\n", - "2019-01-16 04:08:51,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:52,164 : INFO : topic #21 (0.020): 0.008*\"word\" + 0.007*\"languag\" + 0.007*\"centuri\" + 0.005*\"person\" + 0.005*\"tradit\" + 0.005*\"form\" + 0.005*\"peopl\" + 0.005*\"english\" + 0.005*\"god\" + 0.005*\"christian\"\n", - "2019-01-16 04:08:52,166 : INFO : topic #35 (0.020): 0.056*\"minist\" + 0.031*\"prime\" + 0.011*\"affair\" + 0.011*\"indonesia\" + 0.010*\"indonesian\" + 0.009*\"bulgarian\" + 0.009*\"thai\" + 0.007*\"bradi\" + 0.007*\"chi\" + 0.007*\"ani\"\n", - "2019-01-16 04:08:52,168 : INFO : topic #18 (0.020): 0.011*\"energi\" + 0.007*\"wave\" + 0.006*\"temperatur\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"heat\" + 0.005*\"water\" + 0.005*\"light\" + 0.005*\"high\"\n", - "2019-01-16 04:08:52,169 : INFO : topic #27 (0.020): 0.031*\"russian\" + 0.026*\"soviet\" + 0.021*\"german\" + 0.021*\"russia\" + 0.019*\"germani\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"israel\" + 0.011*\"czech\" + 0.011*\"moscow\"\n", - "2019-01-16 04:08:52,171 : INFO : topic #20 (0.020): 0.049*\"win\" + 0.029*\"fight\" + 0.026*\"contest\" + 0.021*\"dai\" + 0.019*\"week\" + 0.018*\"challeng\" + 0.017*\"elimin\" + 0.016*\"decis\" + 0.015*\"round\" + 0.013*\"safe\"\n", - "2019-01-16 04:08:52,177 : INFO : topic diff=0.154211, rho=0.166667\n", - "2019-01-16 04:08:52,845 : INFO : PROGRESS: pass 0, at document #74000/4922894\n", - "2019-01-16 04:08:55,170 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:55,724 : INFO : topic #46 (0.020): 0.044*\"philippin\" + 0.043*\"align\" + 0.041*\"border\" + 0.033*\"style\" + 0.029*\"center\" + 0.022*\"manila\" + 0.016*\"wikit\" + 0.015*\"class\" + 0.013*\"collaps\" + 0.013*\"ambros\"\n", - "2019-01-16 04:08:55,725 : INFO : topic #2 (0.020): 0.047*\"german\" + 0.030*\"der\" + 0.025*\"von\" + 0.019*\"germani\" + 0.019*\"berlin\" + 0.016*\"van\" + 0.014*\"und\" + 0.013*\"die\" + 0.008*\"han\" + 0.008*\"space\"\n", - "2019-01-16 04:08:55,728 : INFO : topic #17 (0.020): 0.044*\"race\" + 0.024*\"championship\" + 0.020*\"world\" + 0.015*\"team\" + 0.013*\"car\" + 0.013*\"finish\" + 0.012*\"time\" + 0.011*\"place\" + 0.011*\"won\" + 0.010*\"point\"\n", - "2019-01-16 04:08:55,729 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.011*\"greek\" + 0.011*\"centuri\" + 0.010*\"templ\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"roman\" + 0.007*\"dynasti\"\n", - "2019-01-16 04:08:55,731 : INFO : topic #22 (0.020): 0.039*\"ag\" + 0.039*\"popul\" + 0.035*\"counti\" + 0.027*\"household\" + 0.027*\"famili\" + 0.023*\"femal\" + 0.022*\"township\" + 0.022*\"year\" + 0.021*\"live\" + 0.021*\"town\"\n", - "2019-01-16 04:08:55,737 : INFO : topic diff=0.144618, rho=0.164399\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:08:56,416 : INFO : PROGRESS: pass 0, at document #76000/4922894\n", - "2019-01-16 04:08:58,697 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:08:59,249 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.011*\"sir\" + 0.010*\"robert\" + 0.010*\"london\" + 0.010*\"british\" + 0.010*\"henri\"\n", - "2019-01-16 04:08:59,251 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.015*\"compani\" + 0.012*\"research\" + 0.011*\"develop\" + 0.010*\"busi\" + 0.010*\"scienc\" + 0.009*\"institut\" + 0.008*\"manag\" + 0.008*\"servic\" + 0.008*\"work\"\n", - "2019-01-16 04:08:59,253 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.020*\"hous\" + 0.014*\"built\" + 0.012*\"church\" + 0.012*\"jpg\" + 0.010*\"centuri\" + 0.010*\"histor\" + 0.010*\"site\" + 0.010*\"file\" + 0.009*\"street\"\n", - "2019-01-16 04:08:59,254 : INFO : topic #44 (0.020): 0.024*\"season\" + 0.022*\"game\" + 0.022*\"team\" + 0.015*\"coach\" + 0.013*\"plai\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"player\" + 0.008*\"record\" + 0.008*\"draft\"\n", - "2019-01-16 04:08:59,256 : INFO : topic #19 (0.020): 0.017*\"radio\" + 0.017*\"new\" + 0.012*\"station\" + 0.012*\"broadcast\" + 0.010*\"channel\" + 0.009*\"dai\" + 0.008*\"bbc\" + 0.008*\"televis\" + 0.008*\"program\" + 0.007*\"time\"\n", - "2019-01-16 04:08:59,261 : INFO : topic diff=0.140324, rho=0.162221\n", - "2019-01-16 04:08:59,845 : INFO : PROGRESS: pass 0, at document #78000/4922894\n", - "2019-01-16 04:09:02,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:02,758 : INFO : topic #17 (0.020): 0.043*\"race\" + 0.025*\"championship\" + 0.021*\"world\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"car\" + 0.011*\"time\" + 0.011*\"place\" + 0.011*\"won\" + 0.011*\"point\"\n", - "2019-01-16 04:09:02,760 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.015*\"compani\" + 0.012*\"research\" + 0.011*\"develop\" + 0.010*\"scienc\" + 0.010*\"busi\" + 0.009*\"institut\" + 0.008*\"manag\" + 0.008*\"work\" + 0.008*\"servic\"\n", - "2019-01-16 04:09:02,762 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.011*\"empir\" + 0.011*\"roman\" + 0.010*\"emperor\" + 0.010*\"centuri\" + 0.009*\"greek\" + 0.009*\"templ\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"dynasti\"\n", - "2019-01-16 04:09:02,764 : INFO : topic #21 (0.020): 0.008*\"word\" + 0.006*\"languag\" + 0.006*\"centuri\" + 0.006*\"god\" + 0.006*\"form\" + 0.006*\"person\" + 0.006*\"tradit\" + 0.005*\"christian\" + 0.005*\"peopl\" + 0.005*\"english\"\n", - "2019-01-16 04:09:02,766 : INFO : topic #15 (0.020): 0.048*\"town\" + 0.032*\"unit\" + 0.028*\"club\" + 0.021*\"citi\" + 0.016*\"cricket\" + 0.015*\"footbal\" + 0.014*\"england\" + 0.010*\"stadium\" + 0.010*\"cup\" + 0.009*\"leagu\"\n", - "2019-01-16 04:09:02,772 : INFO : topic diff=0.141612, rho=0.160128\n", - "2019-01-16 04:09:08,171 : INFO : -11.765 per-word bound, 3481.5 perplexity estimate based on a held-out corpus of 2000 documents with 591003 words\n", - "2019-01-16 04:09:08,172 : INFO : PROGRESS: pass 0, at document #80000/4922894\n", - "2019-01-16 04:09:10,570 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:11,125 : INFO : topic #34 (0.020): 0.072*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.023*\"ye\" + 0.023*\"toronto\" + 0.019*\"korea\" + 0.019*\"languag\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.014*\"singapor\"\n", - "2019-01-16 04:09:11,127 : INFO : topic #12 (0.020): 0.061*\"elect\" + 0.049*\"parti\" + 0.028*\"member\" + 0.017*\"democrat\" + 0.017*\"vote\" + 0.016*\"council\" + 0.015*\"polit\" + 0.012*\"parliament\" + 0.012*\"liber\" + 0.012*\"candid\"\n", - "2019-01-16 04:09:11,129 : INFO : topic #37 (0.020): 0.007*\"charact\" + 0.006*\"man\" + 0.006*\"time\" + 0.006*\"love\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"friend\" + 0.005*\"life\" + 0.004*\"end\" + 0.004*\"later\"\n", - "2019-01-16 04:09:11,131 : INFO : topic #24 (0.020): 0.017*\"ship\" + 0.013*\"polic\" + 0.009*\"kill\" + 0.007*\"report\" + 0.006*\"damag\" + 0.006*\"prison\" + 0.006*\"murder\" + 0.005*\"gun\" + 0.005*\"attack\" + 0.005*\"class\"\n", - "2019-01-16 04:09:11,132 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.010*\"empir\" + 0.010*\"emperor\" + 0.010*\"centuri\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"templ\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"dynasti\"\n", - "2019-01-16 04:09:11,138 : INFO : topic diff=0.137782, rho=0.158114\n", - "2019-01-16 04:09:11,801 : INFO : PROGRESS: pass 0, at document #82000/4922894\n", - "2019-01-16 04:09:14,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:14,679 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.026*\"new\" + 0.026*\"american\" + 0.024*\"univers\" + 0.022*\"unit\" + 0.017*\"york\" + 0.014*\"california\" + 0.012*\"counti\" + 0.012*\"texa\" + 0.012*\"citi\"\n", - "2019-01-16 04:09:14,681 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.020*\"hous\" + 0.014*\"built\" + 0.011*\"church\" + 0.011*\"jpg\" + 0.011*\"centuri\" + 0.010*\"histor\" + 0.010*\"file\" + 0.009*\"site\" + 0.009*\"locat\"\n", - "2019-01-16 04:09:14,683 : INFO : topic #49 (0.020): 0.036*\"east\" + 0.030*\"swedish\" + 0.028*\"west\" + 0.026*\"sweden\" + 0.026*\"poland\" + 0.025*\"north\" + 0.024*\"alt\" + 0.019*\"capit\" + 0.017*\"south\" + 0.014*\"wear\"\n", - "2019-01-16 04:09:14,685 : INFO : topic #46 (0.020): 0.048*\"philippin\" + 0.042*\"align\" + 0.039*\"center\" + 0.037*\"style\" + 0.037*\"border\" + 0.023*\"wikit\" + 0.022*\"class\" + 0.021*\"text\" + 0.016*\"font\" + 0.015*\"manila\"\n", - "2019-01-16 04:09:14,687 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.039*\"franc\" + 0.025*\"pari\" + 0.024*\"italian\" + 0.023*\"saint\" + 0.019*\"jean\" + 0.014*\"itali\" + 0.013*\"loui\" + 0.013*\"de\" + 0.011*\"le\"\n", - "2019-01-16 04:09:14,693 : INFO : topic diff=0.125580, rho=0.156174\n", - "2019-01-16 04:09:15,388 : INFO : PROGRESS: pass 0, at document #84000/4922894\n", - "2019-01-16 04:09:17,703 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:18,255 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.040*\"franc\" + 0.025*\"pari\" + 0.023*\"italian\" + 0.022*\"saint\" + 0.018*\"jean\" + 0.017*\"loui\" + 0.014*\"de\" + 0.014*\"itali\" + 0.011*\"le\"\n", - "2019-01-16 04:09:18,257 : INFO : topic #4 (0.020): 0.141*\"school\" + 0.037*\"colleg\" + 0.032*\"high\" + 0.030*\"student\" + 0.024*\"educ\" + 0.014*\"univers\" + 0.013*\"year\" + 0.011*\"elementari\" + 0.011*\"district\" + 0.009*\"class\"\n", - "2019-01-16 04:09:18,259 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.023*\"award\" + 0.020*\"best\" + 0.019*\"episod\" + 0.019*\"seri\" + 0.015*\"star\" + 0.013*\"role\" + 0.012*\"televis\" + 0.012*\"direct\" + 0.011*\"movi\"\n", - "2019-01-16 04:09:18,261 : INFO : topic #34 (0.020): 0.070*\"canada\" + 0.057*\"canadian\" + 0.021*\"ontario\" + 0.021*\"ye\" + 0.019*\"toronto\" + 0.019*\"languag\" + 0.017*\"korea\" + 0.016*\"malaysia\" + 0.015*\"quebec\" + 0.014*\"korean\"\n", - "2019-01-16 04:09:18,263 : INFO : topic #25 (0.020): 0.029*\"tournament\" + 0.027*\"round\" + 0.025*\"open\" + 0.022*\"winner\" + 0.021*\"final\" + 0.019*\"doubl\" + 0.015*\"runner\" + 0.014*\"hard\" + 0.013*\"seed\" + 0.013*\"titl\"\n", - "2019-01-16 04:09:18,269 : INFO : topic diff=0.123670, rho=0.154303\n", - "2019-01-16 04:09:18,930 : INFO : PROGRESS: pass 0, at document #86000/4922894\n", - "2019-01-16 04:09:21,130 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:21,682 : INFO : topic #5 (0.020): 0.021*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"design\" + 0.008*\"version\" + 0.007*\"data\" + 0.006*\"includ\" + 0.006*\"base\" + 0.006*\"releas\" + 0.006*\"digit\"\n", - "2019-01-16 04:09:21,684 : INFO : topic #18 (0.020): 0.010*\"energi\" + 0.007*\"light\" + 0.007*\"temperatur\" + 0.006*\"wave\" + 0.006*\"water\" + 0.005*\"surfac\" + 0.005*\"materi\" + 0.005*\"high\" + 0.005*\"form\" + 0.005*\"time\"\n", - "2019-01-16 04:09:21,686 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.011*\"empir\" + 0.010*\"centuri\" + 0.009*\"emperor\" + 0.009*\"templ\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"egypt\"\n", - "2019-01-16 04:09:21,687 : INFO : topic #37 (0.020): 0.007*\"charact\" + 0.006*\"man\" + 0.006*\"appear\" + 0.006*\"time\" + 0.006*\"love\" + 0.005*\"like\" + 0.005*\"friend\" + 0.005*\"later\" + 0.004*\"life\" + 0.004*\"end\"\n", - "2019-01-16 04:09:21,689 : INFO : topic #33 (0.020): 0.015*\"bank\" + 0.013*\"rate\" + 0.011*\"increas\" + 0.009*\"market\" + 0.008*\"test\" + 0.008*\"cost\" + 0.007*\"valu\" + 0.007*\"price\" + 0.007*\"time\" + 0.006*\"number\"\n", - "2019-01-16 04:09:21,695 : INFO : topic diff=0.121263, rho=0.152499\n", - "2019-01-16 04:09:22,363 : INFO : PROGRESS: pass 0, at document #88000/4922894\n", - "2019-01-16 04:09:24,697 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:09:25,249 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.040*\"ag\" + 0.038*\"counti\" + 0.029*\"year\" + 0.027*\"township\" + 0.026*\"famili\" + 0.026*\"household\" + 0.025*\"femal\" + 0.025*\"town\" + 0.021*\"live\"\n", - "2019-01-16 04:09:25,250 : INFO : topic #34 (0.020): 0.074*\"canada\" + 0.057*\"canadian\" + 0.024*\"korean\" + 0.022*\"quebec\" + 0.021*\"languag\" + 0.019*\"ontario\" + 0.018*\"ye\" + 0.017*\"korea\" + 0.017*\"malaysia\" + 0.016*\"toronto\"\n", - "2019-01-16 04:09:25,252 : INFO : topic #11 (0.020): 0.031*\"act\" + 0.029*\"court\" + 0.026*\"law\" + 0.025*\"state\" + 0.015*\"presid\" + 0.009*\"governor\" + 0.009*\"offic\" + 0.009*\"feder\" + 0.009*\"case\" + 0.008*\"legal\"\n", - "2019-01-16 04:09:25,254 : INFO : topic #12 (0.020): 0.061*\"elect\" + 0.050*\"parti\" + 0.027*\"member\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.015*\"council\" + 0.014*\"seat\" + 0.014*\"polit\" + 0.013*\"candid\" + 0.013*\"parliament\"\n", - "2019-01-16 04:09:25,256 : INFO : topic #40 (0.020): 0.022*\"bar\" + 0.020*\"africa\" + 0.018*\"african\" + 0.017*\"text\" + 0.013*\"till\" + 0.010*\"color\" + 0.009*\"south\" + 0.008*\"peopl\" + 0.008*\"popul\" + 0.007*\"shift\"\n", - "2019-01-16 04:09:25,263 : INFO : topic diff=0.114220, rho=0.150756\n", - "2019-01-16 04:09:25,923 : INFO : PROGRESS: pass 0, at document #90000/4922894\n", - "2019-01-16 04:09:28,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:28,788 : INFO : topic #40 (0.020): 0.023*\"bar\" + 0.019*\"african\" + 0.019*\"africa\" + 0.017*\"text\" + 0.014*\"till\" + 0.010*\"color\" + 0.009*\"south\" + 0.008*\"peopl\" + 0.007*\"popul\" + 0.007*\"shift\"\n", - "2019-01-16 04:09:28,789 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.011*\"centuri\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"templ\" + 0.008*\"kingdom\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"son\"\n", - "2019-01-16 04:09:28,792 : INFO : topic #45 (0.020): 0.017*\"american\" + 0.015*\"born\" + 0.013*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"peter\" + 0.006*\"jame\" + 0.006*\"richard\" + 0.006*\"robert\"\n", - "2019-01-16 04:09:28,793 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.048*\"parti\" + 0.028*\"member\" + 0.019*\"democrat\" + 0.017*\"vote\" + 0.015*\"council\" + 0.014*\"seat\" + 0.014*\"polit\" + 0.012*\"parliament\" + 0.012*\"candid\"\n", - "2019-01-16 04:09:28,796 : INFO : topic #26 (0.020): 0.038*\"women\" + 0.031*\"olymp\" + 0.029*\"medal\" + 0.027*\"japan\" + 0.026*\"japanes\" + 0.025*\"men\" + 0.021*\"gold\" + 0.021*\"rank\" + 0.020*\"event\" + 0.016*\"athlet\"\n", - "2019-01-16 04:09:28,802 : INFO : topic diff=0.111250, rho=0.149071\n", - "2019-01-16 04:09:29,462 : INFO : PROGRESS: pass 0, at document #92000/4922894\n", - "2019-01-16 04:09:31,721 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:32,279 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"countri\" + 0.010*\"right\" + 0.008*\"polit\" + 0.007*\"support\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"new\"\n", - "2019-01-16 04:09:32,282 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.030*\"work\" + 0.027*\"museum\" + 0.024*\"design\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.014*\"exhibit\" + 0.013*\"architectur\" + 0.013*\"collect\" + 0.013*\"new\"\n", - "2019-01-16 04:09:32,284 : INFO : topic #18 (0.020): 0.009*\"energi\" + 0.006*\"light\" + 0.006*\"temperatur\" + 0.006*\"surfac\" + 0.006*\"materi\" + 0.006*\"wave\" + 0.005*\"water\" + 0.005*\"earth\" + 0.005*\"high\" + 0.005*\"metal\"\n", - "2019-01-16 04:09:32,286 : INFO : topic #46 (0.020): 0.056*\"style\" + 0.053*\"align\" + 0.047*\"center\" + 0.043*\"philippin\" + 0.033*\"text\" + 0.032*\"class\" + 0.032*\"border\" + 0.025*\"wikit\" + 0.013*\"font\" + 0.013*\"collaps\"\n", - "2019-01-16 04:09:32,288 : INFO : topic #33 (0.020): 0.024*\"bank\" + 0.012*\"rate\" + 0.010*\"increas\" + 0.009*\"price\" + 0.008*\"market\" + 0.008*\"test\" + 0.007*\"time\" + 0.007*\"cost\" + 0.007*\"valu\" + 0.006*\"number\"\n", - "2019-01-16 04:09:32,294 : INFO : topic diff=0.102640, rho=0.147442\n", - "2019-01-16 04:09:32,920 : INFO : PROGRESS: pass 0, at document #94000/4922894\n", - "2019-01-16 04:09:35,167 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:35,720 : INFO : topic #35 (0.020): 0.056*\"minist\" + 0.033*\"prime\" + 0.017*\"thai\" + 0.016*\"indonesia\" + 0.013*\"ind\" + 0.011*\"bulgarian\" + 0.011*\"coco\" + 0.010*\"affair\" + 0.009*\"rudd\" + 0.008*\"indonesian\"\n", - "2019-01-16 04:09:35,722 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"compani\" + 0.012*\"research\" + 0.011*\"develop\" + 0.010*\"institut\" + 0.009*\"scienc\" + 0.009*\"busi\" + 0.009*\"manag\" + 0.009*\"work\" + 0.009*\"servic\"\n", - "2019-01-16 04:09:35,724 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.018*\"spanish\" + 0.017*\"del\" + 0.014*\"mexico\" + 0.013*\"spain\" + 0.013*\"santa\" + 0.010*\"juan\" + 0.009*\"lo\" + 0.009*\"francisco\" + 0.009*\"brazil\"\n", - "2019-01-16 04:09:35,726 : INFO : topic #23 (0.020): 0.034*\"ret\" + 0.034*\"medic\" + 0.032*\"hospit\" + 0.023*\"health\" + 0.016*\"patient\" + 0.015*\"diseas\" + 0.014*\"marvel\" + 0.013*\"medicin\" + 0.013*\"treatment\" + 0.011*\"clinic\"\n", - "2019-01-16 04:09:35,728 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.018*\"line\" + 0.018*\"station\" + 0.015*\"railwai\" + 0.014*\"north\" + 0.013*\"road\" + 0.013*\"area\" + 0.012*\"island\" + 0.012*\"south\" + 0.012*\"park\"\n", - "2019-01-16 04:09:35,734 : INFO : topic diff=0.099599, rho=0.145865\n", - "2019-01-16 04:09:36,372 : INFO : PROGRESS: pass 0, at document #96000/4922894\n", - "2019-01-16 04:09:38,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:39,265 : INFO : topic #45 (0.020): 0.019*\"american\" + 0.019*\"born\" + 0.012*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.009*\"bob\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"jame\" + 0.006*\"robert\"\n", - "2019-01-16 04:09:39,267 : INFO : topic #22 (0.020): 0.040*\"ag\" + 0.039*\"popul\" + 0.033*\"counti\" + 0.029*\"male\" + 0.028*\"household\" + 0.026*\"famili\" + 0.026*\"year\" + 0.025*\"femal\" + 0.025*\"township\" + 0.023*\"town\"\n", - "2019-01-16 04:09:39,269 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.018*\"battl\" + 0.018*\"command\" + 0.018*\"forc\" + 0.013*\"militari\" + 0.013*\"regiment\" + 0.012*\"attack\" + 0.012*\"gener\" + 0.010*\"divis\"\n", - "2019-01-16 04:09:39,271 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.023*\"award\" + 0.020*\"episod\" + 0.019*\"best\" + 0.019*\"seri\" + 0.018*\"star\" + 0.014*\"role\" + 0.012*\"movi\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 04:09:39,273 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.021*\"festiv\" + 0.019*\"compos\" + 0.018*\"danc\" + 0.014*\"opera\" + 0.014*\"theatr\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"concert\"\n", - "2019-01-16 04:09:39,280 : INFO : topic diff=0.103563, rho=0.144338\n", - "2019-01-16 04:09:39,943 : INFO : PROGRESS: pass 0, at document #98000/4922894\n", - "2019-01-16 04:09:42,223 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:42,775 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.011*\"theori\" + 0.010*\"group\" + 0.010*\"set\" + 0.010*\"number\" + 0.009*\"space\" + 0.009*\"exampl\" + 0.009*\"point\" + 0.008*\"gener\" + 0.008*\"defin\"\n", - "2019-01-16 04:09:42,777 : INFO : topic #48 (0.020): 0.070*\"march\" + 0.069*\"januari\" + 0.066*\"septemb\" + 0.063*\"octob\" + 0.057*\"juli\" + 0.057*\"august\" + 0.056*\"april\" + 0.055*\"novemb\" + 0.054*\"decemb\" + 0.052*\"june\"\n", - "2019-01-16 04:09:42,778 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.024*\"soviet\" + 0.023*\"russia\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.016*\"israel\" + 0.016*\"germani\" + 0.015*\"german\" + 0.012*\"republ\" + 0.011*\"moscow\"\n", - "2019-01-16 04:09:42,780 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.024*\"award\" + 0.020*\"best\" + 0.020*\"episod\" + 0.019*\"seri\" + 0.018*\"star\" + 0.014*\"role\" + 0.012*\"televis\" + 0.012*\"movi\" + 0.011*\"direct\"\n", - "2019-01-16 04:09:42,782 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.037*\"colleg\" + 0.035*\"student\" + 0.029*\"high\" + 0.025*\"educ\" + 0.014*\"univers\" + 0.013*\"year\" + 0.012*\"district\" + 0.009*\"campu\" + 0.009*\"graduat\"\n", - "2019-01-16 04:09:42,787 : INFO : topic diff=0.095931, rho=0.142857\n", - "2019-01-16 04:09:48,028 : INFO : -11.696 per-word bound, 3317.2 perplexity estimate based on a held-out corpus of 2000 documents with 568966 words\n", - "2019-01-16 04:09:48,028 : INFO : PROGRESS: pass 0, at document #100000/4922894\n", - "2019-01-16 04:09:50,299 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:50,852 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.024*\"award\" + 0.020*\"best\" + 0.020*\"episod\" + 0.020*\"seri\" + 0.019*\"star\" + 0.014*\"role\" + 0.012*\"televis\" + 0.011*\"movi\" + 0.011*\"actor\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:09:50,854 : INFO : topic #33 (0.020): 0.021*\"bank\" + 0.012*\"rate\" + 0.010*\"increas\" + 0.008*\"market\" + 0.008*\"cost\" + 0.008*\"test\" + 0.008*\"price\" + 0.007*\"time\" + 0.006*\"number\" + 0.006*\"result\"\n", - "2019-01-16 04:09:50,856 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.020*\"festiv\" + 0.019*\"compos\" + 0.019*\"string\" + 0.018*\"danc\" + 0.015*\"theatr\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:09:50,858 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.012*\"histor\" + 0.011*\"centuri\" + 0.011*\"jpg\" + 0.010*\"locat\" + 0.010*\"church\" + 0.009*\"site\" + 0.009*\"street\"\n", - "2019-01-16 04:09:50,859 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.027*\"armi\" + 0.019*\"battl\" + 0.018*\"forc\" + 0.017*\"command\" + 0.014*\"rifl\" + 0.013*\"militari\" + 0.013*\"gener\" + 0.011*\"regiment\" + 0.011*\"attack\"\n", - "2019-01-16 04:09:50,865 : INFO : topic diff=0.097009, rho=0.141421\n", - "2019-01-16 04:09:51,565 : INFO : PROGRESS: pass 0, at document #102000/4922894\n", - "2019-01-16 04:09:53,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:54,442 : INFO : topic #44 (0.020): 0.024*\"game\" + 0.023*\"team\" + 0.023*\"season\" + 0.016*\"coach\" + 0.014*\"footbal\" + 0.014*\"plai\" + 0.011*\"player\" + 0.010*\"year\" + 0.010*\"record\" + 0.009*\"yard\"\n", - "2019-01-16 04:09:54,445 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"record\" + 0.025*\"releas\" + 0.021*\"band\" + 0.018*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.012*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:09:54,446 : INFO : topic #32 (0.020): 0.027*\"genu\" + 0.026*\"speci\" + 0.017*\"famili\" + 0.012*\"red\" + 0.011*\"white\" + 0.010*\"plant\" + 0.008*\"black\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.006*\"yellow\"\n", - "2019-01-16 04:09:54,448 : INFO : topic #16 (0.020): 0.027*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.013*\"marri\" + 0.013*\"famili\" + 0.012*\"father\" + 0.012*\"born\" + 0.011*\"bishop\" + 0.011*\"cathol\" + 0.011*\"daughter\"\n", - "2019-01-16 04:09:54,450 : INFO : topic #46 (0.020): 0.058*\"style\" + 0.056*\"class\" + 0.049*\"align\" + 0.046*\"center\" + 0.041*\"philippin\" + 0.035*\"wikit\" + 0.033*\"text\" + 0.032*\"border\" + 0.015*\"width\" + 0.015*\"font\"\n", - "2019-01-16 04:09:54,456 : INFO : topic diff=0.090909, rho=0.140028\n", - "2019-01-16 04:09:55,087 : INFO : PROGRESS: pass 0, at document #104000/4922894\n", - "2019-01-16 04:09:57,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:09:57,855 : INFO : topic #49 (0.020): 0.043*\"east\" + 0.036*\"west\" + 0.033*\"north\" + 0.033*\"swedish\" + 0.031*\"alt\" + 0.027*\"poland\" + 0.025*\"sweden\" + 0.025*\"south\" + 0.018*\"central\" + 0.018*\"voivodeship\"\n", - "2019-01-16 04:09:57,857 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"countri\" + 0.009*\"right\" + 0.009*\"polit\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"new\" + 0.006*\"union\"\n", - "2019-01-16 04:09:57,859 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.053*\"parti\" + 0.027*\"member\" + 0.021*\"democrat\" + 0.018*\"vote\" + 0.014*\"polit\" + 0.013*\"council\" + 0.012*\"seat\" + 0.012*\"republican\" + 0.012*\"term\"\n", - "2019-01-16 04:09:57,861 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.036*\"colleg\" + 0.035*\"student\" + 0.031*\"high\" + 0.026*\"educ\" + 0.016*\"univers\" + 0.014*\"year\" + 0.010*\"district\" + 0.010*\"campu\" + 0.009*\"graduat\"\n", - "2019-01-16 04:09:57,863 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.019*\"del\" + 0.016*\"spanish\" + 0.015*\"santa\" + 0.014*\"spain\" + 0.013*\"mexico\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.009*\"lo\" + 0.009*\"argentina\"\n", - "2019-01-16 04:09:57,869 : INFO : topic diff=0.087738, rho=0.138675\n", - "2019-01-16 04:09:58,502 : INFO : PROGRESS: pass 0, at document #106000/4922894\n", - "2019-01-16 04:10:00,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:01,400 : INFO : topic #34 (0.020): 0.067*\"canada\" + 0.050*\"canadian\" + 0.024*\"korean\" + 0.024*\"korea\" + 0.021*\"malaysia\" + 0.019*\"ontario\" + 0.018*\"languag\" + 0.016*\"toronto\" + 0.015*\"singapor\" + 0.014*\"quebec\"\n", - "2019-01-16 04:10:01,402 : INFO : topic #10 (0.020): 0.016*\"engin\" + 0.012*\"product\" + 0.012*\"cell\" + 0.010*\"car\" + 0.009*\"produc\" + 0.008*\"oil\" + 0.007*\"vehicl\" + 0.007*\"power\" + 0.007*\"model\" + 0.007*\"protein\"\n", - "2019-01-16 04:10:01,404 : INFO : topic #17 (0.020): 0.048*\"race\" + 0.022*\"championship\" + 0.019*\"world\" + 0.018*\"team\" + 0.016*\"car\" + 0.016*\"tour\" + 0.013*\"finish\" + 0.012*\"time\" + 0.012*\"place\" + 0.011*\"won\"\n", - "2019-01-16 04:10:01,405 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.040*\"ag\" + 0.035*\"counti\" + 0.028*\"household\" + 0.026*\"famili\" + 0.024*\"year\" + 0.024*\"femal\" + 0.023*\"male\" + 0.023*\"township\" + 0.023*\"town\"\n", - "2019-01-16 04:10:01,407 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.021*\"danc\" + 0.019*\"festiv\" + 0.019*\"compos\" + 0.013*\"string\" + 0.013*\"theatr\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 04:10:01,413 : INFO : topic diff=0.092836, rho=0.137361\n", - "2019-01-16 04:10:02,011 : INFO : PROGRESS: pass 0, at document #108000/4922894\n", - "2019-01-16 04:10:04,311 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:04,863 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"jpg\" + 0.011*\"centuri\" + 0.011*\"histor\" + 0.010*\"church\" + 0.010*\"site\" + 0.010*\"locat\" + 0.009*\"street\"\n", - "2019-01-16 04:10:04,865 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"countri\" + 0.009*\"polit\" + 0.008*\"right\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 04:10:04,867 : INFO : topic #8 (0.020): 0.050*\"district\" + 0.034*\"villag\" + 0.029*\"india\" + 0.023*\"indian\" + 0.020*\"municip\" + 0.016*\"popul\" + 0.015*\"region\" + 0.015*\"provinc\" + 0.012*\"town\" + 0.011*\"rural\"\n", - "2019-01-16 04:10:04,868 : INFO : topic #35 (0.020): 0.056*\"minist\" + 0.032*\"prime\" + 0.018*\"indonesia\" + 0.017*\"bulgarian\" + 0.014*\"thai\" + 0.012*\"bulgaria\" + 0.009*\"chi\" + 0.009*\"thailand\" + 0.009*\"ind\" + 0.009*\"indonesian\"\n", - "2019-01-16 04:10:04,870 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"compani\" + 0.012*\"research\" + 0.012*\"servic\" + 0.011*\"develop\" + 0.010*\"institut\" + 0.009*\"work\" + 0.009*\"manag\" + 0.009*\"scienc\" + 0.009*\"busi\"\n", - "2019-01-16 04:10:04,875 : INFO : topic diff=0.087886, rho=0.136083\n", - "2019-01-16 04:10:05,467 : INFO : PROGRESS: pass 0, at document #110000/4922894\n", - "2019-01-16 04:10:07,826 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:08,379 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"countri\" + 0.009*\"right\" + 0.008*\"polit\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 04:10:08,381 : INFO : topic #26 (0.020): 0.039*\"women\" + 0.027*\"olymp\" + 0.027*\"medal\" + 0.027*\"japan\" + 0.026*\"men\" + 0.022*\"japanes\" + 0.020*\"event\" + 0.020*\"gold\" + 0.018*\"rank\" + 0.018*\"athlet\"\n", - "2019-01-16 04:10:08,383 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"compani\" + 0.012*\"research\" + 0.012*\"servic\" + 0.011*\"develop\" + 0.010*\"institut\" + 0.009*\"work\" + 0.009*\"manag\" + 0.009*\"scienc\" + 0.009*\"busi\"\n", - "2019-01-16 04:10:08,385 : INFO : topic #20 (0.020): 0.043*\"win\" + 0.032*\"contest\" + 0.024*\"elimin\" + 0.023*\"dai\" + 0.022*\"fight\" + 0.019*\"challeng\" + 0.019*\"semi\" + 0.014*\"week\" + 0.014*\"round\" + 0.013*\"judg\"\n", - "2019-01-16 04:10:08,387 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.011*\"jpg\" + 0.011*\"centuri\" + 0.011*\"histor\" + 0.010*\"site\" + 0.010*\"church\" + 0.010*\"locat\" + 0.009*\"street\"\n", - "2019-01-16 04:10:08,393 : INFO : topic diff=0.085321, rho=0.134840\n", - "2019-01-16 04:10:09,022 : INFO : PROGRESS: pass 0, at document #112000/4922894\n", - "2019-01-16 04:10:11,331 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:11,885 : INFO : topic #19 (0.020): 0.019*\"radio\" + 0.018*\"new\" + 0.014*\"broadcast\" + 0.013*\"station\" + 0.011*\"channel\" + 0.011*\"televis\" + 0.009*\"air\" + 0.008*\"dai\" + 0.008*\"host\" + 0.008*\"program\"\n", - "2019-01-16 04:10:11,887 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.018*\"genu\" + 0.014*\"famili\" + 0.011*\"white\" + 0.011*\"red\" + 0.011*\"plant\" + 0.008*\"black\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"tree\"\n", - "2019-01-16 04:10:11,889 : INFO : topic #49 (0.020): 0.040*\"east\" + 0.039*\"west\" + 0.033*\"swedish\" + 0.032*\"north\" + 0.028*\"sweden\" + 0.027*\"poland\" + 0.025*\"south\" + 0.021*\"alt\" + 0.019*\"region\" + 0.018*\"counti\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:10:11,890 : INFO : topic #29 (0.020): 0.034*\"leagu\" + 0.034*\"team\" + 0.031*\"plai\" + 0.026*\"club\" + 0.024*\"season\" + 0.021*\"cup\" + 0.018*\"player\" + 0.017*\"match\" + 0.016*\"footbal\" + 0.014*\"game\"\n", - "2019-01-16 04:10:11,892 : INFO : topic #0 (0.020): 0.044*\"war\" + 0.029*\"armi\" + 0.018*\"forc\" + 0.017*\"battl\" + 0.016*\"regiment\" + 0.016*\"command\" + 0.014*\"militari\" + 0.012*\"gener\" + 0.012*\"infantri\" + 0.010*\"divis\"\n", - "2019-01-16 04:10:11,898 : INFO : topic diff=0.076981, rho=0.133631\n", - "2019-01-16 04:10:12,551 : INFO : PROGRESS: pass 0, at document #114000/4922894\n", - "2019-01-16 04:10:14,861 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:15,413 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.011*\"countri\" + 0.009*\"right\" + 0.008*\"polit\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"peopl\" + 0.007*\"unit\"\n", - "2019-01-16 04:10:15,415 : INFO : topic #26 (0.020): 0.046*\"women\" + 0.029*\"men\" + 0.027*\"olymp\" + 0.025*\"japan\" + 0.025*\"medal\" + 0.022*\"japanes\" + 0.021*\"event\" + 0.020*\"gold\" + 0.019*\"rank\" + 0.018*\"athlet\"\n", - "2019-01-16 04:10:15,417 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"jpg\" + 0.011*\"centuri\" + 0.010*\"histor\" + 0.010*\"locat\" + 0.010*\"site\" + 0.009*\"church\" + 0.009*\"file\"\n", - "2019-01-16 04:10:15,419 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.038*\"ag\" + 0.032*\"counti\" + 0.028*\"area\" + 0.025*\"household\" + 0.024*\"town\" + 0.024*\"famili\" + 0.023*\"femal\" + 0.022*\"township\" + 0.022*\"year\"\n", - "2019-01-16 04:10:15,421 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.029*\"new\" + 0.026*\"american\" + 0.022*\"unit\" + 0.021*\"univers\" + 0.020*\"york\" + 0.015*\"california\" + 0.013*\"citi\" + 0.012*\"counti\" + 0.012*\"texa\"\n", - "2019-01-16 04:10:15,427 : INFO : topic diff=0.073880, rho=0.132453\n", - "2019-01-16 04:10:16,058 : INFO : PROGRESS: pass 0, at document #116000/4922894\n", - "2019-01-16 04:10:18,422 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:18,975 : INFO : topic #17 (0.020): 0.051*\"race\" + 0.022*\"championship\" + 0.019*\"team\" + 0.016*\"world\" + 0.016*\"tour\" + 0.014*\"car\" + 0.013*\"finish\" + 0.011*\"time\" + 0.011*\"place\" + 0.011*\"point\"\n", - "2019-01-16 04:10:18,977 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.011*\"countri\" + 0.009*\"right\" + 0.008*\"polit\" + 0.007*\"support\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"unit\"\n", - "2019-01-16 04:10:18,979 : INFO : topic #10 (0.020): 0.014*\"engin\" + 0.014*\"cell\" + 0.011*\"product\" + 0.011*\"vehicl\" + 0.008*\"car\" + 0.008*\"acid\" + 0.008*\"type\" + 0.008*\"produc\" + 0.007*\"protein\" + 0.006*\"power\"\n", - "2019-01-16 04:10:18,981 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.037*\"ag\" + 0.033*\"counti\" + 0.028*\"area\" + 0.025*\"household\" + 0.024*\"famili\" + 0.024*\"township\" + 0.023*\"town\" + 0.023*\"femal\" + 0.022*\"year\"\n", - "2019-01-16 04:10:18,983 : INFO : topic #26 (0.020): 0.046*\"women\" + 0.030*\"men\" + 0.026*\"olymp\" + 0.025*\"medal\" + 0.024*\"japan\" + 0.022*\"event\" + 0.021*\"japanes\" + 0.019*\"rank\" + 0.019*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 04:10:18,990 : INFO : topic diff=0.076730, rho=0.131306\n", - "2019-01-16 04:10:19,554 : INFO : PROGRESS: pass 0, at document #118000/4922894\n", - "2019-01-16 04:10:21,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:22,372 : INFO : topic #11 (0.020): 0.028*\"act\" + 0.028*\"law\" + 0.026*\"court\" + 0.022*\"state\" + 0.012*\"case\" + 0.011*\"presid\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.007*\"feder\" + 0.007*\"public\"\n", - "2019-01-16 04:10:22,373 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.048*\"franc\" + 0.025*\"italian\" + 0.023*\"pari\" + 0.022*\"saint\" + 0.018*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 04:10:22,376 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"love\" + 0.005*\"like\" + 0.005*\"friend\" + 0.005*\"later\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:10:22,378 : INFO : topic #39 (0.020): 0.032*\"air\" + 0.024*\"servic\" + 0.020*\"oper\" + 0.020*\"unit\" + 0.019*\"aircraft\" + 0.016*\"airport\" + 0.015*\"forc\" + 0.014*\"navi\" + 0.013*\"flight\" + 0.012*\"marin\"\n", - "2019-01-16 04:10:22,380 : INFO : topic #49 (0.020): 0.041*\"east\" + 0.041*\"west\" + 0.034*\"north\" + 0.032*\"sweden\" + 0.031*\"swedish\" + 0.027*\"south\" + 0.025*\"poland\" + 0.023*\"region\" + 0.021*\"alt\" + 0.018*\"counti\"\n", - "2019-01-16 04:10:22,386 : INFO : topic diff=0.070743, rho=0.130189\n", - "2019-01-16 04:10:27,702 : INFO : -11.559 per-word bound, 3017.0 perplexity estimate based on a held-out corpus of 2000 documents with 561603 words\n", - "2019-01-16 04:10:27,703 : INFO : PROGRESS: pass 0, at document #120000/4922894\n", - "2019-01-16 04:10:30,009 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:30,563 : INFO : topic #45 (0.020): 0.015*\"born\" + 0.015*\"american\" + 0.013*\"john\" + 0.012*\"david\" + 0.009*\"michael\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"jame\" + 0.006*\"robert\" + 0.006*\"richard\"\n", - "2019-01-16 04:10:30,565 : INFO : topic #33 (0.020): 0.014*\"bank\" + 0.012*\"rate\" + 0.010*\"increas\" + 0.009*\"time\" + 0.008*\"million\" + 0.008*\"market\" + 0.008*\"cost\" + 0.007*\"price\" + 0.006*\"number\" + 0.006*\"result\"\n", - "2019-01-16 04:10:30,566 : INFO : topic #15 (0.020): 0.028*\"unit\" + 0.026*\"england\" + 0.020*\"citi\" + 0.019*\"town\" + 0.017*\"cricket\" + 0.016*\"club\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"footbal\" + 0.011*\"stadium\"\n", - "2019-01-16 04:10:30,568 : INFO : topic #27 (0.020): 0.036*\"russian\" + 0.023*\"soviet\" + 0.022*\"russia\" + 0.020*\"germani\" + 0.020*\"jewish\" + 0.020*\"republ\" + 0.016*\"israel\" + 0.015*\"polish\" + 0.013*\"jew\" + 0.013*\"union\"\n", - "2019-01-16 04:10:30,570 : INFO : topic #44 (0.020): 0.028*\"season\" + 0.025*\"game\" + 0.023*\"team\" + 0.016*\"coach\" + 0.014*\"plai\" + 0.013*\"footbal\" + 0.012*\"player\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", - "2019-01-16 04:10:30,575 : INFO : topic diff=0.067357, rho=0.129099\n", - "2019-01-16 04:10:31,188 : INFO : PROGRESS: pass 0, at document #122000/4922894\n", - "2019-01-16 04:10:33,494 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:34,050 : INFO : topic #29 (0.020): 0.033*\"leagu\" + 0.032*\"team\" + 0.030*\"plai\" + 0.029*\"season\" + 0.027*\"club\" + 0.020*\"cup\" + 0.018*\"match\" + 0.017*\"player\" + 0.016*\"footbal\" + 0.015*\"goal\"\n", - "2019-01-16 04:10:34,052 : INFO : topic #5 (0.020): 0.022*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"design\" + 0.007*\"card\" + 0.007*\"version\" + 0.006*\"includ\" + 0.006*\"code\" + 0.006*\"model\" + 0.006*\"digit\"\n", - "2019-01-16 04:10:34,054 : INFO : topic #25 (0.020): 0.038*\"round\" + 0.029*\"tournament\" + 0.026*\"winner\" + 0.024*\"final\" + 0.020*\"open\" + 0.017*\"doubl\" + 0.015*\"runner\" + 0.012*\"singl\" + 0.012*\"draw\" + 0.011*\"hard\"\n", - "2019-01-16 04:10:34,056 : INFO : topic #20 (0.020): 0.043*\"win\" + 0.029*\"contest\" + 0.022*\"dai\" + 0.022*\"fight\" + 0.021*\"elimin\" + 0.016*\"ring\" + 0.016*\"challeng\" + 0.015*\"wrestl\" + 0.013*\"week\" + 0.013*\"round\"\n", - "2019-01-16 04:10:34,058 : INFO : topic #17 (0.020): 0.051*\"race\" + 0.022*\"championship\" + 0.018*\"team\" + 0.017*\"world\" + 0.014*\"car\" + 0.014*\"tour\" + 0.014*\"finish\" + 0.011*\"time\" + 0.010*\"place\" + 0.010*\"won\"\n", - "2019-01-16 04:10:34,064 : INFO : topic diff=0.068308, rho=0.128037\n", - "2019-01-16 04:10:34,707 : INFO : PROGRESS: pass 0, at document #124000/4922894\n", - "2019-01-16 04:10:36,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:37,526 : INFO : topic #41 (0.020): 0.032*\"book\" + 0.029*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"stori\" + 0.011*\"edit\" + 0.011*\"novel\" + 0.010*\"magazin\" + 0.010*\"univers\" + 0.010*\"press\"\n", - "2019-01-16 04:10:37,527 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.030*\"new\" + 0.028*\"american\" + 0.023*\"unit\" + 0.021*\"york\" + 0.018*\"univers\" + 0.014*\"citi\" + 0.013*\"california\" + 0.013*\"counti\" + 0.012*\"texa\"\n", - "2019-01-16 04:10:37,530 : INFO : topic #45 (0.020): 0.015*\"american\" + 0.015*\"born\" + 0.013*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jame\" + 0.006*\"richard\"\n", - "2019-01-16 04:10:37,531 : INFO : topic #40 (0.020): 0.023*\"bar\" + 0.019*\"african\" + 0.019*\"africa\" + 0.014*\"color\" + 0.013*\"till\" + 0.013*\"text\" + 0.010*\"south\" + 0.009*\"coloni\" + 0.008*\"popul\" + 0.008*\"peopl\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:10:37,533 : INFO : topic #49 (0.020): 0.042*\"west\" + 0.042*\"east\" + 0.040*\"north\" + 0.032*\"sweden\" + 0.030*\"swedish\" + 0.030*\"south\" + 0.025*\"region\" + 0.022*\"poland\" + 0.019*\"counti\" + 0.016*\"alt\"\n", - "2019-01-16 04:10:37,539 : INFO : topic diff=0.068287, rho=0.127000\n", - "2019-01-16 04:10:38,168 : INFO : PROGRESS: pass 0, at document #126000/4922894\n", - "2019-01-16 04:10:40,498 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:41,056 : INFO : topic #32 (0.020): 0.030*\"speci\" + 0.013*\"famili\" + 0.013*\"genu\" + 0.011*\"plant\" + 0.010*\"white\" + 0.009*\"red\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"black\"\n", - "2019-01-16 04:10:41,058 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.022*\"hous\" + 0.015*\"built\" + 0.011*\"jpg\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"centuri\" + 0.010*\"locat\" + 0.010*\"site\" + 0.009*\"citi\"\n", - "2019-01-16 04:10:41,061 : INFO : topic #15 (0.020): 0.028*\"unit\" + 0.025*\"england\" + 0.021*\"citi\" + 0.018*\"town\" + 0.017*\"club\" + 0.015*\"cricket\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"stadium\" + 0.012*\"manchest\"\n", - "2019-01-16 04:10:41,062 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.017*\"compani\" + 0.012*\"research\" + 0.012*\"develop\" + 0.010*\"servic\" + 0.010*\"institut\" + 0.010*\"work\" + 0.009*\"manag\" + 0.009*\"busi\" + 0.009*\"intern\"\n", - "2019-01-16 04:10:41,064 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.015*\"famili\" + 0.012*\"bishop\" + 0.012*\"born\" + 0.011*\"father\" + 0.011*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:10:41,070 : INFO : topic diff=0.066217, rho=0.125988\n", - "2019-01-16 04:10:41,700 : INFO : PROGRESS: pass 0, at document #128000/4922894\n", - "2019-01-16 04:10:43,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:44,549 : INFO : topic #22 (0.020): 0.041*\"popul\" + 0.039*\"ag\" + 0.038*\"counti\" + 0.026*\"household\" + 0.025*\"famili\" + 0.025*\"town\" + 0.024*\"area\" + 0.023*\"femal\" + 0.022*\"citi\" + 0.022*\"censu\"\n", - "2019-01-16 04:10:44,551 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.027*\"contest\" + 0.025*\"dai\" + 0.022*\"elimin\" + 0.021*\"challeng\" + 0.019*\"fight\" + 0.016*\"wrestl\" + 0.016*\"week\" + 0.014*\"ring\" + 0.013*\"titl\"\n", - "2019-01-16 04:10:44,554 : INFO : topic #31 (0.020): 0.051*\"australia\" + 0.041*\"australian\" + 0.040*\"china\" + 0.034*\"new\" + 0.030*\"chines\" + 0.024*\"zealand\" + 0.023*\"south\" + 0.022*\"hong\" + 0.021*\"kong\" + 0.017*\"melbourn\"\n", - "2019-01-16 04:10:44,556 : INFO : topic #33 (0.020): 0.017*\"bank\" + 0.012*\"rate\" + 0.010*\"increas\" + 0.009*\"time\" + 0.008*\"test\" + 0.008*\"market\" + 0.008*\"million\" + 0.007*\"cost\" + 0.007*\"price\" + 0.006*\"number\"\n", - "2019-01-16 04:10:44,558 : INFO : topic #10 (0.020): 0.015*\"engin\" + 0.014*\"cell\" + 0.010*\"product\" + 0.009*\"car\" + 0.009*\"vehicl\" + 0.008*\"acid\" + 0.008*\"produc\" + 0.007*\"model\" + 0.007*\"type\" + 0.006*\"wheel\"\n", - "2019-01-16 04:10:44,565 : INFO : topic diff=0.065516, rho=0.125000\n", - "2019-01-16 04:10:45,211 : INFO : PROGRESS: pass 0, at document #130000/4922894\n", - "2019-01-16 04:10:47,551 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:48,104 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.027*\"record\" + 0.021*\"band\" + 0.018*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:10:48,106 : INFO : topic #31 (0.020): 0.053*\"australia\" + 0.041*\"australian\" + 0.038*\"china\" + 0.034*\"new\" + 0.028*\"chines\" + 0.025*\"zealand\" + 0.024*\"south\" + 0.021*\"hong\" + 0.021*\"kong\" + 0.016*\"sydnei\"\n", - "2019-01-16 04:10:48,107 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"friend\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"love\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:10:48,110 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.014*\"famili\" + 0.012*\"born\" + 0.012*\"bishop\" + 0.011*\"father\" + 0.011*\"cathol\" + 0.011*\"daughter\"\n", - "2019-01-16 04:10:48,111 : INFO : topic #27 (0.020): 0.034*\"russian\" + 0.025*\"soviet\" + 0.022*\"russia\" + 0.019*\"jewish\" + 0.018*\"republ\" + 0.018*\"polish\" + 0.018*\"germani\" + 0.018*\"israel\" + 0.013*\"union\" + 0.013*\"moscow\"\n", - "2019-01-16 04:10:48,118 : INFO : topic diff=0.061725, rho=0.124035\n", - "2019-01-16 04:10:48,720 : INFO : PROGRESS: pass 0, at document #132000/4922894\n", - "2019-01-16 04:10:50,959 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:51,512 : INFO : topic #14 (0.020): 0.017*\"compani\" + 0.017*\"univers\" + 0.012*\"research\" + 0.012*\"develop\" + 0.011*\"servic\" + 0.010*\"institut\" + 0.009*\"manag\" + 0.009*\"busi\" + 0.009*\"work\" + 0.009*\"scienc\"\n", - "2019-01-16 04:10:51,514 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.045*\"parti\" + 0.028*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.014*\"republican\" + 0.014*\"term\" + 0.014*\"council\" + 0.013*\"candid\" + 0.013*\"polit\"\n", - "2019-01-16 04:10:51,516 : INFO : topic #48 (0.020): 0.073*\"januari\" + 0.068*\"septemb\" + 0.067*\"octob\" + 0.067*\"march\" + 0.063*\"august\" + 0.062*\"juli\" + 0.060*\"novemb\" + 0.060*\"april\" + 0.057*\"decemb\" + 0.056*\"june\"\n", - "2019-01-16 04:10:51,518 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.030*\"high\" + 0.027*\"educ\" + 0.024*\"univers\" + 0.014*\"year\" + 0.009*\"graduat\" + 0.009*\"district\" + 0.008*\"campu\"\n", - "2019-01-16 04:10:51,520 : INFO : topic #27 (0.020): 0.035*\"russian\" + 0.025*\"soviet\" + 0.022*\"russia\" + 0.019*\"jewish\" + 0.018*\"polish\" + 0.018*\"republ\" + 0.017*\"israel\" + 0.017*\"germani\" + 0.013*\"moscow\" + 0.013*\"union\"\n", - "2019-01-16 04:10:51,526 : INFO : topic diff=0.060479, rho=0.123091\n", - "2019-01-16 04:10:52,099 : INFO : PROGRESS: pass 0, at document #134000/4922894\n", - "2019-01-16 04:10:54,363 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:54,915 : INFO : topic #21 (0.020): 0.009*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"centuri\" + 0.006*\"god\" + 0.005*\"mean\" + 0.005*\"peopl\" + 0.005*\"tradit\" + 0.005*\"english\" + 0.005*\"person\"\n", - "2019-01-16 04:10:54,917 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.031*\"armi\" + 0.018*\"forc\" + 0.017*\"command\" + 0.017*\"battl\" + 0.014*\"regiment\" + 0.014*\"militari\" + 0.012*\"gener\" + 0.012*\"divis\" + 0.010*\"soldier\"\n", - "2019-01-16 04:10:54,919 : INFO : topic #43 (0.020): 0.035*\"san\" + 0.018*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"lo\" + 0.010*\"francisco\" + 0.010*\"latin\"\n", - "2019-01-16 04:10:54,921 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.011*\"famili\" + 0.010*\"genu\" + 0.010*\"plant\" + 0.010*\"white\" + 0.009*\"red\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"black\"\n", - "2019-01-16 04:10:54,923 : INFO : topic #8 (0.020): 0.051*\"district\" + 0.033*\"india\" + 0.032*\"villag\" + 0.023*\"indian\" + 0.020*\"municip\" + 0.015*\"popul\" + 0.014*\"provinc\" + 0.012*\"region\" + 0.011*\"town\" + 0.010*\"rural\"\n", - "2019-01-16 04:10:54,929 : INFO : topic diff=0.060713, rho=0.122169\n", - "2019-01-16 04:10:55,568 : INFO : PROGRESS: pass 0, at document #136000/4922894\n", - "2019-01-16 04:10:57,840 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:10:58,394 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"greek\" + 0.013*\"centuri\" + 0.010*\"kingdom\" + 0.009*\"roman\" + 0.009*\"templ\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.007*\"dynasti\" + 0.007*\"princ\"\n", - "2019-01-16 04:10:58,396 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"love\" + 0.005*\"friend\" + 0.005*\"later\" + 0.005*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:10:58,398 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.051*\"parti\" + 0.027*\"member\" + 0.020*\"democrat\" + 0.018*\"vote\" + 0.014*\"council\" + 0.013*\"presid\" + 0.013*\"republican\" + 0.013*\"seat\" + 0.013*\"term\"\n", - "2019-01-16 04:10:58,400 : INFO : topic #44 (0.020): 0.028*\"season\" + 0.027*\"game\" + 0.025*\"team\" + 0.019*\"coach\" + 0.014*\"plai\" + 0.014*\"footbal\" + 0.012*\"player\" + 0.011*\"year\" + 0.009*\"confer\" + 0.009*\"record\"\n", - "2019-01-16 04:10:58,402 : INFO : topic #45 (0.020): 0.015*\"american\" + 0.015*\"born\" + 0.013*\"john\" + 0.011*\"david\" + 0.011*\"michael\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jame\" + 0.006*\"scott\"\n", - "2019-01-16 04:10:58,407 : INFO : topic diff=0.057394, rho=0.121268\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:10:59,040 : INFO : PROGRESS: pass 0, at document #138000/4922894\n", - "2019-01-16 04:11:01,375 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:01,929 : INFO : topic #29 (0.020): 0.036*\"leagu\" + 0.033*\"team\" + 0.032*\"plai\" + 0.029*\"club\" + 0.026*\"season\" + 0.022*\"cup\" + 0.017*\"footbal\" + 0.017*\"match\" + 0.017*\"player\" + 0.015*\"goal\"\n", - "2019-01-16 04:11:01,931 : INFO : topic #20 (0.020): 0.041*\"win\" + 0.027*\"contest\" + 0.023*\"dai\" + 0.020*\"elimin\" + 0.020*\"fight\" + 0.018*\"challeng\" + 0.016*\"wrestl\" + 0.015*\"ring\" + 0.014*\"week\" + 0.014*\"titl\"\n", - "2019-01-16 04:11:01,933 : INFO : topic #19 (0.020): 0.026*\"radio\" + 0.022*\"new\" + 0.018*\"station\" + 0.015*\"broadcast\" + 0.011*\"televis\" + 0.010*\"channel\" + 0.009*\"air\" + 0.008*\"program\" + 0.008*\"dai\" + 0.008*\"host\"\n", - "2019-01-16 04:11:01,935 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.045*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.017*\"jean\" + 0.017*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 04:11:01,936 : INFO : topic #45 (0.020): 0.015*\"american\" + 0.014*\"born\" + 0.013*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jame\" + 0.006*\"scott\"\n", - "2019-01-16 04:11:01,943 : INFO : topic diff=0.056600, rho=0.120386\n", - "2019-01-16 04:11:07,042 : INFO : -11.717 per-word bound, 3365.6 perplexity estimate based on a held-out corpus of 2000 documents with 535260 words\n", - "2019-01-16 04:11:07,043 : INFO : PROGRESS: pass 0, at document #140000/4922894\n", - "2019-01-16 04:11:09,303 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:09,860 : INFO : topic #7 (0.020): 0.015*\"function\" + 0.012*\"number\" + 0.010*\"space\" + 0.010*\"theori\" + 0.009*\"exampl\" + 0.008*\"gener\" + 0.008*\"point\" + 0.008*\"group\" + 0.008*\"set\" + 0.007*\"defin\"\n", - "2019-01-16 04:11:09,863 : INFO : topic #36 (0.020): 0.059*\"art\" + 0.034*\"museum\" + 0.030*\"work\" + 0.025*\"artist\" + 0.024*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.014*\"galleri\" + 0.013*\"collect\" + 0.012*\"new\"\n", - "2019-01-16 04:11:09,864 : INFO : topic #35 (0.020): 0.050*\"acacia\" + 0.042*\"minist\" + 0.028*\"indonesia\" + 0.027*\"prime\" + 0.013*\"indonesian\" + 0.013*\"thai\" + 0.013*\"bulgarian\" + 0.010*\"thailand\" + 0.010*\"sen\" + 0.009*\"mon\"\n", - "2019-01-16 04:11:09,866 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"state\" + 0.013*\"nation\" + 0.010*\"countri\" + 0.009*\"polit\" + 0.008*\"right\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"foreign\"\n", - "2019-01-16 04:11:09,868 : INFO : topic #9 (0.020): 0.072*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.020*\"best\" + 0.019*\"seri\" + 0.016*\"star\" + 0.013*\"role\" + 0.013*\"produc\" + 0.012*\"actor\" + 0.011*\"direct\"\n", - "2019-01-16 04:11:09,874 : INFO : topic diff=0.056482, rho=0.119523\n", - "2019-01-16 04:11:10,508 : INFO : PROGRESS: pass 0, at document #142000/4922894\n", - "2019-01-16 04:11:12,844 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:13,397 : INFO : topic #22 (0.020): 0.044*\"popul\" + 0.039*\"ag\" + 0.039*\"counti\" + 0.028*\"town\" + 0.027*\"household\" + 0.025*\"famili\" + 0.023*\"femal\" + 0.022*\"year\" + 0.022*\"citi\" + 0.021*\"area\"\n", - "2019-01-16 04:11:13,399 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.007*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"earth\" + 0.005*\"us\" + 0.005*\"materi\" + 0.004*\"measur\" + 0.004*\"temperatur\"\n", - "2019-01-16 04:11:13,400 : INFO : topic #26 (0.020): 0.041*\"women\" + 0.029*\"medal\" + 0.028*\"men\" + 0.026*\"olymp\" + 0.025*\"japan\" + 0.021*\"world\" + 0.020*\"japanes\" + 0.020*\"event\" + 0.018*\"championship\" + 0.018*\"rank\"\n", - "2019-01-16 04:11:13,402 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.017*\"compani\" + 0.013*\"research\" + 0.012*\"servic\" + 0.012*\"develop\" + 0.010*\"institut\" + 0.009*\"work\" + 0.009*\"manag\" + 0.009*\"busi\" + 0.009*\"commun\"\n", - "2019-01-16 04:11:13,404 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.018*\"forc\" + 0.017*\"command\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.013*\"regiment\" + 0.012*\"troop\" + 0.012*\"gener\" + 0.011*\"divis\"\n", - "2019-01-16 04:11:13,409 : INFO : topic diff=0.052953, rho=0.118678\n", - "2019-01-16 04:11:14,004 : INFO : PROGRESS: pass 0, at document #144000/4922894\n", - "2019-01-16 04:11:16,330 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:16,884 : INFO : topic #6 (0.020): 0.069*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.018*\"danc\" + 0.018*\"theatr\" + 0.018*\"festiv\" + 0.013*\"opera\" + 0.012*\"plai\" + 0.012*\"piano\" + 0.011*\"orchestra\"\n", - "2019-01-16 04:11:16,886 : INFO : topic #46 (0.020): 0.090*\"class\" + 0.066*\"center\" + 0.063*\"align\" + 0.053*\"style\" + 0.044*\"wikit\" + 0.038*\"philippin\" + 0.037*\"text\" + 0.033*\"right\" + 0.028*\"border\" + 0.023*\"width\"\n", - "2019-01-16 04:11:16,888 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"love\" + 0.005*\"friend\" + 0.005*\"like\" + 0.005*\"later\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:11:16,890 : INFO : topic #15 (0.020): 0.027*\"unit\" + 0.020*\"england\" + 0.020*\"citi\" + 0.018*\"cricket\" + 0.016*\"town\" + 0.013*\"scottish\" + 0.013*\"scotland\" + 0.012*\"club\" + 0.010*\"footbal\" + 0.009*\"west\"\n", - "2019-01-16 04:11:16,892 : INFO : topic #11 (0.020): 0.029*\"law\" + 0.024*\"court\" + 0.024*\"state\" + 0.022*\"act\" + 0.011*\"case\" + 0.010*\"presid\" + 0.010*\"offic\" + 0.009*\"legal\" + 0.008*\"feder\" + 0.007*\"unit\"\n", - "2019-01-16 04:11:16,898 : INFO : topic diff=0.055033, rho=0.117851\n", - "2019-01-16 04:11:17,502 : INFO : PROGRESS: pass 0, at document #146000/4922894\n", - "2019-01-16 04:11:19,893 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:20,446 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.018*\"jean\" + 0.016*\"itali\" + 0.013*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:11:20,448 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"state\" + 0.013*\"nation\" + 0.010*\"countri\" + 0.009*\"polit\" + 0.008*\"right\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 04:11:20,450 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"jpg\" + 0.010*\"street\" + 0.010*\"centuri\" + 0.010*\"hall\" + 0.010*\"site\" + 0.010*\"histor\" + 0.010*\"locat\"\n", - "2019-01-16 04:11:20,452 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.017*\"forc\" + 0.016*\"command\" + 0.016*\"battl\" + 0.015*\"regiment\" + 0.014*\"militari\" + 0.013*\"gener\" + 0.012*\"troop\" + 0.012*\"divis\"\n", - "2019-01-16 04:11:20,455 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.017*\"station\" + 0.016*\"line\" + 0.014*\"road\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.013*\"island\" + 0.013*\"park\" + 0.012*\"north\" + 0.012*\"rout\"\n", - "2019-01-16 04:11:20,461 : INFO : topic diff=0.049763, rho=0.117041\n", - "2019-01-16 04:11:21,062 : INFO : PROGRESS: pass 0, at document #148000/4922894\n", - "2019-01-16 04:11:23,332 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:23,885 : INFO : topic #39 (0.020): 0.035*\"air\" + 0.022*\"oper\" + 0.019*\"aircraft\" + 0.019*\"servic\" + 0.019*\"unit\" + 0.017*\"forc\" + 0.016*\"airport\" + 0.015*\"squadron\" + 0.013*\"navi\" + 0.011*\"flight\"\n", - "2019-01-16 04:11:23,887 : INFO : topic #46 (0.020): 0.093*\"class\" + 0.063*\"center\" + 0.057*\"align\" + 0.053*\"style\" + 0.046*\"wikit\" + 0.039*\"philippin\" + 0.035*\"text\" + 0.034*\"border\" + 0.031*\"right\" + 0.022*\"width\"\n", - "2019-01-16 04:11:23,889 : INFO : topic #15 (0.020): 0.026*\"unit\" + 0.022*\"england\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"town\" + 0.013*\"scotland\" + 0.013*\"scottish\" + 0.011*\"club\" + 0.010*\"counti\" + 0.009*\"footbal\"\n", - "2019-01-16 04:11:23,891 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.020*\"spanish\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.017*\"spain\" + 0.011*\"brazil\" + 0.010*\"santa\" + 0.009*\"carlo\" + 0.009*\"mexican\" + 0.009*\"juan\"\n", - "2019-01-16 04:11:23,892 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.047*\"parti\" + 0.026*\"member\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.014*\"term\" + 0.014*\"presid\" + 0.013*\"polit\" + 0.012*\"serv\"\n", - "2019-01-16 04:11:23,899 : INFO : topic diff=0.052297, rho=0.116248\n", - "2019-01-16 04:11:24,457 : INFO : PROGRESS: pass 0, at document #150000/4922894\n", - "2019-01-16 04:11:26,737 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:11:27,290 : INFO : topic #22 (0.020): 0.043*\"popul\" + 0.041*\"counti\" + 0.039*\"ag\" + 0.027*\"household\" + 0.026*\"town\" + 0.025*\"famili\" + 0.022*\"citi\" + 0.022*\"femal\" + 0.021*\"censu\" + 0.021*\"year\"\n", - "2019-01-16 04:11:27,292 : INFO : topic #15 (0.020): 0.026*\"unit\" + 0.021*\"england\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"town\" + 0.013*\"scottish\" + 0.013*\"scotland\" + 0.011*\"club\" + 0.010*\"counti\" + 0.010*\"footbal\"\n", - "2019-01-16 04:11:27,294 : INFO : topic #8 (0.020): 0.045*\"district\" + 0.033*\"villag\" + 0.033*\"india\" + 0.027*\"indian\" + 0.020*\"municip\" + 0.015*\"provinc\" + 0.015*\"popul\" + 0.014*\"pakistan\" + 0.012*\"region\" + 0.010*\"town\"\n", - "2019-01-16 04:11:27,296 : INFO : topic #33 (0.020): 0.012*\"bank\" + 0.011*\"rate\" + 0.011*\"increas\" + 0.009*\"million\" + 0.008*\"time\" + 0.008*\"cost\" + 0.007*\"market\" + 0.007*\"number\" + 0.007*\"requir\" + 0.007*\"test\"\n", - "2019-01-16 04:11:27,298 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"saint\" + 0.024*\"pari\" + 0.018*\"jean\" + 0.016*\"itali\" + 0.014*\"de\" + 0.012*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 04:11:27,304 : INFO : topic diff=0.050420, rho=0.115470\n", - "2019-01-16 04:11:27,856 : INFO : PROGRESS: pass 0, at document #152000/4922894\n", - "2019-01-16 04:11:30,092 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:30,651 : INFO : topic #39 (0.020): 0.035*\"air\" + 0.021*\"oper\" + 0.019*\"servic\" + 0.018*\"aircraft\" + 0.018*\"unit\" + 0.018*\"forc\" + 0.016*\"navi\" + 0.016*\"airport\" + 0.013*\"squadron\" + 0.012*\"flight\"\n", - "2019-01-16 04:11:30,653 : INFO : topic #34 (0.020): 0.074*\"canada\" + 0.055*\"canadian\" + 0.025*\"ontario\" + 0.019*\"toronto\" + 0.016*\"quebec\" + 0.016*\"malaysia\" + 0.016*\"korea\" + 0.016*\"danish\" + 0.015*\"montreal\" + 0.014*\"korean\"\n", - "2019-01-16 04:11:30,655 : INFO : topic #45 (0.020): 0.014*\"american\" + 0.014*\"john\" + 0.013*\"david\" + 0.013*\"born\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"richard\"\n", - "2019-01-16 04:11:30,656 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.030*\"armi\" + 0.017*\"forc\" + 0.017*\"battl\" + 0.016*\"command\" + 0.015*\"regiment\" + 0.014*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.011*\"troop\"\n", - "2019-01-16 04:11:30,658 : INFO : topic #30 (0.020): 0.047*\"french\" + 0.040*\"franc\" + 0.030*\"jean\" + 0.024*\"saint\" + 0.024*\"italian\" + 0.022*\"pari\" + 0.015*\"itali\" + 0.013*\"pierr\" + 0.013*\"loui\" + 0.013*\"de\"\n", - "2019-01-16 04:11:30,664 : INFO : topic diff=0.048846, rho=0.114708\n", - "2019-01-16 04:11:31,319 : INFO : PROGRESS: pass 0, at document #154000/4922894\n", - "2019-01-16 04:11:33,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:34,168 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"love\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"friend\" + 0.005*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:11:34,171 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.030*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"univers\" + 0.011*\"magazin\" + 0.011*\"press\" + 0.011*\"novel\"\n", - "2019-01-16 04:11:34,173 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"water\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"planet\" + 0.005*\"us\" + 0.005*\"orbit\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:11:34,174 : INFO : topic #34 (0.020): 0.075*\"canada\" + 0.056*\"canadian\" + 0.025*\"ontario\" + 0.020*\"toronto\" + 0.017*\"danish\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.015*\"malaysia\" + 0.014*\"montreal\" + 0.014*\"korean\"\n", - "2019-01-16 04:11:34,176 : INFO : topic #46 (0.020): 0.091*\"class\" + 0.076*\"center\" + 0.072*\"align\" + 0.047*\"style\" + 0.044*\"wikit\" + 0.038*\"philippin\" + 0.033*\"right\" + 0.032*\"text\" + 0.030*\"border\" + 0.023*\"left\"\n", - "2019-01-16 04:11:34,182 : INFO : topic diff=0.048015, rho=0.113961\n", - "2019-01-16 04:11:34,800 : INFO : PROGRESS: pass 0, at document #156000/4922894\n", - "2019-01-16 04:11:37,037 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:37,589 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.026*\"contest\" + 0.023*\"elimin\" + 0.022*\"wrestl\" + 0.017*\"fight\" + 0.017*\"week\" + 0.016*\"dai\" + 0.015*\"challeng\" + 0.014*\"pro\" + 0.013*\"box\"\n", - "2019-01-16 04:11:37,591 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.031*\"germani\" + 0.026*\"der\" + 0.024*\"van\" + 0.023*\"von\" + 0.018*\"berlin\" + 0.014*\"die\" + 0.013*\"johann\" + 0.012*\"und\" + 0.009*\"dutch\"\n", - "2019-01-16 04:11:37,593 : INFO : topic #22 (0.020): 0.045*\"popul\" + 0.044*\"counti\" + 0.039*\"ag\" + 0.028*\"household\" + 0.026*\"town\" + 0.024*\"famili\" + 0.022*\"femal\" + 0.022*\"year\" + 0.022*\"censu\" + 0.022*\"citi\"\n", - "2019-01-16 04:11:37,595 : INFO : topic #45 (0.020): 0.014*\"american\" + 0.014*\"john\" + 0.013*\"born\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jame\" + 0.006*\"jone\"\n", - "2019-01-16 04:11:37,597 : INFO : topic #24 (0.020): 0.022*\"ship\" + 0.017*\"polic\" + 0.011*\"kill\" + 0.010*\"report\" + 0.009*\"gun\" + 0.008*\"damag\" + 0.007*\"crew\" + 0.007*\"attack\" + 0.007*\"boat\" + 0.007*\"prison\"\n", - "2019-01-16 04:11:37,604 : INFO : topic diff=0.048006, rho=0.113228\n", - "2019-01-16 04:11:38,165 : INFO : PROGRESS: pass 0, at document #158000/4922894\n", - "2019-01-16 04:11:40,398 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:40,950 : INFO : topic #44 (0.020): 0.028*\"season\" + 0.027*\"game\" + 0.026*\"team\" + 0.016*\"coach\" + 0.015*\"plai\" + 0.014*\"footbal\" + 0.011*\"year\" + 0.011*\"player\" + 0.009*\"record\" + 0.008*\"basketbal\"\n", - "2019-01-16 04:11:40,952 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.023*\"court\" + 0.022*\"state\" + 0.019*\"act\" + 0.010*\"case\" + 0.010*\"offic\" + 0.009*\"presid\" + 0.009*\"legal\" + 0.008*\"feder\" + 0.008*\"public\"\n", - "2019-01-16 04:11:40,954 : INFO : topic #26 (0.020): 0.039*\"women\" + 0.027*\"japan\" + 0.027*\"men\" + 0.026*\"olymp\" + 0.025*\"medal\" + 0.023*\"world\" + 0.021*\"championship\" + 0.020*\"japanes\" + 0.019*\"event\" + 0.018*\"athlet\"\n", - "2019-01-16 04:11:40,955 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.023*\"paint\" + 0.023*\"design\" + 0.023*\"artist\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.013*\"galleri\" + 0.012*\"new\"\n", - "2019-01-16 04:11:40,957 : INFO : topic #39 (0.020): 0.036*\"air\" + 0.021*\"oper\" + 0.021*\"navi\" + 0.018*\"aircraft\" + 0.018*\"unit\" + 0.018*\"forc\" + 0.018*\"servic\" + 0.016*\"airport\" + 0.014*\"squadron\" + 0.012*\"flight\"\n", - "2019-01-16 04:11:40,964 : INFO : topic diff=0.046278, rho=0.112509\n", - "2019-01-16 04:11:46,068 : INFO : -11.740 per-word bound, 3419.9 perplexity estimate based on a held-out corpus of 2000 documents with 534038 words\n", - "2019-01-16 04:11:46,069 : INFO : PROGRESS: pass 0, at document #160000/4922894\n", - "2019-01-16 04:11:48,348 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:48,905 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.022*\"state\" + 0.018*\"act\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"presid\" + 0.008*\"legal\" + 0.008*\"feder\" + 0.008*\"public\"\n", - "2019-01-16 04:11:48,907 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.032*\"new\" + 0.029*\"american\" + 0.023*\"unit\" + 0.022*\"york\" + 0.016*\"citi\" + 0.015*\"california\" + 0.014*\"counti\" + 0.014*\"univers\" + 0.011*\"texa\"\n", - "2019-01-16 04:11:48,910 : INFO : topic #12 (0.020): 0.061*\"elect\" + 0.047*\"parti\" + 0.027*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.016*\"presid\" + 0.014*\"council\" + 0.013*\"republican\" + 0.012*\"candid\" + 0.012*\"polit\"\n", - "2019-01-16 04:11:48,912 : INFO : topic #21 (0.020): 0.009*\"languag\" + 0.007*\"word\" + 0.006*\"centuri\" + 0.006*\"form\" + 0.005*\"mean\" + 0.005*\"peopl\" + 0.005*\"tradit\" + 0.005*\"english\" + 0.005*\"us\" + 0.005*\"god\"\n", - "2019-01-16 04:11:48,915 : INFO : topic #33 (0.020): 0.011*\"bank\" + 0.011*\"increas\" + 0.010*\"rate\" + 0.009*\"million\" + 0.008*\"time\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.007*\"market\" + 0.007*\"level\"\n", - "2019-01-16 04:11:48,921 : INFO : topic diff=0.046372, rho=0.111803\n", - "2019-01-16 04:11:49,496 : INFO : PROGRESS: pass 0, at document #162000/4922894\n", - "2019-01-16 04:11:51,807 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:52,360 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.013*\"file\" + 0.013*\"jpg\" + 0.011*\"centuri\" + 0.010*\"site\" + 0.010*\"histor\" + 0.010*\"locat\" + 0.010*\"street\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:11:52,362 : INFO : topic #9 (0.020): 0.072*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"role\" + 0.013*\"actor\" + 0.012*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 04:11:52,364 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.025*\"team\" + 0.015*\"coach\" + 0.015*\"plai\" + 0.014*\"footbal\" + 0.011*\"player\" + 0.011*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", - "2019-01-16 04:11:52,366 : INFO : topic #12 (0.020): 0.061*\"elect\" + 0.046*\"parti\" + 0.028*\"member\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.016*\"presid\" + 0.015*\"council\" + 0.013*\"republican\" + 0.013*\"polit\" + 0.012*\"repres\"\n", - "2019-01-16 04:11:52,368 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.026*\"tournament\" + 0.025*\"final\" + 0.025*\"open\" + 0.024*\"winner\" + 0.018*\"draw\" + 0.017*\"doubl\" + 0.016*\"singl\" + 0.015*\"runner\" + 0.014*\"hard\"\n", - "2019-01-16 04:11:52,374 : INFO : topic diff=0.046038, rho=0.111111\n", - "2019-01-16 04:11:52,982 : INFO : PROGRESS: pass 0, at document #164000/4922894\n", - "2019-01-16 04:11:55,272 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:55,828 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 04:11:55,830 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.040*\"franc\" + 0.025*\"jean\" + 0.025*\"saint\" + 0.024*\"pari\" + 0.023*\"italian\" + 0.015*\"itali\" + 0.014*\"de\" + 0.013*\"pierr\" + 0.011*\"loui\"\n", - "2019-01-16 04:11:55,832 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.027*\"record\" + 0.026*\"releas\" + 0.022*\"band\" + 0.017*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:11:55,835 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.029*\"germani\" + 0.026*\"der\" + 0.025*\"van\" + 0.022*\"von\" + 0.019*\"berlin\" + 0.013*\"die\" + 0.012*\"und\" + 0.012*\"johann\" + 0.011*\"dutch\"\n", - "2019-01-16 04:11:55,837 : INFO : topic #23 (0.020): 0.034*\"medic\" + 0.024*\"hospit\" + 0.021*\"health\" + 0.016*\"diseas\" + 0.016*\"medicin\" + 0.014*\"patient\" + 0.013*\"cancer\" + 0.012*\"treatment\" + 0.011*\"clinic\" + 0.011*\"ret\"\n", - "2019-01-16 04:11:55,843 : INFO : topic diff=0.042106, rho=0.110432\n", - "2019-01-16 04:11:56,423 : INFO : PROGRESS: pass 0, at document #166000/4922894\n", - "2019-01-16 04:11:58,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:11:59,261 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.023*\"artist\" + 0.022*\"design\" + 0.021*\"paint\" + 0.016*\"exhibit\" + 0.014*\"collect\" + 0.012*\"galleri\" + 0.011*\"new\"\n", - "2019-01-16 04:11:59,263 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.016*\"di\" + 0.016*\"death\" + 0.014*\"marri\" + 0.014*\"famili\" + 0.013*\"born\" + 0.012*\"father\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:11:59,266 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.013*\"american\" + 0.012*\"born\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"robert\" + 0.008*\"paul\" + 0.007*\"peter\" + 0.007*\"jame\" + 0.006*\"richard\"\n", - "2019-01-16 04:11:59,268 : INFO : topic #49 (0.020): 0.056*\"east\" + 0.054*\"north\" + 0.053*\"west\" + 0.047*\"south\" + 0.044*\"region\" + 0.026*\"swedish\" + 0.022*\"poland\" + 0.021*\"sweden\" + 0.021*\"central\" + 0.019*\"villag\"\n", - "2019-01-16 04:11:59,270 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 04:11:59,276 : INFO : topic diff=0.044959, rho=0.109764\n", - "2019-01-16 04:11:59,809 : INFO : PROGRESS: pass 0, at document #168000/4922894\n", - "2019-01-16 04:12:02,031 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:02,592 : INFO : topic #23 (0.020): 0.034*\"medic\" + 0.023*\"hospit\" + 0.021*\"health\" + 0.016*\"medicin\" + 0.015*\"diseas\" + 0.014*\"patient\" + 0.013*\"clinic\" + 0.012*\"treatment\" + 0.011*\"cancer\" + 0.009*\"drug\"\n", - "2019-01-16 04:12:02,594 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.027*\"contest\" + 0.020*\"elimin\" + 0.020*\"wrestl\" + 0.019*\"week\" + 0.017*\"fight\" + 0.013*\"challeng\" + 0.013*\"dai\" + 0.013*\"titl\" + 0.012*\"final\"\n", - "2019-01-16 04:12:02,596 : INFO : topic #49 (0.020): 0.060*\"east\" + 0.055*\"north\" + 0.053*\"west\" + 0.047*\"south\" + 0.045*\"region\" + 0.027*\"swedish\" + 0.024*\"sweden\" + 0.021*\"poland\" + 0.021*\"central\" + 0.019*\"villag\"\n", - "2019-01-16 04:12:02,597 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.014*\"centuri\" + 0.013*\"emperor\" + 0.012*\"greek\" + 0.011*\"templ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.007*\"roman\" + 0.007*\"princ\" + 0.006*\"dynasti\"\n", - "2019-01-16 04:12:02,599 : INFO : topic #39 (0.020): 0.036*\"air\" + 0.022*\"oper\" + 0.018*\"forc\" + 0.018*\"unit\" + 0.018*\"navi\" + 0.018*\"aircraft\" + 0.016*\"servic\" + 0.015*\"piper\" + 0.015*\"airport\" + 0.013*\"squadron\"\n", - "2019-01-16 04:12:02,606 : INFO : topic diff=0.043325, rho=0.109109\n", - "2019-01-16 04:12:03,150 : INFO : PROGRESS: pass 0, at document #170000/4922894\n", - "2019-01-16 04:12:05,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:05,948 : INFO : topic #21 (0.020): 0.009*\"languag\" + 0.006*\"word\" + 0.006*\"centuri\" + 0.005*\"form\" + 0.005*\"mean\" + 0.005*\"peopl\" + 0.005*\"differ\" + 0.005*\"us\" + 0.005*\"cultur\" + 0.005*\"tradit\"\n", - "2019-01-16 04:12:05,950 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"state\" + 0.022*\"court\" + 0.018*\"act\" + 0.011*\"offic\" + 0.010*\"case\" + 0.008*\"presid\" + 0.008*\"feder\" + 0.008*\"legal\" + 0.008*\"public\"\n", - "2019-01-16 04:12:05,951 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.025*\"contest\" + 0.022*\"wrestl\" + 0.019*\"week\" + 0.019*\"elimin\" + 0.017*\"fight\" + 0.014*\"box\" + 0.014*\"titl\" + 0.013*\"dai\" + 0.013*\"challeng\"\n", - "2019-01-16 04:12:05,953 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.014*\"cell\" + 0.010*\"product\" + 0.008*\"car\" + 0.008*\"type\" + 0.008*\"produc\" + 0.008*\"model\" + 0.008*\"power\" + 0.007*\"vehicl\" + 0.006*\"protein\"\n", - "2019-01-16 04:12:05,955 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.028*\"armi\" + 0.018*\"command\" + 0.016*\"battl\" + 0.016*\"forc\" + 0.016*\"regiment\" + 0.014*\"militari\" + 0.013*\"divis\" + 0.013*\"gener\" + 0.012*\"battalion\"\n", - "2019-01-16 04:12:05,961 : INFO : topic diff=0.042368, rho=0.108465\n", - "2019-01-16 04:12:06,495 : INFO : PROGRESS: pass 0, at document #172000/4922894\n", - "2019-01-16 04:12:08,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:09,343 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.019*\"station\" + 0.016*\"broadcast\" + 0.012*\"televis\" + 0.010*\"channel\" + 0.010*\"host\" + 0.009*\"network\" + 0.009*\"air\" + 0.009*\"program\"\n", - "2019-01-16 04:12:09,345 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.035*\"colleg\" + 0.034*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.024*\"univers\" + 0.020*\"district\" + 0.016*\"year\" + 0.010*\"graduat\" + 0.009*\"state\"\n", - "2019-01-16 04:12:09,346 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.044*\"parti\" + 0.027*\"member\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"presid\" + 0.015*\"council\" + 0.013*\"repres\" + 0.012*\"candid\" + 0.012*\"polit\"\n", - "2019-01-16 04:12:09,348 : INFO : topic #8 (0.020): 0.050*\"district\" + 0.034*\"india\" + 0.030*\"villag\" + 0.028*\"indian\" + 0.019*\"municip\" + 0.017*\"provinc\" + 0.014*\"popul\" + 0.013*\"pakistan\" + 0.011*\"region\" + 0.010*\"rural\"\n", - "2019-01-16 04:12:09,350 : INFO : topic #41 (0.020): 0.033*\"book\" + 0.030*\"publish\" + 0.020*\"work\" + 0.013*\"new\" + 0.012*\"univers\" + 0.012*\"edit\" + 0.012*\"stori\" + 0.011*\"novel\" + 0.011*\"press\" + 0.010*\"writer\"\n", - "2019-01-16 04:12:09,355 : INFO : topic diff=0.042170, rho=0.107833\n", - "2019-01-16 04:12:09,927 : INFO : PROGRESS: pass 0, at document #174000/4922894\n", - "2019-01-16 04:12:12,218 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:12,775 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.031*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.018*\"berlin\" + 0.013*\"dutch\" + 0.013*\"und\" + 0.013*\"die\" + 0.010*\"johann\"\n", - "2019-01-16 04:12:12,777 : INFO : topic #14 (0.020): 0.018*\"compani\" + 0.016*\"univers\" + 0.012*\"develop\" + 0.012*\"research\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.010*\"institut\" + 0.010*\"work\" + 0.009*\"scienc\" + 0.009*\"busi\"\n", - "2019-01-16 04:12:12,779 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.029*\"publish\" + 0.020*\"work\" + 0.013*\"new\" + 0.012*\"univers\" + 0.012*\"novel\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"press\" + 0.010*\"writer\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:12:12,780 : INFO : topic #9 (0.020): 0.072*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.014*\"role\" + 0.013*\"actor\" + 0.012*\"direct\" + 0.012*\"televis\"\n", - "2019-01-16 04:12:12,782 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.029*\"final\" + 0.027*\"tournament\" + 0.025*\"winner\" + 0.025*\"open\" + 0.015*\"doubl\" + 0.015*\"draw\" + 0.015*\"singl\" + 0.015*\"runner\" + 0.011*\"hard\"\n", - "2019-01-16 04:12:12,788 : INFO : topic diff=0.037235, rho=0.107211\n", - "2019-01-16 04:12:13,367 : INFO : PROGRESS: pass 0, at document #176000/4922894\n", - "2019-01-16 04:12:15,605 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:16,159 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.018*\"station\" + 0.015*\"island\" + 0.015*\"area\" + 0.015*\"line\" + 0.015*\"road\" + 0.014*\"park\" + 0.014*\"railwai\" + 0.012*\"lake\" + 0.012*\"rout\"\n", - "2019-01-16 04:12:16,161 : INFO : topic #46 (0.020): 0.106*\"class\" + 0.064*\"align\" + 0.063*\"center\" + 0.046*\"style\" + 0.045*\"wikit\" + 0.038*\"left\" + 0.037*\"philippin\" + 0.035*\"right\" + 0.032*\"text\" + 0.027*\"border\"\n", - "2019-01-16 04:12:16,163 : INFO : topic #48 (0.020): 0.076*\"august\" + 0.073*\"octob\" + 0.073*\"januari\" + 0.072*\"march\" + 0.070*\"juli\" + 0.070*\"septemb\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.064*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 04:12:16,165 : INFO : topic #8 (0.020): 0.052*\"district\" + 0.034*\"india\" + 0.029*\"villag\" + 0.027*\"indian\" + 0.019*\"municip\" + 0.018*\"provinc\" + 0.013*\"popul\" + 0.013*\"pakistan\" + 0.010*\"region\" + 0.010*\"rural\"\n", - "2019-01-16 04:12:16,167 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.033*\"team\" + 0.031*\"plai\" + 0.029*\"club\" + 0.023*\"season\" + 0.022*\"cup\" + 0.019*\"footbal\" + 0.018*\"match\" + 0.017*\"player\" + 0.014*\"goal\"\n", - "2019-01-16 04:12:16,173 : INFO : topic diff=0.042123, rho=0.106600\n", - "2019-01-16 04:12:16,776 : INFO : PROGRESS: pass 0, at document #178000/4922894\n", - "2019-01-16 04:12:19,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:19,729 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.026*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.016*\"spain\" + 0.013*\"santa\" + 0.010*\"brazil\" + 0.010*\"juan\" + 0.009*\"josé\" + 0.009*\"antonio\"\n", - "2019-01-16 04:12:19,732 : INFO : topic #45 (0.020): 0.014*\"american\" + 0.014*\"john\" + 0.012*\"david\" + 0.011*\"born\" + 0.010*\"michael\" + 0.009*\"robert\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:12:19,733 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.023*\"state\" + 0.021*\"court\" + 0.017*\"act\" + 0.012*\"offic\" + 0.010*\"case\" + 0.008*\"legal\" + 0.008*\"feder\" + 0.008*\"justic\" + 0.008*\"presid\"\n", - "2019-01-16 04:12:19,735 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.010*\"theori\" + 0.009*\"exampl\" + 0.008*\"point\" + 0.008*\"space\" + 0.008*\"valu\" + 0.008*\"set\" + 0.007*\"model\" + 0.007*\"group\"\n", - "2019-01-16 04:12:19,738 : INFO : topic #41 (0.020): 0.033*\"book\" + 0.030*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"univers\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"press\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:12:19,744 : INFO : topic diff=0.037512, rho=0.106000\n", - "2019-01-16 04:12:24,957 : INFO : -11.784 per-word bound, 3526.8 perplexity estimate based on a held-out corpus of 2000 documents with 552853 words\n", - "2019-01-16 04:12:24,958 : INFO : PROGRESS: pass 0, at document #180000/4922894\n", - "2019-01-16 04:12:27,245 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:27,798 : INFO : topic #33 (0.020): 0.011*\"increas\" + 0.010*\"rate\" + 0.009*\"bank\" + 0.009*\"million\" + 0.009*\"time\" + 0.007*\"number\" + 0.007*\"market\" + 0.007*\"level\" + 0.007*\"requir\" + 0.007*\"cost\"\n", - "2019-01-16 04:12:27,800 : INFO : topic #27 (0.020): 0.044*\"russian\" + 0.026*\"soviet\" + 0.025*\"russia\" + 0.020*\"jewish\" + 0.018*\"polish\" + 0.016*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"born\" + 0.012*\"czech\"\n", - "2019-01-16 04:12:27,801 : INFO : topic #40 (0.020): 0.027*\"bar\" + 0.024*\"africa\" + 0.020*\"african\" + 0.017*\"till\" + 0.016*\"text\" + 0.015*\"south\" + 0.015*\"color\" + 0.009*\"coloni\" + 0.009*\"agricultur\" + 0.009*\"popul\"\n", - "2019-01-16 04:12:27,803 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.019*\"radio\" + 0.017*\"station\" + 0.015*\"broadcast\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.009*\"host\" + 0.009*\"program\" + 0.009*\"network\" + 0.009*\"air\"\n", - "2019-01-16 04:12:27,805 : INFO : topic #39 (0.020): 0.037*\"air\" + 0.021*\"oper\" + 0.021*\"aircraft\" + 0.019*\"unit\" + 0.019*\"forc\" + 0.015*\"navi\" + 0.015*\"servic\" + 0.013*\"airport\" + 0.013*\"squadron\" + 0.011*\"flight\"\n", - "2019-01-16 04:12:27,811 : INFO : topic diff=0.037531, rho=0.105409\n", - "2019-01-16 04:12:28,421 : INFO : PROGRESS: pass 0, at document #182000/4922894\n", - "2019-01-16 04:12:30,716 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:31,270 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.030*\"final\" + 0.027*\"winner\" + 0.027*\"tournament\" + 0.022*\"open\" + 0.015*\"runner\" + 0.015*\"doubl\" + 0.014*\"singl\" + 0.013*\"draw\" + 0.011*\"clai\"\n", - "2019-01-16 04:12:31,272 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"famili\" + 0.011*\"genu\" + 0.010*\"bird\" + 0.010*\"plant\" + 0.009*\"white\" + 0.007*\"red\" + 0.007*\"black\" + 0.006*\"tree\" + 0.006*\"fish\"\n", - "2019-01-16 04:12:31,274 : INFO : topic #34 (0.020): 0.075*\"canada\" + 0.061*\"canadian\" + 0.028*\"ontario\" + 0.024*\"toronto\" + 0.018*\"malaysia\" + 0.017*\"korea\" + 0.015*\"island\" + 0.015*\"ye\" + 0.014*\"singapor\" + 0.014*\"british\"\n", - "2019-01-16 04:12:31,276 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.023*\"contest\" + 0.023*\"wrestl\" + 0.019*\"fight\" + 0.016*\"titl\" + 0.016*\"elimin\" + 0.015*\"week\" + 0.014*\"box\" + 0.012*\"dai\" + 0.012*\"challeng\"\n", - "2019-01-16 04:12:31,278 : INFO : topic #17 (0.020): 0.054*\"race\" + 0.018*\"championship\" + 0.018*\"team\" + 0.016*\"car\" + 0.014*\"world\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.010*\"driver\" + 0.010*\"won\"\n", - "2019-01-16 04:12:31,284 : INFO : topic diff=0.040293, rho=0.104828\n", - "2019-01-16 04:12:31,873 : INFO : PROGRESS: pass 0, at document #184000/4922894\n", - "2019-01-16 04:12:34,103 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:34,656 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.032*\"new\" + 0.029*\"american\" + 0.022*\"unit\" + 0.021*\"york\" + 0.016*\"citi\" + 0.015*\"california\" + 0.015*\"counti\" + 0.012*\"univers\" + 0.012*\"texa\"\n", - "2019-01-16 04:12:34,658 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.023*\"state\" + 0.022*\"court\" + 0.016*\"act\" + 0.012*\"offic\" + 0.011*\"case\" + 0.008*\"right\" + 0.008*\"legal\" + 0.008*\"public\" + 0.008*\"feder\"\n", - "2019-01-16 04:12:34,660 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.031*\"work\" + 0.024*\"artist\" + 0.023*\"design\" + 0.023*\"paint\" + 0.016*\"exhibit\" + 0.013*\"collect\" + 0.013*\"galleri\" + 0.011*\"new\"\n", - "2019-01-16 04:12:34,662 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.019*\"son\" + 0.017*\"di\" + 0.014*\"marri\" + 0.014*\"famili\" + 0.014*\"father\" + 0.013*\"death\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"cathol\"\n", - "2019-01-16 04:12:34,665 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.031*\"final\" + 0.027*\"tournament\" + 0.026*\"winner\" + 0.021*\"open\" + 0.015*\"runner\" + 0.014*\"singl\" + 0.014*\"doubl\" + 0.013*\"draw\" + 0.011*\"champion\"\n", - "2019-01-16 04:12:34,670 : INFO : topic diff=0.035548, rho=0.104257\n", - "2019-01-16 04:12:35,235 : INFO : PROGRESS: pass 0, at document #186000/4922894\n", - "2019-01-16 04:12:37,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:38,065 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.029*\"soviet\" + 0.027*\"russia\" + 0.018*\"jewish\" + 0.017*\"republ\" + 0.016*\"polish\" + 0.016*\"israel\" + 0.014*\"moscow\" + 0.013*\"born\" + 0.012*\"germani\"\n", - "2019-01-16 04:12:38,067 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.075*\"march\" + 0.074*\"octob\" + 0.074*\"august\" + 0.071*\"januari\" + 0.070*\"juli\" + 0.065*\"june\" + 0.065*\"novemb\" + 0.065*\"april\" + 0.063*\"decemb\"\n", - "2019-01-16 04:12:38,068 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.032*\"new\" + 0.029*\"american\" + 0.021*\"unit\" + 0.021*\"york\" + 0.016*\"citi\" + 0.015*\"california\" + 0.014*\"counti\" + 0.012*\"univers\" + 0.011*\"washington\"\n", - "2019-01-16 04:12:38,071 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.018*\"london\" + 0.015*\"british\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.012*\"sir\" + 0.011*\"royal\" + 0.011*\"thoma\" + 0.011*\"ireland\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:12:38,072 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.019*\"command\" + 0.018*\"forc\" + 0.016*\"battl\" + 0.015*\"divis\" + 0.015*\"gener\" + 0.014*\"militari\" + 0.013*\"regiment\" + 0.010*\"infantri\"\n", - "2019-01-16 04:12:38,079 : INFO : topic diff=0.038786, rho=0.103695\n", - "2019-01-16 04:12:38,610 : INFO : PROGRESS: pass 0, at document #188000/4922894\n", - "2019-01-16 04:12:40,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:41,445 : INFO : topic #1 (0.020): 0.041*\"album\" + 0.028*\"song\" + 0.026*\"record\" + 0.025*\"releas\" + 0.023*\"band\" + 0.017*\"music\" + 0.015*\"singl\" + 0.014*\"track\" + 0.014*\"chart\" + 0.011*\"guitar\"\n", - "2019-01-16 04:12:41,447 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.030*\"publish\" + 0.019*\"work\" + 0.013*\"new\" + 0.012*\"univers\" + 0.012*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.011*\"press\" + 0.011*\"writer\"\n", - "2019-01-16 04:12:41,448 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.038*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.023*\"saint\" + 0.022*\"jean\" + 0.015*\"itali\" + 0.014*\"de\" + 0.012*\"le\" + 0.012*\"pierr\"\n", - "2019-01-16 04:12:41,450 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.013*\"famili\" + 0.012*\"genu\" + 0.010*\"white\" + 0.009*\"plant\" + 0.009*\"bird\" + 0.008*\"black\" + 0.008*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", - "2019-01-16 04:12:41,452 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.021*\"oper\" + 0.021*\"aircraft\" + 0.020*\"forc\" + 0.019*\"unit\" + 0.016*\"servic\" + 0.015*\"airport\" + 0.014*\"squadron\" + 0.014*\"navi\" + 0.011*\"flight\"\n", - "2019-01-16 04:12:41,459 : INFO : topic diff=0.038794, rho=0.103142\n", - "2019-01-16 04:12:42,044 : INFO : PROGRESS: pass 0, at document #190000/4922894\n", - "2019-01-16 04:12:44,320 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:44,878 : INFO : topic #46 (0.020): 0.111*\"class\" + 0.078*\"align\" + 0.062*\"left\" + 0.059*\"center\" + 0.046*\"style\" + 0.046*\"wikit\" + 0.036*\"philippin\" + 0.030*\"text\" + 0.030*\"right\" + 0.028*\"border\"\n", - "2019-01-16 04:12:44,880 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.025*\"town\" + 0.024*\"england\" + 0.020*\"cricket\" + 0.019*\"citi\" + 0.015*\"scotland\" + 0.015*\"scottish\" + 0.011*\"manchest\" + 0.010*\"west\" + 0.009*\"counti\"\n", - "2019-01-16 04:12:44,882 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.016*\"british\" + 0.014*\"georg\" + 0.013*\"jame\" + 0.012*\"sir\" + 0.011*\"royal\" + 0.011*\"thoma\" + 0.011*\"ireland\"\n", - "2019-01-16 04:12:44,884 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.014*\"famili\" + 0.014*\"marri\" + 0.013*\"father\" + 0.013*\"death\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:12:44,885 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.025*\"contest\" + 0.021*\"wrestl\" + 0.017*\"titl\" + 0.017*\"fight\" + 0.015*\"elimin\" + 0.015*\"safe\" + 0.015*\"box\" + 0.013*\"week\" + 0.011*\"challeng\"\n", - "2019-01-16 04:12:44,891 : INFO : topic diff=0.036943, rho=0.102598\n", - "2019-01-16 04:12:45,476 : INFO : PROGRESS: pass 0, at document #192000/4922894\n", - "2019-01-16 04:12:47,841 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:48,402 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"famili\" + 0.011*\"genu\" + 0.010*\"white\" + 0.009*\"plant\" + 0.009*\"bird\" + 0.008*\"black\" + 0.008*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", - "2019-01-16 04:12:48,404 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.049*\"parti\" + 0.025*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.016*\"presid\" + 0.015*\"council\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.012*\"candid\"\n", - "2019-01-16 04:12:48,406 : INFO : topic #46 (0.020): 0.111*\"class\" + 0.075*\"align\" + 0.062*\"left\" + 0.057*\"center\" + 0.046*\"wikit\" + 0.045*\"style\" + 0.040*\"philippin\" + 0.030*\"text\" + 0.029*\"right\" + 0.027*\"border\"\n", - "2019-01-16 04:12:48,407 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.024*\"state\" + 0.023*\"court\" + 0.017*\"act\" + 0.011*\"offic\" + 0.011*\"case\" + 0.009*\"feder\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"justic\"\n", - "2019-01-16 04:12:48,410 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.030*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"univers\" + 0.012*\"novel\" + 0.012*\"edit\" + 0.011*\"press\" + 0.011*\"stori\" + 0.011*\"writer\"\n", - "2019-01-16 04:12:48,416 : INFO : topic diff=0.040764, rho=0.102062\n", - "2019-01-16 04:12:48,958 : INFO : PROGRESS: pass 0, at document #194000/4922894\n", - "2019-01-16 04:12:51,218 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:51,771 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.026*\"men\" + 0.025*\"japan\" + 0.025*\"world\" + 0.024*\"olymp\" + 0.023*\"medal\" + 0.022*\"championship\" + 0.021*\"japanes\" + 0.021*\"event\" + 0.018*\"gold\"\n", - "2019-01-16 04:12:51,773 : INFO : topic #9 (0.020): 0.075*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"direct\" + 0.012*\"actor\" + 0.011*\"televis\"\n", - "2019-01-16 04:12:51,776 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.016*\"british\" + 0.014*\"georg\" + 0.013*\"jame\" + 0.012*\"sir\" + 0.012*\"thoma\" + 0.012*\"royal\" + 0.010*\"ireland\"\n", - "2019-01-16 04:12:51,778 : INFO : topic #35 (0.020): 0.047*\"minist\" + 0.024*\"prime\" + 0.020*\"thailand\" + 0.020*\"indonesia\" + 0.015*\"thai\" + 0.011*\"chan\" + 0.011*\"bulgarian\" + 0.010*\"indonesian\" + 0.010*\"chi\" + 0.009*\"wong\"\n", - "2019-01-16 04:12:51,780 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.029*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.012*\"univers\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.010*\"writer\"\n", - "2019-01-16 04:12:51,786 : INFO : topic diff=0.034410, rho=0.101535\n", - "2019-01-16 04:12:52,368 : INFO : PROGRESS: pass 0, at document #196000/4922894\n", - "2019-01-16 04:12:54,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:55,150 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.013*\"american\" + 0.011*\"david\" + 0.011*\"born\" + 0.010*\"michael\" + 0.008*\"robert\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:12:55,152 : INFO : topic #23 (0.020): 0.028*\"medic\" + 0.026*\"health\" + 0.023*\"hospit\" + 0.015*\"diseas\" + 0.014*\"ret\" + 0.013*\"medicin\" + 0.013*\"patient\" + 0.011*\"treatment\" + 0.011*\"cancer\" + 0.011*\"clinic\"\n", - "2019-01-16 04:12:55,154 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"point\" + 0.009*\"group\" + 0.009*\"theori\" + 0.009*\"exampl\" + 0.008*\"space\" + 0.007*\"model\" + 0.007*\"valu\" + 0.007*\"set\"\n", - "2019-01-16 04:12:55,156 : INFO : topic #8 (0.020): 0.052*\"district\" + 0.033*\"india\" + 0.030*\"villag\" + 0.028*\"indian\" + 0.020*\"provinc\" + 0.017*\"municip\" + 0.012*\"popul\" + 0.011*\"pakistan\" + 0.010*\"rural\" + 0.009*\"region\"\n", - "2019-01-16 04:12:55,158 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.030*\"final\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.019*\"open\" + 0.014*\"singl\" + 0.013*\"runner\" + 0.012*\"doubl\" + 0.012*\"detail\" + 0.011*\"draw\"\n", - "2019-01-16 04:12:55,164 : INFO : topic diff=0.033151, rho=0.101015\n", - "2019-01-16 04:12:55,760 : INFO : PROGRESS: pass 0, at document #198000/4922894\n", - "2019-01-16 04:12:58,091 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:12:58,645 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.013*\"centuri\" + 0.011*\"templ\" + 0.010*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.007*\"arab\" + 0.007*\"citi\"\n", - "2019-01-16 04:12:58,647 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.016*\"coach\" + 0.013*\"footbal\" + 0.012*\"year\" + 0.012*\"player\" + 0.010*\"record\" + 0.008*\"career\"\n", - "2019-01-16 04:12:58,649 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"god\" + 0.006*\"form\" + 0.006*\"centuri\" + 0.006*\"mean\" + 0.005*\"peopl\" + 0.005*\"differ\" + 0.005*\"us\" + 0.005*\"cultur\"\n", - "2019-01-16 04:12:58,651 : INFO : topic #48 (0.020): 0.075*\"august\" + 0.072*\"march\" + 0.071*\"octob\" + 0.071*\"septemb\" + 0.070*\"juli\" + 0.068*\"januari\" + 0.067*\"decemb\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"april\"\n", - "2019-01-16 04:12:58,653 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.023*\"saint\" + 0.023*\"pari\" + 0.019*\"jean\" + 0.016*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:12:58,659 : INFO : topic diff=0.035868, rho=0.100504\n", - "2019-01-16 04:13:03,844 : INFO : -11.563 per-word bound, 3025.4 perplexity estimate based on a held-out corpus of 2000 documents with 555696 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:13:03,845 : INFO : PROGRESS: pass 0, at document #200000/4922894\n", - "2019-01-16 04:13:06,126 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:06,680 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.021*\"festiv\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"danc\" + 0.015*\"orchestra\" + 0.015*\"plai\" + 0.014*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 04:13:06,682 : INFO : topic #48 (0.020): 0.074*\"august\" + 0.072*\"octob\" + 0.072*\"march\" + 0.072*\"septemb\" + 0.070*\"januari\" + 0.070*\"juli\" + 0.067*\"decemb\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"april\"\n", - "2019-01-16 04:13:06,684 : INFO : topic #22 (0.020): 0.049*\"counti\" + 0.046*\"popul\" + 0.036*\"town\" + 0.035*\"ag\" + 0.032*\"township\" + 0.025*\"famili\" + 0.025*\"household\" + 0.023*\"citi\" + 0.022*\"censu\" + 0.021*\"commun\"\n", - "2019-01-16 04:13:06,686 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.028*\"soviet\" + 0.027*\"russia\" + 0.018*\"israel\" + 0.018*\"jewish\" + 0.017*\"republ\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.013*\"czech\" + 0.012*\"born\"\n", - "2019-01-16 04:13:06,688 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.028*\"armi\" + 0.019*\"forc\" + 0.019*\"command\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"divis\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.009*\"infantri\"\n", - "2019-01-16 04:13:06,694 : INFO : topic diff=0.033886, rho=0.100000\n", - "2019-01-16 04:13:07,292 : INFO : PROGRESS: pass 0, at document #202000/4922894\n", - "2019-01-16 04:13:09,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:10,066 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.022*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.017*\"itali\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:13:10,068 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.031*\"work\" + 0.026*\"artist\" + 0.022*\"paint\" + 0.022*\"design\" + 0.015*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.012*\"painter\"\n", - "2019-01-16 04:13:10,070 : INFO : topic #22 (0.020): 0.050*\"counti\" + 0.046*\"popul\" + 0.039*\"ag\" + 0.036*\"town\" + 0.030*\"township\" + 0.025*\"household\" + 0.024*\"famili\" + 0.023*\"citi\" + 0.021*\"censu\" + 0.021*\"year\"\n", - "2019-01-16 04:13:10,072 : INFO : topic #40 (0.020): 0.025*\"africa\" + 0.023*\"african\" + 0.022*\"bar\" + 0.016*\"south\" + 0.015*\"till\" + 0.013*\"text\" + 0.012*\"color\" + 0.010*\"agricultur\" + 0.010*\"coloni\" + 0.009*\"peopl\"\n", - "2019-01-16 04:13:10,075 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"love\" + 0.005*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:13:10,081 : INFO : topic diff=0.034190, rho=0.099504\n", - "2019-01-16 04:13:10,687 : INFO : PROGRESS: pass 0, at document #204000/4922894\n", - "2019-01-16 04:13:12,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:13,528 : INFO : topic #49 (0.020): 0.056*\"east\" + 0.053*\"north\" + 0.048*\"region\" + 0.047*\"west\" + 0.045*\"south\" + 0.026*\"swedish\" + 0.024*\"sweden\" + 0.023*\"norwai\" + 0.021*\"central\" + 0.021*\"villag\"\n", - "2019-01-16 04:13:13,530 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.009*\"theori\" + 0.009*\"point\" + 0.009*\"group\" + 0.008*\"exampl\" + 0.008*\"mathemat\" + 0.008*\"space\" + 0.007*\"valu\" + 0.007*\"gener\"\n", - "2019-01-16 04:13:13,532 : INFO : topic #23 (0.020): 0.026*\"medic\" + 0.024*\"health\" + 0.024*\"hospit\" + 0.020*\"ret\" + 0.015*\"diseas\" + 0.013*\"patient\" + 0.012*\"medicin\" + 0.012*\"cancer\" + 0.011*\"treatment\" + 0.011*\"clinic\"\n", - "2019-01-16 04:13:13,533 : INFO : topic #22 (0.020): 0.050*\"counti\" + 0.047*\"popul\" + 0.040*\"ag\" + 0.036*\"town\" + 0.029*\"township\" + 0.025*\"household\" + 0.024*\"famili\" + 0.023*\"citi\" + 0.021*\"censu\" + 0.021*\"year\"\n", - "2019-01-16 04:13:13,535 : INFO : topic #24 (0.020): 0.026*\"ship\" + 0.015*\"polic\" + 0.011*\"kill\" + 0.009*\"gun\" + 0.008*\"attack\" + 0.008*\"report\" + 0.007*\"damag\" + 0.007*\"boat\" + 0.007*\"crew\" + 0.007*\"prison\"\n", - "2019-01-16 04:13:13,541 : INFO : topic diff=0.035826, rho=0.099015\n", - "2019-01-16 04:13:14,167 : INFO : PROGRESS: pass 0, at document #206000/4922894\n", - "2019-01-16 04:13:16,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:17,065 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.010*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"foreign\"\n", - "2019-01-16 04:13:17,067 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.049*\"parti\" + 0.025*\"member\" + 0.020*\"democrat\" + 0.020*\"vote\" + 0.016*\"presid\" + 0.016*\"council\" + 0.015*\"republican\" + 0.013*\"repres\" + 0.013*\"candid\"\n", - "2019-01-16 04:13:17,069 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.026*\"award\" + 0.024*\"best\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.012*\"direct\" + 0.012*\"televis\"\n", - "2019-01-16 04:13:17,072 : INFO : topic #48 (0.020): 0.076*\"octob\" + 0.074*\"august\" + 0.074*\"septemb\" + 0.074*\"march\" + 0.072*\"januari\" + 0.070*\"juli\" + 0.070*\"novemb\" + 0.068*\"decemb\" + 0.066*\"april\" + 0.064*\"june\"\n", - "2019-01-16 04:13:17,074 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"coach\" + 0.015*\"plai\" + 0.012*\"footbal\" + 0.012*\"player\" + 0.012*\"year\" + 0.010*\"record\" + 0.008*\"basketbal\"\n", - "2019-01-16 04:13:17,080 : INFO : topic diff=0.029509, rho=0.098533\n", - "2019-01-16 04:13:17,651 : INFO : PROGRESS: pass 0, at document #208000/4922894\n", - "2019-01-16 04:13:19,958 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:20,516 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"god\" + 0.006*\"mean\" + 0.006*\"centuri\" + 0.005*\"peopl\" + 0.005*\"cultur\" + 0.005*\"differ\" + 0.005*\"us\"\n", - "2019-01-16 04:13:20,518 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.015*\"famili\" + 0.014*\"marri\" + 0.014*\"born\" + 0.013*\"father\" + 0.012*\"death\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:13:20,519 : INFO : topic #23 (0.020): 0.031*\"hospit\" + 0.026*\"medic\" + 0.025*\"health\" + 0.017*\"ret\" + 0.015*\"diseas\" + 0.013*\"patient\" + 0.013*\"children\" + 0.012*\"medicin\" + 0.012*\"cancer\" + 0.011*\"treatment\"\n", - "2019-01-16 04:13:20,522 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"love\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 04:13:20,525 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.032*\"univers\" + 0.029*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"district\" + 0.011*\"graduat\" + 0.009*\"program\"\n", - "2019-01-16 04:13:20,531 : INFO : topic diff=0.034736, rho=0.098058\n", - "2019-01-16 04:13:21,083 : INFO : PROGRESS: pass 0, at document #210000/4922894\n", - "2019-01-16 04:13:23,384 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:23,943 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"love\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:13:23,945 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.024*\"court\" + 0.022*\"state\" + 0.019*\"act\" + 0.011*\"offic\" + 0.010*\"case\" + 0.008*\"justic\" + 0.008*\"feder\" + 0.008*\"legal\" + 0.008*\"public\"\n", - "2019-01-16 04:13:23,947 : INFO : topic #14 (0.020): 0.018*\"compani\" + 0.017*\"univers\" + 0.013*\"research\" + 0.012*\"develop\" + 0.011*\"institut\" + 0.010*\"work\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.009*\"intern\" + 0.009*\"busi\"\n", - "2019-01-16 04:13:23,948 : INFO : topic #49 (0.020): 0.054*\"east\" + 0.052*\"north\" + 0.049*\"region\" + 0.048*\"west\" + 0.045*\"south\" + 0.025*\"swedish\" + 0.022*\"sweden\" + 0.021*\"norwai\" + 0.020*\"central\" + 0.020*\"villag\"\n", - "2019-01-16 04:13:23,950 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.037*\"colleg\" + 0.036*\"student\" + 0.031*\"univers\" + 0.029*\"educ\" + 0.028*\"high\" + 0.015*\"year\" + 0.012*\"district\" + 0.011*\"graduat\" + 0.009*\"program\"\n", - "2019-01-16 04:13:23,956 : INFO : topic diff=0.029127, rho=0.097590\n", - "2019-01-16 04:13:24,536 : INFO : PROGRESS: pass 0, at document #212000/4922894\n", - "2019-01-16 04:13:26,796 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:27,357 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.015*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"francisco\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:13:27,358 : INFO : topic #8 (0.020): 0.049*\"district\" + 0.034*\"india\" + 0.028*\"villag\" + 0.027*\"indian\" + 0.020*\"provinc\" + 0.018*\"municip\" + 0.013*\"http\" + 0.012*\"popul\" + 0.010*\"pakistan\" + 0.010*\"rural\"\n", - "2019-01-16 04:13:27,360 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"nation\" + 0.013*\"state\" + 0.011*\"polit\" + 0.009*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"war\"\n", - "2019-01-16 04:13:27,362 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.022*\"oper\" + 0.022*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.015*\"servic\" + 0.015*\"navi\" + 0.014*\"squadron\" + 0.011*\"base\"\n", - "2019-01-16 04:13:27,364 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"white\" + 0.012*\"famili\" + 0.009*\"genu\" + 0.009*\"plant\" + 0.008*\"bird\" + 0.008*\"black\" + 0.008*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 04:13:27,370 : INFO : topic diff=0.031418, rho=0.097129\n", - "2019-01-16 04:13:27,934 : INFO : PROGRESS: pass 0, at document #214000/4922894\n", - "2019-01-16 04:13:30,211 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:30,770 : INFO : topic #8 (0.020): 0.048*\"district\" + 0.033*\"india\" + 0.027*\"indian\" + 0.027*\"villag\" + 0.020*\"provinc\" + 0.018*\"municip\" + 0.013*\"http\" + 0.012*\"popul\" + 0.010*\"pakistan\" + 0.010*\"rural\"\n", - "2019-01-16 04:13:30,773 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.010*\"brazil\" + 0.009*\"josé\" + 0.009*\"juan\" + 0.009*\"francisco\"\n", - "2019-01-16 04:13:30,775 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.019*\"work\" + 0.014*\"stori\" + 0.013*\"new\" + 0.013*\"univers\" + 0.012*\"edit\" + 0.012*\"novel\" + 0.011*\"press\" + 0.011*\"magazin\"\n", - "2019-01-16 04:13:30,777 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.016*\"british\" + 0.016*\"georg\" + 0.013*\"jame\" + 0.012*\"thoma\" + 0.012*\"royal\" + 0.011*\"sir\" + 0.011*\"henri\"\n", - "2019-01-16 04:13:30,778 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"organ\"\n", - "2019-01-16 04:13:30,784 : INFO : topic diff=0.030167, rho=0.096674\n", - "2019-01-16 04:13:31,374 : INFO : PROGRESS: pass 0, at document #216000/4922894\n", - "2019-01-16 04:13:33,668 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:34,221 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.038*\"colleg\" + 0.036*\"student\" + 0.031*\"educ\" + 0.031*\"univers\" + 0.028*\"high\" + 0.015*\"year\" + 0.012*\"district\" + 0.011*\"graduat\" + 0.009*\"program\"\n", - "2019-01-16 04:13:34,223 : INFO : topic #35 (0.020): 0.048*\"minist\" + 0.028*\"prime\" + 0.021*\"thailand\" + 0.018*\"indonesia\" + 0.017*\"thai\" + 0.014*\"bulgarian\" + 0.012*\"chan\" + 0.012*\"indonesian\" + 0.011*\"chi\" + 0.011*\"vietnam\"\n", - "2019-01-16 04:13:34,225 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.030*\"final\" + 0.028*\"tournament\" + 0.027*\"open\" + 0.019*\"winner\" + 0.014*\"singl\" + 0.012*\"doubl\" + 0.012*\"group\" + 0.012*\"runner\" + 0.012*\"draw\"\n", - "2019-01-16 04:13:34,228 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.011*\"jpg\" + 0.010*\"histor\" + 0.010*\"centuri\" + 0.010*\"locat\" + 0.009*\"site\" + 0.009*\"file\"\n", - "2019-01-16 04:13:34,229 : INFO : topic #23 (0.020): 0.029*\"hospit\" + 0.027*\"medic\" + 0.025*\"health\" + 0.014*\"ret\" + 0.014*\"patient\" + 0.014*\"diseas\" + 0.012*\"children\" + 0.012*\"treatment\" + 0.011*\"medicin\" + 0.011*\"cancer\"\n", - "2019-01-16 04:13:34,235 : INFO : topic diff=0.031833, rho=0.096225\n", - "2019-01-16 04:13:34,774 : INFO : PROGRESS: pass 0, at document #218000/4922894\n", - "2019-01-16 04:13:36,998 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:37,552 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.025*\"soviet\" + 0.025*\"russia\" + 0.019*\"israel\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.016*\"republ\" + 0.015*\"moscow\" + 0.013*\"czech\" + 0.013*\"poland\"\n", - "2019-01-16 04:13:37,554 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.018*\"station\" + 0.016*\"line\" + 0.014*\"island\" + 0.014*\"area\" + 0.013*\"road\" + 0.013*\"railwai\" + 0.013*\"rout\" + 0.012*\"park\" + 0.012*\"north\"\n", - "2019-01-16 04:13:37,556 : INFO : topic #35 (0.020): 0.047*\"minist\" + 0.027*\"prime\" + 0.019*\"thailand\" + 0.018*\"indonesia\" + 0.016*\"thai\" + 0.014*\"bulgarian\" + 0.013*\"chan\" + 0.012*\"indonesian\" + 0.010*\"vietnam\" + 0.010*\"chi\"\n", - "2019-01-16 04:13:37,558 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.076*\"align\" + 0.059*\"left\" + 0.056*\"center\" + 0.050*\"wikit\" + 0.049*\"style\" + 0.040*\"right\" + 0.034*\"philippin\" + 0.027*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:13:37,560 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.013*\"white\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.009*\"genu\" + 0.008*\"black\" + 0.008*\"red\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.006*\"tree\"\n", - "2019-01-16 04:13:37,565 : INFO : topic diff=0.030099, rho=0.095783\n", - "2019-01-16 04:13:42,792 : INFO : -11.809 per-word bound, 3588.7 perplexity estimate based on a held-out corpus of 2000 documents with 558022 words\n", - "2019-01-16 04:13:42,793 : INFO : PROGRESS: pass 0, at document #220000/4922894\n", - "2019-01-16 04:13:45,137 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:45,693 : INFO : topic #0 (0.020): 0.041*\"war\" + 0.028*\"armi\" + 0.020*\"forc\" + 0.019*\"command\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.009*\"soldier\"\n", - "2019-01-16 04:13:45,695 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.073*\"align\" + 0.059*\"center\" + 0.058*\"left\" + 0.049*\"wikit\" + 0.047*\"style\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.026*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:13:45,697 : INFO : topic #27 (0.020): 0.038*\"russian\" + 0.025*\"soviet\" + 0.025*\"russia\" + 0.021*\"israel\" + 0.020*\"polish\" + 0.018*\"jewish\" + 0.015*\"republ\" + 0.015*\"moscow\" + 0.014*\"poland\" + 0.013*\"born\"\n", - "2019-01-16 04:13:45,699 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.028*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.017*\"music\" + 0.017*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:13:45,700 : INFO : topic #22 (0.020): 0.051*\"counti\" + 0.046*\"popul\" + 0.037*\"ag\" + 0.033*\"town\" + 0.027*\"household\" + 0.024*\"citi\" + 0.023*\"famili\" + 0.023*\"township\" + 0.022*\"censu\" + 0.020*\"year\"\n", - "2019-01-16 04:13:45,706 : INFO : topic diff=0.026709, rho=0.095346\n", - "2019-01-16 04:13:46,280 : INFO : PROGRESS: pass 0, at document #222000/4922894\n", - "2019-01-16 04:13:48,618 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:49,176 : INFO : topic #14 (0.020): 0.017*\"compani\" + 0.017*\"univers\" + 0.013*\"research\" + 0.012*\"develop\" + 0.011*\"servic\" + 0.011*\"institut\" + 0.011*\"work\" + 0.010*\"manag\" + 0.009*\"intern\" + 0.009*\"nation\"\n", - "2019-01-16 04:13:49,178 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"white\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.009*\"black\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"red\" + 0.007*\"fish\" + 0.006*\"tree\"\n", - "2019-01-16 04:13:49,180 : INFO : topic #33 (0.020): 0.011*\"bank\" + 0.011*\"million\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.008*\"time\" + 0.008*\"market\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.006*\"result\"\n", - "2019-01-16 04:13:49,183 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.017*\"station\" + 0.016*\"line\" + 0.014*\"area\" + 0.014*\"road\" + 0.013*\"island\" + 0.013*\"railwai\" + 0.012*\"rout\" + 0.012*\"north\" + 0.011*\"park\"\n", - "2019-01-16 04:13:49,185 : INFO : topic #15 (0.020): 0.033*\"unit\" + 0.027*\"town\" + 0.025*\"england\" + 0.024*\"citi\" + 0.021*\"cricket\" + 0.019*\"scotland\" + 0.013*\"scottish\" + 0.011*\"manchest\" + 0.010*\"west\" + 0.009*\"english\"\n", - "2019-01-16 04:13:49,191 : INFO : topic diff=0.031477, rho=0.094916\n", - "2019-01-16 04:13:49,722 : INFO : PROGRESS: pass 0, at document #224000/4922894\n", - "2019-01-16 04:13:52,002 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:52,555 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.024*\"court\" + 0.021*\"state\" + 0.017*\"act\" + 0.011*\"offic\" + 0.011*\"case\" + 0.008*\"legal\" + 0.008*\"feder\" + 0.008*\"justic\" + 0.008*\"public\"\n", - "2019-01-16 04:13:52,557 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"releas\" + 0.028*\"song\" + 0.026*\"record\" + 0.022*\"band\" + 0.017*\"music\" + 0.017*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:13:52,559 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.018*\"di\" + 0.015*\"famili\" + 0.014*\"marri\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"death\" + 0.012*\"daughter\" + 0.011*\"year\"\n", - "2019-01-16 04:13:52,562 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.077*\"march\" + 0.077*\"octob\" + 0.075*\"januari\" + 0.074*\"juli\" + 0.072*\"august\" + 0.071*\"april\" + 0.071*\"june\" + 0.071*\"novemb\" + 0.068*\"decemb\"\n", - "2019-01-16 04:13:52,564 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.026*\"airport\" + 0.022*\"oper\" + 0.020*\"aircraft\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.016*\"squadron\" + 0.015*\"servic\" + 0.015*\"navi\" + 0.011*\"base\"\n", - "2019-01-16 04:13:52,570 : INFO : topic diff=0.030792, rho=0.094491\n", - "2019-01-16 04:13:53,104 : INFO : PROGRESS: pass 0, at document #226000/4922894\n", - "2019-01-16 04:13:55,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:55,915 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.019*\"work\" + 0.013*\"new\" + 0.013*\"stori\" + 0.013*\"univers\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:13:55,916 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.017*\"british\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.012*\"thoma\" + 0.011*\"sir\" + 0.011*\"henri\"\n", - "2019-01-16 04:13:55,918 : INFO : topic #33 (0.020): 0.010*\"bank\" + 0.010*\"million\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.009*\"time\" + 0.008*\"market\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.006*\"result\"\n", - "2019-01-16 04:13:55,919 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.010*\"host\" + 0.009*\"program\" + 0.009*\"air\" + 0.009*\"dai\"\n", - "2019-01-16 04:13:55,921 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"friend\" + 0.004*\"said\" + 0.004*\"love\" + 0.004*\"end\"\n", - "2019-01-16 04:13:55,927 : INFO : topic diff=0.027290, rho=0.094072\n", - "2019-01-16 04:13:56,495 : INFO : PROGRESS: pass 0, at document #228000/4922894\n", - "2019-01-16 04:13:58,741 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:13:59,299 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.027*\"saint\" + 0.023*\"pari\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.010*\"le\" + 0.010*\"loui\"\n", - "2019-01-16 04:13:59,302 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.013*\"stori\" + 0.013*\"univers\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:13:59,304 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.017*\"station\" + 0.016*\"line\" + 0.015*\"road\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.013*\"island\" + 0.012*\"north\" + 0.012*\"park\" + 0.012*\"rout\"\n", - "2019-01-16 04:13:59,305 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.010*\"bank\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.008*\"time\" + 0.008*\"market\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.006*\"year\"\n", - "2019-01-16 04:13:59,307 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.013*\"white\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.009*\"black\" + 0.008*\"genu\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 04:13:59,314 : INFO : topic diff=0.027219, rho=0.093659\n", - "2019-01-16 04:13:59,872 : INFO : PROGRESS: pass 0, at document #230000/4922894\n", - "2019-01-16 04:14:02,094 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:02,649 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.019*\"work\" + 0.014*\"new\" + 0.013*\"stori\" + 0.013*\"univers\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:14:02,651 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.010*\"bank\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.008*\"time\" + 0.008*\"market\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"requir\" + 0.006*\"result\"\n", - "2019-01-16 04:14:02,653 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.017*\"station\" + 0.016*\"line\" + 0.016*\"road\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.013*\"island\" + 0.013*\"rout\" + 0.012*\"park\" + 0.012*\"north\"\n", - "2019-01-16 04:14:02,654 : INFO : topic #16 (0.020): 0.028*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.015*\"famili\" + 0.014*\"marri\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"death\" + 0.012*\"daughter\" + 0.011*\"year\"\n", - "2019-01-16 04:14:02,656 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.024*\"court\" + 0.021*\"state\" + 0.017*\"act\" + 0.011*\"offic\" + 0.011*\"case\" + 0.008*\"legal\" + 0.008*\"feder\" + 0.008*\"public\" + 0.008*\"judg\"\n", - "2019-01-16 04:14:02,662 : INFO : topic diff=0.026388, rho=0.093250\n", - "2019-01-16 04:14:03,233 : INFO : PROGRESS: pass 0, at document #232000/4922894\n", - "2019-01-16 04:14:05,514 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:06,069 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.027*\"saint\" + 0.024*\"pari\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.013*\"de\" + 0.011*\"le\" + 0.010*\"loui\"\n", - "2019-01-16 04:14:06,071 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"team\" + 0.017*\"car\" + 0.014*\"championship\" + 0.014*\"finish\" + 0.013*\"ford\" + 0.011*\"driver\" + 0.011*\"tour\" + 0.011*\"win\" + 0.011*\"world\"\n", - "2019-01-16 04:14:06,073 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.028*\"releas\" + 0.026*\"record\" + 0.023*\"band\" + 0.017*\"music\" + 0.016*\"singl\" + 0.013*\"track\" + 0.013*\"chart\" + 0.010*\"guitar\"\n", - "2019-01-16 04:14:06,075 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.031*\"work\" + 0.024*\"artist\" + 0.023*\"design\" + 0.022*\"paint\" + 0.016*\"collect\" + 0.015*\"exhibit\" + 0.012*\"galleri\" + 0.011*\"new\"\n", - "2019-01-16 04:14:06,077 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"like\" + 0.005*\"friend\" + 0.004*\"end\" + 0.004*\"love\" + 0.004*\"said\"\n", - "2019-01-16 04:14:06,083 : INFO : topic diff=0.026186, rho=0.092848\n", - "2019-01-16 04:14:06,674 : INFO : PROGRESS: pass 0, at document #234000/4922894\n", - "2019-01-16 04:14:08,933 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:09,486 : INFO : topic #28 (0.020): 0.025*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.011*\"jpg\" + 0.010*\"histor\" + 0.010*\"locat\" + 0.010*\"file\" + 0.010*\"site\" + 0.010*\"centuri\"\n", - "2019-01-16 04:14:09,488 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.050*\"parti\" + 0.025*\"member\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"presid\" + 0.015*\"council\" + 0.013*\"repres\" + 0.013*\"polit\" + 0.012*\"liber\"\n", - "2019-01-16 04:14:09,490 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.046*\"counti\" + 0.036*\"town\" + 0.036*\"ag\" + 0.028*\"citi\" + 0.026*\"household\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.021*\"township\" + 0.020*\"commun\"\n", - "2019-01-16 04:14:09,492 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"end\" + 0.004*\"love\" + 0.004*\"said\"\n", - "2019-01-16 04:14:09,495 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.023*\"aircraft\" + 0.023*\"airport\" + 0.021*\"oper\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.015*\"navi\" + 0.015*\"squadron\" + 0.015*\"servic\" + 0.012*\"flight\"\n", - "2019-01-16 04:14:09,501 : INFO : topic diff=0.028095, rho=0.092450\n", - "2019-01-16 04:14:10,068 : INFO : PROGRESS: pass 0, at document #236000/4922894\n", - "2019-01-16 04:14:12,308 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:12,861 : INFO : topic #35 (0.020): 0.041*\"minist\" + 0.023*\"prime\" + 0.022*\"indonesia\" + 0.021*\"thailand\" + 0.014*\"thai\" + 0.012*\"vietnam\" + 0.012*\"bulgarian\" + 0.012*\"indonesian\" + 0.010*\"chan\" + 0.009*\"cho\"\n", - "2019-01-16 04:14:12,863 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"end\" + 0.004*\"love\" + 0.004*\"said\"\n", - "2019-01-16 04:14:12,865 : INFO : topic #0 (0.020): 0.043*\"war\" + 0.029*\"armi\" + 0.020*\"battl\" + 0.019*\"command\" + 0.018*\"forc\" + 0.014*\"militari\" + 0.014*\"divis\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.011*\"infantri\"\n", - "2019-01-16 04:14:12,867 : INFO : topic #15 (0.020): 0.032*\"unit\" + 0.026*\"england\" + 0.025*\"town\" + 0.021*\"cricket\" + 0.021*\"citi\" + 0.016*\"scotland\" + 0.012*\"scottish\" + 0.012*\"manchest\" + 0.010*\"west\" + 0.010*\"english\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:14:12,869 : INFO : topic #48 (0.020): 0.079*\"octob\" + 0.079*\"march\" + 0.076*\"septemb\" + 0.074*\"juli\" + 0.074*\"januari\" + 0.072*\"april\" + 0.072*\"novemb\" + 0.072*\"august\" + 0.071*\"june\" + 0.069*\"decemb\"\n", - "2019-01-16 04:14:12,876 : INFO : topic diff=0.027988, rho=0.092057\n", - "2019-01-16 04:14:13,441 : INFO : PROGRESS: pass 0, at document #238000/4922894\n", - "2019-01-16 04:14:15,673 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:16,229 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.021*\"contest\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.015*\"champion\" + 0.014*\"match\" + 0.013*\"point\" + 0.013*\"world\"\n", - "2019-01-16 04:14:16,231 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.010*\"bank\" + 0.010*\"increas\" + 0.009*\"rate\" + 0.009*\"time\" + 0.008*\"market\" + 0.007*\"number\" + 0.007*\"requir\" + 0.007*\"cost\" + 0.006*\"year\"\n", - "2019-01-16 04:14:16,233 : INFO : topic #18 (0.020): 0.007*\"light\" + 0.007*\"energi\" + 0.007*\"water\" + 0.007*\"earth\" + 0.006*\"surfac\" + 0.006*\"wind\" + 0.005*\"high\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"wave\"\n", - "2019-01-16 04:14:16,234 : INFO : topic #9 (0.020): 0.072*\"film\" + 0.027*\"award\" + 0.023*\"best\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"direct\" + 0.012*\"televis\" + 0.012*\"actor\"\n", - "2019-01-16 04:14:16,237 : INFO : topic #38 (0.020): 0.017*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.009*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"war\" + 0.007*\"peopl\" + 0.007*\"unit\"\n", - "2019-01-16 04:14:16,243 : INFO : topic diff=0.029300, rho=0.091670\n", - "2019-01-16 04:14:21,408 : INFO : -11.715 per-word bound, 3360.9 perplexity estimate based on a held-out corpus of 2000 documents with 540245 words\n", - "2019-01-16 04:14:21,409 : INFO : PROGRESS: pass 0, at document #240000/4922894\n", - "2019-01-16 04:14:23,651 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:24,213 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.021*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.011*\"street\" + 0.011*\"file\" + 0.010*\"locat\" + 0.010*\"histor\" + 0.010*\"site\" + 0.010*\"centuri\"\n", - "2019-01-16 04:14:24,215 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.028*\"medal\" + 0.027*\"japan\" + 0.026*\"world\" + 0.026*\"olymp\" + 0.024*\"championship\" + 0.022*\"men\" + 0.020*\"gold\" + 0.020*\"event\" + 0.018*\"japanes\"\n", - "2019-01-16 04:14:24,216 : INFO : topic #46 (0.020): 0.124*\"class\" + 0.071*\"align\" + 0.054*\"center\" + 0.053*\"left\" + 0.052*\"wikit\" + 0.052*\"right\" + 0.051*\"style\" + 0.038*\"philippin\" + 0.028*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:14:24,218 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.009*\"theori\" + 0.009*\"set\" + 0.009*\"valu\" + 0.008*\"point\" + 0.008*\"exampl\" + 0.007*\"method\" + 0.007*\"mathemat\"\n", - "2019-01-16 04:14:24,220 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.027*\"award\" + 0.023*\"best\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"direct\" + 0.012*\"televis\" + 0.012*\"actor\"\n", - "2019-01-16 04:14:24,226 : INFO : topic diff=0.026637, rho=0.091287\n", - "2019-01-16 04:14:24,751 : INFO : PROGRESS: pass 0, at document #242000/4922894\n", - "2019-01-16 04:14:26,960 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:27,517 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.025*\"england\" + 0.023*\"town\" + 0.023*\"citi\" + 0.022*\"cricket\" + 0.015*\"scotland\" + 0.011*\"scottish\" + 0.011*\"manchest\" + 0.010*\"west\" + 0.010*\"english\"\n", - "2019-01-16 04:14:27,519 : INFO : topic #35 (0.020): 0.040*\"minist\" + 0.022*\"thailand\" + 0.021*\"prime\" + 0.020*\"indonesia\" + 0.015*\"vietnam\" + 0.014*\"thai\" + 0.011*\"bulgarian\" + 0.011*\"indonesian\" + 0.010*\"chi\" + 0.010*\"chan\"\n", - "2019-01-16 04:14:27,521 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.024*\"team\" + 0.015*\"coach\" + 0.014*\"plai\" + 0.012*\"footbal\" + 0.012*\"player\" + 0.010*\"year\" + 0.010*\"yard\" + 0.009*\"record\"\n", - "2019-01-16 04:14:27,523 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.028*\"releas\" + 0.027*\"record\" + 0.023*\"band\" + 0.017*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:14:27,525 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"team\" + 0.016*\"car\" + 0.014*\"championship\" + 0.014*\"tour\" + 0.013*\"finish\" + 0.012*\"ford\" + 0.011*\"world\" + 0.011*\"win\" + 0.011*\"stage\"\n", - "2019-01-16 04:14:27,531 : INFO : topic diff=0.026975, rho=0.090909\n", - "2019-01-16 04:14:28,092 : INFO : PROGRESS: pass 0, at document #244000/4922894\n", - "2019-01-16 04:14:30,302 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:30,858 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.015*\"centuri\" + 0.012*\"templ\" + 0.010*\"emperor\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"princ\" + 0.007*\"dynasti\"\n", - "2019-01-16 04:14:30,860 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.024*\"court\" + 0.022*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.011*\"offic\" + 0.008*\"feder\" + 0.008*\"judg\" + 0.008*\"legal\" + 0.008*\"public\"\n", - "2019-01-16 04:14:30,862 : INFO : topic #8 (0.020): 0.047*\"district\" + 0.038*\"india\" + 0.027*\"indian\" + 0.024*\"villag\" + 0.017*\"provinc\" + 0.015*\"municip\" + 0.011*\"iran\" + 0.011*\"khan\" + 0.010*\"popul\" + 0.010*\"pakistan\"\n", - "2019-01-16 04:14:30,864 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"love\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 04:14:30,866 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.022*\"design\" + 0.016*\"exhibit\" + 0.015*\"collect\" + 0.011*\"galleri\" + 0.010*\"new\"\n", - "2019-01-16 04:14:30,872 : INFO : topic diff=0.026410, rho=0.090536\n", - "2019-01-16 04:14:31,357 : INFO : PROGRESS: pass 0, at document #246000/4922894\n", - "2019-01-16 04:14:33,570 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:34,123 : INFO : topic #31 (0.020): 0.052*\"australia\" + 0.044*\"australian\" + 0.042*\"new\" + 0.037*\"chines\" + 0.036*\"china\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.018*\"hong\" + 0.018*\"kong\" + 0.016*\"sydnei\"\n", - "2019-01-16 04:14:34,124 : INFO : topic #22 (0.020): 0.060*\"counti\" + 0.045*\"popul\" + 0.035*\"town\" + 0.034*\"ag\" + 0.033*\"township\" + 0.027*\"citi\" + 0.025*\"household\" + 0.023*\"famili\" + 0.021*\"censu\" + 0.020*\"femal\"\n", - "2019-01-16 04:14:34,127 : INFO : topic #40 (0.020): 0.025*\"africa\" + 0.025*\"bar\" + 0.024*\"african\" + 0.019*\"south\" + 0.015*\"text\" + 0.015*\"till\" + 0.012*\"color\" + 0.010*\"agricultur\" + 0.010*\"popul\" + 0.010*\"coloni\"\n", - "2019-01-16 04:14:34,129 : INFO : topic #16 (0.020): 0.028*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.015*\"famili\" + 0.015*\"marri\" + 0.013*\"born\" + 0.013*\"father\" + 0.013*\"death\" + 0.012*\"daughter\" + 0.012*\"year\"\n", - "2019-01-16 04:14:34,131 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.040*\"franc\" + 0.033*\"italian\" + 0.025*\"saint\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.019*\"jean\" + 0.013*\"de\" + 0.010*\"le\" + 0.010*\"loui\"\n", - "2019-01-16 04:14:34,137 : INFO : topic diff=0.027478, rho=0.090167\n", - "2019-01-16 04:14:34,649 : INFO : PROGRESS: pass 0, at document #248000/4922894\n", - "2019-01-16 04:14:36,821 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:37,375 : INFO : topic #10 (0.020): 0.016*\"engin\" + 0.012*\"product\" + 0.012*\"cell\" + 0.010*\"model\" + 0.009*\"power\" + 0.008*\"type\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.007*\"manufactur\" + 0.007*\"protein\"\n", - "2019-01-16 04:14:37,377 : INFO : topic #34 (0.020): 0.072*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.022*\"toronto\" + 0.018*\"montreal\" + 0.017*\"ye\" + 0.017*\"british\" + 0.016*\"island\" + 0.016*\"quebec\" + 0.015*\"korean\"\n", - "2019-01-16 04:14:37,379 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.040*\"franc\" + 0.033*\"italian\" + 0.026*\"saint\" + 0.023*\"pari\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.010*\"le\" + 0.010*\"loui\"\n", - "2019-01-16 04:14:37,381 : INFO : topic #8 (0.020): 0.050*\"district\" + 0.037*\"india\" + 0.027*\"indian\" + 0.025*\"villag\" + 0.017*\"provinc\" + 0.015*\"municip\" + 0.012*\"iran\" + 0.011*\"rural\" + 0.011*\"khan\" + 0.010*\"pakistan\"\n", - "2019-01-16 04:14:37,383 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"team\" + 0.016*\"car\" + 0.014*\"championship\" + 0.013*\"tour\" + 0.013*\"finish\" + 0.012*\"ford\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"win\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:14:37,388 : INFO : topic diff=0.025825, rho=0.089803\n", - "2019-01-16 04:14:37,948 : INFO : PROGRESS: pass 0, at document #250000/4922894\n", - "2019-01-16 04:14:40,231 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:40,788 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.023*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.011*\"guitar\"\n", - "2019-01-16 04:14:40,790 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.011*\"street\" + 0.010*\"locat\" + 0.010*\"file\" + 0.010*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\"\n", - "2019-01-16 04:14:40,792 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.028*\"armi\" + 0.019*\"command\" + 0.019*\"battl\" + 0.019*\"forc\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.010*\"infantri\"\n", - "2019-01-16 04:14:40,794 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.035*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.023*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.012*\"und\" + 0.012*\"die\" + 0.010*\"netherland\"\n", - "2019-01-16 04:14:40,796 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.006*\"english\" + 0.006*\"god\" + 0.006*\"form\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"centuri\" + 0.005*\"cultur\" + 0.005*\"us\"\n", - "2019-01-16 04:14:40,801 : INFO : topic diff=0.025045, rho=0.089443\n", - "2019-01-16 04:14:41,297 : INFO : PROGRESS: pass 0, at document #252000/4922894\n", - "2019-01-16 04:14:43,523 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:44,079 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.069*\"januari\" + 0.068*\"juli\" + 0.067*\"novemb\" + 0.067*\"decemb\" + 0.066*\"august\" + 0.064*\"june\" + 0.063*\"april\"\n", - "2019-01-16 04:14:44,080 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.010*\"program\" + 0.009*\"host\" + 0.009*\"air\" + 0.009*\"network\"\n", - "2019-01-16 04:14:44,082 : INFO : topic #22 (0.020): 0.058*\"counti\" + 0.046*\"popul\" + 0.034*\"town\" + 0.033*\"ag\" + 0.029*\"township\" + 0.027*\"citi\" + 0.024*\"household\" + 0.023*\"famili\" + 0.021*\"censu\" + 0.021*\"commun\"\n", - "2019-01-16 04:14:44,084 : INFO : topic #25 (0.020): 0.043*\"round\" + 0.030*\"final\" + 0.028*\"tournament\" + 0.025*\"open\" + 0.019*\"winner\" + 0.015*\"runner\" + 0.013*\"draw\" + 0.013*\"singl\" + 0.012*\"doubl\" + 0.012*\"group\"\n", - "2019-01-16 04:14:44,086 : INFO : topic #13 (0.020): 0.052*\"state\" + 0.033*\"new\" + 0.029*\"american\" + 0.022*\"unit\" + 0.022*\"york\" + 0.016*\"citi\" + 0.016*\"california\" + 0.014*\"counti\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 04:14:44,092 : INFO : topic diff=0.024649, rho=0.089087\n", - "2019-01-16 04:14:44,643 : INFO : PROGRESS: pass 0, at document #254000/4922894\n", - "2019-01-16 04:14:47,005 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:47,566 : INFO : topic #28 (0.020): 0.026*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.011*\"street\" + 0.011*\"locat\" + 0.011*\"histor\" + 0.010*\"file\" + 0.010*\"site\" + 0.009*\"centuri\"\n", - "2019-01-16 04:14:47,567 : INFO : topic #34 (0.020): 0.070*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.021*\"ye\" + 0.017*\"montreal\" + 0.017*\"island\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"korean\"\n", - "2019-01-16 04:14:47,569 : INFO : topic #6 (0.020): 0.065*\"music\" + 0.032*\"perform\" + 0.020*\"festiv\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:14:47,571 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.010*\"program\" + 0.009*\"host\" + 0.009*\"air\" + 0.009*\"dai\"\n", - "2019-01-16 04:14:47,573 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"earth\" + 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.005*\"temperatur\" + 0.005*\"high\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"time\"\n", - "2019-01-16 04:14:47,579 : INFO : topic diff=0.023912, rho=0.088736\n", - "2019-01-16 04:14:48,162 : INFO : PROGRESS: pass 0, at document #256000/4922894\n", - "2019-01-16 04:14:50,468 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:51,024 : INFO : topic #22 (0.020): 0.054*\"counti\" + 0.046*\"popul\" + 0.035*\"town\" + 0.034*\"ag\" + 0.027*\"citi\" + 0.026*\"township\" + 0.024*\"household\" + 0.023*\"famili\" + 0.021*\"censu\" + 0.021*\"commun\"\n", - "2019-01-16 04:14:51,025 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.015*\"centuri\" + 0.010*\"templ\" + 0.010*\"emperor\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.008*\"princ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:14:51,027 : INFO : topic #45 (0.020): 0.014*\"american\" + 0.014*\"john\" + 0.011*\"born\" + 0.010*\"michael\" + 0.010*\"david\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\"\n", - "2019-01-16 04:14:51,029 : INFO : topic #25 (0.020): 0.042*\"round\" + 0.031*\"final\" + 0.030*\"tournament\" + 0.025*\"open\" + 0.022*\"winner\" + 0.017*\"runner\" + 0.013*\"qualifi\" + 0.012*\"draw\" + 0.012*\"doubl\" + 0.012*\"group\"\n", - "2019-01-16 04:14:51,031 : INFO : topic #8 (0.020): 0.048*\"district\" + 0.038*\"india\" + 0.028*\"indian\" + 0.027*\"villag\" + 0.016*\"provinc\" + 0.014*\"municip\" + 0.012*\"pakistan\" + 0.012*\"rural\" + 0.011*\"iran\" + 0.010*\"khan\"\n", - "2019-01-16 04:14:51,037 : INFO : topic diff=0.028393, rho=0.088388\n", - "2019-01-16 04:14:51,611 : INFO : PROGRESS: pass 0, at document #258000/4922894\n", - "2019-01-16 04:14:53,840 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:14:54,394 : INFO : topic #25 (0.020): 0.042*\"round\" + 0.031*\"final\" + 0.030*\"tournament\" + 0.025*\"open\" + 0.022*\"winner\" + 0.016*\"runner\" + 0.012*\"qualifi\" + 0.012*\"doubl\" + 0.012*\"draw\" + 0.012*\"singl\"\n", - "2019-01-16 04:14:54,395 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.019*\"station\" + 0.018*\"road\" + 0.015*\"line\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.012*\"rout\" + 0.012*\"lake\" + 0.012*\"north\"\n", - "2019-01-16 04:14:54,398 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.064*\"style\" + 0.062*\"align\" + 0.054*\"wikit\" + 0.054*\"center\" + 0.044*\"left\" + 0.042*\"right\" + 0.034*\"philippin\" + 0.034*\"text\" + 0.021*\"border\"\n", - "2019-01-16 04:14:54,400 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.014*\"new\" + 0.013*\"univers\" + 0.013*\"stori\" + 0.012*\"edit\" + 0.011*\"press\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:14:54,403 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.029*\"armi\" + 0.020*\"forc\" + 0.019*\"command\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.010*\"soldier\"\n", - "2019-01-16 04:14:54,409 : INFO : topic diff=0.024349, rho=0.088045\n", - "2019-01-16 04:14:59,405 : INFO : -11.651 per-word bound, 3216.0 perplexity estimate based on a held-out corpus of 2000 documents with 531711 words\n", - "2019-01-16 04:14:59,406 : INFO : PROGRESS: pass 0, at document #260000/4922894\n", - "2019-01-16 04:15:01,625 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:02,185 : INFO : topic #31 (0.020): 0.053*\"australia\" + 0.045*\"australian\" + 0.040*\"new\" + 0.036*\"china\" + 0.036*\"chines\" + 0.028*\"zealand\" + 0.025*\"south\" + 0.019*\"hong\" + 0.019*\"kong\" + 0.017*\"melbourn\"\n", - "2019-01-16 04:15:02,186 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.006*\"god\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"english\" + 0.005*\"centuri\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"differ\"\n", - "2019-01-16 04:15:02,188 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.019*\"team\" + 0.018*\"car\" + 0.014*\"championship\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"driver\" + 0.010*\"year\"\n", - "2019-01-16 04:15:02,190 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.011*\"number\" + 0.009*\"point\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"space\" + 0.007*\"group\"\n", - "2019-01-16 04:15:02,192 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.015*\"spain\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"lo\" + 0.009*\"carlo\"\n", - "2019-01-16 04:15:02,198 : INFO : topic diff=0.024014, rho=0.087706\n", - "2019-01-16 04:15:02,723 : INFO : PROGRESS: pass 0, at document #262000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:15:04,927 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:05,482 : INFO : topic #49 (0.020): 0.057*\"north\" + 0.052*\"east\" + 0.050*\"region\" + 0.050*\"west\" + 0.046*\"south\" + 0.028*\"swedish\" + 0.023*\"norwai\" + 0.023*\"norwegian\" + 0.022*\"central\" + 0.021*\"sweden\"\n", - "2019-01-16 04:15:05,484 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.021*\"theatr\" + 0.019*\"festiv\" + 0.019*\"compos\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.012*\"opera\" + 0.011*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 04:15:05,486 : INFO : topic #25 (0.020): 0.042*\"round\" + 0.031*\"final\" + 0.029*\"tournament\" + 0.025*\"open\" + 0.023*\"winner\" + 0.017*\"runner\" + 0.012*\"qualifi\" + 0.012*\"doubl\" + 0.012*\"singl\" + 0.012*\"draw\"\n", - "2019-01-16 04:15:05,488 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.017*\"british\" + 0.015*\"georg\" + 0.012*\"thoma\" + 0.012*\"jame\" + 0.012*\"sir\" + 0.012*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 04:15:05,490 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.033*\"team\" + 0.032*\"plai\" + 0.031*\"club\" + 0.025*\"season\" + 0.024*\"cup\" + 0.021*\"footbal\" + 0.017*\"player\" + 0.017*\"match\" + 0.014*\"goal\"\n", - "2019-01-16 04:15:05,496 : INFO : topic diff=0.023145, rho=0.087370\n", - "2019-01-16 04:15:06,000 : INFO : PROGRESS: pass 0, at document #264000/4922894\n", - "2019-01-16 04:15:08,283 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:08,837 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.038*\"colleg\" + 0.038*\"univers\" + 0.033*\"student\" + 0.031*\"educ\" + 0.028*\"high\" + 0.015*\"year\" + 0.011*\"graduat\" + 0.011*\"district\" + 0.009*\"program\"\n", - "2019-01-16 04:15:08,839 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"white\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.009*\"red\" + 0.008*\"black\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"tree\"\n", - "2019-01-16 04:15:08,841 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.029*\"armi\" + 0.020*\"forc\" + 0.020*\"battl\" + 0.019*\"command\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.010*\"soldier\"\n", - "2019-01-16 04:15:08,843 : INFO : topic #39 (0.020): 0.038*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.014*\"navi\" + 0.014*\"servic\" + 0.013*\"flight\" + 0.012*\"squadron\"\n", - "2019-01-16 04:15:08,845 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.038*\"franc\" + 0.030*\"italian\" + 0.025*\"saint\" + 0.025*\"pari\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"loui\" + 0.014*\"de\" + 0.012*\"le\"\n", - "2019-01-16 04:15:08,851 : INFO : topic diff=0.023425, rho=0.087039\n", - "2019-01-16 04:15:09,330 : INFO : PROGRESS: pass 0, at document #266000/4922894\n", - "2019-01-16 04:15:11,529 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:12,086 : INFO : topic #16 (0.020): 0.028*\"church\" + 0.018*\"son\" + 0.018*\"di\" + 0.016*\"famili\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"death\" + 0.012*\"daughter\" + 0.012*\"year\"\n", - "2019-01-16 04:15:12,087 : INFO : topic #24 (0.020): 0.024*\"ship\" + 0.014*\"polic\" + 0.011*\"kill\" + 0.009*\"gun\" + 0.009*\"boat\" + 0.008*\"crew\" + 0.008*\"attack\" + 0.008*\"damag\" + 0.007*\"report\" + 0.007*\"sail\"\n", - "2019-01-16 04:15:12,089 : INFO : topic #31 (0.020): 0.051*\"australia\" + 0.044*\"australian\" + 0.040*\"new\" + 0.039*\"china\" + 0.035*\"chines\" + 0.027*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.017*\"sydnei\"\n", - "2019-01-16 04:15:12,091 : INFO : topic #14 (0.020): 0.016*\"compani\" + 0.015*\"univers\" + 0.013*\"research\" + 0.013*\"develop\" + 0.011*\"work\" + 0.011*\"institut\" + 0.010*\"servic\" + 0.010*\"intern\" + 0.010*\"manag\" + 0.009*\"busi\"\n", - "2019-01-16 04:15:12,093 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.029*\"armi\" + 0.019*\"forc\" + 0.019*\"battl\" + 0.019*\"command\" + 0.014*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.010*\"attack\"\n", - "2019-01-16 04:15:12,099 : INFO : topic diff=0.024038, rho=0.086711\n", - "2019-01-16 04:15:12,567 : INFO : PROGRESS: pass 0, at document #268000/4922894\n", - "2019-01-16 04:15:14,781 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:15,336 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.070*\"align\" + 0.066*\"center\" + 0.059*\"style\" + 0.056*\"wikit\" + 0.042*\"left\" + 0.039*\"right\" + 0.034*\"philippin\" + 0.031*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:15:15,338 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.013*\"famili\" + 0.012*\"white\" + 0.010*\"plant\" + 0.008*\"red\" + 0.008*\"black\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.006*\"long\"\n", - "2019-01-16 04:15:15,340 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.033*\"team\" + 0.032*\"plai\" + 0.031*\"club\" + 0.026*\"season\" + 0.024*\"cup\" + 0.021*\"footbal\" + 0.018*\"player\" + 0.017*\"match\" + 0.014*\"goal\"\n", - "2019-01-16 04:15:15,342 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.021*\"theatr\" + 0.020*\"festiv\" + 0.018*\"compos\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.013*\"opera\" + 0.011*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 04:15:15,343 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.014*\"championship\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"point\"\n", - "2019-01-16 04:15:15,349 : INFO : topic diff=0.023283, rho=0.086387\n", - "2019-01-16 04:15:15,852 : INFO : PROGRESS: pass 0, at document #270000/4922894\n", - "2019-01-16 04:15:18,081 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:18,635 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.025*\"town\" + 0.024*\"england\" + 0.023*\"citi\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.010*\"english\" + 0.010*\"wale\"\n", - "2019-01-16 04:15:18,636 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"love\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:15:18,639 : INFO : topic #24 (0.020): 0.024*\"ship\" + 0.014*\"polic\" + 0.011*\"kill\" + 0.010*\"gun\" + 0.008*\"boat\" + 0.008*\"crew\" + 0.008*\"attack\" + 0.008*\"damag\" + 0.007*\"prison\" + 0.007*\"report\"\n", - "2019-01-16 04:15:18,640 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.028*\"world\" + 0.026*\"medal\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.023*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.018*\"japanes\" + 0.018*\"athlet\"\n", - "2019-01-16 04:15:18,642 : INFO : topic #8 (0.020): 0.048*\"district\" + 0.038*\"india\" + 0.029*\"indian\" + 0.026*\"villag\" + 0.017*\"provinc\" + 0.012*\"municip\" + 0.012*\"rural\" + 0.011*\"iran\" + 0.011*\"pakistan\" + 0.009*\"khan\"\n", - "2019-01-16 04:15:18,649 : INFO : topic diff=0.021356, rho=0.086066\n", - "2019-01-16 04:15:19,209 : INFO : PROGRESS: pass 0, at document #272000/4922894\n", - "2019-01-16 04:15:21,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:22,002 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.033*\"final\" + 0.029*\"tournament\" + 0.025*\"winner\" + 0.023*\"open\" + 0.018*\"runner\" + 0.012*\"singl\" + 0.012*\"doubl\" + 0.012*\"qualifi\" + 0.012*\"group\"\n", - "2019-01-16 04:15:22,004 : INFO : topic #35 (0.020): 0.040*\"minist\" + 0.034*\"prime\" + 0.020*\"indonesia\" + 0.019*\"thailand\" + 0.016*\"bulgarian\" + 0.013*\"thai\" + 0.013*\"vietnam\" + 0.010*\"chan\" + 0.009*\"indonesian\" + 0.009*\"dart\"\n", - "2019-01-16 04:15:22,006 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.017*\"british\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.012*\"jame\" + 0.012*\"henri\" + 0.012*\"thoma\" + 0.011*\"ireland\"\n", - "2019-01-16 04:15:22,008 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.016*\"centuri\" + 0.012*\"greek\" + 0.010*\"emperor\" + 0.010*\"templ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"ancient\" + 0.008*\"princ\"\n", - "2019-01-16 04:15:22,011 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"theori\" + 0.011*\"number\" + 0.008*\"point\" + 0.008*\"space\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"group\" + 0.007*\"set\"\n", - "2019-01-16 04:15:22,017 : INFO : topic diff=0.022325, rho=0.085749\n", - "2019-01-16 04:15:22,567 : INFO : PROGRESS: pass 0, at document #274000/4922894\n", - "2019-01-16 04:15:24,859 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:25,414 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.045*\"parti\" + 0.026*\"member\" + 0.021*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.015*\"term\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:15:25,416 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.019*\"station\" + 0.017*\"line\" + 0.016*\"road\" + 0.014*\"park\" + 0.014*\"railwai\" + 0.013*\"area\" + 0.013*\"rout\" + 0.012*\"north\" + 0.011*\"lake\"\n", - "2019-01-16 04:15:25,418 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.010*\"bank\" + 0.009*\"increas\" + 0.009*\"time\" + 0.009*\"rate\" + 0.007*\"market\" + 0.007*\"number\" + 0.007*\"cost\" + 0.007*\"requir\" + 0.006*\"product\"\n", - "2019-01-16 04:15:25,420 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.028*\"world\" + 0.025*\"olymp\" + 0.025*\"medal\" + 0.024*\"championship\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"japanes\"\n", - "2019-01-16 04:15:25,422 : INFO : topic #13 (0.020): 0.053*\"state\" + 0.040*\"new\" + 0.027*\"york\" + 0.026*\"american\" + 0.022*\"unit\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"counti\" + 0.012*\"texa\" + 0.012*\"washington\"\n", - "2019-01-16 04:15:25,429 : INFO : topic diff=0.024953, rho=0.085436\n", - "2019-01-16 04:15:25,930 : INFO : PROGRESS: pass 0, at document #276000/4922894\n", - "2019-01-16 04:15:28,152 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:28,710 : INFO : topic #12 (0.020): 0.056*\"parti\" + 0.055*\"elect\" + 0.025*\"member\" + 0.022*\"vote\" + 0.020*\"democrat\" + 0.018*\"presid\" + 0.015*\"term\" + 0.014*\"republican\" + 0.014*\"council\" + 0.012*\"repres\"\n", - "2019-01-16 04:15:28,712 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.034*\"team\" + 0.032*\"plai\" + 0.032*\"club\" + 0.026*\"season\" + 0.023*\"cup\" + 0.022*\"footbal\" + 0.018*\"player\" + 0.016*\"match\" + 0.015*\"goal\"\n", - "2019-01-16 04:15:28,713 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.027*\"world\" + 0.024*\"olymp\" + 0.024*\"medal\" + 0.024*\"championship\" + 0.023*\"event\" + 0.023*\"men\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"rank\"\n", - "2019-01-16 04:15:28,715 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\" + 0.004*\"love\"\n", - "2019-01-16 04:15:28,716 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.014*\"new\" + 0.013*\"univers\" + 0.012*\"stori\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"magazin\" + 0.011*\"novel\"\n", - "2019-01-16 04:15:28,722 : INFO : topic diff=0.023405, rho=0.085126\n", - "2019-01-16 04:15:29,270 : INFO : PROGRESS: pass 0, at document #278000/4922894\n", - "2019-01-16 04:15:31,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:32,089 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.018*\"car\" + 0.017*\"team\" + 0.013*\"championship\" + 0.013*\"tour\" + 0.011*\"miss\" + 0.011*\"finish\" + 0.011*\"driver\" + 0.011*\"grand\" + 0.011*\"year\"\n", - "2019-01-16 04:15:32,091 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.012*\"cell\" + 0.012*\"product\" + 0.010*\"model\" + 0.009*\"power\" + 0.008*\"produc\" + 0.008*\"type\" + 0.007*\"car\" + 0.007*\"vehicl\" + 0.007*\"protein\"\n", - "2019-01-16 04:15:32,094 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.015*\"spain\" + 0.014*\"mexico\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", - "2019-01-16 04:15:32,095 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.038*\"museum\" + 0.030*\"work\" + 0.023*\"paint\" + 0.023*\"artist\" + 0.022*\"design\" + 0.018*\"exhibit\" + 0.016*\"collect\" + 0.013*\"galleri\" + 0.010*\"new\"\n", - "2019-01-16 04:15:32,097 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.011*\"theori\" + 0.010*\"number\" + 0.009*\"gener\" + 0.009*\"group\" + 0.008*\"point\" + 0.008*\"set\" + 0.008*\"space\" + 0.008*\"exampl\" + 0.007*\"model\"\n", - "2019-01-16 04:15:32,102 : INFO : topic diff=0.023572, rho=0.084819\n", - "2019-01-16 04:15:37,064 : INFO : -11.707 per-word bound, 3342.2 perplexity estimate based on a held-out corpus of 2000 documents with 523679 words\n", - "2019-01-16 04:15:37,064 : INFO : PROGRESS: pass 0, at document #280000/4922894\n", - "2019-01-16 04:15:39,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:39,830 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.012*\"cell\" + 0.012*\"product\" + 0.010*\"model\" + 0.008*\"power\" + 0.008*\"produc\" + 0.008*\"type\" + 0.007*\"car\" + 0.007*\"vehicl\" + 0.007*\"design\"\n", - "2019-01-16 04:15:39,832 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.016*\"centuri\" + 0.013*\"greek\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.008*\"roman\" + 0.008*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:15:39,833 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.053*\"parti\" + 0.025*\"member\" + 0.022*\"vote\" + 0.020*\"democrat\" + 0.018*\"presid\" + 0.014*\"council\" + 0.014*\"republican\" + 0.014*\"repres\" + 0.013*\"term\"\n", - "2019-01-16 04:15:39,835 : INFO : topic #18 (0.020): 0.009*\"energi\" + 0.008*\"water\" + 0.007*\"surfac\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"effect\"\n", - "2019-01-16 04:15:39,837 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.027*\"world\" + 0.024*\"olymp\" + 0.024*\"medal\" + 0.023*\"championship\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"japanes\"\n", - "2019-01-16 04:15:39,843 : INFO : topic diff=0.020621, rho=0.084515\n", - "2019-01-16 04:15:40,367 : INFO : PROGRESS: pass 0, at document #282000/4922894\n", - "2019-01-16 04:15:42,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:43,149 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.012*\"product\" + 0.011*\"cell\" + 0.011*\"model\" + 0.008*\"power\" + 0.008*\"type\" + 0.008*\"produc\" + 0.008*\"car\" + 0.007*\"vehicl\" + 0.007*\"design\"\n", - "2019-01-16 04:15:43,151 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.027*\"world\" + 0.024*\"medal\" + 0.024*\"olymp\" + 0.024*\"championship\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"men\" + 0.019*\"japanes\" + 0.018*\"athlet\"\n", - "2019-01-16 04:15:43,152 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.009*\"attack\"\n", - "2019-01-16 04:15:43,154 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.028*\"soviet\" + 0.024*\"jewish\" + 0.024*\"russia\" + 0.021*\"polish\" + 0.018*\"israel\" + 0.015*\"born\" + 0.015*\"moscow\" + 0.014*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 04:15:43,157 : INFO : topic #49 (0.020): 0.056*\"north\" + 0.056*\"east\" + 0.052*\"west\" + 0.049*\"region\" + 0.046*\"south\" + 0.027*\"swedish\" + 0.023*\"central\" + 0.023*\"norwegian\" + 0.022*\"norwai\" + 0.021*\"villag\"\n", - "2019-01-16 04:15:43,163 : INFO : topic diff=0.022734, rho=0.084215\n", - "2019-01-16 04:15:43,642 : INFO : PROGRESS: pass 0, at document #284000/4922894\n", - "2019-01-16 04:15:45,862 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:46,419 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.011*\"theori\" + 0.010*\"number\" + 0.010*\"gener\" + 0.009*\"group\" + 0.008*\"point\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"space\" + 0.007*\"model\"\n", - "2019-01-16 04:15:46,421 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.016*\"centuri\" + 0.012*\"greek\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.008*\"roman\" + 0.008*\"ancient\" + 0.008*\"princ\"\n", - "2019-01-16 04:15:46,424 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.014*\"new\" + 0.013*\"univers\" + 0.012*\"press\" + 0.012*\"edit\" + 0.012*\"stori\" + 0.010*\"magazin\" + 0.010*\"author\"\n", - "2019-01-16 04:15:46,425 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.019*\"forc\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.010*\"soldier\"\n", - "2019-01-16 04:15:46,427 : INFO : topic #5 (0.020): 0.025*\"game\" + 0.010*\"develop\" + 0.010*\"version\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"design\"\n", - "2019-01-16 04:15:46,434 : INFO : topic diff=0.020259, rho=0.083918\n", - "2019-01-16 04:15:46,957 : INFO : PROGRESS: pass 0, at document #286000/4922894\n", - "2019-01-16 04:15:49,234 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:49,788 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.019*\"station\" + 0.018*\"road\" + 0.017*\"line\" + 0.015*\"railwai\" + 0.014*\"park\" + 0.013*\"area\" + 0.013*\"rout\" + 0.012*\"north\" + 0.011*\"lake\"\n", - "2019-01-16 04:15:49,790 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.028*\"soviet\" + 0.024*\"jewish\" + 0.023*\"russia\" + 0.021*\"polish\" + 0.017*\"israel\" + 0.015*\"born\" + 0.014*\"jew\" + 0.014*\"moscow\" + 0.014*\"republ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:15:49,792 : INFO : topic #49 (0.020): 0.059*\"east\" + 0.054*\"north\" + 0.053*\"west\" + 0.052*\"region\" + 0.045*\"south\" + 0.028*\"swedish\" + 0.023*\"central\" + 0.022*\"norwegian\" + 0.021*\"villag\" + 0.021*\"norwai\"\n", - "2019-01-16 04:15:49,794 : INFO : topic #10 (0.020): 0.016*\"engin\" + 0.014*\"cell\" + 0.012*\"product\" + 0.011*\"model\" + 0.008*\"type\" + 0.008*\"power\" + 0.008*\"produc\" + 0.007*\"car\" + 0.007*\"protein\" + 0.007*\"vehicl\"\n", - "2019-01-16 04:15:49,796 : INFO : topic #34 (0.020): 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.023*\"island\" + 0.022*\"ye\" + 0.017*\"vancouv\" + 0.017*\"malaysia\" + 0.015*\"british\" + 0.015*\"montreal\"\n", - "2019-01-16 04:15:49,801 : INFO : topic diff=0.023301, rho=0.083624\n", - "2019-01-16 04:15:50,292 : INFO : PROGRESS: pass 0, at document #288000/4922894\n", - "2019-01-16 04:15:52,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:53,081 : INFO : topic #35 (0.020): 0.033*\"minist\" + 0.026*\"prime\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.013*\"vietnam\" + 0.013*\"bulgarian\" + 0.013*\"chan\" + 0.011*\"thai\" + 0.009*\"indonesian\" + 0.009*\"chi\"\n", - "2019-01-16 04:15:53,083 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"union\"\n", - "2019-01-16 04:15:53,085 : INFO : topic #5 (0.020): 0.024*\"game\" + 0.010*\"version\" + 0.010*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"includ\" + 0.007*\"data\"\n", - "2019-01-16 04:15:53,087 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.025*\"england\" + 0.023*\"citi\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"manchest\" + 0.012*\"test\" + 0.010*\"wale\"\n", - "2019-01-16 04:15:53,089 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.014*\"spain\" + 0.014*\"mexico\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"francisco\" + 0.010*\"brazil\" + 0.010*\"josé\"\n", - "2019-01-16 04:15:53,094 : INFO : topic diff=0.022205, rho=0.083333\n", - "2019-01-16 04:15:53,634 : INFO : PROGRESS: pass 0, at document #290000/4922894\n", - "2019-01-16 04:15:55,786 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:56,343 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.024*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.015*\"titl\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.014*\"elimin\" + 0.014*\"point\" + 0.013*\"week\"\n", - "2019-01-16 04:15:56,345 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.011*\"number\" + 0.011*\"set\" + 0.010*\"theori\" + 0.009*\"point\" + 0.009*\"gener\" + 0.008*\"group\" + 0.008*\"exampl\" + 0.007*\"space\" + 0.007*\"model\"\n", - "2019-01-16 04:15:56,347 : INFO : topic #23 (0.020): 0.027*\"medic\" + 0.024*\"hospit\" + 0.020*\"health\" + 0.014*\"patient\" + 0.013*\"medicin\" + 0.012*\"drug\" + 0.012*\"diseas\" + 0.011*\"treatment\" + 0.011*\"ret\" + 0.010*\"care\"\n", - "2019-01-16 04:15:56,349 : INFO : topic #24 (0.020): 0.026*\"ship\" + 0.013*\"polic\" + 0.011*\"kill\" + 0.010*\"gun\" + 0.008*\"attack\" + 0.008*\"damag\" + 0.008*\"boat\" + 0.007*\"crew\" + 0.007*\"dai\" + 0.006*\"report\"\n", - "2019-01-16 04:15:56,351 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.026*\"american\" + 0.025*\"york\" + 0.022*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.014*\"counti\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 04:15:56,358 : INFO : topic diff=0.021642, rho=0.083045\n", - "2019-01-16 04:15:56,884 : INFO : PROGRESS: pass 0, at document #292000/4922894\n", - "2019-01-16 04:15:59,092 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:15:59,646 : INFO : topic #48 (0.020): 0.076*\"octob\" + 0.075*\"march\" + 0.075*\"septemb\" + 0.074*\"januari\" + 0.071*\"novemb\" + 0.067*\"decemb\" + 0.067*\"august\" + 0.067*\"juli\" + 0.066*\"april\" + 0.065*\"june\"\n", - "2019-01-16 04:15:59,648 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.025*\"award\" + 0.023*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:15:59,649 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.014*\"spain\" + 0.014*\"mexico\" + 0.011*\"santa\" + 0.010*\"brazil\" + 0.010*\"francisco\" + 0.010*\"juan\" + 0.010*\"josé\"\n", - "2019-01-16 04:15:59,651 : INFO : topic #5 (0.020): 0.023*\"game\" + 0.010*\"version\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"includ\" + 0.007*\"releas\" + 0.007*\"softwar\"\n", - "2019-01-16 04:15:59,654 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.040*\"new\" + 0.026*\"american\" + 0.026*\"york\" + 0.022*\"unit\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"counti\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 04:15:59,659 : INFO : topic diff=0.021212, rho=0.082761\n", - "2019-01-16 04:16:00,175 : INFO : PROGRESS: pass 0, at document #294000/4922894\n", - "2019-01-16 04:16:02,400 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:02,955 : INFO : topic #23 (0.020): 0.027*\"medic\" + 0.025*\"hospit\" + 0.022*\"health\" + 0.015*\"patient\" + 0.013*\"medicin\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.012*\"drug\" + 0.011*\"treatment\" + 0.010*\"care\"\n", - "2019-01-16 04:16:02,957 : INFO : topic #39 (0.020): 0.037*\"air\" + 0.024*\"airport\" + 0.023*\"oper\" + 0.022*\"aircraft\" + 0.017*\"unit\" + 0.017*\"forc\" + 0.014*\"navi\" + 0.014*\"servic\" + 0.013*\"squadron\" + 0.012*\"flight\"\n", - "2019-01-16 04:16:02,959 : INFO : topic #8 (0.020): 0.048*\"district\" + 0.038*\"india\" + 0.030*\"indian\" + 0.027*\"villag\" + 0.017*\"provinc\" + 0.012*\"pakistan\" + 0.012*\"rural\" + 0.011*\"iran\" + 0.011*\"khan\" + 0.009*\"sri\"\n", - "2019-01-16 04:16:02,961 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.025*\"soviet\" + 0.023*\"jewish\" + 0.023*\"russia\" + 0.020*\"polish\" + 0.017*\"israel\" + 0.016*\"republ\" + 0.015*\"czech\" + 0.015*\"moscow\" + 0.015*\"born\"\n", - "2019-01-16 04:16:02,964 : INFO : topic #25 (0.020): 0.041*\"round\" + 0.032*\"final\" + 0.030*\"tournament\" + 0.025*\"winner\" + 0.022*\"open\" + 0.017*\"runner\" + 0.013*\"hard\" + 0.012*\"qualifi\" + 0.011*\"doubl\" + 0.011*\"singl\"\n", - "2019-01-16 04:16:02,970 : INFO : topic diff=0.021640, rho=0.082479\n", - "2019-01-16 04:16:03,446 : INFO : PROGRESS: pass 0, at document #296000/4922894\n", - "2019-01-16 04:16:05,702 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:06,259 : INFO : topic #25 (0.020): 0.041*\"round\" + 0.032*\"final\" + 0.030*\"tournament\" + 0.024*\"winner\" + 0.024*\"open\" + 0.016*\"runner\" + 0.013*\"qualifi\" + 0.012*\"hard\" + 0.011*\"doubl\" + 0.011*\"draw\"\n", - "2019-01-16 04:16:06,261 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.026*\"soviet\" + 0.023*\"jewish\" + 0.022*\"russia\" + 0.020*\"polish\" + 0.017*\"israel\" + 0.016*\"czech\" + 0.016*\"republ\" + 0.015*\"born\" + 0.014*\"moscow\"\n", - "2019-01-16 04:16:06,263 : INFO : topic #31 (0.020): 0.053*\"australia\" + 0.044*\"new\" + 0.042*\"australian\" + 0.039*\"china\" + 0.035*\"chines\" + 0.031*\"zealand\" + 0.024*\"south\" + 0.024*\"sydnei\" + 0.017*\"hong\" + 0.016*\"kong\"\n", - "2019-01-16 04:16:06,265 : INFO : topic #23 (0.020): 0.026*\"medic\" + 0.024*\"hospit\" + 0.021*\"health\" + 0.015*\"patient\" + 0.013*\"caus\" + 0.013*\"medicin\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.011*\"drug\" + 0.011*\"treatment\"\n", - "2019-01-16 04:16:06,267 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.027*\"record\" + 0.026*\"releas\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 04:16:06,274 : INFO : topic diff=0.020808, rho=0.082199\n", - "2019-01-16 04:16:06,747 : INFO : PROGRESS: pass 0, at document #298000/4922894\n", - "2019-01-16 04:16:08,925 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:09,480 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.025*\"soviet\" + 0.023*\"jewish\" + 0.022*\"russia\" + 0.019*\"polish\" + 0.017*\"israel\" + 0.015*\"czech\" + 0.015*\"republ\" + 0.015*\"born\" + 0.014*\"moscow\"\n", - "2019-01-16 04:16:09,482 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"mexico\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"brazil\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", - "2019-01-16 04:16:09,484 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.012*\"televis\" + 0.012*\"channel\" + 0.010*\"host\" + 0.009*\"program\" + 0.009*\"air\" + 0.009*\"dai\"\n", - "2019-01-16 04:16:09,485 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.034*\"team\" + 0.033*\"plai\" + 0.032*\"club\" + 0.025*\"season\" + 0.023*\"cup\" + 0.022*\"footbal\" + 0.017*\"player\" + 0.016*\"match\" + 0.015*\"goal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:16:09,487 : INFO : topic #48 (0.020): 0.083*\"march\" + 0.075*\"octob\" + 0.075*\"januari\" + 0.074*\"septemb\" + 0.071*\"novemb\" + 0.069*\"juli\" + 0.068*\"decemb\" + 0.067*\"april\" + 0.067*\"august\" + 0.067*\"june\"\n", - "2019-01-16 04:16:09,493 : INFO : topic diff=0.022787, rho=0.081923\n", - "2019-01-16 04:16:14,603 : INFO : -11.420 per-word bound, 2740.9 perplexity estimate based on a held-out corpus of 2000 documents with 555743 words\n", - "2019-01-16 04:16:14,603 : INFO : PROGRESS: pass 0, at document #300000/4922894\n", - "2019-01-16 04:16:16,855 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:17,414 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.033*\"germani\" + 0.027*\"van\" + 0.025*\"von\" + 0.022*\"der\" + 0.018*\"berlin\" + 0.017*\"dutch\" + 0.013*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:16:17,416 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.028*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.024*\"medal\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"men\" + 0.021*\"athlet\" + 0.019*\"japanes\"\n", - "2019-01-16 04:16:17,418 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"love\" + 0.004*\"end\"\n", - "2019-01-16 04:16:17,419 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.024*\"william\" + 0.019*\"london\" + 0.018*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.012*\"ireland\" + 0.012*\"jame\" + 0.012*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 04:16:17,421 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"championship\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"time\" + 0.010*\"ford\" + 0.010*\"tour\" + 0.009*\"seri\"\n", - "2019-01-16 04:16:17,427 : INFO : topic diff=0.020649, rho=0.081650\n", - "2019-01-16 04:16:17,974 : INFO : PROGRESS: pass 0, at document #302000/4922894\n", - "2019-01-16 04:16:20,205 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:20,760 : INFO : topic #24 (0.020): 0.026*\"ship\" + 0.013*\"polic\" + 0.012*\"kill\" + 0.010*\"attack\" + 0.009*\"gun\" + 0.009*\"damag\" + 0.008*\"boat\" + 0.008*\"crew\" + 0.007*\"report\" + 0.007*\"dai\"\n", - "2019-01-16 04:16:20,762 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"love\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 04:16:20,765 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.035*\"final\" + 0.028*\"tournament\" + 0.025*\"open\" + 0.024*\"winner\" + 0.016*\"runner\" + 0.014*\"qualifi\" + 0.011*\"hard\" + 0.011*\"doubl\" + 0.010*\"group\"\n", - "2019-01-16 04:16:20,767 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"increas\" + 0.009*\"time\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"market\" + 0.006*\"number\" + 0.006*\"requir\" + 0.006*\"year\"\n", - "2019-01-16 04:16:20,769 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"god\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.005*\"us\" + 0.005*\"centuri\" + 0.005*\"peopl\"\n", - "2019-01-16 04:16:20,775 : INFO : topic diff=0.019053, rho=0.081379\n", - "2019-01-16 04:16:21,271 : INFO : PROGRESS: pass 0, at document #304000/4922894\n", - "2019-01-16 04:16:23,416 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:23,972 : INFO : topic #48 (0.020): 0.085*\"januari\" + 0.081*\"march\" + 0.075*\"octob\" + 0.074*\"septemb\" + 0.071*\"novemb\" + 0.068*\"june\" + 0.068*\"juli\" + 0.067*\"decemb\" + 0.067*\"august\" + 0.066*\"april\"\n", - "2019-01-16 04:16:23,974 : INFO : topic #27 (0.020): 0.044*\"russian\" + 0.026*\"soviet\" + 0.023*\"jewish\" + 0.022*\"russia\" + 0.022*\"polish\" + 0.017*\"israel\" + 0.016*\"republ\" + 0.015*\"born\" + 0.015*\"czech\" + 0.014*\"moscow\"\n", - "2019-01-16 04:16:23,976 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.013*\"american\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"born\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\"\n", - "2019-01-16 04:16:23,977 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"tour\" + 0.010*\"time\" + 0.010*\"year\"\n", - "2019-01-16 04:16:23,980 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.023*\"court\" + 0.021*\"act\" + 0.021*\"state\" + 0.010*\"case\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"public\" + 0.007*\"judg\" + 0.007*\"feder\"\n", - "2019-01-16 04:16:23,987 : INFO : topic diff=0.020849, rho=0.081111\n", - "2019-01-16 04:16:24,481 : INFO : PROGRESS: pass 0, at document #306000/4922894\n", - "2019-01-16 04:16:26,679 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:27,234 : INFO : topic #9 (0.020): 0.071*\"film\" + 0.025*\"award\" + 0.023*\"episod\" + 0.020*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"movi\"\n", - "2019-01-16 04:16:27,235 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.045*\"parti\" + 0.025*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.015*\"term\" + 0.015*\"council\" + 0.014*\"polit\" + 0.014*\"repres\"\n", - "2019-01-16 04:16:27,237 : INFO : topic #35 (0.020): 0.036*\"minist\" + 0.030*\"prime\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.015*\"vietnam\" + 0.012*\"bulgarian\" + 0.012*\"chan\" + 0.011*\"thai\" + 0.010*\"chi\" + 0.010*\"indonesian\"\n", - "2019-01-16 04:16:27,239 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.018*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.012*\"ireland\" + 0.012*\"jame\" + 0.012*\"thoma\" + 0.011*\"royal\"\n", - "2019-01-16 04:16:27,240 : INFO : topic #34 (0.020): 0.070*\"canada\" + 0.056*\"canadian\" + 0.037*\"flag\" + 0.033*\"ye\" + 0.030*\"island\" + 0.025*\"ontario\" + 0.021*\"toronto\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"defunct\"\n", - "2019-01-16 04:16:27,246 : INFO : topic diff=0.021497, rho=0.080845\n", - "2019-01-16 04:16:27,793 : INFO : PROGRESS: pass 0, at document #308000/4922894\n", - "2019-01-16 04:16:30,045 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:30,601 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.036*\"final\" + 0.028*\"tournament\" + 0.023*\"open\" + 0.022*\"winner\" + 0.015*\"runner\" + 0.014*\"qualifi\" + 0.014*\"group\" + 0.012*\"doubl\" + 0.011*\"singl\"\n", - "2019-01-16 04:16:30,604 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"player\" + 0.007*\"includ\" + 0.007*\"softwar\" + 0.007*\"data\"\n", - "2019-01-16 04:16:30,606 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.018*\"di\" + 0.015*\"famili\" + 0.015*\"marri\" + 0.013*\"born\" + 0.012*\"father\" + 0.012*\"death\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", - "2019-01-16 04:16:30,608 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.024*\"court\" + 0.021*\"act\" + 0.021*\"state\" + 0.011*\"case\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"public\" + 0.007*\"judg\" + 0.007*\"feder\"\n", - "2019-01-16 04:16:30,610 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.045*\"parti\" + 0.025*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.015*\"council\" + 0.015*\"term\" + 0.014*\"polit\" + 0.014*\"repres\"\n", - "2019-01-16 04:16:30,616 : INFO : topic diff=0.020809, rho=0.080582\n", - "2019-01-16 04:16:31,124 : INFO : PROGRESS: pass 0, at document #310000/4922894\n", - "2019-01-16 04:16:33,267 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:33,821 : INFO : topic #31 (0.020): 0.051*\"australia\" + 0.049*\"new\" + 0.039*\"australian\" + 0.037*\"china\" + 0.035*\"chines\" + 0.032*\"zealand\" + 0.028*\"sydnei\" + 0.025*\"south\" + 0.019*\"hong\" + 0.019*\"kong\"\n", - "2019-01-16 04:16:33,823 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"love\" + 0.004*\"end\"\n", - "2019-01-16 04:16:33,825 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.025*\"william\" + 0.020*\"london\" + 0.018*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.012*\"thoma\" + 0.012*\"ireland\" + 0.012*\"henri\" + 0.012*\"jame\"\n", - "2019-01-16 04:16:33,826 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.014*\"cell\" + 0.012*\"product\" + 0.010*\"model\" + 0.008*\"power\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.007*\"protein\" + 0.007*\"car\" + 0.007*\"type\"\n", - "2019-01-16 04:16:33,828 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.018*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.010*\"loui\" + 0.010*\"le\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:16:33,834 : INFO : topic diff=0.020399, rho=0.080322\n", - "2019-01-16 04:16:34,338 : INFO : PROGRESS: pass 0, at document #312000/4922894\n", - "2019-01-16 04:16:36,505 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:37,063 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.015*\"famili\" + 0.015*\"marri\" + 0.013*\"born\" + 0.012*\"father\" + 0.012*\"cathol\" + 0.012*\"death\" + 0.012*\"daughter\"\n", - "2019-01-16 04:16:37,065 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.022*\"contest\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.016*\"elimin\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.014*\"match\" + 0.013*\"week\" + 0.013*\"champion\"\n", - "2019-01-16 04:16:37,066 : INFO : topic #35 (0.020): 0.033*\"minist\" + 0.028*\"prime\" + 0.021*\"thailand\" + 0.017*\"indonesia\" + 0.013*\"vietnam\" + 0.012*\"bulgarian\" + 0.012*\"chan\" + 0.011*\"bangkok\" + 0.010*\"thai\" + 0.010*\"singapor\"\n", - "2019-01-16 04:16:37,068 : INFO : topic #31 (0.020): 0.050*\"australia\" + 0.048*\"new\" + 0.039*\"australian\" + 0.036*\"china\" + 0.034*\"chines\" + 0.031*\"zealand\" + 0.026*\"sydnei\" + 0.024*\"south\" + 0.020*\"hong\" + 0.018*\"kong\"\n", - "2019-01-16 04:16:37,070 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.039*\"new\" + 0.027*\"american\" + 0.026*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.012*\"counti\" + 0.012*\"texa\"\n", - "2019-01-16 04:16:37,075 : INFO : topic diff=0.021371, rho=0.080064\n", - "2019-01-16 04:16:37,601 : INFO : PROGRESS: pass 0, at document #314000/4922894\n", - "2019-01-16 04:16:39,744 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:40,302 : INFO : topic #27 (0.020): 0.046*\"russian\" + 0.026*\"soviet\" + 0.023*\"russia\" + 0.022*\"jewish\" + 0.021*\"polish\" + 0.019*\"born\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.014*\"poland\"\n", - "2019-01-16 04:16:40,304 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"version\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"player\" + 0.007*\"data\" + 0.007*\"design\" + 0.007*\"includ\"\n", - "2019-01-16 04:16:40,305 : INFO : topic #30 (0.020): 0.058*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.018*\"itali\" + 0.017*\"jean\" + 0.013*\"wine\" + 0.012*\"de\" + 0.011*\"loui\"\n", - "2019-01-16 04:16:40,307 : INFO : topic #49 (0.020): 0.062*\"west\" + 0.059*\"north\" + 0.058*\"east\" + 0.057*\"region\" + 0.050*\"south\" + 0.025*\"swedish\" + 0.025*\"central\" + 0.022*\"villag\" + 0.021*\"norwai\" + 0.021*\"norwegian\"\n", - "2019-01-16 04:16:40,309 : INFO : topic #9 (0.020): 0.073*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"direct\" + 0.012*\"produc\"\n", - "2019-01-16 04:16:40,315 : INFO : topic diff=0.020818, rho=0.079809\n", - "2019-01-16 04:16:40,805 : INFO : PROGRESS: pass 0, at document #316000/4922894\n", - "2019-01-16 04:16:42,942 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:43,498 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.038*\"final\" + 0.029*\"tournament\" + 0.021*\"open\" + 0.021*\"winner\" + 0.016*\"group\" + 0.014*\"runner\" + 0.014*\"qualifi\" + 0.011*\"doubl\" + 0.011*\"singl\"\n", - "2019-01-16 04:16:43,499 : INFO : topic #31 (0.020): 0.050*\"australia\" + 0.048*\"new\" + 0.038*\"australian\" + 0.036*\"china\" + 0.034*\"chines\" + 0.031*\"zealand\" + 0.025*\"sydnei\" + 0.025*\"south\" + 0.022*\"hong\" + 0.020*\"kong\"\n", - "2019-01-16 04:16:43,501 : INFO : topic #8 (0.020): 0.046*\"district\" + 0.040*\"india\" + 0.033*\"indian\" + 0.023*\"villag\" + 0.018*\"provinc\" + 0.012*\"iran\" + 0.011*\"pakistan\" + 0.010*\"sri\" + 0.010*\"http\" + 0.010*\"rural\"\n", - "2019-01-16 04:16:43,504 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"god\" + 0.005*\"tradit\" + 0.005*\"us\" + 0.005*\"social\"\n", - "2019-01-16 04:16:43,506 : INFO : topic #48 (0.020): 0.084*\"march\" + 0.080*\"januari\" + 0.075*\"octob\" + 0.075*\"septemb\" + 0.073*\"novemb\" + 0.070*\"juli\" + 0.070*\"decemb\" + 0.069*\"june\" + 0.069*\"april\" + 0.068*\"august\"\n", - "2019-01-16 04:16:43,513 : INFO : topic diff=0.018572, rho=0.079556\n", - "2019-01-16 04:16:43,959 : INFO : PROGRESS: pass 0, at document #318000/4922894\n", - "2019-01-16 04:16:46,183 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:46,739 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"increas\" + 0.009*\"time\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"market\" + 0.007*\"number\" + 0.006*\"year\" + 0.006*\"requir\"\n", - "2019-01-16 04:16:46,741 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.005*\"peopl\" + 0.005*\"us\" + 0.005*\"tradit\" + 0.005*\"god\" + 0.005*\"exampl\"\n", - "2019-01-16 04:16:46,743 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.010*\"air\" + 0.009*\"dai\"\n", - "2019-01-16 04:16:46,744 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.026*\"american\" + 0.026*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.012*\"counti\" + 0.012*\"texa\"\n", - "2019-01-16 04:16:46,746 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.030*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.023*\"medal\" + 0.021*\"event\" + 0.020*\"men\" + 0.018*\"athlet\" + 0.017*\"japanes\"\n", - "2019-01-16 04:16:46,752 : INFO : topic diff=0.019179, rho=0.079305\n", - "2019-01-16 04:16:51,818 : INFO : -11.552 per-word bound, 3003.1 perplexity estimate based on a held-out corpus of 2000 documents with 550903 words\n", - "2019-01-16 04:16:51,819 : INFO : PROGRESS: pass 0, at document #320000/4922894\n", - "2019-01-16 04:16:54,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:54,560 : INFO : topic #40 (0.020): 0.026*\"africa\" + 0.025*\"bar\" + 0.025*\"african\" + 0.018*\"south\" + 0.014*\"till\" + 0.014*\"text\" + 0.012*\"color\" + 0.012*\"coloni\" + 0.010*\"peopl\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:16:54,562 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.030*\"armi\" + 0.023*\"battl\" + 0.019*\"command\" + 0.018*\"forc\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.009*\"soldier\"\n", - "2019-01-16 04:16:54,564 : INFO : topic #8 (0.020): 0.044*\"district\" + 0.040*\"india\" + 0.032*\"indian\" + 0.023*\"villag\" + 0.017*\"provinc\" + 0.012*\"iran\" + 0.011*\"pakistan\" + 0.010*\"rural\" + 0.010*\"http\" + 0.010*\"tamil\"\n", - "2019-01-16 04:16:54,565 : INFO : topic #15 (0.020): 0.028*\"unit\" + 0.025*\"england\" + 0.021*\"cricket\" + 0.021*\"citi\" + 0.018*\"town\" + 0.015*\"scottish\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.010*\"english\" + 0.010*\"wale\"\n", - "2019-01-16 04:16:54,567 : INFO : topic #22 (0.020): 0.060*\"counti\" + 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"ag\" + 0.029*\"citi\" + 0.023*\"household\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.021*\"area\" + 0.020*\"commun\"\n", - "2019-01-16 04:16:54,574 : INFO : topic diff=0.018023, rho=0.079057\n", - "2019-01-16 04:16:55,030 : INFO : PROGRESS: pass 0, at document #322000/4922894\n", - "2019-01-16 04:16:57,240 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:16:57,796 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"number\" + 0.011*\"set\" + 0.009*\"theori\" + 0.009*\"gener\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.007*\"group\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 04:16:57,797 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"increas\" + 0.009*\"time\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"market\" + 0.007*\"year\" + 0.006*\"requir\"\n", - "2019-01-16 04:16:57,799 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.014*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"magazin\"\n", - "2019-01-16 04:16:57,801 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"team\" + 0.033*\"plai\" + 0.032*\"club\" + 0.025*\"season\" + 0.023*\"footbal\" + 0.022*\"cup\" + 0.018*\"player\" + 0.016*\"match\" + 0.015*\"goal\"\n", - "2019-01-16 04:16:57,802 : INFO : topic #49 (0.020): 0.065*\"west\" + 0.064*\"east\" + 0.058*\"north\" + 0.055*\"region\" + 0.054*\"south\" + 0.025*\"swedish\" + 0.025*\"central\" + 0.024*\"villag\" + 0.021*\"norwegian\" + 0.021*\"norwai\"\n", - "2019-01-16 04:16:57,808 : INFO : topic diff=0.019925, rho=0.078811\n", - "2019-01-16 04:16:58,255 : INFO : PROGRESS: pass 0, at document #324000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:17:00,440 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:00,996 : INFO : topic #26 (0.020): 0.030*\"world\" + 0.029*\"women\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.019*\"men\" + 0.018*\"japanes\" + 0.017*\"team\"\n", - "2019-01-16 04:17:00,997 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.014*\"american\" + 0.013*\"born\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\"\n", - "2019-01-16 04:17:01,000 : INFO : topic #48 (0.020): 0.080*\"march\" + 0.078*\"januari\" + 0.074*\"octob\" + 0.074*\"septemb\" + 0.071*\"novemb\" + 0.070*\"april\" + 0.069*\"juli\" + 0.068*\"decemb\" + 0.068*\"june\" + 0.068*\"august\"\n", - "2019-01-16 04:17:01,001 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.023*\"william\" + 0.021*\"london\" + 0.018*\"british\" + 0.014*\"georg\" + 0.014*\"ireland\" + 0.013*\"sir\" + 0.012*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:17:01,004 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.012*\"number\" + 0.011*\"set\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"index\" + 0.008*\"point\" + 0.007*\"space\" + 0.007*\"group\"\n", - "2019-01-16 04:17:01,011 : INFO : topic diff=0.020640, rho=0.078567\n", - "2019-01-16 04:17:01,471 : INFO : PROGRESS: pass 0, at document #326000/4922894\n", - "2019-01-16 04:17:03,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:04,286 : INFO : topic #40 (0.020): 0.027*\"bar\" + 0.027*\"africa\" + 0.025*\"african\" + 0.019*\"south\" + 0.016*\"till\" + 0.015*\"text\" + 0.015*\"color\" + 0.012*\"coloni\" + 0.010*\"peopl\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:17:04,288 : INFO : topic #26 (0.020): 0.030*\"world\" + 0.029*\"women\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.023*\"japan\" + 0.022*\"medal\" + 0.020*\"event\" + 0.018*\"men\" + 0.018*\"japanes\" + 0.017*\"team\"\n", - "2019-01-16 04:17:04,290 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"site\" + 0.010*\"histor\" + 0.009*\"file\" + 0.009*\"place\"\n", - "2019-01-16 04:17:04,292 : INFO : topic #3 (0.020): 0.026*\"john\" + 0.023*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"georg\" + 0.013*\"ireland\" + 0.013*\"sir\" + 0.012*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:17:04,294 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"increas\" + 0.009*\"time\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"number\" + 0.007*\"cost\" + 0.006*\"year\" + 0.006*\"market\" + 0.006*\"requir\"\n", - "2019-01-16 04:17:04,300 : INFO : topic diff=0.018359, rho=0.078326\n", - "2019-01-16 04:17:04,813 : INFO : PROGRESS: pass 0, at document #328000/4922894\n", - "2019-01-16 04:17:07,000 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:07,556 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.015*\"centuri\" + 0.010*\"greek\" + 0.010*\"empir\" + 0.010*\"templ\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 04:17:07,558 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.019*\"work\" + 0.014*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.010*\"magazin\"\n", - "2019-01-16 04:17:07,560 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.005*\"differ\" + 0.005*\"peopl\" + 0.005*\"tradit\" + 0.005*\"centuri\" + 0.005*\"god\"\n", - "2019-01-16 04:17:07,562 : INFO : topic #8 (0.020): 0.044*\"district\" + 0.041*\"india\" + 0.032*\"indian\" + 0.024*\"villag\" + 0.017*\"provinc\" + 0.012*\"pakistan\" + 0.012*\"iran\" + 0.010*\"rural\" + 0.010*\"http\" + 0.009*\"khan\"\n", - "2019-01-16 04:17:07,563 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.019*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"father\" + 0.012*\"death\" + 0.012*\"year\"\n", - "2019-01-16 04:17:07,569 : INFO : topic diff=0.018185, rho=0.078087\n", - "2019-01-16 04:17:08,075 : INFO : PROGRESS: pass 0, at document #330000/4922894\n", - "2019-01-16 04:17:10,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:10,862 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.026*\"england\" + 0.023*\"cricket\" + 0.021*\"citi\" + 0.019*\"town\" + 0.015*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.010*\"wale\" + 0.010*\"english\"\n", - "2019-01-16 04:17:10,864 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.014*\"championship\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.010*\"ford\" + 0.010*\"time\" + 0.010*\"point\"\n", - "2019-01-16 04:17:10,866 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"number\" + 0.007*\"market\" + 0.006*\"year\" + 0.006*\"requir\"\n", - "2019-01-16 04:17:10,867 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.027*\"soviet\" + 0.023*\"polish\" + 0.022*\"russia\" + 0.020*\"jewish\" + 0.018*\"born\" + 0.016*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.014*\"poland\"\n", - "2019-01-16 04:17:10,869 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.036*\"final\" + 0.029*\"tournament\" + 0.022*\"open\" + 0.021*\"winner\" + 0.016*\"group\" + 0.014*\"runner\" + 0.013*\"qualifi\" + 0.011*\"doubl\" + 0.011*\"singl\"\n", - "2019-01-16 04:17:10,874 : INFO : topic diff=0.018704, rho=0.077850\n", - "2019-01-16 04:17:11,402 : INFO : PROGRESS: pass 0, at document #332000/4922894\n", - "2019-01-16 04:17:13,556 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:14,110 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"number\" + 0.006*\"market\" + 0.006*\"year\" + 0.006*\"requir\"\n", - "2019-01-16 04:17:14,112 : INFO : topic #49 (0.020): 0.064*\"east\" + 0.064*\"west\" + 0.062*\"north\" + 0.060*\"region\" + 0.056*\"south\" + 0.026*\"swedish\" + 0.023*\"villag\" + 0.023*\"central\" + 0.021*\"sweden\" + 0.020*\"district\"\n", - "2019-01-16 04:17:14,114 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.015*\"cell\" + 0.013*\"product\" + 0.010*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"chemic\" + 0.007*\"type\" + 0.007*\"plant\" + 0.007*\"vehicl\"\n", - "2019-01-16 04:17:14,116 : INFO : topic #22 (0.020): 0.055*\"counti\" + 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"ag\" + 0.031*\"citi\" + 0.023*\"famili\" + 0.022*\"household\" + 0.022*\"censu\" + 0.022*\"live\" + 0.021*\"area\"\n", - "2019-01-16 04:17:14,117 : INFO : topic #8 (0.020): 0.044*\"district\" + 0.042*\"india\" + 0.032*\"indian\" + 0.023*\"villag\" + 0.017*\"provinc\" + 0.012*\"pakistan\" + 0.012*\"iran\" + 0.010*\"rural\" + 0.010*\"http\" + 0.009*\"tamil\"\n", - "2019-01-16 04:17:14,123 : INFO : topic diff=0.019880, rho=0.077615\n", - "2019-01-16 04:17:14,591 : INFO : PROGRESS: pass 0, at document #334000/4922894\n", - "2019-01-16 04:17:16,762 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:17,322 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.035*\"team\" + 0.034*\"club\" + 0.034*\"plai\" + 0.025*\"season\" + 0.023*\"footbal\" + 0.022*\"cup\" + 0.017*\"player\" + 0.015*\"match\" + 0.015*\"goal\"\n", - "2019-01-16 04:17:17,324 : INFO : topic #22 (0.020): 0.054*\"counti\" + 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"ag\" + 0.030*\"citi\" + 0.023*\"famili\" + 0.022*\"household\" + 0.022*\"censu\" + 0.022*\"live\" + 0.021*\"area\"\n", - "2019-01-16 04:17:17,326 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"cost\" + 0.007*\"number\" + 0.006*\"market\" + 0.006*\"year\" + 0.006*\"requir\"\n", - "2019-01-16 04:17:17,328 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.022*\"team\" + 0.014*\"plai\" + 0.013*\"coach\" + 0.013*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", - "2019-01-16 04:17:17,330 : INFO : topic #23 (0.020): 0.024*\"hospit\" + 0.022*\"medic\" + 0.019*\"health\" + 0.013*\"ret\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.011*\"caus\" + 0.011*\"cancer\" + 0.011*\"treatment\" + 0.010*\"medicin\"\n", - "2019-01-16 04:17:17,336 : INFO : topic diff=0.017076, rho=0.077382\n", - "2019-01-16 04:17:17,854 : INFO : PROGRESS: pass 0, at document #336000/4922894\n", - "2019-01-16 04:17:20,017 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:20,572 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.020*\"london\" + 0.019*\"british\" + 0.015*\"sir\" + 0.013*\"georg\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"ireland\" + 0.012*\"henri\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:17:20,573 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.015*\"cell\" + 0.013*\"product\" + 0.010*\"model\" + 0.010*\"power\" + 0.008*\"produc\" + 0.008*\"chemic\" + 0.007*\"type\" + 0.007*\"plant\" + 0.007*\"design\"\n", - "2019-01-16 04:17:20,576 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.023*\"spanish\" + 0.015*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.010*\"portugues\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\"\n", - "2019-01-16 04:17:20,578 : INFO : topic #0 (0.020): 0.043*\"war\" + 0.030*\"armi\" + 0.021*\"battl\" + 0.019*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.009*\"soldier\"\n", - "2019-01-16 04:17:20,580 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.019*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"father\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"death\"\n", - "2019-01-16 04:17:20,586 : INFO : topic diff=0.020915, rho=0.077152\n", - "2019-01-16 04:17:21,039 : INFO : PROGRESS: pass 0, at document #338000/4922894\n", - "2019-01-16 04:17:23,213 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:23,768 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.031*\"world\" + 0.029*\"japan\" + 0.027*\"championship\" + 0.025*\"event\" + 0.024*\"olymp\" + 0.021*\"medal\" + 0.019*\"japanes\" + 0.019*\"men\" + 0.017*\"athlet\"\n", - "2019-01-16 04:17:23,769 : INFO : topic #49 (0.020): 0.065*\"west\" + 0.065*\"east\" + 0.063*\"north\" + 0.059*\"region\" + 0.054*\"south\" + 0.024*\"swedish\" + 0.024*\"central\" + 0.023*\"villag\" + 0.021*\"sweden\" + 0.021*\"district\"\n", - "2019-01-16 04:17:23,771 : INFO : topic #31 (0.020): 0.052*\"australia\" + 0.048*\"new\" + 0.044*\"australian\" + 0.038*\"china\" + 0.037*\"chines\" + 0.031*\"zealand\" + 0.023*\"south\" + 0.021*\"sydnei\" + 0.019*\"hong\" + 0.018*\"kong\"\n", - "2019-01-16 04:17:23,772 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.019*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"daughter\" + 0.012*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"death\"\n", - "2019-01-16 04:17:23,774 : INFO : topic #32 (0.020): 0.029*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.008*\"red\" + 0.007*\"black\" + 0.007*\"anim\" + 0.007*\"fish\"\n", - "2019-01-16 04:17:23,780 : INFO : topic diff=0.017905, rho=0.076923\n", - "2019-01-16 04:17:28,956 : INFO : -11.801 per-word bound, 3567.6 perplexity estimate based on a held-out corpus of 2000 documents with 555894 words\n", - "2019-01-16 04:17:28,956 : INFO : PROGRESS: pass 0, at document #340000/4922894\n", - "2019-01-16 04:17:31,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:31,783 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.015*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"air\" + 0.009*\"network\"\n", - "2019-01-16 04:17:31,785 : INFO : topic #40 (0.020): 0.030*\"bar\" + 0.025*\"african\" + 0.025*\"africa\" + 0.018*\"till\" + 0.018*\"text\" + 0.018*\"south\" + 0.017*\"color\" + 0.010*\"black\" + 0.010*\"coloni\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:17:31,787 : INFO : topic #0 (0.020): 0.043*\"war\" + 0.030*\"armi\" + 0.020*\"battl\" + 0.020*\"command\" + 0.018*\"forc\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.009*\"soldier\"\n", - "2019-01-16 04:17:31,788 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.025*\"season\" + 0.022*\"team\" + 0.014*\"plai\" + 0.013*\"coach\" + 0.012*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"yard\" + 0.009*\"record\"\n", - "2019-01-16 04:17:31,790 : INFO : topic #22 (0.020): 0.056*\"counti\" + 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"ag\" + 0.029*\"citi\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.022*\"household\" + 0.021*\"live\" + 0.021*\"area\"\n", - "2019-01-16 04:17:31,796 : INFO : topic diff=0.017891, rho=0.076696\n", - "2019-01-16 04:17:32,276 : INFO : PROGRESS: pass 0, at document #342000/4922894\n", - "2019-01-16 04:17:34,499 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:35,058 : INFO : topic #18 (0.020): 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"water\" + 0.006*\"materi\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"us\" + 0.005*\"form\" + 0.005*\"time\"\n", - "2019-01-16 04:17:35,060 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.010*\"santa\" + 0.010*\"portugues\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 04:17:35,061 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"jpg\" + 0.012*\"locat\" + 0.010*\"site\" + 0.010*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\"\n", - "2019-01-16 04:17:35,063 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.033*\"publish\" + 0.020*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 04:17:35,064 : INFO : topic #23 (0.020): 0.022*\"hospit\" + 0.021*\"medic\" + 0.019*\"health\" + 0.013*\"diseas\" + 0.012*\"patient\" + 0.012*\"ret\" + 0.011*\"drug\" + 0.011*\"caus\" + 0.010*\"treatment\" + 0.010*\"cancer\"\n", - "2019-01-16 04:17:35,071 : INFO : topic diff=0.016890, rho=0.076472\n", - "2019-01-16 04:17:35,539 : INFO : PROGRESS: pass 0, at document #344000/4922894\n", - "2019-01-16 04:17:37,777 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:38,334 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.016*\"broadcast\" + 0.015*\"station\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"air\" + 0.009*\"network\"\n", - "2019-01-16 04:17:38,336 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.028*\"american\" + 0.024*\"york\" + 0.022*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"texa\" + 0.011*\"counti\"\n", - "2019-01-16 04:17:38,338 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.010*\"brazil\" + 0.010*\"portugues\" + 0.009*\"juan\" + 0.009*\"josé\"\n", - "2019-01-16 04:17:38,339 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"war\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 04:17:38,341 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.019*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"death\"\n", - "2019-01-16 04:17:38,348 : INFO : topic diff=0.021378, rho=0.076249\n", - "2019-01-16 04:17:38,816 : INFO : PROGRESS: pass 0, at document #346000/4922894\n", - "2019-01-16 04:17:40,993 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:41,548 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.007*\"bank\" + 0.007*\"cost\" + 0.006*\"year\" + 0.006*\"market\" + 0.006*\"number\" + 0.006*\"product\"\n", - "2019-01-16 04:17:41,550 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.032*\"germani\" + 0.025*\"von\" + 0.025*\"van\" + 0.022*\"der\" + 0.022*\"dutch\" + 0.018*\"berlin\" + 0.013*\"die\" + 0.012*\"netherland\" + 0.012*\"und\"\n", - "2019-01-16 04:17:41,552 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.016*\"broadcast\" + 0.016*\"station\" + 0.012*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"air\" + 0.009*\"network\"\n", - "2019-01-16 04:17:41,553 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.033*\"armi\" + 0.020*\"command\" + 0.020*\"battl\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"divis\" + 0.009*\"offic\"\n", - "2019-01-16 04:17:41,555 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"magazin\"\n", - "2019-01-16 04:17:41,561 : INFO : topic diff=0.018668, rho=0.076029\n", - "2019-01-16 04:17:42,035 : INFO : PROGRESS: pass 0, at document #348000/4922894\n", - "2019-01-16 04:17:44,183 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:44,738 : INFO : topic #40 (0.020): 0.029*\"african\" + 0.027*\"bar\" + 0.026*\"africa\" + 0.019*\"south\" + 0.017*\"till\" + 0.016*\"text\" + 0.016*\"color\" + 0.010*\"black\" + 0.010*\"coloni\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:17:44,740 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.009*\"plant\" + 0.009*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"anim\" + 0.007*\"black\" + 0.006*\"fish\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:17:44,741 : INFO : topic #18 (0.020): 0.007*\"earth\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"water\" + 0.006*\"high\" + 0.006*\"materi\" + 0.006*\"us\" + 0.005*\"form\" + 0.005*\"time\"\n", - "2019-01-16 04:17:44,743 : INFO : topic #30 (0.020): 0.060*\"french\" + 0.044*\"franc\" + 0.029*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.012*\"de\" + 0.012*\"wine\" + 0.012*\"loui\"\n", - "2019-01-16 04:17:44,745 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.016*\"fight\" + 0.014*\"champion\" + 0.013*\"match\" + 0.012*\"world\" + 0.012*\"week\"\n", - "2019-01-16 04:17:44,751 : INFO : topic diff=0.017645, rho=0.075810\n", - "2019-01-16 04:17:45,213 : INFO : PROGRESS: pass 0, at document #350000/4922894\n", - "2019-01-16 04:17:47,378 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:47,933 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.015*\"centuri\" + 0.011*\"greek\" + 0.010*\"kingdom\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"templ\" + 0.008*\"princ\" + 0.008*\"roman\" + 0.007*\"citi\"\n", - "2019-01-16 04:17:47,935 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"london\" + 0.019*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"royal\" + 0.012*\"jame\"\n", - "2019-01-16 04:17:47,936 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.007*\"bank\" + 0.007*\"cost\" + 0.006*\"year\" + 0.006*\"market\" + 0.006*\"number\" + 0.006*\"product\"\n", - "2019-01-16 04:17:47,938 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.038*\"final\" + 0.031*\"tournament\" + 0.020*\"open\" + 0.020*\"winner\" + 0.015*\"group\" + 0.014*\"draw\" + 0.014*\"qualifi\" + 0.013*\"runner\" + 0.013*\"doubl\"\n", - "2019-01-16 04:17:47,939 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.028*\"american\" + 0.023*\"unit\" + 0.023*\"york\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"texa\" + 0.012*\"washington\" + 0.012*\"counti\"\n", - "2019-01-16 04:17:47,945 : INFO : topic diff=0.018439, rho=0.075593\n", - "2019-01-16 04:17:48,427 : INFO : PROGRESS: pass 0, at document #352000/4922894\n", - "2019-01-16 04:17:50,604 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:51,161 : INFO : topic #12 (0.020): 0.064*\"elect\" + 0.046*\"parti\" + 0.023*\"member\" + 0.021*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.015*\"council\" + 0.014*\"repres\" + 0.013*\"polit\" + 0.013*\"hous\"\n", - "2019-01-16 04:17:51,163 : INFO : topic #34 (0.020): 0.072*\"canada\" + 0.061*\"canadian\" + 0.035*\"island\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.017*\"quebec\" + 0.017*\"british\" + 0.017*\"flag\"\n", - "2019-01-16 04:17:51,164 : INFO : topic #35 (0.020): 0.023*\"indonesia\" + 0.019*\"prime\" + 0.019*\"minist\" + 0.018*\"thailand\" + 0.017*\"singapor\" + 0.014*\"chan\" + 0.014*\"vietnam\" + 0.013*\"chi\" + 0.013*\"lee\" + 0.013*\"indonesian\"\n", - "2019-01-16 04:17:51,165 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.016*\"centuri\" + 0.011*\"greek\" + 0.010*\"kingdom\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"templ\" + 0.008*\"princ\" + 0.008*\"roman\" + 0.007*\"citi\"\n", - "2019-01-16 04:17:51,167 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.009*\"juan\" + 0.009*\"francisco\" + 0.009*\"josé\"\n", - "2019-01-16 04:17:51,173 : INFO : topic diff=0.016825, rho=0.075378\n", - "2019-01-16 04:17:51,646 : INFO : PROGRESS: pass 0, at document #354000/4922894\n", - "2019-01-16 04:17:53,915 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:54,470 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.015*\"chart\" + 0.012*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:17:54,473 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.039*\"final\" + 0.032*\"tournament\" + 0.021*\"winner\" + 0.019*\"open\" + 0.016*\"group\" + 0.015*\"qualifi\" + 0.014*\"draw\" + 0.013*\"runner\" + 0.012*\"doubl\"\n", - "2019-01-16 04:17:54,475 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"centuri\" + 0.005*\"us\" + 0.005*\"differ\" + 0.005*\"social\"\n", - "2019-01-16 04:17:54,479 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.016*\"centuri\" + 0.011*\"greek\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"templ\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.007*\"princ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:17:54,481 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.034*\"team\" + 0.033*\"plai\" + 0.032*\"club\" + 0.024*\"footbal\" + 0.024*\"season\" + 0.023*\"cup\" + 0.017*\"player\" + 0.017*\"match\" + 0.016*\"goal\"\n", - "2019-01-16 04:17:54,487 : INFO : topic diff=0.021547, rho=0.075165\n", - "2019-01-16 04:17:54,936 : INFO : PROGRESS: pass 0, at document #356000/4922894\n", - "2019-01-16 04:17:57,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:17:57,759 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.073*\"align\" + 0.059*\"style\" + 0.059*\"left\" + 0.058*\"wikit\" + 0.054*\"center\" + 0.035*\"text\" + 0.034*\"right\" + 0.028*\"philippin\" + 0.026*\"border\"\n", - "2019-01-16 04:17:57,761 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.010*\"point\" + 0.010*\"ford\" + 0.010*\"tour\" + 0.010*\"year\"\n", - "2019-01-16 04:17:57,762 : INFO : topic #30 (0.020): 0.058*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.012*\"loui\" + 0.012*\"de\" + 0.010*\"wine\"\n", - "2019-01-16 04:17:57,764 : INFO : topic #47 (0.020): 0.023*\"river\" + 0.020*\"station\" + 0.018*\"road\" + 0.017*\"line\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.014*\"park\" + 0.012*\"north\" + 0.011*\"lake\"\n", - "2019-01-16 04:17:57,765 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"love\" + 0.004*\"said\"\n", - "2019-01-16 04:17:57,772 : INFO : topic diff=0.019453, rho=0.074953\n", - "2019-01-16 04:17:58,251 : INFO : PROGRESS: pass 0, at document #358000/4922894\n", - "2019-01-16 04:18:00,409 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:00,964 : INFO : topic #11 (0.020): 0.029*\"law\" + 0.021*\"court\" + 0.021*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"right\" + 0.008*\"public\" + 0.007*\"feder\"\n", - "2019-01-16 04:18:00,966 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:18:00,968 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.013*\"und\" + 0.011*\"nazi\"\n", - "2019-01-16 04:18:00,969 : INFO : topic #48 (0.020): 0.079*\"march\" + 0.077*\"januari\" + 0.075*\"octob\" + 0.074*\"septemb\" + 0.072*\"juli\" + 0.072*\"april\" + 0.071*\"june\" + 0.071*\"novemb\" + 0.069*\"august\" + 0.065*\"decemb\"\n", - "2019-01-16 04:18:00,971 : INFO : topic #6 (0.020): 0.066*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.018*\"danc\" + 0.017*\"theatr\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 04:18:00,978 : INFO : topic diff=0.018386, rho=0.074744\n", - "2019-01-16 04:18:05,878 : INFO : -12.071 per-word bound, 4303.9 perplexity estimate based on a held-out corpus of 2000 documents with 543151 words\n", - "2019-01-16 04:18:05,878 : INFO : PROGRESS: pass 0, at document #360000/4922894\n", - "2019-01-16 04:18:08,021 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:08,576 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.020*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.014*\"railwai\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"park\" + 0.012*\"north\" + 0.012*\"lake\"\n", - "2019-01-16 04:18:08,578 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.014*\"cell\" + 0.014*\"product\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.007*\"manufactur\" + 0.007*\"chemic\" + 0.007*\"oil\" + 0.007*\"design\"\n", - "2019-01-16 04:18:08,580 : INFO : topic #5 (0.020): 0.024*\"game\" + 0.010*\"version\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"support\" + 0.007*\"base\" + 0.007*\"player\" + 0.007*\"design\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:18:08,582 : INFO : topic #0 (0.020): 0.041*\"war\" + 0.031*\"armi\" + 0.020*\"forc\" + 0.019*\"command\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"regiment\" + 0.010*\"divis\" + 0.009*\"soldier\"\n", - "2019-01-16 04:18:08,584 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.014*\"brazil\" + 0.011*\"santa\" + 0.011*\"argentina\" + 0.009*\"juan\" + 0.009*\"josé\"\n", - "2019-01-16 04:18:08,591 : INFO : topic diff=0.017481, rho=0.074536\n", - "2019-01-16 04:18:09,070 : INFO : PROGRESS: pass 0, at document #362000/4922894\n", - "2019-01-16 04:18:11,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:11,793 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.016*\"centuri\" + 0.011*\"emperor\" + 0.010*\"greek\" + 0.010*\"empir\" + 0.010*\"kingdom\" + 0.009*\"templ\" + 0.008*\"princ\" + 0.008*\"roman\" + 0.007*\"citi\"\n", - "2019-01-16 04:18:11,795 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.013*\"american\" + 0.011*\"david\" + 0.009*\"born\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"smith\"\n", - "2019-01-16 04:18:11,796 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.013*\"henri\" + 0.012*\"jame\"\n", - "2019-01-16 04:18:11,798 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"rate\" + 0.008*\"bank\" + 0.007*\"year\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"number\" + 0.006*\"requir\"\n", - "2019-01-16 04:18:11,799 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.012*\"loui\" + 0.011*\"wine\"\n", - "2019-01-16 04:18:11,806 : INFO : topic diff=0.017198, rho=0.074329\n", - "2019-01-16 04:18:12,265 : INFO : PROGRESS: pass 0, at document #364000/4922894\n", - "2019-01-16 04:18:14,431 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:14,992 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.021*\"contest\" + 0.019*\"fight\" + 0.017*\"wrestl\" + 0.015*\"titl\" + 0.014*\"championship\" + 0.013*\"elimin\" + 0.013*\"champion\" + 0.013*\"week\" + 0.012*\"pro\"\n", - "2019-01-16 04:18:14,994 : INFO : topic #6 (0.020): 0.065*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.017*\"theatr\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:18:14,996 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"love\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 04:18:14,998 : INFO : topic #30 (0.020): 0.058*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.013*\"loui\" + 0.013*\"de\" + 0.011*\"wine\"\n", - "2019-01-16 04:18:15,000 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.020*\"airport\" + 0.016*\"unit\" + 0.016*\"forc\" + 0.014*\"flight\" + 0.014*\"navi\" + 0.013*\"squadron\" + 0.012*\"servic\"\n", - "2019-01-16 04:18:15,006 : INFO : topic diff=0.016819, rho=0.074125\n", - "2019-01-16 04:18:15,482 : INFO : PROGRESS: pass 0, at document #366000/4922894\n", - "2019-01-16 04:18:17,678 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:18,241 : INFO : topic #35 (0.020): 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.017*\"singapor\" + 0.016*\"prime\" + 0.016*\"minist\" + 0.016*\"vietnam\" + 0.015*\"lee\" + 0.014*\"chan\" + 0.013*\"chi\" + 0.013*\"ind\"\n", - "2019-01-16 04:18:18,243 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.019*\"airport\" + 0.016*\"unit\" + 0.016*\"forc\" + 0.014*\"navi\" + 0.013*\"flight\" + 0.013*\"squadron\" + 0.012*\"servic\"\n", - "2019-01-16 04:18:18,244 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.021*\"design\" + 0.016*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.010*\"photograph\"\n", - "2019-01-16 04:18:18,246 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"jpg\" + 0.011*\"locat\" + 0.011*\"street\" + 0.010*\"site\" + 0.010*\"histor\" + 0.009*\"centuri\" + 0.009*\"file\"\n", - "2019-01-16 04:18:18,247 : INFO : topic #49 (0.020): 0.067*\"region\" + 0.067*\"west\" + 0.065*\"east\" + 0.061*\"north\" + 0.055*\"south\" + 0.042*\"villag\" + 0.025*\"central\" + 0.024*\"swedish\" + 0.021*\"district\" + 0.019*\"northern\"\n", - "2019-01-16 04:18:18,253 : INFO : topic diff=0.016679, rho=0.073922\n", - "2019-01-16 04:18:18,751 : INFO : PROGRESS: pass 0, at document #368000/4922894\n", - "2019-01-16 04:18:20,965 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:21,527 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.028*\"soviet\" + 0.027*\"jewish\" + 0.023*\"russia\" + 0.022*\"israel\" + 0.019*\"jew\" + 0.018*\"polish\" + 0.017*\"ukrainian\" + 0.016*\"born\" + 0.015*\"moscow\"\n", - "2019-01-16 04:18:21,529 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.020*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 04:18:21,530 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"light\" + 0.007*\"water\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"materi\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 04:18:21,531 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.051*\"univers\" + 0.038*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.008*\"campu\"\n", - "2019-01-16 04:18:21,533 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"love\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 04:18:21,539 : INFO : topic diff=0.016649, rho=0.073721\n", - "2019-01-16 04:18:22,031 : INFO : PROGRESS: pass 0, at document #370000/4922894\n", - "2019-01-16 04:18:24,187 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:24,745 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"light\" + 0.007*\"water\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"materi\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"effect\" + 0.005*\"time\"\n", - "2019-01-16 04:18:24,747 : INFO : topic #36 (0.020): 0.060*\"art\" + 0.034*\"museum\" + 0.029*\"work\" + 0.022*\"artist\" + 0.022*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.010*\"photograph\"\n", - "2019-01-16 04:18:24,749 : INFO : topic #12 (0.020): 0.062*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.021*\"democrat\" + 0.020*\"presid\" + 0.018*\"vote\" + 0.015*\"council\" + 0.014*\"repres\" + 0.013*\"senat\" + 0.013*\"polit\"\n", - "2019-01-16 04:18:24,751 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"love\"\n", - "2019-01-16 04:18:24,752 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.012*\"und\" + 0.012*\"netherland\" + 0.012*\"die\"\n", - "2019-01-16 04:18:24,758 : INFO : topic diff=0.017421, rho=0.073521\n", - "2019-01-16 04:18:25,231 : INFO : PROGRESS: pass 0, at document #372000/4922894\n", - "2019-01-16 04:18:27,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:27,938 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"light\" + 0.007*\"water\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"materi\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 04:18:27,940 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.015*\"coach\" + 0.014*\"plai\" + 0.012*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"yard\" + 0.009*\"record\"\n", - "2019-01-16 04:18:27,941 : INFO : topic #35 (0.020): 0.021*\"prime\" + 0.019*\"lee\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.016*\"vietnam\" + 0.016*\"singapor\" + 0.016*\"minist\" + 0.014*\"chan\" + 0.013*\"bulgarian\" + 0.013*\"chi\"\n", - "2019-01-16 04:18:27,943 : INFO : topic #25 (0.020): 0.043*\"round\" + 0.040*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"group\" + 0.015*\"draw\" + 0.014*\"runner\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", - "2019-01-16 04:18:27,945 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"bird\" + 0.008*\"red\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"anim\" + 0.006*\"black\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:18:27,950 : INFO : topic diff=0.018452, rho=0.073324\n", - "2019-01-16 04:18:28,386 : INFO : PROGRESS: pass 0, at document #374000/4922894\n", - "2019-01-16 04:18:30,506 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:31,061 : INFO : topic #34 (0.020): 0.073*\"canada\" + 0.059*\"canadian\" + 0.038*\"island\" + 0.027*\"toronto\" + 0.024*\"ontario\" + 0.018*\"british\" + 0.018*\"flag\" + 0.017*\"korean\" + 0.016*\"vancouv\" + 0.015*\"quebec\"\n", - "2019-01-16 04:18:31,063 : INFO : topic #36 (0.020): 0.060*\"art\" + 0.034*\"museum\" + 0.029*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.022*\"design\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.009*\"photograph\"\n", - "2019-01-16 04:18:31,065 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"best\" + 0.020*\"seri\" + 0.017*\"star\" + 0.013*\"role\" + 0.012*\"produc\" + 0.012*\"actor\" + 0.012*\"direct\"\n", - "2019-01-16 04:18:31,066 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.034*\"team\" + 0.033*\"club\" + 0.033*\"plai\" + 0.026*\"cup\" + 0.024*\"footbal\" + 0.024*\"season\" + 0.017*\"player\" + 0.017*\"match\" + 0.015*\"goal\"\n", - "2019-01-16 04:18:31,068 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\" + 0.012*\"jame\"\n", - "2019-01-16 04:18:31,074 : INFO : topic diff=0.016441, rho=0.073127\n", - "2019-01-16 04:18:31,534 : INFO : PROGRESS: pass 0, at document #376000/4922894\n", - "2019-01-16 04:18:33,698 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:34,254 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.018*\"radio\" + 0.015*\"broadcast\" + 0.015*\"station\" + 0.012*\"channel\" + 0.011*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"dai\" + 0.009*\"air\"\n", - "2019-01-16 04:18:34,256 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:18:34,257 : INFO : topic #34 (0.020): 0.073*\"canada\" + 0.059*\"canadian\" + 0.038*\"island\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.018*\"british\" + 0.017*\"flag\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.016*\"malaysia\"\n", - "2019-01-16 04:18:34,259 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"war\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 04:18:34,261 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.022*\"team\" + 0.015*\"coach\" + 0.014*\"plai\" + 0.012*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"basebal\"\n", - "2019-01-16 04:18:34,267 : INFO : topic diff=0.015745, rho=0.072932\n", - "2019-01-16 04:18:34,700 : INFO : PROGRESS: pass 0, at document #378000/4922894\n", - "2019-01-16 04:18:36,847 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:37,404 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"war\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 04:18:37,406 : INFO : topic #12 (0.020): 0.060*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.014*\"council\" + 0.014*\"senat\" + 0.014*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 04:18:37,407 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.013*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.007*\"oil\" + 0.007*\"acid\" + 0.007*\"vehicl\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:18:37,409 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.013*\"finish\" + 0.012*\"championship\" + 0.012*\"tour\" + 0.010*\"point\" + 0.010*\"grand\" + 0.010*\"year\"\n", - "2019-01-16 04:18:37,411 : INFO : topic #36 (0.020): 0.060*\"art\" + 0.033*\"museum\" + 0.029*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.022*\"design\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.009*\"photograph\"\n", - "2019-01-16 04:18:37,417 : INFO : topic diff=0.014381, rho=0.072739\n", - "2019-01-16 04:18:42,452 : INFO : -11.608 per-word bound, 3121.9 perplexity estimate based on a held-out corpus of 2000 documents with 582400 words\n", - "2019-01-16 04:18:42,453 : INFO : PROGRESS: pass 0, at document #380000/4922894\n", - "2019-01-16 04:18:44,675 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:45,236 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.053*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.029*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"grade\" + 0.009*\"teacher\"\n", - "2019-01-16 04:18:45,238 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.011*\"locat\" + 0.011*\"jpg\" + 0.010*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", - "2019-01-16 04:18:45,240 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.006*\"form\" + 0.006*\"mean\" + 0.006*\"god\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"cultur\" + 0.005*\"differ\" + 0.005*\"centuri\"\n", - "2019-01-16 04:18:45,241 : INFO : topic #14 (0.020): 0.015*\"compani\" + 0.014*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.011*\"work\" + 0.011*\"institut\" + 0.010*\"intern\" + 0.010*\"manag\" + 0.009*\"nation\"\n", - "2019-01-16 04:18:45,243 : INFO : topic #40 (0.020): 0.031*\"bar\" + 0.026*\"africa\" + 0.026*\"african\" + 0.023*\"text\" + 0.023*\"till\" + 0.021*\"south\" + 0.019*\"color\" + 0.010*\"format\" + 0.010*\"black\" + 0.009*\"coloni\"\n", - "2019-01-16 04:18:45,249 : INFO : topic diff=0.016313, rho=0.072548\n", - "2019-01-16 04:18:45,691 : INFO : PROGRESS: pass 0, at document #382000/4922894\n", - "2019-01-16 04:18:47,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:48,492 : INFO : topic #35 (0.020): 0.020*\"singapor\" + 0.019*\"lee\" + 0.019*\"prime\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.015*\"vietnam\" + 0.014*\"chan\" + 0.013*\"minist\" + 0.013*\"bulgarian\" + 0.013*\"thai\"\n", - "2019-01-16 04:18:48,493 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"bank\" + 0.007*\"rate\" + 0.007*\"year\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"number\" + 0.006*\"requir\"\n", - "2019-01-16 04:18:48,496 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.027*\"jewish\" + 0.025*\"soviet\" + 0.022*\"russia\" + 0.020*\"polish\" + 0.020*\"israel\" + 0.018*\"jew\" + 0.015*\"born\" + 0.015*\"moscow\" + 0.014*\"republ\"\n", - "2019-01-16 04:18:48,498 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.034*\"team\" + 0.033*\"plai\" + 0.033*\"club\" + 0.026*\"cup\" + 0.025*\"footbal\" + 0.024*\"season\" + 0.017*\"player\" + 0.016*\"match\" + 0.016*\"goal\"\n", - "2019-01-16 04:18:48,499 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.015*\"del\" + 0.014*\"mexico\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.010*\"francisco\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"juan\"\n", - "2019-01-16 04:18:48,505 : INFO : topic diff=0.014971, rho=0.072357\n", - "2019-01-16 04:18:49,004 : INFO : PROGRESS: pass 0, at document #384000/4922894\n", - "2019-01-16 04:18:51,155 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:51,709 : INFO : topic #22 (0.020): 0.049*\"counti\" + 0.049*\"popul\" + 0.034*\"town\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"household\" + 0.022*\"villag\" + 0.021*\"area\"\n", - "2019-01-16 04:18:51,711 : INFO : topic #39 (0.020): 0.041*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.019*\"airport\" + 0.016*\"unit\" + 0.016*\"forc\" + 0.015*\"navi\" + 0.013*\"squadron\" + 0.013*\"flight\" + 0.013*\"servic\"\n", - "2019-01-16 04:18:51,714 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.035*\"germani\" + 0.027*\"van\" + 0.025*\"von\" + 0.023*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.012*\"und\" + 0.012*\"netherland\" + 0.011*\"die\"\n", - "2019-01-16 04:18:51,715 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"born\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:18:51,717 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.022*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.014*\"council\" + 0.014*\"minist\" + 0.013*\"polit\" + 0.013*\"senat\"\n", - "2019-01-16 04:18:51,723 : INFO : topic diff=0.015375, rho=0.072169\n", - "2019-01-16 04:18:52,171 : INFO : PROGRESS: pass 0, at document #386000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:18:54,321 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:54,876 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.020*\"state\" + 0.017*\"act\" + 0.010*\"case\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"public\" + 0.008*\"right\" + 0.007*\"feder\"\n", - "2019-01-16 04:18:54,878 : INFO : topic #39 (0.020): 0.041*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.018*\"airport\" + 0.016*\"unit\" + 0.016*\"forc\" + 0.015*\"navi\" + 0.014*\"squadron\" + 0.013*\"flight\" + 0.013*\"servic\"\n", - "2019-01-16 04:18:54,879 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.011*\"daughter\" + 0.011*\"bishop\"\n", - "2019-01-16 04:18:54,881 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.038*\"franc\" + 0.029*\"saint\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.018*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 04:18:54,883 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.014*\"council\" + 0.014*\"minist\" + 0.013*\"senat\" + 0.013*\"repres\"\n", - "2019-01-16 04:18:54,888 : INFO : topic diff=0.015137, rho=0.071982\n", - "2019-01-16 04:18:55,315 : INFO : PROGRESS: pass 0, at document #388000/4922894\n", - "2019-01-16 04:18:57,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:18:58,043 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.046*\"australian\" + 0.045*\"new\" + 0.040*\"china\" + 0.038*\"chines\" + 0.030*\"zealand\" + 0.023*\"south\" + 0.019*\"hong\" + 0.018*\"kong\" + 0.016*\"sydnei\"\n", - "2019-01-16 04:18:58,044 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.006*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"love\"\n", - "2019-01-16 04:18:58,046 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.020*\"station\" + 0.018*\"road\" + 0.016*\"line\" + 0.014*\"area\" + 0.013*\"railwai\" + 0.013*\"park\" + 0.013*\"rout\" + 0.013*\"lake\" + 0.012*\"north\"\n", - "2019-01-16 04:18:58,048 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"point\" + 0.010*\"win\" + 0.010*\"time\"\n", - "2019-01-16 04:18:58,050 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.026*\"african\" + 0.026*\"africa\" + 0.025*\"text\" + 0.023*\"till\" + 0.021*\"south\" + 0.018*\"color\" + 0.010*\"shift\" + 0.009*\"black\" + 0.009*\"format\"\n", - "2019-01-16 04:18:58,056 : INFO : topic diff=0.015708, rho=0.071796\n", - "2019-01-16 04:18:58,513 : INFO : PROGRESS: pass 0, at document #390000/4922894\n", - "2019-01-16 04:19:00,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:01,307 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.009*\"plant\" + 0.008*\"bird\" + 0.008*\"anim\" + 0.008*\"red\" + 0.008*\"tree\" + 0.007*\"genu\" + 0.007*\"black\"\n", - "2019-01-16 04:19:01,308 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 04:19:01,310 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.034*\"germani\" + 0.027*\"van\" + 0.026*\"von\" + 0.022*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:19:01,312 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:19:01,314 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.014*\"product\" + 0.011*\"cell\" + 0.010*\"model\" + 0.010*\"power\" + 0.009*\"produc\" + 0.007*\"protein\" + 0.007*\"design\" + 0.007*\"car\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:19:01,320 : INFO : topic diff=0.017111, rho=0.071611\n", - "2019-01-16 04:19:01,824 : INFO : PROGRESS: pass 0, at document #392000/4922894\n", - "2019-01-16 04:19:04,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:04,579 : INFO : topic #35 (0.020): 0.027*\"prime\" + 0.018*\"singapor\" + 0.018*\"lee\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"minist\" + 0.016*\"vietnam\" + 0.013*\"chan\" + 0.012*\"chi\" + 0.011*\"thai\"\n", - "2019-01-16 04:19:04,581 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.027*\"africa\" + 0.027*\"african\" + 0.024*\"text\" + 0.021*\"south\" + 0.021*\"till\" + 0.017*\"color\" + 0.010*\"black\" + 0.010*\"shift\" + 0.009*\"coloni\"\n", - "2019-01-16 04:19:04,582 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"jpg\" + 0.011*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"file\"\n", - "2019-01-16 04:19:04,584 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"american\" + 0.012*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:19:04,586 : INFO : topic #36 (0.020): 0.059*\"art\" + 0.033*\"museum\" + 0.029*\"work\" + 0.024*\"paint\" + 0.023*\"design\" + 0.022*\"artist\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.009*\"photograph\"\n", - "2019-01-16 04:19:04,593 : INFO : topic diff=0.017696, rho=0.071429\n", - "2019-01-16 04:19:05,075 : INFO : PROGRESS: pass 0, at document #394000/4922894\n", - "2019-01-16 04:19:07,257 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:07,817 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.011*\"locat\" + 0.011*\"street\" + 0.011*\"jpg\" + 0.011*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", - "2019-01-16 04:19:07,818 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:19:07,820 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.016*\"centuri\" + 0.011*\"emperor\" + 0.010*\"empir\" + 0.010*\"greek\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.008*\"roman\" + 0.008*\"princ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:19:07,822 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.014*\"product\" + 0.013*\"electr\" + 0.011*\"cell\" + 0.011*\"model\" + 0.010*\"power\" + 0.009*\"oil\" + 0.009*\"produc\" + 0.007*\"protein\" + 0.007*\"vehicl\"\n", - "2019-01-16 04:19:07,823 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.007*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 04:19:07,829 : INFO : topic diff=0.014800, rho=0.071247\n", - "2019-01-16 04:19:08,278 : INFO : PROGRESS: pass 0, at document #396000/4922894\n", - "2019-01-16 04:19:10,450 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:11,007 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"district\" + 0.033*\"indian\" + 0.018*\"provinc\" + 0.017*\"villag\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"http\" + 0.010*\"sri\" + 0.009*\"rural\"\n", - "2019-01-16 04:19:11,008 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.011*\"point\" + 0.010*\"time\" + 0.010*\"tour\" + 0.010*\"lap\"\n", - "2019-01-16 04:19:11,010 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.065*\"align\" + 0.061*\"left\" + 0.056*\"style\" + 0.054*\"wikit\" + 0.049*\"center\" + 0.035*\"right\" + 0.034*\"text\" + 0.034*\"border\" + 0.030*\"philippin\"\n", - "2019-01-16 04:19:11,011 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.033*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.025*\"cup\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.017*\"player\" + 0.016*\"match\" + 0.016*\"goal\"\n", - "2019-01-16 04:19:11,013 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.029*\"world\" + 0.025*\"championship\" + 0.024*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.018*\"japanes\"\n", - "2019-01-16 04:19:11,019 : INFO : topic diff=0.016909, rho=0.071067\n", - "2019-01-16 04:19:11,426 : INFO : PROGRESS: pass 0, at document #398000/4922894\n", - "2019-01-16 04:19:13,556 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:14,112 : INFO : topic #6 (0.020): 0.068*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.018*\"festiv\" + 0.017*\"theatr\" + 0.015*\"danc\" + 0.014*\"plai\" + 0.014*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:19:14,114 : INFO : topic #49 (0.020): 0.068*\"region\" + 0.066*\"west\" + 0.064*\"north\" + 0.063*\"east\" + 0.056*\"south\" + 0.039*\"villag\" + 0.024*\"central\" + 0.024*\"administr\" + 0.022*\"swedish\" + 0.022*\"district\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:19:14,115 : INFO : topic #14 (0.020): 0.015*\"compani\" + 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"univers\" + 0.011*\"institut\" + 0.011*\"work\" + 0.011*\"intern\" + 0.010*\"manag\" + 0.009*\"scienc\"\n", - "2019-01-16 04:19:14,117 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"defin\"\n", - "2019-01-16 04:19:14,119 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.020*\"contest\" + 0.020*\"fight\" + 0.016*\"wrestl\" + 0.014*\"match\" + 0.013*\"titl\" + 0.013*\"championship\" + 0.013*\"elimin\" + 0.012*\"week\" + 0.011*\"world\"\n", - "2019-01-16 04:19:14,126 : INFO : topic diff=0.016225, rho=0.070888\n", - "2019-01-16 04:19:18,977 : INFO : -11.687 per-word bound, 3296.8 perplexity estimate based on a held-out corpus of 2000 documents with 517083 words\n", - "2019-01-16 04:19:18,978 : INFO : PROGRESS: pass 0, at document #400000/4922894\n", - "2019-01-16 04:19:21,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:21,656 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.020*\"hospit\" + 0.019*\"health\" + 0.014*\"diseas\" + 0.013*\"ret\" + 0.012*\"patient\" + 0.011*\"medicin\" + 0.010*\"drug\" + 0.010*\"treatment\" + 0.010*\"caus\"\n", - "2019-01-16 04:19:21,658 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.008*\"program\"\n", - "2019-01-16 04:19:21,660 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.028*\"unit\" + 0.022*\"cricket\" + 0.021*\"town\" + 0.019*\"citi\" + 0.017*\"scotland\" + 0.016*\"scottish\" + 0.014*\"manchest\" + 0.012*\"counti\" + 0.012*\"wale\"\n", - "2019-01-16 04:19:21,661 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.033*\"van\" + 0.033*\"germani\" + 0.027*\"dutch\" + 0.025*\"von\" + 0.021*\"der\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 04:19:21,663 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.030*\"armi\" + 0.022*\"forc\" + 0.020*\"command\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.013*\"gener\" + 0.010*\"regiment\" + 0.009*\"divis\" + 0.009*\"troop\"\n", - "2019-01-16 04:19:21,669 : INFO : topic diff=0.016257, rho=0.070711\n", - "2019-01-16 04:19:22,129 : INFO : PROGRESS: pass 0, at document #402000/4922894\n", - "2019-01-16 04:19:24,283 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:24,839 : INFO : topic #49 (0.020): 0.068*\"region\" + 0.067*\"north\" + 0.066*\"west\" + 0.063*\"east\" + 0.059*\"south\" + 0.039*\"villag\" + 0.026*\"district\" + 0.024*\"central\" + 0.023*\"administr\" + 0.021*\"swedish\"\n", - "2019-01-16 04:19:24,841 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.019*\"hospit\" + 0.018*\"health\" + 0.014*\"diseas\" + 0.012*\"ret\" + 0.012*\"patient\" + 0.011*\"medicin\" + 0.010*\"drug\" + 0.010*\"treatment\" + 0.010*\"caus\"\n", - "2019-01-16 04:19:24,842 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.012*\"gun\" + 0.011*\"kill\" + 0.011*\"polic\" + 0.010*\"damag\" + 0.008*\"report\" + 0.008*\"crew\" + 0.008*\"boat\" + 0.008*\"attack\" + 0.007*\"dai\"\n", - "2019-01-16 04:19:24,844 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.021*\"fight\" + 0.021*\"contest\" + 0.015*\"wrestl\" + 0.014*\"match\" + 0.013*\"titl\" + 0.013*\"elimin\" + 0.013*\"championship\" + 0.013*\"week\" + 0.011*\"world\"\n", - "2019-01-16 04:19:24,845 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.005*\"differ\" + 0.005*\"centuri\" + 0.005*\"tradit\" + 0.005*\"god\" + 0.005*\"cultur\"\n", - "2019-01-16 04:19:24,851 : INFO : topic diff=0.014457, rho=0.070535\n", - "2019-01-16 04:19:25,329 : INFO : PROGRESS: pass 0, at document #404000/4922894\n", - "2019-01-16 04:19:27,471 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:28,030 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.039*\"franc\" + 0.028*\"italian\" + 0.026*\"saint\" + 0.024*\"pari\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 04:19:28,032 : INFO : topic #34 (0.020): 0.076*\"canada\" + 0.061*\"canadian\" + 0.039*\"island\" + 0.027*\"ontario\" + 0.022*\"toronto\" + 0.018*\"british\" + 0.016*\"flag\" + 0.016*\"korean\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", - "2019-01-16 04:19:28,035 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.026*\"soviet\" + 0.024*\"russia\" + 0.022*\"jewish\" + 0.021*\"israel\" + 0.021*\"polish\" + 0.016*\"born\" + 0.015*\"republ\" + 0.015*\"czech\" + 0.014*\"poland\"\n", - "2019-01-16 04:19:28,036 : INFO : topic #36 (0.020): 0.059*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.022*\"design\" + 0.018*\"exhibit\" + 0.014*\"collect\" + 0.013*\"galleri\" + 0.009*\"photograph\"\n", - "2019-01-16 04:19:28,038 : INFO : topic #22 (0.020): 0.050*\"counti\" + 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"villag\" + 0.022*\"household\" + 0.020*\"area\"\n", - "2019-01-16 04:19:28,043 : INFO : topic diff=0.015246, rho=0.070360\n", - "2019-01-16 04:19:28,519 : INFO : PROGRESS: pass 0, at document #406000/4922894\n", - "2019-01-16 04:19:30,724 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:31,281 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.021*\"court\" + 0.020*\"state\" + 0.016*\"act\" + 0.013*\"offic\" + 0.010*\"case\" + 0.009*\"legal\" + 0.008*\"public\" + 0.008*\"feder\" + 0.008*\"right\"\n", - "2019-01-16 04:19:31,283 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.024*\"oper\" + 0.022*\"aircraft\" + 0.018*\"airport\" + 0.017*\"unit\" + 0.014*\"forc\" + 0.014*\"flight\" + 0.014*\"navi\" + 0.013*\"squadron\" + 0.012*\"commend\"\n", - "2019-01-16 04:19:31,285 : INFO : topic #34 (0.020): 0.077*\"canada\" + 0.061*\"canadian\" + 0.039*\"island\" + 0.027*\"ontario\" + 0.023*\"toronto\" + 0.018*\"british\" + 0.015*\"korean\" + 0.015*\"flag\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", - "2019-01-16 04:19:31,286 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.065*\"align\" + 0.060*\"left\" + 0.055*\"wikit\" + 0.053*\"style\" + 0.050*\"center\" + 0.037*\"right\" + 0.036*\"philippin\" + 0.034*\"text\" + 0.031*\"border\"\n", - "2019-01-16 04:19:31,288 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.016*\"centuri\" + 0.011*\"emperor\" + 0.011*\"greek\" + 0.011*\"empir\" + 0.009*\"templ\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"princ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:19:31,294 : INFO : topic diff=0.018253, rho=0.070186\n", - "2019-01-16 04:19:31,794 : INFO : PROGRESS: pass 0, at document #408000/4922894\n", - "2019-01-16 04:19:33,927 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:34,484 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.027*\"england\" + 0.025*\"town\" + 0.021*\"citi\" + 0.020*\"cricket\" + 0.016*\"scotland\" + 0.016*\"scottish\" + 0.013*\"manchest\" + 0.011*\"counti\" + 0.010*\"wale\"\n", - "2019-01-16 04:19:34,486 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.021*\"court\" + 0.020*\"state\" + 0.016*\"act\" + 0.013*\"offic\" + 0.010*\"case\" + 0.009*\"legal\" + 0.008*\"public\" + 0.008*\"right\" + 0.008*\"feder\"\n", - "2019-01-16 04:19:34,487 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.011*\"bishop\"\n", - "2019-01-16 04:19:34,489 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"saint\" + 0.023*\"pari\" + 0.023*\"itali\" + 0.017*\"jean\" + 0.017*\"burnei\" + 0.014*\"de\" + 0.011*\"le\"\n", - "2019-01-16 04:19:34,491 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.024*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.011*\"royal\"\n", - "2019-01-16 04:19:34,497 : INFO : topic diff=0.017446, rho=0.070014\n", - "2019-01-16 04:19:34,969 : INFO : PROGRESS: pass 0, at document #410000/4922894\n", - "2019-01-16 04:19:37,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:37,607 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.029*\"presid\" + 0.024*\"member\" + 0.018*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.015*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 04:19:37,609 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"space\" + 0.005*\"form\"\n", - "2019-01-16 04:19:37,610 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.046*\"new\" + 0.045*\"australian\" + 0.037*\"china\" + 0.035*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.018*\"hong\" + 0.017*\"kong\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:19:37,612 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.010*\"set\" + 0.010*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"defin\" + 0.007*\"valu\"\n", - "2019-01-16 04:19:37,614 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.014*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"war\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.006*\"group\"\n", - "2019-01-16 04:19:37,619 : INFO : topic diff=0.016325, rho=0.069843\n", - "2019-01-16 04:19:38,038 : INFO : PROGRESS: pass 0, at document #412000/4922894\n", - "2019-01-16 04:19:40,153 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:40,708 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.040*\"new\" + 0.027*\"york\" + 0.027*\"american\" + 0.025*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"counti\" + 0.012*\"texa\"\n", - "2019-01-16 04:19:40,710 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.039*\"district\" + 0.035*\"indian\" + 0.019*\"provinc\" + 0.017*\"villag\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"http\" + 0.012*\"sri\" + 0.010*\"tamil\"\n", - "2019-01-16 04:19:40,711 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.011*\"kill\" + 0.010*\"polic\" + 0.009*\"boat\" + 0.008*\"crew\" + 0.008*\"report\" + 0.007*\"attack\" + 0.007*\"dai\"\n", - "2019-01-16 04:19:40,713 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"saint\" + 0.026*\"italian\" + 0.023*\"pari\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"burnei\" + 0.013*\"de\" + 0.012*\"le\"\n", - "2019-01-16 04:19:40,715 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.025*\"russia\" + 0.024*\"soviet\" + 0.022*\"jewish\" + 0.021*\"polish\" + 0.020*\"israel\" + 0.016*\"born\" + 0.015*\"poland\" + 0.014*\"moscow\" + 0.014*\"republ\"\n", - "2019-01-16 04:19:40,721 : INFO : topic diff=0.016153, rho=0.069673\n", - "2019-01-16 04:19:41,148 : INFO : PROGRESS: pass 0, at document #414000/4922894\n", - "2019-01-16 04:19:43,312 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:43,868 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.025*\"act\" + 0.020*\"court\" + 0.019*\"state\" + 0.013*\"offic\" + 0.010*\"case\" + 0.008*\"legal\" + 0.008*\"public\" + 0.008*\"right\" + 0.008*\"feder\"\n", - "2019-01-16 04:19:43,870 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.010*\"set\" + 0.010*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"group\" + 0.007*\"defin\" + 0.007*\"model\" + 0.007*\"valu\"\n", - "2019-01-16 04:19:43,872 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.013*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"yard\" + 0.009*\"record\"\n", - "2019-01-16 04:19:43,873 : INFO : topic #6 (0.020): 0.068*\"music\" + 0.030*\"perform\" + 0.021*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:19:43,875 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.016*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.009*\"host\" + 0.009*\"compani\" + 0.009*\"network\"\n", - "2019-01-16 04:19:43,880 : INFO : topic diff=0.015463, rho=0.069505\n", - "2019-01-16 04:19:44,297 : INFO : PROGRESS: pass 0, at document #416000/4922894\n", - "2019-01-16 04:19:46,479 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:47,036 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.049*\"franc\" + 0.027*\"saint\" + 0.026*\"italian\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.013*\"burnei\" + 0.011*\"le\"\n", - "2019-01-16 04:19:47,038 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"teacher\" + 0.008*\"state\"\n", - "2019-01-16 04:19:47,040 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.013*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:19:47,042 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.028*\"africa\" + 0.025*\"african\" + 0.022*\"text\" + 0.021*\"south\" + 0.020*\"till\" + 0.015*\"color\" + 0.012*\"tropic\" + 0.010*\"cape\" + 0.010*\"coloni\"\n", - "2019-01-16 04:19:47,043 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"brazil\" + 0.014*\"spain\" + 0.010*\"juan\" + 0.009*\"francisco\" + 0.009*\"puerto\" + 0.009*\"josé\"\n", - "2019-01-16 04:19:47,049 : INFO : topic diff=0.014790, rho=0.069338\n", - "2019-01-16 04:19:47,488 : INFO : PROGRESS: pass 0, at document #418000/4922894\n", - "2019-01-16 04:19:49,717 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:50,273 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.028*\"england\" + 0.023*\"town\" + 0.021*\"cricket\" + 0.021*\"citi\" + 0.016*\"scottish\" + 0.016*\"scotland\" + 0.014*\"manchest\" + 0.012*\"counti\" + 0.011*\"wale\"\n", - "2019-01-16 04:19:50,275 : INFO : topic #8 (0.020): 0.044*\"india\" + 0.036*\"district\" + 0.034*\"indian\" + 0.018*\"provinc\" + 0.016*\"villag\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"pradesh\" + 0.012*\"http\" + 0.012*\"tamil\"\n", - "2019-01-16 04:19:50,276 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"teacher\" + 0.008*\"state\"\n", - "2019-01-16 04:19:50,278 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"regiment\" + 0.010*\"divis\" + 0.009*\"soldier\"\n", - "2019-01-16 04:19:50,280 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.049*\"franc\" + 0.027*\"saint\" + 0.025*\"italian\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.013*\"de\" + 0.012*\"burnei\" + 0.011*\"le\"\n", - "2019-01-16 04:19:50,286 : INFO : topic diff=0.015255, rho=0.069171\n", - "2019-01-16 04:19:55,285 : INFO : -11.788 per-word bound, 3535.2 perplexity estimate based on a held-out corpus of 2000 documents with 580844 words\n", - "2019-01-16 04:19:55,286 : INFO : PROGRESS: pass 0, at document #420000/4922894\n", - "2019-01-16 04:19:57,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:19:58,099 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"di\" + 0.018*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"bishop\" + 0.012*\"daughter\"\n", - "2019-01-16 04:19:58,101 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.030*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:19:58,102 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.029*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", - "2019-01-16 04:19:58,104 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.049*\"franc\" + 0.026*\"saint\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.013*\"de\" + 0.011*\"burnei\" + 0.011*\"le\"\n", - "2019-01-16 04:19:58,105 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.064*\"align\" + 0.058*\"wikit\" + 0.057*\"left\" + 0.056*\"style\" + 0.051*\"center\" + 0.037*\"philippin\" + 0.036*\"right\" + 0.033*\"text\" + 0.028*\"border\"\n", - "2019-01-16 04:19:58,111 : INFO : topic diff=0.014978, rho=0.069007\n", - "2019-01-16 04:19:58,524 : INFO : PROGRESS: pass 0, at document #422000/4922894\n", - "2019-01-16 04:20:00,714 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:01,270 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.011*\"cell\" + 0.010*\"model\" + 0.010*\"power\" + 0.010*\"electr\" + 0.009*\"oil\" + 0.008*\"vehicl\" + 0.008*\"produc\" + 0.007*\"protein\"\n", - "2019-01-16 04:20:01,272 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.029*\"africa\" + 0.025*\"african\" + 0.022*\"south\" + 0.022*\"text\" + 0.020*\"till\" + 0.015*\"color\" + 0.012*\"cape\" + 0.011*\"tropic\" + 0.010*\"coloni\"\n", - "2019-01-16 04:20:01,274 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"bank\" + 0.008*\"rate\" + 0.007*\"year\" + 0.007*\"market\" + 0.007*\"cost\" + 0.006*\"number\" + 0.006*\"compani\"\n", - "2019-01-16 04:20:01,277 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:20:01,278 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.018*\"fight\" + 0.018*\"wrestl\" + 0.018*\"match\" + 0.017*\"contest\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.013*\"champion\" + 0.013*\"elimin\" + 0.012*\"week\"\n", - "2019-01-16 04:20:01,285 : INFO : topic diff=0.015915, rho=0.068843\n", - "2019-01-16 04:20:01,715 : INFO : PROGRESS: pass 0, at document #424000/4922894\n", - "2019-01-16 04:20:03,849 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:04,404 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.013*\"function\" + 0.011*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"group\" + 0.008*\"point\" + 0.008*\"gener\" + 0.007*\"defin\"\n", - "2019-01-16 04:20:04,406 : INFO : topic #25 (0.020): 0.041*\"round\" + 0.040*\"final\" + 0.028*\"winner\" + 0.027*\"tournament\" + 0.021*\"open\" + 0.016*\"group\" + 0.016*\"runner\" + 0.014*\"doubl\" + 0.013*\"singl\" + 0.012*\"qualifi\"\n", - "2019-01-16 04:20:04,407 : INFO : topic #48 (0.020): 0.075*\"octob\" + 0.075*\"septemb\" + 0.075*\"march\" + 0.072*\"april\" + 0.071*\"novemb\" + 0.071*\"januari\" + 0.070*\"august\" + 0.069*\"juli\" + 0.067*\"decemb\" + 0.066*\"june\"\n", - "2019-01-16 04:20:04,410 : INFO : topic #34 (0.020): 0.077*\"canada\" + 0.062*\"canadian\" + 0.042*\"island\" + 0.027*\"ontario\" + 0.026*\"toronto\" + 0.018*\"british\" + 0.016*\"korea\" + 0.015*\"korean\" + 0.015*\"quebec\" + 0.013*\"malaysia\"\n", - "2019-01-16 04:20:04,412 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.045*\"australian\" + 0.045*\"new\" + 0.036*\"china\" + 0.033*\"chines\" + 0.029*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.018*\"hong\" + 0.017*\"kong\"\n", - "2019-01-16 04:20:04,418 : INFO : topic diff=0.015251, rho=0.068680\n", - "2019-01-16 04:20:04,888 : INFO : PROGRESS: pass 0, at document #426000/4922894\n", - "2019-01-16 04:20:07,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:07,579 : INFO : topic #35 (0.020): 0.043*\"prime\" + 0.039*\"singapor\" + 0.025*\"minist\" + 0.018*\"lee\" + 0.015*\"indonesia\" + 0.015*\"ind\" + 0.014*\"vietnam\" + 0.014*\"thailand\" + 0.012*\"kai\" + 0.012*\"chan\"\n", - "2019-01-16 04:20:07,581 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"time\" + 0.012*\"championship\" + 0.011*\"driver\" + 0.010*\"tour\" + 0.010*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 04:20:07,583 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.013*\"damag\" + 0.011*\"kill\" + 0.010*\"gun\" + 0.009*\"polic\" + 0.009*\"report\" + 0.008*\"attack\" + 0.008*\"boat\" + 0.007*\"crew\" + 0.007*\"dai\"\n", - "2019-01-16 04:20:07,584 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"born\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:20:07,586 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.013*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", - "2019-01-16 04:20:07,592 : INFO : topic diff=0.014305, rho=0.068519\n", - "2019-01-16 04:20:08,066 : INFO : PROGRESS: pass 0, at document #428000/4922894\n", - "2019-01-16 04:20:10,225 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:10,781 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.015*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.010*\"program\" + 0.010*\"host\" + 0.009*\"compani\" + 0.009*\"network\"\n", - "2019-01-16 04:20:10,783 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.045*\"new\" + 0.045*\"australian\" + 0.036*\"china\" + 0.033*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.017*\"hong\" + 0.017*\"kong\"\n", - "2019-01-16 04:20:10,784 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.019*\"hospit\" + 0.018*\"health\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.010*\"medicin\" + 0.010*\"ret\" + 0.010*\"drug\" + 0.009*\"cancer\"\n", - "2019-01-16 04:20:10,786 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.030*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.010*\"regiment\" + 0.009*\"attack\"\n", - "2019-01-16 04:20:10,787 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 04:20:10,793 : INFO : topic diff=0.014790, rho=0.068359\n", - "2019-01-16 04:20:11,253 : INFO : PROGRESS: pass 0, at document #430000/4922894\n", - "2019-01-16 04:20:13,413 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:13,967 : INFO : topic #18 (0.020): 0.008*\"earth\" + 0.008*\"energi\" + 0.008*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"space\" + 0.005*\"materi\" + 0.005*\"time\"\n", - "2019-01-16 04:20:13,970 : INFO : topic #49 (0.020): 0.066*\"west\" + 0.065*\"north\" + 0.065*\"region\" + 0.064*\"south\" + 0.062*\"east\" + 0.036*\"central\" + 0.034*\"villag\" + 0.024*\"district\" + 0.024*\"western\" + 0.022*\"swedish\"\n", - "2019-01-16 04:20:13,972 : INFO : topic #35 (0.020): 0.040*\"prime\" + 0.036*\"singapor\" + 0.024*\"minist\" + 0.018*\"lee\" + 0.018*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"vietnam\" + 0.013*\"ind\" + 0.011*\"chan\" + 0.011*\"kai\"\n", - "2019-01-16 04:20:13,975 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.035*\"indian\" + 0.034*\"district\" + 0.018*\"provinc\" + 0.015*\"villag\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"http\" + 0.012*\"tamil\" + 0.011*\"sri\"\n", - "2019-01-16 04:20:13,977 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.020*\"hospit\" + 0.018*\"health\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.010*\"medicin\" + 0.009*\"drug\" + 0.009*\"cancer\" + 0.009*\"ret\"\n", - "2019-01-16 04:20:13,984 : INFO : topic diff=0.014952, rho=0.068199\n", - "2019-01-16 04:20:14,461 : INFO : PROGRESS: pass 0, at document #432000/4922894\n", - "2019-01-16 04:20:16,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:17,267 : INFO : topic #29 (0.020): 0.036*\"leagu\" + 0.035*\"team\" + 0.033*\"club\" + 0.033*\"plai\" + 0.024*\"season\" + 0.024*\"footbal\" + 0.023*\"cup\" + 0.018*\"player\" + 0.016*\"goal\" + 0.016*\"match\"\n", - "2019-01-16 04:20:17,269 : INFO : topic #33 (0.020): 0.011*\"million\" + 0.009*\"time\" + 0.009*\"increas\" + 0.008*\"bank\" + 0.007*\"year\" + 0.007*\"rate\" + 0.007*\"market\" + 0.007*\"cost\" + 0.006*\"compani\" + 0.006*\"number\"\n", - "2019-01-16 04:20:17,270 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.058*\"wikit\" + 0.057*\"style\" + 0.057*\"align\" + 0.052*\"center\" + 0.052*\"left\" + 0.038*\"philippin\" + 0.037*\"right\" + 0.031*\"text\" + 0.028*\"border\"\n", - "2019-01-16 04:20:17,272 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.035*\"indian\" + 0.034*\"district\" + 0.018*\"provinc\" + 0.015*\"villag\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"http\" + 0.011*\"tamil\" + 0.011*\"sri\"\n", - "2019-01-16 04:20:17,274 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"differ\" + 0.005*\"tradit\" + 0.005*\"english\" + 0.005*\"god\"\n", - "2019-01-16 04:20:17,280 : INFO : topic diff=0.016325, rho=0.068041\n", - "2019-01-16 04:20:17,796 : INFO : PROGRESS: pass 0, at document #434000/4922894\n", - "2019-01-16 04:20:19,916 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:20,472 : INFO : topic #35 (0.020): 0.037*\"prime\" + 0.033*\"singapor\" + 0.022*\"minist\" + 0.017*\"lee\" + 0.016*\"indonesia\" + 0.014*\"vietnam\" + 0.014*\"thailand\" + 0.011*\"ind\" + 0.011*\"kai\" + 0.011*\"chan\"\n", - "2019-01-16 04:20:20,474 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.046*\"new\" + 0.046*\"australian\" + 0.036*\"china\" + 0.033*\"chines\" + 0.031*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.017*\"kong\" + 0.017*\"hong\"\n", - "2019-01-16 04:20:20,476 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.013*\"function\" + 0.010*\"set\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"point\" + 0.008*\"group\" + 0.008*\"gener\" + 0.007*\"defin\"\n", - "2019-01-16 04:20:20,478 : INFO : topic #47 (0.020): 0.022*\"station\" + 0.022*\"river\" + 0.018*\"line\" + 0.018*\"road\" + 0.015*\"rout\" + 0.015*\"railwai\" + 0.014*\"area\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"north\"\n", - "2019-01-16 04:20:20,479 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:20:20,486 : INFO : topic diff=0.014059, rho=0.067884\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:20:20,883 : INFO : PROGRESS: pass 0, at document #436000/4922894\n", - "2019-01-16 04:20:23,005 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:23,564 : INFO : topic #25 (0.020): 0.041*\"round\" + 0.038*\"final\" + 0.029*\"tournament\" + 0.026*\"winner\" + 0.020*\"open\" + 0.016*\"group\" + 0.014*\"runner\" + 0.014*\"qualifi\" + 0.013*\"doubl\" + 0.012*\"singl\"\n", - "2019-01-16 04:20:23,565 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.046*\"australian\" + 0.046*\"new\" + 0.036*\"china\" + 0.033*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.019*\"kong\" + 0.018*\"sydnei\" + 0.018*\"hong\"\n", - "2019-01-16 04:20:23,567 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"santa\" + 0.009*\"francisco\"\n", - "2019-01-16 04:20:23,568 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"differ\" + 0.005*\"tradit\" + 0.005*\"peopl\" + 0.005*\"english\"\n", - "2019-01-16 04:20:23,570 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.013*\"function\" + 0.010*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"model\"\n", - "2019-01-16 04:20:23,576 : INFO : topic diff=0.013793, rho=0.067729\n", - "2019-01-16 04:20:24,054 : INFO : PROGRESS: pass 0, at document #438000/4922894\n", - "2019-01-16 04:20:26,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:26,802 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.017*\"centuri\" + 0.011*\"empir\" + 0.010*\"greek\" + 0.010*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.008*\"ancient\" + 0.007*\"princ\"\n", - "2019-01-16 04:20:26,804 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"born\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:20:26,805 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.042*\"germani\" + 0.029*\"van\" + 0.025*\"von\" + 0.023*\"dutch\" + 0.022*\"der\" + 0.018*\"berlin\" + 0.012*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", - "2019-01-16 04:20:26,807 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.025*\"russia\" + 0.023*\"soviet\" + 0.022*\"polish\" + 0.021*\"jewish\" + 0.018*\"israel\" + 0.017*\"born\" + 0.016*\"republ\" + 0.016*\"poland\" + 0.014*\"ukrainian\"\n", - "2019-01-16 04:20:26,808 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.039*\"new\" + 0.026*\"york\" + 0.026*\"american\" + 0.024*\"unit\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"counti\" + 0.012*\"texa\"\n", - "2019-01-16 04:20:26,815 : INFO : topic diff=0.014852, rho=0.067574\n", - "2019-01-16 04:20:31,792 : INFO : -11.694 per-word bound, 3312.4 perplexity estimate based on a held-out corpus of 2000 documents with 559309 words\n", - "2019-01-16 04:20:31,793 : INFO : PROGRESS: pass 0, at document #440000/4922894\n", - "2019-01-16 04:20:33,949 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:34,511 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.012*\"damag\" + 0.012*\"kill\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"polic\" + 0.008*\"attack\" + 0.008*\"report\" + 0.007*\"crew\" + 0.006*\"sea\"\n", - "2019-01-16 04:20:34,512 : INFO : topic #34 (0.020): 0.082*\"canada\" + 0.071*\"canadian\" + 0.048*\"island\" + 0.027*\"toronto\" + 0.026*\"ontario\" + 0.019*\"montreal\" + 0.019*\"quebec\" + 0.019*\"british\" + 0.017*\"korea\" + 0.014*\"list\"\n", - "2019-01-16 04:20:34,515 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"god\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"differ\" + 0.005*\"tradit\" + 0.005*\"centuri\"\n", - "2019-01-16 04:20:34,517 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.041*\"germani\" + 0.029*\"van\" + 0.025*\"von\" + 0.023*\"dutch\" + 0.022*\"der\" + 0.018*\"berlin\" + 0.012*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", - "2019-01-16 04:20:34,518 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.013*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.008*\"yard\"\n", - "2019-01-16 04:20:34,524 : INFO : topic diff=0.012874, rho=0.067420\n", - "2019-01-16 04:20:34,978 : INFO : PROGRESS: pass 0, at document #442000/4922894\n", - "2019-01-16 04:20:37,168 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:37,723 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"lap\"\n", - "2019-01-16 04:20:37,725 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.013*\"function\" + 0.010*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"model\"\n", - "2019-01-16 04:20:37,727 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.013*\"player\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.008*\"basebal\"\n", - "2019-01-16 04:20:37,728 : INFO : topic #40 (0.020): 0.033*\"bar\" + 0.029*\"africa\" + 0.026*\"african\" + 0.022*\"text\" + 0.021*\"south\" + 0.020*\"till\" + 0.016*\"color\" + 0.011*\"cape\" + 0.011*\"coloni\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:20:37,730 : INFO : topic #30 (0.020): 0.049*\"french\" + 0.043*\"franc\" + 0.026*\"saint\" + 0.026*\"pari\" + 0.026*\"italian\" + 0.018*\"jean\" + 0.018*\"itali\" + 0.015*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:20:37,737 : INFO : topic diff=0.014602, rho=0.067267\n", - "2019-01-16 04:20:38,175 : INFO : PROGRESS: pass 0, at document #444000/4922894\n", - "2019-01-16 04:20:40,352 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:40,909 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.022*\"aircraft\" + 0.016*\"unit\" + 0.015*\"forc\" + 0.013*\"navi\" + 0.013*\"flight\" + 0.012*\"squadron\" + 0.012*\"servic\"\n", - "2019-01-16 04:20:40,911 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.010*\"regiment\" + 0.009*\"soldier\"\n", - "2019-01-16 04:20:40,912 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.007*\"earth\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"materi\" + 0.006*\"us\" + 0.005*\"space\" + 0.005*\"time\"\n", - "2019-01-16 04:20:40,914 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.031*\"unit\" + 0.022*\"cricket\" + 0.022*\"town\" + 0.022*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.011*\"wale\" + 0.011*\"counti\"\n", - "2019-01-16 04:20:40,915 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"fight\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"champion\" + 0.012*\"elimin\" + 0.011*\"world\"\n", - "2019-01-16 04:20:40,921 : INFO : topic diff=0.014710, rho=0.067116\n", - "2019-01-16 04:20:41,390 : INFO : PROGRESS: pass 0, at document #446000/4922894\n", - "2019-01-16 04:20:43,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:44,090 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.020*\"work\" + 0.017*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.011*\"writer\" + 0.011*\"stori\"\n", - "2019-01-16 04:20:44,092 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.017*\"centuri\" + 0.011*\"empir\" + 0.010*\"emperor\" + 0.010*\"greek\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.008*\"templ\" + 0.008*\"ancient\" + 0.007*\"princ\"\n", - "2019-01-16 04:20:44,094 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.030*\"unit\" + 0.022*\"cricket\" + 0.022*\"town\" + 0.022*\"citi\" + 0.016*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.011*\"wale\" + 0.011*\"counti\"\n", - "2019-01-16 04:20:44,096 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.010*\"jpg\" + 0.010*\"histor\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", - "2019-01-16 04:20:44,097 : INFO : topic #22 (0.020): 0.051*\"counti\" + 0.048*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.026*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.022*\"household\" + 0.020*\"municip\"\n", - "2019-01-16 04:20:44,103 : INFO : topic diff=0.014699, rho=0.066965\n", - "2019-01-16 04:20:44,552 : INFO : PROGRESS: pass 0, at document #448000/4922894\n", - "2019-01-16 04:20:46,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:20:47,312 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.025*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.015*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", - "2019-01-16 04:20:47,313 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.021*\"station\" + 0.017*\"road\" + 0.017*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"area\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:20:47,315 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.020*\"state\" + 0.019*\"act\" + 0.012*\"offic\" + 0.011*\"case\" + 0.008*\"legal\" + 0.008*\"public\" + 0.008*\"right\" + 0.008*\"polic\"\n", - "2019-01-16 04:20:47,317 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"author\" + 0.011*\"writer\" + 0.011*\"stori\"\n", - "2019-01-16 04:20:47,318 : INFO : topic #48 (0.020): 0.080*\"septemb\" + 0.077*\"octob\" + 0.076*\"march\" + 0.075*\"august\" + 0.070*\"novemb\" + 0.070*\"april\" + 0.069*\"juli\" + 0.068*\"januari\" + 0.064*\"decemb\" + 0.063*\"june\"\n", - "2019-01-16 04:20:47,325 : INFO : topic diff=0.014336, rho=0.066815\n", - "2019-01-16 04:20:47,756 : INFO : PROGRESS: pass 0, at document #450000/4922894\n", - "2019-01-16 04:20:49,896 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:50,451 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.029*\"soviet\" + 0.025*\"russia\" + 0.022*\"polish\" + 0.021*\"jewish\" + 0.018*\"israel\" + 0.016*\"born\" + 0.016*\"moscow\" + 0.016*\"republ\" + 0.015*\"poland\"\n", - "2019-01-16 04:20:50,452 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.012*\"damag\" + 0.011*\"kill\" + 0.010*\"gun\" + 0.010*\"boat\" + 0.008*\"report\" + 0.008*\"polic\" + 0.008*\"attack\" + 0.008*\"crew\" + 0.007*\"sea\"\n", - "2019-01-16 04:20:50,454 : INFO : topic #0 (0.020): 0.042*\"war\" + 0.030*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.019*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.010*\"regiment\" + 0.009*\"soldier\"\n", - "2019-01-16 04:20:50,455 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.043*\"parti\" + 0.026*\"member\" + 0.025*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.015*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 04:20:50,457 : INFO : topic #8 (0.020): 0.042*\"india\" + 0.032*\"indian\" + 0.028*\"district\" + 0.017*\"provinc\" + 0.016*\"villag\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.014*\"http\" + 0.012*\"tamil\" + 0.010*\"sri\"\n", - "2019-01-16 04:20:50,463 : INFO : topic diff=0.012810, rho=0.066667\n", - "2019-01-16 04:20:50,901 : INFO : PROGRESS: pass 0, at document #452000/4922894\n", - "2019-01-16 04:20:53,036 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:53,592 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.020*\"station\" + 0.018*\"road\" + 0.017*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"area\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:20:53,593 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.024*\"design\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.018*\"exhibit\" + 0.016*\"collect\" + 0.014*\"galleri\" + 0.010*\"photograph\"\n", - "2019-01-16 04:20:53,595 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.013*\"function\" + 0.010*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"point\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"order\"\n", - "2019-01-16 04:20:53,596 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.017*\"centuri\" + 0.011*\"emperor\" + 0.010*\"empir\" + 0.010*\"greek\" + 0.009*\"roman\" + 0.008*\"templ\" + 0.008*\"kingdom\" + 0.008*\"ancient\" + 0.008*\"princ\"\n", - "2019-01-16 04:20:53,598 : INFO : topic #0 (0.020): 0.041*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"regiment\" + 0.010*\"divis\" + 0.009*\"soldier\"\n", - "2019-01-16 04:20:53,604 : INFO : topic diff=0.014788, rho=0.066519\n", - "2019-01-16 04:20:54,052 : INFO : PROGRESS: pass 0, at document #454000/4922894\n", - "2019-01-16 04:20:56,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:56,762 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.014*\"kill\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.008*\"report\" + 0.008*\"attack\" + 0.008*\"polic\" + 0.007*\"crew\" + 0.007*\"sea\"\n", - "2019-01-16 04:20:56,764 : INFO : topic #4 (0.020): 0.120*\"school\" + 0.055*\"univers\" + 0.043*\"colleg\" + 0.036*\"student\" + 0.029*\"educ\" + 0.027*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.008*\"teacher\"\n", - "2019-01-16 04:20:56,765 : INFO : topic #22 (0.020): 0.051*\"counti\" + 0.049*\"popul\" + 0.035*\"town\" + 0.030*\"citi\" + 0.029*\"ag\" + 0.025*\"villag\" + 0.023*\"censu\" + 0.023*\"famili\" + 0.021*\"household\" + 0.021*\"area\"\n", - "2019-01-16 04:20:56,767 : INFO : topic #40 (0.020): 0.033*\"bar\" + 0.028*\"africa\" + 0.026*\"african\" + 0.022*\"text\" + 0.022*\"south\" + 0.020*\"till\" + 0.015*\"color\" + 0.011*\"coloni\" + 0.010*\"agricultur\" + 0.010*\"cape\"\n", - "2019-01-16 04:20:56,770 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 04:20:56,776 : INFO : topic diff=0.011904, rho=0.066372\n", - "2019-01-16 04:20:57,224 : INFO : PROGRESS: pass 0, at document #456000/4922894\n", - "2019-01-16 04:20:59,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:20:59,934 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.046*\"new\" + 0.045*\"australian\" + 0.036*\"china\" + 0.033*\"chines\" + 0.031*\"zealand\" + 0.024*\"south\" + 0.020*\"hong\" + 0.020*\"kong\" + 0.019*\"sydnei\"\n", - "2019-01-16 04:20:59,935 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"born\" + 0.006*\"jone\"\n", - "2019-01-16 04:20:59,937 : INFO : topic #23 (0.020): 0.023*\"medic\" + 0.021*\"hospit\" + 0.017*\"health\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.011*\"medicin\" + 0.010*\"caus\" + 0.009*\"cancer\" + 0.009*\"treatment\" + 0.009*\"studi\"\n", - "2019-01-16 04:20:59,938 : INFO : topic #4 (0.020): 0.120*\"school\" + 0.054*\"univers\" + 0.042*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.008*\"teacher\"\n", - "2019-01-16 04:20:59,941 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"santa\" + 0.010*\"josé\"\n", - "2019-01-16 04:20:59,948 : INFO : topic diff=0.013713, rho=0.066227\n", - "2019-01-16 04:21:00,356 : INFO : PROGRESS: pass 0, at document #458000/4922894\n", - "2019-01-16 04:21:02,511 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:03,066 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.030*\"england\" + 0.024*\"town\" + 0.021*\"citi\" + 0.020*\"cricket\" + 0.014*\"scottish\" + 0.014*\"scotland\" + 0.014*\"manchest\" + 0.011*\"counti\" + 0.010*\"wale\"\n", - "2019-01-16 04:21:03,068 : INFO : topic #46 (0.020): 0.153*\"class\" + 0.061*\"align\" + 0.060*\"wikit\" + 0.054*\"center\" + 0.052*\"style\" + 0.049*\"left\" + 0.038*\"right\" + 0.033*\"philippin\" + 0.030*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:21:03,069 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.043*\"parti\" + 0.026*\"member\" + 0.024*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.015*\"council\" + 0.015*\"minist\" + 0.013*\"polit\" + 0.013*\"repres\"\n", - "2019-01-16 04:21:03,071 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:21:03,073 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.008*\"oil\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 04:21:03,081 : INFO : topic diff=0.015694, rho=0.066082\n", - "2019-01-16 04:21:08,054 : INFO : -11.485 per-word bound, 2866.0 perplexity estimate based on a held-out corpus of 2000 documents with 545854 words\n", - "2019-01-16 04:21:08,055 : INFO : PROGRESS: pass 0, at document #460000/4922894\n", - "2019-01-16 04:21:10,203 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:10,758 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:21:10,760 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.018*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"regiment\" + 0.010*\"order\"\n", - "2019-01-16 04:21:10,762 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.027*\"award\" + 0.022*\"episod\" + 0.020*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.013*\"actor\" + 0.013*\"role\" + 0.012*\"televis\" + 0.012*\"produc\"\n", - "2019-01-16 04:21:10,764 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.014*\"plai\" + 0.014*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:21:10,766 : INFO : topic #4 (0.020): 0.119*\"school\" + 0.052*\"univers\" + 0.039*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.010*\"district\" + 0.009*\"grade\"\n", - "2019-01-16 04:21:10,771 : INFO : topic diff=0.013566, rho=0.065938\n", - "2019-01-16 04:21:11,209 : INFO : PROGRESS: pass 0, at document #462000/4922894\n", - "2019-01-16 04:21:13,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:13,889 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.045*\"new\" + 0.045*\"australian\" + 0.039*\"china\" + 0.035*\"chines\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.020*\"sydnei\" + 0.020*\"hong\" + 0.019*\"kong\"\n", - "2019-01-16 04:21:13,891 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.011*\"locat\" + 0.011*\"street\" + 0.010*\"histor\" + 0.010*\"site\" + 0.010*\"jpg\" + 0.009*\"centuri\" + 0.009*\"church\"\n", - "2019-01-16 04:21:13,893 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.011*\"model\" + 0.010*\"power\" + 0.008*\"produc\" + 0.008*\"oil\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"design\"\n", - "2019-01-16 04:21:13,894 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.010*\"version\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"data\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.007*\"player\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 04:21:13,896 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.011*\"bishop\"\n", - "2019-01-16 04:21:13,902 : INFO : topic diff=0.014490, rho=0.065795\n", - "2019-01-16 04:21:14,319 : INFO : PROGRESS: pass 0, at document #464000/4922894\n", - "2019-01-16 04:21:16,455 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:17,012 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.011*\"power\" + 0.010*\"model\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"oil\" + 0.008*\"vehicl\" + 0.007*\"design\"\n", - "2019-01-16 04:21:17,014 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"love\" + 0.004*\"end\"\n", - "2019-01-16 04:21:17,015 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.012*\"kill\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.009*\"boat\" + 0.008*\"report\" + 0.008*\"crew\" + 0.007*\"attack\" + 0.007*\"sea\" + 0.006*\"polic\"\n", - "2019-01-16 04:21:17,017 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.025*\"prime\" + 0.021*\"lee\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"minist\" + 0.014*\"vietnam\" + 0.012*\"thai\" + 0.011*\"chi\" + 0.011*\"bulgarian\"\n", - "2019-01-16 04:21:17,019 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.006*\"earth\" + 0.006*\"solar\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"space\"\n", - "2019-01-16 04:21:17,026 : INFO : topic diff=0.013093, rho=0.065653\n", - "2019-01-16 04:21:17,455 : INFO : PROGRESS: pass 0, at document #466000/4922894\n", - "2019-01-16 04:21:19,605 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:20,160 : INFO : topic #34 (0.020): 0.080*\"canada\" + 0.066*\"canadian\" + 0.055*\"island\" + 0.028*\"toronto\" + 0.024*\"ontario\" + 0.021*\"ye\" + 0.019*\"quebec\" + 0.018*\"montreal\" + 0.017*\"british\" + 0.014*\"korea\"\n", - "2019-01-16 04:21:20,162 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.023*\"court\" + 0.020*\"state\" + 0.019*\"act\" + 0.011*\"offic\" + 0.011*\"case\" + 0.008*\"public\" + 0.008*\"legal\" + 0.008*\"right\" + 0.008*\"feder\"\n", - "2019-01-16 04:21:20,163 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.044*\"parti\" + 0.026*\"member\" + 0.023*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.015*\"minist\" + 0.015*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 04:21:20,165 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.011*\"daughter\" + 0.011*\"death\"\n", - "2019-01-16 04:21:20,166 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.039*\"new\" + 0.026*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"counti\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:21:20,172 : INFO : topic diff=0.013281, rho=0.065512\n", - "2019-01-16 04:21:20,634 : INFO : PROGRESS: pass 0, at document #468000/4922894\n", - "2019-01-16 04:21:22,791 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:23,347 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.017*\"centuri\" + 0.010*\"emperor\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\" + 0.007*\"princ\"\n", - "2019-01-16 04:21:23,348 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"black\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:21:23,350 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"group\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 04:21:23,354 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.014*\"develop\" + 0.013*\"compani\" + 0.012*\"servic\" + 0.012*\"work\" + 0.011*\"univers\" + 0.011*\"intern\" + 0.011*\"institut\" + 0.011*\"manag\" + 0.009*\"nation\"\n", - "2019-01-16 04:21:23,356 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.045*\"australian\" + 0.044*\"new\" + 0.039*\"chines\" + 0.038*\"china\" + 0.031*\"zealand\" + 0.024*\"south\" + 0.019*\"sydnei\" + 0.019*\"hong\" + 0.019*\"kong\"\n", - "2019-01-16 04:21:23,362 : INFO : topic diff=0.014362, rho=0.065372\n", - "2019-01-16 04:21:23,805 : INFO : PROGRESS: pass 0, at document #470000/4922894\n", - "2019-01-16 04:21:25,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:26,490 : INFO : topic #7 (0.020): 0.016*\"number\" + 0.013*\"function\" + 0.009*\"set\" + 0.009*\"point\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.006*\"order\"\n", - "2019-01-16 04:21:26,491 : INFO : topic #23 (0.020): 0.023*\"medic\" + 0.022*\"hospit\" + 0.019*\"health\" + 0.013*\"diseas\" + 0.011*\"medicin\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"treatment\" + 0.009*\"drug\" + 0.009*\"care\"\n", - "2019-01-16 04:21:26,493 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.022*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:21:26,495 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.007*\"earth\" + 0.006*\"light\" + 0.006*\"solar\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:21:26,497 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"love\" + 0.004*\"end\"\n", - "2019-01-16 04:21:26,504 : INFO : topic diff=0.014847, rho=0.065233\n", - "2019-01-16 04:21:26,917 : INFO : PROGRESS: pass 0, at document #472000/4922894\n", - "2019-01-16 04:21:29,033 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:29,589 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"track\" + 0.014*\"chart\" + 0.010*\"vocal\"\n", - "2019-01-16 04:21:29,590 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.015*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.011*\"network\" + 0.010*\"compani\" + 0.009*\"host\"\n", - "2019-01-16 04:21:29,592 : INFO : topic #34 (0.020): 0.079*\"canada\" + 0.064*\"canadian\" + 0.055*\"island\" + 0.028*\"toronto\" + 0.023*\"ontario\" + 0.018*\"quebec\" + 0.017*\"ye\" + 0.017*\"montreal\" + 0.017*\"british\" + 0.013*\"korea\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:21:29,594 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.027*\"russia\" + 0.026*\"soviet\" + 0.020*\"jewish\" + 0.019*\"born\" + 0.019*\"israel\" + 0.019*\"polish\" + 0.016*\"moscow\" + 0.015*\"republ\" + 0.014*\"poland\"\n", - "2019-01-16 04:21:29,595 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.021*\"station\" + 0.019*\"line\" + 0.017*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.013*\"area\" + 0.013*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:21:29,601 : INFO : topic diff=0.013200, rho=0.065094\n", - "2019-01-16 04:21:30,026 : INFO : PROGRESS: pass 0, at document #474000/4922894\n", - "2019-01-16 04:21:32,191 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:32,747 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.017*\"centuri\" + 0.010*\"roman\" + 0.010*\"empir\" + 0.010*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\" + 0.007*\"princ\"\n", - "2019-01-16 04:21:32,748 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"water\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"solar\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:21:32,750 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"public\" + 0.009*\"program\"\n", - "2019-01-16 04:21:32,752 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.026*\"oper\" + 0.023*\"airport\" + 0.022*\"aircraft\" + 0.016*\"unit\" + 0.015*\"forc\" + 0.014*\"navi\" + 0.014*\"squadron\" + 0.013*\"flight\" + 0.012*\"servic\"\n", - "2019-01-16 04:21:32,754 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.023*\"court\" + 0.020*\"state\" + 0.019*\"act\" + 0.011*\"offic\" + 0.010*\"case\" + 0.008*\"public\" + 0.008*\"feder\" + 0.008*\"legal\" + 0.008*\"right\"\n", - "2019-01-16 04:21:32,760 : INFO : topic diff=0.013241, rho=0.064957\n", - "2019-01-16 04:21:33,195 : INFO : PROGRESS: pass 0, at document #476000/4922894\n", - "2019-01-16 04:21:35,344 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:35,901 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"god\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"differ\" + 0.005*\"tradit\"\n", - "2019-01-16 04:21:35,903 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"track\" + 0.014*\"chart\" + 0.010*\"vocal\"\n", - "2019-01-16 04:21:35,904 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.029*\"olymp\" + 0.028*\"world\" + 0.025*\"championship\" + 0.022*\"men\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.021*\"event\" + 0.018*\"gold\" + 0.017*\"athlet\"\n", - "2019-01-16 04:21:35,907 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"american\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"born\" + 0.006*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:21:35,908 : INFO : topic #47 (0.020): 0.022*\"river\" + 0.021*\"station\" + 0.018*\"line\" + 0.017*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:21:35,915 : INFO : topic diff=0.013826, rho=0.064820\n", - "2019-01-16 04:21:36,306 : INFO : PROGRESS: pass 0, at document #478000/4922894\n", - "2019-01-16 04:21:38,431 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:38,987 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.033*\"indian\" + 0.030*\"district\" + 0.015*\"provinc\" + 0.015*\"http\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.014*\"villag\" + 0.012*\"www\" + 0.011*\"rural\"\n", - "2019-01-16 04:21:38,988 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.030*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.020*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.009*\"order\"\n", - "2019-01-16 04:21:38,990 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.018*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"lap\"\n", - "2019-01-16 04:21:38,991 : INFO : topic #19 (0.020): 0.019*\"new\" + 0.018*\"radio\" + 0.016*\"station\" + 0.014*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"dai\" + 0.010*\"compani\" + 0.010*\"network\"\n", - "2019-01-16 04:21:38,993 : INFO : topic #35 (0.020): 0.027*\"singapor\" + 0.026*\"prime\" + 0.021*\"lee\" + 0.019*\"indonesia\" + 0.019*\"thailand\" + 0.015*\"minist\" + 0.013*\"vietnam\" + 0.012*\"thai\" + 0.011*\"chi\" + 0.011*\"bulgarian\"\n", - "2019-01-16 04:21:38,999 : INFO : topic diff=0.011960, rho=0.064685\n", - "2019-01-16 04:21:44,109 : INFO : -11.722 per-word bound, 3379.3 perplexity estimate based on a held-out corpus of 2000 documents with 580728 words\n", - "2019-01-16 04:21:44,109 : INFO : PROGRESS: pass 0, at document #480000/4922894\n", - "2019-01-16 04:21:46,370 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:46,929 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\" + 0.010*\"lap\"\n", - "2019-01-16 04:21:46,931 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.023*\"presid\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.015*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", - "2019-01-16 04:21:46,933 : INFO : topic #18 (0.020): 0.008*\"energi\" + 0.008*\"water\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.005*\"high\" + 0.005*\"solar\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 04:21:46,935 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"london\" + 0.021*\"british\" + 0.014*\"sir\" + 0.013*\"georg\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 04:21:46,937 : INFO : topic #7 (0.020): 0.016*\"number\" + 0.012*\"function\" + 0.009*\"point\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"group\"\n", - "2019-01-16 04:21:46,943 : INFO : topic diff=0.012355, rho=0.064550\n", - "2019-01-16 04:21:47,382 : INFO : PROGRESS: pass 0, at document #482000/4922894\n", - "2019-01-16 04:21:49,589 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:50,145 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"london\" + 0.020*\"british\" + 0.014*\"sir\" + 0.013*\"georg\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:21:50,147 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.028*\"world\" + 0.028*\"olymp\" + 0.025*\"championship\" + 0.023*\"japan\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 04:21:50,149 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.031*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"author\" + 0.011*\"writer\" + 0.011*\"novel\"\n", - "2019-01-16 04:21:50,150 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.014*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"basebal\"\n", - "2019-01-16 04:21:50,152 : INFO : topic #0 (0.020): 0.040*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.021*\"command\" + 0.020*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.009*\"order\"\n", - "2019-01-16 04:21:50,157 : INFO : topic diff=0.013753, rho=0.064416\n", - "2019-01-16 04:21:50,560 : INFO : PROGRESS: pass 0, at document #484000/4922894\n", - "2019-01-16 04:21:52,714 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:53,270 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.011*\"locat\" + 0.010*\"histor\" + 0.010*\"jpg\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", - "2019-01-16 04:21:53,273 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.006*\"temperatur\" + 0.005*\"high\" + 0.005*\"solar\" + 0.005*\"heat\"\n", - "2019-01-16 04:21:53,275 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.031*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:21:53,277 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.039*\"franc\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.022*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:21:53,279 : INFO : topic #49 (0.020): 0.071*\"north\" + 0.068*\"south\" + 0.067*\"west\" + 0.066*\"east\" + 0.066*\"region\" + 0.039*\"district\" + 0.029*\"central\" + 0.026*\"villag\" + 0.023*\"northern\" + 0.021*\"administr\"\n", - "2019-01-16 04:21:53,285 : INFO : topic diff=0.012470, rho=0.064282\n", - "2019-01-16 04:21:53,756 : INFO : PROGRESS: pass 0, at document #486000/4922894\n", - "2019-01-16 04:21:55,906 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:56,462 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.027*\"soviet\" + 0.026*\"russia\" + 0.020*\"born\" + 0.020*\"jewish\" + 0.018*\"moscow\" + 0.017*\"polish\" + 0.017*\"israel\" + 0.014*\"republ\" + 0.013*\"european\"\n", - "2019-01-16 04:21:56,464 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.023*\"prime\" + 0.021*\"lee\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.015*\"vietnam\" + 0.014*\"minist\" + 0.012*\"thai\" + 0.012*\"bulgarian\" + 0.011*\"kai\"\n", - "2019-01-16 04:21:56,466 : INFO : topic #49 (0.020): 0.070*\"north\" + 0.067*\"region\" + 0.067*\"west\" + 0.067*\"south\" + 0.066*\"east\" + 0.039*\"district\" + 0.029*\"central\" + 0.026*\"villag\" + 0.023*\"northern\" + 0.021*\"administr\"\n", - "2019-01-16 04:21:56,467 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"oil\" + 0.008*\"vehicl\" + 0.008*\"type\"\n", - "2019-01-16 04:21:56,468 : INFO : topic #30 (0.020): 0.047*\"french\" + 0.037*\"franc\" + 0.024*\"pari\" + 0.023*\"italian\" + 0.022*\"saint\" + 0.017*\"jean\" + 0.017*\"itali\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:21:56,475 : INFO : topic diff=0.015579, rho=0.064150\n", - "2019-01-16 04:21:56,918 : INFO : PROGRESS: pass 0, at document #488000/4922894\n", - "2019-01-16 04:21:59,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:21:59,569 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.020*\"hospit\" + 0.019*\"health\" + 0.014*\"diseas\" + 0.011*\"caus\" + 0.010*\"patient\" + 0.010*\"medicin\" + 0.010*\"drug\" + 0.009*\"treatment\" + 0.009*\"children\"\n", - "2019-01-16 04:21:59,571 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.039*\"new\" + 0.026*\"american\" + 0.026*\"york\" + 0.023*\"unit\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"counti\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:21:59,572 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.021*\"command\" + 0.019*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.009*\"order\"\n", - "2019-01-16 04:21:59,574 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.011*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"born\" + 0.006*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:21:59,576 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.011*\"damag\" + 0.011*\"kill\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.008*\"crew\" + 0.008*\"attack\" + 0.007*\"report\" + 0.007*\"sea\" + 0.007*\"sail\"\n", - "2019-01-16 04:21:59,582 : INFO : topic diff=0.013835, rho=0.064018\n", - "2019-01-16 04:22:00,034 : INFO : PROGRESS: pass 0, at document #490000/4922894\n", - "2019-01-16 04:22:02,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:02,735 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"earth\" + 0.006*\"light\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.005*\"high\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"space\"\n", - "2019-01-16 04:22:02,737 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.046*\"australian\" + 0.044*\"new\" + 0.038*\"chines\" + 0.038*\"china\" + 0.030*\"zealand\" + 0.023*\"south\" + 0.019*\"hong\" + 0.019*\"sydnei\" + 0.019*\"kong\"\n", - "2019-01-16 04:22:02,739 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.029*\"england\" + 0.025*\"town\" + 0.022*\"citi\" + 0.021*\"cricket\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.011*\"counti\" + 0.010*\"english\"\n", - "2019-01-16 04:22:02,740 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\" + 0.007*\"princ\"\n", - "2019-01-16 04:22:02,742 : INFO : topic #25 (0.020): 0.052*\"round\" + 0.039*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.015*\"group\" + 0.015*\"qualifi\" + 0.013*\"doubl\" + 0.013*\"draw\" + 0.012*\"runner\"\n", - "2019-01-16 04:22:02,747 : INFO : topic diff=0.011358, rho=0.063888\n", - "2019-01-16 04:22:03,189 : INFO : PROGRESS: pass 0, at document #492000/4922894\n", - "2019-01-16 04:22:05,430 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:05,989 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.012*\"function\" + 0.009*\"point\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"group\"\n", - "2019-01-16 04:22:05,991 : INFO : topic #25 (0.020): 0.052*\"round\" + 0.039*\"final\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.021*\"open\" + 0.015*\"group\" + 0.014*\"qualifi\" + 0.013*\"draw\" + 0.013*\"doubl\" + 0.012*\"runner\"\n", - "2019-01-16 04:22:05,992 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 04:22:05,994 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"london\" + 0.020*\"british\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"jame\"\n", - "2019-01-16 04:22:05,995 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.034*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.019*\"berlin\" + 0.013*\"carl\" + 0.013*\"netherland\" + 0.012*\"str\"\n", - "2019-01-16 04:22:06,001 : INFO : topic diff=0.012094, rho=0.063758\n", - "2019-01-16 04:22:06,427 : INFO : PROGRESS: pass 0, at document #494000/4922894\n", - "2019-01-16 04:22:08,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:09,083 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.012*\"function\" + 0.009*\"point\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"group\"\n", - "2019-01-16 04:22:09,085 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"time\" + 0.008*\"increas\" + 0.008*\"bank\" + 0.008*\"year\" + 0.008*\"compani\" + 0.007*\"rate\" + 0.007*\"limit\" + 0.006*\"market\" + 0.006*\"cost\"\n", - "2019-01-16 04:22:09,086 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.011*\"cathol\" + 0.011*\"daughter\"\n", - "2019-01-16 04:22:09,088 : INFO : topic #47 (0.020): 0.021*\"river\" + 0.021*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"area\" + 0.013*\"park\" + 0.013*\"rout\" + 0.012*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:22:09,089 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.008*\"princ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:22:09,095 : INFO : topic diff=0.012860, rho=0.063628\n", - "2019-01-16 04:22:09,512 : INFO : PROGRESS: pass 0, at document #496000/4922894\n", - "2019-01-16 04:22:11,561 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:12,119 : INFO : topic #34 (0.020): 0.075*\"canada\" + 0.060*\"canadian\" + 0.058*\"island\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.018*\"montreal\" + 0.018*\"british\" + 0.017*\"quebec\" + 0.014*\"korean\" + 0.014*\"korea\"\n", - "2019-01-16 04:22:12,121 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.039*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"open\" + 0.015*\"group\" + 0.014*\"qualifi\" + 0.013*\"doubl\" + 0.013*\"draw\" + 0.012*\"runner\"\n", - "2019-01-16 04:22:12,123 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"god\" + 0.006*\"us\" + 0.005*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"differ\"\n", - "2019-01-16 04:22:12,124 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"genu\" + 0.011*\"famili\" + 0.010*\"white\" + 0.009*\"plant\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 04:22:12,126 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"compani\" + 0.011*\"work\" + 0.011*\"manag\" + 0.011*\"institut\" + 0.011*\"univers\" + 0.011*\"servic\" + 0.011*\"intern\" + 0.009*\"nation\"\n", - "2019-01-16 04:22:12,131 : INFO : topic diff=0.012617, rho=0.063500\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:22:12,526 : INFO : PROGRESS: pass 0, at document #498000/4922894\n", - "2019-01-16 04:22:14,661 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:15,218 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.011*\"street\" + 0.011*\"locat\" + 0.011*\"histor\" + 0.010*\"jpg\" + 0.010*\"site\" + 0.009*\"church\" + 0.009*\"place\"\n", - "2019-01-16 04:22:15,219 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:22:15,221 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.014*\"player\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:22:15,224 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.050*\"univers\" + 0.042*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"public\" + 0.009*\"program\"\n", - "2019-01-16 04:22:15,226 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.019*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"compani\" + 0.009*\"host\"\n", - "2019-01-16 04:22:15,233 : INFO : topic diff=0.012269, rho=0.063372\n", - "2019-01-16 04:22:20,175 : INFO : -11.604 per-word bound, 3112.7 perplexity estimate based on a held-out corpus of 2000 documents with 553770 words\n", - "2019-01-16 04:22:20,176 : INFO : PROGRESS: pass 0, at document #500000/4922894\n", - "2019-01-16 04:22:22,292 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:22,849 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.032*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.012*\"die\" + 0.012*\"carl\" + 0.011*\"netherland\"\n", - "2019-01-16 04:22:22,850 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.012*\"cell\" + 0.009*\"model\" + 0.008*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"design\"\n", - "2019-01-16 04:22:22,852 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 04:22:22,854 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.035*\"indian\" + 0.026*\"district\" + 0.015*\"http\" + 0.015*\"provinc\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"villag\" + 0.013*\"www\" + 0.011*\"khan\"\n", - "2019-01-16 04:22:22,857 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.022*\"british\" + 0.022*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"jame\"\n", - "2019-01-16 04:22:22,864 : INFO : topic diff=0.012362, rho=0.063246\n", - "2019-01-16 04:22:23,290 : INFO : PROGRESS: pass 0, at document #502000/4922894\n", - "2019-01-16 04:22:25,432 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:25,988 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.024*\"footbal\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.016*\"match\"\n", - "2019-01-16 04:22:25,990 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.008*\"energi\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"temperatur\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\"\n", - "2019-01-16 04:22:25,992 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.040*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.015*\"group\" + 0.014*\"qualifi\" + 0.013*\"doubl\" + 0.012*\"draw\" + 0.012*\"runner\"\n", - "2019-01-16 04:22:25,993 : INFO : topic #8 (0.020): 0.044*\"india\" + 0.035*\"indian\" + 0.025*\"district\" + 0.015*\"http\" + 0.015*\"provinc\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"villag\" + 0.013*\"www\" + 0.012*\"khan\"\n", - "2019-01-16 04:22:25,995 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.034*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.012*\"die\" + 0.012*\"netherland\" + 0.011*\"und\"\n", - "2019-01-16 04:22:26,001 : INFO : topic diff=0.011492, rho=0.063119\n", - "2019-01-16 04:22:26,449 : INFO : PROGRESS: pass 0, at document #504000/4922894\n", - "2019-01-16 04:22:28,628 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:29,185 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.021*\"court\" + 0.020*\"state\" + 0.018*\"act\" + 0.011*\"offic\" + 0.010*\"case\" + 0.009*\"right\" + 0.009*\"legal\" + 0.008*\"polic\" + 0.008*\"public\"\n", - "2019-01-16 04:22:29,187 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.024*\"wrestl\" + 0.022*\"match\" + 0.018*\"championship\" + 0.016*\"titl\" + 0.016*\"contest\" + 0.016*\"world\" + 0.015*\"fight\" + 0.014*\"champion\" + 0.013*\"team\"\n", - "2019-01-16 04:22:29,188 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"compani\" + 0.011*\"manag\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"institut\" + 0.011*\"intern\" + 0.011*\"univers\" + 0.010*\"organ\"\n", - "2019-01-16 04:22:29,191 : INFO : topic #31 (0.020): 0.054*\"australia\" + 0.046*\"australian\" + 0.043*\"new\" + 0.038*\"china\" + 0.035*\"chines\" + 0.030*\"zealand\" + 0.023*\"south\" + 0.019*\"sydnei\" + 0.018*\"hong\" + 0.018*\"kong\"\n", - "2019-01-16 04:22:29,192 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:22:29,200 : INFO : topic diff=0.011985, rho=0.062994\n", - "2019-01-16 04:22:29,578 : INFO : PROGRESS: pass 0, at document #506000/4922894\n", - "2019-01-16 04:22:31,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:32,275 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.024*\"wrestl\" + 0.022*\"match\" + 0.018*\"championship\" + 0.016*\"titl\" + 0.016*\"contest\" + 0.015*\"world\" + 0.014*\"fight\" + 0.014*\"champion\" + 0.013*\"team\"\n", - "2019-01-16 04:22:32,277 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.016*\"famili\" + 0.012*\"father\" + 0.012*\"born\" + 0.012*\"year\" + 0.012*\"cathol\" + 0.011*\"daughter\"\n", - "2019-01-16 04:22:32,278 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.028*\"award\" + 0.022*\"episod\" + 0.022*\"seri\" + 0.021*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.013*\"actor\" + 0.012*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:22:32,280 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.031*\"work\" + 0.023*\"design\" + 0.022*\"artist\" + 0.021*\"paint\" + 0.018*\"exhibit\" + 0.014*\"collect\" + 0.013*\"galleri\" + 0.009*\"photograph\"\n", - "2019-01-16 04:22:32,281 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"god\" + 0.005*\"cultur\" + 0.005*\"english\" + 0.005*\"tradit\"\n", - "2019-01-16 04:22:32,288 : INFO : topic diff=0.011038, rho=0.062869\n", - "2019-01-16 04:22:32,725 : INFO : PROGRESS: pass 0, at document #508000/4922894\n", - "2019-01-16 04:22:34,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:35,374 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.015*\"spain\" + 0.012*\"brazil\" + 0.011*\"francisco\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.009*\"mexican\"\n", - "2019-01-16 04:22:35,376 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.024*\"footbal\" + 0.023*\"cup\" + 0.017*\"player\" + 0.017*\"goal\" + 0.016*\"match\"\n", - "2019-01-16 04:22:35,378 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"data\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"develop\" + 0.008*\"player\" + 0.007*\"user\" + 0.007*\"card\"\n", - "2019-01-16 04:22:35,380 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.011*\"american\" + 0.009*\"michael\" + 0.008*\"jame\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"born\" + 0.006*\"peter\" + 0.006*\"smith\"\n", - "2019-01-16 04:22:35,381 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"cell\" + 0.009*\"model\" + 0.008*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"design\"\n", - "2019-01-16 04:22:35,387 : INFO : topic diff=0.011459, rho=0.062746\n", - "2019-01-16 04:22:35,786 : INFO : PROGRESS: pass 0, at document #510000/4922894\n", - "2019-01-16 04:22:37,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:22:38,481 : INFO : topic #14 (0.020): 0.013*\"research\" + 0.013*\"develop\" + 0.012*\"compani\" + 0.011*\"manag\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.011*\"intern\" + 0.011*\"institut\" + 0.010*\"organ\"\n", - "2019-01-16 04:22:38,482 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"god\" + 0.005*\"english\" + 0.005*\"cultur\" + 0.005*\"exampl\"\n", - "2019-01-16 04:22:38,484 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.026*\"oper\" + 0.022*\"aircraft\" + 0.019*\"airport\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"flight\" + 0.012*\"base\" + 0.012*\"servic\"\n", - "2019-01-16 04:22:38,485 : INFO : topic #25 (0.020): 0.051*\"round\" + 0.040*\"final\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.019*\"open\" + 0.016*\"group\" + 0.015*\"qualifi\" + 0.012*\"doubl\" + 0.012*\"runner\" + 0.011*\"draw\"\n", - "2019-01-16 04:22:38,488 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"francisco\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.009*\"puerto\"\n", - "2019-01-16 04:22:38,495 : INFO : topic diff=0.012041, rho=0.062622\n", - "2019-01-16 04:22:38,915 : INFO : PROGRESS: pass 0, at document #512000/4922894\n", - "2019-01-16 04:22:41,071 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:41,627 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"francisco\" + 0.011*\"mexican\" + 0.010*\"juan\" + 0.010*\"santa\"\n", - "2019-01-16 04:22:41,629 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.034*\"perform\" + 0.020*\"theatr\" + 0.020*\"compos\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"plai\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:22:41,631 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.012*\"kill\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.007*\"sea\" + 0.007*\"attack\" + 0.007*\"crew\" + 0.007*\"dai\" + 0.007*\"report\"\n", - "2019-01-16 04:22:41,634 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"god\" + 0.005*\"differ\" + 0.005*\"english\" + 0.005*\"cultur\"\n", - "2019-01-16 04:22:41,636 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"american\" + 0.009*\"michael\" + 0.008*\"jame\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"born\" + 0.006*\"peter\" + 0.006*\"smith\"\n", - "2019-01-16 04:22:41,643 : INFO : topic diff=0.013702, rho=0.062500\n", - "2019-01-16 04:22:42,064 : INFO : PROGRESS: pass 0, at document #514000/4922894\n", - "2019-01-16 04:22:44,129 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:44,686 : INFO : topic #40 (0.020): 0.031*\"africa\" + 0.030*\"bar\" + 0.026*\"african\" + 0.021*\"south\" + 0.018*\"text\" + 0.018*\"till\" + 0.016*\"color\" + 0.011*\"agricultur\" + 0.009*\"coloni\" + 0.008*\"black\"\n", - "2019-01-16 04:22:44,687 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.026*\"oper\" + 0.022*\"aircraft\" + 0.020*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"flight\" + 0.012*\"base\" + 0.012*\"servic\"\n", - "2019-01-16 04:22:44,689 : INFO : topic #49 (0.020): 0.074*\"north\" + 0.072*\"west\" + 0.066*\"south\" + 0.065*\"east\" + 0.065*\"region\" + 0.038*\"district\" + 0.029*\"central\" + 0.025*\"villag\" + 0.022*\"northern\" + 0.022*\"administr\"\n", - "2019-01-16 04:22:44,691 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.006*\"charact\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"end\"\n", - "2019-01-16 04:22:44,693 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.027*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"counti\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:22:44,700 : INFO : topic diff=0.012587, rho=0.062378\n", - "2019-01-16 04:22:45,098 : INFO : PROGRESS: pass 0, at document #516000/4922894\n", - "2019-01-16 04:22:47,240 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:47,797 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.028*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.022*\"event\" + 0.019*\"athlet\" + 0.018*\"rank\"\n", - "2019-01-16 04:22:47,799 : INFO : topic #25 (0.020): 0.051*\"round\" + 0.040*\"final\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.019*\"open\" + 0.017*\"group\" + 0.016*\"qualifi\" + 0.012*\"runner\" + 0.012*\"doubl\" + 0.012*\"singl\"\n", - "2019-01-16 04:22:47,800 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"god\" + 0.005*\"differ\" + 0.005*\"cultur\" + 0.005*\"exampl\"\n", - "2019-01-16 04:22:47,802 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.018*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:22:47,803 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.012*\"father\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"death\"\n", - "2019-01-16 04:22:47,810 : INFO : topic diff=0.012398, rho=0.062257\n", - "2019-01-16 04:22:48,225 : INFO : PROGRESS: pass 0, at document #518000/4922894\n", - "2019-01-16 04:22:50,377 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:50,933 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.029*\"work\" + 0.025*\"design\" + 0.021*\"artist\" + 0.021*\"paint\" + 0.018*\"exhibit\" + 0.015*\"collect\" + 0.013*\"galleri\" + 0.009*\"new\"\n", - "2019-01-16 04:22:50,935 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.011*\"kill\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.008*\"attack\" + 0.007*\"crew\" + 0.007*\"sea\" + 0.007*\"dai\" + 0.007*\"sail\"\n", - "2019-01-16 04:22:50,937 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:22:50,938 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.019*\"compos\" + 0.015*\"festiv\" + 0.015*\"piano\" + 0.014*\"danc\" + 0.014*\"orchestra\" + 0.013*\"opera\" + 0.013*\"plai\"\n", - "2019-01-16 04:22:50,940 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.028*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.022*\"event\" + 0.020*\"athlet\" + 0.018*\"rank\"\n", - "2019-01-16 04:22:50,946 : INFO : topic diff=0.012593, rho=0.062137\n", - "2019-01-16 04:22:55,704 : INFO : -11.515 per-word bound, 2927.0 perplexity estimate based on a held-out corpus of 2000 documents with 548560 words\n", - "2019-01-16 04:22:55,705 : INFO : PROGRESS: pass 0, at document #520000/4922894\n", - "2019-01-16 04:22:57,766 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:22:58,323 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.040*\"franc\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.019*\"jean\" + 0.016*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:22:58,325 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.028*\"england\" + 0.023*\"town\" + 0.022*\"citi\" + 0.020*\"cricket\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.010*\"wale\" + 0.010*\"west\"\n", - "2019-01-16 04:22:58,326 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.027*\"soviet\" + 0.027*\"polish\" + 0.023*\"russia\" + 0.022*\"jewish\" + 0.020*\"born\" + 0.018*\"poland\" + 0.017*\"jew\" + 0.015*\"moscow\" + 0.014*\"israel\"\n", - "2019-01-16 04:22:58,328 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"writer\"\n", - "2019-01-16 04:22:58,329 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.011*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"tom\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"born\" + 0.006*\"peter\"\n", - "2019-01-16 04:22:58,335 : INFO : topic diff=0.010650, rho=0.062017\n", - "2019-01-16 04:22:58,752 : INFO : PROGRESS: pass 0, at document #522000/4922894\n", - "2019-01-16 04:23:00,853 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:01,414 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"compani\" + 0.011*\"institut\" + 0.011*\"intern\" + 0.011*\"manag\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.010*\"nation\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:23:01,416 : INFO : topic #48 (0.020): 0.082*\"octob\" + 0.080*\"march\" + 0.077*\"septemb\" + 0.073*\"juli\" + 0.072*\"januari\" + 0.071*\"august\" + 0.071*\"novemb\" + 0.070*\"decemb\" + 0.069*\"april\" + 0.068*\"june\"\n", - "2019-01-16 04:23:01,418 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.011*\"locat\" + 0.011*\"histor\" + 0.010*\"jpg\" + 0.010*\"site\" + 0.009*\"centuri\" + 0.009*\"church\"\n", - "2019-01-16 04:23:01,419 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.032*\"germani\" + 0.026*\"der\" + 0.025*\"von\" + 0.022*\"van\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.016*\"die\" + 0.014*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:23:01,421 : INFO : topic #35 (0.020): 0.021*\"singapor\" + 0.021*\"lee\" + 0.018*\"prime\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.014*\"vietnam\" + 0.013*\"thai\" + 0.013*\"indonesian\" + 0.012*\"chi\" + 0.011*\"asian\"\n", - "2019-01-16 04:23:01,427 : INFO : topic diff=0.015296, rho=0.061898\n", - "2019-01-16 04:23:01,843 : INFO : PROGRESS: pass 0, at document #524000/4922894\n", - "2019-01-16 04:23:03,990 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:04,551 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.041*\"colleg\" + 0.035*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:23:04,553 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.028*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"counti\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:23:04,555 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.005*\"like\" + 0.005*\"return\" + 0.004*\"stori\" + 0.004*\"end\"\n", - "2019-01-16 04:23:04,556 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.040*\"final\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.020*\"open\" + 0.016*\"group\" + 0.016*\"qualifi\" + 0.012*\"runner\" + 0.012*\"doubl\" + 0.011*\"singl\"\n", - "2019-01-16 04:23:04,558 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.025*\"oper\" + 0.023*\"aircraft\" + 0.019*\"airport\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.013*\"flight\" + 0.012*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:23:04,564 : INFO : topic diff=0.010272, rho=0.061780\n", - "2019-01-16 04:23:05,014 : INFO : PROGRESS: pass 0, at document #526000/4922894\n", - "2019-01-16 04:23:07,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:07,741 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"return\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\"\n", - "2019-01-16 04:23:07,742 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.015*\"broadcast\" + 0.013*\"channel\" + 0.011*\"televis\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"network\"\n", - "2019-01-16 04:23:07,744 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.013*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.009*\"theori\" + 0.008*\"gener\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"point\" + 0.006*\"defin\"\n", - "2019-01-16 04:23:07,745 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.008*\"templ\" + 0.008*\"kingdom\" + 0.007*\"ancient\"\n", - "2019-01-16 04:23:07,747 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.029*\"perform\" + 0.028*\"piano\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.014*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"danc\" + 0.013*\"opera\" + 0.013*\"song\"\n", - "2019-01-16 04:23:07,753 : INFO : topic diff=0.011864, rho=0.061663\n", - "2019-01-16 04:23:08,161 : INFO : PROGRESS: pass 0, at document #528000/4922894\n", - "2019-01-16 04:23:10,301 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:10,858 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.027*\"soviet\" + 0.025*\"polish\" + 0.023*\"russia\" + 0.022*\"jewish\" + 0.021*\"born\" + 0.017*\"poland\" + 0.017*\"jew\" + 0.015*\"moscow\" + 0.015*\"israel\"\n", - "2019-01-16 04:23:10,860 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"yard\"\n", - "2019-01-16 04:23:10,862 : INFO : topic #34 (0.020): 0.073*\"canada\" + 0.070*\"island\" + 0.061*\"canadian\" + 0.027*\"toronto\" + 0.023*\"ontario\" + 0.017*\"montreal\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.012*\"vancouv\" + 0.012*\"ottawa\"\n", - "2019-01-16 04:23:10,864 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.009*\"time\" + 0.008*\"bank\" + 0.008*\"increas\" + 0.008*\"year\" + 0.008*\"compani\" + 0.007*\"rate\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"number\"\n", - "2019-01-16 04:23:10,865 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"templ\" + 0.009*\"princ\" + 0.008*\"kingdom\" + 0.007*\"ancient\"\n", - "2019-01-16 04:23:10,872 : INFO : topic diff=0.010577, rho=0.061546\n", - "2019-01-16 04:23:11,293 : INFO : PROGRESS: pass 0, at document #530000/4922894\n", - "2019-01-16 04:23:13,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:13,995 : INFO : topic #5 (0.020): 0.025*\"game\" + 0.009*\"us\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"window\" + 0.007*\"player\" + 0.007*\"releas\"\n", - "2019-01-16 04:23:13,996 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.021*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:23:13,997 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:23:13,999 : INFO : topic #40 (0.020): 0.030*\"africa\" + 0.029*\"bar\" + 0.026*\"african\" + 0.022*\"south\" + 0.019*\"text\" + 0.017*\"till\" + 0.014*\"color\" + 0.011*\"agricultur\" + 0.009*\"peopl\" + 0.009*\"tropic\"\n", - "2019-01-16 04:23:14,001 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"cell\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"acid\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"protein\"\n", - "2019-01-16 04:23:14,008 : INFO : topic diff=0.013878, rho=0.061430\n", - "2019-01-16 04:23:14,423 : INFO : PROGRESS: pass 0, at document #532000/4922894\n", - "2019-01-16 04:23:16,507 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:17,067 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"cell\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.008*\"acid\" + 0.007*\"vehicl\"\n", - "2019-01-16 04:23:17,069 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.028*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.025*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"rank\"\n", - "2019-01-16 04:23:17,071 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.034*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.025*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:23:17,072 : INFO : topic #49 (0.020): 0.075*\"north\" + 0.071*\"west\" + 0.067*\"east\" + 0.066*\"south\" + 0.066*\"region\" + 0.038*\"district\" + 0.030*\"central\" + 0.025*\"villag\" + 0.023*\"swedish\" + 0.022*\"administr\"\n", - "2019-01-16 04:23:17,074 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.032*\"germani\" + 0.026*\"der\" + 0.025*\"von\" + 0.023*\"van\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.015*\"die\" + 0.014*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:23:17,080 : INFO : topic diff=0.012941, rho=0.061314\n", - "2019-01-16 04:23:17,491 : INFO : PROGRESS: pass 0, at document #534000/4922894\n", - "2019-01-16 04:23:19,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:20,171 : INFO : topic #46 (0.020): 0.125*\"class\" + 0.077*\"align\" + 0.069*\"left\" + 0.055*\"wikit\" + 0.049*\"style\" + 0.046*\"center\" + 0.043*\"right\" + 0.035*\"philippin\" + 0.034*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:23:20,173 : INFO : topic #15 (0.020): 0.033*\"unit\" + 0.028*\"england\" + 0.024*\"citi\" + 0.022*\"town\" + 0.020*\"cricket\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.011*\"wale\" + 0.010*\"counti\"\n", - "2019-01-16 04:23:20,175 : INFO : topic #0 (0.020): 0.041*\"war\" + 0.028*\"armi\" + 0.022*\"command\" + 0.021*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.010*\"offic\" + 0.010*\"regiment\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:23:20,176 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.009*\"theori\" + 0.009*\"exampl\" + 0.008*\"point\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"defin\"\n", - "2019-01-16 04:23:20,178 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"window\"\n", - "2019-01-16 04:23:20,184 : INFO : topic diff=0.011180, rho=0.061199\n", - "2019-01-16 04:23:20,595 : INFO : PROGRESS: pass 0, at document #536000/4922894\n", - "2019-01-16 04:23:22,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:23,264 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.014*\"tour\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 04:23:23,266 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.030*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:23:23,268 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 04:23:23,270 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:23:23,272 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.032*\"germani\" + 0.025*\"von\" + 0.025*\"der\" + 0.023*\"berlin\" + 0.023*\"van\" + 0.019*\"dutch\" + 0.015*\"die\" + 0.013*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:23:23,279 : INFO : topic diff=0.011983, rho=0.061085\n", - "2019-01-16 04:23:23,696 : INFO : PROGRESS: pass 0, at document #538000/4922894\n", - "2019-01-16 04:23:25,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:26,345 : INFO : topic #18 (0.020): 0.008*\"light\" + 0.007*\"water\" + 0.007*\"earth\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"materi\" + 0.006*\"us\" + 0.005*\"time\" + 0.005*\"space\"\n", - "2019-01-16 04:23:26,347 : INFO : topic #21 (0.020): 0.013*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.005*\"god\" + 0.005*\"us\" + 0.005*\"differ\" + 0.005*\"tradit\" + 0.005*\"english\"\n", - "2019-01-16 04:23:26,348 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"area\" + 0.014*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:23:26,350 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.019*\"hospit\" + 0.017*\"health\" + 0.012*\"diseas\" + 0.011*\"caus\" + 0.010*\"ret\" + 0.010*\"drug\" + 0.010*\"patient\" + 0.010*\"medicin\" + 0.009*\"treatment\"\n", - "2019-01-16 04:23:26,351 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"tom\" + 0.006*\"smith\" + 0.006*\"peter\"\n", - "2019-01-16 04:23:26,358 : INFO : topic diff=0.010752, rho=0.060971\n", - "2019-01-16 04:23:31,274 : INFO : -11.875 per-word bound, 3757.0 perplexity estimate based on a held-out corpus of 2000 documents with 546579 words\n", - "2019-01-16 04:23:31,274 : INFO : PROGRESS: pass 0, at document #540000/4922894\n", - "2019-01-16 04:23:33,417 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:33,973 : INFO : topic #40 (0.020): 0.029*\"africa\" + 0.028*\"bar\" + 0.025*\"african\" + 0.022*\"south\" + 0.018*\"text\" + 0.017*\"till\" + 0.013*\"color\" + 0.011*\"agricultur\" + 0.009*\"cape\" + 0.009*\"tropic\"\n", - "2019-01-16 04:23:33,975 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.026*\"soviet\" + 0.025*\"russia\" + 0.022*\"polish\" + 0.021*\"jewish\" + 0.020*\"born\" + 0.016*\"israel\" + 0.015*\"moscow\" + 0.015*\"jew\" + 0.015*\"poland\"\n", - "2019-01-16 04:23:33,976 : INFO : topic #49 (0.020): 0.076*\"north\" + 0.072*\"west\" + 0.069*\"region\" + 0.068*\"south\" + 0.067*\"east\" + 0.038*\"district\" + 0.030*\"central\" + 0.025*\"villag\" + 0.023*\"swedish\" + 0.022*\"administr\"\n", - "2019-01-16 04:23:33,978 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.038*\"final\" + 0.028*\"tournament\" + 0.025*\"winner\" + 0.020*\"open\" + 0.016*\"group\" + 0.015*\"qualifi\" + 0.013*\"singl\" + 0.013*\"doubl\" + 0.013*\"draw\"\n", - "2019-01-16 04:23:33,979 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.025*\"district\" + 0.016*\"http\" + 0.015*\"provinc\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.013*\"www\" + 0.012*\"villag\" + 0.012*\"singh\"\n", - "2019-01-16 04:23:33,985 : INFO : topic diff=0.011523, rho=0.060858\n", - "2019-01-16 04:23:34,364 : INFO : PROGRESS: pass 0, at document #542000/4922894\n", - "2019-01-16 04:23:36,476 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:37,032 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.012*\"kill\" + 0.010*\"gun\" + 0.009*\"boat\" + 0.009*\"damag\" + 0.008*\"sea\" + 0.007*\"attack\" + 0.007*\"dai\" + 0.007*\"island\" + 0.007*\"crew\"\n", - "2019-01-16 04:23:37,034 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.047*\"counti\" + 0.033*\"citi\" + 0.033*\"town\" + 0.029*\"ag\" + 0.029*\"villag\" + 0.024*\"township\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.022*\"district\"\n", - "2019-01-16 04:23:37,035 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.027*\"piano\" + 0.019*\"viola\" + 0.018*\"compos\" + 0.018*\"orchestra\" + 0.017*\"theatr\" + 0.014*\"festiv\" + 0.013*\"opera\" + 0.012*\"danc\"\n", - "2019-01-16 04:23:37,037 : INFO : topic #5 (0.020): 0.025*\"game\" + 0.009*\"us\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 04:23:37,038 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.039*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.030*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:23:37,044 : INFO : topic diff=0.010654, rho=0.060746\n", - "2019-01-16 04:23:37,418 : INFO : PROGRESS: pass 0, at document #544000/4922894\n", - "2019-01-16 04:23:39,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:40,086 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"act\" + 0.022*\"court\" + 0.020*\"state\" + 0.011*\"case\" + 0.010*\"offic\" + 0.010*\"polic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"public\"\n", - "2019-01-16 04:23:40,088 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"yard\" + 0.010*\"year\" + 0.010*\"leagu\"\n", - "2019-01-16 04:23:40,089 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.048*\"australian\" + 0.045*\"new\" + 0.037*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.018*\"sydnei\" + 0.017*\"hong\" + 0.017*\"kong\"\n", - "2019-01-16 04:23:40,091 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"black\"\n", - "2019-01-16 04:23:40,092 : INFO : topic #35 (0.020): 0.019*\"singapor\" + 0.018*\"lee\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.015*\"thai\" + 0.015*\"prime\" + 0.014*\"vietnam\" + 0.012*\"chi\" + 0.012*\"indonesian\" + 0.012*\"asian\"\n", - "2019-01-16 04:23:40,098 : INFO : topic diff=0.011364, rho=0.060634\n", - "2019-01-16 04:23:40,506 : INFO : PROGRESS: pass 0, at document #546000/4922894\n", - "2019-01-16 04:23:42,618 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:43,179 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.021*\"vote\" + 0.021*\"democrat\" + 0.019*\"presid\" + 0.015*\"minist\" + 0.014*\"council\" + 0.014*\"republican\" + 0.013*\"senat\"\n", - "2019-01-16 04:23:43,180 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:23:43,182 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.038*\"final\" + 0.030*\"tournament\" + 0.025*\"winner\" + 0.020*\"open\" + 0.016*\"group\" + 0.015*\"qualifi\" + 0.013*\"doubl\" + 0.013*\"runner\" + 0.012*\"singl\"\n", - "2019-01-16 04:23:43,183 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.034*\"student\" + 0.030*\"educ\" + 0.030*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:23:43,185 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.017*\"road\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:23:43,191 : INFO : topic diff=0.013054, rho=0.060523\n", - "2019-01-16 04:23:43,624 : INFO : PROGRESS: pass 0, at document #548000/4922894\n", - "2019-01-16 04:23:45,854 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:46,412 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"park\" + 0.014*\"rout\" + 0.013*\"area\" + 0.012*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:23:46,414 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"smith\" + 0.006*\"tom\"\n", - "2019-01-16 04:23:46,416 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.012*\"spain\" + 0.012*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\" + 0.010*\"juan\" + 0.010*\"santa\"\n", - "2019-01-16 04:23:46,417 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.021*\"match\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.017*\"titl\" + 0.016*\"championship\" + 0.015*\"team\" + 0.014*\"champion\" + 0.014*\"world\" + 0.013*\"fight\"\n", - "2019-01-16 04:23:46,419 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.047*\"australian\" + 0.044*\"new\" + 0.038*\"china\" + 0.035*\"chines\" + 0.033*\"zealand\" + 0.025*\"south\" + 0.018*\"sydnei\" + 0.017*\"hong\" + 0.017*\"kong\"\n", - "2019-01-16 04:23:46,425 : INFO : topic diff=0.015060, rho=0.060412\n", - "2019-01-16 04:23:46,850 : INFO : PROGRESS: pass 0, at document #550000/4922894\n", - "2019-01-16 04:23:49,062 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:49,616 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.046*\"counti\" + 0.033*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.028*\"villag\" + 0.023*\"famili\" + 0.022*\"township\" + 0.022*\"censu\" + 0.022*\"municip\"\n", - "2019-01-16 04:23:49,618 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:23:49,620 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 04:23:49,621 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.048*\"australian\" + 0.044*\"new\" + 0.038*\"china\" + 0.035*\"chines\" + 0.032*\"zealand\" + 0.025*\"south\" + 0.018*\"sydnei\" + 0.017*\"hong\" + 0.017*\"kong\"\n", - "2019-01-16 04:23:49,623 : INFO : topic #17 (0.020): 0.056*\"race\" + 0.019*\"team\" + 0.019*\"car\" + 0.013*\"tour\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 04:23:49,629 : INFO : topic diff=0.009703, rho=0.060302\n", - "2019-01-16 04:23:50,041 : INFO : PROGRESS: pass 0, at document #552000/4922894\n", - "2019-01-16 04:23:52,212 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:52,768 : INFO : topic #40 (0.020): 0.030*\"bar\" + 0.029*\"africa\" + 0.025*\"african\" + 0.021*\"south\" + 0.019*\"text\" + 0.018*\"till\" + 0.014*\"color\" + 0.010*\"agricultur\" + 0.009*\"peopl\" + 0.008*\"cape\"\n", - "2019-01-16 04:23:52,769 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.078*\"march\" + 0.074*\"septemb\" + 0.072*\"januari\" + 0.070*\"juli\" + 0.070*\"novemb\" + 0.068*\"april\" + 0.067*\"august\" + 0.066*\"decemb\" + 0.066*\"june\"\n", - "2019-01-16 04:23:52,771 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"democrat\" + 0.020*\"presid\" + 0.015*\"minist\" + 0.014*\"council\" + 0.014*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 04:23:52,773 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.045*\"counti\" + 0.034*\"town\" + 0.032*\"citi\" + 0.028*\"ag\" + 0.027*\"villag\" + 0.023*\"famili\" + 0.022*\"district\" + 0.022*\"censu\" + 0.022*\"township\"\n", - "2019-01-16 04:23:52,774 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:23:52,781 : INFO : topic diff=0.013367, rho=0.060193\n", - "2019-01-16 04:23:53,214 : INFO : PROGRESS: pass 0, at document #554000/4922894\n", - "2019-01-16 04:23:55,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:55,949 : INFO : topic #39 (0.020): 0.042*\"air\" + 0.026*\"oper\" + 0.022*\"airport\" + 0.022*\"aircraft\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.014*\"squadron\" + 0.012*\"servic\" + 0.012*\"base\"\n", - "2019-01-16 04:23:55,951 : INFO : topic #33 (0.020): 0.013*\"million\" + 0.009*\"time\" + 0.009*\"compani\" + 0.008*\"bank\" + 0.008*\"year\" + 0.008*\"increas\" + 0.007*\"rate\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"number\"\n", - "2019-01-16 04:23:55,952 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.035*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.024*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:23:55,954 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.045*\"univers\" + 0.038*\"colleg\" + 0.035*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.009*\"program\" + 0.008*\"grade\"\n", - "2019-01-16 04:23:55,955 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.023*\"piano\" + 0.019*\"compos\" + 0.016*\"orchestra\" + 0.016*\"theatr\" + 0.015*\"festiv\" + 0.015*\"viola\" + 0.013*\"danc\" + 0.012*\"opera\"\n", - "2019-01-16 04:23:55,962 : INFO : topic diff=0.012266, rho=0.060084\n", - "2019-01-16 04:23:56,359 : INFO : PROGRESS: pass 0, at document #556000/4922894\n", - "2019-01-16 04:23:58,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:23:59,037 : INFO : topic #40 (0.020): 0.031*\"bar\" + 0.028*\"africa\" + 0.025*\"african\" + 0.021*\"text\" + 0.021*\"south\" + 0.020*\"till\" + 0.016*\"color\" + 0.011*\"agricultur\" + 0.008*\"start\" + 0.008*\"peopl\"\n", - "2019-01-16 04:23:59,039 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.070*\"west\" + 0.069*\"east\" + 0.067*\"south\" + 0.065*\"region\" + 0.037*\"district\" + 0.030*\"central\" + 0.024*\"villag\" + 0.023*\"administr\" + 0.022*\"norwegian\"\n", - "2019-01-16 04:23:59,041 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.010*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:23:59,043 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.019*\"hospit\" + 0.017*\"health\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.010*\"caus\" + 0.010*\"cancer\" + 0.010*\"drug\" + 0.010*\"medicin\"\n", - "2019-01-16 04:23:59,045 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.078*\"march\" + 0.075*\"septemb\" + 0.074*\"januari\" + 0.070*\"juli\" + 0.069*\"novemb\" + 0.069*\"april\" + 0.067*\"august\" + 0.067*\"june\" + 0.066*\"decemb\"\n", - "2019-01-16 04:23:59,051 : INFO : topic diff=0.011772, rho=0.059976\n", - "2019-01-16 04:23:59,424 : INFO : PROGRESS: pass 0, at document #558000/4922894\n", - "2019-01-16 04:24:01,610 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:02,168 : INFO : topic #35 (0.020): 0.020*\"lee\" + 0.020*\"singapor\" + 0.020*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"thai\" + 0.015*\"vietnam\" + 0.013*\"prime\" + 0.011*\"asian\" + 0.011*\"indonesian\" + 0.011*\"chi\"\n", - "2019-01-16 04:24:02,170 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.022*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.014*\"area\" + 0.013*\"rout\" + 0.012*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:24:02,172 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.018*\"radio\" + 0.016*\"broadcast\" + 0.015*\"station\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"host\" + 0.010*\"compani\"\n", - "2019-01-16 04:24:02,173 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.015*\"citi\" + 0.014*\"counti\" + 0.014*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 04:24:02,175 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.022*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"centuri\" + 0.009*\"church\"\n", - "2019-01-16 04:24:02,180 : INFO : topic diff=0.010745, rho=0.059868\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:24:07,141 : INFO : -11.508 per-word bound, 2912.3 perplexity estimate based on a held-out corpus of 2000 documents with 607034 words\n", - "2019-01-16 04:24:07,142 : INFO : PROGRESS: pass 0, at document #560000/4922894\n", - "2019-01-16 04:24:09,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:09,915 : INFO : topic #24 (0.020): 0.030*\"ship\" + 0.011*\"kill\" + 0.011*\"gun\" + 0.009*\"boat\" + 0.009*\"damag\" + 0.009*\"sea\" + 0.008*\"dai\" + 0.007*\"port\" + 0.007*\"island\" + 0.007*\"attack\"\n", - "2019-01-16 04:24:09,916 : INFO : topic #17 (0.020): 0.056*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.014*\"tour\" + 0.012*\"championship\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"stage\" + 0.010*\"year\"\n", - "2019-01-16 04:24:09,918 : INFO : topic #35 (0.020): 0.020*\"lee\" + 0.020*\"thailand\" + 0.020*\"singapor\" + 0.017*\"indonesia\" + 0.016*\"thai\" + 0.015*\"vietnam\" + 0.013*\"prime\" + 0.012*\"asian\" + 0.011*\"chi\" + 0.011*\"bulgarian\"\n", - "2019-01-16 04:24:09,920 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"light\" + 0.007*\"earth\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"space\" + 0.005*\"materi\"\n", - "2019-01-16 04:24:09,922 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"valu\" + 0.008*\"space\" + 0.007*\"gener\"\n", - "2019-01-16 04:24:09,929 : INFO : topic diff=0.012717, rho=0.059761\n", - "2019-01-16 04:24:10,346 : INFO : PROGRESS: pass 0, at document #562000/4922894\n", - "2019-01-16 04:24:12,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:13,027 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.025*\"design\" + 0.022*\"artist\" + 0.021*\"paint\" + 0.018*\"exhibit\" + 0.015*\"collect\" + 0.013*\"galleri\" + 0.009*\"new\"\n", - "2019-01-16 04:24:13,029 : INFO : topic #40 (0.020): 0.030*\"bar\" + 0.029*\"africa\" + 0.026*\"african\" + 0.022*\"south\" + 0.020*\"text\" + 0.019*\"till\" + 0.015*\"color\" + 0.011*\"agricultur\" + 0.009*\"tropic\" + 0.008*\"coloni\"\n", - "2019-01-16 04:24:13,030 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", - "2019-01-16 04:24:13,032 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.009*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"born\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"smith\"\n", - "2019-01-16 04:24:13,034 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:24:13,041 : INFO : topic diff=0.010386, rho=0.059655\n", - "2019-01-16 04:24:13,407 : INFO : PROGRESS: pass 0, at document #564000/4922894\n", - "2019-01-16 04:24:15,551 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:16,108 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.015*\"council\" + 0.014*\"minist\" + 0.014*\"republican\" + 0.013*\"polit\"\n", - "2019-01-16 04:24:16,109 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.077*\"march\" + 0.075*\"septemb\" + 0.075*\"januari\" + 0.069*\"juli\" + 0.068*\"novemb\" + 0.068*\"april\" + 0.067*\"august\" + 0.067*\"june\" + 0.066*\"decemb\"\n", - "2019-01-16 04:24:16,111 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:24:16,113 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.017*\"radio\" + 0.015*\"broadcast\" + 0.015*\"station\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"compani\" + 0.010*\"network\"\n", - "2019-01-16 04:24:16,114 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.018*\"centuri\" + 0.011*\"emperor\" + 0.011*\"empir\" + 0.011*\"roman\" + 0.010*\"greek\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.007*\"princ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:24:16,120 : INFO : topic diff=0.012574, rho=0.059549\n", - "2019-01-16 04:24:16,522 : INFO : PROGRESS: pass 0, at document #566000/4922894\n", - "2019-01-16 04:24:18,617 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:19,174 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 04:24:19,175 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.024*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:24:19,177 : INFO : topic #33 (0.020): 0.013*\"million\" + 0.009*\"compani\" + 0.009*\"time\" + 0.008*\"bank\" + 0.008*\"year\" + 0.008*\"rate\" + 0.008*\"increas\" + 0.007*\"market\" + 0.007*\"cost\" + 0.006*\"product\"\n", - "2019-01-16 04:24:19,181 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.077*\"march\" + 0.074*\"januari\" + 0.073*\"septemb\" + 0.068*\"novemb\" + 0.068*\"juli\" + 0.066*\"april\" + 0.065*\"august\" + 0.065*\"decemb\" + 0.065*\"june\"\n", - "2019-01-16 04:24:19,182 : INFO : topic #35 (0.020): 0.021*\"lee\" + 0.020*\"singapor\" + 0.019*\"thailand\" + 0.018*\"indonesia\" + 0.015*\"thai\" + 0.014*\"vietnam\" + 0.013*\"prime\" + 0.012*\"asian\" + 0.011*\"chi\" + 0.011*\"indonesian\"\n", - "2019-01-16 04:24:19,189 : INFO : topic diff=0.011473, rho=0.059444\n", - "2019-01-16 04:24:19,575 : INFO : PROGRESS: pass 0, at document #568000/4922894\n", - "2019-01-16 04:24:21,645 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:22,201 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.018*\"hospit\" + 0.018*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.011*\"cancer\" + 0.010*\"patient\" + 0.010*\"caus\" + 0.009*\"drug\" + 0.009*\"medicin\"\n", - "2019-01-16 04:24:22,203 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.028*\"england\" + 0.021*\"scotland\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.020*\"town\" + 0.016*\"scottish\" + 0.013*\"manchest\" + 0.011*\"west\" + 0.010*\"counti\"\n", - "2019-01-16 04:24:22,205 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.034*\"museum\" + 0.029*\"work\" + 0.024*\"design\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.017*\"exhibit\" + 0.015*\"collect\" + 0.012*\"galleri\" + 0.009*\"new\"\n", - "2019-01-16 04:24:22,207 : INFO : topic #47 (0.020): 0.023*\"station\" + 0.023*\"river\" + 0.019*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.014*\"park\" + 0.014*\"area\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:24:22,208 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.026*\"oper\" + 0.023*\"aircraft\" + 0.020*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.014*\"squadron\" + 0.011*\"servic\" + 0.011*\"navi\"\n", - "2019-01-16 04:24:22,215 : INFO : topic diff=0.012614, rho=0.059339\n", - "2019-01-16 04:24:22,566 : INFO : PROGRESS: pass 0, at document #570000/4922894\n", - "2019-01-16 04:24:24,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:25,194 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.025*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:24:25,196 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.044*\"counti\" + 0.033*\"town\" + 0.032*\"citi\" + 0.030*\"ag\" + 0.027*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.022*\"district\" + 0.021*\"area\"\n", - "2019-01-16 04:24:25,198 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"black\"\n", - "2019-01-16 04:24:25,199 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.026*\"oper\" + 0.023*\"aircraft\" + 0.020*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.014*\"flight\" + 0.012*\"servic\" + 0.011*\"navi\"\n", - "2019-01-16 04:24:25,200 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.017*\"radio\" + 0.015*\"station\" + 0.015*\"broadcast\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.010*\"dai\" + 0.010*\"program\" + 0.010*\"network\" + 0.009*\"host\"\n", - "2019-01-16 04:24:25,206 : INFO : topic diff=0.010744, rho=0.059235\n", - "2019-01-16 04:24:25,561 : INFO : PROGRESS: pass 0, at document #572000/4922894\n", - "2019-01-16 04:24:27,640 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:24:28,195 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:24:28,197 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"born\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\"\n", - "2019-01-16 04:24:28,199 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.032*\"indian\" + 0.022*\"district\" + 0.018*\"provinc\" + 0.018*\"iran\" + 0.017*\"http\" + 0.013*\"www\" + 0.013*\"pakistan\" + 0.012*\"villag\" + 0.012*\"islam\"\n", - "2019-01-16 04:24:28,200 : INFO : topic #39 (0.020): 0.039*\"air\" + 0.030*\"oper\" + 0.022*\"aircraft\" + 0.019*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.014*\"squadron\" + 0.011*\"servic\" + 0.011*\"navi\"\n", - "2019-01-16 04:24:28,202 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 04:24:28,207 : INFO : topic diff=0.011698, rho=0.059131\n", - "2019-01-16 04:24:28,625 : INFO : PROGRESS: pass 0, at document #574000/4922894\n", - "2019-01-16 04:24:30,883 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:31,438 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 04:24:31,440 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.025*\"cup\" + 0.024*\"footbal\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:24:31,441 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"histor\" + 0.012*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 04:24:31,443 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"group\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 04:24:31,444 : INFO : topic #11 (0.020): 0.030*\"act\" + 0.025*\"law\" + 0.022*\"court\" + 0.019*\"state\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"polic\" + 0.008*\"amend\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 04:24:31,451 : INFO : topic diff=0.012322, rho=0.059028\n", - "2019-01-16 04:24:31,859 : INFO : PROGRESS: pass 0, at document #576000/4922894\n", - "2019-01-16 04:24:33,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:34,503 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"god\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\"\n", - "2019-01-16 04:24:34,505 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.009*\"american\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"born\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\"\n", - "2019-01-16 04:24:34,506 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.034*\"germani\" + 0.025*\"von\" + 0.024*\"der\" + 0.023*\"van\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.013*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:24:34,507 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.031*\"perform\" + 0.021*\"compos\" + 0.018*\"piano\" + 0.016*\"theatr\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.014*\"orchestra\" + 0.013*\"opera\" + 0.013*\"plai\"\n", - "2019-01-16 04:24:34,509 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.029*\"work\" + 0.024*\"design\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.018*\"exhibit\" + 0.015*\"collect\" + 0.013*\"galleri\" + 0.009*\"new\"\n", - "2019-01-16 04:24:34,514 : INFO : topic diff=0.011711, rho=0.058926\n", - "2019-01-16 04:24:34,916 : INFO : PROGRESS: pass 0, at document #578000/4922894\n", - "2019-01-16 04:24:37,068 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:37,623 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 04:24:37,625 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.014*\"product\" + 0.011*\"power\" + 0.011*\"cell\" + 0.009*\"produc\" + 0.009*\"model\" + 0.007*\"design\" + 0.007*\"type\" + 0.007*\"manufactur\" + 0.007*\"protein\"\n", - "2019-01-16 04:24:37,626 : INFO : topic #34 (0.020): 0.075*\"island\" + 0.072*\"canada\" + 0.057*\"canadian\" + 0.027*\"ontario\" + 0.023*\"toronto\" + 0.018*\"british\" + 0.016*\"quebec\" + 0.015*\"montreal\" + 0.015*\"danish\" + 0.013*\"korea\"\n", - "2019-01-16 04:24:37,628 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.019*\"wrestl\" + 0.018*\"contest\" + 0.017*\"team\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.014*\"world\" + 0.013*\"fight\" + 0.013*\"elimin\"\n", - "2019-01-16 04:24:37,629 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.034*\"germani\" + 0.025*\"von\" + 0.024*\"der\" + 0.024*\"van\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.013*\"und\" + 0.012*\"netherland\"\n", - "2019-01-16 04:24:37,635 : INFO : topic diff=0.011259, rho=0.058824\n", - "2019-01-16 04:24:42,536 : INFO : -11.903 per-word bound, 3830.4 perplexity estimate based on a held-out corpus of 2000 documents with 556819 words\n", - "2019-01-16 04:24:42,536 : INFO : PROGRESS: pass 0, at document #580000/4922894\n", - "2019-01-16 04:24:44,718 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:45,275 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.010*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 04:24:45,276 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.017*\"hospit\" + 0.017*\"health\" + 0.013*\"diseas\" + 0.011*\"caus\" + 0.010*\"cancer\" + 0.010*\"patient\" + 0.010*\"drug\" + 0.009*\"medicin\" + 0.009*\"ret\"\n", - "2019-01-16 04:24:45,278 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.030*\"oper\" + 0.023*\"aircraft\" + 0.017*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.014*\"squadron\" + 0.012*\"servic\" + 0.011*\"navi\"\n", - "2019-01-16 04:24:45,280 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.028*\"africa\" + 0.025*\"african\" + 0.022*\"south\" + 0.022*\"text\" + 0.020*\"till\" + 0.015*\"color\" + 0.011*\"agricultur\" + 0.010*\"tropic\" + 0.009*\"cape\"\n", - "2019-01-16 04:24:45,282 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.028*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"direct\" + 0.012*\"televis\"\n", - "2019-01-16 04:24:45,288 : INFO : topic diff=0.010625, rho=0.058722\n", - "2019-01-16 04:24:45,689 : INFO : PROGRESS: pass 0, at document #582000/4922894\n", - "2019-01-16 04:24:47,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:48,344 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.011*\"intern\" + 0.011*\"work\" + 0.011*\"univers\" + 0.011*\"manag\" + 0.011*\"compani\" + 0.011*\"servic\" + 0.010*\"nation\"\n", - "2019-01-16 04:24:48,346 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 04:24:48,348 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"piano\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.014*\"orchestra\" + 0.013*\"opera\" + 0.013*\"plai\"\n", - "2019-01-16 04:24:48,350 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.028*\"born\" + 0.025*\"soviet\" + 0.025*\"russia\" + 0.021*\"polish\" + 0.020*\"jewish\" + 0.015*\"poland\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.014*\"republ\"\n", - "2019-01-16 04:24:48,351 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.033*\"indian\" + 0.021*\"district\" + 0.017*\"provinc\" + 0.017*\"iran\" + 0.017*\"http\" + 0.013*\"www\" + 0.013*\"islam\" + 0.013*\"pakistan\" + 0.011*\"tamil\"\n", - "2019-01-16 04:24:48,357 : INFO : topic diff=0.011150, rho=0.058621\n", - "2019-01-16 04:24:48,722 : INFO : PROGRESS: pass 0, at document #584000/4922894\n", - "2019-01-16 04:24:50,944 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:51,501 : INFO : topic #39 (0.020): 0.040*\"air\" + 0.030*\"oper\" + 0.023*\"aircraft\" + 0.018*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"servic\" + 0.011*\"navi\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:24:51,503 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.015*\"citi\" + 0.014*\"counti\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:24:51,504 : INFO : topic #11 (0.020): 0.027*\"act\" + 0.025*\"law\" + 0.022*\"court\" + 0.019*\"state\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"polic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"public\"\n", - "2019-01-16 04:24:51,506 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.010*\"compani\" + 0.009*\"time\" + 0.008*\"bank\" + 0.008*\"year\" + 0.008*\"increas\" + 0.007*\"rate\" + 0.007*\"market\" + 0.006*\"cost\" + 0.006*\"limit\"\n", - "2019-01-16 04:24:51,507 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"team\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.014*\"world\" + 0.012*\"fight\" + 0.012*\"champion\"\n", - "2019-01-16 04:24:51,513 : INFO : topic diff=0.010711, rho=0.058521\n", - "2019-01-16 04:24:51,890 : INFO : PROGRESS: pass 0, at document #586000/4922894\n", - "2019-01-16 04:24:53,996 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:54,553 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.022*\"itali\" + 0.019*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:24:54,555 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.027*\"africa\" + 0.026*\"african\" + 0.022*\"text\" + 0.021*\"south\" + 0.020*\"till\" + 0.015*\"color\" + 0.011*\"agricultur\" + 0.009*\"tropic\" + 0.008*\"shift\"\n", - "2019-01-16 04:24:54,556 : INFO : topic #4 (0.020): 0.121*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.029*\"educ\" + 0.027*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"degre\"\n", - "2019-01-16 04:24:54,558 : INFO : topic #48 (0.020): 0.079*\"octob\" + 0.077*\"march\" + 0.073*\"septemb\" + 0.071*\"januari\" + 0.069*\"novemb\" + 0.067*\"juli\" + 0.065*\"april\" + 0.064*\"august\" + 0.063*\"decemb\" + 0.063*\"june\"\n", - "2019-01-16 04:24:54,559 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"space\"\n", - "2019-01-16 04:24:54,566 : INFO : topic diff=0.011175, rho=0.058421\n", - "2019-01-16 04:24:54,962 : INFO : PROGRESS: pass 0, at document #588000/4922894\n", - "2019-01-16 04:24:57,068 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:24:57,624 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"stori\"\n", - "2019-01-16 04:24:57,626 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"space\"\n", - "2019-01-16 04:24:57,628 : INFO : topic #40 (0.020): 0.033*\"bar\" + 0.026*\"africa\" + 0.026*\"african\" + 0.023*\"text\" + 0.022*\"south\" + 0.021*\"till\" + 0.016*\"color\" + 0.011*\"agricultur\" + 0.009*\"tropic\" + 0.009*\"shift\"\n", - "2019-01-16 04:24:57,629 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.027*\"world\" + 0.026*\"olymp\" + 0.026*\"men\" + 0.025*\"championship\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"time\"\n", - "2019-01-16 04:24:57,631 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.019*\"radio\" + 0.016*\"station\" + 0.016*\"broadcast\" + 0.012*\"televis\" + 0.011*\"channel\" + 0.010*\"program\" + 0.010*\"network\" + 0.010*\"host\" + 0.010*\"dai\"\n", - "2019-01-16 04:24:57,636 : INFO : topic diff=0.012930, rho=0.058321\n", - "2019-01-16 04:24:57,990 : INFO : PROGRESS: pass 0, at document #590000/4922894\n", - "2019-01-16 04:25:00,113 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:00,669 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.014*\"tour\" + 0.014*\"stage\" + 0.013*\"hors\" + 0.012*\"championship\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"finish\"\n", - "2019-01-16 04:25:00,671 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"friend\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 04:25:00,673 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.027*\"world\" + 0.026*\"olymp\" + 0.026*\"men\" + 0.024*\"championship\" + 0.023*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.020*\"athlet\" + 0.020*\"rank\"\n", - "2019-01-16 04:25:00,675 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"base\"\n", - "2019-01-16 04:25:00,676 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.011*\"work\" + 0.011*\"manag\" + 0.010*\"compani\" + 0.010*\"nation\"\n", - "2019-01-16 04:25:00,682 : INFO : topic diff=0.012063, rho=0.058222\n", - "2019-01-16 04:25:01,042 : INFO : PROGRESS: pass 0, at document #592000/4922894\n", - "2019-01-16 04:25:03,116 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:03,671 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.010*\"compani\" + 0.009*\"time\" + 0.009*\"year\" + 0.008*\"bank\" + 0.008*\"increas\" + 0.007*\"market\" + 0.007*\"rate\" + 0.006*\"cost\" + 0.005*\"product\"\n", - "2019-01-16 04:25:03,673 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"stori\"\n", - "2019-01-16 04:25:03,675 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.033*\"indian\" + 0.021*\"district\" + 0.017*\"http\" + 0.016*\"provinc\" + 0.015*\"iran\" + 0.013*\"pakistan\" + 0.013*\"www\" + 0.013*\"islam\" + 0.012*\"khan\"\n", - "2019-01-16 04:25:03,677 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.011*\"gun\" + 0.011*\"kill\" + 0.010*\"boat\" + 0.009*\"sea\" + 0.008*\"damag\" + 0.007*\"dai\" + 0.007*\"crew\" + 0.007*\"port\" + 0.007*\"report\"\n", - "2019-01-16 04:25:03,678 : INFO : topic #35 (0.020): 0.027*\"singapor\" + 0.022*\"lee\" + 0.020*\"indonesia\" + 0.016*\"vietnam\" + 0.016*\"thailand\" + 0.015*\"subdistrict\" + 0.014*\"asian\" + 0.013*\"prime\" + 0.011*\"chi\" + 0.010*\"chan\"\n", - "2019-01-16 04:25:03,684 : INFO : topic diff=0.010308, rho=0.058124\n", - "2019-01-16 04:25:04,107 : INFO : PROGRESS: pass 0, at document #594000/4922894\n", - "2019-01-16 04:25:06,256 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:06,812 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.043*\"final\" + 0.027*\"tournament\" + 0.026*\"winner\" + 0.019*\"group\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.013*\"runner\" + 0.012*\"point\" + 0.011*\"singl\"\n", - "2019-01-16 04:25:06,814 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.036*\"germani\" + 0.023*\"von\" + 0.023*\"van\" + 0.023*\"der\" + 0.023*\"berlin\" + 0.018*\"dutch\" + 0.012*\"und\" + 0.012*\"die\" + 0.011*\"netherland\"\n", - "2019-01-16 04:25:06,816 : INFO : topic #47 (0.020): 0.023*\"river\" + 0.023*\"station\" + 0.018*\"road\" + 0.018*\"line\" + 0.015*\"railwai\" + 0.015*\"park\" + 0.014*\"area\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:25:06,817 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.011*\"cell\" + 0.010*\"power\" + 0.009*\"produc\" + 0.008*\"model\" + 0.007*\"type\" + 0.007*\"design\" + 0.007*\"protein\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:25:06,819 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.011*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 04:25:06,825 : INFO : topic diff=0.010841, rho=0.058026\n", - "2019-01-16 04:25:07,208 : INFO : PROGRESS: pass 0, at document #596000/4922894\n", - "2019-01-16 04:25:09,357 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:09,913 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.023*\"der\" + 0.022*\"berlin\" + 0.018*\"dutch\" + 0.012*\"und\" + 0.011*\"die\" + 0.011*\"netherland\"\n", - "2019-01-16 04:25:09,915 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", - "2019-01-16 04:25:09,917 : INFO : topic #36 (0.020): 0.060*\"art\" + 0.037*\"museum\" + 0.029*\"work\" + 0.022*\"design\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.018*\"exhibit\" + 0.015*\"collect\" + 0.015*\"galleri\" + 0.010*\"new\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:25:09,918 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.027*\"world\" + 0.027*\"olymp\" + 0.025*\"men\" + 0.024*\"championship\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"rank\" + 0.019*\"athlet\"\n", - "2019-01-16 04:25:09,919 : INFO : topic #20 (0.020): 0.029*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.018*\"wrestl\" + 0.016*\"team\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"world\" + 0.013*\"fight\" + 0.012*\"defeat\"\n", - "2019-01-16 04:25:09,925 : INFO : topic diff=0.011566, rho=0.057928\n", - "2019-01-16 04:25:10,331 : INFO : PROGRESS: pass 0, at document #598000/4922894\n", - "2019-01-16 04:25:12,517 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:13,076 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.011*\"gun\" + 0.011*\"kill\" + 0.010*\"boat\" + 0.009*\"sea\" + 0.009*\"damag\" + 0.007*\"dai\" + 0.007*\"port\" + 0.007*\"crew\" + 0.007*\"report\"\n", - "2019-01-16 04:25:13,078 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.020*\"compos\" + 0.016*\"piano\" + 0.015*\"orchestra\" + 0.015*\"danc\" + 0.014*\"festiv\" + 0.014*\"opera\" + 0.013*\"plai\"\n", - "2019-01-16 04:25:13,079 : INFO : topic #26 (0.020): 0.030*\"women\" + 0.027*\"world\" + 0.027*\"olymp\" + 0.025*\"men\" + 0.025*\"championship\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"rank\"\n", - "2019-01-16 04:25:13,081 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.076*\"march\" + 0.073*\"septemb\" + 0.071*\"januari\" + 0.068*\"novemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.062*\"april\" + 0.059*\"june\"\n", - "2019-01-16 04:25:13,083 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:25:13,088 : INFO : topic diff=0.012220, rho=0.057831\n", - "2019-01-16 04:25:18,019 : INFO : -11.661 per-word bound, 3237.5 perplexity estimate based on a held-out corpus of 2000 documents with 567104 words\n", - "2019-01-16 04:25:18,020 : INFO : PROGRESS: pass 0, at document #600000/4922894\n", - "2019-01-16 04:25:20,118 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:20,674 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.025*\"season\" + 0.024*\"footbal\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", - "2019-01-16 04:25:20,676 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"black\" + 0.007*\"anim\" + 0.007*\"forest\"\n", - "2019-01-16 04:25:20,678 : INFO : topic #4 (0.020): 0.121*\"school\" + 0.051*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", - "2019-01-16 04:25:20,679 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.022*\"lee\" + 0.018*\"indonesia\" + 0.018*\"thailand\" + 0.016*\"vietnam\" + 0.014*\"asian\" + 0.012*\"subdistrict\" + 0.011*\"chi\" + 0.011*\"prime\" + 0.010*\"thai\"\n", - "2019-01-16 04:25:20,680 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.008*\"confer\"\n", - "2019-01-16 04:25:20,686 : INFO : topic diff=0.010501, rho=0.057735\n", - "2019-01-16 04:25:21,077 : INFO : PROGRESS: pass 0, at document #602000/4922894\n", - "2019-01-16 04:25:23,235 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:23,791 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"version\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:25:23,793 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.021*\"democrat\" + 0.021*\"presid\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"gener\" + 0.013*\"republican\"\n", - "2019-01-16 04:25:23,796 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.007*\"light\" + 0.007*\"earth\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"form\"\n", - "2019-01-16 04:25:23,798 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.027*\"england\" + 0.026*\"town\" + 0.020*\"cricket\" + 0.019*\"citi\" + 0.018*\"scotland\" + 0.016*\"scottish\" + 0.013*\"manchest\" + 0.011*\"english\" + 0.010*\"west\"\n", - "2019-01-16 04:25:23,799 : INFO : topic #27 (0.020): 0.046*\"russian\" + 0.028*\"born\" + 0.026*\"soviet\" + 0.024*\"russia\" + 0.021*\"jewish\" + 0.019*\"polish\" + 0.019*\"ukrainian\" + 0.017*\"republ\" + 0.016*\"moscow\" + 0.014*\"israel\"\n", - "2019-01-16 04:25:23,806 : INFO : topic diff=0.009754, rho=0.057639\n", - "2019-01-16 04:25:24,163 : INFO : PROGRESS: pass 0, at document #604000/4922894\n", - "2019-01-16 04:25:26,308 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:26,863 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.068*\"align\" + 0.059*\"left\" + 0.053*\"wikit\" + 0.052*\"style\" + 0.052*\"right\" + 0.048*\"center\" + 0.035*\"philippin\" + 0.033*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:25:26,865 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"video\" + 0.007*\"softwar\"\n", - "2019-01-16 04:25:26,866 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.023*\"berlin\" + 0.023*\"der\" + 0.017*\"dutch\" + 0.012*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:25:26,868 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"pari\" + 0.026*\"italian\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:25:26,869 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"english\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"god\" + 0.006*\"tradit\"\n", - "2019-01-16 04:25:26,874 : INFO : topic diff=0.011174, rho=0.057544\n", - "2019-01-16 04:25:27,216 : INFO : PROGRESS: pass 0, at document #606000/4922894\n", - "2019-01-16 04:25:29,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:29,858 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.029*\"tournament\" + 0.024*\"winner\" + 0.020*\"group\" + 0.019*\"open\" + 0.015*\"runner\" + 0.015*\"qualifi\" + 0.013*\"point\" + 0.011*\"doubl\"\n", - "2019-01-16 04:25:29,860 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"god\" + 0.006*\"english\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\"\n", - "2019-01-16 04:25:29,862 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:25:29,863 : INFO : topic #18 (0.020): 0.011*\"water\" + 0.007*\"light\" + 0.007*\"earth\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"space\"\n", - "2019-01-16 04:25:29,865 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.011*\"institut\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.011*\"manag\" + 0.010*\"nation\" + 0.010*\"compani\"\n", - "2019-01-16 04:25:29,870 : INFO : topic diff=0.010762, rho=0.057448\n", - "2019-01-16 04:25:30,238 : INFO : PROGRESS: pass 0, at document #608000/4922894\n", - "2019-01-16 04:25:32,344 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:32,901 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.044*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.021*\"democrat\" + 0.018*\"minist\" + 0.018*\"vote\" + 0.015*\"council\" + 0.014*\"republican\" + 0.013*\"gener\"\n", - "2019-01-16 04:25:32,902 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.022*\"station\" + 0.017*\"road\" + 0.017*\"line\" + 0.015*\"railwai\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"rout\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:25:32,904 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.029*\"unit\" + 0.025*\"town\" + 0.021*\"cricket\" + 0.019*\"citi\" + 0.019*\"scotland\" + 0.017*\"scottish\" + 0.013*\"manchest\" + 0.011*\"english\" + 0.010*\"west\"\n", - "2019-01-16 04:25:32,906 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"god\" + 0.006*\"us\" + 0.006*\"english\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"cultur\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:25:32,908 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.018*\"centuri\" + 0.011*\"empir\" + 0.011*\"emperor\" + 0.010*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"princ\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:25:32,914 : INFO : topic diff=0.010871, rho=0.057354\n", - "2019-01-16 04:25:33,284 : INFO : PROGRESS: pass 0, at document #610000/4922894\n", - "2019-01-16 04:25:35,417 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:35,973 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.021*\"democrat\" + 0.018*\"minist\" + 0.018*\"vote\" + 0.016*\"council\" + 0.014*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 04:25:35,975 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.027*\"africa\" + 0.026*\"african\" + 0.021*\"south\" + 0.021*\"text\" + 0.020*\"till\" + 0.014*\"color\" + 0.011*\"agricultur\" + 0.010*\"tropic\" + 0.009*\"cape\"\n", - "2019-01-16 04:25:35,976 : INFO : topic #42 (0.020): 0.023*\"king\" + 0.018*\"centuri\" + 0.011*\"emperor\" + 0.011*\"empir\" + 0.010*\"greek\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.008*\"princ\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:25:35,978 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.009*\"francisco\" + 0.009*\"josé\"\n", - "2019-01-16 04:25:35,979 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"exampl\" + 0.010*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"structur\" + 0.007*\"point\" + 0.007*\"valu\"\n", - "2019-01-16 04:25:35,985 : INFO : topic diff=0.009858, rho=0.057260\n", - "2019-01-16 04:25:36,326 : INFO : PROGRESS: pass 0, at document #612000/4922894\n", - "2019-01-16 04:25:38,446 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:39,003 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.022*\"unit\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"counti\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:25:39,004 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.011*\"intern\" + 0.011*\"univers\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"manag\" + 0.010*\"nation\" + 0.010*\"compani\"\n", - "2019-01-16 04:25:39,006 : INFO : topic #39 (0.020): 0.041*\"air\" + 0.031*\"oper\" + 0.024*\"aircraft\" + 0.018*\"airport\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"flight\" + 0.012*\"servic\" + 0.010*\"navi\"\n", - "2019-01-16 04:25:39,007 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"pari\" + 0.027*\"italian\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:25:39,009 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"piano\" + 0.014*\"opera\" + 0.013*\"plai\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:25:39,015 : INFO : topic diff=0.011554, rho=0.057166\n", - "2019-01-16 04:25:39,389 : INFO : PROGRESS: pass 0, at document #614000/4922894\n", - "2019-01-16 04:25:41,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:42,083 : INFO : topic #33 (0.020): 0.012*\"million\" + 0.011*\"compani\" + 0.009*\"time\" + 0.009*\"year\" + 0.008*\"bank\" + 0.008*\"market\" + 0.007*\"increas\" + 0.007*\"rate\" + 0.006*\"cost\" + 0.006*\"trade\"\n", - "2019-01-16 04:25:42,084 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"fish\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"black\" + 0.007*\"red\" + 0.007*\"includ\"\n", - "2019-01-16 04:25:42,086 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"protein\" + 0.007*\"type\" + 0.007*\"design\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:25:42,088 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.024*\"berlin\" + 0.023*\"von\" + 0.022*\"dutch\" + 0.022*\"der\" + 0.012*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:25:42,090 : INFO : topic #18 (0.020): 0.011*\"water\" + 0.007*\"light\" + 0.007*\"earth\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"us\" + 0.006*\"materi\" + 0.005*\"form\" + 0.005*\"time\"\n", - "2019-01-16 04:25:42,097 : INFO : topic diff=0.010087, rho=0.057073\n", - "2019-01-16 04:25:42,461 : INFO : PROGRESS: pass 0, at document #616000/4922894\n", - "2019-01-16 04:25:44,543 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:45,101 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.018*\"radio\" + 0.017*\"station\" + 0.015*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:25:45,102 : INFO : topic #34 (0.020): 0.074*\"island\" + 0.072*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.024*\"korea\" + 0.024*\"ontario\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.015*\"montreal\" + 0.013*\"korean\"\n", - "2019-01-16 04:25:45,105 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"black\" + 0.007*\"red\" + 0.007*\"includ\"\n", - "2019-01-16 04:25:45,106 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"protein\" + 0.007*\"design\" + 0.007*\"manufactur\" + 0.007*\"type\"\n", - "2019-01-16 04:25:45,108 : INFO : topic #18 (0.020): 0.011*\"water\" + 0.007*\"light\" + 0.007*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"us\" + 0.006*\"materi\" + 0.005*\"form\" + 0.005*\"time\"\n", - "2019-01-16 04:25:45,115 : INFO : topic diff=0.012158, rho=0.056980\n", - "2019-01-16 04:25:45,513 : INFO : PROGRESS: pass 0, at document #618000/4922894\n", - "2019-01-16 04:25:47,660 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:48,217 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.023*\"lee\" + 0.020*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asian\" + 0.016*\"vietnam\" + 0.012*\"chan\" + 0.011*\"asia\" + 0.010*\"indonesian\" + 0.010*\"bulgarian\"\n", - "2019-01-16 04:25:48,219 : INFO : topic #46 (0.020): 0.123*\"class\" + 0.072*\"align\" + 0.054*\"center\" + 0.053*\"left\" + 0.052*\"wikit\" + 0.052*\"right\" + 0.049*\"style\" + 0.037*\"philippin\" + 0.031*\"text\" + 0.028*\"border\"\n", - "2019-01-16 04:25:48,220 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.029*\"american\" + 0.025*\"york\" + 0.022*\"unit\" + 0.015*\"citi\" + 0.014*\"california\" + 0.014*\"counti\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:25:48,223 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:25:48,224 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 04:25:48,231 : INFO : topic diff=0.009754, rho=0.056888\n", - "2019-01-16 04:25:53,000 : INFO : -11.502 per-word bound, 2900.9 perplexity estimate based on a held-out corpus of 2000 documents with 528128 words\n", - "2019-01-16 04:25:53,001 : INFO : PROGRESS: pass 0, at document #620000/4922894\n", - "2019-01-16 04:25:55,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:55,696 : INFO : topic #49 (0.020): 0.082*\"north\" + 0.070*\"region\" + 0.068*\"west\" + 0.067*\"south\" + 0.064*\"east\" + 0.045*\"district\" + 0.036*\"northern\" + 0.030*\"central\" + 0.024*\"villag\" + 0.022*\"administr\"\n", - "2019-01-16 04:25:55,697 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:25:55,699 : INFO : topic #10 (0.020): 0.017*\"engin\" + 0.013*\"cell\" + 0.013*\"product\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"protein\" + 0.007*\"type\" + 0.007*\"oil\" + 0.007*\"design\"\n", - "2019-01-16 04:25:55,700 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.025*\"william\" + 0.022*\"british\" + 0.021*\"london\" + 0.016*\"ireland\" + 0.013*\"georg\" + 0.013*\"sir\" + 0.012*\"royal\" + 0.012*\"jame\" + 0.011*\"henri\"\n", - "2019-01-16 04:25:55,702 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.008*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"unit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:25:55,708 : INFO : topic diff=0.009610, rho=0.056796\n", - "2019-01-16 04:25:56,071 : INFO : PROGRESS: pass 0, at document #622000/4922894\n", - "2019-01-16 04:25:58,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:25:58,755 : INFO : topic #40 (0.020): 0.030*\"bar\" + 0.027*\"africa\" + 0.025*\"african\" + 0.022*\"text\" + 0.022*\"south\" + 0.021*\"till\" + 0.014*\"color\" + 0.011*\"tropic\" + 0.010*\"agricultur\" + 0.008*\"cape\"\n", - "2019-01-16 04:25:58,757 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.018*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"network\" + 0.011*\"program\" + 0.010*\"dai\" + 0.010*\"host\"\n", - "2019-01-16 04:25:58,759 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"histor\" + 0.012*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"place\"\n", - "2019-01-16 04:25:58,761 : INFO : topic #27 (0.020): 0.045*\"russian\" + 0.026*\"born\" + 0.025*\"russia\" + 0.022*\"soviet\" + 0.020*\"polish\" + 0.019*\"jewish\" + 0.017*\"moscow\" + 0.016*\"ukrainian\" + 0.015*\"republ\" + 0.014*\"poland\"\n", - "2019-01-16 04:25:58,762 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.024*\"court\" + 0.020*\"act\" + 0.019*\"state\" + 0.012*\"case\" + 0.009*\"offic\" + 0.009*\"polic\" + 0.009*\"right\" + 0.008*\"order\" + 0.008*\"legal\"\n", - "2019-01-16 04:25:58,768 : INFO : topic diff=0.009233, rho=0.056705\n", - "2019-01-16 04:25:59,120 : INFO : PROGRESS: pass 0, at document #624000/4922894\n", - "2019-01-16 04:26:01,315 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:01,876 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:26:01,878 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"kill\"\n", - "2019-01-16 04:26:01,879 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.031*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.010*\"offic\"\n", - "2019-01-16 04:26:01,880 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.010*\"exampl\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"structur\" + 0.007*\"method\"\n", - "2019-01-16 04:26:01,882 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.022*\"cricket\" + 0.019*\"citi\" + 0.017*\"scotland\" + 0.015*\"scottish\" + 0.013*\"manchest\" + 0.011*\"wale\" + 0.011*\"west\"\n", - "2019-01-16 04:26:01,887 : INFO : topic diff=0.010569, rho=0.056614\n", - "2019-01-16 04:26:02,233 : INFO : PROGRESS: pass 0, at document #626000/4922894\n", - "2019-01-16 04:26:04,324 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:04,883 : INFO : topic #49 (0.020): 0.079*\"north\" + 0.076*\"region\" + 0.068*\"south\" + 0.066*\"west\" + 0.063*\"east\" + 0.044*\"district\" + 0.035*\"northern\" + 0.031*\"central\" + 0.023*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:26:04,885 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"develop\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"video\" + 0.008*\"player\" + 0.008*\"user\"\n", - "2019-01-16 04:26:04,887 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.042*\"counti\" + 0.033*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.027*\"villag\" + 0.023*\"censu\" + 0.023*\"famili\" + 0.022*\"district\" + 0.021*\"household\"\n", - "2019-01-16 04:26:04,888 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.028*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:26:04,890 : INFO : topic #3 (0.020): 0.027*\"john\" + 0.025*\"william\" + 0.022*\"british\" + 0.021*\"london\" + 0.015*\"ireland\" + 0.013*\"georg\" + 0.013*\"sir\" + 0.012*\"jame\" + 0.012*\"royal\" + 0.012*\"henri\"\n", - "2019-01-16 04:26:04,896 : INFO : topic diff=0.008622, rho=0.056523\n", - "2019-01-16 04:26:05,240 : INFO : PROGRESS: pass 0, at document #628000/4922894\n", - "2019-01-16 04:26:07,366 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:07,927 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 04:26:07,929 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"institut\" + 0.011*\"servic\" + 0.011*\"univers\" + 0.011*\"work\" + 0.011*\"manag\" + 0.010*\"nation\" + 0.010*\"scienc\"\n", - "2019-01-16 04:26:07,930 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.018*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"championship\" + 0.012*\"stage\" + 0.011*\"driver\" + 0.011*\"time\" + 0.010*\"year\"\n", - "2019-01-16 04:26:07,933 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"god\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"english\"\n", - "2019-01-16 04:26:07,935 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.012*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:26:07,942 : INFO : topic diff=0.010612, rho=0.056433\n", - "2019-01-16 04:26:08,308 : INFO : PROGRESS: pass 0, at document #630000/4922894\n", - "2019-01-16 04:26:10,397 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:10,955 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"histor\" + 0.011*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 04:26:10,956 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.018*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"program\" + 0.010*\"network\" + 0.010*\"air\" + 0.010*\"dai\"\n", - "2019-01-16 04:26:10,958 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.010*\"develop\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"video\" + 0.007*\"player\"\n", - "2019-01-16 04:26:10,960 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"god\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.005*\"english\"\n", - "2019-01-16 04:26:10,962 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.016*\"health\" + 0.013*\"diseas\" + 0.011*\"ret\" + 0.010*\"caus\" + 0.010*\"patient\" + 0.009*\"studi\" + 0.009*\"treatment\" + 0.009*\"medicin\"\n", - "2019-01-16 04:26:10,968 : INFO : topic diff=0.009202, rho=0.056344\n", - "2019-01-16 04:26:11,351 : INFO : PROGRESS: pass 0, at document #632000/4922894\n", - "2019-01-16 04:26:13,445 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:14,002 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"season\" + 0.024*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 04:26:14,003 : INFO : topic #46 (0.020): 0.120*\"class\" + 0.076*\"align\" + 0.062*\"center\" + 0.054*\"wikit\" + 0.053*\"left\" + 0.049*\"right\" + 0.049*\"style\" + 0.039*\"philippin\" + 0.030*\"text\" + 0.027*\"border\"\n", - "2019-01-16 04:26:14,005 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.041*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.017*\"group\" + 0.017*\"open\" + 0.014*\"runner\" + 0.013*\"qualifi\" + 0.012*\"singl\" + 0.012*\"point\"\n", - "2019-01-16 04:26:14,008 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:26:14,009 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"histor\" + 0.011*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 04:26:14,016 : INFO : topic diff=0.010428, rho=0.056254\n", - "2019-01-16 04:26:14,373 : INFO : PROGRESS: pass 0, at document #634000/4922894\n", - "2019-01-16 04:26:16,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:16,994 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.012*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:26:16,995 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", - "2019-01-16 04:26:16,997 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:26:16,998 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\"\n", - "2019-01-16 04:26:17,000 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.016*\"health\" + 0.012*\"diseas\" + 0.010*\"caus\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.010*\"cancer\" + 0.009*\"treatment\" + 0.009*\"studi\"\n", - "2019-01-16 04:26:17,006 : INFO : topic diff=0.010120, rho=0.056166\n", - "2019-01-16 04:26:17,365 : INFO : PROGRESS: pass 0, at document #636000/4922894\n", - "2019-01-16 04:26:19,410 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:19,966 : INFO : topic #35 (0.020): 0.032*\"lee\" + 0.030*\"singapor\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"asian\" + 0.015*\"vietnam\" + 0.013*\"chi\" + 0.012*\"asia\" + 0.011*\"chan\" + 0.011*\"malaysia\"\n", - "2019-01-16 04:26:19,967 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.009*\"sea\" + 0.009*\"kill\" + 0.009*\"damag\" + 0.009*\"crew\" + 0.008*\"dai\" + 0.007*\"port\" + 0.007*\"island\"\n", - "2019-01-16 04:26:19,969 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"small\" + 0.007*\"forest\"\n", - "2019-01-16 04:26:19,971 : INFO : topic #6 (0.020): 0.064*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.020*\"compos\" + 0.018*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:26:19,973 : INFO : topic #27 (0.020): 0.042*\"russian\" + 0.026*\"born\" + 0.024*\"russia\" + 0.021*\"polish\" + 0.021*\"soviet\" + 0.021*\"jewish\" + 0.016*\"moscow\" + 0.015*\"republ\" + 0.014*\"poland\" + 0.014*\"israel\"\n", - "2019-01-16 04:26:19,978 : INFO : topic diff=0.010440, rho=0.056077\n", - "2019-01-16 04:26:20,393 : INFO : PROGRESS: pass 0, at document #638000/4922894\n", - "2019-01-16 04:26:22,521 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:23,079 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:26:23,081 : INFO : topic #2 (0.020): 0.071*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.023*\"berlin\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:26:23,083 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.024*\"york\" + 0.022*\"unit\" + 0.015*\"california\" + 0.015*\"citi\" + 0.014*\"counti\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:26:23,084 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.033*\"indian\" + 0.020*\"district\" + 0.018*\"http\" + 0.014*\"provinc\" + 0.014*\"iran\" + 0.013*\"www\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\"\n", - "2019-01-16 04:26:23,086 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.019*\"compos\" + 0.018*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:26:23,093 : INFO : topic diff=0.009757, rho=0.055989\n", - "2019-01-16 04:26:27,999 : INFO : -11.892 per-word bound, 3799.5 perplexity estimate based on a held-out corpus of 2000 documents with 575869 words\n", - "2019-01-16 04:26:28,000 : INFO : PROGRESS: pass 0, at document #640000/4922894\n", - "2019-01-16 04:26:30,155 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:30,713 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"hospit\" + 0.016*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.011*\"caus\" + 0.010*\"drug\" + 0.010*\"cancer\" + 0.010*\"patient\" + 0.009*\"treatment\"\n", - "2019-01-16 04:26:30,715 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.019*\"compos\" + 0.018*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:26:30,716 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"kill\" + 0.004*\"end\"\n", - "2019-01-16 04:26:30,719 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:26:30,720 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.028*\"unit\" + 0.022*\"cricket\" + 0.020*\"town\" + 0.017*\"citi\" + 0.017*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.012*\"wale\" + 0.011*\"west\"\n", - "2019-01-16 04:26:30,726 : INFO : topic diff=0.011868, rho=0.055902\n", - "2019-01-16 04:26:31,075 : INFO : PROGRESS: pass 0, at document #642000/4922894\n", - "2019-01-16 04:26:33,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:33,761 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.028*\"unit\" + 0.022*\"cricket\" + 0.020*\"town\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.015*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\" + 0.011*\"west\"\n", - "2019-01-16 04:26:33,762 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.019*\"compos\" + 0.018*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:26:33,764 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.012*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"carlo\" + 0.010*\"josé\" + 0.010*\"juan\"\n", - "2019-01-16 04:26:33,766 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:26:33,767 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.011*\"empir\" + 0.010*\"princ\" + 0.010*\"kingdom\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:26:33,774 : INFO : topic diff=0.010678, rho=0.055815\n", - "2019-01-16 04:26:34,148 : INFO : PROGRESS: pass 0, at document #644000/4922894\n", - "2019-01-16 04:26:36,297 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:36,853 : INFO : topic #35 (0.020): 0.032*\"singapor\" + 0.031*\"lee\" + 0.020*\"indonesia\" + 0.019*\"thailand\" + 0.016*\"asian\" + 0.014*\"jakarta\" + 0.014*\"vietnam\" + 0.013*\"asia\" + 0.011*\"chi\" + 0.011*\"bulgarian\"\n", - "2019-01-16 04:26:36,854 : INFO : topic #4 (0.020): 0.122*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:26:36,856 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.045*\"counti\" + 0.033*\"town\" + 0.030*\"citi\" + 0.030*\"villag\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.022*\"municip\" + 0.022*\"district\"\n", - "2019-01-16 04:26:36,857 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:26:36,858 : INFO : topic #44 (0.020): 0.027*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n", - "2019-01-16 04:26:36,864 : INFO : topic diff=0.010810, rho=0.055728\n", - "2019-01-16 04:26:37,223 : INFO : PROGRESS: pass 0, at document #646000/4922894\n", - "2019-01-16 04:26:39,280 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:39,836 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", - "2019-01-16 04:26:39,837 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"cell\" + 0.010*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"protein\" + 0.008*\"acid\" + 0.007*\"design\" + 0.007*\"type\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:26:39,839 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"sea\" + 0.010*\"kill\" + 0.009*\"crew\" + 0.008*\"damag\" + 0.008*\"port\" + 0.008*\"dai\" + 0.007*\"attack\"\n", - "2019-01-16 04:26:39,841 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"histor\" + 0.011*\"locat\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"church\" + 0.009*\"place\"\n", - "2019-01-16 04:26:39,843 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.032*\"indian\" + 0.021*\"district\" + 0.018*\"http\" + 0.014*\"provinc\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.013*\"www\" + 0.011*\"islam\" + 0.011*\"sri\"\n", - "2019-01-16 04:26:39,848 : INFO : topic diff=0.010052, rho=0.055641\n", - "2019-01-16 04:26:40,219 : INFO : PROGRESS: pass 0, at document #648000/4922894\n", - "2019-01-16 04:26:42,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:42,812 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.021*\"compos\" + 0.019*\"theatr\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:26:42,813 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.029*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.021*\"medal\" + 0.021*\"event\" + 0.018*\"rank\" + 0.017*\"time\"\n", - "2019-01-16 04:26:42,815 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.047*\"counti\" + 0.033*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.030*\"villag\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.022*\"municip\" + 0.022*\"district\"\n", - "2019-01-16 04:26:42,816 : INFO : topic #35 (0.020): 0.032*\"singapor\" + 0.031*\"lee\" + 0.022*\"thailand\" + 0.020*\"indonesia\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.013*\"jakarta\" + 0.013*\"asia\" + 0.011*\"chan\" + 0.011*\"chi\"\n", - "2019-01-16 04:26:42,818 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.017*\"titl\" + 0.015*\"wrestl\" + 0.014*\"championship\" + 0.014*\"world\" + 0.014*\"match\" + 0.012*\"team\" + 0.012*\"champion\"\n", - "2019-01-16 04:26:42,824 : INFO : topic diff=0.011887, rho=0.055556\n", - "2019-01-16 04:26:43,214 : INFO : PROGRESS: pass 0, at document #650000/4922894\n", - "2019-01-16 04:26:45,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:45,924 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:26:45,926 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"soldier\"\n", - "2019-01-16 04:26:45,927 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 04:26:45,929 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.028*\"unit\" + 0.021*\"cricket\" + 0.020*\"town\" + 0.018*\"citi\" + 0.017*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.011*\"west\"\n", - "2019-01-16 04:26:45,930 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.022*\"berlin\" + 0.022*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:26:45,936 : INFO : topic diff=0.009740, rho=0.055470\n", - "2019-01-16 04:26:46,308 : INFO : PROGRESS: pass 0, at document #652000/4922894\n", - "2019-01-16 04:26:48,481 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:49,038 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.021*\"station\" + 0.018*\"line\" + 0.017*\"road\" + 0.015*\"rout\" + 0.015*\"park\" + 0.015*\"railwai\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:26:49,040 : INFO : topic #46 (0.020): 0.119*\"class\" + 0.083*\"align\" + 0.064*\"style\" + 0.054*\"center\" + 0.054*\"left\" + 0.051*\"wikit\" + 0.051*\"right\" + 0.048*\"text\" + 0.035*\"philippin\" + 0.024*\"border\"\n", - "2019-01-16 04:26:49,042 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"us\" + 0.006*\"mar\" + 0.005*\"space\" + 0.005*\"materi\"\n", - "2019-01-16 04:26:49,043 : INFO : topic #49 (0.020): 0.080*\"north\" + 0.070*\"region\" + 0.069*\"west\" + 0.067*\"south\" + 0.065*\"east\" + 0.044*\"district\" + 0.033*\"central\" + 0.032*\"northern\" + 0.024*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:26:49,044 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.046*\"counti\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.030*\"villag\" + 0.023*\"municip\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.022*\"district\"\n", - "2019-01-16 04:26:49,050 : INFO : topic diff=0.010601, rho=0.055385\n", - "2019-01-16 04:26:49,409 : INFO : PROGRESS: pass 0, at document #654000/4922894\n", - "2019-01-16 04:26:51,572 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:52,129 : INFO : topic #49 (0.020): 0.079*\"north\" + 0.070*\"region\" + 0.069*\"west\" + 0.066*\"south\" + 0.064*\"east\" + 0.044*\"district\" + 0.034*\"central\" + 0.032*\"northern\" + 0.023*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:26:52,130 : INFO : topic #4 (0.020): 0.122*\"school\" + 0.049*\"univers\" + 0.039*\"student\" + 0.038*\"colleg\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:26:52,132 : INFO : topic #27 (0.020): 0.043*\"russian\" + 0.027*\"born\" + 0.024*\"russia\" + 0.021*\"polish\" + 0.021*\"soviet\" + 0.021*\"jewish\" + 0.018*\"republ\" + 0.016*\"poland\" + 0.015*\"moscow\" + 0.015*\"israel\"\n", - "2019-01-16 04:26:52,133 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"forest\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.006*\"anim\"\n", - "2019-01-16 04:26:52,135 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:26:52,141 : INFO : topic diff=0.010035, rho=0.055300\n", - "2019-01-16 04:26:52,520 : INFO : PROGRESS: pass 0, at document #656000/4922894\n", - "2019-01-16 04:26:54,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:55,176 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.075*\"septemb\" + 0.074*\"octob\" + 0.070*\"juli\" + 0.068*\"januari\" + 0.067*\"august\" + 0.067*\"novemb\" + 0.065*\"decemb\" + 0.065*\"april\" + 0.063*\"june\"\n", - "2019-01-16 04:26:55,177 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.010*\"soldier\"\n", - "2019-01-16 04:26:55,179 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"hospit\" + 0.017*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.011*\"caus\" + 0.010*\"patient\" + 0.009*\"medicin\" + 0.009*\"treatment\" + 0.009*\"drug\"\n", - "2019-01-16 04:26:55,180 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:26:55,181 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.024*\"artist\" + 0.023*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.014*\"galleri\" + 0.014*\"collect\" + 0.009*\"new\"\n", - "2019-01-16 04:26:55,187 : INFO : topic diff=0.010121, rho=0.055216\n", - "2019-01-16 04:26:55,570 : INFO : PROGRESS: pass 0, at document #658000/4922894\n", - "2019-01-16 04:26:57,670 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:26:58,229 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.028*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:26:58,230 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.072*\"west\" + 0.069*\"region\" + 0.066*\"south\" + 0.065*\"east\" + 0.043*\"district\" + 0.033*\"central\" + 0.031*\"northern\" + 0.023*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:26:58,232 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.023*\"artist\" + 0.023*\"design\" + 0.021*\"paint\" + 0.016*\"exhibit\" + 0.014*\"galleri\" + 0.014*\"collect\" + 0.009*\"new\"\n", - "2019-01-16 04:26:58,234 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.011*\"univers\" + 0.011*\"work\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.010*\"nation\" + 0.010*\"organ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:26:58,235 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.030*\"oper\" + 0.023*\"aircraft\" + 0.019*\"airport\" + 0.016*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.013*\"squadron\" + 0.012*\"servic\" + 0.011*\"base\"\n", - "2019-01-16 04:26:58,241 : INFO : topic diff=0.010368, rho=0.055132\n", - "2019-01-16 04:27:03,241 : INFO : -11.600 per-word bound, 3103.8 perplexity estimate based on a held-out corpus of 2000 documents with 573510 words\n", - "2019-01-16 04:27:03,242 : INFO : PROGRESS: pass 0, at document #660000/4922894\n", - "2019-01-16 04:27:05,411 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:05,972 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.071*\"west\" + 0.069*\"region\" + 0.066*\"south\" + 0.065*\"east\" + 0.044*\"district\" + 0.033*\"central\" + 0.030*\"northern\" + 0.023*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:27:05,973 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.073*\"octob\" + 0.069*\"juli\" + 0.067*\"august\" + 0.067*\"januari\" + 0.065*\"novemb\" + 0.064*\"decemb\" + 0.063*\"april\" + 0.062*\"june\"\n", - "2019-01-16 04:27:05,975 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 04:27:05,976 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"match\" + 0.014*\"world\" + 0.013*\"team\" + 0.012*\"champion\"\n", - "2019-01-16 04:27:05,978 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:27:05,984 : INFO : topic diff=0.009800, rho=0.055048\n", - "2019-01-16 04:27:06,351 : INFO : PROGRESS: pass 0, at document #662000/4922894\n", - "2019-01-16 04:27:08,406 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:08,963 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.020*\"district\" + 0.019*\"http\" + 0.016*\"provinc\" + 0.014*\"iran\" + 0.013*\"www\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.012*\"sri\"\n", - "2019-01-16 04:27:08,965 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.015*\"california\" + 0.015*\"citi\" + 0.013*\"counti\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:27:08,967 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.010*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:27:08,968 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.020*\"winner\" + 0.016*\"open\" + 0.016*\"singl\" + 0.014*\"qualifi\" + 0.013*\"point\" + 0.013*\"runner\"\n", - "2019-01-16 04:27:08,969 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.010*\"regiment\" + 0.010*\"offic\"\n", - "2019-01-16 04:27:08,975 : INFO : topic diff=0.009383, rho=0.054965\n", - "2019-01-16 04:27:09,361 : INFO : PROGRESS: pass 0, at document #664000/4922894\n", - "2019-01-16 04:27:11,530 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:12,086 : INFO : topic #4 (0.020): 0.121*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:27:12,087 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.017*\"health\" + 0.017*\"hospit\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"medicin\" + 0.009*\"treatment\" + 0.009*\"cancer\"\n", - "2019-01-16 04:27:12,089 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.073*\"octob\" + 0.067*\"juli\" + 0.066*\"januari\" + 0.066*\"august\" + 0.064*\"novemb\" + 0.064*\"decemb\" + 0.063*\"april\" + 0.061*\"june\"\n", - "2019-01-16 04:27:12,091 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.010*\"right\" + 0.008*\"legal\" + 0.007*\"justic\"\n", - "2019-01-16 04:27:12,093 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 04:27:12,099 : INFO : topic diff=0.010970, rho=0.054882\n", - "2019-01-16 04:27:12,461 : INFO : PROGRESS: pass 0, at document #666000/4922894\n", - "2019-01-16 04:27:14,516 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:15,072 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.012*\"princ\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:27:15,074 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.035*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:27:15,076 : INFO : topic #35 (0.020): 0.033*\"lee\" + 0.026*\"singapor\" + 0.019*\"thailand\" + 0.018*\"vietnam\" + 0.018*\"indonesia\" + 0.015*\"asian\" + 0.013*\"asia\" + 0.011*\"chan\" + 0.011*\"thai\" + 0.011*\"malaysia\"\n", - "2019-01-16 04:27:15,079 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.012*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"carlo\" + 0.010*\"josé\" + 0.010*\"juan\"\n", - "2019-01-16 04:27:15,081 : INFO : topic #39 (0.020): 0.044*\"air\" + 0.029*\"oper\" + 0.023*\"aircraft\" + 0.018*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.014*\"flight\" + 0.013*\"squadron\" + 0.012*\"servic\" + 0.011*\"base\"\n", - "2019-01-16 04:27:15,087 : INFO : topic diff=0.009015, rho=0.054800\n", - "2019-01-16 04:27:15,439 : INFO : PROGRESS: pass 0, at document #668000/4922894\n", - "2019-01-16 04:27:17,614 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:18,170 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.072*\"west\" + 0.067*\"region\" + 0.066*\"south\" + 0.065*\"east\" + 0.045*\"district\" + 0.033*\"central\" + 0.029*\"northern\" + 0.023*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:27:18,171 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.010*\"valu\" + 0.009*\"theori\" + 0.008*\"model\" + 0.008*\"data\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 04:27:18,173 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.016*\"open\" + 0.016*\"singl\" + 0.015*\"point\" + 0.014*\"qualifi\" + 0.012*\"doubl\"\n", - "2019-01-16 04:27:18,174 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:27:18,176 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:27:18,182 : INFO : topic diff=0.009534, rho=0.054718\n", - "2019-01-16 04:27:18,541 : INFO : PROGRESS: pass 0, at document #670000/4922894\n", - "2019-01-16 04:27:20,656 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:21,219 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.068*\"align\" + 0.063*\"style\" + 0.054*\"wikit\" + 0.052*\"center\" + 0.046*\"left\" + 0.044*\"right\" + 0.042*\"text\" + 0.033*\"philippin\" + 0.026*\"border\"\n", - "2019-01-16 04:27:21,221 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.011*\"kill\" + 0.010*\"boat\" + 0.010*\"gun\" + 0.009*\"sea\" + 0.009*\"damag\" + 0.008*\"crew\" + 0.008*\"dai\" + 0.008*\"port\" + 0.007*\"bomb\"\n", - "2019-01-16 04:27:21,223 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.040*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:27:21,225 : INFO : topic #33 (0.020): 0.014*\"compani\" + 0.012*\"million\" + 0.009*\"year\" + 0.008*\"time\" + 0.008*\"market\" + 0.008*\"bank\" + 0.007*\"increas\" + 0.006*\"rate\" + 0.006*\"product\" + 0.006*\"cost\"\n", - "2019-01-16 04:27:21,226 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.029*\"england\" + 0.023*\"town\" + 0.020*\"citi\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.011*\"west\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:27:21,232 : INFO : topic diff=0.008920, rho=0.054636\n", - "2019-01-16 04:27:21,555 : INFO : PROGRESS: pass 0, at document #672000/4922894\n", - "2019-01-16 04:27:23,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:24,148 : INFO : topic #39 (0.020): 0.044*\"air\" + 0.029*\"oper\" + 0.024*\"aircraft\" + 0.017*\"airport\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.015*\"flight\" + 0.012*\"servic\" + 0.012*\"base\"\n", - "2019-01-16 04:27:24,150 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.012*\"intern\" + 0.011*\"work\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.010*\"nation\" + 0.010*\"project\"\n", - "2019-01-16 04:27:24,151 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.022*\"station\" + 0.019*\"road\" + 0.018*\"line\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:27:24,154 : INFO : topic #49 (0.020): 0.076*\"north\" + 0.072*\"west\" + 0.066*\"south\" + 0.065*\"region\" + 0.065*\"east\" + 0.050*\"district\" + 0.033*\"central\" + 0.029*\"northern\" + 0.022*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:27:24,155 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"valu\" + 0.009*\"model\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"data\" + 0.008*\"set\" + 0.007*\"point\" + 0.007*\"gener\"\n", - "2019-01-16 04:27:24,162 : INFO : topic diff=0.011235, rho=0.054554\n", - "2019-01-16 04:27:24,518 : INFO : PROGRESS: pass 0, at document #674000/4922894\n", - "2019-01-16 04:27:26,626 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:27,183 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.028*\"born\" + 0.024*\"russia\" + 0.022*\"soviet\" + 0.021*\"jewish\" + 0.019*\"polish\" + 0.017*\"republ\" + 0.015*\"moscow\" + 0.015*\"poland\" + 0.014*\"czech\"\n", - "2019-01-16 04:27:27,185 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.020*\"team\" + 0.019*\"car\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.011*\"finish\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"tour\" + 0.011*\"stage\"\n", - "2019-01-16 04:27:27,186 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.012*\"intern\" + 0.011*\"work\" + 0.010*\"servic\" + 0.010*\"manag\" + 0.010*\"project\" + 0.010*\"nation\"\n", - "2019-01-16 04:27:27,188 : INFO : topic #49 (0.020): 0.076*\"north\" + 0.072*\"west\" + 0.067*\"south\" + 0.065*\"region\" + 0.065*\"east\" + 0.051*\"district\" + 0.033*\"central\" + 0.029*\"northern\" + 0.022*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:27:27,189 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.017*\"centuri\" + 0.011*\"princ\" + 0.011*\"greek\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:27:27,196 : INFO : topic diff=0.008671, rho=0.054473\n", - "2019-01-16 04:27:27,558 : INFO : PROGRESS: pass 0, at document #676000/4922894\n", - "2019-01-16 04:27:29,696 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:30,251 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"championship\" + 0.013*\"ford\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"tour\" + 0.010*\"year\"\n", - "2019-01-16 04:27:30,253 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.010*\"host\" + 0.010*\"air\"\n", - "2019-01-16 04:27:30,255 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.065*\"align\" + 0.062*\"style\" + 0.056*\"wikit\" + 0.050*\"center\" + 0.047*\"left\" + 0.044*\"right\" + 0.040*\"text\" + 0.032*\"philippin\" + 0.026*\"border\"\n", - "2019-01-16 04:27:30,257 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.012*\"cell\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"protein\" + 0.008*\"acid\" + 0.007*\"design\"\n", - "2019-01-16 04:27:30,258 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.010*\"offic\"\n", - "2019-01-16 04:27:30,264 : INFO : topic diff=0.009666, rho=0.054393\n", - "2019-01-16 04:27:30,618 : INFO : PROGRESS: pass 0, at document #678000/4922894\n", - "2019-01-16 04:27:32,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:33,353 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.028*\"born\" + 0.024*\"soviet\" + 0.024*\"russia\" + 0.021*\"jewish\" + 0.019*\"polish\" + 0.017*\"republ\" + 0.016*\"moscow\" + 0.015*\"poland\" + 0.014*\"czech\"\n", - "2019-01-16 04:27:33,354 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"american\" + 0.008*\"paul\" + 0.008*\"robert\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"william\"\n", - "2019-01-16 04:27:33,356 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.018*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:27:33,357 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.010*\"forest\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 04:27:33,359 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.010*\"offic\"\n", - "2019-01-16 04:27:33,365 : INFO : topic diff=0.010083, rho=0.054313\n", - "2019-01-16 04:27:38,194 : INFO : -11.806 per-word bound, 3581.3 perplexity estimate based on a held-out corpus of 2000 documents with 570397 words\n", - "2019-01-16 04:27:38,195 : INFO : PROGRESS: pass 0, at document #680000/4922894\n", - "2019-01-16 04:27:40,347 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:40,908 : INFO : topic #33 (0.020): 0.014*\"compani\" + 0.012*\"million\" + 0.009*\"year\" + 0.008*\"time\" + 0.008*\"market\" + 0.008*\"bank\" + 0.008*\"increas\" + 0.007*\"product\" + 0.006*\"rate\" + 0.006*\"cost\"\n", - "2019-01-16 04:27:40,910 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.045*\"new\" + 0.039*\"china\" + 0.036*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.020*\"hong\"\n", - "2019-01-16 04:27:40,911 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"japan\" + 0.023*\"men\" + 0.022*\"medal\" + 0.021*\"event\" + 0.018*\"nation\" + 0.018*\"japanes\"\n", - "2019-01-16 04:27:40,914 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.021*\"wrestl\" + 0.018*\"contest\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.015*\"fight\" + 0.015*\"world\" + 0.014*\"match\" + 0.014*\"team\" + 0.012*\"defeat\"\n", - "2019-01-16 04:27:40,916 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"intern\" + 0.011*\"work\" + 0.010*\"manag\" + 0.010*\"servic\" + 0.010*\"nation\" + 0.010*\"organ\"\n", - "2019-01-16 04:27:40,922 : INFO : topic diff=0.009049, rho=0.054233\n", - "2019-01-16 04:27:41,280 : INFO : PROGRESS: pass 0, at document #682000/4922894\n", - "2019-01-16 04:27:43,378 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:43,937 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.031*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:27:43,939 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.060*\"align\" + 0.060*\"style\" + 0.057*\"wikit\" + 0.047*\"center\" + 0.044*\"left\" + 0.041*\"right\" + 0.040*\"text\" + 0.037*\"philippin\" + 0.026*\"border\"\n", - "2019-01-16 04:27:43,940 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.010*\"offic\"\n", - "2019-01-16 04:27:43,942 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.071*\"west\" + 0.067*\"south\" + 0.065*\"east\" + 0.062*\"region\" + 0.050*\"district\" + 0.032*\"central\" + 0.029*\"northern\" + 0.022*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:27:43,945 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.013*\"park\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:27:43,952 : INFO : topic diff=0.009937, rho=0.054153\n", - "2019-01-16 04:27:44,321 : INFO : PROGRESS: pass 0, at document #684000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:27:46,463 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:47,022 : INFO : topic #35 (0.020): 0.031*\"lee\" + 0.024*\"singapor\" + 0.019*\"thailand\" + 0.018*\"vietnam\" + 0.016*\"asia\" + 0.016*\"indonesia\" + 0.014*\"asian\" + 0.013*\"malaysia\" + 0.012*\"–present\" + 0.011*\"thai\"\n", - "2019-01-16 04:27:47,025 : INFO : topic #49 (0.020): 0.077*\"north\" + 0.071*\"west\" + 0.068*\"south\" + 0.065*\"east\" + 0.062*\"region\" + 0.050*\"district\" + 0.032*\"northern\" + 0.032*\"central\" + 0.022*\"villag\" + 0.021*\"administr\"\n", - "2019-01-16 04:27:47,027 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\"\n", - "2019-01-16 04:27:47,029 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.040*\"franc\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.020*\"jean\" + 0.017*\"itali\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:27:47,031 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:27:47,038 : INFO : topic diff=0.010957, rho=0.054074\n", - "2019-01-16 04:27:47,410 : INFO : PROGRESS: pass 0, at document #686000/4922894\n", - "2019-01-16 04:27:49,538 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:50,095 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.023*\"paint\" + 0.022*\"design\" + 0.022*\"artist\" + 0.017*\"exhibit\" + 0.013*\"galleri\" + 0.013*\"collect\" + 0.009*\"new\"\n", - "2019-01-16 04:27:50,097 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.018*\"district\" + 0.017*\"provinc\" + 0.015*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.012*\"islam\"\n", - "2019-01-16 04:27:50,098 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"space\" + 0.005*\"materi\" + 0.005*\"time\"\n", - "2019-01-16 04:27:50,100 : INFO : topic #40 (0.020): 0.031*\"bar\" + 0.029*\"africa\" + 0.027*\"african\" + 0.022*\"south\" + 0.021*\"text\" + 0.020*\"till\" + 0.015*\"color\" + 0.012*\"tropic\" + 0.010*\"black\" + 0.009*\"agricultur\"\n", - "2019-01-16 04:27:50,103 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.010*\"forest\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 04:27:50,109 : INFO : topic diff=0.007710, rho=0.053995\n", - "2019-01-16 04:27:50,447 : INFO : PROGRESS: pass 0, at document #688000/4922894\n", - "2019-01-16 04:27:52,487 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:53,042 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 04:27:53,044 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.028*\"unit\" + 0.022*\"town\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.016*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\" + 0.011*\"counti\"\n", - "2019-01-16 04:27:53,045 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"area\" + 0.014*\"park\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:27:53,047 : INFO : topic #24 (0.020): 0.029*\"ship\" + 0.010*\"boat\" + 0.010*\"gun\" + 0.010*\"damag\" + 0.009*\"kill\" + 0.009*\"sea\" + 0.008*\"crew\" + 0.008*\"port\" + 0.008*\"dai\" + 0.007*\"island\"\n", - "2019-01-16 04:27:53,048 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:27:53,054 : INFO : topic diff=0.009538, rho=0.053916\n", - "2019-01-16 04:27:53,430 : INFO : PROGRESS: pass 0, at document #690000/4922894\n", - "2019-01-16 04:27:55,527 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:56,083 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.014*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:27:56,084 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.068*\"align\" + 0.059*\"style\" + 0.056*\"wikit\" + 0.046*\"right\" + 0.046*\"center\" + 0.044*\"left\" + 0.038*\"text\" + 0.034*\"philippin\" + 0.025*\"border\"\n", - "2019-01-16 04:27:56,086 : INFO : topic #41 (0.020): 0.034*\"book\" + 0.031*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"writer\" + 0.011*\"author\" + 0.010*\"novel\"\n", - "2019-01-16 04:27:56,087 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"softwar\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.007*\"iec\" + 0.007*\"releas\" + 0.007*\"design\"\n", - "2019-01-16 04:27:56,089 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"berlin\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:27:56,095 : INFO : topic diff=0.010902, rho=0.053838\n", - "2019-01-16 04:27:56,441 : INFO : PROGRESS: pass 0, at document #692000/4922894\n", - "2019-01-16 04:27:58,504 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:27:59,059 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.011*\"divis\" + 0.010*\"regiment\" + 0.010*\"offic\"\n", - "2019-01-16 04:27:59,061 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.018*\"health\" + 0.018*\"hospit\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.011*\"patient\" + 0.010*\"medicin\" + 0.010*\"caus\" + 0.009*\"cancer\" + 0.009*\"treatment\"\n", - "2019-01-16 04:27:59,062 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.011*\"cell\" + 0.011*\"model\" + 0.011*\"power\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"protein\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:27:59,064 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.018*\"forc\" + 0.018*\"airport\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.015*\"flight\" + 0.012*\"base\" + 0.011*\"servic\"\n", - "2019-01-16 04:27:59,066 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 04:27:59,072 : INFO : topic diff=0.010541, rho=0.053760\n", - "2019-01-16 04:27:59,413 : INFO : PROGRESS: pass 0, at document #694000/4922894\n", - "2019-01-16 04:28:01,570 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:02,143 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.052*\"australian\" + 0.045*\"new\" + 0.040*\"china\" + 0.036*\"chines\" + 0.030*\"zealand\" + 0.024*\"south\" + 0.020*\"sydnei\" + 0.019*\"kong\" + 0.019*\"hong\"\n", - "2019-01-16 04:28:02,145 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"intern\" + 0.011*\"work\" + 0.011*\"servic\" + 0.010*\"manag\" + 0.010*\"organ\" + 0.010*\"nation\"\n", - "2019-01-16 04:28:02,147 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:28:02,148 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.024*\"wrestl\" + 0.020*\"contest\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.015*\"match\" + 0.015*\"fight\" + 0.015*\"team\" + 0.014*\"world\" + 0.013*\"defeat\"\n", - "2019-01-16 04:28:02,150 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.016*\"citi\" + 0.015*\"california\" + 0.014*\"counti\" + 0.012*\"texa\" + 0.011*\"washington\"\n", - "2019-01-16 04:28:02,156 : INFO : topic diff=0.010605, rho=0.053683\n", - "2019-01-16 04:28:02,485 : INFO : PROGRESS: pass 0, at document #696000/4922894\n", - "2019-01-16 04:28:04,565 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:05,119 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.018*\"open\" + 0.014*\"singl\" + 0.014*\"draw\" + 0.014*\"qualifi\" + 0.014*\"point\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:28:05,121 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"card\" + 0.007*\"player\" + 0.007*\"releas\"\n", - "2019-01-16 04:28:05,123 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.040*\"counti\" + 0.035*\"town\" + 0.030*\"citi\" + 0.029*\"villag\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.022*\"district\" + 0.022*\"municip\"\n", - "2019-01-16 04:28:05,125 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.022*\"berlin\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:28:05,126 : INFO : topic #34 (0.020): 0.081*\"canada\" + 0.080*\"island\" + 0.063*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.015*\"british\" + 0.015*\"montreal\" + 0.015*\"vancouv\" + 0.014*\"korea\"\n", - "2019-01-16 04:28:05,132 : INFO : topic diff=0.008854, rho=0.053606\n", - "2019-01-16 04:28:05,486 : INFO : PROGRESS: pass 0, at document #698000/4922894\n", - "2019-01-16 04:28:07,674 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:08,231 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.022*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:28:08,232 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.015*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 04:28:08,234 : INFO : topic #34 (0.020): 0.081*\"island\" + 0.081*\"canada\" + 0.064*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.015*\"montreal\" + 0.015*\"vancouv\" + 0.015*\"british\" + 0.014*\"korea\"\n", - "2019-01-16 04:28:08,235 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"said\"\n", - "2019-01-16 04:28:08,237 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.071*\"align\" + 0.057*\"wikit\" + 0.056*\"style\" + 0.047*\"right\" + 0.046*\"center\" + 0.046*\"left\" + 0.037*\"text\" + 0.032*\"philippin\" + 0.024*\"border\"\n", - "2019-01-16 04:28:08,243 : INFO : topic diff=0.011023, rho=0.053529\n", - "2019-01-16 04:28:12,868 : INFO : -11.844 per-word bound, 3677.2 perplexity estimate based on a held-out corpus of 2000 documents with 519586 words\n", - "2019-01-16 04:28:12,869 : INFO : PROGRESS: pass 0, at document #700000/4922894\n", - "2019-01-16 04:28:14,931 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:15,489 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.014*\"singl\" + 0.013*\"qualifi\" + 0.013*\"draw\" + 0.013*\"point\"\n", - "2019-01-16 04:28:15,490 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"earth\" + 0.006*\"light\" + 0.006*\"us\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"space\"\n", - "2019-01-16 04:28:15,492 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.072*\"align\" + 0.057*\"wikit\" + 0.055*\"style\" + 0.048*\"center\" + 0.046*\"right\" + 0.046*\"left\" + 0.037*\"text\" + 0.031*\"philippin\" + 0.024*\"border\"\n", - "2019-01-16 04:28:15,493 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.013*\"piano\" + 0.013*\"opera\"\n", - "2019-01-16 04:28:15,494 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.022*\"saint\" + 0.020*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:28:15,500 : INFO : topic diff=0.009516, rho=0.053452\n", - "2019-01-16 04:28:15,854 : INFO : PROGRESS: pass 0, at document #702000/4922894\n", - "2019-01-16 04:28:17,976 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:18,533 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:28:18,535 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"state\" + 0.012*\"nation\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 04:28:18,536 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.015*\"railwai\" + 0.014*\"park\" + 0.014*\"rout\" + 0.013*\"area\" + 0.012*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:28:18,538 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.018*\"provinc\" + 0.017*\"district\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.011*\"khan\" + 0.011*\"sri\"\n", - "2019-01-16 04:28:18,539 : INFO : topic #7 (0.020): 0.016*\"iso\" + 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"valu\" + 0.009*\"theori\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"data\"\n", - "2019-01-16 04:28:18,545 : INFO : topic diff=0.008583, rho=0.053376\n", - "2019-01-16 04:28:18,906 : INFO : PROGRESS: pass 0, at document #704000/4922894\n", - "2019-01-16 04:28:21,114 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:21,670 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"american\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:28:21,672 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 04:28:21,674 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.010*\"file\" + 0.009*\"place\"\n", - "2019-01-16 04:28:21,675 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.019*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:28:21,677 : INFO : topic #29 (0.020): 0.036*\"leagu\" + 0.035*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.024*\"season\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:28:21,684 : INFO : topic diff=0.011107, rho=0.053300\n", - "2019-01-16 04:28:22,010 : INFO : PROGRESS: pass 0, at document #706000/4922894\n", - "2019-01-16 04:28:24,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:24,683 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.018*\"station\" + 0.015*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:28:24,684 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 04:28:24,686 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.022*\"member\" + 0.021*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.019*\"minist\" + 0.015*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 04:28:24,688 : INFO : topic #23 (0.020): 0.021*\"medic\" + 0.017*\"health\" + 0.016*\"hospit\" + 0.014*\"ret\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"treatment\" + 0.009*\"medicin\" + 0.008*\"cancer\"\n", - "2019-01-16 04:28:24,690 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"ford\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"tour\" + 0.010*\"time\"\n", - "2019-01-16 04:28:24,697 : INFO : topic diff=0.009001, rho=0.053225\n", - "2019-01-16 04:28:25,038 : INFO : PROGRESS: pass 0, at document #708000/4922894\n", - "2019-01-16 04:28:27,100 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:27,656 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.023*\"singapor\" + 0.022*\"–present\" + 0.018*\"thailand\" + 0.017*\"asia\" + 0.017*\"vietnam\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.014*\"malaysia\" + 0.010*\"chan\"\n", - "2019-01-16 04:28:27,657 : INFO : topic #40 (0.020): 0.031*\"bar\" + 0.030*\"africa\" + 0.028*\"african\" + 0.024*\"text\" + 0.023*\"till\" + 0.022*\"south\" + 0.015*\"color\" + 0.013*\"tropic\" + 0.010*\"black\" + 0.010*\"shift\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:28:27,660 : INFO : topic #7 (0.020): 0.014*\"iso\" + 0.014*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"method\" + 0.007*\"gener\"\n", - "2019-01-16 04:28:27,661 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.022*\"berlin\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:28:27,663 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.024*\"season\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:28:27,669 : INFO : topic diff=0.008807, rho=0.053149\n", - "2019-01-16 04:28:28,032 : INFO : PROGRESS: pass 0, at document #710000/4922894\n", - "2019-01-16 04:28:30,158 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:30,716 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.029*\"oper\" + 0.024*\"aircraft\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.012*\"servic\"\n", - "2019-01-16 04:28:30,717 : INFO : topic #40 (0.020): 0.032*\"bar\" + 0.030*\"africa\" + 0.028*\"african\" + 0.024*\"text\" + 0.023*\"till\" + 0.022*\"south\" + 0.015*\"color\" + 0.012*\"tropic\" + 0.010*\"shift\" + 0.010*\"black\"\n", - "2019-01-16 04:28:30,720 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.022*\"singapor\" + 0.021*\"–present\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"asia\" + 0.016*\"vietnam\" + 0.016*\"asian\" + 0.014*\"malaysia\" + 0.010*\"thai\"\n", - "2019-01-16 04:28:30,722 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:28:30,724 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 04:28:30,730 : INFO : topic diff=0.010741, rho=0.053074\n", - "2019-01-16 04:28:31,073 : INFO : PROGRESS: pass 0, at document #712000/4922894\n", - "2019-01-16 04:28:33,144 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:33,700 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.030*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.013*\"new\" + 0.012*\"press\" + 0.011*\"edit\" + 0.011*\"writer\" + 0.011*\"author\" + 0.010*\"novel\"\n", - "2019-01-16 04:28:33,702 : INFO : topic #15 (0.020): 0.028*\"england\" + 0.028*\"unit\" + 0.024*\"town\" + 0.021*\"cricket\" + 0.021*\"citi\" + 0.016*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"wale\" + 0.011*\"free\"\n", - "2019-01-16 04:28:33,704 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.015*\"match\" + 0.015*\"champion\" + 0.014*\"world\" + 0.014*\"team\"\n", - "2019-01-16 04:28:33,706 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:28:33,708 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.030*\"born\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.021*\"jewish\" + 0.017*\"polish\" + 0.015*\"republ\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.014*\"poland\"\n", - "2019-01-16 04:28:33,713 : INFO : topic diff=0.009659, rho=0.053000\n", - "2019-01-16 04:28:34,098 : INFO : PROGRESS: pass 0, at document #714000/4922894\n", - "2019-01-16 04:28:36,239 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:36,796 : INFO : topic #11 (0.020): 0.024*\"act\" + 0.024*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.007*\"report\"\n", - "2019-01-16 04:28:36,798 : INFO : topic #22 (0.020): 0.052*\"counti\" + 0.047*\"popul\" + 0.032*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.028*\"ag\" + 0.026*\"township\" + 0.023*\"famili\" + 0.022*\"district\" + 0.021*\"municip\"\n", - "2019-01-16 04:28:36,799 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"ireland\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.012*\"royal\"\n", - "2019-01-16 04:28:36,801 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.018*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:28:36,802 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.017*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"templ\" + 0.008*\"roman\" + 0.007*\"ancient\"\n", - "2019-01-16 04:28:36,807 : INFO : topic diff=0.009349, rho=0.052926\n", - "2019-01-16 04:28:37,161 : INFO : PROGRESS: pass 0, at document #716000/4922894\n", - "2019-01-16 04:28:39,245 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:39,802 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.069*\"align\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.048*\"right\" + 0.047*\"center\" + 0.043*\"left\" + 0.033*\"philippin\" + 0.033*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:28:39,803 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"american\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:28:39,805 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 04:28:39,807 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"ireland\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.012*\"royal\"\n", - "2019-01-16 04:28:39,810 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"japan\" + 0.024*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"gold\"\n", - "2019-01-16 04:28:39,817 : INFO : topic diff=0.010923, rho=0.052852\n", - "2019-01-16 04:28:40,161 : INFO : PROGRESS: pass 0, at document #718000/4922894\n", - "2019-01-16 04:28:42,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:42,788 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"polit\" + 0.010*\"war\" + 0.009*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 04:28:42,789 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"ireland\" + 0.013*\"jame\" + 0.012*\"royal\"\n", - "2019-01-16 04:28:42,791 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 04:28:42,793 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"said\"\n", - "2019-01-16 04:28:42,795 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"file\" + 0.009*\"centuri\"\n", - "2019-01-16 04:28:42,802 : INFO : topic diff=0.008014, rho=0.052778\n", - "2019-01-16 04:28:47,664 : INFO : -11.674 per-word bound, 3267.1 perplexity estimate based on a held-out corpus of 2000 documents with 546778 words\n", - "2019-01-16 04:28:47,665 : INFO : PROGRESS: pass 0, at document #720000/4922894\n", - "2019-01-16 04:28:49,937 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:50,495 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.066*\"align\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.048*\"right\" + 0.046*\"center\" + 0.043*\"left\" + 0.033*\"philippin\" + 0.032*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:28:50,496 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.033*\"born\" + 0.023*\"russia\" + 0.023*\"soviet\" + 0.020*\"jewish\" + 0.016*\"republ\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 04:28:50,498 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.011*\"damag\" + 0.010*\"sea\" + 0.010*\"gun\" + 0.009*\"boat\" + 0.009*\"kill\" + 0.008*\"island\" + 0.008*\"dai\" + 0.008*\"crew\" + 0.007*\"navi\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:28:50,499 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:28:50,500 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"said\"\n", - "2019-01-16 04:28:50,506 : INFO : topic diff=0.009665, rho=0.052705\n", - "2019-01-16 04:28:50,831 : INFO : PROGRESS: pass 0, at document #722000/4922894\n", - "2019-01-16 04:28:52,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:53,433 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.028*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.013*\"point\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.012*\"singl\"\n", - "2019-01-16 04:28:53,435 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.035*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.024*\"season\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 04:28:53,436 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"unit\" + 0.015*\"flight\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.011*\"servic\"\n", - "2019-01-16 04:28:53,438 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"jpg\" + 0.009*\"file\" + 0.009*\"centuri\"\n", - "2019-01-16 04:28:53,441 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.033*\"born\" + 0.023*\"russia\" + 0.023*\"soviet\" + 0.019*\"jewish\" + 0.016*\"republ\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.015*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 04:28:53,448 : INFO : topic diff=0.009842, rho=0.052632\n", - "2019-01-16 04:28:53,807 : INFO : PROGRESS: pass 0, at document #724000/4922894\n", - "2019-01-16 04:28:55,961 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:56,523 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.013*\"championship\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.010*\"ford\" + 0.010*\"stage\"\n", - "2019-01-16 04:28:56,525 : INFO : topic #33 (0.020): 0.016*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"time\" + 0.008*\"bank\" + 0.008*\"market\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.007*\"rate\"\n", - "2019-01-16 04:28:56,526 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"player\" + 0.008*\"version\" + 0.007*\"data\" + 0.007*\"design\" + 0.007*\"releas\"\n", - "2019-01-16 04:28:56,528 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"cathol\" + 0.012*\"year\" + 0.012*\"born\" + 0.011*\"daughter\"\n", - "2019-01-16 04:28:56,529 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"english\"\n", - "2019-01-16 04:28:56,535 : INFO : topic diff=0.009409, rho=0.052559\n", - "2019-01-16 04:28:56,883 : INFO : PROGRESS: pass 0, at document #726000/4922894\n", - "2019-01-16 04:28:58,991 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:28:59,552 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.027*\"singapor\" + 0.025*\"–present\" + 0.019*\"thailand\" + 0.018*\"indonesia\" + 0.017*\"asia\" + 0.016*\"vietnam\" + 0.016*\"asian\" + 0.014*\"malaysia\" + 0.011*\"thai\"\n", - "2019-01-16 04:28:59,553 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"year\" + 0.011*\"driver\" + 0.010*\"ford\" + 0.010*\"stage\"\n", - "2019-01-16 04:28:59,555 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"intern\" + 0.011*\"work\" + 0.010*\"servic\" + 0.010*\"nation\" + 0.010*\"scienc\" + 0.010*\"organ\"\n", - "2019-01-16 04:28:59,556 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:28:59,558 : INFO : topic #33 (0.020): 0.016*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"time\" + 0.008*\"bank\" + 0.008*\"market\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.007*\"rate\"\n", - "2019-01-16 04:28:59,564 : INFO : topic diff=0.011659, rho=0.052486\n", - "2019-01-16 04:28:59,866 : INFO : PROGRESS: pass 0, at document #728000/4922894\n", - "2019-01-16 04:29:01,942 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:02,499 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"wrestl\" + 0.018*\"contest\" + 0.017*\"match\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.015*\"fight\" + 0.015*\"team\" + 0.014*\"world\" + 0.014*\"champion\"\n", - "2019-01-16 04:29:02,500 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.024*\"olymp\" + 0.024*\"japan\" + 0.023*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 04:29:02,502 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.015*\"piano\" + 0.015*\"danc\" + 0.015*\"plai\" + 0.015*\"orchestra\" + 0.015*\"festiv\" + 0.013*\"opera\"\n", - "2019-01-16 04:29:02,503 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:29:02,504 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.016*\"flight\" + 0.014*\"squadron\" + 0.012*\"servic\" + 0.012*\"base\"\n", - "2019-01-16 04:29:02,510 : INFO : topic diff=0.008761, rho=0.052414\n", - "2019-01-16 04:29:02,855 : INFO : PROGRESS: pass 0, at document #730000/4922894\n", - "2019-01-16 04:29:05,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:05,561 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:29:05,563 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"servic\" + 0.013*\"develop\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"intern\" + 0.011*\"work\" + 0.010*\"organ\" + 0.010*\"nation\" + 0.010*\"manag\"\n", - "2019-01-16 04:29:05,565 : INFO : topic #13 (0.020): 0.052*\"state\" + 0.034*\"new\" + 0.028*\"american\" + 0.023*\"unit\" + 0.023*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.013*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:29:05,567 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.028*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.022*\"design\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.014*\"galleri\" + 0.010*\"imag\"\n", - "2019-01-16 04:29:05,569 : INFO : topic #27 (0.020): 0.036*\"russian\" + 0.033*\"born\" + 0.023*\"soviet\" + 0.023*\"russia\" + 0.019*\"jewish\" + 0.016*\"republ\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.014*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 04:29:05,575 : INFO : topic diff=0.011995, rho=0.052342\n", - "2019-01-16 04:29:05,912 : INFO : PROGRESS: pass 0, at document #732000/4922894\n", - "2019-01-16 04:29:07,957 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:08,514 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"wrestl\" + 0.018*\"contest\" + 0.018*\"match\" + 0.018*\"championship\" + 0.017*\"titl\" + 0.015*\"champion\" + 0.014*\"team\" + 0.014*\"fight\" + 0.014*\"world\"\n", - "2019-01-16 04:29:08,516 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"carlo\"\n", - "2019-01-16 04:29:08,518 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"writer\" + 0.011*\"edit\" + 0.010*\"novel\"\n", - "2019-01-16 04:29:08,519 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 04:29:08,521 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"design\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:29:08,527 : INFO : topic diff=0.009194, rho=0.052271\n", - "2019-01-16 04:29:08,878 : INFO : PROGRESS: pass 0, at document #734000/4922894\n", - "2019-01-16 04:29:11,006 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:11,564 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.076*\"septemb\" + 0.073*\"octob\" + 0.070*\"januari\" + 0.068*\"juli\" + 0.067*\"august\" + 0.065*\"novemb\" + 0.064*\"decemb\" + 0.064*\"april\" + 0.063*\"june\"\n", - "2019-01-16 04:29:11,565 : INFO : topic #15 (0.020): 0.031*\"unit\" + 0.028*\"england\" + 0.024*\"town\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.014*\"scotland\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.012*\"scottish\" + 0.010*\"west\"\n", - "2019-01-16 04:29:11,566 : INFO : topic #24 (0.020): 0.028*\"ship\" + 0.012*\"damag\" + 0.010*\"sea\" + 0.010*\"gun\" + 0.009*\"boat\" + 0.008*\"kill\" + 0.008*\"navi\" + 0.008*\"island\" + 0.008*\"dai\" + 0.007*\"port\"\n", - "2019-01-16 04:29:11,568 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.021*\"act\" + 0.018*\"state\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.008*\"right\" + 0.008*\"legal\" + 0.008*\"public\"\n", - "2019-01-16 04:29:11,569 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 04:29:11,575 : INFO : topic diff=0.011176, rho=0.052200\n", - "2019-01-16 04:29:11,875 : INFO : PROGRESS: pass 0, at document #736000/4922894\n", - "2019-01-16 04:29:13,939 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:14,495 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.019*\"http\" + 0.015*\"provinc\" + 0.015*\"district\" + 0.015*\"pakistan\" + 0.014*\"www\" + 0.014*\"iran\" + 0.011*\"islam\" + 0.011*\"sri\"\n", - "2019-01-16 04:29:14,496 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"year\" + 0.011*\"tour\" + 0.010*\"lap\" + 0.010*\"time\"\n", - "2019-01-16 04:29:14,498 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:29:14,500 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 04:29:14,501 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\"\n", - "2019-01-16 04:29:14,508 : INFO : topic diff=0.009896, rho=0.052129\n", - "2019-01-16 04:29:14,846 : INFO : PROGRESS: pass 0, at document #738000/4922894\n", - "2019-01-16 04:29:16,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:17,545 : INFO : topic #27 (0.020): 0.037*\"russian\" + 0.033*\"born\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.019*\"jewish\" + 0.016*\"republ\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 04:29:17,547 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.022*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.016*\"park\" + 0.015*\"railwai\" + 0.015*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:29:17,549 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.031*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"edit\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:29:17,550 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.028*\"england\" + 0.024*\"town\" + 0.020*\"cricket\" + 0.020*\"citi\" + 0.018*\"scotland\" + 0.017*\"wale\" + 0.013*\"manchest\" + 0.012*\"scottish\" + 0.010*\"counti\"\n", - "2019-01-16 04:29:17,552 : INFO : topic #39 (0.020): 0.044*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.016*\"flight\" + 0.014*\"squadron\" + 0.013*\"servic\" + 0.012*\"base\"\n", - "2019-01-16 04:29:17,558 : INFO : topic diff=0.010612, rho=0.052058\n", - "2019-01-16 04:29:22,461 : INFO : -11.711 per-word bound, 3353.3 perplexity estimate based on a held-out corpus of 2000 documents with 572047 words\n", - "2019-01-16 04:29:22,462 : INFO : PROGRESS: pass 0, at document #740000/4922894\n", - "2019-01-16 04:29:24,554 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:25,110 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:29:25,112 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 04:29:25,113 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.020*\"–present\" + 0.020*\"indonesia\" + 0.018*\"thailand\" + 0.017*\"asia\" + 0.016*\"vietnam\" + 0.015*\"asian\" + 0.013*\"malaysia\" + 0.011*\"thai\"\n", - "2019-01-16 04:29:25,115 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:29:25,117 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"cathol\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:29:25,124 : INFO : topic diff=0.008879, rho=0.051988\n", - "2019-01-16 04:29:25,452 : INFO : PROGRESS: pass 0, at document #742000/4922894\n", - "2019-01-16 04:29:27,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:28,092 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.012*\"channel\" + 0.012*\"televis\" + 0.011*\"dai\" + 0.010*\"program\" + 0.010*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:29:28,094 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:29:28,095 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.020*\"winner\" + 0.019*\"group\" + 0.019*\"open\" + 0.014*\"singl\" + 0.013*\"point\" + 0.012*\"qualifi\" + 0.012*\"place\"\n", - "2019-01-16 04:29:28,097 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.018*\"championship\" + 0.017*\"titl\" + 0.014*\"team\" + 0.014*\"fight\" + 0.014*\"world\" + 0.014*\"champion\"\n", - "2019-01-16 04:29:28,098 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"edit\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:29:28,105 : INFO : topic diff=0.008990, rho=0.051917\n", - "2019-01-16 04:29:28,436 : INFO : PROGRESS: pass 0, at document #744000/4922894\n", - "2019-01-16 04:29:30,515 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:31,075 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.075*\"septemb\" + 0.075*\"octob\" + 0.070*\"januari\" + 0.068*\"juli\" + 0.066*\"novemb\" + 0.066*\"august\" + 0.066*\"decemb\" + 0.064*\"april\" + 0.062*\"june\"\n", - "2019-01-16 04:29:31,076 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"us\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"form\"\n", - "2019-01-16 04:29:31,078 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:29:31,080 : INFO : topic #33 (0.020): 0.017*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"market\" + 0.008*\"bank\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.006*\"rate\"\n", - "2019-01-16 04:29:31,082 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.020*\"centuri\" + 0.011*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"dynasti\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\"\n", - "2019-01-16 04:29:31,089 : INFO : topic diff=0.010070, rho=0.051848\n", - "2019-01-16 04:29:31,415 : INFO : PROGRESS: pass 0, at document #746000/4922894\n", - "2019-01-16 04:29:33,529 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:29:34,085 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.018*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.010*\"offic\"\n", - "2019-01-16 04:29:34,087 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.034*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:29:34,089 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.022*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.016*\"park\" + 0.015*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"area\" + 0.011*\"north\"\n", - "2019-01-16 04:29:34,091 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.020*\"–present\" + 0.019*\"indonesia\" + 0.019*\"thailand\" + 0.017*\"asia\" + 0.016*\"vietnam\" + 0.015*\"asian\" + 0.013*\"malaysia\" + 0.012*\"thai\"\n", - "2019-01-16 04:29:34,093 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"robert\" + 0.007*\"american\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:29:34,099 : INFO : topic diff=0.008593, rho=0.051778\n", - "2019-01-16 04:29:34,447 : INFO : PROGRESS: pass 0, at document #748000/4922894\n", - "2019-01-16 04:29:36,641 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:37,201 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.034*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:29:37,202 : INFO : topic #27 (0.020): 0.038*\"russian\" + 0.032*\"born\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.017*\"polish\" + 0.016*\"republ\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"czech\"\n", - "2019-01-16 04:29:37,204 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.020*\"centuri\" + 0.011*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"dynasti\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\"\n", - "2019-01-16 04:29:37,205 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.019*\"http\" + 0.015*\"district\" + 0.015*\"provinc\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.014*\"www\" + 0.011*\"sri\" + 0.011*\"islam\"\n", - "2019-01-16 04:29:37,207 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:29:37,213 : INFO : topic diff=0.008283, rho=0.051709\n", - "2019-01-16 04:29:37,542 : INFO : PROGRESS: pass 0, at document #750000/4922894\n", - "2019-01-16 04:29:39,631 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:40,186 : INFO : topic #35 (0.020): 0.031*\"–present\" + 0.026*\"lee\" + 0.022*\"singapor\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.017*\"asia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"malaysia\" + 0.012*\"thai\"\n", - "2019-01-16 04:29:40,188 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.012*\"televis\"\n", - "2019-01-16 04:29:40,190 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.079*\"canada\" + 0.061*\"canadian\" + 0.027*\"toronto\" + 0.027*\"ontario\" + 0.016*\"montreal\" + 0.015*\"quebec\" + 0.015*\"british\" + 0.015*\"vancouv\" + 0.014*\"provinci\"\n", - "2019-01-16 04:29:40,191 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"fish\" + 0.006*\"red\"\n", - "2019-01-16 04:29:40,193 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.011*\"intern\" + 0.011*\"nation\" + 0.011*\"work\" + 0.010*\"scienc\" + 0.010*\"organ\"\n", - "2019-01-16 04:29:40,199 : INFO : topic diff=0.009521, rho=0.051640\n", - "2019-01-16 04:29:40,525 : INFO : PROGRESS: pass 0, at document #752000/4922894\n", - "2019-01-16 04:29:42,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:43,175 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:29:43,177 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.006*\"fish\"\n", - "2019-01-16 04:29:43,179 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.048*\"australian\" + 0.045*\"new\" + 0.041*\"china\" + 0.034*\"chines\" + 0.032*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.018*\"sydnei\"\n", - "2019-01-16 04:29:43,180 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"senat\"\n", - "2019-01-16 04:29:43,181 : INFO : topic #40 (0.020): 0.033*\"bar\" + 0.030*\"africa\" + 0.027*\"african\" + 0.022*\"south\" + 0.022*\"text\" + 0.022*\"till\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.010*\"black\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:29:43,187 : INFO : topic diff=0.010024, rho=0.051571\n", - "2019-01-16 04:29:43,496 : INFO : PROGRESS: pass 0, at document #754000/4922894\n", - "2019-01-16 04:29:45,588 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:46,143 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.060*\"align\" + 0.058*\"wikit\" + 0.054*\"style\" + 0.052*\"center\" + 0.045*\"left\" + 0.041*\"right\" + 0.034*\"text\" + 0.032*\"philippin\" + 0.028*\"border\"\n", - "2019-01-16 04:29:46,144 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.006*\"fish\"\n", - "2019-01-16 04:29:46,146 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.005*\"exampl\"\n", - "2019-01-16 04:29:46,147 : INFO : topic #35 (0.020): 0.028*\"–present\" + 0.027*\"lee\" + 0.022*\"singapor\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.013*\"malaysia\" + 0.012*\"kim\"\n", - "2019-01-16 04:29:46,148 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:29:46,154 : INFO : topic diff=0.008471, rho=0.051503\n", - "2019-01-16 04:29:46,463 : INFO : PROGRESS: pass 0, at document #756000/4922894\n", - "2019-01-16 04:29:48,606 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:49,163 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.049*\"australian\" + 0.045*\"new\" + 0.042*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"sydnei\" + 0.019*\"kong\"\n", - "2019-01-16 04:29:49,165 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.015*\"danc\" + 0.015*\"opera\" + 0.015*\"plai\" + 0.014*\"piano\" + 0.014*\"festiv\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:29:49,166 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:29:49,167 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.030*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.022*\"south\" + 0.022*\"till\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.010*\"black\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:29:49,169 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.019*\"road\" + 0.019*\"line\" + 0.016*\"park\" + 0.015*\"railwai\" + 0.014*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:29:49,175 : INFO : topic diff=0.008494, rho=0.051434\n", - "2019-01-16 04:29:49,498 : INFO : PROGRESS: pass 0, at document #758000/4922894\n", - "2019-01-16 04:29:51,581 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:52,138 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:29:52,139 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.050*\"australian\" + 0.045*\"new\" + 0.042*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"sydnei\" + 0.019*\"kong\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:29:52,141 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.030*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.022*\"south\" + 0.022*\"till\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.011*\"black\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:29:52,142 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:29:52,143 : INFO : topic #33 (0.020): 0.017*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.006*\"cost\" + 0.006*\"rate\"\n", - "2019-01-16 04:29:52,149 : INFO : topic diff=0.007745, rho=0.051367\n", - "2019-01-16 04:29:57,066 : INFO : -11.815 per-word bound, 3604.2 perplexity estimate based on a held-out corpus of 2000 documents with 586209 words\n", - "2019-01-16 04:29:57,066 : INFO : PROGRESS: pass 0, at document #760000/4922894\n", - "2019-01-16 04:29:59,209 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:29:59,765 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"titl\" + 0.017*\"match\" + 0.017*\"championship\" + 0.014*\"team\" + 0.014*\"fight\" + 0.014*\"world\" + 0.013*\"champion\"\n", - "2019-01-16 04:29:59,767 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.062*\"align\" + 0.059*\"wikit\" + 0.055*\"style\" + 0.052*\"center\" + 0.048*\"left\" + 0.041*\"right\" + 0.034*\"text\" + 0.032*\"philippin\" + 0.027*\"border\"\n", - "2019-01-16 04:29:59,769 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.019*\"state\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:29:59,771 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"american\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"wilson\" + 0.007*\"smith\" + 0.007*\"william\"\n", - "2019-01-16 04:29:59,773 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", - "2019-01-16 04:29:59,779 : INFO : topic diff=0.008143, rho=0.051299\n", - "2019-01-16 04:30:00,129 : INFO : PROGRESS: pass 0, at document #762000/4922894\n", - "2019-01-16 04:30:02,269 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:02,829 : INFO : topic #33 (0.020): 0.017*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"market\" + 0.008*\"time\" + 0.008*\"increas\" + 0.007*\"product\" + 0.006*\"cost\" + 0.006*\"rate\"\n", - "2019-01-16 04:30:02,830 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.005*\"exampl\"\n", - "2019-01-16 04:30:02,832 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"republican\" + 0.013*\"senat\"\n", - "2019-01-16 04:30:02,833 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.024*\"saint\" + 0.018*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 04:30:02,835 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.030*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.022*\"south\" + 0.021*\"till\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.010*\"black\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:30:02,841 : INFO : topic diff=0.008850, rho=0.051232\n", - "2019-01-16 04:30:03,143 : INFO : PROGRESS: pass 0, at document #764000/4922894\n", - "2019-01-16 04:30:05,185 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:05,740 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.019*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:30:05,742 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.028*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.021*\"design\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.013*\"galleri\" + 0.013*\"imag\"\n", - "2019-01-16 04:30:05,744 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"american\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"wilson\" + 0.007*\"smith\" + 0.007*\"william\"\n", - "2019-01-16 04:30:05,746 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"greek\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:30:05,747 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"centuri\" + 0.009*\"jpg\" + 0.009*\"place\"\n", - "2019-01-16 04:30:05,753 : INFO : topic diff=0.008474, rho=0.051164\n", - "2019-01-16 04:30:06,112 : INFO : PROGRESS: pass 0, at document #766000/4922894\n", - "2019-01-16 04:30:08,218 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:08,775 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"greek\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:30:08,777 : INFO : topic #48 (0.020): 0.081*\"march\" + 0.077*\"octob\" + 0.077*\"septemb\" + 0.072*\"januari\" + 0.070*\"novemb\" + 0.070*\"juli\" + 0.069*\"august\" + 0.068*\"decemb\" + 0.067*\"april\" + 0.066*\"june\"\n", - "2019-01-16 04:30:08,779 : INFO : topic #34 (0.020): 0.083*\"island\" + 0.076*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.026*\"toronto\" + 0.018*\"montreal\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"vancouv\" + 0.014*\"korea\"\n", - "2019-01-16 04:30:08,780 : INFO : topic #49 (0.020): 0.075*\"north\" + 0.070*\"west\" + 0.069*\"south\" + 0.067*\"region\" + 0.065*\"east\" + 0.058*\"district\" + 0.033*\"central\" + 0.028*\"northern\" + 0.021*\"administr\" + 0.020*\"villag\"\n", - "2019-01-16 04:30:08,782 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.021*\"berlin\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 04:30:08,787 : INFO : topic diff=0.008925, rho=0.051098\n", - "2019-01-16 04:30:09,123 : INFO : PROGRESS: pass 0, at document #768000/4922894\n", - "2019-01-16 04:30:11,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:11,832 : INFO : topic #22 (0.020): 0.049*\"counti\" + 0.048*\"popul\" + 0.032*\"area\" + 0.031*\"town\" + 0.030*\"villag\" + 0.028*\"citi\" + 0.026*\"ag\" + 0.023*\"district\" + 0.022*\"censu\" + 0.022*\"famili\"\n", - "2019-01-16 04:30:11,833 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.019*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"mexican\" + 0.011*\"brazil\" + 0.010*\"carlo\" + 0.010*\"juan\"\n", - "2019-01-16 04:30:11,835 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 04:30:11,836 : INFO : topic #39 (0.020): 0.046*\"air\" + 0.027*\"oper\" + 0.024*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.015*\"squadron\" + 0.014*\"flight\" + 0.013*\"servic\" + 0.011*\"base\"\n", - "2019-01-16 04:30:11,838 : INFO : topic #24 (0.020): 0.030*\"ship\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"sea\" + 0.008*\"navi\" + 0.008*\"coast\" + 0.008*\"port\" + 0.008*\"island\" + 0.008*\"crew\"\n", - "2019-01-16 04:30:11,844 : INFO : topic diff=0.008742, rho=0.051031\n", - "2019-01-16 04:30:12,165 : INFO : PROGRESS: pass 0, at document #770000/4922894\n", - "2019-01-16 04:30:14,261 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:14,818 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"danc\" + 0.015*\"piano\" + 0.015*\"plai\" + 0.014*\"opera\" + 0.014*\"festiv\" + 0.014*\"orchestra\"\n", - "2019-01-16 04:30:14,820 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 04:30:14,822 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:30:14,823 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"contest\" + 0.020*\"wrestl\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"championship\" + 0.016*\"fight\" + 0.014*\"world\" + 0.013*\"team\" + 0.013*\"champion\"\n", - "2019-01-16 04:30:14,825 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"author\" + 0.012*\"press\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:30:14,831 : INFO : topic diff=0.008778, rho=0.050965\n", - "2019-01-16 04:30:15,166 : INFO : PROGRESS: pass 0, at document #772000/4922894\n", - "2019-01-16 04:30:17,317 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:17,873 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.006*\"fish\" + 0.006*\"tree\"\n", - "2019-01-16 04:30:17,875 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:30:17,877 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.028*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.014*\"imag\" + 0.013*\"galleri\"\n", - "2019-01-16 04:30:17,879 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.028*\"oper\" + 0.023*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.017*\"unit\" + 0.015*\"squadron\" + 0.014*\"flight\" + 0.013*\"servic\" + 0.012*\"base\"\n", - "2019-01-16 04:30:17,881 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.060*\"align\" + 0.058*\"wikit\" + 0.056*\"style\" + 0.053*\"left\" + 0.049*\"center\" + 0.039*\"right\" + 0.032*\"text\" + 0.031*\"philippin\" + 0.031*\"border\"\n", - "2019-01-16 04:30:17,887 : INFO : topic diff=0.010368, rho=0.050899\n", - "2019-01-16 04:30:18,220 : INFO : PROGRESS: pass 0, at document #774000/4922894\n", - "2019-01-16 04:30:20,305 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:20,860 : INFO : topic #33 (0.020): 0.017*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.006*\"rate\" + 0.006*\"cost\"\n", - "2019-01-16 04:30:20,862 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.013*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", - "2019-01-16 04:30:20,863 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 04:30:20,865 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.020*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.012*\"televis\"\n", - "2019-01-16 04:30:20,866 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 04:30:20,873 : INFO : topic diff=0.009056, rho=0.050833\n", - "2019-01-16 04:30:21,200 : INFO : PROGRESS: pass 0, at document #776000/4922894\n", - "2019-01-16 04:30:23,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:23,812 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.047*\"australian\" + 0.045*\"new\" + 0.042*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.019*\"sydnei\"\n", - "2019-01-16 04:30:23,813 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.014*\"father\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", - "2019-01-16 04:30:23,816 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:30:23,817 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.047*\"counti\" + 0.032*\"town\" + 0.031*\"villag\" + 0.031*\"area\" + 0.029*\"citi\" + 0.026*\"ag\" + 0.024*\"district\" + 0.022*\"censu\" + 0.022*\"famili\"\n", - "2019-01-16 04:30:23,820 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.010*\"model\" + 0.010*\"power\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.007*\"type\" + 0.007*\"design\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 04:30:23,826 : INFO : topic diff=0.008802, rho=0.050767\n", - "2019-01-16 04:30:24,170 : INFO : PROGRESS: pass 0, at document #778000/4922894\n", - "2019-01-16 04:30:26,253 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:26,809 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.015*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:30:26,811 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 04:30:26,813 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.015*\"iran\" + 0.013*\"district\" + 0.013*\"provinc\" + 0.013*\"pakistan\" + 0.011*\"sri\" + 0.011*\"templ\"\n", - "2019-01-16 04:30:26,814 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.019*\"winner\" + 0.019*\"open\" + 0.016*\"point\" + 0.013*\"qualifi\" + 0.012*\"singl\" + 0.012*\"doubl\"\n", - "2019-01-16 04:30:26,816 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.006*\"black\" + 0.006*\"fish\"\n", - "2019-01-16 04:30:26,822 : INFO : topic diff=0.008977, rho=0.050702\n", - "2019-01-16 04:30:31,444 : INFO : -11.568 per-word bound, 3036.2 perplexity estimate based on a held-out corpus of 2000 documents with 517551 words\n", - "2019-01-16 04:30:31,445 : INFO : PROGRESS: pass 0, at document #780000/4922894\n", - "2019-01-16 04:30:33,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:34,057 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.023*\"william\" + 0.020*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.013*\"ireland\" + 0.013*\"royal\" + 0.012*\"sir\" + 0.012*\"jame\" + 0.012*\"thoma\"\n", - "2019-01-16 04:30:34,058 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:30:34,060 : INFO : topic #33 (0.020): 0.018*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.006*\"cost\" + 0.006*\"rate\"\n", - "2019-01-16 04:30:34,062 : INFO : topic #15 (0.020): 0.028*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.018*\"scotland\" + 0.014*\"wale\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.010*\"counti\"\n", - "2019-01-16 04:30:34,063 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 04:30:34,069 : INFO : topic diff=0.007719, rho=0.050637\n", - "2019-01-16 04:30:34,363 : INFO : PROGRESS: pass 0, at document #782000/4922894\n", - "2019-01-16 04:30:36,432 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:36,987 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 04:30:36,988 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.019*\"winner\" + 0.018*\"open\" + 0.016*\"point\" + 0.012*\"qualifi\" + 0.012*\"singl\" + 0.012*\"doubl\"\n", - "2019-01-16 04:30:36,990 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.012*\"championship\" + 0.011*\"tour\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 04:30:36,991 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"vancouv\" + 0.013*\"korea\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:30:36,993 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"end\"\n", - "2019-01-16 04:30:37,000 : INFO : topic diff=0.009766, rho=0.050572\n", - "2019-01-16 04:30:37,310 : INFO : PROGRESS: pass 0, at document #784000/4922894\n", - "2019-01-16 04:30:39,412 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:39,969 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.019*\"winner\" + 0.018*\"open\" + 0.016*\"point\" + 0.013*\"qualifi\" + 0.012*\"singl\" + 0.012*\"second\"\n", - "2019-01-16 04:30:39,970 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.020*\"citi\" + 0.019*\"cricket\" + 0.019*\"scotland\" + 0.015*\"manchest\" + 0.014*\"scottish\" + 0.014*\"wale\" + 0.010*\"counti\"\n", - "2019-01-16 04:30:39,972 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"design\"\n", - "2019-01-16 04:30:39,974 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"gun\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.009*\"sea\" + 0.009*\"navi\" + 0.008*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:30:39,976 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:30:39,982 : INFO : topic diff=0.009033, rho=0.050508\n", - "2019-01-16 04:30:40,299 : INFO : PROGRESS: pass 0, at document #786000/4922894\n", - "2019-01-16 04:30:42,465 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:43,022 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"gun\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.009*\"sea\" + 0.009*\"navi\" + 0.008*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:30:43,024 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.023*\"york\" + 0.023*\"unit\" + 0.018*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 04:30:43,026 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 04:30:43,027 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.016*\"health\" + 0.016*\"hospit\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"medicin\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.009*\"studi\"\n", - "2019-01-16 04:30:43,028 : INFO : topic #0 (0.020): 0.039*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:30:43,034 : INFO : topic diff=0.009880, rho=0.050443\n", - "2019-01-16 04:30:43,333 : INFO : PROGRESS: pass 0, at document #788000/4922894\n", - "2019-01-16 04:30:45,450 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:46,009 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 04:30:46,011 : INFO : topic #31 (0.020): 0.056*\"australia\" + 0.048*\"australian\" + 0.045*\"new\" + 0.042*\"china\" + 0.035*\"chines\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.020*\"sydnei\"\n", - "2019-01-16 04:30:46,012 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.020*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:30:46,014 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.012*\"street\" + 0.011*\"site\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.009*\"jpg\"\n", - "2019-01-16 04:30:46,015 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.047*\"counti\" + 0.031*\"town\" + 0.031*\"villag\" + 0.029*\"area\" + 0.029*\"citi\" + 0.027*\"ag\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", - "2019-01-16 04:30:46,020 : INFO : topic diff=0.008499, rho=0.050379\n", - "2019-01-16 04:30:46,322 : INFO : PROGRESS: pass 0, at document #790000/4922894\n", - "2019-01-16 04:30:48,422 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:48,979 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.020*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:30:48,981 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 04:30:48,984 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 04:30:48,986 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"nation\" + 0.017*\"rank\"\n", - "2019-01-16 04:30:48,987 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.025*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 04:30:48,994 : INFO : topic diff=0.007824, rho=0.050315\n", - "2019-01-16 04:30:49,343 : INFO : PROGRESS: pass 0, at document #792000/4922894\n", - "2019-01-16 04:30:51,456 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:52,013 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.038*\"museum\" + 0.028*\"work\" + 0.023*\"paint\" + 0.021*\"design\" + 0.021*\"artist\" + 0.017*\"exhibit\" + 0.014*\"collect\" + 0.014*\"galleri\" + 0.013*\"imag\"\n", - "2019-01-16 04:30:52,015 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.018*\"line\" + 0.018*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.013*\"rout\" + 0.012*\"area\" + 0.012*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:30:52,017 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 04:30:52,018 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.020*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:30:52,020 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"gun\" + 0.010*\"boat\" + 0.010*\"sea\" + 0.009*\"damag\" + 0.009*\"navi\" + 0.009*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:30:52,025 : INFO : topic diff=0.009262, rho=0.050252\n", - "2019-01-16 04:30:52,347 : INFO : PROGRESS: pass 0, at document #794000/4922894\n", - "2019-01-16 04:30:54,490 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:55,050 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.022*\"singapor\" + 0.020*\"vietnam\" + 0.018*\"indonesia\" + 0.018*\"–present\" + 0.016*\"kim\" + 0.015*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"asian\"\n", - "2019-01-16 04:30:55,052 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"method\" + 0.007*\"gener\" + 0.007*\"data\"\n", - "2019-01-16 04:30:55,054 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.012*\"model\" + 0.011*\"power\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"design\" + 0.007*\"car\"\n", - "2019-01-16 04:30:55,056 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.025*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.019*\"berlin\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:30:55,057 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"bird\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.006*\"tree\"\n", - "2019-01-16 04:30:55,063 : INFO : topic diff=0.008453, rho=0.050189\n", - "2019-01-16 04:30:55,386 : INFO : PROGRESS: pass 0, at document #796000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:30:57,501 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:30:58,063 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.020*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 04:30:58,066 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"opera\" + 0.014*\"festiv\" + 0.013*\"piano\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:30:58,067 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.009*\"yard\" + 0.009*\"year\"\n", - "2019-01-16 04:30:58,069 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\" + 0.004*\"said\"\n", - "2019-01-16 04:30:58,071 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.006*\"tree\"\n", - "2019-01-16 04:30:58,077 : INFO : topic diff=0.008378, rho=0.050125\n", - "2019-01-16 04:30:58,383 : INFO : PROGRESS: pass 0, at document #798000/4922894\n", - "2019-01-16 04:31:00,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:00,983 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"opera\" + 0.013*\"piano\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:31:00,985 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.023*\"william\" + 0.021*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"sir\" + 0.012*\"ireland\" + 0.012*\"thoma\" + 0.012*\"jame\"\n", - "2019-01-16 04:31:00,987 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 04:31:00,988 : INFO : topic #40 (0.020): 0.035*\"bar\" + 0.033*\"africa\" + 0.027*\"african\" + 0.023*\"south\" + 0.020*\"text\" + 0.020*\"till\" + 0.016*\"color\" + 0.011*\"black\" + 0.010*\"tropic\" + 0.009*\"agricultur\"\n", - "2019-01-16 04:31:00,989 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 04:31:00,995 : INFO : topic diff=0.010511, rho=0.050063\n", - "2019-01-16 04:31:05,825 : INFO : -11.794 per-word bound, 3550.6 perplexity estimate based on a held-out corpus of 2000 documents with 569617 words\n", - "2019-01-16 04:31:05,826 : INFO : PROGRESS: pass 0, at document #800000/4922894\n", - "2019-01-16 04:31:07,907 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:08,470 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 04:31:08,472 : INFO : topic #40 (0.020): 0.035*\"bar\" + 0.033*\"africa\" + 0.027*\"african\" + 0.024*\"south\" + 0.020*\"text\" + 0.019*\"till\" + 0.016*\"color\" + 0.011*\"black\" + 0.009*\"agricultur\" + 0.009*\"tropic\"\n", - "2019-01-16 04:31:08,473 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.021*\"minist\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 04:31:08,474 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.028*\"unit\" + 0.021*\"town\" + 0.020*\"citi\" + 0.019*\"cricket\" + 0.017*\"scotland\" + 0.016*\"wale\" + 0.015*\"scottish\" + 0.015*\"manchest\" + 0.010*\"english\"\n", - "2019-01-16 04:31:08,476 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.009*\"year\" + 0.009*\"yard\"\n", - "2019-01-16 04:31:08,482 : INFO : topic diff=0.009116, rho=0.050000\n", - "2019-01-16 04:31:08,777 : INFO : PROGRESS: pass 0, at document #802000/4922894\n", - "2019-01-16 04:31:10,905 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:11,463 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.017*\"health\" + 0.016*\"hospit\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"effect\" + 0.009*\"medicin\"\n", - "2019-01-16 04:31:11,464 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.020*\"winner\" + 0.018*\"open\" + 0.018*\"point\" + 0.013*\"qualifi\" + 0.012*\"place\" + 0.011*\"second\"\n", - "2019-01-16 04:31:11,465 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 04:31:11,467 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.012*\"championship\" + 0.012*\"year\" + 0.012*\"tour\" + 0.010*\"time\"\n", - "2019-01-16 04:31:11,468 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.074*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.018*\"quebec\" + 0.018*\"british\" + 0.015*\"montreal\" + 0.014*\"korea\" + 0.014*\"vancouv\"\n", - "2019-01-16 04:31:11,474 : INFO : topic diff=0.008766, rho=0.049938\n", - "2019-01-16 04:31:11,782 : INFO : PROGRESS: pass 0, at document #804000/4922894\n", - "2019-01-16 04:31:13,877 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:14,439 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.043*\"counti\" + 0.033*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.027*\"area\" + 0.027*\"ag\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", - "2019-01-16 04:31:14,440 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"yard\" + 0.009*\"leagu\"\n", - "2019-01-16 04:31:14,442 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 04:31:14,444 : INFO : topic #46 (0.020): 0.153*\"class\" + 0.061*\"align\" + 0.058*\"wikit\" + 0.052*\"left\" + 0.050*\"center\" + 0.050*\"style\" + 0.035*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.028*\"border\"\n", - "2019-01-16 04:31:14,445 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.018*\"health\" + 0.016*\"hospit\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"treatment\" + 0.009*\"effect\" + 0.009*\"medicin\"\n", - "2019-01-16 04:31:14,451 : INFO : topic diff=0.008883, rho=0.049875\n", - "2019-01-16 04:31:14,751 : INFO : PROGRESS: pass 0, at document #806000/4922894\n", - "2019-01-16 04:31:16,816 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:17,377 : INFO : topic #16 (0.020): 0.035*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"cathol\" + 0.012*\"daughter\" + 0.012*\"year\" + 0.012*\"born\"\n", - "2019-01-16 04:31:17,379 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"american\" + 0.008*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:31:17,380 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.018*\"quebec\" + 0.018*\"british\" + 0.015*\"montreal\" + 0.014*\"vancouv\" + 0.014*\"korea\"\n", - "2019-01-16 04:31:17,382 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.023*\"japan\" + 0.021*\"medal\" + 0.021*\"men\" + 0.020*\"event\" + 0.020*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 04:31:17,383 : INFO : topic #14 (0.020): 0.015*\"servic\" + 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"univers\" + 0.012*\"intern\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.010*\"organ\"\n", - "2019-01-16 04:31:17,389 : INFO : topic diff=0.009503, rho=0.049814\n", - "2019-01-16 04:31:17,710 : INFO : PROGRESS: pass 0, at document #808000/4922894\n", - "2019-01-16 04:31:19,804 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:20,360 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.035*\"indian\" + 0.019*\"http\" + 0.015*\"iran\" + 0.014*\"www\" + 0.013*\"provinc\" + 0.013*\"pakistan\" + 0.012*\"district\" + 0.011*\"sri\" + 0.011*\"khan\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:31:20,362 : INFO : topic #48 (0.020): 0.080*\"march\" + 0.078*\"octob\" + 0.075*\"septemb\" + 0.075*\"januari\" + 0.070*\"novemb\" + 0.070*\"juli\" + 0.069*\"decemb\" + 0.069*\"april\" + 0.068*\"august\" + 0.067*\"june\"\n", - "2019-01-16 04:31:20,363 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"yard\"\n", - "2019-01-16 04:31:20,364 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.044*\"final\" + 0.028*\"tournament\" + 0.023*\"group\" + 0.020*\"winner\" + 0.018*\"point\" + 0.018*\"open\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.011*\"second\"\n", - "2019-01-16 04:31:20,366 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.042*\"counti\" + 0.033*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.027*\"area\" + 0.027*\"ag\" + 0.023*\"district\" + 0.023*\"famili\" + 0.022*\"censu\"\n", - "2019-01-16 04:31:20,371 : INFO : topic diff=0.009043, rho=0.049752\n", - "2019-01-16 04:31:20,689 : INFO : PROGRESS: pass 0, at document #810000/4922894\n", - "2019-01-16 04:31:22,760 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:23,315 : INFO : topic #46 (0.020): 0.152*\"class\" + 0.064*\"align\" + 0.058*\"wikit\" + 0.053*\"left\" + 0.051*\"style\" + 0.050*\"center\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.030*\"text\" + 0.027*\"border\"\n", - "2019-01-16 04:31:23,317 : INFO : topic #33 (0.020): 0.019*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"market\" + 0.008*\"bank\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.006*\"new\"\n", - "2019-01-16 04:31:23,319 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"jpg\"\n", - "2019-01-16 04:31:23,320 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:31:23,321 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.043*\"counti\" + 0.033*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.027*\"area\" + 0.026*\"ag\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", - "2019-01-16 04:31:23,327 : INFO : topic diff=0.007460, rho=0.049690\n", - "2019-01-16 04:31:23,643 : INFO : PROGRESS: pass 0, at document #812000/4922894\n", - "2019-01-16 04:31:25,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:26,350 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.034*\"indian\" + 0.019*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"provinc\" + 0.013*\"pakistan\" + 0.012*\"district\" + 0.011*\"sri\" + 0.011*\"islam\"\n", - "2019-01-16 04:31:26,351 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.012*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:31:26,352 : INFO : topic #35 (0.020): 0.033*\"lee\" + 0.021*\"singapor\" + 0.020*\"–present\" + 0.019*\"vietnam\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"kim\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.013*\"asian\"\n", - "2019-01-16 04:31:26,354 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n", - "2019-01-16 04:31:26,356 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.033*\"africa\" + 0.027*\"african\" + 0.024*\"south\" + 0.020*\"till\" + 0.020*\"text\" + 0.017*\"color\" + 0.011*\"black\" + 0.009*\"agricultur\" + 0.009*\"tropic\"\n", - "2019-01-16 04:31:26,363 : INFO : topic diff=0.009135, rho=0.049629\n", - "2019-01-16 04:31:26,679 : INFO : PROGRESS: pass 0, at document #814000/4922894\n", - "2019-01-16 04:31:28,755 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:29,315 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"health\" + 0.016*\"hospit\" + 0.013*\"ret\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.009*\"treatment\" + 0.009*\"medicin\"\n", - "2019-01-16 04:31:29,316 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.011*\"cell\" + 0.009*\"produc\" + 0.007*\"type\" + 0.007*\"vehicl\" + 0.007*\"electr\" + 0.007*\"design\"\n", - "2019-01-16 04:31:29,318 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.020*\"match\" + 0.019*\"wrestl\" + 0.018*\"team\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.013*\"fight\" + 0.013*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 04:31:29,319 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.036*\"museum\" + 0.027*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.014*\"galleri\" + 0.013*\"imag\" + 0.013*\"collect\"\n", - "2019-01-16 04:31:29,321 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.032*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"servic\"\n", - "2019-01-16 04:31:29,327 : INFO : topic diff=0.009084, rho=0.049568\n", - "2019-01-16 04:31:29,639 : INFO : PROGRESS: pass 0, at document #816000/4922894\n", - "2019-01-16 04:31:31,747 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:32,305 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"red\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"tree\"\n", - "2019-01-16 04:31:32,306 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.008*\"valu\" + 0.008*\"method\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 04:31:32,308 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.033*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.014*\"org\" + 0.013*\"provinc\" + 0.013*\"pakistan\" + 0.012*\"district\" + 0.011*\"islam\"\n", - "2019-01-16 04:31:32,309 : INFO : topic #39 (0.020): 0.043*\"air\" + 0.031*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"servic\"\n", - "2019-01-16 04:31:32,311 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"cup\" + 0.025*\"season\" + 0.017*\"match\" + 0.017*\"goal\" + 0.015*\"player\"\n", - "2019-01-16 04:31:32,316 : INFO : topic diff=0.008350, rho=0.049507\n", - "2019-01-16 04:31:32,642 : INFO : PROGRESS: pass 0, at document #818000/4922894\n", - "2019-01-16 04:31:34,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:35,245 : INFO : topic #14 (0.020): 0.015*\"servic\" + 0.014*\"research\" + 0.013*\"develop\" + 0.013*\"intern\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.010*\"organ\"\n", - "2019-01-16 04:31:35,246 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"earth\" + 0.006*\"high\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"effect\"\n", - "2019-01-16 04:31:35,248 : INFO : topic #9 (0.020): 0.070*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"direct\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 04:31:35,249 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.019*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.015*\"rout\" + 0.013*\"area\" + 0.013*\"lake\" + 0.011*\"north\"\n", - "2019-01-16 04:31:35,252 : INFO : topic #5 (0.020): 0.033*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"design\" + 0.007*\"data\"\n", - "2019-01-16 04:31:35,257 : INFO : topic diff=0.009017, rho=0.049447\n", - "2019-01-16 04:31:40,016 : INFO : -11.505 per-word bound, 2906.4 perplexity estimate based on a held-out corpus of 2000 documents with 539382 words\n", - "2019-01-16 04:31:40,017 : INFO : PROGRESS: pass 0, at document #820000/4922894\n", - "2019-01-16 04:31:42,083 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:42,638 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"us\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"effect\"\n", - "2019-01-16 04:31:42,640 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:31:42,641 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:31:42,643 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:31:42,645 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"health\" + 0.016*\"hospit\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.012*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"studi\" + 0.009*\"effect\"\n", - "2019-01-16 04:31:42,652 : INFO : topic diff=0.007571, rho=0.049386\n", - "2019-01-16 04:31:42,932 : INFO : PROGRESS: pass 0, at document #822000/4922894\n", - "2019-01-16 04:31:44,953 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:45,512 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.040*\"counti\" + 0.032*\"town\" + 0.031*\"villag\" + 0.029*\"citi\" + 0.027*\"ag\" + 0.027*\"area\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", - "2019-01-16 04:31:45,514 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.012*\"thoma\" + 0.012*\"jame\" + 0.012*\"ireland\"\n", - "2019-01-16 04:31:45,515 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.048*\"australian\" + 0.045*\"new\" + 0.043*\"china\" + 0.033*\"chines\" + 0.033*\"zealand\" + 0.026*\"south\" + 0.023*\"sydnei\" + 0.021*\"hong\" + 0.020*\"kong\"\n", - "2019-01-16 04:31:45,517 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 04:31:45,519 : INFO : topic #33 (0.020): 0.019*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.008*\"market\" + 0.008*\"bank\" + 0.008*\"time\" + 0.008*\"increas\" + 0.007*\"product\" + 0.007*\"cost\" + 0.006*\"new\"\n", - "2019-01-16 04:31:45,524 : INFO : topic diff=0.009200, rho=0.049326\n", - "2019-01-16 04:31:45,829 : INFO : PROGRESS: pass 0, at document #824000/4922894\n", - "2019-01-16 04:31:47,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:48,479 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.009*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"method\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 04:31:48,481 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"london\" + 0.021*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", - "2019-01-16 04:31:48,482 : INFO : topic #27 (0.020): 0.037*\"russian\" + 0.031*\"born\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.018*\"polish\" + 0.018*\"jewish\" + 0.018*\"republ\" + 0.015*\"moscow\" + 0.015*\"israel\" + 0.014*\"ukrainian\"\n", - "2019-01-16 04:31:48,484 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.019*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.009*\"mexican\" + 0.009*\"francisco\"\n", - "2019-01-16 04:31:48,485 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.016*\"vancouv\" + 0.016*\"quebec\" + 0.015*\"montreal\" + 0.015*\"korean\"\n", - "2019-01-16 04:31:48,491 : INFO : topic diff=0.007687, rho=0.049266\n", - "2019-01-16 04:31:48,817 : INFO : PROGRESS: pass 0, at document #826000/4922894\n", - "2019-01-16 04:31:50,931 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:51,488 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.012*\"die\" + 0.012*\"netherland\" + 0.012*\"und\"\n", - "2019-01-16 04:31:51,490 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.009*\"construct\"\n", - "2019-01-16 04:31:51,491 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.020*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"mexican\" + 0.010*\"juan\" + 0.009*\"lo\"\n", - "2019-01-16 04:31:51,493 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"program\" + 0.010*\"host\" + 0.010*\"dai\" + 0.009*\"network\"\n", - "2019-01-16 04:31:51,494 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"provinc\" + 0.012*\"pakistan\" + 0.012*\"org\" + 0.011*\"district\" + 0.011*\"sri\"\n", - "2019-01-16 04:31:51,500 : INFO : topic diff=0.007180, rho=0.049207\n", - "2019-01-16 04:31:51,795 : INFO : PROGRESS: pass 0, at document #828000/4922894\n", - "2019-01-16 04:31:53,845 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:54,402 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.015*\"piano\" + 0.014*\"opera\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:31:54,403 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"british\" + 0.021*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.013*\"royal\"\n", - "2019-01-16 04:31:54,405 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.020*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"area\" + 0.011*\"north\"\n", - "2019-01-16 04:31:54,406 : INFO : topic #15 (0.020): 0.030*\"unit\" + 0.028*\"england\" + 0.021*\"citi\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.016*\"scotland\" + 0.014*\"manchest\" + 0.014*\"wale\" + 0.014*\"scottish\" + 0.011*\"counti\"\n", - "2019-01-16 04:31:54,407 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.019*\"match\" + 0.018*\"wrestl\" + 0.018*\"team\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"fight\" + 0.013*\"world\" + 0.012*\"ring\"\n", - "2019-01-16 04:31:54,413 : INFO : topic diff=0.010769, rho=0.049147\n", - "2019-01-16 04:31:54,727 : INFO : PROGRESS: pass 0, at document #830000/4922894\n", - "2019-01-16 04:31:56,794 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:31:57,350 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.021*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"royal\"\n", - "2019-01-16 04:31:57,351 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.067*\"align\" + 0.058*\"left\" + 0.057*\"wikit\" + 0.053*\"center\" + 0.049*\"style\" + 0.042*\"text\" + 0.032*\"philippin\" + 0.032*\"right\" + 0.029*\"border\"\n", - "2019-01-16 04:31:57,353 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.030*\"world\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", - "2019-01-16 04:31:57,355 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.036*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 04:31:57,356 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"exampl\"\n", - "2019-01-16 04:31:57,363 : INFO : topic diff=0.007603, rho=0.049088\n", - "2019-01-16 04:31:57,674 : INFO : PROGRESS: pass 0, at document #832000/4922894\n", - "2019-01-16 04:31:59,751 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:00,309 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.025*\"winner\" + 0.022*\"group\" + 0.018*\"point\" + 0.017*\"open\" + 0.013*\"place\" + 0.013*\"qualifi\" + 0.011*\"second\"\n", - "2019-01-16 04:32:00,310 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.011*\"model\" + 0.011*\"power\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"type\" + 0.007*\"design\" + 0.007*\"vehicl\" + 0.007*\"electr\"\n", - "2019-01-16 04:32:00,312 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.011*\"roman\" + 0.010*\"greek\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"year\"\n", - "2019-01-16 04:32:00,313 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.019*\"team\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"fight\" + 0.013*\"world\" + 0.012*\"ring\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:32:00,318 : INFO : topic #39 (0.020): 0.044*\"air\" + 0.031*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.011*\"servic\"\n", - "2019-01-16 04:32:00,324 : INFO : topic diff=0.008361, rho=0.049029\n", - "2019-01-16 04:32:00,625 : INFO : PROGRESS: pass 0, at document #834000/4922894\n", - "2019-01-16 04:32:02,629 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:03,185 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"design\"\n", - "2019-01-16 04:32:03,186 : INFO : topic #40 (0.020): 0.034*\"bar\" + 0.034*\"africa\" + 0.027*\"african\" + 0.024*\"south\" + 0.020*\"text\" + 0.019*\"till\" + 0.017*\"color\" + 0.010*\"black\" + 0.010*\"agricultur\" + 0.009*\"cape\"\n", - "2019-01-16 04:32:03,188 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.017*\"act\" + 0.013*\"polic\" + 0.012*\"case\" + 0.011*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:32:03,189 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"american\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"richard\" + 0.006*\"peter\"\n", - "2019-01-16 04:32:03,191 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"method\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 04:32:03,197 : INFO : topic diff=0.008174, rho=0.048970\n", - "2019-01-16 04:32:03,482 : INFO : PROGRESS: pass 0, at document #836000/4922894\n", - "2019-01-16 04:32:05,557 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:06,114 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"team\" + 0.033*\"plai\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"match\" + 0.016*\"goal\" + 0.015*\"player\"\n", - "2019-01-16 04:32:06,115 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.063*\"align\" + 0.058*\"wikit\" + 0.056*\"left\" + 0.052*\"center\" + 0.049*\"style\" + 0.043*\"text\" + 0.032*\"philippin\" + 0.031*\"right\" + 0.029*\"border\"\n", - "2019-01-16 04:32:06,116 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", - "2019-01-16 04:32:06,118 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"–present\" + 0.020*\"singapor\" + 0.019*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"malaysia\" + 0.015*\"kim\" + 0.014*\"asia\" + 0.014*\"asian\"\n", - "2019-01-16 04:32:06,119 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"us\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"form\"\n", - "2019-01-16 04:32:06,126 : INFO : topic diff=0.008172, rho=0.048912\n", - "2019-01-16 04:32:06,423 : INFO : PROGRESS: pass 0, at document #838000/4922894\n", - "2019-01-16 04:32:08,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:09,058 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"der\" + 0.023*\"von\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:32:09,059 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"match\" + 0.016*\"goal\" + 0.015*\"player\"\n", - "2019-01-16 04:32:09,062 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.010*\"offic\"\n", - "2019-01-16 04:32:09,063 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.041*\"counti\" + 0.032*\"town\" + 0.031*\"villag\" + 0.030*\"citi\" + 0.027*\"ag\" + 0.026*\"area\" + 0.023*\"district\" + 0.022*\"famili\" + 0.022*\"censu\"\n", - "2019-01-16 04:32:09,065 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"magazin\"\n", - "2019-01-16 04:32:09,071 : INFO : topic diff=0.008151, rho=0.048853\n", - "2019-01-16 04:32:13,686 : INFO : -11.760 per-word bound, 3469.1 perplexity estimate based on a held-out corpus of 2000 documents with 526359 words\n", - "2019-01-16 04:32:13,686 : INFO : PROGRESS: pass 0, at document #840000/4922894\n", - "2019-01-16 04:32:15,745 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:16,302 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"design\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:32:16,304 : INFO : topic #5 (0.020): 0.033*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"video\" + 0.007*\"data\"\n", - "2019-01-16 04:32:16,305 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.018*\"team\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.014*\"fight\" + 0.013*\"world\" + 0.012*\"ring\"\n", - "2019-01-16 04:32:16,306 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"piano\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.013*\"opera\"\n", - "2019-01-16 04:32:16,308 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", - "2019-01-16 04:32:16,313 : INFO : topic diff=0.008242, rho=0.048795\n", - "2019-01-16 04:32:16,654 : INFO : PROGRESS: pass 0, at document #842000/4922894\n", - "2019-01-16 04:32:18,729 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:19,287 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:32:19,288 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", - "2019-01-16 04:32:19,290 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"form\"\n", - "2019-01-16 04:32:19,292 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.018*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"piano\" + 0.015*\"plai\" + 0.013*\"opera\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:32:19,293 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.011*\"cathol\"\n", - "2019-01-16 04:32:19,299 : INFO : topic diff=0.008384, rho=0.048737\n", - "2019-01-16 04:32:19,590 : INFO : PROGRESS: pass 0, at document #844000/4922894\n", - "2019-01-16 04:32:21,563 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:22,120 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"singapor\" + 0.020*\"–present\" + 0.020*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"kim\" + 0.016*\"malaysia\" + 0.014*\"asia\" + 0.014*\"asian\"\n", - "2019-01-16 04:32:22,122 : INFO : topic #15 (0.020): 0.029*\"unit\" + 0.028*\"england\" + 0.022*\"citi\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.010*\"counti\"\n", - "2019-01-16 04:32:22,123 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.019*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"mexican\" + 0.010*\"juan\" + 0.010*\"josé\"\n", - "2019-01-16 04:32:22,125 : INFO : topic #16 (0.020): 0.035*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.012*\"year\" + 0.012*\"daughter\" + 0.012*\"born\" + 0.012*\"cathol\"\n", - "2019-01-16 04:32:22,126 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.014*\"park\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:32:22,132 : INFO : topic diff=0.009305, rho=0.048679\n", - "2019-01-16 04:32:22,433 : INFO : PROGRESS: pass 0, at document #846000/4922894\n", - "2019-01-16 04:32:24,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:25,032 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.006*\"us\" + 0.005*\"god\"\n", - "2019-01-16 04:32:25,033 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"method\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 04:32:25,034 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.008*\"teacher\"\n", - "2019-01-16 04:32:25,036 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.010*\"offic\"\n", - "2019-01-16 04:32:25,037 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.017*\"match\" + 0.016*\"goal\" + 0.015*\"player\"\n", - "2019-01-16 04:32:25,043 : INFO : topic diff=0.007826, rho=0.048622\n", - "2019-01-16 04:32:25,340 : INFO : PROGRESS: pass 0, at document #848000/4922894\n", - "2019-01-16 04:32:27,425 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:27,982 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"singapor\" + 0.020*\"–present\" + 0.020*\"vietnam\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"kim\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 04:32:27,983 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"cell\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:32:27,985 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"method\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 04:32:27,986 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.008*\"teacher\"\n", - "2019-01-16 04:32:27,987 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.046*\"new\" + 0.040*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.026*\"south\" + 0.024*\"sydnei\" + 0.020*\"kong\" + 0.018*\"hong\"\n", - "2019-01-16 04:32:27,993 : INFO : topic diff=0.007997, rho=0.048564\n", - "2019-01-16 04:32:28,306 : INFO : PROGRESS: pass 0, at document #850000/4922894\n", - "2019-01-16 04:32:30,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:30,917 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"red\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"tree\"\n", - "2019-01-16 04:32:30,919 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.011*\"patient\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"effect\"\n", - "2019-01-16 04:32:30,922 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"said\"\n", - "2019-01-16 04:32:30,924 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"der\" + 0.023*\"von\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:32:30,925 : INFO : topic #5 (0.020): 0.033*\"game\" + 0.009*\"develop\" + 0.009*\"version\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:32:30,932 : INFO : topic diff=0.014077, rho=0.048507\n", - "2019-01-16 04:32:31,208 : INFO : PROGRESS: pass 0, at document #852000/4922894\n", - "2019-01-16 04:32:33,197 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:33,752 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.019*\"http\" + 0.014*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"khan\" + 0.012*\"provinc\" + 0.011*\"district\" + 0.011*\"singh\"\n", - "2019-01-16 04:32:33,754 : INFO : topic #15 (0.020): 0.028*\"unit\" + 0.027*\"england\" + 0.021*\"citi\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.011*\"counti\"\n", - "2019-01-16 04:32:33,755 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.023*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:32:33,756 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"american\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:32:33,758 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.018*\"forc\" + 0.015*\"battl\" + 0.015*\"regiment\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"lieuten\" + 0.012*\"corp\"\n", - "2019-01-16 04:32:33,764 : INFO : topic diff=0.009127, rho=0.048450\n", - "2019-01-16 04:32:34,070 : INFO : PROGRESS: pass 0, at document #854000/4922894\n", - "2019-01-16 04:32:36,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:36,719 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.023*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:32:36,721 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"method\" + 0.008*\"set\" + 0.007*\"valu\" + 0.007*\"order\" + 0.007*\"gener\"\n", - "2019-01-16 04:32:36,723 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"singapor\" + 0.020*\"vietnam\" + 0.019*\"–present\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"kim\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 04:32:36,724 : INFO : topic #49 (0.020): 0.071*\"north\" + 0.069*\"south\" + 0.067*\"west\" + 0.066*\"region\" + 0.065*\"east\" + 0.055*\"district\" + 0.030*\"central\" + 0.025*\"northern\" + 0.023*\"administr\" + 0.020*\"western\"\n", - "2019-01-16 04:32:36,726 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.018*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"regiment\" + 0.014*\"gener\" + 0.012*\"lieuten\" + 0.012*\"battalion\"\n", - "2019-01-16 04:32:36,731 : INFO : topic diff=0.008057, rho=0.048393\n", - "2019-01-16 04:32:37,015 : INFO : PROGRESS: pass 0, at document #856000/4922894\n", - "2019-01-16 04:32:39,116 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:39,672 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:32:39,674 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:32:39,676 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.014*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:32:39,677 : INFO : topic #40 (0.020): 0.035*\"africa\" + 0.031*\"bar\" + 0.030*\"african\" + 0.025*\"south\" + 0.019*\"till\" + 0.018*\"text\" + 0.017*\"color\" + 0.011*\"cape\" + 0.010*\"black\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:32:39,679 : INFO : topic #33 (0.020): 0.020*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"busi\" + 0.006*\"new\"\n", - "2019-01-16 04:32:39,685 : INFO : topic diff=0.007572, rho=0.048337\n", - "2019-01-16 04:32:39,970 : INFO : PROGRESS: pass 0, at document #858000/4922894\n", - "2019-01-16 04:32:42,081 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:42,639 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.079*\"align\" + 0.074*\"left\" + 0.058*\"wikit\" + 0.049*\"style\" + 0.048*\"center\" + 0.037*\"text\" + 0.034*\"philippin\" + 0.029*\"right\" + 0.027*\"border\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:32:42,640 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 04:32:42,642 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.031*\"oper\" + 0.024*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.012*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:32:42,643 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.011*\"host\" + 0.010*\"program\" + 0.010*\"dai\" + 0.009*\"air\"\n", - "2019-01-16 04:32:42,645 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"der\" + 0.022*\"von\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"die\" + 0.012*\"und\" + 0.011*\"netherland\"\n", - "2019-01-16 04:32:42,651 : INFO : topic diff=0.008478, rho=0.048280\n", - "2019-01-16 04:32:47,414 : INFO : -11.691 per-word bound, 3307.0 perplexity estimate based on a held-out corpus of 2000 documents with 552113 words\n", - "2019-01-16 04:32:47,414 : INFO : PROGRESS: pass 0, at document #860000/4922894\n", - "2019-01-16 04:32:49,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:50,096 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 04:32:50,098 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.027*\"work\" + 0.022*\"artist\" + 0.021*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.013*\"galleri\" + 0.013*\"collect\" + 0.013*\"jpg\"\n", - "2019-01-16 04:32:50,099 : INFO : topic #15 (0.020): 0.027*\"england\" + 0.027*\"unit\" + 0.020*\"citi\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.015*\"scotland\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\" + 0.011*\"counti\"\n", - "2019-01-16 04:32:50,101 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.077*\"align\" + 0.072*\"left\" + 0.058*\"wikit\" + 0.049*\"style\" + 0.047*\"center\" + 0.036*\"text\" + 0.034*\"philippin\" + 0.029*\"right\" + 0.028*\"border\"\n", - "2019-01-16 04:32:50,103 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"wrestl\" + 0.018*\"match\" + 0.018*\"team\" + 0.018*\"contest\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.013*\"fight\" + 0.012*\"week\" + 0.012*\"world\"\n", - "2019-01-16 04:32:50,109 : INFO : topic diff=0.007100, rho=0.048224\n", - "2019-01-16 04:32:50,402 : INFO : PROGRESS: pass 0, at document #862000/4922894\n", - "2019-01-16 04:32:52,564 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:53,129 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.030*\"perform\" + 0.021*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"piano\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.013*\"opera\" + 0.012*\"orchestra\"\n", - "2019-01-16 04:32:53,130 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.029*\"championship\" + 0.027*\"men\" + 0.026*\"olymp\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"japan\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", - "2019-01-16 04:32:53,132 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.019*\"http\" + 0.014*\"pakistan\" + 0.014*\"www\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"provinc\" + 0.011*\"district\" + 0.010*\"islam\"\n", - "2019-01-16 04:32:53,133 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.038*\"counti\" + 0.034*\"town\" + 0.033*\"villag\" + 0.028*\"citi\" + 0.027*\"ag\" + 0.025*\"area\" + 0.023*\"district\" + 0.022*\"censu\" + 0.022*\"municip\"\n", - "2019-01-16 04:32:53,135 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.018*\"royal\" + 0.014*\"georg\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"sir\" + 0.012*\"henri\"\n", - "2019-01-16 04:32:53,141 : INFO : topic diff=0.008331, rho=0.048168\n", - "2019-01-16 04:32:53,422 : INFO : PROGRESS: pass 0, at document #864000/4922894\n", - "2019-01-16 04:32:55,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:55,974 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.014*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"cell\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"manufactur\" + 0.008*\"type\" + 0.008*\"electr\"\n", - "2019-01-16 04:32:55,976 : INFO : topic #5 (0.020): 0.033*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:32:55,978 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.016*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:32:55,979 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"magazin\"\n", - "2019-01-16 04:32:55,981 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:32:55,988 : INFO : topic diff=0.008736, rho=0.048113\n", - "2019-01-16 04:32:56,301 : INFO : PROGRESS: pass 0, at document #866000/4922894\n", - "2019-01-16 04:32:58,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:32:58,933 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:32:58,935 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.017*\"act\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:32:58,936 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.033*\"born\" + 0.024*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.018*\"polish\" + 0.015*\"republ\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.012*\"poland\"\n", - "2019-01-16 04:32:58,938 : INFO : topic #15 (0.020): 0.027*\"england\" + 0.027*\"unit\" + 0.020*\"citi\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.015*\"scottish\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.012*\"wale\" + 0.011*\"counti\"\n", - "2019-01-16 04:32:58,940 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:32:58,946 : INFO : topic diff=0.007715, rho=0.048057\n", - "2019-01-16 04:32:59,273 : INFO : PROGRESS: pass 0, at document #868000/4922894\n", - "2019-01-16 04:33:01,349 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:01,906 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.016*\"act\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:33:01,908 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.031*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.015*\"flight\" + 0.012*\"wing\" + 0.012*\"base\"\n", - "2019-01-16 04:33:01,910 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.027*\"work\" + 0.023*\"artist\" + 0.021*\"design\" + 0.021*\"paint\" + 0.017*\"exhibit\" + 0.013*\"galleri\" + 0.013*\"jpg\" + 0.013*\"collect\"\n", - "2019-01-16 04:33:01,911 : INFO : topic #25 (0.020): 0.043*\"round\" + 0.043*\"final\" + 0.030*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.019*\"open\" + 0.014*\"point\" + 0.013*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", - "2019-01-16 04:33:01,913 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.019*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"studi\" + 0.009*\"medicin\"\n", - "2019-01-16 04:33:01,918 : INFO : topic diff=0.008509, rho=0.048002\n", - "2019-01-16 04:33:02,238 : INFO : PROGRESS: pass 0, at document #870000/4922894\n", - "2019-01-16 04:33:04,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:04,889 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:33:04,890 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:33:04,892 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.054*\"australian\" + 0.045*\"new\" + 0.040*\"china\" + 0.033*\"chines\" + 0.031*\"zealand\" + 0.026*\"south\" + 0.022*\"kong\" + 0.022*\"sydnei\" + 0.020*\"hong\"\n", - "2019-01-16 04:33:04,894 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.030*\"oper\" + 0.025*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.012*\"wing\" + 0.012*\"base\"\n", - "2019-01-16 04:33:04,895 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.030*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.018*\"open\" + 0.014*\"point\" + 0.013*\"place\" + 0.012*\"runner\" + 0.012*\"qualifi\"\n", - "2019-01-16 04:33:04,902 : INFO : topic diff=0.009148, rho=0.047946\n", - "2019-01-16 04:33:05,207 : INFO : PROGRESS: pass 0, at document #872000/4922894\n", - "2019-01-16 04:33:07,305 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:07,862 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.008*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"materi\" + 0.005*\"earth\" + 0.005*\"time\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:33:07,864 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.031*\"world\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.026*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 04:33:07,865 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:33:07,867 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.010*\"develop\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:33:07,869 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:33:07,874 : INFO : topic diff=0.008373, rho=0.047891\n", - "2019-01-16 04:33:08,174 : INFO : PROGRESS: pass 0, at document #874000/4922894\n", - "2019-01-16 04:33:10,265 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:10,822 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 04:33:10,823 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 04:33:10,825 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"yard\" + 0.010*\"year\" + 0.010*\"basebal\"\n", - "2019-01-16 04:33:10,826 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.014*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.008*\"cell\" + 0.008*\"design\" + 0.008*\"manufactur\" + 0.008*\"type\" + 0.008*\"vehicl\"\n", - "2019-01-16 04:33:10,828 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.023*\"court\" + 0.018*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:33:10,834 : INFO : topic diff=0.008642, rho=0.047836\n", - "2019-01-16 04:33:11,113 : INFO : PROGRESS: pass 0, at document #876000/4922894\n", - "2019-01-16 04:33:13,135 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:13,690 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.010*\"carlo\"\n", - "2019-01-16 04:33:13,691 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.029*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.018*\"open\" + 0.014*\"point\" + 0.014*\"place\" + 0.012*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 04:33:13,694 : INFO : topic #40 (0.020): 0.035*\"africa\" + 0.032*\"bar\" + 0.029*\"african\" + 0.025*\"south\" + 0.020*\"till\" + 0.019*\"text\" + 0.018*\"color\" + 0.010*\"cape\" + 0.010*\"agricultur\" + 0.009*\"black\"\n", - "2019-01-16 04:33:13,695 : INFO : topic #33 (0.020): 0.021*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"time\" + 0.007*\"increas\" + 0.007*\"product\" + 0.007*\"busi\" + 0.006*\"new\"\n", - "2019-01-16 04:33:13,696 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.016*\"royal\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.012*\"sir\" + 0.012*\"henri\"\n", - "2019-01-16 04:33:13,704 : INFO : topic diff=0.009605, rho=0.047782\n", - "2019-01-16 04:33:13,995 : INFO : PROGRESS: pass 0, at document #878000/4922894\n", - "2019-01-16 04:33:16,134 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:16,690 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.021*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"opera\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:33:16,692 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.025*\"men\" + 0.023*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 04:33:16,693 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.014*\"actor\" + 0.013*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 04:33:16,694 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"seat\"\n", - "2019-01-16 04:33:16,696 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:33:16,701 : INFO : topic diff=0.007680, rho=0.047727\n", - "2019-01-16 04:33:21,282 : INFO : -11.641 per-word bound, 3194.6 perplexity estimate based on a held-out corpus of 2000 documents with 523414 words\n", - "2019-01-16 04:33:21,283 : INFO : PROGRESS: pass 0, at document #880000/4922894\n", - "2019-01-16 04:33:23,305 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:23,862 : INFO : topic #49 (0.020): 0.072*\"north\" + 0.069*\"south\" + 0.067*\"west\" + 0.066*\"east\" + 0.066*\"region\" + 0.055*\"district\" + 0.030*\"central\" + 0.025*\"northern\" + 0.023*\"administr\" + 0.020*\"villag\"\n", - "2019-01-16 04:33:23,864 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"red\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"tree\"\n", - "2019-01-16 04:33:23,866 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"construct\"\n", - "2019-01-16 04:33:23,867 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.007*\"citi\" + 0.007*\"ancient\"\n", - "2019-01-16 04:33:23,869 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:33:23,875 : INFO : topic diff=0.007765, rho=0.047673\n", - "2019-01-16 04:33:24,181 : INFO : PROGRESS: pass 0, at document #882000/4922894\n", - "2019-01-16 04:33:26,256 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:26,813 : INFO : topic #27 (0.020): 0.037*\"russian\" + 0.036*\"born\" + 0.024*\"russia\" + 0.022*\"soviet\" + 0.020*\"jewish\" + 0.018*\"polish\" + 0.015*\"republ\" + 0.015*\"moscow\" + 0.013*\"israel\" + 0.012*\"poland\"\n", - "2019-01-16 04:33:26,814 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.024*\"area\" + 0.023*\"district\" + 0.022*\"censu\" + 0.022*\"famili\"\n", - "2019-01-16 04:33:26,816 : INFO : topic #4 (0.020): 0.123*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.010*\"program\" + 0.009*\"campu\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:33:26,818 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 04:33:26,820 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.012*\"televis\" + 0.011*\"host\" + 0.010*\"program\" + 0.009*\"dai\" + 0.009*\"air\"\n", - "2019-01-16 04:33:26,827 : INFO : topic diff=0.008276, rho=0.047619\n", - "2019-01-16 04:33:27,121 : INFO : PROGRESS: pass 0, at document #884000/4922894\n", - "2019-01-16 04:33:29,252 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:29,810 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.031*\"armi\" + 0.023*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"corp\"\n", - "2019-01-16 04:33:29,812 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.016*\"royal\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.012*\"sir\" + 0.012*\"henri\"\n", - "2019-01-16 04:33:29,813 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"year\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"championship\"\n", - "2019-01-16 04:33:29,815 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"gun\" + 0.011*\"sea\" + 0.011*\"navi\" + 0.010*\"boat\" + 0.009*\"kill\" + 0.008*\"island\" + 0.008*\"damag\" + 0.008*\"port\" + 0.007*\"coast\"\n", - "2019-01-16 04:33:29,816 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.020*\"singapor\" + 0.019*\"vietnam\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"kim\" + 0.016*\"thailand\" + 0.015*\"asian\" + 0.014*\"–present\" + 0.013*\"asia\"\n", - "2019-01-16 04:33:29,822 : INFO : topic diff=0.007879, rho=0.047565\n", - "2019-01-16 04:33:30,120 : INFO : PROGRESS: pass 0, at document #886000/4922894\n", - "2019-01-16 04:33:32,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:32,810 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", - "2019-01-16 04:33:32,812 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.025*\"saint\" + 0.024*\"pari\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.013*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:33:32,813 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.012*\"year\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"lap\"\n", - "2019-01-16 04:33:32,814 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.020*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"brazil\" + 0.012*\"spain\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.009*\"carlo\"\n", - "2019-01-16 04:33:32,815 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.018*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:33:32,821 : INFO : topic diff=0.007974, rho=0.047511\n", - "2019-01-16 04:33:33,102 : INFO : PROGRESS: pass 0, at document #888000/4922894\n", - "2019-01-16 04:33:35,145 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:35,702 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.014*\"festiv\" + 0.014*\"piano\" + 0.013*\"opera\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:33:35,703 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 04:33:35,705 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:33:35,707 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", - "2019-01-16 04:33:35,709 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.069*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.016*\"british\" + 0.015*\"ye\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", - "2019-01-16 04:33:35,716 : INFO : topic diff=0.008885, rho=0.047458\n", - "2019-01-16 04:33:36,005 : INFO : PROGRESS: pass 0, at document #890000/4922894\n", - "2019-01-16 04:33:38,026 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:38,582 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.053*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.035*\"chines\" + 0.033*\"zealand\" + 0.026*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.019*\"hong\"\n", - "2019-01-16 04:33:38,583 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.016*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 04:33:38,585 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.012*\"gun\" + 0.011*\"sea\" + 0.011*\"navi\" + 0.010*\"boat\" + 0.009*\"kill\" + 0.009*\"island\" + 0.008*\"port\" + 0.008*\"damag\" + 0.007*\"vessel\"\n", - "2019-01-16 04:33:38,587 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.014*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", - "2019-01-16 04:33:38,589 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.028*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"point\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 04:33:38,595 : INFO : topic diff=0.008203, rho=0.047405\n", - "2019-01-16 04:33:38,883 : INFO : PROGRESS: pass 0, at document #892000/4922894\n", - "2019-01-16 04:33:40,949 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:41,506 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"church\"\n", - "2019-01-16 04:33:41,508 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.020*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"brazil\" + 0.012*\"spain\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"juan\" + 0.009*\"carlo\"\n", - "2019-01-16 04:33:41,510 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.022*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"yard\" + 0.009*\"basebal\"\n", - "2019-01-16 04:33:41,512 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"opera\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:33:41,513 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"red\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.006*\"tree\"\n", - "2019-01-16 04:33:41,520 : INFO : topic diff=0.009609, rho=0.047351\n", - "2019-01-16 04:33:41,842 : INFO : PROGRESS: pass 0, at document #894000/4922894\n", - "2019-01-16 04:33:43,929 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:44,485 : INFO : topic #40 (0.020): 0.034*\"africa\" + 0.032*\"bar\" + 0.029*\"african\" + 0.025*\"south\" + 0.019*\"till\" + 0.018*\"text\" + 0.017*\"color\" + 0.012*\"tropic\" + 0.010*\"cape\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:33:44,487 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 04:33:44,488 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"counti\" + 0.035*\"town\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.027*\"ag\" + 0.024*\"area\" + 0.022*\"district\" + 0.022*\"censu\" + 0.021*\"famili\"\n", - "2019-01-16 04:33:44,489 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.026*\"work\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.021*\"design\" + 0.017*\"exhibit\" + 0.014*\"jpg\" + 0.014*\"galleri\" + 0.013*\"collect\"\n", - "2019-01-16 04:33:44,491 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.031*\"armi\" + 0.023*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.011*\"battalion\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:33:44,496 : INFO : topic diff=0.008954, rho=0.047298\n", - "2019-01-16 04:33:44,776 : INFO : PROGRESS: pass 0, at document #896000/4922894\n", - "2019-01-16 04:33:46,855 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:47,412 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"point\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\"\n", - "2019-01-16 04:33:47,413 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.016*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:33:47,416 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.015*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.008*\"manufactur\" + 0.008*\"design\" + 0.007*\"electr\" + 0.007*\"type\"\n", - "2019-01-16 04:33:47,417 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 04:33:47,419 : INFO : topic #40 (0.020): 0.034*\"africa\" + 0.033*\"bar\" + 0.028*\"african\" + 0.025*\"south\" + 0.020*\"till\" + 0.019*\"text\" + 0.017*\"color\" + 0.011*\"tropic\" + 0.010*\"cape\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:33:47,425 : INFO : topic diff=0.008315, rho=0.047246\n", - "2019-01-16 04:33:47,709 : INFO : PROGRESS: pass 0, at document #898000/4922894\n", - "2019-01-16 04:33:49,850 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:50,409 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"gun\" + 0.011*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.008*\"kill\" + 0.008*\"island\" + 0.008*\"port\" + 0.008*\"damag\" + 0.007*\"coast\"\n", - "2019-01-16 04:33:50,411 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.010*\"david\" + 0.009*\"michael\" + 0.008*\"smith\" + 0.008*\"american\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:33:50,413 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 04:33:50,414 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"time\" + 0.010*\"ford\" + 0.010*\"championship\"\n", - "2019-01-16 04:33:50,415 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.041*\"franc\" + 0.029*\"italian\" + 0.024*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:33:50,421 : INFO : topic diff=0.008468, rho=0.047193\n", - "2019-01-16 04:33:55,320 : INFO : -11.833 per-word bound, 3649.2 perplexity estimate based on a held-out corpus of 2000 documents with 591281 words\n", - "2019-01-16 04:33:55,321 : INFO : PROGRESS: pass 0, at document #900000/4922894\n", - "2019-01-16 04:33:57,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:33:58,057 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.006*\"citi\"\n", - "2019-01-16 04:33:58,058 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.017*\"austria\" + 0.012*\"und\" + 0.012*\"netherland\"\n", - "2019-01-16 04:33:58,060 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 04:33:58,062 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.011*\"tour\" + 0.011*\"time\" + 0.010*\"ford\" + 0.010*\"championship\"\n", - "2019-01-16 04:33:58,064 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:33:58,070 : INFO : topic diff=0.009103, rho=0.047140\n", - "2019-01-16 04:33:58,363 : INFO : PROGRESS: pass 0, at document #902000/4922894\n", - "2019-01-16 04:34:00,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:01,095 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 04:34:01,097 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"univers\" + 0.012*\"servic\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"manag\"\n", - "2019-01-16 04:34:01,099 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.010*\"war\" + 0.009*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 04:34:01,100 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"kill\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:34:01,102 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"basebal\" + 0.009*\"record\"\n", - "2019-01-16 04:34:01,109 : INFO : topic diff=0.008504, rho=0.047088\n", - "2019-01-16 04:34:01,391 : INFO : PROGRESS: pass 0, at document #904000/4922894\n", - "2019-01-16 04:34:03,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:04,055 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"construct\"\n", - "2019-01-16 04:34:04,057 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 04:34:04,059 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"later\" + 0.004*\"like\" + 0.004*\"kill\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:34:04,062 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.012*\"gun\" + 0.011*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.009*\"island\" + 0.008*\"port\" + 0.008*\"kill\" + 0.008*\"damag\" + 0.007*\"coast\"\n", - "2019-01-16 04:34:04,064 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.006*\"citi\"\n", - "2019-01-16 04:34:04,071 : INFO : topic diff=0.007385, rho=0.047036\n", - "2019-01-16 04:34:04,356 : INFO : PROGRESS: pass 0, at document #906000/4922894\n", - "2019-01-16 04:34:06,421 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:06,978 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.046*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 04:34:06,980 : INFO : topic #33 (0.020): 0.022*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.009*\"market\" + 0.008*\"bank\" + 0.008*\"time\" + 0.008*\"product\" + 0.007*\"busi\" + 0.007*\"increas\" + 0.006*\"new\"\n", - "2019-01-16 04:34:06,982 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.013*\"finish\" + 0.012*\"year\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 04:34:06,983 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.005*\"english\"\n", - "2019-01-16 04:34:06,985 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:34:06,991 : INFO : topic diff=0.005601, rho=0.046984\n", - "2019-01-16 04:34:07,287 : INFO : PROGRESS: pass 0, at document #908000/4922894\n", - "2019-01-16 04:34:09,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:34:09,924 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"wrestl\" + 0.017*\"team\" + 0.017*\"match\" + 0.016*\"championship\" + 0.016*\"contest\" + 0.015*\"titl\" + 0.014*\"fight\" + 0.014*\"event\" + 0.012*\"world\"\n", - "2019-01-16 04:34:09,925 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.013*\"georg\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"sir\"\n", - "2019-01-16 04:34:09,927 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.031*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:34:09,928 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"paul\" + 0.007*\"american\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:34:09,930 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 04:34:09,936 : INFO : topic diff=0.006739, rho=0.046932\n", - "2019-01-16 04:34:10,222 : INFO : PROGRESS: pass 0, at document #910000/4922894\n", - "2019-01-16 04:34:12,321 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:12,878 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"jame\" + 0.007*\"paul\" + 0.007*\"smith\" + 0.007*\"american\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:34:12,880 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.069*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.022*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"vancouv\"\n", - "2019-01-16 04:34:12,881 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.036*\"counti\" + 0.031*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.026*\"district\" + 0.024*\"area\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:34:12,884 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:34:12,885 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"tour\" + 0.010*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 04:34:12,892 : INFO : topic diff=0.008660, rho=0.046881\n", - "2019-01-16 04:34:13,184 : INFO : PROGRESS: pass 0, at document #912000/4922894\n", - "2019-01-16 04:34:15,245 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:15,803 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:34:15,804 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"leagu\"\n", - "2019-01-16 04:34:15,805 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.016*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"drug\" + 0.009*\"medicin\" + 0.009*\"cancer\"\n", - "2019-01-16 04:34:15,807 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.036*\"counti\" + 0.031*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.026*\"district\" + 0.024*\"area\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:34:15,809 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"polit\" + 0.010*\"war\" + 0.009*\"countri\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 04:34:15,815 : INFO : topic diff=0.007022, rho=0.046829\n", - "2019-01-16 04:34:16,102 : INFO : PROGRESS: pass 0, at document #914000/4922894\n", - "2019-01-16 04:34:18,203 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:18,759 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:34:18,761 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:34:18,762 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"sir\"\n", - "2019-01-16 04:34:18,764 : INFO : topic #27 (0.020): 0.037*\"russian\" + 0.037*\"born\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.019*\"polish\" + 0.017*\"jewish\" + 0.016*\"republ\" + 0.014*\"moscow\" + 0.014*\"israel\" + 0.012*\"poland\"\n", - "2019-01-16 04:34:18,766 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.014*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 04:34:18,772 : INFO : topic diff=0.008347, rho=0.046778\n", - "2019-01-16 04:34:19,059 : INFO : PROGRESS: pass 0, at document #916000/4922894\n", - "2019-01-16 04:34:21,139 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:21,695 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.015*\"park\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:34:21,696 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.027*\"work\" + 0.023*\"artist\" + 0.021*\"paint\" + 0.020*\"design\" + 0.016*\"exhibit\" + 0.016*\"jpg\" + 0.014*\"galleri\" + 0.014*\"collect\"\n", - "2019-01-16 04:34:21,698 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 04:34:21,700 : INFO : topic #1 (0.020): 0.040*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:34:21,702 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"servic\"\n", - "2019-01-16 04:34:21,707 : INFO : topic diff=0.007186, rho=0.046727\n", - "2019-01-16 04:34:21,987 : INFO : PROGRESS: pass 0, at document #918000/4922894\n", - "2019-01-16 04:34:24,044 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:24,601 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.008*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\"\n", - "2019-01-16 04:34:24,603 : INFO : topic #49 (0.020): 0.072*\"district\" + 0.071*\"north\" + 0.065*\"south\" + 0.064*\"west\" + 0.064*\"east\" + 0.062*\"region\" + 0.029*\"central\" + 0.026*\"northern\" + 0.023*\"administr\" + 0.021*\"villag\"\n", - "2019-01-16 04:34:24,605 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.017*\"team\" + 0.017*\"wrestl\" + 0.017*\"contest\" + 0.016*\"championship\" + 0.016*\"match\" + 0.016*\"titl\" + 0.014*\"fight\" + 0.013*\"event\" + 0.013*\"world\"\n", - "2019-01-16 04:34:24,606 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"plant\" + 0.010*\"famili\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 04:34:24,608 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"match\" + 0.016*\"player\" + 0.016*\"goal\"\n", - "2019-01-16 04:34:24,615 : INFO : topic diff=0.006980, rho=0.046676\n", - "2019-01-16 04:34:29,514 : INFO : -11.677 per-word bound, 3274.5 perplexity estimate based on a held-out corpus of 2000 documents with 607127 words\n", - "2019-01-16 04:34:29,515 : INFO : PROGRESS: pass 0, at document #920000/4922894\n", - "2019-01-16 04:34:31,649 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:32,207 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.070*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.015*\"montreal\" + 0.015*\"british\" + 0.015*\"vancouv\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:34:32,208 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.008*\"church\"\n", - "2019-01-16 04:34:32,210 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.020*\"mexico\" + 0.016*\"del\" + 0.012*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 04:34:32,212 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.015*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"electr\" + 0.010*\"cell\" + 0.009*\"produc\" + 0.008*\"manufactur\" + 0.008*\"type\" + 0.007*\"design\"\n", - "2019-01-16 04:34:32,213 : INFO : topic #11 (0.020): 0.028*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:34:32,219 : INFO : topic diff=0.008055, rho=0.046625\n", - "2019-01-16 04:34:32,492 : INFO : PROGRESS: pass 0, at document #922000/4922894\n", - "2019-01-16 04:34:34,578 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:35,135 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.023*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"year\" + 0.011*\"time\" + 0.011*\"tour\" + 0.011*\"ford\" + 0.010*\"championship\"\n", - "2019-01-16 04:34:35,136 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"base\"\n", - "2019-01-16 04:34:35,138 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"team\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.016*\"match\" + 0.015*\"fight\" + 0.013*\"event\" + 0.013*\"world\"\n", - "2019-01-16 04:34:35,139 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"gold\" + 0.018*\"athlet\"\n", - "2019-01-16 04:34:35,141 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.015*\"flight\" + 0.012*\"base\" + 0.011*\"servic\"\n", - "2019-01-16 04:34:35,147 : INFO : topic diff=0.006725, rho=0.046575\n", - "2019-01-16 04:34:35,423 : INFO : PROGRESS: pass 0, at document #924000/4922894\n", - "2019-01-16 04:34:37,512 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:38,069 : INFO : topic #27 (0.020): 0.038*\"russian\" + 0.037*\"born\" + 0.023*\"russia\" + 0.021*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.016*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.012*\"poland\"\n", - "2019-01-16 04:34:38,070 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.012*\"channel\" + 0.012*\"televis\" + 0.010*\"program\" + 0.010*\"host\" + 0.009*\"network\" + 0.009*\"air\"\n", - "2019-01-16 04:34:38,072 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.036*\"chines\" + 0.035*\"zealand\" + 0.027*\"south\" + 0.020*\"kong\" + 0.020*\"sydnei\" + 0.019*\"hong\"\n", - "2019-01-16 04:34:38,074 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"case\" + 0.012*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:34:38,076 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.034*\"new\" + 0.030*\"american\" + 0.023*\"york\" + 0.023*\"unit\" + 0.016*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:34:38,082 : INFO : topic diff=0.008250, rho=0.046524\n", - "2019-01-16 04:34:38,370 : INFO : PROGRESS: pass 0, at document #926000/4922894\n", - "2019-01-16 04:34:40,511 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:41,071 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.016*\"gener\" + 0.012*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:34:41,072 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.023*\"car\" + 0.016*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.012*\"year\" + 0.011*\"time\" + 0.011*\"tour\" + 0.011*\"ford\" + 0.010*\"championship\"\n", - "2019-01-16 04:34:41,074 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.010*\"player\" + 0.009*\"version\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"base\"\n", - "2019-01-16 04:34:41,077 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.024*\"best\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.011*\"role\" + 0.011*\"direct\"\n", - "2019-01-16 04:34:41,078 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"khan\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"singh\"\n", - "2019-01-16 04:34:41,085 : INFO : topic diff=0.008441, rho=0.046474\n", - "2019-01-16 04:34:41,360 : INFO : PROGRESS: pass 0, at document #928000/4922894\n", - "2019-01-16 04:34:43,368 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:43,924 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.044*\"final\" + 0.030*\"tournament\" + 0.027*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.017*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", - "2019-01-16 04:34:43,926 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.019*\"compos\" + 0.019*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.015*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 04:34:43,928 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:34:43,930 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.013*\"gun\" + 0.011*\"navi\" + 0.011*\"sea\" + 0.009*\"boat\" + 0.008*\"island\" + 0.008*\"damag\" + 0.008*\"port\" + 0.007*\"coast\" + 0.007*\"vessel\"\n", - "2019-01-16 04:34:43,932 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n", - "2019-01-16 04:34:43,939 : INFO : topic diff=0.007704, rho=0.046424\n", - "2019-01-16 04:34:44,219 : INFO : PROGRESS: pass 0, at document #930000/4922894\n", - "2019-01-16 04:34:46,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:46,899 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.026*\"work\" + 0.023*\"artist\" + 0.022*\"paint\" + 0.021*\"design\" + 0.017*\"jpg\" + 0.016*\"exhibit\" + 0.014*\"galleri\" + 0.014*\"collect\"\n", - "2019-01-16 04:34:46,901 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\"\n", - "2019-01-16 04:34:46,902 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"legal\"\n", - "2019-01-16 04:34:46,904 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:34:46,905 : INFO : topic #40 (0.020): 0.032*\"africa\" + 0.031*\"bar\" + 0.029*\"african\" + 0.025*\"south\" + 0.020*\"till\" + 0.018*\"color\" + 0.017*\"text\" + 0.012*\"agricultur\" + 0.011*\"tropic\" + 0.010*\"black\"\n", - "2019-01-16 04:34:46,911 : INFO : topic diff=0.008500, rho=0.046374\n", - "2019-01-16 04:34:47,195 : INFO : PROGRESS: pass 0, at document #932000/4922894\n", - "2019-01-16 04:34:49,307 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:49,864 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"construct\"\n", - "2019-01-16 04:34:49,866 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.012*\"thoma\"\n", - "2019-01-16 04:34:49,867 : INFO : topic #1 (0.020): 0.040*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:34:49,869 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:34:49,872 : INFO : topic #17 (0.020): 0.057*\"race\" + 0.023*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"year\" + 0.011*\"time\" + 0.011*\"tour\" + 0.010*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 04:34:49,879 : INFO : topic diff=0.007063, rho=0.046324\n", - "2019-01-16 04:34:50,158 : INFO : PROGRESS: pass 0, at document #934000/4922894\n", - "2019-01-16 04:34:52,275 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:52,832 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.012*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.010*\"host\" + 0.009*\"network\" + 0.009*\"dai\"\n", - "2019-01-16 04:34:52,834 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:34:52,835 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:34:52,838 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"polit\" + 0.010*\"war\" + 0.009*\"countri\" + 0.007*\"union\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 04:34:52,839 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"american\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:34:52,845 : INFO : topic diff=0.007299, rho=0.046274\n", - "2019-01-16 04:34:53,120 : INFO : PROGRESS: pass 0, at document #936000/4922894\n", - "2019-01-16 04:34:55,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:55,766 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.022*\"unit\" + 0.021*\"cricket\" + 0.020*\"town\" + 0.017*\"citi\" + 0.016*\"manchest\" + 0.015*\"scotland\" + 0.015*\"scottish\" + 0.011*\"west\" + 0.011*\"london\"\n", - "2019-01-16 04:34:55,768 : INFO : topic #40 (0.020): 0.033*\"africa\" + 0.030*\"bar\" + 0.029*\"african\" + 0.025*\"south\" + 0.019*\"till\" + 0.017*\"color\" + 0.017*\"text\" + 0.012*\"agricultur\" + 0.011*\"tropic\" + 0.010*\"black\"\n", - "2019-01-16 04:34:55,769 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.023*\"best\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"televis\" + 0.012*\"role\" + 0.012*\"produc\"\n", - "2019-01-16 04:34:55,771 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"servic\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"institut\" + 0.012*\"univers\" + 0.011*\"nation\" + 0.011*\"scienc\" + 0.011*\"work\" + 0.011*\"organ\"\n", - "2019-01-16 04:34:55,772 : INFO : topic #11 (0.020): 0.027*\"law\" + 0.022*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"legal\"\n", - "2019-01-16 04:34:55,778 : INFO : topic diff=0.009951, rho=0.046225\n", - "2019-01-16 04:34:56,050 : INFO : PROGRESS: pass 0, at document #938000/4922894\n", - "2019-01-16 04:34:58,056 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:34:58,618 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"electr\" + 0.010*\"produc\" + 0.009*\"cell\" + 0.008*\"type\" + 0.008*\"protein\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:34:58,619 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.016*\"team\" + 0.015*\"match\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.012*\"event\" + 0.012*\"world\"\n", - "2019-01-16 04:34:58,621 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"octob\" + 0.070*\"march\" + 0.066*\"januari\" + 0.064*\"august\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.062*\"decemb\" + 0.062*\"april\" + 0.060*\"june\"\n", - "2019-01-16 04:34:58,622 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.046*\"parti\" + 0.022*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"seat\"\n", - "2019-01-16 04:34:58,624 : INFO : topic #28 (0.020): 0.027*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"church\"\n", - "2019-01-16 04:34:58,630 : INFO : topic diff=0.007997, rho=0.046176\n", - "2019-01-16 04:35:03,309 : INFO : -11.940 per-word bound, 3929.2 perplexity estimate based on a held-out corpus of 2000 documents with 557685 words\n", - "2019-01-16 04:35:03,310 : INFO : PROGRESS: pass 0, at document #940000/4922894\n", - "2019-01-16 04:35:05,384 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:05,941 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"counti\" + 0.034*\"town\" + 0.031*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.025*\"district\" + 0.024*\"area\" + 0.022*\"censu\" + 0.021*\"famili\"\n", - "2019-01-16 04:35:05,944 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:35:05,946 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:35:05,947 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.071*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.019*\"korean\" + 0.017*\"montreal\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"quebec\"\n", - "2019-01-16 04:35:05,949 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:35:05,954 : INFO : topic diff=0.008375, rho=0.046127\n", - "2019-01-16 04:35:06,221 : INFO : PROGRESS: pass 0, at document #942000/4922894\n", - "2019-01-16 04:35:08,333 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:08,889 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.017*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:35:08,891 : INFO : topic #49 (0.020): 0.072*\"north\" + 0.071*\"district\" + 0.065*\"south\" + 0.064*\"region\" + 0.064*\"west\" + 0.064*\"east\" + 0.031*\"central\" + 0.025*\"northern\" + 0.023*\"administr\" + 0.022*\"villag\"\n", - "2019-01-16 04:35:08,893 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"yard\"\n", - "2019-01-16 04:35:08,894 : INFO : topic #27 (0.020): 0.038*\"russian\" + 0.037*\"born\" + 0.024*\"russia\" + 0.023*\"soviet\" + 0.020*\"polish\" + 0.017*\"jewish\" + 0.015*\"moscow\" + 0.015*\"republ\" + 0.013*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 04:35:08,896 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n", - "2019-01-16 04:35:08,902 : INFO : topic diff=0.007871, rho=0.046078\n", - "2019-01-16 04:35:09,192 : INFO : PROGRESS: pass 0, at document #944000/4922894\n", - "2019-01-16 04:35:11,286 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:11,844 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 04:35:11,846 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", - "2019-01-16 04:35:11,848 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"yard\" + 0.009*\"record\"\n", - "2019-01-16 04:35:11,849 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:35:11,851 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.088*\"align\" + 0.079*\"left\" + 0.056*\"wikit\" + 0.051*\"center\" + 0.049*\"style\" + 0.040*\"right\" + 0.031*\"text\" + 0.030*\"philippin\" + 0.027*\"border\"\n", - "2019-01-16 04:35:11,857 : INFO : topic diff=0.007410, rho=0.046029\n", - "2019-01-16 04:35:12,157 : INFO : PROGRESS: pass 0, at document #946000/4922894\n", - "2019-01-16 04:35:14,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:14,767 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"case\" + 0.012*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:35:14,768 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.012*\"televis\"\n", - "2019-01-16 04:35:14,770 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.023*\"car\" + 0.016*\"team\" + 0.012*\"year\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"time\" + 0.011*\"ford\" + 0.010*\"miss\"\n", - "2019-01-16 04:35:14,772 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.012*\"gun\" + 0.012*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.008*\"island\" + 0.008*\"damag\" + 0.007*\"port\" + 0.007*\"vessel\" + 0.007*\"coast\"\n", - "2019-01-16 04:35:14,774 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:35:14,780 : INFO : topic diff=0.006648, rho=0.045980\n", - "2019-01-16 04:35:15,063 : INFO : PROGRESS: pass 0, at document #948000/4922894\n", - "2019-01-16 04:35:17,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:17,729 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 04:35:17,731 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:35:17,733 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.029*\"tournament\" + 0.025*\"winner\" + 0.022*\"open\" + 0.019*\"group\" + 0.017*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 04:35:17,734 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"cell\" + 0.010*\"produc\" + 0.009*\"electr\" + 0.007*\"type\" + 0.007*\"acid\" + 0.007*\"protein\"\n", - "2019-01-16 04:35:17,735 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.013*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:35:17,741 : INFO : topic diff=0.009623, rho=0.045932\n", - "2019-01-16 04:35:18,012 : INFO : PROGRESS: pass 0, at document #950000/4922894\n", - "2019-01-16 04:35:20,044 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:20,604 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"set\" + 0.007*\"point\" + 0.007*\"method\" + 0.007*\"gener\" + 0.007*\"model\"\n", - "2019-01-16 04:35:20,606 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.017*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:35:20,607 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:35:20,609 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n", - "2019-01-16 04:35:20,612 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 04:35:20,620 : INFO : topic diff=0.007068, rho=0.045883\n", - "2019-01-16 04:35:20,897 : INFO : PROGRESS: pass 0, at document #952000/4922894\n", - "2019-01-16 04:35:22,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:23,466 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:35:23,468 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.048*\"univers\" + 0.038*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:35:23,470 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:35:23,472 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.022*\"spanish\" + 0.021*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"mexican\" + 0.010*\"josé\" + 0.010*\"juan\"\n", - "2019-01-16 04:35:23,473 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.038*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.025*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\"\n", - "2019-01-16 04:35:23,479 : INFO : topic diff=0.008018, rho=0.045835\n", - "2019-01-16 04:35:23,746 : INFO : PROGRESS: pass 0, at document #954000/4922894\n", - "2019-01-16 04:35:25,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:26,310 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"base\"\n", - "2019-01-16 04:35:26,311 : INFO : topic #31 (0.020): 0.057*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.034*\"chines\" + 0.025*\"south\" + 0.021*\"hong\" + 0.020*\"kong\" + 0.018*\"sydnei\"\n", - "2019-01-16 04:35:26,313 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:35:26,314 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korean\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", - "2019-01-16 04:35:26,316 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"term\"\n", - "2019-01-16 04:35:26,321 : INFO : topic diff=0.008304, rho=0.045787\n", - "2019-01-16 04:35:26,598 : INFO : PROGRESS: pass 0, at document #956000/4922894\n", - "2019-01-16 04:35:28,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:29,244 : INFO : topic #14 (0.020): 0.015*\"servic\" + 0.015*\"research\" + 0.013*\"develop\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.010*\"scienc\"\n", - "2019-01-16 04:35:29,246 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"drug\" + 0.009*\"treatment\" + 0.009*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 04:35:29,248 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:35:29,249 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"citi\"\n", - "2019-01-16 04:35:29,251 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.038*\"russian\" + 0.024*\"russia\" + 0.023*\"soviet\" + 0.019*\"polish\" + 0.017*\"jewish\" + 0.016*\"republ\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.012*\"israel\"\n", - "2019-01-16 04:35:29,258 : INFO : topic diff=0.006346, rho=0.045739\n", - "2019-01-16 04:35:29,555 : INFO : PROGRESS: pass 0, at document #958000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:35:31,632 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:32,195 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:35:32,197 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.038*\"counti\" + 0.035*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.025*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:35:32,198 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"mexico\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.010*\"mexican\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\"\n", - "2019-01-16 04:35:32,200 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"octob\" + 0.068*\"march\" + 0.067*\"august\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.063*\"decemb\" + 0.061*\"april\" + 0.059*\"june\"\n", - "2019-01-16 04:35:32,201 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.018*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.015*\"park\" + 0.014*\"lake\" + 0.013*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:35:32,207 : INFO : topic diff=0.007274, rho=0.045691\n", - "2019-01-16 04:35:36,798 : INFO : -11.907 per-word bound, 3841.0 perplexity estimate based on a held-out corpus of 2000 documents with 536439 words\n", - "2019-01-16 04:35:36,799 : INFO : PROGRESS: pass 0, at document #960000/4922894\n", - "2019-01-16 04:35:38,842 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:39,398 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.016*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:35:39,400 : INFO : topic #46 (0.020): 0.124*\"class\" + 0.080*\"align\" + 0.073*\"left\" + 0.056*\"wikit\" + 0.053*\"style\" + 0.048*\"center\" + 0.042*\"right\" + 0.034*\"text\" + 0.032*\"philippin\" + 0.025*\"border\"\n", - "2019-01-16 04:35:39,401 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"octob\" + 0.069*\"march\" + 0.067*\"januari\" + 0.067*\"august\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.063*\"decemb\" + 0.061*\"april\" + 0.060*\"june\"\n", - "2019-01-16 04:35:39,403 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", - "2019-01-16 04:35:39,404 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:35:39,410 : INFO : topic diff=0.007639, rho=0.045644\n", - "2019-01-16 04:35:39,666 : INFO : PROGRESS: pass 0, at document #962000/4922894\n", - "2019-01-16 04:35:41,734 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:42,296 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.010*\"caus\" + 0.009*\"drug\" + 0.009*\"treatment\" + 0.009*\"studi\" + 0.008*\"effect\"\n", - "2019-01-16 04:35:42,298 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"base\"\n", - "2019-01-16 04:35:42,301 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.009*\"exampl\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\" + 0.007*\"model\"\n", - "2019-01-16 04:35:42,302 : INFO : topic #14 (0.020): 0.015*\"servic\" + 0.014*\"research\" + 0.013*\"develop\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.010*\"organ\"\n", - "2019-01-16 04:35:42,304 : INFO : topic #27 (0.020): 0.041*\"russian\" + 0.039*\"born\" + 0.024*\"russia\" + 0.022*\"soviet\" + 0.019*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.012*\"israel\"\n", - "2019-01-16 04:35:42,310 : INFO : topic diff=0.007837, rho=0.045596\n", - "2019-01-16 04:35:42,578 : INFO : PROGRESS: pass 0, at document #964000/4922894\n", - "2019-01-16 04:35:44,610 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:45,167 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.014*\"match\" + 0.014*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 04:35:45,169 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 04:35:45,170 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.024*\"winner\" + 0.020*\"open\" + 0.020*\"group\" + 0.017*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"second\"\n", - "2019-01-16 04:35:45,171 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.019*\"design\" + 0.018*\"jpg\" + 0.017*\"file\" + 0.016*\"exhibit\" + 0.015*\"galleri\"\n", - "2019-01-16 04:35:45,173 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.039*\"born\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.019*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.012*\"israel\"\n", - "2019-01-16 04:35:45,180 : INFO : topic diff=0.008603, rho=0.045549\n", - "2019-01-16 04:35:45,462 : INFO : PROGRESS: pass 0, at document #966000/4922894\n", - "2019-01-16 04:35:47,588 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:48,152 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.015*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:35:48,154 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.017*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:35:48,155 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 04:35:48,157 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:35:48,158 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.016*\"match\" + 0.015*\"team\" + 0.014*\"championship\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 04:35:48,164 : INFO : topic diff=0.008624, rho=0.045502\n", - "2019-01-16 04:35:48,430 : INFO : PROGRESS: pass 0, at document #968000/4922894\n", - "2019-01-16 04:35:50,441 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:50,998 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"term\"\n", - "2019-01-16 04:35:50,999 : INFO : topic #47 (0.020): 0.024*\"station\" + 0.024*\"river\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.015*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:35:51,001 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.047*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:35:51,002 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.075*\"octob\" + 0.069*\"march\" + 0.067*\"januari\" + 0.067*\"august\" + 0.065*\"novemb\" + 0.064*\"juli\" + 0.063*\"decemb\" + 0.062*\"april\" + 0.061*\"june\"\n", - "2019-01-16 04:35:51,003 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.028*\"championship\" + 0.028*\"women\" + 0.025*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 04:35:51,009 : INFO : topic diff=0.007985, rho=0.045455\n", - "2019-01-16 04:35:51,330 : INFO : PROGRESS: pass 0, at document #970000/4922894\n", - "2019-01-16 04:35:53,400 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:53,957 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.014*\"servic\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"univers\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"organ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:35:53,958 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:35:53,960 : INFO : topic #27 (0.020): 0.040*\"russian\" + 0.039*\"born\" + 0.023*\"russia\" + 0.023*\"soviet\" + 0.019*\"polish\" + 0.017*\"jewish\" + 0.015*\"moscow\" + 0.015*\"republ\" + 0.013*\"poland\" + 0.012*\"israel\"\n", - "2019-01-16 04:35:53,961 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.022*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"austria\" + 0.011*\"die\"\n", - "2019-01-16 04:35:53,963 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.030*\"work\" + 0.022*\"artist\" + 0.021*\"paint\" + 0.020*\"design\" + 0.019*\"jpg\" + 0.017*\"file\" + 0.017*\"exhibit\" + 0.015*\"galleri\"\n", - "2019-01-16 04:35:53,968 : INFO : topic diff=0.007794, rho=0.045408\n", - "2019-01-16 04:35:54,239 : INFO : PROGRESS: pass 0, at document #972000/4922894\n", - "2019-01-16 04:35:56,315 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:56,871 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"robert\" + 0.007*\"american\" + 0.006*\"peter\" + 0.006*\"jone\"\n", - "2019-01-16 04:35:56,873 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.014*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.013*\"intern\" + 0.012*\"institut\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", - "2019-01-16 04:35:56,874 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:35:56,876 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:35:56,877 : INFO : topic #33 (0.020): 0.023*\"compani\" + 0.013*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"product\" + 0.007*\"busi\" + 0.007*\"time\" + 0.007*\"increas\" + 0.007*\"rate\"\n", - "2019-01-16 04:35:56,883 : INFO : topic diff=0.008169, rho=0.045361\n", - "2019-01-16 04:35:57,171 : INFO : PROGRESS: pass 0, at document #974000/4922894\n", - "2019-01-16 04:35:59,240 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:35:59,796 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.025*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", - "2019-01-16 04:35:59,797 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.018*\"malaysia\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"asian\" + 0.015*\"min\" + 0.014*\"vietnam\" + 0.014*\"asia\"\n", - "2019-01-16 04:35:59,799 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.012*\"west\" + 0.011*\"wale\"\n", - "2019-01-16 04:35:59,800 : INFO : topic #47 (0.020): 0.024*\"station\" + 0.024*\"river\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.015*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:35:59,802 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korean\" + 0.015*\"quebec\" + 0.014*\"korea\"\n", - "2019-01-16 04:35:59,808 : INFO : topic diff=0.009439, rho=0.045314\n", - "2019-01-16 04:36:00,078 : INFO : PROGRESS: pass 0, at document #976000/4922894\n", - "2019-01-16 04:36:02,222 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:02,777 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.034*\"chines\" + 0.033*\"zealand\" + 0.025*\"south\" + 0.022*\"kong\" + 0.020*\"hong\" + 0.018*\"sydnei\"\n", - "2019-01-16 04:36:02,779 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.017*\"counti\" + 0.017*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:36:02,780 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"materi\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"form\"\n", - "2019-01-16 04:36:02,782 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:36:02,783 : INFO : topic #37 (0.020): 0.007*\"man\" + 0.007*\"time\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:36:02,789 : INFO : topic diff=0.009326, rho=0.045268\n", - "2019-01-16 04:36:03,060 : INFO : PROGRESS: pass 0, at document #978000/4922894\n", - "2019-01-16 04:36:05,179 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:05,735 : INFO : topic #47 (0.020): 0.024*\"station\" + 0.024*\"river\" + 0.020*\"line\" + 0.018*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.015*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:36:05,736 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.033*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:36:05,738 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.017*\"counti\" + 0.017*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:36:05,739 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"gener\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:36:05,740 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.022*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"finish\" + 0.011*\"time\" + 0.011*\"hors\" + 0.010*\"championship\"\n", - "2019-01-16 04:36:05,746 : INFO : topic diff=0.007823, rho=0.045222\n", - "2019-01-16 04:36:10,531 : INFO : -11.577 per-word bound, 3056.1 perplexity estimate based on a held-out corpus of 2000 documents with 604162 words\n", - "2019-01-16 04:36:10,532 : INFO : PROGRESS: pass 0, at document #980000/4922894\n", - "2019-01-16 04:36:12,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:13,198 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:36:13,200 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.040*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.022*\"dutch\" + 0.019*\"berlin\" + 0.019*\"der\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"austria\"\n", - "2019-01-16 04:36:13,202 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"sea\" + 0.012*\"gun\" + 0.012*\"navi\" + 0.010*\"boat\" + 0.008*\"island\" + 0.008*\"port\" + 0.007*\"kill\" + 0.007*\"damag\" + 0.007*\"coast\"\n", - "2019-01-16 04:36:13,203 : INFO : topic #48 (0.020): 0.080*\"septemb\" + 0.077*\"octob\" + 0.073*\"march\" + 0.067*\"august\" + 0.067*\"juli\" + 0.067*\"april\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"decemb\"\n", - "2019-01-16 04:36:13,205 : INFO : topic #27 (0.020): 0.039*\"russian\" + 0.039*\"born\" + 0.024*\"soviet\" + 0.024*\"russia\" + 0.019*\"polish\" + 0.015*\"jewish\" + 0.015*\"moscow\" + 0.015*\"republ\" + 0.013*\"poland\" + 0.013*\"israel\"\n", - "2019-01-16 04:36:13,211 : INFO : topic diff=0.008558, rho=0.045175\n", - "2019-01-16 04:36:13,469 : INFO : PROGRESS: pass 0, at document #982000/4922894\n", - "2019-01-16 04:36:15,516 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:16,074 : INFO : topic #33 (0.020): 0.023*\"compani\" + 0.013*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"product\" + 0.007*\"time\" + 0.007*\"busi\" + 0.007*\"increas\" + 0.007*\"rate\"\n", - "2019-01-16 04:36:16,075 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.072*\"canada\" + 0.059*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"montreal\" + 0.014*\"korean\" + 0.013*\"korea\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:36:16,077 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:36:16,078 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"studi\" + 0.008*\"effect\"\n", - "2019-01-16 04:36:16,080 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:36:16,086 : INFO : topic diff=0.006498, rho=0.045129\n", - "2019-01-16 04:36:16,348 : INFO : PROGRESS: pass 0, at document #984000/4922894\n", - "2019-01-16 04:36:18,387 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:18,948 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.049*\"new\" + 0.039*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.022*\"kong\" + 0.020*\"hong\" + 0.019*\"sydnei\"\n", - "2019-01-16 04:36:18,949 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.010*\"offic\"\n", - "2019-01-16 04:36:18,951 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"electr\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"type\" + 0.009*\"cell\" + 0.008*\"protein\" + 0.007*\"vehicl\"\n", - "2019-01-16 04:36:18,952 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.025*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:36:18,953 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"quebec\" + 0.014*\"korean\" + 0.013*\"vancouv\"\n", - "2019-01-16 04:36:18,960 : INFO : topic diff=0.007187, rho=0.045083\n", - "2019-01-16 04:36:19,243 : INFO : PROGRESS: pass 0, at document #986000/4922894\n", - "2019-01-16 04:36:21,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:21,865 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.013*\"repres\" + 0.013*\"gener\" + 0.013*\"republican\"\n", - "2019-01-16 04:36:21,867 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.026*\"unit\" + 0.023*\"town\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.012*\"wale\" + 0.012*\"london\"\n", - "2019-01-16 04:36:21,869 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"electr\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.009*\"type\" + 0.008*\"protein\" + 0.007*\"vehicl\"\n", - "2019-01-16 04:36:21,870 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 04:36:21,871 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.010*\"offic\"\n", - "2019-01-16 04:36:21,877 : INFO : topic diff=0.008692, rho=0.045038\n", - "2019-01-16 04:36:22,151 : INFO : PROGRESS: pass 0, at document #988000/4922894\n", - "2019-01-16 04:36:24,195 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:24,752 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.025*\"contest\" + 0.018*\"team\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.015*\"match\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.013*\"elimin\" + 0.011*\"champion\"\n", - "2019-01-16 04:36:24,754 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:36:24,756 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.040*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.025*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:36:24,759 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 04:36:24,760 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.067*\"align\" + 0.065*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.052*\"center\" + 0.037*\"right\" + 0.036*\"philippin\" + 0.033*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:36:24,767 : INFO : topic diff=0.007238, rho=0.044992\n", - "2019-01-16 04:36:25,043 : INFO : PROGRESS: pass 0, at document #990000/4922894\n", - "2019-01-16 04:36:27,097 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:27,653 : INFO : topic #40 (0.020): 0.036*\"bar\" + 0.031*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.023*\"till\" + 0.023*\"south\" + 0.021*\"color\" + 0.011*\"black\" + 0.010*\"tropic\" + 0.009*\"agricultur\"\n", - "2019-01-16 04:36:27,655 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:36:27,657 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.025*\"footbal\" + 0.024*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:36:27,659 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:36:27,660 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.047*\"univers\" + 0.039*\"colleg\" + 0.036*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"grade\"\n", - "2019-01-16 04:36:27,667 : INFO : topic diff=0.008531, rho=0.044947\n", - "2019-01-16 04:36:27,936 : INFO : PROGRESS: pass 0, at document #992000/4922894\n", - "2019-01-16 04:36:29,945 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:30,503 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.025*\"contest\" + 0.018*\"team\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"match\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.013*\"elimin\" + 0.011*\"world\"\n", - "2019-01-16 04:36:30,505 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:36:30,506 : INFO : topic #33 (0.020): 0.023*\"compani\" + 0.013*\"million\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"market\" + 0.008*\"product\" + 0.007*\"busi\" + 0.007*\"time\" + 0.007*\"increas\" + 0.006*\"rate\"\n", - "2019-01-16 04:36:30,507 : INFO : topic #2 (0.020): 0.072*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.020*\"der\" + 0.015*\"netherland\" + 0.012*\"die\" + 0.010*\"austria\"\n", - "2019-01-16 04:36:30,509 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.017*\"centuri\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 04:36:30,514 : INFO : topic diff=0.007491, rho=0.044901\n", - "2019-01-16 04:36:30,781 : INFO : PROGRESS: pass 0, at document #994000/4922894\n", - "2019-01-16 04:36:32,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:33,434 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.009*\"gener\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.008*\"theori\" + 0.008*\"method\" + 0.007*\"point\"\n", - "2019-01-16 04:36:33,435 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"work\" + 0.021*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.020*\"jpg\" + 0.018*\"file\" + 0.017*\"exhibit\" + 0.015*\"galleri\"\n", - "2019-01-16 04:36:33,437 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"organ\"\n", - "2019-01-16 04:36:33,438 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"montreal\" + 0.013*\"vancouv\" + 0.013*\"korean\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:36:33,439 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"group\"\n", - "2019-01-16 04:36:33,445 : INFO : topic diff=0.006794, rho=0.044856\n", - "2019-01-16 04:36:33,743 : INFO : PROGRESS: pass 0, at document #996000/4922894\n", - "2019-01-16 04:36:35,808 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:36,364 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.023*\"singapor\" + 0.021*\"min\" + 0.020*\"kim\" + 0.018*\"malaysia\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"asian\" + 0.015*\"asia\" + 0.015*\"vietnam\"\n", - "2019-01-16 04:36:36,365 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:36:36,366 : INFO : topic #27 (0.020): 0.038*\"born\" + 0.036*\"russian\" + 0.024*\"soviet\" + 0.022*\"russia\" + 0.020*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"poland\" + 0.014*\"moscow\" + 0.014*\"israel\"\n", - "2019-01-16 04:36:36,368 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.047*\"univers\" + 0.038*\"colleg\" + 0.036*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"grade\" + 0.009*\"program\"\n", - "2019-01-16 04:36:36,369 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 04:36:36,375 : INFO : topic diff=0.008007, rho=0.044811\n", - "2019-01-16 04:36:36,644 : INFO : PROGRESS: pass 0, at document #998000/4922894\n", - "2019-01-16 04:36:38,620 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:39,176 : INFO : topic #23 (0.020): 0.015*\"ret\" + 0.015*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 04:36:39,178 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.021*\"london\" + 0.019*\"british\" + 0.014*\"royal\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:36:39,180 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 04:36:39,182 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:36:39,184 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.021*\"mexico\" + 0.017*\"del\" + 0.012*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"mexican\" + 0.010*\"josé\" + 0.010*\"juan\"\n", - "2019-01-16 04:36:39,191 : INFO : topic diff=0.008297, rho=0.044766\n", - "2019-01-16 04:36:43,933 : INFO : -11.717 per-word bound, 3367.4 perplexity estimate based on a held-out corpus of 2000 documents with 592532 words\n", - "2019-01-16 04:36:43,933 : INFO : PROGRESS: pass 0, at document #1000000/4922894\n", - "2019-01-16 04:36:46,032 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:46,589 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.036*\"russian\" + 0.024*\"soviet\" + 0.022*\"russia\" + 0.020*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"israel\" + 0.014*\"moscow\" + 0.014*\"poland\"\n", - "2019-01-16 04:36:46,591 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.013*\"senat\" + 0.013*\"council\"\n", - "2019-01-16 04:36:46,592 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.010*\"organ\"\n", - "2019-01-16 04:36:46,594 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.030*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.012*\"wing\" + 0.011*\"base\"\n", - "2019-01-16 04:36:46,596 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:36:46,602 : INFO : topic diff=0.009109, rho=0.044721\n", - "2019-01-16 04:36:46,878 : INFO : PROGRESS: pass 0, at document #1002000/4922894\n", - "2019-01-16 04:36:49,015 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:49,572 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.019*\"cricket\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"london\" + 0.011*\"wale\"\n", - "2019-01-16 04:36:49,574 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.010*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:36:49,575 : INFO : topic #35 (0.020): 0.032*\"singapor\" + 0.025*\"lee\" + 0.020*\"min\" + 0.019*\"malaysia\" + 0.019*\"kim\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asia\" + 0.015*\"asian\" + 0.014*\"vietnam\"\n", - "2019-01-16 04:36:49,577 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.021*\"london\" + 0.020*\"british\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:36:49,579 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.063*\"align\" + 0.061*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.051*\"center\" + 0.036*\"philippin\" + 0.036*\"right\" + 0.033*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:36:49,584 : INFO : topic diff=0.007865, rho=0.044677\n", - "2019-01-16 04:36:49,838 : INFO : PROGRESS: pass 0, at document #1004000/4922894\n", - "2019-01-16 04:36:51,894 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:52,456 : INFO : topic #22 (0.020): 0.046*\"popul\" + 0.040*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.024*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:36:52,458 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.036*\"russian\" + 0.026*\"soviet\" + 0.021*\"russia\" + 0.020*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.014*\"poland\"\n", - "2019-01-16 04:36:52,459 : INFO : topic #3 (0.020): 0.028*\"john\" + 0.026*\"william\" + 0.020*\"london\" + 0.020*\"british\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:36:52,460 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.022*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"tour\" + 0.010*\"time\"\n", - "2019-01-16 04:36:52,462 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"major\"\n", - "2019-01-16 04:36:52,469 : INFO : topic diff=0.008017, rho=0.044632\n", - "2019-01-16 04:36:52,740 : INFO : PROGRESS: pass 0, at document #1006000/4922894\n", - "2019-01-16 04:36:54,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:55,363 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 04:36:55,365 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.012*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:36:55,366 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.024*\"command\" + 0.021*\"forc\" + 0.016*\"gener\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:36:55,368 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.009*\"releas\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:36:55,369 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.030*\"oper\" + 0.026*\"airport\" + 0.026*\"aircraft\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.011*\"wing\" + 0.011*\"airlin\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:36:55,375 : INFO : topic diff=0.006403, rho=0.044588\n", - "2019-01-16 04:36:55,636 : INFO : PROGRESS: pass 0, at document #1008000/4922894\n", - "2019-01-16 04:36:57,676 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:36:58,232 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"novel\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\"\n", - "2019-01-16 04:36:58,233 : INFO : topic #47 (0.020): 0.024*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"area\" + 0.012*\"lake\" + 0.010*\"north\"\n", - "2019-01-16 04:36:58,235 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.049*\"new\" + 0.047*\"australian\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.024*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.018*\"hong\"\n", - "2019-01-16 04:36:58,236 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.024*\"winner\" + 0.022*\"open\" + 0.022*\"group\" + 0.020*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 04:36:58,237 : INFO : topic #22 (0.020): 0.046*\"popul\" + 0.040*\"counti\" + 0.034*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.026*\"ag\" + 0.024*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:36:58,244 : INFO : topic diff=0.007786, rho=0.044544\n", - "2019-01-16 04:36:58,518 : INFO : PROGRESS: pass 0, at document #1010000/4922894\n", - "2019-01-16 04:37:00,590 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:01,147 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.021*\"jpg\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"file\" + 0.018*\"exhibit\" + 0.016*\"galleri\"\n", - "2019-01-16 04:37:01,149 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:37:01,151 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.012*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"record\"\n", - "2019-01-16 04:37:01,152 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.048*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.032*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"grade\"\n", - "2019-01-16 04:37:01,153 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"novel\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\"\n", - "2019-01-16 04:37:01,159 : INFO : topic diff=0.008518, rho=0.044499\n", - "2019-01-16 04:37:01,409 : INFO : PROGRESS: pass 0, at document #1012000/4922894\n", - "2019-01-16 04:37:03,443 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:03,999 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"electr\" + 0.009*\"cell\" + 0.009*\"produc\" + 0.009*\"protein\" + 0.009*\"type\" + 0.008*\"vehicl\"\n", - "2019-01-16 04:37:04,001 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.025*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:37:04,003 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.049*\"new\" + 0.047*\"australian\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.023*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.018*\"hong\"\n", - "2019-01-16 04:37:04,004 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.022*\"contest\" + 0.018*\"team\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.012*\"world\" + 0.012*\"elimin\"\n", - "2019-01-16 04:37:04,006 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.026*\"pari\" + 0.026*\"italian\" + 0.021*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.016*\"de\" + 0.012*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 04:37:04,013 : INFO : topic diff=0.007641, rho=0.044455\n", - "2019-01-16 04:37:04,274 : INFO : PROGRESS: pass 0, at document #1014000/4922894\n", - "2019-01-16 04:37:06,359 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:06,915 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.048*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:37:06,916 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.013*\"servic\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:37:06,918 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.009*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"union\"\n", - "2019-01-16 04:37:06,920 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"london\" + 0.019*\"british\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.011*\"henri\"\n", - "2019-01-16 04:37:06,921 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.016*\"de\" + 0.012*\"le\" + 0.012*\"loui\"\n", - "2019-01-16 04:37:06,928 : INFO : topic diff=0.006664, rho=0.044412\n", - "2019-01-16 04:37:07,181 : INFO : PROGRESS: pass 0, at document #1016000/4922894\n", - "2019-01-16 04:37:09,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:09,751 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.022*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"tour\" + 0.010*\"championship\" + 0.010*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 04:37:09,753 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"cathol\"\n", - "2019-01-16 04:37:09,754 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.022*\"contest\" + 0.017*\"team\" + 0.017*\"titl\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.012*\"world\" + 0.012*\"elimin\"\n", - "2019-01-16 04:37:09,755 : INFO : topic #22 (0.020): 0.046*\"popul\" + 0.038*\"counti\" + 0.034*\"town\" + 0.033*\"villag\" + 0.030*\"citi\" + 0.026*\"ag\" + 0.024*\"district\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:37:09,757 : INFO : topic #31 (0.020): 0.055*\"australia\" + 0.048*\"new\" + 0.047*\"australian\" + 0.039*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.023*\"south\" + 0.021*\"sydnei\" + 0.019*\"kong\" + 0.017*\"hong\"\n", - "2019-01-16 04:37:09,763 : INFO : topic diff=0.007202, rho=0.044368\n", - "2019-01-16 04:37:10,012 : INFO : PROGRESS: pass 0, at document #1018000/4922894\n", - "2019-01-16 04:37:12,001 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:12,557 : INFO : topic #8 (0.020): 0.045*\"india\" + 0.033*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"singh\" + 0.010*\"islam\"\n", - "2019-01-16 04:37:12,558 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.044*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"repres\" + 0.012*\"gener\" + 0.012*\"council\"\n", - "2019-01-16 04:37:12,560 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.022*\"contest\" + 0.017*\"team\" + 0.017*\"titl\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.012*\"elimin\" + 0.012*\"world\"\n", - "2019-01-16 04:37:12,561 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.027*\"unit\" + 0.023*\"town\" + 0.019*\"cricket\" + 0.019*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"wale\" + 0.014*\"manchest\" + 0.013*\"london\"\n", - "2019-01-16 04:37:12,563 : INFO : topic #2 (0.020): 0.070*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.022*\"dutch\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:37:12,570 : INFO : topic diff=0.007162, rho=0.044324\n", - "2019-01-16 04:37:17,198 : INFO : -11.482 per-word bound, 2860.1 perplexity estimate based on a held-out corpus of 2000 documents with 551011 words\n", - "2019-01-16 04:37:17,199 : INFO : PROGRESS: pass 0, at document #1020000/4922894\n", - "2019-01-16 04:37:19,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:37:19,764 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.017*\"state\" + 0.014*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 04:37:19,766 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"record\"\n", - "2019-01-16 04:37:19,767 : INFO : topic #35 (0.020): 0.028*\"singapor\" + 0.026*\"lee\" + 0.019*\"kim\" + 0.018*\"min\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.016*\"asian\" + 0.015*\"thailand\" + 0.015*\"asia\" + 0.013*\"vietnam\"\n", - "2019-01-16 04:37:19,768 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.029*\"work\" + 0.021*\"jpg\" + 0.020*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"file\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", - "2019-01-16 04:37:19,770 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.049*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:37:19,776 : INFO : topic diff=0.007806, rho=0.044281\n", - "2019-01-16 04:37:20,078 : INFO : PROGRESS: pass 0, at document #1022000/4922894\n", - "2019-01-16 04:37:22,185 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:22,741 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:37:22,743 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.032*\"africa\" + 0.030*\"african\" + 0.024*\"color\" + 0.024*\"south\" + 0.023*\"till\" + 0.023*\"text\" + 0.012*\"black\" + 0.010*\"tropic\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:37:22,744 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 04:37:22,746 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 04:37:22,747 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:37:22,754 : INFO : topic diff=0.007928, rho=0.044237\n", - "2019-01-16 04:37:23,025 : INFO : PROGRESS: pass 0, at document #1024000/4922894\n", - "2019-01-16 04:37:25,141 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:25,698 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.021*\"act\" + 0.017*\"state\" + 0.014*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 04:37:25,699 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 04:37:25,701 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 04:37:25,702 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:37:25,703 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.025*\"olymp\" + 0.021*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"time\" + 0.018*\"japanes\"\n", - "2019-01-16 04:37:25,709 : INFO : topic diff=0.006928, rho=0.044194\n", - "2019-01-16 04:37:25,990 : INFO : PROGRESS: pass 0, at document #1026000/4922894\n", - "2019-01-16 04:37:28,123 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:28,683 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.029*\"work\" + 0.021*\"jpg\" + 0.020*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.019*\"file\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", - "2019-01-16 04:37:28,684 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 04:37:28,686 : INFO : topic #2 (0.020): 0.069*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"dutch\" + 0.022*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:37:28,687 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.012*\"navi\" + 0.012*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.009*\"port\" + 0.008*\"island\" + 0.007*\"crew\" + 0.007*\"damag\" + 0.007*\"sail\"\n", - "2019-01-16 04:37:28,689 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:37:28,695 : INFO : topic diff=0.006449, rho=0.044151\n", - "2019-01-16 04:37:28,947 : INFO : PROGRESS: pass 0, at document #1028000/4922894\n", - "2019-01-16 04:37:31,017 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:31,575 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"genu\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 04:37:31,576 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.013*\"product\" + 0.011*\"model\" + 0.011*\"power\" + 0.011*\"protein\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.009*\"type\" + 0.008*\"vehicl\"\n", - "2019-01-16 04:37:31,578 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.027*\"unit\" + 0.022*\"town\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"london\" + 0.013*\"manchest\"\n", - "2019-01-16 04:37:31,579 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 04:37:31,580 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:37:31,585 : INFO : topic diff=0.006797, rho=0.044108\n", - "2019-01-16 04:37:31,852 : INFO : PROGRESS: pass 0, at document #1030000/4922894\n", - "2019-01-16 04:37:33,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:34,526 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:37:34,528 : INFO : topic #35 (0.020): 0.028*\"singapor\" + 0.026*\"lee\" + 0.020*\"kim\" + 0.020*\"malaysia\" + 0.019*\"min\" + 0.017*\"asian\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.015*\"asia\" + 0.013*\"vietnam\"\n", - "2019-01-16 04:37:34,529 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"american\" + 0.006*\"harri\"\n", - "2019-01-16 04:37:34,531 : INFO : topic #37 (0.020): 0.008*\"man\" + 0.007*\"time\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"later\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:37:34,533 : INFO : topic #31 (0.020): 0.057*\"australia\" + 0.049*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.024*\"south\" + 0.021*\"kong\" + 0.020*\"sydnei\" + 0.019*\"hong\"\n", - "2019-01-16 04:37:34,539 : INFO : topic diff=0.008390, rho=0.044065\n", - "2019-01-16 04:37:34,792 : INFO : PROGRESS: pass 0, at document #1032000/4922894\n", - "2019-01-16 04:37:36,868 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:37,425 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 04:37:37,427 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"genu\" + 0.008*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"fish\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:37:37,428 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.026*\"toronto\" + 0.026*\"ontario\" + 0.016*\"montreal\" + 0.015*\"quebec\" + 0.015*\"british\" + 0.014*\"korean\" + 0.013*\"korea\"\n", - "2019-01-16 04:37:37,429 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.022*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"ford\" + 0.011*\"tour\" + 0.011*\"finish\" + 0.010*\"year\" + 0.010*\"time\"\n", - "2019-01-16 04:37:37,431 : INFO : topic #38 (0.020): 0.016*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 04:37:37,438 : INFO : topic diff=0.006217, rho=0.044023\n", - "2019-01-16 04:37:37,702 : INFO : PROGRESS: pass 0, at document #1034000/4922894\n", - "2019-01-16 04:37:39,719 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:40,277 : INFO : topic #40 (0.020): 0.038*\"bar\" + 0.034*\"africa\" + 0.029*\"african\" + 0.024*\"south\" + 0.023*\"text\" + 0.022*\"till\" + 0.022*\"color\" + 0.014*\"tropic\" + 0.011*\"black\" + 0.010*\"storm\"\n", - "2019-01-16 04:37:40,278 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"cathol\"\n", - "2019-01-16 04:37:40,280 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.016*\"gener\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:37:40,282 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 04:37:40,283 : INFO : topic #25 (0.020): 0.048*\"final\" + 0.047*\"round\" + 0.027*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.021*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", - "2019-01-16 04:37:40,289 : INFO : topic diff=0.006498, rho=0.043980\n", - "2019-01-16 04:37:40,554 : INFO : PROGRESS: pass 0, at document #1036000/4922894\n", - "2019-01-16 04:37:42,609 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:43,167 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.029*\"women\" + 0.029*\"championship\" + 0.025*\"olymp\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.021*\"men\" + 0.019*\"japanes\" + 0.018*\"time\"\n", - "2019-01-16 04:37:43,168 : INFO : topic #31 (0.020): 0.058*\"australia\" + 0.049*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.035*\"chines\" + 0.034*\"zealand\" + 0.024*\"south\" + 0.020*\"kong\" + 0.019*\"sydnei\" + 0.018*\"hong\"\n", - "2019-01-16 04:37:43,170 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.029*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:37:43,171 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 04:37:43,173 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.020*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"novel\" + 0.011*\"author\" + 0.010*\"writer\"\n", - "2019-01-16 04:37:43,178 : INFO : topic diff=0.006441, rho=0.043937\n", - "2019-01-16 04:37:43,443 : INFO : PROGRESS: pass 0, at document #1038000/4922894\n", - "2019-01-16 04:37:45,523 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:46,079 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.024*\"season\" + 0.024*\"cup\" + 0.016*\"match\" + 0.016*\"player\" + 0.016*\"goal\"\n", - "2019-01-16 04:37:46,082 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"emperor\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 04:37:46,084 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:37:46,085 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.020*\"act\" + 0.017*\"state\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:37:46,086 : INFO : topic #48 (0.020): 0.074*\"januari\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.072*\"march\" + 0.067*\"novemb\" + 0.066*\"april\" + 0.066*\"decemb\" + 0.065*\"juli\" + 0.064*\"august\" + 0.062*\"june\"\n", - "2019-01-16 04:37:46,092 : INFO : topic diff=0.006741, rho=0.043895\n", - "2019-01-16 04:37:50,896 : INFO : -11.618 per-word bound, 3142.8 perplexity estimate based on a held-out corpus of 2000 documents with 590359 words\n", - "2019-01-16 04:37:50,897 : INFO : PROGRESS: pass 0, at document #1040000/4922894\n", - "2019-01-16 04:37:52,989 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:53,546 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.026*\"unit\" + 0.021*\"town\" + 0.021*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"wale\" + 0.012*\"london\" + 0.012*\"manchest\"\n", - "2019-01-16 04:37:53,548 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 04:37:53,550 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.014*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"electr\" + 0.010*\"protein\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"cell\"\n", - "2019-01-16 04:37:53,551 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"championship\" + 0.011*\"finish\" + 0.011*\"tour\" + 0.010*\"year\" + 0.010*\"hors\"\n", - "2019-01-16 04:37:53,553 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.064*\"align\" + 0.059*\"style\" + 0.057*\"wikit\" + 0.056*\"left\" + 0.048*\"center\" + 0.038*\"right\" + 0.036*\"philippin\" + 0.034*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:37:53,559 : INFO : topic diff=0.009322, rho=0.043853\n", - "2019-01-16 04:37:53,818 : INFO : PROGRESS: pass 0, at document #1042000/4922894\n", - "2019-01-16 04:37:55,871 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:56,437 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.016*\"gener\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:37:56,438 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:37:56,439 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.014*\"park\" + 0.013*\"rout\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:37:56,441 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"orchestra\" + 0.013*\"opera\"\n", - "2019-01-16 04:37:56,442 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:37:56,449 : INFO : topic diff=0.007313, rho=0.043811\n", - "2019-01-16 04:37:56,715 : INFO : PROGRESS: pass 0, at document #1044000/4922894\n", - "2019-01-16 04:37:58,795 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:37:59,353 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.020*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:37:59,354 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.033*\"indian\" + 0.020*\"http\" + 0.015*\"iran\" + 0.015*\"www\" + 0.013*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"templ\" + 0.011*\"ali\"\n", - "2019-01-16 04:37:59,356 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.005*\"term\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:37:59,358 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.016*\"titl\" + 0.016*\"match\" + 0.016*\"wrestl\" + 0.016*\"team\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.013*\"elimin\" + 0.012*\"world\"\n", - "2019-01-16 04:37:59,359 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.072*\"januari\" + 0.071*\"march\" + 0.071*\"septemb\" + 0.065*\"novemb\" + 0.064*\"decemb\" + 0.064*\"april\" + 0.064*\"juli\" + 0.064*\"august\" + 0.062*\"june\"\n", - "2019-01-16 04:37:59,365 : INFO : topic diff=0.008300, rho=0.043769\n", - "2019-01-16 04:37:59,638 : INFO : PROGRESS: pass 0, at document #1046000/4922894\n", - "2019-01-16 04:38:01,733 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:02,290 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.020*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"novel\" + 0.011*\"author\" + 0.010*\"writer\"\n", - "2019-01-16 04:38:02,292 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.036*\"russian\" + 0.022*\"soviet\" + 0.021*\"russia\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.016*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 04:38:02,294 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.017*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 04:38:02,295 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.051*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 04:38:02,297 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.027*\"award\" + 0.021*\"episod\" + 0.021*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.014*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:38:02,303 : INFO : topic diff=0.006751, rho=0.043727\n", - "2019-01-16 04:38:02,593 : INFO : PROGRESS: pass 0, at document #1048000/4922894\n", - "2019-01-16 04:38:04,601 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:05,158 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:38:05,159 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"emperor\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:38:05,161 : INFO : topic #24 (0.020): 0.030*\"ship\" + 0.012*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.010*\"damag\" + 0.009*\"boat\" + 0.009*\"port\" + 0.008*\"island\" + 0.007*\"sail\" + 0.007*\"naval\"\n", - "2019-01-16 04:38:05,162 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.018*\"gener\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 04:38:05,164 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"health\" + 0.013*\"hospit\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"studi\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 04:38:05,170 : INFO : topic diff=0.006535, rho=0.043685\n", - "2019-01-16 04:38:05,434 : INFO : PROGRESS: pass 0, at document #1050000/4922894\n", - "2019-01-16 04:38:07,495 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:08,053 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.014*\"opera\" + 0.013*\"piano\" + 0.013*\"orchestra\"\n", - "2019-01-16 04:38:08,054 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"contest\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.016*\"titl\" + 0.016*\"team\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.012*\"world\" + 0.012*\"elimin\"\n", - "2019-01-16 04:38:08,056 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.033*\"africa\" + 0.029*\"african\" + 0.025*\"till\" + 0.024*\"text\" + 0.024*\"color\" + 0.023*\"south\" + 0.012*\"tropic\" + 0.011*\"black\" + 0.010*\"storm\"\n", - "2019-01-16 04:38:08,057 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 04:38:08,059 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:38:08,065 : INFO : topic diff=0.007158, rho=0.043644\n", - "2019-01-16 04:38:08,319 : INFO : PROGRESS: pass 0, at document #1052000/4922894\n", - "2019-01-16 04:38:10,302 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:10,859 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.050*\"univers\" + 0.038*\"student\" + 0.037*\"colleg\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", - "2019-01-16 04:38:10,861 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.018*\"gener\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 04:38:10,863 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"carlo\"\n", - "2019-01-16 04:38:10,864 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"tree\" + 0.008*\"genu\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:38:10,865 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.026*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.015*\"scottish\" + 0.012*\"wale\" + 0.012*\"london\" + 0.012*\"manchest\"\n", - "2019-01-16 04:38:10,871 : INFO : topic diff=0.007925, rho=0.043602\n", - "2019-01-16 04:38:11,130 : INFO : PROGRESS: pass 0, at document #1054000/4922894\n", - "2019-01-16 04:38:13,106 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:13,661 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.026*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 04:38:13,663 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.008*\"union\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 04:38:13,664 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.070*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.015*\"montreal\" + 0.014*\"korean\" + 0.014*\"korea\"\n", - "2019-01-16 04:38:13,665 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"form\"\n", - "2019-01-16 04:38:13,667 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.032*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.013*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"templ\"\n", - "2019-01-16 04:38:13,672 : INFO : topic diff=0.007755, rho=0.043561\n", - "2019-01-16 04:38:13,936 : INFO : PROGRESS: pass 0, at document #1056000/4922894\n", - "2019-01-16 04:38:15,944 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:16,502 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", - "2019-01-16 04:38:16,504 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"new\" + 0.049*\"australian\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.020*\"sydnei\" + 0.019*\"kong\" + 0.018*\"hong\"\n", - "2019-01-16 04:38:16,506 : INFO : topic #27 (0.020): 0.038*\"born\" + 0.036*\"russian\" + 0.022*\"soviet\" + 0.021*\"russia\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.015*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 04:38:16,507 : INFO : topic #33 (0.020): 0.024*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"increas\" + 0.007*\"new\"\n", - "2019-01-16 04:38:16,509 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:38:16,516 : INFO : topic diff=0.007301, rho=0.043519\n", - "2019-01-16 04:38:16,775 : INFO : PROGRESS: pass 0, at document #1058000/4922894\n", - "2019-01-16 04:38:18,832 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:19,390 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.038*\"germani\" + 0.029*\"van\" + 0.023*\"berlin\" + 0.022*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", - "2019-01-16 04:38:19,392 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.019*\"road\" + 0.018*\"line\" + 0.016*\"railwai\" + 0.014*\"park\" + 0.014*\"rout\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:38:19,393 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.050*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", - "2019-01-16 04:38:19,394 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:38:19,396 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.070*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.015*\"montreal\" + 0.014*\"korea\" + 0.013*\"korean\"\n", - "2019-01-16 04:38:19,402 : INFO : topic diff=0.006893, rho=0.043478\n", - "2019-01-16 04:38:24,097 : INFO : -11.654 per-word bound, 3222.9 perplexity estimate based on a held-out corpus of 2000 documents with 568602 words\n", - "2019-01-16 04:38:24,098 : INFO : PROGRESS: pass 0, at document #1060000/4922894\n", - "2019-01-16 04:38:26,210 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:26,770 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.025*\"singapor\" + 0.019*\"malaysia\" + 0.018*\"kim\" + 0.018*\"indonesia\" + 0.017*\"vietnam\" + 0.017*\"asian\" + 0.016*\"min\" + 0.016*\"thailand\" + 0.014*\"asia\"\n", - "2019-01-16 04:38:26,772 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.012*\"novel\" + 0.011*\"author\" + 0.010*\"writer\"\n", - "2019-01-16 04:38:26,774 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:38:26,775 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.061*\"style\" + 0.061*\"align\" + 0.058*\"wikit\" + 0.052*\"left\" + 0.047*\"center\" + 0.036*\"right\" + 0.036*\"text\" + 0.033*\"philippin\" + 0.024*\"border\"\n", - "2019-01-16 04:38:26,777 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.050*\"univers\" + 0.038*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", - "2019-01-16 04:38:26,783 : INFO : topic diff=0.006410, rho=0.043437\n", - "2019-01-16 04:38:27,039 : INFO : PROGRESS: pass 0, at document #1062000/4922894\n", - "2019-01-16 04:38:29,038 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:29,596 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"octob\" + 0.073*\"januari\" + 0.072*\"septemb\" + 0.067*\"novemb\" + 0.066*\"april\" + 0.065*\"juli\" + 0.065*\"decemb\" + 0.064*\"august\" + 0.062*\"june\"\n", - "2019-01-16 04:38:29,597 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"base\"\n", - "2019-01-16 04:38:29,598 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.070*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.014*\"korean\"\n", - "2019-01-16 04:38:29,600 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 04:38:29,601 : INFO : topic #49 (0.020): 0.071*\"district\" + 0.070*\"north\" + 0.066*\"west\" + 0.065*\"east\" + 0.065*\"south\" + 0.063*\"region\" + 0.036*\"central\" + 0.022*\"villag\" + 0.022*\"provinc\" + 0.022*\"northern\"\n", - "2019-01-16 04:38:29,606 : INFO : topic diff=0.007158, rho=0.043396\n", - "2019-01-16 04:38:29,859 : INFO : PROGRESS: pass 0, at document #1064000/4922894\n", - "2019-01-16 04:38:31,903 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:32,460 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.020*\"sydnei\" + 0.020*\"kong\" + 0.018*\"hong\"\n", - "2019-01-16 04:38:32,462 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.028*\"oper\" + 0.027*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"wing\" + 0.011*\"base\"\n", - "2019-01-16 04:38:32,463 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.013*\"pakistan\" + 0.012*\"sri\" + 0.012*\"templ\" + 0.011*\"khan\" + 0.011*\"ali\"\n", - "2019-01-16 04:38:32,465 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.019*\"contest\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"team\" + 0.016*\"match\" + 0.016*\"championship\" + 0.012*\"elimin\" + 0.012*\"world\"\n", - "2019-01-16 04:38:32,466 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.017*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:38:32,473 : INFO : topic diff=0.006593, rho=0.043355\n", - "2019-01-16 04:38:32,742 : INFO : PROGRESS: pass 0, at document #1066000/4922894\n", - "2019-01-16 04:38:34,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:35,446 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.060*\"style\" + 0.058*\"align\" + 0.057*\"wikit\" + 0.051*\"left\" + 0.047*\"center\" + 0.035*\"right\" + 0.034*\"text\" + 0.033*\"philippin\" + 0.024*\"border\"\n", - "2019-01-16 04:38:35,448 : INFO : topic #33 (0.020): 0.024*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"busi\" + 0.008*\"product\" + 0.007*\"time\" + 0.007*\"increas\" + 0.007*\"new\"\n", - "2019-01-16 04:38:35,449 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.035*\"museum\" + 0.028*\"work\" + 0.023*\"jpg\" + 0.021*\"paint\" + 0.021*\"artist\" + 0.021*\"file\" + 0.018*\"design\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", - "2019-01-16 04:38:35,451 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 04:38:35,452 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.072*\"januari\" + 0.067*\"april\" + 0.066*\"novemb\" + 0.065*\"decemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.061*\"june\"\n", - "2019-01-16 04:38:35,459 : INFO : topic diff=0.007236, rho=0.043315\n", - "2019-01-16 04:38:35,712 : INFO : PROGRESS: pass 0, at document #1068000/4922894\n", - "2019-01-16 04:38:37,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:38,289 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 04:38:38,291 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.012*\"ford\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"finish\" + 0.010*\"time\" + 0.010*\"year\"\n", - "2019-01-16 04:38:38,292 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"form\" + 0.007*\"word\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 04:38:38,294 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.025*\"south\" + 0.020*\"kong\" + 0.019*\"sydnei\" + 0.018*\"hong\"\n", - "2019-01-16 04:38:38,295 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:38:38,301 : INFO : topic diff=0.006417, rho=0.043274\n", - "2019-01-16 04:38:38,560 : INFO : PROGRESS: pass 0, at document #1070000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:38:40,613 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:41,168 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.033*\"africa\" + 0.027*\"african\" + 0.025*\"till\" + 0.024*\"text\" + 0.023*\"south\" + 0.023*\"color\" + 0.011*\"black\" + 0.011*\"tropic\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:38:41,170 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.009*\"port\" + 0.008*\"island\" + 0.007*\"crew\" + 0.007*\"coast\"\n", - "2019-01-16 04:38:41,171 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.070*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.016*\"montreal\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.014*\"british\" + 0.014*\"korean\"\n", - "2019-01-16 04:38:41,173 : INFO : topic #49 (0.020): 0.072*\"district\" + 0.070*\"north\" + 0.066*\"west\" + 0.065*\"east\" + 0.065*\"south\" + 0.063*\"region\" + 0.035*\"central\" + 0.022*\"provinc\" + 0.022*\"villag\" + 0.021*\"northern\"\n", - "2019-01-16 04:38:41,174 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"version\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"base\"\n", - "2019-01-16 04:38:41,180 : INFO : topic diff=0.006370, rho=0.043234\n", - "2019-01-16 04:38:41,487 : INFO : PROGRESS: pass 0, at document #1072000/4922894\n", - "2019-01-16 04:38:43,539 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:44,096 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.022*\"berlin\" + 0.022*\"der\" + 0.021*\"von\" + 0.021*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:38:44,098 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"treatment\" + 0.008*\"studi\" + 0.008*\"effect\"\n", - "2019-01-16 04:38:44,099 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.030*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", - "2019-01-16 04:38:44,101 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"kingdom\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:38:44,102 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.022*\"station\" + 0.020*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:38:44,108 : INFO : topic diff=0.006947, rho=0.043193\n", - "2019-01-16 04:38:44,364 : INFO : PROGRESS: pass 0, at document #1074000/4922894\n", - "2019-01-16 04:38:46,461 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:47,019 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"serv\"\n", - "2019-01-16 04:38:47,021 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.008*\"church\"\n", - "2019-01-16 04:38:47,022 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 04:38:47,024 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.032*\"africa\" + 0.026*\"african\" + 0.024*\"till\" + 0.024*\"text\" + 0.023*\"south\" + 0.023*\"color\" + 0.012*\"black\" + 0.011*\"tropic\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:38:47,026 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.021*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"london\" + 0.011*\"counti\"\n", - "2019-01-16 04:38:47,032 : INFO : topic diff=0.006420, rho=0.043153\n", - "2019-01-16 04:38:47,294 : INFO : PROGRESS: pass 0, at document #1076000/4922894\n", - "2019-01-16 04:38:49,453 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:50,011 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"opera\" + 0.013*\"piano\" + 0.012*\"orchestra\"\n", - "2019-01-16 04:38:50,013 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.022*\"berlin\" + 0.022*\"der\" + 0.021*\"von\" + 0.021*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:38:50,014 : INFO : topic #27 (0.020): 0.038*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.020*\"jewish\" + 0.017*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 04:38:50,016 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 04:38:50,018 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"london\" + 0.012*\"counti\"\n", - "2019-01-16 04:38:50,025 : INFO : topic diff=0.007285, rho=0.043113\n", - "2019-01-16 04:38:50,289 : INFO : PROGRESS: pass 0, at document #1078000/4922894\n", - "2019-01-16 04:38:52,399 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:38:52,958 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"serv\"\n", - "2019-01-16 04:38:52,959 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.011*\"model\" + 0.011*\"power\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"acid\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"protein\"\n", - "2019-01-16 04:38:52,961 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.032*\"africa\" + 0.027*\"african\" + 0.024*\"till\" + 0.023*\"text\" + 0.023*\"south\" + 0.022*\"color\" + 0.012*\"black\" + 0.010*\"tropic\" + 0.010*\"agricultur\"\n", - "2019-01-16 04:38:52,962 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.030*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", - "2019-01-16 04:38:52,964 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 04:38:52,969 : INFO : topic diff=0.006267, rho=0.043073\n", - "2019-01-16 04:38:57,523 : INFO : -11.674 per-word bound, 3268.2 perplexity estimate based on a held-out corpus of 2000 documents with 526083 words\n", - "2019-01-16 04:38:57,524 : INFO : PROGRESS: pass 0, at document #1080000/4922894\n", - "2019-01-16 04:38:59,538 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:00,095 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.011*\"model\" + 0.011*\"power\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"acid\" + 0.008*\"type\" + 0.008*\"protein\" + 0.008*\"vehicl\"\n", - "2019-01-16 04:39:00,096 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"gener\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:39:00,098 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"contest\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"week\"\n", - "2019-01-16 04:39:00,100 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.030*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", - "2019-01-16 04:39:00,102 : INFO : topic #27 (0.020): 0.039*\"born\" + 0.037*\"russian\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.019*\"jewish\" + 0.017*\"polish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", - "2019-01-16 04:39:00,107 : INFO : topic diff=0.006944, rho=0.043033\n", - "2019-01-16 04:39:00,364 : INFO : PROGRESS: pass 0, at document #1082000/4922894\n", - "2019-01-16 04:39:02,413 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:02,970 : INFO : topic #27 (0.020): 0.038*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.020*\"jewish\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"poland\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:39:02,972 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:39:02,974 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"london\" + 0.011*\"counti\"\n", - "2019-01-16 04:39:02,975 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.023*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 04:39:02,976 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.011*\"life\"\n", - "2019-01-16 04:39:02,984 : INFO : topic diff=0.006498, rho=0.042993\n", - "2019-01-16 04:39:03,242 : INFO : PROGRESS: pass 0, at document #1084000/4922894\n", - "2019-01-16 04:39:05,293 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:05,849 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"earth\" + 0.005*\"effect\"\n", - "2019-01-16 04:39:05,850 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.017*\"titl\" + 0.016*\"match\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.016*\"team\" + 0.015*\"championship\" + 0.011*\"world\" + 0.011*\"elimin\"\n", - "2019-01-16 04:39:05,852 : INFO : topic #33 (0.020): 0.024*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"new\" + 0.007*\"increas\"\n", - "2019-01-16 04:39:05,854 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"lo\"\n", - "2019-01-16 04:39:05,855 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.068*\"canada\" + 0.059*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"quebec\" + 0.015*\"korean\" + 0.014*\"british\"\n", - "2019-01-16 04:39:05,862 : INFO : topic diff=0.006922, rho=0.042954\n", - "2019-01-16 04:39:06,118 : INFO : PROGRESS: pass 0, at document #1086000/4922894\n", - "2019-01-16 04:39:08,141 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:08,698 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 04:39:08,699 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"gener\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:39:08,701 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.037*\"counti\" + 0.032*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.022*\"censu\" + 0.021*\"district\"\n", - "2019-01-16 04:39:08,702 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.017*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:39:08,704 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"said\"\n", - "2019-01-16 04:39:08,710 : INFO : topic diff=0.007761, rho=0.042914\n", - "2019-01-16 04:39:08,967 : INFO : PROGRESS: pass 0, at document #1088000/4922894\n", - "2019-01-16 04:39:11,031 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:11,592 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.033*\"team\" + 0.028*\"footbal\" + 0.024*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:39:11,593 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.016*\"match\" + 0.016*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"elimin\" + 0.012*\"world\"\n", - "2019-01-16 04:39:11,596 : INFO : topic #33 (0.020): 0.024*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"new\" + 0.007*\"increas\"\n", - "2019-01-16 04:39:11,598 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.074*\"octob\" + 0.073*\"januari\" + 0.072*\"septemb\" + 0.068*\"april\" + 0.067*\"novemb\" + 0.066*\"juli\" + 0.066*\"decemb\" + 0.064*\"august\" + 0.063*\"june\"\n", - "2019-01-16 04:39:11,599 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"japan\" + 0.023*\"men\" + 0.021*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.018*\"japanes\"\n", - "2019-01-16 04:39:11,605 : INFO : topic diff=0.005905, rho=0.042875\n", - "2019-01-16 04:39:11,872 : INFO : PROGRESS: pass 0, at document #1090000/4922894\n", - "2019-01-16 04:39:13,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:14,500 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 04:39:14,502 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 04:39:14,503 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.028*\"footbal\" + 0.024*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:39:14,504 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\"\n", - "2019-01-16 04:39:14,506 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:39:14,513 : INFO : topic diff=0.007889, rho=0.042835\n", - "2019-01-16 04:39:14,765 : INFO : PROGRESS: pass 0, at document #1092000/4922894\n", - "2019-01-16 04:39:16,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:17,346 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"sea\" + 0.012*\"navi\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"damag\" + 0.009*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:39:17,347 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.008*\"set\" + 0.008*\"gener\" + 0.008*\"point\" + 0.007*\"model\" + 0.007*\"valu\" + 0.007*\"theori\" + 0.007*\"method\"\n", - "2019-01-16 04:39:17,349 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.040*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:39:17,351 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"counti\" + 0.033*\"town\" + 0.031*\"villag\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.023*\"municip\" + 0.023*\"area\" + 0.022*\"censu\" + 0.021*\"district\"\n", - "2019-01-16 04:39:17,353 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.031*\"africa\" + 0.027*\"african\" + 0.023*\"text\" + 0.023*\"till\" + 0.023*\"south\" + 0.023*\"color\" + 0.012*\"black\" + 0.011*\"tropic\" + 0.010*\"storm\"\n", - "2019-01-16 04:39:17,359 : INFO : topic diff=0.007428, rho=0.042796\n", - "2019-01-16 04:39:17,611 : INFO : PROGRESS: pass 0, at document #1094000/4922894\n", - "2019-01-16 04:39:19,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:20,177 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 04:39:20,178 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:39:20,180 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.012*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"damag\" + 0.009*\"port\" + 0.008*\"island\" + 0.008*\"coast\" + 0.008*\"crew\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:39:20,182 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.049*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:39:20,184 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:39:20,190 : INFO : topic diff=0.006675, rho=0.042757\n", - "2019-01-16 04:39:20,444 : INFO : PROGRESS: pass 0, at document #1096000/4922894\n", - "2019-01-16 04:39:22,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:23,089 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.022*\"kim\" + 0.019*\"malaysia\" + 0.019*\"vietnam\" + 0.018*\"asian\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.015*\"min\" + 0.014*\"asia\"\n", - "2019-01-16 04:39:23,090 : INFO : topic #39 (0.020): 0.052*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"forc\" + 0.017*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.012*\"wing\" + 0.012*\"base\"\n", - "2019-01-16 04:39:23,092 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"develop\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", - "2019-01-16 04:39:23,094 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.039*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:39:23,096 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.032*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:39:23,101 : INFO : topic diff=0.008547, rho=0.042718\n", - "2019-01-16 04:39:23,386 : INFO : PROGRESS: pass 0, at document #1098000/4922894\n", - "2019-01-16 04:39:25,422 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:25,979 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 04:39:25,980 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.069*\"canada\" + 0.060*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.016*\"korea\" + 0.015*\"korean\" + 0.015*\"quebec\" + 0.014*\"british\" + 0.014*\"montreal\"\n", - "2019-01-16 04:39:25,981 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.008*\"light\" + 0.008*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"us\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 04:39:25,982 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.045*\"new\" + 0.044*\"china\" + 0.036*\"chines\" + 0.031*\"zealand\" + 0.025*\"south\" + 0.020*\"sydnei\" + 0.018*\"kong\" + 0.017*\"hong\"\n", - "2019-01-16 04:39:25,983 : INFO : topic #33 (0.020): 0.025*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"new\" + 0.007*\"increas\"\n", - "2019-01-16 04:39:25,991 : INFO : topic diff=0.006743, rho=0.042679\n", - "2019-01-16 04:39:30,711 : INFO : -11.594 per-word bound, 3090.3 perplexity estimate based on a held-out corpus of 2000 documents with 563945 words\n", - "2019-01-16 04:39:30,712 : INFO : PROGRESS: pass 0, at document #1100000/4922894\n", - "2019-01-16 04:39:32,777 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:33,334 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.026*\"unit\" + 0.023*\"town\" + 0.020*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"counti\"\n", - "2019-01-16 04:39:33,336 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:39:33,337 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.022*\"lake\" + 0.019*\"road\" + 0.019*\"line\" + 0.016*\"park\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.012*\"area\" + 0.011*\"north\"\n", - "2019-01-16 04:39:33,339 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.032*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:39:33,340 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"serv\"\n", - "2019-01-16 04:39:33,346 : INFO : topic diff=0.006823, rho=0.042640\n", - "2019-01-16 04:39:33,603 : INFO : PROGRESS: pass 0, at document #1102000/4922894\n", - "2019-01-16 04:39:35,693 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:36,251 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.069*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.016*\"korea\" + 0.015*\"korean\" + 0.015*\"british\" + 0.014*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 04:39:36,252 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:39:36,256 : INFO : topic #49 (0.020): 0.075*\"district\" + 0.073*\"north\" + 0.067*\"south\" + 0.064*\"east\" + 0.062*\"west\" + 0.060*\"region\" + 0.034*\"central\" + 0.028*\"provinc\" + 0.026*\"northern\" + 0.022*\"villag\"\n", - "2019-01-16 04:39:36,257 : INFO : topic #33 (0.020): 0.025*\"compani\" + 0.013*\"million\" + 0.010*\"year\" + 0.010*\"market\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"busi\" + 0.007*\"time\" + 0.007*\"new\" + 0.007*\"increas\"\n", - "2019-01-16 04:39:36,259 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n", - "2019-01-16 04:39:36,265 : INFO : topic diff=0.007395, rho=0.042601\n", - "2019-01-16 04:39:36,528 : INFO : PROGRESS: pass 0, at document #1104000/4922894\n", - "2019-01-16 04:39:38,654 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:39,216 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.008*\"citi\"\n", - "2019-01-16 04:39:39,218 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"counti\" + 0.033*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.022*\"censu\" + 0.021*\"famili\"\n", - "2019-01-16 04:39:39,219 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.009*\"cell\" + 0.008*\"protein\" + 0.008*\"vehicl\" + 0.008*\"acid\"\n", - "2019-01-16 04:39:39,221 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"genu\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:39:39,223 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"theori\" + 0.007*\"method\"\n", - "2019-01-16 04:39:39,229 : INFO : topic diff=0.008925, rho=0.042563\n", - "2019-01-16 04:39:39,473 : INFO : PROGRESS: pass 0, at document #1106000/4922894\n", - "2019-01-16 04:39:41,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:42,087 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.046*\"new\" + 0.043*\"china\" + 0.035*\"chines\" + 0.031*\"zealand\" + 0.026*\"south\" + 0.021*\"sydnei\" + 0.018*\"kong\" + 0.017*\"hong\"\n", - "2019-01-16 04:39:42,089 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:39:42,090 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.026*\"singapor\" + 0.022*\"kim\" + 0.019*\"vietnam\" + 0.018*\"malaysia\" + 0.018*\"indonesia\" + 0.018*\"asian\" + 0.016*\"thailand\" + 0.015*\"asia\" + 0.014*\"min\"\n", - "2019-01-16 04:39:42,091 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"order\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:39:42,093 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.067*\"align\" + 0.057*\"left\" + 0.056*\"wikit\" + 0.055*\"style\" + 0.045*\"center\" + 0.037*\"right\" + 0.035*\"philippin\" + 0.031*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:39:42,100 : INFO : topic diff=0.007758, rho=0.042524\n", - "2019-01-16 04:39:42,352 : INFO : PROGRESS: pass 0, at document #1108000/4922894\n", - "2019-01-16 04:39:44,348 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:44,906 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 04:39:44,907 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.022*\"town\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"london\" + 0.013*\"manchest\" + 0.012*\"counti\"\n", - "2019-01-16 04:39:44,909 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.008*\"light\" + 0.008*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"us\" + 0.006*\"time\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 04:39:44,911 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.008*\"church\"\n", - "2019-01-16 04:39:44,913 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"group\"\n", - "2019-01-16 04:39:44,920 : INFO : topic diff=0.006731, rho=0.042486\n", - "2019-01-16 04:39:45,164 : INFO : PROGRESS: pass 0, at document #1110000/4922894\n", - "2019-01-16 04:39:47,229 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:47,786 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"order\" + 0.009*\"right\" + 0.008*\"report\"\n", - "2019-01-16 04:39:47,788 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.014*\"festiv\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:39:47,790 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 04:39:47,791 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"princ\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:39:47,793 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"develop\" + 0.013*\"univers\" + 0.012*\"nation\" + 0.012*\"institut\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:39:47,798 : INFO : topic diff=0.007349, rho=0.042448\n", - "2019-01-16 04:39:48,046 : INFO : PROGRESS: pass 0, at document #1112000/4922894\n", - "2019-01-16 04:39:50,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:50,689 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.017*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.012*\"direct\"\n", - "2019-01-16 04:39:50,691 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.015*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:39:50,692 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:39:50,694 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"counti\" + 0.033*\"town\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.028*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.022*\"censu\" + 0.021*\"famili\"\n", - "2019-01-16 04:39:50,696 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"centuri\" + 0.009*\"place\" + 0.009*\"church\"\n", - "2019-01-16 04:39:50,702 : INFO : topic diff=0.007400, rho=0.042409\n", - "2019-01-16 04:39:50,948 : INFO : PROGRESS: pass 0, at document #1114000/4922894\n", - "2019-01-16 04:39:52,988 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:53,549 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:39:53,550 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.039*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:39:53,552 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.068*\"canada\" + 0.059*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.017*\"korea\" + 0.016*\"korean\" + 0.015*\"british\" + 0.014*\"montreal\" + 0.013*\"quebec\"\n", - "2019-01-16 04:39:53,554 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"princ\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:39:53,555 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 04:39:53,562 : INFO : topic diff=0.006926, rho=0.042371\n", - "2019-01-16 04:39:53,820 : INFO : PROGRESS: pass 0, at document #1116000/4922894\n", - "2019-01-16 04:39:55,840 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:56,397 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.005*\"exampl\"\n", - "2019-01-16 04:39:56,398 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:39:56,400 : INFO : topic #33 (0.020): 0.025*\"compani\" + 0.012*\"million\" + 0.010*\"year\" + 0.010*\"market\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"busi\" + 0.007*\"new\" + 0.007*\"time\" + 0.007*\"increas\"\n", - "2019-01-16 04:39:56,401 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"militari\" + 0.016*\"battl\" + 0.016*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:39:56,403 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"royal\" + 0.012*\"henri\"\n", - "2019-01-16 04:39:56,409 : INFO : topic diff=0.007471, rho=0.042333\n", - "2019-01-16 04:39:56,664 : INFO : PROGRESS: pass 0, at document #1118000/4922894\n", - "2019-01-16 04:39:58,765 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:39:59,323 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"number\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"model\" + 0.008*\"point\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"method\"\n", - "2019-01-16 04:39:59,325 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.050*\"univers\" + 0.042*\"colleg\" + 0.036*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:39:59,326 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.005*\"exampl\"\n", - "2019-01-16 04:39:59,328 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:39:59,329 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"like\" + 0.005*\"kill\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:39:59,335 : INFO : topic diff=0.006776, rho=0.042295\n", - "2019-01-16 04:40:04,034 : INFO : -11.640 per-word bound, 3191.8 perplexity estimate based on a held-out corpus of 2000 documents with 566774 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:40:04,035 : INFO : PROGRESS: pass 0, at document #1120000/4922894\n", - "2019-01-16 04:40:06,163 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:06,724 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.035*\"germani\" + 0.032*\"van\" + 0.024*\"von\" + 0.023*\"dutch\" + 0.022*\"der\" + 0.021*\"berlin\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:40:06,725 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.012*\"novel\" + 0.011*\"author\" + 0.011*\"writer\"\n", - "2019-01-16 04:40:06,727 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.029*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.024*\"japan\" + 0.022*\"men\" + 0.022*\"event\" + 0.019*\"medal\" + 0.018*\"japanes\" + 0.018*\"athlet\"\n", - "2019-01-16 04:40:06,728 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.069*\"canada\" + 0.059*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.017*\"korea\" + 0.016*\"korean\" + 0.015*\"montreal\" + 0.015*\"british\" + 0.013*\"quebec\"\n", - "2019-01-16 04:40:06,729 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.061*\"align\" + 0.056*\"wikit\" + 0.055*\"left\" + 0.053*\"style\" + 0.045*\"center\" + 0.038*\"right\" + 0.036*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:40:06,735 : INFO : topic diff=0.005867, rho=0.042258\n", - "2019-01-16 04:40:07,000 : INFO : PROGRESS: pass 0, at document #1122000/4922894\n", - "2019-01-16 04:40:09,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:09,632 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"london\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:40:09,634 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.019*\"lake\" + 0.018*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.014*\"rout\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:40:09,635 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.061*\"align\" + 0.056*\"wikit\" + 0.054*\"left\" + 0.054*\"style\" + 0.046*\"center\" + 0.038*\"right\" + 0.037*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:40:09,637 : INFO : topic #5 (0.020): 0.032*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:40:09,639 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"develop\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"organ\"\n", - "2019-01-16 04:40:09,645 : INFO : topic diff=0.007143, rho=0.042220\n", - "2019-01-16 04:40:09,930 : INFO : PROGRESS: pass 0, at document #1124000/4922894\n", - "2019-01-16 04:40:11,998 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:12,555 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"design\" + 0.008*\"cell\" + 0.008*\"protein\" + 0.008*\"vehicl\"\n", - "2019-01-16 04:40:12,556 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.022*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.012*\"direct\"\n", - "2019-01-16 04:40:12,559 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.015*\"match\" + 0.015*\"team\" + 0.015*\"championship\" + 0.011*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 04:40:12,560 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 04:40:12,561 : INFO : topic #35 (0.020): 0.028*\"singapor\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.019*\"indonesia\" + 0.018*\"vietnam\" + 0.017*\"malaysia\" + 0.016*\"asian\" + 0.015*\"thailand\" + 0.015*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 04:40:12,568 : INFO : topic diff=0.008198, rho=0.042182\n", - "2019-01-16 04:40:12,815 : INFO : PROGRESS: pass 0, at document #1126000/4922894\n", - "2019-01-16 04:40:14,885 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:15,441 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:40:15,442 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 04:40:15,444 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.015*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:40:15,446 : INFO : topic #7 (0.020): 0.013*\"function\" + 0.012*\"number\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"model\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 04:40:15,447 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 04:40:15,453 : INFO : topic diff=0.005599, rho=0.042145\n", - "2019-01-16 04:40:15,707 : INFO : PROGRESS: pass 0, at document #1128000/4922894\n", - "2019-01-16 04:40:17,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:18,324 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.015*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:40:18,326 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"counti\" + 0.034*\"town\" + 0.033*\"villag\" + 0.031*\"citi\" + 0.028*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.021*\"censu\" + 0.021*\"famili\"\n", - "2019-01-16 04:40:18,327 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"novel\" + 0.011*\"author\" + 0.011*\"writer\"\n", - "2019-01-16 04:40:18,329 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"open\" + 0.018*\"point\" + 0.014*\"qualifi\" + 0.013*\"place\" + 0.013*\"runner\"\n", - "2019-01-16 04:40:18,331 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.051*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:40:18,336 : INFO : topic diff=0.006347, rho=0.042108\n", - "2019-01-16 04:40:18,594 : INFO : PROGRESS: pass 0, at document #1130000/4922894\n", - "2019-01-16 04:40:20,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:21,195 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.075*\"septemb\" + 0.073*\"octob\" + 0.070*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.065*\"april\" + 0.064*\"decemb\" + 0.064*\"june\" + 0.064*\"august\"\n", - "2019-01-16 04:40:21,197 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.016*\"royal\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:40:21,198 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.035*\"germani\" + 0.031*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.022*\"dutch\" + 0.022*\"berlin\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:40:21,200 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"white\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 04:40:21,203 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.018*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:40:21,208 : INFO : topic diff=0.007135, rho=0.042070\n", - "2019-01-16 04:40:21,455 : INFO : PROGRESS: pass 0, at document #1132000/4922894\n", - "2019-01-16 04:40:23,435 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:23,998 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:40:24,000 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:40:24,002 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:40:24,004 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.051*\"univers\" + 0.043*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:40:24,005 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"direct\" + 0.012*\"televis\"\n", - "2019-01-16 04:40:24,011 : INFO : topic diff=0.006780, rho=0.042033\n", - "2019-01-16 04:40:24,270 : INFO : PROGRESS: pass 0, at document #1134000/4922894\n", - "2019-01-16 04:40:26,422 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:26,984 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 04:40:26,985 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"mass\"\n", - "2019-01-16 04:40:26,987 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.018*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:40:26,989 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.024*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.016*\"royal\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:40:26,990 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:40:26,996 : INFO : topic diff=0.007852, rho=0.041996\n", - "2019-01-16 04:40:27,254 : INFO : PROGRESS: pass 0, at document #1136000/4922894\n", - "2019-01-16 04:40:29,336 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:29,892 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"kingdom\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:40:29,894 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:40:29,895 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.032*\"africa\" + 0.028*\"african\" + 0.026*\"text\" + 0.025*\"till\" + 0.025*\"color\" + 0.023*\"south\" + 0.012*\"tropic\" + 0.011*\"black\" + 0.011*\"storm\"\n", - "2019-01-16 04:40:29,897 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 04:40:29,898 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:40:29,904 : INFO : topic diff=0.006881, rho=0.041959\n", - "2019-01-16 04:40:30,156 : INFO : PROGRESS: pass 0, at document #1138000/4922894\n", - "2019-01-16 04:40:32,255 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:32,812 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.019*\"vietnam\" + 0.017*\"indonesia\" + 0.017*\"asian\" + 0.017*\"malaysia\" + 0.016*\"thailand\" + 0.015*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 04:40:32,813 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"yard\"\n", - "2019-01-16 04:40:32,816 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:40:32,817 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.025*\"cup\" + 0.024*\"season\" + 0.017*\"goal\" + 0.017*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:40:32,818 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.018*\"railwai\" + 0.017*\"lake\" + 0.016*\"park\" + 0.014*\"rout\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:40:32,824 : INFO : topic diff=0.010169, rho=0.041922\n", - "2019-01-16 04:40:37,353 : INFO : -11.649 per-word bound, 3212.0 perplexity estimate based on a held-out corpus of 2000 documents with 541592 words\n", - "2019-01-16 04:40:37,354 : INFO : PROGRESS: pass 0, at document #1140000/4922894\n", - "2019-01-16 04:40:39,329 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:39,886 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:40:39,888 : INFO : topic #49 (0.020): 0.077*\"district\" + 0.068*\"north\" + 0.064*\"south\" + 0.063*\"east\" + 0.061*\"region\" + 0.059*\"west\" + 0.034*\"central\" + 0.029*\"provinc\" + 0.024*\"northern\" + 0.022*\"villag\"\n", - "2019-01-16 04:40:39,889 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 04:40:39,890 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.034*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.025*\"cup\" + 0.025*\"season\" + 0.017*\"goal\" + 0.017*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:40:39,892 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.019*\"line\" + 0.018*\"road\" + 0.018*\"railwai\" + 0.017*\"lake\" + 0.015*\"park\" + 0.014*\"rout\" + 0.012*\"area\" + 0.011*\"north\"\n", - "2019-01-16 04:40:39,897 : INFO : topic diff=0.006449, rho=0.041885\n", - "2019-01-16 04:40:40,140 : INFO : PROGRESS: pass 0, at document #1142000/4922894\n", - "2019-01-16 04:40:42,147 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:42,702 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.018*\"japanes\"\n", - "2019-01-16 04:40:42,704 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"white\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 04:40:42,707 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"centuri\"\n", - "2019-01-16 04:40:42,708 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", - "2019-01-16 04:40:42,709 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.050*\"univers\" + 0.043*\"colleg\" + 0.037*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:40:42,715 : INFO : topic diff=0.007044, rho=0.041849\n", - "2019-01-16 04:40:42,960 : INFO : PROGRESS: pass 0, at document #1144000/4922894\n", - "2019-01-16 04:40:45,023 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:45,581 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"lo\" + 0.010*\"juan\" + 0.010*\"josé\"\n", - "2019-01-16 04:40:45,583 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.024*\"singapor\" + 0.021*\"kim\" + 0.018*\"vietnam\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.016*\"asian\" + 0.016*\"thailand\" + 0.014*\"asia\" + 0.013*\"min\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:40:45,585 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"host\" + 0.011*\"dai\"\n", - "2019-01-16 04:40:45,587 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"minist\" + 0.018*\"vote\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"republican\"\n", - "2019-01-16 04:40:45,588 : INFO : topic #49 (0.020): 0.077*\"district\" + 0.069*\"north\" + 0.064*\"south\" + 0.062*\"east\" + 0.061*\"region\" + 0.058*\"west\" + 0.034*\"central\" + 0.029*\"provinc\" + 0.024*\"northern\" + 0.023*\"villag\"\n", - "2019-01-16 04:40:45,595 : INFO : topic diff=0.005709, rho=0.041812\n", - "2019-01-16 04:40:45,835 : INFO : PROGRESS: pass 0, at document #1146000/4922894\n", - "2019-01-16 04:40:47,882 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:48,440 : INFO : topic #49 (0.020): 0.077*\"district\" + 0.068*\"north\" + 0.064*\"south\" + 0.063*\"east\" + 0.061*\"region\" + 0.058*\"west\" + 0.034*\"central\" + 0.029*\"provinc\" + 0.024*\"northern\" + 0.023*\"villag\"\n", - "2019-01-16 04:40:48,441 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"network\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"dai\"\n", - "2019-01-16 04:40:48,443 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.015*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:40:48,445 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"star\" + 0.006*\"us\" + 0.005*\"time\" + 0.005*\"materi\"\n", - "2019-01-16 04:40:48,447 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.014*\"opera\" + 0.014*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:40:48,454 : INFO : topic diff=0.007274, rho=0.041776\n", - "2019-01-16 04:40:48,714 : INFO : PROGRESS: pass 0, at document #1148000/4922894\n", - "2019-01-16 04:40:50,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:51,505 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.026*\"work\" + 0.025*\"paint\" + 0.025*\"jpg\" + 0.022*\"file\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.016*\"imag\"\n", - "2019-01-16 04:40:51,507 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.022*\"contest\" + 0.016*\"match\" + 0.016*\"fight\" + 0.016*\"team\" + 0.015*\"titl\" + 0.014*\"wrestl\" + 0.014*\"week\" + 0.014*\"championship\" + 0.011*\"champion\"\n", - "2019-01-16 04:40:51,509 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.052*\"australian\" + 0.046*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.026*\"south\" + 0.021*\"sydnei\" + 0.018*\"melbourn\" + 0.018*\"kong\"\n", - "2019-01-16 04:40:51,510 : INFO : topic #33 (0.020): 0.025*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n", - "2019-01-16 04:40:51,512 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:40:51,518 : INFO : topic diff=0.006419, rho=0.041739\n", - "2019-01-16 04:40:51,809 : INFO : PROGRESS: pass 0, at document #1150000/4922894\n", - "2019-01-16 04:40:54,046 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:54,605 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.039*\"franc\" + 0.027*\"pari\" + 0.026*\"italian\" + 0.023*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:40:54,606 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.045*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.013*\"draw\" + 0.013*\"qualifi\" + 0.012*\"place\"\n", - "2019-01-16 04:40:54,608 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 04:40:54,609 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.025*\"lee\" + 0.020*\"kim\" + 0.019*\"vietnam\" + 0.018*\"malaysia\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 04:40:54,611 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"team\" + 0.034*\"plai\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.025*\"season\" + 0.017*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", - "2019-01-16 04:40:54,617 : INFO : topic diff=0.007508, rho=0.041703\n", - "2019-01-16 04:40:54,875 : INFO : PROGRESS: pass 0, at document #1152000/4922894\n", - "2019-01-16 04:40:56,950 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:40:57,507 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:40:57,509 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:40:57,510 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"team\" + 0.033*\"plai\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.025*\"season\" + 0.016*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", - "2019-01-16 04:40:57,512 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"number\" + 0.010*\"set\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"model\" + 0.007*\"group\"\n", - "2019-01-16 04:40:57,513 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"form\" + 0.007*\"word\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 04:40:57,519 : INFO : topic diff=0.006719, rho=0.041667\n", - "2019-01-16 04:40:57,770 : INFO : PROGRESS: pass 0, at document #1154000/4922894\n", - "2019-01-16 04:40:59,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:00,443 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:41:00,444 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.012*\"tour\" + 0.011*\"finish\" + 0.011*\"hors\" + 0.011*\"championship\" + 0.010*\"year\"\n", - "2019-01-16 04:41:00,446 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.013*\"london\" + 0.012*\"west\"\n", - "2019-01-16 04:41:00,450 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"network\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"dai\"\n", - "2019-01-16 04:41:00,452 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:41:00,457 : INFO : topic diff=0.006675, rho=0.041631\n", - "2019-01-16 04:41:00,706 : INFO : PROGRESS: pass 0, at document #1156000/4922894\n", - "2019-01-16 04:41:02,700 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:03,258 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.017*\"match\" + 0.016*\"team\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"wrestl\" + 0.014*\"championship\" + 0.012*\"week\" + 0.011*\"world\"\n", - "2019-01-16 04:41:03,260 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"counti\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.028*\"ag\" + 0.022*\"area\" + 0.022*\"censu\" + 0.021*\"municip\" + 0.021*\"famili\"\n", - "2019-01-16 04:41:03,262 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:41:03,264 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:41:03,265 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n", - "2019-01-16 04:41:03,271 : INFO : topic diff=0.006965, rho=0.041595\n", - "2019-01-16 04:41:03,510 : INFO : PROGRESS: pass 0, at document #1158000/4922894\n", - "2019-01-16 04:41:05,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:06,093 : INFO : topic #48 (0.020): 0.075*\"octob\" + 0.075*\"march\" + 0.075*\"septemb\" + 0.071*\"januari\" + 0.068*\"novemb\" + 0.067*\"juli\" + 0.065*\"august\" + 0.065*\"april\" + 0.065*\"june\" + 0.065*\"decemb\"\n", - "2019-01-16 04:41:06,094 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.015*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"lo\" + 0.009*\"josé\"\n", - "2019-01-16 04:41:06,097 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"counti\" + 0.032*\"villag\" + 0.030*\"citi\" + 0.028*\"ag\" + 0.022*\"area\" + 0.022*\"censu\" + 0.021*\"municip\" + 0.021*\"famili\"\n", - "2019-01-16 04:41:06,098 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.024*\"lee\" + 0.020*\"kim\" + 0.020*\"vietnam\" + 0.019*\"malaysia\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asian\" + 0.014*\"min\" + 0.014*\"asia\"\n", - "2019-01-16 04:41:06,099 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.013*\"qualifi\" + 0.013*\"draw\" + 0.013*\"place\"\n", - "2019-01-16 04:41:06,106 : INFO : topic diff=0.006331, rho=0.041559\n", - "2019-01-16 04:41:10,780 : INFO : -12.231 per-word bound, 4807.3 perplexity estimate based on a held-out corpus of 2000 documents with 589120 words\n", - "2019-01-16 04:41:10,781 : INFO : PROGRESS: pass 0, at document #1160000/4922894\n", - "2019-01-16 04:41:12,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:13,391 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.009*\"island\" + 0.008*\"damag\" + 0.008*\"port\" + 0.008*\"crew\" + 0.008*\"sail\"\n", - "2019-01-16 04:41:13,392 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:41:13,394 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:41:13,396 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:41:13,399 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.014*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:41:13,406 : INFO : topic diff=0.008179, rho=0.041523\n", - "2019-01-16 04:41:13,651 : INFO : PROGRESS: pass 0, at document #1162000/4922894\n", - "2019-01-16 04:41:15,664 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:16,220 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"star\"\n", - "2019-01-16 04:41:16,222 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:41:16,223 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:41:16,224 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"royal\" + 0.018*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:41:16,226 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.017*\"team\" + 0.016*\"match\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"wrestl\" + 0.014*\"championship\" + 0.012*\"week\" + 0.011*\"champion\"\n", - "2019-01-16 04:41:16,233 : INFO : topic diff=0.007340, rho=0.041487\n", - "2019-01-16 04:41:16,489 : INFO : PROGRESS: pass 0, at document #1164000/4922894\n", - "2019-01-16 04:41:18,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:19,087 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"star\"\n", - "2019-01-16 04:41:19,089 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.013*\"navi\" + 0.012*\"gun\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.009*\"island\" + 0.008*\"damag\" + 0.008*\"port\" + 0.008*\"crew\" + 0.007*\"naval\"\n", - "2019-01-16 04:41:19,091 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.025*\"lee\" + 0.020*\"kim\" + 0.019*\"malaysia\" + 0.018*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asian\" + 0.014*\"min\" + 0.014*\"asia\"\n", - "2019-01-16 04:41:19,092 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.012*\"number\" + 0.010*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"model\" + 0.007*\"group\"\n", - "2019-01-16 04:41:19,093 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"gener\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:41:19,099 : INFO : topic diff=0.006059, rho=0.041451\n", - "2019-01-16 04:41:19,337 : INFO : PROGRESS: pass 0, at document #1166000/4922894\n", - "2019-01-16 04:41:21,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:21,897 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.010*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\"\n", - "2019-01-16 04:41:21,898 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.027*\"jpg\" + 0.026*\"work\" + 0.024*\"paint\" + 0.023*\"file\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.016*\"imag\"\n", - "2019-01-16 04:41:21,900 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.016*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", - "2019-01-16 04:41:21,903 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:41:21,904 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:41:21,910 : INFO : topic diff=0.007550, rho=0.041416\n", - "2019-01-16 04:41:22,151 : INFO : PROGRESS: pass 0, at document #1168000/4922894\n", - "2019-01-16 04:41:24,185 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:24,744 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:41:24,746 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:41:24,747 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:41:24,749 : INFO : topic #39 (0.020): 0.045*\"air\" + 0.037*\"oper\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 04:41:24,750 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.018*\"royal\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.012*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:41:24,756 : INFO : topic diff=0.005821, rho=0.041380\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:41:25,004 : INFO : PROGRESS: pass 0, at document #1170000/4922894\n", - "2019-01-16 04:41:27,020 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:27,578 : INFO : topic #49 (0.020): 0.080*\"district\" + 0.066*\"north\" + 0.063*\"south\" + 0.063*\"region\" + 0.060*\"east\" + 0.059*\"west\" + 0.033*\"central\" + 0.031*\"provinc\" + 0.023*\"villag\" + 0.023*\"northern\"\n", - "2019-01-16 04:41:27,579 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:41:27,580 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.071*\"canada\" + 0.060*\"canadian\" + 0.026*\"ontario\" + 0.026*\"toronto\" + 0.015*\"montreal\" + 0.015*\"quebec\" + 0.015*\"british\" + 0.014*\"korea\" + 0.014*\"korean\"\n", - "2019-01-16 04:41:27,582 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"london\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:41:27,583 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"treatment\" + 0.010*\"medicin\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"cancer\"\n", - "2019-01-16 04:41:27,590 : INFO : topic diff=0.006058, rho=0.041345\n", - "2019-01-16 04:41:27,828 : INFO : PROGRESS: pass 0, at document #1172000/4922894\n", - "2019-01-16 04:41:29,853 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:30,408 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.030*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.015*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:41:30,410 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:41:30,411 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:41:30,412 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.027*\"jpg\" + 0.026*\"work\" + 0.024*\"file\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.016*\"imag\"\n", - "2019-01-16 04:41:30,414 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:41:30,420 : INFO : topic diff=0.006779, rho=0.041310\n", - "2019-01-16 04:41:30,702 : INFO : PROGRESS: pass 0, at document #1174000/4922894\n", - "2019-01-16 04:41:32,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:33,290 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.036*\"oper\" + 0.027*\"airport\" + 0.026*\"aircraft\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.010*\"group\"\n", - "2019-01-16 04:41:33,292 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"championship\"\n", - "2019-01-16 04:41:33,294 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:41:33,295 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"right\" + 0.011*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:41:33,297 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.052*\"left\" + 0.051*\"center\" + 0.036*\"philippin\" + 0.035*\"right\" + 0.031*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:41:33,304 : INFO : topic diff=0.007152, rho=0.041274\n", - "2019-01-16 04:41:33,554 : INFO : PROGRESS: pass 0, at document #1176000/4922894\n", - "2019-01-16 04:41:35,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:36,176 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.030*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.021*\"berlin\" + 0.014*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:41:36,177 : INFO : topic #46 (0.020): 0.144*\"class\" + 0.067*\"align\" + 0.059*\"wikit\" + 0.054*\"style\" + 0.051*\"left\" + 0.051*\"center\" + 0.036*\"philippin\" + 0.034*\"right\" + 0.031*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:41:36,179 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:41:36,180 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.039*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:41:36,182 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.017*\"team\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.012*\"week\" + 0.012*\"champion\"\n", - "2019-01-16 04:41:36,189 : INFO : topic diff=0.006043, rho=0.041239\n", - "2019-01-16 04:41:36,432 : INFO : PROGRESS: pass 0, at document #1178000/4922894\n", - "2019-01-16 04:41:38,478 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:39,035 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.069*\"align\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.052*\"center\" + 0.050*\"left\" + 0.037*\"right\" + 0.036*\"philippin\" + 0.031*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:41:39,036 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.045*\"round\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.019*\"group\" + 0.019*\"open\" + 0.019*\"point\" + 0.013*\"doubl\" + 0.013*\"place\" + 0.013*\"qualifi\"\n", - "2019-01-16 04:41:39,038 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"team\" + 0.033*\"plai\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.016*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", - "2019-01-16 04:41:39,040 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"product\" + 0.009*\"busi\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"industri\"\n", - "2019-01-16 04:41:39,042 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:41:39,048 : INFO : topic diff=0.007540, rho=0.041204\n", - "2019-01-16 04:41:43,700 : INFO : -11.486 per-word bound, 2867.7 perplexity estimate based on a held-out corpus of 2000 documents with 539939 words\n", - "2019-01-16 04:41:43,700 : INFO : PROGRESS: pass 0, at document #1180000/4922894\n", - "2019-01-16 04:41:45,755 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:46,313 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:41:46,314 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"dai\" + 0.011*\"host\"\n", - "2019-01-16 04:41:46,317 : INFO : topic #35 (0.020): 0.026*\"singapor\" + 0.024*\"lee\" + 0.020*\"kim\" + 0.019*\"malaysia\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.017*\"vietnam\" + 0.015*\"asia\" + 0.015*\"asian\" + 0.014*\"min\"\n", - "2019-01-16 04:41:46,318 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", - "2019-01-16 04:41:46,320 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.040*\"franc\" + 0.027*\"pari\" + 0.026*\"italian\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:41:46,326 : INFO : topic diff=0.007453, rho=0.041169\n", - "2019-01-16 04:41:46,573 : INFO : PROGRESS: pass 0, at document #1182000/4922894\n", - "2019-01-16 04:41:48,662 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:41:49,220 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.032*\"counti\" + 0.032*\"villag\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.022*\"area\" + 0.021*\"municip\" + 0.021*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:41:49,222 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"product\" + 0.009*\"busi\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n", - "2019-01-16 04:41:49,226 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.011*\"boat\" + 0.009*\"island\" + 0.009*\"damag\" + 0.008*\"port\" + 0.008*\"naval\" + 0.008*\"crew\"\n", - "2019-01-16 04:41:49,227 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.036*\"russian\" + 0.025*\"russia\" + 0.021*\"soviet\" + 0.019*\"jewish\" + 0.015*\"polish\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.012*\"poland\"\n", - "2019-01-16 04:41:49,229 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.032*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:41:49,235 : INFO : topic diff=0.005913, rho=0.041135\n", - "2019-01-16 04:41:49,484 : INFO : PROGRESS: pass 0, at document #1184000/4922894\n", - "2019-01-16 04:41:51,507 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:52,064 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.072*\"septemb\" + 0.071*\"march\" + 0.068*\"januari\" + 0.068*\"novemb\" + 0.065*\"juli\" + 0.063*\"august\" + 0.062*\"april\" + 0.062*\"decemb\" + 0.062*\"june\"\n", - "2019-01-16 04:41:52,066 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:41:52,067 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.016*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.010*\"caus\" + 0.010*\"treatment\" + 0.009*\"medicin\" + 0.008*\"cancer\" + 0.008*\"studi\"\n", - "2019-01-16 04:41:52,069 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.017*\"famili\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n", - "2019-01-16 04:41:52,070 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 04:41:52,076 : INFO : topic diff=0.008210, rho=0.041100\n", - "2019-01-16 04:41:52,316 : INFO : PROGRESS: pass 0, at document #1186000/4922894\n", - "2019-01-16 04:41:54,336 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:54,893 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"point\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"valu\"\n", - "2019-01-16 04:41:54,895 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"product\" + 0.009*\"busi\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n", - "2019-01-16 04:41:54,896 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:41:54,898 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.030*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.014*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:41:54,899 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.032*\"villag\" + 0.032*\"counti\" + 0.032*\"citi\" + 0.028*\"ag\" + 0.022*\"area\" + 0.021*\"municip\" + 0.021*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:41:54,904 : INFO : topic diff=0.006134, rho=0.041065\n", - "2019-01-16 04:41:55,153 : INFO : PROGRESS: pass 0, at document #1188000/4922894\n", - "2019-01-16 04:41:57,230 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:41:57,786 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.067*\"align\" + 0.060*\"wikit\" + 0.053*\"center\" + 0.053*\"style\" + 0.050*\"left\" + 0.036*\"right\" + 0.035*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:41:57,788 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"network\"\n", - "2019-01-16 04:41:57,789 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"daughter\" + 0.012*\"life\"\n", - "2019-01-16 04:41:57,791 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:41:57,792 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.041*\"franc\" + 0.027*\"pari\" + 0.027*\"italian\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:41:57,798 : INFO : topic diff=0.006914, rho=0.041030\n", - "2019-01-16 04:41:58,035 : INFO : PROGRESS: pass 0, at document #1190000/4922894\n", - "2019-01-16 04:42:00,112 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:00,671 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.032*\"armi\" + 0.024*\"command\" + 0.021*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:42:00,672 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.012*\"diseas\" + 0.010*\"caus\" + 0.009*\"treatment\" + 0.009*\"patient\" + 0.009*\"medicin\" + 0.008*\"cell\" + 0.008*\"studi\"\n", - "2019-01-16 04:42:00,674 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.013*\"doubl\" + 0.013*\"qualifi\"\n", - "2019-01-16 04:42:00,675 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:42:00,676 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.027*\"ontario\" + 0.025*\"toronto\" + 0.017*\"korea\" + 0.015*\"korean\" + 0.015*\"quebec\" + 0.014*\"british\" + 0.014*\"montreal\"\n", - "2019-01-16 04:42:00,683 : INFO : topic diff=0.006167, rho=0.040996\n", - "2019-01-16 04:42:00,931 : INFO : PROGRESS: pass 0, at document #1192000/4922894\n", - "2019-01-16 04:42:03,026 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:03,589 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", - "2019-01-16 04:42:03,591 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.051*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:42:03,592 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:42:03,594 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"manufactur\"\n", - "2019-01-16 04:42:03,595 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.017*\"royal\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:42:03,601 : INFO : topic diff=0.006165, rho=0.040962\n", - "2019-01-16 04:42:03,850 : INFO : PROGRESS: pass 0, at document #1194000/4922894\n", - "2019-01-16 04:42:05,931 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:06,491 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"health\" + 0.016*\"hospit\" + 0.012*\"diseas\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.009*\"medicin\" + 0.009*\"cancer\"\n", - "2019-01-16 04:42:06,492 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"japan\" + 0.022*\"event\" + 0.021*\"men\" + 0.019*\"medal\" + 0.017*\"japanes\" + 0.017*\"athlet\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:42:06,494 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.019*\"http\" + 0.014*\"www\" + 0.014*\"iran\" + 0.013*\"tamil\" + 0.013*\"pakistan\" + 0.013*\"islam\" + 0.012*\"khan\" + 0.011*\"muslim\"\n", - "2019-01-16 04:42:06,495 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.021*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:42:06,497 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.007*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:42:06,503 : INFO : topic diff=0.005660, rho=0.040927\n", - "2019-01-16 04:42:06,739 : INFO : PROGRESS: pass 0, at document #1196000/4922894\n", - "2019-01-16 04:42:08,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:09,290 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"base\" + 0.007*\"data\" + 0.007*\"softwar\"\n", - "2019-01-16 04:42:09,292 : INFO : topic #33 (0.020): 0.027*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n", - "2019-01-16 04:42:09,293 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:42:09,295 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.033*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:42:09,297 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 04:42:09,303 : INFO : topic diff=0.007117, rho=0.040893\n", - "2019-01-16 04:42:09,545 : INFO : PROGRESS: pass 0, at document #1198000/4922894\n", - "2019-01-16 04:42:11,530 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:12,094 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.016*\"match\" + 0.016*\"goal\" + 0.016*\"player\"\n", - "2019-01-16 04:42:12,096 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.016*\"titl\" + 0.016*\"match\" + 0.016*\"fight\" + 0.016*\"team\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:42:12,098 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.033*\"africa\" + 0.030*\"african\" + 0.028*\"color\" + 0.027*\"text\" + 0.026*\"till\" + 0.023*\"south\" + 0.013*\"cape\" + 0.013*\"black\" + 0.011*\"storm\"\n", - "2019-01-16 04:42:12,099 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.023*\"lee\" + 0.019*\"indonesia\" + 0.019*\"kim\" + 0.017*\"malaysia\" + 0.016*\"thailand\" + 0.016*\"vietnam\" + 0.016*\"min\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 04:42:12,100 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"right\" + 0.009*\"offic\" + 0.009*\"order\" + 0.009*\"report\"\n", - "2019-01-16 04:42:12,106 : INFO : topic diff=0.007145, rho=0.040859\n", - "2019-01-16 04:42:16,820 : INFO : -11.705 per-word bound, 3339.0 perplexity estimate based on a held-out corpus of 2000 documents with 555000 words\n", - "2019-01-16 04:42:16,821 : INFO : PROGRESS: pass 0, at document #1200000/4922894\n", - "2019-01-16 04:42:18,909 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:19,471 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.050*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:42:19,472 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:42:19,474 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.020*\"cricket\" + 0.020*\"town\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.014*\"scotland\" + 0.014*\"london\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 04:42:19,475 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.016*\"royal\" + 0.015*\"georg\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:42:19,477 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.027*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:42:19,484 : INFO : topic diff=0.006896, rho=0.040825\n", - "2019-01-16 04:42:19,726 : INFO : PROGRESS: pass 0, at document #1202000/4922894\n", - "2019-01-16 04:42:21,743 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:22,299 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.009*\"island\" + 0.009*\"damag\" + 0.008*\"port\" + 0.008*\"crew\" + 0.008*\"naval\"\n", - "2019-01-16 04:42:22,301 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"villag\" + 0.031*\"counti\" + 0.031*\"citi\" + 0.028*\"ag\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"municip\" + 0.021*\"censu\"\n", - "2019-01-16 04:42:22,302 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.010*\"commun\" + 0.010*\"organ\"\n", - "2019-01-16 04:42:22,304 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.008*\"point\" + 0.007*\"valu\" + 0.007*\"model\"\n", - "2019-01-16 04:42:22,305 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.019*\"group\" + 0.014*\"doubl\" + 0.013*\"place\" + 0.013*\"qualifi\"\n", - "2019-01-16 04:42:22,311 : INFO : topic diff=0.007388, rho=0.040791\n", - "2019-01-16 04:42:22,557 : INFO : PROGRESS: pass 0, at document #1204000/4922894\n", - "2019-01-16 04:42:24,602 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:25,159 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.016*\"theatr\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 04:42:25,160 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.032*\"armi\" + 0.024*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 04:42:25,162 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.010*\"commun\" + 0.010*\"organ\"\n", - "2019-01-16 04:42:25,163 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.019*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"tamil\" + 0.013*\"pakistan\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.010*\"muslim\"\n", - "2019-01-16 04:42:25,165 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"industri\"\n", - "2019-01-16 04:42:25,170 : INFO : topic diff=0.005416, rho=0.040757\n", - "2019-01-16 04:42:25,413 : INFO : PROGRESS: pass 0, at document #1206000/4922894\n", - "2019-01-16 04:42:27,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:28,023 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.019*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.014*\"lake\" + 0.014*\"park\" + 0.014*\"rout\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 04:42:28,024 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"base\" + 0.007*\"softwar\"\n", - "2019-01-16 04:42:28,025 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.066*\"north\" + 0.064*\"region\" + 0.062*\"east\" + 0.059*\"south\" + 0.058*\"west\" + 0.034*\"central\" + 0.032*\"provinc\" + 0.025*\"villag\" + 0.022*\"counti\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:42:28,027 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.019*\"vote\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 04:42:28,028 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:42:28,034 : INFO : topic diff=0.005370, rho=0.040723\n", - "2019-01-16 04:42:28,273 : INFO : PROGRESS: pass 0, at document #1208000/4922894\n", - "2019-01-16 04:42:30,286 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:30,843 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 04:42:30,844 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.016*\"royal\" + 0.015*\"georg\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.011*\"henri\"\n", - "2019-01-16 04:42:30,846 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.074*\"march\" + 0.072*\"septemb\" + 0.069*\"novemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"august\" + 0.063*\"decemb\" + 0.063*\"april\" + 0.062*\"june\"\n", - "2019-01-16 04:42:30,848 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"industri\"\n", - "2019-01-16 04:42:30,849 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"doubl\" + 0.013*\"qualifi\"\n", - "2019-01-16 04:42:30,856 : INFO : topic diff=0.005875, rho=0.040689\n", - "2019-01-16 04:42:31,099 : INFO : PROGRESS: pass 0, at document #1210000/4922894\n", - "2019-01-16 04:42:33,110 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:33,670 : INFO : topic #49 (0.020): 0.082*\"district\" + 0.066*\"north\" + 0.064*\"region\" + 0.061*\"east\" + 0.058*\"west\" + 0.058*\"south\" + 0.033*\"central\" + 0.032*\"provinc\" + 0.025*\"villag\" + 0.022*\"northern\"\n", - "2019-01-16 04:42:33,672 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"base\" + 0.007*\"data\" + 0.007*\"softwar\"\n", - "2019-01-16 04:42:33,674 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.019*\"road\" + 0.019*\"line\" + 0.018*\"railwai\" + 0.014*\"park\" + 0.014*\"lake\" + 0.014*\"rout\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:42:33,676 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:42:33,677 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"titl\" + 0.016*\"match\" + 0.016*\"fight\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:42:33,682 : INFO : topic diff=0.006477, rho=0.040656\n", - "2019-01-16 04:42:33,927 : INFO : PROGRESS: pass 0, at document #1212000/4922894\n", - "2019-01-16 04:42:36,015 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:36,573 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.037*\"chines\" + 0.034*\"zealand\" + 0.025*\"south\" + 0.020*\"kong\" + 0.020*\"sydnei\" + 0.019*\"hong\"\n", - "2019-01-16 04:42:36,575 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.033*\"africa\" + 0.031*\"african\" + 0.030*\"color\" + 0.028*\"text\" + 0.026*\"till\" + 0.023*\"south\" + 0.013*\"black\" + 0.013*\"cape\" + 0.011*\"storm\"\n", - "2019-01-16 04:42:36,576 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"group\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"model\"\n", - "2019-01-16 04:42:36,578 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:42:36,579 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"network\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"base\" + 0.007*\"data\"\n", - "2019-01-16 04:42:36,585 : INFO : topic diff=0.007350, rho=0.040622\n", - "2019-01-16 04:42:36,829 : INFO : PROGRESS: pass 0, at document #1214000/4922894\n", - "2019-01-16 04:42:38,858 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:39,415 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.025*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.012*\"die\"\n", - "2019-01-16 04:42:39,417 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.032*\"villag\" + 0.032*\"citi\" + 0.030*\"counti\" + 0.028*\"ag\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"censu\"\n", - "2019-01-16 04:42:39,418 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 04:42:39,420 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.026*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 04:42:39,422 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:42:39,428 : INFO : topic diff=0.005845, rho=0.040589\n", - "2019-01-16 04:42:39,667 : INFO : PROGRESS: pass 0, at document #1216000/4922894\n", - "2019-01-16 04:42:41,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:42,223 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"product\" + 0.012*\"model\" + 0.011*\"power\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"design\" + 0.008*\"manufactur\" + 0.007*\"type\"\n", - "2019-01-16 04:42:42,225 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.009*\"port\" + 0.009*\"island\" + 0.008*\"damag\" + 0.008*\"naval\" + 0.008*\"crew\"\n", - "2019-01-16 04:42:42,226 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"cell\" + 0.009*\"treatment\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"medicin\"\n", - "2019-01-16 04:42:42,227 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:42:42,229 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.034*\"africa\" + 0.030*\"african\" + 0.030*\"color\" + 0.028*\"text\" + 0.027*\"till\" + 0.023*\"south\" + 0.013*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", - "2019-01-16 04:42:42,234 : INFO : topic diff=0.006344, rho=0.040555\n", - "2019-01-16 04:42:42,472 : INFO : PROGRESS: pass 0, at document #1218000/4922894\n", - "2019-01-16 04:42:44,517 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:45,074 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:42:45,075 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.032*\"oper\" + 0.025*\"aircraft\" + 0.025*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:42:45,077 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 04:42:45,078 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.033*\"villag\" + 0.032*\"citi\" + 0.031*\"counti\" + 0.028*\"ag\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"censu\"\n", - "2019-01-16 04:42:45,080 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.040*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:42:45,086 : INFO : topic diff=0.006941, rho=0.040522\n", - "2019-01-16 04:42:49,738 : INFO : -11.798 per-word bound, 3560.7 perplexity estimate based on a held-out corpus of 2000 documents with 533264 words\n", - "2019-01-16 04:42:49,739 : INFO : PROGRESS: pass 0, at document #1220000/4922894\n", - "2019-01-16 04:42:51,783 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:52,347 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.026*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 04:42:52,348 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.034*\"africa\" + 0.031*\"african\" + 0.029*\"color\" + 0.028*\"text\" + 0.026*\"till\" + 0.023*\"south\" + 0.013*\"black\" + 0.012*\"cape\" + 0.010*\"storm\"\n", - "2019-01-16 04:42:52,351 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:42:52,352 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.032*\"oper\" + 0.025*\"aircraft\" + 0.025*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:42:52,354 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"nation\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:42:52,360 : INFO : topic diff=0.007479, rho=0.040489\n", - "2019-01-16 04:42:52,600 : INFO : PROGRESS: pass 0, at document #1222000/4922894\n", - "2019-01-16 04:42:54,742 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:55,302 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.050*\"univers\" + 0.043*\"colleg\" + 0.039*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:42:55,303 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.065*\"north\" + 0.065*\"region\" + 0.061*\"east\" + 0.059*\"south\" + 0.056*\"west\" + 0.034*\"central\" + 0.032*\"provinc\" + 0.025*\"villag\" + 0.022*\"northern\"\n", - "2019-01-16 04:42:55,304 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"right\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:42:55,306 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:42:55,307 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"network\" + 0.007*\"softwar\"\n", - "2019-01-16 04:42:55,313 : INFO : topic diff=0.005852, rho=0.040456\n", - "2019-01-16 04:42:55,557 : INFO : PROGRESS: pass 0, at document #1224000/4922894\n", - "2019-01-16 04:42:57,652 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:42:58,209 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.019*\"thailand\" + 0.019*\"kim\" + 0.018*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thai\" + 0.015*\"asian\" + 0.014*\"min\" + 0.014*\"vietnam\"\n", - "2019-01-16 04:42:58,211 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.050*\"univers\" + 0.043*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 04:42:58,212 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:42:58,214 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", - "2019-01-16 04:42:58,215 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.012*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:42:58,221 : INFO : topic diff=0.006966, rho=0.040423\n", - "2019-01-16 04:42:58,494 : INFO : PROGRESS: pass 0, at document #1226000/4922894\n", - "2019-01-16 04:43:00,483 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:01,047 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.012*\"gun\" + 0.011*\"sea\" + 0.011*\"boat\" + 0.009*\"port\" + 0.008*\"island\" + 0.008*\"damag\" + 0.008*\"naval\" + 0.007*\"crew\"\n", - "2019-01-16 04:43:01,048 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.033*\"villag\" + 0.031*\"citi\" + 0.030*\"counti\" + 0.027*\"ag\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"censu\"\n", - "2019-01-16 04:43:01,051 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:43:01,052 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.065*\"north\" + 0.064*\"region\" + 0.061*\"east\" + 0.059*\"south\" + 0.056*\"west\" + 0.033*\"central\" + 0.032*\"provinc\" + 0.025*\"villag\" + 0.023*\"counti\"\n", - "2019-01-16 04:43:01,054 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.027*\"award\" + 0.020*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:43:01,059 : INFO : topic diff=0.006609, rho=0.040390\n", - "2019-01-16 04:43:01,320 : INFO : PROGRESS: pass 0, at document #1228000/4922894\n", - "2019-01-16 04:43:03,438 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:03,998 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.010*\"cell\" + 0.010*\"caus\" + 0.009*\"treatment\" + 0.009*\"patient\" + 0.009*\"cancer\" + 0.008*\"ret\"\n", - "2019-01-16 04:43:03,999 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.034*\"africa\" + 0.030*\"african\" + 0.030*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"south\" + 0.013*\"black\" + 0.012*\"cape\" + 0.010*\"storm\"\n", - "2019-01-16 04:43:04,000 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:43:04,002 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.012*\"model\" + 0.011*\"power\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.008*\"manufactur\" + 0.007*\"type\"\n", - "2019-01-16 04:43:04,003 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.020*\"group\" + 0.018*\"open\" + 0.014*\"doubl\" + 0.013*\"place\" + 0.013*\"qualifi\"\n", - "2019-01-16 04:43:04,015 : INFO : topic diff=0.007597, rho=0.040357\n", - "2019-01-16 04:43:04,258 : INFO : PROGRESS: pass 0, at document #1230000/4922894\n", - "2019-01-16 04:43:06,288 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:06,843 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:43:06,845 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.073*\"septemb\" + 0.073*\"march\" + 0.069*\"novemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"decemb\" + 0.062*\"april\" + 0.062*\"june\"\n", - "2019-01-16 04:43:06,846 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.015*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", - "2019-01-16 04:43:06,849 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.014*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"seri\"\n", - "2019-01-16 04:43:06,850 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.065*\"north\" + 0.063*\"region\" + 0.061*\"east\" + 0.060*\"south\" + 0.057*\"west\" + 0.033*\"central\" + 0.033*\"provinc\" + 0.025*\"villag\" + 0.023*\"counti\"\n", - "2019-01-16 04:43:06,856 : INFO : topic diff=0.007110, rho=0.040324\n", - "2019-01-16 04:43:07,091 : INFO : PROGRESS: pass 0, at document #1232000/4922894\n", - "2019-01-16 04:43:09,137 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:43:09,695 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:43:09,697 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"villag\" + 0.031*\"citi\" + 0.031*\"counti\" + 0.028*\"ag\" + 0.022*\"famili\" + 0.021*\"area\" + 0.021*\"municip\" + 0.021*\"censu\"\n", - "2019-01-16 04:43:09,698 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.039*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.013*\"loui\" + 0.013*\"général\"\n", - "2019-01-16 04:43:09,700 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"like\" + 0.004*\"end\"\n", - "2019-01-16 04:43:09,702 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 04:43:09,708 : INFO : topic diff=0.005867, rho=0.040291\n", - "2019-01-16 04:43:09,946 : INFO : PROGRESS: pass 0, at document #1234000/4922894\n", - "2019-01-16 04:43:12,029 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:12,588 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", - "2019-01-16 04:43:12,589 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"virginia\"\n", - "2019-01-16 04:43:12,590 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.035*\"africa\" + 0.031*\"african\" + 0.029*\"color\" + 0.025*\"text\" + 0.024*\"till\" + 0.024*\"south\" + 0.014*\"black\" + 0.013*\"cape\" + 0.010*\"storm\"\n", - "2019-01-16 04:43:12,592 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"right\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:43:12,593 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:43:12,599 : INFO : topic diff=0.008047, rho=0.040258\n", - "2019-01-16 04:43:12,838 : INFO : PROGRESS: pass 0, at document #1236000/4922894\n", - "2019-01-16 04:43:14,866 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:15,423 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.028*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 04:43:15,425 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:43:15,427 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 04:43:15,428 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:43:15,429 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.007*\"year\" + 0.007*\"ancient\"\n", - "2019-01-16 04:43:15,435 : INFO : topic diff=0.007926, rho=0.040226\n", - "2019-01-16 04:43:15,692 : INFO : PROGRESS: pass 0, at document #1238000/4922894\n", - "2019-01-16 04:43:17,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:18,257 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.019*\"http\" + 0.015*\"www\" + 0.013*\"iran\" + 0.012*\"pakistan\" + 0.012*\"tamil\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.010*\"sri\"\n", - "2019-01-16 04:43:18,258 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"lo\" + 0.010*\"josé\"\n", - "2019-01-16 04:43:18,260 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.014*\"washington\" + 0.011*\"virginia\"\n", - "2019-01-16 04:43:18,261 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", - "2019-01-16 04:43:18,263 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.013*\"driver\" + 0.013*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"seri\"\n", - "2019-01-16 04:43:18,268 : INFO : topic diff=0.006037, rho=0.040193\n", - "2019-01-16 04:43:22,943 : INFO : -11.832 per-word bound, 3646.7 perplexity estimate based on a held-out corpus of 2000 documents with 559741 words\n", - "2019-01-16 04:43:22,943 : INFO : PROGRESS: pass 0, at document #1240000/4922894\n", - "2019-01-16 04:43:24,981 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:25,544 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"point\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"gener\"\n", - "2019-01-16 04:43:25,546 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", - "2019-01-16 04:43:25,547 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.037*\"museum\" + 0.026*\"jpg\" + 0.025*\"work\" + 0.023*\"file\" + 0.021*\"artist\" + 0.020*\"paint\" + 0.020*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:43:25,549 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", - "2019-01-16 04:43:25,550 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.009*\"treatment\" + 0.009*\"ret\" + 0.009*\"medicin\"\n", - "2019-01-16 04:43:25,556 : INFO : topic diff=0.006826, rho=0.040161\n", - "2019-01-16 04:43:25,802 : INFO : PROGRESS: pass 0, at document #1242000/4922894\n", - "2019-01-16 04:43:27,857 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:28,415 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.032*\"villag\" + 0.032*\"citi\" + 0.031*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.022*\"municip\" + 0.021*\"censu\"\n", - "2019-01-16 04:43:28,416 : INFO : topic #27 (0.020): 0.041*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.015*\"moscow\" + 0.014*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.011*\"hungarian\"\n", - "2019-01-16 04:43:28,418 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 04:43:28,419 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"observatori\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\"\n", - "2019-01-16 04:43:28,421 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"year\" + 0.007*\"ancient\"\n", - "2019-01-16 04:43:28,427 : INFO : topic diff=0.005539, rho=0.040129\n", - "2019-01-16 04:43:28,679 : INFO : PROGRESS: pass 0, at document #1244000/4922894\n", - "2019-01-16 04:43:30,830 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:31,391 : INFO : topic #27 (0.020): 0.041*\"born\" + 0.037*\"russian\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.015*\"moscow\" + 0.014*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.011*\"hungarian\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:43:31,393 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:43:31,394 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.040*\"franc\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.019*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:43:31,396 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"year\" + 0.007*\"ancient\"\n", - "2019-01-16 04:43:31,399 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.030*\"oper\" + 0.026*\"airport\" + 0.025*\"aircraft\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 04:43:31,405 : INFO : topic diff=0.006751, rho=0.040096\n", - "2019-01-16 04:43:31,658 : INFO : PROGRESS: pass 0, at document #1246000/4922894\n", - "2019-01-16 04:43:33,744 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:34,302 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.032*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", - "2019-01-16 04:43:34,304 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"cathol\"\n", - "2019-01-16 04:43:34,305 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"year\" + 0.007*\"ancient\"\n", - "2019-01-16 04:43:34,307 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.012*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", - "2019-01-16 04:43:34,308 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.037*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.021*\"artist\" + 0.020*\"paint\" + 0.020*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:43:34,314 : INFO : topic diff=0.007528, rho=0.040064\n", - "2019-01-16 04:43:34,552 : INFO : PROGRESS: pass 0, at document #1248000/4922894\n", - "2019-01-16 04:43:36,627 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:37,185 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.030*\"oper\" + 0.026*\"airport\" + 0.026*\"aircraft\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 04:43:37,186 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 04:43:37,187 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.009*\"port\" + 0.009*\"damag\" + 0.008*\"island\" + 0.008*\"fleet\" + 0.008*\"naval\"\n", - "2019-01-16 04:43:37,189 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"point\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"model\" + 0.007*\"method\" + 0.007*\"group\"\n", - "2019-01-16 04:43:37,190 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.015*\"quebec\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.014*\"british\" + 0.014*\"korean\"\n", - "2019-01-16 04:43:37,197 : INFO : topic diff=0.006372, rho=0.040032\n", - "2019-01-16 04:43:37,483 : INFO : PROGRESS: pass 0, at document #1250000/4922894\n", - "2019-01-16 04:43:39,499 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:40,057 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"wing\" + 0.011*\"base\"\n", - "2019-01-16 04:43:40,058 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 04:43:40,060 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"point\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"model\" + 0.007*\"group\" + 0.007*\"method\"\n", - "2019-01-16 04:43:40,061 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"base\" + 0.007*\"user\"\n", - "2019-01-16 04:43:40,062 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"right\" + 0.009*\"report\" + 0.008*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:43:40,069 : INFO : topic diff=0.007346, rho=0.040000\n", - "2019-01-16 04:43:40,317 : INFO : PROGRESS: pass 0, at document #1252000/4922894\n", - "2019-01-16 04:43:42,318 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:42,875 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:43:42,876 : INFO : topic #12 (0.020): 0.052*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"conserv\" + 0.017*\"minist\" + 0.014*\"liber\" + 0.013*\"repres\"\n", - "2019-01-16 04:43:42,878 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.019*\"http\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"tamil\" + 0.012*\"iran\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"khan\"\n", - "2019-01-16 04:43:42,879 : INFO : topic #46 (0.020): 0.148*\"class\" + 0.068*\"align\" + 0.061*\"wikit\" + 0.055*\"style\" + 0.053*\"left\" + 0.048*\"center\" + 0.038*\"right\" + 0.032*\"text\" + 0.028*\"philippin\" + 0.023*\"border\"\n", - "2019-01-16 04:43:42,880 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:43:42,887 : INFO : topic diff=0.008120, rho=0.039968\n", - "2019-01-16 04:43:43,123 : INFO : PROGRESS: pass 0, at document #1254000/4922894\n", - "2019-01-16 04:43:45,096 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:45,654 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.016*\"japanes\"\n", - "2019-01-16 04:43:45,657 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.027*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:43:45,658 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.038*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.025*\"file\" + 0.021*\"artist\" + 0.020*\"paint\" + 0.020*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:43:45,660 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:43:45,661 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:43:45,667 : INFO : topic diff=0.007942, rho=0.039936\n", - "2019-01-16 04:43:45,915 : INFO : PROGRESS: pass 0, at document #1256000/4922894\n", - "2019-01-16 04:43:47,903 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:48,462 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.019*\"jean\" + 0.018*\"itali\" + 0.014*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:43:48,463 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"union\"\n", - "2019-01-16 04:43:48,465 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.018*\"thailand\" + 0.018*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"thai\" + 0.013*\"min\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:43:48,466 : INFO : topic #12 (0.020): 0.052*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.016*\"conserv\" + 0.014*\"liber\" + 0.013*\"repres\"\n", - "2019-01-16 04:43:48,468 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.009*\"port\" + 0.009*\"damag\" + 0.009*\"island\" + 0.008*\"crew\" + 0.008*\"naval\"\n", - "2019-01-16 04:43:48,474 : INFO : topic diff=0.006989, rho=0.039904\n", - "2019-01-16 04:43:48,718 : INFO : PROGRESS: pass 0, at document #1258000/4922894\n", - "2019-01-16 04:43:50,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:51,263 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:43:51,265 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.032*\"citi\" + 0.031*\"villag\" + 0.030*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.021*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:43:51,266 : INFO : topic #27 (0.020): 0.041*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.021*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.012*\"hungarian\"\n", - "2019-01-16 04:43:51,268 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.034*\"africa\" + 0.031*\"african\" + 0.029*\"color\" + 0.024*\"text\" + 0.024*\"south\" + 0.024*\"till\" + 0.017*\"black\" + 0.011*\"cape\" + 0.010*\"storm\"\n", - "2019-01-16 04:43:51,269 : INFO : topic #12 (0.020): 0.052*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.016*\"conserv\" + 0.013*\"liber\" + 0.013*\"repres\"\n", - "2019-01-16 04:43:51,275 : INFO : topic diff=0.007041, rho=0.039873\n", - "2019-01-16 04:43:55,869 : INFO : -11.630 per-word bound, 3170.2 perplexity estimate based on a held-out corpus of 2000 documents with 547175 words\n", - "2019-01-16 04:43:55,870 : INFO : PROGRESS: pass 0, at document #1260000/4922894\n", - "2019-01-16 04:43:57,932 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:43:58,490 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.037*\"museum\" + 0.029*\"jpg\" + 0.025*\"file\" + 0.025*\"work\" + 0.021*\"artist\" + 0.020*\"paint\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:43:58,491 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.046*\"china\" + 0.038*\"chines\" + 0.033*\"zealand\" + 0.026*\"south\" + 0.021*\"sydnei\" + 0.016*\"kong\" + 0.015*\"melbourn\"\n", - "2019-01-16 04:43:58,493 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"gun\" + 0.010*\"damag\" + 0.009*\"port\" + 0.009*\"island\" + 0.008*\"crew\" + 0.007*\"naval\"\n", - "2019-01-16 04:43:58,495 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:43:58,496 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 04:43:58,503 : INFO : topic diff=0.005924, rho=0.039841\n", - "2019-01-16 04:43:58,740 : INFO : PROGRESS: pass 0, at document #1262000/4922894\n", - "2019-01-16 04:44:00,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:01,364 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.019*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:44:01,365 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:44:01,366 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:44:01,368 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"japanes\"\n", - "2019-01-16 04:44:01,369 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.015*\"conserv\" + 0.013*\"repres\" + 0.013*\"liber\"\n", - "2019-01-16 04:44:01,376 : INFO : topic diff=0.006850, rho=0.039809\n", - "2019-01-16 04:44:01,617 : INFO : PROGRESS: pass 0, at document #1264000/4922894\n", - "2019-01-16 04:44:03,635 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:04,192 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"kilkenni\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"santa\"\n", - "2019-01-16 04:44:04,193 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.010*\"gun\" + 0.009*\"island\" + 0.009*\"port\" + 0.007*\"crew\" + 0.007*\"naval\"\n", - "2019-01-16 04:44:04,195 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"stori\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 04:44:04,197 : INFO : topic #27 (0.020): 0.041*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.021*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.012*\"hungarian\"\n", - "2019-01-16 04:44:04,198 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.009*\"caus\" + 0.009*\"cell\" + 0.009*\"ret\" + 0.009*\"patient\" + 0.009*\"treatment\" + 0.008*\"cancer\"\n", - "2019-01-16 04:44:04,204 : INFO : topic diff=0.006177, rho=0.039778\n", - "2019-01-16 04:44:04,457 : INFO : PROGRESS: pass 0, at document #1266000/4922894\n", - "2019-01-16 04:44:06,511 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:07,069 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.013*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 04:44:07,070 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:44:07,073 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.047*\"new\" + 0.045*\"china\" + 0.037*\"chines\" + 0.033*\"zealand\" + 0.026*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 04:44:07,075 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:44:07,077 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 04:44:07,084 : INFO : topic diff=0.006980, rho=0.039746\n", - "2019-01-16 04:44:07,327 : INFO : PROGRESS: pass 0, at document #1268000/4922894\n", - "2019-01-16 04:44:09,369 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:09,925 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.020*\"contest\" + 0.017*\"titl\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.015*\"match\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:44:09,927 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.020*\"open\" + 0.017*\"doubl\" + 0.014*\"draw\" + 0.014*\"singl\"\n", - "2019-01-16 04:44:09,929 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.015*\"www\" + 0.013*\"pakistan\" + 0.013*\"iran\" + 0.012*\"khan\" + 0.012*\"tamil\" + 0.011*\"islam\" + 0.011*\"ali\"\n", - "2019-01-16 04:44:09,930 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:44:09,933 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:44:09,940 : INFO : topic diff=0.006301, rho=0.039715\n", - "2019-01-16 04:44:10,199 : INFO : PROGRESS: pass 0, at document #1270000/4922894\n", - "2019-01-16 04:44:12,217 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:12,775 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 04:44:12,776 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.015*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 04:44:12,778 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:44:12,780 : INFO : topic #27 (0.020): 0.040*\"born\" + 0.036*\"russian\" + 0.025*\"russia\" + 0.021*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.012*\"czech\"\n", - "2019-01-16 04:44:12,781 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"thailand\" + 0.018*\"kim\" + 0.018*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"thai\" + 0.014*\"vietnam\" + 0.013*\"asia\"\n", - "2019-01-16 04:44:12,787 : INFO : topic diff=0.006945, rho=0.039684\n", - "2019-01-16 04:44:13,029 : INFO : PROGRESS: pass 0, at document #1272000/4922894\n", - "2019-01-16 04:44:15,069 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:15,628 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.023*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:44:15,629 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.016*\"nation\"\n", - "2019-01-16 04:44:15,631 : INFO : topic #48 (0.020): 0.080*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.070*\"januari\" + 0.070*\"juli\" + 0.065*\"novemb\" + 0.065*\"april\" + 0.065*\"june\" + 0.064*\"decemb\" + 0.063*\"august\"\n", - "2019-01-16 04:44:15,632 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.014*\"www\" + 0.013*\"pakistan\" + 0.013*\"iran\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", - "2019-01-16 04:44:15,634 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:44:15,640 : INFO : topic diff=0.006067, rho=0.039653\n", - "2019-01-16 04:44:15,888 : INFO : PROGRESS: pass 0, at document #1274000/4922894\n", - "2019-01-16 04:44:17,945 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:18,502 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:44:18,504 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 04:44:18,506 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.012*\"channel\" + 0.012*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 04:44:18,507 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.077*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.017*\"quebec\" + 0.015*\"montreal\" + 0.014*\"british\" + 0.014*\"korea\" + 0.013*\"korean\"\n", - "2019-01-16 04:44:18,509 : INFO : topic #30 (0.020): 0.050*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.015*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:44:18,515 : INFO : topic diff=0.005040, rho=0.039621\n", - "2019-01-16 04:44:18,803 : INFO : PROGRESS: pass 0, at document #1276000/4922894\n", - "2019-01-16 04:44:20,891 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:21,448 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 04:44:21,449 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:44:21,451 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.013*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 04:44:21,452 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.025*\"unit\" + 0.023*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"london\" + 0.012*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:44:21,454 : INFO : topic #14 (0.020): 0.014*\"research\" + 0.013*\"univers\" + 0.013*\"institut\" + 0.013*\"servic\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", - "2019-01-16 04:44:21,460 : INFO : topic diff=0.007482, rho=0.039590\n", - "2019-01-16 04:44:21,719 : INFO : PROGRESS: pass 0, at document #1278000/4922894\n", - "2019-01-16 04:44:23,759 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:24,315 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"regiment\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\"\n", - "2019-01-16 04:44:24,317 : INFO : topic #33 (0.020): 0.026*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.010*\"year\" + 0.010*\"market\" + 0.010*\"busi\" + 0.008*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.007*\"industri\"\n", - "2019-01-16 04:44:24,318 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 04:44:24,320 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.012*\"author\" + 0.010*\"histori\" + 0.010*\"novel\"\n", - "2019-01-16 04:44:24,321 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.011*\"ireland\"\n", - "2019-01-16 04:44:24,328 : INFO : topic diff=0.006665, rho=0.039559\n", - "2019-01-16 04:44:29,058 : INFO : -11.568 per-word bound, 3036.1 perplexity estimate based on a held-out corpus of 2000 documents with 579239 words\n", - "2019-01-16 04:44:29,059 : INFO : PROGRESS: pass 0, at document #1280000/4922894\n", - "2019-01-16 04:44:31,149 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:31,707 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:44:31,709 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.020*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.012*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 04:44:31,710 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.013*\"wing\"\n", - "2019-01-16 04:44:31,712 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 04:44:31,713 : INFO : topic #46 (0.020): 0.148*\"class\" + 0.062*\"align\" + 0.060*\"wikit\" + 0.053*\"style\" + 0.051*\"left\" + 0.046*\"center\" + 0.039*\"right\" + 0.033*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:44:31,718 : INFO : topic diff=0.007511, rho=0.039528\n", - "2019-01-16 04:44:31,966 : INFO : PROGRESS: pass 0, at document #1282000/4922894\n", - "2019-01-16 04:44:33,965 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:34,522 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 04:44:34,523 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:44:34,525 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:44:34,526 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.008*\"manufactur\"\n", - "2019-01-16 04:44:34,527 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"quebec\" + 0.015*\"montreal\" + 0.014*\"british\" + 0.013*\"korea\" + 0.013*\"korean\"\n", - "2019-01-16 04:44:34,534 : INFO : topic diff=0.006333, rho=0.039498\n", - "2019-01-16 04:44:34,770 : INFO : PROGRESS: pass 0, at document #1284000/4922894\n", - "2019-01-16 04:44:36,779 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:37,335 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:44:37,336 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"wing\" + 0.013*\"base\"\n", - "2019-01-16 04:44:37,338 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"juan\" + 0.010*\"santa\" + 0.009*\"carlo\" + 0.009*\"mexican\"\n", - "2019-01-16 04:44:37,339 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.019*\"open\" + 0.016*\"doubl\" + 0.014*\"draw\" + 0.014*\"singl\"\n", - "2019-01-16 04:44:37,341 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:44:37,346 : INFO : topic diff=0.006603, rho=0.039467\n", - "2019-01-16 04:44:37,592 : INFO : PROGRESS: pass 0, at document #1286000/4922894\n", - "2019-01-16 04:44:39,629 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:40,185 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.012*\"author\" + 0.010*\"writer\" + 0.010*\"histori\"\n", - "2019-01-16 04:44:40,186 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.016*\"player\" + 0.013*\"coach\" + 0.013*\"footbal\" + 0.010*\"year\" + 0.010*\"basebal\" + 0.010*\"leagu\"\n", - "2019-01-16 04:44:40,188 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.035*\"africa\" + 0.031*\"african\" + 0.026*\"color\" + 0.024*\"south\" + 0.024*\"text\" + 0.023*\"till\" + 0.015*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 04:44:40,189 : INFO : topic #46 (0.020): 0.152*\"class\" + 0.061*\"align\" + 0.059*\"wikit\" + 0.053*\"style\" + 0.050*\"left\" + 0.044*\"center\" + 0.041*\"right\" + 0.035*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:44:40,190 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"point\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"model\" + 0.007*\"gener\"\n", - "2019-01-16 04:44:40,197 : INFO : topic diff=0.006454, rho=0.039436\n", - "2019-01-16 04:44:40,447 : INFO : PROGRESS: pass 0, at document #1288000/4922894\n", - "2019-01-16 04:44:42,446 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:43,002 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.016*\"player\" + 0.013*\"coach\" + 0.013*\"footbal\" + 0.010*\"year\" + 0.010*\"basebal\" + 0.010*\"leagu\"\n", - "2019-01-16 04:44:43,003 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"type\" + 0.009*\"vehicl\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:44:43,007 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.051*\"style\" + 0.043*\"center\" + 0.041*\"right\" + 0.040*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:44:43,008 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.066*\"north\" + 0.063*\"east\" + 0.060*\"region\" + 0.057*\"west\" + 0.056*\"south\" + 0.033*\"provinc\" + 0.031*\"central\" + 0.025*\"villag\" + 0.023*\"counti\"\n", - "2019-01-16 04:44:43,010 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"doubl\" + 0.014*\"qualifi\" + 0.013*\"singl\"\n", - "2019-01-16 04:44:43,016 : INFO : topic diff=0.006902, rho=0.039406\n", - "2019-01-16 04:44:43,277 : INFO : PROGRESS: pass 0, at document #1290000/4922894\n", - "2019-01-16 04:44:45,307 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:45,866 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"type\" + 0.009*\"vehicl\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:44:45,867 : INFO : topic #49 (0.020): 0.086*\"district\" + 0.066*\"north\" + 0.063*\"east\" + 0.060*\"region\" + 0.057*\"west\" + 0.056*\"south\" + 0.032*\"provinc\" + 0.031*\"central\" + 0.026*\"villag\" + 0.024*\"counti\"\n", - "2019-01-16 04:44:45,869 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"year\" + 0.010*\"time\"\n", - "2019-01-16 04:44:45,870 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"doubl\" + 0.014*\"qualifi\" + 0.013*\"draw\"\n", - "2019-01-16 04:44:45,872 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.026*\"unit\" + 0.025*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.012*\"manchest\" + 0.011*\"wale\"\n", - "2019-01-16 04:44:45,878 : INFO : topic diff=0.005810, rho=0.039375\n", - "2019-01-16 04:44:46,130 : INFO : PROGRESS: pass 0, at document #1292000/4922894\n", - "2019-01-16 04:44:48,261 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:48,818 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:44:48,820 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.016*\"player\" + 0.013*\"coach\" + 0.013*\"footbal\" + 0.011*\"year\" + 0.010*\"basebal\" + 0.010*\"leagu\"\n", - "2019-01-16 04:44:48,821 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:44:48,823 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"regiment\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\"\n", - "2019-01-16 04:44:48,824 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"damag\" + 0.009*\"island\" + 0.009*\"port\" + 0.008*\"crew\" + 0.007*\"naval\"\n", - "2019-01-16 04:44:48,830 : INFO : topic diff=0.005598, rho=0.039344\n", - "2019-01-16 04:44:49,096 : INFO : PROGRESS: pass 0, at document #1294000/4922894\n", - "2019-01-16 04:44:51,153 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:51,709 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"khan\" + 0.010*\"muslim\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:44:51,711 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.050*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:44:51,712 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:44:51,713 : INFO : topic #33 (0.020): 0.027*\"compani\" + 0.012*\"million\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"industri\"\n", - "2019-01-16 04:44:51,715 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.066*\"north\" + 0.062*\"east\" + 0.060*\"region\" + 0.057*\"west\" + 0.056*\"south\" + 0.032*\"provinc\" + 0.031*\"central\" + 0.026*\"villag\" + 0.023*\"counti\"\n", - "2019-01-16 04:44:51,720 : INFO : topic diff=0.006327, rho=0.039314\n", - "2019-01-16 04:44:51,968 : INFO : PROGRESS: pass 0, at document #1296000/4922894\n", - "2019-01-16 04:44:54,001 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:54,564 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:44:54,565 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 04:44:54,566 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:44:54,568 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"cup\" + 0.026*\"season\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:44:54,569 : INFO : topic #46 (0.020): 0.148*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.055*\"left\" + 0.052*\"style\" + 0.043*\"center\" + 0.041*\"right\" + 0.038*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:44:54,575 : INFO : topic diff=0.006012, rho=0.039284\n", - "2019-01-16 04:44:54,826 : INFO : PROGRESS: pass 0, at document #1298000/4922894\n", - "2019-01-16 04:44:56,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:44:57,407 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.066*\"north\" + 0.062*\"east\" + 0.060*\"region\" + 0.057*\"south\" + 0.057*\"west\" + 0.032*\"provinc\" + 0.031*\"central\" + 0.026*\"villag\" + 0.023*\"counti\"\n", - "2019-01-16 04:44:57,409 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 04:44:57,411 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.019*\"singapor\" + 0.019*\"kim\" + 0.019*\"sun\" + 0.018*\"indonesia\" + 0.017*\"vietnam\" + 0.016*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", - "2019-01-16 04:44:57,413 : INFO : topic #46 (0.020): 0.152*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.052*\"style\" + 0.044*\"center\" + 0.040*\"right\" + 0.038*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:44:57,415 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.016*\"player\" + 0.013*\"coach\" + 0.013*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", - "2019-01-16 04:44:57,422 : INFO : topic diff=0.006452, rho=0.039253\n", - "2019-01-16 04:45:01,923 : INFO : -11.695 per-word bound, 3316.4 perplexity estimate based on a held-out corpus of 2000 documents with 525600 words\n", - "2019-01-16 04:45:01,923 : INFO : PROGRESS: pass 0, at document #1300000/4922894\n", - "2019-01-16 04:45:03,915 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:04,473 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.015*\"match\" + 0.014*\"pro\" + 0.013*\"team\" + 0.012*\"world\"\n", - "2019-01-16 04:45:04,474 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"cup\" + 0.026*\"season\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:45:04,476 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"year\"\n", - "2019-01-16 04:45:04,477 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.066*\"north\" + 0.062*\"east\" + 0.060*\"region\" + 0.057*\"south\" + 0.057*\"west\" + 0.033*\"provinc\" + 0.031*\"central\" + 0.026*\"villag\" + 0.023*\"counti\"\n", - "2019-01-16 04:45:04,479 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:45:04,485 : INFO : topic diff=0.006497, rho=0.039223\n", - "2019-01-16 04:45:04,758 : INFO : PROGRESS: pass 0, at document #1302000/4922894\n", - "2019-01-16 04:45:06,758 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:07,314 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.066*\"north\" + 0.061*\"east\" + 0.058*\"region\" + 0.056*\"south\" + 0.056*\"west\" + 0.032*\"provinc\" + 0.031*\"central\" + 0.026*\"counti\" + 0.026*\"villag\"\n", - "2019-01-16 04:45:07,316 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:45:07,317 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.011*\"ireland\"\n", - "2019-01-16 04:45:07,319 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:45:07,320 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.021*\"artist\" + 0.021*\"paint\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:45:07,326 : INFO : topic diff=0.006558, rho=0.039193\n", - "2019-01-16 04:45:07,577 : INFO : PROGRESS: pass 0, at document #1304000/4922894\n", - "2019-01-16 04:45:09,577 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:10,136 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.035*\"africa\" + 0.032*\"african\" + 0.027*\"color\" + 0.025*\"south\" + 0.024*\"text\" + 0.023*\"till\" + 0.016*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 04:45:10,137 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.011*\"ireland\"\n", - "2019-01-16 04:45:10,139 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:45:10,140 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.065*\"north\" + 0.061*\"east\" + 0.058*\"region\" + 0.056*\"south\" + 0.055*\"west\" + 0.033*\"provinc\" + 0.031*\"central\" + 0.026*\"counti\" + 0.026*\"villag\"\n", - "2019-01-16 04:45:10,142 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:45:10,147 : INFO : topic diff=0.006429, rho=0.039163\n", - "2019-01-16 04:45:10,388 : INFO : PROGRESS: pass 0, at document #1306000/4922894\n", - "2019-01-16 04:45:12,404 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:12,961 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"match\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"pro\" + 0.013*\"elimin\"\n", - "2019-01-16 04:45:12,963 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.019*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"sun\" + 0.017*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"asian\" + 0.013*\"asia\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:45:12,965 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:45:12,966 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"type\" + 0.009*\"produc\" + 0.009*\"vehicl\" + 0.009*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:45:12,967 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.023*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:45:12,973 : INFO : topic diff=0.005248, rho=0.039133\n", - "2019-01-16 04:45:13,218 : INFO : PROGRESS: pass 0, at document #1308000/4922894\n", - "2019-01-16 04:45:15,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:15,794 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.016*\"korean\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.015*\"korea\" + 0.014*\"montreal\"\n", - "2019-01-16 04:45:15,796 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"type\" + 0.009*\"produc\" + 0.009*\"vehicl\" + 0.008*\"electr\" + 0.008*\"design\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:45:15,797 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.011*\"ireland\"\n", - "2019-01-16 04:45:15,799 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:45:15,800 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.013*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"construct\"\n", - "2019-01-16 04:45:15,807 : INFO : topic diff=0.005041, rho=0.039103\n", - "2019-01-16 04:45:16,066 : INFO : PROGRESS: pass 0, at document #1310000/4922894\n", - "2019-01-16 04:45:18,138 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:18,697 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.010*\"port\" + 0.010*\"island\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:45:18,699 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"juan\" + 0.010*\"santa\" + 0.009*\"mexican\" + 0.009*\"josé\"\n", - "2019-01-16 04:45:18,701 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 04:45:18,702 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:45:18,705 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.034*\"africa\" + 0.031*\"african\" + 0.027*\"color\" + 0.025*\"text\" + 0.024*\"south\" + 0.024*\"till\" + 0.016*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 04:45:18,711 : INFO : topic diff=0.006263, rho=0.039073\n", - "2019-01-16 04:45:18,960 : INFO : PROGRESS: pass 0, at document #1312000/4922894\n", - "2019-01-16 04:45:20,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:21,554 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 04:45:21,556 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.012*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:45:21,557 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.020*\"vietnam\" + 0.018*\"indonesia\" + 0.017*\"sun\" + 0.017*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", - "2019-01-16 04:45:21,558 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:45:21,560 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"pro\" + 0.012*\"elimin\"\n", - "2019-01-16 04:45:21,566 : INFO : topic diff=0.006434, rho=0.039043\n", - "2019-01-16 04:45:21,818 : INFO : PROGRESS: pass 0, at document #1314000/4922894\n", - "2019-01-16 04:45:23,847 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:24,405 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.012*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:45:24,407 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"point\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"model\" + 0.007*\"valu\" + 0.007*\"method\" + 0.007*\"group\"\n", - "2019-01-16 04:45:24,408 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"damag\" + 0.010*\"island\" + 0.010*\"port\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:45:24,409 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.021*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:45:24,411 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.065*\"north\" + 0.061*\"east\" + 0.059*\"region\" + 0.056*\"south\" + 0.056*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.026*\"villag\" + 0.025*\"counti\"\n", - "2019-01-16 04:45:24,418 : INFO : topic diff=0.006343, rho=0.039014\n", - "2019-01-16 04:45:24,671 : INFO : PROGRESS: pass 0, at document #1316000/4922894\n", - "2019-01-16 04:45:26,771 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:27,328 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 04:45:27,330 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.049*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:45:27,331 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 04:45:27,333 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.013*\"dai\" + 0.012*\"program\" + 0.010*\"host\" + 0.009*\"air\"\n", - "2019-01-16 04:45:27,334 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.026*\"team\" + 0.016*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", - "2019-01-16 04:45:27,340 : INFO : topic diff=0.006959, rho=0.038984\n", - "2019-01-16 04:45:27,584 : INFO : PROGRESS: pass 0, at document #1318000/4922894\n", - "2019-01-16 04:45:29,589 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:30,145 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 04:45:30,147 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:45:30,148 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:45:30,150 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.012*\"divis\" + 0.012*\"offic\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:45:30,151 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"senat\" + 0.012*\"council\"\n", - "2019-01-16 04:45:30,158 : INFO : topic diff=0.006073, rho=0.038954\n", - "2019-01-16 04:45:34,673 : INFO : -11.802 per-word bound, 3571.2 perplexity estimate based on a held-out corpus of 2000 documents with 529515 words\n", - "2019-01-16 04:45:34,674 : INFO : PROGRESS: pass 0, at document #1320000/4922894\n", - "2019-01-16 04:45:36,668 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:37,225 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.029*\"championship\" + 0.028*\"women\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.019*\"gold\" + 0.018*\"athlet\"\n", - "2019-01-16 04:45:37,227 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"senat\" + 0.012*\"council\"\n", - "2019-01-16 04:45:37,228 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"world\"\n", - "2019-01-16 04:45:37,229 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.009*\"citi\"\n", - "2019-01-16 04:45:37,231 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:45:37,237 : INFO : topic diff=0.006516, rho=0.038925\n", - "2019-01-16 04:45:37,489 : INFO : PROGRESS: pass 0, at document #1322000/4922894\n", - "2019-01-16 04:45:39,571 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:40,129 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.022*\"flight\" + 0.018*\"forc\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:45:40,130 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"construct\"\n", - "2019-01-16 04:45:40,132 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 04:45:40,134 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.025*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:45:40,135 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"regiment\" + 0.012*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 04:45:40,142 : INFO : topic diff=0.007049, rho=0.038895\n", - "2019-01-16 04:45:40,385 : INFO : PROGRESS: pass 0, at document #1324000/4922894\n", - "2019-01-16 04:45:42,424 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:42,982 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.020*\"thailand\" + 0.019*\"singapor\" + 0.019*\"kim\" + 0.019*\"vietnam\" + 0.017*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"sun\" + 0.013*\"asian\" + 0.013*\"asia\"\n", - "2019-01-16 04:45:42,984 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.005*\"jack\"\n", - "2019-01-16 04:45:42,985 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.012*\"senat\" + 0.012*\"council\"\n", - "2019-01-16 04:45:42,987 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:45:42,988 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.064*\"north\" + 0.060*\"east\" + 0.058*\"region\" + 0.057*\"south\" + 0.055*\"west\" + 0.033*\"provinc\" + 0.032*\"central\" + 0.027*\"counti\" + 0.027*\"villag\"\n", - "2019-01-16 04:45:42,994 : INFO : topic diff=0.006453, rho=0.038866\n", - "2019-01-16 04:45:43,235 : INFO : PROGRESS: pass 0, at document #1326000/4922894\n", - "2019-01-16 04:45:45,223 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:45,785 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:45:45,787 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:45:45,789 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.042*\"right\" + 0.042*\"center\" + 0.038*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:45:45,790 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.064*\"north\" + 0.061*\"east\" + 0.058*\"south\" + 0.058*\"region\" + 0.055*\"west\" + 0.033*\"provinc\" + 0.031*\"central\" + 0.027*\"counti\" + 0.027*\"villag\"\n", - "2019-01-16 04:45:45,791 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.018*\"kong\" + 0.016*\"melbourn\"\n", - "2019-01-16 04:45:45,797 : INFO : topic diff=0.006584, rho=0.038837\n", - "2019-01-16 04:45:46,079 : INFO : PROGRESS: pass 0, at document #1328000/4922894\n", - "2019-01-16 04:45:48,102 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:48,660 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:45:48,662 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"titl\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:45:48,663 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"tour\" + 0.011*\"time\" + 0.010*\"win\"\n", - "2019-01-16 04:45:48,665 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:45:48,666 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"type\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:45:48,673 : INFO : topic diff=0.005950, rho=0.038808\n", - "2019-01-16 04:45:48,920 : INFO : PROGRESS: pass 0, at document #1330000/4922894\n", - "2019-01-16 04:45:50,863 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:51,419 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.022*\"kim\" + 0.020*\"thailand\" + 0.019*\"singapor\" + 0.018*\"vietnam\" + 0.016*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"sun\" + 0.013*\"asian\" + 0.012*\"asia\"\n", - "2019-01-16 04:45:51,421 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.062*\"align\" + 0.060*\"wikit\" + 0.053*\"left\" + 0.050*\"style\" + 0.044*\"center\" + 0.041*\"right\" + 0.037*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:45:51,422 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"aircraft\" + 0.027*\"oper\" + 0.025*\"airport\" + 0.021*\"flight\" + 0.018*\"forc\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:45:51,423 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"octob\" + 0.072*\"march\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.063*\"decemb\" + 0.063*\"april\" + 0.062*\"june\"\n", - "2019-01-16 04:45:51,425 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.005*\"jack\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:45:51,431 : INFO : topic diff=0.006743, rho=0.038778\n", - "2019-01-16 04:45:51,676 : INFO : PROGRESS: pass 0, at document #1332000/4922894\n", - "2019-01-16 04:45:53,712 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:54,269 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:45:54,271 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.009*\"carlo\" + 0.009*\"santa\" + 0.009*\"josé\"\n", - "2019-01-16 04:45:54,273 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:45:54,274 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 04:45:54,276 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"construct\"\n", - "2019-01-16 04:45:54,282 : INFO : topic diff=0.006892, rho=0.038749\n", - "2019-01-16 04:45:54,529 : INFO : PROGRESS: pass 0, at document #1334000/4922894\n", - "2019-01-16 04:45:56,573 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:57,129 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.011*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:45:57,131 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.025*\"von\" + 0.023*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:45:57,132 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.025*\"file\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:45:57,134 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:45:57,135 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.067*\"januari\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.062*\"april\" + 0.062*\"decemb\" + 0.061*\"june\"\n", - "2019-01-16 04:45:57,141 : INFO : topic diff=0.006228, rho=0.038720\n", - "2019-01-16 04:45:57,377 : INFO : PROGRESS: pass 0, at document #1336000/4922894\n", - "2019-01-16 04:45:59,374 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:45:59,930 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.012*\"work\" + 0.010*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:45:59,932 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.005*\"richard\"\n", - "2019-01-16 04:45:59,933 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.016*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.012*\"program\" + 0.010*\"host\" + 0.010*\"air\"\n", - "2019-01-16 04:45:59,935 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.025*\"file\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:45:59,936 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.012*\"jame\" + 0.012*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:45:59,942 : INFO : topic diff=0.006337, rho=0.038691\n", - "2019-01-16 04:46:00,183 : INFO : PROGRESS: pass 0, at document #1338000/4922894\n", - "2019-01-16 04:46:02,220 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:02,781 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"like\" + 0.004*\"kill\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 04:46:02,783 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"divis\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\"\n", - "2019-01-16 04:46:02,784 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 04:46:02,786 : INFO : topic #33 (0.020): 0.027*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.006*\"time\" + 0.006*\"industri\"\n", - "2019-01-16 04:46:02,787 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:46:02,793 : INFO : topic diff=0.005925, rho=0.038662\n", - "2019-01-16 04:46:07,494 : INFO : -11.523 per-word bound, 2943.1 perplexity estimate based on a held-out corpus of 2000 documents with 573846 words\n", - "2019-01-16 04:46:07,494 : INFO : PROGRESS: pass 0, at document #1340000/4922894\n", - "2019-01-16 04:46:09,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:10,091 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"intern\" + 0.013*\"servic\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.010*\"organ\"\n", - "2019-01-16 04:46:10,092 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.010*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"point\" + 0.008*\"group\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 04:46:10,094 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"card\" + 0.007*\"softwar\" + 0.007*\"user\" + 0.007*\"data\"\n", - "2019-01-16 04:46:10,096 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.011*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:46:10,098 : INFO : topic #49 (0.020): 0.084*\"district\" + 0.063*\"north\" + 0.060*\"east\" + 0.059*\"south\" + 0.058*\"region\" + 0.055*\"west\" + 0.034*\"provinc\" + 0.030*\"central\" + 0.027*\"counti\" + 0.027*\"villag\"\n", - "2019-01-16 04:46:10,104 : INFO : topic diff=0.006439, rho=0.038633\n", - "2019-01-16 04:46:10,357 : INFO : PROGRESS: pass 0, at document #1342000/4922894\n", - "2019-01-16 04:46:12,362 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:12,918 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:46:12,919 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 04:46:12,921 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.010*\"boat\" + 0.010*\"island\" + 0.010*\"port\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:46:12,922 : INFO : topic #49 (0.020): 0.083*\"district\" + 0.062*\"north\" + 0.059*\"east\" + 0.057*\"south\" + 0.057*\"region\" + 0.054*\"west\" + 0.034*\"provinc\" + 0.030*\"central\" + 0.029*\"counti\" + 0.026*\"villag\"\n", - "2019-01-16 04:46:12,923 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.009*\"carlo\" + 0.009*\"josé\"\n", - "2019-01-16 04:46:12,929 : INFO : topic diff=0.006044, rho=0.038605\n", - "2019-01-16 04:46:13,170 : INFO : PROGRESS: pass 0, at document #1344000/4922894\n", - "2019-01-16 04:46:15,172 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:46:15,729 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.028*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.020*\"municip\"\n", - "2019-01-16 04:46:15,730 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"friend\"\n", - "2019-01-16 04:46:15,732 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:46:15,734 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.010*\"basebal\"\n", - "2019-01-16 04:46:15,735 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.008*\"kingdom\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:46:15,741 : INFO : topic diff=0.006635, rho=0.038576\n", - "2019-01-16 04:46:15,996 : INFO : PROGRESS: pass 0, at document #1346000/4922894\n", - "2019-01-16 04:46:18,047 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:18,604 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 04:46:18,606 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"counti\" + 0.027*\"ag\" + 0.022*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.020*\"municip\"\n", - "2019-01-16 04:46:18,607 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"kill\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"friend\"\n", - "2019-01-16 04:46:18,609 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:46:18,610 : INFO : topic #48 (0.020): 0.074*\"octob\" + 0.074*\"septemb\" + 0.071*\"march\" + 0.067*\"juli\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"august\" + 0.063*\"april\" + 0.062*\"decemb\" + 0.061*\"june\"\n", - "2019-01-16 04:46:18,618 : INFO : topic diff=0.006444, rho=0.038547\n", - "2019-01-16 04:46:18,869 : INFO : PROGRESS: pass 0, at document #1348000/4922894\n", - "2019-01-16 04:46:20,987 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:21,545 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 04:46:21,547 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"puerto\" + 0.009*\"josé\"\n", - "2019-01-16 04:46:21,548 : INFO : topic #48 (0.020): 0.075*\"octob\" + 0.074*\"septemb\" + 0.071*\"march\" + 0.067*\"juli\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"august\" + 0.063*\"april\" + 0.063*\"decemb\" + 0.062*\"june\"\n", - "2019-01-16 04:46:21,550 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.020*\"open\" + 0.020*\"group\" + 0.019*\"point\" + 0.014*\"qualifi\" + 0.014*\"runner\" + 0.013*\"place\"\n", - "2019-01-16 04:46:21,552 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 04:46:21,558 : INFO : topic diff=0.006036, rho=0.038519\n", - "2019-01-16 04:46:21,814 : INFO : PROGRESS: pass 0, at document #1350000/4922894\n", - "2019-01-16 04:46:23,857 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:24,414 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.023*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:46:24,416 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"ag\" + 0.028*\"counti\" + 0.022*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:46:24,417 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.065*\"align\" + 0.060*\"wikit\" + 0.052*\"left\" + 0.051*\"style\" + 0.047*\"center\" + 0.038*\"right\" + 0.036*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:46:24,419 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:46:24,421 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.033*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:46:24,427 : INFO : topic diff=0.006555, rho=0.038490\n", - "2019-01-16 04:46:24,684 : INFO : PROGRESS: pass 0, at document #1352000/4922894\n", - "2019-01-16 04:46:26,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:27,263 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"time\" + 0.010*\"win\"\n", - "2019-01-16 04:46:27,265 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:46:27,267 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:46:27,269 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"end\" + 0.004*\"friend\"\n", - "2019-01-16 04:46:27,272 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.027*\"town\" + 0.025*\"unit\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.017*\"scotland\" + 0.014*\"scottish\" + 0.014*\"london\" + 0.012*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:46:27,278 : INFO : topic diff=0.007246, rho=0.038462\n", - "2019-01-16 04:46:27,561 : INFO : PROGRESS: pass 0, at document #1354000/4922894\n", - "2019-01-16 04:46:29,622 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:30,179 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.013*\"univers\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.012*\"work\" + 0.010*\"commun\" + 0.010*\"organ\"\n", - "2019-01-16 04:46:30,180 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 04:46:30,183 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"kim\" + 0.019*\"singapor\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"vietnam\" + 0.015*\"malaysia\" + 0.013*\"asian\" + 0.012*\"asia\" + 0.012*\"sun\"\n", - "2019-01-16 04:46:30,184 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.039*\"russian\" + 0.025*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.012*\"israel\" + 0.012*\"poland\"\n", - "2019-01-16 04:46:30,185 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.032*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:46:30,191 : INFO : topic diff=0.006296, rho=0.038433\n", - "2019-01-16 04:46:30,447 : INFO : PROGRESS: pass 0, at document #1356000/4922894\n", - "2019-01-16 04:46:32,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:33,068 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.009*\"type\" + 0.008*\"design\" + 0.008*\"vehicl\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:46:33,070 : INFO : topic #33 (0.020): 0.028*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.007*\"time\" + 0.006*\"increas\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:46:33,071 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 04:46:33,073 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"ag\" + 0.028*\"counti\" + 0.023*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:46:33,074 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:46:33,081 : INFO : topic diff=0.006751, rho=0.038405\n", - "2019-01-16 04:46:33,344 : INFO : PROGRESS: pass 0, at document #1358000/4922894\n", - "2019-01-16 04:46:35,419 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:35,977 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.033*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.018*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:46:35,979 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"group\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"gener\"\n", - "2019-01-16 04:46:35,980 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"puerto\" + 0.009*\"josé\"\n", - "2019-01-16 04:46:35,981 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.050*\"australian\" + 0.049*\"new\" + 0.045*\"china\" + 0.034*\"zealand\" + 0.034*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.017*\"kong\" + 0.016*\"melbourn\"\n", - "2019-01-16 04:46:35,983 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:46:35,988 : INFO : topic diff=0.006546, rho=0.038376\n", - "2019-01-16 04:46:40,659 : INFO : -11.736 per-word bound, 3410.8 perplexity estimate based on a held-out corpus of 2000 documents with 572936 words\n", - "2019-01-16 04:46:40,660 : INFO : PROGRESS: pass 0, at document #1360000/4922894\n", - "2019-01-16 04:46:42,707 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:43,263 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"win\"\n", - "2019-01-16 04:46:43,265 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:46:43,266 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"titl\" + 0.017*\"wrestl\" + 0.015*\"fight\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 04:46:43,268 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.010*\"commun\" + 0.010*\"organ\"\n", - "2019-01-16 04:46:43,269 : INFO : topic #9 (0.020): 0.069*\"film\" + 0.025*\"award\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:46:43,275 : INFO : topic diff=0.005844, rho=0.038348\n", - "2019-01-16 04:46:43,544 : INFO : PROGRESS: pass 0, at document #1362000/4922894\n", - "2019-01-16 04:46:45,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:46,172 : INFO : topic #35 (0.020): 0.023*\"lee\" + 0.021*\"kim\" + 0.019*\"singapor\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.017*\"vietnam\" + 0.016*\"min\" + 0.015*\"malaysia\" + 0.013*\"asian\" + 0.012*\"asia\"\n", - "2019-01-16 04:46:46,174 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.028*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.023*\"paint\" + 0.023*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:46:46,176 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.027*\"town\" + 0.025*\"unit\" + 0.020*\"cricket\" + 0.018*\"citi\" + 0.017*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 04:46:46,177 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:46:46,179 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.011*\"puerto\" + 0.009*\"josé\"\n", - "2019-01-16 04:46:46,185 : INFO : topic diff=0.006643, rho=0.038320\n", - "2019-01-16 04:46:46,429 : INFO : PROGRESS: pass 0, at document #1364000/4922894\n", - "2019-01-16 04:46:48,493 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:49,049 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.031*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"writer\" + 0.010*\"stori\"\n", - "2019-01-16 04:46:49,050 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.039*\"russian\" + 0.025*\"russia\" + 0.021*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.012*\"israel\" + 0.012*\"poland\"\n", - "2019-01-16 04:46:49,052 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:46:49,053 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.013*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.007*\"vessel\"\n", - "2019-01-16 04:46:49,055 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 04:46:49,061 : INFO : topic diff=0.006659, rho=0.038292\n", - "2019-01-16 04:46:49,308 : INFO : PROGRESS: pass 0, at document #1366000/4922894\n", - "2019-01-16 04:46:51,318 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:51,875 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.068*\"august\" + 0.068*\"januari\" + 0.068*\"juli\" + 0.066*\"novemb\" + 0.065*\"april\" + 0.063*\"decemb\" + 0.063*\"june\"\n", - "2019-01-16 04:46:51,877 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:46:51,878 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 04:46:51,880 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"design\" + 0.007*\"vehicl\" + 0.007*\"protein\"\n", - "2019-01-16 04:46:51,881 : INFO : topic #33 (0.020): 0.028*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.006*\"time\" + 0.006*\"increas\"\n", - "2019-01-16 04:46:51,887 : INFO : topic diff=0.006692, rho=0.038264\n", - "2019-01-16 04:46:52,138 : INFO : PROGRESS: pass 0, at document #1368000/4922894\n", - "2019-01-16 04:46:54,197 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:54,763 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"jame\"\n", - "2019-01-16 04:46:54,765 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"puerto\" + 0.010*\"mexican\"\n", - "2019-01-16 04:46:54,767 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"mark\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:46:54,768 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.062*\"wikit\" + 0.062*\"align\" + 0.052*\"left\" + 0.050*\"style\" + 0.049*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:46:54,769 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\" + 0.005*\"us\"\n", - "2019-01-16 04:46:54,775 : INFO : topic diff=0.006231, rho=0.038236\n", - "2019-01-16 04:46:55,022 : INFO : PROGRESS: pass 0, at document #1370000/4922894\n", - "2019-01-16 04:46:57,176 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:46:57,733 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.010*\"basebal\"\n", - "2019-01-16 04:46:57,735 : INFO : topic #33 (0.020): 0.028*\"compani\" + 0.012*\"million\" + 0.011*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.009*\"busi\" + 0.009*\"product\" + 0.007*\"new\" + 0.006*\"time\" + 0.006*\"cost\"\n", - "2019-01-16 04:46:57,736 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 04:46:57,738 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:46:57,739 : INFO : topic #49 (0.020): 0.085*\"district\" + 0.065*\"north\" + 0.061*\"east\" + 0.060*\"south\" + 0.058*\"region\" + 0.054*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.027*\"counti\" + 0.027*\"villag\"\n", - "2019-01-16 04:46:57,746 : INFO : topic diff=0.004710, rho=0.038208\n", - "2019-01-16 04:46:57,995 : INFO : PROGRESS: pass 0, at document #1372000/4922894\n", - "2019-01-16 04:47:00,029 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:00,591 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"puerto\" + 0.010*\"mexican\"\n", - "2019-01-16 04:47:00,593 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.050*\"new\" + 0.047*\"china\" + 0.034*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.016*\"kong\" + 0.016*\"queensland\"\n", - "2019-01-16 04:47:00,594 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:47:00,596 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 04:47:00,598 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:47:00,604 : INFO : topic diff=0.006170, rho=0.038180\n", - "2019-01-16 04:47:00,858 : INFO : PROGRESS: pass 0, at document #1374000/4922894\n", - "2019-01-16 04:47:02,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:03,448 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.068*\"januari\" + 0.068*\"juli\" + 0.067*\"august\" + 0.066*\"novemb\" + 0.065*\"april\" + 0.063*\"decemb\" + 0.062*\"june\"\n", - "2019-01-16 04:47:03,449 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.013*\"senat\"\n", - "2019-01-16 04:47:03,451 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.009*\"citi\"\n", - "2019-01-16 04:47:03,452 : INFO : topic #16 (0.020): 0.035*\"church\" + 0.018*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:47:03,453 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"right\" + 0.008*\"offic\" + 0.007*\"legal\"\n", - "2019-01-16 04:47:03,460 : INFO : topic diff=0.005881, rho=0.038152\n", - "2019-01-16 04:47:03,714 : INFO : PROGRESS: pass 0, at document #1376000/4922894\n", - "2019-01-16 04:47:05,757 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:06,315 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.017*\"danc\" + 0.015*\"festiv\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:47:06,316 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 04:47:06,318 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 04:47:06,319 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:47:06,321 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\" + 0.005*\"us\"\n", - "2019-01-16 04:47:06,326 : INFO : topic diff=0.006232, rho=0.038125\n", - "2019-01-16 04:47:06,604 : INFO : PROGRESS: pass 0, at document #1378000/4922894\n", - "2019-01-16 04:47:08,626 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:09,183 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.012*\"council\"\n", - "2019-01-16 04:47:09,185 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.048*\"china\" + 0.034*\"chines\" + 0.032*\"zealand\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.017*\"kong\" + 0.016*\"hong\"\n", - "2019-01-16 04:47:09,186 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.029*\"women\" + 0.028*\"championship\" + 0.028*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 04:47:09,188 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:47:09,189 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.012*\"work\" + 0.010*\"organ\" + 0.010*\"scienc\"\n", - "2019-01-16 04:47:09,195 : INFO : topic diff=0.006149, rho=0.038097\n", - "2019-01-16 04:47:13,917 : INFO : -11.563 per-word bound, 3026.1 perplexity estimate based on a held-out corpus of 2000 documents with 550981 words\n", - "2019-01-16 04:47:13,918 : INFO : PROGRESS: pass 0, at document #1380000/4922894\n", - "2019-01-16 04:47:16,002 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:16,569 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.013*\"hospit\" + 0.012*\"health\" + 0.011*\"patient\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"cell\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.008*\"cancer\"\n", - "2019-01-16 04:47:16,571 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"card\"\n", - "2019-01-16 04:47:16,572 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"tamil\" + 0.011*\"khan\" + 0.010*\"templ\"\n", - "2019-01-16 04:47:16,573 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"vehicl\" + 0.007*\"protein\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:47:16,575 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.036*\"africa\" + 0.031*\"african\" + 0.025*\"text\" + 0.023*\"till\" + 0.023*\"south\" + 0.022*\"color\" + 0.015*\"black\" + 0.011*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 04:47:16,582 : INFO : topic diff=0.004687, rho=0.038069\n", - "2019-01-16 04:47:16,878 : INFO : PROGRESS: pass 0, at document #1382000/4922894\n", - "2019-01-16 04:47:18,918 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:19,477 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 04:47:19,479 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", - "2019-01-16 04:47:19,480 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.010*\"histor\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.009*\"citi\"\n", - "2019-01-16 04:47:19,482 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"writer\" + 0.010*\"novel\"\n", - "2019-01-16 04:47:19,483 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.020*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.013*\"runner\"\n", - "2019-01-16 04:47:19,490 : INFO : topic diff=0.005129, rho=0.038042\n", - "2019-01-16 04:47:19,735 : INFO : PROGRESS: pass 0, at document #1384000/4922894\n", - "2019-01-16 04:47:21,771 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:22,332 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"tamil\" + 0.011*\"khan\" + 0.011*\"ali\"\n", - "2019-01-16 04:47:22,333 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.020*\"winner\" + 0.020*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.012*\"runner\"\n", - "2019-01-16 04:47:22,335 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.047*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.018*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 04:47:22,336 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.062*\"wikit\" + 0.060*\"align\" + 0.053*\"center\" + 0.050*\"style\" + 0.050*\"left\" + 0.036*\"philippin\" + 0.035*\"right\" + 0.028*\"text\" + 0.027*\"border\"\n", - "2019-01-16 04:47:22,337 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"stori\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\"\n", - "2019-01-16 04:47:22,344 : INFO : topic diff=0.005615, rho=0.038014\n", - "2019-01-16 04:47:22,592 : INFO : PROGRESS: pass 0, at document #1386000/4922894\n", - "2019-01-16 04:47:24,600 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:25,156 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:47:25,157 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"time\" + 0.005*\"us\"\n", - "2019-01-16 04:47:25,159 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.016*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:47:25,160 : INFO : topic #7 (0.020): 0.012*\"function\" + 0.011*\"number\" + 0.009*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"group\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"gener\"\n", - "2019-01-16 04:47:25,161 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 04:47:25,167 : INFO : topic diff=0.005664, rho=0.037987\n", - "2019-01-16 04:47:25,409 : INFO : PROGRESS: pass 0, at document #1388000/4922894\n", - "2019-01-16 04:47:27,380 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:27,935 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 04:47:27,937 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:47:27,938 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.021*\"airport\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:47:27,940 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.014*\"divis\" + 0.012*\"offic\" + 0.012*\"regiment\"\n", - "2019-01-16 04:47:27,941 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 04:47:27,948 : INFO : topic diff=0.006477, rho=0.037959\n", - "2019-01-16 04:47:28,198 : INFO : PROGRESS: pass 0, at document #1390000/4922894\n", - "2019-01-16 04:47:30,273 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:30,831 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"friend\"\n", - "2019-01-16 04:47:30,833 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.013*\"republican\" + 0.012*\"council\"\n", - "2019-01-16 04:47:30,834 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 04:47:30,835 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"puerto\"\n", - "2019-01-16 04:47:30,838 : INFO : topic #40 (0.020): 0.038*\"bar\" + 0.035*\"africa\" + 0.031*\"african\" + 0.024*\"text\" + 0.023*\"south\" + 0.023*\"till\" + 0.021*\"color\" + 0.016*\"black\" + 0.011*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 04:47:30,844 : INFO : topic diff=0.006682, rho=0.037932\n", - "2019-01-16 04:47:31,073 : INFO : PROGRESS: pass 0, at document #1392000/4922894\n", - "2019-01-16 04:47:33,047 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:33,603 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:47:33,605 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:47:33,606 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.026*\"unit\" + 0.025*\"town\" + 0.021*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.013*\"london\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 04:47:33,608 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", - "2019-01-16 04:47:33,609 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"fight\" + 0.015*\"team\" + 0.014*\"championship\" + 0.013*\"elimin\" + 0.012*\"champion\"\n", - "2019-01-16 04:47:33,615 : INFO : topic diff=0.005976, rho=0.037905\n", - "2019-01-16 04:47:33,869 : INFO : PROGRESS: pass 0, at document #1394000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:47:35,923 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:36,479 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"win\"\n", - "2019-01-16 04:47:36,481 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.021*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"fight\" + 0.014*\"team\" + 0.014*\"championship\" + 0.013*\"elimin\" + 0.012*\"champion\"\n", - "2019-01-16 04:47:36,482 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:47:36,484 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.029*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 04:47:36,487 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.019*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 04:47:36,493 : INFO : topic diff=0.005627, rho=0.037878\n", - "2019-01-16 04:47:36,742 : INFO : PROGRESS: pass 0, at document #1396000/4922894\n", - "2019-01-16 04:47:38,832 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:39,388 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:47:39,390 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:47:39,391 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"march\" + 0.074*\"octob\" + 0.074*\"juli\" + 0.070*\"august\" + 0.069*\"januari\" + 0.068*\"april\" + 0.066*\"novemb\" + 0.066*\"june\" + 0.064*\"decemb\"\n", - "2019-01-16 04:47:39,393 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 04:47:39,394 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.019*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"sri\" + 0.011*\"khan\" + 0.011*\"singh\" + 0.011*\"tamil\"\n", - "2019-01-16 04:47:39,401 : INFO : topic diff=0.007500, rho=0.037851\n", - "2019-01-16 04:47:39,652 : INFO : PROGRESS: pass 0, at document #1398000/4922894\n", - "2019-01-16 04:47:41,667 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:42,224 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.012*\"republican\" + 0.012*\"senat\"\n", - "2019-01-16 04:47:42,226 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:47:42,227 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.017*\"plai\" + 0.017*\"theatr\" + 0.015*\"danc\" + 0.015*\"festiv\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 04:47:42,230 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"model\" + 0.008*\"type\" + 0.007*\"cell\" + 0.007*\"manufactur\"\n", - "2019-01-16 04:47:42,231 : INFO : topic #35 (0.020): 0.022*\"lee\" + 0.020*\"singapor\" + 0.020*\"kim\" + 0.016*\"indonesia\" + 0.016*\"vietnam\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.013*\"asia\" + 0.013*\"min\" + 0.012*\"asian\"\n", - "2019-01-16 04:47:42,238 : INFO : topic diff=0.005303, rho=0.037823\n", - "2019-01-16 04:47:46,985 : INFO : -11.578 per-word bound, 3057.1 perplexity estimate based on a held-out corpus of 2000 documents with 541362 words\n", - "2019-01-16 04:47:46,986 : INFO : PROGRESS: pass 0, at document #1400000/4922894\n", - "2019-01-16 04:47:49,038 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:49,593 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 04:47:49,595 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 04:47:49,596 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.006*\"mark\"\n", - "2019-01-16 04:47:49,598 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\" + 0.004*\"friend\"\n", - "2019-01-16 04:47:49,599 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:47:49,605 : INFO : topic diff=0.005480, rho=0.037796\n", - "2019-01-16 04:47:49,849 : INFO : PROGRESS: pass 0, at document #1402000/4922894\n", - "2019-01-16 04:47:51,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:52,426 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 04:47:52,428 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.020*\"point\" + 0.020*\"group\" + 0.018*\"open\" + 0.013*\"qualifi\" + 0.013*\"place\" + 0.013*\"runner\"\n", - "2019-01-16 04:47:52,430 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"video\"\n", - "2019-01-16 04:47:52,432 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.064*\"north\" + 0.059*\"region\" + 0.059*\"east\" + 0.058*\"south\" + 0.053*\"west\" + 0.032*\"provinc\" + 0.032*\"central\" + 0.028*\"counti\" + 0.028*\"villag\"\n", - "2019-01-16 04:47:52,434 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.027*\"ag\" + 0.027*\"counti\" + 0.024*\"area\" + 0.022*\"famili\" + 0.022*\"municip\" + 0.022*\"censu\"\n", - "2019-01-16 04:47:52,441 : INFO : topic diff=0.005445, rho=0.037769\n", - "2019-01-16 04:47:52,719 : INFO : PROGRESS: pass 0, at document #1404000/4922894\n", - "2019-01-16 04:47:54,766 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:55,324 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 04:47:55,325 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.014*\"montreal\" + 0.014*\"list\" + 0.013*\"ye\"\n", - "2019-01-16 04:47:55,326 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", - "2019-01-16 04:47:55,328 : INFO : topic #16 (0.020): 0.034*\"church\" + 0.017*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:47:55,329 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.010*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:47:55,335 : INFO : topic diff=0.005562, rho=0.037743\n", - "2019-01-16 04:47:55,580 : INFO : PROGRESS: pass 0, at document #1406000/4922894\n", - "2019-01-16 04:47:57,601 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:47:58,160 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"jame\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:47:58,161 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.012*\"regiment\"\n", - "2019-01-16 04:47:58,163 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.025*\"work\" + 0.024*\"file\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:47:58,164 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.017*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"writer\"\n", - "2019-01-16 04:47:58,165 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.063*\"wikit\" + 0.057*\"align\" + 0.052*\"center\" + 0.050*\"style\" + 0.047*\"left\" + 0.036*\"philippin\" + 0.032*\"right\" + 0.030*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:47:58,171 : INFO : topic diff=0.005631, rho=0.037716\n", - "2019-01-16 04:47:58,420 : INFO : PROGRESS: pass 0, at document #1408000/4922894\n", - "2019-01-16 04:48:00,488 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:01,048 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"time\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 04:48:01,050 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"island\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:48:01,052 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.020*\"point\" + 0.020*\"group\" + 0.018*\"open\" + 0.014*\"qualifi\" + 0.013*\"place\" + 0.013*\"runner\"\n", - "2019-01-16 04:48:01,054 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:48:01,055 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.011*\"juan\" + 0.010*\"puerto\"\n", - "2019-01-16 04:48:01,061 : INFO : topic diff=0.005544, rho=0.037689\n", - "2019-01-16 04:48:01,308 : INFO : PROGRESS: pass 0, at document #1410000/4922894\n", - "2019-01-16 04:48:03,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:03,878 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"princ\" + 0.008*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:48:03,880 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 04:48:03,881 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"puerto\"\n", - "2019-01-16 04:48:03,883 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.027*\"ag\" + 0.027*\"counti\" + 0.024*\"area\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:48:03,885 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.021*\"contest\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"team\" + 0.015*\"titl\" + 0.015*\"wrestl\" + 0.013*\"championship\" + 0.013*\"elimin\" + 0.012*\"champion\"\n", - "2019-01-16 04:48:03,891 : INFO : topic diff=0.005505, rho=0.037662\n", - "2019-01-16 04:48:04,137 : INFO : PROGRESS: pass 0, at document #1412000/4922894\n", - "2019-01-16 04:48:06,163 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:06,721 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.008*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:48:06,722 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.064*\"north\" + 0.059*\"east\" + 0.058*\"south\" + 0.058*\"region\" + 0.052*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.029*\"villag\" + 0.028*\"counti\"\n", - "2019-01-16 04:48:06,723 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.024*\"russia\" + 0.021*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.012*\"israel\"\n", - "2019-01-16 04:48:06,725 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"record\" + 0.026*\"releas\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:48:06,730 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"royal\"\n", - "2019-01-16 04:48:06,736 : INFO : topic diff=0.006022, rho=0.037635\n", - "2019-01-16 04:48:06,978 : INFO : PROGRESS: pass 0, at document #1414000/4922894\n", - "2019-01-16 04:48:08,982 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:09,539 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.015*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:48:09,541 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.075*\"octob\" + 0.073*\"march\" + 0.072*\"juli\" + 0.070*\"august\" + 0.067*\"april\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"decemb\"\n", - "2019-01-16 04:48:09,543 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.063*\"wikit\" + 0.055*\"align\" + 0.053*\"style\" + 0.051*\"center\" + 0.045*\"left\" + 0.036*\"philippin\" + 0.031*\"right\" + 0.029*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:48:09,545 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"son\" + 0.017*\"di\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:48:09,546 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.024*\"singapor\" + 0.020*\"kim\" + 0.016*\"vietnam\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.016*\"indonesia\" + 0.012*\"asia\" + 0.012*\"asian\" + 0.012*\"min\"\n", - "2019-01-16 04:48:09,553 : INFO : topic diff=0.005682, rho=0.037609\n", - "2019-01-16 04:48:09,783 : INFO : PROGRESS: pass 0, at document #1416000/4922894\n", - "2019-01-16 04:48:11,755 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:12,312 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:48:12,313 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.010*\"juan\" + 0.010*\"puerto\"\n", - "2019-01-16 04:48:12,317 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"intern\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"servic\" + 0.010*\"scienc\"\n", - "2019-01-16 04:48:12,319 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.063*\"north\" + 0.058*\"east\" + 0.058*\"region\" + 0.057*\"south\" + 0.052*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.030*\"villag\" + 0.028*\"counti\"\n", - "2019-01-16 04:48:12,320 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"repres\" + 0.013*\"seat\"\n", - "2019-01-16 04:48:12,325 : INFO : topic diff=0.006933, rho=0.037582\n", - "2019-01-16 04:48:12,567 : INFO : PROGRESS: pass 0, at document #1418000/4922894\n", - "2019-01-16 04:48:14,623 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:15,180 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.023*\"russia\" + 0.021*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.012*\"israel\" + 0.012*\"poland\"\n", - "2019-01-16 04:48:15,181 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.016*\"fight\" + 0.016*\"match\" + 0.016*\"titl\" + 0.015*\"team\" + 0.015*\"wrestl\" + 0.013*\"championship\" + 0.013*\"elimin\" + 0.013*\"champion\"\n", - "2019-01-16 04:48:15,183 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.076*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"ye\" + 0.014*\"list\" + 0.014*\"montreal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:48:15,184 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.031*\"villag\" + 0.027*\"ag\" + 0.027*\"counti\" + 0.024*\"area\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:48:15,186 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.046*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.008*\"program\"\n", - "2019-01-16 04:48:15,191 : INFO : topic diff=0.006284, rho=0.037556\n", - "2019-01-16 04:48:19,908 : INFO : -11.479 per-word bound, 2855.3 perplexity estimate based on a held-out corpus of 2000 documents with 578558 words\n", - "2019-01-16 04:48:19,909 : INFO : PROGRESS: pass 0, at document #1420000/4922894\n", - "2019-01-16 04:48:21,936 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:22,493 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 04:48:22,495 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"repres\" + 0.013*\"seat\"\n", - "2019-01-16 04:48:22,497 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.046*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.008*\"program\"\n", - "2019-01-16 04:48:22,498 : INFO : topic #35 (0.020): 0.025*\"singapor\" + 0.023*\"lee\" + 0.022*\"kim\" + 0.016*\"thailand\" + 0.016*\"vietnam\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.013*\"asian\" + 0.012*\"asia\" + 0.012*\"min\"\n", - "2019-01-16 04:48:22,500 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.009*\"type\" + 0.009*\"design\" + 0.008*\"model\" + 0.007*\"protein\" + 0.007*\"acid\"\n", - "2019-01-16 04:48:22,506 : INFO : topic diff=0.006388, rho=0.037529\n", - "2019-01-16 04:48:22,764 : INFO : PROGRESS: pass 0, at document #1422000/4922894\n", - "2019-01-16 04:48:24,803 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:25,361 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:48:25,363 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 04:48:25,365 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"jame\"\n", - "2019-01-16 04:48:25,367 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:48:25,369 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:48:25,375 : INFO : topic diff=0.006004, rho=0.037503\n", - "2019-01-16 04:48:25,608 : INFO : PROGRESS: pass 0, at document #1424000/4922894\n", - "2019-01-16 04:48:27,638 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:28,198 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:48:28,200 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.029*\"italian\" + 0.025*\"pari\" + 0.021*\"itali\" + 0.021*\"saint\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:48:28,202 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.063*\"wikit\" + 0.057*\"align\" + 0.053*\"style\" + 0.050*\"center\" + 0.043*\"left\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.029*\"text\" + 0.027*\"border\"\n", - "2019-01-16 04:48:28,203 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.025*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:48:28,204 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"mark\"\n", - "2019-01-16 04:48:28,210 : INFO : topic diff=0.005791, rho=0.037477\n", - "2019-01-16 04:48:28,463 : INFO : PROGRESS: pass 0, at document #1426000/4922894\n", - "2019-01-16 04:48:30,494 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:31,051 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"counti\" + 0.026*\"ag\" + 0.024*\"area\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:48:31,053 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.062*\"north\" + 0.058*\"east\" + 0.058*\"region\" + 0.056*\"south\" + 0.053*\"west\" + 0.034*\"provinc\" + 0.033*\"central\" + 0.029*\"villag\" + 0.029*\"counti\"\n", - "2019-01-16 04:48:31,054 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 04:48:31,055 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.016*\"quebec\" + 0.015*\"british\" + 0.014*\"list\" + 0.014*\"montreal\" + 0.013*\"korean\"\n", - "2019-01-16 04:48:31,057 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"design\" + 0.008*\"type\" + 0.008*\"model\" + 0.007*\"vehicl\" + 0.007*\"acid\"\n", - "2019-01-16 04:48:31,062 : INFO : topic diff=0.005825, rho=0.037450\n", - "2019-01-16 04:48:31,296 : INFO : PROGRESS: pass 0, at document #1428000/4922894\n", - "2019-01-16 04:48:33,298 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:33,854 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"air\"\n", - "2019-01-16 04:48:33,855 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"island\" + 0.009*\"port\" + 0.008*\"damag\" + 0.008*\"crew\" + 0.008*\"naval\"\n", - "2019-01-16 04:48:33,857 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"mark\"\n", - "2019-01-16 04:48:33,858 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:48:33,859 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.037*\"town\" + 0.031*\"citi\" + 0.030*\"villag\" + 0.029*\"counti\" + 0.026*\"ag\" + 0.023*\"area\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"censu\"\n", - "2019-01-16 04:48:33,865 : INFO : topic diff=0.005820, rho=0.037424\n", - "2019-01-16 04:48:34,135 : INFO : PROGRESS: pass 0, at document #1430000/4922894\n", - "2019-01-16 04:48:36,171 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:36,726 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:48:36,728 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 04:48:36,730 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.010*\"island\" + 0.009*\"port\" + 0.008*\"damag\" + 0.008*\"crew\" + 0.008*\"naval\"\n", - "2019-01-16 04:48:36,733 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.052*\"australian\" + 0.049*\"new\" + 0.046*\"china\" + 0.035*\"chines\" + 0.032*\"zealand\" + 0.028*\"south\" + 0.018*\"sydnei\" + 0.018*\"kong\" + 0.017*\"hong\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:48:36,735 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 04:48:36,742 : INFO : topic diff=0.005628, rho=0.037398\n", - "2019-01-16 04:48:36,995 : INFO : PROGRESS: pass 0, at document #1432000/4922894\n", - "2019-01-16 04:48:39,080 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:39,640 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"busi\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"cost\"\n", - "2019-01-16 04:48:39,641 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"tour\" + 0.010*\"time\"\n", - "2019-01-16 04:48:39,642 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:48:39,644 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\"\n", - "2019-01-16 04:48:39,645 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:48:39,652 : INFO : topic diff=0.006336, rho=0.037372\n", - "2019-01-16 04:48:39,891 : INFO : PROGRESS: pass 0, at document #1434000/4922894\n", - "2019-01-16 04:48:41,872 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:42,428 : INFO : topic #46 (0.020): 0.151*\"class\" + 0.063*\"wikit\" + 0.056*\"align\" + 0.053*\"style\" + 0.049*\"center\" + 0.043*\"left\" + 0.034*\"philippin\" + 0.034*\"right\" + 0.028*\"text\" + 0.027*\"border\"\n", - "2019-01-16 04:48:42,430 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"design\"\n", - "2019-01-16 04:48:42,431 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:48:42,432 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.014*\"battl\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.012*\"offic\"\n", - "2019-01-16 04:48:42,434 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.013*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"servic\" + 0.010*\"scienc\"\n", - "2019-01-16 04:48:42,439 : INFO : topic diff=0.005611, rho=0.037346\n", - "2019-01-16 04:48:42,686 : INFO : PROGRESS: pass 0, at document #1436000/4922894\n", - "2019-01-16 04:48:44,720 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:45,276 : INFO : topic #24 (0.020): 0.031*\"ship\" + 0.014*\"navi\" + 0.012*\"gun\" + 0.011*\"sea\" + 0.010*\"boat\" + 0.010*\"island\" + 0.009*\"port\" + 0.008*\"damag\" + 0.008*\"naval\" + 0.008*\"crew\"\n", - "2019-01-16 04:48:45,278 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:48:45,279 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.025*\"oper\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:48:45,281 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 04:48:45,283 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 04:48:45,289 : INFO : topic diff=0.005267, rho=0.037320\n", - "2019-01-16 04:48:45,535 : INFO : PROGRESS: pass 0, at document #1438000/4922894\n", - "2019-01-16 04:48:47,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:48,129 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.016*\"minist\" + 0.014*\"repres\" + 0.013*\"republican\" + 0.013*\"seat\"\n", - "2019-01-16 04:48:48,132 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:48:48,133 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.027*\"point\" + 0.024*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.014*\"place\" + 0.013*\"doubl\" + 0.013*\"qualifi\"\n", - "2019-01-16 04:48:48,135 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.022*\"kim\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.016*\"vietnam\" + 0.015*\"thailand\" + 0.013*\"asian\" + 0.012*\"asia\" + 0.012*\"min\"\n", - "2019-01-16 04:48:48,140 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.025*\"aircraft\" + 0.025*\"oper\" + 0.025*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:48:48,147 : INFO : topic diff=0.005808, rho=0.037294\n", - "2019-01-16 04:48:52,822 : INFO : -11.661 per-word bound, 3237.7 perplexity estimate based on a held-out corpus of 2000 documents with 590769 words\n", - "2019-01-16 04:48:52,823 : INFO : PROGRESS: pass 0, at document #1440000/4922894\n", - "2019-01-16 04:48:54,866 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:55,426 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.062*\"wikit\" + 0.061*\"align\" + 0.052*\"style\" + 0.048*\"center\" + 0.048*\"left\" + 0.033*\"philippin\" + 0.032*\"right\" + 0.028*\"text\" + 0.026*\"border\"\n", - "2019-01-16 04:48:55,428 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 04:48:55,430 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:48:55,431 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.036*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:48:55,432 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:48:55,438 : INFO : topic diff=0.007233, rho=0.037268\n", - "2019-01-16 04:48:55,682 : INFO : PROGRESS: pass 0, at document #1442000/4922894\n", - "2019-01-16 04:48:57,864 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:48:58,422 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.012*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:48:58,423 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 04:48:58,425 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.076*\"octob\" + 0.074*\"march\" + 0.072*\"juli\" + 0.069*\"januari\" + 0.068*\"august\" + 0.067*\"june\" + 0.067*\"april\" + 0.067*\"novemb\" + 0.065*\"decemb\"\n", - "2019-01-16 04:48:58,427 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.013*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"award\"\n", - "2019-01-16 04:48:58,428 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.061*\"north\" + 0.058*\"east\" + 0.057*\"region\" + 0.056*\"south\" + 0.053*\"west\" + 0.034*\"provinc\" + 0.032*\"central\" + 0.031*\"villag\" + 0.029*\"counti\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:48:58,435 : INFO : topic diff=0.004956, rho=0.037242\n", - "2019-01-16 04:48:58,680 : INFO : PROGRESS: pass 0, at document #1444000/4922894\n", - "2019-01-16 04:49:00,775 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:01,331 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.012*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:49:01,333 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:49:01,335 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.033*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:49:01,337 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.017*\"gold\" + 0.017*\"nation\"\n", - "2019-01-16 04:49:01,338 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.020*\"scotland\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"london\" + 0.013*\"wale\"\n", - "2019-01-16 04:49:01,344 : INFO : topic diff=0.005780, rho=0.037216\n", - "2019-01-16 04:49:01,584 : INFO : PROGRESS: pass 0, at document #1446000/4922894\n", - "2019-01-16 04:49:03,633 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:04,191 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.026*\"kim\" + 0.023*\"singapor\" + 0.018*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"vietnam\" + 0.014*\"thailand\" + 0.014*\"min\" + 0.012*\"asia\"\n", - "2019-01-16 04:49:04,193 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"golf\" + 0.019*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"grand\"\n", - "2019-01-16 04:49:04,194 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:49:04,196 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"jpg\" + 0.033*\"museum\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.019*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:49:04,198 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.012*\"senat\"\n", - "2019-01-16 04:49:04,203 : INFO : topic diff=0.006058, rho=0.037190\n", - "2019-01-16 04:49:04,446 : INFO : PROGRESS: pass 0, at document #1448000/4922894\n", - "2019-01-16 04:49:06,469 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:07,027 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.038*\"russian\" + 0.023*\"russia\" + 0.022*\"soviet\" + 0.018*\"jewish\" + 0.018*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.012*\"poland\" + 0.012*\"israel\"\n", - "2019-01-16 04:49:07,028 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"end\"\n", - "2019-01-16 04:49:07,030 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.022*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:49:07,031 : INFO : topic #34 (0.020): 0.082*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.027*\"ontario\" + 0.025*\"toronto\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"list\" + 0.014*\"montreal\" + 0.013*\"columbia\"\n", - "2019-01-16 04:49:07,033 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"model\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.007*\"us\"\n", - "2019-01-16 04:49:07,041 : INFO : topic diff=0.007769, rho=0.037165\n", - "2019-01-16 04:49:07,291 : INFO : PROGRESS: pass 0, at document #1450000/4922894\n", - "2019-01-16 04:49:09,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:09,922 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.012*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:49:09,923 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"base\"\n", - "2019-01-16 04:49:09,926 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:49:09,927 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.010*\"busi\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"cost\"\n", - "2019-01-16 04:49:09,929 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:49:09,934 : INFO : topic diff=0.005870, rho=0.037139\n", - "2019-01-16 04:49:10,163 : INFO : PROGRESS: pass 0, at document #1452000/4922894\n", - "2019-01-16 04:49:12,119 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:12,679 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:49:12,681 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.009*\"centuri\"\n", - "2019-01-16 04:49:12,682 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"busi\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"cost\"\n", - "2019-01-16 04:49:12,684 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"light\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:49:12,685 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:49:12,691 : INFO : topic diff=0.006409, rho=0.037113\n", - "2019-01-16 04:49:12,943 : INFO : PROGRESS: pass 0, at document #1454000/4922894\n", - "2019-01-16 04:49:15,016 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:15,573 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.020*\"medal\" + 0.020*\"japan\" + 0.017*\"nation\" + 0.016*\"gold\"\n", - "2019-01-16 04:49:15,574 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"orchestra\" + 0.013*\"opera\"\n", - "2019-01-16 04:49:15,575 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.062*\"wikit\" + 0.059*\"align\" + 0.051*\"style\" + 0.050*\"left\" + 0.048*\"center\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.028*\"text\" + 0.026*\"border\"\n", - "2019-01-16 04:49:15,577 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.012*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:49:15,578 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 04:49:15,584 : INFO : topic diff=0.006768, rho=0.037088\n", - "2019-01-16 04:49:15,852 : INFO : PROGRESS: pass 0, at document #1456000/4922894\n", - "2019-01-16 04:49:17,852 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:18,412 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:49:18,414 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.047*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 04:49:18,415 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"scotland\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"wale\"\n", - "2019-01-16 04:49:18,416 : INFO : topic #29 (0.020): 0.042*\"club\" + 0.040*\"leagu\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:49:18,418 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 04:49:18,423 : INFO : topic diff=0.005825, rho=0.037062\n", - "2019-01-16 04:49:18,669 : INFO : PROGRESS: pass 0, at document #1458000/4922894\n", - "2019-01-16 04:49:20,703 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:21,264 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:49:21,265 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"product\" + 0.010*\"busi\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"oper\"\n", - "2019-01-16 04:49:21,267 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 04:49:21,269 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", - "2019-01-16 04:49:21,270 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 04:49:21,276 : INFO : topic diff=0.005945, rho=0.037037\n", - "2019-01-16 04:49:25,979 : INFO : -11.952 per-word bound, 3963.3 perplexity estimate based on a held-out corpus of 2000 documents with 576656 words\n", - "2019-01-16 04:49:25,980 : INFO : PROGRESS: pass 0, at document #1460000/4922894\n", - "2019-01-16 04:49:28,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:28,585 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"commun\"\n", - "2019-01-16 04:49:28,587 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:49:28,589 : INFO : topic #29 (0.020): 0.041*\"club\" + 0.040*\"leagu\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:49:28,590 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 04:49:28,592 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:49:28,598 : INFO : topic diff=0.006164, rho=0.037012\n", - "2019-01-16 04:49:28,843 : INFO : PROGRESS: pass 0, at document #1462000/4922894\n", - "2019-01-16 04:49:30,902 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:31,459 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.038*\"town\" + 0.030*\"citi\" + 0.030*\"villag\" + 0.028*\"counti\" + 0.026*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"municip\"\n", - "2019-01-16 04:49:31,460 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.015*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:49:31,463 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 04:49:31,464 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.025*\"kim\" + 0.022*\"singapor\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.015*\"thailand\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.013*\"min\" + 0.012*\"asia\"\n", - "2019-01-16 04:49:31,465 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"studi\"\n", - "2019-01-16 04:49:31,472 : INFO : topic diff=0.007376, rho=0.036986\n", - "2019-01-16 04:49:31,722 : INFO : PROGRESS: pass 0, at document #1464000/4922894\n", - "2019-01-16 04:49:33,700 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:34,257 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"tamil\" + 0.010*\"khan\"\n", - "2019-01-16 04:49:34,258 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"air\"\n", - "2019-01-16 04:49:34,259 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"product\" + 0.010*\"busi\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"oper\"\n", - "2019-01-16 04:49:34,262 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.062*\"wikit\" + 0.061*\"align\" + 0.052*\"style\" + 0.052*\"left\" + 0.047*\"center\" + 0.033*\"philippin\" + 0.033*\"right\" + 0.030*\"text\" + 0.026*\"border\"\n", - "2019-01-16 04:49:34,263 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.008*\"centuri\"\n", - "2019-01-16 04:49:34,270 : INFO : topic diff=0.006338, rho=0.036961\n", - "2019-01-16 04:49:34,516 : INFO : PROGRESS: pass 0, at document #1466000/4922894\n", - "2019-01-16 04:49:36,568 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:37,124 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.060*\"region\" + 0.059*\"north\" + 0.056*\"east\" + 0.054*\"south\" + 0.051*\"west\" + 0.034*\"provinc\" + 0.032*\"villag\" + 0.031*\"central\" + 0.028*\"counti\"\n", - "2019-01-16 04:49:37,125 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.013*\"orchestra\" + 0.013*\"opera\"\n", - "2019-01-16 04:49:37,127 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.018*\"jewish\" + 0.017*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"american\"\n", - "2019-01-16 04:49:37,128 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"host\" + 0.010*\"air\"\n", - "2019-01-16 04:49:37,130 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.021*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"championship\" + 0.012*\"champion\" + 0.012*\"elimin\"\n", - "2019-01-16 04:49:37,135 : INFO : topic diff=0.005732, rho=0.036936\n", - "2019-01-16 04:49:37,378 : INFO : PROGRESS: pass 0, at document #1468000/4922894\n", - "2019-01-16 04:49:39,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:39,944 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:49:39,946 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"vehicl\" + 0.007*\"car\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:49:39,947 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"order\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\"\n", - "2019-01-16 04:49:39,948 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:49:39,952 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:49:39,958 : INFO : topic diff=0.007290, rho=0.036911\n", - "2019-01-16 04:49:40,207 : INFO : PROGRESS: pass 0, at document #1470000/4922894\n", - "2019-01-16 04:49:42,262 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:42,818 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.025*\"kim\" + 0.024*\"singapor\" + 0.019*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 04:49:42,819 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.062*\"wikit\" + 0.058*\"align\" + 0.051*\"style\" + 0.051*\"left\" + 0.046*\"center\" + 0.035*\"philippin\" + 0.032*\"right\" + 0.029*\"text\" + 0.027*\"border\"\n", - "2019-01-16 04:49:42,821 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.025*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"scotland\" + 0.018*\"citi\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"wale\"\n", - "2019-01-16 04:49:42,822 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"order\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\"\n", - "2019-01-16 04:49:42,825 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:49:42,832 : INFO : topic diff=0.005568, rho=0.036886\n", - "2019-01-16 04:49:43,068 : INFO : PROGRESS: pass 0, at document #1472000/4922894\n", - "2019-01-16 04:49:45,122 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:45,678 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.030*\"citi\" + 0.030*\"villag\" + 0.028*\"counti\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.022*\"municip\"\n", - "2019-01-16 04:49:45,680 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"scotland\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"wale\"\n", - "2019-01-16 04:49:45,682 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", - "2019-01-16 04:49:45,684 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.024*\"kim\" + 0.024*\"singapor\" + 0.019*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.012*\"min\"\n", - "2019-01-16 04:49:45,686 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:49:45,692 : INFO : topic diff=0.005366, rho=0.036860\n", - "2019-01-16 04:49:45,936 : INFO : PROGRESS: pass 0, at document #1474000/4922894\n", - "2019-01-16 04:49:47,927 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:48,486 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.016*\"match\" + 0.015*\"wrestl\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"championship\" + 0.012*\"champion\" + 0.011*\"box\"\n", - "2019-01-16 04:49:48,487 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"version\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:49:48,489 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.033*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"imag\" + 0.019*\"design\" + 0.018*\"exhibit\"\n", - "2019-01-16 04:49:48,491 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"royal\" + 0.014*\"georg\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:49:48,493 : INFO : topic #29 (0.020): 0.041*\"club\" + 0.040*\"leagu\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:49:48,499 : INFO : topic diff=0.006110, rho=0.036835\n", - "2019-01-16 04:49:48,759 : INFO : PROGRESS: pass 0, at document #1476000/4922894\n", - "2019-01-16 04:49:50,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:51,391 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.008*\"centuri\"\n", - "2019-01-16 04:49:51,392 : INFO : topic #39 (0.020): 0.056*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.024*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:49:51,393 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.035*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.010*\"tamil\"\n", - "2019-01-16 04:49:51,396 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.036*\"africa\" + 0.030*\"african\" + 0.026*\"text\" + 0.025*\"south\" + 0.024*\"till\" + 0.022*\"color\" + 0.014*\"black\" + 0.013*\"tropic\" + 0.011*\"storm\"\n", - "2019-01-16 04:49:51,397 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.013*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:49:51,402 : INFO : topic diff=0.007325, rho=0.036811\n", - "2019-01-16 04:49:51,645 : INFO : PROGRESS: pass 0, at document #1478000/4922894\n", - "2019-01-16 04:49:53,681 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:49:54,239 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:49:54,241 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:49:54,242 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"championship\" + 0.012*\"elimin\" + 0.012*\"champion\"\n", - "2019-01-16 04:49:54,244 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"brown\"\n", - "2019-01-16 04:49:54,245 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:49:54,253 : INFO : topic diff=0.006041, rho=0.036786\n", - "2019-01-16 04:49:58,881 : INFO : -11.697 per-word bound, 3319.2 perplexity estimate based on a held-out corpus of 2000 documents with 552764 words\n", - "2019-01-16 04:49:58,882 : INFO : PROGRESS: pass 0, at document #1480000/4922894\n", - "2019-01-16 04:50:00,912 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:01,470 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"union\"\n", - "2019-01-16 04:50:01,471 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:50:01,473 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"bank\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"oper\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:50:01,474 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.061*\"north\" + 0.059*\"region\" + 0.056*\"east\" + 0.055*\"south\" + 0.052*\"west\" + 0.034*\"provinc\" + 0.032*\"villag\" + 0.030*\"central\" + 0.028*\"counti\"\n", - "2019-01-16 04:50:01,476 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:50:01,481 : INFO : topic diff=0.005593, rho=0.036761\n", - "2019-01-16 04:50:01,731 : INFO : PROGRESS: pass 0, at document #1482000/4922894\n", - "2019-01-16 04:50:03,844 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:04,401 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:50:04,402 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 04:50:04,404 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"stori\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:50:04,407 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 04:50:04,408 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.017*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 04:50:04,415 : INFO : topic diff=0.006443, rho=0.036736\n", - "2019-01-16 04:50:04,662 : INFO : PROGRESS: pass 0, at document #1484000/4922894\n", - "2019-01-16 04:50:06,720 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:07,276 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"democrat\" + 0.018*\"presid\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.014*\"repres\" + 0.013*\"council\"\n", - "2019-01-16 04:50:07,278 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.009*\"electr\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"design\" + 0.008*\"type\" + 0.007*\"car\" + 0.007*\"vehicl\"\n", - "2019-01-16 04:50:07,279 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.034*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"american\" + 0.013*\"israel\"\n", - "2019-01-16 04:50:07,280 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.034*\"new\" + 0.033*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:50:07,281 : INFO : topic #29 (0.020): 0.040*\"club\" + 0.040*\"leagu\" + 0.032*\"team\" + 0.032*\"plai\" + 0.028*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:50:07,287 : INFO : topic diff=0.005957, rho=0.036711\n", - "2019-01-16 04:50:07,540 : INFO : PROGRESS: pass 0, at document #1486000/4922894\n", - "2019-01-16 04:50:09,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:10,126 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.066*\"januari\" + 0.065*\"april\" + 0.064*\"august\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 04:50:10,128 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"develop\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", - "2019-01-16 04:50:10,129 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", - "2019-01-16 04:50:10,131 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.009*\"damag\" + 0.009*\"port\" + 0.008*\"coast\" + 0.008*\"crew\"\n", - "2019-01-16 04:50:10,132 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"point\" + 0.025*\"tournament\" + 0.022*\"winner\" + 0.022*\"group\" + 0.016*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", - "2019-01-16 04:50:10,138 : INFO : topic diff=0.006376, rho=0.036686\n", - "2019-01-16 04:50:10,383 : INFO : PROGRESS: pass 0, at document #1488000/4922894\n", - "2019-01-16 04:50:12,407 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:12,963 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"daughter\" + 0.012*\"born\"\n", - "2019-01-16 04:50:12,965 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 04:50:12,966 : INFO : topic #39 (0.020): 0.054*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.024*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 04:50:12,968 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.018*\"presid\" + 0.016*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 04:50:12,969 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"thoma\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:50:12,975 : INFO : topic diff=0.005140, rho=0.036662\n", - "2019-01-16 04:50:13,220 : INFO : PROGRESS: pass 0, at document #1490000/4922894\n", - "2019-01-16 04:50:15,187 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:15,749 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.010*\"damag\" + 0.009*\"port\" + 0.008*\"coast\" + 0.007*\"crew\"\n", - "2019-01-16 04:50:15,751 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.033*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:50:15,752 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 04:50:15,754 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"empir\" + 0.007*\"year\" + 0.007*\"son\"\n", - "2019-01-16 04:50:15,757 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"order\" + 0.009*\"offic\" + 0.009*\"report\"\n", - "2019-01-16 04:50:15,763 : INFO : topic diff=0.005130, rho=0.036637\n", - "2019-01-16 04:50:16,013 : INFO : PROGRESS: pass 0, at document #1492000/4922894\n", - "2019-01-16 04:50:18,045 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:18,604 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:50:18,606 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.060*\"north\" + 0.059*\"region\" + 0.055*\"south\" + 0.054*\"east\" + 0.053*\"west\" + 0.034*\"provinc\" + 0.033*\"villag\" + 0.031*\"central\" + 0.029*\"counti\"\n", - "2019-01-16 04:50:18,607 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.034*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.010*\"tamil\"\n", - "2019-01-16 04:50:18,608 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"cell\" + 0.008*\"treatment\" + 0.008*\"medicin\"\n", - "2019-01-16 04:50:18,609 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.040*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.027*\"season\" + 0.025*\"footbal\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:50:18,615 : INFO : topic diff=0.005794, rho=0.036613\n", - "2019-01-16 04:50:18,867 : INFO : PROGRESS: pass 0, at document #1494000/4922894\n", - "2019-01-16 04:50:20,859 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:21,415 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"cell\" + 0.009*\"studi\"\n", - "2019-01-16 04:50:21,416 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 04:50:21,418 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:50:21,419 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.017*\"scotland\" + 0.014*\"scottish\" + 0.012*\"manchest\" + 0.012*\"london\" + 0.012*\"counti\"\n", - "2019-01-16 04:50:21,421 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"version\" + 0.007*\"video\"\n", - "2019-01-16 04:50:21,428 : INFO : topic diff=0.006758, rho=0.036588\n", - "2019-01-16 04:50:21,674 : INFO : PROGRESS: pass 0, at document #1496000/4922894\n", - "2019-01-16 04:50:23,647 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:24,204 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 04:50:24,206 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.013*\"locat\" + 0.011*\"site\" + 0.010*\"histor\" + 0.009*\"place\" + 0.008*\"construct\" + 0.008*\"centuri\"\n", - "2019-01-16 04:50:24,207 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"order\" + 0.008*\"report\"\n", - "2019-01-16 04:50:24,209 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"golf\" + 0.013*\"driver\" + 0.012*\"year\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"tour\" + 0.010*\"ford\"\n", - "2019-01-16 04:50:24,210 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:50:24,216 : INFO : topic diff=0.006331, rho=0.036564\n", - "2019-01-16 04:50:24,468 : INFO : PROGRESS: pass 0, at document #1498000/4922894\n", - "2019-01-16 04:50:26,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:27,085 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.029*\"villag\" + 0.028*\"counti\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:50:27,086 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"like\"\n", - "2019-01-16 04:50:27,088 : INFO : topic #4 (0.020): 0.126*\"school\" + 0.049*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 04:50:27,089 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 04:50:27,091 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.010*\"mexican\"\n", - "2019-01-16 04:50:27,098 : INFO : topic diff=0.005937, rho=0.036539\n", - "2019-01-16 04:50:31,830 : INFO : -11.693 per-word bound, 3311.8 perplexity estimate based on a held-out corpus of 2000 documents with 582170 words\n", - "2019-01-16 04:50:31,831 : INFO : PROGRESS: pass 0, at document #1500000/4922894\n", - "2019-01-16 04:50:33,899 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:34,456 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.034*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.010*\"tamil\"\n", - "2019-01-16 04:50:34,458 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:50:34,459 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.037*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.021*\"berlin\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:50:34,461 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 04:50:34,462 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 04:50:34,469 : INFO : topic diff=0.006967, rho=0.036515\n", - "2019-01-16 04:50:34,713 : INFO : PROGRESS: pass 0, at document #1502000/4922894\n", - "2019-01-16 04:50:36,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:37,328 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.028*\"villag\" + 0.028*\"counti\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"municip\"\n", - "2019-01-16 04:50:37,330 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 04:50:37,332 : INFO : topic #29 (0.020): 0.040*\"club\" + 0.039*\"leagu\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:50:37,333 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:50:37,334 : INFO : topic #25 (0.020): 0.048*\"final\" + 0.046*\"round\" + 0.024*\"tournament\" + 0.024*\"point\" + 0.023*\"group\" + 0.022*\"winner\" + 0.017*\"open\" + 0.014*\"place\" + 0.012*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 04:50:37,342 : INFO : topic diff=0.006605, rho=0.036491\n", - "2019-01-16 04:50:37,593 : INFO : PROGRESS: pass 0, at document #1504000/4922894\n", - "2019-01-16 04:50:39,628 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:40,190 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.015*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.014*\"moscow\" + 0.013*\"american\"\n", - "2019-01-16 04:50:40,191 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.005*\"like\"\n", - "2019-01-16 04:50:40,193 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.066*\"januari\" + 0.065*\"april\" + 0.065*\"august\" + 0.065*\"novemb\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 04:50:40,194 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.012*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.009*\"damag\" + 0.009*\"port\" + 0.008*\"coast\" + 0.008*\"crew\"\n", - "2019-01-16 04:50:40,197 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", - "2019-01-16 04:50:40,204 : INFO : topic diff=0.005119, rho=0.036466\n", - "2019-01-16 04:50:40,487 : INFO : PROGRESS: pass 0, at document #1506000/4922894\n", - "2019-01-16 04:50:42,514 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:50:43,070 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"organ\" + 0.010*\"scienc\"\n", - "2019-01-16 04:50:43,072 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 04:50:43,073 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"scottish\" + 0.013*\"london\" + 0.012*\"manchest\" + 0.012*\"counti\"\n", - "2019-01-16 04:50:43,075 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.016*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 04:50:43,076 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 04:50:43,083 : INFO : topic diff=0.006222, rho=0.036442\n", - "2019-01-16 04:50:43,324 : INFO : PROGRESS: pass 0, at document #1508000/4922894\n", - "2019-01-16 04:50:45,408 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:45,965 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.030*\"south\" + 0.028*\"chines\" + 0.022*\"sydnei\" + 0.019*\"kong\" + 0.017*\"hong\"\n", - "2019-01-16 04:50:45,967 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 04:50:45,968 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.012*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"crew\"\n", - "2019-01-16 04:50:45,970 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"american\"\n", - "2019-01-16 04:50:45,971 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"us\" + 0.005*\"like\"\n", - "2019-01-16 04:50:45,977 : INFO : topic diff=0.005388, rho=0.036418\n", - "2019-01-16 04:50:46,237 : INFO : PROGRESS: pass 0, at document #1510000/4922894\n", - "2019-01-16 04:50:48,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:48,916 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.013*\"piano\" + 0.013*\"opera\" + 0.012*\"orchestra\"\n", - "2019-01-16 04:50:48,917 : INFO : topic #34 (0.020): 0.083*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"columbia\"\n", - "2019-01-16 04:50:48,919 : INFO : topic #39 (0.020): 0.054*\"air\" + 0.025*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:50:48,920 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.061*\"region\" + 0.060*\"north\" + 0.056*\"south\" + 0.055*\"east\" + 0.052*\"west\" + 0.034*\"provinc\" + 0.033*\"villag\" + 0.030*\"central\" + 0.027*\"counti\"\n", - "2019-01-16 04:50:48,921 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"boat\" + 0.011*\"sea\" + 0.010*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"crew\"\n", - "2019-01-16 04:50:48,927 : INFO : topic diff=0.007144, rho=0.036394\n", - "2019-01-16 04:50:49,175 : INFO : PROGRESS: pass 0, at document #1512000/4922894\n", - "2019-01-16 04:50:51,229 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:51,786 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"repres\" + 0.013*\"council\"\n", - "2019-01-16 04:50:51,787 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.025*\"south\" + 0.025*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.016*\"black\" + 0.011*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 04:50:51,789 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.008*\"centuri\"\n", - "2019-01-16 04:50:51,790 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:50:51,792 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:50:51,797 : INFO : topic diff=0.005315, rho=0.036370\n", - "2019-01-16 04:50:52,046 : INFO : PROGRESS: pass 0, at document #1514000/4922894\n", - "2019-01-16 04:50:54,011 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:54,568 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 04:50:54,569 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:50:54,571 : INFO : topic #17 (0.020): 0.066*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"golf\" + 0.011*\"ford\" + 0.011*\"tour\"\n", - "2019-01-16 04:50:54,573 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"columbia\"\n", - "2019-01-16 04:50:54,575 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.014*\"american\" + 0.014*\"moscow\"\n", - "2019-01-16 04:50:54,582 : INFO : topic diff=0.005572, rho=0.036346\n", - "2019-01-16 04:50:54,833 : INFO : PROGRESS: pass 0, at document #1516000/4922894\n", - "2019-01-16 04:50:57,004 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:50:57,566 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 04:50:57,568 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.015*\"asian\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.013*\"vietnam\" + 0.012*\"min\"\n", - "2019-01-16 04:50:57,570 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 04:50:57,572 : INFO : topic #39 (0.020): 0.054*\"air\" + 0.025*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.021*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:50:57,573 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:50:57,580 : INFO : topic diff=0.005651, rho=0.036322\n", - "2019-01-16 04:50:57,823 : INFO : PROGRESS: pass 0, at document #1518000/4922894\n", - "2019-01-16 04:50:59,836 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:00,393 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.025*\"tournament\" + 0.024*\"point\" + 0.022*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.013*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", - "2019-01-16 04:51:00,394 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.015*\"israel\" + 0.014*\"american\" + 0.014*\"republ\" + 0.013*\"moscow\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:51:00,396 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.021*\"men\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"japanes\" + 0.017*\"nation\"\n", - "2019-01-16 04:51:00,397 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:51:00,399 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:51:00,405 : INFO : topic diff=0.005185, rho=0.036298\n", - "2019-01-16 04:51:04,991 : INFO : -11.870 per-word bound, 3741.8 perplexity estimate based on a held-out corpus of 2000 documents with 535660 words\n", - "2019-01-16 04:51:04,992 : INFO : PROGRESS: pass 0, at document #1520000/4922894\n", - "2019-01-16 04:51:06,988 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:07,547 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:51:07,548 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.025*\"south\" + 0.024*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.016*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 04:51:07,550 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.021*\"kim\" + 0.016*\"malaysia\" + 0.015*\"asia\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.014*\"thailand\" + 0.013*\"vietnam\" + 0.012*\"min\"\n", - "2019-01-16 04:51:07,551 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\"\n", - "2019-01-16 04:51:07,552 : INFO : topic #17 (0.020): 0.065*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"championship\" + 0.011*\"year\" + 0.011*\"tour\" + 0.011*\"golf\" + 0.010*\"ford\"\n", - "2019-01-16 04:51:07,558 : INFO : topic diff=0.004552, rho=0.036274\n", - "2019-01-16 04:51:07,802 : INFO : PROGRESS: pass 0, at document #1522000/4922894\n", - "2019-01-16 04:51:09,887 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:10,443 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.011*\"gun\" + 0.011*\"sea\" + 0.011*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"crew\"\n", - "2019-01-16 04:51:10,445 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.022*\"airport\" + 0.021*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:51:10,446 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:51:10,448 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"brown\"\n", - "2019-01-16 04:51:10,449 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"effect\"\n", - "2019-01-16 04:51:10,455 : INFO : topic diff=0.005798, rho=0.036250\n", - "2019-01-16 04:51:10,695 : INFO : PROGRESS: pass 0, at document #1524000/4922894\n", - "2019-01-16 04:51:12,729 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:13,286 : INFO : topic #39 (0.020): 0.054*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.022*\"airport\" + 0.021*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:51:13,287 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 04:51:13,289 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:51:13,291 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.013*\"product\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"car\"\n", - "2019-01-16 04:51:13,293 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:51:13,301 : INFO : topic diff=0.006373, rho=0.036226\n", - "2019-01-16 04:51:13,558 : INFO : PROGRESS: pass 0, at document #1526000/4922894\n", - "2019-01-16 04:51:15,679 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:16,235 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 04:51:16,237 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:51:16,239 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"year\" + 0.012*\"daughter\" + 0.012*\"born\"\n", - "2019-01-16 04:51:16,240 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"busi\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 04:51:16,241 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.035*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"american\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 04:51:16,247 : INFO : topic diff=0.006711, rho=0.036202\n", - "2019-01-16 04:51:16,488 : INFO : PROGRESS: pass 0, at document #1528000/4922894\n", - "2019-01-16 04:51:18,463 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:19,024 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:51:19,026 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:51:19,027 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 04:51:19,028 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"effect\"\n", - "2019-01-16 04:51:19,029 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.025*\"south\" + 0.024*\"text\" + 0.022*\"till\" + 0.022*\"color\" + 0.016*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 04:51:19,035 : INFO : topic diff=0.007032, rho=0.036179\n", - "2019-01-16 04:51:19,284 : INFO : PROGRESS: pass 0, at document #1530000/4922894\n", - "2019-01-16 04:51:21,327 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:21,885 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:51:21,886 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 04:51:21,888 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.061*\"wikit\" + 0.057*\"align\" + 0.054*\"left\" + 0.052*\"style\" + 0.045*\"center\" + 0.036*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:51:21,890 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.006*\"oper\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:51:21,891 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.015*\"manchest\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.011*\"west\"\n", - "2019-01-16 04:51:21,898 : INFO : topic diff=0.005283, rho=0.036155\n", - "2019-01-16 04:51:22,186 : INFO : PROGRESS: pass 0, at document #1532000/4922894\n", - "2019-01-16 04:51:24,218 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:24,774 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:51:24,776 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"francisco\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"brazil\"\n", - "2019-01-16 04:51:24,778 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"said\"\n", - "2019-01-16 04:51:24,780 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.017*\"station\" + 0.016*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.010*\"host\" + 0.010*\"network\"\n", - "2019-01-16 04:51:24,782 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.023*\"airport\" + 0.021*\"forc\" + 0.018*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.013*\"pilot\" + 0.013*\"base\"\n", - "2019-01-16 04:51:24,788 : INFO : topic diff=0.005190, rho=0.036131\n", - "2019-01-16 04:51:25,037 : INFO : PROGRESS: pass 0, at document #1534000/4922894\n", - "2019-01-16 04:51:27,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:27,656 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.071*\"canada\" + 0.060*\"canadian\" + 0.028*\"ontario\" + 0.025*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"korean\" + 0.014*\"list\"\n", - "2019-01-16 04:51:27,658 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"cell\"\n", - "2019-01-16 04:51:27,659 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"brown\"\n", - "2019-01-16 04:51:27,661 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:51:27,662 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 04:51:27,667 : INFO : topic diff=0.005990, rho=0.036108\n", - "2019-01-16 04:51:27,909 : INFO : PROGRESS: pass 0, at document #1536000/4922894\n", - "2019-01-16 04:51:29,933 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:30,490 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"group\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\"\n", - "2019-01-16 04:51:30,491 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:51:30,494 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"us\"\n", - "2019-01-16 04:51:30,495 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.014*\"opera\" + 0.012*\"piano\" + 0.012*\"orchestra\"\n", - "2019-01-16 04:51:30,496 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"servic\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", - "2019-01-16 04:51:30,503 : INFO : topic diff=0.005485, rho=0.036084\n", - "2019-01-16 04:51:30,756 : INFO : PROGRESS: pass 0, at document #1538000/4922894\n", - "2019-01-16 04:51:32,781 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:33,339 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:51:33,341 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"royal\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:51:33,342 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"construct\"\n", - "2019-01-16 04:51:33,344 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:51:33,345 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.036*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"american\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 04:51:33,351 : INFO : topic diff=0.005334, rho=0.036061\n", - "2019-01-16 04:51:37,901 : INFO : -11.636 per-word bound, 3182.9 perplexity estimate based on a held-out corpus of 2000 documents with 517776 words\n", - "2019-01-16 04:51:37,902 : INFO : PROGRESS: pass 0, at document #1540000/4922894\n", - "2019-01-16 04:51:39,915 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:40,473 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.008*\"record\"\n", - "2019-01-16 04:51:40,475 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.017*\"iran\" + 0.016*\"www\" + 0.014*\"sri\" + 0.013*\"pakistan\" + 0.012*\"islam\" + 0.012*\"ali\" + 0.011*\"khan\"\n", - "2019-01-16 04:51:40,477 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n", - "2019-01-16 04:51:40,478 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.039*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.028*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:51:40,480 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.019*\"kim\" + 0.017*\"malaysia\" + 0.016*\"asian\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"asia\" + 0.013*\"–present\" + 0.013*\"vietnam\"\n", - "2019-01-16 04:51:40,486 : INFO : topic diff=0.005705, rho=0.036037\n", - "2019-01-16 04:51:40,742 : INFO : PROGRESS: pass 0, at document #1542000/4922894\n", - "2019-01-16 04:51:42,775 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:43,336 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.030*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"men\" + 0.020*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 04:51:43,337 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"exhibit\" + 0.018*\"design\" + 0.017*\"imag\"\n", - "2019-01-16 04:51:43,339 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.006*\"fish\"\n", - "2019-01-16 04:51:43,340 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.019*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"network\" + 0.011*\"host\"\n", - "2019-01-16 04:51:43,342 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"brown\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:51:43,347 : INFO : topic diff=0.005182, rho=0.036014\n", - "2019-01-16 04:51:43,595 : INFO : PROGRESS: pass 0, at document #1544000/4922894\n", - "2019-01-16 04:51:45,608 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:46,167 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\"\n", - "2019-01-16 04:51:46,169 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.018*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 04:51:46,170 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.018*\"malaysia\" + 0.016*\"thailand\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"–present\" + 0.013*\"vietnam\"\n", - "2019-01-16 04:51:46,171 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:51:46,174 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.028*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:51:46,181 : INFO : topic diff=0.005272, rho=0.035991\n", - "2019-01-16 04:51:46,428 : INFO : PROGRESS: pass 0, at document #1546000/4922894\n", - "2019-01-16 04:51:48,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:49,059 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.010*\"ret\" + 0.009*\"effect\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"drug\"\n", - "2019-01-16 04:51:49,060 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:51:49,062 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.052*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", - "2019-01-16 04:51:49,064 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 04:51:49,065 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:51:49,072 : INFO : topic diff=0.006491, rho=0.035968\n", - "2019-01-16 04:51:49,309 : INFO : PROGRESS: pass 0, at document #1548000/4922894\n", - "2019-01-16 04:51:51,325 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:51,881 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"construct\"\n", - "2019-01-16 04:51:51,883 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.036*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:51:51,885 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.020*\"london\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", - "2019-01-16 04:51:51,886 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 04:51:51,889 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.005*\"brown\"\n", - "2019-01-16 04:51:51,895 : INFO : topic diff=0.005739, rho=0.035944\n", - "2019-01-16 04:51:52,154 : INFO : PROGRESS: pass 0, at document #1550000/4922894\n", - "2019-01-16 04:51:54,143 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:54,707 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 04:51:54,709 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 04:51:54,710 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.020*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"order\"\n", - "2019-01-16 04:51:54,711 : INFO : topic #46 (0.020): 0.149*\"class\" + 0.061*\"wikit\" + 0.053*\"align\" + 0.051*\"style\" + 0.050*\"left\" + 0.048*\"center\" + 0.034*\"philippin\" + 0.034*\"right\" + 0.027*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:51:54,712 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:51:54,718 : INFO : topic diff=0.007002, rho=0.035921\n", - "2019-01-16 04:51:54,954 : INFO : PROGRESS: pass 0, at document #1552000/4922894\n", - "2019-01-16 04:51:56,939 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:51:57,495 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.007*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 04:51:57,497 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.028*\"counti\" + 0.028*\"ag\" + 0.027*\"villag\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:51:57,499 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:51:57,500 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.013*\"navi\" + 0.011*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"island\" + 0.008*\"port\" + 0.008*\"damag\" + 0.008*\"crew\" + 0.008*\"coast\"\n", - "2019-01-16 04:51:57,502 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 04:51:57,507 : INFO : topic diff=0.005679, rho=0.035898\n", - "2019-01-16 04:51:57,752 : INFO : PROGRESS: pass 0, at document #1554000/4922894\n", - "2019-01-16 04:51:59,807 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:00,364 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.011*\"patient\" + 0.010*\"drug\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.009*\"studi\"\n", - "2019-01-16 04:52:00,366 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:52:00,367 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 04:52:00,369 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.017*\"danc\" + 0.015*\"plai\" + 0.013*\"opera\" + 0.012*\"piano\" + 0.012*\"orchestra\"\n", - "2019-01-16 04:52:00,371 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.024*\"point\" + 0.020*\"winner\" + 0.020*\"group\" + 0.018*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", - "2019-01-16 04:52:00,377 : INFO : topic diff=0.005726, rho=0.035875\n", - "2019-01-16 04:52:00,626 : INFO : PROGRESS: pass 0, at document #1556000/4922894\n", - "2019-01-16 04:52:02,674 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:03,231 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.011*\"patient\" + 0.010*\"drug\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.009*\"medicin\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:52:03,233 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:52:03,235 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 04:52:03,236 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"car\"\n", - "2019-01-16 04:52:03,238 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"london\" + 0.012*\"wale\"\n", - "2019-01-16 04:52:03,245 : INFO : topic diff=0.005912, rho=0.035852\n", - "2019-01-16 04:52:03,526 : INFO : PROGRESS: pass 0, at document #1558000/4922894\n", - "2019-01-16 04:52:05,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:06,089 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.022*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:52:06,090 : INFO : topic #46 (0.020): 0.147*\"class\" + 0.061*\"wikit\" + 0.053*\"align\" + 0.051*\"left\" + 0.051*\"style\" + 0.047*\"center\" + 0.035*\"philippin\" + 0.032*\"right\" + 0.027*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:52:06,092 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\"\n", - "2019-01-16 04:52:06,093 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.021*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:52:06,095 : INFO : topic #40 (0.020): 0.039*\"bar\" + 0.037*\"africa\" + 0.033*\"african\" + 0.027*\"south\" + 0.022*\"text\" + 0.021*\"till\" + 0.021*\"color\" + 0.016*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 04:52:06,101 : INFO : topic diff=0.005602, rho=0.035829\n", - "2019-01-16 04:52:10,742 : INFO : -11.665 per-word bound, 3246.4 perplexity estimate based on a held-out corpus of 2000 documents with 566273 words\n", - "2019-01-16 04:52:10,743 : INFO : PROGRESS: pass 0, at document #1560000/4922894\n", - "2019-01-16 04:52:12,799 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:13,355 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"new\" + 0.051*\"australian\" + 0.046*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.017*\"kong\" + 0.016*\"hong\"\n", - "2019-01-16 04:52:13,357 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.018*\"centuri\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:52:13,359 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.018*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 04:52:13,360 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"iran\" + 0.017*\"www\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\"\n", - "2019-01-16 04:52:13,362 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:52:13,368 : INFO : topic diff=0.005039, rho=0.035806\n", - "2019-01-16 04:52:13,640 : INFO : PROGRESS: pass 0, at document #1562000/4922894\n", - "2019-01-16 04:52:15,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:16,306 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:52:16,307 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"drug\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.009*\"treatment\"\n", - "2019-01-16 04:52:16,309 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"busi\" + 0.010*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.007*\"new\" + 0.007*\"industri\" + 0.007*\"trade\"\n", - "2019-01-16 04:52:16,310 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.024*\"singapor\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.017*\"malaysia\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"vietnam\" + 0.013*\"–present\"\n", - "2019-01-16 04:52:16,312 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.036*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:52:16,318 : INFO : topic diff=0.005863, rho=0.035783\n", - "2019-01-16 04:52:16,571 : INFO : PROGRESS: pass 0, at document #1564000/4922894\n", - "2019-01-16 04:52:18,640 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:19,197 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.025*\"point\" + 0.024*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.019*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"runner\"\n", - "2019-01-16 04:52:19,198 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.059*\"north\" + 0.058*\"region\" + 0.056*\"south\" + 0.052*\"east\" + 0.050*\"west\" + 0.042*\"counti\" + 0.036*\"provinc\" + 0.035*\"villag\" + 0.029*\"central\"\n", - "2019-01-16 04:52:19,199 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:52:19,201 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 04:52:19,202 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.038*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.028*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:52:19,209 : INFO : topic diff=0.005543, rho=0.035760\n", - "2019-01-16 04:52:19,450 : INFO : PROGRESS: pass 0, at document #1566000/4922894\n", - "2019-01-16 04:52:21,441 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:22,007 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 04:52:22,009 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.013*\"opera\" + 0.012*\"piano\" + 0.011*\"orchestra\"\n", - "2019-01-16 04:52:22,010 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.059*\"north\" + 0.057*\"region\" + 0.056*\"south\" + 0.052*\"east\" + 0.050*\"west\" + 0.043*\"counti\" + 0.036*\"provinc\" + 0.035*\"villag\" + 0.029*\"central\"\n", - "2019-01-16 04:52:22,011 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.072*\"canada\" + 0.059*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.014*\"montreal\" + 0.013*\"list\" + 0.013*\"columbia\"\n", - "2019-01-16 04:52:22,013 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:52:22,019 : INFO : topic diff=0.004753, rho=0.035737\n", - "2019-01-16 04:52:22,263 : INFO : PROGRESS: pass 0, at document #1568000/4922894\n", - "2019-01-16 04:52:24,315 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:24,872 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"organ\"\n", - "2019-01-16 04:52:24,873 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\" + 0.012*\"london\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:52:24,875 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 04:52:24,877 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.020*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", - "2019-01-16 04:52:24,878 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:52:24,884 : INFO : topic diff=0.006685, rho=0.035714\n", - "2019-01-16 04:52:25,121 : INFO : PROGRESS: pass 0, at document #1570000/4922894\n", - "2019-01-16 04:52:27,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:27,684 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.045*\"final\" + 0.025*\"point\" + 0.024*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"runner\"\n", - "2019-01-16 04:52:27,686 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"wrestl\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.017*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:52:27,687 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 04:52:27,689 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:52:27,690 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:52:27,696 : INFO : topic diff=0.005442, rho=0.035692\n", - "2019-01-16 04:52:27,940 : INFO : PROGRESS: pass 0, at document #1572000/4922894\n", - "2019-01-16 04:52:29,963 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:30,521 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:52:30,522 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.008*\"vehicl\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"protein\"\n", - "2019-01-16 04:52:30,524 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", - "2019-01-16 04:52:30,526 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 04:52:30,527 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 04:52:30,533 : INFO : topic diff=0.005489, rho=0.035669\n", - "2019-01-16 04:52:30,778 : INFO : PROGRESS: pass 0, at document #1574000/4922894\n", - "2019-01-16 04:52:32,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:33,361 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", - "2019-01-16 04:52:33,362 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 04:52:33,364 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.012*\"und\"\n", - "2019-01-16 04:52:33,365 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.027*\"counti\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.024*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"municip\"\n", - "2019-01-16 04:52:33,367 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 04:52:33,372 : INFO : topic diff=0.007404, rho=0.035646\n", - "2019-01-16 04:52:33,626 : INFO : PROGRESS: pass 0, at document #1576000/4922894\n", - "2019-01-16 04:52:35,661 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:36,219 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.015*\"servic\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.011*\"organ\"\n", - "2019-01-16 04:52:36,221 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.005*\"mark\"\n", - "2019-01-16 04:52:36,222 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 04:52:36,223 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.023*\"singapor\" + 0.020*\"malaysia\" + 0.017*\"kim\" + 0.017*\"thailand\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"–present\" + 0.013*\"vietnam\"\n", - "2019-01-16 04:52:36,225 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.025*\"aircraft\" + 0.025*\"oper\" + 0.022*\"airport\" + 0.021*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:52:36,230 : INFO : topic diff=0.006263, rho=0.035624\n", - "2019-01-16 04:52:36,473 : INFO : PROGRESS: pass 0, at document #1578000/4922894\n", - "2019-01-16 04:52:38,509 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:39,068 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"type\" + 0.007*\"protein\"\n", - "2019-01-16 04:52:39,069 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.019*\"wrestl\" + 0.018*\"fight\" + 0.016*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:52:39,071 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.062*\"wikit\" + 0.054*\"style\" + 0.054*\"align\" + 0.050*\"left\" + 0.046*\"center\" + 0.036*\"philippin\" + 0.030*\"right\" + 0.027*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:52:39,072 : INFO : topic #2 (0.020): 0.067*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:52:39,073 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:52:39,080 : INFO : topic diff=0.005530, rho=0.035601\n", - "2019-01-16 04:52:43,714 : INFO : -11.698 per-word bound, 3322.6 perplexity estimate based on a held-out corpus of 2000 documents with 559899 words\n", - "2019-01-16 04:52:43,715 : INFO : PROGRESS: pass 0, at document #1580000/4922894\n", - "2019-01-16 04:52:45,753 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:46,310 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n", - "2019-01-16 04:52:46,311 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"servic\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.011*\"organ\"\n", - "2019-01-16 04:52:46,313 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.040*\"franc\" + 0.029*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:52:46,314 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:52:46,315 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.052*\"australian\" + 0.050*\"new\" + 0.044*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.016*\"kong\" + 0.015*\"hong\"\n", - "2019-01-16 04:52:46,321 : INFO : topic diff=0.004980, rho=0.035578\n", - "2019-01-16 04:52:46,604 : INFO : PROGRESS: pass 0, at document #1582000/4922894\n", - "2019-01-16 04:52:48,676 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:49,235 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.024*\"tournament\" + 0.023*\"point\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"open\" + 0.016*\"doubl\" + 0.014*\"qualifi\" + 0.014*\"champion\"\n", - "2019-01-16 04:52:49,236 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.017*\"famili\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:52:49,238 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.071*\"canada\" + 0.059*\"canadian\" + 0.028*\"ontario\" + 0.025*\"toronto\" + 0.020*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\" + 0.013*\"columbia\" + 0.012*\"list\"\n", - "2019-01-16 04:52:49,239 : INFO : topic #48 (0.020): 0.076*\"octob\" + 0.076*\"septemb\" + 0.069*\"march\" + 0.066*\"august\" + 0.065*\"juli\" + 0.065*\"januari\" + 0.064*\"april\" + 0.063*\"novemb\" + 0.060*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 04:52:49,240 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:52:49,247 : INFO : topic diff=0.005424, rho=0.035556\n", - "2019-01-16 04:52:49,501 : INFO : PROGRESS: pass 0, at document #1584000/4922894\n", - "2019-01-16 04:52:51,581 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:52,138 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.038*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"khan\" + 0.011*\"singh\"\n", - "2019-01-16 04:52:52,140 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.036*\"russian\" + 0.022*\"russia\" + 0.022*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"american\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 04:52:52,142 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:52:52,144 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"commun\" + 0.011*\"work\" + 0.011*\"organ\"\n", - "2019-01-16 04:52:52,145 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.071*\"canada\" + 0.059*\"canadian\" + 0.027*\"ontario\" + 0.025*\"toronto\" + 0.020*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\" + 0.012*\"korean\" + 0.012*\"columbia\"\n", - "2019-01-16 04:52:52,152 : INFO : topic diff=0.006445, rho=0.035533\n", - "2019-01-16 04:52:52,416 : INFO : PROGRESS: pass 0, at document #1586000/4922894\n", - "2019-01-16 04:52:54,478 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:55,035 : INFO : topic #11 (0.020): 0.026*\"act\" + 0.024*\"law\" + 0.023*\"court\" + 0.016*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:52:55,037 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.043*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 04:52:55,039 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:52:55,040 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.023*\"singapor\" + 0.020*\"malaysia\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.016*\"–present\" + 0.015*\"asian\" + 0.015*\"indonesia\" + 0.014*\"asia\" + 0.013*\"vietnam\"\n", - "2019-01-16 04:52:55,041 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.032*\"citi\" + 0.028*\"villag\" + 0.027*\"ag\" + 0.026*\"counti\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:52:55,047 : INFO : topic diff=0.007241, rho=0.035511\n", - "2019-01-16 04:52:55,287 : INFO : PROGRESS: pass 0, at document #1588000/4922894\n", - "2019-01-16 04:52:57,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:52:58,023 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"leagu\"\n", - "2019-01-16 04:52:58,024 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.019*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.013*\"opera\" + 0.012*\"piano\" + 0.012*\"orchestra\"\n", - "2019-01-16 04:52:58,026 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.032*\"american\" + 0.025*\"unit\" + 0.025*\"york\" + 0.019*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:52:58,028 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:52:58,029 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"includ\" + 0.007*\"data\"\n", - "2019-01-16 04:52:58,036 : INFO : topic diff=0.005550, rho=0.035489\n", - "2019-01-16 04:52:58,288 : INFO : PROGRESS: pass 0, at document #1590000/4922894\n", - "2019-01-16 04:53:00,249 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:00,806 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"studi\" + 0.009*\"cell\" + 0.009*\"treatment\" + 0.009*\"caus\"\n", - "2019-01-16 04:53:00,808 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:53:00,810 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:53:00,811 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"american\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 04:53:00,813 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:53:00,818 : INFO : topic diff=0.006311, rho=0.035466\n", - "2019-01-16 04:53:01,066 : INFO : PROGRESS: pass 0, at document #1592000/4922894\n", - "2019-01-16 04:53:03,035 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:03,593 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:53:03,595 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n", - "2019-01-16 04:53:03,597 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.065*\"align\" + 0.064*\"style\" + 0.059*\"wikit\" + 0.050*\"left\" + 0.046*\"center\" + 0.034*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:53:03,598 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:53:03,599 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:53:03,605 : INFO : topic diff=0.006479, rho=0.035444\n", - "2019-01-16 04:53:03,854 : INFO : PROGRESS: pass 0, at document #1594000/4922894\n", - "2019-01-16 04:53:05,820 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:06,376 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.020*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"francisco\"\n", - "2019-01-16 04:53:06,378 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.036*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 04:53:06,379 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.014*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:53:06,381 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 04:53:06,382 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.005*\"scott\"\n", - "2019-01-16 04:53:06,388 : INFO : topic diff=0.005743, rho=0.035422\n", - "2019-01-16 04:53:06,643 : INFO : PROGRESS: pass 0, at document #1596000/4922894\n", - "2019-01-16 04:53:08,655 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:09,213 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.064*\"align\" + 0.064*\"style\" + 0.060*\"wikit\" + 0.049*\"left\" + 0.046*\"center\" + 0.034*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:53:09,216 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.018*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:53:09,217 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", - "2019-01-16 04:53:09,219 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:53:09,220 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:53:09,228 : INFO : topic diff=0.005604, rho=0.035400\n", - "2019-01-16 04:53:09,474 : INFO : PROGRESS: pass 0, at document #1598000/4922894\n", - "2019-01-16 04:53:11,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:12,057 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:53:12,059 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.024*\"act\" + 0.023*\"court\" + 0.017*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:53:12,060 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.025*\"counti\" + 0.025*\"york\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:53:12,062 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.010*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:53:12,063 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"commun\"\n", - "2019-01-16 04:53:12,069 : INFO : topic diff=0.006429, rho=0.035377\n", - "2019-01-16 04:53:16,754 : INFO : -11.623 per-word bound, 3153.2 perplexity estimate based on a held-out corpus of 2000 documents with 544818 words\n", - "2019-01-16 04:53:16,754 : INFO : PROGRESS: pass 0, at document #1600000/4922894\n", - "2019-01-16 04:53:18,825 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:19,383 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.010*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:53:19,384 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 04:53:19,386 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:53:19,387 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"union\"\n", - "2019-01-16 04:53:19,388 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"medicin\"\n", - "2019-01-16 04:53:19,394 : INFO : topic diff=0.005515, rho=0.035355\n", - "2019-01-16 04:53:19,653 : INFO : PROGRESS: pass 0, at document #1602000/4922894\n", - "2019-01-16 04:53:21,715 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:22,272 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", - "2019-01-16 04:53:22,273 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:53:22,274 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 04:53:22,276 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.009*\"francisco\"\n", - "2019-01-16 04:53:22,277 : INFO : topic #48 (0.020): 0.076*\"octob\" + 0.075*\"septemb\" + 0.071*\"march\" + 0.066*\"januari\" + 0.066*\"august\" + 0.066*\"juli\" + 0.065*\"april\" + 0.065*\"novemb\" + 0.061*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 04:53:22,283 : INFO : topic diff=0.006386, rho=0.035333\n", - "2019-01-16 04:53:22,536 : INFO : PROGRESS: pass 0, at document #1604000/4922894\n", - "2019-01-16 04:53:24,588 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:25,144 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.023*\"tournament\" + 0.023*\"point\" + 0.023*\"winner\" + 0.023*\"open\" + 0.020*\"group\" + 0.016*\"champion\" + 0.016*\"doubl\" + 0.015*\"place\"\n", - "2019-01-16 04:53:25,146 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"protein\" + 0.007*\"type\"\n", - "2019-01-16 04:53:25,147 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.020*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.009*\"francisco\"\n", - "2019-01-16 04:53:25,149 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.026*\"counti\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:53:25,150 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:53:25,156 : INFO : topic diff=0.006019, rho=0.035311\n", - "2019-01-16 04:53:25,418 : INFO : PROGRESS: pass 0, at document #1606000/4922894\n", - "2019-01-16 04:53:27,463 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:53:28,020 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.012*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.010*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:53:28,022 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:53:28,023 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 04:53:28,025 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", - "2019-01-16 04:53:28,027 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.040*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.013*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:53:28,033 : INFO : topic diff=0.006299, rho=0.035289\n", - "2019-01-16 04:53:28,309 : INFO : PROGRESS: pass 0, at document #1608000/4922894\n", - "2019-01-16 04:53:30,346 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:30,906 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 04:53:30,907 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"host\" + 0.010*\"network\"\n", - "2019-01-16 04:53:30,909 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.018*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", - "2019-01-16 04:53:30,911 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.009*\"treatment\" + 0.009*\"medicin\"\n", - "2019-01-16 04:53:30,913 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"said\"\n", - "2019-01-16 04:53:30,919 : INFO : topic diff=0.005950, rho=0.035267\n", - "2019-01-16 04:53:31,171 : INFO : PROGRESS: pass 0, at document #1610000/4922894\n", - "2019-01-16 04:53:33,195 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:33,752 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"american\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 04:53:33,754 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:53:33,756 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.022*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.012*\"pilot\"\n", - "2019-01-16 04:53:33,758 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"gun\" + 0.010*\"port\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 04:53:33,759 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:53:33,766 : INFO : topic diff=0.006765, rho=0.035245\n", - "2019-01-16 04:53:34,015 : INFO : PROGRESS: pass 0, at document #1612000/4922894\n", - "2019-01-16 04:53:35,991 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:36,547 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"union\"\n", - "2019-01-16 04:53:36,549 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:53:36,550 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"francisco\"\n", - "2019-01-16 04:53:36,552 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 04:53:36,553 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.075*\"septemb\" + 0.070*\"march\" + 0.066*\"august\" + 0.065*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.064*\"april\" + 0.061*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 04:53:36,559 : INFO : topic diff=0.006656, rho=0.035223\n", - "2019-01-16 04:53:36,799 : INFO : PROGRESS: pass 0, at document #1614000/4922894\n", - "2019-01-16 04:53:38,811 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:39,368 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:53:39,370 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\" + 0.012*\"born\"\n", - "2019-01-16 04:53:39,373 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:53:39,374 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", - "2019-01-16 04:53:39,377 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.037*\"africa\" + 0.032*\"african\" + 0.026*\"text\" + 0.025*\"south\" + 0.023*\"till\" + 0.022*\"color\" + 0.016*\"black\" + 0.012*\"tropic\" + 0.012*\"storm\"\n", - "2019-01-16 04:53:39,383 : INFO : topic diff=0.005688, rho=0.035202\n", - "2019-01-16 04:53:39,633 : INFO : PROGRESS: pass 0, at document #1616000/4922894\n", - "2019-01-16 04:53:41,682 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:42,238 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", - "2019-01-16 04:53:42,240 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.008*\"construct\"\n", - "2019-01-16 04:53:42,241 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 04:53:42,243 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"medicin\"\n", - "2019-01-16 04:53:42,244 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"commun\"\n", - "2019-01-16 04:53:42,251 : INFO : topic diff=0.004792, rho=0.035180\n", - "2019-01-16 04:53:42,494 : INFO : PROGRESS: pass 0, at document #1618000/4922894\n", - "2019-01-16 04:53:44,491 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:45,048 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:53:45,049 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.073*\"canada\" + 0.057*\"canadian\" + 0.026*\"toronto\" + 0.026*\"ontario\" + 0.019*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\" + 0.014*\"list\" + 0.012*\"korean\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:53:45,051 : INFO : topic #24 (0.020): 0.032*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"gun\" + 0.010*\"port\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 04:53:45,052 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 04:53:45,054 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"type\"\n", - "2019-01-16 04:53:45,060 : INFO : topic diff=0.005797, rho=0.035158\n", - "2019-01-16 04:53:49,585 : INFO : -11.632 per-word bound, 3173.4 perplexity estimate based on a held-out corpus of 2000 documents with 564382 words\n", - "2019-01-16 04:53:49,586 : INFO : PROGRESS: pass 0, at document #1620000/4922894\n", - "2019-01-16 04:53:51,586 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:52,146 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.040*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.012*\"al\" + 0.012*\"die\"\n", - "2019-01-16 04:53:52,147 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"juan\"\n", - "2019-01-16 04:53:52,149 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.011*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.008*\"construct\"\n", - "2019-01-16 04:53:52,150 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"video\" + 0.007*\"includ\"\n", - "2019-01-16 04:53:52,152 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.087*\"style\" + 0.066*\"align\" + 0.057*\"wikit\" + 0.055*\"left\" + 0.045*\"center\" + 0.033*\"philippin\" + 0.031*\"text\" + 0.030*\"right\" + 0.024*\"border\"\n", - "2019-01-16 04:53:52,157 : INFO : topic diff=0.007480, rho=0.035136\n", - "2019-01-16 04:53:52,405 : INFO : PROGRESS: pass 0, at document #1622000/4922894\n", - "2019-01-16 04:53:54,404 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:54,965 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.037*\"africa\" + 0.031*\"african\" + 0.026*\"text\" + 0.025*\"south\" + 0.024*\"color\" + 0.024*\"till\" + 0.015*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 04:53:54,967 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.055*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.031*\"chines\" + 0.031*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.017*\"kong\" + 0.017*\"hong\"\n", - "2019-01-16 04:53:54,968 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.020*\"gold\" + 0.020*\"japan\" + 0.018*\"athlet\"\n", - "2019-01-16 04:53:54,969 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:53:54,972 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.040*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.012*\"al\" + 0.012*\"die\"\n", - "2019-01-16 04:53:54,979 : INFO : topic diff=0.005477, rho=0.035115\n", - "2019-01-16 04:53:55,229 : INFO : PROGRESS: pass 0, at document #1624000/4922894\n", - "2019-01-16 04:53:57,324 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:53:57,880 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:53:57,881 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.010*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:53:57,883 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\" + 0.012*\"born\"\n", - "2019-01-16 04:53:57,885 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.023*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:53:57,887 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"time\"\n", - "2019-01-16 04:53:57,893 : INFO : topic diff=0.007042, rho=0.035093\n", - "2019-01-16 04:53:58,158 : INFO : PROGRESS: pass 0, at document #1626000/4922894\n", - "2019-01-16 04:54:00,279 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:00,836 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"scienc\"\n", - "2019-01-16 04:54:00,838 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 04:54:00,839 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.045*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.022*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:54:00,841 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.020*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"francisco\"\n", - "2019-01-16 04:54:00,843 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.027*\"villag\" + 0.025*\"counti\" + 0.023*\"area\" + 0.022*\"famili\" + 0.021*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:54:00,848 : INFO : topic diff=0.006062, rho=0.035072\n", - "2019-01-16 04:54:01,084 : INFO : PROGRESS: pass 0, at document #1628000/4922894\n", - "2019-01-16 04:54:03,097 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:03,654 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"yard\"\n", - "2019-01-16 04:54:03,656 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 04:54:03,657 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.022*\"airport\" + 0.021*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:54:03,658 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"softwar\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"video\" + 0.007*\"data\"\n", - "2019-01-16 04:54:03,660 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"commun\" + 0.011*\"scienc\"\n", - "2019-01-16 04:54:03,666 : INFO : topic diff=0.006561, rho=0.035050\n", - "2019-01-16 04:54:03,914 : INFO : PROGRESS: pass 0, at document #1630000/4922894\n", - "2019-01-16 04:54:05,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:06,530 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 04:54:06,531 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.075*\"septemb\" + 0.070*\"march\" + 0.066*\"juli\" + 0.066*\"novemb\" + 0.065*\"januari\" + 0.065*\"august\" + 0.064*\"april\" + 0.061*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 04:54:06,533 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.018*\"hospit\" + 0.016*\"health\" + 0.012*\"diseas\" + 0.012*\"ret\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"medicin\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:54:06,534 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"union\"\n", - "2019-01-16 04:54:06,536 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:54:06,543 : INFO : topic diff=0.006006, rho=0.035028\n", - "2019-01-16 04:54:06,786 : INFO : PROGRESS: pass 0, at document #1632000/4922894\n", - "2019-01-16 04:54:08,838 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:09,396 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.014*\"london\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 04:54:09,398 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:54:09,399 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.020*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"mexican\" + 0.010*\"juan\"\n", - "2019-01-16 04:54:09,401 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"protein\"\n", - "2019-01-16 04:54:09,402 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.054*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.017*\"kong\" + 0.017*\"hong\"\n", - "2019-01-16 04:54:09,408 : INFO : topic diff=0.004558, rho=0.035007\n", - "2019-01-16 04:54:09,683 : INFO : PROGRESS: pass 0, at document #1634000/4922894\n", - "2019-01-16 04:54:11,622 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:12,178 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:54:12,180 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.045*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.022*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:54:12,182 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 04:54:12,183 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 04:54:12,185 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.019*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 04:54:12,192 : INFO : topic diff=0.006125, rho=0.034986\n", - "2019-01-16 04:54:12,437 : INFO : PROGRESS: pass 0, at document #1636000/4922894\n", - "2019-01-16 04:54:14,462 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:15,019 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:54:15,021 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:54:15,022 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"minist\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 04:54:15,024 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 04:54:15,027 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.014*\"servic\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"commun\"\n", - "2019-01-16 04:54:15,033 : INFO : topic diff=0.005116, rho=0.034964\n", - "2019-01-16 04:54:15,286 : INFO : PROGRESS: pass 0, at document #1638000/4922894\n", - "2019-01-16 04:54:17,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:17,924 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 04:54:17,925 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.054*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.018*\"kong\" + 0.017*\"hong\"\n", - "2019-01-16 04:54:17,927 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.045*\"franc\" + 0.029*\"pari\" + 0.027*\"italian\" + 0.022*\"saint\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:54:17,928 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", - "2019-01-16 04:54:17,930 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"mexican\" + 0.010*\"josé\" + 0.010*\"juan\"\n", - "2019-01-16 04:54:17,936 : INFO : topic diff=0.005694, rho=0.034943\n", - "2019-01-16 04:54:22,498 : INFO : -11.756 per-word bound, 3457.8 perplexity estimate based on a held-out corpus of 2000 documents with 523906 words\n", - "2019-01-16 04:54:22,499 : INFO : PROGRESS: pass 0, at document #1640000/4922894\n", - "2019-01-16 04:54:24,503 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:25,069 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:54:25,070 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.024*\"counti\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.020*\"municip\"\n", - "2019-01-16 04:54:25,072 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.013*\"million\" + 0.010*\"busi\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:54:25,073 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.012*\"gun\" + 0.012*\"sea\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.008*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 04:54:25,076 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:54:25,082 : INFO : topic diff=0.005873, rho=0.034922\n", - "2019-01-16 04:54:25,332 : INFO : PROGRESS: pass 0, at document #1642000/4922894\n", - "2019-01-16 04:54:27,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:27,933 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\"\n", - "2019-01-16 04:54:27,934 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.006*\"tree\"\n", - "2019-01-16 04:54:27,936 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"effect\"\n", - "2019-01-16 04:54:27,938 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"version\" + 0.009*\"releas\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"video\" + 0.007*\"includ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:54:27,939 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:54:27,945 : INFO : topic diff=0.005041, rho=0.034900\n", - "2019-01-16 04:54:28,178 : INFO : PROGRESS: pass 0, at document #1644000/4922894\n", - "2019-01-16 04:54:30,156 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:30,713 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"year\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 04:54:30,715 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:54:30,716 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:54:30,717 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"winner\" + 0.025*\"tournament\" + 0.024*\"point\" + 0.023*\"open\" + 0.022*\"group\" + 0.016*\"qualifi\" + 0.015*\"place\" + 0.014*\"champion\"\n", - "2019-01-16 04:54:30,719 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:54:30,725 : INFO : topic diff=0.005663, rho=0.034879\n", - "2019-01-16 04:54:30,968 : INFO : PROGRESS: pass 0, at document #1646000/4922894\n", - "2019-01-16 04:54:32,968 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:33,530 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.016*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 04:54:33,532 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.044*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:54:33,533 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.077*\"style\" + 0.060*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.043*\"center\" + 0.033*\"right\" + 0.030*\"philippin\" + 0.030*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:54:33,535 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 04:54:33,537 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:54:33,543 : INFO : topic diff=0.005846, rho=0.034858\n", - "2019-01-16 04:54:33,793 : INFO : PROGRESS: pass 0, at document #1648000/4922894\n", - "2019-01-16 04:54:35,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:36,392 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.019*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 04:54:36,393 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.032*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.023*\"area\" + 0.023*\"counti\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:54:36,395 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 04:54:36,396 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.037*\"africa\" + 0.032*\"african\" + 0.027*\"text\" + 0.026*\"south\" + 0.026*\"till\" + 0.025*\"color\" + 0.018*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 04:54:36,397 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.053*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.017*\"kong\" + 0.016*\"hong\"\n", - "2019-01-16 04:54:36,403 : INFO : topic diff=0.005667, rho=0.034837\n", - "2019-01-16 04:54:36,643 : INFO : PROGRESS: pass 0, at document #1650000/4922894\n", - "2019-01-16 04:54:38,614 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:39,172 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:54:39,173 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:54:39,175 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:54:39,176 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\"\n", - "2019-01-16 04:54:39,180 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"red\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"tree\"\n", - "2019-01-16 04:54:39,187 : INFO : topic diff=0.005902, rho=0.034816\n", - "2019-01-16 04:54:39,424 : INFO : PROGRESS: pass 0, at document #1652000/4922894\n", - "2019-01-16 04:54:41,462 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:42,019 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:54:42,021 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.016*\"match\" + 0.015*\"wrestl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.014*\"titl\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 04:54:42,022 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"gener\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:54:42,025 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:54:42,026 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 04:54:42,033 : INFO : topic diff=0.005557, rho=0.034794\n", - "2019-01-16 04:54:42,278 : INFO : PROGRESS: pass 0, at document #1654000/4922894\n", - "2019-01-16 04:54:44,298 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:44,856 : INFO : topic #19 (0.020): 0.020*\"new\" + 0.020*\"radio\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:54:44,858 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"servic\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"commun\"\n", - "2019-01-16 04:54:44,859 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.076*\"septemb\" + 0.073*\"march\" + 0.068*\"juli\" + 0.068*\"novemb\" + 0.067*\"august\" + 0.067*\"januari\" + 0.067*\"april\" + 0.064*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 04:54:44,861 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\"\n", - "2019-01-16 04:54:44,863 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:54:44,869 : INFO : topic diff=0.006201, rho=0.034773\n", - "2019-01-16 04:54:45,115 : INFO : PROGRESS: pass 0, at document #1656000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:54:47,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:47,722 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.052*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.018*\"sydnei\" + 0.016*\"kong\" + 0.016*\"hong\"\n", - "2019-01-16 04:54:47,724 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.041*\"russian\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"american\" + 0.014*\"republ\" + 0.014*\"jewish\" + 0.013*\"moscow\" + 0.012*\"israel\"\n", - "2019-01-16 04:54:47,725 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:54:47,727 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 04:54:47,730 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\"\n", - "2019-01-16 04:54:47,736 : INFO : topic diff=0.006426, rho=0.034752\n", - "2019-01-16 04:54:47,985 : INFO : PROGRESS: pass 0, at document #1658000/4922894\n", - "2019-01-16 04:54:50,072 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:50,631 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"market\" + 0.010*\"busi\" + 0.010*\"year\" + 0.009*\"bank\" + 0.009*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:54:50,633 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"church\" + 0.009*\"place\"\n", - "2019-01-16 04:54:50,634 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", - "2019-01-16 04:54:50,636 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:54:50,648 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.010*\"white\" + 0.008*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\"\n", - "2019-01-16 04:54:50,654 : INFO : topic diff=0.005372, rho=0.034731\n", - "2019-01-16 04:54:55,318 : INFO : -11.793 per-word bound, 3547.6 perplexity estimate based on a held-out corpus of 2000 documents with 570602 words\n", - "2019-01-16 04:54:55,319 : INFO : PROGRESS: pass 0, at document #1660000/4922894\n", - "2019-01-16 04:54:57,579 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:54:58,135 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"video\" + 0.007*\"user\" + 0.007*\"design\"\n", - "2019-01-16 04:54:58,137 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.029*\"point\" + 0.025*\"winner\" + 0.024*\"tournament\" + 0.023*\"group\" + 0.022*\"open\" + 0.016*\"qualifi\" + 0.015*\"place\" + 0.014*\"champion\"\n", - "2019-01-16 04:54:58,138 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 04:54:58,139 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.054*\"univers\" + 0.044*\"colleg\" + 0.038*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.008*\"campu\"\n", - "2019-01-16 04:54:58,141 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.032*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"counti\" + 0.021*\"famili\" + 0.021*\"censu\" + 0.021*\"municip\"\n", - "2019-01-16 04:54:58,147 : INFO : topic diff=0.006453, rho=0.034711\n", - "2019-01-16 04:54:58,397 : INFO : PROGRESS: pass 0, at document #1662000/4922894\n", - "2019-01-16 04:55:00,434 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:00,992 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"type\"\n", - "2019-01-16 04:55:00,993 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"video\" + 0.007*\"user\" + 0.007*\"data\"\n", - "2019-01-16 04:55:00,995 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.032*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.017*\"gener\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:55:00,997 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:55:00,998 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:55:01,004 : INFO : topic diff=0.005534, rho=0.034690\n", - "2019-01-16 04:55:01,239 : INFO : PROGRESS: pass 0, at document #1664000/4922894\n", - "2019-01-16 04:55:03,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:03,785 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"cell\" + 0.009*\"studi\" + 0.008*\"medicin\"\n", - "2019-01-16 04:55:03,787 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.013*\"orchestra\" + 0.012*\"opera\"\n", - "2019-01-16 04:55:03,789 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.015*\"london\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 04:55:03,791 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 04:55:03,793 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:55:03,799 : INFO : topic diff=0.004882, rho=0.034669\n", - "2019-01-16 04:55:04,037 : INFO : PROGRESS: pass 0, at document #1666000/4922894\n", - "2019-01-16 04:55:06,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:06,573 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.040*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:55:06,574 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.071*\"style\" + 0.063*\"align\" + 0.059*\"wikit\" + 0.056*\"left\" + 0.042*\"center\" + 0.033*\"right\" + 0.030*\"text\" + 0.030*\"philippin\" + 0.025*\"border\"\n", - "2019-01-16 04:55:06,576 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 04:55:06,577 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"peopl\" + 0.008*\"countri\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", - "2019-01-16 04:55:06,579 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:55:06,586 : INFO : topic diff=0.005805, rho=0.034648\n", - "2019-01-16 04:55:06,826 : INFO : PROGRESS: pass 0, at document #1668000/4922894\n", - "2019-01-16 04:55:08,814 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:09,375 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.027*\"villag\" + 0.027*\"ag\" + 0.023*\"area\" + 0.022*\"counti\" + 0.021*\"censu\" + 0.021*\"famili\" + 0.021*\"municip\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:55:09,376 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 04:55:09,378 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:55:09,379 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"match\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.016*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 04:55:09,381 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.021*\"act\" + 0.016*\"state\" + 0.012*\"case\" + 0.012*\"polic\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:55:09,386 : INFO : topic diff=0.005815, rho=0.034627\n", - "2019-01-16 04:55:09,631 : INFO : PROGRESS: pass 0, at document #1670000/4922894\n", - "2019-01-16 04:55:11,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:12,251 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 04:55:12,253 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.020*\"best\" + 0.019*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:55:12,254 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"damag\" + 0.008*\"coast\"\n", - "2019-01-16 04:55:12,256 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"us\" + 0.005*\"effect\"\n", - "2019-01-16 04:55:12,258 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.022*\"dutch\" + 0.019*\"der\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"austria\"\n", - "2019-01-16 04:55:12,264 : INFO : topic diff=0.004273, rho=0.034606\n", - "2019-01-16 04:55:12,503 : INFO : PROGRESS: pass 0, at document #1672000/4922894\n", - "2019-01-16 04:55:14,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:15,064 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.045*\"round\" + 0.029*\"point\" + 0.025*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.022*\"open\" + 0.016*\"qualifi\" + 0.015*\"place\" + 0.013*\"champion\"\n", - "2019-01-16 04:55:15,066 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:55:15,067 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.040*\"china\" + 0.032*\"chines\" + 0.031*\"zealand\" + 0.028*\"south\" + 0.018*\"sydnei\" + 0.017*\"kong\" + 0.016*\"hong\"\n", - "2019-01-16 04:55:15,070 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"church\" + 0.009*\"place\"\n", - "2019-01-16 04:55:15,072 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:55:15,078 : INFO : topic diff=0.004885, rho=0.034586\n", - "2019-01-16 04:55:15,327 : INFO : PROGRESS: pass 0, at document #1674000/4922894\n", - "2019-01-16 04:55:17,364 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:17,922 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.045*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:55:17,923 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:55:17,925 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"commun\"\n", - "2019-01-16 04:55:17,926 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:55:17,928 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 04:55:17,934 : INFO : topic diff=0.005446, rho=0.034565\n", - "2019-01-16 04:55:18,174 : INFO : PROGRESS: pass 0, at document #1676000/4922894\n", - "2019-01-16 04:55:20,174 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:20,730 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 04:55:20,732 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"stori\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 04:55:20,734 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 04:55:20,735 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", - "2019-01-16 04:55:20,737 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 04:55:20,744 : INFO : topic diff=0.004906, rho=0.034544\n", - "2019-01-16 04:55:20,996 : INFO : PROGRESS: pass 0, at document #1678000/4922894\n", - "2019-01-16 04:55:23,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:23,635 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"ret\" + 0.008*\"effect\"\n", - "2019-01-16 04:55:23,638 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.037*\"africa\" + 0.032*\"african\" + 0.026*\"south\" + 0.026*\"text\" + 0.026*\"color\" + 0.026*\"till\" + 0.018*\"black\" + 0.012*\"tropic\" + 0.012*\"cape\"\n", - "2019-01-16 04:55:23,640 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:55:23,642 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.069*\"style\" + 0.060*\"wikit\" + 0.059*\"align\" + 0.053*\"left\" + 0.042*\"center\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.029*\"text\" + 0.025*\"border\"\n", - "2019-01-16 04:55:23,643 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.023*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:55:23,649 : INFO : topic diff=0.005763, rho=0.034524\n", - "2019-01-16 04:55:28,232 : INFO : -11.893 per-word bound, 3802.5 perplexity estimate based on a held-out corpus of 2000 documents with 538242 words\n", - "2019-01-16 04:55:28,233 : INFO : PROGRESS: pass 0, at document #1680000/4922894\n", - "2019-01-16 04:55:30,193 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:30,751 : INFO : topic #34 (0.020): 0.082*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"montreal\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.014*\"korean\" + 0.013*\"columbia\"\n", - "2019-01-16 04:55:30,752 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.027*\"villag\" + 0.027*\"area\" + 0.026*\"ag\" + 0.023*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"municip\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:55:30,754 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"stage\" + 0.011*\"championship\"\n", - "2019-01-16 04:55:30,756 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.026*\"airport\" + 0.020*\"forc\" + 0.016*\"unit\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:55:30,757 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.039*\"china\" + 0.032*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.019*\"sydnei\" + 0.016*\"kong\" + 0.016*\"hong\"\n", - "2019-01-16 04:55:30,763 : INFO : topic diff=0.005065, rho=0.034503\n", - "2019-01-16 04:55:31,002 : INFO : PROGRESS: pass 0, at document #1682000/4922894\n", - "2019-01-16 04:55:32,966 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:33,524 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", - "2019-01-16 04:55:33,526 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.045*\"round\" + 0.029*\"point\" + 0.025*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.020*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.014*\"champion\"\n", - "2019-01-16 04:55:33,527 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 04:55:33,529 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"thailand\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"min\" + 0.014*\"vietnam\" + 0.012*\"asian\" + 0.012*\"thai\"\n", - "2019-01-16 04:55:33,530 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.027*\"villag\" + 0.027*\"area\" + 0.026*\"ag\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"municip\"\n", - "2019-01-16 04:55:33,536 : INFO : topic diff=0.005669, rho=0.034483\n", - "2019-01-16 04:55:33,769 : INFO : PROGRESS: pass 0, at document #1684000/4922894\n", - "2019-01-16 04:55:35,742 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:36,299 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:55:36,301 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 04:55:36,302 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.054*\"east\" + 0.053*\"south\" + 0.049*\"west\" + 0.035*\"provinc\" + 0.035*\"villag\" + 0.033*\"counti\" + 0.029*\"central\"\n", - "2019-01-16 04:55:36,304 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 04:55:36,305 : INFO : topic #34 (0.020): 0.082*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"montreal\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.014*\"korean\" + 0.014*\"korea\"\n", - "2019-01-16 04:55:36,312 : INFO : topic diff=0.005385, rho=0.034462\n", - "2019-01-16 04:55:36,588 : INFO : PROGRESS: pass 0, at document #1686000/4922894\n", - "2019-01-16 04:55:38,665 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:39,222 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.009*\"port\" + 0.009*\"island\" + 0.009*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 04:55:39,224 : INFO : topic #14 (0.020): 0.015*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\"\n", - "2019-01-16 04:55:39,227 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:55:39,228 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 04:55:39,230 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 04:55:39,235 : INFO : topic diff=0.005586, rho=0.034442\n", - "2019-01-16 04:55:39,485 : INFO : PROGRESS: pass 0, at document #1688000/4922894\n", - "2019-01-16 04:55:41,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:42,090 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.015*\"london\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 04:55:42,092 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:55:42,093 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"church\"\n", - "2019-01-16 04:55:42,095 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.005*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 04:55:42,096 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:55:42,102 : INFO : topic diff=0.004439, rho=0.034421\n", - "2019-01-16 04:55:42,346 : INFO : PROGRESS: pass 0, at document #1690000/4922894\n", - "2019-01-16 04:55:44,374 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:44,947 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.033*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.023*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:55:44,948 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.054*\"east\" + 0.053*\"south\" + 0.049*\"west\" + 0.037*\"provinc\" + 0.035*\"villag\" + 0.033*\"counti\" + 0.029*\"central\"\n", - "2019-01-16 04:55:44,950 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:55:44,952 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.009*\"port\" + 0.009*\"island\" + 0.009*\"coast\" + 0.008*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 04:55:44,953 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.025*\"airport\" + 0.020*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 04:55:44,959 : INFO : topic diff=0.004577, rho=0.034401\n", - "2019-01-16 04:55:45,215 : INFO : PROGRESS: pass 0, at document #1692000/4922894\n", - "2019-01-16 04:55:47,271 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:47,828 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:55:47,830 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.054*\"east\" + 0.053*\"south\" + 0.049*\"west\" + 0.037*\"provinc\" + 0.035*\"villag\" + 0.033*\"counti\" + 0.030*\"central\"\n", - "2019-01-16 04:55:47,831 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"stage\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\"\n", - "2019-01-16 04:55:47,833 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:55:47,834 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.014*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"servic\" + 0.012*\"nation\" + 0.011*\"scienc\" + 0.011*\"work\" + 0.011*\"organ\"\n", - "2019-01-16 04:55:47,840 : INFO : topic diff=0.004298, rho=0.034381\n", - "2019-01-16 04:55:48,091 : INFO : PROGRESS: pass 0, at document #1694000/4922894\n", - "2019-01-16 04:55:50,170 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:50,727 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"stage\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"championship\"\n", - "2019-01-16 04:55:50,729 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:55:50,730 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.040*\"russian\" + 0.022*\"russia\" + 0.018*\"soviet\" + 0.017*\"american\" + 0.016*\"polish\" + 0.015*\"moscow\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 04:55:50,732 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"islam\"\n", - "2019-01-16 04:55:50,733 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 04:55:50,739 : INFO : topic diff=0.005266, rho=0.034360\n", - "2019-01-16 04:55:50,980 : INFO : PROGRESS: pass 0, at document #1696000/4922894\n", - "2019-01-16 04:55:52,989 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:53,555 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 04:55:53,557 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.028*\"point\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.020*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"champion\"\n", - "2019-01-16 04:55:53,559 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"year\"\n", - "2019-01-16 04:55:53,560 : INFO : topic #19 (0.020): 0.020*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"program\" + 0.011*\"dai\" + 0.010*\"network\" + 0.010*\"host\"\n", - "2019-01-16 04:55:53,562 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.016*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"church\"\n", - "2019-01-16 04:55:53,568 : INFO : topic diff=0.006719, rho=0.034340\n", - "2019-01-16 04:55:53,820 : INFO : PROGRESS: pass 0, at document #1698000/4922894\n", - "2019-01-16 04:55:55,863 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:55:56,419 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:55:56,420 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"time\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"stage\"\n", - "2019-01-16 04:55:56,422 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 04:55:56,423 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"match\" + 0.018*\"fight\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 04:55:56,425 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:55:56,432 : INFO : topic diff=0.006124, rho=0.034320\n", - "2019-01-16 04:56:00,998 : INFO : -11.637 per-word bound, 3185.0 perplexity estimate based on a held-out corpus of 2000 documents with 537767 words\n", - "2019-01-16 04:56:00,999 : INFO : PROGRESS: pass 0, at document #1700000/4922894\n", - "2019-01-16 04:56:03,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:03,613 : INFO : topic #35 (0.020): 0.031*\"lee\" + 0.022*\"kim\" + 0.019*\"singapor\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"min\" + 0.013*\"vietnam\" + 0.013*\"–present\" + 0.012*\"asian\"\n", - "2019-01-16 04:56:03,615 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:56:03,616 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.040*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"austria\" + 0.011*\"die\"\n", - "2019-01-16 04:56:03,617 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.037*\"africa\" + 0.033*\"african\" + 0.025*\"till\" + 0.025*\"color\" + 0.025*\"south\" + 0.025*\"text\" + 0.020*\"black\" + 0.013*\"tropic\" + 0.011*\"storm\"\n", - "2019-01-16 04:56:03,619 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:56:03,625 : INFO : topic diff=0.005278, rho=0.034300\n", - "2019-01-16 04:56:03,870 : INFO : PROGRESS: pass 0, at document #1702000/4922894\n", - "2019-01-16 04:56:05,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:06,478 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.023*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:56:06,479 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.012*\"gun\" + 0.012*\"sea\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.008*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:56:06,481 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.012*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", - "2019-01-16 04:56:06,482 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 04:56:06,483 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 04:56:06,490 : INFO : topic diff=0.005843, rho=0.034280\n", - "2019-01-16 04:56:06,727 : INFO : PROGRESS: pass 0, at document #1704000/4922894\n", - "2019-01-16 04:56:08,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:09,290 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 04:56:09,291 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.016*\"state\" + 0.013*\"polic\" + 0.012*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:56:09,293 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.012*\"gun\" + 0.010*\"boat\" + 0.009*\"island\" + 0.009*\"port\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:56:09,294 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.040*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"austria\"\n", - "2019-01-16 04:56:09,296 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:56:09,301 : INFO : topic diff=0.005046, rho=0.034259\n", - "2019-01-16 04:56:09,547 : INFO : PROGRESS: pass 0, at document #1706000/4922894\n", - "2019-01-16 04:56:11,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:12,171 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 04:56:12,173 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.023*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:56:12,174 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 04:56:12,175 : INFO : topic #35 (0.020): 0.031*\"lee\" + 0.021*\"kim\" + 0.019*\"singapor\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.014*\"malaysia\" + 0.013*\"min\" + 0.013*\"vietnam\" + 0.012*\"–present\" + 0.012*\"asian\"\n", - "2019-01-16 04:56:12,177 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"gener\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:56:12,184 : INFO : topic diff=0.005147, rho=0.034239\n", - "2019-01-16 04:56:12,426 : INFO : PROGRESS: pass 0, at document #1708000/4922894\n", - "2019-01-16 04:56:14,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:15,002 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.009*\"josé\"\n", - "2019-01-16 04:56:15,004 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"jame\"\n", - "2019-01-16 04:56:15,006 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.017*\"gener\" + 0.015*\"militari\" + 0.014*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:56:15,009 : INFO : topic #49 (0.020): 0.105*\"district\" + 0.058*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.050*\"south\" + 0.048*\"west\" + 0.038*\"villag\" + 0.038*\"counti\" + 0.036*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 04:56:15,010 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.026*\"ag\" + 0.026*\"villag\" + 0.026*\"area\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"municip\"\n", - "2019-01-16 04:56:15,017 : INFO : topic diff=0.005769, rho=0.034219\n", - "2019-01-16 04:56:15,301 : INFO : PROGRESS: pass 0, at document #1710000/4922894\n", - "2019-01-16 04:56:17,325 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:17,881 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 04:56:17,883 : INFO : topic #2 (0.020): 0.068*\"german\" + 0.040*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 04:56:17,885 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"church\"\n", - "2019-01-16 04:56:17,886 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 04:56:17,888 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:56:17,895 : INFO : topic diff=0.005218, rho=0.034199\n", - "2019-01-16 04:56:18,164 : INFO : PROGRESS: pass 0, at document #1712000/4922894\n", - "2019-01-16 04:56:20,252 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:20,808 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 04:56:20,810 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.027*\"point\" + 0.024*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.020*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"champion\"\n", - "2019-01-16 04:56:20,811 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.027*\"ag\" + 0.026*\"villag\" + 0.026*\"area\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"municip\"\n", - "2019-01-16 04:56:20,814 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 04:56:20,815 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:56:20,821 : INFO : topic diff=0.004959, rho=0.034179\n", - "2019-01-16 04:56:21,068 : INFO : PROGRESS: pass 0, at document #1714000/4922894\n", - "2019-01-16 04:56:23,096 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:23,652 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"design\"\n", - "2019-01-16 04:56:23,653 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:56:23,654 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.020*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 04:56:23,656 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:56:23,657 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.022*\"kim\" + 0.019*\"singapor\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.013*\"min\" + 0.012*\"asian\" + 0.012*\"vietnam\" + 0.012*\"–present\"\n", - "2019-01-16 04:56:23,663 : INFO : topic diff=0.005477, rho=0.034159\n", - "2019-01-16 04:56:23,908 : INFO : PROGRESS: pass 0, at document #1716000/4922894\n", - "2019-01-16 04:56:26,022 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:26,578 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.023*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:56:26,579 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:56:26,581 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"london\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 04:56:26,582 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 04:56:26,584 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 04:56:26,589 : INFO : topic diff=0.004902, rho=0.034139\n", - "2019-01-16 04:56:26,831 : INFO : PROGRESS: pass 0, at document #1718000/4922894\n", - "2019-01-16 04:56:28,830 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:29,387 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"protein\" + 0.008*\"vehicl\" + 0.007*\"car\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:56:29,388 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", - "2019-01-16 04:56:29,390 : INFO : topic #23 (0.020): 0.022*\"hospit\" + 0.021*\"medic\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 04:56:29,391 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 04:56:29,393 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\"\n", - "2019-01-16 04:56:29,399 : INFO : topic diff=0.005028, rho=0.034120\n", - "2019-01-16 04:56:33,999 : INFO : -11.880 per-word bound, 3769.5 perplexity estimate based on a held-out corpus of 2000 documents with 550846 words\n", - "2019-01-16 04:56:34,000 : INFO : PROGRESS: pass 0, at document #1720000/4922894\n", - "2019-01-16 04:56:36,022 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:36,578 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"design\" + 0.007*\"data\"\n", - "2019-01-16 04:56:36,580 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:56:36,581 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"carlo\" + 0.010*\"francisco\"\n", - "2019-01-16 04:56:36,583 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 04:56:36,584 : INFO : topic #23 (0.020): 0.021*\"hospit\" + 0.021*\"medic\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"cell\" + 0.009*\"treatment\" + 0.009*\"ret\" + 0.009*\"studi\"\n", - "2019-01-16 04:56:36,590 : INFO : topic diff=0.004629, rho=0.034100\n", - "2019-01-16 04:56:36,829 : INFO : PROGRESS: pass 0, at document #1722000/4922894\n", - "2019-01-16 04:56:38,761 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:39,319 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.014*\"scotland\" + 0.014*\"london\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 04:56:39,320 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.012*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.009*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:56:39,322 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.026*\"ag\" + 0.026*\"villag\" + 0.026*\"area\" + 0.023*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.020*\"commun\"\n", - "2019-01-16 04:56:39,323 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:56:39,325 : INFO : topic #19 (0.020): 0.020*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"air\"\n", - "2019-01-16 04:56:39,331 : INFO : topic diff=0.005446, rho=0.034080\n", - "2019-01-16 04:56:39,584 : INFO : PROGRESS: pass 0, at document #1724000/4922894\n", - "2019-01-16 04:56:41,618 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:42,174 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"protein\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 04:56:42,175 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:56:42,177 : INFO : topic #49 (0.020): 0.104*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.050*\"south\" + 0.048*\"west\" + 0.038*\"villag\" + 0.037*\"counti\" + 0.036*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 04:56:42,178 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 04:56:42,179 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.013*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:56:42,186 : INFO : topic diff=0.005323, rho=0.034060\n", - "2019-01-16 04:56:42,432 : INFO : PROGRESS: pass 0, at document #1726000/4922894\n", - "2019-01-16 04:56:44,479 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:45,038 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"protein\" + 0.008*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 04:56:45,039 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"seat\"\n", - "2019-01-16 04:56:45,041 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:56:45,042 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"gener\" + 0.015*\"militari\" + 0.014*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:56:45,044 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 04:56:45,050 : INFO : topic diff=0.005383, rho=0.034040\n", - "2019-01-16 04:56:45,297 : INFO : PROGRESS: pass 0, at document #1728000/4922894\n", - "2019-01-16 04:56:47,318 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:47,875 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:56:47,877 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:56:47,878 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"seat\"\n", - "2019-01-16 04:56:47,880 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"gener\" + 0.015*\"militari\" + 0.014*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:56:47,881 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.031*\"women\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"gold\" + 0.018*\"athlet\"\n", - "2019-01-16 04:56:47,887 : INFO : topic diff=0.005117, rho=0.034021\n", - "2019-01-16 04:56:48,142 : INFO : PROGRESS: pass 0, at document #1730000/4922894\n", - "2019-01-16 04:56:50,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:50,789 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 04:56:50,791 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:56:50,792 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 04:56:50,794 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:56:50,795 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:56:50,802 : INFO : topic diff=0.006889, rho=0.034001\n", - "2019-01-16 04:56:51,046 : INFO : PROGRESS: pass 0, at document #1732000/4922894\n", - "2019-01-16 04:56:53,068 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:53,625 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 04:56:53,627 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:56:53,628 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.037*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.019*\"american\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.012*\"poland\"\n", - "2019-01-16 04:56:53,630 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.073*\"canada\" + 0.058*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korean\" + 0.015*\"korea\"\n", - "2019-01-16 04:56:53,631 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:56:53,637 : INFO : topic diff=0.004716, rho=0.033981\n", - "2019-01-16 04:56:53,889 : INFO : PROGRESS: pass 0, at document #1734000/4922894\n", - "2019-01-16 04:56:55,976 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:56,537 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 04:56:56,539 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"francisco\"\n", - "2019-01-16 04:56:56,540 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.061*\"wikit\" + 0.058*\"style\" + 0.058*\"align\" + 0.052*\"left\" + 0.045*\"center\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.027*\"text\" + 0.027*\"border\"\n", - "2019-01-16 04:56:56,541 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.031*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 04:56:56,542 : INFO : topic #23 (0.020): 0.020*\"hospit\" + 0.020*\"medic\" + 0.014*\"health\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.009*\"human\" + 0.009*\"treatment\"\n", - "2019-01-16 04:56:56,548 : INFO : topic diff=0.005334, rho=0.033962\n", - "2019-01-16 04:56:56,823 : INFO : PROGRESS: pass 0, at document #1736000/4922894\n", - "2019-01-16 04:56:58,887 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:56:59,449 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:56:59,451 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"stori\" + 0.004*\"return\"\n", - "2019-01-16 04:56:59,452 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 04:56:59,453 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.050*\"australian\" + 0.046*\"new\" + 0.040*\"china\" + 0.031*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 04:56:59,454 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"hous\"\n", - "2019-01-16 04:56:59,460 : INFO : topic diff=0.005352, rho=0.033942\n", - "2019-01-16 04:56:59,714 : INFO : PROGRESS: pass 0, at document #1738000/4922894\n", - "2019-01-16 04:57:02,162 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:02,722 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"form\" + 0.005*\"materi\"\n", - "2019-01-16 04:57:02,723 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:57:02,725 : INFO : topic #49 (0.020): 0.104*\"district\" + 0.059*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.049*\"south\" + 0.048*\"west\" + 0.038*\"villag\" + 0.038*\"counti\" + 0.035*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 04:57:02,726 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"defeat\"\n", - "2019-01-16 04:57:02,727 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.012*\"politician\"\n", - "2019-01-16 04:57:02,733 : INFO : topic diff=0.005477, rho=0.033923\n", - "2019-01-16 04:57:07,478 : INFO : -11.688 per-word bound, 3299.0 perplexity estimate based on a held-out corpus of 2000 documents with 583661 words\n", - "2019-01-16 04:57:07,479 : INFO : PROGRESS: pass 0, at document #1740000/4922894\n", - "2019-01-16 04:57:09,562 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:10,124 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:57:10,126 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"defeat\"\n", - "2019-01-16 04:57:10,127 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"car\" + 0.007*\"protein\"\n", - "2019-01-16 04:57:10,129 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"australian\" + 0.047*\"new\" + 0.040*\"china\" + 0.032*\"zealand\" + 0.030*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 04:57:10,131 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"program\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 04:57:10,137 : INFO : topic diff=0.006664, rho=0.033903\n", - "2019-01-16 04:57:10,391 : INFO : PROGRESS: pass 0, at document #1742000/4922894\n", - "2019-01-16 04:57:12,373 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:12,930 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:57:12,932 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 04:57:12,933 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"elimin\" + 0.012*\"defeat\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:57:12,935 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 04:57:12,936 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:57:12,943 : INFO : topic diff=0.005049, rho=0.033884\n", - "2019-01-16 04:57:13,200 : INFO : PROGRESS: pass 0, at document #1744000/4922894\n", - "2019-01-16 04:57:15,293 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:15,851 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.010*\"novel\" + 0.010*\"author\"\n", - "2019-01-16 04:57:15,852 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.010*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 04:57:15,854 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.063*\"august\" + 0.063*\"juli\" + 0.061*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 04:57:15,855 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"method\" + 0.006*\"point\"\n", - "2019-01-16 04:57:15,856 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:57:15,862 : INFO : topic diff=0.006663, rho=0.033864\n", - "2019-01-16 04:57:16,112 : INFO : PROGRESS: pass 0, at document #1746000/4922894\n", - "2019-01-16 04:57:18,225 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:18,781 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\"\n", - "2019-01-16 04:57:18,782 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:57:18,784 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.034*\"new\" + 0.031*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:57:18,785 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.029*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:57:18,788 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"method\" + 0.006*\"point\"\n", - "2019-01-16 04:57:18,795 : INFO : topic diff=0.004838, rho=0.033845\n", - "2019-01-16 04:57:19,047 : INFO : PROGRESS: pass 0, at document #1748000/4922894\n", - "2019-01-16 04:57:21,094 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:21,654 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.050*\"south\" + 0.049*\"west\" + 0.039*\"villag\" + 0.038*\"counti\" + 0.035*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 04:57:21,655 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:57:21,657 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.023*\"cup\" + 0.016*\"player\" + 0.016*\"match\" + 0.016*\"goal\"\n", - "2019-01-16 04:57:21,658 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.032*\"citi\" + 0.026*\"ag\" + 0.025*\"area\" + 0.025*\"villag\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.021*\"commun\"\n", - "2019-01-16 04:57:21,659 : INFO : topic #23 (0.020): 0.020*\"medic\" + 0.019*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"cell\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 04:57:21,665 : INFO : topic diff=0.004783, rho=0.033826\n", - "2019-01-16 04:57:21,911 : INFO : PROGRESS: pass 0, at document #1750000/4922894\n", - "2019-01-16 04:57:23,916 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:24,476 : INFO : topic #13 (0.020): 0.060*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:57:24,477 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.029*\"women\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.022*\"japan\" + 0.022*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.020*\"gold\" + 0.018*\"japanes\"\n", - "2019-01-16 04:57:24,479 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 04:57:24,481 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:57:24,482 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.026*\"south\" + 0.024*\"till\" + 0.024*\"color\" + 0.023*\"text\" + 0.020*\"black\" + 0.015*\"tropic\" + 0.014*\"storm\"\n", - "2019-01-16 04:57:24,488 : INFO : topic diff=0.005449, rho=0.033806\n", - "2019-01-16 04:57:24,736 : INFO : PROGRESS: pass 0, at document #1752000/4922894\n", - "2019-01-16 04:57:26,791 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:27,350 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.027*\"tournament\" + 0.025*\"point\" + 0.023*\"winner\" + 0.021*\"open\" + 0.019*\"group\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"champion\"\n", - "2019-01-16 04:57:27,351 : INFO : topic #35 (0.020): 0.031*\"lee\" + 0.023*\"kim\" + 0.019*\"singapor\" + 0.018*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.013*\"min\" + 0.013*\"vietnam\" + 0.012*\"thai\" + 0.012*\"asian\"\n", - "2019-01-16 04:57:27,353 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 04:57:27,354 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:57:27,356 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"car\" + 0.007*\"protein\"\n", - "2019-01-16 04:57:27,361 : INFO : topic diff=0.005777, rho=0.033787\n", - "2019-01-16 04:57:27,605 : INFO : PROGRESS: pass 0, at document #1754000/4922894\n", - "2019-01-16 04:57:29,621 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:30,178 : INFO : topic #35 (0.020): 0.030*\"lee\" + 0.023*\"kim\" + 0.019*\"thailand\" + 0.019*\"singapor\" + 0.018*\"indonesia\" + 0.017*\"malaysia\" + 0.013*\"min\" + 0.012*\"vietnam\" + 0.012*\"thai\" + 0.011*\"asian\"\n", - "2019-01-16 04:57:30,180 : INFO : topic #48 (0.020): 0.075*\"octob\" + 0.075*\"septemb\" + 0.074*\"march\" + 0.066*\"novemb\" + 0.065*\"januari\" + 0.065*\"april\" + 0.064*\"juli\" + 0.064*\"august\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 04:57:30,182 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 04:57:30,183 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"car\" + 0.007*\"us\"\n", - "2019-01-16 04:57:30,184 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.010*\"offic\" + 0.008*\"report\" + 0.008*\"legal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:57:30,190 : INFO : topic diff=0.005043, rho=0.033768\n", - "2019-01-16 04:57:30,440 : INFO : PROGRESS: pass 0, at document #1756000/4922894\n", - "2019-01-16 04:57:32,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:33,006 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.007*\"fish\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 04:57:33,008 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.032*\"citi\" + 0.026*\"ag\" + 0.025*\"area\" + 0.025*\"villag\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.021*\"commun\"\n", - "2019-01-16 04:57:33,010 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"royal\"\n", - "2019-01-16 04:57:33,011 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", - "2019-01-16 04:57:33,012 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:57:33,018 : INFO : topic diff=0.004307, rho=0.033748\n", - "2019-01-16 04:57:33,276 : INFO : PROGRESS: pass 0, at document #1758000/4922894\n", - "2019-01-16 04:57:35,386 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:35,943 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.036*\"africa\" + 0.032*\"african\" + 0.025*\"south\" + 0.024*\"color\" + 0.024*\"till\" + 0.023*\"text\" + 0.020*\"black\" + 0.015*\"tropic\" + 0.014*\"storm\"\n", - "2019-01-16 04:57:35,945 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.027*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:57:35,947 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.061*\"wikit\" + 0.057*\"style\" + 0.057*\"align\" + 0.049*\"left\" + 0.045*\"center\" + 0.034*\"right\" + 0.031*\"philippin\" + 0.027*\"text\" + 0.026*\"border\"\n", - "2019-01-16 04:57:35,949 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.010*\"carlo\" + 0.010*\"mexican\" + 0.010*\"juan\"\n", - "2019-01-16 04:57:35,951 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 04:57:35,957 : INFO : topic diff=0.005242, rho=0.033729\n", - "2019-01-16 04:57:40,497 : INFO : -11.529 per-word bound, 2955.1 perplexity estimate based on a held-out corpus of 2000 documents with 540954 words\n", - "2019-01-16 04:57:40,498 : INFO : PROGRESS: pass 0, at document #1760000/4922894\n", - "2019-01-16 04:57:42,487 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:43,045 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:57:43,047 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"form\" + 0.005*\"effect\"\n", - "2019-01-16 04:57:43,048 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"offic\" + 0.010*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:57:43,050 : INFO : topic #13 (0.020): 0.061*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:57:43,051 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.041*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.012*\"han\" + 0.011*\"die\"\n", - "2019-01-16 04:57:43,057 : INFO : topic diff=0.004569, rho=0.033710\n", - "2019-01-16 04:57:43,339 : INFO : PROGRESS: pass 0, at document #1762000/4922894\n", - "2019-01-16 04:57:45,384 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:45,943 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.023*\"kim\" + 0.020*\"singapor\" + 0.019*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"malaysia\" + 0.015*\"thai\" + 0.012*\"vietnam\" + 0.012*\"min\" + 0.012*\"–present\"\n", - "2019-01-16 04:57:45,944 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.060*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.050*\"south\" + 0.049*\"west\" + 0.038*\"villag\" + 0.036*\"counti\" + 0.034*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 04:57:45,946 : INFO : topic #13 (0.020): 0.061*\"state\" + 0.034*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:57:45,947 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 04:57:45,949 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 04:57:45,955 : INFO : topic diff=0.005952, rho=0.033691\n", - "2019-01-16 04:57:46,215 : INFO : PROGRESS: pass 0, at document #1764000/4922894\n", - "2019-01-16 04:57:48,296 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:48,853 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.024*\"point\" + 0.021*\"open\" + 0.021*\"winner\" + 0.020*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"champion\"\n", - "2019-01-16 04:57:48,854 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 04:57:48,855 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"town\" + 0.022*\"unit\" + 0.021*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"london\" + 0.013*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 04:57:48,857 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:57:48,858 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", - "2019-01-16 04:57:48,864 : INFO : topic diff=0.004480, rho=0.033672\n", - "2019-01-16 04:57:49,117 : INFO : PROGRESS: pass 0, at document #1766000/4922894\n", - "2019-01-16 04:57:51,115 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:51,674 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"year\"\n", - "2019-01-16 04:57:51,676 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.015*\"kong\" + 0.015*\"melbourn\"\n", - "2019-01-16 04:57:51,678 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.061*\"wikit\" + 0.059*\"style\" + 0.056*\"align\" + 0.049*\"left\" + 0.047*\"center\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.029*\"text\" + 0.026*\"border\"\n", - "2019-01-16 04:57:51,679 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.075*\"octob\" + 0.075*\"septemb\" + 0.068*\"januari\" + 0.067*\"april\" + 0.066*\"novemb\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 04:57:51,680 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:57:51,686 : INFO : topic diff=0.005050, rho=0.033653\n", - "2019-01-16 04:57:51,927 : INFO : PROGRESS: pass 0, at document #1768000/4922894\n", - "2019-01-16 04:57:53,918 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:57:54,475 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"later\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 04:57:54,477 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:57:54,478 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.032*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.025*\"footbal\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:57:54,479 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 04:57:54,481 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 04:57:54,487 : INFO : topic diff=0.005933, rho=0.033634\n", - "2019-01-16 04:57:54,733 : INFO : PROGRESS: pass 0, at document #1770000/4922894\n", - "2019-01-16 04:57:56,765 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:57:57,322 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", - "2019-01-16 04:57:57,324 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.034*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 04:57:57,325 : INFO : topic #34 (0.020): 0.081*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.026*\"toronto\" + 0.026*\"ontario\" + 0.017*\"british\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 04:57:57,327 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.014*\"institut\" + 0.013*\"intern\" + 0.013*\"develop\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 04:57:57,329 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 04:57:57,335 : INFO : topic diff=0.005105, rho=0.033615\n", - "2019-01-16 04:57:57,573 : INFO : PROGRESS: pass 0, at document #1772000/4922894\n", - "2019-01-16 04:57:59,614 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:00,171 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.018*\"thailand\" + 0.018*\"indonesia\" + 0.017*\"malaysia\" + 0.015*\"thai\" + 0.013*\"min\" + 0.013*\"vietnam\" + 0.012*\"asian\"\n", - "2019-01-16 04:58:00,172 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:58:00,174 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.050*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.036*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 04:58:00,175 : INFO : topic #13 (0.020): 0.061*\"state\" + 0.034*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:58:00,177 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 04:58:00,183 : INFO : topic diff=0.004964, rho=0.033596\n", - "2019-01-16 04:58:00,452 : INFO : PROGRESS: pass 0, at document #1774000/4922894\n", - "2019-01-16 04:58:02,582 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:03,143 : INFO : topic #34 (0.020): 0.082*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 04:58:03,144 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.014*\"institut\" + 0.013*\"develop\" + 0.013*\"intern\" + 0.012*\"nation\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 04:58:03,145 : INFO : topic #4 (0.020): 0.124*\"school\" + 0.049*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.026*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 04:58:03,147 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.031*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:58:03,148 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"form\"\n", - "2019-01-16 04:58:03,154 : INFO : topic diff=0.006788, rho=0.033577\n", - "2019-01-16 04:58:03,402 : INFO : PROGRESS: pass 0, at document #1776000/4922894\n", - "2019-01-16 04:58:05,364 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:05,927 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"form\"\n", - "2019-01-16 04:58:05,929 : INFO : topic #23 (0.020): 0.019*\"medic\" + 0.018*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"human\" + 0.009*\"treatment\" + 0.009*\"ret\"\n", - "2019-01-16 04:58:05,931 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"malaysia\" + 0.014*\"thai\" + 0.013*\"min\" + 0.013*\"vietnam\" + 0.012*\"asia\"\n", - "2019-01-16 04:58:05,932 : INFO : topic #13 (0.020): 0.061*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 04:58:05,934 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", - "2019-01-16 04:58:05,940 : INFO : topic diff=0.005953, rho=0.033558\n", - "2019-01-16 04:58:06,196 : INFO : PROGRESS: pass 0, at document #1778000/4922894\n", - "2019-01-16 04:58:08,215 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:08,778 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"damag\" + 0.010*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\"\n", - "2019-01-16 04:58:08,780 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"case\" + 0.011*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:58:08,782 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"plant\" + 0.011*\"famili\" + 0.009*\"white\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"bird\"\n", - "2019-01-16 04:58:08,783 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.033*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 04:58:08,784 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:58:08,791 : INFO : topic diff=0.004311, rho=0.033539\n", - "2019-01-16 04:58:13,320 : INFO : -11.590 per-word bound, 3083.1 perplexity estimate based on a held-out corpus of 2000 documents with 529118 words\n", - "2019-01-16 04:58:13,321 : INFO : PROGRESS: pass 0, at document #1780000/4922894\n", - "2019-01-16 04:58:15,313 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:15,871 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:58:15,873 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.022*\"open\" + 0.019*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"champion\"\n", - "2019-01-16 04:58:15,874 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:58:15,875 : INFO : topic #35 (0.020): 0.029*\"lee\" + 0.022*\"kim\" + 0.020*\"singapor\" + 0.018*\"thailand\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.014*\"thai\" + 0.013*\"vietnam\" + 0.013*\"min\" + 0.012*\"asian\"\n", - "2019-01-16 04:58:15,877 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", - "2019-01-16 04:58:15,882 : INFO : topic diff=0.004893, rho=0.033520\n", - "2019-01-16 04:58:16,137 : INFO : PROGRESS: pass 0, at document #1782000/4922894\n", - "2019-01-16 04:58:18,186 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:18,743 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 04:58:18,744 : INFO : topic #4 (0.020): 0.125*\"school\" + 0.049*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.026*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 04:58:18,746 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.005*\"time\" + 0.005*\"us\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 04:58:18,747 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:58:18,749 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.027*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:58:18,754 : INFO : topic diff=0.004949, rho=0.033501\n", - "2019-01-16 04:58:19,007 : INFO : PROGRESS: pass 0, at document #1784000/4922894\n", - "2019-01-16 04:58:21,044 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:21,603 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:58:21,604 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:58:21,606 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 04:58:21,607 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.023*\"point\" + 0.022*\"open\" + 0.021*\"winner\" + 0.019*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"champion\"\n", - "2019-01-16 04:58:21,610 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 04:58:21,618 : INFO : topic diff=0.004501, rho=0.033482\n", - "2019-01-16 04:58:21,885 : INFO : PROGRESS: pass 0, at document #1786000/4922894\n", - "2019-01-16 04:58:23,986 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:24,544 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"fight\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"defeat\"\n", - "2019-01-16 04:58:24,546 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"method\"\n", - "2019-01-16 04:58:24,547 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"daughter\" + 0.012*\"life\" + 0.012*\"born\"\n", - "2019-01-16 04:58:24,549 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.050*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.026*\"high\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 04:58:24,550 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:58:24,557 : INFO : topic diff=0.004677, rho=0.033464\n", - "2019-01-16 04:58:24,838 : INFO : PROGRESS: pass 0, at document #1788000/4922894\n", - "2019-01-16 04:58:26,888 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:27,445 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:58:27,446 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 04:58:27,448 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"senat\"\n", - "2019-01-16 04:58:27,450 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.040*\"africa\" + 0.031*\"african\" + 0.027*\"south\" + 0.023*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.019*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 04:58:27,451 : INFO : topic #34 (0.020): 0.083*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", - "2019-01-16 04:58:27,458 : INFO : topic diff=0.004274, rho=0.033445\n", - "2019-01-16 04:58:27,712 : INFO : PROGRESS: pass 0, at document #1790000/4922894\n", - "2019-01-16 04:58:29,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:30,265 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.039*\"africa\" + 0.031*\"african\" + 0.027*\"south\" + 0.023*\"text\" + 0.023*\"till\" + 0.023*\"color\" + 0.020*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 04:58:30,266 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.010*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:58:30,267 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.065*\"align\" + 0.060*\"wikit\" + 0.054*\"style\" + 0.049*\"center\" + 0.046*\"left\" + 0.040*\"right\" + 0.031*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:58:30,269 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:58:30,270 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"includ\" + 0.007*\"design\"\n", - "2019-01-16 04:58:30,276 : INFO : topic diff=0.005179, rho=0.033426\n", - "2019-01-16 04:58:30,533 : INFO : PROGRESS: pass 0, at document #1792000/4922894\n", - "2019-01-16 04:58:32,597 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:33,152 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.030*\"women\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.022*\"japan\" + 0.018*\"gold\" + 0.018*\"athlet\"\n", - "2019-01-16 04:58:33,153 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.064*\"align\" + 0.060*\"wikit\" + 0.054*\"style\" + 0.049*\"center\" + 0.046*\"left\" + 0.040*\"right\" + 0.031*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 04:58:33,155 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.015*\"univers\" + 0.013*\"institut\" + 0.013*\"intern\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:58:33,157 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.040*\"africa\" + 0.031*\"african\" + 0.028*\"south\" + 0.023*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.019*\"black\" + 0.016*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 04:58:33,158 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 04:58:33,163 : INFO : topic diff=0.005419, rho=0.033408\n", - "2019-01-16 04:58:33,418 : INFO : PROGRESS: pass 0, at document #1794000/4922894\n", - "2019-01-16 04:58:35,426 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:35,983 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 04:58:35,985 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"damag\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:58:35,986 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 04:58:35,988 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:58:35,989 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.026*\"ag\" + 0.025*\"area\" + 0.025*\"villag\" + 0.023*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.021*\"commun\"\n", - "2019-01-16 04:58:35,995 : INFO : topic diff=0.004906, rho=0.033389\n", - "2019-01-16 04:58:36,238 : INFO : PROGRESS: pass 0, at document #1796000/4922894\n", - "2019-01-16 04:58:38,273 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:38,831 : INFO : topic #48 (0.020): 0.078*\"octob\" + 0.075*\"septemb\" + 0.072*\"march\" + 0.065*\"januari\" + 0.064*\"april\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.063*\"august\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 04:58:38,832 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.021*\"unit\" + 0.021*\"town\" + 0.021*\"cricket\" + 0.016*\"london\" + 0.015*\"citi\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 04:58:38,833 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"senat\"\n", - "2019-01-16 04:58:38,834 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.006*\"peter\" + 0.006*\"tom\"\n", - "2019-01-16 04:58:38,836 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 04:58:38,842 : INFO : topic diff=0.004700, rho=0.033370\n", - "2019-01-16 04:58:39,100 : INFO : PROGRESS: pass 0, at document #1798000/4922894\n", - "2019-01-16 04:58:41,179 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:41,737 : INFO : topic #40 (0.020): 0.041*\"africa\" + 0.039*\"bar\" + 0.031*\"african\" + 0.029*\"south\" + 0.023*\"text\" + 0.022*\"till\" + 0.022*\"color\" + 0.019*\"black\" + 0.016*\"storm\" + 0.013*\"cape\"\n", - "2019-01-16 04:58:41,738 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"damag\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"crew\"\n", - "2019-01-16 04:58:41,740 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"carlo\" + 0.010*\"francisco\"\n", - "2019-01-16 04:58:41,741 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.021*\"car\" + 0.020*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\"\n", - "2019-01-16 04:58:41,743 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"network\" + 0.011*\"host\"\n", - "2019-01-16 04:58:41,748 : INFO : topic diff=0.004545, rho=0.033352\n", - "2019-01-16 04:58:46,347 : INFO : -11.598 per-word bound, 3100.3 perplexity estimate based on a held-out corpus of 2000 documents with 549756 words\n", - "2019-01-16 04:58:46,348 : INFO : PROGRESS: pass 0, at document #1800000/4922894\n", - "2019-01-16 04:58:48,380 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:48,937 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 04:58:48,939 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"energi\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 04:58:48,940 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"port\" + 0.010*\"damag\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:58:48,942 : INFO : topic #20 (0.020): 0.039*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:58:48,943 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 04:58:48,950 : INFO : topic diff=0.005280, rho=0.033333\n", - "2019-01-16 04:58:49,214 : INFO : PROGRESS: pass 0, at document #1802000/4922894\n", - "2019-01-16 04:58:51,272 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:51,830 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"carlo\" + 0.010*\"francisco\"\n", - "2019-01-16 04:58:51,831 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.019*\"contest\" + 0.019*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 04:58:51,833 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.023*\"point\" + 0.022*\"open\" + 0.021*\"winner\" + 0.020*\"group\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"champion\"\n", - "2019-01-16 04:58:51,834 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.011*\"port\" + 0.010*\"damag\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:58:51,835 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 04:58:51,842 : INFO : topic diff=0.005413, rho=0.033315\n", - "2019-01-16 04:58:52,098 : INFO : PROGRESS: pass 0, at document #1804000/4922894\n", - "2019-01-16 04:58:54,120 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:54,677 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 04:58:54,679 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.048*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.028*\"educ\" + 0.027*\"high\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 04:58:54,680 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.012*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 04:58:54,682 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.025*\"area\" + 0.024*\"villag\" + 0.022*\"counti\" + 0.022*\"censu\" + 0.021*\"famili\" + 0.021*\"commun\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:58:54,683 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:58:54,689 : INFO : topic diff=0.005599, rho=0.033296\n", - "2019-01-16 04:58:54,945 : INFO : PROGRESS: pass 0, at document #1806000/4922894\n", - "2019-01-16 04:58:56,981 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:58:57,538 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"port\" + 0.010*\"island\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.009*\"naval\"\n", - "2019-01-16 04:58:57,539 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 04:58:57,541 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:58:57,542 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.012*\"histor\" + 0.012*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 04:58:57,544 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:58:57,550 : INFO : topic diff=0.005033, rho=0.033278\n", - "2019-01-16 04:58:57,793 : INFO : PROGRESS: pass 0, at document #1808000/4922894\n", - "2019-01-16 04:58:59,986 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:00,544 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:59:00,545 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.031*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:59:00,547 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.025*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 04:59:00,548 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.012*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.007*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 04:59:00,550 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.034*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:59:00,555 : INFO : topic diff=0.005031, rho=0.033260\n", - "2019-01-16 04:59:00,804 : INFO : PROGRESS: pass 0, at document #1810000/4922894\n", - "2019-01-16 04:59:02,898 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:03,457 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.013*\"sea\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:59:03,459 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.023*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"gold\" + 0.018*\"athlet\"\n", - "2019-01-16 04:59:03,460 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", - "2019-01-16 04:59:03,461 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.058*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.049*\"south\" + 0.048*\"west\" + 0.040*\"villag\" + 0.037*\"counti\" + 0.034*\"provinc\" + 0.030*\"central\"\n", - "2019-01-16 04:59:03,463 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 04:59:03,469 : INFO : topic diff=0.004942, rho=0.033241\n", - "2019-01-16 04:59:03,754 : INFO : PROGRESS: pass 0, at document #1812000/4922894\n", - "2019-01-16 04:59:05,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:06,355 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", - "2019-01-16 04:59:06,356 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.054*\"style\" + 0.048*\"center\" + 0.048*\"left\" + 0.040*\"right\" + 0.033*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", - "2019-01-16 04:59:06,358 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.020*\"wrestl\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.016*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 04:59:06,359 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.019*\"kong\" + 0.018*\"hong\"\n", - "2019-01-16 04:59:06,360 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.023*\"seri\" + 0.020*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 04:59:06,367 : INFO : topic diff=0.005168, rho=0.033223\n", - "2019-01-16 04:59:06,620 : INFO : PROGRESS: pass 0, at document #1814000/4922894\n", - "2019-01-16 04:59:08,687 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:09,245 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"fish\"\n", - "2019-01-16 04:59:09,246 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", - "2019-01-16 04:59:09,248 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.058*\"north\" + 0.056*\"region\" + 0.052*\"east\" + 0.049*\"south\" + 0.048*\"west\" + 0.039*\"villag\" + 0.037*\"counti\" + 0.034*\"provinc\" + 0.030*\"central\"\n", - "2019-01-16 04:59:09,251 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 04:59:09,252 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.046*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:59:09,259 : INFO : topic diff=0.004958, rho=0.033204\n", - "2019-01-16 04:59:09,513 : INFO : PROGRESS: pass 0, at document #1816000/4922894\n", - "2019-01-16 04:59:11,521 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:12,083 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.023*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:59:12,084 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.018*\"british\" + 0.017*\"montreal\" + 0.016*\"columbia\" + 0.015*\"quebec\" + 0.015*\"korean\"\n", - "2019-01-16 04:59:12,086 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 04:59:12,087 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 04:59:12,089 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"energi\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 04:59:12,095 : INFO : topic diff=0.005605, rho=0.033186\n", - "2019-01-16 04:59:12,352 : INFO : PROGRESS: pass 0, at document #1818000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:59:14,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:14,978 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.027*\"tournament\" + 0.023*\"point\" + 0.022*\"open\" + 0.022*\"winner\" + 0.021*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"champion\"\n", - "2019-01-16 04:59:14,980 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:59:14,982 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.010*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:59:14,983 : INFO : topic #20 (0.020): 0.040*\"win\" + 0.020*\"wrestl\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.016*\"championship\" + 0.016*\"match\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 04:59:14,985 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.021*\"team\" + 0.021*\"car\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\"\n", - "2019-01-16 04:59:14,991 : INFO : topic diff=0.005281, rho=0.033168\n", - "2019-01-16 04:59:19,453 : INFO : -11.648 per-word bound, 3209.1 perplexity estimate based on a held-out corpus of 2000 documents with 503790 words\n", - "2019-01-16 04:59:19,454 : INFO : PROGRESS: pass 0, at document #1820000/4922894\n", - "2019-01-16 04:59:21,414 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:21,971 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"democrat\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.014*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 04:59:21,973 : INFO : topic #17 (0.020): 0.064*\"race\" + 0.021*\"team\" + 0.021*\"car\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\"\n", - "2019-01-16 04:59:21,975 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.010*\"offic\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 04:59:21,977 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 04:59:21,978 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jone\" + 0.006*\"peter\" + 0.006*\"richard\"\n", - "2019-01-16 04:59:21,985 : INFO : topic diff=0.006741, rho=0.033150\n", - "2019-01-16 04:59:22,233 : INFO : PROGRESS: pass 0, at document #1822000/4922894\n", - "2019-01-16 04:59:24,264 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:24,823 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.065*\"align\" + 0.059*\"wikit\" + 0.055*\"style\" + 0.050*\"center\" + 0.048*\"left\" + 0.039*\"right\" + 0.032*\"text\" + 0.031*\"philippin\" + 0.022*\"border\"\n", - "2019-01-16 04:59:24,824 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:59:24,826 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 04:59:24,827 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.022*\"titl\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 04:59:24,828 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 04:59:24,834 : INFO : topic diff=0.005955, rho=0.033131\n", - "2019-01-16 04:59:25,096 : INFO : PROGRESS: pass 0, at document #1824000/4922894\n", - "2019-01-16 04:59:27,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:27,789 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 04:59:27,790 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 04:59:27,791 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 04:59:27,793 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.023*\"point\" + 0.022*\"open\" + 0.022*\"winner\" + 0.021*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"champion\"\n", - "2019-01-16 04:59:27,794 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.022*\"titl\" + 0.018*\"contest\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 04:59:27,800 : INFO : topic diff=0.005242, rho=0.033113\n", - "2019-01-16 04:59:28,060 : INFO : PROGRESS: pass 0, at document #1826000/4922894\n", - "2019-01-16 04:59:30,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:30,739 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.013*\"diseas\" + 0.011*\"ret\" + 0.011*\"cell\" + 0.010*\"caus\" + 0.010*\"cancer\" + 0.009*\"patient\" + 0.009*\"studi\"\n", - "2019-01-16 04:59:30,740 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"american\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 04:59:30,742 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 04:59:30,744 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.034*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 04:59:30,745 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.012*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 04:59:30,751 : INFO : topic diff=0.005841, rho=0.033095\n", - "2019-01-16 04:59:30,999 : INFO : PROGRESS: pass 0, at document #1828000/4922894\n", - "2019-01-16 04:59:33,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:33,610 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.029*\"area\" + 0.028*\"ag\" + 0.023*\"villag\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.021*\"counti\"\n", - "2019-01-16 04:59:33,612 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 04:59:33,613 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.019*\"american\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 04:59:33,615 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.010*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 04:59:33,616 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"daughter\" + 0.012*\"born\"\n", - "2019-01-16 04:59:33,622 : INFO : topic diff=0.003912, rho=0.033077\n", - "2019-01-16 04:59:33,870 : INFO : PROGRESS: pass 0, at document #1830000/4922894\n", - "2019-01-16 04:59:35,884 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:36,442 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.021*\"cricket\" + 0.020*\"town\" + 0.018*\"citi\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:59:36,443 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 04:59:36,444 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.014*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 04:59:36,446 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.029*\"area\" + 0.028*\"ag\" + 0.023*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.021*\"counti\"\n", - "2019-01-16 04:59:36,447 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"british\" + 0.017*\"montreal\" + 0.015*\"korea\" + 0.015*\"columbia\" + 0.014*\"quebec\"\n", - "2019-01-16 04:59:36,452 : INFO : topic diff=0.004317, rho=0.033059\n", - "2019-01-16 04:59:36,691 : INFO : PROGRESS: pass 0, at document #1832000/4922894\n", - "2019-01-16 04:59:38,677 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:39,234 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.023*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 04:59:39,236 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.019*\"american\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\"\n", - "2019-01-16 04:59:39,237 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", - "2019-01-16 04:59:39,238 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.033*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 04:59:39,240 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 04:59:39,245 : INFO : topic diff=0.004523, rho=0.033041\n", - "2019-01-16 04:59:39,519 : INFO : PROGRESS: pass 0, at document #1834000/4922894\n", - "2019-01-16 04:59:41,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:42,148 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", - "2019-01-16 04:59:42,150 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 04:59:42,151 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 04:59:42,153 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 04:59:42,154 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.015*\"moscow\" + 0.014*\"republ\"\n", - "2019-01-16 04:59:42,161 : INFO : topic diff=0.006387, rho=0.033023\n", - "2019-01-16 04:59:42,416 : INFO : PROGRESS: pass 0, at document #1836000/4922894\n", - "2019-01-16 04:59:44,399 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:44,957 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.007*\"light\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 04:59:44,959 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 04:59:44,962 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", - "2019-01-16 04:59:44,963 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 04:59:44,964 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.020*\"american\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"moscow\" + 0.014*\"republ\"\n", - "2019-01-16 04:59:44,970 : INFO : topic diff=0.005015, rho=0.033005\n", - "2019-01-16 04:59:45,253 : INFO : PROGRESS: pass 0, at document #1838000/4922894\n", - "2019-01-16 04:59:47,317 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:47,873 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.012*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 04:59:47,875 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"ret\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.009*\"cancer\" + 0.009*\"patient\" + 0.009*\"studi\"\n", - "2019-01-16 04:59:47,876 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 04:59:47,878 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.018*\"citi\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 04:59:47,879 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"british\" + 0.017*\"montreal\" + 0.015*\"korea\" + 0.015*\"columbia\" + 0.014*\"quebec\"\n", - "2019-01-16 04:59:47,886 : INFO : topic diff=0.004864, rho=0.032987\n", - "2019-01-16 04:59:52,723 : INFO : -11.868 per-word bound, 3738.2 perplexity estimate based on a held-out corpus of 2000 documents with 595175 words\n", - "2019-01-16 04:59:52,723 : INFO : PROGRESS: pass 0, at document #1840000/4922894\n", - "2019-01-16 04:59:54,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:55,407 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.018*\"citi\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 04:59:55,408 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.028*\"area\" + 0.028*\"ag\" + 0.023*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.021*\"counti\"\n", - "2019-01-16 04:59:55,409 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.010*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 04:59:55,412 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 04:59:55,414 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.046*\"franc\" + 0.028*\"italian\" + 0.027*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:59:55,421 : INFO : topic diff=0.005515, rho=0.032969\n", - "2019-01-16 04:59:55,678 : INFO : PROGRESS: pass 0, at document #1842000/4922894\n", - "2019-01-16 04:59:57,665 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 04:59:58,222 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.006*\"jone\" + 0.006*\"peter\" + 0.006*\"harri\"\n", - "2019-01-16 04:59:58,224 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 04:59:58,225 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.046*\"franc\" + 0.028*\"italian\" + 0.027*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 04:59:58,227 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.028*\"area\" + 0.028*\"ag\" + 0.023*\"villag\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\"\n", - "2019-01-16 04:59:58,228 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 04:59:58,234 : INFO : topic diff=0.005340, rho=0.032951\n", - "2019-01-16 04:59:58,483 : INFO : PROGRESS: pass 0, at document #1844000/4922894\n", - "2019-01-16 05:00:00,468 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:01,029 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.020*\"american\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.015*\"moscow\" + 0.014*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:00:01,030 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 05:00:01,031 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"bird\"\n", - "2019-01-16 05:00:01,033 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.018*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:00:01,034 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.018*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.013*\"–present\" + 0.013*\"asia\"\n", - "2019-01-16 05:00:01,040 : INFO : topic diff=0.005429, rho=0.032933\n", - "2019-01-16 05:00:01,298 : INFO : PROGRESS: pass 0, at document #1846000/4922894\n", - "2019-01-16 05:00:03,357 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:03,925 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.048*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.028*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", - "2019-01-16 05:00:03,926 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:00:03,928 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.058*\"north\" + 0.057*\"region\" + 0.051*\"east\" + 0.048*\"south\" + 0.047*\"west\" + 0.041*\"villag\" + 0.036*\"provinc\" + 0.035*\"counti\" + 0.030*\"central\"\n", - "2019-01-16 05:00:03,929 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"titl\" + 0.018*\"wrestl\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 05:00:03,930 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:00:03,938 : INFO : topic diff=0.003886, rho=0.032915\n", - "2019-01-16 05:00:04,192 : INFO : PROGRESS: pass 0, at document #1848000/4922894\n", - "2019-01-16 05:00:06,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:06,759 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.018*\"british\" + 0.017*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.015*\"quebec\"\n", - "2019-01-16 05:00:06,761 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.034*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:00:06,762 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.043*\"final\" + 0.029*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.021*\"open\" + 0.021*\"group\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:00:06,764 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.063*\"align\" + 0.059*\"wikit\" + 0.054*\"style\" + 0.050*\"center\" + 0.049*\"left\" + 0.036*\"right\" + 0.035*\"philippin\" + 0.031*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:00:06,766 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 05:00:06,773 : INFO : topic diff=0.005263, rho=0.032898\n", - "2019-01-16 05:00:07,029 : INFO : PROGRESS: pass 0, at document #1850000/4922894\n", - "2019-01-16 05:00:09,051 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:09,607 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.043*\"final\" + 0.028*\"tournament\" + 0.023*\"point\" + 0.023*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:00:09,609 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 05:00:09,610 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.034*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:00:09,612 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.023*\"dutch\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.016*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:00:09,613 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.058*\"north\" + 0.057*\"region\" + 0.051*\"east\" + 0.048*\"west\" + 0.048*\"south\" + 0.042*\"villag\" + 0.036*\"provinc\" + 0.035*\"counti\" + 0.030*\"central\"\n", - "2019-01-16 05:00:09,620 : INFO : topic diff=0.005535, rho=0.032880\n", - "2019-01-16 05:00:09,874 : INFO : PROGRESS: pass 0, at document #1852000/4922894\n", - "2019-01-16 05:00:11,921 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:12,478 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.011*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 05:00:12,480 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:00:12,481 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.029*\"van\" + 0.024*\"von\" + 0.023*\"dutch\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.016*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:00:12,483 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:00:12,484 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:00:12,490 : INFO : topic diff=0.004230, rho=0.032862\n", - "2019-01-16 05:00:12,744 : INFO : PROGRESS: pass 0, at document #1854000/4922894\n", - "2019-01-16 05:00:14,758 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:15,316 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.039*\"africa\" + 0.032*\"african\" + 0.029*\"south\" + 0.023*\"text\" + 0.023*\"till\" + 0.023*\"color\" + 0.020*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:00:15,317 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.030*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.018*\"kong\" + 0.018*\"hong\"\n", - "2019-01-16 05:00:15,319 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.047*\"univers\" + 0.043*\"colleg\" + 0.038*\"student\" + 0.028*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:00:15,321 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:00:15,322 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:00:15,328 : INFO : topic diff=0.005254, rho=0.032844\n", - "2019-01-16 05:00:15,590 : INFO : PROGRESS: pass 0, at document #1856000/4922894\n", - "2019-01-16 05:00:17,661 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:18,227 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\"\n", - "2019-01-16 05:00:18,228 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", - "2019-01-16 05:00:18,230 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:00:18,231 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:00:18,233 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.061*\"align\" + 0.060*\"wikit\" + 0.055*\"style\" + 0.051*\"center\" + 0.048*\"left\" + 0.036*\"right\" + 0.035*\"philippin\" + 0.032*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:00:18,239 : INFO : topic diff=0.004670, rho=0.032827\n", - "2019-01-16 05:00:18,484 : INFO : PROGRESS: pass 0, at document #1858000/4922894\n", - "2019-01-16 05:00:20,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:21,040 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"trade\"\n", - "2019-01-16 05:00:21,041 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:00:21,043 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:00:21,044 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", - "2019-01-16 05:00:21,045 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:00:21,051 : INFO : topic diff=0.005077, rho=0.032809\n", - "2019-01-16 05:00:25,587 : INFO : -11.630 per-word bound, 3168.7 perplexity estimate based on a held-out corpus of 2000 documents with 524586 words\n", - "2019-01-16 05:00:25,587 : INFO : PROGRESS: pass 0, at document #1860000/4922894\n", - "2019-01-16 05:00:27,599 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:28,157 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"cancer\" + 0.009*\"studi\"\n", - "2019-01-16 05:00:28,158 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.038*\"russian\" + 0.021*\"russia\" + 0.019*\"american\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.015*\"moscow\" + 0.015*\"jewish\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:00:28,160 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:00:28,161 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:00:28,162 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.017*\"british\" + 0.017*\"montreal\" + 0.015*\"quebec\" + 0.014*\"korea\" + 0.014*\"korean\"\n", - "2019-01-16 05:00:28,168 : INFO : topic diff=0.004798, rho=0.032791\n", - "2019-01-16 05:00:28,428 : INFO : PROGRESS: pass 0, at document #1862000/4922894\n", - "2019-01-16 05:00:30,524 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:31,082 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"repres\" + 0.014*\"republican\" + 0.013*\"senat\"\n", - "2019-01-16 05:00:31,083 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:00:31,085 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:00:31,086 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:00:31,087 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"dutch\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.016*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:00:31,093 : INFO : topic diff=0.004710, rho=0.032774\n", - "2019-01-16 05:00:31,380 : INFO : PROGRESS: pass 0, at document #1864000/4922894\n", - "2019-01-16 05:00:33,453 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:34,010 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\"\n", - "2019-01-16 05:00:34,011 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.024*\"dutch\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.016*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:00:34,013 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"damag\" + 0.008*\"crew\" + 0.008*\"coast\"\n", - "2019-01-16 05:00:34,015 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", - "2019-01-16 05:00:34,016 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:00:34,023 : INFO : topic diff=0.004690, rho=0.032756\n", - "2019-01-16 05:00:34,264 : INFO : PROGRESS: pass 0, at document #1866000/4922894\n", - "2019-01-16 05:00:36,292 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:36,849 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 05:00:36,851 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:00:36,853 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.024*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.014*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:00:36,855 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:00:36,856 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"titl\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.015*\"match\" + 0.014*\"championship\" + 0.012*\"team\" + 0.012*\"elimin\" + 0.011*\"world\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:00:36,862 : INFO : topic diff=0.005293, rho=0.032739\n", - "2019-01-16 05:00:37,107 : INFO : PROGRESS: pass 0, at document #1868000/4922894\n", - "2019-01-16 05:00:39,155 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:39,712 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 05:00:39,714 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.074*\"march\" + 0.073*\"septemb\" + 0.071*\"juli\" + 0.069*\"januari\" + 0.068*\"novemb\" + 0.068*\"april\" + 0.067*\"august\" + 0.067*\"june\" + 0.065*\"decemb\"\n", - "2019-01-16 05:00:39,715 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:00:39,717 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:00:39,719 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:00:39,725 : INFO : topic diff=0.004157, rho=0.032721\n", - "2019-01-16 05:00:39,972 : INFO : PROGRESS: pass 0, at document #1870000/4922894\n", - "2019-01-16 05:00:42,033 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:42,593 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.025*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:00:42,595 : INFO : topic #48 (0.020): 0.077*\"octob\" + 0.074*\"march\" + 0.073*\"septemb\" + 0.071*\"juli\" + 0.069*\"januari\" + 0.068*\"novemb\" + 0.068*\"june\" + 0.068*\"april\" + 0.067*\"august\" + 0.065*\"decemb\"\n", - "2019-01-16 05:00:42,597 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 05:00:42,598 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:00:42,600 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.060*\"align\" + 0.058*\"wikit\" + 0.054*\"style\" + 0.049*\"center\" + 0.048*\"left\" + 0.041*\"philippin\" + 0.036*\"right\" + 0.032*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:00:42,606 : INFO : topic diff=0.005604, rho=0.032703\n", - "2019-01-16 05:00:42,863 : INFO : PROGRESS: pass 0, at document #1872000/4922894\n", - "2019-01-16 05:00:44,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:45,400 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:00:45,401 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:00:45,402 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.056*\"north\" + 0.056*\"region\" + 0.051*\"east\" + 0.048*\"west\" + 0.048*\"south\" + 0.041*\"villag\" + 0.035*\"provinc\" + 0.035*\"counti\" + 0.031*\"central\"\n", - "2019-01-16 05:00:45,404 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:00:45,406 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:00:45,411 : INFO : topic diff=0.004479, rho=0.032686\n", - "2019-01-16 05:00:45,662 : INFO : PROGRESS: pass 0, at document #1874000/4922894\n", - "2019-01-16 05:00:47,741 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:48,300 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.019*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:00:48,301 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:00:48,303 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.020*\"kim\" + 0.019*\"singapor\" + 0.019*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"min\" + 0.013*\"–present\"\n", - "2019-01-16 05:00:48,305 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:00:48,306 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:00:48,312 : INFO : topic diff=0.005075, rho=0.032669\n", - "2019-01-16 05:00:48,563 : INFO : PROGRESS: pass 0, at document #1876000/4922894\n", - "2019-01-16 05:00:50,578 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:51,134 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"contest\" + 0.018*\"titl\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.015*\"match\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"elimin\" + 0.011*\"world\"\n", - "2019-01-16 05:00:51,136 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.015*\"republican\" + 0.014*\"repres\" + 0.013*\"council\"\n", - "2019-01-16 05:00:51,137 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.025*\"von\" + 0.024*\"dutch\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.015*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:00:51,139 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.037*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.014*\"korean\" + 0.014*\"korea\"\n", - "2019-01-16 05:00:51,142 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:00:51,149 : INFO : topic diff=0.004759, rho=0.032651\n", - "2019-01-16 05:00:51,391 : INFO : PROGRESS: pass 0, at document #1878000/4922894\n", - "2019-01-16 05:00:53,431 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:00:53,989 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:00:53,991 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:00:53,992 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"point\" + 0.020*\"open\" + 0.019*\"group\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:00:53,994 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.045*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:00:53,995 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:00:54,001 : INFO : topic diff=0.005307, rho=0.032634\n", - "2019-01-16 05:00:58,516 : INFO : -11.414 per-word bound, 2728.3 perplexity estimate based on a held-out corpus of 2000 documents with 504919 words\n", - "2019-01-16 05:00:58,517 : INFO : PROGRESS: pass 0, at document #1880000/4922894\n", - "2019-01-16 05:01:00,576 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:01:01,133 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.072*\"canada\" + 0.058*\"canadian\" + 0.037*\"ontario\" + 0.025*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.014*\"korea\" + 0.014*\"korean\"\n", - "2019-01-16 05:01:01,134 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.020*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"ford\" + 0.010*\"tour\"\n", - "2019-01-16 05:01:01,136 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:01:01,137 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.025*\"von\" + 0.024*\"dutch\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.015*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:01:01,139 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:01:01,144 : INFO : topic diff=0.004978, rho=0.032616\n", - "2019-01-16 05:01:01,387 : INFO : PROGRESS: pass 0, at document #1882000/4922894\n", - "2019-01-16 05:01:03,410 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:03,971 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:01:03,972 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:01:03,974 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.049*\"australian\" + 0.045*\"new\" + 0.040*\"china\" + 0.031*\"zealand\" + 0.028*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.016*\"kong\"\n", - "2019-01-16 05:01:03,975 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.013*\"scotland\" + 0.013*\"manchest\" + 0.012*\"scottish\" + 0.012*\"west\"\n", - "2019-01-16 05:01:03,976 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.027*\"area\" + 0.022*\"famili\" + 0.022*\"villag\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.020*\"counti\"\n", - "2019-01-16 05:01:03,982 : INFO : topic diff=0.005025, rho=0.032599\n", - "2019-01-16 05:01:04,232 : INFO : PROGRESS: pass 0, at document #1884000/4922894\n", - "2019-01-16 05:01:06,271 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:06,831 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.036*\"russian\" + 0.021*\"russia\" + 0.019*\"american\" + 0.018*\"polish\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:01:06,832 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:01:06,835 : INFO : topic #14 (0.020): 0.015*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.013*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.011*\"organ\"\n", - "2019-01-16 05:01:06,837 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.047*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:01:06,838 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.018*\"indonesia\" + 0.017*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"vietnam\" + 0.013*\"min\" + 0.013*\"–present\" + 0.013*\"asian\"\n", - "2019-01-16 05:01:06,845 : INFO : topic diff=0.006632, rho=0.032582\n", - "2019-01-16 05:01:07,102 : INFO : PROGRESS: pass 0, at document #1886000/4922894\n", - "2019-01-16 05:01:09,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:09,707 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:01:09,708 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.024*\"von\" + 0.023*\"dutch\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:01:09,710 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:01:09,713 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:01:09,714 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.036*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:01:09,720 : INFO : topic diff=0.006239, rho=0.032564\n", - "2019-01-16 05:01:09,978 : INFO : PROGRESS: pass 0, at document #1888000/4922894\n", - "2019-01-16 05:01:12,039 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:12,600 : INFO : topic #27 (0.020): 0.043*\"born\" + 0.036*\"russian\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"american\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:01:12,601 : INFO : topic #28 (0.020): 0.030*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:01:12,603 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"dai\"\n", - "2019-01-16 05:01:12,605 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.027*\"airport\" + 0.025*\"aircraft\" + 0.019*\"forc\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.015*\"flight\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:01:12,606 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:01:12,612 : INFO : topic diff=0.004917, rho=0.032547\n", - "2019-01-16 05:01:12,901 : INFO : PROGRESS: pass 0, at document #1890000/4922894\n", - "2019-01-16 05:01:15,019 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:15,580 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"paint\" + 0.024*\"work\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:01:15,581 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.013*\"scotland\" + 0.012*\"manchest\" + 0.012*\"scottish\" + 0.012*\"west\"\n", - "2019-01-16 05:01:15,583 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.026*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.021*\"villag\" + 0.021*\"municip\"\n", - "2019-01-16 05:01:15,584 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 05:01:15,585 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:01:15,592 : INFO : topic diff=0.004996, rho=0.032530\n", - "2019-01-16 05:01:15,860 : INFO : PROGRESS: pass 0, at document #1892000/4922894\n", - "2019-01-16 05:01:17,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:18,479 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.026*\"paint\" + 0.024*\"work\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:01:18,480 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.022*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"ford\" + 0.010*\"tour\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:01:18,482 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"effect\" + 0.004*\"form\"\n", - "2019-01-16 05:01:18,483 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.057*\"wikit\" + 0.055*\"style\" + 0.054*\"align\" + 0.046*\"left\" + 0.045*\"center\" + 0.043*\"philippin\" + 0.036*\"right\" + 0.032*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:01:18,484 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:01:18,490 : INFO : topic diff=0.004239, rho=0.032513\n", - "2019-01-16 05:01:18,733 : INFO : PROGRESS: pass 0, at document #1894000/4922894\n", - "2019-01-16 05:01:20,702 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:21,268 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.050*\"australian\" + 0.045*\"new\" + 0.041*\"china\" + 0.031*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 05:01:21,270 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:01:21,271 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 05:01:21,273 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.020*\"kim\" + 0.019*\"singapor\" + 0.019*\"indonesia\" + 0.018*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"min\" + 0.014*\"asian\" + 0.013*\"vietnam\" + 0.013*\"asia\"\n", - "2019-01-16 05:01:21,274 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.014*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 05:01:21,280 : INFO : topic diff=0.005065, rho=0.032496\n", - "2019-01-16 05:01:21,530 : INFO : PROGRESS: pass 0, at document #1896000/4922894\n", - "2019-01-16 05:01:23,508 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:24,066 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.008*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:01:24,068 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.050*\"australian\" + 0.046*\"new\" + 0.042*\"china\" + 0.032*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.016*\"kong\"\n", - "2019-01-16 05:01:24,069 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:01:24,071 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.011*\"cell\" + 0.011*\"ret\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"human\" + 0.008*\"studi\"\n", - "2019-01-16 05:01:24,072 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:01:24,078 : INFO : topic diff=0.005360, rho=0.032478\n", - "2019-01-16 05:01:24,328 : INFO : PROGRESS: pass 0, at document #1898000/4922894\n", - "2019-01-16 05:01:26,313 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:26,870 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.009*\"produc\" + 0.009*\"design\" + 0.009*\"electr\" + 0.008*\"car\" + 0.007*\"protein\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:01:26,873 : INFO : topic #28 (0.020): 0.030*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.011*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:01:26,874 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.046*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 05:01:26,876 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"paint\" + 0.024*\"work\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:01:26,877 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:01:26,884 : INFO : topic diff=0.004512, rho=0.032461\n", - "2019-01-16 05:01:31,542 : INFO : -11.650 per-word bound, 3214.3 perplexity estimate based on a held-out corpus of 2000 documents with 590831 words\n", - "2019-01-16 05:01:31,543 : INFO : PROGRESS: pass 0, at document #1900000/4922894\n", - "2019-01-16 05:01:33,566 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:34,126 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.018*\"titl\" + 0.015*\"wrestl\" + 0.014*\"match\" + 0.013*\"championship\" + 0.013*\"team\" + 0.012*\"box\" + 0.012*\"elimin\"\n", - "2019-01-16 05:01:34,127 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:01:34,129 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"materi\"\n", - "2019-01-16 05:01:34,130 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:01:34,131 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:01:34,137 : INFO : topic diff=0.005328, rho=0.032444\n", - "2019-01-16 05:01:34,387 : INFO : PROGRESS: pass 0, at document #1902000/4922894\n", - "2019-01-16 05:01:36,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:36,976 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\"\n", - "2019-01-16 05:01:36,978 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:01:36,979 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jack\"\n", - "2019-01-16 05:01:36,981 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.033*\"ontario\" + 0.026*\"toronto\" + 0.018*\"british\" + 0.016*\"quebec\" + 0.014*\"montreal\" + 0.014*\"columbia\" + 0.014*\"korea\"\n", - "2019-01-16 05:01:36,982 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 05:01:36,988 : INFO : topic diff=0.004505, rho=0.032427\n", - "2019-01-16 05:01:37,240 : INFO : PROGRESS: pass 0, at document #1904000/4922894\n", - "2019-01-16 05:01:39,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:39,830 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.058*\"wikit\" + 0.055*\"style\" + 0.053*\"align\" + 0.046*\"center\" + 0.045*\"left\" + 0.041*\"philippin\" + 0.035*\"right\" + 0.033*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:01:39,832 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:01:39,833 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"titl\" + 0.018*\"fight\" + 0.015*\"wrestl\" + 0.014*\"match\" + 0.013*\"championship\" + 0.013*\"team\" + 0.012*\"box\" + 0.011*\"elimin\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:01:39,835 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"temperatur\"\n", - "2019-01-16 05:01:39,836 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"term\"\n", - "2019-01-16 05:01:39,842 : INFO : topic diff=0.005207, rho=0.032410\n", - "2019-01-16 05:01:40,089 : INFO : PROGRESS: pass 0, at document #1906000/4922894\n", - "2019-01-16 05:01:42,118 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:42,675 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.026*\"paint\" + 0.024*\"work\" + 0.020*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:01:42,676 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.057*\"region\" + 0.055*\"north\" + 0.050*\"east\" + 0.048*\"west\" + 0.048*\"south\" + 0.045*\"villag\" + 0.040*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", - "2019-01-16 05:01:42,678 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.037*\"africa\" + 0.032*\"african\" + 0.027*\"south\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"color\" + 0.019*\"black\" + 0.015*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:01:42,679 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.009*\"network\"\n", - "2019-01-16 05:01:42,680 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:01:42,686 : INFO : topic diff=0.004949, rho=0.032393\n", - "2019-01-16 05:01:42,930 : INFO : PROGRESS: pass 0, at document #1908000/4922894\n", - "2019-01-16 05:01:44,939 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:45,496 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"product\" + 0.013*\"power\" + 0.011*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"car\" + 0.007*\"vehicl\" + 0.007*\"oil\"\n", - "2019-01-16 05:01:45,498 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jack\"\n", - "2019-01-16 05:01:45,500 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:01:45,501 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.018*\"titl\" + 0.015*\"wrestl\" + 0.014*\"match\" + 0.013*\"championship\" + 0.012*\"team\" + 0.012*\"box\" + 0.011*\"world\"\n", - "2019-01-16 05:01:45,502 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"us\" + 0.005*\"effect\" + 0.004*\"materi\"\n", - "2019-01-16 05:01:45,508 : INFO : topic diff=0.005295, rho=0.032376\n", - "2019-01-16 05:01:45,755 : INFO : PROGRESS: pass 0, at document #1910000/4922894\n", - "2019-01-16 05:01:47,761 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:48,321 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"market\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:01:48,322 : INFO : topic #45 (0.020): 0.016*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:01:48,323 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"tour\" + 0.010*\"ford\"\n", - "2019-01-16 05:01:48,328 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.056*\"region\" + 0.055*\"north\" + 0.050*\"east\" + 0.048*\"west\" + 0.047*\"south\" + 0.044*\"villag\" + 0.040*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", - "2019-01-16 05:01:48,329 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:01:48,336 : INFO : topic diff=0.005352, rho=0.032359\n", - "2019-01-16 05:01:48,583 : INFO : PROGRESS: pass 0, at document #1912000/4922894\n", - "2019-01-16 05:01:50,659 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:51,217 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:01:51,218 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.006*\"group\" + 0.006*\"support\"\n", - "2019-01-16 05:01:51,220 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.011*\"organ\"\n", - "2019-01-16 05:01:51,222 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:01:51,224 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:01:51,230 : INFO : topic diff=0.005316, rho=0.032342\n", - "2019-01-16 05:01:51,504 : INFO : PROGRESS: pass 0, at document #1914000/4922894\n", - "2019-01-16 05:01:53,483 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:54,039 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"window\" + 0.007*\"softwar\" + 0.007*\"data\"\n", - "2019-01-16 05:01:54,041 : INFO : topic #28 (0.020): 0.030*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:01:54,043 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.012*\"gun\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:01:54,044 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:01:54,045 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.032*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.014*\"columbia\" + 0.014*\"montreal\" + 0.014*\"korea\"\n", - "2019-01-16 05:01:54,052 : INFO : topic diff=0.003875, rho=0.032325\n", - "2019-01-16 05:01:54,310 : INFO : PROGRESS: pass 0, at document #1916000/4922894\n", - "2019-01-16 05:01:56,395 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:56,952 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 05:01:56,953 : INFO : topic #28 (0.020): 0.030*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:01:56,955 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"tour\" + 0.010*\"ford\"\n", - "2019-01-16 05:01:56,957 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.031*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.014*\"columbia\" + 0.014*\"montreal\" + 0.013*\"korea\"\n", - "2019-01-16 05:01:56,958 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.033*\"world\" + 0.027*\"olymp\" + 0.026*\"championship\" + 0.025*\"men\" + 0.023*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"nation\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:01:56,965 : INFO : topic diff=0.004647, rho=0.032309\n", - "2019-01-16 05:01:57,222 : INFO : PROGRESS: pass 0, at document #1918000/4922894\n", - "2019-01-16 05:01:59,239 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:01:59,795 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.075*\"canada\" + 0.060*\"canadian\" + 0.032*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.014*\"columbia\" + 0.014*\"montreal\" + 0.013*\"korea\"\n", - "2019-01-16 05:01:59,797 : INFO : topic #46 (0.020): 0.143*\"class\" + 0.059*\"wikit\" + 0.056*\"align\" + 0.055*\"style\" + 0.046*\"center\" + 0.046*\"left\" + 0.038*\"philippin\" + 0.036*\"right\" + 0.032*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:01:59,798 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:01:59,799 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:01:59,804 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.036*\"russian\" + 0.022*\"russia\" + 0.020*\"american\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:01:59,810 : INFO : topic diff=0.005189, rho=0.032292\n", - "2019-01-16 05:02:04,434 : INFO : -11.485 per-word bound, 2866.0 perplexity estimate based on a held-out corpus of 2000 documents with 550623 words\n", - "2019-01-16 05:02:04,435 : INFO : PROGRESS: pass 0, at document #1920000/4922894\n", - "2019-01-16 05:02:06,443 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:07,005 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:02:07,007 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.023*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:02:07,009 : INFO : topic #27 (0.020): 0.044*\"born\" + 0.036*\"russian\" + 0.022*\"russia\" + 0.020*\"american\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:02:07,010 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.020*\"kim\" + 0.019*\"singapor\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.014*\"asian\" + 0.014*\"min\" + 0.014*\"vietnam\" + 0.013*\"asia\"\n", - "2019-01-16 05:02:07,012 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"tour\" + 0.009*\"ford\"\n", - "2019-01-16 05:02:07,018 : INFO : topic diff=0.006243, rho=0.032275\n", - "2019-01-16 05:02:07,267 : INFO : PROGRESS: pass 0, at document #1922000/4922894\n", - "2019-01-16 05:02:09,244 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:09,801 : INFO : topic #14 (0.020): 0.016*\"research\" + 0.016*\"univers\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", - "2019-01-16 05:02:09,802 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:02:09,804 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.047*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 05:02:09,805 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:02:09,806 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:02:09,812 : INFO : topic diff=0.005277, rho=0.032258\n", - "2019-01-16 05:02:10,065 : INFO : PROGRESS: pass 0, at document #1924000/4922894\n", - "2019-01-16 05:02:12,044 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:12,602 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:02:12,603 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.056*\"region\" + 0.054*\"north\" + 0.050*\"east\" + 0.047*\"west\" + 0.047*\"south\" + 0.045*\"villag\" + 0.042*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", - "2019-01-16 05:02:12,606 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.039*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:02:12,607 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:02:12,609 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"paint\" + 0.025*\"work\" + 0.021*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:02:12,616 : INFO : topic diff=0.004480, rho=0.032241\n", - "2019-01-16 05:02:12,876 : INFO : PROGRESS: pass 0, at document #1926000/4922894\n", - "2019-01-16 05:02:14,999 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:15,557 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.026*\"area\" + 0.022*\"famili\" + 0.022*\"municip\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.021*\"villag\"\n", - "2019-01-16 05:02:15,559 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:02:15,561 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:02:15,562 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.033*\"world\" + 0.027*\"olymp\" + 0.026*\"championship\" + 0.025*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 05:02:15,564 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:02:15,570 : INFO : topic diff=0.004794, rho=0.032225\n", - "2019-01-16 05:02:15,816 : INFO : PROGRESS: pass 0, at document #1928000/4922894\n", - "2019-01-16 05:02:17,932 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:18,489 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"group\"\n", - "2019-01-16 05:02:18,490 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"high\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"time\" + 0.005*\"us\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:02:18,492 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.056*\"region\" + 0.054*\"north\" + 0.050*\"east\" + 0.048*\"west\" + 0.047*\"south\" + 0.046*\"villag\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", - "2019-01-16 05:02:18,493 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:02:18,495 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:02:18,501 : INFO : topic diff=0.004687, rho=0.032208\n", - "2019-01-16 05:02:18,752 : INFO : PROGRESS: pass 0, at document #1930000/4922894\n", - "2019-01-16 05:02:20,821 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:02:21,377 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:02:21,378 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.065*\"align\" + 0.057*\"wikit\" + 0.052*\"left\" + 0.052*\"style\" + 0.048*\"center\" + 0.036*\"philippin\" + 0.034*\"right\" + 0.031*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:02:21,379 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:02:21,381 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"min\" + 0.013*\"asia\"\n", - "2019-01-16 05:02:21,382 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.056*\"region\" + 0.054*\"north\" + 0.050*\"east\" + 0.048*\"west\" + 0.047*\"south\" + 0.046*\"villag\" + 0.042*\"counti\" + 0.035*\"provinc\" + 0.030*\"central\"\n", - "2019-01-16 05:02:21,388 : INFO : topic diff=0.004716, rho=0.032191\n", - "2019-01-16 05:02:21,638 : INFO : PROGRESS: pass 0, at document #1932000/4922894\n", - "2019-01-16 05:02:23,628 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:24,192 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:02:24,194 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.045*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:02:24,195 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", - "2019-01-16 05:02:24,197 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:02:24,198 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:02:24,204 : INFO : topic diff=0.004863, rho=0.032174\n", - "2019-01-16 05:02:24,457 : INFO : PROGRESS: pass 0, at document #1934000/4922894\n", - "2019-01-16 05:02:26,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:27,006 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:02:27,008 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.020*\"singapor\" + 0.020*\"kim\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"asia\" + 0.014*\"min\"\n", - "2019-01-16 05:02:27,009 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:02:27,011 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:02:27,012 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", - "2019-01-16 05:02:27,019 : INFO : topic diff=0.005132, rho=0.032158\n", - "2019-01-16 05:02:27,268 : INFO : PROGRESS: pass 0, at document #1936000/4922894\n", - "2019-01-16 05:02:29,285 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:29,844 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.014*\"navi\" + 0.013*\"sea\" + 0.012*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 05:02:29,846 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:02:29,847 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:02:29,848 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:02:29,850 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:02:29,856 : INFO : topic diff=0.005033, rho=0.032141\n", - "2019-01-16 05:02:30,112 : INFO : PROGRESS: pass 0, at document #1938000/4922894\n", - "2019-01-16 05:02:32,166 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:32,724 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:02:32,725 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:02:32,727 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.049*\"australian\" + 0.046*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"hong\"\n", - "2019-01-16 05:02:32,728 : INFO : topic #36 (0.020): 0.053*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.025*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:02:32,730 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:02:32,736 : INFO : topic diff=0.004283, rho=0.032125\n", - "2019-01-16 05:02:37,416 : INFO : -11.825 per-word bound, 3626.9 perplexity estimate based on a held-out corpus of 2000 documents with 583498 words\n", - "2019-01-16 05:02:37,417 : INFO : PROGRESS: pass 0, at document #1940000/4922894\n", - "2019-01-16 05:02:39,492 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:40,049 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 05:02:40,051 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.020*\"american\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:02:40,053 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.049*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"hong\"\n", - "2019-01-16 05:02:40,054 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", - "2019-01-16 05:02:40,056 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:02:40,062 : INFO : topic diff=0.005803, rho=0.032108\n", - "2019-01-16 05:02:40,308 : INFO : PROGRESS: pass 0, at document #1942000/4922894\n", - "2019-01-16 05:02:42,336 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:42,896 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.012*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"damag\" + 0.009*\"coast\" + 0.009*\"naval\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:02:42,897 : INFO : topic #13 (0.020): 0.059*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:02:42,899 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:02:42,900 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.010*\"islam\" + 0.010*\"ali\"\n", - "2019-01-16 05:02:42,902 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.026*\"till\" + 0.024*\"color\" + 0.020*\"black\" + 0.013*\"storm\" + 0.011*\"cape\"\n", - "2019-01-16 05:02:42,908 : INFO : topic diff=0.005940, rho=0.032092\n", - "2019-01-16 05:02:43,158 : INFO : PROGRESS: pass 0, at document #1944000/4922894\n", - "2019-01-16 05:02:45,149 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:45,708 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:02:45,709 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:02:45,711 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:02:45,714 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.033*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 05:02:45,716 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"ret\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.009*\"patient\" + 0.009*\"studi\" + 0.009*\"caus\" + 0.008*\"human\"\n", - "2019-01-16 05:02:45,722 : INFO : topic diff=0.004801, rho=0.032075\n", - "2019-01-16 05:02:45,964 : INFO : PROGRESS: pass 0, at document #1946000/4922894\n", - "2019-01-16 05:02:47,941 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:48,501 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.027*\"ag\" + 0.026*\"area\" + 0.022*\"censu\" + 0.022*\"municip\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.021*\"villag\"\n", - "2019-01-16 05:02:48,502 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.020*\"american\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:02:48,504 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"hong\"\n", - "2019-01-16 05:02:48,505 : INFO : topic #34 (0.020): 0.084*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.029*\"ontario\" + 0.026*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.014*\"montreal\" + 0.014*\"korean\"\n", - "2019-01-16 05:02:48,506 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:02:48,512 : INFO : topic diff=0.004758, rho=0.032059\n", - "2019-01-16 05:02:48,757 : INFO : PROGRESS: pass 0, at document #1948000/4922894\n", - "2019-01-16 05:02:50,745 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:51,302 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:02:51,303 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:02:51,306 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.016*\"liber\" + 0.013*\"conserv\" + 0.013*\"republican\"\n", - "2019-01-16 05:02:51,307 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.042*\"final\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.019*\"group\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:02:51,308 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.011*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", - "2019-01-16 05:02:51,314 : INFO : topic diff=0.005422, rho=0.032042\n", - "2019-01-16 05:02:51,564 : INFO : PROGRESS: pass 0, at document #1950000/4922894\n", - "2019-01-16 05:02:53,561 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:54,118 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.067*\"juli\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.064*\"august\" + 0.064*\"april\" + 0.063*\"decemb\"\n", - "2019-01-16 05:02:54,120 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:02:54,121 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:02:54,123 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:02:54,124 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:02:54,130 : INFO : topic diff=0.005058, rho=0.032026\n", - "2019-01-16 05:02:54,386 : INFO : PROGRESS: pass 0, at document #1952000/4922894\n", - "2019-01-16 05:02:56,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:57,028 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 05:02:57,030 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.029*\"airport\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"mission\"\n", - "2019-01-16 05:02:57,031 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.019*\"american\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:02:57,033 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.016*\"liber\" + 0.013*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 05:02:57,034 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", - "2019-01-16 05:02:57,040 : INFO : topic diff=0.005582, rho=0.032009\n", - "2019-01-16 05:02:57,270 : INFO : PROGRESS: pass 0, at document #1954000/4922894\n", - "2019-01-16 05:02:59,409 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:02:59,969 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.017*\"player\" + 0.016*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:02:59,971 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.011*\"santa\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", - "2019-01-16 05:02:59,972 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:02:59,974 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.039*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"singh\" + 0.011*\"islam\"\n", - "2019-01-16 05:02:59,975 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:02:59,981 : INFO : topic diff=0.006005, rho=0.031993\n", - "2019-01-16 05:03:00,229 : INFO : PROGRESS: pass 0, at document #1956000/4922894\n", - "2019-01-16 05:03:02,262 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:02,820 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:03:02,821 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:03:02,823 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:03:02,824 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:03:02,826 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.013*\"piano\" + 0.013*\"orchestra\" + 0.012*\"opera\"\n", - "2019-01-16 05:03:02,831 : INFO : topic diff=0.004625, rho=0.031976\n", - "2019-01-16 05:03:03,088 : INFO : PROGRESS: pass 0, at document #1958000/4922894\n", - "2019-01-16 05:03:05,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:05,650 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:03:05,651 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:03:05,654 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"mission\"\n", - "2019-01-16 05:03:05,655 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.011*\"santa\" + 0.010*\"brazil\" + 0.010*\"carlo\"\n", - "2019-01-16 05:03:05,657 : INFO : topic #4 (0.020): 0.131*\"school\" + 0.047*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:03:05,662 : INFO : topic diff=0.004465, rho=0.031960\n", - "2019-01-16 05:03:10,280 : INFO : -11.606 per-word bound, 3118.0 perplexity estimate based on a held-out corpus of 2000 documents with 554344 words\n", - "2019-01-16 05:03:10,281 : INFO : PROGRESS: pass 0, at document #1960000/4922894\n", - "2019-01-16 05:03:12,314 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:12,874 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.068*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.050*\"style\" + 0.049*\"center\" + 0.034*\"philippin\" + 0.030*\"right\" + 0.030*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:03:12,875 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.015*\"championship\" + 0.014*\"match\" + 0.012*\"team\" + 0.012*\"box\" + 0.012*\"champion\"\n", - "2019-01-16 05:03:12,877 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:03:12,879 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:03:12,881 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"asian\" + 0.014*\"vietnam\" + 0.013*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 05:03:12,887 : INFO : topic diff=0.004424, rho=0.031944\n", - "2019-01-16 05:03:13,134 : INFO : PROGRESS: pass 0, at document #1962000/4922894\n", - "2019-01-16 05:03:15,140 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:15,701 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.054*\"region\" + 0.051*\"north\" + 0.049*\"east\" + 0.048*\"villag\" + 0.047*\"south\" + 0.047*\"west\" + 0.042*\"counti\" + 0.034*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:03:15,702 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.039*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"khan\" + 0.011*\"sri\" + 0.011*\"singh\" + 0.011*\"islam\"\n", - "2019-01-16 05:03:15,704 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:03:15,705 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.045*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:03:15,706 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:03:15,712 : INFO : topic diff=0.004436, rho=0.031928\n", - "2019-01-16 05:03:15,951 : INFO : PROGRESS: pass 0, at document #1964000/4922894\n", - "2019-01-16 05:03:17,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:18,501 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.054*\"region\" + 0.052*\"north\" + 0.048*\"east\" + 0.047*\"villag\" + 0.047*\"south\" + 0.047*\"west\" + 0.042*\"counti\" + 0.034*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:03:18,502 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"power\" + 0.013*\"product\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"car\" + 0.007*\"us\"\n", - "2019-01-16 05:03:18,504 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.067*\"align\" + 0.060*\"wikit\" + 0.057*\"left\" + 0.050*\"style\" + 0.049*\"center\" + 0.034*\"philippin\" + 0.030*\"right\" + 0.030*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:03:18,505 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:03:18,508 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:03:18,516 : INFO : topic diff=0.005164, rho=0.031911\n", - "2019-01-16 05:03:18,805 : INFO : PROGRESS: pass 0, at document #1966000/4922894\n", - "2019-01-16 05:03:20,861 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:21,419 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.027*\"ag\" + 0.025*\"area\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.022*\"commun\" + 0.021*\"municip\" + 0.020*\"villag\"\n", - "2019-01-16 05:03:21,420 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.041*\"final\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.019*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:03:21,422 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.023*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 05:03:21,423 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:03:21,424 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"direct\"\n", - "2019-01-16 05:03:21,430 : INFO : topic diff=0.006069, rho=0.031895\n", - "2019-01-16 05:03:21,663 : INFO : PROGRESS: pass 0, at document #1968000/4922894\n", - "2019-01-16 05:03:23,685 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:24,244 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"mission\"\n", - "2019-01-16 05:03:24,246 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.047*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 05:03:24,248 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:03:24,249 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:03:24,251 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:03:24,257 : INFO : topic diff=0.005039, rho=0.031879\n", - "2019-01-16 05:03:24,498 : INFO : PROGRESS: pass 0, at document #1970000/4922894\n", - "2019-01-16 05:03:26,505 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:27,064 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:03:27,065 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 05:03:27,067 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.014*\"million\" + 0.011*\"market\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:03:27,068 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:03:27,069 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"fish\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\"\n", - "2019-01-16 05:03:27,075 : INFO : topic diff=0.004924, rho=0.031863\n", - "2019-01-16 05:03:27,321 : INFO : PROGRESS: pass 0, at document #1972000/4922894\n", - "2019-01-16 05:03:29,294 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:29,851 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 05:03:29,852 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:03:29,854 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:03:29,855 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.066*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.050*\"center\" + 0.050*\"style\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.029*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:03:29,856 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.065*\"april\" + 0.064*\"august\" + 0.064*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:03:29,863 : INFO : topic diff=0.004073, rho=0.031846\n", - "2019-01-16 05:03:30,121 : INFO : PROGRESS: pass 0, at document #1974000/4922894\n", - "2019-01-16 05:03:32,239 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:32,803 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:03:32,805 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:03:32,806 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.005*\"like\" + 0.005*\"term\"\n", - "2019-01-16 05:03:32,808 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.029*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.021*\"der\" + 0.018*\"berlin\" + 0.015*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:03:32,809 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.020*\"american\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:03:32,815 : INFO : topic diff=0.005120, rho=0.031830\n", - "2019-01-16 05:03:33,058 : INFO : PROGRESS: pass 0, at document #1976000/4922894\n", - "2019-01-16 05:03:35,029 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:35,584 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"airport\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"forc\" + 0.016*\"unit\" + 0.016*\"flight\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:03:35,587 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"cell\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"human\"\n", - "2019-01-16 05:03:35,588 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"brazil\" + 0.009*\"carlo\"\n", - "2019-01-16 05:03:35,589 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"match\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:03:35,591 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:03:35,597 : INFO : topic diff=0.004645, rho=0.031814\n", - "2019-01-16 05:03:35,858 : INFO : PROGRESS: pass 0, at document #1978000/4922894\n", - "2019-01-16 05:03:37,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:38,460 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.058*\"canadian\" + 0.027*\"ontario\" + 0.025*\"toronto\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.014*\"montreal\" + 0.014*\"korea\" + 0.014*\"korean\"\n", - "2019-01-16 05:03:38,461 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:03:38,463 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 05:03:38,464 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.047*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 05:03:38,465 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.041*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.019*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:03:38,471 : INFO : topic diff=0.004293, rho=0.031798\n", - "2019-01-16 05:03:43,090 : INFO : -11.711 per-word bound, 3352.9 perplexity estimate based on a held-out corpus of 2000 documents with 579412 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:03:43,091 : INFO : PROGRESS: pass 0, at document #1980000/4922894\n", - "2019-01-16 05:03:45,072 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:45,631 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"fish\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 05:03:45,633 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:03:45,634 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:03:45,636 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.058*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.017*\"british\" + 0.014*\"montreal\" + 0.014*\"quebec\" + 0.014*\"korea\" + 0.014*\"korean\"\n", - "2019-01-16 05:03:45,637 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.032*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.022*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:03:45,643 : INFO : topic diff=0.004627, rho=0.031782\n", - "2019-01-16 05:03:45,900 : INFO : PROGRESS: pass 0, at document #1982000/4922894\n", - "2019-01-16 05:03:47,897 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:48,458 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"type\"\n", - "2019-01-16 05:03:48,459 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:03:48,461 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.010*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"mark\" + 0.006*\"tom\"\n", - "2019-01-16 05:03:48,462 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:03:48,463 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.039*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.020*\"american\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:03:48,469 : INFO : topic diff=0.004743, rho=0.031766\n", - "2019-01-16 05:03:48,723 : INFO : PROGRESS: pass 0, at document #1984000/4922894\n", - "2019-01-16 05:03:50,747 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:51,305 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"fish\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 05:03:51,307 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.064*\"april\" + 0.063*\"august\" + 0.062*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:03:51,308 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:03:51,310 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:03:51,311 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:03:51,317 : INFO : topic diff=0.004253, rho=0.031750\n", - "2019-01-16 05:03:51,557 : INFO : PROGRESS: pass 0, at document #1986000/4922894\n", - "2019-01-16 05:03:53,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:54,088 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:03:54,089 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"emperor\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:03:54,092 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:03:54,093 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 05:03:54,095 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.009*\"genu\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 05:03:54,102 : INFO : topic diff=0.004151, rho=0.031734\n", - "2019-01-16 05:03:54,361 : INFO : PROGRESS: pass 0, at document #1988000/4922894\n", - "2019-01-16 05:03:56,439 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:56,996 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:03:56,998 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"min\"\n", - "2019-01-16 05:03:56,999 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"version\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:03:57,001 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:03:57,003 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:03:57,009 : INFO : topic diff=0.004603, rho=0.031718\n", - "2019-01-16 05:03:57,264 : INFO : PROGRESS: pass 0, at document #1990000/4922894\n", - "2019-01-16 05:03:59,311 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:03:59,867 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.042*\"final\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.020*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:03:59,869 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:03:59,871 : INFO : topic #3 (0.020): 0.029*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.012*\"royal\"\n", - "2019-01-16 05:03:59,873 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.014*\"chan\"\n", - "2019-01-16 05:03:59,874 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:03:59,880 : INFO : topic diff=0.004640, rho=0.031702\n", - "2019-01-16 05:04:00,167 : INFO : PROGRESS: pass 0, at document #1992000/4922894\n", - "2019-01-16 05:04:02,289 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:02,846 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"year\" + 0.012*\"cathol\" + 0.012*\"born\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:04:02,847 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:04:02,849 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"car\"\n", - "2019-01-16 05:04:02,850 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"airport\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:04:02,852 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.055*\"region\" + 0.052*\"north\" + 0.049*\"villag\" + 0.048*\"east\" + 0.046*\"south\" + 0.046*\"west\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 05:04:02,859 : INFO : topic diff=0.006883, rho=0.031686\n", - "2019-01-16 05:04:03,102 : INFO : PROGRESS: pass 0, at document #1994000/4922894\n", - "2019-01-16 05:04:05,048 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:05,605 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:04:05,607 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.021*\"american\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.013*\"republ\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:04:05,609 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:04:05,610 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.054*\"region\" + 0.052*\"north\" + 0.049*\"villag\" + 0.049*\"east\" + 0.046*\"south\" + 0.046*\"west\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 05:04:05,611 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.042*\"final\" + 0.027*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:04:05,617 : INFO : topic diff=0.004124, rho=0.031670\n", - "2019-01-16 05:04:05,864 : INFO : PROGRESS: pass 0, at document #1996000/4922894\n", - "2019-01-16 05:04:07,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:08,418 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.054*\"region\" + 0.052*\"north\" + 0.049*\"villag\" + 0.049*\"east\" + 0.046*\"west\" + 0.046*\"south\" + 0.040*\"counti\" + 0.034*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 05:04:08,420 : INFO : topic #41 (0.020): 0.035*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:04:08,421 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"chan\"\n", - "2019-01-16 05:04:08,422 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.065*\"januari\" + 0.065*\"juli\" + 0.064*\"april\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:04:08,423 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.017*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:04:08,429 : INFO : topic diff=0.005484, rho=0.031654\n", - "2019-01-16 05:04:08,692 : INFO : PROGRESS: pass 0, at document #1998000/4922894\n", - "2019-01-16 05:04:10,774 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:11,332 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"car\"\n", - "2019-01-16 05:04:11,333 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asia\" + 0.014*\"asian\" + 0.014*\"vietnam\" + 0.013*\"chan\"\n", - "2019-01-16 05:04:11,335 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.012*\"royal\"\n", - "2019-01-16 05:04:11,336 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:04:11,338 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:04:11,345 : INFO : topic diff=0.006689, rho=0.031639\n", - "2019-01-16 05:04:15,984 : INFO : -11.843 per-word bound, 3673.2 perplexity estimate based on a held-out corpus of 2000 documents with 538101 words\n", - "2019-01-16 05:04:15,984 : INFO : PROGRESS: pass 0, at document #2000000/4922894\n", - "2019-01-16 05:04:17,994 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:18,558 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.038*\"russian\" + 0.022*\"russia\" + 0.021*\"soviet\" + 0.021*\"american\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:04:18,560 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.019*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:04:18,561 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:04:18,564 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:04:18,566 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:04:18,572 : INFO : topic diff=0.004208, rho=0.031623\n", - "2019-01-16 05:04:18,836 : INFO : PROGRESS: pass 0, at document #2002000/4922894\n", - "2019-01-16 05:04:20,872 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:21,430 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.019*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:04:21,431 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:04:21,433 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.020*\"cricket\" + 0.018*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.012*\"scottish\"\n", - "2019-01-16 05:04:21,434 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"damag\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 05:04:21,436 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:04:21,441 : INFO : topic diff=0.005003, rho=0.031607\n", - "2019-01-16 05:04:21,689 : INFO : PROGRESS: pass 0, at document #2004000/4922894\n", - "2019-01-16 05:04:23,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:24,264 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.025*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:04:24,265 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"pakistan\" + 0.017*\"www\" + 0.015*\"iran\" + 0.013*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.010*\"singh\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:04:24,267 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:04:24,268 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:04:24,269 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:04:24,275 : INFO : topic diff=0.004375, rho=0.031591\n", - "2019-01-16 05:04:24,517 : INFO : PROGRESS: pass 0, at document #2006000/4922894\n", - "2019-01-16 05:04:26,506 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:27,064 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:04:27,065 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:04:27,067 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"car\" + 0.007*\"type\"\n", - "2019-01-16 05:04:27,068 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"wrestl\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.016*\"titl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 05:04:27,070 : INFO : topic #24 (0.020): 0.033*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 05:04:27,076 : INFO : topic diff=0.004413, rho=0.031575\n", - "2019-01-16 05:04:27,326 : INFO : PROGRESS: pass 0, at document #2008000/4922894\n", - "2019-01-16 05:04:29,306 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:29,866 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:04:29,868 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:04:29,869 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:04:29,871 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 05:04:29,872 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.021*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:04:29,878 : INFO : topic diff=0.004990, rho=0.031560\n", - "2019-01-16 05:04:30,138 : INFO : PROGRESS: pass 0, at document #2010000/4922894\n", - "2019-01-16 05:04:32,191 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:32,749 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:04:32,750 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.037*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.020*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:04:32,753 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:04:32,754 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 05:04:32,756 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:04:32,763 : INFO : topic diff=0.005198, rho=0.031544\n", - "2019-01-16 05:04:33,023 : INFO : PROGRESS: pass 0, at document #2012000/4922894\n", - "2019-01-16 05:04:35,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:35,637 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", - "2019-01-16 05:04:35,638 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:04:35,640 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.033*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 05:04:35,641 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.018*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 05:04:35,642 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:04:35,648 : INFO : topic diff=0.005179, rho=0.031528\n", - "2019-01-16 05:04:35,899 : INFO : PROGRESS: pass 0, at document #2014000/4922894\n", - "2019-01-16 05:04:37,903 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:38,464 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.006*\"support\" + 0.006*\"unit\" + 0.006*\"group\"\n", - "2019-01-16 05:04:38,465 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:04:38,467 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:04:38,468 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.040*\"china\" + 0.033*\"chines\" + 0.032*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 05:04:38,470 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.010*\"port\" + 0.010*\"island\" + 0.008*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 05:04:38,476 : INFO : topic diff=0.005102, rho=0.031513\n", - "2019-01-16 05:04:38,738 : INFO : PROGRESS: pass 0, at document #2016000/4922894\n", - "2019-01-16 05:04:40,814 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:41,370 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:04:41,372 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:04:41,373 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:04:41,375 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.038*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"singh\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:04:41,376 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 05:04:41,382 : INFO : topic diff=0.004085, rho=0.031497\n", - "2019-01-16 05:04:41,678 : INFO : PROGRESS: pass 0, at document #2018000/4922894\n", - "2019-01-16 05:04:43,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:44,346 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.021*\"group\" + 0.020*\"winner\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:04:44,347 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.030*\"citi\" + 0.028*\"ag\" + 0.025*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.020*\"municip\"\n", - "2019-01-16 05:04:44,349 : INFO : topic #39 (0.020): 0.052*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.024*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:04:44,351 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:04:44,352 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:04:44,359 : INFO : topic diff=0.004385, rho=0.031481\n", - "2019-01-16 05:04:49,063 : INFO : -11.631 per-word bound, 3171.3 perplexity estimate based on a held-out corpus of 2000 documents with 559214 words\n", - "2019-01-16 05:04:49,064 : INFO : PROGRESS: pass 0, at document #2020000/4922894\n", - "2019-01-16 05:04:51,098 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:51,656 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.022*\"kim\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"chan\" + 0.014*\"asia\" + 0.013*\"min\" + 0.013*\"vietnam\"\n", - "2019-01-16 05:04:51,658 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"liber\"\n", - "2019-01-16 05:04:51,659 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:04:51,661 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:04:51,663 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"cancer\" + 0.008*\"studi\"\n", - "2019-01-16 05:04:51,669 : INFO : topic diff=0.004359, rho=0.031466\n", - "2019-01-16 05:04:51,921 : INFO : PROGRESS: pass 0, at document #2022000/4922894\n", - "2019-01-16 05:04:53,909 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:54,468 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:04:54,469 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"year\" + 0.012*\"cathol\"\n", - "2019-01-16 05:04:54,471 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:04:54,472 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\" + 0.007*\"car\"\n", - "2019-01-16 05:04:54,474 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.022*\"kim\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.014*\"min\" + 0.014*\"chan\" + 0.014*\"vietnam\"\n", - "2019-01-16 05:04:54,479 : INFO : topic diff=0.004116, rho=0.031450\n", - "2019-01-16 05:04:54,742 : INFO : PROGRESS: pass 0, at document #2024000/4922894\n", - "2019-01-16 05:04:56,793 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:04:57,351 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:04:57,353 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", - "2019-01-16 05:04:57,355 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:04:57,357 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"damag\" + 0.010*\"port\" + 0.010*\"island\" + 0.009*\"coast\" + 0.008*\"naval\"\n", - "2019-01-16 05:04:57,358 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.047*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 05:04:57,364 : INFO : topic diff=0.005640, rho=0.031435\n", - "2019-01-16 05:04:57,616 : INFO : PROGRESS: pass 0, at document #2026000/4922894\n", - "2019-01-16 05:04:59,750 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:00,313 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:05:00,315 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:05:00,316 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:05:00,318 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", - "2019-01-16 05:05:00,319 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:05:00,326 : INFO : topic diff=0.004901, rho=0.031419\n", - "2019-01-16 05:05:00,574 : INFO : PROGRESS: pass 0, at document #2028000/4922894\n", - "2019-01-16 05:05:02,576 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:03,135 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.055*\"style\" + 0.054*\"left\" + 0.048*\"center\" + 0.037*\"right\" + 0.034*\"philippin\" + 0.031*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:05:03,136 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.037*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"singh\"\n", - "2019-01-16 05:05:03,138 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:05:03,139 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.067*\"juli\" + 0.066*\"april\" + 0.065*\"august\" + 0.065*\"januari\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.062*\"decemb\"\n", - "2019-01-16 05:05:03,141 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:05:03,147 : INFO : topic diff=0.004789, rho=0.031404\n", - "2019-01-16 05:05:03,397 : INFO : PROGRESS: pass 0, at document #2030000/4922894\n", - "2019-01-16 05:05:05,357 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:05,916 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:05:05,917 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:05:05,919 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:05:05,921 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:05:05,922 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:05:05,929 : INFO : topic diff=0.004396, rho=0.031388\n", - "2019-01-16 05:05:06,184 : INFO : PROGRESS: pass 0, at document #2032000/4922894\n", - "2019-01-16 05:05:08,196 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:08,757 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"legal\" + 0.008*\"report\"\n", - "2019-01-16 05:05:08,760 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.039*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:05:08,761 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:05:08,763 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.016*\"asia\" + 0.015*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"min\"\n", - "2019-01-16 05:05:08,764 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.047*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 05:05:08,769 : INFO : topic diff=0.005325, rho=0.031373\n", - "2019-01-16 05:05:09,015 : INFO : PROGRESS: pass 0, at document #2034000/4922894\n", - "2019-01-16 05:05:11,015 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:11,573 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.050*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.034*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.015*\"kong\"\n", - "2019-01-16 05:05:11,575 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:05:11,576 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"fight\" + 0.017*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.012*\"team\" + 0.012*\"defeat\" + 0.012*\"world\"\n", - "2019-01-16 05:05:11,578 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:05:11,580 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:05:11,585 : INFO : topic diff=0.005708, rho=0.031357\n", - "2019-01-16 05:05:11,833 : INFO : PROGRESS: pass 0, at document #2036000/4922894\n", - "2019-01-16 05:05:13,858 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:14,417 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", - "2019-01-16 05:05:14,418 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.013*\"year\" + 0.012*\"daughter\"\n", - "2019-01-16 05:05:14,420 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 05:05:14,422 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:05:14,424 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", - "2019-01-16 05:05:14,429 : INFO : topic diff=0.005711, rho=0.031342\n", - "2019-01-16 05:05:14,692 : INFO : PROGRESS: pass 0, at document #2038000/4922894\n", - "2019-01-16 05:05:16,684 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:17,242 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 05:05:17,243 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.010*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:05:17,245 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.010*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"foreign\" + 0.006*\"support\" + 0.006*\"group\"\n", - "2019-01-16 05:05:17,246 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:05:17,247 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.072*\"canada\" + 0.059*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"columbia\" + 0.014*\"korea\" + 0.014*\"montreal\"\n", - "2019-01-16 05:05:17,253 : INFO : topic diff=0.005621, rho=0.031327\n", - "2019-01-16 05:05:21,993 : INFO : -11.668 per-word bound, 3253.6 perplexity estimate based on a held-out corpus of 2000 documents with 596552 words\n", - "2019-01-16 05:05:21,994 : INFO : PROGRESS: pass 0, at document #2040000/4922894\n", - "2019-01-16 05:05:24,085 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:24,643 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:05:24,645 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.022*\"cricket\" + 0.019*\"town\" + 0.016*\"scotland\" + 0.015*\"london\" + 0.015*\"citi\" + 0.014*\"scottish\" + 0.014*\"west\" + 0.013*\"manchest\"\n", - "2019-01-16 05:05:24,646 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.023*\"singapor\" + 0.020*\"kim\" + 0.017*\"malaysia\" + 0.016*\"asia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.013*\"chan\"\n", - "2019-01-16 05:05:24,648 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:05:24,649 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.018*\"danc\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:05:24,655 : INFO : topic diff=0.004799, rho=0.031311\n", - "2019-01-16 05:05:24,941 : INFO : PROGRESS: pass 0, at document #2042000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:05:26,972 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:27,529 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:05:27,531 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"group\"\n", - "2019-01-16 05:05:27,533 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:05:27,534 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:05:27,536 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:05:27,542 : INFO : topic diff=0.003943, rho=0.031296\n", - "2019-01-16 05:05:27,790 : INFO : PROGRESS: pass 0, at document #2044000/4922894\n", - "2019-01-16 05:05:29,857 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:30,413 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:05:30,415 : INFO : topic #48 (0.020): 0.072*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.067*\"juli\" + 0.065*\"januari\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.064*\"august\" + 0.064*\"april\" + 0.063*\"decemb\"\n", - "2019-01-16 05:05:30,416 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:05:30,418 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:05:30,419 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.051*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:05:30,425 : INFO : topic diff=0.004338, rho=0.031281\n", - "2019-01-16 05:05:30,682 : INFO : PROGRESS: pass 0, at document #2046000/4922894\n", - "2019-01-16 05:05:32,776 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:33,333 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"list\"\n", - "2019-01-16 05:05:33,334 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:05:33,336 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.066*\"align\" + 0.058*\"wikit\" + 0.057*\"left\" + 0.054*\"style\" + 0.046*\"center\" + 0.039*\"philippin\" + 0.035*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:05:33,337 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:05:33,339 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.023*\"columbia\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.014*\"korean\" + 0.014*\"korea\"\n", - "2019-01-16 05:05:33,345 : INFO : topic diff=0.004836, rho=0.031265\n", - "2019-01-16 05:05:33,593 : INFO : PROGRESS: pass 0, at document #2048000/4922894\n", - "2019-01-16 05:05:35,586 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:36,145 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:05:36,146 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:05:36,148 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"championship\" + 0.010*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 05:05:36,149 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 05:05:36,151 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.025*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:05:36,157 : INFO : topic diff=0.004982, rho=0.031250\n", - "2019-01-16 05:05:36,418 : INFO : PROGRESS: pass 0, at document #2050000/4922894\n", - "2019-01-16 05:05:38,409 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:38,969 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"cricket\" + 0.022*\"unit\" + 0.018*\"town\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.014*\"citi\" + 0.014*\"west\" + 0.014*\"scottish\" + 0.012*\"manchest\"\n", - "2019-01-16 05:05:38,971 : INFO : topic #2 (0.020): 0.066*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:05:38,972 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.024*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.019*\"household\"\n", - "2019-01-16 05:05:38,973 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.050*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:05:38,975 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.012*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:05:38,982 : INFO : topic diff=0.004760, rho=0.031235\n", - "2019-01-16 05:05:39,224 : INFO : PROGRESS: pass 0, at document #2052000/4922894\n", - "2019-01-16 05:05:41,176 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:41,732 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:05:41,733 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:05:41,735 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:05:41,736 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.069*\"align\" + 0.057*\"wikit\" + 0.055*\"left\" + 0.054*\"style\" + 0.048*\"center\" + 0.039*\"philippin\" + 0.036*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:05:41,737 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.012*\"regiment\"\n", - "2019-01-16 05:05:41,743 : INFO : topic diff=0.004743, rho=0.031220\n", - "2019-01-16 05:05:41,999 : INFO : PROGRESS: pass 0, at document #2054000/4922894\n", - "2019-01-16 05:05:44,031 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:44,588 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.068*\"align\" + 0.057*\"wikit\" + 0.055*\"left\" + 0.054*\"style\" + 0.049*\"center\" + 0.040*\"philippin\" + 0.036*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:05:44,589 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.066*\"juli\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.063*\"june\" + 0.063*\"august\" + 0.063*\"april\" + 0.063*\"decemb\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:05:44,591 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:05:44,592 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:05:44,594 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:05:44,600 : INFO : topic diff=0.003980, rho=0.031204\n", - "2019-01-16 05:05:44,849 : INFO : PROGRESS: pass 0, at document #2056000/4922894\n", - "2019-01-16 05:05:46,887 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:47,445 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\"\n", - "2019-01-16 05:05:47,446 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\" + 0.006*\"design\"\n", - "2019-01-16 05:05:47,448 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:05:47,450 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.023*\"columbia\" + 0.023*\"toronto\" + 0.019*\"ye\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 05:05:47,451 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", - "2019-01-16 05:05:47,458 : INFO : topic diff=0.005929, rho=0.031189\n", - "2019-01-16 05:05:47,713 : INFO : PROGRESS: pass 0, at document #2058000/4922894\n", - "2019-01-16 05:05:49,810 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:50,370 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:05:50,371 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.010*\"nation\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"foreign\"\n", - "2019-01-16 05:05:50,373 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:05:50,375 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.022*\"toronto\" + 0.022*\"columbia\" + 0.018*\"ye\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 05:05:50,376 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"list\"\n", - "2019-01-16 05:05:50,382 : INFO : topic diff=0.004770, rho=0.031174\n", - "2019-01-16 05:05:55,033 : INFO : -12.033 per-word bound, 4190.7 perplexity estimate based on a held-out corpus of 2000 documents with 573702 words\n", - "2019-01-16 05:05:55,034 : INFO : PROGRESS: pass 0, at document #2060000/4922894\n", - "2019-01-16 05:05:57,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:05:57,661 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.010*\"award\"\n", - "2019-01-16 05:05:57,663 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.013*\"henri\"\n", - "2019-01-16 05:05:57,664 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.070*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.054*\"style\" + 0.048*\"center\" + 0.038*\"philippin\" + 0.035*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:05:57,666 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.023*\"airport\" + 0.019*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:05:57,668 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"senat\"\n", - "2019-01-16 05:05:57,675 : INFO : topic diff=0.005476, rho=0.031159\n", - "2019-01-16 05:05:57,935 : INFO : PROGRESS: pass 0, at document #2062000/4922894\n", - "2019-01-16 05:05:59,999 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:00,563 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.022*\"kim\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"asia\" + 0.014*\"vietnam\" + 0.014*\"asian\" + 0.014*\"thailand\" + 0.013*\"min\"\n", - "2019-01-16 05:06:00,564 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"cricket\" + 0.021*\"unit\" + 0.018*\"town\" + 0.015*\"scotland\" + 0.015*\"london\" + 0.015*\"citi\" + 0.014*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 05:06:00,566 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:06:00,567 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:06:00,568 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:06:00,574 : INFO : topic diff=0.004656, rho=0.031144\n", - "2019-01-16 05:06:00,822 : INFO : PROGRESS: pass 0, at document #2064000/4922894\n", - "2019-01-16 05:06:02,794 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:03,351 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:06:03,353 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"royal\"\n", - "2019-01-16 05:06:03,354 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:06:03,355 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"danc\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.013*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:06:03,357 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:06:03,363 : INFO : topic diff=0.005289, rho=0.031129\n", - "2019-01-16 05:06:03,609 : INFO : PROGRESS: pass 0, at document #2066000/4922894\n", - "2019-01-16 05:06:05,598 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:06,156 : INFO : topic #49 (0.020): 0.107*\"district\" + 0.054*\"region\" + 0.054*\"villag\" + 0.049*\"north\" + 0.047*\"east\" + 0.047*\"west\" + 0.044*\"south\" + 0.042*\"counti\" + 0.035*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:06:06,158 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:06:06,159 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.013*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:06:06,161 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"studi\" + 0.008*\"medicin\"\n", - "2019-01-16 05:06:06,162 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"damag\" + 0.010*\"port\" + 0.009*\"naval\" + 0.009*\"coast\"\n", - "2019-01-16 05:06:06,168 : INFO : topic diff=0.004259, rho=0.031114\n", - "2019-01-16 05:06:06,436 : INFO : PROGRESS: pass 0, at document #2068000/4922894\n", - "2019-01-16 05:06:08,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:08,940 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:06:08,942 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 05:06:08,943 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.024*\"area\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.021*\"counti\" + 0.019*\"household\"\n", - "2019-01-16 05:06:08,945 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\"\n", - "2019-01-16 05:06:08,947 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:06:08,953 : INFO : topic diff=0.004435, rho=0.031099\n", - "2019-01-16 05:06:09,207 : INFO : PROGRESS: pass 0, at document #2070000/4922894\n", - "2019-01-16 05:06:11,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:11,792 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.018*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:06:11,793 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.067*\"align\" + 0.058*\"wikit\" + 0.058*\"left\" + 0.054*\"style\" + 0.047*\"center\" + 0.039*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:06:11,795 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:06:11,796 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.010*\"carlo\"\n", - "2019-01-16 05:06:11,797 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"asia\" + 0.015*\"vietnam\" + 0.015*\"thailand\" + 0.015*\"asian\" + 0.013*\"min\"\n", - "2019-01-16 05:06:11,804 : INFO : topic diff=0.004621, rho=0.031083\n", - "2019-01-16 05:06:12,038 : INFO : PROGRESS: pass 0, at document #2072000/4922894\n", - "2019-01-16 05:06:13,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:14,505 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.033*\"african\" + 0.031*\"text\" + 0.029*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.020*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:06:14,506 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:06:14,508 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.017*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:06:14,509 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:06:14,511 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:06:14,516 : INFO : topic diff=0.004651, rho=0.031068\n", - "2019-01-16 05:06:14,780 : INFO : PROGRESS: pass 0, at document #2074000/4922894\n", - "2019-01-16 05:06:16,812 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:17,370 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.021*\"kim\" + 0.018*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"thailand\" + 0.015*\"asia\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.013*\"min\"\n", - "2019-01-16 05:06:17,371 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.017*\"pakistan\" + 0.015*\"www\" + 0.015*\"iran\" + 0.013*\"islam\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\"\n", - "2019-01-16 05:06:17,373 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:06:17,374 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.049*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:06:17,375 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"time\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:06:17,381 : INFO : topic diff=0.005812, rho=0.031054\n", - "2019-01-16 05:06:17,631 : INFO : PROGRESS: pass 0, at document #2076000/4922894\n", - "2019-01-16 05:06:19,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:20,175 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:06:20,176 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.032*\"text\" + 0.029*\"south\" + 0.028*\"till\" + 0.025*\"color\" + 0.020*\"black\" + 0.012*\"cape\" + 0.012*\"storm\"\n", - "2019-01-16 05:06:20,178 : INFO : topic #10 (0.020): 0.024*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\"\n", - "2019-01-16 05:06:20,180 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"contest\" + 0.017*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", - "2019-01-16 05:06:20,181 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.067*\"align\" + 0.057*\"left\" + 0.057*\"wikit\" + 0.054*\"style\" + 0.048*\"center\" + 0.041*\"philippin\" + 0.034*\"right\" + 0.030*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:06:20,187 : INFO : topic diff=0.005262, rho=0.031039\n", - "2019-01-16 05:06:20,436 : INFO : PROGRESS: pass 0, at document #2078000/4922894\n", - "2019-01-16 05:06:22,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:22,951 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.017*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:06:22,953 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.048*\"univers\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:06:22,954 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:06:22,955 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.018*\"malaysia\" + 0.016*\"thailand\" + 0.015*\"indonesia\" + 0.015*\"vietnam\" + 0.015*\"asia\" + 0.015*\"asian\" + 0.014*\"min\"\n", - "2019-01-16 05:06:22,957 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.010*\"juan\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.010*\"carlo\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:06:22,964 : INFO : topic diff=0.005310, rho=0.031024\n", - "2019-01-16 05:06:27,480 : INFO : -11.726 per-word bound, 3387.2 perplexity estimate based on a held-out corpus of 2000 documents with 550745 words\n", - "2019-01-16 05:06:27,480 : INFO : PROGRESS: pass 0, at document #2080000/4922894\n", - "2019-01-16 05:06:29,532 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:30,095 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.010*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 05:06:30,096 : INFO : topic #0 (0.020): 0.038*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.013*\"offic\" + 0.012*\"divis\" + 0.012*\"regiment\"\n", - "2019-01-16 05:06:30,098 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 05:06:30,100 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.012*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.010*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:06:30,102 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:06:30,107 : INFO : topic diff=0.005095, rho=0.031009\n", - "2019-01-16 05:06:30,356 : INFO : PROGRESS: pass 0, at document #2082000/4922894\n", - "2019-01-16 05:06:32,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:32,924 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 05:06:32,925 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", - "2019-01-16 05:06:32,926 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.008*\"develop\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\" + 0.007*\"data\"\n", - "2019-01-16 05:06:32,928 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:06:32,929 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.014*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:06:32,936 : INFO : topic diff=0.005609, rho=0.030994\n", - "2019-01-16 05:06:33,202 : INFO : PROGRESS: pass 0, at document #2084000/4922894\n", - "2019-01-16 05:06:35,283 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:35,845 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 05:06:35,847 : INFO : topic #46 (0.020): 0.145*\"class\" + 0.063*\"align\" + 0.058*\"wikit\" + 0.056*\"left\" + 0.053*\"style\" + 0.047*\"center\" + 0.039*\"philippin\" + 0.033*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:06:35,848 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"galleri\"\n", - "2019-01-16 05:06:35,849 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:06:35,851 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:06:35,857 : INFO : topic diff=0.005006, rho=0.030979\n", - "2019-01-16 05:06:36,111 : INFO : PROGRESS: pass 0, at document #2086000/4922894\n", - "2019-01-16 05:06:38,097 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:38,659 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 05:06:38,661 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:06:38,662 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:06:38,664 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.010*\"juan\" + 0.010*\"brazil\" + 0.010*\"josé\" + 0.010*\"francisco\" + 0.010*\"carlo\"\n", - "2019-01-16 05:06:38,665 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"term\"\n", - "2019-01-16 05:06:38,671 : INFO : topic diff=0.004732, rho=0.030964\n", - "2019-01-16 05:06:38,925 : INFO : PROGRESS: pass 0, at document #2088000/4922894\n", - "2019-01-16 05:06:40,946 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:41,504 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:06:41,505 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"match\" + 0.018*\"fight\" + 0.018*\"wrestl\" + 0.018*\"titl\" + 0.017*\"championship\" + 0.017*\"contest\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"world\"\n", - "2019-01-16 05:06:41,507 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:06:41,508 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"cell\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 05:06:41,509 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:06:41,516 : INFO : topic diff=0.005721, rho=0.030949\n", - "2019-01-16 05:06:41,762 : INFO : PROGRESS: pass 0, at document #2090000/4922894\n", - "2019-01-16 05:06:43,775 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:44,332 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.016*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:06:44,333 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"galleri\"\n", - "2019-01-16 05:06:44,335 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:06:44,336 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:06:44,338 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"version\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\" + 0.007*\"data\"\n", - "2019-01-16 05:06:44,344 : INFO : topic diff=0.005403, rho=0.030934\n", - "2019-01-16 05:06:44,597 : INFO : PROGRESS: pass 0, at document #2092000/4922894\n", - "2019-01-16 05:06:46,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:06:47,270 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"austria\" + 0.011*\"und\"\n", - "2019-01-16 05:06:47,272 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:06:47,273 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.031*\"text\" + 0.030*\"south\" + 0.027*\"till\" + 0.024*\"color\" + 0.021*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:06:47,275 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"galleri\"\n", - "2019-01-16 05:06:47,277 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:06:47,283 : INFO : topic diff=0.005235, rho=0.030920\n", - "2019-01-16 05:06:47,571 : INFO : PROGRESS: pass 0, at document #2094000/4922894\n", - "2019-01-16 05:06:49,682 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:50,239 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.021*\"unit\" + 0.021*\"cricket\" + 0.019*\"town\" + 0.017*\"citi\" + 0.015*\"london\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"run\"\n", - "2019-01-16 05:06:50,241 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:06:50,242 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.017*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"cell\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.009*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 05:06:50,243 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 05:06:50,244 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", - "2019-01-16 05:06:50,250 : INFO : topic diff=0.005469, rho=0.030905\n", - "2019-01-16 05:06:50,497 : INFO : PROGRESS: pass 0, at document #2096000/4922894\n", - "2019-01-16 05:06:52,431 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:52,988 : INFO : topic #49 (0.020): 0.110*\"district\" + 0.054*\"villag\" + 0.053*\"region\" + 0.049*\"north\" + 0.048*\"east\" + 0.048*\"west\" + 0.044*\"south\" + 0.044*\"counti\" + 0.032*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:06:52,990 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:06:52,992 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.010*\"brazil\" + 0.010*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 05:06:52,993 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.013*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.010*\"port\" + 0.010*\"naval\" + 0.009*\"damag\" + 0.009*\"coast\"\n", - "2019-01-16 05:06:52,996 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:06:53,002 : INFO : topic diff=0.005126, rho=0.030890\n", - "2019-01-16 05:06:53,265 : INFO : PROGRESS: pass 0, at document #2098000/4922894\n", - "2019-01-16 05:06:55,351 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:06:55,909 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.023*\"singapor\" + 0.019*\"kim\" + 0.019*\"malaysia\" + 0.018*\"thailand\" + 0.016*\"asia\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.013*\"min\"\n", - "2019-01-16 05:06:55,911 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.010*\"piano\"\n", - "2019-01-16 05:06:55,912 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:06:55,913 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.052*\"australian\" + 0.051*\"new\" + 0.039*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:06:55,915 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.016*\"galleri\"\n", - "2019-01-16 05:06:55,922 : INFO : topic diff=0.005450, rho=0.030875\n", - "2019-01-16 05:07:00,576 : INFO : -11.544 per-word bound, 2985.1 perplexity estimate based on a held-out corpus of 2000 documents with 524518 words\n", - "2019-01-16 05:07:00,577 : INFO : PROGRESS: pass 0, at document #2100000/4922894\n", - "2019-01-16 05:07:02,564 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:03,120 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:07:03,122 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.013*\"servic\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"scienc\"\n", - "2019-01-16 05:07:03,124 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", - "2019-01-16 05:07:03,125 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.072*\"march\" + 0.070*\"septemb\" + 0.064*\"novemb\" + 0.064*\"januari\" + 0.063*\"juli\" + 0.062*\"decemb\" + 0.062*\"august\" + 0.061*\"june\" + 0.060*\"april\"\n", - "2019-01-16 05:07:03,127 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.006*\"red\"\n", - "2019-01-16 05:07:03,132 : INFO : topic diff=0.004658, rho=0.030861\n", - "2019-01-16 05:07:03,374 : INFO : PROGRESS: pass 0, at document #2102000/4922894\n", - "2019-01-16 05:07:05,370 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:05,927 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:07:05,928 : INFO : topic #47 (0.020): 0.029*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.011*\"area\" + 0.010*\"mountain\"\n", - "2019-01-16 05:07:05,930 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"episod\" + 0.022*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.013*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:07:05,931 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:07:05,932 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:07:05,938 : INFO : topic diff=0.005466, rho=0.030846\n", - "2019-01-16 05:07:06,183 : INFO : PROGRESS: pass 0, at document #2104000/4922894\n", - "2019-01-16 05:07:08,248 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:08,805 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.026*\"till\" + 0.023*\"color\" + 0.020*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:07:08,806 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:07:08,808 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"group\"\n", - "2019-01-16 05:07:08,809 : INFO : topic #14 (0.020): 0.016*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"servic\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"organ\" + 0.011*\"scienc\"\n", - "2019-01-16 05:07:08,811 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:07:08,817 : INFO : topic diff=0.004559, rho=0.030831\n", - "2019-01-16 05:07:09,063 : INFO : PROGRESS: pass 0, at document #2106000/4922894\n", - "2019-01-16 05:07:11,042 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:11,599 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:07:11,601 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:07:11,603 : INFO : topic #46 (0.020): 0.144*\"class\" + 0.066*\"align\" + 0.061*\"left\" + 0.059*\"wikit\" + 0.051*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.031*\"right\" + 0.027*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:07:11,604 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.071*\"march\" + 0.070*\"septemb\" + 0.063*\"novemb\" + 0.062*\"januari\" + 0.062*\"juli\" + 0.061*\"decemb\" + 0.061*\"august\" + 0.060*\"june\" + 0.059*\"april\"\n", - "2019-01-16 05:07:11,606 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:07:11,612 : INFO : topic diff=0.005505, rho=0.030817\n", - "2019-01-16 05:07:11,853 : INFO : PROGRESS: pass 0, at document #2108000/4922894\n", - "2019-01-16 05:07:13,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:14,407 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:07:14,408 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.012*\"damag\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.009*\"port\" + 0.009*\"island\" + 0.009*\"naval\" + 0.009*\"coast\"\n", - "2019-01-16 05:07:14,409 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.023*\"censu\" + 0.023*\"famili\" + 0.021*\"commun\" + 0.021*\"counti\" + 0.020*\"household\"\n", - "2019-01-16 05:07:14,411 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:07:14,412 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.012*\"regiment\"\n", - "2019-01-16 05:07:14,418 : INFO : topic diff=0.005987, rho=0.030802\n", - "2019-01-16 05:07:14,666 : INFO : PROGRESS: pass 0, at document #2110000/4922894\n", - "2019-01-16 05:07:16,667 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:17,229 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"bank\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:07:17,230 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:07:17,232 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:07:17,234 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.020*\"malaysia\" + 0.020*\"kim\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.016*\"asia\" + 0.015*\"asian\" + 0.014*\"min\" + 0.014*\"vietnam\"\n", - "2019-01-16 05:07:17,235 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.012*\"time\" + 0.011*\"ford\" + 0.010*\"year\"\n", - "2019-01-16 05:07:17,242 : INFO : topic diff=0.004657, rho=0.030787\n", - "2019-01-16 05:07:17,495 : INFO : PROGRESS: pass 0, at document #2112000/4922894\n", - "2019-01-16 05:07:19,476 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:20,032 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:07:20,034 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.019*\"columbia\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"korean\"\n", - "2019-01-16 05:07:20,035 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:07:20,037 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.021*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.012*\"poland\"\n", - "2019-01-16 05:07:20,039 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.010*\"work\"\n", - "2019-01-16 05:07:20,045 : INFO : topic diff=0.004805, rho=0.030773\n", - "2019-01-16 05:07:20,313 : INFO : PROGRESS: pass 0, at document #2114000/4922894\n", - "2019-01-16 05:07:22,434 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:22,993 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.007*\"electr\" + 0.007*\"protein\"\n", - "2019-01-16 05:07:22,994 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.015*\"plai\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 05:07:22,996 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 05:07:22,998 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:07:23,000 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:07:23,008 : INFO : topic diff=0.005575, rho=0.030758\n", - "2019-01-16 05:07:23,247 : INFO : PROGRESS: pass 0, at document #2116000/4922894\n", - "2019-01-16 05:07:25,209 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:25,771 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.010*\"bank\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:07:25,773 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:07:25,775 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.011*\"death\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:07:25,776 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.016*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.012*\"ireland\"\n", - "2019-01-16 05:07:25,777 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.006*\"group\"\n", - "2019-01-16 05:07:25,783 : INFO : topic diff=0.003938, rho=0.030744\n", - "2019-01-16 05:07:26,045 : INFO : PROGRESS: pass 0, at document #2118000/4922894\n", - "2019-01-16 05:07:28,108 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:28,666 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:07:28,668 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.019*\"town\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"west\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.012*\"scottish\"\n", - "2019-01-16 05:07:28,669 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"nation\" + 0.013*\"institut\" + 0.013*\"develop\" + 0.012*\"intern\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\"\n", - "2019-01-16 05:07:28,671 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.012*\"damag\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"naval\" + 0.009*\"coast\"\n", - "2019-01-16 05:07:28,672 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.016*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"royal\" + 0.013*\"ireland\"\n", - "2019-01-16 05:07:28,678 : INFO : topic diff=0.005676, rho=0.030729\n", - "2019-01-16 05:07:33,368 : INFO : -11.507 per-word bound, 2910.2 perplexity estimate based on a held-out corpus of 2000 documents with 560366 words\n", - "2019-01-16 05:07:33,369 : INFO : PROGRESS: pass 0, at document #2120000/4922894\n", - "2019-01-16 05:07:35,377 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:35,935 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.018*\"columbia\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"quebec\" + 0.015*\"korean\"\n", - "2019-01-16 05:07:35,937 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"naval\" + 0.009*\"coast\"\n", - "2019-01-16 05:07:35,938 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.016*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:07:35,940 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"new\" + 0.008*\"industri\" + 0.007*\"oper\"\n", - "2019-01-16 05:07:35,941 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.030*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 05:07:35,947 : INFO : topic diff=0.004450, rho=0.030715\n", - "2019-01-16 05:07:36,215 : INFO : PROGRESS: pass 0, at document #2122000/4922894\n", - "2019-01-16 05:07:38,247 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:38,805 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"polit\"\n", - "2019-01-16 05:07:38,806 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:07:38,808 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:07:38,809 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:07:38,811 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.020*\"household\"\n", - "2019-01-16 05:07:38,817 : INFO : topic diff=0.006707, rho=0.030700\n", - "2019-01-16 05:07:39,069 : INFO : PROGRESS: pass 0, at document #2124000/4922894\n", - "2019-01-16 05:07:41,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:41,655 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.010*\"cell\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 05:07:41,656 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"time\" + 0.006*\"light\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:07:41,658 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:07:41,659 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:07:41,660 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"order\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"report\"\n", - "2019-01-16 05:07:41,667 : INFO : topic diff=0.004512, rho=0.030686\n", - "2019-01-16 05:07:41,913 : INFO : PROGRESS: pass 0, at document #2126000/4922894\n", - "2019-01-16 05:07:43,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:44,486 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:07:44,487 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:07:44,488 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", - "2019-01-16 05:07:44,490 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.014*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:07:44,491 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.011*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:07:44,497 : INFO : topic diff=0.004368, rho=0.030671\n", - "2019-01-16 05:07:44,750 : INFO : PROGRESS: pass 0, at document #2128000/4922894\n", - "2019-01-16 05:07:46,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:47,326 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"servic\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"organ\"\n", - "2019-01-16 05:07:47,328 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.010*\"santa\" + 0.010*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:07:47,330 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:07:47,331 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:07:47,333 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"cricket\" + 0.018*\"town\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"west\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 05:07:47,339 : INFO : topic diff=0.004513, rho=0.030657\n", - "2019-01-16 05:07:47,586 : INFO : PROGRESS: pass 0, at document #2130000/4922894\n", - "2019-01-16 05:07:49,681 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:50,243 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"match\" + 0.019*\"wrestl\" + 0.018*\"contest\" + 0.017*\"championship\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:07:50,245 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.020*\"winner\" + 0.018*\"open\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:07:50,246 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 05:07:50,248 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.023*\"censu\" + 0.023*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.020*\"household\"\n", - "2019-01-16 05:07:50,249 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:07:50,255 : INFO : topic diff=0.004793, rho=0.030643\n", - "2019-01-16 05:07:50,503 : INFO : PROGRESS: pass 0, at document #2132000/4922894\n", - "2019-01-16 05:07:52,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:53,087 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:07:53,089 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.018*\"columbia\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"korean\"\n", - "2019-01-16 05:07:53,090 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:07:53,092 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:07:53,094 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:07:53,100 : INFO : topic diff=0.004904, rho=0.030628\n", - "2019-01-16 05:07:53,376 : INFO : PROGRESS: pass 0, at document #2134000/4922894\n", - "2019-01-16 05:07:55,452 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:56,015 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:07:56,017 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"offic\" + 0.012*\"divis\"\n", - "2019-01-16 05:07:56,019 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"construct\"\n", - "2019-01-16 05:07:56,020 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:07:56,022 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:07:56,028 : INFO : topic diff=0.005721, rho=0.030614\n", - "2019-01-16 05:07:56,272 : INFO : PROGRESS: pass 0, at document #2136000/4922894\n", - "2019-01-16 05:07:58,255 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:07:58,813 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:07:58,815 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.017*\"theatr\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:07:58,816 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"damag\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"coast\" + 0.009*\"naval\"\n", - "2019-01-16 05:07:58,820 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.010*\"player\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"includ\" + 0.007*\"video\"\n", - "2019-01-16 05:07:58,822 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:07:58,828 : INFO : topic diff=0.004224, rho=0.030600\n", - "2019-01-16 05:07:59,084 : INFO : PROGRESS: pass 0, at document #2138000/4922894\n", - "2019-01-16 05:08:01,084 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:01,642 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:08:01,644 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.012*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"damag\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"naval\" + 0.009*\"coast\"\n", - "2019-01-16 05:08:01,645 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.013*\"sir\" + 0.012*\"henri\"\n", - "2019-01-16 05:08:01,647 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.014*\"tour\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.012*\"ford\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"stage\"\n", - "2019-01-16 05:08:01,648 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"protein\"\n", - "2019-01-16 05:08:01,654 : INFO : topic diff=0.004777, rho=0.030585\n", - "2019-01-16 05:08:06,275 : INFO : -11.796 per-word bound, 3556.1 perplexity estimate based on a held-out corpus of 2000 documents with 552425 words\n", - "2019-01-16 05:08:06,276 : INFO : PROGRESS: pass 0, at document #2140000/4922894\n", - "2019-01-16 05:08:08,317 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:08,873 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:08:08,875 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:08:08,876 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:08:08,878 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"exampl\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"group\"\n", - "2019-01-16 05:08:08,881 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:08:08,887 : INFO : topic diff=0.004780, rho=0.030571\n", - "2019-01-16 05:08:09,133 : INFO : PROGRESS: pass 0, at document #2142000/4922894\n", - "2019-01-16 05:08:11,124 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:11,682 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"polit\" + 0.013*\"council\"\n", - "2019-01-16 05:08:11,683 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:08:11,685 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:08:11,686 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", - "2019-01-16 05:08:11,688 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.030*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.012*\"piano\" + 0.011*\"jazz\"\n", - "2019-01-16 05:08:11,694 : INFO : topic diff=0.005009, rho=0.030557\n", - "2019-01-16 05:08:11,995 : INFO : PROGRESS: pass 0, at document #2144000/4922894\n", - "2019-01-16 05:08:14,089 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:14,645 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"light\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:08:14,647 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.035*\"african\" + 0.030*\"text\" + 0.030*\"south\" + 0.026*\"till\" + 0.026*\"color\" + 0.019*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:08:14,648 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:08:14,649 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"columbia\" + 0.017*\"quebec\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.015*\"korean\"\n", - "2019-01-16 05:08:14,651 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:08:14,657 : INFO : topic diff=0.004565, rho=0.030542\n", - "2019-01-16 05:08:14,902 : INFO : PROGRESS: pass 0, at document #2146000/4922894\n", - "2019-01-16 05:08:16,874 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:17,436 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.011*\"daughter\"\n", - "2019-01-16 05:08:17,437 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 05:08:17,439 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:08:17,440 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.070*\"align\" + 0.062*\"left\" + 0.060*\"wikit\" + 0.052*\"style\" + 0.045*\"center\" + 0.037*\"philippin\" + 0.030*\"right\" + 0.027*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:08:17,442 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"light\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:08:17,448 : INFO : topic diff=0.004350, rho=0.030528\n", - "2019-01-16 05:08:17,696 : INFO : PROGRESS: pass 0, at document #2148000/4922894\n", - "2019-01-16 05:08:19,700 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:20,256 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.064*\"villag\" + 0.053*\"region\" + 0.051*\"north\" + 0.047*\"east\" + 0.046*\"west\" + 0.044*\"south\" + 0.042*\"counti\" + 0.036*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:08:20,258 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:08:20,260 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.014*\"tour\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"ford\" + 0.011*\"stage\"\n", - "2019-01-16 05:08:20,261 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:08:20,262 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:08:20,268 : INFO : topic diff=0.004388, rho=0.030514\n", - "2019-01-16 05:08:20,516 : INFO : PROGRESS: pass 0, at document #2150000/4922894\n", - "2019-01-16 05:08:22,509 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:23,076 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:08:23,077 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:08:23,079 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 05:08:23,081 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"royal\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"henri\"\n", - "2019-01-16 05:08:23,085 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"order\"\n", - "2019-01-16 05:08:23,092 : INFO : topic diff=0.004691, rho=0.030500\n", - "2019-01-16 05:08:23,339 : INFO : PROGRESS: pass 0, at document #2152000/4922894\n", - "2019-01-16 05:08:25,294 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:25,852 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"columbia\" + 0.017*\"quebec\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"korean\"\n", - "2019-01-16 05:08:25,854 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"order\"\n", - "2019-01-16 05:08:25,857 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"orchestra\" + 0.011*\"piano\" + 0.011*\"jazz\"\n", - "2019-01-16 05:08:25,858 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"damag\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\"\n", - "2019-01-16 05:08:25,860 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.021*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:08:25,865 : INFO : topic diff=0.005575, rho=0.030486\n", - "2019-01-16 05:08:26,126 : INFO : PROGRESS: pass 0, at document #2154000/4922894\n", - "2019-01-16 05:08:28,192 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:28,748 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.021*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:08:28,750 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"damag\" + 0.010*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\"\n", - "2019-01-16 05:08:28,752 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"order\"\n", - "2019-01-16 05:08:28,753 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 05:08:28,754 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"royal\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"sir\" + 0.013*\"henri\"\n", - "2019-01-16 05:08:28,761 : INFO : topic diff=0.004981, rho=0.030471\n", - "2019-01-16 05:08:29,009 : INFO : PROGRESS: pass 0, at document #2156000/4922894\n", - "2019-01-16 05:08:31,019 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:31,576 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 05:08:31,577 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.053*\"australian\" + 0.051*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", - "2019-01-16 05:08:31,579 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:08:31,580 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"match\" + 0.018*\"wrestl\" + 0.018*\"contest\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.016*\"fight\" + 0.013*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:08:31,582 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.007*\"protein\" + 0.007*\"us\" + 0.007*\"electr\"\n", - "2019-01-16 05:08:31,587 : INFO : topic diff=0.003841, rho=0.030457\n", - "2019-01-16 05:08:31,831 : INFO : PROGRESS: pass 0, at document #2158000/4922894\n", - "2019-01-16 05:08:33,830 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:34,387 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:08:34,389 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"bridg\" + 0.011*\"area\"\n", - "2019-01-16 05:08:34,390 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:08:34,392 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.013*\"offic\"\n", - "2019-01-16 05:08:34,393 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.064*\"juli\" + 0.063*\"januari\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.062*\"june\" + 0.061*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:08:34,400 : INFO : topic diff=0.004466, rho=0.030443\n", - "2019-01-16 05:08:39,022 : INFO : -11.788 per-word bound, 3536.0 perplexity estimate based on a held-out corpus of 2000 documents with 545483 words\n", - "2019-01-16 05:08:39,023 : INFO : PROGRESS: pass 0, at document #2160000/4922894\n", - "2019-01-16 05:08:40,976 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:41,534 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:08:41,536 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:08:41,537 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.033*\"russian\" + 0.023*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.013*\"republ\" + 0.013*\"poland\" + 0.012*\"moscow\"\n", - "2019-01-16 05:08:41,538 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", - "2019-01-16 05:08:41,540 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.022*\"unit\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.018*\"citi\" + 0.015*\"london\" + 0.014*\"scotland\" + 0.014*\"west\" + 0.013*\"wale\" + 0.012*\"scottish\"\n", - "2019-01-16 05:08:41,546 : INFO : topic diff=0.005380, rho=0.030429\n", - "2019-01-16 05:08:41,814 : INFO : PROGRESS: pass 0, at document #2162000/4922894\n", - "2019-01-16 05:08:43,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:44,417 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", - "2019-01-16 05:08:44,418 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:08:44,420 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"henri\"\n", - "2019-01-16 05:08:44,421 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.013*\"regiment\" + 0.013*\"offic\"\n", - "2019-01-16 05:08:44,423 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.051*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:08:44,429 : INFO : topic diff=0.004759, rho=0.030415\n", - "2019-01-16 05:08:44,672 : INFO : PROGRESS: pass 0, at document #2164000/4922894\n", - "2019-01-16 05:08:46,729 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:47,292 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.019*\"wrestl\" + 0.018*\"titl\" + 0.018*\"championship\" + 0.018*\"contest\" + 0.015*\"fight\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:08:47,293 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.068*\"villag\" + 0.054*\"region\" + 0.050*\"north\" + 0.048*\"east\" + 0.046*\"west\" + 0.043*\"south\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:08:47,295 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:08:47,296 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.013*\"offic\"\n", - "2019-01-16 05:08:47,298 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"construct\"\n", - "2019-01-16 05:08:47,304 : INFO : topic diff=0.004321, rho=0.030401\n", - "2019-01-16 05:08:47,563 : INFO : PROGRESS: pass 0, at document #2166000/4922894\n", - "2019-01-16 05:08:49,712 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:50,269 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:08:50,270 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:08:50,272 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.068*\"villag\" + 0.054*\"region\" + 0.050*\"north\" + 0.048*\"east\" + 0.045*\"west\" + 0.043*\"south\" + 0.041*\"counti\" + 0.035*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:08:50,273 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.021*\"point\" + 0.021*\"winner\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", - "2019-01-16 05:08:50,274 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.017*\"malaysia\" + 0.016*\"asia\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.014*\"min\"\n", - "2019-01-16 05:08:50,280 : INFO : topic diff=0.006373, rho=0.030387\n", - "2019-01-16 05:08:50,524 : INFO : PROGRESS: pass 0, at document #2168000/4922894\n", - "2019-01-16 05:08:52,550 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:53,109 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:08:53,110 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:08:53,112 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.064*\"juli\" + 0.063*\"januari\" + 0.063*\"novemb\" + 0.063*\"august\" + 0.062*\"june\" + 0.061*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:08:53,114 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:08:53,115 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"doubl\"\n", - "2019-01-16 05:08:53,121 : INFO : topic diff=0.003528, rho=0.030373\n", - "2019-01-16 05:08:53,414 : INFO : PROGRESS: pass 0, at document #2170000/4922894\n", - "2019-01-16 05:08:55,425 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:55,982 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:08:55,984 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"singh\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", - "2019-01-16 05:08:55,985 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.063*\"august\" + 0.062*\"june\" + 0.061*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:08:55,986 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:08:55,987 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.012*\"offic\"\n", - "2019-01-16 05:08:55,994 : INFO : topic diff=0.005107, rho=0.030359\n", - "2019-01-16 05:08:56,245 : INFO : PROGRESS: pass 0, at document #2172000/4922894\n", - "2019-01-16 05:08:58,247 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:08:58,806 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.077*\"align\" + 0.066*\"left\" + 0.057*\"wikit\" + 0.056*\"style\" + 0.044*\"center\" + 0.036*\"philippin\" + 0.033*\"right\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:08:58,808 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.013*\"divis\" + 0.012*\"offic\"\n", - "2019-01-16 05:08:58,809 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:08:58,811 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:08:58,813 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:08:58,820 : INFO : topic diff=0.004647, rho=0.030345\n", - "2019-01-16 05:08:59,066 : INFO : PROGRESS: pass 0, at document #2174000/4922894\n", - "2019-01-16 05:09:01,260 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:01,818 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"singh\" + 0.011*\"sri\"\n", - "2019-01-16 05:09:01,819 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"effect\"\n", - "2019-01-16 05:09:01,821 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:09:01,824 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.013*\"henri\" + 0.013*\"sir\"\n", - "2019-01-16 05:09:01,825 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 05:09:01,830 : INFO : topic diff=0.004845, rho=0.030331\n", - "2019-01-16 05:09:02,069 : INFO : PROGRESS: pass 0, at document #2176000/4922894\n", - "2019-01-16 05:09:04,057 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:04,614 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.010*\"organ\"\n", - "2019-01-16 05:09:04,615 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:09:04,617 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.067*\"villag\" + 0.054*\"region\" + 0.049*\"north\" + 0.048*\"east\" + 0.046*\"west\" + 0.043*\"south\" + 0.041*\"counti\" + 0.034*\"provinc\" + 0.026*\"central\"\n", - "2019-01-16 05:09:04,621 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"singh\" + 0.011*\"sri\"\n", - "2019-01-16 05:09:04,622 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.066*\"juli\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.062*\"june\" + 0.062*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:09:04,629 : INFO : topic diff=0.005088, rho=0.030317\n", - "2019-01-16 05:09:04,881 : INFO : PROGRESS: pass 0, at document #2178000/4922894\n", - "2019-01-16 05:09:06,882 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:07,445 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"stori\"\n", - "2019-01-16 05:09:07,446 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:09:07,448 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"sir\" + 0.013*\"henri\" + 0.013*\"royal\"\n", - "2019-01-16 05:09:07,450 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:09:07,452 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:09:07,458 : INFO : topic diff=0.004676, rho=0.030303\n", - "2019-01-16 05:09:12,107 : INFO : -11.675 per-word bound, 3270.7 perplexity estimate based on a held-out corpus of 2000 documents with 584211 words\n", - "2019-01-16 05:09:12,108 : INFO : PROGRESS: pass 0, at document #2180000/4922894\n", - "2019-01-16 05:09:14,151 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:14,708 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.076*\"align\" + 0.064*\"left\" + 0.057*\"wikit\" + 0.054*\"style\" + 0.043*\"center\" + 0.040*\"right\" + 0.034*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:09:14,710 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.013*\"sea\" + 0.011*\"gun\" + 0.011*\"boat\" + 0.010*\"island\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.009*\"port\" + 0.009*\"naval\"\n", - "2019-01-16 05:09:14,711 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.030*\"south\" + 0.030*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.019*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:09:14,713 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:09:14,714 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", - "2019-01-16 05:09:14,720 : INFO : topic diff=0.005540, rho=0.030289\n", - "2019-01-16 05:09:14,973 : INFO : PROGRESS: pass 0, at document #2182000/4922894\n", - "2019-01-16 05:09:17,084 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:17,645 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 05:09:17,646 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.034*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.013*\"poland\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 05:09:17,648 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", - "2019-01-16 05:09:17,649 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 05:09:17,651 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.051*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:09:17,657 : INFO : topic diff=0.003975, rho=0.030275\n", - "2019-01-16 05:09:17,920 : INFO : PROGRESS: pass 0, at document #2184000/4922894\n", - "2019-01-16 05:09:19,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:20,509 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:09:20,511 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.062*\"june\" + 0.061*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:09:20,512 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 05:09:20,514 : INFO : topic #33 (0.020): 0.029*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:09:20,515 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"high\" + 0.006*\"time\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"us\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:09:20,521 : INFO : topic diff=0.004758, rho=0.030261\n", - "2019-01-16 05:09:20,778 : INFO : PROGRESS: pass 0, at document #2186000/4922894\n", - "2019-01-16 05:09:22,854 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:23,416 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.075*\"align\" + 0.065*\"left\" + 0.057*\"wikit\" + 0.054*\"style\" + 0.043*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:09:23,418 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:09:23,419 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.017*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:09:23,421 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"sir\" + 0.013*\"ireland\" + 0.013*\"henri\"\n", - "2019-01-16 05:09:23,422 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:09:23,429 : INFO : topic diff=0.004038, rho=0.030248\n", - "2019-01-16 05:09:23,679 : INFO : PROGRESS: pass 0, at document #2188000/4922894\n", - "2019-01-16 05:09:25,669 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:26,227 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.010*\"medicin\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\"\n", - "2019-01-16 05:09:26,229 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:09:26,230 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 05:09:26,231 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.023*\"area\" + 0.023*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"counti\"\n", - "2019-01-16 05:09:26,233 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:09:26,239 : INFO : topic diff=0.004279, rho=0.030234\n", - "2019-01-16 05:09:26,480 : INFO : PROGRESS: pass 0, at document #2190000/4922894\n", - "2019-01-16 05:09:28,516 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:29,076 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"organ\"\n", - "2019-01-16 05:09:29,077 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.012*\"divis\"\n", - "2019-01-16 05:09:29,078 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.066*\"juli\" + 0.065*\"june\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:09:29,080 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.076*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.020*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.016*\"columbia\" + 0.014*\"korean\"\n", - "2019-01-16 05:09:29,081 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"jazz\" + 0.011*\"opera\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:09:29,088 : INFO : topic diff=0.004166, rho=0.030220\n", - "2019-01-16 05:09:29,342 : INFO : PROGRESS: pass 0, at document #2192000/4922894\n", - "2019-01-16 05:09:31,364 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:31,924 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.010*\"singh\"\n", - "2019-01-16 05:09:31,926 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:09:31,927 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.069*\"villag\" + 0.054*\"region\" + 0.049*\"north\" + 0.047*\"east\" + 0.045*\"west\" + 0.043*\"south\" + 0.041*\"counti\" + 0.034*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:09:31,928 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:09:31,930 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.034*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", - "2019-01-16 05:09:31,936 : INFO : topic diff=0.004667, rho=0.030206\n", - "2019-01-16 05:09:32,200 : INFO : PROGRESS: pass 0, at document #2194000/4922894\n", - "2019-01-16 05:09:34,201 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:34,757 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"match\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.017*\"championship\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.013*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:09:34,758 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 05:09:34,759 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:09:34,761 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.072*\"align\" + 0.063*\"left\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.043*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:09:34,762 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:09:34,768 : INFO : topic diff=0.004404, rho=0.030192\n", - "2019-01-16 05:09:35,057 : INFO : PROGRESS: pass 0, at document #2196000/4922894\n", - "2019-01-16 05:09:37,105 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:37,665 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"jazz\" + 0.012*\"opera\"\n", - "2019-01-16 05:09:37,666 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.020*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.016*\"columbia\" + 0.014*\"korean\"\n", - "2019-01-16 05:09:37,668 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.010*\"order\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"offic\"\n", - "2019-01-16 05:09:37,669 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"citi\" + 0.015*\"london\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.014*\"wale\" + 0.013*\"scottish\"\n", - "2019-01-16 05:09:37,670 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.014*\"de\" + 0.011*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:09:37,676 : INFO : topic diff=0.004037, rho=0.030179\n", - "2019-01-16 05:09:37,937 : INFO : PROGRESS: pass 0, at document #2198000/4922894\n", - "2019-01-16 05:09:39,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:40,549 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"divis\" + 0.012*\"offic\"\n", - "2019-01-16 05:09:40,550 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.020*\"commun\" + 0.020*\"counti\" + 0.020*\"household\"\n", - "2019-01-16 05:09:40,552 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.074*\"march\" + 0.073*\"octob\" + 0.065*\"januari\" + 0.065*\"juli\" + 0.064*\"june\" + 0.063*\"august\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:09:40,553 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:09:40,554 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.017*\"titl\" + 0.017*\"championship\" + 0.016*\"fight\" + 0.013*\"team\" + 0.013*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:09:40,560 : INFO : topic diff=0.004571, rho=0.030165\n", - "2019-01-16 05:09:45,342 : INFO : -11.546 per-word bound, 2990.0 perplexity estimate based on a held-out corpus of 2000 documents with 588507 words\n", - "2019-01-16 05:09:45,342 : INFO : PROGRESS: pass 0, at document #2200000/4922894\n", - "2019-01-16 05:09:47,438 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:47,999 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"medicin\" + 0.009*\"caus\" + 0.008*\"studi\"\n", - "2019-01-16 05:09:48,001 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.070*\"align\" + 0.062*\"left\" + 0.058*\"wikit\" + 0.054*\"style\" + 0.043*\"center\" + 0.039*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:09:48,002 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.013*\"regiment\" + 0.012*\"divis\" + 0.012*\"offic\"\n", - "2019-01-16 05:09:48,004 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.053*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.032*\"chines\" + 0.032*\"zealand\" + 0.030*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:09:48,005 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:09:48,012 : INFO : topic diff=0.005603, rho=0.030151\n", - "2019-01-16 05:09:48,265 : INFO : PROGRESS: pass 0, at document #2202000/4922894\n", - "2019-01-16 05:09:50,258 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:50,815 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.051*\"univers\" + 0.044*\"colleg\" + 0.039*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 05:09:50,817 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"bridg\" + 0.012*\"park\" + 0.011*\"area\"\n", - "2019-01-16 05:09:50,818 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:09:50,819 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.070*\"villag\" + 0.054*\"region\" + 0.048*\"north\" + 0.046*\"east\" + 0.045*\"west\" + 0.042*\"south\" + 0.041*\"counti\" + 0.034*\"provinc\" + 0.026*\"central\"\n", - "2019-01-16 05:09:50,820 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", - "2019-01-16 05:09:50,826 : INFO : topic diff=0.004096, rho=0.030137\n", - "2019-01-16 05:09:51,077 : INFO : PROGRESS: pass 0, at document #2204000/4922894\n", - "2019-01-16 05:09:53,059 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:09:53,617 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.019*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.016*\"columbia\" + 0.014*\"korean\"\n", - "2019-01-16 05:09:53,619 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:09:53,621 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:09:53,622 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.019*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"sir\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"ireland\"\n", - "2019-01-16 05:09:53,624 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"centuri\"\n", - "2019-01-16 05:09:53,629 : INFO : topic diff=0.005828, rho=0.030124\n", - "2019-01-16 05:09:53,893 : INFO : PROGRESS: pass 0, at document #2206000/4922894\n", - "2019-01-16 05:09:55,944 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:56,500 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\" + 0.006*\"point\"\n", - "2019-01-16 05:09:56,502 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"electr\" + 0.007*\"us\"\n", - "2019-01-16 05:09:56,504 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"berlin\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 05:09:56,506 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"medicin\" + 0.009*\"caus\" + 0.008*\"studi\"\n", - "2019-01-16 05:09:56,507 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.023*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"order\" + 0.009*\"report\" + 0.008*\"offic\" + 0.008*\"right\"\n", - "2019-01-16 05:09:56,514 : INFO : topic diff=0.004640, rho=0.030110\n", - "2019-01-16 05:09:56,771 : INFO : PROGRESS: pass 0, at document #2208000/4922894\n", - "2019-01-16 05:09:58,841 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:09:59,398 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.013*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:09:59,400 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.010*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 05:09:59,401 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:09:59,403 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"return\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 05:09:59,404 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:09:59,410 : INFO : topic diff=0.004623, rho=0.030096\n", - "2019-01-16 05:09:59,655 : INFO : PROGRESS: pass 0, at document #2210000/4922894\n", - "2019-01-16 05:10:01,665 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:02,224 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.025*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.014*\"repres\" + 0.013*\"council\" + 0.013*\"polit\"\n", - "2019-01-16 05:10:02,225 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.030*\"ag\" + 0.030*\"citi\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"counti\"\n", - "2019-01-16 05:10:02,227 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 05:10:02,229 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"poland\"\n", - "2019-01-16 05:10:02,230 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"berlin\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 05:10:02,236 : INFO : topic diff=0.004913, rho=0.030083\n", - "2019-01-16 05:10:02,489 : INFO : PROGRESS: pass 0, at document #2212000/4922894\n", - "2019-01-16 05:10:04,513 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:05,071 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:10:05,072 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 05:10:05,074 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:10:05,076 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.040*\"africa\" + 0.034*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.018*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:10:05,077 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.075*\"march\" + 0.073*\"octob\" + 0.065*\"juli\" + 0.065*\"januari\" + 0.064*\"june\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.063*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:10:05,084 : INFO : topic diff=0.004076, rho=0.030069\n", - "2019-01-16 05:10:05,337 : INFO : PROGRESS: pass 0, at document #2214000/4922894\n", - "2019-01-16 05:10:07,368 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:07,931 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"poland\"\n", - "2019-01-16 05:10:07,934 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"return\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 05:10:07,936 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"studi\"\n", - "2019-01-16 05:10:07,937 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.030*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.023*\"censu\" + 0.022*\"famili\" + 0.021*\"commun\" + 0.020*\"counti\" + 0.020*\"household\"\n", - "2019-01-16 05:10:07,938 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:10:07,944 : INFO : topic diff=0.004223, rho=0.030056\n", - "2019-01-16 05:10:08,195 : INFO : PROGRESS: pass 0, at document #2216000/4922894\n", - "2019-01-16 05:10:10,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:10,737 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.018*\"titl\" + 0.017*\"championship\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.014*\"defeat\" + 0.014*\"team\" + 0.013*\"world\"\n", - "2019-01-16 05:10:10,738 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"gold\" + 0.018*\"athlet\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:10:10,740 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", - "2019-01-16 05:10:10,741 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:10:10,743 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\" + 0.006*\"point\"\n", - "2019-01-16 05:10:10,748 : INFO : topic diff=0.004261, rho=0.030042\n", - "2019-01-16 05:10:11,003 : INFO : PROGRESS: pass 0, at document #2218000/4922894\n", - "2019-01-16 05:10:12,965 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:13,521 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:10:13,523 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 05:10:13,524 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 05:10:13,526 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:10:13,527 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:10:13,533 : INFO : topic diff=0.004860, rho=0.030029\n", - "2019-01-16 05:10:18,154 : INFO : -11.624 per-word bound, 3156.1 perplexity estimate based on a held-out corpus of 2000 documents with 531270 words\n", - "2019-01-16 05:10:18,155 : INFO : PROGRESS: pass 0, at document #2220000/4922894\n", - "2019-01-16 05:10:20,191 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:20,747 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:10:20,748 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.016*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:10:20,750 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.051*\"univers\" + 0.044*\"colleg\" + 0.039*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 05:10:20,751 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"gold\"\n", - "2019-01-16 05:10:20,753 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 05:10:20,760 : INFO : topic diff=0.003921, rho=0.030015\n", - "2019-01-16 05:10:21,017 : INFO : PROGRESS: pass 0, at document #2222000/4922894\n", - "2019-01-16 05:10:23,129 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:23,685 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", - "2019-01-16 05:10:23,686 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:10:23,688 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 05:10:23,689 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:10:23,691 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"studi\"\n", - "2019-01-16 05:10:23,698 : INFO : topic diff=0.005637, rho=0.030002\n", - "2019-01-16 05:10:23,957 : INFO : PROGRESS: pass 0, at document #2224000/4922894\n", - "2019-01-16 05:10:26,006 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:26,563 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.053*\"australian\" + 0.048*\"new\" + 0.043*\"china\" + 0.032*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", - "2019-01-16 05:10:26,565 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:10:26,566 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:10:26,567 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.025*\"member\" + 0.020*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.015*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"polit\"\n", - "2019-01-16 05:10:26,569 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:10:26,576 : INFO : topic diff=0.005138, rho=0.029988\n", - "2019-01-16 05:10:26,834 : INFO : PROGRESS: pass 0, at document #2226000/4922894\n", - "2019-01-16 05:10:28,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:29,468 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"town\" + 0.022*\"unit\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.016*\"london\" + 0.014*\"wale\" + 0.014*\"west\" + 0.013*\"scottish\"\n", - "2019-01-16 05:10:29,469 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"poland\"\n", - "2019-01-16 05:10:29,472 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:10:29,474 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:10:29,475 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:10:29,481 : INFO : topic diff=0.004660, rho=0.029975\n", - "2019-01-16 05:10:29,730 : INFO : PROGRESS: pass 0, at document #2228000/4922894\n", - "2019-01-16 05:10:31,759 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:32,319 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.010*\"organ\"\n", - "2019-01-16 05:10:32,321 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:10:32,322 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:10:32,324 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.053*\"australian\" + 0.048*\"new\" + 0.043*\"china\" + 0.032*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", - "2019-01-16 05:10:32,325 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"bridg\" + 0.012*\"park\" + 0.012*\"area\"\n", - "2019-01-16 05:10:32,332 : INFO : topic diff=0.004249, rho=0.029961\n", - "2019-01-16 05:10:32,593 : INFO : PROGRESS: pass 0, at document #2230000/4922894\n", - "2019-01-16 05:10:34,635 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:35,198 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"town\" + 0.021*\"unit\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.016*\"london\" + 0.014*\"wale\" + 0.014*\"west\" + 0.013*\"scottish\"\n", - "2019-01-16 05:10:35,200 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"servic\" + 0.010*\"organ\"\n", - "2019-01-16 05:10:35,201 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:10:35,203 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.071*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.053*\"style\" + 0.045*\"center\" + 0.042*\"right\" + 0.037*\"philippin\" + 0.028*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:10:35,204 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.028*\"tournament\" + 0.022*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:10:35,209 : INFO : topic diff=0.004500, rho=0.029948\n", - "2019-01-16 05:10:35,664 : INFO : PROGRESS: pass 0, at document #2232000/4922894\n", - "2019-01-16 05:10:37,720 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:38,284 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.023*\"area\" + 0.022*\"censu\" + 0.022*\"famili\" + 0.020*\"commun\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", - "2019-01-16 05:10:38,286 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"servic\" + 0.010*\"organ\"\n", - "2019-01-16 05:10:38,287 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"poland\"\n", - "2019-01-16 05:10:38,288 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\"\n", - "2019-01-16 05:10:38,290 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:10:38,295 : INFO : topic diff=0.004911, rho=0.029934\n", - "2019-01-16 05:10:38,561 : INFO : PROGRESS: pass 0, at document #2234000/4922894\n", - "2019-01-16 05:10:40,599 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:41,156 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:10:41,157 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", - "2019-01-16 05:10:41,158 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"berlin\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:10:41,160 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 05:10:41,161 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:10:41,168 : INFO : topic diff=0.005397, rho=0.029921\n", - "2019-01-16 05:10:41,435 : INFO : PROGRESS: pass 0, at document #2236000/4922894\n", - "2019-01-16 05:10:43,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:44,032 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"gold\" + 0.018*\"athlet\"\n", - "2019-01-16 05:10:44,034 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.014*\"melbourn\" + 0.013*\"kong\"\n", - "2019-01-16 05:10:44,035 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:10:44,037 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", - "2019-01-16 05:10:44,038 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.019*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"columbia\"\n", - "2019-01-16 05:10:44,043 : INFO : topic diff=0.005478, rho=0.029907\n", - "2019-01-16 05:10:44,299 : INFO : PROGRESS: pass 0, at document #2238000/4922894\n", - "2019-01-16 05:10:46,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:46,876 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"bridg\" + 0.012*\"park\" + 0.012*\"area\"\n", - "2019-01-16 05:10:46,878 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 05:10:46,879 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:10:46,881 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.019*\"quebec\" + 0.017*\"montreal\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"columbia\"\n", - "2019-01-16 05:10:46,882 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:10:46,888 : INFO : topic diff=0.005245, rho=0.029894\n", - "2019-01-16 05:10:51,506 : INFO : -11.819 per-word bound, 3613.0 perplexity estimate based on a held-out corpus of 2000 documents with 544970 words\n", - "2019-01-16 05:10:51,507 : INFO : PROGRESS: pass 0, at document #2240000/4922894\n", - "2019-01-16 05:10:53,473 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:54,032 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 05:10:54,034 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:10:54,035 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"us\"\n", - "2019-01-16 05:10:54,037 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:10:54,038 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:10:54,045 : INFO : topic diff=0.004932, rho=0.029881\n", - "2019-01-16 05:10:54,303 : INFO : PROGRESS: pass 0, at document #2242000/4922894\n", - "2019-01-16 05:10:56,344 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:56,902 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:10:56,903 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:10:56,905 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:10:56,906 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:10:56,907 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.028*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.021*\"point\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:10:56,913 : INFO : topic diff=0.004313, rho=0.029867\n", - "2019-01-16 05:10:57,157 : INFO : PROGRESS: pass 0, at document #2244000/4922894\n", - "2019-01-16 05:10:59,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:10:59,692 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"politician\"\n", - "2019-01-16 05:10:59,693 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:10:59,696 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:10:59,698 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:10:59,700 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.019*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:10:59,705 : INFO : topic diff=0.004376, rho=0.029854\n", - "2019-01-16 05:10:59,995 : INFO : PROGRESS: pass 0, at document #2246000/4922894\n", - "2019-01-16 05:11:02,100 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:02,657 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:11:02,659 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 05:11:02,660 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"bird\"\n", - "2019-01-16 05:11:02,662 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 05:11:02,663 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.012*\"divis\"\n", - "2019-01-16 05:11:02,669 : INFO : topic diff=0.004120, rho=0.029841\n", - "2019-01-16 05:11:02,929 : INFO : PROGRESS: pass 0, at document #2248000/4922894\n", - "2019-01-16 05:11:04,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:05,491 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.012*\"divis\"\n", - "2019-01-16 05:11:05,493 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 05:11:05,495 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.015*\"vietnam\" + 0.014*\"asia\" + 0.014*\"min\"\n", - "2019-01-16 05:11:05,496 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:11:05,498 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:11:05,504 : INFO : topic diff=0.004692, rho=0.029827\n", - "2019-01-16 05:11:05,758 : INFO : PROGRESS: pass 0, at document #2250000/4922894\n", - "2019-01-16 05:11:07,784 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:08,345 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:11:08,347 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.025*\"color\" + 0.018*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:11:08,348 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:11:08,350 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 05:11:08,351 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.074*\"octob\" + 0.074*\"march\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.063*\"june\" + 0.063*\"novemb\" + 0.063*\"august\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:11:08,358 : INFO : topic diff=0.004754, rho=0.029814\n", - "2019-01-16 05:11:08,611 : INFO : PROGRESS: pass 0, at document #2252000/4922894\n", - "2019-01-16 05:11:10,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:11,149 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"politician\"\n", - "2019-01-16 05:11:11,151 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:11:11,152 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.014*\"tamil\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 05:11:11,153 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.012*\"cell\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"cancer\" + 0.009*\"caus\" + 0.008*\"medicin\"\n", - "2019-01-16 05:11:11,154 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.074*\"octob\" + 0.074*\"march\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.063*\"june\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:11:11,160 : INFO : topic diff=0.005037, rho=0.029801\n", - "2019-01-16 05:11:11,411 : INFO : PROGRESS: pass 0, at document #2254000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:11:13,405 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:13,961 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.032*\"citi\" + 0.029*\"ag\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:11:13,963 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"diseas\" + 0.012*\"cell\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"cancer\" + 0.009*\"caus\" + 0.008*\"medicin\"\n", - "2019-01-16 05:11:13,964 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"poland\"\n", - "2019-01-16 05:11:13,966 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:11:13,967 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.030*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.025*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:11:13,973 : INFO : topic diff=0.004458, rho=0.029788\n", - "2019-01-16 05:11:14,243 : INFO : PROGRESS: pass 0, at document #2256000/4922894\n", - "2019-01-16 05:11:16,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:16,861 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.040*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 05:11:16,862 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.022*\"berlin\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:11:16,864 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:11:16,866 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.025*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:11:16,867 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:11:16,873 : INFO : topic diff=0.005973, rho=0.029775\n", - "2019-01-16 05:11:17,139 : INFO : PROGRESS: pass 0, at document #2258000/4922894\n", - "2019-01-16 05:11:19,183 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:19,742 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:11:19,744 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.048*\"univers\" + 0.043*\"colleg\" + 0.040*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 05:11:19,745 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.025*\"town\" + 0.022*\"unit\" + 0.017*\"citi\" + 0.017*\"cricket\" + 0.017*\"scotland\" + 0.015*\"london\" + 0.014*\"west\" + 0.014*\"scottish\" + 0.013*\"wale\"\n", - "2019-01-16 05:11:19,747 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 05:11:19,748 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 05:11:19,754 : INFO : topic diff=0.004407, rho=0.029761\n", - "2019-01-16 05:11:24,361 : INFO : -11.852 per-word bound, 3695.5 perplexity estimate based on a held-out corpus of 2000 documents with 550557 words\n", - "2019-01-16 05:11:24,362 : INFO : PROGRESS: pass 0, at document #2260000/4922894\n", - "2019-01-16 05:11:26,387 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:26,944 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:11:26,945 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"order\" + 0.009*\"right\" + 0.008*\"offic\"\n", - "2019-01-16 05:11:26,946 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:11:26,948 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:11:26,950 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"fish\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 05:11:26,956 : INFO : topic diff=0.004591, rho=0.029748\n", - "2019-01-16 05:11:27,210 : INFO : PROGRESS: pass 0, at document #2262000/4922894\n", - "2019-01-16 05:11:29,257 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:29,814 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:11:29,815 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:11:29,817 : INFO : topic #33 (0.020): 0.030*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"year\" + 0.010*\"product\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:11:29,818 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"order\" + 0.009*\"right\" + 0.008*\"offic\"\n", - "2019-01-16 05:11:29,819 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:11:29,826 : INFO : topic diff=0.005230, rho=0.029735\n", - "2019-01-16 05:11:30,078 : INFO : PROGRESS: pass 0, at document #2264000/4922894\n", - "2019-01-16 05:11:32,049 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:32,606 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"port\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:11:32,607 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.016*\"galleri\"\n", - "2019-01-16 05:11:32,609 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:11:32,612 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:11:32,614 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 05:11:32,620 : INFO : topic diff=0.004782, rho=0.029722\n", - "2019-01-16 05:11:32,872 : INFO : PROGRESS: pass 0, at document #2266000/4922894\n", - "2019-01-16 05:11:34,840 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:35,399 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:11:35,400 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:11:35,402 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.014*\"tamil\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 05:11:35,403 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.016*\"malaysia\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.015*\"asian\" + 0.015*\"vietnam\" + 0.014*\"min\" + 0.014*\"asia\"\n", - "2019-01-16 05:11:35,404 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.025*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.023*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.017*\"rank\"\n", - "2019-01-16 05:11:35,411 : INFO : topic diff=0.004738, rho=0.029709\n", - "2019-01-16 05:11:35,655 : INFO : PROGRESS: pass 0, at document #2268000/4922894\n", - "2019-01-16 05:11:37,602 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:38,160 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"writer\"\n", - "2019-01-16 05:11:38,162 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:11:38,164 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.025*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 05:11:38,166 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.029*\"ag\" + 0.023*\"area\" + 0.022*\"famili\" + 0.022*\"censu\" + 0.020*\"counti\" + 0.020*\"commun\" + 0.020*\"household\"\n", - "2019-01-16 05:11:38,167 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.034*\"indian\" + 0.020*\"http\" + 0.017*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"tamil\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 05:11:38,174 : INFO : topic diff=0.004715, rho=0.029696\n", - "2019-01-16 05:11:38,430 : INFO : PROGRESS: pass 0, at document #2270000/4922894\n", - "2019-01-16 05:11:40,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:41,005 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"return\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 05:11:41,007 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"right\" + 0.009*\"order\" + 0.008*\"offic\"\n", - "2019-01-16 05:11:41,008 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.075*\"octob\" + 0.073*\"march\" + 0.067*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.062*\"june\" + 0.062*\"april\" + 0.062*\"august\" + 0.062*\"decemb\"\n", - "2019-01-16 05:11:41,009 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:11:41,011 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"republ\" + 0.012*\"moscow\" + 0.012*\"politician\"\n", - "2019-01-16 05:11:41,017 : INFO : topic diff=0.004430, rho=0.029683\n", - "2019-01-16 05:11:41,306 : INFO : PROGRESS: pass 0, at document #2272000/4922894\n", - "2019-01-16 05:11:43,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:43,919 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", - "2019-01-16 05:11:43,920 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:11:43,922 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 05:11:43,924 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:11:43,925 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.025*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.023*\"event\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"rank\"\n", - "2019-01-16 05:11:43,931 : INFO : topic diff=0.005278, rho=0.029670\n", - "2019-01-16 05:11:44,200 : INFO : PROGRESS: pass 0, at document #2274000/4922894\n", - "2019-01-16 05:11:46,281 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:46,838 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.025*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.013*\"council\" + 0.012*\"hous\"\n", - "2019-01-16 05:11:46,839 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 05:11:46,842 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 05:11:46,844 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.013*\"tamil\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 05:11:46,845 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:11:46,851 : INFO : topic diff=0.004951, rho=0.029656\n", - "2019-01-16 05:11:47,115 : INFO : PROGRESS: pass 0, at document #2276000/4922894\n", - "2019-01-16 05:11:49,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:49,744 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:11:49,745 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:11:49,747 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.011*\"work\" + 0.010*\"award\"\n", - "2019-01-16 05:11:49,748 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"kong\"\n", - "2019-01-16 05:11:49,750 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 05:11:49,756 : INFO : topic diff=0.004665, rho=0.029643\n", - "2019-01-16 05:11:50,022 : INFO : PROGRESS: pass 0, at document #2278000/4922894\n", - "2019-01-16 05:11:52,082 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:52,639 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.072*\"align\" + 0.063*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.046*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:11:52,640 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"return\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 05:11:52,642 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.010*\"le\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:11:52,643 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.017*\"iran\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.013*\"tamil\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 05:11:52,644 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"method\" + 0.006*\"point\"\n", - "2019-01-16 05:11:52,650 : INFO : topic diff=0.004902, rho=0.029630\n", - "2019-01-16 05:11:57,240 : INFO : -11.635 per-word bound, 3180.7 perplexity estimate based on a held-out corpus of 2000 documents with 541087 words\n", - "2019-01-16 05:11:57,241 : INFO : PROGRESS: pass 0, at document #2280000/4922894\n", - "2019-01-16 05:11:59,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:11:59,816 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 05:11:59,818 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"berlin\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 05:11:59,819 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 05:11:59,821 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.014*\"asia\" + 0.014*\"min\"\n", - "2019-01-16 05:11:59,822 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.016*\"galleri\"\n", - "2019-01-16 05:11:59,828 : INFO : topic diff=0.004717, rho=0.029617\n", - "2019-01-16 05:12:00,089 : INFO : PROGRESS: pass 0, at document #2282000/4922894\n", - "2019-01-16 05:12:02,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:02,706 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:12:02,707 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.038*\"africa\" + 0.033*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.026*\"till\" + 0.024*\"color\" + 0.018*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:12:02,709 : INFO : topic #27 (0.020): 0.060*\"born\" + 0.034*\"russian\" + 0.026*\"american\" + 0.020*\"russia\" + 0.017*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.012*\"republ\" + 0.012*\"israel\" + 0.012*\"moscow\"\n", - "2019-01-16 05:12:02,711 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.065*\"villag\" + 0.050*\"region\" + 0.048*\"north\" + 0.046*\"south\" + 0.046*\"west\" + 0.046*\"east\" + 0.044*\"counti\" + 0.033*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:12:02,712 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:12:02,718 : INFO : topic diff=0.004361, rho=0.029604\n", - "2019-01-16 05:12:02,976 : INFO : PROGRESS: pass 0, at document #2284000/4922894\n", - "2019-01-16 05:12:04,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:05,534 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 05:12:05,536 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.052*\"univers\" + 0.044*\"colleg\" + 0.039*\"student\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 05:12:05,537 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:12:05,539 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.065*\"villag\" + 0.050*\"region\" + 0.048*\"north\" + 0.046*\"west\" + 0.046*\"south\" + 0.046*\"east\" + 0.044*\"counti\" + 0.032*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:12:05,542 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"model\" + 0.007*\"gener\" + 0.006*\"method\" + 0.006*\"point\"\n", - "2019-01-16 05:12:05,549 : INFO : topic diff=0.004165, rho=0.029591\n", - "2019-01-16 05:12:05,808 : INFO : PROGRESS: pass 0, at document #2286000/4922894\n", - "2019-01-16 05:12:07,874 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:08,431 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"jack\"\n", - "2019-01-16 05:12:08,432 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"berlin\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 05:12:08,434 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 05:12:08,435 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.013*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 05:12:08,436 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:12:08,442 : INFO : topic diff=0.004267, rho=0.029579\n", - "2019-01-16 05:12:08,686 : INFO : PROGRESS: pass 0, at document #2288000/4922894\n", - "2019-01-16 05:12:10,709 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:11,265 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.013*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:12:11,266 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.071*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"quebec\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"korea\"\n", - "2019-01-16 05:12:11,268 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"video\"\n", - "2019-01-16 05:12:11,269 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:12:11,271 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:12:11,276 : INFO : topic diff=0.004263, rho=0.029566\n", - "2019-01-16 05:12:11,528 : INFO : PROGRESS: pass 0, at document #2290000/4922894\n", - "2019-01-16 05:12:13,507 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:14,071 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 05:12:14,073 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:12:14,074 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"right\" + 0.009*\"order\" + 0.008*\"offic\"\n", - "2019-01-16 05:12:14,075 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:12:14,077 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:12:14,083 : INFO : topic diff=0.004584, rho=0.029553\n", - "2019-01-16 05:12:14,336 : INFO : PROGRESS: pass 0, at document #2292000/4922894\n", - "2019-01-16 05:12:16,349 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:16,909 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:12:16,911 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:12:16,912 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 05:12:16,914 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.030*\"world\" + 0.025*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.023*\"event\" + 0.020*\"japan\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.017*\"rank\"\n", - "2019-01-16 05:12:16,915 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.018*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.009*\"ford\"\n", - "2019-01-16 05:12:16,921 : INFO : topic diff=0.005141, rho=0.029540\n", - "2019-01-16 05:12:17,172 : INFO : PROGRESS: pass 0, at document #2294000/4922894\n", - "2019-01-16 05:12:19,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:19,708 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.007*\"peopl\" + 0.007*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:12:19,709 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:12:19,711 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:12:19,713 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"jack\"\n", - "2019-01-16 05:12:19,715 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:12:19,721 : INFO : topic diff=0.004832, rho=0.029527\n", - "2019-01-16 05:12:19,979 : INFO : PROGRESS: pass 0, at document #2296000/4922894\n", - "2019-01-16 05:12:22,005 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:22,562 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:12:22,563 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:12:22,565 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:12:22,566 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:12:22,567 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:12:22,573 : INFO : topic diff=0.004233, rho=0.029514\n", - "2019-01-16 05:12:22,869 : INFO : PROGRESS: pass 0, at document #2298000/4922894\n", - "2019-01-16 05:12:24,908 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:25,470 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:12:25,472 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:12:25,473 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:12:25,474 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:12:25,475 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.074*\"align\" + 0.060*\"left\" + 0.058*\"wikit\" + 0.058*\"style\" + 0.050*\"center\" + 0.039*\"right\" + 0.035*\"text\" + 0.032*\"philippin\" + 0.023*\"border\"\n", - "2019-01-16 05:12:25,482 : INFO : topic diff=0.005070, rho=0.029501\n", - "2019-01-16 05:12:29,998 : INFO : -11.754 per-word bound, 3455.0 perplexity estimate based on a held-out corpus of 2000 documents with 530462 words\n", - "2019-01-16 05:12:29,999 : INFO : PROGRESS: pass 0, at document #2300000/4922894\n", - "2019-01-16 05:12:31,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:32,541 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.011*\"port\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:12:32,543 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:12:32,544 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 05:12:32,546 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"empir\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:12:32,547 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:12:32,554 : INFO : topic diff=0.004257, rho=0.029488\n", - "2019-01-16 05:12:32,820 : INFO : PROGRESS: pass 0, at document #2302000/4922894\n", - "2019-01-16 05:12:34,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:35,404 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.010*\"award\"\n", - "2019-01-16 05:12:35,405 : INFO : topic #27 (0.020): 0.057*\"born\" + 0.033*\"russian\" + 0.025*\"american\" + 0.019*\"russia\" + 0.017*\"polish\" + 0.017*\"jewish\" + 0.017*\"soviet\" + 0.013*\"israel\" + 0.012*\"poland\" + 0.012*\"moscow\"\n", - "2019-01-16 05:12:35,406 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"port\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:12:35,408 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.018*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.009*\"ford\"\n", - "2019-01-16 05:12:35,409 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"kong\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:12:35,415 : INFO : topic diff=0.004465, rho=0.029476\n", - "2019-01-16 05:12:35,672 : INFO : PROGRESS: pass 0, at document #2304000/4922894\n", - "2019-01-16 05:12:37,709 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:38,266 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"match\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 05:12:38,267 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.008*\"roman\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 05:12:38,269 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:12:38,270 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:12:38,271 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.014*\"pakistan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", - "2019-01-16 05:12:38,277 : INFO : topic diff=0.004752, rho=0.029463\n", - "2019-01-16 05:12:38,538 : INFO : PROGRESS: pass 0, at document #2306000/4922894\n", - "2019-01-16 05:12:40,571 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:41,127 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.018*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:12:41,128 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.022*\"singapor\" + 0.021*\"kim\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.016*\"vietnam\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 05:12:41,130 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"pennsylvania\" + 0.011*\"washington\"\n", - "2019-01-16 05:12:41,132 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:12:41,134 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"cultur\" + 0.005*\"tradit\"\n", - "2019-01-16 05:12:41,140 : INFO : topic diff=0.004956, rho=0.029450\n", - "2019-01-16 05:12:41,395 : INFO : PROGRESS: pass 0, at document #2308000/4922894\n", - "2019-01-16 05:12:43,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:43,950 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:12:43,951 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:12:43,954 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.021*\"town\" + 0.021*\"unit\" + 0.017*\"cricket\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.015*\"london\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"wale\"\n", - "2019-01-16 05:12:43,956 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 05:12:43,957 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:12:43,963 : INFO : topic diff=0.005338, rho=0.029437\n", - "2019-01-16 05:12:44,218 : INFO : PROGRESS: pass 0, at document #2310000/4922894\n", - "2019-01-16 05:12:46,184 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:46,740 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 05:12:46,742 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:12:46,743 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 05:12:46,745 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:12:46,746 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"doubl\"\n", - "2019-01-16 05:12:46,752 : INFO : topic diff=0.004747, rho=0.029424\n", - "2019-01-16 05:12:47,013 : INFO : PROGRESS: pass 0, at document #2312000/4922894\n", - "2019-01-16 05:12:49,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:49,654 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"centuri\"\n", - "2019-01-16 05:12:49,655 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:12:49,657 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"gun\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"boat\" + 0.010*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:12:49,658 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.030*\"world\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.024*\"event\" + 0.020*\"athlet\" + 0.020*\"japan\" + 0.020*\"medal\" + 0.018*\"rank\"\n", - "2019-01-16 05:12:49,659 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\" + 0.012*\"royal\"\n", - "2019-01-16 05:12:49,665 : INFO : topic diff=0.004022, rho=0.029412\n", - "2019-01-16 05:12:49,941 : INFO : PROGRESS: pass 0, at document #2314000/4922894\n", - "2019-01-16 05:12:52,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:52,613 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:12:52,614 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:12:52,616 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:12:52,617 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:12:52,618 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:12:52,624 : INFO : topic diff=0.004650, rho=0.029399\n", - "2019-01-16 05:12:52,878 : INFO : PROGRESS: pass 0, at document #2316000/4922894\n", - "2019-01-16 05:12:54,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:55,417 : INFO : topic #35 (0.020): 0.028*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"vietnam\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.013*\"min\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:12:55,418 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.061*\"decemb\" + 0.061*\"april\" + 0.060*\"june\" + 0.060*\"august\"\n", - "2019-01-16 05:12:55,420 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.013*\"finish\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"time\" + 0.011*\"championship\" + 0.011*\"year\" + 0.009*\"ford\"\n", - "2019-01-16 05:12:55,421 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:12:55,423 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"tree\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 05:12:55,429 : INFO : topic diff=0.004485, rho=0.029386\n", - "2019-01-16 05:12:55,705 : INFO : PROGRESS: pass 0, at document #2318000/4922894\n", - "2019-01-16 05:12:57,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:12:58,288 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\"\n", - "2019-01-16 05:12:58,290 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.041*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.020*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:12:58,292 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:12:58,293 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.011*\"jazz\" + 0.011*\"opera\"\n", - "2019-01-16 05:12:58,294 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"servic\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\"\n", - "2019-01-16 05:12:58,300 : INFO : topic diff=0.004875, rho=0.029374\n", - "2019-01-16 05:13:03,196 : INFO : -12.308 per-word bound, 5069.5 perplexity estimate based on a held-out corpus of 2000 documents with 553001 words\n", - "2019-01-16 05:13:03,197 : INFO : PROGRESS: pass 0, at document #2320000/4922894\n", - "2019-01-16 05:13:05,221 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:05,781 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 05:13:05,783 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:13:05,784 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:13:05,787 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:13:05,789 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.030*\"world\" + 0.026*\"men\" + 0.024*\"championship\" + 0.024*\"olymp\" + 0.023*\"event\" + 0.021*\"athlet\" + 0.020*\"japan\" + 0.019*\"medal\" + 0.018*\"rank\"\n", - "2019-01-16 05:13:05,796 : INFO : topic diff=0.004435, rho=0.029361\n", - "2019-01-16 05:13:06,057 : INFO : PROGRESS: pass 0, at document #2322000/4922894\n", - "2019-01-16 05:13:08,058 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:08,614 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:13:08,615 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\"\n", - "2019-01-16 05:13:08,617 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:13:08,619 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:13:08,620 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:13:08,626 : INFO : topic diff=0.004572, rho=0.029348\n", - "2019-01-16 05:13:08,915 : INFO : PROGRESS: pass 0, at document #2324000/4922894\n", - "2019-01-16 05:13:10,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:11,480 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 05:13:11,481 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", - "2019-01-16 05:13:11,483 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"cathol\" + 0.012*\"born\"\n", - "2019-01-16 05:13:11,484 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 05:13:11,485 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:13:11,492 : INFO : topic diff=0.005355, rho=0.029336\n", - "2019-01-16 05:13:11,762 : INFO : PROGRESS: pass 0, at document #2326000/4922894\n", - "2019-01-16 05:13:13,799 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:14,355 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.072*\"align\" + 0.057*\"wikit\" + 0.057*\"left\" + 0.055*\"style\" + 0.047*\"center\" + 0.039*\"right\" + 0.034*\"text\" + 0.031*\"philippin\" + 0.025*\"border\"\n", - "2019-01-16 05:13:14,357 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.053*\"univers\" + 0.045*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:13:14,358 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 05:13:14,359 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.048*\"north\" + 0.047*\"east\" + 0.046*\"south\" + 0.045*\"west\" + 0.044*\"counti\" + 0.032*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:13:14,360 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:13:14,367 : INFO : topic diff=0.004315, rho=0.029323\n", - "2019-01-16 05:13:14,633 : INFO : PROGRESS: pass 0, at document #2328000/4922894\n", - "2019-01-16 05:13:16,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:17,260 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:13:17,261 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.018*\"team\" + 0.018*\"car\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"time\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"stage\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:13:17,263 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"jazz\"\n", - "2019-01-16 05:13:17,264 : INFO : topic #35 (0.020): 0.027*\"lee\" + 0.021*\"kim\" + 0.021*\"singapor\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"vietnam\" + 0.015*\"asian\" + 0.015*\"asia\" + 0.013*\"min\"\n", - "2019-01-16 05:13:17,266 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.022*\"town\" + 0.020*\"unit\" + 0.017*\"scotland\" + 0.017*\"cricket\" + 0.016*\"citi\" + 0.016*\"london\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 05:13:17,271 : INFO : topic diff=0.004308, rho=0.029311\n", - "2019-01-16 05:13:17,546 : INFO : PROGRESS: pass 0, at document #2330000/4922894\n", - "2019-01-16 05:13:19,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:20,160 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 05:13:20,162 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:13:20,164 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:13:20,165 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:13:20,167 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:13:20,173 : INFO : topic diff=0.005455, rho=0.029298\n", - "2019-01-16 05:13:20,432 : INFO : PROGRESS: pass 0, at document #2332000/4922894\n", - "2019-01-16 05:13:22,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:22,993 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\"\n", - "2019-01-16 05:13:22,995 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.069*\"align\" + 0.059*\"wikit\" + 0.055*\"left\" + 0.055*\"style\" + 0.046*\"center\" + 0.038*\"right\" + 0.033*\"text\" + 0.032*\"philippin\" + 0.025*\"border\"\n", - "2019-01-16 05:13:22,996 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 05:13:22,999 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:13:23,001 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:13:23,006 : INFO : topic diff=0.004955, rho=0.029285\n", - "2019-01-16 05:13:23,263 : INFO : PROGRESS: pass 0, at document #2334000/4922894\n", - "2019-01-16 05:13:25,242 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:25,799 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.020*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:13:25,800 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.062*\"april\" + 0.062*\"august\" + 0.062*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:13:25,801 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"design\"\n", - "2019-01-16 05:13:25,803 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.015*\"mexico\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 05:13:25,804 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"ali\"\n", - "2019-01-16 05:13:25,810 : INFO : topic diff=0.004775, rho=0.029273\n", - "2019-01-16 05:13:26,070 : INFO : PROGRESS: pass 0, at document #2336000/4922894\n", - "2019-01-16 05:13:28,059 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:28,616 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 05:13:28,617 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:13:28,619 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", - "2019-01-16 05:13:28,621 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.039*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.027*\"color\" + 0.026*\"text\" + 0.024*\"till\" + 0.021*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", - "2019-01-16 05:13:28,622 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:13:28,628 : INFO : topic diff=0.004267, rho=0.029260\n", - "2019-01-16 05:13:28,884 : INFO : PROGRESS: pass 0, at document #2338000/4922894\n", - "2019-01-16 05:13:30,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:31,477 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", - "2019-01-16 05:13:31,479 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:13:31,480 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"point\" + 0.006*\"group\"\n", - "2019-01-16 05:13:31,482 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.020*\"episod\" + 0.020*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:13:31,483 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"design\"\n", - "2019-01-16 05:13:31,489 : INFO : topic diff=0.004412, rho=0.029248\n", - "2019-01-16 05:13:35,993 : INFO : -11.577 per-word bound, 3054.6 perplexity estimate based on a held-out corpus of 2000 documents with 538409 words\n", - "2019-01-16 05:13:35,994 : INFO : PROGRESS: pass 0, at document #2340000/4922894\n", - "2019-01-16 05:13:38,007 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:38,564 : INFO : topic #4 (0.020): 0.128*\"school\" + 0.052*\"univers\" + 0.045*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:13:38,566 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:13:38,567 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.048*\"north\" + 0.046*\"east\" + 0.046*\"south\" + 0.044*\"west\" + 0.043*\"counti\" + 0.033*\"provinc\" + 0.027*\"central\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:13:38,568 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:13:38,570 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 05:13:38,577 : INFO : topic diff=0.003934, rho=0.029235\n", - "2019-01-16 05:13:38,854 : INFO : PROGRESS: pass 0, at document #2342000/4922894\n", - "2019-01-16 05:13:40,909 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:41,471 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"point\" + 0.006*\"group\"\n", - "2019-01-16 05:13:41,473 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\"\n", - "2019-01-16 05:13:41,474 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 05:13:41,476 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:13:41,477 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:13:41,483 : INFO : topic diff=0.006778, rho=0.029223\n", - "2019-01-16 05:13:41,734 : INFO : PROGRESS: pass 0, at document #2344000/4922894\n", - "2019-01-16 05:13:43,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:44,265 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 05:13:44,266 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:13:44,268 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.012*\"cell\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"medicin\" + 0.009*\"caus\" + 0.008*\"effect\"\n", - "2019-01-16 05:13:44,269 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.011*\"islam\"\n", - "2019-01-16 05:13:44,270 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.065*\"align\" + 0.059*\"wikit\" + 0.055*\"style\" + 0.053*\"left\" + 0.046*\"center\" + 0.040*\"right\" + 0.033*\"philippin\" + 0.032*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:13:44,277 : INFO : topic diff=0.004685, rho=0.029210\n", - "2019-01-16 05:13:44,542 : INFO : PROGRESS: pass 0, at document #2346000/4922894\n", - "2019-01-16 05:13:46,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:47,094 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:13:47,096 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:13:47,098 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:13:47,100 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"sir\" + 0.015*\"royal\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 05:13:47,101 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.068*\"januari\" + 0.066*\"juli\" + 0.066*\"novemb\" + 0.064*\"april\" + 0.064*\"august\" + 0.063*\"june\" + 0.063*\"decemb\"\n", - "2019-01-16 05:13:47,108 : INFO : topic diff=0.004732, rho=0.029198\n", - "2019-01-16 05:13:47,356 : INFO : PROGRESS: pass 0, at document #2348000/4922894\n", - "2019-01-16 05:13:49,408 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:49,967 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:13:49,969 : INFO : topic #44 (0.020): 0.028*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:13:49,971 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:13:49,973 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:13:49,974 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.031*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.022*\"area\" + 0.022*\"censu\" + 0.020*\"commun\" + 0.020*\"household\" + 0.020*\"counti\"\n", - "2019-01-16 05:13:49,980 : INFO : topic diff=0.003993, rho=0.029185\n", - "2019-01-16 05:13:50,274 : INFO : PROGRESS: pass 0, at document #2350000/4922894\n", - "2019-01-16 05:13:52,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:52,890 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:13:52,892 : INFO : topic #4 (0.020): 0.127*\"school\" + 0.052*\"univers\" + 0.046*\"colleg\" + 0.039*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:13:52,893 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.016*\"squadron\" + 0.015*\"flight\" + 0.014*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:13:52,894 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.026*\"color\" + 0.026*\"text\" + 0.024*\"till\" + 0.022*\"black\" + 0.013*\"cape\" + 0.012*\"storm\"\n", - "2019-01-16 05:13:52,896 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:13:52,901 : INFO : topic diff=0.004690, rho=0.029173\n", - "2019-01-16 05:13:53,160 : INFO : PROGRESS: pass 0, at document #2352000/4922894\n", - "2019-01-16 05:13:55,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:55,746 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.062*\"villag\" + 0.053*\"region\" + 0.048*\"north\" + 0.046*\"east\" + 0.046*\"south\" + 0.045*\"west\" + 0.043*\"counti\" + 0.033*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:13:55,747 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.025*\"championship\" + 0.023*\"event\" + 0.020*\"japan\" + 0.020*\"medal\" + 0.020*\"athlet\" + 0.017*\"rank\"\n", - "2019-01-16 05:13:55,749 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"centuri\" + 0.009*\"church\"\n", - "2019-01-16 05:13:55,751 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"medicin\" + 0.008*\"cancer\"\n", - "2019-01-16 05:13:55,753 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:13:55,758 : INFO : topic diff=0.004087, rho=0.029161\n", - "2019-01-16 05:13:56,005 : INFO : PROGRESS: pass 0, at document #2354000/4922894\n", - "2019-01-16 05:13:57,948 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:13:58,507 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:13:58,508 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:13:58,510 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.011*\"award\"\n", - "2019-01-16 05:13:58,511 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:13:58,512 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.019*\"open\" + 0.019*\"point\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:13:58,518 : INFO : topic diff=0.005366, rho=0.029148\n", - "2019-01-16 05:13:58,780 : INFO : PROGRESS: pass 0, at document #2356000/4922894\n", - "2019-01-16 05:14:00,738 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:01,297 : INFO : topic #31 (0.020): 0.059*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.044*\"china\" + 0.034*\"chines\" + 0.034*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"kong\"\n", - "2019-01-16 05:14:01,298 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"ali\"\n", - "2019-01-16 05:14:01,300 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.010*\"author\"\n", - "2019-01-16 05:14:01,301 : INFO : topic #34 (0.020): 0.106*\"island\" + 0.070*\"canada\" + 0.059*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.016*\"korean\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:14:01,303 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"order\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:14:01,310 : INFO : topic diff=0.004754, rho=0.029136\n", - "2019-01-16 05:14:01,560 : INFO : PROGRESS: pass 0, at document #2358000/4922894\n", - "2019-01-16 05:14:03,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:04,082 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:14:04,083 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.009*\"air\"\n", - "2019-01-16 05:14:04,085 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.018*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.016*\"team\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:14:04,086 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"regiment\" + 0.012*\"offic\" + 0.012*\"divis\"\n", - "2019-01-16 05:14:04,087 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"ali\"\n", - "2019-01-16 05:14:04,094 : INFO : topic diff=0.004216, rho=0.029123\n", - "2019-01-16 05:14:08,634 : INFO : -11.713 per-word bound, 3357.0 perplexity estimate based on a held-out corpus of 2000 documents with 549560 words\n", - "2019-01-16 05:14:08,635 : INFO : PROGRESS: pass 0, at document #2360000/4922894\n", - "2019-01-16 05:14:10,657 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:11,214 : INFO : topic #26 (0.020): 0.034*\"women\" + 0.030*\"world\" + 0.026*\"men\" + 0.025*\"olymp\" + 0.024*\"championship\" + 0.023*\"event\" + 0.020*\"japan\" + 0.020*\"medal\" + 0.020*\"athlet\" + 0.017*\"rank\"\n", - "2019-01-16 05:14:11,216 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:14:11,217 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 05:14:11,218 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.006*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:14:11,220 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"design\"\n", - "2019-01-16 05:14:11,225 : INFO : topic diff=0.005136, rho=0.029111\n", - "2019-01-16 05:14:11,488 : INFO : PROGRESS: pass 0, at document #2362000/4922894\n", - "2019-01-16 05:14:13,529 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:14,089 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"town\" + 0.020*\"unit\" + 0.019*\"cricket\" + 0.018*\"scotland\" + 0.017*\"citi\" + 0.016*\"london\" + 0.016*\"scottish\" + 0.013*\"west\" + 0.012*\"wale\"\n", - "2019-01-16 05:14:14,090 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:14:14,092 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.007*\"light\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"high\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"temperatur\"\n", - "2019-01-16 05:14:14,093 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.022*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:14:14,095 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"player\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"design\"\n", - "2019-01-16 05:14:14,100 : INFO : topic diff=0.004796, rho=0.029099\n", - "2019-01-16 05:14:14,359 : INFO : PROGRESS: pass 0, at document #2364000/4922894\n", - "2019-01-16 05:14:16,382 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:16,963 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"design\"\n", - "2019-01-16 05:14:16,965 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:14:16,967 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:14:16,968 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"town\" + 0.020*\"unit\" + 0.020*\"cricket\" + 0.018*\"scotland\" + 0.016*\"citi\" + 0.016*\"scottish\" + 0.015*\"london\" + 0.013*\"west\" + 0.013*\"manchest\"\n", - "2019-01-16 05:14:16,969 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:14:16,975 : INFO : topic diff=0.004194, rho=0.029086\n", - "2019-01-16 05:14:17,245 : INFO : PROGRESS: pass 0, at document #2366000/4922894\n", - "2019-01-16 05:14:19,300 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:14:19,857 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:14:19,859 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.025*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:14:19,860 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:14:19,862 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 05:14:19,863 : INFO : topic #40 (0.020): 0.040*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.030*\"south\" + 0.025*\"color\" + 0.025*\"text\" + 0.023*\"till\" + 0.021*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:14:19,869 : INFO : topic diff=0.004662, rho=0.029074\n", - "2019-01-16 05:14:20,127 : INFO : PROGRESS: pass 0, at document #2368000/4922894\n", - "2019-01-16 05:14:22,174 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:22,731 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:14:22,733 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"high\" + 0.005*\"us\" + 0.005*\"effect\" + 0.004*\"form\"\n", - "2019-01-16 05:14:22,735 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:14:22,736 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.016*\"team\" + 0.015*\"championship\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:14:22,737 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"order\" + 0.008*\"right\" + 0.008*\"offic\"\n", - "2019-01-16 05:14:22,743 : INFO : topic diff=0.003698, rho=0.029062\n", - "2019-01-16 05:14:22,994 : INFO : PROGRESS: pass 0, at document #2370000/4922894\n", - "2019-01-16 05:14:24,977 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:25,541 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"town\" + 0.020*\"unit\" + 0.020*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.016*\"london\" + 0.015*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 05:14:25,542 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.062*\"villag\" + 0.053*\"region\" + 0.048*\"north\" + 0.047*\"east\" + 0.045*\"south\" + 0.044*\"counti\" + 0.044*\"west\" + 0.032*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 05:14:25,544 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.023*\"group\" + 0.020*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:14:25,545 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.019*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 05:14:25,546 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"direct\" + 0.011*\"produc\"\n", - "2019-01-16 05:14:25,552 : INFO : topic diff=0.004457, rho=0.029050\n", - "2019-01-16 05:14:25,807 : INFO : PROGRESS: pass 0, at document #2372000/4922894\n", - "2019-01-16 05:14:27,867 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:28,426 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"polit\" + 0.010*\"war\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:14:28,427 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.011*\"medicin\" + 0.009*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"cancer\"\n", - "2019-01-16 05:14:28,428 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"regiment\" + 0.012*\"offic\" + 0.011*\"divis\"\n", - "2019-01-16 05:14:28,430 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:14:28,431 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 05:14:28,437 : INFO : topic diff=0.005013, rho=0.029037\n", - "2019-01-16 05:14:28,712 : INFO : PROGRESS: pass 0, at document #2374000/4922894\n", - "2019-01-16 05:14:30,683 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:31,239 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.029*\"south\" + 0.025*\"text\" + 0.025*\"color\" + 0.023*\"till\" + 0.022*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:14:31,240 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:14:31,242 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.072*\"align\" + 0.063*\"left\" + 0.058*\"wikit\" + 0.053*\"style\" + 0.044*\"center\" + 0.039*\"right\" + 0.035*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:14:31,243 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.012*\"ali\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", - "2019-01-16 05:14:31,247 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:14:31,254 : INFO : topic diff=0.004296, rho=0.029025\n", - "2019-01-16 05:14:31,511 : INFO : PROGRESS: pass 0, at document #2376000/4922894\n", - "2019-01-16 05:14:33,555 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:34,111 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:14:34,113 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:14:34,115 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:14:34,116 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:14:34,117 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"town\" + 0.020*\"unit\" + 0.020*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.016*\"london\" + 0.015*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:14:34,123 : INFO : topic diff=0.004391, rho=0.029013\n", - "2019-01-16 05:14:34,385 : INFO : PROGRESS: pass 0, at document #2378000/4922894\n", - "2019-01-16 05:14:36,536 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:37,093 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:14:37,094 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.073*\"octob\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.064*\"decemb\" + 0.063*\"april\" + 0.063*\"august\" + 0.063*\"june\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:14:37,095 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.019*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 05:14:37,096 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:14:37,098 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:14:37,103 : INFO : topic diff=0.004497, rho=0.029001\n", - "2019-01-16 05:14:41,753 : INFO : -11.568 per-word bound, 3036.3 perplexity estimate based on a held-out corpus of 2000 documents with 564354 words\n", - "2019-01-16 05:14:41,753 : INFO : PROGRESS: pass 0, at document #2380000/4922894\n", - "2019-01-16 05:14:43,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:44,355 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.022*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:14:44,356 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"town\" + 0.020*\"unit\" + 0.020*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.016*\"london\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:14:44,358 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", - "2019-01-16 05:14:44,360 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:14:44,361 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:14:44,367 : INFO : topic diff=0.004821, rho=0.028989\n", - "2019-01-16 05:14:44,627 : INFO : PROGRESS: pass 0, at document #2382000/4922894\n", - "2019-01-16 05:14:46,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:47,275 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:14:47,276 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.062*\"villag\" + 0.052*\"region\" + 0.048*\"north\" + 0.047*\"east\" + 0.045*\"south\" + 0.044*\"counti\" + 0.043*\"west\" + 0.032*\"provinc\" + 0.029*\"central\"\n", - "2019-01-16 05:14:47,278 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.050*\"univers\" + 0.044*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:14:47,279 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"servic\" + 0.011*\"award\"\n", - "2019-01-16 05:14:47,280 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:14:47,286 : INFO : topic diff=0.004443, rho=0.028976\n", - "2019-01-16 05:14:47,537 : INFO : PROGRESS: pass 0, at document #2384000/4922894\n", - "2019-01-16 05:14:49,575 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:50,135 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.035*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:14:50,136 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.012*\"ali\"\n", - "2019-01-16 05:14:50,139 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"cricket\" + 0.022*\"town\" + 0.020*\"unit\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.016*\"london\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:14:50,140 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:14:50,142 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:14:50,148 : INFO : topic diff=0.003983, rho=0.028964\n", - "2019-01-16 05:14:50,410 : INFO : PROGRESS: pass 0, at document #2386000/4922894\n", - "2019-01-16 05:14:52,451 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:53,009 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:14:53,010 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.052*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:14:53,012 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:14:53,013 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:14:53,014 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.010*\"medicin\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\"\n", - "2019-01-16 05:14:53,020 : INFO : topic diff=0.004398, rho=0.028952\n", - "2019-01-16 05:14:53,283 : INFO : PROGRESS: pass 0, at document #2388000/4922894\n", - "2019-01-16 05:14:55,270 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:55,825 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:14:55,827 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:14:55,828 : INFO : topic #34 (0.020): 0.103*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", - "2019-01-16 05:14:55,829 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.016*\"team\" + 0.013*\"champion\" + 0.012*\"defeat\"\n", - "2019-01-16 05:14:55,830 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"team\" + 0.033*\"plai\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:14:55,836 : INFO : topic diff=0.004553, rho=0.028940\n", - "2019-01-16 05:14:56,101 : INFO : PROGRESS: pass 0, at document #2390000/4922894\n", - "2019-01-16 05:14:58,120 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:14:58,676 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.023*\"till\" + 0.023*\"color\" + 0.021*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:14:58,678 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:14:58,679 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:14:58,681 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:14:58,682 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", - "2019-01-16 05:14:58,688 : INFO : topic diff=0.003773, rho=0.028928\n", - "2019-01-16 05:14:58,942 : INFO : PROGRESS: pass 0, at document #2392000/4922894\n", - "2019-01-16 05:15:00,941 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:01,503 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.012*\"tamil\" + 0.012*\"sri\" + 0.011*\"islam\"\n", - "2019-01-16 05:15:01,506 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 05:15:01,507 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:15:01,509 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:15:01,510 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:15:01,515 : INFO : topic diff=0.004834, rho=0.028916\n", - "2019-01-16 05:15:01,779 : INFO : PROGRESS: pass 0, at document #2394000/4922894\n", - "2019-01-16 05:15:04,027 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:04,590 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:15:04,592 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.069*\"align\" + 0.061*\"left\" + 0.059*\"wikit\" + 0.053*\"style\" + 0.044*\"center\" + 0.038*\"right\" + 0.033*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:15:04,593 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.024*\"color\" + 0.021*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:15:04,595 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:15:04,596 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:15:04,602 : INFO : topic diff=0.004141, rho=0.028904\n", - "2019-01-16 05:15:04,858 : INFO : PROGRESS: pass 0, at document #2396000/4922894\n", - "2019-01-16 05:15:06,861 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:07,419 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"championship\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"year\"\n", - "2019-01-16 05:15:07,420 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", - "2019-01-16 05:15:07,421 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:15:07,423 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:15:07,424 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"son\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.013*\"year\" + 0.012*\"daughter\"\n", - "2019-01-16 05:15:07,430 : INFO : topic diff=0.004133, rho=0.028892\n", - "2019-01-16 05:15:07,690 : INFO : PROGRESS: pass 0, at document #2398000/4922894\n", - "2019-01-16 05:15:09,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:10,271 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:15:10,272 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.013*\"champion\" + 0.012*\"defeat\"\n", - "2019-01-16 05:15:10,274 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:15:10,275 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 05:15:10,276 : INFO : topic #34 (0.020): 0.103*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.017*\"british\" + 0.016*\"korean\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", - "2019-01-16 05:15:10,282 : INFO : topic diff=0.004845, rho=0.028880\n", - "2019-01-16 05:15:14,842 : INFO : -11.643 per-word bound, 3198.9 perplexity estimate based on a held-out corpus of 2000 documents with 540912 words\n", - "2019-01-16 05:15:14,843 : INFO : PROGRESS: pass 0, at document #2400000/4922894\n", - "2019-01-16 05:15:16,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:17,391 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:15:17,393 : INFO : topic #26 (0.020): 0.035*\"women\" + 0.030*\"world\" + 0.026*\"olymp\" + 0.026*\"men\" + 0.025*\"championship\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"rank\"\n", - "2019-01-16 05:15:17,394 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:15:17,396 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 05:15:17,397 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.023*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:15:17,403 : INFO : topic diff=0.003563, rho=0.028868\n", - "2019-01-16 05:15:17,669 : INFO : PROGRESS: pass 0, at document #2402000/4922894\n", - "2019-01-16 05:15:19,747 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:20,303 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.013*\"televis\" + 0.012*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.009*\"air\"\n", - "2019-01-16 05:15:20,304 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:15:20,306 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.067*\"align\" + 0.061*\"left\" + 0.059*\"wikit\" + 0.053*\"style\" + 0.044*\"center\" + 0.037*\"right\" + 0.034*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:15:20,307 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"championship\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"year\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:15:20,309 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:15:20,315 : INFO : topic diff=0.005193, rho=0.028855\n", - "2019-01-16 05:15:20,572 : INFO : PROGRESS: pass 0, at document #2404000/4922894\n", - "2019-01-16 05:15:22,585 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:23,141 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:15:23,143 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:15:23,145 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:15:23,146 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:15:23,148 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"method\"\n", - "2019-01-16 05:15:23,155 : INFO : topic diff=0.003970, rho=0.028843\n", - "2019-01-16 05:15:23,417 : INFO : PROGRESS: pass 0, at document #2406000/4922894\n", - "2019-01-16 05:15:25,436 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:25,995 : INFO : topic #34 (0.020): 0.101*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.017*\"british\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", - "2019-01-16 05:15:25,997 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:15:25,998 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.007*\"robert\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:15:26,000 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.028*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:15:26,003 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 05:15:26,009 : INFO : topic diff=0.004432, rho=0.028831\n", - "2019-01-16 05:15:26,265 : INFO : PROGRESS: pass 0, at document #2408000/4922894\n", - "2019-01-16 05:15:28,277 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:28,838 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 05:15:28,840 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.011*\"servic\"\n", - "2019-01-16 05:15:28,841 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.065*\"april\" + 0.064*\"june\" + 0.064*\"decemb\" + 0.063*\"august\"\n", - "2019-01-16 05:15:28,843 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:15:28,844 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:15:28,850 : INFO : topic diff=0.004418, rho=0.028820\n", - "2019-01-16 05:15:29,100 : INFO : PROGRESS: pass 0, at document #2410000/4922894\n", - "2019-01-16 05:15:31,002 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:31,559 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:15:31,560 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"term\" + 0.005*\"tradit\"\n", - "2019-01-16 05:15:31,562 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 05:15:31,563 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"method\"\n", - "2019-01-16 05:15:31,565 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:15:31,571 : INFO : topic diff=0.004306, rho=0.028808\n", - "2019-01-16 05:15:31,826 : INFO : PROGRESS: pass 0, at document #2412000/4922894\n", - "2019-01-16 05:15:33,786 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:34,344 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:15:34,345 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:15:34,347 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:15:34,348 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.061*\"villag\" + 0.052*\"region\" + 0.047*\"east\" + 0.046*\"north\" + 0.044*\"south\" + 0.044*\"west\" + 0.043*\"counti\" + 0.032*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:15:34,349 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.014*\"royal\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\"\n", - "2019-01-16 05:15:34,355 : INFO : topic diff=0.004769, rho=0.028796\n", - "2019-01-16 05:15:34,613 : INFO : PROGRESS: pass 0, at document #2414000/4922894\n", - "2019-01-16 05:15:36,674 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:37,231 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.012*\"ali\" + 0.011*\"sri\" + 0.011*\"islam\"\n", - "2019-01-16 05:15:37,233 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:15:37,234 : INFO : topic #34 (0.020): 0.101*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"montreal\" + 0.014*\"korea\" + 0.014*\"quebec\"\n", - "2019-01-16 05:15:37,236 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:15:37,237 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:15:37,243 : INFO : topic diff=0.004177, rho=0.028784\n", - "2019-01-16 05:15:37,505 : INFO : PROGRESS: pass 0, at document #2416000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:15:39,550 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:40,109 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.029*\"airport\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:15:40,110 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:15:40,113 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:15:40,114 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.043*\"final\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.020*\"open\" + 0.020*\"winner\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"doubl\"\n", - "2019-01-16 05:15:40,115 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:15:40,121 : INFO : topic diff=0.004065, rho=0.028772\n", - "2019-01-16 05:15:40,393 : INFO : PROGRESS: pass 0, at document #2418000/4922894\n", - "2019-01-16 05:15:42,381 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:42,940 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.019*\"match\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"team\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:15:42,941 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:15:42,943 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 05:15:42,944 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.021*\"british\" + 0.018*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"royal\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:15:42,946 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:15:42,951 : INFO : topic diff=0.004532, rho=0.028760\n", - "2019-01-16 05:15:47,630 : INFO : -11.635 per-word bound, 3181.4 perplexity estimate based on a held-out corpus of 2000 documents with 561255 words\n", - "2019-01-16 05:15:47,631 : INFO : PROGRESS: pass 0, at document #2420000/4922894\n", - "2019-01-16 05:15:49,694 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:50,252 : INFO : topic #34 (0.020): 0.102*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.016*\"british\" + 0.015*\"korean\" + 0.014*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", - "2019-01-16 05:15:50,253 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\"\n", - "2019-01-16 05:15:50,254 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:15:50,255 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.020*\"russia\" + 0.019*\"polish\" + 0.019*\"jewish\" + 0.018*\"soviet\" + 0.015*\"israel\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", - "2019-01-16 05:15:50,257 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.023*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"asian\" + 0.015*\"vietnam\" + 0.013*\"hong\"\n", - "2019-01-16 05:15:50,262 : INFO : topic diff=0.004891, rho=0.028748\n", - "2019-01-16 05:15:50,529 : INFO : PROGRESS: pass 0, at document #2422000/4922894\n", - "2019-01-16 05:15:52,568 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:53,124 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"us\" + 0.008*\"releas\" + 0.007*\"player\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:15:53,126 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:15:53,127 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.014*\"piano\" + 0.014*\"orchestra\" + 0.012*\"opera\"\n", - "2019-01-16 05:15:53,129 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:15:53,130 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:15:53,136 : INFO : topic diff=0.004946, rho=0.028736\n", - "2019-01-16 05:15:53,385 : INFO : PROGRESS: pass 0, at document #2424000/4922894\n", - "2019-01-16 05:15:55,392 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:55,950 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"fleet\"\n", - "2019-01-16 05:15:55,951 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.021*\"open\" + 0.021*\"group\" + 0.020*\"winner\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"doubl\"\n", - "2019-01-16 05:15:55,953 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:15:55,954 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:15:55,955 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:15:55,961 : INFO : topic diff=0.003987, rho=0.028724\n", - "2019-01-16 05:15:56,244 : INFO : PROGRESS: pass 0, at document #2426000/4922894\n", - "2019-01-16 05:15:58,179 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:15:58,735 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.068*\"juli\" + 0.067*\"novemb\" + 0.066*\"april\" + 0.065*\"june\" + 0.065*\"august\" + 0.064*\"decemb\"\n", - "2019-01-16 05:15:58,737 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.023*\"act\" + 0.021*\"court\" + 0.016*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 05:15:58,738 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:15:58,739 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:15:58,741 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.012*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:15:58,747 : INFO : topic diff=0.004509, rho=0.028712\n", - "2019-01-16 05:15:58,999 : INFO : PROGRESS: pass 0, at document #2428000/4922894\n", - "2019-01-16 05:16:01,019 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:01,575 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.019*\"design\" + 0.019*\"imag\" + 0.017*\"exhibit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:16:01,577 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"ali\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"sri\"\n", - "2019-01-16 05:16:01,578 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 05:16:01,580 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"protein\" + 0.007*\"us\" + 0.007*\"ga\"\n", - "2019-01-16 05:16:01,581 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"team\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:16:01,587 : INFO : topic diff=0.004202, rho=0.028701\n", - "2019-01-16 05:16:01,846 : INFO : PROGRESS: pass 0, at document #2430000/4922894\n", - "2019-01-16 05:16:03,904 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:04,463 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"team\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:16:04,464 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.047*\"univers\" + 0.043*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:16:04,465 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.024*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.011*\"cape\"\n", - "2019-01-16 05:16:04,467 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:16:04,468 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.068*\"align\" + 0.059*\"wikit\" + 0.058*\"left\" + 0.054*\"style\" + 0.047*\"center\" + 0.036*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:16:04,474 : INFO : topic diff=0.004362, rho=0.028689\n", - "2019-01-16 05:16:04,732 : INFO : PROGRESS: pass 0, at document #2432000/4922894\n", - "2019-01-16 05:16:06,681 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:07,241 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:16:07,242 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:16:07,243 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.062*\"villag\" + 0.051*\"region\" + 0.046*\"east\" + 0.046*\"north\" + 0.045*\"west\" + 0.044*\"south\" + 0.042*\"counti\" + 0.032*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:16:07,245 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", - "2019-01-16 05:16:07,246 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.024*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.011*\"cape\"\n", - "2019-01-16 05:16:07,252 : INFO : topic diff=0.004643, rho=0.028677\n", - "2019-01-16 05:16:07,507 : INFO : PROGRESS: pass 0, at document #2434000/4922894\n", - "2019-01-16 05:16:09,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:10,004 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.019*\"design\" + 0.019*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:16:10,006 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.030*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:16:10,007 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:16:10,011 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:16:10,014 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.067*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.053*\"style\" + 0.047*\"center\" + 0.036*\"right\" + 0.033*\"philippin\" + 0.029*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:16:10,020 : INFO : topic diff=0.004786, rho=0.028665\n", - "2019-01-16 05:16:10,273 : INFO : PROGRESS: pass 0, at document #2436000/4922894\n", - "2019-01-16 05:16:12,253 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:12,809 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:16:12,811 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:16:12,812 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.069*\"juli\" + 0.068*\"januari\" + 0.067*\"novemb\" + 0.066*\"june\" + 0.066*\"april\" + 0.066*\"august\" + 0.065*\"decemb\"\n", - "2019-01-16 05:16:12,813 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.023*\"color\" + 0.022*\"black\" + 0.012*\"storm\" + 0.011*\"cape\"\n", - "2019-01-16 05:16:12,814 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:16:12,820 : INFO : topic diff=0.003731, rho=0.028653\n", - "2019-01-16 05:16:13,079 : INFO : PROGRESS: pass 0, at document #2438000/4922894\n", - "2019-01-16 05:16:15,158 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:15,716 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:16:15,717 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.026*\"tournament\" + 0.022*\"open\" + 0.020*\"winner\" + 0.020*\"group\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:16:15,719 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:16:15,720 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:16:15,723 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.020*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.016*\"scotland\" + 0.016*\"citi\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.013*\"wale\"\n", - "2019-01-16 05:16:15,729 : INFO : topic diff=0.004939, rho=0.028642\n", - "2019-01-16 05:16:20,299 : INFO : -11.508 per-word bound, 2912.3 perplexity estimate based on a held-out corpus of 2000 documents with 547313 words\n", - "2019-01-16 05:16:20,300 : INFO : PROGRESS: pass 0, at document #2440000/4922894\n", - "2019-01-16 05:16:22,298 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:22,855 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.007*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:16:22,856 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:16:22,858 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", - "2019-01-16 05:16:22,859 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.015*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:16:22,860 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:16:22,866 : INFO : topic diff=0.004760, rho=0.028630\n", - "2019-01-16 05:16:23,126 : INFO : PROGRESS: pass 0, at document #2442000/4922894\n", - "2019-01-16 05:16:25,166 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:25,722 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 05:16:25,724 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 05:16:25,725 : INFO : topic #34 (0.020): 0.100*\"island\" + 0.072*\"canada\" + 0.062*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"british\" + 0.014*\"korean\" + 0.014*\"korea\" + 0.014*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 05:16:25,727 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.017*\"thailand\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.013*\"hong\"\n", - "2019-01-16 05:16:25,728 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.011*\"servic\" + 0.011*\"scienc\" + 0.011*\"award\"\n", - "2019-01-16 05:16:25,734 : INFO : topic diff=0.004121, rho=0.028618\n", - "2019-01-16 05:16:25,995 : INFO : PROGRESS: pass 0, at document #2444000/4922894\n", - "2019-01-16 05:16:27,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:28,535 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"april\" + 0.066*\"novemb\" + 0.065*\"august\" + 0.064*\"june\" + 0.063*\"decemb\"\n", - "2019-01-16 05:16:28,538 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:16:28,539 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:16:28,541 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.013*\"orchestra\" + 0.012*\"opera\"\n", - "2019-01-16 05:16:28,542 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:16:28,548 : INFO : topic diff=0.004893, rho=0.028606\n", - "2019-01-16 05:16:28,803 : INFO : PROGRESS: pass 0, at document #2446000/4922894\n", - "2019-01-16 05:16:30,834 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:31,390 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:16:31,391 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"singapor\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"hong\"\n", - "2019-01-16 05:16:31,393 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:16:31,394 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.056*\"left\" + 0.052*\"style\" + 0.046*\"center\" + 0.036*\"philippin\" + 0.035*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:16:31,395 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.052*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:16:31,401 : INFO : topic diff=0.004235, rho=0.028595\n", - "2019-01-16 05:16:31,670 : INFO : PROGRESS: pass 0, at document #2448000/4922894\n", - "2019-01-16 05:16:33,695 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:34,252 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:16:34,253 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"malaysia\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.014*\"asian\" + 0.014*\"hong\"\n", - "2019-01-16 05:16:34,255 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", - "2019-01-16 05:16:34,256 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:16:34,258 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"artist\" + 0.021*\"paint\" + 0.020*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:16:34,263 : INFO : topic diff=0.003654, rho=0.028583\n", - "2019-01-16 05:16:34,565 : INFO : PROGRESS: pass 0, at document #2450000/4922894\n", - "2019-01-16 05:16:36,613 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:37,172 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 05:16:37,174 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.011*\"year\" + 0.010*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 05:16:37,175 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:16:37,177 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:16:37,178 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 05:16:37,184 : INFO : topic diff=0.004635, rho=0.028571\n", - "2019-01-16 05:16:37,440 : INFO : PROGRESS: pass 0, at document #2452000/4922894\n", - "2019-01-16 05:16:39,460 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:40,019 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:16:40,020 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"award\" + 0.011*\"scienc\"\n", - "2019-01-16 05:16:40,021 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:16:40,023 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.012*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:16:40,024 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"compos\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:16:40,030 : INFO : topic diff=0.004730, rho=0.028560\n", - "2019-01-16 05:16:40,285 : INFO : PROGRESS: pass 0, at document #2454000/4922894\n", - "2019-01-16 05:16:42,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:42,831 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.029*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 05:16:42,833 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"us\" + 0.007*\"protein\"\n", - "2019-01-16 05:16:42,834 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:16:42,835 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.063*\"align\" + 0.059*\"wikit\" + 0.055*\"left\" + 0.053*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:16:42,838 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.021*\"singapor\" + 0.017*\"kim\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"asia\" + 0.015*\"vietnam\" + 0.015*\"asian\" + 0.014*\"hong\"\n", - "2019-01-16 05:16:42,844 : INFO : topic diff=0.004796, rho=0.028548\n", - "2019-01-16 05:16:43,099 : INFO : PROGRESS: pass 0, at document #2456000/4922894\n", - "2019-01-16 05:16:45,113 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:45,672 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 05:16:45,674 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:16:45,675 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:16:45,679 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"compos\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:16:45,681 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:16:45,687 : INFO : topic diff=0.004146, rho=0.028537\n", - "2019-01-16 05:16:45,940 : INFO : PROGRESS: pass 0, at document #2458000/4922894\n", - "2019-01-16 05:16:47,967 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:48,527 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.029*\"world\" + 0.026*\"olymp\" + 0.025*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:16:48,528 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"sail\"\n", - "2019-01-16 05:16:48,529 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.055*\"left\" + 0.053*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:16:48,531 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 05:16:48,532 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:16:48,538 : INFO : topic diff=0.004231, rho=0.028525\n", - "2019-01-16 05:16:53,090 : INFO : -11.459 per-word bound, 2814.3 perplexity estimate based on a held-out corpus of 2000 documents with 559586 words\n", - "2019-01-16 05:16:53,091 : INFO : PROGRESS: pass 0, at document #2460000/4922894\n", - "2019-01-16 05:16:55,073 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:55,630 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.054*\"left\" + 0.054*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.031*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:16:55,632 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.014*\"georg\" + 0.014*\"royal\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\"\n", - "2019-01-16 05:16:55,633 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:16:55,634 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.016*\"fight\" + 0.016*\"team\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:16:55,635 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:16:55,641 : INFO : topic diff=0.004046, rho=0.028513\n", - "2019-01-16 05:16:55,908 : INFO : PROGRESS: pass 0, at document #2462000/4922894\n", - "2019-01-16 05:16:57,961 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:16:58,518 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.042*\"final\" + 0.025*\"tournament\" + 0.021*\"open\" + 0.020*\"winner\" + 0.019*\"group\" + 0.017*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:16:58,519 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:16:58,521 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:16:58,522 : INFO : topic #41 (0.020): 0.036*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", - "2019-01-16 05:16:58,524 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:16:58,530 : INFO : topic diff=0.003501, rho=0.028502\n", - "2019-01-16 05:16:58,781 : INFO : PROGRESS: pass 0, at document #2464000/4922894\n", - "2019-01-16 05:17:00,796 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:01,353 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.030*\"italian\" + 0.024*\"pari\" + 0.022*\"itali\" + 0.020*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:17:01,354 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:17:01,355 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.066*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.053*\"style\" + 0.046*\"center\" + 0.037*\"philippin\" + 0.035*\"right\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:17:01,358 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"sail\"\n", - "2019-01-16 05:17:01,359 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:17:01,365 : INFO : topic diff=0.003964, rho=0.028490\n", - "2019-01-16 05:17:01,621 : INFO : PROGRESS: pass 0, at document #2466000/4922894\n", - "2019-01-16 05:17:03,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:04,266 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.012*\"ali\" + 0.012*\"khan\" + 0.011*\"sri\"\n", - "2019-01-16 05:17:04,268 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"ret\" + 0.013*\"health\" + 0.012*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 05:17:04,269 : INFO : topic #34 (0.020): 0.100*\"island\" + 0.072*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.017*\"british\" + 0.015*\"montreal\" + 0.015*\"korean\" + 0.014*\"korea\" + 0.014*\"quebec\"\n", - "2019-01-16 05:17:04,271 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.020*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 05:17:04,272 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.033*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:17:04,278 : INFO : topic diff=0.004369, rho=0.028479\n", - "2019-01-16 05:17:04,531 : INFO : PROGRESS: pass 0, at document #2468000/4922894\n", - "2019-01-16 05:17:06,497 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:07,055 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.031*\"italian\" + 0.024*\"pari\" + 0.023*\"itali\" + 0.020*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:17:07,056 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.011*\"market\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:17:07,059 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"group\"\n", - "2019-01-16 05:17:07,060 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"union\"\n", - "2019-01-16 05:17:07,062 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:17:07,068 : INFO : topic diff=0.004926, rho=0.028467\n", - "2019-01-16 05:17:07,322 : INFO : PROGRESS: pass 0, at document #2470000/4922894\n", - "2019-01-16 05:17:09,312 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:09,869 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"scienc\" + 0.011*\"servic\"\n", - "2019-01-16 05:17:09,870 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.026*\"text\" + 0.023*\"till\" + 0.022*\"black\" + 0.022*\"color\" + 0.012*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:17:09,872 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.024*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", - "2019-01-16 05:17:09,873 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.067*\"juli\" + 0.067*\"august\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"april\" + 0.063*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:17:09,875 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:17:09,881 : INFO : topic diff=0.004068, rho=0.028456\n", - "2019-01-16 05:17:10,141 : INFO : PROGRESS: pass 0, at document #2472000/4922894\n", - "2019-01-16 05:17:12,165 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:12,721 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:17:12,722 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.070*\"align\" + 0.064*\"left\" + 0.058*\"wikit\" + 0.051*\"style\" + 0.045*\"center\" + 0.036*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:17:12,723 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.061*\"villag\" + 0.051*\"region\" + 0.047*\"east\" + 0.047*\"north\" + 0.045*\"west\" + 0.044*\"south\" + 0.039*\"counti\" + 0.032*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:17:12,725 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:17:12,726 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.014*\"piano\" + 0.013*\"orchestra\" + 0.011*\"opera\"\n", - "2019-01-16 05:17:12,732 : INFO : topic diff=0.003602, rho=0.028444\n", - "2019-01-16 05:17:12,987 : INFO : PROGRESS: pass 0, at document #2474000/4922894\n", - "2019-01-16 05:17:15,018 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:15,575 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:17:15,577 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"fish\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:17:15,579 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:17:15,581 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:17:15,584 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:17:15,591 : INFO : topic diff=0.003717, rho=0.028433\n", - "2019-01-16 05:17:15,895 : INFO : PROGRESS: pass 0, at document #2476000/4922894\n", - "2019-01-16 05:17:18,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:18,570 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 05:17:18,572 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"player\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:17:18,573 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.050*\"univers\" + 0.043*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:17:18,575 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"sail\"\n", - "2019-01-16 05:17:18,576 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:17:18,582 : INFO : topic diff=0.004517, rho=0.028421\n", - "2019-01-16 05:17:18,835 : INFO : PROGRESS: pass 0, at document #2478000/4922894\n", - "2019-01-16 05:17:20,877 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:21,434 : INFO : topic #18 (0.020): 0.008*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"us\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:17:21,435 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"scienc\" + 0.010*\"servic\"\n", - "2019-01-16 05:17:21,437 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.018*\"match\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"champion\" + 0.012*\"defeat\"\n", - "2019-01-16 05:17:21,438 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:17:21,440 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:17:21,445 : INFO : topic diff=0.004419, rho=0.028410\n", - "2019-01-16 05:17:25,958 : INFO : -11.662 per-word bound, 3239.5 perplexity estimate based on a held-out corpus of 2000 documents with 538662 words\n", - "2019-01-16 05:17:25,958 : INFO : PROGRESS: pass 0, at document #2480000/4922894\n", - "2019-01-16 05:17:27,916 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:28,473 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:17:28,475 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:17:28,476 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:17:28,477 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", - "2019-01-16 05:17:28,479 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"ret\" + 0.012*\"diseas\" + 0.011*\"cell\" + 0.011*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 05:17:28,484 : INFO : topic diff=0.003827, rho=0.028398\n", - "2019-01-16 05:17:28,742 : INFO : PROGRESS: pass 0, at document #2482000/4922894\n", - "2019-01-16 05:17:30,743 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:31,300 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:17:31,302 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.017*\"kim\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"thailand\" + 0.015*\"hong\" + 0.015*\"asian\" + 0.014*\"asia\" + 0.014*\"kong\"\n", - "2019-01-16 05:17:31,303 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:17:31,304 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:17:31,306 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:17:31,312 : INFO : topic diff=0.004356, rho=0.028387\n", - "2019-01-16 05:17:31,566 : INFO : PROGRESS: pass 0, at document #2484000/4922894\n", - "2019-01-16 05:17:33,586 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:34,143 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:17:34,144 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.016*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:17:34,147 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:17:34,148 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:17:34,150 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:17:34,156 : INFO : topic diff=0.004388, rho=0.028375\n", - "2019-01-16 05:17:34,408 : INFO : PROGRESS: pass 0, at document #2486000/4922894\n", - "2019-01-16 05:17:36,410 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:36,967 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.023*\"color\" + 0.023*\"black\" + 0.012*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:17:36,968 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.019*\"wrestl\" + 0.017*\"match\" + 0.017*\"fight\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:17:36,970 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.069*\"align\" + 0.065*\"left\" + 0.057*\"wikit\" + 0.051*\"style\" + 0.045*\"center\" + 0.035*\"philippin\" + 0.034*\"right\" + 0.029*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:17:36,972 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:17:36,973 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"area\" + 0.021*\"commun\" + 0.021*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:17:36,980 : INFO : topic diff=0.003686, rho=0.028364\n", - "2019-01-16 05:17:37,241 : INFO : PROGRESS: pass 0, at document #2488000/4922894\n", - "2019-01-16 05:17:39,253 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:39,817 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 05:17:39,819 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:17:39,821 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:17:39,822 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:17:39,825 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"area\" + 0.021*\"commun\" + 0.021*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:17:39,831 : INFO : topic diff=0.004695, rho=0.028352\n", - "2019-01-16 05:17:40,086 : INFO : PROGRESS: pass 0, at document #2490000/4922894\n", - "2019-01-16 05:17:42,048 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:42,605 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"port\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:17:42,607 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:17:42,608 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"stage\"\n", - "2019-01-16 05:17:42,610 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:17:42,611 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:17:42,618 : INFO : topic diff=0.004140, rho=0.028341\n", - "2019-01-16 05:17:42,868 : INFO : PROGRESS: pass 0, at document #2492000/4922894\n", - "2019-01-16 05:17:44,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:45,423 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:17:45,425 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:17:45,426 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:17:45,428 : INFO : topic #17 (0.020): 0.058*\"race\" + 0.022*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 05:17:45,429 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"program\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"network\"\n", - "2019-01-16 05:17:45,436 : INFO : topic diff=0.003947, rho=0.028330\n", - "2019-01-16 05:17:45,712 : INFO : PROGRESS: pass 0, at document #2494000/4922894\n", - "2019-01-16 05:17:47,712 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:48,270 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.032*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.019*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:17:48,272 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.012*\"pilot\"\n", - "2019-01-16 05:17:48,274 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.019*\"wrestl\" + 0.017*\"match\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.014*\"titl\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"champion\"\n", - "2019-01-16 05:17:48,275 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:17:48,277 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:17:48,283 : INFO : topic diff=0.003906, rho=0.028318\n", - "2019-01-16 05:17:48,553 : INFO : PROGRESS: pass 0, at document #2496000/4922894\n", - "2019-01-16 05:17:50,539 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:51,096 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:17:51,097 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"malaysia\" + 0.016*\"kim\" + 0.015*\"hong\" + 0.015*\"asian\" + 0.014*\"vietnam\" + 0.014*\"asia\"\n", - "2019-01-16 05:17:51,099 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\"\n", - "2019-01-16 05:17:51,102 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:17:51,103 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.011*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:17:51,111 : INFO : topic diff=0.003857, rho=0.028307\n", - "2019-01-16 05:17:51,366 : INFO : PROGRESS: pass 0, at document #2498000/4922894\n", - "2019-01-16 05:17:53,333 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:17:53,891 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:17:53,892 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\"\n", - "2019-01-16 05:17:53,893 : INFO : topic #31 (0.020): 0.061*\"australia\" + 0.052*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.037*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:17:53,895 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.037*\"town\" + 0.034*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:17:53,897 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:17:53,903 : INFO : topic diff=0.004886, rho=0.028296\n", - "2019-01-16 05:17:58,475 : INFO : -11.734 per-word bound, 3407.0 perplexity estimate based on a held-out corpus of 2000 documents with 559841 words\n", - "2019-01-16 05:17:58,476 : INFO : PROGRESS: pass 0, at document #2500000/4922894\n", - "2019-01-16 05:18:00,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:01,046 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:18:01,049 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"tradit\" + 0.005*\"cultur\"\n", - "2019-01-16 05:18:01,051 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.052*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.037*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:18:01,052 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.029*\"italian\" + 0.024*\"pari\" + 0.021*\"itali\" + 0.019*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"le\" + 0.012*\"loui\"\n", - "2019-01-16 05:18:01,054 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"wale\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 05:18:01,060 : INFO : topic diff=0.004378, rho=0.028284\n", - "2019-01-16 05:18:01,346 : INFO : PROGRESS: pass 0, at document #2502000/4922894\n", - "2019-01-16 05:18:03,337 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:03,894 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.073*\"align\" + 0.063*\"left\" + 0.057*\"wikit\" + 0.049*\"style\" + 0.046*\"center\" + 0.040*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:18:03,895 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"royal\" + 0.013*\"thoma\" + 0.012*\"henri\"\n", - "2019-01-16 05:18:03,897 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"studi\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:18:03,899 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:18:03,900 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.029*\"italian\" + 0.024*\"pari\" + 0.021*\"itali\" + 0.019*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 05:18:03,908 : INFO : topic diff=0.003228, rho=0.028273\n", - "2019-01-16 05:18:04,155 : INFO : PROGRESS: pass 0, at document #2504000/4922894\n", - "2019-01-16 05:18:06,178 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:06,735 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 05:18:06,737 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.016*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 05:18:06,738 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.042*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.018*\"point\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:18:06,740 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:18:06,741 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", - "2019-01-16 05:18:06,747 : INFO : topic diff=0.004838, rho=0.028262\n", - "2019-01-16 05:18:07,007 : INFO : PROGRESS: pass 0, at document #2506000/4922894\n", - "2019-01-16 05:18:08,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:09,540 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.011*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:18:09,541 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:18:09,542 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.021*\"unit\" + 0.019*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 05:18:09,544 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.012*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:18:09,546 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.029*\"italian\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.018*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:18:09,552 : INFO : topic diff=0.004120, rho=0.028250\n", - "2019-01-16 05:18:09,811 : INFO : PROGRESS: pass 0, at document #2508000/4922894\n", - "2019-01-16 05:18:11,769 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:12,327 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"jone\"\n", - "2019-01-16 05:18:12,328 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.012*\"pilot\"\n", - "2019-01-16 05:18:12,329 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", - "2019-01-16 05:18:12,330 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 05:18:12,332 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:18:12,337 : INFO : topic diff=0.004245, rho=0.028239\n", - "2019-01-16 05:18:12,584 : INFO : PROGRESS: pass 0, at document #2510000/4922894\n", - "2019-01-16 05:18:14,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:15,091 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.010*\"und\"\n", - "2019-01-16 05:18:15,093 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:18:15,094 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.022*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.017*\"thailand\" + 0.015*\"hong\" + 0.014*\"asian\" + 0.014*\"vietnam\" + 0.014*\"asia\"\n", - "2019-01-16 05:18:15,095 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:18:15,096 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"union\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:18:15,102 : INFO : topic diff=0.004047, rho=0.028228\n", - "2019-01-16 05:18:15,360 : INFO : PROGRESS: pass 0, at document #2512000/4922894\n", - "2019-01-16 05:18:17,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:17,950 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.065*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 05:18:17,952 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 05:18:17,953 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"studi\"\n", - "2019-01-16 05:18:17,955 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.006*\"unit\" + 0.006*\"group\"\n", - "2019-01-16 05:18:17,956 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"piano\" + 0.012*\"orchestra\" + 0.012*\"opera\"\n", - "2019-01-16 05:18:17,962 : INFO : topic diff=0.004116, rho=0.028217\n", - "2019-01-16 05:18:18,219 : INFO : PROGRESS: pass 0, at document #2514000/4922894\n", - "2019-01-16 05:18:20,213 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:20,777 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.011*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.006*\"unit\" + 0.006*\"group\"\n", - "2019-01-16 05:18:20,779 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.041*\"franc\" + 0.029*\"italian\" + 0.023*\"pari\" + 0.021*\"itali\" + 0.019*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 05:18:20,781 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 05:18:20,782 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 05:18:20,783 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:18:20,789 : INFO : topic diff=0.003495, rho=0.028205\n", - "2019-01-16 05:18:21,058 : INFO : PROGRESS: pass 0, at document #2516000/4922894\n", - "2019-01-16 05:18:23,125 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:23,685 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:18:23,686 : INFO : topic #23 (0.020): 0.016*\"hospit\" + 0.016*\"medic\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.010*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"studi\"\n", - "2019-01-16 05:18:23,687 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.072*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.046*\"center\" + 0.044*\"right\" + 0.034*\"philippin\" + 0.033*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:18:23,688 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.015*\"scottish\" + 0.014*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:18:23,691 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:18:23,697 : INFO : topic diff=0.004084, rho=0.028194\n", - "2019-01-16 05:18:23,961 : INFO : PROGRESS: pass 0, at document #2518000/4922894\n", - "2019-01-16 05:18:25,984 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:26,541 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"report\" + 0.008*\"offic\" + 0.008*\"legal\" + 0.008*\"right\"\n", - "2019-01-16 05:18:26,543 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:18:26,544 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.017*\"match\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"champion\"\n", - "2019-01-16 05:18:26,546 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"thailand\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.016*\"hong\" + 0.015*\"vietnam\" + 0.015*\"kong\" + 0.014*\"asian\"\n", - "2019-01-16 05:18:26,547 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.038*\"russian\" + 0.023*\"american\" + 0.020*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.012*\"israel\" + 0.012*\"poland\"\n", - "2019-01-16 05:18:26,552 : INFO : topic diff=0.004062, rho=0.028183\n", - "2019-01-16 05:18:30,962 : INFO : -11.474 per-word bound, 2843.8 perplexity estimate based on a held-out corpus of 2000 documents with 521463 words\n", - "2019-01-16 05:18:30,964 : INFO : PROGRESS: pass 0, at document #2520000/4922894\n", - "2019-01-16 05:18:32,941 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:33,501 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 05:18:33,502 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"hong\" + 0.015*\"vietnam\" + 0.015*\"kong\" + 0.014*\"asian\"\n", - "2019-01-16 05:18:33,504 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 05:18:33,505 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:18:33,506 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:18:33,512 : INFO : topic diff=0.005472, rho=0.028172\n", - "2019-01-16 05:18:33,782 : INFO : PROGRESS: pass 0, at document #2522000/4922894\n", - "2019-01-16 05:18:35,864 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:36,427 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:18:36,429 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.017*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:18:36,430 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 05:18:36,431 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"public\"\n", - "2019-01-16 05:18:36,433 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"surfac\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 05:18:36,440 : INFO : topic diff=0.004982, rho=0.028161\n", - "2019-01-16 05:18:36,698 : INFO : PROGRESS: pass 0, at document #2524000/4922894\n", - "2019-01-16 05:18:38,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:39,284 : INFO : topic #20 (0.020): 0.030*\"win\" + 0.021*\"contest\" + 0.017*\"wrestl\" + 0.016*\"match\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.013*\"elimin\" + 0.012*\"world\"\n", - "2019-01-16 05:18:39,286 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"championship\"\n", - "2019-01-16 05:18:39,288 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"hong\" + 0.015*\"kong\" + 0.015*\"vietnam\" + 0.014*\"asian\"\n", - "2019-01-16 05:18:39,289 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:18:39,291 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", - "2019-01-16 05:18:39,298 : INFO : topic diff=0.003947, rho=0.028149\n", - "2019-01-16 05:18:39,552 : INFO : PROGRESS: pass 0, at document #2526000/4922894\n", - "2019-01-16 05:18:41,508 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:42,066 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"london\" + 0.018*\"cricket\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:18:42,067 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.050*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"public\"\n", - "2019-01-16 05:18:42,068 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:18:42,071 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:18:42,073 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.025*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"ireland\"\n", - "2019-01-16 05:18:42,080 : INFO : topic diff=0.004487, rho=0.028138\n", - "2019-01-16 05:18:42,383 : INFO : PROGRESS: pass 0, at document #2528000/4922894\n", - "2019-01-16 05:18:44,417 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:18:44,974 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:18:44,976 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", - "2019-01-16 05:18:44,978 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.072*\"align\" + 0.061*\"left\" + 0.057*\"wikit\" + 0.051*\"style\" + 0.047*\"center\" + 0.042*\"right\" + 0.034*\"philippin\" + 0.031*\"text\" + 0.021*\"border\"\n", - "2019-01-16 05:18:44,979 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:18:44,980 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\"\n", - "2019-01-16 05:18:44,986 : INFO : topic diff=0.004055, rho=0.028127\n", - "2019-01-16 05:18:45,238 : INFO : PROGRESS: pass 0, at document #2530000/4922894\n", - "2019-01-16 05:18:47,300 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:47,857 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:18:47,859 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.064*\"villag\" + 0.051*\"region\" + 0.046*\"east\" + 0.045*\"west\" + 0.044*\"north\" + 0.042*\"south\" + 0.040*\"counti\" + 0.031*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:18:47,860 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"protein\"\n", - "2019-01-16 05:18:47,862 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:18:47,863 : INFO : topic #35 (0.020): 0.024*\"lee\" + 0.021*\"singapor\" + 0.017*\"kim\" + 0.017*\"hong\" + 0.017*\"malaysia\" + 0.017*\"indonesia\" + 0.016*\"thailand\" + 0.016*\"kong\" + 0.015*\"vietnam\" + 0.014*\"asian\"\n", - "2019-01-16 05:18:47,870 : INFO : topic diff=0.004729, rho=0.028116\n", - "2019-01-16 05:18:48,121 : INFO : PROGRESS: pass 0, at document #2532000/4922894\n", - "2019-01-16 05:18:50,126 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:50,682 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.013*\"elimin\" + 0.012*\"world\"\n", - "2019-01-16 05:18:50,683 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:18:50,686 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.019*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:18:50,687 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.029*\"italian\" + 0.024*\"pari\" + 0.021*\"itali\" + 0.019*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:18:50,688 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.024*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:18:50,694 : INFO : topic diff=0.003986, rho=0.028105\n", - "2019-01-16 05:18:50,959 : INFO : PROGRESS: pass 0, at document #2534000/4922894\n", - "2019-01-16 05:18:53,078 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:53,635 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.038*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.011*\"cape\"\n", - "2019-01-16 05:18:53,636 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:18:53,638 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:18:53,639 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.024*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.019*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:18:53,640 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:18:53,646 : INFO : topic diff=0.005178, rho=0.028094\n", - "2019-01-16 05:18:53,893 : INFO : PROGRESS: pass 0, at document #2536000/4922894\n", - "2019-01-16 05:18:55,882 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:56,446 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:18:56,448 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:18:56,449 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:18:56,451 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:18:56,453 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"associ\"\n", - "2019-01-16 05:18:56,459 : INFO : topic diff=0.004268, rho=0.028083\n", - "2019-01-16 05:18:56,716 : INFO : PROGRESS: pass 0, at document #2538000/4922894\n", - "2019-01-16 05:18:58,730 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:18:59,288 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:18:59,289 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.037*\"indian\" + 0.024*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", - "2019-01-16 05:18:59,290 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"stage\" + 0.010*\"championship\"\n", - "2019-01-16 05:18:59,292 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.021*\"theatr\" + 0.018*\"festiv\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:18:59,293 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.020*\"singapor\" + 0.017*\"hong\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.017*\"kim\" + 0.016*\"kong\" + 0.016*\"malaysia\" + 0.015*\"vietnam\" + 0.014*\"asian\"\n", - "2019-01-16 05:18:59,298 : INFO : topic diff=0.004183, rho=0.028072\n", - "2019-01-16 05:19:04,048 : INFO : -12.125 per-word bound, 4466.6 perplexity estimate based on a held-out corpus of 2000 documents with 566664 words\n", - "2019-01-16 05:19:04,048 : INFO : PROGRESS: pass 0, at document #2540000/4922894\n", - "2019-01-16 05:19:06,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:06,609 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"includ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:19:06,611 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:19:06,612 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:19:06,614 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"associ\"\n", - "2019-01-16 05:19:06,616 : INFO : topic #47 (0.020): 0.027*\"station\" + 0.025*\"river\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:19:06,622 : INFO : topic diff=0.004120, rho=0.028061\n", - "2019-01-16 05:19:06,881 : INFO : PROGRESS: pass 0, at document #2542000/4922894\n", - "2019-01-16 05:19:08,879 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:09,438 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:19:09,439 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:19:09,440 : INFO : topic #14 (0.020): 0.017*\"univers\" + 0.015*\"research\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"associ\"\n", - "2019-01-16 05:19:09,442 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", - "2019-01-16 05:19:09,443 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"ret\" + 0.008*\"treatment\"\n", - "2019-01-16 05:19:09,449 : INFO : topic diff=0.004108, rho=0.028050\n", - "2019-01-16 05:19:09,712 : INFO : PROGRESS: pass 0, at document #2544000/4922894\n", - "2019-01-16 05:19:11,723 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:12,280 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"materi\"\n", - "2019-01-16 05:19:12,281 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:19:12,283 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:19:12,286 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.018*\"london\" + 0.018*\"cricket\" + 0.018*\"scotland\" + 0.017*\"citi\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:19:12,287 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:19:12,294 : INFO : topic diff=0.004372, rho=0.028039\n", - "2019-01-16 05:19:12,546 : INFO : PROGRESS: pass 0, at document #2546000/4922894\n", - "2019-01-16 05:19:14,528 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:15,085 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:19:15,087 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.024*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.019*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"runner\"\n", - "2019-01-16 05:19:15,088 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:19:15,090 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.007*\"peopl\" + 0.007*\"union\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:19:15,092 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:19:15,098 : INFO : topic diff=0.004455, rho=0.028028\n", - "2019-01-16 05:19:15,344 : INFO : PROGRESS: pass 0, at document #2548000/4922894\n", - "2019-01-16 05:19:17,342 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:17,900 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:19:17,901 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 05:19:17,903 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:19:17,904 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.037*\"russian\" + 0.022*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.012*\"israel\" + 0.012*\"republ\"\n", - "2019-01-16 05:19:17,905 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"associ\"\n", - "2019-01-16 05:19:17,911 : INFO : topic diff=0.004523, rho=0.028017\n", - "2019-01-16 05:19:18,161 : INFO : PROGRESS: pass 0, at document #2550000/4922894\n", - "2019-01-16 05:19:20,108 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:20,666 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:19:20,668 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:19:20,669 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", - "2019-01-16 05:19:20,670 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:19:20,672 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.020*\"itali\" + 0.020*\"saint\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 05:19:20,679 : INFO : topic diff=0.004212, rho=0.028006\n", - "2019-01-16 05:19:20,942 : INFO : PROGRESS: pass 0, at document #2552000/4922894\n", - "2019-01-16 05:19:22,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:23,458 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 05:19:23,460 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:19:23,462 : INFO : topic #47 (0.020): 0.027*\"station\" + 0.024*\"river\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:19:23,463 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 05:19:23,464 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:19:23,470 : INFO : topic diff=0.004417, rho=0.027995\n", - "2019-01-16 05:19:23,771 : INFO : PROGRESS: pass 0, at document #2554000/4922894\n", - "2019-01-16 05:19:25,713 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:26,270 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.030*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.023*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"japanes\"\n", - "2019-01-16 05:19:26,272 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:19:26,275 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:19:26,276 : INFO : topic #47 (0.020): 0.027*\"station\" + 0.025*\"river\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:19:26,277 : INFO : topic #34 (0.020): 0.098*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.018*\"korean\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", - "2019-01-16 05:19:26,284 : INFO : topic diff=0.004501, rho=0.027984\n", - "2019-01-16 05:19:26,531 : INFO : PROGRESS: pass 0, at document #2556000/4922894\n", - "2019-01-16 05:19:28,518 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:29,074 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.047*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.028*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:19:29,076 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:19:29,077 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.023*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 05:19:29,079 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.024*\"work\" + 0.022*\"artist\" + 0.022*\"paint\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 05:19:29,080 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:19:29,086 : INFO : topic diff=0.004672, rho=0.027973\n", - "2019-01-16 05:19:29,349 : INFO : PROGRESS: pass 0, at document #2558000/4922894\n", - "2019-01-16 05:19:31,407 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:31,964 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:19:31,965 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.023*\"pari\" + 0.020*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:19:31,966 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"right\"\n", - "2019-01-16 05:19:31,969 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:19:31,970 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.038*\"africa\" + 0.036*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.028*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", - "2019-01-16 05:19:31,975 : INFO : topic diff=0.003859, rho=0.027962\n", - "2019-01-16 05:19:36,703 : INFO : -11.716 per-word bound, 3363.2 perplexity estimate based on a held-out corpus of 2000 documents with 594711 words\n", - "2019-01-16 05:19:36,704 : INFO : PROGRESS: pass 0, at document #2560000/4922894\n", - "2019-01-16 05:19:38,734 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:39,293 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:19:39,294 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.037*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", - "2019-01-16 05:19:39,295 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:19:39,297 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:19:39,299 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 05:19:39,305 : INFO : topic diff=0.005792, rho=0.027951\n", - "2019-01-16 05:19:39,557 : INFO : PROGRESS: pass 0, at document #2562000/4922894\n", - "2019-01-16 05:19:41,565 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:42,123 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"festiv\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:19:42,124 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.043*\"final\" + 0.027*\"winner\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.019*\"open\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:19:42,126 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.019*\"medal\" + 0.017*\"japanes\" + 0.017*\"athlet\"\n", - "2019-01-16 05:19:42,128 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:19:42,130 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:19:42,136 : INFO : topic diff=0.004007, rho=0.027940\n", - "2019-01-16 05:19:42,391 : INFO : PROGRESS: pass 0, at document #2564000/4922894\n", - "2019-01-16 05:19:44,381 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:44,939 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:19:44,941 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.071*\"septemb\" + 0.069*\"octob\" + 0.068*\"januari\" + 0.066*\"juli\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.063*\"june\" + 0.062*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 05:19:44,942 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:19:44,946 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:19:44,947 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:19:44,953 : INFO : topic diff=0.003770, rho=0.027929\n", - "2019-01-16 05:19:45,204 : INFO : PROGRESS: pass 0, at document #2566000/4922894\n", - "2019-01-16 05:19:47,214 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:47,771 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.018*\"scotland\" + 0.018*\"london\" + 0.017*\"citi\" + 0.017*\"cricket\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:19:47,772 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:19:47,774 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"elimin\" + 0.012*\"world\"\n", - "2019-01-16 05:19:47,775 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:19:47,776 : INFO : topic #34 (0.020): 0.098*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.016*\"korean\" + 0.015*\"montreal\" + 0.015*\"british\" + 0.015*\"korea\" + 0.015*\"quebec\"\n", - "2019-01-16 05:19:47,782 : INFO : topic diff=0.004081, rho=0.027918\n", - "2019-01-16 05:19:48,047 : INFO : PROGRESS: pass 0, at document #2568000/4922894\n", - "2019-01-16 05:19:50,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:50,693 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.018*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:19:50,695 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.071*\"septemb\" + 0.070*\"octob\" + 0.068*\"januari\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.062*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 05:19:50,696 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:19:50,698 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"space\"\n", - "2019-01-16 05:19:50,699 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", - "2019-01-16 05:19:50,705 : INFO : topic diff=0.004706, rho=0.027907\n", - "2019-01-16 05:19:50,958 : INFO : PROGRESS: pass 0, at document #2570000/4922894\n", - "2019-01-16 05:19:53,018 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:53,577 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.022*\"american\" + 0.020*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:19:53,579 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"light\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.004*\"materi\"\n", - "2019-01-16 05:19:53,580 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"area\" + 0.020*\"peopl\" + 0.020*\"household\"\n", - "2019-01-16 05:19:53,582 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.027*\"winner\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.019*\"open\" + 0.018*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:19:53,583 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"naval\" + 0.009*\"coast\" + 0.009*\"fleet\" + 0.009*\"gun\"\n", - "2019-01-16 05:19:53,589 : INFO : topic diff=0.003540, rho=0.027896\n", - "2019-01-16 05:19:53,841 : INFO : PROGRESS: pass 0, at document #2572000/4922894\n", - "2019-01-16 05:19:55,846 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:56,404 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", - "2019-01-16 05:19:56,405 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:19:56,407 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:19:56,409 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 05:19:56,411 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 05:19:56,418 : INFO : topic diff=0.004353, rho=0.027886\n", - "2019-01-16 05:19:56,677 : INFO : PROGRESS: pass 0, at document #2574000/4922894\n", - "2019-01-16 05:19:58,658 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:19:59,217 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:19:59,219 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:19:59,220 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"novel\"\n", - "2019-01-16 05:19:59,222 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.017*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:19:59,223 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.064*\"villag\" + 0.052*\"region\" + 0.045*\"east\" + 0.044*\"west\" + 0.044*\"north\" + 0.042*\"south\" + 0.039*\"counti\" + 0.031*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:19:59,230 : INFO : topic diff=0.004271, rho=0.027875\n", - "2019-01-16 05:19:59,490 : INFO : PROGRESS: pass 0, at document #2576000/4922894\n", - "2019-01-16 05:20:01,520 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:02,083 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:20:02,085 : INFO : topic #47 (0.020): 0.026*\"station\" + 0.026*\"river\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:20:02,086 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.036*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:20:02,088 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:20:02,089 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:20:02,096 : INFO : topic diff=0.004104, rho=0.027864\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:20:02,387 : INFO : PROGRESS: pass 0, at document #2578000/4922894\n", - "2019-01-16 05:20:04,371 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:04,928 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.018*\"london\" + 0.017*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 05:20:04,930 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:20:04,932 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"fleet\" + 0.009*\"gun\"\n", - "2019-01-16 05:20:04,935 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:20:04,937 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:20:04,944 : INFO : topic diff=0.004021, rho=0.027853\n", - "2019-01-16 05:20:09,526 : INFO : -11.591 per-word bound, 3084.5 perplexity estimate based on a held-out corpus of 2000 documents with 543005 words\n", - "2019-01-16 05:20:09,527 : INFO : PROGRESS: pass 0, at document #2580000/4922894\n", - "2019-01-16 05:20:11,558 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:12,115 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.012*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 05:20:12,116 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.010*\"novel\"\n", - "2019-01-16 05:20:12,118 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:20:12,119 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.023*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.016*\"nation\"\n", - "2019-01-16 05:20:12,120 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"area\" + 0.020*\"peopl\" + 0.020*\"household\"\n", - "2019-01-16 05:20:12,126 : INFO : topic diff=0.004697, rho=0.027842\n", - "2019-01-16 05:20:12,387 : INFO : PROGRESS: pass 0, at document #2582000/4922894\n", - "2019-01-16 05:20:14,424 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:14,982 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.026*\"winner\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:20:14,983 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.028*\"ag\" + 0.023*\"famili\" + 0.023*\"censu\" + 0.021*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", - "2019-01-16 05:20:14,985 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:20:14,986 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.016*\"nation\"\n", - "2019-01-16 05:20:14,987 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.025*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:20:14,994 : INFO : topic diff=0.004201, rho=0.027832\n", - "2019-01-16 05:20:15,254 : INFO : PROGRESS: pass 0, at document #2584000/4922894\n", - "2019-01-16 05:20:17,312 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:17,873 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.012*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.009*\"ret\" + 0.008*\"medicin\"\n", - "2019-01-16 05:20:17,875 : INFO : topic #26 (0.020): 0.033*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.023*\"japan\" + 0.022*\"event\" + 0.019*\"medal\" + 0.017*\"athlet\" + 0.016*\"japanes\"\n", - "2019-01-16 05:20:17,876 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"winner\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 05:20:17,878 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"singapor\" + 0.020*\"hong\" + 0.019*\"kim\" + 0.019*\"kong\" + 0.016*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"vietnam\" + 0.014*\"asian\"\n", - "2019-01-16 05:20:17,879 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.072*\"septemb\" + 0.072*\"octob\" + 0.069*\"januari\" + 0.067*\"juli\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.063*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 05:20:17,884 : INFO : topic diff=0.004130, rho=0.027821\n", - "2019-01-16 05:20:18,138 : INFO : PROGRESS: pass 0, at document #2586000/4922894\n", - "2019-01-16 05:20:20,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:20,662 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:20:20,664 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:20:20,665 : INFO : topic #46 (0.020): 0.146*\"class\" + 0.065*\"align\" + 0.060*\"wikit\" + 0.055*\"left\" + 0.052*\"style\" + 0.045*\"center\" + 0.043*\"right\" + 0.033*\"philippin\" + 0.032*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:20:20,666 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.036*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:20:20,668 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\" + 0.007*\"valu\"\n", - "2019-01-16 05:20:20,674 : INFO : topic diff=0.004457, rho=0.027810\n", - "2019-01-16 05:20:20,935 : INFO : PROGRESS: pass 0, at document #2588000/4922894\n", - "2019-01-16 05:20:22,976 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:23,536 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.017*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.015*\"british\"\n", - "2019-01-16 05:20:23,537 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 05:20:23,539 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:20:23,540 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:20:23,541 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"fleet\" + 0.009*\"naval\" + 0.009*\"gun\"\n", - "2019-01-16 05:20:23,547 : INFO : topic diff=0.003981, rho=0.027799\n", - "2019-01-16 05:20:23,816 : INFO : PROGRESS: pass 0, at document #2590000/4922894\n", - "2019-01-16 05:20:25,871 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:20:26,433 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:20:26,435 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:20:26,436 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.019*\"squadron\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:20:26,437 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.045*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.030*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:20:26,439 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.015*\"british\"\n", - "2019-01-16 05:20:26,445 : INFO : topic diff=0.005673, rho=0.027789\n", - "2019-01-16 05:20:26,686 : INFO : PROGRESS: pass 0, at document #2592000/4922894\n", - "2019-01-16 05:20:28,664 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:29,221 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.019*\"squadron\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:20:29,223 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.025*\"winner\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.019*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:20:29,224 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:20:29,226 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:20:29,228 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:20:29,234 : INFO : topic diff=0.004366, rho=0.027778\n", - "2019-01-16 05:20:29,487 : INFO : PROGRESS: pass 0, at document #2594000/4922894\n", - "2019-01-16 05:20:31,488 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:32,047 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:20:32,048 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:20:32,049 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.012*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\"\n", - "2019-01-16 05:20:32,051 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.026*\"winner\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.019*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:20:32,053 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.019*\"squadron\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:20:32,059 : INFO : topic diff=0.003969, rho=0.027767\n", - "2019-01-16 05:20:32,322 : INFO : PROGRESS: pass 0, at document #2596000/4922894\n", - "2019-01-16 05:20:34,355 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:34,911 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.018*\"london\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.017*\"scotland\" + 0.015*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 05:20:34,912 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:20:34,914 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:20:34,915 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.064*\"villag\" + 0.052*\"region\" + 0.046*\"west\" + 0.045*\"east\" + 0.043*\"north\" + 0.041*\"south\" + 0.040*\"counti\" + 0.031*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:20:34,916 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.012*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.010*\"histori\"\n", - "2019-01-16 05:20:34,922 : INFO : topic diff=0.003328, rho=0.027756\n", - "2019-01-16 05:20:35,189 : INFO : PROGRESS: pass 0, at document #2598000/4922894\n", - "2019-01-16 05:20:37,272 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:37,829 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:20:37,830 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.036*\"zealand\" + 0.031*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:20:37,831 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:20:37,832 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.023*\"ontario\" + 0.017*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.015*\"british\"\n", - "2019-01-16 05:20:37,834 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:20:37,839 : INFO : topic diff=0.004177, rho=0.027746\n", - "2019-01-16 05:20:42,581 : INFO : -11.400 per-word bound, 2701.8 perplexity estimate based on a held-out corpus of 2000 documents with 584827 words\n", - "2019-01-16 05:20:42,582 : INFO : PROGRESS: pass 0, at document #2600000/4922894\n", - "2019-01-16 05:20:44,626 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:45,187 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.026*\"till\" + 0.024*\"color\" + 0.023*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", - "2019-01-16 05:20:45,189 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:20:45,190 : INFO : topic #49 (0.020): 0.103*\"district\" + 0.063*\"villag\" + 0.051*\"region\" + 0.046*\"west\" + 0.045*\"east\" + 0.043*\"north\" + 0.041*\"south\" + 0.040*\"counti\" + 0.031*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:20:45,191 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.011*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:20:45,193 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.021*\"singapor\" + 0.021*\"hong\" + 0.021*\"kim\" + 0.020*\"kong\" + 0.017*\"malaysia\" + 0.016*\"indonesia\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.013*\"asian\"\n", - "2019-01-16 05:20:45,199 : INFO : topic diff=0.005073, rho=0.027735\n", - "2019-01-16 05:20:45,468 : INFO : PROGRESS: pass 0, at document #2602000/4922894\n", - "2019-01-16 05:20:47,547 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:48,109 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:20:48,110 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:20:48,112 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:20:48,113 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 05:20:48,114 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.028*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", - "2019-01-16 05:20:48,120 : INFO : topic diff=0.003729, rho=0.027724\n", - "2019-01-16 05:20:48,409 : INFO : PROGRESS: pass 0, at document #2604000/4922894\n", - "2019-01-16 05:20:50,352 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:50,909 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 05:20:50,910 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"red\"\n", - "2019-01-16 05:20:50,911 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"base\"\n", - "2019-01-16 05:20:50,913 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.019*\"squadron\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:20:50,915 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:20:50,920 : INFO : topic diff=0.003695, rho=0.027714\n", - "2019-01-16 05:20:51,187 : INFO : PROGRESS: pass 0, at document #2606000/4922894\n", - "2019-01-16 05:20:53,178 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:53,734 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:20:53,736 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:20:53,737 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"men\" + 0.025*\"olymp\" + 0.024*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:20:53,738 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"effect\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 05:20:53,739 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"red\"\n", - "2019-01-16 05:20:53,745 : INFO : topic diff=0.003708, rho=0.027703\n", - "2019-01-16 05:20:53,999 : INFO : PROGRESS: pass 0, at document #2608000/4922894\n", - "2019-01-16 05:20:55,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:56,534 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.066*\"align\" + 0.058*\"wikit\" + 0.055*\"left\" + 0.053*\"style\" + 0.045*\"right\" + 0.045*\"center\" + 0.033*\"text\" + 0.032*\"philippin\" + 0.023*\"border\"\n", - "2019-01-16 05:20:56,536 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:20:56,538 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:20:56,539 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"red\"\n", - "2019-01-16 05:20:56,541 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:20:56,548 : INFO : topic diff=0.004251, rho=0.027692\n", - "2019-01-16 05:20:56,801 : INFO : PROGRESS: pass 0, at document #2610000/4922894\n", - "2019-01-16 05:20:58,785 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:20:59,351 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.022*\"hong\" + 0.021*\"kong\" + 0.020*\"singapor\" + 0.020*\"kim\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.013*\"asian\" + 0.013*\"asia\"\n", - "2019-01-16 05:20:59,352 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.069*\"januari\" + 0.069*\"juli\" + 0.067*\"august\" + 0.066*\"novemb\" + 0.066*\"june\" + 0.065*\"april\" + 0.064*\"decemb\"\n", - "2019-01-16 05:20:59,354 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:20:59,356 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", - "2019-01-16 05:20:59,357 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.026*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:20:59,363 : INFO : topic diff=0.003829, rho=0.027682\n", - "2019-01-16 05:20:59,619 : INFO : PROGRESS: pass 0, at document #2612000/4922894\n", - "2019-01-16 05:21:01,580 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:02,140 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:21:02,141 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:21:02,143 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:21:02,145 : INFO : topic #26 (0.020): 0.031*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:21:02,146 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.069*\"januari\" + 0.069*\"juli\" + 0.068*\"august\" + 0.066*\"novemb\" + 0.066*\"june\" + 0.065*\"april\" + 0.065*\"decemb\"\n", - "2019-01-16 05:21:02,152 : INFO : topic diff=0.004265, rho=0.027671\n", - "2019-01-16 05:21:02,406 : INFO : PROGRESS: pass 0, at document #2614000/4922894\n", - "2019-01-16 05:21:04,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:04,905 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:21:04,907 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:21:04,908 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:21:04,909 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"squadron\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:21:04,911 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.011*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.006*\"unit\"\n", - "2019-01-16 05:21:04,916 : INFO : topic diff=0.005152, rho=0.027661\n", - "2019-01-16 05:21:05,186 : INFO : PROGRESS: pass 0, at document #2616000/4922894\n", - "2019-01-16 05:21:07,238 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:07,795 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.044*\"univers\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.029*\"educ\" + 0.028*\"high\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"teacher\"\n", - "2019-01-16 05:21:07,796 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.023*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"tamil\" + 0.010*\"com\"\n", - "2019-01-16 05:21:07,797 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.062*\"villag\" + 0.052*\"region\" + 0.046*\"west\" + 0.044*\"east\" + 0.044*\"north\" + 0.041*\"south\" + 0.040*\"counti\" + 0.032*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:21:07,798 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"japan\" + 0.024*\"men\" + 0.022*\"event\" + 0.020*\"medal\" + 0.017*\"athlet\" + 0.017*\"japanes\"\n", - "2019-01-16 05:21:07,800 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:21:07,805 : INFO : topic diff=0.004408, rho=0.027650\n", - "2019-01-16 05:21:08,055 : INFO : PROGRESS: pass 0, at document #2618000/4922894\n", - "2019-01-16 05:21:10,020 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:10,576 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.006*\"red\"\n", - "2019-01-16 05:21:10,577 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 05:21:10,579 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 05:21:10,580 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.016*\"match\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:21:10,582 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:21:10,587 : INFO : topic diff=0.003481, rho=0.027639\n", - "2019-01-16 05:21:15,115 : INFO : -11.567 per-word bound, 3034.4 perplexity estimate based on a held-out corpus of 2000 documents with 519744 words\n", - "2019-01-16 05:21:15,116 : INFO : PROGRESS: pass 0, at document #2620000/4922894\n", - "2019-01-16 05:21:17,118 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:17,675 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 05:21:17,677 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:21:17,678 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"miss\"\n", - "2019-01-16 05:21:17,681 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:21:17,683 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:21:17,690 : INFO : topic diff=0.003895, rho=0.027629\n", - "2019-01-16 05:21:17,963 : INFO : PROGRESS: pass 0, at document #2622000/4922894\n", - "2019-01-16 05:21:20,026 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:20,582 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:21:20,584 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:21:20,586 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.019*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:21:20,587 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.051*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.020*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:21:20,588 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.020*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:21:20,595 : INFO : topic diff=0.005335, rho=0.027618\n", - "2019-01-16 05:21:20,843 : INFO : PROGRESS: pass 0, at document #2624000/4922894\n", - "2019-01-16 05:21:22,859 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:23,416 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"korea\"\n", - "2019-01-16 05:21:23,418 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.029*\"south\" + 0.029*\"text\" + 0.027*\"color\" + 0.026*\"till\" + 0.022*\"black\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 05:21:23,420 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:21:23,421 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.028*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"household\"\n", - "2019-01-16 05:21:23,423 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"space\" + 0.005*\"materi\"\n", - "2019-01-16 05:21:23,430 : INFO : topic diff=0.004283, rho=0.027608\n", - "2019-01-16 05:21:23,684 : INFO : PROGRESS: pass 0, at document #2626000/4922894\n", - "2019-01-16 05:21:25,674 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:26,230 : INFO : topic #35 (0.020): 0.026*\"lee\" + 0.022*\"hong\" + 0.022*\"singapor\" + 0.022*\"kong\" + 0.020*\"kim\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"asia\" + 0.015*\"thailand\" + 0.014*\"asian\"\n", - "2019-01-16 05:21:26,232 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.025*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:21:26,233 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"contest\" + 0.017*\"titl\" + 0.016*\"match\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.013*\"team\" + 0.013*\"champion\" + 0.013*\"world\"\n", - "2019-01-16 05:21:26,235 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:21:26,236 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 05:21:26,242 : INFO : topic diff=0.004424, rho=0.027597\n", - "2019-01-16 05:21:26,509 : INFO : PROGRESS: pass 0, at document #2628000/4922894\n", - "2019-01-16 05:21:28,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:29,129 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"space\" + 0.005*\"materi\"\n", - "2019-01-16 05:21:29,131 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:21:29,132 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.006*\"red\"\n", - "2019-01-16 05:21:29,134 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.020*\"dutch\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:21:29,135 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.022*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:21:29,141 : INFO : topic diff=0.003945, rho=0.027587\n", - "2019-01-16 05:21:29,447 : INFO : PROGRESS: pass 0, at document #2630000/4922894\n", - "2019-01-16 05:21:31,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:32,096 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 05:21:32,098 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:21:32,099 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"area\" + 0.021*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:21:32,101 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:21:32,102 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:21:32,109 : INFO : topic diff=0.004756, rho=0.027576\n", - "2019-01-16 05:21:32,362 : INFO : PROGRESS: pass 0, at document #2632000/4922894\n", - "2019-01-16 05:21:34,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:34,975 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:21:34,976 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"protein\"\n", - "2019-01-16 05:21:34,978 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:21:34,979 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.040*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"tamil\" + 0.011*\"khan\"\n", - "2019-01-16 05:21:34,980 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:21:34,986 : INFO : topic diff=0.004627, rho=0.027566\n", - "2019-01-16 05:21:35,245 : INFO : PROGRESS: pass 0, at document #2634000/4922894\n", - "2019-01-16 05:21:37,343 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:37,899 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.025*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:21:37,901 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.020*\"der\" + 0.014*\"netherland\" + 0.011*\"und\" + 0.010*\"die\"\n", - "2019-01-16 05:21:37,902 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:21:37,904 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.017*\"london\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", - "2019-01-16 05:21:37,905 : INFO : topic #39 (0.020): 0.052*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.017*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:21:37,911 : INFO : topic diff=0.005134, rho=0.027555\n", - "2019-01-16 05:21:38,178 : INFO : PROGRESS: pass 0, at document #2636000/4922894\n", - "2019-01-16 05:21:40,221 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:40,778 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:21:40,779 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.020*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:21:40,781 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:21:40,782 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:21:40,783 : INFO : topic #49 (0.020): 0.102*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.047*\"east\" + 0.047*\"west\" + 0.045*\"north\" + 0.041*\"south\" + 0.038*\"counti\" + 0.031*\"provinc\" + 0.030*\"central\"\n", - "2019-01-16 05:21:40,789 : INFO : topic diff=0.003974, rho=0.027545\n", - "2019-01-16 05:21:41,049 : INFO : PROGRESS: pass 0, at document #2638000/4922894\n", - "2019-01-16 05:21:43,046 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:43,603 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.006*\"red\"\n", - "2019-01-16 05:21:43,604 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.009*\"ret\" + 0.009*\"patient\" + 0.009*\"effect\" + 0.009*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 05:21:43,605 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.017*\"london\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 05:21:43,607 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 05:21:43,608 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.026*\"saint\" + 0.025*\"italian\" + 0.024*\"pari\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:21:43,614 : INFO : topic diff=0.004180, rho=0.027535\n", - "2019-01-16 05:21:48,195 : INFO : -11.670 per-word bound, 3258.7 perplexity estimate based on a held-out corpus of 2000 documents with 541033 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:21:48,196 : INFO : PROGRESS: pass 0, at document #2640000/4922894\n", - "2019-01-16 05:21:50,192 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:50,748 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:21:50,750 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:21:50,751 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"danc\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:21:50,753 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:21:50,754 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.016*\"korean\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"korea\"\n", - "2019-01-16 05:21:50,760 : INFO : topic diff=0.003564, rho=0.027524\n", - "2019-01-16 05:21:51,020 : INFO : PROGRESS: pass 0, at document #2642000/4922894\n", - "2019-01-16 05:21:53,047 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:53,605 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 05:21:53,606 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:21:53,608 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:21:53,609 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.023*\"singapor\" + 0.023*\"hong\" + 0.022*\"kong\" + 0.019*\"kim\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.013*\"asian\"\n", - "2019-01-16 05:21:53,611 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:21:53,617 : INFO : topic diff=0.004620, rho=0.027514\n", - "2019-01-16 05:21:53,872 : INFO : PROGRESS: pass 0, at document #2644000/4922894\n", - "2019-01-16 05:21:55,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:56,466 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\" + 0.008*\"right\"\n", - "2019-01-16 05:21:56,467 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:21:56,469 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"countri\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 05:21:56,470 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:21:56,471 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.010*\"histori\"\n", - "2019-01-16 05:21:56,478 : INFO : topic diff=0.004462, rho=0.027503\n", - "2019-01-16 05:21:56,735 : INFO : PROGRESS: pass 0, at document #2646000/4922894\n", - "2019-01-16 05:21:58,791 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:21:59,347 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.024*\"hong\" + 0.023*\"singapor\" + 0.023*\"kong\" + 0.019*\"kim\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"asia\" + 0.014*\"thailand\" + 0.013*\"vietnam\"\n", - "2019-01-16 05:21:59,349 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:21:59,351 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:21:59,354 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.012*\"health\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 05:21:59,356 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:21:59,363 : INFO : topic diff=0.003274, rho=0.027493\n", - "2019-01-16 05:21:59,612 : INFO : PROGRESS: pass 0, at document #2648000/4922894\n", - "2019-01-16 05:22:01,601 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:02,162 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.053*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.030*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:22:02,163 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"countri\" + 0.009*\"polit\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 05:22:02,165 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.006*\"red\"\n", - "2019-01-16 05:22:02,167 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.075*\"canada\" + 0.063*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.014*\"korea\"\n", - "2019-01-16 05:22:02,168 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.013*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:22:02,174 : INFO : topic diff=0.003600, rho=0.027482\n", - "2019-01-16 05:22:02,431 : INFO : PROGRESS: pass 0, at document #2650000/4922894\n", - "2019-01-16 05:22:04,416 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:04,974 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:22:04,976 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.030*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:22:04,977 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:22:04,979 : INFO : topic #14 (0.020): 0.018*\"univers\" + 0.016*\"research\" + 0.013*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.010*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:22:04,980 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.065*\"align\" + 0.057*\"left\" + 0.056*\"wikit\" + 0.052*\"style\" + 0.045*\"center\" + 0.044*\"right\" + 0.033*\"philippin\" + 0.032*\"text\" + 0.022*\"border\"\n", - "2019-01-16 05:22:04,987 : INFO : topic diff=0.004375, rho=0.027472\n", - "2019-01-16 05:22:05,246 : INFO : PROGRESS: pass 0, at document #2652000/4922894\n", - "2019-01-16 05:22:07,289 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:07,849 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"space\" + 0.005*\"effect\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:22:07,850 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"area\" + 0.020*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:22:07,851 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:22:07,853 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:22:07,854 : INFO : topic #42 (0.020): 0.024*\"king\" + 0.021*\"centuri\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:22:07,860 : INFO : topic diff=0.004777, rho=0.027462\n", - "2019-01-16 05:22:08,115 : INFO : PROGRESS: pass 0, at document #2654000/4922894\n", - "2019-01-16 05:22:10,098 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:10,654 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:22:10,655 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.025*\"men\" + 0.024*\"japan\" + 0.021*\"event\" + 0.020*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:22:10,657 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:22:10,658 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"space\" + 0.005*\"effect\"\n", - "2019-01-16 05:22:10,659 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:22:10,666 : INFO : topic diff=0.004003, rho=0.027451\n", - "2019-01-16 05:22:10,950 : INFO : PROGRESS: pass 0, at document #2656000/4922894\n", - "2019-01-16 05:22:12,906 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:13,463 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.026*\"saint\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:22:13,465 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"bank\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:22:13,466 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:22:13,468 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:22:13,469 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:22:13,475 : INFO : topic diff=0.003725, rho=0.027441\n", - "2019-01-16 05:22:13,730 : INFO : PROGRESS: pass 0, at document #2658000/4922894\n", - "2019-01-16 05:22:15,745 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:16,308 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.012*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:22:16,309 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:22:16,311 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.025*\"saint\" + 0.025*\"pari\" + 0.025*\"italian\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:22:16,312 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"group\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:22:16,314 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:22:16,320 : INFO : topic diff=0.004254, rho=0.027431\n", - "2019-01-16 05:22:20,915 : INFO : -11.644 per-word bound, 3200.6 perplexity estimate based on a held-out corpus of 2000 documents with 553662 words\n", - "2019-01-16 05:22:20,916 : INFO : PROGRESS: pass 0, at document #2660000/4922894\n", - "2019-01-16 05:22:22,888 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:23,448 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:22:23,450 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"base\"\n", - "2019-01-16 05:22:23,451 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:22:23,454 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.012*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:22:23,456 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"wale\" + 0.012*\"west\"\n", - "2019-01-16 05:22:23,463 : INFO : topic diff=0.004518, rho=0.027420\n", - "2019-01-16 05:22:23,735 : INFO : PROGRESS: pass 0, at document #2662000/4922894\n", - "2019-01-16 05:22:25,816 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:26,375 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"sri\"\n", - "2019-01-16 05:22:26,377 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:22:26,378 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:22:26,380 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 05:22:26,382 : INFO : topic #34 (0.020): 0.098*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"quebec\" + 0.016*\"montreal\" + 0.016*\"korean\" + 0.015*\"british\" + 0.015*\"korea\"\n", - "2019-01-16 05:22:26,387 : INFO : topic diff=0.004817, rho=0.027410\n", - "2019-01-16 05:22:26,633 : INFO : PROGRESS: pass 0, at document #2664000/4922894\n", - "2019-01-16 05:22:28,597 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:29,155 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 05:22:29,156 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:22:29,158 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.012*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:22:29,160 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:22:29,161 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.073*\"align\" + 0.058*\"left\" + 0.055*\"wikit\" + 0.051*\"style\" + 0.048*\"right\" + 0.045*\"center\" + 0.034*\"philippin\" + 0.031*\"text\" + 0.021*\"border\"\n", - "2019-01-16 05:22:29,167 : INFO : topic diff=0.004199, rho=0.027400\n", - "2019-01-16 05:22:29,424 : INFO : PROGRESS: pass 0, at document #2666000/4922894\n", - "2019-01-16 05:22:31,443 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:32,002 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:22:32,003 : INFO : topic #4 (0.020): 0.131*\"school\" + 0.044*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 05:22:32,005 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:22:32,007 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:22:32,008 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:22:32,013 : INFO : topic diff=0.004205, rho=0.027390\n", - "2019-01-16 05:22:32,266 : INFO : PROGRESS: pass 0, at document #2668000/4922894\n", - "2019-01-16 05:22:34,310 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:34,866 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:22:34,868 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:22:34,869 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:22:34,871 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:22:34,872 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 05:22:34,878 : INFO : topic diff=0.003773, rho=0.027379\n", - "2019-01-16 05:22:35,134 : INFO : PROGRESS: pass 0, at document #2670000/4922894\n", - "2019-01-16 05:22:37,075 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:37,632 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:22:37,633 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:22:37,635 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.015*\"jewish\" + 0.015*\"polish\" + 0.013*\"moscow\" + 0.012*\"israel\" + 0.012*\"republ\"\n", - "2019-01-16 05:22:37,636 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"austria\"\n", - "2019-01-16 05:22:37,638 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.045*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:22:37,643 : INFO : topic diff=0.004396, rho=0.027369\n", - "2019-01-16 05:22:37,892 : INFO : PROGRESS: pass 0, at document #2672000/4922894\n", - "2019-01-16 05:22:39,894 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:40,452 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.012*\"und\" + 0.011*\"austria\"\n", - "2019-01-16 05:22:40,453 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.044*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:22:40,454 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"effect\"\n", - "2019-01-16 05:22:40,455 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:22:40,456 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:22:40,462 : INFO : topic diff=0.003269, rho=0.027359\n", - "2019-01-16 05:22:40,724 : INFO : PROGRESS: pass 0, at document #2674000/4922894\n", - "2019-01-16 05:22:42,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:43,307 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.016*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:22:43,308 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.015*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.012*\"republ\"\n", - "2019-01-16 05:22:43,311 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:22:43,312 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:22:43,314 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"town\" + 0.022*\"unit\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", - "2019-01-16 05:22:43,321 : INFO : topic diff=0.005146, rho=0.027349\n", - "2019-01-16 05:22:43,584 : INFO : PROGRESS: pass 0, at document #2676000/4922894\n", - "2019-01-16 05:22:45,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:46,151 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:22:46,153 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"town\" + 0.022*\"unit\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", - "2019-01-16 05:22:46,154 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:22:46,155 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.008*\"naval\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:22:46,157 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:22:46,162 : INFO : topic diff=0.004724, rho=0.027338\n", - "2019-01-16 05:22:46,410 : INFO : PROGRESS: pass 0, at document #2678000/4922894\n", - "2019-01-16 05:22:48,451 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:49,007 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:22:49,008 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:22:49,009 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:22:49,011 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 05:22:49,013 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:22:49,019 : INFO : topic diff=0.004406, rho=0.027328\n", - "2019-01-16 05:22:53,523 : INFO : -11.628 per-word bound, 3165.1 perplexity estimate based on a held-out corpus of 2000 documents with 543069 words\n", - "2019-01-16 05:22:53,524 : INFO : PROGRESS: pass 0, at document #2680000/4922894\n", - "2019-01-16 05:22:55,514 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:56,072 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.016*\"imag\"\n", - "2019-01-16 05:22:56,074 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:22:56,075 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.008*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 05:22:56,076 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 05:22:56,078 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:22:56,083 : INFO : topic diff=0.004097, rho=0.027318\n", - "2019-01-16 05:22:56,362 : INFO : PROGRESS: pass 0, at document #2682000/4922894\n", - "2019-01-16 05:22:58,316 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:22:58,875 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:22:58,876 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"space\" + 0.005*\"effect\"\n", - "2019-01-16 05:22:58,878 : INFO : topic #34 (0.020): 0.098*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\"\n", - "2019-01-16 05:22:58,879 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.023*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:22:58,881 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.022*\"town\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", - "2019-01-16 05:22:58,886 : INFO : topic diff=0.005249, rho=0.027308\n", - "2019-01-16 05:22:59,138 : INFO : PROGRESS: pass 0, at document #2684000/4922894\n", - "2019-01-16 05:23:01,088 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:01,644 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.064*\"villag\" + 0.050*\"region\" + 0.046*\"east\" + 0.046*\"west\" + 0.045*\"north\" + 0.041*\"south\" + 0.040*\"counti\" + 0.031*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:23:01,646 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"mark\"\n", - "2019-01-16 05:23:01,647 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.012*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"studi\" + 0.008*\"effect\"\n", - "2019-01-16 05:23:01,648 : INFO : topic #4 (0.020): 0.131*\"school\" + 0.045*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:23:01,650 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:23:01,656 : INFO : topic diff=0.004138, rho=0.027298\n", - "2019-01-16 05:23:01,911 : INFO : PROGRESS: pass 0, at document #2686000/4922894\n", - "2019-01-16 05:23:03,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:04,445 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:23:04,446 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:23:04,448 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 05:23:04,449 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:23:04,450 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.023*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.010*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:23:04,456 : INFO : topic diff=0.004042, rho=0.027287\n", - "2019-01-16 05:23:04,704 : INFO : PROGRESS: pass 0, at document #2688000/4922894\n", - "2019-01-16 05:23:06,873 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:07,430 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:23:07,432 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 05:23:07,433 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"space\"\n", - "2019-01-16 05:23:07,435 : INFO : topic #31 (0.020): 0.060*\"australia\" + 0.052*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.012*\"queensland\"\n", - "2019-01-16 05:23:07,437 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"pilot\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:23:07,443 : INFO : topic diff=0.003864, rho=0.027277\n", - "2019-01-16 05:23:07,702 : INFO : PROGRESS: pass 0, at document #2690000/4922894\n", - "2019-01-16 05:23:09,750 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:10,308 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"iran\" + 0.013*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", - "2019-01-16 05:23:10,310 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.006*\"bird\" + 0.006*\"red\"\n", - "2019-01-16 05:23:10,312 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:23:10,313 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"time\" + 0.010*\"championship\"\n", - "2019-01-16 05:23:10,314 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:23:10,320 : INFO : topic diff=0.003792, rho=0.027267\n", - "2019-01-16 05:23:10,569 : INFO : PROGRESS: pass 0, at document #2692000/4922894\n", - "2019-01-16 05:23:12,592 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:13,148 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:23:13,150 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:23:13,151 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:23:13,153 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.045*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:23:13,155 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"union\"\n", - "2019-01-16 05:23:13,161 : INFO : topic diff=0.003757, rho=0.027257\n", - "2019-01-16 05:23:13,414 : INFO : PROGRESS: pass 0, at document #2694000/4922894\n", - "2019-01-16 05:23:15,381 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:15,941 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"mark\"\n", - "2019-01-16 05:23:15,943 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:23:15,944 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:23:15,946 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"space\"\n", - "2019-01-16 05:23:15,947 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:23:15,953 : INFO : topic diff=0.004716, rho=0.027247\n", - "2019-01-16 05:23:16,200 : INFO : PROGRESS: pass 0, at document #2696000/4922894\n", - "2019-01-16 05:23:18,196 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:18,754 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 05:23:18,755 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:23:18,757 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.009*\"set\" + 0.009*\"theori\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"valu\" + 0.007*\"method\"\n", - "2019-01-16 05:23:18,758 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:23:18,759 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"west\"\n", - "2019-01-16 05:23:18,766 : INFO : topic diff=0.005049, rho=0.027237\n", - "2019-01-16 05:23:19,020 : INFO : PROGRESS: pass 0, at document #2698000/4922894\n", - "2019-01-16 05:23:20,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:21,551 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:23:21,553 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:23:21,555 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.025*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:23:21,557 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.025*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:23:21,558 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:23:21,564 : INFO : topic diff=0.004555, rho=0.027227\n", - "2019-01-16 05:23:26,179 : INFO : -11.872 per-word bound, 3747.0 perplexity estimate based on a held-out corpus of 2000 documents with 556717 words\n", - "2019-01-16 05:23:26,180 : INFO : PROGRESS: pass 0, at document #2700000/4922894\n", - "2019-01-16 05:23:28,200 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:28,757 : INFO : topic #34 (0.020): 0.097*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\"\n", - "2019-01-16 05:23:28,758 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.039*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:23:28,760 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.044*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:23:28,761 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 05:23:28,763 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:23:28,769 : INFO : topic diff=0.004117, rho=0.027217\n", - "2019-01-16 05:23:29,017 : INFO : PROGRESS: pass 0, at document #2702000/4922894\n", - "2019-01-16 05:23:31,066 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:23:31,627 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:23:31,628 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.065*\"august\" + 0.063*\"april\" + 0.063*\"decemb\"\n", - "2019-01-16 05:23:31,629 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:23:31,630 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"area\" + 0.021*\"counti\" + 0.020*\"household\"\n", - "2019-01-16 05:23:31,632 : INFO : topic #34 (0.020): 0.097*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"british\"\n", - "2019-01-16 05:23:31,637 : INFO : topic diff=0.003848, rho=0.027206\n", - "2019-01-16 05:23:31,894 : INFO : PROGRESS: pass 0, at document #2704000/4922894\n", - "2019-01-16 05:23:33,833 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:34,393 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:23:34,395 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:23:34,396 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.085*\"align\" + 0.074*\"left\" + 0.055*\"wikit\" + 0.048*\"style\" + 0.043*\"center\" + 0.042*\"right\" + 0.030*\"philippin\" + 0.030*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:23:34,398 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"human\"\n", - "2019-01-16 05:23:34,399 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:23:34,405 : INFO : topic diff=0.004287, rho=0.027196\n", - "2019-01-16 05:23:34,690 : INFO : PROGRESS: pass 0, at document #2706000/4922894\n", - "2019-01-16 05:23:36,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:37,224 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", - "2019-01-16 05:23:37,225 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"theori\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"method\"\n", - "2019-01-16 05:23:37,227 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:23:37,228 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.024*\"winner\" + 0.022*\"point\" + 0.021*\"group\" + 0.017*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:23:37,230 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:23:37,236 : INFO : topic diff=0.004205, rho=0.027186\n", - "2019-01-16 05:23:37,478 : INFO : PROGRESS: pass 0, at document #2708000/4922894\n", - "2019-01-16 05:23:39,428 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:39,989 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"gun\" + 0.009*\"damag\" + 0.008*\"sail\"\n", - "2019-01-16 05:23:39,991 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"program\" + 0.011*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:23:39,993 : INFO : topic #35 (0.020): 0.025*\"kong\" + 0.024*\"lee\" + 0.024*\"hong\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.015*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", - "2019-01-16 05:23:39,994 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:23:39,996 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", - "2019-01-16 05:23:40,001 : INFO : topic diff=0.003502, rho=0.027176\n", - "2019-01-16 05:23:40,256 : INFO : PROGRESS: pass 0, at document #2710000/4922894\n", - "2019-01-16 05:23:42,242 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:42,799 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:23:42,800 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.022*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:23:42,802 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:23:42,803 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"khan\" + 0.013*\"tamil\" + 0.012*\"sri\" + 0.011*\"islam\"\n", - "2019-01-16 05:23:42,805 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:23:42,811 : INFO : topic diff=0.004323, rho=0.027166\n", - "2019-01-16 05:23:43,049 : INFO : PROGRESS: pass 0, at document #2712000/4922894\n", - "2019-01-16 05:23:44,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:45,560 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"program\" + 0.012*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:23:45,561 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.008*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 05:23:45,563 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:23:45,564 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:23:45,566 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:23:45,572 : INFO : topic diff=0.004190, rho=0.027156\n", - "2019-01-16 05:23:45,833 : INFO : PROGRESS: pass 0, at document #2714000/4922894\n", - "2019-01-16 05:23:47,915 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:48,478 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"tamil\" + 0.013*\"khan\" + 0.012*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 05:23:48,480 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:23:48,482 : INFO : topic #48 (0.020): 0.079*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.067*\"januari\" + 0.067*\"juli\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.064*\"august\" + 0.063*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 05:23:48,483 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"citi\"\n", - "2019-01-16 05:23:48,485 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"champion\" + 0.013*\"team\" + 0.012*\"world\"\n", - "2019-01-16 05:23:48,490 : INFO : topic diff=0.004432, rho=0.027146\n", - "2019-01-16 05:23:48,747 : INFO : PROGRESS: pass 0, at document #2716000/4922894\n", - "2019-01-16 05:23:50,741 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:51,303 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"champion\" + 0.013*\"team\" + 0.012*\"world\"\n", - "2019-01-16 05:23:51,305 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.043*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.027*\"color\" + 0.027*\"till\" + 0.023*\"black\" + 0.012*\"cape\" + 0.012*\"storm\"\n", - "2019-01-16 05:23:51,307 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.009*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:23:51,308 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:23:51,310 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.072*\"septemb\" + 0.072*\"octob\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 05:23:51,316 : INFO : topic diff=0.004427, rho=0.027136\n", - "2019-01-16 05:23:51,579 : INFO : PROGRESS: pass 0, at document #2718000/4922894\n", - "2019-01-16 05:23:53,593 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:23:54,150 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"citi\"\n", - "2019-01-16 05:23:54,152 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:23:54,154 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.044*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:23:54,155 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.008*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 05:23:54,157 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.012*\"republ\" + 0.012*\"politician\"\n", - "2019-01-16 05:23:54,163 : INFO : topic diff=0.003792, rho=0.027126\n", - "2019-01-16 05:23:58,568 : INFO : -11.583 per-word bound, 3068.7 perplexity estimate based on a held-out corpus of 2000 documents with 510301 words\n", - "2019-01-16 05:23:58,569 : INFO : PROGRESS: pass 0, at document #2720000/4922894\n", - "2019-01-16 05:24:00,503 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:01,061 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", - "2019-01-16 05:24:01,062 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 05:24:01,064 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.016*\"match\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"champion\" + 0.013*\"team\" + 0.012*\"world\"\n", - "2019-01-16 05:24:01,065 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.022*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:24:01,067 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:24:01,073 : INFO : topic diff=0.003827, rho=0.027116\n", - "2019-01-16 05:24:01,324 : INFO : PROGRESS: pass 0, at document #2722000/4922894\n", - "2019-01-16 05:24:03,390 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:03,948 : INFO : topic #9 (0.020): 0.065*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"movi\" + 0.011*\"televis\"\n", - "2019-01-16 05:24:03,949 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:24:03,952 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.022*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:24:03,953 : INFO : topic #35 (0.020): 0.025*\"lee\" + 0.024*\"hong\" + 0.024*\"kong\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.015*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.013*\"asian\" + 0.013*\"vietnam\"\n", - "2019-01-16 05:24:03,954 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.010*\"regiment\"\n", - "2019-01-16 05:24:03,960 : INFO : topic diff=0.003421, rho=0.027106\n", - "2019-01-16 05:24:04,209 : INFO : PROGRESS: pass 0, at document #2724000/4922894\n", - "2019-01-16 05:24:06,199 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:06,756 : INFO : topic #35 (0.020): 0.025*\"hong\" + 0.025*\"lee\" + 0.025*\"kong\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.015*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.013*\"asian\" + 0.013*\"vietnam\"\n", - "2019-01-16 05:24:06,758 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.006*\"union\" + 0.006*\"group\"\n", - "2019-01-16 05:24:06,759 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:24:06,760 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:24:06,762 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 05:24:06,767 : INFO : topic diff=0.003376, rho=0.027096\n", - "2019-01-16 05:24:07,031 : INFO : PROGRESS: pass 0, at document #2726000/4922894\n", - "2019-01-16 05:24:09,096 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:09,658 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:24:09,660 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.079*\"align\" + 0.067*\"left\" + 0.056*\"wikit\" + 0.048*\"style\" + 0.044*\"right\" + 0.044*\"center\" + 0.031*\"philippin\" + 0.029*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:24:09,662 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:24:09,663 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.071*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.017*\"korea\" + 0.015*\"british\" + 0.015*\"montreal\"\n", - "2019-01-16 05:24:09,664 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:24:09,671 : INFO : topic diff=0.005083, rho=0.027086\n", - "2019-01-16 05:24:09,930 : INFO : PROGRESS: pass 0, at document #2728000/4922894\n", - "2019-01-16 05:24:11,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:12,500 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.025*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:24:12,501 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 05:24:12,503 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n", - "2019-01-16 05:24:12,504 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:24:12,507 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.026*\"pari\" + 0.025*\"italian\" + 0.023*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:24:12,513 : INFO : topic diff=0.004313, rho=0.027077\n", - "2019-01-16 05:24:12,766 : INFO : PROGRESS: pass 0, at document #2730000/4922894\n", - "2019-01-16 05:24:14,766 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:15,322 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:24:15,324 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:24:15,325 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:24:15,327 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:24:15,328 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 05:24:15,335 : INFO : topic diff=0.004626, rho=0.027067\n", - "2019-01-16 05:24:15,623 : INFO : PROGRESS: pass 0, at document #2732000/4922894\n", - "2019-01-16 05:24:17,614 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:18,171 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 05:24:18,173 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.064*\"august\" + 0.064*\"decemb\" + 0.064*\"june\" + 0.062*\"april\"\n", - "2019-01-16 05:24:18,174 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:24:18,175 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.053*\"australian\" + 0.050*\"new\" + 0.043*\"china\" + 0.033*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:24:18,177 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:24:18,183 : INFO : topic diff=0.003976, rho=0.027057\n", - "2019-01-16 05:24:18,436 : INFO : PROGRESS: pass 0, at document #2734000/4922894\n", - "2019-01-16 05:24:20,402 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:20,960 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 05:24:20,961 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"gun\" + 0.009*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 05:24:20,963 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.043*\"china\" + 0.033*\"chines\" + 0.033*\"zealand\" + 0.029*\"south\" + 0.019*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:24:20,965 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:24:20,966 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"counti\" + 0.021*\"township\" + 0.020*\"household\"\n", - "2019-01-16 05:24:20,972 : INFO : topic diff=0.004820, rho=0.027047\n", - "2019-01-16 05:24:21,219 : INFO : PROGRESS: pass 0, at document #2736000/4922894\n", - "2019-01-16 05:24:23,198 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:23,757 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"gun\" + 0.009*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 05:24:23,758 : INFO : topic #35 (0.020): 0.027*\"hong\" + 0.027*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", - "2019-01-16 05:24:23,760 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:24:23,762 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:24:23,763 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.071*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.017*\"korea\" + 0.015*\"british\" + 0.015*\"montreal\"\n", - "2019-01-16 05:24:23,768 : INFO : topic diff=0.003657, rho=0.027037\n", - "2019-01-16 05:24:24,027 : INFO : PROGRESS: pass 0, at document #2738000/4922894\n", - "2019-01-16 05:24:26,029 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:26,585 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 05:24:26,587 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.071*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.022*\"toronto\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.015*\"british\" + 0.015*\"montreal\"\n", - "2019-01-16 05:24:26,588 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:24:26,590 : INFO : topic #35 (0.020): 0.027*\"hong\" + 0.027*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.014*\"asian\" + 0.013*\"asia\"\n", - "2019-01-16 05:24:26,592 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:24:26,598 : INFO : topic diff=0.003904, rho=0.027027\n", - "2019-01-16 05:24:31,187 : INFO : -11.721 per-word bound, 3375.4 perplexity estimate based on a held-out corpus of 2000 documents with 540880 words\n", - "2019-01-16 05:24:31,188 : INFO : PROGRESS: pass 0, at document #2740000/4922894\n", - "2019-01-16 05:24:33,195 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:33,752 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:24:33,754 : INFO : topic #0 (0.020): 0.037*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.010*\"regiment\"\n", - "2019-01-16 05:24:33,755 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:24:33,756 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.066*\"juli\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.064*\"decemb\" + 0.063*\"june\" + 0.062*\"april\"\n", - "2019-01-16 05:24:33,758 : INFO : topic #9 (0.020): 0.065*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"movi\" + 0.011*\"televis\"\n", - "2019-01-16 05:24:33,764 : INFO : topic diff=0.004021, rho=0.027017\n", - "2019-01-16 05:24:34,023 : INFO : PROGRESS: pass 0, at document #2742000/4922894\n", - "2019-01-16 05:24:36,079 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:36,636 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:24:36,637 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:24:36,639 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:24:36,641 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.009*\"gun\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.008*\"naval\"\n", - "2019-01-16 05:24:36,642 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:24:36,648 : INFO : topic diff=0.004851, rho=0.027007\n", - "2019-01-16 05:24:36,908 : INFO : PROGRESS: pass 0, at document #2744000/4922894\n", - "2019-01-16 05:24:38,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:39,464 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 05:24:39,465 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"commun\"\n", - "2019-01-16 05:24:39,467 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:24:39,469 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:24:39,470 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"protein\"\n", - "2019-01-16 05:24:39,476 : INFO : topic diff=0.004642, rho=0.026997\n", - "2019-01-16 05:24:39,728 : INFO : PROGRESS: pass 0, at document #2746000/4922894\n", - "2019-01-16 05:24:41,792 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:42,348 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 05:24:42,350 : INFO : topic #4 (0.020): 0.131*\"school\" + 0.044*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"grade\"\n", - "2019-01-16 05:24:42,351 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:24:42,352 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"commun\"\n", - "2019-01-16 05:24:42,354 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.013*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:24:42,360 : INFO : topic diff=0.003835, rho=0.026988\n", - "2019-01-16 05:24:42,616 : INFO : PROGRESS: pass 0, at document #2748000/4922894\n", - "2019-01-16 05:24:44,655 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:45,212 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.042*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.027*\"till\" + 0.026*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:24:45,213 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.004*\"temperatur\"\n", - "2019-01-16 05:24:45,215 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:24:45,216 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"tour\" + 0.011*\"championship\" + 0.010*\"ford\" + 0.010*\"grand\"\n", - "2019-01-16 05:24:45,217 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.017*\"london\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:24:45,224 : INFO : topic diff=0.004404, rho=0.026978\n", - "2019-01-16 05:24:45,476 : INFO : PROGRESS: pass 0, at document #2750000/4922894\n", - "2019-01-16 05:24:47,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:48,040 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 05:24:48,041 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:24:48,043 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", - "2019-01-16 05:24:48,045 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:24:48,046 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"commun\"\n", - "2019-01-16 05:24:48,052 : INFO : topic diff=0.004210, rho=0.026968\n", - "2019-01-16 05:24:48,315 : INFO : PROGRESS: pass 0, at document #2752000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:24:50,314 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:50,873 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"royal\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:24:50,874 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"commun\"\n", - "2019-01-16 05:24:50,876 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:24:50,878 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:24:50,879 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.021*\"wrestl\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:24:50,886 : INFO : topic diff=0.003842, rho=0.026958\n", - "2019-01-16 05:24:51,144 : INFO : PROGRESS: pass 0, at document #2754000/4922894\n", - "2019-01-16 05:24:53,132 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:53,689 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.019*\"democrat\" + 0.018*\"presid\" + 0.018*\"vote\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", - "2019-01-16 05:24:53,690 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.073*\"align\" + 0.064*\"left\" + 0.056*\"wikit\" + 0.049*\"style\" + 0.044*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:24:53,692 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.017*\"london\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:24:53,693 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:24:53,696 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 05:24:53,703 : INFO : topic diff=0.004625, rho=0.026948\n", - "2019-01-16 05:24:53,951 : INFO : PROGRESS: pass 0, at document #2756000/4922894\n", - "2019-01-16 05:24:55,974 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:56,532 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"commun\"\n", - "2019-01-16 05:24:56,534 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:24:56,536 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.024*\"township\" + 0.023*\"counti\" + 0.022*\"censu\" + 0.021*\"commun\" + 0.020*\"household\"\n", - "2019-01-16 05:24:56,538 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.072*\"align\" + 0.063*\"left\" + 0.056*\"wikit\" + 0.049*\"style\" + 0.044*\"center\" + 0.041*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:24:56,540 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.044*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"grade\"\n", - "2019-01-16 05:24:56,546 : INFO : topic diff=0.003870, rho=0.026939\n", - "2019-01-16 05:24:56,825 : INFO : PROGRESS: pass 0, at document #2758000/4922894\n", - "2019-01-16 05:24:58,799 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:24:59,356 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:24:59,358 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:24:59,359 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", - "2019-01-16 05:24:59,361 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:24:59,363 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 05:24:59,370 : INFO : topic diff=0.004146, rho=0.026929\n", - "2019-01-16 05:25:04,005 : INFO : -12.099 per-word bound, 4385.8 perplexity estimate based on a held-out corpus of 2000 documents with 559668 words\n", - "2019-01-16 05:25:04,006 : INFO : PROGRESS: pass 0, at document #2760000/4922894\n", - "2019-01-16 05:25:06,262 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:06,821 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"counti\" + 0.023*\"township\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"household\"\n", - "2019-01-16 05:25:06,823 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:25:06,825 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:25:06,826 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:25:06,827 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.042*\"africa\" + 0.037*\"african\" + 0.032*\"south\" + 0.029*\"text\" + 0.027*\"till\" + 0.026*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:25:06,833 : INFO : topic diff=0.004673, rho=0.026919\n", - "2019-01-16 05:25:07,103 : INFO : PROGRESS: pass 0, at document #2762000/4922894\n", - "2019-01-16 05:25:09,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:09,723 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:25:09,724 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"commun\"\n", - "2019-01-16 05:25:09,726 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"mark\" + 0.006*\"richard\"\n", - "2019-01-16 05:25:09,727 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:25:09,729 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:25:09,735 : INFO : topic diff=0.004278, rho=0.026909\n", - "2019-01-16 05:25:09,991 : INFO : PROGRESS: pass 0, at document #2764000/4922894\n", - "2019-01-16 05:25:12,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:12,560 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.064*\"villag\" + 0.051*\"region\" + 0.045*\"north\" + 0.044*\"east\" + 0.044*\"west\" + 0.041*\"counti\" + 0.040*\"south\" + 0.030*\"provinc\" + 0.027*\"central\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:25:12,561 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"protein\"\n", - "2019-01-16 05:25:12,563 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:25:12,564 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.019*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:25:12,566 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:25:12,572 : INFO : topic diff=0.003926, rho=0.026900\n", - "2019-01-16 05:25:12,833 : INFO : PROGRESS: pass 0, at document #2766000/4922894\n", - "2019-01-16 05:25:14,827 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:15,385 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"commun\"\n", - "2019-01-16 05:25:15,387 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.011*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 05:25:15,388 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"air\"\n", - "2019-01-16 05:25:15,390 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.024*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"japanes\"\n", - "2019-01-16 05:25:15,391 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.064*\"villag\" + 0.051*\"region\" + 0.045*\"north\" + 0.045*\"east\" + 0.044*\"west\" + 0.040*\"counti\" + 0.040*\"south\" + 0.030*\"provinc\" + 0.026*\"central\"\n", - "2019-01-16 05:25:15,396 : INFO : topic diff=0.003515, rho=0.026890\n", - "2019-01-16 05:25:15,660 : INFO : PROGRESS: pass 0, at document #2768000/4922894\n", - "2019-01-16 05:25:17,667 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:18,227 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.012*\"model\" + 0.011*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:25:18,228 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"sail\"\n", - "2019-01-16 05:25:18,230 : INFO : topic #15 (0.020): 0.029*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.014*\"scottish\" + 0.014*\"scotland\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:25:18,231 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 05:25:18,233 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:25:18,239 : INFO : topic diff=0.004583, rho=0.026880\n", - "2019-01-16 05:25:18,483 : INFO : PROGRESS: pass 0, at document #2770000/4922894\n", - "2019-01-16 05:25:20,393 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:20,949 : INFO : topic #15 (0.020): 0.030*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.020*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 05:25:20,950 : INFO : topic #35 (0.020): 0.029*\"kong\" + 0.029*\"hong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asia\"\n", - "2019-01-16 05:25:20,952 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:25:20,953 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.031*\"text\" + 0.027*\"till\" + 0.026*\"color\" + 0.022*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:25:20,955 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.066*\"juli\" + 0.066*\"januari\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.064*\"decemb\" + 0.063*\"april\"\n", - "2019-01-16 05:25:20,961 : INFO : topic diff=0.004817, rho=0.026870\n", - "2019-01-16 05:25:21,221 : INFO : PROGRESS: pass 0, at document #2772000/4922894\n", - "2019-01-16 05:25:23,261 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:23,818 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"human\"\n", - "2019-01-16 05:25:23,819 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.043*\"univers\" + 0.039*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"grade\" + 0.010*\"state\"\n", - "2019-01-16 05:25:23,821 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.012*\"divis\"\n", - "2019-01-16 05:25:23,822 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"exampl\" + 0.007*\"method\" + 0.007*\"group\"\n", - "2019-01-16 05:25:23,824 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 05:25:23,831 : INFO : topic diff=0.004576, rho=0.026861\n", - "2019-01-16 05:25:24,079 : INFO : PROGRESS: pass 0, at document #2774000/4922894\n", - "2019-01-16 05:25:26,089 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:26,646 : INFO : topic #35 (0.020): 0.029*\"kong\" + 0.029*\"hong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.017*\"malaysia\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asia\"\n", - "2019-01-16 05:25:26,647 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:25:26,649 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:25:26,651 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.017*\"medic\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", - "2019-01-16 05:25:26,652 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.018*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:25:26,659 : INFO : topic diff=0.003593, rho=0.026851\n", - "2019-01-16 05:25:26,908 : INFO : PROGRESS: pass 0, at document #2776000/4922894\n", - "2019-01-16 05:25:28,846 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:29,410 : INFO : topic #14 (0.020): 0.019*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:25:29,412 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:25:29,414 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:25:29,415 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.035*\"citi\" + 0.035*\"town\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.023*\"censu\" + 0.022*\"township\" + 0.020*\"household\"\n", - "2019-01-16 05:25:29,418 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"sail\"\n", - "2019-01-16 05:25:29,423 : INFO : topic diff=0.003976, rho=0.026841\n", - "2019-01-16 05:25:29,684 : INFO : PROGRESS: pass 0, at document #2778000/4922894\n", - "2019-01-16 05:25:31,709 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:32,267 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.021*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:25:32,268 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:25:32,270 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.067*\"align\" + 0.059*\"left\" + 0.056*\"wikit\" + 0.051*\"style\" + 0.044*\"center\" + 0.039*\"right\" + 0.035*\"philippin\" + 0.030*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:25:32,271 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 05:25:32,273 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:25:32,279 : INFO : topic diff=0.004125, rho=0.026832\n", - "2019-01-16 05:25:36,782 : INFO : -11.584 per-word bound, 3070.4 perplexity estimate based on a held-out corpus of 2000 documents with 531248 words\n", - "2019-01-16 05:25:36,782 : INFO : PROGRESS: pass 0, at document #2780000/4922894\n", - "2019-01-16 05:25:38,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:39,324 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:25:39,326 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", - "2019-01-16 05:25:39,327 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:25:39,329 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"grade\" + 0.010*\"state\"\n", - "2019-01-16 05:25:39,330 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.063*\"villag\" + 0.050*\"region\" + 0.046*\"north\" + 0.045*\"east\" + 0.045*\"west\" + 0.041*\"south\" + 0.040*\"counti\" + 0.030*\"provinc\" + 0.026*\"central\"\n", - "2019-01-16 05:25:39,336 : INFO : topic diff=0.003258, rho=0.026822\n", - "2019-01-16 05:25:39,592 : INFO : PROGRESS: pass 0, at document #2782000/4922894\n", - "2019-01-16 05:25:41,602 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:42,158 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.017*\"medic\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", - "2019-01-16 05:25:42,160 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:25:42,162 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:25:42,164 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:25:42,165 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 05:25:42,171 : INFO : topic diff=0.003799, rho=0.026812\n", - "2019-01-16 05:25:42,460 : INFO : PROGRESS: pass 0, at document #2784000/4922894\n", - "2019-01-16 05:25:44,452 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:45,010 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.015*\"battl\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 05:25:45,012 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:25:45,013 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", - "2019-01-16 05:25:45,014 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:25:45,016 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 05:25:45,022 : INFO : topic diff=0.004307, rho=0.026803\n", - "2019-01-16 05:25:45,271 : INFO : PROGRESS: pass 0, at document #2786000/4922894\n", - "2019-01-16 05:25:47,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:47,896 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:25:47,898 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"model\" + 0.012*\"product\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:25:47,899 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:25:47,901 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.020*\"centuri\" + 0.012*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:25:47,902 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.044*\"univers\" + 0.042*\"colleg\" + 0.037*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"grade\" + 0.009*\"state\"\n", - "2019-01-16 05:25:47,908 : INFO : topic diff=0.004931, rho=0.026793\n", - "2019-01-16 05:25:48,165 : INFO : PROGRESS: pass 0, at document #2788000/4922894\n", - "2019-01-16 05:25:50,165 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:50,729 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 05:25:50,730 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.012*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:25:50,732 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:25:50,734 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:25:50,735 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.010*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:25:50,742 : INFO : topic diff=0.003501, rho=0.026784\n", - "2019-01-16 05:25:51,003 : INFO : PROGRESS: pass 0, at document #2790000/4922894\n", - "2019-01-16 05:25:53,018 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:53,574 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.022*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:25:53,576 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:25:53,577 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:25:53,578 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.010*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:25:53,581 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:25:53,587 : INFO : topic diff=0.004015, rho=0.026774\n", - "2019-01-16 05:25:53,847 : INFO : PROGRESS: pass 0, at document #2792000/4922894\n", - "2019-01-16 05:25:55,827 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:56,386 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.063*\"align\" + 0.057*\"wikit\" + 0.056*\"left\" + 0.051*\"style\" + 0.043*\"center\" + 0.037*\"right\" + 0.036*\"philippin\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:25:56,387 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"town\" + 0.036*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.021*\"township\" + 0.020*\"household\"\n", - "2019-01-16 05:25:56,389 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.020*\"airport\" + 0.018*\"flight\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:25:56,391 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:25:56,393 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:25:56,398 : INFO : topic diff=0.004191, rho=0.026764\n", - "2019-01-16 05:25:56,662 : INFO : PROGRESS: pass 0, at document #2794000/4922894\n", - "2019-01-16 05:25:58,754 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:25:59,312 : INFO : topic #22 (0.020): 0.047*\"popul\" + 0.036*\"citi\" + 0.036*\"town\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.021*\"township\" + 0.020*\"household\"\n", - "2019-01-16 05:25:59,313 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 05:25:59,314 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:25:59,316 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.016*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:25:59,317 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:25:59,323 : INFO : topic diff=0.005167, rho=0.026755\n", - "2019-01-16 05:25:59,603 : INFO : PROGRESS: pass 0, at document #2796000/4922894\n", - "2019-01-16 05:26:01,650 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:02,207 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.069*\"januari\" + 0.067*\"juli\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.064*\"decemb\" + 0.064*\"april\"\n", - "2019-01-16 05:26:02,209 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.017*\"medic\" + 0.014*\"health\" + 0.013*\"cell\" + 0.013*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"human\"\n", - "2019-01-16 05:26:02,210 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.016*\"london\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:26:02,212 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"program\" + 0.012*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 05:26:02,213 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:26:02,219 : INFO : topic diff=0.004517, rho=0.026745\n", - "2019-01-16 05:26:02,472 : INFO : PROGRESS: pass 0, at document #2798000/4922894\n", - "2019-01-16 05:26:04,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:05,039 : INFO : topic #35 (0.020): 0.029*\"hong\" + 0.028*\"kong\" + 0.023*\"singapor\" + 0.023*\"lee\" + 0.018*\"kim\" + 0.018*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asia\" + 0.014*\"asian\" + 0.014*\"min\"\n", - "2019-01-16 05:26:05,040 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:26:05,042 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:26:05,043 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:26:05,046 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.069*\"januari\" + 0.067*\"juli\" + 0.066*\"august\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.064*\"decemb\" + 0.063*\"april\"\n", - "2019-01-16 05:26:05,052 : INFO : topic diff=0.003798, rho=0.026736\n", - "2019-01-16 05:26:09,705 : INFO : -11.769 per-word bound, 3489.0 perplexity estimate based on a held-out corpus of 2000 documents with 547662 words\n", - "2019-01-16 05:26:09,705 : INFO : PROGRESS: pass 0, at document #2800000/4922894\n", - "2019-01-16 05:26:11,716 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:12,278 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"us\"\n", - "2019-01-16 05:26:12,279 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:26:12,281 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.019*\"airport\" + 0.019*\"forc\" + 0.018*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:26:12,282 : INFO : topic #35 (0.020): 0.029*\"hong\" + 0.028*\"kong\" + 0.023*\"singapor\" + 0.023*\"lee\" + 0.018*\"kim\" + 0.018*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asia\" + 0.014*\"asian\" + 0.014*\"min\"\n", - "2019-01-16 05:26:12,286 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:26:12,292 : INFO : topic diff=0.004193, rho=0.026726\n", - "2019-01-16 05:26:12,551 : INFO : PROGRESS: pass 0, at document #2802000/4922894\n", - "2019-01-16 05:26:14,597 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:15,154 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"group\"\n", - "2019-01-16 05:26:15,156 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:26:15,157 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"dai\" + 0.004*\"return\"\n", - "2019-01-16 05:26:15,158 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:26:15,161 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.018*\"democrat\" + 0.018*\"vote\" + 0.018*\"presid\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 05:26:15,168 : INFO : topic diff=0.004661, rho=0.026717\n", - "2019-01-16 05:26:15,418 : INFO : PROGRESS: pass 0, at document #2804000/4922894\n", - "2019-01-16 05:26:17,423 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:17,980 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 05:26:17,982 : INFO : topic #15 (0.020): 0.031*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.017*\"cricket\" + 0.016*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:26:17,983 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", - "2019-01-16 05:26:17,984 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.018*\"presid\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 05:26:17,986 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.064*\"villag\" + 0.049*\"region\" + 0.046*\"north\" + 0.045*\"east\" + 0.044*\"west\" + 0.041*\"south\" + 0.039*\"counti\" + 0.032*\"provinc\" + 0.026*\"central\"\n", - "2019-01-16 05:26:17,993 : INFO : topic diff=0.003909, rho=0.026707\n", - "2019-01-16 05:26:18,248 : INFO : PROGRESS: pass 0, at document #2806000/4922894\n", - "2019-01-16 05:26:20,268 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:20,825 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"flag\" + 0.016*\"korean\" + 0.015*\"korea\"\n", - "2019-01-16 05:26:20,827 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.022*\"counti\" + 0.021*\"household\" + 0.020*\"area\"\n", - "2019-01-16 05:26:20,829 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 05:26:20,830 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.065*\"villag\" + 0.049*\"region\" + 0.046*\"north\" + 0.045*\"east\" + 0.044*\"west\" + 0.041*\"south\" + 0.039*\"counti\" + 0.032*\"provinc\" + 0.026*\"central\"\n", - "2019-01-16 05:26:20,831 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:26:20,837 : INFO : topic diff=0.004108, rho=0.026698\n", - "2019-01-16 05:26:21,135 : INFO : PROGRESS: pass 0, at document #2808000/4922894\n", - "2019-01-16 05:26:23,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:23,745 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.015*\"festiv\" + 0.015*\"plai\" + 0.013*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:26:23,746 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.069*\"januari\" + 0.067*\"juli\" + 0.065*\"august\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.063*\"decemb\"\n", - "2019-01-16 05:26:23,748 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"wrestl\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:26:23,749 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.038*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.012*\"israel\"\n", - "2019-01-16 05:26:23,750 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:26:23,756 : INFO : topic diff=0.003836, rho=0.026688\n", - "2019-01-16 05:26:24,015 : INFO : PROGRESS: pass 0, at document #2810000/4922894\n", - "2019-01-16 05:26:26,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:26,632 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:26:26,633 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:26:26,635 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:26:26,636 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.021*\"centuri\" + 0.011*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:26:26,638 : INFO : topic #35 (0.020): 0.028*\"hong\" + 0.028*\"kong\" + 0.023*\"singapor\" + 0.023*\"lee\" + 0.018*\"malaysia\" + 0.018*\"kim\" + 0.016*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 05:26:26,645 : INFO : topic diff=0.003882, rho=0.026679\n", - "2019-01-16 05:26:26,906 : INFO : PROGRESS: pass 0, at document #2812000/4922894\n", - "2019-01-16 05:26:28,898 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:29,454 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:26:29,456 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:26:29,457 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:26:29,459 : INFO : topic #4 (0.020): 0.129*\"school\" + 0.044*\"univers\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:26:29,460 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.010*\"countri\" + 0.008*\"peopl\" + 0.006*\"unit\" + 0.006*\"group\" + 0.006*\"union\"\n", - "2019-01-16 05:26:29,466 : INFO : topic diff=0.004215, rho=0.026669\n", - "2019-01-16 05:26:29,727 : INFO : PROGRESS: pass 0, at document #2814000/4922894\n", - "2019-01-16 05:26:31,715 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:32,273 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.015*\"montreal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:26:32,274 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"materi\"\n", - "2019-01-16 05:26:32,276 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.013*\"royal\" + 0.013*\"ireland\" + 0.013*\"jame\" + 0.013*\"thoma\"\n", - "2019-01-16 05:26:32,277 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"unit\" + 0.006*\"group\" + 0.006*\"support\"\n", - "2019-01-16 05:26:32,280 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.025*\"member\" + 0.019*\"democrat\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", - "2019-01-16 05:26:32,286 : INFO : topic diff=0.003548, rho=0.026660\n", - "2019-01-16 05:26:32,551 : INFO : PROGRESS: pass 0, at document #2816000/4922894\n", - "2019-01-16 05:26:34,601 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:35,161 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", - "2019-01-16 05:26:35,163 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:26:35,164 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.061*\"align\" + 0.058*\"wikit\" + 0.055*\"left\" + 0.051*\"style\" + 0.045*\"center\" + 0.037*\"philippin\" + 0.035*\"right\" + 0.030*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:26:35,167 : INFO : topic #4 (0.020): 0.130*\"school\" + 0.044*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:26:35,168 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"wrestl\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.017*\"match\" + 0.017*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:26:35,174 : INFO : topic diff=0.005509, rho=0.026650\n", - "2019-01-16 05:26:35,431 : INFO : PROGRESS: pass 0, at document #2818000/4922894\n", - "2019-01-16 05:26:37,456 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:38,015 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:26:38,017 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:26:38,019 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:26:38,020 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:26:38,021 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.064*\"villag\" + 0.050*\"region\" + 0.046*\"north\" + 0.045*\"east\" + 0.044*\"west\" + 0.042*\"south\" + 0.039*\"counti\" + 0.032*\"provinc\" + 0.026*\"central\"\n", - "2019-01-16 05:26:38,027 : INFO : topic diff=0.004500, rho=0.026641\n", - "2019-01-16 05:26:42,672 : INFO : -11.915 per-word bound, 3861.1 perplexity estimate based on a held-out corpus of 2000 documents with 562817 words\n", - "2019-01-16 05:26:42,672 : INFO : PROGRESS: pass 0, at document #2820000/4922894\n", - "2019-01-16 05:26:44,716 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:45,274 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:26:45,275 : INFO : topic #35 (0.020): 0.028*\"hong\" + 0.027*\"kong\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.022*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\" + 0.014*\"asian\"\n", - "2019-01-16 05:26:45,277 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.071*\"septemb\" + 0.070*\"januari\" + 0.068*\"juli\" + 0.066*\"june\" + 0.066*\"novemb\" + 0.065*\"august\" + 0.064*\"decemb\" + 0.064*\"april\"\n", - "2019-01-16 05:26:45,278 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.012*\"model\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:26:45,280 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:26:45,287 : INFO : topic diff=0.003487, rho=0.026631\n", - "2019-01-16 05:26:45,561 : INFO : PROGRESS: pass 0, at document #2822000/4922894\n", - "2019-01-16 05:26:47,650 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:48,209 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:26:48,210 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:26:48,212 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:26:48,213 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 05:26:48,214 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"jone\"\n", - "2019-01-16 05:26:48,221 : INFO : topic diff=0.004295, rho=0.026622\n", - "2019-01-16 05:26:48,465 : INFO : PROGRESS: pass 0, at document #2824000/4922894\n", - "2019-01-16 05:26:50,385 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:50,942 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:26:50,944 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"produc\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:26:50,947 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:26:50,948 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"base\"\n", - "2019-01-16 05:26:50,949 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.009*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"jone\"\n", - "2019-01-16 05:26:50,955 : INFO : topic diff=0.004298, rho=0.026612\n", - "2019-01-16 05:26:51,208 : INFO : PROGRESS: pass 0, at document #2826000/4922894\n", - "2019-01-16 05:26:53,179 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:53,735 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:26:53,737 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"squadron\" + 0.019*\"airport\" + 0.019*\"flight\" + 0.018*\"forc\" + 0.016*\"unit\" + 0.012*\"base\" + 0.012*\"fly\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:26:53,738 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:26:53,740 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:26:53,741 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:26:53,747 : INFO : topic diff=0.004486, rho=0.026603\n", - "2019-01-16 05:26:53,997 : INFO : PROGRESS: pass 0, at document #2828000/4922894\n", - "2019-01-16 05:26:55,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:56,553 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.011*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:26:56,554 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", - "2019-01-16 05:26:56,556 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:26:56,557 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.069*\"januari\" + 0.068*\"juli\" + 0.066*\"novemb\" + 0.066*\"june\" + 0.065*\"august\" + 0.064*\"decemb\" + 0.063*\"april\"\n", - "2019-01-16 05:26:56,559 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"khan\"\n", - "2019-01-16 05:26:56,564 : INFO : topic diff=0.004559, rho=0.026593\n", - "2019-01-16 05:26:56,829 : INFO : PROGRESS: pass 0, at document #2830000/4922894\n", - "2019-01-16 05:26:59,087 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:26:59,651 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:26:59,652 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"base\"\n", - "2019-01-16 05:26:59,653 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:26:59,656 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:26:59,657 : INFO : topic #35 (0.020): 0.028*\"hong\" + 0.027*\"kong\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asia\" + 0.013*\"asian\"\n", - "2019-01-16 05:26:59,664 : INFO : topic diff=0.003906, rho=0.026584\n", - "2019-01-16 05:26:59,917 : INFO : PROGRESS: pass 0, at document #2832000/4922894\n", - "2019-01-16 05:27:01,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:02,445 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.025*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 05:27:02,447 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:27:02,449 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"squadron\" + 0.018*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.012*\"base\" + 0.012*\"fly\"\n", - "2019-01-16 05:27:02,451 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.073*\"align\" + 0.067*\"left\" + 0.056*\"wikit\" + 0.048*\"style\" + 0.046*\"center\" + 0.036*\"philippin\" + 0.032*\"right\" + 0.028*\"text\" + 0.026*\"border\"\n", - "2019-01-16 05:27:02,452 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:27:02,459 : INFO : topic diff=0.003994, rho=0.026575\n", - "2019-01-16 05:27:02,755 : INFO : PROGRESS: pass 0, at document #2834000/4922894\n", - "2019-01-16 05:27:04,770 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:05,326 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:27:05,327 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.031*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.023*\"color\" + 0.023*\"black\" + 0.015*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:27:05,329 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.027*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.018*\"athlet\" + 0.017*\"rank\"\n", - "2019-01-16 05:27:05,330 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"squadron\" + 0.019*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.017*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:27:05,332 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:27:05,338 : INFO : topic diff=0.003592, rho=0.026565\n", - "2019-01-16 05:27:05,606 : INFO : PROGRESS: pass 0, at document #2836000/4922894\n", - "2019-01-16 05:27:07,869 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:08,431 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 05:27:08,433 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", - "2019-01-16 05:27:08,434 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 05:27:08,435 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", - "2019-01-16 05:27:08,437 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.022*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:27:08,442 : INFO : topic diff=0.003710, rho=0.026556\n", - "2019-01-16 05:27:08,691 : INFO : PROGRESS: pass 0, at document #2838000/4922894\n", - "2019-01-16 05:27:10,710 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:11,267 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:27:11,269 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:27:11,270 : INFO : topic #35 (0.020): 0.028*\"hong\" + 0.027*\"kong\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asia\" + 0.014*\"asian\"\n", - "2019-01-16 05:27:11,271 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.022*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:27:11,272 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 05:27:11,279 : INFO : topic diff=0.004098, rho=0.026547\n", - "2019-01-16 05:27:15,933 : INFO : -11.456 per-word bound, 2809.3 perplexity estimate based on a held-out corpus of 2000 documents with 565771 words\n", - "2019-01-16 05:27:15,934 : INFO : PROGRESS: pass 0, at document #2840000/4922894\n", - "2019-01-16 05:27:17,988 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:18,552 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:27:18,553 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.023*\"point\" + 0.021*\"group\" + 0.019*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.011*\"won\"\n", - "2019-01-16 05:27:18,556 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:27:18,557 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:27:18,559 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"base\"\n", - "2019-01-16 05:27:18,565 : INFO : topic diff=0.003477, rho=0.026537\n", - "2019-01-16 05:27:18,832 : INFO : PROGRESS: pass 0, at document #2842000/4922894\n", - "2019-01-16 05:27:20,833 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:21,390 : INFO : topic #35 (0.020): 0.027*\"hong\" + 0.027*\"lee\" + 0.027*\"kong\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 05:27:21,391 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"korean\" + 0.016*\"montreal\" + 0.015*\"ye\"\n", - "2019-01-16 05:27:21,393 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:27:21,394 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.014*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"construct\"\n", - "2019-01-16 05:27:21,396 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.019*\"airport\" + 0.019*\"squadron\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.016*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:27:21,402 : INFO : topic diff=0.003726, rho=0.026528\n", - "2019-01-16 05:27:21,662 : INFO : PROGRESS: pass 0, at document #2844000/4922894\n", - "2019-01-16 05:27:23,663 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:24,220 : INFO : topic #35 (0.020): 0.027*\"hong\" + 0.027*\"kong\" + 0.027*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 05:27:24,222 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:27:24,223 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.022*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:27:24,225 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:27:24,226 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:27:24,232 : INFO : topic diff=0.003908, rho=0.026519\n", - "2019-01-16 05:27:24,498 : INFO : PROGRESS: pass 0, at document #2846000/4922894\n", - "2019-01-16 05:27:26,516 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:27,074 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"pari\" + 0.027*\"italian\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:27:27,075 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"theori\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.007*\"set\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:27:27,077 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"group\" + 0.006*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:27:27,078 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"danish\" + 0.011*\"die\"\n", - "2019-01-16 05:27:27,079 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:27:27,085 : INFO : topic diff=0.003882, rho=0.026509\n", - "2019-01-16 05:27:27,346 : INFO : PROGRESS: pass 0, at document #2848000/4922894\n", - "2019-01-16 05:27:29,328 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:29,885 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"danish\" + 0.011*\"die\"\n", - "2019-01-16 05:27:29,887 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:27:29,888 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.025*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:27:29,890 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.071*\"januari\" + 0.068*\"juli\" + 0.066*\"june\" + 0.066*\"novemb\" + 0.065*\"august\" + 0.064*\"decemb\" + 0.063*\"april\"\n", - "2019-01-16 05:27:29,891 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.010*\"divis\"\n", - "2019-01-16 05:27:29,897 : INFO : topic diff=0.004647, rho=0.026500\n", - "2019-01-16 05:27:30,155 : INFO : PROGRESS: pass 0, at document #2850000/4922894\n", - "2019-01-16 05:27:32,142 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:32,697 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:27:32,699 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:27:32,701 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:27:32,702 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:27:32,704 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:27:32,710 : INFO : topic diff=0.004014, rho=0.026491\n", - "2019-01-16 05:27:32,974 : INFO : PROGRESS: pass 0, at document #2852000/4922894\n", - "2019-01-16 05:27:34,968 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:35,525 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:27:35,526 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.074*\"canada\" + 0.058*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.019*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", - "2019-01-16 05:27:35,528 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.028*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.019*\"episod\" + 0.016*\"star\" + 0.012*\"produc\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:27:35,530 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"coast\" + 0.009*\"port\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:27:35,531 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", - "2019-01-16 05:27:35,538 : INFO : topic diff=0.004530, rho=0.026481\n", - "2019-01-16 05:27:35,801 : INFO : PROGRESS: pass 0, at document #2854000/4922894\n", - "2019-01-16 05:27:37,774 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:38,330 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:27:38,332 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"harri\"\n", - "2019-01-16 05:27:38,334 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:27:38,335 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.062*\"villag\" + 0.050*\"region\" + 0.045*\"east\" + 0.044*\"north\" + 0.044*\"counti\" + 0.042*\"west\" + 0.040*\"south\" + 0.032*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:27:38,337 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"host\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:27:38,342 : INFO : topic diff=0.003821, rho=0.026472\n", - "2019-01-16 05:27:38,809 : INFO : PROGRESS: pass 0, at document #2856000/4922894\n", - "2019-01-16 05:27:40,801 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:41,359 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.007*\"set\" + 0.007*\"gener\" + 0.007*\"valu\" + 0.007*\"method\" + 0.007*\"group\"\n", - "2019-01-16 05:27:41,361 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"tree\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:27:41,363 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:27:41,365 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.010*\"regiment\"\n", - "2019-01-16 05:27:41,368 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:27:41,374 : INFO : topic diff=0.003284, rho=0.026463\n", - "2019-01-16 05:27:41,639 : INFO : PROGRESS: pass 0, at document #2858000/4922894\n", - "2019-01-16 05:27:43,624 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:44,182 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"host\" + 0.012*\"program\" + 0.012*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:27:44,183 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"area\"\n", - "2019-01-16 05:27:44,185 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.011*\"islam\" + 0.011*\"khan\" + 0.011*\"tamil\"\n", - "2019-01-16 05:27:44,186 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.019*\"squadron\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:27:44,188 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 05:27:44,194 : INFO : topic diff=0.003291, rho=0.026454\n", - "2019-01-16 05:27:48,973 : INFO : -11.697 per-word bound, 3320.0 perplexity estimate based on a held-out corpus of 2000 documents with 571303 words\n", - "2019-01-16 05:27:48,974 : INFO : PROGRESS: pass 0, at document #2860000/4922894\n", - "2019-01-16 05:27:51,010 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:51,567 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:27:51,569 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:27:51,571 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.028*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.019*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.011*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:27:51,572 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"team\" + 0.032*\"plai\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.015*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:27:51,574 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:27:51,580 : INFO : topic diff=0.004562, rho=0.026444\n", - "2019-01-16 05:27:51,840 : INFO : PROGRESS: pass 0, at document #2862000/4922894\n", - "2019-01-16 05:27:53,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:27:54,405 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.076*\"align\" + 0.070*\"left\" + 0.057*\"wikit\" + 0.049*\"style\" + 0.045*\"center\" + 0.035*\"right\" + 0.034*\"philippin\" + 0.029*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:27:54,407 : INFO : topic #48 (0.020): 0.079*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.071*\"januari\" + 0.066*\"juli\" + 0.066*\"novemb\" + 0.064*\"august\" + 0.064*\"june\" + 0.064*\"decemb\" + 0.062*\"april\"\n", - "2019-01-16 05:27:54,408 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.021*\"contest\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.016*\"match\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:27:54,409 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.025*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"hous\"\n", - "2019-01-16 05:27:54,411 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:27:54,416 : INFO : topic diff=0.004206, rho=0.026435\n", - "2019-01-16 05:27:54,671 : INFO : PROGRESS: pass 0, at document #2864000/4922894\n", - "2019-01-16 05:27:56,685 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:27:57,242 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:27:57,243 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:27:57,244 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"servic\" + 0.010*\"award\"\n", - "2019-01-16 05:27:57,246 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:27:57,247 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:27:57,254 : INFO : topic diff=0.003505, rho=0.026426\n", - "2019-01-16 05:27:57,512 : INFO : PROGRESS: pass 0, at document #2866000/4922894\n", - "2019-01-16 05:27:59,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:00,065 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.024*\"winner\" + 0.022*\"point\" + 0.021*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:28:00,067 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:28:00,069 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.011*\"empir\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:28:00,071 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:28:00,072 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"scienc\" + 0.011*\"work\" + 0.011*\"servic\" + 0.010*\"award\"\n", - "2019-01-16 05:28:00,078 : INFO : topic diff=0.004782, rho=0.026417\n", - "2019-01-16 05:28:00,327 : INFO : PROGRESS: pass 0, at document #2868000/4922894\n", - "2019-01-16 05:28:02,302 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:02,858 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 05:28:02,859 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:28:02,860 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"island\" + 0.009*\"port\" + 0.009*\"coast\" + 0.009*\"damag\" + 0.009*\"fleet\"\n", - "2019-01-16 05:28:02,861 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"championship\"\n", - "2019-01-16 05:28:02,863 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.018*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:28:02,869 : INFO : topic diff=0.004153, rho=0.026407\n", - "2019-01-16 05:28:03,133 : INFO : PROGRESS: pass 0, at document #2870000/4922894\n", - "2019-01-16 05:28:05,142 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:05,699 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.019*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 05:28:05,701 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.032*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:28:05,702 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.018*\"citi\" + 0.017*\"cricket\" + 0.017*\"scotland\" + 0.017*\"london\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.014*\"wale\"\n", - "2019-01-16 05:28:05,704 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:28:05,705 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.013*\"polic\" + 0.010*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:28:05,711 : INFO : topic diff=0.004096, rho=0.026398\n", - "2019-01-16 05:28:05,960 : INFO : PROGRESS: pass 0, at document #2872000/4922894\n", - "2019-01-16 05:28:07,922 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:08,479 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:28:08,480 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.030*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.018*\"squadron\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:28:08,482 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 05:28:08,484 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.029*\"kong\" + 0.028*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asian\" + 0.014*\"vietnam\"\n", - "2019-01-16 05:28:08,486 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:28:08,492 : INFO : topic diff=0.003803, rho=0.026389\n", - "2019-01-16 05:28:08,754 : INFO : PROGRESS: pass 0, at document #2874000/4922894\n", - "2019-01-16 05:28:10,833 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:11,391 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:28:11,393 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:28:11,395 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:28:11,397 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 05:28:11,398 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.070*\"januari\" + 0.066*\"novemb\" + 0.066*\"juli\" + 0.065*\"june\" + 0.064*\"decemb\" + 0.064*\"august\" + 0.063*\"april\"\n", - "2019-01-16 05:28:11,405 : INFO : topic diff=0.004062, rho=0.026380\n", - "2019-01-16 05:28:11,658 : INFO : PROGRESS: pass 0, at document #2876000/4922894\n", - "2019-01-16 05:28:13,689 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:14,248 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.030*\"kong\" + 0.028*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.017*\"thailand\" + 0.016*\"malaysia\" + 0.014*\"asian\" + 0.014*\"indonesia\" + 0.014*\"vietnam\"\n", - "2019-01-16 05:28:14,250 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.029*\"ag\" + 0.024*\"famili\" + 0.022*\"censu\" + 0.022*\"commun\" + 0.021*\"area\" + 0.021*\"counti\" + 0.021*\"household\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:28:14,252 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"tamil\" + 0.011*\"islam\"\n", - "2019-01-16 05:28:14,253 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\"\n", - "2019-01-16 05:28:14,256 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 05:28:14,265 : INFO : topic diff=0.003658, rho=0.026371\n", - "2019-01-16 05:28:14,523 : INFO : PROGRESS: pass 0, at document #2878000/4922894\n", - "2019-01-16 05:28:16,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:17,178 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.030*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"squadron\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:28:17,179 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:28:17,181 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"danish\"\n", - "2019-01-16 05:28:17,184 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:28:17,185 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:28:17,191 : INFO : topic diff=0.005584, rho=0.026361\n", - "2019-01-16 05:28:21,924 : INFO : -11.849 per-word bound, 3689.4 perplexity estimate based on a held-out corpus of 2000 documents with 574477 words\n", - "2019-01-16 05:28:21,925 : INFO : PROGRESS: pass 0, at document #2880000/4922894\n", - "2019-01-16 05:28:23,969 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:24,534 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:28:24,536 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:28:24,537 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:28:24,539 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.013*\"channel\" + 0.013*\"televis\" + 0.012*\"program\" + 0.012*\"host\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:28:24,540 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:28:24,546 : INFO : topic diff=0.003605, rho=0.026352\n", - "2019-01-16 05:28:24,804 : INFO : PROGRESS: pass 0, at document #2882000/4922894\n", - "2019-01-16 05:28:26,829 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:27,390 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"form\" + 0.005*\"us\"\n", - "2019-01-16 05:28:27,391 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:28:27,392 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.011*\"busi\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:28:27,394 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.025*\"black\" + 0.024*\"till\" + 0.021*\"color\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:28:27,395 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:28:27,401 : INFO : topic diff=0.004363, rho=0.026343\n", - "2019-01-16 05:28:27,664 : INFO : PROGRESS: pass 0, at document #2884000/4922894\n", - "2019-01-16 05:28:29,662 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:30,219 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.027*\"olymp\" + 0.023*\"medal\" + 0.022*\"japan\" + 0.022*\"men\" + 0.022*\"event\" + 0.018*\"athlet\" + 0.016*\"gold\"\n", - "2019-01-16 05:28:30,221 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:28:30,222 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", - "2019-01-16 05:28:30,224 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"pari\" + 0.026*\"italian\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:28:30,225 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:28:30,232 : INFO : topic diff=0.004537, rho=0.026334\n", - "2019-01-16 05:28:30,543 : INFO : PROGRESS: pass 0, at document #2886000/4922894\n", - "2019-01-16 05:28:32,547 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:33,109 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.016*\"medic\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"cancer\" + 0.008*\"studi\"\n", - "2019-01-16 05:28:33,110 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.016*\"championship\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"box\"\n", - "2019-01-16 05:28:33,112 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"electr\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:28:33,113 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:28:33,114 : INFO : topic #7 (0.020): 0.015*\"number\" + 0.011*\"function\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"set\" + 0.007*\"valu\" + 0.007*\"method\" + 0.007*\"group\"\n", - "2019-01-16 05:28:33,120 : INFO : topic diff=0.003716, rho=0.026325\n", - "2019-01-16 05:28:33,373 : INFO : PROGRESS: pass 0, at document #2888000/4922894\n", - "2019-01-16 05:28:35,385 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:35,942 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:28:35,944 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.017*\"council\" + 0.013*\"repres\" + 0.012*\"senat\"\n", - "2019-01-16 05:28:35,945 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.016*\"gold\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:28:35,947 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"group\"\n", - "2019-01-16 05:28:35,950 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.011*\"busi\" + 0.011*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:28:35,956 : INFO : topic diff=0.003774, rho=0.026316\n", - "2019-01-16 05:28:36,217 : INFO : PROGRESS: pass 0, at document #2890000/4922894\n", - "2019-01-16 05:28:38,223 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:38,780 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.027*\"text\" + 0.025*\"black\" + 0.024*\"till\" + 0.022*\"color\" + 0.013*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 05:28:38,781 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"contest\" + 0.018*\"wrestl\" + 0.017*\"match\" + 0.016*\"championship\" + 0.016*\"fight\" + 0.015*\"titl\" + 0.015*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 05:28:38,782 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.012*\"program\" + 0.011*\"dai\" + 0.010*\"network\"\n", - "2019-01-16 05:28:38,784 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.073*\"align\" + 0.065*\"left\" + 0.058*\"wikit\" + 0.048*\"style\" + 0.047*\"center\" + 0.037*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:28:38,785 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:28:38,790 : INFO : topic diff=0.003466, rho=0.026307\n", - "2019-01-16 05:28:39,040 : INFO : PROGRESS: pass 0, at document #2892000/4922894\n", - "2019-01-16 05:28:41,050 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:41,607 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:28:41,608 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"octob\" + 0.071*\"septemb\" + 0.070*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.062*\"april\"\n", - "2019-01-16 05:28:41,609 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:28:41,612 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.028*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:28:41,613 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:28:41,619 : INFO : topic diff=0.004730, rho=0.026298\n", - "2019-01-16 05:28:41,881 : INFO : PROGRESS: pass 0, at document #2894000/4922894\n", - "2019-01-16 05:28:43,877 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:44,434 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:28:44,435 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.070*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.062*\"april\"\n", - "2019-01-16 05:28:44,437 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.018*\"london\" + 0.014*\"sir\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", - "2019-01-16 05:28:44,439 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:28:44,441 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.011*\"empir\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:28:44,447 : INFO : topic diff=0.003596, rho=0.026288\n", - "2019-01-16 05:28:44,706 : INFO : PROGRESS: pass 0, at document #2896000/4922894\n", - "2019-01-16 05:28:46,753 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:47,316 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.011*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.009*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:28:47,317 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.029*\"kong\" + 0.028*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.017*\"thailand\" + 0.017*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.014*\"vietnam\"\n", - "2019-01-16 05:28:47,319 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:28:47,320 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:28:47,321 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:28:47,327 : INFO : topic diff=0.004441, rho=0.026279\n", - "2019-01-16 05:28:47,578 : INFO : PROGRESS: pass 0, at document #2898000/4922894\n", - "2019-01-16 05:28:49,597 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:50,157 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:28:50,158 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.010*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:28:50,160 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.071*\"align\" + 0.063*\"left\" + 0.058*\"wikit\" + 0.049*\"style\" + 0.046*\"center\" + 0.036*\"right\" + 0.035*\"philippin\" + 0.028*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:28:50,161 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:28:50,162 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.027*\"pari\" + 0.027*\"italian\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:28:50,168 : INFO : topic diff=0.003442, rho=0.026270\n", - "2019-01-16 05:28:54,719 : INFO : -11.640 per-word bound, 3192.3 perplexity estimate based on a held-out corpus of 2000 documents with 560330 words\n", - "2019-01-16 05:28:54,720 : INFO : PROGRESS: pass 0, at document #2900000/4922894\n", - "2019-01-16 05:28:56,717 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:28:57,276 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:28:57,277 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"form\" + 0.004*\"us\"\n", - "2019-01-16 05:28:57,279 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.011*\"electr\" + 0.009*\"design\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:28:57,280 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.016*\"scotland\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:28:57,282 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:28:57,288 : INFO : topic diff=0.004229, rho=0.026261\n", - "2019-01-16 05:28:57,543 : INFO : PROGRESS: pass 0, at document #2902000/4922894\n", - "2019-01-16 05:28:59,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:00,088 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:29:00,090 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"ali\" + 0.012*\"tamil\" + 0.012*\"islam\"\n", - "2019-01-16 05:29:00,092 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:29:00,094 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:29:00,095 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 05:29:00,102 : INFO : topic diff=0.003805, rho=0.026252\n", - "2019-01-16 05:29:00,359 : INFO : PROGRESS: pass 0, at document #2904000/4922894\n", - "2019-01-16 05:29:02,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:02,898 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:29:02,899 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:29:02,901 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.016*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:29:02,902 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.019*\"airport\" + 0.019*\"squadron\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:29:02,904 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:29:02,910 : INFO : topic diff=0.003427, rho=0.026243\n", - "2019-01-16 05:29:03,162 : INFO : PROGRESS: pass 0, at document #2906000/4922894\n", - "2019-01-16 05:29:05,182 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:05,742 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 05:29:05,743 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:29:05,746 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"group\"\n", - "2019-01-16 05:29:05,747 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.015*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:29:05,750 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:29:05,757 : INFO : topic diff=0.003794, rho=0.026234\n", - "2019-01-16 05:29:06,012 : INFO : PROGRESS: pass 0, at document #2908000/4922894\n", - "2019-01-16 05:29:08,214 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:08,772 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:29:08,773 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:29:08,776 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 05:29:08,778 : INFO : topic #3 (0.020): 0.033*\"william\" + 0.031*\"john\" + 0.019*\"british\" + 0.017*\"london\" + 0.014*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"royal\"\n", - "2019-01-16 05:29:08,779 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:29:08,785 : INFO : topic diff=0.004080, rho=0.026225\n", - "2019-01-16 05:29:09,079 : INFO : PROGRESS: pass 0, at document #2910000/4922894\n", - "2019-01-16 05:29:11,095 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:11,652 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:29:11,654 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:29:11,657 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:29:11,658 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 05:29:11,659 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"port\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.009*\"naval\"\n", - "2019-01-16 05:29:11,665 : INFO : topic diff=0.003424, rho=0.026216\n", - "2019-01-16 05:29:11,919 : INFO : PROGRESS: pass 0, at document #2912000/4922894\n", - "2019-01-16 05:29:13,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:14,442 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.006*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:29:14,444 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.039*\"african\" + 0.031*\"south\" + 0.028*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.013*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 05:29:14,447 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:29:14,449 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:29:14,450 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:29:14,456 : INFO : topic diff=0.004348, rho=0.026207\n", - "2019-01-16 05:29:14,712 : INFO : PROGRESS: pass 0, at document #2914000/4922894\n", - "2019-01-16 05:29:16,798 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:29:17,360 : INFO : topic #4 (0.020): 0.140*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:29:17,362 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.063*\"august\" + 0.062*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 05:29:17,364 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:29:17,365 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:29:17,367 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.012*\"polic\" + 0.010*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:29:17,372 : INFO : topic diff=0.004136, rho=0.026198\n", - "2019-01-16 05:29:17,636 : INFO : PROGRESS: pass 0, at document #2916000/4922894\n", - "2019-01-16 05:29:19,649 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:20,208 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.016*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 05:29:20,209 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:29:20,210 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"market\" + 0.012*\"million\" + 0.011*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:29:20,212 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"iran\" + 0.016*\"www\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.012*\"ali\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", - "2019-01-16 05:29:20,213 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:29:20,219 : INFO : topic diff=0.004061, rho=0.026189\n", - "2019-01-16 05:29:20,466 : INFO : PROGRESS: pass 0, at document #2918000/4922894\n", - "2019-01-16 05:29:22,408 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:22,967 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:29:22,968 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:29:22,969 : INFO : topic #4 (0.020): 0.140*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.013*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:29:22,971 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.016*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 05:29:22,972 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.041*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"point\" + 0.020*\"open\" + 0.020*\"group\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:29:22,978 : INFO : topic diff=0.004133, rho=0.026180\n", - "2019-01-16 05:29:27,398 : INFO : -11.786 per-word bound, 3531.0 perplexity estimate based on a held-out corpus of 2000 documents with 520513 words\n", - "2019-01-16 05:29:27,399 : INFO : PROGRESS: pass 0, at document #2920000/4922894\n", - "2019-01-16 05:29:29,344 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:29,905 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:29:29,907 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"red\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 05:29:29,909 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 05:29:29,911 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:29:29,912 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"gun\" + 0.010*\"damag\" + 0.009*\"coast\" + 0.009*\"naval\"\n", - "2019-01-16 05:29:29,918 : INFO : topic diff=0.003864, rho=0.026171\n", - "2019-01-16 05:29:30,173 : INFO : PROGRESS: pass 0, at document #2922000/4922894\n", - "2019-01-16 05:29:32,190 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:32,748 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.011*\"dai\" + 0.010*\"air\"\n", - "2019-01-16 05:29:32,750 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:29:32,751 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"centuri\"\n", - "2019-01-16 05:29:32,753 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.031*\"south\" + 0.027*\"text\" + 0.025*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:29:32,755 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.019*\"british\" + 0.016*\"korean\" + 0.016*\"flag\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:29:32,761 : INFO : topic diff=0.003709, rho=0.026162\n", - "2019-01-16 05:29:33,016 : INFO : PROGRESS: pass 0, at document #2924000/4922894\n", - "2019-01-16 05:29:35,051 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:35,610 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.062*\"august\" + 0.062*\"june\" + 0.062*\"decemb\" + 0.061*\"april\"\n", - "2019-01-16 05:29:35,612 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"dai\" + 0.013*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:29:35,613 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:29:35,614 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:29:35,616 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.041*\"round\" + 0.025*\"tournament\" + 0.022*\"winner\" + 0.022*\"point\" + 0.020*\"open\" + 0.020*\"group\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:29:35,622 : INFO : topic diff=0.003505, rho=0.026153\n", - "2019-01-16 05:29:35,874 : INFO : PROGRESS: pass 0, at document #2926000/4922894\n", - "2019-01-16 05:29:37,856 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:38,413 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.032*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.016*\"asian\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"asia\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:29:38,414 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 05:29:38,416 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:29:38,417 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:29:38,418 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.021*\"peopl\" + 0.020*\"area\"\n", - "2019-01-16 05:29:38,424 : INFO : topic diff=0.003661, rho=0.026144\n", - "2019-01-16 05:29:38,670 : INFO : PROGRESS: pass 0, at document #2928000/4922894\n", - "2019-01-16 05:29:40,608 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:41,165 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:29:41,167 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:29:41,168 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.043*\"north\" + 0.043*\"east\" + 0.041*\"west\" + 0.041*\"counti\" + 0.038*\"south\" + 0.032*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:29:41,169 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.019*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:29:41,171 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.063*\"june\" + 0.062*\"decemb\" + 0.061*\"april\"\n", - "2019-01-16 05:29:41,177 : INFO : topic diff=0.004211, rho=0.026135\n", - "2019-01-16 05:29:41,429 : INFO : PROGRESS: pass 0, at document #2930000/4922894\n", - "2019-01-16 05:29:43,406 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:43,962 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"point\" + 0.020*\"group\" + 0.020*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:29:43,963 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:29:43,964 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:29:43,965 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:29:43,969 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:29:43,975 : INFO : topic diff=0.004179, rho=0.026126\n", - "2019-01-16 05:29:44,234 : INFO : PROGRESS: pass 0, at document #2932000/4922894\n", - "2019-01-16 05:29:46,306 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:46,871 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.015*\"team\" + 0.015*\"titl\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:29:46,873 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:29:46,874 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"union\"\n", - "2019-01-16 05:29:46,875 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"danish\"\n", - "2019-01-16 05:29:46,877 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"electr\" + 0.010*\"model\" + 0.009*\"design\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:29:46,884 : INFO : topic diff=0.004160, rho=0.026118\n", - "2019-01-16 05:29:47,129 : INFO : PROGRESS: pass 0, at document #2934000/4922894\n", - "2019-01-16 05:29:49,145 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:49,701 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"market\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:29:49,702 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.065*\"align\" + 0.060*\"wikit\" + 0.059*\"left\" + 0.050*\"style\" + 0.045*\"center\" + 0.036*\"philippin\" + 0.033*\"right\" + 0.027*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:29:49,704 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.020*\"peopl\" + 0.020*\"area\"\n", - "2019-01-16 05:29:49,705 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"studi\"\n", - "2019-01-16 05:29:49,706 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:29:49,711 : INFO : topic diff=0.004373, rho=0.026109\n", - "2019-01-16 05:29:49,996 : INFO : PROGRESS: pass 0, at document #2936000/4922894\n", - "2019-01-16 05:29:52,017 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:52,574 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"british\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.016*\"montreal\" + 0.016*\"quebec\"\n", - "2019-01-16 05:29:52,575 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:29:52,576 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.019*\"forc\" + 0.018*\"airport\" + 0.018*\"squadron\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.013*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:29:52,578 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:29:52,579 : INFO : topic #11 (0.020): 0.025*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:29:52,586 : INFO : topic diff=0.003608, rho=0.026100\n", - "2019-01-16 05:29:52,834 : INFO : PROGRESS: pass 0, at document #2938000/4922894\n", - "2019-01-16 05:29:54,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:29:55,344 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:29:55,346 : INFO : topic #3 (0.020): 0.031*\"william\" + 0.031*\"john\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"henri\" + 0.014*\"royal\" + 0.013*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\"\n", - "2019-01-16 05:29:55,348 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.031*\"kong\" + 0.027*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\" + 0.014*\"asia\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:29:55,349 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:29:55,351 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"version\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 05:29:55,356 : INFO : topic diff=0.003821, rho=0.026091\n", - "2019-01-16 05:29:59,848 : INFO : -11.627 per-word bound, 3163.9 perplexity estimate based on a held-out corpus of 2000 documents with 510300 words\n", - "2019-01-16 05:29:59,849 : INFO : PROGRESS: pass 0, at document #2940000/4922894\n", - "2019-01-16 05:30:01,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:02,401 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:30:02,402 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\" + 0.014*\"asia\"\n", - "2019-01-16 05:30:02,404 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:30:02,406 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.020*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:30:02,407 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.016*\"militari\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 05:30:02,413 : INFO : topic diff=0.004181, rho=0.026082\n", - "2019-01-16 05:30:02,670 : INFO : PROGRESS: pass 0, at document #2942000/4922894\n", - "2019-01-16 05:30:04,689 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:05,246 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.043*\"north\" + 0.042*\"east\" + 0.042*\"counti\" + 0.041*\"west\" + 0.037*\"south\" + 0.032*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:30:05,248 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.030*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.016*\"thailand\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\" + 0.014*\"asia\"\n", - "2019-01-16 05:30:05,249 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:30:05,251 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.018*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:30:05,253 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.025*\"color\" + 0.024*\"black\" + 0.024*\"till\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:30:05,259 : INFO : topic diff=0.003827, rho=0.026073\n", - "2019-01-16 05:30:05,512 : INFO : PROGRESS: pass 0, at document #2944000/4922894\n", - "2019-01-16 05:30:07,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:08,085 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 05:30:08,087 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:30:08,089 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.020*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:30:08,091 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"electr\" + 0.010*\"model\" + 0.009*\"design\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"protein\"\n", - "2019-01-16 05:30:08,092 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:30:08,098 : INFO : topic diff=0.004152, rho=0.026064\n", - "2019-01-16 05:30:08,353 : INFO : PROGRESS: pass 0, at document #2946000/4922894\n", - "2019-01-16 05:30:10,342 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:10,898 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 05:30:10,900 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.031*\"kong\" + 0.027*\"lee\" + 0.022*\"kim\" + 0.021*\"singapor\" + 0.016*\"indonesia\" + 0.016*\"thailand\" + 0.015*\"asian\" + 0.015*\"malaysia\" + 0.014*\"asia\"\n", - "2019-01-16 05:30:10,901 : INFO : topic #20 (0.020): 0.038*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.015*\"team\" + 0.015*\"match\" + 0.014*\"titl\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:30:10,903 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"red\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 05:30:10,904 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.063*\"villag\" + 0.051*\"region\" + 0.044*\"north\" + 0.043*\"counti\" + 0.042*\"east\" + 0.041*\"west\" + 0.037*\"south\" + 0.032*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:30:10,910 : INFO : topic diff=0.003357, rho=0.026055\n", - "2019-01-16 05:30:11,184 : INFO : PROGRESS: pass 0, at document #2948000/4922894\n", - "2019-01-16 05:30:13,178 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:13,738 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:30:13,740 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:30:13,741 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.070*\"canada\" + 0.059*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.018*\"british\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 05:30:13,743 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.013*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:30:13,744 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.018*\"london\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.012*\"wale\"\n", - "2019-01-16 05:30:13,751 : INFO : topic diff=0.004077, rho=0.026047\n", - "2019-01-16 05:30:14,019 : INFO : PROGRESS: pass 0, at document #2950000/4922894\n", - "2019-01-16 05:30:16,045 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:16,603 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:30:16,605 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:30:16,606 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.011*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:30:16,608 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.019*\"airport\" + 0.019*\"forc\" + 0.018*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:30:16,610 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:30:16,615 : INFO : topic diff=0.004356, rho=0.026038\n", - "2019-01-16 05:30:16,873 : INFO : PROGRESS: pass 0, at document #2952000/4922894\n", - "2019-01-16 05:30:18,885 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:19,443 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:30:19,445 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", - "2019-01-16 05:30:19,446 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:30:19,448 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:30:19,449 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.063*\"villag\" + 0.052*\"region\" + 0.044*\"north\" + 0.043*\"east\" + 0.042*\"counti\" + 0.041*\"west\" + 0.038*\"south\" + 0.031*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:30:19,456 : INFO : topic diff=0.003995, rho=0.026029\n", - "2019-01-16 05:30:19,726 : INFO : PROGRESS: pass 0, at document #2954000/4922894\n", - "2019-01-16 05:30:21,736 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:22,297 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.028*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", - "2019-01-16 05:30:22,298 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.071*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.019*\"british\" + 0.018*\"korean\" + 0.017*\"quebec\" + 0.017*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 05:30:22,300 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:30:22,301 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"time\" + 0.012*\"finish\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 05:30:22,303 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:30:22,309 : INFO : topic diff=0.004223, rho=0.026020\n", - "2019-01-16 05:30:22,578 : INFO : PROGRESS: pass 0, at document #2956000/4922894\n", - "2019-01-16 05:30:24,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:25,176 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", - "2019-01-16 05:30:25,177 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.012*\"ali\" + 0.011*\"islam\" + 0.011*\"khan\"\n", - "2019-01-16 05:30:25,179 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:30:25,180 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"new\" + 0.055*\"australian\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"south\" + 0.031*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:30:25,181 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 05:30:25,187 : INFO : topic diff=0.004030, rho=0.026011\n", - "2019-01-16 05:30:25,437 : INFO : PROGRESS: pass 0, at document #2958000/4922894\n", - "2019-01-16 05:30:27,445 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:28,009 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.044*\"univers\" + 0.041*\"colleg\" + 0.037*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", - "2019-01-16 05:30:28,011 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.028*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:30:28,012 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.010*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:30:28,013 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:30:28,015 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:30:28,021 : INFO : topic diff=0.003514, rho=0.026003\n", - "2019-01-16 05:30:32,720 : INFO : -11.632 per-word bound, 3173.6 perplexity estimate based on a held-out corpus of 2000 documents with 584590 words\n", - "2019-01-16 05:30:32,721 : INFO : PROGRESS: pass 0, at document #2960000/4922894\n", - "2019-01-16 05:30:34,748 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:35,306 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:30:35,308 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:30:35,309 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 05:30:35,311 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:30:35,312 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"match\" + 0.015*\"championship\" + 0.014*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"box\"\n", - "2019-01-16 05:30:35,318 : INFO : topic diff=0.004549, rho=0.025994\n", - "2019-01-16 05:30:35,612 : INFO : PROGRESS: pass 0, at document #2962000/4922894\n", - "2019-01-16 05:30:37,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:38,203 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"danish\"\n", - "2019-01-16 05:30:38,204 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.014*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:30:38,206 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.013*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:30:38,207 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.022*\"winner\" + 0.022*\"point\" + 0.020*\"group\" + 0.020*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:30:38,208 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.062*\"june\" + 0.061*\"august\" + 0.061*\"april\" + 0.061*\"decemb\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:30:38,214 : INFO : topic diff=0.003629, rho=0.025985\n", - "2019-01-16 05:30:38,467 : INFO : PROGRESS: pass 0, at document #2964000/4922894\n", - "2019-01-16 05:30:40,409 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:40,966 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.062*\"june\" + 0.062*\"august\" + 0.061*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:30:40,967 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.010*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:30:40,969 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.064*\"align\" + 0.060*\"wikit\" + 0.058*\"left\" + 0.049*\"style\" + 0.045*\"center\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.029*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:30:40,970 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:30:40,973 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:30:40,979 : INFO : topic diff=0.004412, rho=0.025976\n", - "2019-01-16 05:30:41,247 : INFO : PROGRESS: pass 0, at document #2966000/4922894\n", - "2019-01-16 05:30:43,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:43,785 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:30:43,786 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.035*\"russian\" + 0.028*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", - "2019-01-16 05:30:43,788 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:30:43,789 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.021*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"danish\"\n", - "2019-01-16 05:30:43,790 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.062*\"june\" + 0.062*\"august\" + 0.061*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:30:43,795 : INFO : topic diff=0.003461, rho=0.025967\n", - "2019-01-16 05:30:44,039 : INFO : PROGRESS: pass 0, at document #2968000/4922894\n", - "2019-01-16 05:30:46,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:46,636 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:30:46,637 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:30:46,638 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"household\" + 0.020*\"township\" + 0.020*\"counti\"\n", - "2019-01-16 05:30:46,640 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"carlo\"\n", - "2019-01-16 05:30:46,641 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", - "2019-01-16 05:30:46,647 : INFO : topic diff=0.004441, rho=0.025959\n", - "2019-01-16 05:30:46,919 : INFO : PROGRESS: pass 0, at document #2970000/4922894\n", - "2019-01-16 05:30:49,030 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:49,587 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:30:49,588 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:30:49,590 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", - "2019-01-16 05:30:49,592 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:30:49,594 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:30:49,601 : INFO : topic diff=0.004040, rho=0.025950\n", - "2019-01-16 05:30:49,863 : INFO : PROGRESS: pass 0, at document #2972000/4922894\n", - "2019-01-16 05:30:51,920 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:52,479 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"commun\" + 0.021*\"household\" + 0.021*\"counti\" + 0.020*\"peopl\"\n", - "2019-01-16 05:30:52,481 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:30:52,483 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"citi\" + 0.017*\"london\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"wale\" + 0.012*\"scottish\"\n", - "2019-01-16 05:30:52,485 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.054*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"south\" + 0.031*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"western\"\n", - "2019-01-16 05:30:52,486 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:30:52,492 : INFO : topic diff=0.003239, rho=0.025941\n", - "2019-01-16 05:30:52,737 : INFO : PROGRESS: pass 0, at document #2974000/4922894\n", - "2019-01-16 05:30:54,722 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:55,279 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.018*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:30:55,281 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:30:55,282 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", - "2019-01-16 05:30:55,284 : INFO : topic #11 (0.020): 0.026*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"right\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 05:30:55,285 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 05:30:55,291 : INFO : topic diff=0.003981, rho=0.025933\n", - "2019-01-16 05:30:55,540 : INFO : PROGRESS: pass 0, at document #2976000/4922894\n", - "2019-01-16 05:30:57,566 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:30:58,124 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:30:58,125 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"ireland\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\"\n", - "2019-01-16 05:30:58,127 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:30:58,128 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"time\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:30:58,130 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 05:30:58,136 : INFO : topic diff=0.003880, rho=0.025924\n", - "2019-01-16 05:30:58,397 : INFO : PROGRESS: pass 0, at document #2978000/4922894\n", - "2019-01-16 05:31:00,435 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:00,994 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"israel\" + 0.012*\"republ\" + 0.012*\"moscow\"\n", - "2019-01-16 05:31:00,996 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:31:00,997 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.018*\"squadron\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:31:00,998 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", - "2019-01-16 05:31:01,000 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"work\"\n", - "2019-01-16 05:31:01,006 : INFO : topic diff=0.003657, rho=0.025915\n", - "2019-01-16 05:31:05,527 : INFO : -11.820 per-word bound, 3614.6 perplexity estimate based on a held-out corpus of 2000 documents with 552644 words\n", - "2019-01-16 05:31:05,527 : INFO : PROGRESS: pass 0, at document #2980000/4922894\n", - "2019-01-16 05:31:07,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:08,283 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"bank\" + 0.012*\"million\" + 0.012*\"market\" + 0.012*\"busi\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:31:08,284 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 05:31:08,287 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:31:08,288 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"team\" + 0.033*\"plai\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", - "2019-01-16 05:31:08,290 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"ireland\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\"\n", - "2019-01-16 05:31:08,296 : INFO : topic diff=0.004119, rho=0.025906\n", - "2019-01-16 05:31:08,553 : INFO : PROGRESS: pass 0, at document #2982000/4922894\n", - "2019-01-16 05:31:10,643 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:11,200 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:31:11,202 : INFO : topic #29 (0.020): 0.039*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.033*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", - "2019-01-16 05:31:11,203 : INFO : topic #6 (0.020): 0.063*\"music\" + 0.032*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"work\"\n", - "2019-01-16 05:31:11,204 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.021*\"von\" + 0.021*\"der\" + 0.021*\"berlin\" + 0.020*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:31:11,206 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.044*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.033*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:31:11,211 : INFO : topic diff=0.003528, rho=0.025898\n", - "2019-01-16 05:31:11,464 : INFO : PROGRESS: pass 0, at document #2984000/4922894\n", - "2019-01-16 05:31:13,468 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:14,024 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.021*\"group\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:31:14,026 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.045*\"africa\" + 0.039*\"african\" + 0.032*\"south\" + 0.028*\"text\" + 0.027*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.012*\"tropic\" + 0.011*\"storm\"\n", - "2019-01-16 05:31:14,027 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.061*\"wikit\" + 0.060*\"align\" + 0.057*\"left\" + 0.050*\"style\" + 0.044*\"center\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.028*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:31:14,028 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 05:31:14,030 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"ireland\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\"\n", - "2019-01-16 05:31:14,036 : INFO : topic diff=0.004199, rho=0.025889\n", - "2019-01-16 05:31:14,298 : INFO : PROGRESS: pass 0, at document #2986000/4922894\n", - "2019-01-16 05:31:16,341 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:16,899 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:31:16,900 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:31:16,901 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:31:16,903 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", - "2019-01-16 05:31:16,905 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.013*\"locat\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.008*\"centuri\"\n", - "2019-01-16 05:31:16,911 : INFO : topic diff=0.004200, rho=0.025880\n", - "2019-01-16 05:31:17,202 : INFO : PROGRESS: pass 0, at document #2988000/4922894\n", - "2019-01-16 05:31:19,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:19,735 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", - "2019-01-16 05:31:19,736 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.027*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.018*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:31:19,738 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"valu\" + 0.007*\"set\" + 0.007*\"point\" + 0.007*\"group\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:31:19,740 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:31:19,741 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.015*\"titl\" + 0.015*\"wrestl\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.011*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:31:19,748 : INFO : topic diff=0.004098, rho=0.025872\n", - "2019-01-16 05:31:20,026 : INFO : PROGRESS: pass 0, at document #2990000/4922894\n", - "2019-01-16 05:31:22,219 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:22,807 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 05:31:22,809 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:31:22,811 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:31:22,812 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"year\" + 0.009*\"stage\"\n", - "2019-01-16 05:31:22,813 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:31:22,819 : INFO : topic diff=0.003557, rho=0.025863\n", - "2019-01-16 05:31:23,075 : INFO : PROGRESS: pass 0, at document #2992000/4922894\n", - "2019-01-16 05:31:25,135 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:25,701 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:31:25,703 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:31:25,704 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.021*\"group\" + 0.021*\"winner\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:31:25,705 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.030*\"kong\" + 0.026*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"asia\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asian\"\n", - "2019-01-16 05:31:25,707 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:31:25,713 : INFO : topic diff=0.003708, rho=0.025854\n", - "2019-01-16 05:31:25,985 : INFO : PROGRESS: pass 0, at document #2994000/4922894\n", - "2019-01-16 05:31:28,039 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:28,602 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 05:31:28,604 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.044*\"africa\" + 0.038*\"african\" + 0.032*\"south\" + 0.030*\"text\" + 0.027*\"color\" + 0.027*\"till\" + 0.024*\"black\" + 0.012*\"storm\" + 0.012*\"shift\"\n", - "2019-01-16 05:31:28,605 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:31:28,606 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.015*\"titl\" + 0.015*\"wrestl\" + 0.015*\"championship\" + 0.015*\"match\" + 0.013*\"team\" + 0.012*\"champion\" + 0.011*\"elimin\"\n", - "2019-01-16 05:31:28,608 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:31:28,614 : INFO : topic diff=0.004211, rho=0.025846\n", - "2019-01-16 05:31:28,872 : INFO : PROGRESS: pass 0, at document #2996000/4922894\n", - "2019-01-16 05:31:30,926 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:31,483 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.045*\"africa\" + 0.039*\"african\" + 0.033*\"south\" + 0.029*\"text\" + 0.027*\"color\" + 0.027*\"till\" + 0.024*\"black\" + 0.011*\"storm\" + 0.011*\"shift\"\n", - "2019-01-16 05:31:31,484 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.070*\"canada\" + 0.059*\"canadian\" + 0.023*\"toronto\" + 0.022*\"ontario\" + 0.019*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:31:31,485 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\" + 0.020*\"area\"\n", - "2019-01-16 05:31:31,487 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.018*\"vote\" + 0.018*\"democrat\" + 0.015*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", - "2019-01-16 05:31:31,488 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.006*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"form\" + 0.005*\"effect\"\n", - "2019-01-16 05:31:31,494 : INFO : topic diff=0.004209, rho=0.025837\n", - "2019-01-16 05:31:31,749 : INFO : PROGRESS: pass 0, at document #2998000/4922894\n", - "2019-01-16 05:31:33,735 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:34,292 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.070*\"canada\" + 0.059*\"canadian\" + 0.023*\"toronto\" + 0.023*\"ontario\" + 0.019*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:31:34,293 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 05:31:34,295 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:31:34,297 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:31:34,298 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.033*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", - "2019-01-16 05:31:34,304 : INFO : topic diff=0.003045, rho=0.025828\n", - "2019-01-16 05:31:38,899 : INFO : -11.520 per-word bound, 2937.3 perplexity estimate based on a held-out corpus of 2000 documents with 539462 words\n", - "2019-01-16 05:31:38,900 : INFO : PROGRESS: pass 0, at document #3000000/4922894\n", - "2019-01-16 05:31:40,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:41,448 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.020*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:31:41,449 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.054*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.031*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:31:41,450 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:31:41,452 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.015*\"wrestl\" + 0.015*\"titl\" + 0.015*\"match\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.012*\"elimin\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:31:41,453 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.022*\"town\" + 0.018*\"citi\" + 0.017*\"cricket\" + 0.017*\"london\" + 0.016*\"scotland\" + 0.013*\"wale\" + 0.013*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:31:41,458 : INFO : topic diff=0.003103, rho=0.025820\n", - "2019-01-16 05:31:41,721 : INFO : PROGRESS: pass 0, at document #3002000/4922894\n", - "2019-01-16 05:31:43,738 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:44,297 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"organ\" + 0.010*\"servic\"\n", - "2019-01-16 05:31:44,298 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.022*\"point\" + 0.021*\"group\" + 0.021*\"winner\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:31:44,300 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 05:31:44,301 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.015*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", - "2019-01-16 05:31:44,303 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"work\"\n", - "2019-01-16 05:31:44,308 : INFO : topic diff=0.003683, rho=0.025811\n", - "2019-01-16 05:31:44,578 : INFO : PROGRESS: pass 0, at document #3004000/4922894\n", - "2019-01-16 05:31:46,631 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:47,189 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:31:47,191 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:31:47,192 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.061*\"align\" + 0.060*\"wikit\" + 0.058*\"left\" + 0.050*\"style\" + 0.049*\"center\" + 0.034*\"right\" + 0.032*\"philippin\" + 0.028*\"text\" + 0.026*\"border\"\n", - "2019-01-16 05:31:47,194 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:31:47,196 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.013*\"henri\" + 0.013*\"thoma\"\n", - "2019-01-16 05:31:47,202 : INFO : topic diff=0.003526, rho=0.025803\n", - "2019-01-16 05:31:47,458 : INFO : PROGRESS: pass 0, at document #3006000/4922894\n", - "2019-01-16 05:31:49,497 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:50,059 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:31:50,061 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:31:50,062 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:31:50,064 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 05:31:50,065 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.054*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.031*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:31:50,071 : INFO : topic diff=0.003704, rho=0.025794\n", - "2019-01-16 05:31:50,330 : INFO : PROGRESS: pass 0, at document #3008000/4922894\n", - "2019-01-16 05:31:52,269 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:52,826 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:31:52,828 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:31:52,829 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.018*\"citi\" + 0.018*\"london\" + 0.017*\"cricket\" + 0.016*\"scotland\" + 0.014*\"wale\" + 0.013*\"manchest\" + 0.013*\"west\"\n", - "2019-01-16 05:31:52,831 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:31:52,833 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.016*\"indonesia\" + 0.016*\"asia\" + 0.015*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"asian\"\n", - "2019-01-16 05:31:52,839 : INFO : topic diff=0.003736, rho=0.025786\n", - "2019-01-16 05:31:53,103 : INFO : PROGRESS: pass 0, at document #3010000/4922894\n", - "2019-01-16 05:31:55,162 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:55,718 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"organ\" + 0.010*\"award\"\n", - "2019-01-16 05:31:55,719 : INFO : topic #8 (0.020): 0.054*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.018*\"pakistan\" + 0.015*\"www\" + 0.014*\"iran\" + 0.012*\"ali\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 05:31:55,721 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.027*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:31:55,722 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.018*\"vote\" + 0.018*\"minist\" + 0.015*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", - "2019-01-16 05:31:55,723 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.012*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:31:55,729 : INFO : topic diff=0.003191, rho=0.025777\n", - "2019-01-16 05:31:55,994 : INFO : PROGRESS: pass 0, at document #3012000/4922894\n", - "2019-01-16 05:31:58,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:31:58,582 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.016*\"station\" + 0.015*\"dai\" + 0.014*\"televis\" + 0.012*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:31:58,583 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.018*\"citi\" + 0.018*\"london\" + 0.017*\"cricket\" + 0.016*\"scotland\" + 0.013*\"wale\" + 0.013*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 05:31:58,585 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:31:58,586 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.010*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:31:58,587 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"island\" + 0.011*\"boat\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"sail\"\n", - "2019-01-16 05:31:58,596 : INFO : topic diff=0.003137, rho=0.025768\n", - "2019-01-16 05:31:58,890 : INFO : PROGRESS: pass 0, at document #3014000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:32:00,914 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:01,475 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:32:01,476 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:32:01,477 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.023*\"point\" + 0.022*\"group\" + 0.021*\"winner\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:32:01,479 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"produc\" + 0.011*\"role\" + 0.011*\"televis\"\n", - "2019-01-16 05:32:01,481 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:32:01,487 : INFO : topic diff=0.003897, rho=0.025760\n", - "2019-01-16 05:32:01,741 : INFO : PROGRESS: pass 0, at document #3016000/4922894\n", - "2019-01-16 05:32:03,718 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:04,279 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:32:04,281 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 05:32:04,282 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.020*\"centuri\" + 0.010*\"roman\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:32:04,284 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:32:04,286 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:32:04,292 : INFO : topic diff=0.004275, rho=0.025751\n", - "2019-01-16 05:32:04,553 : INFO : PROGRESS: pass 0, at document #3018000/4922894\n", - "2019-01-16 05:32:06,518 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:07,075 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:32:07,076 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"citi\" + 0.036*\"town\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.020*\"area\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:32:07,077 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.065*\"villag\" + 0.051*\"region\" + 0.044*\"east\" + 0.043*\"north\" + 0.042*\"west\" + 0.039*\"counti\" + 0.038*\"south\" + 0.033*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:32:07,079 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.016*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:32:07,080 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:32:07,086 : INFO : topic diff=0.004331, rho=0.025743\n", - "2019-01-16 05:32:11,644 : INFO : -11.655 per-word bound, 3225.6 perplexity estimate based on a held-out corpus of 2000 documents with 542016 words\n", - "2019-01-16 05:32:11,645 : INFO : PROGRESS: pass 0, at document #3020000/4922894\n", - "2019-01-16 05:32:13,638 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:14,196 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\"\n", - "2019-01-16 05:32:14,198 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.017*\"london\" + 0.016*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.013*\"henri\"\n", - "2019-01-16 05:32:14,200 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:32:14,201 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:32:14,203 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"ret\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:32:14,209 : INFO : topic diff=0.003674, rho=0.025734\n", - "2019-01-16 05:32:14,472 : INFO : PROGRESS: pass 0, at document #3022000/4922894\n", - "2019-01-16 05:32:16,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:17,093 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.053*\"australian\" + 0.052*\"new\" + 0.045*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.032*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:32:17,095 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 05:32:17,097 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.011*\"daughter\"\n", - "2019-01-16 05:32:17,098 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:32:17,100 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:32:17,106 : INFO : topic diff=0.003294, rho=0.025726\n", - "2019-01-16 05:32:17,364 : INFO : PROGRESS: pass 0, at document #3024000/4922894\n", - "2019-01-16 05:32:19,351 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:19,908 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.022*\"toronto\" + 0.022*\"ontario\" + 0.019*\"korean\" + 0.018*\"british\" + 0.018*\"korea\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 05:32:19,909 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"match\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:32:19,910 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.022*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:32:19,912 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 05:32:19,913 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:32:19,919 : INFO : topic diff=0.004852, rho=0.025717\n", - "2019-01-16 05:32:20,182 : INFO : PROGRESS: pass 0, at document #3026000/4922894\n", - "2019-01-16 05:32:22,168 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:22,725 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:32:22,727 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.036*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.020*\"household\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:32:22,728 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.018*\"london\" + 0.015*\"scotland\" + 0.013*\"wale\" + 0.013*\"manchest\" + 0.013*\"west\"\n", - "2019-01-16 05:32:22,729 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 05:32:22,731 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:32:22,736 : INFO : topic diff=0.004184, rho=0.025709\n", - "2019-01-16 05:32:22,996 : INFO : PROGRESS: pass 0, at document #3028000/4922894\n", - "2019-01-16 05:32:24,985 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:25,543 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"polit\" + 0.013*\"repres\"\n", - "2019-01-16 05:32:25,544 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.068*\"januari\" + 0.066*\"novemb\" + 0.065*\"juli\" + 0.063*\"decemb\" + 0.063*\"june\" + 0.063*\"april\" + 0.063*\"august\"\n", - "2019-01-16 05:32:25,546 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:32:25,547 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.013*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.006*\"union\"\n", - "2019-01-16 05:32:25,548 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:32:25,554 : INFO : topic diff=0.003700, rho=0.025700\n", - "2019-01-16 05:32:25,823 : INFO : PROGRESS: pass 0, at document #3030000/4922894\n", - "2019-01-16 05:32:27,801 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:28,358 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:32:28,360 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"organ\" + 0.010*\"award\"\n", - "2019-01-16 05:32:28,361 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:32:28,363 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:32:28,364 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 05:32:28,370 : INFO : topic diff=0.004446, rho=0.025692\n", - "2019-01-16 05:32:28,624 : INFO : PROGRESS: pass 0, at document #3032000/4922894\n", - "2019-01-16 05:32:30,644 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:31,200 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:32:31,201 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:32:31,203 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.016*\"georg\" + 0.014*\"sir\" + 0.013*\"ireland\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:32:31,204 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:32:31,205 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.012*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:32:31,212 : INFO : topic diff=0.002962, rho=0.025683\n", - "2019-01-16 05:32:31,485 : INFO : PROGRESS: pass 0, at document #3034000/4922894\n", - "2019-01-16 05:32:33,552 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:34,108 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.021*\"kim\" + 0.016*\"indonesia\" + 0.015*\"asia\" + 0.014*\"malaysia\" + 0.014*\"thailand\" + 0.013*\"asian\"\n", - "2019-01-16 05:32:34,110 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 05:32:34,112 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.015*\"dai\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:32:34,113 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:32:34,114 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:32:34,120 : INFO : topic diff=0.004655, rho=0.025675\n", - "2019-01-16 05:32:34,368 : INFO : PROGRESS: pass 0, at document #3036000/4922894\n", - "2019-01-16 05:32:36,321 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:36,878 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:32:36,879 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:32:36,881 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"politician\"\n", - "2019-01-16 05:32:36,882 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"richard\"\n", - "2019-01-16 05:32:36,883 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.035*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:32:36,890 : INFO : topic diff=0.004718, rho=0.025666\n", - "2019-01-16 05:32:37,154 : INFO : PROGRESS: pass 0, at document #3038000/4922894\n", - "2019-01-16 05:32:39,147 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:39,705 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.016*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 05:32:39,706 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.034*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.017*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"politician\"\n", - "2019-01-16 05:32:39,707 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:32:39,709 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"jone\"\n", - "2019-01-16 05:32:39,710 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:32:39,716 : INFO : topic diff=0.003779, rho=0.025658\n", - "2019-01-16 05:32:44,338 : INFO : -11.649 per-word bound, 3212.5 perplexity estimate based on a held-out corpus of 2000 documents with 565028 words\n", - "2019-01-16 05:32:44,339 : INFO : PROGRESS: pass 0, at document #3040000/4922894\n", - "2019-01-16 05:32:46,372 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:46,932 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"harri\" + 0.006*\"jone\"\n", - "2019-01-16 05:32:46,933 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:32:46,935 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:32:46,936 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:32:46,938 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.018*\"minist\" + 0.015*\"council\" + 0.013*\"polit\" + 0.013*\"republican\"\n", - "2019-01-16 05:32:46,943 : INFO : topic diff=0.003881, rho=0.025649\n", - "2019-01-16 05:32:47,189 : INFO : PROGRESS: pass 0, at document #3042000/4922894\n", - "2019-01-16 05:32:49,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:49,708 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:32:49,709 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:32:49,711 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.018*\"london\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:32:49,712 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.024*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", - "2019-01-16 05:32:49,713 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"record\" + 0.009*\"leagu\"\n", - "2019-01-16 05:32:49,719 : INFO : topic diff=0.005174, rho=0.025641\n", - "2019-01-16 05:32:49,990 : INFO : PROGRESS: pass 0, at document #3044000/4922894\n", - "2019-01-16 05:32:52,048 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:52,605 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:32:52,607 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:32:52,608 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:32:52,610 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:32:52,612 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.012*\"servic\" + 0.011*\"organ\"\n", - "2019-01-16 05:32:52,619 : INFO : topic diff=0.003905, rho=0.025633\n", - "2019-01-16 05:32:52,872 : INFO : PROGRESS: pass 0, at document #3046000/4922894\n", - "2019-01-16 05:32:54,917 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:55,478 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"citi\" + 0.036*\"town\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.020*\"household\" + 0.020*\"area\"\n", - "2019-01-16 05:32:55,479 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.043*\"africa\" + 0.037*\"african\" + 0.033*\"south\" + 0.030*\"text\" + 0.027*\"till\" + 0.027*\"color\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.012*\"storm\"\n", - "2019-01-16 05:32:55,481 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:32:55,483 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"servic\" + 0.011*\"organ\"\n", - "2019-01-16 05:32:55,484 : INFO : topic #2 (0.020): 0.059*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:32:55,490 : INFO : topic diff=0.004660, rho=0.025624\n", - "2019-01-16 05:32:55,755 : INFO : PROGRESS: pass 0, at document #3048000/4922894\n", - "2019-01-16 05:32:57,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:32:58,311 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"mountain\"\n", - "2019-01-16 05:32:58,312 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:32:58,314 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.018*\"korean\" + 0.018*\"british\" + 0.017*\"korea\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 05:32:58,316 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:32:58,317 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.011*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:32:58,324 : INFO : topic diff=0.003698, rho=0.025616\n", - "2019-01-16 05:32:58,587 : INFO : PROGRESS: pass 0, at document #3050000/4922894\n", - "2019-01-16 05:33:00,625 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:01,186 : INFO : topic #46 (0.020): 0.142*\"class\" + 0.060*\"align\" + 0.059*\"wikit\" + 0.054*\"left\" + 0.048*\"style\" + 0.046*\"center\" + 0.035*\"right\" + 0.033*\"philippin\" + 0.027*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:33:01,188 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\"\n", - "2019-01-16 05:33:01,189 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:33:01,190 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:33:01,191 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.025*\"saint\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:33:01,197 : INFO : topic diff=0.003631, rho=0.025607\n", - "2019-01-16 05:33:01,470 : INFO : PROGRESS: pass 0, at document #3052000/4922894\n", - "2019-01-16 05:33:03,464 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:04,021 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.016*\"medic\" + 0.015*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:33:04,022 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:33:04,024 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:33:04,025 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:33:04,027 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", - "2019-01-16 05:33:04,033 : INFO : topic diff=0.003894, rho=0.025599\n", - "2019-01-16 05:33:04,306 : INFO : PROGRESS: pass 0, at document #3054000/4922894\n", - "2019-01-16 05:33:06,297 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:06,853 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.032*\"kong\" + 0.023*\"lee\" + 0.021*\"kim\" + 0.020*\"singapor\" + 0.016*\"asia\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.014*\"thailand\" + 0.013*\"asian\"\n", - "2019-01-16 05:33:06,855 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"dai\" + 0.014*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:33:06,856 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.019*\"contest\" + 0.018*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"match\" + 0.014*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"elimin\"\n", - "2019-01-16 05:33:06,858 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:33:06,859 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:33:06,864 : INFO : topic diff=0.003373, rho=0.025591\n", - "2019-01-16 05:33:07,131 : INFO : PROGRESS: pass 0, at document #3056000/4922894\n", - "2019-01-16 05:33:09,373 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:09,931 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"saint\" + 0.026*\"pari\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:33:09,933 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:33:09,934 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:33:09,935 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"servic\" + 0.011*\"organ\"\n", - "2019-01-16 05:33:09,937 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:33:09,942 : INFO : topic diff=0.004361, rho=0.025582\n", - "2019-01-16 05:33:10,198 : INFO : PROGRESS: pass 0, at document #3058000/4922894\n", - "2019-01-16 05:33:12,170 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:12,728 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:33:12,730 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 05:33:12,731 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"dai\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:33:12,732 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.017*\"london\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:33:12,734 : INFO : topic #40 (0.020): 0.053*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.034*\"text\" + 0.030*\"south\" + 0.030*\"color\" + 0.030*\"till\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 05:33:12,740 : INFO : topic diff=0.003678, rho=0.025574\n", - "2019-01-16 05:33:17,489 : INFO : -12.016 per-word bound, 4142.0 perplexity estimate based on a held-out corpus of 2000 documents with 579504 words\n", - "2019-01-16 05:33:17,489 : INFO : PROGRESS: pass 0, at document #3060000/4922894\n", - "2019-01-16 05:33:19,568 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:20,125 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:33:20,126 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:33:20,128 : INFO : topic #40 (0.020): 0.053*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.033*\"text\" + 0.030*\"south\" + 0.030*\"color\" + 0.030*\"till\" + 0.025*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 05:33:20,129 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:33:20,131 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.015*\"dai\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:33:20,138 : INFO : topic diff=0.003505, rho=0.025565\n", - "2019-01-16 05:33:20,402 : INFO : PROGRESS: pass 0, at document #3062000/4922894\n", - "2019-01-16 05:33:22,392 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:22,950 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:33:22,951 : INFO : topic #8 (0.020): 0.053*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.018*\"www\" + 0.017*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.012*\"ali\" + 0.012*\"islam\" + 0.012*\"sri\"\n", - "2019-01-16 05:33:22,953 : INFO : topic #4 (0.020): 0.140*\"school\" + 0.042*\"univers\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.035*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:33:22,954 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:33:22,955 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:33:22,961 : INFO : topic diff=0.003149, rho=0.025557\n", - "2019-01-16 05:33:23,258 : INFO : PROGRESS: pass 0, at document #3064000/4922894\n", - "2019-01-16 05:33:25,244 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:25,802 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.065*\"villag\" + 0.053*\"region\" + 0.044*\"east\" + 0.043*\"north\" + 0.042*\"counti\" + 0.041*\"west\" + 0.037*\"south\" + 0.033*\"provinc\" + 0.027*\"central\"\n", - "2019-01-16 05:33:25,803 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"polit\"\n", - "2019-01-16 05:33:25,805 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:33:25,807 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:33:25,808 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:33:25,814 : INFO : topic diff=0.004163, rho=0.025549\n", - "2019-01-16 05:33:26,082 : INFO : PROGRESS: pass 0, at document #3066000/4922894\n", - "2019-01-16 05:33:28,101 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:28,660 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.026*\"saint\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:33:28,662 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:33:28,664 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:33:28,665 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.068*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 05:33:28,666 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"servic\" + 0.010*\"organ\"\n", - "2019-01-16 05:33:28,672 : INFO : topic diff=0.004735, rho=0.025540\n", - "2019-01-16 05:33:28,925 : INFO : PROGRESS: pass 0, at document #3068000/4922894\n", - "2019-01-16 05:33:30,868 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:31,427 : INFO : topic #40 (0.020): 0.052*\"bar\" + 0.041*\"africa\" + 0.035*\"african\" + 0.033*\"text\" + 0.031*\"south\" + 0.029*\"till\" + 0.029*\"color\" + 0.025*\"black\" + 0.014*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 05:33:31,429 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.042*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.034*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:33:31,431 : INFO : topic #2 (0.020): 0.059*\"german\" + 0.035*\"germani\" + 0.029*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.021*\"dutch\" + 0.020*\"berlin\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:33:31,432 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"group\" + 0.022*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:33:31,433 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.015*\"dai\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:33:31,439 : INFO : topic diff=0.004288, rho=0.025532\n", - "2019-01-16 05:33:31,709 : INFO : PROGRESS: pass 0, at document #3070000/4922894\n", - "2019-01-16 05:33:33,724 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:34,280 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:33:34,281 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:33:34,283 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.071*\"septemb\" + 0.067*\"januari\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.062*\"august\" + 0.062*\"decemb\" + 0.062*\"june\" + 0.061*\"april\"\n", - "2019-01-16 05:33:34,284 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.012*\"polit\"\n", - "2019-01-16 05:33:34,287 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.030*\"kong\" + 0.023*\"lee\" + 0.022*\"singapor\" + 0.021*\"kim\" + 0.015*\"malaysia\" + 0.015*\"asia\" + 0.015*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\"\n", - "2019-01-16 05:33:34,292 : INFO : topic diff=0.003958, rho=0.025524\n", - "2019-01-16 05:33:34,553 : INFO : PROGRESS: pass 0, at document #3072000/4922894\n", - "2019-01-16 05:33:36,557 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:37,113 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:33:37,115 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.070*\"septemb\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.062*\"august\" + 0.062*\"decemb\" + 0.061*\"june\" + 0.061*\"april\"\n", - "2019-01-16 05:33:37,116 : INFO : topic #8 (0.020): 0.052*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.016*\"pakistan\" + 0.012*\"ali\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\"\n", - "2019-01-16 05:33:37,117 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.022*\"town\" + 0.018*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 05:33:37,118 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"korea\" + 0.018*\"korean\" + 0.018*\"british\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:33:37,123 : INFO : topic diff=0.004402, rho=0.025516\n", - "2019-01-16 05:33:37,384 : INFO : PROGRESS: pass 0, at document #3074000/4922894\n", - "2019-01-16 05:33:39,368 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:39,925 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:33:39,927 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:33:39,928 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", - "2019-01-16 05:33:39,929 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.070*\"septemb\" + 0.066*\"januari\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.062*\"august\" + 0.062*\"decemb\" + 0.061*\"june\" + 0.061*\"april\"\n", - "2019-01-16 05:33:39,931 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.015*\"asia\" + 0.015*\"malaysia\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\"\n", - "2019-01-16 05:33:39,937 : INFO : topic diff=0.004203, rho=0.025507\n", - "2019-01-16 05:33:40,198 : INFO : PROGRESS: pass 0, at document #3076000/4922894\n", - "2019-01-16 05:33:42,193 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:42,751 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"servic\" + 0.010*\"organ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:33:42,752 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 05:33:42,754 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:33:42,756 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:33:42,757 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.030*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.022*\"commun\" + 0.021*\"household\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", - "2019-01-16 05:33:42,763 : INFO : topic diff=0.003651, rho=0.025499\n", - "2019-01-16 05:33:43,026 : INFO : PROGRESS: pass 0, at document #3078000/4922894\n", - "2019-01-16 05:33:45,008 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:45,565 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"construct\"\n", - "2019-01-16 05:33:45,567 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:33:45,568 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:33:45,570 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:33:45,571 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.063*\"align\" + 0.058*\"wikit\" + 0.051*\"left\" + 0.048*\"center\" + 0.047*\"style\" + 0.039*\"right\" + 0.036*\"philippin\" + 0.025*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:33:45,577 : INFO : topic diff=0.004124, rho=0.025491\n", - "2019-01-16 05:33:50,241 : INFO : -11.986 per-word bound, 4055.9 perplexity estimate based on a held-out corpus of 2000 documents with 561924 words\n", - "2019-01-16 05:33:50,242 : INFO : PROGRESS: pass 0, at document #3080000/4922894\n", - "2019-01-16 05:33:52,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:52,784 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:33:52,786 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:33:52,787 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.069*\"canada\" + 0.057*\"canadian\" + 0.025*\"toronto\" + 0.021*\"ontario\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:33:52,789 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:33:52,790 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.026*\"saint\" + 0.022*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:33:52,796 : INFO : topic diff=0.004075, rho=0.025482\n", - "2019-01-16 05:33:53,057 : INFO : PROGRESS: pass 0, at document #3082000/4922894\n", - "2019-01-16 05:33:55,041 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:55,598 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.043*\"franc\" + 0.028*\"pari\" + 0.027*\"italian\" + 0.025*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:33:55,600 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.012*\"polit\"\n", - "2019-01-16 05:33:55,601 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.009*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:33:55,603 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 05:33:55,605 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.045*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.022*\"point\" + 0.022*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:33:55,611 : INFO : topic diff=0.004574, rho=0.025474\n", - "2019-01-16 05:33:55,880 : INFO : PROGRESS: pass 0, at document #3084000/4922894\n", - "2019-01-16 05:33:57,870 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:33:58,427 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.010*\"regiment\"\n", - "2019-01-16 05:33:58,429 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:33:58,431 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:33:58,433 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:33:58,434 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:33:58,440 : INFO : topic diff=0.004033, rho=0.025466\n", - "2019-01-16 05:33:58,699 : INFO : PROGRESS: pass 0, at document #3086000/4922894\n", - "2019-01-16 05:34:00,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:01,290 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.069*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.022*\"ontario\" + 0.017*\"british\" + 0.017*\"korea\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:34:01,292 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:34:01,295 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", - "2019-01-16 05:34:01,296 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.065*\"villag\" + 0.052*\"region\" + 0.043*\"east\" + 0.043*\"north\" + 0.041*\"counti\" + 0.041*\"west\" + 0.037*\"south\" + 0.033*\"provinc\" + 0.027*\"municip\"\n", - "2019-01-16 05:34:01,298 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:34:01,304 : INFO : topic diff=0.003715, rho=0.025458\n", - "2019-01-16 05:34:01,576 : INFO : PROGRESS: pass 0, at document #3088000/4922894\n", - "2019-01-16 05:34:03,593 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:04,155 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 05:34:04,156 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.023*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.020*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:34:04,158 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.017*\"medic\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:34:04,159 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", - "2019-01-16 05:34:04,161 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:34:04,167 : INFO : topic diff=0.003613, rho=0.025449\n", - "2019-01-16 05:34:04,464 : INFO : PROGRESS: pass 0, at document #3090000/4922894\n", - "2019-01-16 05:34:06,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:07,007 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"dai\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:34:07,008 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"republican\" + 0.012*\"polit\"\n", - "2019-01-16 05:34:07,010 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"set\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:34:07,011 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", - "2019-01-16 05:34:07,013 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.034*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:34:07,019 : INFO : topic diff=0.004493, rho=0.025441\n", - "2019-01-16 05:34:07,270 : INFO : PROGRESS: pass 0, at document #3092000/4922894\n", - "2019-01-16 05:34:09,245 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:09,801 : INFO : topic #16 (0.020): 0.033*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:34:09,803 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.029*\"kong\" + 0.023*\"lee\" + 0.020*\"singapor\" + 0.020*\"kim\" + 0.016*\"min\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"asia\" + 0.014*\"thailand\"\n", - "2019-01-16 05:34:09,804 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.012*\"market\" + 0.012*\"busi\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.007*\"new\"\n", - "2019-01-16 05:34:09,805 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"republican\" + 0.013*\"senat\"\n", - "2019-01-16 05:34:09,807 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:34:09,813 : INFO : topic diff=0.003593, rho=0.025433\n", - "2019-01-16 05:34:10,075 : INFO : PROGRESS: pass 0, at document #3094000/4922894\n", - "2019-01-16 05:34:12,002 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:12,558 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"puerto\"\n", - "2019-01-16 05:34:12,560 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:34:12,561 : INFO : topic #2 (0.020): 0.058*\"german\" + 0.035*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:34:12,563 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"harri\" + 0.006*\"richard\"\n", - "2019-01-16 05:34:12,564 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:34:12,570 : INFO : topic diff=0.003628, rho=0.025425\n", - "2019-01-16 05:34:12,829 : INFO : PROGRESS: pass 0, at document #3096000/4922894\n", - "2019-01-16 05:34:14,846 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:15,403 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:34:15,405 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:34:15,406 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:34:15,408 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 05:34:15,410 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:34:15,416 : INFO : topic diff=0.004133, rho=0.025416\n", - "2019-01-16 05:34:15,696 : INFO : PROGRESS: pass 0, at document #3098000/4922894\n", - "2019-01-16 05:34:17,758 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:18,315 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 05:34:18,316 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"harri\" + 0.006*\"richard\"\n", - "2019-01-16 05:34:18,318 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:34:18,319 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.034*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:34:18,320 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:34:18,326 : INFO : topic diff=0.004891, rho=0.025408\n", - "2019-01-16 05:34:22,740 : INFO : -11.692 per-word bound, 3308.5 perplexity estimate based on a held-out corpus of 2000 documents with 515508 words\n", - "2019-01-16 05:34:22,740 : INFO : PROGRESS: pass 0, at document #3100000/4922894\n", - "2019-01-16 05:34:24,652 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:25,208 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:34:25,209 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.044*\"china\" + 0.035*\"zealand\" + 0.034*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:34:25,211 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.006*\"unit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:34:25,212 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:34:25,214 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:34:25,219 : INFO : topic diff=0.003643, rho=0.025400\n", - "2019-01-16 05:34:25,495 : INFO : PROGRESS: pass 0, at document #3102000/4922894\n", - "2019-01-16 05:34:27,551 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:28,107 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.011*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 05:34:28,109 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:34:28,111 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:34:28,112 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"bank\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.007*\"new\"\n", - "2019-01-16 05:34:28,114 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"dai\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 05:34:28,119 : INFO : topic diff=0.003717, rho=0.025392\n", - "2019-01-16 05:34:28,391 : INFO : PROGRESS: pass 0, at document #3104000/4922894\n", - "2019-01-16 05:34:30,467 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:31,024 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.022*\"ontario\" + 0.019*\"quebec\" + 0.017*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:34:31,026 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.025*\"unit\" + 0.022*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"wale\"\n", - "2019-01-16 05:34:31,027 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:34:31,028 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.049*\"left\" + 0.047*\"center\" + 0.047*\"style\" + 0.038*\"right\" + 0.035*\"philippin\" + 0.025*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:34:31,029 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:34:31,035 : INFO : topic diff=0.003400, rho=0.025384\n", - "2019-01-16 05:34:31,296 : INFO : PROGRESS: pass 0, at document #3106000/4922894\n", - "2019-01-16 05:34:33,300 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:33,856 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.008*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:34:33,858 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"lo\"\n", - "2019-01-16 05:34:33,859 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:34:33,861 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.025*\"toronto\" + 0.022*\"ontario\" + 0.018*\"quebec\" + 0.017*\"british\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:34:33,862 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"theatr\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 05:34:33,868 : INFO : topic diff=0.003943, rho=0.025375\n", - "2019-01-16 05:34:34,133 : INFO : PROGRESS: pass 0, at document #3108000/4922894\n", - "2019-01-16 05:34:36,143 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:36,700 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:34:36,701 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:34:36,703 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:34:36,705 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.042*\"univers\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:34:36,707 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.050*\"left\" + 0.047*\"style\" + 0.046*\"center\" + 0.039*\"right\" + 0.034*\"philippin\" + 0.025*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:34:36,713 : INFO : topic diff=0.003734, rho=0.025367\n", - "2019-01-16 05:34:36,977 : INFO : PROGRESS: pass 0, at document #3110000/4922894\n", - "2019-01-16 05:34:38,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:39,500 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.066*\"juli\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.062*\"april\" + 0.062*\"june\"\n", - "2019-01-16 05:34:39,502 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.030*\"text\" + 0.030*\"south\" + 0.028*\"color\" + 0.028*\"till\" + 0.024*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:34:39,504 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.008*\"group\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 05:34:39,506 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:34:39,507 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:34:39,513 : INFO : topic diff=0.004046, rho=0.025359\n", - "2019-01-16 05:34:39,769 : INFO : PROGRESS: pass 0, at document #3112000/4922894\n", - "2019-01-16 05:34:41,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:42,284 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:34:42,286 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:34:42,287 : INFO : topic #49 (0.020): 0.098*\"district\" + 0.064*\"villag\" + 0.053*\"region\" + 0.045*\"east\" + 0.045*\"north\" + 0.041*\"counti\" + 0.041*\"west\" + 0.037*\"south\" + 0.031*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:34:42,288 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:34:42,289 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"oper\" + 0.007*\"new\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:34:42,295 : INFO : topic diff=0.003860, rho=0.025351\n", - "2019-01-16 05:34:42,555 : INFO : PROGRESS: pass 0, at document #3114000/4922894\n", - "2019-01-16 05:34:44,557 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:45,115 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:34:45,117 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.010*\"servic\" + 0.010*\"award\"\n", - "2019-01-16 05:34:45,118 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.053*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:34:45,119 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:34:45,120 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.027*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:34:45,126 : INFO : topic diff=0.004280, rho=0.025343\n", - "2019-01-16 05:34:45,415 : INFO : PROGRESS: pass 0, at document #3116000/4922894\n", - "2019-01-16 05:34:47,440 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:47,996 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:34:47,997 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:34:47,999 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"ret\" + 0.008*\"treatment\"\n", - "2019-01-16 05:34:48,002 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.023*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:34:48,004 : INFO : topic #2 (0.020): 0.058*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:34:48,010 : INFO : topic diff=0.003511, rho=0.025335\n", - "2019-01-16 05:34:48,274 : INFO : PROGRESS: pass 0, at document #3118000/4922894\n", - "2019-01-16 05:34:50,292 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:50,850 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"beach\"\n", - "2019-01-16 05:34:50,851 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.036*\"russian\" + 0.028*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.014*\"polish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.012*\"republ\"\n", - "2019-01-16 05:34:50,852 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.061*\"align\" + 0.059*\"wikit\" + 0.051*\"left\" + 0.048*\"style\" + 0.047*\"center\" + 0.039*\"right\" + 0.034*\"philippin\" + 0.026*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:34:50,854 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:34:50,856 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.016*\"theatr\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:34:50,862 : INFO : topic diff=0.003323, rho=0.025327\n", - "2019-01-16 05:34:55,360 : INFO : -11.658 per-word bound, 3230.6 perplexity estimate based on a held-out corpus of 2000 documents with 526172 words\n", - "2019-01-16 05:34:55,361 : INFO : PROGRESS: pass 0, at document #3120000/4922894\n", - "2019-01-16 05:34:57,308 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:34:57,865 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.012*\"ali\" + 0.011*\"khan\" + 0.011*\"islam\"\n", - "2019-01-16 05:34:57,867 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:34:57,868 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.024*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:34:57,870 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:34:57,871 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 05:34:57,877 : INFO : topic diff=0.003837, rho=0.025318\n", - "2019-01-16 05:34:58,137 : INFO : PROGRESS: pass 0, at document #3122000/4922894\n", - "2019-01-16 05:35:00,154 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:00,718 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"red\"\n", - "2019-01-16 05:35:00,719 : INFO : topic #14 (0.020): 0.020*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.010*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:35:00,721 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:35:00,722 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:35:00,724 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"beach\"\n", - "2019-01-16 05:35:00,731 : INFO : topic diff=0.003736, rho=0.025310\n", - "2019-01-16 05:35:01,003 : INFO : PROGRESS: pass 0, at document #3124000/4922894\n", - "2019-01-16 05:35:03,000 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:03,558 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:35:03,559 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\"\n", - "2019-01-16 05:35:03,563 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:35:03,564 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:35:03,566 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:35:03,572 : INFO : topic diff=0.004453, rho=0.025302\n", - "2019-01-16 05:35:03,827 : INFO : PROGRESS: pass 0, at document #3126000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:35:05,817 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:06,375 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:35:06,377 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.012*\"wing\"\n", - "2019-01-16 05:35:06,379 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.053*\"left\" + 0.049*\"style\" + 0.046*\"center\" + 0.037*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.023*\"border\"\n", - "2019-01-16 05:35:06,380 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:35:06,381 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\"\n", - "2019-01-16 05:35:06,386 : INFO : topic diff=0.004416, rho=0.025294\n", - "2019-01-16 05:35:06,634 : INFO : PROGRESS: pass 0, at document #3128000/4922894\n", - "2019-01-16 05:35:08,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:09,344 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:35:09,346 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:35:09,347 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:35:09,349 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:35:09,350 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:35:09,361 : INFO : topic diff=0.003583, rho=0.025286\n", - "2019-01-16 05:35:09,610 : INFO : PROGRESS: pass 0, at document #3130000/4922894\n", - "2019-01-16 05:35:11,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:12,196 : INFO : topic #30 (0.020): 0.051*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:35:12,198 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.006*\"group\"\n", - "2019-01-16 05:35:12,199 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:35:12,201 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:35:12,202 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:35:12,208 : INFO : topic diff=0.003642, rho=0.025278\n", - "2019-01-16 05:35:12,466 : INFO : PROGRESS: pass 0, at document #3132000/4922894\n", - "2019-01-16 05:35:14,617 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:15,177 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:35:15,178 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:35:15,179 : INFO : topic #40 (0.020): 0.049*\"bar\" + 0.042*\"africa\" + 0.037*\"african\" + 0.031*\"text\" + 0.031*\"south\" + 0.027*\"color\" + 0.027*\"till\" + 0.025*\"black\" + 0.012*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:35:15,181 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:35:15,182 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:35:15,188 : INFO : topic diff=0.003950, rho=0.025270\n", - "2019-01-16 05:35:15,455 : INFO : PROGRESS: pass 0, at document #3134000/4922894\n", - "2019-01-16 05:35:17,543 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:18,106 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"beach\"\n", - "2019-01-16 05:35:18,107 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:35:18,109 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"genu\" + 0.007*\"red\"\n", - "2019-01-16 05:35:18,110 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"wale\"\n", - "2019-01-16 05:35:18,111 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:35:18,117 : INFO : topic diff=0.003811, rho=0.025262\n", - "2019-01-16 05:35:18,397 : INFO : PROGRESS: pass 0, at document #3136000/4922894\n", - "2019-01-16 05:35:20,400 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:20,958 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"red\"\n", - "2019-01-16 05:35:20,960 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:35:20,961 : INFO : topic #42 (0.020): 0.029*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:35:20,962 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.064*\"villag\" + 0.052*\"region\" + 0.045*\"east\" + 0.044*\"north\" + 0.040*\"west\" + 0.040*\"counti\" + 0.038*\"south\" + 0.032*\"provinc\" + 0.028*\"central\"\n", - "2019-01-16 05:35:20,964 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:35:20,970 : INFO : topic diff=0.003719, rho=0.025254\n", - "2019-01-16 05:35:21,234 : INFO : PROGRESS: pass 0, at document #3138000/4922894\n", - "2019-01-16 05:35:23,242 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:23,798 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:35:23,800 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:35:23,801 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:35:23,803 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"cathol\"\n", - "2019-01-16 05:35:23,805 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:35:23,810 : INFO : topic diff=0.004121, rho=0.025246\n", - "2019-01-16 05:35:28,456 : INFO : -11.582 per-word bound, 3065.3 perplexity estimate based on a held-out corpus of 2000 documents with 568819 words\n", - "2019-01-16 05:35:28,457 : INFO : PROGRESS: pass 0, at document #3140000/4922894\n", - "2019-01-16 05:35:30,442 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:31,009 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.021*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"counti\"\n", - "2019-01-16 05:35:31,012 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"user\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:35:31,014 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:35:31,016 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"islam\"\n", - "2019-01-16 05:35:31,017 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:35:31,023 : INFO : topic diff=0.003235, rho=0.025238\n", - "2019-01-16 05:35:31,327 : INFO : PROGRESS: pass 0, at document #3142000/4922894\n", - "2019-01-16 05:35:33,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:33,945 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:35:33,947 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.018*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:35:33,948 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:35:33,950 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 05:35:33,951 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:35:33,957 : INFO : topic diff=0.004453, rho=0.025230\n", - "2019-01-16 05:35:34,220 : INFO : PROGRESS: pass 0, at document #3144000/4922894\n", - "2019-01-16 05:35:36,272 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:36,829 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"set\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:35:36,831 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.018*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:35:36,832 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"men\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:35:36,834 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:35:36,835 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:35:36,841 : INFO : topic diff=0.003622, rho=0.025222\n", - "2019-01-16 05:35:37,094 : INFO : PROGRESS: pass 0, at document #3146000/4922894\n", - "2019-01-16 05:35:39,020 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:39,577 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:35:39,579 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.045*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.013*\"council\" + 0.013*\"polit\" + 0.012*\"repres\"\n", - "2019-01-16 05:35:39,580 : INFO : topic #2 (0.020): 0.059*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:35:39,582 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:35:39,584 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:35:39,589 : INFO : topic diff=0.004750, rho=0.025214\n", - "2019-01-16 05:35:39,843 : INFO : PROGRESS: pass 0, at document #3148000/4922894\n", - "2019-01-16 05:35:41,831 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:42,394 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.033*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:35:42,396 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", - "2019-01-16 05:35:42,398 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:35:42,399 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"drug\"\n", - "2019-01-16 05:35:42,400 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:35:42,406 : INFO : topic diff=0.004070, rho=0.025206\n", - "2019-01-16 05:35:42,664 : INFO : PROGRESS: pass 0, at document #3150000/4922894\n", - "2019-01-16 05:35:44,650 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:45,206 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"stage\"\n", - "2019-01-16 05:35:45,207 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:35:45,208 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:35:45,210 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:35:45,212 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:35:45,218 : INFO : topic diff=0.004073, rho=0.025198\n", - "2019-01-16 05:35:45,487 : INFO : PROGRESS: pass 0, at document #3152000/4922894\n", - "2019-01-16 05:35:47,531 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:48,088 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:35:48,090 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:35:48,091 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 05:35:48,093 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"mark\"\n", - "2019-01-16 05:35:48,096 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:35:48,102 : INFO : topic diff=0.003723, rho=0.025190\n", - "2019-01-16 05:35:48,368 : INFO : PROGRESS: pass 0, at document #3154000/4922894\n", - "2019-01-16 05:35:50,421 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:50,986 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:35:50,988 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:35:50,990 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 05:35:50,992 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", - "2019-01-16 05:35:50,993 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:35:51,000 : INFO : topic diff=0.004245, rho=0.025182\n", - "2019-01-16 05:35:51,272 : INFO : PROGRESS: pass 0, at document #3156000/4922894\n", - "2019-01-16 05:35:53,398 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:53,963 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.030*\"text\" + 0.028*\"south\" + 0.026*\"till\" + 0.026*\"color\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 05:35:53,965 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:35:53,967 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"cultur\" + 0.005*\"like\"\n", - "2019-01-16 05:35:53,968 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.006*\"union\" + 0.006*\"support\" + 0.006*\"group\"\n", - "2019-01-16 05:35:53,969 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:35:53,975 : INFO : topic diff=0.005325, rho=0.025174\n", - "2019-01-16 05:35:54,245 : INFO : PROGRESS: pass 0, at document #3158000/4922894\n", - "2019-01-16 05:35:56,358 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:35:56,915 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:35:56,917 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.014*\"tour\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"year\"\n", - "2019-01-16 05:35:56,918 : INFO : topic #35 (0.020): 0.030*\"hong\" + 0.029*\"kong\" + 0.028*\"lee\" + 0.024*\"kim\" + 0.019*\"singapor\" + 0.018*\"malaysia\" + 0.015*\"min\" + 0.014*\"asia\" + 0.014*\"indonesia\" + 0.013*\"thailand\"\n", - "2019-01-16 05:35:56,920 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:35:56,922 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:35:56,928 : INFO : topic diff=0.003436, rho=0.025166\n", - "2019-01-16 05:36:01,813 : INFO : -11.949 per-word bound, 3952.8 perplexity estimate based on a held-out corpus of 2000 documents with 608660 words\n", - "2019-01-16 05:36:01,814 : INFO : PROGRESS: pass 0, at document #3160000/4922894\n", - "2019-01-16 05:36:03,898 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:04,457 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 05:36:04,458 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 05:36:04,459 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.034*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"area\"\n", - "2019-01-16 05:36:04,461 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.027*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:36:04,462 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.043*\"univers\" + 0.042*\"colleg\" + 0.040*\"student\" + 0.033*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:36:04,468 : INFO : topic diff=0.004264, rho=0.025158\n", - "2019-01-16 05:36:04,725 : INFO : PROGRESS: pass 0, at document #3162000/4922894\n", - "2019-01-16 05:36:06,782 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:07,339 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:36:07,340 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:36:07,342 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:36:07,344 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 05:36:07,345 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.044*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"polit\" + 0.013*\"republican\"\n", - "2019-01-16 05:36:07,352 : INFO : topic diff=0.004264, rho=0.025150\n", - "2019-01-16 05:36:07,620 : INFO : PROGRESS: pass 0, at document #3164000/4922894\n", - "2019-01-16 05:36:09,669 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:10,227 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:36:10,229 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:36:10,230 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:36:10,231 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:36:10,233 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:36:10,238 : INFO : topic diff=0.004483, rho=0.025142\n", - "2019-01-16 05:36:10,535 : INFO : PROGRESS: pass 0, at document #3166000/4922894\n", - "2019-01-16 05:36:12,526 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:13,085 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:36:13,087 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.020*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"min\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"thailand\"\n", - "2019-01-16 05:36:13,089 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", - "2019-01-16 05:36:13,090 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"santa\" + 0.009*\"carlo\"\n", - "2019-01-16 05:36:13,091 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"roman\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:36:13,098 : INFO : topic diff=0.004618, rho=0.025134\n", - "2019-01-16 05:36:13,355 : INFO : PROGRESS: pass 0, at document #3168000/4922894\n", - "2019-01-16 05:36:15,373 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:15,937 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", - "2019-01-16 05:36:15,939 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:36:15,940 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.030*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.020*\"singapor\" + 0.017*\"malaysia\" + 0.015*\"min\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"thailand\"\n", - "2019-01-16 05:36:15,942 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.006*\"support\"\n", - "2019-01-16 05:36:15,943 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"london\" + 0.020*\"town\" + 0.017*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.011*\"manchest\"\n", - "2019-01-16 05:36:15,948 : INFO : topic diff=0.003892, rho=0.025126\n", - "2019-01-16 05:36:16,211 : INFO : PROGRESS: pass 0, at document #3170000/4922894\n", - "2019-01-16 05:36:18,219 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:18,775 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"town\" + 0.034*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.021*\"peopl\" + 0.019*\"area\"\n", - "2019-01-16 05:36:18,776 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.034*\"african\" + 0.031*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.026*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:36:18,778 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 05:36:18,779 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 05:36:18,780 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"santa\" + 0.009*\"carlo\"\n", - "2019-01-16 05:36:18,786 : INFO : topic diff=0.003725, rho=0.025118\n", - "2019-01-16 05:36:19,044 : INFO : PROGRESS: pass 0, at document #3172000/4922894\n", - "2019-01-16 05:36:21,010 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:21,566 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:36:21,568 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:36:21,570 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:36:21,571 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:36:21,573 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:36:21,580 : INFO : topic diff=0.003694, rho=0.025110\n", - "2019-01-16 05:36:21,841 : INFO : PROGRESS: pass 0, at document #3174000/4922894\n", - "2019-01-16 05:36:23,901 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:24,462 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"london\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:36:24,464 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:36:24,466 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.029*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:36:24,468 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 05:36:24,469 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:36:24,476 : INFO : topic diff=0.003595, rho=0.025102\n", - "2019-01-16 05:36:24,733 : INFO : PROGRESS: pass 0, at document #3176000/4922894\n", - "2019-01-16 05:36:26,751 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:27,312 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.011*\"josé\" + 0.010*\"santa\" + 0.009*\"lo\"\n", - "2019-01-16 05:36:27,314 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:36:27,316 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 05:36:27,318 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.014*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", - "2019-01-16 05:36:27,320 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:36:27,326 : INFO : topic diff=0.003186, rho=0.025094\n", - "2019-01-16 05:36:27,594 : INFO : PROGRESS: pass 0, at document #3178000/4922894\n", - "2019-01-16 05:36:29,599 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:30,157 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:36:30,158 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:36:30,160 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.018*\"korean\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.014*\"montreal\"\n", - "2019-01-16 05:36:30,161 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"japan\" + 0.022*\"men\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.016*\"nation\"\n", - "2019-01-16 05:36:30,163 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.013*\"council\" + 0.013*\"polit\" + 0.013*\"republican\"\n", - "2019-01-16 05:36:30,169 : INFO : topic diff=0.003753, rho=0.025086\n", - "2019-01-16 05:36:34,825 : INFO : -11.412 per-word bound, 2724.1 perplexity estimate based on a held-out corpus of 2000 documents with 574007 words\n", - "2019-01-16 05:36:34,826 : INFO : PROGRESS: pass 0, at document #3180000/4922894\n", - "2019-01-16 05:36:36,830 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:37,395 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.037*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"area\"\n", - "2019-01-16 05:36:37,396 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:36:37,398 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.035*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.017*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:36:37,399 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:36:37,401 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:36:37,407 : INFO : topic diff=0.003870, rho=0.025078\n", - "2019-01-16 05:36:37,658 : INFO : PROGRESS: pass 0, at document #3182000/4922894\n", - "2019-01-16 05:36:39,588 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:40,146 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"khan\" + 0.011*\"islam\"\n", - "2019-01-16 05:36:40,147 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:36:40,149 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.066*\"villag\" + 0.051*\"region\" + 0.043*\"north\" + 0.043*\"east\" + 0.042*\"counti\" + 0.040*\"west\" + 0.037*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", - "2019-01-16 05:36:40,150 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:36:40,151 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:36:40,157 : INFO : topic diff=0.003832, rho=0.025071\n", - "2019-01-16 05:36:40,419 : INFO : PROGRESS: pass 0, at document #3184000/4922894\n", - "2019-01-16 05:36:42,445 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:43,004 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:36:43,006 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:36:43,008 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 05:36:43,010 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.070*\"canada\" + 0.057*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.018*\"british\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.015*\"korea\" + 0.014*\"montreal\"\n", - "2019-01-16 05:36:43,013 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:36:43,018 : INFO : topic diff=0.003793, rho=0.025063\n", - "2019-01-16 05:36:43,270 : INFO : PROGRESS: pass 0, at document #3186000/4922894\n", - "2019-01-16 05:36:45,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:45,832 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.019*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:36:45,833 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", - "2019-01-16 05:36:45,835 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.014*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:36:45,836 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:36:45,837 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.014*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:36:45,843 : INFO : topic diff=0.003696, rho=0.025055\n", - "2019-01-16 05:36:46,106 : INFO : PROGRESS: pass 0, at document #3188000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:36:48,107 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:48,670 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:36:48,672 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:36:48,674 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.031*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.027*\"color\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:36:48,675 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:36:48,676 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 05:36:48,682 : INFO : topic diff=0.003307, rho=0.025047\n", - "2019-01-16 05:36:48,931 : INFO : PROGRESS: pass 0, at document #3190000/4922894\n", - "2019-01-16 05:36:50,869 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:51,429 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:36:51,430 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:36:51,432 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"stage\"\n", - "2019-01-16 05:36:51,433 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.017*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.013*\"brazil\" + 0.011*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 05:36:51,435 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.016*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.010*\"histori\" + 0.010*\"novel\"\n", - "2019-01-16 05:36:51,442 : INFO : topic diff=0.003557, rho=0.025039\n", - "2019-01-16 05:36:51,740 : INFO : PROGRESS: pass 0, at document #3192000/4922894\n", - "2019-01-16 05:36:53,751 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:54,309 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"set\" + 0.007*\"group\"\n", - "2019-01-16 05:36:54,311 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.059*\"wikit\" + 0.054*\"align\" + 0.049*\"style\" + 0.047*\"left\" + 0.044*\"center\" + 0.037*\"philippin\" + 0.034*\"right\" + 0.028*\"text\" + 0.026*\"border\"\n", - "2019-01-16 05:36:54,313 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:36:54,314 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.070*\"canada\" + 0.057*\"canadian\" + 0.024*\"toronto\" + 0.022*\"ontario\" + 0.017*\"british\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:36:54,316 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:36:54,324 : INFO : topic diff=0.003990, rho=0.025031\n", - "2019-01-16 05:36:54,590 : INFO : PROGRESS: pass 0, at document #3194000/4922894\n", - "2019-01-16 05:36:56,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:57,152 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"khan\" + 0.011*\"islam\"\n", - "2019-01-16 05:36:57,154 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:36:57,156 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:36:57,157 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:36:57,159 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:36:57,165 : INFO : topic diff=0.003235, rho=0.025023\n", - "2019-01-16 05:36:57,414 : INFO : PROGRESS: pass 0, at document #3196000/4922894\n", - "2019-01-16 05:36:59,342 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:36:59,898 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"human\" + 0.008*\"caus\" + 0.008*\"studi\" + 0.008*\"effect\"\n", - "2019-01-16 05:36:59,900 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.029*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"royal\" + 0.013*\"henri\"\n", - "2019-01-16 05:36:59,901 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:36:59,903 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:36:59,904 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:36:59,912 : INFO : topic diff=0.003471, rho=0.025016\n", - "2019-01-16 05:37:00,169 : INFO : PROGRESS: pass 0, at document #3198000/4922894\n", - "2019-01-16 05:37:02,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:02,713 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 05:37:02,715 : INFO : topic #44 (0.020): 0.032*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:37:02,716 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"tree\" + 0.007*\"forest\" + 0.007*\"genu\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:37:02,718 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.027*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:37:02,719 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.013*\"channel\" + 0.011*\"network\" + 0.011*\"host\" + 0.011*\"program\"\n", - "2019-01-16 05:37:02,726 : INFO : topic diff=0.003623, rho=0.025008\n", - "2019-01-16 05:37:07,208 : INFO : -11.509 per-word bound, 2913.6 perplexity estimate based on a held-out corpus of 2000 documents with 515963 words\n", - "2019-01-16 05:37:07,209 : INFO : PROGRESS: pass 0, at document #3200000/4922894\n", - "2019-01-16 05:37:09,423 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:09,981 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:37:09,983 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:37:09,984 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"softwar\" + 0.007*\"base\"\n", - "2019-01-16 05:37:09,986 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:37:09,987 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"west\"\n", - "2019-01-16 05:37:09,993 : INFO : topic diff=0.004275, rho=0.025000\n", - "2019-01-16 05:37:10,255 : INFO : PROGRESS: pass 0, at document #3202000/4922894\n", - "2019-01-16 05:37:12,276 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:12,834 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.035*\"citi\" + 0.031*\"ag\" + 0.024*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"area\"\n", - "2019-01-16 05:37:12,835 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:37:12,837 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.044*\"north\" + 0.043*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", - "2019-01-16 05:37:12,838 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"work\" + 0.010*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:37:12,840 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.017*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:37:12,846 : INFO : topic diff=0.003675, rho=0.024992\n", - "2019-01-16 05:37:13,109 : INFO : PROGRESS: pass 0, at document #3204000/4922894\n", - "2019-01-16 05:37:15,105 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:15,663 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:37:15,664 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.047*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"point\" + 0.021*\"group\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:37:15,665 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.035*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:37:15,667 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.065*\"villag\" + 0.050*\"region\" + 0.043*\"north\" + 0.043*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", - "2019-01-16 05:37:15,668 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.070*\"canada\" + 0.057*\"canadian\" + 0.023*\"toronto\" + 0.023*\"ontario\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:37:15,674 : INFO : topic diff=0.003859, rho=0.024984\n", - "2019-01-16 05:37:15,928 : INFO : PROGRESS: pass 0, at document #3206000/4922894\n", - "2019-01-16 05:37:17,909 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:18,466 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"wale\" + 0.012*\"manchest\"\n", - "2019-01-16 05:37:18,467 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:37:18,470 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:37:18,472 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 05:37:18,473 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:37:18,479 : INFO : topic diff=0.003490, rho=0.024977\n", - "2019-01-16 05:37:18,739 : INFO : PROGRESS: pass 0, at document #3208000/4922894\n", - "2019-01-16 05:37:20,748 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:21,307 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:37:21,308 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"polit\" + 0.012*\"repres\"\n", - "2019-01-16 05:37:21,310 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.059*\"wikit\" + 0.053*\"align\" + 0.050*\"style\" + 0.046*\"left\" + 0.044*\"center\" + 0.036*\"philippin\" + 0.033*\"right\" + 0.028*\"text\" + 0.027*\"border\"\n", - "2019-01-16 05:37:21,313 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.023*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"wale\"\n", - "2019-01-16 05:37:21,316 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.043*\"north\" + 0.042*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", - "2019-01-16 05:37:21,322 : INFO : topic diff=0.003409, rho=0.024969\n", - "2019-01-16 05:37:21,593 : INFO : PROGRESS: pass 0, at document #3210000/4922894\n", - "2019-01-16 05:37:23,644 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:24,202 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", - "2019-01-16 05:37:24,203 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:37:24,205 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:37:24,206 : INFO : topic #36 (0.020): 0.053*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:37:24,208 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:37:24,213 : INFO : topic diff=0.003691, rho=0.024961\n", - "2019-01-16 05:37:24,471 : INFO : PROGRESS: pass 0, at document #3212000/4922894\n", - "2019-01-16 05:37:26,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:27,044 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"japan\" + 0.018*\"time\" + 0.018*\"athlet\"\n", - "2019-01-16 05:37:27,045 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", - "2019-01-16 05:37:27,047 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:37:27,048 : INFO : topic #35 (0.020): 0.034*\"hong\" + 0.032*\"kong\" + 0.026*\"lee\" + 0.022*\"kim\" + 0.019*\"singapor\" + 0.016*\"malaysia\" + 0.014*\"min\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.013*\"asia\"\n", - "2019-01-16 05:37:27,050 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:37:27,056 : INFO : topic diff=0.003376, rho=0.024953\n", - "2019-01-16 05:37:27,313 : INFO : PROGRESS: pass 0, at document #3214000/4922894\n", - "2019-01-16 05:37:29,270 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:29,827 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"puerto\"\n", - "2019-01-16 05:37:29,829 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.019*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:37:29,830 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"set\" + 0.007*\"group\"\n", - "2019-01-16 05:37:29,831 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:37:29,834 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.035*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:37:29,840 : INFO : topic diff=0.003734, rho=0.024945\n", - "2019-01-16 05:37:30,099 : INFO : PROGRESS: pass 0, at document #3216000/4922894\n", - "2019-01-16 05:37:32,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:32,632 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", - "2019-01-16 05:37:32,634 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:37:32,635 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:37:32,637 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:37:32,638 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"santa\" + 0.009*\"puerto\"\n", - "2019-01-16 05:37:32,644 : INFO : topic diff=0.003947, rho=0.024938\n", - "2019-01-16 05:37:32,939 : INFO : PROGRESS: pass 0, at document #3218000/4922894\n", - "2019-01-16 05:37:34,945 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:35,502 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.066*\"villag\" + 0.049*\"region\" + 0.043*\"north\" + 0.042*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", - "2019-01-16 05:37:35,503 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"islam\"\n", - "2019-01-16 05:37:35,505 : INFO : topic #31 (0.020): 0.062*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.029*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:37:35,506 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:37:35,508 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 05:37:35,513 : INFO : topic diff=0.003296, rho=0.024930\n", - "2019-01-16 05:37:40,012 : INFO : -11.631 per-word bound, 3171.9 perplexity estimate based on a held-out corpus of 2000 documents with 544444 words\n", - "2019-01-16 05:37:40,012 : INFO : PROGRESS: pass 0, at document #3220000/4922894\n", - "2019-01-16 05:37:42,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:42,575 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:37:42,577 : INFO : topic #31 (0.020): 0.063*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.033*\"chines\" + 0.028*\"south\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:37:42,578 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.010*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:37:42,580 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.020*\"london\" + 0.017*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.012*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 05:37:42,581 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:37:42,587 : INFO : topic diff=0.003520, rho=0.024922\n", - "2019-01-16 05:37:42,838 : INFO : PROGRESS: pass 0, at document #3222000/4922894\n", - "2019-01-16 05:37:44,761 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:45,319 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:37:45,320 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:37:45,322 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:37:45,323 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:37:45,324 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:37:45,331 : INFO : topic diff=0.003981, rho=0.024915\n", - "2019-01-16 05:37:45,594 : INFO : PROGRESS: pass 0, at document #3224000/4922894\n", - "2019-01-16 05:37:47,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:48,147 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"santa\" + 0.010*\"josé\" + 0.009*\"puerto\"\n", - "2019-01-16 05:37:48,149 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.010*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 05:37:48,150 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:37:48,152 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:37:48,153 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.013*\"henri\"\n", - "2019-01-16 05:37:48,159 : INFO : topic diff=0.003699, rho=0.024907\n", - "2019-01-16 05:37:48,430 : INFO : PROGRESS: pass 0, at document #3226000/4922894\n", - "2019-01-16 05:37:50,459 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:51,019 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:37:51,020 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:37:51,021 : INFO : topic #46 (0.020): 0.138*\"class\" + 0.059*\"wikit\" + 0.052*\"style\" + 0.051*\"align\" + 0.045*\"center\" + 0.044*\"left\" + 0.036*\"philippin\" + 0.031*\"right\" + 0.028*\"border\" + 0.028*\"text\"\n", - "2019-01-16 05:37:51,023 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.044*\"univers\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:37:51,024 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"set\" + 0.007*\"group\"\n", - "2019-01-16 05:37:51,030 : INFO : topic diff=0.003893, rho=0.024899\n", - "2019-01-16 05:37:51,292 : INFO : PROGRESS: pass 0, at document #3228000/4922894\n", - "2019-01-16 05:37:53,343 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:53,905 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:37:53,906 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:37:53,907 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.044*\"univers\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:37:53,908 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"return\"\n", - "2019-01-16 05:37:53,910 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:37:53,916 : INFO : topic diff=0.004092, rho=0.024891\n", - "2019-01-16 05:37:54,176 : INFO : PROGRESS: pass 0, at document #3230000/4922894\n", - "2019-01-16 05:37:56,104 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:56,660 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.032*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:37:56,662 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 05:37:56,663 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.032*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.019*\"singapor\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"min\" + 0.014*\"indonesia\" + 0.013*\"asia\"\n", - "2019-01-16 05:37:56,665 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.038*\"africa\" + 0.034*\"african\" + 0.031*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.027*\"color\" + 0.022*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 05:37:56,666 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.066*\"villag\" + 0.051*\"region\" + 0.043*\"north\" + 0.042*\"counti\" + 0.042*\"east\" + 0.039*\"west\" + 0.036*\"south\" + 0.032*\"provinc\" + 0.028*\"municip\"\n", - "2019-01-16 05:37:56,672 : INFO : topic diff=0.004138, rho=0.024884\n", - "2019-01-16 05:37:56,929 : INFO : PROGRESS: pass 0, at document #3232000/4922894\n", - "2019-01-16 05:37:58,940 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:37:59,505 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", - "2019-01-16 05:37:59,506 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.031*\"kong\" + 0.027*\"lee\" + 0.023*\"kim\" + 0.019*\"singapor\" + 0.016*\"malaysia\" + 0.015*\"min\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.013*\"asia\"\n", - "2019-01-16 05:37:59,509 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:37:59,510 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:37:59,512 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:37:59,517 : INFO : topic diff=0.003907, rho=0.024876\n", - "2019-01-16 05:37:59,790 : INFO : PROGRESS: pass 0, at document #3234000/4922894\n", - "2019-01-16 05:38:01,846 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:02,404 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"citi\" + 0.035*\"town\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.019*\"counti\"\n", - "2019-01-16 05:38:02,406 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:38:02,408 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.016*\"station\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:38:02,410 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:38:02,412 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:38:02,419 : INFO : topic diff=0.004536, rho=0.024868\n", - "2019-01-16 05:38:02,677 : INFO : PROGRESS: pass 0, at document #3236000/4922894\n", - "2019-01-16 05:38:04,641 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:05,199 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"tree\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:38:05,200 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:38:05,201 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.015*\"festiv\" + 0.013*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 05:38:05,203 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:38:05,205 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:38:05,211 : INFO : topic diff=0.003355, rho=0.024861\n", - "2019-01-16 05:38:05,477 : INFO : PROGRESS: pass 0, at document #3238000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:38:07,493 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:08,050 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:38:08,052 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.023*\"winner\" + 0.021*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:38:08,053 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.015*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:38:08,055 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"sri\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"khan\"\n", - "2019-01-16 05:38:08,057 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:38:08,062 : INFO : topic diff=0.003924, rho=0.024853\n", - "2019-01-16 05:38:12,608 : INFO : -11.518 per-word bound, 2932.6 perplexity estimate based on a held-out corpus of 2000 documents with 563650 words\n", - "2019-01-16 05:38:12,609 : INFO : PROGRESS: pass 0, at document #3240000/4922894\n", - "2019-01-16 05:38:14,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:15,168 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"tree\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:38:15,170 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.016*\"station\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:38:15,172 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:38:15,173 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 05:38:15,174 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:38:15,180 : INFO : topic diff=0.003984, rho=0.024845\n", - "2019-01-16 05:38:15,436 : INFO : PROGRESS: pass 0, at document #3242000/4922894\n", - "2019-01-16 05:38:17,459 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:18,016 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:38:18,018 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"wale\"\n", - "2019-01-16 05:38:18,019 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:38:18,020 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", - "2019-01-16 05:38:18,021 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:38:18,027 : INFO : topic diff=0.004019, rho=0.024838\n", - "2019-01-16 05:38:18,320 : INFO : PROGRESS: pass 0, at document #3244000/4922894\n", - "2019-01-16 05:38:20,301 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:20,861 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"royal\"\n", - "2019-01-16 05:38:20,862 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:38:20,864 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 05:38:20,865 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:38:20,866 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:38:20,872 : INFO : topic diff=0.004121, rho=0.024830\n", - "2019-01-16 05:38:21,144 : INFO : PROGRESS: pass 0, at document #3246000/4922894\n", - "2019-01-16 05:38:23,138 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:23,696 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"tree\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:38:23,698 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"magazin\"\n", - "2019-01-16 05:38:23,700 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:38:23,701 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.017*\"korean\" + 0.016*\"british\" + 0.015*\"korea\" + 0.014*\"montreal\"\n", - "2019-01-16 05:38:23,702 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.058*\"wikit\" + 0.054*\"align\" + 0.050*\"style\" + 0.049*\"center\" + 0.041*\"left\" + 0.035*\"right\" + 0.034*\"philippin\" + 0.028*\"text\" + 0.026*\"border\"\n", - "2019-01-16 05:38:23,710 : INFO : topic diff=0.003980, rho=0.024822\n", - "2019-01-16 05:38:23,958 : INFO : PROGRESS: pass 0, at document #3248000/4922894\n", - "2019-01-16 05:38:25,932 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:26,490 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:38:26,492 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:38:26,494 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:38:26,495 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:38:26,496 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:38:26,505 : INFO : topic diff=0.003005, rho=0.024815\n", - "2019-01-16 05:38:26,757 : INFO : PROGRESS: pass 0, at document #3250000/4922894\n", - "2019-01-16 05:38:28,685 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:29,246 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:38:29,248 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", - "2019-01-16 05:38:29,250 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 05:38:29,251 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.070*\"octob\" + 0.065*\"januari\" + 0.065*\"august\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:38:29,252 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n", - "2019-01-16 05:38:29,258 : INFO : topic diff=0.003551, rho=0.024807\n", - "2019-01-16 05:38:29,517 : INFO : PROGRESS: pass 0, at document #3252000/4922894\n", - "2019-01-16 05:38:31,519 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:32,077 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 05:38:32,078 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:38:32,080 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", - "2019-01-16 05:38:32,081 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.005*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 05:38:32,083 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:38:32,089 : INFO : topic diff=0.003775, rho=0.024799\n", - "2019-01-16 05:38:32,334 : INFO : PROGRESS: pass 0, at document #3254000/4922894\n", - "2019-01-16 05:38:34,290 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:34,848 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:38:34,850 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.024*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"muslim\" + 0.010*\"khan\"\n", - "2019-01-16 05:38:34,851 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:38:34,852 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:38:34,854 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.066*\"august\" + 0.065*\"januari\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.064*\"april\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:38:34,859 : INFO : topic diff=0.003741, rho=0.024792\n", - "2019-01-16 05:38:35,106 : INFO : PROGRESS: pass 0, at document #3256000/4922894\n", - "2019-01-16 05:38:37,038 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:37,595 : INFO : topic #36 (0.020): 0.052*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:38:37,596 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:38:37,598 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:38:37,599 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"human\" + 0.008*\"studi\"\n", - "2019-01-16 05:38:37,601 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.034*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.023*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"nation\" + 0.017*\"time\"\n", - "2019-01-16 05:38:37,609 : INFO : topic diff=0.003207, rho=0.024784\n", - "2019-01-16 05:38:37,873 : INFO : PROGRESS: pass 0, at document #3258000/4922894\n", - "2019-01-16 05:38:39,878 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:40,435 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:38:40,437 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:38:40,439 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:38:40,440 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:38:40,442 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.029*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:38:40,448 : INFO : topic diff=0.003737, rho=0.024776\n", - "2019-01-16 05:38:44,958 : INFO : -12.074 per-word bound, 4312.7 perplexity estimate based on a held-out corpus of 2000 documents with 542671 words\n", - "2019-01-16 05:38:44,958 : INFO : PROGRESS: pass 0, at document #3260000/4922894\n", - "2019-01-16 05:38:47,008 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:47,573 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:38:47,575 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"ret\" + 0.008*\"human\" + 0.008*\"studi\"\n", - "2019-01-16 05:38:47,577 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:38:47,578 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:38:47,580 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.010*\"pilot\"\n", - "2019-01-16 05:38:47,585 : INFO : topic diff=0.003467, rho=0.024769\n", - "2019-01-16 05:38:47,850 : INFO : PROGRESS: pass 0, at document #3262000/4922894\n", - "2019-01-16 05:38:49,892 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:50,449 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"mean\" + 0.005*\"like\"\n", - "2019-01-16 05:38:50,450 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.035*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.011*\"und\" + 0.011*\"die\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:38:50,452 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:38:50,453 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:38:50,455 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:38:50,462 : INFO : topic diff=0.003991, rho=0.024761\n", - "2019-01-16 05:38:50,718 : INFO : PROGRESS: pass 0, at document #3264000/4922894\n", - "2019-01-16 05:38:52,744 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:53,300 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 05:38:53,302 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:38:53,304 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", - "2019-01-16 05:38:53,305 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:38:53,306 : INFO : topic #36 (0.020): 0.052*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:38:53,312 : INFO : topic diff=0.004607, rho=0.024754\n", - "2019-01-16 05:38:53,571 : INFO : PROGRESS: pass 0, at document #3266000/4922894\n", - "2019-01-16 05:38:55,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:56,093 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"us\"\n", - "2019-01-16 05:38:56,094 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"mountain\"\n", - "2019-01-16 05:38:56,095 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:38:56,097 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.010*\"novel\"\n", - "2019-01-16 05:38:56,098 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:38:56,104 : INFO : topic diff=0.003852, rho=0.024746\n", - "2019-01-16 05:38:56,387 : INFO : PROGRESS: pass 0, at document #3268000/4922894\n", - "2019-01-16 05:38:58,327 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:38:58,886 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"muslim\" + 0.010*\"khan\"\n", - "2019-01-16 05:38:58,888 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:38:58,890 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:38:58,891 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:38:58,893 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:38:58,900 : INFO : topic diff=0.003400, rho=0.024739\n", - "2019-01-16 05:38:59,176 : INFO : PROGRESS: pass 0, at document #3270000/4922894\n", - "2019-01-16 05:39:01,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:01,751 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.010*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:39:01,752 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.022*\"point\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:39:01,754 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.065*\"villag\" + 0.051*\"region\" + 0.044*\"counti\" + 0.042*\"north\" + 0.041*\"east\" + 0.039*\"west\" + 0.037*\"south\" + 0.033*\"provinc\" + 0.029*\"municip\"\n", - "2019-01-16 05:39:01,757 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"cricket\" + 0.020*\"london\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", - "2019-01-16 05:39:01,759 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:39:01,765 : INFO : topic diff=0.004146, rho=0.024731\n", - "2019-01-16 05:39:02,034 : INFO : PROGRESS: pass 0, at document #3272000/4922894\n", - "2019-01-16 05:39:04,032 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:04,588 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.007*\"order\"\n", - "2019-01-16 05:39:04,590 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:39:04,592 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:39:04,593 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:39:04,594 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.030*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:39:04,600 : INFO : topic diff=0.003808, rho=0.024723\n", - "2019-01-16 05:39:04,861 : INFO : PROGRESS: pass 0, at document #3274000/4922894\n", - "2019-01-16 05:39:06,854 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:07,411 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:39:07,413 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.022*\"point\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:39:07,415 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:39:07,417 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"member\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:39:07,418 : INFO : topic #36 (0.020): 0.053*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:39:07,424 : INFO : topic diff=0.003654, rho=0.024716\n", - "2019-01-16 05:39:07,686 : INFO : PROGRESS: pass 0, at document #3276000/4922894\n", - "2019-01-16 05:39:10,014 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:10,570 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"church\"\n", - "2019-01-16 05:39:10,571 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.027*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 05:39:10,573 : INFO : topic #3 (0.020): 0.030*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 05:39:10,574 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:39:10,575 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.068*\"august\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.065*\"januari\" + 0.064*\"april\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:39:10,581 : INFO : topic diff=0.003340, rho=0.024708\n", - "2019-01-16 05:39:10,859 : INFO : PROGRESS: pass 0, at document #3278000/4922894\n", - "2019-01-16 05:39:12,924 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:13,480 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.017*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:39:13,482 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"event\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:39:13,483 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:39:13,484 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 05:39:13,485 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:39:13,491 : INFO : topic diff=0.004444, rho=0.024701\n", - "2019-01-16 05:39:18,225 : INFO : -11.768 per-word bound, 3487.4 perplexity estimate based on a held-out corpus of 2000 documents with 561574 words\n", - "2019-01-16 05:39:18,226 : INFO : PROGRESS: pass 0, at document #3280000/4922894\n", - "2019-01-16 05:39:20,282 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:20,839 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"lake\" + 0.015*\"rout\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:39:20,841 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.068*\"august\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.064*\"april\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:39:20,843 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"car\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:39:20,844 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:39:20,846 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 05:39:20,852 : INFO : topic diff=0.004002, rho=0.024693\n", - "2019-01-16 05:39:21,117 : INFO : PROGRESS: pass 0, at document #3282000/4922894\n", - "2019-01-16 05:39:23,115 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:23,672 : INFO : topic #25 (0.020): 0.049*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.016*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:39:23,673 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.020*\"titl\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:39:23,675 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.054*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:39:23,676 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.030*\"text\" + 0.029*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.023*\"black\" + 0.013*\"cape\" + 0.011*\"storm\"\n", - "2019-01-16 05:39:23,679 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:39:23,685 : INFO : topic diff=0.003653, rho=0.024686\n", - "2019-01-16 05:39:23,963 : INFO : PROGRESS: pass 0, at document #3284000/4922894\n", - "2019-01-16 05:39:25,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:26,530 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"member\"\n", - "2019-01-16 05:39:26,532 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"cell\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 05:39:26,533 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"grade\"\n", - "2019-01-16 05:39:26,535 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:39:26,536 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:39:26,543 : INFO : topic diff=0.003982, rho=0.024678\n", - "2019-01-16 05:39:26,811 : INFO : PROGRESS: pass 0, at document #3286000/4922894\n", - "2019-01-16 05:39:28,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:29,362 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", - "2019-01-16 05:39:29,364 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"cell\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"studi\" + 0.008*\"treatment\"\n", - "2019-01-16 05:39:29,365 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.016*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:39:29,367 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"grand\"\n", - "2019-01-16 05:39:29,368 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:39:29,374 : INFO : topic diff=0.004554, rho=0.024671\n", - "2019-01-16 05:39:29,643 : INFO : PROGRESS: pass 0, at document #3288000/4922894\n", - "2019-01-16 05:39:31,659 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:32,217 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"car\" + 0.008*\"vehicl\" + 0.007*\"us\"\n", - "2019-01-16 05:39:32,219 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"cell\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"patient\" + 0.008*\"ret\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:39:32,220 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:39:32,222 : INFO : topic #35 (0.020): 0.035*\"kong\" + 0.030*\"hong\" + 0.028*\"lee\" + 0.022*\"singapor\" + 0.020*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"vietnam\"\n", - "2019-01-16 05:39:32,224 : INFO : topic #25 (0.020): 0.050*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.016*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:39:32,230 : INFO : topic diff=0.003532, rho=0.024663\n", - "2019-01-16 05:39:32,484 : INFO : PROGRESS: pass 0, at document #3290000/4922894\n", - "2019-01-16 05:39:34,501 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:35,059 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:39:35,061 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.015*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:39:35,062 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 05:39:35,063 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:39:35,064 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:39:35,070 : INFO : topic diff=0.004048, rho=0.024656\n", - "2019-01-16 05:39:35,331 : INFO : PROGRESS: pass 0, at document #3292000/4922894\n", - "2019-01-16 05:39:37,363 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:37,923 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:39:37,924 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:39:37,925 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:39:37,927 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.037*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\"\n", - "2019-01-16 05:39:37,928 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.044*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:39:37,934 : INFO : topic diff=0.003406, rho=0.024648\n", - "2019-01-16 05:39:38,234 : INFO : PROGRESS: pass 0, at document #3294000/4922894\n", - "2019-01-16 05:39:40,321 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:40,882 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.021*\"counti\" + 0.020*\"peopl\"\n", - "2019-01-16 05:39:40,883 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:39:40,886 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:39:40,887 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.030*\"text\" + 0.029*\"south\" + 0.026*\"till\" + 0.024*\"color\" + 0.022*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", - "2019-01-16 05:39:40,889 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.030*\"hong\" + 0.027*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.013*\"vietnam\"\n", - "2019-01-16 05:39:40,894 : INFO : topic diff=0.004304, rho=0.024641\n", - "2019-01-16 05:39:41,157 : INFO : PROGRESS: pass 0, at document #3296000/4922894\n", - "2019-01-16 05:39:43,157 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:43,715 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.058*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"ye\" + 0.015*\"korea\"\n", - "2019-01-16 05:39:43,717 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"site\" + 0.012*\"street\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"construct\"\n", - "2019-01-16 05:39:43,718 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:39:43,720 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"time\" + 0.009*\"grand\"\n", - "2019-01-16 05:39:43,722 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.011*\"patient\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:39:43,727 : INFO : topic diff=0.003676, rho=0.024633\n", - "2019-01-16 05:39:43,991 : INFO : PROGRESS: pass 0, at document #3298000/4922894\n", - "2019-01-16 05:39:45,984 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:46,543 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:39:46,544 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"grade\" + 0.009*\"teacher\"\n", - "2019-01-16 05:39:46,546 : INFO : topic #29 (0.020): 0.037*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:39:46,547 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"player\" + 0.007*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:39:46,548 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.010*\"swedish\" + 0.010*\"die\"\n", - "2019-01-16 05:39:46,554 : INFO : topic diff=0.003653, rho=0.024626\n", - "2019-01-16 05:39:51,321 : INFO : -11.845 per-word bound, 3680.0 perplexity estimate based on a held-out corpus of 2000 documents with 546533 words\n", - "2019-01-16 05:39:51,322 : INFO : PROGRESS: pass 0, at document #3300000/4922894\n", - "2019-01-16 05:39:53,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:39:53,921 : INFO : topic #32 (0.020): 0.028*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.008*\"tree\" + 0.007*\"red\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 05:39:53,922 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"car\" + 0.008*\"vehicl\" + 0.007*\"us\"\n", - "2019-01-16 05:39:53,924 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"grand\"\n", - "2019-01-16 05:39:53,925 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:39:53,927 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:39:53,933 : INFO : topic diff=0.003712, rho=0.024618\n", - "2019-01-16 05:39:54,203 : INFO : PROGRESS: pass 0, at document #3302000/4922894\n", - "2019-01-16 05:39:56,198 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:56,754 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:39:56,756 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.034*\"citi\" + 0.032*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"household\" + 0.021*\"commun\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:39:56,758 : INFO : topic #29 (0.020): 0.037*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:39:56,759 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:39:56,761 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 05:39:56,767 : INFO : topic diff=0.003388, rho=0.024611\n", - "2019-01-16 05:39:57,030 : INFO : PROGRESS: pass 0, at document #3304000/4922894\n", - "2019-01-16 05:39:59,018 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:39:59,575 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:39:59,576 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:39:59,577 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 05:39:59,579 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:39:59,580 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"grade\" + 0.009*\"teacher\"\n", - "2019-01-16 05:39:59,586 : INFO : topic diff=0.003252, rho=0.024603\n", - "2019-01-16 05:39:59,844 : INFO : PROGRESS: pass 0, at document #3306000/4922894\n", - "2019-01-16 05:40:01,863 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:02,422 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:40:02,423 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:40:02,426 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:40:02,427 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"group\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\"\n", - "2019-01-16 05:40:02,430 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:40:02,436 : INFO : topic diff=0.003241, rho=0.024596\n", - "2019-01-16 05:40:02,700 : INFO : PROGRESS: pass 0, at document #3308000/4922894\n", - "2019-01-16 05:40:04,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:05,262 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:40:05,263 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:40:05,265 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.071*\"canada\" + 0.059*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"ye\" + 0.016*\"korean\"\n", - "2019-01-16 05:40:05,266 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"car\" + 0.007*\"us\"\n", - "2019-01-16 05:40:05,268 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:40:05,273 : INFO : topic diff=0.003289, rho=0.024589\n", - "2019-01-16 05:40:05,534 : INFO : PROGRESS: pass 0, at document #3310000/4922894\n", - "2019-01-16 05:40:07,519 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:08,076 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.023*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:40:08,077 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:40:08,078 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:40:08,080 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:40:08,081 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\" + 0.011*\"khan\"\n", - "2019-01-16 05:40:08,086 : INFO : topic diff=0.003844, rho=0.024581\n", - "2019-01-16 05:40:08,342 : INFO : PROGRESS: pass 0, at document #3312000/4922894\n", - "2019-01-16 05:40:10,329 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:10,887 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:40:10,889 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:40:10,890 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:40:10,892 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:40:10,893 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 05:40:10,900 : INFO : topic diff=0.004657, rho=0.024574\n", - "2019-01-16 05:40:11,159 : INFO : PROGRESS: pass 0, at document #3314000/4922894\n", - "2019-01-16 05:40:13,114 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:13,669 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:40:13,671 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 05:40:13,672 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:40:13,674 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.011*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:40:13,675 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.014*\"pakistan\" + 0.013*\"iran\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\" + 0.010*\"khan\"\n", - "2019-01-16 05:40:13,681 : INFO : topic diff=0.004647, rho=0.024566\n", - "2019-01-16 05:40:13,931 : INFO : PROGRESS: pass 0, at document #3316000/4922894\n", - "2019-01-16 05:40:15,868 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:16,425 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"titl\" + 0.017*\"wrestl\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.011*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:40:16,426 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:40:16,428 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.006*\"union\" + 0.006*\"unit\"\n", - "2019-01-16 05:40:16,429 : INFO : topic #46 (0.020): 0.141*\"class\" + 0.060*\"wikit\" + 0.055*\"align\" + 0.047*\"style\" + 0.047*\"left\" + 0.047*\"center\" + 0.033*\"philippin\" + 0.032*\"right\" + 0.026*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:40:16,430 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:40:16,436 : INFO : topic diff=0.003597, rho=0.024559\n", - "2019-01-16 05:40:16,705 : INFO : PROGRESS: pass 0, at document #3318000/4922894\n", - "2019-01-16 05:40:18,737 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:19,301 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 05:40:19,303 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", - "2019-01-16 05:40:19,305 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\" + 0.010*\"khan\"\n", - "2019-01-16 05:40:19,308 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:40:19,309 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"order\"\n", - "2019-01-16 05:40:19,315 : INFO : topic diff=0.003147, rho=0.024551\n", - "2019-01-16 05:40:23,936 : INFO : -11.542 per-word bound, 2982.2 perplexity estimate based on a held-out corpus of 2000 documents with 544637 words\n", - "2019-01-16 05:40:23,937 : INFO : PROGRESS: pass 0, at document #3320000/4922894\n", - "2019-01-16 05:40:25,921 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:26,483 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"member\"\n", - "2019-01-16 05:40:26,484 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"medicin\"\n", - "2019-01-16 05:40:26,486 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.006*\"union\" + 0.006*\"unit\"\n", - "2019-01-16 05:40:26,488 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 05:40:26,489 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.011*\"daughter\"\n", - "2019-01-16 05:40:26,496 : INFO : topic diff=0.003388, rho=0.024544\n", - "2019-01-16 05:40:26,764 : INFO : PROGRESS: pass 0, at document #3322000/4922894\n", - "2019-01-16 05:40:28,812 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:29,370 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"grade\"\n", - "2019-01-16 05:40:29,371 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:40:29,373 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:40:29,374 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:40:29,376 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 05:40:29,382 : INFO : topic diff=0.003868, rho=0.024537\n", - "2019-01-16 05:40:29,640 : INFO : PROGRESS: pass 0, at document #3324000/4922894\n", - "2019-01-16 05:40:31,695 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:32,257 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"construct\" + 0.009*\"church\"\n", - "2019-01-16 05:40:32,259 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:40:32,261 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.006*\"group\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:40:32,262 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:40:32,264 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:40:32,270 : INFO : topic diff=0.003250, rho=0.024529\n", - "2019-01-16 05:40:32,534 : INFO : PROGRESS: pass 0, at document #3326000/4922894\n", - "2019-01-16 05:40:34,510 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:35,067 : INFO : topic #46 (0.020): 0.140*\"class\" + 0.064*\"align\" + 0.059*\"wikit\" + 0.057*\"left\" + 0.047*\"style\" + 0.046*\"center\" + 0.032*\"philippin\" + 0.031*\"right\" + 0.026*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:40:35,069 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:40:35,071 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.006*\"group\" + 0.006*\"unit\"\n", - "2019-01-16 05:40:35,072 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:40:35,073 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.026*\"till\" + 0.024*\"color\" + 0.023*\"black\" + 0.013*\"cape\" + 0.013*\"storm\"\n", - "2019-01-16 05:40:35,079 : INFO : topic diff=0.003447, rho=0.024522\n", - "2019-01-16 05:40:35,340 : INFO : PROGRESS: pass 0, at document #3328000/4922894\n", - "2019-01-16 05:40:37,372 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:37,930 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:40:37,931 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.070*\"august\" + 0.069*\"juli\" + 0.065*\"april\" + 0.064*\"june\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.060*\"decemb\"\n", - "2019-01-16 05:40:37,934 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:40:37,935 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.014*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", - "2019-01-16 05:40:37,936 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.033*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 05:40:37,943 : INFO : topic diff=0.003736, rho=0.024515\n", - "2019-01-16 05:40:38,207 : INFO : PROGRESS: pass 0, at document #3330000/4922894\n", - "2019-01-16 05:40:40,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:40,797 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 05:40:40,799 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:40:40,800 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.011*\"boat\" + 0.011*\"port\" + 0.011*\"island\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"fleet\"\n", - "2019-01-16 05:40:40,802 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.069*\"august\" + 0.068*\"juli\" + 0.065*\"april\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:40:40,803 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.036*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"commun\" + 0.022*\"household\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:40:40,809 : INFO : topic diff=0.004056, rho=0.024507\n", - "2019-01-16 05:40:41,073 : INFO : PROGRESS: pass 0, at document #3332000/4922894\n", - "2019-01-16 05:40:43,106 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:43,667 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:40:43,668 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 05:40:43,670 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.015*\"malaysia\" + 0.013*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", - "2019-01-16 05:40:43,671 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"commun\" + 0.022*\"household\" + 0.020*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 05:40:43,673 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:40:43,678 : INFO : topic diff=0.003936, rho=0.024500\n", - "2019-01-16 05:40:43,938 : INFO : PROGRESS: pass 0, at document #3334000/4922894\n", - "2019-01-16 05:40:45,988 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:46,553 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.066*\"villag\" + 0.052*\"region\" + 0.043*\"counti\" + 0.041*\"north\" + 0.040*\"east\" + 0.038*\"west\" + 0.036*\"south\" + 0.031*\"provinc\" + 0.028*\"municip\"\n", - "2019-01-16 05:40:46,554 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.066*\"align\" + 0.059*\"wikit\" + 0.056*\"left\" + 0.047*\"style\" + 0.045*\"center\" + 0.034*\"right\" + 0.032*\"philippin\" + 0.026*\"text\" + 0.025*\"list\"\n", - "2019-01-16 05:40:46,555 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", - "2019-01-16 05:40:46,557 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.021*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", - "2019-01-16 05:40:46,558 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.030*\"hong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.013*\"asia\" + 0.013*\"indonesia\" + 0.013*\"chines\"\n", - "2019-01-16 05:40:46,564 : INFO : topic diff=0.003914, rho=0.024492\n", - "2019-01-16 05:40:46,825 : INFO : PROGRESS: pass 0, at document #3336000/4922894\n", - "2019-01-16 05:40:48,845 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:49,403 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\" + 0.010*\"khan\"\n", - "2019-01-16 05:40:49,405 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.005*\"like\"\n", - "2019-01-16 05:40:49,407 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:40:49,408 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"church\"\n", - "2019-01-16 05:40:49,409 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.017*\"design\" + 0.017*\"exhibit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:40:49,415 : INFO : topic diff=0.003139, rho=0.024485\n", - "2019-01-16 05:40:49,673 : INFO : PROGRESS: pass 0, at document #3338000/4922894\n", - "2019-01-16 05:40:51,634 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:52,192 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:40:52,194 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.058*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:40:52,195 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:40:52,196 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:40:52,198 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.007*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:40:52,205 : INFO : topic diff=0.003624, rho=0.024478\n", - "2019-01-16 05:40:56,791 : INFO : -11.552 per-word bound, 3002.7 perplexity estimate based on a held-out corpus of 2000 documents with 548076 words\n", - "2019-01-16 05:40:56,791 : INFO : PROGRESS: pass 0, at document #3340000/4922894\n", - "2019-01-16 05:40:58,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:40:59,392 : INFO : topic #19 (0.020): 0.022*\"new\" + 0.022*\"radio\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", - "2019-01-16 05:40:59,394 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"group\" + 0.008*\"theori\" + 0.007*\"point\"\n", - "2019-01-16 05:40:59,395 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:40:59,397 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.017*\"design\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:40:59,398 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:40:59,404 : INFO : topic diff=0.003474, rho=0.024470\n", - "2019-01-16 05:40:59,667 : INFO : PROGRESS: pass 0, at document #3342000/4922894\n", - "2019-01-16 05:41:01,744 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:02,302 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:41:02,303 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:41:02,305 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:41:02,308 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.012*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:41:02,309 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.030*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.016*\"malaysia\" + 0.014*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", - "2019-01-16 05:41:02,316 : INFO : topic diff=0.003130, rho=0.024463\n", - "2019-01-16 05:41:02,623 : INFO : PROGRESS: pass 0, at document #3344000/4922894\n", - "2019-01-16 05:41:04,605 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:05,167 : INFO : topic #29 (0.020): 0.040*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.029*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:41:05,168 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:41:05,171 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"march\" + 0.072*\"octob\" + 0.070*\"august\" + 0.069*\"juli\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"april\" + 0.064*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:41:05,172 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:41:05,174 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:41:05,180 : INFO : topic diff=0.003619, rho=0.024456\n", - "2019-01-16 05:41:05,456 : INFO : PROGRESS: pass 0, at document #3346000/4922894\n", - "2019-01-16 05:41:07,518 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:08,076 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 05:41:08,077 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"ye\" + 0.015*\"korean\" + 0.015*\"korea\"\n", - "2019-01-16 05:41:08,079 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"car\" + 0.007*\"us\"\n", - "2019-01-16 05:41:08,080 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.021*\"men\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 05:41:08,082 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.014*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 05:41:08,087 : INFO : topic diff=0.003803, rho=0.024448\n", - "2019-01-16 05:41:08,342 : INFO : PROGRESS: pass 0, at document #3348000/4922894\n", - "2019-01-16 05:41:10,622 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:11,181 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:41:11,183 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 05:41:11,184 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:41:11,186 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:41:11,188 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:41:11,194 : INFO : topic diff=0.003464, rho=0.024441\n", - "2019-01-16 05:41:11,471 : INFO : PROGRESS: pass 0, at document #3350000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:41:13,442 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:13,999 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:41:14,000 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:41:14,002 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 05:41:14,003 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.071*\"octob\" + 0.069*\"august\" + 0.068*\"juli\" + 0.066*\"januari\" + 0.065*\"april\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:41:14,005 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"group\" + 0.008*\"theori\" + 0.007*\"point\"\n", - "2019-01-16 05:41:14,011 : INFO : topic diff=0.003761, rho=0.024434\n", - "2019-01-16 05:41:14,274 : INFO : PROGRESS: pass 0, at document #3352000/4922894\n", - "2019-01-16 05:41:16,281 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:16,837 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.069*\"august\" + 0.069*\"juli\" + 0.066*\"januari\" + 0.066*\"april\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:41:16,839 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"jewish\" + 0.018*\"soviet\" + 0.015*\"polish\" + 0.015*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 05:41:16,840 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\"\n", - "2019-01-16 05:41:16,842 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:41:16,843 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.026*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", - "2019-01-16 05:41:16,850 : INFO : topic diff=0.004088, rho=0.024427\n", - "2019-01-16 05:41:17,126 : INFO : PROGRESS: pass 0, at document #3354000/4922894\n", - "2019-01-16 05:41:19,165 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:19,722 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.014*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", - "2019-01-16 05:41:19,723 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"london\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"west\"\n", - "2019-01-16 05:41:19,725 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 05:41:19,726 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:41:19,728 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:41:19,734 : INFO : topic diff=0.004255, rho=0.024419\n", - "2019-01-16 05:41:19,988 : INFO : PROGRESS: pass 0, at document #3356000/4922894\n", - "2019-01-16 05:41:21,936 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:22,493 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.018*\"railwai\" + 0.015*\"lake\" + 0.015*\"rout\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:41:22,495 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", - "2019-01-16 05:41:22,496 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.013*\"channel\" + 0.011*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", - "2019-01-16 05:41:22,498 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:41:22,499 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.006*\"mean\" + 0.005*\"like\"\n", - "2019-01-16 05:41:22,505 : INFO : topic diff=0.003501, rho=0.024412\n", - "2019-01-16 05:41:22,767 : INFO : PROGRESS: pass 0, at document #3358000/4922894\n", - "2019-01-16 05:41:24,807 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:25,364 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", - "2019-01-16 05:41:25,365 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"time\"\n", - "2019-01-16 05:41:25,367 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.016*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"network\" + 0.011*\"host\" + 0.011*\"program\"\n", - "2019-01-16 05:41:25,368 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:41:25,370 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.048*\"new\" + 0.043*\"china\" + 0.033*\"zealand\" + 0.032*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:41:25,375 : INFO : topic diff=0.003655, rho=0.024405\n", - "2019-01-16 05:41:30,037 : INFO : -11.798 per-word bound, 3560.4 perplexity estimate based on a held-out corpus of 2000 documents with 583751 words\n", - "2019-01-16 05:41:30,038 : INFO : PROGRESS: pass 0, at document #3360000/4922894\n", - "2019-01-16 05:41:32,067 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:32,625 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"group\" + 0.007*\"point\" + 0.007*\"theori\"\n", - "2019-01-16 05:41:32,626 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:41:32,628 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.025*\"unit\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:41:32,629 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:41:32,630 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.026*\"lee\" + 0.021*\"singapor\" + 0.017*\"kim\" + 0.016*\"malaysia\" + 0.015*\"thailand\" + 0.015*\"indonesia\" + 0.013*\"asia\" + 0.013*\"chines\"\n", - "2019-01-16 05:41:32,636 : INFO : topic diff=0.004241, rho=0.024398\n", - "2019-01-16 05:41:32,898 : INFO : PROGRESS: pass 0, at document #3362000/4922894\n", - "2019-01-16 05:41:34,892 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:35,448 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.018*\"wrestl\" + 0.017*\"contest\" + 0.016*\"championship\" + 0.015*\"fight\" + 0.015*\"team\" + 0.011*\"world\" + 0.011*\"defeat\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:41:35,450 : INFO : topic #29 (0.020): 0.039*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:41:35,452 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"us\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:41:35,453 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.019*\"railwai\" + 0.015*\"lake\" + 0.015*\"rout\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:41:35,454 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.019*\"london\" + 0.018*\"citi\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 05:41:35,460 : INFO : topic diff=0.003368, rho=0.024390\n", - "2019-01-16 05:41:35,729 : INFO : PROGRESS: pass 0, at document #3364000/4922894\n", - "2019-01-16 05:41:37,714 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:38,271 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 05:41:38,273 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.006*\"fish\"\n", - "2019-01-16 05:41:38,274 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.018*\"wrestl\" + 0.017*\"contest\" + 0.016*\"championship\" + 0.015*\"fight\" + 0.015*\"team\" + 0.011*\"defeat\" + 0.011*\"world\"\n", - "2019-01-16 05:41:38,275 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 05:41:38,277 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.019*\"railwai\" + 0.015*\"lake\" + 0.015*\"rout\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 05:41:38,283 : INFO : topic diff=0.003428, rho=0.024383\n", - "2019-01-16 05:41:38,563 : INFO : PROGRESS: pass 0, at document #3366000/4922894\n", - "2019-01-16 05:41:40,624 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:41,181 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.016*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:41:41,182 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:41:41,185 : INFO : topic #43 (0.020): 0.027*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:41:41,186 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"power\" + 0.012*\"model\" + 0.011*\"product\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.008*\"car\" + 0.008*\"electr\" + 0.007*\"us\"\n", - "2019-01-16 05:41:41,188 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:41:41,194 : INFO : topic diff=0.005163, rho=0.024376\n", - "2019-01-16 05:41:41,455 : INFO : PROGRESS: pass 0, at document #3368000/4922894\n", - "2019-01-16 05:41:43,441 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:43,997 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:41:43,999 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.036*\"germani\" + 0.023*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.012*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:41:44,000 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.011*\"daughter\"\n", - "2019-01-16 05:41:44,002 : INFO : topic #29 (0.020): 0.039*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:41:44,004 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"march\" + 0.072*\"octob\" + 0.070*\"juli\" + 0.069*\"august\" + 0.067*\"januari\" + 0.066*\"april\" + 0.066*\"novemb\" + 0.065*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:41:44,011 : INFO : topic diff=0.003450, rho=0.024369\n", - "2019-01-16 05:41:44,325 : INFO : PROGRESS: pass 0, at document #3370000/4922894\n", - "2019-01-16 05:41:46,375 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:46,933 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.021*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:41:46,935 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.007*\"legal\"\n", - "2019-01-16 05:41:46,936 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:41:46,938 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"us\"\n", - "2019-01-16 05:41:46,939 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"group\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\"\n", - "2019-01-16 05:41:46,945 : INFO : topic diff=0.003787, rho=0.024361\n", - "2019-01-16 05:41:47,218 : INFO : PROGRESS: pass 0, at document #3372000/4922894\n", - "2019-01-16 05:41:49,302 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:49,858 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.071*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.022*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.015*\"montreal\"\n", - "2019-01-16 05:41:49,859 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:41:49,860 : INFO : topic #25 (0.020): 0.048*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"doubl\"\n", - "2019-01-16 05:41:49,862 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.015*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:41:49,863 : INFO : topic #31 (0.020): 0.073*\"australia\" + 0.057*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:41:49,869 : INFO : topic diff=0.004039, rho=0.024354\n", - "2019-01-16 05:41:50,134 : INFO : PROGRESS: pass 0, at document #3374000/4922894\n", - "2019-01-16 05:41:52,121 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:52,678 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:41:52,679 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:41:52,681 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"match\" + 0.018*\"titl\" + 0.018*\"wrestl\" + 0.016*\"contest\" + 0.016*\"championship\" + 0.015*\"fight\" + 0.015*\"team\" + 0.011*\"defeat\" + 0.011*\"world\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:41:52,682 : INFO : topic #31 (0.020): 0.073*\"australia\" + 0.058*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:41:52,683 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:41:52,689 : INFO : topic diff=0.003611, rho=0.024347\n", - "2019-01-16 05:41:52,955 : INFO : PROGRESS: pass 0, at document #3376000/4922894\n", - "2019-01-16 05:41:55,310 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:55,869 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:41:55,871 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:41:55,872 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:41:55,874 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:41:55,875 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.010*\"direct\"\n", - "2019-01-16 05:41:55,881 : INFO : topic diff=0.003471, rho=0.024340\n", - "2019-01-16 05:41:56,155 : INFO : PROGRESS: pass 0, at document #3378000/4922894\n", - "2019-01-16 05:41:58,184 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:41:58,743 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", - "2019-01-16 05:41:58,744 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:41:58,745 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.008*\"vehicl\" + 0.007*\"electr\" + 0.007*\"car\" + 0.007*\"us\"\n", - "2019-01-16 05:41:58,747 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:41:58,748 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"township\" + 0.022*\"household\" + 0.022*\"commun\" + 0.021*\"counti\"\n", - "2019-01-16 05:41:58,754 : INFO : topic diff=0.003483, rho=0.024332\n", - "2019-01-16 05:42:03,391 : INFO : -11.606 per-word bound, 3116.3 perplexity estimate based on a held-out corpus of 2000 documents with 560516 words\n", - "2019-01-16 05:42:03,392 : INFO : PROGRESS: pass 0, at document #3380000/4922894\n", - "2019-01-16 05:42:05,424 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:05,986 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.039*\"africa\" + 0.036*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.025*\"black\" + 0.024*\"color\" + 0.012*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:42:05,987 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.063*\"align\" + 0.060*\"wikit\" + 0.053*\"left\" + 0.051*\"style\" + 0.045*\"center\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.028*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:42:05,988 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.070*\"villag\" + 0.052*\"region\" + 0.044*\"counti\" + 0.040*\"north\" + 0.040*\"east\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.027*\"municip\"\n", - "2019-01-16 05:42:05,989 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.035*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.010*\"khan\"\n", - "2019-01-16 05:42:05,992 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"exhibit\" + 0.017*\"imag\" + 0.016*\"design\"\n", - "2019-01-16 05:42:05,999 : INFO : topic diff=0.003449, rho=0.024325\n", - "2019-01-16 05:42:06,257 : INFO : PROGRESS: pass 0, at document #3382000/4922894\n", - "2019-01-16 05:42:08,277 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:08,835 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"titl\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.016*\"contest\" + 0.015*\"championship\" + 0.015*\"fight\" + 0.014*\"team\" + 0.012*\"event\" + 0.011*\"world\"\n", - "2019-01-16 05:42:08,837 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"township\" + 0.022*\"household\" + 0.022*\"commun\" + 0.022*\"counti\"\n", - "2019-01-16 05:42:08,839 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.070*\"villag\" + 0.052*\"region\" + 0.045*\"counti\" + 0.040*\"north\" + 0.040*\"east\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.027*\"municip\"\n", - "2019-01-16 05:42:08,840 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.024*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:42:08,841 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"coast\" + 0.008*\"fleet\"\n", - "2019-01-16 05:42:08,847 : INFO : topic diff=0.003687, rho=0.024318\n", - "2019-01-16 05:42:09,099 : INFO : PROGRESS: pass 0, at document #3384000/4922894\n", - "2019-01-16 05:42:11,049 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:11,605 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:42:11,606 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.010*\"khan\"\n", - "2019-01-16 05:42:11,608 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"citi\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.013*\"wale\"\n", - "2019-01-16 05:42:11,609 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.027*\"olymp\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"men\" + 0.021*\"japan\" + 0.018*\"athlet\" + 0.018*\"time\"\n", - "2019-01-16 05:42:11,610 : INFO : topic #29 (0.020): 0.039*\"club\" + 0.037*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 05:42:11,616 : INFO : topic diff=0.003882, rho=0.024311\n", - "2019-01-16 05:42:11,885 : INFO : PROGRESS: pass 0, at document #3386000/4922894\n", - "2019-01-16 05:42:13,916 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:14,474 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"construct\"\n", - "2019-01-16 05:42:14,476 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", - "2019-01-16 05:42:14,477 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:42:14,479 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.039*\"africa\" + 0.036*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.026*\"till\" + 0.025*\"black\" + 0.025*\"color\" + 0.012*\"storm\" + 0.012*\"cape\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:42:14,480 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.063*\"align\" + 0.060*\"wikit\" + 0.051*\"left\" + 0.051*\"style\" + 0.045*\"center\" + 0.035*\"right\" + 0.032*\"philippin\" + 0.027*\"text\" + 0.025*\"border\"\n", - "2019-01-16 05:42:14,486 : INFO : topic diff=0.003665, rho=0.024304\n", - "2019-01-16 05:42:14,749 : INFO : PROGRESS: pass 0, at document #3388000/4922894\n", - "2019-01-16 05:42:16,799 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:17,362 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.032*\"hong\" + 0.026*\"lee\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.014*\"thailand\" + 0.014*\"min\" + 0.014*\"indonesia\" + 0.013*\"chines\"\n", - "2019-01-16 05:42:17,363 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.065*\"align\" + 0.059*\"wikit\" + 0.052*\"left\" + 0.051*\"style\" + 0.044*\"center\" + 0.036*\"right\" + 0.032*\"philippin\" + 0.027*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:42:17,365 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.010*\"sri\"\n", - "2019-01-16 05:42:17,367 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:42:17,368 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:42:17,374 : INFO : topic diff=0.004348, rho=0.024296\n", - "2019-01-16 05:42:17,643 : INFO : PROGRESS: pass 0, at document #3390000/4922894\n", - "2019-01-16 05:42:19,682 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:20,243 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:42:20,245 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"exhibit\" + 0.017*\"imag\" + 0.017*\"design\"\n", - "2019-01-16 05:42:20,247 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"citi\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.014*\"scottish\" + 0.013*\"wale\"\n", - "2019-01-16 05:42:20,248 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.019*\"match\" + 0.018*\"titl\" + 0.017*\"wrestl\" + 0.016*\"contest\" + 0.016*\"championship\" + 0.016*\"fight\" + 0.014*\"team\" + 0.012*\"event\" + 0.012*\"world\"\n", - "2019-01-16 05:42:20,249 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.022*\"toronto\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.015*\"british\" + 0.015*\"montreal\" + 0.015*\"korean\"\n", - "2019-01-16 05:42:20,255 : INFO : topic diff=0.003487, rho=0.024289\n", - "2019-01-16 05:42:20,532 : INFO : PROGRESS: pass 0, at document #3392000/4922894\n", - "2019-01-16 05:42:22,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:23,092 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.035*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"township\" + 0.022*\"commun\" + 0.022*\"household\" + 0.021*\"counti\"\n", - "2019-01-16 05:42:23,094 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:42:23,096 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\"\n", - "2019-01-16 05:42:23,098 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", - "2019-01-16 05:42:23,099 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.006*\"group\"\n", - "2019-01-16 05:42:23,106 : INFO : topic diff=0.003375, rho=0.024282\n", - "2019-01-16 05:42:23,390 : INFO : PROGRESS: pass 0, at document #3394000/4922894\n", - "2019-01-16 05:42:25,452 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:26,009 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 05:42:26,010 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.043*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", - "2019-01-16 05:42:26,012 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:42:26,014 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:42:26,015 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:42:26,021 : INFO : topic diff=0.003563, rho=0.024275\n", - "2019-01-16 05:42:26,308 : INFO : PROGRESS: pass 0, at document #3396000/4922894\n", - "2019-01-16 05:42:28,288 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:28,847 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.073*\"octob\" + 0.069*\"juli\" + 0.068*\"august\" + 0.067*\"januari\" + 0.066*\"april\" + 0.066*\"novemb\" + 0.064*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:42:28,848 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:42:28,850 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:42:28,852 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\"\n", - "2019-01-16 05:42:28,853 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:42:28,861 : INFO : topic diff=0.003922, rho=0.024268\n", - "2019-01-16 05:42:29,139 : INFO : PROGRESS: pass 0, at document #3398000/4922894\n", - "2019-01-16 05:42:31,169 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:31,726 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.014*\"edit\" + 0.014*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", - "2019-01-16 05:42:31,727 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:42:31,729 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:42:31,730 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.042*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:42:31,731 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:42:31,737 : INFO : topic diff=0.003889, rho=0.024261\n", - "2019-01-16 05:42:36,379 : INFO : -11.828 per-word bound, 3635.0 perplexity estimate based on a held-out corpus of 2000 documents with 570126 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:42:36,380 : INFO : PROGRESS: pass 0, at document #3400000/4922894\n", - "2019-01-16 05:42:38,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:38,975 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.069*\"villag\" + 0.051*\"region\" + 0.044*\"counti\" + 0.040*\"east\" + 0.040*\"north\" + 0.037*\"west\" + 0.034*\"south\" + 0.032*\"provinc\" + 0.026*\"municip\"\n", - "2019-01-16 05:42:38,976 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"citi\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"west\"\n", - "2019-01-16 05:42:38,978 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 05:42:38,979 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"construct\"\n", - "2019-01-16 05:42:38,981 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.011*\"model\" + 0.010*\"design\" + 0.008*\"produc\" + 0.007*\"vehicl\" + 0.007*\"type\" + 0.007*\"us\" + 0.007*\"electr\"\n", - "2019-01-16 05:42:38,987 : INFO : topic diff=0.003543, rho=0.024254\n", - "2019-01-16 05:42:39,247 : INFO : PROGRESS: pass 0, at document #3402000/4922894\n", - "2019-01-16 05:42:41,277 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:41,834 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.042*\"univers\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:42:41,835 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:42:41,837 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.071*\"canada\" + 0.058*\"canadian\" + 0.023*\"ontario\" + 0.021*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.014*\"korean\"\n", - "2019-01-16 05:42:41,838 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 05:42:41,840 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", - "2019-01-16 05:42:41,847 : INFO : topic diff=0.003912, rho=0.024246\n", - "2019-01-16 05:42:42,120 : INFO : PROGRESS: pass 0, at document #3404000/4922894\n", - "2019-01-16 05:42:44,127 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:44,685 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.039*\"africa\" + 0.036*\"african\" + 0.028*\"south\" + 0.028*\"text\" + 0.024*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.013*\"cape\"\n", - "2019-01-16 05:42:44,686 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.017*\"kim\" + 0.015*\"malaysia\" + 0.014*\"chines\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\"\n", - "2019-01-16 05:42:44,688 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.011*\"die\" + 0.011*\"und\"\n", - "2019-01-16 05:42:44,689 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:42:44,690 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.068*\"august\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"april\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 05:42:44,696 : INFO : topic diff=0.004093, rho=0.024239\n", - "2019-01-16 05:42:44,959 : INFO : PROGRESS: pass 0, at document #3406000/4922894\n", - "2019-01-16 05:42:46,971 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:47,533 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:42:47,535 : INFO : topic #20 (0.020): 0.030*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"titl\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"fight\" + 0.015*\"team\" + 0.012*\"defeat\" + 0.011*\"world\"\n", - "2019-01-16 05:42:47,536 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", - "2019-01-16 05:42:47,538 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:42:47,539 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"construct\"\n", - "2019-01-16 05:42:47,545 : INFO : topic diff=0.003264, rho=0.024232\n", - "2019-01-16 05:42:47,791 : INFO : PROGRESS: pass 0, at document #3408000/4922894\n", - "2019-01-16 05:42:49,780 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:50,340 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", - "2019-01-16 05:42:50,342 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.070*\"canada\" + 0.058*\"canadian\" + 0.023*\"ontario\" + 0.022*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.014*\"korean\"\n", - "2019-01-16 05:42:50,344 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"develop\" + 0.009*\"us\" + 0.009*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:42:50,345 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.017*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"royal\"\n", - "2019-01-16 05:42:50,346 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:42:50,352 : INFO : topic diff=0.003285, rho=0.024225\n", - "2019-01-16 05:42:50,612 : INFO : PROGRESS: pass 0, at document #3410000/4922894\n", - "2019-01-16 05:42:52,582 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:53,139 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.012*\"scienc\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:42:53,141 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.012*\"base\" + 0.010*\"train\"\n", - "2019-01-16 05:42:53,142 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:42:53,144 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 05:42:53,146 : INFO : topic #25 (0.020): 0.047*\"round\" + 0.046*\"final\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.017*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", - "2019-01-16 05:42:53,152 : INFO : topic diff=0.003548, rho=0.024218\n", - "2019-01-16 05:42:53,408 : INFO : PROGRESS: pass 0, at document #3412000/4922894\n", - "2019-01-16 05:42:55,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:56,004 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:42:56,006 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 05:42:56,008 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:42:56,010 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:42:56,011 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"univers\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:42:56,017 : INFO : topic diff=0.003032, rho=0.024211\n", - "2019-01-16 05:42:56,284 : INFO : PROGRESS: pass 0, at document #3414000/4922894\n", - "2019-01-16 05:42:58,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:42:58,875 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"tree\"\n", - "2019-01-16 05:42:58,876 : INFO : topic #16 (0.020): 0.029*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", - "2019-01-16 05:42:58,878 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\" + 0.007*\"electr\"\n", - "2019-01-16 05:42:58,879 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:42:58,880 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.024*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.013*\"cape\"\n", - "2019-01-16 05:42:58,887 : INFO : topic diff=0.003708, rho=0.024204\n", - "2019-01-16 05:42:59,156 : INFO : PROGRESS: pass 0, at document #3416000/4922894\n", - "2019-01-16 05:43:01,191 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:01,748 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.007*\"legal\"\n", - "2019-01-16 05:43:01,750 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.009*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:43:01,751 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.046*\"counti\" + 0.040*\"east\" + 0.039*\"north\" + 0.037*\"west\" + 0.035*\"south\" + 0.032*\"provinc\" + 0.027*\"municip\"\n", - "2019-01-16 05:43:01,752 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.017*\"exhibit\" + 0.017*\"design\"\n", - "2019-01-16 05:43:01,754 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:43:01,760 : INFO : topic diff=0.003061, rho=0.024197\n", - "2019-01-16 05:43:02,030 : INFO : PROGRESS: pass 0, at document #3418000/4922894\n", - "2019-01-16 05:43:04,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:04,561 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:43:04,562 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:43:04,563 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", - "2019-01-16 05:43:04,565 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:43:04,567 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.010*\"train\"\n", - "2019-01-16 05:43:04,573 : INFO : topic diff=0.003527, rho=0.024190\n", - "2019-01-16 05:43:09,244 : INFO : -11.635 per-word bound, 3181.4 perplexity estimate based on a held-out corpus of 2000 documents with 577071 words\n", - "2019-01-16 05:43:09,245 : INFO : PROGRESS: pass 0, at document #3420000/4922894\n", - "2019-01-16 05:43:11,398 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:11,955 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 05:43:11,956 : INFO : topic #43 (0.020): 0.028*\"san\" + 0.023*\"spanish\" + 0.017*\"del\" + 0.017*\"mexico\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 05:43:11,958 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.006*\"group\"\n", - "2019-01-16 05:43:11,960 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.011*\"model\" + 0.009*\"produc\" + 0.007*\"electr\" + 0.007*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:43:11,961 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:43:11,968 : INFO : topic diff=0.003543, rho=0.024183\n", - "2019-01-16 05:43:12,265 : INFO : PROGRESS: pass 0, at document #3422000/4922894\n", - "2019-01-16 05:43:14,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:14,866 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", - "2019-01-16 05:43:14,867 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.020*\"singapor\" + 0.017*\"kim\" + 0.017*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"chines\" + 0.014*\"thailand\" + 0.013*\"min\"\n", - "2019-01-16 05:43:14,869 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"empir\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:43:14,870 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.011*\"swedish\" + 0.011*\"die\"\n", - "2019-01-16 05:43:14,872 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:43:14,878 : INFO : topic diff=0.004163, rho=0.024175\n", - "2019-01-16 05:43:15,134 : INFO : PROGRESS: pass 0, at document #3424000/4922894\n", - "2019-01-16 05:43:17,158 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:17,719 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:43:17,720 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:43:17,722 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.025*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:43:17,725 : INFO : topic #40 (0.020): 0.049*\"bar\" + 0.039*\"africa\" + 0.037*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.025*\"till\" + 0.024*\"color\" + 0.024*\"black\" + 0.014*\"storm\" + 0.013*\"cape\"\n", - "2019-01-16 05:43:17,726 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.068*\"august\" + 0.068*\"juli\" + 0.068*\"januari\" + 0.065*\"april\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:43:17,733 : INFO : topic diff=0.003697, rho=0.024168\n", - "2019-01-16 05:43:17,991 : INFO : PROGRESS: pass 0, at document #3426000/4922894\n", - "2019-01-16 05:43:20,032 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:20,588 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:43:20,589 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.069*\"align\" + 0.060*\"left\" + 0.058*\"wikit\" + 0.048*\"style\" + 0.043*\"center\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.026*\"text\" + 0.024*\"border\"\n", - "2019-01-16 05:43:20,590 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.014*\"manchest\" + 0.013*\"scottish\" + 0.013*\"wale\"\n", - "2019-01-16 05:43:20,593 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"player\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:43:20,594 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", - "2019-01-16 05:43:20,600 : INFO : topic diff=0.003568, rho=0.024161\n", - "2019-01-16 05:43:20,870 : INFO : PROGRESS: pass 0, at document #3428000/4922894\n", - "2019-01-16 05:43:22,878 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:23,435 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.007*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:43:23,437 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:43:23,438 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.033*\"citi\" + 0.032*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.022*\"commun\" + 0.022*\"household\" + 0.020*\"counti\" + 0.020*\"peopl\"\n", - "2019-01-16 05:43:23,440 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.038*\"africa\" + 0.036*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.025*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.014*\"storm\" + 0.014*\"cape\"\n", - "2019-01-16 05:43:23,442 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.020*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:43:23,447 : INFO : topic diff=0.003487, rho=0.024154\n", - "2019-01-16 05:43:23,724 : INFO : PROGRESS: pass 0, at document #3430000/4922894\n", - "2019-01-16 05:43:25,823 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:26,386 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.021*\"von\" + 0.020*\"dutch\" + 0.019*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", - "2019-01-16 05:43:26,388 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:43:26,389 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 05:43:26,391 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 05:43:26,392 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 05:43:26,398 : INFO : topic diff=0.003218, rho=0.024147\n", - "2019-01-16 05:43:26,659 : INFO : PROGRESS: pass 0, at document #3432000/4922894\n", - "2019-01-16 05:43:28,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:29,227 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:43:29,228 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 05:43:29,231 : INFO : topic #31 (0.020): 0.070*\"australia\" + 0.058*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.036*\"zealand\" + 0.031*\"chines\" + 0.031*\"south\" + 0.021*\"sydnei\" + 0.018*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:43:29,232 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"construct\"\n", - "2019-01-16 05:43:29,235 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:43:29,240 : INFO : topic diff=0.002789, rho=0.024140\n", - "2019-01-16 05:43:29,504 : INFO : PROGRESS: pass 0, at document #3434000/4922894\n", - "2019-01-16 05:43:31,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:32,052 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"end\" + 0.004*\"return\"\n", - "2019-01-16 05:43:32,053 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"pari\" + 0.026*\"italian\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:43:32,055 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"defeat\" + 0.011*\"world\"\n", - "2019-01-16 05:43:32,056 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 05:43:32,057 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.021*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", - "2019-01-16 05:43:32,063 : INFO : topic diff=0.003760, rho=0.024133\n", - "2019-01-16 05:43:32,322 : INFO : PROGRESS: pass 0, at document #3436000/4922894\n", - "2019-01-16 05:43:34,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:34,865 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:43:34,867 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:43:34,868 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:43:34,870 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:43:34,872 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:43:34,877 : INFO : topic diff=0.003046, rho=0.024126\n", - "2019-01-16 05:43:35,143 : INFO : PROGRESS: pass 0, at document #3438000/4922894\n", - "2019-01-16 05:43:37,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:37,721 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.041*\"colleg\" + 0.041*\"univers\" + 0.039*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:43:37,722 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:43:37,724 : INFO : topic #31 (0.020): 0.069*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:43:37,725 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:43:37,726 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:43:37,733 : INFO : topic diff=0.004165, rho=0.024119\n", - "2019-01-16 05:43:42,312 : INFO : -11.859 per-word bound, 3715.0 perplexity estimate based on a held-out corpus of 2000 documents with 530873 words\n", - "2019-01-16 05:43:42,313 : INFO : PROGRESS: pass 0, at document #3440000/4922894\n", - "2019-01-16 05:43:44,347 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:44,910 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"group\" + 0.021*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.014*\"won\"\n", - "2019-01-16 05:43:44,911 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"magazin\"\n", - "2019-01-16 05:43:44,913 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:43:44,914 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.072*\"march\" + 0.072*\"octob\" + 0.068*\"juli\" + 0.068*\"august\" + 0.068*\"januari\" + 0.066*\"april\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 05:43:44,916 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.026*\"unit\" + 0.025*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:43:44,922 : INFO : topic diff=0.003905, rho=0.024112\n", - "2019-01-16 05:43:45,200 : INFO : PROGRESS: pass 0, at document #3442000/4922894\n", - "2019-01-16 05:43:47,226 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:47,783 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"henri\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 05:43:47,784 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 05:43:47,786 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:43:47,787 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:43:47,789 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", - "2019-01-16 05:43:47,797 : INFO : topic diff=0.003573, rho=0.024105\n", - "2019-01-16 05:43:48,065 : INFO : PROGRESS: pass 0, at document #3444000/4922894\n", - "2019-01-16 05:43:50,122 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:50,681 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\" + 0.015*\"british\" + 0.015*\"korean\"\n", - "2019-01-16 05:43:50,683 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.012*\"republ\"\n", - "2019-01-16 05:43:50,684 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:43:50,686 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.010*\"stori\"\n", - "2019-01-16 05:43:50,687 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:43:50,694 : INFO : topic diff=0.003000, rho=0.024098\n", - "2019-01-16 05:43:50,960 : INFO : PROGRESS: pass 0, at document #3446000/4922894\n", - "2019-01-16 05:43:52,955 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:53,512 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:43:53,513 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"republican\" + 0.013*\"repres\" + 0.013*\"council\"\n", - "2019-01-16 05:43:53,515 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:43:53,516 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 05:43:53,518 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", - "2019-01-16 05:43:53,524 : INFO : topic diff=0.003692, rho=0.024091\n", - "2019-01-16 05:43:53,803 : INFO : PROGRESS: pass 0, at document #3448000/4922894\n", - "2019-01-16 05:43:55,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:56,310 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.030*\"perform\" + 0.020*\"compos\" + 0.019*\"theatr\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:43:56,311 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:43:56,313 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.014*\"won\"\n", - "2019-01-16 05:43:56,314 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.031*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:43:56,316 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.025*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.014*\"storm\" + 0.014*\"cape\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:43:56,321 : INFO : topic diff=0.004065, rho=0.024084\n", - "2019-01-16 05:43:56,601 : INFO : PROGRESS: pass 0, at document #3450000/4922894\n", - "2019-01-16 05:43:58,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:43:59,177 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:43:59,178 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.024*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", - "2019-01-16 05:43:59,179 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 05:43:59,181 : INFO : topic #19 (0.020): 0.021*\"new\" + 0.021*\"radio\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"network\" + 0.011*\"program\"\n", - "2019-01-16 05:43:59,182 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.072*\"villag\" + 0.050*\"region\" + 0.043*\"counti\" + 0.040*\"east\" + 0.039*\"north\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.027*\"municip\"\n", - "2019-01-16 05:43:59,189 : INFO : topic diff=0.003612, rho=0.024077\n", - "2019-01-16 05:43:59,467 : INFO : PROGRESS: pass 0, at document #3452000/4922894\n", - "2019-01-16 05:44:01,546 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:02,108 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"network\" + 0.011*\"program\"\n", - "2019-01-16 05:44:02,109 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.023*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.015*\"chines\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"min\"\n", - "2019-01-16 05:44:02,111 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:44:02,112 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:44:02,113 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"train\"\n", - "2019-01-16 05:44:02,119 : INFO : topic diff=0.003822, rho=0.024070\n", - "2019-01-16 05:44:02,399 : INFO : PROGRESS: pass 0, at document #3454000/4922894\n", - "2019-01-16 05:44:04,427 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:04,984 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.014*\"won\"\n", - "2019-01-16 05:44:04,985 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:44:04,987 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"time\"\n", - "2019-01-16 05:44:04,988 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:44:04,989 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:44:04,994 : INFO : topic diff=0.003939, rho=0.024063\n", - "2019-01-16 05:44:05,253 : INFO : PROGRESS: pass 0, at document #3456000/4922894\n", - "2019-01-16 05:44:07,219 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:07,777 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:44:07,778 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"montreal\" + 0.014*\"ye\"\n", - "2019-01-16 05:44:07,780 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:44:07,781 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 05:44:07,782 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.031*\"south\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:44:07,788 : INFO : topic diff=0.003466, rho=0.024056\n", - "2019-01-16 05:44:08,065 : INFO : PROGRESS: pass 0, at document #3458000/4922894\n", - "2019-01-16 05:44:10,066 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:10,622 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.041*\"colleg\" + 0.040*\"univers\" + 0.038*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:44:10,623 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.007*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:44:10,625 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.014*\"israel\" + 0.013*\"moscow\" + 0.013*\"poland\"\n", - "2019-01-16 05:44:10,626 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:44:10,627 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"cell\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:44:10,633 : INFO : topic diff=0.003260, rho=0.024049\n", - "2019-01-16 05:44:15,170 : INFO : -11.565 per-word bound, 3029.0 perplexity estimate based on a held-out corpus of 2000 documents with 558133 words\n", - "2019-01-16 05:44:15,171 : INFO : PROGRESS: pass 0, at document #3460000/4922894\n", - "2019-01-16 05:44:17,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:17,745 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 05:44:17,747 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:44:17,749 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", - "2019-01-16 05:44:17,750 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.064*\"align\" + 0.058*\"wikit\" + 0.057*\"left\" + 0.049*\"style\" + 0.043*\"center\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.029*\"list\" + 0.027*\"text\"\n", - "2019-01-16 05:44:17,751 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.016*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:44:17,758 : INFO : topic diff=0.003098, rho=0.024042\n", - "2019-01-16 05:44:18,028 : INFO : PROGRESS: pass 0, at document #3462000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:44:19,993 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:20,550 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:44:20,552 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:44:20,553 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:44:20,555 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 05:44:20,556 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.023*\"lee\" + 0.022*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.014*\"indonesia\" + 0.014*\"asia\" + 0.014*\"thailand\"\n", - "2019-01-16 05:44:20,562 : INFO : topic diff=0.003408, rho=0.024035\n", - "2019-01-16 05:44:20,835 : INFO : PROGRESS: pass 0, at document #3464000/4922894\n", - "2019-01-16 05:44:22,811 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:23,370 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.014*\"montreal\" + 0.014*\"korean\"\n", - "2019-01-16 05:44:23,371 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"london\" + 0.019*\"citi\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.013*\"wale\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 05:44:23,374 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:44:23,375 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"best\" + 0.020*\"seri\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:44:23,376 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:44:23,382 : INFO : topic diff=0.003027, rho=0.024028\n", - "2019-01-16 05:44:23,663 : INFO : PROGRESS: pass 0, at document #3466000/4922894\n", - "2019-01-16 05:44:25,673 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:26,231 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.010*\"khan\"\n", - "2019-01-16 05:44:26,232 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.014*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:44:26,234 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"gun\" + 0.009*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:44:26,235 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.031*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:44:26,237 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.008*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"natur\" + 0.007*\"tree\"\n", - "2019-01-16 05:44:26,243 : INFO : topic diff=0.004159, rho=0.024022\n", - "2019-01-16 05:44:26,518 : INFO : PROGRESS: pass 0, at document #3468000/4922894\n", - "2019-01-16 05:44:28,525 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:29,083 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:44:29,084 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.015*\"spain\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:44:29,086 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.055*\"australian\" + 0.048*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.019*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:44:29,087 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.023*\"ontario\" + 0.023*\"toronto\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"korean\" + 0.014*\"montreal\"\n", - "2019-01-16 05:44:29,088 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:44:29,094 : INFO : topic diff=0.003736, rho=0.024015\n", - "2019-01-16 05:44:29,352 : INFO : PROGRESS: pass 0, at document #3470000/4922894\n", - "2019-01-16 05:44:31,340 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:31,898 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:44:31,900 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.014*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 05:44:31,901 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:44:31,903 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:44:31,904 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.010*\"author\" + 0.010*\"stori\"\n", - "2019-01-16 05:44:31,910 : INFO : topic diff=0.003311, rho=0.024008\n", - "2019-01-16 05:44:32,216 : INFO : PROGRESS: pass 0, at document #3472000/4922894\n", - "2019-01-16 05:44:34,201 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:34,758 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:44:34,760 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:44:34,762 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", - "2019-01-16 05:44:34,764 : INFO : topic #20 (0.020): 0.030*\"win\" + 0.019*\"contest\" + 0.018*\"match\" + 0.017*\"titl\" + 0.016*\"wrestl\" + 0.016*\"team\" + 0.016*\"fight\" + 0.015*\"week\" + 0.015*\"championship\" + 0.012*\"defeat\"\n", - "2019-01-16 05:44:34,765 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.011*\"island\" + 0.011*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:44:34,771 : INFO : topic diff=0.003411, rho=0.024001\n", - "2019-01-16 05:44:35,025 : INFO : PROGRESS: pass 0, at document #3474000/4922894\n", - "2019-01-16 05:44:36,946 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:37,502 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"pilot\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:44:37,504 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:44:37,505 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.016*\"park\" + 0.014*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:44:37,507 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:44:37,508 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.013*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\"\n", - "2019-01-16 05:44:37,514 : INFO : topic diff=0.003940, rho=0.023994\n", - "2019-01-16 05:44:37,784 : INFO : PROGRESS: pass 0, at document #3476000/4922894\n", - "2019-01-16 05:44:39,797 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:40,358 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"natur\" + 0.007*\"tree\"\n", - "2019-01-16 05:44:40,359 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.012*\"work\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:44:40,361 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:44:40,362 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:44:40,363 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:44:40,369 : INFO : topic diff=0.003485, rho=0.023987\n", - "2019-01-16 05:44:40,644 : INFO : PROGRESS: pass 0, at document #3478000/4922894\n", - "2019-01-16 05:44:42,646 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:43,203 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:44:43,205 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:44:43,207 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:44:43,208 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.014*\"lake\" + 0.014*\"rout\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:44:43,209 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:44:43,216 : INFO : topic diff=0.003943, rho=0.023980\n", - "2019-01-16 05:44:48,018 : INFO : -11.985 per-word bound, 4054.1 perplexity estimate based on a held-out corpus of 2000 documents with 594315 words\n", - "2019-01-16 05:44:48,019 : INFO : PROGRESS: pass 0, at document #3480000/4922894\n", - "2019-01-16 05:44:50,096 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:50,655 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:44:50,656 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.028*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:44:50,658 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"ford\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\"\n", - "2019-01-16 05:44:50,660 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.011*\"daughter\"\n", - "2019-01-16 05:44:50,661 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:44:50,668 : INFO : topic diff=0.003695, rho=0.023973\n", - "2019-01-16 05:44:50,944 : INFO : PROGRESS: pass 0, at document #3482000/4922894\n", - "2019-01-16 05:44:52,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:53,467 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:44:53,469 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:44:53,470 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:44:53,472 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:44:53,473 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:44:53,480 : INFO : topic diff=0.003714, rho=0.023966\n", - "2019-01-16 05:44:53,757 : INFO : PROGRESS: pass 0, at document #3484000/4922894\n", - "2019-01-16 05:44:55,803 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:56,367 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.018*\"london\" + 0.018*\"cricket\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"manchest\"\n", - "2019-01-16 05:44:56,369 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.005*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:44:56,370 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 05:44:56,372 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 05:44:56,373 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.037*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:44:56,379 : INFO : topic diff=0.003184, rho=0.023959\n", - "2019-01-16 05:44:56,649 : INFO : PROGRESS: pass 0, at document #3486000/4922894\n", - "2019-01-16 05:44:58,629 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:44:59,186 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.042*\"africa\" + 0.038*\"african\" + 0.029*\"south\" + 0.026*\"text\" + 0.026*\"black\" + 0.024*\"color\" + 0.024*\"till\" + 0.015*\"storm\" + 0.014*\"cape\"\n", - "2019-01-16 05:44:59,187 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:44:59,189 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.023*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.015*\"korea\" + 0.015*\"korean\" + 0.014*\"montreal\"\n", - "2019-01-16 05:44:59,191 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:44:59,193 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 05:44:59,199 : INFO : topic diff=0.003260, rho=0.023953\n", - "2019-01-16 05:44:59,469 : INFO : PROGRESS: pass 0, at document #3488000/4922894\n", - "2019-01-16 05:45:01,500 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:02,058 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:45:02,059 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:45:02,061 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:45:02,063 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.033*\"town\" + 0.033*\"citi\" + 0.032*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\" + 0.021*\"counti\"\n", - "2019-01-16 05:45:02,064 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"univers\" + 0.015*\"new\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:45:02,071 : INFO : topic diff=0.003558, rho=0.023946\n", - "2019-01-16 05:45:02,333 : INFO : PROGRESS: pass 0, at document #3490000/4922894\n", - "2019-01-16 05:45:04,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:04,917 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.042*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.026*\"black\" + 0.026*\"text\" + 0.024*\"till\" + 0.024*\"color\" + 0.014*\"storm\" + 0.013*\"cape\"\n", - "2019-01-16 05:45:04,918 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:45:04,920 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"bank\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:45:04,921 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"natur\"\n", - "2019-01-16 05:45:04,923 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:45:04,930 : INFO : topic diff=0.002983, rho=0.023939\n", - "2019-01-16 05:45:05,205 : INFO : PROGRESS: pass 0, at document #3492000/4922894\n", - "2019-01-16 05:45:07,227 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:07,787 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:45:07,788 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.020*\"nation\" + 0.019*\"athlet\"\n", - "2019-01-16 05:45:07,790 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:45:07,791 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:45:07,793 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:45:07,800 : INFO : topic diff=0.004230, rho=0.023932\n", - "2019-01-16 05:45:08,056 : INFO : PROGRESS: pass 0, at document #3494000/4922894\n", - "2019-01-16 05:45:10,031 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:10,587 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:45:10,589 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", - "2019-01-16 05:45:10,591 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.010*\"ali\" + 0.010*\"sri\"\n", - "2019-01-16 05:45:10,593 : INFO : topic #6 (0.020): 0.056*\"music\" + 0.030*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.017*\"festiv\" + 0.013*\"orchestra\" + 0.013*\"danc\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 05:45:10,594 : INFO : topic #14 (0.020): 0.021*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:45:10,600 : INFO : topic diff=0.004349, rho=0.023925\n", - "2019-01-16 05:45:10,871 : INFO : PROGRESS: pass 0, at document #3496000/4922894\n", - "2019-01-16 05:45:13,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:13,651 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", - "2019-01-16 05:45:13,653 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:45:13,654 : INFO : topic #20 (0.020): 0.030*\"win\" + 0.018*\"contest\" + 0.017*\"match\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.014*\"week\" + 0.011*\"world\"\n", - "2019-01-16 05:45:13,656 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:45:13,657 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 05:45:13,663 : INFO : topic diff=0.004208, rho=0.023918\n", - "2019-01-16 05:45:13,968 : INFO : PROGRESS: pass 0, at document #3498000/4922894\n", - "2019-01-16 05:45:16,022 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:16,581 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\"\n", - "2019-01-16 05:45:16,583 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 05:45:16,584 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"royal\"\n", - "2019-01-16 05:45:16,585 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:45:16,586 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.017*\"imag\" + 0.017*\"galleri\"\n", - "2019-01-16 05:45:16,593 : INFO : topic diff=0.003907, rho=0.023911\n", - "2019-01-16 05:45:21,157 : INFO : -11.619 per-word bound, 3146.3 perplexity estimate based on a held-out corpus of 2000 documents with 553249 words\n", - "2019-01-16 05:45:21,158 : INFO : PROGRESS: pass 0, at document #3500000/4922894\n", - "2019-01-16 05:45:23,148 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:23,706 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.028*\"van\" + 0.023*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"die\"\n", - "2019-01-16 05:45:23,707 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:45:23,709 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"car\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:45:23,710 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 05:45:23,711 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.018*\"soviet\" + 0.017*\"jewish\" + 0.015*\"polish\" + 0.013*\"israel\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:45:23,718 : INFO : topic diff=0.003616, rho=0.023905\n", - "2019-01-16 05:45:23,997 : INFO : PROGRESS: pass 0, at document #3502000/4922894\n", - "2019-01-16 05:45:26,027 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:26,603 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:45:26,605 : INFO : topic #9 (0.020): 0.065*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.010*\"movi\"\n", - "2019-01-16 05:45:26,606 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:45:26,608 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:45:26,609 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.017*\"exhibit\" + 0.017*\"imag\" + 0.017*\"design\"\n", - "2019-01-16 05:45:26,615 : INFO : topic diff=0.003282, rho=0.023898\n", - "2019-01-16 05:45:26,881 : INFO : PROGRESS: pass 0, at document #3504000/4922894\n", - "2019-01-16 05:45:28,816 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:29,373 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.015*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.009*\"josé\"\n", - "2019-01-16 05:45:29,375 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:45:29,376 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:45:29,378 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:45:29,379 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"order\"\n", - "2019-01-16 05:45:29,385 : INFO : topic diff=0.003202, rho=0.023891\n", - "2019-01-16 05:45:29,638 : INFO : PROGRESS: pass 0, at document #3506000/4922894\n", - "2019-01-16 05:45:31,560 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:32,120 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:45:32,121 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 05:45:32,122 : INFO : topic #25 (0.020): 0.046*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:45:32,123 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.023*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", - "2019-01-16 05:45:32,124 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"softwar\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:45:32,130 : INFO : topic diff=0.003885, rho=0.023884\n", - "2019-01-16 05:45:32,374 : INFO : PROGRESS: pass 0, at document #3508000/4922894\n", - "2019-01-16 05:45:34,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:34,789 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.010*\"ali\" + 0.010*\"sri\"\n", - "2019-01-16 05:45:34,791 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.037*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:45:34,793 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"imag\" + 0.017*\"exhibit\" + 0.017*\"design\"\n", - "2019-01-16 05:45:34,795 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.015*\"team\" + 0.015*\"wrestl\" + 0.014*\"championship\" + 0.013*\"week\" + 0.011*\"defeat\"\n", - "2019-01-16 05:45:34,796 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:45:34,802 : INFO : topic diff=0.004229, rho=0.023877\n", - "2019-01-16 05:45:35,071 : INFO : PROGRESS: pass 0, at document #3510000/4922894\n", - "2019-01-16 05:45:37,119 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:37,675 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:45:37,676 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.033*\"town\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.026*\"township\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.023*\"commun\" + 0.023*\"counti\" + 0.021*\"household\"\n", - "2019-01-16 05:45:37,678 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.069*\"juli\" + 0.067*\"august\" + 0.067*\"januari\" + 0.065*\"june\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 05:45:37,679 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:45:37,681 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:45:37,686 : INFO : topic diff=0.003503, rho=0.023870\n", - "2019-01-16 05:45:37,967 : INFO : PROGRESS: pass 0, at document #3512000/4922894\n", - "2019-01-16 05:45:40,027 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:40,584 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:45:40,586 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"team\" + 0.014*\"championship\" + 0.013*\"week\" + 0.011*\"defeat\"\n", - "2019-01-16 05:45:40,587 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:45:40,589 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.010*\"sri\"\n", - "2019-01-16 05:45:40,590 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.018*\"berlin\" + 0.015*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:45:40,595 : INFO : topic diff=0.004745, rho=0.023864\n", - "2019-01-16 05:45:40,862 : INFO : PROGRESS: pass 0, at document #3514000/4922894\n", - "2019-01-16 05:45:42,912 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:43,468 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"bank\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:45:43,469 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.028*\"till\" + 0.027*\"text\" + 0.026*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:45:43,471 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:45:43,473 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"said\" + 0.004*\"dai\"\n", - "2019-01-16 05:45:43,474 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:45:43,482 : INFO : topic diff=0.002886, rho=0.023857\n", - "2019-01-16 05:45:43,746 : INFO : PROGRESS: pass 0, at document #3516000/4922894\n", - "2019-01-16 05:45:45,790 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:46,349 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:45:46,351 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:45:46,353 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:45:46,354 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:45:46,355 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 05:45:46,361 : INFO : topic diff=0.002975, rho=0.023850\n", - "2019-01-16 05:45:46,647 : INFO : PROGRESS: pass 0, at document #3518000/4922894\n", - "2019-01-16 05:45:48,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:49,310 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.017*\"contest\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.013*\"week\" + 0.011*\"defeat\"\n", - "2019-01-16 05:45:49,311 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"tree\"\n", - "2019-01-16 05:45:49,313 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:45:49,317 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 05:45:49,318 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:45:49,324 : INFO : topic diff=0.004004, rho=0.023843\n", - "2019-01-16 05:45:53,808 : INFO : -11.546 per-word bound, 2990.9 perplexity estimate based on a held-out corpus of 2000 documents with 552972 words\n", - "2019-01-16 05:45:53,809 : INFO : PROGRESS: pass 0, at document #3520000/4922894\n", - "2019-01-16 05:45:55,733 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:56,290 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"tamil\"\n", - "2019-01-16 05:45:56,291 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.017*\"contest\" + 0.017*\"titl\" + 0.016*\"fight\" + 0.015*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.013*\"week\" + 0.011*\"defeat\"\n", - "2019-01-16 05:45:56,292 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:45:56,294 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:45:56,295 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"finish\" + 0.012*\"tour\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"ford\" + 0.011*\"championship\"\n", - "2019-01-16 05:45:56,301 : INFO : topic diff=0.004174, rho=0.023837\n", - "2019-01-16 05:45:56,562 : INFO : PROGRESS: pass 0, at document #3522000/4922894\n", - "2019-01-16 05:45:58,522 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:45:59,080 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:45:59,081 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:45:59,082 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.042*\"east\" + 0.041*\"west\" + 0.040*\"counti\" + 0.039*\"north\" + 0.037*\"south\" + 0.031*\"provinc\" + 0.030*\"municip\"\n", - "2019-01-16 05:45:59,084 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"ireland\" + 0.013*\"thoma\"\n", - "2019-01-16 05:45:59,086 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.011*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:45:59,092 : INFO : topic diff=0.004059, rho=0.023830\n", - "2019-01-16 05:45:59,390 : INFO : PROGRESS: pass 0, at document #3524000/4922894\n", - "2019-01-16 05:46:01,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:46:01,978 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.042*\"east\" + 0.040*\"west\" + 0.040*\"counti\" + 0.039*\"north\" + 0.037*\"south\" + 0.030*\"provinc\" + 0.030*\"municip\"\n", - "2019-01-16 05:46:01,979 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\"\n", - "2019-01-16 05:46:01,982 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:46:01,984 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 05:46:01,985 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:46:01,992 : INFO : topic diff=0.003459, rho=0.023823\n", - "2019-01-16 05:46:02,267 : INFO : PROGRESS: pass 0, at document #3526000/4922894\n", - "2019-01-16 05:46:04,320 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:04,876 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:46:04,878 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.014*\"driver\" + 0.012*\"finish\" + 0.011*\"tour\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"ford\" + 0.010*\"championship\"\n", - "2019-01-16 05:46:04,879 : INFO : topic #5 (0.020): 0.025*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:46:04,881 : INFO : topic #20 (0.020): 0.031*\"win\" + 0.020*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"team\" + 0.015*\"championship\" + 0.012*\"week\" + 0.011*\"defeat\"\n", - "2019-01-16 05:46:04,882 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:46:04,889 : INFO : topic diff=0.003916, rho=0.023816\n", - "2019-01-16 05:46:05,164 : INFO : PROGRESS: pass 0, at document #3528000/4922894\n", - "2019-01-16 05:46:07,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:07,765 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.023*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"nation\" + 0.019*\"athlet\"\n", - "2019-01-16 05:46:07,767 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.019*\"broadcast\" + 0.017*\"station\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"network\" + 0.011*\"program\" + 0.011*\"host\"\n", - "2019-01-16 05:46:07,768 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.032*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.015*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:46:07,769 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.016*\"park\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:46:07,771 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:46:07,778 : INFO : topic diff=0.003771, rho=0.023810\n", - "2019-01-16 05:46:08,047 : INFO : PROGRESS: pass 0, at document #3530000/4922894\n", - "2019-01-16 05:46:10,041 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:10,599 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"tamil\"\n", - "2019-01-16 05:46:10,600 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.058*\"align\" + 0.057*\"wikit\" + 0.053*\"left\" + 0.051*\"style\" + 0.044*\"center\" + 0.038*\"right\" + 0.032*\"philippin\" + 0.030*\"list\" + 0.029*\"text\"\n", - "2019-01-16 05:46:10,601 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 05:46:10,603 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:46:10,605 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.018*\"exhibit\" + 0.017*\"design\"\n", - "2019-01-16 05:46:10,611 : INFO : topic diff=0.003032, rho=0.023803\n", - "2019-01-16 05:46:10,888 : INFO : PROGRESS: pass 0, at document #3532000/4922894\n", - "2019-01-16 05:46:12,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:13,477 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"natur\" + 0.007*\"forest\"\n", - "2019-01-16 05:46:13,479 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:46:13,480 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 05:46:13,481 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.071*\"march\" + 0.071*\"octob\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.063*\"june\" + 0.062*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:46:13,483 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:46:13,488 : INFO : topic diff=0.004783, rho=0.023796\n", - "2019-01-16 05:46:13,761 : INFO : PROGRESS: pass 0, at document #3534000/4922894\n", - "2019-01-16 05:46:15,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:16,309 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"natur\"\n", - "2019-01-16 05:46:16,310 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.071*\"villag\" + 0.051*\"region\" + 0.042*\"east\" + 0.040*\"west\" + 0.040*\"counti\" + 0.040*\"north\" + 0.036*\"south\" + 0.031*\"provinc\" + 0.031*\"municip\"\n", - "2019-01-16 05:46:16,311 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 05:46:16,312 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.016*\"act\" + 0.016*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"order\" + 0.009*\"right\" + 0.009*\"report\" + 0.009*\"offic\"\n", - "2019-01-16 05:46:16,314 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.023*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"nation\" + 0.019*\"athlet\"\n", - "2019-01-16 05:46:16,320 : INFO : topic diff=0.003294, rho=0.023789\n", - "2019-01-16 05:46:16,587 : INFO : PROGRESS: pass 0, at document #3536000/4922894\n", - "2019-01-16 05:46:18,585 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:19,141 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.010*\"pilot\"\n", - "2019-01-16 05:46:19,143 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:46:19,144 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"offic\" + 0.011*\"divis\" + 0.010*\"regiment\"\n", - "2019-01-16 05:46:19,146 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.012*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:46:19,147 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.022*\"lee\" + 0.021*\"singapor\" + 0.016*\"malaysia\" + 0.016*\"kim\" + 0.014*\"asia\" + 0.014*\"chines\" + 0.014*\"indonesia\" + 0.014*\"thailand\"\n", - "2019-01-16 05:46:19,153 : INFO : topic diff=0.003656, rho=0.023783\n", - "2019-01-16 05:46:19,418 : INFO : PROGRESS: pass 0, at document #3538000/4922894\n", - "2019-01-16 05:46:21,395 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:21,953 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:46:21,954 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:46:21,955 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.008*\"beach\"\n", - "2019-01-16 05:46:21,957 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:46:21,958 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", - "2019-01-16 05:46:21,965 : INFO : topic diff=0.003400, rho=0.023776\n", - "2019-01-16 05:46:26,715 : INFO : -11.322 per-word bound, 2559.9 perplexity estimate based on a held-out corpus of 2000 documents with 561799 words\n", - "2019-01-16 05:46:26,717 : INFO : PROGRESS: pass 0, at document #3540000/4922894\n", - "2019-01-16 05:46:28,701 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:29,259 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:46:29,261 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:46:29,262 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 05:46:29,264 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.013*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:46:29,265 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.013*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"union\"\n", - "2019-01-16 05:46:29,273 : INFO : topic diff=0.003641, rho=0.023769\n", - "2019-01-16 05:46:29,541 : INFO : PROGRESS: pass 0, at document #3542000/4922894\n", - "2019-01-16 05:46:31,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:32,092 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:46:32,094 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 05:46:32,096 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"jame\" + 0.012*\"ireland\"\n", - "2019-01-16 05:46:32,097 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:46:32,098 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.066*\"align\" + 0.057*\"left\" + 0.056*\"wikit\" + 0.051*\"style\" + 0.044*\"center\" + 0.037*\"right\" + 0.031*\"philippin\" + 0.030*\"text\" + 0.030*\"list\"\n", - "2019-01-16 05:46:32,104 : INFO : topic diff=0.003424, rho=0.023762\n", - "2019-01-16 05:46:32,379 : INFO : PROGRESS: pass 0, at document #3544000/4922894\n", - "2019-01-16 05:46:34,366 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:34,923 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:46:34,925 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.015*\"montreal\" + 0.015*\"korean\"\n", - "2019-01-16 05:46:34,926 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:46:34,927 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.040*\"china\" + 0.036*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:46:34,928 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:46:34,934 : INFO : topic diff=0.004084, rho=0.023756\n", - "2019-01-16 05:46:35,193 : INFO : PROGRESS: pass 0, at document #3546000/4922894\n", - "2019-01-16 05:46:37,160 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:37,717 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 05:46:37,718 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:46:37,720 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 05:46:37,721 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:46:37,722 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.033*\"town\" + 0.033*\"citi\" + 0.032*\"ag\" + 0.028*\"township\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"counti\" + 0.021*\"household\"\n", - "2019-01-16 05:46:37,729 : INFO : topic diff=0.002945, rho=0.023749\n", - "2019-01-16 05:46:38,004 : INFO : PROGRESS: pass 0, at document #3548000/4922894\n", - "2019-01-16 05:46:40,054 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:40,611 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:46:40,613 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.012*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:46:40,615 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:46:40,616 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"order\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", - "2019-01-16 05:46:40,618 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 05:46:40,623 : INFO : topic diff=0.003773, rho=0.023742\n", - "2019-01-16 05:46:40,926 : INFO : PROGRESS: pass 0, at document #3550000/4922894\n", - "2019-01-16 05:46:42,993 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:43,550 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.010*\"regiment\"\n", - "2019-01-16 05:46:43,552 : INFO : topic #5 (0.020): 0.024*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"player\" + 0.007*\"includ\"\n", - "2019-01-16 05:46:43,554 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:46:43,555 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:46:43,557 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"mexican\" + 0.010*\"josé\"\n", - "2019-01-16 05:46:43,564 : INFO : topic diff=0.003424, rho=0.023736\n", - "2019-01-16 05:46:43,830 : INFO : PROGRESS: pass 0, at document #3552000/4922894\n", - "2019-01-16 05:46:45,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:46,426 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"coast\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:46:46,428 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:46:46,430 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.010*\"regiment\"\n", - "2019-01-16 05:46:46,431 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:46:46,432 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:46:46,439 : INFO : topic diff=0.004336, rho=0.023729\n", - "2019-01-16 05:46:46,710 : INFO : PROGRESS: pass 0, at document #3554000/4922894\n", - "2019-01-16 05:46:48,701 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:49,258 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"point\" + 0.006*\"group\"\n", - "2019-01-16 05:46:49,259 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.040*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 05:46:49,260 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:46:49,262 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.028*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:46:49,263 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:46:49,268 : INFO : topic diff=0.003602, rho=0.023722\n", - "2019-01-16 05:46:49,539 : INFO : PROGRESS: pass 0, at document #3556000/4922894\n", - "2019-01-16 05:46:51,600 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:52,164 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:46:52,166 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"car\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:46:52,168 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:46:52,170 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 05:46:52,171 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:46:52,178 : INFO : topic diff=0.003256, rho=0.023716\n", - "2019-01-16 05:46:52,452 : INFO : PROGRESS: pass 0, at document #3558000/4922894\n", - "2019-01-16 05:46:54,458 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:46:55,021 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.012*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:46:55,022 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:46:55,024 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:46:55,027 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:46:55,029 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.042*\"east\" + 0.041*\"north\" + 0.040*\"counti\" + 0.039*\"west\" + 0.037*\"south\" + 0.031*\"municip\" + 0.031*\"provinc\"\n", - "2019-01-16 05:46:55,035 : INFO : topic diff=0.003435, rho=0.023709\n", - "2019-01-16 05:46:59,728 : INFO : -11.678 per-word bound, 3276.3 perplexity estimate based on a held-out corpus of 2000 documents with 559699 words\n", - "2019-01-16 05:46:59,729 : INFO : PROGRESS: pass 0, at document #3560000/4922894\n", - "2019-01-16 05:47:01,754 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:02,312 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:47:02,313 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:47:02,316 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.019*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 05:47:02,317 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.019*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:47:02,319 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.011*\"coast\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:47:02,325 : INFO : topic diff=0.003498, rho=0.023702\n", - "2019-01-16 05:47:02,595 : INFO : PROGRESS: pass 0, at document #3562000/4922894\n", - "2019-01-16 05:47:04,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:05,152 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"gener\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", - "2019-01-16 05:47:05,153 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:47:05,155 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.028*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.027*\"color\" + 0.026*\"black\" + 0.014*\"storm\" + 0.013*\"format\"\n", - "2019-01-16 05:47:05,156 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"week\" + 0.012*\"defeat\"\n", - "2019-01-16 05:47:05,157 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 05:47:05,163 : INFO : topic diff=0.003320, rho=0.023696\n", - "2019-01-16 05:47:05,437 : INFO : PROGRESS: pass 0, at document #3564000/4922894\n", - "2019-01-16 05:47:07,461 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:08,018 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:47:08,020 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:47:08,021 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.012*\"order\" + 0.010*\"polic\" + 0.010*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\"\n", - "2019-01-16 05:47:08,023 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"said\" + 0.004*\"return\"\n", - "2019-01-16 05:47:08,024 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.015*\"unit\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:47:08,030 : INFO : topic diff=0.004416, rho=0.023689\n", - "2019-01-16 05:47:08,309 : INFO : PROGRESS: pass 0, at document #3566000/4922894\n", - "2019-01-16 05:47:10,339 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:10,894 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"week\" + 0.012*\"defeat\"\n", - "2019-01-16 05:47:10,896 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:47:10,897 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:47:10,898 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.072*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.065*\"august\" + 0.064*\"june\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:47:10,899 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.039*\"africa\" + 0.035*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.026*\"color\" + 0.025*\"black\" + 0.014*\"storm\" + 0.013*\"format\"\n", - "2019-01-16 05:47:10,905 : INFO : topic diff=0.004355, rho=0.023682\n", - "2019-01-16 05:47:11,181 : INFO : PROGRESS: pass 0, at document #3568000/4922894\n", - "2019-01-16 05:47:13,358 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:13,915 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 05:47:13,917 : INFO : topic #24 (0.020): 0.038*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"coast\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:47:13,919 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:47:13,920 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:47:13,922 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"emperor\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:47:13,927 : INFO : topic diff=0.003883, rho=0.023676\n", - "2019-01-16 05:47:14,197 : INFO : PROGRESS: pass 0, at document #3570000/4922894\n", - "2019-01-16 05:47:16,174 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:16,732 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.019*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:47:16,733 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.013*\"cell\" + 0.012*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:47:16,735 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", - "2019-01-16 05:47:16,736 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:47:16,738 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.036*\"russian\" + 0.023*\"american\" + 0.023*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:47:16,743 : INFO : topic diff=0.003186, rho=0.023669\n", - "2019-01-16 05:47:17,013 : INFO : PROGRESS: pass 0, at document #3572000/4922894\n", - "2019-01-16 05:47:19,021 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:19,582 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\" + 0.010*\"stage\"\n", - "2019-01-16 05:47:19,584 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:47:19,586 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.026*\"singapor\" + 0.022*\"lee\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.014*\"indonesia\" + 0.014*\"chines\" + 0.014*\"asia\" + 0.014*\"thailand\"\n", - "2019-01-16 05:47:19,588 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:47:19,589 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.015*\"squadron\" + 0.013*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 05:47:19,597 : INFO : topic diff=0.003788, rho=0.023662\n", - "2019-01-16 05:47:19,894 : INFO : PROGRESS: pass 0, at document #3574000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:47:21,885 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:22,442 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:47:22,444 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.019*\"nation\" + 0.019*\"athlet\"\n", - "2019-01-16 05:47:22,446 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:47:22,448 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:47:22,449 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:47:22,456 : INFO : topic diff=0.003418, rho=0.023656\n", - "2019-01-16 05:47:22,726 : INFO : PROGRESS: pass 0, at document #3576000/4922894\n", - "2019-01-16 05:47:24,739 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:25,297 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:47:25,298 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.016*\"korean\" + 0.016*\"quebec\" + 0.016*\"korea\"\n", - "2019-01-16 05:47:25,299 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"week\" + 0.011*\"defeat\"\n", - "2019-01-16 05:47:25,301 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 05:47:25,303 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.008*\"citi\" + 0.008*\"church\"\n", - "2019-01-16 05:47:25,309 : INFO : topic diff=0.003328, rho=0.023649\n", - "2019-01-16 05:47:25,574 : INFO : PROGRESS: pass 0, at document #3578000/4922894\n", - "2019-01-16 05:47:27,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:28,044 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.014*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:47:28,045 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:47:28,048 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:47:28,049 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:47:28,051 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.012*\"ret\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.008*\"treatment\" + 0.008*\"caus\" + 0.008*\"studi\"\n", - "2019-01-16 05:47:28,057 : INFO : topic diff=0.003831, rho=0.023643\n", - "2019-01-16 05:47:32,807 : INFO : -11.580 per-word bound, 3060.7 perplexity estimate based on a held-out corpus of 2000 documents with 592401 words\n", - "2019-01-16 05:47:32,808 : INFO : PROGRESS: pass 0, at document #3580000/4922894\n", - "2019-01-16 05:47:34,866 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:35,423 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.017*\"titl\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.015*\"championship\" + 0.015*\"team\" + 0.012*\"defeat\" + 0.011*\"week\"\n", - "2019-01-16 05:47:35,425 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"order\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", - "2019-01-16 05:47:35,426 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.039*\"africa\" + 0.034*\"african\" + 0.029*\"text\" + 0.027*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.016*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 05:47:35,428 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"player\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:47:35,429 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.011*\"island\" + 0.010*\"coast\" + 0.010*\"port\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 05:47:35,435 : INFO : topic diff=0.003875, rho=0.023636\n", - "2019-01-16 05:47:35,716 : INFO : PROGRESS: pass 0, at document #3582000/4922894\n", - "2019-01-16 05:47:37,722 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:38,283 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.022*\"vote\" + 0.021*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:47:38,284 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.024*\"singapor\" + 0.022*\"lee\" + 0.020*\"kim\" + 0.015*\"malaysia\" + 0.015*\"chines\" + 0.014*\"asia\" + 0.014*\"indonesia\" + 0.014*\"thailand\"\n", - "2019-01-16 05:47:38,285 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 05:47:38,287 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:47:38,288 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.075*\"villag\" + 0.050*\"region\" + 0.042*\"east\" + 0.041*\"north\" + 0.039*\"west\" + 0.038*\"counti\" + 0.037*\"south\" + 0.030*\"provinc\" + 0.030*\"municip\"\n", - "2019-01-16 05:47:38,293 : INFO : topic diff=0.003509, rho=0.023629\n", - "2019-01-16 05:47:38,557 : INFO : PROGRESS: pass 0, at document #3584000/4922894\n", - "2019-01-16 05:47:40,541 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:41,097 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:47:41,098 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:47:41,100 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 05:47:41,101 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.004*\"materi\"\n", - "2019-01-16 05:47:41,103 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"order\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", - "2019-01-16 05:47:41,108 : INFO : topic diff=0.003752, rho=0.023623\n", - "2019-01-16 05:47:41,372 : INFO : PROGRESS: pass 0, at document #3586000/4922894\n", - "2019-01-16 05:47:43,359 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:43,916 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:47:43,917 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.004*\"materi\"\n", - "2019-01-16 05:47:43,919 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.012*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:47:43,920 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.024*\"singapor\" + 0.022*\"lee\" + 0.019*\"kim\" + 0.015*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"chines\" + 0.014*\"asia\" + 0.014*\"japanes\"\n", - "2019-01-16 05:47:43,922 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"act\" + 0.016*\"state\" + 0.012*\"polic\" + 0.011*\"order\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", - "2019-01-16 05:47:43,928 : INFO : topic diff=0.004076, rho=0.023616\n", - "2019-01-16 05:47:44,200 : INFO : PROGRESS: pass 0, at document #3588000/4922894\n", - "2019-01-16 05:47:46,259 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:46,817 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.024*\"singapor\" + 0.022*\"lee\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"asia\" + 0.015*\"chines\" + 0.014*\"japanes\"\n", - "2019-01-16 05:47:46,819 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"bank\" + 0.012*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:47:46,821 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.021*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:47:46,822 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:47:46,823 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.025*\"http\" + 0.019*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.011*\"ali\" + 0.011*\"khan\" + 0.011*\"islam\" + 0.011*\"com\"\n", - "2019-01-16 05:47:46,830 : INFO : topic diff=0.003030, rho=0.023610\n", - "2019-01-16 05:47:47,095 : INFO : PROGRESS: pass 0, at document #3590000/4922894\n", - "2019-01-16 05:47:49,093 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:49,649 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.015*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:47:49,651 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", - "2019-01-16 05:47:49,652 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.012*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:47:49,654 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:47:49,655 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:47:49,661 : INFO : topic diff=0.003499, rho=0.023603\n", - "2019-01-16 05:47:49,933 : INFO : PROGRESS: pass 0, at document #3592000/4922894\n", - "2019-01-16 05:47:51,958 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:52,520 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 05:47:52,522 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.012*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:47:52,523 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:47:52,525 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"coast\" + 0.010*\"port\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", - "2019-01-16 05:47:52,527 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.046*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.016*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:47:52,534 : INFO : topic diff=0.004798, rho=0.023596\n", - "2019-01-16 05:47:52,792 : INFO : PROGRESS: pass 0, at document #3594000/4922894\n", - "2019-01-16 05:47:54,781 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:55,342 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"june\" + 0.063*\"januari\" + 0.063*\"novemb\" + 0.061*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:47:55,344 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:47:55,345 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"said\" + 0.004*\"return\"\n", - "2019-01-16 05:47:55,347 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.013*\"ret\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"treatment\" + 0.008*\"caus\" + 0.008*\"studi\"\n", - "2019-01-16 05:47:55,349 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:47:55,355 : INFO : topic diff=0.003809, rho=0.023590\n", - "2019-01-16 05:47:55,624 : INFO : PROGRESS: pass 0, at document #3596000/4922894\n", - "2019-01-16 05:47:57,600 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:47:58,158 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.010*\"case\" + 0.010*\"order\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\"\n", - "2019-01-16 05:47:58,159 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.012*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:47:58,160 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.051*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.020*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:47:58,162 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:47:58,163 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"korea\" + 0.016*\"quebec\"\n", - "2019-01-16 05:47:58,168 : INFO : topic diff=0.003185, rho=0.023583\n", - "2019-01-16 05:47:58,438 : INFO : PROGRESS: pass 0, at document #3598000/4922894\n", - "2019-01-16 05:48:00,435 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:00,993 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"june\" + 0.064*\"januari\" + 0.064*\"novemb\" + 0.062*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:48:00,994 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:48:00,995 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"tradit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:48:00,997 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"ford\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 05:48:00,999 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 05:48:01,006 : INFO : topic diff=0.003563, rho=0.023577\n", - "2019-01-16 05:48:05,566 : INFO : -11.613 per-word bound, 3131.9 perplexity estimate based on a held-out corpus of 2000 documents with 539970 words\n", - "2019-01-16 05:48:05,567 : INFO : PROGRESS: pass 0, at document #3600000/4922894\n", - "2019-01-16 05:48:07,558 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:08,114 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.064*\"januari\" + 0.062*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:48:08,116 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\"\n", - "2019-01-16 05:48:08,117 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:48:08,118 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 05:48:08,120 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.015*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 05:48:08,126 : INFO : topic diff=0.004003, rho=0.023570\n", - "2019-01-16 05:48:08,407 : INFO : PROGRESS: pass 0, at document #3602000/4922894\n", - "2019-01-16 05:48:10,464 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:11,021 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.063*\"align\" + 0.056*\"wikit\" + 0.056*\"left\" + 0.051*\"style\" + 0.046*\"center\" + 0.036*\"list\" + 0.035*\"right\" + 0.032*\"text\" + 0.031*\"philippin\"\n", - "2019-01-16 05:48:11,022 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:48:11,024 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"juli\" + 0.065*\"august\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.064*\"januari\" + 0.062*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:48:11,025 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:48:11,027 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"montreal\" + 0.015*\"quebec\"\n", - "2019-01-16 05:48:11,034 : INFO : topic diff=0.004021, rho=0.023564\n", - "2019-01-16 05:48:11,291 : INFO : PROGRESS: pass 0, at document #3604000/4922894\n", - "2019-01-16 05:48:13,252 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:13,809 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.020*\"team\" + 0.013*\"driver\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 05:48:13,810 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:48:13,813 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:48:13,815 : INFO : topic #43 (0.020): 0.029*\"san\" + 0.021*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:48:13,817 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:48:13,823 : INFO : topic diff=0.003401, rho=0.023557\n", - "2019-01-16 05:48:14,095 : INFO : PROGRESS: pass 0, at document #3606000/4922894\n", - "2019-01-16 05:48:16,160 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:16,717 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:48:16,719 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"winner\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:48:16,720 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:48:16,721 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.016*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 05:48:16,723 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:48:16,728 : INFO : topic diff=0.003450, rho=0.023551\n", - "2019-01-16 05:48:17,000 : INFO : PROGRESS: pass 0, at document #3608000/4922894\n", - "2019-01-16 05:48:18,977 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:19,535 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:48:19,537 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"said\" + 0.004*\"return\"\n", - "2019-01-16 05:48:19,539 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:48:19,540 : INFO : topic #10 (0.020): 0.023*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"car\"\n", - "2019-01-16 05:48:19,541 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.045*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"itali\" + 0.021*\"saint\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 05:48:19,548 : INFO : topic diff=0.004676, rho=0.023544\n", - "2019-01-16 05:48:19,824 : INFO : PROGRESS: pass 0, at document #3610000/4922894\n", - "2019-01-16 05:48:21,803 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:22,359 : INFO : topic #15 (0.020): 0.038*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.018*\"scotland\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"west\"\n", - "2019-01-16 05:48:22,361 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"coast\" + 0.010*\"port\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.008*\"sail\"\n", - "2019-01-16 05:48:22,363 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:48:22,364 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.072*\"villag\" + 0.050*\"region\" + 0.041*\"east\" + 0.040*\"north\" + 0.038*\"west\" + 0.038*\"counti\" + 0.036*\"south\" + 0.030*\"municip\" + 0.030*\"provinc\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:48:22,366 : INFO : topic #27 (0.020): 0.045*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 05:48:22,372 : INFO : topic diff=0.002877, rho=0.023538\n", - "2019-01-16 05:48:22,639 : INFO : PROGRESS: pass 0, at document #3612000/4922894\n", - "2019-01-16 05:48:24,616 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:25,173 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"materi\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:48:25,174 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.022*\"winner\" + 0.018*\"open\" + 0.016*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:48:25,176 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:48:25,177 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"version\" + 0.007*\"includ\"\n", - "2019-01-16 05:48:25,179 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.021*\"event\" + 0.019*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:48:25,184 : INFO : topic diff=0.003498, rho=0.023531\n", - "2019-01-16 05:48:25,455 : INFO : PROGRESS: pass 0, at document #3614000/4922894\n", - "2019-01-16 05:48:27,493 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:28,052 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", - "2019-01-16 05:48:28,054 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:48:28,056 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:48:28,058 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.019*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:48:28,060 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:48:28,066 : INFO : topic diff=0.003864, rho=0.023525\n", - "2019-01-16 05:48:28,346 : INFO : PROGRESS: pass 0, at document #3616000/4922894\n", - "2019-01-16 05:48:30,398 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:30,958 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:48:30,960 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.021*\"event\" + 0.019*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:48:30,961 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:48:30,962 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.010*\"regiment\"\n", - "2019-01-16 05:48:30,964 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:48:30,969 : INFO : topic diff=0.003421, rho=0.023518\n", - "2019-01-16 05:48:31,232 : INFO : PROGRESS: pass 0, at document #3618000/4922894\n", - "2019-01-16 05:48:33,240 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:33,799 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:48:33,801 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:48:33,802 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:48:33,803 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:48:33,804 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.023*\"singapor\" + 0.021*\"lee\" + 0.020*\"kim\" + 0.016*\"min\" + 0.016*\"indonesia\" + 0.015*\"chines\" + 0.015*\"malaysia\" + 0.015*\"japanes\"\n", - "2019-01-16 05:48:33,810 : INFO : topic diff=0.003943, rho=0.023512\n", - "2019-01-16 05:48:38,257 : INFO : -11.650 per-word bound, 3213.9 perplexity estimate based on a held-out corpus of 2000 documents with 499043 words\n", - "2019-01-16 05:48:38,258 : INFO : PROGRESS: pass 0, at document #3620000/4922894\n", - "2019-01-16 05:48:40,190 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:40,747 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.017*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:48:40,748 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:48:40,750 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"construct\"\n", - "2019-01-16 05:48:40,751 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"version\" + 0.007*\"includ\"\n", - "2019-01-16 05:48:40,752 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.023*\"singapor\" + 0.021*\"lee\" + 0.019*\"kim\" + 0.016*\"min\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"japanes\"\n", - "2019-01-16 05:48:40,758 : INFO : topic diff=0.003803, rho=0.023505\n", - "2019-01-16 05:48:41,053 : INFO : PROGRESS: pass 0, at document #3622000/4922894\n", - "2019-01-16 05:48:43,068 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:43,626 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.072*\"villag\" + 0.051*\"region\" + 0.040*\"east\" + 0.040*\"north\" + 0.038*\"west\" + 0.037*\"counti\" + 0.036*\"south\" + 0.030*\"provinc\" + 0.029*\"municip\"\n", - "2019-01-16 05:48:43,627 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 05:48:43,629 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:48:43,630 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.067*\"align\" + 0.061*\"left\" + 0.056*\"wikit\" + 0.052*\"style\" + 0.044*\"center\" + 0.034*\"list\" + 0.033*\"right\" + 0.033*\"text\" + 0.030*\"philippin\"\n", - "2019-01-16 05:48:43,631 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.017*\"titl\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"week\" + 0.011*\"defeat\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:48:43,637 : INFO : topic diff=0.003193, rho=0.023499\n", - "2019-01-16 05:48:43,906 : INFO : PROGRESS: pass 0, at document #3624000/4922894\n", - "2019-01-16 05:48:45,949 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:46,509 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"magazin\"\n", - "2019-01-16 05:48:46,511 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:48:46,512 : INFO : topic #30 (0.020): 0.057*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:48:46,514 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 05:48:46,515 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.008*\"sail\"\n", - "2019-01-16 05:48:46,521 : INFO : topic diff=0.004525, rho=0.023492\n", - "2019-01-16 05:48:46,815 : INFO : PROGRESS: pass 0, at document #3626000/4922894\n", - "2019-01-16 05:48:48,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:49,433 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.031*\"hong\" + 0.023*\"singapor\" + 0.021*\"lee\" + 0.019*\"kim\" + 0.016*\"indonesia\" + 0.015*\"min\" + 0.015*\"malaysia\" + 0.015*\"chines\" + 0.015*\"japanes\"\n", - "2019-01-16 05:48:49,434 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.041*\"colleg\" + 0.039*\"univers\" + 0.039*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"teacher\" + 0.009*\"state\"\n", - "2019-01-16 05:48:49,436 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.027*\"oper\" + 0.025*\"aircraft\" + 0.020*\"airport\" + 0.019*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 05:48:49,437 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.008*\"sail\"\n", - "2019-01-16 05:48:49,438 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:48:49,444 : INFO : topic diff=0.004274, rho=0.023486\n", - "2019-01-16 05:48:49,716 : INFO : PROGRESS: pass 0, at document #3628000/4922894\n", - "2019-01-16 05:48:51,657 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:52,215 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.044*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.021*\"itali\" + 0.017*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:48:52,216 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.007*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 05:48:52,218 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:48:52,219 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 05:48:52,221 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:48:52,228 : INFO : topic diff=0.003700, rho=0.023479\n", - "2019-01-16 05:48:52,513 : INFO : PROGRESS: pass 0, at document #3630000/4922894\n", - "2019-01-16 05:48:54,538 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:55,101 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.074*\"canada\" + 0.060*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.018*\"korean\" + 0.017*\"korea\" + 0.017*\"british\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", - "2019-01-16 05:48:55,103 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"jazz\"\n", - "2019-01-16 05:48:55,105 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:48:55,106 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:48:55,107 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"car\"\n", - "2019-01-16 05:48:55,113 : INFO : topic diff=0.003292, rho=0.023473\n", - "2019-01-16 05:48:55,382 : INFO : PROGRESS: pass 0, at document #3632000/4922894\n", - "2019-01-16 05:48:57,499 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:48:58,056 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:48:58,058 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:48:58,059 : INFO : topic #48 (0.020): 0.082*\"septemb\" + 0.076*\"octob\" + 0.073*\"march\" + 0.065*\"juli\" + 0.064*\"august\" + 0.064*\"januari\" + 0.062*\"novemb\" + 0.062*\"june\" + 0.061*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:48:58,060 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"khan\"\n", - "2019-01-16 05:48:58,062 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.008*\"studi\"\n", - "2019-01-16 05:48:58,068 : INFO : topic diff=0.003655, rho=0.023466\n", - "2019-01-16 05:48:58,340 : INFO : PROGRESS: pass 0, at document #3634000/4922894\n", - "2019-01-16 05:49:00,320 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:00,878 : INFO : topic #25 (0.020): 0.047*\"final\" + 0.045*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.022*\"winner\" + 0.019*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:49:00,880 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"kill\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:49:00,881 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:49:00,884 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:49:00,885 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"khan\"\n", - "2019-01-16 05:49:00,891 : INFO : topic diff=0.003433, rho=0.023460\n", - "2019-01-16 05:49:01,155 : INFO : PROGRESS: pass 0, at document #3636000/4922894\n", - "2019-01-16 05:49:03,054 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:03,611 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"championship\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:49:03,612 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.065*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.053*\"style\" + 0.043*\"center\" + 0.034*\"list\" + 0.033*\"right\" + 0.032*\"text\" + 0.031*\"philippin\"\n", - "2019-01-16 05:49:03,615 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:49:03,616 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:49:03,618 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:49:03,623 : INFO : topic diff=0.003999, rho=0.023453\n", - "2019-01-16 05:49:03,900 : INFO : PROGRESS: pass 0, at document #3638000/4922894\n", - "2019-01-16 05:49:05,879 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:06,438 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:49:06,439 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:49:06,441 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:49:06,442 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.040*\"student\" + 0.038*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"program\"\n", - "2019-01-16 05:49:06,444 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:49:06,451 : INFO : topic diff=0.003180, rho=0.023447\n", - "2019-01-16 05:49:10,915 : INFO : -12.137 per-word bound, 4505.3 perplexity estimate based on a held-out corpus of 2000 documents with 528580 words\n", - "2019-01-16 05:49:10,916 : INFO : PROGRESS: pass 0, at document #3640000/4922894\n", - "2019-01-16 05:49:12,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:13,494 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:49:13,495 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:49:13,497 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.027*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:49:13,498 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:49:13,499 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"car\" + 0.007*\"us\"\n", - "2019-01-16 05:49:13,505 : INFO : topic diff=0.003986, rho=0.023440\n", - "2019-01-16 05:49:13,781 : INFO : PROGRESS: pass 0, at document #3642000/4922894\n", - "2019-01-16 05:49:15,839 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:16,399 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.063*\"align\" + 0.057*\"left\" + 0.057*\"wikit\" + 0.056*\"style\" + 0.043*\"center\" + 0.035*\"list\" + 0.032*\"right\" + 0.032*\"text\" + 0.031*\"philippin\"\n", - "2019-01-16 05:49:16,400 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.023*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:49:16,402 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 05:49:16,403 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:49:16,404 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.017*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:49:16,411 : INFO : topic diff=0.003369, rho=0.023434\n", - "2019-01-16 05:49:16,690 : INFO : PROGRESS: pass 0, at document #3644000/4922894\n", - "2019-01-16 05:49:18,707 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:19,265 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.026*\"till\" + 0.024*\"color\" + 0.024*\"black\" + 0.014*\"cape\" + 0.013*\"storm\"\n", - "2019-01-16 05:49:19,266 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.013*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 05:49:19,267 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.020*\"open\" + 0.015*\"place\" + 0.015*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:49:19,268 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.021*\"event\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:49:19,270 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.024*\"singapor\" + 0.021*\"lee\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.015*\"chines\" + 0.015*\"min\" + 0.015*\"japanes\"\n", - "2019-01-16 05:49:19,276 : INFO : topic diff=0.003350, rho=0.023427\n", - "2019-01-16 05:49:19,559 : INFO : PROGRESS: pass 0, at document #3646000/4922894\n", - "2019-01-16 05:49:21,641 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:22,198 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", - "2019-01-16 05:49:22,199 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"le\" + 0.011*\"loui\"\n", - "2019-01-16 05:49:22,200 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:49:22,203 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:49:22,204 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:49:22,209 : INFO : topic diff=0.004418, rho=0.023421\n", - "2019-01-16 05:49:22,468 : INFO : PROGRESS: pass 0, at document #3648000/4922894\n", - "2019-01-16 05:49:24,429 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:24,993 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:49:24,995 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:49:24,997 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:49:24,998 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"north\"\n", - "2019-01-16 05:49:25,000 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:49:25,006 : INFO : topic diff=0.003492, rho=0.023415\n", - "2019-01-16 05:49:25,268 : INFO : PROGRESS: pass 0, at document #3650000/4922894\n", - "2019-01-16 05:49:27,235 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:27,792 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.054*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:49:27,794 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.061*\"align\" + 0.056*\"wikit\" + 0.056*\"left\" + 0.056*\"style\" + 0.043*\"center\" + 0.037*\"list\" + 0.032*\"right\" + 0.031*\"philippin\" + 0.031*\"text\"\n", - "2019-01-16 05:49:27,795 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 05:49:27,796 : INFO : topic #15 (0.020): 0.037*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.017*\"scotland\" + 0.017*\"citi\" + 0.014*\"scottish\" + 0.013*\"wale\" + 0.013*\"west\"\n", - "2019-01-16 05:49:27,797 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:49:27,803 : INFO : topic diff=0.003859, rho=0.023408\n", - "2019-01-16 05:49:28,094 : INFO : PROGRESS: pass 0, at document #3652000/4922894\n", - "2019-01-16 05:49:30,078 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:30,636 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.072*\"villag\" + 0.051*\"region\" + 0.041*\"east\" + 0.039*\"north\" + 0.038*\"west\" + 0.038*\"counti\" + 0.036*\"south\" + 0.030*\"provinc\" + 0.030*\"municip\"\n", - "2019-01-16 05:49:30,638 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", - "2019-01-16 05:49:30,639 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.013*\"product\" + 0.010*\"model\" + 0.010*\"design\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"car\"\n", - "2019-01-16 05:49:30,640 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:49:30,642 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:49:30,648 : INFO : topic diff=0.003109, rho=0.023402\n", - "2019-01-16 05:49:30,917 : INFO : PROGRESS: pass 0, at document #3654000/4922894\n", - "2019-01-16 05:49:32,881 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:33,439 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"order\" + 0.009*\"right\"\n", - "2019-01-16 05:49:33,441 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:49:33,443 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:49:33,444 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"materi\" + 0.005*\"effect\" + 0.005*\"temperatur\"\n", - "2019-01-16 05:49:33,445 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 05:49:33,451 : INFO : topic diff=0.003256, rho=0.023395\n", - "2019-01-16 05:49:33,725 : INFO : PROGRESS: pass 0, at document #3656000/4922894\n", - "2019-01-16 05:49:35,727 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:36,293 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"montreal\" + 0.015*\"quebec\"\n", - "2019-01-16 05:49:36,295 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"seat\" + 0.013*\"repres\"\n", - "2019-01-16 05:49:36,297 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"order\" + 0.009*\"right\"\n", - "2019-01-16 05:49:36,298 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:49:36,299 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:49:36,306 : INFO : topic diff=0.003986, rho=0.023389\n", - "2019-01-16 05:49:36,591 : INFO : PROGRESS: pass 0, at document #3658000/4922894\n", - "2019-01-16 05:49:38,602 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:39,160 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"medicin\"\n", - "2019-01-16 05:49:39,161 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 05:49:39,163 : INFO : topic #25 (0.020): 0.046*\"final\" + 0.045*\"round\" + 0.026*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", - "2019-01-16 05:49:39,164 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.023*\"singapor\" + 0.022*\"lee\" + 0.019*\"kim\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"indonesia\" + 0.015*\"japanes\" + 0.015*\"thailand\"\n", - "2019-01-16 05:49:39,165 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"islam\" + 0.011*\"ali\"\n", - "2019-01-16 05:49:39,172 : INFO : topic diff=0.003858, rho=0.023383\n", - "2019-01-16 05:49:43,816 : INFO : -11.773 per-word bound, 3499.2 perplexity estimate based on a held-out corpus of 2000 documents with 550731 words\n", - "2019-01-16 05:49:43,817 : INFO : PROGRESS: pass 0, at document #3660000/4922894\n", - "2019-01-16 05:49:45,825 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:46,383 : INFO : topic #49 (0.020): 0.096*\"district\" + 0.072*\"villag\" + 0.051*\"region\" + 0.041*\"east\" + 0.039*\"north\" + 0.038*\"west\" + 0.037*\"counti\" + 0.035*\"south\" + 0.030*\"municip\" + 0.029*\"provinc\"\n", - "2019-01-16 05:49:46,385 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.023*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:49:46,386 : INFO : topic #15 (0.020): 0.036*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.019*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.017*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:49:46,387 : INFO : topic #14 (0.020): 0.022*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"servic\" + 0.010*\"award\"\n", - "2019-01-16 05:49:46,388 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:49:46,394 : INFO : topic diff=0.003841, rho=0.023376\n", - "2019-01-16 05:49:46,677 : INFO : PROGRESS: pass 0, at document #3662000/4922894\n", - "2019-01-16 05:49:48,770 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:49,327 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:49:49,329 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.011*\"tamil\" + 0.011*\"islam\" + 0.011*\"ali\"\n", - "2019-01-16 05:49:49,331 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:49:49,332 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:49:49,333 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"nation\" + 0.019*\"athlet\"\n", - "2019-01-16 05:49:49,339 : INFO : topic diff=0.003215, rho=0.023370\n", - "2019-01-16 05:49:49,621 : INFO : PROGRESS: pass 0, at document #3664000/4922894\n", - "2019-01-16 05:49:51,644 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:52,202 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"materi\" + 0.005*\"temperatur\" + 0.005*\"effect\"\n", - "2019-01-16 05:49:52,203 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.022*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.015*\"malaysia\" + 0.015*\"chines\" + 0.015*\"japanes\" + 0.015*\"indonesia\" + 0.014*\"thailand\"\n", - "2019-01-16 05:49:52,205 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.032*\"south\" + 0.030*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:49:52,207 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:49:52,208 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:49:52,215 : INFO : topic diff=0.004808, rho=0.023363\n", - "2019-01-16 05:49:52,477 : INFO : PROGRESS: pass 0, at document #3666000/4922894\n", - "2019-01-16 05:49:54,417 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:54,978 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:49:54,980 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 05:49:54,982 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 05:49:54,984 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:49:54,986 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"magazin\" + 0.011*\"author\"\n", - "2019-01-16 05:49:54,993 : INFO : topic diff=0.003919, rho=0.023357\n", - "2019-01-16 05:49:55,261 : INFO : PROGRESS: pass 0, at document #3668000/4922894\n", - "2019-01-16 05:49:57,248 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:49:57,807 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 05:49:57,808 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.025*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.010*\"north\"\n", - "2019-01-16 05:49:57,809 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:49:57,811 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 05:49:57,812 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.023*\"von\" + 0.023*\"van\" + 0.021*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.013*\"swedish\" + 0.012*\"netherland\" + 0.011*\"sweden\"\n", - "2019-01-16 05:49:57,818 : INFO : topic diff=0.003537, rho=0.023351\n", - "2019-01-16 05:49:58,081 : INFO : PROGRESS: pass 0, at document #3670000/4922894\n", - "2019-01-16 05:50:00,023 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:00,583 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.011*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 05:50:00,584 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"seat\"\n", - "2019-01-16 05:50:00,586 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"defeat\" + 0.011*\"world\"\n", - "2019-01-16 05:50:00,587 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:50:00,589 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:50:00,598 : INFO : topic diff=0.002975, rho=0.023344\n", - "2019-01-16 05:50:00,898 : INFO : PROGRESS: pass 0, at document #3672000/4922894\n", - "2019-01-16 05:50:02,952 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:03,514 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.033*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", - "2019-01-16 05:50:03,516 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:50:03,518 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:50:03,519 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 05:50:03,521 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"order\" + 0.008*\"right\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:50:03,527 : INFO : topic diff=0.003075, rho=0.023338\n", - "2019-01-16 05:50:03,797 : INFO : PROGRESS: pass 0, at document #3674000/4922894\n", - "2019-01-16 05:50:05,800 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:06,357 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.023*\"black\" + 0.013*\"format\" + 0.013*\"storm\"\n", - "2019-01-16 05:50:06,358 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:50:06,360 : INFO : topic #22 (0.020): 0.048*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.024*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:50:06,362 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.020*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"pilot\"\n", - "2019-01-16 05:50:06,363 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", - "2019-01-16 05:50:06,369 : INFO : topic diff=0.003676, rho=0.023332\n", - "2019-01-16 05:50:06,674 : INFO : PROGRESS: pass 0, at document #3676000/4922894\n", - "2019-01-16 05:50:08,687 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:09,246 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 05:50:09,247 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.034*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:50:09,249 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.034*\"town\" + 0.031*\"citi\" + 0.031*\"ag\" + 0.025*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"counti\" + 0.021*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:50:09,250 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"order\"\n", - "2019-01-16 05:50:09,252 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.010*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.008*\"damag\"\n", - "2019-01-16 05:50:09,259 : INFO : topic diff=0.003521, rho=0.023325\n", - "2019-01-16 05:50:09,539 : INFO : PROGRESS: pass 0, at document #3678000/4922894\n", - "2019-01-16 05:50:11,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:12,127 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"vehicl\" + 0.008*\"type\" + 0.008*\"us\"\n", - "2019-01-16 05:50:12,129 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", - "2019-01-16 05:50:12,130 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.066*\"align\" + 0.057*\"wikit\" + 0.056*\"style\" + 0.056*\"left\" + 0.047*\"center\" + 0.035*\"list\" + 0.032*\"text\" + 0.031*\"right\" + 0.029*\"philippin\"\n", - "2019-01-16 05:50:12,131 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:50:12,132 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.025*\"group\" + 0.023*\"point\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", - "2019-01-16 05:50:12,138 : INFO : topic diff=0.003843, rho=0.023319\n", - "2019-01-16 05:50:16,814 : INFO : -11.785 per-word bound, 3527.9 perplexity estimate based on a held-out corpus of 2000 documents with 577804 words\n", - "2019-01-16 05:50:16,814 : INFO : PROGRESS: pass 0, at document #3680000/4922894\n", - "2019-01-16 05:50:18,816 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:19,372 : INFO : topic #10 (0.020): 0.022*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:50:19,374 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.029*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.025*\"color\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:50:19,375 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.024*\"group\" + 0.023*\"point\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", - "2019-01-16 05:50:19,377 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:50:19,379 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:50:19,384 : INFO : topic diff=0.003417, rho=0.023313\n", - "2019-01-16 05:50:19,665 : INFO : PROGRESS: pass 0, at document #3682000/4922894\n", - "2019-01-16 05:50:21,665 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:22,223 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:50:22,225 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:50:22,227 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"west\" + 0.014*\"scottish\" + 0.013*\"wale\"\n", - "2019-01-16 05:50:22,228 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:50:22,229 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 05:50:22,236 : INFO : topic diff=0.003645, rho=0.023306\n", - "2019-01-16 05:50:22,505 : INFO : PROGRESS: pass 0, at document #3684000/4922894\n", - "2019-01-16 05:50:24,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:25,063 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:50:25,065 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.008*\"empir\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:50:25,066 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"pilot\"\n", - "2019-01-16 05:50:25,067 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:50:25,069 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.018*\"design\" + 0.017*\"imag\"\n", - "2019-01-16 05:50:25,075 : INFO : topic diff=0.003473, rho=0.023300\n", - "2019-01-16 05:50:25,346 : INFO : PROGRESS: pass 0, at document #3686000/4922894\n", - "2019-01-16 05:50:27,361 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:50:27,918 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.015*\"danc\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.011*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 05:50:27,919 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:50:27,921 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.070*\"villag\" + 0.052*\"region\" + 0.040*\"east\" + 0.040*\"north\" + 0.038*\"west\" + 0.037*\"counti\" + 0.036*\"south\" + 0.030*\"municip\" + 0.029*\"provinc\"\n", - "2019-01-16 05:50:27,922 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.024*\"group\" + 0.023*\"point\" + 0.022*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", - "2019-01-16 05:50:27,924 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.032*\"south\" + 0.030*\"chines\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:50:27,930 : INFO : topic diff=0.003049, rho=0.023294\n", - "2019-01-16 05:50:28,205 : INFO : PROGRESS: pass 0, at document #3688000/4922894\n", - "2019-01-16 05:50:30,241 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:30,799 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:50:30,800 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:50:30,802 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"emperor\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:50:30,803 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.018*\"design\" + 0.017*\"imag\"\n", - "2019-01-16 05:50:30,804 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.074*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:50:30,811 : INFO : topic diff=0.003030, rho=0.023287\n", - "2019-01-16 05:50:31,076 : INFO : PROGRESS: pass 0, at document #3690000/4922894\n", - "2019-01-16 05:50:33,081 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:33,641 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"defeat\" + 0.011*\"world\"\n", - "2019-01-16 05:50:33,642 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"iran\" + 0.014*\"pakistan\" + 0.013*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\" + 0.010*\"muslim\"\n", - "2019-01-16 05:50:33,644 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.019*\"nation\"\n", - "2019-01-16 05:50:33,646 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.024*\"group\" + 0.023*\"point\" + 0.022*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", - "2019-01-16 05:50:33,647 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:50:33,654 : INFO : topic diff=0.003944, rho=0.023281\n", - "2019-01-16 05:50:33,928 : INFO : PROGRESS: pass 0, at document #3692000/4922894\n", - "2019-01-16 05:50:35,969 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:36,527 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.042*\"round\" + 0.025*\"tournament\" + 0.024*\"group\" + 0.023*\"point\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"qualifi\" + 0.015*\"place\" + 0.013*\"won\"\n", - "2019-01-16 05:50:36,529 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 05:50:36,530 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.014*\"west\" + 0.013*\"wale\"\n", - "2019-01-16 05:50:36,531 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:50:36,533 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 05:50:36,539 : INFO : topic diff=0.003420, rho=0.023275\n", - "2019-01-16 05:50:36,815 : INFO : PROGRESS: pass 0, at document #3694000/4922894\n", - "2019-01-16 05:50:38,812 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:39,369 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.014*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:50:39,370 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.033*\"hong\" + 0.021*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.016*\"chines\" + 0.016*\"japanes\" + 0.014*\"indonesia\" + 0.014*\"asia\"\n", - "2019-01-16 05:50:39,371 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.026*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:50:39,374 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.069*\"villag\" + 0.052*\"region\" + 0.040*\"east\" + 0.039*\"north\" + 0.038*\"west\" + 0.036*\"counti\" + 0.035*\"south\" + 0.029*\"municip\" + 0.029*\"provinc\"\n", - "2019-01-16 05:50:39,375 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", - "2019-01-16 05:50:39,381 : INFO : topic diff=0.003842, rho=0.023268\n", - "2019-01-16 05:50:39,642 : INFO : PROGRESS: pass 0, at document #3696000/4922894\n", - "2019-01-16 05:50:41,615 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:42,173 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 05:50:42,174 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:50:42,175 : INFO : topic #36 (0.020): 0.058*\"art\" + 0.036*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.018*\"design\" + 0.017*\"imag\"\n", - "2019-01-16 05:50:42,177 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"form\"\n", - "2019-01-16 05:50:42,178 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.032*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:50:42,184 : INFO : topic diff=0.004169, rho=0.023262\n", - "2019-01-16 05:50:42,450 : INFO : PROGRESS: pass 0, at document #3698000/4922894\n", - "2019-01-16 05:50:44,473 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:45,029 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:50:45,030 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.017*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:50:45,032 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"kill\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:50:45,033 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"model\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"valu\" + 0.007*\"point\"\n", - "2019-01-16 05:50:45,034 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.033*\"hong\" + 0.022*\"singapor\" + 0.021*\"lee\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"japanes\" + 0.014*\"indonesia\" + 0.014*\"asia\"\n", - "2019-01-16 05:50:45,040 : INFO : topic diff=0.003648, rho=0.023256\n", - "2019-01-16 05:50:49,630 : INFO : -11.536 per-word bound, 2968.9 perplexity estimate based on a held-out corpus of 2000 documents with 542697 words\n", - "2019-01-16 05:50:49,631 : INFO : PROGRESS: pass 0, at document #3700000/4922894\n", - "2019-01-16 05:50:51,645 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:52,202 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:50:52,204 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:50:52,206 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"vehicl\" + 0.008*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:50:52,207 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:50:52,209 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:50:52,215 : INFO : topic diff=0.003385, rho=0.023250\n", - "2019-01-16 05:50:52,531 : INFO : PROGRESS: pass 0, at document #3702000/4922894\n", - "2019-01-16 05:50:54,595 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:55,157 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.017*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:50:55,158 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.019*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:50:55,160 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:50:55,161 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.075*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 05:50:55,162 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"muslim\"\n", - "2019-01-16 05:50:55,168 : INFO : topic diff=0.002960, rho=0.023243\n", - "2019-01-16 05:50:55,455 : INFO : PROGRESS: pass 0, at document #3704000/4922894\n", - "2019-01-16 05:50:57,508 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:50:58,065 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.035*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"muslim\"\n", - "2019-01-16 05:50:58,067 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:50:58,068 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:50:58,070 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"seat\" + 0.013*\"repres\"\n", - "2019-01-16 05:50:58,071 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.030*\"text\" + 0.028*\"south\" + 0.027*\"till\" + 0.026*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 05:50:58,078 : INFO : topic diff=0.004100, rho=0.023237\n", - "2019-01-16 05:50:58,353 : INFO : PROGRESS: pass 0, at document #3706000/4922894\n", - "2019-01-16 05:51:00,351 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:00,909 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.038*\"germani\" + 0.024*\"von\" + 0.023*\"van\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.013*\"swedish\" + 0.012*\"netherland\" + 0.012*\"sweden\"\n", - "2019-01-16 05:51:00,911 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.026*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:51:00,912 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:51:00,915 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"finish\" + 0.012*\"ford\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:51:00,917 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.033*\"kong\" + 0.022*\"lee\" + 0.022*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"japanes\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:51:00,923 : INFO : topic diff=0.003503, rho=0.023231\n", - "2019-01-16 05:51:01,195 : INFO : PROGRESS: pass 0, at document #3708000/4922894\n", - "2019-01-16 05:51:03,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:03,722 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.035*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.017*\"design\" + 0.017*\"imag\"\n", - "2019-01-16 05:51:03,724 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.026*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:51:03,726 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 05:51:03,728 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:51:03,729 : INFO : topic #48 (0.020): 0.080*\"septemb\" + 0.075*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.065*\"august\" + 0.064*\"januari\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.062*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:51:03,736 : INFO : topic diff=0.003273, rho=0.023224\n", - "2019-01-16 05:51:04,019 : INFO : PROGRESS: pass 0, at document #3710000/4922894\n", - "2019-01-16 05:51:06,016 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:06,574 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:51:06,575 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.033*\"kong\" + 0.022*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"japanes\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:51:06,576 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:51:06,578 : INFO : topic #23 (0.020): 0.017*\"hospit\" + 0.016*\"medic\" + 0.014*\"health\" + 0.014*\"cell\" + 0.011*\"diseas\" + 0.011*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 05:51:06,579 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"empir\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:51:06,585 : INFO : topic diff=0.003571, rho=0.023218\n", - "2019-01-16 05:51:06,875 : INFO : PROGRESS: pass 0, at document #3712000/4922894\n", - "2019-01-16 05:51:08,934 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:09,494 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.018*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"manchest\"\n", - "2019-01-16 05:51:09,496 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.017*\"korea\" + 0.015*\"quebec\" + 0.014*\"montreal\"\n", - "2019-01-16 05:51:09,497 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.017*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:51:09,499 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.014*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:51:09,500 : INFO : topic #8 (0.020): 0.046*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"muslim\"\n", - "2019-01-16 05:51:09,506 : INFO : topic diff=0.003854, rho=0.023212\n", - "2019-01-16 05:51:09,777 : INFO : PROGRESS: pass 0, at document #3714000/4922894\n", - "2019-01-16 05:51:11,786 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:12,347 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:51:12,349 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.063*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.053*\"style\" + 0.046*\"center\" + 0.034*\"list\" + 0.031*\"philippin\" + 0.030*\"text\" + 0.030*\"right\"\n", - "2019-01-16 05:51:12,350 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:51:12,353 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.033*\"kong\" + 0.022*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.016*\"japanes\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"thailand\"\n", - "2019-01-16 05:51:12,354 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:51:12,360 : INFO : topic diff=0.003372, rho=0.023206\n", - "2019-01-16 05:51:12,627 : INFO : PROGRESS: pass 0, at document #3716000/4922894\n", - "2019-01-16 05:51:14,974 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:15,540 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 05:51:15,542 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.016*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"damag\"\n", - "2019-01-16 05:51:15,543 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 05:51:15,545 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:51:15,546 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.034*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.014*\"pakistan\" + 0.014*\"iran\" + 0.013*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"muslim\"\n", - "2019-01-16 05:51:15,552 : INFO : topic diff=0.003938, rho=0.023199\n", - "2019-01-16 05:51:15,831 : INFO : PROGRESS: pass 0, at document #3718000/4922894\n", - "2019-01-16 05:51:17,888 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:18,445 : INFO : topic #2 (0.020): 0.065*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 05:51:18,446 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.007*\"us\" + 0.007*\"type\"\n", - "2019-01-16 05:51:18,447 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 05:51:18,450 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:51:18,451 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.022*\"lee\" + 0.021*\"singapor\" + 0.018*\"kim\" + 0.016*\"malaysia\" + 0.015*\"japanes\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:51:18,457 : INFO : topic diff=0.003619, rho=0.023193\n", - "2019-01-16 05:51:23,158 : INFO : -11.618 per-word bound, 3144.1 perplexity estimate based on a held-out corpus of 2000 documents with 572472 words\n", - "2019-01-16 05:51:23,159 : INFO : PROGRESS: pass 0, at document #3720000/4922894\n", - "2019-01-16 05:51:25,199 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:25,758 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:51:25,760 : INFO : topic #39 (0.020): 0.052*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.019*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"train\"\n", - "2019-01-16 05:51:25,761 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:51:25,763 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"street\" + 0.012*\"locat\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 05:51:25,764 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.014*\"health\" + 0.014*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.008*\"activ\"\n", - "2019-01-16 05:51:25,770 : INFO : topic diff=0.004406, rho=0.023187\n", - "2019-01-16 05:51:26,050 : INFO : PROGRESS: pass 0, at document #3722000/4922894\n", - "2019-01-16 05:51:28,086 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:28,645 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:51:28,646 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.024*\"paint\" + 0.020*\"artist\" + 0.018*\"exhibit\" + 0.017*\"design\" + 0.017*\"imag\"\n", - "2019-01-16 05:51:28,647 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:51:28,649 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"town\" + 0.031*\"ag\" + 0.031*\"citi\" + 0.027*\"famili\" + 0.025*\"counti\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"township\" + 0.021*\"household\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:51:28,650 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.062*\"align\" + 0.057*\"wikit\" + 0.053*\"left\" + 0.053*\"style\" + 0.045*\"center\" + 0.034*\"list\" + 0.030*\"philippin\" + 0.030*\"text\" + 0.029*\"right\"\n", - "2019-01-16 05:51:28,655 : INFO : topic diff=0.003183, rho=0.023181\n", - "2019-01-16 05:51:28,937 : INFO : PROGRESS: pass 0, at document #3724000/4922894\n", - "2019-01-16 05:51:30,928 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:31,486 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:51:31,488 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"henri\" + 0.013*\"royal\" + 0.013*\"thoma\"\n", - "2019-01-16 05:51:31,489 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.018*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"manchest\"\n", - "2019-01-16 05:51:31,492 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:51:31,494 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.024*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:51:31,500 : INFO : topic diff=0.003334, rho=0.023174\n", - "2019-01-16 05:51:31,762 : INFO : PROGRESS: pass 0, at document #3726000/4922894\n", - "2019-01-16 05:51:33,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:34,222 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 05:51:34,223 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.010*\"electr\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"type\" + 0.007*\"us\"\n", - "2019-01-16 05:51:34,224 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.036*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:51:34,226 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:51:34,228 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:51:34,233 : INFO : topic diff=0.003467, rho=0.023168\n", - "2019-01-16 05:51:34,546 : INFO : PROGRESS: pass 0, at document #3728000/4922894\n", - "2019-01-16 05:51:36,553 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:37,110 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:51:37,111 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:51:37,112 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:51:37,114 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"gun\" + 0.009*\"damag\"\n", - "2019-01-16 05:51:37,116 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"light\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 05:51:37,122 : INFO : topic diff=0.003786, rho=0.023162\n", - "2019-01-16 05:51:37,404 : INFO : PROGRESS: pass 0, at document #3730000/4922894\n", - "2019-01-16 05:51:39,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:39,941 : INFO : topic #48 (0.020): 0.080*\"septemb\" + 0.075*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.065*\"august\" + 0.065*\"june\" + 0.064*\"novemb\" + 0.064*\"januari\" + 0.062*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:51:39,942 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:51:39,943 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.016*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:51:39,945 : INFO : topic #42 (0.020): 0.028*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:51:39,946 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.059*\"align\" + 0.057*\"wikit\" + 0.053*\"left\" + 0.052*\"style\" + 0.046*\"center\" + 0.034*\"list\" + 0.031*\"philippin\" + 0.030*\"text\" + 0.029*\"right\"\n", - "2019-01-16 05:51:39,951 : INFO : topic diff=0.004275, rho=0.023156\n", - "2019-01-16 05:51:40,228 : INFO : PROGRESS: pass 0, at document #3732000/4922894\n", - "2019-01-16 05:51:42,281 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:42,839 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:51:42,841 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"surfac\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 05:51:42,842 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:51:42,843 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:51:42,845 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.013*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.011*\"muslim\"\n", - "2019-01-16 05:51:42,851 : INFO : topic diff=0.003943, rho=0.023150\n", - "2019-01-16 05:51:43,121 : INFO : PROGRESS: pass 0, at document #3734000/4922894\n", - "2019-01-16 05:51:45,176 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:45,734 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"henri\" + 0.013*\"royal\" + 0.013*\"thoma\"\n", - "2019-01-16 05:51:45,736 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.032*\"chines\" + 0.031*\"south\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:51:45,739 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"event\" + 0.021*\"men\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 05:51:45,740 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.020*\"http\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.013*\"iran\" + 0.013*\"tamil\" + 0.013*\"sri\" + 0.011*\"islam\" + 0.011*\"khan\"\n", - "2019-01-16 05:51:45,742 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"treatment\" + 0.009*\"caus\" + 0.008*\"studi\"\n", - "2019-01-16 05:51:45,749 : INFO : topic diff=0.003661, rho=0.023143\n", - "2019-01-16 05:51:46,047 : INFO : PROGRESS: pass 0, at document #3736000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:51:48,111 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:48,670 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:51:48,671 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:51:48,673 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"week\" + 0.011*\"defeat\"\n", - "2019-01-16 05:51:48,674 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.032*\"kong\" + 0.022*\"lee\" + 0.022*\"singapor\" + 0.017*\"kim\" + 0.016*\"malaysia\" + 0.016*\"japanes\" + 0.015*\"asia\" + 0.015*\"chines\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:51:48,675 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:51:48,681 : INFO : topic diff=0.003237, rho=0.023137\n", - "2019-01-16 05:51:48,962 : INFO : PROGRESS: pass 0, at document #3738000/4922894\n", - "2019-01-16 05:51:51,011 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:51,570 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 05:51:51,572 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:51:51,573 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:51:51,575 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.029*\"text\" + 0.026*\"till\" + 0.025*\"black\" + 0.025*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:51:51,576 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:51:51,582 : INFO : topic diff=0.003231, rho=0.023131\n", - "2019-01-16 05:51:56,277 : INFO : -11.368 per-word bound, 2643.8 perplexity estimate based on a held-out corpus of 2000 documents with 570062 words\n", - "2019-01-16 05:51:56,277 : INFO : PROGRESS: pass 0, at document #3740000/4922894\n", - "2019-01-16 05:51:58,298 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:51:58,855 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:51:58,856 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.020*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:51:58,858 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.032*\"south\" + 0.031*\"chines\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:51:58,860 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.029*\"text\" + 0.026*\"till\" + 0.025*\"black\" + 0.024*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:51:58,862 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:51:58,869 : INFO : topic diff=0.003503, rho=0.023125\n", - "2019-01-16 05:51:59,153 : INFO : PROGRESS: pass 0, at document #3742000/4922894\n", - "2019-01-16 05:52:01,175 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:01,734 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:52:01,735 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.011*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:52:01,737 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.020*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:52:01,738 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:52:01,740 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 05:52:01,745 : INFO : topic diff=0.002959, rho=0.023119\n", - "2019-01-16 05:52:02,003 : INFO : PROGRESS: pass 0, at document #3744000/4922894\n", - "2019-01-16 05:52:03,975 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:04,531 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.031*\"south\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:52:04,533 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:52:04,534 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.059*\"wikit\" + 0.057*\"align\" + 0.051*\"style\" + 0.050*\"left\" + 0.045*\"center\" + 0.034*\"list\" + 0.031*\"philippin\" + 0.030*\"text\" + 0.030*\"right\"\n", - "2019-01-16 05:52:04,536 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"vehicl\" + 0.008*\"type\" + 0.008*\"us\"\n", - "2019-01-16 05:52:04,537 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"georg\" + 0.015*\"london\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\"\n", - "2019-01-16 05:52:04,544 : INFO : topic diff=0.003253, rho=0.023113\n", - "2019-01-16 05:52:04,828 : INFO : PROGRESS: pass 0, at document #3746000/4922894\n", - "2019-01-16 05:52:06,873 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:07,429 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 05:52:07,431 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"materi\" + 0.005*\"effect\"\n", - "2019-01-16 05:52:07,432 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:52:07,433 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:52:07,435 : INFO : topic #21 (0.020): 0.010*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 05:52:07,441 : INFO : topic diff=0.003014, rho=0.023106\n", - "2019-01-16 05:52:07,723 : INFO : PROGRESS: pass 0, at document #3748000/4922894\n", - "2019-01-16 05:52:09,739 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:10,295 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:52:10,297 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"produc\"\n", - "2019-01-16 05:52:10,298 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.023*\"point\" + 0.020*\"winner\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:52:10,300 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:52:10,301 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:52:10,307 : INFO : topic diff=0.003167, rho=0.023100\n", - "2019-01-16 05:52:10,572 : INFO : PROGRESS: pass 0, at document #3750000/4922894\n", - "2019-01-16 05:52:12,590 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:13,147 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:52:13,148 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 05:52:13,150 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.010*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 05:52:13,151 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 05:52:13,153 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:52:13,158 : INFO : topic diff=0.003403, rho=0.023094\n", - "2019-01-16 05:52:13,430 : INFO : PROGRESS: pass 0, at document #3752000/4922894\n", - "2019-01-16 05:52:15,405 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:15,964 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:52:15,966 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.075*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.015*\"montreal\" + 0.014*\"quebec\"\n", - "2019-01-16 05:52:15,967 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:52:15,968 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:52:15,970 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:52:15,976 : INFO : topic diff=0.003688, rho=0.023088\n", - "2019-01-16 05:52:16,292 : INFO : PROGRESS: pass 0, at document #3754000/4922894\n", - "2019-01-16 05:52:18,387 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:18,944 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:52:18,945 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.029*\"text\" + 0.029*\"south\" + 0.026*\"till\" + 0.026*\"black\" + 0.025*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:52:18,947 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"time\"\n", - "2019-01-16 05:52:18,948 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:52:18,949 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:52:18,955 : INFO : topic diff=0.004295, rho=0.023082\n", - "2019-01-16 05:52:19,233 : INFO : PROGRESS: pass 0, at document #3756000/4922894\n", - "2019-01-16 05:52:21,194 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:21,751 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.070*\"march\" + 0.066*\"juli\" + 0.064*\"august\" + 0.064*\"june\" + 0.063*\"januari\" + 0.062*\"novemb\" + 0.061*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:52:21,753 : INFO : topic #39 (0.020): 0.053*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.020*\"airport\" + 0.020*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:52:21,754 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"year\" + 0.011*\"time\"\n", - "2019-01-16 05:52:21,756 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.019*\"london\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.013*\"manchest\"\n", - "2019-01-16 05:52:21,757 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:52:21,762 : INFO : topic diff=0.004148, rho=0.023076\n", - "2019-01-16 05:52:22,041 : INFO : PROGRESS: pass 0, at document #3758000/4922894\n", - "2019-01-16 05:52:24,058 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:24,616 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:52:24,617 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"tradit\" + 0.005*\"exampl\"\n", - "2019-01-16 05:52:24,618 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", - "2019-01-16 05:52:24,620 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"japan\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:52:24,621 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:52:24,627 : INFO : topic diff=0.003339, rho=0.023069\n", - "2019-01-16 05:52:29,222 : INFO : -11.721 per-word bound, 3376.0 perplexity estimate based on a held-out corpus of 2000 documents with 530450 words\n", - "2019-01-16 05:52:29,223 : INFO : PROGRESS: pass 0, at document #3760000/4922894\n", - "2019-01-16 05:52:31,273 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:31,830 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 05:52:31,831 : INFO : topic #49 (0.020): 0.099*\"district\" + 0.069*\"villag\" + 0.052*\"region\" + 0.039*\"north\" + 0.039*\"east\" + 0.038*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.030*\"municip\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:52:31,832 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 05:52:31,833 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"town\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", - "2019-01-16 05:52:31,834 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"defeat\" + 0.011*\"week\"\n", - "2019-01-16 05:52:31,840 : INFO : topic diff=0.004094, rho=0.023063\n", - "2019-01-16 05:52:32,126 : INFO : PROGRESS: pass 0, at document #3762000/4922894\n", - "2019-01-16 05:52:34,148 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:34,706 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:52:34,707 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:52:34,708 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.021*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", - "2019-01-16 05:52:34,710 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:52:34,711 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"time\"\n", - "2019-01-16 05:52:34,717 : INFO : topic diff=0.003791, rho=0.023057\n", - "2019-01-16 05:52:34,989 : INFO : PROGRESS: pass 0, at document #3764000/4922894\n", - "2019-01-16 05:52:36,929 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:37,489 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.011*\"defeat\" + 0.011*\"week\"\n", - "2019-01-16 05:52:37,491 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:52:37,492 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 05:52:37,494 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.058*\"wikit\" + 0.058*\"align\" + 0.051*\"style\" + 0.047*\"left\" + 0.045*\"center\" + 0.035*\"list\" + 0.032*\"right\" + 0.032*\"philippin\" + 0.029*\"text\"\n", - "2019-01-16 05:52:37,495 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:52:37,501 : INFO : topic diff=0.003250, rho=0.023051\n", - "2019-01-16 05:52:37,776 : INFO : PROGRESS: pass 0, at document #3766000/4922894\n", - "2019-01-16 05:52:39,782 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:40,343 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:52:40,345 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.032*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"counti\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", - "2019-01-16 05:52:40,348 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.009*\"gun\" + 0.009*\"naval\"\n", - "2019-01-16 05:52:40,349 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.019*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 05:52:40,350 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"park\"\n", - "2019-01-16 05:52:40,357 : INFO : topic diff=0.003390, rho=0.023045\n", - "2019-01-16 05:52:40,622 : INFO : PROGRESS: pass 0, at document #3768000/4922894\n", - "2019-01-16 05:52:42,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:43,169 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:52:43,171 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:52:43,172 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"church\" + 0.008*\"park\"\n", - "2019-01-16 05:52:43,174 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.009*\"naval\" + 0.009*\"gun\"\n", - "2019-01-16 05:52:43,175 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.032*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"counti\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", - "2019-01-16 05:52:43,182 : INFO : topic diff=0.003964, rho=0.023039\n", - "2019-01-16 05:52:43,471 : INFO : PROGRESS: pass 0, at document #3770000/4922894\n", - "2019-01-16 05:52:45,512 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:46,069 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"piano\" + 0.012*\"orchestra\" + 0.012*\"opera\"\n", - "2019-01-16 05:52:46,071 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.025*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:52:46,072 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:52:46,074 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"mexican\"\n", - "2019-01-16 05:52:46,075 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", - "2019-01-16 05:52:46,081 : INFO : topic diff=0.003471, rho=0.023033\n", - "2019-01-16 05:52:46,371 : INFO : PROGRESS: pass 0, at document #3772000/4922894\n", - "2019-01-16 05:52:48,453 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:49,014 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.015*\"polish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:52:49,016 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"township\"\n", - "2019-01-16 05:52:49,017 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:52:49,019 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:52:49,020 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"vehicl\" + 0.008*\"us\"\n", - "2019-01-16 05:52:49,027 : INFO : topic diff=0.004072, rho=0.023027\n", - "2019-01-16 05:52:49,315 : INFO : PROGRESS: pass 0, at document #3774000/4922894\n", - "2019-01-16 05:52:51,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:51,931 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.058*\"wikit\" + 0.057*\"align\" + 0.051*\"style\" + 0.047*\"left\" + 0.045*\"center\" + 0.035*\"list\" + 0.033*\"philippin\" + 0.031*\"right\" + 0.029*\"text\"\n", - "2019-01-16 05:52:51,933 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", - "2019-01-16 05:52:51,934 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"tom\"\n", - "2019-01-16 05:52:51,935 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.015*\"montreal\" + 0.014*\"quebec\"\n", - "2019-01-16 05:52:51,937 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:52:51,943 : INFO : topic diff=0.002860, rho=0.023020\n", - "2019-01-16 05:52:52,225 : INFO : PROGRESS: pass 0, at document #3776000/4922894\n", - "2019-01-16 05:52:54,226 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:54,783 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:52:54,785 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.012*\"republ\"\n", - "2019-01-16 05:52:54,786 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", - "2019-01-16 05:52:54,788 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:52:54,789 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.032*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"tamil\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"muslim\"\n", - "2019-01-16 05:52:54,795 : INFO : topic diff=0.003161, rho=0.023014\n", - "2019-01-16 05:52:55,105 : INFO : PROGRESS: pass 0, at document #3778000/4922894\n", - "2019-01-16 05:52:57,080 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:52:57,647 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.011*\"coast\" + 0.010*\"damag\" + 0.009*\"gun\" + 0.009*\"naval\"\n", - "2019-01-16 05:52:57,649 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", - "2019-01-16 05:52:57,651 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.032*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"tamil\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"muslim\"\n", - "2019-01-16 05:52:57,654 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.006*\"point\"\n", - "2019-01-16 05:52:57,655 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 05:52:57,661 : INFO : topic diff=0.003326, rho=0.023008\n", - "2019-01-16 05:53:02,212 : INFO : -11.954 per-word bound, 3966.1 perplexity estimate based on a held-out corpus of 2000 documents with 522799 words\n", - "2019-01-16 05:53:02,213 : INFO : PROGRESS: pass 0, at document #3780000/4922894\n", - "2019-01-16 05:53:04,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:04,736 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:53:04,738 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:53:04,740 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 05:53:04,741 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.075*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", - "2019-01-16 05:53:04,743 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.059*\"align\" + 0.058*\"wikit\" + 0.051*\"style\" + 0.049*\"left\" + 0.044*\"center\" + 0.035*\"list\" + 0.032*\"philippin\" + 0.031*\"right\" + 0.029*\"text\"\n", - "2019-01-16 05:53:04,749 : INFO : topic diff=0.003654, rho=0.023002\n", - "2019-01-16 05:53:05,034 : INFO : PROGRESS: pass 0, at document #3782000/4922894\n", - "2019-01-16 05:53:07,056 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:07,613 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:53:07,615 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:53:07,616 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.042*\"round\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.023*\"point\" + 0.021*\"winner\" + 0.020*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:53:07,618 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.036*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 05:53:07,619 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.054*\"australian\" + 0.052*\"new\" + 0.043*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:53:07,626 : INFO : topic diff=0.003539, rho=0.022996\n", - "2019-01-16 05:53:07,916 : INFO : PROGRESS: pass 0, at document #3784000/4922894\n", - "2019-01-16 05:53:09,882 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:10,440 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"valu\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:53:10,441 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"servic\" + 0.010*\"award\"\n", - "2019-01-16 05:53:10,443 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.075*\"canada\" + 0.064*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korean\" + 0.017*\"british\" + 0.016*\"korea\" + 0.014*\"montreal\" + 0.014*\"quebec\"\n", - "2019-01-16 05:53:10,444 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:53:10,446 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"citi\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:53:10,451 : INFO : topic diff=0.003535, rho=0.022990\n", - "2019-01-16 05:53:10,716 : INFO : PROGRESS: pass 0, at document #3786000/4922894\n", - "2019-01-16 05:53:12,715 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:13,272 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 05:53:13,274 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:53:13,275 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 05:53:13,276 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.031*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:53:13,278 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 05:53:13,283 : INFO : topic diff=0.003185, rho=0.022984\n", - "2019-01-16 05:53:13,568 : INFO : PROGRESS: pass 0, at document #3788000/4922894\n", - "2019-01-16 05:53:15,825 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:16,381 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"contest\" + 0.017*\"match\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"week\" + 0.012*\"defeat\"\n", - "2019-01-16 05:53:16,383 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.066*\"august\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.063*\"januari\" + 0.062*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:53:16,385 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.041*\"round\" + 0.026*\"tournament\" + 0.024*\"group\" + 0.023*\"winner\" + 0.023*\"point\" + 0.020*\"open\" + 0.016*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:53:16,386 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 05:53:16,388 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.020*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.016*\"danc\" + 0.012*\"opera\" + 0.012*\"piano\" + 0.012*\"orchestra\"\n", - "2019-01-16 05:53:16,393 : INFO : topic diff=0.003143, rho=0.022978\n", - "2019-01-16 05:53:16,686 : INFO : PROGRESS: pass 0, at document #3790000/4922894\n", - "2019-01-16 05:53:18,666 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:19,225 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"candid\" + 0.013*\"repres\"\n", - "2019-01-16 05:53:19,227 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:53:19,228 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 05:53:19,229 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:53:19,231 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"state\"\n", - "2019-01-16 05:53:19,236 : INFO : topic diff=0.002690, rho=0.022972\n", - "2019-01-16 05:53:19,521 : INFO : PROGRESS: pass 0, at document #3792000/4922894\n", - "2019-01-16 05:53:21,537 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:22,094 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"candid\" + 0.013*\"repres\"\n", - "2019-01-16 05:53:22,096 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.013*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:53:22,097 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.009*\"studi\" + 0.008*\"treatment\"\n", - "2019-01-16 05:53:22,099 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:53:22,101 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.014*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:53:22,108 : INFO : topic diff=0.003002, rho=0.022966\n", - "2019-01-16 05:53:22,388 : INFO : PROGRESS: pass 0, at document #3794000/4922894\n", - "2019-01-16 05:53:24,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:24,935 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"program\" + 0.009*\"campu\"\n", - "2019-01-16 05:53:24,937 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:53:24,938 : INFO : topic #12 (0.020): 0.053*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"candid\" + 0.013*\"repres\"\n", - "2019-01-16 05:53:24,939 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"electr\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:53:24,941 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.013*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:53:24,948 : INFO : topic diff=0.003235, rho=0.022960\n", - "2019-01-16 05:53:25,222 : INFO : PROGRESS: pass 0, at document #3796000/4922894\n", - "2019-01-16 05:53:27,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:27,762 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:53:27,763 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:53:27,765 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:53:27,766 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:53:27,768 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:53:27,773 : INFO : topic diff=0.003439, rho=0.022954\n", - "2019-01-16 05:53:28,062 : INFO : PROGRESS: pass 0, at document #3798000/4922894\n", - "2019-01-16 05:53:30,129 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:30,687 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"church\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:53:30,689 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:53:30,691 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 05:53:30,692 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 05:53:30,694 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 05:53:30,699 : INFO : topic diff=0.004186, rho=0.022948\n", - "2019-01-16 05:53:35,339 : INFO : -11.847 per-word bound, 3683.8 perplexity estimate based on a held-out corpus of 2000 documents with 566539 words\n", - "2019-01-16 05:53:35,340 : INFO : PROGRESS: pass 0, at document #3800000/4922894\n", - "2019-01-16 05:53:37,377 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:37,936 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 05:53:37,937 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"centuri\"\n", - "2019-01-16 05:53:37,939 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.068*\"villag\" + 0.052*\"region\" + 0.039*\"north\" + 0.037*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.029*\"municip\"\n", - "2019-01-16 05:53:37,941 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"georg\" + 0.015*\"london\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 05:53:37,942 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:53:37,949 : INFO : topic diff=0.003776, rho=0.022942\n", - "2019-01-16 05:53:38,228 : INFO : PROGRESS: pass 0, at document #3802000/4922894\n", - "2019-01-16 05:53:40,217 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:40,773 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"park\" + 0.012*\"lake\" + 0.012*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:53:40,775 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.006*\"point\"\n", - "2019-01-16 05:53:40,776 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.022*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.012*\"tamil\" + 0.011*\"khan\"\n", - "2019-01-16 05:53:40,778 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"royal\"\n", - "2019-01-16 05:53:40,780 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:53:40,786 : INFO : topic diff=0.003974, rho=0.022936\n", - "2019-01-16 05:53:41,104 : INFO : PROGRESS: pass 0, at document #3804000/4922894\n", - "2019-01-16 05:53:43,084 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:43,641 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:53:43,643 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.022*\"car\" + 0.018*\"team\" + 0.013*\"driver\" + 0.013*\"championship\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"ford\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:53:43,644 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:53:43,646 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"tamil\"\n", - "2019-01-16 05:53:43,647 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:53:43,653 : INFO : topic diff=0.003474, rho=0.022930\n", - "2019-01-16 05:53:43,934 : INFO : PROGRESS: pass 0, at document #3806000/4922894\n", - "2019-01-16 05:53:45,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:46,478 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.042*\"round\" + 0.026*\"tournament\" + 0.026*\"winner\" + 0.023*\"group\" + 0.022*\"point\" + 0.019*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:53:46,479 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.017*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:53:46,482 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:53:46,486 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:53:46,488 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:53:46,494 : INFO : topic diff=0.003125, rho=0.022923\n", - "2019-01-16 05:53:46,785 : INFO : PROGRESS: pass 0, at document #3808000/4922894\n", - "2019-01-16 05:53:48,849 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:49,415 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.071*\"march\" + 0.067*\"juli\" + 0.067*\"august\" + 0.064*\"june\" + 0.064*\"novemb\" + 0.063*\"januari\" + 0.062*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:53:49,417 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.051*\"new\" + 0.043*\"china\" + 0.032*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:53:49,419 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.020*\"cricket\" + 0.019*\"london\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:53:49,420 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"develop\" + 0.010*\"award\"\n", - "2019-01-16 05:53:49,421 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.012*\"polic\" + 0.011*\"case\" + 0.010*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:53:49,427 : INFO : topic diff=0.003471, rho=0.022917\n", - "2019-01-16 05:53:49,701 : INFO : PROGRESS: pass 0, at document #3810000/4922894\n", - "2019-01-16 05:53:51,678 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:52,236 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.032*\"town\" + 0.031*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"counti\" + 0.022*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:53:52,237 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:53:52,239 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:53:52,240 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"servic\" + 0.011*\"develop\" + 0.010*\"award\"\n", - "2019-01-16 05:53:52,241 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 05:53:52,247 : INFO : topic diff=0.003287, rho=0.022911\n", - "2019-01-16 05:53:52,527 : INFO : PROGRESS: pass 0, at document #3812000/4922894\n", - "2019-01-16 05:53:54,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:55,127 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.067*\"villag\" + 0.053*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.030*\"municip\" + 0.030*\"provinc\"\n", - "2019-01-16 05:53:55,129 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:53:55,131 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.022*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:53:55,132 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"fight\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"week\"\n", - "2019-01-16 05:53:55,133 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.010*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"group\"\n", - "2019-01-16 05:53:55,139 : INFO : topic diff=0.004471, rho=0.022905\n", - "2019-01-16 05:53:55,434 : INFO : PROGRESS: pass 0, at document #3814000/4922894\n", - "2019-01-16 05:53:57,507 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:53:58,066 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:53:58,068 : INFO : topic #25 (0.020): 0.043*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.025*\"winner\" + 0.023*\"group\" + 0.022*\"point\" + 0.020*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:53:58,069 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.032*\"town\" + 0.031*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"household\" + 0.020*\"peopl\"\n", - "2019-01-16 05:53:58,071 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:53:58,072 : INFO : topic #49 (0.020): 0.100*\"district\" + 0.068*\"villag\" + 0.052*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.030*\"municip\" + 0.030*\"provinc\"\n", - "2019-01-16 05:53:58,079 : INFO : topic diff=0.003576, rho=0.022899\n", - "2019-01-16 05:53:58,342 : INFO : PROGRESS: pass 0, at document #3816000/4922894\n", - "2019-01-16 05:54:00,314 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:00,872 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:54:00,874 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.057*\"wikit\" + 0.057*\"align\" + 0.050*\"style\" + 0.049*\"left\" + 0.043*\"center\" + 0.034*\"list\" + 0.034*\"philippin\" + 0.030*\"right\" + 0.028*\"text\"\n", - "2019-01-16 05:54:00,875 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"program\"\n", - "2019-01-16 05:54:00,876 : INFO : topic #31 (0.020): 0.064*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:54:00,877 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.011*\"coast\" + 0.011*\"gun\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 05:54:00,883 : INFO : topic diff=0.003456, rho=0.022893\n", - "2019-01-16 05:54:01,161 : INFO : PROGRESS: pass 0, at document #3818000/4922894\n", - "2019-01-16 05:54:03,143 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:03,701 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:54:03,703 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:54:03,705 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.006*\"fish\"\n", - "2019-01-16 05:54:03,706 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.023*\"american\" + 0.022*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 05:54:03,707 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:54:03,713 : INFO : topic diff=0.003355, rho=0.022887\n", - "2019-01-16 05:54:08,276 : INFO : -11.500 per-word bound, 2896.3 perplexity estimate based on a held-out corpus of 2000 documents with 558249 words\n", - "2019-01-16 05:54:08,277 : INFO : PROGRESS: pass 0, at document #3820000/4922894\n", - "2019-01-16 05:54:10,255 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:10,811 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.039*\"african\" + 0.029*\"south\" + 0.026*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:54:10,812 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.014*\"father\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:54:10,815 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.058*\"wikit\" + 0.057*\"align\" + 0.049*\"style\" + 0.048*\"left\" + 0.043*\"center\" + 0.034*\"list\" + 0.034*\"philippin\" + 0.031*\"right\" + 0.027*\"text\"\n", - "2019-01-16 05:54:10,816 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", - "2019-01-16 05:54:10,818 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"georg\" + 0.015*\"london\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.013*\"royal\"\n", - "2019-01-16 05:54:10,824 : INFO : topic diff=0.002664, rho=0.022881\n", - "2019-01-16 05:54:11,105 : INFO : PROGRESS: pass 0, at document #3822000/4922894\n", - "2019-01-16 05:54:13,056 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:13,611 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 05:54:13,613 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", - "2019-01-16 05:54:13,614 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.058*\"align\" + 0.057*\"wikit\" + 0.049*\"style\" + 0.048*\"left\" + 0.043*\"center\" + 0.034*\"philippin\" + 0.034*\"list\" + 0.031*\"right\" + 0.027*\"text\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:54:13,616 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:54:13,617 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.011*\"island\" + 0.011*\"boat\" + 0.011*\"gun\" + 0.011*\"port\" + 0.011*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:54:13,623 : INFO : topic diff=0.003562, rho=0.022875\n", - "2019-01-16 05:54:13,891 : INFO : PROGRESS: pass 0, at document #3824000/4922894\n", - "2019-01-16 05:54:15,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:16,466 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:54:16,467 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 05:54:16,468 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:54:16,470 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:54:16,472 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.008*\"church\"\n", - "2019-01-16 05:54:16,478 : INFO : topic diff=0.003339, rho=0.022869\n", - "2019-01-16 05:54:16,754 : INFO : PROGRESS: pass 0, at document #3826000/4922894\n", - "2019-01-16 05:54:18,753 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:19,313 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.037*\"russian\" + 0.023*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.015*\"jewish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 05:54:19,314 : INFO : topic #48 (0.020): 0.079*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.068*\"juli\" + 0.067*\"august\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:54:19,316 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"star\" + 0.005*\"temperatur\" + 0.005*\"effect\"\n", - "2019-01-16 05:54:19,317 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"sea\" + 0.015*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"gun\" + 0.011*\"port\" + 0.011*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:54:19,319 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 05:54:19,326 : INFO : topic diff=0.003509, rho=0.022863\n", - "2019-01-16 05:54:19,615 : INFO : PROGRESS: pass 0, at document #3828000/4922894\n", - "2019-01-16 05:54:21,660 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:22,220 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.022*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:54:22,221 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:54:22,222 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:54:22,224 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.057*\"wikit\" + 0.057*\"align\" + 0.048*\"style\" + 0.047*\"left\" + 0.043*\"center\" + 0.034*\"philippin\" + 0.033*\"list\" + 0.032*\"right\" + 0.027*\"text\"\n", - "2019-01-16 05:54:22,226 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\"\n", - "2019-01-16 05:54:22,231 : INFO : topic diff=0.004061, rho=0.022858\n", - "2019-01-16 05:54:22,549 : INFO : PROGRESS: pass 0, at document #3830000/4922894\n", - "2019-01-16 05:54:24,568 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:25,126 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 05:54:25,127 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:54:25,129 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"return\" + 0.004*\"friend\"\n", - "2019-01-16 05:54:25,131 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 05:54:25,132 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:54:25,138 : INFO : topic diff=0.003180, rho=0.022852\n", - "2019-01-16 05:54:25,413 : INFO : PROGRESS: pass 0, at document #3832000/4922894\n", - "2019-01-16 05:54:27,391 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:27,949 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.022*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"lap\"\n", - "2019-01-16 05:54:27,951 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.009*\"roman\" + 0.009*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 05:54:27,952 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 05:54:27,954 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:54:27,955 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 05:54:27,961 : INFO : topic diff=0.003019, rho=0.022846\n", - "2019-01-16 05:54:28,241 : INFO : PROGRESS: pass 0, at document #3834000/4922894\n", - "2019-01-16 05:54:30,221 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:30,780 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:54:30,782 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.068*\"juli\" + 0.067*\"august\" + 0.065*\"januari\" + 0.065*\"novemb\" + 0.064*\"june\" + 0.062*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:54:30,783 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.051*\"new\" + 0.044*\"china\" + 0.033*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:54:30,784 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:54:30,785 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.026*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.024*\"color\" + 0.015*\"storm\" + 0.014*\"tropic\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:54:30,791 : INFO : topic diff=0.003696, rho=0.022840\n", - "2019-01-16 05:54:31,066 : INFO : PROGRESS: pass 0, at document #3836000/4922894\n", - "2019-01-16 05:54:33,009 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:33,566 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.012*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 05:54:33,567 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"township\" + 0.023*\"commun\" + 0.023*\"counti\" + 0.022*\"household\"\n", - "2019-01-16 05:54:33,568 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"texa\" + 0.012*\"washington\"\n", - "2019-01-16 05:54:33,569 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:54:33,571 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"driver\" + 0.012*\"championship\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.011*\"ford\" + 0.011*\"lap\" + 0.011*\"year\"\n", - "2019-01-16 05:54:33,577 : INFO : topic diff=0.003491, rho=0.022834\n", - "2019-01-16 05:54:33,864 : INFO : PROGRESS: pass 0, at document #3838000/4922894\n", - "2019-01-16 05:54:35,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:36,429 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", - "2019-01-16 05:54:36,430 : INFO : topic #49 (0.020): 0.101*\"district\" + 0.067*\"villag\" + 0.052*\"region\" + 0.038*\"north\" + 0.038*\"counti\" + 0.037*\"east\" + 0.037*\"west\" + 0.034*\"south\" + 0.031*\"municip\" + 0.030*\"provinc\"\n", - "2019-01-16 05:54:36,432 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.067*\"juli\" + 0.067*\"august\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.061*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:54:36,433 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"township\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"household\"\n", - "2019-01-16 05:54:36,435 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"star\"\n", - "2019-01-16 05:54:36,441 : INFO : topic diff=0.003114, rho=0.022828\n", - "2019-01-16 05:54:41,061 : INFO : -11.942 per-word bound, 3935.8 perplexity estimate based on a held-out corpus of 2000 documents with 554886 words\n", - "2019-01-16 05:54:41,062 : INFO : PROGRESS: pass 0, at document #3840000/4922894\n", - "2019-01-16 05:54:43,091 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:43,650 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 05:54:43,651 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"author\" + 0.011*\"novel\"\n", - "2019-01-16 05:54:43,653 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:54:43,655 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:54:43,656 : INFO : topic #35 (0.020): 0.034*\"hong\" + 0.034*\"kong\" + 0.024*\"kim\" + 0.023*\"lee\" + 0.020*\"singapor\" + 0.017*\"japanes\" + 0.015*\"malaysia\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:54:43,662 : INFO : topic diff=0.003037, rho=0.022822\n", - "2019-01-16 05:54:43,947 : INFO : PROGRESS: pass 0, at document #3842000/4922894\n", - "2019-01-16 05:54:45,946 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:46,505 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"fight\" + 0.017*\"contest\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", - "2019-01-16 05:54:46,506 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.018*\"korean\" + 0.017*\"british\" + 0.015*\"korea\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 05:54:46,508 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.019*\"minist\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 05:54:46,509 : INFO : topic #35 (0.020): 0.035*\"hong\" + 0.034*\"kong\" + 0.023*\"kim\" + 0.023*\"lee\" + 0.021*\"singapor\" + 0.017*\"japanes\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"asia\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:54:46,510 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 05:54:46,516 : INFO : topic diff=0.003260, rho=0.022816\n", - "2019-01-16 05:54:46,780 : INFO : PROGRESS: pass 0, at document #3844000/4922894\n", - "2019-01-16 05:54:48,768 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:49,325 : INFO : topic #48 (0.020): 0.078*\"septemb\" + 0.073*\"march\" + 0.073*\"octob\" + 0.067*\"juli\" + 0.067*\"august\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.062*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:54:49,327 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", - "2019-01-16 05:54:49,328 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.015*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:54:49,329 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:54:49,331 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.020*\"imag\" + 0.018*\"exhibit\" + 0.018*\"design\"\n", - "2019-01-16 05:54:49,337 : INFO : topic diff=0.003355, rho=0.022810\n", - "2019-01-16 05:54:49,606 : INFO : PROGRESS: pass 0, at document #3846000/4922894\n", - "2019-01-16 05:54:51,591 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:52,148 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:54:52,149 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:54:52,151 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"japan\" + 0.021*\"event\" + 0.021*\"medal\" + 0.017*\"gold\" + 0.017*\"athlet\"\n", - "2019-01-16 05:54:52,153 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 05:54:52,154 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.024*\"winner\" + 0.023*\"group\" + 0.022*\"point\" + 0.019*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:54:52,161 : INFO : topic diff=0.004341, rho=0.022804\n", - "2019-01-16 05:54:52,444 : INFO : PROGRESS: pass 0, at document #3848000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:54:54,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:55,024 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:54:55,026 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:54:55,028 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:54:55,029 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:54:55,030 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:54:55,037 : INFO : topic diff=0.003412, rho=0.022798\n", - "2019-01-16 05:54:55,328 : INFO : PROGRESS: pass 0, at document #3850000/4922894\n", - "2019-01-16 05:54:57,373 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:54:57,931 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.021*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:54:57,932 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:54:57,934 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 05:54:57,935 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 05:54:57,936 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", - "2019-01-16 05:54:57,942 : INFO : topic diff=0.002922, rho=0.022792\n", - "2019-01-16 05:54:58,219 : INFO : PROGRESS: pass 0, at document #3852000/4922894\n", - "2019-01-16 05:55:00,231 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:00,789 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.023*\"group\" + 0.022*\"point\" + 0.019*\"open\" + 0.016*\"place\" + 0.013*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:55:00,790 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.032*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"islam\"\n", - "2019-01-16 05:55:00,791 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"township\" + 0.022*\"household\"\n", - "2019-01-16 05:55:00,793 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:55:00,794 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 05:55:00,799 : INFO : topic diff=0.003129, rho=0.022786\n", - "2019-01-16 05:55:01,104 : INFO : PROGRESS: pass 0, at document #3854000/4922894\n", - "2019-01-16 05:55:03,053 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:03,611 : INFO : topic #13 (0.020): 0.053*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.023*\"counti\" + 0.017*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 05:55:03,613 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:55:03,615 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.038*\"univers\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:55:03,616 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"plai\" + 0.017*\"compos\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:55:03,618 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"said\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 05:55:03,623 : INFO : topic diff=0.003314, rho=0.022780\n", - "2019-01-16 05:55:03,895 : INFO : PROGRESS: pass 0, at document #3856000/4922894\n", - "2019-01-16 05:55:05,933 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:06,490 : INFO : topic #48 (0.020): 0.077*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.068*\"juli\" + 0.067*\"august\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 05:55:06,491 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"oper\" + 0.007*\"new\"\n", - "2019-01-16 05:55:06,494 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.017*\"korean\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.014*\"quebec\"\n", - "2019-01-16 05:55:06,496 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 05:55:06,497 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.017*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 05:55:06,503 : INFO : topic diff=0.003661, rho=0.022774\n", - "2019-01-16 05:55:06,790 : INFO : PROGRESS: pass 0, at document #3858000/4922894\n", - "2019-01-16 05:55:08,811 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:09,369 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\"\n", - "2019-01-16 05:55:09,371 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:55:09,372 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.012*\"swedish\" + 0.012*\"und\"\n", - "2019-01-16 05:55:09,373 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 05:55:09,375 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:55:09,382 : INFO : topic diff=0.003066, rho=0.022768\n", - "2019-01-16 05:55:13,772 : INFO : -11.650 per-word bound, 3213.2 perplexity estimate based on a held-out corpus of 2000 documents with 509194 words\n", - "2019-01-16 05:55:13,773 : INFO : PROGRESS: pass 0, at document #3860000/4922894\n", - "2019-01-16 05:55:16,019 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:16,577 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.039*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.013*\"tropic\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:55:16,579 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:55:16,580 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"star\"\n", - "2019-01-16 05:55:16,581 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 05:55:16,583 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"jame\" + 0.014*\"henri\" + 0.013*\"thoma\" + 0.013*\"ireland\"\n", - "2019-01-16 05:55:16,588 : INFO : topic diff=0.003295, rho=0.022763\n", - "2019-01-16 05:55:16,867 : INFO : PROGRESS: pass 0, at document #3862000/4922894\n", - "2019-01-16 05:55:18,886 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:19,443 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"township\" + 0.023*\"counti\" + 0.022*\"household\"\n", - "2019-01-16 05:55:19,444 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:55:19,446 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", - "2019-01-16 05:55:19,448 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.038*\"univers\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:55:19,449 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.023*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:55:19,455 : INFO : topic diff=0.003378, rho=0.022757\n", - "2019-01-16 05:55:19,738 : INFO : PROGRESS: pass 0, at document #3864000/4922894\n", - "2019-01-16 05:55:21,740 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:22,305 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.050*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:55:22,307 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:55:22,309 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:55:22,311 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 05:55:22,313 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.039*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.026*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 05:55:22,319 : INFO : topic diff=0.003810, rho=0.022751\n", - "2019-01-16 05:55:22,602 : INFO : PROGRESS: pass 0, at document #3866000/4922894\n", - "2019-01-16 05:55:24,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:25,152 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 05:55:25,154 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:55:25,155 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:55:25,156 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.020*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"danc\" + 0.016*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 05:55:25,158 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:55:25,163 : INFO : topic diff=0.003235, rho=0.022745\n", - "2019-01-16 05:55:25,438 : INFO : PROGRESS: pass 0, at document #3868000/4922894\n", - "2019-01-16 05:55:27,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:28,025 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:55:28,027 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:55:28,029 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:55:28,030 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.043*\"colleg\" + 0.039*\"univers\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:55:28,032 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", - "2019-01-16 05:55:28,037 : INFO : topic diff=0.003372, rho=0.022739\n", - "2019-01-16 05:55:28,306 : INFO : PROGRESS: pass 0, at document #3870000/4922894\n", - "2019-01-16 05:55:30,286 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:30,844 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", - "2019-01-16 05:55:30,845 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:55:30,847 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.013*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 05:55:30,849 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 05:55:30,850 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.039*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 05:55:30,856 : INFO : topic diff=0.003451, rho=0.022733\n", - "2019-01-16 05:55:31,159 : INFO : PROGRESS: pass 0, at document #3872000/4922894\n", - "2019-01-16 05:55:33,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:33,792 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:55:33,794 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:55:33,795 : INFO : topic #35 (0.020): 0.034*\"hong\" + 0.033*\"kong\" + 0.023*\"lee\" + 0.022*\"kim\" + 0.020*\"singapor\" + 0.016*\"japanes\" + 0.016*\"malaysia\" + 0.016*\"chines\" + 0.015*\"asian\" + 0.014*\"indonesia\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:55:33,797 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 05:55:33,798 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.075*\"septemb\" + 0.073*\"octob\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.062*\"june\" + 0.060*\"april\" + 0.060*\"decemb\"\n", - "2019-01-16 05:55:33,804 : INFO : topic diff=0.003506, rho=0.022727\n", - "2019-01-16 05:55:34,084 : INFO : PROGRESS: pass 0, at document #3874000/4922894\n", - "2019-01-16 05:55:36,121 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:36,677 : INFO : topic #46 (0.020): 0.134*\"class\" + 0.064*\"align\" + 0.057*\"wikit\" + 0.051*\"left\" + 0.047*\"style\" + 0.041*\"center\" + 0.033*\"list\" + 0.033*\"philippin\" + 0.033*\"right\" + 0.028*\"text\"\n", - "2019-01-16 05:55:36,678 : INFO : topic #35 (0.020): 0.034*\"hong\" + 0.033*\"kong\" + 0.023*\"lee\" + 0.022*\"kim\" + 0.020*\"singapor\" + 0.016*\"japanes\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"asian\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:55:36,680 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:55:36,681 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:55:36,683 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", - "2019-01-16 05:55:36,688 : INFO : topic diff=0.003430, rho=0.022721\n", - "2019-01-16 05:55:36,970 : INFO : PROGRESS: pass 0, at document #3876000/4922894\n", - "2019-01-16 05:55:38,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:39,554 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.033*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"tamil\" + 0.011*\"ali\"\n", - "2019-01-16 05:55:39,556 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.013*\"sweden\"\n", - "2019-01-16 05:55:39,558 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:55:39,559 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"japan\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"gold\" + 0.017*\"athlet\"\n", - "2019-01-16 05:55:39,560 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.038*\"univers\" + 0.038*\"student\" + 0.030*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:55:39,567 : INFO : topic diff=0.003464, rho=0.022716\n", - "2019-01-16 05:55:39,851 : INFO : PROGRESS: pass 0, at document #3878000/4922894\n", - "2019-01-16 05:55:41,855 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:42,413 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 05:55:42,415 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"township\" + 0.022*\"household\"\n", - "2019-01-16 05:55:42,416 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:55:42,418 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.017*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:55:42,423 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.015*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:55:42,430 : INFO : topic diff=0.003364, rho=0.022710\n", - "2019-01-16 05:55:47,250 : INFO : -11.881 per-word bound, 3771.9 perplexity estimate based on a held-out corpus of 2000 documents with 573001 words\n", - "2019-01-16 05:55:47,251 : INFO : PROGRESS: pass 0, at document #3880000/4922894\n", - "2019-01-16 05:55:49,370 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:49,931 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"theori\" + 0.007*\"group\"\n", - "2019-01-16 05:55:49,933 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", - "2019-01-16 05:55:49,935 : INFO : topic #49 (0.020): 0.097*\"district\" + 0.067*\"villag\" + 0.051*\"region\" + 0.038*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.034*\"south\" + 0.031*\"municip\" + 0.031*\"provinc\"\n", - "2019-01-16 05:55:49,936 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 05:55:49,938 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 05:55:49,943 : INFO : topic diff=0.003779, rho=0.022704\n", - "2019-01-16 05:55:50,216 : INFO : PROGRESS: pass 0, at document #3882000/4922894\n", - "2019-01-16 05:55:52,200 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:52,758 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:55:52,759 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"host\" + 0.011*\"program\" + 0.011*\"dai\" + 0.011*\"network\"\n", - "2019-01-16 05:55:52,761 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"counti\" + 0.022*\"township\" + 0.022*\"household\"\n", - "2019-01-16 05:55:52,762 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.067*\"align\" + 0.056*\"left\" + 0.056*\"wikit\" + 0.046*\"style\" + 0.040*\"center\" + 0.033*\"philippin\" + 0.032*\"right\" + 0.032*\"list\" + 0.027*\"text\"\n", - "2019-01-16 05:55:52,763 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.023*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.017*\"jewish\" + 0.014*\"poland\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:55:52,768 : INFO : topic diff=0.003199, rho=0.022698\n", - "2019-01-16 05:55:53,044 : INFO : PROGRESS: pass 0, at document #3884000/4922894\n", - "2019-01-16 05:55:54,997 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:55,554 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"citi\" + 0.031*\"ag\" + 0.031*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"township\" + 0.022*\"household\"\n", - "2019-01-16 05:55:55,555 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 05:55:55,556 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"type\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 05:55:55,558 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.028*\"south\" + 0.028*\"text\" + 0.025*\"till\" + 0.025*\"black\" + 0.023*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:55:55,559 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 05:55:55,564 : INFO : topic diff=0.003479, rho=0.022692\n", - "2019-01-16 05:55:55,847 : INFO : PROGRESS: pass 0, at document #3886000/4922894\n", - "2019-01-16 05:55:57,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:55:58,391 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.067*\"align\" + 0.056*\"wikit\" + 0.056*\"left\" + 0.046*\"style\" + 0.041*\"center\" + 0.033*\"philippin\" + 0.032*\"right\" + 0.032*\"list\" + 0.028*\"text\"\n", - "2019-01-16 05:55:58,392 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"squadron\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 05:55:58,396 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"fight\" + 0.017*\"contest\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", - "2019-01-16 05:55:58,397 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"theori\" + 0.007*\"group\"\n", - "2019-01-16 05:55:58,398 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.033*\"hong\" + 0.023*\"lee\" + 0.023*\"kim\" + 0.021*\"singapor\" + 0.016*\"chines\" + 0.016*\"malaysia\" + 0.016*\"japanes\" + 0.014*\"asian\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:55:58,404 : INFO : topic diff=0.002878, rho=0.022686\n", - "2019-01-16 05:55:58,674 : INFO : PROGRESS: pass 0, at document #3888000/4922894\n", - "2019-01-16 05:56:00,654 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:01,211 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 05:56:01,212 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:56:01,214 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.016*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:56:01,215 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:56:01,217 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 05:56:01,223 : INFO : topic diff=0.003154, rho=0.022680\n", - "2019-01-16 05:56:01,513 : INFO : PROGRESS: pass 0, at document #3890000/4922894\n", - "2019-01-16 05:56:03,488 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:04,045 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"fight\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.017*\"contest\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", - "2019-01-16 05:56:04,046 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 05:56:04,048 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:56:04,049 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 05:56:04,051 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:56:04,057 : INFO : topic diff=0.003554, rho=0.022675\n", - "2019-01-16 05:56:04,320 : INFO : PROGRESS: pass 0, at document #3892000/4922894\n", - "2019-01-16 05:56:06,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:06,875 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.043*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 05:56:06,877 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:56:06,880 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", - "2019-01-16 05:56:06,882 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.028*\"text\" + 0.028*\"south\" + 0.025*\"black\" + 0.025*\"till\" + 0.024*\"color\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:56:06,883 : INFO : topic #29 (0.020): 0.038*\"club\" + 0.038*\"leagu\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.016*\"match\"\n", - "2019-01-16 05:56:06,889 : INFO : topic diff=0.004013, rho=0.022669\n", - "2019-01-16 05:56:07,158 : INFO : PROGRESS: pass 0, at document #3894000/4922894\n", - "2019-01-16 05:56:09,125 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:09,688 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 05:56:09,690 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"jack\" + 0.006*\"peter\" + 0.006*\"tom\"\n", - "2019-01-16 05:56:09,691 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"gold\" + 0.017*\"athlet\"\n", - "2019-01-16 05:56:09,693 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:56:09,695 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.024*\"town\" + 0.021*\"unit\" + 0.021*\"london\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.012*\"wale\" + 0.012*\"manchest\" + 0.012*\"scottish\"\n", - "2019-01-16 05:56:09,701 : INFO : topic diff=0.003231, rho=0.022663\n", - "2019-01-16 05:56:09,968 : INFO : PROGRESS: pass 0, at document #3896000/4922894\n", - "2019-01-16 05:56:11,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:12,527 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.023*\"american\" + 0.020*\"soviet\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.014*\"poland\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:56:12,528 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:56:12,531 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.032*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:56:12,532 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:56:12,535 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:56:12,541 : INFO : topic diff=0.003585, rho=0.022657\n", - "2019-01-16 05:56:12,820 : INFO : PROGRESS: pass 0, at document #3898000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:56:14,883 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:15,444 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.020*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"movi\" + 0.011*\"televis\"\n", - "2019-01-16 05:56:15,445 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:56:15,447 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.038*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 05:56:15,448 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"group\" + 0.007*\"theori\"\n", - "2019-01-16 05:56:15,450 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 05:56:15,457 : INFO : topic diff=0.003434, rho=0.022651\n", - "2019-01-16 05:56:20,126 : INFO : -11.729 per-word bound, 3394.7 perplexity estimate based on a held-out corpus of 2000 documents with 552505 words\n", - "2019-01-16 05:56:20,127 : INFO : PROGRESS: pass 0, at document #3900000/4922894\n", - "2019-01-16 05:56:22,134 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:22,691 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:56:22,693 : INFO : topic #35 (0.020): 0.035*\"hong\" + 0.034*\"kong\" + 0.023*\"lee\" + 0.021*\"kim\" + 0.021*\"singapor\" + 0.017*\"chines\" + 0.016*\"japanes\" + 0.016*\"malaysia\" + 0.015*\"indonesia\" + 0.014*\"asian\"\n", - "2019-01-16 05:56:22,694 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:56:22,696 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 05:56:22,697 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", - "2019-01-16 05:56:22,703 : INFO : topic diff=0.003080, rho=0.022646\n", - "2019-01-16 05:56:22,988 : INFO : PROGRESS: pass 0, at document #3902000/4922894\n", - "2019-01-16 05:56:24,982 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:25,542 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.066*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.049*\"style\" + 0.043*\"center\" + 0.034*\"right\" + 0.032*\"list\" + 0.032*\"philippin\" + 0.029*\"text\"\n", - "2019-01-16 05:56:25,544 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"space\" + 0.005*\"effect\"\n", - "2019-01-16 05:56:25,545 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", - "2019-01-16 05:56:25,547 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"greek\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 05:56:25,548 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.016*\"match\"\n", - "2019-01-16 05:56:25,554 : INFO : topic diff=0.003527, rho=0.022640\n", - "2019-01-16 05:56:25,824 : INFO : PROGRESS: pass 0, at document #3904000/4922894\n", - "2019-01-16 05:56:27,837 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:28,393 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:56:28,395 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 05:56:28,396 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 05:56:28,398 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.012*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 05:56:28,399 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 05:56:28,406 : INFO : topic diff=0.003371, rho=0.022634\n", - "2019-01-16 05:56:28,728 : INFO : PROGRESS: pass 0, at document #3906000/4922894\n", - "2019-01-16 05:56:31,083 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:31,641 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:56:31,643 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 05:56:31,644 : INFO : topic #13 (0.020): 0.054*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:56:31,645 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:56:31,647 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"ford\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:56:31,652 : INFO : topic diff=0.003872, rho=0.022628\n", - "2019-01-16 05:56:31,927 : INFO : PROGRESS: pass 0, at document #3908000/4922894\n", - "2019-01-16 05:56:33,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:34,499 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"gener\" + 0.007*\"method\" + 0.007*\"theori\" + 0.007*\"group\"\n", - "2019-01-16 05:56:34,501 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 05:56:34,503 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:56:34,505 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.007*\"light\" + 0.007*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"space\" + 0.005*\"effect\"\n", - "2019-01-16 05:56:34,506 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:56:34,512 : INFO : topic diff=0.004135, rho=0.022622\n", - "2019-01-16 05:56:34,785 : INFO : PROGRESS: pass 0, at document #3910000/4922894\n", - "2019-01-16 05:56:36,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:37,345 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:56:37,346 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:56:37,348 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", - "2019-01-16 05:56:37,349 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.036*\"russian\" + 0.023*\"russia\" + 0.022*\"american\" + 0.021*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:56:37,351 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.006*\"red\"\n", - "2019-01-16 05:56:37,357 : INFO : topic diff=0.003776, rho=0.022617\n", - "2019-01-16 05:56:37,641 : INFO : PROGRESS: pass 0, at document #3912000/4922894\n", - "2019-01-16 05:56:39,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:40,176 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 05:56:40,178 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:56:40,181 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 05:56:40,183 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:56:40,185 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 05:56:40,191 : INFO : topic diff=0.003582, rho=0.022611\n", - "2019-01-16 05:56:40,470 : INFO : PROGRESS: pass 0, at document #3914000/4922894\n", - "2019-01-16 05:56:42,471 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:43,029 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"march\" + 0.072*\"octob\" + 0.065*\"juli\" + 0.065*\"januari\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.061*\"june\" + 0.060*\"april\" + 0.059*\"decemb\"\n", - "2019-01-16 05:56:43,032 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:56:43,035 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:56:43,036 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 05:56:43,037 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.037*\"russian\" + 0.023*\"russia\" + 0.021*\"american\" + 0.021*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.014*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 05:56:43,043 : INFO : topic diff=0.003040, rho=0.022605\n", - "2019-01-16 05:56:43,326 : INFO : PROGRESS: pass 0, at document #3916000/4922894\n", - "2019-01-16 05:56:45,372 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:45,931 : INFO : topic #23 (0.020): 0.016*\"hospit\" + 0.016*\"medic\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 05:56:45,932 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", - "2019-01-16 05:56:45,934 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:56:45,935 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.016*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:56:45,937 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:56:45,942 : INFO : topic diff=0.003911, rho=0.022599\n", - "2019-01-16 05:56:46,216 : INFO : PROGRESS: pass 0, at document #3918000/4922894\n", - "2019-01-16 05:56:48,153 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:48,710 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.028*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.023*\"black\" + 0.022*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 05:56:48,712 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:56:48,713 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.065*\"align\" + 0.056*\"wikit\" + 0.051*\"left\" + 0.050*\"style\" + 0.043*\"center\" + 0.037*\"list\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.031*\"text\"\n", - "2019-01-16 05:56:48,715 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 05:56:48,716 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", - "2019-01-16 05:56:48,722 : INFO : topic diff=0.003602, rho=0.022593\n", - "2019-01-16 05:56:53,301 : INFO : -11.669 per-word bound, 3256.6 perplexity estimate based on a held-out corpus of 2000 documents with 549255 words\n", - "2019-01-16 05:56:53,301 : INFO : PROGRESS: pass 0, at document #3920000/4922894\n", - "2019-01-16 05:56:55,304 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:55,860 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.022*\"car\" + 0.016*\"team\" + 0.013*\"driver\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:56:55,862 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.033*\"kong\" + 0.024*\"lee\" + 0.021*\"kim\" + 0.021*\"singapor\" + 0.017*\"chines\" + 0.016*\"japanes\" + 0.015*\"malaysia\" + 0.015*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 05:56:55,863 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 05:56:55,864 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.006*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:56:55,865 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:56:55,871 : INFO : topic diff=0.003016, rho=0.022588\n", - "2019-01-16 05:56:56,138 : INFO : PROGRESS: pass 0, at document #3922000/4922894\n", - "2019-01-16 05:56:58,074 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:56:58,631 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:56:58,632 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.011*\"piano\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:56:58,634 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.072*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"korean\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.015*\"montreal\" + 0.015*\"korea\"\n", - "2019-01-16 05:56:58,635 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.065*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.050*\"style\" + 0.046*\"center\" + 0.036*\"list\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.032*\"text\"\n", - "2019-01-16 05:56:58,637 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 05:56:58,643 : INFO : topic diff=0.003373, rho=0.022582\n", - "2019-01-16 05:56:58,911 : INFO : PROGRESS: pass 0, at document #3924000/4922894\n", - "2019-01-16 05:57:00,849 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:01,406 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:57:01,408 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"damag\"\n", - "2019-01-16 05:57:01,409 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:57:01,411 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", - "2019-01-16 05:57:01,412 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:57:01,419 : INFO : topic diff=0.003551, rho=0.022576\n", - "2019-01-16 05:57:01,707 : INFO : PROGRESS: pass 0, at document #3926000/4922894\n", - "2019-01-16 05:57:03,664 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:04,224 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.064*\"align\" + 0.057*\"wikit\" + 0.052*\"left\" + 0.049*\"style\" + 0.045*\"center\" + 0.036*\"list\" + 0.033*\"right\" + 0.032*\"philippin\" + 0.031*\"text\"\n", - "2019-01-16 05:57:04,225 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.012*\"tamil\" + 0.011*\"ali\"\n", - "2019-01-16 05:57:04,226 : INFO : topic #23 (0.020): 0.016*\"hospit\" + 0.016*\"medic\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 05:57:04,228 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 05:57:04,229 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:57:04,235 : INFO : topic diff=0.003267, rho=0.022570\n", - "2019-01-16 05:57:04,517 : INFO : PROGRESS: pass 0, at document #3928000/4922894\n", - "2019-01-16 05:57:06,509 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:07,069 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:57:07,070 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:57:07,072 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:57:07,073 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", - "2019-01-16 05:57:07,075 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:57:07,081 : INFO : topic diff=0.003169, rho=0.022565\n", - "2019-01-16 05:57:07,357 : INFO : PROGRESS: pass 0, at document #3930000/4922894\n", - "2019-01-16 05:57:09,438 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:10,004 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:57:10,006 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:57:10,007 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"jame\" + 0.014*\"ireland\" + 0.013*\"henri\" + 0.013*\"thoma\"\n", - "2019-01-16 05:57:10,011 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.009*\"park\"\n", - "2019-01-16 05:57:10,013 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:57:10,019 : INFO : topic diff=0.003834, rho=0.022559\n", - "2019-01-16 05:57:10,329 : INFO : PROGRESS: pass 0, at document #3932000/4922894\n", - "2019-01-16 05:57:12,388 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:12,952 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", - "2019-01-16 05:57:12,954 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:57:12,956 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:57:12,957 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 05:57:12,959 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.036*\"east\" + 0.036*\"west\" + 0.034*\"south\" + 0.032*\"municip\" + 0.032*\"provinc\"\n", - "2019-01-16 05:57:12,965 : INFO : topic diff=0.003512, rho=0.022553\n", - "2019-01-16 05:57:13,238 : INFO : PROGRESS: pass 0, at document #3934000/4922894\n", - "2019-01-16 05:57:15,527 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:16,084 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.031*\"town\" + 0.030*\"citi\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"household\" + 0.022*\"township\"\n", - "2019-01-16 05:57:16,086 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 05:57:16,087 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"red\"\n", - "2019-01-16 05:57:16,089 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"wing\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:57:16,091 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:57:16,097 : INFO : topic diff=0.004011, rho=0.022547\n", - "2019-01-16 05:57:16,383 : INFO : PROGRESS: pass 0, at document #3936000/4922894\n", - "2019-01-16 05:57:18,460 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:19,019 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:57:19,020 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:57:19,022 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:57:19,024 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.017*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 05:57:19,027 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 05:57:19,033 : INFO : topic diff=0.003695, rho=0.022542\n", - "2019-01-16 05:57:19,318 : INFO : PROGRESS: pass 0, at document #3938000/4922894\n", - "2019-01-16 05:57:21,355 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:21,913 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.014*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:57:21,914 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.031*\"town\" + 0.030*\"citi\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.022*\"counti\" + 0.022*\"township\"\n", - "2019-01-16 05:57:21,915 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:57:21,917 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.048*\"new\" + 0.041*\"china\" + 0.032*\"zealand\" + 0.031*\"south\" + 0.028*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:57:21,918 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.018*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"republican\"\n", - "2019-01-16 05:57:21,924 : INFO : topic diff=0.003941, rho=0.022536\n", - "2019-01-16 05:57:26,605 : INFO : -11.632 per-word bound, 3174.7 perplexity estimate based on a held-out corpus of 2000 documents with 554601 words\n", - "2019-01-16 05:57:26,606 : INFO : PROGRESS: pass 0, at document #3940000/4922894\n", - "2019-01-16 05:57:28,603 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:29,162 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.031*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.017*\"japanes\" + 0.016*\"chines\" + 0.016*\"malaysia\" + 0.015*\"asian\" + 0.014*\"indonesia\"\n", - "2019-01-16 05:57:29,163 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"light\" + 0.006*\"time\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:57:29,165 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:57:29,166 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:57:29,168 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"tom\"\n", - "2019-01-16 05:57:29,175 : INFO : topic diff=0.003089, rho=0.022530\n", - "2019-01-16 05:57:29,450 : INFO : PROGRESS: pass 0, at document #3942000/4922894\n", - "2019-01-16 05:57:31,472 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:32,032 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", - "2019-01-16 05:57:32,033 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:57:32,035 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\" + 0.007*\"point\"\n", - "2019-01-16 05:57:32,036 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.024*\"http\" + 0.019*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"sri\" + 0.012*\"ali\" + 0.012*\"khan\" + 0.012*\"com\"\n", - "2019-01-16 05:57:32,038 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"festiv\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 05:57:32,043 : INFO : topic diff=0.003874, rho=0.022525\n", - "2019-01-16 05:57:32,331 : INFO : PROGRESS: pass 0, at document #3944000/4922894\n", - "2019-01-16 05:57:34,366 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:34,928 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.014*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:57:34,929 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"republican\"\n", - "2019-01-16 05:57:34,931 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:57:34,932 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", - "2019-01-16 05:57:34,933 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:57:34,939 : INFO : topic diff=0.003136, rho=0.022519\n", - "2019-01-16 05:57:35,229 : INFO : PROGRESS: pass 0, at document #3946000/4922894\n", - "2019-01-16 05:57:37,249 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:37,808 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.042*\"china\" + 0.032*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:57:37,809 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:57:37,811 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 05:57:37,812 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"method\" + 0.007*\"point\"\n", - "2019-01-16 05:57:37,814 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:57:37,819 : INFO : topic diff=0.003576, rho=0.022513\n", - "2019-01-16 05:57:38,089 : INFO : PROGRESS: pass 0, at document #3948000/4922894\n", - "2019-01-16 05:57:40,113 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:40,680 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:57:40,682 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:57:40,683 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:57:40,684 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.031*\"kong\" + 0.024*\"lee\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.017*\"japanes\" + 0.016*\"malaysia\" + 0.016*\"chines\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 05:57:40,686 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.016*\"hospit\" + 0.013*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:57:40,691 : INFO : topic diff=0.002859, rho=0.022507\n", - "2019-01-16 05:57:40,970 : INFO : PROGRESS: pass 0, at document #3950000/4922894\n", - "2019-01-16 05:57:42,965 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:43,522 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:57:43,524 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"sir\" + 0.014*\"jame\" + 0.013*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:57:43,525 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 05:57:43,527 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:57:43,529 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", - "2019-01-16 05:57:43,536 : INFO : topic diff=0.003274, rho=0.022502\n", - "2019-01-16 05:57:43,821 : INFO : PROGRESS: pass 0, at document #3952000/4922894\n", - "2019-01-16 05:57:45,876 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:46,438 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.034*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.012*\"ali\" + 0.011*\"com\"\n", - "2019-01-16 05:57:46,440 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 05:57:46,441 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"port\" + 0.012*\"island\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 05:57:46,443 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:57:46,444 : INFO : topic #34 (0.020): 0.094*\"island\" + 0.072*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 05:57:46,450 : INFO : topic diff=0.003605, rho=0.022496\n", - "2019-01-16 05:57:46,726 : INFO : PROGRESS: pass 0, at document #3954000/4922894\n", - "2019-01-16 05:57:48,752 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:49,308 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.006*\"includ\"\n", - "2019-01-16 05:57:49,309 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.034*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"com\"\n", - "2019-01-16 05:57:49,310 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 05:57:49,312 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:57:49,313 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:57:49,319 : INFO : topic diff=0.003488, rho=0.022490\n", - "2019-01-16 05:57:49,610 : INFO : PROGRESS: pass 0, at document #3956000/4922894\n", - "2019-01-16 05:57:51,620 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:52,178 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:57:52,180 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 05:57:52,181 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.017*\"gold\"\n", - "2019-01-16 05:57:52,183 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"driver\" + 0.012*\"tour\" + 0.012*\"ford\" + 0.011*\"finish\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:57:52,185 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 05:57:52,192 : INFO : topic diff=0.003343, rho=0.022485\n", - "2019-01-16 05:57:52,494 : INFO : PROGRESS: pass 0, at document #3958000/4922894\n", - "2019-01-16 05:57:54,470 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:57:55,029 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.012*\"mountain\" + 0.011*\"area\"\n", - "2019-01-16 05:57:55,031 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 05:57:55,032 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 05:57:55,034 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:57:55,038 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.011*\"actor\" + 0.011*\"televis\" + 0.011*\"movi\"\n", - "2019-01-16 05:57:55,044 : INFO : topic diff=0.003176, rho=0.022479\n", - "2019-01-16 05:57:59,614 : INFO : -11.472 per-word bound, 2841.0 perplexity estimate based on a held-out corpus of 2000 documents with 536722 words\n", - "2019-01-16 05:57:59,615 : INFO : PROGRESS: pass 0, at document #3960000/4922894\n", - "2019-01-16 05:58:01,654 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:58:02,216 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.032*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:58:02,218 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:58:02,219 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:58:02,220 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.008*\"greek\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 05:58:02,222 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 05:58:02,228 : INFO : topic diff=0.003431, rho=0.022473\n", - "2019-01-16 05:58:02,501 : INFO : PROGRESS: pass 0, at document #3962000/4922894\n", - "2019-01-16 05:58:04,556 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:05,115 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:58:05,116 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"finish\" + 0.010*\"championship\" + 0.010*\"year\" + 0.010*\"time\"\n", - "2019-01-16 05:58:05,118 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:58:05,119 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.024*\"russia\" + 0.020*\"american\" + 0.020*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:58:05,123 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:58:05,128 : INFO : topic diff=0.003233, rho=0.022468\n", - "2019-01-16 05:58:05,397 : INFO : PROGRESS: pass 0, at document #3964000/4922894\n", - "2019-01-16 05:58:07,448 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:08,006 : INFO : topic #27 (0.020): 0.046*\"born\" + 0.035*\"russian\" + 0.024*\"russia\" + 0.021*\"american\" + 0.020*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.013*\"poland\" + 0.013*\"moscow\" + 0.013*\"republ\"\n", - "2019-01-16 05:58:08,007 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.029*\"text\" + 0.025*\"till\" + 0.024*\"color\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:58:08,008 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.016*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:58:08,010 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:58:08,011 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"mountain\" + 0.011*\"area\"\n", - "2019-01-16 05:58:08,016 : INFO : topic diff=0.002755, rho=0.022462\n", - "2019-01-16 05:58:08,290 : INFO : PROGRESS: pass 0, at document #3966000/4922894\n", - "2019-01-16 05:58:10,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:10,877 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.013*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:58:10,878 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.018*\"match\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.017*\"championship\" + 0.016*\"contest\" + 0.015*\"titl\" + 0.013*\"team\" + 0.012*\"defeat\" + 0.012*\"champion\"\n", - "2019-01-16 05:58:10,880 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.060*\"april\" + 0.060*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 05:58:10,881 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:58:10,882 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:58:10,888 : INFO : topic diff=0.003608, rho=0.022456\n", - "2019-01-16 05:58:11,154 : INFO : PROGRESS: pass 0, at document #3968000/4922894\n", - "2019-01-16 05:58:13,106 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:13,663 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.025*\"color\" + 0.024*\"till\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:58:13,665 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"finish\" + 0.010*\"year\" + 0.010*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 05:58:13,666 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:58:13,667 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 05:58:13,668 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"member\"\n", - "2019-01-16 05:58:13,674 : INFO : topic diff=0.003197, rho=0.022451\n", - "2019-01-16 05:58:13,939 : INFO : PROGRESS: pass 0, at document #3970000/4922894\n", - "2019-01-16 05:58:15,955 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:16,513 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.021*\"unit\" + 0.021*\"london\" + 0.021*\"town\" + 0.021*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:58:16,514 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", - "2019-01-16 05:58:16,516 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:58:16,517 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:58:16,519 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.015*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:58:16,526 : INFO : topic diff=0.003265, rho=0.022445\n", - "2019-01-16 05:58:16,795 : INFO : PROGRESS: pass 0, at document #3972000/4922894\n", - "2019-01-16 05:58:18,778 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:19,336 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 05:58:19,337 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"boat\" + 0.012*\"port\" + 0.012*\"island\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"beach\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:58:19,338 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 05:58:19,340 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.008*\"version\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:58:19,342 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"unit\"\n", - "2019-01-16 05:58:19,348 : INFO : topic diff=0.002914, rho=0.022439\n", - "2019-01-16 05:58:19,616 : INFO : PROGRESS: pass 0, at document #3974000/4922894\n", - "2019-01-16 05:58:21,627 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:22,187 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:58:22,189 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.006*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 05:58:22,190 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:58:22,191 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.030*\"town\" + 0.030*\"citi\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.022*\"counti\" + 0.021*\"peopl\"\n", - "2019-01-16 05:58:22,193 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", - "2019-01-16 05:58:22,199 : INFO : topic diff=0.003433, rho=0.022434\n", - "2019-01-16 05:58:22,462 : INFO : PROGRESS: pass 0, at document #3976000/4922894\n", - "2019-01-16 05:58:24,492 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:25,049 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.022*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.013*\"won\"\n", - "2019-01-16 05:58:25,050 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:58:25,052 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 05:58:25,054 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 05:58:25,055 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.025*\"color\" + 0.024*\"till\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:58:25,061 : INFO : topic diff=0.003897, rho=0.022428\n", - "2019-01-16 05:58:25,339 : INFO : PROGRESS: pass 0, at document #3978000/4922894\n", - "2019-01-16 05:58:27,374 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:27,931 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.021*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.020*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:58:27,932 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 05:58:27,933 : INFO : topic #34 (0.020): 0.096*\"island\" + 0.071*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.017*\"quebec\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.016*\"british\" + 0.016*\"montreal\"\n", - "2019-01-16 05:58:27,935 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:58:27,936 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 05:58:27,942 : INFO : topic diff=0.002877, rho=0.022422\n", - "2019-01-16 05:58:32,649 : INFO : -11.583 per-word bound, 3067.6 perplexity estimate based on a held-out corpus of 2000 documents with 581518 words\n", - "2019-01-16 05:58:32,650 : INFO : PROGRESS: pass 0, at document #3980000/4922894\n", - "2019-01-16 05:58:34,651 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:35,208 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.011*\"park\" + 0.011*\"mountain\" + 0.011*\"area\"\n", - "2019-01-16 05:58:35,210 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.051*\"style\" + 0.043*\"center\" + 0.035*\"list\" + 0.033*\"philippin\" + 0.031*\"right\" + 0.030*\"text\"\n", - "2019-01-16 05:58:35,211 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:58:35,213 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:58:35,214 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:58:35,220 : INFO : topic diff=0.003199, rho=0.022417\n", - "2019-01-16 05:58:35,528 : INFO : PROGRESS: pass 0, at document #3982000/4922894\n", - "2019-01-16 05:58:37,520 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:38,080 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:58:38,081 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:58:38,083 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"church\"\n", - "2019-01-16 05:58:38,084 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.068*\"villag\" + 0.050*\"region\" + 0.040*\"north\" + 0.039*\"east\" + 0.038*\"counti\" + 0.038*\"west\" + 0.036*\"south\" + 0.032*\"municip\" + 0.032*\"provinc\"\n", - "2019-01-16 05:58:38,085 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.028*\"text\" + 0.026*\"color\" + 0.024*\"till\" + 0.023*\"black\" + 0.013*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 05:58:38,092 : INFO : topic diff=0.003405, rho=0.022411\n", - "2019-01-16 05:58:38,360 : INFO : PROGRESS: pass 0, at document #3984000/4922894\n", - "2019-01-16 05:58:40,370 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:40,927 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:58:40,928 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 05:58:40,930 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:58:40,933 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.049*\"new\" + 0.041*\"china\" + 0.033*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:58:40,935 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.062*\"align\" + 0.058*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.044*\"center\" + 0.035*\"list\" + 0.034*\"philippin\" + 0.031*\"right\" + 0.030*\"text\"\n", - "2019-01-16 05:58:40,942 : INFO : topic diff=0.003394, rho=0.022406\n", - "2019-01-16 05:58:41,211 : INFO : PROGRESS: pass 0, at document #3986000/4922894\n", - "2019-01-16 05:58:43,274 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:43,831 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", - "2019-01-16 05:58:43,832 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.039*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 05:58:43,835 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 05:58:43,837 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.032*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 05:58:43,838 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"championship\"\n", - "2019-01-16 05:58:43,843 : INFO : topic diff=0.004505, rho=0.022400\n", - "2019-01-16 05:58:44,098 : INFO : PROGRESS: pass 0, at document #3988000/4922894\n", - "2019-01-16 05:58:46,110 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:46,667 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 05:58:46,669 : INFO : topic #36 (0.020): 0.057*\"art\" + 0.032*\"jpg\" + 0.032*\"museum\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 05:58:46,670 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.017*\"hospit\" + 0.015*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 05:58:46,672 : INFO : topic #34 (0.020): 0.095*\"island\" + 0.071*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"quebec\" + 0.017*\"korean\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"korea\"\n", - "2019-01-16 05:58:46,673 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:58:46,678 : INFO : topic diff=0.003506, rho=0.022394\n", - "2019-01-16 05:58:46,964 : INFO : PROGRESS: pass 0, at document #3990000/4922894\n", - "2019-01-16 05:58:48,997 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:49,555 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"time\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.010*\"year\" + 0.010*\"championship\"\n", - "2019-01-16 05:58:49,557 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"ali\" + 0.011*\"com\"\n", - "2019-01-16 05:58:49,558 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:58:49,559 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.028*\"airport\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:58:49,562 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"network\" + 0.011*\"program\"\n", - "2019-01-16 05:58:49,568 : INFO : topic diff=0.002505, rho=0.022389\n", - "2019-01-16 05:58:49,842 : INFO : PROGRESS: pass 0, at document #3992000/4922894\n", - "2019-01-16 05:58:51,847 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:52,405 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.015*\"mexico\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:58:52,406 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.012*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:58:52,408 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.021*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:58:52,409 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 05:58:52,411 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"california\" + 0.015*\"citi\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:58:52,416 : INFO : topic diff=0.003123, rho=0.022383\n", - "2019-01-16 05:58:52,690 : INFO : PROGRESS: pass 0, at document #3994000/4922894\n", - "2019-01-16 05:58:54,700 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:55,266 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 05:58:55,268 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.030*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"township\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"counti\"\n", - "2019-01-16 05:58:55,269 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:58:55,271 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 05:58:55,273 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:58:55,279 : INFO : topic diff=0.003943, rho=0.022377\n", - "2019-01-16 05:58:55,538 : INFO : PROGRESS: pass 0, at document #3996000/4922894\n", - "2019-01-16 05:58:57,501 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:58:58,060 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:58:58,062 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.034*\"russian\" + 0.022*\"russia\" + 0.022*\"american\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.013*\"moscow\" + 0.013*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 05:58:58,064 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:58:58,065 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:58:58,067 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.039*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:58:58,073 : INFO : topic diff=0.002691, rho=0.022372\n", - "2019-01-16 05:58:58,320 : INFO : PROGRESS: pass 0, at document #3998000/4922894\n", - "2019-01-16 05:59:00,282 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:00,846 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 05:59:00,848 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 05:59:00,850 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 05:59:00,851 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.021*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.014*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 05:59:00,852 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:59:00,858 : INFO : topic diff=0.003790, rho=0.022366\n", - "2019-01-16 05:59:05,550 : INFO : -11.463 per-word bound, 2822.0 perplexity estimate based on a held-out corpus of 2000 documents with 564993 words\n", - "2019-01-16 05:59:05,551 : INFO : PROGRESS: pass 0, at document #4000000/4922894\n", - "2019-01-16 05:59:07,639 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:08,202 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.014*\"sir\" + 0.014*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 05:59:08,204 : INFO : topic #16 (0.020): 0.030*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:59:08,205 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"match\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.017*\"contest\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 05:59:08,206 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.050*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 05:59:08,208 : INFO : topic #14 (0.020): 0.023*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.012*\"scienc\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 05:59:08,214 : INFO : topic diff=0.003626, rho=0.022361\n", - "2019-01-16 05:59:08,473 : INFO : PROGRESS: pass 0, at document #4002000/4922894\n", - "2019-01-16 05:59:10,453 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:11,011 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.019*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 05:59:11,013 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:59:11,014 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"islam\" + 0.011*\"com\"\n", - "2019-01-16 05:59:11,016 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:59:11,017 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.071*\"villag\" + 0.049*\"region\" + 0.040*\"north\" + 0.039*\"east\" + 0.038*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\" + 0.031*\"municip\"\n", - "2019-01-16 05:59:11,023 : INFO : topic diff=0.003106, rho=0.022355\n", - "2019-01-16 05:59:11,281 : INFO : PROGRESS: pass 0, at document #4004000/4922894\n", - "2019-01-16 05:59:13,254 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:13,812 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"network\" + 0.012*\"host\" + 0.011*\"dai\" + 0.011*\"program\"\n", - "2019-01-16 05:59:13,813 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:59:13,815 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.023*\"lee\" + 0.020*\"kim\" + 0.020*\"singapor\" + 0.017*\"japanes\" + 0.016*\"malaysia\" + 0.015*\"chines\" + 0.015*\"indonesia\" + 0.015*\"asian\"\n", - "2019-01-16 05:59:13,817 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.006*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:59:13,819 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 05:59:13,825 : INFO : topic diff=0.003223, rho=0.022350\n", - "2019-01-16 05:59:14,089 : INFO : PROGRESS: pass 0, at document #4006000/4922894\n", - "2019-01-16 05:59:16,216 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:16,778 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:59:16,780 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.039*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 05:59:16,781 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.012*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.008*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:59:16,782 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.030*\"town\" + 0.030*\"citi\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"township\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"counti\"\n", - "2019-01-16 05:59:16,784 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 05:59:16,789 : INFO : topic diff=0.003214, rho=0.022344\n", - "2019-01-16 05:59:17,094 : INFO : PROGRESS: pass 0, at document #4008000/4922894\n", - "2019-01-16 05:59:19,095 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:19,655 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.023*\"group\" + 0.023*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:59:19,656 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 05:59:19,658 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.042*\"colleg\" + 0.039*\"univers\" + 0.039*\"student\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 05:59:19,659 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:59:19,660 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", - "2019-01-16 05:59:19,666 : INFO : topic diff=0.002933, rho=0.022338\n", - "2019-01-16 05:59:19,944 : INFO : PROGRESS: pass 0, at document #4010000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:59:21,979 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:22,542 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"senat\" + 0.013*\"council\"\n", - "2019-01-16 05:59:22,544 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:59:22,545 : INFO : topic #39 (0.020): 0.051*\"air\" + 0.026*\"airport\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:59:22,546 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:59:22,547 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"rout\" + 0.016*\"railwai\" + 0.012*\"lake\" + 0.011*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:59:22,553 : INFO : topic diff=0.003744, rho=0.022333\n", - "2019-01-16 05:59:22,834 : INFO : PROGRESS: pass 0, at document #4012000/4922894\n", - "2019-01-16 05:59:24,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:25,364 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 05:59:25,366 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 05:59:25,367 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:59:25,368 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.024*\"till\" + 0.024*\"black\" + 0.024*\"color\" + 0.014*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 05:59:25,370 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.030*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"township\" + 0.022*\"household\" + 0.021*\"counti\"\n", - "2019-01-16 05:59:25,377 : INFO : topic diff=0.002622, rho=0.022327\n", - "2019-01-16 05:59:25,666 : INFO : PROGRESS: pass 0, at document #4014000/4922894\n", - "2019-01-16 05:59:27,722 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:28,279 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.023*\"winner\" + 0.023*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 05:59:28,281 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 05:59:28,283 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"season\" + 0.026*\"footbal\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 05:59:28,284 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 05:59:28,285 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.030*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.022*\"township\" + 0.021*\"counti\"\n", - "2019-01-16 05:59:28,291 : INFO : topic diff=0.003559, rho=0.022322\n", - "2019-01-16 05:59:28,556 : INFO : PROGRESS: pass 0, at document #4016000/4922894\n", - "2019-01-16 05:59:30,560 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:31,120 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\" + 0.006*\"forest\"\n", - "2019-01-16 05:59:31,122 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.006*\"peter\" + 0.006*\"tom\" + 0.006*\"jone\"\n", - "2019-01-16 05:59:31,124 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:59:31,126 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 05:59:31,127 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 05:59:31,133 : INFO : topic diff=0.002963, rho=0.022316\n", - "2019-01-16 05:59:31,412 : INFO : PROGRESS: pass 0, at document #4018000/4922894\n", - "2019-01-16 05:59:33,493 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:34,055 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.012*\"lake\" + 0.011*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 05:59:34,057 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.017*\"plai\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 05:59:34,058 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 05:59:34,060 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 05:59:34,061 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 05:59:34,068 : INFO : topic diff=0.003198, rho=0.022311\n", - "2019-01-16 05:59:38,823 : INFO : -11.554 per-word bound, 3007.3 perplexity estimate based on a held-out corpus of 2000 documents with 600312 words\n", - "2019-01-16 05:59:38,824 : INFO : PROGRESS: pass 0, at document #4020000/4922894\n", - "2019-01-16 05:59:40,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:41,418 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 05:59:41,419 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"develop\" + 0.012*\"intern\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:59:41,421 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"republican\" + 0.013*\"council\"\n", - "2019-01-16 05:59:41,422 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 05:59:41,423 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 05:59:41,429 : INFO : topic diff=0.004344, rho=0.022305\n", - "2019-01-16 05:59:41,691 : INFO : PROGRESS: pass 0, at document #4022000/4922894\n", - "2019-01-16 05:59:43,657 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:44,217 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"viru\" + 0.008*\"human\" + 0.008*\"ret\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 05:59:44,219 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:59:44,220 : INFO : topic #26 (0.020): 0.035*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:59:44,222 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"march\" + 0.073*\"octob\" + 0.066*\"juli\" + 0.065*\"august\" + 0.063*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 05:59:44,224 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\" + 0.006*\"forest\"\n", - "2019-01-16 05:59:44,230 : INFO : topic diff=0.003587, rho=0.022299\n", - "2019-01-16 05:59:44,485 : INFO : PROGRESS: pass 0, at document #4024000/4922894\n", - "2019-01-16 05:59:46,464 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:47,020 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.027*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 05:59:47,021 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 05:59:47,023 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 05:59:47,025 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:59:47,026 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:59:47,031 : INFO : topic diff=0.003232, rho=0.022294\n", - "2019-01-16 05:59:47,294 : INFO : PROGRESS: pass 0, at document #4026000/4922894\n", - "2019-01-16 05:59:49,348 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:49,904 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.021*\"american\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.017*\"polish\" + 0.014*\"israel\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", - "2019-01-16 05:59:49,906 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.022*\"township\" + 0.021*\"counti\"\n", - "2019-01-16 05:59:49,907 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:59:49,908 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 05:59:49,909 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"son\" + 0.017*\"famili\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 05:59:49,915 : INFO : topic diff=0.003249, rho=0.022288\n", - "2019-01-16 05:59:50,171 : INFO : PROGRESS: pass 0, at document #4028000/4922894\n", - "2019-01-16 05:59:52,129 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:52,684 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 05:59:52,686 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"tom\" + 0.006*\"richard\"\n", - "2019-01-16 05:59:52,687 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 05:59:52,689 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 05:59:52,690 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.017*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.013*\"khan\" + 0.012*\"sri\" + 0.011*\"islam\" + 0.011*\"tamil\"\n", - "2019-01-16 05:59:52,696 : INFO : topic diff=0.004109, rho=0.022283\n", - "2019-01-16 05:59:52,967 : INFO : PROGRESS: pass 0, at document #4030000/4922894\n", - "2019-01-16 05:59:54,939 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:55,497 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 05:59:55,498 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 05:59:55,500 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 05:59:55,501 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 05:59:55,502 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"servic\"\n", - "2019-01-16 05:59:55,508 : INFO : topic diff=0.003352, rho=0.022277\n", - "2019-01-16 05:59:55,770 : INFO : PROGRESS: pass 0, at document #4032000/4922894\n", - "2019-01-16 05:59:57,721 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 05:59:58,278 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 05:59:58,280 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.025*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 05:59:58,282 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.021*\"sydnei\" + 0.018*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 05:59:58,284 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 05:59:58,286 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 05:59:58,292 : INFO : topic diff=0.003098, rho=0.022272\n", - "2019-01-16 05:59:58,581 : INFO : PROGRESS: pass 0, at document #4034000/4922894\n", - "2019-01-16 06:00:00,537 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:01,094 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:00:01,095 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:00:01,096 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:00:01,098 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:00:01,099 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:00:01,105 : INFO : topic diff=0.002948, rho=0.022266\n", - "2019-01-16 06:00:01,383 : INFO : PROGRESS: pass 0, at document #4036000/4922894\n", - "2019-01-16 06:00:03,411 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:03,968 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.021*\"medal\" + 0.021*\"event\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 06:00:03,970 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.025*\"http\" + 0.019*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.012*\"sri\" + 0.011*\"islam\" + 0.011*\"com\"\n", - "2019-01-16 06:00:03,971 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.023*\"russia\" + 0.021*\"american\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.018*\"jewish\" + 0.013*\"israel\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", - "2019-01-16 06:00:03,973 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 06:00:03,974 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:00:03,980 : INFO : topic diff=0.003181, rho=0.022261\n", - "2019-01-16 06:00:04,249 : INFO : PROGRESS: pass 0, at document #4038000/4922894\n", - "2019-01-16 06:00:06,197 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:06,753 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"california\" + 0.016*\"citi\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:00:06,755 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:00:06,756 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.070*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"municip\" + 0.038*\"east\" + 0.037*\"counti\" + 0.036*\"west\" + 0.035*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:00:06,757 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.023*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", - "2019-01-16 06:00:06,759 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:00:06,765 : INFO : topic diff=0.002843, rho=0.022255\n", - "2019-01-16 06:00:11,277 : INFO : -11.681 per-word bound, 3284.3 perplexity estimate based on a held-out corpus of 2000 documents with 556207 words\n", - "2019-01-16 06:00:11,278 : INFO : PROGRESS: pass 0, at document #4040000/4922894\n", - "2019-01-16 06:00:13,258 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:13,820 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.023*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:00:13,821 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"senat\"\n", - "2019-01-16 06:00:13,822 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.005*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:00:13,824 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.070*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"municip\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.035*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:00:13,825 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 06:00:13,831 : INFO : topic diff=0.003086, rho=0.022250\n", - "2019-01-16 06:00:14,096 : INFO : PROGRESS: pass 0, at document #4042000/4922894\n", - "2019-01-16 06:00:16,078 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:16,635 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.016*\"match\" + 0.016*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 06:00:16,637 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 06:00:16,639 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.014*\"ireland\" + 0.013*\"sir\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 06:00:16,640 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:00:16,642 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 06:00:16,648 : INFO : topic diff=0.003135, rho=0.022244\n", - "2019-01-16 06:00:16,943 : INFO : PROGRESS: pass 0, at document #4044000/4922894\n", - "2019-01-16 06:00:19,013 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:19,569 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.043*\"colleg\" + 0.040*\"univers\" + 0.040*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:00:19,571 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:00:19,572 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.012*\"le\"\n", - "2019-01-16 06:00:19,574 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"finish\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"championship\"\n", - "2019-01-16 06:00:19,576 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.057*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.021*\"sydnei\" + 0.018*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:00:19,581 : INFO : topic diff=0.004099, rho=0.022239\n", - "2019-01-16 06:00:19,851 : INFO : PROGRESS: pass 0, at document #4046000/4922894\n", - "2019-01-16 06:00:21,863 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:22,422 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.040*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.010*\"campu\" + 0.009*\"program\"\n", - "2019-01-16 06:00:22,424 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.018*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:00:22,425 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:00:22,427 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.038*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:00:22,428 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"festiv\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"piano\" + 0.012*\"opera\" + 0.012*\"orchestra\"\n", - "2019-01-16 06:00:22,434 : INFO : topic diff=0.003048, rho=0.022233\n", - "2019-01-16 06:00:22,704 : INFO : PROGRESS: pass 0, at document #4048000/4922894\n", - "2019-01-16 06:00:24,695 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:25,253 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.042*\"africa\" + 0.039*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.025*\"till\" + 0.024*\"black\" + 0.024*\"color\" + 0.012*\"storm\" + 0.011*\"cape\"\n", - "2019-01-16 06:00:25,254 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:00:25,256 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\"\n", - "2019-01-16 06:00:25,257 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 06:00:25,258 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.057*\"australian\" + 0.050*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.018*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:00:25,264 : INFO : topic diff=0.003276, rho=0.022228\n", - "2019-01-16 06:00:25,531 : INFO : PROGRESS: pass 0, at document #4050000/4922894\n", - "2019-01-16 06:00:27,530 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:28,087 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"championship\"\n", - "2019-01-16 06:00:28,089 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:00:28,091 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:00:28,092 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:00:28,093 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.035*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.018*\"polish\" + 0.018*\"soviet\" + 0.018*\"jewish\" + 0.013*\"poland\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:00:28,099 : INFO : topic diff=0.003614, rho=0.022222\n", - "2019-01-16 06:00:28,372 : INFO : PROGRESS: pass 0, at document #4052000/4922894\n", - "2019-01-16 06:00:30,518 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:31,075 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:00:31,077 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.020*\"counti\"\n", - "2019-01-16 06:00:31,078 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:00:31,080 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:00:31,081 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:00:31,087 : INFO : topic diff=0.003074, rho=0.022217\n", - "2019-01-16 06:00:31,382 : INFO : PROGRESS: pass 0, at document #4054000/4922894\n", - "2019-01-16 06:00:33,386 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:33,947 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.042*\"round\" + 0.027*\"tournament\" + 0.024*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:00:33,948 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\"\n", - "2019-01-16 06:00:33,950 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.013*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 06:00:33,951 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.015*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:00:33,952 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 06:00:33,959 : INFO : topic diff=0.003325, rho=0.022211\n", - "2019-01-16 06:00:34,244 : INFO : PROGRESS: pass 0, at document #4056000/4922894\n", - "2019-01-16 06:00:36,255 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:36,812 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.034*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.018*\"jewish\" + 0.018*\"polish\" + 0.018*\"soviet\" + 0.013*\"israel\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", - "2019-01-16 06:00:36,814 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:00:36,815 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.026*\"oper\" + 0.025*\"aircraft\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:00:36,817 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:00:36,818 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.074*\"march\" + 0.074*\"octob\" + 0.068*\"juli\" + 0.066*\"august\" + 0.065*\"januari\" + 0.064*\"novemb\" + 0.063*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:00:36,824 : INFO : topic diff=0.003044, rho=0.022206\n", - "2019-01-16 06:00:37,113 : INFO : PROGRESS: pass 0, at document #4058000/4922894\n", - "2019-01-16 06:00:39,182 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:39,742 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"senat\"\n", - "2019-01-16 06:00:39,744 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 06:00:39,746 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:00:39,748 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 06:00:39,749 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", - "2019-01-16 06:00:39,755 : INFO : topic diff=0.002755, rho=0.022200\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:00:44,536 : INFO : -11.765 per-word bound, 3481.5 perplexity estimate based on a held-out corpus of 2000 documents with 580761 words\n", - "2019-01-16 06:00:44,537 : INFO : PROGRESS: pass 0, at document #4060000/4922894\n", - "2019-01-16 06:00:46,609 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:47,170 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.042*\"africa\" + 0.039*\"african\" + 0.031*\"south\" + 0.028*\"text\" + 0.024*\"till\" + 0.024*\"black\" + 0.023*\"color\" + 0.012*\"storm\" + 0.011*\"tropic\"\n", - "2019-01-16 06:00:47,171 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 06:00:47,174 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.015*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", - "2019-01-16 06:00:47,175 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:00:47,177 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.026*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.018*\"exhibit\" + 0.018*\"design\" + 0.018*\"imag\"\n", - "2019-01-16 06:00:47,183 : INFO : topic diff=0.003195, rho=0.022195\n", - "2019-01-16 06:00:47,440 : INFO : PROGRESS: pass 0, at document #4062000/4922894\n", - "2019-01-16 06:00:49,477 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:50,033 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.009*\"develop\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:00:50,035 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:00:50,036 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.057*\"australian\" + 0.051*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:00:50,037 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.070*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"municip\" + 0.037*\"counti\" + 0.037*\"west\" + 0.034*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:00:50,039 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"men\" + 0.020*\"japan\" + 0.019*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 06:00:50,045 : INFO : topic diff=0.003470, rho=0.022189\n", - "2019-01-16 06:00:50,304 : INFO : PROGRESS: pass 0, at document #4064000/4922894\n", - "2019-01-16 06:00:52,244 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:52,800 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.017*\"navi\" + 0.016*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.008*\"fleet\"\n", - "2019-01-16 06:00:52,801 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 06:00:52,804 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 06:00:52,805 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:00:52,807 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"piano\" + 0.011*\"orchestra\"\n", - "2019-01-16 06:00:52,813 : INFO : topic diff=0.003277, rho=0.022184\n", - "2019-01-16 06:00:53,065 : INFO : PROGRESS: pass 0, at document #4066000/4922894\n", - "2019-01-16 06:00:55,056 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:55,614 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:00:55,616 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:00:55,617 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.021*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.015*\"channel\" + 0.014*\"televis\" + 0.012*\"network\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"dai\"\n", - "2019-01-16 06:00:55,618 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:00:55,620 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 06:00:55,625 : INFO : topic diff=0.003213, rho=0.022178\n", - "2019-01-16 06:00:55,874 : INFO : PROGRESS: pass 0, at document #4068000/4922894\n", - "2019-01-16 06:00:57,879 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:00:58,438 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 06:00:58,439 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:00:58,441 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:00:58,442 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 06:00:58,444 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.008*\"park\" + 0.008*\"church\"\n", - "2019-01-16 06:00:58,450 : INFO : topic diff=0.003254, rho=0.022173\n", - "2019-01-16 06:00:58,709 : INFO : PROGRESS: pass 0, at document #4070000/4922894\n", - "2019-01-16 06:01:00,791 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:01,352 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:01:01,354 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 06:01:01,355 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.016*\"match\" + 0.016*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 06:01:01,357 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:01:01,359 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:01:01,365 : INFO : topic diff=0.004148, rho=0.022168\n", - "2019-01-16 06:01:01,623 : INFO : PROGRESS: pass 0, at document #4072000/4922894\n", - "2019-01-16 06:01:03,620 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:01:04,182 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:01:04,183 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"polit\"\n", - "2019-01-16 06:01:04,185 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"world\"\n", - "2019-01-16 06:01:04,186 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.066*\"juli\" + 0.065*\"august\" + 0.065*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:01:04,187 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.070*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.038*\"counti\" + 0.037*\"west\" + 0.036*\"municip\" + 0.035*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:01:04,193 : INFO : topic diff=0.003155, rho=0.022162\n", - "2019-01-16 06:01:04,452 : INFO : PROGRESS: pass 0, at document #4074000/4922894\n", - "2019-01-16 06:01:06,473 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:07,032 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"park\"\n", - "2019-01-16 06:01:07,033 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:01:07,034 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:01:07,036 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"jame\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:01:07,037 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.022*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"direct\" + 0.011*\"televis\"\n", - "2019-01-16 06:01:07,043 : INFO : topic diff=0.002999, rho=0.022157\n", - "2019-01-16 06:01:07,298 : INFO : PROGRESS: pass 0, at document #4076000/4922894\n", - "2019-01-16 06:01:09,265 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:09,832 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.030*\"kong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.018*\"malaysia\" + 0.016*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.014*\"asia\"\n", - "2019-01-16 06:01:09,833 : INFO : topic #48 (0.020): 0.073*\"octob\" + 0.072*\"septemb\" + 0.071*\"march\" + 0.064*\"juli\" + 0.064*\"august\" + 0.063*\"januari\" + 0.062*\"novemb\" + 0.060*\"april\" + 0.060*\"june\" + 0.058*\"decemb\"\n", - "2019-01-16 06:01:09,835 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 06:01:09,836 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.011*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:01:09,837 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.024*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 06:01:09,844 : INFO : topic diff=0.003949, rho=0.022151\n", - "2019-01-16 06:01:10,086 : INFO : PROGRESS: pass 0, at document #4078000/4922894\n", - "2019-01-16 06:01:12,075 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:12,630 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.016*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.008*\"beach\"\n", - "2019-01-16 06:01:12,632 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.072*\"septemb\" + 0.071*\"march\" + 0.064*\"juli\" + 0.063*\"august\" + 0.063*\"januari\" + 0.061*\"novemb\" + 0.060*\"april\" + 0.059*\"june\" + 0.058*\"decemb\"\n", - "2019-01-16 06:01:12,633 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 06:01:12,635 : INFO : topic #41 (0.020): 0.037*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:01:12,637 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.036*\"municip\" + 0.034*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:01:12,643 : INFO : topic diff=0.003852, rho=0.022146\n", - "2019-01-16 06:01:17,482 : INFO : -11.808 per-word bound, 3585.2 perplexity estimate based on a held-out corpus of 2000 documents with 532711 words\n", - "2019-01-16 06:01:17,483 : INFO : PROGRESS: pass 0, at document #4080000/4922894\n", - "2019-01-16 06:01:19,485 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:20,046 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"russia\" + 0.020*\"american\" + 0.018*\"soviet\" + 0.018*\"jewish\" + 0.018*\"polish\" + 0.014*\"moscow\" + 0.013*\"poland\" + 0.013*\"israel\"\n", - "2019-01-16 06:01:20,048 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.022*\"household\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.020*\"peopl\"\n", - "2019-01-16 06:01:20,050 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:01:20,051 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.023*\"toronto\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"korea\" + 0.015*\"korean\"\n", - "2019-01-16 06:01:20,052 : INFO : topic #35 (0.020): 0.032*\"hong\" + 0.030*\"kong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.020*\"kim\" + 0.018*\"malaysia\" + 0.016*\"chines\" + 0.016*\"japanes\" + 0.015*\"indonesia\" + 0.014*\"thailand\"\n", - "2019-01-16 06:01:20,058 : INFO : topic diff=0.003572, rho=0.022140\n", - "2019-01-16 06:01:20,313 : INFO : PROGRESS: pass 0, at document #4082000/4922894\n", - "2019-01-16 06:01:22,322 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:22,881 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:01:22,882 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"human\" + 0.008*\"studi\"\n", - "2019-01-16 06:01:22,883 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.011*\"product\" + 0.009*\"year\" + 0.008*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 06:01:22,884 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.014*\"georg\" + 0.014*\"jame\" + 0.014*\"sir\" + 0.013*\"henri\" + 0.013*\"thoma\" + 0.012*\"ireland\"\n", - "2019-01-16 06:01:22,886 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 06:01:22,891 : INFO : topic diff=0.003214, rho=0.022135\n", - "2019-01-16 06:01:23,150 : INFO : PROGRESS: pass 0, at document #4084000/4922894\n", - "2019-01-16 06:01:25,209 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:25,765 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.024*\"http\" + 0.018*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"islam\" + 0.011*\"com\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:01:25,767 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.021*\"cricket\" + 0.021*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.012*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 06:01:25,768 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:01:25,769 : INFO : topic #34 (0.020): 0.093*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"quebec\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.015*\"korea\" + 0.015*\"korean\"\n", - "2019-01-16 06:01:25,771 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:01:25,778 : INFO : topic diff=0.003713, rho=0.022130\n", - "2019-01-16 06:01:26,077 : INFO : PROGRESS: pass 0, at document #4086000/4922894\n", - "2019-01-16 06:01:28,071 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:28,629 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:01:28,631 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.016*\"sea\" + 0.013*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.008*\"fleet\"\n", - "2019-01-16 06:01:28,633 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:01:28,634 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 06:01:28,636 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:01:28,642 : INFO : topic diff=0.002954, rho=0.022124\n", - "2019-01-16 06:01:28,894 : INFO : PROGRESS: pass 0, at document #4088000/4922894\n", - "2019-01-16 06:01:30,821 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:31,379 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 06:01:31,381 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"version\" + 0.007*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:01:31,382 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.019*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.012*\"republican\"\n", - "2019-01-16 06:01:31,383 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\"\n", - "2019-01-16 06:01:31,384 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\" + 0.008*\"studi\"\n", - "2019-01-16 06:01:31,391 : INFO : topic diff=0.003335, rho=0.022119\n", - "2019-01-16 06:01:31,645 : INFO : PROGRESS: pass 0, at document #4090000/4922894\n", - "2019-01-16 06:01:33,662 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:34,225 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 06:01:34,226 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:01:34,228 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:01:34,230 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:01:34,232 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.058*\"align\" + 0.055*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.039*\"list\" + 0.039*\"center\" + 0.033*\"philippin\" + 0.031*\"border\" + 0.031*\"right\"\n", - "2019-01-16 06:01:34,238 : INFO : topic diff=0.003461, rho=0.022113\n", - "2019-01-16 06:01:34,489 : INFO : PROGRESS: pass 0, at document #4092000/4922894\n", - "2019-01-16 06:01:36,486 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:37,043 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.057*\"align\" + 0.055*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.039*\"list\" + 0.038*\"center\" + 0.033*\"philippin\" + 0.031*\"border\" + 0.031*\"right\"\n", - "2019-01-16 06:01:37,045 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.022*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:01:37,046 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:01:37,047 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:01:37,049 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:01:37,055 : INFO : topic diff=0.002936, rho=0.022108\n", - "2019-01-16 06:01:37,301 : INFO : PROGRESS: pass 0, at document #4094000/4922894\n", - "2019-01-16 06:01:39,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:39,866 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"swedish\" + 0.013*\"netherland\" + 0.012*\"sweden\"\n", - "2019-01-16 06:01:39,868 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.039*\"african\" + 0.039*\"africa\" + 0.029*\"south\" + 0.027*\"text\" + 0.024*\"till\" + 0.023*\"black\" + 0.022*\"color\" + 0.014*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 06:01:39,869 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.051*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:01:39,871 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", - "2019-01-16 06:01:39,873 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.037*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:01:39,879 : INFO : topic diff=0.003203, rho=0.022102\n", - "2019-01-16 06:01:40,133 : INFO : PROGRESS: pass 0, at document #4096000/4922894\n", - "2019-01-16 06:01:42,086 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:42,651 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:01:42,653 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:01:42,655 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:01:42,656 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.020*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 06:01:42,658 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:01:42,664 : INFO : topic diff=0.003672, rho=0.022097\n", - "2019-01-16 06:01:42,911 : INFO : PROGRESS: pass 0, at document #4098000/4922894\n", - "2019-01-16 06:01:44,851 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:45,408 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:01:45,409 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 06:01:45,412 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:01:45,413 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.021*\"men\" + 0.021*\"event\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:01:45,414 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:01:45,420 : INFO : topic diff=0.003595, rho=0.022092\n", - "2019-01-16 06:01:50,038 : INFO : -11.480 per-word bound, 2856.6 perplexity estimate based on a held-out corpus of 2000 documents with 559783 words\n", - "2019-01-16 06:01:50,039 : INFO : PROGRESS: pass 0, at document #4100000/4922894\n", - "2019-01-16 06:01:52,062 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:52,619 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.076*\"canada\" + 0.059*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.015*\"korea\" + 0.014*\"korean\"\n", - "2019-01-16 06:01:52,620 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.036*\"indian\" + 0.024*\"http\" + 0.018*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"islam\" + 0.011*\"sri\"\n", - "2019-01-16 06:01:52,622 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.018*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 06:01:52,624 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:01:52,625 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"damag\"\n", - "2019-01-16 06:01:52,631 : INFO : topic diff=0.003305, rho=0.022086\n", - "2019-01-16 06:01:52,884 : INFO : PROGRESS: pass 0, at document #4102000/4922894\n", - "2019-01-16 06:01:54,860 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:55,423 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"time\"\n", - "2019-01-16 06:01:55,424 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:01:55,426 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.012*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", - "2019-01-16 06:01:55,427 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.013*\"press\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 06:01:55,428 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:01:55,436 : INFO : topic diff=0.003344, rho=0.022081\n", - "2019-01-16 06:01:55,689 : INFO : PROGRESS: pass 0, at document #4104000/4922894\n", - "2019-01-16 06:01:57,678 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:01:58,236 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 06:01:58,238 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:01:58,239 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:01:58,241 : INFO : topic #32 (0.020): 0.027*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:01:58,242 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.021*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:01:58,248 : INFO : topic diff=0.003742, rho=0.022076\n", - "2019-01-16 06:01:58,508 : INFO : PROGRESS: pass 0, at document #4106000/4922894\n", - "2019-01-16 06:02:00,592 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:01,155 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.010*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 06:02:01,156 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:02:01,157 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:02:01,159 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:02:01,160 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"oper\" + 0.007*\"new\"\n", - "2019-01-16 06:02:01,166 : INFO : topic diff=0.003073, rho=0.022070\n", - "2019-01-16 06:02:01,422 : INFO : PROGRESS: pass 0, at document #4108000/4922894\n", - "2019-01-16 06:02:03,444 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:04,005 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 06:02:04,006 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.016*\"fight\" + 0.016*\"match\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.013*\"team\" + 0.013*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 06:02:04,008 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.055*\"align\" + 0.055*\"wikit\" + 0.052*\"left\" + 0.050*\"style\" + 0.039*\"center\" + 0.038*\"list\" + 0.034*\"philippin\" + 0.032*\"right\" + 0.031*\"border\"\n", - "2019-01-16 06:02:04,010 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:02:04,011 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 06:02:04,018 : INFO : topic diff=0.003443, rho=0.022065\n", - "2019-01-16 06:02:04,271 : INFO : PROGRESS: pass 0, at document #4110000/4922894\n", - "2019-01-16 06:02:06,250 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:06,811 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:02:06,813 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.021*\"london\" + 0.020*\"cricket\" + 0.020*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\" + 0.012*\"west\"\n", - "2019-01-16 06:02:06,814 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.014*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:02:06,815 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", - "2019-01-16 06:02:06,816 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.007*\"group\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"method\"\n", - "2019-01-16 06:02:06,823 : INFO : topic diff=0.003788, rho=0.022059\n", - "2019-01-16 06:02:07,105 : INFO : PROGRESS: pass 0, at document #4112000/4922894\n", - "2019-01-16 06:02:09,057 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:09,617 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 06:02:09,618 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.012*\"program\" + 0.011*\"network\" + 0.011*\"host\"\n", - "2019-01-16 06:02:09,619 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"finish\"\n", - "2019-01-16 06:02:09,621 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.014*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:02:09,622 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:02:09,629 : INFO : topic diff=0.002688, rho=0.022054\n", - "2019-01-16 06:02:09,884 : INFO : PROGRESS: pass 0, at document #4114000/4922894\n", - "2019-01-16 06:02:11,924 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:12,480 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 06:02:12,481 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.018*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 06:02:12,483 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:02:12,485 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.030*\"kong\" + 0.024*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.017*\"malaysia\" + 0.016*\"chines\" + 0.016*\"japanes\" + 0.015*\"thailand\" + 0.015*\"indonesia\"\n", - "2019-01-16 06:02:12,486 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:02:12,492 : INFO : topic diff=0.003186, rho=0.022049\n", - "2019-01-16 06:02:12,753 : INFO : PROGRESS: pass 0, at document #4116000/4922894\n", - "2019-01-16 06:02:14,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:15,308 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.016*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.010*\"naval\" + 0.009*\"gun\"\n", - "2019-01-16 06:02:15,310 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:02:15,312 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.034*\"russian\" + 0.022*\"russia\" + 0.021*\"american\" + 0.020*\"soviet\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.014*\"moscow\" + 0.014*\"republ\" + 0.014*\"poland\"\n", - "2019-01-16 06:02:15,313 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:02:15,314 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:02:15,321 : INFO : topic diff=0.003309, rho=0.022043\n", - "2019-01-16 06:02:15,576 : INFO : PROGRESS: pass 0, at document #4118000/4922894\n", - "2019-01-16 06:02:17,598 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:18,156 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.066*\"august\" + 0.065*\"juli\" + 0.063*\"januari\" + 0.062*\"april\" + 0.061*\"novemb\" + 0.060*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:02:18,157 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.037*\"new\" + 0.031*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.017*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:02:18,159 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"navi\" + 0.016*\"sea\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.010*\"naval\" + 0.009*\"gun\"\n", - "2019-01-16 06:02:18,160 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"smith\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"jone\"\n", - "2019-01-16 06:02:18,161 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:02:18,167 : INFO : topic diff=0.003244, rho=0.022038\n", - "2019-01-16 06:02:22,848 : INFO : -11.625 per-word bound, 3158.8 perplexity estimate based on a held-out corpus of 2000 documents with 580578 words\n", - "2019-01-16 06:02:22,849 : INFO : PROGRESS: pass 0, at document #4120000/4922894\n", - "2019-01-16 06:02:24,838 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:25,395 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.029*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"township\" + 0.022*\"household\"\n", - "2019-01-16 06:02:25,396 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.018*\"contest\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.015*\"fight\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 06:02:25,397 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"aircraft\" + 0.025*\"oper\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:02:25,399 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:02:25,400 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"new\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:02:25,406 : INFO : topic diff=0.003276, rho=0.022033\n", - "2019-01-16 06:02:25,667 : INFO : PROGRESS: pass 0, at document #4122000/4922894\n", - "2019-01-16 06:02:27,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:28,245 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"new\"\n", - "2019-01-16 06:02:28,246 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.035*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\" + 0.011*\"islam\"\n", - "2019-01-16 06:02:28,248 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:02:28,250 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 06:02:28,252 : INFO : topic #46 (0.020): 0.137*\"class\" + 0.056*\"align\" + 0.055*\"wikit\" + 0.049*\"left\" + 0.049*\"style\" + 0.039*\"center\" + 0.038*\"list\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.030*\"border\"\n", - "2019-01-16 06:02:28,257 : INFO : topic diff=0.003177, rho=0.022027\n", - "2019-01-16 06:02:28,503 : INFO : PROGRESS: pass 0, at document #4124000/4922894\n", - "2019-01-16 06:02:30,553 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:31,111 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:02:31,112 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.016*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"ret\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:02:31,113 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"damag\" + 0.010*\"naval\" + 0.009*\"gun\"\n", - "2019-01-16 06:02:31,115 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"democrat\" + 0.016*\"minist\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:02:31,116 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.016*\"match\" + 0.015*\"fight\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 06:02:31,122 : INFO : topic diff=0.003480, rho=0.022022\n", - "2019-01-16 06:02:31,374 : INFO : PROGRESS: pass 0, at document #4126000/4922894\n", - "2019-01-16 06:02:33,383 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:33,939 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.056*\"align\" + 0.055*\"wikit\" + 0.049*\"style\" + 0.049*\"left\" + 0.039*\"center\" + 0.038*\"list\" + 0.034*\"right\" + 0.034*\"philippin\" + 0.030*\"border\"\n", - "2019-01-16 06:02:33,941 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.014*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:02:33,943 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.040*\"univers\" + 0.039*\"student\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:02:33,944 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"church\" + 0.008*\"citi\"\n", - "2019-01-16 06:02:33,946 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 06:02:33,952 : INFO : topic diff=0.003331, rho=0.022017\n", - "2019-01-16 06:02:34,203 : INFO : PROGRESS: pass 0, at document #4128000/4922894\n", - "2019-01-16 06:02:36,209 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:36,770 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 06:02:36,772 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.031*\"hong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.017*\"kim\" + 0.017*\"malaysia\" + 0.016*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.015*\"asian\"\n", - "2019-01-16 06:02:36,774 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.015*\"player\"\n", - "2019-01-16 06:02:36,777 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:02:36,778 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:02:36,784 : INFO : topic diff=0.003627, rho=0.022011\n", - "2019-01-16 06:02:37,032 : INFO : PROGRESS: pass 0, at document #4130000/4922894\n", - "2019-01-16 06:02:39,154 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:39,716 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"finish\" + 0.011*\"time\" + 0.011*\"year\"\n", - "2019-01-16 06:02:39,717 : INFO : topic #6 (0.020): 0.056*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"piano\" + 0.012*\"opera\" + 0.011*\"orchestra\"\n", - "2019-01-16 06:02:39,718 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:02:39,719 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 06:02:39,721 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.055*\"wikit\" + 0.055*\"align\" + 0.049*\"style\" + 0.048*\"left\" + 0.039*\"center\" + 0.038*\"list\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.030*\"border\"\n", - "2019-01-16 06:02:39,727 : INFO : topic diff=0.002911, rho=0.022006\n", - "2019-01-16 06:02:39,974 : INFO : PROGRESS: pass 0, at document #4132000/4922894\n", - "2019-01-16 06:02:41,973 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:42,543 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\"\n", - "2019-01-16 06:02:42,545 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"gun\" + 0.009*\"damag\"\n", - "2019-01-16 06:02:42,546 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 06:02:42,548 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:02:42,549 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.057*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:02:42,555 : INFO : topic diff=0.003789, rho=0.022001\n", - "2019-01-16 06:02:42,807 : INFO : PROGRESS: pass 0, at document #4134000/4922894\n", - "2019-01-16 06:02:44,828 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:45,386 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:02:45,388 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:02:45,389 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.012*\"piano\" + 0.012*\"opera\" + 0.012*\"orchestra\"\n", - "2019-01-16 06:02:45,391 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", - "2019-01-16 06:02:45,392 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:02:45,398 : INFO : topic diff=0.002814, rho=0.021995\n", - "2019-01-16 06:02:45,698 : INFO : PROGRESS: pass 0, at document #4136000/4922894\n", - "2019-01-16 06:02:47,749 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:48,307 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.010*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 06:02:48,308 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:02:48,310 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:02:48,313 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"forest\"\n", - "2019-01-16 06:02:48,315 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:02:48,323 : INFO : topic diff=0.003133, rho=0.021990\n", - "2019-01-16 06:02:48,575 : INFO : PROGRESS: pass 0, at document #4138000/4922894\n", - "2019-01-16 06:02:50,545 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:51,103 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 06:02:51,104 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:02:51,106 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.039*\"africa\" + 0.039*\"african\" + 0.031*\"south\" + 0.027*\"text\" + 0.025*\"black\" + 0.023*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 06:02:51,108 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"model\" + 0.008*\"set\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 06:02:51,109 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", - "2019-01-16 06:02:51,115 : INFO : topic diff=0.003293, rho=0.021985\n", - "2019-01-16 06:02:55,673 : INFO : -11.739 per-word bound, 3419.1 perplexity estimate based on a held-out corpus of 2000 documents with 519009 words\n", - "2019-01-16 06:02:55,674 : INFO : PROGRESS: pass 0, at document #4140000/4922894\n", - "2019-01-16 06:02:57,657 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:02:58,216 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.022*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.020*\"japan\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 06:02:58,218 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:02:58,220 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"regiment\" + 0.011*\"divis\" + 0.011*\"offic\"\n", - "2019-01-16 06:02:58,222 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 06:02:58,223 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"son\" + 0.016*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.012*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:02:58,229 : INFO : topic diff=0.003379, rho=0.021979\n", - "2019-01-16 06:02:58,487 : INFO : PROGRESS: pass 0, at document #4142000/4922894\n", - "2019-01-16 06:03:00,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:01,005 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:03:01,007 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 06:03:01,009 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.023*\"http\" + 0.018*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 06:03:01,011 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.030*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.022*\"township\"\n", - "2019-01-16 06:03:01,013 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.023*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.013*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:03:01,019 : INFO : topic diff=0.003408, rho=0.021974\n", - "2019-01-16 06:03:01,282 : INFO : PROGRESS: pass 0, at document #4144000/4922894\n", - "2019-01-16 06:03:03,309 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:03,869 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:03:03,870 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.055*\"wikit\" + 0.053*\"align\" + 0.050*\"style\" + 0.047*\"left\" + 0.039*\"center\" + 0.038*\"list\" + 0.033*\"philippin\" + 0.033*\"right\" + 0.030*\"border\"\n", - "2019-01-16 06:03:03,872 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 06:03:03,874 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"friend\"\n", - "2019-01-16 06:03:03,875 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:03:03,881 : INFO : topic diff=0.003370, rho=0.021969\n", - "2019-01-16 06:03:04,158 : INFO : PROGRESS: pass 0, at document #4146000/4922894\n", - "2019-01-16 06:03:06,160 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:06,718 : INFO : topic #27 (0.020): 0.047*\"born\" + 0.034*\"russian\" + 0.021*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 06:03:06,719 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.032*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:03:06,721 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.069*\"villag\" + 0.051*\"region\" + 0.038*\"east\" + 0.037*\"north\" + 0.036*\"municip\" + 0.036*\"counti\" + 0.035*\"west\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:03:06,722 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"author\" + 0.011*\"stori\"\n", - "2019-01-16 06:03:06,723 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"qualifi\" + 0.014*\"place\" + 0.012*\"won\"\n", - "2019-01-16 06:03:06,729 : INFO : topic diff=0.003692, rho=0.021963\n", - "2019-01-16 06:03:06,988 : INFO : PROGRESS: pass 0, at document #4148000/4922894\n", - "2019-01-16 06:03:08,985 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:09,541 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 06:03:09,543 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"friend\"\n", - "2019-01-16 06:03:09,545 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.039*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.024*\"black\" + 0.023*\"till\" + 0.023*\"color\" + 0.015*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 06:03:09,546 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.022*\"group\" + 0.020*\"point\" + 0.019*\"open\" + 0.014*\"qualifi\" + 0.014*\"place\" + 0.012*\"won\"\n", - "2019-01-16 06:03:09,547 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:03:09,553 : INFO : topic diff=0.003747, rho=0.021958\n", - "2019-01-16 06:03:09,818 : INFO : PROGRESS: pass 0, at document #4150000/4922894\n", - "2019-01-16 06:03:11,905 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:12,467 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", - "2019-01-16 06:03:12,469 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"airport\" + 0.026*\"aircraft\" + 0.025*\"oper\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.013*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:03:12,470 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"theori\" + 0.007*\"group\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 06:03:12,472 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:03:12,473 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:03:12,481 : INFO : topic diff=0.003093, rho=0.021953\n", - "2019-01-16 06:03:12,740 : INFO : PROGRESS: pass 0, at document #4152000/4922894\n", - "2019-01-16 06:03:14,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:15,326 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.014*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", - "2019-01-16 06:03:15,327 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.014*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:03:15,329 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"ret\" + 0.008*\"treatment\"\n", - "2019-01-16 06:03:15,330 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.067*\"juli\" + 0.067*\"august\" + 0.066*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.061*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:03:15,331 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"gun\" + 0.009*\"damag\"\n", - "2019-01-16 06:03:15,337 : INFO : topic diff=0.002957, rho=0.021948\n", - "2019-01-16 06:03:15,604 : INFO : PROGRESS: pass 0, at document #4154000/4922894\n", - "2019-01-16 06:03:17,864 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:18,428 : INFO : topic #6 (0.020): 0.057*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 06:03:18,429 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.069*\"villag\" + 0.051*\"region\" + 0.038*\"east\" + 0.037*\"north\" + 0.036*\"municip\" + 0.035*\"counti\" + 0.035*\"west\" + 0.034*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:03:18,431 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.014*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:03:18,433 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.014*\"qualifi\" + 0.014*\"place\" + 0.013*\"won\"\n", - "2019-01-16 06:03:18,434 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"event\" + 0.020*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 06:03:18,440 : INFO : topic diff=0.003349, rho=0.021942\n", - "2019-01-16 06:03:18,700 : INFO : PROGRESS: pass 0, at document #4156000/4922894\n", - "2019-01-16 06:03:20,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:21,263 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:03:21,264 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.012*\"west\"\n", - "2019-01-16 06:03:21,266 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 06:03:21,267 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.019*\"forc\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.014*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:03:21,268 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 06:03:21,274 : INFO : topic diff=0.002700, rho=0.021937\n", - "2019-01-16 06:03:21,522 : INFO : PROGRESS: pass 0, at document #4158000/4922894\n", - "2019-01-16 06:03:23,460 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:24,021 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.014*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.011*\"ford\"\n", - "2019-01-16 06:03:24,023 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:03:24,025 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:03:24,027 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.013*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:03:24,029 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.034*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.017*\"polish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"poland\"\n", - "2019-01-16 06:03:24,035 : INFO : topic diff=0.003557, rho=0.021932\n", - "2019-01-16 06:03:28,556 : INFO : -11.655 per-word bound, 3225.2 perplexity estimate based on a held-out corpus of 2000 documents with 541298 words\n", - "2019-01-16 06:03:28,557 : INFO : PROGRESS: pass 0, at document #4160000/4922894\n", - "2019-01-16 06:03:30,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:31,092 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.013*\"ireland\" + 0.013*\"thoma\" + 0.013*\"henri\"\n", - "2019-01-16 06:03:31,094 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 06:03:31,095 : INFO : topic #40 (0.020): 0.042*\"bar\" + 0.039*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.024*\"black\" + 0.023*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 06:03:31,096 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:03:31,098 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"republican\"\n", - "2019-01-16 06:03:31,104 : INFO : topic diff=0.003167, rho=0.021926\n", - "2019-01-16 06:03:31,395 : INFO : PROGRESS: pass 0, at document #4162000/4922894\n", - "2019-01-16 06:03:33,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:34,005 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:03:34,006 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 06:03:34,008 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:03:34,009 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.014*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 06:03:34,010 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.013*\"henri\"\n", - "2019-01-16 06:03:34,016 : INFO : topic diff=0.002832, rho=0.021921\n", - "2019-01-16 06:03:34,276 : INFO : PROGRESS: pass 0, at document #4164000/4922894\n", - "2019-01-16 06:03:36,371 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:36,931 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.013*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:03:36,933 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"park\" + 0.009*\"citi\"\n", - "2019-01-16 06:03:36,935 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.029*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.022*\"counti\" + 0.022*\"household\" + 0.021*\"township\"\n", - "2019-01-16 06:03:36,936 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.017*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"match\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 06:03:36,937 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 06:03:36,944 : INFO : topic diff=0.003217, rho=0.021916\n", - "2019-01-16 06:03:37,204 : INFO : PROGRESS: pass 0, at document #4166000/4922894\n", - "2019-01-16 06:03:39,192 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:39,750 : INFO : topic #46 (0.020): 0.139*\"class\" + 0.056*\"align\" + 0.055*\"wikit\" + 0.048*\"style\" + 0.047*\"left\" + 0.040*\"center\" + 0.037*\"list\" + 0.035*\"right\" + 0.034*\"philippin\" + 0.029*\"text\"\n", - "2019-01-16 06:03:39,752 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", - "2019-01-16 06:03:39,753 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 06:03:39,754 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:03:39,756 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.012*\"texa\"\n", - "2019-01-16 06:03:39,761 : INFO : topic diff=0.003281, rho=0.021911\n", - "2019-01-16 06:03:40,026 : INFO : PROGRESS: pass 0, at document #4168000/4922894\n", - "2019-01-16 06:03:42,023 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:42,582 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.020*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:03:42,584 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.011*\"sweden\"\n", - "2019-01-16 06:03:42,585 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"best\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:03:42,587 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 06:03:42,588 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"event\" + 0.020*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 06:03:42,594 : INFO : topic diff=0.003224, rho=0.021905\n", - "2019-01-16 06:03:42,862 : INFO : PROGRESS: pass 0, at document #4170000/4922894\n", - "2019-01-16 06:03:44,850 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:45,408 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.014*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 06:03:45,411 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"mountain\"\n", - "2019-01-16 06:03:45,412 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.014*\"poland\" + 0.013*\"republ\"\n", - "2019-01-16 06:03:45,414 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:03:45,415 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:03:45,421 : INFO : topic diff=0.003680, rho=0.021900\n", - "2019-01-16 06:03:45,667 : INFO : PROGRESS: pass 0, at document #4172000/4922894\n", - "2019-01-16 06:03:47,623 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:48,180 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.026*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.018*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", - "2019-01-16 06:03:48,182 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:03:48,183 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:03:48,185 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.075*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.023*\"toronto\" + 0.018*\"quebec\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"montreal\" + 0.015*\"korea\"\n", - "2019-01-16 06:03:48,187 : INFO : topic #12 (0.020): 0.059*\"elect\" + 0.040*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.018*\"presid\" + 0.016*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 06:03:48,193 : INFO : topic diff=0.002970, rho=0.021895\n", - "2019-01-16 06:03:48,452 : INFO : PROGRESS: pass 0, at document #4174000/4922894\n", - "2019-01-16 06:03:50,498 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:51,058 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:03:51,060 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:03:51,063 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 06:03:51,064 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"township\" + 0.022*\"counti\" + 0.022*\"household\"\n", - "2019-01-16 06:03:51,066 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.043*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:03:51,072 : INFO : topic diff=0.002840, rho=0.021890\n", - "2019-01-16 06:03:51,328 : INFO : PROGRESS: pass 0, at document #4176000/4922894\n", - "2019-01-16 06:03:53,323 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:53,881 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 06:03:53,883 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:03:53,884 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.017*\"sea\" + 0.015*\"navi\" + 0.012*\"boat\" + 0.012*\"island\" + 0.012*\"port\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 06:03:53,886 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.072*\"march\" + 0.067*\"juli\" + 0.066*\"august\" + 0.065*\"januari\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:03:53,887 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"gener\" + 0.014*\"militari\" + 0.013*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:03:53,893 : INFO : topic diff=0.003172, rho=0.021884\n", - "2019-01-16 06:03:54,159 : INFO : PROGRESS: pass 0, at document #4178000/4922894\n", - "2019-01-16 06:03:56,282 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:03:56,842 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:03:56,843 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.015*\"manchest\" + 0.015*\"scottish\" + 0.013*\"west\"\n", - "2019-01-16 06:03:56,844 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.014*\"israel\" + 0.013*\"republ\"\n", - "2019-01-16 06:03:56,846 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:03:56,847 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"bank\" + 0.011*\"market\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", - "2019-01-16 06:03:56,853 : INFO : topic diff=0.002926, rho=0.021879\n", - "2019-01-16 06:04:01,527 : INFO : -11.527 per-word bound, 2951.8 perplexity estimate based on a held-out corpus of 2000 documents with 561362 words\n", - "2019-01-16 06:04:01,527 : INFO : PROGRESS: pass 0, at document #4180000/4922894\n", - "2019-01-16 06:04:03,550 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:04,108 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"township\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"household\"\n", - "2019-01-16 06:04:04,109 : INFO : topic #43 (0.020): 0.030*\"san\" + 0.024*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 06:04:04,111 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:04:04,112 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 06:04:04,113 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.022*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.015*\"scottish\" + 0.015*\"manchest\" + 0.013*\"west\"\n", - "2019-01-16 06:04:04,119 : INFO : topic diff=0.002738, rho=0.021874\n", - "2019-01-16 06:04:04,374 : INFO : PROGRESS: pass 0, at document #4182000/4922894\n", - "2019-01-16 06:04:06,322 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:06,881 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 06:04:06,883 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:04:06,884 : INFO : topic #23 (0.020): 0.018*\"medic\" + 0.016*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:04:06,885 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"airport\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 06:04:06,887 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.019*\"presid\" + 0.016*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 06:04:06,892 : INFO : topic diff=0.003216, rho=0.021869\n", - "2019-01-16 06:04:07,155 : INFO : PROGRESS: pass 0, at document #4184000/4922894\n", - "2019-01-16 06:04:09,135 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:04:09,692 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:04:09,693 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.038*\"east\" + 0.037*\"north\" + 0.036*\"west\" + 0.035*\"counti\" + 0.035*\"municip\" + 0.034*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:04:09,695 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.024*\"lee\" + 0.022*\"singapor\" + 0.018*\"malaysia\" + 0.018*\"kim\" + 0.017*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.015*\"thailand\"\n", - "2019-01-16 06:04:09,696 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 06:04:09,698 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 06:04:09,703 : INFO : topic diff=0.003308, rho=0.021863\n", - "2019-01-16 06:04:09,970 : INFO : PROGRESS: pass 0, at document #4186000/4922894\n", - "2019-01-16 06:04:12,040 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:12,597 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.031*\"south\" + 0.026*\"text\" + 0.024*\"black\" + 0.024*\"till\" + 0.023*\"color\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 06:04:12,598 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", - "2019-01-16 06:04:12,599 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.023*\"toronto\" + 0.023*\"ontario\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 06:04:12,602 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.012*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 06:04:12,603 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.030*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.023*\"commun\" + 0.022*\"township\" + 0.022*\"household\"\n", - "2019-01-16 06:04:12,609 : INFO : topic diff=0.002942, rho=0.021858\n", - "2019-01-16 06:04:12,914 : INFO : PROGRESS: pass 0, at document #4188000/4922894\n", - "2019-01-16 06:04:15,015 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:15,577 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:04:15,579 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:04:15,580 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 06:04:15,582 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.011*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:04:15,583 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.070*\"villag\" + 0.051*\"region\" + 0.038*\"east\" + 0.038*\"north\" + 0.036*\"west\" + 0.035*\"counti\" + 0.034*\"municip\" + 0.034*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:04:15,590 : INFO : topic diff=0.003303, rho=0.021853\n", - "2019-01-16 06:04:15,847 : INFO : PROGRESS: pass 0, at document #4190000/4922894\n", - "2019-01-16 06:04:17,848 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:18,405 : INFO : topic #0 (0.020): 0.035*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:04:18,407 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.022*\"singapor\" + 0.019*\"kim\" + 0.018*\"malaysia\" + 0.018*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.015*\"thailand\"\n", - "2019-01-16 06:04:18,408 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.009*\"josé\" + 0.009*\"mexican\"\n", - "2019-01-16 06:04:18,409 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.012*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"tree\"\n", - "2019-01-16 06:04:18,410 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:04:18,416 : INFO : topic diff=0.002783, rho=0.021848\n", - "2019-01-16 06:04:18,670 : INFO : PROGRESS: pass 0, at document #4192000/4922894\n", - "2019-01-16 06:04:20,593 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:21,155 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:04:21,157 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 06:04:21,159 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:04:21,161 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.066*\"august\" + 0.063*\"novemb\" + 0.063*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 06:04:21,163 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 06:04:21,170 : INFO : topic diff=0.003058, rho=0.021843\n", - "2019-01-16 06:04:21,440 : INFO : PROGRESS: pass 0, at document #4194000/4922894\n", - "2019-01-16 06:04:23,485 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:24,044 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 06:04:24,046 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:04:24,048 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 06:04:24,049 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:04:24,050 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:04:24,056 : INFO : topic diff=0.004027, rho=0.021837\n", - "2019-01-16 06:04:24,311 : INFO : PROGRESS: pass 0, at document #4196000/4922894\n", - "2019-01-16 06:04:26,263 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:26,822 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:04:26,824 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.021*\"singapor\" + 0.019*\"kim\" + 0.018*\"malaysia\" + 0.018*\"japanes\" + 0.016*\"chines\" + 0.015*\"indonesia\" + 0.014*\"thailand\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:04:26,825 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.009*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:04:26,826 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 06:04:26,828 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:04:26,834 : INFO : topic diff=0.003490, rho=0.021832\n", - "2019-01-16 06:04:27,101 : INFO : PROGRESS: pass 0, at document #4198000/4922894\n", - "2019-01-16 06:04:29,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:29,696 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.022*\"unit\" + 0.019*\"town\" + 0.019*\"cricket\" + 0.016*\"scotland\" + 0.015*\"citi\" + 0.015*\"scottish\" + 0.015*\"manchest\" + 0.013*\"west\"\n", - "2019-01-16 06:04:29,698 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:04:29,700 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:04:29,702 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 06:04:29,703 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"jame\" + 0.015*\"sir\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.013*\"henri\"\n", - "2019-01-16 06:04:29,709 : INFO : topic diff=0.004517, rho=0.021827\n", - "2019-01-16 06:04:34,201 : INFO : -11.612 per-word bound, 3131.1 perplexity estimate based on a held-out corpus of 2000 documents with 531635 words\n", - "2019-01-16 06:04:34,202 : INFO : PROGRESS: pass 0, at document #4200000/4922894\n", - "2019-01-16 06:04:36,145 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:36,704 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"best\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:04:36,705 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.013*\"squadron\" + 0.012*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 06:04:36,706 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:04:36,708 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"wrestl\" + 0.016*\"fight\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 06:04:36,709 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 06:04:36,716 : INFO : topic diff=0.002979, rho=0.021822\n", - "2019-01-16 06:04:36,990 : INFO : PROGRESS: pass 0, at document #4202000/4922894\n", - "2019-01-16 06:04:38,995 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:39,553 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 06:04:39,556 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"best\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.015*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:04:39,558 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:04:39,559 : INFO : topic #4 (0.020): 0.132*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:04:39,560 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"energi\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:04:39,566 : INFO : topic diff=0.003367, rho=0.021817\n", - "2019-01-16 06:04:39,831 : INFO : PROGRESS: pass 0, at document #4204000/4922894\n", - "2019-01-16 06:04:41,845 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:42,401 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"london\" + 0.021*\"unit\" + 0.020*\"town\" + 0.019*\"cricket\" + 0.016*\"scotland\" + 0.015*\"citi\" + 0.015*\"scottish\" + 0.014*\"manchest\" + 0.013*\"west\"\n", - "2019-01-16 06:04:42,403 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.058*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:04:42,404 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.042*\"round\" + 0.027*\"tournament\" + 0.021*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.020*\"point\" + 0.014*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 06:04:42,405 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:04:42,407 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 06:04:42,413 : INFO : topic diff=0.003447, rho=0.021811\n", - "2019-01-16 06:04:42,675 : INFO : PROGRESS: pass 0, at document #4206000/4922894\n", - "2019-01-16 06:04:44,681 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:45,237 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.069*\"villag\" + 0.051*\"region\" + 0.041*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.036*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:04:45,239 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"boat\" + 0.012*\"port\" + 0.012*\"island\" + 0.011*\"coast\" + 0.009*\"gun\" + 0.009*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 06:04:45,240 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:04:45,241 : INFO : topic #48 (0.020): 0.076*\"septemb\" + 0.075*\"octob\" + 0.074*\"march\" + 0.068*\"juli\" + 0.067*\"januari\" + 0.067*\"august\" + 0.064*\"novemb\" + 0.064*\"june\" + 0.063*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 06:04:45,243 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 06:04:45,250 : INFO : topic diff=0.003402, rho=0.021806\n", - "2019-01-16 06:04:45,523 : INFO : PROGRESS: pass 0, at document #4208000/4922894\n", - "2019-01-16 06:04:47,581 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:48,138 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 06:04:48,139 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.032*\"ag\" + 0.031*\"citi\" + 0.030*\"town\" + 0.027*\"famili\" + 0.024*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.022*\"township\"\n", - "2019-01-16 06:04:48,140 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:04:48,141 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.018*\"exhibit\"\n", - "2019-01-16 06:04:48,142 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:04:48,148 : INFO : topic diff=0.004327, rho=0.021801\n", - "2019-01-16 06:04:48,425 : INFO : PROGRESS: pass 0, at document #4210000/4922894\n", - "2019-01-16 06:04:50,455 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:51,017 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 06:04:51,019 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"model\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.006*\"group\"\n", - "2019-01-16 06:04:51,020 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 06:04:51,021 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"medal\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"japan\" + 0.019*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 06:04:51,022 : INFO : topic #40 (0.020): 0.041*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.025*\"black\" + 0.025*\"text\" + 0.023*\"till\" + 0.022*\"color\" + 0.015*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 06:04:51,029 : INFO : topic diff=0.002820, rho=0.021796\n", - "2019-01-16 06:04:51,288 : INFO : PROGRESS: pass 0, at document #4212000/4922894\n", - "2019-01-16 06:04:53,259 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:53,815 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 06:04:53,817 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"democrat\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 06:04:53,818 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.024*\"london\" + 0.022*\"unit\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.014*\"scottish\" + 0.014*\"manchest\" + 0.014*\"west\"\n", - "2019-01-16 06:04:53,820 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:04:53,822 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:04:53,827 : INFO : topic diff=0.002963, rho=0.021791\n", - "2019-01-16 06:04:54,128 : INFO : PROGRESS: pass 0, at document #4214000/4922894\n", - "2019-01-16 06:04:56,113 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:56,671 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.072*\"canada\" + 0.059*\"canadian\" + 0.023*\"ontario\" + 0.023*\"toronto\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"montreal\" + 0.015*\"korea\"\n", - "2019-01-16 06:04:56,672 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:04:56,675 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:04:56,677 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 06:04:56,678 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:04:56,684 : INFO : topic diff=0.003175, rho=0.021786\n", - "2019-01-16 06:04:56,949 : INFO : PROGRESS: pass 0, at document #4216000/4922894\n", - "2019-01-16 06:04:58,921 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:04:59,479 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:04:59,480 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:04:59,482 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.013*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:04:59,483 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 06:04:59,484 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:04:59,491 : INFO : topic diff=0.003571, rho=0.021780\n", - "2019-01-16 06:04:59,760 : INFO : PROGRESS: pass 0, at document #4218000/4922894\n", - "2019-01-16 06:05:01,792 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:02,349 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:05:02,350 : INFO : topic #4 (0.020): 0.133*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:05:02,352 : INFO : topic #12 (0.020): 0.058*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"democrat\" + 0.019*\"vote\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 06:05:02,354 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.012*\"regiment\"\n", - "2019-01-16 06:05:02,355 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:05:02,361 : INFO : topic diff=0.003474, rho=0.021775\n", - "2019-01-16 06:05:06,956 : INFO : -11.703 per-word bound, 3333.7 perplexity estimate based on a held-out corpus of 2000 documents with 580529 words\n", - "2019-01-16 06:05:06,957 : INFO : PROGRESS: pass 0, at document #4220000/4922894\n", - "2019-01-16 06:05:08,947 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:09,505 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 06:05:09,506 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.015*\"jame\" + 0.014*\"sir\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:05:09,508 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.067*\"villag\" + 0.050*\"region\" + 0.040*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.035*\"west\" + 0.035*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:05:09,509 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.021*\"open\" + 0.020*\"group\" + 0.020*\"point\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:05:09,510 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.022*\"household\" + 0.022*\"commun\" + 0.021*\"township\"\n", - "2019-01-16 06:05:09,516 : INFO : topic diff=0.004024, rho=0.021770\n", - "2019-01-16 06:05:09,782 : INFO : PROGRESS: pass 0, at document #4222000/4922894\n", - "2019-01-16 06:05:11,767 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:12,325 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 06:05:12,326 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 06:05:12,328 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.025*\"oper\" + 0.025*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:05:12,329 : INFO : topic #44 (0.020): 0.031*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:05:12,331 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 06:05:12,336 : INFO : topic diff=0.003526, rho=0.021765\n", - "2019-01-16 06:05:12,593 : INFO : PROGRESS: pass 0, at document #4224000/4922894\n", - "2019-01-16 06:05:14,549 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:15,106 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 06:05:15,107 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 06:05:15,109 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"intern\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:05:15,110 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.060*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:05:15,112 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.075*\"septemb\" + 0.075*\"octob\" + 0.069*\"juli\" + 0.067*\"januari\" + 0.067*\"august\" + 0.066*\"june\" + 0.065*\"novemb\" + 0.063*\"april\" + 0.062*\"decemb\"\n", - "2019-01-16 06:05:15,118 : INFO : topic diff=0.002685, rho=0.021760\n", - "2019-01-16 06:05:15,375 : INFO : PROGRESS: pass 0, at document #4226000/4922894\n", - "2019-01-16 06:05:17,397 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:17,963 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"harri\"\n", - "2019-01-16 06:05:17,964 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.013*\"sweden\"\n", - "2019-01-16 06:05:17,966 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", - "2019-01-16 06:05:17,967 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.060*\"australian\" + 0.054*\"new\" + 0.040*\"china\" + 0.037*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:05:17,968 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"counti\" + 0.022*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\"\n", - "2019-01-16 06:05:17,974 : INFO : topic diff=0.002760, rho=0.021755\n", - "2019-01-16 06:05:18,225 : INFO : PROGRESS: pass 0, at document #4228000/4922894\n", - "2019-01-16 06:05:20,195 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:20,754 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", - "2019-01-16 06:05:20,755 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:05:20,757 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n", - "2019-01-16 06:05:20,758 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:05:20,759 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:05:20,765 : INFO : topic diff=0.002526, rho=0.021749\n", - "2019-01-16 06:05:21,037 : INFO : PROGRESS: pass 0, at document #4230000/4922894\n", - "2019-01-16 06:05:23,073 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:23,629 : INFO : topic #11 (0.020): 0.022*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:05:23,630 : INFO : topic #46 (0.020): 0.136*\"class\" + 0.058*\"wikit\" + 0.058*\"align\" + 0.050*\"style\" + 0.047*\"left\" + 0.042*\"center\" + 0.036*\"list\" + 0.034*\"philippin\" + 0.032*\"right\" + 0.030*\"text\"\n", - "2019-01-16 06:05:23,632 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"harri\"\n", - "2019-01-16 06:05:23,633 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:05:23,634 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.027*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:05:23,640 : INFO : topic diff=0.003176, rho=0.021744\n", - "2019-01-16 06:05:23,898 : INFO : PROGRESS: pass 0, at document #4232000/4922894\n", - "2019-01-16 06:05:25,837 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:26,396 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"jazz\"\n", - "2019-01-16 06:05:26,398 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.035*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:05:26,400 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"friend\" + 0.004*\"return\"\n", - "2019-01-16 06:05:26,401 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.058*\"wikit\" + 0.057*\"align\" + 0.050*\"style\" + 0.047*\"left\" + 0.041*\"center\" + 0.036*\"list\" + 0.034*\"philippin\" + 0.033*\"right\" + 0.030*\"text\"\n", - "2019-01-16 06:05:26,403 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:05:26,409 : INFO : topic diff=0.003357, rho=0.021739\n", - "2019-01-16 06:05:26,675 : INFO : PROGRESS: pass 0, at document #4234000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:05:28,743 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:29,301 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"exampl\"\n", - "2019-01-16 06:05:29,302 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.029*\"south\" + 0.026*\"black\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 06:05:29,304 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:05:29,305 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"time\" + 0.010*\"year\" + 0.010*\"championship\" + 0.010*\"ford\"\n", - "2019-01-16 06:05:29,307 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.022*\"counti\" + 0.022*\"household\" + 0.021*\"peopl\"\n", - "2019-01-16 06:05:29,312 : INFO : topic diff=0.004295, rho=0.021734\n", - "2019-01-16 06:05:29,565 : INFO : PROGRESS: pass 0, at document #4236000/4922894\n", - "2019-01-16 06:05:31,610 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:32,168 : INFO : topic #14 (0.020): 0.024*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:05:32,169 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"poland\" + 0.014*\"israel\"\n", - "2019-01-16 06:05:32,171 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:05:32,172 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"cathol\"\n", - "2019-01-16 06:05:32,173 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.040*\"africa\" + 0.038*\"african\" + 0.030*\"south\" + 0.026*\"text\" + 0.026*\"black\" + 0.025*\"till\" + 0.023*\"color\" + 0.014*\"storm\" + 0.014*\"tropic\"\n", - "2019-01-16 06:05:32,179 : INFO : topic diff=0.003956, rho=0.021729\n", - "2019-01-16 06:05:32,482 : INFO : PROGRESS: pass 0, at document #4238000/4922894\n", - "2019-01-16 06:05:34,480 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:35,039 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:05:35,040 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.023*\"london\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 06:05:35,041 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.030*\"women\" + 0.027*\"olymp\" + 0.026*\"championship\" + 0.024*\"japan\" + 0.022*\"men\" + 0.021*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 06:05:35,043 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:05:35,044 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"open\" + 0.021*\"point\" + 0.021*\"group\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:05:35,050 : INFO : topic diff=0.003384, rho=0.021724\n", - "2019-01-16 06:05:39,717 : INFO : -11.679 per-word bound, 3278.6 perplexity estimate based on a held-out corpus of 2000 documents with 541210 words\n", - "2019-01-16 06:05:39,718 : INFO : PROGRESS: pass 0, at document #4240000/4922894\n", - "2019-01-16 06:05:41,708 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:42,265 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:05:42,267 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.021*\"http\" + 0.017*\"www\" + 0.015*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.012*\"khan\" + 0.011*\"singh\"\n", - "2019-01-16 06:05:42,268 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:05:42,269 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"group\" + 0.007*\"unit\"\n", - "2019-01-16 06:05:42,270 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.024*\"toronto\" + 0.024*\"ontario\" + 0.017*\"british\" + 0.016*\"quebec\" + 0.016*\"korean\" + 0.016*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 06:05:42,276 : INFO : topic diff=0.002788, rho=0.021719\n", - "2019-01-16 06:05:42,535 : INFO : PROGRESS: pass 0, at document #4242000/4922894\n", - "2019-01-16 06:05:44,535 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:45,092 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.027*\"till\" + 0.025*\"black\" + 0.025*\"color\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 06:05:45,094 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"direct\"\n", - "2019-01-16 06:05:45,096 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.030*\"high\" + 0.030*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:05:45,098 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:05:45,099 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"cathol\"\n", - "2019-01-16 06:05:45,106 : INFO : topic diff=0.002906, rho=0.021713\n", - "2019-01-16 06:05:45,362 : INFO : PROGRESS: pass 0, at document #4244000/4922894\n", - "2019-01-16 06:05:47,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:47,940 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.070*\"villag\" + 0.050*\"region\" + 0.038*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:05:47,941 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:05:47,942 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.010*\"direct\"\n", - "2019-01-16 06:05:47,944 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:05:47,945 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:05:47,952 : INFO : topic diff=0.003259, rho=0.021708\n", - "2019-01-16 06:05:48,210 : INFO : PROGRESS: pass 0, at document #4246000/4922894\n", - "2019-01-16 06:05:50,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:50,793 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:05:50,795 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:05:50,796 : INFO : topic #24 (0.020): 0.034*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"damag\"\n", - "2019-01-16 06:05:50,798 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.069*\"villag\" + 0.050*\"region\" + 0.038*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:05:50,799 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.013*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 06:05:50,805 : INFO : topic diff=0.003201, rho=0.021703\n", - "2019-01-16 06:05:51,067 : INFO : PROGRESS: pass 0, at document #4248000/4922894\n", - "2019-01-16 06:05:53,083 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:53,639 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"cathol\"\n", - "2019-01-16 06:05:53,640 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 06:05:53,642 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"end\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 06:05:53,643 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:05:53,644 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.011*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 06:05:53,650 : INFO : topic diff=0.003451, rho=0.021698\n", - "2019-01-16 06:05:53,920 : INFO : PROGRESS: pass 0, at document #4250000/4922894\n", - "2019-01-16 06:05:55,930 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:56,488 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:05:56,489 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"new\"\n", - "2019-01-16 06:05:56,490 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.024*\"toronto\" + 0.023*\"ontario\" + 0.017*\"korean\" + 0.016*\"korea\" + 0.016*\"british\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 06:05:56,492 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.020*\"democrat\" + 0.019*\"presid\" + 0.017*\"minist\" + 0.013*\"republican\" + 0.013*\"council\" + 0.013*\"repres\"\n", - "2019-01-16 06:05:56,493 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 06:05:56,499 : INFO : topic diff=0.002935, rho=0.021693\n", - "2019-01-16 06:05:56,756 : INFO : PROGRESS: pass 0, at document #4252000/4922894\n", - "2019-01-16 06:05:58,652 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:05:59,210 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:05:59,212 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", - "2019-01-16 06:05:59,213 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:05:59,214 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"counti\" + 0.022*\"household\" + 0.021*\"peopl\"\n", - "2019-01-16 06:05:59,216 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"vocal\"\n", - "2019-01-16 06:05:59,222 : INFO : topic diff=0.003384, rho=0.021688\n", - "2019-01-16 06:05:59,485 : INFO : PROGRESS: pass 0, at document #4254000/4922894\n", - "2019-01-16 06:06:01,466 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:02,025 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 06:06:02,027 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:06:02,028 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.037*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.012*\"sri\" + 0.011*\"khan\" + 0.011*\"singh\"\n", - "2019-01-16 06:06:02,029 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.040*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.027*\"till\" + 0.026*\"black\" + 0.025*\"color\" + 0.014*\"tropic\" + 0.014*\"storm\"\n", - "2019-01-16 06:06:02,030 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:06:02,036 : INFO : topic diff=0.003499, rho=0.021683\n", - "2019-01-16 06:06:02,294 : INFO : PROGRESS: pass 0, at document #4256000/4922894\n", - "2019-01-16 06:06:04,267 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:04,822 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:06:04,824 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.015*\"navi\" + 0.015*\"sea\" + 0.012*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"damag\" + 0.009*\"naval\"\n", - "2019-01-16 06:06:04,825 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.010*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:06:04,827 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.011*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:06:04,828 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:06:04,834 : INFO : topic diff=0.003411, rho=0.021678\n", - "2019-01-16 06:06:05,112 : INFO : PROGRESS: pass 0, at document #4258000/4922894\n", - "2019-01-16 06:06:07,150 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:07,707 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:06:07,709 : INFO : topic #47 (0.020): 0.028*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.019*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.014*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:06:07,710 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.023*\"japan\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:06:07,712 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 06:06:07,713 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.022*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.015*\"wrestl\" + 0.015*\"defeat\" + 0.015*\"titl\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"world\"\n", - "2019-01-16 06:06:07,719 : INFO : topic diff=0.004628, rho=0.021673\n", - "2019-01-16 06:06:12,340 : INFO : -11.601 per-word bound, 3106.6 perplexity estimate based on a held-out corpus of 2000 documents with 547621 words\n", - "2019-01-16 06:06:12,340 : INFO : PROGRESS: pass 0, at document #4260000/4922894\n", - "2019-01-16 06:06:14,326 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:14,883 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:06:14,885 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.073*\"octob\" + 0.073*\"march\" + 0.065*\"juli\" + 0.064*\"januari\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:06:14,886 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:06:14,887 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:06:14,888 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:06:14,894 : INFO : topic diff=0.003004, rho=0.021668\n", - "2019-01-16 06:06:15,168 : INFO : PROGRESS: pass 0, at document #4262000/4922894\n", - "2019-01-16 06:06:17,252 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:17,809 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.013*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:06:17,811 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.061*\"align\" + 0.056*\"wikit\" + 0.053*\"left\" + 0.048*\"style\" + 0.039*\"center\" + 0.035*\"list\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:06:17,813 : INFO : topic #48 (0.020): 0.075*\"septemb\" + 0.074*\"octob\" + 0.073*\"march\" + 0.065*\"januari\" + 0.065*\"juli\" + 0.063*\"august\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:06:17,814 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 06:06:17,816 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 06:06:17,822 : INFO : topic diff=0.002581, rho=0.021662\n", - "2019-01-16 06:06:18,120 : INFO : PROGRESS: pass 0, at document #4264000/4922894\n", - "2019-01-16 06:06:20,118 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:20,675 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:06:20,676 : INFO : topic #17 (0.020): 0.063*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"championship\" + 0.011*\"time\" + 0.011*\"year\" + 0.010*\"ford\"\n", - "2019-01-16 06:06:20,678 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.013*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:06:20,679 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.062*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.048*\"style\" + 0.040*\"center\" + 0.035*\"right\" + 0.035*\"list\" + 0.033*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:06:20,682 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 06:06:20,689 : INFO : topic diff=0.003241, rho=0.021657\n", - "2019-01-16 06:06:20,947 : INFO : PROGRESS: pass 0, at document #4266000/4922894\n", - "2019-01-16 06:06:22,933 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:23,490 : INFO : topic #4 (0.020): 0.134*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.036*\"univers\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:06:23,492 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:06:23,493 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:06:23,495 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 06:06:23,496 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.068*\"villag\" + 0.050*\"region\" + 0.040*\"counti\" + 0.037*\"east\" + 0.036*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:06:23,502 : INFO : topic diff=0.003384, rho=0.021652\n", - "2019-01-16 06:06:23,756 : INFO : PROGRESS: pass 0, at document #4268000/4922894\n", - "2019-01-16 06:06:25,732 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:26,289 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:06:26,290 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:06:26,292 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:06:26,293 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.009*\"patient\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:06:26,295 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:06:26,300 : INFO : topic diff=0.003574, rho=0.021647\n", - "2019-01-16 06:06:26,568 : INFO : PROGRESS: pass 0, at document #4270000/4922894\n", - "2019-01-16 06:06:28,607 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:29,163 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.013*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.008*\"oper\"\n", - "2019-01-16 06:06:29,165 : INFO : topic #11 (0.020): 0.022*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:06:29,166 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:06:29,168 : INFO : topic #1 (0.020): 0.037*\"album\" + 0.029*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:06:29,170 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 06:06:29,176 : INFO : topic diff=0.003085, rho=0.021642\n", - "2019-01-16 06:06:29,445 : INFO : PROGRESS: pass 0, at document #4272000/4922894\n", - "2019-01-16 06:06:31,457 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:32,017 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.010*\"stori\"\n", - "2019-01-16 06:06:32,018 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"jean\" + 0.018*\"itali\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:06:32,020 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"cathol\"\n", - "2019-01-16 06:06:32,021 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:06:32,022 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.063*\"align\" + 0.056*\"wikit\" + 0.054*\"left\" + 0.048*\"style\" + 0.041*\"center\" + 0.034*\"list\" + 0.034*\"right\" + 0.033*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:06:32,028 : INFO : topic diff=0.003433, rho=0.021637\n", - "2019-01-16 06:06:32,298 : INFO : PROGRESS: pass 0, at document #4274000/4922894\n", - "2019-01-16 06:06:34,305 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:34,865 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:06:34,866 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"union\"\n", - "2019-01-16 06:06:34,868 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.016*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:06:34,870 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:06:34,871 : INFO : topic #49 (0.020): 0.095*\"district\" + 0.068*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:06:34,877 : INFO : topic diff=0.003981, rho=0.021632\n", - "2019-01-16 06:06:35,123 : INFO : PROGRESS: pass 0, at document #4276000/4922894\n", - "2019-01-16 06:06:37,043 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:37,600 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"israel\"\n", - "2019-01-16 06:06:37,601 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:06:37,603 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:06:37,604 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.024*\"censu\" + 0.024*\"commun\" + 0.023*\"counti\" + 0.022*\"household\" + 0.021*\"peopl\"\n", - "2019-01-16 06:06:37,605 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:06:37,611 : INFO : topic diff=0.002997, rho=0.021627\n", - "2019-01-16 06:06:37,889 : INFO : PROGRESS: pass 0, at document #4278000/4922894\n", - "2019-01-16 06:06:39,842 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:40,401 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"defeat\" + 0.013*\"team\" + 0.012*\"world\"\n", - "2019-01-16 06:06:40,402 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", - "2019-01-16 06:06:40,404 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:06:40,405 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", - "2019-01-16 06:06:40,408 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:06:40,414 : INFO : topic diff=0.003662, rho=0.021622\n", - "2019-01-16 06:06:44,844 : INFO : -11.624 per-word bound, 3157.0 perplexity estimate based on a held-out corpus of 2000 documents with 516807 words\n", - "2019-01-16 06:06:44,844 : INFO : PROGRESS: pass 0, at document #4280000/4922894\n", - "2019-01-16 06:06:46,823 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:47,381 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", - "2019-01-16 06:06:47,383 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"servic\" + 0.007*\"oper\"\n", - "2019-01-16 06:06:47,384 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.036*\"germani\" + 0.026*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.014*\"swedish\" + 0.013*\"sweden\"\n", - "2019-01-16 06:06:47,386 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.041*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:06:47,387 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.014*\"cell\" + 0.013*\"health\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.009*\"treatment\"\n", - "2019-01-16 06:06:47,394 : INFO : topic diff=0.003354, rho=0.021617\n", - "2019-01-16 06:06:47,677 : INFO : PROGRESS: pass 0, at document #4282000/4922894\n", - "2019-01-16 06:06:49,727 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:50,285 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"point\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.006*\"method\"\n", - "2019-01-16 06:06:50,286 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 06:06:50,288 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.017*\"citi\" + 0.014*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", - "2019-01-16 06:06:50,289 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 06:06:50,290 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.026*\"till\" + 0.025*\"black\" + 0.024*\"color\" + 0.014*\"tropic\" + 0.013*\"storm\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:06:50,296 : INFO : topic diff=0.003845, rho=0.021612\n", - "2019-01-16 06:06:50,554 : INFO : PROGRESS: pass 0, at document #4284000/4922894\n", - "2019-01-16 06:06:52,487 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:53,045 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:06:53,047 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 06:06:53,048 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.033*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.021*\"artist\" + 0.019*\"imag\" + 0.018*\"design\" + 0.018*\"exhibit\"\n", - "2019-01-16 06:06:53,050 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.019*\"democrat\" + 0.019*\"minist\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:06:53,051 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:06:53,058 : INFO : topic diff=0.003071, rho=0.021607\n", - "2019-01-16 06:06:53,336 : INFO : PROGRESS: pass 0, at document #4286000/4922894\n", - "2019-01-16 06:06:55,330 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:55,890 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"jame\" + 0.015*\"london\" + 0.013*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:06:55,891 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 06:06:55,892 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:06:55,893 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"form\"\n", - "2019-01-16 06:06:55,895 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 06:06:55,901 : INFO : topic diff=0.003292, rho=0.021602\n", - "2019-01-16 06:06:56,151 : INFO : PROGRESS: pass 0, at document #4288000/4922894\n", - "2019-01-16 06:06:58,087 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:06:58,643 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"forest\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 06:06:58,645 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"tradit\"\n", - "2019-01-16 06:06:58,646 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:06:58,648 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.006*\"method\"\n", - "2019-01-16 06:06:58,650 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:06:58,656 : INFO : topic diff=0.003238, rho=0.021597\n", - "2019-01-16 06:06:58,951 : INFO : PROGRESS: pass 0, at document #4290000/4922894\n", - "2019-01-16 06:07:00,991 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:01,547 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.022*\"point\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", - "2019-01-16 06:07:01,549 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 06:07:01,551 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 06:07:01,554 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.072*\"octob\" + 0.072*\"march\" + 0.063*\"januari\" + 0.062*\"novemb\" + 0.062*\"juli\" + 0.062*\"august\" + 0.062*\"april\" + 0.059*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:07:01,556 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:07:01,562 : INFO : topic diff=0.003589, rho=0.021592\n", - "2019-01-16 06:07:01,838 : INFO : PROGRESS: pass 0, at document #4292000/4922894\n", - "2019-01-16 06:07:03,903 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:04,463 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 06:07:04,464 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.021*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"jame\" + 0.013*\"thoma\" + 0.012*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:07:04,466 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.021*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", - "2019-01-16 06:07:04,467 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.072*\"octob\" + 0.072*\"march\" + 0.063*\"januari\" + 0.062*\"novemb\" + 0.062*\"juli\" + 0.062*\"august\" + 0.062*\"april\" + 0.059*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:07:04,469 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 06:07:04,475 : INFO : topic diff=0.003255, rho=0.021587\n", - "2019-01-16 06:07:04,730 : INFO : PROGRESS: pass 0, at document #4294000/4922894\n", - "2019-01-16 06:07:06,705 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:07,266 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:07:07,267 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.019*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:07:07,268 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"union\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 06:07:07,270 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:07:07,271 : INFO : topic #48 (0.020): 0.074*\"septemb\" + 0.072*\"octob\" + 0.072*\"march\" + 0.063*\"januari\" + 0.063*\"august\" + 0.062*\"juli\" + 0.062*\"novemb\" + 0.062*\"april\" + 0.059*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:07:07,277 : INFO : topic diff=0.003009, rho=0.021582\n", - "2019-01-16 06:07:07,539 : INFO : PROGRESS: pass 0, at document #4296000/4922894\n", - "2019-01-16 06:07:09,527 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:10,088 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.008*\"valu\" + 0.007*\"point\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"group\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:07:10,090 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.013*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 06:07:10,092 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 06:07:10,093 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:07:10,094 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:07:10,100 : INFO : topic diff=0.002819, rho=0.021577\n", - "2019-01-16 06:07:10,362 : INFO : PROGRESS: pass 0, at document #4298000/4922894\n", - "2019-01-16 06:07:12,364 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:12,923 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 06:07:12,924 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.021*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", - "2019-01-16 06:07:12,926 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\" + 0.004*\"said\"\n", - "2019-01-16 06:07:12,927 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.019*\"exhibit\" + 0.018*\"design\" + 0.018*\"imag\"\n", - "2019-01-16 06:07:12,928 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.062*\"align\" + 0.056*\"wikit\" + 0.053*\"left\" + 0.049*\"style\" + 0.041*\"center\" + 0.034*\"right\" + 0.033*\"list\" + 0.031*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:07:12,934 : INFO : topic diff=0.003263, rho=0.021572\n", - "2019-01-16 06:07:17,670 : INFO : -11.602 per-word bound, 3107.7 perplexity estimate based on a held-out corpus of 2000 documents with 566318 words\n", - "2019-01-16 06:07:17,671 : INFO : PROGRESS: pass 0, at document #4300000/4922894\n", - "2019-01-16 06:07:19,801 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:20,362 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"develop\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 06:07:20,363 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:07:20,365 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 06:07:20,367 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.023*\"pari\" + 0.021*\"saint\" + 0.018*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 06:07:20,369 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:07:20,375 : INFO : topic diff=0.002601, rho=0.021567\n", - "2019-01-16 06:07:20,639 : INFO : PROGRESS: pass 0, at document #4302000/4922894\n", - "2019-01-16 06:07:22,677 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:23,234 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:07:23,235 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.024*\"black\" + 0.014*\"tropic\" + 0.014*\"storm\"\n", - "2019-01-16 06:07:23,236 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.013*\"port\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 06:07:23,238 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.037*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 06:07:23,239 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:07:23,246 : INFO : topic diff=0.003239, rho=0.021562\n", - "2019-01-16 06:07:23,510 : INFO : PROGRESS: pass 0, at document #4304000/4922894\n", - "2019-01-16 06:07:25,470 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:26,027 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.011*\"driver\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:07:26,029 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 06:07:26,031 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:07:26,032 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"union\" + 0.007*\"group\"\n", - "2019-01-16 06:07:26,033 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:07:26,040 : INFO : topic diff=0.002827, rho=0.021557\n", - "2019-01-16 06:07:26,306 : INFO : PROGRESS: pass 0, at document #4306000/4922894\n", - "2019-01-16 06:07:28,301 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:28,858 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.013*\"port\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 06:07:28,860 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.008*\"empir\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 06:07:28,862 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"season\" + 0.027*\"footbal\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:07:28,863 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 06:07:28,864 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"born\" + 0.013*\"year\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:07:28,871 : INFO : topic diff=0.003067, rho=0.021552\n", - "2019-01-16 06:07:29,136 : INFO : PROGRESS: pass 0, at document #4308000/4922894\n", - "2019-01-16 06:07:31,130 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:31,690 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"model\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"group\"\n", - "2019-01-16 06:07:31,691 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:07:31,693 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.074*\"septemb\" + 0.072*\"octob\" + 0.064*\"januari\" + 0.063*\"juli\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.062*\"april\" + 0.059*\"june\" + 0.059*\"decemb\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:07:31,695 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"right\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 06:07:31,696 : INFO : topic #20 (0.020): 0.037*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.016*\"fight\" + 0.015*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.013*\"world\"\n", - "2019-01-16 06:07:31,702 : INFO : topic diff=0.002758, rho=0.021547\n", - "2019-01-16 06:07:31,973 : INFO : PROGRESS: pass 0, at document #4310000/4922894\n", - "2019-01-16 06:07:33,990 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:34,547 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.020*\"vote\" + 0.019*\"democrat\" + 0.014*\"council\" + 0.014*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:07:34,549 : INFO : topic #0 (0.020): 0.036*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:07:34,550 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:07:34,552 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.036*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:07:34,554 : INFO : topic #15 (0.020): 0.032*\"england\" + 0.023*\"unit\" + 0.021*\"london\" + 0.021*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 06:07:34,560 : INFO : topic diff=0.003154, rho=0.021542\n", - "2019-01-16 06:07:34,808 : INFO : PROGRESS: pass 0, at document #4312000/4922894\n", - "2019-01-16 06:07:36,762 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:37,319 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"red\"\n", - "2019-01-16 06:07:37,320 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.029*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.016*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:07:37,321 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:07:37,323 : INFO : topic #35 (0.020): 0.031*\"hong\" + 0.031*\"kong\" + 0.024*\"lee\" + 0.021*\"singapor\" + 0.020*\"japanes\" + 0.019*\"chines\" + 0.019*\"kim\" + 0.016*\"indonesia\" + 0.016*\"malaysia\" + 0.015*\"asian\"\n", - "2019-01-16 06:07:37,324 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:07:37,330 : INFO : topic diff=0.003074, rho=0.021537\n", - "2019-01-16 06:07:37,634 : INFO : PROGRESS: pass 0, at document #4314000/4922894\n", - "2019-01-16 06:07:39,677 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:40,236 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"mexican\"\n", - "2019-01-16 06:07:40,238 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:07:40,239 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:07:40,241 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.040*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:07:40,242 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:07:40,248 : INFO : topic diff=0.003490, rho=0.021532\n", - "2019-01-16 06:07:40,519 : INFO : PROGRESS: pass 0, at document #4316000/4922894\n", - "2019-01-16 06:07:42,499 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:43,057 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.018*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.013*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"mexican\"\n", - "2019-01-16 06:07:43,058 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.013*\"health\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.009*\"cancer\" + 0.009*\"treatment\"\n", - "2019-01-16 06:07:43,060 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.028*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 06:07:43,062 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.022*\"counti\" + 0.021*\"peopl\"\n", - "2019-01-16 06:07:43,063 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.019*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:07:43,069 : INFO : topic diff=0.003815, rho=0.021527\n", - "2019-01-16 06:07:43,327 : INFO : PROGRESS: pass 0, at document #4318000/4922894\n", - "2019-01-16 06:07:45,333 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:45,892 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.040*\"counti\" + 0.037*\"east\" + 0.037*\"north\" + 0.035*\"west\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:07:45,894 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", - "2019-01-16 06:07:45,896 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"church\"\n", - "2019-01-16 06:07:45,897 : INFO : topic #27 (0.020): 0.048*\"born\" + 0.034*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 06:07:45,900 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.007*\"ancient\" + 0.006*\"citi\"\n", - "2019-01-16 06:07:45,906 : INFO : topic diff=0.003122, rho=0.021522\n", - "2019-01-16 06:07:50,677 : INFO : -11.691 per-word bound, 3306.8 perplexity estimate based on a held-out corpus of 2000 documents with 558366 words\n", - "2019-01-16 06:07:50,678 : INFO : PROGRESS: pass 0, at document #4320000/4922894\n", - "2019-01-16 06:07:52,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:53,258 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:07:53,260 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.065*\"januari\" + 0.063*\"juli\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.061*\"april\" + 0.060*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:07:53,261 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.021*\"winner\" + 0.020*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"second\"\n", - "2019-01-16 06:07:53,263 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.013*\"port\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.008*\"damag\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:07:53,264 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"confer\"\n", - "2019-01-16 06:07:53,271 : INFO : topic diff=0.002651, rho=0.021517\n", - "2019-01-16 06:07:53,545 : INFO : PROGRESS: pass 0, at document #4322000/4922894\n", - "2019-01-16 06:07:55,555 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:56,112 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 06:07:56,113 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:07:56,115 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.039*\"colleg\" + 0.038*\"student\" + 0.036*\"univers\" + 0.029*\"educ\" + 0.029*\"high\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 06:07:56,116 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:07:56,117 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"navi\" + 0.015*\"sea\" + 0.012*\"port\" + 0.012*\"island\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.008*\"bai\"\n", - "2019-01-16 06:07:56,123 : INFO : topic diff=0.003032, rho=0.021512\n", - "2019-01-16 06:07:56,398 : INFO : PROGRESS: pass 0, at document #4324000/4922894\n", - "2019-01-16 06:07:58,415 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:07:58,973 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.032*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"festiv\" + 0.016*\"plai\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.012*\"jazz\"\n", - "2019-01-16 06:07:58,975 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.009*\"cancer\"\n", - "2019-01-16 06:07:58,976 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:07:58,978 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"confer\"\n", - "2019-01-16 06:07:58,981 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:07:58,987 : INFO : topic diff=0.002980, rho=0.021507\n", - "2019-01-16 06:07:59,258 : INFO : PROGRESS: pass 0, at document #4326000/4922894\n", - "2019-01-16 06:08:01,227 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:01,783 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.065*\"januari\" + 0.064*\"juli\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.060*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:08:01,785 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.012*\"manchest\" + 0.012*\"scottish\"\n", - "2019-01-16 06:08:01,786 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.014*\"pakistan\" + 0.013*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", - "2019-01-16 06:08:01,788 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:08:01,789 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.038*\"east\" + 0.037*\"west\" + 0.037*\"north\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:08:01,794 : INFO : topic diff=0.003845, rho=0.021502\n", - "2019-01-16 06:08:02,065 : INFO : PROGRESS: pass 0, at document #4328000/4922894\n", - "2019-01-16 06:08:04,108 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:04,664 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"confer\"\n", - "2019-01-16 06:08:04,665 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:08:04,667 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"olymp\" + 0.026*\"championship\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:08:04,668 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.022*\"point\" + 0.022*\"winner\" + 0.020*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:08:04,669 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.012*\"function\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"set\" + 0.008*\"gener\" + 0.008*\"model\" + 0.007*\"group\" + 0.007*\"point\" + 0.007*\"theori\"\n", - "2019-01-16 06:08:04,675 : INFO : topic diff=0.003415, rho=0.021497\n", - "2019-01-16 06:08:04,930 : INFO : PROGRESS: pass 0, at document #4330000/4922894\n", - "2019-01-16 06:08:06,961 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:07,519 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.022*\"counti\" + 0.021*\"peopl\"\n", - "2019-01-16 06:08:07,521 : INFO : topic #11 (0.020): 0.022*\"law\" + 0.020*\"court\" + 0.019*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"right\" + 0.009*\"report\" + 0.008*\"legal\"\n", - "2019-01-16 06:08:07,522 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.040*\"colleg\" + 0.038*\"student\" + 0.036*\"univers\" + 0.029*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:08:07,523 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:08:07,525 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:08:07,530 : INFO : topic diff=0.003290, rho=0.021492\n", - "2019-01-16 06:08:07,788 : INFO : PROGRESS: pass 0, at document #4332000/4922894\n", - "2019-01-16 06:08:09,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:10,377 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.039*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:08:10,378 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:08:10,380 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:08:10,381 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.026*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:08:10,382 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"match\" + 0.017*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.013*\"world\"\n", - "2019-01-16 06:08:10,388 : INFO : topic diff=0.002779, rho=0.021487\n", - "2019-01-16 06:08:10,649 : INFO : PROGRESS: pass 0, at document #4334000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:08:12,631 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:13,190 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:08:13,192 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:08:13,193 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.038*\"east\" + 0.037*\"west\" + 0.037*\"north\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:08:13,195 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:08:13,196 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.066*\"align\" + 0.056*\"wikit\" + 0.051*\"left\" + 0.048*\"style\" + 0.043*\"center\" + 0.038*\"right\" + 0.034*\"list\" + 0.032*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:08:13,202 : INFO : topic diff=0.003913, rho=0.021482\n", - "2019-01-16 06:08:13,471 : INFO : PROGRESS: pass 0, at document #4336000/4922894\n", - "2019-01-16 06:08:15,457 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:16,019 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.065*\"align\" + 0.056*\"wikit\" + 0.051*\"left\" + 0.049*\"style\" + 0.043*\"center\" + 0.038*\"right\" + 0.034*\"list\" + 0.033*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:08:16,021 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:08:16,024 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.012*\"manchest\" + 0.012*\"scottish\"\n", - "2019-01-16 06:08:16,025 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:08:16,026 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.013*\"press\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"stori\" + 0.011*\"novel\"\n", - "2019-01-16 06:08:16,032 : INFO : topic diff=0.003739, rho=0.021477\n", - "2019-01-16 06:08:16,303 : INFO : PROGRESS: pass 0, at document #4338000/4922894\n", - "2019-01-16 06:08:18,280 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:18,836 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.012*\"product\" + 0.011*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 06:08:18,838 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.007*\"high\" + 0.007*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:08:18,839 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.015*\"netherland\" + 0.014*\"swedish\" + 0.013*\"sweden\"\n", - "2019-01-16 06:08:18,840 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.042*\"parti\" + 0.022*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:08:18,842 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 06:08:18,847 : INFO : topic diff=0.002777, rho=0.021472\n", - "2019-01-16 06:08:23,474 : INFO : -11.566 per-word bound, 3031.8 perplexity estimate based on a held-out corpus of 2000 documents with 549941 words\n", - "2019-01-16 06:08:23,475 : INFO : PROGRESS: pass 0, at document #4340000/4922894\n", - "2019-01-16 06:08:25,480 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:26,038 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.021*\"japanes\" + 0.020*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.016*\"indonesia\" + 0.015*\"malaysia\" + 0.015*\"asia\"\n", - "2019-01-16 06:08:26,040 : INFO : topic #33 (0.020): 0.031*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"servic\"\n", - "2019-01-16 06:08:26,041 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:08:26,043 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.022*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"republican\" + 0.013*\"repres\"\n", - "2019-01-16 06:08:26,044 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"north\" + 0.011*\"area\"\n", - "2019-01-16 06:08:26,050 : INFO : topic diff=0.002943, rho=0.021467\n", - "2019-01-16 06:08:26,313 : INFO : PROGRESS: pass 0, at document #4342000/4922894\n", - "2019-01-16 06:08:28,287 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:28,844 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:08:28,846 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 06:08:28,847 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 06:08:28,849 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:08:28,851 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"counti\" + 0.038*\"east\" + 0.037*\"west\" + 0.037*\"north\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:08:28,857 : INFO : topic diff=0.002929, rho=0.021462\n", - "2019-01-16 06:08:29,122 : INFO : PROGRESS: pass 0, at document #4344000/4922894\n", - "2019-01-16 06:08:31,130 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:31,688 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 06:08:31,690 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:08:31,691 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:08:31,693 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"mexican\"\n", - "2019-01-16 06:08:31,695 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.033*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:08:31,700 : INFO : topic diff=0.003073, rho=0.021457\n", - "2019-01-16 06:08:31,958 : INFO : PROGRESS: pass 0, at document #4346000/4922894\n", - "2019-01-16 06:08:33,962 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:34,522 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:08:34,523 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.077*\"canada\" + 0.061*\"canadian\" + 0.024*\"ontario\" + 0.024*\"toronto\" + 0.021*\"ye\" + 0.017*\"british\" + 0.016*\"korean\" + 0.015*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 06:08:34,525 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.007*\"type\"\n", - "2019-01-16 06:08:34,526 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:08:34,527 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:08:34,533 : INFO : topic diff=0.002931, rho=0.021452\n", - "2019-01-16 06:08:34,787 : INFO : PROGRESS: pass 0, at document #4348000/4922894\n", - "2019-01-16 06:08:36,738 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:37,295 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.017*\"jewish\" + 0.015*\"republ\" + 0.014*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 06:08:37,297 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.030*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:08:37,299 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"support\" + 0.007*\"group\"\n", - "2019-01-16 06:08:37,301 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"north\" + 0.011*\"area\"\n", - "2019-01-16 06:08:37,302 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 06:08:37,309 : INFO : topic diff=0.003152, rho=0.021447\n", - "2019-01-16 06:08:37,565 : INFO : PROGRESS: pass 0, at document #4350000/4922894\n", - "2019-01-16 06:08:39,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:40,090 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:08:40,091 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 06:08:40,094 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"releas\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 06:08:40,095 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.013*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.009*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:08:40,097 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:08:40,102 : INFO : topic diff=0.003111, rho=0.021442\n", - "2019-01-16 06:08:40,363 : INFO : PROGRESS: pass 0, at document #4352000/4922894\n", - "2019-01-16 06:08:42,350 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:42,908 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"dai\" + 0.004*\"friend\"\n", - "2019-01-16 06:08:42,909 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:08:42,910 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.072*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.063*\"august\" + 0.063*\"april\" + 0.061*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:08:42,913 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:08:42,914 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"piano\" + 0.012*\"orchestra\" + 0.012*\"jazz\"\n", - "2019-01-16 06:08:42,920 : INFO : topic diff=0.003094, rho=0.021437\n", - "2019-01-16 06:08:43,188 : INFO : PROGRESS: pass 0, at document #4354000/4922894\n", - "2019-01-16 06:08:45,214 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:45,773 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.008*\"emperor\" + 0.008*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:08:45,774 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"jazz\"\n", - "2019-01-16 06:08:45,775 : INFO : topic #35 (0.020): 0.032*\"kong\" + 0.031*\"hong\" + 0.024*\"lee\" + 0.021*\"japanes\" + 0.020*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.016*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\"\n", - "2019-01-16 06:08:45,777 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.025*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:08:45,778 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:08:45,785 : INFO : topic diff=0.002725, rho=0.021432\n", - "2019-01-16 06:08:46,048 : INFO : PROGRESS: pass 0, at document #4356000/4922894\n", - "2019-01-16 06:08:48,005 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:48,568 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.036*\"russian\" + 0.022*\"american\" + 0.022*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:08:48,570 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:08:48,571 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.018*\"imag\"\n", - "2019-01-16 06:08:48,573 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 06:08:48,575 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"author\" + 0.011*\"novel\" + 0.011*\"stori\"\n", - "2019-01-16 06:08:48,582 : INFO : topic diff=0.003638, rho=0.021427\n", - "2019-01-16 06:08:48,852 : INFO : PROGRESS: pass 0, at document #4358000/4922894\n", - "2019-01-16 06:08:50,810 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:51,369 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"dai\"\n", - "2019-01-16 06:08:51,370 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:08:51,371 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.039*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:08:51,373 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"direct\"\n", - "2019-01-16 06:08:51,375 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"park\"\n", - "2019-01-16 06:08:51,382 : INFO : topic diff=0.003146, rho=0.021423\n", - "2019-01-16 06:08:56,037 : INFO : -11.626 per-word bound, 3159.8 perplexity estimate based on a held-out corpus of 2000 documents with 547641 words\n", - "2019-01-16 06:08:56,038 : INFO : PROGRESS: pass 0, at document #4360000/4922894\n", - "2019-01-16 06:08:58,028 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:08:58,586 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:08:58,587 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.008*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:08:58,589 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 06:08:58,591 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.036*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:08:58,592 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.012*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:08:58,597 : INFO : topic diff=0.003368, rho=0.021418\n", - "2019-01-16 06:08:58,871 : INFO : PROGRESS: pass 0, at document #4362000/4922894\n", - "2019-01-16 06:09:00,887 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:01,448 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.067*\"villag\" + 0.050*\"region\" + 0.038*\"counti\" + 0.038*\"east\" + 0.038*\"west\" + 0.037*\"north\" + 0.033*\"south\" + 0.033*\"municip\" + 0.032*\"provinc\"\n", - "2019-01-16 06:09:01,449 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 06:09:01,451 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.026*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.015*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"wing\" + 0.012*\"base\"\n", - "2019-01-16 06:09:01,452 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:09:01,453 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:09:01,459 : INFO : topic diff=0.002691, rho=0.021413\n", - "2019-01-16 06:09:01,713 : INFO : PROGRESS: pass 0, at document #4364000/4922894\n", - "2019-01-16 06:09:03,658 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:04,216 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:09:04,218 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jack\" + 0.006*\"richard\"\n", - "2019-01-16 06:09:04,219 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"dai\" + 0.004*\"friend\"\n", - "2019-01-16 06:09:04,220 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.036*\"russian\" + 0.022*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:09:04,222 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:09:04,227 : INFO : topic diff=0.003681, rho=0.021408\n", - "2019-01-16 06:09:04,521 : INFO : PROGRESS: pass 0, at document #4366000/4922894\n", - "2019-01-16 06:09:06,504 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:07,061 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.039*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"iran\" + 0.015*\"pakistan\" + 0.013*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\"\n", - "2019-01-16 06:09:07,063 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.067*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.038*\"east\" + 0.038*\"west\" + 0.033*\"south\" + 0.033*\"municip\" + 0.031*\"provinc\"\n", - "2019-01-16 06:09:07,065 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"septemb\" + 0.073*\"octob\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 06:09:07,067 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 06:09:07,069 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"park\"\n", - "2019-01-16 06:09:07,075 : INFO : topic diff=0.003637, rho=0.021403\n", - "2019-01-16 06:09:07,342 : INFO : PROGRESS: pass 0, at document #4368000/4922894\n", - "2019-01-16 06:09:09,380 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:09,937 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.031*\"world\" + 0.026*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 06:09:09,939 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 06:09:09,940 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:09:09,942 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.069*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.050*\"style\" + 0.042*\"center\" + 0.040*\"right\" + 0.032*\"list\" + 0.031*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:09:09,943 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", - "2019-01-16 06:09:09,949 : INFO : topic diff=0.002781, rho=0.021398\n", - "2019-01-16 06:09:10,219 : INFO : PROGRESS: pass 0, at document #4370000/4922894\n", - "2019-01-16 06:09:12,146 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:12,705 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.040*\"africa\" + 0.035*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.028*\"till\" + 0.028*\"color\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 06:09:12,706 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 06:09:12,708 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.036*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:09:12,709 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"genu\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:09:12,711 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", - "2019-01-16 06:09:12,717 : INFO : topic diff=0.003654, rho=0.021393\n", - "2019-01-16 06:09:12,993 : INFO : PROGRESS: pass 0, at document #4372000/4922894\n", - "2019-01-16 06:09:14,940 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:15,497 : INFO : topic #20 (0.020): 0.036*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.016*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.014*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:09:15,499 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.019*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:09:15,501 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 06:09:15,504 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.039*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:09:15,506 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.005*\"materi\"\n", - "2019-01-16 06:09:15,512 : INFO : topic diff=0.003457, rho=0.021388\n", - "2019-01-16 06:09:15,770 : INFO : PROGRESS: pass 0, at document #4374000/4922894\n", - "2019-01-16 06:09:17,739 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:18,298 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"smith\" + 0.008*\"paul\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:09:18,300 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.013*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", - "2019-01-16 06:09:18,301 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.070*\"align\" + 0.055*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.041*\"center\" + 0.039*\"right\" + 0.031*\"list\" + 0.031*\"philippin\" + 0.027*\"text\"\n", - "2019-01-16 06:09:18,302 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:09:18,304 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 06:09:18,310 : INFO : topic diff=0.002818, rho=0.021383\n", - "2019-01-16 06:09:18,563 : INFO : PROGRESS: pass 0, at document #4376000/4922894\n", - "2019-01-16 06:09:20,710 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:21,266 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.069*\"align\" + 0.055*\"wikit\" + 0.054*\"left\" + 0.050*\"style\" + 0.042*\"center\" + 0.039*\"right\" + 0.032*\"philippin\" + 0.031*\"list\" + 0.027*\"text\"\n", - "2019-01-16 06:09:21,268 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\" + 0.004*\"friend\"\n", - "2019-01-16 06:09:21,269 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.012*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:09:21,271 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:09:21,273 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 06:09:21,279 : INFO : topic diff=0.002475, rho=0.021378\n", - "2019-01-16 06:09:21,551 : INFO : PROGRESS: pass 0, at document #4378000/4922894\n", - "2019-01-16 06:09:23,563 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:24,126 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.036*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.016*\"israel\" + 0.015*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:09:24,127 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\"\n", - "2019-01-16 06:09:24,129 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:09:24,130 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"draw\"\n", - "2019-01-16 06:09:24,132 : INFO : topic #36 (0.020): 0.056*\"art\" + 0.034*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:09:24,137 : INFO : topic diff=0.003117, rho=0.021374\n", - "2019-01-16 06:09:28,695 : INFO : -11.481 per-word bound, 2858.3 perplexity estimate based on a held-out corpus of 2000 documents with 538361 words\n", - "2019-01-16 06:09:28,696 : INFO : PROGRESS: pass 0, at document #4380000/4922894\n", - "2019-01-16 06:09:30,836 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:31,400 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"servic\"\n", - "2019-01-16 06:09:31,401 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.065*\"januari\" + 0.063*\"novemb\" + 0.063*\"juli\" + 0.061*\"august\" + 0.061*\"april\" + 0.060*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:09:31,402 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"carlo\"\n", - "2019-01-16 06:09:31,404 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 06:09:31,405 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"light\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:09:31,412 : INFO : topic diff=0.002966, rho=0.021369\n", - "2019-01-16 06:09:31,682 : INFO : PROGRESS: pass 0, at document #4382000/4922894\n", - "2019-01-16 06:09:33,643 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:34,202 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:09:34,204 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.023*\"household\" + 0.022*\"year\" + 0.021*\"counti\"\n", - "2019-01-16 06:09:34,206 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"theori\" + 0.007*\"point\"\n", - "2019-01-16 06:09:34,207 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:09:34,209 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:09:34,216 : INFO : topic diff=0.003482, rho=0.021364\n", - "2019-01-16 06:09:34,481 : INFO : PROGRESS: pass 0, at document #4384000/4922894\n", - "2019-01-16 06:09:36,408 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:36,964 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:09:36,966 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"union\" + 0.007*\"support\"\n", - "2019-01-16 06:09:36,967 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:09:36,969 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:09:36,970 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.018*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:09:36,976 : INFO : topic diff=0.002948, rho=0.021359\n", - "2019-01-16 06:09:37,252 : INFO : PROGRESS: pass 0, at document #4386000/4922894\n", - "2019-01-16 06:09:39,193 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:39,754 : INFO : topic #5 (0.020): 0.026*\"game\" + 0.008*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:09:39,756 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"kingdom\" + 0.009*\"empir\" + 0.008*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:09:39,758 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"theori\" + 0.007*\"point\"\n", - "2019-01-16 06:09:39,760 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.020*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 06:09:39,761 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"host\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:09:39,769 : INFO : topic diff=0.003253, rho=0.021354\n", - "2019-01-16 06:09:40,037 : INFO : PROGRESS: pass 0, at document #4388000/4922894\n", - "2019-01-16 06:09:42,072 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:42,628 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", - "2019-01-16 06:09:42,630 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.025*\"lee\" + 0.022*\"japanes\" + 0.020*\"singapor\" + 0.020*\"chines\" + 0.018*\"kim\" + 0.015*\"indonesia\" + 0.015*\"asian\" + 0.015*\"malaysia\"\n", - "2019-01-16 06:09:42,631 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.025*\"tournament\" + 0.022*\"group\" + 0.022*\"winner\" + 0.020*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"draw\"\n", - "2019-01-16 06:09:42,632 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.067*\"villag\" + 0.051*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.037*\"west\" + 0.037*\"east\" + 0.033*\"south\" + 0.033*\"municip\" + 0.031*\"provinc\"\n", - "2019-01-16 06:09:42,633 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:09:42,639 : INFO : topic diff=0.003070, rho=0.021349\n", - "2019-01-16 06:09:42,911 : INFO : PROGRESS: pass 0, at document #4390000/4922894\n", - "2019-01-16 06:09:44,907 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:45,469 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 06:09:45,470 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.022*\"year\" + 0.021*\"counti\"\n", - "2019-01-16 06:09:45,471 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:09:45,473 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"singh\" + 0.011*\"khan\"\n", - "2019-01-16 06:09:45,474 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.020*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.012*\"scottish\"\n", - "2019-01-16 06:09:45,481 : INFO : topic diff=0.002598, rho=0.021344\n", - "2019-01-16 06:09:45,792 : INFO : PROGRESS: pass 0, at document #4392000/4922894\n", - "2019-01-16 06:09:47,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:48,394 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"oper\" + 0.007*\"servic\"\n", - "2019-01-16 06:09:48,395 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"construct\"\n", - "2019-01-16 06:09:48,398 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.032*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"jazz\"\n", - "2019-01-16 06:09:48,399 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:09:48,401 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:09:48,407 : INFO : topic diff=0.004290, rho=0.021339\n", - "2019-01-16 06:09:48,693 : INFO : PROGRESS: pass 0, at document #4394000/4922894\n", - "2019-01-16 06:09:50,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:51,269 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:09:51,271 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:09:51,273 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.042*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.029*\"text\" + 0.028*\"color\" + 0.028*\"till\" + 0.024*\"black\" + 0.012*\"tropic\" + 0.012*\"storm\"\n", - "2019-01-16 06:09:51,274 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:09:51,275 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.012*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"carlo\"\n", - "2019-01-16 06:09:51,281 : INFO : topic diff=0.003411, rho=0.021335\n", - "2019-01-16 06:09:51,544 : INFO : PROGRESS: pass 0, at document #4396000/4922894\n", - "2019-01-16 06:09:53,528 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:54,086 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.012*\"texa\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:09:54,087 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.008*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:09:54,089 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 06:09:54,090 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.039*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"singh\" + 0.011*\"sri\"\n", - "2019-01-16 06:09:54,092 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.065*\"align\" + 0.056*\"wikit\" + 0.052*\"left\" + 0.049*\"style\" + 0.042*\"center\" + 0.038*\"right\" + 0.035*\"list\" + 0.031*\"philippin\" + 0.026*\"text\"\n", - "2019-01-16 06:09:54,097 : INFO : topic diff=0.002680, rho=0.021330\n", - "2019-01-16 06:09:54,370 : INFO : PROGRESS: pass 0, at document #4398000/4922894\n", - "2019-01-16 06:09:56,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:09:56,977 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\" + 0.008*\"type\"\n", - "2019-01-16 06:09:56,979 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.006*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 06:09:56,981 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"jazz\"\n", - "2019-01-16 06:09:56,983 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:09:56,984 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:09:56,990 : INFO : topic diff=0.003160, rho=0.021325\n", - "2019-01-16 06:10:01,734 : INFO : -11.622 per-word bound, 3152.7 perplexity estimate based on a held-out corpus of 2000 documents with 582150 words\n", - "2019-01-16 06:10:01,735 : INFO : PROGRESS: pass 0, at document #4400000/4922894\n", - "2019-01-16 06:10:03,796 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:04,354 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.023*\"american\" + 0.021*\"russia\" + 0.018*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.015*\"israel\" + 0.015*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:10:04,356 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"develop\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:10:04,357 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:10:04,359 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.019*\"team\" + 0.013*\"tour\" + 0.013*\"finish\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:10:04,360 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", - "2019-01-16 06:10:04,366 : INFO : topic diff=0.003167, rho=0.021320\n", - "2019-01-16 06:10:04,632 : INFO : PROGRESS: pass 0, at document #4402000/4922894\n", - "2019-01-16 06:10:06,634 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:07,191 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 06:10:07,192 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 06:10:07,193 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"theori\" + 0.007*\"group\"\n", - "2019-01-16 06:10:07,195 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"tree\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 06:10:07,196 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 06:10:07,202 : INFO : topic diff=0.003387, rho=0.021315\n", - "2019-01-16 06:10:07,455 : INFO : PROGRESS: pass 0, at document #4404000/4922894\n", - "2019-01-16 06:10:09,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:10,004 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:10:10,006 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.019*\"presid\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:10:10,007 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.072*\"align\" + 0.060*\"left\" + 0.055*\"wikit\" + 0.048*\"style\" + 0.041*\"center\" + 0.037*\"right\" + 0.034*\"list\" + 0.031*\"philippin\" + 0.026*\"text\"\n", - "2019-01-16 06:10:10,013 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.043*\"africa\" + 0.038*\"african\" + 0.031*\"south\" + 0.030*\"text\" + 0.028*\"color\" + 0.028*\"till\" + 0.025*\"black\" + 0.012*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 06:10:10,014 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:10:10,020 : INFO : topic diff=0.003302, rho=0.021310\n", - "2019-01-16 06:10:10,276 : INFO : PROGRESS: pass 0, at document #4406000/4922894\n", - "2019-01-16 06:10:12,233 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:12,789 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:10:12,790 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.014*\"netherland\" + 0.014*\"swedish\" + 0.014*\"sweden\"\n", - "2019-01-16 06:10:12,792 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.066*\"villag\" + 0.051*\"region\" + 0.040*\"north\" + 0.038*\"counti\" + 0.037*\"west\" + 0.037*\"east\" + 0.033*\"south\" + 0.033*\"municip\" + 0.032*\"provinc\"\n", - "2019-01-16 06:10:12,793 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"network\"\n", - "2019-01-16 06:10:12,794 : INFO : topic #9 (0.020): 0.068*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:10:12,800 : INFO : topic diff=0.003289, rho=0.021306\n", - "2019-01-16 06:10:13,063 : INFO : PROGRESS: pass 0, at document #4408000/4922894\n", - "2019-01-16 06:10:15,040 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:15,605 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"right\" + 0.009*\"offic\" + 0.008*\"legal\"\n", - "2019-01-16 06:10:15,608 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:10:15,609 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.071*\"octob\" + 0.071*\"septemb\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.062*\"april\" + 0.062*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:10:15,611 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.023*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:10:15,615 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:10:15,621 : INFO : topic diff=0.003106, rho=0.021301\n", - "2019-01-16 06:10:15,895 : INFO : PROGRESS: pass 0, at document #4410000/4922894\n", - "2019-01-16 06:10:17,906 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:18,466 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"dutch\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.014*\"sweden\" + 0.014*\"swedish\" + 0.014*\"netherland\"\n", - "2019-01-16 06:10:18,468 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:10:18,469 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.032*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:10:18,471 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:10:18,473 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:10:18,480 : INFO : topic diff=0.002798, rho=0.021296\n", - "2019-01-16 06:10:18,745 : INFO : PROGRESS: pass 0, at document #4412000/4922894\n", - "2019-01-16 06:10:20,739 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:21,298 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.011*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:10:21,300 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:10:21,301 : INFO : topic #6 (0.020): 0.058*\"music\" + 0.031*\"perform\" + 0.018*\"compos\" + 0.018*\"theatr\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"piano\" + 0.011*\"jazz\"\n", - "2019-01-16 06:10:21,302 : INFO : topic #10 (0.020): 0.018*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"electr\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"vehicl\"\n", - "2019-01-16 06:10:21,304 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 06:10:21,310 : INFO : topic diff=0.003357, rho=0.021291\n", - "2019-01-16 06:10:21,580 : INFO : PROGRESS: pass 0, at document #4414000/4922894\n", - "2019-01-16 06:10:23,663 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:24,220 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", - "2019-01-16 06:10:24,221 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.076*\"canada\" + 0.062*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.019*\"ye\" + 0.017*\"british\" + 0.016*\"montreal\" + 0.016*\"quebec\" + 0.015*\"korea\"\n", - "2019-01-16 06:10:24,223 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.031*\"high\" + 0.029*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:10:24,224 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.032*\"south\" + 0.029*\"chines\" + 0.021*\"sydnei\" + 0.017*\"melbourn\" + 0.015*\"queensland\"\n", - "2019-01-16 06:10:24,225 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.022*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:10:24,231 : INFO : topic diff=0.003804, rho=0.021286\n", - "2019-01-16 06:10:24,486 : INFO : PROGRESS: pass 0, at document #4416000/4922894\n", - "2019-01-16 06:10:26,514 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:27,074 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", - "2019-01-16 06:10:27,076 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"year\" + 0.021*\"peopl\"\n", - "2019-01-16 06:10:27,077 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 06:10:27,079 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 06:10:27,080 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:10:27,086 : INFO : topic diff=0.002941, rho=0.021281\n", - "2019-01-16 06:10:27,392 : INFO : PROGRESS: pass 0, at document #4418000/4922894\n", - "2019-01-16 06:10:29,396 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:29,953 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:10:29,955 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.011*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:10:29,957 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:10:29,958 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 06:10:29,959 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.012*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:10:29,966 : INFO : topic diff=0.002798, rho=0.021277\n", - "2019-01-16 06:10:34,651 : INFO : -11.542 per-word bound, 2981.9 perplexity estimate based on a held-out corpus of 2000 documents with 568233 words\n", - "2019-01-16 06:10:34,652 : INFO : PROGRESS: pass 0, at document #4420000/4922894\n", - "2019-01-16 06:10:36,715 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:37,275 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.023*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:10:37,277 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", - "2019-01-16 06:10:37,278 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"singh\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:10:37,279 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"town\" + 0.023*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"west\" + 0.012*\"scottish\" + 0.012*\"manchest\"\n", - "2019-01-16 06:10:37,280 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.074*\"align\" + 0.057*\"left\" + 0.054*\"wikit\" + 0.052*\"style\" + 0.046*\"center\" + 0.035*\"list\" + 0.035*\"right\" + 0.031*\"text\" + 0.030*\"philippin\"\n", - "2019-01-16 06:10:37,286 : INFO : topic diff=0.002599, rho=0.021272\n", - "2019-01-16 06:10:37,562 : INFO : PROGRESS: pass 0, at document #4422000/4922894\n", - "2019-01-16 06:10:39,629 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:40,188 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"member\"\n", - "2019-01-16 06:10:40,190 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"act\" + 0.017*\"state\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:10:40,192 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:10:40,193 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.031*\"hong\" + 0.025*\"lee\" + 0.023*\"japanes\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.019*\"chines\" + 0.014*\"indonesia\" + 0.014*\"thailand\" + 0.014*\"malaysia\"\n", - "2019-01-16 06:10:40,194 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:10:40,200 : INFO : topic diff=0.003375, rho=0.021267\n", - "2019-01-16 06:10:40,465 : INFO : PROGRESS: pass 0, at document #4424000/4922894\n", - "2019-01-16 06:10:42,455 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:43,014 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:10:43,016 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.011*\"opera\"\n", - "2019-01-16 06:10:43,017 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"north\"\n", - "2019-01-16 06:10:43,018 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.011*\"greek\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:10:43,020 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"year\" + 0.021*\"peopl\"\n", - "2019-01-16 06:10:43,025 : INFO : topic diff=0.002828, rho=0.021262\n", - "2019-01-16 06:10:43,308 : INFO : PROGRESS: pass 0, at document #4426000/4922894\n", - "2019-01-16 06:10:45,367 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:45,931 : INFO : topic #30 (0.020): 0.056*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:10:45,933 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:10:45,934 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:10:45,936 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.021*\"command\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.013*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:10:45,937 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"forest\" + 0.007*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:10:45,944 : INFO : topic diff=0.002663, rho=0.021257\n", - "2019-01-16 06:10:46,216 : INFO : PROGRESS: pass 0, at document #4428000/4922894\n", - "2019-01-16 06:10:48,308 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:48,868 : INFO : topic #18 (0.020): 0.009*\"water\" + 0.007*\"energi\" + 0.006*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:10:48,870 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:10:48,871 : INFO : topic #14 (0.020): 0.025*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:10:48,873 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:10:48,874 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.037*\"west\" + 0.037*\"east\" + 0.034*\"municip\" + 0.033*\"provinc\" + 0.032*\"south\"\n", - "2019-01-16 06:10:48,880 : INFO : topic diff=0.003352, rho=0.021253\n", - "2019-01-16 06:10:49,138 : INFO : PROGRESS: pass 0, at document #4430000/4922894\n", - "2019-01-16 06:10:51,159 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:51,718 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"forc\" + 0.021*\"command\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:10:51,720 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:10:51,721 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"servic\" + 0.007*\"new\"\n", - "2019-01-16 06:10:51,724 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.024*\"lee\" + 0.023*\"japanes\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.019*\"chines\" + 0.014*\"indonesia\" + 0.014*\"malaysia\" + 0.014*\"thailand\"\n", - "2019-01-16 06:10:51,725 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"year\" + 0.021*\"peopl\"\n", - "2019-01-16 06:10:51,733 : INFO : topic diff=0.003068, rho=0.021248\n", - "2019-01-16 06:10:52,001 : INFO : PROGRESS: pass 0, at document #4432000/4922894\n", - "2019-01-16 06:10:53,986 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:54,547 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:10:54,549 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"year\" + 0.021*\"peopl\"\n", - "2019-01-16 06:10:54,550 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"church\"\n", - "2019-01-16 06:10:54,552 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"thoma\" + 0.013*\"ireland\" + 0.012*\"henri\"\n", - "2019-01-16 06:10:54,553 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"support\" + 0.007*\"unit\" + 0.007*\"group\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:10:54,559 : INFO : topic diff=0.002714, rho=0.021243\n", - "2019-01-16 06:10:54,822 : INFO : PROGRESS: pass 0, at document #4434000/4922894\n", - "2019-01-16 06:10:56,836 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:10:57,399 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"network\"\n", - "2019-01-16 06:10:57,401 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.038*\"counti\" + 0.037*\"east\" + 0.037*\"west\" + 0.033*\"municip\" + 0.033*\"south\" + 0.033*\"provinc\"\n", - "2019-01-16 06:10:57,402 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.018*\"centuri\" + 0.010*\"greek\" + 0.010*\"roman\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:10:57,404 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.074*\"align\" + 0.058*\"left\" + 0.055*\"wikit\" + 0.052*\"style\" + 0.046*\"center\" + 0.035*\"right\" + 0.034*\"list\" + 0.030*\"text\" + 0.029*\"philippin\"\n", - "2019-01-16 06:10:57,405 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.012*\"orchestra\" + 0.010*\"jazz\"\n", - "2019-01-16 06:10:57,411 : INFO : topic diff=0.003070, rho=0.021238\n", - "2019-01-16 06:10:57,668 : INFO : PROGRESS: pass 0, at document #4436000/4922894\n", - "2019-01-16 06:10:59,623 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:00,181 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:11:00,183 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"ali\" + 0.011*\"singh\" + 0.011*\"sri\"\n", - "2019-01-16 06:11:00,184 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.014*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"fleet\"\n", - "2019-01-16 06:11:00,186 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.034*\"russian\" + 0.026*\"american\" + 0.020*\"russia\" + 0.018*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"israel\" + 0.014*\"poland\" + 0.013*\"republ\"\n", - "2019-01-16 06:11:00,187 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.020*\"match\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:11:00,193 : INFO : topic diff=0.002736, rho=0.021233\n", - "2019-01-16 06:11:00,453 : INFO : PROGRESS: pass 0, at document #4438000/4922894\n", - "2019-01-16 06:11:02,468 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:03,024 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.018*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:11:03,025 : INFO : topic #49 (0.020): 0.092*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.037*\"counti\" + 0.037*\"east\" + 0.037*\"west\" + 0.033*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:11:03,026 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"cancer\"\n", - "2019-01-16 06:11:03,028 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:11:03,029 : INFO : topic #48 (0.020): 0.077*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 06:11:03,035 : INFO : topic diff=0.003348, rho=0.021229\n", - "2019-01-16 06:11:07,628 : INFO : -11.705 per-word bound, 3338.8 perplexity estimate based on a held-out corpus of 2000 documents with 556923 words\n", - "2019-01-16 06:11:07,628 : INFO : PROGRESS: pass 0, at document #4440000/4922894\n", - "2019-01-16 06:11:09,649 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:10,208 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.034*\"russian\" + 0.025*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"israel\" + 0.014*\"poland\" + 0.014*\"republ\"\n", - "2019-01-16 06:11:10,209 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.012*\"orchestra\" + 0.010*\"jazz\"\n", - "2019-01-16 06:11:10,210 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:11:10,212 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.055*\"new\" + 0.041*\"china\" + 0.037*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:11:10,213 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.043*\"africa\" + 0.039*\"african\" + 0.032*\"south\" + 0.028*\"text\" + 0.027*\"color\" + 0.027*\"till\" + 0.025*\"black\" + 0.012*\"cape\" + 0.012*\"storm\"\n", - "2019-01-16 06:11:10,218 : INFO : topic diff=0.002502, rho=0.021224\n", - "2019-01-16 06:11:10,526 : INFO : PROGRESS: pass 0, at document #4442000/4922894\n", - "2019-01-16 06:11:12,587 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:13,146 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:11:13,147 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.064*\"novemb\" + 0.064*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 06:11:13,148 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.023*\"episod\" + 0.021*\"seri\" + 0.019*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:11:13,150 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.031*\"perform\" + 0.018*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.012*\"orchestra\" + 0.011*\"jazz\"\n", - "2019-01-16 06:11:13,151 : INFO : topic #25 (0.020): 0.045*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"point\" + 0.021*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.011*\"singl\"\n", - "2019-01-16 06:11:13,157 : INFO : topic diff=0.003384, rho=0.021219\n", - "2019-01-16 06:11:13,408 : INFO : PROGRESS: pass 0, at document #4444000/4922894\n", - "2019-01-16 06:11:15,369 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:15,928 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.043*\"parti\" + 0.022*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 06:11:15,929 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:11:15,930 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:11:15,932 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.041*\"colleg\" + 0.040*\"student\" + 0.037*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:11:15,933 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"town\" + 0.023*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.013*\"wale\" + 0.013*\"scottish\" + 0.013*\"west\"\n", - "2019-01-16 06:11:15,939 : INFO : topic diff=0.003372, rho=0.021214\n", - "2019-01-16 06:11:16,197 : INFO : PROGRESS: pass 0, at document #4446000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:11:18,183 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:18,739 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:11:18,741 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:11:18,742 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 06:11:18,744 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.021*\"saint\" + 0.019*\"jean\" + 0.019*\"itali\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:11:18,745 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.024*\"town\" + 0.023*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.017*\"scotland\" + 0.016*\"citi\" + 0.013*\"scottish\" + 0.013*\"wale\" + 0.013*\"west\"\n", - "2019-01-16 06:11:18,751 : INFO : topic diff=0.003340, rho=0.021209\n", - "2019-01-16 06:11:19,017 : INFO : PROGRESS: pass 0, at document #4448000/4922894\n", - "2019-01-16 06:11:21,151 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:21,709 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:11:21,711 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"park\"\n", - "2019-01-16 06:11:21,712 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"univers\" + 0.014*\"press\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:11:21,714 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:11:21,716 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.023*\"lee\" + 0.023*\"japanes\" + 0.020*\"singapor\" + 0.019*\"kim\" + 0.018*\"chines\" + 0.015*\"malaysia\" + 0.014*\"asia\" + 0.014*\"asian\"\n", - "2019-01-16 06:11:21,722 : INFO : topic diff=0.004072, rho=0.021205\n", - "2019-01-16 06:11:21,999 : INFO : PROGRESS: pass 0, at document #4450000/4922894\n", - "2019-01-16 06:11:24,024 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:24,583 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"greek\" + 0.010*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"citi\"\n", - "2019-01-16 06:11:24,584 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.064*\"august\" + 0.063*\"april\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 06:11:24,586 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.008*\"park\"\n", - "2019-01-16 06:11:24,587 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.019*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.012*\"year\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:11:24,590 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.004*\"materi\"\n", - "2019-01-16 06:11:24,596 : INFO : topic diff=0.002937, rho=0.021200\n", - "2019-01-16 06:11:24,859 : INFO : PROGRESS: pass 0, at document #4452000/4922894\n", - "2019-01-16 06:11:26,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:27,398 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:11:27,399 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:11:27,401 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:11:27,402 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:11:27,403 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.024*\"lee\" + 0.023*\"japanes\" + 0.020*\"kim\" + 0.019*\"singapor\" + 0.018*\"chines\" + 0.015*\"malaysia\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 06:11:27,409 : INFO : topic diff=0.002788, rho=0.021195\n", - "2019-01-16 06:11:27,680 : INFO : PROGRESS: pass 0, at document #4454000/4922894\n", - "2019-01-16 06:11:29,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:30,286 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 06:11:30,287 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.013*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:11:30,289 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:11:30,290 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.072*\"align\" + 0.056*\"left\" + 0.056*\"wikit\" + 0.052*\"style\" + 0.047*\"center\" + 0.038*\"right\" + 0.035*\"list\" + 0.031*\"philippin\" + 0.031*\"text\"\n", - "2019-01-16 06:11:30,292 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:11:30,297 : INFO : topic diff=0.003452, rho=0.021190\n", - "2019-01-16 06:11:30,584 : INFO : PROGRESS: pass 0, at document #4456000/4922894\n", - "2019-01-16 06:11:32,633 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:33,189 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"jone\" + 0.006*\"jack\"\n", - "2019-01-16 06:11:33,191 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 06:11:33,192 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.017*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:11:33,194 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.008*\"fleet\"\n", - "2019-01-16 06:11:33,195 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.023*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:11:33,201 : INFO : topic diff=0.003855, rho=0.021186\n", - "2019-01-16 06:11:33,462 : INFO : PROGRESS: pass 0, at document #4458000/4922894\n", - "2019-01-16 06:11:35,473 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:36,047 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.028*\"william\" + 0.020*\"british\" + 0.016*\"thoma\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.014*\"ireland\" + 0.013*\"henri\"\n", - "2019-01-16 06:11:36,048 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.014*\"israel\" + 0.014*\"republ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:11:36,049 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.031*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:11:36,051 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.025*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.014*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:11:36,052 : INFO : topic #48 (0.020): 0.078*\"march\" + 0.074*\"octob\" + 0.073*\"septemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.064*\"novemb\" + 0.064*\"april\" + 0.064*\"august\" + 0.063*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 06:11:36,058 : INFO : topic diff=0.002902, rho=0.021181\n", - "2019-01-16 06:11:40,617 : INFO : -11.404 per-word bound, 2709.0 perplexity estimate based on a held-out corpus of 2000 documents with 559145 words\n", - "2019-01-16 06:11:40,618 : INFO : PROGRESS: pass 0, at document #4460000/4922894\n", - "2019-01-16 06:11:42,603 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:43,167 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:11:43,169 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:11:43,170 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"commun\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:11:43,171 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.045*\"final\" + 0.025*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"singl\"\n", - "2019-01-16 06:11:43,172 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.016*\"jewish\" + 0.014*\"poland\" + 0.014*\"israel\" + 0.014*\"republ\"\n", - "2019-01-16 06:11:43,178 : INFO : topic diff=0.003353, rho=0.021176\n", - "2019-01-16 06:11:43,444 : INFO : PROGRESS: pass 0, at document #4462000/4922894\n", - "2019-01-16 06:11:45,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:45,935 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.042*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:11:45,936 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"pakistan\" + 0.016*\"www\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\"\n", - "2019-01-16 06:11:45,937 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.015*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:11:45,939 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 06:11:45,942 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 06:11:45,948 : INFO : topic diff=0.003684, rho=0.021171\n", - "2019-01-16 06:11:46,221 : INFO : PROGRESS: pass 0, at document #4464000/4922894\n", - "2019-01-16 06:11:48,203 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:48,763 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 06:11:48,765 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 06:11:48,766 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"year\" + 0.012*\"driver\" + 0.011*\"championship\" + 0.010*\"time\" + 0.010*\"ford\"\n", - "2019-01-16 06:11:48,767 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.023*\"unit\" + 0.023*\"town\" + 0.021*\"london\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.016*\"citi\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.013*\"wale\"\n", - "2019-01-16 06:11:48,769 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.038*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", - "2019-01-16 06:11:48,774 : INFO : topic diff=0.002563, rho=0.021167\n", - "2019-01-16 06:11:49,046 : INFO : PROGRESS: pass 0, at document #4466000/4922894\n", - "2019-01-16 06:11:51,074 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:51,631 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.024*\"lee\" + 0.022*\"japanes\" + 0.020*\"kim\" + 0.020*\"singapor\" + 0.018*\"chines\" + 0.015*\"malaysia\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 06:11:51,633 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:11:51,634 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.065*\"novemb\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.061*\"decemb\"\n", - "2019-01-16 06:11:51,636 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:11:51,637 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:11:51,643 : INFO : topic diff=0.003078, rho=0.021162\n", - "2019-01-16 06:11:51,939 : INFO : PROGRESS: pass 0, at document #4468000/4922894\n", - "2019-01-16 06:11:53,968 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:54,526 : INFO : topic #5 (0.020): 0.027*\"game\" + 0.009*\"us\" + 0.008*\"develop\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.007*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:11:54,527 : INFO : topic #34 (0.020): 0.083*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.017*\"korea\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"quebec\"\n", - "2019-01-16 06:11:54,528 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"match\" + 0.018*\"contest\" + 0.018*\"fight\" + 0.017*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 06:11:54,530 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:11:54,531 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:11:54,537 : INFO : topic diff=0.003015, rho=0.021157\n", - "2019-01-16 06:11:54,806 : INFO : PROGRESS: pass 0, at document #4470000/4922894\n", - "2019-01-16 06:11:56,788 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:11:57,345 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"product\" + 0.011*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:11:57,347 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.041*\"colleg\" + 0.039*\"student\" + 0.038*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.018*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"teacher\"\n", - "2019-01-16 06:11:57,348 : INFO : topic #31 (0.020): 0.066*\"australia\" + 0.055*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.018*\"melbourn\" + 0.015*\"queensland\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:11:57,349 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 06:11:57,351 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.019*\"new\" + 0.019*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.013*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", - "2019-01-16 06:11:57,356 : INFO : topic diff=0.003001, rho=0.021152\n", - "2019-01-16 06:11:57,617 : INFO : PROGRESS: pass 0, at document #4472000/4922894\n", - "2019-01-16 06:11:59,593 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:00,151 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.017*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:12:00,152 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"player\" + 0.016*\"goal\" + 0.015*\"match\"\n", - "2019-01-16 06:12:00,153 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.023*\"unit\" + 0.022*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"scotland\" + 0.016*\"citi\" + 0.013*\"scottish\" + 0.013*\"west\" + 0.012*\"manchest\"\n", - "2019-01-16 06:12:00,155 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:12:00,156 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 06:12:00,163 : INFO : topic diff=0.003038, rho=0.021148\n", - "2019-01-16 06:12:00,553 : INFO : PROGRESS: pass 0, at document #4474000/4922894\n", - "2019-01-16 06:12:02,520 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:03,081 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.075*\"align\" + 0.063*\"left\" + 0.056*\"wikit\" + 0.050*\"style\" + 0.047*\"center\" + 0.038*\"right\" + 0.034*\"list\" + 0.030*\"text\" + 0.030*\"philippin\"\n", - "2019-01-16 06:12:03,082 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.062*\"august\" + 0.062*\"june\" + 0.062*\"april\" + 0.061*\"decemb\"\n", - "2019-01-16 06:12:03,083 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\"\n", - "2019-01-16 06:12:03,084 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.043*\"africa\" + 0.038*\"african\" + 0.032*\"south\" + 0.029*\"text\" + 0.029*\"color\" + 0.027*\"till\" + 0.024*\"black\" + 0.012*\"cape\" + 0.011*\"storm\"\n", - "2019-01-16 06:12:03,085 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.030*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:12:03,091 : INFO : topic diff=0.003359, rho=0.021143\n", - "2019-01-16 06:12:03,367 : INFO : PROGRESS: pass 0, at document #4476000/4922894\n", - "2019-01-16 06:12:05,378 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:05,939 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:12:05,940 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.019*\"match\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:12:05,942 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:12:05,944 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.006*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 06:12:05,945 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.021*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:12:05,951 : INFO : topic diff=0.003250, rho=0.021138\n", - "2019-01-16 06:12:06,221 : INFO : PROGRESS: pass 0, at document #4478000/4922894\n", - "2019-01-16 06:12:08,235 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:08,792 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"citi\" + 0.009*\"place\" + 0.009*\"church\"\n", - "2019-01-16 06:12:08,793 : INFO : topic #8 (0.020): 0.048*\"india\" + 0.038*\"indian\" + 0.021*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.014*\"iran\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"khan\" + 0.011*\"ali\"\n", - "2019-01-16 06:12:08,795 : INFO : topic #49 (0.020): 0.094*\"district\" + 0.065*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"counti\" + 0.037*\"west\" + 0.033*\"municip\" + 0.032*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:12:08,796 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:12:08,797 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 06:12:08,803 : INFO : topic diff=0.003926, rho=0.021134\n", - "2019-01-16 06:12:13,544 : INFO : -11.550 per-word bound, 2998.9 perplexity estimate based on a held-out corpus of 2000 documents with 586840 words\n", - "2019-01-16 06:12:13,545 : INFO : PROGRESS: pass 0, at document #4480000/4922894\n", - "2019-01-16 06:12:15,600 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:16,158 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:12:16,159 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 06:12:16,161 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:12:16,162 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"thoma\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 06:12:16,163 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.065*\"villag\" + 0.049*\"region\" + 0.039*\"north\" + 0.038*\"east\" + 0.037*\"west\" + 0.037*\"counti\" + 0.033*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:12:16,169 : INFO : topic diff=0.003378, rho=0.021129\n", - "2019-01-16 06:12:16,450 : INFO : PROGRESS: pass 0, at document #4482000/4922894\n", - "2019-01-16 06:12:18,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:19,093 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.006*\"group\" + 0.006*\"support\"\n", - "2019-01-16 06:12:19,094 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:12:19,096 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 06:12:19,097 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:12:19,098 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 06:12:19,104 : INFO : topic diff=0.003094, rho=0.021124\n", - "2019-01-16 06:12:19,375 : INFO : PROGRESS: pass 0, at document #4484000/4922894\n", - "2019-01-16 06:12:21,405 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:21,966 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.009*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:12:21,967 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"year\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 06:12:21,969 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:12:21,970 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:12:21,972 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 06:12:21,978 : INFO : topic diff=0.003722, rho=0.021119\n", - "2019-01-16 06:12:22,249 : INFO : PROGRESS: pass 0, at document #4486000/4922894\n", - "2019-01-16 06:12:24,228 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:24,785 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"differ\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:12:24,787 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:12:24,788 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.009*\"ret\" + 0.008*\"treatment\" + 0.008*\"cancer\"\n", - "2019-01-16 06:12:24,790 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:12:24,791 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 06:12:24,797 : INFO : topic diff=0.003464, rho=0.021115\n", - "2019-01-16 06:12:25,050 : INFO : PROGRESS: pass 0, at document #4488000/4922894\n", - "2019-01-16 06:12:26,991 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:27,548 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"set\" + 0.009*\"model\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n", - "2019-01-16 06:12:27,550 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", - "2019-01-16 06:12:27,551 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:12:27,552 : INFO : topic #17 (0.020): 0.062*\"race\" + 0.021*\"car\" + 0.018*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"year\" + 0.011*\"driver\" + 0.011*\"championship\" + 0.011*\"ford\" + 0.010*\"time\"\n", - "2019-01-16 06:12:27,554 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.066*\"januari\" + 0.065*\"novemb\" + 0.065*\"juli\" + 0.063*\"august\" + 0.063*\"april\" + 0.062*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 06:12:27,560 : INFO : topic diff=0.003950, rho=0.021110\n", - "2019-01-16 06:12:27,827 : INFO : PROGRESS: pass 0, at document #4490000/4922894\n", - "2019-01-16 06:12:29,793 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:30,350 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 06:12:30,352 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.034*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 06:12:30,353 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:12:30,355 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"church\"\n", - "2019-01-16 06:12:30,356 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:12:30,362 : INFO : topic diff=0.002985, rho=0.021105\n", - "2019-01-16 06:12:30,628 : INFO : PROGRESS: pass 0, at document #4492000/4922894\n", - "2019-01-16 06:12:32,684 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:33,242 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"place\" + 0.009*\"citi\" + 0.009*\"church\"\n", - "2019-01-16 06:12:33,244 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.019*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:12:33,246 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"appear\" + 0.005*\"later\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 06:12:33,248 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"protein\"\n", - "2019-01-16 06:12:33,249 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", - "2019-01-16 06:12:33,255 : INFO : topic diff=0.003115, rho=0.021101\n", - "2019-01-16 06:12:33,557 : INFO : PROGRESS: pass 0, at document #4494000/4922894\n", - "2019-01-16 06:12:35,575 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:36,132 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.029*\"citi\" + 0.029*\"town\" + 0.027*\"famili\" + 0.025*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:12:36,134 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:12:36,135 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.057*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:12:36,136 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:12:36,138 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:12:36,143 : INFO : topic diff=0.003015, rho=0.021096\n", - "2019-01-16 06:12:36,403 : INFO : PROGRESS: pass 0, at document #4496000/4922894\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:12:38,359 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:38,916 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 06:12:38,918 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 06:12:38,919 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.057*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.036*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:12:38,920 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:12:38,921 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:12:38,927 : INFO : topic diff=0.003405, rho=0.021091\n", - "2019-01-16 06:12:39,197 : INFO : PROGRESS: pass 0, at document #4498000/4922894\n", - "2019-01-16 06:12:41,261 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:41,819 : INFO : topic #13 (0.020): 0.055*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.023*\"unit\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:12:41,821 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.032*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:12:41,822 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:12:41,824 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.008*\"data\" + 0.007*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:12:41,825 : INFO : topic #48 (0.020): 0.076*\"march\" + 0.073*\"octob\" + 0.073*\"septemb\" + 0.066*\"januari\" + 0.064*\"novemb\" + 0.064*\"juli\" + 0.063*\"august\" + 0.062*\"april\" + 0.062*\"decemb\" + 0.062*\"june\"\n", - "2019-01-16 06:12:41,830 : INFO : topic diff=0.004120, rho=0.021087\n", - "2019-01-16 06:12:46,414 : INFO : -11.851 per-word bound, 3693.5 perplexity estimate based on a held-out corpus of 2000 documents with 535739 words\n", - "2019-01-16 06:12:46,415 : INFO : PROGRESS: pass 0, at document #4500000/4922894\n", - "2019-01-16 06:12:48,430 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:48,988 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"nation\" + 0.018*\"athlet\"\n", - "2019-01-16 06:12:48,990 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"materi\"\n", - "2019-01-16 06:12:48,991 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:12:48,993 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.070*\"align\" + 0.060*\"left\" + 0.056*\"wikit\" + 0.050*\"style\" + 0.044*\"center\" + 0.038*\"right\" + 0.033*\"list\" + 0.032*\"philippin\" + 0.030*\"text\"\n", - "2019-01-16 06:12:48,995 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"said\" + 0.004*\"friend\"\n", - "2019-01-16 06:12:49,001 : INFO : topic diff=0.003611, rho=0.021082\n", - "2019-01-16 06:12:49,280 : INFO : PROGRESS: pass 0, at document #4502000/4922894\n", - "2019-01-16 06:12:51,334 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:51,894 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.066*\"villag\" + 0.049*\"region\" + 0.038*\"north\" + 0.038*\"east\" + 0.038*\"west\" + 0.036*\"counti\" + 0.033*\"municip\" + 0.033*\"south\" + 0.030*\"provinc\"\n", - "2019-01-16 06:12:51,896 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.020*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 06:12:51,897 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 06:12:51,899 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 06:12:51,900 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"space\"\n", - "2019-01-16 06:12:51,908 : INFO : topic diff=0.003149, rho=0.021077\n", - "2019-01-16 06:12:52,181 : INFO : PROGRESS: pass 0, at document #4504000/4922894\n", - "2019-01-16 06:12:54,208 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:54,766 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"high\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", - "2019-01-16 06:12:54,768 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:12:54,770 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.022*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:12:54,771 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"world\"\n", - "2019-01-16 06:12:54,775 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.036*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.015*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 06:12:54,782 : INFO : topic diff=0.003089, rho=0.021072\n", - "2019-01-16 06:12:55,049 : INFO : PROGRESS: pass 0, at document #4506000/4922894\n", - "2019-01-16 06:12:57,091 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:12:57,648 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 06:12:57,649 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 06:12:57,650 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.027*\"season\" + 0.024*\"cup\" + 0.016*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:12:57,652 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 06:12:57,653 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 06:12:57,659 : INFO : topic diff=0.003348, rho=0.021068\n", - "2019-01-16 06:12:57,928 : INFO : PROGRESS: pass 0, at document #4508000/4922894\n", - "2019-01-16 06:12:59,962 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:00,521 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.017*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.011*\"naval\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"fleet\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:13:00,522 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", - "2019-01-16 06:13:00,523 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:13:00,526 : INFO : topic #6 (0.020): 0.059*\"music\" + 0.029*\"perform\" + 0.018*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"piano\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.011*\"opera\"\n", - "2019-01-16 06:13:00,527 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.015*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"citi\" + 0.009*\"place\"\n", - "2019-01-16 06:13:00,534 : INFO : topic diff=0.005142, rho=0.021063\n", - "2019-01-16 06:13:00,800 : INFO : PROGRESS: pass 0, at document #4510000/4922894\n", - "2019-01-16 06:13:02,769 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:03,331 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", - "2019-01-16 06:13:03,333 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.018*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 06:13:03,335 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 06:13:03,336 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.028*\"text\" + 0.027*\"color\" + 0.025*\"till\" + 0.023*\"black\" + 0.014*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 06:13:03,337 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:13:03,343 : INFO : topic diff=0.003016, rho=0.021058\n", - "2019-01-16 06:13:03,604 : INFO : PROGRESS: pass 0, at document #4512000/4922894\n", - "2019-01-16 06:13:05,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:06,156 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", - "2019-01-16 06:13:06,157 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.026*\"italian\" + 0.025*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:13:06,159 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:13:06,160 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 06:13:06,161 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:13:06,167 : INFO : topic diff=0.002920, rho=0.021054\n", - "2019-01-16 06:13:06,431 : INFO : PROGRESS: pass 0, at document #4514000/4922894\n", - "2019-01-16 06:13:08,432 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:08,992 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.013*\"poland\"\n", - "2019-01-16 06:13:08,993 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:13:08,995 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"peopl\"\n", - "2019-01-16 06:13:08,996 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.014*\"coach\" + 0.012*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:13:08,997 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"said\"\n", - "2019-01-16 06:13:09,004 : INFO : topic diff=0.003465, rho=0.021049\n", - "2019-01-16 06:13:09,278 : INFO : PROGRESS: pass 0, at document #4516000/4922894\n", - "2019-01-16 06:13:11,286 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:11,842 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.013*\"defeat\" + 0.012*\"world\"\n", - "2019-01-16 06:13:11,844 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"columbia\" + 0.016*\"korean\"\n", - "2019-01-16 06:13:11,845 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:13:11,847 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:13:11,848 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.026*\"lee\" + 0.022*\"japanes\" + 0.019*\"kim\" + 0.019*\"singapor\" + 0.018*\"chines\" + 0.015*\"asian\" + 0.014*\"indonesia\" + 0.014*\"asia\"\n", - "2019-01-16 06:13:11,854 : INFO : topic diff=0.003145, rho=0.021044\n", - "2019-01-16 06:13:12,117 : INFO : PROGRESS: pass 0, at document #4518000/4922894\n", - "2019-01-16 06:13:14,149 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:14,709 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.012*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:13:14,711 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.030*\"jpg\" + 0.029*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:13:14,712 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.009*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\"\n", - "2019-01-16 06:13:14,714 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.007*\"support\"\n", - "2019-01-16 06:13:14,715 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.027*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:13:14,721 : INFO : topic diff=0.002510, rho=0.021040\n", - "2019-01-16 06:13:19,487 : INFO : -11.595 per-word bound, 3094.0 perplexity estimate based on a held-out corpus of 2000 documents with 562596 words\n", - "2019-01-16 06:13:19,488 : INFO : PROGRESS: pass 0, at document #4520000/4922894\n", - "2019-01-16 06:13:21,642 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:22,199 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:13:22,201 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"record\" + 0.025*\"releas\" + 0.020*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:13:22,203 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:13:22,205 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:13:22,207 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"said\"\n", - "2019-01-16 06:13:22,213 : INFO : topic diff=0.003267, rho=0.021035\n", - "2019-01-16 06:13:22,475 : INFO : PROGRESS: pass 0, at document #4522000/4922894\n", - "2019-01-16 06:13:24,458 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:25,015 : INFO : topic #2 (0.020): 0.059*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:13:25,016 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"di\" + 0.017*\"famili\" + 0.016*\"son\" + 0.015*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:13:25,017 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"sir\" + 0.015*\"thoma\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:13:25,019 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 06:13:25,020 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:13:25,026 : INFO : topic diff=0.002480, rho=0.021031\n", - "2019-01-16 06:13:25,302 : INFO : PROGRESS: pass 0, at document #4524000/4922894\n", - "2019-01-16 06:13:27,285 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:27,841 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:13:27,843 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.018*\"railwai\" + 0.014*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.012*\"bridg\" + 0.011*\"area\"\n", - "2019-01-16 06:13:27,844 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"nation\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:13:27,845 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.069*\"align\" + 0.061*\"left\" + 0.057*\"wikit\" + 0.052*\"style\" + 0.044*\"center\" + 0.036*\"right\" + 0.034*\"list\" + 0.033*\"philippin\" + 0.030*\"text\"\n", - "2019-01-16 06:13:27,846 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.020*\"match\" + 0.018*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.015*\"team\" + 0.013*\"defeat\" + 0.012*\"world\"\n", - "2019-01-16 06:13:27,852 : INFO : topic diff=0.003313, rho=0.021026\n", - "2019-01-16 06:13:28,120 : INFO : PROGRESS: pass 0, at document #4526000/4922894\n", - "2019-01-16 06:13:30,141 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:30,700 : INFO : topic #49 (0.020): 0.093*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.040*\"east\" + 0.039*\"north\" + 0.039*\"west\" + 0.036*\"counti\" + 0.034*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", - "2019-01-16 06:13:30,701 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.029*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"piano\" + 0.014*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\"\n", - "2019-01-16 06:13:30,702 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.008*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 06:13:30,703 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.040*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 06:13:30,704 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.036*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:13:30,711 : INFO : topic diff=0.003488, rho=0.021021\n", - "2019-01-16 06:13:30,971 : INFO : PROGRESS: pass 0, at document #4528000/4922894\n", - "2019-01-16 06:13:32,974 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:33,531 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.020*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:13:33,533 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:13:33,534 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 06:13:33,536 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"high\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", - "2019-01-16 06:13:33,537 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:13:33,543 : INFO : topic diff=0.002976, rho=0.021017\n", - "2019-01-16 06:13:33,818 : INFO : PROGRESS: pass 0, at document #4530000/4922894\n", - "2019-01-16 06:13:35,844 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:36,406 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:13:36,408 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:13:36,409 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"octob\" + 0.071*\"septemb\" + 0.067*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.062*\"april\" + 0.062*\"august\" + 0.061*\"decemb\" + 0.060*\"june\"\n", - "2019-01-16 06:13:36,411 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.037*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 06:13:36,413 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"sir\" + 0.015*\"thoma\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:13:36,420 : INFO : topic diff=0.003299, rho=0.021012\n", - "2019-01-16 06:13:36,695 : INFO : PROGRESS: pass 0, at document #4532000/4922894\n", - "2019-01-16 06:13:38,761 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:39,323 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:13:39,325 : INFO : topic #34 (0.020): 0.091*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"british\" + 0.016*\"korea\" + 0.016*\"korean\" + 0.016*\"quebec\" + 0.015*\"columbia\"\n", - "2019-01-16 06:13:39,326 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.029*\"perform\" + 0.018*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.014*\"piano\" + 0.012*\"orchestra\" + 0.011*\"opera\"\n", - "2019-01-16 06:13:39,327 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:13:39,328 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:13:39,334 : INFO : topic diff=0.003486, rho=0.021007\n", - "2019-01-16 06:13:39,611 : INFO : PROGRESS: pass 0, at document #4534000/4922894\n", - "2019-01-16 06:13:41,638 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:42,196 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 06:13:42,198 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.033*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:13:42,200 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.058*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.030*\"chines\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:13:42,201 : INFO : topic #10 (0.020): 0.021*\"engin\" + 0.012*\"product\" + 0.012*\"power\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:13:42,203 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:13:42,209 : INFO : topic diff=0.003328, rho=0.021003\n", - "2019-01-16 06:13:42,468 : INFO : PROGRESS: pass 0, at document #4536000/4922894\n", - "2019-01-16 06:13:44,410 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:44,969 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"cancer\"\n", - "2019-01-16 06:13:44,971 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:13:44,973 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.020*\"point\" + 0.020*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.011*\"singl\"\n", - "2019-01-16 06:13:44,974 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"scotland\" + 0.015*\"citi\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 06:13:44,976 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"user\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"releas\" + 0.007*\"includ\"\n", - "2019-01-16 06:13:44,982 : INFO : topic diff=0.002916, rho=0.020998\n", - "2019-01-16 06:13:45,243 : INFO : PROGRESS: pass 0, at document #4538000/4922894\n", - "2019-01-16 06:13:47,237 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:47,796 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.029*\"hong\" + 0.025*\"lee\" + 0.024*\"japanes\" + 0.019*\"singapor\" + 0.019*\"chines\" + 0.019*\"kim\" + 0.014*\"malaysia\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 06:13:47,798 : INFO : topic #29 (0.020): 0.039*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:13:47,799 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:13:47,800 : INFO : topic #43 (0.020): 0.034*\"san\" + 0.023*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 06:13:47,801 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.022*\"commun\" + 0.021*\"counti\" + 0.021*\"year\"\n", - "2019-01-16 06:13:47,807 : INFO : topic diff=0.003381, rho=0.020993\n", - "2019-01-16 06:13:52,532 : INFO : -11.595 per-word bound, 3093.7 perplexity estimate based on a held-out corpus of 2000 documents with 563337 words\n", - "2019-01-16 06:13:52,533 : INFO : PROGRESS: pass 0, at document #4540000/4922894\n", - "2019-01-16 06:13:54,562 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:55,123 : INFO : topic #35 (0.020): 0.029*\"kong\" + 0.029*\"hong\" + 0.025*\"lee\" + 0.024*\"japanes\" + 0.019*\"singapor\" + 0.019*\"kim\" + 0.018*\"chines\" + 0.014*\"malaysia\" + 0.014*\"asian\" + 0.014*\"indonesia\"\n", - "2019-01-16 06:13:55,124 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:13:55,125 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.075*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"korea\" + 0.017*\"british\" + 0.016*\"korean\" + 0.016*\"quebec\" + 0.015*\"montreal\"\n", - "2019-01-16 06:13:55,127 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.022*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:13:55,128 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.058*\"australian\" + 0.054*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.017*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:13:55,134 : INFO : topic diff=0.003400, rho=0.020989\n", - "2019-01-16 06:13:55,411 : INFO : PROGRESS: pass 0, at document #4542000/4922894\n", - "2019-01-16 06:13:57,421 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:13:57,981 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:13:57,982 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"roman\" + 0.009*\"princ\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.008*\"kingdom\" + 0.007*\"templ\" + 0.007*\"ancient\"\n", - "2019-01-16 06:13:57,983 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 06:13:57,985 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"japan\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:13:57,987 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:13:57,993 : INFO : topic diff=0.003037, rho=0.020984\n", - "2019-01-16 06:13:58,270 : INFO : PROGRESS: pass 0, at document #4544000/4922894\n", - "2019-01-16 06:14:00,291 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:00,855 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.022*\"winner\" + 0.020*\"point\" + 0.020*\"group\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:14:00,856 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:14:00,859 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.029*\"perform\" + 0.017*\"compos\" + 0.017*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.014*\"piano\" + 0.012*\"orchestra\" + 0.012*\"opera\"\n", - "2019-01-16 06:14:00,860 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.064*\"novemb\" + 0.063*\"juli\" + 0.063*\"april\" + 0.063*\"august\" + 0.062*\"decemb\" + 0.061*\"june\"\n", - "2019-01-16 06:14:00,861 : INFO : topic #8 (0.020): 0.047*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.016*\"iran\" + 0.015*\"pakistan\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:14:00,868 : INFO : topic diff=0.002983, rho=0.020980\n", - "2019-01-16 06:14:01,169 : INFO : PROGRESS: pass 0, at document #4546000/4922894\n", - "2019-01-16 06:14:03,165 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:03,722 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:14:03,724 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"moscow\" + 0.013*\"republ\" + 0.013*\"israel\"\n", - "2019-01-16 06:14:03,725 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.022*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.017*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 06:14:03,727 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"sir\" + 0.015*\"thoma\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:14:03,728 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.041*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.026*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.013*\"tropic\" + 0.012*\"storm\"\n", - "2019-01-16 06:14:03,734 : INFO : topic diff=0.003088, rho=0.020975\n", - "2019-01-16 06:14:04,018 : INFO : PROGRESS: pass 0, at document #4548000/4922894\n", - "2019-01-16 06:14:06,074 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:06,631 : INFO : topic #46 (0.020): 0.127*\"class\" + 0.068*\"align\" + 0.059*\"left\" + 0.057*\"wikit\" + 0.051*\"style\" + 0.042*\"center\" + 0.037*\"right\" + 0.037*\"list\" + 0.033*\"philippin\" + 0.029*\"text\"\n", - "2019-01-16 06:14:06,633 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.013*\"republican\"\n", - "2019-01-16 06:14:06,634 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:14:06,635 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:14:06,636 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:14:06,642 : INFO : topic diff=0.003474, rho=0.020970\n", - "2019-01-16 06:14:06,936 : INFO : PROGRESS: pass 0, at document #4550000/4922894\n", - "2019-01-16 06:14:08,985 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:09,542 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:14:09,544 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.039*\"east\" + 0.039*\"north\" + 0.039*\"west\" + 0.038*\"counti\" + 0.034*\"south\" + 0.032*\"municip\" + 0.029*\"provinc\"\n", - "2019-01-16 06:14:09,545 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"peopl\"\n", - "2019-01-16 06:14:09,546 : INFO : topic #46 (0.020): 0.128*\"class\" + 0.067*\"align\" + 0.058*\"left\" + 0.057*\"wikit\" + 0.051*\"style\" + 0.042*\"center\" + 0.037*\"right\" + 0.037*\"list\" + 0.033*\"philippin\" + 0.029*\"text\"\n", - "2019-01-16 06:14:09,547 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.015*\"scotland\" + 0.015*\"citi\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 06:14:09,553 : INFO : topic diff=0.003570, rho=0.020966\n", - "2019-01-16 06:14:09,831 : INFO : PROGRESS: pass 0, at document #4552000/4922894\n", - "2019-01-16 06:14:11,889 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:12,446 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 06:14:12,448 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:14:12,449 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"lo\"\n", - "2019-01-16 06:14:12,451 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:14:12,452 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.025*\"station\" + 0.022*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", - "2019-01-16 06:14:12,459 : INFO : topic diff=0.003346, rho=0.020961\n", - "2019-01-16 06:14:12,726 : INFO : PROGRESS: pass 0, at document #4554000/4922894\n", - "2019-01-16 06:14:14,742 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:15,298 : INFO : topic #34 (0.020): 0.092*\"island\" + 0.073*\"canada\" + 0.062*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"korea\" + 0.016*\"korean\" + 0.015*\"quebec\" + 0.015*\"north\"\n", - "2019-01-16 06:14:15,300 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.057*\"australian\" + 0.054*\"new\" + 0.042*\"china\" + 0.035*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:14:15,301 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"year\"\n", - "2019-01-16 06:14:15,302 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.025*\"japanes\" + 0.024*\"lee\" + 0.019*\"chines\" + 0.019*\"singapor\" + 0.019*\"kim\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asian\"\n", - "2019-01-16 06:14:15,305 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:14:15,311 : INFO : topic diff=0.003463, rho=0.020956\n", - "2019-01-16 06:14:15,562 : INFO : PROGRESS: pass 0, at document #4556000/4922894\n", - "2019-01-16 06:14:17,477 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:18,039 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 06:14:18,040 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", - "2019-01-16 06:14:18,042 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.012*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 06:14:18,043 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 06:14:18,044 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.013*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:14:18,050 : INFO : topic diff=0.003152, rho=0.020952\n", - "2019-01-16 06:14:18,327 : INFO : PROGRESS: pass 0, at document #4558000/4922894\n", - "2019-01-16 06:14:20,375 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:20,932 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.015*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:14:20,934 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", - "2019-01-16 06:14:20,935 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.071*\"septemb\" + 0.071*\"octob\" + 0.065*\"januari\" + 0.063*\"april\" + 0.062*\"novemb\" + 0.062*\"juli\" + 0.061*\"august\" + 0.060*\"decemb\" + 0.059*\"june\"\n", - "2019-01-16 06:14:20,937 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:14:20,938 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:14:20,944 : INFO : topic diff=0.003321, rho=0.020947\n", - "2019-01-16 06:14:25,560 : INFO : -11.723 per-word bound, 3379.4 perplexity estimate based on a held-out corpus of 2000 documents with 548987 words\n", - "2019-01-16 06:14:25,561 : INFO : PROGRESS: pass 0, at document #4560000/4922894\n", - "2019-01-16 06:14:27,573 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:28,131 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"year\"\n", - "2019-01-16 06:14:28,133 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.026*\"japanes\" + 0.024*\"lee\" + 0.019*\"chines\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"asian\"\n", - "2019-01-16 06:14:28,134 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.040*\"africa\" + 0.036*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.025*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.013*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 06:14:28,136 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:14:28,137 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", - "2019-01-16 06:14:28,143 : INFO : topic diff=0.003355, rho=0.020943\n", - "2019-01-16 06:14:28,412 : INFO : PROGRESS: pass 0, at document #4562000/4922894\n", - "2019-01-16 06:14:30,397 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:30,956 : INFO : topic #15 (0.020): 0.033*\"england\" + 0.023*\"unit\" + 0.021*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 06:14:30,957 : INFO : topic #35 (0.020): 0.031*\"kong\" + 0.030*\"hong\" + 0.026*\"japanes\" + 0.023*\"lee\" + 0.019*\"singapor\" + 0.018*\"chines\" + 0.018*\"kim\" + 0.015*\"asia\" + 0.014*\"thailand\" + 0.014*\"indonesia\"\n", - "2019-01-16 06:14:30,959 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:14:30,961 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.025*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:14:30,962 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:14:30,970 : INFO : topic diff=0.003155, rho=0.020938\n", - "2019-01-16 06:14:31,249 : INFO : PROGRESS: pass 0, at document #4564000/4922894\n", - "2019-01-16 06:14:33,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:33,793 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:14:33,794 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:14:33,796 : INFO : topic #46 (0.020): 0.129*\"class\" + 0.065*\"align\" + 0.058*\"wikit\" + 0.057*\"left\" + 0.051*\"style\" + 0.042*\"center\" + 0.037*\"right\" + 0.037*\"list\" + 0.033*\"philippin\" + 0.029*\"text\"\n", - "2019-01-16 06:14:33,797 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:14:33,800 : INFO : topic #12 (0.020): 0.054*\"elect\" + 0.042*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.013*\"senat\"\n", - "2019-01-16 06:14:33,806 : INFO : topic diff=0.003258, rho=0.020934\n", - "2019-01-16 06:14:34,089 : INFO : PROGRESS: pass 0, at document #4566000/4922894\n", - "2019-01-16 06:14:36,136 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:36,692 : INFO : topic #18 (0.020): 0.011*\"water\" + 0.007*\"light\" + 0.006*\"energi\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.006*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", - "2019-01-16 06:14:36,694 : INFO : topic #26 (0.020): 0.032*\"women\" + 0.032*\"world\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 06:14:36,695 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:14:36,696 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"lo\"\n", - "2019-01-16 06:14:36,698 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:14:36,704 : INFO : topic diff=0.003567, rho=0.020929\n", - "2019-01-16 06:14:36,986 : INFO : PROGRESS: pass 0, at document #4568000/4922894\n", - "2019-01-16 06:14:39,011 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:39,569 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.016*\"sir\" + 0.015*\"thoma\" + 0.015*\"georg\" + 0.014*\"london\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"ireland\"\n", - "2019-01-16 06:14:39,571 : INFO : topic #7 (0.020): 0.012*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"method\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 06:14:39,572 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"north\" + 0.039*\"west\" + 0.039*\"east\" + 0.038*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", - "2019-01-16 06:14:39,573 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.024*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:14:39,574 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"robert\" + 0.007*\"smith\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n", - "2019-01-16 06:14:39,580 : INFO : topic diff=0.002921, rho=0.020924\n", - "2019-01-16 06:14:39,883 : INFO : PROGRESS: pass 0, at document #4570000/4922894\n", - "2019-01-16 06:14:41,852 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:42,412 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:14:42,413 : INFO : topic #34 (0.020): 0.090*\"island\" + 0.075*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.025*\"toronto\" + 0.017*\"korean\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.016*\"korea\" + 0.015*\"montreal\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:14:42,415 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:14:42,416 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.050*\"region\" + 0.039*\"west\" + 0.039*\"north\" + 0.039*\"east\" + 0.038*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", - "2019-01-16 06:14:42,417 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:14:42,423 : INFO : topic diff=0.003156, rho=0.020920\n", - "2019-01-16 06:14:42,696 : INFO : PROGRESS: pass 0, at document #4572000/4922894\n", - "2019-01-16 06:14:44,812 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:45,374 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.035*\"russian\" + 0.026*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.019*\"jewish\" + 0.016*\"polish\" + 0.013*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:14:45,376 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.018*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:14:45,377 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.010*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:14:45,379 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 06:14:45,381 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 06:14:45,386 : INFO : topic diff=0.003323, rho=0.020915\n", - "2019-01-16 06:14:45,657 : INFO : PROGRESS: pass 0, at document #4574000/4922894\n", - "2019-01-16 06:14:47,701 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:48,258 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:14:48,259 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:14:48,260 : INFO : topic #0 (0.020): 0.032*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:14:48,262 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:14:48,263 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.026*\"japanes\" + 0.024*\"lee\" + 0.018*\"singapor\" + 0.018*\"chines\" + 0.018*\"kim\" + 0.015*\"asia\" + 0.014*\"thailand\" + 0.014*\"asian\"\n", - "2019-01-16 06:14:48,268 : INFO : topic diff=0.002824, rho=0.020911\n", - "2019-01-16 06:14:48,533 : INFO : PROGRESS: pass 0, at document #4576000/4922894\n", - "2019-01-16 06:14:50,533 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:51,091 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.022*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:14:51,092 : INFO : topic #35 (0.020): 0.030*\"kong\" + 0.030*\"hong\" + 0.026*\"japanes\" + 0.023*\"lee\" + 0.018*\"singapor\" + 0.018*\"chines\" + 0.018*\"kim\" + 0.015*\"asia\" + 0.014*\"thailand\" + 0.014*\"asian\"\n", - "2019-01-16 06:14:51,094 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.019*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:14:51,095 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.026*\"pari\" + 0.024*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:14:51,096 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:14:51,102 : INFO : topic diff=0.003249, rho=0.020906\n", - "2019-01-16 06:14:51,372 : INFO : PROGRESS: pass 0, at document #4578000/4922894\n", - "2019-01-16 06:14:53,360 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:14:53,918 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:14:53,920 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:14:53,922 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:14:53,923 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", - "2019-01-16 06:14:53,925 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"tree\" + 0.008*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 06:14:53,932 : INFO : topic diff=0.003628, rho=0.020901\n", - "2019-01-16 06:14:58,587 : INFO : -11.551 per-word bound, 2999.7 perplexity estimate based on a held-out corpus of 2000 documents with 547928 words\n", - "2019-01-16 06:14:58,588 : INFO : PROGRESS: pass 0, at document #4580000/4922894\n", - "2019-01-16 06:15:00,580 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:01,144 : INFO : topic #31 (0.020): 0.065*\"australia\" + 0.055*\"australian\" + 0.053*\"new\" + 0.043*\"china\" + 0.034*\"zealand\" + 0.031*\"chines\" + 0.030*\"south\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:15:01,146 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.020*\"seri\" + 0.020*\"best\" + 0.020*\"episod\" + 0.016*\"star\" + 0.013*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:15:01,147 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:15:01,149 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.017*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.011*\"naval\" + 0.010*\"gun\" + 0.010*\"coast\" + 0.009*\"fleet\"\n", - "2019-01-16 06:15:01,151 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:15:01,158 : INFO : topic diff=0.002694, rho=0.020897\n", - "2019-01-16 06:15:01,437 : INFO : PROGRESS: pass 0, at document #4582000/4922894\n", - "2019-01-16 06:15:03,420 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:03,977 : INFO : topic #22 (0.020): 0.049*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"counti\" + 0.021*\"peopl\"\n", - "2019-01-16 06:15:03,979 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 06:15:03,980 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.013*\"polit\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:15:03,981 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:15:03,983 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"ret\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:15:03,988 : INFO : topic diff=0.003488, rho=0.020892\n", - "2019-01-16 06:15:04,255 : INFO : PROGRESS: pass 0, at document #4584000/4922894\n", - "2019-01-16 06:15:06,331 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:06,887 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:15:06,889 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.043*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"repres\" + 0.014*\"council\" + 0.013*\"polit\"\n", - "2019-01-16 06:15:06,890 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.074*\"canada\" + 0.061*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"korean\" + 0.015*\"quebec\" + 0.015*\"korea\" + 0.015*\"montreal\"\n", - "2019-01-16 06:15:06,891 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"protein\"\n", - "2019-01-16 06:15:06,893 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"form\"\n", - "2019-01-16 06:15:06,899 : INFO : topic diff=0.003337, rho=0.020888\n", - "2019-01-16 06:15:07,173 : INFO : PROGRESS: pass 0, at document #4586000/4922894\n", - "2019-01-16 06:15:09,161 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:09,719 : INFO : topic #2 (0.020): 0.064*\"german\" + 0.037*\"germani\" + 0.024*\"van\" + 0.023*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:15:09,720 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:15:09,722 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.025*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:15:09,723 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:15:09,724 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:15:09,730 : INFO : topic diff=0.002976, rho=0.020883\n", - "2019-01-16 06:15:10,010 : INFO : PROGRESS: pass 0, at document #4588000/4922894\n", - "2019-01-16 06:15:12,020 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:12,579 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"method\" + 0.007*\"gener\" + 0.007*\"point\"\n", - "2019-01-16 06:15:12,580 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"servic\"\n", - "2019-01-16 06:15:12,581 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.029*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.013*\"piano\" + 0.012*\"opera\" + 0.012*\"orchestra\"\n", - "2019-01-16 06:15:12,583 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.019*\"match\" + 0.019*\"fight\" + 0.018*\"contest\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.014*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"defeat\"\n", - "2019-01-16 06:15:12,584 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.041*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.026*\"text\" + 0.026*\"color\" + 0.026*\"till\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 06:15:12,590 : INFO : topic diff=0.003175, rho=0.020879\n", - "2019-01-16 06:15:12,857 : INFO : PROGRESS: pass 0, at document #4590000/4922894\n", - "2019-01-16 06:15:14,866 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:15,426 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.065*\"april\" + 0.064*\"juli\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.062*\"decemb\" + 0.061*\"june\"\n", - "2019-01-16 06:15:15,427 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:15:15,429 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:15:15,430 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.014*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"ret\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:15:15,431 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.036*\"univers\" + 0.031*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"campu\"\n", - "2019-01-16 06:15:15,437 : INFO : topic diff=0.002774, rho=0.020874\n", - "2019-01-16 06:15:15,716 : INFO : PROGRESS: pass 0, at document #4592000/4922894\n", - "2019-01-16 06:15:17,716 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:18,274 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 06:15:18,275 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.021*\"japan\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 06:15:18,277 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.028*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.018*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.010*\"pilot\"\n", - "2019-01-16 06:15:18,278 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 06:15:18,280 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:15:18,286 : INFO : topic diff=0.003460, rho=0.020870\n", - "2019-01-16 06:15:18,547 : INFO : PROGRESS: pass 0, at document #4594000/4922894\n", - "2019-01-16 06:15:20,502 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:21,065 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:15:21,067 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:15:21,068 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:15:21,069 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.022*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:15:21,070 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:15:21,075 : INFO : topic diff=0.003015, rho=0.020865\n", - "2019-01-16 06:15:21,368 : INFO : PROGRESS: pass 0, at document #4596000/4922894\n", - "2019-01-16 06:15:23,317 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:23,875 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:15:23,877 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:15:23,878 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:15:23,880 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:15:23,881 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:15:23,888 : INFO : topic diff=0.003246, rho=0.020861\n", - "2019-01-16 06:15:24,158 : INFO : PROGRESS: pass 0, at document #4598000/4922894\n", - "2019-01-16 06:15:26,275 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:26,832 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.021*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:15:26,834 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:15:26,835 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:15:26,837 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.017*\"montreal\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.015*\"korean\" + 0.015*\"korea\"\n", - "2019-01-16 06:15:26,838 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.026*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.024*\"black\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 06:15:26,844 : INFO : topic diff=0.003079, rho=0.020856\n", - "2019-01-16 06:15:31,709 : INFO : -11.694 per-word bound, 3313.7 perplexity estimate based on a held-out corpus of 2000 documents with 598187 words\n", - "2019-01-16 06:15:31,710 : INFO : PROGRESS: pass 0, at document #4600000/4922894\n", - "2019-01-16 06:15:33,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:34,393 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:15:34,395 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.011*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", - "2019-01-16 06:15:34,396 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.023*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.014*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:15:34,397 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.064*\"april\" + 0.064*\"august\" + 0.064*\"juli\" + 0.063*\"novemb\" + 0.062*\"decemb\" + 0.061*\"june\"\n", - "2019-01-16 06:15:34,399 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"japan\" + 0.021*\"medal\" + 0.018*\"nation\" + 0.017*\"athlet\"\n", - "2019-01-16 06:15:34,405 : INFO : topic diff=0.003322, rho=0.020851\n", - "2019-01-16 06:15:34,681 : INFO : PROGRESS: pass 0, at document #4602000/4922894\n", - "2019-01-16 06:15:36,711 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:37,267 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:15:37,269 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"episod\" + 0.020*\"seri\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:15:37,270 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.015*\"pakistan\" + 0.011*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 06:15:37,271 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.072*\"march\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.064*\"april\" + 0.064*\"august\" + 0.064*\"juli\" + 0.063*\"novemb\" + 0.062*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 06:15:37,273 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 06:15:37,280 : INFO : topic diff=0.002959, rho=0.020847\n", - "2019-01-16 06:15:37,546 : INFO : PROGRESS: pass 0, at document #4604000/4922894\n", - "2019-01-16 06:15:39,534 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:40,093 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.072*\"march\" + 0.072*\"octob\" + 0.066*\"januari\" + 0.065*\"juli\" + 0.065*\"april\" + 0.065*\"august\" + 0.063*\"novemb\" + 0.062*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 06:15:40,095 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:15:40,096 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:15:40,097 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.011*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:15:40,098 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.008*\"kingdom\" + 0.008*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:15:40,104 : INFO : topic diff=0.002981, rho=0.020842\n", - "2019-01-16 06:15:40,377 : INFO : PROGRESS: pass 0, at document #4606000/4922894\n", - "2019-01-16 06:15:42,395 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:42,954 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.038*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.015*\"pakistan\" + 0.012*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 06:15:42,956 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:15:42,958 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.023*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:15:42,960 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.017*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 06:15:42,962 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.069*\"align\" + 0.061*\"left\" + 0.055*\"wikit\" + 0.050*\"style\" + 0.043*\"center\" + 0.037*\"right\" + 0.036*\"list\" + 0.034*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:15:42,968 : INFO : topic diff=0.002973, rho=0.020838\n", - "2019-01-16 06:15:43,230 : INFO : PROGRESS: pass 0, at document #4608000/4922894\n", - "2019-01-16 06:15:45,207 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:15:45,764 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.016*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:15:45,766 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.023*\"von\" + 0.023*\"van\" + 0.021*\"der\" + 0.020*\"berlin\" + 0.019*\"dutch\" + 0.014*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:15:45,769 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"method\" + 0.007*\"point\"\n", - "2019-01-16 06:15:45,770 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"uss\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\"\n", - "2019-01-16 06:15:45,772 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"jewish\" + 0.016*\"polish\" + 0.014*\"israel\" + 0.013*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:15:45,778 : INFO : topic diff=0.003008, rho=0.020833\n", - "2019-01-16 06:15:46,044 : INFO : PROGRESS: pass 0, at document #4610000/4922894\n", - "2019-01-16 06:15:48,082 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:48,640 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.041*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.026*\"color\" + 0.025*\"text\" + 0.025*\"till\" + 0.024*\"black\" + 0.014*\"storm\" + 0.012*\"tropic\"\n", - "2019-01-16 06:15:48,642 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.022*\"presid\" + 0.020*\"minist\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.013*\"repres\" + 0.013*\"council\" + 0.013*\"polit\"\n", - "2019-01-16 06:15:48,643 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.011*\"uss\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\"\n", - "2019-01-16 06:15:48,645 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.014*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:15:48,647 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\" + 0.008*\"studi\"\n", - "2019-01-16 06:15:48,654 : INFO : topic diff=0.003567, rho=0.020829\n", - "2019-01-16 06:15:48,936 : INFO : PROGRESS: pass 0, at document #4612000/4922894\n", - "2019-01-16 06:15:50,970 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:51,528 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.014*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"servic\"\n", - "2019-01-16 06:15:51,529 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:15:51,531 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:15:51,533 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.020*\"town\" + 0.020*\"london\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"scottish\" + 0.013*\"west\"\n", - "2019-01-16 06:15:51,535 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"time\" + 0.017*\"nation\"\n", - "2019-01-16 06:15:51,540 : INFO : topic diff=0.003860, rho=0.020824\n", - "2019-01-16 06:15:51,800 : INFO : PROGRESS: pass 0, at document #4614000/4922894\n", - "2019-01-16 06:15:53,836 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:54,394 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.021*\"japan\" + 0.018*\"time\" + 0.017*\"nation\"\n", - "2019-01-16 06:15:54,395 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:15:54,397 : INFO : topic #0 (0.020): 0.032*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:15:54,399 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.019*\"match\" + 0.018*\"fight\" + 0.018*\"contest\" + 0.016*\"wrestl\" + 0.015*\"championship\" + 0.014*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:15:54,400 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.067*\"align\" + 0.059*\"left\" + 0.056*\"wikit\" + 0.050*\"style\" + 0.042*\"center\" + 0.036*\"right\" + 0.036*\"list\" + 0.033*\"philippin\" + 0.027*\"text\"\n", - "2019-01-16 06:15:54,406 : INFO : topic diff=0.002922, rho=0.020820\n", - "2019-01-16 06:15:54,686 : INFO : PROGRESS: pass 0, at document #4616000/4922894\n", - "2019-01-16 06:15:56,696 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:15:57,253 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", - "2019-01-16 06:15:57,255 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:15:57,256 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"base\"\n", - "2019-01-16 06:15:57,258 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.009*\"type\" + 0.008*\"electr\" + 0.008*\"us\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:15:57,259 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.007*\"genu\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 06:15:57,265 : INFO : topic diff=0.002825, rho=0.020815\n", - "2019-01-16 06:15:57,540 : INFO : PROGRESS: pass 0, at document #4618000/4922894\n", - "2019-01-16 06:15:59,554 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:00,113 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.007*\"unit\"\n", - "2019-01-16 06:16:00,114 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:16:00,115 : INFO : topic #4 (0.020): 0.139*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.035*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 06:16:00,117 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.033*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:16:00,118 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.013*\"royal\"\n", - "2019-01-16 06:16:00,124 : INFO : topic diff=0.002840, rho=0.020811\n", - "2019-01-16 06:16:04,713 : INFO : -11.788 per-word bound, 3537.2 perplexity estimate based on a held-out corpus of 2000 documents with 539484 words\n", - "2019-01-16 06:16:04,714 : INFO : PROGRESS: pass 0, at document #4620000/4922894\n", - "2019-01-16 06:16:06,718 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:07,277 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.026*\"text\" + 0.025*\"color\" + 0.025*\"till\" + 0.023*\"black\" + 0.014*\"storm\" + 0.012*\"cape\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:16:07,279 : INFO : topic #0 (0.020): 0.032*\"war\" + 0.030*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:16:07,281 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"time\" + 0.017*\"nation\"\n", - "2019-01-16 06:16:07,282 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"servic\"\n", - "2019-01-16 06:16:07,284 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.009*\"francisco\"\n", - "2019-01-16 06:16:07,290 : INFO : topic diff=0.002414, rho=0.020806\n", - "2019-01-16 06:16:07,611 : INFO : PROGRESS: pass 0, at document #4622000/4922894\n", - "2019-01-16 06:16:09,637 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:10,197 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"york\" + 0.024*\"unit\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 06:16:10,198 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:16:10,200 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.011*\"diseas\" + 0.011*\"cell\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:16:10,202 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 06:16:10,204 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:16:10,210 : INFO : topic diff=0.003513, rho=0.020802\n", - "2019-01-16 06:16:10,478 : INFO : PROGRESS: pass 0, at document #4624000/4922894\n", - "2019-01-16 06:16:12,482 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:13,040 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.027*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:16:13,042 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:16:13,043 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:16:13,044 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.042*\"africa\" + 0.036*\"african\" + 0.032*\"south\" + 0.026*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 06:16:13,045 : INFO : topic #39 (0.020): 0.047*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"pilot\"\n", - "2019-01-16 06:16:13,051 : INFO : topic diff=0.003317, rho=0.020797\n", - "2019-01-16 06:16:13,310 : INFO : PROGRESS: pass 0, at document #4626000/4922894\n", - "2019-01-16 06:16:15,333 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:15,892 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.066*\"januari\" + 0.064*\"juli\" + 0.064*\"april\" + 0.063*\"august\" + 0.063*\"novemb\" + 0.062*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:16:15,894 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.011*\"islam\" + 0.011*\"khan\" + 0.011*\"sri\" + 0.011*\"tamil\"\n", - "2019-01-16 06:16:15,895 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:16:15,897 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:16:15,898 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 06:16:15,904 : INFO : topic diff=0.003028, rho=0.020793\n", - "2019-01-16 06:16:16,174 : INFO : PROGRESS: pass 0, at document #4628000/4922894\n", - "2019-01-16 06:16:18,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:18,755 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.009*\"portugues\"\n", - "2019-01-16 06:16:18,756 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.008*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:16:18,758 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:16:18,759 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 06:16:18,761 : INFO : topic #24 (0.020): 0.035*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"uss\" + 0.009*\"gun\"\n", - "2019-01-16 06:16:18,766 : INFO : topic diff=0.003254, rho=0.020788\n", - "2019-01-16 06:16:19,026 : INFO : PROGRESS: pass 0, at document #4630000/4922894\n", - "2019-01-16 06:16:20,959 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:21,516 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.027*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"time\" + 0.017*\"athlet\"\n", - "2019-01-16 06:16:21,518 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:16:21,519 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.010*\"ret\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"effect\"\n", - "2019-01-16 06:16:21,520 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.043*\"africa\" + 0.037*\"african\" + 0.031*\"south\" + 0.026*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"black\" + 0.014*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 06:16:21,522 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.007*\"support\"\n", - "2019-01-16 06:16:21,527 : INFO : topic diff=0.003246, rho=0.020784\n", - "2019-01-16 06:16:21,782 : INFO : PROGRESS: pass 0, at document #4632000/4922894\n", - "2019-01-16 06:16:23,712 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:24,270 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"pierr\"\n", - "2019-01-16 06:16:24,271 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.035*\"zealand\" + 0.030*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:16:24,273 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:16:24,274 : INFO : topic #49 (0.020): 0.088*\"district\" + 0.068*\"villag\" + 0.050*\"region\" + 0.039*\"west\" + 0.039*\"east\" + 0.039*\"north\" + 0.036*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", - "2019-01-16 06:16:24,275 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:16:24,281 : INFO : topic diff=0.003046, rho=0.020779\n", - "2019-01-16 06:16:24,555 : INFO : PROGRESS: pass 0, at document #4634000/4922894\n", - "2019-01-16 06:16:26,556 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:27,113 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"end\"\n", - "2019-01-16 06:16:27,114 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:16:27,116 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.037*\"germani\" + 0.023*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:16:27,117 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"citi\"\n", - "2019-01-16 06:16:27,118 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:16:27,124 : INFO : topic diff=0.003379, rho=0.020775\n", - "2019-01-16 06:16:27,392 : INFO : PROGRESS: pass 0, at document #4636000/4922894\n", - "2019-01-16 06:16:29,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:29,932 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.011*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:16:29,934 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.015*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:16:29,936 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.027*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:16:29,937 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.025*\"olymp\" + 0.024*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.021*\"japan\" + 0.018*\"time\" + 0.018*\"athlet\"\n", - "2019-01-16 06:16:29,939 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.011*\"time\"\n", - "2019-01-16 06:16:29,945 : INFO : topic diff=0.003227, rho=0.020770\n", - "2019-01-16 06:16:30,221 : INFO : PROGRESS: pass 0, at document #4638000/4922894\n", - "2019-01-16 06:16:32,262 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:32,820 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:16:32,822 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.022*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.012*\"regiment\"\n", - "2019-01-16 06:16:32,824 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:16:32,826 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:16:32,827 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"emperor\" + 0.009*\"empir\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:16:32,833 : INFO : topic diff=0.002899, rho=0.020766\n", - "2019-01-16 06:16:37,337 : INFO : -11.756 per-word bound, 3459.3 perplexity estimate based on a held-out corpus of 2000 documents with 547193 words\n", - "2019-01-16 06:16:37,337 : INFO : PROGRESS: pass 0, at document #4640000/4922894\n", - "2019-01-16 06:16:39,275 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:39,832 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"finish\" + 0.011*\"ford\" + 0.011*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:16:39,833 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.075*\"canada\" + 0.065*\"canadian\" + 0.026*\"ontario\" + 0.024*\"toronto\" + 0.016*\"british\" + 0.016*\"quebec\" + 0.016*\"montreal\" + 0.015*\"korean\" + 0.015*\"korea\"\n", - "2019-01-16 06:16:39,835 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:16:39,836 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.070*\"align\" + 0.063*\"left\" + 0.056*\"wikit\" + 0.049*\"style\" + 0.042*\"center\" + 0.036*\"list\" + 0.034*\"right\" + 0.032*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:16:39,838 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.009*\"develop\" + 0.008*\"player\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"releas\" + 0.007*\"data\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 06:16:39,848 : INFO : topic diff=0.003337, rho=0.020761\n", - "2019-01-16 06:16:40,128 : INFO : PROGRESS: pass 0, at document #4642000/4922894\n", - "2019-01-16 06:16:42,197 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:42,757 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.011*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.008*\"caus\" + 0.008*\"effect\" + 0.008*\"treatment\"\n", - "2019-01-16 06:16:42,759 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:16:42,760 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:16:42,762 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:16:42,763 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.043*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.010*\"le\"\n", - "2019-01-16 06:16:42,768 : INFO : topic diff=0.003117, rho=0.020757\n", - "2019-01-16 06:16:43,036 : INFO : PROGRESS: pass 0, at document #4644000/4922894\n", - "2019-01-16 06:16:45,047 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:45,605 : INFO : topic #20 (0.020): 0.032*\"win\" + 0.018*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:16:45,607 : INFO : topic #19 (0.020): 0.021*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"channel\" + 0.014*\"televis\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", - "2019-01-16 06:16:45,608 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:16:45,610 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.029*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:16:45,611 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.023*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:16:45,617 : INFO : topic diff=0.003020, rho=0.020752\n", - "2019-01-16 06:16:45,886 : INFO : PROGRESS: pass 0, at document #4646000/4922894\n", - "2019-01-16 06:16:47,867 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:48,427 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:16:48,429 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:16:48,430 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.036*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.014*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:16:48,431 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.071*\"septemb\" + 0.070*\"octob\" + 0.066*\"januari\" + 0.063*\"juli\" + 0.063*\"april\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.060*\"june\" + 0.059*\"decemb\"\n", - "2019-01-16 06:16:48,433 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.023*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 06:16:48,438 : INFO : topic diff=0.002921, rho=0.020748\n", - "2019-01-16 06:16:48,734 : INFO : PROGRESS: pass 0, at document #4648000/4922894\n", - "2019-01-16 06:16:50,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:51,257 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.025*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"church\" + 0.009*\"place\" + 0.009*\"park\"\n", - "2019-01-16 06:16:51,259 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.068*\"align\" + 0.061*\"left\" + 0.055*\"wikit\" + 0.049*\"style\" + 0.043*\"center\" + 0.035*\"list\" + 0.034*\"right\" + 0.032*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:16:51,260 : INFO : topic #32 (0.020): 0.025*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\"\n", - "2019-01-16 06:16:51,262 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.016*\"navi\" + 0.012*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"uss\"\n", - "2019-01-16 06:16:51,263 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:16:51,270 : INFO : topic diff=0.002951, rho=0.020743\n", - "2019-01-16 06:16:51,547 : INFO : PROGRESS: pass 0, at document #4650000/4922894\n", - "2019-01-16 06:16:53,688 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:54,252 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"product\" + 0.010*\"bank\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:16:54,254 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.026*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.011*\"year\" + 0.010*\"leagu\" + 0.009*\"basebal\"\n", - "2019-01-16 06:16:54,256 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:16:54,257 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:16:54,259 : INFO : topic #4 (0.020): 0.138*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.035*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"campu\" + 0.009*\"state\"\n", - "2019-01-16 06:16:54,264 : INFO : topic diff=0.004031, rho=0.020739\n", - "2019-01-16 06:16:54,533 : INFO : PROGRESS: pass 0, at document #4652000/4922894\n", - "2019-01-16 06:16:56,540 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:57,099 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:16:57,101 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.018*\"son\" + 0.017*\"di\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:16:57,102 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.016*\"mexico\" + 0.015*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.009*\"francisco\"\n", - "2019-01-16 06:16:57,104 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"senat\"\n", - "2019-01-16 06:16:57,105 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.071*\"septemb\" + 0.069*\"octob\" + 0.065*\"januari\" + 0.063*\"juli\" + 0.063*\"april\" + 0.063*\"august\" + 0.062*\"novemb\" + 0.060*\"june\" + 0.058*\"decemb\"\n", - "2019-01-16 06:16:57,112 : INFO : topic diff=0.003376, rho=0.020735\n", - "2019-01-16 06:16:57,373 : INFO : PROGRESS: pass 0, at document #4654000/4922894\n", - "2019-01-16 06:16:59,323 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:16:59,881 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:16:59,882 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"friend\" + 0.004*\"dai\"\n", - "2019-01-16 06:16:59,884 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:16:59,885 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.043*\"africa\" + 0.037*\"african\" + 0.032*\"south\" + 0.028*\"color\" + 0.026*\"text\" + 0.025*\"till\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"cape\"\n", - "2019-01-16 06:16:59,886 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.014*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:16:59,892 : INFO : topic diff=0.003418, rho=0.020730\n", - "2019-01-16 06:17:00,153 : INFO : PROGRESS: pass 0, at document #4656000/4922894\n", - "2019-01-16 06:17:02,121 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:02,677 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.033*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:17:02,679 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:17:02,680 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"sea\" + 0.015*\"navi\" + 0.013*\"island\" + 0.012*\"boat\" + 0.011*\"port\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"uss\"\n", - "2019-01-16 06:17:02,682 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 06:17:02,683 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.016*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:17:02,689 : INFO : topic diff=0.003016, rho=0.020726\n", - "2019-01-16 06:17:02,947 : INFO : PROGRESS: pass 0, at document #4658000/4922894\n", - "2019-01-16 06:17:04,910 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:17:05,467 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:17:05,468 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.015*\"militari\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 06:17:05,470 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.074*\"canada\" + 0.063*\"canadian\" + 0.026*\"ontario\" + 0.026*\"toronto\" + 0.016*\"montreal\" + 0.016*\"british\" + 0.016*\"korea\" + 0.016*\"korean\" + 0.015*\"quebec\"\n", - "2019-01-16 06:17:05,472 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"scienc\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:17:05,473 : INFO : topic #27 (0.020): 0.049*\"born\" + 0.037*\"russian\" + 0.025*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:17:05,479 : INFO : topic diff=0.002841, rho=0.020721\n", - "2019-01-16 06:17:10,062 : INFO : -11.553 per-word bound, 3003.9 perplexity estimate based on a held-out corpus of 2000 documents with 547388 words\n", - "2019-01-16 06:17:10,063 : INFO : PROGRESS: pass 0, at document #4660000/4922894\n", - "2019-01-16 06:17:12,084 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:12,641 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", - "2019-01-16 06:17:12,642 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", - "2019-01-16 06:17:12,644 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 06:17:12,645 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.020*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:17:12,647 : INFO : topic #10 (0.020): 0.020*\"engin\" + 0.013*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"manufactur\"\n", - "2019-01-16 06:17:12,654 : INFO : topic diff=0.003107, rho=0.020717\n", - "2019-01-16 06:17:12,918 : INFO : PROGRESS: pass 0, at document #4662000/4922894\n", - "2019-01-16 06:17:14,899 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:15,457 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.032*\"kong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.020*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.014*\"asia\" + 0.014*\"asian\"\n", - "2019-01-16 06:17:15,459 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:17:15,460 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:17:15,461 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.039*\"east\" + 0.039*\"north\" + 0.039*\"west\" + 0.037*\"counti\" + 0.034*\"south\" + 0.032*\"municip\" + 0.030*\"provinc\"\n", - "2019-01-16 06:17:15,462 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.017*\"state\" + 0.015*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"report\" + 0.009*\"offic\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:17:15,469 : INFO : topic diff=0.002766, rho=0.020712\n", - "2019-01-16 06:17:15,748 : INFO : PROGRESS: pass 0, at document #4664000/4922894\n", - "2019-01-16 06:17:17,794 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:18,352 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.031*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:17:18,354 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"press\" + 0.014*\"new\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.010*\"author\"\n", - "2019-01-16 06:17:18,355 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.007*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:17:18,356 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:17:18,358 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"son\" + 0.017*\"di\" + 0.015*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:17:18,364 : INFO : topic diff=0.002919, rho=0.020708\n", - "2019-01-16 06:17:18,639 : INFO : PROGRESS: pass 0, at document #4666000/4922894\n", - "2019-01-16 06:17:20,620 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:21,178 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:17:21,179 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"piano\" + 0.012*\"opera\" + 0.012*\"orchestra\"\n", - "2019-01-16 06:17:21,181 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:17:21,182 : INFO : topic #27 (0.020): 0.050*\"born\" + 0.037*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:17:21,185 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:17:21,191 : INFO : topic diff=0.003146, rho=0.020703\n", - "2019-01-16 06:17:21,453 : INFO : PROGRESS: pass 0, at document #4668000/4922894\n", - "2019-01-16 06:17:23,809 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:24,368 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.011*\"time\" + 0.010*\"championship\"\n", - "2019-01-16 06:17:24,369 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"nation\" + 0.011*\"state\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"support\" + 0.006*\"unit\"\n", - "2019-01-16 06:17:24,371 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 06:17:24,372 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:17:24,373 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"press\" + 0.014*\"new\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.012*\"novel\" + 0.011*\"stori\" + 0.010*\"author\"\n", - "2019-01-16 06:17:24,379 : INFO : topic diff=0.003090, rho=0.020699\n", - "2019-01-16 06:17:24,644 : INFO : PROGRESS: pass 0, at document #4670000/4922894\n", - "2019-01-16 06:17:26,699 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:27,256 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.042*\"africa\" + 0.036*\"african\" + 0.031*\"south\" + 0.029*\"color\" + 0.028*\"text\" + 0.027*\"till\" + 0.024*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:17:27,258 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.019*\"group\" + 0.019*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:17:27,259 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.019*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:17:27,260 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"gener\" + 0.014*\"militari\" + 0.012*\"offic\" + 0.011*\"regiment\" + 0.011*\"divis\"\n", - "2019-01-16 06:17:27,262 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"london\" + 0.019*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"scottish\" + 0.013*\"manchest\" + 0.013*\"west\"\n", - "2019-01-16 06:17:27,267 : INFO : topic diff=0.002720, rho=0.020695\n", - "2019-01-16 06:17:27,557 : INFO : PROGRESS: pass 0, at document #4672000/4922894\n", - "2019-01-16 06:17:29,529 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:30,086 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.009*\"fleet\"\n", - "2019-01-16 06:17:30,087 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 06:17:30,089 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"theori\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:17:30,090 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.019*\"group\" + 0.019*\"open\" + 0.019*\"point\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:17:30,091 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", - "2019-01-16 06:17:30,098 : INFO : topic diff=0.002743, rho=0.020690\n", - "2019-01-16 06:17:30,359 : INFO : PROGRESS: pass 0, at document #4674000/4922894\n", - "2019-01-16 06:17:32,379 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:32,936 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"earth\" + 0.005*\"temperatur\" + 0.005*\"effect\" + 0.004*\"materi\"\n", - "2019-01-16 06:17:32,937 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:17:32,938 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.007*\"oper\"\n", - "2019-01-16 06:17:32,940 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.028*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:17:32,941 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:17:32,947 : INFO : topic diff=0.003358, rho=0.020686\n", - "2019-01-16 06:17:33,219 : INFO : PROGRESS: pass 0, at document #4676000/4922894\n", - "2019-01-16 06:17:35,239 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:35,796 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:17:35,798 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.033*\"hong\" + 0.028*\"japanes\" + 0.023*\"lee\" + 0.020*\"singapor\" + 0.018*\"chines\" + 0.018*\"kim\" + 0.016*\"thailand\" + 0.014*\"asian\" + 0.014*\"asia\"\n", - "2019-01-16 06:17:35,799 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.018*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.017*\"wrestl\" + 0.015*\"championship\" + 0.015*\"titl\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:17:35,801 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", - "2019-01-16 06:17:35,803 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.070*\"align\" + 0.065*\"left\" + 0.056*\"wikit\" + 0.048*\"style\" + 0.042*\"center\" + 0.035*\"list\" + 0.034*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", - "2019-01-16 06:17:35,808 : INFO : topic diff=0.003015, rho=0.020681\n", - "2019-01-16 06:17:36,092 : INFO : PROGRESS: pass 0, at document #4678000/4922894\n", - "2019-01-16 06:17:38,124 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:38,682 : INFO : topic #34 (0.020): 0.089*\"island\" + 0.075*\"canada\" + 0.064*\"canadian\" + 0.026*\"toronto\" + 0.026*\"ontario\" + 0.016*\"korea\" + 0.016*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\" + 0.016*\"korean\"\n", - "2019-01-16 06:17:38,683 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.040*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.020*\"minist\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:17:38,685 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:17:38,686 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.028*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.023*\"household\" + 0.022*\"commun\" + 0.021*\"peopl\" + 0.021*\"year\"\n", - "2019-01-16 06:17:38,687 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"francisco\" + 0.010*\"josé\"\n", - "2019-01-16 06:17:38,693 : INFO : topic diff=0.002679, rho=0.020677\n", - "2019-01-16 06:17:43,300 : INFO : -11.839 per-word bound, 3663.4 perplexity estimate based on a held-out corpus of 2000 documents with 564993 words\n", - "2019-01-16 06:17:43,301 : INFO : PROGRESS: pass 0, at document #4680000/4922894\n", - "2019-01-16 06:17:45,289 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:45,845 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"iran\" + 0.015*\"www\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"sri\" + 0.011*\"ali\"\n", - "2019-01-16 06:17:45,847 : INFO : topic #42 (0.020): 0.027*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:17:45,848 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:17:45,851 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.038*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:17:45,852 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:17:45,858 : INFO : topic diff=0.003307, rho=0.020672\n", - "2019-01-16 06:17:46,143 : INFO : PROGRESS: pass 0, at document #4682000/4922894\n", - "2019-01-16 06:17:48,156 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:48,713 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.007*\"user\" + 0.007*\"softwar\" + 0.007*\"video\"\n", - "2019-01-16 06:17:48,715 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"campu\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:17:48,716 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.022*\"unit\" + 0.020*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", - "2019-01-16 06:17:48,717 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:17:48,719 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.012*\"divis\"\n", - "2019-01-16 06:17:48,726 : INFO : topic diff=0.003182, rho=0.020668\n", - "2019-01-16 06:17:48,993 : INFO : PROGRESS: pass 0, at document #4684000/4922894\n", - "2019-01-16 06:17:50,961 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:51,519 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.011*\"air\"\n", - "2019-01-16 06:17:51,520 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 06:17:51,522 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"robert\" + 0.008*\"smith\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"jone\"\n", - "2019-01-16 06:17:51,524 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\" + 0.010*\"championship\"\n", - "2019-01-16 06:17:51,526 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.027*\"aircraft\" + 0.026*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 06:17:51,532 : INFO : topic diff=0.003182, rho=0.020664\n", - "2019-01-16 06:17:51,816 : INFO : PROGRESS: pass 0, at document #4686000/4922894\n", - "2019-01-16 06:17:53,900 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:54,462 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.020*\"dutch\" + 0.019*\"berlin\" + 0.013*\"netherland\" + 0.013*\"swedish\" + 0.012*\"sweden\"\n", - "2019-01-16 06:17:54,464 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.022*\"presid\" + 0.021*\"minist\" + 0.020*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:17:54,466 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"church\" + 0.009*\"place\"\n", - "2019-01-16 06:17:54,468 : INFO : topic #30 (0.020): 0.055*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.013*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:17:54,469 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.011*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\" + 0.010*\"championship\"\n", - "2019-01-16 06:17:54,475 : INFO : topic diff=0.003261, rho=0.020659\n", - "2019-01-16 06:17:54,752 : INFO : PROGRESS: pass 0, at document #4688000/4922894\n", - "2019-01-16 06:17:56,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:17:57,381 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.028*\"color\" + 0.027*\"text\" + 0.026*\"till\" + 0.024*\"black\" + 0.013*\"cape\" + 0.013*\"storm\"\n", - "2019-01-16 06:17:57,382 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.018*\"chines\" + 0.016*\"thailand\" + 0.014*\"asia\" + 0.014*\"malaysia\"\n", - "2019-01-16 06:17:57,383 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 06:17:57,385 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.017*\"match\" + 0.017*\"contest\" + 0.017*\"fight\" + 0.016*\"wrestl\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:17:57,386 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:17:57,392 : INFO : topic diff=0.003197, rho=0.020655\n", - "2019-01-16 06:17:57,673 : INFO : PROGRESS: pass 0, at document #4690000/4922894\n", - "2019-01-16 06:17:59,673 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:00,231 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.035*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:18:00,233 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.014*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:18:00,236 : INFO : topic #31 (0.020): 0.067*\"australia\" + 0.056*\"australian\" + 0.053*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.027*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:18:00,238 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 06:18:00,239 : INFO : topic #13 (0.020): 0.056*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:18:00,246 : INFO : topic diff=0.003055, rho=0.020650\n", - "2019-01-16 06:18:00,512 : INFO : PROGRESS: pass 0, at document #4692000/4922894\n", - "2019-01-16 06:18:02,492 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:03,051 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 06:18:03,052 : INFO : topic #27 (0.020): 0.055*\"born\" + 0.036*\"russian\" + 0.027*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"jewish\" + 0.016*\"polish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:18:03,054 : INFO : topic #35 (0.020): 0.033*\"kong\" + 0.032*\"hong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.018*\"chines\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.013*\"malaysia\"\n", - "2019-01-16 06:18:03,056 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 06:18:03,057 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"legal\"\n", - "2019-01-16 06:18:03,063 : INFO : topic diff=0.002865, rho=0.020646\n", - "2019-01-16 06:18:03,344 : INFO : PROGRESS: pass 0, at document #4694000/4922894\n", - "2019-01-16 06:18:05,362 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:05,921 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"aircraft\" + 0.027*\"oper\" + 0.026*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 06:18:05,922 : INFO : topic #8 (0.020): 0.050*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.018*\"www\" + 0.016*\"iran\" + 0.014*\"pakistan\" + 0.013*\"khan\" + 0.012*\"com\" + 0.012*\"sri\" + 0.011*\"islam\"\n", - "2019-01-16 06:18:05,924 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"sir\" + 0.015*\"london\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:18:05,925 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.025*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.016*\"match\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:18:05,927 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.028*\"color\" + 0.026*\"till\" + 0.024*\"black\" + 0.013*\"cape\" + 0.012*\"storm\"\n", - "2019-01-16 06:18:05,933 : INFO : topic diff=0.003572, rho=0.020642\n", - "2019-01-16 06:18:06,202 : INFO : PROGRESS: pass 0, at document #4696000/4922894\n", - "2019-01-16 06:18:08,173 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:08,731 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.072*\"septemb\" + 0.071*\"octob\" + 0.066*\"januari\" + 0.066*\"juli\" + 0.064*\"april\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.063*\"june\" + 0.060*\"decemb\"\n", - "2019-01-16 06:18:08,732 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"minist\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:18:08,735 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"gener\" + 0.014*\"militari\" + 0.012*\"offic\" + 0.012*\"regiment\" + 0.012*\"divis\"\n", - "2019-01-16 06:18:08,736 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.020*\"japan\" + 0.018*\"athlet\" + 0.017*\"time\"\n", - "2019-01-16 06:18:08,738 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.023*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", - "2019-01-16 06:18:08,744 : INFO : topic diff=0.003514, rho=0.020637\n", - "2019-01-16 06:18:09,043 : INFO : PROGRESS: pass 0, at document #4698000/4922894\n", - "2019-01-16 06:18:11,021 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:11,580 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", - "2019-01-16 06:18:11,581 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.022*\"unit\" + 0.020*\"london\" + 0.019*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"wale\" + 0.013*\"west\"\n", - "2019-01-16 06:18:11,583 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"park\" + 0.009*\"church\" + 0.009*\"place\"\n", - "2019-01-16 06:18:11,585 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.020*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.008*\"order\"\n", - "2019-01-16 06:18:11,587 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"dai\"\n", - "2019-01-16 06:18:11,593 : INFO : topic diff=0.003293, rho=0.020633\n", - "2019-01-16 06:18:16,209 : INFO : -11.707 per-word bound, 3344.3 perplexity estimate based on a held-out corpus of 2000 documents with 560019 words\n", - "2019-01-16 06:18:16,210 : INFO : PROGRESS: pass 0, at document #4700000/4922894\n", - "2019-01-16 06:18:18,222 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:18,780 : INFO : topic #49 (0.020): 0.088*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.038*\"west\" + 0.038*\"north\" + 0.036*\"counti\" + 0.036*\"provinc\" + 0.033*\"south\" + 0.032*\"municip\"\n", - "2019-01-16 06:18:18,781 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"offic\" + 0.012*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 06:18:18,783 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"commun\" + 0.025*\"censu\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.020*\"live\"\n", - "2019-01-16 06:18:18,786 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.014*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:18:18,788 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"player\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"user\" + 0.007*\"video\"\n", - "2019-01-16 06:18:18,794 : INFO : topic diff=0.002694, rho=0.020628\n", - "2019-01-16 06:18:19,066 : INFO : PROGRESS: pass 0, at document #4702000/4922894\n", - "2019-01-16 06:18:21,095 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:21,651 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.016*\"del\" + 0.016*\"mexico\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.010*\"josé\" + 0.010*\"juan\" + 0.010*\"portugues\"\n", - "2019-01-16 06:18:21,653 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 06:18:21,654 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"stage\" + 0.010*\"ford\"\n", - "2019-01-16 06:18:21,655 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.036*\"russian\" + 0.026*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.016*\"polish\" + 0.016*\"jewish\" + 0.014*\"israel\" + 0.014*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:18:21,659 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.037*\"germani\" + 0.025*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"berlin\" + 0.019*\"dutch\" + 0.013*\"swedish\" + 0.013*\"netherland\" + 0.012*\"sweden\"\n", - "2019-01-16 06:18:21,664 : INFO : topic diff=0.003409, rho=0.020624\n", - "2019-01-16 06:18:21,933 : INFO : PROGRESS: pass 0, at document #4704000/4922894\n", - "2019-01-16 06:18:23,900 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:24,457 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 06:18:24,459 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.027*\"color\" + 0.026*\"till\" + 0.024*\"black\" + 0.013*\"cape\" + 0.013*\"storm\"\n", - "2019-01-16 06:18:24,460 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", - "2019-01-16 06:18:24,461 : INFO : topic #35 (0.020): 0.035*\"kong\" + 0.033*\"hong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.019*\"singapor\" + 0.018*\"kim\" + 0.018*\"chines\" + 0.015*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"asia\"\n", - "2019-01-16 06:18:24,464 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:18:24,470 : INFO : topic diff=0.003208, rho=0.020620\n", - "2019-01-16 06:18:24,746 : INFO : PROGRESS: pass 0, at document #4706000/4922894\n", - "2019-01-16 06:18:26,747 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:27,304 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"pilot\"\n", - "2019-01-16 06:18:27,306 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:18:27,308 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.018*\"centuri\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:18:27,309 : INFO : topic #40 (0.020): 0.045*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.027*\"color\" + 0.025*\"till\" + 0.024*\"black\" + 0.013*\"cape\" + 0.013*\"storm\"\n", - "2019-01-16 06:18:27,311 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:18:27,317 : INFO : topic diff=0.003337, rho=0.020615\n", - "2019-01-16 06:18:27,574 : INFO : PROGRESS: pass 0, at document #4708000/4922894\n", - "2019-01-16 06:18:29,562 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:30,121 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"match\" + 0.016*\"titl\" + 0.015*\"wrestl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"world\" + 0.011*\"champion\"\n", - "2019-01-16 06:18:30,123 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.015*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"piano\" + 0.012*\"opera\"\n", - "2019-01-16 06:18:30,124 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.022*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:18:30,125 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.042*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:18:30,127 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"mean\" + 0.006*\"us\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 06:18:30,132 : INFO : topic diff=0.002776, rho=0.020611\n", - "2019-01-16 06:18:30,397 : INFO : PROGRESS: pass 0, at document #4710000/4922894\n", - "2019-01-16 06:18:32,357 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:32,914 : INFO : topic #35 (0.020): 0.035*\"kong\" + 0.034*\"hong\" + 0.028*\"japanes\" + 0.022*\"lee\" + 0.020*\"singapor\" + 0.018*\"kim\" + 0.018*\"chines\" + 0.015*\"thailand\" + 0.014*\"malaysia\" + 0.014*\"asia\"\n", - "2019-01-16 06:18:32,915 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 06:18:32,917 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.019*\"minist\" + 0.019*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.013*\"republican\"\n", - "2019-01-16 06:18:32,918 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:18:32,920 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.007*\"fish\" + 0.007*\"tree\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.006*\"red\"\n", - "2019-01-16 06:18:32,926 : INFO : topic diff=0.003339, rho=0.020607\n", - "2019-01-16 06:18:33,191 : INFO : PROGRESS: pass 0, at document #4712000/4922894\n", - "2019-01-16 06:18:35,241 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:35,797 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:18:35,798 : INFO : topic #48 (0.020): 0.075*\"march\" + 0.071*\"octob\" + 0.070*\"septemb\" + 0.068*\"januari\" + 0.065*\"juli\" + 0.064*\"april\" + 0.064*\"novemb\" + 0.063*\"august\" + 0.063*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 06:18:35,800 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.005*\"tradit\" + 0.005*\"term\"\n", - "2019-01-16 06:18:35,802 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.032*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.018*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:18:35,804 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.010*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:18:35,810 : INFO : topic diff=0.003173, rho=0.020602\n", - "2019-01-16 06:18:36,088 : INFO : PROGRESS: pass 0, at document #4714000/4922894\n", - "2019-01-16 06:18:38,075 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:38,632 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"boat\" + 0.012*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", - "2019-01-16 06:18:38,633 : INFO : topic #5 (0.020): 0.028*\"game\" + 0.008*\"develop\" + 0.008*\"us\" + 0.008*\"player\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.007*\"softwar\" + 0.007*\"user\" + 0.007*\"video\"\n", - "2019-01-16 06:18:38,635 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:18:38,636 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.032*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:18:38,637 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.017*\"year\" + 0.012*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 06:18:38,643 : INFO : topic diff=0.003366, rho=0.020598\n", - "2019-01-16 06:18:38,912 : INFO : PROGRESS: pass 0, at document #4716000/4922894\n", - "2019-01-16 06:18:40,894 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:41,453 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"human\"\n", - "2019-01-16 06:18:41,454 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.032*\"ye\" + 0.025*\"toronto\" + 0.024*\"ontario\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"quebec\" + 0.016*\"montreal\"\n", - "2019-01-16 06:18:41,455 : INFO : topic #40 (0.020): 0.046*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.028*\"text\" + 0.027*\"color\" + 0.026*\"till\" + 0.024*\"black\" + 0.012*\"cape\" + 0.012*\"storm\"\n", - "2019-01-16 06:18:41,457 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"dai\"\n", - "2019-01-16 06:18:41,458 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:18:41,464 : INFO : topic diff=0.002869, rho=0.020593\n", - "2019-01-16 06:18:41,738 : INFO : PROGRESS: pass 0, at document #4718000/4922894\n", - "2019-01-16 06:18:43,726 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:44,283 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.040*\"east\" + 0.039*\"west\" + 0.037*\"north\" + 0.036*\"counti\" + 0.034*\"provinc\" + 0.034*\"south\" + 0.032*\"municip\"\n", - "2019-01-16 06:18:44,285 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.011*\"develop\" + 0.011*\"award\" + 0.010*\"organ\"\n", - "2019-01-16 06:18:44,287 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:18:44,288 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.016*\"marri\" + 0.013*\"father\" + 0.013*\"year\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:18:44,290 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:18:44,297 : INFO : topic diff=0.002623, rho=0.020589\n", - "2019-01-16 06:18:48,999 : INFO : -11.903 per-word bound, 3830.0 perplexity estimate based on a held-out corpus of 2000 documents with 552948 words\n", - "2019-01-16 06:18:49,000 : INFO : PROGRESS: pass 0, at document #4720000/4922894\n", - "2019-01-16 06:18:50,987 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:18:51,543 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:18:51,545 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:18:51,546 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:18:51,547 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"effect\" + 0.008*\"human\"\n", - "2019-01-16 06:18:51,549 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:18:51,555 : INFO : topic diff=0.002901, rho=0.020585\n", - "2019-01-16 06:18:51,840 : INFO : PROGRESS: pass 0, at document #4722000/4922894\n", - "2019-01-16 06:18:53,852 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:54,412 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:18:54,414 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.015*\"music\" + 0.015*\"singl\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:18:54,416 : INFO : topic #31 (0.020): 0.071*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.040*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.027*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 06:18:54,418 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.019*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"republican\"\n", - "2019-01-16 06:18:54,419 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 06:18:54,426 : INFO : topic diff=0.003322, rho=0.020580\n", - "2019-01-16 06:18:54,739 : INFO : PROGRESS: pass 0, at document #4724000/4922894\n", - "2019-01-16 06:18:56,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:18:57,352 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:18:57,353 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:18:57,355 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 06:18:57,357 : INFO : topic #41 (0.020): 0.038*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.010*\"magazin\"\n", - "2019-01-16 06:18:57,358 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 06:18:57,364 : INFO : topic diff=0.003250, rho=0.020576\n", - "2019-01-16 06:18:57,621 : INFO : PROGRESS: pass 0, at document #4726000/4922894\n", - "2019-01-16 06:18:59,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:00,171 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.020*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:19:00,172 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.033*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.017*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:19:00,174 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.016*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:19:00,176 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.072*\"canada\" + 0.061*\"canadian\" + 0.031*\"ye\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 06:19:00,177 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:19:00,183 : INFO : topic diff=0.002716, rho=0.020572\n", - "2019-01-16 06:19:00,459 : INFO : PROGRESS: pass 0, at document #4728000/4922894\n", - "2019-01-16 06:19:02,427 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:02,987 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"greek\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:19:02,988 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 06:19:02,990 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.067*\"align\" + 0.060*\"left\" + 0.057*\"wikit\" + 0.047*\"style\" + 0.043*\"center\" + 0.037*\"list\" + 0.037*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", - "2019-01-16 06:19:02,991 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.016*\"danc\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 06:19:02,992 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.023*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"wale\"\n", - "2019-01-16 06:19:02,998 : INFO : topic diff=0.003487, rho=0.020567\n", - "2019-01-16 06:19:03,263 : INFO : PROGRESS: pass 0, at document #4730000/4922894\n", - "2019-01-16 06:19:05,202 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:05,758 : INFO : topic #39 (0.020): 0.050*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:19:05,760 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.040*\"east\" + 0.038*\"west\" + 0.037*\"north\" + 0.036*\"counti\" + 0.034*\"provinc\" + 0.034*\"municip\" + 0.033*\"south\"\n", - "2019-01-16 06:19:05,762 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"genu\" + 0.008*\"white\" + 0.008*\"forest\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 06:19:05,763 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.021*\"presid\" + 0.020*\"vote\" + 0.019*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:19:05,764 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.021*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:19:05,771 : INFO : topic diff=0.003032, rho=0.020563\n", - "2019-01-16 06:19:06,041 : INFO : PROGRESS: pass 0, at document #4732000/4922894\n", - "2019-01-16 06:19:07,992 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:08,549 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.008*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"scott\"\n", - "2019-01-16 06:19:08,550 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"wale\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:19:08,552 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.044*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:19:08,554 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:19:08,555 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.019*\"station\" + 0.018*\"broadcast\" + 0.015*\"televis\" + 0.014*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"network\"\n", - "2019-01-16 06:19:08,561 : INFO : topic diff=0.003218, rho=0.020559\n", - "2019-01-16 06:19:08,819 : INFO : PROGRESS: pass 0, at document #4734000/4922894\n", - "2019-01-16 06:19:10,764 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:11,322 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.011*\"histor\" + 0.011*\"site\" + 0.009*\"park\" + 0.009*\"church\" + 0.009*\"place\"\n", - "2019-01-16 06:19:11,323 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"wale\"\n", - "2019-01-16 06:19:11,327 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.015*\"festiv\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 06:19:11,328 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"naval\" + 0.010*\"coast\" + 0.009*\"gun\" + 0.008*\"bai\"\n", - "2019-01-16 06:19:11,329 : INFO : topic #40 (0.020): 0.043*\"bar\" + 0.043*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.026*\"color\" + 0.025*\"till\" + 0.023*\"black\" + 0.012*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 06:19:11,335 : INFO : topic diff=0.002770, rho=0.020554\n", - "2019-01-16 06:19:11,590 : INFO : PROGRESS: pass 0, at document #4736000/4922894\n", - "2019-01-16 06:19:13,566 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:14,122 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 06:19:14,124 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"offic\" + 0.009*\"report\" + 0.008*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 06:19:14,125 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.040*\"east\" + 0.037*\"west\" + 0.037*\"north\" + 0.037*\"counti\" + 0.034*\"provinc\" + 0.033*\"municip\" + 0.033*\"south\"\n", - "2019-01-16 06:19:14,127 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 06:19:14,128 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"term\" + 0.005*\"tradit\"\n", - "2019-01-16 06:19:14,134 : INFO : topic diff=0.002946, rho=0.020550\n", - "2019-01-16 06:19:14,390 : INFO : PROGRESS: pass 0, at document #4738000/4922894\n", - "2019-01-16 06:19:16,385 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:16,946 : INFO : topic #47 (0.020): 0.027*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 06:19:16,947 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.066*\"align\" + 0.060*\"left\" + 0.057*\"wikit\" + 0.046*\"style\" + 0.042*\"center\" + 0.037*\"list\" + 0.035*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", - "2019-01-16 06:19:16,949 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.009*\"guitar\"\n", - "2019-01-16 06:19:16,951 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:19:16,952 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.011*\"portugues\" + 0.010*\"josé\" + 0.010*\"juan\"\n", - "2019-01-16 06:19:16,958 : INFO : topic diff=0.003089, rho=0.020546\n", - "2019-01-16 06:19:21,516 : INFO : -11.383 per-word bound, 2670.1 perplexity estimate based on a held-out corpus of 2000 documents with 548469 words\n", - "2019-01-16 06:19:21,517 : INFO : PROGRESS: pass 0, at document #4740000/4922894\n", - "2019-01-16 06:19:23,580 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:24,145 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:19:24,147 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:19:24,148 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"term\" + 0.005*\"tradit\"\n", - "2019-01-16 06:19:24,149 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:19:24,152 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.013*\"park\" + 0.011*\"area\" + 0.010*\"bridg\"\n", - "2019-01-16 06:19:24,159 : INFO : topic diff=0.002965, rho=0.020541\n", - "2019-01-16 06:19:24,438 : INFO : PROGRESS: pass 0, at document #4742000/4922894\n", - "2019-01-16 06:19:26,447 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:27,003 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.019*\"town\" + 0.018*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"wale\"\n", - "2019-01-16 06:19:27,004 : INFO : topic #30 (0.020): 0.054*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.021*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:19:27,006 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"mission\"\n", - "2019-01-16 06:19:27,007 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.037*\"west\" + 0.036*\"north\" + 0.036*\"counti\" + 0.034*\"provinc\" + 0.033*\"municip\" + 0.033*\"south\"\n", - "2019-01-16 06:19:27,009 : INFO : topic #21 (0.020): 0.012*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"term\" + 0.005*\"tradit\"\n", - "2019-01-16 06:19:27,016 : INFO : topic diff=0.003055, rho=0.020537\n", - "2019-01-16 06:19:27,284 : INFO : PROGRESS: pass 0, at document #4744000/4922894\n", - "2019-01-16 06:19:29,232 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:29,789 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.032*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:19:29,790 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"championship\" + 0.010*\"stage\"\n", - "2019-01-16 06:19:29,793 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.065*\"novemb\" + 0.065*\"august\" + 0.064*\"april\" + 0.063*\"june\" + 0.062*\"decemb\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:19:29,794 : INFO : topic #35 (0.020): 0.036*\"kong\" + 0.034*\"hong\" + 0.030*\"japanes\" + 0.021*\"lee\" + 0.019*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.014*\"malaysia\"\n", - "2019-01-16 06:19:29,796 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:19:29,803 : INFO : topic diff=0.003493, rho=0.020533\n", - "2019-01-16 06:19:30,067 : INFO : PROGRESS: pass 0, at document #4746000/4922894\n", - "2019-01-16 06:19:32,103 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:32,658 : INFO : topic #17 (0.020): 0.061*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:19:32,660 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"forest\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"bird\" + 0.007*\"red\"\n", - "2019-01-16 06:19:32,662 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"friend\" + 0.004*\"like\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:19:32,663 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:19:32,664 : INFO : topic #26 (0.020): 0.034*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:19:32,671 : INFO : topic diff=0.002639, rho=0.020528\n", - "2019-01-16 06:19:32,963 : INFO : PROGRESS: pass 0, at document #4748000/4922894\n", - "2019-01-16 06:19:35,033 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:35,591 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.067*\"juli\" + 0.065*\"august\" + 0.065*\"novemb\" + 0.064*\"april\" + 0.063*\"june\" + 0.063*\"decemb\"\n", - "2019-01-16 06:19:35,592 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:19:35,594 : INFO : topic #31 (0.020): 0.070*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.027*\"chines\" + 0.022*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:19:35,595 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.028*\"ye\" + 0.026*\"toronto\" + 0.024*\"ontario\" + 0.017*\"korea\" + 0.017*\"korean\" + 0.016*\"quebec\" + 0.016*\"montreal\"\n", - "2019-01-16 06:19:35,596 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.021*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:19:35,603 : INFO : topic diff=0.003351, rho=0.020524\n", - "2019-01-16 06:19:35,920 : INFO : PROGRESS: pass 0, at document #4750000/4922894\n", - "2019-01-16 06:19:37,962 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:38,520 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:19:38,522 : INFO : topic #20 (0.020): 0.033*\"win\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.015*\"titl\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 06:19:38,524 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 06:19:38,525 : INFO : topic #40 (0.020): 0.044*\"bar\" + 0.042*\"africa\" + 0.035*\"african\" + 0.030*\"south\" + 0.027*\"text\" + 0.025*\"color\" + 0.025*\"till\" + 0.022*\"black\" + 0.013*\"storm\" + 0.012*\"cape\"\n", - "2019-01-16 06:19:38,526 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"vehicl\"\n", - "2019-01-16 06:19:38,533 : INFO : topic diff=0.002991, rho=0.020520\n", - "2019-01-16 06:19:38,800 : INFO : PROGRESS: pass 0, at document #4752000/4922894\n", - "2019-01-16 06:19:40,806 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:41,365 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.010*\"function\" + 0.010*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:19:41,366 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.010*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:19:41,368 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.019*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 06:19:41,369 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 06:19:41,371 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.014*\"swedish\" + 0.013*\"netherland\" + 0.013*\"sweden\"\n", - "2019-01-16 06:19:41,376 : INFO : topic diff=0.002509, rho=0.020515\n", - "2019-01-16 06:19:41,636 : INFO : PROGRESS: pass 0, at document #4754000/4922894\n", - "2019-01-16 06:19:43,573 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:44,133 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"empir\" + 0.010*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:19:44,134 : INFO : topic #46 (0.020): 0.135*\"class\" + 0.066*\"align\" + 0.059*\"left\" + 0.058*\"wikit\" + 0.047*\"style\" + 0.041*\"center\" + 0.037*\"list\" + 0.035*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", - "2019-01-16 06:19:44,136 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.020*\"line\" + 0.016*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 06:19:44,137 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.022*\"russia\" + 0.019*\"soviet\" + 0.019*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"poland\"\n", - "2019-01-16 06:19:44,138 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.012*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 06:19:44,144 : INFO : topic diff=0.002716, rho=0.020511\n", - "2019-01-16 06:19:44,396 : INFO : PROGRESS: pass 0, at document #4756000/4922894\n", - "2019-01-16 06:19:46,371 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:46,929 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.026*\"tournament\" + 0.021*\"winner\" + 0.021*\"group\" + 0.020*\"point\" + 0.017*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 06:19:46,930 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"term\" + 0.005*\"like\"\n", - "2019-01-16 06:19:46,932 : INFO : topic #2 (0.020): 0.061*\"german\" + 0.038*\"germani\" + 0.028*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"berlin\" + 0.018*\"dutch\" + 0.014*\"swedish\" + 0.013*\"netherland\" + 0.013*\"sweden\"\n", - "2019-01-16 06:19:46,933 : INFO : topic #35 (0.020): 0.037*\"kong\" + 0.035*\"hong\" + 0.030*\"japanes\" + 0.021*\"lee\" + 0.019*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.015*\"thailand\" + 0.014*\"asia\" + 0.014*\"malaysia\"\n", - "2019-01-16 06:19:46,934 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.010*\"portugues\" + 0.010*\"juan\" + 0.010*\"josé\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:19:46,940 : INFO : topic diff=0.003260, rho=0.020507\n", - "2019-01-16 06:19:47,202 : INFO : PROGRESS: pass 0, at document #4758000/4922894\n", - "2019-01-16 06:19:49,203 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:49,759 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.029*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"gener\" + 0.014*\"militari\" + 0.012*\"regiment\" + 0.012*\"divis\" + 0.012*\"offic\"\n", - "2019-01-16 06:19:49,761 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.010*\"north\"\n", - "2019-01-16 06:19:49,763 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.010*\"portugues\" + 0.010*\"juan\" + 0.010*\"josé\"\n", - "2019-01-16 06:19:49,764 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.008*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 06:19:49,765 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:19:49,772 : INFO : topic diff=0.002877, rho=0.020502\n", - "2019-01-16 06:19:54,302 : INFO : -11.882 per-word bound, 3774.5 perplexity estimate based on a held-out corpus of 2000 documents with 532166 words\n", - "2019-01-16 06:19:54,302 : INFO : PROGRESS: pass 0, at document #4760000/4922894\n", - "2019-01-16 06:19:56,331 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:56,887 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:19:56,889 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:19:56,890 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:19:56,892 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:19:56,894 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 06:19:56,900 : INFO : topic diff=0.002783, rho=0.020498\n", - "2019-01-16 06:19:57,178 : INFO : PROGRESS: pass 0, at document #4762000/4922894\n", - "2019-01-16 06:19:59,164 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:19:59,722 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", - "2019-01-16 06:19:59,724 : INFO : topic #1 (0.020): 0.039*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:19:59,725 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"medal\" + 0.022*\"event\" + 0.018*\"japan\" + 0.018*\"athlet\" + 0.017*\"nation\"\n", - "2019-01-16 06:19:59,726 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.023*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.012*\"santa\" + 0.010*\"portugues\" + 0.010*\"juan\" + 0.010*\"josé\"\n", - "2019-01-16 06:19:59,728 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"year\" + 0.011*\"ford\" + 0.010*\"time\" + 0.010*\"stage\"\n", - "2019-01-16 06:19:59,735 : INFO : topic diff=0.003709, rho=0.020494\n", - "2019-01-16 06:20:00,001 : INFO : PROGRESS: pass 0, at document #4764000/4922894\n", - "2019-01-16 06:20:01,919 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:02,477 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:20:02,479 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.014*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:20:02,481 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:20:02,482 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:20:02,483 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.049*\"region\" + 0.040*\"east\" + 0.038*\"north\" + 0.037*\"west\" + 0.037*\"counti\" + 0.034*\"south\" + 0.033*\"municip\" + 0.032*\"provinc\"\n", - "2019-01-16 06:20:02,489 : INFO : topic diff=0.003414, rho=0.020489\n", - "2019-01-16 06:20:02,753 : INFO : PROGRESS: pass 0, at document #4766000/4922894\n", - "2019-01-16 06:20:04,753 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:05,312 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.033*\"museum\" + 0.029*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.022*\"paint\" + 0.021*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:20:05,313 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:20:05,315 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:20:05,316 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.018*\"democrat\" + 0.013*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:20:05,317 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:20:05,323 : INFO : topic diff=0.003141, rho=0.020485\n", - "2019-01-16 06:20:05,593 : INFO : PROGRESS: pass 0, at document #4768000/4922894\n", - "2019-01-16 06:20:07,594 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:08,151 : INFO : topic #46 (0.020): 0.130*\"class\" + 0.071*\"align\" + 0.066*\"left\" + 0.056*\"wikit\" + 0.046*\"style\" + 0.041*\"center\" + 0.035*\"list\" + 0.033*\"right\" + 0.031*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:20:08,152 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"mission\"\n", - "2019-01-16 06:20:08,154 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.014*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.012*\"regiment\" + 0.012*\"offic\"\n", - "2019-01-16 06:20:08,155 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:20:08,156 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.009*\"empir\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:20:08,162 : INFO : topic diff=0.002783, rho=0.020481\n", - "2019-01-16 06:20:08,415 : INFO : PROGRESS: pass 0, at document #4770000/4922894\n", - "2019-01-16 06:20:10,399 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:20:10,955 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:20:10,956 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.022*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:20:10,958 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.011*\"boat\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", - "2019-01-16 06:20:10,960 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.013*\"brazil\" + 0.011*\"santa\" + 0.010*\"juan\" + 0.010*\"portugues\" + 0.010*\"josé\"\n", - "2019-01-16 06:20:10,961 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.037*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"moscow\" + 0.013*\"israel\"\n", - "2019-01-16 06:20:10,967 : INFO : topic diff=0.002720, rho=0.020477\n", - "2019-01-16 06:20:11,245 : INFO : PROGRESS: pass 0, at document #4772000/4922894\n", - "2019-01-16 06:20:13,236 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:13,792 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 06:20:13,793 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:20:13,795 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"cultur\" + 0.006*\"peopl\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"like\" + 0.005*\"term\"\n", - "2019-01-16 06:20:13,797 : INFO : topic #12 (0.020): 0.055*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.021*\"presid\" + 0.019*\"vote\" + 0.018*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.012*\"polit\"\n", - "2019-01-16 06:20:13,798 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.026*\"william\" + 0.020*\"british\" + 0.016*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.013*\"royal\"\n", - "2019-01-16 06:20:13,804 : INFO : topic diff=0.003336, rho=0.020472\n", - "2019-01-16 06:20:14,116 : INFO : PROGRESS: pass 0, at document #4774000/4922894\n", - "2019-01-16 06:20:16,134 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:16,697 : INFO : topic #20 (0.020): 0.035*\"win\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.017*\"match\" + 0.015*\"titl\" + 0.015*\"championship\" + 0.014*\"team\" + 0.012*\"champion\" + 0.011*\"world\"\n", - "2019-01-16 06:20:16,699 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:20:16,700 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.023*\"ye\" + 0.019*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.015*\"british\"\n", - "2019-01-16 06:20:16,702 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.021*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.014*\"swedish\" + 0.013*\"netherland\" + 0.013*\"sweden\"\n", - "2019-01-16 06:20:16,703 : INFO : topic #31 (0.020): 0.069*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.043*\"china\" + 0.035*\"zealand\" + 0.031*\"south\" + 0.028*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 06:20:16,709 : INFO : topic diff=0.002958, rho=0.020468\n", - "2019-01-16 06:20:16,987 : INFO : PROGRESS: pass 0, at document #4776000/4922894\n", - "2019-01-16 06:20:18,951 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:19,512 : INFO : topic #30 (0.020): 0.053*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.021*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:20:19,513 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"finish\" + 0.011*\"ford\" + 0.011*\"year\" + 0.010*\"time\" + 0.010*\"stage\"\n", - "2019-01-16 06:20:19,515 : INFO : topic #9 (0.020): 0.067*\"film\" + 0.026*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:20:19,516 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.009*\"teacher\" + 0.009*\"state\"\n", - "2019-01-16 06:20:19,518 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.055*\"australian\" + 0.052*\"new\" + 0.042*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.028*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 06:20:19,524 : INFO : topic diff=0.002958, rho=0.020464\n", - "2019-01-16 06:20:19,797 : INFO : PROGRESS: pass 0, at document #4778000/4922894\n", - "2019-01-16 06:20:21,768 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:22,325 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.073*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.066*\"juli\" + 0.065*\"august\" + 0.065*\"novemb\" + 0.064*\"april\" + 0.062*\"june\" + 0.062*\"decemb\"\n", - "2019-01-16 06:20:22,327 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.011*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 06:20:22,329 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 06:20:22,330 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:20:22,332 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"unit\" + 0.007*\"group\" + 0.006*\"support\"\n", - "2019-01-16 06:20:22,337 : INFO : topic diff=0.003323, rho=0.020459\n", - "2019-01-16 06:20:26,868 : INFO : -11.995 per-word bound, 4081.9 perplexity estimate based on a held-out corpus of 2000 documents with 542830 words\n", - "2019-01-16 06:20:26,869 : INFO : PROGRESS: pass 0, at document #4780000/4922894\n", - "2019-01-16 06:20:28,843 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:29,407 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:20:29,409 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"seri\" + 0.021*\"episod\" + 0.020*\"best\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:20:29,410 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:20:29,411 : INFO : topic #43 (0.020): 0.031*\"san\" + 0.022*\"spanish\" + 0.018*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"portugues\" + 0.010*\"josé\"\n", - "2019-01-16 06:20:29,412 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.033*\"hong\" + 0.029*\"japanes\" + 0.021*\"lee\" + 0.021*\"singapor\" + 0.019*\"chines\" + 0.017*\"kim\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"malaysia\"\n", - "2019-01-16 06:20:29,418 : INFO : topic diff=0.003318, rho=0.020455\n", - "2019-01-16 06:20:29,687 : INFO : PROGRESS: pass 0, at document #4782000/4922894\n", - "2019-01-16 06:20:31,709 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:32,269 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.007*\"peter\" + 0.006*\"scott\" + 0.006*\"richard\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:20:32,271 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.015*\"match\"\n", - "2019-01-16 06:20:32,272 : INFO : topic #24 (0.020): 0.036*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"gun\" + 0.008*\"fleet\"\n", - "2019-01-16 06:20:32,274 : INFO : topic #4 (0.020): 0.135*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.033*\"univers\" + 0.030*\"high\" + 0.029*\"educ\" + 0.016*\"year\" + 0.012*\"graduat\" + 0.010*\"state\" + 0.010*\"teacher\"\n", - "2019-01-16 06:20:32,275 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.073*\"canada\" + 0.061*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.022*\"ye\" + 0.018*\"quebec\" + 0.018*\"korean\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 06:20:32,280 : INFO : topic diff=0.003332, rho=0.020451\n", - "2019-01-16 06:20:32,557 : INFO : PROGRESS: pass 0, at document #4784000/4922894\n", - "2019-01-16 06:20:34,552 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:35,110 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.017*\"match\" + 0.017*\"fight\" + 0.017*\"contest\" + 0.017*\"wrestl\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.012*\"defeat\" + 0.011*\"champion\"\n", - "2019-01-16 06:20:35,111 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"scott\" + 0.006*\"richard\"\n", - "2019-01-16 06:20:35,113 : INFO : topic #46 (0.020): 0.131*\"class\" + 0.068*\"align\" + 0.063*\"left\" + 0.057*\"wikit\" + 0.047*\"style\" + 0.041*\"center\" + 0.034*\"list\" + 0.034*\"right\" + 0.031*\"philippin\" + 0.028*\"text\"\n", - "2019-01-16 06:20:35,114 : INFO : topic #27 (0.020): 0.052*\"born\" + 0.037*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.016*\"jewish\" + 0.014*\"republ\" + 0.013*\"israel\" + 0.013*\"moscow\"\n", - "2019-01-16 06:20:35,115 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:20:35,121 : INFO : topic diff=0.002949, rho=0.020447\n", - "2019-01-16 06:20:35,393 : INFO : PROGRESS: pass 0, at document #4786000/4922894\n", - "2019-01-16 06:20:37,401 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:37,958 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.009*\"patient\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 06:20:37,959 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"new\" + 0.008*\"oper\"\n", - "2019-01-16 06:20:37,960 : INFO : topic #48 (0.020): 0.074*\"march\" + 0.074*\"octob\" + 0.072*\"septemb\" + 0.067*\"januari\" + 0.065*\"juli\" + 0.065*\"august\" + 0.065*\"novemb\" + 0.063*\"april\" + 0.062*\"decemb\" + 0.062*\"june\"\n", - "2019-01-16 06:20:37,962 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:20:37,966 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"network\"\n", - "2019-01-16 06:20:37,973 : INFO : topic diff=0.002849, rho=0.020442\n", - "2019-01-16 06:20:38,225 : INFO : PROGRESS: pass 0, at document #4788000/4922894\n", - "2019-01-16 06:20:40,147 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:40,703 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.010*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", - "2019-01-16 06:20:40,704 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"unit\" + 0.014*\"squadron\" + 0.011*\"base\" + 0.011*\"wing\"\n", - "2019-01-16 06:20:40,705 : INFO : topic #22 (0.020): 0.050*\"popul\" + 0.034*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.025*\"commun\" + 0.022*\"household\" + 0.021*\"live\" + 0.021*\"peopl\"\n", - "2019-01-16 06:20:40,707 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.025*\"till\" + 0.025*\"color\" + 0.022*\"black\" + 0.014*\"cape\" + 0.012*\"storm\"\n", - "2019-01-16 06:20:40,708 : INFO : topic #19 (0.020): 0.023*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"host\" + 0.011*\"program\" + 0.010*\"air\"\n", - "2019-01-16 06:20:40,715 : INFO : topic diff=0.003313, rho=0.020438\n", - "2019-01-16 06:20:40,995 : INFO : PROGRESS: pass 0, at document #4790000/4922894\n", - "2019-01-16 06:20:42,983 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:43,540 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.038*\"north\" + 0.037*\"west\" + 0.036*\"counti\" + 0.034*\"municip\" + 0.033*\"south\" + 0.032*\"provinc\"\n", - "2019-01-16 06:20:43,541 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"scott\"\n", - "2019-01-16 06:20:43,543 : INFO : topic #17 (0.020): 0.059*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"ford\" + 0.010*\"championship\"\n", - "2019-01-16 06:20:43,545 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:20:43,546 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:20:43,552 : INFO : topic diff=0.003266, rho=0.020434\n", - "2019-01-16 06:20:43,822 : INFO : PROGRESS: pass 0, at document #4792000/4922894\n", - "2019-01-16 06:20:45,865 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:46,422 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"scott\"\n", - "2019-01-16 06:20:46,423 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.027*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:20:46,425 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:20:46,427 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 06:20:46,428 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"london\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:20:46,435 : INFO : topic diff=0.003274, rho=0.020429\n", - "2019-01-16 06:20:46,702 : INFO : PROGRESS: pass 0, at document #4794000/4922894\n", - "2019-01-16 06:20:48,756 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:49,312 : INFO : topic #8 (0.020): 0.051*\"india\" + 0.036*\"indian\" + 0.022*\"http\" + 0.018*\"www\" + 0.016*\"iran\" + 0.014*\"pakistan\" + 0.012*\"khan\" + 0.011*\"sri\" + 0.011*\"com\" + 0.011*\"islam\"\n", - "2019-01-16 06:20:49,314 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"festiv\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.013*\"orchestra\" + 0.012*\"piano\"\n", - "2019-01-16 06:20:49,316 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:20:49,317 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 06:20:49,318 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"forest\" + 0.008*\"genu\" + 0.008*\"white\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:20:49,324 : INFO : topic diff=0.003146, rho=0.020425\n", - "2019-01-16 06:20:49,595 : INFO : PROGRESS: pass 0, at document #4796000/4922894\n", - "2019-01-16 06:20:51,538 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:52,096 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.029*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:20:52,097 : INFO : topic #47 (0.020): 0.026*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:20:52,099 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"forest\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"tree\" + 0.007*\"fish\" + 0.007*\"red\"\n", - "2019-01-16 06:20:52,101 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.041*\"africa\" + 0.034*\"african\" + 0.029*\"south\" + 0.027*\"text\" + 0.026*\"till\" + 0.025*\"color\" + 0.022*\"black\" + 0.013*\"cape\" + 0.012*\"storm\"\n", - "2019-01-16 06:20:52,103 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", - "2019-01-16 06:20:52,110 : INFO : topic diff=0.003106, rho=0.020421\n", - "2019-01-16 06:20:52,392 : INFO : PROGRESS: pass 0, at document #4798000/4922894\n", - "2019-01-16 06:20:54,401 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:20:54,961 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.010*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"vehicl\"\n", - "2019-01-16 06:20:54,963 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.074*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.020*\"ye\" + 0.020*\"korean\" + 0.018*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 06:20:54,964 : INFO : topic #39 (0.020): 0.048*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.026*\"airport\" + 0.018*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"wing\"\n", - "2019-01-16 06:20:54,966 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 06:20:54,967 : INFO : topic #46 (0.020): 0.133*\"class\" + 0.066*\"align\" + 0.061*\"left\" + 0.058*\"wikit\" + 0.047*\"style\" + 0.042*\"center\" + 0.034*\"list\" + 0.034*\"right\" + 0.030*\"philippin\" + 0.029*\"text\"\n", - "2019-01-16 06:20:54,973 : INFO : topic diff=0.003046, rho=0.020417\n", - "2019-01-16 06:20:59,650 : INFO : -11.732 per-word bound, 3402.3 perplexity estimate based on a held-out corpus of 2000 documents with 558379 words\n", - "2019-01-16 06:20:59,651 : INFO : PROGRESS: pass 0, at document #4800000/4922894\n", - "2019-01-16 06:21:01,672 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:02,233 : INFO : topic #5 (0.020): 0.029*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 06:21:02,235 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.032*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.018*\"athlet\" + 0.018*\"japan\" + 0.018*\"nation\"\n", - "2019-01-16 06:21:02,237 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"us\" + 0.006*\"mean\" + 0.006*\"cultur\" + 0.005*\"like\" + 0.005*\"term\"\n", - "2019-01-16 06:21:02,238 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.054*\"australian\" + 0.051*\"new\" + 0.041*\"china\" + 0.034*\"zealand\" + 0.031*\"south\" + 0.027*\"chines\" + 0.021*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 06:21:02,240 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:21:02,246 : INFO : topic diff=0.003289, rho=0.020412\n", - "2019-01-16 06:21:02,510 : INFO : PROGRESS: pass 0, at document #4802000/4922894\n", - "2019-01-16 06:21:04,490 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:05,048 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:21:05,050 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.033*\"hong\" + 0.029*\"japanes\" + 0.021*\"singapor\" + 0.021*\"lee\" + 0.019*\"chines\" + 0.017*\"kim\" + 0.014*\"thailand\" + 0.014*\"indonesia\" + 0.014*\"malaysia\"\n", - "2019-01-16 06:21:05,051 : INFO : topic #23 (0.020): 0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.011*\"ret\" + 0.010*\"patient\" + 0.009*\"caus\" + 0.008*\"treatment\" + 0.008*\"human\"\n", - "2019-01-16 06:21:05,052 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.025*\"toronto\" + 0.020*\"korean\" + 0.019*\"ye\" + 0.018*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 06:21:05,053 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.026*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"exhibit\" + 0.017*\"imag\"\n", - "2019-01-16 06:21:05,059 : INFO : topic diff=0.002831, rho=0.020408\n", - "2019-01-16 06:21:05,325 : INFO : PROGRESS: pass 0, at document #4804000/4922894\n", - "2019-01-16 06:21:07,368 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:07,927 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.015*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:21:07,928 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.009*\"us\" + 0.008*\"version\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 06:21:07,930 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:21:07,931 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.027*\"south\" + 0.027*\"text\" + 0.025*\"till\" + 0.024*\"color\" + 0.023*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 06:21:07,933 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:21:07,939 : INFO : topic diff=0.002881, rho=0.020404\n", - "2019-01-16 06:21:08,211 : INFO : PROGRESS: pass 0, at document #4806000/4922894\n", - "2019-01-16 06:21:10,223 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:10,779 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 06:21:10,781 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 06:21:10,782 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"wrestl\" + 0.017*\"fight\" + 0.017*\"match\" + 0.016*\"contest\" + 0.016*\"championship\" + 0.016*\"titl\" + 0.014*\"team\" + 0.012*\"champion\" + 0.012*\"defeat\"\n", - "2019-01-16 06:21:10,783 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"valu\" + 0.007*\"gener\" + 0.007*\"group\" + 0.007*\"point\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:21:10,785 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:21:10,791 : INFO : topic diff=0.002921, rho=0.020400\n", - "2019-01-16 06:21:11,064 : INFO : PROGRESS: pass 0, at document #4808000/4922894\n", - "2019-01-16 06:21:13,077 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:13,634 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.015*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", - "2019-01-16 06:21:13,635 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.012*\"port\" + 0.012*\"boat\" + 0.010*\"coast\" + 0.010*\"gun\" + 0.010*\"naval\" + 0.009*\"damag\"\n", - "2019-01-16 06:21:13,637 : INFO : topic #33 (0.020): 0.032*\"compani\" + 0.012*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:21:13,638 : INFO : topic #22 (0.020): 0.051*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.024*\"commun\" + 0.023*\"household\" + 0.021*\"peopl\" + 0.021*\"live\"\n", - "2019-01-16 06:21:13,639 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.018*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.014*\"west\" + 0.013*\"manchest\" + 0.013*\"scottish\"\n", - "2019-01-16 06:21:13,647 : INFO : topic diff=0.003589, rho=0.020395\n", - "2019-01-16 06:21:13,928 : INFO : PROGRESS: pass 0, at document #4810000/4922894\n", - "2019-01-16 06:21:15,955 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:16,514 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.021*\"best\" + 0.021*\"seri\" + 0.020*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:21:16,517 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"korean\" + 0.019*\"ye\" + 0.018*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 06:21:16,518 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"princ\" + 0.009*\"roman\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.007*\"ancient\" + 0.007*\"templ\"\n", - "2019-01-16 06:21:16,520 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:21:16,521 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"oper\" + 0.026*\"aircraft\" + 0.026*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"mission\"\n", - "2019-01-16 06:21:16,530 : INFO : topic diff=0.002587, rho=0.020391\n", - "2019-01-16 06:21:16,801 : INFO : PROGRESS: pass 0, at document #4812000/4922894\n", - "2019-01-16 06:21:18,777 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:19,339 : INFO : topic #6 (0.020): 0.062*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.015*\"danc\" + 0.013*\"opera\" + 0.012*\"orchestra\" + 0.011*\"piano\"\n", - "2019-01-16 06:21:19,341 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.022*\"court\" + 0.017*\"state\" + 0.016*\"act\" + 0.011*\"case\" + 0.010*\"polic\" + 0.009*\"right\" + 0.009*\"offic\" + 0.009*\"report\" + 0.007*\"legal\"\n", - "2019-01-16 06:21:19,343 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"intern\" + 0.012*\"work\" + 0.012*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:21:19,344 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"road\" + 0.021*\"line\" + 0.017*\"railwai\" + 0.016*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:21:19,345 : INFO : topic #40 (0.020): 0.048*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.027*\"text\" + 0.027*\"south\" + 0.025*\"till\" + 0.023*\"color\" + 0.022*\"black\" + 0.014*\"storm\" + 0.013*\"tropic\"\n", - "2019-01-16 06:21:19,352 : INFO : topic diff=0.003809, rho=0.020387\n", - "2019-01-16 06:21:19,622 : INFO : PROGRESS: pass 0, at document #4814000/4922894\n", - "2019-01-16 06:21:21,613 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:22,169 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.015*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.010*\"air\"\n", - "2019-01-16 06:21:22,171 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.034*\"hong\" + 0.031*\"japanes\" + 0.026*\"singapor\" + 0.021*\"lee\" + 0.019*\"chines\" + 0.017*\"kim\" + 0.014*\"indonesia\" + 0.014*\"malaysia\" + 0.014*\"thailand\"\n", - "2019-01-16 06:21:22,172 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.010*\"park\" + 0.009*\"citi\" + 0.009*\"church\"\n", - "2019-01-16 06:21:22,173 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:21:22,174 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"korean\" + 0.019*\"quebec\" + 0.018*\"ye\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 06:21:22,180 : INFO : topic diff=0.004143, rho=0.020383\n", - "2019-01-16 06:21:22,447 : INFO : PROGRESS: pass 0, at document #4816000/4922894\n", - "2019-01-16 06:21:24,789 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:25,346 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"london\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:21:25,348 : INFO : topic #48 (0.020): 0.073*\"septemb\" + 0.073*\"march\" + 0.072*\"octob\" + 0.065*\"januari\" + 0.064*\"august\" + 0.064*\"juli\" + 0.064*\"novemb\" + 0.063*\"april\" + 0.062*\"decemb\" + 0.061*\"june\"\n", - "2019-01-16 06:21:25,349 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.015*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:21:25,351 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"energi\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.004*\"materi\"\n", - "2019-01-16 06:21:25,353 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"differ\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"like\" + 0.005*\"term\"\n", - "2019-01-16 06:21:25,358 : INFO : topic diff=0.002678, rho=0.020378\n", - "2019-01-16 06:21:25,625 : INFO : PROGRESS: pass 0, at document #4818000/4922894\n", - "2019-01-16 06:21:27,654 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:28,210 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:21:28,212 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"us\" + 0.008*\"vehicl\"\n", - "2019-01-16 06:21:28,213 : INFO : topic #26 (0.020): 0.033*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"japan\" + 0.018*\"athlet\" + 0.018*\"nation\"\n", - "2019-01-16 06:21:28,215 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"born\" + 0.013*\"life\" + 0.012*\"daughter\"\n", - "2019-01-16 06:21:28,216 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:21:28,222 : INFO : topic diff=0.002842, rho=0.020374\n", - "2019-01-16 06:21:32,792 : INFO : -11.683 per-word bound, 3288.4 perplexity estimate based on a held-out corpus of 2000 documents with 567663 words\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:21:32,793 : INFO : PROGRESS: pass 0, at document #4820000/4922894\n", - "2019-01-16 06:21:34,777 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:35,335 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"kill\" + 0.005*\"charact\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:21:35,337 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:21:35,338 : INFO : topic #48 (0.020): 0.073*\"march\" + 0.073*\"septemb\" + 0.072*\"octob\" + 0.065*\"januari\" + 0.064*\"august\" + 0.063*\"novemb\" + 0.063*\"juli\" + 0.063*\"april\" + 0.061*\"decemb\" + 0.061*\"june\"\n", - "2019-01-16 06:21:35,339 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:21:35,340 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.009*\"model\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n", - "2019-01-16 06:21:35,346 : INFO : topic diff=0.003386, rho=0.020370\n", - "2019-01-16 06:21:35,616 : INFO : PROGRESS: pass 0, at document #4822000/4922894\n", - "2019-01-16 06:21:37,562 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:38,121 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.034*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.024*\"cup\" + 0.017*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:21:38,123 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:21:38,125 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.011*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"vehicl\"\n", - "2019-01-16 06:21:38,126 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.011*\"market\" + 0.011*\"bank\" + 0.010*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:21:38,127 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.073*\"canada\" + 0.059*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.019*\"ye\" + 0.018*\"quebec\" + 0.018*\"korean\" + 0.016*\"montreal\" + 0.016*\"british\"\n", - "2019-01-16 06:21:38,133 : INFO : topic diff=0.003257, rho=0.020366\n", - "2019-01-16 06:21:38,408 : INFO : PROGRESS: pass 0, at document #4824000/4922894\n", - "2019-01-16 06:21:40,423 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:40,981 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.026*\"famili\" + 0.026*\"censu\" + 0.024*\"commun\" + 0.023*\"household\" + 0.022*\"peopl\" + 0.021*\"live\"\n", - "2019-01-16 06:21:40,982 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"flight\" + 0.017*\"forc\" + 0.014*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.010*\"fly\"\n", - "2019-01-16 06:21:40,985 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:21:40,986 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.039*\"east\" + 0.038*\"north\" + 0.037*\"west\" + 0.036*\"counti\" + 0.034*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:21:40,988 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:21:40,993 : INFO : topic diff=0.003144, rho=0.020362\n", - "2019-01-16 06:21:41,301 : INFO : PROGRESS: pass 0, at document #4826000/4922894\n", - "2019-01-16 06:21:43,292 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:43,855 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.020*\"town\" + 0.018*\"cricket\" + 0.017*\"citi\" + 0.015*\"scotland\" + 0.013*\"west\" + 0.013*\"scottish\" + 0.013*\"manchest\"\n", - "2019-01-16 06:21:43,856 : INFO : topic #35 (0.020): 0.034*\"kong\" + 0.033*\"hong\" + 0.030*\"japanes\" + 0.025*\"singapor\" + 0.023*\"lee\" + 0.018*\"chines\" + 0.016*\"kim\" + 0.014*\"indonesia\" + 0.014*\"malaysia\" + 0.014*\"thailand\"\n", - "2019-01-16 06:21:43,858 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:21:43,859 : INFO : topic #27 (0.020): 0.054*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.020*\"russia\" + 0.019*\"soviet\" + 0.018*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", - "2019-01-16 06:21:43,861 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:21:43,867 : INFO : topic diff=0.003319, rho=0.020357\n", - "2019-01-16 06:21:44,154 : INFO : PROGRESS: pass 0, at document #4828000/4922894\n", - "2019-01-16 06:21:46,204 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:46,762 : INFO : topic #2 (0.020): 0.060*\"german\" + 0.037*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.018*\"berlin\" + 0.015*\"swedish\" + 0.014*\"netherland\" + 0.013*\"sweden\"\n", - "2019-01-16 06:21:46,763 : INFO : topic #6 (0.020): 0.061*\"music\" + 0.031*\"perform\" + 0.019*\"theatr\" + 0.017*\"compos\" + 0.016*\"plai\" + 0.015*\"danc\" + 0.015*\"festiv\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 06:21:46,765 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:21:46,767 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.022*\"spanish\" + 0.016*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.011*\"santa\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", - "2019-01-16 06:21:46,768 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:21:46,774 : INFO : topic diff=0.002690, rho=0.020353\n", - "2019-01-16 06:21:47,041 : INFO : PROGRESS: pass 0, at document #4830000/4922894\n", - "2019-01-16 06:21:49,067 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:49,627 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:21:49,628 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.035*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:21:49,630 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:21:49,632 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"tom\"\n", - "2019-01-16 06:21:49,634 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"includ\"\n", - "2019-01-16 06:21:49,640 : INFO : topic diff=0.003060, rho=0.020349\n", - "2019-01-16 06:21:49,908 : INFO : PROGRESS: pass 0, at document #4832000/4922894\n", - "2019-01-16 06:21:51,929 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:52,492 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"bank\" + 0.011*\"product\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:21:52,493 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.022*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.011*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:21:52,495 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:21:52,496 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.021*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:21:52,498 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:21:52,505 : INFO : topic diff=0.003268, rho=0.020345\n", - "2019-01-16 06:21:52,767 : INFO : PROGRESS: pass 0, at document #4834000/4922894\n", - "2019-01-16 06:21:54,792 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:55,349 : INFO : topic #49 (0.020): 0.088*\"district\" + 0.067*\"villag\" + 0.049*\"region\" + 0.039*\"east\" + 0.038*\"north\" + 0.037*\"west\" + 0.036*\"counti\" + 0.033*\"municip\" + 0.033*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:21:55,351 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.014*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:21:55,352 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.012*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", - "2019-01-16 06:21:55,354 : INFO : topic #28 (0.020): 0.028*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.013*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.010*\"park\" + 0.009*\"church\" + 0.009*\"citi\"\n", - "2019-01-16 06:21:55,355 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.018*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:21:55,361 : INFO : topic diff=0.002977, rho=0.020341\n", - "2019-01-16 06:21:55,636 : INFO : PROGRESS: pass 0, at document #4836000/4922894\n", - "2019-01-16 06:21:57,559 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:21:58,117 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.036*\"new\" + 0.029*\"american\" + 0.025*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:21:58,118 : INFO : topic #5 (0.020): 0.031*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 06:21:58,120 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.018*\"japan\" + 0.018*\"time\"\n", - "2019-01-16 06:21:58,122 : INFO : topic #48 (0.020): 0.072*\"march\" + 0.072*\"septemb\" + 0.072*\"octob\" + 0.065*\"januari\" + 0.063*\"novemb\" + 0.063*\"august\" + 0.062*\"juli\" + 0.062*\"april\" + 0.061*\"decemb\" + 0.059*\"june\"\n", - "2019-01-16 06:21:58,123 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:21:58,129 : INFO : topic diff=0.003646, rho=0.020336\n", - "2019-01-16 06:21:58,405 : INFO : PROGRESS: pass 0, at document #4838000/4922894\n", - "2019-01-16 06:22:00,390 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:00,948 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.020*\"new\" + 0.018*\"broadcast\" + 0.018*\"station\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.012*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", - "2019-01-16 06:22:00,950 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.021*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.012*\"divis\" + 0.011*\"regiment\" + 0.011*\"offic\"\n", - "2019-01-16 06:22:00,951 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"counti\" + 0.021*\"peopl\"\n", - "2019-01-16 06:22:00,952 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.015*\"player\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:22:00,953 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:22:00,959 : INFO : topic diff=0.003035, rho=0.020332\n", - "2019-01-16 06:22:05,590 : INFO : -11.489 per-word bound, 2874.7 perplexity estimate based on a held-out corpus of 2000 documents with 566920 words\n", - "2019-01-16 06:22:05,591 : INFO : PROGRESS: pass 0, at document #4840000/4922894\n", - "2019-01-16 06:22:07,592 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:08,150 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"forest\" + 0.007*\"bird\" + 0.007*\"red\" + 0.007*\"tree\" + 0.007*\"fish\"\n", - "2019-01-16 06:22:08,152 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.033*\"ag\" + 0.030*\"citi\" + 0.027*\"town\" + 0.027*\"famili\" + 0.026*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", - "2019-01-16 06:22:08,153 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"compos\" + 0.018*\"theatr\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.013*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 06:22:08,156 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:22:08,157 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", - "2019-01-16 06:22:08,163 : INFO : topic diff=0.003179, rho=0.020328\n", - "2019-01-16 06:22:08,432 : INFO : PROGRESS: pass 0, at document #4842000/4922894\n", - "2019-01-16 06:22:10,403 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:10,960 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:22:10,962 : INFO : topic #27 (0.020): 0.053*\"born\" + 0.036*\"russian\" + 0.024*\"american\" + 0.021*\"russia\" + 0.019*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"republ\" + 0.013*\"poland\" + 0.013*\"moscow\"\n", - "2019-01-16 06:22:10,963 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:22:10,964 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"type\" + 0.008*\"us\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:22:10,966 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.014*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 06:22:10,972 : INFO : topic diff=0.003021, rho=0.020324\n", - "2019-01-16 06:22:11,244 : INFO : PROGRESS: pass 0, at document #4844000/4922894\n", - "2019-01-16 06:22:13,268 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:13,828 : INFO : topic #40 (0.020): 0.047*\"bar\" + 0.038*\"africa\" + 0.033*\"african\" + 0.029*\"text\" + 0.026*\"south\" + 0.026*\"till\" + 0.025*\"color\" + 0.023*\"black\" + 0.015*\"tropic\" + 0.014*\"storm\"\n", - "2019-01-16 06:22:13,829 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"valu\" + 0.008*\"set\" + 0.008*\"exampl\" + 0.008*\"theori\" + 0.007*\"gener\" + 0.007*\"point\" + 0.007*\"group\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:22:13,830 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"brazil\" + 0.012*\"santa\" + 0.011*\"juan\" + 0.010*\"portugues\" + 0.010*\"josé\"\n", - "2019-01-16 06:22:13,831 : INFO : topic #34 (0.020): 0.085*\"island\" + 0.073*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.018*\"ye\" + 0.018*\"korean\" + 0.017*\"quebec\" + 0.016*\"montreal\" + 0.016*\"korea\"\n", - "2019-01-16 06:22:13,833 : INFO : topic #38 (0.020): 0.015*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.009*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:22:13,839 : INFO : topic diff=0.002444, rho=0.020319\n", - "2019-01-16 06:22:14,119 : INFO : PROGRESS: pass 0, at document #4846000/4922894\n", - "2019-01-16 06:22:16,211 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:16,771 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.007*\"user\" + 0.007*\"includ\"\n", - "2019-01-16 06:22:16,772 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"life\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 06:22:16,773 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:22:16,775 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.041*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:22:16,777 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.031*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 06:22:16,783 : INFO : topic diff=0.002827, rho=0.020315\n", - "2019-01-16 06:22:17,058 : INFO : PROGRESS: pass 0, at document #4848000/4922894\n", - "2019-01-16 06:22:19,076 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:19,635 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:22:19,637 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.025*\"ontario\" + 0.024*\"toronto\" + 0.017*\"ye\" + 0.017*\"korean\" + 0.017*\"quebec\" + 0.016*\"british\" + 0.016*\"montreal\"\n", - "2019-01-16 06:22:19,638 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.038*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.015*\"swedish\" + 0.014*\"netherland\" + 0.014*\"sweden\"\n", - "2019-01-16 06:22:19,640 : INFO : topic #25 (0.020): 0.044*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 06:22:19,641 : INFO : topic #48 (0.020): 0.073*\"octob\" + 0.072*\"march\" + 0.071*\"septemb\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.062*\"april\" + 0.062*\"juli\" + 0.060*\"decemb\" + 0.059*\"june\"\n", - "2019-01-16 06:22:19,647 : INFO : topic diff=0.002841, rho=0.020311\n", - "2019-01-16 06:22:19,929 : INFO : PROGRESS: pass 0, at document #4850000/4922894\n", - "2019-01-16 06:22:21,943 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:22,501 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.014*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:22:22,503 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:22:22,504 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"model\" + 0.009*\"produc\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:22:22,506 : INFO : topic #48 (0.020): 0.073*\"octob\" + 0.072*\"march\" + 0.071*\"septemb\" + 0.064*\"januari\" + 0.063*\"novemb\" + 0.062*\"august\" + 0.062*\"april\" + 0.061*\"juli\" + 0.060*\"decemb\" + 0.059*\"june\"\n", - "2019-01-16 06:22:22,507 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.018*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.016*\"marri\" + 0.014*\"year\" + 0.013*\"life\" + 0.013*\"born\" + 0.013*\"father\" + 0.012*\"daughter\"\n", - "2019-01-16 06:22:22,513 : INFO : topic diff=0.002851, rho=0.020307\n", - "2019-01-16 06:22:22,803 : INFO : PROGRESS: pass 0, at document #4852000/4922894\n", - "2019-01-16 06:22:24,717 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:25,274 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.024*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.013*\"coach\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"basebal\"\n", - "2019-01-16 06:22:25,275 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.042*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:22:25,277 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.015*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:22:25,278 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"product\" + 0.011*\"bank\" + 0.009*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:22:25,279 : INFO : topic #21 (0.020): 0.011*\"languag\" + 0.007*\"word\" + 0.007*\"form\" + 0.006*\"peopl\" + 0.006*\"cultur\" + 0.006*\"differ\" + 0.006*\"us\" + 0.006*\"mean\" + 0.005*\"tradit\" + 0.005*\"like\"\n", - "2019-01-16 06:22:25,285 : INFO : topic diff=0.003099, rho=0.020303\n", - "2019-01-16 06:22:25,548 : INFO : PROGRESS: pass 0, at document #4854000/4922894\n", - "2019-01-16 06:22:27,524 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:28,080 : INFO : topic #14 (0.020): 0.026*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", - "2019-01-16 06:22:28,082 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.029*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:22:28,083 : INFO : topic #25 (0.020): 0.043*\"final\" + 0.043*\"round\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.021*\"winner\" + 0.021*\"point\" + 0.019*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 06:22:28,085 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"sir\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:22:28,086 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.040*\"franc\" + 0.028*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:22:28,092 : INFO : topic diff=0.003174, rho=0.020299\n", - "2019-01-16 06:22:28,354 : INFO : PROGRESS: pass 0, at document #4856000/4922894\n", - "2019-01-16 06:22:30,338 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:30,896 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.029*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.018*\"japan\" + 0.018*\"time\"\n", - "2019-01-16 06:22:30,898 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.011*\"ret\" + 0.011*\"diseas\" + 0.009*\"patient\" + 0.008*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 06:22:30,899 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.009*\"princ\" + 0.009*\"empir\" + 0.009*\"greek\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"roman\" + 0.007*\"ancient\" + 0.006*\"citi\"\n", - "2019-01-16 06:22:30,901 : INFO : topic #45 (0.020): 0.014*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"richard\" + 0.006*\"jack\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:22:30,902 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:22:30,908 : INFO : topic diff=0.003192, rho=0.020294\n", - "2019-01-16 06:22:31,188 : INFO : PROGRESS: pass 0, at document #4858000/4922894\n", - "2019-01-16 06:22:33,181 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:33,739 : INFO : topic #36 (0.020): 0.055*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:22:33,740 : INFO : topic #37 (0.020): 0.007*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:22:33,743 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.019*\"contest\" + 0.017*\"fight\" + 0.017*\"match\" + 0.017*\"wrestl\" + 0.016*\"titl\" + 0.016*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"champion\"\n", - "2019-01-16 06:22:33,745 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:22:33,746 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:22:33,752 : INFO : topic diff=0.003016, rho=0.020290\n", - "2019-01-16 06:22:38,407 : INFO : -11.393 per-word bound, 2689.0 perplexity estimate based on a held-out corpus of 2000 documents with 577823 words\n", - "2019-01-16 06:22:38,408 : INFO : PROGRESS: pass 0, at document #4860000/4922894\n", - "2019-01-16 06:22:40,390 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:40,948 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:22:40,949 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.024*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"minist\" + 0.017*\"democrat\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:22:40,951 : INFO : topic #16 (0.020): 0.032*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"life\" + 0.013*\"father\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 06:22:40,952 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.028*\"famili\" + 0.027*\"town\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", - "2019-01-16 06:22:40,953 : INFO : topic #41 (0.020): 0.040*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:22:40,959 : INFO : topic diff=0.003486, rho=0.020286\n", - "2019-01-16 06:22:41,234 : INFO : PROGRESS: pass 0, at document #4862000/4922894\n", - "2019-01-16 06:22:43,189 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:43,745 : INFO : topic #33 (0.020): 0.033*\"compani\" + 0.013*\"million\" + 0.012*\"busi\" + 0.012*\"market\" + 0.011*\"product\" + 0.010*\"bank\" + 0.010*\"year\" + 0.009*\"industri\" + 0.008*\"oper\" + 0.008*\"new\"\n", - "2019-01-16 06:22:43,746 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.067*\"villag\" + 0.048*\"region\" + 0.040*\"west\" + 0.039*\"east\" + 0.038*\"north\" + 0.036*\"counti\" + 0.033*\"municip\" + 0.032*\"south\" + 0.031*\"provinc\"\n", - "2019-01-16 06:22:43,748 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:22:43,749 : INFO : topic #44 (0.020): 0.029*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"player\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.011*\"footbal\" + 0.010*\"year\" + 0.010*\"leagu\" + 0.009*\"record\"\n", - "2019-01-16 06:22:43,750 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:22:43,756 : INFO : topic diff=0.002933, rho=0.020282\n", - "2019-01-16 06:22:44,015 : INFO : PROGRESS: pass 0, at document #4864000/4922894\n", - "2019-01-16 06:22:45,955 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:46,513 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.020*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:22:46,515 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"televis\" + 0.011*\"produc\"\n", - "2019-01-16 06:22:46,516 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:22:46,518 : INFO : topic #43 (0.020): 0.032*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"portugues\"\n", - "2019-01-16 06:22:46,519 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:22:46,525 : INFO : topic diff=0.003500, rho=0.020278\n", - "2019-01-16 06:22:46,794 : INFO : PROGRESS: pass 0, at document #4866000/4922894\n", - "2019-01-16 06:22:48,835 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:49,393 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.007*\"high\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:22:49,394 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.034*\"museum\" + 0.030*\"jpg\" + 0.027*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.018*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:22:49,398 : INFO : topic #46 (0.020): 0.132*\"class\" + 0.072*\"align\" + 0.072*\"left\" + 0.055*\"wikit\" + 0.046*\"style\" + 0.039*\"center\" + 0.035*\"list\" + 0.032*\"right\" + 0.031*\"philippin\" + 0.027*\"text\"\n", - "2019-01-16 06:22:49,399 : INFO : topic #35 (0.020): 0.033*\"hong\" + 0.032*\"kong\" + 0.031*\"japanes\" + 0.023*\"singapor\" + 0.023*\"lee\" + 0.018*\"chines\" + 0.017*\"kim\" + 0.015*\"malaysia\" + 0.014*\"indonesia\" + 0.014*\"thailand\"\n", - "2019-01-16 06:22:49,400 : INFO : topic #41 (0.020): 0.040*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"edit\" + 0.013*\"univers\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.010*\"author\"\n", - "2019-01-16 06:22:49,406 : INFO : topic diff=0.003310, rho=0.020274\n", - "2019-01-16 06:22:49,687 : INFO : PROGRESS: pass 0, at document #4868000/4922894\n", - "2019-01-16 06:22:51,728 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:52,285 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.024*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:22:52,287 : INFO : topic #34 (0.020): 0.087*\"island\" + 0.071*\"canada\" + 0.060*\"canadian\" + 0.025*\"toronto\" + 0.025*\"ontario\" + 0.018*\"ye\" + 0.018*\"korean\" + 0.017*\"quebec\" + 0.016*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 06:22:52,288 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.006*\"high\" + 0.006*\"earth\" + 0.006*\"surfac\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:22:52,290 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.036*\"club\" + 0.036*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n", - "2019-01-16 06:22:52,291 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.014*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.008*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:22:52,298 : INFO : topic diff=0.003291, rho=0.020269\n", - "2019-01-16 06:22:52,569 : INFO : PROGRESS: pass 0, at document #4870000/4922894\n", - "2019-01-16 06:22:54,569 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:55,131 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", - "2019-01-16 06:22:55,132 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.022*\"event\" + 0.022*\"men\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.018*\"japan\" + 0.017*\"time\"\n", - "2019-01-16 06:22:55,133 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:22:55,135 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.016*\"team\" + 0.013*\"finish\" + 0.013*\"tour\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"championship\" + 0.010*\"time\"\n", - "2019-01-16 06:22:55,136 : INFO : topic #40 (0.020): 0.050*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.030*\"text\" + 0.027*\"till\" + 0.026*\"south\" + 0.025*\"color\" + 0.023*\"black\" + 0.015*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 06:22:55,142 : INFO : topic diff=0.003226, rho=0.020265\n", - "2019-01-16 06:22:55,424 : INFO : PROGRESS: pass 0, at document #4872000/4922894\n", - "2019-01-16 06:22:57,418 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:22:57,975 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:22:57,977 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", - "2019-01-16 06:22:57,978 : INFO : topic #49 (0.020): 0.089*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.039*\"west\" + 0.039*\"east\" + 0.038*\"north\" + 0.036*\"counti\" + 0.033*\"municip\" + 0.032*\"south\" + 0.030*\"provinc\"\n", - "2019-01-16 06:22:57,980 : INFO : topic #29 (0.020): 0.038*\"leagu\" + 0.037*\"club\" + 0.036*\"plai\" + 0.030*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.018*\"goal\" + 0.016*\"player\" + 0.016*\"match\"\n", - "2019-01-16 06:22:57,981 : INFO : topic #2 (0.020): 0.062*\"german\" + 0.039*\"germani\" + 0.027*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.016*\"swedish\" + 0.014*\"sweden\" + 0.013*\"netherland\"\n", - "2019-01-16 06:22:57,986 : INFO : topic diff=0.002728, rho=0.020261\n", - "2019-01-16 06:22:58,258 : INFO : PROGRESS: pass 0, at document #4874000/4922894\n", - "2019-01-16 06:23:00,229 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:00,788 : INFO : topic #22 (0.020): 0.051*\"popul\" + 0.033*\"ag\" + 0.029*\"citi\" + 0.028*\"town\" + 0.028*\"famili\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", - "2019-01-16 06:23:00,789 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.040*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.015*\"de\" + 0.011*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:23:00,791 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"data\" + 0.008*\"version\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"base\"\n", - "2019-01-16 06:23:00,792 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"sir\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:23:00,794 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 06:23:00,800 : INFO : topic diff=0.003258, rho=0.020257\n", - "2019-01-16 06:23:01,069 : INFO : PROGRESS: pass 0, at document #4876000/4922894\n", - "2019-01-16 06:23:03,025 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:03,583 : INFO : topic #0 (0.020): 0.034*\"war\" + 0.028*\"armi\" + 0.020*\"command\" + 0.020*\"forc\" + 0.016*\"battl\" + 0.015*\"militari\" + 0.014*\"gener\" + 0.011*\"divis\" + 0.011*\"offic\" + 0.011*\"regiment\"\n", - "2019-01-16 06:23:03,584 : INFO : topic #22 (0.020): 0.052*\"popul\" + 0.032*\"ag\" + 0.029*\"citi\" + 0.028*\"famili\" + 0.028*\"town\" + 0.025*\"censu\" + 0.024*\"commun\" + 0.022*\"household\" + 0.021*\"peopl\" + 0.021*\"counti\"\n", - "2019-01-16 06:23:03,586 : INFO : topic #39 (0.020): 0.049*\"air\" + 0.027*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.016*\"flight\" + 0.016*\"squadron\" + 0.014*\"unit\" + 0.011*\"base\" + 0.011*\"fly\"\n", - "2019-01-16 06:23:03,589 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"user\" + 0.008*\"softwar\" + 0.007*\"base\"\n", - "2019-01-16 06:23:03,591 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"novel\" + 0.011*\"stori\" + 0.011*\"author\"\n", - "2019-01-16 06:23:03,596 : INFO : topic diff=0.002770, rho=0.020253\n", - "2019-01-16 06:23:03,891 : INFO : PROGRESS: pass 0, at document #4878000/4922894\n", - "2019-01-16 06:23:05,787 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:06,345 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.012*\"lake\" + 0.012*\"park\" + 0.011*\"area\" + 0.011*\"bridg\"\n", - "2019-01-16 06:23:06,347 : INFO : topic #7 (0.020): 0.014*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.009*\"set\" + 0.008*\"exampl\" + 0.008*\"valu\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:23:06,350 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:23:06,351 : INFO : topic #26 (0.020): 0.031*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.022*\"medal\" + 0.019*\"athlet\" + 0.018*\"time\" + 0.017*\"japan\"\n", - "2019-01-16 06:23:06,353 : INFO : topic #20 (0.020): 0.034*\"win\" + 0.018*\"contest\" + 0.018*\"match\" + 0.017*\"wrestl\" + 0.017*\"fight\" + 0.017*\"titl\" + 0.016*\"championship\" + 0.013*\"team\" + 0.012*\"world\" + 0.012*\"defeat\"\n", - "2019-01-16 06:23:06,360 : INFO : topic diff=0.003075, rho=0.020249\n", - "2019-01-16 06:23:11,095 : INFO : -11.824 per-word bound, 3626.0 perplexity estimate based on a held-out corpus of 2000 documents with 551294 words\n", - "2019-01-16 06:23:11,096 : INFO : PROGRESS: pass 0, at document #4880000/4922894\n", - "2019-01-16 06:23:13,141 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:13,698 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.007*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:23:13,700 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.071*\"march\" + 0.070*\"septemb\" + 0.062*\"januari\" + 0.062*\"juli\" + 0.062*\"novemb\" + 0.062*\"august\" + 0.061*\"april\" + 0.061*\"decemb\" + 0.059*\"june\"\n", - "2019-01-16 06:23:13,701 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"base\"\n", - "2019-01-16 06:23:13,702 : INFO : topic #13 (0.020): 0.058*\"state\" + 0.035*\"new\" + 0.030*\"american\" + 0.025*\"unit\" + 0.023*\"york\" + 0.021*\"counti\" + 0.015*\"citi\" + 0.015*\"california\" + 0.012*\"washington\" + 0.011*\"texa\"\n", - "2019-01-16 06:23:13,705 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.012*\"award\" + 0.011*\"develop\" + 0.010*\"associ\"\n", - "2019-01-16 06:23:13,711 : INFO : topic diff=0.003169, rho=0.020244\n", - "2019-01-16 06:23:13,980 : INFO : PROGRESS: pass 0, at document #4882000/4922894\n", - "2019-01-16 06:23:16,042 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:23:16,600 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.016*\"plai\" + 0.015*\"festiv\" + 0.014*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 06:23:16,601 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.011*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"us\" + 0.008*\"electr\" + 0.008*\"type\" + 0.007*\"vehicl\"\n", - "2019-01-16 06:23:16,603 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.039*\"colleg\" + 0.039*\"student\" + 0.033*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"district\"\n", - "2019-01-16 06:23:16,604 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 06:23:16,605 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.019*\"athlet\" + 0.018*\"time\" + 0.017*\"japan\"\n", - "2019-01-16 06:23:16,611 : INFO : topic diff=0.003338, rho=0.020240\n", - "2019-01-16 06:23:16,865 : INFO : PROGRESS: pass 0, at document #4884000/4922894\n", - "2019-01-16 06:23:18,847 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:19,406 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.056*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.032*\"south\" + 0.032*\"zealand\" + 0.026*\"chines\" + 0.022*\"sydnei\" + 0.016*\"melbourn\" + 0.013*\"queensland\"\n", - "2019-01-16 06:23:19,407 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"red\" + 0.007*\"tree\"\n", - "2019-01-16 06:23:19,408 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.026*\"tournament\" + 0.022*\"group\" + 0.020*\"winner\" + 0.019*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"runner\"\n", - "2019-01-16 06:23:19,410 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.025*\"award\" + 0.022*\"seri\" + 0.021*\"best\" + 0.021*\"episod\" + 0.015*\"star\" + 0.012*\"actor\" + 0.012*\"role\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 06:23:19,412 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.040*\"franc\" + 0.027*\"italian\" + 0.025*\"pari\" + 0.022*\"saint\" + 0.019*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:23:19,417 : INFO : topic diff=0.002851, rho=0.020236\n", - "2019-01-16 06:23:19,679 : INFO : PROGRESS: pass 0, at document #4886000/4922894\n", - "2019-01-16 06:23:21,659 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:22,219 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"hospit\" + 0.015*\"health\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.008*\"human\" + 0.008*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 06:23:22,220 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.035*\"indian\" + 0.020*\"http\" + 0.016*\"pakistan\" + 0.016*\"www\" + 0.015*\"iran\" + 0.012*\"islam\" + 0.012*\"khan\" + 0.011*\"ali\" + 0.011*\"sri\"\n", - "2019-01-16 06:23:22,221 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.025*\"record\" + 0.020*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", - "2019-01-16 06:23:22,222 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.007*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 06:23:22,224 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"player\" + 0.009*\"develop\" + 0.008*\"us\" + 0.008*\"releas\" + 0.008*\"version\" + 0.008*\"data\" + 0.008*\"softwar\" + 0.008*\"user\" + 0.007*\"base\"\n", - "2019-01-16 06:23:22,230 : INFO : topic diff=0.002476, rho=0.020232\n", - "2019-01-16 06:23:22,519 : INFO : PROGRESS: pass 0, at document #4888000/4922894\n", - "2019-01-16 06:23:24,873 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:25,433 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:23:25,434 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.016*\"swedish\" + 0.014*\"sweden\" + 0.014*\"netherland\"\n", - "2019-01-16 06:23:25,438 : INFO : topic #42 (0.020): 0.025*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"year\"\n", - "2019-01-16 06:23:25,440 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.010*\"patient\" + 0.008*\"human\" + 0.008*\"caus\" + 0.008*\"treatment\"\n", - "2019-01-16 06:23:25,441 : INFO : topic #11 (0.020): 0.023*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.015*\"act\" + 0.011*\"polic\" + 0.011*\"case\" + 0.009*\"report\" + 0.009*\"offic\" + 0.009*\"right\" + 0.008*\"order\"\n", - "2019-01-16 06:23:25,448 : INFO : topic diff=0.003760, rho=0.020228\n", - "2019-01-16 06:23:25,727 : INFO : PROGRESS: pass 0, at document #4890000/4922894\n", - "2019-01-16 06:23:27,774 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:28,332 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.007*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:23:28,334 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", - "2019-01-16 06:23:28,336 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.013*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"associ\"\n", - "2019-01-16 06:23:28,338 : INFO : topic #34 (0.020): 0.088*\"island\" + 0.072*\"canada\" + 0.060*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"quebec\" + 0.017*\"ye\" + 0.017*\"korea\" + 0.017*\"korean\" + 0.016*\"montreal\"\n", - "2019-01-16 06:23:28,339 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.010*\"plant\" + 0.008*\"white\" + 0.008*\"genu\" + 0.008*\"bird\" + 0.007*\"forest\" + 0.007*\"red\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 06:23:28,346 : INFO : topic diff=0.002942, rho=0.020224\n", - "2019-01-16 06:23:28,613 : INFO : PROGRESS: pass 0, at document #4892000/4922894\n", - "2019-01-16 06:23:30,619 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:31,178 : INFO : topic #10 (0.020): 0.019*\"engin\" + 0.012*\"power\" + 0.012*\"product\" + 0.010*\"design\" + 0.009*\"produc\" + 0.009*\"model\" + 0.008*\"us\" + 0.008*\"type\" + 0.008*\"electr\" + 0.008*\"vehicl\"\n", - "2019-01-16 06:23:31,179 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"district\"\n", - "2019-01-16 06:23:31,181 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:23:31,182 : INFO : topic #27 (0.020): 0.051*\"born\" + 0.035*\"russian\" + 0.024*\"american\" + 0.020*\"soviet\" + 0.020*\"russia\" + 0.018*\"polish\" + 0.015*\"jewish\" + 0.015*\"poland\" + 0.014*\"republ\" + 0.012*\"moscow\"\n", - "2019-01-16 06:23:31,183 : INFO : topic #23 (0.020): 0.017*\"medic\" + 0.015*\"health\" + 0.015*\"hospit\" + 0.012*\"cell\" + 0.011*\"diseas\" + 0.010*\"ret\" + 0.009*\"patient\" + 0.008*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", - "2019-01-16 06:23:31,189 : INFO : topic diff=0.003131, rho=0.020220\n", - "2019-01-16 06:23:31,462 : INFO : PROGRESS: pass 0, at document #4894000/4922894\n", - "2019-01-16 06:23:33,520 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:34,081 : INFO : topic #35 (0.020): 0.033*\"japanes\" + 0.033*\"kong\" + 0.032*\"hong\" + 0.023*\"lee\" + 0.022*\"singapor\" + 0.018*\"chines\" + 0.017*\"kim\" + 0.015*\"japan\" + 0.014*\"malaysia\" + 0.014*\"indonesia\"\n", - "2019-01-16 06:23:34,083 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"japan\" + 0.017*\"time\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:23:34,084 : INFO : topic #40 (0.020): 0.051*\"bar\" + 0.039*\"africa\" + 0.033*\"african\" + 0.031*\"text\" + 0.028*\"till\" + 0.027*\"south\" + 0.026*\"color\" + 0.023*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 06:23:34,085 : INFO : topic #48 (0.020): 0.073*\"octob\" + 0.071*\"march\" + 0.071*\"septemb\" + 0.063*\"novemb\" + 0.063*\"januari\" + 0.062*\"juli\" + 0.062*\"august\" + 0.061*\"april\" + 0.061*\"decemb\" + 0.059*\"june\"\n", - "2019-01-16 06:23:34,086 : INFO : topic #31 (0.020): 0.068*\"australia\" + 0.056*\"australian\" + 0.051*\"new\" + 0.040*\"china\" + 0.033*\"zealand\" + 0.033*\"south\" + 0.026*\"chines\" + 0.021*\"sydnei\" + 0.015*\"melbourn\" + 0.014*\"queensland\"\n", - "2019-01-16 06:23:34,092 : INFO : topic diff=0.003495, rho=0.020215\n", - "2019-01-16 06:23:34,363 : INFO : PROGRESS: pass 0, at document #4896000/4922894\n", - "2019-01-16 06:23:36,376 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:36,934 : INFO : topic #25 (0.020): 0.045*\"round\" + 0.044*\"final\" + 0.027*\"tournament\" + 0.022*\"group\" + 0.020*\"winner\" + 0.020*\"point\" + 0.018*\"open\" + 0.015*\"place\" + 0.014*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 06:23:36,935 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 06:23:36,936 : INFO : topic #8 (0.020): 0.049*\"india\" + 0.036*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.016*\"pakistan\" + 0.015*\"iran\" + 0.012*\"khan\" + 0.011*\"islam\" + 0.011*\"ali\" + 0.011*\"sri\"\n", - "2019-01-16 06:23:36,938 : INFO : topic #36 (0.020): 0.054*\"art\" + 0.035*\"museum\" + 0.031*\"jpg\" + 0.028*\"file\" + 0.024*\"work\" + 0.021*\"paint\" + 0.020*\"artist\" + 0.019*\"design\" + 0.017*\"imag\" + 0.017*\"exhibit\"\n", - "2019-01-16 06:23:36,939 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.007*\"method\"\n", - "2019-01-16 06:23:36,945 : INFO : topic diff=0.002734, rho=0.020211\n", - "2019-01-16 06:23:37,222 : INFO : PROGRESS: pass 0, at document #4898000/4922894\n", - "2019-01-16 06:23:39,289 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:39,846 : INFO : topic #4 (0.020): 0.136*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.009*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 06:23:39,848 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.030*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"japan\" + 0.017*\"nation\"\n", - "2019-01-16 06:23:39,849 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 06:23:39,852 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", - "2019-01-16 06:23:39,853 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.016*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 06:23:39,859 : INFO : topic diff=0.002856, rho=0.020207\n", - "2019-01-16 06:23:44,425 : INFO : -11.407 per-word bound, 2715.7 perplexity estimate based on a held-out corpus of 2000 documents with 546421 words\n", - "2019-01-16 06:23:44,426 : INFO : PROGRESS: pass 0, at document #4900000/4922894\n", - "2019-01-16 06:23:46,434 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:46,993 : INFO : topic #3 (0.020): 0.031*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"royal\"\n", - "2019-01-16 06:23:46,994 : INFO : topic #26 (0.020): 0.032*\"world\" + 0.031*\"women\" + 0.028*\"championship\" + 0.026*\"olymp\" + 0.023*\"men\" + 0.022*\"event\" + 0.021*\"medal\" + 0.018*\"athlet\" + 0.018*\"japan\" + 0.017*\"nation\"\n", - "2019-01-16 06:23:46,995 : INFO : topic #12 (0.020): 0.057*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.019*\"presid\" + 0.019*\"vote\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:23:46,997 : INFO : topic #2 (0.020): 0.063*\"german\" + 0.039*\"germani\" + 0.026*\"van\" + 0.022*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.016*\"swedish\" + 0.014*\"netherland\" + 0.014*\"sweden\"\n", - "2019-01-16 06:23:46,998 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"servic\"\n", - "2019-01-16 06:23:47,004 : INFO : topic diff=0.002838, rho=0.020203\n", - "2019-01-16 06:23:47,302 : INFO : PROGRESS: pass 0, at document #4902000/4922894\n", - "2019-01-16 06:23:49,319 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:49,876 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", - "2019-01-16 06:23:49,878 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:23:49,879 : INFO : topic #15 (0.020): 0.035*\"england\" + 0.025*\"unit\" + 0.022*\"london\" + 0.019*\"town\" + 0.019*\"cricket\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", - "2019-01-16 06:23:49,880 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.011*\"port\" + 0.011*\"boat\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.009*\"fleet\" + 0.009*\"gun\"\n", - "2019-01-16 06:23:49,882 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.012*\"piano\"\n", - "2019-01-16 06:23:49,887 : INFO : topic diff=0.002917, rho=0.020199\n", - "2019-01-16 06:23:50,163 : INFO : PROGRESS: pass 0, at document #4904000/4922894\n", - "2019-01-16 06:23:52,140 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:52,695 : INFO : topic #28 (0.020): 0.029*\"build\" + 0.024*\"hous\" + 0.014*\"built\" + 0.012*\"locat\" + 0.012*\"street\" + 0.012*\"site\" + 0.011*\"histor\" + 0.009*\"park\" + 0.009*\"citi\" + 0.009*\"place\"\n", - "2019-01-16 06:23:52,697 : INFO : topic #14 (0.020): 0.027*\"univers\" + 0.016*\"research\" + 0.014*\"institut\" + 0.012*\"scienc\" + 0.012*\"nation\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"servic\"\n", - "2019-01-16 06:23:52,698 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:23:52,699 : INFO : topic #19 (0.020): 0.022*\"radio\" + 0.019*\"new\" + 0.018*\"station\" + 0.018*\"broadcast\" + 0.014*\"televis\" + 0.013*\"channel\" + 0.013*\"dai\" + 0.011*\"program\" + 0.011*\"host\" + 0.011*\"air\"\n", - "2019-01-16 06:23:52,701 : INFO : topic #9 (0.020): 0.066*\"film\" + 0.024*\"award\" + 0.022*\"seri\" + 0.022*\"episod\" + 0.021*\"best\" + 0.015*\"star\" + 0.012*\"role\" + 0.012*\"actor\" + 0.011*\"produc\" + 0.011*\"televis\"\n", - "2019-01-16 06:23:52,707 : INFO : topic diff=0.003139, rho=0.020195\n", - "2019-01-16 06:23:52,983 : INFO : PROGRESS: pass 0, at document #4906000/4922894\n", - "2019-01-16 06:23:54,987 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:55,544 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"energi\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:23:55,545 : INFO : topic #7 (0.020): 0.013*\"number\" + 0.011*\"function\" + 0.010*\"model\" + 0.008*\"set\" + 0.008*\"valu\" + 0.008*\"exampl\" + 0.007*\"gener\" + 0.007*\"theori\" + 0.007*\"point\" + 0.006*\"method\"\n", - "2019-01-16 06:23:55,546 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.040*\"east\" + 0.039*\"west\" + 0.038*\"north\" + 0.037*\"counti\" + 0.033*\"south\" + 0.033*\"municip\" + 0.029*\"provinc\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:23:55,548 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"emperor\" + 0.009*\"kingdom\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 06:23:55,549 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 06:23:55,555 : INFO : topic diff=0.003067, rho=0.020191\n", - "2019-01-16 06:23:55,828 : INFO : PROGRESS: pass 0, at document #4908000/4922894\n", - "2019-01-16 06:23:57,819 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:23:58,383 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.022*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.014*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 06:23:58,385 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 06:23:58,387 : INFO : topic #34 (0.020): 0.086*\"island\" + 0.073*\"canada\" + 0.063*\"canadian\" + 0.026*\"toronto\" + 0.025*\"ontario\" + 0.017*\"quebec\" + 0.017*\"ye\" + 0.017*\"korean\" + 0.017*\"korea\" + 0.016*\"montreal\"\n", - "2019-01-16 06:23:58,388 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:23:58,389 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 06:23:58,395 : INFO : topic diff=0.003361, rho=0.020187\n", - "2019-01-16 06:23:58,659 : INFO : PROGRESS: pass 0, at document #4910000/4922894\n", - "2019-01-16 06:24:00,612 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:24:01,170 : INFO : topic #4 (0.020): 0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.034*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"teacher\"\n", - "2019-01-16 06:24:01,171 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.016*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.013*\"scottish\"\n", - "2019-01-16 06:24:01,173 : INFO : topic #42 (0.020): 0.026*\"king\" + 0.019*\"centuri\" + 0.010*\"princ\" + 0.009*\"empir\" + 0.009*\"kingdom\" + 0.009*\"emperor\" + 0.009*\"greek\" + 0.008*\"roman\" + 0.007*\"ancient\" + 0.006*\"templ\"\n", - "2019-01-16 06:24:01,175 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.013*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 06:24:01,176 : INFO : topic #12 (0.020): 0.056*\"elect\" + 0.041*\"parti\" + 0.023*\"member\" + 0.020*\"vote\" + 0.020*\"presid\" + 0.017*\"democrat\" + 0.017*\"minist\" + 0.014*\"council\" + 0.013*\"repres\" + 0.013*\"polit\"\n", - "2019-01-16 06:24:01,182 : INFO : topic diff=0.003295, rho=0.020182\n", - "2019-01-16 06:24:01,443 : INFO : PROGRESS: pass 0, at document #4912000/4922894\n", - "2019-01-16 06:24:03,413 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:24:03,972 : INFO : topic #49 (0.020): 0.090*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.039*\"west\" + 0.038*\"north\" + 0.037*\"counti\" + 0.033*\"south\" + 0.033*\"municip\" + 0.029*\"provinc\"\n", - "2019-01-16 06:24:03,974 : INFO : topic #6 (0.020): 0.060*\"music\" + 0.030*\"perform\" + 0.019*\"theatr\" + 0.018*\"compos\" + 0.017*\"plai\" + 0.016*\"festiv\" + 0.015*\"danc\" + 0.014*\"orchestra\" + 0.012*\"opera\" + 0.011*\"piano\"\n", - "2019-01-16 06:24:03,975 : INFO : topic #41 (0.020): 0.039*\"book\" + 0.034*\"publish\" + 0.021*\"work\" + 0.015*\"new\" + 0.013*\"press\" + 0.013*\"univers\" + 0.013*\"edit\" + 0.011*\"stori\" + 0.011*\"novel\" + 0.011*\"author\"\n", - "2019-01-16 06:24:03,976 : INFO : topic #16 (0.020): 0.031*\"church\" + 0.017*\"famili\" + 0.017*\"di\" + 0.017*\"son\" + 0.015*\"marri\" + 0.014*\"year\" + 0.013*\"father\" + 0.013*\"life\" + 0.013*\"born\" + 0.012*\"daughter\"\n", - "2019-01-16 06:24:03,977 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.012*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 06:24:03,983 : INFO : topic diff=0.003338, rho=0.020178\n", - "2019-01-16 06:24:04,250 : INFO : PROGRESS: pass 0, at document #4914000/4922894\n", - "2019-01-16 06:24:06,256 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:24:06,812 : INFO : topic #30 (0.020): 0.052*\"french\" + 0.041*\"franc\" + 0.027*\"italian\" + 0.024*\"pari\" + 0.022*\"saint\" + 0.020*\"itali\" + 0.018*\"jean\" + 0.014*\"de\" + 0.012*\"loui\" + 0.011*\"le\"\n", - "2019-01-16 06:24:06,814 : INFO : topic #43 (0.020): 0.033*\"san\" + 0.021*\"spanish\" + 0.017*\"mexico\" + 0.016*\"del\" + 0.013*\"spain\" + 0.012*\"santa\" + 0.011*\"brazil\" + 0.011*\"juan\" + 0.010*\"josé\" + 0.010*\"francisco\"\n", - "2019-01-16 06:24:06,815 : INFO : topic #44 (0.020): 0.030*\"game\" + 0.027*\"season\" + 0.023*\"team\" + 0.015*\"plai\" + 0.014*\"coach\" + 0.014*\"player\" + 0.011*\"footbal\" + 0.010*\"leagu\" + 0.010*\"year\" + 0.009*\"record\"\n", - "2019-01-16 06:24:06,817 : INFO : topic #45 (0.020): 0.015*\"john\" + 0.011*\"david\" + 0.010*\"michael\" + 0.009*\"paul\" + 0.008*\"smith\" + 0.007*\"robert\" + 0.007*\"jame\" + 0.006*\"peter\" + 0.006*\"jone\" + 0.006*\"richard\"\n", - "2019-01-16 06:24:06,819 : INFO : topic #47 (0.020): 0.025*\"river\" + 0.025*\"station\" + 0.020*\"line\" + 0.020*\"road\" + 0.016*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", - "2019-01-16 06:24:06,825 : INFO : topic diff=0.002677, rho=0.020174\n", - "2019-01-16 06:24:07,086 : INFO : PROGRESS: pass 0, at document #4916000/4922894\n", - "2019-01-16 06:24:09,022 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:24:09,579 : INFO : topic #17 (0.020): 0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"tour\" + 0.012*\"finish\" + 0.012*\"driver\" + 0.012*\"ford\" + 0.011*\"year\" + 0.011*\"time\" + 0.011*\"championship\"\n", - "2019-01-16 06:24:09,580 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.006*\"high\" + 0.006*\"energi\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:24:09,583 : INFO : topic #49 (0.020): 0.091*\"district\" + 0.066*\"villag\" + 0.048*\"region\" + 0.039*\"east\" + 0.039*\"west\" + 0.038*\"north\" + 0.037*\"counti\" + 0.033*\"south\" + 0.032*\"municip\" + 0.029*\"provinc\"\n", - "2019-01-16 06:24:09,585 : INFO : topic #32 (0.020): 0.026*\"speci\" + 0.011*\"famili\" + 0.009*\"plant\" + 0.008*\"white\" + 0.008*\"bird\" + 0.008*\"genu\" + 0.007*\"red\" + 0.007*\"forest\" + 0.007*\"fish\" + 0.007*\"tree\"\n", - "2019-01-16 06:24:09,586 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.020*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"sir\" + 0.014*\"thoma\" + 0.013*\"jame\" + 0.013*\"henri\" + 0.012*\"ireland\"\n", - "2019-01-16 06:24:09,592 : INFO : topic diff=0.002973, rho=0.020170\n", - "2019-01-16 06:24:09,869 : INFO : PROGRESS: pass 0, at document #4918000/4922894\n", - "2019-01-16 06:24:11,923 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:24:12,482 : INFO : topic #37 (0.020): 0.008*\"time\" + 0.007*\"man\" + 0.005*\"later\" + 0.005*\"appear\" + 0.005*\"charact\" + 0.005*\"kill\" + 0.004*\"like\" + 0.004*\"friend\" + 0.004*\"return\" + 0.004*\"end\"\n", - "2019-01-16 06:24:12,483 : INFO : topic #13 (0.020): 0.057*\"state\" + 0.036*\"new\" + 0.030*\"american\" + 0.024*\"unit\" + 0.024*\"york\" + 0.020*\"counti\" + 0.015*\"citi\" + 0.014*\"california\" + 0.012*\"washington\" + 0.010*\"texa\"\n", - "2019-01-16 06:24:12,484 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"softwar\" + 0.008*\"us\" + 0.008*\"version\" + 0.008*\"user\" + 0.007*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 06:24:12,486 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.025*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.012*\"scottish\"\n", - "2019-01-16 06:24:12,487 : INFO : topic #29 (0.020): 0.040*\"leagu\" + 0.036*\"club\" + 0.035*\"plai\" + 0.031*\"team\" + 0.026*\"footbal\" + 0.026*\"season\" + 0.023*\"cup\" + 0.017*\"goal\" + 0.016*\"match\" + 0.016*\"player\"\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2019-01-16 06:24:12,492 : INFO : topic diff=0.003718, rho=0.020166\n", - "2019-01-16 06:24:17,164 : INFO : -11.794 per-word bound, 3550.7 perplexity estimate based on a held-out corpus of 2000 documents with 582002 words\n", - "2019-01-16 06:24:17,165 : INFO : PROGRESS: pass 0, at document #4920000/4922894\n", - "2019-01-16 06:24:19,188 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:24:19,745 : INFO : topic #27 (0.020): 0.055*\"born\" + 0.034*\"russian\" + 0.025*\"american\" + 0.021*\"russia\" + 0.020*\"soviet\" + 0.017*\"polish\" + 0.015*\"jewish\" + 0.014*\"poland\" + 0.014*\"republ\" + 0.013*\"moscow\"\n", - "2019-01-16 06:24:19,746 : INFO : topic #48 (0.020): 0.071*\"octob\" + 0.070*\"septemb\" + 0.069*\"march\" + 0.062*\"decemb\" + 0.062*\"januari\" + 0.062*\"novemb\" + 0.062*\"juli\" + 0.061*\"august\" + 0.060*\"april\" + 0.058*\"june\"\n", - "2019-01-16 06:24:19,748 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"vocal\"\n", - "2019-01-16 06:24:19,749 : INFO : topic #3 (0.020): 0.032*\"john\" + 0.027*\"william\" + 0.019*\"british\" + 0.015*\"georg\" + 0.015*\"london\" + 0.014*\"thoma\" + 0.014*\"sir\" + 0.013*\"jame\" + 0.013*\"royal\" + 0.013*\"henri\"\n", - "2019-01-16 06:24:19,751 : INFO : topic #25 (0.020): 0.044*\"round\" + 0.043*\"final\" + 0.025*\"tournament\" + 0.023*\"group\" + 0.020*\"point\" + 0.020*\"winner\" + 0.018*\"open\" + 0.015*\"place\" + 0.013*\"qualifi\" + 0.012*\"won\"\n", - "2019-01-16 06:24:19,756 : INFO : topic diff=0.003724, rho=0.020162\n", - "2019-01-16 06:24:20,023 : INFO : PROGRESS: pass 0, at document #4922000/4922894\n", - "2019-01-16 06:24:22,003 : INFO : merging changes from 2000 documents into a model of 4922894 documents\n", - "2019-01-16 06:24:22,561 : INFO : topic #5 (0.020): 0.030*\"game\" + 0.009*\"develop\" + 0.009*\"player\" + 0.008*\"releas\" + 0.008*\"us\" + 0.008*\"softwar\" + 0.008*\"version\" + 0.008*\"user\" + 0.008*\"data\" + 0.007*\"includ\"\n", - "2019-01-16 06:24:22,563 : INFO : topic #0 (0.020): 0.033*\"war\" + 0.028*\"armi\" + 0.021*\"forc\" + 0.020*\"command\" + 0.015*\"militari\" + 0.015*\"battl\" + 0.013*\"gener\" + 0.012*\"offic\" + 0.011*\"divis\" + 0.011*\"regiment\"\n", - "2019-01-16 06:24:22,565 : INFO : topic #24 (0.020): 0.037*\"ship\" + 0.016*\"navi\" + 0.015*\"sea\" + 0.013*\"island\" + 0.011*\"boat\" + 0.011*\"port\" + 0.010*\"coast\" + 0.010*\"naval\" + 0.010*\"gun\" + 0.009*\"fleet\"\n", - "2019-01-16 06:24:22,566 : INFO : topic #48 (0.020): 0.072*\"octob\" + 0.070*\"septemb\" + 0.069*\"march\" + 0.062*\"januari\" + 0.062*\"decemb\" + 0.062*\"novemb\" + 0.061*\"juli\" + 0.061*\"august\" + 0.060*\"april\" + 0.057*\"june\"\n", - "2019-01-16 06:24:22,569 : INFO : topic #38 (0.020): 0.014*\"govern\" + 0.012*\"state\" + 0.012*\"nation\" + 0.010*\"war\" + 0.009*\"polit\" + 0.008*\"countri\" + 0.008*\"peopl\" + 0.007*\"group\" + 0.007*\"unit\" + 0.006*\"support\"\n", - "2019-01-16 06:24:22,575 : INFO : topic diff=0.003063, rho=0.020158\n", - "2019-01-16 06:24:24,935 : INFO : -11.515 per-word bound, 2926.5 perplexity estimate based on a held-out corpus of 894 documents with 240978 words\n", - "2019-01-16 06:24:24,936 : INFO : PROGRESS: pass 0, at document #4922894/4922894\n", - "2019-01-16 06:24:25,882 : INFO : merging changes from 894 documents into a model of 4922894 documents\n", - "2019-01-16 06:24:26,443 : INFO : topic #11 (0.020): 0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.007*\"legal\"\n", - "2019-01-16 06:24:26,445 : INFO : topic #18 (0.020): 0.010*\"water\" + 0.007*\"light\" + 0.007*\"energi\" + 0.007*\"high\" + 0.006*\"surfac\" + 0.006*\"earth\" + 0.006*\"time\" + 0.005*\"effect\" + 0.005*\"temperatur\" + 0.005*\"materi\"\n", - "2019-01-16 06:24:26,447 : INFO : topic #40 (0.020): 0.052*\"bar\" + 0.038*\"africa\" + 0.033*\"text\" + 0.033*\"african\" + 0.031*\"till\" + 0.029*\"color\" + 0.026*\"south\" + 0.023*\"black\" + 0.013*\"tropic\" + 0.013*\"storm\"\n", - "2019-01-16 06:24:26,448 : INFO : topic #15 (0.020): 0.034*\"england\" + 0.024*\"unit\" + 0.021*\"london\" + 0.019*\"cricket\" + 0.019*\"town\" + 0.016*\"citi\" + 0.015*\"scotland\" + 0.013*\"manchest\" + 0.013*\"west\" + 0.012*\"scottish\"\n", - "2019-01-16 06:24:26,450 : INFO : topic #1 (0.020): 0.038*\"album\" + 0.028*\"song\" + 0.026*\"releas\" + 0.026*\"record\" + 0.021*\"band\" + 0.016*\"singl\" + 0.015*\"music\" + 0.014*\"chart\" + 0.013*\"track\" + 0.010*\"guitar\"\n", + "==Truncated==\n", "2019-01-16 06:24:26,456 : INFO : topic diff=0.003897, rho=0.020154\n", "2019-01-16 06:24:26,465 : INFO : saving LdaState object under lda.model.state, separately None\n", "2019-01-16 06:24:26,680 : INFO : saved lda.model.state\n", From 467a2addd1bf7934d7aee013043230724a717183 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Thu, 17 Jan 2019 14:40:00 +0300 Subject: [PATCH 143/144] Fix last cell formatting --- docs/notebooks/nmf_wikipedia.ipynb | 97 ++++++++++++++++++++---------- 1 file changed, 65 insertions(+), 32 deletions(-) diff --git a/docs/notebooks/nmf_wikipedia.ipynb b/docs/notebooks/nmf_wikipedia.ipynb index c528ce6c0f..eaa3c656c7 100644 --- a/docs/notebooks/nmf_wikipedia.ipynb +++ b/docs/notebooks/nmf_wikipedia.ipynb @@ -1146,75 +1146,105 @@ "nmf\n", "====================\n", "\n", - "(24, '0.131*\"mount\" + 0.129*\"lemmon\" + 0.129*\"peak\" + 0.127*\"kitt\" + 0.127*\"spacewatch\" + 0.065*\"survei\" + 0.037*\"octob\" + 0.031*\"septemb\" + 0.023*\"css\" + 0.023*\"catalina\"')\n", + "Topic: 24\n", + "0.131*\"mount\" + 0.129*\"lemmon\" + 0.129*\"peak\" + 0.127*\"kitt\" + 0.127*\"spacewatch\" + 0.065*\"survei\" + 0.037*\"octob\" + 0.031*\"septemb\" + 0.023*\"css\" + 0.023*\"catalina\"\n", "\n", - "(32, '0.196*\"linear\" + 0.195*\"socorro\" + 0.045*\"septemb\" + 0.039*\"neat\" + 0.035*\"palomar\" + 0.032*\"octob\" + 0.024*\"kitt\" + 0.024*\"peak\" + 0.024*\"spacewatch\" + 0.023*\"anderson\"')\n", + "Topic: 32\n", + "0.196*\"linear\" + 0.195*\"socorro\" + 0.045*\"septemb\" + 0.039*\"neat\" + 0.035*\"palomar\" + 0.032*\"octob\" + 0.024*\"kitt\" + 0.024*\"peak\" + 0.024*\"spacewatch\" + 0.023*\"anderson\"\n", "\n", - "(8, '0.331*\"align\" + 0.270*\"left\" + 0.071*\"right\" + 0.040*\"text\" + 0.035*\"style\" + 0.022*\"center\" + 0.013*\"bar\" + 0.009*\"till\" + 0.008*\"bgcolor\" + 0.008*\"color\"')\n", + "Topic: 8\n", + "0.331*\"align\" + 0.270*\"left\" + 0.071*\"right\" + 0.040*\"text\" + 0.035*\"style\" + 0.022*\"center\" + 0.013*\"bar\" + 0.009*\"till\" + 0.008*\"bgcolor\" + 0.008*\"color\"\n", "\n", - "(27, '0.186*\"district\" + 0.027*\"pennsylvania\" + 0.022*\"grade\" + 0.017*\"fund\" + 0.017*\"educ\" + 0.017*\"basic\" + 0.016*\"level\" + 0.014*\"oblast\" + 0.014*\"rural\" + 0.013*\"tax\"')\n", + "Topic: 27\n", + "0.186*\"district\" + 0.027*\"pennsylvania\" + 0.022*\"grade\" + 0.017*\"fund\" + 0.017*\"educ\" + 0.017*\"basic\" + 0.016*\"level\" + 0.014*\"oblast\" + 0.014*\"rural\" + 0.013*\"tax\"\n", "\n", - "(48, '0.103*\"art\" + 0.066*\"museum\" + 0.040*\"paint\" + 0.035*\"work\" + 0.026*\"artist\" + 0.024*\"galleri\" + 0.022*\"exhibit\" + 0.019*\"collect\" + 0.015*\"histori\" + 0.013*\"jpg\"')\n", + "Topic: 48\n", + "0.103*\"art\" + 0.066*\"museum\" + 0.040*\"paint\" + 0.035*\"work\" + 0.026*\"artist\" + 0.024*\"galleri\" + 0.022*\"exhibit\" + 0.019*\"collect\" + 0.015*\"histori\" + 0.013*\"jpg\"\n", "\n", - "(11, '0.122*\"new\" + 0.043*\"york\" + 0.009*\"zealand\" + 0.007*\"jersei\" + 0.006*\"american\" + 0.006*\"time\" + 0.006*\"australia\" + 0.005*\"radio\" + 0.005*\"press\" + 0.005*\"washington\"')\n", + "Topic: 11\n", + "0.122*\"new\" + 0.043*\"york\" + 0.009*\"zealand\" + 0.007*\"jersei\" + 0.006*\"american\" + 0.006*\"time\" + 0.006*\"australia\" + 0.005*\"radio\" + 0.005*\"press\" + 0.005*\"washington\"\n", "\n", - "(20, '0.008*\"us\" + 0.006*\"gener\" + 0.006*\"model\" + 0.006*\"data\" + 0.006*\"design\" + 0.005*\"time\" + 0.005*\"function\" + 0.005*\"number\" + 0.005*\"process\" + 0.005*\"exampl\"')\n", + "Topic: 20\n", + "0.008*\"us\" + 0.006*\"gener\" + 0.006*\"model\" + 0.006*\"data\" + 0.006*\"design\" + 0.005*\"time\" + 0.005*\"function\" + 0.005*\"number\" + 0.005*\"process\" + 0.005*\"exampl\"\n", "\n", - "(28, '0.074*\"year\" + 0.022*\"dai\" + 0.012*\"time\" + 0.008*\"ag\" + 0.006*\"month\" + 0.006*\"includ\" + 0.006*\"follow\" + 0.005*\"later\" + 0.005*\"old\" + 0.005*\"student\"')\n", + "Topic: 28\n", + "0.074*\"year\" + 0.022*\"dai\" + 0.012*\"time\" + 0.008*\"ag\" + 0.006*\"month\" + 0.006*\"includ\" + 0.006*\"follow\" + 0.005*\"later\" + 0.005*\"old\" + 0.005*\"student\"\n", "\n", - "(38, '0.033*\"royal\" + 0.025*\"john\" + 0.025*\"william\" + 0.016*\"lieuten\" + 0.013*\"georg\" + 0.012*\"offic\" + 0.012*\"jame\" + 0.011*\"sergeant\" + 0.011*\"major\" + 0.010*\"charl\"')\n", + "Topic: 38\n", + "0.033*\"royal\" + 0.025*\"john\" + 0.025*\"william\" + 0.016*\"lieuten\" + 0.013*\"georg\" + 0.012*\"offic\" + 0.012*\"jame\" + 0.011*\"sergeant\" + 0.011*\"major\" + 0.010*\"charl\"\n", "\n", - "(19, '0.012*\"area\" + 0.011*\"river\" + 0.010*\"water\" + 0.004*\"larg\" + 0.004*\"region\" + 0.004*\"lake\" + 0.004*\"power\" + 0.004*\"high\" + 0.004*\"bar\" + 0.004*\"form\"')\n", + "Topic: 19\n", + "0.012*\"area\" + 0.011*\"river\" + 0.010*\"water\" + 0.004*\"larg\" + 0.004*\"region\" + 0.004*\"lake\" + 0.004*\"power\" + 0.004*\"high\" + 0.004*\"bar\" + 0.004*\"form\"\n", "\n", "\n", "====================\n", "nmf_with_r\n", "====================\n", "\n", - "(49, '0.112*\"peak\" + 0.111*\"kitt\" + 0.111*\"mount\" + 0.111*\"spacewatch\" + 0.109*\"lemmon\" + 0.055*\"survei\" + 0.044*\"octob\" + 0.041*\"septemb\" + 0.026*\"novemb\" + 0.021*\"march\"')\n", + "Topic: 49\n", + "0.112*\"peak\" + 0.111*\"kitt\" + 0.111*\"mount\" + 0.111*\"spacewatch\" + 0.109*\"lemmon\" + 0.055*\"survei\" + 0.044*\"octob\" + 0.041*\"septemb\" + 0.026*\"novemb\" + 0.021*\"march\"\n", "\n", - "(32, '0.194*\"linear\" + 0.193*\"socorro\" + 0.047*\"septemb\" + 0.038*\"neat\" + 0.034*\"palomar\" + 0.034*\"octob\" + 0.025*\"decemb\" + 0.024*\"august\" + 0.023*\"anderson\" + 0.023*\"mesa\"')\n", + "Topic: 32\n", + "0.194*\"linear\" + 0.193*\"socorro\" + 0.047*\"septemb\" + 0.038*\"neat\" + 0.034*\"palomar\" + 0.034*\"octob\" + 0.025*\"decemb\" + 0.024*\"august\" + 0.023*\"anderson\" + 0.023*\"mesa\"\n", "\n", - "(48, '0.112*\"art\" + 0.063*\"museum\" + 0.037*\"paint\" + 0.036*\"work\" + 0.028*\"artist\" + 0.026*\"galleri\" + 0.025*\"exhibit\" + 0.020*\"collect\" + 0.015*\"histori\" + 0.014*\"design\"')\n", + "Topic: 48\n", + "0.112*\"art\" + 0.063*\"museum\" + 0.037*\"paint\" + 0.036*\"work\" + 0.028*\"artist\" + 0.026*\"galleri\" + 0.025*\"exhibit\" + 0.020*\"collect\" + 0.015*\"histori\" + 0.014*\"design\"\n", "\n", - "(4, '0.093*\"club\" + 0.049*\"cup\" + 0.033*\"footbal\" + 0.031*\"goal\" + 0.022*\"leagu\" + 0.022*\"unit\" + 0.022*\"plai\" + 0.022*\"match\" + 0.018*\"score\" + 0.015*\"player\"')\n", + "Topic: 4\n", + "0.093*\"club\" + 0.049*\"cup\" + 0.033*\"footbal\" + 0.031*\"goal\" + 0.022*\"leagu\" + 0.022*\"unit\" + 0.022*\"plai\" + 0.022*\"match\" + 0.018*\"score\" + 0.015*\"player\"\n", "\n", - "(27, '0.159*\"district\" + 0.031*\"pennsylvania\" + 0.025*\"grade\" + 0.021*\"educ\" + 0.019*\"fund\" + 0.018*\"basic\" + 0.017*\"level\" + 0.015*\"student\" + 0.014*\"receiv\" + 0.014*\"tax\"')\n", + "Topic: 27\n", + "0.159*\"district\" + 0.031*\"pennsylvania\" + 0.025*\"grade\" + 0.021*\"educ\" + 0.019*\"fund\" + 0.018*\"basic\" + 0.017*\"level\" + 0.015*\"student\" + 0.014*\"receiv\" + 0.014*\"tax\"\n", "\n", - "(17, '0.095*\"season\" + 0.014*\"plai\" + 0.010*\"coach\" + 0.009*\"final\" + 0.009*\"second\" + 0.008*\"win\" + 0.008*\"record\" + 0.008*\"career\" + 0.008*\"finish\" + 0.007*\"point\"')\n", + "Topic: 17\n", + "0.095*\"season\" + 0.014*\"plai\" + 0.010*\"coach\" + 0.009*\"final\" + 0.009*\"second\" + 0.008*\"win\" + 0.008*\"record\" + 0.008*\"career\" + 0.008*\"finish\" + 0.007*\"point\"\n", "\n", - "(40, '0.009*\"time\" + 0.008*\"later\" + 0.007*\"kill\" + 0.006*\"appear\" + 0.005*\"man\" + 0.005*\"death\" + 0.005*\"father\" + 0.005*\"return\" + 0.005*\"son\" + 0.004*\"charact\"')\n", + "Topic: 40\n", + "0.009*\"time\" + 0.008*\"later\" + 0.007*\"kill\" + 0.006*\"appear\" + 0.005*\"man\" + 0.005*\"death\" + 0.005*\"father\" + 0.005*\"return\" + 0.005*\"son\" + 0.004*\"charact\"\n", "\n", - "(20, '0.008*\"us\" + 0.006*\"gener\" + 0.005*\"design\" + 0.005*\"model\" + 0.005*\"develop\" + 0.005*\"time\" + 0.004*\"data\" + 0.004*\"number\" + 0.004*\"function\" + 0.004*\"process\"')\n", + "Topic: 20\n", + "0.008*\"us\" + 0.006*\"gener\" + 0.005*\"design\" + 0.005*\"model\" + 0.005*\"develop\" + 0.005*\"time\" + 0.004*\"data\" + 0.004*\"number\" + 0.004*\"function\" + 0.004*\"process\"\n", "\n", - "(19, '0.009*\"water\" + 0.008*\"area\" + 0.008*\"speci\" + 0.005*\"larg\" + 0.004*\"order\" + 0.004*\"region\" + 0.004*\"includ\" + 0.004*\"black\" + 0.004*\"famili\" + 0.004*\"popul\"')\n", + "Topic: 19\n", + "0.009*\"water\" + 0.008*\"area\" + 0.008*\"speci\" + 0.005*\"larg\" + 0.004*\"order\" + 0.004*\"region\" + 0.004*\"includ\" + 0.004*\"black\" + 0.004*\"famili\" + 0.004*\"popul\"\n", "\n", - "(38, '0.044*\"royal\" + 0.020*\"william\" + 0.019*\"john\" + 0.016*\"corp\" + 0.014*\"lieuten\" + 0.013*\"capt\" + 0.012*\"engin\" + 0.011*\"armi\" + 0.011*\"georg\" + 0.011*\"temp\"')\n", + "Topic: 38\n", + "0.044*\"royal\" + 0.020*\"william\" + 0.019*\"john\" + 0.016*\"corp\" + 0.014*\"lieuten\" + 0.013*\"capt\" + 0.012*\"engin\" + 0.011*\"armi\" + 0.011*\"georg\" + 0.011*\"temp\"\n", "\n", "\n", "====================\n", "lda\n", "====================\n", "\n", - "(35, '0.034*\"kong\" + 0.034*\"japanes\" + 0.033*\"hong\" + 0.023*\"lee\" + 0.021*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.015*\"japan\" + 0.014*\"indonesia\" + 0.014*\"thailand\"')\n", + "Topic: 35\n", + "0.034*\"kong\" + 0.034*\"japanes\" + 0.033*\"hong\" + 0.023*\"lee\" + 0.021*\"singapor\" + 0.019*\"chines\" + 0.018*\"kim\" + 0.015*\"japan\" + 0.014*\"indonesia\" + 0.014*\"thailand\"\n", "\n", - "(23, '0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"')\n", + "Topic: 23\n", + "0.016*\"medic\" + 0.014*\"health\" + 0.014*\"hospit\" + 0.013*\"cell\" + 0.011*\"diseas\" + 0.010*\"patient\" + 0.009*\"ret\" + 0.009*\"caus\" + 0.008*\"human\" + 0.008*\"treatment\"\n", "\n", - "(47, '0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"')\n", + "Topic: 47\n", + "0.025*\"river\" + 0.024*\"station\" + 0.021*\"line\" + 0.020*\"road\" + 0.017*\"railwai\" + 0.015*\"rout\" + 0.013*\"lake\" + 0.012*\"park\" + 0.011*\"bridg\" + 0.011*\"area\"\n", "\n", - "(14, '0.027*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"')\n", + "Topic: 14\n", + "0.027*\"univers\" + 0.015*\"research\" + 0.014*\"institut\" + 0.012*\"nation\" + 0.012*\"scienc\" + 0.012*\"work\" + 0.012*\"intern\" + 0.011*\"award\" + 0.011*\"develop\" + 0.010*\"organ\"\n", "\n", - "(39, '0.050*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"')\n", + "Topic: 39\n", + "0.050*\"air\" + 0.026*\"aircraft\" + 0.026*\"oper\" + 0.025*\"airport\" + 0.017*\"forc\" + 0.017*\"flight\" + 0.015*\"squadron\" + 0.014*\"unit\" + 0.012*\"base\" + 0.011*\"wing\"\n", "\n", - "(17, '0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"championship\" + 0.011*\"year\"')\n", + "Topic: 17\n", + "0.060*\"race\" + 0.020*\"car\" + 0.017*\"team\" + 0.012*\"finish\" + 0.012*\"tour\" + 0.012*\"driver\" + 0.011*\"ford\" + 0.011*\"time\" + 0.011*\"championship\" + 0.011*\"year\"\n", "\n", - "(4, '0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.033*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"campu\"')\n", + "Topic: 4\n", + "0.137*\"school\" + 0.040*\"colleg\" + 0.039*\"student\" + 0.033*\"univers\" + 0.030*\"high\" + 0.028*\"educ\" + 0.016*\"year\" + 0.011*\"graduat\" + 0.010*\"state\" + 0.009*\"campu\"\n", "\n", - "(8, '0.048*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.013*\"sri\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.012*\"tamil\"')\n", + "Topic: 8\n", + "0.048*\"india\" + 0.037*\"indian\" + 0.020*\"http\" + 0.016*\"www\" + 0.015*\"pakistan\" + 0.015*\"iran\" + 0.013*\"sri\" + 0.012*\"khan\" + 0.012*\"islam\" + 0.012*\"tamil\"\n", "\n", - "(2, '0.062*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.015*\"swedish\" + 0.014*\"netherland\" + 0.014*\"sweden\"')\n", + "Topic: 2\n", + "0.062*\"german\" + 0.039*\"germani\" + 0.025*\"van\" + 0.023*\"von\" + 0.020*\"der\" + 0.019*\"dutch\" + 0.019*\"berlin\" + 0.015*\"swedish\" + 0.014*\"netherland\" + 0.014*\"sweden\"\n", "\n", - "(11, '0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.007*\"legal\"')\n", + "Topic: 11\n", + "0.024*\"law\" + 0.021*\"court\" + 0.016*\"state\" + 0.016*\"act\" + 0.011*\"polic\" + 0.010*\"case\" + 0.009*\"offic\" + 0.009*\"report\" + 0.009*\"right\" + 0.007*\"legal\"\n", "\n", "\n" ] @@ -1226,8 +1256,11 @@ " print(row['model'])\n", " print('='*20)\n", " print()\n", - " print(\"\\n\\n\".join(str(topic) for topic in row['topics']))\n", - " print('\\n')" + " for topic_idx, tokens in row['topics']:\n", + " print('Topic: {}'.format(topic_idx))\n", + " print(tokens)\n", + " print()\n", + " print()" ] }, { From e34b939e9a5f1f79f9582ef3d0618fd43bbd7be2 Mon Sep 17 00:00:00 2001 From: anotherbugmaster Date: Thu, 17 Jan 2019 14:57:39 +0300 Subject: [PATCH 144/144] [skip ci] Change model hyperparameters back --- docs/notebooks/nmf_tutorial.ipynb | 531 ++++++++++++++---------------- 1 file changed, 250 insertions(+), 281 deletions(-) diff --git a/docs/notebooks/nmf_tutorial.ipynb b/docs/notebooks/nmf_tutorial.ipynb index e94e63549a..49e5f02bc3 100644 --- a/docs/notebooks/nmf_tutorial.ipynb +++ b/docs/notebooks/nmf_tutorial.ipynb @@ -155,11 +155,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-16 20:07:39,675 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", - "2019-01-16 20:07:40,035 : INFO : built Dictionary(25279 unique tokens: ['actual', 'assum', 'babbl', 'batka', 'batkaj']...) from 2819 documents (total 435328 corpus positions)\n", - "2019-01-16 20:07:40,065 : INFO : discarding 18198 tokens: [('batka', 1), ('batkaj', 1), ('beatl', 1), ('ccmail', 3), ('dayton', 4), ('edu', 1785), ('inhibit', 1), ('jbatka', 1), ('line', 2748), ('organ', 2602)]...\n", - "2019-01-16 20:07:40,065 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", - "2019-01-16 20:07:40,074 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['actual', 'assum', 'babbl', 'burster', 'caus']...)\n" + "2019-01-17 14:47:54,339 : INFO : adding document #0 to Dictionary(0 unique tokens: [])\n", + "2019-01-17 14:47:54,673 : INFO : built Dictionary(25279 unique tokens: ['actual', 'assum', 'babbl', 'batka', 'batkaj']...) from 2819 documents (total 435328 corpus positions)\n", + "2019-01-17 14:47:54,701 : INFO : discarding 18198 tokens: [('batka', 1), ('batkaj', 1), ('beatl', 1), ('ccmail', 3), ('dayton', 4), ('edu', 1785), ('inhibit', 1), ('jbatka', 1), ('line', 2748), ('organ', 2602)]...\n", + "2019-01-17 14:47:54,702 : INFO : keeping 7081 tokens which were in no less than 5 and no more than 1409 (=50.0%) documents\n", + "2019-01-17 14:47:54,712 : INFO : resulting dictionary: Dictionary(7081 unique tokens: ['actual', 'assum', 'babbl', 'burster', 'caus']...)\n" ] } ], @@ -219,16 +219,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-16 20:08:57,128 : INFO : Loss (no outliers): 426.47238078342497\tLoss (with outliers): 426.47238078342497\n", - "2019-01-16 20:09:05,447 : INFO : Loss (no outliers): 408.54246082951744\tLoss (with outliers): 408.54246082951744\n" + "2019-01-17 14:47:56,086 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", + "2019-01-17 14:47:56,387 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1min 24s, sys: 126 ms, total: 1min 24s\n", - "Wall time: 1min 24s\n" + "CPU times: user 1.23 s, sys: 30.1 ms, total: 1.26 s\n", + "Wall time: 1.27 s\n" ] } ], @@ -238,16 +238,15 @@ "nmf = GensimNmf(\n", " corpus=train_corpus,\n", " chunksize=1000,\n", - " num_topics=100,\n", + " num_topics=5,\n", " id2word=dictionary,\n", " passes=5,\n", " eval_every=10,\n", - " minimum_probability=0,2\n", + " minimum_probability=0,\n", " random_state=42,\n", " use_r=False,\n", " lambda_=1000,\n", " kappa=1,\n", - " sparse_coef=0,\n", ")" ] }, @@ -266,26 +265,16 @@ { "data": { "text/plain": [ - "[(31,\n", - " '0.106*\"know\" + 0.093*\"kill\" + 0.038*\"said\" + 0.032*\"like\" + 0.027*\"sai\" + 0.027*\"murder\" + 0.024*\"time\" + 0.023*\"go\" + 0.018*\"mayb\" + 0.017*\"look\"'),\n", - " (75,\n", - " '0.056*\"said\" + 0.052*\"sai\" + 0.025*\"went\" + 0.024*\"shout\" + 0.022*\"go\" + 0.017*\"car\" + 0.017*\"let\" + 0.015*\"right\" + 0.015*\"live\" + 0.014*\"look\"'),\n", - " (43,\n", - " '0.058*\"bit\" + 0.039*\"displai\" + 0.035*\"program\" + 0.031*\"color\" + 0.024*\"read\" + 0.020*\"file\" + 0.019*\"time\" + 0.018*\"save\" + 0.018*\"chang\" + 0.018*\"us\"'),\n", - " (69,\n", - " '0.046*\"peopl\" + 0.022*\"happen\" + 0.019*\"think\" + 0.017*\"start\" + 0.015*\"build\" + 0.015*\"look\" + 0.015*\"come\" + 0.014*\"mamma\" + 0.013*\"woman\" + 0.012*\"stop\"'),\n", - " (47,\n", - " '0.050*\"data\" + 0.038*\"ftp\" + 0.037*\"avail\" + 0.025*\"imag\" + 0.018*\"file\" + 0.016*\"inform\" + 0.015*\"directori\" + 0.015*\"contact\" + 0.015*\"archiv\" + 0.015*\"space\"'),\n", + "[(0,\n", + " '0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*\"said\" + 0.017*\"know\" + 0.010*\"went\" + 0.010*\"sai\" + 0.010*\"like\" + 0.010*\"apart\" + 0.009*\"come\" + 0.009*\"azerbaijani\"'),\n", " (1,\n", - " '0.024*\"rocket\" + 0.022*\"centaur\" + 0.019*\"proton\" + 0.014*\"model\" + 0.011*\"com\" + 0.011*\"engin\" + 0.009*\"oper\" + 0.009*\"stage\" + 0.009*\"feet\" + 0.008*\"pad\"'),\n", - " (18,\n", - " '0.055*\"bike\" + 0.018*\"rider\" + 0.017*\"yalcin\" + 0.017*\"onur\" + 0.016*\"motorcycl\" + 0.013*\"differ\" + 0.012*\"ride\" + 0.012*\"counterst\" + 0.008*\"mot\" + 0.008*\"rtsg\"'),\n", - " (13,\n", - " '0.023*\"like\" + 0.015*\"time\" + 0.015*\"ride\" + 0.013*\"sun\" + 0.012*\"dog\" + 0.012*\"evid\" + 0.011*\"ether\" + 0.009*\"need\" + 0.009*\"look\" + 0.009*\"conclus\"'),\n", - " (25,\n", - " '0.033*\"bike\" + 0.024*\"greec\" + 0.024*\"minor\" + 0.022*\"greek\" + 0.020*\"right\" + 0.015*\"mile\" + 0.011*\"point\" + 0.011*\"insur\" + 0.009*\"religion\" + 0.008*\"turkei\"'),\n", - " (8,\n", - " '0.094*\"com\" + 0.022*\"nntp\" + 0.022*\"host\" + 0.009*\"repli\" + 0.008*\"sun\" + 0.007*\"ibm\" + 0.006*\"distribut\" + 0.005*\"east\" + 0.005*\"dseg\" + 0.005*\"bnr\"')]" + " '0.094*\"jpeg\" + 0.040*\"file\" + 0.039*\"gif\" + 0.033*\"imag\" + 0.030*\"color\" + 0.021*\"format\" + 0.018*\"qualiti\" + 0.016*\"convert\" + 0.016*\"compress\" + 0.016*\"version\"'),\n", + " (2,\n", + " '0.046*\"imag\" + 0.021*\"graphic\" + 0.018*\"data\" + 0.016*\"file\" + 0.016*\"ftp\" + 0.016*\"pub\" + 0.015*\"avail\" + 0.013*\"format\" + 0.012*\"program\" + 0.012*\"packag\"'),\n", + " (3,\n", + " '0.035*\"god\" + 0.029*\"atheist\" + 0.021*\"believ\" + 0.021*\"exist\" + 0.018*\"atheism\" + 0.016*\"religion\" + 0.015*\"peopl\" + 0.014*\"christian\" + 0.013*\"religi\" + 0.012*\"israel\"'),\n", + " (4,\n", + " '0.044*\"space\" + 0.029*\"launch\" + 0.020*\"satellit\" + 0.013*\"orbit\" + 0.013*\"nasa\" + 0.011*\"year\" + 0.010*\"mission\" + 0.009*\"new\" + 0.009*\"commerci\" + 0.009*\"market\"')]" ] }, "execution_count": 8, @@ -313,13 +302,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-16 20:09:05,534 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-17 14:47:56,425 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] }, { "data": { "text/plain": [ - "-3.8676579012372256" + "-1.7121027413685233" ] }, "execution_count": 9, @@ -350,7 +339,7 @@ { "data": { "text/plain": [ - "1537.0045919142308" + "55.22863930899718" ] }, "execution_count": 10, @@ -406,7 +395,7 @@ "\"Until I meet you, then, in Upper Hell\n", "Convulsed, foaming immortal blood: farewell\" - J. Berryman, \"A Professor's Song\"\n", "\n", - "Topics: [(6, 0.0006829123814417761), (8, 0.0339936178620312), (23, 0.026664664006601103), (24, 0.03137830013292132), (26, 0.10830591900869159), (30, 0.012741960871727066), (32, 0.009153232662528448), (41, 0.28029402285348615), (44, 0.020603570714518495), (45, 0.005148183199969697), (46, 0.008630306396864984), (49, 0.032893262022578106), (51, 0.0013443202466471697), (68, 0.0050745025123350475), (69, 0.06345416496154094), (73, 0.005894374017751842), (76, 0.00951008791775525), (83, 0.01748317077945112), (91, 0.07721359683489294), (92, 0.19793981556741636), (95, 0.05159601504884954)]\n" + "Topics: [(0, 0.29204189080735804), (1, 0.026352973191825578), (2, 0.36870720087404435), (3, 0.28605983002406815), (4, 0.02683810510270401)]\n" ] } ], @@ -434,7 +423,7 @@ "output_type": "stream", "text": [ "Word: actual\n", - "Topics: [(0, 0.011785506706927991), (1, 0.057685032805057455), (2, 0.007426013081166645), (3, 0.04155996013527836), (5, 0.022509912861435964), (6, 0.040365072299587364), (8, 0.011943210545655216), (10, 0.017667696731828456), (11, 0.017283043303432995), (12, 0.030601338714917336), (13, 0.0440437996824471), (14, 0.013603516474464852), (16, 0.06876354497228125), (18, 0.003615217435673311), (20, 0.03929691855807725), (21, 0.030644453799129976), (22, 0.029787809033199924), (23, 0.026217059459006056), (26, 0.05178518457303864), (27, 0.00608361614698074), (32, 0.02468574130516948), (33, 0.009882157863511754), (35, 0.039221966204555626), (37, 0.05160932953888611), (39, 0.002535706496840385), (41, 0.02109647797129182), (42, 0.014270686388955239), (46, 0.0023539940450063024), (48, 0.005399153523392092), (49, 0.005226906810197849), (50, 0.013219119900964953), (54, 0.022326295409228186), (55, 0.011269235799342811), (57, 0.040216869591692295), (59, 0.001832786546605227), (62, 0.0023876417468913966), (65, 0.0013132868098296737), (66, 0.005779061934683635), (70, 0.016218931550795155), (72, 0.017967386653475838), (80, 0.005246006017057054), (81, 0.005474943216546645), (83, 0.0041541967445725145), (84, 0.0019149716216973064), (85, 0.004634527794970411), (88, 0.01032666891535383), (89, 0.00042854723862315215), (91, 0.0062681081341637536), (94, 0.012358778897115664), (95, 0.054978224385855805), (97, 0.012734383623140883)]\n" + "Topics: [(1, 0.20201598559144582), (3, 0.7979840144085542)]\n" ] } ], @@ -478,8 +467,8 @@ { "data": { "text/plain": [ - "<7081x100 sparse matrix of type ''\n", - "\twith 131362 stored elements in Compressed Sparse Column format>" + "<7081x5 sparse matrix of type ''\n", + "\twith 1735 stored elements in Compressed Sparse Column format>" ] }, "execution_count": 14, @@ -500,7 +489,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Density: 0.18551334557265922\n" + "Density: 0.04900437791272419\n" ] } ], @@ -523,8 +512,8 @@ { "data": { "text/plain": [ - "<100x819 sparse matrix of type ''\n", - "\twith 16626 stored elements in Compressed Sparse Row format>" + "<5x819 sparse matrix of type ''\n", + "\twith 3593 stored elements in Compressed Sparse Row format>" ] }, "execution_count": 16, @@ -545,7 +534,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Density: 0.20300366300366302\n" + "Density: 0.8774114774114774\n" ] } ], @@ -757,184 +746,184 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-16 20:09:54,949 : INFO : using symmetric alpha at 0.2\n", - "2019-01-16 20:09:54,950 : INFO : using symmetric eta at 0.2\n", - "2019-01-16 20:09:54,952 : INFO : using serial LDA version on this node\n", - "2019-01-16 20:09:54,957 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", - "2019-01-16 20:09:54,961 : INFO : PROGRESS: pass 0, at document #1000/2819\n", - "2019-01-16 20:09:56,078 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:09:56,083 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.005*\"new\" + 0.005*\"peopl\" + 0.004*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"nntp\" + 0.004*\"armenian\" + 0.004*\"host\"\n", - "2019-01-16 20:09:56,087 : INFO : topic #1 (0.200): 0.007*\"com\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"god\" + 0.004*\"univers\" + 0.004*\"said\" + 0.004*\"host\"\n", - "2019-01-16 20:09:56,090 : INFO : topic #2 (0.200): 0.005*\"time\" + 0.005*\"like\" + 0.005*\"com\" + 0.005*\"israel\" + 0.005*\"space\" + 0.005*\"univers\" + 0.004*\"peopl\" + 0.004*\"islam\" + 0.004*\"host\" + 0.004*\"isra\"\n", - "2019-01-16 20:09:56,092 : INFO : topic #3 (0.200): 0.008*\"com\" + 0.006*\"jpeg\" + 0.006*\"imag\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"file\" + 0.005*\"host\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"graphic\"\n", - "2019-01-16 20:09:56,096 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"space\" + 0.006*\"com\" + 0.005*\"armenian\" + 0.004*\"know\" + 0.004*\"nasa\" + 0.003*\"right\" + 0.003*\"like\" + 0.003*\"point\" + 0.003*\"time\"\n", - "2019-01-16 20:09:56,098 : INFO : topic diff=1.649469, rho=1.000000\n", - "2019-01-16 20:09:56,099 : INFO : PROGRESS: pass 0, at document #2000/2819\n", - "2019-01-16 20:09:57,122 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:09:57,127 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"space\" + 0.005*\"new\" + 0.005*\"armenian\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"time\" + 0.004*\"nntp\" + 0.004*\"turkish\"\n", - "2019-01-16 20:09:57,131 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.007*\"com\" + 0.006*\"know\" + 0.006*\"like\" + 0.006*\"think\" + 0.005*\"god\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"thing\" + 0.004*\"univers\"\n", - "2019-01-16 20:09:57,134 : INFO : topic #2 (0.200): 0.007*\"israel\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"islam\" + 0.005*\"like\" + 0.005*\"time\" + 0.005*\"univers\" + 0.005*\"state\" + 0.004*\"god\" + 0.004*\"know\"\n", - "2019-01-16 20:09:57,137 : INFO : topic #3 (0.200): 0.011*\"imag\" + 0.009*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.005*\"program\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\"\n", - "2019-01-16 20:09:57,137 : INFO : topic #4 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"space\" + 0.005*\"know\" + 0.005*\"nasa\" + 0.004*\"com\" + 0.004*\"right\" + 0.004*\"like\" + 0.003*\"said\" + 0.003*\"armenia\"\n", - "2019-01-16 20:09:57,138 : INFO : topic diff=0.848670, rho=0.707107\n", - "2019-01-16 20:09:58,364 : INFO : -8.075 per-word bound, 269.6 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", - "2019-01-16 20:09:58,365 : INFO : PROGRESS: pass 0, at document #2819/2819\n", - "2019-01-16 20:09:59,107 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-16 20:09:59,111 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"space\" + 0.005*\"new\" + 0.005*\"turkish\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"armenian\" + 0.004*\"time\"\n", - "2019-01-16 20:09:59,112 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"said\" + 0.004*\"moral\" + 0.004*\"time\"\n", - "2019-01-16 20:09:59,113 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"peopl\" + 0.005*\"state\" + 0.005*\"univers\" + 0.005*\"islam\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"arab\"\n", - "2019-01-16 20:09:59,114 : INFO : topic #3 (0.200): 0.011*\"com\" + 0.009*\"graphic\" + 0.009*\"imag\" + 0.007*\"file\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"softwar\" + 0.005*\"us\" + 0.005*\"like\"\n", - "2019-01-16 20:09:59,116 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"space\" + 0.008*\"peopl\" + 0.006*\"turkish\" + 0.005*\"launch\" + 0.004*\"nasa\" + 0.004*\"year\" + 0.004*\"turkei\" + 0.004*\"armenia\" + 0.004*\"know\"\n", - "2019-01-16 20:09:59,120 : INFO : topic diff=0.663292, rho=0.577350\n", - "2019-01-16 20:09:59,122 : INFO : PROGRESS: pass 1, at document #1000/2819\n", - "2019-01-16 20:09:59,938 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:09:59,943 : INFO : topic #0 (0.200): 0.007*\"com\" + 0.007*\"space\" + 0.005*\"new\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"turkish\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"nntp\"\n", - "2019-01-16 20:09:59,944 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"god\" + 0.006*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", - "2019-01-16 20:09:59,944 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"univers\"\n", - "2019-01-16 20:09:59,946 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"com\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"jpeg\" + 0.005*\"nntp\" + 0.005*\"univers\"\n", - "2019-01-16 20:09:59,947 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.011*\"space\" + 0.008*\"peopl\" + 0.006*\"nasa\" + 0.006*\"turkish\" + 0.005*\"launch\" + 0.004*\"year\" + 0.004*\"armenia\" + 0.004*\"said\" + 0.004*\"orbit\"\n", - "2019-01-16 20:09:59,947 : INFO : topic diff=0.431707, rho=0.455535\n", - "2019-01-16 20:09:59,948 : INFO : PROGRESS: pass 1, at document #2000/2819\n", - "2019-01-16 20:10:00,736 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:10:00,741 : INFO : topic #0 (0.200): 0.008*\"space\" + 0.007*\"com\" + 0.006*\"new\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"year\" + 0.004*\"nntp\" + 0.004*\"host\" + 0.004*\"time\"\n", - "2019-01-16 20:10:00,742 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", - "2019-01-16 20:10:00,742 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.007*\"jew\" + 0.006*\"peopl\" + 0.006*\"arab\" + 0.006*\"islam\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", - "2019-01-16 20:10:00,743 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.010*\"com\" + 0.008*\"file\" + 0.008*\"graphic\" + 0.007*\"program\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.005*\"nntp\"\n", - "2019-01-16 20:10:00,746 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"space\" + 0.009*\"peopl\" + 0.005*\"turkish\" + 0.005*\"said\" + 0.005*\"nasa\" + 0.005*\"know\" + 0.004*\"armenia\" + 0.004*\"year\" + 0.004*\"like\"\n", - "2019-01-16 20:10:00,747 : INFO : topic diff=0.436104, rho=0.455535\n", - "2019-01-16 20:10:01,838 : INFO : -7.846 per-word bound, 230.1 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", - "2019-01-16 20:10:01,838 : INFO : PROGRESS: pass 1, at document #2819/2819\n", - "2019-01-16 20:10:02,446 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-16 20:10:02,452 : INFO : topic #0 (0.200): 0.008*\"space\" + 0.007*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"orbit\" + 0.004*\"dod\" + 0.004*\"host\"\n", - "2019-01-16 20:10:02,453 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", - "2019-01-16 20:10:02,455 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.009*\"isra\" + 0.008*\"jew\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.005*\"state\" + 0.005*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", - "2019-01-16 20:10:02,457 : INFO : topic #3 (0.200): 0.011*\"imag\" + 0.010*\"com\" + 0.010*\"graphic\" + 0.008*\"file\" + 0.007*\"program\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"nntp\" + 0.005*\"univers\"\n", - "2019-01-16 20:10:02,457 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.009*\"space\" + 0.008*\"peopl\" + 0.005*\"said\" + 0.005*\"launch\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.005*\"nasa\" + 0.004*\"turkei\"\n" + "2019-01-17 14:48:02,685 : INFO : using symmetric alpha at 0.2\n", + "2019-01-17 14:48:02,685 : INFO : using symmetric eta at 0.2\n", + "2019-01-17 14:48:02,687 : INFO : using serial LDA version on this node\n", + "2019-01-17 14:48:02,693 : INFO : running online (multi-pass) LDA training, 5 topics, 5 passes over the supplied corpus of 2819 documents, updating model once every 1000 documents, evaluating perplexity every 2819 documents, iterating 50x with a convergence threshold of 0.001000\n", + "2019-01-17 14:48:02,694 : INFO : PROGRESS: pass 0, at document #1000/2819\n", + "2019-01-17 14:48:03,679 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:03,684 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.005*\"new\" + 0.005*\"peopl\" + 0.004*\"space\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"time\" + 0.004*\"nntp\" + 0.004*\"armenian\" + 0.004*\"host\"\n", + "2019-01-17 14:48:03,684 : INFO : topic #1 (0.200): 0.007*\"com\" + 0.005*\"like\" + 0.005*\"peopl\" + 0.005*\"know\" + 0.004*\"think\" + 0.004*\"time\" + 0.004*\"god\" + 0.004*\"univers\" + 0.004*\"said\" + 0.004*\"host\"\n", + "2019-01-17 14:48:03,685 : INFO : topic #2 (0.200): 0.005*\"time\" + 0.005*\"like\" + 0.005*\"com\" + 0.005*\"israel\" + 0.005*\"space\" + 0.005*\"univers\" + 0.004*\"peopl\" + 0.004*\"islam\" + 0.004*\"host\" + 0.004*\"isra\"\n", + "2019-01-17 14:48:03,686 : INFO : topic #3 (0.200): 0.008*\"com\" + 0.006*\"jpeg\" + 0.006*\"imag\" + 0.005*\"nntp\" + 0.005*\"think\" + 0.005*\"file\" + 0.005*\"host\" + 0.004*\"like\" + 0.004*\"univers\" + 0.004*\"graphic\"\n", + "2019-01-17 14:48:03,687 : INFO : topic #4 (0.200): 0.007*\"peopl\" + 0.006*\"space\" + 0.006*\"com\" + 0.005*\"armenian\" + 0.004*\"know\" + 0.004*\"nasa\" + 0.003*\"right\" + 0.003*\"like\" + 0.003*\"point\" + 0.003*\"time\"\n", + "2019-01-17 14:48:03,687 : INFO : topic diff=1.649469, rho=1.000000\n", + "2019-01-17 14:48:03,688 : INFO : PROGRESS: pass 0, at document #2000/2819\n", + "2019-01-17 14:48:04,584 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:04,589 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"space\" + 0.005*\"new\" + 0.005*\"armenian\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"peopl\" + 0.004*\"time\" + 0.004*\"nntp\" + 0.004*\"turkish\"\n", + "2019-01-17 14:48:04,590 : INFO : topic #1 (0.200): 0.007*\"peopl\" + 0.007*\"com\" + 0.006*\"know\" + 0.006*\"like\" + 0.006*\"think\" + 0.005*\"god\" + 0.005*\"said\" + 0.004*\"time\" + 0.004*\"thing\" + 0.004*\"univers\"\n", + "2019-01-17 14:48:04,590 : INFO : topic #2 (0.200): 0.007*\"israel\" + 0.005*\"isra\" + 0.005*\"peopl\" + 0.005*\"islam\" + 0.005*\"like\" + 0.005*\"time\" + 0.005*\"univers\" + 0.005*\"state\" + 0.004*\"god\" + 0.004*\"know\"\n", + "2019-01-17 14:48:04,591 : INFO : topic #3 (0.200): 0.011*\"imag\" + 0.009*\"com\" + 0.007*\"file\" + 0.006*\"graphic\" + 0.005*\"program\" + 0.005*\"like\" + 0.005*\"host\" + 0.004*\"nntp\" + 0.004*\"univers\" + 0.004*\"us\"\n", + "2019-01-17 14:48:04,592 : INFO : topic #4 (0.200): 0.011*\"armenian\" + 0.009*\"peopl\" + 0.009*\"space\" + 0.005*\"know\" + 0.005*\"nasa\" + 0.004*\"com\" + 0.004*\"right\" + 0.004*\"like\" + 0.003*\"said\" + 0.003*\"armenia\"\n", + "2019-01-17 14:48:04,592 : INFO : topic diff=0.848670, rho=0.707107\n", + "2019-01-17 14:48:05,706 : INFO : -8.075 per-word bound, 269.6 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-17 14:48:05,707 : INFO : PROGRESS: pass 0, at document #2819/2819\n", + "2019-01-17 14:48:06,380 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-17 14:48:06,384 : INFO : topic #0 (0.200): 0.006*\"com\" + 0.006*\"space\" + 0.005*\"new\" + 0.005*\"turkish\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"armenian\" + 0.004*\"time\"\n", + "2019-01-17 14:48:06,386 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.006*\"think\" + 0.006*\"god\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"said\" + 0.004*\"moral\" + 0.004*\"time\"\n", + "2019-01-17 14:48:06,386 : INFO : topic #2 (0.200): 0.010*\"israel\" + 0.007*\"isra\" + 0.006*\"jew\" + 0.006*\"peopl\" + 0.005*\"state\" + 0.005*\"univers\" + 0.005*\"islam\" + 0.005*\"think\" + 0.005*\"time\" + 0.004*\"arab\"\n", + "2019-01-17 14:48:06,387 : INFO : topic #3 (0.200): 0.011*\"com\" + 0.009*\"graphic\" + 0.009*\"imag\" + 0.007*\"file\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"nntp\" + 0.005*\"softwar\" + 0.005*\"us\" + 0.005*\"like\"\n", + "2019-01-17 14:48:06,388 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.010*\"space\" + 0.008*\"peopl\" + 0.006*\"turkish\" + 0.005*\"launch\" + 0.004*\"nasa\" + 0.004*\"year\" + 0.004*\"turkei\" + 0.004*\"armenia\" + 0.004*\"know\"\n", + "2019-01-17 14:48:06,389 : INFO : topic diff=0.663292, rho=0.577350\n", + "2019-01-17 14:48:06,390 : INFO : PROGRESS: pass 1, at document #1000/2819\n", + "2019-01-17 14:48:07,142 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:07,147 : INFO : topic #0 (0.200): 0.007*\"com\" + 0.007*\"space\" + 0.005*\"new\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"turkish\" + 0.004*\"time\" + 0.004*\"year\" + 0.004*\"nntp\"\n", + "2019-01-17 14:48:07,148 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"god\" + 0.006*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", + "2019-01-17 14:48:07,148 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.006*\"peopl\" + 0.006*\"jew\" + 0.005*\"arab\" + 0.005*\"islam\" + 0.005*\"think\" + 0.005*\"right\" + 0.005*\"state\" + 0.004*\"univers\"\n", + "2019-01-17 14:48:07,149 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"com\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.006*\"program\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"jpeg\" + 0.005*\"nntp\" + 0.005*\"univers\"\n", + "2019-01-17 14:48:07,150 : INFO : topic #4 (0.200): 0.014*\"armenian\" + 0.011*\"space\" + 0.008*\"peopl\" + 0.006*\"nasa\" + 0.006*\"turkish\" + 0.005*\"launch\" + 0.004*\"year\" + 0.004*\"armenia\" + 0.004*\"said\" + 0.004*\"orbit\"\n", + "2019-01-17 14:48:07,150 : INFO : topic diff=0.431707, rho=0.455535\n", + "2019-01-17 14:48:07,151 : INFO : PROGRESS: pass 1, at document #2000/2819\n", + "2019-01-17 14:48:07,831 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:07,836 : INFO : topic #0 (0.200): 0.008*\"space\" + 0.007*\"com\" + 0.006*\"new\" + 0.005*\"bike\" + 0.005*\"univers\" + 0.004*\"like\" + 0.004*\"year\" + 0.004*\"nntp\" + 0.004*\"host\" + 0.004*\"time\"\n", + "2019-01-17 14:48:07,837 : INFO : topic #1 (0.200): 0.009*\"com\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", + "2019-01-17 14:48:07,838 : INFO : topic #2 (0.200): 0.011*\"israel\" + 0.009*\"isra\" + 0.007*\"jew\" + 0.006*\"peopl\" + 0.006*\"arab\" + 0.006*\"islam\" + 0.005*\"state\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-17 14:48:07,838 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.010*\"com\" + 0.008*\"file\" + 0.008*\"graphic\" + 0.007*\"program\" + 0.005*\"us\" + 0.005*\"host\" + 0.005*\"univers\" + 0.005*\"softwar\" + 0.005*\"nntp\"\n", + "2019-01-17 14:48:07,839 : INFO : topic #4 (0.200): 0.016*\"armenian\" + 0.010*\"space\" + 0.009*\"peopl\" + 0.005*\"turkish\" + 0.005*\"said\" + 0.005*\"nasa\" + 0.005*\"know\" + 0.004*\"armenia\" + 0.004*\"year\" + 0.004*\"like\"\n", + "2019-01-17 14:48:07,840 : INFO : topic diff=0.436104, rho=0.455535\n", + "2019-01-17 14:48:08,814 : INFO : -7.846 per-word bound, 230.1 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-17 14:48:08,815 : INFO : PROGRESS: pass 1, at document #2819/2819\n", + "2019-01-17 14:48:09,364 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-17 14:48:09,368 : INFO : topic #0 (0.200): 0.008*\"space\" + 0.007*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"orbit\" + 0.004*\"dod\" + 0.004*\"host\"\n", + "2019-01-17 14:48:09,370 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.008*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.005*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"said\"\n", + "2019-01-17 14:48:09,371 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.009*\"isra\" + 0.008*\"jew\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.005*\"state\" + 0.005*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-17 14:48:09,374 : INFO : topic #3 (0.200): 0.011*\"imag\" + 0.010*\"com\" + 0.010*\"graphic\" + 0.008*\"file\" + 0.007*\"program\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"us\" + 0.005*\"nntp\" + 0.005*\"univers\"\n", + "2019-01-17 14:48:09,374 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.009*\"space\" + 0.008*\"peopl\" + 0.005*\"said\" + 0.005*\"launch\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.005*\"nasa\" + 0.004*\"turkei\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-16 20:10:02,458 : INFO : topic diff=0.423402, rho=0.455535\n", - "2019-01-16 20:10:02,461 : INFO : PROGRESS: pass 2, at document #1000/2819\n", - "2019-01-16 20:10:03,139 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:10:03,145 : INFO : topic #0 (0.200): 0.009*\"space\" + 0.007*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.004*\"nasa\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"time\"\n", - "2019-01-16 20:10:03,146 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"time\" + 0.005*\"atheist\"\n", - "2019-01-16 20:10:03,147 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.007*\"jew\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.006*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.005*\"state\" + 0.004*\"univers\"\n", - "2019-01-16 20:10:03,148 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.009*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"host\" + 0.005*\"univers\" + 0.005*\"jpeg\" + 0.005*\"nntp\"\n", - "2019-01-16 20:10:03,150 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.008*\"space\" + 0.005*\"said\" + 0.005*\"nasa\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"launch\" + 0.004*\"turkei\"\n", - "2019-01-16 20:10:03,151 : INFO : topic diff=0.333963, rho=0.414549\n", - "2019-01-16 20:10:03,151 : INFO : PROGRESS: pass 2, at document #2000/2819\n", - "2019-01-16 20:10:03,843 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:10:03,848 : INFO : topic #0 (0.200): 0.011*\"space\" + 0.008*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"nasa\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"host\"\n", - "2019-01-16 20:10:03,849 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.010*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"atheist\"\n", - "2019-01-16 20:10:03,850 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"state\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", - "2019-01-16 20:10:03,851 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.009*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"softwar\" + 0.005*\"host\" + 0.005*\"nntp\"\n", - "2019-01-16 20:10:03,852 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"space\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"like\" + 0.004*\"year\" + 0.004*\"nasa\"\n", - "2019-01-16 20:10:03,854 : INFO : topic diff=0.334135, rho=0.414549\n", - "2019-01-16 20:10:04,852 : INFO : -7.786 per-word bound, 220.6 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", - "2019-01-16 20:10:04,853 : INFO : PROGRESS: pass 2, at document #2819/2819\n", - "2019-01-16 20:10:05,391 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-16 20:10:05,396 : INFO : topic #0 (0.200): 0.011*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.005*\"nasa\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"satellit\"\n", - "2019-01-16 20:10:05,397 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"believ\"\n", - "2019-01-16 20:10:05,397 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.009*\"jew\" + 0.007*\"peopl\" + 0.007*\"arab\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", - "2019-01-16 20:10:05,398 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"com\" + 0.009*\"file\" + 0.007*\"program\" + 0.006*\"softwar\" + 0.006*\"us\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"mail\"\n", - "2019-01-16 20:10:05,399 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.006*\"said\" + 0.006*\"space\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"year\" + 0.005*\"know\"\n", - "2019-01-16 20:10:05,400 : INFO : topic diff=0.321527, rho=0.414549\n", - "2019-01-16 20:10:05,401 : INFO : PROGRESS: pass 3, at document #1000/2819\n", - "2019-01-16 20:10:06,054 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:10:06,059 : INFO : topic #0 (0.200): 0.012*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"orbit\" + 0.006*\"nasa\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"host\"\n", - "2019-01-16 20:10:06,059 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"moral\" + 0.005*\"time\" + 0.005*\"atheist\"\n", - "2019-01-16 20:10:06,060 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"think\" + 0.004*\"univers\"\n", - "2019-01-16 20:10:06,061 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.008*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"jpeg\" + 0.005*\"softwar\"\n", - "2019-01-16 20:10:06,062 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.006*\"said\" + 0.005*\"armenia\" + 0.005*\"space\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.004*\"year\" + 0.004*\"know\"\n", - "2019-01-16 20:10:06,062 : INFO : topic diff=0.255652, rho=0.382948\n", - "2019-01-16 20:10:06,066 : INFO : PROGRESS: pass 3, at document #2000/2819\n", - "2019-01-16 20:10:06,715 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:10:06,720 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"nasa\" + 0.006*\"bike\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.005*\"univers\" + 0.004*\"year\" + 0.004*\"host\" + 0.004*\"nntp\"\n", - "2019-01-16 20:10:06,721 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.010*\"com\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.005*\"believ\"\n", - "2019-01-16 20:10:06,723 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"jewish\"\n", - "2019-01-16 20:10:06,724 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.008*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"nntp\"\n", - "2019-01-16 20:10:06,725 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.004*\"year\" + 0.004*\"turkei\"\n", - "2019-01-16 20:10:06,726 : INFO : topic diff=0.256253, rho=0.382948\n", - "2019-01-16 20:10:07,714 : INFO : -7.754 per-word bound, 215.8 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", - "2019-01-16 20:10:07,715 : INFO : PROGRESS: pass 3, at document #2819/2819\n", - "2019-01-16 20:10:08,248 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-16 20:10:08,254 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"nasa\" + 0.006*\"new\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.004*\"like\"\n", - "2019-01-16 20:10:08,255 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"time\"\n", - "2019-01-16 20:10:08,256 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.010*\"isra\" + 0.009*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"state\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"war\"\n", - "2019-01-16 20:10:08,258 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"softwar\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"mail\"\n", - "2019-01-16 20:10:08,259 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"like\"\n", - "2019-01-16 20:10:08,259 : INFO : topic diff=0.249831, rho=0.382948\n", - "2019-01-16 20:10:08,260 : INFO : PROGRESS: pass 4, at document #1000/2819\n", - "2019-01-16 20:10:08,887 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:10:08,892 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.007*\"nasa\" + 0.006*\"orbit\" + 0.005*\"new\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.004*\"host\"\n" + "2019-01-17 14:48:09,377 : INFO : topic diff=0.423402, rho=0.455535\n", + "2019-01-17 14:48:09,378 : INFO : PROGRESS: pass 2, at document #1000/2819\n", + "2019-01-17 14:48:09,997 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:10,002 : INFO : topic #0 (0.200): 0.009*\"space\" + 0.007*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.004*\"nasa\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"time\"\n", + "2019-01-17 14:48:10,003 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.009*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.006*\"moral\" + 0.005*\"time\" + 0.005*\"atheist\"\n", + "2019-01-17 14:48:10,006 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.007*\"jew\" + 0.007*\"peopl\" + 0.006*\"arab\" + 0.006*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.005*\"state\" + 0.004*\"univers\"\n", + "2019-01-17 14:48:10,007 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.009*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"host\" + 0.005*\"univers\" + 0.005*\"jpeg\" + 0.005*\"nntp\"\n", + "2019-01-17 14:48:10,008 : INFO : topic #4 (0.200): 0.017*\"armenian\" + 0.009*\"turkish\" + 0.008*\"peopl\" + 0.008*\"space\" + 0.005*\"said\" + 0.005*\"nasa\" + 0.005*\"armenia\" + 0.005*\"year\" + 0.004*\"launch\" + 0.004*\"turkei\"\n", + "2019-01-17 14:48:10,008 : INFO : topic diff=0.333963, rho=0.414549\n", + "2019-01-17 14:48:10,010 : INFO : PROGRESS: pass 2, at document #2000/2819\n", + "2019-01-17 14:48:10,635 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:10,640 : INFO : topic #0 (0.200): 0.011*\"space\" + 0.008*\"com\" + 0.006*\"bike\" + 0.006*\"new\" + 0.005*\"nasa\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.004*\"year\" + 0.004*\"like\" + 0.004*\"host\"\n", + "2019-01-17 14:48:10,640 : INFO : topic #1 (0.200): 0.010*\"com\" + 0.010*\"god\" + 0.007*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"atheist\"\n", + "2019-01-17 14:48:10,643 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"state\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-17 14:48:10,646 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.009*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"softwar\" + 0.005*\"host\" + 0.005*\"nntp\"\n", + "2019-01-17 14:48:10,647 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"peopl\" + 0.008*\"turkish\" + 0.007*\"space\" + 0.006*\"said\" + 0.005*\"know\" + 0.005*\"armenia\" + 0.004*\"like\" + 0.004*\"year\" + 0.004*\"nasa\"\n", + "2019-01-17 14:48:10,647 : INFO : topic diff=0.334135, rho=0.414549\n", + "2019-01-17 14:48:11,575 : INFO : -7.786 per-word bound, 220.6 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-17 14:48:11,576 : INFO : PROGRESS: pass 2, at document #2819/2819\n", + "2019-01-17 14:48:12,086 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-17 14:48:12,092 : INFO : topic #0 (0.200): 0.011*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"orbit\" + 0.005*\"nasa\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"satellit\"\n", + "2019-01-17 14:48:12,093 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"time\" + 0.004*\"believ\"\n", + "2019-01-17 14:48:12,094 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.010*\"isra\" + 0.009*\"jew\" + 0.007*\"peopl\" + 0.007*\"arab\" + 0.006*\"state\" + 0.005*\"islam\" + 0.005*\"right\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-17 14:48:12,095 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"com\" + 0.009*\"file\" + 0.007*\"program\" + 0.006*\"softwar\" + 0.006*\"us\" + 0.005*\"univers\" + 0.005*\"host\" + 0.005*\"mail\"\n", + "2019-01-17 14:48:12,096 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.011*\"turkish\" + 0.009*\"peopl\" + 0.006*\"said\" + 0.006*\"space\" + 0.005*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"year\" + 0.005*\"know\"\n", + "2019-01-17 14:48:12,099 : INFO : topic diff=0.321527, rho=0.414549\n", + "2019-01-17 14:48:12,100 : INFO : PROGRESS: pass 3, at document #1000/2819\n", + "2019-01-17 14:48:12,722 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:12,727 : INFO : topic #0 (0.200): 0.012*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"orbit\" + 0.006*\"nasa\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"like\" + 0.004*\"host\"\n", + "2019-01-17 14:48:12,728 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"like\" + 0.007*\"think\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"moral\" + 0.005*\"time\" + 0.005*\"atheist\"\n", + "2019-01-17 14:48:12,729 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"think\" + 0.004*\"univers\"\n", + "2019-01-17 14:48:12,730 : INFO : topic #3 (0.200): 0.013*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.008*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"jpeg\" + 0.005*\"softwar\"\n", + "2019-01-17 14:48:12,731 : INFO : topic #4 (0.200): 0.018*\"armenian\" + 0.010*\"turkish\" + 0.009*\"peopl\" + 0.006*\"said\" + 0.005*\"armenia\" + 0.005*\"space\" + 0.005*\"turk\" + 0.005*\"turkei\" + 0.004*\"year\" + 0.004*\"know\"\n", + "2019-01-17 14:48:12,731 : INFO : topic diff=0.255652, rho=0.382948\n", + "2019-01-17 14:48:12,732 : INFO : PROGRESS: pass 3, at document #2000/2819\n", + "2019-01-17 14:48:13,320 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:13,325 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"nasa\" + 0.006*\"bike\" + 0.006*\"new\" + 0.006*\"orbit\" + 0.005*\"univers\" + 0.004*\"year\" + 0.004*\"host\" + 0.004*\"nntp\"\n", + "2019-01-17 14:48:13,326 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.010*\"com\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"know\" + 0.006*\"thing\" + 0.005*\"moral\" + 0.005*\"time\" + 0.005*\"believ\"\n", + "2019-01-17 14:48:13,326 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.008*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"state\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"jewish\"\n", + "2019-01-17 14:48:13,327 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.009*\"file\" + 0.009*\"graphic\" + 0.008*\"com\" + 0.007*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"nntp\"\n", + "2019-01-17 14:48:13,328 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"peopl\" + 0.009*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.004*\"year\" + 0.004*\"turkei\"\n", + "2019-01-17 14:48:13,328 : INFO : topic diff=0.256253, rho=0.382948\n", + "2019-01-17 14:48:14,249 : INFO : -7.754 per-word bound, 215.8 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-17 14:48:14,250 : INFO : PROGRESS: pass 3, at document #2819/2819\n", + "2019-01-17 14:48:14,719 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-17 14:48:14,724 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.006*\"nasa\" + 0.006*\"new\" + 0.005*\"orbit\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.004*\"like\"\n", + "2019-01-17 14:48:14,724 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.010*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"time\"\n", + "2019-01-17 14:48:14,725 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.010*\"isra\" + 0.009*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"state\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"war\"\n", + "2019-01-17 14:48:14,726 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.009*\"file\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"softwar\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"host\" + 0.005*\"mail\"\n", + "2019-01-17 14:48:14,727 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.005*\"armenia\" + 0.005*\"turk\" + 0.005*\"know\" + 0.004*\"year\" + 0.004*\"like\"\n", + "2019-01-17 14:48:14,727 : INFO : topic diff=0.249831, rho=0.382948\n", + "2019-01-17 14:48:14,728 : INFO : PROGRESS: pass 4, at document #1000/2819\n", + "2019-01-17 14:48:15,289 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:15,294 : INFO : topic #0 (0.200): 0.013*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.007*\"nasa\" + 0.006*\"orbit\" + 0.005*\"new\" + 0.005*\"year\" + 0.005*\"univers\" + 0.005*\"launch\" + 0.004*\"host\"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-01-16 20:10:08,893 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.011*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"moral\" + 0.005*\"atheist\" + 0.005*\"time\"\n", - "2019-01-16 20:10:08,895 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.011*\"isra\" + 0.009*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"think\" + 0.004*\"peac\"\n", - "2019-01-16 20:10:08,897 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.010*\"graphic\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"softwar\" + 0.005*\"host\" + 0.005*\"jpeg\"\n", - "2019-01-16 20:10:08,900 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.004*\"greek\" + 0.004*\"year\"\n", - "2019-01-16 20:10:08,902 : INFO : topic diff=0.204473, rho=0.357622\n", - "2019-01-16 20:10:08,902 : INFO : PROGRESS: pass 4, at document #2000/2819\n", - "2019-01-16 20:10:09,532 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", - "2019-01-16 20:10:09,538 : INFO : topic #0 (0.200): 0.014*\"space\" + 0.008*\"com\" + 0.008*\"nasa\" + 0.007*\"bike\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"host\" + 0.004*\"nntp\"\n", - "2019-01-16 20:10:09,539 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.010*\"com\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"atheist\"\n", - "2019-01-16 20:10:09,540 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.009*\"jew\" + 0.008*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.004*\"jewish\"\n", - "2019-01-16 20:10:09,541 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.008*\"program\" + 0.007*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"need\"\n", - "2019-01-16 20:10:09,542 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.005*\"turkei\" + 0.004*\"time\"\n", - "2019-01-16 20:10:09,542 : INFO : topic diff=0.206188, rho=0.357622\n", - "2019-01-16 20:10:10,493 : INFO : -7.735 per-word bound, 213.0 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", - "2019-01-16 20:10:10,494 : INFO : PROGRESS: pass 4, at document #2819/2819\n", - "2019-01-16 20:10:10,990 : INFO : merging changes from 819 documents into a model of 2819 documents\n", - "2019-01-16 20:10:10,995 : INFO : topic #0 (0.200): 0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.007*\"nasa\" + 0.005*\"new\" + 0.005*\"orbit\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"univers\" + 0.004*\"like\"\n", - "2019-01-16 20:10:10,996 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"time\"\n", - "2019-01-16 20:10:10,997 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.011*\"isra\" + 0.010*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"state\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"jewish\"\n", - "2019-01-16 20:10:10,998 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.010*\"file\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"softwar\" + 0.006*\"univers\" + 0.006*\"us\" + 0.005*\"mail\" + 0.005*\"host\"\n", - "2019-01-16 20:10:10,998 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"know\" + 0.004*\"greek\" + 0.004*\"year\"\n", - "2019-01-16 20:10:10,999 : INFO : topic diff=0.203500, rho=0.357622\n", - "2019-01-16 20:10:15,719 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:10:26,490 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", - "2019-01-16 20:10:27,246 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", - "2019-01-16 20:10:47,825 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:11:02,035 : INFO : Loss (no outliers): 677.513414250545\tLoss (with outliers): 279.46611421992964\n", - "2019-01-16 20:11:09,040 : INFO : Loss (no outliers): 669.590857352226\tLoss (with outliers): 259.2467646189499\n", - "2019-01-16 20:11:41,754 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:11:42,726 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", - "2019-01-16 20:11:43,033 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", - "2019-01-16 20:11:58,355 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:12:01,493 : INFO : Loss (no outliers): 692.6547711302494\tLoss (with outliers): 287.76899186681857\n", - "2019-01-16 20:12:02,130 : INFO : Loss (no outliers): 695.4958681211045\tLoss (with outliers): 268.2945499450434\n", - "2019-01-16 20:12:27,345 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:12:29,083 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", - "2019-01-16 20:12:29,882 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", - "2019-01-16 20:12:50,781 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:13:06,065 : INFO : Loss (no outliers): 639.6176167237056\tLoss (with outliers): 511.0048240200623\n", - "2019-01-16 20:13:13,389 : INFO : Loss (no outliers): 637.4050783690045\tLoss (with outliers): 498.7006582634081\n", - "2019-01-16 20:13:46,326 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:13:47,224 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", - "2019-01-16 20:13:47,507 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", - "2019-01-16 20:14:02,082 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:14:05,741 : INFO : Loss (no outliers): 651.3812921174149\tLoss (with outliers): 518.2309924867346\n", - "2019-01-16 20:14:06,801 : INFO : Loss (no outliers): 647.9339449244935\tLoss (with outliers): 509.8204986004983\n", - "2019-01-16 20:14:30,871 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:14:32,642 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", - "2019-01-16 20:14:33,477 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", - "2019-01-16 20:14:53,828 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:15:13,520 : INFO : Loss (no outliers): 542.2256187627806\tLoss (with outliers): 542.2256187627806\n", - "2019-01-16 20:15:23,484 : INFO : Loss (no outliers): 624.7035238321835\tLoss (with outliers): 624.6056240734391\n", - "2019-01-16 20:15:53,641 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:15:54,609 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", - "2019-01-16 20:15:54,913 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", - "2019-01-16 20:16:10,160 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", - "2019-01-16 20:16:15,070 : INFO : Loss (no outliers): 547.1203901181682\tLoss (with outliers): 547.1203901181682\n", - "2019-01-16 20:16:16,263 : INFO : Loss (no outliers): 633.6243596382214\tLoss (with outliers): 633.3634284766107\n", - "2019-01-16 20:16:37,995 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" + "2019-01-17 14:48:15,295 : INFO : topic #1 (0.200): 0.011*\"com\" + 0.011*\"god\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.006*\"moral\" + 0.005*\"atheist\" + 0.005*\"time\"\n", + "2019-01-17 14:48:15,296 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.011*\"isra\" + 0.009*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"state\" + 0.005*\"think\" + 0.004*\"peac\"\n", + "2019-01-17 14:48:15,296 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.010*\"graphic\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"us\" + 0.006*\"univers\" + 0.005*\"softwar\" + 0.005*\"host\" + 0.005*\"jpeg\"\n", + "2019-01-17 14:48:15,297 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"turkish\" + 0.010*\"peopl\" + 0.006*\"said\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"turkei\" + 0.005*\"know\" + 0.004*\"greek\" + 0.004*\"year\"\n", + "2019-01-17 14:48:15,297 : INFO : topic diff=0.204473, rho=0.357622\n", + "2019-01-17 14:48:15,298 : INFO : PROGRESS: pass 4, at document #2000/2819\n", + "2019-01-17 14:48:15,860 : INFO : merging changes from 1000 documents into a model of 2819 documents\n", + "2019-01-17 14:48:15,865 : INFO : topic #0 (0.200): 0.014*\"space\" + 0.008*\"com\" + 0.008*\"nasa\" + 0.007*\"bike\" + 0.006*\"orbit\" + 0.006*\"new\" + 0.005*\"univers\" + 0.005*\"year\" + 0.004*\"host\" + 0.004*\"nntp\"\n", + "2019-01-17 14:48:15,865 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.010*\"com\" + 0.008*\"peopl\" + 0.007*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"atheist\"\n", + "2019-01-17 14:48:15,868 : INFO : topic #2 (0.200): 0.012*\"israel\" + 0.011*\"isra\" + 0.009*\"jew\" + 0.008*\"arab\" + 0.007*\"peopl\" + 0.006*\"islam\" + 0.006*\"right\" + 0.006*\"state\" + 0.005*\"think\" + 0.004*\"jewish\"\n", + "2019-01-17 14:48:15,869 : INFO : topic #3 (0.200): 0.014*\"imag\" + 0.010*\"file\" + 0.009*\"graphic\" + 0.008*\"program\" + 0.007*\"com\" + 0.006*\"univers\" + 0.006*\"us\" + 0.006*\"softwar\" + 0.005*\"host\" + 0.005*\"need\"\n", + "2019-01-17 14:48:15,870 : INFO : topic #4 (0.200): 0.019*\"armenian\" + 0.011*\"peopl\" + 0.010*\"turkish\" + 0.007*\"said\" + 0.006*\"know\" + 0.006*\"armenia\" + 0.005*\"turk\" + 0.005*\"like\" + 0.005*\"turkei\" + 0.004*\"time\"\n", + "2019-01-17 14:48:15,870 : INFO : topic diff=0.206188, rho=0.357622\n", + "2019-01-17 14:48:16,764 : INFO : -7.735 per-word bound, 213.0 perplexity estimate based on a held-out corpus of 819 documents with 113268 words\n", + "2019-01-17 14:48:16,765 : INFO : PROGRESS: pass 4, at document #2819/2819\n", + "2019-01-17 14:48:17,216 : INFO : merging changes from 819 documents into a model of 2819 documents\n", + "2019-01-17 14:48:17,221 : INFO : topic #0 (0.200): 0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike\" + 0.007*\"nasa\" + 0.005*\"new\" + 0.005*\"orbit\" + 0.005*\"launch\" + 0.005*\"year\" + 0.005*\"univers\" + 0.004*\"like\"\n", + "2019-01-17 14:48:17,222 : INFO : topic #1 (0.200): 0.011*\"god\" + 0.011*\"com\" + 0.008*\"peopl\" + 0.008*\"think\" + 0.007*\"like\" + 0.006*\"thing\" + 0.006*\"know\" + 0.005*\"moral\" + 0.005*\"believ\" + 0.005*\"time\"\n", + "2019-01-17 14:48:17,223 : INFO : topic #2 (0.200): 0.013*\"israel\" + 0.011*\"isra\" + 0.010*\"jew\" + 0.007*\"arab\" + 0.007*\"peopl\" + 0.006*\"state\" + 0.006*\"islam\" + 0.006*\"right\" + 0.005*\"think\" + 0.004*\"jewish\"\n", + "2019-01-17 14:48:17,224 : INFO : topic #3 (0.200): 0.012*\"imag\" + 0.010*\"graphic\" + 0.010*\"file\" + 0.008*\"com\" + 0.008*\"program\" + 0.006*\"softwar\" + 0.006*\"univers\" + 0.006*\"us\" + 0.005*\"mail\" + 0.005*\"host\"\n", + "2019-01-17 14:48:17,224 : INFO : topic #4 (0.200): 0.020*\"armenian\" + 0.012*\"turkish\" + 0.010*\"peopl\" + 0.007*\"said\" + 0.006*\"turkei\" + 0.006*\"armenia\" + 0.006*\"turk\" + 0.005*\"know\" + 0.004*\"greek\" + 0.004*\"year\"\n", + "2019-01-17 14:48:17,225 : INFO : topic diff=0.203500, rho=0.357622\n", + "2019-01-17 14:48:21,544 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:48:31,057 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", + "2019-01-17 14:48:31,780 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", + "2019-01-17 14:48:50,245 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:49:03,569 : INFO : Loss (no outliers): 677.513414250545\tLoss (with outliers): 279.46611421992964\n", + "2019-01-17 14:49:10,097 : INFO : Loss (no outliers): 669.590857352226\tLoss (with outliers): 259.2467646189499\n", + "2019-01-17 14:49:39,601 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:49:40,561 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", + "2019-01-17 14:49:40,838 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", + "2019-01-17 14:49:54,607 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:49:57,634 : INFO : Loss (no outliers): 692.6547711302494\tLoss (with outliers): 287.76899186681857\n", + "2019-01-17 14:49:58,233 : INFO : Loss (no outliers): 695.4958681211045\tLoss (with outliers): 268.2945499450434\n", + "2019-01-17 14:50:21,411 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:50:22,980 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", + "2019-01-17 14:50:23,716 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", + "2019-01-17 14:50:42,308 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:50:56,452 : INFO : Loss (no outliers): 639.6176167237056\tLoss (with outliers): 511.0048240200623\n", + "2019-01-17 14:51:03,333 : INFO : Loss (no outliers): 637.4050783690045\tLoss (with outliers): 498.7006582634081\n", + "2019-01-17 14:51:33,575 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:51:34,425 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", + "2019-01-17 14:51:34,696 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", + "2019-01-17 14:51:48,503 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:51:51,998 : INFO : Loss (no outliers): 651.3812921172465\tLoss (with outliers): 518.2309924866902\n", + "2019-01-17 14:51:53,008 : INFO : Loss (no outliers): 647.9339449245117\tLoss (with outliers): 509.82049860049364\n", + "2019-01-17 14:52:14,849 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:52:16,415 : INFO : Loss (no outliers): 543.9085511209285\tLoss (with outliers): 543.9085511209285\n", + "2019-01-17 14:52:17,127 : INFO : Loss (no outliers): 629.7446210861123\tLoss (with outliers): 629.7446210861123\n", + "2019-01-17 14:52:35,545 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:52:54,059 : INFO : Loss (no outliers): 542.2256187627806\tLoss (with outliers): 542.2256187627806\n", + "2019-01-17 14:53:03,433 : INFO : Loss (no outliers): 624.7035238321835\tLoss (with outliers): 624.6056240734391\n", + "2019-01-17 14:53:30,678 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:53:31,653 : INFO : Loss (no outliers): 547.4249457586467\tLoss (with outliers): 547.4249457586467\n", + "2019-01-17 14:53:31,927 : INFO : Loss (no outliers): 638.2126742605573\tLoss (with outliers): 638.2126742605573\n", + "2019-01-17 14:53:45,702 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n", + "2019-01-17 14:53:50,458 : INFO : Loss (no outliers): 547.1203901181682\tLoss (with outliers): 547.1203901181682\n", + "2019-01-17 14:53:51,589 : INFO : Loss (no outliers): 633.6243596382214\tLoss (with outliers): 633.3634284766107\n", + "2019-01-17 14:54:12,967 : INFO : CorpusAccumulator accumulated stats from 1000 documents\n" ] } ], @@ -1036,12 +1025,12 @@ " \n", " 5\n", " -1.675162\n", - " 0.527186\n", - " 7.167811\n", + " 0.527719\n", + " 7.167809\n", " gensim_nmf\n", - " 24.738141\n", + " 24.738142\n", " [(0, 0.035*\"com\" + 0.030*\"world\" + 0.030*\"like...\n", - " 3.742604\n", + " 3.597497\n", " 1.0\n", " 3.0\n", " 1.0\n", @@ -1054,7 +1043,7 @@ " gensim_nmf\n", " 2479.600679\n", " [(0, 0.012*\"com\" + 0.012*\"armenian\" + 0.011*\"w...\n", - " 21.181466\n", + " 19.820650\n", " 1.0\n", " 0.0\n", " 1.0\n", @@ -1067,7 +1056,7 @@ " gensim_nmf\n", " 48.768942\n", " [(0, 0.025*\"armenian\" + 0.023*\"peopl\" + 0.021*...\n", - " 6.074569\n", + " 5.856175\n", " 100.0\n", " 3.0\n", " 1.0\n", @@ -1076,11 +1065,11 @@ " 9\n", " -1.670903\n", " 0.694030\n", - " 7.131332\n", + " 7.131330\n", " gensim_nmf\n", - " 46.644076\n", + " 46.644018\n", " [(0, 0.031*\"armenian\" + 0.021*\"peopl\" + 0.020*...\n", - " 4.689899\n", + " 4.476314\n", " 10.0\n", " 3.0\n", " 1.0\n", @@ -1093,7 +1082,7 @@ " sklearn_nmf\n", " 2404.189918\n", " NaN\n", - " 6.833197\n", + " 5.676373\n", " NaN\n", " NaN\n", " NaN\n", @@ -1106,7 +1095,7 @@ " gensim_nmf\n", " 2460.213716\n", " [(0, 0.017*\"armenian\" + 0.016*\"peopl\" + 0.015*...\n", - " 29.622293\n", + " 27.860318\n", " 100.0\n", " 0.0\n", " 1.0\n", @@ -1119,7 +1108,7 @@ " gensim_nmf\n", " 55.361718\n", " [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*...\n", - " 1.243323\n", + " 1.205277\n", " 1.0\n", " 3.0\n", " 0.0\n", @@ -1132,7 +1121,7 @@ " gensim_nmf\n", " 55.361718\n", " [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*...\n", - " 1.149419\n", + " 1.091239\n", " 10.0\n", " 3.0\n", " 0.0\n", @@ -1145,7 +1134,7 @@ " gensim_nmf\n", " 55.361718\n", " [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*...\n", - " 1.238548\n", + " 1.219200\n", " 100.0\n", " 3.0\n", " 0.0\n", @@ -1158,7 +1147,7 @@ " gensim_nmf\n", " 2473.714343\n", " [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*...\n", - " 2.377610\n", + " 2.253492\n", " 1.0\n", " 0.0\n", " 0.0\n", @@ -1171,7 +1160,7 @@ " gensim_nmf\n", " 2473.714343\n", " [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*...\n", - " 2.500768\n", + " 2.271240\n", " 10.0\n", " 0.0\n", " 0.0\n", @@ -1184,7 +1173,7 @@ " gensim_nmf\n", " 2473.714343\n", " [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*...\n", - " 2.569788\n", + " 2.247909\n", " 100.0\n", " 0.0\n", " 0.0\n", @@ -1197,7 +1186,7 @@ " gensim_nmf\n", " 2287.018000\n", " [(0, 0.022*\"armenian\" + 0.015*\"peopl\" + 0.014*...\n", - " 22.575536\n", + " 20.997104\n", " 10.0\n", " 0.0\n", " 1.0\n", @@ -1210,7 +1199,7 @@ " lda\n", " 1939.575701\n", " [(0, 0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike...\n", - " 16.050437\n", + " 14.540969\n", " NaN\n", " NaN\n", " NaN\n", @@ -1221,10 +1210,10 @@ ], "text/plain": [ " coherence f1 l2_norm model perplexity \\\n", - "5 -1.675162 0.527186 7.167811 gensim_nmf 24.738141 \n", + "5 -1.675162 0.527719 7.167809 gensim_nmf 24.738142 \n", "3 -1.693074 0.625267 7.035608 gensim_nmf 2479.600679 \n", "13 -1.695379 0.675373 7.183766 gensim_nmf 48.768942 \n", - "9 -1.670903 0.694030 7.131332 gensim_nmf 46.644076 \n", + "9 -1.670903 0.694030 7.131330 gensim_nmf 46.644018 \n", "1 NaN 0.698827 6.929583 sklearn_nmf 2404.189918 \n", "11 -1.711411 0.698827 7.059604 gensim_nmf 2460.213716 \n", "4 -1.712103 0.700959 7.174119 gensim_nmf 55.361718 \n", @@ -1237,20 +1226,20 @@ "0 -1.755650 0.765458 7.002725 lda 1939.575701 \n", "\n", " topics train_time lambda_ \\\n", - "5 [(0, 0.035*\"com\" + 0.030*\"world\" + 0.030*\"like... 3.742604 1.0 \n", - "3 [(0, 0.012*\"com\" + 0.012*\"armenian\" + 0.011*\"w... 21.181466 1.0 \n", - "13 [(0, 0.025*\"armenian\" + 0.023*\"peopl\" + 0.021*... 6.074569 100.0 \n", - "9 [(0, 0.031*\"armenian\" + 0.021*\"peopl\" + 0.020*... 4.689899 10.0 \n", - "1 NaN 6.833197 NaN \n", - "11 [(0, 0.017*\"armenian\" + 0.016*\"peopl\" + 0.015*... 29.622293 100.0 \n", - "4 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.243323 1.0 \n", - "8 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.149419 10.0 \n", - "12 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.238548 100.0 \n", - "2 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.377610 1.0 \n", - "6 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.500768 10.0 \n", - "10 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.569788 100.0 \n", - "7 [(0, 0.022*\"armenian\" + 0.015*\"peopl\" + 0.014*... 22.575536 10.0 \n", - "0 [(0, 0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike... 16.050437 NaN \n", + "5 [(0, 0.035*\"com\" + 0.030*\"world\" + 0.030*\"like... 3.597497 1.0 \n", + "3 [(0, 0.012*\"com\" + 0.012*\"armenian\" + 0.011*\"w... 19.820650 1.0 \n", + "13 [(0, 0.025*\"armenian\" + 0.023*\"peopl\" + 0.021*... 5.856175 100.0 \n", + "9 [(0, 0.031*\"armenian\" + 0.021*\"peopl\" + 0.020*... 4.476314 10.0 \n", + "1 NaN 5.676373 NaN \n", + "11 [(0, 0.017*\"armenian\" + 0.016*\"peopl\" + 0.015*... 27.860318 100.0 \n", + "4 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.205277 1.0 \n", + "8 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.091239 10.0 \n", + "12 [(0, 0.021*\"armenian\" + 0.020*\"peopl\" + 0.019*... 1.219200 100.0 \n", + "2 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.253492 1.0 \n", + "6 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.271240 10.0 \n", + "10 [(0, 0.017*\"armenian\" + 0.015*\"peopl\" + 0.014*... 2.247909 100.0 \n", + "7 [(0, 0.022*\"armenian\" + 0.015*\"peopl\" + 0.014*... 20.997104 10.0 \n", + "0 [(0, 0.014*\"space\" + 0.008*\"com\" + 0.007*\"bike... 14.540969 NaN \n", "\n", " sparse_coef use_r \n", "5 3.0 1.0 \n", @@ -1446,9 +1435,9 @@ "\n", "Dataset consists of 400 faces\n", "Extracting the top 6 Eigenfaces - PCA using randomized SVD...\n", - "done in 0.239s\n", + "done in 0.195s\n", "Extracting the top 6 Non-negative components - NMF (Sklearn)...\n", - "done in 0.825s\n", + "done in 1.069s\n", "Extracting the top 6 Non-negative components - NMF (Gensim)...\n" ] }, @@ -1456,38 +1445,25 @@ "name": "stderr", "output_type": "stream", "text": [ - "2019-01-16 20:16:45,760 : INFO : Loss (no outliers): 5.445814094922526\tLoss (with outliers): 5.445814094922526\n", - "2019-01-16 20:16:45,763 : INFO : Loss (no outliers): 5.445814094922526\tLoss (with outliers): 5.445814094922526\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "done in 6.213s\n", - "Extracting the top 6 Independent components - FastICA...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/anotherbugmaster/.virtualenvs/gensim/lib/python3.7/site-packages/sklearn/decomposition/fastica_.py:118: UserWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.\n", - " warnings.warn('FastICA did not converge. Consider increasing '\n" + "2019-01-17 14:54:20,785 : INFO : Loss (no outliers): 5.486415140971889\tLoss (with outliers): 5.486415140971889\n", + "2019-01-17 14:54:20,788 : INFO : Loss (no outliers): 5.486415140971889\tLoss (with outliers): 5.486415140971889\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "done in 0.299s\n", + "done in 6.041s\n", + "Extracting the top 6 Independent components - FastICA...\n", + "done in 0.197s\n", "Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...\n", - "done in 0.925s\n", + "done in 0.862s\n", "Extracting the top 6 MiniBatchDictionaryLearning...\n", - "done in 2.195s\n", + "done in 0.660s\n", "Extracting the top 6 Cluster centers - MiniBatchKMeans...\n", - "done in 0.082s\n", - "Extracting the top 6 Factor Analysis components - FA...\n" + "done in 0.064s\n", + "Extracting the top 6 Factor Analysis components - FA...\n", + "done in 0.113s\n" ] }, { @@ -1498,13 +1474,6 @@ " ConvergenceWarning)\n" ] }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "done in 0.227s\n" - ] - }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm0ZedZ3vl8994aNJRUVbIsCY3WPFqyPGFjmiGy8KIbG4LdKybExtixF2lYnbBWEnqFNIGETndD0gFCHBoamnYIBNoYMG4zxRM22EjYmqzJKs1SabAkV5VcquHee/qPc35nv+fZ77fvuSWBsc/3rFXr1D1n729/0977fd6xjEYjNTQ0NDQ0fK1j6SvdgYaGhoaGhr8OtBdeQ0NDQ8NCoL3wGhoaGhoWAu2F19DQ0NCwEGgvvIaGhoaGhUB74TU0NDQ0LATaC++rHKWU7yuljCr/rpscc93k79e9QNf84VLKd74Qbf1VoJTyt0sp//Ar3Q9HKWVlsg4/Oufxry6l/HYp5YlSyuFSyn2llJ8vpXxdcuzDpZRfCn+/a3Kts17IMYT20zkupVxbSvkXpZSd9v3cYy+lvKmUclsp5dDknBNfyL43LC7aC+9rB2+R9Br79xeT3/5i8vfNL9C1fljS39gXnqS/Lelv3AtvMyilfJ+kT0naKemHJF0v6X+T9O2SPldKuXKDJn5X4zV/4q+oi7U5vlbSj2nc7ylGo9HqpD+/MtRoKWWrpF+T9IDGY36NpIMvQH8bGrTyle5AwwuGm0aj0T3ZD6PRaL+kT2/UQCll22g0OvyC9+xrAH+dc1NKuVzSL0h6v6S/M+qyQ3y8lPL/aizA/FYp5arJi6SH0Wj0pKQn/zr6Oy9Go9GGe1DS2ZJOkPRfRqPRJ/6Ku9SwYGgMbwGQqTRLKZ8spXyslPKdpZSbSimHJb178tsPl1LuKKU8V0p5ppRyQynljZPfHpZ0pqS3B9XpL6UX7q51QSnl10opj09Uc/eWUv6tHfMtpZSPlFKenfz78OTBH4+hz9eXUj5XSjk4UX29MRzznyT9XUnnhv7dE35/cSnlF0opj5ZSjkzG+U67DurAbyilvL+Usk9jtrWZvi6XUv6XUspjk35+VNJlgwvV4R9JKpJ+aGSpkEaj0Rcl/aikSyW9qdaAqzRLKX9YSvmL5LizSilrpZQfCt+dX0r59VLKkxO14mfnmeNSyrsk/eLksPvCb2fNo9IspfwrSazVr06O/5PJb2+YzDPzeVsp5R+WUpaTdt4z2R/PlVKenuyZrw+/n1hK+alSyv2TPXBvKeVHSiklHHNSKeXfl1IemuzZx0spf1xKubjW/4a/+WgM72sHy6WUuJ6j0Wi0tsE5l0n6t5J+QtL9kp4qpbxdY9XZj2v8kD9O0tWSTpmc8x2S/lDSDZL+5eS7qtqslHKBxoxkv8YP6j2SzpF0XTjmTZJ+W2M13PdoLIj9iKQ/LaW8dDQaPRKavHjS538t6SlJ/1jS+0spF49Go/s0Vqe9aNLn75qcc2hynZ2TMW2R9D9Pxvztkn6xlLJ1NBq917r/65L+s6T3SlreZF//laR/KumnJP1XSa+anDMP/pakz4xGo9q8flDSSNK3aswC58H7JL1vMk93h+//rqQ1jceqUsp5kj4jaa/GKssvajzO3ymlfMdoNPqQ6nP8iKTzJf1PGqs8905+m1et+h8l3SrpNyT9C4332b7Jb+dL+iNJPzu51is1nuMXabyvNOn/v5P0P2r84v3nk6+/XmPm+OlSypZJOxdrvH9vk/Rajff7Lo3XTJJ+RtIbJP0zjV/Cp0j6RkknzzmWhr+JGI1G7d9X8T9J36fxw8//fTIcc93ku9eF7z4paV3SVdbef5T0Fxtc82FJ//ec/fvPGr/sTq/8XjR+8fyhfb9T0tOSftr6fETS+eG7MyZj+yfhu/8k6f7kWj8u6TlJF9j3vyLpcUnLk7/fNWnzp46lrxo/HA9K+vd23D+btPujG8zZUUnv2+CYL0r6PVuTXwp/M4azJn+fIOmApH9p7dxm7fyqpMck7bLjPirpxjnmmOueZ9+vzDn2SyfHfe/AMWXS3o9N5qFMvr9ksqf/94Fz3zFp/7X2/Y9JOizplMnfdw610/59df5rKs2vHXyXxlIv/945fLgk6Z7RaHSrfXeDpJeXUn6mlPK3SinHP89+Xa/xA/Wxyu+XSjpX0q9N1F4rE6b6rMZM47+x4+8cjUb38sdoNNqr8UPvnDn68gZJfybpAbvWH0p6scYPzIgPHGNfr9aYGf+mnf8bc/TxrwSj0ejLGjPT70V1V0p5maQrNGZ/4A2SPiTpQDJH15ZSTvhr7rokqZTydaWUXyylPKixQHBUYxZ4ijrtw+s1fhn+nwNNvUFjLcNf2Pj+SNJWSa+eHHeDpHdOVJ0vL6W0Z+XXAJpK82sHt40qTisD2Jt898sa3/jfr7F34OFSyv8n6R+NRqMHj6FfuzVmHzW8ePL5q5N/jnvt76eTYw5L2j5HX16ssWrxaOX3U+xvn595+3rG5PNx+93/ruFhSefVfiyl7NB4Xh+asz3wPklvk/Q6SX8q6e9J+pKk3wvHnKrx2n9/pY3dkr68yes+L0zsdL+vcd9+XGP2dUjSd2usTmbtWb+N9tsF2ngP/AONGfnf10R9Xkr5VY0Z6nPHNpKGrzTaC2+x0asNNRrrc94r6b2llN2Svk3Sv9HYxvMNx3CNpzR2chn6XZL+icZqM8cL6Rn5lMYviR+u/H6X/e3zM29feVGeZm2eNl839V8lva2U8uJRbsf7Do2ZzEfmbA98RGM72/eWUv5M0lsl/dZo1vv0aUl/IumnK23M+9J+IXGxpJdJeutoNJqy5FLKd9lxX5x8nqkxi8vwlMY2ubdWfr9Pkkaj0QGNX6Y/MrFrvkXjF98hjV+EDV+FaC+8hipGo9HTkn69lPIaSW8PPx3WWGU3D/5I0psGHt63a/wSunw0Gv3U8+rwxv37A0nv0dj29MXk940wb19v1thW+N9Liq71f2fO6/w7jZnYz5ZS3joRQiRJpZQXaeyscZfmd4KRJI1Go/VSyq9p7I37IUmna1adKY3n6OUaawwODTRXm2NenvPuj3mAWn3Kyso4Xu977Lg/1lhIebc65xPHH2gsMOwbjUZfmOfio9Hofkk/VUr5e5I2in9s+BuM9sJrmEEp5f+S9IykP9c4jusSjR8sfxQOu13SN5VS/luNJf4nR6PRA5Um/7nGdpM/L6X8a42l67MlvX40Gr1t8hD+QUm/XUrZLum3NJbCT9fYe+7e0Wj0M5scxu2Svr+U8m5Jn5P03Gg0uk1j1vIWjT0q/w9Jd0vaobFt7rWj0cgZwwzm7etoNHqqlPIzkv5pKeXLGjOmV6uuJvTr3FZK+Qcax+KdWkr5BY0dSS7T+EF+oqTrRpUYvA3wPo0Z6n/QmM180n7/UY29aj9eSvl5jQPAd0m6StI5o9Ho70+Oq83x7ZPff3ASvnBUYwHg+VSa/rzGasr/tZQy0tgx5Yc19i6dYjQa3V1K+VlJ/7iUcrLG3qzrGntp3jYajX5L0v+jsaPXR0spP62xV+hWSRdKeqOk/240Gh0upXxGY5vnbRqrcL9FY3vnLzyPcTR8pfGV9ppp/57fP3VemhcOHFPz0vxYcuw7JH1c45fdIY3tUv9G0o5wzOWT8w9O2v2lDfp4oaT/ovHL4ZDG6qaftmO+QWPW8czkmPs0VqN+/Rx9dg/FHZPrPTPp3z3ht90au5zfr7HH5xMas7AfCseknoab7OuKxiqwxzVmex/VmB1s6KkY2niNpN+ZrMWRSZ//g6Qz55iDGS9NO/Zzk99+onLdczS25T4yue6jGgs83zPnHP/E5Jw1+qDn6aWpcQaXT0323EMaO6y8x8eosar3f9D4RXZYYxXtRyW9Ohxz3KSPd02OeUpjp6Mfk7Q0OeanJ/O0T2OnpFsk/eBX+n5v/57fP9x5GxoaGhoavqbRXG0bGhoaGhYC7YXX0NDQ0LAQaC+8hoaGhoaFQHvhNTQ0NDQsBNoLr6GhoaFhIdBeeA0NDQ0NC4FNBZ7v3LlzdMYZZ2htbRzvub6+3juGMAdKS3nYQxYGwXe1EImh30MJq7n7wXf039vwc7PrbTSu7Ho1ZP3wua3NwdCc1MaXwdv3dmljdbWLdT56dJz4Yvv2cSrDlZUV7d+/XwcPHuxdcPfu3aMzzzxz2if/jNf039hv3pehY2I/s3HOg6G9utGcZutfu3Zt/x1rH+fF0P723/z7+Pvy8mxJuqWlpZlPjuXveM7KyvgRtLa2pscee0z79u3rdeqEE04Y7dy5c7rGQ88D/47r8Bn7sBE2Wrfs2Fo/Xujr1Z4D89zrG7U1z7GbeY7799l7A/h9DOK4fD+VUnTgwAEdOnRow8Fv6oV3xhln6Jd/+Zf1xS/OZmWKA/CHLQ/FoYcY3zEh/Obn8jc3idS/qfz6PPjiRqcd3/z+UI/j4liu7X3mb26sQ4e6rEwc430desnQR747cuTITN8OHz4883t8wDN/W7dunbmuvwDjJuIcn/vnnhvnyT3++HF2p3379k3P2bt378x1rr76ar3vfZ6paoyzzz5bH/7wh/Xss89Kkg4ePChJ07+lbs4OHDgw80lfmIMtW7b0zqGfHPvMM88Mjiuiti6cE+eJeY57UOrv7zgu2tu2bVt6XfaMr3V2HcA46GN86fB/75M/KPg+9ovrMcf+YuITIUfq1v+4446bOeeEE06YuR6/S9KuXbskSaeeeqqk8X5417velY51586d+oEf+IHpnmet4/3J/+n3SSedNNNPxh7nk3M2eglmD3c/h7/9Xo7POd8789yX/ht7w/dx9mzMXgwR2cvFn2ecy9z7cy7uVX/m+n7mc+iFxzj2798/8/fOnTunx5x88skz3+3YsUM///M/X20zoqk0GxoaGhoWAptieOvr6zp48OBUouMt7JKr1L3dkbiQxF0tQbvxt0yyjm1FadYlK/8bZJJdNr6IKEUhKXofXeLh+yjNIu3X1EWZhIk05HPLdYbUlvSbOad9WBrHRgmvNo9cn/7s2LGjNy7Y1Be/+MVBVeLq6mqPMcTxIUUy11yTfkb1l/ebPUn/aePLX/7yzJjjPqCvzogBxw4xLj+Gv+PeYZ5gNb6GXD/bu66q8vspk959f7FH6Jvfmxkr4Bhnds5KYv9ranAfbzzfxz4EZ01xvbjf2OOMbUjF58y69uwYMt3430NmhBoLnMeE4hof75uPJZ7r2qhanyPYzzVtQdamayx8j/o+9P/HccLQWU/+lrq1Zv1XVlbmVuU2htfQ0NDQsBA4JoaHbj6T7Gr2kJoR3M+Pv7nxOzu3ZixGwsskYCQDl1YyvXTtOs70arZEqWMxNYYH4jhdD06f6Zvb5zLQhtu3ODfawpyx+hpkNoIXvehFkjqG9+yzzw7q52O77uggdfNEf2t7J9MOuAbB+z+0Vzday8hC3Z44j7Qe51nq5tDH5QxX6u8Dt9ll+9u1DVzfWRuIc+I2YuD3YmwDiZvr8HxwFh+ldI6NdsTaXi6laHl5uXftOK/0gblzVuFrTbtx/P7p9vp5njuZ9sSPYY79HhhyQPNznCHPY/9zTUnmT+F98HvCfSKyZ5Zfn2P8mRzHA/wY2kBTE/sE+8v6XUNjeA0NDQ0NC4H2wmtoaGhoWAhsSqUZ6wpJfVVJhprBPNLfzKEgazdzZqnF/NA+6pToROB9ceOtO0Bk13G3cFc9uhorgxuaM7Wrq6eAq+Hi9WgnGnUjsvXimBhOkR0b59Fdy/ft21d1WpHGczdPDE7NuE/b8RqELuAYwrH0E9WcO6hI9VAZV7dFFSNwVSPrxHVR60nd3LrzRm39s/WpOUdljjyoW/2e4BjWOAvZ8ZAc5pW9xFyceOKJ03NQQdMX1E++/+I8+v0x5HRw9OhRPfHEE9OQGA85iO25E5HPdVShuSMI/eV7n4t4bi3er/Z7NlZXOWZOJLXQrFqcbkRNRezP0bh3MlNDvJ7v4XhdN7u489k86nc3/7D/4j3vppqtW7cOPnciGsNraGhoaFgIbIrhSbNv2lpAY/zNz8uMnc5A3IGiJiHH79wRwCWgzEED1FykYx+d/Xn7PoboMu0u3TVjeYSzHJiKS6FI69kacA7GXWc0Q8H4NXfxOHeM68ILL5Qk/emf/umGTis+13He6INL5Xz/pS99SVIn2UndvmIeNvqMc8137A2C4d0VP+4dWK2Pc4hx19h+bb9FFu3OKX7dIckWyboWEuSON/EYpHOX7LkecxWPhW37vYJDSdw7p5xyiqSODR49erTKilZXV/X4449Pr717925JsyEyzhT8HsuSFriDhDtXDN3zfp/4/Zeds1H41ZATSS3Rhe+L+NzxdmuML55T08g5AxvSQjizA64Vkfpr4IkjfA9L3fMshqJs9NwBjeE1NDQ0NCwENm3DW1tb6+nsh972NcknSlr+FvccjW7Pitdzhuduu+7GH3/zfsOI+IzswwPBa9Joxg6RRGqphLL+1ALnGQfSkgfES938Pf300zO/uYSXBWH7/PF9lg+R3+LcDNliov0XRCnQbQq0jx6ffRfTdvncuQTsbUX25HY+1yywR6OLPizT18NZQWaj9vl3yXtIU1LTWAzZtZkvZyOe4ioLMWCfMz5PWlBLeSZ18wULdBtO7ANrkCWvAOwb7IYeBhH/7/thKJyCa3raOQ9az+4fT3iwUThP7JP32fddlqrRr1tLSJCx0FoatCHm50zP5yKziXraM9fIZXPimiXfq4wr88Hgty1btrTA84aGhoaGhohNMTwCQF1iy6Q9D+L2YPUo2bvUgOTF37AYZx/xO5fSYIuZFOOeQC41ZQl5PQjZvfNqjCgbe83jzoN943g8iSvAjpFVMfC/mXPsJtmc+Hi9r3GtXYLfSNJaX1/vrQe6es6PY3QbAGON6+LzTfv0zT07I9PH6w/W5mPnelEy9/mvJQTO2nPW6ew804pkezEiYx+cz76jXRiS25Di2runnXs983v00vTvfA9k7Jo+RW3RkGfj2tpaL91UTN9X83x0Jp4xSfrAnvH+Z4kC/H6g/aG0gTV731B6MLfRegKImvYg+86f11lwfC2hQa3aROyfJ4Fwb+As+YMHwTtDzzQAQ/faRmgMr6GhoaFhIbBphrd169ZeaZqhOA6PxeGtnyXkdSnMvaaw3USWAUNAWndvLKTB6NmH5M4xnow08/jxmByXoj3eK0ofHiPk+mn3oov/53p4wLmkzblZQm2XhNzuENkKv9Eex9Q8ZiOQjOfRpTvDp9SHNJs+KP7GfqBv0YbHtRmL959+n3vuuZKkiy66aHrurbfeKkm6//77Z9pCqnzxi1/cu56zFfYV+5CE6meeeWZv7M5cv+7rvk6SdO+990rq4hmj1Myx/MY+gE1RqiuW7CLlG3s/1iuMfw+lv3K7uUv4ca3oE2PnnvAkwvF6rCn33lAC4NFopPX19el9y9gzL2rfn37vZUm9XRvgc5ExT+a2Fsvntnapz/Cc3WTaIe+Lj3coxaA/BzK7m8OfLxnrjMfFZ4iX/PJ5dc2G1O2jWqxtNi7X3kXN0UZoDK+hoaGhYSFwTF6aQ8l8nUV41gJ+j295Z3QunXscVpSakGzd3kNxQNqI+n7vq0tnrj+Wcgkx9t1Zb3Yd93SiLT5jbJPb9bx9L50TJRwkYbd51WwT8druueZzksXQxKTU83pLDXmIIcEj/cGeHn30UUkdo5D6Hnv039k7DOmlL33p9NwrrrhCknTnnXdKkm6++WZJfVtOTHrsjJ4+sjcff/zx3rjoE/NNn5CE+T2bE1gujIJP1tbL4kjS5ZdfLqm7x1w74Tb4rNSPZ1FiLlgbWGS8ttvGYXyZjfpjH/uYpI55X3XVVYNJ1bdu3TqNgYxjBZ48mU8YOB7L2bPK94rHf2b3J3vQGRBj9GTL8Tv3fK0lMZc6NuPM1VlaxnBr5Zlq/gdxDoCP3RlZ1H7U4gsZp7PG2I57TPv6xXM8hrd5aTY0NDQ0NBjaC6+hoaGhYSGwaZXm6urqICWeNjyhm1BhVDNDVas90NiNyLSVpZZy921PghypfnSpjm3UAiXj+X6sqyuh5H6NCPqKWoTPrOYTc+EqTFedZG7p9LGWvieuG8dwHVdBZ2vtqr+lpaVBx4MsLVmm8nnwwQcldepB+nb++edLmlUxulqavcE4mD9UgKS0iqBfX/jCF2b+9kQIEajvUHF6QuOHHnpoeixqO3dWoM/cG1lQt9eW8/llXGefffb0Ow/jcRU6yJzOPDFvLS1aTOvF9diTqI9JAcYaxD3K3vnLv/zL6TFRPRaxvLys3bt3T80Ubi7xtuPY3IQSj+MedceWWg3C2D93UvMK4cwfznSxPcDa8smeivcE57hzWq3GXZwT3ytDiZ8B13FVPePw52zcq7SHWpTrePL1GBrkTjLuYJU52Hi9zMz5qobG8BoaGhoaFgKbTh6Ni7A07ArrhnFnEJEpuEu5BxsiiSEJR4nBww5qQY9ZsLJLE7XUQrG/tWTV7vIbJWM3SiM9YUhHioqONx6Y61KNXyeWo3GW6+wsSzjt7s3urJBJWkjpcd2GgoezgNPIaj/5yU9Kkk477TRJ0mWXXTZttzZW5oV2PEyB7++77z5J0iOPPDI9FybipZ6QZt1AL/W1DjAdxuPOUpJ0zz33SJJe/epXz4zDg7pdGyL1HUFYBxx5YKyxX3fddZck6frrr5/p04033iip7/w1lASCOXAnlujA4Vob9hCOLWecccZMn6Xuvn3yyScljZNy1xJhr6ysaNeuXT03+8zZxpmBO6Jk1bYZv6fG8jCS2D93pvD14X6KTBhNDvcLf7M+GQsFzlg9IUU2J/6bO6Bl2hjGijOga9U8cD+yKw+V8mQAQ1odf+6w3/z+iu279mkeNIbX0NDQ0LAQ2HTg+ZYtW3quo5n9iLcwb2jYzFCpDaQxl3SQKggEjuzJXV3dLX3Pnj0z/Yn/dzuP26SirdCv50mDOZa5ifp+tzlgm0K6dQlT6gdi0gYSPSwoC8J96qmnJPXd3D38IkrpjJk18ITKmQ3PGcKhQ4eqAaCllFRK+9znPjf9jjAB9gz9QxJ2phz7AHtgbmPoQrze7/zO70y/I0SBtfLg8aFkvqwlx7okCquRurmkHbf7cX2OixoMZyh+PQ9xkDp73lve8hZJHaODaRLeATKm5H/7XETblDMg1s3LLcW2GSPzuW/fvqotZnl5Wbt27eoxhPgccI2IF0HOAqXdNufrALsdStDtwdQ+rriW9M0D870sVqYlqSUAAJkmC/izxMMHot2PMfPJXHjaP7fpxT55KSlPMhBZoocsuG+CFxCQOg1IPGbeNGON4TU0NDQ0LASOKXl0rdii1E+1g3SJ9Jylt4GluJcS7dMGklGUSGCOXibD7TFRikUi5TckO097FRme25FqJe/5HpYldUzOwXg98Dhezz2RkJppM0uu6ozR53zI88ltrs5ysxIpGRNyHD16VE888cT0749//OOSZgOY6RfHwdJYJ6S92CeOce9MwDhc6pS6gHNnwO5hHMflzN73GRJr9CTFFnneeefNnAOjfeyxx2b6E7URMHr3JHTWlCVUR7vh2gcPhI/wQGc/1gvDSv1gb67DfUvqtJik20u8bN++verhu7y8rJNPPnlQivcEEMyL2/ajVoP7nrXjnnWmmd1j3tdaQoDI8DyJvBdKzQrAAi8x5mAeIxPyZ5MnPs+KIgP3vPVE8Vm6ONrBJslvaCXQvkS7ptsvgZejyn7L/EE2QmN4DQ0NDQ0LgWPy0gSZDQ+JgLc6Ul18q0uz6YGQXnhjw154+/OJhBzZE153NXsB39MfqWMV6ILpG+Pg+sSDSZ3nG8fASt2ukMUIIdkxZv52thBtEhyD3dJjt1xizWxrziy99EuW9NvLDXlS6Sjl0kdY9vr6etVLc//+/frwhz88jU8juXLcF9iY2EOsLf3mepmnHUwIqb1WkDOOmWOdBfp1omTszJ75cEYemSR7hXRa7D/2JPYSxhm9NJkf90L0gsQR7IkPfvCDM+NhDWmfPhIvF8fKeLg3PXFzJlU7i+a62JtJDSbNesvW2gNLS0szzwufi3hNT5/mnpFRy8CzKSY/53pSt5asV3aPuWbHYx0jc4H1uzdobQxS3+vTfRRA5k3tfazFrWX3rB/DnEQP6fi91GfTjJP2uUcjy0bzx95wbVdWUNm90Lds2TLoHT7T37mOamhoaGho+CrHphleKaVnL4tvV8+O4SVPkFSijcOlcmwetEub2H3i257fkEyRXvnk+rDEeKz3CSkD9kESXkl6//vfPx2/JL3hDW+Q1E9sjUSM/UTqmKJ7SSKhIL3G0jX011mnM2Yk1qi7Z27POeecmT67HTLaVJhHvvNsHVlCbTBPxoP19XUdOnRoaq96+9vfLmk2Do85Y11OP/30mTayTCRua4zSo9S36cX+uz0WeImSLF6ReWHPsIeZtyiBu/cln8wF+yCWygFIvIzLM+24diT2+4EHHpDU7RW35XisbDyG/VdjbfEcjw11ezB9jPZaNBdkWllbW6tK6aPRSIcPH+6VGotwj27G6DG2Wayf20Xdc5AyTllpIY7hby9PlXlrewyvJ4SP46Mv7ufgMXUenyf1i6kCt+Vl5/gna+cJ1TObPnPMvc2zCzYXNRjAY6Nr8c5SP96zJY9uaGhoaGgwPC8bHv+PGRSQCNwW5KUiouSDDQhGgp0n2oakLvr/6quvnp7rsW0eC3T33XdL6piepF6ZEVgNEglSRrQbXHDBBZI6Wx7FQ+kTtgLir6LuHhvG3r17JXVeYRxLrsUo2SElI9khWSMFvuY1r5HUxZUxV9K41IokfeITn5DUSYVIVrQR7Wcek+TxOEh0kbk4m3r22WerLG/Xrl1685vfPJ0LZxCxP6wh8+9epbGECfMEi6afSOUPP/xw2p8IxuRxhey7mBfVCwxzD3hR4biW7A1nh35vZHFYnl2Gda71VepnwOF6Ucsh9VlRPNelcPKMOvuROhsgfXIvV/ZUnEfaZ/1OOumkasYMsjvV7LIZ3JbOZ7wv6Sd9gMWwR91DMbIIj/NzuyznxGcIvzmjdA/YCPczyErsxP5QoVbyAAAgAElEQVRED19ntR53l2Vc8QxV3E+e8QfEvVPLUcwcsHezeEz3c/B9Fs9hz0f7abPhNTQ0NDQ0BLQXXkNDQ0PDQuCYnFY86WpM44TaxB0Z3Nge3ZKh7ahNMHKiRkQV6OmjpM7w7ymYcAD59Kc/LWnWMAtNJgUTVJzrMp5Ikz3sgXZdtYW6MqqPvCQNf3MM14sG9UsuuURSp1657bbbJHWqO1zcUZNEBw/mB3UDaj1Ut6gpokqT/3vYgycDiOfUys1kWF9f18GDB3upy6KzBXPsKhcv4xJVmqjTGP+f/dmfSerWAVV2FlYB+I39xbkeeiJ16nAPC+FYN7pL3Xq4s4WXYskqkLO/ua47NmQu7vSB9lEleVhMlqaK/zMXrMG1114rqZvnaJLwcjqeDJ224j3BOfTttNNOq5YiksbPj1rasziWWrJoDwmQ+inQXLXMXvHnXWzX73/mmPXA5BHboy8cw/OP7+P6s1Zcx/evq3WzBPQeOB/TwsXxx/M5x0MAuN+ytXJHF55NtMVzL6p5GTP3gIddsM+jqtbfKUNJCxyN4TU0NDQ0LAQ2XQB2bW1tKkHC0rJSOJ6sFVZF0HhWBBCJAEmAtpAqKfFy//33T8/l2kgpMCLOxXkhuuAjgcCsPPEvUmeUltywTdLj17/+9ZI6SYXxRYnEEzMzHiQfjo0SsIclwEZJ04TTDH2PEv7tt98uSbr00ktnxoG0yZpERlZzGPDA+jiP7IOYJHaoAOzhw4d7KcCitOmlflxq9j5l/YZpsYZRwpZm14X2mQ/2gycvz8rCcK6n3qLvL3/5y6fnfOpTn5LUSfIe3O0u9PF+gh15wU/AvotrSR9oj/YJYWE+vTxWbAcGF4PFY5/jvLuGInNmkmbvJ9aHfT60d6TxWngqw8hu+I3192QSmfMDGiX2IM8f5jSGTkmz+9BDmzxonOtHRxQvbI3TmhcPzpKjb1TMNQtBqKUq8xSNkVF6IgV/fns6suio4s8InoXsZ/Z/DF5nf7EP/PmQJbimv4S2nHjiiWmoSobG8BoaGhoaFgKbYnirq6t68skney7fV1555fQYL+LqrsRZAmOOhZ1xjgdZw4w8mJi+SZ2EQJoql3YjkF74hA1wTpTo+P/5558/0z7w1F/xeownJsqN46LPkUnAZj1oGIYZ06tJs0yJeaLPSJK0zzjj9ZDS+WSOIxOXZgPFGU9M3zRkxyulTKVo5jyOw93pAf11G0i8thfkdLtLZgvwtGl+rkvPUj8MgXM9eB1bYhyrhyN44ueM4TBmD50BSM0xPZi3w98ewjCUYo5juJ4nVo4s1F3xfT6z8ldu6z548OCGSYDdRpSFSHk6Kw85iedwbcaIBsYL87omI47NtSV870kGMsCOYDlZKjvg7Jbr8Zml4PJgdNcgcP0sGJ9z3L7syR/i3uH/7Fm392WJAzzBPXD7Y7yOB/cvLS01G15DQ0NDQ0PEphje4cOHde+9904lOi/TIPWlCt7UnhopSohIQX4Okg4FK72sfWwPSYe+4XHpSZBjXxxcNwuuRcIlXRPB8QSiwzo8BZPU6Zo9HRjHuD1A6iRglzbpu+v2owSEVMa8MR7mnL9jmR23K7mdxNlQbB/WuWfPnkGGt7S01CscmZVtcqnVWVzsN2OhPaR0PxYmFKVLt20gmXrqorgPkIq5jl8Pdv3nf/7n03NgqCQ/d6nWtQ+ZbZX1YP/xN2nw4v72RLyeJLmW6NivLXXr7cw/rhv7zTUZgL0V9w59YhwPPfRQqrmhTxkLyUoUeeJiX9M4Zo5hD3niYo71orL0SeoXTHYWFdeW//Mc8CTyvu/iNWsMxu+j7Nno7MztznF/u0akZhvLtBIeyO6JpjMG73NbSzydleiaN9g8ojG8hoaGhoaFwKZteE8//fTUu4kEylFS9hLtHsfhCZvj+Z6CiWORzpFMMimG35AY8CB1XbTUsSf6itSObdKlQqlLbEwCa9KgIcXQd5hljJfh2i95yUtmrus2lHg9pEAkG/fg8oTQMT7Oi2C6tMR44/V87j3uhzFEr0cYAwzvhBNOqKZ7Wl5e1s6dO3sesFFKc7uAp8/yPkrdetdSLoFMAq7FEdKGx9ZJ/YTTXqQYDUNMtwez87mpeRBm0jzXZZ29lNbQOGqelrG8CvBE137/uKYmHuN7x9lpZHisLZqSp556KrVdgZi0nnmLjNBttLUi1XHNfR583/kaR7bjCfRhic5y4znYtDy+z+//yGbdXul7iHPc9hrhMYn0CXbqdnqp7yfh9yL3XeZRyjr6HGT2TN8b7qXpyb/jOUP3Sw2N4TU0NDQ0LAQ2HYd35MiR6dsX21R8+yKF85ZHMiQGxaUqqe8l5BIIkkEmkURPHamTQJ2ZREmYYz1xKZ9IDvEcWOGrXvUqSdJb3/pWSf0SL4zvk5/8ZG88njzW7SNRUnFJ0ZPV+hzFc5Ho3GtuKFMFa4qtklhIzyAT2QDMIWauiWWRIpDQ3SM1rqVnKeFYZ2JZglzX67udgvmM9j+3OWTJlONxUp8BeVYWGHD08MUbMGaGiH0a8tZ0Ox9aCGx5vofiOZ4w2ec3i8d09uTef9m6+Vw7y86K73IszwWPtXSsra31mEjmCQ3op2cZyUovcQ95jJm3EeeJsbhmwZN9ZzY8b2PII9Hv2VrC8WzvuFbDbXZ8xrl3LYv7ENQSUkv97FpeDi2La2XOaywtm3vPSHT06NGWPLqhoaGhoSGivfAaGhoaGhYCm1Jpbt++XZdeeqluuukmSX3jtNRXT6Ky8JRF8ThPveUJWVFLOhWPx/LpbvQgc/VGDeW03QPR4//f8Y53SOrX8/KgaMIVpC55sCfQ5hxX2Upd0uMsGXEcnzsFxet4LTAfX6ZaQKXpKhNUNNHwzLVxRNm/f/9g1fN4PnMSHSpQrfh6u6okqjj5zhMAe+C8q6mkbr7dISCmSpNmg/q5HuvPuaz7zTffLKlT90vdPHkYioeAuPo1/p/r0AYOEJ7kOY7DVWWu9smSVdeCuz3YN57jjmOuQsvqS7I+nsYtAykNvd/xHA8LqAXzR5W8J4ugf/48yMI4PNzJ79MsXKi23u6sMpQejPY98DxTCXoaOFfdZwmgPZSBc11164lEpG5NXf05tA9dZe5z5H/HvsRA/abSbGhoaGhoCDgmpxWYURYU6Cl++M3TRWVMAYnbXfKRhHijZ8ZjgEQQy5f49byEiEtYOJd8/vOfn56DRE3JIs5BKmR8tB2Tqt5yyy2SOqnfpRmvaix1TiO11ETuRBClNZesmAtYkJftiHCJlfFkqbmQ6GnvyJEj1fRQa2trOnDgwNTp58Ybb5QkvelNb5oeA3upSbWZodylYt9/noopC0uosQskybiX3PmFdSaZt5fgkbq5dIcjmKxL51mJFw+sJ8CdcIjYR3eVd6cld3TI7t/sN2l4vznbYLyZBsPTrb3qVa+altxylFK0ZcuWQSm+VlooqyK/0TGu3ciccWopvlzDld0PtFfbm1l6MHcE8fG4FiReB3iokScJif316vWANY1rCVwL5eWiQPy75ujiDlUZg0XrtnXr1g01S6AxvIaGhoaGhcCmGV7Ul2bBw0gL7hLvabsim3EG50GdHuwbA1Q94a+XlskkklpRWqRkbFIkcJak7/zO75zpay3okX5EewX2Ksr1IGF56Y1oz4L1eQJeZ3aZZFMLzHRJPEpk7rrOJ8dmLtN+nTPPPHNamsixvr6uZ599Vt/0Td8kqUuufOedd06PoQQS7MnTNmXSntslPFB/SLJ3adkl7SydGmsFA8eG5raOyMy94Kon83VNRmQFHgZAn5zpER4jdSEKhEN4YnUfb9wHWRKE2IYXnpX6iRroP98z/hjuwf+vueYaSWPNSVacN0PG1n0vujbI93E8xu9ht19me6hWeqfWRryOn5ul2fOxArdp+T0R55A9w37wUCee0TFUx4PU3QbuCa7j9bxPnjSc+yg+v13bBZzxRdAOe56E/vOgMbyGhoaGhoXAMRWAdW+/LNWX2+ywgWXlgWoJSmvl6zN9vafpcu+vKJHWJCukDJgd0qckvfKVr5w5p5aWirkhQDj+Hw/ICy+8cObYWsBzRM2OlRXkdBsB7XrS2ji/fm23J2ReZ27nOe2006q2FAB7fs973iNJ+s3f/M3pb+wnyhnx91BguHvjeUoktytkyW6dRXki8qyIJ1Ixv3lgc2T4rqHwIOVaKaYIZyN8nnXWWZJmU5mxRpTvwnbs+929K6W+tyNw78Csb84KYKHZfqO9K664QtLYrlNjS6UULS0t9eYvKw9UsyF7CjrazfrvGGJePqdug4psxp9NzI+3n91j/tx0W+HQGDyBg6chiyW60JCxN9E6uR2TNuP97kzZ2ZunD4tjHUoc7m2Tjo7EIF/+8pdn2hxCY3gNDQ0NDQuBTTG8lZUV7d69e+q96MUopX5peOwILvln3kS8xV3KrMWTxHZcWh1Kn+RSKu2RcJq/SY4tdVIqUoXHtnEOHkgkVJakb//2b5ckfexjH5vpq6dTypiy23uAxypmdlQ8CN2DFMQ2ndE5C8gYXsZQhxK5Li0t9ebr+uuvn/5+ww03SOo8OF/2spdJ6uaU8URpzmMNa5Iu142Mz5l9LYYrSy2GVHzJJZdI6jzGvJin1K1VLTGzM42sOLLbbj1WjLhNqWN7SM14kJLw3PdOxmBq91xWrob22F/EJLqtOjIJmDLnbqQdWFpa6rGn2IcsfVkcoz9bpH55oFqcYmZjc5sgbWEXY3yxj2i5PA7OyxBl8BRzvmaZBzvgWNgt/gEgSyLPs9DtwUNemrV7z/dwZHOZb0D8PmPzvHdiqsbmpdnQ0NDQ0BCwKYa3tLSkE044YZp5whNCS92bGikvemNGRGnGJQP3uPMEylFK84h/PxeJJJ7j0hEM4v7775fUsY7oNYlU4RknXC/PnMQ4PGL37rnnHkmdBI5XopdOiuNAGqrZSUDmuerxX7V5juewLl4kN9OlezHfHTt2VMvzcD1nFZFlvuIVr5DUFU/lEy8s5jSuH/11CbcmAWf9d68yt7nFTCvsFUo9wey8MGy8JzzuE9QSXWexgjVPUi+hFdvhWGzSeMRiI0Vqz5hLraSMx6bFc5C4+fR9GLPPwDZhPUPsppSi5eXlXtaXzLvUbV5D9jEAi/G4XPeqzZKt02/GzP7g98suu2x6Dloi9oMzPfeNiP33bDDsGdcSZGzdGVctw0zsG33wcl787kWlpXpGF5+/7H3B9fy54PdmPCY+x+YtEdQYXkNDQ0PDQqC98BoaGhoaFgKbUmmWUrSysjKlkk888YSkWfUaVBRVJn97CqhMnQbcyM/fWYVmV9d5YDjUP0tYihris5/9rKROTYXKJ57jCYXdOOyOCFEtgRoA9cYnPvEJSeNAbalT/0b3d3dVdxWTp86KlJ523JXY05RlCYe9ArGrzuK6oc5BNVYLL8mu6W7VETir3HvvvZKkRx99VJJ07rnnSppNTeThL0OVn73/rnJxt+ksaTDrihoMtTdOI64Siqi5+ruTR1Sh+vi4r1ApMY9xbdnX3CfMH9/jeMVnDEuoVeF2NXi8Z+kL+4CgfNSWqDL5Xeonod66dWs1LGBtbU3PPvtsNSWgVA8TGHJm8N88yYOr0+I+8Dqf/rc7Bkl9VR/w+zSraccnpoZamFLcd+7IxTg8nCyaL9wZp6aOzEJpas/i7Jno1+Oe8/ALfx7F/8d3TFNpNjQ0NDQ0BGyK4ZEAGCcMnDxgRlInLW6UzipKOW6YraXayYJ6hyRPKa8IDjPFiI+0cuWVV86MIUrNjAPDM9IMUrOnCYvSI78RgI6Dw969eyV1wbcx4bAn6XU3dGcykT04u6059kRk0pePI/ZH6lerrrEqMBqNes4XWWka+odTD+vgzCv2Adbne8mdWeI8eQiG9yML+aAvMZ2a1JemM7Z72mmnSer2DA4BjAHWGOfcHWhYU+452Fs06rvGwEvXuJNEHL8zSl+nGEYAWH/YrrNe+pNJ4UPJgeMxR48erZaLimOppcIbKoVUS8zMnMLe4j3iCQg8uJv1j2wdRuKJwP1ZGfvoTmvOvDx9V0wizlp6G+w7EPvIWNkztOHXzZzT/B5wJj7kbOQhQF5RPmqEmB9Cv0opjeE1NDQ0NDREbIrhra+v6+DBg1Omcscdd0ialSpwj3b9rUuVEV6eZ9o5k5K9YKvU1/ny6QHoMfXSAw88IKlL6kzJGmx3XiJH6gcNw8boC1IS+vAY0sBvSC/YqAiwRjrMglRdZ89c+dxktgp30fag5ayIp0v0tYTKsT0kt0OHDlVZHvbfIRboyQI87IEQgMhCYviH1LEnTzSehRg4G/eCxr7W8RhYi5e/4jPaRVgrvvM0eJ7AIUrALi2zZ7mvGG/GQhmfJ41mDB5MLPVt1TUNTdSysAZ+f9aSv8d2XYORYWlpSccdd9xgkuVaEuKsBBZwm1aNkbA+cU09EbLPG+wjakTQLHmKPLfHZunIPHm3B62jHYj3htsivVhyltbLCz67jW2I4QFn7UNr4nvS94H3OQKGfMUVV0yTK2yExvAaGhoaGhYCm2J40lg64e2O11xkT0g2zhTc2yZKPu4B6JL2kPTndilPweP2uvgd5XoIePZg0thHD4SslaxBasvGBy666CJJ3dzs2bNH0mw6Msq+uGTn3nNZMKd7s7ke3PX+sd8A1u6eVxH8hvR18ODBQYa3ZcuWqk0ituOep7SZJTFwXb9Lvu5lOk/CYY6FsWRewZ4ui/niXoiB1Kwddq/MszaOJfbH2SafMFX2cmbDo094Y+I96QHcsR+e0ICxu20ySvhub/bCs17QObYXvRlr9/loNNLq6mpvLaNWo5bE2VlM5mXsDMSZHwwvrmmtUCpjRUMTtQNe1gZ2znxl+4J2fV38uQPDyzRojMPtmuyTuL/5vxd85m/XdMV9V9MOuf/BkB3d93tm1/Zxffd3f7d+93d/t/d7hsbwGhoaGhoWApuOw1teXu6lQIpSDG9k3up4armdZKYTk/bcq9Bj+DIvw1pJCjwgP/3pT0vqPP6kLj7oda97naROwnKdd9SHuz4aTye34SBVY2uROkkOiYrrXXXVVZI6ZkNRVKlLp4VN1G0pLq1FCdDtmZ6OLJN2acc9uHyNo5TrUtj+/fs3tOHVEjVL3d6gD7WEwJGNuleh21/dxpLBbZwuVUeJ1Nkz3qHMAfsusgbO51juCVgAyDQLrrFw79ws3RrryzzWkoZn+4B9XvOIzLwq3YuWPet7NUs4vVHcZITHRcY5dhseY3MmFveBeyA6G/Tfs7I2zCXsmecMaxz9ANxmd/fdd0vqtAKuPZK6+4519nRnPv44x7VYXfYdz6MIv9dgrLBc9gp/Z8WYPd6wVkw4u66XdWPOoxbRtQ733ntv1cvc0RheQ0NDQ8NC4JgYHpKIv42lTiKA4SBlIqEgCUXPTpeskUyQiIZi7XizIz0Tl4RthSwP2M2kLn4QyRcG5iXvY2aIWqJhPhkD/aDN+BvzhXTE+Ij/u+mmm6bnfOADH5Akvf71r5fUSWMuqbokHvtai8fL7AJuP/NYxMxWiKTFsUM2PIfbBiJo12N0XGqX+vPh/XTpMrMjAWc3WaJu+ouUzLzDavg+SrG0y71AAUsvMJtJqV4k1jNSZDZj1vK8886bmQOX+LPiyLUitEPlgdy+7cVxaT+ynSxB/EaxVM42s6witfV3L9p4jLNCn69sLzH/PCPw8OaTZ0ucT9ga57BnSCqfeYPSB/aKZ3pyppnZYznHk1e7vTsbM2yU53qWdcbBb6y3xwpnrNC1UhwLs4tzz3gozbV///5WHqihoaGhoSHimLw0PWtFZFyeQ5O3PW9qmFfGLmAxnuPNJd8YS1XzlsQjjjbjORQ3vOuuu2b6Rnwenm/vfve7p+fQPsyV9pBeXAKPYH6Q0jgGSSuz6dx8882SunlEmsEz1m2hUeLCnuT5Cn294jm1PH8w1iwfJ+MYso9FlFI2LOMz9JvPtbedteGI48sydkh9lhP3N5oKZ1Yeg5ZJwF4MGW89j6HK8mLSntsVPQNK7IszOC9e7DZyqZ7r1PdFli2De83nPtMOwDbcHpMB+2+Nzce2na0xp1k8l+8jj0/ztjNvXTRIfHp8WtyXzprwJYDp8dwh3lTqnjOwP18X/vaSQ1K3j2i/ZpfNngMO1sv3aBZT5yWy/LkT55H967Gjfv9EPxH6zfP6+OOPbza8hoaGhoaGiPbCa2hoaGhYCGy64vnxxx/fcwWPNNsN1tBY0pE5zZU6VUKNanvYQlT5cA6UH7UAqkfURagxpU61g0oDtQHB6Zwb1R9ve9vbZn5D1edqlixtF+pJ5o0Acz49MXVsh/EwJ1SvJjAdNVlcAw/k52/G4wmv43g8DMFLDUV1FXPO2u7cuXOwRND6+novlVBUH7k60NUrqEri3LoqoxbUnRnoXY3r4TaMPabRcrUMbXCsp1uLv+GwhdqG8Tz88MMzcxHnxFPLsd6c69XSpX4ldfYZ84bzTBYIXCsH5MhUw8D75AkQ4nfzJP1dW1vTvn37pun6slAGf3a4k8pQNfGNEqd7UgOpUxN64nQ3w2RhPN4u36PijM5y3P+YXRiPq/39eSvNPk8iPOA+e377b6wTJivGF/cO//dPkKmv/RjGwbiz4+gLjo833XRTmnosQ2N4DQ0NDQ0LgU2HJWzbtq2XbDVzD0bycSeFrHyOB/O66z/sAykHhib1GReMzsupRFZ4zTXXSOqMw0gKngIqXuejH/3ozG9IyS7pMD6CSqXOOYFxeRJhmFIMZWBOkNI4xxPaZpK4ux/TV2cQUeLGccbXx93gY6JjvjvrrLMkjaXemls7cAearOwHThdcyxlEFijte8eZScZUfO48MS97JjOyO5P0FElxf7s7NnvSg5Nx6Ir7gHM8MNedPmIwvhf49H3tZWKGXLq971nCAJ8nZ3jOnOP/Y8hOje2Rls7TT2XaBA9p8iQSWUgLcO1DLc1aBHu0FvAe4UzXQxe8QHPsk6e581AJZ5hSt488VZo/B7LiqhzLc5y+eUhaXDPXOnjSB0+wHc/3feXrFc+h33EftPJADQ0NDQ0NAZtieMvLyzr++ON77CJKWs5aPMA0KyvvJTCQXjgGfS7SRQwxcLdjJAGkJoJvSdUVv8N2csstt8yMw91rGbvUMUj65vYmfo9la3BZdomSucK9Ns4Jx6LXZ94efPBBSZ30xvexHBHu4YQ5OPvJ7Fxue3QW78HfUjdfztCHgITqduDYP2deQwVsfWwu9Xs6qsgWvX3GgQ3FE1DH67lk7RJwtPs5C3TGynpx/agxcXssYJ970u/YJ+8La4fNFcS0Tb6fPRjfS/9kffJ73YPkIzyhQ4aVlRXt3r27V0A0rrUnCfC19aB4/3/sd7yulNv/eHZwvzM2L/KalZbiN54RziRjknTXdvn96Enlo3bAbWauyeJYEiFIfeaIVoA+sUfZU5lds8a2soQXvp/oozPM+GzxBO7HH398Y3gNDQ0NDQ0Rm7bhbd26dfqWR0KKb2wkBN7UrkPnTT1UqNB126QFGwpWdrsYUjPejFFqov2XvOQlkjopDLubFxGVupRBNS9Nxu0JoqVOwvJ0WkiFWYJUpD+YG3ayM888U1JnX0TCzLylYNm1cktxTmoMr1bCJvY/Sp9DknoppSdxxxRz3j9ndJkU5zYzZ4dZGSIfM+vvxYszj1sPfncW6OOT+kVoPUkw1/cUdLFd1tCT9mYJer3/7EW3kyC9R80Ddm1v3z0j4/i8XWdZQx6fsd3a3lldXdWXvvSlHquOzx3uLeaS9XFWERMmezo97kNPZsEejXPM/c+xaKHQ5vCMwTNX6ntUY8MF9DWWCfProd1ir/KcoK/Ru5F9xNz4veD+DvEc+sZzB7gvRuZ56+NxLUXGzD3Jt3tkx3tiqOTTRmgMr6GhoaFhIbAphre2tqb9+/dPpc0sFqPmNZR5BAGXvrA9ubecSwNSX1rhrY+kR5tREkFKcSkNaQymBauTOqaFBEKSanT5LtXSdryeS9xIcsxJTC2GhAND9dg9ypB4wuvYHl54HsuVSVrOqpn7LFUaGGJCDop4uqdatAE4C3NvLJdUYzvO8NwG5bY3qdsjzLvbqTK7oEuttUTMmdbD40trjCazM7pUO5Q83GMEAYycc9mH0abnyYo9vivbO5ltVer2g0vvsY/x3Jod5tChQ/r85z8/vR+zQsB+bfd4zEo98WzwZxVjh02zT6I9Dj8A9iQetmheGGv0N3D7HuvB37DDqB3yNIS1+yfzZnR/CS+myjlx/ekjDM9Tlg3d427n38gmH+Gp05iD7B50lrm8vNxseA0NDQ0NDRGbZngHDhyYkUCkXAfscUkemxHf2Oih+XSpMssIAdzLB6mt5vkZ/3/vvfdK6tspkPAuu+yy6TlIR7TvUh9ShyfPljrpjz56nI/HLEqdrQ5G59dB8so8+5wZwfQ8i0JkBUiBsB2XxrKsFJ5IeSMpa2lpqeepGpmQsxdHxiTdxuUZFzxuLl6PfZbFP8W2o9Tstiz3wPTMHlI3Z7VitG7bjZ6w7g1MG5yTMUofj3v0sWeyc5Hs0VB4bFrmuepr4LGCQ5I97Q15+K6uruqpp56a9uWCCy6Y6Vu8hq+Ls91MO+CsyZl3VjCVOcSWhp2P5wTMLnpNOtP350KWzcgzxnicnydwj5qlWtForucemHEOvFhtbb/H+fTyU35OpmWhL7THeDL/AEB/4/07lOEpojG8hoaGhoaFQHvhNTQ0NDQsBI4pLMFr3UWVCFQU+u+qQA9ojudnhmWuK/Wr+0odbXa1ICoFT20mSXv27JHUuWC72zafUXVLcCbfocqAkvM944zJqmtqAq8EHVVRMeg9jtNr3GUqJvpPH93Q7Kl+pE6V4MZ/d0zJ1i2qjYbSQy0tLfXSGmVGcP/OqyFn/XPVh6fLygLCUY14VXHG4OmcYt/cASVLFkc8/3wAACAASURBVAxcre7GfAz2HkQc++QOIH69uF/cJED7uMXz6WExUrd/3enHHQ+GQjVcZeuOFXGMUfVY2zvLy8s6+eSTp+ejtsucVzZyVorXcFOJJw3nk+tkyZi9FqCfE/cO8+xqaneEi9fhHNbQU2+5qjmq3xkXfWLdvbJ7vOe5PzzdmSdN8GdyRK22JsieITgB8dz053p8NjK3MaHBPEkvpMbwGhoaGhoWBJtieKPRSEeOHOlVd45ptDzBK29jN2zHt78nFXVjJ1JFVlLE3aSRfJEUcGWOxlyYnRvkaQvDPaV44rEwVo7BWO2lS6Kk5UH4WSJm/xuHGlyGGR+hE264jQzWr+PM0gNupU5SY3zu6JC50NMexx4+fLjqau9Vq0GUzGqJpd1RJEqV7mjgqcs8IXRkBUjS7BlPNO4JjqXOAYg1dYadVc2uSePA91/UmLgR3x1faDu6v3tpJ/YV+x5nBZfepW4t2c9eoitj+r7fnNFm94Q7shx//PFVRrCysqJTTjll2i57NLLaGlvzcWUaBQ8x8fAUnm9RO8C12QeeZN3XS+o0LoQa+Z5xDUOEawX8PspStDFW1t+TVDCGLDzJHdH8ulmCBcBc1NL8xXsQZsx37M3bbrtt5jqR9fozb96QBKkxvIaGhoaGBcGmGB7w1DtRivGkn7zt3caW2QD8jU1b7mYdz3V3XS/eyu8xhZVL/Z7Elc/7779/eg5hAkg4uCp7W874Yl+chXhQZZT86QOuy0iOnjLJQx2kfkJbt88565Y66Z/5cvtsnD/g7tV33nlnj7UCSrxkKb7iMRG1xM9x/d1m43PqqYqyxLwutXph4Dh2dwN3u1IWHO92JE+8PJTUu5aWK6ahi/2Q+loA5o8yVXwiTUdJHEmaveOB7x4wHs/PyinFNrJk5bE0Ui0cZWlpSccdd1zP7gvbjv1mrG4Dz1Kw1QKja1qNyLwZI3PNXnENSWS1XgaMsbtGK6KWTpHvPeQg0yzw6SkFM40Cz+kak+NYfo8hNG4n9STisLn4bGSd+I55pYQbmq54jmt6WuB5Q0NDQ0ODYVMMb2lpaYZtZTYJZ1yehiw7B6nBPdJcUuDaSKhSJ+UhccA2kKyQhKMEgITDJ8HdLonG1GLY7DgHaYXxIvm7LSyOuVa4Eokv2ghgFbBP1/N7ctoocTO3XqTRy5DEtfRikR7I6jZYqWOFMOEnnniiyuBGo5FGo9FgORjfK5nNVpqdP/rpDNtZdGZzQCpH8nYmxvekfJI6+wt9ZF24HuWbotYjSqdSv0gpc5bZKOkvx9LHIbsf+/bcc8+d+Y2962w9svIhVhMR95uPg73pLDhjrozjs5/9bC9pAKDwtNv6Y7+99I0nk3Dv5vh/Z6Sc4zauoSTFzC1jdK1O/K2WFMOTjMe+ANrzPer7IoJnld8T7s0bUQvkdw/vjJX7sexH0iFmacK4x1hbT7QRz8mSPcybQLoxvIaGhoaGhcAxMTyXaodicpB87rrrLkmdhBx1vw4kj1oKM/S69Cl+unTm5TSkTtpzLz2PA4zJnL0oradRcs/H6FXkXnpZ/Is0q++HcbluHkkWL1TGG9MeedFIt5E6S4xj97/pB8dGVkii3GiTqOnS19bW9Mwzz0wZa2RADmf2Lr3Gvvq6u/ckc+oMUOqn1oIt00fGFUu8sDfQHLhnJ2wulmlBO8Ce4Ldrr71WUqex8LmWOpu0F8JkX7MvYqkZ9jrHcl0v+cJ+uOOOO6bnunere8E6Y8qOdSaW2SY5h+vt2bNncE9E7QB9iHvRPTfpg8d9Rgbk2gZn017kNLIZruN2eZ53ntRc6qeYc3u8e7lG+Bwyb8TWZWy1ptlx+3/Gjrw8mNsQ+T1qdJwVenJq+pppd9yzmE8v2ST1k25v3749LS6coTG8hoaGhoaFwKYY3vr6uo4ePdqLeYklf1yaQPLCFoRkFPXvSJ5ezNDZGxJwjDly70/3HspiW/j/3r17Z/rCeNzjLrbLdTwLB5KOJ1uN50a7XmwLaQZpPrZDH2EZtMtcYLOMsZC+Lm4zYE7i+Jwpue2L8SGlSbNecly3xvBWV1f19NNPV7ObxGt5uRn3zhsqPprFJcbvo0SKVAkrYw6Zaxh+5uFLe9432ozaCbeL0q5nSfH9EOfE4UwrahTc9uk2G7QBXixZ6tu8azawyCRqhV59D2XetVzv8ccfH0wavrKy0lv/rNyQszT64rGwUrd2bjN2VusMLJ7jdnLWMss2wt73kl6Z7db76GNnzfy5F9fF579WxDeOq6Z582TVbnfO+uyZpPzZEvtf8zr3wttSN4/RT6R5aTY0NDQ0NARsOtPKc889N2VAxPHEt6u/8T0uy+O84jmuS3ePJPcYlDoJEQnB4+9gVbEf2XdSxxyxscTfuaZnj/BPj8+T+mzQJW+kwjgnsCeOgckhySOFkn8vMgq8TpFqazE8keHRLtd1Cdbz/sU5qcWKRRw9elSPPvrolD25bc3bztpzKTCOze07znI8U4jUScnMHWNkXjwvotTPpOJ2MrfpxD6yHoyLfehliDLm4uvg8VLR7ueem5yDbc/zgEb7n9t9vU2PrZL6XnOZp6Cfw3z98R//cXqsI8vTmnkXcv+5RoL15z6K/fEYM9af9RgqsusMzPdfZjP00mLuHRzX372e/Z7wOYjPHddyeT5MEJ8DPh7P1uKet/H6XvyafeUexpFF1ryA3SYatWOcEzUjLZdmQ0NDQ0NDQHvhNTQ0NDQsBDYdlnDiiSdO3dGhz9FhAurrSWfdzT2eA7IqurEtDJfRRZXfaBcVp6seI42++uqrJUmXXnqppL4RH9VJrFYc50DqjLeuwvKEylJHx93wy3juvPPOmb+lbt4IyPSyIFB9+hjd4FHr0CdP5kqfY1kYNxYzDi/vlBnFo3tzzXh86NAh3XHHHVMV0yWXXCIpr3jO2mXu7FwHeAokr5TsqrjYf3d04Lq1hMBSX5UJ2PdusI9j9PJTWTC0t+3qKMbjezWqvtxZwZNI+70R1aGo2TxFms9fts4cQ189rCj+TbKCL3zhC9Pr1lTi7rSSOXm4kwOhS4wDNX88B/Wmt+fqOg+vkPpJwz2VXbZ3acdVfD7uof1dK6+VlQnzPepr5qptqZ+cnHvAE2v4mOL1eCbxnHUnxLgPPFG3O6HxezyHvrFXh547jsbwGhoaGhoWAsdUHsiDuqMbNZInkjxSFG93mEg0nGJMR7rwwo4eBBmlZ/qAJHfBBRdIkl7xilfMfB+vR9+QGjx4l+vjECJ1jNSZgzvWZEGVLr0gCcHezj//fEnSAw88MD3nc5/7nKR+SQ/6gWEY5hWlNCR5Zy7OFiKz8GB05hXJOXMy8cDtIaeV1dVVPfPMM9NxEfycubf73+7UFI9zxx8v9eOStqd1k/rSshdxjVItx7j7ee0z9smlcQ/yzkrvuLNQbU4ivESSr3+WABowLi+27Aw6WwNAu4zbg8El6YYbbpg5djOu5SCyC+6Hc845R1I/GTpjjmE19C+GOcXvAXMdk1fQb0/j56w2S6dWS5LugftS/fnijm+ZI5onrXDHOzQZ0TnPnf5qYQieZFzqJ2Pg+ebao7jvsmQSUn/fxXllrSNDbgyvoaGhoaEhYNPlgUopvbQvkeHxpn744Ycl9VmA/y11UoVLQEg6bnuI0iVSCuV7rrjiCkkd84ERRanJ9dQuHTCe2EeXtDiXY+hjVvjRbWa04X+TgkfqmCrSDDYJtzfS12hvdDuSlwfKEjzzHZKb25nchiB1knuUoocCpU844YRpGi3CHwhtidf0MAdnPnEtPfyAv92W6oH1Ut/12stdZUzY59YDf13ijsdwrmsd3GaUBfN6ELTbjuK6eGknv46Xo4rXYz95sndAm5kt1xn6ULJyTzKxkYS+tLTUk/pjsmnm//LLL5fUaZIoJOq2aal/L9GeJ3dwLVI8159rntIus8e5jdrZe8aendHV7I5xH3hYEud6maL4rEKj5M8oxse6sZZRYwLD4xnsqcuyROfA73W/X2NiBQ8nmzdxtNQYXkNDQ0PDgmDTNrwsgWqUzpwBeVFA91iT+l6MSGFIIJ5aLEoxSFKUnvDisW6/iH3z/rtEFKVYL/eB5OHlkJA+MsmuZusAkXkxVuwGJN2mLU+DFO0L9NXbp69ZGRIkVk+z5p6MMM445lqgccTKyopOP/103X777ZL6Xq4RWeLd2Kcokbpk6JK1M8C4Li7FOsPL0izV0p3xvc9xPNZLujjDdC9HqZ+g3dfFEx3HMTtTdE9CkKXbcjbF9bIAfm/HA+mz67zjHe+QJP3cz/2cpLG9PGO2XGvr1q1piSeAhoeSSHhler/j+sNWnAG5TY/voye0J292/4JMs+TB6Nzvfv9kGoXamrqdLj5DvFgxnzzn/NkV/8997mzMvetjf7i2p1D0EkPx2e/3uJeNymx47m3ebHgNDQ0NDQ2GTTG8Q4cO6c4775yyqZh0Frh9yKUnJIQsMTPMBLbCm9yZWIxXc+8oJCFPzBolEdfJuxSLh1eUPrz8D5II3yMJcd2oc3advdt9smKKtBftHlK/NIbb3qSOXfCdsxH3eo3fMedeZDNLFJ6lF6ph69atOuuss6YMDykw9sHtYp6mycupxLG5BO8xbllJpqzESfw+S+Y7lBw7+8zarc2be+tlxzrLyeLwWLta8mYvlRPnxG1QwO+viFrSb48DpDiuJF122WWSpHe+852SpPe+972pBy3jOHTo0LRvbqOUOg9rbMOxtJfU7Z14n3h6Nrfpu1YnPkNgQBzDs5D7n+/jPDrbjOVtauPyfeQMzwtOR/brSeK9tBB9zGyhHqvp57o3qtR5t3taRN8zQx6+Nc1MljDetYfzoDG8hoaGhoaFwKYY3pEjR/TQQw9N4ysyKcbtVW5Tc8+k+H+Xyt2byPW78diaPSzzSHRJ13XOSCjRXuWZJ5AUORddPl6I2BRiezBXznVbYWQUzIlne3GvMI8Zi3115uqephkLdQmPNc68AWtlYDKsrKzoRS960bQdWDrZGCJc5+82j7h3nNm5ncRjD6NtzefO7SGZx6VL2M6mXIqPffPkzX4v0Ha8nzLbTPw7Y0W+LjUpOivb46yP67stJ57jNjs0MnhqX3PNNZI6Lz6py7Ry5ZVXShozvd///d/vjYX2d+zYMV1bz1gTQX9j9hipe5ZErRTMyu2jgL+z0kLsK/d0ZA74Pl7PPWvd8zlLjg7cQ92TmEfNCxgqOxTbjKgl7nfPXh+T1DE8z2BT87qO7frfmc0dMMeMuWb7zdAYXkNDQ0PDQqC98BoaGhoaFgKbDjxfX1/XQw89JKlzlY/pelxNh4MIx9RUJBGk9EId4Mlvo0EadYO7fNN+po7whKioB9xtN6rOnJ5Dq6HvtUTAsU/ugOLql8zxxNVr7sjhaYLisR5A7SEhmfuzX3+okrtXVK85HUhdAmDWFJVWVCezZzwA2IPgs6B+dzioJebN0oR5QP5QYDZwxyOvnRZV7B5CgqqcOfXwh8yo76p7D6WI+9sN/X59bzuqmFz9XVvTLDyJT8ZDsoSLL75Y0qyaHweW8847b/pbLbxl27ZtOv/88wdDTPg/fcA5jnuKOY994FifQ851NXncq67y8+cPv8f7kvX2+nu1GpvxWI6pqalrDiLxN1dhZ+YgT0rOOvs9kakaubdrCfyzdas5tLj6N96DzKObbuZBY3gNDQ0NDQuBTTG8Uoq2bNnSM5hG438tiBZpCgeOLLWYB8YimZB+6pFHHun1icTLLgnw9ncpKvbbAyW9JEbsI5Ib7SIFcl13XonXIwgWqaXG3qLUnDkUxD65wZ2STVJnPPYkwi5ZZpWVkbhog3HT5yixOpuqGce59tra2nS9brzxRkkdC5C6tFBI4x7I7GEqsT8eoFtzWorSZa2kizugZKETtbRZfMZzvP1aCMU8bM2Dbp1hRNSCxocq1Xv6tlry4jh+2kXyJjE0mhruedLlSV1ZoD179kiSLrrool7/wZYtW3T66acPJtn2McI2eHZwnSzxgDse1aq9xzV1xyp3eMruX7+XPJGCO8TFY9h39NUdUrKkAjWnMmd2mVOW77taYve4Bux9r3yOJjDTKPh+riVhj9dnn/lzYh40htfQ0NDQsBDYtA1vNBr1iq3GN7azNaQX3sLOTOL5Lj17WjBYVHzbIw15QmvXNUcJ2O0gziBoK5YpQoLEZudJlilLgm0iSj4exO12zEzf7ymLaumP+D26fAOkvb1790rq2zei7cglRHdzZu7j9+7CPqRLp7QUNhTKBGEPlrr0cPQT1uou5plUSbKAWh+GWLSnMnNbXuaCXyuE6kkG4jWdYTkr87R8caxuU6kFrcffPNjepXIvNZT1zUNCsuTRsClCcj7zmc9I6pKhs//iuLgnuF9OPfXUNFifa5122mmDJZh8ntgzlKEi4cFQuR7G5ImtMzumh05l4VaxDanP5Dz9YhaCUkuMXNOmZGnpvM/O2rLwBN8HtXs8s6MyX/MwMN+rzjCz8TuTXF9fn5vlNYbX0NDQ0LAQOCaGx9sYiSUrTePpeZDWd+3aNfO91A+8RYqETbk3W5RuYUVIdDWbTWQmHpzsxU05JzIuPEO9AKJLyQQXZ+makAY96TJ9j16c7hXlbNBTc8VzCeqGJXrqJA+SjX0BjN3TEw0lil5bWxuUtNbW1qbrTyqouHeQ9mHLjMnTusVrsJasD+3Vgnjj3qnZNFy6jdejT860nBVG9uyStTM5byOCvrj3nLOOoWKurLPvu8xm5fYr92R1NiR1mpA/+ZM/mTmW/YcNj/tZ6p4DPBceeeSRdPyM7aSTTurtrYzluP2VZNL0G7YpdfY997x2j8+h8jPOSDyZQcZa6VuWNMLP8bVyz+Fa2jipzuR9D8V59+dMjVVnqfo8wUJM3OHH+nc1++lQyax4bzSG19DQ0NDQELDp8kD8k/KEpUgI/MbbHskbqSmW4PCUQe4J5sVPI/NCSsKG5TFBXiwwXs+LQnrqpxjvRd9Iq+Zs1L00I3vyooqAc+lrlNI5x70BnaVlkp17KNIX9yjLYiGRyjxJdeZh5Xr3IaytrengwYPTNcRe98ADD0yPwQ7nMVSMNYu7cV0/TM9TitW8zeJ3PpecE9fSE3D790Op82r2WLcvZuviEqx7BWbnDEnj8fvIFr1P7knKsdGTkHsZBnfKKadI6pgfezmyefqPB/MzzzxTtUvhHe7zlhXzdS0AfYDp4TkqdVoG99IEHqc3VCiXY9h3QzGONTtYVnC45mHpv2faCO93LYVahKc59L66zS2LN+U5Gj3H4zgjap7eQ16ivuejtnAjNIbX0NDQ0LAQOKZMK5mNC3hRRbd5uFeT1EmAHmflCZIzrym3Lbndyr3MpE4C8RIogGOjlyZ9cG9Qt4dxvSj5MCecg1RLW1kSVJe0a4lSM8ZRK6rodp4sGa7HCHkB0iFd+UZMb3V1dXo+TDnG4TFGpHC8/NyWl3kk1rQDLnHHufF5cmk28wZ0m5bDs/ZkcEbnUnW07TAuz8Lhca5xTtwO47GjQ/Gffh23c/N9LA9z6623zlyHuCvOQdKPbJ7sKzDyWPIrQ5Z9ZIjNsGaM+dJLL5UkffjDH56ewzz72GrZbaLdkv+7h6979g55wLp2ImNxvt9qWY0y1uv7NyuC621tlLXEvbmz66HFgfHzzOd5mj1DfN7myZ7Cc+HAgQPNhtfQ0NDQ0BDRXngNDQ0NDQuBTas0pb6BNjqGQJfdYO1Vq6OK0dWd/IZ6DfWB/x2PdRWWU/9oZHfVhddZQ8URVZ7Q8zPOOENSR71dLZKpFlD1QMFRBXsAJU4b8TtcumnPA8IzQ38trduQ2sBVpozX0zkNpS4aCksYjUZaXV3tuYDHdWHt+CSQGfdx1j0G2TMvrpaK143fx/lzhwNXT2Xu4+5EwN8ck6l+mUNPWecJF9zJROrm26tigyw9mKsqa3snu54nUHY1GN/HfXDLLbfMjJ01ZVysX0y+jNqL651++umDIS/r6+tVh434f1cB0ibXi/PkSbtdxejq5Kj6c5WmOxwNhUx43UNXS2dOWf5ZS+eXOSAN1aOLfY6/ZU4psf3MTFJLyoAjHM/ObN08NMfvo0zF6c5486AxvIaGhoaGhcCmwxJWV1enEkkW1M3bFqM2Uq2Xl4lSsxtrn3jiCUldcKqngMrcm2kfZoLLMedGtgZzwMHApYhLLrlEknTTTTdNz0FCrAX+4pqNET7+7iEGzmBoO5ZZ4jcvLQQLHCpHxG+wQ1yyPUF0dHTxAHZPdJtJhy4NRqcUB67l7jDBGkud4wIsAibMXPJ9lszZJWyXMjPmzZjcKcrDNzIJ0sdOP7K0Ye5k4e3WpOn4m6edcueVeG6t3AzMmDXmnskSQdecgPie1HBZu846SBodnxPsL9jgrl270vHTh7W1tUGGlzmJxLGjccJhLPbH96zPrQd/S/2SVaw/c+D7IbZXqyKe3TseFuLJAxzxueMMv8bwhs5xrVDt+9gnZ3o8k4cSHTij87nK7kHmZGlpaW6W1xheQ0NDQ8NCYNMM78iRIz3WFKUNGI7b1mAmsJgs8Bx4KiRYBtJgVtYGVuhMEpdoXNxjX1wP7YHUUeJijKQmch0+Ugz2iocffnh6LmyT8kbOXJCQo2Ts5Y1go7AR1oDjYHGxL8yNn5O5WXsYidsMMl26S6SllKqktbS0NOPKzhrGYr4wPE8h5+WoYjJp9oanbfOCrLEfwBmJ2zE9IXGEJzYHWfozZ3C1EI/se/7PODO7m5QHEzPHrslwFpwFDzuzB+zrGE7itjtAcgEC0eNccQ8SInTw4MHBsJaY8CILS4jHxU/mib7RF6l/39Xc9z00Jx7jZYnYU5lGoZYIwhMcZOnB3O7rv2c2NU+z5jZ3t1VKfX8D4LZRD5bPxgWrxoaXJUmo2ercjp6Fd2wmhGF67txHNjQ0NDQ0fBWjbKZ4XinlSUkPbHhgwyLj3NFodKp/2fZOwxxoe6fhWJHuHcemXngNDQ0NDQ1frWgqzYaGhoaGhUB74TU0NDQ0LATaC6+hoaGhYSHQXngNDQ0NDQuBTcXhbdu2bXTCCScMlrz3DA2gVvQwO6ZWXn4or9pGmOecY2n3hWjr+Vz3r+o6NWemGHfjWUaee+45HT58WKurq70Lbd++fbRjx47BGLChTBq1/mdxb/HvoTEP5f3c6NyNkJ07FD82T7+y346lj8cyvqxUkv/m8V3ztB/jsJ566ikdOHCgd9LKyspo69atvZizOBfE84F55tozPNWeN0Oo5Vb1awydO098obc/T99qeTjnOedYft+ovFbWD4/r4/1B7CixuVm5rZhN6ejRo+lzx7GpF96OHTv0xje+sVfXKL68PFjTU+6waWOQqm+8WgLYoUDD2mbNkuvWUKsb93zh1/Yktf59/H9tsw797fPpD6Da9eN3noQ7S6RMfbMHH3xQ0nhzfuYzn+m1KY3X+9u+7dt04YUXSuoC9D1YWerXOPSag1kQqj8IPIDVg1XjbyALFo5t+f+zY4ZedF59fZ5K8X5P+OfQWvr6e+B71mf66KnavP34wCURgNfh84dYllCZJAzLy8v6yZ/8yf4EaLzul1122bSGIgkMYr3KV77ylZL6yQM8lV2cc0+IXquans1xbb9tJlED4Pr0Pc5TFuAd4XsonuvB8bVnYAw8r6Uhq1Wbj2162jH/m37ExBGcT0ISngec8yu/8iuSpA9+8IPTczifvu3evVtf+MIX0rE5mkqzoaGhoWEhsCmGV0rR0tJSNbmq1E+55Il4s/Q5nrDWUZOipL4kshk1xEa/D0nrG1H/LLFtDRn7AF7KyM/JWAnfoRbwNFtZ1W7vg7ORLGm2S26ZBB/7dPTo0V5pqaw9319gqIo0qKWHy5i+S8+eUiybp9paDjFyzvHSPjUGFpN6DyXjrsGTu9MG8+vsPV7D2UyNFcR58JIu7Adni3GtOTbug9pYV1ZWdMopp0wrqT/66KOSpIsuumh6jK9lTUuTrV8txZvPT7Z3/L4ZUudupELP7nXacS2XJyn3hOHZeGosPZsT2nMTlc9F3NM+dn+GZOfA1vy5Q0L96667TpJ0ww039MbDsS21WENDQ0NDg2FTDG9tbU379++fvn2Hkix7guRamYn4W01qcukiSiS1gp81J4bsO2eHWR83whDzOxYJayNHgJqtKv4/k6giol0gJnaO7Tr7iWWWmJ+YMHeIPUftAGwzYzPOklzKjPPl7KFm0/NrxP8POUNI+dw6Wx5yXvA5rNmia3aaeKzvlUzKdabsNkR+Z+7jdZG4fU7YQ9zfMbkwc8ExtXI3MXm0l9wZsrEvLy9r165dvSTLMSF8jeE4W8u0EJ482hNPz5OkeihpuvfFzxkqAFvT7PhezcoF1bQOPgeZzdDH5/egP+fjd76mPp/Z89vnnr358pe/XJJ09dVXT8/Zs2fPTHvHHXfc3M/qxvAaGhoaGhYC7YXX0NDQ0LAQ2JRKUxpTUNxnMycTVwO4s4pXYZb67stOwWsOCPG7jdz454nHGVJTDLllb7b9jeJV4v9r6rYhd2TWB1UJoQSuyohjohJ0dPWO18vGx7FUVn/22Wc3rGnmDi6xXXdkQW1GP70mXISrRlwdmlVO9vmoqbaz63l7Q84StTgrbz9TT/qxtXPnifvz+wc1dgw1qd2nvhaZ0wr9Z53cjBH3m6s/vf5axNLSko477rhpzcNdu3ZJkk488cTpMdRcA1FVHvuWPTv4rVaxO7sH3MQwj5NM7Rni90Q0QdRUiiALD/Br155VHnIUz6k5r3nYUgTPHZ8/H1+cE98rqNR9vb7lW75les5DDz0kqatteN999w06zEU0htfQ0NDQsBDYFMNbWlrStm3bqq7yUl8icPfWzG3XpYmag8aQO/1GoQZDGT1AzT0568uxZCTYyLCauSM7y41ZTeI5UcJF0gJUl3ZJPEp2VEnH9RvpmetlQfkEicZA0hqQKkLt0AAAIABJREFU0l0SjdJsrcoyYA/Fc2AkXqndA6czRwp37fbruiQc/+9Sa62tiBpbGwpwdkeDWpiFV3aXZh2MYlvucBPPZY494NzZWmRQtMt3zLXv4bhuhMx4GxlKKdqyZct0L15zzTWS8rXc6DkQmQn9OXDggKRuzDBfZzPRuSdm+YjH0kYtxCoeWwtlyJ47YCNnrNjHWqgR42YNsucOqDkdDiUtYP74ZB/i7BjB+awBzx2uh1MMziuS9Hu/93uSxgHnkvTII4/MHZrQGF5DQ0NDw0Jg04HnKysr07evu9PWvpP6DCFKsUgasBakJD49RU2UomvpyFyqifBjaynM4rm1oOiNUk3Fc12CYxxcJ47Lg4Oxk+3fv3+mr/z+zDPPTM9FKkJyQ3pCAs+kYHIRPvLII5K6OeH78847b2YssQ9IZTGw3LG0tKTt27dXGYvUzYunoXOWEZkpx/o5tM/3ngjB/x+v73s3shlnqG47zNayZjt1yR6mnDEX3zN+T0SWjUTt81ZzF4+s3dt19sk9GtkjtjX2nbNp2owMz+/1Ukr1XhqNRlpdXZ3ajLE3R7bG/13b4H1D2xHBfHCfPPHEE5L6Nr19+/b1znWGf+qp46LbsJu49mhEPEWeaw2yRB5u36uFOjFeqVsz5obnLM8QNEFxf7ttjvvH++a23dhH1oD1oo/07Zxzzpmew2++ZwHjPPvss6ffXXLJJZK6BAQ7duxoYQkNDQ0NDQ0Rx+SlCTLPN0+jxFseySGTtLAfudTCWx8GgQ44k+yQHlzCz6QywHWQGPH+QuKJ0hkSW4191Lwq42/OAmBlSLtkBpc6acy9zZwZcW6029EHl9a4LnPFuKVuvfCA4hjG/dhjj0ma9ZYi4StsYNu2bYOMd/v27YNp1NxrzW0pjCtKwC6Fu4TIHkK6jnPijKrm+ZrZDPkuejjG68fvXSNS8yT1NFIRHvhPn2Hg0WPRg/sZu+8/Z1lSnxGzr3ycUftR85R2xhzn3gOMN8L6+rrOPffcmT4+/PDD09+d/dM/7n+OHWJcgH7yXKKP8R5zezLt8lzLkqKzn7GTM+/uARux0d70dYqB4G47hcFyjj+T43U8VZv7VzDP0avb7ZZu08s0Z2eeeaakLpm8Pz/cHixJL33pSyV1Wq/NoDG8hoaGhoaFwKYZntTX0UcJGMkDiRB9Md/DHKK05Lpf9+gckoC4jpeQQSLgeplXGUAKRPJCQo6ej57OCMmG792LKfOWArQLa+Iz6t+dQbhNxXX5mWcXY0bCQurMmAtMgb6yFhyDFHjrrbdOz/nmb/5mSbN6/iGGt7y8PJ2vIVsXY6W/tO823ThGjz10r8nMs9i91hizS/xxbumLrwuM3NclXpNjOddtbCBLBO42ZD6JRYr14DwFl4PfWdNs73gqLrfDxXMYO1I/mhLXPsR7gu+Yz8OHD1e9p5eWlnT88cdP70/6ENPhuV0MW/T9998/07fIhLmHOYff0FzQ/t69eyXlnpfOwBgj93hk6+7xjIaFOcjsWLVEzF5KiO+j96t7lzJv7sUd7XC+zq5d4VjmhrWOv/l4OJb5jXsVFg37ZE3Q5jHnvEck6YorrpAk/cEf/MFM3+ZBY3gNDQ0NDQuBY2J4IIs5gqU8+eSTkjopD4knKxUCPEEt0kW0bUm5HdG95dwzKNog3AMRSRemhaQfGR7tcw4SFSwk88oCLv0hMTJHWTwUkhrSmNsmnWVndi36iiTpiYEjw+McGCzrg8ca+vLoDerlh0466aSqtEUcnvc3Mm/G5pKhFxaN59Af1qrmZcb3sX/OGLk+Er73g3HEc92Gm9mkXKIGbnfKYqyc2TEeL4LpcW3S7FrFfjAXaDaQrqXuXqA9rof3IXMT9w7t0D6FWjk3y3LCmGNml5p2YNu2bbrgggt6NtfITPg/9xb79iUveYmk7l7IvIyJ52KOWW/mALtc9AfgeeJjr3moRngZKC+SHZk5//fCtv68ybJfsa7uqe73U9Y3167BuJwFR7bmsbDMr8frxnVmr1DAlcTQrInbZCVNbbkcc999981VTFlqDK+hoaGhYUHQXngNDQ0NDQuBTak0R6ORjhw5Uq1hJPWpvasyOTaq7zwdT83FPAsidyrvbrQgU5egUoByo6ZArRPVYxhnXdXoNcX4O/YdKu8OO25wjqoMVBb0oVZLjb7jvCB1Lr78hjrCnYKi+oPf3FUalQPq3mg8pm+oOZaWlgbrgu3YsaNnBI/7APWFq7uZLwzcUT3tLtZumPc0XpmDFXNN33F4cLWbVHekydKQAXeYcZU93zOGeD/RNw9VYL8RfBtdy1kjPrm+7zv2alRpMreuymLfc2xUJ7oa1FVZWZJid2QZSg21detWnXXWWdUQnXhtzATs5zPOOENS5/4eVYxcm376HLvaGrVu7D/X9QD37B6rqd1q6up4vocYeHgAwLFH6quuUfeiovVkz7EPqCwxcfD8o298xnPd6cyf9VlqMb/X77vvPknSPffcI6kLQYjXob1LL71UkvSBD3wgTWadoTG8hoaGhoaFwKYZ3uHDh3uG9EyqdddbpBvcTrOEtZ482F1VM+O3M6xaYtYh47E7DTCe6MLshmzgQbweNB+P8XM9aDgGqyIp8ukOBxzLuZkB2h1enJVk5Y/caI1hmDWIjjzuVj/kHuyJxz2dVvw/v+F4wPxlqZCcNbPuzDWfzgDjd+545GnI4jk+T7BpJGCviC7VQ0lq5YIiE2BfueMTc8D4o0MFLIe1gum5tiALqGYN2JuMx9NSxb3j9yBMgns/q7Q9FGrkWF5e1sknn9xzXov3C6yc/Ur6KtYlCwHxvehgXBkz82dHDK+QuvnKyqD5Oey7oWeUJwd3pxieA/EZyrqyD/hkzzCuLLG+X3ee5NHuQOjB6Z40Qermib3C9ZydxrVmXNdee+20TxslDQeN4TU0NDQ0LAQ2zfCyxM3xLY+kwXG8mXmDoxOODMj1uEhJDz744MzfSAxRF+wBsh48nOnSa2VakCpgljEQ3OFJdvnbbTzxN+8zkt1FF10kaVaKow8wPOxXuJp7qZcszIP2kbDoG+O94447pse6RMr8uW0P3b7ULweTlf8BpZSZ34eKqqK/dwbkkmnsQ43JOSuMNkjG6uvMWL3EUISndHLbVky5VCufVJNKsxI29J8+M172RVYeilASnxNYoycXjmDvMC4+a3bWCBgm12f+Yioo7C9nnXWWpLp9S+qSR7sNOq4lv5Fk2IP8mb+oHfDwBg97YW49qUCEJ4D3zzi3Xm7Iy3Vl97KnLGT+fc28XJHUT6vGs8O1EPEc9g4snfmDOXtwedzbnirPGayHWMQ5YDwcy/WyFH6sD/a9iy++eMaGPYTG8BoaGhoaFgKbLg+0vLw8lUgynTNvfJgAb3kYXpbU2W0ASFpeSBCJDo9BqS/1E2iKxIN0FiUA905yVoKECtOIx8CS/NPtj1FqYp6QUpC0sJMgaUXp0wO9XT/ukmuU+CiQSUkfJCvm/POf/7ykWYZBX2KQdYQH2Er9kiEbBZ5v3bq1F2Qf+8264kXmczoEZ7xoAZzlRrbG3uF67BGX2uM53n8POOfvaP/NPJPjse5hnKUW8yTp2LMyLQTtujSOPQtvQ9hVvB7ry5y496Gz+niOs15PkpAl+0XjM2TLI2mBe2RHJsTYPFGxe3ZmbJaxeh/cfh7vafa8sz7XDmQe7MxL7f7PUsK5v0St/FrsI6yfeadPtD+UysyTR3uasqFC2DwTOZbnKeOMnqXOev3ZD+Jzh3mivW/8xm/U3Xff3etHhsbwGhoaGhoWAptieOvr6zpy5EgvUWuUxN1biDe3xzbFt7x7w8EmiKFBevPip/GYCy+8UJL0zne+c6YtpLSPfOQj03M+8YlPSOpLL55yLMa0oAcn3g0pmb9hEPQ1Sp/0AUkLFsxcYSuIUoxLzTBX4oluv/12SR1bi+wBhnfZZZfNtMF1b7vtNkmzTJljmE+kNOYCRnHjjTdOzyHFD+tx2mmnpaVtQJQGPe2UVC99xFwSExjtiF6YFEmYY1gf5icyIsYEi3b7CxJyZm9mvV3azNKReQoztx3zd1bg2OcCz1VnO1Hi9xgx/n7ggQdmzrn++uslzXrAuU3cWWKW3o3reGo+t/PFPepscGVlZTAWDy/f2G7cB64B8XvavXZjf/hkDtkP3K/EOkYmjBcoyalhqtwvzGmcJ9aQPcizwllhXEv3OndPcvf8zbw0ma/4PPO+AfdJoH32Hc9g7qt4b9AHngt4MPNM4XqxNBzHsF6ecJxnZNwbPE+Zr2uvvVa/8Ru/0RtLhsbwGhoaGhoWAptieGtra9q/f3+v3ExMIEoBUWx2XhKev6N3Ty0RMizq8ssvl9SPx5I6by/ac8kOCSGWiPfMF14OCCkwetpxPlIZ0qV7rXmGijhPjJPPmoen1C9oC7uB6dF3vKmuu+666bmeDLtWMiljlIzdmQN9I8mrJN11112SpJe97GWSpDe/+c1VGyDX9/idaD+oFULl2nhuxawyzANjZT5uvvlmSd06IBFjT4jtu03o/PPPl9R5JsZz+D+SLnufv7OiorUYKme07okp9TOI+N50b0qpm1NsuPQRxoIU/cpXvlJSx/gl6aabbpo5lvvJGR8MR+rmmHu+lvg82rM8gfJQLBXe4e6JmCWE9799bjMPX2dW7Gs0JVwvFpyF0ZEZJO5JqWOJkXHx7GCPsC94dnk8cOyjZ6txrVhm/2PdeXY4280KXXv2JPcSBTwrYW9SPfk+n8xnhGe7Yh97gds4LvrEHn3ta1+bFtzN0BheQ0NDQ8NCYNNxeEePHp2+7WFgUfLh/14ixGPPoq3H40KQtJAM8MBBiop2H76D1XzoQx+SJF155ZWSOgkhMhOXklz/jwQUWSgSLe2h1/c8e7EYKkAax/6GjdKz0UQmwDx6gUSkKL5Hirvzzjun58JUsO/Rvn/G2C366OvlGWuihMw63HLLLZKkb/3Wb03znYLRaNRj/BHOuJh/pDfmHluU1NmGP/vZz0rqmBCMnHNYn6iNYC9yLNdxFk08qNTZMN3jDYYHw8SmHK/jnm7unQmixA2LYb1ZO2I3hzK7MA6kcPYsoJhvlI6vuuoqSZ2mBjsnn+wp5j2ez/7mb1/jaIdxm+c8mTKcFcb2PK8v+9QZUNRqoOmArbkmiblnXNETkD3BOvC88wLYUeNB36IHr9TXDmUeiTWmxZ7imRX3AQyfNlh/+uEsOF7HM67QN/YSz6HIsjmX+4l7jXn71Kc+JUm64IILenPCPvAMU+4vEsE8XXjhhYO+AxGN4TU0NDQ0LATaC6+hoaGhYSGwKZXm0tKStm/fPnU7hWZGoz4U1x1Q3DU7UlBXo7ljiyc0jqpGaDpqCNSFToFRCcXreXkQ1B+oOqLKrxYUynXcwSEGumPU9wTTtWBZqV8NG5WSVw9GPRDnhPZRs9EX5hHnj0suuWR6DmP3YGhAP6JzhAcy33TTTWnlbTAajXpB8DEQ2J2I6Pf/39659Vh2XWV7dFV3px2jlkOwiALGMXbbHBILKVIUzhJccYmEQIH/RX4Bf4DLSJFAlhzhBJzEJORkIDgxhLSIEnfittPd+7uInr3fevaYq6r86bvgq/HeVNWudZhrrrnWHu84vIN5Y32kixHXG9twPNwqzA9zkslETubhGrmHXQdy5gyXHtdusYJ09bCNxaFdAgByTkh+YKy4iSgaZ13m/eK+kzLPOsftxr0mTT3XOWPDjQc4L/c3hZxxLTEHuFL9/GYSGPeBZ3Gr4zmw+HLOE9e4cmG6zCfHkOOqOqyZl156qaoOzwsuz6rjpDVLzHWiz6wjxopr0+100sVt+UaLZVhCL92hhHtwu7qlFM9vns/tjpxQx5zh2szzMSesVe4tyVEcu2s2wPWxL8+P2yFVHcvGXVQ4umoY3mAwGAyuCC7F8G7evFlPPfXU3rokESS/5d2CxAKtXQsUgMXj9iwuzMUyqTpYWBYPdRuTZEAE/m3FYOlgpeV5ODfBWhfkWhA2rVUKLWFyFFtaLigtLa6LOcHSJykCC4tjZhEuVhJWOOzWLZSSrbrNEP+zoG1KKbno/969e0sR4N1uV48ePTpKgumCzZyLa3a5SBbMMpdYni5xcTJOlxrP+VhDTnhIYDWzL3PLPWTNJJPwnLg0gzFxfVmYyxqFYbl4l/u+lZZtEWfWzJalDVIYvOrAcJMpMxaX97Avc5aFz4x7JaztMV2/fr2V6wJY+2YRzD0sLZM+LA/H88KYaD/D/GXpgd8ZPJeWo+uEwF2WwPnd4qrquNzC0mhmevls8Dtrh+eUz3mX5fn8zrXXi+eJ+cznd9W6imfUiVYJNwR2S7UuyZGfW+8dYxjeYDAYDK4ELsXwHnvssXrxxReP0mq3LEVLLzlel9sAF6o6TtG13LB4sOMkaSlZNJV4EhYJFnBadFgcWPCWPeNYXdkFsRTHNCxw21kp7OM2GlhnnK9r4gnLXbUw6URjHQsxU0/LHqaMBbnb7TZFgGkgnMgWL9w75pQxwKKYt2QKbEt8qhPezX1z3XG/+YyxwBZgKjlmF5a7rRJzkkzCRcJmUWa9eS+dys5YiF2ybwozIwPFdTn13+IJeX0cj32IP/r68j7zWQrCVx3uJ//P5wmmwHPy4MGDzVjMw4cPl41081otPMG4/ezlNhZKdmyIn3lf2MZSWKuGrVWHZ5VnyM+ci/yrjuXm2NbvXIuMVx23VYOV0VaHe8x6yTG54bAFEMwe8zyWObOMXOfV4XpchtEVx9sz8tZbb7XfQR2G4Q0Gg8HgSuBSDO/09PQMu+ObO62ZlZ/d2Uv5fywCrAi+wbGm+btrxLiylj2OtADsayZWRAwH6zOzt/DRu6EtlqMzSDOm5iakji90zSLZJ7PY8trNGjJ70ozRWa5dpqwLy93wE0sWP3zVcVuTLXmohw8f1g9/+MP9vNlnX3WwZl3IbMmxvP+Wm2P++clcd2zN8Ql+mhlnLNeFv9wf5qLLJHammb0ejul12YrcF7elgdkls4XtYo3DkO0x4R5nhqdjqzwDzB/PSO7j++a4OYwmx+j46XkNYHNtdTFvF5w7u7HLHeDcjoNx/K2sUYvgM0++h/kecDa2pQY7b9Qq58FegU6qz+859uEdDtNLEXnec2475dZGILORuQ63MMss4Kqzcmt+B67aH3UMjvX14x//eGJ4g8FgMBgkLsXwfvzjH9crr7xSv/d7v1dVxy0cqo6z+ZxRw7d+ZpW5Oadjdraa8tvcFrf98vxMi5TjwKjMgLqMLsZETMN1avYrJwuBIWBxu12P5XvyOJzHbKCTBfJYHLMzch5tEXO/sP74G7miqoO178zcFXa73VGMJb0DfGZrjiwv5iJr/czSLT5rVtDFGBk36xCGtCWE7exjy4QlO7C3wU0vHb/o2gO5RtGNZruGw9TDEVtjbrC4WY/J9N1Q2JmqnKdrf2QGzjYZ5wFeMw8ePNhcPw8fPjxax+kRcQNRx6k7z5PPZ9bptdI9a6v741ZGOUbHIH1dHbP0e2XVaDnB8T03Xoe806oO72V7RLrGuTmePB5gjKw712bnNma7zt7tzsNzcv/+/WF4g8FgMBgkLt0e6N69e0dMLGMczrBjm616G6wgZ9i5fY5ZW/4POKbTffNbTYRjuO1RZmVZLLjLdKzq1RI4HtlQjlly3rSaHVOz1ee5yHlYxS+A2U9ua+aaKjpVB/ZbdbACncnZYbfb1YMHD47iI7mPLd0Vq0Hst+qwzmBnVtrxPHUKP5zX2WOdpW9W5jVL7CPnvKvny23MjLZiU4wZds0aynY9zJcbgJJZ7Lq/ZJRY4z4+6Bies0B55lf75pgyI3K1fmg87f93bM3P40rdpup4nrzO/Mx1z4vF0P0+yhiXY2l+DvmZXg97XFbxxa1M+c7rlGPvPD38z8+N3yXdWJ2n4XZOub4dg+Re8M7cqtvO2PhF1VaG4Q0Gg8HgSmC+8AaDwWBwJXApl+ajR4/q3r17R4kTSZWRHev6QSWSgpqOuzDbFDkp8coNtiUPtSplsCxUFmT6Ojiv3a0dBberwkKzlr/K/R1sd8C5c/N6Pp0WvxItzvNZsJnrdHFxjvW8ovOHDx8euTC65I7cp+rY1ZgBdMbFvbMQ8FbigV2xTgTy51XHQr+WmLJbLH9fuZYtmp7zsEpOsKRe3hdKPzqRh9yXZIX8P2sTcWwLOrAu8lpWCQ2+zi4Z4zzB6KpDH85VT7jueE7c6mCXssMUW4lvPp+TY5wwkr+nmzOP2z0/fp+dVzKR63s1Jt4H3NPch/tvUQbPeSfwsCqd8Pu8K0VyeYfnOsfYCQKMS3MwGAwGg8Clk1beeuutvVVJAsOrr76634ZO4xQwOnBpizi3sXXs9O0ty87WuRMAkiXY0iGhBusCZpdBd+SsVskjWwFul2+QQk8QG+u8kyMyQz0vmSX3Oc/KzX0tc8acWyotu42bcd++fXvJ8na73Zn0YSzE7p66sNhF+JlMZCk5j81p3Gk58j+urWN0+Xn+z0kKzJdLaRJdok6OvbNSfR632QJZKGw5LcC8WqauK4Mwo3Ch9VaauEtqfIzuWs9LK3/48OGSXecYDM95t9787rDXxgkqVes59HXlPOHRMZN0wliXRAK8rr3ecvuV+AbPTyfKwbuId9/Kc8E++TytSkL8XHWye557z2O3T17nMLzBYDAYDAKXYnhVP/tmpy0Q6eGf+9zn9v+35bFiF10cbtXkcD/YxnpeWeWOK6UF4CJHjod1g7RUFsev/PmrdOSuxQf7ILVEyj+sKf3ibnfj61hZflXHMj2rwufO4vb9A118yUz5wx/+cMtSOf6DBw/2DLKTN7OVam9AJxq8sgRtkbJPssNVrMbrsWsp5JT2VVw4j9tJo3X/zzlxoT7zB/PuJKXYZlVu4XF0DJZi/1Xblo6RrUoAzKDzPBcppEawYBVjzf23YsT5/xzfKi6+xdY8DyuG2rVO4zn3fTGb8u85hvSq5LE6AQLfZ3uJsrUaLZL8nFryC2+YGwnkPn5ndN6J8+5X9/1xWe9AYhjeYDAYDK4ELsXwrl+/Xr/wC79Q//AP/1BVVZ/61Keq6pCZWVX1ne98p6qOMx4t/JwMwplA/K/Lisrtq45jhCu/+FYWI751RHaJFSXD85jM8GyZdFl6AKklrD8zvaqq559/vqqOrSSzts7CXInSehzJKM1mbJV3bUnYhnn6xV/8xeU9u3btWt28efNo/DnHZnS+T9212kq3XJst384atBW9JeK8ap+C9Yp3INseWWDc1+N72Vn4PD9Y1ith8KrjZst+RnwPkpWvCpxXx6g6Lih2bKiLwXPfM3az1Tw4pcc8lvzd98wZgltYFYJ3x7Y0mrfpMjJZB85w9DrIewmTZyzEav0eZZ1nprdZtEW9mZtsLcX7G4bH8ez9sCB+1XELuJX4Q+cFWjHxLs5otnmRTN/9cS+85WAwGAwG/4txKYZ37dq1unXr1j7LEGHh3//9399v89JLL1XVwbLBmnCriK6Og20tmAy2WguZkdjySThbiTFhCeGXTrayagNzkaxNW4ocl4aYnPcb3/jGfh9887TIWfnSu9ZC/O76qC05slUsjDmy4HXVofUJbUbu3r27mRF6enp6JFHUxePMajqLfgVLfpk9dZ6F82Ti8nPGz77Mh5lwJ0u3klwym8q4CPEV35/VmPM8Zje2mp1FmWMwK1jFjnN/Mzxi4p3HxLG7d95559xMO1/zSrKtu9aO4a9E6b2GO+FxnofVeu9qE1krrCHYEdfBmsnscNfz4Y3yPh1rck2tY4fcj5xH3oV+f/vZ60SlWbeO4XKMznPDuC1l5jXbZQVn5vBFWd4wvMFgMBhcCVxaaeUnP/nJvn3Kyy+/XFVVf/qnf7rf5nd/93erquq1116rqnX7ns46W2VLuQlqJ0LLt70ZGP/POiUY6t27d6vqYK3YyugaY9p6XjG9zuLwMZgDlDEYV1XVG2+8cWZMbOPs1y6jbBWHwWoiLtAprYBVa6FsD/Tss8+eGdvnP//5Mz79LWBddlYzcNygyy61Jbiqi7PlmNuujrElVu77wPm4rmyJY0ULsw6ux/WGeXx+YuFjrbuuMY+3ElY30+yEx50Zu1XH5jjpqiVYNkPdalxqoLSylQltVnERtr6qEfb4u2xW7tUq43brfMwHcV6YcOfJ8LnZ10LU3bPBtrzn2BYRcZ7lVOlxVq69RX6+8vrN2j12t5GqOvbqreJyyXr93D722GOb6ycxDG8wGAwGVwLzhTcYDAaDK4FLuTRxLeByIY3/s5/97H6bO3fuVNWhKN2SVSRjdIkndiVAUy1DlfQVmmwJLCg3Y8ziSn6HvjuYvCV75YSaVVf2bp9VWQDXm+Ud//Iv/1JVVV/72teq6lAITLkH19sJwNo159IGu8Py99UYO/ce5ybZZqunGanlq9T1HJ/LVJzs00k8+VrtcmGseb7zEo+2EpBWa9Xu9xw3WCVHbLnscWUCC5DnfbEYubtv2+3c3TMnQWz1QXNxPNviwuwSXnytW4kHu92uHj16dOSiz2teCY9vFZOfF4ZweU+eg3eI3cTMucsTqg4uTMoAEPDgc5I+sgO5SzFw7WVSVNXxus/jfvGLXzzzN+9ojo3LM6/D72S71jsBeicQ8o5yMmCuA0IAdnd6fWTpBNuyzi/S/R0MwxsMBoPBlcClpcVgeVWHb1iEoqsOpQoIS8PogBlZ1cEq4qetMwc000LA0nGwNTsp53mrjhMPYE1OcMiArFmaE1zMPrfkgSy82kkNPf3001V1KEanIJSfWEvdvra0Mwmiqm/x4rR9J2V07U64juzcvgoeP3r0qO7fv3+UgJJW80qAm2s028xtzLxWQs2dnJqZnEsxkhG5ZMXlGqzrrqXQqkv1qo1PgoQmkq8sPZed6TkfiTNY0WaanWXs+70qAM45WSXjmC1slR2cnp5uppY/evToQpIWQrHeAAAgAElEQVRSHstKTqsbj5m3f+b7wIXnwMXVneQbTAvvE/eFtZP3xYyKY7AO7HHK+wIrcnkPx8xEPuC1aHa+JUjPue2N4Jh8nnPGXDjpxn/n2lgJBFwEw/AGg8FgcCVw6cLz69evH0kGZUo03/Kk1TvVHGszi1C7uEce19Z6l4JvtoS1RCwxLS03XsUStp88435YNGxrpmepsY7p2NJ1qncWdZM6zNy4cB+LPpvUgpWUj4u+c4wraTFbcsnYV+nHKzx8+HB/PZ0IMddoZr8See6wsri7diaMwUW0WJ1YwLlWM76S+zBfnWjBqrCZtcR5HGPNfS0dRXyM64It5Hm4LsbEMVhnXWulLATfmqNOjH0l39XFQt0ya0v6a7fbtex3S6B7S8x7hfMYXrInx5X9jHWNr+05eOGFF6rqcE95tvJaHYPmuMTdWCtdgThz+7GPfezMeSgro5wovQOwQpdkdB6Zqv6ZZz37/dPFQnnXWijCMbxs7HwR4YEVhuENBoPB4Erg0gzv5s2bR1lenYir40Z861PkmOwJ+Fvdcl6O9eXvWADEDrGesXLSAmb8jt1ZricFgLHcsMKwsFdtgjqfM+d1hlPn77clTwNagIVHbCfn05akLSEzPZ+76lhg1sKzeVzO94EPfGApHs053FIorVnWCOfk2m1pd80gzWpWjUvTuoRRcl7uN3FSruXjH//4fh/uv1ko64wxJ0vrxA9yDuyVSMFhzsO6ZvzPPffcmeuG+VcdLHbOZ9bJWuratawY3lZ80dfHejCj7OJZ/Hzf+953boYv6Ji+77cl+Lpj29PiHIHVzzzPSry5k040C+W+2NuRGZiODYN8n+Wx0hvBO9EskPceY86ibot6r1padevC2/o95ByNhPMK7N3pGDO4iCwdGIY3GAwGgyuB9xTDc4PMLf+6sxbN1qrW1pEtE//d/c+ySlgOKZ/j7DuLR8OaUurLNYFY8q4f6eYEyxcW5lgVbDT3cazE2Uvsw5wl63brDrOermWKs6LMXLnnyeCcqfahD31ok+HlWLp5cgyXbbeahfraLMi71WoKy5a1wTrgp7NEq44ZHvefdQgTy/XNeLG4XUNlCa5kgp7/ZNNVh7lPy56sacckHQ9mDWd8ZJWdCzj/Vjsq7gHn4Zhdw9ZVTWKC947ZfOdZWrGyLrbnmtBVU2X2yUzvVexuJeuWx3eNo9+n3XPJ+mL+WWer1mr5mT1m9r51gvAem71C3fvAbNfenK4RML+7ltPxvq5+km1/9KMfbXogEsPwBoPBYHAlcOk6vKpja3nLSjez42e2QOF3LA+zDGdr5jnM7BzLwVrO2hCOC+PCAsaaIPMx6wsd48IqxvLgGhhjWulkPhF3++53v3tmn2eeeaaqzlpXrtFa1ZNZEaHqOBPWVtmWKszKkrO1lmO6iNLByclJvf/9719adHk838M8hq+1E+nN47s5aY7f7N8Wfteux+eBaRNjgAHaiq46fm4szAvjzH1tueJ1cIwqrXTG6+NarBi2kDFDZyz7HneMjPvEeWyV85wls3FbpS1cu3atbty4cRSPy3vhOjsr4GzV+K2aSLv+N2s4zejs6dlioY6TrpqtJuy5OC/zNo+zyh0Aud7I3HRWpmvfung6Y/DaN0PuYsaee6+LTn2IMX3/+9+/cMbmMLzBYDAYXAm8J4bn+EWnp2a9RmtPZszB1omzFt3EtfNT28LDesWazXpAqxJg+bIN7CytBiwa2BqZfFw7PnWQcRq3EmGssE5qFpOFOuvKlpWtxZwTW0erBqoXbamR23ZxGNjNG2+8sbS0drtd3b9//8jPn2Myw1plmaYVy++OJ7puDGaUrJG1wWewG366FUpev+uwYHadvp/jbLbwk2FVnX2erOvKsb73ve+duf6co2SkVQfmZV1Z1nl6FqjRMsvxs94prfh/nJdjpOXvDNWLwHO/1YLL22y1h1q1g+K+d+dxo+FVE9y8Ps7tFj/Acec8t9sB8c70eyKZvq8TuDY6nyd7B1wj6nnNa3D7MTO6LpPUrJZ97Q3p2DX7bDWeNobhDQaDweBKYL7wBoPBYHAlcOmO5/fv3z9yOSYlhpbb5ebyhK7lCpTYrga3fumEoP3Taf1d12rcDYw5i3er+iQS9sX9aJcaLoVM9f7gBz9YVcdBcNyjuKeyANTp7Z0cWHctec0OTls+rAuo23W66p7eXc+Wa4EWL6BLI/baAbiEmetOmsjp8i4FsZBuno8Uf1yZdnkj4J3bWmg673dVn4zjBKCVlFW6iRgj643rslssC5GZW5e7MEaSp1jvWX7jJCwnkHVF2Oxj1/N5IgQXxaNHj+qtt946cgl3LbFWIu8dVqLuzPWqnCO3XaXDO3yRY7KYM248C6vn9XjeXeriUq6q4xIgwPl5Z7lMojufXY6sj7x+kv3Yx2GerojeiXV24XehD9/bBw8eTOH5YDAYDAaJSzG8hw8f1v/8z//UL/3SL1XVsVXFNlUH68UW15Zl5ICzA+Z8+2fwe3V8t7PpAsGMkYQDJw90ac8uLHVxNGPFuq46NG91Wj3WDVZazgnssitGzevxPFf1KcN5/hUDzP+5mBjkMZ32nMXBxsnJSRvA78bnYlczrmRpbubr4m3YC2wmrVnuu5OmuHdY+K+//vp+Hxdts68bgqZ1azboFivMMcdImThKWL71rW9V1aFUhrng+jrvgAWFnWDDMUjAynMjP0aaepcMYVgYwKn6mcjFHHfttIx333233nzzzX2D5E6g3W3A/Ixvte1iW+4tbNnJHfl+WMmRsWadNFV1XLoE+JvnI9mKvRpOAHJZVh7b8n1mQayZTsrObdfMFi1TlmNE2o415Gcl31VmeGbkXbNqy8jdu3fvQuLgVcPwBoPBYHBFcOkY3ttvv30Uz0pLy5Iwti63YMbhwnOsmjzWquDTBagdu7DVhLXRCRub2a2at2LNpJ/azNWpy5aJ6uZkxfS6mOiKyTk1e+u+rYq+u5KQVdmDkdZ11/TUxc5YoGZ+yRSwTolL8ZM4jIt6u/iB1x0MiHFk+5QvfOELZ7blGLShIlZ4586d/TYweK9Ns2lYaTKuV155paqqvvzlL1fVganCPmENHaO0eMGqiWfOJwySuWc+YXpuj1R1LAzRyU5V9U2f83larZ8HDx7U3bt39y2zthp/8hwy52ad3Tksfs0cM7fMddcw2XPNXHZlPPYSuTSD8215lszSed90whCW8nLuBWs3y6HsIXOs2F6JjF1zf2gCztrhc8dg89o5rwXUYYU59/Zu/fCHPxxpscFgMBgMEv9X4tGdX9zSVPZ121LpjmM2sZIaY0weY3eMtJpsDXWZjlVn4z1ml84q8hiz+Nd+aMcrusaIzFvX2DHRtUpZzYkZ35aQLlhlweb1XBSPHj06KhpNqx/rmLnO7MEcb8YciLfAimBjxIhgPmTKdhlpnJc54PhdFhtzBwvAOv7mN79ZVVX//u//XlVVn/jEJ/b7wIoszOz7QJbb1772tf2+r7322pnr67LxDJgKxyeWAitgXrsGzs8++2xVHVgNP7/yla9UVdXzzz9/5pqqDvcLC95ZdC6SznN2GZfGbrert99++yjzu8v09jNt78pWpjDxSwQJXNRvr0duY5Fvr/O8Zj+PzlHIOBbnXolzWGghY7l+B3tsFu2vOhbJ4Bg8V9xj1kUnWmCRdOcU5PV5DrhOe+a61kwps3bRrN9heIPBYDC4Erg0w7t169b+G7sTyPW3uDOEOkvOLMV+a3/eZYU67rYllGxG6UwuW6xVx409V/Vm/L8TcbXf31mOnSyXfeq2VDtrd5XRueXntnSVY5Vbck4pMLxiojTxtJXezZOBpdi1cYHhEXvinn3kIx+pquM1mgzVEnLE32xd5riwYhm35bNgZLC1qkMMw3VJXrtIzL355pv7bRj/b/3Wb50Zk2u6MrOTsbhJKKzMVnMnacd65+//+I//qKoDk82sTdcmWiB+S9g4PUKrtXP9+vV68skn99fI2LpGwH7feL4ya9JxNo7vmDeMJQXhXTPqNkH8P993rs3zmLmX+Zyu3mds6/devkNWtXQrCbWqA7u1gD4/Wf/evuoQ53X2sxl/9/7ms2wInGPvPIJs+/M///MXyhGpGoY3GAwGgyuCSzG8k5OTunXr1t6KcKZV/m4fsP24HdPbatZZte2HX1k6rtnIz2zpOKO0U2fBanG9iBlfXh8WlGsQ3VQ2sWqeaLbYZVyuVFmcuZpj5DPG6ho4j7nq2EK9efPmuW1YrEjTsU7HSy1gu9WIEyuTY6QF6vOxDfu4XRCZlxlnBLAX9oHlMG/J8IjrEUtzzDYVI6rOzvFTTz1VVQd26Fgqc0O9XtVx7MTi0ezr7M3cxlnHsFTmJpkzY3MmM393sSl7DLbWzc2bN+sjH/nI/hqZk+4d4qy/lZB6gvsBMzGLBzl+5p2MROb8V3/1V8+MI6/LXg17T7rmumafzoh2i6kOKyFtN8muOsSKUX9yXJ3r6t7RrnnmufL9z3ldKXI5Vtll5nfzdR6G4Q0Gg8HgSmC+8AaDwWBwJXBpl+Zjjz22p9ddEonTg1ddirtec8aqA3W6pZzosZL86Y6zSo6xqyGPsxKltdRYXpPpugPRdgVVnU0vzm0Zm4tWcx6cTt9dT15T7uN+W1vuNruvz+ttlu4k34P8zKK6FgSnxKDq4GrDhcjaJMnC7rW8ZlxxuBotqtsl0XA83DVO23aKedUh4I/rCHcRc4pkFokpKWLO/9iWBBPuD3OR95+x4Iby9ZCcsyVLxxicoIY7kfKEnAtS1UkccrLUViLXO++8syxNoOM58/ibv/mbZ46R53CYYOueOmnFrm3muitbsuQX84/L1z0V83hOhmKMduNx7Xl81jfvGReTJ+x+tIBH1++R33HZ233o0pq8Psbo9w7Psd2XCZetcYxObITPeOZff/31tmSkwzC8wWAwGFwJvKfCc2DWk7/zLb5K1OjSdV2I63261GLv48Jw/u5SmG1pYTl0cmhYKQ7A+nq2AukrptexULcMWYlkm0lXHSxUszUz2C44bitwldJcdbAy87rOkxfDms2CVWBvgFkm++QcYzVzTTATs9wuvRkmwnxxzeyD6DfMImHZJq7biQ9VVb/xG79RVYdyA+4pY3zmmWeq6lCsTup/1YGFwspIKmHMnVg51jhzw7a+jk4Q2u2BvGYobYBZ5/9I5GANsT62RMr5ucXw7t27Vy+99NK+bIPr6oSLVx3OmRPuT47Lxc+sMxfwJ8ODWfOZJQX9zsrzrFoWrTwxuY89Ltwn1m4mE6261puB5bvx6aefrqrDvWPtwN7dOinvLet5JQTuAvgcA1iJfndeQBKGvvnNb56Rx9vCMLzBYDAYXAlciuFV/ezb2+wmfc5Oa7d1Z3aTv5u1uKi623eVduwyggT78z/LNXWi2Ja+sWi1mW0n4mqLyiy4kxazGK3Tj7tGk+yLdWZW2rVoshWLpWipobzX9ptvCQADxmk2UHVcdmLxaM6XbIaiYGInzI/jV8Q+UkwA1uT4FNdMLCxZARa1YygWVMdSzuPDAhwvfeGFF6rqUAaRYtWrJp0rkfSqw33mOhgzYr6ANl85n8wjx4XJMTddQb/Zrdd1l8Lu53RLWuztt9+u11577aig3oX8Ccfsttal2SDPOGuFeexEj/ECcO+YA86f7wF7A1ZNXXMuLAdojw73wSUg3fV15VZVZ8tuYPBcM6Ug9oJ1jIv3Dc+kY7idR8vs2szfZVlVBy8Oguo/+MEPRjx6MBgMBoPEpRnetWvXjuS10npyzMSNWEFaGc50sj+W/3cxQ8fwbCF02YCOR1k4uRN+9TYukncm11ZDS2dJdfE/GIT/x5iwpjq25jYt/hx0BfxmrM567TJXu/iecXJyUrdv394zLcafkliObXRxN/+NRUrMbNW806yj6rDObI1z3o4V8pkz6ziWW0xVHcubwUxcUM/Yc3uyTf08OTs558Ss3yLRWMj87ETELS5BVmZmyAKvN+I8jsV2VjjneffddzdZXtVhjinkp8i76jgu7bXTeXpWa93SaH72qg5MDgYMq+Fntw9rxs9N92z5mr2vvTj8zPP5HWVPFnOyld9gLxvrgevM58y5CGZpINeBM3sd5+N8ef9effXVqjo0Rb5x48a5niUwDG8wGAwGVwLvKUtzS6jTIsRmfHksw9s4m43zplXhOhU3/mQ8yRotUeXr6RiLY1z47rs4SI6j6sAKVvVdbqOS29o6ct1dx/As2mrf+VbDVu+zyqLK41yE4V27dq1OTk728QIsu66+xkyPv9k31wmxpd/5nd+pqqrPfe5zZ47PT1hVxsI8h8TOsF45Xza5/Nd//deqOtxftrEEU943mBTMJGN0VQdmx+d5fRzXGYN8Tlwu1x/sI9lT1eH+sC33Mlk288Tz45q6TjydsRD/g40wb107Ku4p8/juu+8uJaJOT0/riSee2M8985nto2BjHt95coVVB3bkbV3jlkzIa8QxKB8jr9nSctwfxpFrh/vOOrbQvFtNJbh3/LQAfucJ8vuE8dtz4czvvI5VnaHr8aqO2xu5+TLHSolAWlVlzHUY3mAwGAwGgUszvBs3bhyxjq71DpaBazOczZZwXYzjf1jP6et3K3pqnajRcMwo97F/2OKuOUZne33961+vqoM6A758jplWs0VOzYS6TDJbbK63MgvKTKtVnU/XXsf7uM4HYGl1otiZdbqytN566636+7//+/qDP/iDqjpYwFaUyXOsBLo7hRgal1rUF1ZFrC/jcY7DOabbqQJZUcdtTNgnm51aYBhL26zDccAcG7V5/E0sjXWdHgwrXJzHcjJmyDxxzWRlOmMxvSywD3tijE59iH3u3r27VFwib8Bix53XhmfZ3iBnruYYVq2wVk2Rq46ZEPvae9LF1l0P5+ax+Uwwt7DaVTYi6y/fA/zOWvQYHa+tOqxnC95bWYY1k+9VzyfHZe102ehWg3HWMZ/zHFcd3r1se/v27c2cicQwvMFgMBhcCVw6S7PqWJewa72z0jDsKuKdzYP17JqPrp2O281gPX/729+uqoNuYcbUXAPkpq32W+c+jIHzcVxULFwvlXALHjPltJp9PqxDzksMAUu/q/ty3Z3rcdI6M7t2zWPXaNZaoFt+9J/85Cf16quv1p/8yZ+c2SebnVonlHXAPe10AxkD1ixMj32YJ6uoVB0z1C7GUHV27XBc3xdnB3Zs/Vd+5Veqquq555478znZZpwnGRfZp6iMYP0T6+haF60yhbH07TlJxuw6U9RMzGyThfBMW2eW56dTy+DcMNfvfe97yxY3p6en9fjjj++vFcbMPFZVvfzyy1V1uD88F6xnjp3vH67NjYAdX+TznOuuNVrVMfNPrJpSOy7XMUq2tZIL+3aeBcfSrPO7pTPMu8Hre6WmU3X8fnP+BteVa8fxZBgt94bj//M///N+H+5hNt2dGN5gMBgMBoH5whsMBoPBlcClk1ZOT0+PqHC6/lwQbfrujsTdtqv0ZLfzyX35DLcRLgfKB3CDVJ1NKKk6uAncpifdFXYHmEJD9aHbWWJg0Wu7gOx6yG0tTm3JNEuQVR3uQVdsm+ftWmqsOqxvpTBnwsvKtbDb7er+/ftHMlSk5Fcd7gtuGQL1pCSTUJGuJXfvJomIa+d6+JmCwxaN5qdlnHIenW7O3+4IjWum6jjl2q5s5o/rzbIFzmNRX+aok16ydJ5djMBlGd312bXNnOXacZmP10pXrsI1fvGLX6yqn7metxIy7t+/v08M+7d/+7eqOluKwXPA/yyR1707nOpvMBdsl65mv6NchmV5xKrj9xzn9Ti6ZBy343GIqJNS5H92AbrMIl2oq0QdxubSilxTLs1xuMHPVX7mInx+/tM//dOZv3Pc6b69KIbhDQaDweBK4D2JR9tCTYvbckZO4ugEoJ3+bdFgrPIuIcBBY6wLmnqStECBeNWxRWUL362Acmxc10rUFaQl6bZDZm9uqphjM7CoSGbYEua1Zef057S8XQKwanuU1qctxYu0B4IJY51lmyASjRgL8+bWJF1Q38kCbvXCuHOtOoXdLZFcSJvnduKRyywyAYM1yDr2enfKf66DTL3Ofczich1YLLxrA1PVF56vkpS4Lu5BjtHMzkkqXodVh2Qlisdv3LixKS326NGj/bV2TIhkpVdeeaWqDkwfDw/3o3vGmH/mwSnxrAvWbh7Hz7BZU9cc2+8BJ3XkGJ0I5PcMc9IVrbsMyfff5839s21TjtUejE4I2mO1iH3Oib16nA/PDx6ATow/3z+TtDIYDAaDQeA9xfAstppWswsXVwKtaW3Y0nCsy40kuwaCfObmp5alyvNY1Ndt5bESqw5W4Mpasq89LY5V81aui5+Z/r6KoTEOWMNWTNTFqBwTS7WzilbX5aLf/GxLtsnHxrJH+Ddb78DGiGWZ6TmOmmMw43L8qitpcXsoH9Nxizw3cwwr4HPmNmMpLgewSLWZTV6fJZxWxcsZS3GsziIQLpJP5rUSJ95a31sNmvN6k5HB7LpYV4fT09OjmDHC2lUHiblvfOMbVXWI5cHwOjFnt3Yyq2G8sJlkwqxb4stuz+MygoRl2sz8Mm2fbd2s2ELX3VpyjgDr0Iw84fvA3PBMWlg731kuaXDxv9lqgrlmXfDMc95kkl5vF33/VA3DGwwGg8EVwaUY3m63qwcPHhyxtq5w1ZYIVkZXeG5LwP5iLJ6uEaOFkrHCusaoYJWJ5JhDWnTOXuOnGZat0Kq+SWeO0Qw29+GnhWC3rJoutpbX2wnOrhplOnaXsUVbs7vdbhmHQZbOTVeTZcPwHAfz2HLclkDibxfkYmnn+TyXZk9d+xSLiLOtM3/zPF4jZnj2RnTxOI9/JZqQ2zpebuHxrZihs+bM7JIVW6jZz2knHwdryhZCK/Hxk5OTunXr1p5NcN9ef/31/TY00SVW/4//+I9VdSjqh+nlORgfa9JM2MXXubb5H3NtuTPmJ9m2n0Mz7C7j1uIIK49ZF6f18S1I4PuWv1t2jHXQNUX2+djHbYi4f7kv18FxYXhk5DJWmF7unzHjieENBoPBYBC4dAzv5OSklZkC1MbY92oLsas5A47HuZ4kLRLLWvl8tt4TjmU5XpItKfjMbTLchgh0bM3sA1bAdXWi2BZ1dsZlJ8ZtSTEL6HbSQqsWP8wN1lnXHghcv359aWnB8FgXnCezNLnfyEJ997vfPTNe7mWOkblbjXsrzsh9WDXK3JJTcx2eYzjd/QCu93McrmviyTGc8ZbySsCMwXFNGFe3DszwvM68thLOynNMPmsgGUMyxq21c/369b1l/9///d9VdVZQmGvh/fPrv/7rVXWI6TFftD/KczvTlnXh68h76rVoxsq6To+IPQjMpXMK0jvAcZlvYverjOVcB16LXg9+RqqOmR33iWNx3qwzBfZkrTJ+c054B5OhTXY944DxbXn1zmscnBiGNxgMBoMrgUvH8Ha73d5i+/CHP1xVvUWKJfWd73ynqo6zifIb21a4RUZhBVjAXQakazwcN0grwLFBrBUsOqyotHxdT2g1Fmd8ZqzSWWCOFXZNXIEzFW1xY4l1MSPHUlxTk9dnBskcY4FZNDavJy3jlbVF81dbjGmROmuS+AgWvducVB1nJDrj0vVXnVqGW8vkmL2PW9hYJN3i0vk/szVnNTojMuE6UNekdrVUzmrODNsVXIPm+GnHmB3n4XyujczYDXGzrHVbxfB2u92ZtUr2dMZ1OBdrhqxNrpn6PNpTcdy8ZsYNi2HceGJS2YXzOduU+li3LcuxWaXFOQw5t9l8uOq4ptdz3L0bPa9eH7mPn3sLTzumn8+br4u1YhHu3O7LX/7ymfMSg2Vemb9cO/4OGfHowWAwGAyE+cIbDAaDwZXAe+qHB/XHPfDaa6/t/wflNRV377R0wdhNYuoLJXZRYtW6FxdUvEt0cf8zC+MiNJ374E6DWjsJgmNx7ExT7zqD53l9jPydeVzt08mS2T2JOwI3RVdQDewiI10Y18Mv//Iv77clwNy5RozT09O6ffv23qXJWLriflxV7khPElG6N/gf23K/7TbsSlq8VjgG95qx5lq1YO3KTZkucN93FwA7ASrdYCmuneex9Fy60FcJVS414L51YsUWgGbMnYi4k69W0oAJwgiEPp544okLFZ9XHZc+VR3myeUouMjoi0n/vapjKTmug+My1zyDuQ7Y1vJdrGsnJlUdz4sFrblvnfBAN+9Vh/Xn+5O/+13lJLpu7VhCsZNKW43V5RVOVOvejYj+IxBPwhpj7Vyn6SK+aOLKMLzBYDAYXAlciuE9fPiwfvCDH9QnP/nJqqr66Ec/WlVVX/3qV/fbuLAcC/7u3btV1af4Om3VQUkYHj+7di3AyStuV1R1XIyMJeLWPp1YrNPgGauTMdLyWZVkuIi9K4q2/NEqaaIrHnaSjBlLN48OUlO4C7tKhgMTvnPnTlUdins7nJ6e1hNPPLFfB1h5uQ/3w0XW7kyd98UF2CuRZf5OKSQXaLsgvyvmZQ6976p9U9Ux+7PlvWLteR4nQXismZhgYWnPG/eWe5rlN5bQcwd0LPKcR45rYWnuBYk8rKXchvfD7du3lwyPkhYnlSX7Zf5JGrEX49d+7deOxgDbYwwrEQmuvUsMcrG1xTNyra6k/ix00bEVe70shNGJgLgkiznpvBDAknk8gy5p4PNcB5zPjNnvnxSCJvHR3iYLq2fpGmvyIp4lYxjeYDAYDK4ELl14fvPmzfrjP/7jqjpOkU1gpWCd/+d//ueZbTsJHFs+trTsJ899zGrchLBrt2Nm6UaZaaWvrC9feyeQ6rR0fjL2rsUL4/f5XBDssoyq47lYCVDn9VnAmuJvrGnGk/539kfE90c/+tGyrdGtW7fqzp07+3R01sNzzz2334b5YHz8jQUMU8C/n9dqa3Ul55Xjc1zC7NmWZO7PZ7ADp7hvFfVbkNctX/Kem0EAi4aAHxkAAAjaSURBVBh0bN2C2hYi4F5kCQ+szN4Hr/8cj5sfu1SHa8hCcVL8uaePP/74siwBWFou59ixetigmwpnzJiSKYuS23vDOuxa/bhQ3yVBuXbMnl0mYi9S1eHd4XIUtzDjWHkvVyU6Xqv57DiG7+a3LibP9xxzzVwwFnshMr+DdWtPgj2FWX5kb8qqYXiHYXiDwWAwuBK4FMP74Ac/WH/1V3+1j7vwjZ7+VWcT8e2OGOgbb7xRVWetj1XLE8sZwT66olcsBMfYtvzUwEyvi8NgibpNiuWZOsvHxeO+Tkv/5FiAhVjZ1zGkHAtwK5FO3s3F6ViMf/7nf15VVX/zN39TVWetdGcs3rt3ry2e59xPP/10vfrqq1V1YIXJuBiDY5pYs51ElWPDMAdb5dynXKsWJXfMjvNsSUqtWFTeD1vpbj+zKvbObd1+yMIKybwtIed2VDBLrPdOds2MwvOX51tJ9HEfWUtZKI4Hgay884qHd7vd0XOS4+bYHJf3jGOtGTMmfsR7xcXUjpt3rX787rJsW2YUM/+sUTO6TnoLWPaM8ziLsZPds1i+BSgyd8CyZ47p+R2ZzIssep4bzsu9Yb7zHhBz5b5ZLLqTsnNW661bt6bwfDAYDAaDxKUY3vve9766c+fO3tL5+te/XlVns6UcA8AywG/LvmntuU7H7Ixv906ax/5iW96d/93ZcY4duLaq6thKsuXrfTu/+EqeydlNCSw3rLBVFmpa3DAvx3+cHZhWEUwJSSasdGJtf/Znf1ZVVZ/+9Kf3+3jOLa+WeOyxx+rFF1+sL3zhC1V1EPVNEVq367HEWCdNhBVroV9n6bm2ruowZ85IW/3M43kN2ZrONWUBbjMKrqebPzfVJKOS9e06rbx2njHmBCZGTRrHTIvbLYRcO9WxNbewcm1kbgtgOcnIt6TF3n333SPPRLJ1syLG4izmZAp4nSxOb2+Hs53zOG547Zh7jtGMdxXDS0+PPVQWdeb4zGN6XRijWafl9jJexvvbMmd+3zkeXHV4hzD3PCu8311bnL/7XeyGAh27zuzqqcMbDAaDwSBw6SzN69ev7y034jFpIaTAatVxrQk++zfffHO/jVtNuE0PVgDbpYVvH73hNjtcR+7j+FsnyNv5yLtjgGSU/M+Zdlbg6DLtbC078wor1CLK3ZhWYsWJF198saoObADrHFbwl3/5l/tt//qv/7qqztY6rWqpbt68WU899dS+Zu/zn/98VZ3NuHz22Werap3xxlyk9YdSB14Gt1oym+6sdK8/ewWSFThG6xqtrl7SLVUcQ2NfzptWvesiuWfcH9ZUWsAc16yTukksceImGWdyVqtjhq7HqjpWqGEtcqxOuYj3APf08ccfX64dxKO9nvOaYb6MhdiQG0LnGDg3ikGuoeP/FrOvOlb0IfvTTX0zo9zKLmaUrumtOtxv5paxuMbN3rDuM9ah2Vm+s12ry7yxDfNsBaDclvNwPdwLx+SrDpmybON6PP7OOTHbOy+798y2F95yMBgMBoP/xZgvvMFgMBhcCbwnlybUFUHhBPQcKr5y9eHSqDoIFENbLTBtt1S6CZxwsBLm7VLLu2A011l1liq7eBhavSrD6Hqa2S266jmWv6+2cYF9ujKc7s4cWAiW1O2qqr/4i7+oqkPSyt/93d9VVdXHPvaxqqr6zGc+U1Vn79tv//ZvV1XVSy+9VFU/c6WtyhIQj37hhReq6uDmIvGp6iD0C1y+0blv+Qy3HO5CF2TjZunKRTg++yI5xTxll2xLmTmJxULNVYd+fhR6O/GJsVpOKbfxPXVPx0zasPuRa8d9zNg4T65Vy485acbrLo/j8AIuM9LV812AG5FwxZNPPtmWRzCGrit3wm5crtku4M49DSxtZxm1dOM6EcgJV10YY1Xq4SSy7llmHycF8v+tEhML23sNdW5Xxsrat8QXz0pKi5EE1PW6zPNmqIh9eG+vkr+6Up0sT7ho8fkwvMFgMBhcCVya4d24cWOfqk4iQ1oVzz//fFUdp/Y6PTi//bFaLHVkaSIneWzB58vEGorIsXy6lGWjY2Hd+VzcXXXcjsX7dFaZmcJKpJjP00pzYSZWLveCn3neZ555pqoOc8K94Hr+8A//sKqq/vZv/3a/D0kmL7/88n6fzvpmDu7du7dvAwLTS4YHAyFNnmP5fue4M+EirxmL14XbuS+BeCxSAvEwMrObPN+K4XdCw8wlVrHl51ibLirOa3fxuAUPcm2ZpcGmAUwaq70TRbaEmkWLM7XcDIJtuC6uG2u+6sDwsgRp9Wztdrt65513ls9C1YFpMP9ORCOpJN87zJP3YQ6cMt8lIvm+ONkjmbCfO7cdYp11rczMMi3x1bVBW3mwfC+7//kYTl7q3sUWjOB6mXv+TwF61bHcnss8QCfRlt8lU3g+GAwGg0HgUgzv5OSkfu7nfq6+9KUvVdXBIuliT26Jk8c4GoQKjYnL8a1O+rStmqqDxWOfNpYcx8x9XOhrS2eL6QFbsxaR7SwOizpvtfZwc9KV/BmWV+7rmJ1jEexLvC7Pwz5YZTT3RTD8j/7oj/b7YLnTJgq5sA4//elP67/+67/2x4VRZnkKDI+4m2NCWJfJuJgP7qXLYpgfF9vmcTgGBbLMEx6MZFzEMLHOWV/cS9hUsg/HUvmb2JYZRJZJ+L473telzHNcx4xgWIydee6KyF1C40ajnRyVnyMXPMPuq469K+fh9PR0f78Y9xbjYix4c0AKNDhGyzxQtuF3VQpkrFqadWsUcM38z8XqjK0Tked/Lr9gjNzzjP9abpF7x/kt0Oxz53HxbHgt55ywDWsUTw3vMn4yvzl+5pHnt2t7Bsz+Tk5OhuENBoPBYJC4dlFJlqqqa9eufb+qvv3/bjiD/w/w9G63e9IfztoZXACzdgbvFe3aMS71hTcYDAaDwf9WjEtzMBgMBlcC84U3GAwGgyuB+cIbDAaDwZXAfOENBoPB4EpgvvAGg8FgcCUwX3iDwWAwuBKYL7zBYDAYXAnMF95gMBgMrgTmC28wGAwGVwL/BxfldYutiQgNAAAAAElFTkSuQmCC\n", @@ -1517,7 +1486,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYZXlVJbp+EZGRY2VNQA2AVIE44vD66Sdgg9jYymd3q/haoXEAbFtxeOrDVhxea7XayhMbBUekbUsFQduRhlYcq1ucwemhlIJSIkUVNWUNmZWVmRFx3h/nrIgd6+y9z4nKuDdf4l7fF9+Ne+85v/Obzrl77bF1XYdCoVAoFAqLwcqF7kChUCgUCh/IqB/aQqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIyR/a1toLWmtd8Hevc9x1i+zwXLTWvqi19s7W2lnbzw80yHpstNbe3Vr78dbaY5xjn9Ja+9nW2vuGebm7tfbrrbXnt9ZWneO/eWj3F5czmtH1b2qt3XQhrn2hMcz7DUu+5nXDdV+wxGve2Fq7ZcZxV7XWXtla+5vW2unW2l2ttbe11l7RWjvYWnvksKd/KGnj3w7je8bw/iZz72y21k601v6stfb9rbWP3L9Rju7T6O+WfbrWoaG9b9in9j64tXZDa+2DnO9ub639yH5cZz/QWvvk1tofDHvkfa21726tHZxx3nNba7/YWnvPcO7NrbVva60d3Y9+re3h2M8B8F75bMP8/yYATwFw2/l26nzRWrsWwI8CeC2AFwJ46ML2aOG4EcCr0K/nxwL4jwCe2lr72K7rTgNAa+1rALwcwG8BeAmAvwdwOYBPBfDDAO4F8MvS7hcOr5/eWruy67q7FzwOxZcv+Xr/2HEb+nv4by90Ryxaa8cB/CGALQAvA3AzgCvQ7/XPA/CtXdfd2Vr7FQDPaa19Tdd1Z52mvhD9vv+f5rO/APClw//HATwJwBcBeFFr7au7rgt/uPeIp8j7XwTw5wBuMJ+d2adrnRmu9559au+DAXwrgN9w2vx0ACf26TrnhdbaxwH4VfTPsW9G3++XAbgKwPMnTn8J+n31EvT3wf+Ofsyf1Fp7Rne+CSe6rkv/ALwAQAfgg6eO/f/LH4BPGvr8zy50X5Yw1g7Ad8hnzx8+/+zh/dPRP6ReGbTxBAAfLZ89ZWjjTcPrV17osV7geT54Adb1hgs97iWM80YAt0wc80XDfHyM810D0Ib/P3s47tnOcdcN98C3m89uAvAW59gDAH4OwCaAj1/QuG8B8Jo9HL/U/SfXftYwr//0Qu+XiX7+CoC/BLBqPvuSoe8fOXHuI53PeO5Tz7dv+2aj9VTHrbUjrbUfHlSUJwdq/lRPPdVa+6TW2m+21h5orZ1qrb25tfYkOeam1tpbWmuf0lr7k9bag621t7fWnm2OuRH9DQQAvzlc68bhu+e21n6rtXbn0J8/ba2NJJ3W2lpr7SWttb9qrT00HP+rrbUPM8c8srX2I621W1trZwZVw5dIO1e31n5iUGGcaa3d1lp7Y2vtUQ9vlmfjj4fXDx5eXwLgHgBf7x3cdd3fdl33F/Lx89E/aP4dgH/AtEQIIDYhDKqnTj776tbaOwZVzYnW2ltlLXepjltrzxja/ozW2g+0Xn14V2vtNa21y6TtR7bWXtdau39o+8eH87ZVh8kYbmytvbf1qvbfa62dBvDdw3dz91DXWvuO1tpXtV6d/0Br7X82UUm21laH424b9vNNeow59lmttd8f5uu+1tovtdY+VI7hPfKs1qtBTw99/IRhX3/ncK17hnEeNefuUh233Gx0g8x1ei8Mxz1zuG8faq39bWvtS/WYAFcMr7frF92A4e0b0e/zL3Da+AL0P8o/OXWxruvOodembAD4qpl93De01l7fWntXa+3pbVCDAvi24bsvHPbRncOeeltr7Xly/kh13Fp7aetNS09s/bP11LAvv7G11pK+PAv9DxgA/I5Z/ycP3+9SHbfWXjR8//GttZ8f7pHbW2tfO3z/r1prfz5c/w9bax/jXPM5rbU/Gu6HE8N8PHpizo4A+BQAr++6btN89Tr0z7HPyM7vuu5O52M+R7ev3Vp7dGvttcM9dKb1z/Y3tNYuz9rfi+p4tbWmx291XbeVnPOj6FXONwB4K4Bnolfn7kJr7V+gp/tvAvD5w8cvQb+wH9113T+Yw58A4BUAvgvAXQC+FsB/a619WNd17wLw7QDeBuCVAL4CwJ8A4CQ+Hr2k+lL00u3TAfyX1trhruusneH1AD4LwPehV5ccGo69BsDNrVdlvQXA4WFs7wbwaQB+uLV2sOu67x/a+SkAjwPwdeh/rK4a5uBIMmf7geuH13tbb3v9ZAC/1HXdLBV6620azwHw613Xva+19hoA39ha+/Cu696xHx1srX0egP+M/gHyO+jn8qOx81DN8Ar0D9XnAfhQ9D+Cm9gtDPwCgI8C8I0A3gXg/wDw/ZiPS9Hvg+8B8E0ATg+fz91DQL+X/xrAVwNYR6/G+uVhr9LscsPQ/ssB/BqAjwPwBu3M8MB7E3rV/3MAHEM/d29pvYngVnM4VWb/CcBJ9PPzhuFvDb2W6sOHY+5AIIBhxxxk8XkAvhLAO4Z+zboXWmsfDuB/oH8OPBfAweH4Y+jXLsMfDa+vb629FD0LPaUHdV13trX2OgD/rrV2Rdd195ivPx/A73Vd986Ja7GtO1prbwXwiXOOXwAegf758f8A+CsAHO/16Pflu4b3nwzgp1pr613X3TjRZkN/X/wY+rX/bADfiZ5dvy445/cB/F8Avhe9ip0C+dsnrvUa9NqKH0a/Z76ntfYI9Krm/4TenPc9AH6xtfZE/ji2HRPXq9Grbi9Dv89/e9jnDwbX+xD0e3tXv7que6C19h4AHzHRXw+fNLzaZ97rAVwJ4MUAbgVwNYB/jv43IsYMOv4C9PTZ+3ujc9x1w/sPRf8g+npp75XDcS8wn70LwG/KccfR/5B+n/nsJgDnADzRfPYo9DfqN5nPPmW4xjOSca2gX5hXA/hz8/k/G879quTc/4B+ozxRPn/10Oe14f3JrJ19Upd06Dfu2rDYTx42xikA16L/ce8AfNce2vzc4Zx/Y9ayA/DSPeyX6+TzG/rttv3+BwD8yURbNwG4ybx/xtD2T8hxPzCsB1WInzoc97ly3Bum9sVw3I3DcZ85cZy7h8y6vBPAAfPZv4ZRRaG3kZ8E8CNy7ksgqmP0P1Dv5N4aPrt+uB9e7twjjzeffcbQ3m/IdX4BwLvN++sg96Yc/4nDPNvrzb0XXju8P2qOeSyAs5hQHQ/HfstwbIeeab512FOXyXEfPxzzZeazJw+ffamzv0aqY/P96wCcPp/7M2n7FgSqY/QP8w7Ap83cfz8F4A/N54eG87/BfPZSmHt6+KwB+BsAb5i4Tqg6Rq9l+BHz/kXDsV9vPltHb8d9CMBjzOd8znzC8P4y9M+tH5JrfMiw5i9K+sjn9ujeHvbKm/a4Po9Drx357zJfZwF8yV7Xey+q42cPm9j+fU1y/CcMHftv8vnP2TettSeiZ6mvHVRbawNzfhC9NPV0Of+dnZFKu667A71UPvKIUwxqk9e11m5F/zA6B+CL0f+QEHxIvzpp6lnonTPeLX1+M3pph9LTHwP4utarSD8qU9GYPq7aNltrc9bom4axnEY/Z+cAfHrXde+bca6H5wO4H8AvAUDXdX+NfryfP7M/c/DHAD629R6enzKofubiTfL+/0XPkK4a3j8ZvfCl3tI/h/k4h54178LMPUT8eterIW0/gZ29+lEAjgL4WTnv9XLNowD+CYCf6XaYMLquezeA38WO5E38Tdd1f2fe3zy8vlmOuxnAY2buy+vQz+ebAfx789Xce+EpAP5HZ5ho12uqfnfq2sOx34Z+3r4Y/Q/LlegZz9tba1eZ4/4YvaBp1cdfiN5B6GfmXMugoX8WxAfsvlf3oiGcwoNd1+l6obX2YW2IHED/43MOPVv39p+H7Xun6389/hIznp0PA1Q3o+sd094N4C+7rrMOtdyXjx1en4Ze26e/BX83/OlvwULQWrsUvVB+Ev1+A7A9X28D8E2tta9se/BM38tD8+1d171V/t6VHH/N8HqHfP5+eU975Y9h58HFv3+J/oayuAdjnMEEdW+tHQPw6wA+BsA3oF/UjwfwX9E/pIkrAdzTDd66AR6FftG1vxQq2OfnoF+wr0evcrm1tfYtEz9Wvyltfks2rgH/dRjL/wbgEV3XfXTXdfSsvBv9D/DjZrSD1trV6FV/bwJwsLV2Wevtnz+P3lbxzDntzMBPAvgy9ALZmwHc01r7hTYvPEz3AL01uQeuAXBCfuSA8d7LcGe329azlz20l356/dL3l6N/6Hse/bdjrG5XL9CzyedrAEahXRaDeviN6KMOntftNhfNvReugT//s9ek67rbu677sa7rXth13fXoVdiPRm+asfgJAE9pfVjKOvr78Je7rttrmN9jkURRDHt117hn7t85GNmjh/vwNwB8GPox/1P0+++1mFJd9tjsuu5++Wzy2fkw4e21aF/y+vwteAvG++mJGP8WeNfzbKVXwP/dGGEQat+EXhv4qV3X6f58NnrP5m9GL+S9d8rODezNRrtXcIM+Cr00Q1wlxzFk5BvRbyKF56b/cPAU9D82T+u67i380JFC7wJwxWBzi35s70YvQHx18P1fA9ts+ysAfEXrnVaejz705k70tgsPXwrgEvN+Diu9reu6t3pfdF230XqHon8+2MymQgg+D/2D998Mf4rno/+xiUA78Lp8vusmGaTDVwF41eBI8KnobbY/g/7H93xwG4DLW2sH5MdW914Gj8nM3UNzwXvkKvTMAua9xYmhP1c7bVyNmQ+Rh4PBxv8z6NV6n9CNbaOz7gX0Y/Xmfy9rsgtd1/1ga+3bMba/vQa97fELAPwZ+gftpBOUResdFj8Ool0QvA/9D51+th/w9t/T0AsWn2Xv99bagX265oUGfwueh95MolAhweKv0TP8j4TRZA3C8Qch11Dy2IPofYU+CsAnd113sx7Tdd3t6NXjL2qtfQT68NHvRC8Y/XjU9iJ/aP8I/Wb5HAwemwM+R477a/T2io/suu6lC+wPVZPbD97hAf+ZctyvoWcrX4zYeeZXAfyfAN4z/JhOYlC/flNr7UXoY/Wy4/YbL0Vvj/puOA/E1tr1AC7pes/j56OPNXyB085LADy7tXZJ13UPBNf6++H1SejtP/wh+tSoc13XnQDwM621T8BOTOP54A/QCwvPxm61rO69vWLuHpqLv0Bvk/pc9E5OxHPtQV3XnWqtvQ3A57TWbuh2HEceB+Cp2JuT117xcvQP+Kd1ux2uiLn3wu+jj8c+yh/r1tpj0dt90x+nQTV8pzBptNauQe+0tot1dl13a2vtN9CrVD8aPWseqWGT6x0A8EPon4+vjI4bVKKugLsgePvvUegdjBYJCueHF3yd/4Ve+/b4rusi5ywXXdc92Fr7TQDPba19l9FGPRf9s+C/Z+cPz6ifRS9MP6vruj+Zcc2/Qm8a/HIkz3Rgbz+0Hzt4jSneau1GphM3t9Z+GsC3D6rSt6E3WP+r4ZCt4biutfYV6L0x19EP9i70ku5T0d/AL99DPyP8HnqJ6Adba9+K3jb2fw/XutT0+7dbaz8P4OXDg+C30MfVPR29Qf0m9B54z0HvFf296IWFo+hVOk/ruu4zBz3/b6BX69yM/ub4TPSqjV/bh/HMRtd1/6u19uJhTB+B3tnnPUNfnoleqHjewF4+Cr0Tzk3aTmvtEHqb3L9GLL39MfqEBy8b1v0M+lCJXarV1tqPAngA/QP4DvQOD1+AfZibrut+rbX2uwB+dNiz7xr6zFCCzFM+w6w9tId+3jvsn29urT2AfuwfD+DfOof/B/QqrTe2PvvRMfTakfvQawL2Ha2156IPb/ku9GaEJ5uv3zvY2ybvheH470Av6Pxaa+1l6DUeN2Ce6vgLAHxJa+216AX4B9Hvl69Fr/H6Qeecn0B/710P4Hu9Z9SAS8y4LkG//1+I3ub55V3XvW1G/5aF30EvmL2qtfZt6B1GvwX9HI4ywe0jbkZ/z3xxa+0U+jl/h6PdOC90XXdP60OS/nPrkw69Gf0z4tHovat/peu6zM/iW9CrnX+6tfYq7Hjfv6brum1v5NaHnv0QgE/suu4Ph49fjd5p8FvRmwDsXn9P10dfXIWe8f40+n2+if65chi5lu+8vY479DZBe9x15twj6FWk96A3LL8BwL+A49GJXpJ4I3a8025Br7Z5ijnmJvgB5rcAuNG8d72O0f/Q/yl6qelv0T9EboDxhh2OW0Ovg/8b9JvqTvShCR9qjrkc/UPm3cMxd6C/Eb5m+P4getXoXw5jvx/9j9DzpuZ8L39wElYkxz4Vve3sNvQ//Pegf7h/Pnp7/fcNm+dxwfkr6H+gb5q4zkcOa3VyOP7FOs/omfNNw7ydGebxewEcl/W+ybx/xjDeTwn2qN17jxz2zwPos179JHYSeYwSH0h7N6L/IfG+m7uHRusCx6sXvbT9HehVT6eHMX8EnIQV6IWc3x+Ouw/9Tf+hcsxNkHvEXPeL5fMbhs/XvP6Z772/G0w76b0g9+WfDuv9d+i1FzdiOmHFhw/t/yl69eI59Hv45wD8k+Ccw8Mches9zBXHszUc/2foNQRpgoN9uG9vQe51/K7gu09Dn1HqNHr16peh11g9ZI6JvI43gmvdPKO/Xzn0eWNo+8nD55HX8WPk/D/A2Ov9w4ZjP18+/0z02bseQC9UvRPAf9G9HvTzmeid8x4a9sj3ADgkx7CPTzaf3Z7s9W8YjjmK/gf5r9A/2+4bxvU5U/1iOMTS0Fr79+hVmNd1XbdfKcIKhUm01n4APVu5opu2VRcKhcK+YJE2WrTW/iV63fWfoZcYn4Y+NOBn60e2sEi0PrvRpeg1Cuvo2eCXAXhZ/cgWCoVlYqE/tOip/2ehdy46ij6TxivR68ELhUXiFPo47yegV+O/G3288csuZKcKhcI/PixddVwoFAqFwj8mVOH3QqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFohFO0PtXGhtrTtw4AC2tvpcAXz1bMQrK/3vP9NHrq6u7vqcr/YYPUdTT2apKKeOnXPu+bQ/dfxe+7jX8cy5XgYeq2uZzY0e23Ud7rjjDtx///2jg48ePdpddtll2+d47epn+mr3zNQ5EfZrjfcytxHm+Fbsh/+Ft05R29F3+rn9nv/zebC5ubnr/cbGRng9orWGkydP4syZM6OJPXbsWHfFFVdst8v22P5U/7Jr7uXz8z12P8+9UNjLfoz2kPdZtG7efc3ngP1Nue+++/Dggw8udEKX+UOLxz3ucTh58iQA4NSpPqkINz6PAYD19T5N7pEjfcax48eP73p/9Oh2rWocPtxnBTt4sE88dODAgV1t8dV74Opn0Q88X+13eq4KA3Zx9TvbXtamd070as+JBJPoc85ZdsycHw59aPJcrqcdtz5Iz507h6/7Os0N3+P48eN44QtfiLNnz+5qj2tux8D15nvuD57D723/Dh06tOs770dZP4/2TjTnFnv5UWY7KphGDyL+oNhz+FnUZ68vUz+AfG+vpz9megzX78yZnegq/v/QQ32K7Pvv79PZ8jlx77337noP9HsF2L1Xf/u3f3s0FgC4/PLL8eIXv3i7nRMn+tzzfP7YfrFdnVtvnqLniq5ldv+cDynIhE6F9oHrEe3zrL3snCkBKyNXVvCxx6hgxLUCxvtL9x/3h32+8ZnB35Rjx47hJ39yT2mwHxZKdVwoFAqFwgKxNEbbdR3OnTu3LTV6KhxVKxMRI7P/R8xP2amnbpzD2iLMOSeS7CLpNLvOXDWnd91I2rbzHbWvbWSqnOj6U+q/CFtbWzh16lS4L7y2ud4ZE5xi4myD33uMNpqnbMw6Dm88eqwy1jkq3YhBzFmHSKPBNjk3ViOlx+p7j3XzfD1H58i+J6vhZ9Yk5WFzc3P0vPGeO5Hq0dMARBql6J729p2ud3ZvzWW9mdZl6tw5rHsvz8joXlCtCDC+1/hKNsrfDctOtT0F27daLH5GDcqhQ4f2xcQyhWK0hUKhUCgsEBec0c5xlIlsp/a7KTtkZv+MruMx3bkseI4tIxqnx0r0O2XFnlSX9SHqRyQlRhJn1p6yEytZ6jxmUmXXdbvset7c6zWt/dbCs53zVe36kd1V27HvI62B7WP03ltDnVO1lep1MzYU3Sues4junUgz4Nlo1f5OBqo2QmCHqSiUedq54Tl8PXv2bMpo7fnaR/3f9lPnze5fMqtIg5attWoFzge6773nUcS2iTksNfNB0XambLPe+KP1Vmbr9Sm6F9RXwILtTe2b/UIx2kKhUCgUFoj6oS0UCoVCYYFYmuoY2O2UQLWPVcfMVRlbtYWq+VQNmIVbRCqizAliKl43Uzcr5jhBRdebExIUqQj34uAQqaotIvVLpqJSlXGmRuu6DmfPnt1eU8/sMKWG47F2v2mYUKQO9PaO9j9S4XrqbVVjZk4d0R6JVIaeuUCPiVTk3lh1XqecjoCxapeOJ2p+sMdETleZqpf7YGNjI+1X13WpKprQNeR+0FdgHLKm4T7Retn/pxwM9xIGo2PwEKmQveeqtheFPM5RO6vq1lsDjZeOzBDZ80fDliLHOmDsULdoFKMtFAqFQmGBWKoz1Obm5rYE6wVNK2uKHJy8BAuUMPmdSpweK4kcp+YE9EehIZlTylRbHhuemxDBGxel7MiRwTt3bqjTHGabhbooa9jc3EyZvw0j8foQObTo/mByCmAnmQU/0z2TZSSLGDQ/z/a3BtZr6IllAFNJDZSVepoUzjHfa/IOb+9oAhAdg+eEx3GQwZI16Dx6jDa6Xz1Gq/O2sbExeb9loW56n0fPFLt3+L/Ok66Tx/wyVm0/t2NS7YeXMEQxN6mF5+wVafV0vFnIm+cwZ8c3h9GqlsQmrND9FDlbedqEveyd/UAx2kKhUCgUFoilMtqNjQ2XmSg0dZ+m1cvCeyK7ipeOSyX6KNwjC39RGwLh5VJVSTVish5jj1iqNydTaRqz9Ipz7ckeo4uSKRBZCNLa2lrKoltrozRsHluM2vdYScRoNRXoHOavDNNj8V5YCoCR34LdS5o+UW2zug881h3dE8rYbP91DjQ0x9v3DMGasu96oTpMsajnZGFEUcrEOfC0VTpf3Bf6av/XOY00TXPC/XROvTAo3SN8P8WS7XWIyGZv+6vPXu4HL6XpVApT3TvePvC0FfbVMlq91/T5w2OnQgeXgWK0hUKhUCgsEEv3OiY8L8nIYzhjtCpRRhK5J73rZ5k3JjFlZ5uTbJ1QlpixU7UBRazV9juyt2Z25MjLNfNU1uuo5JoluZib2q21FnokWug1o2QUQLz+ZCssYuHZK5XBaP+9qjOUsGnDJKJkJN4YdU/q/rf94Gf0qtbXjJVENlplVhZcF2WGHLd3X/Ez9im69+z95LHcKWaS+TTomHX9+Z4aECD2Oo60ZJ6WSu3cfPXskVp8gcewDfXetojYbqQt8+aE66NFXDgP9tiIxWeMnWPVV46bx9p5jDzUFd7nc7yl9xPFaAuFQqFQWCCWymi7rhvZYKzUo56hlJqm0pt536n05EltkSdilqJOpSgrdUZ9VHYVsZQsFjLzpIsQMT9tK4ufU7bl2WGj+LzINm3/t9eJpMzWGlZXV7elW882F3l/Z8w/imsla+Dnug/tZ8rIeQ77atdSPe7VRquv9tgoveVeJPNof3nerYTGG3JulFnZ//md2tX46jEMZZGel7j2V9OTRvDirT0PW64pr8lynGRxmT0y0qxltnMdT2SPt2NVm2wW1z/lC5LdG8pkVfvjxRbrZ1F8uMdAo5J3hOcbwr5xz0S1i+0enZO7YBEoRlsoFAqFwgKxVEbbWht5utnk7ypBqk1JPd/YJrAjqSjbUfuEZxdg+zxXr+vZP/X6WXL8iH3O6eOU3TPL2BTFwmX2VpUcI9uwxVSSdI1ds+1OeSpaqMTqxeVqu8rEbB8iFjIngbpC/QlUk2L/V82GMllrw43WV22nWR95LFm2SvUeg448odmGahfsuTquqNSf1w7X4rLLLgMAPPjggwB23/PEnIIURBSjb/+P7MXKJu3/0VrOYYsKZav2emrXjMr+ZftAi3vouL2Y2MiDPIqR9fqkGhx6mJ8+fXp0TqTdyVi++lboXNk50QIXy2K2xWgLhUKhUFgg6oe2UCgUCoUFYqmqY2CcjIKGbCB3HQfG6iwLNaKrak3DfIDYsM9+UJVtz1GVqqpyPGP+VMJszomXzCMqjqBOWJmjUeRENscJIgrEt3OiamzPAUSvr/M2VRTA+962F4WAUT1FFaRdlyj8JVK12uup6m5O/Vu9nqom1TnKjiNKjBGp+O31qIrWfcA5sSo8VeWyLzxG7z3P0UiTuasKz66lOoixr+yj95x44IEHAOy+B7JEK1tbW7NCzHS/qkObdepRs4KdQ2+stm1VHev976ljVZWqjmee6nhu8hnCCyvT55k+f7yUiKr6VnOD3pN2XFNJfTLob4v3O7FsJyiiGG2hUCgUCgvE0hhtaw0HDhwYJWfwHAOikBJlkWwXGDtBqaSnBnMgTrmnxnwrTStzUgnJY7RRcv1IyvYM/jreLMnBlBNKFkwfBX2rtJpJ9xqCosd5x2YpGFtrWFlZGSVAyEKMTp06BWDMBOw5UbIBHkPJm+favaMSv4akeVqEyKFM18NjtKpRiPahXRd+R+bANnhv3Hvvvbve2//5SscVtsHxKCsHxkkcdA68FKO6J/me6+exEnV66bouZTxe6ldv7/AzLzRL+xLdu3r/eGw4SmOYFQGIHIyU2dpz2P5USkTvvtOQxCghi/fc0eQavI+4pvzcMloi0tR4mgEtPBGlJ7V9zIp+LBLFaAuFQqFQWCCWaqNdXV0NdfBALF1ktgR1154KF8mS/VPKoUTmSZaU5NVmmgVcq9QbBY57cxIVR9DQDC8dYZT6kcgSkOu8euEVU+foXFlou1OS5erq6mjslk1xrJSSlfVm4Q8qNfMYbcM7VxNUZIlFNPmCSvrKFoGxvZttsM9aVN3T9qgmiHNyauRLAAAgAElEQVREtuqF93A8tIcq687CvSJmpuzLXkdDrDj3HuthH+lLof4K2pfNzc004YqGn02xR++YKDWrp92ZSoXppQuNipZo+Iud26gEoYYMzgkJip5vdu7ZF+5nfdX9budTGWtU+MIr7BD12bsn9F7IEuXsJ4rRFgqFQqGwQCw9BWNkw7D/q5SsdhqPiUXlwlRS8hLDR4nU1ROSY7CgVBpJtBYRC1AbjSf96jjUQ9FKlpQc1YtVJVqVdLP+qy3Nm0ediyyRwJxjCNpo2SdN8QbsMJ8o6bpti1CJVz2qtaiATSqvHsOa9FxZA7AjgavfAN/ff//9AHYzWl7z2LFju8ahfgvsu5fkQNm2JqC349J7S5O4KLO2rELLk0X3emYT5nWiMnD2OtbWO6UR4Tx5Nl89l/3XAgqejTYrcQj4XvqRd3Zkf/fGofDSd+o+m0r276VvVN8X3VN2TlQLwWOUdXNcdn9EhRXYhiYVssfqPRelK7XH2vEso1ReMdpCoVAoFBaIpZfJo1Tl2e+UlSob8aRbtZHyOy3mrQnDvWO8MnW2bSCW6KJ0iraParfT62UsTyVKZbJW0lNJ8uGkEtS+ZjHMupaqEchiZK0Em0mWKysrI9sVxwnszKWOnfD6wM/Uy5QMj9+T2Xral8gr3Iv/03hZsjhN3O+VcGNMt3r78r2X5nJueTS7L9Q/IfKQztL2KRtRBm3XeSqO1vMWV03M+vr6ZGF1ZTdeHDivRUamffM88lVboNoPvtrrKcOcKjLifacs1PPViAofqAaN52SpbaMCGJ52Ua97ySWX7PpeS98BYw9le29beOdERVsyfwxiKn5/v1CMtlAoFAqFBWLpmaGiBO5AHHdHeDp3lUjIPi6//HIAO9KUJ71feumlAMYxVVkWGfVw1OxOntQexXXpdbxYSJUYldGqHQbwy3oBOxKrJmq39j+2r7HFnr2a4JxodhxlD570O8dW21rD+vr6tgaCfbD7IGL4OufeOZrQXm2pXrlBLc49h70rk6X3JeGVhlOPVGUnXGtvz6pnqu5dL4uaMnHV+hCerVD3iGYC4qt3PdUUEZ7tWe/XyG4J7PiFZCxSGTjvD2VtHmtW/wQ+f44fPw5gZ328WE7NsqRewN5ejYo+6Bjs+VGhkEjjYcelvgZqb818bPiezxddJ+uLwHbp5c7X++67b9f4Mg1RpAnNfi8OHjy4lFjaYrSFQqFQKCwQS2W0VnKIivR6n6nE4ZWto+TI8lrqrUvJ3MucQumJUpuyOGv3Uolb7WrWg1P7q68R67LSuzLlqNRdZgPSuEO2r7mlLThmHuN5+iqislje3CuLX19fTzNDtda2z1FmC4yz0ajknTFNtkfth7I3T2ugXqxsn/uP/WGsqu2LMv3IGxQYe54qy9Lv7f5U5h8xGC9uVz3Iyb45Bs6V3auaPUpZMfvGjFT2OnoPRBoVe6w9JovBX1tb274O++B52kexsdpXe75qHIhIA+G1rz4N6vFrv1MtzJx9zvb1fvfigxX6TIpi8m17vO/ZF9WkkPXbOdN7m/NK34S77roLgB9Xrb8l2X2l82TzYC8SxWgLhUKhUFgg6oe2UCgUCoUFYunOUErdrUolCh3wigkQVDVcccUVAMbqUYV12FGXdVVTqTOJ/UydDzSA3zPARynQCC8RvaqXsoQIisjJSwPGPQcKjsNz5lCoE9ecMCJND5gVFWC/tHSfXRddb1Wbc62pirL/c6xaFpGv7BdNDBbsP1XGfKXKWB3E7HU03aDnaKaqVQ3viUI1gJ354fV0z3iFPbj+dObhsbfeeuuucdFJxar/dK+yLe4v7iW7bhy7mkZUhW3nJko474GOdIQ6vvEYYEctqQ6bnpOaqopVPeql/yPmqo69/a33rC3KoX2M0hhGBV3s9bgOGm6j62Xhqby98dAMYfeqOsXpuHhfeftb3+tvjF0DLQKyLBSjLRQKhUJhgVgao6WbfeZE4CXx57n2cyvBqsFdnUQ0aN5LMB0V0/bKsUVu9lFRdQtPmrZtZXOiDgxRknH7vzrfRE4fFlEaRXX6yooMqDTqMdUs8UEEW64Q2C2VRkWnlZ0ypAvYCTvQuY0c2+w4eCz7dOWVV+7qE/thg/WjVI8q4du9FCUD0eICbNs67LBvUSIYLxxC2+d1qTHKQp6UQWnqT7JSL20j29FE+8ps7f9eOJyCjJb3smop7P+q0eLYvZKA7Jc6CUXJWrwEDOpgGN2n3hg1FMhLjaqaNB2vPvdsHyOtnl7XS6OoTkha0MFLAKLavCjZjg1F1Ge+PuOjNKz2syoqUCgUCoXCBwCWymjPnTs3koRs0L66dkehLVZCU8ZK6ZN2qYw5eenYbN+ILNGCSodZubooibgyZyu9R0xZbXNzJMvIluWl/CPUbuixbpXE9XpecLtXyCGTLLuu254XDRuybSszJquLEi945yhb9BKAKGPhOtCG6dlbdQ8qG9EAf3vOVElFL4xExxqlh7TjZ7u0R6udkgzdK5wdpQfVxBhecpUoWcOccLKM0WobXnEB9UvQufaS3eg1lSkrI5tjE1RNl2c7V38S1SJkKW11n+nzzzJafYZEe9ULk5rad4R3P0XFBby0lKqJ0hSgXhKZqWfholCMtlAoFAqFBWKpXse2JFFmm1NGkXn4qe0qKojspWuLiqgTnsQcpU1UVmclZpVUVVrUYH2vPFZUFs3r45T0GUm29tqRndzzLFRpPpIaPQ9zYspWwlJ53rnAzrwog+V7z5OTrFMlX11D73pqU9J0imrLtOeoxkTZoZbE846NbHSe/0JkL1Qbqm0vShOqDNOORdNS0mNVbWUeu/OStQC+1kn7OFVQ4OzZs2FyGPu/PpO0Xa+4iK5lpLXIEvPoXlHbqf1M7zFqBJTNeX3J7ntg97qoP4lXps5eV/+PjrHwUkzqvotSP9rzvSQU9pxMy2ivtUgUoy0UCoVCYYFYehytSiqetBOxRa80WSTRR2zYwouTtdf30o6plKReul6b2gcv5tH7HhgXsidU6rXzqPahyGaaFXZQSTzyQgbGjCxi1J59PCogYUGP9cyzWz1E1SbrlebKyp8B48TtHiPXmMvMVq92fT3XK6ZOphyx0ygW2/6veyfb30S03yKve/uZMuZIg2P7EvkxeKUDuaZkzlN75+zZs6EWwUP0vJmTLnbK1mjbjdry7gntk+4VL6oiKkhBRCUevT7MScGqcxo9O7zra190Lrz1mutV7eUlyLRVi0Ax2kKhUCgUFoilMlomh59znH1V+6onVWm7KlF6ElFkR9FzrDSqGWDUw069Ar1rqz1X4SWv97zuvPfeeFQqVHu2nc+IhUYMx7aj140KIET9jkBWEnkz2jFFMXxeDLZqGlTazRhGVAggK4jhxToC4wTqnrZANRtzbIBahk0ZtNdnZfHKKLPx6bHa50x7oRoiMnmP/UX+AxG6rptkvVG/outGTCjb83PhaZqUgU15Oev/QGwLzva33tuqSfES9kfPg8gOq//bdj2Pbz1GfyfmrLXVxJSNtlAoFAqFixz1Q1soFAqFwgKxVNXx6upqqq7gZ5FaJnNsmlID70WVoypEqzpmSEgUBuOpqiP1ovZ5TqiOjsNLAalzG6lwMvWP9jlTy0ypbLzvtY9T6pvNzc1tJxuG7Ng+asC+jt1z5phyhNDQkqzmb+S45yXpIDQtII+1NWyjfazfE17iEg2NiFIx2vN5jqa5i8wD9n91DFPVceZUFN3jngMVce7cucn9kyXAUJNKdm39TM1Zc1KJRmaYzMGR0PtG18sLDYycL7N1iZzfdP7s++g5oOdkzxBVK2frps/NqI923GzPOjg+HPX+XlGMtlAoFAqFBWJpjLa1hgMHDqQOJhnbtfBSk00xijmSJqFSnHWA0uB2dQ7wwjsit/epUBp7rpcM3fZjTjiJYo6T0pwg9Lnaguw6XdeFrGRrawtnz57dltqZ0MGT3nWd1WnJslJNeBBpD7L0nVEygGicQOxQR8Zu0zcqY4oc3CJnJTtOth8lLgHGCRDUOUqdpOy+UycyPcbT9uj9pO89tqXtnz17djINo17bS1gQhRx6JT2j59he2FH07OLYs7ArXpdrGmmi5mAvzqVZ4o+pcLJIw+EdQ+h1vFCdqeepdx1Pm7dIFKMtFAqFQmGBWCqjXVlZGenivRCNLEBcz4mk88jlO7N7RGE9XimwKK2i2jbsZ2p3iNhPxoYjO4hlaspCtP0oRMQ7NpI0M5tYlrRBx5GFX9lrWRbI8Xnl1gi9tmdTn0pNl2lFpjQm3niylHDAeL3ssdE+iEInLHhfsbC5Jj3w0pJGZRDVJuilYIzKoXlJLrSgBvuYJRrhGvLcU6dOTZbKi+5xO+ZMKwXszZdBj/M+i/aQp9nSe1XtkV4YTKSdip5HHluMwnm89J3ROPV9ZqOPtHtTIZEW2e+HPqeL0RYKhUKh8AGApXodr6zsJI7X0k16nEUmoahdbYppZNJUlO4rK6asEpfXxlQ6u4wtUmrnqxY/92y0kWfyXuytkbf2Xlj3HExpL+w1eG0mq7dzEWkY5iRq10LiEePPkl1EjNpLM6dMST3Hs2TyUeIAby9xTnQusqQrmro0kvy9VKP8P3r1EsBwHDxG7chZGtQ5KRhba1hbW9veM94aRM+IyIvV9m8qUX/GNKOoA28tleFF93R2nYg5e8/gKFGF7lW7lnO8piNMMdfMRqtzkvn46JiXkawCKEZbKBQKhcJCsVRG68VceWzx4aQxm5OGbaqtOYm0I7tmZiOKkl9Hyfg9NkxJX2M6vVJhkZTreTECvpQ4Nff28yg5eZa03LPFRGvYdR22tra254XshPY8ADh+/DiAnTVTmyXZjxcrqfaoiHF46QYzTUZ0HWUWau/KPLqjmEQvPalK7bq/OSe24DfTQEap7yKv9+yYOfeGplzUknseo2W/p2IhW2sjhpx5MSsyD9WI8UfPMvu/rmmWolDZdbTuXvpWvmpKTK9gA6HsWp+Fnr+BpoGMtJaZrVaPmfJrsIjyBGS27jnt7geK0RYKhUKhsEAsjdHSc5T2MM8DUW06c+13QGzL2kucW1QI3suYQkSs1POMjmyXe5EsKZFrbKedx4ih6feeNBd5EWbeelGM5xztQfQ+A+NMyWxtv2m3VQmczCjLJqVQBrqXmEHPk1PZn3rpenajaF9HHtNZQQLuEY2VtYyWc6ol1vRenGKBtv0sFlLtt1EMpNUUsL86Bx66rsPGxsYo7t177szxNo7GOGUP9eytGfOyx9k+RuVAvb4qo9VY/CxjU/TMUBuql2NA9/NUrLn9TPeVMmh7rs6f3k+eZ7QXHbAMO20x2kKhUCgUFoj6oS0UCoVCYYFYqup4Y2NjlM7MqksidZG6b3uqgChl2xyVrqrsVI2VJRLQOpqqrrHtz3Esio7TOeCrlx5QnZ40CUGkBrTX3ktaMz03SgTuOaDMAfeOqjqt6jhyvNBEFXOcYKIQgEwNPJW4wJ7Pfmuyhuw6+sr9FoVs2OvofuBcMGGFVR2rU9Ill1wCwHcMBB6eM4mnotR1031uVZSeajK6t7quw+bm5shJLXPmi5Ltz9mzkTNhljowQhZWxPXXZ4s9h2umz6YoKYT3bNRnoDpheXVd9VkVhft415uaa7uOU+Fk2flZsp5FoBhtoVAoFAoLxFJTMK6vr4+kHC+gPwoUz6SPyFlHJTCPDXuOJPa9ZbRqnI8C+20ChaikmsJz7oj6GCXUttfWeYzYR+YEEb23jG0qeF/nDBgzwinJcmtrK1wfwC9paNvNwnqU7Uyl8/Q+ixLn2z6SLfKV0PkhA7H/s09koZo+0XOKI1ONNBiaitEeS4eziEFp3y2itfQS0ROaNlQdXGyhBb32VGjPysrK9vnetedqmrKUflEIkM61/Uz3nTqBesxM7zUN2fG0ITwmKgPoMWy9h72wKB2DpqxVLUjEwu0xet+oY5Pn9BntA2+evVCjZbDaYrSFQqFQKCwQF6xMnhc6o2EIijkBziqJZe7wUVq5jJ2qrYJ2T0prDJ3w0vVloRj2OMswovCBaLwWKjlOhRNYRGElHqJxzLHn2rCBKclSWZvdJzomZQVZSsQoDCFKNGIxxWStHZlMVkNospR4ykqUnWjIhudPoNBxWolf9+pUEpmMIU5pjIDYvqbJNLxnwpxkJ3zuEMqYLSK73V7Sqnp9i6B7U9mbbZPrEhV69+411QpEdmOvj/oZ2+J6eMlOojVUNuyF+UTJOzQFp90HmtSEfdHxeto3ve6iUYy2UCgUCoUFYqkpGGkv4f+Ar+PPWG8E1dNPFRew50S2YI/Rqs1FGS3ZaOZZqRKdpk+zNrrIlqm2GSupKdvYS1FyHWd0bGav1HHOYcVTfdnc3BxJ9Za96WfKfr0E9FES8ki6zvahsjbaBK09lhK3Xk/X0ib5V29qthsl/7eIWK8G/3sl6HQPaaIUj+XrfRu92nVTG6wypjmF2jMvU45T7cPZOZkGg9AEDnP9MOy5kfexx7Yj1hsVJrF90+vN2d96jKY95auX+EO1KjrOKZux7VNUetF+93ASHGVFbRaBYrSFQqFQKCwQS7fRRrY0YH7haC/NXBSHlXkyz9XPezaMiDFnnsORvVj7kcXgKsvO7BAq7Xrp5/T6me3N66v9TFlWllhd+zqVRu/cuXMjLYi1D2lavijNnOeVGXmSZyxF51TZA/vjecuyAILaX717gsxBbXFkGJkdlO1rykXVDFjofGlJvYiF2/bUNqfsxDIeZbAcl37uMSd73Sn/Db3XMtty5Lnu7d8orjiLo83syYAfo6rzQC0F94enaYhKKep+80oREvyM+5j98Ly4o3tNtQj6zLZjJ/S5nWk2FFFbFva5U17HhUKhUChc5Fgao11ZWcH6+vooG45FlFBa2WgmvU7p6fdiy6CkZ5mTsmotOB7FyNljo2w/nj05YmbR9e05yhKjJPneXEXZnTzMSaQ+59wpu5buA8s8vKIBFpwLby014xjZgsZGegnb9RiV2j0mo+eQxWXn0G4fxbN6TE33jjJ3shKPyaitW9u080hEdnG10XqZqDgHypw8O6zu47Nnz4b7lM8d1QDMeYYovGxSqhXRvT/HBhhpfrIiI2qX9BhtVBCC+5vvVQNhz4mul8VER34y0T607elvQNQPb1wR7LrtxU9lP1GMtlAoFAqFBWLpNlplU55EEdlkMwlmytvY87yN4mjVBmjtbOpZF43DY5pqm9XYSE+C1TmIvKgzpq7j0zY89h3ZpbzPp7yKM7vuHKjXceax7pWas7D278gmq2vqxWBHWbCUHdo14H66++67d/U/yooD7OwN5hw+duzYrr7pOL3YYmWFamfL/BYiBu3Zk/VcjYH1NES0MSqzVRutF/88NwextcN59vbouRJpIOz/6sEd7SXPZyPy1leWDOysg66d9s2eE2VzUnhrSUQ2be/+jZ4v3ngUURY7j/1G11Vvfi8rV/Q8WzSK0RYKhUKhsEDUD22hUCgUCgvEUhNWrK2tjVzOPXVMpD6YY/yOEit4KtcoGbWqkK3qmKqbKXWITaOozjtRIvA5qdD02L0EXEcOB177RKQW9tYtSozhIUotmUHDlWyfNO2aqpo0WB4Yq/c09V1W0jFLhGKv5yX5P3nyJIAdNWmWNpHXjhyL1MnHqtO1TB7bUEejLF2ohoToPrDXU9WhhvV4phj+z1edE091TNgEIJnz4/r6errf1HQS3R+Zoxmh+8HbJ9H9kjlDcV2OHj0KYEflznnz+hOllI2c/DLHSr7q9Wwfo0QskdnBSx6jUPVvFk401Xfbjn1f4T2FQqFQKFzkWKoz1MrKyohFZM4UU04K3jmKLORkKrm2d31lA3SVp0RGSdPrl6bPi1zzs8QOc4z5UViHfu8xNXVKiJzM7HW94vPZdbO+euDe0TAc256mN9RjvP2mzkKR85OGe3ljjlKL2oQPmsBBQ1q8uY3Kr81Jxajtc2/qvrApH7UMX8T2MyfGKIzDS0SvjFaTJ2jCDNsnqynKGK1NwUjY95qKMysEQETXmxNWOMVks/N5Lp3idFx2n6jWK9L2ZA5buu+U/XtsUVloVJzeS/3pOWbac6Jr2+vo/vCS+dhj54Qwni+K0RYKhUKhsEAs1UYL5HaIiBFFtlr7mb6Pwl88t35NMhDZw/R8+53abi37IXNUW5WOx2OGas+NpN4syXvk/p61GUmuno1L29H25kijGYvous5lot75ni3WnuOlYNT+q22JoRVeEvQocN/bq2oTzQoC6Li4d9TuqtezfVTmHCXTsHMSlQzU8KnsfooKmnssVRlsxGg9pmbv172mYMx8Q4iIXXmYCif0bPlRaGAWlqIhM+p34V0n0rZkyfinNGdZoY3oOaN9nbPvs35o++ojoNot+90cTdp+ohhtoVAoFAoLxAVjtJ4XmSJKWJEFr0fJLTzpNJK0tWSXlXpUOiPUFuilB4xSoqmN0JNKlX1k0qDaxqJycJmX8NT6eLaZqeQWmT1nCltbW6lncpSqLUsGoSwnKtuV2XcVUdA8MPbupAep7l3PpqT2dO5N7Zs3BrXFRiUFbTvcs7pH5uxVnWstJmAZre7RKNG9Z1O1zCzbR13XjebR3p+ZRz3PV0T21ankLUDMvLJ+qBZEU3LqcV570XMh85eJWD6/t/MYzUWkXbSf677VvnoMdyoiIruf7PqV13GhUCgUChc5lspordexlx5sio16NqWo9NIcZqteoGQJ2jfPnqNpFFXizGzP6kkalcKz/0dSl2dfURuWSoXRWDxENrlMSoxswFNex5kn58bGRsrAtW2uJdcnS2+o2okojZ61i0Ye3cosPe9sBcdDW6rtjxai0LXNbHOEelpG9kT7md4/2r7nT6AMLbK3Wq9j9YdQtu2xrb0W+mYsLbDDAD2N05woBx3rHO1QdK6WPoxsml77upe8c6IIj0hL4THaKMVk5tE7FamQpXzVccxZ4+ge8Epwemlwi9EWCoVCoXCRY6lxtKurqyNJ30oTyhKUharU630WlVJT70l7bmTX82x3UWk7ZbhZbKKeq6zFkxKJyOvZYsq2HbEUe71Iysu8xefaaLxj9uL9552jGo1o/b12iKgAu9orbftTsZceo+Vn3CNZLCSPJRPj9bRPno02W+eoz1EMdqQZ8hgUEcXRZgXN1Y7rFfzOkuBH0HssY/FRDLbFlDYqism2/09lkfL2AaG26znML9JozfHi17nwvNyja0ce+RaRB/Gccny6ZzPNgD6fM23efqIYbaFQKBQKC0T90BYKhUKhsEAs1RmK6dCAXG2h6ipV6XoqQ20nSnDuhQbpuWpE98JSVA04R/2rtT0j9aznYKJtzQkY1zFHTmVePyI1lqcOjkIb5iS5IDI1IJ1ZItNCNuYs6bvWo9W9pM5ynppMr6uqL3uOzoPuBzU/2PZ5jvaZ8O6DKBUe4Tl56XWixBie+jYKbYrCfGx/o4QVuha2/ei9gmYrwHeQUQefKHWo9xyIzCW6pt7ejxwNs/tS50sTs3hJJ9Tpaur5av/XfRXVCvf6r+kzdc7mJLLJzE/arranIV32f+sIWc5QhUKhUChc5Fh6woo5SQyislWZ5DXHWUOvR3hJte17L0g6StPnhYxEIUCR0d7rYxSi4bnMq+NCFAriOXtoYHgUrpKF6kRp6Dw3+zlYWVnBoUOHRgzTC7dRpqX7IEtcoqFAKilniUQI9lFZMhCn0ePeUWc5r4+aZEITMFgWoWONQoQseL6OWdPZKfO17UXMxrvuVNpTj1nrXjx06FDqvHfgwIHta6vmyf6vbG0viQ+i8BvveroX1SnTKySh7egz0WN1+mzQ8UTPWW8uovSdnkZDtVPR89VzhFVkzoY65qg4iHVM9cIwi9EWCoVCoXCRY+kJK4g5qcoiG1pmz4tcyZUB2GtH6QY9N3tlsPxO3cWzQH6FSmBZekMvvMbruz13qgyf1y+VQrPUgjqOyL6bpYfL9kFrbVeqOe/aKs2qtJ4VV59KVOAlJ/dKDHrn2n5wj0QhDNq2HU90DFmwFoIHdlhiZCv3wuWILD2fhV03zrGupdoCLTuN0qAqQ/fYltUERDa81vqCAjzf0zjx/tD5UCabpf+bstFynTyoXdqzcTItrO4hDV+z8xQVHIiYc5YIKGO/0TlZEh9FlIZ0TmGH6Lmj9ljbB/u8LkZbKBQKhcJFjqUmrFhbWxuxVK8EXeT9p3YqYMwsIo9aTTQB7Eg1yj6U/XhJB9RmopJy5tUYedJ57CWSBrUt28copWBkz/Zs3hlDiM4hpuxW9rMsKF/B8ynd2+Mj71hNXGGZGRmR2qGi9crShUbaFs/rWEsfZmxB119ZikrtWZpITS2apdFTT+s5DDfSCESFAoCxbTYq7JFpiKYYrU2zd+TIEQDAqVOnRmPeSxrFKW9YvZctq1KtlyZ/UO0MMJ539aHItHyRXTUqbpCNR+H5E2hZyehZ5RXpmEpc492DhGoXqUWwz0N+Z5PFFKMtFAqFQuEix9IZrTJLKxFFHnSRF5s9JmJrRJSM2x67l5ityLvQS9s4VVIv86qO0tqpfcVjhhELzmLh5jJa7zOvL3YMmdfmVBzt6urqSPK3Niy1a2m7XvuallPTHGaI7HiZp7XOvzJNzqMd1+HDh3e1p0U5PA0KoWs15XVq29G54LkaG5mlAI1YqtUY8X8yVx7DV55rbZy637LE8IzBth7K2h6vHXnaZnGtytKi1KyeNkfnWm3ZnjaEUE2Hxwgjph4xQU9LpXZX1SDaezryaYji372Y7zkx0To+tQkra7XaBK57xdEWCoVCofABhKUy2vX19ZHtx8Y4ESrhK/PLsjtFDCbzfFVpSpm1jsO+6ufaL9tOlA1JvUO9cyNbree5GjGZaAxeXGPEUj3WP8VovbnXWMiM0TKO1rPNar+V6ankbRkY24vKiUW+AhaapDySsi3UzpatB/sb2beyTFhTfgtqM/bGyv6r98DA3TkAACAASURBVK8tdafXU18Ktbfac5XB6jkc39GjR7fP4XrR3pp5s66srODIkSMjT2We611Lmb5nM526/7PMUJHGScfnxcQSuu+89Y/uw4jBec9VXUsvhl0RZYCKch1YTLFLT0Ok2gT1zLb7W/MdlNdxoVAoFAofAFgao11ZWcHBgwfDcnbAmNkRKgF5RaCjdjPJU+2fUUHkrC/aVlbWKYovjVijdx21Bc/JFzrlsZwhsj16XqAqQc85h9jc3AyZI1nJnBg7zacb2YstNJZTz/VYiXr70vYTZeMBxntC7V5esXidwznxzERkz9d5tBJ/tK/VZqfZnux3fFUmy/c21lcZrZ6jHtq2T9YGF+1lfe4Qtg9kORyT5g/2EJXHI1RrkK1TpK3ysop59mn7udeHqM+RzwYQs09l995zLjpW2876OoeN65wqy+erjcHXe60YbaFQKBQKHwCoH9pCoVAoFBaIpTtDqarXGtXVMSpyUvJSuEWq4zkG+KkAdc85RdUwqury2o+cAzK1SeQan/U5Kh4QOcNkjlQanpCFL02p0SzUiStLtca9k4WyaLtZMnKFpv3TJANeKIMGxatTiqeiVtOHXkfTeNr/pwoCeM4wuh5R+UfPSU3bUNWxpzpU5z6+8t5QRyfbnqqb+V7Dm7w5seE7CiasUAeZY8eObR/D5BXq8KOJNrw1nXp2zEm+7zkLatuRc50m1/HmKVJfzwnzixwCvXtd96ZXXjJCZOLzUksSUZiUqo69ogL23FIdFwqFQqFwkWOpjPbgwYOjhAJW2ohKMWUSR1Q4Ogo+94LAle1GBYu9c7zi2cBuyVNZcJRUwZM81blKWZcXbhT1Ub/PygASUQC+l3xibuiT7ZOdv8xhxM6nxxo1mUVUeswLnVIHnyiRhTdPXiiGbdv2W6+njlOZA1UUCpSFIE1pFrKUg5Gzi4YEeeFEeh+po5O9V9R5Lbr3vBKLXJeDBw+mCVbW1tZG2gLLqsmaNXkG+6ls2I41cmSMHNEsouecdx9Fx2bpOzXESJlldm/osyO6judAFWkXszKgEaZCt+wxqmVShgvEJUsXjWK0hUKhUCgsEBcsBaNXZkxLfilLzNL1KUPSBOZZSTBNdqAJMzx75FTYSxbKErGQLMk/EaWF8yTmiDGr9O3ZaHXsymQ9pqZ9Vgk2Y5Pnzp2bDFXRpAlZyUMis9Gr5K3hZVHIjm1X99Uc5q+2et13Xv/1nKk9ZBGtj/de95dqiLSv3rmamEJttja0RtMf6r72WNBeigBQk0bWyj7YkA/aazXdY5aUgYi0BlHyC3tMVJhiTigLkT3XNAxO51jfe9eIEqJ4RTqihC/6vPZYajS+TIOiYVE8hmudhffYPVQ22kKhUCgULnIstfA7PQABv3wUJR8tX6detJl3XFRI2isjpl6SatfLkm2rh3Tk4Wk/i46ZSo3mjVP76JWcigq+RzYhr29Tr1677EsWTE9Ye1gk1XZdtyttn2dXURaidlYvBWPkZazlyjL2pqkD1fvYMo3Ia1oZjmW2yg7OR/qOtCN2TiKWz35o8glvPtXLWK/jnRP5OKiGwH5m75ssYcXhw4dHa+qlYHzwwQcB+N6qQJ7eMFqfLOlN5BHvPQ/0vszGq9fRxBHRsySz0UbRItmzWMcR2fuzc9VD3/OXIWONbLN2rT3NYzHaQqFQKBQuciyV0QLj9GlWytG0dlFKRgu1Iej7TJomou+8GK7IDpElEY9sSpFtyZPaIo/eOXGiiswrWCVnHY/X56lYOy8OVb1MM/vs1tYWzpw5s90nSq7WQ1W9SnVdMru+aj3Uc1ntlPa7yIalzNqOf45XNqEMJkrXl9m9ovhtL5adc8HvyE55rqZItGug8cjKcL20jZ7HKzAu0mD3jpbw29ramvRY5/k8l3Y8+39k2/NilCObcsR0M1tmVADFs0vrMXu5L6P0iV463GiPqMYjY+xT/fHYt0KfQ979xPtWmSzX09po91Kecz9RjLZQKBQKhQViqV7HKysrI69ja4/SWMio6LkneU3ZatUeZ/+PvAu9eE2VhKIyZvYclSSzzEyKiP2o1OvZOyLv4kwKjyTlOZKztpGxb0/TMMVqdT9YadrGVNp21TaXMVsyL832RQZt92q0ZloowO4t1Raol+lcL1rb52wfRN6fGaNV3wb1X4g8iu3/atvWtc7YndpkPV8OMha7TpnXqk0cz3Zt4XfdO7reXny92jvn7PlozBoV4GmAvHHZV28/RrG2URu2r3quPiu8Z7E+R6PnnqchiPqm2kC7D5TtKqPVknjeOV3XTWb32g8Uoy0UCoVCYYGoH9pCoVAoFBaIpSesINTxyUJDgAiqJrKUiHqsqrG8VH6RE0+W3jBylfecYKbUv3up9RrVyvQcaqJiBnOSXOwlyUHURqaaikIMIrTWRvvBS75PtZGqK71QrchJSPcO1aQM/7CIEvV7BSOiOVQThWfeUFXalEOdPScqtKFmFftZVBhAv/cKBKjKVa/rhcuxr7bGrPdq/7f3XKY6PnDgwMjkY/eOOkjxVcc6JwWjIqvXSkTPn8wpMlKxe85C2n6kuraqX12XaE1t21H4oLbpOUNFZi597xUIUIdNTcXozYkt0lHhPYVCoVAoXORYesKKOen/KFmpQ4l3TpT0YSoJPzAuIxWVe/MkS5WMVLL0zon6GiWJ8K4TSV+eZBkdmzlSRM4cWZgMMRVMbz/3JOOMlaysrGzvBy/5RBQ2RiaWOZhof9mux2AJtkf2EznwefuAiNJ5eqklo72jbdrraWk1Ta+o6fSAcYiOMlv93DLaKJwkSphg+8b5JAtRJuulQZ0DatJ0z3ilAZXRcu9kyXWm2FuUrMFrI0tKoc+iKOzFCyuM+hA5ogHT2giPLUd7UtvIHLeicEIvbJLrocxVnwWWBWfJjxaJYrSFQqFQKCwQS2W0NoGzSh3AuCwVj1FWmiW0V6idxQsN0rCXKL2ivd4UG83sukSWAk0R2aIz+0IUAqKY496uffXmZKpPnm0us/Xa9mwpNK+/EaOltMtE9l76xsjOrnvG2ta03zYo3l7HsqCIlahPgm0rkux1/3nrojZTHqsJ4b2wq4jJask7OycazqPz6rG/6N6LQjYs5pZds5o0tmP7rcxIWbVXCtFLl+nBG3PklzDHVjjlK+FdJ3r+REkwgDj0TO8R7/wo5HLKhgtMM1pPE2FDtewxmuDGwmpbykZbKBQKhcJFjqUnrNi+sKS5s5+p15i1A9njgNjrT6U4r6yTJsjQtH1zWFckeVkmM1VqLmPDDyeYOpIg54xH7TmaXCErlBx5a3sJ9r20c5lt1yYd0HWz/3PPaGEDj3lEKQkJTbDgSfGRpsF6NdoxWkTM1huX2p/Uduul0dPvdH69c6JkE8pwvXSKeo7XvvZDUyPqHGmieL0mEHvi81o2UY7XB56viQ7UxueliyV070SsTv+3x0aJJex3nn9ChLlewJk3+F6iDRQZc9XPI+aq+9x7rkbnepEa/I729+y5s58oRlsoFAqFwgKxVEZ78ODB1JNPJWBNFq22JmDMsCIvTS9mMIJKQllc6xy2GMXARfGsni1Irx9Jp/a7SHKOmI137FSKOQu1+WQSbWT7ydrmsdRweN7nfNVCAWRGp06dmux/FG/q2RZ1H0Te6BbKhjLbc7Tfon3v2Vuj8Xj3RMRko9J3HtSOp/suixrQPeTF1CsDzLQsPJfte+fQy5jfKZPl88feJ5EGTZlnlm4w8tLW7+13e7m3dU9EzywvNaam54yKaHjpNKN7OYrqAMbP2il/BiCOIdY94/1eaEGRRaMYbaFQKBQKC8QFK/zuxVRFUqcygDmZc6J4Rk9q08wv6lHoMRkiKpvn2TtU6oyyCHl2ZL2eMsyswLhK2TpOe65KzJEU7EnOKuVrHGcWjzxlo7Xnen3Q4gEq3XqsgZ7I2qcoltiuC/dMZN8nPJYa7QPvHGUQkfbD8wbVggBarF3L2dlzlMlquTyNebeY8li1axAVDlF7tedNO9fnwNurnje4akqU0XraMGViyvj1HrT9VW2VMksvJlZ9TaJ9Z8+fu69tH6NyeFFZyDnQ/eCNL9L2eZqNyMclast+Zp8XZaMtFAqFQuEiR/3QFgqFQqGwQFywogKe67WqatWhxHOmIFS1EKlNs8BxVaHMcb5SzHHnn4J3vKqZsgQSUTtz+hGlKNM599QxURiHp1rO1DtenzY3N1NVYZSwXFVFNnhd0zTqnOq4vGQQVDfqOd668DOqJNVRz1MpqvMgEalcrSpXTSPsK9vU5BPeZ1pMIHPk070ShbF5iVlUBc058tY62m8R1tbWRuGEnilCnWu0wIGd80j9r/PiqdajvUJ4fYzSJ6o63h4XpapUE5W376acn+YUiIjUv4QXdqNrGz3XvXM8lbS+j/bkolGMtlAoFAqFBWLpjDZL7q6SZZZQ2rYLxEm2M0TSoLJgL9FCJGFq2/a7KQnckyynwgS8+dRxRXOROVJEYQT6vb12lJYyC1uZg67rsLGxEUrxwHj+1aHOG4emTSTzm5PuUsMDoqQWnmNT5BDItizrjsJedM49hxZ1nFFmy+9tyBMLKfAYDX+Iws30f9uXyMlQ+2vHqfeePUe1FVbboeBzR+fPcwCMkiN4zxRdw6hvfLXzqN+pRiMqAuAdm52TJenw2vdCdaacPe052r5qJOcw2uje80LgIi1bFOLptdN13cNKCrRXFKMtFAqFQmGBWGp4DxC7mnvHqDTvSTtTbuFT5eXsMZFU7IUEeTYR+94L0ckYmf3es83o2PVzL7wnuo5KmJlEN8cOFiXiiF69Y+cgSxkXpRnUPeSFligbjDQCnsQfsTUyQyt1K8vWNJFazs7rv0L75tnZ9FWTT1gbrRZSmEqjZ1mTrrOye4+h6RyrZkoTZwBjG/eBAwcmnydq+8uYWJQAwfPPiDRZmuQk86HQsWY+CFmaRj1X1y7SgnhzEmnutM0srEifvdF7e45qefTZ74X0aR8y+6v6cJSNtlAoFAqFDwC0vXrEPuwLtXYngL9fysUKFyse13XdI/XD2juFGai9U3i4cPfOfmJpP7SFQqFQKPxjRKmOC4VCoVBYIOqHtlAoFAqFBaJ+aAuFQqFQWCDqh7ZQKBQKhQViaXG06+vr3ZEjR8Kya0Cc/SiLRZsTsxmdG7U1B1PtL8rJLJqb/b5eVIosWzddP43fy+KRW2vY2NjA5ubmaBEuu+yy7tprrx2N1RtzlJtVY2SzMWXl+qY+mxMfPoVsLc9nnfdzjzyc0mLevRnlxdX3tu+ah3dzcxMnTpzAqVOnRp1aXV3tDhw4MIqFnZN3O8v2lmVIOl88nNjy/cbUvj7fe+Hh9idrU/MBeHHJXiH7M2fOYGNjY6G18pb2Q3vkyBE8/elP3057p/Uu7WeaCo/neCm1eANFCcCzJOhT8NJ+aXt6nSzYnNAb2UsLpudGAevej1iUpjFC9qOpCQP0FdhJfHDy5EkA40T0l156KYDdiRHuu+8+AMD999+//dldd93l9u+aa67BjTfeuL0P9Gax12R7fM/0gkwgYc/RdqJav3PSv02lg/M+i5KQeAJJlqzDvvf2t+6ZLBXfnBq50fWm7i1NZADs3K/R6/Hjx0dtnzhxAgBw5513Auj33Ste8Qr3muvr67juuuvw6Ec/eld7x44d2z7miiuuAAAcPnx419g0DaWXDESTf0TCm1eLWdd7zrNK10X3h/dDFK1/VjRjqjCEl7wjSpmrr5pQB4ifUXOShrCdI0eO7LoO9wnvffsZnzX33HMP3v72t7vX3k+U6rhQKBQKhQViqSkYW2thonFgrE4kMmlGMaUOtFJUpO6do46JVOAe+4n6qMd4bEL7kpUaI/Q7bTdKEO4hYnWe5BypbqxESdgk8Xw/pTLN2D2Zhe6hTNLX8l1TZb68El0RO81U+pHaMSuWEKXLi/qcHUM8HFWu7t05Kf+yUo6aOlPni6zSMlBNITqlTjxy5EjKyKgNi+6tTFs1NVZv7iOtQaSlsP9HaU61bQtlkNF8zVlLTXtoz4n6FqXStfeTzl+UmtM7R+eN60mGa+8n3TMrKyv7quKOUIy2UCgUCoUFYumMVhNoe3YPsp1IwvR0+5FknNk9Iokokubs/5EDBV8pVXntRg46mYPBlMQ8xzasDMcrMK3HRs5FGevWPp0+fRrA7rJ0uqZnz54NWXrX9YXftZ+WFatdOCrMndkUI5bgJS+PkpJnTjK63hH7zWzmU446HqOdYrIeU9dx7oXR6rkZC4vKQGrpQK+g+RxG21rD+vr6yIeDbAfYWV8ew32lLM4rX6latqlk/La/kV3f2wdTDnsPxwclY9BsT23mc0pfRjbZ7Fwt7DLn3ozs1TyXNnf7nGAJSq71+vp6MdpCoVAoFC521A9toVAoFAoLxNJUx631NSGpPvRqrxJqCCc81aKqClVdpu3bNiOHBW3Dq7kZ1XLN3N6nnKzmOCVpXdXMgUbbUzWwV1OX51DdwlcNZ8hc86MQIU9Fo33x0Frb3j/22jZUhyrG6FpZbcop1ZbnQBOpjiPnJfsZ5zQye3hzEamM9T7y1H+6J1WVy71sv9M5iFR53vUy5ycdQxRqpHvHqv+0j1k9WqqOOcajR48C2K061vq2qpr2nlVcI/ZL76UsZEsxZXqx/0dhVplqdeq54+0tVafr8867n6ZCgDL1ttaqnXLc8tol2D5/a6zJiqrjSy65BEAfGlaq40KhUCgULnIsldEeOHBgVkV7lQY1FMST0JTpRd9niJw3bJvqGEOJO2tfHcCiBBUeE4j6EiWwsO1E7EAz63iSM+ecTJGfe4xW21VHEbZhE1bMCf0gWmu7pFJv7N5YLDS0wIL9jALts2xCESPzJHLV1GiSA4/16N4houQXto9RGIyOy2O00fiUcXh9jpg64e23qZCzzBFpdXU1ZbQHDx4cMRkmrgB2WBuvqevtaV2UwXKPR+GLmdNY5ATlOdJF8++NP3pGTK0tMA6pjJyhPAdBb19l4/X6pPeg95zjZzZ5DrAzJ1xXajGAnQQ2fJ6sra0Voy0UCoVC4WLH0hjtysoKDh06lEq3UdhLZvfS9tQ1PwrHseeqrY7XydJ9sY+UlBUeK/WSdHhjsJIg+6AS3Zw8rMo01e7qJQiJJHRlxZ50r3bSzH7o5SGNYMPCon5HYVD6vad5iPaISvF2XSJWkDHrKORI970da+TLEKXts32k1K6MVsfj7bcoTET7atcg8pcg5qw1wXY9Gy2ZimoiPNAvhAkvmG6RzBaIQ7R4b3uaNX02UdMTjTmz0epe4jlemtOI8Xv7nudHPgeZf4lq7pThZiFvUUhQ5pejdnK9r7y0q+qPEflcMMwH2LHN87O9hEOdD4rRFgqFQqGwQCzdRhtJ8UCc5J3SjscWVMJSCVKlXyspRcH5czCVdMCDeoFynJoC0Ca7UFuwXifzUI3sX0RmX4tYlwddN6ZcVAnWk36zlI46Jh2zx2h1HBG717aBcSo+tq/ep/aYiI14+2EqgYTHfqZSL0aesvb/qMCGMg57zNT8aTJ9YKzZUHtlZh9XNsT3WtTCwt5P0f5hCsbLLrsMALZfrSZKbbP6eWZnVbYb2V8zDZd+znmzPg2cby10oOfaIi2R1ijS9tnnjtpbqR1RL2RPQ8RzNMm/7v/Mvhslp7HjVv8Yjl37bMdPJsvXQ4cOLYXVFqMtFAqFQmGBWGoKxtXV1VB6BMbeqRGLs1I7JdPIHpUxJ+2DnjuHLRIqtVnJMuqLSm+eZBnFlyn7slDvVo3547wyNaJlUGw38lzObHPaHsvmeYxA7ThnzpyZxWptO7YPyij4nn0iy7YMTO35UaEALy5QJXr1tFSbk20vsnerXdL+P+WV6+0DnS/1CvdseJGHOu9JvnJtvfnU+1Y1Bl48Mu9feojaIgJ6Hb3Xsjja1dVVXHrppbj88ssB7JRstH3Q+07nYE6seqRpyNgboeeon4Tti5Z/1D1k29Z7ISrtqGvgfadxtfreQp+fGjfuMU3dO/p889ZXNTaao4HtW69jzt8999wDoBhtoVAoFAofEFgao+26bpeERgnFSqqUknlcxDitfYV2AEozyh5Vqp6TsD3ylrOf2aTU9lXb9hBJi145QO2LsnqPbZF1aGJ2tYN5knrkRcvxWLsRMWVfIavMpNKMlXRdh3Pnzo0kfsv82C+OiQXgKblqAXhg7IWttkWFXWNKyfRepc2Hx3CPejbTyIOYY/DK/0W2c9V42LZ5vYhZ8FiPlSpzeuCBBwDs3KOcV89Gq+2zj5wTy1Z1/tQjnvNsx6XaC2YO87CysoJjx45tM1n2wT5D9B7SAhVeHHhUEETXxfO0jdaM/eD82LllH/icY/+jvgI766+am8gD386JPl+4Prw+27L3ROR/o/Z8j6V6vwf2OlnEiT6TVUNk5542+jvvvHP7nIqjLRQKhULhIkf90BYKhUKhsEAsVXVsHYSoTuQrsKM2IJXXtGlUI3mB1YTWr4wKFNjvtC1e30tKrWowdXrxamRS7aKhSDw3cpayxxC8rvbdHqfqLE35F7nF23Y1+DtLxKBOI0xvxzXQECX7ma0ded99943aZrsbGxvbfaD61+4dqjap6rzjjjsAjFXH9hx+RpUg2+WrjsvuA64pnWx0j/K9VZPSzKF7RlXhXniPqsF0/lQN7vVfHWrUic3Oyb333gtgZ/5OnDgBYEd1zDmze0fVpOrwxjmzc0JVHufr6quv3tWWp+ZUh7DMmYXOUGyfKmSvQICOg88SryYu51mdkjgffPUcwFQdq+YGzq0tfKCqdZ1bXp/9seOKkrnos8Xb32ru0NBET52uIU/sk+1bBFXjR2Y2+7+q7dl3NbfZ77gHM5PVfqIYbaFQKBQKC8RSGa0XjmFBaVMlPn6uzBCISy9RClXnCnucOhCokZ4Spk3hFbFQDQ3wwpeUXSvz9BitslB1kSc85ytlOerIpI4bwDgRuGoC1LEG2GE5ZEbsK5ktx2MlWnWcWF9fD5lJ13W7+s71IosFgFtvvRXAmIGxTxrwD4wZrDJlHZdlAJSIeR2Ola9M9ce9C4wdezQkzZP4db8pw9PEDnZd2G8N5+E4+d5qEvg/nUXuuuuuXZ+rc5bdd8qydD97SUN0zFF5PLtHNe1p13Vhopi1tTVceeWV2+tgWSKhYWiRZsM+vzgfZP48Vvcf14vMHdh5npBlq4MT15zaEtvvyAlLk6tw7EBc8CR6DgHjBBjqKMhXu36qpeS88j6lgyJh15F9tYkk7Lg10YTtP4/RdLV6f1nw/j18+HCF9xQKhUKhcLFjqQkrbBo9Sh9W0tMwC35Hyc6T0CJbZVRWzkptlFQpnfJcSr9e0gFljsqKKSlZqT1Kz0aoXcIep5IqpTSdK8vUOEb2gZKkpm3z7F86x7peXhEF9olSPa/H9xpIbvsflYGzYHgP54Lt0w4LAO973/t2XZPzESUSsNdWm5LasLNwBE0yoTZVO+eqOVHpXRmV7aOWcovKldm11P3L8ZFp8DoeK+F3GpoRlXq011PfBmVqdg/xfuFnbE/ZuGUlj3zkIwHsDtmLwulWV1dx/Pjxkc3RC2nivJCN6tgtI3v/+9+/61hlbWS6XHOrDVFbvdoN+T21InYelMXxGakszn6mWgIv2T7gJ5DgOJTBc7xWq8R9pHPAe5HvvWc/PyPL5zpRQ8TfAFvekGPV0oecR+4PL+SJ1z5+/Hgx2kKhUCgULnYsvUwepQtKIVaaoH1DJRRlqVZ6jWwVUbo7z3tRJUtK11lJNYV6GXqJHQi1P9F2p+n77Hgijz4vyYJK6JxXTYjg2bx1rjVwnXPjef+pNKop4Ow57Dcl867r0oQVGxsb2yyH0rW1LSpbV7bqJezXBBuqcVBbo5dGTzUaas/1vFsjFq+J273+6/WVyXl95Lnqea0JYoBxUouoDKUyUHsdLfOWpetTTYna1TxvWt4v1hM30haxTJ5qGuzcq3dx5C179913b59DGzY/0zYIL50i+6rpLFWzZve3egpz7I95zGMA7LBfO8ecS+2b+qB4XvWEevpz3GSn7Duww+75nWolyHTZR8tO1b7K9eccUXtlvdw5B3pfUSOpSYy8Yx/xiEekZRb3C8VoC4VCoVBYIJbKaA8fPjzynrQxfKqXVxuPegEC4yT+ysSU+VkJXL0/eV0yMy8Fo9p81f5K6ddKXpH3WxRnaKVS9lu9M5XRWEarybSvuuoqADsSJe0qWQo+9llLT/G9tbOp3VY9Bq3Uq/2352bFxk+fPr0tMXMcdsw6t+wnj1HvY2BcckzjTpWJWZuWxowqW+NetQxTGYNe1ytkHhXv9hgzsHseNE5WbeheUQmuFc/lGqqPgMZ1AmPP7qhMnu0z2+Fe9cr96XXYvk0xmZWnXF1dHe1Jr1xmVKiDrJX7z/aB/Wa7nGP1brbPLL3vNK6Z8HIMKNSD2e4d2io1xafOtcfG9bnJcWUFMDTGV9M26vtHPOIR2+fqvaepbXmOXZuoCI0+1+19pz4Ox44dC72y9xPFaAuFQqFQWCCWWvj94MGD2xIKWZVlNJSIKPnQM0ztRtb+qVIUpSRKKTyW17OebtrGlVdeuetVJU5gzM60T2QLVtK79tprd42V0i496dTmZCVZgvOmzEwThtux01ZxzTXXAABuu+02ADt2Fs92RluIeoNSquc82jXgnE6V0PLWzZZUy2y0Z86cGdmY7Jg1Y5YWz/YyGSkzIvNX26yuk+1/xKTVDgfsrJ1qLtS+b6+jnqiaeUxttB7D5HVpO7O2RtuWbf/666/f1SdlYZ79S7NxcR9oPDf7YdvVguLKLq32QrVKKysr4d5prWFtbW37WO4Te39yPbSUonoS23uf/dZYcWVHvDesdy77qjZyrhP3jFcuk+CxvJfVOxcY2yPVJqsM0Cs0r1qXqHCEvY7mEtD761GPehSA3az/9ttv3zUn6lvj+QREc64xudZ7m7DefdErxwAAIABJREFU4JUZqlAoFAqFixxLL5NHaYNSopVQNF+s2glVmgJ2pKInPOEJAHbYI6Vrvnol9ngdxsTxeo9//OMB7GTFobQFjO0amimJn3tZT9STU/N3ekXVVXL0suvY8dn2tZi2SoVkujYelWtA1vGkJz0JwE7s4s0337xrnHbs2hdlK1ZCV8/O1loYC9law4EDB0YSsmd7oaSv3pKa19iCWpAP+ZAP2XXuP/zDPwDYyb9rbbQq8RNa1NqOSW3LasdTHwUgzh6kUrin7dEsTrw+557XsfZNjdPkudxD7Lt6dtr+c554H3F/8T4j47X/qx2ce0f3rv3feo1PMVr1pvfiWhmLTfapnrVW06Q+Bmr3VA9vy+I5T9w7quHQ+Hd7DudbnwNePubIy1hjrr2ypNxHmu2N8O4n1TTo3uF+9OLSOQcf9EEftOscPntVk+K1o+Pxojg4Bzzm6NGjFUdbKBQKhcLFjvqhLRQKhUJhgViq6vjcuXOj9GPWkE31AY/RMm5URVgVHo3/VO/R8E1VB1UPVGdYdYymJtQUeV5yBg3jUXWvLftGqMqE6kx1pPECxtlHXlcdKDREyB5LqGMB1Vi8nnXUYDsaLkWVPEMcmMTftmvDLex1qQayKkN149/a2kqdEtbW1kZqTTvHXCOqKTXZgOdgRvUn1VWPfexjAQDvfe97dx2nKQuBsSqL607nJTqpZGEdnANVc1t1tCZa0TAIVQtaaAo6dTbU1Jm2j1rqUB2F2GerltOUezRN8N58xzveAWD3/cT9rYk5tACHXWt1DMtUxysrKzh69Oi2U5JXalP3CveQmrfsWNWRSJP+89ULbSPUxMM59tJOahpTfd5w/a3Zgf+rKUcLk2gKUGDnmaDPDr2u3d+ahlRDn9QsYNdAyxiq0yrXxv5e8Fh9jdKW2r5xfJkT5n6iGG2hUCgUCgvEUhNWHD16dFvK8qR3Dajmdxpgb8MfKJnQcUUlL0prPM5K7zxWpV1NnO05GKhEGzkgATvSmDoJaDgP2YJ1ktESd7wuJWWOzzI2DauhRKsFA8jcrFRK13s6spDZ0jGMoSFWUlcJWRP4K9MFxiX6phxaWmsjCdXOE/eIOkBoCIBlftR+cB0ss7fnajgMMC4FSGcxdVbykqtoQn51UrH7jfPvJcMHxgzDKzDOuSDbVgZtr0dmoe+pySDb4xpY1sX2OBfckxpuocnsbR91z7DPdk+rE8za2tokK2E7fPWc+XhtDQfhHFhtGO9pnsuxaiIbdZIExglKNHzR007oOXy+RIkdbHsa6qbJZzR1IbCzzho2x7WjJtHe01FheXW24lrZZ7GGPBG8PtfNS8jBvmg5VW9OeD77lJVY3E8Uoy0UCoVCYYFYesIKSg+URmxoSZSQQJOwW1sfv9MSTSqVqoRs2ycr4XVpX9MActsHZSx8T2kqYyVq91DbnVdMW0Nf9HOvoL1+x3PIOLzkE5oI4ZZbbgGwM+dkd/YcDWnQPvJ7a3fhOnE9zp07F7KSra2tXaFhXsF6gpI+r6VJIrSsou2L2o1pW/S0LzyW7bJPanO04HxoghK1mXqFAVRzomXy1KZp2yPzp8TPPqp0b9uhVkfTeZI9eCkByT4499wzmpDBMgxNfKEhQuy7vW+13N7m5maa7OTcuXOje8uyKe5l9jtKIWr7rcVD1I9ECzrYvap7I0rnaddFnxlk2crm7DxoUn/2VRmzV2KP7XMOmMSH8+bdeyyCoAk3bDlDOy6v7CTPtSkSbZ/tM4R9Y1/5zNfiHHbvaBhUpknbTxSjLRQKhUJhgVi617Hqw73SWWrLpPREycSm0SO0iDuhiaWtXY9SkrIdlVIte1NbqXpyUvK3Er+yDk2BpjYie656m2rSBo/dKStle/xcJXc7vqhwudqPvCBwLVWojNYmESesFD3FStTmaM/VhAoaYM/PLetWST8qdm9tV7ZP9lVZm9rwgLH3pzJZ7m+rnYi0IGpv1z1l29FE/aqBsH3URAjKdjgX+r03N7wX9Z63/gvqea8sX7UAdux2n2d2ttbayFbq7Xm1ldtr2uPsmLgX9dmhpS+9FJKaKEFt9FY7oc8q3sP0qeB7Tzuhzx19vnJtbR/Vw19tpNznXtIJaspUy6L3r5dOUfeoetfb66mWh9AEQXbdvFSSZaMtFAqFQuEix9IY7dbWFh588MFtSU/tk8DuIuDA2CuOUpXHMNSeqynRCCtBq/SkUq8XP6klwDRtnsahAmOmF8UMahpBYGznUBasicNtHzRWWedIy2jZ9jUpvrJfy5xUYlXJ2ZM8eW0r8c9ltCoZA+O9o7GqGiNtP9NSi2p391LGaQk67hXOj1fsXsslqnZAU3Ha/zV1oJb78qRyZdBqD9USghZsl99FffaKWajNUdmIPUfjgHnfqpdwFieelcnTwu8eE9c5VHuuxzA1Ub/ejxlUg6XzoqlagXHBCWqHyGitr4OOS5+jqmHz/Al4DO2f1H6oJsWuC/vAc7h3NF2t2uPt9TifnubMjsX2IfLe5/VVywnEqWwXhWK0hUKhUCgsEEtjtISWBvMKMKt9UG1m1janun1KNerBqezKQu02URYc2w77TQmTLJv2Cc/upUyPUInS2llUgtTybDzWSno6T5oBRj0GMy/nKDbOkwR5rK6bx7pUm7C6ujoZR6uMzEq7altWW7myOPu/slPVHmjb9jtlzpoM33o88jN6R1LyV1ZkoV7H3rx5fbZ9ou1M2b3HAnkPaJECvTd0X9r/NVuZxnF796C2p3vXy85mNQ6ZNoQFTey47NhVg8ax6praPigbVeYVlYq0fdDnna61V7CBmhvuITJbb3/rmqlGReNZPYapzw61+3uFQrjPVWOnpTHtc0fXPdorXk4DLb2qxWgs1AO6bLSFQqFQKHwAoH5oC4VCoVBYIJaqOt7a2hqF7FiVD6l+5GDgOdVEAf3qUODVB9Vajqo28xL2q6qOAeNqgM9S76lzSKRStn1SVbEmArcOLfwsqpmrDlYWOn+es5W+17lWVbiq4iysw0mkwqHaOOuDqlY1qYHnfMf+UuXE/afOMF7SAU3pOCfRAj+L6gPTacOq43SNVG0a7Sl7rDqKUe2oSQGAcREGNXtEoSn2GN0PuiZ2fKrGJDiPnopanXmmEg5sbGxs70EtxmHb0fXWsBd7HTU76DND58JTVUfpM/XVHkOnSz53OE9cN/vcoUpYU23qs1edimwfNbVshuj+z57Beoz2Tfe3NydR2ksvBClS2y8axWgLhUKhUFgglu4M5YU9RN9puIAnMUUMLJKuPGcYZW1qiPeupynBNEjbS7btSee2TcJeT8MrNB2lF/6gjmbKFK2zlSIKF/FCMwidJ01C4LF8xdmzZ1OnBO+69jqRA5iW5rIOR+o4pwUjvPSW2p8orExLudn/tfSbDR+z/bF9iJINzJHQlX0rW7H7TYtYaLiSsn2PTUaJRfjeWzedEy98SM/xmJGCzlAaruY5KUUJELQUou2Dhgtp2Ii353UtPW2EQjUlfO7o88ZeT8NriKiAg9dH1UrovrOJP/T+9cLi7HW99dNnrz53bF+jPcLnn+dU5h07Zx+dL4rRFgqFQqGwQCyd0aqruZUwKFnQ3qASuB4HjFmbpv3Sc+37KCWYhtJYlkDJUgsRKGuzfVTWE9kslOnaa2upKS22bqU2SnSR7UmlUi+1XJQeTq9vv1N3eyZxyJIEWE1Exmg3NzdHbM1KypogXwtlaypLe6yWAotS1nmMRlNi6qvHMJUNa5pDL+RNw3c0vMdLPqBJVbRMnscstEyehrppUg8PUzZHO49672naQ8KbE/tdxgY3NzdH6TazlI578aGIEjjoenj7ILLzEnaeuEdpX9diKlwXL7mOrpnakb0UjDxWtRE6bqsh0pSbGt6n94aXgjHSwmXJTqJi9J6GQpN4nDx5shhtoVAoFAoXO5bKaLuu25aytCg0MJbO1T6QpTlTSV+ZjCcRqTSqXmwe09Sk5+rZ60mnXhJ075zMw1ITVVDC1MTg9n/1No6YmpUep6Q7zwM3go4vY7QHDhyY9B5Vm6nXnjJxLTLu2Xgiz8OMYUQl+3SNPY2NXjdKjWfb06IBaqecU+qL7bPkGRmIlyCFe4gMV1Nvegw68ojW7z0vftWYqLbF00TNGXPXddjc3BwlFvHKPKqmgfDmWNmU9kX76M1TdK959xg1aFwXMlf6hrD0IcsbAjusjeur4+NaakF4YOeZQZuwJuDwtI1sj33iM96zh+vnqk3MnlGEMtkoQYp3f9sSocVoC4VCoVC4yLHUMnmbm5sj24InqWrKOI3hsudEcYYKlZyBsYSnUqh6QAI70pJ6ZXpp4aI+RunzvHRuypA1Fs6T7tX+naU+s323303Zd+34OAdaJkvtevY6WTymouu6XXG2Wv7PfhbF37FvNi2bFtq21/Pa9NbU+862YT9XVqq2WS0ebtufip/N7PvaV+5hxmJyvYCxhkbtuzoG736L7klvzfmZFkvI2lSGMqVdscfrvQDEcZ/aJy+hvXrsaoEKTwuncxcVE7D2cr23Tpw4AQC4++67d723CfQjPwFen3Zqff7ZY9gevZy5V6kV8Qp7EHzG67PLi8zQ51ikofI0RJybKJrDrjWfVZy3Kd+Q/UIx2kKhUCgUFoilMVqWq1Jp19qHNEuMSmQaI2mPVQkzYqlW6omKp2tMpJWYKeF57MP2zWMYGs9ICTAr/0ao56DGJHrZhHS+VLrOymRlhb0VvJ7GWqoHuAerVchsbltbWyG7t/3VOE+133gScWYHsuPzMpLpMVnifEr4lKpVU+Mlr9e50z2k2gtP28N1UG90nms9cKOCCppNTG3s9jtC59XLBqdjzwpLaLt2nqLzNjc3cerUqW327nkBK4O19lv7+V58GXTfeQU1dB/zeeDFjJKxqk329ttvBwDcc889AHZreTQjGBFl3LPzqf4V3DssnqJ2UPs/X8nIo+t4/hL6TJ777ADGGgF9FgA786ZZABeNYrSFQqFQKCwQ9UNbKBQKhcICsdTwntZamLQB2FEj0y1cVR9eHU2tsUoVhIYLzKmfqa7rNLJbVRLVEeo0oqoOz9CvNSXVGYHwVMeaOFvTjNnE8FFtT3Xy0WQY9hgNBdLwCK92alT8wVMDae3aKWxtbY1UXtY5RZ2EIicuD5yvqQQiXnJyTfOm/fBS4nkJ0oGdfWH3jiYMiPa3pzrlsQwFoepaHRG5320fdH0jhyoLdQCbk0yen2XOVQpV9Wbmja2tLZw+fXp7n/FcTXtpv9OxqardG0uU3MRbFzXZ6B7iXNBhBxibZe68804AwG233QZgJzmMl/xf96Tee57TkBYr0ZSSPMc6QKlzoT7XomelPTZ6ZniOdPq7QHBt1XHPHst5euCBB8oZqlAoFAqFix1LT1gRBagDPsMCxkZ0z1VepUR1D/dSFbI9ZbB8T8nMlqAjVKLVFH9eOSdKf7yOMlov+F0Dw1Wy9UIblMVPMVorJarEGr33EtFrSEOWpo/QAggZsgTqxFTykTnSq66t50ilzDJiMFYbMrcAgWWTuke1PKKG/XjlCynhkyHdcccdo77p9dSJZ044kR47R5ugUCdG7zpeGtAIW1tbOHXq1LYzER10bJ+mHBsJe72olGKU0MVqqdRpR8OHuF7vf//7R+Ph3qfzE5ksYfdoFEao/VAtFjAugKGlRLmX7P0UheIow/W0MNqH6Hlj5zXam1HJVPu/TeZTjLZQKBQKhYscS7fRqsSXJSxQOyHhhWioDUElMrVXAjvsgMxC7WEeM1M7lCak57gsW+B3ZC4MNbC2MWBcEs8bh0rxnj1Xkw0oA9A5swxKbdA6Bx6bjEKB1FbsJZiYK02ura2N7Hi2D1Np/zJ2payQyPZmxChV42DtyFxvhkhce+21AICrr756e4zAbpairECTW/A6vD5T9dlz2R7t+PycLM+uS1RiUe/bjHHq9ed8HmkICE/j4YV5Kbquw9mzZ7f3s4Y4AeMyibqGWXL6ufvYS1WoJQl5/+urdz3VnHmhWvps0PtT2aOmKwV29mqU7N9qH1Uzp1o39l21M0D8vNb72gvpikLgPKaupTCXhWK0hUKhUCgsEEtltKurq2HaQ2DscRbp9D3dPhEV5PbKPfGziDV6tllKYZrAWhN3W5ag3sZ8VS9Dzw5BUFJlH5k4Q5mOPYbQ+csCx5XR6KuXYH0q2YDnia2234yVtNawsrIyWh9vH6hnepaUYmrvZIntFbyuejxahkG2ef311wMAHvvYxwLYKX3G61qPWLajAf3K0DgXTJVn26M9T5MPsG2biF5Lq6kGR1lJxvIiD3C7D6bsbDoW294cu/7W1hYeeuihUZKQLMm/+oKox739LvKaV58Kq+Hic0WT0Kht2z6rPJ8WYLcGw7Zhj+V1dH34Sk2H3TvsL9eZ12Hfs+IiHA/nRp+NysqBcRrFqLRiViYvYrJ2jbSQwsbGRtloC4VCoVC42HHBvI4zRhsV1fakXX6nnrz0LlRPYhv3xc805lEl/6wcm0qumuja60MU28vxWQlMC75HffeYmsaHKmvwYiEp8autWSV3j02oTVhTzXl2EbsPIoZCO5uXzs4e473XzzMbrc6TxpJ6RdVVQqY9VNsCdtaMe5PvtcSjtV2pRK/HqDbESwwfaTC8cWrMLRGlyPNKx0Vs1NMMqJ0tKqJgod7nWakz7h1b6BvwvbMjD3vPVyN6Rihb1OIjdmy6RzjHfF54qTj1GWl9ALSPPFb3it6HZLR236kdlVoXbcObE0LzIuia2jnhsWqr171q50S1itFzzdM62DUtRlsoFAqFwkWOpTJaYOyJ5kmWKqlo4nQrMWshdtoS1HZJJmulNpW0tbi12hqAsQSr2Yo825XaZhXqlefZMrVvKvFZBqK2Cp3rqOC991mUgShL8q7neuumn00VFDhz5syI0Xrxcdr+HIakTMwr46XvKaWTAXrMBdgtXdNWykTwPFeLP1i7rjILldbVA9uWvOOeYMwj4zL5nv2wGYjYJ9WkKBv1PIfV8z6KLLBrpXtVx+WxYLW9nT59epLRqp3QPgeUuSrjVFuqvbaeq88DL+5cIyD0GcU1tjZT7SvXia9z/CCizGeaNwDY2YN8nkZZ7Kw/gfon6Npp2TzLxvm/FstQ72rPth4VusiKj8wplrKfKEZbKBQKhcICsVRGu7W1FRajBsY2Pn31PGz5Pxmt2mz5qqzY/h/lL1avOWBsE1EPNy++kP3XvhC8vldMmhIepUVlgsqsbZ/UYzQqkOzFQmppMB2nlxkqkjA9eMWgI1tJ13U4d+7cKGY08xzV18y7Wb0X/7/2zqW3kStZwkmqZaMXhmG0bXh3//+vMmY9MCB320A3REqzuAgx9FXkIW00OZAnY0NJrMc5VadKGfmI5JyZ4Vt1ivWJQXY1396I+9dff62qExtmnSPjYVUnViNmoU/GuVJsVdnEYrLSx9X5NQffp2N+XSbuquE8PR2JRXRMdMWCBfc4rdaOx2hZI+/jIgvlmvd96O2i9rjAlpU+Bn7yXeasm8xf60q10Dp/imHSK9Vlsqf3KrO0GT9OOTbMV+H14zvUt9F67qoekgeU2eIrnXN6HKZN3mAwGAwG/wDMP9rBYDAYDK6I/5pghZAScZgMJReHkgXc5UZBCgr3dyU1Vb0QAV1JqZyoa9Ekt4i7YehKo7uCZRgOun86l3GSQtNY6KpcJQYx2Yau8JX0XicMnpKhLnFB+nEPh8PyvnQi7ytxg5W70c/DxJOq0zWlQAbdc54cpZ/lwiW0ryfBfPjw4dWnXMc6vty/TM6qOrkXlewkN3eXBOjfMYzTNaRI5SR002vdpXvRiVywnMWfmUuEKgS6jvk+8LkJXTIcj+vjSqVyHTjXVKJX9fqZ4LtPv2seqe1fF86iK5ku7DRWbcuSNx8jXdAs9+F70F3InZgFx5TKGLuWhZckl3758uUm7uNhtIPBYDAYXBE3ZbSHw2EjXJ2ShrogPq3sqr4xNoP5idEyoaGTh0xC3bKIaJ2RYft52HCbxdlJuJst1WRR6li0Wvmzb0PWl9ipzq1rTbb9V4T2V4lIq1Z9HZian0o++En2nsQSaNHSqk6iHd24mbTh5xPrUJKSGCaT1iTkXrWVx5PYBYVSuC78Z52XyWQpoSXJciZ0Hp2qbZIhWVBK2OmaQbBkyL9zZtix3OPxWJ8+fdrInvr8yKr/Djherjsff1f2RC+I3xcyWZbbpAQjymhynXUytWk+fFZWspR8DyQhFj8mj+PoSgV93J0XJEl+UhJzlUj3NTGMdjAYDAaDK+JmjFYlGrQo3QdP1tSxnGQdUn6LzdyT5UzrhgxalhnLcapOsTEKSAjOgsnQOV+O3S29Tnx/JYXH8TKu3BWu+3dksitxfsaNLxHjvySGyu15bj9u1y6xi9/4ORmL47FSrK5rF8f8AofOx7Wj+KrO423y9HyI2fq64nyqXrPHVJbkY09MRscn+xBWngedj+uNjNbP1x2P6yHdN+Hp6WnJSp6enl6uaSqx05w1bq7jVK7WvaPo6Ui5B5Rv1LZda0o/Dt+fLL/xa6O107WG4/suNW7gvMhk3aPBsjE+g4z/+z1ILD6NdZXTwxKolIvCvBV/r1wTw2gHg8FgMLgibspoD4fDpjF7ygI+B7dQtD+luxizTRYR2WgStfC/O2h5Ka4mCy/FV7qm1szsSxYWLVZZ5smy7jKDGcMQUss7WvU8VmKTnQziucbc57bh9ysZSMaQhBTX7Rgtz5mERDoZu7SuBTI9nV9ZwcoS9jir4quK52otdh6c1BibXh82NxBbrtoyPsa7LomlMxZ8CWNghvoqC50NL1YQY2G83Vtgdi3aBMoAVm3XfJJpdPhY6ZXqGgM4WyRLo7BDWt+aD0UaLhGh0XeUGGU+i4+djTW6FoLpfcF3Ellv8hTxWeO7i965qtOz5d6EYbSDwWAwGLxx3JTRPj09bZiZW4nnLNQUK+HfOuH8JErNeMq5NnZ+PrHUzuL38zBe17FGZRS6Jcg4cdcIOWXjdVl4K9H3TvpMSPHRTnqxYwgJfyX7b5UtLXQNAhJz5prs2jWmdUDJTwq0O1tWLFCfYpLaV/t4YwDG19jUgp6clL9Ay58tI91jw+N1Qu2rzO8u7t55dPy7riVmYrjuCVrF+A+Hw8u2YjTe4KNr1NFl76c5dK32xCZdipO14/Q4pNrcjx8/vvpkXJltM/14fM+dy5D2eYj565OMPbW6Y2OKbh2k/ByBjJbr0fc5l23sOQ+ah+5Bqh2+BobRDgaDwWBwRdyM0e52u9jIOCkodQozqxZnAq0z1uGlGlVZt2RFqxrBTrQ+iZZfWiuYYqj6W9fMILHGrsE3x5rY8DkmsaqJFWg5p3o2juXx8XHJaHe73SYumuLSZBRdCzwHsyK5b2pmwYzdToksqWGxZaN+l+qThOKrTgzMlWx8zBqb4q3O1JhBzPyFVeY/WTyZLJt5p20ErutVs3iNZeV14T1+//59Gzt+fn6u4/G4ac/pz5O+Y1y6E6lPc+EzRpF8tUisOnksqH7UeYSqTveQXhDdQ62dVStKzodNVFKjBTZv72rM/WdmTXM+WqOugMbnhs+cvk9eJW1Dj8qqtvzWGEY7GAwGg8EVMf9oB4PBYDC4Im7qOt7v962gddU2OE8XYUrE8eP7p9BJiVWdXBjdPinNnm4muVToHmF5ic+V7lglD+i87qJM7j3fli63dB7Nr0u3Xx23+36VDNWV2qRr8lfKRrpmBVVbl31XjuTJHN25O2EMT07R+eSyo+s4CcV3ySFah3L/uigFZRQpHk83sJfq0HXMUqRUEtSFCijuksqyuN54v1JCE0MUnQDIKryxCjnQdZwE79kIhMl76d3C545uUrpY/b6pnMvdyX5MJjr5cek61lh/+OGHzT5c17rflI1Nz57ea0y+03VkklTVaa1yna/cvwIT9joJ3SQEw7Agr7lfe5Yn+X7XxDDawWAwGAyuiJuX93QC/lUnK43JDsSqPMDP52AyRNqXjCxJyHVJAUzU8SQBintz7ufa6Pm2nSD8itFSEEN/T63OhEtbCPq23WdCKpnpIPlOejrcuu1E7nndfK5kXGTmZGZ+bI2fiWwsT/G1QxYkBsu16etbZSGyyrn+WNDv0olkECyREJP2e0BxAyb1sEGBr4NOYrRLcPJtOknLSzwdu92ufVdIflHPIGUJfW68PqvnkSyKTKxrhVd1umYak+6x5sBkuarTWuE6JhNM5SpMqGQyVBLq6ZiskORJKX/KEriuAUfVNrmrKxFMJX30WrI0yROg6PF6fHycNnmDwWAwGLx13IzR7vf7+vbbb5dC3WRrLBNIbLQrHCfTSPHWjrEwBuQFz7TkWO4iSzCJb3Ryhl05U9qXAgkpvtCNTX/XMWjZVm0bPHet71KZDMfSlRP5d968YCU68Pz8/HJtU2kYywE4Prb9c3TlVWT+vg7I+DQ2MQ+Nx68JY1WKxYklJlEViljwfJQadRbEuDXjW+n+U6KQv/Oe+nU+VxaVRBU6UY1V4/fEeldt8n7//feXc2osXgaluVFsZCWJyndVt+50bbUuqqp+/vnnV2MQ46IohL/v9LxTIpNiJ37/Oy+Y5kOPR8q70DpjKVBqIdoJcGiM2lbXwttBcl707iQPGz2Oqam7/+5wpj4x2sFgMBgM3jhu2vj97u7uxeqRhZQs1U4sIYkzrCzZqq2/3hkNvxNjoYWTzqF9KEguibSU4Utm0ckopn3JtslOnN2RWZCZsUB+BcbiEiPs4rjMCvXzkRnd398vx+NxuCSn2MklpvNwnEJ3PygpV3W6z12h/aoFnTKVeQ/TNWamsMbAeLXg14ReCf3OWJ3H3zRXsiwKv2jsvq/GwnjbqnWgrhefebJ7Pw/v5YqRHI/HV54IioNUna6trguZXspL4JrWeHWPych97swQZhxc1z5JPjKeymx3BxlsV9Whe+DMT38d/89dAAASVElEQVRjRjYze9MzK8bK68hMaf2exsJ7m2LFfL8wj4Ht+nzbW7BYxzDawWAwGAyuiJsy2qqThSqrw/30tI7o60+ZZ528m6wdMjK32hT3enh4qKqTBSSLMol7cwyM61xSK0q2w9izMyey7q4pg2cb8vhksF0cJM2vi9GmOrTOyl3FkYVz7Hq/32+s2iTfSUaU7kd3TnoAyKacGTFe3NWDplpI1reS6SUpvE7UX2AWqo+J22oeiS2yfpL3u4tFOsh6GX/1606G1mWJpzWk43Wt6bTf58+fX+ahuXvjBjEwMaJORjN5muhJ4T6a34cPH1720fOodx/Xm95R/q6iN4yi+Hyv+t/o2aB3QizfZSmZTa1jdA1RfCxsmkEWme5XV4fMa5/aALJuVveW67wqNx6YGO1gMBgMBm8cN2W0blmkOixmJZKtptgt6646haiUtcaYiCwgKbakbDVa6efa16Vxk+3QwkyMRtZaV9/qTKbLbmVmIuMhvi+zZslg/PwrRuFj/rvY7Xav7jlrl/3nLr7fqTI5OoWrZIl3Iv+MsyY1KcauWHu7Uq/qYpcrq5zZmF1tpH/XZQ6TcaYsZ64rVgak2tiutjw1FEl1zt38Vb9P1pNap+l+6Hc2GUg5Bp41X9XXt3uW848//lhVVb/88surbXj/nWEyp4XsWr87U6eKE68RvXKpJlpxVI2F3pfkXeTcdV6Ng83k/W9dY4DkyWGtOpWgVu8lrzQZRjsYDAaDwRvHzWO0K/1dxUq6OGGqM+RxOyWZFN8lOyVzkQXmY+wsVWbUJR1eMqRORzZpKzP7cwWdT2PS9fKaN4db6t01JnNatcnjNqs2eX6+zrJUi0XWV7vF2rUp6xTCEs5lZ3qWJBkN24mldlydnmtXN+7nTrFxn0/KjCXbOqe45t+J5XQeIjaR95/JZFfqX+fGmGpZmX+x8phIY13biO04WxQL1LPMioKU0dvVpnftE70l3E8//VRVJ2arWCbXsK9Vxm3pldB8lNHs89B3XdvRVKussTgTrzq9Q1i/6/sIfEakgKVPaT5zrr4vtb1TLT7XQZfPUpVVpIbRDgaDwWDwxjH/aAeDwWAwuCJu7jqm+9STEjwF3rGSQhNW8oVV2f2jonW6itncwN0VSUzdz8skkqqtu5zQ/Nh8oGrrTu6E75PYdudGX4l7s4yESWudeL8fl65jJhc5kgQnsdvt6v7+fpPckIrXu2SxFXgtef1SsgjbF2odM3lo1ZqwC10kF3LXqGEl4iFQQERI52OCVpdIx9Z+vg2Te1brke4/rue0D2UoV8Lwu92uvvnmm02CkZfB6BnjMfT3NBZuq+MzHMDExKq+XabAFnG+Le83170fk+5t7sN15vt2wisqSdL999JEhucYTmFSns+PojDn5Fyr+kSprmzPcUkI7mtiGO1gMBgMBlfEzdvkrRqxM2jPlPnEUjq5RCZT6Fieni6rTFYUrXTKkPFnPx6tudQKjJZkVzKTCvpZnM1kIj8fk6FkTdO6ZlmJ/9yJiXeM3sdE9puSl8h6L2mXxxZXSW6QWCX+kCV2Y2C7t/QdhUOSQArZGdfOaowC2aHmrfuUSpB4fjb89nNoTJTRE7PVM8Jkn6rt9emSbVKpFr0VfG5XTG0lDC9viMYtz0MShekScpJwDa9dty3bGPrcNAY+U0mqks+h5qF7KUaYhGS0L0vcuJb8WUmtIf28mucqGUrHYFIpn+OqbRImPRvp2eS8zpXC+Zi8lGqSoQaDwWAweOO4aYxWcmhVW4myqpMFTgm3ZHn7Mf1T1pJS5int5RYYpfzYQisV3LsFn+aRWrixfCPJgPn5Vs2UKUm3aqDOuBoZLkXTq7ZsgfGrVFLBuCjnx3ivHz8JtRPPz8+vRAlSvPKchFsSEuninmzerU8vdaDICBmtxuOxOa7VzguSmmZ0TcjJEpyVsX0YRTTo9fGfNW4yWv7d9yUT6+JsqQk6xRq6Mh8H55ew3+/r/fv3mzaJq1aUnUfGkXIjqjIb9WNVbVsQshSMjUqqTsxVn9qHIg0+L46fjHYVQ2f5DpsxaOx6z/rxOtEJsWGKU/i+Xb5KamLR3S++g31e/P9zKwyjHQwGg8HgirhpjPbLly+bVlQOCjcwe5FxSf9b15ic8QePQzCTjwIPKZbQtVaj7FzKOqbwPZlesqBp4XdNBZKFxgxYxgSZJZzmzgbQq6YJjAl1Gcxpm3Oxkufn5002Y2LIHQNMVntXYH/JNe7kM/V3jdHXKufMbGPmJlRtm3IzZsY4VGqMzVZtq/hXJzHK5t2JLfB6cl3T6+QgK2E+g3uSNH7PyO+yjsVouxZ4adw8VmLizJno4uyMpVedBDLYzk3HUHzcPSiUkKQwito2JsaXnj+fg+BsnFnU9MKkvIuuEQRjtantJDOTmYXeZRRXbeP4fDb9mUhew1tgGO1gMBgMBlfEzRjt8Xisjx8/vliUlK6rOlkxsppk5WifFIeixd+BFmjVlkEwLqFt3bJkhiBZQ2LqtLgYc161lWM7rE4KLzEL7aM4SsqaJcgWO2vYLULGbTvZQz8G5dLevXt3VkqPbdYuqavm70lmjrEdMs6VDGDXsJyxJt+GjI7eliQZx/NcIlXIZ6Nbh6v6ScZk9YzomUjMoJsfvSN+Hsb1VnFk1mNeknWs79mU3s/JeOAqKzfFDDlOP7avfc2fmcOsr03rjd4J5mE49GzxPcdrmhh75ynrPF1+3HN5BGzI4d91nrvUsJ3nYZu+5CFM789zLTq/BobRDgaDwWBwRdw0Rvv4+PhiecmacWtDlgiZBpmFW5H6jjV6neXnDJoxX42tywb2c2v8ZBYp65DzIYNaxYjIssh6Ui0m44XMlF6J/dOi7Opm3ULvaiEFXiuHxvDw8HA2bsLr5nNOGdSOS2KY3f1I8SGOhZ+JBXEdkA11jRB8rtymy0b2c3M9CGwxWbVtk8jaazLelMXN+8wx+rz5/DAOr98T+3FGu4rRfvfdd5s1mOKRGifb4yU2lWrQ0+8pS5+xSt1TXduUG0K222UF+/uNGbZ8BvhuSeej/kDX8MV/5jvD75PPP9XBd/kdKQeFHgfeN+oyVG1j6mo6cW0Mox0MBoPB4IqYf7SDwWAwGFwRN3UdH4/HjQCCi3vLdUyXrT5Taj4lEZlOT9GJ5CbgNnR1uYuSyQBMfkiJDEyj75IvUrJMJ8hO17G7wpjmzuPSleTXkGn7dAOxfMr/xqQHukDPle+sElru7u420oF0iVed3FQUsFj1xKWbtxNISaIgvP8rV6LGQHcpr21K2OrczERyVXcJWyxJ8+8o4sJ+ywmdYAnnncp76IpmCMPXRtfoImG/30eZQL43/HgC3acpaYYJQHR5p5CG3nmeCOhIUqzcJomb+DhWf2PpWSrz69zKqzAA3fOaXyeckkIIvO98RpNASieRmkJBPM4kQw0Gg8Fg8A/ATRnt4XDYBLsdKrqW9ZeEy6syK2Xgu2ORDhYvd0lXbvFr/CvLuOq1dUiLqWttlRIsaJV1CTwu+UhmxuJ/fU8GWrVNZCH7SBJ2vLY6H+91KglyYZHOspQ3hAlhPudV+ZH/npKhaKXz+qVkGKIrv/Lrx+86ZpZK0Dq5SK4ln3dXyM+mEitGS+EKMuxUbsF7QbaXvAoCE7aSMAK/O4f9ft+K/1f1jJKJlEmwn+8KCopw7lWnJCi9OyRQwXdLml9XdpU8DXwOOfZVWSEZLRP4koANyy+7bVfvnW59J2iMugb0QHLd+/EuLQv9WhhGOxgMBoPBFXFTRpuaYK8EwdkSalWUz1R2pvEnC5wxK8Y0KR3m23Qi8peUW3QyjqlkYtUmyrdNknLnYrMcs2/D1lNkoMmS7Rhbsn51v/S5ipPIG7JilrRQO0nOxBI68Xuy1BWDohWd5BR5f3WN6Y1J7IRxXMbuk/gJvR5sl7iK73Obrsxs1VyCbDSV9PF4Ynts7JBELlLbRUJrhw1LUhtLQeeS0Is8ar6dxsnzMx6p8/r2XPMUYknCJdpGY+FzmN4TnYgO35Hc3ufD2KnOq2vkrRg1Rz7b+juZbvKGsJyI6yytb10TMuZUcpnkGae8ZzAYDAaDN46btsk7Ho8biT+3qlisTmYhy8X30d9kNcnykzV1Tsigqo9dJSuKY+oybd3S74TuaUmlInDGgmi5r+TaGOu5RORAIAu+JOu42ybF7mjdruQhVVROybjUQDxlF/s+7lUhu2FMlg0Dklehk8TsxC+qTmxNnhKutxRHTtfd0Xk8/PiMv5I9pG2IzmvhYyPrWcVHKS7QVQk4c6Kn4cuXL+1alieNLCdJFnLcbEziuSI6n947ZF5sAiGvXNXpvvPZohcpiesw7qlroeYC6V7yWjJHI71b6I3oGLq3+KMQBxsgcL372um8LHwH+/z4buS1T14OMtpVbsjXxDDawWAwGAyuiJsy2qqTBZQa8NLylgUpy+vh4aGqXjcb1vGYYUbJshT/pGXMuOvKAtffNA9aUamheZftt2rATKtMVmDHvnzOlFoTWOvn4+F8yBSStd2x+Y4Vp+Oeg89hxZDP1R37ebu2hWQygrPuTvRcSPKGjPXSak9Sjx2z4FqiVe/j72QikzRjFy/ks5CqB8jMVnFxgfctyQ/69368VU2v73c4HFp25z8zh4T3yxkt8x+6eLS38hP0zmL8mWL7fl++//77qtpWYnQx9aqtx4b3kvclXWM+a5oH2aqPm23w+MnMaf9bt1aFlE8g0EOTPIeJTQ+jHQwGg8HgjeNmjPbp6ak+f/78EquQJeixIGZhklnKeko1ql0cQr9LdDvFzDpBeIpVp+PSUu7qHR3n2uT5GMkSBDKAlMFHRksGl1geVYt4zJQFSibbMYMEz25cKUPt9/uNQLtnMfOcXe1wYouXNo13nFOESmyra5PIzzTGjklyvaesTG3LTM6Usd55XXj+lLHOfAXW3NKT4sfh/eJnYs6XKENpXzZDSB4ggQ0U0vHFKFUDS88SM3uT96Vr3p4U8PQd65q79oz+XZc5vgLVmzQ/Pfdkqb4tP8mKxc5TA5bO87DKqtbYOg+lj5HHnRjtYDAYDAb/AMw/2sFgMBgMroibuo7/+OOPF9dxEqqg+6Prz+gp5QLdEJ1bNrnJ6GJgkoi7crs+sHTPpmJzJuowGSEl1rD8ha601KO3c4nSbdK5CdMxWPqQxt25+1K6PYU+Vnh+/v9exmwqkCTcdB86SbckUcgx8BgpaYylYEw4SeU9SSBiNQ7N3cdNNxwTq1IpGl2fXA9J5J/n7ZpNJJcun71uLflxmMjC4yf37Wr9Ot69e7cRnk8CGCx7olvW56r7r8TMLmktuWuZfOWlS34+x2+//fbqvDoG5QdTmRwlSzvRE1+rnduXazSJhnTJhArfJWlEueK5jtkXObmB6VbmtVj1P76FWEXVMNrBYDAYDK6KmzHa4/FYf/7554v1JivDU7y74mhZSvzdtyVLkHWjJAJBVpVvo7Gw6DslizCNvmu/51Z2x2CElRgBy2l4DZhM4tsy+alLPEnJEZ0sYSrLOtdajyUPVWuBijSWx8fHzbl93GSQlDVM5UpMKOqaCyQLnY0vyGQ1Z58nyxrIKLROLml8wGclJZaQ8dEjcEmjha7lYWKnPF8nlOIsSPdU14TXOo1xxXKJ3W4XWwdym6rtmuwE/P3c2kbvFTK+JFVICUZ6X1Qek94HTBD195kfkz/7WLmWkveF76SurHAl/apPJYzRU+jXW/PoPETJY8MEQD6LKZmV3oO7u7tJhhoMBoPB4K3jpk0FHh8fNxbqqoE45RSTDJcs7k+fPr3apythSWn9TO9nKYAjyf+l86Y2XB37pUWbmFPXGDsJ3tP67K7BSoqxa7ydypfOSTAyXuVjuyRWK9GBFBcUKG5CFrcqneH1Ylu0tE66ua4aEPB+dC0QL2n/xjGl9pCdlGRXupHmxWdyJcXJ81Fgn54O34dMvfMy+FwZn07Y7XZ1f3+/uT6rRgpkRonR8vkjs6VEq89Za7KT6Uwt97rnQyI+SWq2E3tIHiGC958MVn938SBdN82dokGMt7oAiH5mAwfmhPi10rb0mHB+SaSoE0a5FobRDgaDwWBwRexu1fh2t9v9u6r+dZOTDd4q/u/5+fkn/nHWzuACzNoZ/F3EtfM1cbN/tIPBYDAY/C9iXMeDwWAwGFwR8492MBgMBoMrYv7RDgaDwWBwRcw/2sFgMBgMroj5RzsYDAaDwRUx/2gHg8FgMLgi5h/tYDAYDAZXxPyjHQwGg8Hgiph/tIPBYDAYXBH/AZKP8fDLJfmhAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAE9CAYAAACspaOVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYZXlVJbp+EZGRY2VNQA2AVIE44vD66Sdgg9jYymd3q/haoXEAbFtxeOrDVhxea7XayhMbBUekbUsFQduRhlYcq1ucwemhlIJSIkUVNWUNmZWVmRFx3h/nrIgd6+y9z4nKuDdf4l7fF9+Ne+85v/Obzrl77bF1XYdCoVAoFAqLwcqF7kChUCgUCh/IqB/aQqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFoj6oS0UCoVCYYGoH9pCoVAoFBaIyR/a1toLWmtd8Hevc9x1i+zwXLTWvqi19s7W2lnbzw80yHpstNbe3Vr78dbaY5xjn9Ja+9nW2vuGebm7tfbrrbXnt9ZWneO/eWj3F5czmtH1b2qt3XQhrn2hMcz7DUu+5nXDdV+wxGve2Fq7ZcZxV7XWXtla+5vW2unW2l2ttbe11l7RWjvYWnvksKd/KGnj3w7je8bw/iZz72y21k601v6stfb9rbWP3L9Rju7T6O+WfbrWoaG9b9in9j64tXZDa+2DnO9ub639yH5cZz/QWvvk1tofDHvkfa21726tHZxx3nNba7/YWnvPcO7NrbVva60d3Y9+re3h2M8B8F75bMP8/yYATwFw2/l26nzRWrsWwI8CeC2AFwJ46ML2aOG4EcCr0K/nxwL4jwCe2lr72K7rTgNAa+1rALwcwG8BeAmAvwdwOYBPBfDDAO4F8MvS7hcOr5/eWruy67q7FzwOxZcv+Xr/2HEb+nv4by90Ryxaa8cB/CGALQAvA3AzgCvQ7/XPA/CtXdfd2Vr7FQDPaa19Tdd1Z52mvhD9vv+f5rO/APClw//HATwJwBcBeFFr7au7rgt/uPeIp8j7XwTw5wBuMJ+d2adrnRmu9559au+DAXwrgN9w2vx0ACf26TrnhdbaxwH4VfTPsW9G3++XAbgKwPMnTn8J+n31EvT3wf+Ofsyf1Fp7Rne+CSe6rkv/ALwAQAfgg6eO/f/LH4BPGvr8zy50X5Yw1g7Ad8hnzx8+/+zh/dPRP6ReGbTxBAAfLZ89ZWjjTcPrV17osV7geT54Adb1hgs97iWM80YAt0wc80XDfHyM810D0Ib/P3s47tnOcdcN98C3m89uAvAW59gDAH4OwCaAj1/QuG8B8Jo9HL/U/SfXftYwr//0Qu+XiX7+CoC/BLBqPvuSoe8fOXHuI53PeO5Tz7dv+2aj9VTHrbUjrbUfHlSUJwdq/lRPPdVa+6TW2m+21h5orZ1qrb25tfYkOeam1tpbWmuf0lr7k9bag621t7fWnm2OuRH9DQQAvzlc68bhu+e21n6rtXbn0J8/ba2NJJ3W2lpr7SWttb9qrT00HP+rrbUPM8c8srX2I621W1trZwZVw5dIO1e31n5iUGGcaa3d1lp7Y2vtUQ9vlmfjj4fXDx5eXwLgHgBf7x3cdd3fdl33F/Lx89E/aP4dgH/AtEQIIDYhDKqnTj776tbaOwZVzYnW2ltlLXepjltrzxja/ozW2g+0Xn14V2vtNa21y6TtR7bWXtdau39o+8eH87ZVh8kYbmytvbf1qvbfa62dBvDdw3dz91DXWvuO1tpXtV6d/0Br7X82UUm21laH424b9vNNeow59lmttd8f5uu+1tovtdY+VI7hPfKs1qtBTw99/IRhX3/ncK17hnEeNefuUh233Gx0g8x1ei8Mxz1zuG8faq39bWvtS/WYAFcMr7frF92A4e0b0e/zL3Da+AL0P8o/OXWxruvOodembAD4qpl93De01l7fWntXa+3pbVCDAvi24bsvHPbRncOeeltr7Xly/kh13Fp7aetNS09s/bP11LAvv7G11pK+PAv9DxgA/I5Z/ycP3+9SHbfWXjR8//GttZ8f7pHbW2tfO3z/r1prfz5c/w9bax/jXPM5rbU/Gu6HE8N8PHpizo4A+BQAr++6btN89Tr0z7HPyM7vuu5O52M+R7ev3Vp7dGvttcM9dKb1z/Y3tNYuz9rfi+p4tbWmx291XbeVnPOj6FXONwB4K4Bnolfn7kJr7V+gp/tvAvD5w8cvQb+wH9113T+Yw58A4BUAvgvAXQC+FsB/a619WNd17wLw7QDeBuCVAL4CwJ8A4CQ+Hr2k+lL00u3TAfyX1trhruusneH1AD4LwPehV5ccGo69BsDNrVdlvQXA4WFs7wbwaQB+uLV2sOu67x/a+SkAjwPwdeh/rK4a5uBIMmf7geuH13tbb3v9ZAC/1HXdLBV6620azwHw613Xva+19hoA39ha+/Cu696xHx1srX0egP+M/gHyO+jn8qOx81DN8Ar0D9XnAfhQ9D+Cm9gtDPwCgI8C8I0A3gXg/wDw/ZiPS9Hvg+8B8E0ATg+fz91DQL+X/xrAVwNYR6/G+uVhr9LscsPQ/ssB/BqAjwPwBu3M8MB7E3rV/3MAHEM/d29pvYngVnM4VWb/CcBJ9PPzhuFvDb2W6sOHY+5AIIBhxxxk8XkAvhLAO4Z+zboXWmsfDuB/oH8OPBfAweH4Y+jXLsMfDa+vb629FD0LPaUHdV13trX2OgD/rrV2Rdd195ivPx/A73Vd986Ja7GtO1prbwXwiXOOXwAegf758f8A+CsAHO/16Pflu4b3nwzgp1pr613X3TjRZkN/X/wY+rX/bADfiZ5dvy445/cB/F8Avhe9ip0C+dsnrvUa9NqKH0a/Z76ntfYI9Krm/4TenPc9AH6xtfZE/ji2HRPXq9Grbi9Dv89/e9jnDwbX+xD0e3tXv7que6C19h4AHzHRXw+fNLzaZ97rAVwJ4MUAbgVwNYB/jv43IsYMOv4C9PTZ+3ujc9x1w/sPRf8g+npp75XDcS8wn70LwG/KccfR/5B+n/nsJgDnADzRfPYo9DfqN5nPPmW4xjOSca2gX5hXA/hz8/k/G879quTc/4B+ozxRPn/10Oe14f3JrJ19Upd06Dfu2rDYTx42xikA16L/ce8AfNce2vzc4Zx/Y9ayA/DSPeyX6+TzG/rttv3+BwD8yURbNwG4ybx/xtD2T8hxPzCsB1WInzoc97ly3Bum9sVw3I3DcZ85cZy7h8y6vBPAAfPZv4ZRRaG3kZ8E8CNy7ksgqmP0P1Dv5N4aPrt+uB9e7twjjzeffcbQ3m/IdX4BwLvN++sg96Yc/4nDPNvrzb0XXju8P2qOeSyAs5hQHQ/HfstwbIeeab512FOXyXEfPxzzZeazJw+ffamzv0aqY/P96wCcPp/7M2n7FgSqY/QP8w7Ap83cfz8F4A/N54eG87/BfPZSmHt6+KwB+BsAb5i4Tqg6Rq9l+BHz/kXDsV9vPltHb8d9CMBjzOd8znzC8P4y9M+tH5JrfMiw5i9K+sjn9ujeHvbKm/a4Po9Drx357zJfZwF8yV7Xey+q42cPm9j+fU1y/CcMHftv8vnP2TettSeiZ6mvHVRbawNzfhC9NPV0Of+dnZFKu667A71UPvKIUwxqk9e11m5F/zA6B+CL0f+QEHxIvzpp6lnonTPeLX1+M3pph9LTHwP4utarSD8qU9GYPq7aNltrc9bom4axnEY/Z+cAfHrXde+bca6H5wO4H8AvAUDXdX+NfryfP7M/c/DHAD629R6enzKofubiTfL+/0XPkK4a3j8ZvfCl3tI/h/k4h54178LMPUT8eterIW0/gZ29+lEAjgL4WTnv9XLNowD+CYCf6XaYMLquezeA38WO5E38Tdd1f2fe3zy8vlmOuxnAY2buy+vQz+ebAfx789Xce+EpAP5HZ5ho12uqfnfq2sOx34Z+3r4Y/Q/LlegZz9tba1eZ4/4YvaBp1cdfiN5B6GfmXMugoX8WxAfsvlf3oiGcwoNd1+l6obX2YW2IHED/43MOPVv39p+H7Xun6389/hIznp0PA1Q3o+sd094N4C+7rrMOtdyXjx1en4Ze26e/BX83/OlvwULQWrsUvVB+Ev1+A7A9X28D8E2tta9se/BM38tD8+1d171V/t6VHH/N8HqHfP5+eU975Y9h58HFv3+J/oayuAdjnMEEdW+tHQPw6wA+BsA3oF/UjwfwX9E/pIkrAdzTDd66AR6FftG1vxQq2OfnoF+wr0evcrm1tfYtEz9Wvyltfks2rgH/dRjL/wbgEV3XfXTXdfSsvBv9D/DjZrSD1trV6FV/bwJwsLV2Wevtnz+P3lbxzDntzMBPAvgy9ALZmwHc01r7hTYvPEz3AL01uQeuAXBCfuSA8d7LcGe329azlz20l356/dL3l6N/6Hse/bdjrG5XL9CzyedrAEahXRaDeviN6KMOntftNhfNvReugT//s9ek67rbu677sa7rXth13fXoVdiPRm+asfgJAE9pfVjKOvr78Je7rttrmN9jkURRDHt117hn7t85GNmjh/vwNwB8GPox/1P0+++1mFJd9tjsuu5++Wzy2fkw4e21aF/y+vwteAvG++mJGP8WeNfzbKVXwP/dGGEQat+EXhv4qV3X6f58NnrP5m9GL+S9d8rODezNRrtXcIM+Cr00Q1wlxzFk5BvRbyKF56b/cPAU9D82T+u67i380JFC7wJwxWBzi35s70YvQHx18P1fA9ts+ysAfEXrnVaejz705k70tgsPXwrgEvN+Diu9reu6t3pfdF230XqHon8+2MymQgg+D/2D998Mf4rno/+xiUA78Lp8vusmGaTDVwF41eBI8KnobbY/g/7H93xwG4DLW2sH5MdW914Gj8nM3UNzwXvkKvTMAua9xYmhP1c7bVyNmQ+Rh4PBxv8z6NV6n9CNbaOz7gX0Y/Xmfy9rsgtd1/1ga+3bMba/vQa97fELAPwZ+gftpBOUResdFj8Ool0QvA/9D51+th/w9t/T0AsWn2Xv99bagX265oUGfwueh95MolAhweKv0TP8j4TRZA3C8Qch11Dy2IPofYU+CsAnd113sx7Tdd3t6NXjL2qtfQT68NHvRC8Y/XjU9iJ/aP8I/Wb5HAwemwM+R477a/T2io/suu6lC+wPVZPbD97hAf+ZctyvoWcrX4zYeeZXAfyfAN4z/JhOYlC/flNr7UXoY/Wy4/YbL0Vvj/puOA/E1tr1AC7pes/j56OPNXyB085LADy7tXZJ13UPBNf6++H1SejtP/wh+tSoc13XnQDwM621T8BOTOP54A/QCwvPxm61rO69vWLuHpqLv0Bvk/pc9E5OxHPtQV3XnWqtvQ3A57TWbuh2HEceB+Cp2JuT117xcvQP+Kd1ux2uiLn3wu+jj8c+yh/r1tpj0dt90x+nQTV8pzBptNauQe+0tot1dl13a2vtN9CrVD8aPWseqWGT6x0A8EPon4+vjI4bVKKugLsgePvvUegdjBYJCueHF3yd/4Ve+/b4rusi5ywXXdc92Fr7TQDPba19l9FGPRf9s+C/Z+cPz6ifRS9MP6vruj+Zcc2/Qm8a/HIkz3Rgbz+0Hzt4jSneau1GphM3t9Z+GsC3D6rSt6E3WP+r4ZCt4biutfYV6L0x19EP9i70ku5T0d/AL99DPyP8HnqJ6Adba9+K3jb2fw/XutT0+7dbaz8P4OXDg+C30MfVPR29Qf0m9B54z0HvFf296IWFo+hVOk/ruu4zBz3/b6BX69yM/ub4TPSqjV/bh/HMRtd1/6u19uJhTB+B3tnnPUNfnoleqHjewF4+Cr0Tzk3aTmvtEHqb3L9GLL39MfqEBy8b1v0M+lCJXarV1tqPAngA/QP4DvQOD1+AfZibrut+rbX2uwB+dNiz7xr6zFCCzFM+w6w9tId+3jvsn29urT2AfuwfD+DfOof/B/QqrTe2PvvRMfTakfvQawL2Ha2156IPb/ku9GaEJ5uv3zvY2ybvheH470Av6Pxaa+1l6DUeN2Ce6vgLAHxJa+216AX4B9Hvl69Fr/H6Qeecn0B/710P4Hu9Z9SAS8y4LkG//1+I3ub55V3XvW1G/5aF30EvmL2qtfZt6B1GvwX9HI4ywe0jbkZ/z3xxa+0U+jl/h6PdOC90XXdP60OS/nPrkw69Gf0z4tHovat/peu6zM/iW9CrnX+6tfYq7Hjfv6brum1v5NaHnv0QgE/suu4Ph49fjd5p8FvRmwDsXn9P10dfXIWe8f40+n2+if65chi5lu+8vY479DZBe9x15twj6FWk96A3LL8BwL+A49GJXpJ4I3a8025Br7Z5ijnmJvgB5rcAuNG8d72O0f/Q/yl6qelv0T9EboDxhh2OW0Ovg/8b9JvqTvShCR9qjrkc/UPm3cMxd6C/Eb5m+P4getXoXw5jvx/9j9DzpuZ8L39wElYkxz4Vve3sNvQ//Pegf7h/Pnp7/fcNm+dxwfkr6H+gb5q4zkcOa3VyOP7FOs/omfNNw7ydGebxewEcl/W+ybx/xjDeTwn2qN17jxz2zwPos179JHYSeYwSH0h7N6L/IfG+m7uHRusCx6sXvbT9HehVT6eHMX8EnIQV6IWc3x+Ouw/9Tf+hcsxNkHvEXPeL5fMbhs/XvP6Z772/G0w76b0g9+WfDuv9d+i1FzdiOmHFhw/t/yl69eI59Hv45wD8k+Ccw8Mches9zBXHszUc/2foNQRpgoN9uG9vQe51/K7gu09Dn1HqNHr16peh11g9ZI6JvI43gmvdPKO/Xzn0eWNo+8nD55HX8WPk/D/A2Ov9w4ZjP18+/0z02bseQC9UvRPAf9G9HvTzmeid8x4a9sj3ADgkx7CPTzaf3Z7s9W8YjjmK/gf5r9A/2+4bxvU5U/1iOMTS0Fr79+hVmNd1XbdfKcIKhUm01n4APVu5opu2VRcKhcK+YJE2WrTW/iV63fWfoZcYn4Y+NOBn60e2sEi0PrvRpeg1Cuvo2eCXAXhZ/cgWCoVlYqE/tOip/2ehdy46ij6TxivR68ELhUXiFPo47yegV+O/G3288csuZKcKhcI/PixddVwoFAqFwj8mVOH3QqFQKBQWiPqhLRQKhUJhgagf2kKhUCgUFohFO0PtXGhtrTtw4AC2tvpcAXz1bMQrK/3vP9NHrq6u7vqcr/YYPUdTT2apKKeOnXPu+bQ/dfxe+7jX8cy5XgYeq2uZzY0e23Ud7rjjDtx///2jg48ePdpddtll2+d47epn+mr3zNQ5EfZrjfcytxHm+Fbsh/+Ft05R29F3+rn9nv/zebC5ubnr/cbGRng9orWGkydP4syZM6OJPXbsWHfFFVdst8v22P5U/7Jr7uXz8z12P8+9UNjLfoz2kPdZtG7efc3ngP1Nue+++/Dggw8udEKX+UOLxz3ucTh58iQA4NSpPqkINz6PAYD19T5N7pEjfcax48eP73p/9Oh2rWocPtxnBTt4sE88dODAgV1t8dV74Opn0Q88X+13eq4KA3Zx9TvbXtamd070as+JBJPoc85ZdsycHw59aPJcrqcdtz5Iz507h6/7Os0N3+P48eN44QtfiLNnz+5qj2tux8D15nvuD57D723/Dh06tOs770dZP4/2TjTnFnv5UWY7KphGDyL+oNhz+FnUZ68vUz+AfG+vpz9megzX78yZnegq/v/QQ32K7Pvv79PZ8jlx77337noP9HsF2L1Xf/u3f3s0FgC4/PLL8eIXv3i7nRMn+tzzfP7YfrFdnVtvnqLniq5ldv+cDynIhE6F9oHrEe3zrL3snCkBKyNXVvCxx6hgxLUCxvtL9x/3h32+8ZnB35Rjx47hJ39yT2mwHxZKdVwoFAqFwgKxNEbbdR3OnTu3LTV6KhxVKxMRI7P/R8xP2amnbpzD2iLMOSeS7CLpNLvOXDWnd91I2rbzHbWvbWSqnOj6U+q/CFtbWzh16lS4L7y2ud4ZE5xi4myD33uMNpqnbMw6Dm88eqwy1jkq3YhBzFmHSKPBNjk3ViOlx+p7j3XzfD1H58i+J6vhZ9Yk5WFzc3P0vPGeO5Hq0dMARBql6J729p2ud3ZvzWW9mdZl6tw5rHsvz8joXlCtCDC+1/hKNsrfDctOtT0F27daLH5GDcqhQ4f2xcQyhWK0hUKhUCgsEBec0c5xlIlsp/a7KTtkZv+MruMx3bkseI4tIxqnx0r0O2XFnlSX9SHqRyQlRhJn1p6yEytZ6jxmUmXXdbvset7c6zWt/dbCs53zVe36kd1V27HvI62B7WP03ltDnVO1lep1MzYU3Sues4junUgz4Nlo1f5OBqo2QmCHqSiUedq54Tl8PXv2bMpo7fnaR/3f9lPnze5fMqtIg5attWoFzge6773nUcS2iTksNfNB0XambLPe+KP1Vmbr9Sm6F9RXwILtTe2b/UIx2kKhUCgUFoj6oS0UCoVCYYFYmuoY2O2UQLWPVcfMVRlbtYWq+VQNmIVbRCqizAliKl43Uzcr5jhBRdebExIUqQj34uAQqaotIvVLpqJSlXGmRuu6DmfPnt1eU8/sMKWG47F2v2mYUKQO9PaO9j9S4XrqbVVjZk4d0R6JVIaeuUCPiVTk3lh1XqecjoCxapeOJ2p+sMdETleZqpf7YGNjI+1X13WpKprQNeR+0FdgHLKm4T7Retn/pxwM9xIGo2PwEKmQveeqtheFPM5RO6vq1lsDjZeOzBDZ80fDliLHOmDsULdoFKMtFAqFQmGBWKoz1Obm5rYE6wVNK2uKHJy8BAuUMPmdSpweK4kcp+YE9EehIZlTylRbHhuemxDBGxel7MiRwTt3bqjTHGabhbooa9jc3EyZvw0j8foQObTo/mByCmAnmQU/0z2TZSSLGDQ/z/a3BtZr6IllAFNJDZSVepoUzjHfa/IOb+9oAhAdg+eEx3GQwZI16Dx6jDa6Xz1Gq/O2sbExeb9loW56n0fPFLt3+L/Ok66Tx/wyVm0/t2NS7YeXMEQxN6mF5+wVafV0vFnIm+cwZ8c3h9GqlsQmrND9FDlbedqEveyd/UAx2kKhUCgUFoilMtqNjQ2XmSg0dZ+m1cvCeyK7ipeOSyX6KNwjC39RGwLh5VJVSTVish5jj1iqNydTaRqz9Ipz7ckeo4uSKRBZCNLa2lrKoltrozRsHluM2vdYScRoNRXoHOavDNNj8V5YCoCR34LdS5o+UW2zug881h3dE8rYbP91DjQ0x9v3DMGasu96oTpMsajnZGFEUcrEOfC0VTpf3Bf6av/XOY00TXPC/XROvTAo3SN8P8WS7XWIyGZv+6vPXu4HL6XpVApT3TvePvC0FfbVMlq91/T5w2OnQgeXgWK0hUKhUCgsEEv3OiY8L8nIYzhjtCpRRhK5J73rZ5k3JjFlZ5uTbJ1QlpixU7UBRazV9juyt2Z25MjLNfNU1uuo5JoluZib2q21FnokWug1o2QUQLz+ZCssYuHZK5XBaP+9qjOUsGnDJKJkJN4YdU/q/rf94Gf0qtbXjJVENlplVhZcF2WGHLd3X/Ez9im69+z95LHcKWaS+TTomHX9+Z4aECD2Oo60ZJ6WSu3cfPXskVp8gcewDfXetojYbqQt8+aE66NFXDgP9tiIxWeMnWPVV46bx9p5jDzUFd7nc7yl9xPFaAuFQqFQWCCWymi7rhvZYKzUo56hlJqm0pt536n05EltkSdilqJOpSgrdUZ9VHYVsZQsFjLzpIsQMT9tK4ufU7bl2WGj+LzINm3/t9eJpMzWGlZXV7elW882F3l/Z8w/imsla+Dnug/tZ8rIeQ77atdSPe7VRquv9tgoveVeJPNof3nerYTGG3JulFnZ//md2tX46jEMZZGel7j2V9OTRvDirT0PW64pr8lynGRxmT0y0qxltnMdT2SPt2NVm2wW1z/lC5LdG8pkVfvjxRbrZ1F8uMdAo5J3hOcbwr5xz0S1i+0enZO7YBEoRlsoFAqFwgKxVEbbWht5utnk7ypBqk1JPd/YJrAjqSjbUfuEZxdg+zxXr+vZP/X6WXL8iH3O6eOU3TPL2BTFwmX2VpUcI9uwxVSSdI1ds+1OeSpaqMTqxeVqu8rEbB8iFjIngbpC/QlUk2L/V82GMllrw43WV22nWR95LFm2SvUeg448odmGahfsuTquqNSf1w7X4rLLLgMAPPjggwB23/PEnIIURBSjb/+P7MXKJu3/0VrOYYsKZav2emrXjMr+ZftAi3vouL2Y2MiDPIqR9fqkGhx6mJ8+fXp0TqTdyVi++lboXNk50QIXy2K2xWgLhUKhUFgg6oe2UCgUCoUFYqmqY2CcjIKGbCB3HQfG6iwLNaKrak3DfIDYsM9+UJVtz1GVqqpyPGP+VMJszomXzCMqjqBOWJmjUeRENscJIgrEt3OiamzPAUSvr/M2VRTA+962F4WAUT1FFaRdlyj8JVK12uup6m5O/Vu9nqom1TnKjiNKjBGp+O31qIrWfcA5sSo8VeWyLzxG7z3P0UiTuasKz66lOoixr+yj95x44IEHAOy+B7JEK1tbW7NCzHS/qkObdepRs4KdQ2+stm1VHev976ljVZWqjmee6nhu8hnCCyvT55k+f7yUiKr6VnOD3pN2XFNJfTLob4v3O7FsJyiiGG2hUCgUCgvE0hhtaw0HDhwYJWfwHAOikBJlkWwXGDtBqaSnBnMgTrmnxnwrTStzUgnJY7RRcv1IyvYM/jreLMnBlBNKFkwfBX2rtJpJ9xqCosd5x2YpGFtrWFlZGSVAyEKMTp06BWDMBOw5UbIBHkPJm+favaMSv4akeVqEyKFM18NjtKpRiPahXRd+R+bANnhv3Hvvvbve2//5SscVtsHxKCsHxkkcdA68FKO6J/me6+exEnV66bouZTxe6ldv7/AzLzRL+xLdu3r/eGw4SmOYFQGIHIyU2dpz2P5USkTvvtOQxCghi/fc0eQavI+4pvzcMloi0tR4mgEtPBGlJ7V9zIp+LBLFaAuFQqFQWCCWaqNdXV0NdfBALF1ktgR1154KF8mS/VPKoUTmSZaU5NVmmgVcq9QbBY57cxIVR9DQDC8dYZT6kcgSkOu8euEVU+foXFlou1OS5erq6mjslk1xrJSSlfVm4Q8qNfMYbcM7VxNUZIlFNPmCSvrKFoGxvZttsM9aVN3T9qgmiHNyauRLAAAgAElEQVREtuqF93A8tIcq687CvSJmpuzLXkdDrDj3HuthH+lLof4K2pfNzc004YqGn02xR++YKDWrp92ZSoXppQuNipZo+Iud26gEoYYMzgkJip5vdu7ZF+5nfdX9budTGWtU+MIr7BD12bsn9F7IEuXsJ4rRFgqFQqGwQCw9BWNkw7D/q5SsdhqPiUXlwlRS8hLDR4nU1ROSY7CgVBpJtBYRC1AbjSf96jjUQ9FKlpQc1YtVJVqVdLP+qy3Nm0ediyyRwJxjCNpo2SdN8QbsMJ8o6bpti1CJVz2qtaiATSqvHsOa9FxZA7AjgavfAN/ff//9AHYzWl7z2LFju8ahfgvsu5fkQNm2JqC349J7S5O4KLO2rELLk0X3emYT5nWiMnD2OtbWO6UR4Tx5Nl89l/3XAgqejTYrcQj4XvqRd3Zkf/fGofDSd+o+m0r276VvVN8X3VN2TlQLwWOUdXNcdn9EhRXYhiYVssfqPRelK7XH2vEso1ReMdpCoVAoFBaIpZfJo1Tl2e+UlSob8aRbtZHyOy3mrQnDvWO8MnW2bSCW6KJ0iraParfT62UsTyVKZbJW0lNJ8uGkEtS+ZjHMupaqEchiZK0Em0mWKysrI9sVxwnszKWOnfD6wM/Uy5QMj9+T2Xral8gr3Iv/03hZsjhN3O+VcGNMt3r78r2X5nJueTS7L9Q/IfKQztL2KRtRBm3XeSqO1vMWV03M+vr6ZGF1ZTdeHDivRUamffM88lVboNoPvtrrKcOcKjLifacs1PPViAofqAaN52SpbaMCGJ52Ua97ySWX7PpeS98BYw9le29beOdERVsyfwxiKn5/v1CMtlAoFAqFBWLpmaGiBO5AHHdHeDp3lUjIPi6//HIAO9KUJ71feumlAMYxVVkWGfVw1OxOntQexXXpdbxYSJUYldGqHQbwy3oBOxKrJmq39j+2r7HFnr2a4JxodhxlD570O8dW21rD+vr6tgaCfbD7IGL4OufeOZrQXm2pXrlBLc49h70rk6X3JeGVhlOPVGUnXGtvz6pnqu5dL4uaMnHV+hCerVD3iGYC4qt3PdUUEZ7tWe/XyG4J7PiFZCxSGTjvD2VtHmtW/wQ+f44fPw5gZ328WE7NsqRewN5ejYo+6Bjs+VGhkEjjYcelvgZqb818bPiezxddJ+uLwHbp5c7X++67b9f4Mg1RpAnNfi8OHjy4lFjaYrSFQqFQKCwQS2W0VnKIivR6n6nE4ZWto+TI8lrqrUvJ3MucQumJUpuyOGv3Uolb7WrWg1P7q68R67LSuzLlqNRdZgPSuEO2r7mlLThmHuN5+iqislje3CuLX19fTzNDtda2z1FmC4yz0ajknTFNtkfth7I3T2ugXqxsn/uP/WGsqu2LMv3IGxQYe54qy9Lv7f5U5h8xGC9uVz3Iyb45Bs6V3auaPUpZMfvGjFT2OnoPRBoVe6w9JovBX1tb274O++B52kexsdpXe75qHIhIA+G1rz4N6vFrv1MtzJx9zvb1fvfigxX6TIpi8m17vO/ZF9WkkPXbOdN7m/NK34S77roLgB9Xrb8l2X2l82TzYC8SxWgLhUKhUFgg6oe2UCgUCoUFYunOUErdrUolCh3wigkQVDVcccUVAMbqUYV12FGXdVVTqTOJ/UydDzSA3zPARynQCC8RvaqXsoQIisjJSwPGPQcKjsNz5lCoE9ecMCJND5gVFWC/tHSfXRddb1Wbc62pirL/c6xaFpGv7BdNDBbsP1XGfKXKWB3E7HU03aDnaKaqVQ3viUI1gJ354fV0z3iFPbj+dObhsbfeeuuucdFJxar/dK+yLe4v7iW7bhy7mkZUhW3nJko474GOdIQ6vvEYYEctqQ6bnpOaqopVPeql/yPmqo69/a33rC3KoX2M0hhGBV3s9bgOGm6j62Xhqby98dAMYfeqOsXpuHhfeftb3+tvjF0DLQKyLBSjLRQKhUJhgVgao6WbfeZE4CXx57n2cyvBqsFdnUQ0aN5LMB0V0/bKsUVu9lFRdQtPmrZtZXOiDgxRknH7vzrfRE4fFlEaRXX6yooMqDTqMdUs8UEEW64Q2C2VRkWnlZ0ypAvYCTvQuY0c2+w4eCz7dOWVV+7qE/thg/WjVI8q4du9FCUD0eICbNs67LBvUSIYLxxC2+d1qTHKQp6UQWnqT7JSL20j29FE+8ps7f9eOJyCjJb3smop7P+q0eLYvZKA7Jc6CUXJWrwEDOpgGN2n3hg1FMhLjaqaNB2vPvdsHyOtnl7XS6OoTkha0MFLAKLavCjZjg1F1Ge+PuOjNKz2syoqUCgUCoXCBwCWymjPnTs3koRs0L66dkehLVZCU8ZK6ZN2qYw5eenYbN+ILNGCSodZubooibgyZyu9R0xZbXNzJMvIluWl/CPUbuixbpXE9XpecLtXyCGTLLuu254XDRuybSszJquLEi945yhb9BKAKGPhOtCG6dlbdQ8qG9EAf3vOVElFL4xExxqlh7TjZ7u0R6udkgzdK5wdpQfVxBhecpUoWcOccLKM0WobXnEB9UvQufaS3eg1lSkrI5tjE1RNl2c7V38S1SJkKW11n+nzzzJafYZEe9ULk5rad4R3P0XFBby0lKqJ0hSgXhKZqWfholCMtlAoFAqFBWKpXse2JFFmm1NGkXn4qe0qKojspWuLiqgTnsQcpU1UVmclZpVUVVrUYH2vPFZUFs3r45T0GUm29tqRndzzLFRpPpIaPQ9zYspWwlJ53rnAzrwog+V7z5OTrFMlX11D73pqU9J0imrLtOeoxkTZoZbE846NbHSe/0JkL1Qbqm0vShOqDNOORdNS0mNVbWUeu/OStQC+1kn7OFVQ4OzZs2FyGPu/PpO0Xa+4iK5lpLXIEvPoXlHbqf1M7zFqBJTNeX3J7ntg97qoP4lXps5eV/+PjrHwUkzqvotSP9rzvSQU9pxMy2ivtUgUoy0UCoVCYYFYehytSiqetBOxRa80WSTRR2zYwouTtdf30o6plKReul6b2gcv5tH7HhgXsidU6rXzqPahyGaaFXZQSTzyQgbGjCxi1J59PCogYUGP9cyzWz1E1SbrlebKyp8B48TtHiPXmMvMVq92fT3XK6ZOphyx0ygW2/6veyfb30S03yKve/uZMuZIg2P7EvkxeKUDuaZkzlN75+zZs6EWwUP0vJmTLnbK1mjbjdry7gntk+4VL6oiKkhBRCUevT7MScGqcxo9O7zra190Lrz1mutV7eUlyLRVi0Ax2kKhUCgUFoilMlomh59znH1V+6onVWm7KlF6ElFkR9FzrDSqGWDUw069Ar1rqz1X4SWv97zuvPfeeFQqVHu2nc+IhUYMx7aj140KIET9jkBWEnkz2jFFMXxeDLZqGlTazRhGVAggK4jhxToC4wTqnrZANRtzbIBahk0ZtNdnZfHKKLPx6bHa50x7oRoiMnmP/UX+AxG6rptkvVG/outGTCjb83PhaZqUgU15Oev/QGwLzva33tuqSfES9kfPg8gOq//bdj2Pbz1GfyfmrLXVxJSNtlAoFAqFixz1Q1soFAqFwgKxVNXx6upqqq7gZ5FaJnNsmlID70WVoypEqzpmSEgUBuOpqiP1ovZ5TqiOjsNLAalzG6lwMvWP9jlTy0ypbLzvtY9T6pvNzc1tJxuG7Ng+asC+jt1z5phyhNDQkqzmb+S45yXpIDQtII+1NWyjfazfE17iEg2NiFIx2vN5jqa5i8wD9n91DFPVceZUFN3jngMVce7cucn9kyXAUJNKdm39TM1Zc1KJRmaYzMGR0PtG18sLDYycL7N1iZzfdP7s++g5oOdkzxBVK2frps/NqI923GzPOjg+HPX+XlGMtlAoFAqFBWJpjLa1hgMHDqQOJhnbtfBSk00xijmSJqFSnHWA0uB2dQ7wwjsit/epUBp7rpcM3fZjTjiJYo6T0pwg9Lnaguw6XdeFrGRrawtnz57dltqZ0MGT3nWd1WnJslJNeBBpD7L0nVEygGicQOxQR8Zu0zcqY4oc3CJnJTtOth8lLgHGCRDUOUqdpOy+UycyPcbT9uj9pO89tqXtnz17djINo17bS1gQhRx6JT2j59he2FH07OLYs7ArXpdrGmmi5mAvzqVZ4o+pcLJIw+EdQ+h1vFCdqeepdx1Pm7dIFKMtFAqFQmGBWCqjXVlZGenivRCNLEBcz4mk88jlO7N7RGE9XimwKK2i2jbsZ2p3iNhPxoYjO4hlaspCtP0oRMQ7NpI0M5tYlrRBx5GFX9lrWRbI8Xnl1gi9tmdTn0pNl2lFpjQm3niylHDAeL3ssdE+iEInLHhfsbC5Jj3w0pJGZRDVJuilYIzKoXlJLrSgBvuYJRrhGvLcU6dOTZbKi+5xO+ZMKwXszZdBj/M+i/aQp9nSe1XtkV4YTKSdip5HHluMwnm89J3ROPV9ZqOPtHtTIZEW2e+HPqeL0RYKhUKh8AGApXodr6zsJI7X0k16nEUmoahdbYppZNJUlO4rK6asEpfXxlQ6u4wtUmrnqxY/92y0kWfyXuytkbf2Xlj3HExpL+w1eG0mq7dzEWkY5iRq10LiEePPkl1EjNpLM6dMST3Hs2TyUeIAby9xTnQusqQrmro0kvy9VKP8P3r1EsBwHDxG7chZGtQ5KRhba1hbW9veM94aRM+IyIvV9m8qUX/GNKOoA28tleFF93R2nYg5e8/gKFGF7lW7lnO8piNMMdfMRqtzkvn46JiXkawCKEZbKBQKhcJCsVRG68VceWzx4aQxm5OGbaqtOYm0I7tmZiOKkl9Hyfg9NkxJX2M6vVJhkZTreTECvpQ4Nff28yg5eZa03LPFRGvYdR22tra254XshPY8ADh+/DiAnTVTmyXZjxcrqfaoiHF46QYzTUZ0HWUWau/KPLqjmEQvPalK7bq/OSe24DfTQEap7yKv9+yYOfeGplzUknseo2W/p2IhW2sjhpx5MSsyD9WI8UfPMvu/rmmWolDZdbTuXvpWvmpKTK9gA6HsWp+Fnr+BpoGMtJaZrVaPmfJrsIjyBGS27jnt7geK0RYKhUKhsEAsjdHSc5T2MM8DUW06c+13QGzL2kucW1QI3suYQkSs1POMjmyXe5EsKZFrbKedx4ih6feeNBd5EWbeelGM5xztQfQ+A+NMyWxtv2m3VQmczCjLJqVQBrqXmEHPk1PZn3rpenajaF9HHtNZQQLuEY2VtYyWc6ol1vRenGKBtv0sFlLtt1EMpNUUsL86Bx66rsPGxsYo7t177szxNo7GOGUP9eytGfOyx9k+RuVAvb4qo9VY/CxjU/TMUBuql2NA9/NUrLn9TPeVMmh7rs6f3k+eZ7QXHbAMO20x2kKhUCgUFoj6oS0UCoVCYYFYqup4Y2NjlM7MqksidZG6b3uqgChl2xyVrqrsVI2VJRLQOpqqrrHtz3Esio7TOeCrlx5QnZ40CUGkBrTX3ktaMz03SgTuOaDMAfeOqjqt6jhyvNBEFXOcYKIQgEwNPJW4wJ7Pfmuyhuw6+sr9FoVs2OvofuBcMGGFVR2rU9Ill1wCwHcMBB6eM4mnotR1031uVZSeajK6t7quw+bm5shJLXPmi5Ltz9mzkTNhljowQhZWxPXXZ4s9h2umz6YoKYT3bNRnoDpheXVd9VkVhft415uaa7uOU+Fk2flZsp5FoBhtoVAoFAoLxFJTMK6vr4+kHC+gPwoUz6SPyFlHJTCPDXuOJPa9ZbRqnI8C+20ChaikmsJz7oj6GCXUttfWeYzYR+YEEb23jG0qeF/nDBgzwinJcmtrK1wfwC9paNvNwnqU7Uyl8/Q+ixLn2z6SLfKV0PkhA7H/s09koZo+0XOKI1ONNBiaitEeS4eziEFp3y2itfQS0ROaNlQdXGyhBb32VGjPysrK9vnetedqmrKUflEIkM61/Uz3nTqBesxM7zUN2fG0ITwmKgPoMWy9h72wKB2DpqxVLUjEwu0xet+oY5Pn9BntA2+evVCjZbDaYrSFQqFQKCwQF6xMnhc6o2EIijkBziqJZe7wUVq5jJ2qrYJ2T0prDJ3w0vVloRj2OMswovCBaLwWKjlOhRNYRGElHqJxzLHn2rCBKclSWZvdJzomZQVZSsQoDCFKNGIxxWStHZlMVkNospR4ykqUnWjIhudPoNBxWolf9+pUEpmMIU5pjIDYvqbJNLxnwpxkJ3zuEMqYLSK73V7Sqnp9i6B7U9mbbZPrEhV69+411QpEdmOvj/oZ2+J6eMlOojVUNuyF+UTJOzQFp90HmtSEfdHxeto3ve6iUYy2UCgUCoUFYqkpGGkv4f+Ar+PPWG8E1dNPFRew50S2YI/Rqs1FGS3ZaOZZqRKdpk+zNrrIlqm2GSupKdvYS1FyHWd0bGav1HHOYcVTfdnc3BxJ9Za96WfKfr0E9FES8ki6zvahsjbaBK09lhK3Xk/X0ib5V29qthsl/7eIWK8G/3sl6HQPaaIUj+XrfRu92nVTG6wypjmF2jMvU45T7cPZOZkGg9AEDnP9MOy5kfexx7Yj1hsVJrF90+vN2d96jKY95auX+EO1KjrOKZux7VNUetF+93ASHGVFbRaBYrSFQqFQKCwQS7fRRrY0YH7haC/NXBSHlXkyz9XPezaMiDFnnsORvVj7kcXgKsvO7BAq7Xrp5/T6me3N66v9TFlWllhd+zqVRu/cuXMjLYi1D2lavijNnOeVGXmSZyxF51TZA/vjecuyAILaX717gsxBbXFkGJkdlO1rykXVDFjofGlJvYiF2/bUNqfsxDIeZbAcl37uMSd73Sn/Db3XMtty5Lnu7d8orjiLo83syYAfo6rzQC0F94enaYhKKep+80oREvyM+5j98Ly4o3tNtQj6zLZjJ/S5nWk2FFFbFva5U17HhUKhUChc5Fgao11ZWcH6+vooG45FlFBa2WgmvU7p6fdiy6CkZ5mTsmotOB7FyNljo2w/nj05YmbR9e05yhKjJPneXEXZnTzMSaQ+59wpu5buA8s8vKIBFpwLby014xjZgsZGegnb9RiV2j0mo+eQxWXn0G4fxbN6TE33jjJ3shKPyaitW9u080hEdnG10XqZqDgHypw8O6zu47Nnz4b7lM8d1QDMeYYovGxSqhXRvT/HBhhpfrIiI2qX9BhtVBCC+5vvVQNhz4mul8VER34y0T607elvQNQPb1wR7LrtxU9lP1GMtlAoFAqFBWLpNlplU55EEdlkMwlmytvY87yN4mjVBmjtbOpZF43DY5pqm9XYSE+C1TmIvKgzpq7j0zY89h3ZpbzPp7yKM7vuHKjXceax7pWas7D278gmq2vqxWBHWbCUHdo14H66++67d/U/yooD7OwN5hw+duzYrr7pOL3YYmWFamfL/BYiBu3Zk/VcjYH1NES0MSqzVRutF/88NwextcN59vbouRJpIOz/6sEd7SXPZyPy1leWDOysg66d9s2eE2VzUnhrSUQ2be/+jZ4v3ngUURY7j/1G11Vvfi8rV/Q8WzSK0RYKhUKhsEDUD22hUCgUCgvEUhNWrK2tjVzOPXVMpD6YY/yOEit4KtcoGbWqkK3qmKqbKXWITaOozjtRIvA5qdD02L0EXEcOB177RKQW9tYtSozhIUotmUHDlWyfNO2aqpo0WB4Yq/c09V1W0jFLhGKv5yX5P3nyJIAdNWmWNpHXjhyL1MnHqtO1TB7bUEejLF2ohoToPrDXU9WhhvV4phj+z1edE091TNgEIJnz4/r6errf1HQS3R+Zoxmh+8HbJ9H9kjlDcV2OHj0KYEflznnz+hOllI2c/DLHSr7q9Wwfo0QskdnBSx6jUPVvFk401Xfbjn1f4T2FQqFQKFzkWKoz1MrKyohFZM4UU04K3jmKLORkKrm2d31lA3SVp0RGSdPrl6bPi1zzs8QOc4z5UViHfu8xNXVKiJzM7HW94vPZdbO+euDe0TAc256mN9RjvP2mzkKR85OGe3ljjlKL2oQPmsBBQ1q8uY3Kr81Jxajtc2/qvrApH7UMX8T2MyfGKIzDS0SvjFaTJ2jCDNsnqynKGK1NwUjY95qKMysEQETXmxNWOMVks/N5Lp3idFx2n6jWK9L2ZA5buu+U/XtsUVloVJzeS/3pOWbac6Jr2+vo/vCS+dhj54Qwni+K0RYKhUKhsEAs1UYL5HaIiBFFtlr7mb6Pwl88t35NMhDZw/R8+53abi37IXNUW5WOx2OGas+NpN4syXvk/p61GUmuno1L29H25kijGYvous5lot75ni3WnuOlYNT+q22JoRVeEvQocN/bq2oTzQoC6Li4d9TuqtezfVTmHCXTsHMSlQzU8KnsfooKmnssVRlsxGg9pmbv172mYMx8Q4iIXXmYCif0bPlRaGAWlqIhM+p34V0n0rZkyfinNGdZoY3oOaN9nbPvs35o++ojoNot+90cTdp+ohhtoVAoFAoLxAVjtJ4XmSJKWJEFr0fJLTzpNJK0tWSXlXpUOiPUFuilB4xSoqmN0JNKlX1k0qDaxqJycJmX8NT6eLaZqeQWmT1nCltbW6lncpSqLUsGoSwnKtuV2XcVUdA8MPbupAep7l3PpqT2dO5N7Zs3BrXFRiUFbTvcs7pH5uxVnWstJmAZre7RKNG9Z1O1zCzbR13XjebR3p+ZRz3PV0T21ankLUDMvLJ+qBZEU3LqcV570XMh85eJWD6/t/MYzUWkXbSf677VvnoMdyoiIruf7PqV13GhUCgUChc5lspordexlx5sio16NqWo9NIcZqteoGQJ2jfPnqNpFFXizGzP6kkalcKz/0dSl2dfURuWSoXRWDxENrlMSoxswFNex5kn58bGRsrAtW2uJdcnS2+o2okojZ61i0Ye3cosPe9sBcdDW6rtjxai0LXNbHOEelpG9kT7md4/2r7nT6AMLbK3Wq9j9YdQtu2xrb0W+mYsLbDDAD2N05woBx3rHO1QdK6WPoxsml77upe8c6IIj0hL4THaKMVk5tE7FamQpXzVccxZ4+ge8Epwemlwi9EWCoVCoXCRY6lxtKurqyNJ30oTyhKUharU630WlVJT70l7bmTX82x3UWk7ZbhZbKKeq6zFkxKJyOvZYsq2HbEUe71Iysu8xefaaLxj9uL9552jGo1o/b12iKgAu9orbftTsZceo+Vn3CNZLCSPJRPj9bRPno02W+eoz1EMdqQZ8hgUEcXRZgXN1Y7rFfzOkuBH0HssY/FRDLbFlDYqism2/09lkfL2AaG26znML9JozfHi17nwvNyja0ce+RaRB/Gccny6ZzPNgD6fM23efqIYbaFQKBQKC0T90BYKhUKhsEAs1RmK6dCAXG2h6ipV6XoqQ20nSnDuhQbpuWpE98JSVA04R/2rtT0j9aznYKJtzQkY1zFHTmVePyI1lqcOjkIb5iS5IDI1IJ1ZItNCNuYs6bvWo9W9pM5ynppMr6uqL3uOzoPuBzU/2PZ5jvaZ8O6DKBUe4Tl56XWixBie+jYKbYrCfGx/o4QVuha2/ei9gmYrwHeQUQefKHWo9xyIzCW6pt7ejxwNs/tS50sTs3hJJ9Tpaur5av/XfRXVCvf6r+kzdc7mJLLJzE/arranIV32f+sIWc5QhUKhUChc5Fh6woo5SQyislWZ5DXHWUOvR3hJte17L0g6StPnhYxEIUCR0d7rYxSi4bnMq+NCFAriOXtoYHgUrpKF6kRp6Dw3+zlYWVnBoUOHRgzTC7dRpqX7IEtcoqFAKilniUQI9lFZMhCn0ePeUWc5r4+aZEITMFgWoWONQoQseL6OWdPZKfO17UXMxrvuVNpTj1nrXjx06FDqvHfgwIHta6vmyf6vbG0viQ+i8BvveroX1SnTKySh7egz0WN1+mzQ8UTPWW8uovSdnkZDtVPR89VzhFVkzoY65qg4iHVM9cIwi9EWCoVCoXCRY+kJK4g5qcoiG1pmz4tcyZUB2GtH6QY9N3tlsPxO3cWzQH6FSmBZekMvvMbruz13qgyf1y+VQrPUgjqOyL6bpYfL9kFrbVeqOe/aKs2qtJ4VV59KVOAlJ/dKDHrn2n5wj0QhDNq2HU90DFmwFoIHdlhiZCv3wuWILD2fhV03zrGupdoCLTuN0qAqQ/fYltUERDa81vqCAjzf0zjx/tD5UCabpf+bstFynTyoXdqzcTItrO4hDV+z8xQVHIiYc5YIKGO/0TlZEh9FlIZ0TmGH6Lmj9ljbB/u8LkZbKBQKhcJFjqUmrFhbWxuxVK8EXeT9p3YqYMwsIo9aTTQB7Eg1yj6U/XhJB9RmopJy5tUYedJ57CWSBrUt28copWBkz/Zs3hlDiM4hpuxW9rMsKF/B8ynd2+Mj71hNXGGZGRmR2qGi9crShUbaFs/rWEsfZmxB119ZikrtWZpITS2apdFTT+s5DDfSCESFAoCxbTYq7JFpiKYYrU2zd+TIEQDAqVOnRmPeSxrFKW9YvZctq1KtlyZ/UO0MMJ539aHItHyRXTUqbpCNR+H5E2hZyehZ5RXpmEpc492DhGoXqUWwz0N+Z5PFFKMtFAqFQuEix9IZrTJLKxFFHnSRF5s9JmJrRJSM2x67l5ityLvQS9s4VVIv86qO0tqpfcVjhhELzmLh5jJa7zOvL3YMmdfmVBzt6urqSPK3Niy1a2m7XvuallPTHGaI7HiZp7XOvzJNzqMd1+HDh3e1p0U5PA0KoWs15XVq29G54LkaG5mlAI1YqtUY8X8yVx7DV55rbZy637LE8IzBth7K2h6vHXnaZnGtytKi1KyeNkfnWm3ZnjaEUE2Hxwgjph4xQU9LpXZX1SDaezryaYji372Y7zkx0To+tQkra7XaBK57xdEWCoVCofABhKUy2vX19ZHtx8Y4ESrhK/PLsjtFDCbzfFVpSpm1jsO+6ufaL9tOlA1JvUO9cyNbree5GjGZaAxeXGPEUj3WP8VovbnXWMiM0TKO1rPNar+V6ankbRkY24vKiUW+AhaapDySsi3UzpatB/sb2beyTFhTfgtqM/bGyv6r98DA3TkAACAASURBVK8tdafXU18Ktbfac5XB6jkc39GjR7fP4XrR3pp5s66srODIkSMjT2We611Lmb5nM526/7PMUJHGScfnxcQSuu+89Y/uw4jBec9VXUsvhl0RZYCKch1YTLFLT0Ok2gT1zLb7W/MdlNdxoVAoFAofAFgao11ZWcHBgwfDcnbAmNkRKgF5RaCjdjPJU+2fUUHkrC/aVlbWKYovjVijdx21Bc/JFzrlsZwhsj16XqAqQc85h9jc3AyZI1nJnBg7zacb2YstNJZTz/VYiXr70vYTZeMBxntC7V5esXidwznxzERkz9d5tBJ/tK/VZqfZnux3fFUmy/c21lcZrZ6jHtq2T9YGF+1lfe4Qtg9kORyT5g/2EJXHI1RrkK1TpK3ysop59mn7udeHqM+RzwYQs09l995zLjpW2876OoeN65wqy+erjcHXe60YbaFQKBQKHwCoH9pCoVAoFBaIpTtDqarXGtXVMSpyUvJSuEWq4zkG+KkAdc85RdUwqury2o+cAzK1SeQan/U5Kh4QOcNkjlQanpCFL02p0SzUiStLtca9k4WyaLtZMnKFpv3TJANeKIMGxatTiqeiVtOHXkfTeNr/pwoCeM4wuh5R+UfPSU3bUNWxpzpU5z6+8t5QRyfbnqqb+V7Dm7w5seE7CiasUAeZY8eObR/D5BXq8KOJNrw1nXp2zEm+7zkLatuRc50m1/HmKVJfzwnzixwCvXtd96ZXXjJCZOLzUksSUZiUqo69ogL23FIdFwqFQqFwkWOpjPbgwYOjhAJW2ohKMWUSR1Q4Ogo+94LAle1GBYu9c7zi2cBuyVNZcJRUwZM81blKWZcXbhT1Ub/PygASUQC+l3xibuiT7ZOdv8xhxM6nxxo1mUVUeswLnVIHnyiRhTdPXiiGbdv2W6+njlOZA1UUCpSFIE1pFrKUg5Gzi4YEeeFEeh+po5O9V9R5Lbr3vBKLXJeDBw+mCVbW1tZG2gLLqsmaNXkG+6ls2I41cmSMHNEsouecdx9Fx2bpOzXESJlldm/osyO6judAFWkXszKgEaZCt+wxqmVShgvEJUsXjWK0hUKhUCgsEBcsBaNXZkxLfilLzNL1KUPSBOZZSTBNdqAJMzx75FTYSxbKErGQLMk/EaWF8yTmiDGr9O3ZaHXsymQ9pqZ9Vgk2Y5Pnzp2bDFXRpAlZyUMis9Gr5K3hZVHIjm1X99Uc5q+2et13Xv/1nKk9ZBGtj/de95dqiLSv3rmamEJttja0RtMf6r72WNBeigBQk0bWyj7YkA/aazXdY5aUgYi0BlHyC3tMVJhiTigLkT3XNAxO51jfe9eIEqJ4RTqihC/6vPZYajS+TIOiYVE8hmudhffYPVQ22kKhUCgULnIstfA7PQABv3wUJR8tX6detJl3XFRI2isjpl6SatfLkm2rh3Tk4Wk/i46ZSo3mjVP76JWcigq+RzYhr29Tr1677EsWTE9Ye1gk1XZdtyttn2dXURaidlYvBWPkZazlyjL2pqkD1fvYMo3Ia1oZjmW2yg7OR/qOtCN2TiKWz35o8glvPtXLWK/jnRP5OKiGwH5m75ssYcXhw4dHa+qlYHzwwQcB+N6qQJ7eMFqfLOlN5BHvPQ/0vszGq9fRxBHRsySz0UbRItmzWMcR2fuzc9VD3/OXIWONbLN2rT3NYzHaQqFQKBQuciyV0QLj9GlWytG0dlFKRgu1Iej7TJomou+8GK7IDpElEY9sSpFtyZPaIo/eOXGiiswrWCVnHY/X56lYOy8OVb1MM/vs1tYWzpw5s90nSq7WQ1W9SnVdMru+aj3Uc1ntlPa7yIalzNqOf45XNqEMJkrXl9m9ovhtL5adc8HvyE55rqZItGug8cjKcL20jZ7HKzAu0mD3jpbw29ramvRY5/k8l3Y8+39k2/NilCObcsR0M1tmVADFs0vrMXu5L6P0iV463GiPqMYjY+xT/fHYt0KfQ979xPtWmSzX09po91Kecz9RjLZQKBQKhQViqV7HKysrI69ja4/SWMio6LkneU3ZatUeZ/+PvAu9eE2VhKIyZvYclSSzzEyKiP2o1OvZOyLv4kwKjyTlOZKztpGxb0/TMMVqdT9YadrGVNp21TaXMVsyL832RQZt92q0ZloowO4t1Raol+lcL1rb52wfRN6fGaNV3wb1X4g8iu3/atvWtc7YndpkPV8OMha7TpnXqk0cz3Zt4XfdO7reXny92jvn7PlozBoV4GmAvHHZV28/RrG2URu2r3quPiu8Z7E+R6PnnqchiPqm2kC7D5TtKqPVknjeOV3XTWb32g8Uoy0UCoVCYYGoH9pCoVAoFBaIpSesINTxyUJDgAiqJrKUiHqsqrG8VH6RE0+W3jBylfecYKbUv3up9RrVyvQcaqJiBnOSXOwlyUHURqaaikIMIrTWRvvBS75PtZGqK71QrchJSPcO1aQM/7CIEvV7BSOiOVQThWfeUFXalEOdPScqtKFmFftZVBhAv/cKBKjKVa/rhcuxr7bGrPdq/7f3XKY6PnDgwMjkY/eOOkjxVcc6JwWjIqvXSkTPn8wpMlKxe85C2n6kuraqX12XaE1t21H4oLbpOUNFZi597xUIUIdNTcXozYkt0lHhPYVCoVAoXORYesKKOen/KFmpQ4l3TpT0YSoJPzAuIxWVe/MkS5WMVLL0zon6GiWJ8K4TSV+eZBkdmzlSRM4cWZgMMRVMbz/3JOOMlaysrGzvBy/5RBQ2RiaWOZhof9mux2AJtkf2EznwefuAiNJ5eqklo72jbdrraWk1Ta+o6fSAcYiOMlv93DLaKJwkSphg+8b5JAtRJuulQZ0DatJ0z3ilAZXRcu9kyXWm2FuUrMFrI0tKoc+iKOzFCyuM+hA5ogHT2giPLUd7UtvIHLeicEIvbJLrocxVnwWWBWfJjxaJYrSFQqFQKCwQS2W0NoGzSh3AuCwVj1FWmiW0V6idxQsN0rCXKL2ivd4UG83sukSWAk0R2aIz+0IUAqKY496uffXmZKpPnm0us/Xa9mwpNK+/EaOltMtE9l76xsjOrnvG2ta03zYo3l7HsqCIlahPgm0rkux1/3nrojZTHqsJ4b2wq4jJask7OycazqPz6rG/6N6LQjYs5pZds5o0tmP7rcxIWbVXCtFLl+nBG3PklzDHVjjlK+FdJ3r+REkwgDj0TO8R7/wo5HLKhgtMM1pPE2FDtewxmuDGwmpbykZbKBQKhcJFjqUnrNi+sKS5s5+p15i1A9njgNjrT6U4r6yTJsjQtH1zWFckeVkmM1VqLmPDDyeYOpIg54xH7TmaXCErlBx5a3sJ9r20c5lt1yYd0HWz/3PPaGEDj3lEKQkJTbDgSfGRpsF6NdoxWkTM1huX2p/Uduul0dPvdH69c6JkE8pwvXSKeo7XvvZDUyPqHGmieL0mEHvi81o2UY7XB56viQ7UxueliyV070SsTv+3x0aJJex3nn9ChLlewJk3+F6iDRQZc9XPI+aq+9x7rkbnepEa/I729+y5s58oRlsoFAqFwgKxVEZ78ODB1JNPJWBNFq22JmDMsCIvTS9mMIJKQllc6xy2GMXARfGsni1Irx9Jp/a7SHKOmI137FSKOQu1+WQSbWT7ydrmsdRweN7nfNVCAWRGp06dmux/FG/q2RZ1H0Te6BbKhjLbc7Tfon3v2Vuj8Xj3RMRko9J3HtSOp/suixrQPeTF1CsDzLQsPJfte+fQy5jfKZPl88feJ5EGTZlnlm4w8tLW7+13e7m3dU9EzywvNaam54yKaHjpNKN7OYrqAMbP2il/BiCOIdY94/1eaEGRRaMYbaFQKBQKC8QFK/zuxVRFUqcygDmZc6J4Rk9q08wv6lHoMRkiKpvn2TtU6oyyCHl2ZL2eMsyswLhK2TpOe65KzJEU7EnOKuVrHGcWjzxlo7Xnen3Q4gEq3XqsgZ7I2qcoltiuC/dMZN8nPJYa7QPvHGUQkfbD8wbVggBarF3L2dlzlMlquTyNebeY8li1axAVDlF7tedNO9fnwNurnje4akqU0XraMGViyvj1HrT9VW2VMksvJlZ9TaJ9Z8+fu69tH6NyeFFZyDnQ/eCNL9L2eZqNyMclast+Zp8XZaMtFAqFQuEiR/3QFgqFQqGwQFywogKe67WqatWhxHOmIFS1EKlNs8BxVaHMcb5SzHHnn4J3vKqZsgQSUTtz+hGlKNM599QxURiHp1rO1DtenzY3N1NVYZSwXFVFNnhd0zTqnOq4vGQQVDfqOd668DOqJNVRz1MpqvMgEalcrSpXTSPsK9vU5BPeZ1pMIHPk070ShbF5iVlUBc058tY62m8R1tbWRuGEnilCnWu0wIGd80j9r/PiqdajvUJ4fYzSJ6o63h4XpapUE5W376acn+YUiIjUv4QXdqNrGz3XvXM8lbS+j/bkolGMtlAoFAqFBWLpjDZL7q6SZZZQ2rYLxEm2M0TSoLJgL9FCJGFq2/a7KQnckyynwgS8+dRxRXOROVJEYQT6vb12lJYyC1uZg67rsLGxEUrxwHj+1aHOG4emTSTzm5PuUsMDoqQWnmNT5BDItizrjsJedM49hxZ1nFFmy+9tyBMLKfAYDX+Iws30f9uXyMlQ+2vHqfeePUe1FVbboeBzR+fPcwCMkiN4zxRdw6hvfLXzqN+pRiMqAuAdm52TJenw2vdCdaacPe052r5qJOcw2uje80LgIi1bFOLptdN13cNKCrRXFKMtFAqFQmGBWGp4DxC7mnvHqDTvSTtTbuFT5eXsMZFU7IUEeTYR+94L0ckYmf3es83o2PVzL7wnuo5KmJlEN8cOFiXiiF69Y+cgSxkXpRnUPeSFligbjDQCnsQfsTUyQyt1K8vWNJFazs7rv0L75tnZ9FWTT1gbrRZSmEqjZ1mTrrOye4+h6RyrZkoTZwBjG/eBAwcmnydq+8uYWJQAwfPPiDRZmuQk86HQsWY+CFmaRj1X1y7SgnhzEmnutM0srEifvdF7e45qefTZ74X0aR8y+6v6cJSNtlAoFAqFDwC0vXrEPuwLtXYngL9fysUKFyse13XdI/XD2juFGai9U3i4cPfOfmJpP7SFQqFQKPxjRKmOC4VCoVBYIOqHtlAoFAqFBaJ+aAuFQqFQWCDqh7ZQKBQKhQViaXG06+vr3ZEjR8Kya0Cc/SiLRZsTsxmdG7U1B1PtL8rJLJqb/b5eVIosWzddP43fy+KRW2vY2NjA5ubmaBEuu+yy7tprrx2N1RtzlJtVY2SzMWXl+qY+mxMfPoVsLc9nnfdzjzyc0mLevRnlxdX3tu+ah3dzcxMnTpzAqVOnRp1aXV3tDhw4MIqFnZN3O8v2lmVIOl88nNjy/cbUvj7fe+Hh9idrU/MBeHHJXiH7M2fOYGNjY6G18pb2Q3vkyBE8/elP3057p/Uu7WeaCo/neCm1eANFCcCzJOhT8NJ+aXt6nSzYnNAb2UsLpudGAevej1iUpjFC9qOpCQP0FdhJfHDy5EkA40T0l156KYDdiRHuu+8+AMD999+//dldd93l9u+aa67BjTfeuL0P9Gax12R7fM/0gkwgYc/RdqJav3PSv02lg/M+i5KQeAJJlqzDvvf2t+6ZLBXfnBq50fWm7i1NZADs3K/R6/Hjx0dtnzhxAgBw5513Auj33Ste8Qr3muvr67juuuvw6Ec/eld7x44d2z7miiuuAAAcPnx419g0DaWXDESTf0TCm1eLWdd7zrNK10X3h/dDFK1/VjRjqjCEl7wjSpmrr5pQB4ifUXOShrCdI0eO7LoO9wnvffsZnzX33HMP3v72t7vX3k+U6rhQKBQKhQViqSkYW2thonFgrE4kMmlGMaUOtFJUpO6do46JVOAe+4n6qMd4bEL7kpUaI/Q7bTdKEO4hYnWe5BypbqxESdgk8Xw/pTLN2D2Zhe6hTNLX8l1TZb68El0RO81U+pHaMSuWEKXLi/qcHUM8HFWu7t05Kf+yUo6aOlPni6zSMlBNITqlTjxy5EjKyKgNi+6tTFs1NVZv7iOtQaSlsP9HaU61bQtlkNF8zVlLTXtoz4n6FqXStfeTzl+UmtM7R+eN60mGa+8n3TMrKyv7quKOUIy2UCgUCoUFYumMVhNoe3YPsp1IwvR0+5FknNk9Iokokubs/5EDBV8pVXntRg46mYPBlMQ8xzasDMcrMK3HRs5FGevWPp0+fRrA7rJ0uqZnz54NWXrX9YXftZ+WFatdOCrMndkUI5bgJS+PkpJnTjK63hH7zWzmU446HqOdYrIeU9dx7oXR6rkZC4vKQGrpQK+g+RxG21rD+vr6yIeDbAfYWV8ew32lLM4rX6latqlk/La/UwntM1+NaE33Wn5yqo9qM59T+jKyyWbnamGXOfdmZK/mubS52+cES1ByrdfX14vRFgqFQqFwsaN+aAuFQqFQWCCWpjpura8JSfWhV3uVUEM44akWVVWo6jJt37YZOSxoG17NzaiWa+b2PuVkNccpSeuqZg402p6qgb2aujyH6ha+ajhD5pofhQh5Khrti4fW2vb+sde2oTpUMUbXympTTqm2PAeaSHUcOS/ZzzinkdnDm4tIZaz3kaf+0z2pqlzuZfudzkGkyvOulzk/6RiiUCPdO1b9p33M6tFSdcwxHj16FMBu1bHWt1XVtPes4hqxX3ovZSFbiinTi/0/CrPKVKtTzx1vb6k6XZ933v00FQKUqbe1Vu2U45bXLsH2+VtjTVZUHV9yySUA+tCwUh0XCoVCoXCRY6mM9sCBA7Mq2qs0qKEgnoSmTC/6PkPkvGHbVMcYStxZ++oAFiWo8JhA1JcogYVtJ2IHmlnHk5w552SK/NxjtNquOoqwDZuwQvs65dBipVJv7N5YLDS0wIL9jALts2xCESPzJHLV1GiSA4/16N4houQXto9RGIyOy2O00fiUcXh9jpg64e23qZCzzBFpdXU1ZbQHDx7cZjJMnsLEFcAOa+M1db09rYsyWO7xKHwxcxqLnOE8R7po/r3xR8+IqbUFxiGVkTOU5yDo7SvbH0/7on3Se9B7zvEzmzwH2JkTriu1GMBOAhs+T9bW1orRFgqFQqFwsWNpjHZlZQWHDh1Kpdso7CWze2l76pofhePYc9VWx+tk6b7YR0rKCo+Vekk6vDFYSZB9UIluTh5WZZpqd/UShEQSurJiT7pXO2lmP4zsyB5sWFjU7ygMSr/3NA/RHlEp3q5LxAoyZh2FHOm+t2ONfBmitH22j5TaldHqeLz9FoWJaF/tGkT+EsSctSbYrmejJVNRTYQH+oUw4cVll10GYMdGx2OA8fOA97anWdNnEzU90ZgzG63uJdUeAeO8vVEolb0O78fI5yDzL1HNnTLcLOQtCgnK/HLUTq73lZd2Vf0xIp8LhvkAO7Z5fraXcKjzQTHaQqFQKBQWiKXbaCMpHoiTvFPa8diCSlgqQar0ayWlKDh/DqaSDnhQL1COU1MA2mQXagvW62QeqpH9i8jsaxHr8qDrxpSLKsF60m+W0lHHpGP2GK2OI2L32jYwTsXH9tX71B4TsRFvP0wlkPDYz1TqxchT1v4fFdhQxmGPmZo/TaYPjDUbaq/M7OPKhvhei1pY2Psp2j9MwUgmy1eriVLbrH6e2VmV7Ub210zDpZ9z3qxPA+dbCx3ouRkLjq7P9bfPHbW3UjuiXsiehojnaJJ/3f+ZfTdKTmPHrf4xHLv22Y6fTJavhw4dWgqrLUZbKBQKhcICsdQUjKurq6H0CIy9UyMWZ6V2SqaRPSpjTtoHPXcOWyRUarOSZdQXld48yTKKL1P2ZaHerRrzx3llakTLoNhu5Lmc2ea0PZbN8xiB2nHOnDkzi9XadmwflFHwPftElm0ZmNrzo0IBXlygSvTqaak2J9teZO9Wu6T9f8or19sHOl/qFe7Z8CIPdd6TfOXaevOp961qDLx4ZN6/9BC1RQT0OnqvZXG0q6uruPTSS3H55ZcD2PE6tn3Q+07nYE6seqRpyNibtqW2TI+9aflH3UO2bb0XotKOugbedxpXq+8t9PmpceMe09S9o883b31VY6M5Gti+9Trm/N1zzz0AitEWCoVCofABgaUx2q7rdklolFCspEopmcdFjNPaV2gHoDSj7FGl6jkJ2yNvOfuZTUptX7VtD5G06JUD1L4oq/fYFlmHJmZXO5gnqUdetByPFws7ZV8hq8yk0oyVdF2Hc+fOjZiMZX7sF8fEAvCUXLUAPDD2wlbbosKuMaVkeq/S5sNjuEc9m2nEaDgGr/xfZDtXjYdtm9eLmAWP9VipMqcHHngAwM49ynn1bLTaPvvIObFsVedPPeI5z3Zcqr1g5jAPKysrOHbs2DaTZR/sM0TvIS1Q4cWBRwVBdF08T9vIZs7POT92btkHPufY/6ivwM7687OsTJ3OiT5fuD68Pvtu74nI/0bt+R5L9X4P7HWyiBN9JquGyM49bfR33nnn9jkVR1soFAqFwkWO+qEtFAqFQmGBWKrq2DoIUZ3IV2BHbUAqrwmgqUbyAqsJrV8ZFSiw32lbvL6XlFrVYOr04tXIpNpFQ5F4buQsZY8heF3tuz1O1Vma8i9yi7ftavB3lohBnUaY3k6dPKyqV9Xnhw8fxn333Tdqm+1ubGxs94HqX7t3qNqkqvOOO+4AMFYd23P4GVWCbJevOi67D7imdLLRPcr3Vk1KM4fuGVWFe+E9qgbT+VM1uNd/dahRJzY7J/feey+Anfk7ceIEgB3VMefM7h1Vk6rDG+fMzokmkLj66qt3teWpOdUhLHNmoTMU26cK2SsQoOPgs8Srict5VqckzgdfPQcwVcequYFzawsfqGpd55bXZ3/suKJkLvps8fa3mjs0NNGq03Wv6hzZvkVQNX5kZrP/q9qefVdzm/2OezAzWe0nitEWCoVCobBALJXReuEYFpQ2VeLj58oMgbj0EqVQda6wx6kDgRrpKWHaFF4RC9XQAC98Sdm1Mk+P0SoLVRd5wnO+UpajjkzqhAGME4GrJkClVWCH5ZAZsa9kthyPlWjVcWJ9fT1kJl3X7eo714ssFgBuvfVWAGMGxj5pwD8wZrDKlHVclgFQIuZ1OFa+XnHFFQB29i4wduzRkDRP4tf9pgxPEzvYdWG/NZyH4+R7q0ng/3QWueuuu3Z9rs5Zdt8py9L97CUN0TFH5fHsHtW0p13XhYli1tbWcOWVV26vg2WJhIahRZoN+/zifJD581jdf1wvMndg53lClq0OTlxzaktsvyMnLE2uwrEDccGT6DkEjBNgqKMgX+36qZaS88r7lA6KhF1H9tUmkrDj1kQTtv88RtPV6v1lwfv38OHDFd5TKBQKhcLFjqUmrLBp9Ch9WElPwyz4HSU7T0KLbJVRWTkrtVFSpXTKcyn9ekkHlDkqK6akZKX2KD0boXYJe5xKqpTSdK4sU+MY2QdKkpq2zbN/6RzrenlFFNgnSvW8Ht9rILntf1QGzoLhPZwLtk87LAC8733v23VNzkeUSMBeW9PoqQ07C0fQJBNqp7JzrpoTld6VUdk+aim3qFyZXUvdvxwfmQav47ESfqehGVGpR3s99W1Qpmb3EO8Xfsb2lI1bVvLIRz4SwO6QvSicbnV1FcePHx/ZHL2QJs4L2aiO3TKy97///buOVdZGpss1t9oQtdWr3ZDfUyti50FZHJ+RyuLsZ6ol8JLtA34CCY5DGTzHa7VK3Ec6B7wX+d579vMzsnyuEzVE/A2w5Q05Vp7D7ziP3B9eyBOvffz48WK0hUKhUChc7Fh6mTxKF5RCrDRB+4ZKKMpSrfQa2SqidHee96JKlpSus5JqCvUy9BI7EGp/ou1O0/fZ8ah0miVZUAmd86oJETybt861Bq5zbjzvP5VGNQWcPYf9pmTedV2asGJjY2Ob5VC6trZFZevKVr2E/Zo4QDUOamv00uipRkPtuZ53a8TiNXG713+9vjI5r488Vz2vNUEMME5qEZWhVAZqr8NXTTzjpetTTYna1TxvWt4v1hM30haxTJ5qGuzcq3dx5C179913b59DGzY/0zYIL50i+6rpLFWzZve3egpz7I95zGMA7LBfO8ecS+2b+qB4XvWEevpz3GSn7Duww+75nWolyHTZR8tO1b7K9eccUXtlvdw5B3pfUSOpSYy8Yx/xiEekZRb3C8VoC4VCoVBYIJbKaA8fPjzynrQxfKqXVxuPegEC4yT+ysSU+VkJXL0/eV0yMy8Fo9p81f5K6ddKXpH3WxRnaKVS9lu9M5XRWEarybSvuuoqADsSJe0qWQo+9llLT/G9tbOp3VY9Bq3Uq/2352bFxk+fPr0tMXMcdsw6t+wnj1HvY2BcckzjTpWJWZuWxowqW+NetQxTGYNe1ytkHhXv9hgzsHseNE5WbeheUQmuFc/lGqqPgMZ1AmPP7qhMnu0z2+Fe9cr96XXYvk0xmZWnXF1dHe1Jr1xmVKiDrJX7z/aB/Wa7nGP1brbPLL3vNK6Z8HIMKNSD2e4d2io1xafOtcfG9bnJcWUFMDTGV9M26vtHPOIR2+fqvaepbXmOXZuoCI0+1+19pz4Ox44dC72y9xPFaAuFQqFQWCCWWvj94MGD2xIKWZVlNJSIKPnQM0ztRtb+qVIUpSRKKTyW17OebtrGlVdeuetVJU5gzM60T2QLVtK79tprd42V0i496dTmZCVZgvOmzExLvdmx01ZxzTXXAABuu+02ADt2Fs92RluIeoNSquc82jXgnE6V0PLWzZZUy2y0Z86cGdmY7Jg1Y5YWz/YyGSkzIvNX26yuk+1/xKTVDgfsrJ1qLtS+b6+jnqiaeUxttB7D5HVpO7O2RtuWbf/666/f1SdlYZ79S7NxcR9oPDf7YdvVguLKLq32QrVKKysr4d5prWFtbW37WO4Te39yPbSUonoS23uf/dZYcWVHvDesdy77qjZyrhP3jFcuk+CxvJfVOxcY2yPVJqsM0Cs0r1qXqHCEvY7mEtD761GPehSA3az/9ttv3zUn6lvj+QREc64xJHOVgQAAIABJREFUudZ7m7De4JUZqlAoFAqFixxLL5NHaYNSopVQNF+s2glVmgJ2pKInPOEJAHbYI6Vrvnol9ngdxsTxeo9//OMB7GTFobQFjO0amimJn3tZT9STU/N3ekXVVXL0suvY8dn2tZi2SoVkujYelWtA1vGkJz0JwE7s4s0337xrnHbs2hdlK1ZCV8/O1loYC9law4EDB0YSsmd7oaSv3pKa19iCWpAP+ZAP2XXuP/zDPwDYyb9rbbQq8RNa1NqOSW3LasdTHwUgzh6kUrin7dEsTrw+557XsfZNjdPkudxD7Lt6dtr+c554H3F/8T4j47X/qx2ce0f3rv3feo1PMVr1pvfiWhmLTfapnrVW06Q+Bmr3VA9vy+K1fJ1qODT+3Z7D+dbngJePOfIy1phrrywp95FmeyO8+0k1Dbp3uB+9uHTOwQd90AftOofPXtWkeO3oeLznDueAxxw9erTiaAuFQqFQuNhRP7SFQqFQKCwQS1Udnzt3bpR+zBqyqT7gMVrGjaoIq8Kj8Z/qPRq+qeqg6oHqDKuO0dSEmiLPS86gYTyq7rVl3whVmVCdqY40XsA4+8jrqgOFhgjZYwl1LKAai9ezjhpsR8OlqJJniAOT+Nt2bbiFvS7VQFZlqG78W1tbqVPC2traSK1p55hrRDWlJhvwHMyo/qS66rGPfSwA4L3vfe+u4zRlITBWZXHd6bxEJ5UsrINzoGpuq47WRCsaBqFqQQtNQafOhpo60/ZRSx2qoxD7bNVymnKPpgnem+94xzsA7L6fuL81MYcW4LBrrY5hmep4ZWUFR48e3XZK8kpt6l7hHlLzlh2rOhJp0n++eqFthJp4OMde2klNY6rPG66/NTvwfzXlaGESdZICdp4J+uzQ69r9rWlINfRJzQJ2DbSMoTqtcm3s7wWP1Vc1MdlxsW8cX+aEuZ8oRlsoFAqFwgKx1IQVR48e3ZayPOldA6r5nQbY2/AHSiZ0XFHJi9Iaj7PSO49VaVcTZ3sOBirRRg5IwI40pk4CGs5DtmCdZLTEHa9LSZnjs4xNw2oo2WnBADI3K5XS9Z6OLGS2dAxjaIiV1FVC1gT+ynSBcYm+KYeW1toosb6dJ+4RDQ/READL/Kj94DpYZm/P1XAYYFwKkM5i6qzkJVfRhPzqpGL3G+ffS4YPjBmGV2Ccc0G2rQzaXo/MQt9Tk0G2xzWwrIvtcS64JzXcQpPZ2z7qnmGf7Z5WJ5i1tbVJVsJ2+Oo58/HaGg7CObDaMN7TPJdj1UQ26iQJjBOUaPiip53Qc/h8iRI72PY01E2Tz/C9l7Bfw+a4dtQk2ns6KiyvzlZcK/ss1pAngtfnunkJOdgXLafqzQnPZ5+yEov7iWK0hUKhUCgsEEtPWEHpgdKIDS2JEhJoEnZr6+N3WqJJpVKVkG37lOR4XdrXNIDc9kEZC99TmspYido91HbnFdPW0Bf93Ctor9/xHDIOL/mEJkK45ZZbAOzMOdmdPUdDGrSP/N7aXbhOXI9z586FrGRra2tXaJhXsJ6gpM9raZIILato+6J2Y9oWPe0Lj2W77JPaHC04H5qgRG2mXmEA1ZxomTy1adr2yPwp8bOPKt3bdqjV0XSeZA9eSkCyD84994wmZLAMQxNfaIgQ+27vWy23t7m5mSY7OXfu3OjesmyKe5n9jlKI2n5r8RD1I9GCDnav6t6I0nnaddFnBlm2sjk7D5rUn31VxuyV2OMzkXPAJD6cN+/eYxEETbhhyxnacXllJ3muTZFo+2yfIewb54LPfC3OYfeOhkFlmrT9RDHaQqFQKBQWiKV7Has+3CudpbZMSk+UTGwaPUKLuBOaWNra9SglKdtRKdWyN7WVqicnJX8r8Svr0BRoaiOy56q3qXrUeexOWSnb4+cqudvxRYXL1X7kBYFrqUJltDaJOGGl6ClWojZHe64mVNAAe35uWbdK+lGxe7IF7ZN9VdamNjxg7P2pTJb722onIi2I2tt1T9l2NFG/aiBsHzURgrIdzoV+780N70W9563/gnreK8tXLYAdu93nmZ2ttTaylXp7Xm3l9pr2ODsm7kV9dmjpSy+FpCZKUBu91U7os4r3MH0q+N7TTuhzR5+vXFvP3qoaBc4997mXdIKaMtWy6P3rpVPUPare9fZ6quUhNEGQXTcvlWTZaAuFQqFQuMixNEa7tbWFBx98cFvSU/sksLsIODD2iqNU5TEMtedqSjTCStAqPanU68VPagkwTZuncajAmOlFMYOaRhAY2zmUBWvicNsHjVXWOdIyWrZ9TYqv7NcyJ5VYVXL2JE9e20r8cxmtSsbAeO9orKrGSNvPtNSi2t29lHFago57hfPjFbvXcomqHdBUnPZ/TR2o5b48qVwZtNpDtYSgBdvld1GfvWIWanNUNmLP0Thg3rfqJZzFiWdl8rTwu8fEdQ7VnusxTE3Ur/djBtVg6bxoqlZgXHCC2iEyWuvroOPS56hq2Dx/Ah5D+ye1H6pJsevCPvAc7h1NV6v2eHs9zqenObNjsX2IvPd5fdVyAnEq20WhGG2hUCgUCgvE0hgtoaXBvALMah9Um5m1zalun1KNenAqu7JQu02UBce2w35TwiTLpn3Cs3sp0yNUorR2FpUgtTwbj7WSns6TxsSpx2Dm5RzFxnmSII/VdfNYl2oTVldXJ+NolZFZaVdty2orVxZn/1d2qtoDbdt+p8xZk+Fbj0d+Ru9ISv7KiizU69ibN6/Ptk+0nSm791gg7wEtUqD3hu5L+79mK9M4bu8e1PZ073rZ2azGIdOGsKCJHZcdu2rQOFZdU9sHZaPKvKJSkbYP+rzTtfYKNlBzwz1EZuvtb46HbFQ1KhrP6jFMfXao3d8rFMJ9rho7LY1pnzu67tFe8XIaaOlVLUZjoR7QZaMtFAqFQuEDAPVDWygUCoXCArFU1fHW1tYoZMeqfEj1IwcDz6kmCuhXhwKvPqjWclS1mZewX1V1DBhXA3yWek+dQyKVsu2Tqoo5R2zbOrTws6hmrjpYWej8ec5W+l7nWlXhqoqzsA4nkQqHauOsD6pa1aQGnvOdbR/Y2X/qDOMlHdCUjnMSLfCzqD4wnTasOk7XSNWm0Z6yx6qjGNWOmhQAGBdhULNHFJpij9H9oGtix6dqTILz6Kmo1ZlnKuHAxsbG9h7UYhy2HR2Hhr3Y66jZQZ8ZOheeqjpKn6mv9hg6XfK5w3niutnnDj/TVJv67FWnIttHTS2bIbr/s2ewHqN90/3tzUmU9tILQYrU9otGMdpCoVAoFBaIpTtDeWEP0XcaLuBJTBEDi6QrzxlGWZsa4r3raUowDdL2gr896dy2SdjraXiFpqP0wh/U0UyZonW2UkThIl5oBqHzpEkIPJavOHv2bOqU4F3XXidyANPSXNbhSEMJtGCEl95S+xOFlWkpN/u/ln6z4WO277YPUbKBORK6sm9lK3a/aRELDVdStu+xySixCN9766Zz4oUP6TkeM1LQGUrD1TwnJULHpKUQbR80XEjDRrw9r2vpaSMUqinhc0efN/Z6Gl5DRAUcvD6qVkL3nU38ofevFxZnr+utnz579blj+xrtET7/PKcy79g5++h8UYy2UCgUCoUFYumMltK7JyVSsqBtwStIbI8DxqxN037pufZ9lBJMQ2ksS6BkqYUIlLXZPirriWwWynTttbXUlBZbt1IbJbooQYZKpV5quSg9nF7ffqfu9kzikCUJsJqIjNFubm6O2JqVlDVBvhbK1lSW9lgtBRalrPMYjabE1FePYSob1jSHXsibhu9oeI+XfECTqmiZPI9ZaJk8DXXTpB4epmyOdh713tO0h4Q3J/a7jA1ubm6O0m1mKR334kMRJXDQ9fD2QWTnJew8cY/Svq7FVLguXnIdXTNlsJ4WjseqNkLHbTVEmnJTw/v03vBSMEZauCzZSVSM3vPp0SQeJ0+eLEZbKBQKhcLFjqUy2q7rtqUsLQoNjKVztQ9kac5U0lcm40lEKo2qF5vHNDXpuXr2etKplwTdOyfzsNREFZQwNTG4/V+9jSOmZqXHKenO88CNoOPLGO2BAwcmvUfVZuq1p0xci4x7Np7I8zBjGFHJPl1jT2Oj141S49n2tGiA2innlPpi+yx5RgbiJUjhHiLD1dSbHoOOPKL1e8+LXzUmqm3xNFFzxtx1HTY3N0eJRbwyj6ppILw5VjalfdE+evMU3WvePUYNGteFzJW+ISx9yPKGwA5r4/rq+HQv2etxvmgT1gQcnraR7bFPfMZH9nD7uWoTs2cUoUw2SpDi3d+2RGgx2kKhUCgULnIstUze5ubmyLbgSaqaMk5juOw5UZyhQiVnYCzhqRSqHpDAjrSkXpleWrioj1H6PC+dmzJkjYXzpHu1f2epz2zf7XdT9l07Ps6BlslSu569ThaPqei6blecrZb/s59F8Xfsm03LpoW27fW8Nr019b6zbdjPlZWqbVaLh9v2p+JnM/u+9pV7mLGYXC9grKFR+66OwbvfonvSW3N+psUSsjaVoUxpV+zxei8Acdyn9slLaK/2Ti1Q4WnhdO6iYgLWXq731okTJ3a93n333QB2J9CP/AR4fdqp9flnj2F79HLmXqVWxCvsQfAZr88uzyasz7FIQ+VpiDg3UTSHXWs+qzhfU74h+4VitIVCoVAoLBBLY7QsV6XSrrUPaZYYlcg0RtIeqxJmxFKt1BMVT9eYSCsxU8Lz2Iftm8cwNJ6REmBW/o1Qz0GNSfSyCel8qXSdlcnKCnsreD2NtVQPcA9Wq5DZ3La2tkJ2b/urcZ5qv/Ek4swOZMfnZSTTY7LE+ZTwKVWrpsZLXq9zp3tItReetofroN7oPNd64EYFFTSbmNrY7XeEzquXDU7HnhWW0HbtPEXnbW5u4tSpU9vs3fMCVgZr7bf28734Mui+8wpq6D7m88CLGSVzVZvs7bffDgC45557AOzW8mhGMCLKuGfnU/0ruHdYPEXtoPZ/vpKRR9fx/CX0mTz32QGMNQL6LAB25k2zAC4axWgLhUKhUFgg6oe2UCgUCoUFYqnhPa21MGkDsKNGplu4qj68OppaY5UqCA0XmFM/U13XaWS3qiSqI9RpRFUdnqFfa0qqMwLhqY41cbamGbOJ4aPanurko8kw7DEaCqThEV7t1Kj4g6cG0tq1U9ja2hqpvKxzijoJRU5cHjhfUwlEvOTkmuZN++GlxPMSpAM7+8LuHU0YEO1vT3XKYxkKQtW1OiJyv9s+6PpGDlUW6gA2J5k8P8ucqxSq6s3MG1tbWzh9+vT2PuO5mvbSfhcldPBSYxJRchNvXdRko3uIc0GHHWBslrnzzjsBALfddhuAneQwXvJ/3ZOa3MVzGtJiJapK5jnWAUqdC/W5Fj0r7bHRM8NzpNPfBYJrq4579ljO0wMPPFDOUIVCoVAoXOxYesKKKEAd8BkWMJbEPFd5lRLVPdxLVcj2lMHyPSUzW4KOUIlWU/x55Zwo/fE6ymi94HcNDFfJ1gttUBY/xWitlKgSa/TeS0SvIQ1Zmj5CCyBkyBKoE1PJR+ZIr7q2niOVMsuIwVhtyNwCBJZN6h7V8oga9uOVL6SET4Z0xx13jPqm11MnnjnhRHrsHG2CQp0Yvet4aUAjbG1t4dSpU9vORHTQsX2acmwk7PWiUopRQherpVKnHQ0f4nq9//3vd8cD7Dg/kckSdo9GYYRRMhD7XNUCGOwb33Mv2fspCsVRhutpYbQP0fPGzmu0N6OSqfZ/m8ynGG2hUCgUChc5lm6jVYkvS1igdkLCC9HQslQqkam9EthhB2QWag/zmJnaoTQhPcdl2QK/I3NhqIG1jQHjknjeOFSK9+y5mmxAGYDOmWVQaoPWOfDYZBQKpLZiL8HEXGlybW1tZMezfZhK+5exK2WFRLY3I0apGgdrR+Z6M0Ti2muvBQBcffXV22MEdrMUZQWa3ILX4fWZqs+ey/Zox+fnZHl2XaISi3rfZoxTrz/n80hDQHgaDy/MS9F1Hc6ePbu9nzXEyV5b146vWXL6ufvYS1WoJQl5/+urdz3VnHmhWvps0PtT2aOmKwV29mqU7N9qH1Uzp1o39l21M0D8vI7sy/a7KATOY+paCnNZKEZbKBQKhcICsVRGu7q6GqY9BMYeZ5FO39PtE1FBbq/cEz+LWKNnm6UUpgmsNXG3ZQnqbcxX9TL07BAEJVX2kYkzlOnYYwidvyxwXBmNvnoJ1qeSDXie2Gr7zVhJaw0rKyuj9fH2gXqmZ0kppvZOltheweuqx6NlGGSb119/PQDgsY99LICd0me8rvWIZTsa0K8MjXPBVHm2PdrzNPkA27aJ6LW0mmpwlJVkLC/yALf7YMrOpmOx7c2x629tbeGhhx4aJQnJkvyrL4h63NvvIq959amwGi4+VzQJjdq27bPK82kBdmswbBv2WLWv6r6mpsPuHfaX68zrsO9ZcRGOh3Ojz0Zl5cA4jWJUWjErkxcxWbtGvKYtklE22kKhUCgULnJcMK/jjNFGRbU9aZffqScvvQvVk9jGffEzjXlUyT8rx6aSqya69voQxfZyfFYC04LvUd89pqbxocoavFhISvxqa1bJ3WMTahPWVHOeXcTug4ih0M7mpbOzx3jv9fPMRqvzpLGkXlF1lZBpD9W2gJ01497key3xaG1XKtHrMaoN8RLDRxoMb5wac0tEKfK80nERG/U0A2pni4ooWKj3eVbqjHvHFvoGfO/syMPe89WInhHKFrX4iB2b7hHOMZ8XXipOfUZaHwDtI4/VvaL3IRmt3XdqR6XWRdvw5oTQvAi6pnZOeKza6nWv2jlRrWL0XPO0DnZNi9EWCoVCoXCRY6mMFhh7onmSpUoqmjjdSsxaiJ22BLVdkslaqU0lbS1urbYGYCzBarYiz3altlmFeuV5tkztm0p8loGorULnOip4730WZSDKkrzrud666WdTBQXOnDkzYrRefJy2P4chKRPzynjpe0rpZIAecwF2S9e0lTIRPM/V4g/WrqvMQqV19cC2Je+4JxjzyLhMvmc/bAYi9kk1KcpGPc9h9byPIgvsWule1XF5LFhtb6dPn55ktGontM8BZa7KONWWaq+t5+rzwIs71wgIfUZxja3NVPvKdeLrHD+IKPOZ5g0AdvYgn6dRFjvrT6D+Cbp2WjbPsnH+r8Uy1Lvas61HhS6y4iNziqXsJ4rRFgqFQqGwQCyV0W5tbYXFqIGxjU9fPQ9b/k9GqzZbviortv9H+YvVaw4Y20TUw82LL2T/tS8Er+8Vk6aER2lRmaAya9sn9RiNCiR7sZBaGkzH6WWGiiRMD14x6MhW0nUdzp07N4oZzTxH9TXzbv7/2ju33kiKL4lnexjQPCCEAIm3/f6fCu3zCmm4SYxsj/8Pq3DH/Coiu0F0r4Y98WK7uy6ZVVnlE+cSh9mLnDMzfNc6x/rEIFvNtzfi/umnn9ZaZzbMOkfGw9Y6sxoxC/1knCvFVpVNLCYrfVydX9t63W5jfi0Td9dwnp6OxCIaE92xYME9Tru14zFa1sz6uMhCueZ9H3q7qD0usGWlj4E/+S5z1k3mr3WlWmidP8Uw6ZVqmezpvcosbcaPU44N81V4/fgO9W20nlvVQ/KAMlt8p3NOj8O0yRsMBoPB4F+A+Uc7GAwGg8EN8X8mWCGkRBwmQ8nFoWQBd7lRkILC/a2kZq0uREBXUionai2a5BZxNwxdaXRXsAzDQfdPcxknKTSNha7KXWIQk23oCt9J7zVh8JQMdY0L0o/79PS0vS9N5H0nbrBzN/p5mHiy1vmaUiCD7jlPjtLvcuES2teTYL777rtPfsp1rOPL7cvkrLXO7kUlO8nN3ZIA/TuGcVpDilROQje91l26F03kognhc/9LoOuY7wOfm9CS4XhcH1cqlWvgXFOJ3lqfPhN89+lvzSO1/WvhLLqS6cJOY9W2LHnzMdIFzXIfvgfdhdzELDimVMbYWham5FIKiHz48OEu7uNhtIPBYDAY3BB3ZbRPT08H4eqUNNSC+LSy1+qNsRnMT4yWCQ1NHjIJdcsionVGhu3nYcNtFmcn4W62VJNFpmPRauXvvg1ZX2KnOreuNdn2XxHa3yUi7Vr1NTA1P5V88CfZexJLoEVLqzqJdrRxM2nDzyfWoSQlMUwmrUnIfa2jPJ7ELiiUwnXhv+u8TCZLCS1JljOheXTWOiYZkgWlhJ3WDIIlQ/6dM8PGcp+fn9dvv/12kD31+ZFV/x1wvFx3Pv5W9kQviN8XMlmW26QEI8pocp01mdo0Hz4rO1lKvgeSEIsfk8dxtFJBH3fzgiTJz/RMj2DFYDAYDAafOe7GaFWiQYvSffBkTY3lJOuQ8lts5p4sZ/rryaBlmbEcZ61zbIwCEoKzYDJ0zpdjd0uvie/vpPA4XsaVW+G6f0cmuxPnZ9z4GjH+a2Ko3J7n9uO2doktfuPnZCyOx0qxutYujvkFDp2Pa0fxVZ3Hy230fIjZ+rrifNb6lD2msiQfe2IyOj7Zh7DzPOh8XG9ktH6+djyuh3TfhI8fP25ZycePH1+vaSqx05w1bq7jVK7W3lH0dKTcA8o3atvWmtKPw/cny2/82mjttNZwfN+lxg2cF5msezS0jrm+GZNO5USJxaex7nJ6WAKVclGYt+LvlVtiGO1gMBgMBjfEXRnt09PToTF7ygK+BLdQtD+luxizTRYR2WgStfDPHbS8FFeThZfiK62pNTP7koVFi1WWebKsW2YwYxhCanlHq57HSmyyySBeasx9aRt+v5OBZAxJSHHdxmh5ziQk0mTs0roWyPR0fmUFK0vY46yKryqeq7XYPDipMTa9PmxuILa81pHxMd51TSydseBrGAMz1HdZ6Gx4sYMYC2Nz3gKztWgTKAO41jHH4FJDcR8rvVKtMYCzRbI0Cjuk9a35UKThGhEafUeJUeaz+NjZWKO1EEzvC76TyHqTp4jPGt9d9M6tdX62vL3kMNrBYDAYDD5z3JXRfvz48cDM3Eq8ZKGmWAk/a8L5SZSa8ZRLbez8fGKpzeL38zBe11ijMgrdEmScuDVCTtl4LQtvJ/repM+EFB9t0ouNIST8ley/Xba00BoEJObMNdnaNaZ1QMlPCrQ7W1YsUD/FJLWv9vHGAGRKbGpBT07KX6Dlz5aR7rHh8ZpQ+y7zu8Xdm0fHv2stMRPDdU/QLsb/9PT0uq0YjTf4aI06Wva+j4u5E8ypEJt0KU7WjtPjkGpzf/31109+Mq7Mtpl+PL7nLmVI+zzE/PWTjD21umNjirYOUn6OQEbL9ej7XMo29pwHzUP3INUO3wLDaAeDwWAwuCHuxmhPp1NsZJwUlJrCzK7FmUDrjHV4qUZV1i1Z0a5GsInWJ9Hya2sFUwxVn7VmBok1tgbfHGtiw5eYxK4mVqDlnOrZOJbHx8ctoz2dToe4aIpLk1G0FngOZkVy39TMghm7TYksqWGxZaP+luqThOLXOjMwV7LxMWtsirc6U2MGMfMXdpn/ZPFksmzmnbYRuK53zeI1lp3Xhff43bt3NXb88vKynp+fD+05/XnSd4xLN5H6NBc+YxTJV4vEtc4eC6ofNY/QWud7SC+I7qHWzq4VJefDJiqp0QKbt7cac/+dWdOcj9aoK6DxueEzp++TV0nb0KOyqy2/N4bRDgaDwWBwQ8w/2sFgMBgMboi7uo4fHh6qoPVax+A8XYQpEceP7z+FJiW21tmF0fZJafZ0M8mlQvcIy0t8rnTHKnlA53UXZXLv+bZ0uaXzaH4t3X533Pb9Lhmqldqka/JXykZas4K1ji77Vo7kyRzt3E0Yw5NTdD657Og6TkLxLTlE61DuXxeloIwixePpBvZSHbqOWYqUSoJaqIDiLqksi+uN9yslNDFE0QRAduGNXciBruMkeM9GIEzeS+8WPnd0k9LF6vdN5VzuTvZjMtHJj0vXscb67bffHvbhutb9pmxsevb0XmPyna4jk6TWOq9VrvOd+1dgwl6T0E1CMAwL8pr7tWd5ku93SwyjHQwGg8Hghrh7eU8T8F/rbKUx2YHYlQf4+RxMhkj7kpElCbmWFMBEHU8SoLg3536pjZ5v2wThd4yWghj6PLU6E65tIejbtp8JqWSmQfKd9HS4ddtE7nndfK5kXGTmZGZ+bI2fiWwsT/G1QxYkBsu16etbZSGyyrn+WNDv0olkECyREJP2e0BxAyb1sEGBr4MmMdoSnHybJmmZnvUkuNLeFZJf1DNIWUKfG6/P7nkkiyITa63w1jpfM41J91hzYLLcWue1wnVMJpjKVZhQyWSoJNTTmKyQ5Ekpf8oSuNaAw+fc1kF6X7RkS5YmeQIUPV6Pj4/TJm8wGAwGg88dd2O0Dw8P66uvvtoKdZOtsUwgsdEmZ0imkeKtjbEwBuQFz7TkWO4iSzCJbzQ5w1bOlPalQEKKL7Sx6XMdg5btWscGz631XSqT4VhaOZF/580LdqIDLy8vr9c2lYaxHIDjY9s/RyuvIvP3dUDGp7GJeWg8fk0Yq1IsTiwxiapQxILno9SosyDGrRnfSvefEoX8m/fUr/OlsqgkqtBENXaN31PrtLZ2np+f1y+//PK6j8biZVCaG8VG0v3gXMlkue50bRXLX+t8PzQGMS6KQvj7Ts87JTIpduL3v3nBtCbp8Uh5F1pnLAVKLUSbAIfGqG31jHg7yCa80pqa+O8sJ2IpXHoXO1OfGO1gMBgMBp857tr4/c2bN69WjyyklLXYxBKSOMPOkl3r6K93RsPvxFho4aRzaB8KkksiLWX4klk0GcW0L9k22YmzOzILMjMWyO/AWFxihC2Oy6xQPx+Z0du3b7fj8ThcklNsconpPByn0O4HJeXWOt/nVmi/a0EndsN7mK4xM4U1BsarBb8m9Erob8bqPP6muZJlUfhFY/d9NRaKKexaB+p68Zknm/TztGcg4fn5+RNPBMVB1jpfWzEfMr3kxeGa1nh1j8nIfawSamBbPsbhk+Qj46nMdneQwbaqDt0DZ376jBnZzOzQ/Z5fAAASVUlEQVRNz6wYK68jM6X1dxoLG3CkWDHfL7x+bNfn296DxTqG0Q4Gg8FgcEPcldGudbYOZXW4n57WEX39KfOsybvJ2iEjc6tNca/379+vtc4WkKz5JO7NMTCuc02tKNkOY8/OnMi6W1MGzzbk8clgWxwkza/FaFMdWrNyd3Fk4RK7fnh4OFi1Sb6TjCjdj3ZOegDIppwZMV7c6kFTLSTrW8nMkhReE/UXmIXqY+K2mkdii6yf5P1usUgHWS/jr37dydBalnhaQzpea02n/f7888/XeWju3rhBDIxeKj4fydNETwr30fy+++671330POrdx/WWWvnx/lIUn+9V/4yeDXonxPJdlpLZ1DpGa4jiY2HTDLLIdL9aHTKvfWoDyLpZ3Vuu87Vy44GJ0Q4Gg8Fg8JnjrozWLYtUh8WsRLLVFLtlS6umEJWy1mQ5isHKApJiS8pWo5V+qX1dGjfZDi3MxGhkrbX6VmcyLbuVmYmMh/i+zJolg/Hz7xiFj/nv4nQ6fXLPWbvsv7f4flNlcjSFq2SJN5F/xlmTmhRjV6y93alXtdjlzipnNmarjfTvWuYwGWfKcua6YmVAqo1tteWpoUiqc27zV/0+WU9qnab7ob/ZZCDlGHjW/Fq9vt2znL///vu11lo//vjjJ9vw/jvDZE4L2bX+dqZOFSdeI3rlUk202L3GQu9L8i6Szeu8GgebyftnrTFA8uSwVp1KULv3kleaDKMdDAaDweAzx91jtDv9XcVKWpxwV9e2U5JJx1zryE7JXGSB+RibpdriOr4tGVLTkU3ayvruEnv082lMul5e8+ZwS71dYzKnXZs8brNrk+fna5alWiyyvtqvRWtT1hTCEi5lZ3qWJBkN24mldlxNz7XVjfu5U2zc55MUu8i2Limu+XdiOc1DxCby/juZ7E7969IYU3tL5l/sPCbSWNc2YjvOFsUC9SwzVpsyelttemuf6C3hfvjhh7XWmdkqlsk17GtVz3/zSmg+0jz2ebQWm7v6fWY1axu9Q1i/6/sIfEakgKWf0nzmXH1fanunWnyug5bP4nP3d8gw2sFgMBgMPnPMP9rBYDAYDG6Iu7uO6T71pARPgXck9xGxky9cK7t/VLROVzGbG7i7Iomp+3mZRLLW0V1OaH5sPrDWMemmuX2S2HZzo+/EvVlGwqS1Jt7vx6XrmMlFjiTBSZxOp/X27duD2zwVr7dksR14LXn9UrII2xdqHTN5aNeasIUukgu5NWrYiXgIFBAR0vmYoNUS6djaz7dhcs9uPdL9x/Wc9qEM5U4Y/nQ6rS+//PKQYORlMHrGeAx9nsbCbXV8hgOYmLhWb5cpMCHRt+X95rr3Y9K9zUQ3rjPflwltGpNKktgEwH+nKBHFgtjEYa2jKMwlOde19olSjvRe2ZWn3QLDaAeDwWAwuCHu3iZv14hd1ibLeXaMtsklMplCx/L0dFllsqJopVOGjL/78WjNpVZgLF1oJTOpoJ/F2Uwm8vMxGYqC3UxaSaUTTUy8MXofE9lvSl4i672mXR5bXCW5QWKX+EOW2MbAdm/pOwqHJIEUsjOund0YBbJDzVv3KZUg8fxs+O3n0Jgooydmq2eEyT5rHa9PS7ZJpVr0VvC53TG1nTC8vCEatzwPSRSmJeQk4Rpeu7Yt2xj63DQGPlNJWpLPoeaheylGmIRktC9L3LiW/FlJrSH9vJrnLhlKx2BSKZ/jtY5JmPRspGeT82LyYkrs5P+dSYYaDAaDweBfgLvGaCWHttaxqHmtswVOCbdkefsx/aesJaXMU9rLLTBK+bGFViq4dws+zSO1cGP5RpIB8/PtmilTkm7XQJ1xNTJcNhtY68gWGL9KJRWMi3J+jPf68ZNQO/Hy8vKJKEGKV16ScEtCIi3uyebd+umiAxQZIaPVeDw2x7XavCCpaUZrQk6W4KyM7cMookGvj/+ucZPR8nPfl0ysxdlSE3SKNbQyHwfnl/Dw8LDevXt3aJO4a0XZPDKOlBuxVm904NeCLQhZCsZGJWsdW75RnIGCNmn8ZLS7GDrLd9iMQePQe9aP10QnxIYpTuH7tnyV1MSi3S++g31euvYtf+VWGEY7GAwGg8ENcdcY7YcPH14tlZQFTHEGZi8yLumftcbkjD94HIKZfBR4SLGE1lqNWXopY5DC92R6yYKmhd+aCiQLjRmwjAkySzjNnQ2gd00TGBNqGcxpm0uxkpeXl0M2Y2LIjQEmq70V2F9zjZt8pj7XGH2tcs7MNmZuwlrHptyMmTEOlRpjs1XbLv7VJEbZvDuxBV5Prmt6nRxkJcxncE+Sxu8CLy3rWIyW7x2fc1sH/DvdF82lxdkZS1/rLJDBdm46huLj7kFhZQSFUdS2MTG+9Pz5HARn49qWYjs70ZjWCIKx2tR2kpnJzEJPOT0C4/h8Nv2Z0HxcqvIeGEY7GAwGg8ENcTdG+/z8vH799ddXi5LSdWsdrUNZOdonxaFo8Tcwa3etI4NgXELbumXJDEGyhsTUaXEx5rxrK8d2WE0KLzEL7aM4SsqaJcgWmzXsrJtx2yZ76MegXNoXX3xxUUqPbdauqavm30lmjrEdMs6dDGBrWM5Yk29DRkdvS5KM43mukSrks9HWYaqfbLFaPSN6JlL8ss2P3hE/D+N6uzgy6zGvyTrW92xK7+dkPHCXlZtihhynH9vXvubPzGHW16b1Ru8E8zAcerb4nqNHI3l7Wu5H83T5cS/lEVAbwL9rnjt6RdJ52KYveQjT+/NSi85/AsNoB4PBYDC4Ie4ao318fHy1vGTNuLUhS4RMg8zCrUh9xxq9Zvk5g2bMV2Nr2cB+bo2fzCJlHXI+ZFC7GBFZFllPqsVkvJCZ0juxf1qUrW7WLfRWCynwWjk0hvfv319Ua2l1cv5ZO8Y1Mcx2P1J8iGPhz8SCuA7IhlojBJ8rt2nZyH5urgeBLSbXOqoSsfaajDdlcfM+c4w+bz4/jMPr78R+nNHuYrRff/31YQ2meKTGyfZ4iU2lGvT0d8rSZ6xS91TXNuWGkO22rGB/v7HCg88A3y3pfNQfaA1f/He+M/w++fxTHXzL70g5KGTivG/UZVjrfK/dO3aPDORhtIPBYDAY3BDzj3YwGAwGgxvirq7j5+fngwCCi3vLdUyXrX6m1HxKIjKdnqITyU3AbejqchclkwGY/JASGZhQ0JIvUrJME2Sn69hdYUxz53HpSvJryLR9uoGSgLc+Y9IDXaCXynd2CS1v3rw5SAfSJb7WsW8v70caN928TSAliYLw/u9ciRoD3aW8tilhq7mZieSqbglbLEnz7yjiwn7LCU2whPNO5T10RTOE4WujNbpIeHh4iDKBfG/48QS6T1PSDBOA6PJOIQ2W6PCaJilWbpPETXwcu8/aGNM7i27lXRiA7nnNrwmnpBAC7zuf0SSQ0iRSUyiIx5lkqMFgMBgM/gW4K6N9eno6BLsdKrqW9ZeEy9fKrJSB78YiHSxsbklXbvFr/DvLeK1PrUNaTK21VUqwoFXWEnhc8pHMjMX/+p4MdK1jIgvZR5Kw47XV+XivU0mQC4s0y1LeECaE+Zx35Uf+d0qGopXO65eSYYhWfuXXj981ZpZK0JpcJNeSz7sV8rOpxI7RUriCDDuVW/BekO0lr4LAhK0kjMDvLuHh4aGK/6/VGSUTKZNgP98VFBTh3Nc6J0Hp3SGBCr5b0vxa2VXyNPA55Nh3ZYVktEzgSwmOLL/ktrxG6b3T1neCxqhrQA8k170f79qy0H8Kw2gHg8FgMLgh7spoUxPsnSA4W0LtivKZys40/mSBM2bFmCalw3ybJiJ/TblFk3FMJRO7NlG+bZKUuxSb5Zh9G7aeIgNN4vWNsSX5Rt0v/dzFSeQN2TFLWqhNkjOxBFr4bAHW7puDVnSSU+T91TWmNyaxE8ZxGbtP4if0erBd4i6+z21amdmuuQTZaCrp4/HE9tjYIYlcpLaLhNYOG5akNpaCziWhF3nUfDuNk+dnPJJNAPwz3m+W7qW1o7HwOUzviSaiw3ckt/f5MHaq8+oa+btRc+Szrc/JdJM3hOVEXGdpfeuakDGnkkuWg768vEx5z2AwGAwGnzvu2ibv+fn5IPHnVhWL1cksZLn4PvpMVpMsP1lTl4QM1uqxq2RFcUwt09Yt/SZ0T0sqFYEzFkTLfSfXxljPNSIHAlnwNVnHbZsUu6N1u5OHVFE5BfRTA/GUXez7uFeF7Ka1L9y1ImySmE38Yq0zWxMbSFa20Jg50TwefnzGX8ke0jZE81r42Mh6dvFRigu0KgFvYk9Pw4cPH+palieNLMdZHtc4mXfKctf59N4h82ITCHnl1jq2amMbu9RAggyWso1qLpDuJa8lczTSu4XeiMbQvcUfhTj0k1nWbFm4Vvey8B3s8+O7kdc+eTmYl/PmzZthtIPBYDAYfO64K6Nd62wBMaa61tHylgUpy+v9+/drrU+bDet4zDCjZFmKf9IyZtx1Z4HrM82DVlRqaN6y/XYNmGmVyQpkRqyfjyyXbId1dD4ezodMIVnbjc03VpyOewk+hx1DvlR37OdtbQvJZARn3U30XEjyhoz10mpPUo+NWXAt0ar38TeZyCTN2OKFfBZS9QCZ2S4uLvC+JflB/96Pt6vp9f2enp4qu/PfmUPC++WMlvkPLR7trfwEvbMYf6bYvt+Xb775Zq11rMRoMfW1usemeUfSNeazpnmQrfq42QaPP5k57Z+1tSqkfAKBHprkOUxs+h4YRjsYDAaDwQ1xN0b78ePH9eeff77GKmQJeiyIWZhklrKeUo1qi0Pob4luJ398E4SnWHU6Li3lVu/ouNQmz8dIliCQAaQMPjJaMrjE8qhaxGOmLFAy2cYMEjy7cacM9fDwcBBo9yxmnrPVDie2eG3TeMclRajEtlqbRP5MY2xMkus9ZWVqW2Zypoz15nXh+VPGOvMVWHNLT4ofh/eLPxNzvkYZSvuyGYIzGt4rNlBIxxejVA2sILbKzN7kfWnN25MCnr5jXXNrz+jftczxHajepGug5z7VwvIzPq86pth5asDSPA+7rGqNrXko/d3A4+7q9/9JDKMdDAaDweCGmH+0g8FgMBjcEHd1Hf/++++vruMUjKb7o/Vn9JRygW6I5pZNbjK6GJgk4q7c1geW7tkkCM5EHSYjpMQalr/QlZZ69DaXKN0mzU2YjsHShzTu5u5L6fYU+tjh5eV/exmzqUCScNN9aJJuSaKQY+AxUtIYS8GYcJLKe5JAxG4cmruPm244JlalUjS6Prkeksg/z9uaTSSXLp+9tpb8OExk4fGT+3a3fh1ffPHFQXjej9fKnuiW9bnq/isxk+U3XDspSU3vGy9d8vM5fv7550/Oq2NQfjCVyVGytIme+Fptbl+u0SQa0pIJFb5L0ohyxXMdsy9ycgPTrcxrset/fI/SnrWG0Q4Gg8FgcFPcjdE+Pz+vP/7449V6k5XhKd6tOFqWEv/2bckSZN0oiUCQVeXbaCws+k7JIkyjb+333MpuDEbYiRGwnIbXgMkkvi2Tn1riSUqOIINgOVNK2Gqt9VjysNZeoCKN5fHx8XBuHzcZJGUNU7kSE4pac4FkobPxBZms5uzzZFkDGYXWyTWND/ispMQSMj56BK5ptNBaHiZ2yvM1oRRnQbqnuia81mmMO5ZLnE6n2DqQ26x1XJNNwN/PrW30XiHjY+mO/67z0vui8pj0PmCCqL/P/Jj83cfKtZS8L3wntbLCnfSrfiphjJ5Cv96aR/MQJY8NEwD5LKZkVnoP3rx5M8lQg8FgMBh87rhrU4HHx8eDhbprIE45xSTDJYv7t99++2SfVsKShB1Y+MxSAEeS/0vnTW24GvulRZuYU2uMnQTvaX22a7CTYmyNt1P50iUJRsarfGzXxGolOpDiggLFTcjidqUzvF5si5bWSZvrrgEB70drgXhN+zeOKbWHbFKSrXQjzYvP5E6Kk+djvJKeDt+HTL15GXyujE8nnE6n9fbt28P12TVSIDNKjJbPH5ktJVp9zlqTTaYztdxrz4dEfJLUbBN7SB4hgvefDFafu3iQrpvmTtEgxltdAES/s4EDc0L8Wmlbekw4vyRS1IRRboVhtIPBYDAY3BCnezW+PZ1O/7PW+u+7nGzwueK/Xl5efuCHs3YGV2DWzuDvIq6dfxJ3+0c7GAwGg8H/R4zreDAYDAaDG2L+0Q4Gg8FgcEPMP9rBYDAYDG6I+Uc7GAwGg8ENMf9oB4PBYDC4IeYf7WAwGAwGN8T8ox0MBoPB4IaYf7SDwWAwGNwQ8492MBgMBoMb4j8x5OMySsn/mgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1527,7 +1496,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZVlVJTrWjcgusiEbEUitJ3ZVWpaKCgWWCmgpWii2lNihlO+VaelT7EWpJwmKinyKDVJig4ipYi/2IGiKiB12ZQfYZPJQMiFJsouI7CLurh97z7jzjjPH3OvceyPuPjjH993v3LOb1e2111ljtm0YBhQKhUKhUFg+tg67AYVCoVAoFPpQP9qFQqFQKGwI6ke7UCgUCoUNQf1oFwqFQqGwIagf7UKhUCgUNgT1o10oFAqFwoZg9ke7tfaU1trQWru9tXYFnTs6nbv2rLVwQ9Fae2xr7drW2hYdf+g0Zk85pKYVDgDTe/GFh1T3MP2t1N9au661diMdu3G6/idFeb8znX+NqIf/ruto41Zr7S9aa19Dxz+1tfbq1trbWmt3t9be1Fr7pdbaJ7hrbM15n45xuHauLYeJqW8vOOAy1XPxfzceUF0XTuU97YDKe59pXfy/gnM3t9Z+4CDqOQi01j66tfaH0zx9S2vtO1prF3Te+5jW2itba7e01u5srb2utfbkg2jX0TWufQCArwdwIA/vXwEeC+AZAL4FwLY7fhOADwfwj4fQpsLB4SkY358XHWIbntFau24Yhvs6rr0LwKe21i4dhuEuO9haew8Aj5nOR3gxgBfSsVs66vs8AA8BcOYHq7X25QC+B+OYPRfACQDvDeATAXwMgN/sKHfT8EwAf9xa++5hGN54QGV+OH3/RQB/CeBad+zeA6rr3qm+//+AynsfjOviK4MyHw/gtgOqZ19orT0c43x8GYCnY2z3cwE8CMAXdNz7CgC/C+ALMY7hZwF4SWvt6DAMP7qftq3zo/0KAF/WWnveMAxv3U+l/5oxDMO9AP7wsNtR2Hi8AsDjAFwD4Ps6rv8tAB8H4DMw/hAbngzgRgBvBnAkuO9fhmHYy3z9GgAvGYbhJB37pWEY/m937LcB/BBLpJaK1toF0zvchWEY/ry19ucAvgLAlxxEG/h5tNbuBfD23ue0Th+GMfrWOVmvhmH4s3NRTye+GcA/APjsYRhOA3hVa20A8MLW2ncMw/A3yb2fA+AUgE8ZhuHu6dgrWmsfAuDzAezrR3udF+Vbps//OXdha+0/TqKB4621E621V7XW/iNd8+LW2j+31j6ktfZ7rbWTrbW/b619cU9j1rm/tfaerbWfmEQV905iu08Lrvvs1trrW2v3tNb+qrX2ya2161tr17trLmytPa+19tdT/25urf1Ka+393DXXYtxNAsD9JrKazu0Sj7fWvra1dl9r7aqgPX/bWnuZ+36stfac1toN0z03tNae3rPgtdYubq19e2vtH6cxuLm19vOttQe5a9Z5bg9vrb12Eh29obX2idP5r2qjOPbO1trLWmsPpPuH1tqzp3b/83T/q1trD6PrWmvtK6ey72ut3dRae35r7bKgvG9prX35NB53tdZ+t7X2AcEYfHobxV0n26ju+dlGYrqp7de11j6rtfZ30zi8rrX2ke6a6zGy049oO+LI66dzD26t/VgbxWn3Tu3+1dbau849ozXxJwB+CcDTW2vHOq6/G8DPYfyR9ngygB8HcGChEVtrjwTwgQBYHH8lgJuje4Zh2I6OuzIf3lp7a2vtF1prFybXfXBr7Zdba7dNc+v3W2sfRdc8orX2c27+vaG19q2ttYvouutba69prT2htfbnbfxx/JLpXPe8A/BSAJ/L5Z8LtNZe2lr7h9bao6e5fzeAZ03nPn9q8y1T+/+0tfY5dP+KeHxaR0611t63tfby6R25obX2Da21lrTlEwD8xvT199y786jp/C7xeGvti6fzj2jjWmXr7VdP55/QWvvLqf4/aq19cFDnk1prfzy987dN4/FuM2N2DMDHAnjp9INt+CkApwF8cnY/gPMxsut76PgdcL+5rbUHtNZe0Fp787RWvLW19oo2oxbCMAzpH0Yx4IBRPPCcqTHvMZ07Op271l3/QRgXiD8F8ESMO/s/mY59sLvuxQDuBPB3GNnCx2F8yQcAH93Rrq77AfwbAG8D8NcYRXYfj1E8tw3gk911Hzcd+yWMYpovAPBPAN4C4Hp33QMA/DBGccdjAHwaRhZzG4AHT9e8+3TNAOAjADwKwKOmcw+djj9l+v5uGCfCl1D/Pmy67jPcWP8egFsx7tr/M0axzT0AvnNmrM4H8FqM4sj/b+rrEwH8EID32+Nz+1uMop9PmNp1D4DvBPArGMWdXzhd9zPUlgEjq/t9AJ8K4EkA3jD160p33bdO1z5/emZfCeD4VNcWlXcjgJdjfJmeCOAGjLvko+66L56ufdH0fJ+Ece7cAOBSd92NAN409f2JAD4JwJ8DuB3A5dM1/x7An2EUST5q+vv307nfAvBGAJ8L4NEA/iuAHwDw0Lk53fs39eNbAHzANHee5s5dB+BGuv7G6fhjp+vffTr+qKms9wZwPYDXBPU8G+PcO/PX0b5nTM9+i47/NoCTAL4WwL/tWXOm74/DKL7/AQBHqH1+7flQjHP8NdOzezyAX8a4Zn2Yu+4zMJKPT8L4Dn8Jxs3ES6kd12NcO27AOJ8fC+CD1pl307UPn67/mIOaA9HzFedeOs3dN039fCyAR7jn9D8wrgcfh/GdO41pbZquuXBqu59j3z5d91cY16KPxagGGTAyU9XOB0zXDwC+CDvvziXT+ZsB/EDwzr4BwDdM9fzodOzbML5/nzmN/xsxrtd+fnwFxjX9hQD+C4DPBvD307XHknY+bKrj04Jz/wTgx2eex4diXDefh1FFdCWALwVwvy8T42b5XwD8N4xrxacD+G4AH5qW3zEhnoKdH+0rpwnwoulc9KP9c3AL3HTsMgDvAPAL7tiLsfoDewHGxfsHO9rVdT+AH8Gog7uK7v8tAH/hvr8W4w97c8fsh/P6pB1HABzDuKh8pTt+7XQvv8APhfvRdm35A7ruuzFuBC6Yvj95uu/RdN3TAdwH4F2TNn7hdO8nJ9es+9we7Y59EHZeLv/SfNc0UXmhfTuAi2lM7gfwzdP3KzEutC+mNn4e92P6/vcAznPHnjgd/0/T90sw7nJfROW95zR2X+GO3TiN+xXumC26n+OOXQ/6kZuOHwfw5XPzdz9/U1u+Zfr/x6dn9IDpe/aj3ab/nzYdfwGA31f9meqJ/t5npn2/YeXS8X8L4H+7ct6Okb08jq57CnbWnM+dntEzxTj4tedVGDdi59P7+XcYxfJRWxvGdezzMC7wV7lz10/HHibqTuedO34exh+5bzxL8+FG5D/aA4CPnyljaxqHHwfwR+64+tHe9QM9jeMbAfzyTD2fMN37kcE59aP9de7Y+Rjfz3swbT6n4585XfvI6fvlGDdwLwjm4CkAX5y08WOmsh4bnHsdgF/reCb/CaP9ks31ewB8Hl3zDwC+dd3nvZYeaRiGd2BkU5/fWvt34rJHA/jVYRhud/fdiXHH+xi69uQwDL/jrrsX44M/I7Jso4X6mb9178c4SX4dwB1UzssBfHBr7bLW2hGMC/PPD9NoTuX9Kcbd8y601j5zEsfcjnECnMD4w6DGZA4vAfAoE4tM7ftsjCzVdE+fgHG3/FrqxyswLgqPSsp/HICbh2H45eSadZ7biWEYXu2+v376fOWwW5z0eowLwUPo/l8fhuGEq+dGjHozM7B5FMaXk62UX4pxvLk9vzUMw/3u+19NnzYPPhzjBuQnaOzePLXx0VTeHwzD4A1iuLwMfwLga1trT22tfWAmLjS01o7QPF/nvXwGxrn3tXMXTnP7OgBPbq2dj1Ha8JKZ214E4BH09+aZe65GYKw2jIZYH4Lx+T0bwF9glFS9vLUWqd2+AuMm8anDMDwjq3ASPT8GwM8C2HbPuGE0enq0u/ayNqqZ/hHj5vB+jD9WDcD7UtE3DsPwF6LauXln/b4f46bx6pk+ZGvdfnByGIaXB/W9X2vtZ1prb8H4Xt2PcfPSu479mv0zza2/Qd87si5MpI5hNLq8AcDfDMPwz+4aW4P+zfT5URjJFL/z/zT98Tt/YGitvT/GefinGKU5H4dRQvCi1toT3aV/AuCLWmtf31r70N73fi/GH8/DuLN/ljh/JcYdBuNmAFfQschS8F6Muzu01h6KcSKd+ZuOdd0/4V0xKv/vp7/nTuevAvAuGH/43haUt8vorrX2BAA/jXH3/jkAHolxIbuF6l0Hv4Dxh9/0jY+b2u0X1HcF8B5BP/7Y9UPhKoximAzrPLfb/Zdhx3qZn4cd53GJDBnfilFVYG0Bt2cYhlOYxOh07zvou210rF7TJ78Sq+P3gVgdu13luY1Tz/N9EsaNztdhZJX/0lr7ppkX8lXUpm/qqMfa9k8YpUlPbWQ/IPASjOL9ZwC4GONcznDTMAyvo785I6YLIayXh2E4PQzDq4dh+J/DMHwsgPfC+GP3jEYupRhVUP8C4Odn6gPGOXEEo/qHn/H/C+AK9wx+FCOL+16MC+ojMIovre0e0TthmJt3HncDkDrtjrVuP1ixI2itXY7xfXg/jBu+j8Q4Dj+Bvnl+etrUe/Dae1CI1pW5tcbe+ddgdT68L/L10srm+QiM84yfO+M7MKqHPmUYhl8bhuGVwzD8D4yqw+91112DcVN8DcYf+Le21p7bEpsNYD3rcQDAMAzHW2vfhpFxPze45B0AHhwcfzDWN+d/C8aJxMfWwa0Y9aDPSeqwXWZkLPQg7HZN+CwA/zAMw1PsQGvtPKz+kHRjGIYTrbVfxCgKfAbG3e4/DcPw++6yWzHuMD9TFHNjUsXbAfyHmWYc5HObw4PEMdtY2EvxYIy7dwBnJBBXYf6lYdw6fT7Fl+eg3J3WxjAMb8P4A/ClkzTqCzC6/dwC4H+J264BcKn7vu4c/+apnm/saN8bW2t/hNF18xe8ZOUAcSviBS9qz1taaz+M0RXsfbGzCQVG3fMPAri+tfYxwzCERmwTbscoyv5+COnBMAzb04L4KRjF6t9j51prH6ia2NOPDlyJ8T1UOIi1TiHqw0dh3CR/6jAMr7OD01r2zgB75z8HoxqDwRsOjzdg/E34AIzudACA1tolGCUJPzRT9wcCeC1JHYFxbn96a+3yYRhunzY9Xwfg61pr74lxbX82RrsPKVnaqwjmBQC+CjsW5R6/C+DxzfmDttYuBfAEjDqibkwM7nWzF+b4TYzi0b8ZdszvV9Baex2Az2itXWsi8tbah2HUe/of7WMYH6jHk7HqLmO77ovQ96PwEgCf11r7eIwGWrwh+k2Mi9jxYRhezzfP4BUAPqu19oRhGH5FXHNgz60Dj2+tXWwi8olRPAqjrgwYReX3Ydwgvcrd9ySMc3bd9rwW4zN4n2EYfmzPrd6Ne7H7h3YFwzC8AcA3ttGjQW6apuv2jOmH7/sBfBn63HO+A6P06fn7qTdBpHJAa+0hwzBEzNU8L/hH+V8wGk79DoDfmX64Q+Y7bXx/D8AHA/izQVujX4DxXb2fjj9FXL9vtNYejJEByud8QGvdOjCPgzPj0EYPh8ef5Xr9ung28WqM0o33Gobhp9a5cRiGk621V2FcM7/N/fh+Fsa5o9ZQw80APqSNPtn+t+KRGNehld+DYRhuAPCc1toXYIZg7elHexiGe1trz8K4C2Z8M0Y5/qtaa8/BuMv7eoyTRInUzya+CeMO59WttedjZKRXYByY9xqGwaJKPQPjj9svttZ+EKPI/FqMD8AvAL+JMUjF8wD8KkZd+JeBRMYYrasB4Ktba7+BUZyUvZSvwriz/hGME/rH6fxPYLQyfFVr7TsxWk6ej9Hy95Mx7phPIsZ1AP47gJ+apCR/hPEH5+MBfPe0CTiXz+1ujH6Lz8W4iD4T4873ecBoOzH18Rtaaycw2iS8P8ZN4mvgdGk9GIbhztba1wL4/kmE/BsYdYzvhlEPev0wDGG0sAR/C+BLWmtPwhgo5y6Mc+WVGJ/V6zEuiJ+Ccb69Ys3y18W3Y7TIfQxG2weJYRh+AaNK5mzh1QD+W2vtqmEYbnXH/7q19kqMz/MGjHYGj8coqv6ZYRhWAngMw3BTa+2xGC3P7YdbMdCvmup+eWvtRzCKtt8FozXvkWEYnjYMwx2ttT/E+F7ehJH9fiF2VDNnA4+cPl+dXnVu8XsYVXIvnNbyyzCulW/F6P1ytvB6jOvp/zO92/cB+Dtv43IQmNaQpwH4ztba1RhtmO7C+Jw/GsBvDMPwc0kR34RxrfnJ1toLsRNc5bphGP7aLmqtfRFGEvsRwzD80XT4+zCuuS+b7r0Xo2X4pwE4swmYiOLPYJT+ncBoHf9+GKVOEvsJaPCjCMQOwzD8b4y74zsB/BjGH5/jAB4zDMNf7qO+PWFaCB6O8UfuWzFaav8vjIvbb7vrfgujePr9MYpEvh7AV2NciO9wRf4QRhHGkzDuuB6PkY36a4DxB/0FGN0s/gCj0UHWzm2MLmvvhtEQ6h/o/P0Yf2R/COPi/OsYfxy+ACOTlFGxpnsfN/Xb7n0BxgXtHdM15/K5vQTjD+/zp7puAfCfJ0NHw9MxLsL/BeNYPm267xMTFiUxDMMLMW5u/h3Gvv06xk3ZUYwGUeviORg3Wj+M8dm+EKOF6J9h3CD9HMZ59OEAPncYhpeJcg4E04/jd53NOtbAyzCOxSfR8adj3JA+C+Mm5qcxjs/TsOo/fgaTWPyxGDdB1zfhZzuMwTkegVE0+r1THd+DUVzpfzA/G6MO8fsxGrrdDOCp/d1bG58E4E/5nT5MTBufz8D4PH4e46b9+zDO27NZ700Yx/qRGJ/Jn2B8Pmejru/FaNH/HzCulb+GkZwN2DEaVPf+Mca156EY14pnYlx7/ztduoWRfTd3709gXGsuw6iz/lmM8/Ia7I5z8mqM4vufxLjGPQHAl05rlURzxtIFQmvt3TGa5T97GIZvPuz2vDOgjUFmnj0Mw2yQnsLmorX2YowuOR972G05TEw69JsAfM0wDD9y2O0pbD4O0q1gozG5jHwXRvHm2zFatX4dRqOAHz7EphUKm4hnAvi71trDZ9RC7+y4BqNXykHZUhT+laN+tHdwGqO18vMxWiifwKj3+a/K+KVQKMQYhuGGNobqPejwrZuGezEGUmLj1UJhTyjxeKFQKBQKG4KNyKxTKBQKhUKhfrQLhUKhUNgY1I92oVAoFAobgkUZoh07dmy4/PLLD6Qsn6eBczbMfe8tdz9t2u+10fm93LOfa/cyFvtpg9lfvPGNb3z7MAy74mxfccUVw0Me8hBsbW3tuW1cj/+fP3vu7T23zj17sUFZ556e+nrblI3ZOmNxkHY3N91008rcufjii3etOzZ3bC4BwJEjR3Z92jk+Hq07/LkfLKWMs4V15vs6c3V7ezv8PHXq1Gw9hhtuuGFl7hwGFvWjffnll+Oaa67ZVxn2Mp1//vlnjh09OnaTX8a57x7qXM8LqTYJ2QsetUHdywsJf0btUAuK+vRlqXFbZyzUtfasonpOnx6jCT760Y9eifh19dVX46d/+qfPPHf7zJ6lvbhWrn3ai+z/v//++8NreRHw4IWAr+H6/T1zi022sVD1R9fN1efHwqD6zsftXt9vPsb18nd/z0H8eF977bUrc8fWHSv/ggsuAABcfPHFZ6655JJLAACXXXYZAODSSy89cy8AHDs2RgW96KKd6Jw2l887bwznzT/s9pn1S72HPe+alZu9c2qdmSszKp/bnNXB74LaHPvrovfFXxu9v/be3nffGHvqxIkx8NrJk2PwyFtuuWXXd1+PPS/Dk5/85DTS4LlCiccLhUKhUNgQLIppHwQiZqgYqNoRrsNIszaoa3qY9ty9PVA7YX+uF37HazvQrPxeZP3mne7cmJ933nln2E0kbVCsgnfuHnNiXMWeszJ6mBV/57np2zw3/j0ifsW0WSoRtU3Vz88vOmb9yNia9V2N+X4xDMOuMYmkGXOMl9voYeXNqW6y91Sx8r2sB1HbVH1cbzZ31DP0dfB7yfMsmwd8DT8n+8zWfl4fTKrimTZL09aVRpxtLKs1hUKhUCgUJN7pmDbrd6NjkdHIHOaY8DqGb9nxXqOVSMe8Dta9x++w1Q60xyZAXZvpzg2mG4xgTNueLe+ofXmsAzP0GJsplhfdO8dW92N01bP7V4Z8vh1zfc7auB8ds7JXMPj+MRu3Z5xJSPaDqNy9vNO979g6TG4/xm3Rc1Psdc62Zh1k6wFLXnqkUHaPsifx3+f069FvgVofloJi2oVCoVAobAjqR7tQKBQKhQ3BO414nA0OvNhFGSHMuVUB824T67h6ZVhXlLaOEVuP4ZtBGb5EYzJnRJKV29N2fj7eHYzRWsORI0dWnnXUJm53BuWSxKKzSFSnDGW47B73LT4fQY1ljxh7P2Jy5Y7WI47vmTv2LDP3uoPEXozusnuUq1ePSyaPU4/Ll1LHZO6CezGAnbs2W6sMPAaZ4R3PHX4HWWwetUGNuf+94Llu7mJLQTHtQqFQKBQ2BO80TFtFLAJ2dup8jdoBZ0zbwDu4yACJsZdoWT3YC4tdh5VH34H+oC5Zm+2zJ6LUXLlbW1vpPJhjvFHwBhV4RQVmiQz25phoD/PpGVPFIjIWrYK3ZEFW+Jh98hhw//l/30Y2LsuY69l2AVNt9W1YxyBVSQF7mLaqNwK7Uak5E0k+5iRu60gNe6ISzrnfZhIyJSnrcfni4z2SxKWhmHahUCgUChuCdxqmbWw6c/VRO13e7Wf38vFIfzQXGtKQBeJQO2AVYi+6N9vN9rBWf0/GIPiajOWqerJgKL0MvrW2IlXx98y5XGWhE/mcYpkZS1fhPqOxmYtt3ePy16OP5/arNmb9slCRqr7MxYj7a8ejULKMddjffsF9UvYC69gcZMfVNZmtBrdNuWZGkh3V1gxz7mE9evd1pHNK+pRJrqyNNkfXCb0cheFdAoppFwqFQqGwIdh4pm1h6CzwBgfpBzTj7LGUVAFZuKyMaWd6T0OvHrzHIljpMKPd7DoBUubqy9rGoU9Vv7wEQUlEIhjLZmYatVPZIyjpBqCTY5hlaZasgHfsXEbERNkKPgsao8K9KrYcsWZOymGfzMR9eT3PcA5q7COJi9J3r2Mlv18oaQK3BdDzl1mzoScpT6YHz5LK+Ht7Qu0q6/UouY1aT9d5Htk4zl2TjRG/N/wuZPfspR/nAsW0C4VCoVDYEGws07adETNsZnT+f7aqzJiVgtKPR7sxFQYvsu5UVrs9mAtsn+mUenfYERTDjhidYoMsqch05xlaa9ja2uqydlWMLdKvqRC43EZjpJnngTFv7mtkcc4snJ+TTz3L9XHbMut41herZ5hZHCv/+R6GohKGROCxPpe6RhX6WElEomtVe6NkIxGz9WCviwj8bDOJhNLZW9s4Ra2/Z86aP3qnuW28jtp49kgUlQTLH7N67fcis/c5l7YSe0Ex7UKhUCgUNgQbx7R5d6+sbHsswBVTzHSMzAyzgPPqM2KDrG+d03FHO3DbvXI/I4vzOT0/M8fMwllFLvP9Y2mA2kF71sYsosfiPdOrGUtQjDdj2sZsbafOu3q2JvfnTO9tn/fcc8+udvRYc/Nnjy+qspDt8Z9l7EUCEs0dxfrVeAI7z8CzPH/N2WLcfv7x87fv9hlJG+asqzNbl96+RTYg7PPOrDzyjph7L9nGAdh5Hlwfs/OsD8qjx8a1Zx3nPmQeI1bPRRddBGDnXYzm99lOTLNXFNMuFAqFQmFDUD/ahUKhUChsCDZCPB65YClxdSY+5GAQXH5kTKKMK1RYvKgtLPqLxIrK4EgZLWUipx5R+1wowB4jIg5ok7l1ZS49/rwXv63jdmbX8z1RkA42umG3EC/qZPEtjynPP59cgMXj9957LwDg7rvvBgCcPHly5R4W4fu++bZlxnI8Biw29e6Q7ArDyFzxVLALQ2b4xu5wfI/vv91v9dr4sarooFxzrB5zJwWACy+8EABw7NgxAMDFF18MYFUU7KFcvFjFkgXZ4cA1hsxdMHN7VJhbXyK1hVIRWhkmeo7cxJQYnMfePwNWRfQYvrFKgA0f2ZDZ/2+fJR4vFAqFQqGwJ2wc0zYoc/8owQEb/KidbbQztZ0eu9jYtcaSIhcc3j2q3V50zxxrWCfsX+TWoHaPytXHt4fd7fxu2F/r6+DdccRquY38jD1DjDAMQxoqds6wLWNsfC+3v8eI0WBzkxlXVLdy48qkTyp4TBYISD1vZvjAfOIdft+iYC7KxYj75M+xpIqZ5UEZpEXsy95vM2BiiUskOeC1iENpGiL3rczlDthZd3x9yg3M+mFt70kYwvVFLl98zvplEqUTJ06sXMttsn6wNCKSOLGUqUcqqJi9tS2SJLFEpJh2oVAoFAqFPWEjmLbf9WW6ZH9ttANVeiFmvn7XqXbJvDP0uzFm2MzKogADKgQks5iIDSrW3aPf5fLYHSraZXKfWeeYucGwG0XEarj9KrBJhuhZqiAgGTNkqPFiPZ4/p+oxZMk/5sKaRtfMuXZFLj/MbHqCBvF4st4zYp88xsa0lI1F1AZm1pFucx121FrDkSNHVuav6bGBVSkPh6+NJBLWb5NEKbsItrnx9/I8MxYbzSXTt3N5xirNhuKSSy45cw8/Z7aPUK6H/n9+zvz8IxshfrdtrJVLXQRlT2Jj5I8pyR6vXVGbKmFIoVAoFAqFPWEjmLbffdtOjHe+zGp6EhwoHWbEzpTlN+tx/D28Y8/0t6x/VGETMytVBu94vZWytZd3mkon3BMWlMfK75J5Z62ssiNdbY/FvIUx5Xnhd9CqbyrMrT+n5g4zHs+0bbztXmYC0bxkCQ7rC7MEByq4ShYAhplbjwU2jzEzR9bVq9Sa/t6eZ6z0vBHL5Xvm4Mcu8yKx56vYf2SZz+8OS5eidtu7o96/SFrHITp5LI1p+/pMz2318TrAz8fPb5s7LBXgPkSSJF4jzRqf13dvL8Pzac6jB9h556zvynI/8jYyeInLElBMu1AoFAqFDcFGMG2/2+Jdtdp9R7t7xSJU2k1/bs4vPPLP5d0x7zzEE5R3AAAgAElEQVQjvbRqI/cr2r3y7ts+M10PsyPF1rJUl0rv7uvjftpYKB1XVI8f4wheLxnpqniHrmwaPJjpzOnRzIcYWJVwRBa/3Eaegzb32VLbswwVWpeff/ZOZKF8GTxXWXKgpCm+DRwml1mpfxbKnoT7v1embTptthCP2q3mSuSvrZJj8Ny0dy9aD3h+sUTCl21zj+eDZ8fcdn4flb2AssfwZSi/7chrxfrDn+ytE/lpc1nKwt63n+tlXX4kabE+K1uYw0Ix7UKhUCgUNgTL2kIQMp2I0ilmrIlZo9IpeUY3pyfKrGuZTXD9UcQwZd3I1qr+Xi5PWX5HkYLUjpN1+H6Xa9eypWeml7SxsJ0uM0lDpFvq0bO21tBaW9GvR+xSWS4bMr2q6cZuu+02AMBdd90FYNW6F9hhPspCN5JiMOtiBhqNMTMpZkvMbqPoZgaef5FlM0dy4/E0pmpj4tvHulqD9c/mg58HkT+7R2TNHtmaKLTWcPTo0dT/V/lY8/Py91i77rzzzl3feyLHWbk8R21sM+kCl6eS3vhr2P6C56p9j3TMzLDZvzmSWNi7oWwprK2RdTyv28rGwl/D3hFWLkuygFV7n4OKtHdQKKZdKBQKhcKGYJFMm9m030kpK2cV5xfQ1quR3hOId9h8DTPGyNJU+RVnzIGlALzbyyJvcT974iKr+tny3O+wuX+ZTy+DJSLs45n5a2cW7MMwYBiGFWYaSWnUWEZja+06fvw4AODWW28FsKrHvf3223ddD+ywiQc84AEAdqxQrc+ZL7mSvEQW58ygOa4yS58iHbqBx4AlJB7cD7astjHzY2JjYNbCNkZZfH4VW129I3uBry/yDVbvu7KtAXYkEiyZ4LjlNm5RG9jmgN9PP7bWFvYLZ2aa2UOwHQZLrCK7GANHi7PzUYpTbotJrtjuxLfVyrv00ksBALfccguAnXlu9fv6OIY567StPdEaOSfhOSwU0y4UCoVCYUNQP9qFQqFQKGwIFikeN7DBE6DdPdigyYs7VPAJA4sRfX0qqAW7EkSiW+XeEonUleuFgcVlkVhMpdOLjJfYlYNFaPYZpdfjBAQsno/Ei3PpG6OACZE7hoIFV+GkFRlYvG/1+HtNfPuOd7wDwE5ISDOKsTZan+04AFx22WUAVgNGWBlRQA5+7mzolLm1cD9YBBglh2DxJ4t5I5EzqxmsPpsPViarA/w5K4MDdHAdvh+Ra5T/HqkMemBzh8ctcjuzdaYnfSOPJYfH5KAdUZvt2ZmKxeqPUmXaOQtTqtwV/fNQ/WHjrigJkMHqM7F/z7NUblT2vtm88GNk91x55ZUAdsTld9xxx642Wjt8X60//E5Ea3GmLl0CimkXCoVCobAhWCTTZvaSGaXwzi1iIsotgw2oIsMgda8d7zHyUmH+ot2mMgwyRK4Q1mc7xy5AUZhH26WqNI52rTHHKCADpyW18bTdMUs/PFhCERmeKGOsCK01nHfeeSsMOwpYocJLGvwztXvM+IXZkZXBbDaCGSSxdMj3L3J58m2KDDE5JCS3weZqlMBDMcUsHCwbDbI7ko0Ru375a7k//B5HhpYGFZbVX7eO8ZAZMXI9kSuekmJE7onWThsHa6d9N0YYvSdsdGf3GPh99W2x8Wd2HAVkUS6X0XMAdq8t/L5z/bZ2RIlc2IX2qquu2tU2NnL0bbJjLH2IxooNN1WCIv/9IA0czwaKaRcKhUKhsCFYJNM2ROErecerdM5RMBCVglMFPwFWd3esJ8p0jNxm3hFGAVIYVj+7nDAT8lAuWBGzZEbHzCdql0qZybpMv4vn8WIdbdS2LKECw5g2lx+54rF7i4H1X8AqwzamYXrpTO/Obm3WD06O4OeqXaP0+NGun6VP6rlH51kKxEwo0kGy3lOF2MxSqrIEg/sbSZJUqNvoea7rprO9vb3iTuXtE/h9s+92TSQVZIbLAVpYQuLHWK03Knxq1EYO6Wv1e2nRXJpQng++Drav4SArmS0Rs1jWOSuJk6/P5o7ZjnCfgNXgNCrVaJTKuccu5jBQTLtQKBQKhQ3Bopl2FKR+LsFFtrtjxsG71+weFeQgYoF8LVuN2r2RVS2zCd75RnpexURY1xzZBigpAwepiSzd53TE/rmp58T1exbIu+EsuIrVkYXl5GQrKtFBdA+XqxLTRDt2A1vV2xz2zEexZmaBEePmMVY2FFFyGxWIJfN04CBIUfIcbodi4T2SK2U1bvCBP+bmiodJaaI5aOD2sgV4tu6oIERcT4/FO3siRO+0gdmlrTfGUH0b+F3gZxqtO3NhWaPxVIl3elL1chlq3fHfOWxuFJTG1x/1WUlBDwvFtAuFQqFQ2BAsmmln/pdK9xol9mAWqdJPRrs6ZVnes/tiJspsybdRpQBV9WdsgHegUZo7lUiey8qYltK7RlaXSlebjSPvjnt12x6RNS/Pq54kMFy+2t1HOkYlRYmsx7mPnF4zC2OrJB1K8uPL5eec2TYoKRcnWojmlpKaZN9Z6sASmB67kgytjak5s3XA6mB7DfZz9wxOzTeuJ7J+ZzbJ4Tizd0Hpa+1er5dmewv1LkSsk+cMs/bItkalSlUeN5HkSrUpmqssDVJheqNwx9zPpWBZrSkUCoVCoSCxaKZtyKIyKRbtd0tqh5vpstW9XH/URmaxrL+JIocpa1G1Q/RtVjp6brvfnatg+FFCCoayTlZ66qwM3uFHz62nTXxPJJGYK0+xAGA1KhfbC0T+8wxlCxCxl7m2Zkk/Mp2ir8Of4znLDCSK2sbnbAzYYjfy0+X6uS+Z1GsdyUgPhmHA9vb2SryDTJqlJEaRHUcWzc7f699Plo6xdCMrk5+htYkTlWRtUutbpENnuwhl/+PvVx4NbLMU9YvfCbX++f9ZWqdSgkbtLz/tQqFQKBQKe0L9aBcKhUKhsCHYCPG4h3JJYeOHSASoDHIyV5k50XMkAoyMG3zbI6MOJaZS4usswL0y0MmM85SINYIa60ztoAzs2MUjEmdzGQrRvZkLmUJP3zlncZTAQSGbf+wOyEEuIpGjyi1vyILscEha5eoThZPk588qgyz3twpykY29Cn17EOLL06dPpy6G7K7H8zkyDMsCFEX3RkGdlAtglL/bYO3nPN3WB0vKEUEZe/F53zY2QOTnH81vNhjmNTOad2o961GX8Jqlfkd8W1hFuRQU0y4UCoVCYUOwKKZtrheZsQrv0Pgz293OMRKuw1+jGKK1NQpYwUH32V0tM7ri4xnUTj5Lzcl95zIyVsu7ZcW0I4MQHkduWxTKUbWR4fuXsTD1DPl7dL+6dp3kApmBngqIYYgYnQpfqkJgRlIafh6qfiAP2hPVl7mn9RiF8rOcY4PrYhiGXUzbEK0DvP5kAXRYojbX50gyxWWxRCQaW3tm9mkGaNEz7U2OkbFXO2eMm93g/LhyuFdmwOpZ+/95rVcGav5/TvCkDIw92IhtKSimXSgUCoXChmBxTPvo0aNndlAcDhHQbCvTR/W4dvE9BuV6wzpMz86UHqonLN6cLilqIzN7Zk8RW1L9YnaUudBxGRnTVm53c2FpPdYJJ8jPKWqnYs0RY5/TwWbMQD27KP0h6/jYNW6dQA/cxihQDpfLrMLmTjQmPN8y1mKYY8sRW+J+qKAx+2Hcw7CamjPqjwqmEs3f7H3gaxlKX6tsHPy1SjoTrQMs1ZyzcYnWVV6vs5S8dg0nCGGXyswmhd/tzC6C9dNcf8aiM2nTYaKYdqFQKBQKG4JFMW1g3H0yI83YktJP+h3hOkzAl8n/R/VEFpJ8r7rG90sFG+jRvfBuUSUo8DvGOf1nFsyF75mzsI/un9Pz+f85aYpCa02237dX9T3SaSvmq8qK6lMMLuoP2z/w8UyKYVC2BpHum9Ofss6UJSL+f2bcijlmUho1nll9PK6980PBgqvsJVwlP6fIMl/ZHKh5GF2jdM4Rq+RAImp9iMrjMVVBn3w5XM/x48cBAJdccslKfQZeP3tCFKs2G6JxjsJa+/oiFq3e+aWgmHahUCgUChuCxTFtYNV/MbKqZD1utlNX1q3rtCXTXar6lDVqlNJuzmozq4+tRrm+iJ0phqCsZKM2cX+yceU+K/1exFQMc/7V/v7MklSx5kgnptjROla26p5oJ690mZk+lBmmYkuZBTC/a5keT4XW7ZGezLGWyBaBkYU63SuMbQPxM+B5xezSfJ/NUttfO8cMs3fMoPzn/XvMvs6coCiyoeAxVM+Wz/t6WLfNjNvXcezYsbCfHJcgm7PKniS6x/psz0eluI2ka5xMZylYVmsKhUKhUChILIppD8OA++67byX6EF/jYTs0vidiL3P+pNG9io0ZoshEzEQV4+nRlawT7SfSP/rjETNRlt+ZLltFLZrT2UX1qu9Rf+b8JX3/zDo00uPzbpvPR/XMMZCoH3N626gM5emgnm1UrjoeeToYOGqWXWvjF1lFsx8uWwRzitiojdm7x8fm9OH7ga83Sgtp48CJdno8XZQEYp33RTFS/yzt2XHiFkPE7JXfuRrbbJ2zfvG7Z4zbX6MszHue5dw8iMpQDD6yuOdkIgcxvw4SxbQLhUKhUNgQ1I92oVAoFAobgsWJx0+fPp2G+1RGLizKiIIOKMOVHrcdRhZchcWCPWELVTCDufzDUfmMnpCebNiXGYJkY+2PR2CRmnI1823icIUK3uUrCiTCahL16d1P2GBlHVclniNzxn++bg42oQJJROWyOFx9Rm1hMXmkmuD3kseI1Q+Ry8+cy2ZkYMXnDlJsub29veJi6tugxt/an7ksqeeeicN5zFgsbt+juWNicQsryqqWKFSweqczFRiXH70//jpgR1RuY2LzbB01iRKDc1s9VPhrVgP5Ywdp6HiQKKZdKBQKhcKGYFFMu7WGra2tNDUasxOVICRzFVA7qGxnpZhAtOtXTNt2e2yw49ur3E4yVsHMh/sZsSVVH7s5ZG4i6jMa5zl2y+3y5fQGXjh9+vTKjjpyF1RJCrh/0TEViCUK92nHeI4wI/BGlJyMQ5Xv3wkuf849KAtrqwJK+PrmXPyYcWdGhqqeyAVnziBtv8iMPtXYGtR8jqDelyigDBug8eeFF1545h5za+J5xxIrf4/NNx53ZUTr587Jkyd3tdGMy8ytK3pveZ1hg75sDZ4b20iiw+uceleywFNLQzHtQqFQKBQ2BIti2sC4W8rcGvx1wA5rzbCua1IWkIM/eRfr/+91F4vq5h0hs1ffb941Kj1htpNn9sT6Sr9rVgFSesZRMdV1AqdEGIYBp06dWtmxZy5rvTYO0TneoTO78f+rPnIQIX+tsSb7NL1gxIT5PVGBUax+K9OXw3OWy4qkNPxM2eXIkNluqLkauRZx2/YatpRhtjScpjKSLsyx/ghZkCOP6P3ktrD0ydd74sQJADsslnXb9owvu+yyM/cY6+bwtba+cCIU775l9VmbLrrool3XWtn++bMUkt0DGVkgGDX2PePI720m2VmabruYdqFQKBQKG4JFMW1v/QvkTvKRU7yVEZXr71WW55EFMLMlZrNs7Ru1rYcRKBbGupiof3O62ax+ZVnOIRGj+ngnym2LgmpkFvRROzzmdFrGmKK2+HbznMkswJndsV5YzQ//P5fPzMuzWGPBxnyMzRhbss9obJUUg9vjmTZLUtgmIJoH/Aw5GAWXndkVcB+iZ6DsSQ7KetzmDffdzxN+vtyWzNNF2dsoS/SoHmavdvyee+45c489V2PDNoesXGPN/h47Z/PKyjBpidVnfTA9ti/fYGNh5UfBdazcHi8VIH4X54JURePI76u1PfOosHvWSQl8LlBMu1AoFAqFDcGimDYw7mp6/BhVAgrWS3nMhS1lVhWdU9brvkxm2Oy3mrFYpYvltvkdKO8E7TuXkTFVFWo104ezFbayls/OHRTTHobd6RUziQvXlekl1S5+HZ0m953TYXoY4zG2xKwpYrWKsTEbzMIyzkmDMt0ih7VV7fBQ1sLRPcz6VZrK/SKzDbDxZ+t+bncUIrQ3jkHEKpUPdDROHHJWhZP1ftPGrK1uO8dMNNKhs3RGJfjx9jcqXemczUB0rEfSYu23frEum/sZlbs0a/Ji2oVCoVAobAgWxbRbazj//PNXfPgyn2ulx/M74bm0kD07N2UBGlkYqihDmZ6Q61EWkRl7UYk8It0SSwq4vGzHq1iZ2kX7+phpZ77dqnwFz7SZqURlq517FNVMRcCb8xAAVmMJGPOIWBtHQFM680gapPzC10FPHAQeW6VrzCRmc1Gn1vGRPijws4ySSHiWyu3ktinmye9JpE+1ecDPgcc2mjsc1c7usXXV67SVfYfB+ssRE4Edv2yrl7/btd6bgPulvAeyOawkS9F8Yx22lc/fI6a9NKtxQzHtQqFQKBQ2BItj2kePHu2KNa10jZH1sEo2z3o13s36c4phZ7tkLo+ZVmYpn+2o+V7l82ifkS+70kMqa8pI3zan68kios3pRaNr5na+wzCklqS8g1Y2DpH+XvnNM+P2ZSmGbZ/m1+rTFF566aUAdqJKXXLJJQB2dNtmvevZEvvnrsNErb3WBmVzEM1VZe+h6oju5Wsyu4KzxbAZURvZa0DNnSh6o/quJGK+Dap8u9ezWLvH5oiSMEbvBMPmrM2LyJ/a/rdr2C87sm1RMcDV+hPFHGCvGB6rKFqg8v6IIhkuTYfNKKZdKBQKhcKGoH60C4VCoVDYECxOPL61tZWKcwwsMstch/h+5aIUXa/EhT2GYVEYPyAWjys3lp4QiJyIhF0xIkM07qtyMYlSjyrxUebOxW4o6hlkYv+5MKbb29tpOs9MlJ2Vu873SCWg1BUm2jRRuD9moSbt08TjJgq3TwC46667dpXP4nKlivD1+SQSwKp6xN+j0pXOJRKJ0KNqOSxxZSRm5YAibEgZuTfNBQOJ1gMOvKNcDLNkLLzuRCJutd6wyFu5kXqwgW1kaKdcSlV46ChYEbeB3+ssmY4KshKt30s1SCumXSgUCoXChmBRTBtYDWVqxwxzwS56ArNkdXN9ynAqY768+50z8onKnTO+8fWyawXv3O18ZGzBhiDMyqPdMu9oVcrLyGhlHaa9TrpDa5dqm293xo6jMqNrFfPJgrrMfQKrYR7tOzMfz4yNqds1xrzNWC0bE5YCKBecyDiPpVxzY6PGx1+zjrHUQSNjsRy4hN+PaL1Rbo0Gfv6ZMRQbokauSpG7a1RWNN+UNIYZaPQucoASdj3zYFc/NujN3BZZ+sOGvhnTngtDG0lmM5fjw0Qx7UKhUCgUNgSLZNpzqRP9ORW0I7snc0lgzLleRDpfvoZTF0ZuXEp33ZMmjl0vlCtbpuvhdhgySQKzDNZ7ZTrtHteizNZAIQt2wXp7bm+kt5sLCpO1cY7ZR8yA2RKzlmjO8pjafOB0nllwEmWrYcjCPHI7VGhK30b+3mO/wvecLQYU6VPZJYlDE2dMWwVR4Xc8CmBjUC6HUfIPW2fUs/T1qOehXLN8WczoVbAdP47qfefQsVHSGyUdVIzb369cNaN1cM5u5bBRTLtQKBQKhQ3Bopn23HXR94yxKf1TpsNgPSBfE+20eefHu/Mo+L6y4owCo/jzvtxsx+nb4f+f09tku0zFypm5+v/nmFYPy1XwOu0eNsa7/khCMJf2NENm9+Db5p8Lh41UyWDY2tuXx/YJWcAK7pcKdhGlqVS2DOqd8Zhj2JEOvTeoz34RPRcOL5vpRA0qjKlB6XX9tYop2j1sze7vYSbfE86Y56oKLuTvYW8VluxEEkX1nio2HUHNBz9XWeqjUnVGa/7SrMYNxbQLhUKhUNgQLIppG8tmf+MolJ3S8Wb+vnyvIdJh8bV8TbYT5B2uShQSsUrlN23oqU8l9IiY9pz1fQ+76dENKz/PzJKaJQgZ0zaWzTv1yBqdx5YZqWcGbHnP1zKi9qtnGKXZ5DkS+fACsb51jjVFVtFzDMSYXI+unvttWEdy1pMk6GyD39eobg5nGo2tsuJWbDaylGYrbjXvfPncNivDjvvQp8ySuY3K8t1jLgVspEPnaxWrjdZIbqtaz309zP45fXJkVxJJRJeAYtqFQqFQKGwIFsW0jSn16BLmLEoj326VMGQdfVqmw+K28K6O2+brYSvhuWD/GQvgNkcMvDd9YyYVUDrnTKet2HhmFd3DtLl/0bWKRai2ATu7bd6RKyvbqF6+h3f5kV5SseaIXdj97C/Lx+++++5d56O2KOvdjGnP+apHvvJZf1R95xqRnzazL363IwvwObuIKGkFR7Pj55Ql2OH3pse6Omq/b1Pk6cCMnhHVx2uj8kRhCYA/xrp5XhOzdc7GlSVKkZV6z1p/GCimXSgUCoXChqB+tAuFQqFQ2BAsSjwO5IEYIuzFDYRFmFm4QSXiZjGfL5MNWdj1IXKF4FzLBg6fuE7oU2U8Fx1T/clycRvUvZEBigpOEoU+ZbF19oyHYcDp06fTa9X9mTGcGvdMFWBQz0GJ6f3/bFyWBdkxNzE2GrO5o8Tm0TkWJ6pENr7PrNLhfPLRezz3bp8ro7Ne2DjNGW559AbpiHLY85zhZ8tGlP5/e+4W3jYLoDRnAKiM2XzbuFwWL0fGcyx6ZpF3ZMTGmAu9648pcXhm4Lc0sbihmHahUCgUChuCxTHtYRjSUJq8a+wxhpnb1fcE8ZhjHv4eZqdKGuB3kbzTZQOojMVyPYpFRwZ2fC2HwsxcpxjrMFZlkOaZQ4+7G5/PXNXY2EaxCo85FzVmk5FBi31ayElms1G4V+UuGLkCKkZj31W9wKqxmnIXjMBsiA2usoA5BhVMY2lMmw2ZsveD75kLt5nNVRV209y2sqAu/C4b/PrE57gMlg5GRmX8nedQJuHja5SLo79GrcUR01aujFnAIX7n1RgdFoppFwqFQqGwIVjUFsL0koaM+aideaSbUQx6zmUpqlc560c67TlWkbml8U6UHf4zqJ2oHxPFrJVbhd+dZ0k+1PE5vTfXG107F1iih4lH7c0Ytwpyw2DmDWi3vSwYDjNeJQmJ5hu32diD0nn7a/bCbHnuqHSr/pkq90qWEkWShCWA3fOszzbG0TmDsj2xvvrQtKwXtmRA/Awz1mzPliV/2bo6N2eje1nqkOmhDSq0aib1VHMnS4jD6zVLluwzShjSY0tzGCimXSgUCoXChmBRTNvCmPIuzO9uVQjALECKCoDBOyq2egV2dEe8i1PWtv5apfeO2PIc+2OmGllms842s/w1qHSaaqcdtVnptnrq5RSUUUAW+4zC2XqcPn16hZFG9hBzEoJMB8vXqIAZ2b3GmiJ9mt1z8uTJXeUryUtUvmLpmW3DOuB+2DuiUoRG48nsmaVBEfNZEmxNUqFKgZ3xyay3gZ1xilgzv/e94T/9NSzVioIHKYbLErAeCSaPiQ+byu8eX8vraST1Mii7j0hyxe+a2XlE85+lHCpp02GhmHahUCgUChuCRTFtYNyJKT0roK0OmU1ElpiKETLTjvSqXJZi3FEbeKfb43+udvA9/syGbIef+ZlHiPThBhUOtOca9k/vSTKi2nfq1KkVH/jI73/OajzT+fXYP3D7I8YJxMzgoosuArCj32SmEOnB+VlyyE2WvETW4/xM2XuhJyStGpuILanPLGHIEsESj8gKWfl28/gZM/f/ZyzZlwWszm8V+tSvHVYPPzu2oYnqV2Fa2Uo+S6LCZXGY0Sjkqgq9y+9KdGwvXhJLm4vFtAuFQqFQ2BAskmmzTtvrFNjatYe1Mli3qSyZuW5/L7ObSAfH9ahg/BHmfKEjv3AV2a1H/8Xl8+4yCsKv2hTpq1hnnVmNG9ax3jSmzRaz6zDtiBkqXR9/z3yumWnxs438So1xK28F3weVFIH9ZiP7C2YtyiYg8uqI5n7Uz+zd2HSmzYgs3fl9sD6arjd6X0zSYp92Ld8TMVG2xI8s8g3Kstzuyepj32oVNTACzxm2EbB7vT3TnI81+2L7/9lavAfK9uWwUUy7UCgUCoUNwaKYdmsNR44ckTtTYGc3xXqTHovliA35e+faBuiIPdEOdI7RZUxb6b8jq2hmcoppR+Vwm3kcIxsBpe/Mopux1MR28MywI6v4HgvnYRhw3333pdboam4oy3l/v+3Y56zHe6QnmUWuioDFujh/D+vtlG1DlGrQmJyVa+k717F5UKw5aquKHbCOjnHJiCQgvGbNRUbzsDliz8l00Gz17etTEfIySRJfw0w7i8DI85r7EdkkqchoKkWs7w/HY1eMOzrXs5ZkkrcloJh2oVAoFAobgvrRLhQKhUJhQ7Ao8TgwiiRUQgdgJ1ygEq9E9yhDDBVWMHKnYRFQZlTWm9QkCgAzZ8wRic3nQgD2qAxUMBfVjqhNPDbeyGUumErmHsQGNaof99xzz0ownMjNbc7ILwpFmrVTQc1R63vkTsWqDu5zpupQbcqev3JD4nmRBUjhpDYqkYM/xmOTuWxuKtiNidc1NrYy40NAh+ZkkXcWMrTHxXFOtN2zDigXv2hNY7ULh3/l+REZlfHYqOOqnDn0uLAeJpbVmkKhUCgUChKLYtpmiJbtbIxJsel+Zjijdo/8mblrMIvIgmsoYwfFLqJ2zxmXRQZWmUGVv87/r9hgliiA28RBaaIgNWx8xUw7qoeZwtxu+dSpU2k4WwYzwayv7LbHxyOjq97EMVEblfFYxCbY2EaVH7l8KUMkJYXy/6swqRlbVglC9uPCuXSwK54KSpI9Uwu7ydIZL82aS6ARrY0sJVPuqpGRIxvDsatu9vyZAXOAFDZI89dyG9nVKxrHvYTrVQFtDhvFtAuFQqFQ2BAsjmkfPXr0DJuOdqDm+pDph/1xK9cf4++ZrlQl4zD0hLPkNil2G5WvAllEekLeSfNOPhuTudCkEQOa02VHQWpUsoQeZHrOYRhSSYKvW7HxjO3PJVQxZIk85ur397NbCzMRz0A4QIpB2QRE80AxkchNLGq3/55JEJT9SE8AIOX+uBcWdRiwdhprtneCw44CO+Qh7toAACAASURBVOPOiS1YYuVDnxp4fckCirC0jKHcOf3//P6zi1sEu8ZcDK2fpuO2zyyM6Rxr9+fWQSb9WwKKaRcKhUKhsCFYHNO+4IILVhhJFA5TWRRHFpOK4TATYavYCCpko9+Nze3UIitl1TYuI9IXKinDOmFMlaVpxLBUEoNMp83XKmts38Z1Qlq2NqZ1ZR1WlsKU0TNOc6lMVds8VCCb6BqlP/bzXrFWpduO6pu7J/J0UHOlR1c/x7SjZ8A61E0LyMLtZeYYJbpgC3Rj1vaO+Xt43VFzJrJpUMGD7HjkNcPW8MpLJ5Ik2TFj2ta/EydOANhh2pn1OL/r2bsxB98vZceyFBTTLhQKhUJhQ7A4ph3t5HwSdYPyl85Yy1wyjIxhKUtj33bVRpVII/JJVuWuE3qVLT+j3eZceRkDVmyTmVC0e1UhAqMx4ecyZzfgmXakV1OWsetA2Q1EbeR6VHjP7Fn2+O8racycBMaDWXjmN81SLvXZw7QVW8/8gTnVaCaxWBpL8rA5au03ex1gNWWqYr6Z3YgKFZuxT+XVYYi8CJQfeGYVz2FzbSyMYdvxKIS1mm9el70f8DpWOu1CoVAoFAp7wuKY9tGjR1MGovwUe6yrfT18DZDrspWFdsQqo35F90T9U+d6mJb6Hukg5xgOtyOSgPB3pev255S/c5QcRkUSy6B8Vf3/zCYySYzyde+J/qQsy/l5ZJb5ykrdMyzFQPldiKKszUUiy3zk59KGrmMbwvVF/eMxyKRsdq3pgJcW1QrYYZXMooHVucmJazjyn/+/5z0xqAh4XG9mBxF5Jfjj/lmz94NZjSvviEgfrjwQ9uNFEK1VhqVF51veTC4UCoVCoRCifrQLhUKhUNgQLEo8DsTJGrx4gt2K2BjFRE6RyJHFoOq7FzmpEJSZ8cuc8VBktDQn+usJK8rIDI9625wZgamA+j2hT/narP091wJjP1k06wNLsEqFRYOR2kSJj7mPkXtIb1KbKJiLUk+YWDQSPbMIdZ1kCUrUGc0dFSazJ2AKj6NKWJKJK/l5sVogKmeJ4nGDzVETFQOr80oZwHpRuBpTHqcooJFSV825SQJ6fkX5re0Z2Tptfbfv7P4WqTnnwueuYzgWqfKUK9tSsNyZXCgUCoVCYRcWxbTN5UsFPQFWGQfv6qMd9VwwDTbUiZKN8DW8E46CnXDowczNSrlYKMOwiJ3NBWjpgdqd97SV2xNBJROInlvW57n229j71H/GStiFMDKCU+WqXX1kiKiC9fSEzc0CVPj6/T38XY1bxF6UIVLk1qOuUcFdVLujtmXzTRm42bWRAdY6YYYPC+z+BOz0VaWwjaQLBnZ3ZAmSZ9q8bs6NV+TSyN/ZQNFLEBTTZgO0jOWqwD89UgHVHz8mSrq6FCx3JhcKhUKhUNiFRTFtg+10It0L70Bth5bdo1wSDGrH6O9RoRkz5ms7TRWAoydhCEsbsvoYKjRlhDm2lgW76Al+0suao7SBqo2MYRi6goLws+xxa5lDJuFhV6usjWp8lJuL/39unnNZvjzFrKO5o66Z+/RQiWMypqfShkb3rBNmdinw9hdKwtczTsrFNBtTFSCJEa0hKmEHM27fR2PfbHvCuuwo2FLWFr5HSXbYtTCTPiwNy2xVoVAoFAqFFSyOaW9tbc1aUgM7uyHTT7IzfsbK1DURi+FzGXvgtpk0gPU0kYXsOsk9fBnRMdW2LG0kB60xRBbVvWH+ouMqSE20a2ZPgQzDMIThEiPJC1s/96Tiy/TCvh/RsXXm2Zw0KEqUo8KH8j0R8+Gx6EkyocJIzvXBQ0mfeuwX1Dz3c5fn6EGzpr3oT9cBh+xUYZsjyRSvb9ncVQFqeK2K3k8rl9vKVuPeepytxdU9UZAdpbteJ6gKz53Iu4DLW1oo3GLahUKhUChsCBbFtM163H/3n8DOjogtJNkqObpHJYNXAfaBPh0ff+e2sFWl1eetmJXvuGLeGRvs2WGr8lUIv0zfq/RGWVIL/oz6yX7VmdX1MAyhv2jEKph5sp4wGieFzPNgTj8d6aCV7USWmlMlTGAmnIV2Vew8a6PSoWcslP1ie6Q0/G7M+W37/9dh2D1Ww2z/cLYti61vtnZlHiisn+X1J3qPVKpcZpdZ8hfWQ3NaTb/umi6bddicIKUnfoPyqMiYMb/jkZ/2uXq2e0Ux7UKhUCgUNgSLYtrAuBPqSajAOyXbRWa7Y77XPo2hZIk15ixmI90LMxLezUaMbi8+0HOW3tE9cztq5QPJ7Qb0jrSnrT3+2pGFZ4TIwjmzh1DSk6g/PZbrCtzXdSzBDVmUs162HJWtrMYzP+1sbkTf/TO199SeJSdRicrgNvWw6CwRDaO1htbaSpt6nqkh0o0eVKpID+uH9+k2cKQ/myPGfE2y598jpftX8RQi2wa711g0M3DPtDkFJ+vDuV2RpIzL5/NROUqiGDFtbsvSrMiX1ZpCoVAoFAoS9aNdKBQKhcKGYFHi8a2tLZx//vkriQ8ic3wTe9g1JhpShjzAjnhIif6sLC8SinIQR/dkhmjsthGJx1mkpUQykWhQiX4yMeVcwBcV3CE6xvX3uMMocWhkENIbIOPIkSOpemEuCUIkCp7LrZsZMTL4mkhcza4vygAtcm/j+avyW/cYWjKigEPK0I7nUiaOnTPW8//PJbWJ2tubMMS7mvYEMFKuQ5FxqTKAPQh4MTknS2LxseUWj1woWbSs1qq9uH75e1g8rkTR0TuaufhF3z24nh43z6WJxQ3LbFWhUCgUCoUVLIppt9Zw/vnnr+yy/A5KuXrZTsp2kVk6QjYMY+bgd2XMWtgYJtqBct2KGUSuF3NsuYcFKEOdyJ2Od6DKaKoHPcya28+GIJ6VrWMQYsZEXE4kkWDm1tNXtSPn75GRF5fL8zoyKjN21sO0VfCUOeMyf26d0I2KdSpjpmiuzgURikK7KlefSEqzTohdO59doyQsLE3wTJvbYM/0bLkS8bgcP35813djt1FyDLVW8BoZzR0ui/sZMe05iU7m+jXntpWlVo7miip/qVh26wqFQqFQKJzBopg2MO6AmMX6XZkKAsDuANlOfc6dKgsvySwmc4nhhCHMZiI3Ktbb9TBtdS5j7YqtGObcqyJkrlNz+sgsyEEvPFuKdNvZ2Kn61HNR4R0jVyWbB0pvG+ntWMKjwo1m1yhmOhekJmprlnpUuStGZfE5HsceSVKvDYc6Fl3j152or8YQ+b0wZp25G3G759jm2UIUVlTBxoIDsmRBlnjd3g8iKataG/k3wT9zdilUEs29uHkeFoppFwqFQqGwIWhLCtXWWrsFwJsOux2FxeM9hmF4oD9Qc6fQiZo7hb1iZe4cBhb1o10oFAqFQkGjxOOFQqFQKGwI6ke7UCgUCoUNQf1oFwqFQqGwIagf7UKhUCgUNgSL8tO+9NJLh6uuuiqNajXnxxxBRaRSx/dSVs+1fPyg/QDX8T+eqzs7P+c7nvnaKv/IzGeZo4G9/vWvfztbcR47dmy4/PLL0z7tBT19i75nZa1T717uXQp6YtD3vJtzqVN74lQbbrrpppW5c8UVVwxXX3110pNVnI3nsc47d7awF8Pk/URNPIj61lm35z4BHYPjzW9+88rcOQws6kf7gQ98IJ71rGfhyiuvBABcdtllAIBLLrnkzDUXXXQRAODCCy8EsBrUIHoIHBqSA9mrcI8eKmB+lBOZz6lFJwsAY+DALHy9h/ohzEICqgAVWeAK3jhxTnMLOGEJCvwxe2723e7hXLzATrCQu+66a9fnwx72sBX3nMsvvxzXXHPNSv/2C+4T5/bOwmXOLbRRwJm5gCV8L7AaAEYFMMkCSRh6kr+oRbNnozEXPIY//f+WHIOTTdiz6UnMce21167MnYc85CG47rrr5Lj5//kch2qNxmku6BHXEV3TM7a9m/YsjO06hIafoTqfBS3i71xmdq/KHx/1z45xwpIo5/fJkycB7Mw3u+apT33qItwCSzxeKBQKhcKGYFFM2xKG2M6Z2Q2ww3w4dB3v3CKmzTuxKFUhlzW3A53rj4dKf5mVzyw5q593p5nkgKEYY8QG58YkYhKcrtRgz9EYuO2AfTkmXfHnzjVUnzlpwTrzo0cCwmDphj+WseO5slWo0L2AxygK7arq34uIuCcs5xxOnz69Mo7+veFnNZc61/+v3qmMefeMxxx6WHMv0+Z2+WvUfMskO+oclxkl4FHpcqNnopLn9Eghs3Skh4li2oVCoVAobAgWxbSBkUGwIZpPd6eSsxuYRfv/OWC+0ptkOm2FTOejdndZ4gbe7avECln59t36H+lBDXPB+H19LOXgxAgRO7dnqMbRJCiRlIN1l+cS/KysTzymEQtQczQ7z0x6LqWpP8Zt7kng0JtEpUcq1PMecZ9Z+nVQ7946GIYBp06dOjMHs3ozPbS6Vn32PFNlp9DzXDLpo7qHj69jYLmO3l2xcl67fBkqbWfEyg1ZIin/PbPZyNbpw0Ax7UKhUCgUNgT1o10oFAqFwoZgUeLx1tqunMjsXgNocZSJMKKcsWbAZJ8sHs9csZSxRa/RT4Qe8bgSi0UifRaHcfnRPUp0qgzSvJiKnwu7RXEdwLxKIhK1W9vMdYzFl+cC/IyUG1UkImRjGyU+9GJRNmiza2xcsrzW6nsmwp0Tf0ai1l4Xnx4jHzYUioxDz7Yh0DAM2N7e7hKLqvGKjMmUqoNVTnzen5szEIzWAWu3EhtHxnIGJVLvcRfld6PHmE71J1KXqDnSM8/UOxKtxXsxOj6XKKZdKBQKhcKGYFFMG9hh20AcEc3AOyRzjjc2bY7x/n+7xj6VQ3+0s1c73izIiXL1yFy+5nankaEdH+PPnqAD9t12/bz798/AzrFrnn1y8Bp/D7NyduvLDKzY4O1cgqUWhjkXIH9OsfOIxZp0gQ3gIhagpEB8PmIdal7z+xXNNxUopcdVRkmBeiRJBw2/5vh61mFa2XvCkqket8o5pp0ZatkxxUg9eozHojZnbVwn4NCc0Vzk8mXjyusb3xuV39tff+/SGHcx7UKhUCgUNgSLY9pA7m7EbkzG6iwM5okTJ3Z9Ajth6Zhp2728Y4v0GwqZexOzR2OZ0Q6VXYa479w26280FipEX+QGp/qnWAKwwwItIAqHJo3sCvhebnMkVVGMZEmIGAHDzs3pNv3/Nj7sCpexJRWIJwviwS4xKvSu758KPar0kZneVUl8on6eTdeb6F2MpBkqJGy2TvB48FyPAuYYlKtnJulj3XLPHFU2Onw8cv1UTDvql7IB4uceuamyJEd9z56Fqn9pAVQyLG8VLBQKhUKhEGKRTNsQ7YqYxZm++vjx4wB2GLZ999fYPcy42arcM8Q5ps0sGthhnhZ+03bWHCTE7+7mrHiZNXumzf2wcz0JFBSY2fsQojaeHF702LFjAFYlGMDOjpl12sryHFieLmldqIAYhp5gFypMahYMQrWD7RWiNnKZNodMWuWPsURHhfqMmP1cfz3OBQvKwvQCWvJliGxNuP9K8hZZjxvWCWOqJB09ti3cD9WObK5x+3sC5qjPSF/NHkI87yKpEB9jiUEmDTLsJ5Ts2UAx7UKhUCgUNgSLY9rDMKxYCUfWtUqXbekbvfU4M2il294LM2XrXn9M7QDZUttfo3bLzG58W62v9nmuwu7xDtSzDAUbJ2PWzDKMvfvy1wmpeFiImIhiJcq/1UNZCTMD9ucy/aOvLwu1auWrWAb+f2YvKrytf5/53VZML2KD+3lPM7TWzvxFbfH/swRqnVCxPYlC+B6D0hNn3hZzbY+gdNlKf+3bNGfbkLWF2bM944g1s3cK6/CjvjN63kHu31KwrNYUCoVCoVCQWBzT3traSnfjvOs2ps1WyKZfje5htqr8m4HVXSnvsE0vFbEJ5eucWVXyro53pJkl+Nlg2JdeeimA3ePJluWsl850mTb2d9xxx657I72ese4lWHbORYrLmDZbDbO/rgfrO5WlcaaXVG3M0noyo2aJiK+D7RNU23t0w8xUOYaCv5/XhYNi3BYRLYPSo7JEIvI8UZK3zOeambSaD1HaYn6neIzXkQpkvuQ8v5Q3jrcRUtJOlnqaDUXEtLn9LA3I1mKViCeyaZhL+HNYKKZdKBQKhcKGoH60C4VCoVDYECxKPN5a25VPO0pWEblWADtuVpG4QyUnYLEUnwdWjcdMjGNilx5XFWtLlviC65kLeuLHhAOVrCMmt/KsbSaSvvjiiwHsiMW9eFyJ/xlZIAZrs3If8/X0uJucLSgxrjKCyQzRWKTKoVyB1RCxNldYHOrHlkWnrLrhvkSibrvX5gH3x94v3w81Z7meSNStgpRYOyKRqpVzySWXANgxOo2C+OwFHDTGl8si37lATf4Yi8dVMKdMBcEBm6K5Y//zOsNudn7uzOX27kn+wQGvWP3o3VPtf3vvTQzObqpRKGQGr/WR4SO/RzaP1dhEfSxDtEKhUCgUCnvC4pj20aNHUyMBDuDgXYT8cb+DUmyYd2ZRuD/eDbNbVbTD5rZYuba7M9bqd3S2O1XuNMp4hcvxbbJdq533bMl2oMZaLrvssl3fbVx5h+rrVgY2UZADNqhhIw9rq6/HxpTZ+dkCs1x/jOekktp48NzhspgZAasMgI39InfB3hSgEVviZ2nnTNJi8KyTnxm752SGb3ZOSWuiBCXMwphx2zvpGd268GuD1e0DyjB75PeeXZV8X9RnD5s02ByxOcOM0Z9TCX0M/nko41HFziMpJBuiKTbtj5mL7n6emQqJG0m7WArAkoss7e/SXE2LaRcKhUKhsCFYFNMGxp1eliDCdj28Q7SdVBR0QLk+KD2h16va7pGZlO0UI30U78ysrcawrT2eVXIiDWuDCoUZhUDlsJLGlq2eSC99xRVXAACuuuqqXdewjjsKHsOMgVmI30UrRscJKzyjY4Z6tnTa1uds1806RqVn98+e3VesHxzeNnKjUSEh7VlGrjDWFg6TG7kHGawcK5frjRikcvVRaUT9u6hc2Hh8/bjaPTaf7JPTmHpErmMKwzDg1KlTZ67lcMDATlhkli4xk/NQ7nQqTaQHn+sJMKSSAKkQnv4e5RrF4xfNOwPP9ygQVGQvsC7YZoPnbORqyr8BLCWK3MSW5uplKKZdKBQKhcKGYHFM2+8SmWkBqztyZW2b6SjsHmbJUXAV222zHi/Tr84FMTBmEAWAMQbP+lyWEkQBYHhsOHFJZGlqukvTD/KOm3fivi2sM7P6bMy8JEEll2AdWqQzO1s7XnsO3OesPm43Sz48i2FGwONkiKQ0ylrd2hoFFmH2zxKdiNmrtI0qmIi/1p6psVBmT1yvL0+F48ykDyyhsLbbfPP1WFvW8TxgFujHmPvGzDdLI6y8OVjKkN2r7Eh8v3gOss48swBX55ilR+sOSyh6LMB5DV4HnLQlewbZGPs2ZuFZz1VY6F4U0y4UCoVCYUOwOKYd6U6jXbJK6Rj539n9xqxsV2V+nsZu+ROYD7cX7cKYhVmbbMfJlovAqoUs+zgyw/d6d97JKl1P5C9r+qe3v/3tu65h5uN3oqwjN5bO0o0oTSEzuMz/mK2SD8ofl623rd2RTpAt4dnjgNsW+aazVINjCvhxYlbE74A9Lz8WPJ+sDH4XopC7KokEW/dH4TmtPPM8YJ/bSH9pz9RYs51jlhRZOPN3e5+tvmidsGvnQp5ub29Li3Bg1XbGruVxiiQSc6lyI4ttfu78HFgC6PvK5RpYQubL5/eQ2xRZZquw0CxV89hLLAmG0rMry3dgPvxw5OliKD/tQqFQKBQKe8LimHZr7YwvH+/oAc0alM+1h+38br/9dgDArbfeuuvTGLZnsaxb5uQjBr8bY2tkjmJkDMFbvTKDsjEwaQAzbb/bZN2RMTmWLPjdpPXRjlk9toNnnZOXPlgSEWNYZoH+oAc9CMAO8478Ja1cZliRhTPrdf1zUchYs4GZL1uuR8/f2sV6VbvWPiMLfbbQtnHj6FrAznNnaY1dE6VftXIVs+cIWX7ust80p7Hl+e/rsfIuv/xyADvvEbMor8M3/bf1z8aL55+fB7wORIkhuF9sD5NZXVvCEH7H/TvNUgy2g4n8y/kdY7bHdgp+nVN2KtxnXx9bQvNaGPltW7k8VxjcB2BVomL95fU7GntbQ7gf3G+/zkXpOj0iaYeVq+w6Iv9zfi7FtAuFQqFQKOwJi2Pap0+fPrOjsl1fpm9gpmCI2Mstt9wCALjtttt2lWUs19iksQFft7FJ27kZM7Bdq7EnXy77SfPON2IGzL74u4or7dvG0ZMypsoMi3fFb3vb2wDEu03bLb/pTW8CsMO03vu93xvADgPz5fLulS2Ro5ja60QkyiKUGVgSwTpRf69dY1KEK6+8EsDO87cxZ+kKsDMnbL5Zn60sk/j4ecAW7Mzg7NM/f6W75PMRG+R7lN95VJ+No33amBhsrCwNK7AzPtb3q6++GsDOu/KWt7xlpY2KdarvHj3pOy3nwRyr9WBvEpZQeNgzfZd3eZcz9QE774vNsSgaIPuis3TIr1V8D+ujI4ZqdTILZ0lPpOdnvTD7xrOO3YOZtvUjit5oYJsJW1+iyGsG9jDgtTiSxCg2vhQU0y4UCoVCYUNQP9qFQqFQKGwIFiUeH4YB999//0pQdy+a4+AWbNxh4ikTvwHAnXfeCQB4xzvecaYeYFXUbmIRL9Zlow4TAbLTvjfgMFEfp7W0/kSiNBX0XgX68KJAFm1ZfTZubFwGrIq2VGAWNsrw15qozvph43zzzTev3GNt4xSMVlYUTpDVFz1g4y8PDjbDAWQiw0fro6lHWKxn88z64VUQbJjFxjycBtO3gUN1ssjTix6V0RiLiyMjTVa7sBg0S7/Kc5XbzkaUvs9cvqkSbA7Zp++73csGR/xeefQEV7FERXa/1ROFbrXny2LjTCxu64mFCubxMfiwqWxUau+0lWXj498XdtdU4xWpR5RahNfKaA3h75zMxNdnz8rGgueMja+pKv28Y1WHjYXNHVOtRGpAnqMquI9v92GmBM5QTLtQKBQKhQ3BIpm2IXI/sF2QSnfHhiHAagINZlic0i5ie7bzs3LtGmtjFAwiChji6412hFlQE4+InbEBjbWDA4N4qOAhvMOP0ojaWNi1xkKNnUZBSlQSi2jHywZUPTteex6RYR0byqgEB57FshEjBz+xvnMCGWDnOdt42PwzhhU9/8zVCoiTzVgbDRw8hl0C/Txg9mJjbGVG7JyN5dhliQ3TvLTI5oixJOunMUczSPJjE7n/RP2Nzs/d6/vExp1+HrABoHKr8mWY66P1md0GH/CABwBYTcvr/7f5bGySQwVHLpLWBruXDV+jULsZ8wRWjQF93XYtp3Pld933nVMr2zpj76LNyygts80dNlS28Y7SyBp43eHUzr4/kWHqElBMu1AoFAqFDcGimDbDdluR+T+zPdY1+Z2i7cxYp2PsyHZbxi4iNxFmPrxDjMKmsvsRhx70uh7b+amgIMzw/L0qAQqf9ztQlfTe7rXx5N00sBrkwp6P7XSjRBGsY2Y3FA4T6cuPAsowzG3HyjOW5PWEBn4uHGDB38O6Nvtu7InZpg+uwgFEDCpgjm+TgfWP7Mbnr2EGzP2LJC4sfWG9aJQIZS7pi71vzJp8OXavSTCMYdun75/NN5ZMsF2LH2d7l1nyorC9vZ1Kt6wPzL7seURBOli3y8cf+MAH7mpblPaSEyDxGhLZjSgXU5ai+XtYOsjrQxRwRiXAydJ5GjgAC0vneLyB1efM7qLR+8bzl8czckvjZ1kJQwqFQqFQKOwJi2LaW1tbuOiii1Lndg5qwMyAraD9/xwEgPWHzHaB1V0W68Wj5B9zAUQiXY9BWTmqdHRROdY/DjoR1cf6T9Vvv3vm4C0cljViLEovxFbRnk2tE7h/GAacPn36zDON6uMxZOlJZO3K7Tf2qAJxRBIJtuJlZuVZoDqnkpv49ivpDDMf/53HnXWaWTpHlZaUvRciBsmfbFHv+6KkATyvTUccnZvTaQ/DINP+AquM1D5Z6uClCtxHnutqrKN7VcKiaB3g+cysPQq1y3NIWZN7sP0NS7eid5GljNYfltpZW6N7lYdFpFvnNYOfcRTAqUdScJgopl0oFAqFwoZgUUy7tYYLL7wwTWquUgnOfQdWd+zszxgxUuWHmVmPc3m2IzR9HYc59fUoRsBt921UFuY8jpnenXexvEP1O15mgbZbZVuALM0qty3qt0p/mIF15X5s2Fecy7ddvm83zwm2OlW+0L5vKnxtlLKRkzAwe+Wws9xHQDM89okHVvWt/H5FNiI8n1RYUUOUOMZgbVGW7r4e1c9IIsdWwRlbGoYBp06dWnmXI0kRMzSOueDHiW0Wor5F/fL1sd88S4Gy+aZ02pEXyRzDjsJFs0SRbQ9YPw1oKQnbRURjEtkNeEQJPrhcfo8jG5Ge0LeHiWLahUKhUChsCBbHtI8cObJiDevBOjAV1N3vnJh92aeyso0YqdKZZ1FzrB9mKWmfpnuLdLQqUhmPRdRGvpf90COfTh4b3slH0bVUmlK2+Ix8ybkM3vVnurMe8LWR7pf1aspS17ePd+acWCFqP+vQeZwiKQ7PTWOM7OHgmSNLFXislVTF94st9e17ZOHODNsQRTDk9ii/czuu2Ki/hp9blCSGvSHmkj7Y2gPEa4qS/vFnJFVgxqmiH0ZrCLefbSh8LAuOiMgSqqhfyj+b53V0XCUB4tgO/h622YjsR1Rbud45tu6P8XuspGC+bZnt0WFiWa0pFAqFQqEgUT/ahUKhUChsCBYlHgdG0QeLMSP3jyisnr8nc9thow4Wh3iwOIyDDWRuDQZO2MFhU/09SizO4qJIbMT3qNCh3F5/D4sVMzElPycW/0VibRXMJROH2XhFYT/n2ubL44QQHMgmMoJR461Em5HrCBsrKbWM/1+FhowCcSj1CCNT4fB7xWJDb5yj3AHtOKuOov7xvax2itRb/J3VD5FoEVLyJwAAIABJREFUuie/uonGVUARf6xHzM73sCiW1x2+PjrGoWLZ3dL/z8GWWJ2QuYkpUXCmMrC2qRDF/lkqFVG2Bisow7soqQk/C1YzZIGu5p75uUYx7UKhUCgUNgSLY9pbW1sriS6y3SsbgGRMmw3RlEFLFhSEA7JwIgHfRt5FmjFR5JrAjECxp4idqWANnK7Ug8drbscd7cC5zRzoJkrnqRIRRAEtuD/rBDmIDIOUCxQ/Y1+PMgzkfnEdvlxud2T8wnWzUREH5vH1zBllZuCUqDzWUfpQxUBUYoqMaStDvugeJZWJpEI89hmDG4bhzJ9qg2ovH/fPmtkwrzeZkRw/UzaEjIwm2ZiPXb0it7TeuRK9T0qqpdYjf41K8KTGyB+bk0ZmBr7KTTF6nyphSKFQKBQKhX1hcUwbyIP8c8o6teuPdt3MfHlHGu3ulB6cA/b7+nn3yLu7aCfPuzoV7CRqY7TL9/VaPeskh1ef/n/F8FhfHbWfEbmUZG1Q4LCIEcxtKkohyt/nApXMuVsBcTALIJ67zLANrMv2z1qF/VXPNpM+MNOOpCYcQpjRw1TYHiJzneOxtjax+9s6+lDG6dOnV6RmGQtVcz5Lr6n061EAG8Va+Vn7sjLdtS8je5cV+8/04Vwuz+so8JTSu/M8j8Yzc2FTUC57GYvez3w6myimXSgUCoXChmBxTNunyIusD+cC2Uf6QmbUKshKxGLUtbxj8zp03qGx/oTLjtrA37ntEYu1T05VFyVuMJbCu2K1e810zbzTVqFQo2PrMPoe3RI/L99upRPndkc7bHVNZq2uJAQZU+DgLWo+eCi7B2YmEeNnGxCVsMEnlOFkGQfBdHm+ReOo2p49N4OSdtj929vbMrUtoMPt8vH9BOLw96pgSplnDc9JZvCZN4d635W0Blhda3kMsuQ9Nr/Mzoff22gtVglwsuevpBpZwCGDkmAeNoppFwqFQqGwIVgc0/ZWnOybCOgA/T2h+tSukvUqGQPme9nq0beJd/dRKkYD+y2yXpx9oaOdIev5DZkPpmJJmdW08o9kiULUT9YtMbOM2MB+rDejXbL3bQVWJTqZtXPGPIDcR9TAEpBobHlOZnppxfZ7pCaKrWZ2BBwWVyUZiTDnPx2NGeuaOalKNM8MHI41axe/n9FcZKbL9WT6e/U9Guu5e6J2KCtu5SURlafsUiJpl/K6yGxEeK7w2sHvYmZfwtLHyGNI2aRkIWTVu7AULKs1hUKhUCgUJBbHtI8cObKyC4v8fVVyiiiFHSeQN52viowW7dh4p8u7fL8bu/TSS3ddyyzZ7o3YhF3DSUZ4V+nZBVtc8lgYokD6bB2vEOma1e7V4L+rdI5sDeuZcZa28yDAbIJ9YX272F9WSW8i1qxYTOR5wLYGLOHpifrEvrzcjohBMgPi5xPdY/pv1ourhDwec0w7knao97NHOtMTES17F5hx8vsT2VAof+85yUh0D7e/x7+YJTmZFEBFXuP6M+mDzV1DZpPE802NRSZR4jm0jg1UjzSIk+gsBcW0C4VCoVDYENSPdqFQKBQKG4JFicdbazh69Kg0pPD/R4kM/D1Z6Lw5s//M+IFFwla/iQr5fkAbhvk2msjeREwnT57c9Z3FSL5Mu9fqtbawEU7k9mLXmHEPqx2itrL4nctlUVvUdxXWNDMC6xGTzwVxAXbGy8TIWRAQFjWzeJy/R/OORcwsHvdzOHPt82V6sKiejfxUIJAM7Aro5zfXp8YxCimsQrvy88rEvioQiz9u1/YkmfHXA7GrEouaWRUVhdqNEtD4cjMRuArZmRlCqgQkWUARZQimwg1nrnM2bjbmmaqD58ac8aQ/psKWRm5iBrUeZO/+0gzQDMtsVaFQKBQKhRUsimkbMuMXA7MJNtCKXL7YRUUxuShQikqnx2329fGukuv1xmS2Oz1x4sSuz16mAOywc3ajinbYdsx22OwGlQVGUIZV2W6ZWeacewqwyjZ6mHaP8Zo9B5NiMNvIQicyS2I27eeBMrpjAzE/37LgGapfbDgTtcVflyUbYfepiC0qaQO3rYfxqO+Rm9CcoVsWfjiDuZnys42eCxtocfsz5jtnXJZdqwKKRFIMfi4cOjQyELVrOKhO5hrFTL7HLZUlYVmypr0iKmPOXSxqa2ZIeZgopl0oFAqFwoZgUUx7GAbcd999K6EU/c5JhZ1Tuz5/P7O9LCgD18f1WJm2Q/U6P2YntpszvXEUTIF3qeswbAPvGhWbzdqoEOm0mTly0I0o9KWNF18bMTrW62bsubW29i6dXe9YT+nrVOFRVRhdYLXPzLCjMVdsiRljFADIrrXQkCqIUBaSVrnRRPo9lnaxC2Wkv55Lixvp8ucCzUTugipYUITWGra2tmRCiqidijVHaV2VfUgWuESxPJVe2MPmmSXEsc9o3nGKT54H2bqgJEa2rpoky6+z0Tvm+6lcKv01/D0LZ6ukMbxWZm5pxbQLhUKhUCjsCYti2sAO2wZihqgCE2TWjXO74kx3wbtT3h1nyei5PkbEXg5iV8cShIxlMNNiPTizG2BVqjGXQMSXx+d6gh30JqTY2trqKldJXnosV1WwFWPT3jZgLkRrxDpYZ8rBhPhe3waWeDADzYJ4sMTD5lA0v5X1uJoH/p3kIEIqBGr03NheJXtezBB73iser4h9KWvnLOSlsnrPWKxi2CaBixi/Sfssrat9KskLoAP9sPQmsnhnhs0SNg457a81KN22l9IZlL0HPy9fB0t0FMOOpByGYtqFQqFQKBT2hMUxbWB11+136rw7VSnkevxZlR68Z2eVWQ3z7puvidgEWxrbTlMlOoiYD1uCctlZwhBlqR/pC+eYapa0RVlDKzYCrO6WMzADitiMYqYRM2QmbWzG2Avr6L1tA7MF5b8cja2ysuV2+TawL7HSR3vmw5a+yn8+8zzgd4HP+3uZlalwwJEe3MbT2qo8Enw5yuqb+3b//fevtNePufIN53kbjVNvAopIj89zxZg2h5sFduYePweWUMzp96O2R9bqnCxJpZGNQi5beRyCmT04opDCSocdSUj4/VGhqyN7CG7jUlBMu1AoFAqFDcGimLbps1knYqwGWN1tqV1jtptU1qcqWpO/Rn2PdL4G2wGznjhK52nX8i7W+hv5VXPULvbLZEv3qN3c9yyKlkqeoD6jtqj6I93SOjptbn+kl2RGzX7UEYu152KWuKzrtfMZM1C7ey9N4WQ2PBcjXR+zfWV3EcUwsLZZvSqanfdm4DFWEd+id5DHmKP1Zak055K1RJG3ornIMKbNkrAoupn6Hq1Hyv6mxweaU/OyRCKSwFicBusHP9NI6qBiCKgYE34eqNgS1o7jx4+v3MM2ASoxSdS/uQhlkUW98vFXum7/f9TnJaCYdqFQKBQKG4LFMe3t7W0ZKzyD2s1m1xgyBsd6KGWd7HdqthtWMaD5uD+n7s10jsyG2X+S/YWBVaajLFkzi1PFdNaxVmf4djAznouZPbcr53Yry3k/TmwVzoyEGXYWJ5939cye/P9KkhRZgFvdJpFSuln2jff/M5tgpp352vL4MXvyZakYAobovVW6xYx5rePjb0ybpRj+HntWbP8SPQ8GzzvFJrN0wmoN9BKJO+64A8Bqikzuu5/fNn/5k20LovgRFnfCGDVHcczWFpWvwJBFYFPrS6SfZp05Sy6i9Zv19z22NOcSxbQLhUKhUNgQ1I92oVAoFAobgsWJx++9915pHAWsikhZbB0FA/HlA9owqOcebkckjlduLCw2jAJksKiRxyJyG1FiIxOXskg3ahMb/qgEGVFb1glcMWcYFImpegKwtNZw5MgRaSQH6EASPOZeTKrcw+bCsUZ9UiqVKGDFnHtLVI8KW5upVnrTD0YiQp7nbMjF4+yPsXEhqyrWCTxiiAzs5lwaPbI651KlRu+gSnTD7zSLbP3/HIyExcr+vImrb7vtNgCrRo0Gvw7YGmGfSjxubfTrhNWnkhtFIm6eI3PGi5EL3TricaWKyoLvZAaCS0Ax7UKhUCgUNgSLYtrAjlEIEBtoMJQRVE8AAV+nry/aqe0l+IiVaztQTqxgO1V/jHf0KshFln6O2xYFflDJFzg0IbtoAKusUu1MMxccRibl4P6o+0+fPr0SYCRqN38yA/djrlximJVH7mK88+e5aW30AVnYLZATyURGjAa7RoVajdgMGy8y+2Npkb9W9ZPLjpI+MKPOAvMoSQvPsyzpQw/TzsJXqnS+6plG13K5Vl/EtLOUn6o+u8eY7+23376r3ChYFc9jPxeztgKrBmc8V3hu+XNK6sQSpmhdVa5zWbIZlWAlkiAp6eZSUEy7UCgUCoUNweKYdmtNpusD4kTufL//jM7xzoz1HVFi+SgRiYdvI+/mOPSg9Sti2nYtJwbIwkry7pXLigIVMCtSu8lst8kMvlf3nNWbBe6f079ub2+vjJd/bsw0FROK9ODMWlm3Helv2Y1P6ZyjYC5+bgCrNgc+4JAKbsKBMtgVEFh1b2G2EtkgMCvnd5L18L4+fqd7dOoqUUQ2zzKpT3Tt9vb2SnnR+7KXdUe1LUtawUyaJSxsG+DL4SA0KnQosOMephIGZaxTSVgyGwp2C1RBXFTY46htWeInNb+53sgeoph2oVAoFAqFfWFxTHtraycZPafxAzTjzXSmSvfBetuIkSpmzzu2KECGtdvKv/POO3eV6fvF1zLT4SArHsy0VaCMSLek9PlKf+ivUTvSHmmHQo+OKcIwDGf02sBq8oweROWzlT1/Msv19TE7VglWIuZraRW5/ZH3gArDymPN7AZYZUlWrjH+iGmrQBhZaF++l9+1zGp4zkuhxx5izgLYM+3MXkS1JbPjYPDxzKqf311+1l6qx5I2fpctvGg0FnYtB2bhsrN3Wtl9eKlQFozIl5U9LxU4J7N9Us8tC4e9jnfMuUQx7UKhUCgUNgSLY9rb29srDNvvQNm6UeleVNmAZoo9uztmOqw/9v9zKEJVpi9XgaUBkd5VMV/b+fr6FONRlpjZ7pzbHu3K51hYVBbrzHp2vJk+VflmMkuKQsQqP3Puq28/e0Ewe5pL1RjVF0malP6T7zX23GORm/nVq7gAfG/GypRkLJtvc5bbGbL0iiahYXuIKDYBf8/Y2ByjVnEC/DFmrcy0/XxTKWbt06zJvb0Ez1GFaP71SgOy5EZKd53pp5XNU8Sa1ZrRE7paeQwcNoppFwqFQqGwIVgc0/Z+2hxpCdA7pEwXonbvyurZX8e6Zt7hRhbuPQHz1wWXEfmSK5YcJaNXulLFuHqsK9e19vbImLyKDhVBWWirOoA+iYti5cyWIxbLrCKLnqbYqx3nSHm+XGWVzjrHSErDFu4sqYjuYcaoogZm/ZvzZfb/q/dVzT+Pubnj7SEi9jcn0eth2ga28o5sTjjNLl8TjS3PM55v9ml+3MDOWsVrLidIiaIFMmvmtkWxC1R6VX4HI+kkr7VKtx0x7XX00pm0bgkopl0oFAqFwoagfrQLhUKhUNgQLEo8PgwDTp06tRIEwItXTJwTua9YGf7T/x+JsqN7vZjNjDbsHqufxcf+HiVeOQgxeQZl+JQZ1syJbCN3nrkANxEylx7/PcphvI6aQRmOAVo0l7WBy11HNMsGOcpAMEoUYefYgCpSA7G4mvvJbfTPOArw4suPDJAikXnU1ki1wiLuuXnh283f2dUnCorUO0ejoE6+Xh5LpUaK1p25MKzRO8ZBfDKxOJdn15rbIIuvvQuWuXjNBXWK5oEyjlOfWfs5TCqr9vwxZTybrf0GfhbRs+F71lHznQssqzWFQqFQKBQkFsW0t7e3cc8996yki/TGD3aMjXyUy4BHr9uGZwzK1StLTGEwlm7l2veI8RwEC+c2sKGG3/GqXSsbVLERk79GubRk6TdVII4oIQEnIsjcdgxZeFY2zFLJC6IEF3OGSFFilTlEBlxsMMUGQXatN9SxY2ykxuwvkgoZVMrbCCoRDbOyTHKh3r1McjHHtDwyV7zo2tZal6RFjalhL+9xxCo5QIqSbkQSPjZa5Lnjn7UZujHjjtYMX7Y/N+fK5sHvidWjUmdG77x6J3sCs8wZNQL7M6g9F1hWawqFQqFQKEgskmnbLityzrcdmWJ1mbuOCgLCbNqzHQ6Lafog1uv6NvIunHeXka7e6jEGtY6+eM4FJ2J/Ksxn5LrEUDvpTJ/MUEw1cs2x8VIhFq3ura2trl02M4QeVqbsIrJ7lM6V54cPdsHzTbEHH8yHbRmYlXH/olCb3KasfmbWzHxZh++fKYffVEw702UyM81CUPYyX8+0o2Qm2RhyOdzuzH3S1+fnAfeZwxlHdiUsSVJhbCNXNn7uKtBMNHeUnr8nYBIzarUu+HO8vvA6FIV25TIMkWSHWXi5fBUKhUKhUNgTFsW0h2HAvffeu2JBGzFfFULTlxX9H6EnGL5i2ga/K7c2GfvmXasPomBgtsSMM7NoZMtOFWwjut/OMQvMdLNcvtJtZaEvObkB67T8MZM+ZEzbymTpiYfaQauwnxEUy2MdpP/fWLG1P2N/LA3gxArszeDB743ysPCwcjm4CrM2b1fC48OsT+lffbt5HLP3mRkrs89MusY64R5EYzvnaRCtIWrdYUZq89v33eaKem947gKr6WIZkd2Igb0IlO45WlfV84l09SqZEr+bkf2F6ruyrYn6riQ7mb1MhTEtFAqFQqGwJyyKaZtO23Z7tvuJ9HfMEFmP5qF2vD06Mtu1MsNmBuTrsDbZNbxzj3RLzFI5jB9bVUa+jypdZI+uNtoV+3ZFuiz1mYWB5LYoHRewGg6WU45msPHyrIP19cpvO+qrAvfDS0gsFaKFjbTvxqKy5C/McKMEEQx+7qz/jOwVWLLDbDny41YJIpTEJ+qfCl8Z2WEoi/LM0pyPrWMjErHK3tgOPTptPs7sE1h9HobMQ0NZjWc2G0rny0w76v9cisxIashhUnlsVAhe/79KPZthjmFnHghLQzHtQqFQKBQ2BItj2sePH19ht8ZQ/DGlv11H9zL36ctXu+SIVXIENNanRfq7uaQVyso7aqNKRBD5IvKumBFZaPIOnuvNbAO4/ixRgOlv7XMdpp352hp4jCO9pNKbqTI8OG2rfRrzjjwF+Fkq1hQ9D34OHCfAjkesSen0Ij99TmZh6XJZDx+x9LkocYaI5ar3NHufMsmEh3+fovLUe6niOPhjysqa30H/DDiRh+pzlshF+U9n842ZdSaJm7MAn1tbojbztVF8CGVzkklcVCwO9kYCVte1pWGZrSoUCoVCobCCRTHtYRjT4xmzjqwhTR9ox5jVZn6liiUbMr9P5Wtt4MhBvnxm2hGr4fjavEtlhuXbrtL42fhF7ExZ17LVetSHOV12pguaY9ieTdsxY4xRuj4um5+p7w+PBzOeiPWxVati61Hfo3jN/p5Il8nMlj0RIrasIpCx3jiyUmYLfUYkSbD5Zgyb22jwFucGxaiY/WfeH4phR0w7szA3mI8/v9tRKltVp5IYRG1gFsvX8f++XH5ekYQvszBnzMUCV/pq34+DjOao4gb4ts5JLqJ5oGJxRBIULq/8tAuFQqFQKOwJ9aNdKBQKhf/T3rkrua0kQbQpV/ba+/+ftfb1ZSgmAmsoSqp7mFkNcmY0REQehy8QaAJNsrOe4SK8lHmclClcBSeVGZXpYWya0HGFQ2iSUWX3VHlNte+17ksBFjU2FhZwx1ZjVO3u2LbPmXOUGYumNNeEQZmPXICLMm0xxYKmW6Z39W1VoA45juO3e6WPre/v+/fvcryFMvfxnDlToErJKvMxA9KYKtXHwSI7/fOp463li8PwdirIMrmG+j52z01jXuvehOkCMNX3bfqe8rErWezoZUxVapQb1xmz+FSApW/Xv7cMuOV3gUVQFC59akpp5PWYUr7eA4tWueBZlWroUlinYDnOcxXIR1zw4VcTpR1CCCFchJdW2qVMeiH9UqulwhlcNKV/FLviIB0GMrhmCKrBQVGruVJetQLuypHK0I2Zqrrff6YYwK6JCj9DR6l+Nw4XKMgCOlMhhl0gmjqees61lFRNJqgIWbLTlXRd68/crOteAZb1mA1l1vpzHpw1Q6WjuMA6Bk8qNcj5RKWlVCADROtx3VIlqblD68mUvuXUIB+/Rw0ex3FXyrUf1wUuOYvBWvsym2fKb7pGHlPryl3xoI4LyuUcUiWlaRVyQV7q89Tc4VxxBaL6e511Q1nKWCbZlU2dfjtfrchKlHYIIYRwEV5aaRe9uEqt0JgONJXQJFzpnikN6AqXqPKFXIFyVafSXuo+fVU7P2V/r0v1USt7+kHreEyhm8r7uQYhyhfkVt8sPKJKOSprxjNQabNxy5kCEk71qXgCqu86nks9U2Mqat6rsZ8tAuFiLdbypXxViiGtPvxcLK6ifMPOt63m3ZkiSDyOsxgojuNYb29vv+eeui67EqrTnN8pa2Wl4TZ9rGvpWBuX8keLkop5cfECnP/9eLQK8jeE++5jciV3lcImHONk9XQpevzdnqwCUdohhBBCeIrLKu2KBC6FxlXkVJzBraBU2cWCqoKKVCnfXfvQvmpVir2PnatLpZoJFYPyD/H4znerjufak7KYx1p/zhv9hlTYk9J+BnVdXHlF9VnpV+e+JgXHa1nzimU/+z7cXKUC6UrbtcbkWBVOKU7NGZwFwbVMVE00OKbJmsLvk5sPStGr18hxHOvnz59326hiRO77OB3nrP90Kknq4hX6e5yyd1kz6rmz8T99bIWK+OZ7OHdoOZpKIe/K2Kr54aLH3eft+3WPv5oo7RBCCOEiXEJp95VORY2XL7vyGUsRKZ+gy5N0EcBKkbL9IF9XuJKaLhe3v8epWLUCda9Nj50vh/5KtUp3UcGTNYBRrrXt5NPmc8/4tPtx6a+t/TK3v597F7XrlNuk6JyVppf7dPunqu3s5uSklnbKSvm0qf4ZRT4pE5fnPCkgWkacEnpWEVXkuIsF6fen68sxuLxvFzcwWbNU1oA7totH2dWCUNtM5/aZ3x0XT0RLEr8jaky0OiilzfoQvCbq8/FaT/UhvoIo7RBCCOEiXEJpd6jMqF7rtvtV3IrTrQj7atb5WKZV666qmVIMU8MTtU/VSpArRD7fV6DKb7+W949PecGuIcZ0PDYIUb5jvrZTOTuY513jpD/tTPR4jbMsPUoZFIyQdfED/TlG5roWirzf4bZKaTtV7rIl+njrlo1CyBTV7SwLqiqhs7TU/Hg2u6Cq6U1jYEwG54NqVkGcz3xSs7weLuZE7cfllqsYA/c5Jh++89VPNQV22TCTJcHNnSmi3qlz/s5N1fveE1PzGURphxBCCBchf9ohhBDCRbiceZzmwzJXTSlYBc0nZ0w0uyL1U4qKO64KcJhK/yl6QBLNhzRpqmYWDnce+/GcOXZq9sD3sokGTeFr3QegvTf1oo7BAMT6bKqEK49dtwxim9Kb6jg0j6vANx7vzDXbFX+gqVudRxfwpIpduKAhlk0t+jXdFcRQgWlnU/XeMz/KRL6WdkEwMNOZjacxuFSlQrmmdiWKlWuFv2NTUNku8OyRc/tMsSqXPqrcDa5AyiMFZ5z7sT92x3kVorRDCCGEi3A5pV0wkIkr4b6KdcENXPWpVokurYkBKVNACJU1b/t+di0SpyCveq4CgzgOlcq2C0RyKWj9cznl0GFgVX12FlWplD71no+i9ssmLWrVzwIvXKm7xhd9W547WjPU8WiRmNgpbaaL9fNJ1czgIloJ+nO7lB8VIEbF4xqGTA14dkFTz3Acx6kGHrx2kxXIlRXm6+rxriDUmQYXDEBV58n9VvE6Td9BZ51R82NXQtqNo9937XLVtZgCeDt9uzNFab6SKO0QQgjhIlxWadMXWqk3yhfomgdQCaniEG5V53xx/Xiu/CLVGd+vHhOlXphWNa0yXfGOwhV3UPs/0yigxluq1jWl72lZj7TifIY6Zs2huv79urjyq2yNWMV+VHoL5xlVbf+cVL5MiZp8jFNqT6fHJ/B4Tm1OVhpaDCbLC9XfI6UoCyqhjyh+cbvdTikqqsm6LjWH1LYFPytfV9/pXZtNNd/Y+telq/bjMM6Hc0hZADkH3RgfKQjlfjv7fefDdjEPav/8vevHmQqvvAJR2iGEEMJFuKzSpsKh8ukFH1yzB/qHlE+bfs9iUhNUDVwRKv/ne6DioLJTfsKpIUhH+bL5HvphVRlTrui5Kp4ahpxtPfksjFJXxRnYtpFZC6poQ83Buj3TUKHOLZWcs/j097hI2UKV4q3j0MrEOaTiPJy/c4p8p3WBSk691/mNPyq693a7rW/fvtn4js7OJ6tiEJyins6jy1pwx1/rfi66rAFlhTxT6IXPO6vMrqxpf85Fr09Km7/1u9LCavy1rYrzONNU5CuJ0g4hhBAuwmWVdsEo5GnV5XxjXLX2lWGtnKnCHyncT5X52T4Sp3SUL8v5sLid2o9TClNp17pObkU9+TI/S3HXGCpyvZ+DGi8VFZW2iup1MRN8j1Ivta1rsKHiIdy8ctG9/f7O8nJGYfH6q+vF67/LtFjL+/VpiXm2jOlavz7/VGaYipT+4/p9mOIwnDVBHY9WOcZDKJ+28zE/EpHNc8jvuoqy3qEsSWcVtoqodw1CHvldfSQ2JD7tEEIIITzF5ZU2V6S10u0Rsi7alatIpTJYEY0NSaYKTuRvrdgeyVvlCpd+cPpY1XuIiian/4mKdcpH/ls+Jarqfn+Xi6p8/3ytfNv0p/VzS3VONcn3ruWjxjm/ldLe5f+q6+IyHZzC7t8N18SCKnDKrHAWs/dwu91sjnLnbIOVtfaNbvhdUDEn9N9yLqlqY26sU/zNWWugsri4+XAmk2ensFUmz6650iOciTRPnnYIIYQQniJ/2iGEEMJFuLx5nOYjZZJyZQTPlKubzF9quz4ml/rw2WZymsUeMS87c5xK+eFjVzClv8YxTcFyfO5vmckrjXCt+57hzpzMxiH9PkulRqCNAAACTklEQVSB8vwpV049x8AjdS528+xMf+PCpY2pgCA3z88EPrltVCAXzcfvCThzvL29jSWEa7yu37xyL9DE7VwQqtiKO0/8XqqUL/XaWrpxkEtZdEGF02+XM32ra+qCdd0t76vjPMKUHnmmVOxXEqUdQgghXITLK22u0NUKza3IXHqDeq5WXQwAUfuu1SqD1c4WMPgozqQuUElRaU9FI6hCeVxVGIHbuEI30+f5LJSCqzQwFiapa/njx49/vbcX9WGwXW07laJkOhiP66xG/bWd8p6UNi1VDIjr910KE9PSpkIwU6pX4UpbPhJwOXEcv9pynglw4tyejs05zW3dd2+t+3PMa8viNOp4u6A59Zrb12R92JUinYLJ3LV0RYWm4z+T8jV9j16V1x5dCCGEEH5zeaVdMGVhas3pVllnVtiuebvyE1FZ83gf0ehAccb3w/PlVsuu6cBa9yUAedzJH+We76r9M3yXj1JjKD83fc2FUhVM36p9qBagfI9LJWMxD/Vep/CUX9alCbkCFvyMfRs2fVHzngUyikmduQIgH1XGtPYxKW31Pe9jKZTydVApqlKarpSvsprsFL16vFOnj1jAnEpWFgS3zVQca4qVeC/qPNDa9CpEaYcQQggX4fZKJdput9s/a63/ffU4wsvz3+M4/tOfyNwJJ8ncCc9yN3e+gpf60w4hhBCCJ+bxEEII4SLkTzuEEEK4CPnTDiGEEC5C/rRDCCGEi5A/7RBCCOEi5E87hBBCuAj50w4hhBAuQv60QwghhIuQP+0QQgjhIvwfRv576ZYnjfUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWm4ZclVHbgih1JVZmWNCE24kRlsbDeDm0lgEIIGgQUIaGQEAoRMD8K4QYABi6FRIZCB5gPhbqCZLYMwg8VgoC0kJFNIQmYQUzOVxFCl1lBCNaiGzKwp8x3/OGfn22/dvXbEffky371ir+973333DHEi4sQ5N9bea+9o0zShUCgUCoXC5uPIYVegUCgUCoXCGOpHu1AoFAqFLUH9aBcKhUKhsCWoH+1CoVAoFLYE9aNdKBQKhcKWoH60C4VCoVDYEnR/tFtrz2mtTa21e1pr19O+Y8u+my5ZDbcUrbWntNZuaq0doe1PXPrsOYdUtcIBYHkuvviQrj0tfyvXb629tLV2G227bTn+P4jyfn3Z/zpxHf576UAdj7TW/rC19tW0/TNba69prb2ztfZAa+3NrbVfbK19ijvG3jnvN9APN/XqcphY2vb9B1ymui/+77YDutaVS3nPP6Dy3m95L/53wb53tNZ+4CCuc7FY3t//vrX2p6218621W9Y49/rW2ncv4/z+pf+edFB1O7bGsdcC+NcADuTm/S3AUwC8AMC3Athx228H8FEA/uoQ6lQ4ODwH8/PzY4dYhxe01l46TdPDA8feD+AzW2unpmm63za21t4bwMct+yO8BMAP0rY7Bq73BQAeB+DCD1Zr7csB/FvMffadAM4AeF8AnwrgEwD86kC524ZvBvA7rbXvmabpTQdU5kfR918A8EcAbnLbHjqgaz20XO//P6Dy3g/ze/FVQZlPA/CuA7rOxeKpAD4awBswk9u2xrmPAfBFAH4fwKsBfMZBVmydH+1XAviy1tqLp2n6m4OsxN8mTNP0EIDfOux6FLYer8T8YnkugP974PhfA/BJAD4b8w+x4QsB3AbgLQCOBue9bZqm/YzXrwbw49M0naVtvzhN0//stv0XAD/MFqlNRWvtUcszPIRpmv6gtfYHAL4CwJceRB34frTWHgJw5+h9WqcN05x967K8r6Zp+v3LcZ1BfOM0TV8PAK21lwH479c4943TNN24nPtpOOAf7XUelG9dPr+xd2Br7SNaa69qrZ1urZ1prb26tfYRdMxLWmtvba3949baa1trZ1trf9Fa+5KRyqxzfmvt77bWfrK1dkdr7aHFbPdZwXGf11q7pbX2YGvtj1trT2+t3dxau9kdc2Vr7cWttT9Z2veO1tovt9Y+wB1zE+bZJAA8YiarZd8e83hr7Wtaaw+31m4M6vNnrbX/5L6faK19R2vt1uWcW1tr3zDywmutnWytfXtr7a+WPnhHa+3nWmuPccesc98+rLX2+jabON/YWvvUZf9Xtdkce19r7T+11h5N50+ttRct9X7rcv5rWmsfQse11tpXLmU/3Fq7vbX2va21a4LyvrW19uVLf9zfWvuN1to/Cvrgf2qt/dYyVu5prf3HRma6pe4vba19bmvtz5d+eENr7WPcMTdjZqf/pO2aI29e9j22zWa1ty/9fHtr7Vdaa+/Zu0dr4ncB/CKAb2itnRg4/gEAL8P8I+3xhQB+AsCBpUZsrX0kgA8EwOb4GwC8IzpnmqadaLsr88Naa3/TWvv51tqVyXEf3Fr7pdbau5ax9ZuttY+lYz68tfYyN/7e2Fr7N621q+i4m1trr2utfXpr7Q/a/OP4pcu+4XEH4KcBfD6XfznQWvvp1tpfttaevIz9BwC8cNn37KXOdyz1/73W2rPo/BXz+PIeOddae//W2iuWZ+TW1trXtdYkI22zC+Tly9fXumfnScv+Pebx1tqXLPs/vM3vKnvf/qtl/6e31v5ouf5vt9Y+OLjmM1trv7M88+9a+uMJvX7rjcfOuUPPUmvteGvt21prf93m35w72/xb9pG9C6R/mM2AE2azxndgNpe897Lv2LLvJnf8B2F+QfwegGdgntn/7rLtg91xLwFwH4A/x8wWPgnzQz4B+PiBeg2dD+DvAHgngD/BbLL7ZMzmuR0AT3fHfdKy7Rcxm2m+CMBfA3g7gJvdcdcC+BEAn4v5xf1ZmFnMuwA8djnmvZZjJgD/BMCTADxp2ffEZftzlu9PAHAewJdS+z50Oe6zXV+/FsBdmGft/yOAbwDwIIDv6vTVFQBej9kc+X8sbX0GgB8G8AH7vG9/BuCLAXzKUq8HAXwXgF/GbO784uW4n6W6TJhZ3W8C+EwAzwTwxqVdN7jj/s1y7Pcu9+wrAZxernWEyrsNwCsAPH2p+60A/hLAMXfclyzH/thyf5+JeezcCuCUO+42AG9e2v4MAJ8G4A8A3APguuWYf4jZ9PVHdm8B/MNl368BeBOAzwfwZAD/DMAPAHhib0yP/i3t+FYA/2gZO893+14K4DY6/rZl+1OW499r2f6kpaz3BXAzgNcF13kR5rF34W+gfi9Y7v0R2v5fAJwF8DUA/t7IO2f5/lTM5vsfAHCU6uffPf8D5jH+uuXePQ3AL2F+Z32oO+6zMZOPT8P8DH8p5snET1M9bsb87rgV83h+CoAPWmfcLcd+2HL8JxzUGIjur9j308vYffPSzqcA+HB3n/4F5vfBJ2F+5s5jeTctx1y51N2PsW9fjvtjzO+iT8TsBpkAfF5Sz2uX4ycA/xt2n52rl/3vAPADwTP7RgBft1zn3y3bvg3z8/c5S/+/CfP72o+Pr8D8Tv9BAP8UwOcB+Ivl2BNr9O/LANyyz3vzaUt9nxTs+xbMz8m/XMbh0zE/1/80LXPgos/B7o/2DcsA+LFlX/Sj/TK4F9yy7RoAdwP4ebftJVj9gX0U5pf3Dw3Ua+h8AD+K2Qd3I53/awD+0H1/PeYf9ua22Q/nzUk9jgI4gfml8pVu+03LufwAPxHuR9vV5b/Scd+DeSLwqOX7Fy7nPZmO+wYADwN4z6SOX7yc+/TkmHXv25Pdtg/C7sPlH5rvBvAIVl+0dwI4SX3yCIBvWb7fgPlF+xKq4xdwO5bvfwHguNv2jGX7Ry/frwZwL5Zx6477u0vffYXbdtvS79e7bfbSfZbbdjPoR27ZfhrAl+/nAR/9W+ryrcv/P7Hco2uX79mPdlv+f/6y/fsB/KZqz3Kd6O/9OvV7uZVL2/8egP/PlXMngJ8C8FQ67jnYfed8/nKPvln0g3/3vBrzROwKej7/HLNZPqprw/we+wLML/gb3b6bl20fIq6djju3/TjmH7mvv0Tj4TbkP9oTgE/ulHFk6YefAPDbbrv60d7zA73045sA/FLnOp+ynPsxwT71o/21btsVmJ/PB7FMPpftn7Mc+5HL9+swT+C+PxiD5wB8yRr9e6l+tF8F4D+sW+ZafqRpmu7GzKae3Vr7++KwJwP4lWma7nHn3Yd5xvtxdOzZaZp+3R33EOYbf8Fk2WaF+oW/dc/HPEj+M4B7qZxXAPjg1to1rbWjmF/MPzctvbmU93uYZ8970Fr7nMUccw/mAXAG8w+D6pMefhzAk9qill3q93mYWar5nj4F82z59dSOV2J+KWTqxKcCeMc0Tb+UHLPOfTszTdNr3HdTVr5qmqbztP0YZkGSx3+epumMu85tmP1mJrB5EuaHk1XKP425v7k+vzZN0yPu+x8vnzYOPgrzBOQnqe/estTxyVTef52myQtiuLwMvwvga1prz2utfWBmLjS01o7SOF/nuXwB5rH3Nb0Dl7H9UgBf2Fq7ArO14cc7p/0YgA+nv7d0znk8ArHaNAux/jHm+/ciAH+I2VL1itZa5Hb7CsyTxOdN0/SC7IKL6fnjAPxHADvuHjfML8cnu2OvabOb6a8wTw4fwfxj1QC8PxV92zRNfygu2xt31u5HME8aH99pQ/auuxicnabpFcH1PqC19rOttbdjfq4ewTx5GX2P/b/2zzK2/hRjz8i6MJM6pll0eSuAP52m6a3uGHsH/Z3l82Mxkyl+5v96+eNn/jDwu5jFoS9srX10a+34yEn7EX+8GPPM/oVi/w2YFdKMdwC4nrZFSsGHMM/u0Fp7IuaBdOFv2TZ0/oL3BPBsLgezehUAbgTwHph/+N4ZlLdHdNda+3QAP4N59v4sAB+J+UV2B113Hfw85h9+8zc+dam3f6G+J4D3DtrxO64dCjcCeFunDuvct3v8l2lXvcz3w7Zzv0RCxr/B7CqwuoDrM03TOSxmdDr3bvpuEx27rvmTX4XV/vtArPbdnvLcxGnk/j4T80TnazGzyre11r6p80P8aqrTNw1cx+r215itSc9rpB8Q+HHM5v0XADiJeSxnuH2apjfQX0/EdCWEenmapvPTNL1mmqZvnKbpEwG8D+Yfuxc0CinF7IJ6G4Cf61wPmMfEUczuH77H/zuA6909+HeYWdz/hdks/OGYTZRWd4/omTD0xp3HAwCkT3vgXXcxWNERtNauw/w8fADmCd/HYO6Hn8TYOD+/TOo9+N17UIjeK713jT3zr8PqeHh/5O/Ly4WbME9en4HZXXhna+2Hg+dgD9aezU3TdLq19m2YGfd3BofcDeCxwfbHYn05/9sxDyTetg7uwuwH/Y7kGjbLjMRCj8He0ITPBfCX0zQ9xzYsMyT+IRnGNE1nWmu/gNkU+ALMs92/nqbpN91hd2GeYX6OKOa25BJ3oq9+PMj71sNjxDabWNjL8LGYZ+8ALlggbsTqy7KHu5bP5/jyHFS409qYpumdmH8A/uVijfoizGE/dwD4f8RpzwVwyn1fd4x/y3Kdrx+o35taa7+NOXTz571l5QBxF1Yneqo+b2+t/QjmULD3x+4kFJh9zz8E4ObW2idM0xSK2Bbcg9mU/X0Q1oNpmnbaLGL7DMxm9X9r+1prH6iqONKOAdyA+TlUOIh3nULUho/FPEn+zGma3mAbR9neFsCe+WdhdmMweMJx2bFMfl8E4EWttcdh9ml/F2Yr4xep8/Zrgvl+AF+FXUW5x28AeFpz8aCttVMAPh2zj2gYC4N7Q/fAHL+K2Tz6p9M0PaAOaq29AcBnt9ZuMhN5a+1DMfs9/Y/2Ccw/8h5fiNVwGZt1X4WxH4UfB/AFrbVPxizQ4gnRr2J+iZ2epmk40H/BKwF8bmvt06dp+mVxzIHdtwE8rbV20kzkC6N4EmZfGTCbyh/GPEF6tTvvmZjH7Lr1eT3me/B+0zT9+33Xei8ewt4f2hVM0/RGAF/f5ogGOWlajts3lh++7wPwZRgLz/k/MVufvvdirpsgcjmgtfa4aZoi5mqRF/yj/DbMwqlfB/Dryw93yHyXie9rAXwwgN+ftPr3UZif1Udo+3PE8ReN1tpjMTNAeZ8P6F23Dizi4EI/tDnC4WmX+Lr+vXgp8RrM1o33mabppy7xtS4ay7j+wdbaZ6BDsPb1oz1N00OttRdingUzvgWz8/3VrbXvwDzL+9eYB4kyqV9KfBPm2ftrWmvfi5mRXo+5Y95nmibLKvUCzD9uv9Ba+yHMJvObML9I/AvgVzH7IV4M4Fcw+8K/DGQyxqyuBoB/1Vp7OWZzUvZQvhrzzPpHMQ/on6D9Pwngn2Pu1+/CrJy8ArPy9+mYZ8xnEeOlAP5XAD+1WEl+G/MPzicD+J5lEnA579sDAF7ZWvtOzC/Rb8Y8830xMGsnljZ+XWvtDGZNwj/APEl8HZwvbQTTNN3XWvsaAN+3mJBfjtnH+ATMftCbp2kKs4Ul+DMAX9paeybmRDn3Yx4rr8J8r27B/EL8DMzj7ZVrlr8uvh2zIvfjMGsfJKZp+nnMLplLhdcA+OettRunabrLbf+T1tqrMN/PWzHrDJ6G2VT9s9M0rSTwmKbp9tbaUzArz+2HWzHQr1qu/YrW2o9iNm2/B2ZV+dFpmp4/TdO9rbXfwvxc3o6Z/X4xdl0zlwIWwvOa9KjLi9didsn94PIuvwbzu/JvMEe/XCrcgvl9+r8sz/bDAP7ca1wOAss75PkAvqu19njMGqb7Md/njwfw8mmaXqbOb3MorIUKPgHAqdbaM5bvf2wT7dbaUzGP52dN0/Sz7vxPwzxR+9Bl08e31t4LwH3TNL1yOeblmN/FFp3yYZiTDL2417ie+u05CBSjmH/w3wRScC77PhLzy+s05oHxagAfQce8BMBbg+vdjEStvZ/zsRuC9TbMg+R2zIrtL6DjnoV5NvwQZjPqZy0d+gvumCOYfzzejjl85Tcwi2tug1M7Y57Nfx9mP/kOdsP3nghSj7tzvnPZ93rR5isxTyRuWep4N2Yxw03ohOJgFit9J+YXuvXBy+BU5xd53y4omrOxg90woq8H8FbMKtDXghS6mEVBX7ncD6vv9wG4ZuC6YR9j/oH4dcwThLOYzWY/hiVcaznmNgRKXKwqlR+L+WG9f9l3M+YJyA8uY+f0cp3fhVOdH8Rf1OZl+wuWfbfR9rBNwXMTqcdXrjNQv+sxT8y+iLZ/CWZ//5uX+34G8/P1tdir+I7GzXti9n2/CcATonuybPsHmAWL78T8jLx1uebTaHy8fLl378RscfjUpbynZH2yz3H3wwDecJBjYPT+Ln3xl2LfJ2Oe/D+wPAv/AvPk70F3jFKPnxPX6qqsMWsMbsNssbygrIZWj78Xnf9bmEWvftsHLMfyO/0zML+j78fuM/8jAP5+p46mco/+nh8c97l0/jvEube4Y74O84/23UvdbsEcing0q1tbTi4EWGZGfwngRdM0fcth1+fdAW1OMvOiaZq6SXoK24vW2kswv2w/8bDrcphYfOi3A/jqaZp+9LDrU9h+HGRYwVZjCRn5bsxM807MqtavxTwD+pFDrFqhsI34ZgB/3lr7sCl3C72747mY2fxBaSkKf8tRP9q7OI/Z5Pm9mBXKZzCbbf/ZJMQvhUIhxjRNt7Y5Ve9Bp2/dNjyE2VzO4tVCYV8o83ihUCgUCluCrVhZp1AoFAqFQv1oFwqFQqGwNagf7UKhUCgUtgQbJUQ7ceLEdN111x1IWX6dBl6zofd9tNyLqdPFHhvt3885F3Pspe4LPsb0F29605vunKZpT57t66+/fnrc4x6HI0eOXHTdvM7D/ufPkXNH961zzn40KOucM3K90TplfbZOXxyk7ub2229fGTsnT57c896xsWNjCQCOHj2659P28fbovcOfF4NNKeNSYZ3xvs5Y3dnZ2fN5/vz5PZ8jY+zWW29dGTuHgY360b7uuuvw3Oc+96LKsIfpiiuuuLDt2LG5mfww9r57qH0jD6SaJGQPeFQHdS6/SLg9I9frffr6qH5bpy9Un9i9iq5jD9iTn/zklYxfj3/84/EzP/MzF+67fWb30h7Uc+fO7Snfvvv/H3nkkT3H2Ce/DDz4RcDH8AvEn6NeNvaZTSzU9aPjetfzfWFQbeftdq5vN2/j6/J3f85B/HjfdNNNK2PH3jtW/qMe9SgAwMmTJy8cc/XVVwMArrnmGgDAqVOnLpwLACdOzFlBr7pqNzunjeXjx+d03vzDzuMwgnoOR541Kzd7PtV7pldmVD7XObsGPwtqcuyPi54Xf2z0/D788LyOiD2/Z87MidfOnp2TR95xxx17vvvrcL2f/exnp5kGLxfKPF4oFAqFwpZgo5j2QSBihsxAlQk1M62uM8MdNcfvx5R2UKatdVmLn/EaY1Az7XWQ9eu6fX78+PEL7CYyV3K9ecYeoWfGVew5OnadPu8xLF/3Xv+PmPi5PVa+lR21q3dfrL+zbXwdLhvYbbvq84uFSyu5p3y/rWeJ8mUxmLmt82zzM8blr/PsZXVT1+PrZmNH3UN/DX4H276eBS46hu9TVA8bbzbO7P3AFllj4P5YY+zROD5MFNMuFAqFQmFL8G7HtNm/G22LWFgPvRn2OsK3bPuoaCXyMa+Ddc/xM2ybiSr/fuZHVtt5Bu732af5BlU5x48fl4IhX45i2iOMWLG86FxmEYrV7AcjvkjFAn099mMF2M85qm6sVzD49jEbZ/Z00IjKHfHT8nGjz9g6fuWLEbdF902x14MU0WXvA2axI/59O0f5uL1Pu3ffWO/ky1XlHzaKaRcKhUKhsCWoH+1CoVAoFLYE7zbmcTaverOLbWMRwkGYpdYRpI2U30MkZhk13WfnGJTwxR/HZtb9hJ+o9mRCtEwQ0lrD0aNHV+51VCeut9rv682iFzaZRaFfSijDZY+Eb/H+CGocjJix93NdFSaWhe0o0VA2duxeZuF1B4n9iO4i8LhV4kI+3v/P/ZSJ2XpCLUMWtjUqolV16NW1Z67OhHc8dpTZ2rvR+BjVnujdYtexcLFNQTHtQqFQKBS2BO82TDsTIHEYkMpiFM02RxliJEBi7Cdb1gh6IRfrMO3RGTcwntRlpO6ROHAdpm3HZ+Ogx3gjZsLJVDg5SJZZSSUhyUKwFPMZsQqpYzIWrZK3ZElWeBsnp2EmFFkfDEpclrHdSx0Cpurq67COIFVZAUeYtrpuBA6j4vIjS4V6d/RCvzKMZCXshd9mFjJlKbO6ZZns+JyorCyR0SagmHahUCgUCluCdxumbWya/dbA6oyXZ7o828/O5e1ROE8vNaRhJBGHmhlmPhiecUaz2R5z20/SE+XDi+rIZWUhX4qZMCzsC8hDOVRdstSJvE+xTO9DUylP+XsWgqOYwkjIHzOvyBfI9Vd1zNplPj9lscjax3W17VEqWcbFhCGtC26TYp7raA5626N9mVaD66ZCMyPLjrpuBmap66R4VlaIDMr6lFmurI42RtX7Jrr+OnnJLyeKaRcKhUKhsCXYeqZtaeiYYXkF4bo+14hVKqYzwrRHVpQZ9YNnviXep1ith/ITZzPfnsI88i2pWTHXPVL9jyTDaa3h2LFjK+dErELpEZR1A9AJF2xBgmixApvdsx+cy4iYKKvgrT2RJYnbyglLlP89qjf3BTNxX17vHmaRB9z3GWtT7eHrXg5GlOkffF0AbdFj1mwYWZQn84P3fLFseYnaxeUq9u738bOtysyQ9WPvmKyP2FKlrJ7RfTuIJEKXAsW0C4VCoVDYEmwt0+aE78xIIobFqsqMWSko/3g0G1NxhJG6U6l2R8CMLZuN87bRGXYExZoiRseMXmkCIivHqL/ryJEjQypUxdii62Xx/778KJaT+8eO4bZmanU12/dLz/auy+M/8mnzucofH9XFnr2evzcC+13XYTWXOl7bQ1l7lEUkOlbFF0dtj5htVFYWUcH3NrsvymdvdeMlav053AcZi400C74ddn0eUxGUdiiyClkdzQKb6X32o5i/nCimXSgUCoXClmDrmDb7g5gBraMAV8wg8zEyM4xm4ErNmGUfYpbc83FHM3Cbvar4zMhfrNisWkwjqv9IEv5RRuX9fHxsL07bZ0SL6m0sQTHeqD3sd7SZOqvII582+73t88EHH9zz3d9rVqUrC8yIRUKp+0fiZ7nPvUZEqXdVuRmzY1961I8qnwL30UHDj7dHPepRAHb7wSwdbOnzUH56ZtFZjL/K6BU9E/wO5HLZr+v/j/Z5sMYB2H2O+HqsQYjU3AYV0WP9Gj3z6v0WPQd8PSvvyiuvBLD7LEbWNTtWRS8cFoppFwqFQqGwJagf7UKhUCgUtgRbYR7PTIFsro5EXmyuYdEQm9y9SUalSmQTzYioTCU78NdhU6ISLWUmwRFTey8V4Ij4ghPaZKESSuDC+6O1cEfMurafy42SdLDoxs4xE6jvLxZiKXGK7TeTd7TtoYceAgCcPXsWAPDAAw+snMNJIAws9onCWlRoEZv7vKmbxUPKhZNdzzAivGJBE5uVs35UbqyDToJh7bPx4P8/ceIEAODkyZN76p+twc3vF3axRCFa9j8nrjFk4YJsJh9B7/0SuS2Ui9DKMNNzFiZmZnAeo9bfZsYGVsN6VV2j8C31DuYy/TkcZrkpKKZdKBQKhcKWYLOmEAJZoP3IAgc2W83SRwLxzNRmfBxiY8caI4hCcHj2yLO9qF09odbFhKdFwjCGCvXx9eFZqmck/lh/DZ4dM0vnOvtjrQ6eISqotKPA6n3gvs7C7RSLzUL+bNx5tgBosVlUTi+hRFRHxdKzBSPU/eZ7DeiFdwws+MsSs6hxHoVOKStbT0S1LiL2ZWP8qquu2nNNfl6iZCdsXVAhjH57FnIH7L53/HtOCTatHVb3kQVD+HpRyBfvs/qbRenMmTMrxxqsj60dbI3gMeT3KSGaIboHzOytblFSJ6vbpRY67hfFtAuFQqFQ2BJsBdP2M53Ml+yPjWagyi/Es2Q/U1OzZJ4ZejbBDJtZZZRgQDEo9hdFfvGRmTtfTy2nyOFQESPnNtun1TULg2GGErEaPjaaDUeYpkmmKvXXYGbNqUh9m5mBqPAPK9NYBrDKSph5RixHJYcZ8Wkr37/yv/v/mbllFh+rP/enCn+LEnLwvhE2o5h1ZFVRliRV7tGjR1fGb+RPtTrYfebn0Y9jayNrJVSonL+nHApn/cThg77NxqRZw2Os0rQUV1999YVz2FLEegUeq9HY4XS9HOoYaYT4+bS+ViF1GaxM1o74bfwOZgtTFA4bWSY2AcW0C4VCoVDYEmwF0/bMwWZi7N9kVjOywIFSnUbsTCm/2Y/jz+EZe+a/ZXak0iZGTE/5udl36uvITEH5BZXK3IOZl333s2T2R7KvLmLGPd+VhynHeVz4GTS3RflXI2agxg6z9GiWz0zAVLXRuGQ2yeMusjr0li5lduvHkNWXVcqZEpv7WCU4iiICMv+juq5i8iqNpsco444S6kRjxxT/Sg8TKfO5jWxdiqwn9uz0nj/ft3aOOtaYtm+XqeE5mYmyCvj+tLHDVgG7PivD/T5+R5oan9/vXi/D47gX0QPsPnPWdqXcz5JxsWbnsFFMu1AoFAqFLcFWMG0/0+FZtZp9R4y0p1QdiUlVceE+rlSpw3nm6WeKvQT5mfJcpXe0z8zXw8psFXsb+ZOZmbLf3V+Py7N7yj6uaLYc9XEE75eMfFXK56pSRfpr89hg36K11Vi038f+SLVYQnQdZn2ZUprbzNYAZkT+fxV/PhLhYG3nuN2IEbEflNXp0fWyVLH+nP0ybfNp2/MZ+TIzlbhvR6RT4foqDUik3VE+7Og9Z1YAgx3jx6Qv2/9BIWdaAAAgAElEQVSvmDb71KP+5PdZZvnhdwN/crSOf/ezf7unsPf15+tmy8faWLQ2j/jVLyeKaRcKhUKhsCXYaKad+UQUW8pioJk1qlhhz+iYgfJsLlPXWt24Lhmr5roothRZA7Il6rgeKsaWfc48E/fXYaUnX9+3j1k/swxm3P7/kSXyWmtora341yOLC2fGU3786JrGZt71rncBAO6///49ZXlWEy1GAOSqePa5MQONVLzGHjgGXvmyI3+4QekusoVQmMWYnzTqE2sP+87Zfxj5mJWmwbZHi81E1h5Gaw3Hjh1LFfPWVr6Xqj3Abr/cd999e74rrYZ/XjmO2Y4xK0BmXeDy+Fnzfne+l0rfYd8jHzMzbLtOZGmxbfYcsZbC2mV19H1i44rf20pj4Y9RuQOsPf45YF/9pqGYdqFQKBQKW4KNZNrMpqNsTEqFGs1A1Ywp8nsC8XKOfIzNxlg566HiiiMfFs9WWYnNM+BIccztjPxsfI6BZ9YcR+tn2HxslhWMwRYRvk6U9Uyporn+0zStKHYjK40hy/1ssHpZrOtdd90FYFV9f++99+5pD7DLJq699loAu1EEVmYUV60yxxmiiAfO480sna1P2dKjKq+3Z6zs57Ty2Hd6+vRpAHv7xMaRxQpbH2X5+ZXmxOrOLHE/iJTbvjz1vKucBcCuYtk+rZ6mlOZ+y+rAVpkoEsDqwnHhzEz9e4c1Oqy/YItVpIsxqDhx/x7kHA52XbNcqeyV/nqnTp0CANxxxx0Adsc5Z6vzfWGf7NNmq4DvE9u3Tsz/5UAx7UKhUCgUtgT1o10oFAqFwpZgI83jBhY8ATrNIwfAe3NHL/kEmxH99dQiBWw+zEJV1FKg0XU49MLA5rLILKaW04vES2ziZBOafUbL6/ECBGyej0IkVJpWteCLr+OIedySq9h1ooUNGGyKjtwJZtq8++67AeyayU0UY+eamde2A8A111wDYDVhBC9WEI0DJTSKBJEqbI7HVNSfbG7tLarjz2fTrY0HqzO7A7itgBb9RKJJFn2xaTdKPzwCGzts+vblsZuIn5PIhMomcyvf+oUXkonKsHtnLha7fhT+xq4H7pfo2VDt4fsUJVcx2PXM7D9yL9Vyl/Yc2bjwfWTn3HDDDQB2zeXmmrI6Wj18W609bBbPkjqt8/65nNis2hQKhUKhUJDYSKbNDDtLMccztygsRIVlqAD7KNCez+Xl2zyYdavQq2i22UvrGIkjrM22TyVT8NfjEBa2INixxhyjmSgvS2r9abPjSLzGIkOVrCaqS4bWGo4fP74SQuKh0l1m98vaZOIXaxOPlWzZUE5ywYskREtAsqWFQ/0iy44SL3HYS2SF4jHKfRQlqWELlY0Va4N994IlthSxmDEKh1TWLRZj+ffEOos8mIhRpRL2beX3DjO2KOTLLBBWT/tujDBKk8ls384xRBYXTpusll3NUp/yM8JjyQvR+Hnn69v9j5LUcP1vvPHGPXVjsaavk21j6wMv9OHL5/c2j29vHVSpTjcFxbQLhUKhUNgSbCTTZmTJTph5ZMlA1BKc/Oln2Dy7U4tOeDDL4+T30axchYfZ9TnkJGN2KgQrS0nJ56rkK/4cZe2ImLZi1FEaQQOn8MwWLTGmzeVGiz6ocRCFnRnDtjaZz8183WphBb+PdQNqcQT/f2T1idrgz1HJQfjZyJiDSkUZLYRh2zi5C/sCo/BL22f9my0jqyxj/BktATqKaZpW/Pten8DPm33nBTd8O5jhcogcPy+RRVH5paN6qcVymL16P7FaIEQlq/L3UulRRt4hrLdhn3OUZMdg7bGxY9qRCJzghe9JtpRzZrU7TBTTLhQKhUJhS7DRTDtKUt9b4CJTijPj4Nlr5i9UfsIRsGrU6uiZAS/Pp5ayjPy8PEtWSvQofaWyMnA7o0XimTFkvmF1n7IFKzIFc4QjR46kaTnZj8p9GvVTtGyiP4eTTvg2Kz2CIVp+kK+nFuGIoJT5WVvUsqqG6Hni54RZGSfdyBYo6aUJBsYZj/e3ZlYZhqUxzdLlslWJFeDZe0clIeKojsw6wNeP3n889rlc60djqL4O3P8qqZN/nlTSEbYORPoEtiSMLNXLZaj3jge3K0pKw21R74VNQTHtQqFQKBS2BBvNtKOUnUp1yjPdKFWfmg0rf5G/dnYMb1c+vWzJQrUEqLr+iDqa0/FFifvV7F75raN9jCjVZs+SkJVjdR1VkXtEal7uuxH/utI/GCJ/Mse+8jjkGFm/j/3svLhJtpwnty8bw+yzZH3CiLbBwNaGyFKS9bFHFNurFsQZ0ZX0rnX06NH0GbdrsF6D03xGC6vwe4yvEy0sxGyS03Fmz4Ly19q53vetUuByWRHrVCmceXv0DDK4z6P+VFoGFYHg66LuRdb3XMamYLNqUygUCoVCQWKjmbYhm6krFh0xX8WWspmUYgYjjE4pzbPMYXyOmiFmPkbF0v0MVMWfj/iRlTpZ+cmzMpTVY9068TmRRaJX3ohP0fqQ1cJR/DzXRWU7i7QGzJbMTxxFOChftrLK+HOVX5VV3pGfnxmO9QEv2ZlZO3rPZtSubIGf/WCaJuzs7KzkO8isWdzn0VKwbPlQ4ytiiFYHZsdcZja+OcsdL1SS1Um93yIfurJgZdnGlHWINUseKvJEvf+i+nPOguj9vs574TBQTLtQKBQKhS1B/WgXCoVCobAl2ArzuAeb/pRgyptxlClOmbq8eaRneo7CNTiJgiELJVAmNPU9MqnyMVlZPZPSOuEnvRC66BhlSotMkqPipchUGIWQqbZF5xi4TSwIypI0cBmGSOSlQm9YMObNh2pt+ZF6cErakQVDVP15XERlqIVJIkGQAo+hg0h+cf78+ZXx4evCriwez5HoSon4lGsvc0Hw8xGt323gtLnswrEEQR5K5KVEjb5uLEDkVKWR0FKFYmWuSvU+4+1RiBmPTQ75isIgR5IRHQaKaRcKhUKhsCXYKKZtoRc8e4yY72gKPX9+j/nwNfwximFHCSU4YQWHF0RpORXTHmERKvg/W5qTr6PCNrLrqVSyEXtXfc1187NyLqcX8hW1L2PuKqVhtGhJL9woEuMoUVzGJrk8XmI0GjvKSqFSYEZWGm4nj+vIYsGhbEqsmSXXUEw1u289Nrgupmnaw7QN0XuA3z987Sh9slqgJrP49ZL5RAlnVJigCdCiMcWWItWX0djlcWeMm0V50aImykLK9ciEdkq0GZ2jFnjikLAI2b7DQDHtQqFQKBS2BBvHtI8dO3ZhBsXpEAHNKjN/1EgIktqvwoQ48Ue0nKMKz8jS4vV8SVEdmdkza2G2lrWL2VEWQsdlZEkJVGiPWqAiwjrpBPk+RfXsLSIwckzGDJSvOfPvM6PiMTPSB6qvs/At28dMhOsB7PYFp8ntWVP8/6rfIrbEfc1WjSzh0CimaXVpzqg9KplKlFY0C2eM9nsof63SOPhjeVlLDnOKyjOoexk94zye7H0dLTVqsGN4gRC22mTP0zqWMtZK2PVV2t6ozdHv0GGimHahUCgUCluCjWLawDx7Y/aVsSVmJhEzHFna0SNiBnx9leA+Kkcd49ulkg2M+EGZHalFP/xMu+f/5OtH7VPJ/TkxTHQ+1zG7RyN+Jzt3nZm6Qc3c/f/MOHtl+f8Vg8v84NnCIEAeHaF8fSOpVs0vqawS/L8/d510jz2GHV1PWdNGx0dWl52dnX2lq+T7FFn4ssgIvz1SKfPYVM+trwun/VXvh6g8ZQ2KmDazZLvO6dOnAQBXX331yvUMKkphHUsSI+pnpQBnH3f0nuDUwZuCYtqFQqFQKGwJNo5pA6vxfZGfiP24hmjW2vMtZeCZpvI5R9dTalSOA4zKU9uj9rFqlK8XMT7FEJRKNqoDtyfrV26z8p1H9ecyMqj75f9XrDnzaXMZyhIyono2ZLP8Xux1FFfKx/Zi4/0xalGbCCoqQanJsxSRjIx1GkY1KuvA2La/dvSMcVutnyz22ZTa/tgeM8zaqqxAkUVGpZ5l5h0pzg0qzSzv99dhaxkzbn+NEydOhO3jZZizMav0JNE51ma7P2rRpuiZjzQAm4Bi2oVCoVAobAk2imlP04SHH344XEjDH+NhsyE+J2Ivo0tyZmrXnprTn6PimNeJLx2J21b+J0PGTFQs7wgD7rHMrH2Zz5SvwzoCBd8+81lFfvwem4y29xjIOjHe2f0fjXn2faH6RbGy6Hgr354jjgeOYpbZ58f9e7FLqap2qH69GPjrRstCWlttXLHuJot0UQvprPO8KEbq76XdO164xRAxe8X2e+87Xyd+//CzZ4zbH6MU5iP3sjcOojIUg+d+BVZzExykRecgUEy7UCgUCoUtQf1oFwqFQqGwJdg48/j58+dXAuCzRCkqvahHL6lBZqZS5posuUpPkBOlLVTJDLKUrnyuMuOsk9JTJTmIzlFJVUaENWyWy5LGcAiTgg/5ihKJsJtEfXqzLovF1glV4jHSE//5a3O6xywBDJfL5nD16cF9YNfnkDdg1dyrEsFw2t6o7UpoFQmsuD8PMhRnZ2dnJcTU10H1v9U/cwWo+56Zw7nP2CzOCVR8Hez9aeF7au3vqC4q9DOqM5cfPT/+OGDXVG59YuNsxE3SM4Nn5myV/prdQMCYsPYwUUy7UCgUCoUtwUYx7dbanuQqWeiFYZ3EKT3hSlYGM19mLb5MxbRttscp/KK6ZX3A4D5QIq9o2Ugu32bpPGuOwkTUZ5byUInzuF6+nFGmff78+ZUZdRQuqBYp4PZF27i/mPn4smwbjxFmBF5EyalBufws1Ecl/mE2G4mmekljIuFbL21pdt8U24wEVkoEuI6gcwSZUFD1rYGf8QzqeYnCjlgoxZ9XXnnlhXMsrInHHVus/DksPORj+Tn1jPTs2bN76mjiMgvriqwP/J7hZzx7B/f6NrLo8LjmZ8W+Rws+bSqKaRcKhUKhsCXYKKYNzLMlZi3RzIdnZtksbN3QpCwhB3/yzNT/PxouFl1bBf9zWEV0DF83S8/JLIxZACdmAMZYMn8ftSRkPvveQivnzp2T4TUeqv6qHdE+ZsDMbvz/PXbm22XHGmt68MEH93xmC3hwnZQfz8ry23jMclmRlYbvKYccGTLthhqr0bMxcsx+YFoaXkQiYvsjYXsMleaXET2fXBf2ofvrnzlzBsAua1S+7WuvvfbCOca67Vi7jr1feCEUH75l17O6XnXVVXuOtbL9/WcrpAoPHPH798Iv/f9KE8Dbo3I2zbddTLtQKBQKhS3BRjFtr/4F8iB5lWou80cqNpkla2C2pGa8kUo5m8UxFAtj30vUvp5vdmT5OZ6tckrE6HpswVAJQaLyIwU9Q52THT/i++cxkynAlZZB+Q1H2BkzL3+OMWxjPsZmjC2t449W/ne7hq8/pwzmcRexZdvG/nYuO9MVcBsyq9ClUo8b0+akQZGimD9ZIR9FurCFSN2fyHrC2gy2Bnirid1XY8PsNzbW7M+xa9r4Mj+1+aeNLVsbbL8vn9+FVn4U/WNWGBWlkvn5lcU0s/ApKxRbFqKIiiz64TBRTLtQKBQKhS3BRjFtYJ7VjPgzFGvOFjfvpS2NUkTyPi4jmmEzw+a41YzFKh99xkR4JsjKT0PGVFWq1Yz5sApbqeWjbT3GFSHzLTHLzvqWr7VOWsyegnkkjp6Xw/QwxmNsiZl2xGpHNQ3Kt+73KUTRAwZmqEov4aHUwtE5zPrVMpUXC8XKgF1mFkV++LpEY3A0j0HEKvkZY1+27yfWMtg5HAsdsXPWO7AlKfKhs3WG+4QZvj+Wx8yIZmCd59Rg9efnh/39WVrggx5nF4ti2oVCoVAobAk2imm31nDFFVes+GKimU5vNu9ZjFoW0jAyc1MK0IxZKd9VxrSjhdz9uRl7UQt5ZJnlOB5YXS/yE6nrR21QLJx9WB69THaMnZ2dlWuP+Myz+698mL0MWR68cAQrc/1YtW0qH0C2QI2KC18HypIU5RRQMfFZtIayXDHWiZE+KPA48EybGZp6/jNrD/eTfUb+VM6Ip3Qk/r7Y2OH4f/Zbe6YdaSR8GcxE/Vg1v7ddl79zdr+ojsoqlI1h9cxF90SpxPl7FB0xYvE9DBTTLhQKhUJhS7BxTPvYsWNDGbAUs4lUh2r5ObWIe8YQefYVzZLZ72XHMtPyUApIpUDNWDP7TKPrKT+kyk8d+dt6M9AsI9q6LHrkmGmahmLF1T01RP57FTevZvvAKktl5mFxrX6ZwlOnTgHYzSp19dVXAwDuv/9+AKvx28Cu3zvKytaD1dfqoLQHUVRHL3qAr+HPUZEO0Zhax4d5EIjeLRw1oNrsLSBZNIUvny1ivhzWPbA/37NYxVZHIjUYNmZtXETx1PY/K815zETRA+o5UlEaHhx1wfHU/h6ovPVZnDaPwYrTLhQKhUKhsC/Uj3ahUCgUCluCjTOPHzlyZMiM0wu1icyiBpUMPzpemQtHhGFRGj9gVYzhz1cJRUbScrIAhBMyROdy/ymRTGY+Mqi+8v9HwibVPhVSFsFCvrLlPPcTKrTOOGMo8zibyc0U7rddc801AHbN5RwC5tNJ8gINnM4yM9OyaTMbz4ZeiFkvvW20LevHwxICRWZWFm6xkDIKb+olA+FUof7avcVSMgEnv3ciE7d636jkKtm7mc3xkchVhZSy2TpLVsR14D4aMY/z9TIRapnHC4VCoVAo7AsbxbSBvalM1wmrOgiZfsb2FFuJZmE8a+uJfKJye+Ibf11mbszkbX8kJmPWxKw8CkvhGa1a8jISrTD7HLEgjApofMhXNCvvJcqJoI5VzCcqqyfuitI8cmIMYzwmXrNPADh58iSA3XF23333AdgN1+F77K+nRJNKKATE4qCo7dlzy0LI7Hm9XAK0jMVy4hJuR1THXlgj33+/n8WjKqmKfy6jxYv8Odl4U8JQZpvRs2jWB6sLhy1GCVmUoDcLW1SpY/m+ZUxbhXBm78ZNQzHtQqFQKBS2BBvJtLOQgV7YTsbK9nOO8tOpZBvRufbJs1o/I1bsKwspMnDoBbPYyLekkhdwX2SWBJXIJPNpq3sb3YsR5sZ1zZJd9OoZ1buXFCarY49FZsyArRXe781gfyMv3DCSxpTBCUY8o1MLoCg26K/XC4MyZJqUS530IvKncugfpyaOns9eEhV+xqMENgYVchgt/mHvGRUW66+j7gdbEHhxEH8Mf+e+8P2o3gOc9IRDwHy53AeKcfvzeyFl2XNbyVUKhUKhUCjsCxvHtIExH2ZvhhglH1GLU/AMLpvlG3jG5o9j5bJiT9l1WBHO8G1hf7GaIfqZPs/ce2ww8znz92gBAaU+HblvI75nq+s62gauU8S0e8ueZlDjLkvQwyl8+dyMeSsGwizG+6R5rPC4iBbPUGmB+XqZv1c9v5E/MUupeykQ3Rf202bPv0GlMTVwH0TWjF663Ohe8nWUXsX/rzQmme+X3zsq4iSyKKrnVLHp6Fhut8H3iepHVqlHiXRUSunDRjHtQqFQKBS2BBvFtFtrOHr06Eq8caRWzRhgtt2fa4h8WL1jo5kgX1stFBItqq5mkb3ZerRPxdhGTLunvh9hNzzTjli1UoJn+oKMuTOMZWcxw+paStnu9zF7jdLX8vWUdYFn+9ksv7fAgt+mLAYq1tfvs09j+vx9nTS2fJ/WybsQfb/cal5+XqNrczrTqI49Fbcq21+b76Ead758rpuVYdt96lPO6aA0Q1kd+ZP7IvKhZ1oAj0hfopTthii2W8VrZ/Hg2fvmMFFMu1AoFAqFLcFGMW1jSiP+wv34GXi2GC0QwsexDynzYRmUIpJnldGyeuwXUvHBkbJV1Tli4KPLN44oqlUccubTVirsyFfPbEAhUql6qHozw47qrbLosd82ui77eNmfFi2PqHyNEcu18zle1uK0bbspjT1b6y1ZmFmURmPVs+gPxbA3IUY2itNmPQo/25ECXMXAWx9EWbl4jPIxUf+NjGc+h61yakGP6L3DjJ4RjVV+N6pIlOiZ5/eB0oZkcdr2LHBURGTB2DRftqGYdqFQKBQKW4L60S4UCoVCYUuwUeZxIF+PNsJ+TBgqVCkSXSgTN5v5fJksZGFhQyR0MPM4m8k5fWIWGqXWpo2SXPA21Z5sLW6DOjcK9VCfUepTNkln93qaJpw7dy49Vp2fhZb1zOKZSE7dDyX28f8rl03UBjaP2zFsCoxCvtikrkK+outy39ixnBo1eo65nZn5fxNg/dQTbnn0QpMMkYlWCQRVQhv/v91fCwvMEigpczUfy+8jfw4fy+bqyPTMbkbu10jExmBXReQG5HexSpca1TF6124CimkXCoVCobAl2DimDeSpNHkmOBKa1JspjaQ17TEPfw6zU1U3P4tkJuVn0NF1ohmomnFmCSt4hm19oEKdMmSMVTFU/vTtHgmN8fAhX1GfM0vh+5ExQv6uhGJR2kX7ZCFYJF5jawwzBW6D38dswdjEAw88sKesSEzEoV4j4LHBiWhGUtNyv22SEM2D03ny85Gl++2l28zGqkq/aWFbWVIXfpYN/v00+p6JnpnevTRkFj4+JrPO9CxX0fhmS6kK9YqYNgvfNgXFtAuFQqFQ2BJs1BRimqauT5t9HuwfzpihChlSLDA6l1lNtASkmn1niT+y9H3++8isj2eR0UxeMWsVVpH5p3tsNNrHzDqa1fYWXPDgsROhd1+4jr1t0f5sHKiEFb7exoqzNIvqOtwe9mFHiz5E4Uaj4LGjwvj8Pe356qPnKbvvlxscnmfPhYXXRfsMynJk2235VWDVL2yLAfE9zFiz3Vu2/GXvVZWiNnum92OV4+v2wjEBPXayRCnsw2adR5Q8iK0Km6avKKZdKBQKhcKWYKOYdmvzspzMKv3sVrEk/oxmTioBBiul/eyOl7ljH0gU0K8YX+S37bVLHRelBuRkDpny19BbNGOENatkGtl12WcW9T37SqN0th47OztDPkZlcRlJJMPHqIQ90XXsu7EmZgHALmPjaAUeU9EYUws2qGQ7Uf1HwO3gtMPMsCM1PrPn7PndNKYD7L6TssQl1j9Kkc1sOWLNrE4fTf/pj+FnLUrT20vxG72zlKWN+8SnTVWLzBhY7xFZI5WlKtJ2sFbDnivTl2RJgzgaYlNQTLtQKBQKhS3BRjFtYJ6JKT8roH29yq/n/1e+V2bamYKZmUA0u2PWwDPdkbg/NYMfiWc2ZPGZWZx5hMgfbuBZc5ZCVDFsjk/3x4zG6587d25F45DFaytLQebzG9E/cP2ZpSh9BLDr17RP9sFFzJvbw75MpUj35SuLQaZwV7Hqmeahp5zO4tE3EWzx8FYTZqvMsLnfjJn7/1UZhkjNzZoG9lP78WjX4XFt52SL6fA7Sanko0VU2FLFuQWiNMsq1a4dy+cCq4zaLFmZ/mXTx14x7UKhUCgUtgQbybTZp+19CipxvmFE8cfsIcvKxf4MlUEs8sHxdZg9Z/7EUaW7r6PK7Dbi/+Lyuf8iRaaqU+SvYisG93XEqkd84wZj2swyo0VElFo8yzanjsn0EnYMsyauR8QmlC8uYqLMwu1cjpuN9BdcLi93GI3vbF/UR1n8sfK3bzrbUYiU7vw8WBvN1xup7NniYsfaZ6Sp6GVEjMY3W4F4zHAdI4tbZCWLvnvwmGGNAC92A+ilQFXmP9+OaJ/CqPXxsLCZtSoUCoVCobCCjWLarTUcPXpUzkyB3ZkS+01ULmO/LcomxcdmdQN2Z5WZ2luxBcXOIih/bjQLVPmxM9bSixnNsjXZ7Jz9x1yPKC+y9Z/N4Fm9GjHVEfY1TRMefvjhFV955MdnKOW8b5NaKpWR3VMe15Ei1843hsXLbEZ9wX46pW2IlpXleGD2ASrLiwf7BzMluNKgrJOJbZPh+4mjA/g5GcnmaGPkqquuAqCfG389tqiw79lDsUpm2lkGRn7euR2RJkllRlOWpahd7MPm2OteeT1U7vFCoVAoFAoXhfrRLhQKhUJhS7BR5nFgNklk4TpsChwxd6ikGmz6i9JKKhNQJiobXdQkSgDDdeS+iMzmKgXgiJBLmZ6ztJkMNvdyCJ0/RiVTidrP4U3Zvd7Z2cGDDz54wZyXpZftifz8veVylCsigpnt+HrW9qg+bDJns3xkSlV1UGbX6FweV1kYnNWXF2FQ6R8zkaYSpG2rEM2DhYHqWY4Waxld2CJL16zcFn68ZQmf/DmZW0iF+GXPtB3DaWH5mfftVeZ/No9Hws51UuFmyWg2AcW0C4VCoVDYEmwU0zYhWsbqjEmpGVokrFBMgz+zcA0OhciSayhGyIwxCqNRyRRYlBUx+0xQ5dvp/1dLc3K9ImavktJESWrUwiA9hufr2pstnzt3Ti4qEEEliYlYpWLYStDn6636NrLs8LnMKjixRLRPsdkoYQUzeJWm1fdrtDCD/56xZbVASJZ+dtthbVOLjXDyG2CVPZpAkMWf3pqlkqpw30ZCSxaR8TslshqxGI5DdbP7r1KPqlBHfwzXUSVb8f9fTLreTQv92qzaFAqFQqFQkNg4pn38+PEVn5+fgVooTOY389utXL+Nv2fhJmoxDsM6s7ERH61azi9j2srKwCFzWZ/0UpNG7FP5+SOmrRLAqIURPEb8nNM0pZYEf21laRmxKmTsCIjvaU9jsE5Yi33Pkk6osZItIKOsUdlYVe1QYV3+HFWnjGkrK9B+WNRhwOppy6/y2I9YJYfgsaXKpz418D1jC4wHh7IyVDhntI8X9oneHdxWa5/1iY1r0y5FFh5m1sq37fetg0xnswnYrNoUCoVCoVCQ2DimfcUVV6wwkigdplIFRskgeupaTt2Y+U57KRt9fXtK3GyB955qM0rmwvvWSWOqkmhEs3PFOpXfOjsn8xGvw6Bam5d1ZaYaLf6yTuIQRm8p0wi9hVwiKEYasVi1BKeyAmTX7zFhQDPcXuKMkfIzbQP7ULctIYvSALAKH9hlnKxA5+VQI0sS9w/fD38Ov/N4PNv2KGpGpaDNdCFZdLQAACAASURBVB5cF2bYZ86cAbDLtH2fcD+pZ8K3b/QdEi2pq9JPHzaKaRcKhUKhsCXYOKZ97NixFYbtF1E3MJsb8dcpZsVMO0JvNpkxA7WQRuTrGUlb2qsrKz+j2WavvIwBjy7N6Geo3OaRPuH70vMteabNDAHQPmzGiEWiF5sKrN4HZsBRPVR8vLo//v8e84y0AUobkmlEegtTZIy+5/eOYokNPK54fETP/qaxJA9jjlZ/0+sAq0umKuab6Ub43o7kO1D5EwyRlob7nS0xWfy5MW3rC2PYtj3Te/DnyGIgI2CLzqZFNBTTLhQKhUJhS7BxTPvo0aMpE1JxiiPqan8dPgbIfdlKoR35p6N2RedEKmX1PVv2jmfW6tyIYfF3VcfI58P71Kc/tsfKs8xySuHqwTHJUTwzswmG7xvFWpRPO7MGcIx/Ns5HLRN+HzNQFQceWQP4GH5GomdDLZXI+yMotmd9EukhuJ/4/kV+d14WdZNgrJJZNLD6PPDCNZz5z/8/8pwYVDz+iO4js8b4+vjjeBlNU4/zYh9ZdjM1vkcspgrR86TaddjYvJFcKBQKhUIhRP1oFwqFQqGwJdgo8zgQL9bgzROcKpNNImZyisQ9bPLppRvlcnxZmdlImUoz0VLP9Mfm6ijZCUMlTomg6pzVVYlVMvHaiICP6z9yLDC3k9N/+iQkKtxsRHTF+5QLIjK598yIHkroxqLMTKjF4ZB8PyLBmgrfGkljqkLNMqEduxn42MxcqdJyZoLLTRak2Rg1UzGg28bjLkpj2uvT6BzlrhoxNSs3iJm4o2Qn9p7mZCoc1hWZx3uiyXWQiWZHkm8dBoppFwqFQqGwJdgops1CtEhYwIyDZ18RA+mlOlVhNtG5ii1nITEc+uXby+0aDb2KRGy9BC0jULPzqK4K2fXUYgLRfcvarMD3y2bwwC7D4BBCFv1kSUF6grQomQszkXXS5hqYzUZiOZX4R7HoqDwlSPJQTGdkwRBlZbB2c7iNb4eB+zNj05uaitKDw588OKmJEh16qDSi/D7yGF1sKBIx8ncWJnoLQo9p86IgmVWIx93FJEuKRLOGEqIVCoVCoVDYFzaKaRsi1mKwWY+xJpup8UzdI0u8AowxEcXCMuarZoKZD47ZAp87Ei7GdR/xbfMsNfO/c10zqwOX32PN0YIEXIbCNE0pI1XJP9iHlSU7UYjCkrgvlQ84ClVSs/2RhBXKKhC1if3T6twoFE8d27s+oMdXxPTU2BnxgyvdxSbC6y+sbRyyxla7zEKl+jiyYoz6srOEOezDjkIB2X+vzol8+Cotb+b3V7oYDi3MtAGbhs2sVaFQKBQKhRVsHNM+cuTIWr5L809yMP5Imk8+RiWa8Psy9sB1U9sjH9w6i3v4MqJt6vpRu5gFKtbpZ9gqzR+fE7VBJamJZvDRLFhhmqYw0UQEZqYZu1D3g+sbJYdRSUGyxTh612NmHG1TPr9s6UJmONniHyqNJLchQy95TDb+1TGRAvhS+bT34z9dB7z8ZLRgBxBbpvj9lo1d5btmVXn0PFm5xp45nWikHmcftlqCNkqyoxK+rKMeV0mjMl/9pkUeFNMuFAqFQmFLsFFM29Tj/nt0DLCqkLQZGfs5/P/eZ+ShUlX68nq+7YiJKj+ktcGrmJnRKvbKx0fbRmbYqnxmPCNKYMWwR/ySWTs5rjRjz9M07fGdZf5iZpeZn7DH0Hi8ZT5GrlvEtNX4Umzat0Op1Lm9EUvvLQIS1VFpRTIWympdxaij7dGz7a+T+WpHkC2OYWBL1KVWFlsd7N2VRaBEi4j4MqLniN+fzEBHfMx8DCvB/XvXfNnMrHmBlJH8DSoaKGPGbNmL1OOX697uF8W0C4VCoVDYEmwU0wbmmdDIggo8U7JZZDa753NZ9Rj5V3vxq5nvhRlJlokri4v2GGHY2WzcoGJbue7RzHc0w9dIXUfitRWDYEQK52jW3VNIZ+p3LkN99+coq0WkoVALdDBL9vtH2XLkg1aZz7KMaGpsjEQE2HNq99Lakfm0uU4jeohsIRpGaw1HjhwZOtaf4xH5Rg9qqUgPq1sU081Lc/J7xyx7/jlihs0qdZUvwJdv5xqL5jHsmTYvwcm+e66Xvx7fH35Gomed26F82lEmTsOmqcg3qzaFQqFQKBQk6ke7UCgUCoUtwUaZx48cOYIrrrhiRQQRyfHZvGamoSwVpZmHlOmPF1jw+1RYS5TYnk0yHLYRmfV4Td3eIhyZUEOFGkXhIcrUqNK3RtuU6SkTcqj2RYKQUVHR0aNHU/eCEtlxuzLRnTLRrhMKyJ9+bHGYDB8TmcdZiKaEbrw/avOI+KYX2sdmzBFzbNaPKuGPYcR91hs7ZiL352YJjLi+bIL25ygB7EHAm8l5sSQ2H1uiliiEkk3L6l0VvVdZHMyhX/4cNo8rU3T0jPLY5DpnAjRlfs/ep5tmFjdsZq0KhUKhUCisYKOYdmsNV1xxRSr6UeE6tt1mkWq5OH+sSiTiZ2XMWngWHs1A1YIGvp18nV6yCT43YwFKkBaF0/EMdCTUSyFLX6mERiwE8axsHUFIa21PyKBapMXXa4Ql9xZS4L6PRF5KtBaxCU420ROV+f9ZrKZEhZHQspe6MQrf42P5HkeLf6gQv6xPGCrELEpjqurK8EmdRpJpMAO1tnqmzXWwe3qpQomYBZ8+fXrPd2O30aI26l3B78ho7HBZ3M4o5a7qg0wAa+iFbUVLK2eJrVT5mTXzMFFMu1AoFAqFLcFGMW1gngFlaerUjIn9aFFSjV6KUOUL8ueqdI+Rn9CO5dlqNJNTSTpGmLbal7F2npUrv+Q6WIex8nWzJAej8H7JkYUnVP091H1RGoBIDxFpJdT1uA/ZX52FbbFPUSWhyNhSL9kOsGoVUuGKUZ8o5sP9GN03NWZHmFE2lsxCkzFttuzZscass3AjrgPrFS4XorSiCtY+TsiSjVl1n/aDKFGKejeybiFKAKOS+vRSP28iimkXCoVCobAlaJs0w2it3QHgzYddj8LG472naXq031BjpzCIGjuF/WJl7BwGNupHu1AoFAqFgkaZxwuFQqFQ2BLUj3ahUCgUCluC+tEuFAqFQmFLUD/ahUKhUChsCTYqTvvUqVPTjTfemGa16sUxR1DxwyPLK/b2Xcw5B51xZ5344961s/292PEsa1svZ3eUa5izgt1yyy13sorzxIkT03XXXZe2aT8YaVv0PStrnevu59zDxjrx0up7Ng5UJq4sT7Xh9ttvXxk7119//fT4xz9e1jnCpbgf6zxzlwr7ESbvJ2viQZaxTr783iegc3C85S1vWRk7h4GN+tF+9KMfjRe+8IWwl699njx58sIxJ06cALCb/F4lAfE3wRIjcHIBTvdoyNI8qgUWotSno+dm4MQsWbpJ/iEcWR9aJajIElfwxIknWXZv7BPYTUJx5ZVX7vluyRt4LV5g977df//9ez4/5EM+ZCU857rrrsNzn/vclXZeLKx+vBYxTyijdJC9F+1IAhi1AEq2gItKYDKSSEItBjLyg8htyMrn54aTyEQLotjiGLzYhN2bkYU5brrpppWx87jHPQ4vfelLZb9FbeJ1p7N+Gnmm1PXWWSRldNKevd9GCY7fxumGVdmqDv6YaI15dYxaPz77AbZ3v42VKOHM2bNn93za+Hve8563EWGBZR4vFAqFQmFLsFFMu7WG48ePX2BozMaA3ZmtYiCZuYOZNc/MRkxz2XV8O1T7eucyVOL86FyVvnLkOooxRmywNyuPzuHlSg12H42BG4vydbnqqqtW9l1u9KwnbBEZQbYoghpD0YIHbG3qLboxcr39mCt76UYz9FLMZvtG0nJmmKYJ586dW3kGsmUo1QIkIy6hnlUr2rcfjLDmUabN9fLHjL7vPNjqw+lG7dzIgqn6Xr2r/T71GbUhW470MFFMu1AoFAqFLcFGMW1gZmSc3N0vd8dMm9lktKAC+y3Uwgrr+GAYmc+v57+JwLN9Xlghq4Py9UR+UINiARFr5gT9aolGv93uoaq/WVMif5tt8+PgckH1ofm5+L5EoknV5mg/M+nekqZ+m6HHJvz4HF1EJWNnvN0Q9QnvU8uIZuWuu38E58+fX+mLyK+qFryJ+k9Zq9a5p0qnkL2jetbBaJu6lxcjsMwsOso6p/QZfh9bqEY0FGrBk2y5Wj5mU1BMu1AoFAqFLUH9aBcKhUKhsCXYKPN4W9ZDNtOImUz9urQsumHzRyThN3m/CZnsu4rHywQoKoxjnXMiE746l81GkbisZxYfWQvXPtV6s94ExWFPdp+4fH+OckkYOITGtyMSJF4u8D1SYVSRqY7FNipsJxKV8TnsForK4TqOmC175s/ombA+USZbPicT+fD69NFa9tlzchCYpmlP+7Kwo16Ogsg9wq4OfsZ4f1SeMl9H7wG+P9yO7P4rk3pm6uY6Zs8EQ7Ures9xeOA640zVJRrf+wnNvZwopl0oFAqFwpZgo5i2IcuIZuDZMLNpS9YB7CZlsGMU084YqUImQOH2qDZEUGENESPhxAE8I42SyKjZZI8VALv3xRgwf3I9fHmcrISTlmQCK8/CLzeUdaQXAuT3KXYesVgLe2QBXDT771mB1glP5GN5LPn6qmNHQmWUFSh6BkeEmxeD1hpaa0OhnwqZYJMtUyNhlT1mGDFgZpWKkXqMJG2J6pzVMROxjjBdv90/byxQ5vdbhN7YycLSimkXCoVCoVC4KGwk0458fQZmxcbqjE1b6rkzZ85cOMe2GQvnNIg8Y4tYhWJS0WzS2KR92j5jldFslv1B3HZut7ckcJpWa59tN8tClBpSzSIVSwB2WaAlROHUpJGuwNpsx3KdI6tKNmPfFESMgMGJIzIrBrMk1gtkbImZlgr18mNLaSaUFcr/zylHlbYi87sqH2bUzkvp247CIbPQuMzyweD+4LGunnm/r3dvPfhdMjJGlXWGt/vr9VLsRs9tz0fPlkR/rkqOpb6PtG+d8NtNwea9BQuFQqFQKITYOKadzRyBVfZojPP06dMAdhm2fQd2WTgni1eq8nXSItps0yubjU1a+k1OBKPU1oD226p2+/9Ve/YD9jn6FKJmubDFW2yffbf+88yerQ2sCI8Sp2Rq9G1ELxmJ38YMQEVN+P97/kj2Cfp9qm42huye+21s0WE2mPl5e+1Vbb1UML+2ui7rEJi1RloTbj/rNmzsZxaXdca8snRk2pbRRCKZ79fAlrBM29Cz7ET+arau8riLrEJWXztWMe4IB5FK9lKgmHahUCgUCluCjWPa0zRJf67/32ZOzLTt09g1sOpjZaYd+WBHEaUI5Rmt7bPt7OsGNOOwz0wdb9uszZc6rlXNQKMYWz6HVeTs5zXrhD9n09SbEdapay8G129jFs3jwe9TsfUjscTsx82Wr2VGo+KNIz2EsiRl8blqWcWDRBbjC6z2k9Uhy9PAZY8sFKLqo/zfWbQFt2MkP4TyZSv/ta9TT9sQ1UUtyRrpcHhs8liJ3kt8X9QzkUUKFNMuFAqFQqGwL2wc026tDS0sb7MtY5w2I7Nzzb8ancM+XzXbA1Znpcwuoqxt7LtSako/S2ZWzrNVjkf3M8iReMX94tSpUwD29if75DhuO/NlWt/ff//9e8qIskIZ696EhP1qIZWRGTurhnl8e6i+5T7N/JKqjtG4YysQj0O7p5F/1+qorCiRBUFFAtixNj4ips0s/SAZ9zRNqeZA+VGtDpm/mBluZE1gcPSGGg++TzhqhdnxSPx8L4Y8stLYOdxH/M7yx/SsnqahiJi2qn9m2WHLRJa1LWPum4Bi2oVCoVAobAnqR7tQKBQKhS3BRpnHW2s4evToilknEhaw6MnCrCJxh1qcgM0gvN//z+YwM7tkJhs2NVpSkmjhC25PL+lJdG6UPrQHK48TpZw8eRLArlncvvtzlKmJkzv4/+2Tk+KYKdyHlmVukssFFuKoMZSl2uXvVka0EAqvIc+ixci0zqZTdt1wWyJTt51rY5QXLrFx4duhFlPh79GzES1E46/rnwd2CV199dUAdl0s+xGQMqZpWrk/vlxl8mWzrq83P4/qMxJw8j20+6JSCPv/+T3D7wzf5721vdV98ts4PJBN31F4KifBsueezefrmPIj8zg/RzaOVd9EbVVpqA8LxbQLhUKhUNgSbBzTPn78uEz3COwN5QJWGXaUAlXN+HlmxoH4/hybFXNYVTTD9u3x5drsztirn9HZTFOF02SLGTDL45kupxAFdmegJjSzT2Mxxnx5huqhkhtETIwFViqExl+HEyJkIWUHAWa5fhvPttWCF/6eMjvjcR2xJWYALEQyZKkh1QIOmeiGx5u3rAB7Wadimxz+mImXlOWAw7uAXXbG7MvGqj2TntGtCy9Es/vmE8pwHbjNHKrk96nPETZpYPbMz6f/P2PjwN6xrMSjioFHi9sYOAzX+s+/s+1/Y9gXe898PbKFXqxu9p7lhYqi5E6bimLahUKhUChsCTaKaQPzDC+T2tss0WaeHNgfMSMV+qBm+96varNh9tfZTDFaSpDrbbM4Ztg+jMrawzPCkQT3XG8rw2bjxl799azN119/PQDgxhtv3HOM1YdTsfrymTGwTyuaRTOjs3pEDIsZ6qXyaVubo/A9g1r0JVsqkRkb6weiRVJUSJT1j52bLbNqdVTj3MP62Mrl60YLy3AdOVSS0/b666rFUtgS45mPnW/jicM8bax6RKGRCtM04dy5cxeOtfI9Q+TnPbMqGfg9wOdkoUQqpWp2jtKy8DMXjVEVpsrPnL8G9y2Ha0XplC8mkZWB/f08ZqNQUx5vbCXydeSQxU1L7lRMu1AoFAqFLcHGMe0oqUKUSJ99f6wSjBTaBpW6MUquYrNu9r1m/tVeEgNjr1ECGJvR20xU+ZSiBDDMBpktR0pT812af5Bn3BmDsPKtLGNrNsP2/mlm4XxvmZ35a1+qmS4rcqPEJQzF/pnNeDB7ZB1GtgSkgZcwzZiKlceK8EgxqxJ+KOWz/9+eDVZx8/iIEoAo3UrEnux/e15Yg2L18NfhuoyMIX7+fR+zxU1FDUTKbBVFoPzHvnyVmCVL98rJTnh7pgTnfTyuo/eOla8WXoqsgtn7pQcrQ6XRje4BjzO+174efD82IbmTRzHtQqFQKBS2BBvHtP0sKfMXs2/bELEJ9gcaeDlP/gS07yOLiWZ/kNXJ6sHKRWB1eU32CzPD9353pYpXflFfN/M/3XnnnXuOYfWyvy/sIzeWztaNKF0mz3RVSkzfZvadXyzYImHXHlkcgyMO1AISwKoVyPqLmXYUraB85uZn9T44Hk/KihE9G9YXNs449jVi2jyur7nmGgC7Y4l9zv6+Wb39wjD+ejauI4Wz1Y0tSZkC2Y7NUp5O04Tz58+vRIL4+6LU7cymI0sRP8O8n/Udfh/7srlMfz1WQCsrgD+OLQb87mCLkn8Xq3cja2s89pNLgsHvO7Y0jsReK4uCPz/KvbAJ2MxaFQqFQqFQWMFGMm2OxY4yRrHSV8Vc+3NslnfPPfcAAO6++24AwF133QVgNTsPsBorzD4/vgawyyK4TswQvJXAWIrNVq0PzF/ITNvPNtl3ZEzOyudZum+jbbPr2AyefU7e+mAx3cawTIH+2Mc+FsBqjC+w2298L5jJe7bBfe7vi4KNi0j1bLD7YBYCpYL32zjGnhdAsX7zOgWui90X67doQQW772yRUHkCgNXxxnoF9mn76zHDUos+RD5mu851110HYPV5MngLl1m32E/NS+pGSncVw86KYF/vbElJj2maZHSJv5bSwUTZzfgZYyuGlRXpcLjfVbx+lDlOvQuzvAA8VhiRZsPuFcdn2/ZMR2DvEG4Ht9u/59jyxoisHfzssSUh8luPRF0cJoppFwqFQqGwJdisKQTmWY7N9m3Wlyn7IoYG7GVlNgO84447AADvete7AOzOwjkPrs36/bWNTVrdjJnarNXYky+X46R55hvFJCuVOvtMs/zlrOpmdacHMyxmJO985zsBxP4dmy2/+c1vBrDLsN73fd8XwC4D8+XyTJfZZpRTex2MLHto98P6h32iftZtffmYxzwGAHDDDTcA2L3/1ucc6w3s9o+NN2uzlWUWHz8OWEXP0QLsWwf6CmkVT+3PZXBZUaw1q+H9cwPs9tW99967Uo61/QlPeAKA3Wfl7W9/+0od2dqllqeMxujI8p225gHrKyINBftkOe44Osfu6Xu8x3vsaYc9LzbGomyAHEdvjNjGhe9zfoZVhIMHR5ZwhrQsskYtzcnanQjMtK0dUfZGA2sm7P1izN5nsDNwhAHnHo/yInAEzaahmHahUCgUCluC+tEuFAqFQmFLsFHm8Wma8Mgjj1wwZZh5xZvqImGM/27mMG+Su++++wDsCmVYFGUws4g367KoQy2K4AUcnDzFPq09kSlNJb1XaTJ9+9m0xaZaFpf5crg8XiAkS0Vppjprh/XzO97xjpVz+F6ySdPuW7QEaGT2UuD75GFt4tSsLO7zJm6rj7lH2Kxn44xDp3ybOGyKk49Ei9uwiEkl0AF0Eg0l8ovEPSxWzNICq7HJaUBZROnbzCF/5l6yMWSfvk52Ll/P+iJLBJS5S1prOHbs2Ipbzj+fnCqYzcaZWdzeJ5YqmPvH4McOi0rtmbayrH+i0FYOh1WuFt8O7h8WaEXjQIVRsQnaX8/ulfUFm6+tf81V6d9z7OqwvrCxc/vtt+8py0O9R6N2sVm/0pgWCoVCoVDYFzaOafvZVCRGsBmnStgfsVheQIMZls2sOJTEb+P0opwiMpqpqXCTKEEKX49ZEpfhZ6Cc7IJDfyLxkkElD+EZfpT0xPrCjjUWGoV88f1iEVE041XpZjMwS4rqrZZg5GX7gF2RCyefYbYcpUO0bdYfNv6MYUX3n8cvi32sv3xykijhim8HM34/DpRQi0OvojAxtsKwlcbERb5PbIwYS7I+MuYYhV32xgEL7aJ9vVSUR48eXXk+/DhgS5QKLfRWGgsptDbzvbv22msB7DLDKCWpjS9jk9a3UepWriNbJqJngi1tasGQLAzOzuHnPjrH2m7XZaskh776c608GzssVLbr+7HK953fO1wf355NS19qKKZdKBQKhcKWYKOYNiNaeIL32ezRvrMPBtidmbFPx2b1NtsydhExIA47sXOipSuVz49TD3pmwOyf2QT7GKNz1QIbnNAE0In02acahT/wNrs/xiw4xM3XzcBhKBFb4npnM18L27HyVDiXvyazZvbJ+v+tP2yMGPNhP3i20IVBJcyJwOyIU676Y5ghqBSY/r4wu2R2FGlIuP94DNnzZqwpChOyulkYprFy+/T32trMzyVbIXw/232K/NMRdnZ2Vqxbvjy1YEjm/+SkNgZ7Ph796EfvKTta9pKZPb9DfNnWHyrElK1ovv6cCpd9vhHz5ZA/A2s3Iq0BJ2Axlmzf2Srmy7P7YuXauIieN37GuT+jsDS2PmTP52GgmHahUCgUCluCjWLarTVcddVVK+kKvb+BE4VwwvtIXcuLUbBPlheCjxI7GJhZR4t/qAQibA2IkkGopf+YTUfLzxmsfVkCAT6XZ5w8O/bMh5OTcNrUaJER5Y/mdJOeTfH9zxL486IP0fWYUXNfRiyW628Mgf2HPB78PlbiZ6kvVfIOZm2+jipBCusIopSN3O+sLcj6XpVvrMn6ImIqiq2zH9a3WaUZtU/zEUf7MivNNE3Y2dlZuaeRpYiZKUceRP5UHm/cx9l7jsvld1f0HuDxzKzcM1F+Vtk6Y4jGGOtv2LoVWch4zFt72GpndY38/Gy55H71vnUVZcSMO+r7i1nU5FKimHahUCgUCluCjWLaR44c2aOKjRhbtGCG/575Udh/x/GMESNVcZiZepzLsxmh+es4zam/jprdcUy5r6NiWuyX8u3nmTzPYnmGGsXKs9KZY36zZVa5bhETYjbRW/TBl8/jAVhN68p+OpvlR7GoKo6d+ymKPGC9AC8K49mZWtaQFwXJUpGytYb90n4s8zPBceFRTgO11CdbbSJrB99nqwtHZ0TWAHX/mWECq0t/9ljT+fPn0+VoWSHP94F1BcCqZkFpM6J2qThwbkc03tSCIdF7gK+n4rWj67FFkbUHWfpkrnNmdeC6KKtJlM5WqeLZOhAtwBRZNTcBxbQLhUKhUNgSbBTTNgWwUmrysUA8ywb2zkiZcbA/Tamt/T6eqbEvxJfBs2RjEaw8jmZw3B6eGUY+RmbHdoyKQ/flqb7JMrDxdZlpR2xdzeB51p/5zkZmvGyR8DNonqmrTGjeL638dtynkS+QrT7cT9EiDGxx4SgFXg7RH8vtUxnL/LkcCcBRCpHCna0jbHVSftIIfL8iixNbWlQGuGg5XuWjZVhWNCB+p3DfRsuBch24/zlePss/oLQtzPR9JkbOiMj+/MhixUyU33OGLNMg9xvndvD3mFksf3K9MsatImCiXA9sfeDnOsu6WUy7UCgUCoXCvlA/2oVCoVAobAk2yjwOzKaITHDAoU9sxonk+irUh01x2fXYJMNlRaEJBg5rYDNidA6bllToQnaOSh3K9fXnsFkx6hM2s7Gwi0MwonrzdTJTFKfjzMB18+Vx+BQnsonqq0Rwqn+iccChhWwKjMywKjVkJEhiE7Ay50VmWE7LywlY2LTr28XuBTuXXUeROVaZfyMxEbdPiU4j0/RIClxzy7G51Z+jxqdqh/+fTbHrjAPuF3bhePM4i2L5PReJM7ld64j9uG4qRXEk8mK3S/YOVlDCu0xIyiLKaO10vk9lHi8UCoVCobAvbBzTBlaTAnjwjMmQiW14tq1mdyOzPGZNnJjF11GJiiI2oRiBYo5RgnslJskSjvDsWAnPsuQa3PdRaIm6b8zOotAiZg4jiMRJzAhVshZ/HU6Qw6lVVXv8tbmfmMVGjI5FRRxGEwns9iOcMcbDbIUXrIjERIp18v4sqQ8jGt98L9n6FVk9WGDZS65if6oOqt4sSPT3n0WLHtYLTgAAIABJREFUPQHaCNO2spgp+nP4eWerVra8Zg9RWlH+VO8jf4z1hUp0FfURWwpUONeIFdL6MRqjPK5qac5CoVAoFAr7wsYx7SNHjqykCIzSYaolGKOZtfJls08zm90pP3iUBo9njypMLGoX1yXyQ3EdmQ0amJFEPmHlk8t86oqV8zlRHRXjya6jWHoE1g9EsLApXqTAkIV/2P1XKU+jWXnEOHxZUQIYqxuzpyhERoUqqXubjW8O/YoYXe9eZgyYz1Uah8iSxOFodh/34w9l+BS40TPNUGM+eu/Yu0ox7BF/uPr0ZSnfdfYsjyYuisa1Yro8rqPEU8rvzuM86k9lHcxCDFUfbBqLHkEx7UKhUCgUtgQbx7R3dnZWEghEzED5LyLFIjNrFdgfKc/VMTzLi5bVM6iZe3QdlV6Uj4tYrH3yUnURK4ySdAA6kUnma1az1xFfJtc9Y/QjTIrvl6+38olzvTMthWKKmVJaRThEPmhWBSuFtodiGr3UtP4Y1mbwcpJen2D7esrfkeQqqg1ZAhCue3bfovozbMGQTGmu0u3yduWrV9cFYr8qt1VpeDKfr0oMlanH+Xrct76O/H7mYzItjY0h0/mod3L0XlURG9H9V1YNZdGMUOrxQqFQKBQK+8LGMW2v4oxU1qwy5JluNGvtxSIy2/CzO/Z7G9jX6OP8OBaQmSIvPhK1i/3iKhbag9kZ1zViAcyS1CIdEQtgJm8sMVqYguvCKs4o1arhYvxOWT8Z2DoTqXi5LqpOWYwof+elU/357OvL/NLK969Yn69jLwIgswbYJ/shs/s1woq57uxftwV41GI+HpyONasXp5vNVMiKcWf+1N73dfIEZFEE+/HfZs97dP0I6v5HGhHOB8DW1ah9yoIULXFr4HK4jiPWu2LahUKhUCgU9oWNY9pHjx5d8a9FCeDNb8sMJFqEwY7lheSVr9ufqxi2WsQdAE6dOrXnHJ7d2bkRm+BlG+2Tz80WmeC+MET9yOWqBRYiy0W0UL1HtIADWyHYmuKZcbZs50GA2RHHwvp6qYxdWXw76wOYAUWWpLNnzwJYvad2bpb1iY/h2PeM0SnNhlK+A6sxw0r5m+UH4H0Rs2fdiIqS8MjYHqO1hiNHjqzEmXu/Piui+fmJNBTrZhmLVN2q/pmC345lS05mBVCZ17jMzPpg7ypDpC/i/uLxneUcUJnx+PmNrsd1zcBtvVTvn/2imHahUCgUCluC+tEuFAqFQmFLsFHm8dbmNW2zZAAGtYhEljqPRQkq9elIOkQWhl155ZUr5xiUKcjX0Uz4ZmIyM6l9skjKi284xMPqwiKcKOzFjjFxD6+JHdWVhWZsSmNTm4dKQcj7+X9gzEw1YtKyvvZmcCBPdsImbRXuFo07dY5tj0RSStSTpdbkOrAwMDOPG9hdYuf48a1cBna9LKUwP08Gvl+Z2VeJpPx2O9bu9QiUqwhYdTWwKypKY6rCJ3vXB7SwlvvFt1ntU2lfAS0EUyFf/pnmdtn7wPo8cg/wu1i5HaI+U78L7FrLFosysKDU94lyEW4KimkXCoVCobAl2CimbWABRSRGsH2c8pTZrD+Wlx9UbCxLrqISdESLY/Asj+vm2bLNTs+cObPncx2mYKycQ3KiGbZts77mMChOjBCdq2by0X1jljmSYpHZxgjTHhGv2X0wqwazjSzpjWK+vOCGrwuzGGZtWaiKstpEz4SyBvD9j5iICtOL2CIL6FRK1+hZ6THqaLz1ltLN2FLUtwwLM83Ear1EOXycr6ehJy7LjlX95O8XvxvtPnHq0EggasewuDS7X/z8s/UxS1LUSyK1TpIaRvRsKCvrCDvftFSnxbQLhUKhUNgSbBTTnqYJDz/88IVZH/sc7Rj/aeBZZLS8Yi/phKqTB7NIq6v3+TE7sbqY3ziatfMsdR2GbWAGothsVkeFyKfN7NLuVxQ6xek5+diI0a2TCKG1trYPikPvoiU72UrCoT18Te/fZyuG8ot6KLbEjDFK72jH2lhUbC0aB8yAsgRHfC4nEWKfcGS5YP1IxrzUOcqnyedHfcH7jhw5kjL33gI+EStjCwc/hyqEyaOnj4ksCXY/bNGZq6++GkDcT7wgDLPm7L3Aeg9OdmOWLG8NUMviqvGW3TeVbCVaZITvKb9bIivNOglYLieKaRcKhUKhsCXYKKYNzLMa9qt5P6FikZwWz6OXAnBkoQCembFPOFqMXlkFRtI8Xgy4/7LZKvua2Q8eKWnZctFTVPvyVHrMrN2jSy8eOXJkqNxekpNMuaqU05F1iLUFvMBCxDqUEp8V5pFKWaWT7S2yE9WRIwOihDM8ZpQ63j+TnESImWOWQpRT7Gb3a2TJVIaKMonKG0muw9fmfRmLVQzbLHAR4zcLy4kTJ/Z82vaobjyOuQ94zEY6FU6GxToj/z5iy4B6F/MYjuqmInuixFNsOVBpTf2+TUUx7UKhUCgUtgQbx7SBVXbnZ+oqhSH7H6LYQJ4dK/Vj5N9Q8cQRm2DfER+T+V6Y2aiFDnx9mCmyEjzz5UfpFz0iPxgzVRU3GSn4mUFwn0d1jOLnFfheR2yGVdzsz/P3kpm0sRZbUpAZttc2sNWC2US0QA1bkJQ1yNdR+cyjtI7AXubDUQIqfj5iqszO+HuU5pZZGaflje6b/W/9yb75SF/AY5AtGNy2Rx55JFVO8/hV4zbzabPFI6oHt5nHijFt2+/bZWOP74NaBMgfy3VW1kLPYnmRI7U4RzbeOPWttYcZN6B1F4pxR3Xi8Rb57tUiSpuCYtqFQqFQKGwJNopp24yXl/wz38xBXgdYZYZZHCv7zZT6MdrHal6eXQK7szo7lhc1YSbu2TQv3MBxmax0j+qt/KyR8pz9W8qCkS2eoa4f+ZbW8Wlz/SOmzUyU46gjFmv3xRS5zNJtf8QMmKVkTMSYVMTCfX2ibZyRjFkmMy5fF7uuymZnkQ9+Hx+bMV8+l7PBsS87sjD1FmsZyRYXwd47SnMQnc+WiMzC12Ov0djnfmH/cOR3tzwN1g6+p5HVQeUQUDkm/H2x8u26999//57vp0+f3nOcb4eygKi4at8OhUhRryIPsggHZuO9ZV0vN4ppFwqFQqGwJdg4pr2zs5NmpGG/Rm82G0H5pyIoP5SaiQK7s2FW9TITidrFecLZj5fluFbX4xhpXz6reBkRe1EK8Izx8LnKh+7rwXqCLGc2EM/KIz8nl5f1k/1vn0otHqldme0rv1rk8+uNb38du7b52ZVvlhXi/n/OF81MO4q1Vf3H7Gkk+sMQPbdR9i8gZ14q01YEtvBxGYDOlZ6pxg38vCg26RkiLyOs3meeBd57770AVpfI5Lr6dpqFiD957Eb5I8z6Yoyaszhm7xYeXyN+/l7sdpTdjK2aI8vHMvseyap3OVFMu1AoFAqFLUH9aBcKhUKhsCXYOPP4Qw89JMVRwKqJaSTdHUOlpsxS2ikzeRTqwWZPE9Kx+c23S6UEVWKVEZGXmUtZZOLPt20stmCzUZaEfyRxhRKpcZ0j87gKF/NoreHo0aNSJAesCtDYFMymbr+PQ/H4O4uxojapECAPDtNSKRqj66i0tXxOtKiJQS2IEdXVxrcKaeR+ztrHpvb9JLiIBHbRAisKWbKTKMmQLzcazyo9KT/LLDbz/7Npls3Kfr+Zq++66y5ZLrD3PWDvCPtU5nEry78nTHBm5nhOvRy9T3mM9MSLvu967rfIPM4m7kgEzHXcz/vtcqKYdqFQKBQKW4KNYtrAPKtR8nxgdfauGHfEDA1K/JKlL1TJJqLFH7huNgPl9H4+jIZDfFRSlwiKuSkBjL+eSqrBM/2ILbGgjj+zBDdc90yANNIX0zTh/Pnz6bKuXO9e6BKgQ2JUitIoERCzPbY2+IQsnD6WEzyw6MuDw6Z6S3VGxzD743SW/L8/RiU+8vdchVtmoVm9UKmI0e5nsYd1FgzhukXjWzFCrlvEiLkuKrlTtLiNMd977rlnT/kGf/94HJvAUlmFovBEFbbHwli/j8vnUM1oTPVC57KUpOr9GoXqZeNgE1BMu1AoFAqFLcHGMe3WWhoKEYVL8flqm5rdsb/DXy9KGxldJwrON3DqQWtXxLTtWF4YgJmQB88WuawonSUzhmjG6a8XMRZm8CN+Q+Uz5etF+3rl7+zspP5bttKo8iI/OLNxZiZRmkw7hxkIsyTPtK08PzaAVc2B+SD9tRXDZv1CxHx7lh7fVxxS1guhjBLzcNpSQ/b8rsOAMqtPdOzOzs5KeZHFrffeGXkGlGUvSoGqwuoi3z+nTeZkTgb/3Vh5ZsHxdcvSfRqy8FTWhKjQ2UzHot7jWfgWj2++bmSZ3Y+15nKgmHahUCgUCluCjWPawKr/xLMMlfYuS/ChfB8qebyfWSm/Lc/Y/OxVpSC877779pTp28VpSyOVeFQPf4zVhVWczA79OcqqwTNc/13NbDPtwKi6P5rVjjIr82sDMavcD9gvx58qtSawyo57C9ZYO4DdiAP2ZWbLebJfnfs82q780GxhiJL5MDLlLx+jmM6ItkHtz7b1/JIR0+b9/vNixrxKiez7WC1/ytqKKPEHv9+sjsaqo3baOZyYheucWUKU7sNbhTjdr7K0RP1r+5RfOkuCopTg2dhZJ0HP5UQx7UKhUCgUtgQbybTZxxylQTSMpC3lc0eZYlQnZknsP/b/G9My/yTPKqMFQ3rXj+LF1dKivMhIFO+uGEQWu871VzHdmZKWy4v8Y5mvSiFT3arYTC43Uqn34sy5PwF9z1hjkCmmuXzWVvhjFEu2/eYvj+qo9Akji78olf8IO1OWpEgJzuWsk7o4W17RLDSsh8giUEbeHYpRK0uLt4SxhUcxbd9PyuJin6Ym9+8qjhJQiMYfb1NWKN8u1oAo33X0zPO7Sr3PRyKHMs2DsqZuCoppFwqFQqGwJdg4pj1N04ovO4p9VbPuaOarZsPKn+aPY19zFJfN341Zc/adLONSD9n1lI+HZ4yebWRLi/rvUbyzUleOqL17saseWRyrgsoKpq7hr5Md14sNVrHKwCqryLKncTv4epG6Vy2jqjK/RXoI1bcR02Y/vvJPRyxKWSgY2fOrYogzttgbO14PEdW7x+bXieXldkQZC3mZXT4mei55n2LCtrAHsPuuUhE02WIwHOPNCxVFuQuUBoTfWdFymL1MliNKcN4efe/FyB82imkXCoVCobAlqB/tQqFQKBS2BBtlHp+mOYWpmSfM7BKFU7GZJROEsPlEmdgjEQybj/jYyFyuzCsXYx4fgVqLORPW9Ey2UejZOuK/0XOivmdT3Tr9N2LWXWdxDCV6ys5hQY4SCEZrVUf7ouv7dqi0pSzUycREBjU+fLncf1bXkfDL/bhJ+BiVotIfMyIytfoooROwasZV7oteWGL0PXrGlFm6l8rXn2PgceiT+dj7jT+5Hta+yISvUvlG5nFVf3aFsWvPb+uF30WuFYMSB0bm8Z4L57CwWbUpFAqFQqEgsVFMe2dnBw8++ODKcpEmxgB2wxXUbD4LGVEzdhY0eHajkp2w6MPPbu1Yq6t9t1lsFOpzEAH8KrWqXd/PeNWslZfki2bYKpRnZPEHVddoQQIWAUbiFIZKqQisCrPU4gVRms9eyFq0sIpCJoJhiw4Lgqw9vi/sXvFyrureRmOtt0RntI9ZimLgkYVEsaXMcsHPaxYKuE5a0dYaWmvyPeHL4TaPtLVXB06GAqxaSVTfRqmJ+ZnlsePfA5ZMxd6xxsKVCCuzXDErj1i1ek7suWfxbhSqp6wbmbWj9/xm7LyYdqFQKBQKhX1hI5k2J773PhgOTVCz/sy3bVBhO9ESeTZrtZR8nN7UWwN4lsqzyyhpjLXZGNQ6/mK1kLxaBMS3h2eRzLQjqJn0OkxbJVeJQnOsv1SKRavTkSNH0lkyWxxGEqTwuUoXEZ3D44mtNlHaWTvGWLNiD1mCDJVcJWKfysrACzpETEQl9eFnI1palxPPjDBtFcoYje8sBC+CZ9pRuVGIVe+78lkrKxOnH/b72KIXLZykLEn8DotC2ZidZ4lmDMrPb8gSJvEn+7IN0eJNWRpgPkcxbPX+ifZVyFehUCgUCoV9YaOY9jRNeOihhy7MuqKk+MzIsiUrfbkZRtItKqZtiPzTnDYyWhTewGypl0bUX48VvirZRnQ++85GfLhcPs/wI/+bWhiAWWikJzAGkjFtK5MXFYgWf1FpP0fUooppRwpm+5/rn/liObkEL6xguoiIQVodOJ1k5lO1cln5zfc0WmxG+XmV/9XXW/mns/SVzMZHLCPsEx5BdI56hzDLzFJoqjpGqZDPnj27pw4qaVC07KW3+kV19c9YpHfxdcr8xGw54vsTKcA5cZZK9Rvd295za4jGXU9DEVlX+bqbgmLahUKhUChsCTaKaZtPm5eu9DNQ82+zb0wt2cn/e6hZv59Z2ayVGTYzoEgBbMcwK4p8S8x8re1WF/vO/n5/DsdjKh+335YpZn29Mv9ej3lF+1RKQt9Xdt9tdh75/BTsHM862AfL7cnaqsDt8DN2Y9anT5/e850Zd2SRYIabLTLCqmAeo8xMIj8hMx4+J0pFyXVTFp9Icaz0JJF/VPm51/F/j2hEFJMHVt8V6pxoH1uvVCRAFrViyHQjPGYUS4/eA1xnZtqRZae3RGbEYjn3Avupo/HGbVdLz0bg9xzXVfnSR8s/DBTTLhQKhUJhS7BxTPv06dMX2JHNQM2/A+wy7SxxPpD7xHqZiSIGrNTpEatUMZaGLG5V1UWpvP3/PEtVGbn89XhWrNrt26BUydkMWClms4UCOEvTSJw2lx/VQTGgyC/ZU2BnDI59ldYOW7CB4/j99ZT1xBBlNWN2rLJbRTkM1IIafG99nYzR8TPJVqgoP4DKEsfHAVrfkSnOle9SIWLV0XOq1M3Rc6qyp6lIBM+0eXlfvj4vbuL/V5aOTAHOxygWnSnBlS4n63ses3ysHzs9zUlmceHxwPHgUZmbFp9t2MxaFQqFQqFQWMFGMe1pmpfHM2YdqSGNPdjsnpWqI7HBSiGdxX2qWGtD5oNhph1l+WGfNTPgTJmtcgAr3xawOoOO/J2qDYp1ZjN6A7MXnvl6v7X1id3znk97Z2dn5f779nDsc49V+G29jEpR21W0AFs5PJtiZmt14yUafbs4tpatPxnzWSfbnIHzJ1h5pvvg3AVRpi9mRWpc8P9ReyJr0Yj62WAx/jwufL05f0FPjeyhVO4jESG9KIvIwsfPY/Ru4nO4TvwZWR+Ule5iwH73KB+7ykORWVy4/vyei6JM+N24KSimXSgUCoXClqB+tAuFQqFQ2BJslHmcYaExkTjJTKUqCUQWgtETFUViCyXU4bKBVXOlwerGiQXUtT3YbBoJg9TympnJzqBSUmaiMiU8y0Q5nH7WtkdiM15EIHIr+Guae8W3x5d38uTJPfXlekYmwJ4Z18AhWcCuedjqbW3kpEF+7LCYx7cvup5vqwq9476OzMi9hBKZiEmlco1M0j1zciaMU89plnp3NGzHpzGN2sP1ysSrBpXmk91wkQuK3X/KPB71E4v9MoGoWvDkIE3eEThpFdc1EmCqcEFDlMyF3zv8jGcuvXXCBS8nimkXCoVCobAl2GimbWzah3wZWzUWziKfKJF+j71maUxZyMChKlH6SiUw4dmzZ47MDBXz4eX2+H/VDl8PX766Ds+4ozI5xCxj58wulADNMwdmF+uIpbJkECqlKt9r/z+LUpil8/3x5xjj5hApO9cLLbmNzKKj9JUqLJH7IHoO1PKNhizky9ph7eLPLJ0pM59MLNcTAUb3bR1M04SdnZ0VS46/bi9lZ5R+VYljlVg2C+McFVT5fSqtcSRIVSGt/Az6PuZ3FT/TWRttzDOj5vEYjXNlpcnEcmphkqxPst+Fw0Qx7UKhUCgUtgQbzbQNPkmEMTJOWDES8mVYZ0lJnmWx7yViouyX7KUx9P9zSA/PuKMEA1kCBH9sFNZg++x6agERD+WLU7N1Xz6DNQqRT/ug/Gz/rb2zZ3IbSYJoU6b8tff//6yzz5chxZBnVWzdY2Y1SM7MEhH5HI1IsNEAGiSyPqm0VeMW7odP764kJFVN/5trhsVHeiob58S5qrlPJU53x1c49aLUMtU3Uw55fFPRC/rU1bpz/uPJr8x7b3dOPj4+7koH8/0Oz9eULuisVa7xjtqGY6rYh93+lHp1FiSXVtfPA9cdv0MKVazIldx1cTkdd+6npj0uVU+tiyjtEEIIIXwKp1Da3addvpCKBK6nYyod9QRaOFU+FaunD4aKVPmLdwpRtYNz/ju+37fb+bCp8DnfPr578lZFQ5zFQjUKUH78te4Vdlfa9Kc9E8WprouLmFbXyZW05HU/Mje2d2U7zD4Or/OktHmtXPaAKjTiVIuzoqjjoTpyPva+H55PpZLcZ2i1maK9OYbidrut379/38UCqO8B59NW++W1pLWGak/FqfAedhkPa91b51wRks4u02SK++Fn+d04fVcxEpxr6Ug0tyv8os4J7/kj15r7fReitEMIIYSTcAql3Z902N6wIlhLoSk/5U7FHlGkVDpHfGWupKbLxe2fcSr2SL7skffdtnzyVUp7ar24llbaTukwRqErcfq7n4kO7uNR6dSaKX9aoea9i8SmmlrL+yx//vz5f2P06HFnBaD/eLqWLjpexUPwuLitUtq8J8pyMKmVgirZKdYpl5zK59V82tvttv78+TPey7sIdjUHl/dNdTepWKrW6RipHrn/XS2IaQzF7ntnUtr87qC1hpbMPm8eB9dHv+f5mjsnKupfjfcORGmHEEIIJ+EUSrtDZUY/Vz0VqXaAxFV96k/cu4brU2Ss259SDLtqUi4ifK17/6qLxFXHRVzU5tTMYJfjuda9ci+VS4Wt2hNOlolHcG0Oa26qkp2LHq//uxiHPk6dn1L0VDP9nNdrNVeXedBxfnWXn6uiebkfF/ne58CocR63Una8hs6XPV0DwiyDR6k8bdJfq2PcKbZnIvNdC98+Pu9tVY/C3X98fYqhcHnnU3S8W1/q+9RZcI5k/7h1dSR6nJ9xjVLU/nbVML+bKO0QQgjhJORHO4QQQjgJpzOPMzig/p1SsAqa0p1pZjIju9J5ykzl9qsCHB5Na+oBdzQf0qSpmlk43HlUAX7OZTCZk+oztc0UiMYe46+mXtQ+mBrF4K5+/Z2JcQp8LOiWYDMb1Rt76u3toDnSmS1Zbra/51weqtgF1xXTj2hyV4F9zqSpSrDuUvVeDUTjflSAFV0n3NYFyfVxGBB7JG2QgWjufTUnN7fJFeDSqqbj43FOjVDcey71TLlWnPtPuVFcOWYXSKj286pb7rOJ0g4hhBBOwumUdkGFxkAnVdjDPSVSTarw/4JlBI+UXXRF61U6EgOeiDq+UjycC/+dmkwUR5+E1/KqiWOtdR9YVcfOoiq9pKdrnvIqNS6btKigKxZncMF+ylLigsemACSqryPpJspCoPanlLa7vlRNPdiMa2dncVEtaAsenypIxM/sgqae4Xq9jqlzNTatVtO+nRpX4/P9o0GFCq6HKWXOKeldmmz/21ln1PpwFh3XDEQpbVfo6EhrXXeP9O2cxepdiNIOIYQQTsJplTaVWRV4UE+IzsdKJcSUnLV8uUWlIgrne3GN7LlP9X+iniadX6pQJT0L+u6pwJTqoFWAY6jzSD81/+3NYb66qEHts9ZQFTnpqWFlfam50H9br1exnyk1jueU/vG17lNSqI6PFMbYraV+nZR1oc9ZWQvoZ3W+WZWCxZgG549UViiOQavNK/z48WNUlU5NPtPMxvlK1T39SJtNqtY6x1MhkV16GOcz4YouPVIQyn139r+5ZlypUgXjSTh2n9NnxUp8NlHaIYQQwkk4rdKup+tSZnzq6srARWa7pgzK58e2fZPycSqSCvuznuCoOFw0r/KZ7fw2UxEHqqbJF7R7Kq7/q4Yhu7aKr1L7VPujhYBrZfJPl3JnsxmnatfyynOKAHZ+SV5T1T6UhWVcMRcV56Eadbg58j2ezylq3pXl/Kzo3svlMlpI1L5dkZAjhThooVJFfWocWv+mWBPnj6YfXkVKq3bBiik63hVbUvev+x7l99LUZvOZ1r3c31RQqUj0eAghhBCe4rRKu2AUcj2h9vxZ9zTnIhkVVCLTtnxKpJr8ah/JrrFC38aVseR2/XWXzzopn3qNpUSZs65ylouvUtw1h/JLq6h3KhwX06B8jIyZmHz/VCCuwYaKh9hlR9Af2+c2tWLdQUsO10eHWQQuH1j5tDk+LSPPljGtMZyPvs9v1/Cir29ncXDHrNQe61C48p9q3Edyn6fWqH0/Ksp6h7JY7BS28k87K9QzZUane8atzXchSjuEEEI4CadX2vSFqoYhVDZUvJMPhpGyfPIt9TTlBhbf9cTmFO/0VEnfFv2IqgELx6ePu59HNv3gtpNK+i6fElV1/9tFgLvI+bX+ibeoMcq3zWYj/bPcj8sPV5Ykp5Jd5LM6Pn72SMU/rgcq7H5tXZQyx5hyu100+StcLpdD1ejcuWW0/1q+uUgxxZwwetp976hmHGSyRNCKsYvEn6xC3EadR2cFdFXvVAbKkaj4oxyJNE+edgghhBCeIj/aIYQQwkk4vXnclQatYiudI6X5yGRaVGP1OTlT2lebyV3p1SM4c5xK+SlqG5rAu4nTBeHRZHfEhP/V9AIvTMupQiyuzKcyV9Z43EY1VGBJXQYeqXOxW2dTf2O3VnivTAFB7n6aAp+4DdedWm+7vtqv8PHxYXum93m6fvNFPxfO1bQzk/f98V8XmKZe47VVjYOY6sX/u4BVxS6oTG3jzOHT2ileMYu7dc6/35Eo7RBCCOEknF5p8wn0yNP9VGaxv9+pp68KJpqCIFh6kCkY35VK4NIqOlRSVDxT0YhdIIoqjODmxjGn4/kq1HqoNLBSvq7RSh2HaqxR5/LXr1/jGGvdB7i5/SqrgysNyes0KW3eRwyI63+7wC1WrSe+AAABeklEQVSqqH5e3dp3KYH9Pa7RaV0/wu12W9fr9S7AaWrR61L9VKCWKyTims/08VkutcZS52myqEyv9/fcWOq+3KWJTqVIXfGg6bO7/T+yDibr3SuWyu8gSjuEEEI4CadX2sVUJGDntzvCroyg8hM5/1DxVQ0xjvh+eL7c03LNUT1pswQg9zv5o9zrXdF8he/yUdjIhMq3UOeAyqbGUOlB7jOurWdP+eJnnbVCFd1wCmsqYOHiEljydSq2Q6XKbdVa3amzV7her3dqts+B/mDX+ESVwCUu5kAVV3F+/MlqwuvjrrHa1s31iAXMxSkoC4LbZipJOvm7X0Wdh6NxDN9NlHYIIYRwEi7vZK+/XC7/XWv959+eR3h7/r7dbn/1F7J2wkGydsKz3K2df4O3+tEOIYQQgifm8RBCCOEk5Ec7hBBCOAn50Q4hhBBOQn60QwghhJOQH+0QQgjhJORHO4QQQjgJ+dEOIYQQTkJ+tEMIIYSTkB/tEEII4ST8DzagfNT7gzynAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1537,7 +1506,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bflZ1/n9nXsrlVRSqTFVlaQy0dANKo6oYNsMCgERBBUFGSRit6FBRUQUFEg0IlMz+BBpcEhDDCqoIA7MeQyjA4PIHMhQpKgpNWSshJru6j/W/p79ns9+37X3OffcumdXvd/nOc8+ew2/ea39+77jmKZJjUaj0Wg0zj4OLncDGo1Go9Fo7Ib+0W40Go1GY0/QP9qNRqPRaOwJ+ke70Wg0Go09Qf9oNxqNRqOxJ+gf7Uaj0Wg09gRbf7THGC8ZY0xjjLePMa7DufOrcy+/ZC3cU4wxPnyM8fIxxgGOv3A1Zi+5TE1rnAJWz8VnXaa6p9XfRv1jjNeMMW7DsdtW1/+Lorz/vDr/40U9/HvNDm08GGP83BjjbyTnPmSM8a/GGL85xnh4jPHOMcZPjTFeMcZ49tYBuIQYY7xujPG6UyzvG8YY33ta5a3KvG1hbg7/TrG+u8cY33xKZd24ei/+zuTcfx1jfP9p1HNaGGN81hjjZ8cY7x1jvG2M8aNjjPffcs/HjDH+xRjjTav73jDG+MYxxg2n0abzx7j2Gkl/S9IXnUbFTwJ8uKSXSfr7ki6E43dJ+hBJb7wMbWqcHl6i+fl51WVsw8vGGK+ZpunhHa59l6RPHGNcPU3Tu3xwjPECSR+2Op/hWyV9C47du0N9ny7p2ZK+KR4cY3yBpK+R9J8lfYmkN0l6hqQ/JOkvSfogSX9sh/IvFT7nlMv7KklvGmN8xDRN//mUyvyTkq4M379J0jlJLz2l8omPlfS2UyrrRs3vxTdI+nmc+4uSHjulei4aY4yv07wmv0rSX9e8Tj9Y0lVbbv0czYT470q6TdL7r/5/8Rjjd0/T9N6LaddxfrR/UNJfGWN8/TRN91xMpU9mTNP0kKT/ernb0dh7/KCkF2t+UX/jDtf/kKSPkvSnNf8QG5+h+cVyu+YXP3HHNE0nWa9/Q9Krp2l6jw+MMT5C8w/2P5ym6fNx/feOMb5C0p85QV2nhmmafvmUy7trjPEfJH2h5o3KaZT5P+L3McY7JZ3fdZ7GGFeu3kO71vezx2ziiTBN0y89HvXsgjHGh0v6fEl/bJqmyP7/4w63/8VpmuLG9kfGGG+W9AOaN1ypxGtnTNO0+KeZUUyS/g9JD0r6xnDu/Orcy3HPH5D0w5LevbrntZL+AK75Vkm/Ken3SPoxSe+R9OuSPntbm457v6QXSfp2zQzhIUk/J+lPJtf9OUm/Kum3JP2CpD8h6XWSXheueaqkr5f0i6v+3S3pP0h6/3DNy1fjcuRvde6Fq+8vWX3/QkkPS7ohac8vS/qe8P0qzbu+N6/uebOkvyPpYIfxerqkr9TM8B9atfvfSrr5hPP2QZJ+UtJ7Jb1e0h9fnf/rmn8E3inpeyQ9C/dPkr581e7fXN3/o5J+N64bmh+a16/6epekV0p6ZlLe35f0V1fj8S5JPyLptydj8Kc0b5jeI+ntkv61pOfjmtskvUbSp0j6ldU4/LSkPxyueV0yv69bnbtF0rdJunM1zndpftBv2mVd77j23efvXs3jVeHcayTdVvTpVZJei3Ov18wCXifpx7N6TtC+P7i69/fg+PdLequkpxyjrK1rXrNUa9L8vL5S0n2rv9dIuhblfd5qXt+rmT3+tMK7QJvPu8v+RM0ShwdWa+cbNG9yfr+kH1+tk1+S9NHFuntM0vNOaw2g/I25C+e+UtKjkn6H5uf53ZK+Y3XuY1dzcveq/b+g+Tk6QBl3S/rm8P2zV2Py+yR9p+Zn7g5JX7s0t5oZ58Z7UdKnrM7/V0nfH67/mNX5j5X0z1bz9YCkr9bMZP+QpP+i+Xn+BUl/JKnzI1fj8+7V33+S9AE7jOl3SvqlU5yj61Z9+cJw7BrNUpLbNb8r7tG8GX/fxbJ2qOwlq8reV/PD85CkF6zObfxoS/qdqwfiZyR9kuad/U+tjv2ucN23an6x/4pmtvBRmncgk6SP2KFdO90v6XmaXxS/qFlk99GaX14XJP2JcN1HrY79u9Ui+UzNors7dfQhvkbSP9X8Uv8wzTunH1otqFtW19y6umaS9L9rFql88OrcC3X0R/u5mh/oz0H/ft/quj8dxvrHJN0v6a9J+qOaX16/Jelrt4zVUzT/wD4o6UtXff0kSf9Eq83GCebtlyV9luYH68fcDs0bmD++OvdOSd+JtkyaF+lPaH4RfrLmH477JV0frvsHq2tfuZqzz9f80P2Yjr6wJ80/Sj+g+aX9SZpf7G/QzD74onnVan4/WfPaebOkq8N1t0n6jVXfP0nSx0n6H5pf1Neurvltkn5W0v/03Er6batzPyTp1yR9mqQP1cwcv1nSC0/xBeAf7d++WjtfFM4t/Wh/+Or6W1fHP3hV1v+i+kf7yzWvvcO/Hdr3stXcx3k6v1pL336Mfu605rX+YX2zZqnDiyX9lVV93xau+zTNP2BfJukjVuvgizQzI1/zOuU/2rdJ+jrNz84rVse+cbWGPkvzGv0xzc/YjejHs1bXf9ZprQGUvzF34dxXrub8jZrVmx8h6UNX5/7yalw/RtIfWY3Fe7RJwqof7devxvIjNW/8JklfvNDOp2p+7qbVGvGzc8PqfPWj/WbNvz0ftfqcNG+afkXze/pjVve+Q2GTpvVm6d9ofjf8SUn/XTN5e/aWMb1T0r9crbe7Vuvmf0r6xBPO0Seu2v1x4dg/17zZ+Qua3xV/atWv37tY1g6VvUTrH+3rNb+8XhUeKv5o/xuFF9zq2DM175C+Kxz7Vm3+wF6p+QH9xzu0a6f7Ne/Q7hWYrOaX68+F7z+p+Yd9hGP+4XzdQjvOaWYD75L0+eH4y1f3nsf1L1T40Q5t+S+47hs0bwSuXH3/jNV9H4rr/o5mBlIyOc0vlUlhk5Jcc9x5+9Bw7Hdq/RCfC8e/TtIjODZpZkFPx5g8IukVq+/Xa94cfiva+Onsx+r7r0u6Ihz7pNXxP7T6/gzND/SrUN6LVmP318Kx21bjfl049kGr8j41HHudkhel5o3FXz3Jg73rnwID1vzgPyDpmtX3pR/tsfr/i1bHv0nST1T9Uc6KJm1jAtL3udxw7ObVvV+RXJ9uCnZd81r/sH4brnul5h/4Eb7/7Ja2v075jzbXzs+ujkcJjJ+Dz0zKvV07vNdOuB7Stbg695WrNr10SxljNf6vkHQPzlU/2l+M635Y0s9vqcds+9OTc9WP9jfhul9eHf+gcOwPrI598ur7wWrMvxf3+jfsKxfaeKCZwL1T8+b/kzVvBP/d6vjHHHN+rtW8afo5Hd3IvkHSPzjufB/L5Wuapgc0s6k/P8b434rLPlTSf5ym6e3hvndK+veamWnEe6ZgnDHNepZfk/R8H1tZqB/+Hfd+zRP/vZLegXJ+QNLvGmM8c4xxTvOL+d9Oq9Fclfczmnd5RzDG+LNjjP82xni75h3Yg5p/GKox2YZXS/rgMcb7us+aRfXfOa11Tx+jmQH+JPrxg5Ku0LxjrfBiSXdP0/TvF645zrw9OE3Tj4bvv7r6/OFpmh7D8fOaDZIivneapgdDPbdpfmA/ZHXogzVLB2il/K80jzfb80PTND0Svv/C6tPr4EM0b0C+HWN3+6qNH4ry/ss0TdHwhuUt4ackfeEY4/PGGB84xhjbbhhjnMM6P85z+TLNa+8Lt124WtuvkfQZY4ynaH4ZvXrLba/SLAKOf7dvuec52s1YTWOMWzRv2A7/wnN+3DX/n/D9FzRv5G9eff8pSb97Zcn7kWOMbQZFEd+H77+q+Tn4cRyTZukeca/mcSnBd90ua+cY+O6kvlvHGP9sjPEWrcf/SyTdNMa4docys/He5Rk5LrKxf2Capp/GMWk99r9ds8TzNVg779S8DvjME0Pzc/UJ0zR9xzRNP6iZDLxB0hfv2vDVc/adkm6Q9OemaYpGyT8l6S+NMf7WGOP37vrcn8RP++s17+z/XnH+es3iBOJuzXL9iMwi8SHNYhSNMV6ozQf6hbvev8JNkv48y9FsECPNg3mj5pfAW5PyjhjdjTE+XtJ3aBbNfKpm/d3v1/xQPnXj7t3wXZp/+D9j9f3Fq3bHF+pNkl6Q9OO/h35UuEGzGGYJx5m3t8cv09p6mfPh4xyXzJDxHs2qArdFbM80TY9qJUbHvQ/guzc6rvem1ecPa3P8PlCbY3ekvLBx2mV+P1nzRudvaraOvWOM8WVbHsjXok1ftkM9btubNEuTPm+M8awdbnm1ZvH+yzTbOXzHluvvmqbpp/G3zYjpqVrPgXG/ZtbLl/p9Wm8G/gnOHXfNb1sHr5b0f2t+Zn9A0gNjjO/CO6VCtrar5yBbJ++V9LQtdbCf3JyeFBemaTryblv9gP0nrUXbH655Dvxe3GWtZ+N90nfgErKx3/au8TP/7doc14/Uwvty9cP6ds1r/5fC8Uc1GxP+nl0avSKD/0LSH5b08dM0/QoueanmTfFLNasl7xljfM0YY3EMj2M97oa/e2Xl+bVaT3DEA5qNcYhbdHy3gTs1LyQeOw7u16xr+qqFOh7VPJk3JedvlvSW8P1TJL1hmqaX+MAY4wpt/pDsjGmaHhxjfLdmndvLNIuB3zRN00+Ey+7XzPr/bFHMbQtV3KfZEGUJpzlv23BzccwbC78MbtFs3CPp8EVzgzZfFttw/+rzJbG8gMrd6dhYvRw/V9LnrqRRn6n5pXivpP+3uO2lkq4O34+7xl+xqudv79C+Xxtj/DfN+svvipKVU8T9wkZvmqZHxxg/KumjxhhP8Q/c6kX405I0xvi4pJyTrvkNrCQN3yLpW8Ycc+LFmt9j36H5h/xS4nptujgRfNe9/pTqnpJjH6BZnP9npmn6Nz44xris1vunCD/zX6DZ0JX4rS33/5Jm9VmGC8XxQ6ykJK/SrEv/hGmafozXrCSZf1PS3xxjvEjzOv9yzXYFL6vKPvaP9grfpNlK+O8n535E0sdGf9AxxtWSPl6z7mVnrB7sn9564TK+X7N49JemBf+4McZPS/rTY4yXW0Q+xvh9micu/mhfpflHPuIztOku413+07Tbj8KrJX36GOOjNRstcEP0/ZqNw949TdOv8uYt+EFJnzLG+Phpmv5Dcc2pzdsO+NgxxtMtIl8xnQ/WrH+TZlH5w5o3SK8N932y5jV73Pb8pOY5eN9pmr7txK0+iod09Id2A9M0vV7S3x5jfLYWNk2r606MaZruHGP8I83GV7u4/Xy1ZunTKy+m3gVkKgfX+0OaN9B0+cpwMWt+ESv1x3eMMf6gLp1/s6RDxvV8zd4KS2262HfdcWDVwKFaaYxxpWa13KVEfC9eSvyC5s3vB0zT9HUnuP+7JX3NGOMDp2n6BemQNPxRzWLtbXilZhL2qdM0Uby/gWma3izpq8YYn6ktBOtEP9rTND00xvh7kv5xcvoVmi1uXzvGsKXf39K8SCqR+qXEl2kWp/3oGOOVmnfn12kemPeZpslRpV6m+cftu8cY/1izyPzlmsXDcWf1/ZqDVHy9ZleeD9L8siRjsb/nF4wxvk/SY1seytdqXmT/TPOC/uc4/+2arQxfO8b4Ws2WjE/RbPn7JzRbNb5HOV4j6f+S9C9XUpL/pvkH56MlfcPqhfh4ztt7Jf3gGONrNOsc/65mXdPXS7PtxKqPXzzGeFCzTcIHaN4k/rg2dWmLmKbpnWOML5T0j1Yi5O/TbJj2XM0iyNdN03Rc38lflvQ5Y4xP1mxk8i7Na+WHNc/Vr2p+IX6C5vX2g8cs/7j4Ss2BID5Msx64xDRN36VZJXOp8KOS/sIY44Zpmsx4NE3Ta8cYXyTpK8ccEevVmpn0UyX9r5o3aQ9qzQwvZs1vYPVcv0uzm9BbV3V+hi793PwOzc9RxvguF35e8/vmq4Pq5gu0FjNfKvym5mf908YYr9fMKt8IG5KLxjRNj40x/rKkf72yXfi3mtn3LZo9en5tmqalTes3aza4+54xxpdofr9/jmZ1zV/wRWOMF2t+P33qNE3fuTr2stW13yzpLWOMaHtxz+oH2kTxOzWz+gc1i+3fX9I/XOrbSZm2JP1/mo1f3i8enKbp58fsmP7lmv1Vh+bd/4dN0/Q/L6K+E2GapreMMT5I8w/wP9DsfnG/ZkvxbwvX/dAYw+Lp79ZscPAFmn/03xGK/CeajR0+S/MO/ac0s1EaevxHzRKJz1mVMVZ/VTsvjDnM5N/QbAj1Bpx/ZMXCv0jzy/lFmif6jZp/xMqHbXXvi1d9+0urz/s1u109sLrm8Zy3V6/a/krNm6Of0uyrGcXef0ezSPmzNY/h/av7vhjGHDthmqZvGWPcrnnNfqrmtX+HZtXJz52gD1+l2fDwn2o2WPkRzZugn9W8QXqB5s3e6yV92jRN33OCOnbGNE33jzmC08svZT074ns0ix8/TuEZk6Rpmr56jPETmv2l/Tz+luZx+g7NVsqPra498Zov8BOaX7ifodl1807NG9pSFHlK+DjNG7rXXeJ6dsY0Te8dY3yCZre1b9fK62b1+Y8uYb2PjDH+T80k4bWan8M/p9nI9LTr+u4xB/T521qTobs0b9oWQ/GuVJYfIen/0fwev1Lzs/1iiLoPNEtZo82KI/p99uov4lvCsR/V/C560aqMN0r63GmaGIHwCOwK0UgwxrhV84/3l0/T9IrL3Z4nAsYcE/nLp2n6ksvdlsalwxjjWzX7g3/k5W7L5cYY45c1e6Z86eVuS2P/cTFM+wmFMcbTNPsV/7Bmw6330Wwk8B7NbKrRaOyOvyvpV8YYH/Q462rPFFZs9mbNBm+NxkWjf7TXeEyzvuOVmi2UH9QsOv0z0zRlrlCNRqPANE1vHnMmu8wj48mEp2kOJHIprPQbT0K0eLzRaDQajT3BSYKrNBqNRqPRuAzoH+1Go9FoNPYE/aPdaDQajcae4EwZol111VXTtdfuEqf+eHDc/W2fvH6pjOr8rtdU52xjsC1XwC5lHafM4+QmYLnGtu+SdOFC7mJ9cHCwcY//ZzlveMMb7pum6Uic7Wc84xnT9ddvRpLN5uU462HbGmHbsnHk+Ffzs1TOLvX4mMeY9VRjf9x6qmure7N6t/Uvu4frwdc89thjG2VUtjp33nlnunZuuGEditpr8dy5dZBDt9fn+Lk0Tm6ny+N39icr39c8+uijR777fGwDrzl//vyR7xl8D6/12MaxYL/Yn6od8dy2+X/kkUc26uUYsB2co9j+6l1yHNx1110ba+dy4Ez9aF977bV66UtPP6LgFVdcIUl6ylOekn56kn1d9iD4kwvT35fu8YOw9KBnC07afOHzwY/H3H7D9RqxbJfLFwcfJrY53sMfnYcfnmNd+EHxg5cd84Pne57+9Kdv1O9rYzmS9PEf//EbEb+uu+46fd7nfd7GQ/nUp65j71955ZWS1uPiT1/ztKfNkRXjOPp/jqXH38fdP85fBMeW45jVY7j87DxfsNUPCOc89sPz4Pa7LD8j/h6v4cuzQrzO5fAH1/V4rmN9Dz300JFjv/Vbv3Xk893vfveR77FO/iC+/OUv31g7N954o172spcdXvuMZzzjSD+l9bh7Y3j11XMEW68ZtzH21X3xfHj9PfOZz5Qkvec979mox+A7ievL8xXfAy7P8D3uz7vetRlNmc8C1xLb8453rONM+ZqrrrrqSJtc31vf+tYj36XNZ9nt9/EHH5yT/733vXPEaa8LaT22fBbuvvvuI2XF9e8x99i4jF02sES2di4HWjzeaDQajcae4Ewx7UsFsiUybyNjzWSalSgoY82ur2LpsR7u/FgfxTuxPrJvsqOMnbF8HmeZsT7vViupgxF36xXz8aeZSpyT44i2pmnSI488siESjG3wbp7zUkk34v3VfPt4xnLJSM3KzAhdT2T2LodztyQKZn8qKYrbEfvrtrgMsyUzFNcb2+hx9DHW6zI9l3GNuVwyHrYtMrJKmsFnIROP76oSeOSRRzYYo+crttuMzed8bTaX/p/XuB8+/qxnzRLXyITJWm+77TZJ0vOedzRV99vetg7ZTQmBWTHfC3GNuj+uz2PttrjfVlvGe5/znDk9+L33zqnTLYV45zvfeeSe2EYf8/POT6spXGYczwceeOBIf7xG+FxF6Zrb4mchk1TuG5ppNxqNRqOxJ3jCMu1Mx+xdpHecZIaZAUrGvqV61x/robEI2VOmJya4M1wyfGEZrifrQ2U0VLG1TJJANsP+Vn2K97iszPCEbJx6tohpmlIdazaXlXSB45W1z8yDc0pmGsEyyOhifTQI8r2UnsS5JJPzuajjjfVEFkudKecsM/4hY6N0g8yYEq1Yj+91m6zLXALX29I1u+Kxxx47bK+ZWxwLzp37bobo85Hl+dobb7xRknT//YcJz44cN6u1XUcs3+vq1ltvlSTdd999ktaMNMLj7ja5/S7f/YpjbP26x8s6ZZfvdniN+fpYro/5Wq8pf958882H95j5uj6Pl+0SPEZuq/Xi8R6+A92fTBrgdesxqQz89inIWDPtRqPRaDT2BP2j3Wg0Go3GnuAJKx6PIhK6clEUsot41KBBQ+YSxXsqcXnW3sr1imLL+J3iaLaNxkyx/CVXsuy6CBrWUJy9i4iS4rdsbGicVeHChQul6D475j5TrB6NX2iURNUKjc2iKJhrY5sIOiu3WqvZ/bynMmaMoMqG99L1KLaRa6Zyi8vWDg3RPG6ux+JMaS06rcZm19gGFWyIRgO72B/XbXGuVQ/Pfe5zJUlvf/ucDySKni3Sdvtdnr9TFB3v9fjY+MqidqoeYlwLi9L5vHhsqXqJ/fK1NJ7zve53XEOuz2Ph8n3c4xld0VwuxdV8D/jeJaNg94NjFdVCHh+K1lnmtnfLWUIz7Uaj0Wg09gRPWKYdQRclo4pIFXddZOlktUvBLnxvxQiyoBrVjm+JpXPnWbkyZbtW4zhR1Cq3LbrvRJZbsT26SkUjqW2BX9gm/2Xl8/9YHoOuxHY7iIavoVGVj9NgLLabu/wlyYH7bHbCcXM9S/dyvS25J3IdUNpEo6J4PxkpGTADacRrvEbMimhgF9vF9USWdrFGRNM06cKFCxvPdGwDA++4ThtWeUye//znH95jVyfPpZm163E/7JrlsqTNAFD33HOPpPV6c1kRLs9rlmNpw7HMOJNr0mNO5r3kLkgjM0sOogTB5VsywSBLhpl9XEMeJ4893e4yMOBT1e99QjPtRqPRaDT2BE9Ypp0F1aAOkzvrLEjINobNe+P/DExB3emSbpv9IFvK9FJVaNVd4iJX37NgHnTBqnTasV66DvGeTOrB8pZChFZYcsFisB1/xqAaDljhMaVO2/dQzxvPVdKLTPdPXaLZjNdwFmYyuhnFMigFypg2+8MxySQMvGebm1icU4ampS6TZUjr+XCfybSze04Ct4kBZiLIIt1Hz4GDgkibLl6UniyF/TWTpgSCUrTYRq9VM1Lrc7k+otSEQUzsvmXWTF13bKN185wX98uSBl8Xy92GLOQqsYt7IEO7Evvk6mU00240Go1GY0/whGXaEd4BkvGSeZDNxHMVy8uslKkbpW5viWFX1oxk0ZleaslymmVST0hGXYVvjf/z3kr/GlGxjEyXuWQDsA1L4V5pKU3WHJmJWR7tFHyNmU4WGndbu7NAKVWwDupFI4v2XPoeJsLJrIYNMjZaC/tzyTvCqNbdEpuhVGhpfVMKUK3742KMoXPnzm1YSMd+WOLB8KK+NtPfmml6bH3Oc8l7trHCbaB0xG286aabJEnXXHPNRj2+x9bpbrP76Xsyhux15XNm1P4ek4ucFVTv1X1CM+1Go9FoNPYETwqmbXhHSx2cd9RMZhD/ZwjUJZDFkvEs+XZXbKVKVJLVUyXaiP1asvSO9WRW32TaFcPJjpOdUz8Z9W20FzjJrjjeU0kTaD2eWS7TJ5SpEf096ma3SWeyBB68xuUtxRrgPHBus8QdbGPln08pSqyH+nX2i+2Ix2gPUVkvR/AZpHRgFx1nhjGGrrzyyg0Pjujv66Qe1GVbb52NsceWul/6Ip8WaC/g8XnLW94iaW3ZHm02mOqT6UnNlrMQuD5Hf+yLlRg8nmiddqPRaDQajUuGJxXT5q7SoEVzBHVs3O1715rpTquEGUuMZ1vCjkznTV29d76sJ+6SyaCq1JlklLENlT5yiRnTp5w63Aha3y8lIBljaIxRJkKR1vpZ6v6YYCEyLOqHyXTJzpfayHWR6Zq3+TzTwjn+T593stdsXZoF2rc3RiKLiMyX1s58fsi0l6QCLDNj/lV5nMc4jku+u4TXDp+FKPW58847j9zj8m2hbXbp9JTS2gKaFvK8x3Nw2gzV9XtuLSWI40TLco8/bTn8TERLcOvB77rrLknHi4R4mqikRU9UNNNuNBqNRmNP0D/ajUaj0WjsCZ5U4nGKGGm4sos7lWGxqQ02oijN4joGZ6DIO6IysqLYPDNe8v/uVxX0JIo4ORb+pHg0M9TwMfazSkIS2+C2OogDXWaWVAdxjDNE8XgWhKQKt0rRX7wnMxqU1iJG35sF4ojtktYiR5aVrTcanlGNEMuwGJSidRqx+XxURfBY5QYZ1wXF8VVwjUzdxMAsXF+7qEJc/lKil+OGqczUKFl+a88hA5hkQWi8xrl+GW70jW98o6S1e5W0XoteX/6sDFWlzTFzfW6j64uqA5+jCsX9oZrBBnnSOhQpc4y7rF0Cqfge993jS1WWtGkEyPqy5zcLXLPvaKbdaDQajcae4EnBtKtwh9zlLxkyMFgHDcLiDpsMxLtWMrxoEOKdIN2cyM4z9yCGAnUZZH8xyQANnKoxySQNPsZd8RI7qoK4MExoZvBEo68KNiiq+kOpgpmAmU/GYlgeGTbHb0ka4DUSGRz75TmrwufS2DC2kW477geTckS4fLMYskGyZ2nN7CuGzWcljgklRxyvzO2uSs7jejND0uOkXDw4ODhikJW5fDnNps95Dv3JgD2xDb7G4/OCF7xA0pqhuuwY9tRj7L7587777jvSjshm/T9O0o/AAAAgAElEQVQlX2bENpK7+eabD+8xO6X7I0M/33LLLZLWwVdi+90Wv184p/G94L5bUuEyLAVgUJ8IjjFTcWbpQ72u6ZZ2HEPFs4Zm2o1Go9Fo7AmecEw7CztaJU8ni8oSbDC5A1ksw1hKm7px6lIz3SLbViFro49510rG651odg915ZXePY4nE2EQTKYSr6WOyWNCXWe8lvVWyCQlsQwy0ui+IuUBPWgXwLSKBvX88Zg/zUQ8H5mOm9ISSkSyNrIetyFzYWMZWUpUaZOhZCE9aRNAKc3S81S5UrreWFYV4IjuSJkucxd3oIODA1111VWHc+p6IiM1WzXMDD2n1l/HNnh+b7jhBknrNWNm7b5arxyfFx/jO8o6ZbtZuR3xGkq1zEC93v2ekI7q0aX1WJoJX3fddZLWDDuuJbNWjw3XkOuJwVzcH4+J2+/+OuSqn9FYH4NU+RqmxY3JRizJ85i4H5RYLL13zhqaaTcajUajsSd4wjHtzGqYOycmdF9KVuDdbxVIxDu4yLy8syU7Y71kQPEcdZtVSsh4DeE2mQ3ENvqYd8vWh5HVkLXFcnzOZTBpRmyjd9uUJDBwRmRllIjskppzKSyhmU2l46VUJYJW3GyjEVlMhaWALLQOp36YYx2v5XhRisGAObH8pTC58by0Xt8eC9p1UKIU583rgIE+mGQntrEKy0sWnSW12TWda7SHcBuzJEDVfHsszLiltS7b7WdQFQZxiTYnZMsMEZpJu170ohdJWuvGeY/rj4k8qNv1HLo/b3rTm470Mz4zZq1m2mybWXy0OGfCG9fHoEGuP87BHXfcIWmtm/dzbGadBdnxNS7P/fC12Tv4rKOZdqPRaDQae4InHNPeBWTjDL8YdTBknN5Jk4HHHRstY8n+mOYvXss20m+VoRulTRbo/pjN0BJY2gwRat0SrZMz9lnpztwf76Yjy/Gu2ztd77A9jpnvbWV7cBzEdtPS+zTCHtIHN/MH9dxZmmEG5uPRUpZ+62y7xymuUfphU4LEOYzrjrYMle48shdKbpiClmw09o8+tkzi43vjPYw/QKnMUhpWYynZzLlz53TNNdccts3PeGS+9Bv2OnZbrPvNEt54HsxMXRb9i+OYe2zNYq1fp67eFtSx7uc+97mSNu0D/AyaPcc6fc5tY/wBs/O4dpgwxP21vtr1RtsR66y9funBwXZFi3qPOZO0+LjrWbIM57vpYtO6Xg400240Go1GY0/wpGTahnd73qEygpS03sV5F+l7GFA/7uRpeUufUe8IIyvzDpeWkJVOPbJEMi3uOJl6NN5D3bl3vHffffeR49HK1DokW2a6rd55e/ccd6+0Uve9RKbLZBsrnD9/fqfIR7RHuBhQF5zZQ5CJ0Oo1SwWaRbGT1uskxgXw/xXzXPIE4LyQNTMJSSyfemjOj+ct6kFdD33jrQ/NUuAyLST7l+nODTLTDNM06cKFC4dja8vi2AbPmde++2xWbmYapQx+D5jdUf9txkgdtLRm5W63r3ne854nab0OYn2W4FDS5+Nue6ZjpiSBFu9ZsiWPk8F3GH3YpfXc+V3hT4+Vy6APdmyT15XLspQjs1WhZCdLuCPtV7KRZtqNRqPRaOwJnpRM21F5GM852xna4tLskanrvEPMYlx750fr8Sy+MmMxUw9JBhR3imTftHSlJbK0qb+nHtLtMcOO95qBmA184Ad+oKS1Xvy22247MjaxbbQO3cWSmnG4M4wxjjDtJYvzzNd5V7h9ZlheF57/OI603nbfaT+w5JNsmKX52swegjYUZMkZIybjIMOmpba0aaVLGwqD1uSxfNoAML1s1CdXUeGMLBoZWfgSLly4oAcffHAj3W60sqZHhFmx3xmUNsX2uC2/+Iu/eOQaW3ubAWfR1Ly+zI7NQLOIYfRftzTLjDjzBGFEPMYuYJSzKA1wfXyXuG2MH5GNid+vjGpHiYa0Hje339d4jPicxTZU1v9tPd5oNBqNRuOSoX+0G41Go9HYEzwpxOMWp7zwhS+UtBYb2Z2iCmAhbYpxLb6xuIhiRGlTlG1YBMSA/rGcShzO+iMs4qHxEkVDS8YWNHRzfzLRndtv0aC/Wyzme6I7Cl0sKvFrFiBjl4QkYwydO3duI7xsbDdF88eB59trx/3w9yrhirTuqw1pPB8WPWZzSiOyKuSutCmurgKzZEFIWAbFoAy2EcG0tAwNSXeurP0WqVahUGN7Of+7BN/ZxZVnmiY9/PDDh2JWil2ltXja4lwmp8jeAx4zq4ss3rUxmeff/Yv1+bm3KoWuZQwSIq3Hx211EBKPj+tzCNTYXrp6UhWRjbHnn2oR1+v+eMziPRbDM6iTj1PUL20a3Bp+j9N4N4IqFQaLOeuhSyOaaTcajUajsSfYW6btnd9S6EnDu0MG/WeKRIYXjGDwe4YvjTvQijV79+odYeZSQkMgGvNkwVzIMBi4Itt5VvX4Xu/gszI8BmYBDKJAA6zYbqYLJeI80pAlM76JmKbpsJ1ZchEaw1UsLN5LQyMG4uH8ZOvA7XdZnK/IVCq3KSNbmwx16+9kTQyRK63Hgv2gkVEW0pMSEK8HuvzF/tGgi0aGlBrFflBywM/MtYj3VrCkJrY/C93qte8xdJ+z4EDuC9NPmml7XNz3yEgpjbFBKMOXRtdJzoPBNRQlfO4PpT5my0wyElNzuh5fw/CibnPWRhqvOeiKy6Chn7SWgNCIkXOdBVdxfXyPZ4GnznqglWbajUaj0WjsCfaWaWe6vQregTlAgXdi3tXRXScyLepvDe9MM9ZGVuZz3t1lgTgYppQsgmwptpE7Q7LlTN9GHSl19zfeeKOkXNdI16J7771X0nrHnbk/0c2tcuOJ4TnNdLxTX3LfmaZJjz322IZrRxZsxeUxoEdma1C5m5HdkuXG9lf6fJbhfkibgSoYoCMLY8vQtExlyCBCsR7OKZlOHHuPKQNiMKwkxyGWw2AdVdrNeI76VyOzdaiC01S4cOHC4bpw/97v/d7v8Pwtt9wiac3C/e7wPLg+2y3E9vqY17bH1GPssYi2NJ53s1lKwvysxXVASQfn1gk34ruMjN1s1vp3j30mffC11As///nPlyT9+q//uqSj82N9u10m3Q+6fmWpit1G12MbJdvO+Bmh21psN1MD8z0rNdNuNBqNRqNxSthbpn0x8E6MDCtzwKdVrZkBQ2HG3VkVZpH1ZYkbiCr5Q2Ta1J1X1rRZ8AYmUmASC1rJZ6iYT9xhU8dM/X62s2Zwmm2hKB977LGNIDWxXkogmLjDiOycrJjlk/1nEhCPjz+5hmIZnLsq+UyUSPh/Mp5tKS2z/vic55+2D7FNZLP0dFiaL4YxXZKccf4ZiGOXsLRLbTl37pye+cxnHo6xWV+2DjguZn/0oJA29cKed0sizKyZ6lTaXL++1qzdUo7Izj0ODP/LlMCRnVtKRskUbTfIUOM5jr+t5bN3zFvf+tYj/bPHgcfKY8AQzNKa2XsMmNTEyKRd1Vqp3oNnGc20G41Go9HYEzxhmDbZ3ZJPr3dmVZrITNdsUAe8ZDVKNsYdYZb0g8yjCkmZseYseUl2PruGVr1kLdlOlBa/7l8WnpO6eDKrjNEzHOIu9gvUS8d7OA9ug/tu1hLbQJsF7thpCxDZUiWlWEq0QXYe9d3SpgQktpHlcg1lVta0tPW17F8Wpteo9INMlBNRhY/MwtlW9h30IY7PINfM0vvACUPuueceSXn6W0szPF5m2O6H2XkcW79f+Hy4DKfbNIOM7fcx30OfaPoZxz4yvWY1JhGuj2C8iMzWgLY61oebEcfQrlw77h/DAfueOAdVymH3N/Pn9zUeC+rMs3sy6elZQjPtRqPRaDT2BHvPtKuoSFmKRO6gzWKY+jGySlquUl9IfV48Rp9XBufPoqiRgZLZZayFelWyJeq0qr7GezM/Z4P3eKfN9HcZKvaZsU5a4e+id6JeP5vLSjeaWY8b9H0mfDzzL6YEh5HxMubjvjMiGllFdj/18NQ9Zqk5mb6VVuxRgkAGR/ZCa/UMlQQrW5dsI+cxkySxnqW1M02THnroocO+k8HF+12e7SE81tbNxjYw2hvHkuNmi2pp7bdsuO/2fY7R01gfbSgcnyLaQRiMhUDPCs+hPW+iNIDjTT9q9zuLe8DnyP2jBCGzU8iSicS2xbmmdJP1ZtLJJQnRWUAz7Uaj0Wg09gT9o91oNBqNxp5g78XjFDFZFJOF0KTojcYImWjO4hReS3eXKKqhCxTDClpsFOuh6w1FqxQFZaJ1l1ElGcncymgYVgWlyESqVRjJzAVnWwhKBtuIx7JgLdvgcmnIFUEDGoY5ldZzV41ptZakTVEfxycL6UrXNxokZeLeKl821wXF5vF/rmMGaIkiTiYRYS5siquP42rI6+I5to1zkBmvsX8ZpmnSI488cjjH7p9FwtJmohAbrRkuPwZXsXuTRc5Ui1BUa7cnaR0ulAFfOIcxkA1DD1vETkM4u3lJm8ZrXndV8JPYbxr90mjN7cgSIzGMqPvJxChxHVjMz/XNcMFRlUPXsSphUfYubvF4o9FoNBqNi8LeM21jyR2ITLAyvsqMH7gzq1LVZe4mZCt0KcrcUCqjIrY1Y9ruH43jMoMg9ofhU1n2kqEGmU7G6KogGtsMvGIbdoF31kvpPH2Oc2mGFRM30IiLQSho5Ji54DCoS8WIIzinTEuYSXYqlsz6oiSB48PUs5mxHI3hmPK0kk7FcwzTahwnyAXbnq3RKk1uxDRNevTRRw/H1sZSMTmGGadDZd56662S1mzS9ZhdS+v1xMQaDK5iJhzDbzJ8resxQ3XZMRmHj/laM1Nf47ZF9y6fs4Gb15LbxHdiZPZuf5We1GVkBnCU0nA9ZKFIHVrZ/WLAFxqWxvK49vnO2iXQ1VlBM+1Go9FoNPYETximXelIl64x6LoQmQHZEnWOmauP72F4SQbqWAqQwvYz2EbcTfocky5w55kl46hYH9sT+7fkVpWVFceErm0MTpOFg8120MQYQ2OM1AWPoI45C6pjeMzYlqrvUe/OcTJrjaEnq3tYTyUdiG1juli64kVdn8H1zLHOAo1QOkOGSqadzUUVRChz22KfvWYYCCjeSwa1FCjjwoULevDBBw/Hy6wzMm23wczU+m6mto1uYma07r8Zt93DOPbRjYvuhy7DCTey95wZtlmqx+fOO+88Uk+086BUkP2ji1tcQ2SvZKgeG0sLpLWumtI/zrHriW31ePIdSQlf9p6opIJZ248j2bscaKbdaDQajcaeYO+ZduVgH1kT9XLcoXPXl+mAqyQJRmbt6nus22EowCxlIa2TK4v3WB91igzP6vpjfQyiYZC1ZKEvjSpsahZWkuNncAecMfpd4IQhZPmxDbR2pX6Y4WylTdboT0pRsoAMHONKL54lODCY1CRjEWSyXO9kE1n4XK556gvj8xTZZCyXqUYZCjWWSwZJ25BMklDZTLj82C9Kt44DM+xoCc60l26fmSOftXg/289QpGbGZvjS9gA1Xn9RauPQn77Xlt6UTESJm5l7lrZV2kyZGe09DNoNuAyPSQwa4/FzX72+XUZmcc4++xqubwaGkdbPgue0kihFbJPEXm400240Go1GY0+w90ybCTQyP1b681W72EwPzmuo28z0oWSNmQU276F+hvpC9iUeJzun3yIt4LNyyJbYxkxfWKWAZJ/iNWRHZFZLPr277Hg515F90WebDDsLl8r+e7efJRqQjs4Ld/FMR5lJJFhu5Re+BM4lUzJGHSPXJseCaURjeW6bWWhldRuZHfXq2fqKdcRraNdhxsWwnbH9u/raHhwcHPbVjDXrM62sbcls6UP0taYnA625q9Cx0uazS12264+skn3mM54lLmKcBuq2rUd2PbF/hu8lA87sFDx+nsM77rhD0noNUaIYJRdeR9U7K5NgMrkI37NLCaaW7CwuJ5ppNxqNRqOxJ9h7pl3pYLMITkw0QDaTMW2WmyWSj+2Q1rs6WkwvRbUis6b/ItsYGR31qZQ6eNccWQ7b6DHKWDn7V1noVzruWJ7ZRxWRKM5bVf4uoL+ptLmbZoKITG/PueJ6I7uMZXDnT5aURY7j2DGiE+c2ghIJJorJpAOUOtF7IGP4ld/3LpHr+OxVVsOZPQMZZBWdMJZzHFASF59xM04zXj6XZKSxXdXzQpZnVhjLNeOmlMHSgLi+acFuVkz9e0yVaTC9KqMFusz4DFq/bckNdcoeT1uvx/J8jfXd1m0zyUiWGMf1MTKfy4i+5C4v+rNHZNEiM1uMs4Rm2o1Go9Fo7An6R7vRaDQajT3B3ovHDbqoZMZEFIdXAVMyUCxOB/8oSqE7AUVMmWjT5boNFk/RmChz+arCVlK0GcVGlfiTCVcyV6wqbCHFl1loV4rfqwQSsZzKNS8DE65EFxbmUac7EwNlxGNMxsL2ZmJkGvcwIQVDKsZ6LD6sEsYsJceoDJCywD10R6xEuEt5lL2u2U+uw1h+JerOVCBVKFKuu8wQbSlUbCznkUce2XiOsrpsOPXCF75Q0np8LIqOome6S9HIj0ZgmaEok4442YfLjs8Ew4bavYqi7mzt0HiVLliZu6BhEbevZUKUOG82xuM9lbjcn7EcG7O5LTfffLOk9TqMz7zHnElgoipCWg65fNbQTLvRaDQajT3BE45pZ7tuGl0xyAkDiGSpCyuWbmSskjtqfy4lCqmuWdr9kVHRECRja94Nky2TzVRBUeI57sKzsJUc86XgHcaSG18FGn9l4V7JqH1tltiA7a9cRoyMNbNt7HsWurWSYmRrlEZCZNqZdKYC53sp7aXHk25hXKvxXq6RKu1mHBP2nWOTrbuldbsNmesaje7e8pa3SJLe533eR9KaAUcpjcsxe6RrGkN1xvmxsZX75GeaazgGuvE5BxJxuTTyilJBvivoRuXvbk+sj4lB+B7IDFNdX2Uky9C7cU69NixlsFSDgW2iMaDni4zeyCRknTCk0Wg0Go3GqeAJw7QNurlIm8zGoB53KXBJ5RaW7dSop7WeiHrqLMwnmXwVWCTqshhsoGpbbDvrqxJ6ZEFKtrncZPdwJ1/pi7LUlsa29Kvnzp3baFOc8yqMrMcy22FTp01d/9I8kXFWIXCjDo66WIYGzXS0VeIMtjlzyeK5KlRoxlipA+b4MuiFtJkApdKlx3toR8C1tKRv3UUvaZ023YKyJCl0hbzrrrskrdNGxrl0wBCzPDNBSmkyWwr32efMED0G1lfHEKEuP6belNYsluE+Y/leEwx56xCrnh/rpGO5ZrzWF/t9x/Cp8X9LJjxn1lMvJXphQBu/Tzk38V3sdcYEL1zXmS1K67QbjUaj0WhcFJ5wTDtjPNR3MzACA5pkTJvMh4nXlyxXKwvpzKqWLIXsokoJKa13qQwakum/jEraQLaWSS64K68Sh2SowqZGVCE9MzBhSBZa1eWZkVTSi0wCYjD4A/W7cU45V1XAmkxKw3VnFkYL+HiMulKGxM2so70maEXO/mWJN6oQtFw78V4GZjFoUxFZM6UzfPYy+4XjsqQxxuG4eTyXgp1wPhxA5NnPfvbhPWagbp9ZsVmy2089rrSeD3/SLsVjcPfddx/pQ2y359b1uSyz52oc4j0c6xjMxVIGgpbZkWn7nKUQZPIMNBMTlFBCYT27591lZuuNa4gBgfYJzbQbjUaj0dgTPOGYNlmztLkr9qd3uN6RZpay9HH1jo1+wHF3VzE56qXiebeXTIo6bu8MvROO5yqL2cwPlLpZSgXIcrOEIVWI16wdZjFV0hTqomP5lIhkMNOmHjz2mbp22jp4dx/bwN29zzHhidfQEtujFXyWMMSWvmTHLp9SogiGJKUnApOesK+xTZyPJetx6rL96THKLJy3eR5k+mmmoKWkJ5Oq7IIxhs6fP39YN1OnRjDpC/2A47xwrdD33izSjDWOceXT73eL/bfNLqW11biPWbfte6xHju8qP7PWybuNUXctreeL1te7ILMrob0F/cKtd4+SBB+j/zlTIMd3jMeEtk5cMyfxMrhcaKbdaDQajcae4AnHtDO2XKVhIwOp0mFGkLVyFy1t6oyYFo4pIqX1rtG7Y7ImMv4I6hsZ9N/3Rn2UrzGzpyU1LVvj7tXHmDTFyKJbVQkpdknNmenVK3DHnFmwc9dNBp75jFMHT30053ipr/RFzvrFe6kfjuyF11LiwTHO9HhVWzO2WflJV+MYnwf61LJ+I65psnHq3zMpzUlASUHmyeC5c/v8DPh47CvjNNx3332SNhNr0Co63kMJFf3B41p1u613d3233XbbkfNxbF1ulkTkUsJ9Z7wIj4UlCfEdY9ZtaZQZNxN82BI9nqOtRmYHYbSfdqPRaDQajVPBE5ZpZxa5jO/N3XMWmWib/zIj7kibKd3or0if2Fj3NlaZsUBaPVfW6pE1UadERmcs+doyhWHlUx7LITvi+MY2kxnuYunJujM/T88/I1Jl6TYZW55jSracWdlXkdEy63pa3rotPp7NB6UkXGe8J/N0qKK1ZbHWq8hr9EPOGAsty8noszGhpS/blkkDjoNpmvToo49uSJdi+z2m7iMts40opTNzZjpPepww+pm0ue4sNatyFEjSDTfcIGnNYs2e3Xb6b7vvlwOu12N00003SdqUUkYJpsfrnnvukbReK5ZceG48ntLaYp9rtrL74f9nEc20G41Go9HYE/SPdqPRaDQae4IzJR53KMrTcHjPkn7QqIoiYn6PoAiOwS8ykQoN3RgyMBN1Gwx6kiVfYFuqellmPEc3l6rMCLpiUfxPgytp01CLrkW7GGVdrNiKbkVL42NQBVCFQs3c3Co3OrpEZSJ812NxYeX6F4+5jRbD0g0pUzNUyR4oNo/rgXPke6uEPBEW89PAkkFrooqJrlP+XHIPOw7s8sVnK0tAQjUPr41hRf2/XbpsQOX2M2BKFHVbxOv5d/3+/vznP7/sD11O+WxlIXAvVsVwXPBZe8Mb3iBp7a7GUKjSejzp4kVDv/jeeeCBByRt/gYsicuX1HxnAc20G41Go9HYE5wppi3NO6KTMG2y57iTq8I4crdvZhJ3agbT0JGBeGcYz9FAiMZXMegE2T6Z1S5pPcngq0AW8ZrKXYdjlIWFNdg/9yXWx4AVlUFXJg3I2n8SVAlUaOCUrT+OD9uWGZ3xGEOCZm5VZL6UUGQSEDJtuiFVYUZjWzJXsqzsrPyK6Wb1kdmYeZM9Zal1q/ClFwsbovH5yVyj2AY/91lYXj8HZtBcDwxRajeneK+ZovvKNJtxXq6//npJ6/Fy2+hqGo29dkl3e1xUz3Z2jBIqG6bZiC6ud68VSyHs2mWGzXC+sXw+03z24rydVYZtNNNuNBqNRmNPcOaY9sWyqaVEGkxHSfeJLLgK9aBsn+/xDlha76ypc6HuN7vHn94lU3ee6cMrF68qvWO8n7py7oD9maUNJIOj7jQLcEMmR+aV6bSpfz8pKFVgko9MF1/pev1JFrULWG8MNELmyT7TnTCCiSKWQroa1K8TmeSKbolVCtJMN8ikFtTrZml0KZk47ZCTY4wjEr4sQQ3dzvw8xDCi0pr1SdJ111135Bxdyuy6xBSe0lp/S/sav7Ps5hTTbNINjUGXXE9873gs7Q7mz4thm7sw7eoc11Lsg/9ncBVKRmP9Hi8/Y5X7aIcxbTQajUajceo4U0x7mqYT7/CW7qustqkvzgKMVCncqKPN9ODe+WYpEaWju2gybVoAV2FGYz+OY6VOJk2GvRSkhOPH9HdLVvFVgvld5u+00uhVlvNZ26hrJRz8gTYCUp7qM/ueje0So67g8YnBJbaB880Qv7xOWvcxS9cZzy8F2aEVOfXIWeKVLN3qaWCaJj3yyCMb6yvTaXOcrIPN5to6alqNu6xbbrnlyHeydmm9Nl2G2bvfE5mHhpN/uI1OG2pkKXoZaMr9sP576dnje9SoUvbGY9vS+WZzbV0203hSwimtn4WlxET7hmbajUaj0WjsCc4U0z4NZGyJuzXqgKk3jrswWoVSL0WdXLyGOnIej2yGx5iS0X3IknRU1sFZ4gPeQyvxysoyY88Mk0ldZyyrsmw3Mr18ZaF9saikCbQQz+rkPJiNMRSqtBmKMltfUi7ZcXm+91Ixgyq9Kuc0Y0uVnp/2EVm6VYYFpURpKdTqacNMm1KGpZCqHh/rgG25HefSrNh99DX223bY0SxRDZ+XyuMlskrrt++4444jbfU9lgpEnTbr43No9rq0Dqv0tUtJjnwNdfROpZlJPd1uX+PxtW47S815qaU0lwPNtBuNRqPR2BOcKaZtK86LYRXZjoo7fkYIImteslImI8l2k2TLlSV2tE71MVq08zPTj1O3XDGfbAdapXNkP7MkGgb1RJlOc9tON4sotgvzOQmqNJRGptNmu61Hoy426vXIKivEdWBmU+nBTztyFRkN11s2l9vawIQYsf9VNKtKSiTlEpBLAbY3sjwm7rCul6w1SsLMAK2rdp/f933fV9LaFzmT0th7xPVSEuY5iNbqTtvJxC1uU2Z3wWeZ3zNJolHprJnII1rFW7pAjwD3y/12m2O6UuunrbO3xMLjxmQ7Wdv2WZdtNNNuNBqNRmNP0D/ajUaj0WjsCc6UeFy6eEOBpZB5VdAHGr9khjMGxchZwpAq/GYVXjSeY8jVSiScBSGhmI0BYZYCz1QiyCzPdSZmy7CL8RLLz+qpEqBcLCj6zerZ5ppGQ7X4nWEV2R8mXInHGOqWoS+jARITj1RrNkvKwnWW5ZTnd/9vd7eq/KV1UhnlZcFVHg+R5vnz5w/HMQvwxLmq3CmzxCq8xmJxrw9fF0XtDl9qUbBF7QzlGROU0CCLbls+zqAvsTy6mlLUHvNb0xCVaqcsoYv7/pznPOdIeV6HbquPZ+Ppa7J3IFE9E/uMZtqNRqPRaOwJzhTTvpjgKgaTQkg1eyTb8840M4LxDrsKRhLrWDLIivVkgTiqYBMMZxjv9Y6WO3eGF11yYWGyDAVomkkAACAASURBVBq+RdCorDIyyxhS5gYkbbq2xDYspSU9CY6zxrZdSwlBtu5obEUJTDReYh99jskn4vgx9KTnskoKE+e0GlOyxCgNYLvJZhggJo4J1yalEEuSskuFg4ODIwFH3NdYr8eM0hO+H6IExEZVvsaGWb6W4xPH2PXYuIwJNVxWTDJC5lsldHGZ0towjOzV/bMRncv6jd/4DREu323yvVmYUa/N2267TdJmkiafdwCVaIjG8bLE4O67795o0xMZzbQbjUaj0dgTnCmmfRrIgjPwnHdzDGOZMdEqwEfFnmM9lTsVmY+0maaPARdcfqZLq8KIsl9Z0JAqCcNSQBMyxV2YUJXSsgp0E48Z21ynLhYnCd5CvVpkzZxLswqGvo394vxS4pGNNdkw3ak4blFfXEkxyIiztUMdttcD9b5xXPlcZnp91vd44MKFCxvPa2TNlMqZmZPVmiFKm+8Z6njNHLPQtR5bs3UHTHG9TjYS7/HzQt08n+X4jJmp09XP9VuKYx1zfCYp1bS+mojrjakwuf7cX+vYM1sKX+v6rr32WklHWfkTGc20G41Go9HYEzzhmPZSGFPqofiZsVgG0KcOOGMEDONHC90lZsrdMfuTBXPhMfYrswA3qtCTDN8aUbWfbDoyrIo5URoQWQCZ3KVm2ruAY0jr+4ytM30n+5yFe6W0hqwm2jgwiEscw3httg4qNraEKhAK12gWhIV6dQYPoSX84wGHMXWdtJiWapsWM1/32XpcadP+wOd83CzWeuP4rPmeN7/5zZI2Q5EaWRutW3bwEbfRYx/14E5a4nLMcPkeyPTulYfBUsIYPi98J7t/toqPdViKZf37zTffLGmtHzfM1qWj1u5PFDTTbjQajUZjT3CmmPYYQ2OMU9ll72K5XIXyjDBb8A7UfpJmBJl1N3V59r+ktW3Uf3rH6V0+28hQfWRT8ZqK9cU2kmEb23T38Zh3/1WKxsySmjos6rRje1jPEtMeY+jcuXOnllSkAnXySyE9ObaVD36m8/Xa8HxzbUZ9q9cXWaDbtrTOvSaq+SYjivWwPq7JbH24PvfLbadv8eOJCxcu6D3veU+Z4lbaZJFkpj5uFi2t3xFmvkwgYoad6YQ9d77WLJ32AtHq3f+7HCcoMaP32McUoLYkd3mUCnFdZMx+W9yGeE8V1yBKKKT12D3rWc86PHb//fdLWvt4Z5bs0hOTXUc00240Go1GY09wppi2NO9ouRvLEl1sQ7yuirrFsjJfW+p2qNv2Z2wzk3pUrDIyEO5Wqcskm4mshveSabHM2MbKF5rHl9LrGbREz+agij7GBCzxmixJSoZ4/vFi3MZSUhZeUyVlkGorfo5bvI7+q2TUVfQxaXN9UZLgzygVqnSWGUPlddQX8zm6HJGrpmk60uYli3lKL+hzHSUvliKYAVu6QP9p63FjwgtGFTMonckilJGdG/4edb70BDErZyrOpXnZ9qyd5FnMmL317+6HJQdMQvNERzPtRqPRaDT2BGeKaVsvaVxM3NhMT1jt+MhQIqg7IpvM9JL0w+YOm3pEqY5LXcX1jags2Ssr8niMDJF648yHfRv7y6QPRpUCNLPcp/X90o59jKErrrhi61xfKmSRxajj5TVLVv30gV9KS1qtRbLoLD5AFXOe9Wb94xxyzBlbINZTfV4OkGnvAj/TmdeDwfjxTEfp82a3EdbfGrwny3lArxX6zzPmQwSf6V3iej8ez1i0dKfthqUBUQr0ZEAz7Uaj0Wg09gT9o91oNBqNxp7gTInHpVn0seSkv0uAknivtCker0KTZmXT8KtKkhBBNx2Lwx0UoEp/GI8ticNjm6W12I3uKJXbWLzHbYnhEKVlsShRiVbj8SpNYeUCFtuwFKwjXnvu3LnL4jIkrdsW3WloSEcR9y7zX4UZzQzeaAhWGQpm97JtlVFbbMu2/mTi+CphyL6CBmnxGXOAEBtI2WjMa4QBWu68887De6lGYopW1h//p6pp6V3CeaZhnbEUavVSqjbi2qkC77CtT3Q00240Go1GY09wJpl2teuPOIlxGl2hyLyz0J2VqxUNtKIxxLZEF0spMg2yZiNjpGRW3FlnO+EqoAwZdmaIVu2wl8KYGjQqI9PLpCq7JibJ3AUfL2QshsaFVcrWOLYeb/aZxkRLQWjYpiVXR56jq2HGqnlt5S62Cy7XfGVgiM3jgIxbku677z5J67mzqxVdvRygJUqS3AYHO3FgFrP0LGWqGSfdNZkSNEo3mLDF9bJNlshFgzsGxGECpiXJ2ElAg1um83yyoJl2o9FoNBp7gjPHtA8ODsqgJ7xOqvUpSy5f3HEycEIM98ny6UaRMWLuhsmAMrbMnSyZ21LyjCr1Illzpv+q3N2qICv8X6r1kllaPdZLJp/ptJeSs0RM03RZgnNIy2FlGYJ2KRxrZV9B/XCWmpUsmW2iq0wsx/XEtZ+1I+sXJT38nrklnUV2dNqsn4ya7xem6IxrnxK9F7zgBUeuyaQCXl8V473xxhs37vH82t6mSifrzxhW1K5qDMPKwCwx1CqDUx3neeXzfxbX0OOBZtqNRqPRaOwJzhTTtuU4WeVSaMhdLBe58ydLrph4PEd2QYYSd30MyOJdqhlWxsDJoCvr7SW9IZNNEHGsKubONmZhM8kG/cm5yNJscv4qKUQEreMzOL3i5QrSkdVLZutxo1QjstuMDUcwjGaEmZbLs7UyE9Qs6cO3BSCS6ueGz0IW6OYsBFN5vBDDkkrr94FZrcEwtNJ67By6k1InryHrnuM9TlnJlKBM1hLL9dqwVOCGG26QtF4XTiwS16XPMeWo+2mdd2yj4Ws5Ro3taKbdaDQajcae4EwxbWnerVNvcxI9ZdzJVwybYTepz8nu9c6UOuiMoZAtM4xpZDxMilGFiMyseXmO+v4szKSv9Q7b9ft75cMeseQHHtuRXWsseQoshd8kpmnSww8/vLMf/2kj61+VOINeClGyU/U1kzrxHqOyNM/8dSlp2TansXym7WTbM6b9ZNVDStIDDzwgaT2mtn3J1jXnjFIas/V4r9mrJSxM9+vPGDbVFu2eF99rduzvfi9E+xUyacalWHpem2GfHM20G41Go9HYE5w5pi1tWhovRVQylhgWEyh4V8moYJl+uvJJJqvN9ISs3/qgJV/rXSNTxeu4K68iVcU+MEEIJQe7MFWygCUWXemyKU3J6l3y+87aczmwZClNnX/lex3/pw7TLCpj2rQS5xqhHUZWRpUON4uiVlmJ8znj8xbb8mQE+27Gax1wltaT0jrPh1l6ZM1ve9vbjpTnZ/ruu+8+Un9ky07IwfmnRCR7xqv3nO+9GL/3Ro1m2o1Go9Fo7An6R7vRaDQajT3BmROPLwW1j//T9WlJPE4Rt7/bkIK5sjOxLsXylQgynqP4kKEH4z029KiC+y+J441qbHg+wvVuE7Fmxnn8zvHLxNUcC4ps45jQwGkJlzOwiuuXNsPRSptr1PAYx7FnYBzPD1U5cf6rULSsL1NBcK6qhCVRpEp1BcNY8p4ns0h8F2TBVTzPnn8bnlHkbFcsaW1U5nF3Tm6L2m0IF0XfNiK7FHN0HLG4+/lkS/5xEjTTbjQajUZjT3DmmPYSy43/00BrVzYWr6VLhHexWbALGvMspax0m2iQQWOyjC1t+8xCYFasn+wpazPDiFYsPQtVWgXZWJJ6MG0gw5ku1bkPjC0LzMPQoGTYWfARS3/IsKswt1ItdarWcDxWITMCJJOuXM6eDAFULgacFzNlac2OzUD5TvF3p/+Mx+655x5J0vXXXy9Juv322yWtWexZNAxshr07mmk3Go1Go7EnOHNMW1rWxZJ5Ms3mUnnbwpZmQUjMeMgEGQwlc6ciwyXjXupXlWCD12f1VeO3VF+lq89Y0zbXniW3tErfamQuU0vuYLGPBwcHZ4rduS2W5FBKkiWbMdvymPoeSkRiWZV9xzbmHY9VST4yVzY+P1XwosYylkIyM62m15CR2QvccccdktYs3e5gmYtpY3/Rs9hoNBqNxp7gTDHtMYbOnz+f6t6MKjXdLuERGb6U9y4xBAe3IONe0nEzMAJ1mVlQjYqNM5FIZlFfBUbJdthk1tRHUwqRhef0OVoRZ/1jWyubgDiPDOiwjSmcFf3cNtBaOK4pSi8qiUtcq9RzV/YeS/YfVWAesun4fyVxaZwMWbhXp7t02E8nEHEglfi8OOCKpYN8Lq0fd2hSac3gK52ybSkyr4jG5UEz7Uaj0Wg09gRnjmmfO3euTP0YQZayZLFcMWwyOe9Is9R1BnWOmTUv22RWSQaaWcXT0pjns3spmSCzynT1FRum1IH6yniNd99L6SKJJetnllH5yFf37cq0L1dSEfpgZ+Pm8WFoXYY8jeycIS45t0sJQ8iwl3zs2Y/jzHtjO6Lemok6qKf2PNlCPN7j9JrWhz/3uc+VtPb1jnNrhu1yfI2fbX+eVkhShi2uPF4aNZppNxqNRqOxJzhTTFvSEQvgXVJzkqFmuhkmAqF/LK2eI1gercYz5mOQcfMzslyeq/STGVMlW64swGMbq6ht3En7eByHyhaA85TN2zbWnOnqn2jgesysuT1ntqWghCWTSGQJb+I9me6Zz4TZHll0lD61fvPSw6zZftge/5tuuunI+Tgvfjf5GjNu+21n7yraw1xzzTVHyvVn5kXjdcVEJYziZsYvbdrBZDYTjWU00240Go1GY0/QP9qNRqPRaOwJzqR4nP9HcV4VOMRimyX3LQaSoJiX4ux4zrAYnsFJlq6h21bm6lOJ3auAKTG4xrbALBkq8RTFs1nADIq4dgkAUxmgVGqAeA8NrS4W1bgsiZ4vJaK4mevZ5yguj2NhESbvtajb8+R7szCWdP3xfHOuG48PPB82PKNKzyLn66677vAehin1fPvT4vL43rn11luP1OukIhaT33zzzZKku+66S1KusrIbmp8ft+PZz362pKPvDovOLVLvdXV8NNNuNBqNRmNPcKaY9hjjMByltGYTSwlDyGIZ7i+iYtqxftZHlycGxsgYNxNFVC5gSwk8tgXMWBoTukq5nsiwmE6RzIoGaPHeKjVnlszEqCQkDG8aQeZ72qx3W5pX6fFnAjQmc/1eS2bVcSyq1LJcB57LyNL5rBltbHY24Hlg2GYz8OxdZfh5tCGaWa6DsEjSnXfeKWnNrJn61ak7r732Wklr1i5J73znOyWt3dG8Nu0+5nujsdwuYacby2im3Wg0Go3GnuBMMW0HyKB+NXOJIfM8Dgtj4JClYBdVGsUq7WY8R1cyBrmIO+OKcfJ71s8q8QA/I1tmGxkwpXIBy+qpwozGdmVSjPg969fj5fK1lOb1OKlfLwWYdMSIUhq71niuGAjjtAJjNB5/2LWL7z0fj8zXjNbz7EBQnn8zbDPveMzluAymKXZZ0fXT7Juui9aLu4wotfE6bhevk6OZdqPRaDQae4JxlkIQjjHulfQbl7sdjTOPF0zT9Kx4oNdOY0f02mmcFBtr53LgTP1oNxqNRqPRqNHi8Uaj0Wg09gT9o91oNBqNxp6gf7QbjUaj0dgT9I92o9FoNBp7gjPlp33ttddOt9xyy6FPdBYxjMnS6U+cpXqjj6Ov8Xf6a0f/4CrtJKOQZX6HLG/JN5G+zrx2F39h1rMU6atKOl/FD4/XZeVl3zN/5+razCe78hW/884776MV51VXXTXZb3Qbqmh2lS/5xeJijD13SWG6dGxXbLt36fy2udylrVX62l3KW8ozwHX++te/fmPtXH311dOznvWs8t6lcqvzJ0H2fFbXHKeeXa6tyj3OvFc5CI7blqoMln+SOTjOWPA9cPvtt2+sncuBM/Wjfcstt+hVr3rVYZB6O/zbwV9aD7oDzvvzHe94h6S1I38MRsGAKL7GAQqYCztLGOEwj3wJ+N54j9vrY0zg4PPxZVOFFa2Cj8QxMRiAw98d5jIGRqg2Msy5m+Up56L2eDqJQfZQMdSpP32NQyzGH2i3n8FDvvRLv3TDPefaa6/VS1/6Uh4+ArfXYRe9vjw+bpPbEu9hCFyO39KmzajyjS8FDzpOQJRtmxGu2ayt3KRlL09upj1uVWjaLH8zy2K+Zn+P1zDEr+fJAUHiHHjcvDYdcvNDPuRDNtbOTTfdpK/4iq84vCdLkuN5YQIVho6NY1OtGT7bx9mQs+xdfqB2ISU8V5Ub+8d1xDW7S7+W2rbUjuxevqtjWzhefJ/Her2e+V743M/93DPhFtji8Uaj0Wg09gRnimkfHBzoqquuOtzNmQnFXZB31dzdG2TV8f8sfGgsw2VHFks2aRGs09x5pxaZARkvd5FZuFSyEyaK8D0uO/bbLMLjZWbqMsm4pbWUgfUz8QrZQqzHY2PGYzbOtJLxHqomjKW0mwwhe1JQ7UKmk4WSZbsosj9OmNNdrmU6Wn5fEj1W67p6RrJ63V+G3M3ur9Kt+jOTKFFCxEQ1RpbUhP0iS49lMHlNJpmK5V1xxRWH/cjUcpVkjddmYn22v1pTSyoB10tmH0E2WSVXiu+d6j3K0LdLUhqOAdd5nIttoY+53rKQ0qy3Cm0djzHxE/sX72HSntNWl10szlZrGo1Go9FolDhzTPupT33q4c452+GQeVTpNeNxs0ozUAe/966LwfedUi6W5128g+G7jb437jaZTMT1cLccd6Bktr6W+jrqx6U1i2AZlCxEds1dN5m9P6mvjv3i2Ps4WXzsB3XXlGRk+s/T2uluS3dqLNk0VDrtXYyWyOiNjNmTrSwlm9lm8Mg+xPor48VMr2tUDI4pZ8nIs2MZq411SDm7i9fEpBk8t8QQI86dO7eR/jLOC59l1pOtUY5txSozCQzXV8UQMx0654yMNGOVTIzEPmTfK6nPkl7a5VNixWcxS8u8zcA2k0ZV/avsDPi/dNTG5SygmXaj0Wg0GnuC/tFuNBqNRmNPcKbE42MMXXnllYfiLoslMiMlGmTZ5SszsrFbmK+14RZFQcwDG6+xKNvGVnQpiS5RBsVSFN9EYzmKg/jdZWSi58ooZhfDLYrmaBBEIz1p0xiH9dMlR6oN26h+yETTu7i3bOtf/H+be0lcb5URI0VoFLdFVEY+S/7LnMvj+J5SLMu2xnVX+TxT/ZSJRakaoMg7c/nyc0SXQoMi6vg/n0UjE19yzWwzRIvrZJf8476GovRMnFu5yNHgKY5T5c60JHqujBWXDCAr//jjqKSqNZS5q1b1VaL9TGxduYllba+ejcqVNpZPt7CzgmbajUaj0WjsCc4c077iiis2GFGEGRldoAwzwrvvvvvwGF2sXH7GjuN5ab3b8rXeNZORZvd752vDNu/2bQiX7ZLJUqq2RhawzeAtY5ZkR2R4ZI6xPu7CyUYzZuy2kPFERhWvi226mJ1uZnRlcLe9FFmLzJOGdOzHEnhtZnS1za0qC1xTuUYtsZkq2ASfmewe1le5zkUGyYAVZPbZXDPwEJm2ERk3Wec2Q7R4bfb+yYzTlvoh1ZIHjqnbHceTrlaVVCsz8qKEoIqumJ07Cbg2q/5m126TCmQsnWNOLBlPEjT0kzbH/jTG6DTRTLvRaDQajT3BmWTaDHUZ2bR3Pd750hWHulNpk/lu2zlFJnScUINso+G2kC3HXaZ3277X/aC+LgvEwJ1ntZvN9Lscv1304BWr5L2ZNMKSELMCMqGs/ovRLS3p5iq3t0yPxnGqxi22v9K5LTE6ut4xQMVSPH6yy0pqElnFtudpKZZ/9Sww3GhkuS6f631p3TGsJOfU90YGXrmjLYHXxP5VwWYySZRRuU/tEpiFUqDKjTPWS+lI5XKY5QTgfGfhmdlGopK8ZPYQbFv1bl6ycWE9x7H7WHovLEkMzwKaaTcajUajsSc4U0xbmnc11F1lzMC7VOuLzeCilfNp4CT6DDIp6j3NuKN+l0zHrIKBAzwmcYdd7dy5m6x0+I8nuKOnJW2mb1vSd27Dki6Tu/ul0JBkOJWuO7aRun6yPkqU4jWURFSBS7K20nqc/Yz3WhpCvTGDqxxn7F0+7UCy8siI2Y5YTiXhqfSj0nLwkwoe+1gfQ+BmoYgrVOtgKfzmtnWX6WIriQvLyAKy8PljWRmbpS3FLsGKPBZcZ9U4ZvVxbDie2TjyuVrKOliVf1bQTLvRaDQajT3BmWLa0zTp0Ucf3dAjxl2Rfa7ta21mTSaSWWI+XuCu0f2x/7nbnFlkc4dLH84sFGWW1jJiydL9coMhXyOOY0dAZOVVoTO5o850fpXOfSmxxjaL1SysKcPIGmbjtEWQtvtpG1kyHcYbqKyWT4Ista7Xqj0o6LdtZOzMdh7+dBm0A8iwC1tamhePT8Um+c6K7WacicpPP7OlqOwHlkKfVvdUVv9L97A9SxKLzGaCZW6T4FAqma2/Kt1mVl8ldeK6y0Lt7uJxcDnQTLvRaDQajT3BmdtKPProoxusM1qPc+fkHdN9990nKQ/s7x04WVIVrD6z5r0Ytu76lyxZq50ud5VuY0yzSR9osldfG8fx8ZY+bEOWAKHSWe0Cr4vIvmgnUOm5luaHEg+eX9Krkq1ku3yeY3mZTq5iHly71K3GY/Tpp1XxkiSE0gGz6Wc+85mSjib0oLSjSg2ZeTqY7ToqIH2+owTB53bRS44xdP78+UX/5iphCMcvSrVYHsfUyKzsK8nbkgcKr91FT7wtOuBSwpCq3EoaJW36pFOnXSWuiaiSfrAdsR6C9Wa+/0vxQi4nmmk3Go1Go7En6B/tRqPRaDT2BGdKPD5Nky5cuHAocnL+67e+9a2H19x///2SpHvvvVfSpssKRXRSHZCAonaL1LJQhNvER5koikZxFm1ZvBNF3Bb5ud0MrkFRZBTdxXKkTaOlrF8U6zG3+OUKKJAZgR1HPOUxf/rTny5pbawUz1XGL64nitTpYlWJczMxI9UhFMUt9atS3WTufQzlaxwnOAQN6pj8JRsTGpXRuMzn47PItUksqRcMP0d298yCrlTJJSqMMUqjpfg/x5rGslHMygAldJ/KDG2NKhgMVQGZeLzqx5IBWuUCxXdYpjIwqF7K1D+8Z1swnyy4CueUKqNM/M9nfCmo1C7v9suJZtqNRqPRaOwJzhzTfvjhhw93s9lu0kywCtloROMXg6zVTH4pFCFdYQwaDGVuLazPjMD1RsMZM0O2lUzf7mKRQbL97rvvufrqqyUdZQkux+2mgRBdWOIccExc35IBIftVIdtZHwduS2awRWZDFkGGGNtQBcQwMqbNNlQSnoydMzQtw5jG9ei1QHcagxKezCWGc8p+Rgbp/12v167HzeucxmYR24KGxDFxOV6rDLrkdZaFS91FSuOATpV0Q1q/d/zM8rlZck/kmDK9b5aa0+Uz0AvnODPYozSGz3JsI8e0YrE+HtvI55PvKkoApfU647U0tONnrK8KQLQksaBBm9dqFrBn27N+udFMu9FoNBqNPcGZYtoXLlzQe9/73g2mat2VtHYjYdrL6667TlK+63Y53i2TATFIQ2TtZqS+l3Bb466TwU6o07zmmmuOtFXaDCbgna+Zo9m5y85co8x4GBQg09vQ9YIMgbv/LLmJ20p2m4Vp9fgdJ9DLcXSyYwwdHBxs9CcLgcvwodTBZfVVrjEVY5Tq9J1LwYMowfFYkwnFsXWdLp/18jMLDVkxONpYSJvscpcQq6yvcoPLAsNUoWItQWL/pfU6q9J4ZmDd8Zl3HXTfpAtgpgen3Y3fKVzfWRKgKvUn1wnvj6CkInsmKFHhs5AFGtmW+MSfWTAf2tL4/Rbf9dtAdp7ZM2V69fg9Y+JM2nTW0Ey70Wg0Go09wZli2tK8y1nagXpXxdCg3nU94xnPOHJeWu/0rGPxTtc7dVqGZoFLuLOlFWxso3eL3JUzOUbUSzNRgvtJVmFkVqrUJfreTC/v8ph4xWDYxqhbsrTDTMTXeC6ypCYeC5fzjne8Q9twEp02WVccJwYBocRliYlWerSKTUXwWn7GtUNbBn+vLLPjtZ7DbaEoYxsrC3faamR68CqoC9fOEvMhE86YXWUVTSv2OI5V6NAKBwcHh3V6XUcJCMenSmkaJUn+n0kydgl6kul0M2T9ogSJYxzHlu8OPstuU5aIqUqew7GIY1JZgJ8Gq82eQb63q1SwmSQxC0Z0FtBMu9FoNBqNPcGZYtrTNOmxxx47ZAyZHtT/07/QTCTTmVLv6Gvp78mEBBG0so1tlo5af1N35Z0bd57XX3/9Rr/cZ7eB+vEbbrhB0lHr+CoE5Lve9S5Jm+FMY3n0Ua90nFEq4HLdNu7C3bbYRlp2XnvttZLWY1+lXTwOpmkq/UulTSkJ9XTVLjxeSzZOlhHXB/tEq+EsMUGViMJjaduNpTSild6QiTey/lQJUrIxcTnuM6UQWTwC/+9PS22WQlPSNqSqJ7JO6piXbCmmadJDDz10ONa+Nq5fPrv0YsmSg/DcSSRHlLgsheysyueznkmfqIemPzPHOsLXeH17XWShmbkmaTNReescB1l9XDtL91Ay2tbjjUaj0Wg0ToQzxbTHGDp37twGQ4k7SO+UrLum/7J38A888MDhPYxm5bSeZNhGxmKpH6Klbra7o67UFpK+Nup1ycYNShbcz1if9dNMrOB7XG/GOt1XSwqoS6cePvaPZbht9C2V1vNS6UovlmlP03QoqZGO6lGNyto5lhGvk+roUh5jrx2PW9YP6sYomYi7f44TmW6WCMVtIVNkvIOMrZEF0ueerD2WY9C2gZKMqJflerPk4KabbpK0+VzHfpD50J4kS69YRTKL8LpxvywFytJs0mKZzDCzadiWMCazfqdUiO3I/LQpUWQkxsw+xaAEhP3LYgrQnqjyl479qlJ8Ug9PuwVpc2wpQTIy2wY+81U0t+ya43ggPB5opt1oNBqNxp7gTDFtad4lUX+U7YK4MzOb9I468/P0ruv5z3/+keM/8zM/I2lTrxuP0T/cvtbekcY2UpdDHVmUAlT3GLR4dh8yy3Pqv12vj0cLcdfnc4z4XSzFuwAAIABJREFUZLjNjvke2+K+33rrrUfKz/yPK4Zw2nF9OX7Z2uE5MtA4Bmy31xd9rzN7CM/DNn1dZM30w6bVaxYlkKykYqCZbo56drIlsvWsfLbZx9/2trdJyr0xvO68rrz+nvOc50iSbrzxxsN7aB1Of3BG2cquqWKdu9zMDz1j7paScC35fOwr1xOfT+qNI/gMkQEbcb1XORZoA5ClHnbbLLXz+5VW7JkvOdtEKU3GtCvGzXc1I0VKm3Eh/O7PLNwrL4Il9szn5DixJR4PNNNuNBqNRmNP0D/ajUaj0WjsCc6UeHyaJj366KMbAeejCMgiEItiKab08SiysSjkec97nqS1aPuuu+6StBkaNIpkKEKlS1QW7N//x5SisR4jirjdLwarp6grC+3pe+lq5k+Lk6KoyONEwz6PFcW9WVhYink9bm9/+9uP1C/VLhenLXriuGVGZVl4RWm9ZmK7aTzm9rMfmcEejckMivGiqJVicYrzMhemysiGazcL08rAJZ5DukztEmDC5VPEGkXPvsb1uI0Wj9udMAYT8nNCw04aLWWqkMwIkzg4ONDTnva0jWcsc43i/Lsf/oxzSfUex5ABTZYSXrCvRpaa02B/PI7ZfLgtVcKdJXdIurtRRZmpwJg8xcZ/DLaSBWah6sNt9vGooqJqiO/v7JmgaiJTX1xONNNuNBqNRmNPcKaYtpSHvoy7rczlSZLuueeeI9dmrhD33XefpPXO0K5fDPrv3X4sz+ycxiU0NsvaZlQuC9KmSwrZoHeM7n+UBtDQhe4ZNvaJ/TKLcLt9zjtff8/64h272TkZvtlNTLjgtvmTrlKnBe7qs7SXVYCULIAEd/MG5zJz0SGL5FhmBk80kKHRV2Z0RYbm/jCcpJ+n2Be3iWvH3xmaNoJGQ26H6/E6ycLCeq34HgcassFnbGOVkIJsMEuLWqUrZXlPecpTDqVPWVhUho+lMZnri++BSiLA59PjFNvIe2kAmYV4rhK20IAvSvi2hSLl+Yz5GpVBWmaQStDAlu5qsR+USnq9+Z0YJQlGFcY0G0cmyzlraKbdaDQajcae4Ewx7TGGnvrUp27seO06Iq13nJX+lIElpDUjdLlm5WTJS/o710N2ZF1Q3N0y4QB3sbwuA/U3Los6Z2lzR+hdq9vs0Kdxh+37fY37wbCF1LFLm2z/9ttvP1J/tpvmLvxS6YmWwldWqSqNLNwr+0/XH+qtsyAkXDPUwWWuRdSdkmHHMSYbq1KCMvhJ/L9KmsLUkBHUtzOYSuZi5rF1PV5DlmRleleDwW/IdjNdfRYWlRhjaIyxES41PmN0kayYeyYBIeunHUe27gy2yWsnc98iK3b7fY/1xnEsmAjFoK53KZkOJR2UTmVheisbIeqa41rlnFKCkIWz5fuTktLMhZIBoC4mpOqlQDPtRqPRaDT2BGeKaUvzToi7We8QpU3LRLLlLNyed2+0wDXT9Y6K+uP4Py3ayezjbpL3VHqcuIOrLEwN7nizkIcMZmDWkiUzoN7O/WJaUbcnMmWfs+76OAH1LyZ5wi7gGERpRqVTJlPIwr3SWrwKGRtZFFk/2WOWVjFjC7Es6jalOlAE2TPZTKyPVvdZsg+jCsRCZpkFsmCCCDNtH1+y2K1sEciaYhsyRkrYa2VJ0lZ5JXAdH2dOqeteYs2UiFRlRtCy3e+DLHyyWbHnmxKWjG3SLoH2D5lHhee9SrjDecrWNqWBRhb6NPO2iddkZS1JGc8Cmmk3Go1Go7EnOFNMe4yh8+fPH1qQUkcXQSblHZm/Z5Z/TIrh77wn7tSYfpL66ixRxEmSX2xj2Ea2+6uSVXhMbAme+ZLTL5K7YyaElzZDK/o7LfvjPVUCktP20+buO9slV9a11MlFVFa7tNhd2uVXftQRDM9bWfHG9V2F6vS1S6yzSk+6lDSBnhNV6NhsTMigySAzZsSxoA498wdm3dvY0sHBwcZcxn5RkpdZHbOv1TqjNCFbd5Xvtpkq2Wy8h/NCaUlsM1k4x5bzteSNEW1m4vEsVgITunCdZ++5bVKOLBQ0k8xwvjI/7crC/KygmXaj0Wg0GnuCM8e0n/KUp2zsbDIWSl2rP61XyaxP6WPJXWum87N19bbd1i4WhpUfpbRdf+KdPq284z20vPT3pUQYlXV6xdLiPdRPLemryagv1e51qdxKmlH5b0ub9g8si4whs2CurNQzO4Ztkccyn2TqBTkPle45/k8bBoNsNra/itpHLCW1cFuZ8jZj2gRZVJYed8n63bCEb6k/ZHnULWdzybVIDwDWt3Qv683858laPad+Z/hdlkWO8720aVmKMMh+VEla4ru4si3g+zyTnnAOqzHKpAFs2y52OM20G41Go9FoXBT6R7vRaDQajT3BmRKPS7OIg/mao4GD3RVoTEYRUwzZed111x25l3lsq8AZlxq7uCbQmITBN6TNEKjMWbwklq8MQmgsE0VTFs2xPAZKiKgSoSypBY7jcuEAGZmolKgSTyzVt2uwjnicLoaxrfHaOF4MgMJc7FnQCaMST+8S+pJqEAadyNYq12Ilxs7q47WZ8SLrq4zKsn65PI7jEmh0mZVn0GAwE49XQWBYluc/ulVWyVC4ZuOc07WTSTn8GZOxVONOQ77MLY1ujwbXdZzryqXLx6nCjHNdPZ+VmDz+z/frkgst33001rzcaKbdaDQajcae4GxtITTvgJYMW5gSz0k/uIuNxg9MYGHWykAVxwkSchxwx+22xTZWIU3JdCgliOWTifjTLC3u5Cu3NLKobA4YVKUKC5qVS8Mj4yTGebz2iiuu2GBwmbuJUTHDWB/nzqhSJGZjQHcTM5NsDuiCQhccGj5JmwaUlQFcBraNLli7MNQq+UIV9CX2I1vPBJ9PSnT8HGUskM/GUh1uE91I4/2sm2O8Swrbbez5OO2Pa8jPN9OIMix05iZGVryUztXgO4nzk7lgVaFdK1fKTNpRBalZkrhUkr3M4I3vQCYLutxopt1oNBqNxp7gTDHtg4MDXXnllYe7HzPhGEiCQfcdiMXfzbyjXto7S++YGEiErHIpsfy2cKMRdCWjLjhza9nm1pCFTd1WL4OhSCcLAENkO+mITLfEnfQuTG5Xxj3GOFwru4QnNLaNeXbPNh19bAPnmwF6soQKRqUvjm1mMBAzroqhZq5M7DPD3JqtxftZL+vLmDaZ3bY0qdLmWuWYLCWK2EV6ZlsIvg+ycLZerwwSsrRmeG1lY5Ilx6DUhFKVKKFgIBymKc7mo0rgUblIZYFytiVGWQqOVUkQMhfEatyWkppULplcu3GdsPzWaTcajUaj0TgRztQWwoH7uauzDlXaTPJBVul7o77YLKEKCVrtLjNUjDiC4T2dGpRtjGVsY75M/B77Uumd3A4zr8hqzfpPw1Ke1r0MIiGt++c2VWEgd7EWrXBwcLCRwD5L5MLyjSyQCJloZQmcWeFuCzqSsRe2lbrszOKcOnJew7ZnVspMmuP67LkR+2BpFkN7Uv9Kr4ZYTpUAg0F94j2ZZCJiyX5h2xo6d+7cYX/c5yhdoNW7x5YhXTO2zO+UArDMeK56TpioJpbDeanKjO1n//gu9POUBTuppAKuL9rrVOuZ857ZDLCt9F7gXGTlUzK29M7fZgdxudBMu9FoNBqNPcGZY9qPPfbY4W41292ZqXm3752Yrcl97b333nt4j8sxw6B+ythFT10x4mhhSN9DWoIu+TNvgxlRZMhLjC22LTIsMmyPa5XidMlnlddkSSaYVMD1VKxAOl7IQWmee+pTszYQVQKCWDdZJP3Xs/SnlWUsGX3mCWDwmsyOgEzb81zpULN+UkLh8j1fUXLl/7fpd7OYAqy70tlnz5nr8Vqlz3o2vxVTzUCpQ2RfTI1a+VxH6QLnmeWyvdkz5vbzOcmeDc87n0NKB7OUwJTssA9ZUpNKL1xJEmIbPZ6ey10Tu7ANsawlyVaVqCR79quQzmcFzbQbjUaj0dgTnCmmfXBwoKc//emHuzHvdCJDtLW4I555x+QdrneG11xzzeE93LVTt2RQ35bdS1hfHS3cvSvOLDyltY7nOFaJtKiPO2zXZ2kD63PbbrrppsNjDzzwwJFyKoa95OvLCFK03M70bdvSOp4U0zTp4YcfPmSGWYS5Ss+5JAFhX8gis4hxBpkWfb4z3T8TZ/heSoXivLDdjIDF/scx4VohM80SRdCehOu9ShG6dG5JB02pSeW7nPkD78KSbEvDcrNEFx5TPoeZ/zyfoUpylPnVU4JDO4XMv53sle3IIpTRToA2QoyvkD1P/KR+Oo4jy+V7m3OcvX8qPXQWW6KySaEfepwTvpd3SQb1eKKZdqPRaDQae4L+0W40Go1GY09wpsTj586d0zOe8YyNQPdZwoFrr71W0trgzPfYPSyKOFgORVoU52Q5ammU4Ppp7BOvdb0WodNN4zhiF7Y5gnmUaSxF1zNJuvHGGyWtDdJovMTvGVhfdJGJ5+M1DGxTGTXFdu8qQreYU1qLCLPgKpWIdinfdGUAdJwEJR4PGozFNjIPfGWol4kcfW3l4piB4kMaETK/cbyG4n+uQ9YR7zEqN6j4DC4ZX2VlLfWzwpJxlrTpskj1RaYaYJ2V21hmhEVxdPU9tpvuVDTO9T1LoXY51lX41ljOLiFijUzlGcugMWNWX2XwmAVzqcKYLoU7rkToZwXNtBuNRqPR2BOcqS3ENE165JFHDneI3jnFXRmDp9jg7I477pC0GVBEWu+quLszvJPKDBmY3MNlMSRpFhjBzJY7QeM4RlhkEUvBABiOMdspeox9rRmw67GhXxZmtHL1YEKUjC3RxcdzkqVs3BYmlTg4ONhgCkuGdLsE9qiCMbCMjC2xLUtJWHgPQ6Au9Yfr6zguKjTkZEKXjEFmIWKlOshPFl6U9ywliqBUhhKxzAiMWBoTJyk6TjhbPz9M9LMUfKQy1Mvureaf75s4TjYEdduqACkRVWpR1m9EKQoTkFQhieM9lYEb31VLoVcpGVsyCq2M5SoDtVjucYM7PV5opt1oNBqNxp7gTDFtac22pTzUZuUKYVewt7/97RtlUs/NHVoVgF5a7/TMmhkMwGVlIQ+5u6MU4B3veMfhPdx9c7fH8H4xmAulAd4Bu992g8rSBl533XWS1ozBbWKSkaU0qZWuLHP1oUsWGWQWcOZidryZToxjS5a35NZSpaFcCodYJZ2h9CaeoyTCn57bONYMwHESVIxkSW/JsSBTze6lRIWsOQuKw2egYtZZop9dpDVjDB0cHGzYGGQhacnQ3BZKquK1HFPqw5dsXKq0q5l7KiWGZMtL4VIZcraSOmTSALp+ehz93o7vb9po+DtthrL1VgU4Yj+zMMR8hyylPq1Cn54VNNNuNBqNRmNPcKaYtnVLZKpXX3314TVkIN7lecd2yy23SJLuv//+w3ts6W1452fWR5YUd11m8L62Cjpxww03HN7DpAvcEWa6de7ct4XSizvsGEgm1uOxcX/ch9hXw2PMnae/R90dw8G6XF6bBacwc/cc0Fo6Szm5K6L1eBa0o/IEILJAC2RslQXzLuEy3edsl08dHq/JLOBPK0CNtDnmbuuSxMKo9IZxvbPvVb0R2/TgGchqd5FCuE2ZxT4lfOzbkrSDa4d9z3SxZPa0nKfUIbbN0kbaixiZdXVmhxKvzdYY3xG0rfAzvksSHdpjZMl7uO44rllQJ0ryqpS6meRqlwBTlwNnqzWNRqPRaDRKnDmmHUNReteX6TeqnbOPx1B+TNNI3ZXvMduM9TEZO1kE9TnSmvl6p0m2ZP149Js2rFtiUgTqD7Nk9FWCkoyR0KKcoRstnXB7Ipsnk6Yvb8Zkma60snTOUjLuolMaY+iKK67Y0PktJWGo9J3ZTp0JQahHy/xKySbIjjK2RIbhZ8EWwdmcsl+0BKceL1oRU8dMm43s2SMLrJhPFp5zmx58Fwt7tmMJWSKXCks+yZUlOPsT104VEpZlZf2p/Iu9PuiZIq3n3cmUDEoQMymNy7WtDKWPmTX5thChS9b3BMeP0rzYbs7Tkg66slfh99ivyr7jrKCZdqPRaDQae4IzxbQvXLigBx98cEMXG3dblZ6WUaCsi5Y2I1L5HBm364lMhDt+30PL9si0XY7b5La6Xuq84/++hoyj2q3HNlXRrdx/WojGflA35/ZEXb1h1u3ymKjEbY07fo5x5e8c2Q2TjGxDpr/OfK63fcaxJVvgtUzGkO3yqRM7DtOmdXW262dkOvreV/VKm8yKEpHsmahsMyrr8UwvuY0lL+kYOQdLvuRLCV2MMYbOnz+/sfaXrMeNLE4DzxHVusui93HOPD+ZFLJqG79n7eK7g+uMuvyTovIwOc77gO/Ean1k9SwlpqmOtfV4o9FoNBqNE+FMMe1pmvTYY48d7uoyS1PG1bUvsnU8Zg5R5+1j1sX6HCME+bosBjDZOq1Ho3W1GY7bb/bsXV604jaqHajLX4p2xQho3ElnVrys12V4PK3TzuKx+//oKy6tx8BtjOPrCGusl+N6McjYWYaKLSyxiCoK3P/f3rn0xnFsSThJaWHchQTJmvX8/5818M6GHwIEGzYkchZGiIdfR2QXZVnsvojY9KsqKysrqzrjPOLwOEcimnf57Ix2TWUpnR4/fZcs0ehUpujzS6+zreSr1TXk97sxSf7PXb4zfZrMoZ/vj0Saq80UaTzbS1HHrlQm84nJrJNewNyXqm9UhZv76JmoayVLH62BzpLEvOmnaOsTtNJMpFiJpJXhcu+TxYXHn3iKX5rzqT7toiiKoii+CP3TLoqiKIorwcWZx//666+TNI1pzpPJVSZoZ9Je68HMO9uRyZepWAwymWZkmbJpbtNxdRwnRUlhDpr1Jvgdy8ztAkXYLgUSXBk/itRo3ylkM793KWapzCIFb9Y6DdxjmpAzET5FXEXytxRrmUhBKClIZYJjnORMnTgMg+94rXfpWzQjuj6mQMpU2GO2mQIcZWJlUYiJc8VNuN0E51ASHpnb8DxSsNSXgv12Y30ubWuC45/KQgqzLW3DwFtK387romeVgkcVCKpXF5RH03mSBHX3FQu5nJu77jduw/K1s68u2HPCiRUlWd4d6DJ4qsjTv40y7aIoiqK4ElwU0xaYyuFSRlg4gat5V2SEZT25ChMznAFWZPQUxVcA3Dw+A3LUlxRkNM81lWIU83Grv7TyPCefOH9LTIsiL7MdjaMCXjRGLrUs9fEp1odz+PTp0/ZcXdnHc31MxRxSeo0L8kmBR6lk6+wrS2U6EZdzkpe7MUmBaMmK4vrIMp5H06xmu0cC+Hj9krjGfL8rTzvbv7293aaQJZa/6wPv4WRdEiabZYoX23ABompXAWl6RtI6OUHxIG2joNIde2aBIoHWuV1pTqalMqh23ht8RvI6OXndJDiVgtgm0r3/3CjTLoqiKIorwUUxbfm0BZfKQeaZUm9mkRAxQa7Y1ZbYslaXTrCAYhf8PEEmzxW8VrNOTpArTrILFiGZ78/JSDoRj5SeoX2Zfje31W8sAuJWsfTRk6k8RbI04cWLF9sV9C7VavbJMTaKPdAisrOApAIRstY4JqLrz21capFA1kSxEMFZTVLRh125w+TDJrvZyYEeud6Jae/YOe+Fc2k7Nzc3cU7Oc6FvP8lkzvepDKTacrEojBfgNXTWGabe6b5kLM/sI58dZNy7+5JWmRQjMq2eZK98rrlnvsD7k2Pi/Nbn0utcWtcRAZbnRJl2URRFUVwJLoppr/X3Koe+sLkCpQ9bqyL5U13ErN5ThF6rLMqZzpWVtmXUM1eXLpqbPiQxejF/x7CEJJThojhTFC+FOVwUPtlL8jW5yHNZJrhKdlG8rp2JnV/yCOSXFFzRB1pA5r6zjy6GIjFsMR79PhkQrSKJxc59yHiE9+/fr7X2EbnJsqLzdv5wshX2iWIero+paIrzpafo6x0z5lwkW3Lys0+J8uZxdpHy9NeyYJDrd8qQoEVkXpfE9vi9E57i80x9dNaGZDHS8ybNxwlmouziP3YCNq5NZ/U8F5uyY81HcCTO4jlRpl0URVEUV4KLY9prZdY5wZWY8ouVN+1K1ok16LP2oc/bRYDqlcXiHbMXK9IKl0xE0Z3azm1Dhqc+0w8296GPiSv9ydLVNzJ3WRSc1Cq3UV/EuLWPjj8ZZCoXSlb2pUyboKUiHcN9dtKJjFhlPikjp+fx6H98CvsjjkSyJvbk4hM4j5kPTGY0+619aIU6Iv+YYlF2ubYpJsEV7eA5nxu329vbkzgSV66RfdhFI1MSlHPyCHtNPmBn1aJ/mGPAyOy5LY+rbWlBmOeX/M/J8ue25XOAY+/2JdM+EhH+lHvtSC73c+Kye1cURVEUxWdcHNOe+ZLOV0W1LX0WWxbmPowO1+ryp59+Wms9+MN3TJt+QbKlmdtNXyZVx5g/Oc+HVoZzRRlc3wSyqNlHrnjVRrIkTHamlaiUltRuWgnPMUiFAVxO5FNWx/f39+vjx48nLGO2l/KZd8yb8RXJV+rUmi4lv5OMbjJ/FsThdWfJ1gkXNzC3dbnEnM/0V7tsBleGcrbl+kY9hR2r1dxJ5+eOxXvcRcozdkb91/inQi/zeClP2t0vjEdgX/W82d1XKU5gV9aTx5VV0FmfmDnDLJYjpVuT8qPgzi89d4TJrsu0i6IoiqL4KuifdlEURVFcCS7OPP7x48et6YIC9kcEMmjSFChNytSwuY3qQSvYikFfv/3228m5sBYuUwlc7d10HgzyoXTgbCOlrszgMv2mICKleFDcg6l08zcK3CRJ1PmeQUMUBPmnRR92rhWaJdk3tw9N6JcmtPBPQTMrrwfn7lqnroAkfiJMU/e5VCYGU83vnEylO4e1TuvQ71wV9/d/F5vZpRKxn7uiL/yOr3x2OZOwtmUAKs3k7h7TueveZnChu5fTPSEwPW1uQ1eE+uyCAFkIhPeTSzEUkgwwn3POtM7rw3REV/DpUnHZvSuKoiiK4jMuiml/+vRpffjw4fPK6e3bt2stnyxPNsd0hrmaZNoKV6Dcbn6vADelaZFlqq0pm8qVrgseW+sxWybjZYqHVq/qj8rvTXDlK6jvbjX55s2bR8fhqlXHm33VKlivCkhjOpoL7mGAE5nsU4uETNzd3Z2soOeqmelaLCnoAtOOMqtLFWI4B5bxTCmHrggDGXBiMzuBG7aRSjbOvpER696YFjIy7Z0FRxKmbN+Vo6XFZScVTDaZCog44SFaBlL62Lwvea10zinYb7bHAkwpEHGeH60zelYwEM6dV7J+cjsnrCWwDXd+vKYpdc7NtyNyuc+BMu2iKIqiuBJcFNNe6+9VE1fOr169+vw7fclK46JvRCIra2WRf66EtUJ0fiL5tN+9e/doW5bOm2D6kfoqzDQ1Cb2kFT0lKWfaDn1VlC2kcMH8LUlq0qfpiifo+rBEJ48x908pXv+0YMj9/f1WFGet05QbSrnu2J1ARkim+E/TvFKpUvbD9TWxCLLBuS+tJqk07K7YDNunZWkej/dvYtwTSTyDTH4ybfrmee85sL9unCiYk/ri2qFfPBUFmv1PhUL4zFrrweLAObQrzcrCNGSkat+xWJ4zX53IDr9LqX4UiHJjkUrRHmHGvNa74k1l2kVRFEVRfBEuimkrilOrPr26aEetghTdzKLtr1+//rwPS26KYVF+kX7jtR5Wmmrvhx9+WGs9RGI7aUBB/ReLpl9NLH2ttX799ddH/U+FARxrZmQnWQZ97A70h+v8ZGFw4gM6d8mxUhZ2Mh9GyJJZu1KDXwNu7pyTd3SMPRURIIuax9N3ap/iFo5NUZ6Sc4YM1W3DtgQKmrjvEtNxRXSSBCqtAHPu8P4l+9sxH4J+a8c6+Zrw8uXLk+huN3/JCBm34QqrMCI+yQ5P/zStgfQF8xk5z1/nmiyKE7SskGnzHplzikw++YddoSLOM7Yp7ERP6PfW73MeOIvU7Ks7r0tl2EKZdlEURVFcCS6Oad/d3X1evTIaca3TVZBWj5O1rvWYVWpbMkB9LyaufVy+548//vio/Z9//vnR8eeqjPnAzH12UZXM3ZRPngU91PY8P0ZFkw04P6ljNPN4Om+N67Q+KFJeUeP6zBX9ZA4a41TG8d+S/HSyqMkX53KSiRQ9TJa21sP1lgVCv5G1TbbG3FZG2XNOPQU7nyY1Bej/dnPnHLNyxUZSwY1deVRCY0SG7Vin7pOdlUllXXnu81rSmsDIbMHFw7Df9GVTE2H2IekDOOuCKw8723KlYM/Jh7prSHAb9nk+B5L1IckDu/tX/U9xEc7aQZCdT6QSsJeCMu2iKIqiuBJcFNO+u7tbHz58+Lw60up4sjwxv6Qy5lZHLE1JnzaZ1lyJ6tj0g5KlOR8c2SwZt1Peok+TkeHO502VISGVrpt946uOpyIrLs9V7Wgb+s55TrMd+ua+ZVGNlMfqChsIiZUnP+Fc5Ss/XuOUxnqOLcdJ23JsnQ/uXC6qi9Cm7gALxzgfelJPEzjOR3K8mb89x5VsKOVgzzHSfavXcz7tFy9enFgQJtNm3AgtY84CQs0IxgcwNsTlJJMlc5+pcsh7ipaDI0V0hFR2c4LzIJWEnaAVkNebr9NCwvNK8T/u3kjZEO7/oky7KIqiKIqvgotj2r///vvnlY4il/W61kMUN9nxzhfClZ+Ytj5TjWwye/mZ5GPmqt6VZEyR39qGrGn+xlen+XsUbiwEWg7ouyR7myt6MjqNm/zWjvkkVvstmTbzs8minf8uaaYnnfXp46QPnbnQu2vLTAce/4jWdVIQc7mvjGQWk0yxDxPp2jrLRWIt5/TFd+07v7XeO7W0cxCLnUybJSVpLWM+81qn1yyxOxfBzPZTtPUuIvycVvvclvchrYMus4JxKRojWj+nJYbMN1lKhZ21w1kQ3fmule+B3X20a+85cVm9KYqiKIoion/aRVEURXEluDjz+B9//HESnDLLXiq9SNvIbEuzxwzqYCqA9kkBIlOYhVKgFO43kWkxAAAMv0lEQVRPJhqdz1qngUFPKYrxrUtB8niukAfTXOROYOqZCyIRUvDcv4nkgtiZAFPgHMfJmYJlkk0CPM70nNw9TBdzwUTsAwNqGAC31oP5Xa9JWnOaDGnmpTws++X6pFcWqhCcAIza573oTOAM6DuXInd/fx9L6a51Kt50Tt52rZyCmVxCuwIlyU0x+8Hjcdx29xqDvPhM3D2HUmlbdzyeVwqa2wmcpN927i1hd42FJP97Kbis3hRFURRFEXFRTPv+/n79+eefJ/KPs/iHgtK42qe4ylxhKeVGzI/iJ2LWTu6TDCsVeN+l4HDlyfSWeWyCQSpfW+6TQTcaR726lS5Tl8i0dS4zACWlhTwHkpiKu5aJYSfGNecdA3QYROZYLK93KiAz9yFbTcGElB+d7xPD4r7zO17DI7KZbGMXECSk4D+xX96Tc59dUBz7znthnt8UCJl9YJEOd114LQVa6ZwwC1/TmM/2uQ/nnwsmozWSFh2XXpWsjEdSpVJfGXB3JOBScJK7tIiyfWcV4Pwu0y6KoiiK4otwcUx7rpbF4MSU13oorMGUFPpZ52pLqzqlb9E/xLJ9zk8kPzj9gkydWus0lYPC9i5th+ybpT/ptzziC2ZfXdnAxLDp25xI4iSUl5x9pGXiOUHWwtcdQ3DSo/N7ty/HSWPs/IUcp+RXc6wspe1QKGPnD9c9QiuEY82OIbr+uIIoTC17yvmRaTsZ0zQ3HW5ubtbLly8/i+Goj7M9WvKYtudYGeNrnHDM7OMUgEnXLBWumUixGk6mmcfjs3FXIpZpaWTAvAY7UEzIlRNN6WFMt5zHS75yFnxxqZopze65UaZdFEVRFFeCi1pC3N3dPfLZ6v30aWs1rFdGvQpzdZT8dVOgfy0f3a1iD/ru7du3a62HFZp87M6XqYIaAtn07CNZkfpGyUat+OdqmQyOq3Kdg4tSVvssNUpfp5NcZWQuywU6gZsd4/lWSIVDXBR28medk4ydIAujT33Og8Tg2HfHlpK/k4x3Hi9Ju5LJOctVksekT9vJ55K9kGE52VyWK2WMimPaR/zrt7e36z//+c/J88GVlCQj3LFo+rnTnGGfJ3RuKabBScSekwie+9Dqx3nA2AZnFeKcTBkW8zhsN5XQnGOWLBW0Erh9aDlMsRuz/zuhn+fEZfWmKIqiKIqIi2LaglZw8lnNFa8YttgjfXDOF8OV0vSRr3UqbzlX7GRH9JFpn8nOZBlI0bz0G8/9ueLVtiwJOFfRLip4tslc9rnPq1evHv2WxPhdlGoaE+c7vYSocYIralfogIyQzG1XrOCcP9qx5iSzuItlSIUTyBQc80mlbo/k3JIZ6nNi0WudWnDIDtWfaXHjOCWG7ax0R/QAbm9v13fffXfCsF2+Pn3xnM/zOKlEZdILmEiyufS3ukhpsst5nvP3tU5z31OpVOeXTpkUu4yKNN9S27OvyWJBhj3nG5k1552LUqff+1tqSRxBmXZRFEVRXAkukmmzsMYsGCKGrchyMW2WEpwg46BPUexdbc5IUbFmrZLJ6FnYfq0H1TbmkYrxupUbfTpk3qnYyVo5qnIqX82+z9+Sj4fszPnQ6X8l055M7BJ82Qk8R6fGxTFOvuW5b1JWSmpQqZ21Tst4zuMeYf0JPGenuJaO536bxyWrnu3zM1mbOx4L0YglUv3MbXsOt7e3J+xr9lv3MHO56XN2WSRp7qSykWud3mOpUIzLn+fzjox7tsFnUopL2PnJac3YWdXY3s4fPb9nv+dnWjRdPBO33cVsJEvFpaBMuyiKoiiuBP3TLoqiKIorwUWax4kpOiBztV5lypYZRObzGZSS0goYfCFT0TTrMH1J26h9fZ6maJnzdTyay53YibAL4pif53YM4qGZyNUHTikrOl8WN3BCKanmtzOPX1owx1rZ9LczcVOAZXe9knk0maDnb8m0vUs/SbKLyTw73/P6pDS1tU7nBs29nI+zPzSHp9rLLsWMJmPdgwpMm31083aHm5ubKIu5lndLzePo3p59SHKbHCd3XY4GPDrXA+/tXREOtsvAw1TgY25DV6HggsxSwC2xS9E7ZxafZu10P+0Kr5zb97lRpl0URVEUV4KrYNpzFSSGLeESMV0xbgZYrXUajKBtKEXqVn9cpbJ9rvpnO2L9v/zyy1rrIWjOpQJRejAFOrmUmCT9x/NxqRBccTItxaXTkGElOdBLZNcTu7S2cyADSuUx3T6pJOx8z+C0lIo13yf2ugt8S6ldlIQ8IjCRAiKdRGRKJXMBTyxAk0p0zqCzI6IqR89nrdP7gpYBsX03tpwTPMcdo+N50Fro0qn4vGPhkgl+l1K/3L3M51h63rjn3Dk51t1847xK/ZjbnEsX2x2nTLsoiqIoii/CVTDtCfm3lZ6lFa6+dwUIXCnMuQ0Z9/SJiMFrNU9RBTF99WetB/EW+bYp5uLE8Ck5yZU193FpQlyBUr7VWR8o0pBKAk62oG0pYOFSb64JbqVOH3YSh3ACJhoPXheyGabmrZULNTjmSDbG9nfSlwKZYyrv6X5LY+KOl+YZ/ZNzvlEml2lQX0O4Zye5udbDNeIY63uXHkSrxa6sZurDufKQLoaCfXNFMYhzvu2dYJKQ0vecNSDFUnAMnBWKvnq27Z6r6dx3fv6dKNFzoky7KIqiKK4EV8e0tboTixXDlUCKY9VJYJ7MwIkqqD35p/Wb/NQs2bnWY//v/I2rdLe6c7Ko87NbZZKVk2GzCMjcP60mKeLhCoakba6Vae+KByT2mDIS5j7nIrTnfGFkeWJjO+GKxFbo35vvee1YYGH2nSUZUzS0i5JP8473hmPaap8WnSOlH8/h5uZm60elUAnFbsjEZ39pmRJ2cqZOknOt0+fA3IeZH8nysit3+ZQ4lSTheuS8iDTPvxZr5tyk39/JmJ6TWn0ulGkXRVEUxZXg6pi2IB+2XuXbJkNYKxdb4PeukAejRrWyVqENHn/u//3336+11nr//v2jV7ei18qPRVK4qtxFXZLRM29xl9OZChO4VaYYQ/J/Xyvc2GrM6J8+x2bWOm5x2PkJvyZc2cvkq6eFwZXzTJaqJFU5v+M9wOM5ps2o8a+dpbCLEmb8gfqie4ulOx2SNOguqjtFoDMGYfYxZaLQ8jZ/42ti2u582FaSRJ3bJB+6K4Qi7ORYJ9zzlVYGHqdMuyiKoiiKr46rZdr0E8mfI+Y7mUHy19Av5Pwb2obsQnni+v3169ef96EVgGVEnXoSlcno09Lvu5W8LAXcxkUnc6WZCr7vokYTc7g27KwKSTGOc8pZGy5tpe784SyEQYuSi7GgFSj5RXeR52T0tPg45S3ORTLJL4XU0HYFV3hfJLVBVxiHcyPdL/Ozy+Ff6zSC3vmnWSKV5zXz2XkdzhUKcWPNvu6KzaS4AX7vMg9Sqcwj+dRsj3EYu213UffPgTLtoiiKorgS9E+7KIqiKK4EV2seFyizKXOfk+xk3WcGNjjTjVK6mDYlU42O7wLRBKb2qM1pSlM76qtM6jof7asAuGmmoqgCU9dckJTak/kzteXSuJLJ7FLMwE9FSgmc7+liYLrbkUIelwi6mVzRlLX8+aXrnVIc3W8Cx3NX/OPfmG8vX76M9ajne5pOmYL5FMnWXZEUpm/Ofq7lhYzYf5rqd2I3nMe8Du76J3dYEpOZ7SXBK56Dc3Oy/SMSu+cKlOxShI+0/y1xWb0piqIoiiLi6pk22bMY72RGDFRgesEuICQl42v1peAvMeO5P0sHvnv37tHneRz9JrEYCmFIPMYxXwW4CVr9a0y0bzrH2V4qWDKPx9+ulWELTFnaSRo6ucq19sIy1xSol4K9NM/XOhVc4Zx5SmlOYZc+mObZ10z1evny5VZwY2671mngmRNm4j7CkZKPTlzEfT/nW2LF6Tm31ilr5WtKAZzHoYXPiUcJHFu90mKRUl6filQwhJYRx7RbMKQoiqIoin+E/xqmnVJx5nv+ds6/Nn+TH5rFRVyBEgou8Hhi02/evPm8D/vv0rTWeljxTnat71iCT312vh+uqMmSdgIW/y2iKinFZyedyBX7uSIGc9tLSwE7AlfAg2wyiVG4+UErl5DEfVw7OynXL4EkTNO1XiuzV706HyzZcBJT2flb+bwhi3USuEkalkWPZrvJP7y7xzn+6TnrxiSNNcfziCQp4a7buZSy+XuKPbgUlGkXRVEUxZXg5pJW/Tc3Nz+ttf7vuftRXDz+9/7+/n/mF507xUF07hRfipO58xy4qD/toiiKoigyah4viqIoiitB/7SLoiiK4krQP+2iKIqiuBL0T7soiqIorgT90y6KoiiKK0H/tIuiKIriStA/7aIoiqK4EvRPuyiKoiiuBP3TLoqiKIorwf8DHCl7g6HbwdAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAE9CAYAAAAmijrUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4bflZ1/n93ZpCUpW6t6pSIGNC093EAUUjU3czKAREHEGDQCTGbkPjgIhhUCSFEQ3QDD5EGhzSISZiUIk4AAbyEMMkJiISQxKGpISkMlRqSA1JJVX3rv5j7e897/ns9117n3PPvWfvqvf7PPc5d6+91m9ev/37vuOYpkmNRqPRaDR2H2dOuwGNRqPRaDS2Q/9oNxqNRqOxJ+gf7Uaj0Wg09gT9o91oNBqNxp6gf7QbjUaj0dgT9I92o9FoNBp7go0/2mOMZ40xpjHGvWOMc/ju6tV3t122Fu4pxhifOca4bYxxBtefvBqzZ51S0xongNV78exTqnta/Vurf4zx0jHG7bh2++r+f1aU91Or73+mqIf/XrpFG8+MMX5pjPHXk+8+dYzxz8cYbxtjfHCMcd8Y47VjjOePMX7bxgG4jBhjvHqM8eoTLO+7xxg/elLlrcq8fWFuLv47wfreOcb4vhMq65bVvvgJyXf/aYzx4ydRz0lhjPHsMcYvjjHeP8a4Z4zxmjHGx2/x3C1jjBePMe4eYzwwxvgPY4ynnkSbrj7CvTdK+jpJX38SFT8G8JmSnifp70i6EK6/Q9KnSvqNU2hT4+TwLM3vz4tOsQ3PG2O8dJqmD25x7/2S/vgY44Zpmu73xTHGx0j6jNX3GV4s6ftx7c4t6vsySb9N0vfGi2OMr5H07ZJ+StI3SnqLpOslfZqkvyDpaZL+0BblXy585QmX962S3jLG+Kxpmn7qhMr8E5KuC5+/V9JVkp5zQuUTny/pnhMq6xbN++KvS/plfPfnJZ0/oXouGWOM79S8Jr9V0l/TvE4/RdLjNzx3laQflXSrpP9b87v1jZJePcb4hGma3nUp7TrKj/YrJf3lMcZ3XWqlj2VM0/QBSf/ptNvR2Hu8UtLTNW/U37PF/T8h6XMkfaHmH2LjmZJul/Rbmjd+4u3TNB1nvf51SS+Zpul9vjDG+CzNP9h/f5qmr8b9PzrG+HuS/tQx6joxTNP0Kydc3jvGGP9W0nM1H1ROosz/Gj+PMe6TdPW28zTGuG61D21b3y8esYnHwjRNb7gS9WyDMcZnSvpqSX9omqbI/v/dFo9/kaTfL+nTpmn6+VV5v6D5PfsaSV97SY2bpmnxn2ZGMUn6PyQ9KOl7wndXr767Dc98kqSflPTA6plXSfok3PNiSW+T9ImSflrS+yT9mqSv2NSmoz4v6SmSXqaZIXxA0i9J+hPJfX9G0pskPSTp9ZL+qKRXS3p1uOdxkr5L0n9f9e+dkv6tpI8P99y2GpdD/1bfPXn1+Vmrz8+V9EFJNyft+RVJPxI+P17zqe+tq2feKulvSjqzxXg9QdILNDP8D6za/a8kfegx5+1pkn5O0vslvVnSH159/9c0L877JP2IpCfh+UnSt6za/bbV86+R9Htw39D80rx51dd3SHqhpCcm5f0dSX9lNR73S/qPkn5HMgZ/UvOB6X2S7pX0LyR9NO65XdJLJX2xpDeuxuF1kv73cM+rk/l99eq7D5P0A5LuWI3zOzS/6Ldus663XPvu8ytW8/j48N1LJd1e9OlFkl6F794s6ZtXffqZrJ5jtO+TV89+Iq7/uKR3S7r2CGVtXPOapVqT5vf1hZLes/r3UklnUd5Xreb1/ZrZ4+sU9gKtv+8u+49rljjcvVo73635kPP7Jf3Map28QdLnFuvuvKSPOqk1gPLX5i589wJJj0j6nZrf5wckvXz13eev5uSdq/a/XvN7dAZlvFPS94XPX7Eak98n6Yc0v3Nvl/QdS3Mr6eOT92aS9MWr7/+TpB8P93/e6vvPl/RPVvN1t6Rv06za/TRJP6/5fX69pD+Q1PnZq/F5YPXv30t66hZj+kOS3nDM+XiZpN9Irr9c0pvD5xs1S0l+S/Ne8S7Nh/GPWyx/iwY8azVwH6f55fmApI9Zfbf2oy3pE1YvxH/RfOL4QkmvXV373eG+F2ve2N+omS18jqR/tirvs7Zo11bPS/oozRvFf9cssvtczZvXBUl/NNz3Oatr/3q1SL5cs+juDh1+iW+U9I81b+qfoVlU9ROrBfVhq3s+cnXPJOl/0yxS+ZTVd0/W4R/tj9D8Qn8l+vf7Vvd9YRjrn5Z0l6S/KukPat68HpL0HRvG6lrNP7APSvpbq75+kaR/pNVh4xjz9iuSnq35xfppt0PzAeYPr767T9IPoS2T5kX6s5o3wmdo/uG4S9JN4b6/u7r3has5+2rNL91P6/CGPWn+UfoPmjftL9K8sf+6ZvbBjeZFq/l9hua181ZJN4T7bpf0P1Z9/yJJXyDpv2reqM+u7vntkn5R0n/z3Er67avvfkLSr0r6Ukmfrpk5fp+kJx9nAyjm0z/av2O1dr4+fLf0o/2Zq/s/cnX9U1Zl/U+qf7S/RfPau/hvi/Y9bzX3cZ6uXq2llx2hn1uteR38sL5Vs9Th6ZL+8qq+Hwj3fanmH7BvkvRZq3Xw9ZL+fLjn1cp/tG+X9J2a353nr659z2oNPVvzGv1pze/YLejHk1b3P/uk1gDKX5u78N0LVnP+G5rVm58l6dNX3/2l1bh+nqQ/sBqL92mdhFU/2m9ejeVnaz74TZK+YaGdj9P83k2rNeJ35+bV99WP9ls1//Z8zurvpPnQ9EbN+/TnrZ59r8IhTQeHpX+peW/4E5L+s2by9ts2jOkdkn5wtd7esVo3/03SH99iPn5JgWyF69+0as+1q8//VPNh589p3iv+5Kpfv3ex/C0a8Cwd/GjfpHnzelF4qfij/S8VNrjVtSdqPiH9cLj2Yq3/wF6n+QX9h1u0a6vnNZ/Q7hSYrObN9ZfC55/T/MM+wjX/cL56oR1XaWYD90v66nD9ttWzV+P+Jyv8aIe2/Dzu+27NB4HrVp+fuXru03Hf39TMQEomp3lTmRQOKck9R523Tw/XPkEHL/FV4fp3SnoY1ybNLOgJGJOHJT1/9fkmzYfDF6ONX8Z+rD7/mqRrwrUvWl3/tNXn6zW/0C9CeU9Zjd1fDdduX437uXDtaavyviRce7WSjVLzweKvbFq/l/JPgQFrfvHvlnTj6vPSj/ZY/f/rV9e/V9LPVv1RzoombWIC0o+53HDtQ1fP/r3k/vRQsO2a18EP6w/gvhdq/oEf4fMvbmj7q5X/aHPt/OLqepTA+D348qTc39IW+9ox10O6FlffvWDVpudsKGOsxv/5kt6F76of7W/AfT8p6Zc31GO2/WXJd9WP9vfivl9ZXX9auPZJq2vPWH0+sxrzH8Wz/g17wUIbz2gmcPdpPvw/Q/NB8F+vrn/ehj7+prB3ra7/pVUbn7T6/OuS/u5R5/tILl/TNN2tmU392THG/1rc9umS/t00TfeG5+6T9G80M9OI903BOGOa9Sy/KumjfW1loX7x31Gf1zzxPyrpvSjnP0j63WOMJ64MB54m6V9Nq9FclfdfNJ/yDmGM8afHGL8wxrhX8wnsQc0/DNWYbMJLJH3KGOPj3GfNovofmg50T5+nmQH+HPrxSknXaD6xVni6pHdO0/RvFu45yrw9OE3Ta8LnN63+/uQ0Tedx/WrNBkkRPzpN04Ohnts1v7Cfurr0KZqlA7RS/ueax5vt+Ylpmh4On1+/+ut18KmaDyAvw9j91qqNn47yfn6apmh4w/KW8FpJzx1jfNUY43eNMcamB8YYV2GdH+W9fJ7mtffcTTeu1vZLJT1zjHGt5s3oJRsee5FmEXD891sbnvlwbWespjHGh2k+sF38F97zo675f4/Pr9d8kP/Q1efXSvo9Y4zvGWN89hhj0aAI+DF8fpPm9+BncE2apXvEnZrHpQT3um3WzhHwiqS+jxxj/JMxxm/qYPy/UdKtY4yzW5SZjfc278hRkY393dM0vQ7XpIOx/x2aJZ4vxdq5T/M64DtPDM3v1R+bpunl0zS9UjMZ+HVJ33D8rhzCayX9hTHG140xfu+27/1x/LS/S/PJ/m8X39+kWZxAvFPSOVzLLBI/oFmMojHGk7X+Qj952+dXuFXSn2U5mg1iJOlmzRaN12gWoxOHjO7GGH9Es27ijZK+RLP+7vdrfikft/b0dvhhzT/8z1x9fvqq3XFDvVXSxyT9+M+hHxVu1iyGWcJR5u3e+GE6sF7mfPg6xyUzZHyXZlWB2yK2Z5qmR7QSo+PZu/HZBx3Xe+vq709qffx+l9bH7lB54eC0zfw+Q/NB52s1W8e+fYzxTRteyFehTd+0RT1u21s0S5O+aozxpC0eeYlm8f7zNNs5vHzD/e+Ypul1+LfJiOlxOpgD4y7NrJeb+nt0cBj4R/juqGt+0zp4iWZr3k/WfGi/e4zxw9hTKmRru3oPsnXyfkkfsqEO9pOH0+PiwjRNh/a21Q/Yv9eBaPszNc+B98Vt1no23sfdA5eQjf2mvcbv/Mu0Pq6frYX9cpqmC5rn9h1TMI5b7T8/pdmOalN7uWdK8751QbPUT5rVui9a/f0vkt41xvj2McbiGB7FelySNE3TAysrz+/QwQRH3K3ZGIf4MB3dbeAOzQuJ146CuzTrmr51oY5HNE/mrcn3H6pZ3GF8saRfn6bpWb4wxrhG6z8kW2OapgfHGK/QrHN7nmYx8FumafrZcNtdmln/ny6KuX2hivdoNkRZwknO2yZ8aHHNBwtvBh+m2bhH0sWN5matbxabcNfq77NieQGVu9ORsdoc/6Kkv7iSRn255k3xTkn/b/HYcyTdED4fdY0/f1XP39iifb+6smT9es1qj3s3PXMM3CVsWtM0PTLGeI2kzxljXOsfuNVG+DpJGmN8QVLOcdf8GlaShu+X9P1jjjnxdM372Ms1/5BfTtykdRcngnvdm0+o7im59lTN4vw/NU3Tv/TFMcapWu+fIPzOf41mQ1fioQ3Pv0Gz+izDheJ6fPaTkuu/XfNvh9f+fZoP9187xniK5nX+LZrtCp5XFX7kH+0VvlezlfDfSb77j5I+P/qDjjFukPRHNOtetsaqc6/beOMyflyzePQN0zS9v7ppjPE6SV84xrjNIvIxxu/TPHHxR/vxmn/kI56pdXcZn/I/RNv9KLxE0peNMT5Xs4EWD0Q/rtk47IFpmt7EhzfglZK+eIzxR6Zp+rfFPSc2b1vg88cYT7CIfMV0PkWz/k2aReUf1HxAelV47hma1+xR2/Nzmufg46Zp+oFjt/owPqDDP7RrmKbpzZL+xhjjK7RwaFrdd2xM03THGOMfaDa+2sbt59s0S59eeCn1LiBTObjen9B8gKbLV4ZLWfOLWKk/Xj7G+GRdPv9mSRf9dj9as7fCUpsuda87CqwauKhWGmNcp1ktdzkR98XLiddrPvw+dZqm7zzG86+Q9O1jjN81TdPrpYuk4Q9qFmsv4d9I+jNjjE+epukXVs+e02z4yJgHkqRpmt4q6VvHGF+uDQTrWD/a0zR9YIzxtyX9w+Tr52u2uH3VGMOWfl+neZFUIvXLiW/SLE57zRjjhZpP5+c0D8zHTtPkqFLP0/zj9ooxxj/ULDK/TbN4OJ6sflxzkIrv0uzK8zTNmyUZi/09v2aM8WOSzm94KV+leZH9E80L+p/i+5dptjJ81RjjOzRbMl6r2fL3j2q2anyfcrxU0v8l6QdXUpJf0PyD87mSvnu1IV7JeXu/pFeOMb5ds87xmzXrmr5Lmm0nVn38hjHGg5ptEp6q+ZD4M1rXpS1imqb7xhjPlfQPViLkH9MsovoIzSLIV0/TlEYLW8CvSPrKMcYzNFvm3q95rfyk5rl6k+YN8Y9pXm+vPGL5R8ULNAeC+AzNeuAS0zT9sGaVzOXCayT9uTHGzdM0mfFomqZXjTG+XtILxhwR6yWamfTjJP0vmg9pD+qAGV7Kml/D6r2+X7Ob0LtXdT5Tl39ufqfm9yhjfKeFX9a833xbUN18jQ7EzJcLb9P8rn/pGOPNmlnlb8CG5JIxTdP5McZfkvQvVrYL/0oz+/4wzR49vzpN09Kh9fs0G9z9yBjjGzXv71+pWV3z53zTGOPpmvenL5mm6YdWl/+F5jgF/3yM8XWa19xFr4fw7Ou0ci3TvO4/W7Oh3t9f6ttxmbYk/X+ajV/+53hxmqZfHrNj+rdo9lcdmk//nzFN03+7hPqOhWmafnOM8TTNP8B/V7P7xV2aLcV/INz3E2MMi6dfodng4Gs0/+i/NxT5jzQbOzxb8wn9tZrZKA09/p1micRXrsoYq39VOy+MOczkX9dsCPXr+P7hFQv/es2b81M0T/RvaP4RK1+21bNPX/XtL6z+3qXZ7eru1T1Xct5esmr7CzUfjl6r2Vczir3/pmaR8ldoHsO7Vs99w0rndCRM0/T9Y4zf0rxmv0Tz2n+7ZtXJLx2jD9+q2fDwH2s2WPmPmg9Bv6j5gPQxmg97b5b0pdM0/cgx6tga0zTdNeYITrddznq2xI9o3qC+QOEdk6Rpmr5tjPGzmv2l/T4+pHmcXq7ZSvn86t5jr/kCP6t5w32mZtfNOzQfaEtR5AnhCzQf6F59mevZGtM0vX+M8cc0u629TCuvm9Xff3AZ6314jPF/aiYJr9L8Hv4ZzUamJ13XK8Yc0Odv6IAMvUPzoW0xFO9KZflZkv4fzfv4dZrf7adP0/TT4dYzmqWsZ8Kz58cYf0jzD/T3az5o/qykz5ym6Z3h2ddo3ouesirjNyT9xWmaUjZu2BWikWCM8ZGaf7y/ZZqm5592ex4NGHNM5G+ZpukbT7stjcuHMcaLNfuDf/Zpt+W0Mcb4Fc2eKX/rtNvS2H9cCtN+VGGM8SGa/Yp/UrPh1sdqNhJ4n2Y21Wg0tsc3S3rjGONpV1hXu1NYsdkPVRCLNhqXgv7RPsB5zfqOF2q2UH5Qs+j0T03TlLlCNRqNAtM0vXXMmewyj4zHEj5EcyCRy2Gl33gMosXjjUaj0WjsCY4TXKXRaDQajcYpoH+0G41Go9HYE/SPdqPRaDQae4KdMkR7/OMfP509u02c+kuD4/Dzr/X7MU4/Y/bzmSWcOXP4TMR6ltpW3ZPVW7XxOM9mY8DPbJs/V3/j/y9cuHDo79JYZOVI0h133PGeaZoOxdm+/vrrp5tvPggnnM1TNe9Lc3rU+V9aF9usmdNCNe/HKWPperV2lsrgOvDaOX/+/KG/29jnVGvnpptuuvi8y1uC323/veqqqw59zu6t+pONOb+rnll6lp+zthke0+qepXeaZSy1p3qnq/YsYZv9dNOznrdYBvcmj8nb3/72tbVzGtipH+2zZ8/qOc+5rBEFJUnXXHPNob/G1VfPw+GJlNZfSr402aT7msvjXyNbmC7XGwefcXuyl9X9cVvYv9gvw/ey777uz7E+ttv3fvCDc6yLhx566FAf4rX3ve996V/XH8fx4YcfPlSO2/C85z1vLeLXTTfdpOc+97kX2+a+X3fddRfv4bVrr732UN3+y3GLz3Bzdpuyza76jht+HM9Nh4Fs02M91Y/ONj+I7FfWB74D3OQeeeSRQ59j//x/38PrbrvXknSwDvz3wQfnBHHvf/8clfiee+ZgWh/4wEGOkuqH67bbbltbO+fOndNXfdVXXSzvKD/aT3ziEy+WwXpNQDi2fLfc1zj3Hh+Pi9cqx/hDPuQgGijHkJ9dRrYPuDzf47Fmf+N1l+9xd9t8j5/xfMVrbJvLYD3ZXGTr6ri48cYbJR1eb96ruIaytXMaaPF4o9FoNBp7gp1i2lcKPL36NJexyuyEKR2wMZ/QIjtzOWTLrjdjLz7pViJ11+Oy4gnU9WUMMd6bPeNyfWInE3KZHqvYJsJtz9pYicV4ko5l87tNovQ4R5SExPZVovlM5EhWQpbEZ+P8cR3wnkwkSUa9jcjRcP8rZpc9U5Xved9GZcD55tjEOjgWFTuPEiY+w/d0SYK0Dbx2tmHYRMWepYN3y1Ia9+mBBx6QJD3+8Y8/VEaEx+wJT3jCoXvMWv1sJs1yfVxfmTiee4fv5b7geh73uIOskV5vXENk2jfccMPady7n3nvvPfTZ+4ylHv6b1XMS8Jgtqf92Dc20G41Go9HYEzwmmbbhU5xPWWSX0jor46mf+iNp/TRpfQ3ZS9RH8TRMXfaS0YWfdfvJGFh2bC/1qwZZe9RBbqOT4+fKaIVjv2Qss4RpmvTII48s6ndpBMd7ab8Q/1/ptMn6MtZMWwM/w3bEezZJJmI9FXutGH4ss5p/9j8z6KvWLBlRXDv+v8vwu+J6qOuO/fC97Odx14xBKc1RwPc0jq2/Y9lmybwvjpvXjMfDewnfsbhWXS73H5frNWw7kvg8bQmq/Sbbf2grQraePZ/Nc3zG90WbFEobvH9GNn5UeG+O9ew6mmk3Go1Go7En6B/tRqPRaDT2BI9J8XhlbJWJbirjFxrORFBsSDEoRV/xGYIipsx4qTKSo5g01uf++C/FlBYbsc3xHo6j7/WzUdxX+aRSDHwcYyDj/Pnzi+LxysfV92YuMTYEojuYPy8ZQy25BbLdbCPd6DjGmYthZYC25L5VqTTYz9i/JTc39od18Du6cy25+NAtaBs/+20wTdOxjZzoshRVXjY48xqqRMKZmN/jnblPSgfjlany6L5Fg9soCt5kiOg2ZXtWZbxWqfZivyiWphrAn6O7GNdIJn4/Lo6rHjkNNNNuNBqNRmNP8Jhk2jQio3HPkqEOgxxk8KmNJ9wlIxIadZG5kTnGE3IVsID9XDIMo7EPpQNZMA+efMna4+k1czs7SZgtcZyWmLbv9WnfzCGyJX9nBuC/NETLmDbXTjVPcWxpTFiNaexXZpyWXadLXrzHfacLENlU1mcy36VIX+6f/7JfMUCKQaMkvyPZ+3qlUTFGad0t1AZTXl+UWEW3Shrd2XiMBpHxHaOhK9cb96MIf2dmT0lSZrDINWPQ1TUzBq2kUB6/SsIgHYzfSUjn2K59QDPtRqPRaDT2BI9Jpl2dqrLrZLZ0n+BpWTo4Yfp0TLcKP5sFO6nYMk+okS1Vuj0/Qx1T1r8KVdhJ6YBBVGFNY9lkUlVghkvFNiEOOYbUV8cAEtQLUsdHnW8ca/+/CqbCsI/x/x7byp0rA90TOe+RyRlVyF32O+sX+14xrjgXdH+sQvvGflKHuRTn+0rhKDH0/e445CnHK7NT4Tq2O5fL8lhYXx7hYCZZAJZYprS+5r03eZ7othbbWLmJul+WLMS9g+ubEpelELhk4/6O47jrwVEuFc20G41Go9HYEzwmmfZxQDZGphBPnTyFV8EmloIPUDfLejKWUWUCInvP2sI2LoU+NKg3Xjrpsg3WWZ0UxhgX/8X6eE/8S10s9XjxHp78qwAtSxbMZJUe+8hQaTVeJapZ0hNumrs4NvSKIHvOLMU5z5QYVAlEYrup215iR9R/UupxmtnTKEWL1tzcM8xiGciDbFOqE2pwP7CFeqyHum1/ppQwXmNbqoBAmcTFZZA9u60xmIv76Pe/WjOZRwD3PD6T6flZ3qOBhTfTbjQajUZjT9BMe0vwJL2UXrGy4iXLjOH3rIciq6C+JtMFbmL22Smz0g/xmUxnX1kJb5M+MrOyPimcOXNmke1XjIxMMUuRGOuQ1q2slxKUkLUs6Qk5L/R5z6Qmlf6ebJkJRbJ7WZ8/Z/pwg1bwFXuK37EttIPI7CEqu44lm43LDY+LdctRx2xGa102db7eBzIrbK4z9917RpYcyPe4XLfN+mqPcWxjlYaSZSylWaVumethKfQp+8G9M75/nGdKbTJbmsomieFS9wnNtBuNRqPR2BM0094SPqFZP0PdTxb1p0rrmCX24DMMvl9Z28ZrtMymjnab5BmG7/XJPmsrpQ2bUmdKByd3W7ZGfdelYoyxmOCg8l91H7PEJ7QxoM58yXKVkojM/iFej+VVrIWsOd7D9UadahYljrplWv5mLJ7Mt7IAXkr+USWsyfTUlaU2dcWZ//nlguu8/vrrJR2s56gvNqPle0/dNuMFxHvpt+76MqlJZZfgz2bckd36fazqIyONY8x3g/tOFvegSsVK/XvmeWAwpgX30yyBSBWdspl2o9FoNBqNy4b+0W40Go1GY0/Q4vFjwqKZzG2rMgChqCkLDVkF/KhCFMb/U2xdBdmQ1l2uqrCBmeg1C4cZP2cGKBQ933jjjZLWjWeOizHGIUM0Y0k8brGaRfRLIWIr1y6GFY3PUrRdue1lbjSVISLbxTGIZVSfM5EjReh0S4xqDF9joAyKK424drJgLbH+zLisUg0wTGsU+2bhUE8SFvkyJGns+7333itpva/vfe97D13fRr1EFUCWwKMy0POYu4wsgYvvZRhTGqpGtQz3Gxq1ZSGZ6ba3ZOAoHRZ1+/+eW6pyGJAo9nWTa2uHMW00Go1Go3HiaKZ9GcCwizSYWTKyILP2XwaUiCdUMjmGPvQzkX3QxcdlmFFVxj6xPIZypXtIZBiuh4z+7NmzkqT77rvvUP3Hgdm2VLu/xbo9PzTgy07qBg3EaIQVWQXrJktaSjLCZAu8HllZlS60SsqQue95LpkG06wwMizPERl2ZTSXBRxhW6swsbH9NFJaknZdLkMjji0lSJkBXBWoxPfaYC1KmxhMhYlqMuM7g0ayZJnxXXY9Zqs0MmRylhjMpUrNS6lZnB+7v1GCU7mAxdScVUjnpfr3iUFvi2bajUaj0WjsCR51THsp/aDBUz51zfG0tymlZObeRYZDlwQG/49gGj2fipf0UmQnDJPok2dk2r7H9d1///2S6nCd8bTs9jPgC1nBUrAIton6/3hPNi8ZpmlaTH/q8SarYECRzG2rSk7hZ7Owi1X4UDLSWDaf8T1mHHQbktbHm6yVazeuA7IThp70WMUx8fNc19T3Z/YXlVsa34Woy3Q51h8zOA1Z6eUE9bX8myXjcN88L77HDDsL5VpJSahHzkLSMsgN643vMu0S6NLqsc3cIb1mKlaeue9xn+F6d1tdb1w7fNf82fuRpQAxeAznZx9dvIhm2o1Go9Fo7An2nmlXoTMzPZdBi+iK3UjrwQcY/IRsPV6jRSYtciMz8InSp0RlbMi6AAAgAElEQVSWYV2Q2UamJyTjMDvz6Tnqo3yvv7OlK/VRZnGZ5IKMm1akDgQhHYwpdXNMHBD7xZP7JqY9xlib28yCnXpoSlMyph3riG1a0lNXYReNLPlLFZDH8HxlemmvnU1hPWOZDIRC1kQWHcunpKVK5JF5OtBimskesgAw/q5KuHElWZTXrefDbfI7IdWSAY/t3XffLSlfB7Q1qcqI9RkMpkIdd7QbcT22KfG97p+ZMfXw0oE0hIFlKPnJJEm0CaFkbykhkttE3bbbEaU03L+vhDTmcqOZdqPRaDQae4JHDdM2jnLark5dsQyf+HxqNpsxi/SpNp5eaQFNfVAWOpShDV2uratdn/2bI9twOWbWZAG8T1pnR+fOnZO07guZhWk1qCvzeFLXGNtLv1DqNKNuk/YCSz6dYwxdffXVZbmxL2wfpTJLyV8Mshnq7N2mWJ7bQv/cpeQf1MlR0iOtJ61wm6hb9rqIfaKuj+ExM5sNsmHaQVT++7Ecjkkl0YhtpA859bqxDEoDTtqK2OWTYUfpksfHjNrgu5StA0p/yCJ93YmGJOmmm26SdLBXeR14vu655x5JBx4BsRzqmu+66y5JyxJLw++RpYFLKVM9/25jZR+R6d99r9tK8P2S1j0rlhIK7QuaaTcajUajsSfYKaY9xkiTPixhKf3bJlB/yFOtdMBezGbMdH3CpUVjvMYT55Iluk/F1PXwFJslemcENjNujk1kWD5xmhnccsstkg703nfccYekgxOqT/HS4ZN6LOM973mPpHU9WOwPfch5Gs98LOn/XeGqq65aYxdZ9Cd/V6UljKhO5tSZZ7YUlTXvUmQyMkMzK/o8Z37z1BPTFsBleoykdaZTJefIpAFcxxVbziRXtGVwWYx2FVH5xHt9ZElGjE32ENvCdVoCxlgFWQQvt9t7h8fA76n1yVkKU7+Pftb7kZlq5q1ADwP3nbY1sS1+1mvD+8073/nOQ+1Y0glvSnIS/x/XoHQgjaBNSmTVHhMmYlmKYVDZBDTTbjQajUajcdmxU0xbytMinjQ+9mM/VtKBjscnw5hCzjDD9InPp/qbb75Z0sEpOUbuoS9yxhoIMrYqIloW1Yo6c+oh6ecqHei7ecL2SdSnVzPweDr3Cd4W50996lMlHYzJG9/4RkmHx4QskCdq9y+LKMaIR0ugRXNsN/20t1lf1T1kKLTQjSBLZtuidIHlct5pRxCf4Rhz3LK1U0kSqGfNrOItLfFnWpwzxkC8h8x0G++PKkY39ZXxXsZkuFSY8ZLVUYojHfTRewjng1EC4zjRXsD3+h2jt4m0vvbNjhkXIrJct9H3ej787mapeStQwkgdd2xL1MVLB3sJ7RSydyPuK7G/tHmIqPzC9xHNtBuNRqPR2BP0j3aj0Wg0GnuCnRKPT9OkCxcurLnmZKCLzTb3fvzHf7ykA9GMRcRMYRdFMhahG0wu4WeyBAdM/eh7KT6MoAsMgylk7hQUOdIQxCK0zKiDIRYpjqfRVmw32/+kJz1J0oH46l3vetfF75iYgsZYNJaKWEqwEcu/9tpr19QLsd1Z8JSqLILiNYqIs7SUTO7ieaiStcTnbbDDtmaGlzSGohsa+xNFnXTBYT0MCBTLp0qDyWYytQbnx2VVKSGl2l2L9WeqlUx0fhzQ1Y6ua5lRI90o3V6PNVNKZmvV8J5l8bzHOoqKGQrYa8ii50xszH4wfO02Ll8GjSfdX+8LsU0MBPRrv/Zrkg7UjUvlG0zVuvQbwGf2Gc20G41Go9HYE+wU07bLF8PvbeOSQ2RhPn3iJMNeOqH5pOkTLl0RyBTdD2mdUfuUmYUgdHluG13KfN31xwACZOP+S+O5eHonM/QpnwZQZE/SwSnZBjY+WVsqQUOR2F6y5qWwo4aZSRayMeL8+fNlykdpnQkwZCKTssT2MlwtXa8yFxyWwSQtS8lmXB7Xd+a2w6Aq7gfHgmkdY/m8h0Y9mUEf55JGRDRqjN8xAIvbRBe0eI1rxWVk48ggHScVvpLMlMZkEXQ38vvvMmzk+Za3vOXQ/REeu1tvvfVQGV6H8V3jXmXjMrttZSGQmfbU9XktUSqwBM8h1050EfW+xiBLH/VRHyVJesMb3rCxHrfJ9Xmf22aO99nVy2im3Wg0Go3GnmDnmPY111yzllwiO+VRR8qQnZE9+/8uh+4SDKEXT+xkRz7NMuhFrJ9O/zy9ZkEAyF6of6VLSWSQfoY6Uj/jtkZ2Q10iGWR0JYn9j/Czt99++6F7Mv0e+2UwFV9k02YRPp0zIEPENE165JFH1hhq1NW6bruiMEUiQ8jGZ6qAKFWShAgGVSFbi8ynWiMcW7Op2MelYCOxzMwFi+FaKRmJ71MVVMVj4bXMhBnxOzIt6roj02bSh6UQq0Smxz0O3E4yeLYpS3TCMaSkyvfFhD6G2bhdvXyP5y2ub9rbuE3emzJJFd0Rl0ItV+C6454ZbWwcHtVt9Lvo9fyUpzxFkvS2t73t0H2xfN+7KW3yoxXNtBuNRqPR2BPsFNOepknTNKXhD4lLSQTAE6BPq1l9PD3yRJpZJJNZky0xoEG8l5bZZF5ZfdQHM2BKxgJ8WrWOjIykSn8orVtrVgFTspSMtH4m+/TJW1oPY7pNkBoj0/0zuInr9hhkiRuo/yYz4TOxz+wrxzhLMlKxR3oIxOAUfIYBU7hWI3tiAB5+ZnjTiCrkKVl77PdSGtRYfyyDAWUqxr2kVz7K2jGycaKdgNdBlm6XgXbMeKnz9ZqPTJhr3yGCvR797mUBkxhamZ4BUWJFfbA/V0mHMjD08lJQqXe/+92SDqzEvY45JkzIFP/PBDhZ2tBHM5ppNxqNRqOxJ9gppi3NJ0z6KGdYCnco5T6bDG1IK0QjnpDJsKmndhuzsKK0pmU98WRNHX0VmjLrN59h6kdasUrrVqN8hqww079Tv+dTehaUn/2hhXHGMOnLuQ1boh91tg5o8e3P9F2PIFt236lvjfo7+kln7D+WEZ/heJhVMO1i1l6OEyUhsX6m7yRbz1KTkiWTLS95fVSJSGi9Hlku1w6lTkbmUcF+HQWxDV6Lfmf53jM2Q2wP+1wx0izBDtck/ZijZTYllG6zmbyvx1ShtPep0tVug4qVL1mec/15P8qkgxzPbbyLHo1opt1oNBqNxp5g55j2mTNn1k7dS7oK6toYFUpaj/LFyEQGGVe8l5GhmIg9nkwZZJ/syCfS+Ayt0zcl1MjayLbw3kxyQWZDve8SKn9c+tXG8pksgW3KLM63tV+4cOHCmu450xdzfVX69dgG2iVQGpSxJVpgk/2TQWZtZNuySGmUpFQ+71myEUYgI3PMmDb13ZS4bIPKOplzE6+xbdW7H585ipRmG3C8KDmKY04du8fJ77/XhT9Hjw1K67jOsneZEkS+w34mi0Pgv2blbpN16dtEG+P+uc16oLSG0RwjTlJnzf3oUiPmXUk00240Go1GY0/QP9qNRqPRaOwJdk48fv78+UvKfcpEBBGVUUoV0EQ6EHFZbENRbZZQgUYcNGLLwnwyFCmD/ldBHeIzlftOluu3ckfyXxqmZWJSiozpkpG5+hh0leH4RlQ5n4kxRmnYFOusxOE0EIvPU9RY5XTOxOMMk0qVROZa5PJteMQ2xrms8mWzjdmYuNzMZSnWF40mqzVDsWjWjiyAUYbMXZBtolomK5NJJY6CuBaZQINj7e/jmqfKhG1wWdn7wpCzdKdjQKBYjuvznNm1lMFv4j0Wi7sMhyT2s0dJxuEyPdeZGvC0jce4puLayfLO7xKaaTcajUajsSfYOaadncozVIY6Rjwl8VRFl6Sl1JY8BS8F02DdZvtnz56VdHBqZTCCeI2nPLKXjJ1ZGsBEEWb0WVANf8dEF5mxEvtJl5sqBWRmTMR0jXQxi/UyKMgSnNbVc0fmEOviKZ+uRFkY01hPBA2eMtZskOlnbIMuXh4Xsxeui/gMx7aSVGWBeQy6SmVt9Rrx+mablpJ1sI1kXktuYpRCkGFna2cb99FtQIkQE2ksJbwxGOqWbk1ZyF2uKxrPZglxDLpaMVRs/L/L9TgxqNM2cJstBXCZcZ9zfdwLXS9DMV8uRs53MbbxtKUAm9BMu9FoNBqNPcHOMW1pOxcSMmy6RsTTPU+nDEbBU218lic+ul7YNSJzbzLby3TKfMZtqvSeTCwfT8ubdDAZU2UykSqoBl3O4rNZ4pPYtqzeKkjMUmIHsrMKWX1LLktsS8aWaI9QjXHGtDe1NwtgwoQ0LGtpTCtpzJKkglIGMvyMdTAQEAP1LLFnSlS2SaHJ98ZszGtyqY3Vu3dUUDpG9u/xi25b3BsYVtjSE77b0rpO238p2clSpprFVnYDcb2xTQZtahgidalcSg6iPYTLs6SP692fvQ6j/Q+lcpUNRxbUiVIG2nLE97qZdqPRaDQajRPBTjFtJwyhheYSeKLOgsfTStOnVJ8aaWm+xPAra9vYVqbAowW6n83Sh/pkyCT3DqyfBRqhhSwDY1AfL61bkjK4C5OexLZWrJOsNGPPVUhHjkMEdfUV4hxQ95i1m7rYLDUnLfKXdP3Z56x9LCNjopVUJmPnbFsVIIWJJOI9TIlJW4rMmpupJymdyd5fzkGV2nJJ2kUr6czzINP9Xwqq8ixNy5KVeB15XTFAkt81v2NxH6L+m+8j39fYNrN9smLfGxk9g/XQTsVBpDL9dGXvQaldtHD3PmY7HzNs7pFm9lnKY9pdUKKRvYOU1i1JJzdJ1U4bzbQbjUaj0dgT7BTTNo4Sro6nIT8bdb4+vVX6DQbuX0qSYFDnFNk1dXs+TfpEuBSyjyyCjDRjFdR/07qX+utYLoPwc4woAYh95pgspSsl2I9MurJkwUxYSkNdeWRAlSTAffT8ZCkS6XO9TRt5jXOZJUUgY6ukFhnTXvKgiM9EdkaLedp1UEol1SlAqzZmjKUKVZw94/XM1JZk5Rk7zzwnjgOySI6XU93GsTWbpLeK22/Wma0tv7vU2zNuQkzvy3kxi/b76vE7d+7cWj3+zs+aWZu1k8VLBzEE3GfGMsj2AYb2ZVwN15/ZCjk5Ctdm5ccfy2E46kwyYrROu9FoNBqNxolgJ5n2pYA6Omn9JMtTPplAPJXTQppMOEtQwihpZriubymxfBXVzMyUySekdX2+62U0q9gvRtqqEslnDJKWtGSDmVUv/S8ZAS5LuFH551aITDtLMchTN3XBGduvEqhUlrlLkb4q+4GlmAJkK5SMZHV6bKukL7GOih17jDIpDe+lBXplzc52x3vZz9guWpZX0o24dqn3PCnQLoZSp2hD4e+YYnYbWxrOIf2K/WwcJ9u/MFqan7n55pvX6qWU0d95vm+55ZZD9ce0nv7O91Y67Qi+w/RO4d4c152lGZk+X5LuvfdeSYf3RvrTe4xc35KEb1fRTLvRaDQajT1B/2g3Go1Go7En2EnxOMVfRwFz1koHIp8q5CTzbGeuIwx6YtETg7pE0KirSsqQtd+owmbG+9iGKg95FJdaZE6xO0V2maiLxllM4JAZoLCNVTjLpbCwS2KraZr0yCOPrLm/RWM/qhaYQzxLjlIZj/kzRfdZUpbKzSkLGkPxdxVYJnvGWHJ94XXmxKbIma5g0sG75WsWx9JNKQPnkiLUbYzWuIb4N/bnUvaSDDb8oquU94doqEWVmtsUXaDifdEA0mJdvhd8x+MzFgF7zTMZiMXLcX4sLvY1t43z7u9j/9wfj4XHhqq9OKcuz0Z4BMcs7lluG1VtvteGf/Gdp2EyDeuyAFFHCZ98Gmim3Wg0Go3GnuBRx7QzkAXzdEwDishiGKqRn/3XRhCxPBt5ZCnqKjAVJNkSjcxiG2hUxJB98YTNQCJkkGTrmSsTDULI2jL4FExDNGMpGEYMCkGMMTTGWGMG8ZTPACVVYJ4sOUpW3yZUqVFpJJelyqTUglKb2C5KCKpgJEuujJw7jlFcO3Q/pJShkmgsYSmMaZXqkwFP4lq6XAknXAfdz+g+Gq9ROmfwc1zfDG1Klp4lECE7teTDDDtby77Gd8ufzdYZuCn2lclsGEY17kteM2b4lgIwYUkWUpppg3lPFhyJaZC5PxiZS2Mz7Uaj0Wg0GpeEnWLaZksnHT6OJ6YqkAiTuEsHpzafWqsAAvF05xMoE2f48xLjdjk+eVaMO35mek0HIaAOPxtXSg58EibzylLXkdmT+cTTK3WMdL/L3Hbo5rKkKzVcnsc4jjWTrXD+sxSjFUut9MWR2XkdkAlmrl5Glfygsr+QNrvrkfFm9glVMJJsXowqvSaZcca0j5L8hUFwKLnims3atIQxhq666qqtmBXXCO1l4hpl0BvuHWSGURfrd7pyq3NbI5Oke5P1t2azHr/oRuUxI+snS85sK9yGe+6551D9lLzEternmU64SsAS569ix5zjuBe7fLN/BlXJ9pSl5EW7gGbajUaj0WjsCXaKaTs4xuUK2E7dJU/CGZumfq7S08VnmH7OoG4rnqwZ1MJtIYv291GXxbY5iIKZiOuLluEMlmHpgssgG4ynWeqyGSa2CqvJPmf3ZvWwfxmmadL58+fX1k7UkTPoDdlylkTA7aVdAAPZGFmiGurp2cY4JpUullKbLMlIZZfAsjNGuZSKk2AbqYevPB6kdSlXxYizcaT3BRn2cfeLMYauueaaRaZNiQulGJndiN8pSkf8rC2ozf4i26WO2X03q82kNS7HVtRm2EtjTTsOrq8quIu0nvLYyUU8Vp6fGJCFTNpttt6djD+zSaHHCwMAxb2NdhdVopDMY2RX0Uy70Wg0Go09wU4xbZ94jZNm2gxx6pMw9brxlOt7yM5pgR5ZNfVA1PFk/aIfOFPx8eQd2ZtPk9GHMj6T6duYao96N/YzslwyR+o2M+ZDvb7L5ck6sx4nm8lgpm1kTJupKVlepqvfRncdP8c20PK7Ciua6ZhpJUyJT2TnlBy43io0ZOY/T9ZS+VHHZzjG1D1nEo1KD87v4xywXL5f1HVX7a4wTdNWnh1SvRbpXRL/73eNa92MMJPeUYrl/cXPmHGbVWfl2KOFthWZNMvwXPkZ6oKzdMIMy0zJSOyXWbfbTX9wSuvinFLaWElGst8QjyM9OU7aU+lKoJl2o9FoNBp7gp1k2lnKyuOUZVCXbF0PrVzJvKV1X2eyFZ6ApdxyWap9omP5tASm32xmCe5To0/WbqNPs0wWH/vFNtPinDru+Kx1cpVuMT5TRdxasl+gZGQbf1+emDPG5vaSmWRsuYpqVbVlKZEHkfnIcp4NWv5mjN7lMFHEUpurZCxk0VnEqCq6Ga1vY1sr6YaRrQcybK6vLDXnUbGJadF6m8hiCPBetzeyY+lgTmOf/a56f7nzzjslHeiNM4kL7S88HksR6+hf7vpcFq/Hfc7fcb6578V+uf2WPpA1c71F6SFtUjj/WXso9aEkj9EcY927imbajUaj0WjsCXaKaUvzqexSTsxkxvH/PmlSX8xUdrb+jvfwdE+dUzxd+l5aXvLkHZkvYxf7Lxk4Y57HNpItL8VFr6LCue0u03MRfdcN6oX8mVGNYttoaV5JMpbKXUKla47PV/HDM7ZfeRxU1qiZPs3XGFUqi5RVrSvqcTMdLH38vY6XLHIpOWJkMtoBxGeq1KksI87bJqadzUEVrW2bWP7b4uqrr15cX5RM0V+avtGxnYzkZT0xbV4cX0E6YLb+W+ncMwkfY4/7uj/fdNNNF5/hu0UdOhl2xrQrrwTvLVEa4DGx5IASN7fV+4/HKraRkgSOb9xXK3sLfp9J13YVzbQbjUaj0dgT9I92o9FoNBp7gp0Sjzuc4KWY4VO8Kx2ItiwmtNjGhlS+Ttcv6UCskondpQOxjo3bpHURDMVkWVo9g+4hDIziZ7IkExQfUrQb2+XnGcbQf6uUpLE8umdQtBlFqlUqy6VEEXSV20YMuiQer8KH0s0u9pVuVHTj4hhnomcGkKnEyrGNFvFZHEl3wezdyBLexHuzwC00IqIYPgvTS5VNZfyXBbKgi2GlbsjaSOO4k0ro4H2nSkwSweAg3hcYaEQ6EAv7HfIzNhj19Uz07ffQInMaT3oMoqspkwlZVG8Rs9v6nve85+Iz586dO/Qs1TK+1+sxjjmN1rzeqwRG0sHYel3fddddh8q65ZZbDtW/pG7iGnU7MndIuqxlYVL3Bc20G41Go9HYE+wU03YY00th2lkwDDIDMiCG8IwM2KdhGmrwemTgvocnQ594XX80WvHzPrH7O3/m38x9hwYhPh0zdOTSMy7XkgMauUnr7JxBInyqjc+QISwxbIOsdhtDtCVkIUCl9bGMc8kxIwtbSnvJQDIMVJO5Kl0Kq6Rkwp89DxkzrtiKkbk6ed6rZDac26x/dC3kOlxq40kHXZLmPpD5xnrYPrYlk3JU4+J3mAZpcX0zXCnD5mbJbXyP30ezV+8lWSjSO+6449CzNB50GzNXQ65VhmLOglVVrowuy3uW77MkILY/GuxJ64FTYhurQD9ZIqR9QTPtRqPRaDT2BDvFtKX51LZNEA2CLDqyJQabMJNmAvYssQYDh/BkyFRv0nqgBerSfTJ1kPx4D1OB+pTMpCaxf3RhcpvIkrKUk1UqSN6XnZapy1rSDTM8JU+6Syz6JIJnRGxiakvfV9KfjHGTWVepS7NgECxvm76z/CplZoaq/Izd8v2s9NOZNIWMlTYjWYCWy8mw3aYPfOADay6amRsnXT7NDLP30s/Y9c6BRchmqeeNz3BsKYmL4+S2vPvd75Z0wJKtN3aZUZrCMLlMe5oltdkEunFloV25rt137g9xf2Wqz+z9iddjW7gmaZt0udbW5UAz7Uaj0Wg09gQ7xbSnadLDDz98SbrspSAdPg2TmfpUmQUDoBUvrSyztHrU7RgMX5jpCZlkgHpDWq9K64yG9y6lyqz0bu4f9ZfSul6S9VGiEMvj2C9JVbaxML8cOM762ybtJeeBFvyxnEuxar0UyQSDrSylK6VHAHXmS2PCEKjUwx83+cdx4GQzfqcyfTElA0y7m4WkZYhOv0MMN+u9JdrSMFSw662eje2+7777JB3sIdZbW09+ucbTY2BG7/02kyiSadui3vOf2cVUIU+5Z2XeCtS7k53vkxV5M+1Go9FoNPYEO8W0pflEVKVD3PSclFtxVsk4yLBjyDzDloqb9INZekUmvPBJlGkX43c87Vd/s2cNWnf7BJrpjTnWPuHSEjUyn6wNEfR3jaBPKtNkLvkQX6r1+JUGGQEt9LPkL5Ul++XW61Z6aSN+rph8lSAl810naI1/GjpGvjexrVWaXa9n66uzBBcMK+vPLisLN2uGTf9oeqREFsswnmbcbpPZbMRJpKb0vDMEs/t18803X7yX3i9MbuRxpF+6tM6aqz05SzazKRHTPqGZdqPRaDQae4KdY9qb9K7VyYh6tMjomPSAum2fTGlBGevmdzy5RV0WGTb17Fl0Naaqq+7NWDrHxP0za850wrTSrFKO+r7IIHz65cmXDHIbiQnbnuk/T5N9nQRozU/pQmbVz3u9DpaseC+FNfHZ45S1jQ6d6404zTmmbcZSlD6PD6V10fZjycZDOnjnGcEslkOdNj1CYnIMs26zVWPJbz4+vw1i/6hfd1utmzfTjgmYfA8TFblNZtzefzLpJ3XX1H/HvZ9JlLbxpNh1NNNuNBqNRmNP0D/ajUaj0WjsCXZaPE4xorRZPG7Dg2jUQeMqhpGs8rNm39EQhEZg8RoDRrDtsR4GImCgBxrCRDGV+8ycvxRtxnFkqFOGj6TYKoqpmOjE9TK/bmacx7ZRZBfbXLmj7SsqVUBmVOjvuB4oLo/3ZqohaT3/dTaOS25olwNUqRin6XqzlCiE6grew3mT1sOH0n2TySviXkLRs9vm9zCbS+aizvLaS7mLIYOpcJ1lajn3jyGYvT/4+yzZEHO8030wU6NY7E/VhD9nxmVXyk30SqKZdqPRaDQae4KdYtoOcpCFwTQqIxGyu3gSJrNgqjyeWrNQlD4J+hRLY7ZYH13MyGKyNjKYCSUHRjYmZstZGs1YZjwlM/WdDT9cn/uXGdpVKUB54o2omLyRuQu5Tp7CM4wxdM011+ydW5h0eCxoxGfWwrGITIUBKciSq1SG0nrYVINzebkYyy4EtRhjXFw/vG5UTLv6LK3vO35PGU7ZyPYsul6abTI5j3Tg0sU0lP7Mdz2ick9l+NRYH9ekv3N4aO8xce24PI8F3euYEjgmB6E00m3y2JCBS8uui/uKZtqNRqPRaOwJdoppGzxtbXM6IjOIbIN6IeqH6VIUT9xM6cbQpFnaSCaKIPPmffF56t85Fll9FeNlYP144qW+3fonMmLfF+tjmk3ek4UgJMOumB3ZTsTSd+7LSQSLuNLIQl9yrdBtMCa1oasdJRPUt8a5ZNIXSlY4p3z+0QCzbAb4yZg2pWeUzmXuqdwPmG7T16PdiNnqO9/5TknSnXfeKWl9vqJ7l4OpMHHM0nxV0ivuGTFcquG63T+vSbc1W8tm+WTYZPTco2MbKilAJpFrnXaj0Wg0Go1Tw04ybWOJLTEYCJGFMaXuurLQjSc1Wl5mqTh5X5ZsPoLWvdJ6oBLq3cn0Mytr6t+NTFfPdnu8aAGe6UH9fzI7ticL3E/bA9oVZEzF4xnZJWF7iNNGbD/1g5ynLJELU7PynszSmCyPDI9rJrImll9JWuI7waQ5Btf7vlj7m2nTCyID++RxYVhTaV16wTlcCi/89re/XdIBMzV7pQ1CfLZK68p5j21cSkca22gddFwHtC9yWxlUJrMe53fW75s1e/1nexaDq1RJXOJY7JPkbROaaTcajUajsSfYaabNpOdS7XNahQqV1plh5Yu49Cwtc31q9QnOJ8TYFn7nEH4uK0vWXp1Aybwz33Va+vLEHU+tZH+UDtCPOp7o2T+OZ8awPG6V/y/DM8a6adm6y8gkLrQt4HrLPA8oAaENQBxH+nC7PrMml5/5yJKFM0Vmtnbou8v1x5SJ++A3e5sUV6wAACAASURBVNVVV5U6aGmdfXOM3efI9pgYhGB4ZafOjN/Zetr67m3iGnheqI/OvEioU/Y97g+lBZnErfq8FCKVa5a+3d4rY2hX2iu572TembV6M+1Go9FoNBpXHDvNtI3MwpE6UVp3Zs+QjVeJPTKfZPoc+nTnv1FPyHr8LPVCGdOm7trlVxbpsf3UjVWMWzrQGbke6lCNzKecVuO8J2PV7kfFtLLod2SdWfS5+PwY49RP1HH8qNP2X3ogZElylnT9Uh5Nr/pMCciSLzGfyaRPnBdKZcjOYluXoo6dFsYYuuqqq9bel8wjpJIYmQnHfvm9p9TEY8B3Ivok2+faFtpHSSVZMVyy53iNOm1KXE4a3Ks8npVkSTqQAlRpUpci/T2a0Ey70Wg0Go09wV4w7XiqpX6QJ8FMr0o9MU9f1AVFRmd/SbIJMvmo8+Jp0W2p4khn5VEfSMYV+83Tf5UUPtbHEzZ16mxXpgdjuTydx3mjDo6Mi9KJ+H/OeYUzZ86cms40s3Kt2CrnOrOY5/gsMayKIVb+udvomFnmku8r7SC4prK1s0u6bVuP04Mirl9a1/M99FjHZ6zf9vrlO0D7mDhf1m9fDqYb558W7Kdl8e96KSXIpAIGxzOTRmyTHnjf8OjrUaPRaDQaj1L0j3aj0Wg0GnuCvRCPR7EIRcsUV9MFLN5TiVFc/tmzZyXlhmgWZVH0mAWpZwD7SqybpSGlQdom1x9pPUFAZZSXGSBVblpVUJdYTxXMhcZ7ERQrVmFaY9to8JRhjKFrr702Dbd4JZCpIKqAKJyPzOWLbopL88+1UgXXycqgMeE2qEJ5Gr5+udN7nhSmadIjjzxSqrWkOtwnU5nGNc99hvPgMi0StvGZ23QlwL3itAPiMExr5kLJoCpMKxrHbpcMHk8KzbQbjUaj0dgT7AXTjiCTrhhIZtBE9kgWmRlDMeiAXaN8IvQzkVUwbSeDgjiQQBa+ksY7PAlnqS3Zfp4us1MrXb3cP17P2JvdW6qUmVnoU/Ync0Nj25fSHhJ229mlYAqVexPHIHP94+dqXWT3cF0vsadqnDgvsQzWU6WpXHJt3DVkhp0RNJzjPpQZUvk9pzuYn/EekkmkThJVOuMI7nMMUXulkUnMYqAVSbr77rsP3ZutrdOWHFwONNNuNBqNRmNPsHdMm2b/FePOGBtPxdRX+2880TE1J/UnGZugixKDUWQpQGMY1IhNOvwI6noMShhieQytydCb27gyGVWYwQheW0pXSt3oUnAVP3vaTC6yGdpQVPMS1wFd+2gzQbYW76HOL3PXimXw/1U/COp8+U5Q0rJNMJfTxpkzZy7ahmT2CdU4UcoR+8dwxUwG43HK7Apoj2J7G4+pGX3G0pmQxGvp+uuvX6uHAV4oteMcXqn3K5Ngut12pVti2I9mNNNuNBqNRmNPsHdMm8ENqIemvo3/j6gsQuPJjeyB4fbIxOMz1BPTEjjTMZPFVuwyYyyZ5byUpwqtAs0QSwEyzCQYRjVjKlW5FTuM1zI9flbeww8/nKYFvZLIEiowBO5S2FyD81Mlcon30Kp/k/dCvLf6vJT0w/dSCsD+7gKWgmzYejx7l42qL1xncfzMhj3+1m2THfs9iuuASVluuukmSQf7z4033ijpQK8rrbNTSloyKQ33pGqcLhebpfSTnhZxrDx+u2S3chpopt1oNBqNxp5g75i2QX2a9USZ/jALGyrV7Dae7nwKvu+++w7Vy9CUS6yCbCVLkVfpMivL4G1SWPKZOCaVBbDLYLKDLPkH276UZKCygiYLyFjhNskLpmnS+fPnTz1BQGReZKBcX9nY0j+b6yFLIELdf2Wdvo0UooppENvo+WDaWoP++7vOiC5cuKAHHnhgTY98qX7mHiczblpmMylQnFPbuFiXzT3MzzjMsnSwZlxf5ZES9yquMzJevrfHmUvvzdK6fY/HhNIZ/81sfU7bsv200Uy70Wg0Go09wd4y7Sr4vpHppf0MWTlPmVlUI7ILnxQzhk3/2EwvGOuVaiZVJWOIeqlKl8l64phQV052XqVdjOUxItFS+kDOQaU7y5jyUoS1XUbFNKvIThGbximzHjeqtJ5LnhUG58mIXhv+P9M4GtskObnS2EZKQ4vpk2o/U2/af3tJOuc5tCeLGadTdbqMqAc3w/b+xvaTxUrrewalAF6rR2G3XN/RG8d1+5rvcZttGZ5JBdy/XZfcXG400240Go1GY0/QP9qNRqPRaOwJ9lY8blDEmLkuVPl/GTiAZUgHYiEmezDoeibVoQApyo/iK4ouLXKs6ov9YyCUKiBCFsSDBmFMhOIyowiUxmNVOMasf5VxVBZycylwRYUq4MtpgGJWzg8NB+M9dHdbcsmpwohW7dnmO6qKogifyXN2ybWrwjYi1cutfnEbLOb1vGdBdiwupsErxeIWl8fyGSCJ/YqqMX9HN1S6J2ahiQkGZnEf4h5mMT/LdT+9l2Q5zas98bGGZtqNRqPRaOwJ9p5pGxVDlNZPiWRuDG6QhXl0Gb7Hf11vZkzEE/RSUhOjcvVi0pHMbcOgW4URmSqDKlD6wDSfGdMi42IZmfFaFXY2C/bCcjexpTNnzqwxhoy5X2lkxnwRsc8cnyxM7rb10biRRpTxWmXQaSy5fDWWUY2TJXJZcBWDRmV0SzPzjvXQUJBSwuiix3XlNrHNmfEcwzFX6y26fFUurNznLI3I1iMlVo81NNNuNBqNRmNP8Khh2gZ1wtLBCZYnUf/1yTMLGcrQhvzrk2l24q0YT8boqxScVfpD1xvr8zXeSylBbAuZNMMKZu5q1LeSWWduQ2QKVf/iyZquZEtM2ak5s+vErriMMEmDtBxEJX6/TSKXSrKTpfWkvUDl+pXd29gOVZCTbD3aJYquf5S4MbBNhBmu/zpAVNw7vOd5L6Su2Z+z0LRuI/XS/D7q1J20pAriwz06Gxu6GD7W0Ey70Wg0Go09waOOaRsZM7RlYhWqM0v1Rp2vP0c9DZ/JEnTEerNEDtRDV+EsaaEZr1X1ZpbZTDLBNlFvnSWMoFUqre+Xgniwraw3lr8p0Ihx5syZrZJlVBbap4XoZcAkIptSQko1w+bfrL8MpcqxyQKNnPZ47SK2SWJB6YnnPZNmmUHb2pr6aO8/WeASByjxM67HLDcyVUpNzMKZiIkW4bEcBmLi58jsKdFjgJ5tkg091tFMu9FoNBqNPcGjlmnHE69Pc/RFJgPNmDaTe/DEe8MNN5R1kzUzZF/GeKhXr1J0xtMrg/xXOsfMKr66h7rOeDonA6aFZ2Y9TklCZaW8lAJyiWmPMQ7ptTkmsU7q1U+bOWYs1tfMtKqEK9K6HQKTvyyl3+TapH92NpeNSwPHmmE/pfWQpIZTctLXW1qfb6/3c+fOSZLuueceSYfnknsj9xBadUfpmttiZu/6aFuTvbeVDQUZd2MdzbQbjUaj0dgTPGqZdkQVEYg67kyPwtMwfSlpXS4dnDTJqKljjCyQls/08aaOOz5Lv0XW65NwbGNlAZ71J16X1v10N1kgs73xu0166njvJrYX/bQzcIx3UW+2aT4y6UBmFS6tj1tmN8B1QKbD9KKNHJcyPp6X+I4xtgR9r/2Ox/eKbeB6sFQwWpzTC4axK/wME33ENjElqNvhZ+N6szSTdhi7Zmeyy2im3Wg0Go3GnqB/tBuNRqPR2BM8JsTjBoOpEBZ9R5ETw5Qy/KfFOjYYitcYUMQBWFxWNDKh+JgiboqTo+jLz1KUalEUAybEflViKopptzFeYr8z8T+fWTKeO47BGMuJIvDqeYrJd0k0R9UORZJSPXeV+H8p3/k2iSEaNbZZb0SmkuK+4/2ArmCZmiSKsKWDoCpnz56VdJDXO7bXe4RVaU984hMlHeyJS6qkai90WXG9ubwHHnjgUH8qo9bGOpppNxqNRqOxJ3hMMW2fSn26o6FGZlDFgBVmrzRei64XTLnHMKoMoBGv0TBkU6rGCJ9wfXJnitB4inW5WerF2FZ/n7GzKqBEZmRWuSzRiC5jeDSkqjDGWHQVqZ5fCsSya4yzXbB2G5cipYnPmmlzv6E7X3zH6NJKF1MjPsPgLdxnyLTjurPk0PuL9z23OXNXNetnIKalfaZxGM20G41Go9HYEzymmLbh06JPiEvBJ3hK9TNkZ1mglCrZCE/E8Xl/R0ZVpQiN9/AzXbPiKbYKkMK/lTtX/K5iqkvBXKqUoLGMpTGusHRSr1h+pZOvrjUaRwHfe7JZutdJ68FVLDVjgo/MBYvvId/pbdwsq7DDUSJH+x7aCjF1b7y3SpryWE+7uQ2aaTcajUajsScYu2QpO8a4U9L/OO12NHYeHzNN05PihV47jS3Ra6dxXKytndPATv1oNxqNRqPRqNHi8Uaj0Wg09gT9o91oNBqNxp6gf7QbjUaj0dgT9I92o9FoNBp7gp3y0z579uz04R/+4Rf9GbOoPwYjbFXxsOM9m3xtTyqa0bb3Zs9UPsmb4kln9xynTce5d5tnq3u2nZuId7zjHe+hFefjH//46ezZs2sR7DK/b95DbJOy8zhr5STW1zZtO07K0UtJU8pnN32OqOZrad74TDau3Ae8P7zpTW9aWzvXX3/9dO7cubX38lKNdDe9hyedGrZ6/4+zHxBZW7d9f5b2uUvBUfp3lDmo9off/M3fXFs7p4Gd+tH+iI/4CP3gD/6gzp07J0m68cYbJR0OEWowQIrD491///2HrksHwekZSIQ/+EvBNQyG+8xy4S6FxYxlxAAC/NFyQALmgM4W36bABAyfGq9VOXhZRmxflfO2KjN7hpupg0lsg9tuu23NPefs2bN6znOeo+uvv17SeihZ6SAgjb/joTCbtyqM7DbBH6rNv9pUs2cNBp/JftT4eZuNket7mw2QwUKq61me+mrsPTcOJhKDB/GaQ286jGbWZr//3g+cJOMTP/ET19bOTTfdpK/92q+9+A772RgUpBoDIo7JtgdSBlRiObG+6j2K/68Sx/j7LKnJNgFXpMPvk//PEKusPwPbyjWbtZXg+7UNYauCOsX15nXF/eLZz372TrgFtni80Wg0Go09wU4x7TGGrr322osnnOxEz1MrT1IZE2LIPDNdhhVkmfE7n7r9HUOVRrhcBsVfAtu/iWlFxl+F++TpOWMOTC7CkIcukyf/iOOI3TgmGds4anlXXXXV2sk9jkEl9lqaH0oPmMJyiaFUTJqSnWy9cW2yjEwaVIWVXUrZSXZCppON2SYpzTbjy7C9XptZ6tmqPjL5uHbIkpj6lu3btHaqPlZjkN1ThfA0sjayDKayzaQYWfpWKX+H3Qbfy/5VDDXeW41ttv9tSoDEuY5tPo46a9P75HWyJCHZtRDGzbQbjUaj0dgT7CTT9okxS8BenaqYYCOejpiqjmknjYyJkKWQrS7VR/bocv191NXzBMqT7zapOdkv6poyXY9RlZ/1m6fXbfTvmwzRToppx89s0yYDtExKU526q1SjS1IH3pPNJRnHNuljN0k6yDKylKlV/ZlEgdIGw2uW7C1jeFWbM6bt96TS51rnnfUrs4chxhi6+uqr197tjDVvYnvZemObKqlGdm9VxpJxF/u8JA3gePtZf+YcZ2NisF+ZJNPfMdlINSax/mrv4/rK9m+WsfQM96Co794FNNNuNBqNRmNP0D/ajUaj0WjsCXZOPH711VcvGo9QlFSJLTOxisXG/m6TUVu8RlGP3UKW3Jyytrif0rJLiUH3NJaVtYHGalQdZG2kCN9jlYmTKuOrbQw3TsoHNsMYY010lokCiaXxWVK7xM+ZeLwSqW7rLx7LWxK/V37zdN/LxP9U/1TxDjJj0MrwsXLrktZF5pUhVHzG7wnVXEYmFvY9zENd4aqrrtrKz7cyUqO4N95Dl0uWkb0v2XueIXPf2uRSuLRGKyPGpfqqfPTZmq1UHNXfbXy8uafEua7UDEuGnpXx6a6gmXaj0Wg0GnuCnWLa0nwi4gk9M2Qg86TBVGSxDz30kKQDdux7K7acuVPF9sV7spMaT/lkExl7IfPYFNQjnkDpjsZ2VJKF+Ez17FGkAu5fVuamyFfZyf6oJ9zItGmEl/WJp+2Mcbvf/I4n96W2Vi5XGfPnGJKBZvVtci2r5ja7Vrk4ZuNocDzJOiPzoZFpJUGK/bXUx89QgrTkHuR3cFuDtFh3bDfXThUMJJtTBpuppBhL+5xB5hif4T5TPZuNE9tUSaUy49LKsHIpmEsl2akMI5fq4bwtBampjNiy9b20b54mmmk3Go1Go7En2CmmPcbQNddcs1UgD5+CyKwZilA6YNr+ziEz/ZmsItOHG5vC4UkHp3qHT6XOzSfhzOWLumUGasnqq3TXPCkexU3oOPB4Zq4slUvJSeq4p2laYyKZBISnbY9TtnY4hmzvkg5uSb8eP0dG5/kmMyR7zZjBJh05WXQsh0F1vIYqKc4SyLBj/8x87aaVhZGUDjMkSqjIzrIwvcSmMJ3TNJXhWbPnN7lVxWcqNrtUx7aSnG1sXCqdc3YtC7Ecv1+ybdgU1GcJlWtWhkpSlbHmaj81trGbuhx75aWgmXaj0Wg0GnuCnWPaZ86cKfUe0sHJn0ybeuvIlvz/97///ZIOmLavm2GdlO6iChDiU14WOo8M1CdAMh0yIGmdKZ6W1eMSa6bVPVnNkrXoUeuPyJg272OCiIxpE8dpL9cFrfylg7VR2QcssUmDbaIEJraDUhnafRwHS/YlZIHUT7p/cQ6oy2YAmEx3X+ndK8TgPH4Xs1DI1NsvBQOq2Gv1fmZtrDwPlt41tmlpP6hY5SZPi/hsxXzJcrP2VvrpzPOiWtd8j6IUpAoAw/02C8yThajeBTTTbjQajUZjT7BTTFuaT0aVZaF0cJoys/Zfs2ezaV+X1nXZZOVXCkwnGuF0g2RS1GlnDG8pjeau4nK1kb6wsZ7KEp+MMDLfypf2JPRcmX8x/ZipF86soKtwvGR41FvH/x9Hd70tMv00+8n5imva77T14U6d6M9ZWGCjsqzP7qvCgErrEjDqazNdsN/zSvdbtTWrt7qeWXNvQlzL1ANzvCof86zd3K8zBr7Jd5z1ZEy78orIJAqVrRD/Zhb1me/9LqCZdqPRaDQae4KdY9rRAjizdiWT9mf/NevIdC8+OfmEzpPbcZNVHBUZy3R/fMqvLI+XTuPb+FLvGk6KcXvd8OScpdwjK2JcAK8PqWaAlTV5BloRk21GC9aK0fH6Nr6vfI8yHd3l8EX1+F1//fWSDpixtN4P6vAzHaP/b+Z6//33S1r3xojP2Dq98hiIsD6bHhoZy6382TNJBcvhO8zrmUSCcSE4h0v9qqRDcb1tYv+0rt7Gl5zW6nEc+V5SssjxzWxKKoZtLKXjrazls6Qg20QsPA000240Go1GY0/QP9qNRqPRaOwJdlI8Tvcgi77j//kdQ/hFEadFMBSZ8S9dwKR14x26VZ0UmGShMtSh21hsUxXwJQs6QLETVQNLwSSqHOO+ZylIzUkGU4lwCNNq/KR1YxQGfDEy8WFlZLOUnKEKMuG16b+ZoQ7rYW75zDhzk8FTpmI5jssdx9hGlG6j++Xrfu9iG1jGUohXiin9zj/44IOH6ovztmk9Z1gKgctc9RyvTMRNNVwVstXjFtch1WQ2onUfszznVQjQpXWxydCtEl9n/fIz7g/XQyyPKj0ajGX7LI3V/JnuWxFcT6yX9WVt2TXD3mbajUaj0WjsCXaKaU/TpPPnz68xh3hqrkLzLYVB3MTufBpjkI34f7eJhnAMhboNMiMMnrb9mSwjMyahO5DbsuTWwEAVm4wt4mm5Cpu6Tbo7BjA5SeO/q6++ejEFY2VotCTFqFAZqWRMm+uYRkZZ2tMqJGSWDIJGUZV0IGPTZC0Vu4hj4v+bSdPgzMw6S7FbGS+x3sh8KD3zWPgeGnHy//GZJfDdim1kWlAaBGbvWJXWlZ+9LuOzHltKryo2HZ/3PFRzmqVKZZ+r9R2frYK4uM3uQ3yGUgbfy7n030yiVCV/WQoLTAkJw+huE551V9BMu9FoNBqNPcFOMu0lNw3qvhjicBuXGLJM6ofiSc4nNLpaLLlr0P2DrMXlR10f9TIV066YSqyH92SuF9Shk3Flp3+DY07dNr+PbSIsuThpHfdSWkDOM12xspSpxqakCFnoS6MarzhOnA8GFPEzkU14Hfka9Z9keNmY0HWJ9UemTRsRMu0qgEpsC+tn2N5MV8v3lO9vFtqXOuAKZ86cWWPjsTzuNxUTzfTgVXKjJV1pJj3I+hElYNX7TolHVi+lSxlr5bPse+WuGseR0gXvq06utE3AKzJ8P5PZUFSShGrfi9coGdsVNNNuNBqNRmNPsFtHiAJZoBTDpzuf8jMdKXXkFXuiRWF8hgzfpy+f6uIpnbpMJsnI9PDUSy+lN4zfx/4xTCrHKgtyQMZNKUSWTrDS/bos1x9ZAK1ByQpOQrcd7SEybArskTHDJWlFbHeWHIPSCrJaP7tNMAhanmcBWe655x5JNZvJ7C44JtSl8m+812uflu2UIMR1QslUZU+QvYOVRXi2hrjeNgVXufrqqy/e42czjwl+tqTIbYyeLtl+si24d1SwVCWCLJLzk0mSYgCc7Blb6sd1R0mipQN8J7IxqcKlHgcuy2ORSbvcH0r0MqZN26ArFXRrWzTTbjQajUZjT7BTTNt+ttRhRfZU+UdS15gxLvpp0xLcp8mov6b+iboy6rjivdQPks1k4TLJQMiEM8tJMlta12Z698pCmqfKLMQr09vxZJ/5EtMKlmWcRGpO+2rHcmK7OWdmF2RRsQ2UeDCspOc4O+WTLfFzZjdQpWj19Sc84Qlr9TABjte19YS+l0wo1lMlScisuflO0CqZcxvZGX13OQdLSSZop0Cr8jiODGccEwgR0zTpgx/84Nrau+GGGy7+n8/Te4SpTWO7TwtV/ZmVOvcI75WUOiz5wvsd4NgvpQTl3nESrDauVf+fUjUjSwi0ZOOyC2im3Wg0Go3GnmCnmLY0n3zIYrKTGvVn1JVmJyff64QD9957ryTpvvvuO/R9dmLnad5/Mz1hlsAgIpMgGGS2Lt8MK7NkrPxL+Te2lX6LPolG/VN8Jkt353spbchOphWTO8lIcxcuXCijTcU6GZHMqCJWxWtkVEz3umRT4fqXWB91yiyPUptYLpnvUnQpo7IRMTKLc7Iiv0eVf2tknx7zJz7xiZKkG2+8UZJ06623SsolCXwvqzUS217FV8gwTZMeeeSRi+W7bZlFMed9mzgNlT69itIVr1EXy/cx8wQg3PcsOYzH2ePOtZOlHDXcNsYHYNSzOP8Vk6bUjlbesW1c7xz7OCaeH7fB/eQ6j89QutXW441Go9FoNI6F3TpCaD6J8WSaxbutoj1lOlifxKzjo36aJ9TMYpP6M+rxInvyPTzdsdwsVSKZaMXaM4tjg7rS7LTsttCKk6fx7FmeRCl1yOIiV/04qUTz9vF3vzLdfxVdzsjSH9Iq3PPsOWZK2HjqZ4Qot81leNy8PiIqxpsxX9bH6FJH0RNWaSQzn2VKJjjHlmBFkEm9613vknQg/froj/5oSdK5c+fW+lWtVY5nbAOlHBnGGLruuuvWJC+Z3Qc9QVhufIYpUmkpTSvlCO5n1jFzD8nYdRUnP5P8MW+AJR+eS67ZzMq68srZxvq6GgvXE32u6Y/t+fK+nlnSuxzuC5WXTrx2EpbtlwPNtBuNRqPR2BP0j3aj0Wg0GnuCnRKPx7Sc0roxRPw/xShLSUYoNqE7DY3MLH6J91auSZmIMwvMLx24tzDMpLTuOlIZPzBhQWwLxXE0CInGOBShUfREtUOWuq4aiyU3MbqlnZQ7hcXjbueSwR6D0Bh0/YvP0HWEgTiMLFmBQbFbtk4qoz62Iwvism3600xMyoAp/uwxyZ6pRPV0T1sKgerv/E68+93vPlS/dLBmaOhUGSLF5zORKeHgKhSpR9EsXdV8j9+XzHCKBq40+vN+QBfA2P5LSWXLZ5cC8zC9aqWeydro94XqMbp+LYHGoVn4aBrnMfmH2xOfoRice0AWzOdyBH46STTTbjQajUZjT7BTTFuaTzlMpxZPd1USDiNjcDy1Mh2bvzczyEKE+t73vve9h647WUI8mTLIiNvE4C6ZGxU/V4ZhWajNyu2Erk7x3ioQDMPCZkY+VZsyg64qcT2NWC71VEsXvSyBQ2VkZ0lEluCABitM3GFGmrEYphmsjL0yVK5mS8ygYqRGXKs0+OE7kRkxkYWxX37G7G1JKmSmc/PNNx+6NwtJSuZDqURmnLmNMdSZM2d03XXXXRxjMvvYLveJ4+T6IrOn+x6lWa6PjDs+Y2RGfduCksUoFSSjpeFlleRGWn+n6VrmPsT9u5oHj5sNED23cQ9xPTSK456VJWJiWzcZI8dytkliciXRTLvRaDQajT3BTjHtMYauvfbaNaYQg9nzRFgFHYjwyZk6X97LE318xm4FPuX5FJaFTa1CkFY6zQjqiau/WQAQMvgqFaW07obmU7I/k51nQQ4oBaAeOZ5eaWtQJWLZJljENnA/4qnb8+tTPaUZmasadWIV28v05JXkgwF6IhiogrrZTMdMdrrkFhb7GdvA/pGdZbpFhtali0ymE2TACkqqlsJlMlUiU8FmrqHbBO2ZpuliKFPpgAlnulEm4SCjz0KE8ju+u253ZkvjNnCtZGuHe4PH6+zZs5IOgsZkYWyrRBp8t+O8VPtMxYClg3XMZxkIyOObudD5Hu5RdEWN93CdL73zrtN7R+u0G41Go9FoHAs7xbTPnDmja6+9ttTFSeuhIBmO01gKpVklvKBOJj7jk5iTCCwFk6+Swbv8LLgH2YI/84S4pL8ms1lK4EEr7iqQAK31s3s4BlnAFOqGN9kmXCoYBjarq7LMjf2h1MQgq2BClNiGiolkUhq2keOVpUWlhf9S6EleZ2Acehxk+mJKWKr1bmQshuuPuuEldsP5yqRPbNOm4D3TNK3pv7N5oSSEYxHrKWC0cgAAIABJREFUqZK/bLI9iW0wzMLZn8yGguzVDNtSjTvvvHOtjZa8+R7PkyVH/hvfDV8zk/aeTGlJnC/a9TD4Dccsgn2nJ0c213yfqhTH8RmulaV0v6eBZtqNRqPRaOwJdoppS/MJizqzeFqqwpUusSUymyotnBFPVhU7qnxHszYwbWOmH+JpjqfzJT04GWPl+5z5EFN/U1lVRqZJa2HWl1mNkl2wnpPGUpD/jBVJOaukpIXzwLnMks1UOkxjKRQl1w5DbUbQSn0bKUYVyrVKYRjbQr0gLaoziUvmWRDbkYUOJRviPGVpXbcJFco6aOMQy+Ncsk2Z9wPHkBbMlDZlKWE3pWpdigtA6/TM88TW2rTa5lhndgOsz1JISmDinFIKQIlY9W7Ge7kXs+w4jpWnhsctC8HK2BWt0240Go1Go3Es7BzTjshOW2Q61Wk1npwq5kl/cOuNYvIP6nrZJuoA4/8rfRd9e2P51J2R6WYnetbDqGBL/sAZu5TWGU/2bGXZnpVJ1lEx7EuxGJfq03d2rdKFxbGtLFYr3X92jfUx7WYsi+3nPZkPsUHfdzKGDFyTmW5eyqUPVbIeI2OQ/I7SgIz5VBKkaG1dIYt4RYwxUklSFp2R48X3P7NcpveK28Q1k6XmZN9psR/rI2vlM07KktlsWKJDzwpasWe+61X8gayNFbjvZWlEWQ7fK+4/sY20QajYetaWZtqNRqPRaDSOhf7RbjQajUZjT7Bz4vELFy6siVky4w6KNZZycBuVWJTiyswooUoCkuXrpdEG3SVokCathw+kwcQ2Ae75mWKyLDDCtsiCnmz6u+Rmw3G8VNevMcaim9/Stcp9J0OVnGWpvsoAKTOcoRiW64BBfeL/KQ6li1EmPqTBEd10MpcYBk9h/1h29v5W4XOzd4NrpRKHZm5CfrdjspwM0zQtitKrUK006IxrMFN/xL5ZbL5kJMf5J6JBHw2nqO7zXxuMxX4xsYr74TZm70Tl6skAWHHtVIGmaPCWuYtx3iu1XEQWhlda37czd0EmJNkVNNNuNBqNRmNPsFNM2+kVeZqNqIy5aByzTZhPMiuGPsyeJZugsZe0blSWJa+Q8hM2GQ5P6ZmbVWU05JM3QwPGttHFo3KDi3Usuapkn2P5VajVk2La7Mc2p2+2IbZlk+GjkRlLkRkw6Elm3MO1wtN+Nv+bXNiyYD4G55vjlrFOGiexv1X9GVw+E67EtlZrkpKxLKkNmVsGrx2PvZMCZUmADLrGUQITr/EvxzST2pCJcj34ehY2l0arDsFMaUoEJQnVexrnkvdyT3Z7Yhu5f7NNS66GSwZnFRg8iFgyOuT+vStopt1oNBqNxp5gp5i2dMC2pWUH+0oH5xNV1GFVp2Qy64xdVMFGqIPLAghkfav6xYAEPE0yFWTmeuETbRUwIzIjuhBVwVyy0/kmt6xt9MjblnVU0BVnScdcBUpZCviyqR9L+lAGI6lCpGZtqvS6WT/4l/3KghUZrM9ti+6JVfCjTUEv4r1Zgg3ey/5V4XOXAhtVOs3sfr/DWahgByihdIHSk6yeTQyb98X/b3o2zovnqtKVU6omrTP3KoRnFUgpa7/rMcPPXCjJrKtENdvYNlSSs1hfJeXKyqbUIQv4c5popt1oNBqNxp5gp5g2ddqVhW5EFfwkO03SWZ46sSxRQOWMz/riqbay2l0K0VfpkPyXARqyAAJZco9N/fKJk3qwKpFDBK8tsVvO5UkzbNdb9UOqUwlWQSKyZ8hMqf+KYNARrqFMt0i2cpxwttUayp5h27x2zCwzKQDDpZIFbgpIFOurLPmXEjhUQXFiWymBW2KI1mm7ve67maJUW7nTpiarh7rfbb6v7l2yNPczTEzEgDVZYCbO86ZQz/FZ7kkc82iZzr2IYVq592dSryrpB9se21IF8cnGvgp1uitopt1oNBqNxp5gp5i2NJ9ytrEsrlhMdhKtkhMYUS9U1VMlyVjSafsESL9Fn+DiCTTzaYzlL52wq/SdPC3HU2ulT9smzSb90KswoJkF8Ca/90vBNE2lbizWaVT3xvVC9lClvczWKuuj7i1b11XCBobGzZiP10iVonMpnCj17FWCiuyZqozMypeMtepnfKbyjqCP9CYL8SXEREX0iY+w3UilZ8/00rSir2IUZM8eJTSs553smGXFvcRt4hhSSpitb9fHe2hXEtcqpQBeM9Ucxn7Sa6Eax2itzvV0FMlOFW72tNFMu9FoNBqNPcFOMW3rJKkjiScq6iqpt1nSnzEYfZXaL4vgw7LIkjKdNv2kDevK4nUyKJ5Azcr9OTJ76t2rSExLPo+b9DZZykl+R3/weEr2WFTzlunbjoozZ86s2SlkbJ+na0oBsuhfS1HMIjI/1srqNZOeVMldPH6ZHzPn3fOwzVj6HjOgKqpd5rPMtVqtqcz/mLpLRqGKz9AqmulkM9bL9bUk0ZmmSQ899NBaKslMauI58zvMyGFL3gOVXj2bc84pJYuZLYX/b5284choWeIYf8f3kkw4s0/gu1FFtctsDRgBkn3IIszxnspWKI4Jo1EaHPPYRur3N6V1vdJopt1oNBqNxp6gf7QbjUaj0dgT7Jx4PDMcyowE6CpAkWwU4VbhFVk+A5mwnAgaDEVjhSphw4MPPijpQNQd66GIiQZbFr9lxlJs61JYToNtMyrjqYgq0AuNtZZyMFPclonfjuIW5rVDsW4mrq6Cf2QBJCoRcxWgJaISydL1cClBDceabY73HkUsXrWpCkSUqagoEnYZ7EMW2pXvXmW0FcGAL1RvZGqtJcMtw66mdG/M5sV9ptiYKio+H7/bxiWP4mOKw7Ncz0xEkqmppOXAPHQFrQxjY30G1zv3I+lgTCiq53xlxl/VPr6Ug7sykswS7xjcE5fcBU8DzbQbjUaj0dgT7BTTnqZJjzzyyMWTNE/uEWSzPtVl7LxymzF4Ss5cIsgEGCIyYzdkIHYtY1sjqkQUVcjN+B1dIaogFNLm0K7sQ2bkw5PtkvEPv6OhTcZKj8oYz5w5s8bCsnXANhkZG6sCOdAlhkwhK7cySIqGLzSQobFP5r5F9nUpqIzzsrGpwjwurW+yWbr6LBkvMXBOlXQi6882a4nGklnADTK1JWZa7SuVpC9LWsE9kAw7zouNyjxO/ut+MURyLI+JNciEM2nAE57whLT9FXuP7ab7luu1lIDpkjOwHr6TsZ6lUKf8nLkq7hJ2s1WNRqPRaDTWsHNM++GHH147KWY6Cp5Wlxzgq+D7PAFnrK9igjx5RmbA06tPk3Sr2QaVvjLqtM1WKKGge1xkYpWr1TZtqwI/LIWfJTuidGAb3eMmnD9//iIDylhFlRSBnyNjq8ZlU9/jM9XJPXNr4XxQ0rOUCvYkmIHHz/XQvSq2keugCvsY20V9Md91M62YDpFt4jNk4LFN1eeIMYbOnDlzURKWuQtSp1ylLo37UOUCVyWxiNjErBneWFp/t2xDU0lrImxnU4WmNTL9rufn/vvvl3SwZly/r0ub33czfK6prH+UomQ6baNi7lm446XgQLuA3WpNo9FoNBqNEjvHtM+fP7/GAjOLcoYw3CYMYqXHYGCTJX04Q/Rl9flUZ2Zdpcw8CqoTYiy/Cv6/FE7Q7bY+bEkfSZAVLoUQpS6pKv9SgvOPMS6OgfuTjTnnbinRCdkJrVDJTLJwn5skE9n6ZoCMKqVhbJPXwZItSAUyKLOnLC0h57LSKWdSCt5LKVG2VmmtTj14Fh7UdZo9x5DBxDRNmqZpTfqT6WLJuCkBW5K0UOe7JA2oWCO9Z7L5ueuuuxb7HPvFOfS8c2/MgpB4vZlRUzqQJTDatCaX9NOVznzJCp9SRnodsZ/xO49tlGbsApppNxqNRqOxJ9gppi3NJx9aSGenbrKkShfI/8fPLsOsJtOzsHyyMp/GstMkGSh1JUcBWWx2AqUl+xKD5L0ckyrkZ6yPp++lNlZSjiX98nHGiewlY76cy8raPj7Dzxy/rM9VClgy78iW3F6yVjOgpRSptOa1NIV62Kifpo7c7wL1x9l6M6q1kllhV7ps9jv2s9JlVmsoXtvGd90+/hVTjKBVN5l3xmLJACsPgYylsz8ep3Pnzq3V575GHfK2YDhbhqjNPGvYtup9PY5OOKuPUi7em60DvmP8TcliWXD9bko2c6XRTLvRaDQajT3BTjFtW4+TqWYRlehPSn/tJYtV6yis86FeJ54YeTLzsxVriuX4VGz9Kv21j4Iqelv8P3WIFZuOz1TW99Q9ZjqfKu3dUvL4KirUUazXM9jHn774mV79KFIFsgT6k9Kaf+nETl1zpk8zKAVYSqBQsUiuC7LcrNzKzz3Tu3M82Y/KWj/WV0mwMmveqtysfPpPb2La11577ZoUJfoqVzpmMu/MT5t9YqSwpehvtDmhJOSko3UtRVGsUEkFsrXj/hxnD6xsk6p6Y32U4HDfieO4JHnbBTTTbjQajUZjT7BzTPuhhx5aO01uE9eZ1uSZHo2skVbWRjwZkvFUp8qol6SFL/86rV/UPR2VYWbW6iyLDCiLosYxpo6WMZfjs2TwlU9xLKdiaZXf61EwTVOZgm+pzsoaOrvmeaZkIItqtRQ7IJYRGZ2lPx5vM6xKxx3bxnVdWa3Hsir2wjHK3hXqYiuGlfnK8zMlZxkqtpRJLLjml8q1n7aRvYtk0lzHjCgWUbFXjmmmx3e53hOXJC5nz549dO99990n6YDVLvmFXwr43ld2CrHdXr+MiMaxOsq+mO07lORwXJf8tN2mzEL/NNFMu9FoNBqNPUH/aDcajUajsSfYOfH4I488suYInwXuNyojgUzURKMri2go0op1+F6LKymaWwrzyLSKNPaJIme7WjAgQZWaM4rH2Da6oWQuGRRLUgREUWuWbGSTQciSqwdFdJcSVMVtefjhh9faFMuleDVLwVihCp24lHiABmjVvZ77WK5FmlVQnSgKpjg8MwCKZWVhgSn+tftYFjyoMs5jWzPRe+Wus417TeWKk9WzKfALka3VuC4qg0kaomXtZVu2CdZBAzTvLxTnxiA8/v8tt9wi6UA8bpWL10w0Anvve997qI1HcVdl24wsqRHh8txmti0zIMzWb0Q21wy+xd+UbYzMqvTMp4Vm2o1Go9Fo7Al2jmmfP39+LbjBkpEIDVgy9kcGQra0dPraZKyWpRKsQjMa2YnbzManYjIfBjDJ3Bp4oicLWAoJyDaSvWdMwifsKjzjUkCOo5x0t4XXT1Vu5arGvm8zTlXwifhs5dpTMdLsmtcDJSExRCUDRWwyNMokV2Sa/LzNmPgZJn3IXDZpxMZQwkuuelUijoxpZ8ZJm5CNH90nK2lWJsXgWqyYaNxDzGLpYpoZThlmqTfeeKMk6dZbb5V0YPDKeZEOjNfoukiXrCytLJk2Xdp87zauc5V7bJRCUaJDY0MG4Ylt4v7J7zNp21JAmdNEM+1Go9FoNPYEO8W0pfmURMaQhferTPkz5siUlQyMQSYUT2M8zVVuJvE0Rp2i67/hhhsOtS2erMnKs2ANsW1ZuMyKeWSB9CsWkOmwY7vid2QkfCabt01JNC4FZ86cWQzAUH23FOTC4LxUp/64DioGvxTulcllXP69994r6YBxR/ZSMTlKaZbCffqdcL2UEizptDcFo1iyEWE7ltpIm4RKchbr2SaEZuXyFdvC/aVi8EsSMLprkeVFaQqZL5k+7WWk9RSmZtz+a1fTuO9w3VZhWjNQopiF5ZUO7zt8f6qgPpkLKCU51Xub7VUc86VgVVxPR5HSXAk00240Go1GY0+wU0eIMUbKtLNUawb1GT7BRyZCC+wqnV5mmUtnf554M70HT37WD7l+/92G2VUn3aUQoZQC8G9ExXDY34yJUOrBtkdQ90vGfanW42OMQ/VmgSSW9I8RmUSCuriq/XEcNyU2yPpeWeQzocM2cFnxXWC7yFppG5LNcaVDr+wJsveX47iU4rQKl8s2ZnO9rSQnrh/2L9ZZWYBn1tVVgpBKyhTntkqatLR2yc6dMvP6668/9DfOTzUP1bxEkL26/dy34/qjfU0VdInBjOIzDNpCqcdSQCXq5pckMcdJdHIlsJutajQajUajsYadYtrTNKflrKwDpc1JH6hfiagsVpnQPtPB0deb9cT6GP7ObaW/X2btSpbCpAOZ/q5KQMF+Zv6GZPQui23PdEusf4lhsT/HCVO4CWOMRR0zfTYrlp/pRlneEsMmKovjy6HX3waZPYTZENkK2Wf8P8e6SoASx2Zbu4IsgQPZZrXe47XKR56YpmlNR5uFpOU8c7wyds5x4nxnEjC2l1KMJR94+ivb08AeKhHcVyp/Zq+PzLOG+4vH3J8j0+Ye5DZaGlnF1Ih93ZSwKI4JpSbVul6ypTjppCyXimbajUaj0WjsCXaKaUvziYhsLJ5MaclXnb4yvSSj/FAfvZQQnSdftjG2iydq6k9cZqY7ryyyedLOWMCSLQBR6ZIqHX7sn8eL/aksQLN+sR0nybhjuXGMq2QoS1bwFSOs2FKWtKJKyVlZ4Z8GKG1iqtssstwmScFRfPC3sQ3gu8jPsR1uN/9WdUcJ31Hmw+ycc5xhk4Qqi6YX25j9jW01W+Uewb5nVvGb7D2ysSGzdv3Wbft6lhCHthLcM7JIfBUYSyOz2dgU4S2TJFWfTxvNtBuNRqPR2BP0j3aj0Wg0GnuCnROPx1CUS25NBMU6WYAUikyrsJ9L7hSZSwrbZZETRWZ01s8MUChCZdvY9lgPRWZVWVm/6ArBZ6NBF1UUWd7kWHb87qRdvWL5Fy5cWBuDTDxe5RCnOx/Lz9q75BpjceFJ9fFKgMZdmSrHqAzEiMxtZ9P8Z2VV92YGcBbJZsalGc6fP78mhs9E9JU6zoiiVLaXajnuIfEdYxjbKoxuJrqlWNpBVViWtB6CNDPCk/L5p0rI5TMUc+yX34lqPrJAM0YVnMbI9iHeu03Y3koFuytopt1oNBqNxp5gp5j2hQsXDhlNZIZhPAFuE+azctMge146/fN0TJevpVSglatZfIZSgMpti+H/pAM2sWToFtscy6nSOrosl+FA/vFeGscxMMeSq0+V2vK4mKY5NSfDjS6NE0/bWZsqt6LKbTCyim0ZdrYOrhTIaKoQqxmDZN9p4EeJU7xWGR5lATKMSlrjdsTgJGaZS+6O7DeNseL6rYIdVa5g8RmDfc4MNg2y1Cxhh3Q4yIvnsgqmZJYb9wGPGVlsJdnLDG7dNpfloC6Z9GkbiYf0/7d3Nr1tM0kQHtkGAgRGbnve//+z9rzXHIIAifYQdNz7qKpJO4lF5q26WBa/ZoZDaqo/ql/uVy/7yfvPIjNqjFzaFt9dfUwmi8sREKYdBEEQBCfBoZj29Xr9vxWx8jFzdbWnvKK6jjpGMXsWOKi/ZAR9BUr/uksbmr7bktrsq1f6FOl3V6vkKU1irVumqq7Htit/O/dRY/w7QbGQ3k+yB/rvlJVmKyWN/dlTxo8FMDrbrW1kWNPYvhb9/rlCO7Q69GOqvbSeuHk/CVfQx+hKKPbzcqxVOUkybJaaVOcm61L3cq84zFr+/cIiR/V/Z5VkwOw7/cZr3QrksI3qXck5SAsi2Xo/lnOkrv8aCVk+C64QFD/3fWjtVH5+zicnRNP7ExnTIAiCIAh+CYdk2hQF6H6breR7rtjXuvU7sTAIV1t9hehW/lPZQ+cXJqNT0qeOiU7iMS6Clfuq8nNONMYJ0HQ4tqREQ5w4xJ+CElehlcb1tcOxBdd+9f2W+Izyobt7x7iBvs9bRFrcvSMDUueuYyjIQvbeMZVR7NdRMSlk8MVGi+F1Nk0JzS2m3cHCQv2ajFeZnmlXBrLASOkuM/rp06e11u0creew+q4i5mvbHjEfPo9OkpaWOXUsmbB6F7MQSI01rSeK5XI8OXd5rr6Nzxrn6sTOjyB+1BGmHQRBEAQnwaGY9vfv39eXL19+rsJq5diZtiqbt9btyqn7CWvl6dglV1n9WEbCkjWr6ERGQHJf5auvFSaLizi/mMrTntrU2973ITg2UwS/k/ebGOt7r1q7haDmkYuunYrNuIhl5/vrqPnkyiyqe8n7Q0ncSWp1C0qKssZmKr7AY8j+6P9WucTs157sDzIqymYyJ7tvq797osf5uTPHuv81R+q89Kuq8rCOYbOc8MePH3/u4/zSZKTdglD70qrAcZusZuzHHn/xVtGcPo7lt6+2Vt9dlkxvq8vcmOJzXAQ/Lajq/rN/R0GYdhAEQRCcBIdi2tfrVeZadsF55hOSeSu1Ma6cyR7JEJRwv/PxMt+v78PrTKt9MnintDUxbfqY9vjB35KTSKbtImlVqcT3XrX2lbornMAIXbWPuw9Tv5zv2hW8UN+RFW0xxtfCzStVKIZt5Nx3c6czF8d8ppxlV+CFDLu/J+jv3jNuvE/dx8x71yO9e9uU9czlf5Npd4siLR/OmqL6xXLCrhhQbyPnmcsi6HB6ELQWKYUylv5lf/iuVm3gO5/vtH49VyBk8mUfNYr8WK0JgiAIgsDiUEz727dvP9V01nrxO/QVaClzOf+j8lHQl+mKp7Oo+1q3zJ2+zIk5bulU9xUh/TVbDHtSbSPTnXy0W5HnE/MhuOLu1z1CBCZLFzqGuMdqwu3Kp13byIYmRax7jRPn5MS0+Z2LUnaxFf07Z+VSDIu518zBVtHj9d0Uc3C9/qh3wHiYfl+KsbtoexUnUe+TbgHomJ4x56fl80nG39vo5rey0jlGPb3nGF3t/PzKksQodd5/5UPn+63e685P3T9z/Kg10OGyYo6CY7UmCIIgCAKL/GgHQRAEwUlwKPN4iavQhNGD01hKzgUhdJPQliBLmUGY8N/hzMhKLITBS1tlL9d6MecxeIXX21NEZY+J1bkIlHwg4QQlnBSqauM94CROmebS2+ruJbdPY85t/L+Pmyvg8qfEaPis0cSo3CjueXISrqrtLsCzoNKteP8onNLdEHyOtgLRrtfrTXBSD0Sra9U2CphUP3phHaaa8i9LwnaUTGmh7guDJvvcoQvAFblhv/s2muUnOVue3727lBAQ3QlMcavrKBliJwOsgst4Ps5z9S6mCd+ltt4LYdpBEARBcBIcjmmr8oo9wITBDgXHHPu+XKU6hjgFJ7ggnGkV6yQP+4q02lb9I/tzoh7q2kwBe431YRrHQrEOx1BVG48EprlMwUQuqOZ3Fj7p880FVjIgUomPbLFxxURc6stWMNNaXszHMa61boVmnESpSksi06a4Smf6FOmYmPblclkPDw/2PbHWi4WPrJVFOrowU12bJTOdnHJvI4Ni61wMalPBrGTyxdqnoDJXKpVzSr1D+GxMgbAMzqQlZBI9YVvKqsE5rOYqA9s4vmpMprSweyJMOwiCIAhOgsMx7a9fv/5cBSnRhFo10pdNX6DywXF15Upa9pUV/dHVlqnICFe0e4pvsJgEhfPJfJTPr/ahv2Yq3OBW2OxLh/O3OvnWo6J8jpOYAiUTXWqKsp4QTiJU+fyI+l6xwC3LBuMUJtbsBGCU5cqJ65B5qWPJfHguVUyH84u+bOXT3iMzu9aPsSkZUZWqVdvqu2J5k9+zs+61bseYbL2PExko268KXThrUI1FvTuV8FTBid+o/ZUASj+m2j6lnPJZmEpmFpy1RhU14fPpUhnVM+gKodwbYdpBEARBcBIcaglRIgeTKH6tpvh3kkPkaotMdCoHVyBrnti5YzxObEWd1/1Vq1u3WiWr6XDM0EUrK7ZU40bf3FF92QSZjpJWpM+1oHzLDiwdODFtWmPImvbIpjpZWUbqrnU7Rzh36Oft+zhZ4ImtOcsYn6dujap96LsuSwkZeO/rnvv0+Pi4np+fbxiV8v1zLItxqyhkCniwLS4WZa1bURjGCdT49TbT+uNid/r7wFlYCi7ivX9251Bj4nzlzpfe92OEOeehEsdiKVBaKNScZZGUo1kMw7SDIAiC4CQ4FNOuKE4y374KYtnOWl1P0onOf0ZmpXzOjIDcU1Cj96cfS5akooZdzvUktblVdEGtkrka5uqSq1kVmcv/XZ7u0VHtVr4rFyHLMVD5zIxU5fnVXOL9fk20uvMxksX0Z6PaRr+3+9s/0wrBUonKh04/r4uLmCKO6ctW868+7ylU8/DwsJ6fn8diEsyprn64Z7vDSS67qOt+PuZrE/2cHFv2Q5X7dGVqibfoBCgrlSvSxO0Ty6V1lfNssiTxna/kTLmNpU7vjTDtIAiCIDgJDsW0r9frul6vN/mMfeVEhl1/p2jDfv61bn3ajABX/nDHJuhv6+124vcqqparbqcypXxCbhXM/vRz0Q/tfPRTDrDz1Z0VLCiz1m2fXIGFKUKfTMfFR/TzqawEdd3+mazclWRUPkYykj253zy/K5OrFKq2shT6XGUePX3bii2q3OepHx8+fPh5PqWIWGzL+U+VRYpjV+flM81zrOULBrl5Uf3o56EVZdJecKpp/H+Kv+A826MpwL/MClKFnzjfyNZV/IXLoFDxBVTITPR4EARBEARvQn60gyAIguAkOBbvXz9MKgyo6uYkCq7QPK7SXlyKjTOV7KkhTfPbZFJ3wWvdnEeTEr939a/7toKTM1TX5nlpqlNmUhckdVZMQV6UMZ1MzWvpQDRXb5rXV21wZmpltnYphZN4DOedE2Dpc8i5eVwQoxIrcv9TYla1kSlerHXd9907N5+enkYZTAp3cPxZQKR/5riU2ZUiRCqdysm8Fvq9dIU0eE9VCh7NxPU93QLqXcLUSY59HzuazNmm2q5qmvNZdDXZVaoeTdyuaFRv91Tv/J44VmuCIAiCILA4FNOuIDSuGPuqm2X5KNg/iY9sgQFqa/nVHNEDXrgiZNqQSu/aYtoM+prKRxYY1KGO2RIPmdI2VFDUmaFW1OybYzzcvtbLnGCxCZeS1c/rUqDeYtWY2C2vx/uugqTUd/1/V8xHtcGJx+wRSqE4kkpb2jM3L5fLenx83FWS0T0vxbQ7q3TBVk7mWF1FuZPSAAAFsElEQVRnK+Wzt4PvG1e+WLHzAlNoa+5OQkAFV5RDsXMnBDSx3C3pZSUmxfRDzl2mj/X2ToF790SYdhAEQRCcBIdj2t+/f79Jn1A+mD1pHzzG+dwKUyoEV91cjfU0EedjZn8mX6bzSyuBDCfDSuagCsqThTuZwamtfwtUDMIWsyZUOhUtEk5ApX/mvr/TmjGVdeUzQL98h5JF7eeY2sxYED6/ikHyGCej+RZcr9exqIQrnEEhjg7XPvdO6e2nn56xFJMkaYFjypSpfjxTQJ3lRcUNOAnmKU3UxXXQB62sECUdy7YrS89WvMUeMa6jve/CtIMgCILgJDgU0y4waV+xypL3q5J55XtRCf2uCAJXrSr6kCIqLJGoimS4CGCyChWxyGMIJQbgfIjOx9i/c5GYLlpabftbUP3qrMn1dQ+bdMIUtLjsKeDwp+IGaJnifFD+XTJsPhucd8qH7q6v/NPchyUff1eBminKntHMvLby39Y7qcah2l2M1/nz+zGMpudz233/W9kDynLJvnO+T2NLdswxofxsvzbb6uRMlXwuRXum9zffuU7SVfnBj5odE6YdBEEQBCfBIZl2Qa3UuLqjnClXSf2zYqlr3eYg9pUoz1crsooWrRW4KqjBFRp9ctMKzvnQplJyrpDDHlborjv5pf42vMY3umectuIUpvv/Xqv7rcjYPXNnq8iD8oMW9jA8l6e9VeTiNbhcLlZKs39XIGOr94TKKy7Q0kIp1N5n53P9/PnzWus2I6Gfh+/N+l9FStPH66SJlcQzM2pcJsLE1mltcjoBa93mnbvzTjLEZOsqE8KVYT0KwrSDIAiC4CQ4NNMuKDF3rrZr9co8w7V8+Umn7DUVf2AOuVqFudVj+bJU1K2zAtQ5ql/KT0j/DPMVlS/LMSwX3flPQl+d0282RX4TnDMu5/aelgvebz4ryirgnhdXQKIzH1doxTG8fsxr/K2/ApZxXOtWw4G5yMpKQ6atYhg6+rFbZVwrpmdSDOP8K3Uz9Ww7xb2pMI6zBjjNib4vrRpOXU+pm/G6W+PaoXK5+b97fx8FYdpBEARBcBLkRzsIgiAIToJj8f4doNmGKSIqTYyBGTSzTCZhJzJCUxALCqz1EqxGs7USQ9lKKXNpampbofqrAmucVKNzEagUuqOlQvwuKHO1KzDgUsEUtlwS7trvAZoE6/+aQ91U7CR1Keaj0tVcWpgT9ehwQiO/ipIxZVqXEnViINMek325xZwZVwkasRY2hUxUkJcrYsS2quJGfB9wrCfzuOvH9CwwqIwuRLof+vm33tvqeeJ4sg/qXTylzN4TYdpBEARBcBKclmlzZUsWrWQF3QqdjGAKaOAqbxIuqVUjS9epFZwLqiGLnoovcBvHoPebqWxO1lQxyr815augCqs4ucfXBOyRiRzBUuGkVWlBmmRz+SzuYcIuHUqNzXuM09PTk03rWssX4XAFfTr4XLpgqP4OqGeXz6lj3P14Z8VQ7eH93hJ52hPMyjS+juoXx4BCNNxPtWmP5YrsnJYeJVm753fgnjhmq4IgCIIguMHpmDbB1C+uRNfy0pw8B9MQ1rpluo5NTOkNhUmI3jFbrnRVsQEe41aI6hjX1ond/JOYNtmkSzcpTKI+jl2q9MT3gns2iuG5YjQKzqetCji4FMdJpOZ3FAZRuFwu6+Hh4UbYY0oDYqpXjVO3brnn0VlpFKukQEqdn+l1/XxOCpf7KThmuudY5zvv71O+AxlH4CRKO/jcUFxKWRRdmU0lffqaPt8DYdpBEARBcBJcjsSaLpfLf9da/7l3O4LD49/X6/Vf/YvMnWAnMneCt+Jm7twDh/rRDoIgCILAI+bxIAiCIDgJ8qMdBEEQBCdBfrSDIAiC4CTIj3YQBEEQnAT50Q6CIAiCkyA/2kEQBEFwEuRHOwiCIAhOgvxoB0EQBMFJkB/tIAiCIDgJ/gcHVV+hgrlpSwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1547,7 +1516,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXuYbdtZ1vnOqtr73O+XnOQEEoGILd4bVARCuhtiwiWCoIAixLsoCPiojy2oAaER5dI+jTZq5CYXEVSwQSKhmygIIggKdMQEkhwSOJec+2Xvqr131ew/5nqrvvrN7xtzrn12SMca7/PUs2qtNeeYY44x5ljf+12HcRzV0dHR0dHx3zt23tsd6Ojo6Ojo+LVA/8Hr6Ojo6DgT6D94HR0dHR1nAv0Hr6Ojo6PjTKD/4HV0dHR0nAn0H7yOjo6OjjOBq/rBG4bhtcMwjMMwfNC16sgwDG8ahuFN16q99xaGYXjFZmxe8R68xmuHYfhj76n2O9oYhuELhmH4/e+F6750s7ayvy+7xtfaGYbhddk6Hobhy4ZhmMUzDcNwfhiGzx2G4ceGYXhqGIaDYRjeNgzDPx6G4bclxw+b78dhGD7+Gvf/YxpjFf9ef42u9wmb9j70GrX3ymEYvjj5/DdtrvOp1+I61wLDMHzeMAxvHYZhfxiGNw/D8NqV5/3VYRh+ehiGx4dhuDgMw1uGYfhbwzDc9p7q6957quGO9yheq2nuvuG93I+zii+Q9KOS/sV76fpfIelf4bN3XeNr7Ej6G5v/37R08DAMt0h6g6TfLunrJX2ZpOckvUzSZ0p6o6R7cNpHSfp1m/8/S9L3P99OB/xHSR8e3r9Y0ndt+hWv88g1ut6Pbq73X69Re6+U9Lma+hvxS5vrvOUaXed5YRiGL5T0VZK+RNK/k/Txkr5xGIbDcRz/ycLpt0v6p5LerGmtfKikvy7pIzd/1xz9B6+j430PbxvH8T+8tzsB/B+S/kdJLx/H8T+Gz/+tpNcPw/DJyTmfLemyph/U1wzDcPs4jk9ei86M4/i0pOMxCtqoX1ozdsMwDJL2xnG8vPJ6T8brvacwjuPFX4vrrMEwDDdIep2krx/H8Us3H79pGIaXSPqKYRi+bRzHo+r8cRz/Mj764WEYjiR91TAMHzyO43+75p0ex3HrP00MY5T0QeGzN2mScj5G0k9LuiDp5yV9cnL+p0v6BUkHkv5fSZ+8Of9NOO4eTdLir2yO/QVJf6roy8slfY+kZyU9JunvSboBx94o6SslvV3Spc3rF0naCce8YtPeayR9naRHN3/fKun2pH/fLulpSU9K+hZJn7Q5/xU49vdrWqgXNsd+l6T3xzHv2Fzn0zVJis9J+ilJH4lxHvH3Jo5x0s+/L+mdm3F8p6R/Ium6cMyrJP24pIuSntqM5QejHc/xqyT9582xPyPpd2kSnv43SQ9KelzSN0m6KZz70k1f/6ykr9EkWV+Q9H2SXorrnNMk2b5jM0/v2Lw/l7T3pyV96ea6T0r6vyS9OBmDPyXpv0ja38znP5Z0J44ZN9f585u18YymDftDMEcc/2/afPfrJf3Lzb3tS/rlzTzvXc1zltyD7/lPLBz3+Zu19vhmTH5M0qtwzJ6kL5f0tjAmPyrp92y+4z2Okr54c+6XSRpDW+8n6Yqk/32Le7lR03PzvZv1NEr609dinIrrfdDmGq8tvn9U017z5yS9dXM/H7v57m9v1vszm7n9QUm/A+d/wqb9Dw2f/ZQm1vvxm7V3YfP66oW+flUy9s9uvvtNm/efGo7/bk1740doYrYXNbGm/0XSIOmvanrmve/cgeud18Tm36ppf3iXJi3CuYV+vnrTlw/H55+4+fzDrmKeXrs59wPDZ6+R9BOb9fKMpr3xL13VOrjKxeNO8QfvQU0/YJ+5WcRv3CyceNzHSDrStDF9/KatX96c+6Zw3K2S/tvmuz+5Oe/vSDqU9HlJX355s1BeKemLNW2U34QH/Ec0/Rh+wWYxfJGmh/2rw3Gv2LT3dk1S6yslfd5mEX0zxuFHNpPwuZJ+ryYV4zuFHzxJf2bz2TdI+jhJn7aZtLdLuiUc9w5JD0j6SUmfqukh+pnNQr19c8xv1CRQ/BdJv3vz9xsbc3XHZiE/JukLN/f9GZpUCbdsjnnVZlzfuFlcf0jSL0p6t6T7MccPSfo5TT/Kn6DpwXpY0j+S9I2bcfgCTZL73w7nvnQzBu8Mc/9HN/P+Fp3+Mft2TevmSzfj/7pNe9+etPeOzfGv1sQYHtVccPpbm/O/etPeH9UkRP2EpN1wnNv7N5tx+NTNHP2iNj9amlR2D2rayDz+H7j57q2aNpxPkfTRm3H8Vknnr+Y5S+bS9/ynNK3n4z8c9zWS/thmrl8l6f/U9Mx9bDjmb2jaPD5v09fXSPqbkj5+8/1HbK71+nCf92++4w/eZ22O/Z+3uJc/vDnnUyTtSvpVSf/+WoxTcb01P3i/ounZ+oOa9puXbL77lk1/X7EZp3+paT94WTi/+sF7l6Sf1fTMvVqT2m9fiVAWznt/Sd+m6cfHY/9hm++qH7zHNe29n7W5zk9u5vfvavqRe7Um4fCCpG8I5w6a1OPPSPpfN/f9FzQRh29eGNO/uOnLLfj8Azaff/bKudnTJAB9pKZn7XvDdx+i6dn9x5qe3Y+R9DmS/uZVrYOrXDyvVf6DdxmL4F5NG+lfDZ/9e02bZGRVv1tgKpL+2mZhvAzX/kebxbmHvnw9jvuizbV//eb9H9kc9/LkuEuS7t28f8XmOP64fd2mP8Pm/cdujvt0HPcDCj94km7WxJi+Acf9us11vyB89g5JTyhIYJr02qOkP4Sx/tGVc/Wlm3H47Y1jfkrTZr2H/l2W9DXJHH9A+Ow1m/79ENr8F5LeHt6/dHMc594b6x/HA/06tPfFm89/C9p7E47zQ/iicNyhpL+O43zdTwqfjZtxiD++n7r5/Pdgnr4V7d29Oe41V/NMrZxL33P2l7JITba4PUn/j6R/Hj5/g6R/1riWWd7rku/4g/dFglS+4l5+UNMmfX7z/u9s2njZ2ja2HLs1P3hPCewnOW5XEyN6l6QvD59XP3gXJb1fMod/fuE6XyVpP/m8+sEbFVinJqY+ahKYh/D5P5T0THhvlvb7cZ0/vTQfmjQ6V5LPb9+c+4Ur5uU+rOPvUdDMadrfD7XANtf+XeuwhLeO4/hWvxnH8RFNKoD3l6RhGHYlfZik7x6DbnecdOrvQFuv0iSBv30Yhj3/aZK+79LEdCL+Gd7/U00P++8M7T0g6cfQ3g9qUqH9bpxPA/rPSbpO0gs27z9c00T88+S6ER+uia1+G677Tk1qiJfj+B8fx/EJXFfajOFV4JWSfnIcx5/JvhyG4SZJv0PSd47jeMWfj+P4dk3CyUfjlLeM4/i28P4XNq//Bsf9gqQXb2whEZz7f69p87CDgcfjW3Ge37M//xrvOV4fq2kdcPx/QpNUy/F/43jabrN2/B/TpB78W8Mw/MlhGF62cLyk6ZmI/UrGK8OXaXqOjv/i3A3D8GHDMHz/MAwPa1qjlyX9T5I+OLTxk5I+ceNx+RHDMJxf099rgWEY7tfEPr9zHMdLm4+/efP6WQvnDhiv3WvYtX+LZ8/X/LhhGH5kGIbHNWkeDiTdr9PjWeHnxnF8p9+M4/gOTezpap/nCo+M4/jT4b2fyx8cN78c4fObh2G4ffP+VZq0VN+X7IvS5Fj0nsSjmtbwyzUxy4+U9C+GYfBv03/avH7XMAyfPAzDXc/nYtf6B+/x5LMDSddv/r9b04/Lw8lx/OxeTYNwGX/ftfmeN87z/f7+0N5LkvZsYGd7vJeDzavv5YWSnhjnRu3sPiTph5Jr/+al647jyOtui7vU9uC7Q5Na48Hku4ck3YnPuCFcany+p0kijqjm3vPk67E/D+F7Y2mePP6/qPn436Lt5z3FZlP5WE1S/VdIesvG5f5zWudp8rqLffrsheMl6YFxHH8q/vmLjcPAD2kSsj5XkyDxYZrU1fEe/qYm9v9Jmmx3j27CBzi+a+AN/SUrj/8jmvae7x2G4fbN5vsuTTb/z1z40f/jOj1e19KxYfYMDMPwkZpUfg9rmpvfpWk836p1z+TSnnitsM1zKZ1+Pm7d9CmOq4Xa1g/ME5J2Nx66EV5D2b2fwjiOVzZr+EfGcfxaTYzuVZpMPxrH8ec0mT9ukvQdkh4ZhuFHh2H48KrNFn6tvTQf1TSYL0i+e4EmBmY8pokdfn7RFhf6CzTpsON7adLLu723a9LPZ3hH8XmFByXdMQzDOfzo8d4e27y+Fv0zntnyutviUZ38mGR4QpMq4b7ku/u0YtFuiWru//Pmf1/vPk0/BrEv8fu18Pi/UvOHP37/vLFhvp+12bB/q6YfnL8/DMM7xnH8geK0T9SkOTDe/jy78XGaNrA/MI6jhQQz+djXS5p+mL9iGIb7Nv34Gk0b4R/e8po/rMlG+ImaVKdL8I96NSYfrToU4nt0slakycxwrTAmn/0BTarOTxvH8dAfPl+m8f8jPKbpuXhl8X1LWPZ+9iE67Tlq7dubr6I/Ft6OY7zHcXyDpDdsvEI/UpMq9QeGYXi/cRy32j9/TX/wxnE8HIbhJyV96jAMr7NqaxiG36VJtx1/8N6gyaD+yxvV6BL+oE4/bJ+u6SH8idDep2jydvoFPX/8uCb28ik6rcb8dBz3Y5p+1D5oHMdv1rXBgSZ2sgY/KOmLh2H4reM4/hd+OY7jc8Mw/CdJf2AzJ4fSMVP4PZocd64lOPcfoSlG6sc33/+7zeuna/IiNLwJv2nL671R0zp4/3Ec33hVPZ7jQNIN1Zcbtvefh2H4C5oYyW9SsblvJNhriRs3r8dC2DAM/4MmZvKOog8PSfpHwzB8oqa+ahzHKxsX8fI+w/nvHIbhn0j6nGEYvmM8HZbgPnzSOI7fMwzD75T0GzR5DX8XDrteE5v6bBXzPI6jvaZ/rXCjJjXm8Y/hMAyv0VzTcK1xIOncMAy78Yf2PYA3aPJM3R3H8SeWDgbepGlv+8M6/YP3mZqckP5Tcs4SbLL4JX4xTiEZbxyG4R5NTj0v1pZxj++NOLy/oWkT/p5hGP6BJpf5L9GJysr4Wk3ejD8yDMPXamJ0N2l6WD5qHMffh+M/bhiGv7Np+3durvMtwab4bZq88/7vYRi+WpOX43lJH6jJ8eKTxnG8sPYmxnF84zAMPyrpHwzDcLcmFcenabNhhOOeHobhL0n6e5uJ+gFNEuP92kiy4zh++9rrbvBmSX92GIZP07QwnhnrmJWv1eQt+EPDlI3j5zSpln+fpD+zkZD+miab5fcNw/D3NTnafMmmn1+9Zd+WcItOz/1XaBq7b5GkcRx/fhiG75D0uo0t4cc0qeX+mqTv2PYHYhzHXxqG4Sslfd0wDB+sKcxgX5Mr/cdKev04jj+85T28WdJHDcPwCZrW7aOaWNXflfSdmtSnu5pY/RWtYz3XCm/UZLf71s1z8yJNc/nL8aBhGL5P04b005q8gH+HpvH4unDYmzXZ+d64OeZXxnHMVN/SJJy+TFMs1ddrUqs+p+n5+kxJv0UTO/tsTQLIV47j+MtsZBiGfyXpU4Zh+HPbPI/vQbxB0p+Q9A836/JDNHkzcr+61nizJrXvXxyG4YclXa7s8M8T369JyPi+YRi+RhPD2tHktPbxkj5nHMeU5Y3jeGEYhi/VZLd+RCeB55+myTno2FY/DMN3Svq94zjevnl/vyYV5Xdo2sN2NPlR/AVNP57/enPcF0r6bZp8BH5Fkzbor2jShBz7i6zG1Xi6qBGHlxz7DoXwgM1nn6HpB2wpDu8OTRv22zXpnh/RFArwBUlfXq4ppudZTWqvLA7vek0u7o4BfFyT8f51OvH6fMWmvY8p7vml4bN7NhP2jE7i8H6f8ji8j9Ok+nlak2vwWzWFKfxGjNW3JmN4yltOk3rvX2+uO/NUTM6/V5N31oObcXynJieBVhze96qIw8NnL1USG7YZ02PvQc3j8N69GYfvl/TrcO55TY4ZD2hiKg+ojsPjdT1/HP8/oulBem6zRv6rps39xeGYUdKXFff32vDZb9C0Di9svvumzRh/s6YQiwua1ta/1fSQP2/vstY9J8f5+drXZBf7g5qcfn4xHPOXNWk/Ht/M+X/TlOUieuq+XJOX34EacXiYt8/brKOnN2vtbZo8q3/z5vvHJP2bRt/tNfiZ12rcNu2uisMrvvvLmzXooO+P0vTD8H3hmDIOr7jW1y3095ymkJBHNQkIi3F4OP/mzXF/BZ9/7ubz+8Jne5L+0mat7Gvay35GkzB6U6ufm/M/X9OPlmOl/1hyzHf7Hjbvb9k8L7+ok9jkn9n048Zw3EdritV1LPavaiIvH7DUr+zPLvbvsximvG3fqMl99hffy93pKDAMw0s1CS5/chzHa5K/sKOjo2Mb9GoJHR0dHR1nAv0Hr6Ojo6PjTOB9XqXZ0dHR0dGxBp3hdXR0dHScCfQfvI6Ojo6OM4H+g9fR0dHRcSawVeD57bffPt53333a3Z3SIzrlXbQD+v+joynm8PDwsPk+nsPXKqVeK9Xeuty77WMzuyY/ez62z23O5bHsc3YP2bxkx+7s7My+86u/86vnPLZ56dKUlu/y5Smpx5UrV/T000/rwoULs0557axZB/6sWhdr5qe65/cGfi3s5K1rvLft9F5DcS78f9xLHnvsMT377LOzCRuGYdzZ2Tk+lvtPvEZc00tYWlfbPPNrxnjpmKV9r4XWPsD3a9qvjm2dey32bc5f61mPr/v7+7p06dLijW31g3fffffp9a9/ve68885TnfTmJUn7+1Nqu6efflqSdOHClCzh2WefPfXqzVI62TD96g1vaRPm//HY1uDzMz9Avg+fG++LGzQ3ZSL2i+3FTT4iXq9aHNUD7XuI/1c/fP7+3Llzx59dd911pz47f35Knn/99VOO2XvuuWd2zUcemTK+PfDAlBHu8ccf1zd+4zem/fPaeeaZKfWd14HXiyRdvHhRknRwMOVr5rrwa0vAWis0RVQPd+sHlses/Tw7ploPa7B2Q8het7lu68fB/8c1GOHPvZbi/zfffLMk6cYbb9SXf/mXz0+WtLe3pzvvvPN43/G5e3sn29ctt9wyu4Z0smayZ8+f+RivuzXj5O+uXLlyqi1+v/RZbD9bs37efQyf7ezH3/D4+HUboYDn+L2vl7XBPhrcb+L33KO8Hrz/eE+I4+vr+Dfk4OBA/+E/rCsC31WaHR0dHR1nAlsxvGEYtLu7O2NclpCkk19dSz5+bUmTS9IKJZMoXVRS5RrplcyrYgvxM37H62SSVtWXbZjDklQWJaBK4qYEGfsV5zC7rpm6JTDpRGK78cYpX/HTTz/dZFRHR0ezcYt9WMua4zlLqpCWWorMbg3DW6v+aqGlWub3bNf3no1F1T7P5TogO1nT5/i+mrc1LHtJ6yFN6/jWW289Zm/URkjSTTfddOozt8tnO7u2v/OYcs/K1mqltVmz70RmGq+bva++q/aDeJ9keNX+2lq7vC8ysrjHeOyXNAjx+hX79Fz7fdQEZWO+Vg3cGV5HR0dHx5nAVgzPCTitX81sXWZ4fq0kuEyyN/yrXrGclr2KbWZ9XGvnWSPZs+8tSbI6piWlLzGJNdIzGUxLAvNntE1YwjKbk0707DfcMFWQqdi2rzmO40xizHTz1T36NUrIz8f+VtkcWvYqjhlZQmts1zoRZAyPEjW1Itn5VZ9435EtLDGUbWyT1CR4TcX/uUYz7Ozs6KabbpoxO9vtpJM16LXh9cpxajlJkRVy74p+B2yjYsmZo47vnUwvs61X+xudyLJnp2J4a2yTnEP3eY1mY+k5juvN48a1yD5H0Ja/t7e32lmpM7yOjo6OjjOB/oPX0dHR0XEmcFVOK6bcDCOQ5k4rRstZgeqAJfVU5rRAus7XTG2zZFxdow6rrpc5gSw5VmS0nGohxjS11LK8L6p1srALGu55P/G+qGK+7rrrVjvX+DWuk8oBiPfcir+q1LcZlkIKWirNSk2dqXM4R9X6zuLVlhx41riaVyqm7PPKyaNlkuCaqcY+e+a9X7TmaWdnRzfccMOxCt0OKrfeeuvxMXZy4Hq1aiybN85D5eiShR5UTmwthxCPE507uC6iGq9Se1Z7Sewj1YHVvGTq2Eot3VK/L4U/ZPdX3YePcZvZOPqYS5cudaeVjo6Ojo6OiK0Y3s7Ojm688cbZr3KUECgNWdIi88tCGeJ1IlpshhJP5WodpYolY76RMcml8ISsj5R8KlfflmSfhRJk98J24jkcq+z++EoX7UyCtOS9t7e3mIlhDRNquenH6/qa8Zgq6D5jQBUDaTk80QGD7CZruzXP2X22mL5ROSRkxy6FUrRCQyqnjMwBpXLrz7CNO/8wDNrb2ztmcbfffrsk6bbbbjt1jHTirMLwBO83WUjTkual5dy15MQR33tcqI1yX1tzyXVM5upXMsKsz9toWar9Zk2gu+eLe3K2h7gPdkwy/L6VQOTw8LAzvI6Ojo6OjoitbXjnzp2bMYRMQqCO3iliYjoYw5+tTSmWSWkVqzm+0SD5VPYO9j2zFRGVzSgeTxbC+6zsQvE7HkPJuxV2QekvC++wNOawAx9L6TPOG1M8nTt37nkxPM53ZYOIc9m6p/h+iV1JtVt6psGoWEFm61iTH7AC75l2IL7GY5eYXsZg6PJdJWXIQpF8LiX6NXbUmJSA8L5j251TjMUQmYohev7N/DK2zjXOMASPeWb/Wwptys6p7GFmMxlLWxP2QFT7GfeUqG2rNBWVnTHbQ3wffuWxWWB9FXpk7ZFfY5/cXtyTltAZXkdHR0fHmcBWDE+afpEpGUQbHJmdU1JVSaRjO/zljteMn7ekZ77P9OJVqp1WECk9HCuJnjr2+Bkl2Eqaju1Seq5eW55Wfo22NvbRgbtuzx5wlvgsRcUUP0YrCDri6OiomT7Mknbl5ZWNLftgVOxwm2z6RuYhVr3P7muNx2g8Lmu/YnaWqqMEzPVdsZ/M+9Dn0MuYXrxLgeKxjSpt3VoMw6Drr7/+2GZ31113neqrNA809/h43VJjIc21TR5D99dtMk2iVNseqf2K984xJIvh+o/trE38HMekmvcqIbU0X6NM+Oxzzd7iuvNn3kvIWFtsuPL+zNLIGc8995yk6bel2/A6Ojo6OjoCtmZ4WcxOlGJsq/OrywQ98cQTp17N+KR5zFdl28rsY5R8KC0x5ZA0lzx8TuWZGL9bik9peUCS/dJGlHmuWsqk1GmptFU+w6DEn7ECluYxfIzvy8fFdqMtpJWm7ejoqJzrCErALfsb2+P4V/bgDJWXZuZxybVZed5m7VFqb4Hsmeu95WnJNcs+eq4zj8tY4zDeZzYXFduhVL5GC5Fhd3dXN9100zHDi96ZvJav4XvjPUZtFFkYtSVVirHsO7JY30/UiCztZ96XMoZHNlbtVZl/A+1yPpb7XuxTZTv23pGVY6rYn9toeWny+pwbe+bG67idJd+BiM7wOjo6OjrOBLZOHn1wcHD8y01pSpKeeuopSTou9Pnoo49Kkh566CFJeeFP2gLJYigRRanADM4eW5Y47NHFuJx4jF+ZzHVNVfYq3iXLDMDsD+4Ts0xE9uRj/Jn11VFvLZ2MZybhs09+tQQWS/3QZkcmYc+4OI6en8hClrzGOLZrPPhacUPM9lPF8LWyWDAuiuwmgjZNHus5jeuj8nisYgfjGFYMshXXWsVbUsPgtZPZmeiBzXWfJXDnM9LSemyzDnZ2dnTzzTcfMzs/83Gumf0pZv+J95F5M9MuybWfMdjKxs5xis+0n9kqG1XmacxxIrMnw8xseD6GXpO+3+jtSpsdNTz+3owr7gccL+6F3PciluKb4zPha8e9vTO8jo6Ojo6OgP6D19HR0dFxJrCVSvPo6EgHBwfH1NVqSzumSNLjjz8uSXrsscckSe9617skSU8++aSk3DnCajp/Z1WLP6c6ItJo03SrO6yms0rTn8faWZXappWWx6DqhSqGljMGKb1VHL5+VPP63j1ufvXYePyoUon3RzUE1RSev3g9jxNrc1n9a3VSvPYa54txHHV4eDhTS2ZqwyVVZjynUvlU77MKzZUjQOa8xO8q545WeqilzyOqVE9Uu2XjWKnduHbiustUf/E6WcAxx5Hu9a3UXHE8W4myb7jhhmO1u9dodnyV1ioLevb5Ho8slECap7vKQDVd5mDne/WzxoQb2Xh5bqp0d3TgyGpF0hTkZ5j1LKX5c86g/Cp0LOsjVfRcf7HfWYhbRFyPng/v8duEGnWG19HR0dFxJrC108rFixePf1EtfUSm8PDDD0uSHnzwQUknzIRSU5YAmhKif8kpBWQSo1kmJUdKn9KJtOL2zAot1VjKyKRYg4lgKdnH+6skahqvLflJc/bsV7NCGnOjZEfplqEZDMeQ5sHCdjaik0JW8TyGXVRS+jiO2t/fbzpbVC7/ZFWZa3nFsFtJBTynNMy3EuguVcPOJFS2XyW0XhOqwfcZS6zc7avQlsjwKg1Gi+EZDORm4t8swDmOZ7V2dnd3dfvttx+vPUv2cZziWo5jQEYSx9H99DF0SOIznWmAyP64VuO+waQBlZYjXsd7QuXMwfvN0u4xdMlj5X0vK9fDufC5DJOK45lpN+L1MqccOgplAeY8x32L4Q/daaWjo6OjoyNga4Z3+fLlY4nBLMR2O+nEdmcmQruRpYCoN/b/DmlgELl19llaK0pYbsuuq5YK43HufxW07tcsaJQgw2NoQ4Yq+Xa8RsXGyCwyiYhJnfmeyV3j/5TOLO3adujEAbFPPufixYvlOHntkG1EVkuGQ2bfKkLLY6uEuVFypQ2jslO0yjYZZJQZCyULMSr39Ph/y87DfpEJM3yITCzaVKoyUQw9iGNCKZ3zZ2TJGFqp8Yzd3V3dcsstZYJz6WT9+tlmOIURUxpaa+JzaGNiurI1aeM4LzEwm8+u151tky2Ww7XvNnzfmW2NJZMMMvxMK1GFtHjP9+fZ/bHArY/xfca9n/uN59Qs3iw0C1Z3O7fccstiWsPj+1p1VEdHR0dHx/s4tmZ4R0dHM2/KaMOzBML0XdQNZ2m0tvW4i/+zgCBtRNn1aBdhgckISlaV15QR2ZO9uAZ4AAAgAElEQVTHgB5wtBlkemiyDPfDDNqSUJRweH9VyqfYR0tSHgOOjduIjMz/uw+XL19u2vBacx7vYckGldmrGFRNm3Fme+I5ZAWZ/bcKVm4lV16yJ3ENZfZt3nvFouL16JnKZzFroyoHVHmYSnMv5zUey9RYtLQDTh5N78LIhCoW7eeEmgpp7jlePWOtgGkyX66h2B+3W3mS3nPPPac+l07YbNxjI3ysxzGe6z7Q7u8xoLd4vFfen9eMj/W9xDRvvlcG35NRmulJdXJoX9d7S5YwwPdz2223dYbX0dHR0dERcVWpxfwrb5tblKbJHihlMrZOmuuSaYPg+ygNULqkJxXLg8T/KxaTSdqUfHldFj/M+uh7d58oQUYJ18f6utRl01Mp2mFsm+C4WlrKEvb6O99P1LNLOVN2/6M3bcXwjo6OdPny5VmfMsmMEnZVdDXeA+2gtFdmrMBg/F2WwsyoPPaouWglACYTasWZVsl0W166FcwWmAg4zjWTv5MpZ3NQecry2c/S7RmttbOzs6PrrrvumBn4WYjsyeuKacfcBz8TGUszS3F7fvaoFYj9q2x3rZhK7meMv82SK/u59HxkWod4v3HN0rbKfS3TTjFxO+3/fvW9xPSE1GB4vqilqjwx43d89TjEa0cv9LWxeJ3hdXR0dHScCVyVlybtL/HXNf4SSyeSD6WYqCu2JG8Jy7ps6pyZuFSaMzhLHJReop7a/adNgFJ0lF4oHVcSBSWg2J7v2czYHq1Glgz3xS9+saQTScu6fEuhjOmRTmIhfT1LWry/6HFZZVZhzGJkkmRrlQ1Gmubj0qVLMxaTFdUkAzYyFk+bmueSxSg9f5n9z8cyi02r2Gm29qXcs5PfVQmueVz8n0yCNuss0Tk9VJlgndqC2DevUY5JVsy1Vb6L7RNxTluxVFmx4giPAzUHzOAR++92zPB8fTI8Hxft1/6Onpxcw5HNxP1EOplDP9Pvfve7JZ2Oda20HbQ3ZgyP4xTte9I8Li/eD7VPRmV/lE5YqK/LWGUyaWmutfPvh1+zPd/99hq1LXYNOsPr6Ojo6DgT2LoAbOZ9FqUY/4pTSuf7zOvIzO5lL3uZpBOJ6ud//uclSffee6+k05IK2ZOlI0oZsd+WDFg6iLFHMf+m/6ftjhJ9FktDxmCp2W3dcccdp95H+H7cvtmar+/vo4RvCcoM8kM/9EMlnUiQzqKS5UC1pOx2K9uYdDIP0VZTSenDMGhvb28WoxNBplgxxtiHpVJItHnEc2PplngMJdXIuOiFxzjMeL8G1wQ9Yb0Osz5WnqtkcXE8KxskPah9TmQCPpeMmAwq88zm88PnKrPXVpk9MjBzSNQmeUyrIq5GfC7dHz+fZgqPPPLIqet5H3KJM2mePSR6HkrzEkyxj/TarjyLpXkGKdq2aJ+L7JoskOvLcxjnkvPrPntfp203PkO+9v3333/qej7G++6LXvSi43O4TzOuOttPmCFpG3SG19HR0dFxJtB/8Do6Ojo6zgS2VmlmqZkitaTqw5TedDYLZbA6wA4aL3nJSyRJb3vb2ySd0F2rQyONZpJWq4fuvvtuSSfqicww72OtrmRwdbwOVUeVo4GNq5Ga03HG1zWdZ5Ls2Eerbdw3qyOtcqA6SZpXlb/vvvsknagafvZnf3Z2Do3idJLIgtWt9oqOFS2VZuaOnKXRogqMhvLMbb9yoGHgapZEvOpzFtJSJe3NHEAMurfz1c9PptL2vTJlVis1V1Wyiu7wWQLvKp0bwzziOVXfqnuJfVoTMGx1uOe/lUarqubuZzxLLeZzfB8Mincb0XGCjk6+dzuCZQ5W3Hd8LkNnMqe8KqE6VZtxL64SONAhKTrYeR9w8n/35a677pJ08gzS0U+aO4gxBM3zFufAexOfcYPB8/FefR+ttHREZ3gdHR0dHWcCV+W0wiSu8dfX/1PS9a89QxDi/5ZA7GxBKcafx7Ypwb3whS887qc0T5wbzyEoaUeJ21LJUtC6P8/Sk5G1uX1LKvG+fD4DPH0fNqC7jczV9wUveIGkOll2ViqHZYLc16zoJh12Wq7lwzBoZ2dnxoTi8VXCbErAceypZaAzFJldFnhM6ZnSa1wHvOeK2WX3VRWcZdB4K2k5xzdjVQxKZ1+zJOwGS8mQTWWSOK9Xlb2JazRbtxW8duj8k4U2MQSDCQGio5b/9/NHN36mHItzwT3ETl9ef9ZaZWXCyEgYWhC1KL6vmIJNmjszGfEevOd6DOyUwwT+2d5Ihx2/2rGQ+1Hst1kuw8mygrO+DvdLFlbOQpGiA9capyepM7yOjo6OjjOCq7LhMSAzs3Fk9r34PkskbLd5SyCWGMzaLDlE25qlB7rv29aVBcxW/ffnDMzNQDd9ujjH6zGFk6U/uhzHc9yOJUdLOm7DOnVK5HEsHO5gNuhjo5RrsDwQbXeW6KIdhmnUKuYsnUhhVbkZaW6HoLRJFhr/93ceWwa9ZmyKyQkoYTOZedYeGVa2Zmj3oJaAtss4jkt2sVaAezbG8X7IALP7M2jTjXPAQq9GlY5PmocsLGFnZ+eY0TEJg3TCQFj02HtLDBpnH2iXZPB1xsyqxOx236ctKvaFQem0Tcf9jSkGzZpoz8zWN9cZE+u77zH8iomfWbTae0dmO64ST3sueL8RZObUoMX7oh1zZ2enF4Dt6Ojo6OiI2Dq12JUrV45/oWnLk+aSNdkGPaLisZZ8LEVQMnAbsSSFQYnL0hmLPEp1oU/D181K11CCr5IIMy1W/K4qFhol4MqzzmNx5513njo32qYo2dNGSI/S2K77VCVdjue0mEl277F8UCUhx2tVDDwLsq5KIFHya5WWYhLnbH1wrdCumHla0jZZeYeyLFHsC8egleg8Sw4e+9gKkmcbPDZrm+u6Sg4cx4Zj3UoebRsemVf09vPzzTmjVigyB2sDyKyqfsRnjEyIQeWZNoIlb/ze2hqv95gqi+ySWgGumex5IrPznmxmF/dTP99mz/R6prd65oXqZ4LFt+mlGtvhe14nntMq6ryEzvA6Ojo6Os4Erip5NCXvzGPLIMPLvCYpvTC2qmJG8Vzrui31MeYtSlrUIVepkDJ7DCUqSjqUvOOxBtmiJcs4JmRa/s7vKVHGNEtMUkzpj+l74jlMLebXrCTLNrFUvt81c0kGvoalkV1S6qu82uJ1yRazZM/+n9+1EiiTnXGdcyyyIrW0GTO2KUuKnbHNeP1sDpjWrWJ4LZtJZTuMYFqt3d3dJsO7/vrrZ9558Xmh5sjt014dGQltqnymaDPMCuVWqex4nHTyDHHcvTdS4xOvXZUsIsuJc+55pjcm/R0yHwyyacbpGlkaPO9F1H647aht43pjGrRsTKiBa2kHiM7wOjo6OjrOBLZieM544F9Y/xpn0f0swWOpgomUpbmnIe0SzAgRpQxLIn6tYn+indESiPXVlrz8yiKb0pwlLdllMmnQ161sd/Ecf+bxYrYZ2tay0kI8htJhlEapf6fHql8j+yBTOHfu3KK31BpvKkp3lF4zNkObE5lPNqfVdat4QKkuD9VKss3xX7KlxXPJXKtyQRGUmjk2S7bW+Mq+ZcmqORbVGG1TZokYhmH2/GdezVU5ozVlm+h1zPGKY11lvKmK4MZz6HHtZ8t7WBxbf0YvVGqWmBg8tlut1dbe4f3SvgJVBp54f9QoVYnB4xzQ54P+Gz43s58uJZnP0BleR0dHR8eZQP/B6+jo6Og4E9hapXn+/PmZU0FUwdDZguq1LFWMYXUE6XOm8jNMm0nfqYqLTh3+n44Z7itrw8V2+Z5qsEzlYzpuN2DWznMbsSIyE7tS9UPVaRybSi3VMrBXKh+PTZYMl1XLl9SVOzs7x+dnKbk4dlSJcLwiKscnvmb1wqq5bCUApqq0VXetUgdW8xRRhTtQjZMlxeY5dJZaoxbNHFtiv7L7yo7h9+zLddddV64fO8u5PTqzSSdmEdaW43OSXYNu7px3ptuLoCqTTkZxDqqAc5/jvsc+WqXpc7lmOU9x3VVrhOreGEJFNT4de7ivR1CVXSW8zsA9n+t+zV61Bp3hdXR0dHScCWydWiwmcW05P1CKYbBllJbIjig1t4ySFYsxMyHTi31zXxyASsNwFgBMhsV+ZAHVTJVGt+AsqJ2hCnS3XlNhm9IamV2WhsjtMGg0k6YYirENMnbRkvCl3LFhKZ0V+7aG4WWlVgxKrTTeZ88EGSlZUyW1x3bI5FvhAew/jfsVC64+y/oewXO2SYMWU9gtJR73emPJHGnOIjIHJylPMVilh6MDXuaIxueRe1d2Pe+FWfLm2GbWHrVqVYLweC6TSNDpJ4YJMNk6S5hlCdx5f1UYUZaWjk43Hmsy5vgM8VnbBp3hdXR0dHScCVxV8mjqrTN2wWSgZEjRzZR6WkpYLQmBbIaspkpzFL+jpJe568b7j8eSNWUBu5TObcvze9rCsmOYyDZLR2aQOXIsMtsUww7Mequ2s37v7u429epZgHMrQJ/zngVm83qtAHNpO4bHdSHN55/rOisfxc9oM6qYXrxeFY7QSmVWMceWO3c15nzW47mtZAIVsnRkS2uHJaBabNOgG31mM67e87nNUqMxfIg2qCzhhcOhqvCkmEaL7JKMh4kwsmK+1JC4H0wMLc2LqpLZkfHFZ9HHVLZqIwuDoMaKpbqyZyLa+XrgeUdHR0dHR8DWDO/o6KgpKVK6tARAxhLZRaYj5zUjWuVMyM4yqdP/00uKnqPUrUdQD870UWvgYoosuRH76HbtwUlbHgOeI1qsQzpt16wYMplMlkqoCjSOGIZBu7u7M/YU77nFIuL7VvBwle6stQ4y5hjbitJjlvxAqr3bpDlj5HXZVhxHPxtkv2SaWVFXethWdsBWID8ZZUuSrhJOt2yvmbd2hmEYZn3KPJPZPu1wLVZbgV6UUjsAO/YnrilrTZi6jB7Z0WuSti3OoZlWxvjdB7Myanq8PuI5PsYJrM2mvVeQ8cU9ZI1WTcoTanu+3FcmvojwvUZtV2d4HR0dHR0dAVsnj44ML/NEYiof2qks5cTSHvQao7TEGJrMhkc2UyVQjt9Rh20JJfMMqjxGq/i8LB6G42bp5e6775Z0OtGt+0RJuPLaazG8ynYUWYilvKqwZDb2HKdz5841WV7m4Zt5X9HDriWBV0y+1W+jio8jm4mSffxfmhcR9fssDo/3ntmk43Xjd5V3cBYbRrbHAqMtG0vFqmnHyiTqbcq1MOZxHMfF88gGMg/fqnxXplGoknkzkTFZljQfh8pr24xFOhl/731+3m03s5d41CxxrcSip/FYjmc8h3Z5P/cuSxTPoSc5k0mzH5lXaBXvm3kh+/8YJx2RpSejlmV/f3+1p3hneB0dHR0dZwJbZ1rZ2dlp2o+oX+evepbQlLEmZC2USFsJjCsvzXgOSwjRXpXZ4aqYM+rHM5sE++/r+j7ttRU9I5kVocoGkjG8yrOOtqrMS5MsgOwky6oTWW3L0+7o6Kj0qpTmUnMVa5gxkooBVYwvnlvF7rU8IWlj8DrI7JmV92dlC88S8nKsaf/LxqRKEl3ZEiM4ri37aZU5poqRje1WCYbZ/v7+/vHz4TGP98eSMWZPtNdHVPtM1cf4PfcDZmnJxsnFaH1dMzvay+JY0B7G+eb14vFVH2nbjRmlaIOmnY/7QLwetRuMSc3GkWux8tjPnsHIMrsNr6Ojo6OjI6D/4HV0dHR0nAlsHZawu7tbGnWleVBglgZIykMQSIUz5xGpnU6pSnYcrx9T6WTts95fPIY0vap1lqk/rMp0X6zC8Dl2XpFOwjisiqmcBVh5Pf7PPlOluUaVxTayQFNWna9gp6eILGkBx3BN6qrKmej51I1rJVawGsjGdr/PVHRVgnGaBDKVJlX1bJ8Bz9k9U7XZUjERlZoyS+tVjVvLcYj3WfXh8PBw5gCXOVBxH/Cz3nLUqkwnWTJnnlslDffnVmPG7zyXfv4fe+wxSSf7Q2YWqUxFHNP4fHrvqNThfh8daxgewNRfraTidCaqEh7EPleJDjz2DDfKrnNwcNBVmh0dHR0dHRFXFXhOSTWT9gxKTa1yNhWYPidKMWRcDIh0X13yJx7LRNNMlBzdu90Hptip3GGzxMOW4Cz1vfvd75Y0TxAd269SlrUcBCoJu8WUKkcDspNs7FsB+hE7OzvNfpOBMrg6c3uvnB6qJAYR1ZjyfeYIwKTkXG9rUn5xHrJ7oQRP1pZpMKgNqJ4vaiUycMxbacmWUnVl/Yiso2J54zjq0qVLx89jtg8YnHcy7zgvTOnF8aKWI0smwHFwW247aj3osOd9wM4rnNPYvvvEskfUhsUxZKC7USUVz9rjGm2tmWpvqhxtYjscm4qVxjGIz2tneB0dHR0dHQFXVR6olRYocx2PaAW7LrkHZymgqmKdlgIsFUY7hhmd7S/33XefJOnOO+88dd2of3ffLDGytAdTFznUQDqRSKmz9+dmfpkUwzGuUhll7vaVpMr38fzK7Tizm2RSfzXvwzBob29vphXIglAN9jOzH1UpndiP1vXont4qvcRktlVKu1YgbFWMNGN4S2nWMjs6A3Or+6rSsMXrVqw3e345ji0b4ZrQiNj+wcHBLMg69tvPJVlbZaeL5zP8hPa5zH7OceFzSVtb/M734XAE7wdGy85IdkNGFsMvfA7DOWLqMul0WALHgIkWaEeN+xOfjcqvIc4B2Tr3nax0Gu17Le0A0RleR0dHR8eZwFUFntNDKEok9Mqsgp7jL3IlUS8lP46wxOOgctvD/LlZnSTdcccdkqSXvvSlkqQXvehFkk4Yn6WbyNKYeosMj95gkS263w6GZTCp7YvRFub/zVCrFGZZoGsmFS2BrJ220YzVk0G2rjcMU/LoKug6+6wqExWv00qTtXRuZbtjSqbsHEqZLdtGxaQqZpnZ8LwebBPyusg0GO5bVUiZiYczm0qVbi1LdFAFuBOZFN6yxxnjOJUk8xjQBhXbZjD1Gt+BykuWe1dWmNVjTVtUNrbuv1/J9LMUZmSZLFnl1yzxhTVKlT9ApoWoNEp8tr3u4rzRRuf2OceZZydRpbSL362120V0htfR0dHRcSawdfLoK1euzDwQo1RAqaXyJoq/2BV78XUqbzbp5NfeemkzLbMpshDphMmZwUX2F69z2223ze6RyaHdFst3RBZHexw9+5hUVjqR5N1updtm8uL4XYVMQso80aS2dxbtF5cvX15M4lol7I2opPIq5Vh2bpUIOmNrFcPK7GdkM4zZyrxZK88zMuNMmnb7lqgttfu913urdE0Vu2WmEZ/FyrbWisNbi2yuKxtldhwZUGa3ruzXWR9oq6tes5JQvjbL5Th+lsVqpRNbnb2zDbKzuMYYP+j7oQYrK83Ddcd9x/ueS4/F87lnsSwZPTCleRL+pZJdsY8xiXj8PNPM+Fg+c2vQGV5HR0dHx5nAVgzv6OhIzz777KyETERlf6tK1KedKpKeZh6gZnZmRJUNL4tPMTuztxSltcj8mCSaki510TH+xnE2ttU98sgjkk68QB999NFTx8X7Mtw3v3oOWpJxZV/KskSQwa7xnqM96+LFi029+s7OTpkxJP5feSRmzLQ6tmJ4GVur4hYz0KOPpXiyJL6VRydtQxmT8BjTVszSVpEVkKmS5ZAht+JoK7t5tu5amXAqLMUKur2dnZ2ZdihqNar+Vesgu4fKlmvEOWW8r1+9t7hv9heQ5iVwvL9YG5XFtVYlitwWGV4cEzM3lwGyN7o1V+5bvC+uN+9jbt/vvS6iZoFjTYaXZYehBqkqpJ2VaovatpZ/R0RneB0dHR0dZwJbM7xLly7Nov0zW9BS5o5WQU6+pxdTlKpZRJHMKLMZWnrxuZaWfB1LMzG3pb0uraNnvk1LPpbAYz/M7B588EFJJ7p8Su3xHLdLmxq9tDJplPrvyi6TlfqpkMWXsQ8HBwcl47SXJvvQih9c4yFY2fOqNuK5lURKaTMr9eN+V1lmWrktGcPEmKfMhuNjvFYo8cdxoNZhibXHZ5Q2+EqDkaHykDXiOJLhL7U/jmOT6XNN85gs5yw/82vFHCMTMjtj7l7vC2Z8kZncc889kqQXv/jFkk40S9676JktzUuZ0VfBffL1vD9Jcybn77yXmY3GefK1fV0yLa6HjHkZfI6yckQsnEzv1jXxunFfWUJneB0dHR0dZwL9B6+jo6Oj40zgqsISWP02CxOoUowx8Jj/R5DOmm5HhxBTewa8U2UaVU9WC9hZhIZSv8bg8XvvvffUZ1ZlWKVk9YT7ExNB2zXZziosA8L7y/pfBdTS4SH23+26jww8jahSYrWcTDIX8JZqIVNpZQkIKtVVptJsJaOO71vpobiOuR6ye6pSb/nzLLSAqsvq/qL6nffDgGP2J6Iq8bQmgQOvu5QYOkNLlZo5KbSSR1+5ciUtFcP26FTmVyYnlk72BKo9K5NAVnqHKk2uoeioYpWiP3P7dl7zvhb3Kqs7bX7xXuLn3X22KjVezypLf2cnFoY0RViVyTXCuWkljmeQPB3uWhXWWdIoS8LOcJG9vb2ePLqjo6OjoyNi6+TRh4eHpTtv/L8KEm6ltamOrZK6xutULrCZsdpSjANALT1ROouB5w888MCpzywtuV06EUQWSsNz5UwSnUiYtHkp1VOUtKqQECa4za5HSa5yJMm+a4WaOHk0pedMql9K+dTSDiw5q2TOPZVzRyvYnmyzFZDN9qt1XbG3eC4l2awcUaUd4P21+lox5xazqxySMoZXFTDNcHR0pAsXLpSla6R5oWT2KVvfVSKAKhwhMhOPqZkJxyVLIuB27AznV4ZSRVd/OraY4bldaiNiMVezPY+N+0qtULweWa/bZShaloi62tsZ5hWZJZNv0GHI12cS6zgGV65c6Qyvo6Ojo6MjYmsb3uHh4SxhaUSV9HMpsDSew/dsIysLUumYs7I27rclK7drKYrv43UspdAmQOk5k5pou3GblsSidMbwB6NK+RRBaYilRVqpxbYJGmb7S8gCz+P1ltKCZderAs/5PmOU1Zqh1LzG5sXrZeEStKm1yhBVoOYiY0/UcvCYNUyPbbVselWAO8cvC+9YSoMXr2EGRPuZNLcPcS5pp5NOGBVTYdEG1Rpjliyi3TyOrZ9z2+rdnsMG/KzHsfZ31kL51X2ky3+W8ICpt7g/ZD4RfmWQd8Vos3YN2ueyAH7OH5l6vAcyU+6RLXSG19HR0dFxJrC1De/o6KhMshs/o52C30dUQa5snx49sf2qMGFWPofJRw1LaWZ2MZmzdef0BmNZEEudWdkMg55V9qaK5YhsI+R1aP9rMaUq0XHGPqr0WpQO471sk7SV53gM4hxQaqwKiLbSQxFVEvPYPu2lTMSbMTzOA217WUJ1sr+sT7weWVllO4zwZ2TTtANmtjBiqfxSPKb6PEv6vqYsENtiKru4dvy88Hn3dTKtFG1aTBfHvSx6UVclkXhstK1zHNy+Pb8zO6P7aHbI9bbm2TBbY3IMtxEL0JpBMnk9kWnbuN7opZntjVWBaY5RvC/3aU1aOqIzvI6Ojo6OM4HtRXTN9bqt9FBkb2tKu1QJqLNUT5bKfE6V2idKZNQXM02QpaosmTNjqShxMy4n/m+7HG13jM+J7fh+KiZhtMr2EJnETUZHG0t2zpo5je1HG57HOErAlRdeKwas8qwjsvJH9AyrGF9me+I6Z1qw2J8sNi+euyZezeCY81mMx1RaDmoAtmH8a6TppWLFWd+WYjjjd1nCbM4/U1ZlMZz0AOSc+llnKsL4WcXeGZ8rnewnTBrP5M5ZqS/fK9eKP8/SkjEBtLVULAuVabJ8DtNIVsmeY9/4XHlfy+x/1T7D9Rbvi3v+Wh8CqTO8jo6Ojo4zgq0ZXtSlx88MSlSVZJBJlbSL8H1mw6Oungwvkxot4dDj0nYA69QtgUnzWDpmdnGfmN0guw7tfT42nsNSRYy3on4+091XZWKqmLv4GZO4MiuMNC+vc/78+Wa2jHEcm1k/lgqlZhqFpTgurrtsjMlqWxqFilGSicX13bKzxHMzSbXK/lEVx43HZKw8HpvZaZds7hnTq7JycOwzdh3HuppLe4fTjpmVUWKfuN7iOdyrON/+3OwianzM3FgeqrLTSifPvW1mDz/8sKST2F4nlY7ep2RF9A73PuR9KbI1fuZXejlGLQuZXeVHkWmlaPvmvpcl5V6KgcwySdFf4/DwsMfhdXR0dHR0RPQfvI6Ojo6OM4GtVZpO5CrNqaU0d/U1GACcpQdrqcPia7yeabIpNh1PskDwSmVmlabDA6JqwVTfr3RdpjOGVZuxXVN7Jpb191HdxmBYhlIwDVFUBfhYVtCukiXHMalqwmWJezN111LwdMsBhf2m63PW7yXX5MrxSZoHvfLes4BqquQZpMxA53jsUiB4lj5saTwzt/6ldGtVgu0MVI+ucSyhOjEzRXA+WuEJ4zjq4OBgpt6P98kE6ZUqOJtLt8v9jI4iUX1p546HHnpI0tzUkCXlcL/ttMJAbKs4o5rQe4KPifuKdDpoPPZZOlFh2tnG3zFMIVNp0pxEB5TMOY/OKlXAeSu9G50Bs/AOPk+XLl3qKs2Ojo6Ojo6IrSue7+/vH/+aWtqITIjOFTRyZ+7BlEhp8KXrdyy9Q5dvGkyNKAFQ+iNzpDFbmrMBMjyemzmtsDpx5bySgS7SNC5nCYcNOva0HEaqY1ouwJE5VJKWk0dXjiHxmmRRZAzxXqvAaDJWOknE7ypX6NZabSWLjm3F65CxrnH557i3nCKMKt0Zz82C15ecVFqJoLlmONeZu308pmKPR0dHeu65506Vg5FOrwM/jyyfxXvPUgwabt+fswRP5nThPpi1sY/xGn7e3Rc7vlB7kzlWVaWFzOIyByuGUjF5vc9dEyrGJNJMNSbNyw9VzmaZZqla51kIivvr6zz99NOrQqOkzvA6Ojo6Os4Iriq1GIuu+pddyhmOz5Pa7u20hxh0wY16a1/HkoClFlrP2qkAACAASURBVNvhLCFFCYC6ewap+zXq7MkUfM/uE+0U8f79PyVGSzW+73hfDHC3dOZXSjRRx02GyvtkoHU8p7KBZAyP0n8reHgYhlNFPrOg7qXCq1kqrhbTyfqfub4ztVRViqf6LJ6blUipwgB4TstOViV+NuJ6YPB7xc7X3B/HomVr4/PDtZSldYtrsZrDw8NDPf3007OEEXHfqRK0V+MVv2P/mGLO14vlwrwH+hwnebZtj+EK8XpVWjj3PUsiQS0BA7KztcMAc+4dfvW+EOGx5VjT38DMM/5fpQXzuoxMuUpzR41VxuDi3rg6gf2qozo6Ojo6Ot7HcVWpxfwrbIkh/sovFRvMgmz561xJemZAMQDU7dNryBII2U38zv0mI3Jfs9RcTJhcld7IPAmr0kmZBG7JjR5VTIKb2RvdJ44JJdcsKJZ6d7KR6O3Ke23p0W3D87Geg8hqaf9gu7QNRbRshxUyG128jpGxNYJSexZ4XjEtMrFW4vEqiL2Vbq1idi3WUwWvZ+fQZsP1lmkUaMNd8hTd39+fPeuRRbGsDBleZnOtUhj6+aCXbmQmZnTcK9wnM73ob8CEzPQ7aDFhv1ZewZkXNT0fqxRzmc3wnnvukTRPC0ZtWDyXc5ml2ZPyhNr00+AemXnXxrHvXpodHR0dHR0BVxWH51/WzJ5EVuRf/VZJFLI+SpH+1beE9Pjjjx9/5xiTyrbg60eG52MtKTLRrJGVA6nYGQtCZunPKK14/Iw4jtS/0wZKz844ZiwlUjG8zGOtYlFZomHGy7VS/AzDoHPnzs2k5Sg1+54p6bY8UGP7sS9rbF1VcdhWaRKC7KblacljqrRKGcOjlExbePy+xcbi55l3aObNGJE9Z1VqNj5Xmc04soKWl+bFixePj/VzGZ9P29eq55MxnvE72u74PZ+neKyfGxZ+NbOLqb5oZ3T/uc5b+w7ToPm994FMy8L9lXtGvG/vKx5P2+yoFciSllND5vvkORkLZZHqVrHq7Hqd4XV0dHR0dARsxfDM7vyLbYkl6qkZZU+PO0o10rKkS6kt2pGYGNV98is9I2MfqwwbWSJTSjSUgBmXl0mrLOVhZHpqStqM2WO2m2hHpfcZM1S0PBbJDujBGMeEn7UyHgzDcCq5tMc+Mm8WpmTxTkrt/D97T0S2WDE8sphWsuqMlWXvYztVppVWXBy91/hMtGzilR0wWweZLSg7t2WPq2xSWVaOOE6tTEsHBwczBhSfo2pcsgTZvB6fP9qnvEZjBhTb8OwNThZjRBs1S/jQozTbT2nLp52bSZ0j+Pzz8yzLDeeQ64HxwHEOuOdWWpcWw6M2J9NC0EO1J4/u6Ojo6OgAtmZ4R0dHM8+9KJGYaVB6rlhbRGU7qaL94/8s3+MsBv48SgC0LdDzqMUkKmmZ3kWZrchgbE3L842eltSTs2yINM+/l2VWIWh7rTKYZEU3Y17PJRse+xv7bUmUXmW0v2RFPCuPRCOzhXEsK9tX5nHL8WnZGoxqDVUZULJjKGFnXqGcs8p+nrHTykuTr1nGGno5UrMQtSxkKDFGk7BmiZ6QER4PMy+2lcX/xvaze+N+E+3NfsZs46JGKys8zfhlziX3EGmuuTLWlKliHCG9MrPMMfS05Fj7vffZzJOdWVjMcrNsR2TeLAyd/U4wN3C34XV0dHR0dAD9B6+jo6Oj40zgqgLPqbZzaIB0klB6KWA2c6Ou1EOm6TYaRxXq3XffPd0IgpVJqyM1p2qPbtSZAbVyGqC6kK76bCce20pETPrPshxWHVulEg3qDBY16AiTBVTzPhnwGlUYrJi8v7/fTPGzs7Mzc+aISb4drMu5pJoogoG47C/vL1NpVuqQlgNHtZ4z1WZVEbxKcNxK+VWpQ7PQjarivZGVa6nCe6p0f/H/KlF3liicz3zL2Wgcp4rnbtfrLksoXCUa93WyMBiaaBhGka0/98EqR7fLvaSVoJ3zHp3xjCU1OMOVMgckqurpWBhVzRy3KkwgUzVy/fJ+M3U4j7H6mCrcDGvTiUV0htfR0dHRcSawtdPKlStXZk4FWfocls1ppZ8iY6wS1maJqSuJ1NKLjdjRPZgSD427mbRJBweyJUpCmeGZEralmCzdmiUduz2bOfOVzC+eW0mHdNKIyFKjSTnDY4DpwcFB02llZ2dn5iodJTlKnJljA1Gx5Epr0Cr1Q4m+lcS5Yk1GnH9qA2ior9KFZf3mWGT9WApLWApMz46h5iRLHMEUXa0iry3GSAzDVFjY2gyGOEVUaQqz9GDVM8xjMybsMfWzzUKs2TlkcD6H6QOz+/Ex1LxwPqJWhyFZ3IPJSiMYYsD3LDUk1c8gnZcyJzCjcnhaU1JoDTrD6+jo6Og4E9ia4e3v788YXtQBO7EzJeFM4jFoa2AKHEs1vl4sc88yHbR5WWqKabxoD2H6sUy3TdsWA359D7RrSSdpesiSfGyW6svXtq3O92zGSmYX+8rAX95DFozvvpAxMKA+CzSNgbQtaWt3d3fmIh2lS48/g23JHCLoyl+5a7fSk7H9yuYW+91KMJ19z3YiWvbuFvuL183GvcWaWv2J31XJxLPAc7rmVwHpWbs7O3V5oJ2dHd18882nygFJecmvytaZ2Qp5L3xuyCCidoPPEp+TTFtELRBd++0LkdkmMzYb75v3IJ3sDSxZ5j0lK8xrZEklYj9aNrZKQ+LrZwm8uf+4Tyz/Fq+9lGQiQ2d4HR0dHR1nAlszvBhczKTO0smvO9N20XuupZOtEiZn0jWvZ5Zg6ckSQmR4lhYqr6yMIdF7iYG/ZBhZup7KWzNjlCzHYWnNTM+skWV94rnscyvAmemNKMEyODa2G4teVgzPqcUYRB5ZW+U9xqDhOI5V4HnF9DJwjbbKHBFVsoSWnWIpSD2bF75mKcWIyvZJ+1ycA94HmV6WxKBKUs5jo30pSy1WYXd3VzfffPPsfjIJv3oemXQ5HsvCpNROtYLIva+wEGvmKc1gbrKlLLVYlUS5sjtnCQjoV9BK5GEwWYGfe2qw4hpe8sEwMjsq15n7TK0b/5emOV3L9jrD6+jo6Og4E7gqL01LSUx+Ks3j3lhslJID/5dqCcGvUQKqSt+QGUWGR6mMKZgyKTZL4SXN4/Iy3T0LSlK6zZK8VvdhydHM1e+zuC+ONaXEOCaUrJjaxyw+SpAsdtmy4Tm1GK+X3TMZHkuwZJ5hZC1VqamIKml5ZQdqnVul4IqoUn4ZrbR0VbLotSmVYl+rZOmxPTKkFsOrkhG3NCa0+x0eHjbLGcXE49na4XNotNZBvHbWX6bNiuuODI8FrlkaJ37HGL2Wx6qvU9lquVdmcX/UCvi55T4e+8K0czFRc3wf11+Vmq16L839CVjQmmkf433F/aIzvI6Ojo6OjoCrSh5Nb8OMXdCrJ7Yhnf7Fpn69Kk2RFaekVw+ltsyrjN5rVSHGjEnQHkd7WMumUpVOIpuTThgdC71Sp+02s7ivKgF0lRg29p92BTO8eH+WbmM8UWX/GoZBu7u7x9cma4v36PZ8b0y2G214lPop6a6xcW2TCLo61mjFuFXtc+1kdpjWuFbX4TFr2CifDXpntpJH85Vxrq3sLHt7e6VX6c7Ojm688caZTSqOvT0c77zzzlPttlh7ldGn8tKM16vKkNmTlP4B8Xr0CreWJtsz3T7XRrXOMy9UsrVWGTSyQWp8WKItm1N61RtZoV0+T0ySb6//bG1EprzGFix1htfR0dHRcUbQf/A6Ojo6Os4Etk4ePY7jsSorc3s2FbWxtTKqR7pbJUCtUmNFSuxzq0TJGfydVQdWLZimM/Qg9oWOOpWqKTPmGjSOU20Z//crVZxUMbXqfNEo73uITisEax16rKIhn+EdR0dHi44eVK9ldfxYK4/qo0wFV9Vr4/y0wmEqZ5Us8Dy7NylXuy+hpbas1KAtx5rKZX1NYH2l0qzaiv9zTbYcXSqnnwzDMGhvb2+mio9J630+VYB0lmulljMqtWE8jqq9NeD4M3QrC7up1N2s2ZntlWuTlMfrcX+rUia29h3OJfefbO1w7Vf1BWP7cfzWPm+d4XV0dHR0nAlcVWoxuuDGX186czDAOAuQZMC5JY+YEFnKy2jQ0cWvlICjJOJ23QcznTUOD1XZGRpN43GU7Cy9MMQgpk6qjvGr28oCQKvgZCaijXPAdujAw0rH8bs1Uq6dVowseNj37PlxP1spxujKz4BpSs8Zy1hKQtuSmiv2zntvofV9lQiakn12XTKriq1lLt9G5diRBZ5X7vVZarHMwWUphIRMP84LmUiVCDqCzKNiU1lCgmp/4/4Q3zPsyfdbOclk7VSslEw2Xof7Jl/juFdOK0z9xevGc3ldhhZk6837WmTtsf04f5VD0hp0htfR0dHRcSawFcM7OjrSwcFBKQVIc0nHUrtdzTM7giUASmW+DqWzzKZC1/7Wrz4lrErnHEH2x8KjbCtLo0TWRvaWlfhhAlgWj2RgaOxrVcTRjCnaKC3BkTHR3vnkk08en5MFuLfGPbI8so14bwy5YOq3jOH53iglt4J6KSGuKTvCY2l/2yahbZW+q5XajPakzHZTMTreX8ay6R5OZpcxyuo6LbsfQxVa62YcRx0cHJxKOBHblea2LWsinILPz1g8h+ENtPtRcxGfF4Zk8bosJh2P9bNNJpm51lfzzD5mJca4vrkPMNRAOp0IPr7Sfr4mPIXpHlsFBGivZ6B71A4wAX30DVhCZ3gdHR0dHWcCV+WlWem8pXnwJJkeU8dIc8ndx5JFZQHaboesoOWZ5j7yWBYlza5j6YheUh4DluSJ7dML0QzP/YgMjza7ihllQbgsVcT0RLyH+B3tmWQwWSHdmFy3lVpsd3d3lmous3V6DD0uLFSZpULyMbQD87jM5kB2EPtMVGVnsvtdOmaN7YFsrAp4z/pKplWxtSzNH4OWqzb4fzymVcCXzwnTeEUcHR1pf39/5h0e2YU/Y2JmpsDKEiVnNsGszSxxOm1rfLayfcd9qBLsZ3NZeSGyiHRmy3d7ZHi0z8fPaLujxsf3EPdxeld7f6sKAsf+Vmsme569T0bv/h543tHR0dHREbA1wxuGYSbdRKmfDI42ryxBbmVzqOI3ok2vSsRMaSLT91s6MuugvjpKnZR4yKzogRklEnqQ+rWKO4vfUeJZKvkR+8+4QjLyLKaOcThuN9P3G5kHXIadnZ1mDBiTR3NOPSZR0q5YEtdOZjOk9NhK01ShOiazFVZ9rmyI2/QpY5QVw+OaytJRVXa+zI7Kvq6Jsds2TvHg4OB4vvycZONE24/HwlqOu+666/gclv0hS+JeFfcsMqHsGOn03LvfmddqvH4E54He01UB5PhZ5sEpzbVw2b2zXWp+WiXNqJnJ9mLOAffRbN1Tm9e9NDs6Ojo6OoCtGZ49NaW5FC2dSA30uKPHU/xVtm6eXjxMAN1iT5QMWqV3yHRc8p6lL6LkU3k4VSWFsgKw1H+TnUamVEnSZJpZiSZmRaFHl6XdVtYUeqFlY2JEKbBl04reVJkdpsq4QxtrlmnHoI2L0nvGLKqsJVmsXRV/l92vUcV1so1s7CqWVHkYZ31ssVy+J8uprpNlvqhiA7PSNWynxfjGcSpLRtvumkTJXPvR05Ilt7wPxWOkXItS2brIMGNbtF8TmXcwnxNq0Krk5bG/3KN4bubhy+vTqzbzRuc+xr5n88Y+eW90PJ7vN9oZuR9cuXKle2l2dHR0dHRE9B+8jo6Ojo4zga0Dzy9cuKBnn312OhlqBGmuimMi5ixQ2qoFt8tgzkz9ZZBGk/rb0SFSb6p2qG7N3JANGqmpUqSKNYJBvUwtlKVbq5LfUrUaVSdUtzCxLiu+x+/oyEGVTTbXa5w8hmGqeM45zFR/VPVS7ZUFnlOVxarSmbqwcs/PQiay/mZtZOB3HC86BmShE1Xfs+OYHq5SbWZtVarT6tzWsexPhpa6M7a7t7c3U2nHc+gYUaX8i8+01WfeI/jcZPXbDAZ620zAxOwxFR/HgWFX3O/i/wyrqJITZM551frO9tUqNIgqx8yBkI52fJ4z8xafV6ph/XlMOsCUaGtDEqTO8Do6Ojo6zgiuiuE5DCFztjBb8y+1JRxK65FdVNV8KfFkqWmYcNhgCq7I8Fg1nEZqtxUlfDIfv9L1n+wt/k+mRWmU/cjGogp0zRgex7NKsCtpNqd0s86C1cnwW+WBLKUvBVD7WKkOds7SkRlk5Z7jVnkYMkc6bLRKTa1xr69YE9dSxkaXUoll483xq1J9ZYxsyZEmc8CpXNYrRhH/j0yp5cxx/vz5Waq5TDtAVkaWEdmM1wq1QZzvLL0V+8BxyhLd06HF77nuMk0PHbr4fcaUs9R/0sn+5+/ttBPB57RK+xf3fjoM8jpuK2OF1Xr2/cb9nfdz/vz51WEuneF1dHR0dJwJbM3wLl26VAYnS/Niqv61J9OL59DlnZJOFTArzaUzShdGltaIdj+DrvjZvVY2riy4km2QGbHESBwLMi3aChgIH88l+6RrdpQ+GUjPsIQWE2P6uG2QMZTKtTyzcXEs+b5yyZbqdFat8IFKoue5rVRfRMsex+stscOIKvyA11uTQq2FpdCJVtqrtTa8yPAy937Pu/eBiuFl9jjasmiL8vqOLMN7A1MYVrbD2E4VwuC+Rm0N1y2ZamZnNjgvfDa4d2Ygo2OSjCzwnAk1uK/HeeMxtM8x3Cz+X6URbKEzvI6Ojo6OM4Fhm1/HYRjeLemB91x3Ov47wEvGcbyHH/a107ECfe10XC3StUNs9YPX0dHR0dHxvoqu0uzo6OjoOBPoP3gdHR0dHWcC/Qevo6Ojo+NMoP/gdXR0dHScCWwVh3fDDTeMt912W1kgUZrHB1VOMfHzpXIZVXxP67ttchuuLS2RYU25mG1KyazFNuescUxqZUiR8jipLDbxmWee0cWLF2edu/XWW8d77713lrElxpxlZViya2cZNtaslaztNWids808XM08r3l+lr7b0hO72WbruWbMZitDEuPX9vb29PDDD+upp56adeD6668fb7rppmaWmaX127q/tWunheezh1yLNboGbHcppnRNn1rrgK9Z3DY/y47h+2x/uHz5sg4PDxcnYasfvFtvvVWf8RmfcRwY+cQTT0g6nSDVG1oM2s6QVb2tKjMzYDaeu1RlOQuK5fVaKZCWUP3gZSl+qj4zaLXVF/Y5uz6vVy2q7MeGaXsMB93GsXcQvOf66OhI3/3d360M99xzj77yK79SDz/8sCTpySeflCQ988wzx8c89dRTp9rztXztLFEAkwhUNceyNGFV3Tj+8GZB9zx3TRJprju2n6UW46bBecoSDvMYnlulAIuoEl47MDgKuVxfcT+QpDvvvFPS6cDtO+64Q5J09913S5oqkX/+53/+rB/SlPrq1a9+9XGfmOwh9qH6seVeIs3TkDFpRGsul1JZrUnbxn2gVbWc56z9XKoFkewHj+dzXFt7SJX2sJXo3s+6Cwf4vV9ZyT6eH1OVPfLII7P7ztBVmh0dHR0dZwJbVzx39WFpnr5JylVVUpulsbQHJS2ymozhLZWIWFMCZQ3YF5bpaJVRqZhdlnqpYoVr+koJrirjE9ui5Mb7sjQdpXRKea3k0eM46vLly7NzsrWzxEBa6ciYpqlKyRXPWSutL30WP99mnsgoMoZXsbUslVk2L622sjHhs9eat+oZYKmc+AwyyXcrQXd1nex8ttPaF56PGnJNf6vrVRqYLDl6tTbWJkuOyDRJ8fpZu3ye/Ixm12e6M+5r1ErEY7i/cZ3FPnLtDMOwWg3cGV5HR0dHx5nAVgxvHEcdHh7O2EBWRodJezMjtUE7DBO/UmrO2BolucpAu/RZbCtKMVXJE36fMTwmb2X7mc2gKk66BpXRuNVWVRbInzO5dOu6Fa5cuTJrJ7PDMKkz11nsP4vcrnEiqlDZUjL76JIRv1Xih1JzCz6HxUkzhzGj0sBUtsmM4VWJn9eUWeI5TFouzYssX7lyZXH9VLbPrH9rEmQvOei0UDnQrFl/TILP1yzBtVElsc+e7bV7R8vpkNetWFy8TmUzNDLWXdlNs32HCbPHcVzNuDvD6+jo6Og4E+g/eB0dHR0dZwJbqTSHYTj+k/K4KapYqMKk+7g0r0DOyrlrXL8r9dAaV1/jatRhlTE5C7uonHKyGnpLDg2tGJrKdZiqwayWVuU6TZVR/C6+b6mJrly5cnxN1vWLbVf9zVRZ7oNVH1ejCl4KLclUzXxP9U223ip38JY6zGPC2oZUbWYhJjyW95upQ1uOIRGZyp73TpVmVn/xueeekyTF+N4MwzDMxrr1TFdhSS3nNbbVUjlXartWnOKSynxNKMNS7FymLtxmP6ucDTNzQtWPJQe7lumGyJwgqeaPZrYldIbX0dHR0XEmsHVYQnQ2aTlo0PXezI7VcLPPfCwdXujMEtEKpuT7tYwnkxqWJGD2Nf5v5kqmx89jO5V7eJXFIH7mvrJ6OasLS6eDx+MxRhbY2sqAQhwdHenSpUvHjguW7P0a+7mUcSVzIqkM/tuw9ioQPd5nxc4rh6T4f5zfeL2WE0lVvZ7B11mYgL/j/BstplQ9P9n9sVI4tRzuh1l9/CzrP2F2t1QVPXt9PmhVr6+w5pngGLbWDh2AtgmhWRqLbP4zjUFsw2upFejOc/gcZftq9Txxz4rXdF/4XLXQGV5HR0dHx5nA1ja8vb29Uj8uzVmYpT6/OnA5BjD7O7LAKlwhSvFLNpssUJbSsaUHB8i2WBODHg1Ktb6HrP9+71faMKW5pFPZ0jL39CUW4O/jODKtVnWfmQTpfrek9HEcdenSpWMm6ZRiUeon03b7ZoWtoH7aaNZIoFkf46vbyOaFa5HzFMfW55NBVmECWZgP0zP5c7/PbKEMB6jSxsX3mV033hfvn//H97QdZmEJnv9W0oJhGHTu3LmS8cd7MypbVMa8uYdU6Qlb+WQru1WW3IFrpGJ68bNK68HrZVoirjuy+Djn7lOVaIA2veyZr0JbGNIQj8mC0mN/4ueZZqTb8Do6Ojo6OgK2Zng7OzszqTYLlCRbu/nmmyWdMLtowyPDoS3P78kE4zkM5jQyxkLpkgyCErFUezwatMdFhlfdj189JpnUTOmT1/e9xL5GSVpaZ8fyMUz4SsmylVIoevBm7e/v7x8zO7/GvlY2xzVp1SitV0lwM4/iKjGu28rWql+9rskCbrrppuNzyPAq213mVUkmx+S6tNPF9ugJaVQJyOO5FbwuW+dQWs+ClGnD29/fL69thsd5WWNba3lp8hkjw+I+F1Gl6cpYk8Fnt2KYmRalSkfGShSZ1qZ6X9nr43dLazTev+eSe6HXajZfbs/nVH3K5q3SQrXQGV5HR0dHx5nAVXlp0hYVSzf4V7xiMxkTWxs35l/0zEvPoHcjpbfYN8Z3UXrJbHiVxNWKM+RnVbLszDZpVHY5S+9RIopSc7wP6tszvbf74Pkys8g8urK4okrqPjw81DPPPKOnn35a0om9NDIT9tvwuGW2lCqlXMWIM/tYdT8ZK+T4+zvaaSNzJStaSgidjUkVo5jNLefKLJTMhetfmj+fVUq5qGUxaNfhWohjYu2Kj7148eKiDY+xllnqv0rzwnUd/+dzSZtaS6tRrTffK+2Y2Tm0z8d1ubS/VV7D8Z6JKkF0RLXO6KUZz+W8+Dv3yefGvdH/c0227PY+x8/GNnb6zvA6Ojo6Os4EtmZ40jwmJ0oSjI1gqZBM4qmSK1e69Chd2lZimxklhszmQEm6Yj7xnCqzQiVxZXFKlJ6zjAG8nj+zxGNmZGbnIrzR25E2FErOrVhBfse2WjGXaxieCz22YrPM8Fj41XMc7WPsN0G2E8eYa5Jjndke6FXm/lcMI/aNa7FibZEJ0SuTzJi21+y6fiY4nmv6yrWZPRu01VHyzrzzbMONDLaVkPvo6GjGHFslY8zeGAO7Jj62sq217pmsKbsX2tm4drOxrbL/VLG8mYcnNRfcZ+PaqQoM09aW7Vn0auacZIm9fewtt9ySXtf7W4THx+duqp3PjsvQGV5HR0dHx5lA/8Hr6Ojo6DgT2FqlGVULmUqEdc6qKtZZPa0qyNbfm8JGlabVNFZz2UDvYxkOIc0DPn0/VmFlqs4qHMGgaimqIioDt8fIar6oWvC9W2VmZ48nn3xS0olKyKpNq7qkuZqlUn9kxmOrgm699dZTbWShAVmdq1Yao+eee26WUiwLKPX8ek7vuOOOU+/j/DOhQRUekoWn+DP3xfNPtWt06/e8UD3N9bEmxRON+ZlzBNXeVFNlaemqMfCc+ploJSKuVFqZYxGfdb96zWZqP5/vdbuUAPjw8HBmiohzSTUXE1x4XWfzUtVhpAouS99WBWQbrbR0dFZpOcdU805TSrbvVEmrs2D2pXp4rfSLVd1F7nuxj3QM83z5mc+SVmf7TpUwgegMr6Ojo6PjTOCqGB6RMRO6bRPxF5nBtJT+LGH72tG12MZOv952222STiSF22+//dRrPJ9GZEsmlkwjKC1RyqAkkjFYunJT0jJrk6SnnnpKkvT4449Lkh555BFJJ0ZcBm7H8XRfyX4ZIhLHsZLgzQroWBQ/q5IjRxweHurJJ5887jdDD6QT5uH5uPvuuyVJd95556n+Rmbq/nl+fc8+x6/uoxmydLKu3CeuN/cxnuNjuA7oEFCNQQZKwJkTGDUXVQB8/N+vHhuPlV993Sy9mz/z/fK9WbB0sgb93HgNua8+Jz5XPsbf7e/vL6aHqgK34z0ylSHTFLYYntlSxWrjudQCUYvTSkdWBVWzrfiZ22WqMbLELISGTJ7pwzKnFc83X1muZ5sSY9kcVCnFqJXIrhOfp7UJvjvD6+jo6Og4E7iqsISWLp1u2mQGDCyU5lIj7Vf+3teJzIR2FkvlluwzvbHZE8McqIePthtLYT7W7cW+SHNpMR5LN2czC9+32Vz87Fd/9VclSQ8++KCkE4bnvmXSZ2XX9KulpihJ/x+4jQAAIABJREFU+j4okXousnQ+HovIfpdseHSnjynYLKW73/fee++p+3EfzealExZ41113nbo3Mr8sSYLHkOuMjC+6RjMQ2+f6nCzwnKBGwce2yrnwfry+rdGIoRo+1t/5HNpnfS+RefkzahC8Hv15PMfj5HniGvV9xnljOxcuXGgGEO/s7DRt0Ay1qNIexmvQtlgFamfsnWkIPWdez1WYTGyPWjDPT8a4qv2mlTaQgfp+9ZqlRi3Cc+c9yW0xHGFNMu6WnZGhM2RytMnGY/xdK6Uh0RleR0dHR8eZwNYMbxiGmf42816iTpvSRGRPlJLJ6Kqku/F6lkDo1Zil66E0xtRfDC6O7VSBnrTpZB6QDCy29OTXKDVbSjaze+yxxySdjJsl7qykiMfC41gVEc2CRs0KqiD5LN3amgKM4zjqypUrMyk6Mjx6XFqaNXuh16Z0wnTM8JiAIPOaNZiyjAySzEWaFzX1evY80cNTmqdJog2FTCMrdulzzNLNbGm7ip95nHxftCVnJa+Yjo7XNzuM640aErLEbA4YnPzkk0+WNs6dnR1df/31Mxt+HCcmvGBQNYP94725X7TDt5IJ8D6qgs3V/Uh1Mo4sXRc9y5n8I0t4USUN8B7J8lHxWO8z9LSlBitL80etE23TmZcmGSyTPsT9lEndl4oDR3SG19HR0dFxJrAVw7OUTkkoeh8yTolSnu1nkeGxjAnboJdhVnqF3mtka1FKYwkZeoEa8T1jAC2tmA1QwsqS6zLOi4mUoy7dn7nde+65R9IJk6G3YJS46VFFluvvo1TENEtkP63SJbEA7JIunZ5hmTcr7RK+N9979Lg1s+E9ex1Qss+SlnNuee+ZhM9YNmoYotTs+eb1oqdj7HO00zAJu9d+K6E27VleZ5UXdLQdM90Vk1NnpbM4blEal+ZxtdLcE7JlwxuG4RTDo/dnbCdLJRj7kDE82rqWbHnxWL8ybVtWpopMi8w+K/Xldcb9hftcllqM7ZIVtjxJ6e2czSFR3U8VBxhRPfPZOZlGoTO8jo6Ojo6OgKtieJaALG1mSVyZtYReWVmRS0sVL3zhCyWd2JPMoizZR5sRpcmqBH3mnVWV3MnioWy7cF+yDC7x3CxGxNexZO/4rszG4XY9Bu6LGY3H13MQPeAeeughSSdj7r7YLkgJP7Zv6YlMNvM6y0qULBWZ9bEsexP7VXkV+h7jmFsy9Jj6+j7G8/7www9LOh2vxmM9ln6fFfOlhOs+us+RLbGPWcykNF+zcawZT0Y2RdtObIf2OHreObYzPovUJLAwJ5lNdj+06boftkNLc7Zx+fLlMg5vZ2dH58+fn62d+OxT60QbbmYvo78B2RSZWGTezKzkefHzmmUxYckgtk+/A+lkTZLZua+0WUd7LLOykJ1nnpYGY2HpM5B5wXq/4XPl9eY24rxRE2NUha8znDt3rntpdnR0dHR0RGzF8FyI0bA9LmNClupoN8rKsvtX/v7775ckfeAHfuCpNiwRWZ+clcBwX5hD01JtlmGDGQ7o/RMle9oIyULooRTZEz1JmUcyi6VhCREWsLTE84IXvODU5/E7f/YBH/ABkk5Yzlve8pZTYyadjLWlTNoksiwntBu04mGOjo506dKlmaQd7ZYcd0vLrZgzwvfkfpgVZnNqWMKlHTC7nsfD0jLtPhnjotdfXBvSPFcstQax/4wDrexm0jyzi9cdtRDRnu5r2+vU92mtS2YzNviZ+5qxK0v7PueWW25pZqI5PDw8PjaLG6PtjKw5K5XlMfUz5LVCLVRW9Nnnel/x+xe96EWSTrQpcd+p8q7Sdp15PZMBsU9ZxhLav+gVnGkUaLP38+I16zbsARzvz/32enq/93s/SSfPzwMPPCDpdGYf3iu1Rr5+5mUf19NSlp7j+1t1VEdHR0dHx/s4+g9eR0dHR8eZwFYqTQeAMoFp5rRiSk8DLSsRSyeqo5e85CWSTgylNqq3wgeoFqjShEX6W1W6plt4VH/RSFuV9siCYlnChwHhrYBjg4G0vod3v/vdp9qQ5s4RVu+yqvA73/nO43PcLlVjvk6mZqFzT8uwfHR0pGeffXYWkhHVKXQIcmoxliqK48QUT1axMBG1247rjmouBppnCXJZsorq6kxVazUr1xvTtWXhIlYdMekCrxvXKt3C/er2W9WhfawdEPwcU82bOWN4Tn2/fPayUlBWdy2VB5JqtW4LVBfH9e159vpiQL7vw23EOaXJhipGz0dMCO9x4vPJvSvOZRUET8cTI44hVedcD1lYwlKwvfcypo+TTtYzVaZ+9ryWbVqR5k4/3M895zG9H1Wxa6udS53hdXR0dHScEWzttHL+/PlZ0clohLT0QucRpgmLgdl2APGvuqV0SvSWuDKjtaUIBuRmabSyz+L9ZO7oBgNwmSYoS/VVFXispHVpHoBJ47ElR7oCx3MsUbHckcferufS3PXar3RDzqTwmIZsKaUSy83EcAr2xVKdx8frIjqRsIgqEw7QiSFK+GRYTDFlNhpZIRkly6lkDhosO0NXbLfP5AzSvGSRr+djsoB6Ot/4eeFY+B7iHLD4ru+Hic4jfB2yQr9niZl4bT6vGXZ2dnTjjTceMzL3KUuJxjR+dAjJwjfoqMXkEQxBkOYJsT2nnicGs0dUCfV93Rg6U4VOkeltU4ybrCoLJme/uS9k4WX+zho6JifnGo59otMRHYYy7UBkqD0soaOjo6OjI+CqAs9pr4oSqX+ZaS8i44oSiaUzS4aWSBgAzES20olEwABNptOJkh0ZqsHSK5GFUgKlyy8lothHSs22GVSptOJ3fO8xbwW4siCrbaFk2ZHtWKoko2SAc8aQPE+t1GIOHqbdIM6B23OAMsNROI7xf9pWPS5mSJTW47FViZXMbZs2FSYRoP0q6xtLobDETJSamX7OQbyZrdjwfDDNFpkEg3uleYC5x43hRZHp0W7p+WPKvGjvyUrFVLBmifaxyExoq2Mia6YtjPdCG6efBYYrZdoI+gywbFfGTPieWpT4TLgd96Gay4zpM2lAVrpMOr1X0TbI63sMGDIWz6ENlNqBOCYM5+J+k9moqU1r+Q4QneF1dHR0dJwJbMXwjo6OdOHCheNfVkuZWZkZBmhTNxslROqWLT2QVWRprpjqyOdWaZykuZ3NfWVy4iiRVSVw6J3FwM14LhkR07BFRknvLybHNUs0Yl8p8XgsfD3OkTQfYwacU7rOrn10dLToacf5yqRL2gdYLDYr28QgeL+nTSUydc5pxfDi57RXmc34lYHv2b1SKq/swPEYFknmHGfPk9cZA55pZ8xKPrFv7rv7EeegSifI9ZaN/ZriwdYs0Y4c9wEyOyZqMDJvbd8LbZ20B2faCLL1Krg8Xseg1iZLHkAthME9MzuOWikWHs6eQdorqYWih2w8l57KlY9EnDc+E1zX/jxqdeg/ceXKlW7D6+jo6OjoiNjahndwcDBLTRR/XWkraXkiGmRjlIDj9aXTkhbbYxkL2vJi+/RWtK2IHlfSvGQIJQreb1ZKhAmgLS1nEhGZY1XKZKmkCfuS9TmiSpVFO2rsWxUTxD5k3rUZe6LHpd8zrVrrXsi01xTzNBg3FuOZ/L+ZnOMgzUrN/KJ0Tdsz7dhZ6SWDHqNmbS0mTYZVJQLPbIa0w1T2nyyVnc/1vFFTE1OmZUmIWwxvf3+/ZFPxHjkGBtdzPIdroiqNlaXgoj2MXtzRk5QelkyO7utEb9bMyzOiFZNG2zTZGm36sR3uJ/RZyLy2+dzQV8LjnWkEl/aSrBwV73MNOsPr6Ojo6DgT2IrhGZQQszLvlF5Z3j3+KleFCfl9lrHBYDyK37PcTQSLHDpuLXqdsn1K52SlLYbHTAr2eMqKHDI2hmNO5txih5lHpJR7u1bJXFtxUpQcMwzDoN3d3RnLaK0DHpNlPqEUm62veG4EC26S8dB+Jp1I38wqQu/MOLaMYVrKtJGtb5/j63P+I5PwddzvShuQsQf3hXGGlUdhvB5thyxiHO0wXM9LZaWOjo5m6zrT2lCTxLmN88I9KbMrxtfMd8CgZil7JvgMsSxVZh+ttF6c/yxWcMmzk17C8TuPDf0PmFUp9jUWgo7nVt7JESyhRft9SzPTGV5HR0dHRwfQf/A6Ojo6Os4EtlZp7u7uNlWaVq1QbUL306haYCVjo1J3ZOoPBrJWIQ3SCT22atGqTIZORLUFVZp0wW0Zl5lCihXj/X106qB6a6vgSqhgGIaQuVlnqqrYRkvltDZ56+7u7ixlWVTB8B7pLk4VVOwf22WqokrVmV2PDgdR5cO6gXZs8iuvK82rlTPUhOqvbK7ZNyKOo/+vVJctNTXVX1SZZ3XXqDbkWqKqK34X1V+tNXblypWZg0Y8niEdTAzeqt9HtV1W1Z3Xo3qdDilZG3Qe8fPvz6nOk3LHwNhGlUIttsN1VdXSi8dQJez33B+y54kmmirdXzyfJikm587CrrZxRDM6w+vo6OjoOBPYOnn07u7uTArMJLNKsuKvvXQinWchC7z+0meUKukKLp1IE5aw/GqpPUvBQ0mKEgmlpyyYl84jDKqM0hOlf0rYVYBw7AOZHiX7VhA2pd2MxVFK39nZKRmUE0vTgSeyWq4r3mOWmshSsdvj/FcJAzK0WIxhJscyOpRe43XN8MhM2H72PNE9vNKCxDABSsdGlhSB77l+uc7XlNuig0s212z3/PnzzbCEw8PDNEGDkc3VElprNfbNaJUlY7B6xp6YJMFzxrJNWfmrJYe+TINRpSVjP7KyZJVTEcc5czqr9jsjC0XiOdx3MtYbEyn0iucdHR0dHR0BVxWWkLmkHjcIexzZRObi63OYtqpyhc8kUtoIKSHEYE4f6ySxDMTMXOYNshDq8LMAbZbjsDsypeWMUVaFHyl9xr5SUl4TWkAmziDRzJ7aSkCQYW9vbxYukqXEIrvlWGTrjjaG1nojyM54X1mBY/fb12US68hCWHyU91ndfzwnC8mIn2c2wyy9VbyvLPH4kqS8JmUWpfXWddzvm2++edEOzsKl2TVp711j7+GzxfYz9kT2UtnFMrbOdGdVQWqpZlpkoa1E4ARTi7VSGrZYd3UNhqbxmcyOtaaGe2/2DGZhSp3hdXR0dHR0BGzN8HZ2dkoJ3N/HV36eSaS0MVUeg5kNovIYpbTckrgtXVTp0GL7ZI6VLS+CAZ+W8MwwmWIsHlsFjxpVaZvsGGONV2Xl1ZjZJGi/rNrb29ubedFFVk99PttvFeKsEh5UhWDj/7RF8vv4OQu9ei5pD3b5Julk7VXFSVt2UrMCBjTTgzSOPVPnsdQKxzcbT7IdPnste1ZVrDTTYPgZuP766xfXMJlQfKar9Fm8r4gqQQPXVObVXO1zvF6WKJlasFZCjbUMK1vfXFcsROzrx4QA1LK1SpjFz+OxS/4O8Rz2jSw/0ybS1tnSXBGd4XV0dHR0nAlclQ3PyFLTVHFP1S+4NI/NY+wepfWWR6LBBK0Zo2Q5opbthn1ZSuqa9ZHJfOmxGlNYUcKuSpa0GF7FlLLYFtogKelnqZmWbB8R9vBtsXiuncpuFSX7pVI0LNDZ8kzNUrxJp+2/Xuu2wzrxr9PEOabTzCW2W8U4et45X/EYt2fboT93SrMsVpDeeEaVji3rA1lhxvwZR1aVwcnK6zhxewvjOB7/xevEe6Z9jOmtsjW/NrF4a98xqMGi13A8xvPD8kRZ20ue1hVLjceSCXEdZomZqfWotB+ZbY0xnERWjoievNybM0/SbeLvjvu99RkdHR0dHR3vg7iq8kCUoqINwL/ELL9uSSSTfJjpgF49lVQT/6d+mLFPUbJz7JQlrEpaywpMMoaGyamzOKxKMqWNJZZPiawitrcm80mVyJpSb1amoyrjlNnpyP6OjuoCsDs7O7rxxhuPGQnLSMV2Kskwkza5JiobA0sOSXOPNBZizRimmZwZl+0fd999t6ST4sFRivVcVlI513CmWfC8e12zEGxm4/B3ZpBVCZZ4f5U9qWWnrRgSMwzF58k2zlZZK8PaAYO2r3gtPvdk7VE7wGeqyrSSMbxq3dFLN57DONIqMXfG8NhnsvbMzsh9moyf15XmbJwaH2oAMs/byt8hY37MrMIMVrzveOySV3iGzvA6Ojo6Os4E+g9eR0dHR8eZwNYqzUuXLjXVX5W7LutsneoEHBio0qyCO2O7VE/w+rF6eaUuZNhAhFVXrGFFtaSRBdZTZcZgy8yFmU4/7luVJioD1XoMw4jtUP1AtUdUW6114HF/r7/++llAe2bArhIb0Dkiu3a1/rI0SlWqLwax2xElfub2rMK89957Jc1rw8X7qFR/LbWs++h1x5R5DFOI1/F9VK7lmVqKYIgOVYWx/1yzdHHPnFasnrrhhhsWwxKqxADx/yzVWuxvVi+ucgypXuM5fKXpI6ZTYx/oEJShSlnHFGZZKkeqlLkesueX7fl6Hs9WQDj3YtZqbDk8VQ52vJeItUnrIzrD6+jo6Og4E7iqsAS6UWdGSBpRW2EJZIpVKQyW15Hm0hmlP7cZGR6rUlcJpyMsrdoN3U4LVRhGlGb9naX0J5544lSfmNIsg++Dxvc14QgciyyFESW2rKq0lDOkyp0/wk4rZkRO1B2N75VWgAwpcyaqAs/JgGL/OWdk+Gbxmeu8z7XzBRlklOyrsIMqTVyWyowMwvdr9mlHrFZ7DBvIrk+pn+E9S45F8Rwek5XKic4erSDro6Oj2TmZs4XH31qczImM51SJALi3ZCEG3Dt4bhyD6vnLEnIbvDbDkxh6kDGhKhlHVm7L8DF0cKE2Ij5PvDbHNUudR60TnaZaaSzpILkGneF1dHR0dJwJbF0e6LrrrpulV4r2gyotWCu4sgqQrFzMs4DDrGSEdCLpRbsdy5ZYSre0bKkmSlw+h4HGld0pBh5bknKfKOGb6bVKYND+ZwZByU+qA2pbUlOVIo1tZIGmxs7OTimlD8Og8+fPlwl0Yx+qxM+ZlJelrYp9Yx+zZL4MLTGzI9OT5tI559DzEpMIMOlxZTtkGEE81u0z4S/tZ/Ge6W5Pm5GfiWgTZUhGVY6KZYriOexHZnuntmYbW3SWbKHSDnD+477UYroRma2LTIt2eqbviv/Tlsb+ZJ9VYVa0C7aCsdckY6/svFXC8cjWyOCYFCL7vaDmpUqd2Np3tkFneB0dHR0dZwJb2/CGYZillWnpcatSIVGqoL64klJanp6UOChdRPg6Zna20Zi9WYqKdhjad2KQeHadyPDIWHwdS/JkfvE+yA4YQJ15iZIRcZ4yGx5ZhtFKYbam/EdsJ3ppZvPC/nPtZIG5VRq66vs4b/R8pOfb/9feufW2cWxLuEXaFhLAdoBgP5///7P2Y5AgcQIksGJbPA8bJS19U7VmqI3zkMNVgECRnOnp7rlw1bpUuwJ99VuMq8aG1/L3hOZbVjrnS+NUW58+fXraV9cbPRfyMLiFbjUHFElgEbFjh4w3JkbrQAbBeXRF31WIYo/ldcLF6Trls6pe34yL83wzln+EWXDeumdjGq/zmJGVpaWlnNeGGd7Vg7BWL5lGhpXEE+pnqTi98xKlpcGE+v412ZnCMLzBYDAY3ARelaXJGiBXi8GYE62lI8voMFOsy0RizIGWaScLpH0l/cPFZOtnjBUxW8rFOOhnT9lFbh6T77yrWUvnp5OUIptK1mg9DhlXZwGrDk/zpbiYW+xU7TLj1cWHWSeUMuv0fY0dkhUmJlyPp2tEWZEpQ9WxXS5VRetdbbv4n7Yhs9Q8Vo8CGSuzhDWvmosaO9ZnPG7H9FLtJmOGLiO3stDOQ3C5XOK1WT9L8V+hE2Ym00vLlq21fUYkVtNJbzHO55gL22cmO6+h6v1S+5wDjteJlSePSZIPq98dXUSWx3bo9q3n5ajM2DC8wWAwGNwErs7SPJ1OG9bUZU2mbZxlwG1oVTrmRd91qtuobWsfWdL0dTNLr4IZnLRiXE2NrC5lxck656KeNWbIsTOuxfFVprRnfTo/OS23VAvpzpvw7du3aLEpw5eit12MlXDC48y0ZC1lqpOq/Scr13lx51LnUOeK8RHn9eB54L3B49c+8ni83l12Xl1U1bXLuG9VRNH/KRPbZdNxntKSQt1iqF0Nqp479IzU85KuWzI+l6Wb1EvIorqlrHjdkynV/cnodO5Y81b357XSxcWEpLDD8bi4Js/ZEWUnMuTksXPLUaX33XHS+3bfw1sOBoPBYPAPxquyNDtljWTFJsur7iMcXfbdfZYyeOoxWN0vpkdViZrRJ6uZSh5c5sYpbchaVtxHr90+1J9LMUSXPUnFhmQ9O0srzZ+zoBlX6BQPjmhpJguUFmJlgKmWLmkQHomT6lXno2ZiUhGCmqpOs5PnmWwp1WfWfuta5OLFgssKVbtpGRznMeFc69rtdFO7TMg6LlfHVs91p7SiP9du7QP7ma4DHttty/lx/U/eKd63az2fQ95LnfeG2diMy/I5VM8llwdKz21X/8uYKI/Lcbp9eA5cZqdArxO9Ik4/mfqpRzAMbzAYDAY3gfnBGwwGg8FN4OqklfP5vEmCqG4CJiGkVaUr2F5KF3ZyQanQlGn0LmlF7inKdXHpEjcutUsXlis8VjtKO+fqvkJ9n4RsmdBxREqI7uUuZTqVIxxJLe62UdKKkiJc8XsSyGXigUtaSatT0y3qXOmd7N3eWOkC6tK1ea54bziXE122wp4Lv7ZP9/gRQXcWhrPkoLrqdC71GfvknhMsir+/v29l6c7n86bY2m1PtzqL651bMi2905XDpEQkPqPqPnJ/6x7QcbgSuhuP9mGiDc9pTbRLsmNMynLSYkxEYlmZm/skGNEtf5WSDeked/uksosOw/AGg8FgcBN4VeE5U3G7BQRpATkhYFq46dUxCVoNtDx43LWyiDKFc6tVrcSWFDRORd71eGQDsp6cpb2XaEILz1mHe8Kybh75/pqAcMc2tTyQkn+OlEbQOnfLwiQRX1r0rsg2Bb3Jpt24uNQOC7VdMa+7Fus+vJbqOJJ8m+tbSvbh9aA+u3PMe5tjOMKCta0rPSCbevfuXUwvv1wu69u3b3Gx39qflLLuGH5ieHzvliUT9pLk3FJmnNtO4JpM0UnJ1fcuiUR9oEfLsSdeg2RTaXGAug3nlXPfCYcQbh8naH1UUHoY3mAwGAxuAlcxvMvlPwsx8tfUWU11n7XycjPdNmzfWXGMmdFqopWx1rYwktZrirmstV12KMVfOosjlRo45uKsMDcuV4zP43UMLDG6I1Z1PQdd4fn5fH6KYzC9v34m7MVn62e0KlPxvbNmGbNVG0ojd7EbgRa+6yMt7VTU7yTfUjyT+7rrm2LVe8etx2F8mcd1DI/3T7etvCc1ntWxRmfFO89S6qeLrTLuSxbFUgDHvNJyNq7shnFYxdt4rzvhBY6D8ntu/BQcZ/vu/Kf7JXnbHGtnzLjL32Bfk2i0KyfiogNHMAxvMBgMBjeBqxne169fW4HWPSHhxFjcZ3tMr27TxWrWemkFJEsySTHV/2k1EU7CKlnWAovXXf9pcaXM1vq/s8JcW+479r1jV8w2TBDLW2tr4a+1laRKIgap7bW2jIgxzs4aTJmqLg7DOdY27vwz45bMguPulqWiV4DyTfW7xPCSbJT7jkXyjoWmGDXnqs6j+nZkeSA9d7rs0r1nhbvmUyF+ipvWfRmD7jwbBI+juXAx3iQwzyxKFw9MuQ+8N8jmKxJzZny225bv3XMuiRU4OBY4MbzBYDAYDApeJR7N5UfqLy4zv5LUj6uHShZ2PX5CkrGhtVY/o4VLgV4n4prkeTjOLr6QsgK75XoSszvCfshGjghBC12skOfyfD7v1lJpW8XHKlMma2F8zMXA2C+KRws6/3UZHYHL5KQs3rW2QuDO0q39qf09KnpbLe40ri5TmrV7jPdw326R0rTsltuH8RZm9Cl+u9bz+Vdf9yz0x8fHyJTZn4ouhsdazT2h5G7B5BSv6mpd+Yyq3g5B1ybnmPJxOp5bHqibg7qvQ8qCd/uk+mnB1b2muC/hmKuQzr3DMLzBYDAY3AReJR6dMuPW2qqidAzhKLq4H60zWk2udotxllQXUy1ttp8sOzcnaUFT+s5djIDt00p0c6M5Zs1UsvTdZykztotJHFHL0NxTqaa2Q4adaoEcUkxXbb9///5pWy7/lJbAcQxP3gDOsatTS5Zuiuk5uDhY3bd+Tg8Ms5DJEv7444+nfZNSEpf+qdu5RY9rn3X8Ot9ie9rmy5cvu5nNKRO3jmnPi+I+S9t29ZH0wOypi9RtyJbTM6xuy+tZ+7iYKo/HvvHZ4u6nvblxuRrsI8fjGF7y6jH+uLc47sTwBoPBYDAomB+8wWAwGNwEXuXSJBV27kLR9STt49LoOzFbHZvgPizidoFa0t8kkOrEnJO0WOqXGw/peifRxjXaUqGrS0tnG13xsEtkcX1zad17c1G3p9i2K8yl6y25c+s2OldMpKILqLrVfvzxx7XWs3uNKd9aB8+57+TS5Kr1SmapSG6oJP1Vx5fcXXqt4ssCU/7VHl22WpexXhcU9aYANV2btX2OS6/qR01aYXnI5XLZTUpLEmD1s9eETFx5FftWX+vxUoiB+661LSGhWH13/ln8nsoT6r4MR3DfTlqMbl3eT+55kNzK3f1LV+WRJCn2tf4m7WEY3mAwGAxuAlczPAm5ruUlsWRxJqFiZ02xHW7DBBT3a84EAyYPuOBqSvl1xcNpGRi+d5ZmKubmttXaSam3LDR1AfVUAtLNX2qvExnYS+OuOJ1O67vvvjvE8Lh8U9dukuViAoULapOBsABY10dN9dZSLrRWk0xdPY5A2bMk3+T6z23duFjYnEpZ3L2RCs3JKFziQWIUmleVItS+Vc/CXsJT521I5Q1dcldtPx23tuHYIxPcyJDdPc3nDpdKquxZfdAckoXqfLnjsXQieXEq0j3Ne8VdOxR54Ny7PvKa5Ku7F7r+72EY3mAwGAxuAq+K4dHIYj2IAAAS2UlEQVSfWi0fWpf0Wzs2kOJwKRW7E3FNqdG1z0zbTv5/FxcjOyMTkpXmGB4tny5dl+LKtKy7eCet3FQI6pZoSuUjjs272GuKoZzP5/Xhw4fNWKuMFhkerb0uPsPFLRlj0bmuMbZff/11rfUcq2Nxd02ZFxT3YnyPS6/U6zAV/KZygXpvaE5YnMx9nRwZ2ajmlQsSayx1rNqGDIJjcuNh3En3hCusdgX6xN3d3Xr79m0sOVlrW+xOBuwKwXncvRR5lwdAMflOJo7xZp5Dxq1qv1MZFFlUve7SsmCcI1cGkYQv+FrbZmlOKsPoRAu6MgvuI7x9+3ZieIPBYDAYVFwtLfbmzZunX30noMy4G+MFnTSNQGaX2NVaWyuly1oS9J2s8pRFV62XvWy5bly0Puj3d8ejRU0WygxZt28qbHaWbLKQUrypHrvGPFM7p9PpRZaerh2xjPoZLUGKeXdCB8ywpKVY5/X3339fa720wut4GGtZaystpu/03sUdKT/GGDGv2ZrBqPb0md53GYscF2M4lNCr9zFZiI5HdlXvQQoCMCtTcm51XF28klAML8WXtU1Fykg+wgSSVJorItc8UWrOjY+sMMWsK5IMWGJelR3y/JKpqj/Vg0ZvhPrI+8vNI5+5FHBwjJNxxsTsHLuu/R+GNxgMBoNBwdUM7927dxvB0moh0NpjNlaXJcXXJOrqfPe0XjqLgVJI7KsTNKUl4phVbbPuyzgi5Zm6uUlxTM6FE2Tdq5Or85gWlOxEv7lQZhqDPr+/v39qTyyjijn/9ddfa63nWI8T8a59rf1JmWC8DsR+1nq2qH/77be11tYCdULUOrb6n2TiXLyKi7jyelObbgkjskQyfSezRRm0FKd1rF3j4flMi9jWz8TsJOOmV3ffCnuZdx1jZtuuva7+d89L4+Yp3cOac8eE3BI+dTxumR4u05QkxpzXjfFlZhI7VkjhcT4/O4a3l9HrvG6J/SWh7fp/ZaPD8AaDwWAwKLiK4Z1Op/X9999vWIUTH02/9i7jydV01M8ZF3RWWqq36eo4GK+gleFqqdLyQIxVVsuI+8ri5nFd/I9xTCrIOAtISItHCu4ccM7Zp8o+mEF4ZJkO1hVVhlezBWt7XR0Ux8gsL8bcarxOWZo//fTTi20o6uuWllKfKrut39dxOfHkOh5awK7+U/1WG7S0XayacSaqs1CRpX6WvC2O7fCeVvsudsd9hL04zPl8bmNqZE/sp6vd28tA7LK2+RnnxymvJIHpIx6eBMb6j4go04Pl+pjmhMzLHY/XM5+rLt8gxXQ70eiU/dxhGN5gMBgMbgKvYnj8RXWZQcyoc8umEEklQb/oTgGFrI8WETOF1tr629mWQ1dfttY2LliPl5ZlSfU+bjzJUnVMlixQr+pbZxml2J2LFXVWP3G5XNaXL1+e9pHqRrX+xQg0P4oFdfV4iYnyvOtc16Vwfv7557XWWr/88sta6zljlLWjdZ7EhljDydiH4pH1M7JBshLHZJkFqv6L8VHT04Exww8fPrx4/eGHHzZ9okeB7NQp+2gb1gx2LLR6MPaUVng9V+uf2YRJKaSLBaV+umcLM251XOYsuLgcwYxIx1yTByZpXTokvc/6PjGtpGRzZKkfxjndPgIZsjtvzC49nU4TwxsMBoPBoGJ+8AaDwWBwE/ivXJoubZwUnynynWuTQVwhlSnU7/YCzy5dly6rI/JJQgreMjmntrsn3uoKwekyoxvRuTB4PLXbSQpxvpJLsyZw0J3aFRFfLpf18PCwKequrjL9TzelXGNu6R32W/2ja1nva9IK5bOYRs10/rWeXYdytzKhyi31JLCPSaC7XocM/Ov4kjhjEXn9nyVC6rPGQzfsWs/3r1zOR9x+dPPqPa9N59K8ZlkfurvqmOk+Tft0Ls10/bpkOYF96e4xujf5vKMMXt0/Jc3x3nPi0UmI2bns6TJNzzl3PPYlCWu4ZdeS69aVf9HdPoXng8FgMBgAVxee119Tx2ZSAXBXPEx0Ka9r+aQFiqeqjyz25f/1PVO963ZkqrR0UkmFay9JJLkljJJEUpJdq+MgQ0nF8nWbVHjuEobISLqU6Mvlsr5+/frEUFjSUP/XqxgdWZRbfJSWKVk7xbjX2iZY1eVr6rauMJtL32g8To5sj3XwWnLiuhwXC9vruHhv6XjqI68tNyc8fndPkimme8Rddzo/796927XSk9h2/T+VJ3TlO12yTG3DMSEelwljTrZLSJ6YCp6rlPjmkuVSGQT7cyRJJu1T+8xnsO7fJAbf9ak71/SUHLl2nvY9tNVgMBgMBv9wXB3Du7+/3xQa1/hY8vEeEYkVmH7eWYhpWYlkqdZ2ybi4nEUnBE0LryvmJBNi+y7ukwo9U8zKsUMyIjI9x0LIOsloXAyvzltieZfLZf3999+b4mcnAMxjHzkfjJkk1lnPi+bn48ePa61tartKC+o+KQap+JhLLee4UvmLs1IpqC3WriJ9zVGNb9KyZ+xb5R9kZHVfsl96Qep1wGuD58nJ7SWZLQeVJSRBdQfn+dg7XloY152XVCDdFZGzAJ/jcXGx1Dc+E924+HxJzN+l/B85L9yOvwfyqux5+2ofeI90z/wj5VDEMLzBYDAY3ASujuHd39/H5UAqWIhNodxq5SZLKsU4nBQOF+CkTFNnsaQMKMcoOosqIcX3Oimj9B3jCS7+R2swxTGqZZ+ypZih5pZmqqy6Y3gPDw9P7ep8uThMYrPd+djLtGVh8FrPrEyfUbZLFnktIk+xO0ql1Xlixmay9Bkbr9syNs193HlJzIvSYnVOGKvVe3ohOhFmeko4zroN46YOl8tlffv2bcM6OxFxzotjponN8PpzXpsUS0tx+tpv9pnH6Tw9ibm6mFvKdk/vK7rsz/q+XqsU1KbEmMvQT8+dtJBv/f9IdjgxDG8wGAwGN4GrGd7pdHqy+mQhdtlX9N87P39ieKk+xmUisSaQx3ExNTKdTqYsZX3x+07oOInV8nvXB2ZlCkestMSUXAxvb04cKzxiaT0+Pr6I4Yk1ddmMXGDYHUfbkDUdqTkSw6MkFq9ZJ+bM80u262JcHftNSJl8zLx0cUGyMdZyuuWdOqF212b9jOxTcUYX1xRcth/x+Pi4Pn/+vFmayHlEUmzLsU56f9J9WfshMPOQWeE8hutLuj+dB+uol8jF4xIr5HaufT6z6Jmpz2KKrx+J3fF4vFccK+S13uUOEMPwBoPBYHATeFUdHjO23LIw+pWXxcOlhDo2wF/wru7PfVaPI3Q1NLT+u0UukyJEZ0mmGOFem3UcKQOuq6lLn3eWZKrZcrHQFOtweHx8XH/++ecmluba0ysXWXXjI7NPFi9jUbVdshm16frI4+k6l/C0Y5yaS7JDHk9w13d6dd4RXsdkdKybq9cUayGT8o7zRrAmjNe7Ex6vLGDPQ8BrsHoAeL5ZU9tdo0kBid4OpxAipDizOx4ZD+PlnceM6JYAS4pY3X2b7mGyNpehz8VcyYKFTrGG4+HCt3UbjfXh4WEY3mAwGAwGFfODNxgMBoObwKvKEpKczlrbsgOuleUEeVM5AAOjbmVwuoPYpyMp7SzMdSLVqWgzuWGOpMp2cmR0f7FPHI9L+U7F6+54dFkxLZ0JCRUuIYRg4bkSRlw6PYP6XOvNzS1dsrr+6Mp0ySROsiyNh0H0tLZhl7Sk/lNovSuyTcd35SJ0acp1mUQEqqsx3QNd4gP7r3tcc+LcycIR0QIehwlxtZ0ULnD3q54dLKtyiUfsfyqCT6VA9f/kdneF9NdKGTq3K92QXXF5SpLidU6B9foZj8fkHPfc4b1Hd3w9b84dfhTD8AaDwWBwE7iK4a318tdZVkwN0NN6ZSB2jxmtldN3XXIMLV5a9o7h0WpKFq8L5qc+Mn3X9TXt6ywustm9lc5dAgqRSipqeyo1IZN0zJKJAW/evGlTnx8fH6MkWx1zWk7EjZUWIq87jYcWeP1MY9KSO11qOftKUWp33jXfKRmrk7BK36XElPq/W0alvrqSBrbLflCsvf7PgmO+d/tcIz3YlcGIafC+Z4KIu36TpJgTVhB4D6WEty5Jhp6yTiorySx24hV8rlBg2rFFnocknUiBj7pNSgp0TCxdb6k8yuF8Ph+WFxuGNxgMBoObwNUMz1nX9ddXv/hkSa6IN4EWFi2HLl5FC8+VGNDap4XllhRKy87we6HOSbJeWTTfxcdojdEy7vZNkm0VnL89WbK1fKp6VxJxOp02jL9azRyTtpX1zljeWs/SVLRmGUPmIqVrbWWnkgBwPX9koWQ8HRsg+2OpTieSkJafccXjYrUUuGaBvfNkMI6UhNxdPIvxed4rlQ24ou+9spZOqiyVfPA5UPvg4l61LS6z5Z476fy4c5ni4LxPu/hvKi3gnNfj7MX7an/YHtvguezi6UcK3fU/46g8bh0XY5FHflOEYXiDwWAwuAm8KobHX9T6iy2Lk0yPFki1DFjgS2uGMYIKZoWmzCCOoeubs5ZoudHSZt/r+Gh9MrvIzUknQuvG38mE0VpzFhHPQVp6pR4nxfkcJFqgbXQu6zlNArLsf7XIacHTumR8tooVU5g5SXA5CSvKkHFh2y5bjtc1xRkci2ZcTsfReOqCsGJy+o5i0fqcBfa132Q9ZAldPD1lEu/t30mvPT4+bu7teu3wenXx5bpvPR6Xz2L8nIzCtdvFurlP8rx0Rf2prS7jUuDzJzHwipQVmjI+K+ih4blw4+B8XrMk2P39/cTwBoPBYDCoeJW0GH/9K/YEap1cVMpWk2XQZRfSSiODcBYXBUqT5VUt37RNqv+p6DIT6+fOguwWlq2fO+aVYgXdEi8cB/veSXPtZdrd3d1tZKcckoCsq/1hrRdZImN39ZyK8eiV16req2ZwredMTo1DgrmsFXWSSxxz8npUpsxzRcZKAWzXb73n+Bxj5vWWXuv4UmYfmZLzelwTf2FGrBOCTpmC2reefzIP9ZOMzyF5IzrGleLivPfqcdmH9Pw5svwRn3fXZM/yXnR9TZn4R56NaRvG2XnM2rcjGIY3GAwGg5vA1TG8tbYWnRNmZjykW8aE+6YaM1fbQotU7cuic/G4Tn0ljTOxzCPWxV6WnmMAKSMt1d84lRbG45JKR/1/L7PTWZ+Vhez50rm8iFsIWK9icown1XlkO2RCSfmn/s+YlxZx1Ws9/qdPn160yz6S3dRtk2gw4TKKGSsia3OLuFJhhXOg5XvqArdCUvRwosHsd1KS6e79TmnlcrmsL1++PF07HTtMma8u1p3GSLgYe3rucJHaeh+zT3vXgfsuvXd95Pk4woxS7I6qVGR89bPEYF0+ApkyMy+dZ4ueqmF4g8FgMBgA84M3GAwGg5vAq1yagnMJJhcSk1hcAWhKJhG6ZBkeXy4X59Lck09yoqR0jdCFkKh43SYFhF2adSp+pnuIroZu3yMp02yPbXWu4T1psbrmmVvnSqDrisXc9fyrnT0BcO1bkzsEut3lylTSRz3ex48fXxyXEmOpmFlzUL9LK4XXa4elM3TdurXmnKh7bUN9da52yoGlgmNXtkJ35/v37zftCzwPnVvqcrmsh4eHjXxbLVZOqe8sbXGC05ovXnd0j9c+8h7inLpnFPvIuXX3WCdR5j53Rd3JTenaTolVSTrRXQepDfes6mTH0riOCJonDMMbDAaDwU3gv0pa6dLpyRAo6qx07rqNS8Bwx62gdSwLTtYfGcBaW8ZAFsD0ZIeUFtwVYtLCFyjqmtqpfXXSTMKRonHuQ6RzUd8zeLyXYu6sz2op6xxSQowJIrUsQfuz3IXs3SV3JMEDJrPUfn/48OFFH/XdkSWMaB3TQnVMKDG5IynfvO60KntamXqt5/syiTo7SSkWaDMxKSVtub6m7z5//rxhRC55LS0P5I5NLwOTSjQOnq/6f2JPlOir/6e57STFhOS9STJiFfyuE6vmPZGWP+oShwR6ZhyDTc9P98zU3LrStj0MwxsMBoPBTeBVDI/sphNIZXo4FxZda7u44J60lLPskpXslhJhbEigxedSblMcLJVQ1M9o6ZBpOl96Klalv99ZTcln7/rI9PcUR3UMr7KPztJyfnpX9MribZYpVIbHgnPNpVLtk8Rd/SwV18pL4KTFFOdLIgIdWJDdxWn2ZNv0ffWYkMFpvnjdicHU+VQ7LDvgkkkujppEEVxJD2NAX79+PZxefoTV7rGp+h3PB58PfJa545Fx7xVUuzYEFytM7fHadV4UPitSwXv9P5UyCcmLVPdhW0cK+lNbFZ1c3B6G4Q0Gg8HgJnB3TdHe3d3dz2utf//fdWfw/wD/c7lc/sUP59oZHMBcO4PXwl47xFU/eIPBYDAY/FMxLs3BYDAY3ATmB28wGAwGN4H5wRsMBoPBTWB+8AaDwWBwE5gfvMFgMBjcBOYHbzAYDAY3gfnBGwwGg8FNYH7wBoPBYHATmB+8wWAwGNwE/hf30Xu0T8opqgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXuYbnlV37l+VXUufaOvNG2DCCjRUWNGx7uCmBGCInhDxYhKTNQYNWIm5slETcCQIUaRyYxxTDQqihgviZeBRIQZMaKOwXgZGERRubQtTXefvvc5fc6pqj1/7P2tWvV51/rt/Vaflqfzru/z1PPWu9+9f/e99/qu268Nw2CFQqFQKPy3jq0PdAMKhUKhUPiLQL3wCoVCobARqBdeoVAoFDYC9cIrFAqFwkagXniFQqFQ2AjUC69QKBQKG4FjvfBaay9qrQ2ttQ+7VA1prb2ptfamS1XeBwqttWdMY/OMR7COF7XWvvqRKr/QR2vtxa21L/wA1PukaW1Ffy+7xHVttdZeEq3j1trLWmsr8UyttZOttW9srf1Ga+3e1tr51tqfttb+bWvtvw/Ob9PvQ2vtOZe4/Z/VGSv/90OXqL7Pncr7+EtU3rNaa98eHP/oqZ7nX4p6LgVaa9/UWntna+2h1trbW2svWnDNqdbaP2yt/Wpr7fbW2n2ttbe01l7YWmuPVFt3HqmCC48oXmTj3P3wB7gdm4oXm9mbzew/fIDqf7mZ/SKO/dklrmPLzP7J9P+b5k5urV1lZr9kZh9rZj9gZi8zswfN7Klm9kIze4OZPRaXPc3Mnjz9/5Vm9rqH22iH/2Jmn+K+P8HMfmZql6/n9ktU35un+v7gEpX3LDP7Rhvb6/EnUz1/dInqeVhorX2LmX2Pmb3UzP6zmT3HzH6ktbY3DMOPdy691sy+1cxeNV1/zsw+38x+3Mw+dCrvkqNeeIXCow9/OgzD//OBbgTwv5vZ/2BmTx+G4b+4479qZj/UWvuC4JqvMrOLNr5Qn9dau2YYhnsuRWOGYbjPzA7GyGmj/mTJ2E0sY2cYhosL67vH1/dIYRiGc38R9SxBa+0yM3uJmf3AMAzfOR1+U2vtQ8zs5a21nxiGYT+5/C4ze8owDPe6Y29srd1oZv9Ta+1lwzDsXfJGD8Ow9p+NDGMwsw9zx95ko5TzWWb2O2Z21szeZmZfEFz/AjN7h5mdN7P/z8y+YLr+TTjvsTZKi7dO577DzL42acvTzeznzewBMztjZv/KzC7DuZeb2XeZ2bvM7ML0+W1mtuXOecZU3vPM7PvM7M7p79Vmdk3QvteY2X1mdo+Z/ZiNUspgZs/AuV9o40I9O537M2b2RJzz7qmeF9goKT5oZr9tZp+OcR7w9yaOcdDO7zezW6ZxvMVGSeqUO+fZZvabNkpa905j+eEoR3P8bDP7venc3zWzT7JRePpfzOx9Ni7mHzWzK9y1T5ra+nfM7HttlKzPmtlrzexJqOeEjZLtu6d5evf0/URQ3teZ2XdO9d5jZv+nmT0hGIOvNbPfN7OHpvn8t2Z2Hc4Zpnr+7rQ27rfxgf1RmCOO/49Ov/0lM/u5qW8Pmdl7p3neOc59FvRBff5bM+d987TW7prG5DfM7Nk4Z8fM/pmZ/akbkzeb2adOv7GPg5l9+3Tty8xscGV9sJntmtn/ukZfLrfxvvmFaT0NZvZ1l2Kckvo+bKrjRcnvd9r4rPkGM3vn1J9nTr/9i2m93z/N7S+b2cfh+s+dyv94d+y3bWS9z5nW3tnp87Nn2vo9wdg/MP320dP357vzf9bGZ+On2chsz5nZ283sfzSzZmb/yMZ7Xs+da1HfSRvZ/DttfD78mY1ahBMz7fzsqS2fguPPnY5/wjHm6Vuna691xz7dzH7FzO6exvCPzewVx1oHx1w8L7L4hfc+G19gL5wW8RumhePP+ywz27fxwfScqaz3Tte+yZ33GDP7w+m3r5mu+24z2zOzbwra8t5poTzLzL7dxgflj+IG/zUbX4YvnhbDt9l4s7/CnfeMqbx32Si1PsvMvmlaRK/COPyajTftN5rZX7NRxXiL4YVnZn97OvbDZvY5ZvalNr7Q3mVmV7nz3m1m7zGzt5jZ8228iX53WqjXTOd8pI0Cxe+b2SdPfx/Zmatrp4V8xsy+Zer3l5nZv1Pd01ztTfP1PDP769OiusPMHo85vs3M3mrjS/lzbbyx3m9mP2hmPzKNw4ttlNz/hbv2SdMY3OLm/m9M8/5HdvRl9hob1813TuP/kqm81wTlvXs6/7NtZAx32qrg9M+n618xlfc3bBSifsvMtt15Ku/10zg8f5qjP7bppWWjyu59Nj7INP4fOv32ThsfOF9kZp8xjeOrzezkce6zYC7V56+1cT0f/OG87zWzr57m+tlm9n/YeM89053zT2x8gH/T1Nbnmdk/NbPnTL9/2lTXD7l+Pn76jS+8r5zO/atr9OXLp2u+yMy2zezPzezXL8U4JfUteeHdauO99SU2Pm8+ZPrtx6b2PmMap5+z8XnwVHd99sL7MzP7f2285z7bRrXfQxYIZe66J5rZT9j48tHYf8L0W/bCu8vGZ+9XTvW8ZZrff2njS+6zbRQOz5rZD7trm43q8fvN7H+e+v33bCQOr5oZ078/teUqHH/KdPyrjjFPr7Xx/mrT9xvsUDB6jpl95rS2v+9Y6+CYi+dFFr/wLmIR3Gjjg/QfuWO/buND0rOqTzYwFTP7jmlhPBV1/+C0OHfQlh/Aed821f2Xpu9fMZ339OC8C2Z24/T9GdN5fLl939QeTcQzp/NegPP+k7kXnpldaSNj+mGc9+Sp3he7Y++2UYrx0s3HT+X9dYz1mxfO1XdO4/CxnXN+28aH9Q7ad9HMvjeY46e4Y8+b2vdGlPkfzOxd7vuTpvM493qw/k3c0C9Bed8+Hf8YlPcmnKeb8GZ33p6Z/WOcp3o/3x0bpnHwL9/nT8c/FfP0apR3w3Te845zTy2cS/U5+gtZpI22uB0z+7/N7N+7479kZj/dqUss7yXBb3zhfdt07oeu0ZdftvEhfXL6/t1TGU9dWsaaY7fkhXevgf0E523byIj+zMz+mTuevfDOmdkHB3P4d2fq+R4zeyg4nr3wBnOs00amPtgoMDd3/N+Y2f3uu1jaF6Ker5ubDxs1OrvB8Wuma79lzTn6wum6b3bHnjEde8o6ZWV/lzos4Z3DMLxTX4ZhuN1GFcATzcxaa9tm9glm9rOD0+0Oo0793Sjr2TZK4O9qre3oz0bp+3obmY7HT+P7v7PxZv9EV957zOw3UN4v26hC+2RcTwP6W83slJk9bvr+KTY+SP99UK/Hp9jIVn8C9d5ioxri6Tj/N4dhuBv1mk1jeAw8y8zeMgzD70Y/ttauMLOPM7OfGoZhV8eHYXiXjcLJZ+CSPxqG4U/d93dMn6/Hee8wsycEHlec+1+38eEhBwONx6txnb6zPf8R3zlez7RxHXD8f8tGqZbj/4bhqN1m6fifsVE9+M9ba1/TWnvqzPlmNt4Tvl0LPdReZuN9dPDn56619gmttde11t5v4xq9aKNk/OGujLeY2XMnj8tPa62dXNLeS4HW2uNtZJ8/NQzDhenwq6bPr5y5tmG8ti9h034V957q/JzW2q+11u6yUfNw3sweb0fHM8Nbh2G4RV+GYXi3jezpuPdzhtuHYfgd91335S8P05vDHb+ytXbN9P3ZNjKo1wbPRbPRsegRR2vt42w0g7zOzP4399PbbTTt/Ehr7ctaazc/nHou9QvvruDYeTM7Pf1/g40vl/cH5/HYjTY+jC7i72em36+fuV7fH+/K+5CgPBnYWR77cn76VF8+yMzuHlaN2lE/zMzeGNT9l+fqHYaB9a6L663vwXetjWqN9wW/3WZm1+EYHwgXOsd3bJSIPbK51zypPrbnNvwuzM2Txv+PbXX8r7L15z3E9FB5po1S/cvN7I8ml/uv711no9edb9NXzZxvZvaeYRh+2//ph8lh4I02ClnfaKMg8Qk2qqt9H/6pjez/82203d05hQ9wfJdAD/QPWXj+V9j47PmF1to108P3z2y0+c+5pf9NOzpef3iM9mZYuQdaa59uo8rv/TbOzSfZOJ7vtGX35Nwz8VJhnfvS7Oj98ZipTX5cJdTy/mCd25OHrofWUNT3FbTW/jsbNQ5vNbMv8S/oiTT9VRvNOj9oZre21n7vuGEsf9FemnfaOJiPC357nI0MTDhjIzv85qQsLvTH2ajD9t/NRr28ynuXjfr5CO9Ojmd4n5ld21o7gZce+3Zm+nwR2ifcv2a96+JOO3yZRLjbRpXBTcFvN9nCRbsGsrn/vel/1XeTjS8D3xb/+1Jo/J9lqze///1hY2K+Xzk9sP+KjS+c72+tvXsYhv+UXPZcGzUHwrseZjM+x8YH2BcPwyAhQUzet/WCjS/ml7fWbpra8b02Pgi/fM06f8VGG+FzbVSdzkEv9WxMPsPyUIift8O1YjaaGS4VhuDYF9uo6vzSwXkNttZ6L4JHE87YeF88K/m9JyzrefZRdtRzVNq3t89V3lp7io0C2q022o/P8pxh9Pr9vNbaCRsFju8ws59rrX0EtE2z+At94Q3DsNdae4uZPb+19hKptlprn2Sjbtu/8H7JRoP6e6e3/By+xI7ebC+w8Sb8LVfeF9no7fQOe/j4TRvZyxfZUTXmC3Deb9j4UvuwYRheZZcG521kJ0vwy2b27a21vzIMw+/zx2EYHmyt/Vcz++JpTvbMDpjCp9rouHMpwbn/NBtjpH5z+v0/T58vsNGLUNBD+E1r1vcGG9fBE4dheMOxWryK82Z2WfbjJKH+Xmvt79nISD7akof7MAxvjY4/DFw+fR4IYZME/UmWCHXTi/EHW2vPtbGtNgzDbmtt3zr9dNff0lr7cTP7+tbaTw5HwxLUhs8fhuHnW2ufaGYfYaPX8M/gtNM2sqmvsmSeh2GQ1/RfFC63UY158DJsrT3PVjUNlxrnzexEa217eCTc8w/xSzZ6pm4Pw/BbcycDb7Lx2fbldvSF90IbnZD+a+/iSbX9xqmMvzbMhKRMxOLNrbWX2viC/nA7ZKKL8IGIw/snNj6Ef7619q9tdJl/qR2qrIRX2ujN+GuttVfayOiusPFmedowDJ+H8z+ntfbdU9mfONXzY86m+BM2euf9X621V9jo5XjSxiDH59novLAiXWQYhuENrbU3m9m/bq3dYKOK40ttemC48+5rrX2rmf2r1tpjbXzw3Wsj6/oMG50uXrO03glvN7O/01r7UhtZ0P3DMGSqnVfa6C34xjZm43irjarlzzOzvz0Mw/02Skyvs1GP//02Otq8dGrnK9Zs2xyusqNz/3Ibx+7HzMyGYXhba+0nzewlky3hN2xUy32Hmf3kui+IYRj+pLX2XWb2fa21D7cxzOAhG13pn2lmPzQMw6+s2Ye3m9nTWmufa+O6vdNGVvUvzeynbFSfbtvI6ndtGeu5VHiDjXa7V0/3zc02zuV7/Umttdfa+ED6HRvVRR9n43h8nzvt7Tba+d4wnXPrMAyR6ttsFE6fama/0lr7ARsfZA/aeH+90Mw+xkZ29lU2CiDfNQzDe1lIa+0XzeyLWmvfsM79+Ajil8zsb5nZv5nW5UfZ6M3I59WlxtttVPv+/dbar5jZxcwO/zDxOhuFjNe21r7XRpX8lo1Oa88xs68fhiFkecMwnG2tfaeNduvb7TDw/EttdA46sNW31n7KxpfaNdP3q2x8Vj/OxjXxlIntCW+dhPEvsVH4/UUbCdFjbPQivXtq63o4jqeLdeLwgnPfbS48YDr2ZTa+wObi8K618YH9Lht1z7fbGArw4qAtT7fRdfUBG9VeURzeaRtd3BUDeJeNxvuX2KHX5zOm8j4r6fOT3LHHmtlP2iihKA7v8yyOw/scG1U/99noGvxOG8MUPhJj9epgDI94y9mo3vuPU70rnorB9Tfa6J31vmkcb7HRSaAXh/cLlsTh4diTLIgNm8b0wHvQVuPw7pjG4XVm9mRce9JGx4z32MhU3mN5HB7r1fxx/L/CRin0wWmN/IGND/cnuHMGM3tZ0r8XuWMfYeM6PDv99qPTGL/KxhCLszaurV+18SZ/2N5lvT4H5+n+eshGu9iX2Oj088funH9go/bjrmnO/9DM/rEd9dR9uo1efuetE4eHefumaR3dN621P7XR9vKXp9/PmNnrO22X1+ALL9W4TeUuisNLfvsH0xpU0PfTbHzYvtadk8bhJXV13ept9HX4oencfVsQh4frr5zO+4c4/o3T8ZvcsR0b49/eNq2Ze6Z5f7m5WNpOW7/ZRsFbsdJfHZzzs+oD+pH9ffx03sdM175natv7bXz5pV7nvT+52D9q0ca8bT9io/vsH3+Am1NI0Fp7ko2Cy9cMw3BJ8hcWCoXCOqjdEgqFQqGwEagXXqFQKBQ2Ao96lWahUCgUCktQDK9QKBQKG4F64RUKhUJhI1AvvEKhUChsBNYKPL/iiiuGa6+91vb2xsB/2f+i1Hc6ps+tra0jn/4ansvyltgZ17FFzp3b68+lqmPpOXPXPJx+++/6X5/7+/vhdz8OOzs7K5933HGH3X///SuDdfLkyeGyyy6z7e3tI9doPfj/uWaWQNdsqk16yfpcdw0vLWOuXK4lf0zPkv39fbvvvvvs3LlzK4VdffXVw4033nhwjT4jHOf++ECtGdZ7KebnkSwvKnPJs7/3fOe9zvJ67wv/fLjlllvszJkzsx1e64V37bXX2jd8wzfY3XcfTUnoK1ZjTp4ck6+fOHHCzMyuuGJM5Xf69JizVA88Mzt4COoafefDVvDfs5euvkc3Bx/uLCN60GYTksHXyzZk9ft6sxePf0BEv0fH+DLY3d098un/17Vnz45JLi5cGHPNPvjgg0fKMhvXg5nZ4x43pse8+uqr7aUvfWk4Hpdffrk97WlPs2uuuebgXLPDdWFmdtllYxarU6fG1JJaBxx734bsAcc+94QzniNkAlh0zjoP1mi+55C1YR1hc+54r3x9ak706cvhd11z8eKY5eyhhw7TXmp93XvvuOH1/fffb695TZxw6MYbb7RXvvKV9sADDxwpL7rHOMY94Zz3UHQv+WuiOZ57HkTXzD1/IsyRgWhNZS+PnsDg5zWqN1sP/n/Vo2d/JBgLutf1HNA1fBdceeWVB9dcfvnlR64dhsE+8zM/M+2TR6k0C4VCobARWIvh7e/v2/nz51ckIr2VzXKpQoik6UwaI6JrKZVRulxH8u5dMyeNZYzC/5apZHpj0jsnqv9SQVKYGJ4kLS+lS9I+f37cQUfzl2Fra2tFtR2pNDP0xilTvS5Rj2fz0WNAx1GhZm3NzvP1rMPw+JvqicacyO5XsoOeSYKI1NdUbff6MQzDkbXV09qwHz2VfMZ0s3UctTEz1URznK0zfvf1Z8+ZbLx694bKZRv9vLDv1LZxfUTaNr0PqLaOWKF+k4aJDDNaq1oz/tylz79ieIVCoVDYCKy9W8Le3t6B1B/ZvPiGJiI9+RJ9u7+2V14miUSS3XHamElHPcmL0l5mY/PSFaW/nt49QyatL7FNZfPo2yVmp8+LFy92GU9rbUUijqS0TIqM7LKUItdxBFDdmUQ/15eorb16M9vNknqzuewhs7esw/iWgGORrTNvu9H/YgNbW1vdudrb2ztgAWQMPahN0TVsL48Tke04u/97LJ6shs8/b1tn3Zm9tKeVYht69z/v++y5F2k42I/oHo/ak7XflxFpPXz5xfAKhUKhUHCoF16hUCgUNgJrqTSHYbCLFy8eqDR7KpHMUYN015/r64nKWkLbM+odlUewrf68qN3ZuVm5mdqtp+LKfuupOOdcl6PzqDrIVJr+Gqle5Mjy0EMPpe1qrVlrbcV1OVJpZuoNjV/kwMBwjSVYqo7sOTpk6rtIBTPnjt5z+snmv7d2ei7kvg9+HDInkp6zkTDn0u5/Vz1yP1/itKLnjpylonnJQpqWhG9kc9gLh1lqwvHX8DtVm5FTXtamniPM3H2/RKWt8tXPbKyiY1T3soys3R6R4xjPPXHiRKk0C4VCoVDwWDss4ezZsweSVgRJbELmsNFz1xV6rv7EnNNKVG72vef+njnS9JwKaGxf4o6eHZtruz+WSZQRMkN25t5tdtRZRZ9LnVZ67uiUasl8vFFfazFj0T32lDGenhSbMdQl2o7MiaDn6q1ryQJ6zJZ9z9oWSc9ZsD/L8A4oqtsf84gk+yg4uedqv7e3d2SdsT+Zg0TGOvi/Pycro9e3JXPb0yD54/4eykIJWE/kgDXH7JayIn8u79tIUze3hvw64Tlc1zzPo8cYMxTDKxQKhcJG4Fg2PElYDDQ0O5S+dIwSduRmOmcH67lzL3Upn7MRRG1bxz2cUrVnIVEqJH/uEgbLa46Tlopj0LM/ZK7fETuVDW93d3e2D0v0+Vk6NX16DQPHNrLzRWVGdZMlUFI1W02PpPLIbnpp4taZu8wGzvRwvr9kuXPMNeofpfHMHmN2mC5wiT1O6LFoYhgGO3/+/MFcR7bwbG1nIUAevTy/GY6T4ILXsh8Ru+Ga4bru2faXhk71nnNz4RARw8vWd1SP5olpyPgc7dm3i+EVCoVCoQA8LC9NvbEl4ZkdShjUs2fsxp8zx3gi+1/G/hi8GUkiS+1x0bk8TinNs5C5oOie9DnnWRextDnvrCWMci5NmL9ec33hwoW0THlo9tgN7VFkMxHDY19YBn/v2Y4lXfLayF6lT6ZEWpKgl+h5XGZjQY9Fffpz5myFUcovSdpMD8Vzl/Svp2VZGuytus6fP7/y3PHzkrHWzMvR/5at9R47zO5ZMuDIHjtXT4Q5z95eXzIb8RLWS5bIdeDbTK2NzhHzj/pJ26OSSPO55vuldaBk8+ugGF6hUCgUNgJre2leuHDhwGYTecDNedlQgjSbT2dDD6GoPn5K4pW0u04cTmS7mYvvIbOMbHhkZZnHle8rGZ3GLdqmhf0S1BaO3xLpkzr2yPtUElyP4aks6uij88meJNFF9rk5u0tvjMkC5mLdomuz+KQe5rxoIxaS2ewi7UGWtDfz3oy85pjcuWfvzTyxPetkPUQvtZhsePRU7TETev3xeWC26uHLcpcwrsy2xe1t/G89mx2vyezZ/C5EXppco9QK+HnKNEeZfTsCn1naCkpjom19zMzOnTt35FNt1tZjUb/0/uE2QUtQDK9QKBQKG4G1k0fLjmcW66kpAci+pw389Fb28XqUIvnZ84CUZECbBm1pS7w02Z7I006gjZASl7czKV6NUrMQealS2pcUw6S7Gt8o4wE9uyghq11mqxIWN+XlNkH+mMrvxeEpBo99781LFmsUbTrJdvPaSJrW/2T0lM6jDCHcpJbemz17T2YHi2zImbYj84L2bSLD47WRhJxpFHrxmGwrs3NEWhaO0xwzHoYh1a74dgpkL1qr/r4VU+AzI7NPRptWk13Qfsp2ma0+I1i/n396xJPp9+KbdQ7ZGTU8kbaNmqTM0zNaq7xG4yabW6QlYj8FbRQdaaM0f5dddtliL9lieIVCoVDYCNQLr1AoFAobgbVVmmarRlCv8hFtlbrkmmuuMbNDd9PIaUVqOV3DT6qpvLpQtPaBBx448l0qOh3Xpz8nc5tW+ZGRPTPQ9wz2VCUKNHhHqjONp1TCGkcG+/rxpHs9DfZUI5gdqmY0NryWKjuzVTXU3t5eV7Wws7OzoirthYBEquXsGoHqqF6gLtXSqpcqTT+2VPVwPUf3RFYP2xSp9+h8sSSInarLTO2qNeTdu7OdyJeoMjNnDAbp+3KXJDDOrvXzQocMOkNIfR8lreAayZzkeirZLAFB9Bzg/cd2+HpoNuB9ma2LqF+ch8g5R/PPBN1U70cqTapMs/0XPfTc0W+ar/vuu+/Icb0LfPm6T0+fPr04DKgYXqFQKBQ2AsdyWsmCEc1WmR1Zmi9HoMRGhwyxGtUTOVvoXH0XU4mMxpSwKUWprF74QxbwHrmyc5zoaKJz1U+zw3F7zGMeY2aHxlsyvMg9OHMLz1IZ+XLURtVLqTRyYV9iMN7a2rLTp0+vsCdfntqXOUrQkYJ9iPqaSbn+2szRgJK+/3/OHd2PScQufH0ZO/CItsSJ6vf/0xmMDjdaQz5xROZu3ksNyHkTMscuD9/GXljC7u7uSht8+XfffbeZrTqn8HsvFEe/aXw4/1HSgix0JUqAkSUCoMOGv2/poJM9f3qJIsjs6cwSaW34rKK2gP301/K7zmEYiG8DP/Ucj8JidEzP+LlwKI9ieIVCoVDYCKydWmxvb29F0vY2ADEQHWMoQeS2nUmelHgz6drsULJ+8MEHzczs3nvvPVKvl4DEPiVp3H///WZmds899xy5JgpopMt15vIfuevStZdsTazKH7vuuuuOtJnhHWQpZoeSVCYl6Rr9bra61Q9TSular0tXQOkS6aq1Zjs7OytJYn14Cm2NWZiKl/ayBAdZ8LBfd1lge5ZMwIOSLlm1Xzv6n2Mb2fvYxix0oZc2jFI6Xei97cPs6P1L+w7Xe6Q9oOYgStxAZGw+gkKhyNK0/nzdKo9zK/ix5VZmfFYs2X6GabO89onXclzImtSfiK1nWxllaeR82/jc1LxrPfi1ynGUZolriqzNg+u7lyQh04wxdMo/q/QMWrLxNFEMr1AoFAobgbVtePv7+yuedl5SkhRBxpB5jPn/acPLtibx14olkUVRqvVSjMpnElJJCWfOnDny3ZdL1pnZ8rykR525xktsTczO2/CuuuoqMztkdjxHv5PNma1K51l6Ii+dMYBf7fdb/5gdZSMMSp/bwmNnZydlUb4OIbNBZeWbra4djkGUeinTHES2TpYztyGsPzbnaRmxHNaTpTJbknhcYBKBKAkEWQg1Cb6+bN6X2CQ968hY3v7+vp07d+6gHjEh3z9J/dS40Jsw8rgVmBCgNy9z9xjP8//zOUZv0J4Gg4yYTNavVT3z+Oylh3cUUK9notc6+d+jdaBjWeLxiIXRXq5+0PvcP0/VNu+hXwyvUCgUCgWHtRne1tbWyts3SpRM9qQ3uJKCeluQJA56KWVJliPPILIWShdRzA7tUrRx+H5lUqxshr3k0ZSa9Cm2FqV4Iuu86667zOwwnlASTyTZkXlTz04PLF+3pGevHzcEbyujAAAgAElEQVRbjRny/fLMcS4Oj1JtlLiWNt1sw0yzPHZO51LT4OvLUlWxXx4+jZo/l/aRCPRwzFibl2ZpU8s0DNH6ZPs1t+yDXx8ac60/buoaJW4mQ8kSa/v2cD3NxVaePXv24Fzdc14jImRxa/T09u0TOC/UOPW24mJsXY/NZDF8TFdndni/0w7mPRTNVm2HZqtrMvIC9ef5c3zcstlq4ueex63A+6hnbyS7Vr/Udt9m9dUz8SXbmZkVwysUCoXChmAthtdaOxIvE225IclAkoB+k72ql91B0fV8u0syijKkUEevc8hyIhsHpUC1Uf1Se8wOPTlpw6FNirE8ZqseiUyoHWUd0RiI2TEB9W233WZmh1K7l9JvvvnmI+WqH7QleduN5kP9pBdWxFwzaTqCbHi81oM2Tkqmgm8DJUNKwBofSrVqkz+X6y3qT+atJpAlRMhseFxDvq9ZNpZoHNlWMkd9aqw0575uxoHqexTXmtm6eh6znLfIE9a36dy5cyvn+DnlOlUf6fHtGbjaQJbEZwbtVv6YyhPr1HrTOEU24ywhvO5Bz9bIyrm+yfS85oxrJMvAE7E1nau1IW9NtTVKxs3YXZ2j55zg+8f7kmww0gDQfri7u1txeIVCoVAoeBzLS1NvZUkkXspU/JtsdXq7037lGZCkPF3753/+50fKEGMRU4myfTAXpCQj6e69vl9toOTGWBrF5flzJHEwRx+lXC9xqD61W23JvML89fQ+pc1QY+Ilydtvv/3INX/wB39gZmY33XSTmR2Oq69P46f5UuYKMnUvkXFLoTlJa39/P8zYImSbuZIRaY6ja8kyaCuK8odyziS1M6+oPzfblijy7GTMFJlxVkZ0Dsctsn2RKTODDBl5xK4yW5EYhL+fsk1DhR7DE3qMuLVmJ06cOJi7yE6aZbOhzdiPn8rTWlcZvD+i3J1kkPp+6623mpnZ9ddfb2ZHvRzntoPqbbcmZDbPyOOSbJzasCgrEO893eN6Lqg9eg75jVq5RvUc0jg/9rGPXWl7FqPHnKj+GmqodnZ2ZreXEorhFQqFQmEjUC+8QqFQKGwE1k4ttru7e6DeiNQpopui9Ex6HBnmpQ6QauHOO+80s9UkrirD03wa5kVze8mjmayZLv5Msur7ypRIPDdSgzH8QJ+k4dFO3lS7MhhbKpWeGkSOL1IZP+UpTzGzw+B1f73GgoHmkbs1t3/pqTS1djK1jq+TjgccW6/S1BhSVT63JY9vP89hkLLvU5YMgQG0kUpzTpUYOS8xmHcu8YH/n+3PguajQGcmlta9Qacwfw7HhuEeETTHS1RSqjtSfbMufTI9oE/QoD7xU/cJVafRNmjZ3MqkEjmvZWpK9U/qQrNVFS1DJhjUHZlS1EbOaRTSkpkG+Nxj2WaH40dTgfoTqcPVfppH1E+NiVcNL0ldl6EYXqFQKBQ2AsdieAxG9hKLjJt6U9PBIAp+lBSrN78SJlNiVJotLzVJwuC2QDQEe6aXbT7KtEReSueWPiojC0/wiW0pBfJ4ZFDPXLA1RpJ4ON6+XDFlGZbJlCIDvqRbBiXrmsjNOuufh9ZOxLiFLH2V2sBtVPwxgYZ/fu/Vz6D1SNolo8qSH0fjRAbL/kbB62QFGbOMpHSyHjLXaBNPJpVg+rHIeYltYkqraDsfOn/1nJ2GYbDz588fCZ8wOxraFG3p5dsvRPe07g+Wz1AgX5/mRexF46H7kqFbZqtOREyjpe/+2ZGNpertbThL7QfXUuRARqbNcC9ux+bvJ7WJbes5LPKZlIUj9DQAS9OKmRXDKxQKhcKG4FiB59y40L/luRGrGIPYWbTNjMqTTYlu3Apm70ncTK1DHXOk71X7da0kEwZqm+UJXsl8JL1EiZn1qXAHSYNRWAIlG9rS1NZIn82g0BtuuGGl71kb6TqveiL7QpTWbC4AtJcmLrMxMfjag+ySW6xQMoxc8Dm3tFFHtiLav7LjvjzOS+ZiHiU4jtZI1D9f7tJretu1sI1kh/7czN7Y26R4ScDw/v7+EU0RtR2+DjIFPTuY5MH/zxRiKqO3nRaTFgh6rkXPqoytMw2eH5NMI8HQmShZQvR89vVHW/yQ2fNaBtZ7ML0fbYYcG7PVpBxcd6on2h7IJ+6uwPNCoVAoFBzWDjzf2dkJU+0IDPDlBn7rbEnP7d6jLWoirziz3E7n26Zyxeikw9d3L8UwZVgmoUa2Im6aGW1qSGTbzkRpz/zvZqt2RUpPbIf/n96YZFe+zUu2UREUPEzpckmCZgalRomLmaiYazPaHkbIkjizPR4cSwbD+vmg3Ys2PPbLS9zZJppkn1FgbjYfvW17OJfUMERzTc9IMsxoe6eoH3Oemj07aZbmjh6/EZvN2AzL8vVRE5K1PRon9p1bfEVl0RtTbaUvQbQO2GYyy2gcmciabDAak2wbL14bbQlGfwbeG9Fm1bRVL0ExvEKhUChsBNa24XlJrBdTR2mJCWsj76VsCxJK7T2pgl5NUQJiSQvSR4styd6oerxXFvX6lPqzlEZmObPidkTRRqMEpRqyVd82ejdSwow8O+c2je15ki5heL1tZpjiK2qnWWwT4rFsKx4PtoHspbcdFce/d09kzC5rj/+dDJbXRuPIvvZsdgS3aCL75dY2EbJNdyPNTLTFGKG1w7Z5cFNb2qJo4/XXkM3y3o6YEO+xbPPingekrtXzJ0qd1otr9f1kvVF/su17PLhWuQ70e7QOWD4Tdkc2Xa4VarSi7d041zs7O2XDKxQKhULBY+04PJ8AOLLHZbY5bmPi38i0D8xJ3lHcUJQ81Ww1Ps9s1StTGV70GWURoOQYbXHvv0dSjKRLSTy9jAG9ZMT+eJTYVsgSHUfJfAXa/Xoef5yvpR53vg29c1guWdSSOmkbWNI2MpMoeXQ2/vT4NJtndj2bIdcIy+hldsliqnrb9mTxfjy35zHLcezZWDxzzdaEvMOFiNUyPpaansjmRA1CzxuY/WCfaFOL2BPr0zNJnqTRM4zH+NyhbTqyHWfPiIhx0T+DNlCe56/l+mLsZjQ2nPPMw9d71y6J+81QDK9QKBQKG4F64RUKhUJhI7B2WMLe3l7qim+2qtJhKrEopIHqiMxNPFKnUA3BRNDczdi3TaqEM2fOmNmhikEB8L6N2b5amSt7pCaiswwR7dXWS43k6/H1Zw41NEj7+rKUTHR3jlQmS1WaXh0eBTBn6jP2I6pnTl3bU6GyXKrqo8B6hs7Q8SoaW6pqe3vA8dosaTXbFdWThe5EY5KdQ9V6dO066k+Vo36dP38+XT9yWtE9ETkzcT1lqtko+TnT6AnRvSVQlcgwqGjtcGxlUmFIi1ff8fnC+5C/+7ZmQeucy2h/UToIRc6Gviz+78unajUyEbB/WYo73yY/BnMhLQf1LTqrUCgUCoVHOdZ2Wtnb21uR+j0TolQniYCJf3uB0pReMmnN/0/pgQwvYoVieEr15VMVsV9MHs020agcGXPJ8Cjhe+mJjHgJkxQ4nmR2/GTd/jvny9dP1+WlUpZZzBiZgFvIWEb025wbd3SM5WZJnf3/mbNKtPVP5oRDR6DMQcmXz3HrBRxnAejZVjpZ3dG5UThJNhc9Bxev8elpCLa3tw8Ynu6fnrNNFiITpSXkPcwxiMrMQiSo9YgcrHRvqR/UbEUOGnMOQNG8aLx4bzPMK3LOyxyeVGbPcSjTzEVtn9N2ROEdnOtTp04VwysUCoVCwWNtG55HlLA0S5uzZKNHMSBKZz2GJ2RpdCIpV21RwCcTP0e6bYH2xmgDVtZH9idmqeNMoeX/p4QzJ037a/nJwP0opZCgufA2FtaT2YoiKKRFiMI3smTKrC/aemdp0uqePYl2l2jtsN0Zs+uFJWRSehToThsKx1jrsGePZT/WYeIEWRH/j9ALnfBpp3o2vK2trRU3d18ew4bWSXtHZHbKiNVSC5CxdrPVxO9MVxiFJdAmyON8tkRrNUsezfRovi20qWX3erSWqKmjzTXSfnGNZCFp/jfPiJfObzG8QqFQKGwE1mZ4W1tbK3YlL0Hwba43dpZyzJ+bSQR8e0d6+DlPNC/FiGFJh84t6aMNH7NAT7ICpivy5ZNJyHbot0piv8jsssSsXgKcYyyRJyHLYaqkbC78sa2trS57iNrokV3bk94y5pbZkXoMdYl0ye1MBHq++rFlGjK2hYkBepvsClyHflPNbC6ZnixifHNbCfVYIllvFqTvEW3qG8Hb8KItY6ilyVjFkr5GGhCC63cumbzZIbNjgmZ9cqPWqG30UNT3aIwzbRAZUuTBHnlHevTs6VlgeG+Os2T1kSaInpzDMFRqsUKhUCgUPI6VPFrgm9ZsVeLwOnqzQ1blWQ0TsVISpBdgz9snk8r8xqXaBkjt1uaQkmrkreml5kyvzzgcIYqHUT2UPrnVj1m+sWiW/qjH8LLtdTyLY6xgxrYi+1IW78Pr9vf3u2mnMvawxPY05wkZSeBZ6jJK/tGmoUxHRa/gyKZG71iy9khK77XfbNVL1OzoujVb3aQ4k/j9MbJA3oORDS/77Nl5mHw7gmx4OkfPDj8vfM5ktq1eTF3GKnpehgJ/E2uKUhrK7i9Gp+9R6q1sjbJtQi+xvsa6pzFjHDO1X1l/o/Ky+zi6Vu3WM5KaFD8m3LB3HRTDKxQKhcJG4FgbwFJXG0kkmS2Nm7mqTH8OPyO72By4bYe34UlCVEYVlSuJS5++PsayZBJ3tH2QzpG0cvXVV5vZaiJqn4FFY6K2zmU1iTxlMxtVj+1kUqAQMdcsuwmva611N9XMskqw7sizk/2Ys+lF9WTewNFYZJv5RnF4ZIMcYzIvX1/mcbvEk1jzw7kl44/mbZ3E4Nn48dOPCTcS7dl/h2Gw3d3dlXUb+Q7QJkhbe3RfRnM2h2wMVYaYnX9uiMmR4ekzsjPyWThn44qeA2REXG+RHY7PT9plI2QxdT3GT0/VJfUcJ+73oC1rX1EoFAqFwqMQ9cIrFAqFwkZgbaeV7e3tA2ocucqTWjOYOFLBZI4YS5wXSJ/pPKB2+F2Er7nmmiPl0cU7coCh40FPZcpraQBWPVJtqj7tuG52qN6kSzlVGZEKOQtL4FxEDiPZrsjR2HOclqicqUaJnIwyg/ycY0PUTl4TBStzHfSSOjPRsJyhpMKKnJsYlhDtAO7rj0InGGxNlV0UrMwkCVw7S9zuM/VutIdaNn69fQV9n+dU4ux7FC6iY1m4QzQvTBawJMSAqkxdKxW3Pr0DEZNVrOO0koVBcA4jdWimUuw5/+mTTmy9e4XriurW3juA92umJs+uqdRihUKhUCg4rM3wdnZ2VrZC6UlaAqWJKJAwk6yEKKUQJawsaF3urv4Y6+kld2YAPXcA7rn8KwxC0p4cUSThyXnGS2sqP5KOfX09ZwyCzLznWjznLOHrzBLOsr37+/vhmhGyPvbSQ7EvWTqoiDVm7IX1RCEGYnT8zAz3/trM0SEaR7JDOqREKceyXdKZTDhydMgk7ex4hIxVRdqBuV3GdZ13lovYDUOkGOrRe7Zkz59MU+LPYaIB9icKF6GzCp1ZfBvJPrMxiEKEoiTL/ng0FrxfWF+WkDw6liXN8PcGt0RiP6K1w3tgHeeVYniFQqFQ2AisHZYwDEM3/VBmz1mSxDWzU2WJc3vlqyzazcwO7S+SyiVFkVV5u5/KpY0wS+589913H1yrctUmMbrrrrvOzGLdvU9rFvVLiFKBLQ2+7oUy0M27Z2vzkmTPtfzixYtd1kbGkbG2nj6fUutcqiyz3M05snUwPIXzEYVO9OyIUf1RULegNcmEB55JROvJbNWuHdWXsbNsyy7/f3YvRCEBGZuP0Nq4AWzGOswO5yViEVkbsjAotols1JfD+4MbHHsbHlOJMVwgSsbPAPosHIVatwhzYQP+/+z5zbUarQOuh97ambMvRm1esplAhmJ4hUKhUNgIHGt7oCWeb8KS9E08lgW76rzII02glBklSJWN7s477zSz1WB4XRPZ/bjFB/XykvTOnDlzcC3Tg9Heo1RmflzV/iy1jxClh+LGjpn9wl9DaTxL1ebLoMQ9J11evHhxJbi3p5tn23rJjns2zayNmYTPcYtsDpR46eEb1S2GlQWaR5td0kYj+6+YntaOT7PFxL9Z/6KtjDKG3POam9uceEmiA8/+I8x5AHNMqWnq2R6zZ1PmGcv//TlCz65NdqjPKGVWdr9knrFRYgg9b7T+uM1S5I2e2fd79mYh83LuMbKMFUbzts5zZ6UNi88sFAqFQuFRjLUZ3vb2dsrIPGhTIeuIGB6vWSKlUeKhlEwvN7NDdkaPS9qQtI2Qbwvj7uilF9XHdGM6V+WrD95mSCk903FHOvcolVMEf01vc1izfqLhSDefobcxL5HF4ERt4G+Z1Bexw8x2F30X49ZcaZ7FvHo2VXpJkpXQPufBBORa39GWMtSEZDa7aAuYzAbfi4cilqQjY31zNrytra0V22BvQ9ksCXbUTtqMs7i8aFPfLHYvYkpcG3xW0D7sj/Fe5jMlsu1xHbMsxhL7/+nPkNlEI40P11Dv/s2e7b17kM+inrc5UQyvUCgUChuBtRje1taWnTp16oChLJHoM9vKEo+tJVJlxuwye4IvTxI3t/bhFhn+f0rnWcYD32bq5lUfJXn/nTFzlGB7Hma0J2WxPFFGj8yjc4nefYmXJrfIibJvrMPaoliyrH4i0ywsYSaZHSFKREzpnN6S3EjZrwPaCBlLlXkl+vKJntdrJo3PZbBZgp4NbA6KxTPrx9TxWI9Bcq44L7x//DzqOZBlQOF2aGarc8UsOfQ09eVl3qC9e5rJyvmdWilfDj3ms+dAdC23ZKJ/QLTesnuxh57tOUMxvEKhUChsBI61PRDjRSJpL2MikdSZxXzQnhTZijKvJTKuKMaNkrekZ13rN42VpEaPJ0prURvF6BR/R3tPLz+hsHQbHH8s2zS2lys086zrzZu3CfUk/729vRUG6THHuHpeXlxf2ffeWmXbenYYek+yrX7+qHVglhTa1CIbXuYt2bNr97Lk+LZ6zHmuHif2KVpDx4nD07hIA+P7zDnjGopya2ZrMWNGEcPLYttUpt8AlgxIzxD1J8qLys2x+Rygx6dHZs8kW4xyIRO9vKtZfXxuR+Od2Vg5rpGGzn8uXY/F8AqFQqGwEagXXqFQKBQ2AsdKHt1Tt9GwTEpKg6a/RrSU6oIsvRHL8df0VH5SHShoV5BbuOrzziz6X2pOJuDlLum+XVRpRrui85pMzUbVReTowRAQje/c9icemTokCo6PtvuIyvPBxZGai+Vk6rQessTYkcqD52SOSJFKk8HCVG36+qhup+qS/YvWQabej5ymqM5lP3rzn7mDzyUV8MjUlf54FAYz53jQc2zIwhB6Kj+BW/vwGqo4e33kvHjHNyatkGlDak89f6IwETp5cQ7V9shUwGfykl3FM6eV3trJEipka9Yfy1T10bpjUg6flH4OxfAKhUKhsBFYm+GdPHkyTf1klm/+J/Tcg8lWsre8Nx5naaAokURB2D7Q2+xQYqBx2ZfLtDyUZiIWSkk+Slnl22y2yiCFjKVFBvw5ia6XUiiTJHtB/3MsYHd3d8WBpue8svQ76+ldE7GCjE1HRvae408GajXovNIbP9bHsnQ8SreXscMe+527F9mu6NysDz3nnzmnlZMnTx5xACHIZllnNE9ZkHgWoM1Nns1yJx6mIvT/q16GBfhEFwK1HmSO7EP0nKMmRsyyx/Sy5yifp1EQOdcoNVqRU1b2rI+cgpiKb8k9eHDt4jMLhUKhUHgUY22Gt7W1dcByeu7G1NtmtjZ/TZY2i67FvbAEMgj97pNHM9VTJnlLEvLlMnQh63fPhsN+9TbB5LW91EW8Zo4VeMwlCOgFja6zASwDdiP2NNe2Jfr67Joew8vGNlrfcxKvb2MWTEu38CiIfC5MJJrTLKE27UBL7CTswzrojWOPkRCtNdve3j547uhejp4hcyEYUbAyWZPWKJldFGSdbe3E55H/nzZDlctwlV49fP5EgfBMsJEliPfIkj5kacMidpUlCOix+GxruN7ajLZTmkMxvEKhUChsBNYOPBfLM+tvFS8sYRlL08JEnoKZpE2bk2d4vi9m+Vb03saXsVCBQaSRJEkvPZ2j7Yk8OG5znpB+DLPgW0rB3r4w5w3WwxLvSYF2Ea/P59Y7SzxuieyanoRPFttLpD0XkB+xuSxBLueDW69E9ZAFRuuC7GLOHhtpTHpJJdZFNPZRqqze/Prk0dwU1SNbr1EbyAYZYE4m1PNQ5jOEzxKzw/XNjafltRk9G6kpyzZVjTRLZEL0JYiu4drk/LO+6H6a02R4LE10EHm9+/VbXpqFQqFQKDgcawNYIZJm6VWYMbtIqsj0t700YUQWrxaBOnRu0OoZHiW5LOYkSpVDBpTZOSObhJB5+vV06ULmyRXZFzIpN+oL2zDHwLwNT2Mv+4J+95+ss+fZmbFYriHP9LlWMs9eP05ZaqfMK9mXS6l8ib2bfeX6iuKiuCYyG3GUaH3Ou3WduDyuu8hj0XtEZutHqcWi5MpZu9mWyFszm2euw4itad1mHuvROmAaQiapj9KfsW2M/6Q/hb+fmByfMaORZiZjdks86HkvZPdE5HE554ntx5k+AydPniyGVygUCoWCx7EYXm9DP0oImVdZJF1ktqAsMwnr9vXxe2QzzLwlI49ElstraZ/zUgwl7MxbztdBT6fs3MimOGcriuKKsuwStHP48Zbk6FnGHMuj7aZnH8s2kuwxvCy2jn03O5SwqQ3oxeFlSbz5PWJNmX0py/jSK5/MwvchWztElMGG0njmYer7l91PPZsxNx/1WXgi9Lxr2Z4IkWdi5q3I2EaVHbGnzLswYnrUEun+0bjIlt+LV8xYJ8s0O9RQcWPhXjaTOXs5+xddm3nM9u4NgeMW9YtrdGdnpxheoVAoFAoe9cIrFAqFwkbgWMmjRTMjF3whU0NGQcpZ6ILQc3snTV6SrJoBi3Rzzdrhy82cOVR/L9Esj0fOGHNqvMx139fNhMbZPl/Rb5lLduTC3lNRZH2OVJpSc9Gonqk22W//PXOY8PNCp4HMbT9SMWWhOdE4ca54D2Rq/6hcIlpbTDtFZ5hearE5J5Vee7IgeToq+WNRUHeEXpA5f/ffOZdRu+dSrvX24cwCzwX/XWpQBs4z5VbktEIVsNqi5BiRwxPvo8ws01Npcr7n0tT531jmOs8LhoZ5dXI0H0tRDK9QKBQKG4G1GN7W1pZdfvnlKwwvMgQLcwZzfw5TewmZpGq2KsXMGUF7bemxkyzwu+eEw/IpYfXYDuslC2UZkSs7A3OjYN/smkwq6/Wz5x48DOP2QGSSveB3ulz3EgBzjLNQDF9fthN8T7KPDOb+2miNZgkaesG1QpaUPGOW2TH/PQpH4DnZtT1mR60A2XXE8JZuD7S1tbXyXPBzQcejOYYanTvnYBcxE6bv6rVR4DlMS+evUVsybZoY0NIAbd/PaEw4d2TrDJr37SH7zJ4dvUTQDKHgZ9TudRJfFMMrFAqFwkZgbRveqVOnDt7C2s7i7NmzB+dkAcs9F2lKJ3Nb70RBiHQlptTmpYosSSx16H47Eqb4IgsRaBfyY+H10L5NkdTMrYoolWehDR6ZS36UkimTzimhRvalJSx3GIYwJMCvB80Hwx2yrUpYflav70+PRc9pCfy5mRv6EibEcWOZHj03cP89YqGZ3W0dyThzU4/mILPd8X7z5+i3OYY3DEOaSD06tiRchO0+jr2S9bONfD743+bYWnRN1p/o2UiGp0/NQxQuQ00P7xsmqY60e1mgOZNY+/+z8Irept8Mv1mCYniFQqFQ2AiszfD8m/ayyy4zs6NSjFhRltrJl0VkAYo+hQyRSS09DyUmb47sSWxzpt/PUnot8SSkXdD3j9ILJbze9ipZ6qLMthf1g9IfA22jc3qQDU99V8Lcq6666uAcBuKqH72Ac7aF33t2WdqMMztvJF2SdfbsPZFXoT83204lKo9rKbIPzjG4HrPjVjUsM/qeBRxr/emZ0EstFtXh0Vo7+F1MyCdd5/NmHamf9Wfj12NCTFNHPwfftszmqXssGltqn6gxU1l6Jvv2U1uUscVoDLKkDBGTZnJqsrbIHsdk2HoG8BoP3oMXLlzorp0j1y46q1AoFAqFRznWTi22tXW4TYdiQPxbOEtnJUS2vIy90P4WlUldc5aw1EvcmS1N0syStEBZMtUo0WzGWCPpRaA9s7dxqq/DI9PDL4mdYVt7iYb9PPXixS5cuHBQt6R+L6VLcqdNNWNVURso4WeMyJ9LCVjoxW5lCZojuyzXLRlEL+4vskF79NLtZUyuZ49jGzLv16g8shzNbWSvpT15GPK0dIr/JcPz9w9j2bJ40jk7YdT3yC+Bc6b1zGdLVH6Gnk2fdt7M1hbZm+e83yM7XM/m7cuM1iWfgWRvkSdp9knW6K9fmk7sSNvWvqJQKBQKhUchjpVphZJxZHuSxJPpxXvecgJZm6RC7z3Jc8jAIgmBdgra9Kj79uWSZdAeF/WLbYxskb6sqPwsS0qUmHfphpYRk8i8v3pSlfcQ68XheV27pH7v4Sv7Az3cep6iS2x1Hn6NZTaOXpzS0qw5PRuXsIQd0jaYxeNFY5J9z+a6d062TZE/J0tOHm2zxHW8v78/G4en38kCzA7XU+bxHWk3sjnLMq5E19ITld7bvXlhPfROZ/89MubqPaH57IjmwZflf8s0JEIvY1bmcRlpv7J4OyaPPg6bi1AMr1AoFAobgbVteF7XHsV+6H+xMErgmddhD5QcvdTBNmRbYUQ2NXoF0jPISxVZhgtKNZFkl3l4ZjkczQ4lLUmu/OSYRFIapU+2x1+TSVA9WyhZ9BzD293dPeirmJ234dEOonaT3fRiOef6Edk4ON+UciPMMb1I8n04oAaD3mw9WwqZKjPMRGxNWLKlEculd3Avy43XRvRsePrzffYML2PnPcvdT8EAACAASURBVK/NnuepR7Qxa2ZDZ31RhhAh07hENuqMHS6xZ2UMtsd6WT/ZZ+RpnsWM6plM5ufP5TVkdtFzJ/I2n0MxvEKhUChsBOqFVygUCoWNwFoqzWEYbG9vb8X46IMdqUpcEnBOFRtVVzQQe2cSqiepWlCZnkZTDcTgysitm04c7F8v2Je0fJ0wAbrvZ8mXI6eVbJuOqL65wO1IdaJx9M5LPdWKQhN8GxSAbmZ25ZVXmtmhCkRzmqWr8+3KwkN4XtT+LPC75zzAc3qB2j1noahtvS2Y5pxX/DlZOjp9Z7KGrP2+D73+MUk0nVeiROG9Nenh26ixvuKKKw6O3Xvvven5Zn012FygebT+sucBn1W+X1kiBY6BN0Fkqj6O1xKHJ/ar5/DGsA6BYxWltKPTWRae4M/NVNHRvcjn5jqqzWJ4hUKhUNgIrO20YrZqMPVv7MzVP3PJ5vVmuXE1MipTSqIjAlNjse6loMTD8IqMLfrfMlffqH90LMikaDJBfw0dbDgXfk7mmFEkLUZJvecYHje0FJvzfSAj0PrQ8d5WT1n7hYjhLQmuzuphyEk0jgxZydzPyQD8/5TgOYfRmFAaX8e1e855JVqrGaOL3OG5FueSR7fWDs6lZsHscI1IEzIXmhH1MdPE9ALPuVFpj7GSnWVagcjhiQ5iWdmRhilzcOmF9MyNX7TO6UDIMKPeRrp8vsyFRZgdnZ9KLVYoFAqFgsPDCks4KMTZx5gSZk4X3DsmiZ9Mxeu4syS+rM8zL0rS2dYikRsydfeZ7SjSOVNKouTo+5UFjWfBvJFNZS49lJdCs8B6So4Rc/Gsei4swSfT9e03O5xvnZOx6ghZuEgmQfrfMnf9Ja7eRO+aTKImO4uC1jP0+iVk62AJOJ6RNoLzRcbX2+x3LoWVb0ePxVCzw3XWs8uTAWXaqChcgMyLKcB8fXNMK5pLamvm1lDvHsk0Z37saf/lvPc0PtwGiLb4KIQm28qqFzrRe07PoRheoVAoFDYCx/LSFCJPnd7Gff4az2ayIEMyL0mOkY2D0lm2fYYvj56dveStvFbI7EmRNJgF6NIu58/JUorRhhfVTZsH2xNJg5Q+M48rs8O++22i5lKLUVL0tkcG17PPS2xRc9JzdG2WrFyIbCpLU4z56xfbGTqp0zJ7SM9GlXkD9my5WX+ioPwszVa2Zs1WbdKR5si3aXt7e8WWGyW9zgLxI83P3NrIgrB9+WIz2cbTPY/oKEkBv895LWYemL3+9DzL6Q2aPRupyTM7HAtuJRZtCyTwGc+2RhostnWdJCbF8AqFQqGwEVjbhueTvEaJPWnXiWKLeA2T51ISYRxRlnzZn0Pm4+sna6J0GEl89MKMUohFbfb9EeZsHtFvSsXF471YqsxLU4jSAs15a/prKNEtseEJUQwNbXhkBtG8ZDbbngeab5O/dgkrpFdu5jUZSfZZIu6eDYep8chgIva4xGbr0duqi2MUMbwsJpQ29yi1mOZ2e3u7y/Auu+yybrxVtskomUo0l5kNn+y2t10Y+xXZnfkc41xG91g2H9lcRusguzYak7l4XH+vmx19FkvTk81B7/4VehtbC3xf9LYlI4rhFQqFQmEjsLYNby6qnTrgOZ0wyzfLN2/sxTjRxkAJK2KhbAvZUuRNRNtDJp1H3lnMpNDbtoNSMZNEL9FtZ9kmIukzYwyUOiOJzvd5jlExy4dntVmGDtqFe5vrzm0E3POAzObSn5fZHJbYE7L4J9YXZU3JbHVLpPQ55uKReSzyXuxt9UPvvyUJzi9evNhleK21laxJPsMT147WDBOR+7XDZ9mcp2DE8DhOLLOXRSnzno3i1LL5X2L/4z2wTkYhIWN2/nlAOz8ZXvRc4j0QZX/xbTVbffbNZXg60q9FZxUKhUKh8ChHvfAKhUKhsBFY22llb29vxb3UU2YaLEWFI0OjkBn+M5fcrG5fT6TC4DmZq2/URqo1IvVTVJYH6Xqm4vS/UYWZ7dXWU09marhobASOPdUU/phXJ2ZqKYW0ZOpds0O1lJxX9MlUUr3926hyYx97+6ItWW9EtoaiUIZsbWSqzt652Xd/LAvNycYsuiZbh17lFKks/bW91GJLg+xbaytB3lG6QDrOsG2RWpJqSJVP1VlkSqEqnZ+9IHmtd5YRXZOpv7mel+xP10u3x9+yfT4ZkhSdy40EeqEzBJ9zUViZb3+lFisUCoVCwWFthucDQPVG91I6AxOVXkbSDEMaPChJZZJoTwKiw0PvzT8ncXtpUOdmacloCPZMiIwuSxvmpWa6MGdSOqUo/3/mQBEFgGbSLsci2mYpmy8PMrzIvVp1MzyBiXm9tBdJ7h5LUtoJDOPoYc5I3pNm1wmU7bE/X2bPAYVrhuPox4jalSjJM6+Jgsj9NVHYzdKUYsLW1tbKWvdr8fLLLzezw+TR+tQ1kcanF0zv66HzhdnqfGTOFpE2Iks12AtS57lMRB0lpObzjeMX3TP8jZodrV2/JRjbxLIyBy+zPEE3NSdRwhNhbmspj2J4hUKhUNgIrMXwtra27NSpUysST5TMWW9+6Xhpn4kkLYFSe28TWdorqHeXxOUlH5WnNjEANHL5J4PM7F+RzplSchZ2EUm7GeOaCxSP0Ns0lH1nKEBkN1mSsNbDp6br9VXjo7WijT6jsc222hHIrqM5XWLnyzBnJ/XnHMdWmLGAJQH1mT2uZ9PLGHhv0+Is0S+viQLPfRjEXGqxjOWYHWoB9CnGpzVEluP7SLaUJYCONi7NnjsM7/DHenbuOVDzw+dfL/A8e2b0mCuZHe10PZaYbV0V2Qy1NjKboe8XnztzW0t5FMMrFAqFwkbgWDa8LBWP2aoNjxuwRhukZjrtXvok1kfpObNX+DZl0nLEWDIWmkmJURJXso0lAcCZ3YffvRSVMZTMHuCvySS6aNPNrPwM+/v7R7QBvlyz1XRTDCaOPC97KeR8myI7Teat1hsnIjsnuieWBsdG5fQSGfN7tuky2UjPA47ru5eMPdNU9DQYmtMl2oHWmu3s7KQehL5P3JBVnw888MCRtvi66UnO1IURm8lS2glLfAeWIPNjyNhTtO4yr+3IVyFLYZclgo62MqJdU+f2+p2lk+zZqHlvL0ExvEKhUChsBNZmeGZ9CYGMR5KczpU0pWTI/jeWK8mAEmtkP2B8CBlXpEtnmzNpNmob29yz+1AKpHQY2eEowWX2i94WP1nbonifTHrOdPlReXN2pUga9m3LtpWh96aXwLNxz7aLiuK+OP7Z5r7+f66ZXmwbr507HtnU+NtSz1j/GW00zDJoi8ruiUiqzmLRet6gwhzT297eTrf+MVvVQNBLUzY9MT1fDsdf66tnM8zYDO2APW1RpimLYjgFPs+y9GH+GNkZbZKRp2UWS0cP74gx83nQS/OYxVz3bJM9r885FMMrFAqFwkZgLYYnXTq9cCKPxWyblGhbCdlq5lhNL7aJ16gesYWIhZJxzMV0+WuzJLs9j8teTBCvIbvN2C/b5X/LtjeJbEqZ7WtJtoQlG7P69nhETIEsg15+/pps+xRBY9zzSMwYVo89L9US+PKz9UxJv7epLyXfJZlWMpYWscMsW0rPJj5nZ4rAtvTuudaanTx5coV5Resg2rLMbNVO58+Z2x6q95zLtiOL4o25rqktiMYimw/2OwI3qSVLizZ1pgc+NWY9LRjHk1q26PnKseXc6p73vgNcb7UBbKFQKBQKQL3wCoVCobARWFulub29vWLUj6g+Az5p0JS7sD9GtQmpqmhuz3GCbYvUBFk9vaByls/AT/bPU/1svNjGqF5em4UjeFVNFuAsMAmvP8Y2RWnIMvRUWHJa6c0hEw3QQaKX1or9oOt9FNrCoFeq7yL1WOasskSNx3ozB5iovkxd3FO7ZnuzZUHLvfZnJoqo/XP3cXRtL3h4a2vLTp8+vXJ/+POzHc+pKo1UYwyRyBIR9NYs11LkGEb1Otd7pC6nKSFTv0b3Osci21fS3+P8LXsG98xL/L5EHT6XTjJydJkL5I9QDK9QKBQKG4G1wxK80wqlDrNVaVzSQy+4W+nHskDCbCseD0oCKiOqPzP80xnHtzFzbOhJfzxXoENNxKLmAlp7rrmZoZuG6MhpJWOuERvo7QwetXt3d3eFzfdcsLMtkfx5TFicOQKxrb68bG3OpS2L0EsikCVQyMba/780TZRZHsajesmyowTHx+kz29RjvZT255xWTp06lSaZ8NeTpdFhy98bXstktjrf+r3nRCSQEfWCoXkfZo5B/rfo/vPHo3ua4QdZaJG/JmN2vG+j+cq0bEvGhs/AuS2NzPpahwzF8AqFQqGwEVjbhtdaW8RmsvQykR2G7rO8tieR+rb5zyWSKstb4oZMUKqJJJJMSqek59OuUcLJ9P5L9NdkyJGkxzHN2GBPWt/f359tzxL7ThZq0JPo5rY1imyHZAECx3aJ2zPPjVhTxuw4tkvCIbJECFGbsvCbXnD8koQKrCezv0QMie3trR09d/y5WfsF2qKioHs+k1ge75fIdrw0mYAH/Qq4vv21XNdZUoQew8vChiKWxrZka3bJ8yeb/yiUgegF1EflLbXjFcMrFAqFwkagrePh0lq7w8ze88g1p/DfAD5kGIbH8mCtncIC1NopHBfh2iHWeuEVCoVCofBoRak0C4VCobARqBdeoVAoFDYC9cIrFAqFwkagXniFQqFQ2AisFYd3+vTp4corr+zmW2PGAyHLl+n/z2I/eo4162SE4DXr1ENkcX692KbjxOzMXXMcp6MozivL3MHsHL6+aIPPBx980M6fP7/S6J2dneHEiRMrsTm9LB9Zm6JMJFn2iN7Yz2Uvyc5bes5xsc56WFLv3DlLYqmyT7M8o0sWnxcda63Z+fPn7eLFiyuNve6664bHP/7xaX2+vOw5s07exUdq/i/FGjnOM2qda9e9ZklOzXWu5zOglzfZz/9dd91lDzzwwOwAr/XCu/LKK+25z32u3XDDDWZmdvXVV5uZ2VVXXXVwjo4piFyNe/DBB83sMKm0D6jUfnj6TcGh2Q0UBXVzYff2fuO13K+pN2Ec7Cx5dBQAKkhQ6O3gzGBxBpHO7QPnjzGIM9oHi/Vph2hde+edd5rZ4VyZmd17771mZnbPPfccfL7+9a9faYfqeuITn3iwE/Xdd99tZodz7utiSiSlnlOqJ58SSufoWJZGibs/+/pYL6+JxinbcTqanyx12dz+j1E9+mQ/I1BoWSKc8WWS7UWoeTQ7nEPtJq41wn0u/T3v5139ecc73hH24+abb7af/umfPmiLyvWJGlT3/ffff+Q3tj8StDn/2bPDz2l2fwq9ucyORy/lJfsRRn3x1zI1H9F7dvAaro/oOZcJG72EIXx+6lq9T/zY6V2iz729PXvFK14R9o0olWahUCgUNgJrpxY7ceJEukWN2Spr6aULEjL2EqUf8r/7c+bUYR49VYuvJ8Jc+qRe2VlCVCaR9ccyqXMJK8h2lY6YC8tT+8XUr7jiipV6/FYrvowMe3t7KwzfS6pcVxmL9ueRrWYML1oPGVvuqZ44r9m1EZPkuUvqZXnZjtQ9Ne9cgvNovZPhcaz8Ndzh2msBsvKZGHwYhi4DuXDhwsq95tOEiXHqWKT2IrLnztw958/pqd4yzKWyi8Z2TkUbtSMbgyVpF9nnLMVY1Nbs+c36/fWRecTskMVFz59eusMMxfAKhUKhsBFYm+H57YFoE/LHJInS7hZJDJIMxRiybTME/z1jgdG5Qqb/FpYkqc7OiZxJdIwbMlJKjxgXPzObUdQGgUwpcjbKNoDVNbKRebuJjvn+9KS6vb297uaNc4xO68MzS9r59Bu3heqxp6zNPXtc5khD+2NUHvvbk7i5ZrixaZTgPGOuxBIHMs0317W3HXIdZ4nPPcjw2A6P/f19O3/+/EGdaltkR/Ssz7chAu+l7F6jzT26NmMbPecenrMOw8u2UIucylh/z+FmTgvQe95mz0J+9+3SMdpc9ak59uuN62R3d7eSRxcKhUKh4FEvvEKhUChsBNbe8Xx7e/uA2kuNFKk0sz3YIlpL99mMxkeUnyqmbIdgfw3VAaLT3GvOtzFzRlnieJCFA+iTair/W6Yi66mt6DySqRaiOKbM7Vjqy8hRQAblc+fOzcYaZU5Gvi9UJUlNqTZ4A/aVV15pZqsqzSgMgfX12uIRqTSz8afzjL+G9XEt6VrfDq4RqsN5X/n/uYZ6O2sLXPua70y1aXbopDJ3L/hrIseqnlrK/642+dAG/a92UtXbK5u7pFNNyTH313DN9uL9succEamYM2eV3rMx6ye/90J1jhPSwudrL+yLJi+GUDDExSMbvx6K4RUKhUJhI3CssARJr5K0JWWbrbIYSti94G4ayulOvU4EfxZA68uXNKHvkiIihkepLAt/iCT/TErXWImVeAlyqZt95DyTSXJk11H/xNroAh6FJ5w9e/ZIG3tOEq210K3bG6PpCEBGp8/HPOYxB9fof/3GsaRzR4+Bcpx6a5TjrnGKdpPPHBq4drhO/P9cB/quz97Yctd3SuCRo4NYFBme1oevT9eIZemT90rkrLDUpXx7e/vgXJXvnVZ072bPiF6WHl8H++a/+/OzsKAey83aRlYzx4R7ZfX6k4UwRMx1TlPTc7BRGXQgihglr8nK92WpvXPhZRGK4RUKhUJhI3Ashid7iVKKKQ2V2SqL0dtX0vqS9F1RGqBem3pgOiKzVelVv0laJvMzW5VaqXvmZ4+tMR2WPr27vcaPrvgqq8d+M+mTzM73T2Oha/UbbUS+jVoH+tza2urOhw9p4fqI6hBr0zq79tprzewow7vmmmvM7HAN0q7MMAXPnjhOmV3OjxPTWtGu1AOvydze1Qfffn3SVqnvESvMQhfI9CLtB20nZFW+japHjF/1q3yt7yiNXJR0gWitWWtthWX68jK7kcY6GotM40HbXS/wPEunxXr9MbaNDK/nozCXLs73j7bHJQyP5wqZxsyfp/nhGsr67f9nkDzXpmfzWntRqsk5FMMrFAqFwkZgLYa3tbVlp0+fPpC4JWl7aU8SgqS6TAcdMQG9zfV2z9hCJGlRT02vHy8h6H+lrVHCWUqm+t0j09lTWoqYhFgH2QiTI0fXiO0wyWrWLn8uIQnMS8j06JN0RpuUl6TJok6dOpXOGbUDURJcXSubsBLHXn/99WZmB0nLxerMDtdgNqb04vRjrGNR8LbZqqRqlicppq0rsm0IlJ7J+L1NnEyOdnP1O2J4tPdxzJnc2ezw3iCz070QaSMEXaNzNSZRgusogLqXtEDB52aHTDJieBnTiuyyZH1qL72DIy/NLMF0pvnxIEsiq4m0HnNemJH9kfc0112UCpBrhNoAfUaB/vyN90Iv+QO/U3PSSwIiDcASFMMrFAqFwkZgbYZ35ZVXrtjuvLSnY5JE9ealNBnZDZjkWMhSAEXnUpqI4pQiFmaWJ6D1bfT2HLNVhhnZCighzm1D4qE2iFFQGoy8D2krIkujN6wHtwcifHyZxkt1X3bZZd0tUE6fPp3GQPq+iL2IvV133XVHPv12VGR4+hQT4fForWbeeVqzXjvAOFOxDV4bjS2ZpMpQW8lOo/6Q6enTz0uUCsu3iWzBz0nGNmiH9hK3GDe9KFlfxCg0xru7u12Gd+HChRXWGdnlyZp6Nic+V3h/Zr/7//kbv/c8IGlDpJe4P0egHYxz7M/PtvbRORqzyKam+ae/g8b+vvvuO3I86gfnIIo3FjLPYrU1sv9GzHsOxfAKhUKhsBFYi+Ftb2/bVVdddSBh077k/5ckrbe9JAHZQPTpz6H07+s1W92GxLch80yTZNyL7tc5lIC8tKS2ZayMxz2T0P8cLx3veYFR4qaHWpSMm16mWXLfKFZQ59ArVGPv26h1oHPn4vB2dnZWMsdEUjNteN7uZnZUqtQ6ymwPGgPGDJqtSoj8jOKJVC770dtsM8taofrJ2iI7I5keN7z1Y0+mRduKPqU18LZqsv85W44/R2298cYbzexw3G6//fYjZfqx8EnJM4a3v79vDz300MEcRjZo9YEMRfdLL3sS+0g2GN2fnAcmUmfCc/9/xkwi+y+RxW5qHfgxZjkaLx73GgwyOv1Gvwdt4OxZdmY/5VhEXsiZVzW90s0O72Wvoank0YVCoVAoONQLr1AoFAobgbVVmo95zGNWXKO9Cobu61Kb3HHHHUe+eyosiiq6TOOnqHhkCM7UhHTX9k4YdEPO3GYjtQ2DU7OdgKNjTPFE19ueWlJjJBWejMY9ZAZ1qmH8/1QNyyEhMjgzKHou8Hx7e3vFOO1VTNzbjqpmOhWZHa6Re++996AN/hqNY5TonM5LPoDe1x+FizA8RG1j2jqz+aBhBl/7/mUqU94zvj62QW3TmtFnlKIr27V6iWMVnc6kklY93owhaP782iCGYbBz584dPDs01748jYP6rt/o4OJVflQ/Z3uy0Zxhtvpc4fOGCQL8/zqXqnM+W3x5QpYYPNrjkuYOBu5zLfn/tUao9mZCgkiFmoVkRPcTVfZ63jD8xY+JXzMsbw7F8AqFQqGwETgWw5OzAiVis9WAXDG7O++808wOJQjP8CSx3XPPPUfOkWFUn5IgJDmaHbJMSQaUGCQh+XRUOoeSHCUhjyxkIkvxEyU7ldSZORF45wH9r0+NkSQvjZXgpRxKmRwTpuzy52ic6HSka/zYk12fPHmyu8XOyZMnD9oZJRfQXKo8jTkdTnrJjnUNnaMY1G626uqv8WDSat9nhrlQo0HnCbN8yyxeGyVZppTOhAS61rMd3YNaI7oHz5w5Y2aHa4iMxmzVcYhsm04FZvlO3j5cxbfVw6dGyxje3t6e3X///Sv3i9dyqK9kIr10elmKL4GOG1Fok+rjeEVsnYHzGlOVFT13+Iwlo8uc5nwbqEHoPXfUNj1v9Oz1WgBfj5/zuS3NonAEaiH0nc8h7+giRNqUORTDKxQKhcJG4FiB50wr5CWEu+66y8wOJYX3ve99ZnYoddKeYLYqgUpa0zkqU290X7+kcqZaoqu3T0dF12EyIEliUfokgZvGClFgvaQh9UfSk/obhWpovGh30fipDNXvGawkLYaPaIx03I+JflOCZqXz0rkqU+3yv3lmlknprTU7efLkiiu2H2O1k0HEkoQj7YDGjMmbyQJUlg+h0XyrzRoPjQFtUH4c2A+yHN9GsjJ9MswmspNx40u1VfeE7hWtJbPD+/G2224zM7P3vve9Zna4ZmhH93OgsaYWR2Ohdea1A1mSZW6Z5FkhJfkLFy6ka0dhCVr7mnOv5dB4MI0b7aaRPZZMQXNIdhslkyCLpRalt7lqxALNjtrUuEZol+cYR31nOj8ycTIxs1U/A/WLmo3IBs/QLPY3ShzCNZNtNWW2ats/e/bs4m2miuEVCoVCYSOw9vZA29vbK/YSr9/Nglr1XZ/SDZsdSqey80mCk+QVSSACJWDVJ4lB0o1nJky5JYnhgz7og8wsTkPFAHaNAb2mooS5vEZtIaP1fdExSeUMeGYgeNRW2ozoOeulIgYp6xpJ8lGAOwPbr7766lBPbzaO06lTp9I0Tr7szKuMa8v/lqUzoo3VjxO9yugRG239wzUTJdXmNdykNduehUkU/DW0tymYW2vI309iO7feeuuRT9pEyTx9+RpjenLq3vRMmZoD2lvUX1+P5muJDW8YBtvd3V0JgvbPHY0P1zzHNvJi5DojE4kYHlmL1hW9nX2fM3s/vUH9PUZ7H5kc11208XAUdO8RrbfMLkutS29bLLWN94zvv8aNz5eeZ6+g8h588MG0b0QxvEKhUChsBNZieNqmo5fMmfFp9KKj7cHs8G3O+BQdp9dPlEZGEiPZISU/D0ovkkSe8IQnmNlRSVVSLBOvUj/O+B9/LqWWXkJtMlfG+9C+ILuT7zO3+OE2NF6yy5LEqk2MkfPX+7i1ng1ve3t7JT4pYplaT5xLsRlv46CXl+ZH4yTbE73ozA5ZCseH6Y78+uZ65holEzc7ZD70ApWdtFefwNR83I4oisNTX7WeVa7GijYefy3XA9N5+Xswi2dlDKFnO5oP76GYaQeGYbDz58+v2CD9PcZ1R8/XaKNZzSU9opkKiyzRl0P7JONA/T0dxZR5UGtktppujDY91h+tVW7ESg9Wfw1/40bUGtcolRkZKhleb+u0TPsh9OzoS7cGMiuGVygUCoUNwVoMT5AkIok1slcw4wHjyLyUrre7JO5MMrjpppvMLLbHUdJmNgnvSUpWJqlGdhBJ3hFboS2AGTAiSZJ2EErPke5e5VBnT3bw2Mc+duU8sej3v//9YdsihkzpmrYBjZk2YfV1qh/33XdfdwPYnZ2dFZbj1w5td/rU2tFnZDdg4mJ5XKq9qte3j165lJYjT1zaOrUWGefl2YC2NaK3LLMDaU1F0iy32dL9w3vFl5t5Eqp8sV+1z+zQNsjy5W3t71uBWyWRGUUxYuyfTyxODMNgFy9eXNEaRXFxPKe3+Si3MdJ60FohA/ZaFDIdMjx9ehsU40k5P9TA+PZzGyjGckaZn5hsW9/1GXnPahzV18x7ku3z5TLemImnfRt1PRk/7/FoM+7I5j2HYniFQqFQ2AisHYd3+vTpFXuOZwPM8SfWJNYhKd1LCoxdkjTDt33E1ijBMb9jlIlC9TDrBz+9/p31SBqktMlcc7699CgU1D9/nF5Hql9tJiPzXnMap4/92I890h/FZVEK9v9nW4pEdgxJwt4Wktlh1GZdT3ud2SoDIZuJ7LEajyc/+clmdmivohRLbzBfn1iaxlAsUV7DWrtmq/YqSp7MFWq2akdiDlqtJdrLzFYla+YwjDagZZ5S2sa1DqUx8eyH8WMf/MEfbGZmj3vc48zM7G1ve9uRes0Ox5brWOMrtu0le+ZDnLPDRGwuWmu0dfXuaUFs5klPepKZHY6f2K60BJ4JR1sUma1uKuzvJ26amtn7oi24uJ3WXNYes1V7mOZM9TNPoLkklgAAIABJREFUrr9G8ZGMFWQWJ98/2laf+MQnHqlX46nnkNlqFi2NHz22o9g95n1dgmJ4hUKhUNgI1AuvUCgUChuBtVWaV1xxxUqyXU+j6TQiGssAQk9RGeiZbZ+hMr1qhDviSl3EZKfRtjZUidCI643HMvDzWlF9Brp7qO9zSYSjHaFpyJbKial+POgcQUebSJ2oPnO3cboAR7uya1562wNtbW3ZZZdddtDuaAfyLNhU9UjN4sdY7ZQqU+fQEUAqNG8Ml3pdv0mVKVB14s9VW1UGnYm8c0+WiFljSnd1H+CsdazxioKu2Uaqg3gf6V6RU5O/n7g2tS5uvvnmI/2+5ZZbDq5R+eof1Xnqr08nqPb6RABzak3eE36caP7Iwip8fVLpae0o8YRP02Z2+Hzzqm2aRZjiT+uil4hebWYyeT+XnDM+f3RttEUOncD4jKTzntnhfGsdq59KXqB1KPWlfx5ofnX/6t6UY53a6u9BjanWc7btUWSK8EkLloYmFMMrFAqFwkZg7bCE/f39leDhyGgoSUGSLrd88cb+Xnoas1UX+WhjVhpt1TYaXz2Y6oabhEZpenSMm7YyTZVP5kx3ZyXLloQZGd/pEs9wD9WvfnonAoZZaOxlnKcLte9fFrCt+qONdL2rfhTyoLouv/zyFZYWOTypT6pb56g+L82qbwyIpvSs+fEsg3NFR6QoYNqHxPh6mIbKOzgw0S8TLTBI2rMQSb5Mc0aJ388/f9MnHazoMGB2OO8aVyZJUF88G1Z5uibbADS6B73TSk9KV+ICs3gtMjyIm7rquHfu0v2ocjQv1A5QQ2O26nii55zGOkrUnG2myzmMnMnm0pJFz1DWo3XOgHvPlLkmNV4qg2kQIw2N1v7cs9LXTScjbkflmTK1D9vb28XwCoVCoVDwWIvhaZsOSlOR+750wHoLSzKOwgQkaTCoVxAbiNzSKQEddAxsIApwVjmS9MSAyGp8m+geziS1EVujzlxjQ1dfL6UweJPlM9DZjwkTTNNmwGS/vlz1WeyTkpZnH9l2Ixn29/dXGLhsHWaH40F2qe9kN2arYSDczoaJwjX2vs+0h9LeF9k42A9Jtfr07INrNHORjxgeQ2cogbMvZqvJr8lYNLdZKIofA26oKvh7gxqfLNm733yXSZF3d3e7Uvr+/v6KtO9tuWQctD1HW33pGrEWjSnv0yj5chYmJNas54Qf2yxEhrZJv96ydHdZCq7IfZ/lcj36fqndsmPSZ0BjQs2DP0fPFd3b3P7Mjwm3ymL4V5QyrZeMeg7F8AqFQqGwEVjbhtdaW3kbR/pjSZFM/yKpyr+Vsy12aAugt5E/l8GbTDjtJSEdk06bnnV+Y1SBUh7rYYCkl8AZcKxPSVOSdr0ErGv0G22EZIXRtifcpDQaP4GSMBMq0+PLj4FPBZbZ8Pb394/YmZjWy/eFG6UyWN3b0RhYzLRktMtGG4DqmKRWMi8vXdIjUZ8K4va2O4GedgK9KTXmkYSv38hcI5amOeS9xhR+EWjzom0lstdzvVEb0UtSvUQ7oNRi9ISOxolekTpXYxAlOybzoB04SupNVsGkEmLG/tnI9Ge0Y/fYDLcj4rMxYqG8hv1mEnGz1WeSxkZtpwe9f87Rbqox0Hfaev0xaiyoUfLPsigYfSmK4RUKhUJhI3Cs1GJCZMPJpD169HnpjNJk5nFFiTj6TWBcipcQxKTE5BQnIslDv/syKSGSWbH+yKbG8nssjQyLiW65IWiUAJYSHhm5t6OS1dBmEF3D5NtzDO+hhx5aiYuLPLYoudErK4o5YoJssluyUd9+shdKqn5sWL7WkBiepPYo9RYT/Qq0w0ZxrbRF63s0jrQF8h6hV6hvD1lmliw9YjuZLSXaSJexetm60TkPPfTQylYy3laodrN9nEOfCozslbGNvc1jBaY9VBmRbZ32OMYQkxH7tkWpyqIyot8430xL5+eFmjGtM32S7UbzFtm+fXt4b3rwXue2bL79UZzsHIrhFQqFQmEjcKw4PG4SGEl2ZGuUbv01tL9liZMFL10ya4VAhuT1xvTkk1cRk1ZHGTboDUaJn/FKvu+S7KQHZ1YLz1zI6Bhvw+MRy6ZkSkk70oHrmPTvaiulQl+n/5yT1IWIrZPhZJ6IEcMTaPOiXcQzYf7GTBBqj/e4pA1Vdl99yjMt8iSlZ5+O0w4TZRKity6T90a2G9ruuA6ibal472XewZGdiespY5b+f7+tTbZ2FKOncdO9kXmD+r5ySy4Pjb/awudaDxx3esRqLCKPWz5nehosbprKe5oZSXw/aRvkeibD9f9nycnZnoj1ZvGGS/wNWD5tsFHf+XsPxfAKhUKhsBGoF16hUCgUNgJrqTSHYTii0hTt9Woiqi7pSizK7V3wRenp2ktDdJZex9fL4M4oYJppx6RqoJuwp/pSo6j9VGXMOSZ40NWfQZb+f7qJUz3UM/pnjkORY0em7uK+X76NVG/1VEHDMNju7u7KjuBeLcH9EFk+jf5mq+pNqtcyFZDZ4bgzxETrIFJt0yGEISxURXMMfD+ZxDtS+WROUepXlJCXaqbMoSraKTqrh/tLetCckAU4+2upYpxLK3bixImV0JnIqSxzPKJpxV/DhBe817Igb7PDMaSDi9roQzEY8kOTgNoROa/xHs7St/kx5rNJ35kY3j+LmVgje85E61tgmBmddCKHJz6TpHal45W/prebfYZieIVCoVDYCBzLaUVveUkDXuLmm5oOAEwwa7a6hQsZJKWMHsOjtByl7VIb6NBCydRL9mKfDKHwRndfX+SgwTZRwvNB2GQqNGjTkcd/p5sznRai3cuj4Fqzw/mLJHuy2QsXLnSdVsxWwyr8OqBUznmmI0rUFkrCS6Q/GuC5hryjjsaJjk4K12By76htZBJ04PBjkmk16AATOZ5k2obIOSID12zE4ilxk1VRK+Lr9uM0F4TOFHkRU6AjiD6j9jOxwZwDSpQsg8+7Jan4sgTXQqQxyz7pEBKxXv5GZufHMQvVoLNcNFdM2Zg5pET3JB3S9ElNl8fSlIYexfAKhUKhsBFY24a3u7t7ILWI4fmtcKhzFii9+t8znS+ZVu+NntkNqPP2xySdS7rgBoyecUnCYLom2gwit22yI45NFHBMfX4WjN2Tmnpu3iyTUiA/IymXfT937tys1EXJMUp2y9CP3vzTVke35l6CgJ4E79voIduCbHcqjxqAaDsTagcYahIxV/3G/nFN+dAJJnrOEgxHrIAgo4tc2RnQzPVMtuXhWW7WDoUsqF9RImiyTDKuyNbdS6Icwc8Pw1zIFqO0XlHycw+G1Pj/OWfZuo5c/vmdm61GicCzsA76MkSaJbYtCqgXyFhpP4/WDpMKrJNirBheoVAoFDYCazO8vb29FQnFS8J8mzOoVoikpSzFU/bp/49sQv53LwVwew5JK7LVqD8+jRa9l8gOmALMtyPyZvXX6NP3iyyTNkLa9jxrzAKNe96uZHKZZ2dkm9Q4zTG8ra2tFe8v78WWtVdgoLb/n1oC9iOyZ/FYtsmql4C5dRTTMzG1lNmqpxlZEteuZyFsC+2ykWRPGzFtej2vUDL7uXR/bC/L84i21/FzOpe0IEvC7fuUpRiMgvp5bmbv5doyW7X7Zkmeo+TKZCQcr0gbxTljGUy8HvWH2jXdt1HyB2m/pL3juo5s1Xw+k41GnrJsa5R8n4iYYwWeFwqFQqHgsLaX5t7e3ooE7t/ytE/wzR15Z9HuwjLICrykmMXMUDL1qcWYPkuSjqT1++6778hxs1W7BCVgxoN5iYPMlfF+8viLvCYFekdxDvyYZLGQQiRJ0xsv2+IliqW666670nI9vGSusfblaVwy20PE/CjtZ+m0IoaX2WEZvxTNiyRefYrZ0w7M63292ZZTHmqTxktrhfeKH/uMbWTbqvjvHONs3Xs7Gu2Mum90PPL07Xl6Z+ilIJzzJo28pzMmktmgIq1UL2UivzN2MmJlROYxymsiZpQ9M9jWaMsvpiWTZiPzMPbXkull7wR/fcbee/GTPsa2GF6hUCgUCg5rMbz9/X178MEHD6TMXjaJTKceedRkyaKzpNGRxw6lid4WFNpAVNK5pGcxFTG8iH2wbUziHEl6lIZUrzzroms4TvT+6mVNoUef0LOBZPUK9FI1O0yU7LcDmdseiJvfevuvruUGpRrbyIuNLIznZBkpzHIGRE8xPy9aO/Rao601YpIC7XA9xpVlVJFGIZpTah3IbjJGE40JJX7GY/lzyXpp7/HQuPl6el7F29vbK/bMyNbJtcIyI0/YqD6zPLbT/8Zze9oVsnHd/z2GxzljJinW59cBtQ3c4DhLvO/PyTanXSeWs5chi+fQ54PbFWXtLYZXKBQKhYJDvfAKhUKhsBFYW6V59uzZlUTC3gGFKjcm4BXl9u7ometz5qYeudNnbvV0rIjKk2rujjvuMLM4UTJVFgxwpSHagyqFyKXXl+3LyZwvluw7R4PvEtpPFa3arDK8ekrt11xqHCMMw3Bkx3MmUvbH1GcfTO3bFDl3ZGrCbPyia7MkwVJxm60G4qr9nMtovziqX7mLdHStfsv2RYzWA1NYaX64t1jkBJQ51NBxzIP3LXcXjxyrGIoxl7DAhy1Eqeeo5uK+lFFweWQO8OcuuW+ocovChAStHe71xmBvf49l++FR3R4lEWAyfo2xnPUE/yzm/NJUEyUOEfhbFtAfhadkKcsi1XCUOKFUmoVCoVAoOByL4d19991mdrjNRLRjLiUdSgT+Ghr8ud0MgzujwEyWK+lGTgaefdDhQxI8Uzz5UAOyjUwSib7T8UD9klRzzz33rNQnkMnRdT+SbChx0/04C4A1W3XFznax9m3zkvdceiiNdcS01F4G76vPNNT79qhvnFtK8Z5NZdIqt0TyDE8u99lWMr2druWwI6ecbOfrKLBeZdChis4MvhzePwwp6DmQZdtDMcG7PydLJRalW+M5PccN9SFL0eb7yD7x3GjtsAz+vuQ+EcjAfJ+Z/FxB3fqMdi0ng6RDV5bOyyzfhqrnTMTttFgumWSUnpBtE6JnA49loRORo6LmtlKLFQqFQqEAHCt5NKW+IwXCZke9e8+GEgXRsn6zOPiZLtGSxBkQbJa7A1On7qUpHaN7PiUs9d/rxXWNjtEOE9n0GKCfJRFWX3x93OqH6bUitiNkzDGyn1F67oUltDZu4qm+ap685MatbpjYIJKqs+DWJa7QAhmK5lbhKn57IM4ZJfAoSFlgcvSMUUT2EY2N2sIUd72kyLSl6F7ouXdzjbLfkYaG9kwyO88osrRXEba2tuzkyZMrtrueLTcLBI9shbQTZXbfiHlzTXId+j5rjehevfnmm83M7KabbjrSnijhBTepzjZijZg+tSpqm7Rfnq1nz7NeWjAhS2G4DjKbbpQSkG1eVP7aLSoUCoVC4VGItW14Dz300IGEyGBos3nPHHqb+f8ZPEobgOr1EhClcB8E7cuK7H5ketk2Rf6YPJwyj0GVKfum2SGbUfkqV2UxPZWHymf/6B3q2aHaQPtpFjzq2zZnu/P1sO657VW8N1UkAbMt2RZTvt2ZLS2zAUReoVE7fb+iBMBkdrQvR3bt7LPHRrl+Ze+RHT0ac51LVkZWwPXgkbEzMj5/LuvjfdxjZHPpoba3t1c2iu61O/Ny7mGOFfrjtEFSwyT4Z4gSdojR6fPaa689Uj7tdGaHzI6aA2pZesHxet5oDUXPMK75zGM10mDQtkaNXLTNF++nzCYZbScXJSKZQzG8QqFQKGwEjsXwJAWIafm3fZSQ1GxVcoiSnIrFUKqk3cfHkdDzkB6d3ADS7NBbTp/0YutJDoxlol2BHoX+f50jBqZPjaP3BpQUqz6rbRojlRXZY1QuU0tRoo/iDGkjZBxYlADY21HnpC16ikX2A7LMJXa4zJuMG/L24nlol4kYEO1iajPnoaf1yBgWN5P15ZOhaG6XbJkkZF7Cvn+MBeOn6oviMbMkxdFWOZk3bYa9vb2Vc30benGWHv73zFaXbR7sx5NjqHGhF602CjY7ZFZicGTiURupOaD2g7HQnq2pTVlSZz5XzQ6fL/Se1TOM7fF+ABzPXrpFgWsl22oqStUo9LzDiWJ4hUKhUNgIrO2lef78+RWbWiTVM7aOen7/lmZGAG4jz6wWUbYHSReSfJnForeJJ7NJCF7Solcey6eu2UtakuiYrDXL9GC2at+jByPHyENSGr1OKaVFCVnJYLItdHwf/WcmaW1tbdmpU6cO2kYp0NdF+1EvEThtZvREFDR+UdxQ5p2n32V78eVToqYNJWJ4mS0ry27ir8lsKPqMbJOcOzJN2rv9NbT3ZZ/RWGQsOIK/FzImPwyDXbx4ccXbuCfVc81E85J5L2eMxM8Lk59rXeu+5TPS16P7Tl6STFbuY375POM6jrQsgsq/8847zczstttuM7ND++/tt99+pM1mq6yfW5mpbRGjnvO8jWx4XG9zn/56bz9dascrhlcoFAqFjcCxGB7joiKWwZgm2u685MOtVhijRakyiskga9F3SSTSn5utSlSyoekzsotQaqaETb2/B20cGRvwmVZ0DiUsekv2vF75yfojqYmsk9kMvCTFOV0nH2JkayEDIWuLvDczuwTtY9G1WTycEEncOldrVdIx4zL9WHBtkFkw12ZkJ+WYZLkj/RhEeQijMiOvObIzfka5O7kWM22BL8df0/Oa3dvbW5RPdi7LTMS8e0zOt9E/5/jMyO5Hz7i0VpTXV5of2sn8s0o2QHl9Szul+WfMqPdgVz1icmfOnDGzQ+bHtntQo7SEBWeamGy7N7PVdc1nSbbNHK8tG16hUCgUCg71wisUCoXCRuBYYQmi6aKb3vmBDgd0PIkCjnlOlnw2osbZ9hxCpGIkHWdaqJ66jddmru2+XvVLageW1UvxFCWyNlsNx4iCemmApoNN5KKva6Re6W3tQbX1+fPnu6nFdnZ2Vn7vufxTzdFzXhGYNIDB91EAa7adSRQSIPWmVEuaF6mPono4h9lWL1GqN95PGi+pVJfsPD23zr1Ki/dctu495lTmVEl7ZNvCRKCaNUoEzXL4PQp/iBIUe9Bpzmw1WQQD3ukYZHaYwP7WW289Uj5Vmt5J6vrrrz/y6dWdZofPlChkSyESSk4vVSbVyV6Fzueo1irXdeS0wqBxrs3IYZH3OM1lQuRY5Z9jtT1QoVAoFAoOx2J4khR6Uh8lxezT/0/nFEpPUYofSlSUKiMHFAaJ0zkhkgIjhxnfpux71D9KzVHZWTAvt5/pGYSFLLFyxArIUGk0jsISPMPrtWMYhnQDXV8eJUSyzEja47xkLNoH29OZJApoJciWbrjhhiO/R5vX6phYoSR4BvFGzJvsj9v0RI4XKjdzIumx3t7Gsh5+nsm8M61Hz2nhwoULs9qBnhTPeyhLWdVzeOJaYgiQZ3gM6WDbIrYuFqYwATmRcB48w5OzCp1XBD5bPMPL0i4KdJry7c6SYauMiBVzPWeJtHupAekkF6VME7i+lqAYXqFQKBQ2AmsxPLPDTWDNVvW7ZquSDSXFHlPINp/sJSWmrpllMhCUdbP9/vdIIqWUsiTZKXXmHIsoCDtLt5YFFXtWIEmU+vglrrvZ9iq95AKSgOc2gN3b2+tu+0EbY5Yiq5eiiGEVYsK0l3lQWqfNNUrbpvXGVHOCTwCsNuiTCQjIPqI20qamMiKpmWEC1Lb0NoDlWmE4SjQn2fz0JG/a++bSQw3D0B0fPkMyTUXEnrPNTnv2cbKZbA6j5w6361F4gL777agUJC7bndgfWSifMf5/agO4hZn3D1D5+uTzm2spCt3imERhHbyGz3w+E6MNYLN0ZD0UwysUCoXCRmBthme2utVK5JFGKT3a8j4rN9tkVW92LylkiX/56evNghvpRdTzfCQLVL8lbfjk0QI3yKQ0GnlAStpjm///9s6lx40jCcLZoqSRobEFGBAMn/b//6w9GgIs2DBgjzQz9GERYMzXkUVSiz14mXGZIdmP6upqMiMfkbSMEgOjACzZoFu7LNTuLDufR8YGVgWgx+N/mgevmDAtxEvEo8noOnZB9ubXkthG1Snm4s11uWa6xpxuNYvt0fonE0tSc919Xs1RF4vkvVk1qaXoNsexaoZKrGJ3bsGv1k6y8H38ule8hytvAWO49Fgx/stMaY3Nt2GsOAlmkz0rlpe8UcxjoDQfs9RTrgIlBXUdqZWZ4sxcsxxzYld8jiiSkdo6dXH6lVdH15oY4zkMwxsMBoPBTeBqaTGPwzCWV7VnLYxTUKBZx/VtmK3J9z0TiZmObFmUrGZZOBw/LeNkvXAbWq+6/mQ905fNfVNtYlfn07XRSNvwXlB+zfehJczr9vgCx3auiaefW/v69mT/XQZmEoDmuLs1lQSAmaXZtdFZbUMpO2f4sprJGNjiSUjx7S6uzc99G8b9ukawHndnzIvruMtK9Pe6++XzmBozr+DrPa1foovDJ3mzTuqNcWBneJwn1n1qjH5fFIcTo1Lj10+fPlVV1S+//FJVL7/fOhaj9zUmxolX4+drzyhm6zLNRSc55/ela/LNNkUJ5+qaUyuz1VrsMAxvMBgMBjeBq2N4j4+Pu7YtSQia/m76uFf+V9bWkR2qDtDfE5gBlzJJaeEwm3FVV8htOqHmBMaRuhYsVfv2P4ypkLV57Q4zZTv1kdQeSO+R4aW2O872dPxz1hYZt1vgXdwlZaJ24Plpbfq64xrs6v1WmW9ai1pLqX6NMSDGwXiexNZYC8bsXX8OmJVHltM1Oq3aC2pzLSVm1jXs5XlTWy+P+XdrZ9u22KTWn+mUFeljSJ6RTmCaz7jmREy9ap/hyOcnxVa13lRTJ4b3008/VdWpplOKLFX77wGyJc2f2GNia2wTRqUf/67m9XQZq2Kh/gzR69E1DkhgHJUehpUn4JLvHWEY3mAwGAxuAvODNxgMBoObwDclrdCN6C6fJOWlff39VLjKhIaOTrtbTaK9LN4UFWa38aq9+4FdfLWtj7FLd+5cnY6ulEH7sGuy/8+5ZoqxXJnubqEblz37UtC/S5mnK9D7e1GG6nA4LOWhDofD7v64G3ElQdVhVVic4G6Vrnv5qnDa+41Vne6T1llK29c2SlagK5HlN44u0Yl9JZPbtUv+0v3nmKt6V5Z3Juf1dfPV9WP041zipu628/dYiN+FFlKBfidWz1Ijd+/quZOosz7T33TNuodyLep75+PHj1VV9eOPP1bVqUyhav89IFeijktXupfQ6DtB56FrXfffE13o0u7EGPQ9sJrPzpWZ1jl/F+jiTEkr7toel+ZgMBgMBoarxaP//PPPnbXlwWP98l/TtodF6ewAzaJHR2eBaNtUPEwBViZSJKFhBrSZDk4r0Me6Kravyim+bJnUFWwnRkUWSGs6STRxbjtW7SxUY9P5/vrrryU7OxwOu2C7b6+56wS5U8JEV0zfyVC5NcuSBa0VsvjEJMh86KVIpQXchuUQKeGlY3YM6rsVrc+6Fj9cHykBhYknnXciobt/SdaLazRh27YXSS2cx6rT873qPF+VEyd4refKpNK2LEfR5+6N0nsUrSejdG+UGJ3+kln595ofM52HSWssPfC54Jjp4WFiStV+nnis5DHphEP4HK9KkV6/fn1xecswvMFgMBjcBK5ieE9PT/Xbb78tW24wfsRf7ORb5y+2LBEK82pfT8HXZ3qPxdDaxy17NvGkZZXSdVOKus8BY0kOnZtWkl5TzNXPx+vkWNlyJo1ff1dWNBkES0E0r26xdnHMBFnptPZTLIiCxRx3ag9EpsX5Evye8jMySZ3HWa0+Y5yXMTVee9WefXSyV6sicgoQ8Pp9H8aqdR6u+8S8OEZ6Nvw57tpP8RhpTpyprsoS7u7uduwslVPoGeJzuooPs8EwvTm6b2qk6tAzrM9UHpAaKHdeCH0faB8vLeB91jYUAk9MiN617nvA4/L0dmg9swxB1+Ux7a5hM9df8kacazSbcj78+BPDGwwGg8HAcHUM748//thZpm4169ecQqEUpU3ZcoxPMbsoFUwrS4rZSmQmjsTgqk7WoawmtxoYF2FRJcfoFiZlhnRdbGuf5kRj6uTB6J/3bVlgz1iFW3a0BslYZOH5dXUFxwlq4rmytM9ZaUnercuS7Zqcetse7SvGo3nSvFDs26+VjIKxvRQX41g5Zh3DWQFjgl1Rt99/Ws0aYycmnoSnzzXxTM1Qu0xmwV8zq/H9+/dtHGbbtnrz5s2OIaTifjIFxk+d1Xfj7JpIO5tRJiVZcrcuqk7PvdYg49jMQ/DP6CnjWtIY/fo62cNOcq7qtPZV/E6BAzLOJBV5zsuXtu1id/Tu+Xu+7TC8wWAwGAwMV9fhff36dWcpuuVDPzHbi5BBVPXSR5S50WvVq1SdLCnJ8jBLMlmkOjeZFzP63NLq4jCsRdN4knSarJlOFNv3Yb2arr2LpaR6H9YR8fr9fVqOunZJZ+lvyqpMVhixbVu9fft2Z1WvWuHQ8k7yUF3ckPU7YnFeryhQRJfxixRzoJdAVjtl43xbHoOtZZLQOT+jbFjKYCbb0Ni4VpK3hfeAMd1U58bPyD5W2a76ey6G58wlPa+6V2S3zHL1c9DbwHGTcbmoM7MVfaxVe6bnY6LU1yUNTfks8Hp0/SvReo49tfzScbqM5eRlEzqWzTWcYsZ8zWfEwZZsl4jWC8PwBoPBYHAT+K8awNIaqDpZQ7TuBGZyVe3bltAiJNPzLCYJr/78889VdbLgmSXlVizZF61mjcdFqnUc1sEwkzApiOgzWXSatySgLNCy4bayNjXfHqvUZ5xrZvg5aP0zdpf25XFWDWBfvXpV9/f3u6axqalml/natZ/x8XNszHxTFp0fl5Yu47++drqmoDp+ainE+ChjxKw7TdYzs2a5rpNqDpWEuL55jxPoyUjPL9kmwXvhY/KawBXD8zhNqms919aImat+bZ14NOPY/n3w+fPnqjplZ/J+6G+HELbMAAAQKUlEQVQSZqaIc1cvm66HcT9moydxbI2fazPNIzNhydq43pOCFTOwyVxTiyZ+5/P7dZWleQ2G4Q0Gg8HgJnDVTyTrYcR2PPNN1qJ+ffWaFlhqrkorjIoKsoxcKUVZmvqr1htkDs6iaMHLeqXl69fF9iy0AslCkj6hxq+2IGzI6JY9rU2yD2VRycKUxennZvYn4xzJ2qUlzyzXZGm5ldlZ+YfDoT58+LCz9tw7cK6NSMriY0yT18N4ls8xM3u5DnnPfRtBx5NnIa1vZqsxS5LHTpmEzGSm5ZuUixhvZL3rSrlGIKu6xOLulJNSPMu1G88xPO2TMrDJ1jvFn5XSitBlM6b1x3o0rWf99WN7vNJfk/H7ebhGCcZj/Tkgk1s1DSYY/6XXgVrF/h7XKHMJ/N4wjs34fVIf4r2+VGWlahjeYDAYDG4E84M3GAwGg5vA1S5NTy1nUWLVyc0gF4+oqN5PRd2dMHMn5uz0mgFfBkrT+Ui96SpZlU7Q7dVJpqUO63SrseB5JeLL9iAsinXXIF21QnIPCHTrci44Lh8b3V0Jh8Oh3r9/v5SooouCwtnJBcd5ZwIUx50Es7ti3iTFxDZUOp7GSjeib8vCW15XKjHhuuPxV212uIYu6STflZis3EacCwpap1T2VJy8Si134fHkNuYzy3KNVE7B43RF/Um2S8lPlFfkHKRSI77md9hKoo/gs+LfWV1CC99P5URsIdbJFfo9pcxZJzGXXKldYXtqPkC3+ipZjhiGNxgMBoObwDcxPCY4pFYotBr4vlvaTGSgpdsJjPq+GosscLHPlPbOoK32SdI+wio47EhyTZwvfabzJBFuzknXwibNJ5N+OvabJKVYOM2EhNRKxK3oVWr6u3fvdtJvKTW6S+YQ3NLmNXVCxqtiXibQsAGxg1ay1g6tztRUk8kj3bHTe12pBiW0fNyJETuS4DkTkbpWSX4+JhywDCc18byW4ak1WRq/jzMlRvA4RNd+jNumdmFKoNM9lteG7b2q9veB8mOpHEXoUvDZxNifJzaLZclRSvjSeXQdSkrRX5UjUIaxal8KwuMn70tXbE+Gt1obk7QyGAwGgwFwFcN79erVCys9Mbyu0Jz+8WTN0ofdtbNJDTKVnv/rr79W1cnakEWSGrIy/sXU4lUspUvpTRYk05FlHclqYkFq1d7SJiNSEWySOOpKQCgJ52Pt/P1kEkmc9pIC0MPhUPf397uU8lSgzULoLi7n1yqQebPUITFKvac1pDEm67IT5GU5R5LR6soRVvEHxkNo+a4KqoWO4SeJOY6F3pbUcJbxKl5num6WaqxwPB7r4eGhjSv7uTuZwnQefhexjILH8Oezk29jCVBieJwXxsdS/LfzenB9+/k4Bs1f8mDxfJRGI9OjLJr/z+96erh8H/4+EKnRNWOq27ZNDG8wGAwGA8fVDO+7777bWQGrIlthJRXDTCoyBhZ+unUpNvD777+/OIbGpsaoXiApq0L7UjqIMT0ft8AMyE4Q2LdNsmP+eWquSmFp7SsrTQxvJZ3GjNIU16KFxAyyJPYseEH7qnj43bt3uwaqEgrwcdMy5FykGB736YpsfY7Z9kUMT8dYZc92Ga8r9qGxMFZD9rZilJ1MU9pHf/Us0GOSWAFjQV0rI78GzaPmi81JU+yd98nPQTw/P78o/k8ZlxS55nkSGP8mO+daTjFI3g+yXF9vzFplFjCzuX1bXo/OR0H61FCZWbJduzAfC7Mz2dqIx/B9ydo60XK/Dn62KipnTPjp6Wl5nx3D8AaDwWBwE/imGJ5+lfVrn2J4bPFDkdvUip4yVrRIkySOWBpFddnGx2M3ZIq0JpJVwTqRVeYgP6cVzjFRqm11zay3SU1KGa/qmoeuGF4nE5Tm5tJGjM/Pz7tGqW41616SZfCcKW7QMRHGOJwpaG7lHdD8s9lviiWzto0Wb6ov5GsedyVhRTDWmuLNvBe8l0nKjY2NuzE586CweBc/T2vDxeZX2auPj4+7MayksbieV7kDBJlearnD54Pvp7pPMn3OW8oA7yS2Oi+Ij6er7+vinP5/Jxqd8g0EznHXdsmfQbLCLl6f2oh5FvLE8AaDwWAwMFzN8L7//vslU2AcTvUcqxqazh8uUK3FLRLGsBhDkzWRfM204DRWqmf4cTqR2i6bzo9Pq69jsP4/W9R0DC/VQnJOuniQgxlpzN5MIty6jvv7+2XN19u3b9uYRNVp7ciKZHbZyk/frRlm4Pk1M2OUln3KuGSMmgobHn/pcEm7I6JjM6mWirWUtJ67136eLms3tWbh9bBmayXorPlyqz9d45cvX1qlGj+X2HpXJ5ueE9atcu0klsvvDt7LVf0nn2nej8SAOpbWZdX6NszO5etVaynG/bo2RY4uvp28bR3L5b6r7Oqnp6dl8+kXY7toq8FgMBgM/uGYH7zBYDAY3ASudmne3d3tXIzubumCnkwUSXJGAoPqdNGkAD3TgUmfPY2ahbAcY0rG4fkoaZYkxQS6yNi9nMXLPm72ZqO7Mgk3d2LEnSiu/6/x063Ie+DX7O6dzj2nhCedh9fjoDuF7o50DrqUmMyTpMxS0b5fV5LE4piYSp5Sy+nmpNuLCQcpbZvuL97/JHTOfTpXpyeLdZJsLKlIPdt0Pm2j5yh1gU/Xdc61y7IUT5ygjBoT0i5J1DrXcy6Vw3QlJsnVzCQsjjXN06WyWZcIenQhFb8u9inkX35PXDImYbUO+P3JUi6WWvm+qz6cxDC8wWAwGNwErmJ4VS9ZQWovwqAnmV5iG2zHQtkpprO61UNLjkkyOqZbFd5l2cfGlhgOtsLh2IVLCl35OkkmMTW/SzhIiQdktwxWpzHqHmq+mJyRUt27AHPCtm0vGGAqZGcBrix4sraELmVda4lyZVX7uaMVmxJRuEY0X0qaYBdr36drR0MpuHQvycb0NyV6MWkgeRCqstxat55p2fs6oHByx35Ssbp/L5wrS+A8+fH0vJNh0UuUvnfYZbtL50+Jb5wXMpXU1obP3yoRhV6NruXOiuF1guMUNff/yexYdpOSqDpxkU48Ix2H5Q78jvRrTvflHIbhDQaDweAmcDXDe35+3hWRp7YWTNOn798tEaUSU7aJLIb+3aq9XA9/7VcpxbRWOkvI92dqdOeHX8lDdcXQHkuhJc+/qzZFHENirOlaqnpLLhXasgRkVTzMfZJ1SXFZWe2Ml6UYLtkMi/lXMRze21WRfYpb+hykZ6IrWehYQSpPYayWa8ctZcZuGc9k3HsV92EJUmJ4Gr9k/HgMenD8PX+Wz60dMuBUoE2rvxP3ruqfC6Frs+Wfkc12cVnfX/uyHVVXPuTjJoNdNY3luOl9YKzc/z9XhsDvaB8D1yw9dmmtdkxPx/SytnQ/JoY3GAwGg4HhKoZ3PB5fNPmkFVC1b3LK7KkkLcZMQBZX02Lw9hYsfmbxZpJP6iwQWT56neJLZKECWWjyw9PCoXixMzzFnGTZ6C9bGmnMfn30w3eCw37fGFO7RIZI53Hr89KssjSPFDnWfda8pLZGXUyhE41OliDnKVm+HDcFh3m+VYYv2cGqSPkcg03FvIyZ0MJm7NKZFcemNaJjJKa/erZ97P48MV7/5s2bpWjB69evdww/xcfIEslQ/RkjU+jEjtN6IMPntSemT3kuXQ/ZZ/JCcEz0DqzAmHQnWp3Gzec0xZkFxoQpCsLv87QvGXPKneD3wePj44hHDwaDwWDguDqGV7XP5EuZT6xdoSWUxEfJgOh/J/Or2sdo9OtP/7hYVNUp1sDmjZ2sjn/WiRV3LTH8upilxYaMqXWNmB6tdlrrHh+h3FEXd/R9uiw8st7EClexB0FZmmREPjZlOur+shZQ99TH0MVsBTKglURRF3/xddAJQa9kqLrWRRx7Yoe832T8Wh/u9dD/jA137DNlH3IddEymav/cCKsMXz5jK2korR0hycSRIXTMx7P9yDxZJ7cSiO/kAuld0Zr24zPjlusiMVeyJDI8xp/TXHTx5yQt1rV34xpK33NdzDjJE/LZ6+qLfR/Wcl/K7qqG4Q0Gg8HgRvBNDI/t3VMVPLelT9itQfppO6tGlmv6tZfFqyaubObqVsyHDx9evMfrSRYrY3jnRGLTGCnmTEsotWlh2yNaST/88MNurLTOO0vP96FFp8/YMidZkB2TJI7H426enGXqOLrPtJITCzjHMmld+hyfE2SmckjV3gvBOIysdmcSrN3rYqspNsXj6TyaIzYCTtuS4XWMzMG1wviPzzPrF4VV1rOgMXz9+nWZpblt287T42uW30GcyxQzZjxc0DhX7Ye6LM1OJcjHlLxAfr60D5lPp1CyqsfsYpYp85qxT85vypTt7o/WX8qUpXqOtuFz5UjzNFmag8FgMBgY5gdvMBgMBjeBq1ya27bV3d3dLnXVKSr7ZXUi0qnjeSeQy+JndxfR/UC3p1ybTn8/f/784rwMNAvuBmXBZZe+n0SkSfGTC5Ov6f4UKO6cJLo6oVcWlSY3AOdCSRGpSJfuhsPhcLZ4mK4yPy6D0XSjUSbKIbdnl+KdkhhSSr8fg+nPvq3+ck1SONnHT3d+Vy6Seg4yAYWvPeGJbleuJYpAJNc23WFMpU8uTboNV2UwXJP+HnE8Huvh4WGX5OHoOmWvekKyqJnPLhPF/BmjEHyXlLcqbepE81flKQz70GW7Koch6Lr36+rKIOhaTYL3PEYnbeefMRGJ15vKoVYCER2G4Q0Gg8HgJnA1w3MrPsnaMOWdjE+WT5IZkpVO64EyRG6Rs/BcYMGxQ1JmTC1mED8lYZAxdJ3P0z60mniMZKkwOK4kFbJsH7vmsZNGImNydIk8QpICW7Eox7Ztu23T2uEcrsbbda3uEp8Sa9d1iM1esg/b5WhNsoyjaj+XZFhdoo2fh8yO4gUrS5teAbJ1f81nguUj6R7xelK5EkFm5OMknp+f6+HhYVeClNYbW5d13iLflkyvS/JIpREE17XPk57LTmbxksSLrvVT+i7m8cgOta+XtAj0kHQCC77u+P3WtWjye6Bz85nXedM8JwnKSVoZDAaDwcBwNcPzFi+rdHTGi7Qt26hU7Zu3Mg4iyypZ+PSv07pMTT7Pxd1WcSjtqzHROrumLQgtfI/7MIVd80aWwPYdVSdGwZgkLf5USMui9RVro7zWqgEsj5VSv7kvWRuvp2rfMqormE5sg54DWrGpuS7HyPhzigczFthZ+KnwmPEPxudWDYA5B2RgjJH6tny9euZZZiGwoW0SnPa56NaaYngs0UnF7yx2prcoCY938XIe28sXeN+776FU1M8SrWva23QF4Cl3gN87XEOpvINzwPY8PEZq9cOmy11Mz/chKEmZvk89fnnpHA7DGwwGg8FNYLvU91lVtW3bp6r69/9uOIP/A/zreDx+5JuzdgYXYNbO4FsR1w5x1Q/eYDAYDAb/VIxLczAYDAY3gfnBGwwGg8FNYH7wBoPBYHATmB+8wWAwGNwE5gdvMBgMBjeB+cEbDAaDwU1gfvAGg8FgcBOYH7zBYDAY3ATmB28wGAwGN4G/AZmMpHQOGx+JAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1567,7 +1536,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXuUZedZ3vl8VV3d1d2SWuq2utW6+6KA7Yw9zEBCYIgJyxBjhltWFnGAEIM9mEASkoknIQ4QA+Ya7gQMgwkeiDGL+32MCcRc4hDIcLEM2MaSWrduSS2p1VJfSt1dteePfZ6z3/rt99tVpy1bUup71qp16pyz97e/297nvTzv+5au69TQ0NDQ0PA/Opae7g40NDQ0NDR8JNB+8BoaGhoadgTaD15DQ0NDw45A+8FraGhoaNgRaD94DQ0NDQ07Au0Hr6GhoaFhR+AZ/YNXSnl1KaWb/f2V5PuXhe9fHj5/aynl2GVe81gp5a3h/SeHa/jvgVLKr5VS/tplXuNzSin/52We+8ZZH3Ztcdyt6POTs37/Zinln5VSrkzO2TT2bfbn1aWUL6l83pVSbl2kvWciZvvpvqe7H4sgrP+rn+6+ZJjNKe+r7O+Tn6Lr/WQp5X1PRVuz9l5fSvms5PNvKaWsPVXX+VBQSnlFKeUnSil3llLOl1I+WEr5vlLKoW2c+6LZse8tpZwppRwvpfx8KeXFH4m+f7gw+dB8BuEJSf9A0tfg8384+44P72+Q9D2Xea3PlfR48vk/lfSHkoqkGyX9K0n/qZTy0q7r7lrwGp8j6eWSvvMy+7gIvlnSL6lf68OS/qakr5f0laWUv9113QfCsbWxT+HVs7b/Az7/VUl/Q9KJy+hzw4eOE+rn/46nuyMVfIOkHwzvXyvpNZL+N0nr4fM/f4qu99WS9j9FbUnS6yX9ivp7K+L7Jf3cU3idDwVfrl6p+TpJxyR99Oz/Tyul/M9d152fOPeV6tfiRyT9iaRD6p95f1BK+fiu627/cHb8w4Vnyw/ez0n6wlLK13azSPlSyl5Jf1fSz6p/6M7Rdd1l3+Rd1/1x5au/6Lru9/2mlPLHkv5S0iskvflyr/cRwJ2x35J+rpTy/ZLeLemnZxu/kybHvjC6rjsp6eRT1d5TiVLKsqTSdd2lp7sv20UpZUXSpW6bmSK6rntS0u9veeDThNk9Or9PSymvmP3737azLqWUPbMxbvd6H1y8l4uj67p7Jd37kbjWNvCa2X1o/HYp5S5Jv65euP2JiXPf2nXdt8cPSim/JeluSf9E0pc+1Z39SOAZbdIM+HFJt6iXOIzPVd//n+XBNGkG887rSilfX0o5UUp5rJTyy6WUG3Huds161oRWwrnXllJ+qJTygVLKuVLKvTOTwg2xb+o10xuC2eYY2viB2blPzl5/vJSyB9d/binlV2fmhrtLKV9bStnWenZd95eS3iTpJZI+ZWrspZTnzq7/wKw/d5ZSvmf23bskvUzSJ4axvGv23cikWUpZKaW8aXadC7PXN80e5j5mkbV6VSnlt0opJ2fz8MellH/I8c7a+8ZSylfNbvgLkj5u1oevTI5/42z9rtnOfIbzvrSU8qellLVSysOllB8ppRzEMf+4lPJfSymPzsb1+6WUz8AxnoMvL6V8WynluKQnJV0d5vXjSylvK6U8PjM3fW8pZTVp49Xhs7eWUu4rpXxMKeV3Z2P8y1LKlyVjeflsPtdKbwp7Le+rjxRKb5rrSimfOevDI+ofvCqlfPRsHo6V3mx3R+lNcVehjU0mzdl5XSnli0sp3zzb36dKKb9QSjm6RX8ekHRE0mvCvv/B2XebTJqllNXZ918z23/3llLOllJ+sZRysJRytJTyc7N1vLuU8s+T671g1v+HZ+vx/3HPZMCPnfGHs9cbku/iuQ8nnz0q6U6eW3rz7vtm8/9oKeUPSin/+1b9ezrwbNHw7pb0O+rNmr87++yLJP28pDMLtPOv1Ws2X6LevPcdkv6jpE/exrlLpfeb2aT5TZLOSfrlcMxBSWuz65yUdL2kfyHpv5RSPrrrujX1ppxrJX2cJPsAnpSk2QP23bN23iTpPbN+frak3T5uhp+X9KOSvkvSZ6o3Vdw7+2w7+DVJ3y3pEyX9ZnZAKeW5kv5gNs6vVa/R3izp02aHfLn6+VuW9LrZZ1Mm0f9H0uepn7vfk/QJkv6NpOdJ+nwcu521ep6kn5H0LZI21Jtr31JK2dt13Q9qM16t/mZ9vaSzs/9/Qb2kOjd/l177e42kn+q67tTEWDahlPIt6tf6eyX9X+ofCm+S9FdLKZ/QdZ3NdLdKeot6E9Mu9Wv3K6WUT++67h1o9t+of0B9qfo5jr6hH5f0dkl/R73p8o2STkn6t1t09Sr1kv13qzdtf7GkN5dS3t913X+ejeVF6k3SfyDpVer33tdIOqB+np8u/KD6++3vS/KP+w3q1/KnJD0m6QXq5+1/0vbu638r6bfV748bJH27pLdK+tsT57xS0m+o38PfPPvswS2u81pJf6z+PrlR/X37VknXqbdg/YD6e+A7Syl/2nXdb0lSKeV5kv6b+nv7n0p6RNIXSvqlUsoru6779W2MMeJls9e/WPA8lVKOqDeL/kb47DXq7+c3SvqvkvZJeqn6Z9gzD13XPWP/1G/CTv0m/hL1N/SqpKOSLkn6VPWbupP08nDeWyUdC+9vnR3zLrT/+tnn14fPjqlX5/3e7fPvMUmv3KL/y5Jumh3/uejffcnxX6/ef/ExE22+cdbeF+Pz2yW9Mxnzayvt7Jl9/+aJsf+YeoHi+on+vEvS702s3a2z93919v6NOO6rZ5+/ZNG1wvdL6n9AfljSn+K7TtJxSXvxudf2k8JnnzX77OO3Wi/M9bqkr8Xnnzhr63O26PM7Jf1isnZ/pN70ms3r1+HzX5H0gaSNV2McnaS/hX3wiKT/O3z2E+oFtn3hs6Pqf3CP1ebhQ/kL+3pX8t0rZt+9fRvt7FLvH+8kvTB8/pOS3hfef/TsmF+v7MeDW1znAUlvST7/Fklr4f3qrL3bJS2Fz39g9vnrw2e71T/j4j35ttnePYDr/I6k319wjq9Wb0b+k9iXBc7/WfXPg1vCZ2+R9O4Px574cPw9W0yakvTT6m/Oz5T0Beo3XKqZTODX8N6O15u3ce5XqNfKPk69hPcO9T6wl8WDSin/aGbWOqP+R/me2VcftY1rfJqkP+y250v7Vbx/r7Y3DqPMXqd8Qp8m6Ve6rju+QLs1/M3Z63/E537/Mny+5VqVUm4rpby9lHK/pIuzv9cqn+t3dHDSd133LvWkiNeFj18n6T3dZr/nVvhU9T9ebyul7PKfesn8CQ1jVynlfy2l/Eop5UH1++Pi7Pysz7/QzZ4qCbj+t2t763+um2ly0tzX9wGc+/GSfq3runPhuBPqNe5JlFKW4xyUbZrZt4mfT663OjMXvn9mSryoQQPZzj2XzaO02L20Hbyz67qoHdu8OtfQuq67IOku9UKy8Qr1Wu1Z7K13qjfLr2obKKXsVq8FH5L099GX7Zz/deqtCa/ruu7u8NUfSvrrpZTvKqV8Sum5Fc9YPGt+8Lque0K9CeofqDdnvm3RRZP0KN7bRLidTfOBruv+++zv/1VvVrlT0rf5gFLKP1Evuf0n9Zvjr6l/eGz3GockbZf+no1lW5t/Bt9UUyzKRfqzFWzi4PUewPfG5FqVUq5Q/2B7qaSvkvRJ6oWR/6BeMCJq43yzpL9bSjlUSrlF/QOG5tCtcHj2+kENP7z+u1L9PKqUcpN6Ie2gesf/J8z6/A7laze1Ntn8ZOMmMjMt985RSQ8lx21ltpP68cXxf+02ztkusvn4DvVa2Vslfbr6e+5Vs++2cz98KM+ERcB5vzDxuff4svq98qUa76tvUP/83tLPPGvnJ9RzID6z67qFzJmllH+mfh1f33Xd2/D1D6s3tX6S+ufeo6WUny7wtz9T8Gzx4Rk/pl4iW1L/g/O0oeu6rpTyF+o1TuNVkn6z67p/4Q9mfrDt4mFt4Ux+CmGn9+9NHPNU9scPluu0mSp/Hb7fLv6GeiLTJ3VdNx9Dqccn1jSlH1Pvh3m1+ofHOfVmpEXwyOz105T/oPj7V6j3g31e13VzQaKUsq/S7tNVu+uEhh/xiCPbOPd12hwm9FRYB4xsPv6epB/uus6+NJVSnvMUXvNpQ9d166WU0+qfed9VOWxELokopRT1QuBnSfrsrut+d+r45PzXzq79jV3XfUfSxw31oRjfX/r4vleoF0LeprHV5mnHs+0H7zc0c053XfdnT2dHZqaaF2sz9X6fxqSNL05Of1JSpvq/U9JXlz6270+fko4mKKXcpl4q/mP1Prga3inp75RSjs5MWhme1DgOMsPvzF5fJekbw+dfMHud6kcG/0hc9Acz0s9nL9JI13WPl1Lepv5BfYV6P9GisYi/oZ7McXPXdb8xcVzW57+i3tf3TAps/31Jryyl7LNZc8Zc/ERtEVfZdd37PwL9kzR/mO9VmM8ZsnvuqUbtHn6q8Q71VozbuwXCMAL+vfp77PNnlqlto5TyKkk/JOn7uq776q2O77ruEfVm/U9UL4g84/Cs+sHreqbb06XZvXDml5N6luUXSXqRpH8ZjnmHpH9VSnmDeobbp6iPFST+XNLBUso/kvTf1Tu5b1cvSX2++oD2N6n3JzxH/UP8y2Zm3UXxvFLKx6sn0FyrXup6jXrJ8PMmfERSz2B7paR3l1K+Sb3J7gZJr+i67gvDWL68lPL31GtuT2QPva7r3ltKebukN860sHer19K+Rv2PzKKBrO9WL1x8fynl36oPKv7q2bgOLNjWD2jw49XMmXtLKdlafrDruj8ppXyrpH9fSvko9ay/NfVm409VT274z+pNPpck/Vgp5TvUmw6/Tr2f95nkXniT+n3766WUb1dvKv0a9SbNp5OluQkzK8s7Jb229CEHx9Q/aP+Xj8Dl/1zS3yqlvFK9+fehruvu2eKcy8Eb1PuC31VK+QH1e+Ua9SFF13ddNwopMWb3xZer39P3zJ4DxoPdLGFG6UOezkr6oa7rvmL22cvVWz/+UNLbce55C+SlD2M6qV5IOqmeDPQqBd/kMwnPqh+8pxnfG/4/Jen96qWmt4fPv149E+qfq7fD/7Z6evOdaOst6n173zQ7/m71bMbHZtLRm9T7pQ6pf8j8lgab/6L417O/i7N+/5l6e/yPbPUD2nXdsdlGf5N6s98Vku6X9IvhsG9VTw54y+z731adDv5q9XPxJep/nI7Pzv+6RQfVdd3JUsrnqjef/Mysre9R7/PYiprPtt5TSvmApMe7rvujymEH1ROniO+X9I+7rnvDzMT9FbO/Tj2V/DfVh3Oo67o/K6V8gfp98kvqBYSvUm8G+uRF+vzhRNd1fz6L8/p36i0q96tfp1eoZ38+k/Bl6rWYb1X/Y/zL6oXR//Jhvu6/VP9D8jPqNb0fmvXlKUXXdXeWUj5WPYv1W9ULwA+rF4a3CkH69NnrlyV9i/0t6gXi5fD9y9XHGP91jclK71f/wyb1LpEvUn9vX6n+PvwRXcY9/ZFAmRbwGxr+x8dMK/sLSf9H13U/8nT355mIGUnog5J+teu61zzd/WlouBy0H7yGHYsZk+wF6qXRF0h6AUMXdipKKd+nXrI/rj6BwldK+hhJH9d13Xuezr41NFwumkmzYSfjterNux9Qb55uP3YDVtWb0I6oN6f/gfrkDu3HruFZi6bhNTQ0NDTsCDyTmGENDQ0NDQ0fNrQfvIaGhoaGHYH2g9fQ0NDQsCOwEGlldXW1279/v7Nka/fu3ZKkpaXhd3PXrrzJPilCjqnvtvrefeExi/gmeWytzfjZVu3H73nsVuPN2tnY2Jjs69T1tvo861NtDrK+Ly8vz18fffRRnTlzZnTQgQMHuiNHjmh9va+S8+STfdIIjyvrn/eV2+fnU+NYZI5r17+cY7L1qM0hj53aW/zuqRzfIvdKdl2Ow2vqtb506dLoOn5OrKz0pRCn9s6VV17ZHTp0aL7ubs+vknTx4sVN12SfptblcngMW527nXW6nDWswXMT22T7U/cNsVXfsnHXxhzv8a3O5fusTT8P/Nny8rIef/xxnT9/fssJXegHb+/evXrZy142n7ibb+4Til9zzZC/9KqrrtrUGf8oetAcvCTt27dvNKj43gP0Zo4/qt7onhgf6/e+KWLbvHF4rK8z9XCvPbTctvsV/3e78QcivsYNyRv3woU+7nxtrS+JxoeKX7NxcHx8MPHa/C5+H398vA5u7+jRo/qu78pT/h0+fFjf/d3frePH+9SK99zTJ6V44okh9t17xbjiiiskSQcO9IlT/HD0azyH/avdsPHG8jkeK9/HOTUoePAYfx/Xn3PLPcK5jnPMPvm6noPtPOh4He7/OAYes50fWp9z7lxfXOH8+Z7sevr0aUnSI4/0qUS9dyVp//79kqSbbupzmB85ckTf9m3zPOybcPDgQb3hDW+YPyfOnOkTHnkPSdKJEyc2XcPH+L7JBEbvXx/jMfOHmnMd58GvfA5lgldtb/q9rxPXg/eY4b65T74P4rPR1+N942N8nXjfcX/VnoXZj5bngGOncJvtN6+B++Y95M/jPXH11VdvGvuVV16pn/3ZUR3wFM2k2dDQ0NCwI7CQhtd1nS5dujT/FbaUEaWKmhRpZBLpvDOQZihdZuZSSsCUIjJJi8fWXjOJLpP6pbFmOWX6cRtuP9MW3Af2n+Pds6evCBOl5ymJMZ6bjYXaB9cr09CNJ554ojo/XddpbW1NZ8+elSQ9/nifn9nSnzTWeGsmmbgPKOFSSzSyfnP++d7Xj3uYGjWlWmrx8XyupdeH14+gOZfH+vupe4MWBs6rpems/7wno+a6XXBepWG/ej9sdb73eUTsi9eXWquP8XjiPnAfuGdptWFbETWLT4aaxYr3WFxzWmOidSOCzwVpWLta37L9xj1iDYt7NWuT+5yaZLZHPVZfhxqmnw/xOj7WiG62rdA0vIaGhoaGHYHL0vDon8s0E//a793bV9CgNBF/7SmVU4pxW9R62DdprGlN2Zop9df8F9mxW2l8mXZIiZF9jedQM+YcUPLL5sTzWvNRZNJgbZz+PK5b5ouo+c42Nja0trY29+tYq4jrQ22J8L5YXR1qc/p/7zNKojVNOTuWmkjmd7bE6b5aS6gRNiKopRvbkYC5J/1qzSfTbDmemg83ak/eK/6MbdhPF8dXswZMEYh8Hftwz58/X7UelFK0Z8+e0bxF6wDvLfpSM23GezDTQGNbvBdj+0aNZ5D51Pi+tv8ianNK61fmo+bzxuPJtF5aA0gQonUvziv9bZyjzPpBbY1aoscT15rPgUXIP03Da2hoaGjYEWg/eA0NDQ0NOwILJ4/uum7kXI1qbc0BT1XcJihpbHqjCYFtRnMK+1ILF4iqPlV7oxauwP+zNmpmy/g/++LxksTA87P3NPtmpkbSkumIjmOiA93tTcU+cc7X19erzmObNCO5Jp4b+0AThfviPeNwBamnJEsDzT3bk7XPbRKhqcVmHVLNpcEMZtq7kVH8a6Bpy+A6xc/4ne8ZU/Xj/VQLg6jRxCMZgyYmw+PyfEeiSzRLSoPZs0awidfxPJ4/f766d5aWlrRv377R/RL3Yi0Uh+a1aGarhUp5v9VMgPEzmvpI7oljovmdZs/s2Uk3S22OMqKX90j2PIvI5oTPAz6bOc/ZmD1ezon3UASfm1Pm8IzIt12zZtPwGhoaGhp2BBbW8Eop1cwK8bNaEK+lm0zas4RoCZRSLWmu8Rhf1+1burG0mVHZGXhK6SKT1ulopqQzFXjsc00IIBElzglJIh4PacHZnPjaDOak1DvljCct3a9RQ/N1vAZra2tV4sHGxobOnTs3SQyi5uO1dDIDB5z6VRqkRWs6btfSJckXWQKCmuPc+zDObS2RgufF52SkpRqpg/suI3R5fL4exx21XtLR+Z7jimtaIyuQmh+vxzkgkYfzEOcikn9qe8caHsMIMgsM97jnh2sqjTUQUuKnsgzVwq5I6ohzW6P417JTxWO20mA8J5GAxEBz3nu1cUrjfVwLocr2KvcXxzkV2mTwXomkLM+jrTqLZJBpGl5DQ0NDw47AZRWArdHqpTpdm1pO9AEw+JSaFX/Bs3x41EgsvWX+A/bB760NUqqJ7VKKqQXLT6X4MWr5MaUhnRY1Yl+3lj4qjotSrftOSnv838fSb0ENOh6zHft5KUVLS0sjbSNbF0tuhw4dktSnloqv1vikQYKnJuf1p28v81eQUs5xZdoa19T7PTunlm6qFoA+lb6LYQj0B8VjPAdcd/fVeyaGeVCTq2muUbPxHPs+pl/xsccek7RZk6ZFJGr/hDW8U6dObepblibMfWE4jccR9y+DnnlfTHEVqG3WwoWmLCIE/eacg3g9WkMyHoDHwaB1v2ZhZfRf03drZPc+E13UwjrifmOYD/cftVRprCkvgqbhNTQ0NDTsCFyWhkcJK2oX1pL862vpwlK5pYp4Dm299DUweD3+2ltaqLHz/H2ULi2B0nficy2RZtcxaP+upe+KY6b053FZAoqaizU8S1Zuw4HbtG3H61kS9jg9HkrpmTRo34zZc2Shxetk2uyUtldKGSXijX2gZuf58OfU4iKYYszvGVwc+5/5sKSBdWiNJa4tEyR7H3ue/H2WAJr7jRKq90fsDzUq70OeG/tIHwrvyRobOp5DvzYtJZn/jBoStessPZSPuXDhQpVF6IQG9HVFCwV9SmzLx8Z14bp7bms+tYzVzPWfqhDBhMicNz7LYns1FiP3fZwT3/+0evlzPpekYe/4/q8lk6aFK86F26X1w3MS+8jvuDczLc7nT/kga2gaXkNDQ0PDjsBCGp5t6f71t7QcmU+Gf3XNqLPm4M+dPFgafuWZHsntM04vShWMh6oxPDPp0t9RSuMYIpiWLGOMsY/+zuOw1uZX9yf6Fxhr5HHx1X6tKAn5M/p9rOlR8o/j8npZGrRGWfMdxOtsxTZbX1+f95ssuthPpgmLNdNiX+IYuBeZkijbq7U0TUxwHa0Dbifu3+x6GfuU2tJWyculMcPSoLYez/H1qO361XPmeydK3NRU6Bv3WsR182f0A3t/W1OPvnr3IdMyCe8d+tSi1aWWgo1xmlncp/c+tUD65+Le9/rTd5exQQ0/A31uLZnzdpI6u69eF69HXBffRzzWyBiQnEc+K7lHszJofqWVyusfr+c+sn36feNc0fe43cTRUtPwGhoaGhp2CBbS8JaXl3XllVfOJbpMOqOEYCmMMTpRMrBWwfIw805W4kikQQPxr7ylVmqUGZPUfaPUwvi4eM0aM5GSXTyXkqOPscTj14x9Sh8h/TOWFqNkR1+hpSUmbI4St+fN7VsitnROm35sP8bZTNnTu66bS/ae+xjPlWkr0rBeXusIFxetxUPSNxC1Ws8ZY/bop4twu/SlTmXa8RipKVAbpb8k9rsW92kJOc4Zx+xzmAnFxXgzUNumvynGQlKToAZGn1EcY8bWJZy03s8OPw8ic5AWF8+5+5kxYOnb9Dn0h7ntuB/of/d1fa8ZUavivev7j/ssYwUzCXYtyXs81+eQwepxZhaT2rO2VtIsFnCmpkXLj/dDtI64Pc+1rVN8vsU5qnEitoOm4TU0NDQ07Ai0H7yGhoaGhh2BhU2a11xzzVxtN/09I0zY3GC1mhWuo+rtdhjc7WNIaolmCbbHgO0sUNamBJpk6UCNZAX2iaYkj8GIpjqaW+mwr9Xni9/5XFKpvRaed2lsliBFOjO7Gl4nj+e6666TNJgjohmUoQVTSVxJKydFXho75hmK4fOjecPj9zyRFMMUVtGkaRNPJAtJ0/UXSRqiOTJL8utxMbQlM9HHz2O/mQbP+8AmpYxa7rH6HH/u+Xz00UclbZ5PH8OUZQyKPnHixPwcpvPzPUgzY5ZQ3e1evHixSj7ouk4XLlwYJVCI9xifRTbFkwAVTafXXnvtpuuQTs/76OGHH54fS1IH09Nl4SlGrZaez4mEF4/DY/W82VR75MgRSeNQEGnYGyQauU3vg4x4QnMhU7Z5XuOeZpJ3X899yp6V3nvuq8+55pprNvUn3iPbSdBeQ9PwGhoaGhp2BBYOS4gU5iz5qSUPS0t2jFsizaRaVs+1NLOdAEM61X1sTXqXBsmWQY6UIKMkZukrkkOkcaCuEaW0WtopBkdnJYzcPin6nqOp0iu8/lTZm1qYhUkhloajNMiwkb17905qeLt3756P1X2K+4BSM2njXoNIXmF6OGrglkBJTInHeE5rWnQE9zETdWdVxGspqjjXWQICkhR4ncyCwXRN3N8eA6uOS4OG77nxe6+xNfy4Dw4fPrypPVsF/Oo1ipokQ5vOnDkzST5YWloaka3iPWat0ve9X0lMy0qLUTtnaj4/36JmwoBprs9UeaBaNXlbxeIzy+3yuWoNyJYdptiLn5G04vYZ0hPnhyWevHe9VzzO+Dz0ue4jE89nFhNqfyRFuS0/s6Xx3E8lHieahtfQ0NDQsCOwkIa3a9cuHT58eC5h+1c+UpSZmLmWjDSzwzLhMwMmmdg4tsvQAhZEjFooKcUMVs8CTS1VcHyWVBmgnfkjWACSfoxI27a057mlRE/fQLweE9v6vbU1S2nRn0XKNIP9mf4oHmusrKxUNbxLly7pkUceSX24Bkur2GfiOba2EftteK943ijRTyXMZggGLQ5Rmzl58qSksXZELT5KpEwwUEuwMFXmpFZY1GOIa8HE1gwjslTu+cz8MPSjUtuOc8LQoHvuuWdTW/Svxs+8ttYSM6yvr+uRRx6Z9zdLCPDCF75w09hZzoqaeByjj/Vc+hxrkr5foybs/6kF0scW71PP5XOe85xNx3qveFzRT+7vfC9Ys2PiBu/hyKeoJbJ2W247hlLUwms8Tvct26v0Z3vOGfQfwxJovfFe9D1z/fXXbxpDPDbeT60AbENDQ0NDQ8BCGt7KyoqOHDmi22+/XdI4sNTHSMOveGbLljaziZhklglRLS3R/yMNUqOvx6SjUyyp++67b9PnlryypNi+JksIWWuyfZ8+xTgOFjR1G5nW4367D9YsPAdkxEX42kxhRMZdDDzmejEAnX7BeCw1likcPXpU0jBfWYFMFgQMEZtsAAAgAElEQVT2sZYuoxTrubSP0e/JiKTPUxqnb6OP1WPPtHVLxV4nS8uekyils12yAKdKPdGCwaBo9jW2571KKZ0lhqKETyav4XM8v9GfRW3a133ooYckjZNPSON7/corr6wGn1+8eFEnT54caSpmKEbQMmFNLLMo0aLAV7K5s0LAvKdqSaTj/wzUf/DBB+fjlHJ/le9VrxVZqPTLxWPdV+8R31f07cXx8NlkVi6LR2cJNuiz8xpkScQ9Vvq+WdIo/sbw2ttJT2c0Da+hoaGhYUdg4fJApZS5fZUFOyPoO7GU5/eZROrXBx54QNIgIZrtNVUqwpoOY4yi3d248cYbJQ3SkN9bw7MEFONuLH1Zo/N7S7qUpqdK5jCmypJK1AqozTBZrSU8t+W+R3jOPRcstGttK47HxzImye+jlM74yV27dlVjZJyWjiyvzPdoeB3Y7+gztpRPv0iN+RZ9eIzztDRL9m5MYeU59fwzTihbf2pATKZcK+YpDfvK/SZrLitsy1Rs9FEztVScT/fJ53oN3H7GBvQ9wZIxma/NcB8ii3bKD7O+vj5KURXj8GoFRBkPFzV/7wmP0fNDxmdWPJbJ1r2mPtb3hi0z8X/6Dj0/nq/4zGLhVTLIvV6MY8uu43M8b4wDlgbWp8/1sc9//vMlDfvCax6f43w+kyVMNmw839qox+txeG7su5SGNfTvxMbGRvPhNTQ0NDQ0RCwch7e6ujqyG8df1xpbkr68qAn4WNuJfaylCh9raT7GYVmqZIJeSkBZWRhLGjfccIOkQUvIfEX0CTFWbKpcEGP1WCbDx0bpzP+7D5ZC7avyObb/x/75HGtrlrAoHUa2lK+XxQTGYzNGl6Xc06dPT2ZBcJmX2Meo1Xle6IMyfJ2YIcOfuV/2dZj153nhfEkDA4zJvC1lZgWHvTd9jCXrmhYvjf1vZNSR+Rg1CTItud/IDoztcF9FKVnKYxM9jg9+8IObruvPbfXIWM/MPsO1jvGFjHlcW1ubLPOytLQ0KqOVZf3xmMieZJYRabg/PDZrdn5meb78XIqlyOjrJtPa/YhWFPqrvGc9DmtNMV7R7ZD9SRZoxoT1vPN5zRjS+JzzZ97Xftb62eu+erxxfB77zTffLGnYK3fccYek4X6Oa8Dk2F4nj4+Zk6RBe7777rsl9QWjp5KPRzQNr6GhoaFhR2AhDW99fV2PP/74/FeePi8fI41LxdOfEH+RLZ1ZomIxQ7MpLU1ECf/YsWOSBkmBRU5pY5cG6dztMd4m88MwpoUFJo2sGCp9GPT7eJwxHyZZjJa4LUX5WL9Gf6Pn+AMf+ICkwdb94he/WNI412EcM+O6PG76KKVBq44s06lMKysrK/OxWgKP/gpmoPEcur/eH1ED8rUd+2W/r/cmGV1ZcdXoC5KGvcI9LI3Zhe6br5eVv3L7MedofKXvMr4na83zxTmKfhFr4/SXM4aUfkdp7Nfx3nXfrRXff//983Oy+NjYBgusSsPzwHO7vr5e1fAuXryoBx98cBTHGvcOfc5uy3vGz4E4tz7G682YU8/Tvffeu+m9NNz3jDfmfRvn1lwE+t2s2XnvZr58skLJIM7i4rjezHWZlTrzs/aP/uiPNvXZ97/7Y43vrrvump/rueY8+hnFfSeNfe/MY5xlPWIWmFOnTm2bqdk0vIaGhoaGHYH2g9fQ0NDQsCOwkElzY2NDTz755Nw0YRU1OkpZLdqmDztsbQKKpkCb2mies4pv09ytt94qabOTlSWDrMbbXGlzXgyUtZru69pkYfMowy6kcSCpx+dx0VwVTZruI5O1sqxKJK3YNGszgU1JnhP3x+dEggdNJCwPYzNSJKC4/zRp0pQWg8yjSUEam3eJ5eXluSnG/Y3n+Np+ZQLZzATHUkcMkWFS2UOHDo2+Y4IDXidLduu59X62md17N/bR88RxuC2SPbKEB0zTxD5Gc5uPNXGHJk2vJccS++A9UkvvF9eN+9rXpzkqS1Dg/TtVHsipxW655ZZN18vCBAyvB4koESZXePw2z9nESQJKRmLzveV77s4775Q0DiORhjUz2cJzyfs1XsfPF9//nlObNmtJLOK1beL2eLnPIgnw/e9/v6TBRcBQDV/HIRZxXt1H99nHMDlGNNn6OW0Tqc/1nESTN8+PRDomSqihaXgNDQ0NDTsCC2l4pRQtLS2NCnNmv77WhCyJWBpzkLe1LGmQxtwOCQcf+7EfK2mQmqImZInAUgsLv1pyiFKTqeksn+HrewzxOllC6XhdklmixGHNwX11nyyB0yEc58TtvuQlL5E0SF4ZOcLw+nzUR33Uprnw/Pk6UfpkyjSPw/Pm8cQAd2qzV1111SQ9uOu6UbjIlCZk1JIgxz44hIUlVyhdRuKEr8NwDSZUiKQjj9X7mCWyWD5KGrQBWzB8vahtSsOaRpIMg+4ZmOvxRG3HY6Z25jVmOETss69NAhmLF0fNmZoqNTzPUUyZFfeM1M95jfC0vLysQ4cOza/j504kP7g/nmtqtyRSSMNzwJqIx8ZAbc9XXAtbNbyWJKBkiQ6Y2MDzZKuArx/JawY1Oh/j+5EpFuP4fI9RK8uSsXusfkZxLRksH+8vX8/z5nXy575utA4wZMZWJ5Nn3MesnJz7/fjjj7fyQA0NDQ0NDRELpxaLRWD9Kx+DnhlIGDU5aZzWSBokAGpptjmz5EfUCpjUlpqWX2PQLf0fLAdDOm9sh6m2DEsilryi1GTJkMHrpI1nEiuTBVuT4TzH61k7pL+RxUszzZxplFg6JWoD9CtdccUV1RI3LgDLQr1Z+RRfu6bFxvcs+1NLzOx+Z5KgpWNSopnWK16bAc4cQ/ycWhn3s33TlIRjfy0tc7xuO+sjUzsxvR/3mDRed/rlqKVEMB0U1yLuN4YvTYUl7N27Vy960Yvm+8HzFPtAaw3ngCkHpcG/73uX/lDeN/Ee87H0wzMheQafa83OfeP6SOOirX7P9fcYssLTLL3D+z+G5fh8P8d8jDV83rfxXvQxvo6fKSyoG/vIElzUKK05x73BxOBnzpyZTHgR0TS8hoaGhoYdgYU0vK7rdOnSpbl0wSBcaSxF2Mbs9/R5SZtLtUuDROBfcEpR0V9hiY4psZhkN0pn7pOlopoGFCUtlg5hyRqmSsqYpG7XEg5LCkWpkGmhONfUYGJfGfTKYpHUGuM5LP/BBMdRquaaTqWGWl9f1+nTp+ftZZo+k9saDNSPPgCmiSNbixpwZM+yxA77kZUfoSbM62VJtpngmamlzG5j6q/Yf7Ik/TmTO8fv6Cvi2rqt2Fd+xyLC/j7uAwbSs4hnlvSd1pV9+/ZNFsBdWlqaa3b2Y8d9QmYl/ZXkFkTwHuM8ZfuajNuaPzhqHl5v3/dmh/tYz1fcU7QkuS8eD+/P+JxjcWJ/RyZztNowQbe1zxpbOz5DWNbLc8N5zIq5ci4YnB81Sbfj+bxw4cLksyeiaXgNDQ0NDTsCC7M0V1ZW5lK1paooNTGWitoLY47isUbNrmvEc2usSSaPzYrGWitj+ilLFRnDipIpJbmsnIUlHrfn6zJ5dGTneY6ZWojpgTz+qOHFcj2xfZbkyRLN0sdFv0ycex8bUxfVmHYbGxs6f/78SMvJ4rlYtob2+agJcK9QOmeR2qjhUdp3n1geKM4JNUpqU1PlgTx3boMFU93HLA6Pqd4Yn5SxXWtaGscZ9wGtLdQoMw2J7FZrB/Q3ZQmu49hre2d9fX1T+igfF+/pWio8fh+1TbJ/yWpl2q7smeXPfA9ErYNjts/OGp7HY0YkSxvFvnG/eewZY9XwMX6GWDOu8QCkYe28F+kjJNs1W7NaisYsPpM+b8+jx+V1zOILs+f0VmgaXkNDQ0PDjsDCPry1tbUROy/LoGBJgf4LamDxO4O+J0oR8T2lCUp6LLIqjTPEWEKg9hmvQ9+kJSomVc58HJRAKGHTdxD7QL8mfZbuY5Q+KUnV5j6TmphVwn4SJi3OxrxVEcau6+btZ6VJqLVSY8i0GYO+EzJu2ecpkD2b+XLJIPX8+PvoZ2bSYzIg3adMC/Ua0XdCf3Dc3/T3MqEyE7jHNSBjlRot2cqx/26PbGtbCbJsGG53Ko7q0qVLmzIlkUMgDetgTaTG7I39dr+4PmTCZixTMnmtcVPzjkxvj8Hnmk1N/1u0ejAzle9HapjsszRm+Hrs9pfRTycNVhW342McM0qGb3yOk7mZxQjHcyPIkeD+jlohn5vb9d9JTcNraGhoaNghaD94DQ0NDQ07AguTVnbv3j1SO6MJhg5fJnXO6pIxGDm2J42JMNEsQQIAacJWfzMSAc0pVpszujodsDQLuQ2m78rOzUzA/NymBDqrMyJFvEY8hrRgmqvi+Nxvf8dq2Fn9Pzvoa4SXCJNWmJg7MxtzzKS9ZyYMmjA5xqm+1UyoTKMkjU2MtbCHaG7jZzQP0rQ5lXjc+4om5yw0iOZPXm+qojvnhGsc14AhMhxHRqjgtbfaO5GEkgV3M92Ux8FUf7EvNjd6T3qdSSajeS22z4B8holEIpqPYZC8nztZcgSaXbOEDXGc8RlCU7LHY/KKk4LEeWQomO9/t8vrxmcxvyPhKVsDpp/LKrdLm5+n7q/NvWfOnGmpxRoaGhoaGiIW1vB27do1os/GlFmUikg0oAM9fsZyHEQmXTLA3GBgbqx4TueqpTBqElmwo8+lBGKpgymGYvuWxqnpZQQLJnwmWYX9iterkXwoBUVJi5qqpV73PdNcSGy4dOnSliVeSAyI8+ix0oHNuYhSZY3yTw0lS5JA7YVah19jQl5LmtYkWAKHbcV2amEJ1LgyWrr3r1NjMQF4vGd8Pd5XTHSdkQu8HpTOuf+jRYFaNNeL5KaISEuv7R0/d0z6YMhOHBPJRCTUZBqe9zhTvk0ly6iVC2PyhLg/IpFJGrQpa2JM1C6NK7kzdKVWZT62a8KJySk+x4muIzynJmx5X/GZnD13uQ9IIKTWHeF2fH2SseJzj5aDqZAWoml4DQ0NDQ07AguHJayvr0/Sw+l3YdopprWJx9Z8DExgG3/N6S/wd5bKKe1Kg62eQb2UfCMsrVKyYsolI16Pfh6WkHHbGbW81g/6QuO59Jm4rVoZHKkusbrPlhKzlFLRTzoVeH7hwoW538/05zhvlKz9HenHWXLd2t6hxpf5HHgu0xtFPwx9RAwpyPxi9AlTm566nzwHTN7tflhKz5Jwsz3Ob5b+ivNGP/AUqKG5jSwBsJGlHSOWlpa0uro6KlwbtSeGrjD0Jws8d/+YCovrxeePNMy/x+T2bRnJrmd4X5H6P6X51KwC9Itla8kEDr4Hs9RpTLNI7ZP8gyyUivegkT13mCDA4/FepfYdr+O1vfrqq+eJwLdC0/AaGhoaGnYEFtLwzJbyrz4TAUtjiaeWnifahBmsTcmU7+OvPaV/Jh2NBUsNpsmqMT2jlM50RiyeyDHEAFAWLnXfGISdJYDOCorGPmaJmym50ddGbVgaB3hmxRqlzX4TMmJj2jlieXlZBw4cmPthsnRTTKPGdcpYmvSH0ofG91HqpERKH6d9HnHMTDtWS5IQ/TVMTkzGI31FsY/cmx6n27RPL/pjmLyZvikjmxMyVf2+ZsmI7TKBN8vDRNBiMlU4eHl5WVddddX82KzcFgPLmVouS6NVsxxQE800cO4VlmlicHQ83+cy0YIR+QYsQstnoT93W7FfTGEYWY3S2Fee9YUaGP3bUz59g5pynF/6CskKz5j79CsfOnRocv9s6su2jmpoaGhoaHiW47LKA/kXmwlTpXEME6XWTJthDEnG4GM/CGtclsotcWX2cUqtlHwzfw/t0ZawLXHViitKY7+lx+UUPzfeeKOkzZIdmU2MFWLpl8z/x8SsHmeWWsxgzCP9MBmD0Br+VBHPpaUl7d69e943anpxzNQyWVA0SnPUPLbSZjKJm34rj9V7KvqKmLqKrEXPeVxL7xVqErUST9FPQh8afXqek+hnPH78uKTBukE2Nfd35hOfYkzGc+NntO5MldsyqJHVsGvXLj33uc+VJN1+++2SNt9X/t/rkxXirY2lltaKeyazLDCZO68X14UxlNRKqO3EazKZM0t9TaV3ZJyz2zh58qSkPLG+k9/73uacZAnoCTKkaYWRhnnza5wvKf+98LFHjx6d96GVB2poaGhoaAhYSMNbWlrS3r175/4C/xq7MKM02Ild1JJ+Htqx4/+1rAu1wpXSWPNw9gBK1dEP4/9rpWMsQcTr0A/DorS1EvWxXUtLjP9z2ZDsesx4QNZhlgGBPgdqnWwj9pHstqmyMEy6OxVLZZYmfWsZe5bX5BxnjK3MHxXHw+OlsV/He4mFM7O9w+S9tRIzETXGIz/PigczJrCmtWXjoSZXY4nGz6gp02cTz2GiZDJY/T5q85kfuYau63T+/Pn5PnN5m/vvv39+jDVqv9rqVLs/Y/+yskwR9JPx/3gunzcx6TWLpkaWoTR+ZkmD1sf7hfuClh9p2Ffuq/voZzRLW0mDT5gxj+4jfWoZK5TMeFoN4v6nn7zmK45ary0XnpsTJ05sKym81DS8hoaGhoYdgvaD19DQ0NCwI7AwaeXixYvzIGQ7NqNJ02YUJyhlHSebTKKTlY5ZpkBigtEs4bD7RFU7q47sPhqssG2VOZJxrGIzWS9NgDbrZOnRaJaw+SUzMdIcYBNDRvGO/ZDGwf80bTIAPY6PKdlo4srMbR47zTwRpRQtLy+PwjiyAH3S3GmizQhPNJXSYZ6Z77wnbFomSYXJBWIf6Wz33vF+j/uboQVTdRClzXvH/9vcbZMTzb7RLMXExTRDknAV57MW7jKVjszmKJquaA6NoHl67969kxXPz549Ox9PFsDse9XPAb8yMfxUejCuE02eWUo71sNj/c04dhL3GNSdmfwYPM61JNU/hhF4P9uEahOgTZpuy3sqtkcCj02PDGKPZmruZ7o3shRtTFHG56Z/YzKT5d133y2pn+NGWmloaGhoaAhYSMNbX1/XY489NiJumKAijQMVaxJjlIBrqa+yCtDx+AhKCnSyR0nE0h+rB/tzS+mZ9mHt0OdSajHVNwseZqC5JTxLXFGKYakct+EUOp7nLFiWJIUo/bNvBAOpmXQ308yjplCT0p0A2ONy/+N+qVWcZ5hKJPeQLMLQFqY/y9IosVo5E9dmyXzZR0vP3hdxjzI1FR3y1D4tRcdjvVc8Tiatjpo/NS3331YC0t+zZOxMr1Wj8MdrkyDEBAgZKaRWKivCpBWvtccetQGv4UMPPSSpXuk+7k+OsbYu1mDjuUy9VwtliHNibYUhE+67yYAx2YTXiqnK/HzzGLzG0drmZ5H74uc0tagsLIWELffN481SpvkzJpzmszjuA2rC3LMZucl982tMfLIVmobX0NDQ0LAjsHBqsTNnzsw1EksmMf0UUwYZlCoyyY6aXC1Ak32K16Xfx+9jkKp9Z5R0KSnE97bRkwZPTYyJTeMxTEtFrTRKTZSKSCWmphHnmyna6G/MqOUM0OcxWdorI/NBZrCWF8eaFVelD2Cq2C2D02uFMbOwCoaQMCzC14laqPeEJXxe376O2GcmJeA+MKgxS8O+8yvL9mTpmgz6majtZvcXx2OwdE3sI+fNoO89g58d586dqxbxdNJ63hOx37Se8JrU2qWx77EWTpGhVjaHz5DYR2t47pvX1NpTVqyaweEHDx6UNFij/BzwWHx8vI7HbuuQ59xz4WdLvE4tnIyI1g8mnmeChcyXy3YYZpFZlnxMLHQ8ZbWKaBpeQ0NDQ8OOwMIszY2NjVFAcOavorRG5l0mVdbSQtFPFSUv2rItiVj7zKQmXs/tmdWUMTv9v79jAlYGpkeJhBKwJSCPxxJelBaZWNbvqbX5nKgtMKDU52TSuUGmmkHtMwtwp/09g0u8eI6ZRiy2Q+2FJVAimByayXanEk/XGLb0scTr0t/H0k8sMSON09yxr5RuI4vY33mPmFFHJmlcUybUzsYR246WhVpCdbIc434jM9GY0pCywOna/jE73JqI+xJZwTVWNhN0T5XgqaUczEqM2UpEHxMZsBHUPlmezO+diEIatEKmlGMZIr9GDZO+YzPn6bt1iq74HVMmMvlHFnjO9H4cF3834v9keNfS8MX2aNXbDpqG19DQ0NCwI7BwarE9e/bMJUMy1CKypMbZ9243glLYVHor+gLdN8flWPK27Vsa7N1uz9qa7d+WajKfGjVYS9zUXDMWqttzXyzJu69ZImW3w3JE9HdlsVRkcDEdVgSlMLLzqDFxfqR+naaSR1955ZWjVHBxH7h/tcKvU6B/kuyvzJdnjY6xjdE3ENuQhvU+ceLEpr4xbVTGtPOrpXP6e92PzC/CvUJ/X+yj+2JpP4vVi3MS71Eye2vScxbDSbYp91JsK2NITqWlO3v2rG655RZJ+d6xhkCtiVpF7He836Rh73idmLYv3tO+Hu/7LGWe4ecLY/a2U9qGJYXIRvZr1PCY8s199R7yOfYHSsM+sgZL/sGUf52xtZyDLIY4Y7NGZLHX5GlwHafQNLyGhoaGhh2BhVmaa2troySnGWsuY+FJYxaONI6rqSWLzmIyyLRjmSBrc5mkytgdn+vxRWmJvgFKZZZQKE1J0uHDhyWNi9HWmGSxb4zDoV+OrKrYF4P+t6wEDP2kWRFcnkOtbysNb3V1dRMrL/Yp9oG+PK5dVsSVWgTHTC1KGsf9uW9eL0vRsbgq/SyW1n09FkeO1yRrkT68zOfleXJ7Hgf9MJmGxzgot0ELTbx/Gb+4SLYMvmYZUQzGuO3Zs2fShxc1c/vy4v1CTatWdDSOlX5/Pl/YVvSxM6kz4xcztjo1O2ZTytjO3k+2Crlda3qMuY19ZNYna3LW3txWLGVFpiqvT19iHB+z55CTQf+gtHUR5qz4LuMmp/y/RNPwGhoaGhp2BBbOtHL69OlRmZupIou041JDkcY55BinxvfRlk7NpxbjFvNiuk+WLq0NElHaINOS/g9mA4lzQp+Kr+djog2d12PRVjIiMwZellUinjtVSoNFSCmBxeswe0mWP5RtW2LM4muoEdA6MFXOpsYurFkA4jFel2uvvVaSdOTIkU19zJipZPIxL2KM3WMsHfOycr2iT4KaKrWNzPdBLYB+XmrtzI4Uz+H9lLEd+R3HQ2ZxPNaWjFLKlhqeNW1r4JE7QLY0c5BupywZn1UsxZOVqKEPinFrkX140003SRr2mc9hyadoHfB4yLxljF3GpyCT+Oabb950fcYDSuNya7xf+RyK+8D95l4lolbI0kx8nnlvZs8sa7Atl2ZDQ0NDQwPQfvAaGhoaGnYEFiatnD9/fhSEnVXZpUmx5kSO/9McyLRgTBAsjVMeWdU2ASFTvamW26ToY7IyNwwaJT3X59K5HI91n44fPy5pXJU5oxQzpMAgySSaUEk8IEU7Mw3Scc+A5sw8QbPelPOYeycjW9SCTbNgZ4P7imP1/GXlYVimiSQC0tSlcdkZmg9pRop9sHmGJsWp9G3XXXedpMGM571DslKWyqyWwIGEl7hmtSB19jWuRc1EPlVeh3O9trZWpaaXUrSysjI3t7G8jTROQOH553UyGj0JWjQB+76MrgcGmLsthg/F67nfL3zhCyUNz02bAk2eiyZNkmNqoTpMahBhE6bboikzPlv4bKcJ2/s8I9gwRMJ98f739SPZiO2QuJWFhNglFM242wntkJqG19DQ0NCwQ7BwarELFy7Mg24tdUbEX29pnPopCwCN7Uvj0AZK+pnjmcQJlk8hASL2pVZoNEob1D4oSZEAER3csdxL/I7B6xkRgHT7WjHUOF5K1EycW5OkpXqiV2qH8X/39fz585Ntb2xszKV0kiLiZwwSJ1EnC5Tm2GphHBEkHLDgKwk80jhpL53rWSFLrwOvUyttFPeLpWKfa22Uml02j0ZN68405loqrqkk1Qx3ocbk99FyQkLQVPJoX5cEh7imbpsEFFLlM0sI9zqDur0GMZkAE2t4n7kEk/dQlrTe7Xgv2dKThXJx7pg2kBa0GGJg+FyWNMrSLnp9ramSSMg5i/uB652RvuLn0ni/eQ54j2SFm/2sPXjwYNPwGhoaGhoaIhb24T355JNzycC/sFGqYNAwpcjMp2bUSnvwFz2jslPzosQXQw8svbA8hrWPrHSR27MfznZ2v7rvbiuOzxIctTK3ZekkSylV88PQ15YlRaaPhhpNFsqQFUqN52TBvp6vM2fOTNKDSykj7TOT6pmcwOdsJ6SF2kZNgozt0i9CyTRK9v7f1g2voSV7nxv9Pd4jlrDdV7dhDY8FieNc+B4wHZ4p5yJq46FWWCsQHK9b07Kn1jnbXxzX5cDX9H0aNUamA2T4UFbslvPAsJCpwqUMU/Ias834LCGvgIWnGdQdx8hUbPa/uW+2CjjZdPzOGp2TR9eKrsb+8h6s+efi86mWzNnnsLRZHDN9ntQWIxgwf+DAgabhNTQ0NDQ0RCyk4bmAJ31cUUJkCR9qcplNtlYWhv4QS8BZORNK+kyUnGmFDCKupWSKx9JP4b5Yemf6IGlcFNTXsbZA7ST2n/7LWhmNjC1FTY/SWibZk2VbY3jGa0ZpdysNjyy6WDyYzENqGZkPktp4zQeZaWtcbyZ+ZhCzNGjw/s4SNSX8yLTznmApISaczqwebs973/PFlFKZ5l3zqfj6UwkjtvKfZvc8QW0gk9Zjguts/G5nz5498/vITOjotyabr+YLitegtYSpsNxflvWSxixqzym1xHg9ar703ZpNmRUcNnyu94GfB7YWxH3v+bIVwHuSyaMztqv3N0tm1fZWbK9WuDt79lNTJis9K2lmv2jUaqeKy0Y0Da+hoaGhYUdgYQ1vZWVlMl0PpUbGGFkqi1oaNUVqLf5FtzQzFcdB1pqlpSiFsmwKJRH6jqTN6XeycVkiydI0keFJ6Tmzh3vMlJJ9HfrAorRLzc7nsjxH5s+gxkRtMUpamcRWw8bGhs6cOTNapygB10qPUKvOSrx1qi4AACAASURBVLxYC6uVbfE5UVujFG6p1m2wTWlcsJLWBybslQbJ3fvKPigWAs6kVGpPZANHhizPoX+XZVtqidDjOTW/b7Z3uA9qSZiluv80w9LSkvbu3TvXTOy7iffaVtemNh37Q9+TX+mfj/eYn0Esfsu1jGvKMk20gtk/m81TVlonji9jp7uPPtf728eQvR377zlh8nqmX4v7nM8xt8FCtNEXSmY2n1n0ycZ2/dqSRzc0NDQ0NAALF4BdXV2dS1qWFOKvr6UI2vrpN4pSZU1CtBTNNqOU4XPI8mFMVSYhGDEJaexrvI4lDsfM8fpug5kR4rVZVJXvs9I7tcw1lHKi1suktJyTzHdDSZXaRsam9PpE6a/Gluq6ThsbGyNJLGOKcqxkd8Vr0P/GdqlFT0mkLPWSzRfjrSjFZoVTKRXb71eLrYzjo7bLuaFvJYK+G2rvU0l+qdFxDFnMKM9lNpoMkbk65QuMCYKzjDScQ7Iyszg1Mro9Jvrjsn3gZyALzPq6jJ+M7foYrwsTXdtPLI1L6zCJs+fvvvvuk7TZt+r2vVd9DovIRvh5yTJUtT0U18BJ15mBiUnE4zrzmc9MKxkz232KGvNUDOem/m7rqIaGhoaGhmc52g9eQ0NDQ8OOwMKkld27d4/qyUWHqtVxVreliTFz5pLSS1NmVvPJNbKsJtuZb1XY14sqMUkyU2lsjJrJjCZH9y0z2ZL2nBEpjBrFl1Rq0pRjX2jmdRumK8c1IGGIFZWzoFjW5iqlVJMOux80jUW4fwxPYIq5zOlNYkstiDz2jyZlVhc3IjXc39Ex7/cZEYCmHK+3+8SwhdhHpoWqVRXPCC+85xgOQ1OaNA5VYQJokhpiH0jGYphRltYr1nObCkvYvXv3vL/ZPNF8xmTHWVgCv+N9wnstM83W0vXV0mrFY21qJNHKz7R4rPvoY7PwF2kzacXzbTcME18wOYc07I2HH354U7tMmehg+UjmY6o8ry2JNXGP+ZiaG8Nm+bhuvMcbaaWhoaGhoQFYmLSyd+/euWRgenVGia8lPTamSr0wsJ0ByPF6lhrsjPZ7SyhMSxWvw/eUxiLtmcl7mTqI1X4jSEZggm3SxuNYWTm5piVmyVXpACbRxesXx0GJldT2LCmyMSWle+8wmHcq+JnSXpY8mhIiUzGR5BOtA6RtUyMm4UoaJNsalZ2kifgZtQySZDIN1n3jPUGtNN4T/t/ECo+DKcxIsJDGVdm5Tu5rDOCnJG9w/8W1pna9e/fu6t7xcSS+TSWT4HMoSx6d7SdpHHxNLTu2x2cU1zQLbWJ4CvdolsLMwfa0evm5M0Ww8j5wu5HOL23e3w7m9nhssSN5xv2IJCAStrwPGaoVw3xIEPIr0/BFDc7t2qq1trbWNLyGhoaGhoaIhTS8lZUV3XDDDXMp4NixY5I2+ziYNol2cPrNsu8YbElJLEpA9PsxmNaSUZQyWBySGpalpqgVWpJxvy1dMDCT0ps0SHaWhC0BUZrKgnltf7dmYcnK43GbmVZACY4U6qxMB/2YpO5ntP6YTq4maa2srOjo0aMjbSdqpg8++OCmc2qJs+M5Hn/mT4yfc72kceC52/La8b0kPfDAA5KG/eA+0j8SJV9/5z54PzBtFENDpGEvUrthcHRMIu3+0idFTYaJleN4mAaNVoOoudCvxLnIyvnUNLEMXddt0q4yzcRwO55b+nijFkpNgRo4tbbseUCLCIPZ7aeThnX3WtHCkBVI5fPM6+0+0e8c7z/76muWHvr/pGGe3BeGWTH5Q9zDLLJcK+Ac15rhNfx9yO75rDRb0/AaGhoaGhoCFmZpLi0tzVPgWLKLUvO9994rKU9MLI2TEktjKdlSC5lXmd/HUgqZTv6cCXNjOzWpgAGh0iDhWHpmORIGukYprRYwS1ZblJo9f7VEv0wTFbUhS5A1dpnHH8fHNGtMDG2JNivt4XU7e/ZsNQCUTDtrqlFKNzttStrnOUbNouDrZInHua+8j6mRRAnZUqylcqZkI1szXpN7kxYNJtCVhvWvJeSlb1ca70Wf67mIjF4i24txnEypFcdFbaom4Uvjue+6rno/Li0tad++fSM/T9S8mYidQdYcR+wf0/XR8hP9lQbvT1pvsoB9zw+TVzC4Ot7LZKjTZ0juQLw3aFFgwnP79uL1yP5mSjZah+Kznwk06BPPEp2TPU0tMEuO7/2dJezYCk3Da2hoaGjYEbisODyDMUjSWDqiRJqxCllSiH4Elu84efLk/FxqcrTD8zW2R0adP7ffL0u9c+utt0oa/G9ul5K/tWBpkIKoFRhMbRT7Rg2VMV2W4jIthPZxJhzOkjDTn2iJayplWtSEatLW8vKyDhw4MO8bk1LHflKrdZ9YqkQaWxKovWfpyAxq5z7X8+T33g/SOEUZ28gkbUvW3Heec1onsjglpuniXpryjxlkZzKZcRwztR/eZxH069RSjWV9jPt2KrXYysrKiEkcmalkgXveGHOY7TdqtfT/ZhoeWZL2l3kM1p6in8z3kNeBfSSDOf5vHz7L5zD2bWqOPV8uJZTFxTE2mMxexhlnafCsUTK+MUsYT5Y72yKjNJ5j7Nu3b0urkNE0vIaGhoaGHYHLSh5NyTHaZDOmkc+Vch9BLUsBWUz+1X/ooYfmxzJLCplvvh4/l8aM0lrZDmlzQldps98q9tGSXfSbuY8eD30oWTJXS33uk9uPrC9pnCBaGvsRqEFmPkxKu8y8Qs2d/7uNWizV8vKyrr766rkkTFZrvDb7RF9hRFYyyNeTxtp7Vjy4lmXGn2fMTu8H+jq8bvE6bo/+a+9J+rqitGupnHuI/sA4d9Siec+xP1l8GZl2jIeKe9XnUxvN2HQGj5lK/usCsO63NYjog66VUaLWHuG1Ynwq/aJkZMZ2yTb2/W9kyaqpNTPeL2quzFZDZrHbt8UpgtYtr4/P8f6ODF9mYfKx9CEzg1a8Dn2SjGvNeADkOdjP6Ge0+yWNfcZXX3110/AaGhoaGhoiFtLwNjY2tLa2NtJQokTCLCzMqZnFBFEKo3RpVpMlyZi/zRKBpSVf1xKJ+5oVOfSxljwoYUVpjWwo2r/JYosSCX2QZIFSAorXvueeexRBaTrTmOm3YpwPteIIskGpsWexe36dsqXbD2NpNito6fU/fvy4pHGRVcaXxTFaEmRcpL/Pxso4NPtd/Z5lo6RhbukrzjQfg/lIDWq0U6xQ+l2ZCSXTkLjvPC6yQqN2RJYjmXaZVsi4T2M7DMksrjPD0tLSfB4t/U+xWVmuJ/Nx0V/N7C/0X0VNyGCMGzOTZNqa55a+O7IPY39rOWN5/8f5pI+9xiCN5/CeZsYTv6eGm80J933mo6SmnxXqjW3EuWgFYBsaGhoaGipoP3gNDQ0NDTsCC5k0pV7dZrLYaMqgOYgEFFJVpTGBwaYQ0tJttojXY/XwmvM6C5Stme+Yaii2SxXfc5AlVzY4ruuuu25T++5PNKHafFIjC9Acl9GDSXPPqs0bNjOQVs+5mkrcvLS0NGla6LpuFCAc14Wp1rx2DFLPQkxovmFgrs+JY6dJx6YrhhHEc2rJrzPKtUFzI03qTDydzWEsoxNfvR+i6cz9ZkV6mj/9eQzgZoJ2Bpr7NSPWcA/RDBpNuNxnU4Snruu0trY23x82G8YxM90YU2MZkXxGkhKfB0wiEfvne/XEiRObzvGY77///k3nxvZYnd1r6DazSu5MT8iwhKwsFdebBJuMDMY1pEuA4USRlEMzO8lAJCHGdmiiZQB8XDf/z/CO7aBpeA0NDQ0NOwILB54vLy+PCnRm2hrLmkwFMFM6YSCuQSKKNEhHDswkxZ/O3ng9UvAtvVhyiBIdpUH2iaEN0enqUAJrDkeOHJE0SEJZgDPp7yRHUGqPJBnDGjFp9lk6KlL+fSyJFXTSS3lR3xoYxBuJAF5/kxJIGvG58Rxek6EGLMkSr895oJM9Gxfn0vNhjSebH9KzOddZglyD7TMhAI+Lx5BIZfIXwxPiuT6Wr+xH1AoZ1sFxM6G3NE7jtW/fvtTyEOF7giXBpPFeYeA8kzDEdqi1MEF3VgbNKRTvvvvuTcdSa44pDd1Ht0PyGkNoYp/cjteBaeIyaxufb0zVmCVJ8P3i70gcI6EnS+TPRO60OMXnOsNFmDQ6CytjKbiLFy9OlpaKaBpeQ0NDQ8OOwMI+vOXl5ZHEELUZSzaWdJwGLBbri99LY2o/JUNLGaaNR6nC3x09elTSuJRH5hehZE8/H9PaRNiPQLq+22DQrzSk8iE1mlpb7CP9SB4zqdN+jf4/pnWj5J2VhbFkR2mXaZwyankMf9gqgJjJrqPE7bF5nVkuyHsoSrEskMtyKZTSo8TNoFqvj7VlpouShnWhH8ZaZ0bR531CjYe08cxi4n1Gny7blMY+NfoxqWVnqcxoMfD+yMoRGbUUY/QhSWOt+sorr5wMaVldXR1R720pkYb1d+FnFtmNoTPsg+fLc+k55rMszol9dwz8r/kSY194Dxtcr9hHhpDQz53tHd7/TMo/dQ6fAyw8nfmZmQja4PM9avK+p9kXz7XXJFr1GDjfkkc3NDQ0NDQAC2l4LsRYYxlJY7/RXXfdJWmskUQpgEw3S5OUJrJk1f7l93fUTDINz8da+mKCZiZQlQapxP4ltsHA9Dg+SnL0w/h9lgyX/af0lGlK1jKY6oeMtegHYsA02YhZmSX6z6YCh0spKqWMyulEP4ylc2vE1FR8bhwHfcX0pdCikPnJmADA2ov3YVwXBp7XfMZTTGKyjymJR8sCNWu2n/kuqA3yep5PWkFiH8i4Y1uZBsvxUSuIGh79iFNJC5zS0MhY1Cwa7X77fvXeir4gphCsWUK8D2JaP9/v9JNSi47rY+uQX30vedzue2QxsmSUz6F1IEsYzmTrtCwsUmbLIBs+MiSZlDyz5sU2YjvmL3hNfa6tPVl6v+g3bz68hoaGhoaGgIVTi507d27+a0rGmjRmSVkCYMqvjJHFooq18vLx15x+MUpetK1L4zgRSxnWNsjijNekjZvFNTNWKCVfJgLOYtyoCVE6o68sSrtk9DHGxYh9ZKLmmn8jajtmxrpw63Oe85xJLW95eXmUZihLa+R1sNQXGYHSZmmPGijLidTi1+K5NY0o8znwO1/XfWahTGkcw1RLzE0tVRr7zqi5ZqxQpnuiz5rs4IxdSwmeezbzM9aSRmdpvQzfN/v375/04e3Zs2dkPcn2gTU6a2PuU1YAmExD+tK9Tp7rmNKQ+41rl1l6GPdJC5PnOPoK/SxkUmqDvtDMKsV7m5ptvCdYPJjP+prmL2kUn819QUtA/J/9Nzvd+yOzIvq7J598sml4DQ0NDQ0NEZeVPNrSUlYigpI7yzxYWs9KRPiVDDv6QDJmn6WxmoaSJR+tsRmzWCfGw1Bqp4aZlQeij5DaTpRYWUqDiXnJ3ssK81KCZ6Hd6LOg78vr5z57jqIPhGWbVlZWtpS0GKsTfYJkalnKY+xhlGJrycmpvWVJnenToq+L2nXsG+eUEnFW6okFTLNyKbwe/V/MYMQ1iO1Rc2Q2mIwdXNNuPI+Mwc3aqWk5jGGN7W2VeHzXrl3zcVGTyK5B3xr919I4FpCxlX7Pe939jaDWTAtQ7CPj7XjPREai96RjKGuWnSmLCfkMfEZmpcVo0aIWmlmaWHi65suNFgVmivI5LL8VnxO+TiwJt1UM53x82zqqoaGhoaHhWY72g9fQ0NDQsCPwISWPNqI6SUe/TQmmejsQPZoYaI4ixd/mA5q64jFU342Mes0QBiZKzcIfPOaaU9dgQGg81qD5gWak2Bd+x6rYNLHFc0m+4RxFwgPJODSVZSYaO9djuqOtzFKk4se94+9MDrD5lESRSGLJzE3SMLfuY9Z/JjTnXNAEGcdKUyPNoJljnibSGoEr3l80u9EslZn5ORfcO7XvpcFcVCPFZIkFuK9YJd33ekydx6Bupkojuq4bmb0ifZ+kB3+Xpc8yWJfOx9Ac7vFEUyPnlHObEcWY8Jl7KKsX5+tce+21m67D+yxbW6byYnhPRnhiYDvNoVNJ0mlqpImbpnZpPPc08zPUQRoThaYIT0TT8BoaGhoadgQWTh4dJZaMZuxf2vvuu0/SQKe1NGEKuyWWeA4DgH2OpTUGJ0pjTcjf1ajG2Xd0xGfSGaWwWgBwpMoarDDuY0nWiZR/EmeYFoiO9SyEwqBUTqpxbM+fUcvmcdKw/qbkT6UVc/BwRh4xLLkxIJeEmazf2TrHc1k+SBrmztoGHfRey9gmk+hSU80S5Bp0+Nek9GyOSazJyh0ZTOnF6tu0bMR9x2NICvP4H3roofk5tIyQ0OBz4nh9Tkw5WNs/pRQtLS2NwiciVd/PkwceeGDTMaTtZ5q3wVSCHiMtUNK4ajwJV1mZMGo4TDnHZ5c0tkzwfq89W+L1DJZ2IlFNqhPbfE9OJXAwWM2eFrM47yQy+ffB8Hw6WD+OMaatbKSVhoaGhoaGgIV9eEtLS6N0V9EHYP+af6lNp/V7/xJnfhimjmIRTx8XtcNa0C5TIEUJgNIyae++fpS0mFiWfh6GCUQJKFJqI9y+v492apY7oUZH30E8l/RfapCWqrOA4+gXiWDgsTRIZ9a8pqR0X48+1yjhMeGu55A+13gOU4vVtFkjrim1cffNkmlGf6emQC000zQZuuI9U0vEG8dAnwpp71zj+B3vBWqLnrsYUO09woLDDODPNFhqFNxf8TnhpAXeO9tJAMyk6zHJstuj39XPGT+XohZHTZjautuiBSC2w3uYz4O4luQT+D6kzzDTDmtaNP3AWSFo+rxYNDYrLcVC17zPplI2ek2pXTP9njROUOJzmYQ9piBkKMPGxsa2E0g3Da+hoaGhYUdgYR/eysrKiKmTFSz0r7qTtlKKiYwtMnH8a20JiMzBKJEy2Sn9FpmkFX0WERxX1MwonZA9x6DyKDVZQswSrtb647mw1MSE2llZGI6jVtLDfcv8aWS1ue9uI5aFufXWWyVtZoHVJK2lpaVNLE4W2Yz9YnowBqlnabuo0dNfUCvJEsfs63uu6ReO1yYbszbH0jj4nfvcoFQdx0MWIyXs+D2tHdQsPI8sKhr7ajCQ3t/HdaNGwmK7me/GVprYx1rSgqWlJV1xxRWjxMVxzNR8DVoUyMiN51Dz4b0X9x3vLZY/y0rXsJQQ+8ZA9/gd71VaGqbSE3o89OFRa4vt8DsWBLaVJUuSQOal3/s1S0fmvtKfyUT48TsnNak9zzM0Da+hoaGhYUdgYQ1vaWlp5POK8SlMNuxfbvvybIs1w0aSbrjhBklj6ZKaniWDyORhSiGy1+j7iMdQKvJ4fA6LYGZ9oy+N2oI0SNK1AqA+NktDxMKstTQ90T/i/309SsYZs5PMRF+XGkaMn+S8RSmcWFpa0u7du6vFT2MfDMZfWqKLWialciajpY8g9r+mbXIfZhplLak309XFz3wdpokjWzhKzWTpMnk01yAeSxYm04NlacI4ZqYy8+eRNVeLwyM7L2qCXodYLHZKw1tdXR3FhsV59Jj9rDCDk1pA1AasZdJfTqsB/XXx2v7O82GLVs1vLw17xfuY/t+oATFZs1GLz4z3NPcO33Ofx2M4x2SjZ8VjWUjZe8V+OX8er+vnDP2ZRmYVy9KotTi8hoaGhoaGgIU0vAsXLujee+8d+UuixE37rQv43X///f0Fk4SpZIBRW6LUHKUAS3L0W/gYSwFRGiATidJB5g+gVE42I/0AWUwdpaNaQdA4Vr7P4ol4PCUg2sndj9hHMlOZqcLHxiw3/sxS7TXXXJNmb4j9omYX+80YQEr0tBrEsdUykHg/Zj4VasnUuL2v496hFOs+ey6yhNPUpLjPKdlnScvpG6K0HuedPsgaGzgrR+Sx1hKPZ2Vo6L/2+Myc9LGRaUfG6sbGRlXD29jY0JNPPjkqURXnmHF9WYxZ7Fs8n3uRGUJoKcn64LF53vx91PR4L5FBnsVw2srE5xj5Exl7ltlyWOrJyHx4LPHD+4msdWmYe2t01OzdZvy9qK0P/fiRXRsLv0rbY/gaTcNraGhoaNgRaD94DQ0NDQ07AguZNE0ttxnRJoy77757fgxNbs997nMlSe973/skDWro85///Pk5d955p6TBLOBXU+JtbrOZLZI7rDb7O1Zhp1kinm/1nKZN1raTxjR0q+l05tLUFb9jUDQJNxmJhGYXmvcy8ytDMkioyMw9NMkxFZf7GJ3HN95446ZjosmSMOGJ5pS4lqRA07Sd1cOjqc3joCkmI/cwQS3DILLExu4bTenuo+cpmhiZbop7ho75aC4ntZwEFIa8SGOTJs1vmdPfyGqkZe8jMgJDbMvzGUORfO/FNZ0iPK2uro7M/Fl9PZJISGaJ+43hOV5nv/c5JJdIg9mOBBA/u6YIIazRyfXJ3D0kK3Fus1Rz3DO8p5nwI35HchxDDHzd+Fz1erD2oPcZ9248tlaHz3OUuRVqBQOm0DS8hoaGhoYdgYUrnp8/f35ETDAxRRqcrPxlfslLXiJpIK9E8oMlUqaXYZqmTPOi85v0bWoH0tg5zES5vl6s7p1JGvFzUpjj9WppwhiomTmct5KejSgV1lKmMYg4ahI14oHbcFhJ1EL9nSW706dPV6Wtruu0sbExSn4c22PKN+8LS+tZCRnvvRMnTmwaK8MVjKwNziX3TjzHGpXbJaGKYTmxPWrPTFJAYpQ0TqTNytpT6aFIUuGcs4xL/IzEJmqlGUmKqawMkjKk4d6K98IUtXx5eXl+7/ncuNdIorB2Rk0oangOb2J1bWo12bqwHBRJcg6HiPeln1sMMOczJEtS7XZY0qpWbT6CSalp4YnPNCYpoCbO8cfK7yT38NnLOYrH0JpDImMk2NlSEO/BFpbQ0NDQ0NAQsJCGt76+rlOnTs3f+39LM9JYiyCt9LbbbpO0WfJ2AOj73/9+SYN0Zsnev/6W+DNJ0XZ2X5d25ExKowRPST8GHNMvxkTD9NPE5NgeBzUtBo9GKZ1SUi0dFSUi9lsaJH3PVRb0zTAEFr906EGco2PHjkka6Oc33XRTtfxP13W6dOnSaB7jeLxmx48fT8fuccS1tLTnUi70BVADixI3SyIx8Dybc/rU6J/1WmYB+jVaPVMjxevVknlTw4tzkq1v7BsTDWfBygwip7YT9wF9r6TIs5SWNA75uOqqq7Ys8cKC0FmhXKa+8jneJ3FufSwtCVlC9jiuCCbInvKTes38vKS2Th+iNH5ukerPEJOsv7VSVplGTm2cYTY+1muQJVigtYtaaWZto4+SnIWs/FnkfGQp4zI0Da+hoaGhYUegLBK0V0o5KenuLQ9s2Mm4peu6a/lh2zsN20DbOw2Xi3TvEAv94DU0NDQ0NDxb0UyaDQ0NDQ07Au0Hr6GhoaFhR6D94DU0NDQ07Ai0H7yGhoaGhh2BheLwDhw40B05cmRUqibC8ROMs2LB1AgSZ7Z6P4XasU9FGx8qnop2a3OznbanjuF3jOHJ8vzx2qUUnT59WufOnRsFLF1zzTXd9ddfnxbvNBj/xFicWp7ORRDb4Bj5OoXtZnaI7dXWimWCtoOpe4TXqb0uci4RY6m4PrV4umzuY9aXxx57TGfPnh1N/urqanfFFVeM2o19Y2xrFnc5NZ6tvtvuudl9Ujt2O/uN3y1yD9Tu6UWeGZeDyxkfs10Z2e8Fix5PPXeIhX7wDh8+rO/8zu+cJw12WqeY6suBg04x5qBDBvNmNb/4wOPnUw9dHjN149a+m0pHxkXjTc4Fi+NjQKbfs9ZYBANYORe1NEHSOD1Q1qf4eWyXKdRqSawjYsX2H/3RHx19L/VV7X/qp35qnqLsvvvuG43d++jkyZOShuBkpgeLgbKsdM51qCWlzcbISt1ZuiamU+NDJFtTJq5moDGT+sZzub7c51nFcwbQM8C59hr7WGuLacukIcmCz3VAsBNI1BI7SEMQ9vOe9zy9+c1vHn0v9QkTPuMzPmPeHmvESUN6sMOHD2+6NpMXxAco5457feq5U6tlmN0fNXDfZXuHqd64JzmnWeo8PrvYxyx5NFGryp7NCauvTylIrNnIRAeZouTnhPfguXPn9JM/+ZNpv4lm0mxoaGho2BFYSMOTNidxzRLX0qRJyZSfx/Nr5lBKU1GqqWmBBitgx2NrmFKjOc6aJJJVEaZWyLJEmfRJiYcla6bMBqykzutk6ahY9ZtSWZY0OLY3ZSZZWlqal9XxubEPWQXuCJbRiZ+5v7WyJlm/uKbuC7XEOAdcO0qx3MtSPZk3tSm3nVkHWAaK+zqOpWZaZMqvKdMWNWSOL8JzwbEzLVqmmceK7VPuiIsXL46quzNJdewv708jM8X6urUE2dm+pNVkEfMgtSU+O+K60YJEDY/rEd/zvmffs2fGVub9LNWXQStHZrFgf3hPeD6ZHDvrK+/57aBpeA0NDQ0NOwILaXilFK2srEzaremj4yuT3kqD349JdGvS+ZQPr6ZxZVJFpjHG9/G6lBin7OA8lxreduz+9HtMkUdqoLY25UymdMtEryyWGf/3um1sbFQl3Y2NDZ07d26UMDlqOfQ9Unuf8nH5M/o8SI7IyijRd1IrFxXb536j9hT3G/2t3EOU4qOGRymdPpqM0FNLUs4+TpVo4rnWrijFS4MPj1ov/c1ZUWT7406fPl31H3VdX1rKSZ6NzNpQ891OWVE4du6HzH/NMdYsLhmxhhpjptmxj1z3mlYYx8QkzsQU8YoJ7TN/du0c3ldG7dkpjf3bfrZk5CO20wrANjQ0NDQ0AO0Hr6GhoaFhR2Bhk+by8vKkWa1myrQJ02aPSGu2qYJ1wmgWqDmi4zE0E2QOfBINSE6gKW2q/ZqJKTOHWm0n+WKK6FCLw5lagxqFmQ79SMaohU7USBPS2FSSUaIjNjY2RhWM4zzV6Pmet4wgkJnlYhs0ZWYmGZqca+ax2A6d6iTLZH1k30hAcZtxLDXiyZSZn8QCjplmquhK4BzXwjoiKHdyuQAAIABJREFUOcK1/xxGwvGSxBD/dztra2tV09SlS5f0yCOPzE2imYmOlcFJtplybfgck/G4PtmcbxVaNBWeUCNZbCf8oUaey9quEY+mxsVjamEd2fOp9kyqxURKwzOw1u5USEs0bW6XNNQ0vIaGhoaGHYGFNLyu67S+vj7SnqJkz2BWa3R2Tvt9DFZn4CopqjVadwZLepRqo1ToY1gVmYjSFCVdOuSniAc81q/WcrOq1RxzTfrNKMacH84JKx/H79hnEl8iSAvuuq4qaZnwVCOkxPaoBTJcIF6DFZgtpVtbqkn62VhrhI1MK4gZQmrHxrFLY+mVmorXKRKDaIXg/PH7rdrLxpuFhvDVx2RV5z0u30/+zuPLrAO1QPoMXddpbW1trklm+5d7nBpftv5sp1ZleyrhBcNraOXIQmhqSRKmMgrVLBTUnqJ1wHNA6wcTLmTPP1ouSBzLNDzOH0lfWZIMw/Pne55Er2zd4vvtZqBpGl5DQ0NDw47AwoHnGxsbIy0mSjXW4Bxg/PDDD0saJEOmKor/M/1YFsLA69Wo9pRqrAFIg8/Bx1oSyijXRk3CyiSQWh+p2VHbzSj6NWm85ofM4GOnqL6U+qbSrBnU8KYkrVKKVldXR+3EMXuslvK87llIgeE0VldffbWkQcvweDg/U6mX3DeGx2THul1rMUw1Fq+zVd5Nrwu1xXgdo7avY5otn08J3330/nMf4xp4L9Kn6znx9/Ge9LW9H2zNcd/dfgwrqGmuGWw5oOYdNWT/f8UVV0gaUosxQNv7JZ7jecqSVEh52AC1Fj6zuJelcRo8hgJle5PJCWp+ssxq4P+ZMo/zl1kwDPpNM8sMz635qMlhkDRPNch0e342Zvc8r726uto0vIaGhoaGhojL8uExSDBKe/bHmbFlaZI24Clthv6wqfRQ/GWn1mnpJpNI2X5NW5PG9n4GntLXNZU+J0s/Vrsu7exMOGsJLGoFtTRuXgsmq83arbG/stRF1pgvXbo06YtZX18f+THjulADtvZCidTXk4bkw9RiLekbWRotakCUzqmZS2PtjwxftxWldY/Rc2jplRK+24rWCPrfuN4ef9Rcauno3BZ9x/EesnbGe9JtWMOLPnjumQcffFDS8CyITEzD5zvp8969eyetA6WUqt9UGvaE191j9Vx63uK+iHMW+19L/ZX58MgipO897h1acvzq/UAtURrPYU0LzRIze778vPOr54BWotjvWno9+vSytHv0p9JyEhn6Bsc3Nfe8B3fv3r3t6iVNw2toaGho2BFY2Ie3vr4+0hQyHwD9blMSiaUw2ofpr8hit1i2hMjiZHwOfR30l2QJpylx1BhX0ZZuqcXjdJ/83hJelFzIiiSLyW1YWqulD5KGNeG5GegnYWxclporsim3iofxWO3PiXuHPg6vi7WAa6+9VtKg1UjD+Blz5Plw+xlLj34Jg/swalzut+8BagWZ5FtLscW+0R8ojcvc8NVaStRc3A59aO6rx5P58PwZEzVzz8b9xmTyTBqd+W58rNd4//79k0mAl5eXR5p+nCf3gZqcS5h5z/g9z5fGDMTtJCf2fnBbtKpkmj7vd77PNKCt2IuZhkMNi9a2TCukdkb2sc8lJ0MaP4O8d2lxiJp19D1L4xRj2fgYEzj1PCOahtfQ0NDQsCOwsIYnjVlLUaKzxMPYHCawjdLVViVw/OtuqcJ27fiZz6FmaUQpjX2hVJNpKVvFw9FPFyUSSkmUApmoOX7GYqS1bCBZSRFqox5nVtaJUjjZrtm4Oee7du2q+mG6rtOlS5dGcVwZi839tIR4ww03SBokwyjR+Rz6Zb0nvVc8rqitGUx6zDWc8g/4usyWksUN0S/h8fkc9y1qIdZUfA61t0OHDo36VIuho/+USZ9jvyk120pAy4I03Mvut9fE1zdjO4Js2qlsGUtLS1pdXZ0f6z0Wfbm2Ahw9ejTtE2MC45joS5vydRu0+Pj6U5lB3H/3m/eA5y3OVy22jfe4xxfvPx/r9n1f8ZkyleiembKIuHcY9+nr8p6ImqDvAXIg6OOP9yAz+ixUdHfbRzY0NDQ0NDyL0X7wGhoaGhp2BBYOS4g1z2wSMJVZGtR0kgcYwBzp1qzbZHOEr8Og3qjy24RKijXJFtF0Vqt0XUvFEz+rkRPo3I8mW5/jvtZMJdGZW3MW05SR1fTzZ74eA06nTAFZQmEpT9nGJMTbcR6ToJSZ02zyOXz4sCTp4MGD1X57L/gc7gOb7TwXkfBC0w7TQ7mNaAal6ZrjyYgAJPeQlGPzoNvKkvnaZMY2Hbib7W9WFWdSCM/JqVOn5ue6HZrmmNA7jtPXoXnKa+JxZaQsz/nZs2cn0+ft27dvnlzApkHvC0m67rrrJA3r62Ni+1LuDvFnvv4jjzyy6fpZ8gXej753fSzTF0qD+ZmJL0iSyYhhdEN4Lb2H/X0M7mcogV/ZVnx+e33df88j9332nGBaP+4Vz0VmivY6ea+YoOa1iPstrqE0XYeTaBpeQ0NDQ8OOwGWlFqNzN0oVll4t7dHRnP0SW9KopbyhAzVKTT4mBsLGNrL37q8lBUstliAZsBn7Twp5jSIbJRImQfb1SIvPKL616tQ8N0sAnCV8jmOIfbTUT0mrVi4mfufPzp8/X5XSXfGc85gl16WmePz48U19jOPyXszIIrF9p7jLUi8RNeKVNMyLpVSSBdzHqHFbg7Mk7fmydMvg8UgIcbsep1+pDUQpneW2HnroIUlDQLjvFfc9atkMP/FakNIe18jn0DLjNTHJIGoDDKif0vB27dqlgwcPzufH14lar9fD93ScD2ms6UnDnuC60Grkscd9wLI21F4yiwhDJLyXSKTK0u0Z3pMk9llLj+Pztd03v/f95HHZSiCNE1zUNKes714fWkqYoMLP2dhv73mG8GRwOzF8qKUWa2hoaGhoCLis1GKW3DIKrn/lac9niqKsQGaWMih+nxUu9Xek1TNpbJQoad+3VMjUO9l1GEJRK1oaJRQmxWYaqsynR98nQ0FqZTsi6CvwOfR3xetRuqX/ItrfKY1N0ffX19f1+OOPz6V874/oj6V0bmnVkiil9thPpiWjX87nRj+pfUDUymm5iPuAIQT2M3qOLbFGq4evUyssSik+7gP6Ij0n3kv+3NqKNGhUDzzwwKa5sSTPwPAoHXMvWiuhLyeutdeU+8F7ynMS+2gp3/fl6dOnqwWEzR3wXvR8xrX0mnk/kUbveYr7jf5P+t+Y9Dr6jpgcmum7MouWNSv7G6+//npJw/PG14/X8Tg8hywl5n3oc2LQOjUsj8vr4PFHjbJWBNfXYVqyuHc9T15/WhKyefT8HDlyRNJwfzEYP/7GMMTkscceaz68hoaGhoaGiIU0vOXlZe3fv38kMURfCH9pGaCZ2YYtVdB3Q0aSX2tBkLFdSs1RA7J2QQmEKXiiz8HfsY/R/h3HEjVKFsTka1auhz48S6ZkZ/ncTLKrBWRSkpUGfwgTDFsaywqcMq1bFtRtdF2nCxcuzOf+5MmTkgZtJF6zpsX4epmfosYcphaVlf5xn7xOU/uL7DvuM2qa0qDNWDv2HrJ2yLWM9waTUVOzp3VEGkvSTE7AsktZEV76r7w/mMottmtwTTK/n/voOThz5kzVh2d4rO5LXEv301otE1KQuZq16/aoTWW+5ei3lsZlfPwciM9Gll6ihcmaa/QVkiPg5wBTf2X3J31pvL+yZxX9v1x/+mvjnPDeYokujztq2bQOWGtn0oLYRyYKf/jhh5uG19DQ0NDQELGQhldK0d69e0epl6IUQ18TWX6Z34+JUcn+o+QdpWfGozFNV1ak1lKE+20/hftk7SBqSCzhYenl/vvv33Rdt5XFRUV2UmwzY3QxKXStvBIlv/gZNUcWq8x8bmTMWmvLYpE8Tx7XE088UZXSL126pFOnTo0kt8xvE23z0jjJbvTleR2YnsltOPbJKaeiFup+c296vliYOH5nydb+EEvA7lv04Xm/OrbIfbDfwuvvuYnsQ2ufZlgyztXfR58xyyjxPvV4PTcx7oyMWCagNjILTSwTFcftPRHToGUp0mpxnEtLS9q/f/98vXxvxDmmD8taDGPC4vrT+kRNxPNGv5Y07DdrOtSqvQ+swWZ9NHuW/r+o4ZnRab8fr0t2cuyj14GsYybUj/vbfWOqPt6TGQ+AzFWWFPN+j88d95exkExbGZ+dvo983zzxxBPbTiDdNLyGhoaGhh2BhTW8lZWVUVmRLGsKo/xZbiSLNfEvv23ZLBFBDVAaJB5LjNbe6D+IWqGlPEsNN910k6Sxr5BSrTRIPpbCaTtmWZrYB2oOTCYdwTgUSj6MIcx8BUxszLI3WVFcg5Kxj40+N/fByZ3vuOOOKtPOcXjU2mPM2X333Sdp7D9gfyNTlGVgvBd9jr+3hhfXhcmomWTX/tmoAdFH6D7feOONkvI4PMacsZwOmb9xLTyuO++8c1P/vQ5uwxqgNMybx+5xWttwH609RI3ijjvukCS9973vlTT4s7iHsoTDvq7HznszJsX2tT2P+/fvr7J8V1ZWdOTIkfk4mJQ49sEgvyDzW3O93Z61XN4DEW7Xc+lnChN3Ry2UzzHPrcfl+bEGIw17wmv5ghe8QNLwjGLpL/vG45y4/95XZOlmcaYeu/vvc2h5ipYl35ceDzU+9zXev/Rr89no65jRKg3PXt+XBw4cmCzhFNE0vIaGhoaGHYGFNDxL6ZSMotRMaYk+lYylaanBmp0lxWPHjm06l/4T90kaJBBLKCxDFG3A/sxSAX0CWWFbltrIilBGRM2FfkuWtMnmxNqF2/GcuC1/bi0r+gyZLYHatj+f8k1R2s7iYdx/axdTdvR9+/bppS99qU6cOCFp0Kqz8kD2izKPYJYhhmVm/Op9QJ9k9I+xtIo1IB9jrSrL98k5sC/NPr0sl6q1Mmp4ZMBFqdnt+r7yHqVkH/vo8fgYt2ttlGzH6BO95ZZbNh3je8BzYQ0i7h3vxRqTmTlDY/tT5aeM5eVlXX311fMxZv447luvN5mCcZ44xnvvvXfTudZUmJFF2uybi2P02jE7VOyv18XHMk9qNk9+fpGpzNdoyWL+WPr7svyvtVyaXltbc3i/xb56/5ElnDGbmTnK+9njiblvDbLrT506tSXD12gaXkNDQ0PDjkD7wWtoaGho2BFY2KT5xBNPjBKkRtIF0zRZBaejOarRJGIwEarV9Cyw2Wqy+2KV3H2kyi8N5giWHWJ6sgiaOUnfJW0/mrRI8WXJIqv8Wdouq+02p9SSB0eSC01oNN1OlbLxPDL9FdOvSYO5weOYqni+Z88e3XbbbaOUS5EEw+885zaj2bQUzdMONPYYPe+33XbbpjZI55bGFdZtWvJ6mAoeiQ42e911112Shj3JRNBZejD3kWZ3v9KkLw33Qi0NnQkOcd5J9uLcsASQxxLHakLA85//fEnSi1/8YknSe97zHkl5SADXntXRs6DvaBqrkVZc8dxzkSWqoFuCJZmyMmGeZ+8vH+N1sPnd/Yr9Ywo+EpO8r6OpjaZmhpTE+8hgCj6m7/Lce7yxH76O3Qd+tWnbaxznxNd2CIn3jK/DRBvxXiT5kCWZfB3fV9I4bSR/P/j8iZ/FckQteXRDQ0NDQ0PAwmEJq6urc2nKEkLU8Cw1+Vee9Oms/AMDjLdyrkYJKCuaGK9Ph3DsL8sPsdROpulRk2TRQ48/o0y7r0xllaVDY6kVX4dkhaxMB+eLJUSyJNzUAtwepdvohKfmUkqpSlpLS0vas2fPXHJkAdU4H9bkTJSwVMlwi9gfkjmsLXuMt956q6TNGiVp+9xf7mN0nDOwmWQpawdZ+jNq1NQK/L33R4StEtYw3WfS1qVxyRpSvn2/mRwUJXzPj8/JCqey776O93cthVkkffi+jGnXahqeS5J5Xny9zLLksdCCwLSB0jiZBO9hjz1LOcf7glqHxxefVe4LS0sxMXi8Dp837gvJWn4Wx31AQhVLm5E8Fb+j1cn7mgm3I8HK7TM9mOeZe0gatM5aOSBaCuNcZAlItkLT8BoaGhoadgQW0vAspdO++v+3d27LcVxHl06QoEjJssMO25IoOTy68KXf/0n8ABqLsiyPLMk6kcShMReOD73wVe4CoIi5+Kdz3TTQXbVrn6oqjytTcuVN7YTFvaKktu3b7u6w52zDb3aX/kHCynB6J4dag+iKk3KsE7SBpffs46ovTgzNPlrqdCi2Na7UrPwb17e9vEt4d7Fap05kHzmGse6lJZydndX5+fkm3HmvYKW1ThPMVm1JjdEiVhRJ6XOwdGwNpQstd1HY9LvmHOT3zLN93vbdkN6RiccAKZ3f0H679BjTNPmeY095X2bf2Gf4t0wC0PXNfjKnInVliGzJ6ICGx1p3Fhjm1lqzCZRTi8Ta4NSI1ByqtppRjsX39IpIO9un305x6gin0Qqd3M8n48V6k+e6KC57h3k0aXZex8WWuef20stMg8jcYCHpiDxoz5YyWwcSTnV79uzZaHiDwWAwGCQeXQD2cDjsEtcikbjwqv1kKQmZANrlh/YouJxMvSq1kr4b2ne5IZe3SKnBhV4BUgvXQ7NNKdGRqUhRXN/kztmeC5pakuxKATka1FGBjL/TlPl0ki9YUYe5D91vP/zww602vbeWSKYmm6W/qaUhedqH5pJMLjiav5lOycncmazsxGukV2sxXVK0qfGQvK1hJAUX/bX/l3NMT1V1lJZtbXG5G5D7zpGEPqcjWvD+os+sRednXhVs7nB1dVX//ve/NxHYuZasnYseu93UvB3xyrH002XCcs9aS1+V5LLGWbUtNM3aOWq86mh98qcp3zp/HNem/44KXmmlOQ72jgkdOkuXtV2uwzzSt9RCXSzY6+gofI+R8U3i+WAwGAwGgUdreG/evNn4JFIisc/Jklbn9zPhMu1bUujsuZYqHM3k8hNVRynFPhr64fy1bM/XtR3cOX15HWttezlC9MXzZ412b25WRXddWqRqK6laozXlTzeuvVyY6+vr+v7772/z5rpCopZ80RDsh0stkzE5P8lSLFJh9tH9db6Q/Sd5HfYQGp4L5abE6VxJ+3CQ2mkzc53wM7Gf0FS5DuuReXHW/v3JmnqOqo7rYR+bNZfUEukLe9aak/uc7XG9vdJSNzc3dXl5eTvHSP/Zb9NaOYqyi7R0+SdrPDzffE/kObZkWSNJzYRj6T/zwh6i70kEji+N+8ZWKdp0jmXVlv6L547LA+VamugesM98f+WaOnd4RR/X5Yxa+3MEfT53POZvvvlmfHiDwWAwGCQereFdXV0tNbKqrbTvgqWdP84lg6yZWJtJyc5SvyPTOh+BpWMXxnQUatW2jAVSk/2O9C1LyjjPztGTJqbOczzmjvXBsE3eUXp72qDt/I5cS23H7DLPnz9f9sulpdKOD9Ds6C8FMq0xpJRuf5t9xSZQTt+D+2rfpzWlqqNUCcky84ZvrfNt2BLifD+Tsec+cJShc51A+hm7osd5fWtXHXmw/c2c4/2e7TgamPk0OXYeyzg+++yzpX/45uamXr9+vfG15R7ynu40OsMly/J6Vcc57SISWQfW3dG61jjzHBfM9d7JeXD5L471/uac9JMyLubfx7Dfujmy9ud73c/1qu2znU8zsHTw/vIc5Ro50vsxGA1vMBgMBieBeeENBoPB4CTwKJNm1X9VTidZpwpu056JbPfC6IFNIk7YzONtijOtlsO5s282U+IUt7M6v8OktaLcsvktf3OtKVf37ULmbX7yuDtziwMMnHTbpVjYGW0ToMdXtV3Tt2/fLgMPnj59Wr/+9a83SbzZntNCnJTMsWm2wezkul2eW9DRqdkEzP9cL1NMqLzsJHLvoc50atOO+8YapIOedrgeZl4CekxTV7W9F/jNQUYOEEjYlEabzHc3j1577q+u0rZNkFdXV7uBB+fn55vAseyD59RmtS6gyq4L7x0HnnT3p10NJkvoku2dOuEgsrwvTSxhsyh70ykhbievj+vAwStVxzUyqYTNzX6+5zl+Jvucrk/AzyHmuSPHz3p4eylRidHwBoPBYHASeLSG9/Tp042TPSUEaxxd6Gsel3874GWlvXUSqb+zNJESt5MdV1pUV0XaUpEDG6yN5m8u4YGmgmTUJcXamctcOIihSyK3BrbSnPM6gHYtteW4TE21J2VdXV3VN998s6n6nEnkTmlx1eoumZj2rK2tqm/nuS5FYkokPrsq6RzLmlFKZi91hvvGgVXWAFOj7KqFVx0p1P76179WVdXf/va3299cfsZUX3vJ3iaKsMWmC+gC/MZ943JLqaGxbpkCdB/xuLWMvF9MPO80FFfWzmO9t32/7M2T05NsHciAEK7nYCH/nylUDgy0Fs33XaASfWQ9rK2T8pL3tNMPTI5h61COz31dpaZ18FzwXHC6WdVRI+ba33777S4hRmI0vMFgMBicBB5NHv3ixYtbeiVCszu/jcPb997u1lpWyeoOF89rW7JeaW1VWx+dJd49ctrOr9O1kf0xTZOlQaT3Lvx9pUFak+yk4460N7/vtB1Likh4pk6r2obb763xxcVFvXr16jYMnURafFFVW0os0KU/ACe7mnTb2lv6OCyd075LC2UJFMaP9mIKtr2UD9NR2f/T7VmuvUplQBv4y1/+cnsOxNKM2X5Y+7eyz50fKfvk61dt0y2ccsL+7+YmtYKVDw9KQ98D+Rzw/nX6kFNO8m/vA++/LmHaa+eQf1vB8jqOITDhfVqWgH1pttZ0vjba815lz6DhvXz58vYckt6ZG5cWsoaXWvuKZm2l8eWcME9Ou+n2DvOVhWxHwxsMBoPBIPCLNDzs7kgDSSjr6DjbyVckq1VbH91DbMD2/yFxoIF15KO+tq/bJUevSsY4AtK0RFXbJHVLf8xRnmPNakUltqddu++g0/AclbXyGXblTuj/u+++20Zi0d7r1683hM1YCzg/r21w7fQb2A/n//l0dFvVVvKkb2jcTmbPPrqgqBO1u3XxuFwaxZpgdx0Xq3Vh5aqjxM5vrK2jHE0RmMesCN1Nlp5/m9DBtFE592jKaBuXl5e76/7OO+9srA45HmuPXtPuGbJKkLa1ZkW3lce6XJTLUyXsw2fe8Mt2/vjV/enP3Ad+FjpynecQxYVzzHlf5vcm6ci+rsqP7RFs20ft6Ff2TvprGc8eEf0Ko+ENBoPB4CTwKA3vcDjUmzdvbqUWpICkOXKUkstjWNPb+80aXSel8Z0LzmJ75jO1NZPGWrI0hVFex5GWjijlnJTsVjRASCqUg+lKr5j2x9GZvkb2wXZxS0Jdvo81I+a1i+zzWPd8eIA9QzHK9IV6TzhfsfMvWeK1pL8itM1jXb7GUY0Zpem1s/TfRenS3srv8xAND02I/YxUTl5e7hP6kLmn2Uf7HfN6ztW0f8sac55DH71nuzlhX33xxReb9oyzs7M7UZq0//nnn98eg1Zrjcp7qvNXWouyJuRxJJyfyz3eFUzmOencSs7pqM7so/MzyxHNXekd1sUaZTceR9bSJ1sHurxc+6Dty+3iLUxSvoodyD2FJoyG9+LFi13i+sRoeIPBYDA4CTw6D+/JkycbqYmIu6otm4B9G52WZh/ayqYOulwwgC2Yz067sW3ZrBlIQilpOQrM2f6OSk3N1iWDPBdILCn50IeVv7GLJDUcDeixdN91JXiyjZSk7M+6ublZ9ufq6qq+/fbb23bQ9LJv7JlVDl23H+y7Yz2s3TqnL4/lGNaB6xNBmpJwkoLnb47a7bRC9rdZOFycluKeVUfpnDbQBoiwo0juP/7xj9tzrH36XmBcbjPHbo1+FXGX10Frc0RflyNGHEBG3q6k9Jubm3r79u1tu1hEkmmFaFYXnV1F/Fbdn9+7Z0Vh73jsaPP2B2d/7ZdFU+kiSVdR2WaQ6Sww1sqZf+a+29+APUn/XY6ou89XffX65/VWZP/A92bVMeeV++TFixcPsi5VjYY3GAwGgxPBvPAGg8FgcBJ4lEnz7Oysnj59eqs+4jhHRa46mhYw/fCbzRVd1eq8TtU2udF0XlVHE5XpoEyY24Vem44K9b2r89eFcOf/qzqA+beDIvbIe5007OroK6qfbM/t7qn9DsF2mHPX5ipkfg+kstD/JILGDMjnn//85zvtO3il6mgedJCUq6dzXJe0jjmK3zAX0kaa7DH/rQINGE/OhYMFbIbiWD6zjzaHd6kZ2deub8zJn/70pzvXpc9d1Wo+bcoCmXjepW9kn7tz+PuTTz6pqv+ablcmTYLlaO/vf/97VR2JL6qO6+sxmai5I5y2m8ABXJ2Z36Y42ndtu7xemo6rjs9K5q9Lh1rVp1xRjuU62QwNuB73Yt7TzCN7lnvRpBAO9Enwm0m4O5PtijyaY+hrzp3dSvcRjydGwxsMBoPBSeAXpSWYlDaTAv3m5w2ejvj8nnYT1mIc9p4a3qo6uhPfU3o03ZC1NCd5Zp+QvjqNIceV51rLRXoiIIH5S+3RCeycY43PlFqJVaV4O7Gzvw79tmaR82ji2lVpIK758uXL2zB6a6zZDlIdmhXtMgddCL61dUvvnSbswCNXgsZR3pH5sqYOSOkqYBNYkkTZOQdI0Z2G5/JaDhrZo9vjXCR54H7sJTo7hafTdu4rzUObOY/sY/pyeXm5G7RycXGxCeP3MyX7R/+t6XeJ0tZqrRF1xOkmOPA8EYjSaYW+h+kTfe7oyPgOrZ17ZFUGK9sziQR7hfVwubeq4z5mLkzG0FnbfI+tSgt1AYsm5eBcxttRpnFsF4S3wmh4g8FgMDgJPDot4fr6ekMkm5KPqa+cWAjyHPsHLOnZjp3nWkpflfxJqcLk0ZyDtITkkPZpSzYuS2NpMaVEjqUN27Q9Z/kbfXLhWdrsbPem8FkVAs3xraTabo1XxxwOh6Ut/dmzZ/Xhhx/ejt1rnn1wsjNaYUcTZw3UPlZrpnuE2Za0veZV21D1pFWrOkrG6ZvkNxfetBaCVphC7M1jAAAgAElEQVRk1fgTnRRNn2k715I+0n8+vZYmRM/54TdbSjqpnfvFn/Sp09xcbuvJkydLDe/6+rq+++67+uijj+70P32CvpesbaIV5jVsHXIpmr0SZ8yp/XBoJB0RApq8k8gBeyY1cD/zONcWhu567Cs0OcbnlI28F9035ob52yNJX9GerSjb8jp+3u3R4plQ/aH+u6rR8AaDwWBwIvhFBWBXieL8XrUlFjYh9J1OSKK3JGrJr5O4nTxuG3AmArt0iBNlkdZSgjRdzirirpNIrJUhLXH9LtHaVGZ82m69p7l43hyFlj43+75WRX5z7h01uefDA/ZfdjRKLmDqOU+YAos++X/vx6otPRLrwNiRJDufsX269rGmD89+P9aFY2jj66+/vnP9/A3t0H20jzf7wDHMAfNqi0Y3r763O7o9sEoediRx589KzeU+Sd33cleaZlXktisp5HPdX1tCcl3Yv+wR+uZnWGprtvTwP+vBfsi1pA9EvTsa2Ps7nyFcx5YR/uf3zofrZ6HXcI9q0GWQ/Htqtn5ee8/yfxI7OPbihx9+eNCzp2o0vMFgMBicCB6dh5dawyrfq2rrYzDp6UPJPvOcjnjaEjeSgEtipPRoKcblTLpyE0hUpoVCwnN0Y8L+EEt61ryqtvmFjl5a+VqqthIQfUWS3JO46ZPnoKNosxawlw9zc3NTl5eXt5GIRNh1vkf6gFbj6LIc6yofyHuzmydLq+TjsR+4XkY5Imk7wo31wd+Y+5t5d2HPFU1cjsWSNNexlaUjKV5ZA2w1yH1gP5YjGE1InNdh3kwi7Zyq7GP6M1dS+tnZWb3zzju3UbPcPznH3O+2xJioO9d/VdSUftu3m8WP0dbpE205L7QrMYblgr4QxYvmmvcY0Z6MmXFyDDRrXfFgW8qYc1sYOjoya3je59197vvTml6XF7gqf+T/c4/aT39xcTF5eIPBYDAYJB6l4d3c3LRaQUpaLlPBb0g+e7bWFauAbeoJM11YAjYDQ57DsUhrSDwmoM5x0TfOQZpF0kMKTL8IEh19cVvMaeYVIe2ZpHYv4gnc5wPtpMFVDpLt8NkWklbO+V4Rz3fffXdD9pxSP/1hDq2V2QfVYeVb7QpkWpJ339kPMHtUVX322WdVtS1zBGMI6OYJZiLWlus5nyy1J/vALYF3eUouYUUfnTdp/1Z3HY61xJ0+FfutrRlZy6ra5o/uFfE8HA719u3bjW81/WMu22T/5F7xVjODeJ74PgmMuf8ZI31hbSFmztgBR3jzXCAS1xHm2QfWEi2Ne8S5jjnHtja5dBvWilxL5muVh7myMGS7juR0XEf3HLeFZkU8XbUuO/QQjIY3GAwGg5PAo6M0721QRTWRgOw/6nxqwNqGJciUSDJyqmrLJuICmnm+I7tc0DS1NNvOLVVYgkx+UTNqWLtx3lS2576sJNZOWwMrbbCz3ZtBwfO4l0NzX6Td+fn5xseSfhHzRjKH9mN2kWGW+lhT5s85aVVbCZ5j+R7/SUr2sL/QN0umSO0dGwztfPrpp1W1zamj7dyrXjv7+5yPWXWcJ/N6mp2jKwDbRbNWbQtx5jkr/4vzDbNNrs2cvH37dimp39zc1Js3bzb+w4yENZuHrRtd3pg1e0cvY1Fgj+Y9zZhYb1uFHAFedXyG8B2+O3Ot5lisNTl/0TmWeW84+pTr0HfmMUteWVO2FWBVNNtjzfH4++7cFRtLF1HO3KYWPwVgB4PBYDAIzAtvMBgMBieBRwetZAjoXsCE1VhTiyVWias2OXTJlZg1HNjiMj1ZPsUBNB6HaXS6PtoR6yTiNLs6VWJFv9YlgNqpb+d+5+x38I/NAh21mE0Vq+rPOSe+9vPnz3dLELF/sv2OTs3V1538nv3mN5vNnCzcpTS44jefjAuTJgnh3ZiZY8xefHbOfPpGdXKOxdRNfwiIqTruGdPCsV6Y0DJUm3kicMKpC3tBTQ44WZW96qpW2+zvAJi8Du0yt7/5zW/apHD6eXV1tQlE6cjdV2bRLi3BJnKnxfA765TmcBPOc26aaLNfCZOEr8zI3Xi8r53q0gUvAfrK/iKFxmWL8joO4HFb+TzwnKzu36502sp072dk1XEf2Z31EIyGNxgMBoOTwC9KS0Cq+N3vfldVd6UMS4R+c/uNnt9ZijRJbBfCbM3HWgzSRUpPTrg0SbCl6IQTIe0s7ciy7bz396a4ynZX9EyWvFI6doCLAx32pM9VmSUHlHTt3uc8PhwOm7nIMbPOlnQtIXYBCKZYs9bc9Z91Ryr3HCPZpybBnl8VDUZa7gI0XFoHjQiJ24EheW0HcFnzy6AdB6k4aIH57AIQLIXz6YCK7v61huaE444wIIOyVtYBnjvWSPfIz91Wl5bigKwViXinTa2sUWjrXYCVg2EIFiFdJSnFgAsa+951ykQG1rgQsAk3OsILkxQ46d4FdnPN/eyz9aXTCq3Bmuavs8xwTtLrTdDKYDAYDAaBR6cl3NzcbMK48y19HwF0l6xuydfh4p39HaxoaxyunhoX0gkS0CoEtqMhWpGrWsPo/BH0ZZVUmX4Y2rFv0loI/2eItrVcS017vgL33/b4Lhw9i1TuFfG8vr6+DeN2+wlLmS7M25WjskTqpPUugdXpLpaeO/+YaY2sJdlfl30iDNy0ZNxHjCGTlZH6kbBtOenuJ99r9NGpG9ZwunbtN93zqTiVxYTxXTJ+tru3d66urjak77mWK9+2y1DlfvM9Zp+dCwBnW9639l+ZGrDqOKf4hvkkkd7UX1VbcnJbwZgD+phaKOOgffsK90p+Ac8R13Fh2uzrqvD0nn//Pt9r3k+sC+uV8Rn3YTS8wWAwGJwEflF5INtk8y3voqr2dXV+ii65sOooRSTFV1Uv4a9odDopxqVdgLWpzldoqXlVnDbHshqfo+ZSinGRWkvcbiv7Sjv0cTUXnVZgaWyPtsf939PwDodD/fjjj5tE3Tze2rKlZeYkpdgVIbbb6LQMrynzZmm909aQuBmHC2amBsD94oKr9MnaaNdHg3G7LFb+bd/diqwg19hkDN53nbRuLcp7l3PTykKf0lez54fJwtPeJ9mHFVF3ZyVy5KHHvLpfq457Am2cfcAYTSNYddwjWdam6mhpwv+Wa4nWZ03LPi5bcbrx2ffpItbZN1uhGA99dYHWbD99+tn3rpTZSmP1czXXk8he782HYDS8wWAwGJwEHl0e6MmTJxspo5P2LD3vlQWyrd9+gj2/2Cry0b93fsaVn6rzcTnnw9fpaIGA/WPW6KwV59+O5LSEbakqf1vlN4LsqwupWrp1xGfVthTKkydPllL62dlZPXv27FZb6yLS8Dms8rGQojNvyP5P+5DtK+r659IuXeQrgCQYn6nz8Ozj667pnFRH6eZ13QfmzVRTSUfWad55rIuHJpx/Zfq4bny+P70nWXPyArtz9iJ8D4dDvX79euNLy/u082VmH1b5ZHmOfZomc+72vktvWTPqShjxLKFdfGxdtCuajUnC/XyFgDqxili35SKfO54D9pBzRdnvXRHpVWR5F13tZ9UqHw9/Z36XecZTHmgwGAwGg8CjNDzKdAAk7Y5FxX4E0JXAsAZkG7ClqI4hxH4QRyhmv82OsCJkTsnHfgkXQtyTYuxHssTd5ZeZ6NX5ZG57r7yK8244J7XWlc8GOPIv22H+9soDEWln/0Gu5X3aq/0+ee2OuSXbt58p23NeGhqJo86qjnt+pUHy2fkZ0Q4ddWq/cBcd7HvM406N2ZaLldYLcj75zYwhvm87i4LL7Vhzyr1LSaQsDrtXAPb58+e3Pq4uOpz5tmWEY/g+97wjuVf3qaPI829btMzS0vljVxGlSVJuoFH5WbHHOoJFxPeprSFdfqR9hvy/Kspctd0jvif3LCcr7d7P22w//aSThzcYDAaDQWBeeIPBYDA4CTw6LeH6+npD+ZVJzysn5EoVr9qa5VYBLh0VjlVuE8t2wRY2P2IiceBGnrMKy7bptEuOdvoDbfB9R9ODicqmE5vmukrHnnOPG3SmDJtoPJ9pWnD7e6Hlh8Ohfvrpp01Sd5Jsuzq9Aw26BFObTRyebVNP9s9mQfpC6kS3D5yKY1MP/7969er2HIfl31d5vFtLm2o97lxL+u/ggYeY331P5Prk71nH0C4JzL5cn/7kWtBuppWsTJpPnz6t999//7ZeIEjTIO05LcB7Pk3D3osOTnHyeN6fq6AhzuWZ2Jn4HSxiqsNcF8ycXisHTZniLvtvE6LNlV26hc2vXI9jWdOuXe9rBwF2bpHO5ZDjcXBi1d11GZPmYDAYDAaBR5NHHw6H2zc0Ul6GG6+SnldBLFVb5/19ocQpDThoxcS8vkb2wRK3JdWUIK1J2hFrKSbPxZFtCdbJ6x1dkzXiVWBAtm0t0w7mLvzZgRQrQuCcVzv196iDLi8v66uvvrqVRCFhzjE7iXwVvJTnOGACOCS7c7KjcfBpDauTKk3hxB5CI3fof9VWM2V8piXbI8emj9ZgbZ2oOt6XDnSxRL9Hwo1Eb9LgPToqJws74CXn3vv28vJyGfD05MmT+tWvfnU7Vltbqo5aJYFBwETqeQ5z6OR9/rfmlZYsP8dczZxzMpz+j3/8Y1Udk8npEykFfh5UHZOsncqAhmVy6e5+Ag4Yo0xV3tNOF6KvjN2WjAwG9Jz43us0eAfS+d7zuHNcWSl+79mTGA1vMBgMBieBRyeen5+f30q3fgtX9YmpCWsSVX0yaNU2cRFpIqUm+5o6n0bV3TBxF6y0r4M+khC6Nw6HzbqIaP7GJ0mc9NnaaNVRUrWU9BDKL2vGnhNrxXmO0xNM59SVEkn6s1W/Li4u6tWrV/XJJ59U1V1pGdgvtiK9TinWa2brgGm8UotAKnZyLyHz4MMPP7z9G82U/vPJ2iIR5zwhjaNx4Zdxgd7u3kCapa/WFjufGuH7pmZz4V+XOMo5sJ/ZqS2JlfXBRA75nPA5GRvQtf/06dNNiZzcQyv/v/3k3f60FYV9aOqtPfJop0F0VGZOc2E87CmeHekfQyvkWCwMTm3q/LJ+DrC2tMV1ch49F8ybS/7YD5h9o0+mMnN5smzH1g36ypx0BO6pjY4PbzAYDAaDwKM1vGfPnm2KXab2ZF9WV9a96q4kYoLkVRI0Ghel6au2JV2QsC35dEUHHYlkTTMlESQcS7iOnmQuUvKxz8ZlLTrpk+KQloDsD3GJmTzHmp2lt73yR/Zj2s+Vf+carDS8w+FQP/zww63khpbTRWwxRq8Tv2f5HLR9r6Wl8k4CZs6yvbwu/aBAZ/5tKZP28Wen1k5fnGzPHOxJwMD3BMc4WT5h4mHAHCDhdwWcrSk5mTjHZ58afXWScmp41jrfe++9pR/myZMn9f7779/egxTMTR/VKlHadFq536xVmOBg5dur2iZx+15D20ntiWNXBNAdiQB/f/zxx1VV9fnnn9851mWb8vnEM2SlwbJXU1tlP7mEkKNBQZ7LnmDMq+d4R6zv98RedCbtp192NLzBYDAYDAKPjtK8vLy8lRh4gycljql9gN/cKcUg+VnycWRnV2bHUiXan30OXfFJ5yWltOlzTDeEBMf31uxSaqZP1iCRsPYIte1LQxuxHT7nxH4fS+DOufP5VVuJscuT6fw6Kz/M06dP67e//e2S0DaBlGlpnf9T4yKKjXNYF0ebdTR47C9HG9MnJMj04Zk81/urK2nlQrL42Lx2bjvbt/8K2C9XddTs6AtjtoTdkSKvIkj3qOsA97FztdA0cv/TB6T19957b0kaXvXf+WVcaPWpMdK2ywJZi+riBazJrajGcm+zN5zDx7i6MkrsSdYSTZU+dbmpXAe/MvvY+4+5zvHZl+aIzs6iQB+dE+sI3E4bd96ffXhdWTY/e7k3WEdHalcd90xaWfb2TmI0vMFgMBicBB5NHv369euNXTylKrQ9NBHnYHQlhSyl2m5szS8lBDNfpHRcdZQgsqQMUgQSsKUJ/u+YSPhknNZ8OmaXFfEzkpzt5d2xLn7qQrrZV5cdWtnQ8xqWfGmfPnYFH/mOPr148WK3YOmnn366yYfr8oacw2RNJPttQnH7aug/a96NmXORos0qkVoo+8j+CbTDzndjRo1VkdXOD+OyMC5+yu9ZHoh2nUfm+6nLcfKarvxNCfve0Tacu9dFA6b2vJLS8f/yO5oe2n3Vca+gZdi3BVJ7siZs0m1rhV3/VoTw3VoyHy4tBGgjo8N5ntlXb5++91aC9We9zYiTzw5bEKyVeg7SMuT4DeZtVYg2z6EvLn/EsZlfyf7qyrjdh9HwBoPBYHASeLQP7+3bt5uIpI6RhE+XwLFdPOG3u6X3Fd9aVc8aUbXNI6nasmXYH2efYdVROnLenTkcfXzXRzM5OJ+tasukYbv1XgHYVeRT57sD1kKZG85FAuuisvjt7du3Sw3v/Py8Pvjgg42WltIskhvSnPPJunUhhwk/EWPkXPtPc+zMqfco5/B/5uWtokC5PuNLrZD2VyWsgH+vqk3Oa+fTqLpr2fjyyy+r6rh3Xr58WVVbX17H3ch62I8Kuj1krcCWn44/l7VGgzgcDruRdufn55v7JsdsS4S5Op1zm/1kbv08c7Rup5msymg5erPquCf5dLRuFztgbZxP5naPp9LWAO5TF6LNvco5rI9zSG2NS8sZsEZni1L+bmuUI2b9TKg6rn/u0b285MRoeIPBYDA4CcwLbzAYDAYngUebNK+urjZldFIFN7G0KXfaTqgquRNVHf6eQTJ2Dpu2pwt0wQzG9eyUNhF11dYcsEpwtYM4jzUxrysE57joGyq9k3hXJZQSDrsHDujIdhwM4aT8jqT6oYCaLseVfaA9yHRNjdUFE0G9hCmONhizE7Szz6ypk7YxcXeBNV531sGJ1GnyMwkCa2mHfZcmQL+dusD1bKas2ganYDJzAEwXOm+iAZuYHNSSfesImvP7nEcHte0lD7NvXIop06EckGHzJHOaro1VpXZgYvjcJ05doH1KGJk4u2vfKQwm0cjfbMp0MItJvrP/q6CVruSXn+l+RtFnzkmTqtu1KX/vHeBnPuew1plmRB+dBvMQjIY3GAwGg5PAo9MSfv755w2ZbybZ2rmOtGzpLbWnVVkJJAVLpp1G6dBnNAiTIldtgwZMhWSppuuLtRsT5ObvaB+WdK2lpQSJ1O+wYI+7o04z/ZPDz50Qmuc4lNhS4l4gz31hwjc3NxuKohzXShO2VpWSIto6GoMTV02Jxu85H8yDUxc6OiraM/0U4fVdIIivZ4JmU86RkJzfWcO2ZSElYL7jc0WS3oV8m9bNAQjsy9QKTLNlKi4XwK1aF7TtcHZ2Vu+8885tO2gzGWxh7cXBZN3+BV5nB4T5GVO1tToxx9zrXUkw3yer9jvt2dYu1sFaYxeQtrJcdXPB3LrdTHtJkNpRdbyXrTmvKNX8d9VxvLTlsltVx/slrV5THmgwGAwGg8CjNLzr6+v68ccfN4mtKQ1YokYCQgLv7Li0x1sdKcP+IyeEJpAErDlwPVMOJVZpAgknsloyWaUCVG3D3q3ZOfG1au0PsfS5R+Zrf4uT/rvwd8+5x9mVdXpISDAlXpAIO0oxNABTU5FUbI0h//7oo4/uHLtKVs++Mmfst9T+8tguxeQPf/hDVW01B5clynZWVg7TrXXH2KdGW/S5K9tk+i4n9rsETNVWKjdhRJeuYM0OmAy80/Dy+bCS0iGtd5h9WgdWJcZMkpGaglNIbEFwOk+mX9jyYX8cY81znLIFrJWm1uQ0lJVvfS9WgnNXmldaB/z8ciqB08ty7/jZ6OeNySzymFW6lUs0ZV/AQ1MSqkbDGwwGg8GJ4NE+vO+//35DvZRSjJOokaKQWvaiCy01dCVd6Ievhx/CEt2eFGuCXNDZuJGwHe3nqEbTRSVWRWrt08t2DWuJpgnKv+2jdNJ053MzeTDwemYfuoTSDufn57dSOedksUtTUdnX0RHXOjoXiXBFCNBF6YFVRFquhSVSxuNCqQmvg7UDR0uiPebfzAnjtd8npWaTu3s83pudP455smbXkX4zdmt/ubZVd339tlz8/PPPu5J6Rod7X2QfrI2zHzrKt1Uy/31FkPOYVYHhzkJjsgL7SbuisdZ4bAXp6PaA709byOh7V1rK8RLe1521xSXUOuqyqrtkE8yTKdlsLcjrdL7wFWm9MRreYDAYDE4Cj9Lwrq6u6rvvvttI3GkXR5OzvdrRknu5E7TnvCukipTiTNpqadl2a8bRtefIqpSaLb3aTm0JKDWLVZFIwP+dPRyY+NkaWEp4zk+x5NxpsKuIsRWlUdVRMkSSu7i4WErp+PA81tRmXPTWUrL3XfcdJM748jzWzk9qjchFT1Mr5JzOV1d11CA6CiuPw212dFTui33jrEtGWlpz8D3Bvt6LJHVkLPutG4M1e/rkSOnc3/Q/tcOVlH5zc3OnuHBHeo32aG2afhJF25X8WhFjr8pT0d88x5Yl0PmqnUvrfuR1bNVgDjvflv9fFd3eoz/z9WxB8XOu0yxNoch6OR84QbucY+27i1zNvO2hFhsMBoPBIPBoppUsD2QJqOooYZtkFi2g81dZArZd15Jf+gKc+2FSV2tiVetyFWaZ6Apxrgisu+v4N9qgj5bsUxq0FmjNy0UV9yRXRxJ2fh/71lyOppOq7Ut58+bNg23pLrJadcw/c9TqStvN/nAskjyEz16vXHszd3hOuW76fdx/Rz52EYv2J1pL9FqnlL7KUaWvzgPLYxxB6KhERzL72lXbPEA0iy5HFYmbcTo6s4tydKRyB5hWmDcTXFcd19D+eZ47WBI6DcjaoH2r9LXrP8d4z3SlpRzJ6SjQvahgPyPuK7KaWFm99liavJ/po8fX+beB/f7s0fTteg1c8JjrZYyCLTMXFxfjwxsMBoPBIDEvvMFgMBicBH4ReTQhvlY7q46mJIJXIHjFLEQCekfTQ3smTrYjs6t4vkrQ7tIEbOKzk9+Jp9lOV7uuamumSrOETbU2F3RjcDDGKqS8M7V2VEh5Xc7pyLFdBZ52u8R9B8fsmRUwS9kM3iW9mviXY+hDmjdsAsF89vHHH1fVlhKpS52wyZH9x3XT7GpTHNclaKRLrHf6js36Nv2kidOkuh1pQB5XtQ62cI1FEz1kn0w4zFxwH+camPSYOaBP3PO5Fr5f94JWnHje1WCzC8WBDa4QXnV8vjD+lcuhowlzSpET27uUFofcr+rv5draHO3xgi6Fy2bXVRBYrsWqRuOK+DqfkX7u+JjOhOqEeveVNcrnm5PfJ/F8MBgMBgPh0YnnWdW6C1ox+ShSHW9wyH7Tyb4iH0aaxCGNszolEqTUvdBe99ESgSWs7pwVway1TvqT1+c7O1tXVDx5vRX9FNKSKzwnVhQ8nfRpTc6JxnvV0jPZe6/Ey7Nnz5ZJvVVHaQ6rgKmPXKIpx8i+cyI4lGNffPHFnfFl+/7f0npqBU6rWdFh5R51sIqDBizd5j6wxuVw7U67dkqQyyw50KFL83C7aG3d/WVNwhok80faSc4JGvke+S9pCdz/aJ0ZvNYlbWefGGtaFNhvnPP111/fOZYAvO75wLOJPeOEcNAFk9lqs0eu7D3h9TclV5cOtdqrnbXA1i8HYXkMue/Yx1536O+60mku48Y8+lmZ6+aE9mfPnu0G4NwZ84OOGgwGg8HgfzgepeFV/feNvpIgq7blQ5AUkO5evnx55/tsx5qHiVg7u7GlZlOAdXRUK9+WNcyu6KBDb23vd0HQPNeh15a8Olu0x2ztoEsit5TJmlga7HyUTv62fzNDsxlzarl7lGgXFxcb+qH06+AHQ1tzqRDTD2Uf3H/WjnB0+p3Xc4Ksr+f0mDzWlEv2ceZ6uJ1V4VwTAufflvBXpWyqjpqLS3MxJ05tyfvB4fzW1v71r39V1V0tm7/RiFZJ69246Ot9tGJff/31rQYG8p42ob3nCXTPDtbFZOU+N9NTnCawCtfPPprggHnp7qMce7a7skKZeCPH6nvSCe/Zpi0KbstjSW1tle7l8XYlk5j7VTHknBP2Qb4fRsMbDAaDwSDwaA3vcDhsfABJvYRUadsvEiLJxV1kkCUSJEfbyRMrjYvr0ceOxPW+cj1dVNaq8Ku1qo4I2lpTFyXl821nt8S/F1Fq6d8J9qnROpl3RQjcJVQ7UrIDlgH8Lo68rTquL1oZ2gRjpE/Zb6/ZyodLQjr+waqtz8G+1E5q9BjtI+qiZum3C/I6wbnza7pPtgp05Oi2BniPrrRGXzvH2+0Zn7MiHO8ifF326M2bN0st7/Lysr744otbzb8bs/1i9IWocXy5Hei/NXsXzu2eP94jjsDujvUceq/u3ctOXt8jbPc963uk8zuuyoE5RsKWtQ6sl6OQO/+2x8HzyNHXCfZVN9crjIY3GAwGg5PAozW8qu3bOKUCInJWZK7Yx1PKcaSWpQxHy3VFHG3rzmOMlZ19j3KHcawKLT60xHzVukxPR8i7Ig822epe+ysJKNfR5Y2sxXd5gN4HV1dX91L8WKtOMLf4grDVs2e6QqLst85nkv1lHOTnVVX985//vDMOr3E3zpXWxBwjdabW5Had7+V930XpWYNZrY/7m+13kbweL31C87J/iXFmhKTH7pxU1ij9Pd5PP/3001LDu76+ru+//34T1ZjPEPrDGNkjzEVHa+Vj/H3n4wKrOIDVOmV/VwWBuz18nza4IrxO2A9v31r2w2NdRXZ3+85zYOtQR55vujhbV+xLzjFnJsCQRw8Gg8FgEHiUhoektQfe3i4gyVvemkTVUaI3ma01FaSzTmoC9n110U3OYbKfwqU/8rdVMU9Lb9mvzv/lPvl6SLFmsVixkXQ+SktClv7S52Ibvf1MPi7Pz2jd+yStPW3G845EyJ6DsaPLAQNeb/u8UpvBr/fq1as7bdlf0pWWuq+Ib66HtQHvWVsYOm3N/jazsnSRn5a07UNxfmA35hUpO3l5Vcf1wX+/KqzcrXVaaPbKA11cXHk+BKMAAAQUSURBVGz8Y/kcsMZhHxd9++CDDzbtr0r8uLzN3jPEeWl7OY60xz6mb934XcrJ7Tryes/CYiuYCy7nMfb32bLV+X/9/DYTUxetTjtochyLtYB3A77YHHv6azvS7A6j4Q0Gg8HgJDAvvMFgMBicBB5NHn04HDbmqAw7RrUmSdNmQkwjaU4jVNx0OaaN6gIeSKZ18jDX7YJXViH9DnHvaIEc0MA4bBZNeBxu0yp61ZpKyvOJWSLNUqtq6DZhdISswE5qTNRp0nZttPuSP8/OzjYhyl1IvBOVOSYrqwMHVXTzkW0nWDNC1r/88ss7138Ima/3XZeW4BSdVVK/90Oe4xpp/O9k5uy/x+kABL7vgllYW5NMuJZe1TF9xOYw7mtM0d0exZx3H7VYmq672nk28dql0pEw20zLMTy77KbYq3W5chvkfWUyDpurHTyV5/tck3W4Lmj+tkp76IIEfY6P2UulshuEvnueM4H/q6++aseBCbMjvHB6ypBHDwaDwWAgPDpo5T//+c/GkdmFKFtqXJUqqTq+sV1exI5aB6JUHSUAzrHTvXOUWmpxuK6d11VbTW6l8XUUZA5scTiwv8+/rdVag+hSKSyxWmPtKKUMS/bduFzeZi95+HA41E8//XRrDeiqYP/+97+vqu0eYm05NzVlB1W4MvtKe0+Yusz7LcdkTctaU0cAbekVWMLvSH67UO6EtbmEA2ocRNAlAruSu4mtO63QWo61UhMBV201rj16KPaOK893RODMKdYANNU9km2OoS/5PMtxZHpPRwOXcEmo7C/XZY6djpDPAVs9VlaCLtDOfVlZtroSXavq5aAjIrB2uCJUyLZZp1W6EqlJOfdYBVaUjXsYDW8wGAwGJ4FH+/C6ENB8K/M2Rwo3mWv3lncpIYCkhRRhqpps336qLnTZfbT0bL9PSmerMhn2IXU+ys7PktftCrJak7Mfay/FYVXCwxpyV5zSY3eaRa61C2PuFfG8ubm5DS/PcXUUbPeVJurmyf0zdRVaYq7xKqXA181Ed/xSK0okt5XHOHTeUru1q8TK32fatcSqxArX437Lc63Bci6aHX1MX641CBeN7TQk+6uePHmytA5AS7eXxmMyda7pItW5z02NaCJ4PztybmwxeIg/bu+5meh8hd6rJjiwhpvHropjeyx5bWuBtiitSKartnvIz8xMMfAxtn5xv6V1xPdAp9WuMBreYDAYDE4CZ/dRQd05+Ozs/1TV//5/153B/wf4Xzc3N3/0l7N3Bg/A7J3BL0W7d4xHvfAGg8FgMPifijFpDgaDweAkMC+8wWAwGJwE5oU3GAwGg5PAvPAGg8FgcBKYF95gMBgMTgLzwhsMBoPBSWBeeIPBYDA4CcwLbzAYDAYngXnhDQaDweAk8H8Bk2kng7eBvJAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXuUZedZ3vl8VV3d1d2SWuq2utW6+6KAccYeZiAhMGDCAmLMhEAWixAgYLCHe8JkwgRibgYcbhOuiTEMJjgQgxd3CBAwlxgCxkAGgmXANpbUunVLasmtlvpSfana88c+z9lv/fb77arTli0p9T1r1Tp1ztn7299t7/Nenvd9S9d1amhoaGho+B8dS093BxoaGhoaGj4YaD94DQ0NDQ07Au0Hr6GhoaFhR6D94DU0NDQ07Ai0H7yGhoaGhh2B9oPX0NDQ0LAj8Iz+wSulvKKU0s3+/kby/UvD958YPn9jKeXYFV7zWCnljeH9x4dr+O+hUsqvlVL+1hVe49NLKf/XFZ77mlkfdm1x3O3o84VZv3+7lPJ/llKuTs7ZNPZt9ucVpZQvqnzelVJuX6S9ZyJm++mBp7sfiyCs/yue7r5kmM0p76vs7+Ofouu9uZTyrqeirVl7X11K+bTk8+8opaw9Vdd5f1FKec5srt9XSjlTSvmNUsoLt3Hel26xLtd9MPr/VGPyofkMwpOS/omkb8DnXzD7jg/vb5X0/Vd4rc+Q9ETy+T+T9CeSiqSbJX2NpN8qpbyk67p7FrzGp0v6REnfc4V9XATfLumX1a/1YUkfJ+lbJH1VKeXvdV33nnBsbexTeMWs7X+Pz39V0t+RdOIK+tzw/uOE+vm/6+nuSAXfKumHwvtXSXqlpP9N0nr4/C+fout9vaT9T1FbkvTVkn5F/b0V8TpJP/8UXueKUUpZlvRr6u/7L1P/rPx6SW8tpby467qHJ07/eUn/HZ8tSfrPkv6867pTH4Auf8DxbPnB+3lJn1dK+cZuFilfStkr6TMl/Zz6h+4cXddd8U3edd2fVb76q67r3u43pZQ/k/TXkl4m6fVXer0PAu6O/Zb086WU10l6m6SfKaX8z57TibEvjK7rTko6+VS191Ri9iAoXdddfrr7sl2UUlYkXe62mSmi67oLkt6+5YFPE2b36Pw+LaW8bPbvH21nXUope2Zj3O713rt4LxdH13X3S7r/g3GtbeAzJX2kpI/uuu4PJamU8keSjkn6F5L+Ze3ErusekfRI/KyU8kmSrpH0Hz5A/f2A4xlt0gz4CUm3qZf+jM9Q3/+f48E0aQbzzpeUUr6llHKilPJ4KeU/lVJuxrnbNetZE1oJ515fSvnhUsp7SinnSin3l1J+spRyU+ybes30pmAeOIY2fnB27oXZ60+UUvbg+s8tpfzqzExxbynlG0sp21rPruv+WtJrJb1Y0idMjb2U8tzZ9R+a9efuUsr3z757q6SXSvqYMJa3zr4bmTRLKSullNfOrnNx9vra2cPcxyyyVp9dSvmdUsrJ2Tz8WSnlCzjeWXv/upTytaWUeyRdlPSRsz58VXL8a2brt5DZppTyxaWUPy+lrJVSHi2l/Ggp5SCO+cpSyh/OTEyPl1LeXkr5VBzjOfjyUsp3lVKOS7og6dowrx9VSnlTKeWJUsrxUsoPlFJWkzZeET57YynlgVLKh5dS/utsjH9dSvnSZCyfOJvPtVLKe0spr+J99cFCKeVls7H8/VkfHpN07+y7D53Nw7FSyvlSyl2llH9bSrkGbWwyac7O60opX1hK+fbZ/j5VSvnFUsrRLfrzkKQjkl4Z9v0Pzb7bZNIspazOvv+G2f67v5RytpTyS6WUg6WUo6WUn5+t472llH+eXO8Fs/4/OluP/497poJPUy/w/qE/6LruMfVa3z/YxvnEF0g6L+ln0L+vLqW8azb/7yul/HEp5X+/gvY/4Hi2aHj3Svo99WbN/zr77PMl/YKkMwu086/UazZfpF7N/25J/1HSx2/j3KXS+81s0vw2Seck/adwzEFJa7PrnJR0o3pJ6g9KKR/add2aelPO9eolL/sALkjS7AH7tlk7r5X0jlk//4Gk3T5uhl+Q9GOSvlfS35f0zeolyx/bzkSo3/TfJ+ljJP12dkAp5bmS/ng2zm9Ur9HeKumTZ4d8ufr5W5b0JbPPpkyi/0HSZ6mfu9+X9NGSvk7S8yR9Do7dzlo9T9LPSvoOSRvqzbVvKKXs7bruh7QZr5B0t3pT1NnZ/78o6YsVzN+l1/5eKemnFzHblFK+Q/1a/4Ck/1vSTerX8G+WUj666zqb6W6X9Ab1UvYu9Wv3K6WUT+m67tfR7NepN6N/sfo5jr6hn5D0U5L+oXrT5WsknZL0TVt09RpJP6l+7b9F0hdKen0p5d1d1/2X2Vg+TL1J+o8lfbb6vfcNkg6on+enCz+k/n77x5L8436T+rX8aUmPS3qB+nn7n7S9+/qbJP2u+v1xk6R/I+mNkv7exDkvl/Sb6vfwt88+mzIPSr3J9s/U3yc3q79v3yjpBvUWrB9Ufw98Tynlz7uu+x1JKqU8T9Ifqb+3/5mkxyR9nqRfLqW8vOu635i45oskvTP5/C8kfWYpZXfXdRe36Ldm/bhavZLxC13XPRE+f6X6+/k1kv5Q0j5JL1H/DHvmoeu6Z+yf+k3Yqd/EX6T+hl6VdFTSZUmfpH5Td5I+MZz3RknHwvvbZ8e8Fe1/9ezzG8NnxyS9Mbx3+/x7XNLLt+j/sqRbZsd/Bvr3QHL8t6j3X3z4RJuvmbX3hfj8TklvScb8qko7e2bfv35i7D+uXqC4caI/b5X0+xNrd/vs/d+cvX8Njvv62ecvXnSt8P2S+h+QH1HvY4jfdZKOS9qLz722Hxs++7TZZx+11XphrtclfSM+/5hZW5++RZ/fIumXkrX7U/Wm12xevxmf/4qk9yRtvALj6CT9XeyDxyT9v+Gzn1QvsO0Lnx1V/4N7rDYP789f2Ne7ku9eNvvup7bRzi71/vFO0gvD52+W9K7w/kNnx/xGZT8e3OI6D0l6Q/L5d0haC+9XZ+3dKWkpfP6Ds8+/Ony2W/0zLt6Tb5rt3QO4zu9JevsWfbxP4X4On3/l7NrXL7A+Xzg755Px+Rskve0DsSc+EH/PFpOm1KvRe9RLxJ+rfsOlmskEfg3v75y93rqNc79CvVb2keolvF9X7wN7aTyolPJlM7PWGfU/yvfNvvqQbVzjkyX9Sbc9X9qv4v07tb1xGGX2OuUT+mRJv9J13fEF2q3h42av/xGf+/1L8fmWa1VKuaOU8lOllAclXZr9vUr5XP9613Xn4wdd171VPSniS8LHXyLpHd1mv+dW+CT1P15vKqXs8p96yfxJDWNXKeV/LaX8SinlYfX749Ls/KzPv9jNnioJuP53anvrf66baXLS3Nf3Hpz7UZJ+reu6c+G4E+o17kmUUpbjHJRtmtm3iV9Irrc6Mxe+e2ZKvKRe+5K2d89l8ygtdi9tB2/pui5qxzavzjW0rte27lEvJBsvU6/VnsXeeot6s/yqPjj4AkkPSvotfP4nkv52KeV7SymfUHpuxTMWz5ofvK7rnlRvgvon6s2Zb8IG2g7eh/c2EW5n07yn67r/Nvv7z+rNKndL+i4fUEr5p+olt99Sb2r6W+ofHtu9xiFJ26W/Z2NZZPP7pppiUS7Sn61gEwev9xC+NybXqpRylfoH20skfa2kj1UvjPx79YIRURvn69Wbdw6VUm5T/4ChOXQrHJ69vlfDD6//rlY/jyql3KJeSDso6Z+qN+l+pHrhKVu7qbXJ5icbN5GZabl3jgqEhRm2MttJ/fji+L9xG+dsF9l8fLd6reyNkj5F/T332bPvtnM/vD/PhEXAeb848bn3+LL6vfLFGu+rb1X//J7yM5+qfH9QvWn69HY6PrsvPk7STyTP3B9Rb2r9WPXPvfeVUn6mwN/+TMGzxYdn/Lh6iWxJ/Q/O04au67pSyl+p1ziNz5b0213X/Qt/MPODbRePqvcjfDBgp/fvTxzzVPbHD5YbtJkqfwO+3y7+jnoi08d2XTcfQ6nHJ9Y0pR9X74d5hfqHwzn1ZqRF8Njs9ZOV/6D4+5ep94N9Vtd1c0GilLKv0u7TVbvrhIYf8Ygj2zj3S7Q5TOipsA4Y2Xz8I0k/0nWdfWkqpTznKbzm04au69ZLKafVP/O+t3LYoxNN/IV6AYD4MEnv7bbpv1OvYBQl7MzZD+DrJL2ulHJI/R7/bvX3EK02TzuebT94v6mZc7rrur94OjsyM9W8SJup9/s0Jm18YXL6BUmZ6v8WSV9f+ti+P39KOpqglHKHeqn4z9T74Gp4i6R/WEo5OjNpZbigcRxkht+bvX62pH8dPv/c2etUPzL4R+KSP5iRfhZin3Vd90Qp5U3qH9RXqfcTLRqL+JvqJeZbu677zYnjsj7/DfW+vmdSYPvbJb28lLLPZs0Zc/FjtEVcZdd17/4g9E+SVEop6u+jS/gqu+eeatTu4acav67einFnt0AYxgy/LOkfl1L+dtd1fyTN75GXS/rhBdr5fEl/3HXdZOB+1zNA31RK+Rj1gsgzDs+qH7yuZ7o9XZrdC2d+OalnWX6+ekkpxrL8uqSvKaW8Wj3D7RPUx8IQfynpYCnlyyT9N/VO7jvVS3Gfoz6g/bXq/QnPUf8Q/9KZWXdRPK+U8lHqCTTXq5e6XqleMvysCR+R1DPYXi7pbaWUb1NvsrtJ0su6rvu8MJYvL6X8I/Wa25PZQ6/runeWUn5K0mtmWtjb1Gtp36D+R+ZOnrMF3qZeuHhdKeWb1AcVf/1sXAcWbOsHNfjxaubMvaWUbC3f23Xdfy+lfKekf1dK+RD1rL819WbjT1JPbvgv6k0+lyX9eCnlu9WbDr9ZvZ/3meReeK36ffsbpZR/o95U+g3qTZpPJ0tzE2ZWlrdIelXpQw6OqX/Q/i8fhMv/paS/W0p5uXrz7yNd1923xTlXgler9wW/tZTyg+r3ynXqQ4pu7LpuFFIS8DPqyV5vLqV8jXp/8tep35vf7YNKH/J0VtIPd133FbGBUspHqycNbvo8fP9G9UL/22evH6peqJ1ijz5teFb94D3N+IHw/ylJ75b0OV3X/VT4/FskXSvpn6u3w/+uenrz3WjrDep9e982O/5e9WzGx2fS0WvV+6UOqX/I/I4Gm/+i+Fezv0uzfv+Fer/Kj271A9p13bHZj+Vr1Zv9rlLvuP6lcNh3qicHvGH2/e+qTgd/hfq5+CL1P07HZ+d/86KD6rruZCnlM9TfuD87a+v71fsntqLms613lFLeI+mJruv+tHLYQSH+aIbXSfrKrutePTNxf8Xsr1NPJf9t9eEc6rruL0opn6t+n/yyegHha9WbgT5+kT5/INF13V/O4rz+H/UWlQfVr9PL1LM/n0n4Ukn/Tn3/NtQTPD5f0h98gK/7L9ULRz+rXtP74VlfnlJ0XXd3KeUj1LNYv1O9APyoemF4MgRpZhL9FPX3yA+rZ4H+gaSP77ruoXBoUS8QLyfNfIH6Z8+bK5f5ffXz/Qr1lp7jkn5UV3BPfzBQpgX8hob/8THTyv5K0v/Rdd2PPt39eSZiRhJ6r6Rf7brulU93fxoargTtB69hx2LGJHuBemn0BZJewNCFnYpSyr9VbzY+rj6BwldJ+nBJH9l13Tuezr41NFwpmkmzYSfjVerNu+9Rb55uP3YDVtWb0I6oN2n9sfrkDu3HruFZi6bhNTQ0NDTsCDyTmGENDQ0NDQ0fMLQfvIaGhoaGHYH2g9fQ0NDQsCOwEGlldXW1279/v7Nka/fu3ZKkpaXhd3PXrrzJPilCjqnvtvrefeExi/gmeWytzfjZVu3H73nsVuPN2tnY2Jjs69T1tvo861NtDrK+Ly8vz1/f97736cyZM6ODDhw40B05ckTr632VnAsX+qQRHlfWP+8rt8/Pp8axyBzXrn8lx2TrUZtDHju1t/jdUzm+Re6V7Loch9fUa3358uXRdfycWFnpSyFO7Z2rr766O3To0Hzd3Z5fJenSpUubrsk+Ta3LlfAYtjp3O+t0JWtYg+cmtsn2p+4bYqu+ZeOujTne41udy/dZm34e+LPl5WU98cQTOn/+/JYTutAP3t69e/XSl750PnG33tonFL/uuiE/6TXXXLOpM/5R9KA5eEnat2/faFDxvQfozRx/VL3RPTE+1u99U8S2eePwWF9n6uFee2i5bfcr/u924w9EfI0bkjfuxYt93PnaWl8SjQ8Vv2bj4Pj4YOK1+V38Pv74eB3c3tGjR/W935un/Dt8+LC+7/u+T8eP96kV77uvT0rx5JND7Lv3inHVVVdJkg4c6BOn+OHo13gO+1e7YeON5XM8Vr6Pc2pQ8OAx/j6uP+eWe4RzHeeYffJ1PQfbedDxOtz/cQw8Zjs/tD7n3Lm+uML58z3Z9fTpPjfxY4/1qUS9dyVp//79kqRbbulzmB85ckTf9V3zPOybcPDgQb361a+ePyfOnOkTHnkPSdKJEyc2XcPH+L7JBEbvXx/jMfOHmnMd58GvfA5lgldtb/q9rxPXg/eY4b65T74P4rPR1+N942N8nXjfcX/VnoXZj5bngGOncJvtN6+B++Y95M/jPXHttdduGvvVV1+tn/u5UR3wFM2k2dDQ0NCwI7CQhtd1nS5fvjz/FbaUEaWKmhRpZBLpvDOQZihdZuZSSsCUIjJJi8fWXjOJLpP6pbFmOWX6cRtuP9MW3Af2n+Pds6evCBOl5ymJMZ6bjYXaB9cr09CNJ598sjo/XddpbW1NZ8+elSQ98USfn9nSnzTWeGsmmbgPKOFSSzSyfnP++d7Xj3uYGjWlWmrx8XyupdeH14+gOZfH+vupe4MWBs6rpems/7wno+a6XXBepWG/ej9sdb73eUTsi9eXWquP8XjiPnAfuGdptWFbETWLT4aaxYr3WFxzWmOidSOCzwVpWLta37L9xj1iDYt7NWuT+5yaZLZHPVZfhxqmnw/xOj7WiG62rdA0vIaGhoaGHYEr0vDon8s0E//a793bV9CgNBF/7SmVU4pxW9R62DdprGlN2Zop9df8F9mxW2l8mXZIiZF9jedQM+YcUPLL5sTzWvNRZNJgbZz+PK5b5ouo+c42Nja0trY29+tYq4jrQ22J8L5YXR1qc/p/7zNKojVNOTuWmkjmd7bE6b5aS6gRNiKopRvbkYC5J/1qzSfTbDmemg83ak/eK/6MbdhPF8dXswZMEYh8Hftwz58/X7UelFK0Z8+e0bxF6wDvLfpSM23GezDTQGNbvBdj+0aNZ5D51Pi+tv8ianNK61fmo+bzxuPJtF5aA0gQonUvziv9bZyjzPpBbY1aoscT15rPgUXIP03Da2hoaGjYEWg/eA0NDQ0NOwILJ4/uum7kXI1qbc0BT1XcJihpbHqjCYFtRnMK+1ILF4iqPlV7oxauwP+zNmpmy/g/++LxksTA87P3NPtmpkbSkumIjmOiA93tTcU+cc7X19erzmObNCO5Jp4b+0AThfviPeNwBamnJEsDzT3bk7XPbRKhqcVmHVLNpcEMZtq7kVH8a6Bpy+A6xc/4ne8ZU/Xj/VQLg6jRxCMZgyYmw+PyfEeiSzRLSoPZs0awidfxPJ4/f766d5aWlrRv377R/RL3Yi0Uh+a1aGarhUp5v9VMgPEzmvpI7oljovmdZs/s2Uk3S22OMqKX90j2PIvI5oTPAz6bOc/ZmD1ezon3UASfm1Pm8IzIt12zZtPwGhoaGhp2BBbW8Eop1cwK8bNaEK+lm0zas4RoCZRSLWmu8Rhf1+1burG0mVHZGXhK6SKT1ulopqQzFXjsc00IIBElzglJIh4PacHZnPjaDOak1DvljCct3a9RQ/N1vAZra2tV4sHGxobOnTs3SQyi5uO1dDIDB5z6VRqkRWs6btfSJckXWQKCmuPc+zDObS2RgufF52SkpRqpg/suI3R5fL4exx21XtLR+Z7jimtaIyuQmh+vxzkgkYfzEOcikn9qe8caHsMIMgsM97jnh2sqjTUQUuKnsgzVwq5I6ohzW6P417JTxWO20mA8J5GAxEBz3nu1cUrjfVwLocr2KvcXxzkV2mTwXomkLM+jrTqLZJBpGl5DQ0NDw47AFRWArdHqpTpdm1pO9AEw+JSaFX/Bs3x41EgsvWX+A/bB760NUqqJ7VKKqQXLT6X4MWr5MaUhnRY1Yl+3lj4qjotSrftOSnv838fSb0ENOh6zHft5KUVLS0sjbSNbF0tuhw4dktSnloqv1vikQYKnJuf1p28v81eQUs5xZdoa19T7PTunlm6qFoA+lb6LYQj0B8VjPAdcd/fVeyaGeVCTq2muUbPxHPs+pl/x8ccfl7RZk6ZFJGr/hDW8U6dObepblibMfWE4jccR9y+DnnlfTHEVqG3WwoWmLCIE/eacg3g9WkMyHoDHwaB1v2ZhZfRf03drZPc+E13UwjrifmOYD/cftVRprCkvgqbhNTQ0NDTsCFyRhkcJK2oX1pL862vpwlK5pYp4Dm299DUweD3+2ltaqLHz/H2ULi2B0nficy2RZtcxaP+upe+KY6b053FZAoqaizU8S1Zuw4HbtG3H61kS9jg9HkrpmTRo34zZc2Shxetk2uyUtldKGSXijX2gZuf58OfU4iKYYszvGVwc+5/5sKSBdWiNJa4tEyR7H3ue/H2WAJr7jRKq90fsDzUq70OeG/tIHwrvyRobOp5DvzYtJZn/jBoStessPZSPuXjxYpVF6IQG9HVFCwV9SmzLx8Z14bp7bms+tYzVzPWfqhDBhMicNz7LYns1FiP3fZwT3/+0evlzPpekYe/4/q8lk6aFK86F26X1w3MS+8jvuDczLc7nT/kga2gaXkNDQ0PDjsBCGp5t6f71t7QcmU+Gf3XNqLPm4M+dPFgafuWZHsntM04vShWMh6oxPDPp0t9RSuMYIpiWLGOMsY/+zuOw1uZX9yf6Fxhr5HHx1X6tKAn5M/p9rOlR8o/j8npZGrRGWfMdxOtsxTZbX1+f95ssuthPpgmLNdNiX+IYuBeZkijbq7U0TUxwHa0Dbifu3+x6GfuU2tJWyculMcPSoLYez/H1qO361XPmeydK3NRU6Bv3WsR182f0A3t/W1OPvnr3IdMyCe8d+tSi1aWWgo1xmlncp/c+tUD65+Le9/rTd5exQQ0/A31uLZnzdpI6u69eF69HXBffRzzWyBiQnEc+K7lHszJofqWVyusfr+c+sn36feNc0fe43cTRUtPwGhoaGhp2CBbS8JaXl3X11VfPJbpMOqOEYCmMMTpRMrBWwfIw805W4kikQQPxr7ylVmqUGZPUfaPUwvi4eM0aM5GSXTyXkqOPscTj14x9Sh8h/TOWFqNkR1+hpSUmbI4St+fN7VsitnROm35sP8bZTNnTu66bS/ae+xjPlWkr0rBeXusIFxetxUPSNxC1Ws8ZY/bop4twu/SlTmXa8RipKVAbpb8k9rsW92kJOc4Zx+xzmAnFxXgzUNumvynGQlKToAZGn1EcY8bWJZy03s8OPw8ic5AWF8+5+5kxYOnb9Dn0h7ntuB/of/d1fa8ZUavivev7j/ssYwUzCXYtyXs81+eQwepxZhaT2rO2VtIsFnCmpkXLj/dDtI64Pc+1rVN8vsU5qnEitoOm4TU0NDQ07Ai0H7yGhoaGhh2BhU2a11133VxtN/09I0zY3GC1mhWuo+rtdhjc7WNIaolmCbbHgO0sUNamBJpk6UCNZAX2iaYkj8GIpjqaW+mwr9Xni9/5XFKpvRaed2lsliBFOjO7Gl4nj+eGG26QNJgjohmUoQVTSVxJKydFXho75hmK4fOjecPj9zyRFMMUVtGkaRNPJAtJ0/UXSRqiOTJL8utxMbQlM9HHz2O/mQbP+8AmpYxa7rH6HH/u+Xzf+94nafN8+himLGNQ9IkTJ+bnMJ2f70GaGbOE6m730qVLVfJB13W6ePHiKIFCvMf4LLIpngSoaDq9/vrrN12HdHreR48++uj8WJI6mJ4uC08xarX0fE4kvHgcHqvnzabaI0eOSBqHgkjD3iDRyG16H2TEE5oLmbLN8xr3NJO8+3ruU/as9N5zX33Oddddt6k/8R7ZToL2GpqG19DQ0NCwI7BwWEKkMGfJTy15WFqyY9wSaSbVsnqupZntBBjSqe5ja9K7NEi2DHKkBBklMUtfkRwijQN1jSil1dJOMTg6K2Hk9knR9xxNlV7h9afK3tTCLEwKsTQcpUGGjezdu3dSw9u9e/d8rO5T3AeUmkkb9xpE8grTw1EDtwRKYko8xnNa06IjuI+ZqDurIl5LUcW5zhIQkKTA62QWDKZr4v72GFh1XBo0fM+N33uNreHHfXD48OFN7dkq4FevUdQkGdp05syZSfLB0tLSiGwV7zFrlb7v/UpiWlZajNo5U/P5+RY1EwZMc32mygPVqsnbKhafWW6Xz1VrQLbsMMVe/IykFbfPkJ44Pyzx5L3rveJxxuehz3UfmXg+s5hQ+yMpym35mS2N534q8TjRNLyGhoaGhh2BhTS8Xbt26fDhw3MJ27/ykaLMxMy1ZKSZHZYJnxkwycTGsV2GFrAgYtRCSSlmsHoWaGqpguOzpMoA7cwfwQKQ9GNE2ralPc8tJXr6BuL1mNjW762tWUqL/ixSphnsz/RH8VhjZWWlquFdvnxZjz32WOrDNVhaxT4Tz7G1jdhvw3vF80aJfiphNkMwaHGI2szJkycljbUjavFRImWCgVqChakyJ7XCoh5DXAsmtmYYkaVyz2fmh6Efldp2nBOGBt13332b2qJ/NX7mtbWWmGF9fV2PPfbYvL9ZQoAXvvCFm8bOclbUxOMYfazn0udYk/T9GjVh/08tkD62eJ96Lp/znOdsOtZ7xeOKfnJ/53vBmh0TN3gPRz5FLZG123LbMZSiFl7jcbpv2V6lP9tzzqD/GJZA6433ou+ZG2+8cdMY4rHxfmoFYBsaGhoaGgIW0vBWVlZ05MgR3XnnnZLGgaU+Rhp+xTNbtrSZTcQks0yIammJ/h9pkBp9PSYdnWJJPfDAA5s+t+SVJcX2NVlCyFqT7fv0KcZxsKCp28i0HvfbfbBm4TkgIy7C12YKIzLuYuAx14sB6PQLxmOpsUzh6NGjkob5ygpksiCwj7V0GaUQg6NsAAAgAElEQVRYz6V9jH5PRiR9ntI4fRt9rB57pq1bKvY6WVr2nEQpne2SBThV6okWDAZFs6+xPe9VSuksMRQlfDJ5DZ/j+Y3+LGrTvu4jjzwiaZx8Qhrf61dffXU1+PzSpUs6efLkSFMxQzGClglrYplFiRYFvpLNnRUC5j1VSyId/2eg/sMPPzwfp5T7q3yveq3IQqVfLh7rvnqP+L6iby+Oh88ms3JZPDpLsEGfndcgSyLusdL3zZJG8TeG195OejqjaXgNDQ0NDTsCC5cHKqXM7ass2BlB34mlPL/PJFK/PvTQQ5IGCdFsr6lSEdZ0GGMU7e7GzTffLGmQhvzeGp4loBh3Y+nLGp3fW9KlND1VMocxVZZUolZAbYbJai3huS33PcJz7rlgoV1rW3E8PpYxSX4fpXTGT+7atasaI+O0dGR5Zb5Hw+vAfkefsaV8+kVqzLfow2Ocp6VZsndjCivPqeefcULZ+lMDYjLlWjFPadhX7jdZc1lhW6Zio4+aqaXifLpPPtdr4PYzNqDvCZaMyXxthvsQWbRTfpj19fVRiqoYh1crIMp4uKj5e094jJ4fMj6z4rFMtu419bG+N2yZif/Td+j58XzFZxYLr5JB7vViHFt2HZ/jeWMcsDSwPn2uj33+858vadgXXvP4HOfzmSxhsmHj+dZGPV6Pw3Nj36U0rKF/JzY2NpoPr6GhoaGhIWLhOLzV1dWR3Tj+utbYkvTlRU3Ax9pO7GMtVfhYS/MxDstSJRP0UgLKysJY0rjpppskDVpC5iuiT4ixYlPlghirxzIZPjZKZ/7ffbAUal+Vz7H9P/bP51hbs4RF6TCypXy9LCYwHpsxuizlnj59ejILgsu8xD5Grc7zQh+U4evEDBn+zP2yr8OsP88L50saGGBM5m0pMys47L3pYyxZ17R4aex/I6OOzMeoSZBpyf1GdmBsh/sqSslSHpvocbz3ve/ddF1/bqtHxnpm9hmudYwvZMzj2traZJmXpaWlURmtLOuPx0T2JLOMSMP94bFZs/Mzy/Pl51IsRUZfN5nW7ke0otBf5T3rcVhrivGKbofsT7JAMyas553Pa8aQxuecP/O+9rPWz1731eON4/PYb731VknDXrnrrrskDfdzXAMmx/Y6eXzMnCQN2vO9994rqS8YPZV8PKJpeA0NDQ0NOwILaXjr6+t64okn5r/y9Hn5GGlcKp7+hPiLbOnMEhWLGZpNaWkiSvjHjh2TNEgKLHJKG7s0SOduj/E2mR+GMS0sMGlkxVDpw6Dfx+OM+TDJYrTEbSnKx/o1+hs9x+95z3skDbbuF73oRZLGuQ7jmBnX5XHTRykNWnVkmU5lWllZWZmP1RJ49FcwA43n0P31/ogakK/t2C/7fb03yejKiqtGX5A07BXuYWnMLnTffL2s/JXbjzlH4yt9l/E9WWueL85R9ItYG6e/nDGk9DtKY7+O9677bq34wQcfnJ+TxcfGNlhgVRqeB57b9fX1qoZ36dIlPfzww6M41rh36HN2W94zfg7EufUxXm/GnHqe7r///k3vpeG+Z7wx79s4t+Yi0O9mzc57N/PlkxVKBnEWF8f1Zq7LrNSZn7V/+qd/uqnPvv/dH2t899xzz/xczzXn0c8o7jtp7HtnHuMs6xGzwJw6dWrbTM2m4TU0NDQ07Ai0H7yGhoaGhh2BhUyaGxsbunDhwtw0YRU1OkpZLdqmDztsbQKKpkCb2mies4pv09ztt98uabOTlSWDrMbbXGlzXgyUtZru69pkYfMowy6kcSCpx+dx0VwVTZruI5O1sqxKJK3YNGszgU1JnhP3x+dEggdNJCwPYzNSJKC4/zRp0pQWg8yjSUEam3eJ5eXluSnG/Y3n+Np+ZQLZzATHUkcMkWFS2UOHDo2+Y4IDXidLduu59X62md17N/bR88RxuC2SPbKEB0zTxD5Gc5uPNXGHJk2vJccS++A9UkvvF9eN+9rXpzkqS1Dg/TtVHsipxW677bZN18vCBAyvB4koESZXePw2z9nESQJKRmLzveV77u6775Y0DiORhjUz2cJzyfs1XsfPF9//nlObNmtJLOK1beL2eLnPIgnw3e9+t6TBRcBQDV/HIRZxXt1H99nHMDlGNNn6OW0Tqc/1nESTN8+PRDomSqihaXgNDQ0NDTsCC2l4pRQtLS2NCnNmv77WhCyJWBpzkLe1LGmQxtwOCQcf8REfIWmQmqImZInAUgsLv1pyiFKTqeksn+HrewzxOllC6XhdklmixGHNwX11nyyB0yEc58TtvvjFL5Y0SF4ZOcLw+nzIh3zIprnw/Pk6UfpkyjSPw/Pm8cQAd2qz11xzzSQ9uOu6UbjIlCZk1JIgxz44hIUlVyhdRuKEr8NwDSZUiKQjj9X7mCWyWD5KGrQBWzB8vahtSsOaRpIMg+4ZmOvxRG3HY6Z25jVmOETss69NAhmLF0fNmZoqNTzPUUyZFfeM1M95jfC0vLysQ4cOza/j504kP7g/nmtqtyRSSMNzwJqIx8ZAbc9XXAtbNbyWJKBkiQ6Y2MDzZKuArx/JawY1Oh/j+5EpFuP4fI9RK8uSsXusfkZxLRksH+8vX8/z5nXy575utA4wZMZWJ5Nn3MesnJz7/cQTT7TyQA0NDQ0NDRELpxaLRWD9Kx+DnhlIGDU5aZzWSBokAGpptjmz5EfUCpjUlpqWX2PQLf0fLAdDOm9sh6m2DEsilryi1GTJkMHrpI1nEiuTBVuT4TzH61k7pL+RxUszzZxplFg6JWoD9CtdddVV1RI3LgDLQr1Z+RRfu6bFxvcs+1NLzOx+Z5KgpWNSopnWK16bAc4cQ/ycWhn3s33TlIRjfy0tc7xuO+sjUzsxvR/3mDRed/rlqKVEMB0U1yLuN4YvTYUl7N27Vx/2YR823w+ep9gHWms4B0w5KA3+fd+79Ifyvon3mI+lH54JyTP4XGt27hvXRxoXbfV7rr/HkBWeZukd3v8xLMfn+znmY6zh876N96KP8XX8TGFB3dhHluCiRmnNOe4NJgY/c+bMZMKLiKbhNTQ0NDTsCCyk4XVdp8uXL8+lCwbhSmMpwjZmv6fPS9pcql0aJAL/glOKiv4KS3RMicUku1E6c58sFdU0oChpsXQIS9YwVVLGJHW7lnBYUihKhUwLxbmmBhP7yqBXFouk1hjPYfkPJjiOUjXXdCo11Pr6uk6fPj1vL9P0mdzWYKB+9AEwTRzZWtSAI3uWJXbYj6z8CDVhXi9Lss0Ez0wtZXYbU3/F/pMl6c+Z3Dl+R18R19Ztxb7yOxYR9vdxHzCQnkU8s6TvtK7s27dvsgDu0tLSXLOzHzvuEzIr6a8ktyCC9xjnKdvXZNzW/MFR8/B6+743O9zHer7inqIlyX3xeHh/xuccixP7OzKZo9WGCbqtfdbY2vEZwrJenhvOY1bMlXPB4PyoSbodz+fFixcnnz0RTcNraGhoaNgRWJilubKyMpeqLVVFqYmxVNReGHMUjzVqdl0jnltjTTJ5bFY01loZ009ZqsgYVpRMKcll5Sws8bg9X5fJoyM7z3PM1EJMD+TxRw0vluuJ7bMkT5Zolj4u+mXi3PvYmLqoxrTb2NjQ+fPnR1pOFs/FsjW0z0dNgHuF0jmL1EYNj9K++8TyQHFOqFFSm5oqD+S5cxssmOo+ZnF4TPXG+KSM7VrT0jjOuA9obaFGmWlIZLdaO6C/KUtwHcde2zvr6+ub0kf5uHhP11Lh8fuobZL9S1Yr03Zlzyx/5nsgah0cs3121vA8HjMiWdoo9o37zWPPGKuGj/EzxJpxjQcgDWvnvUgfIdmu2ZrVUjRm8Zn0eXsePS6vYxZfmD2nt0LT8BoaGhoadgQW9uGtra2N2HlZBgVLCvRfUAOL3xn0PVGKiO8pTVDSY5FVaZwhxhICtc94HfomLVExqXLm46AEQgmbvoPYB/o16bN0H6P0SUmqNveZ1MSsEvaTMGlxNuatijB2XTdvPytNQq2VGkOmzRj0nZBxyz5PgezZzJdLBqnnx99HPzOTHpMB6T5lWqjXiL4T+oPj/qa/lwmVmcA9rgEZq9RoyVaO/Xd7ZFvbSpBlw3C7U3FUly9f3pQpiRwCaVgHayI1Zm/st/vF9SETNmOZkslrjZuad2R6eww+12xq+t+i1YOZqXw/UsNkn6Uxw9djt7+MfjppsKq4HR/jmFEyfONznMzNLEY4nhtBjgT3d9QK+dzcrv9OahpeQ0NDQ8MOQfvBa2hoaGjYEViYtLJ79+6R2hlNMHT4MqlzVpeMwcixPWlMhIlmCRIASBO2+puRCGhOsdqc0dXpgKVZyG0wfVd2bmYC5uc2JdBZnREp4jXiMaQF01wVx+d++ztWw87q/9lBXyO8RJi0wsTcmdmYYybtPTNh0ITJMU71rWZCZRolaWxirIU9RHMbP6N5kKbNqcTj3lc0OWehQTR/8npTFd05J1zjuAYMkeE4MkIFr73V3okklCy4m+mmPA6m+ot9sbnRe9LrTDIZzWuxfQbkM0wkEtF8DIPk/dzJkiPQ7JolbIjjjM8QmpI9HpNXnBQkziNDwXz/u11eNz6L+R0JT9kaMP1cVrld2vw8dX9t7j1z5kxLLdbQ0NDQ0BCxsIa3a9euEX02psyiVESiAR3o8TOW4yAy6ZIB5gYDc2PFczpXLYVRk8iCHX0uJRBLHUwxFNu3NE5NLyNYMOEzySrsV7xejeRDKShKWtRULfW675nmQmLD5cuXtyzxQmJAnEePlQ5szkWUKmuUf2ooWZIEai/UOvwaE/Ja0rQmwRI4bCu2UwtLoMaV0dK9f50aiwnA4z3j6/G+YqLrjFzg9aB0zv0fLQrUorleJDdFRFp6be/4uWPSB0N24phIJiKhJtPwvMeZ8m0qWUatXBiTJ8T9EYlM0qBNWRNjonZpXMmdoSu1KvOxXRNOTE7xOU50HeE5NWHL+4rP5Oy5y31AAiG17gi34+uTjBWfe7QcTIW0EE3Da2hoaGjYEVg4LGF9fX2SHk6/C9NOMa1NPLbmY2AC2/hrTn+Bv7NUTmlXGmz1DOql5BthaZWSFVMuGfF69POwhIzbzqjltX7QFxrPpc/EbdXK4Eh1idV9tpSYpZSKftKpwPOLFy/O/X6mP8d5o2Tt70g/zpLr1vYONb7M58Bzmd4o+mHoI2JIQeYXo0+Y2vTU/eQ5YPJu98NSepaEm+1xfrP0V5w3+oGnQA3NbWQJgI0s7RixtLSk1dXVUeHaqD0xdIWhP1ngufvHVFhcLz5/pGH+PSa3b8tIdj3D+4rU/ynNp2YVoF8sW0smcPA9mKVOY5pFap/kH2ShVLwHjey5wwQBHo/3KrXveB2v7bXXXjtPBL4VmobX0NDQ0LAjsJCGZ7aUf/WZCFgaSzy19DzRJsxgbUqmfB9/7Sn9M+loLFhqME1WjekZpXSmM2LxRI4hBoCycKn7xiDsLAF0VlA09jFL3EzJjb42asPSOMAzK9YobfabkBEb084Ry8vLOnDgwNwPk6WbYho1rlPG0qQ/lD40vo9SJyVS+jjt84hjZtqxWpKE6K9hcmIyHukrin3k3vQ43aZ9etEfw+TN9E0Z2ZyQqer3NUtGbJcJvFkeJoIWk6nCwcvLy7rmmmvmx2blthhYztRyWRqtmuWAmmimgXOvsEwTg6Pj+T6XiRaMyDdgEVo+C/2524r9YgrDyGqUxr7yrC/UwOjfnvLpG9SU4/zSV0hWeMbcp1/50KFDk/tnU1+2dVRDQ0NDQ8OzHFdUHsi/2EyYKo1jmCi1ZtoMY0gyBh/7QVjjslRuiSuzj1NqpeSb+Xtoj7aEbYmrVlxRGvstPS6n+Ln55pslbZbsyGxirBBLv2T+PyZm9Tiz1GIGYx7ph8kYhNbwp4p4Li0taffu3fO+UdOLY6aWyYKiUZqj5rGVNpNJ3PRbeazeU9FXxNRVZC16zuNaeq9Qk6iVeIp+EvrQ6NPznEQ/4/HjxyUN1g2yqbm/M5/4FGMynhs/o3VnqtyWQY2shl27dum5z32uJOnOO++UtPm+8v9en6wQb20stbRW3DOZZYHJ3Hm9uC6MoaRWQm0nXpPJnFnqayq9I+Oc3cbJkycl5Yn1nfze9zbnJEtAT5AhTSuMNMybX+N8SfnvhY89evTovA+tPFBDQ0NDQ0PAQhre0tKS9u7dO/cX+NfYhRmlwU7sopb089COHf+vZV2oFa6UxpqHswdQqo5+GP9fKx1jCSJeh34YFqWtlaiP7VpaYvyfy4Zk12PGA7IOswwI9DlQ62QbsY9kt02VhWHS3alYKrM06VvL2LO8Juc4Y2xl/qg4Hh4vjf063kssnJntHSbvrZWYiagxHvl5VjyYMYE1rS0bDzW5Gks0fkZNmT6beA4TJZPB6vdRm8/8yDV0Xafz58/P95nL2zz44IPzY6xR+9VWp9r9GfuXlWWKoJ+M/8dz+byJSa9ZNDWyDKXxM0satD7eL9wXtPxIw75yX91HP6NZ2koafMKMeXQf6VPLWKFkxtNqEPc//eQ1X3HUem258NycOHFiW0nhpabhNTQ0NDTsELQfvIaGhoaGHYGFSSuXLl2aByHbsRlNmjajOEEp6zjZZBKdrHTMMgUSE4xmCYfdJ6raWXVk99FghW2rzJGMYxWbyXppArRZJ0uPRrOEzS+ZiZHmAJsYMop37Ic0Dv6naZMB6HF8TMlGE1dmbvPYaeaJKKVoeXl5FMaRBeiT5k4TbUZ4oqmUDvPMfOc9YdMySSpMLhD7SGe79473e9zfDC2YqoMobd47/t/mbpucaPaNZikmLqYZkoSrOJ+1cJepdGQ2R9F0RXNoBM3Te/funax4fvbs2fl4sgBm36t+DviVieGn0oNxnWjyzFLasR4e62/GsZO4x6DuzOTH4HGuJan+MYzA+9kmVJsAbdJ0W95TsT0SeGx6ZBB7NFNzP9O9kaVoY4oyPjf9G5OZLO+9915J/Rw30kpDQ0NDQ0PAQhre+vq6Hn/88RFxwwQVaRyoWJMYowRcS32VVYCOx0dQUqCTPUoilv5YPdifW0rPtA9rhz6XUoupvlnwMAPNLeFZ4opSDEvluA2n0PE8Z8GyJClE6Z99IxhIzaS7mWYeNYWalO4EwB6X+x/3S63iPMNUIrmHZBGGtjD9WZZGidXKmbg2S+bLPlp69r6Ie5SpqeiQp/ZpKToe673icTJpddT8qWm5/7YSkP6eJWNneq0ahT9emwQhJkDISCG1UlkRJq14rT32qA14DR955BFJ9Ur3cX9yjLV1sQYbz2XqvVooQ5wTaysMmXDfTQaMySa8VkxV5uebx+A1jtY2P4vcFz+nqUVlYSkkbLlvHm+WMs2fMeE0n8VxH1AT5p7NyE3um19j4pOt0DS8hoaGhoYdgYVTi505c2aukVgyiemnmDLIoFSRSXbU5GoBmuxTvC79Pn4fg1TtO6OkS0khvreNnjR4amJMbBqPYVoqaqVRaqJURCoxNY0430zRRn9jRi1ngD6PydJeGZkPMoO1vDjWrLgqfQBTxW4ZnF4rjJmFVTCEhGERvk7UQr0nLOHz+vZ1xD4zKQH3gUGNWRr2nV9ZtidL12TQz0RtN7u/OB6DpWtiHzlvBn3vGfzsOHfuXLWIp5PW856I/ab1hNek1i6NfY+1cIoMtbI5fIbEPlrDc9+8ptaesmLVDA4/ePCgpMEa5eeAx+Lj43U8dluHPOeeCz9b4nVq4WREtH4w8TwTLGS+XLbDMIvMsuRjYqHjKatVRNPwGhoaGhp2BBZmaW5sbIwCgjN/FaU1Mu8yqbKWFop+qih50ZZtScTaZyY18Xpuz6ymjNnp//0dE7AyMD1KJJSALQF5PJbworTIxLJ+T63N50RtgQGlPieTzg0y1Qxqn1mAO+3vGVzixXPMNGKxHWovLIESweTQTLY7lXi6xrCljyVel/4+ln5iiRlpnOaOfaV0G1nE/s57xIw6MknjmjKhdjaO2Ha0LNQSqpPlGPcbmYnGlIaUBU7X9o/Z4dZE3JfICq6xspmge6oETy3lYFZizFYi+pjIgI2g9snyZH7vRBTSoBUypRzLEPk1apj0HZs5T9+tU3TF75gykck/ssBzpvfjuPi7Ef8nw7uWhi+2R6vedtA0vIaGhoaGHYGFU4vt2bNnLhmSoRaRJTXOvne7EZTCptJb0Rfovjkux5K3bd/SYO92e9bWbP+2VJP51KjBWuKm5pqxUN2e+2JJ3n3NEim7HZYjor8ri6Uig4vpsCIohZGdR42J8yP16zSVPPrqq68epYKL+8D9qxV+nQL9k2R/Zb48a3SMbYy+gdiGNKz3iRMnNvWNaaMypp1fLZ3T3+t+ZH4R7hX6+2If3RdL+1msXpyTeI+S2VuTnrMYTrJNuZdiWxlDciot3dmzZ3XbbbdJyveONQRqTdQqYr/j/SYNe8frxLR98Z729XjfZynzDD9fGLO3ndI2LClENrJfo4bHlG/uq/eQz7E/UBr2kTVY8g+m/OuMreUcZDHEGZs1Iou9Jk+D6ziFpuE1NDQ0NOwILMzSXFtbGyU5zVhzGQtPGrNwpHFcTS1ZdBaTQaYdywRZm8skVcbu+FyPL0pL9A1QKrOEQmlKkg4fPixpXIy2xiSLfWMcDv1yZFXFvhj0v2UlYOgnzYrg8hxqfVtpeKurq5tYebFPsQ/05XHtsiKu1CI4ZmpR0jjuz33zelmKjsVV6WextO7rsThyvCZZi/ThZT4vz5Pb8zjoh8k0PMZBuQ1aaOL9y/jFRbJl8DXLiGIwxm3Pnj2TPryomduXF+8Xalq1oqNxrPT78/nCtqKPnUmdGb+YsdWp2TGbUsZ29n6yVcjtWtNjzG3sI7M+WZOz9ua2YikrMlV5ffoS4/iYPYecDPoHpa2LMGfFdxk3OeX/JZqG19DQ0NCwI7BwppXTp0+PytxMFVmkHZcaijTOIcc4Nb6PtnRqPrUYt5gX032ydGltkIjSBpmW9H8wG0icE/pUfD0fE23ovB6LtpIRmTHwsqwS8dypUhosQkoJLF6H2Uuy/KFs2xJjFl9DjYDWgalyNjV2Yc0CEI/xulx//fWSpCNHjmzqY8ZMJZOPeRFj7B5j6ZiXlesVfRLUVKltZL4PagH081JrZ3akeA7vp4ztyO84HjKL47G2ZJRSttTwrGlbA4/cAbKlmYN0O2XJ+KxiKZ6sRA19UIxbi+zDW265RdKwz3wOSz5F64DHQ+YtY+wyPgWZxLfeeuum6zMeUBqXW+P9yudQ3AfuN/cqEbVClmbi88x7M3tmWYNtuTQbGhoaGhqA9oPX0NDQ0LAjsDBp5fz586Mg7KzKLk2KNSdy/J/mQKYFY4JgaZzyyKq2CQiZ6k213CZFH5OVuWHQKOm5PpfO5Xis+3T8+HFJ46rMGaWYIQUGSSbRhEriASnamWmQjnsGNGfmCZr1ppzH3DsZ2aIWbJoFOxvcVxyr5y8rD8MyTSQRkKYujcvO0HxIM1Lsg80zNClOpW+74YYbJA1mPO8dkpWyVGa1BA4kvMQ1qwWps69xLWom8qnyOpzrtbW1KjW9lKKVlZW5uY3lbaRxAgrPP6+T0ehJ0KIJ2PdldD0wwNxtMXwoXs/9fuELXyhpeG7aFGjyXDRpkhxTC9VhUoMImzDdFk2Z8dnCZztN2N7nGcGGIRLui/e/rx/JRmyHxK0sJMQuoWjG3U5oh9Q0vIaGhoaGHYKFU4tdvHhxHnRrqTMi/npL49RPWQBobF8ahzZQ0s8czyROsHwKCRCxL7VCo1HaoPZBSYoEiOjgjuVe4ncMXs+IAKTb14qhxvFSombi3JokLdUTvVI7jP+7r+fPn59se2NjYy6lkxQRP2OQOIk6WaA0x1YL44gg4YAFX0ngkcZJe+lczwpZeh14nVppo7hfLBX7XGuj1OyyeTRqWnemMddScU0lqWa4CzUmv4+WExKCppJH+7okOMQ1ddskoJAqn1lCuNcZ1O01iMkEmFjD+8wlmLyHsqT1bsd7yZaeLJSLc8e0gbSgxRADw+eypFGWdtHra02VRELOWdwPXO+M9BU/l8b7zXPAeyQr3Oxn7cGDB5uG19DQ0NDQELGwD+/ChQtzycC/sFGqYNAwpcjMp2bUSnvwFz2jslPzosQXQw8svbA8hrWPrHSR27MfznZ2v7rvbiuOzxIctTK3ZekkSylV88PQ15YlRaaPhhpNFsqQFUqN52TBvp6vM2fOTNKDSykj7TOT6pmcwOdsJ6SF2kZNgozt0i9CyTRK9v7f1g2voSV7nxv9Pd4jlrDdV7dhDY8FieNc+B4wHZ4p5yJq46FWWCsQHK9b07Kn1jnbXxzXlcDX9H0aNUamA2T4UFbslvPAsJCpwqUMU/Ias834LCGvgIWnGdQdx8hUbPa/uW+2CjjZdPzOGp2TR9eKrsb+8h6s+efi86mWzNnnsLRZHDN9ntQWIxgwf+DAgabhNTQ0NDQ0RCyk4bmAJ31cUUJkCR9qcplNtlYWhv4QS8BZORNK+kyUnGmFDCKupWSKx9JP4b5Yemf6IGlcFNTXsbZA7ST2n/7LWhmNjC1FTY/SWibZk2VbY3jGa0ZpdysNjyy6WDyYzENqGZkPktp4zQeZaWtcbyZ+ZhCzNGjw/s4SNSX8yLTznmApISaczqwebs973/PFlFKZ5l3zqfj6UwkjtvKfZvc8QW0gk9Zjguts/G5nz5498/vITOjotyabr+YLitegtYSpsNxflvWSxixqzym1xHg9ar703ZpNmRUcNnyu94GfB7YWxH3v+bIVwHuSyaMztqv3N0tm1fZWbK9WuDt79lNTJis9K2lmv2jUaqeKy0Y0Da+hoaGhYUdgYQ1vZWVlMl0PpUbGGFkqi1oaNUVqLf5FtzQzFcdB1pqlpSiFsmwKJRH6jqTN6XeycVkiydI0keFJ6Tmzh3vMlJJ9HfrAorRLzc7nsjxH5s+gxkRtMUpamcRWw8bGhs6cOTNapygB10qPUKvOSrxYC6uVbYKFVvwAACAASURBVPE5UVujFG6p1m2wTWlcsJLWBybslQbJ3fvKPigWAs6kVGpPZANHhizPoX+XZVtqidDjOTW/b7Z3uA9qSZiluv80w9LSkvbu3TvXTOy7iffaVtemNh37Q9+TX+mfj/eYn0Esfsu1jGvKMk20gtk/m81TVlonji9jp7uPPtf728eQvR377zlh8nqmX4v7nM8xt8FCtNEXSmY2n1n0ycZ2/dqSRzc0NDQ0NAALF4BdXV2dS1qWFOKvr6UI2vrpN4pSZU1CtBTNNqOU4XPI8mFMVSYhGDEJaexrvI4lDsfM8fpug5kR4rVZVJXvs9I7tcw1lHKi1suktJyTzHdDSZXaRsam9PpE6a/Gluq6ThsbGyNJLGOKcqxkd8Vr0P/GdqlFT0mkLPWSzRfjrSjFZoVTKRXb71eLrYzjo7bLuaFvJYK+G2rvU0l+qdFxDFnMKM9lNpoMkbk65QuMCYKzjDScQ7Iyszg1Mro9Jvrjsn3gZyALzPq6jJ+M7foYrwsTXdtPLI1L6zCJs+fvgQcekLTZt+r2vVd9DovIRvh5yTJUtT0U18BJ15mBiUnE4zrzmc9MKxkz232KGvNUDOem/m7rqIaGhoaGhmc52g9eQ0NDQ8OOwMKkld27d4/qyUWHqtVxVreliTFz5pLSS1NmVvPJNbKsJtuZb1XY14sqMUkyU2lsjJrJjCZH9y0z2ZL2nBEpjBrFl1Rq0pRjX2jmdRumK8c1IGGIFZWzoFjW5iqlVJMOux80jUW4fwxPYIq5zOlNYkstiDz2jyZlVhc3IjXc39Ex7/cZEYCmHK+3+8SwhdhHpoWqVRXPCC+85xgOQ1OaNA5VYQJokhpiH0jGYphRltYr1nObCkvYvXv3vL/ZPNF8xmTHWVgCv+N9wnstM83W0vXV0mrFY21qJNHKz7R4rPvoY7PwF2kzacXzbTcME18wOYc07I1HH310U7tMmehg+UjmY6o8ry2JNXGP+ZiaG8Nm+bhuvMcbaaWhoaGhoQFYmLSyd+/euWRgenVGia8lPTamSr0wsJ0ByPF6lhrsjPZ7SyhMSxWvw/eUxiLtmcl7mTqI1X4jSEZggm3SxuNYWTm5piVmyVXpACbRxesXx0GJldT2LCmyMSWle+8wmHcq+JnSXpY8mhIiUzGR5BOtA6RtUyMm4UoaJNsalZ2kifgZtQySZDIN1n3jPUGtNN4T/t/ECo+DKcxIsJDGVdm5Tu5rDOCnJG9w/8W1pna9e/fu6t7xcSS+TSWT4HMoSx6d7SdpHHxNLTu2x2cU1zQLbWJ4CvdolsLMwfa0evm5M0Ww8j5wu5HOL23e3w7m9nhssSN5xv2IJCAStrwPGaoVw3xIEPIr0/BFDc7t2qq1trbWNLyGhoaGhoaIhTS8lZUV3XTTTXMp4NixY5I2+ziYNol2cPrNsu8YbElJLEpA9PsxmNaSUZQyWBySGpalpqgVWpJxvy1dMDCT0ps0SHaWhC0BUZrKgnltf7dmYcnK43GbmVZACY4U6qxMB/2YpO5ntP6YTq4maa2srOjo0aMjbSdqpg8//PCmc2qJs+M5Hn/mT4yfc72kceC52/La8b0kPfTQQ5KG/eA+0j8SJV9/5z54PzBtFENDpGEvUrthcHRMIu3+0idFTYaJleN4mAaNVoOoudCvxLnIyvnUNLEMXddt0q4yzcRwO55b+nijFkpNgRo4tbbseUCLCIPZ7aeThnX3WtHCkBVI5fPM6+0+0e8c7z/76muWHvr/pGGe3BeGWTH5Q9zDLLJcK+Ac15rhNfx9yO75rDRb0/AaGhoaGhoCFmZpLi0tzVPgWLKLUvP9998vKU9MLI2TEktjKdlSC5lXmd/HUgqZTv6cCXNjOzWpgAGh0iDhWHpmORIGukYprRYwS1ZblJo9f7VEv0wTFbUhS5A1dpnHH8fHNGtMDG2JNivt4XU7e/ZsNQCUTDtrqlFKNzttStrnOUbNouDrZInHua+8j6mRRAnZUqylcqZkI1szXpN7kxYNJtCVhvWvJeSlb1ca70Wf67mIjF4i24txnEypFcdFbaom4Uvjue+6rno/Li0tad++fSM/T9S8mYidQdYcR+wf0/XR8hP9lQbvT1pvsoB9zw+TVzC4Ot7LZKjTZ0juQLw3aFFgwnP79uL1yP5mSjZah+Kznwk06BPPEp2TPU0tMEuO7/2dJezYCk3Da2hoaGjYEbiiODyDMUjSWDqiRJqxCllSiH4Elu84efLk/FxqcrTD8zW2R0adP7ffL0u9c/vtt0sa/G9ul5K/tWBpkIKoFRhMbRT7Rg2VMV2W4jIthPZxJhzOkjDTn2iJayplWtSEatLW8vKyDhw4MO8bk1LHflKrdZ9YqkQaWxKovWfpyAxq5z7X8+T33g/SOEUZ28gkbUvW3Heec1onsjglpuniXpryjxlkZzKZcRwztR/eZxH069RSjWV9jPt2KrXYysrKiEkcmalkgXveGHOY7TdqtfT/ZhoeWZL2l3kM1p6in8z3kNeBfSSDOf5vHz7L5zD2bWqOPV8uJZTFxTE2mMxexhlnafCsUTK+MUsYT5Y72yKjNJ5j7Nu3b0urkNE0vIaGhoaGHYErSh5NyTHaZDOmkc+Vch9BLUsBWUz+1X/kkUfmxzJLCplvvh4/l8aM0lrZDmlzQldps98q9tGSXfSbuY8eD30oWTJXS33uk9uPrC9pnCBaGvsRqEFmPkxKu8y8Qs2d/7uNWizV8vKyrr322rkkTFZrvDb7RF9hRFYyyNeTxtp7Vjy4lmXGn2fMTu8H+jq8bvE6bo/+a+9J+rqitGupnHuI/sA4d9Siec+xP1l8GZl2jIeKe9XnUxvN2HQGj5lK/usCsO63NYjog66VUaLWHuG1Ynwq/aJkZMZ2yTb2/W9kyaqpNTPeL2quzFZDZrHbt8UpgtYtr4/P8f6ODF9mYfKx9CEzg1a8Dn2SjGvNeADkOdjP6Ge0+yWNfcbXXntt0/AaGhoaGhoiFtLwNjY2tLa2NtJQokTCLCzMqZnFBFEKo3RpVpMlyZi/zRKBpSVf1xKJ+5oVOfSxljwoYUVpjWwo2r/JYosSCX2QZIFSAorXvu+++xRBaTrTmOm3YpwPteIIskGpsWexe36dsqXbD2NpNito6fU/fvy4pHGRVcaXxTFaEmRcpL/Pxso4NPtd/Z5lo6RhbukrzjQfg/lIDWq0U6xQ+l2ZCSXTkLjvPC6yQqN2RJYjmXaZVsi4T2M7DMksrjPD0tLSfB4t/U+xWVmuJ/Nx0V/N7C/0X0VNyGCMGzOTZNqa55a+O7IPY39rOWN5/8f5pI+9xiCN5/CeZsYTv6eGm80J933mo6SmnxXqjW3EuWgFYBsaGhoaGipoP3gNDQ0NDTsCC5k0pV7dZrLYaMqgOYgEFFJVpTGBwaYQ0tJttojXY/XwmvM6C5Stme+Yaii2SxXfc5AlVzY4rhtuuGFT++5PNKHafFIjC9Acl9GDSXPPqs0bNjOQVs+5mkrcvLS0NGla6LpuFCAc14Wp1rx2DFLPQkxovmFgrs+JY6dJx6YrhhHEc2rJrzPKtUFzI03qTDydzWEsoxNfvR+i6cz9ZkV6mj/9eQzgZoJ2Bpr7NSPWcA/RDBpNuNxnU4Snruu0trY23x82G8YxM90YU2MZkXxGkhKfB0wiEfvne/XEiRObzvGYH3zwwU3nxvZYnd1r6DazSu5MT8iwhKwsFdebBJuMDMY1pEuA4USRlEMzO8lAJCHGdmiiZQB8XDf/z/CO7aBpeA0NDQ0NOwILB54vLy+PCnRm2hrLmkwFMFM6YSCuQSKKNEhHDswkxZ/O3ng9UvAtvVhyiBIdpUH2iaEN0enqUAJrDkeOHJE0SEJZgDPp7yRHUGqPJBnDGjFp9lk6KlL+fSyJFXTSS3lR3xoYxBuJAF5/kxJIGvG58Rxek6EGLMkSr895oJM9Gxfn0vNhjSebH9KzOddZglyD7TMhAI+Lx5BIZfIXwxPiuT6Wr+xH1AoZ1sFxM6G3NE7jtW/fvtTyEOF7giXBpPFeYeA8kzDEdqi1MEF3VgbNKRTvvffeTcdSa44pDd1Ht0PyGkNoYp/cjteBaeIyaxufb0zVmCVJ8P3i70gcI6EnS+TPRO60OMXnOsNFmDQ6CytjKbhLly5NlpaKaBpeQ0NDQ8OOwMI+vOXl5ZHEELUZSzaWdJwGLBbri99LY2o/JUNLGaaNR6nC3x09elTSuJRH5hehZE8/H9PaRNiPQLq+22DQrzSk8iE1mlpb7CP9SB4zqdN+jf4/pnWj5J2VhbFkR2mXaZwyankMf9gqgJjJrqPE7bF5nVkuyHsoSrEskMtyKZTSo8TNoFqvj7VlpouShnWhH8ZaZ0bR531CjYe08cxi4n1Gny7blMY+NfoxqWVnqcxoMfD+yMoRGbUUY/QhSWOt+uqrr54MaVldXR1R720pkYb1d+FnFtmNoTPsg+fLc+k55rMszol9dwz8r/kSY194Dxtcr9hHhpDQz53tHd7/TMo/dQ6fAyw8nfmZmQja4PM9avK+p9kXz7XXJFr1GDjfkkc3NDQ0NDQAC2l4LsRYYxlJY7/RPffcI2mskUQpgEw3S5OUJrJk1f7l93fUTDINz8da+mKCZiZQlQapxP4ltsHA9Dg+SnL0w/h9lgyX/af0lGlK1jKY6oeMtegHYsA02YhZmSX6z6YCh0spKqWMyulEP4ylc2vE1FR8bhwHfcX0pdCikPnJmADA2ov3YVwXBp7XfMZTTGKyjymJR8sCNWu2n/kuqA3yep5PWkFiH8i4Y1uZBsvxUSuIGh79iFNJC5zS0MhY1Cwa7X77fvXeir4gphCsWUK8D2JaP9/v9JNSi47rY+uQX30vedzue2QxsmSUz6F1IEsYzmTrtCwsUmbLIBs+MiSZlDyz5sU2YjvmL3hNfa6tPVl6v+g3bz68hoaGhoaGgIVTi507d27+a0rGmjRmSVkCYMqvjJHFooq18vLx15x+MUpetK1L4zgRSxnWNsjijNekjZvFNTNWKCVfJgLOYtyoCVE6o68sSrtk9DHGxYh9ZKLmmn8jajtmxrpw63Oe85xJLW95eXmUZihLa+R1sNQXGYHSZmmPGijLidTi1+K5NY0o8znwO1/XfWahTGkcw1RLzE0tVRr7zqi5ZqxQpnuiz5rs4IxdSwmeezbzM9aSRmdpvQzfN/v375/04e3Zs2dkPcn2gTU6a2PuU1YAmExD+tK9Tp7rmNKQ+41rl1l6GPdJC5PnOPoK/SxkUmqDvtDMKsV7m5ptvCdYPJjP+prmL2kUn819QUtA/J/9Nzvd+yOzIvq7CxcuNA2voaGhoaEh4oqSR1taykpEUHJnmQdL61mJCL+SYUcfSMbsszRW01Cy5KM1NmMW68R4GErt1DCz8kD0EVLbiRIrS2kwMS/Ze1lhXkrwLLQbfRb0fXn93GfPUfSBsGzTysrKlpIWY3WiT5BMLUt5jD2MUmwtOTm1tyypM31a9HVRu45945xSIs5KPbGAaVYuhdej/4sZjLgGsT1qjswGk7GDa9qN55ExuFk7NS2HMayxva0Sj+/atWs+LmoS2TXoW6P/WhrHAjK20u95r7u/EdSaaQGKfWS8He+ZyEj0nnQMZc2yM2UxIZ+Bz8istBgtWtRCM0sTC0/XfLnRosBMUT6H5bfic8LXiSXhtorhnI9vW0c1NDQ0NDQ8y9F+8BoaGhoadgTer+TRRlQn6ei3KcFUbweiRxMDzVGk+Nt8QFNXPIbqu5FRrxnCwESpWfiDx1xz6hoMCI3HGjQ/0IwU+8LvWBWbJrZ4Lsk3nKNIeCAZh6ayzERj53pMd7SVWYpU/Lh3/J3JATafkigSSSyZuUka5tZ9zPrPhOacC5og41hpaqQZNHPM00RaI3DF+4tmN5qlMjM/54J7p/a9NJiLaqSYLLEA9xWrpPtej6nzGNTNVGlE13Ujs1ek75P04O+y9FkG69L5GJrDPZ5oauSccm4zohgTPnMPZfXifJ3rr79+03V4n2Vry1ReDO/JCE8MbKc5dCpJOk2NNHHT1C6N555mfoY6SGOi0BThiWgaXkNDQ0PDjsDCyaOjxJLRjP1L+8ADD0ga6LSWJkxht8QSz2EAsM+xtMbgRGmsCfm7GtU4+46O+Ew6oxRWCwCOVFmDFcZ9LMk6kfJP4gzTAtGxnoVQGJTKSTWO7fkzatk8ThrW35T8qbRiDh7OyCOGJTcG5JIwk/U7W+d4LssHScPcWdugg95rGdtkEl1qqlmCXIMO/5qUns0xiTVZuSODKb1YfZuWjbjveAxJYR7/I488Mj+HlhESGnxOHK/PiSkHa/unlKKlpaVR+ESk6vt58tBDD206hrT9TPM2mErQY6QFShpXjSfhKisTRg2HKef47JLGlgne77VnS7yewdJOJKpJdWKb78mpBA4Gq9nTYhbnnUQm/z4Ynk8H68cxxrSVjbTS0NDQ0NAQsLAPb2lpaZTuKvoA7F/zL7XptH7vX+LMD8PUUSzi6eOidlgL2mUKpCgBUFom7d3Xj5IWE8vSz8MwgSgBRUpthNv399FOzXIn1OjoO4jnkv5LDdJSdRZwHP0iEQw8lgbpzJrXlJTu69HnGiU8Jtz1HNLnGs9harGaNmvENaU27r5ZMs3o79QUqIVmmiZDV7xnaol44xjoUyHtnWscv+O9QG3RcxcDqr1HWHCYAfyZBkuNgvsrPiectMB7ZzsJgJl0PSZZdnv0u/o54+dS1OKoCVNbd1u0AMR2eA/zeRDXknwC34f0GWbaYU2Lph84KwRNnxeLxmalpVjomvfZVMpGrym1a6bfk8YJSnwuk7DHFIQMZdjY2Nh2Aumm4TU0NDQ07Ags7MNbWVkZMXWygoX+VXfSVkoxkbFFJo5/rS0BkTkYJVImO6XfIpO0os8iguOKmhmlE7LnGFQepSZLiFnC1Vp/PBeWmphQOysLw3HUSnq4b5k/jaw2991txLIwt99+u6TNLLCapLW0tLSJxckim7FfTA/GIPUsbRc1evoLaiVZ4ph9fc81/cLx2mRj1uZYGge/c58blKrjeMhipIQdv6e1g5qF55FFRWNfDQbS+/u4btRIWGw3893YShP7WEtasLS0pKuuumqUuDiOmZqvQYsCGbnxHGo+vPfivuO9xfJnWekalhJi3xjoHr/jvUpLw1R6Qo+HPjxqbbEdfseCwLayZEkSyLz0e79m6cjcV/ozmQg/fuekJrXneYam4TU0NDQ07AgsrOEtLS2NfF4xPoXJhv3LbV+ebbFm2EjSTTfdJGksXVLTs2QQmTxMKUT2Gn0f8RhKRR6Pz2ERzKxv9KVRW5AGSbpWANTHZmmIWJi1lqYn+kf8v69HyThjdpKZ6OtSw4jxk5y3KIUTS0tL2r17d7X4aeyDwfhLS3RRy6RUzmS09BHE/te0Te7DTKOsJfVmurr4ma/DNHFkC0epmSxdJo/mGsRjycJkerAsTRjHzFRm/jyy5mpxeGTnRU3Q6xCLxU5peKurq6PYsDiPHrOfFWZwUguI2oC1TPrLaTWgvy5e2995PmzRqvntpWGveB/T/xs1ICZrNmrxmfGe5t7he+7zeAznmGz0rHgsCyl7r9gv58/jdf2coT/TyKxiWRq1FofX0NDQ0NAQsJCGd/HiRd1///0jf0mUuGm/dQG/Bx98sL9gkjCVDDBqS5SaoxRgSY5+Cx9jKSBKA2QiUTrI/AGUyslmpB8gi6mjdFQrCBrHyvdZPBGPpwREO7n7EftIZiozVfjYmOXGn1mqve6669LsDbFf1OxivxkDSImeVoM4tloGEu/HzKdCLZkat/d13DuUYt1nz0WWcJqaFPc5JfssaTl9Q5TW47zTB1ljA2fliDzWWuLxrAwN/dcen5mTPjYy7chY3djYqGp4GxsbunDhwqhEVZxjxvVlMWaxb/F87kVmCKGlJOuDx+Z58/dR0+O9RAZ5FsNpKxOfY+RPZOxZZsthqScj8+GxxA/vJ7LWpWHurdFRs3eb8feitj7040d2bSz8Km2P4Ws0Da+hoaGhYUeg/eA1NDQ0NOwILGTSNLXcZkSbMO699975MTS5Pfe5z5Ukvetd75I0qKHPf/7z5+fcfffdkgazgF9Nibe5zWa2SO6w2uzvWIWdZol4vtVzmjZZ204a09CtptOZS1NX/I5B0STcZCQSml1o3svMrwzJIKEiM/fQJMdUXO5jdB7ffPPNm46JJkvChCeaU+JakgJN03ZWD4+mNo+DppiM3MMEtQyDyBIbu280pbuPnqdoYmS6Ke4ZOuajuZzUchJQGPIijU2aNL9lTn8jq5GWvY/ICAyxLc9nDEXyvRfXdIrwtLq6OjLzZ/X1SCIhmSXuN4bneJ393ueQXCINZjsSQPzsmiKEsEYn1ydz95CsxLnNUs1xz/CeZsKP+B3JcQwx8HXjc9XrwdqD3mfcu/HYWh0+z1HmVqgVDJhC0/AaGhoaGnYEFq54fv78+RExwcQUaXCy8pf5xS9+saSBvBLJD5ZImV6GaZoyzYvOb9K3qR1IY+cwE+X6erG6dyZpxM9JYY7Xq6UJY6Bm5nDeSno2olRYS5nGIOKoSdSIB27DYSVRC/V3luxOnz5dlba6rtPGxsYo+XFsjynfvC8srWclZLz3Tpw4sWmsDFcwsjY4l9w78RxrVG6XhCqG5cT2qD0zSQGJUdI4kTYra0+lhyJJhXPOMi7xMxKbqJVmJCmmsjJIypCGeyveC1PU8uXl5fm953PjXiOJwtoZNaGo4Tm8idW1qdVk68JyUCTJORwi3pd+bjHAnM+QLEm122FJq1q1+QgmpaaFJz7TmKSAmjjHHyu/k9zDZy/nKB5Daw6JjJFgZ0tBvAdbWEJDQ0NDQ0PAQhre+vq6Tp06NX/v/y3NSGMtgrTSO+64Q9JmydsBoO9+97slDdKZJXv/+lvizyRF29l9XdqRMymNEjwl/RhwTL8YEw3TTxOTY3sc1LQYPBqldEpJtXRUlIjYb2mQ9D1XWdA3wxBY/NKhB3GOjh07Jmmgn99yyy3V8j9d1+ny5cujeYzj8ZodP348HbvHEdfS0p5LudAXQA0sStwsicTA82zO6VOjf9ZrmQXo12j1TI0Ur1dL5k0NL85Jtr6xb0w0nAUrM4ic2k7cB/S9kiLPUlrSOOTjmmuu2bLECwtCZ4VymfrK53ifxLn1sbQkZAnZ47gimCB7yk/qNfPzkto6fYjS+LlFqj9DTLL+1kpZZRo5tXGG2fhYr0GWYIHWLmqlmbWNPkpyFrLyZ5HzkaWMy9A0vIaGhoaGHYGySNBeKeWkpHu3PLBhJ+O2ruuu54dt7zRsA23vNFwp0r1DLPSD19DQ0NDQ8GxFM2k2NDQ0NOwItB+8hoaGhoYdgfaD19DQ0NCwI9B+8BoaGhoadgQWisM7cOBAd+TIkVGpmgjHTzDOigVTI0ic2er9FGrHPhVtvL94Ktqtzc122p46ht8xhifL88drl1J0+vRpnTt3bhSwdN1113U33nhjWrzTYPwTY3FqeToXQWyDY+TrFLab2SG2V1srlgnaDqbuEV6n9rrIuUSMpeL61OLpsrmPWV8ef/xxnT17djT5q6ur3VVXXTVqN/aNsa1Z3OXUeLb6brvnZvdJ7djt7Dd+t8g9ULunF3lmXAmuZHzMdmVkvxcsejz13CEW+sE7fPiwvud7vmeeNNhpnWKqLwcOOsWYgw4ZzJvV/OIDj59PPXR5zNSNW/tuKh0ZF403ORcsjo8BmX7PWmMRDGDlXNTSBEnj9EBZn+LnsV2mUKslsY6IFdt/7Md+bPS91Fe1/+mf/ul5irIHHnhgNHbvo5MnT0oagpOZHiwGyrLSOdehlpQ2GyMrdWfpmphOjQ+RbE2ZuJqBxkzqG8/l+nKfZxXPGUDPAOfaa+xjrS2mLZOGJAs+1wHBTiBRS+wgDUHYz3ve8/T6179+9L3UJ0z41E/91Hl7rBEnDenBDh8+vOnaTF4QH6CcO+71qedOrZZhdn/UwH2X7R2meuOe5JxmqfP47GIfs+TRRK0qezYnrL4+pSCxZiMTHWSKkp8T3oPnzp3Tm9/85rTfRDNpNjQ0NDTsCCyk4Umbk7hmiWtp0qRkys/j+TVzKKWpKNXUtECDFbDjsTVMqdEcZ00SyaoIUytkWaJM+qTEw5I1U2YDVlLndbJ0VKz6TaksSxoc25sykywtLc3L6vjc2IesAncEy+jEz9zfWlmTrF9cU/eFWmKcA64dpVjuZamezJvalNvOrAMsA8V9HcdSMy0y5deUaYsaMscX4bng2JkWLdPMY8X2KXfEpUuXRtXdmaQ69pf3p5GZYn3dWoLsbF/SarKIeZDaEp8dcd1oQaKGx/WI73nfs+/ZM2Mr836W6suglSOzWLA/vCc8n0yOnfWV9/x20DS8hoaGhoYdgYU0vFKKVlZWJu3W9NHxlUlvpcHvxyS6Nel8yodX07gyqSLTGOP7eF1KjFN2cJ5LDW87dn/6PabIIzVQW5tyJlO6ZaJXFsuM/3vdNjY2qpLuxsaGzp07N0qYHLUc+h6pvU/5uPwZfR4kR2RllOg7qZWLiu1zv1F7ivuN/lbuIUrxUcOjlE4fTUboqSUpZx+nSjTxXGtXlOKlwYdHrZf+5qwosv1xp0+frvqPuq4vLeUkz0Zmbaj5bqesKBw790Pmv+YYaxaXjFhDjTHT7NhHrntNK4xjYhJnYop4xYT2mT+7dg7vK6P27JTG/m0/WzLyEdtpBWAbGhoaGhqA9oPX0NDQ0LAjsLBJc3l5edKsVjNl2oRps0ekNdtUwTphNAvUHNHxGJoJMgc+iQYkJ9CUNtV+zcSUmUOttpN8MUV0qMXhTK1BjcJMh34kY9RCJ2qkCWlsKsko0REbGxujCsZxnmr0fM9bRhDIzHKxDZoyM5MMTc4181hsh051kmWyPrJvJKC4zTiWGvFkysxPYgHHTDNVdCVwjmthHZEc4dp/DiPhiZcZeQAAIABJREFUeEliiP+7nbW1tapp6vLly3rsscfmJtHMRMfK4CTbTLk2fI7JeFyfbM63Ci2aCk+okSy2E/5QI89lbdeIR1Pj4jG1sI7s+VR7JtViIqXhGVhrdyqkJZo2t0saahpeQ0NDQ8OOwEIaXtd1Wl9fH2lPUbJnMKs1Ojun/T4GqzNwlRTVGq07gyU9SrVRKvQxrIpMRGmKki4d8lPEAx7rV2u5WdVqjrkm/WYUY84P54SVj+N37DOJLxGkBXddV5W0THiqEVJie9QCGS4Qr8EKzJbSrS3VJP1srDXCRqYVxAwhtWPj2KWx9EpNxesUiUG0QnD++P1W7WXjzUJD+OpjsqrzHpfvJ3/n8WXWgVogfYau67S2tjbXJLP9yz1OjS9bf7ZTq7I9lfCC4TW0cmQhNLUkCVMZhWoWCmpP0TrgOaD1gwkXsucfLRckjmUaHuePpK8sSYbh+fM9T6JXtm7x/XYz0DQNr6GhoaFhR2DhwPONjY2RFhOlGmtwDjB+9NFHJQ2SIVMVxf+ZfiwLYeD1alR7SjXWAKTB5+BjLQlllGujJmFlEkitj9TsqO1mFP2aNF7zQ2bwsVNUX0p9U2nWDGp4U5JWKUWrq6ujduKYPVZLeV73LKTAcBqra6+9VtKgZXg8nJ+p1EvuG8NjsmPdrrUYphqL19kq76bXhdpivI5R29cxzZbPp4TvPnr/uY9xDbwX6dP1nPj7eE/62t4Ptua4724/hhXUNNcMthxQ844asv+/6qqrJA2pxRig7f0Sz/E8ZUkqpDxsgFoLn1ncy9I4DR5DgbK9yeQENT9ZZjXw/0yZx/nLLBgG/aaZZYbn1nzU5DBImqcaZLo9Pxuze57XXl1dbRpeQ0NDQ0NDxBX58BgkGKU9++PM2LI0SRvwlDZDf9hUeij+slPrtHSTSaRsv6atSWN7PwNP6euaSp+TpR+rXZd2diactQQWtYJaGjevBZPVZu3W2F9Z6iJrzJcvX570xayvr4/8mHFdqAFbe6FE6utJQ/JharGW9I0sjRY1IErn1MylsfZHhq/bitK6x+g5tPRKCd9tRWsE/W9cb48/ai61dHRui77jeA9ZO+M96Tas4UUfPPfMww8/LGl4FkQmpuHznfR57969k9aBUkrVbyoNe8Lr7rF6Lj1vcV/EOYv9r6X+ynx4ZBHS9x73Di05fvV+oJYojeewpoVmiZk9X37e+dVzQCtR7HctvR59elnaPfpTaTmJDH2D45uae96Du3fv3nb1kqbhNTQ0NDTsCCzsw1tfXx9pCpkPgH63KYnEUhjtw/RXZLFbLFtCZHEyPoe+DvpLsoTTlDhqjKtoS7fU4nG6T35vCS9KLmRFksXkNiyt1dIHScOa8NwM9JMwNi5LzRXZlFvFw3is9ufEvUMfh9fFWsD1118vadBqpGH8jDnyfLj9jKVHv4TBfRg1Lvfb9wC1gkzyraXYYt/oD5TGZW74ai0lai5uhz4099XjyXx4/oyJmrln435jMnkmjc58Nz7Wa7x///7JJMDLy8sjTT/Ok/tATc4lzLxn/J7nS2MG4naSE3s/uC1aVTJNn/c732ca0FbsxUzDoYZFa1umFVI7I/vY55KTIY2fQd67tDhEzTr6nqVxirFsfIwJnHqeEU3Da2hoaGjYEVhYw5PGrKUo0VniYWwOE9hG6WqrEjj+dbdUYbt2/MznULM0opTGvlCqybSUreLh6KeLEgmlJEqBTNQcP2Mx0lo2kKykCLVRjzMr60QpnGzXbNyc8127dlX9MF3X6fLly6M4rozF5n5aQrzpppskDZJhlOh8Dv2y3pPeKx5X1NYMJj3mGk75B3xdZkvJ4obol/D4fI77FrUQayo+h9rboUOHRn2qxdDRf8qkz7HflJptJaBlQRruZffba+Lrm7EdQTbtVLaMpaUlra6uzo/1Hou+XFsBjh49mvaJMYFxTPSlTfm6DVp8fP2pzCDuv/vNe8DzFuerFtvGe9zji/efj3X7vq/4TJlKdM9MWUTcO4z79HV5T0RN0PcAORD08cd7kBl9Fiq6u+0jGxoaGhoansVoP3gNDQ0NDTsCC4clxJpnNgmYyiwNajrJAwxgjnRr1m2yOcLXYVBvVPltQiXFmmSLaDqrVbqupeKJn9XICXTuR5Otz3Ffa6aS6MytOYtpyshq+vkzX48Bp1OmgCyhsJSnbGMS4u04j0lQysxpNvkcPnxYknTw4MFqv70XfA73gc12notIeKFph+mh3EY0g9J0zfFkRACSe0jKsXnQbWXJfG0yY5sO3M32N6uKMymE5+TUqVPzc90OTXNM6B3H6evQPOU18bgyUpbn/OzZs5Pp8/bt2zdPLmDToPeFJN1www2ShvX1MbF9KXeH+DNf/7HHHtt0/Sz5Au9H37s+lukLpcH8zMQXJMlkxDC6IbyW3sP+Pgb3M5TAr2wrPr+9vu6/55H7PntOMK0f94rnIjNFe528V0xQ81rE/RbXUJquw0k0Da+hoaGhYUfgilKL0bkbpQpLr5b26GjOfoktadRS3tCBGqUmHxMDYWMb2Xv315KCpRZLkAzYjP0nhbxGkY0SCZMg+3qkxWcU31p1ap6bJQDOEj7HMcQ+WuqnpFUrFxO/82fnz5+vSumueM55zJLrUlM8fvz4pj7GcXkvZmSR2L5T3GWpl4ga8Uoa5sVSKskC7mPUuK3BWZL2fFm6ZfB4JIS4XY/Tr9QGopTOcluPPPKIpCEg3PeK+x61bIafeC1IaY9r5HNomfGamGQQtQEG1E9peLt27dLBgwfn8+PrRK3X6+F7Os6HNNb0pGFPcF1oNfLY4z5gWRtqL5lFhCES3kskUmXp9gzvSRL7rKXH8fna7pvf+37yuGwlkMYJLmqaU9Z3rw8tJUxQ4eds7Lf3PEN4MridGD7UUos1NDQ0NDQEXFFqMUtuGQXXv/K05zNFUVYgM0sZFL/PCpf6O9LqmTQ2SpS071sqZOqd7DoMoagVLY0SCpNiMw1V5tOj75OhILWyHRH0Ffgc+rvi9Sjd0n8R7e+Uxqbo++vr63riiSfmUr73R/THUjq3tGpJlFJ77CfTktEv53Ojn9Q+IGrltFzEfcAQAvsZPceWWKPVw9epFRalFB/3AX2RnhPvJX9ubUUaNKqHHnpo09xYkmdgeJSOuRetldCXE9faa8r94D3lOYl9tJTv+/L06dPVAsLmDngvej7jWnrNvJ9Io/c8xf1G/yf9b0x6HX1HTA7N9F2ZRcualf2NN954o6TheePrx+t4HJ5DlhLzPvQ5MWidGpbH5XXw+KNGWSuC6+swLVncu54nrz8tCdk8en6OHDkiabi/GIwff2MYYvL44483H15DQ0NDQ0PEQhre8vKy9u/fP5IYoi+Ev7QM0Mxsw5Yq6LshI8mvtSDI2C6l5qgBWbugBMIUPNHn4O/Yx2j/jmOJGiULYvI1K9dDH54lU7KzfG4m2dUCMinJSoM/hAmGLY1lBU6Z1i0L6ja6rtPFixfnc3/y5ElJgzYSr1nTYny9zE9RYw5Ti8pK/7hPXqep/UX2HfcZNU1p0GasHXsPWTvkWsZ7g8moqdnTOiKNJWkmJ2DZpawIL/1X3h9M5RbbNbgmmd/PffQcnDlzpurDMzxW9yWupftprZYJKchczdp1e9SmMt9y9FtL4zI+fg7EZyNLL9HCZM01+grJEfBzgKm/svuTvjTeX9mziv5frj/9tXFOeG+xRJfHHbVsWgestTNpQewjE4U/+uijTcNraGhoaGiIWEjDK6Vo7969o9RLUYqhr4ksv8zvx8SoZP9R8o7SM+PRmKYrK1JrKcL9tp/CfbJ2EDUklvCw9PLggw9uuq7byuKiIjsptpkxupgUulZeiZJf/IyaI4tVZj43MmattWWxSJ4nj+vJJ5+sSumXL1/WqVOnRpJb5reJtnlpnGQ3+vK8DkzP5DYc++SUU1ELdb+5Nz1fLEwcv7Nka3+IJWD3LfrwvF8dW+Q+2G/h9ffcRPahtU8zLBnn6u+jz5hllHiferyemxh3RkYsE1AbmYUmlomK4/aeiGnQshRptTjOpaUl7d+/f75evjfiHNOHZS2GMWFx/Wl9oibieaNfSxr2mzUdatXeB9Zgsz6aPUv/X9TwzOi034/XJTs59tHrQNYxE+rH/e2+MVUf78mMB0DmKkuKeb/H5477y1hIpq2Mz07fR75vnnzyyW0nkG4aXkNDQ0PDjsDCGt7KysqorEiWNYVR/iw3ksWa+JfftmyWiKAGKA0SjyVGa2/0H0St0FKepYZbbrlF0thXSKlWGiQfS+G0HbMsTewDNQcmk45gHAolH8YQZr4CJjZm2ZusKK5BydjHRp+b++DkznfddVeVaec4PGrtMebsgQcekDT2H7C/kSnKMjDeiz7H31vDi+vCZNRMsmv/bNSA6CN0n2+++WZJeRweY85YTofM37gWHtfdd9+9qf9eB7dhDVAa5s1j9zitbbiP1h6iRnHXXXdJkt75zndKGvxZ3ENZwmFf12PnvRmTYvvansf9+/dXWb4rKys6cuTIfBxMShz7YJBfkPmtud5uz1ou74EIt+u59DOFibujFsrnmOfW4/L8WIORhj3htXzBC14gaXhGsfSXfeNxTtx/7yuydLM4U4/d/fc5tDxFy5LvS4+HGp/7Gu9f+rX5bPR1zGiVhmev78sDBw5MlnCKaBpeQ0NDQ8OOwEIanqV0SkZRaqa0RJ9KxtK01GDNzpLisWPHNp1L/4n7JA0SiCUUliGKNmB/ZqmAPoGssC1LbWRFKCOi5kK/JUvaZHNi7cLteE7clj+3lhV9hsyWQG3bn0/5pihtZ/Ew7r+1iyk7+r59+/SSl7xEJ06ckDRo1Vl5IPtFmUcwyxDDMjN+9T6gTzL6x1haxRqQj7FWleX75BzYl2afXpZL1VoZNTwy4KLU7HZ9X3mPUrKPffR4fIzbtTZKtmP0id52222bjvE94LmwBhH3jvdijcnMnKGx/anyU8by8rKuvfba+Rgzfxz3rdebTME4Txzj/fffv+lcayrMyCJt9s3FMXrtmB0q9tfr4mOZJzWbJz+/yFTma7RkMX8s/X1Z/tdaLk2vra05vN9iX73/yBLOmM3MHOX97PHE3LcG2fWnTp3akuFrNA2voaGhoWFHoP3gNTQ0NDTsCCxs0nzyySdHCVIj6YJpmqyC09Ec1WgSMZgI1Wp6FthsNdl9sUruPlLllwZzBMsOMT1ZBM2cpO+Sth9NWqT4smSRVf4sbZfVdptTasmDI8mFJjSabqdK2Xgemf6K6dekwdzgcUxVPN+zZ4/uuOOOUcqlSILhd55zm9FsWormaQcae4ye9zvuuGNTG6RzS+MK6zYteT1MBY9EB5u97rnnHknDnmQi6Cw9mPtIs7tfadKXhnuhlobOBIc47yR7cW5YAshjiWM1IeD5z3++JOlFL3qRJOkd73iHpDwkgGvP6uhZ0Hc0jdVIK6547rnIElXQLcGSTFmZMM+z95eP8TrY/O5+xf4xBR+JSd7X0dRGUzNDSuJ9ZDAFH9N3ee493tgPX8fuA7/atO01jnPiazuExHvG12GijXgvknzIkky+ju8raZw2kr8ffP7Ez2I5opY8uqGhoaGhIWDhsITV1dW5NGUJIWp4lpr8K0/6dFb+gQHGWzlXowSUFU2M16dDOPaX5YdYaifT9KhJsuihx59Rpt1XprLK0qGx1IqvQ7JCVqaD88USIlkSbmoBbo/SbXTCU3MppVQlraWlJe3Zs2cuObKAapwPa3ImSliqZLhF7A/JHNaWPcbbb79d0maNkrR97i/3MTrOGdhMspS1gyz9GTVqagX+3vsjwlYJa5juM2nr0rhkDSnfvt9MDooSvufH52SFU9l3X8f7u5bCLJI+fF/GtGs1Dc8lyTwvvl5mWfJYaEFg2kBpnEyC97DHnqWc431BrcPji88q94WlpZgYPF6Hzxv3hWQtP4vjPiChiqXNSJ6K3/3/7Z3bchzX0aUTJChSsuyww7YkSg6PLnzp938SP4DGoizLI0uyTiRxaMyF40MvfJW7AChiLv7pXDcNdFft2qeqyuNKW53Y1ybczgAr2jc9GPPsPVR11DpX5YBsKcy56AhI7sNoeIPBYDA4CTxKw0NKt301JVfe1E5Y3CtKatu+7e4Oe842/GZ36R8krAynd3KoNYiuOCnHOkEbWHrPPq764sTQ7KOlTodiW+NKzcq/cX3by7uEdxerdepE9pFjGOteWsLZ2Vmdn59vwp33ClZa6zTBbNWW1BgtYkWRlD4HS8fWULrQcheFTb9rzkF+zzzb523fDekdmXgMkNL5De23S48xTZPvOfaU92X2jX2Gf8skAF3f7CdzKlJXhsiWjA5oeKx1Z4Fhbq01m0A5tUisDU6NSM2haqsZ5Vh8T6+ItLN9+u0Up45wGq3Qyf18Ml6sN3mui+Kyd5hHk2bndVxsmXtuL73MNIjMDRaSjsiD9mwps3Ug4VS3Z8+ejYY3GAwGg0Hi0QVgD4fDLnEtEokLr9pPlpKQCaBdfmiPgsvJ1KtSK+m7oX2XG3J5i5QaXOgVILVwPTTblBIdmYoUxfVN7pztuaCpJcmuFJCjQR0VyPg7TZlPJ/mCFXWY+9D99sMPP9xq03triWRqsln6m1oakqd9aC7J5IKj+ZvplJzMncnKTrxGerUW0yVFmxoPydsaRlJw0V/7fznH9FRVR2nZ1haXuwG57xxJ6HM6ogXvL/rMWnR+5lXB5g5XV1f173//exOBnWvJ2rnosdtNzdsRrxxLP10mLPestfRVSS5rnFXbQtOsnaPGq47WJ3+a8q3zx3Ft+u+o4JVWmuNg75jQobN0WdvlOswjfUst1MWCvY6OwvcYGd8kng8Gg8FgEHi0hvfmzZuNTyIlEvucLGl1fj8TLtO+JYXOnmupwtFMLj9RdZRS7KOhH85fy/Z8XdvBndOX17HWtpcjRF88f9Zo9+ZmVXTXpUWqtpKqNVpT/nTj2suFub6+ru+///42b64rJGrJFw3BfrjUMhmT85MsxSIVZh/dX+cL2X+S12EPoeG5UG5KnM6VtA8HqZ02M9cJPxP7CU2V67AemRdn7d+frKnnqOq4HvaxWXNJLZG+sGetObnP2R7X2ystdXNzU5eXl7dzjPSf/TatlaMou0hLl3+yxsPzzfdEnmNLljWS1Ew4lv4zL+wh+p5E4PjSuG9slaJN51hWbem/eO64PFCupYnuAfvM91euqXOHV/RxXc6otT9H0Odzx2P+5ptvxoc3GAwGg0Hi0Rre1dXVUiOr2kr7Llja+eNcMsiaibWZlOws9TsyrfMRWDp2YUxHoVZty1ggNdnvSN+ypIzz7Bw9aWLqPMdj7lgfDNvkHaW3pw3azu/ItdR2zC7z/PnzZb9cWirt+ADNjv5SINMaQ0rp9rfZV2wC5fQ9uK/2fVpTqjpKlZAsM2/41jrfhi0hzvczGXvuA0cZOtcJpJ+xK3qc17d21ZEH29/MOd7v2Y6jgZlPk2PnsYzjs88+W/qHb25u6vXr1xtfW+4h7+lOozNcsiyvV3Wc0y4ikXVg3R2ta40zz3HBXO+dnAeX/+JY72/OST8p42L+fQz7rZsja3++1/1cr9o+2/k0A0sH7y/PUa6RI70fg9HwBoPBYHASmBfeYDAYDE4CjzJpVv1X5XSSdargNu2ZyHYvjB7YJOKEzTzepjjTajmcO/tmMyVOcTur8ztMWivKLZvf8jfXmnJ13y5k3uYnj7sztzjAwEm3XYqFndE2AXp8Vds1ffv27TLw4OnTp/XrX/96k8Sb7TktxEnJHJtmG8xOrtvluQUdnZpNwPzP9TLFhMrLTiL3HupMpzbtuG+sQTroaYfrYeYloMc0dVXbe4HfHGTkAIGETWm0yXx38+i15/7qKm3bBHl1dbUbeHB+fr4JHMs+eE5tVusCquy68N5x4El3f9rVYLKELtneqRMOIsv70sQSNouyN50S4nby+rgOHLxSdVwjk0rY3Ozne57jZ7LP6foE/Bxinjty/KyHt5cSlRgNbzAYDAYngUdreE+fPt042VNCsMbRhb7mcfm3A15W2lsnkfo7SxMpcTvZcaVFdVWkLRU5sMHaaP7mEh5oKkhGXVKsnbnMhYMYuiRya2ArzTmvA2jXUluOy9RUe1LW1dVVffPNN5uqz5lE7pQWV63ukolpz9raqvp2nutSJKZE4rOrks6xrBmlZPZSZ7hvHFhlDTA1yq5aeNWRQu2vf/1rVVX97W9/u/3N5WdM9bWX7G2iCFtsuoAuwG/cNy63lBoa65YpQPcRj1vLyPvFxPNOQ3Fl7TzWe9v3y948OT3J1oEMCOF6Dhby/5lC5cBAa9F83wUq0UfWw9o6KS95Tzv9wOQYtg7l+NzXVWpaB88FzwWnm1UdNWKu/e233+4SYiRGwxsMBoPBSeDR5NEvXry4pVciNLvz2zi8fe/tbq1llazucPG8tiXrldZWtfXRWeLdI6ft/DpdG9kf0zRZGkR678LfVxqkNclOOu5Ie/P7TtuxpIiEZ+q0qm24/d4aX1xc1KtXr27D0EmkxRdVtaXEAl36A3Cyq0m3rb2lj8PSOe27tFCWQGH8aC+mYNtL+TAdlf0/3Z7l2qtUBrSBv/zlL7fnQCzNmO2HtX8r+9z5kbJPvn7VNt3CKSfs/25uUitY+fCgNPQ9kM8B71+nDznlJP/2PvD+6xKmvXYO+bcVLK/jGAIT3qdlCdiXZmtN52ujPe9V9gwa3suXL2/PIemduXFpIWt4qbWvaNZWGl/OCfPktJtu7zBfWch2NLzBYDAYDAK/SMPD7o40kISyjo6znXxFslq19dE9xAZs/x8SBxpYRz7qa/u6XXL0qmSMIyBNS1S1TVK39Mcc5TnWrFZUYnvatfsOOg3PUVkrn2FX7oT+v/vuu20kFu29fv16Q9iMtYDz89oG106/gf1w/p9PR7dVbSVP+obG7WT27KMLijpRu1sXj8ulUawJdtdxsVoXVq46Suz8xto6ytEUgXnMitDdZOn5twkdTBuVc4+mjLZxeXm5u+7vvPPOxuqQ47H26DXtniGrBGlba1Z0W3msy0W5PFXCPnzmDb9s549f3Z/+zH3gZ6Ej13kOUVw4x5z3ZX5vko7s66r82B7Btn3Ujn5l76S/lvHsEdGvMBreYDAYDE4Cj9LwDodDvXnz5lZqQQpImiNHKbk8hjW9vd+s0XVSGt+54Cy2Zz5TWzNprCVLUxjldRxp6YhSzknJbkUDhKRCOZiu9Ippfxyd6WtkH2wXtyTU5ftYM2Jeu8g+j3XPhwfYMxSjTF+o94TzFTv/kiVeS/orQts81uVrHNWYUZpeO0v/XZQu7a38Pg/R8NCE2M9I5eTl5T6hD5l7mn203zGv51xN+7esMec59NF7tpsT9tUXX3yxac84Ozu7E6VJ+59//vntMWi11qi8pzp/pbUoa0IeR8L5udzjXcFknpPOreScjurMPjo/sxzR3JXeYV2sUXbjcWQtfbJ1oMvLtQ/avtwu3sIk5avYgdxTaMJoeC9evNglrk+MhjcYDAaDk8Cj8/CePHmykZqIuKvasgnYt9FpafahrWzqoMsFA9iC+ey0G9uWzZqBJJSSlqPAnO3vqNTUbF0yyHOBxJKSD31Y+Ru7SFLD0YAeS/ddV4In20hJyv6sm5ubZX+urq7q22+/vW0HTS/7xp5Z5dB1+8G+O9bD2q1z+vJYjmEduD4RpCkJJyl4/uao3U4rZH+bhcPFaSnuWXWUzmkDbYAIO4rk/uMf/7g9x9qn7wXG5TZz7NboVxF3eR20Nkf0dTlixAFk5O1KSr+5uam3b9/etotFJJlWiGZ10dlVxG/V/fm9e1YU9o7HjjZvf3D2135ZNJUuknQVlW0Gmc4CY62c+Wfuu/0N2JP03+WIuvt81Vevf15vRfYPfG9WHXNeuU9evHjxIOtS1Wh4g8FgMDgRzAtvMBgMBieBR5k0z87O6unTp7fqI45zVOSqo2kB0w+/2VzRVa3O61RtkxtN51V1NFGZDsqEuV3otemoUN+7On9dCHf+v6oDmH87KGKPvNdJw66OvqL6yfbc7p7a7xBshzl3ba5C5vdAKgv9TyJozIB8/vnPf77TvoNXqo7mQQdJuXo6x3VJ65ij+A1zIW2kyR7z3yrQgPHkXDhYwGYojuUz+2hzeJeakX3t+sac/OlPf7pzXfrcVa3m06YskInnXfpG9rk7h78/+eSTqvqv6XZl0iRYjvb+/ve/V9WR+KLquL4ek4maO8JpuwkcwNWZ+W2Ko33Xtsvrpem46visZP66dKhVfcoV5Viuk83QgOtxL+Y9zTyyZ7kXTQrhQJ8Ev5mEuzPZrsijOYa+5tzZrXQf8XhiNLzBYDAYnAR+UVqCSWkzKdBvft7g6YjP72k3YS3GYe+p4a2qozvxPaVH0w1ZS3OSZ/YJ6avTGHJcea61XKQnAhKYv9QencDOOdb4TKmVWFWKtxM7++vQb2sWOY8mrl2VBuKaL1++vA2jt8aa7SDVoVnRLnPQheBbW7f03mnCDjxyJWgc5R2ZL2vqgJSuAjaBJUmUnXOAFN1peC6v5aCRPbo9zkWSB+7HXqKzU3g6bee+0jy0mfPIPqYvl5eXu0ErFxcXmzB+P1Oyf/Tfmn6XKG2t1hpRR5xuggPPE4EonVboe5g+0eeOjozv0Nq5R1ZlsLI9k0iwV1gPl3urOu5j5sJkDJ21zffYqrRQF7BoUg7OZbwdZRrHdkF4K4yGNxgMBoOTwKPTEq6vrzdEsin5mPrKiYUgz7F/wJKe7dh5rqX0VcmflCpMHs05SEtIDmmftmTjsjSWFlNK5FjasE3bc5a/0ScXnqXNznZvCp9VIdAc30qq7dZ4dczhcFja0p89e1Yffvjh7di95tkHJzujFXY0cdZA7WO1ZrpHmG1J22tetQ1VT1q1qqNknL5JfnPhTWshaIVJVo0/0UnR9JnGPpwdAAAgAElEQVS2cy3pI/3n02tpQvScH36zpaST2rlf/EmfOs3N5baePHmy1PCur6/ru+++q48++uhO/9Mn6HvJ2iZaYV7D1iGXotkrccac2g+HRtIRIaDJO4kcsGdSA/czj3NtYeiux75Ck2N8TtnIe9F9Y26Yvz2S9BXt2YqyLa/j590eLZ4J1R/qv6saDW8wGAwGJ4JfVAB2lSjO71VbYmETQt/phCR6S6KW/DqJ28njtgFnIrBLhzhRFmktJUjT5awi7jqJxFoZ0hLX7xKtTWXGp+3We5qL581RaOlzs+9rVeQ3595Rk3s+PGD/ZUej5AKmnvOEKbDok//3fqza0iOxDowdSbLzGdunax9r+vDs92NdOIY2vv766zvXz9/QDt1H+3izDxzDHDCvtmh08+p7u6PbA6vkYUcSd/6s1Fzuk9R9L3elaVZFbruSQj7X/bUlJNeF/cseoW9+hqW2ZksP/7Me7IdcS/pA1Lujgb2/8xnCdWwZ4X9+73y4fhZ6DfeoBl0Gyb+nZuvntfcs/yexg2Mvfvjhhwc9e6pGwxsMBoPBieDReXipNazyvaq2PgaTnj6U7DPP6YinLXEjCbgkRkqPlmJczqQrN4FEZVooJDxHNybsD7GkZ82raptf6Oilla+laisB0VckyT2Jmz55DjqKNmsBe/kwNzc3dXl5eRuJSIRd53ukD2g1ji7Lsa7ygbw3u3mytEo+HvuB62WUI5K2I9xYH/yNub+Zdxf2XNHE5VgsSXMdW1k6kuKVNcBWg9wH9mM5gtGExHkd5s0k0s6pyj6mP3MlpZ+dndU777xzGzXL/ZNzzP1uS4yJunP9V0VN6bd9u1n8GG2dPtGW80K7EmNYLugLUbxornmPEe3JmBknx0Cz1hUPtqWMObeFoaMjs4bnfd7d574/rel1eYGr8kf+P/eo/fQXFxeThzcYDAaDQeJRGt7NzU2rFaSk5TIV/Ibks2drXbEK2KaeMNOFJWAzMOQ5HIu0hsRjAuocF33jHKRZJD2kwPSLINHRF7fFnGZeEdKeSWr3Ip7AfT7QThpc5SDZDp9tIWnlnO8V8Xz33Xc3ZM8p9dMf5tBamX1QHVa+1a5ApiV59539ALNHVdVnn31WVdsyRzCGgG6eYCZibbme88lSe7IP3BJ4l6fkElb00XmT9m911+FYS9zpU7Hf2pqRtayqbf7oXhHPw+FQb9++3fhW0z/msk32T+4VbzUziOeJ75PAmPufMdIX1hZi5owdcIQ3zwUicR1hnn1gLdHSuEec65hzbGuTS7dhrci1ZL5WeZgrC0O260hOx3V0z3FbaFbE01XrskMPwWh4g8FgMDgJPDpK894GVVQTCcj+o86nBqxtWIJMiSQjp6q2bCIuoJnnO7LLBU1TS7Pt3FKFJcjkFzWjhrUb501le+7LSmLttDWw0gY7270ZFDyPezk090XanZ+fb3ws6RcxbyRzaD9mFxlmqY81Zf6ck1a1leA5lu/xn6RkD/sLfbNkitTescHQzqefflpV25w62s696rWzv8/5mFXHeTKvp9k5ugKwXTRr1bYQZ56z8r843zDb5NrMydu3b5eS+s3NTb1582bjP8xIWLN52LrR5Y1Zs3f0MhYF9mje04yJ9bZVyBHgVcdnCN/huzPXao7FWpPzF51jmfeGo0+5Dn1nHrPklTVlWwFWRbM91hyPv+/OXbGxdBHlzG1q8VMAdjAYDAaDwLzwBoPBYHASeHTQSoaA7gVMWI01tVhilbhqk0OXXIlZw4EtLtOT5VMcQONxmEan66MdsU4iTrOrUyVW9GtdAqid+nbud85+B//YLNBRi9lUsar+nHPiaz9//ny3BBH7J9vv6NRcfd3J79lvfrPZzMnCXUqDK37zybgwaZIQ3o2ZOcbsxWfnzKdvVCfnWEzd9IeAmKrjnjEtHOuFCS1DtZknAiecurAX1OSAk1XZq65qtc3+DoDJ69Auc/ub3/ymTQqnn1dXV5tAlI7cfWUW7dISbCJ3Wgy/s05pDjfhPOemiTb7lTBJ+MqM3I3H+9qpLl3wEqCv7C9SaFy2KK/jAB63lc8Dz8nq/u1Kp61M935GVh33kd1ZD8FoeIPBYDA4CfyitASkit/97ndVdVfKsEToN7ff6PmdpUiTxHYhzNZ8rMUgXaT05IRLkwRbik44EdLO0o4s2857f2+Kq2x3Rc9kySulYwe4ONBhT/pclVlyQEnX7n3O48PhsJmLHDPrbEnXEmIXgGCKNWvNXf9Zd6RyzzGSfWoS7PlV0WCk5S5Aw6V10IiQuB0Yktd2AJc1vwzacZCKgxaYzy4AwVI4nw6o6O5fa2hOOO4IAzIoa2Ud4LljjXSP/NxtdWkpDshakYh32tTKGoW23gVYORiGYBHSVZJSDLigse9dp0xkYI0LAZtwoyO8MEmBk+5dYDfX3M8+W186rdAarGn+OssM5yS93gStDAaDwWAQeHRaws3NzSaMO9/S9xFAd8nqlnwdLt7Z38GKtsbh6qlxIZ0gAa1CYDsaohW5qjWMzh9BX1ZJlemHoR37Jq2F8H+GaFvLtdS05ytw/22P78LRs0jlXhHP6+vr2zBut5+wlOnCvF05KkukTlrvElid7mLpufOPmdbIWpL9ddknwsBNS8Z9xBgyWRmpHwnblpPufvK9Rh+dumENp2vXftM9n4pTWUwY3yXjZ7t7e+fq6mpD+p5rufJtuwxV7jffY/bZuQBwtuV9a/+VqQGrjnOKb5hPEulN/VW1JSe3FYw5oI+phTIO2revcK/kF/AccR0Xps2+rgpP7/n37/O95v3EurBeGZ9xH0bDGwwGg8FJ4BeVB7JNNt/yLqpqX1fnp+iSC6uOUkRSfFX1Ev6KRqeTYlzaBVib6nyFlppXxWlzLKvxOWoupRgXqbXE7bayr7RDH1dz0WkFlsb2aHvc/z0N73A41I8//rhJ1M3jrS1bWmZOUopdEWK7jU7L8Joyb5bWO20NiZtxuGBmagDcLy64Sp+sjXZ9NBi3y2Ll3/bdrcgKco1NxuB910nr1qK8dzk3rSz0KX01e36YLDztfZJ9WBF1d1YiRx56zKv7teq4J9DG2QeM0TSCVcc9kmVtqo6WJvxvuZZofda07OOyFacbn32fLmKdfbMVivHQVxdozfbTp59970qZrTRWP1dzPYns9d58CEbDGwwGg8FJ4NHlgZ48ebKRMjppz9LzXlkg2/rtJ9jzi60iH/1752dc+ak6H5dzPnydjhYI2D9mjc5acf7tSE5L2Jaq8rdVfiPIvrqQqqVbR3xWbUuhPHnyZCmln52d1bNnz261tS4iDZ/DKh8LKTrzhuz/tA/ZvqKufy7t0kW+AkiC8Zk6D88+vu6azkl1lG5e131g3kw1lXRkneadx7p4aML5V6aP68bn+9N7kjUnL7A7Zy/C93A41OvXrze+tLxPO19m9mGVT5bn2KdpMudu77v0ljWjroQRzxLaxcfWRbui2Zgk3M9XCKgTq4h1Wy7yueM5YA85V5T93hWRXkWWd9HVflat8vHwd+Z3mWc85YEGg8FgMAg8SsOjTAdA0u5YVOxHAF0JDGtAtgFbiuoYQuwHcYRi9tvsCCtC5pR87JdwIcQ9KcZ+JEvcXX6ZiV6dT+a298qrOO+Gc1JrXflsgCP/sh3mb688EJF29h/kWt6nvdrvk9fumFuyffuZsj3npaGROOqs6rjnVxokn52fEe3QUaf2C3fRwb7HPO7UmG25WGm9IOeT38wY4vu2syi43I41p9y7lETK4rB7BWCfP39+6+PqosOZb1tGOIbvc887knt1nzqKPP+2RcssLZ0/dhVRmiTlBhqVnxV7rCNYRHyf2hrS5UfaZ8j/q6LMVds94ntyz3Ky0u79vM320086eXiDwWAwGATmhTcYDAaDk8Cj0xKur683lF+Z9LxyQq5U8aqtWW4V4NJR4VjlNrFsF2xh8yMmEgdu5DmrsGybTrvkaKc/0AbfdzQ9mKhsOrFprqt07Dn3uEFnyrCJxvOZpgW3vxdafjgc6qefftokdSfJtqvTO9CgSzC12cTh2Tb1ZP9sFqQvpE50+8CpODb18P+rV69uz3FY/n2Vx7u1tKnW4861pP8OHniI+d33RK5P/p51DO2SwOzL9elPrgXtZlrJyqT59OnTev/992/rBYI0DdKe0wK859M07L3o4BQnj+f9uQoa4lyeiZ2J38EipjrMdcHM6bVy0JQp7rL/NiHaXNmlW9j8yvU4ljXt2vW+dhBg5xbpXA45HgcnVt1dlzFpDgaDwWAQeDR59OFwuH1DI+VluPEq6XkVxFK1dd7fF0qc0oCDVkzM62tkHyxxW1JNCdKapB2xlmLyXBzZlmCdvN7RNVkjXgUGZNvWMu1g7sKfHUixIgTOebVTf4866PLysr766qtbSRQS5hyzk8hXwUt5jgMmgEOyOyc7Ggef1rA6qdIUTuwhNHKH/ldtNVPGZ1qyPXJs+mgN1taJquN96UAXS/R7JNxI9CYN3qOjcrKwA15y7r1vLy8vlwFPT548qV/96le3Y7W1peqoVRIYBEyknucwh07e539rXmnJ8nPM1cw5J8Pp//jHP1bVMZmcPpFS4OdB1THJ2qkMaFgml+7uJ+CAMcpU5T3tdCH6ythtychgQM+J771Og3cgne89jzvHlZXi9549idHwBoPBYHASeHTi+fn5+a1067dwVZ+YmrAmUdUng1ZtExeRJlJqsq+p82lU3Q0Td8FK+zroIwmhe+Nw2KyLiOZvfJLESZ+tjVYdJVVLSQ+h/LJm7DmxVpznOD3BdE5dKZGkP1v16+Liol69elWffPJJVd2VloH9YivS65RivWa2DpjGK7UIpGIn9xIyDz788MPbv9FM6T+frC0Scc4T0jgaF34ZF+jt7g2kWfpqbbHzqRG+b2o2F/51iaOcA/uZndqSWFkfTOSQzwmfk7EBXftPnz7dlMjJPbTy/9tP3u1PW1HYh6be2iOPdhpER2XmNBfGw57i2ZH+MbRCjsXC4NSmzi/r5wBrS1tcJ+fRc8G8ueSP/YDZN/pkKjOXJ8t2bN2gr8xJR+Ce2uj48AaDwWAwCDxaw3v27Nmm2GVqT/ZldWXdq+5KIiZIXiVBo3FRmr5qW9IFCduST1d00JFI1jRTEkHCsYTr6EnmIiUf+2xc1qKTPikOaQnI/hCXmMlzrNlZetsrf2Q/pv1c+XeuwUrDOxwO9cMPP9xKbmg5XcQWY/Q68XuWz0Hb91paKu8kYOYs28vr0g8KdObfljJpH392au30xcn2zMGeBAx8T3CMk+UTJh4GzAESflfA2ZqSk4lzfPap0VcnKaeGZ63zvffeW/phnjx5Uu+///7tPUjB3PRRrRKlTaeV+81ahQkOVr69qm0St+81tJ3Unjh2RQDdkQjw98cff1xVVZ9//vmdY122KZ9PPENWGix7NbVV9pNLCDkaFOS57AnGvHqOd8T6fk/sRWfSfvplR8MbDAaDwSDw6CjNy8vLW4mBN3hS4pjaB/jNnVIMkp8lH0d2dmV2LFWi/dnn0BWfdF5SSps+x3RDSHB8b80upWb6ZA0SCWuPUNu+NLQR2+FzTuz3sQTunDufX7WVGLs8mc6vs/LDPH36tH77298uCW0TSJmW1vk/NS6i2DiHdXG0WUeDx/5ytDF9QoJMH57Jc72/upJWLiSLj81r57azffuvgP1yVUfNjr4wZkvYHSnyKoJ0j7oOcB87VwtNI/c/fUBaf++995ak4VX/nV/GhVafGiNtuyyQtaguXsCa3IpqLPc2e8M5fIyrK6PEnmQt0VTpU5ebynXwK7OPvf+Y6xyffWmO6OwsCvTRObGOwO20cef92YfXlWXzs5d7g3V0pHbVcc+klWVv7yRGwxsMBoPBSeDR5NGvX7/e2MVTqkLbQxNxDkZXUshSqu3G1vxSQjDzRUrHVUcJIkvKIEUgAVua4P+OiYRPxmnNp2N2WRE/I8nZXt4d6+KnLqSbfXXZoZUNPa9hyZf26WNX8JHv6NOLFy92C5Z++umnm3y4Lm/IOUzWRLLfJhS3r4b+s+bdmDkXKdqsEqmFso/sn0A77Hw3ZtRYFVnt/DAuC+Pip/ye5YFo13lkvp+6HCev6crflLDvHW3DuXtdNGBqzyspHf8vv6Ppod1XHfcKWoZ9WyC1J2vCJt22Vtj1b0UI360l8+HSQoA2Mjqc55l99fbpe28lWH/W24w4+eywBcFaqecgLUOO32DeVoVo8xz64vJHHJv5leyvrozbfRgNbzAYDAYngUf78N6+fbuJSOoYSfh0CRzbxRN+u1t6X/GtVfWsEVXbPJKqLVuG/XH2GVYdpSPn3ZnD0cd3fTSTg/PZqrZMGrZb7xWAXUU+db47YC2UueFcJLAuKovf3r59u9Twzs/P64MPPthoaSnNIrkhzTmfrFsXcpjwEzFGzrX/NMfOnHqPcg7/Z17eKgqU6zO+1Appf1XCCvj3qtrkvHY+jaq7lo0vv/yyqo575+XLl1W19eV13I2sh/2ooNtD1gps+en4c1lrNIjD4bAbaXd+fr65b3LMtkSYq9M5t9lP5tbPM0frdprJqoyWozerjnuST0frdrED1sb5ZG73eCptDeA+dSHa3Kucw/o4h9TWuLScAWt0tijl77ZGOWLWz4Sq4/rnHt3LS06MhjcYDAaDk8C88AaDwWBwEni0SfPq6mpTRidVcBNLm3Kn7YSqkjtR1eHvGSRj57Bpe7pAF8xgXM9OaRNRV23NAasEVzuI81gT87pCcI6LvqHSO4l3VUIp4bB74ICObMfBEE7K70iqHwqo6XJc2Qfag0zX1FhdMBHUS5jiaIMxO0E7+8yaOmkbE3cXWON1Zx2cSJ0mP5MgsJZ22HdpAvTbqQtcz2bKqm1wCiYzB8B0ofMmGrCJyUEt2beOoDm/z3l0UNte8jD7xqWYMh3KARk2TzKn6dpYVWoHJobPfeLUBdqnhJGJs7v2ncJgEo38zaZMB7OY5Dv7vwpa6Up++ZnuZxR95pw0qbpdm/L33gF+5nMOa51pRvTRaTAPwWh4g8FgMDgJPDot4eeff96Q+WaSrZ3rSMuW3lJ7WpWVQFKwZNpplA59RoMwKXLVNmjAVEiWarq+WLsxQW7+jvZhSddaWkqQSP0OC/a4O+o00z85/NwJoXmOQ4ktJe4F8twXJnxzc7OhKMpxrTRha1UpKaKtozE4cdWUaPye88E8OHWho6OiPdNPEV7fBYL4eiZoNuUcCcn5nTVsWxZSAuY7Plck6V3It2ndHIDAvkytwDRbpuJyAdyqdUHbDmdnZ/XOO+/ctoM2k8EW1l4cTNbtX+B1dkCYnzFVW6sTc8y93pUE832yar/Tnm3tYh2sNXYBaSvLVTcXzK3bzbSXBKkdVcd72ZrzilLNf1cdx0tbLrtVdbxf0uo15YEGg8FgMAg8SsO7vr6uH3/8cZPYmtKAJWokICTwzo5Le7zVkTLsP3JCaAJJwJoD1zPlUGKVJpBwIqslk1UqQNU27N2anRNfq9b+EEufe2S+9rc46b8Lf/ece5xdWaeHhART4gWJsKMUQwMwNRVJxdYY8u+PPvrozrGrZPXsK3PGfkvtL4/tUkz+8Ic/VNVWc3BZomxnZeUw3Vp3jH1qtEWfu7JNpu9yYr9LwFRtpXITRnTpCtbsgMnAOw0vnw8rKR3SeofZp3VgVWLMJBmpKTiFxBYEp/Nk+oUtH/bHMdY8xylbwFppak1OQ1n51vdiJTh3pXmldcDPL6cSOL0s946fjX7emMwij1mlW7lEU/YFPDQloWo0vMFgMBicCB7tw/v+++831EspxTiJGikKqWUvutBSQ1fShX74evghLNHtSbEmyAWdjRsJ29F+jmo0XVRiVaTWPr1s17CWaJqg/Ns+SidNdz43kwcDr2f2oUso7XB+fn4rlXNOFrs0FZV9HR1xraNzkQhXhABdlB5YRaTlWlgiZTwulJrwOlg7cLQk2mP+zZwwXvt9Umo2ubvH473Z+eOYJ2t2Hek3Y7f2l2tbddfXb8vFzz//vCupZ3S490X2wdo4+6GjfFsl899XBDmPWRUY7iw0Jiuwn7QrGmuNx1aQjm4P+P60hYy+d6WlHC/hfd1ZW1xCraMuq7pLNsE8mZLN1oK8TucLX5HWG6PhDQaDweAk8CgN7+rqqr777ruNxJ12cTQ526sdLbmXO0F7zrtCqkgpzqStlpZtt2YcXXuOrEqp2dKr7dSWgFKzWBWJBPzf2cOBiZ+tgaWE5/wUS86dBruKGFtRGlUdJUMkuYuLi6WUjg/PY01txkVvLSV733XfQeKML89j7fyk1ohc9DS1Qs7pfHVVRw2io7DyONxmR0flvtg3zrpkpKU1B98T7Ou9SFJHxrLfujFYs6dPjpTO/U3/UztcSek3Nzd3igt3pNdoj9am6SdRtF3JrxUx9qo8Ff3Nc2xZAp2v2rm07kdex1YN5rDzbfn/VdHtPfozX88WFD/nOs3SFIqsl/OBE7TLOda+u8jVzNsearHBYDAYDAKPZlrJ8kCWgKqOErZJZtECOn+VJWDbdS35pS/AuR8mdbUmVrUuV2GWia4Q54rAuruOf6MN+mjJPqVBa4HWvFxUcU9ydSRh5/exb83laDqp2r6UN2/ePNiW7iKrVcf8M0etrrTd7A/HIslD+Oz1yrU3c4fnlOum38f9d+RjF7Fof6K1RK91SumrHFX66jywPMYRhI5KdCSzr121zQNEs+hyVJG4GaejM7soR0cqd4BphXkzwXXVcQ3tn+e5gyWh04CsDdq3Sl+7/nOM90xXWsqRnI4C3YsK9jPiviKriZXVa4+lyfuZPnp8nX8b2O/PHk3frtfABY+5XsYo2DJzcXExPrzBYDAYDBLzwhsMBoPBSeAXkUcT4mu1s+poSiJ4BYJXzEIkoHc0PbRn4mQ7MruK56sE7S5NwCY+O/mdeJrtdLXrqrZmqjRL2FRrc0E3BgdjrELKO1NrR4WU1+WcjhzbVeBpt0vcd3DMnlkBs5TN4F3Sq4l/OYY+pHnDJhDMZx9//HFVbSmRutQJmxzZf1w3za42xXFdgka6xHqn79isb9NPmjhNqtuRBuRxVetgC9dYNNFD9smEw8wF93GugUmPmQP6xD2fa+H7dS9oxYnnXQ02u1Ac2OAK4VXH5wvjX7kcOpowpxQ5sb1LaXHI/ar+Xq6tzdEeL+hSuGx2XQWB5VqsajSuiK/zGennjo/pTKhOqHdfWaN8vjn5fRLPB4PBYDAQHp14nlWtu6AVk48i1fEGh+w3newr8mGkSRzSOKtTIkFK3QvtdR8tEVjC6s5ZEcxa66Q/eX2+s7N1RcWT11vRTyEtucJzYkXB00mf1uScaLxXLT2TvfdKvDx79myZ1Ft1lOawCpj6yCWacozsOyeCQzn2xRdf3Blftu//La2nVuC0mhUdVu5RB6s4aMDSbe4Da1wO1+60a6cEucySAx26NA+3i9bW3V/WJKxBMn+kneScoJHvkf+SlsD9j9aZwWtd0nb2ibGmRYH9xjlff/31nWMJwOueDzyb2DNOCAddMJmtNnvkyt4TXn9TcnXpUKu92lkLbP1yEJbHkPuOfex1h/6uK53mMm7Mo5+VuW5OaH/27NluAM6dMT/oqMFgMBgM/ofjURpe1X/f6CsJsmpbPgRJAenu5cuXd77Pdqx5mIi1sxtbajYFWEdHtfJtWcPsig469Nb2fhcEzXMdem3Jq7NFe8zWDrokckuZrImlwc5H6eRv+zczNJsxp5a7R4l2cXGxoR9Kvw5+MLQ1lwox/VD2wf1n7QhHp995PSfI+npOj8ljTblkH2euh9tZFc41IXD+bQl/Vcqm6qi5uDQXc+LUlrwfHM5vbe1f//pXVd3VsvkbjWiVtN6Ni77eRyv29ddf32pgIO9pE9p7nkD37GBdTFbuczM9xWkCq3D97KMJDpiX7j7KsWe7KyuUiTdyrL4nnfCebdqi4LY8ltTWVuleHm9XMom5XxVDzjlhH+T7YTS8wWAwGAwCj9bwDofDxgeQ1EtIlbb9IiGSXNxFBlkiQXK0nTyx0ri4Hn3sSFzvK9fTRWWtCr9aq+qIoK01dVFSPt92dkv8exGllv6dYJ8arZN5V4TAXUK1IyU7YBnA7+LI26rj+qKVoU0wRvqU/faarXy4JKTjH6za+hzsS+2kRo/RPqIuapZ+uyCvE5w7v6b7ZKtAR45ua4D36Epr9LVzvN2e8TkrwvEuwtdlj968ebPU8i4vL+uLL7641fy7MdsvRl+IGseX24H+W7N34dzu+eM94gjs7ljPoffq3r3s5PU9wnbfs75HOr/jqhyYYyRsWevAejkKufNvexw8jxx9nWBfdXO9wmh4g8FgMDgJPFrDq9q+jVMqICJnReaKfTylHEdqWcpwtFxXxNG27jzGWNnZ9yh3GMeq0OJDS8xXrcv0dIS8K/Jgk63utb+SgHIdXd7IWnyXB+h9cHV1dS/Fj7XqBHOLLwhbPXumKyTKfut8JtlfxkF+XlXVP//5zzvj8Bp341xpTcwxUmdqTW7X+V7e912UnjWY1fq4v9l+F8nr8dInNC/7lxhnRkh67M5JZY3S3+P99NNPPy01vOvr6/r+++83UY35DKE/jJE9wlx0tFY+xt93Pi6wigNYrVP2d1UQuNvD92mDK8LrhP3w9q1lPzzWVWR3t+88B7YOdeT5pouzdcW+5BxzZgIMefRgMBgMBoFHaXhIWnvg7e0CkrzlrUlUHSV6k9laU0E666QmYN9XF93kHCb7KVz6I39bFfO09Jb96vxf7pOvhxRrFosVG0nno7QkZOkvfS620dvP5OPy/IzWvU/S2tNmPO9IhOw5GDu6HDDg9bbPK7UZ/HqvXr2605b9JV1pqfuK+OZ6WBvwnrWFodPW7G8zK0sX+WlJ2z4U5wd2Y16RspOXV3VcH/z3q8LK3VqnhWavPNDFxcXGP5bPAWsc9shulGgAAAQLSURBVHHRtw8++GDT/qrEj8vb7D1DnJe2l+NIe+xj+taN36Wc3K4jr/csLLaCueByHmN/ny1bnf/Xz28zMXXR6rSDJsexWAt4N+CLzbGnv7Yjze4wGt5gMBgMTgLzwhsMBoPBSeDR5NGHw2FjjsqwY1RrkjRtJsQ0kuY0QsVNl2PaqC7ggWRaJw9z3S54ZRXS7xD3jhbIAQ2Mw2bRhMfhNq2iV62ppDyfmCXSLLWqhm4TRkfICuykxkSdJm3XRrsv+fPs7GwTotyFxDtRmWOysjpwUEU3H9l2gjUjZP3LL7+8c/2HkPl633VpCU7RWSX1ez/kOa6Rxv9OZs7+e5wOQOD7LpiFtTXJhGvpVR3TR2wO477GFN3tUcx591GLpem6q51nE69dKh0Js820HMOzy26KvVqXK7dB3lcm47C52sFTeb7PNVmH64Lmb6u0hy5I0Of4mL1UKrtB6LvnORP4v/rqq3YcmDA7wgunpwx59GAwGAwGwqODVv7zn/9sHJldiLKlxlWpkqrjG9vlReyodSBK1VEC4Bw73TtHqaUWh+vaeV211eRWGl9HQebAFocD+/v821qtNYgulcISqzXWjlLKsGTfjcvlbfaShw+HQ/3000+31oCuCvbvf//7qtruIdaWc1NTdlCFK7OvtPeEqcu833JM1rSsNXUE0JZegSX8juS3C+VOWJtLOKDGQQRdIrAruZvYutMKreVYKzURcNVW49qjh2LvuPJ8RwTOnGINQFPdI9nmGPqSz7McR6b3dDRwCZeEyv5yXebY6Qj5HLDVY2Ul6ALt3JeVZasr0bWqXg46IgJrhytChWybdVqlK5GalHOPVWBF2biH0fAGg8FgcBJ4tA+vCwHNtzJvc6Rwk7l2b3mXEgJIWkgRpqrJ9u2n6kKX3UdLz/b7pHS2KpNhH1Lno+z8LHndriCrNTn7sfZSHFYlPKwhd8UpPXanWeRauzDmXhHPm5ub2/DyHFdHwXZfaaJuntw/U1ehJeYar1IKfN1MdMcvtaJEclt5jEPnLbVbu0qs/H2mXUusSqxwPe63PNcaLOei2dHH9OVag3DR2E5Dsr/qyZMnS+sAtHR7aTwmU+eaLlKd+9zUiCaC97Mj58YWg4f44/aem4nOV+i9aoIDa7h57Ko4tseS17YWaIvSimS6aruH/MzMFAMfY+sX91taR3wPdFrtCqPhDQaDweAkcHYfFdSdg8/O/k9V/e//d90Z/H+A/3Vzc/NHfzl7Z/AAzN4Z/FK0e8d41AtvMBgMBoP/qRiT5mAwGAxOAvPCGwwGg8FJYF54g8FgMDgJzAtvMBgMBieBeeENBoPB4CQwL7zBYDAYnATmhTcYDAaDk8C88AaDwWBwEpgX3mAwGAxOAv8XTGMhTsbosj0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1597,7 +1566,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4betV1vl+++zT3P7cLrkJkERpRMESUCTYoGWDYhQERBMFEkKqUk/ZK9gUIKDBLmopIFqgRBFpYheiKCCtDwUKIqSAGBECIc1Nbn/P7XLOPXvP+mOud++xf2uMb8517rkJsL/3efaz9lprzm9+3ZxrvKNt0zRpYGBgYGDglzr23t8dGBgYGBgYeF9g/OANDAwMDJwKjB+8gYGBgYFTgfGDNzAwMDBwKjB+8AYGBgYGTgXGD97AwMDAwKnAs/6D11p7RWttKv5+x7NwvVe21l5xvdtdcd3WWnvrZlwveR9d8+tbaz/9LLT7qs04PvB6tz1w7Wit3dFa+5LW2ke9H679qs59/FuT4z93890PPgt9+c+dvsS/e67T9X6stfaG69TWhc0a/obkuze01n7selzneqC19sGttX/bWnustfZIa+0b18xpa+03tdZe11r7qdbak621n2utfW1r7QPeF/3uYf99eK3PkPQOfPbmZ+E6r5R0VdI/eRba7uE3S/plm/8/W9K3vo+vfz3xLZJ+QtJ97++ODJzAHZK+WNLPSXp/PRg/TdK9+Cy7j1++eX1xa+3Dpmn6qevYh8+VdEt4/1ckfbjmZ0zEg9fpep8l6fJ1auuC5jV8XNIP4Ls/J+n8dbrOM0Jr7XZJ3yvpPZJeprnff03Sf2yt/dppmq50Tn+5pBdKeq2kn9r8/yWSfri19r9M0/TAs9j1Lt6XP3g/Nk3TdWcj7wu01s5P07S04V8u6WnNm+STW2sXp2l65Fnv3LOAaZrul3T/+7sfA78g8aPTNP1c74DW2i+X9Jsk/XtJv0ezAPiF16sD0zT9JK73oKTL0zT95zXnr7yf4/V+fMcuXhOus1DwTPEnJN0t6ddP03SvJLXWfkrSmyR9pqSv7Zz7f22eIUfYMNc3ad4Lf+dZ6fEaTNP0rP5JeoWkSdKHdI65QdLfk/STkp7QLEG+UdKvSI79YEn/XLPkcVnSWyX9nc1337+5Vvz7znDuiyV91+Yaj0v6j5J+Hdr/es0S9G+U9IOSnpL0txfGeKOkS5qZ0e/eXPfVyXHfr/kH8RMl/aikJzUzqU/GcR8W+vGUpJ+R9PclXUz6+tNhDh+S9Nrkuq+SdCjpQ8M8fOfm+Cc37X8Fjp8kfWD47LM0s4onJD0q6f+T9KoV6//Rm3l5aDOWt0j68+H7JunPapYEL0t6l6SvkHRzOGZ/058vkfT5kn5+049/K+kuSc+V9C83a/Dzkj4vGf+k+SH8xs3aP7C5zgUc+wGbeX1A0ns136R/uGjvYyV94+a675L0dyWdx7E3a5Z0f07SFc379S9IauGY37Fp7yWS/oFmZnK/pK+TdNvmmA/R9t6eJH3m5vtP0rxfH92M7y2SvuA63sce84tWHPslm2N/taT/KultcbzPwjPmm7S5D5Lv/tSmL79us/aXJH3v5rvfvNmb79zcB/9d0hdJOoc2fkzSG8L7379p87dL+seSHtb8PPpHcd8mfblYrOGf2nz/Bs3EwMd/lNd4s7fu3/T/qyWdk/SRkr5b873wPyR9enLNj5P0bZt98aSk75H0sSvm9EckfWvy+Zskfcs1rtNlhWepZjbre+PyZnzfJ+ljnq298r50WjnTWtsPf2fCdzds/v6yZonwj0q6SdIPttae44Naax8s6Yck/QbNEuMnbc7xMf+75gfxj0r6+M3fH9+c+9Gaf2xu1czGXqFZRfSfWmsfib7eIekbND/4PknSNy+M7VM1q1i+TvOP6L2aJZkMH6ZZwvlbmtVD75H0r1prvywc8wGaHxJ/UtLvkvRlm9d/V3VgmqanNKtxX9FaO4evXy3pu6dp+p+ttdsk/QfND9/P1jzff0XS2artjY3mn2q+uT5Zs+roayXdXp2zOe/jNattXrgZy0s037hRl/83NM/Ft0n6fZv/Xynp37XWuD8/R/ND6v/YtOd+fYuk/6Z5Pr9D0mtba5+YdOkbND/UPk3Sl2/a+crQ31s033CfKOkval7XN0v65621Vybt/XPND5pPk/T/aJaK/1xo7+ymP58j6f/WvJdeJ+lLJf31pL2v0LwuL5P0Gkl/UMfS8Nt1rLJ7jY7397e11j50Mwf/U9IfkvQpmuf55uQazxS9+1ittaZ5X/3YNDOjr5P0As1r9f7Ev9T8w/WpmudPmk0QP6D5ufF7JP1DSX9a895Yg6/WLJz8Qc379rM136sVHpP0Ozf/f4WO1/CbFq7zZZp/HP6IZrXiqzTv29drfjZ9quYfjW9srb3AJ7XWPkHSf5J0RvMe/EOSDiR9b2vtwxeu+as0C+PET26+2wmttRdr/pH+7+Hj12zG8tc133Ov0rwe3efKM8Kz9UsafsVfoVyq+f7OOWc0/+A9KemPh8+/QbOEc0/n3O/XRoLD52/QzDJuhcT1iKTXh8++ftO/l+wwxu/YtH1u8/61mzY+NOnbFUm/PHz2vM2xf67T/r7mB8Yk6Vejrz8d3n+oZib3svDZx2zO+wOb9y/evP9VneudYHiaGcl917D2P6D5h/uG4vu7N/Pxj4o983vC+CfNN8uZcNyXbz7/C+Gzs5rZ2dck4/lKXOeLNdt7P3jz3mzgN+G479UsxOyhvS/Ccd8m6c3h/edsjvsNyXUvS7pz894M7x/juH8o6Ynw3izvFTjupZvPb7pe921nT/Dve3HcJ2w+/9Ob93dt1vifPIt9W8PwvnihjbbZZ39sszYXwncVw/t7aOPrl+4THbO8z0u+qxjev8Zx3735/PeGz16w+exPhs9+RNIP4565oFkLUq6HZo3VifsqfPeVkh7ccX0ubPryNkk3hs+/X9LXPlv7Ivt7XzK8T9WsAvLf58YvW2svba39UGvtUc0Pocc1s75fEQ77RElvnKbp3ddw/U/YnHvJH0yzje3fSfotOPayZvvDIjaeR79d0jdPx4bcf7p5zVjeW6Zpemvow72aH9BRMjvfWvvC1tpbWmtPabYNfs/m61+hAtM0/U/NqspXh49fLendmhmANDOSS5K+prX2R1Z6Yv6wpLtba1/XWnvJhiV2sWFLL5b0z6aZfWb4eM0/UF+Pz79R8w831+U7pmk6CO/fsnn9dn8wTdPTmtWGH5Rc7/V4/02ahauP3bz/BElvm6bp+3Hc10u6R9tzT8ekH1dYR83q7Z+R9EORFWkWkM5pVjcttXdja+2uZCwRP6r5nvnm1tqnt9buXjhekgSmttae/8k6eR+/Gt+/fNOXb5CkaXZQ+PeSPr21dtNCf8ge28o+rcG/Sa53Z2vt77XWflbzPf+0ZuZ1TtKLVrSZrdfdrbUbnmFfif+A92/RfH/8R38wTdPPazYZfJAkbfbAx2i+l1pY46uatRifcJ37mGKzhq/TzApfNk3Tk+HrH5b0Ga21L26tvXiHPXjNeF/+4P3ENE3/Nfz9D3/RWvtUzQvzE5rVOR+n+WZ6SLN0YNyhbU/PRWwm/XZte5dJ84/BHfjsPdNGBFmBz9I8j9/SWrvYWru46eNPSPrM5KZ9KGnjsk6O829K+kua1UEvkfTrdazOuqA+vkrSb2mtffjmR+cPa5ainpakaZoelvS/alal/kNJb2+t/Xhr7fdXDU7T9F2a1SEv0iyFPtBa+45EFRxxh2apubdenvcT6zLNDgUPa3tdHsb7K53Ps3l6T/HeKtY72JcN3h2+j+Bach2fo9nm/DT+7J1354r2pIU139xLv1vHwsN7Wms/2Fr7zdU5rbUPYb9WCj8/3rmPb9S8T79P0uVwP/wbzerVT1to+53o0x9a0Z+1yNb19Zrvj9dqZtkfq1mbIS3fZ1K9Xtfb0zLb309N2443cd/bzPO3tb3/PlPbe+8Imx+ly8pVi3cof4ZV+CrNe+Kl0zTRK/UvalYFv0yz/fmB1to/aK3dukP7O+F96aXZw0s1M58jO0lr7YJm+h/xoE7af1ZhmqaptfawZimduEfbC7j2x046dr+mFGb8Fs0qsV3wUs0/Un/VH2weHGvwbzXbe16tmc3dKOlr4gHTNP03SZ+2kag+VtIXSPqXrbWPnKbpLUowTdPrJb2+tXazpN+m2fb2H1prLyiEg4c0z2NvvTzv92z6Kkna2CBv12431ho8N15n816aH7Tuz0cn590Tvt8FD0r6ac03dIaf3bG9Ehuh5Ls2981v1GyX/fettRdO05T1++06ZrYGBYJdYVv2b9f2Q1qa75V/1jn/d+mkLflnnmF/Ik7s0Q1r/m2aTSZfFT4vhYRfZHBIxl9Vwm412/J6eLOkj0g+/1VaGU7WWnut5ufQy6dp+hZ+P03TezXbs790oyn7/Zp/APe0rTm4LviF8oN3o2aqHfHZ2mag3yHpU1prz5mmqYoRu6zcWP99kn5va+2maZqekKSNau4lm3Z3Rmvt12uO//kqSf8CX1/Q7BX2cu3+g3eDZkks4nPWnDhN00Fr7asl/RnND/Jvnwo38mmarmp2DPpLmufhV+pYTVi1/7ikN24Ywt9W8cM0TdNjbQ46/qzW2pdtNjfxg5rH+VLN62O8TPPaf2+vL9eAP6jZiG+8VPON/0Ob998n6VNbax83TdN/Ccf9Yc0sL/5YroEdcR7dqJufKSzRlyqzzTx/12Zv/yvNDkPZ+lzW7EF5PfFyzd6An6ZZ5Rbxv0l6aWvtg6Zpent28jRNb7rO/enB6tWj+2zjJFU5m10vLK7h9cA0Te9urb1Js83/C66hiTdK+vOttXtsQmqt/WpJv0az2reL1toXSfo8SX9smqaekOP+vlPS32+tfbpm79NnBb9QfvC+TdJXttb+lmam9LGajceXcNwXaVbd/GBr7a9plp4/SNLvnKbJG/XNkl7VWvsMzRL0pWmOb/nLmh+w37mRPJpm9cV5zdLwteDlmm/sv7HRoZ9Aa+2Nmm0XfxS66yV8u6RXttberFnK/QzNas21+BrNKtGP1MzeYp8+RbMX5Bs0e3bdrNmwf0nSf1GC1tqXaVaBfI9m1dALNK/Pfy3Yg/FnN+f8QGvt72j+Af5gzTfhn5ym6f7W2t+V9HkbW+W3aZYq/4rmH59vL9q9Vvy+1toTmu2cL9bs6fu6YFP9Ws1evW9orX2h5lCDz9SsAv7caZr4EF/C12l2wPmezd7+cc32oQ/RbAv7vYlaqod3aXayellr7Sc1O3W9VbOA8PGa5+/tmp2B/i/N6uRnI7nDFoIt+6unafru5PtHNAsOn6nZ0/D9jZ/XJgyhtXZJswfl/6mTAe3XHdM0PdVa+znNGpb/V5tQmo4A/0zwJyR9x+Y59M80J5J4juZnyaVpmnrPvS/XLKS8sbX2pToOPP9JBZbeWvs1mh1S/sw0TV+++ezVmp+3/0LSj2w8NI2HNs9jtda+U/N9/ibNgtKLNYcO9Txdnxmeba8YrYvDO6OZer9Lx7Eiv0bzDUsPvg/R7Ir7oOY4qZ+R9LfC98/XfOM/pu04vI/XcdzK45offGkc3opxndv04ds7x3ySTsZKVR6kJ8ap+YH1es0Pt4c1b7CPi22Fvlbead+l+eF3Bp//yk3bP7uZv/s0G99/XTiGXpqfrJkF36tZQn275h/V0ls2tPVrN+0/qtmo/t8VPNQ0Cx6fpzkO74oW4vDQdhobxnkOx/1GzSrfxzdr14vDe3Az1l4cHq/7GklX8ZnDbf7Hpr0HNQsWX6xjr097af7W4joxHvLTN3P4tPfDZlxv3Oyjy5t1+mZJH3Yd7+NuHJ5m4XFSJ8ZL84PxLderT6HdNV6adyXfffjmPnl8M2ev1Ww3nCR9VDiu8tLks8PXurjQ39+pOXzqitbF4f0BnP93JT2etPuItj2RP1rSv9bsGHdZ8w/9v5L021bM64dqvncf13z/fpOk5+GYj4pjCOPIPHonzONf0uy48rDm5/6bJf153xfPxl/bXHjglxBaa3dq3th/c5qmL31/9+f9jdbaqzT/QP+yaSFLyMDAwC9d/EJRaQ5cB2xckT9cc/DspDlrx8DAwMCARnmgX2r4FM1OGR8j6bOmZ8cuMDAwMPCLEkOlOTAwMDBwKjAY3sDAwMDAqcD4wRsYGBgYOBUYP3gDAwMDA6cCO3lp7u/vT2fPntXh4Rx/69doB2TqyL29ve5r/N/nxu+yNrOcskvHPFvnrPl+7XWu97m9Pi3Ba9prn/bfaZp033336dKlS1sH33TTTdMdd9yxdU5ca15r6XXpuwzXMsdr29kVa+zn2Ryv7U91Ll97x1Sf+96P8GcHBwfp+954W2t67LHH9N73vndrIDfeeON08eLFo/auXJlTqD799HEyoqtXr6b9XHNvLe2hXe6t63XsEji+63VOtUa7fF7ts+z3ovot4W9Bds/7u/39fT311FO6cuXK4mTs9IN39uxZvehFL9ITTzwhSUevceOdOXPmqBOSdOONN0qSbr311hPv/SpJN9wwZ9m5cOHC0XXiq9vMBu/v/Fn13q+xHbbhz/k+/s9jjN4CcU7YBj/v9YXj87l+jf/3+lTBG84PKZ977ty5rT76GD9srl69qs///M9P27148aJe/epXHz2s3J7XPvab6+9jfE4cq/vjvcO59Gt2s1dr2hPODLez5sFq9G78+Hn8MeGPB6/T6xt/aLxO/pyv8Ri/+rp+7/W7fPk4QYz/9+tjjz0mSbp0aU6U9Mgjj0iS3vve4+xyvma8B771W1l8YMZtt92mV77ylXrooTmpz9vfPmcmu+++YydkX+upp04W5vAeyu6T8+fPp8f4fW8fLK1D9jk/4+uaNTV4f+7yI8ZnY/YDxOcA32d7lUKH33vd/RrXyP/7t8R7yL8pt9wyJ77xvR/HfPPNcwbJO++8Uz/yIz9Sjj9iqDQHBgYGBk4FdmJ40zTp6tWrR7++lAIjMiklfr5G0s7YGd+zvWdL1VTRc0r6GShxV5/32qiofqZi8v+ctzXgdarx7orDw0M9+eSTR2OllJldgxJopm7jPFSMqydxV+itR7VmayTt6tyeyqda/+y6/t9Mhfcn7zPfx/Fcv1b7PGOF1d404jlmij7m3Llz3fk+PDw8Ygh+/riN2AfeY9QSZZoQswcyPaOnDq3usV3U4pmKjuBzrnqW9K5zLWywYm2ZdoD7iXuGbUjHjI57xmv85JNPnmg7fufP3vve964yD0iD4Q0MDAwMnBLszPCefvrpo1/YaLszKsZD+0iUYtbY0KrPK/33GqmG9rBdHCB6hn/2sWJJawzqFVPuoWJjbCtzNuK4fE7GGjm3ayX02E7so8/3d7axED1bJ201PVtuNT+7OBeQgfWcOQzaQXj9OI9LRvxsHqtxeE7Y5yhxL9nuMobh58CSk0J2TmyfrCXi8PBwywkm6zdtgxx7ZsOj78AazQjvj9hP6dpseLQhRlTjqcbbux4/z/Ys18zz6+tm2j1qb6gl8LnxvvYzIdvH0jHDizY8jvny5cvpGDIMhjcwMDAwcCowfvAGBgYGBk4FdlZpHhwcHNFZqyUyFVPlPJC5+FIdVbnrZyEBS6rMNXF/pNEZva7UWmtiW5ZUC2vUH5X6tde/Ss2WqUmpTqpUtlkf3X5P/TpNk65cuXJ0TKYOz9yks2vH9beqw2opv6cKM1OlL8V7VuOQtlU9a2LOKpUf75leOEwVjpKpmquwCu6HTC1VhSHYjTyeQycC7ovMhT0zi/RivfwX+9hToXtevC/8GtVpDo3i3tnFuaNy6snWculZmKk0l/rCPdR7NvI6PRU631NlnKk0vVf8HR1SeI9Ix+th1Sb7moXBGFZ3Pv3008NpZWBgYGBgIGLnengHBwdHUllmZKb0WIUYZO7BlmwYYFwFoGefVcHDEZS0lhxQsmOrtjJJq5K4e046lQRfOS1krICoXPd74+u993W8PgcHB10mfPXq1a7jTDRMR9DN3hK5tC2lW2Ks9l22dyrnlWw/eH+ToVDbER0qOA6iShQQP+MxHGfmBMbvyLyMLMTAknXlVBDnxmM3++MezZ4XuzC81pr29va6ITJkL95LdEyJCS8cuMzEF2scgzLWGtHbO0uOfRnDq547ZJJZgDa1HpVjV28cZlhkeNma+liyM/YjtsPkBb1EB3S+unr16mB4AwMDAwMDEdcUeF7lrYv/V9JExoAqO4slAjK+jB3yXDKjnsSV6Zaz9/HYyl08Gx/7Us1NT0pfSnt1LWwtnuP2K8k1swdS8u3Z8Fpraq0dnU/9vlTbZjhfkeHRRrO0Z3phFZzTbH8zXRLXx+PK9httGWRvPRbKdGt8jZI92/N3ZHiWyOOamqVViQc8/mgLq9z6yRwim/Na+7PWWldKP3PmzJY2Ja4l04GZtZnF3XbbbZKOUxxKx2mrPBafUwWkZ/ax6h7LQieYA9RtMOQjW38+cw0+b2KqPt4LHofH69deWkI+G91X2uuk43vCtjW/9z3hvsU++jo+9vHHHz/RD/cx7tFeQoMlDIY3MDAwMHAqcE1emj3PvYqRUNrM7BQV86kkleyzNQyvksIqj7vs2GoOdmFrlXdqnBNKyVU6qgy7BNJTL07pvyd9R2a05OnYYwo8ZinoWqptm35fJQiOn1UB9BnjZOA1GXFvrqtg5V5KKdqxKZ1n4yIrZLvc53EPLXn/ZiyetlwGQWfX4T3WC/ZurenMmTNb93p8Dridm266SdIxs7vjjjtOvEaG52PJ8Gj3o/Yg/l8xIbIb6Zj5+NXnMGVaz5OYWgcyfI879tvjsf3S42bC9dge14OpxDyG+Iw0O/N3TgjtZOKczwgzRrfh9+5PvAcZ/L4LBsMbGBgYGDgV2NlLc5qmo19/ppKRtiVR2lLWpqGK7dMDLko9lc1pjY2rSsGVpX5aSsezJpVZ5cGa2YrIJFgOhJJxLz3ZGq/UyhZBG06mS1+bBq21tpVSKkppWQqqDLGvlqBZK82fW3qmV6O0zfAMthXnlutB77UssXFlDyWzy+4JsswqLVi8BtNO8VyWa4l9pcclveWy8fk6tLvQUzJLiu32oxcm0VrT/v7+lodq1A6Q8ZjF3HXXXZKOGV5kQGQ69Nas2HT8n/eWx0OW4zFmY+ecZM8q7hFqMDIvVI7Pr54DHxsZHj0pqdmiN2W8V8kO3RavE+eRz0B6aRrR/tvz2l/CYHgDAwMDA6cCOzO8iMxDzFIFi3by2HgO9cX8da88xaTjX35LL4wPyST7pQwbGQtdirfpsZOezbPXdkRlq2Kf4/9VHFZmK1oqKUTbXjx2F0mrKuMSQdbqa1pazpJQ0261lJlGWk5w7r5mHsW0LXBcWXwZ+8DyPb4nMk9Y9omZarLq3+xLFduUeU/yleyj533ovppJ2C4TGZkLttI7OMM0TTo8PNxKYJztVT8HLl68KOmYXWTxbPQU5v7lXGcMj+A50YZXlfTpxQyTFVIr4DmlPTL7rip0G8F1514xc3XxXdvnsrFTg9DT6ti2es8995w494EHHtg6h/a9yP6XMBjewMDAwMCpwPjBGxgYGBg4FbgmlSZpdQwkpAuv31M9laXCopGdKgs6xMTPqDJ1n0zns5Q7MSWW1K/mS9UO1ROZys+g2q1y8shUqFRhVvW2suBRBgRTLRbnxNfuqTvYR87bUlhCpoKK7XGe/B3dmzMHDToW+NXqjyy8guvt+eilmuMepLo4S6NVhT9USRmy8dGV28dYXRjVvFQxepx0RDGylHZ0mqJaNu43hrAwwXRWB83jie320tJldTizSu1Z6FLsS+ZEYjVdte7ud+wfw6s8xrgO0sk9T7UtVX+ZWjcLc4rXp8lmTeiH581zEfeqx04zgveZ78FHH31UkvTQQw8dnUsVOfdMZvah05XV4HfffXfaj4iYcnCoNAcGBgYGBgJ2YnittdSlNEofdJiglJG5YEcX5whKBG4zSy1FV1i60Ud3XQZZ07EhSwtEhlAlYu6llOIcVOmb4rWr9GdVkL607TJtkEFl807jPterl8Isc4aJx+7t7W25O/cqhFuqrBIDxP5WQdZ0n46stgqCr9hBBOeF6xD3DqXwXpICnkt25Dk3i3rkkUck5QzPY7d07HOMjA2trfodz6HDExlEts/osLPE8C5fvrzFyOO6OE2YNTqGr505E1X3dJY2S8qZMDVZboOhGRyPxxz7ZPYUr0PHKWqJeuvF8TFkw9eJ+8L7yPvKDO7hhx8+8bnvTTsfRVRat8w5x+tC7YPP8bpGVsj7djC8gYGBgYEBYGeGd+bMmS29fq8ET4XMPsY0ZGvSa5GlVcmJYxuWvihxVC7Z8ZqV/Y0SVqbvr1zms3RlZJu0DZL5ZcyyCobP1obS+ZpAega/rkktRgYU59FjtE2FiZirRAGx3WpujV54Atchs6nZNkzp2BKwz+1pIbKkvbFvmR2YweQMbM5skyzxUxVYjmyNfeIcsM3YX7JsH0sbWfzfc7NUWurg4GAr0UU2x+yn+8+SNbHfZPAMss40GLTLmonYvT4L1eH+qp5VkTV5nhk8Xtn4Ixia5T6bSXpdbI+Lc/Lud79bkvTOd75T0jHT87nuY5xPMrsq4D0G//Mczn1WEoxMPyYWX8JgeAMDAwMDpwI7J4+2tCXljKGStJmKKSvZXiWh7RXIpFTJ1Dj0UPM44itLUFTBvfHaHF8lGcf2KY1VaXtif+n5RCaZJeOmNyb145m9i/akpWB5qU6vVmFvb28rQW68DlNesYxKZkekPYx2XttumSA4nkNGz7WN46SETe8/2zjiWnrezQIqj1v3J+5VMm6y0cyObrgdn+Oxc44yexxTPPFej+OjZ6LbpVdllpYu3k/V/rHvgNewlzSYLNl981zEvtIWSI9esqisrA3LQnEuMi0RkxbQxmnmlbXH+6ay08W+MV2c96pZWgwe97Xf8573SJLuv//+E8dUWpdsDnyO+2T2G6/nz5jI2n3NbO9MOJ8VNKgwGN7AwMDAwKnAznF4BwcHW6XjewUrKc1mNidKIj6GMX2ZlM5Er5XXUpaOjNIgvUIzb8AqNpCenxkoFfUSDlt8P1tZAAAgAElEQVRKoq2rKi3TYz1Gj7mShXqO6YGXzUlc056kFb18aVuRjte5YgZZbCA9Tjk/9BTLWK1RedFmUjrtZGQdWSo7pt2j5x3ZVbwe9w7tb3EsVcosxrdme8ftMTUWWUjmZU2POyNLJ5eluapS09mDkzGJccxmJh6LvQg9X/4+89L0sWTCtjUxubS0nViaz6qe96SPcZ98jG1pkeHRJsg54BrHPnLPVIVZs9g971Wn+mJcXJbk2czNr/SyzuINaWunt2t2X7OM07lz51YnkB4Mb2BgYGDgVOCaygNVxValZTuOkUnAfrXd5c4775R0LOVkLOu2226TtK1v79mXKo9H2iliG/QmqpgcPT6lOvk1bUdxHi3FkG1YqmFC3uj5RFsdM8rQLiAdS1KWzmmjWJPJoSdl7e3t6fz580cSHCXy2G/aAnr2UWaG8LEx7jL2MStrQ0bZK2XFGDfOl68br09bGW12XuvMNmWpn+w8S4ZscO3oLUcNQFwDStZMGmz7T8ZcKP33ykbRXroUS7W3t3dkAzVDikzY/SXjZqaQLFOQ7yGzGF/HJYUyTRbj65jhKfMo9n6mlsB9dKLkmFXEfaEd7Pbbbz/RJ7/GZxuzXLldes3GtWTMqK9Pnwi/9/NX2vbk9N792Z/9WUnHa5B5ZhuV12mWfci48cYbB8MbGBgYGBiI2JnhxVirLH7MoBcWf7Ezu5+lYkpWjLuJEomPsceRr0t7UJSe6WnUy+RiVDFMVSmjrJwFx05GGb2PeD3GLblNz1mUOLk+PCZjp2S1ZBS08cVjYx7DnpQev/M4ItusCpPSppppB7iHKIGzBE88hwzV9gtK4BG0YzP2LPPS5Rx7nD0bXmWbpEYj7lmzAc8FbSjUpERE+1GE23ff7I0ar0dNArOQZLkvY4akJe2Q2ZOZQ9wH1nBED0BeM7YR+/VBH/RBko41Sm6DeykrlOrnjtv1syuLcWMMoxkPc49m9zI1OfT47ZV68jG04WWaGWpMPC5qSF7wghec+Dwe6/n7iI/4CEnS8573PEnSm970JknHnp/xOmSO3NeZ9iP2dXhpDgwMDAwMBIwfvIGBgYGBU4FrKg9EdUSWmqgqhZNRT9NWqwN6RnwpT3ZKdQDVrVlFaKoD6GIcVSYcM51TeomgfQxVP5lzDEF1K9Mc0T0+HktnhSrxdRwPg7t7fcuSIPeCh/f397fcteO60IDNMATPRVRLWe3EtF0+1yogJl2OY3X/7QjgatkM/o/tMNGB559q0tgn9pHq8SylHUN0qsQDmRrMDg6e13vvvffEeKyqjfPMquK8nzzfsY8MEua5dOGXju/buB96eyee6z700k0x0YVVgF5b6Xh+/NyhOYT3WNyfnrullH9RZc+Ey36l2SCqmhnmwDlyH7NQI6bqs1OJ32dtUq3O9be68h3veIekk/eT96aP8Rz5vnrRi14k6eSzqnoWG15jz13sY3SYWYvB8AYGBgYGTgV2ZniHh4dbElyW1qhyE80SsTI9D9Pk0NU4c1GtUkxlLvhV+iSmrMnG5b7QKYJlLaLUTMNzFogbxx3/J0Nm4u5MssucbuK5PeccMnAGise5J8Nf4xrM1FxxzqtkAUwga8lcOnYwodNIFXCelSYxY7Qk6vee+yiRcm8yqJdOP7HfFTskK4x7i+EpDC3oJX8gszK7scNJlqqtSnDOMkuRhXAvVskg4lrTCerw8LB0PDhz5oxuvfXWo/Yt2cfjzTToKEP2FPe8j60K1tJZKjov+drui9tnEolegD6d5ryX7TyTHVs5CmbhUNybWZrF+Hk8pwpH8rFOPRafP9ameG94vsws/T7ub96nTIOWJSvnPdgrLUUMhjcwMDAwcCqwE8M7PDzUlStXtooPRldm2hQYWpAFjzN9kSUESzw9JsHCrwbtf710NkYVtB4/4zGWBlnOIkqztPMxDRkDuONntBlWhTmzlFmU8IweK6CrMoOTs+tE22SvxMvVq1e3goajPY7X9islx6yoJiVSBnv7Opndh32m7S5LzE0XfK5TtBVx39I2SWYcx8c0eES2LywB2+5Bxuf5zMI8eC8yhCYrKeS5ZVJk7sOMwfEeyODiwT7G/XegdjzftjoWYGURYemYefB5xvlxG3FNuc9oS2PwfWyfr54/t5+tP+9D9pn7MH5GmzH3Y3ZPVCn63EcmeJe2Weh9990n6Tg0I0tHxnJb1JxkWg9q5HrJxInB8AYGBgYGTgV2Lg8Ug/yy8kD0KssS/kon7SKV1Mw0SllSZEqg1a99pqeuCthm9jGOg+dSmo3HU79ONpJ5dhoVw6NNKkp2tL+wz9n4OI9VsupsXPH9Unoojicr9cSSPpbajcxDkIGrVcox9kfaTr1ErNEOcD+wz/Fc2mWMntczNQwMis+C8bnPyaYyzQJtJlWppqjBsPSdpW+L52Sla9bg4OBAjz322NbzIIJ2UdpH6bGYjY3MgfbTOGamV2RbveQO3Of2ErVGK9rY6ElZrW1ml2dyaiYi6GltKlZORhvvg6qkWcaujcpXgfbVqAmizXVt0Lk0GN7AwMDAwCnBNSWPpsdOJq3xl5usI4sBI/OpkvhmCWCr61vazOLwMk/B+HlExfAq6SJ+XrHcqoyPVNuzOEdkTPF/zlvPK7RKoM11y5iEseQpFQs1ZinnKEmzLEtmN6ikR9ovvA/iXFdJ0Hvsg3FelMBt/4l7yrY0pnarYh17c2xwTbOSQgbXhYWH49wxDRnjojIWWiURJ5PMmMSaxOMHBwe6dOnS1n2SlRgj+HlkQLS/V/dN5gld3f9Mut3zgLzrrrskSc95znNOHBs1DWRUVSHgzDu42gf0vOwV5q3Gy+dPBJ93ZJTxOcTnGrURbiuyXmo5eh6+xGB4AwMDAwOnAjsxPHtLVbYhHhtBNrPmHEq+WQwKy1awT1mWBEqt9CT1sdEziJ6WzExCRhv7WHlYVfF48RiCtpzMHlQV+qySVvf6X9nyMvSkrMPDQ12+fHlLSo99qNhrZS/l/9I2e4nXJ8joqjH2klVTaredpCc198rmECz7UtmMI2hH6nlAsh9VFqXe2tLD1+yWNtHsOsZSH2P8b2a7qVgZ763MPsp4QcYiZmymyo5jZhwTqnOMbsdxn44rfec739kdf3yln0PG8MiEDNrHslJm3GfVvu+V7WHiac5ZbJfsj6w60whmcdlLGAxvYGBgYOBUYPzgDQwMDAycCjyjeniZgTNLHXbigkmKJ6OqOE7KmtVkI0jxo6u0VZrsC9WTkXpTLVBV4e65ylbhApkatFIhcVyZepIqGfYxU5cuOZxk52apqXpw4gKpX9uwUr1m6jWqPauQGaYni59VoR69kA9fh1XZfU6Whqqn9vb8SLmKu0qsnTmRMCC3Ss2XOSLRWaByQMmQVdCOyILjo+mh5wCWhYZEWD1H13uD7u7Zd0xiUT3DIni/M51b5pTlY+3g5PXJwmKqkBKquLPnTpXCjOrKOFdcu2q9s73DNfU8OtyCYWdZvxmwnyVUN7zmdDrsYTC8gYGBgYFTgZ2dVjIX+yjFVK7WNNRnyZUpNVQG0+x6BiWijOHRTZqOLz332arPRs+JpHJ75nERlMZ5/ax/FUPqnVOdS2RzH9e8J6VfuXJlq8xMtg+ygHYpTyNHqbUKp8hYbxXqscaZhMmUWSYoOkZVqeQqTUkWLkJJl/dIVo3boOMWA4KzhOAVO8i0H1wDOin0mGt0UlhyPmC6syw8xZ9VyZWz5xfnsirFk93TdHijJiEmPWbieb/GFGlEtZ/XgE5+DNVigu0IajKMHtNfcnTx3GRV2Rk21CvNxMIAZ8+eHWEJAwMDAwMDEddkw6Mkl+mpKQH0gmGXbChLrCO2X+m6M/dZSsKUVDNJ26j6lpXpYNmUyhU3Y0+0RVSpv9ZIfrQh9VyK17TX63927WinyRIXs13OeSZ5V3ulssNF9lalbePcx31QsSOGtHDs0jYbJJvKtANkJrbzMPFvXL8s/VfWjyzwnO78VWHVqDHhPeY+smRTxgpiGqqevWhvb2+rfFjst8fsIH+PvRfYXrHkKowogutSMZM4JhZ4zbRPVR8r7QPDlOI+YGk0BtrzuZShshGydFLsI7/LEltX7fuVdud4TzDB9S6sdzC8gYGBgYFTgZ1teGu8AaVaEukFjS5J3NkvOfXTWQCmlBecJZMjs8gkSEokVTqlOH4WhbSE12NcVZA6v8/e0zZENpXNY5Xeak2C1rUefHEMlj5jIdEqfVtVXkna9r7jOvF9tg84Xz3bDW0KDIL1sT0bNdlnL4UVC2T6OmQ7UVtRsdtqX2TJo8n0yNIyplwFx5vxZV7P2ZiJ1pr29/ePkiFnjJH7k2yZAeHS9vOL80Ybf+atS5ZIRpx5z9IGVdkb4/9LZcKyZzETq7NIbZb+zB6V1A5U9sC4BtQCUINAG3I2dqOX4DzzTVjL8gbDGxgYGBg4FdjZhif1Uz1VuuY1nm+UHqu4pV3sS1nsFiW5TGqVTkoVVQJoSiJZOh9/ZonK0lNV+iX+T2lmKVl2/H/Jthav5/5SUt2ljMtSEtfI8izdZqVQOC9kNXG/cazsL/fjmnRqvYS8tB/Qmy2LNarSs3Gf99J4ZTYT6XhOor3G8V0VqsTAsQ8E5zVj2RXrpT0mjiN6DPbu6729vS1mFD1hactkTGAWz9VLkxW/576M31WakCyWj2zZ88XrZLGpLBbrZ4jn2u/jWvpY2zVZlmiNxy29TjlH8X3F6LxeGeut0tGxPFXcO5UX7RoMhjcwMDAwcCqwE8NzpgzaEzKPy0rn22MAS7FmPVteFa9SScYcVzwnk8irchhVTF2WDYYSHtlHloGgsmNSotwlGXfP64xsc03snrE2FkbaluCk47FaMvU+YxaG2IclaY/zmCUwJtOqEpHHdgzairLk6FU8ZLWnMqmZ91y0fUon2Y6lZDIT2l0yO0zlTV3Z/6Rtz9VKGxHfe93XemAfHBxsaUZiZhJrCmyD4ng8f7GQqFkLC74yiXSWHarKBMJY0biXHnroofRYFpqN12EfPT56fBtxL1W2aHqhZutfeX/2tANM/FwV7I39YtJtFpHNfmOM+NwccXgDAwMDAwMB4wdvYGBgYOBUYGenlYODgy2HhkiJqwBFvkbX1KUkrZVbd/yfahu3n7n1V6qdytU4/l+5u1efx/+rwN9MXUCVMIPl16iK6ZTBfvTUoJUaIq51FqBfYZqmtCZhdFqpAn+ptuw56FShGFmg+7Wobdn/Kol3nCc6HlQprLLxeX4q932rtjKVptu75ZZbTvSD1+klWNil1lil7s0CrJl+bElV/vTTT3ed1uhqbzUhnWOyFGyVy3+Ves59iscw2XaWRquqS+fx+H1U/XocdkSyStOf02Eoq9lnOKzDx/ZqKnJ8VLsaWS09Opm5fb6PffH68NWI+4P3+Ag8HxgYGBgYAHYOPD937tyWa3Zm9MzSJFWgWzBdvRlwnAWAZn2JbWQMr5Iys0SzZH2V80omDVZpx6qQhnidysGgJ9VUThJVf7J+k/1k87gUDEscHh5uhUpkKdgo3VEC7iVXNqqwjgyVNiKTfM24LC1XoSwxEJwu6kwe3HNeYnAyX31uDBR2v+kYQmeJXqhLldi80gBI2+7olPQjm+c49vb2yjVyajGPJ7sHOEaGsGTaKIbIVCwzu6crNkgNlvdJ/I59YorD2EczeLN0Mzw7LXkOfM/0tDaeE/eJQfIR1V5hWa+MrfnV682E6lEbwXP4TMxCgzxf8bk5As8HBgYGBgYCrqk8UE8SzooKVm0toUqRlDE82k7IuKLumXYXFm3MEvJSKlsK0O0lZGWfM4ZECapih73E02vfx3bIHCo3Zf7v90vrSok07pNqbLQFZQVLyejWlPyhvZfXYTiEpK30VnQPz9ZjKTk6P48Mt9KY9Ox+HHu134wshKaym2f3PKV02mGYrDi2GyX5ShvUWtOFCxe2bFA9zZLvzyz5sMF7muWH+HkWoF9pYMxuYuhElfaQtrt4HV67CmHJQgBoE6ctzX3sFbrmmtqWl5UP4v1j5ux18/Ui0/f8+Bi/77FPo6dtqDAY3sDAwMDAqcDOXpqttW5KHurvK91s5mlXBW9XrxG0t/SSBtMDqWJ4WaApPe2qVFbRplJ5oVICy2xg1KXTK6sKfO8hs2tRqmWfetLUGruig4fJFCKboTdfLxEAz6HHm1El9+b/2Xjcj2iHYeJirk+mUeAaub2KrWVp6djuUqLuCGo06Pmb2bUorVf3tVTbaJhSKpv7NYnHnTya6bPi3qHHMJM7ZKnFqmdSlYg6rovHWKX+89iz/c3Ua2RamecyA7INpu/KND0cF4O84zkVYyQ7pf059r/aD5kHZpV+rvc8c1/is3jY8AYGBgYGBgKuyYbH5LoZw6vsMNk5jEerSlBkUmDPsysi0/dXzDFjQFW6oSo+rxfvRa/TjMFU55AFcCzxmEpi7aXpqUqi9JIv7xJLxeTKMbWYpcYqfVGmHfC16R1X9T+THCs7cJbg2sc4Lor7wMg80cioaLMhe4/f0SZF5tKLw6SEXdkUY98YZ1glBo7H0kZDST9Lwh3385KWgvGZEbT18DmUsdnq+UKP5J6n7y6pE8liqC3IfBSYANremeyztQbxfuKa8RivS+ZRTi1eVSYq00pxv1VFk/m/VD/3suTRMb51MLyBgYGBgYGAnRje3t6ezp8/v5XEt5fFpPJ8i5JQL7lohsz2ZPC61HHH7yj9Mb4jS3JKFlIxvTW2LtpwsoTDlVcWvaTWJCvuZaqoPEZ7rC3z5FtaO/Y36vPpJUeJ221nCafZ36q4Z+Y9SdsKtRJZ3B+lf0qzGZPw3mFxzV52k8ybMV4/Y08+h2x3zX6gRE1WwutKx551ZnZkEFl2JdphYiYVYm9vTzfccMMRQ2HcWjY2YpfsQlx/luLpgfsvrjVtm2Q+TJoev/M5ly5dOvG5QW9HabsALNmZ+5h5BdMbvYrHzbzx+czvafcq2y3vzcxjvuf7UGEwvIGBgYGBU4GdvTT39/e7eSPprVR5PGWo4oMopfdiwcjwsgKZzKvHvlIil7alvCovYiZtUHe9SwHDislxbrKcdlyfXumfpcwka5heD/TSJHORthletS5ZvCKlPTKwLNaxiofjHo3neD89+OCDJ46tpNp4vu1+LNBKybfnSUiG5dcsDo9eyFVsZc9DksyVOSulY/uS2YVfacvJrhPnrxeHt7+/X9reY9tLe7FXPodanCrXqbRtE6TmJTuHMbpmZXweZf4NZGlVpqd4PWoSqvyUmfdp5bHem18yucq+mbVBzUjPQ5v93iXf62B4AwMDAwOnAuMHb2BgYGDgVGDnsIT9/f3S2O9jpO1UP0vBnfEYttVTE1Q0uVIBScfqzSw9TkT2uSk+A517tLr6bm1ZnYieswqvV4VKZPNYOcns0teeuqO1OQFwpaaUtlUuHCvTRkl1SaFKXRnPZXgIDfCZS7T3kdV4fuW4smS33nd07ae6PEseTbdwvzLwPY6RISBMh8d5jf9XCQIyEwGr11dhCZljVS/pcTz2/PnzW6ra6MjAZAVEptLmsXReo5kiSyZvVPd4NIv42XHHHXdIkh599NETr5nakH3i9fj8iykNGcLiYyrHF147gnPeS3hRhUFl6skqSXl1XZ6fve9hMLyBgYGBgVOBa0otRuP+UkopaZ3rde+a0rpEwFUy13g9lg6he66N7pk0aCmWc1CFJ8S+VAwrGw/npHJEYRLb2KfqnJ4Rnt9lSaPZx7VBn621bukdln+hEZ+MKB5TpUDjukQWyWBurh2vG8+nu/hSiZn43WOPPXairSzgmNfjdXjvRfZh93YyuDXp6KrwITpNZBqTyt2ezkjx/xgcX7EkP3NYmiayHjqNsK1sbqvnCteDgc7S9v3P9fDYs71KBs77KLI0f8b0h5VzYJxjltPyOUwpFueKoVlEpT2I16ZTCfd5plkyOK9ZP9aUt6owGN7AwMDAwKnAzgxP6qfRqphJLwXPkn2oCqSO51bhCCz9wv7Gc+lSHiV7Sz6ZW3ZsI3OdXwpKZ4quXrtLrC07lsiY5VKg+ZKNxX1du5aZ/chg+AaZVpT6KnZUFdmsEnn3EPdB/D9rr5dwgHuT0nmWrokJf6uyKb2wBErcVQB67APtOwy7yBIGsJQMj41zxXCaXmqxaZp09erVLQaWMbzqvshseGQKDBanvT5ej+yisivFc5wWjKE0vp7bMkPPjuU+p907m0Pu2apIbkSl9aDGJFtTM0jPZy8ZR5V0pGev5b7dJXH+YHgDAwMDA6cC18Tw+Ou7xkOxkmaz8/mLTakzSgVVyiOW58hYASUPegVGKdftUHfNvmdec5UHqZEVkyUDqpJFr9GLL3lNxc96bJrvl7xc2Yel5N9Z4HV8n3kx0vbI8kxkz7GvtLtUdp+MPfkcS+NVEtx4DiVp7t1s7xAeF0sYZfNIe3NP0ia4v+lZGjUcHAcZeXbfVqkHe/0ha4q2LtoJ1+x52qOY+o0B+3H9soKr8TpGtOG5v34147v99tslHc9BfB5U3uBMmZg9i6tE4LfeeuuJc9eMix6rPT8A+kTQC3rN/lvDzLPvljAY3sDAwMDAqcDOcXhnzpzZkhgzG0DlJZkxI0q4VUkhI/Oao16ajCizqVWvmb2nkiJoQ8psYVVaHnqUZXZNSsAVk8hY4hJri32syhwtMb5dEO0w2ZiJKo1SZHi0E9DLjPPYY7WVR3HPu5DM0vaLuHeYhq6nscjGm33X80Ks2EAVD5VpB3huZafLvqtKyUQWl2l1ljQFZkZm1bG9mDQ5QxZLRxuaX1nctHdPk7WznFO04ZFBmuFRCxHX0sfQfk2Nk/sT16UqmcQxRDAmlOOj1iPunSrm1a9+Nvc0gtXez5h59Npd+1waDG9gYGBg4FTgmuLw1tjwKu9JvkrbDI/sjJJwlOwstfDYXqLZqrwEGV6mf7d0SemPrDDTOVfvs0TbVUkNMpdMSqO9ak38X8Xs1iSN7cV1Eex3XEvGNHLM2XWYLYWMrkomHcG++H1mz6DN0HukkoTj+d4jZJtkjfHcKikxYxUzOyO1Ajw3i7GsPIhpD8q0LEwwzetH9pHZvnp7bG9vb8t2F/vAeeCcZvclP6vs4hnD43OA4yLTk7afEdzvvcTzPIeZV7wuvTmkbc3XM4uM16u8trmHevuusvtl7VXPmez5TS/a/f39wfAGBgYGBgYixg/ewMDAwMCpwM5OK3t7e12jt1HVwctSfWVqTqk26me133hulVQ4tkdHDToXZAl5I42O5/YSpFYqxcrBJxtXFRDco/JLNbOyYM5KhZGNi8f2jNGtNZ07d24rqL/nqMO90qsXxkDmqmp55qBB1RvXNEtcy2Bl7oue4wnVVG6rVy29MiNkITQ8hnsmO8dgn6rwgahO5JpSpbkmQHjJtby1thUYHkMjrGKskkhnLuy833lP09ElnsuQhSqhQuwH59AOTu67rx/n1u3fdNNNJ9pj6AnnOqJ3D8frxrH6HCYR4P7Oaje6DYZMrHHGqp4/PeefodIcGBgYGBgAdnZaWWJ4lQRaBRVnxxJso8coK4MzxyBtS26VW3J2bBXw3GO9PIasY02l68oZJws4pTTYMx4bldNKLwB0jQS/t7enG2+8ccs1OUqzVYLxKn2TtM3wmI6M+y1jodx/7lNPIqXLtRme91AWJsLQGbLELKibTIF7J3N4YjgA9wj3bGR61KpUad2ykkIMQKczWpak2H244YYbyoDkvb09nT9/fiu5cixRxITZHEcWPF6l7aIjWi95dBWQz3CpeI7ZGhOQ23kkC7Fwu+5LTLod38d9UCXloANX1seqTI/nIGOL3BsV6+2xUN6f7k9Mt8YA/sHwBgYGBgYGgGtKLWasYXiVDSoLHu4lmI5t94KHDUq3mWs59fB83ws4zmxC1fUql/81RSQr+yKR2cKqeVwTRlCx+F7KtCXmeO7cuS17VUQVLE7mFeeg556fvc/sFWyL48j2aiYdSzmT4NzRVZ5u9nHvZKV14vsqmXQ811iTeJzMqLLl9Rge7T4MfK/moMfwbrjhhi32FhkXU66ZNVWanzhGrinP4TpF+Dou4soSVy4QHNu97bbbTrTLwrmR4TPRQKXB8FjiurBYcMXs4jksHbSkyYrPLD4j12gjen4F0nZSgNiHGKayJl2ZNBjewMDAwMApwc5emvv7+1tSdRZQWtnysmSxVRoySudZeiCymMyLLPYna4evWcmZLI2a5yTrY5YKp5dKjKB9hx6KVRqsrI2KiWWs0KiYXc9Lc40evUrcLW1LoLRbZkG3lcRLrYHRS1pe2f0yL02mdKrsFvFYg0yP+y+7N4ylFHOxv9XeyDylq2O4z+iBmX1WpSPr3bcXLlwo909r7YSNj2xH2g7qX5OAorK3V+n04vV4X1R24AiyvhjwLR2zq7gu1DrRs9bHevxZyje2S2bX05iwiKzB+0A6aVON7ff8OCoPYtvsstJMtOH19g4xGN7AwMDAwKnAdWF48VeeNoBKf5slkqUkUDG8zHuOkn0v2XHFXqivziT7yrPSbWQJj5didar4mGysS2WDsnESu3hprkmgm9kPsnb39/fLGLRsbNwrWfuMF2JZoB7YXuW92ys+SU84I75nGipqRiovwdiXqgxVLyk2GZHbpWdfnAfaWMlYstRi9P7jsRkzZyzs2bNny31pGx7nJH7Ga/H+6DE83p9VQvJ4LmMPaY/L4kzZLp8zWeyez/deqZhWZo8jo2IbvcT69Ezt2ULZ10pjl42vSgFH2138jfG6xzJLw4Y3MDAwMDAQsDPDu3DhQvlrLNWZT3qeg5VumV5zlArjd5WOO7OpVBlP+H1si4UYjUoHnbHDKgtHVviTEgslK9q7ssw1lGp7Nrcq7o42kF5S7CWvzwsXLhxJ4pn9hB529ETM1oXzzb1Ee1kGeumSVfU8U6tMO9n+5jkcQ8Zgq35XDAYluPUAACAASURBVDxrx9djDCTXVqrL0HhNGGcWzyG7YbxhxiRsx+oxvDNnzuiWW27Zilu75ZZbjo5h3FtlS4v3ZZXwu/KMzgqlVs+mnramSlafeWDzmUGWyDXMslAxzrOKk8za533E52mWcafy2+CYsrnwdWPpn/hekm6++WZJJ1ngYHgDAwMDAwMBOzE8S+m9iHnGDZHR9coDVV55RJQEKRUxH10vBqjyeOrZ/yilUcLLdNyVhEMPr4xxVfEplfdedi77tsYex7Z6NhCj5/XnTCuUSOM5ZOlVTF2ci8rOV2VgiSCzM9vgumTSI+0TZAPZPC2VsOHx2fXIWDNvOXpycjxkPb28tmZTvq/N2mI2ELI+xn1lJZSyLCa9OLwbb7yxLBsmHWcv4diq2Lr4P+8P3o+Zx29l/2esHj0XY3uVzTg+B3gs9zNjH3uZT6rCvJlnJ/eQ7Wa9uL/KVsfnbBYL6/b5vGN2Gul47/h+jfG9SxgMb2BgYGDgVGD84A0MDAwMnArs7LRy/vz5LbobnVbojkv1ZxZ47nNMVf3eNLdyb41YKi8S1RFMDmx6TjfxzH12jbqLn1dB4r1whMyhIKLnyEOVTFUqKXOsqZCpDKgyOzg46DpZnD9//kjFs6aMTpX4Oc6j28mcKeL3mfu+95v3mfdxpWqM1+b8V8kLsu+WVIvxulU4TC/8pjInsB9MgxX/p2qrCj3IPmPJGjsZZA4j0VGoF3h+7ty5E88ZSXriiSeO/meQO5877n8viQA/5/ueCSBTmbvvhueF6lD2mdXM4zmco154DNX8fKZUKQ6l7X1QmVTWpDTspSOr1Lk0EURVMZ18hkpzYGBgYGAA2Nlp5dy5c1uu5VG6sRSWFZeUcqm5ChatXnuBwCzBEvvO/6u0SUbm6k3Db2Xo7kncZJi7SOlV4t/MWE0nj15aryrNkpGxVIYNXLlyZTE0ge1k6ZpYeoUahWyeyET8ueea7ID9ysbYY8/cK1XSZSlP4RSP6YXsVA5IPQ0AJXZqXTjP8Xrc5wwxIHuLx/D+7aWlo0v+Umqxs2fPbgXwx8TMdJjh/U+WG/uzVDarx7yz9IrxOlnYDZNWMGFz7Dude9hXttFbl6V0aPGY6rm6JrHHUlhK5jjEZCYMEYr3LxneCEsYGBgYGBgAdi4PdObMmW5iUetaKfGsKcRJib4KlOy5UVelMHruyFWwaJauiZIP2UDGhCgFUeLuBWFXNpye/a8KaahCKXr975UwYhqqq1evdhne4eHhlkt0tFdUBTmrhMnSdrArmRfdxDN7FW0ddP3OEgJw72dJlQkyqirsIqJiY7RJ9lgaWRnvkXguj6lCDqK7PdeUe7WXjD3OcS+12E033XS0lj7OtsHYb/fXLuu0+/a0Gtzz3Bexf9yTmW9C/F7aTlFWJVXOGBcZKlOOZUV2K20QQ1t6IVTZOKrPOdd8zjHBt7RtY/f4vLZZWFEVrL4Gg+ENDAwMDJwK7Oylube3t/XLGn996blZFdXMWBol7orpZelsGGhOaT2TRGjXqQK043fVsWu8hChRVSwx67/Rk86WxtFjeJRyaf/reWlSyswwTVNqm4iwBE+POr7PPATp3UUpPWNgZAXcF9xbWftVouYs/VlvzbI2snPJArnv4/9M1Ub7Nj0v4/9c08qeHq+3lNIuSynV01QYe3snk0e7HRdSjde2XY8euNU9Ly3fuxkTrkog0ZabJeYm46I3Y/bcqWy4vfR+lQaJ9/gab2SjShkp1ck+yJzjWro9lkFyoDmTQ8RzljzzMwyGNzAwMDBwKrCzDU+qS0fE7/xKb6lMF7yUfsxt0GNJ2rYjUQLJkkfzOlV6sjVejD3PsqVjqv6sOadKYhy/q3TdPbZGtkkpLUs0HBlSZcM7PDzU5cuXtyS22Bd/5nWmV24mdVZpjGJsoLRtt4r9Z7sca5b0uPKeNGIfyQYr20PmNVn1rfKmlLZtdn7PmLQsdpG2Os5brxwVP2NKsTiPTCXVs/163EzgHtNN0XZnpkefguw+MaoUcEav6G1l887YWpXSLEt0XqVZrLwkMy0RvyMTz57JFRutvNPjd7Rjck4yb13+pnjdsrR0Ro+hVhgMb2BgYGDgVGBnhhdteP5Vzmw3zO7R80SqSsHTS4qMQqrLAhm9Ei9r4u8MSkeVfrqHSmrKWAL170u2jl4WCF6nx/DYRmVvlHL7WE/aOjg42JJuMw9fS3XM8kD2FkH2YpjdZPGhle2JzD/uj8zOIvVjzsjSKo/bDFXhV+7deA/SvkTJu2Jx8dwqg0d2/1aZNfgMiHZbMvw1MZw9TYXbZvwWs5f0tChL3ozZHLPPZD6Zd2HlvdqzL1bPN3o5xuMqD29qP7J7mnuyKnDc88WgpqQX1+o+2TvT7D3zIeC9d/ny5ZFpZWBgYGBgIGL84A0MDAwMnArsHJaQJcXN6Dbdt2kgzSgqv6PKzK+Z0ZPopd4ixa6cZnpqSrbbc7OuKh33aHilluT1s7CISv1Z1UeLqFyZ17jM98IS3AZV3Jmayw4NVM1lalCjCm2h41Os48awGqqHeFx1bWldkHWVNIDq8QiaAqrg3kwtueSAkqk0qRpjn9aEw9ABIXM2YyLtpcTj586dW5WIoErUzdCM+D/vS6r1sv1dOWYwMUH2nGMQea/yOQPNq0T6mUqfSfirBOBxHmkS4JxTLc8EI/EY7pFsfJWan+aNOPecx8PDw6HSHBgYGBgYiNjZaSWyPEpG/l7alurIzjK3/SqNFSXSzC29cibIGBAlbTrh9KR0ulhXr1mQ7VIqnF4S10oSyqSpKsi/CjyN/++SpqdKN1Rhb29vK+A89oGlQJgaiwlm4/mcn8olPxufXdnprJKVfFli2lkoA8dXJSvI+kgnKbKNXtXqKi0YNSbxXIYdVOnC4rpR4vb6kell5YE49gxOeMFjs8+YbJhsPa4LmSL7ULHr7Bj3xWPP1r/aI3S0ycJgfA7Xh+sSNRhVonsmdc6ScrB9jpMalAiGdVTPSCln//F9Np8ZMx3JowcGBgYGBgKuKXk0JazMjkapjgwvCxOo9LBMAZWxAr6uCQBdm4Ir/l/ZXSopMRvXUoqpeAxf14QlsA0ik8qWAuqzIE+OvYe9vT1duHBhi+HFJMQsAOx2bYOwpJqlsqtKTHnP9OyLTEtmqdJtxATUXP9KOxDHWbllc9/3AoBpK+mxj8r2zbCeXro1zlePKVW2miqIOGunJ6FP06SDg4Mueyb75zMps1tXIVN8nz13Yt9iWxlL4/W4d6rXeKzbrUINsrChTCOWvY92O7Izakh6Nt5qfxs9fwOHI1Bj52NjOjIy1exaFQbDGxgYGBg4FdjZS3N/f3/L26/H1iidGz3GVQVkswyJlCchlo4lkCw4vkp1Q1tb5lVGSauy7WUpjCovw156JUpulU0vA6WlXZKuVtfJvDSNnpRuTztK3nH9vL60qTHlGBMFsF+xL7QDZ16a9AwzstIkPLc6Nn5f2Ya577JgZveNCXmNLBC8Sr7es93x3CwJdrx+pv0gQ6FdKzK8aj9XmKZp65i4D1g4lF6SWRKBpWeHzzWTiPfNUlJ8eolmfamed73nKQuwko3G+4usnN6nbivug+p+X/o89pt99ZyzPFI2F9VzNN6DWUmhwfAGBgYGBgYCdmZ4586dO/rFzpKsUuIkW8qSEFPq5689pfUopVUSIqXb+D37UCUh7cXuVfF3mT2mSktW2ckiegwrXj+Lhazsij2Gt8T+MvYR45cqSct7h0nFo+RGCZBJw60tyNIncQ9VqZDi55Qm6VWW2Qx53Qo9r1naXygtZ7Fi3KNMKZbZ4XgPMA6rV6yW9qzKO1haL51nDKkqcxNhz/CMpRtmkW6PdkTuVY4hvue8ZDGoldd0z7aasZX4eTa3VToy2vTJSrM+VWnqMmRFbyMym2hlj6082+P/S/bNCKYefPrppwfDGxgYGBgYiHhGBWB7ZeUtcVDSyrwNKymGDDKTtMjgyHiyZKiUSCuPyF6ZDkp4vXOZ9Liy5cX3FfukRJlJadWxPbsfGSvbz7K3VLbWDLb/VkmXpVoL4M9t24vr/8QTT6TnUDLs2broyVntx3g+9yQ94no23MorM7ObMTvKU089daKvWQFYMrsso0rsR7aHel6ZROWZSE/t+P1SVp4Ie2nSqzQyJWoF/J7lZeIcLNnF1zAgg1mnMhsX57tiYGs8inte4QZjUqsxZM85zglthLQtS/0YVGk7a0xsj88OZqHJ4pqrWMseBsMbGBgYGDgVGD94AwMDAwOnAtcUeG5k6iOmsekZHw0ammncpFoyqglI22nEzxJO02jcUwsQS0GcWZtUC1QpjCJ6Vb6XrlepPenSHFGpUHtJuLlOS6qFaZpKN/fssypcJAah+ppW9VXjyZyXmLLOx7paduZgRbUTnQYyBwGr2bimVXqtqCaimtOBwHREiQH8/t+vVNmuCQWokqH30uNxr1aVw7Pzl1RzBwcHW/3N6qqxv0w1lqXeompsKfk6/5fq2orZHFMtSEeUzGkl2xvx82zf8V5mWrKsb5XjHtP+sVZlvDafB1UoV/yuUvtnzx2qj0dYwsDAwMDAAHBN5YGqIF9p2/GA0l5mKKekw9cqUDteh6mlyA6zgMwl9tRLqlohCx+ogoWz67CdyiGkSuoaUbHqzHGIklUl4feSBi9hmqaua3TFfKvSK9KxI4vBRNO9Na6M+r3yQHSYqJxXsnRkXKPKWSL2h/vaEj6ZXmQu/p9hCBx3trfYRzorMMQm/l+5lDOJcTy2V6qKfa6c2qSTDDe2Z/aWMa4q5GJNImIye895lQw59pdapywZslGFzNA5cI3Di1GxKf4f+8wkAj2nHKPSGmVhCUuOdll4h+f68PBwJI8eGBgYGBiI2NmGl7lbrzm+Z8OrJN/KbpCxjCU2kxVvrJLFZvrwKkk07XI9u89SEHkWzJt9F8eb2eWWAp1761bp0HsBx2ulK6meL2nbxmAwbVcW7FqVoSJD6TEJ2n+z8dH+5r7STpEFx2eFK7NxZeyJfWOoQbRhMgUftR7cD71g7MoGn7HQym7v68Vkv71SXBV6qd4qe38vXKUKfq+eJT3bN58p2T1RhSexrxmbqdIhrnlm8XnKPmaMq9Ls0Caa+SpUBZszVlglxeb1e7bQc+fODRvewMDAwMBARNvRQ/F+SW979roz8EsAL5ym6W5+OPbOwAqMvTNwrUj3DrHTD97AwMDAwMAvVgyV5sDAwMDAqcD4wRsYGBgYOBUYP3gDAwMDA6cC4wdvYGBgYOBUYKc4vFtuuWW68847u7FUxrU4w7yvznl/YW2syJpz1oz72bhelpUjxu7cf//9euyxx7YaufXWW6e77767LI0Ur834KMYYZfttKVMHr8H/s/dL5/ewpmzLs4Wl9q9lX/DcbB6rTCVZWSrGrR0cHOjSpUt68skntzrXWptiu4zdkrZLEPVKYRmMR6yOrQpE945dg+rY67UPq2PWxONWx1Qxvs8UVam0LDY3ex5cvXpVh4eHi5Oy0w/enXfeqS/8wi/UY489Jum4FlkMQuWDp6otlQXzcmNVD7EsUXKF3o/x0ka+lodjLzHrUlB3r/1dNlp17poA8apqsYOGY+Lmm2++WZJ08eJFSXPaoS/4gi9I273rrrv0mte8ZqumXTZ2BlU7bRPTaUnbScKZ5qqqvhzHavDYXuol9rvaw/G7pR9uplKLqO6fLFVfFaxbpTLrJTzgMVlwNoO6WYOO1cgl6ZFHHpEkPfDAA5LmhN2ve93rtsZt7O/v67bbbpM07yVJR++l+dkUr7UmbRfvoSrln9vI7jnuO6KXZLu6H7ME7VX9vSoBeTy3SgCeBdgvpRZkoos1gmavTh4D5/nsv//++yUd/9ZI2vr9efLJJ4+OW+zLqqMGBgYGBgZ+kWPn1GJSnxlVEmJVdkKqVQqVJNwrhUNkbVepvipanbVXYRdm10sfdi3XqbAk8Ut1+jG/OlFr1keyql6fe6WRlhhQNm+UGivWlqUJo/qrmp81arE1ZVoqKbaHJWaXsYQ1aeGWUKmee22wlBHTbpn5STVDydBa09mzZ4/O97kxiTi/Y58yRlKxlF2eB1UCcqO3PtWxmdmA68GUbNleqlg532epzNaopXkc2Wi1d3rFBrjfb731Vkkn09ItPbd7GAxvYGBgYOBUYGeG52KMUt8OU0kEWYmIJftUlbg5flYhK2FDCdvS2VJy56yva9gTUUlRWXFdopKaegy2sk31GDpZQSaJZ8mJe+OepqmbKJf7imPssZql5MMsTxU/47k9G2+1F3uahl6S8AzZupCNcg9lCYCXrre0Vhl6LIT3k6X3zL5Flra/v99lPhcuXDg61q+xNBTth9VzJ9p/e9oGqU66HI+tnj+959JSsvzIXKsE01XS7dhH2upiuxWWHHd2SXjPeyMr1cZ2aDu0z0Ast5Vpm9ZiMLyBgYGBgVOB8YM3MDAwMHAqcE1OKz033V6F7Ph5poJZcvXPaPWaSslSXx1RqWRiH6myWjImr4lxofF4l1qDVB9kThK7xEVVVex71+H1ltBaK6sgSyfVTVkfsvgrrmGlks3CLXru0rHt2MeqPl0VQ5iNlTGNPTURa8BxTXthAs/EaWXtfZWhctHPnCPW1DRrren8+fNHKkyHw0Q1l/+vnGCyOnVUc1ZOWGtjPNm+lJtuqGrk/R/PqWqB8p4wslqRVahRtle5BnREqZ6ZEUvmmOjgw/HxfrWKOoZDWaXp72LIwhIGwxsYGBgYOBXYieHZYaViA/H/yj3cv+BRMqGUUjmCZFJlFSxKNphVPK/cp3lchqWg3l54AqXyzEV7bfBwhorh8fNeFfgq4HgNc8mwt7en8+fPl32pzpG2pcCeVEmGzbnOjOyc614QuefHrIBB8pl2wO1yPy2x0dhvslsyv3gPVay2Wp9e5po1LvucE95zPYchS+s9h6e9vT2dO3fuiOHdcsstko5d1qVjB5bKwSm7l1mp3Wto8D7JKq1Xgd+9oH6O3a+VVoXtxD7TgSOuS7XuVTKQ+N3SvZH1sdJg8L7NWDYdnXw9s7ibbrrp6BwnLcg0Y0sYDG9gYGBg4FRgZ4YXJaVeIHCU3OIrf7mlOg8er9ML/DSoa2Z6oPi/Jbo1rIlssMIaxsI5YiomaZv1rQlWr/pSMbAo4XlOyH7XuFevCdCW5nEzUDb2n9IdsaYv3G/cWz3b8Zog8swWlJ3bs29Xx2TaDwZUc1zeQ/EcMrtKU5JpPzjmKm/uLin7Mts7bVC9APTWmi5cuHDE7G6//XZJx0wvtrMU7Bz74LnzZ+4DtR1Z2xxTxs6lk8+d6v63/dHvM/ZcsSfvj95zgEyOtvLYZ4Y9cF16KSLJuPjsysKOyDaz3wfpZBo5MzynGFsKhzrR31VHDQwMDAwM/CLHzl6a8Rc+kwIsDfkX2tJLJZlKtbRs9GyGBO0v1NNn51Oa7QXXso9r7IyUMisdfvQ6W7Ld9K67JGFnErevQ6ZXMebYhzXSlT00e+NYstVVKYt66KXG4rpUTDWzdbivlbdm1oeKFVT2xvh/9dqz/1a2GybczryeyfA5rl5ShhhMno07Itoiq3105swZXbx4UXfffbck6Y477pB0kgVU7N/t8zkU/+eYK2Tncmz0aoxsyhol7gd7IHo80ZbohOnVdWjDi3NYsXKm88qec167GNwfz8nmZMk72PPrMcXPDD6DMxu12Z6ZXs/DlxgMb2BgYGDgVOCa4vCMzCPTUoolA0svPW+5yl7Ui6FaAvXyGSugR10V9xVRSelrUHlNZraU6pg13o1VyY0eM6riJcm24nFLEnFEa037+/tdGx6vzX6TfWZ9qKTMNTFO3AeVXSj2P46v+n7JA7a3r9ku2WYWK0btBhmdE/H6Nesr7w3aFzNW0IuXjP3K+t1LLba/v68777zzqASQvTOz+MmKeWVp5CoPS7Io2sviGA3PLdOQxf0ZmU18z5izyPCeeuqpE+1wX1ce7nE8vEdoD15jh2P7WXqvyguc+zEmgqYfhcHxxnVzeagHH3xQ0szeB8MbGBgYGBgI2JnhRU+7o0aCFGAphd5jZApRUvWvPHXKPYkv9ieeY7BSbuZpRymMzCjTT1OyZ5/XsChKQFHiISo7GaWmzA5TMbvMG3JJQsr6kTGxXvLZw8PDbrwi2Yul20uXLkk6LgTrV+lYSq68S2mXixKxtRB+5d613ScbM+fY1/VezmIcyQIMlmnpsTWDnsbZ+vs7z5EzUjz++OMnXiMDqDJq0DYfbTucv5gVQ8q9D4mep93+/r4uXrx4xOzcfvbcYcLqKjYwnl/Fx1IblcU6ekyOE2M/Mu9wxgYyS1N8HtgTkTGClS080xaQgbuPZGtr2vd7r3l8Rnp8LNjscXpckSlzv7kvPsfPgMyL97777pM0FxFeq/0bDG9gYGBg4FRg/OANDAwMDJwK7KTSbK2dUGlmzh10k2bgN2l8PKZyzKgMmhFVG5mKydTa31E9lBmcqSqjurBKghqPoVql55DgPlaBp1TLxnOr9EZet6wu1bUE/RtxjZeOo+oxqnysvvA6PPzww5KO3Y+tKvFx0rHKx5/51eo7JgzIVJoXL16UdJyUmKpOfy5tq4MqB5G4d7j3Odc8t+fyTxd67l3pWJVklaXn79FHH5V0PGd0Xol9oVqP6sqotvT8MTDc7uOev8zJpEo0HeGwBLdj1Wbcv14rqgs9F37N1JKeU6uwvabeQ1liCLrPM9WbP4+hRu4/HUJ4X8ZkyP6O6kE64xhRPcnwpyp0Igu3YNiLUYUKRTAMwfsre27zOe1xej2zsBuHpdiJ6V3vetdQaQ4MDAwMDERcl7CE+OvqX3waWS2JZq7llJIrt+3MBZvB22RRGcOrgqtp6M7cqOl2vORUEs+pqhNnLv8sWcJ2K2eN2B6lvypoWdp20KgqKkesKRUS+314eLjFdiNbsxHaDITOKl7LeI6P8TmVY4bPzSRuMwYzFL+aoWRJiqvE1r5eRJWeiWwkS3Rs6djrwNAC7wPPQ5wLM+T777//xDGezyyQn5XIzeQ87kxDY9BxhxqUuJcY8tHTDOzv7+u5z33ukURvB5G4f8lmzGqrklPS8Rx6P3ku/d7z53viuc997tG5VfV13tMZo6SGxePJElAw8JzPn17guftEluvxZU5S1V7lmq4pS0VGlyUd8TH+jI4v2TPf43rOc54jadYw9J5TEYPhDQwMDAycClxTeSBK6dEGQEmDUnnG8Mhw6ErcYw7Wr0c7S7xuL2i4CrY2sjRqVfJmBrz2ynRUiah7Qd2Wjjw3lNp6uvQqWDVKn5S0aIvIwi5oC1gKbZim6WhdzMQcPCpJ73nPeyTVbs2UUOP/FSvkPMXgX4aFZNoAjtl2MI+dNi2fG0MnaD+sgqGzIFu6xruP7ocZpccfP3vggQckbSfbpfQc9yHtWFXas15pGX9HW2K8ju0w8ZyK5Z09e1bPfe5zj2yFTCwsHa+h58VjJ0OO60/bMO1JDz300In3995779G5TFXGYG6/xucS7w8zO4/L+IAP+ICj//mMoPaJ914WJmDNicfrcXkuspAWag7cD3/u50RM6uy+8FlMW3gs9ePrMZzDr5kGy2tqxn377bd3k49HDIY3MDAwMHAq8IySR1vyyUr9+DsGC9NulrWd/apLOcuilM6gWyNLuUOdM4NFMy9GBmnSfpVJTdRpV+mPor2BgdOUfCj5xfFS6lvjuepj3QfaWKJdwWCQ79WrV1d7aVpyjDYvriEZcebZSbuRGZ/bYsB5JgFXnmfZXmWALJMGeJ6y+aqSRVMr0PMkNDMmo43MxcdUnn0stpnZPzivZHiRZTPQnCyH94Z0/DxYG5R+2223Ha2Xr5el4PLYaafyezNA6XjvMeUXGXhmO66SHvPZwuTLccwMoPdzNK4H7Xu0dfXKh1Gb5vcet/dO3N/eV2aBPtZ2bc+V2VpWlsrn+B7gsz+um/vr+8hs1+Om1i9+5ut94Ad+YBo8n2EwvIGBgYGBU4GdGN7h4aGuXLmy5dUYf+UpzVHiyjz6aCeqYoD8K94r28Nkq0YmxVYekJk+mGywKjGUeVeSrTHFUC8tEKUiS4W0IcTruX3PRRWXlyUNpq2uijOK363x0jw8PNTly5e3POMiqpI7frXkGOOUKD2SEXMvRUmQXqYcO1mIdLwXfT0fQ2k9zlOV8JssMIuL4nXofUrbuHR87/l6trNYaqaXY+wX7x/PCb1D4z3ic8xmqr0Twb3SY3itNZ09e/ZovswCzEKk4/l3v81A3F/a6eIxZi+0j3p+HFeYpWDjvJC9Z+n7qP2ytyHj9KTtMmtM8Uatje100vG6uK+859xGvJ/M8CpNT0/DQc2MvWr5HI/3BlPjUTPnvRrn0fvba37bbbcNL82BgYGBgYGInb00L1++fCQx+Bc2SmuMo7C0xLiUKDUvFVO0dONf+16sEz36MrbGLDD0eMoYCzM10EPRko7HH+2ajJ0hs2N/4rH0TKxYcBynJXpLbpRus+wp7ndV0sPIiv3Gta08Ne2hSdtDlMy8zszMQGYXPSDdnqVjerx5viylx/5XicBp/2Esl7RtjyMbjJ5q3POURmlLjFJuxfAsyWfZK3wdz0XmlSvlRVHt0WfvWe9j9jGyBc8pY/bIoLO9ExlxtXf29vZOsGFfx8wsfkZWw0w0Pe/pKvOR5zGyGTJs3jc+NvbRzy96t3tf2+sw7jevO+Nkae/O4p/pnctSPFlmH7JzzoXX1p6k8V70nuGzxM+jzL5NeyaZPovjxvPXemZGDIY3MDAwMHAqsHMuzXPnzh1JBswrKG3HiTHLAosdSse/6owT8i859fERPpbSk7MkWEJgbEgPlj6zmC33iWUsKOFl+enIKJg9I8sGQzscS2y4j5HZ0I7B2DEys/h/ldexZ5/LikESe3t7afxUlPZ8TfeXEjCzprjdONYXvvCFJ45xbF+Wf5H2F9ryqK2IzNPCmAAAIABJREFUfajugaykEPdMZbvjmsfPPP++vvvMfRivzevQY5CSd4Tn6/nPf76kY+bn+yrL7MKYWK+brxu1Oll5md7+OXPmzJb9Ku4n2seZdzWL4fSxXBfvHdr/4vPHn7kNFrwmA4zn+1lV2b7jc6diyYybzXwXvK/cF3rpmgHG57fXnecyo5DnKLM3mv0x+9C73/1uSXnGHZYq4n0d9yjn79Zbbx25NAcGBgYGBiLGD97AwMDAwKnAzirNs2fPbqm7skBwujWbhmbVipn2iQGR99xzz4nrRdVIFQhOVWpUg7EdHttLuVSpNJm6KBpfGShLo3EvATRdzDnuzNGBrtEMrM3KnVQJvOmUE4OMq1CGDK21E2oJpg7KrsmE0D0HjbvuukvSsYu31SeeH6tJs3ARqiOtnnLS5Szw3PPNZAUs6xTP4Xs6aWXqUKpx/UrVT5wbf+a1YiVthhXFdfGcuw8xQa8kvfWtb5WUhyVUjg5ZxfAszdqS0wqTemeB5351yAKTF2SlkDyXfkbZnd5OGAzkj2AKMTq1ZWp8JmzwuZn67nnPe96JPnq+/Iz0575OnBOvJZ8/DCeLz1DPgeeR42CYRFxz7wnvFSYr8PVjGry77777RF98rtfY93WWMMLrcvPNN4+whIGBgYGBgYid/TodmiBtp7WRto2rlgj8i23pObre0hDL8hkMNMyux3IpTIKclfoxGC6QgQyvKozKoOUIss0q4D4bB92rPUdZ6iJfm0yZhvUo2ZFJMi1VxlwyiXyJ5TGVVJSA3W+Go1Aijutkqd9zx5AVS8SW+DOWyMKvDB/ICgFzrzCIOwvqZ5okFoDNmBBT2tFJhoG60vYe9XpbsjZz6e07MztL0e6H5zvOCaX/iuVkpWSYlCHDNE26evXqkfTvEJPIFDg/PjYrdmzQaYWaEaYYi/cLU+7xnvK5MSzBfSHj4h7OHDQYokNNg68bSxgxvMeszXPj17iHOCfUYDGMIGPMLCJsFuf5zZyX3J775P3ntY7PCe9JO930tAPEYHgDAwMDA6cCOweexwTBWZmdrDBgfJ9JS5YwzAJZioLptTJpjal93Fav5IrBxKwMCJe2JesqAbDbyKQmgzYdtilt2wqpf6ddK/aVdji7GjOIM0sJxz6x/FC0Y7CUTI8hWzOQpd5iHyzxWn9Pt/3YB86PpX6vi9vwfGVB5HTLtxSdsVUW7WRSBO+7NYVzmQw9YztkEF5L97EKeZGOx0wbpRltdo7n3pK3pWja5jMW4r74va+ThQZx7FeuXOkmLbh8+fLWnGbPAZYQYvmk+NypEkF47C5h5L0VtSlcQ2qUqlRZ0vEe9Fr6NWOFfq4xqTPZp8+J47MtkqWyvC+ozYnHcq45R1kSBc6B58vj8/tMK+U9Y0bn8XD/x/72UtdVGAxvYGBgYOBUYGcbXizxwkDGiMweUR3Lz8im6L0X7UiU/nldFt+Utm2PZHSZnYbSBM8ly4k6Z3rD0TswS+PF61HCIvPKkhXzXH9uXX6WwqpK/OvPs7RuUdqrbHjTNOnpp5/eajdLLWYpjwzE0m7sAwPjGZBNphz7V5VNotdwPIe2IkuvZi9+n+0d7nPacNmv+B21EF7vLACY96f3iPts6TkrVkyWFe1kUq6hYaonS/CW2rNzeN8cHh4ulggyaM+OY+V93yu9lCWyiDDDY6kpafsZwcDsDPQDcPtkPrENpmhkkgSmRYvnMsUcg9WzNIhM0VZpfrJkE5xjt0uGHwvAGj6WNvDsN4bPql5SDGIwvIGBgYGBU4GdGV6UIChBSnVZHsZzZTFnTKPEX/KsaCwlATI6JqmN/1dFVOk1F8+h3aBKPJvZ1JbaiqiK4FbFSXvSKqVQM5ddSiZlbIDFbs+dO9dleFevXt0qchklbkuCjE9iAc44n0ypRE/Ian3iOSxZRE/Y2Ed6qZktua9Zqi/2iR6dvThG2jxZVJNjkbb3G+evd2/wfqVmIZOqq8Twmf2F58R7u9o7jsOjNieOk9oMxti5Dxnz5vMlK8Qaj5O2bVkcu+c8S3rtzxxjZ7svfRjiNckoyYSyvepz7fFIPwNqiWI7vif4Wnlixr5Vie2z5031++D5y+zpWYxwTzsQMRjewMDAwMCpwO71FQIyqZ8SNX/VyVDiZ2SMWftE5TVEb9FMt05pkAwzK2FkVH2l91QcK1koj81YKJmc35PBZH0jKCXG48iAqpJNmR0j82rN0FrbWo+sZAylZWaRiDYHSqksKFmtU+w/v6MtKivxYjuj7SP+PNNCGLSP7mLDY/xqNh6jsr9QOs/sf5XXIdlgvB/oXUpbThava0SWuxSLxxJMmT8A9ymfC9kezdhK/DxLkm8wzpeenpHhMQOObXi2+/o6UVtj251tqZUmyzG3sY9ktUy6zGLG0nYybD6bmfEn26vVfZx5oxtM/p2VOzJ4zy/ZfyMGwxsYGBgYOBUYP3gDAwMDA6cCO6s0W2tbqsCsphXVHDQQr6lfVB2TVS3Owg8ispRYVGWyGndmAK5UZXyfBbq7fc5fVnOOqqNKVZupL5fcdHsqhWp8VSq1eGxvTZ14nM4FUY1E1SgdNZh8O/aHKeYYYM4wEmk78bjfUx0VA6bprELXe6uWsr3TUw9XfWQKK4bfeD5jMC8DjTkXPbUr71eqOLOafnRRr0IE4rh6AfOEHZ4cMO25j6ptJp6oHMPiOUxZx5qT3PPZfcO15PMoPgd8DNXgVB96nNKxStOfsS9ehywROL/zdWhWyNI88tnk67LuaKbS5LOrl0KxcvajCjWe47nwZ2vVmdJgeAMDAwMDpwQ7lwdqrW0l1e1V9yZDqAz18Rgao9c4rdDJgn3rSbV08e71kZLNGscalpCh80BmoKXUzL6wjxnrXdM3g8dQwltKGybN46wcD6JmILafJUqu3NvddqwibYnd0qvnkA5IGSiB0oWdAdXxGLJBhoXEcVUMqwqpyUIamB6Mn0eGZycIVu52P+hEle2Pai34Gv9n0u+eE5PbXQr+NqZp2goXieEOTCnH9FOZ85rnicyb85PtIa6hUQX9S8d71SzJ1zeYRkw6fjYtJdYnO5W2K86TpdEBLoLz1gtwNyrHoJ52r3qu0KEszjO1aE8//fRwWhkYGBgYGIi4JhseGUv89aUr8pp0SlV6rjWlQ4zKTTuTEMgkGYbQc5+t7C5Gdi5ZKG15WeoiSv1VSrPM7sO+Vkwvu97SOLOgWOPMmTPdBMDRfThzN6bUXwUNxz54Ln1MJZ1ndhhKpFWgbJYcncHJtFtlQcqU+qsCulkgMBMzc39kbIpzTVt1T+thVLbkLLE67Ym9ECWfn+39bBxxf5q52K1f2rbhM7l6tv7c0xxrVQw5HkOWxHPi9WwLdkiLr2tG50TdkeF5HNGuJx3POdlZPK4Kg2IJpTgusmiGlPTCU/iMqlIoxrWufAS4npG5cu88+uijq/ayNBjewMDAwMApwc42vP39/S17Qvx1JVNg2rA1njpLyALdKwkxK8hZJZzulZuodNiV9NLzJKwKf2bJnFlupGJ0vRIZlH566aEqTztKb/GYKBH31qG1tnVOlFCrxNJmb5kNoBeEzDHyXM4hPXwzDQMZXuWNHMfFvUH7BNcnWxeur6VzS/RRAvZ1yAq9v3qp+qq9yv5kSRLI/nr39a7Jo+P6ZsnPzSrtJctAZs5J/L8KnOd9kj3nKjuYz422VTNS2t/c5wceeEDScYFe6Xh9bcur/Bxon43nGn5em0E65ZjLCMXz7R3KdHQVE4ufVc+ozNO7ep76/sruEffRjPjSpUuD4Q0MDAwMDERcU/JoerdliaD5i8sYN7YZUXnW9VKZLUllWXkJ2mx6SXx73knxe/YrO4Y2AtoZpG1dOj3hqqS+8f9KOifTiO3RZtQbN+drlzIdZP7Z+YypsrQcvTTJuDjvlQ05+4y2DqbIitfzd9RcZPs/0zLE97R1xHVjzCb3qpletPt4fnqxenEMGbjuVV9jO1WR5GzOyYx69t/Dw0Ndvnx5qwixmVEEixv3PC6r2F2yiizhPdslvE5eH+mYYXl93P93v/vdkqR3vetdko6ZS2yfXqdug2OIrJfxv2Z0PtZ7JpbrMdvznnFfaP/N9k6vgHbsa+ZRXp2TPavc73e84x1HfRpemgMDAwMDAwE7MTzHwvRisshW6ImWMa7KXlBlOshsHFXGk0y3TU+jKsF0Jg0aVdaMnkeXwdiWLBGrwe9oU1tTeJJ9zqTTypuRtorMBmL0bHjTNBeApW4+60MVH5Zl0alsd0we3Mvwk3mbxmPjOZas/crMEFlpKe7vyjs08wrl/DNxLouHRvhYJljv2daqe3FNTGflSZyxKxYy7TG8g4MDXbp0aauQaWRCXOfMW1Y6qVFwH2jDI7PL4mQr2y2LvMY9azucX22re9vb3iZJuv/++yWd1GDQS9HjqfZO9sxi5hjbEs0wo/3X8+hsNm6fZXp6scrUFjF7SwTv6ep3wntZOmZ2WTHqJQyGNzAwMDBwKjB+8AYGBgYGTgV2VmkeHByUBvT4WTxHqtWV8ZjK+aGXdLdyTqHTR+bKzvRJlUomA1Wm1VjitavQAfcnpjir6uBVAcc9Z6DKWaUXeM5x9r6rEnZHeO/Q6B3VRJwnHps5TDBBMY/tJb2mmraqzBzX2GvE9EZUNcX5ZGB2FehuZOpQq7msfqKKKabZsjqNfasckXrq10rNnwUPV/UWs/vaY14KK/F5TzzxxNa9Fu8XJhZfGnN2bPWsytTUlWnBweU+1u798Ryv5b333nviNXPCocMM9yjv5aj681j9WWX+iPev9xHToPk993+2dwiqtHtJ+b3GDqnwOONae06sxn/44YdXO8wNhjcwMDAwcCqwc+D53t7eVsLXTGqi4b+XbJnGYqNK7dMLIvcrJaMoARsVo8sCZykNVuUzMkbB4OHK8B/Hz7RtVfJYul9L21J6JbFmqFJJ9datF/RuOD0UnRViv6sEAD2HiTXOFLGtTEqvQjyyci1VSAurSWdOUqwiXjnnZPMZ0yhJs1QrbUvcsf1KQ0GHg54mo8fSDDoyVA4VWQB/j9nFPjz++OO67777JJ0MlDaYqo4JwbN1qdKOcV6yiueVVsD9MKuKDiieO7vVezxe0xiiwXFQC8BnCgPt42eGnXyYyCEmsa4c26w1iGEW8fh4LM/1+2yfVZoEHpsluHa7Tz311GB4AwMDAwMDEdcUeG70frmXpMc1gYKUNrI0PmR0lrDIYmJhRPafabwoxUvbEqklN0qoWVFC9422Lurd47joCs2EyrGQZYXKnkrWHbGU7DuTPte4lrfWTpybhadUKamq1GhxDGtsxfH4eA7bYDmdKKXTbdsSr1kH00ZJ27ZiuotTer3tttu2+u8+UFNhW152T1S2T2oH4r5csuFln1dhF71QmSwEZSmkhesR58L/c07dvu098ZxKs8TPe+kC6TPARN1xH7hvMSVWPIahJtW1Y/s8LgvzsfbB68JnScaeqgQeTDIQnzEVG+VzL9tvBp/fDA2Rjufc2o0ReD4wMDAwMABcU3kgo6c3rRLi9opOUuqv7HNRX8/PqrI6sa/04KTUQltLHLfPoY2wSsUUwWKNhiWVKA3Sa4njIyuNfWVgPW15WQA/vdoo4WXrxvaWbHmZhBxBKXIpuL/qV7wWU4BFRlmlkDKD4L6QjqXl5z//+ZKO0zWZ8fm6vWTOlLRp16SdRNr2ymQgcgzC9Vi9r6pgZSOuCwO4Oa9ZELlB7UbP7td7DmTHXrlyZet5kGlg+JoFjRu8Vys2m2kjGLTOuaXmKf5PDZK1A1nariwFX4S/zzQ/TD9mzQE9TOOzmv0nY+X3vUQUbDO7XqXF472ReeTatj4Y3sDAwMDAAHBNXpprvP6qlF9GluyYNjoysSz2jSyNyVQztlaxQfY1K/FChpWlEpNyWxcluCwWrbqeUcUdZgUS+Uomlnmhss/0KMyk9bVpza5cudJNLVbZK3jt7BzOf5XMObN10Q4TbXbSybW0DcjxVrYNs+/ed/F8zpPXxXOSJdBlrCCL4mZxf/QQZPxTZduN/69JUm5UMZBkcT3J/r3vfW9XSj88PNxKih33ideOdiTea1n8IO1G7Ef2Ob1A6bVpO1zcBx5rVYDVr3H/eS29z/yez0bvh+ir4D644Ozdd999oq8+J66LP6PvANPUGVkcHvcDWXemjaq838n04ndZLOASBsMbGBgYGDgV2JnhnT179uhXOZN8+EtN3WwmadGjihJX9RrbYZkY2raipMXrVpk1Mq9JSn+VnSmLi6rsY1mmkipWrvKeimDGi6pAZ+ZhxT6v0Y1HibtX4uWpp57a2ju9OKyqNE0v6bVBCZjMXDqWWunZx5I/cR/4HNvMONfeZ1HSppahKjzq99Ee5+vZXkEPP38eYwVt76Bt0OhlofFYqz4vsbBsfNkaUZtz+fLlxViqyq4UQU3PmgTWlU2/is+Vjhk+bWfUnsSYQdt/vXZuz+tFe2D8n4VR+cz0fotr7STR99xzj6Rjpuc2PIaoYfLYY2Lu+Ln3I5/rcczUDlA7kWk/qv3F68X/47qsZXmD4Q0MDAwMnApcE8PLbEBGxcZoF4vMpPLOXMpmIm1L1pRMM+8l/7/EPrPYD2aZqbJaZJ5W9ICr7GbxHHp/VoUYs/nseTfyfebtmfU1y5ZhZPk8YztXr17dYnRZoVTad3pef5WNk6+U5qXtUj9kB0ZkEi7pQqmf2gJ7bUrHkj1jwZgdI+uj2Z4lbmdYYUaPyPDoQVjZEHtlb7iHuLZx7at4Ntpyeja8nqfdNE3dc+Nn7Avvm3hO5SvAeEnavKRtRsd95jbMouL5vMfcZ/cjMiDG29LrmHax2DbtzL6O32d2Rvbf+6uyhffWgH3L1rcqc1Z56MdrrvXMjBgMb2BgYGDgVGD84A0MDAwMnArsHHge00dlKs0q+SipaU9F0UslxfdUO/A1q8zr70ztqULtJWKlEbyq/JuVQqHDBscQQYP8UiXqzFV/KYA7ogoi77khr0khFXH16tUtVWxsj2o0vmZOFksJDvy9VTNZqie2wTCOqPKzajGqEOMxngurMaXj5LxWMTE9mFWqTE8Vr+PrxgDc7PpSPV9VcoSeE5BfqRZbo06iyjtzbluT9NchLVSHZw4T2bXi+7jWvLZVe1SvZSo5pgPjdRg+EtvxPrC60k4sfGZKdVJsmknY93gsHfqYRCNLCEFVo9tnfzKTBOeVISKZo5q/4zMyU2kyfKiXDJ8YDG9gYGBg4FTgGQWeU5KUasmKElbmolxJ9pQGM4N59T6TKiwtWJpg8HCWasjHWnKnazT7nBXFrVJw+fvYx0rSXlOupWJGZKNZAuCKMWdJgykF9qR+Ox5Uwfexv1XR29gW/6/CQugQEiXFShLlHGQBzkz8y7mOzgpmZ3QiYKgEg32lYymWrutGL6l3leqJbD6T0qsEynQSy86p0pFlTlmVQxXPf+KJJ47YbsZmemwyXi9iqXxWFeIQv6vuR69b1CjYScQpvuzY5P2Q7Xc6IFXaCLO3GA6z5ETE1HOxv0yDxjayZ1a1hj2NYLV3Kgc2Kb+nR2qxgYGBgYGBgGuy4VHy7f26VrahLG0XsSaou7JHULrJkgZToicT66VcMuOjS3MmpZEtse9GPIf2zP+/vfPpjdtKgviTZCWOD04CY4MAOez3/1h7zQZBAsSBHUszeyqp9WNVk6PFHrLTdRlpZki+Rz5yuvpPdfKtJ+m2Oo/06hhAKhrtWGHy3ROn02lTqO3iR4yp0srspMUSw+sk0XQuZR2nJrhrbVs5ab9kepWlaa2o8aes8SSL5qxZHo/roKajs+kp557WQz02JeW0zh3rJcM/Gpdb6+W17p4DDw8PT4xE16nOOTVzTnOuY+jKJ+p8avwqtRTSGPXdykIVz9P+xPB4jV2cPHk5eD857xefSbxOrlSHQvdJfrEilQgJLtafvE9dzkcSXT+CYXiDwWAwuApcHMNT8fla3red2ANbQ3QZnnuxvC6zj5aw20ZWlywbWkJkfnU/BKWXHDtMfm8WkbpWInt+8U4IOjXzdNdtz0rqtukYo3A+ny1j7t4ja3MFp3sMr4s9CRT85TWt8yJ74jlQnMkJAOuzdG+wmLnuNxXzijXUAmWKIfC+OuKZSc2dXTyOY92LIVYkyT4Htj2q7IlxPY7FZfLxPDBLlmumZsimvANdd8c+xEwlJqCYLkW9nReF/9PrIe+Ba3DLxrk6F7o+bq3SY5Ge+e5eTJnr7jmR9tc10tX5qyx6YniDwWAwGBRcHMN78+bNRsam+oBTU8Uj7CL5/rssTe4vyc7UbcgG69zqPpxUVrKWuW8HxvloUVaG55pB1uN18ZLEClKNIv926KyzGkc6uh+X9ZliTfy8i+Hx/Y5tUJBX1rFrKSXISucr16FjA3zVmDuPid7T2FgbprG7jMUUY+3iMALv3+QlqJ8lmaiODdR7OgkAKztc94Qs/JqRSG8N47CuBpXSamLgZGfaRrJu9TuMgzH2VJmYxkKJOWVtivHp8wrWw/F5p/VW1ywbG7OGU/t0WcF8NlGUn//XsdELkq5rHSPXKJ+JdewpY/kIhuENBoPB4CpwMcM7n8+teLSQ/PnOsk/WI33NgtuWPu1OnYUWJ7M2j8SkEhwz43lyrVHq/2ttWySlfbkYJb+b4n2upo5z5ncrk2Ds4f7+vl0Tdby0nt14yRYp1Mzt3XFo8bs50zIlw6tzpiJEaqukmMpauQ3RnkrQWttGr0daPXVMqb66OJNridQdv27DjNGu9QszEr/++us4btVwpjjPWtvsUu7fNQAmi6nNaCvEKH/++efNe2yyy6zCOkaNhc1ala2pdj6V4TE2SY9Calq81laMnCopGnNlT2SuHEcacx0TY5+8rp23RcdnLLSOUdfnSP3v5jiHvzkYDAaDwd8Y84M3GAwGg6vAxS7N6lroSguSZJBLIkiyXHuF2m5bujD0WtO2tV/K55Aid/3dSPkZHHcyYUwaoKuhultYXkH3bkr9dbjEpZBeXYEz3Vx77sw6D7eGUidwroeu4/2ekKwT15XrJSV7OBk8jlkJB859x/Ok6811RlHztbbJAXvuwwquUSbLuMSrVOjM43ZSZvyOS6W/xA2l8TAhre6P7lney07EIPVb5Odyr/3+++9Pn/3yyy8vXhnKcOUvGpv2J9el/nfhGbk/ub4pcODuPZbI8Jkot3uXEEL5RUkrai617yNF0YUuNMTQBp+Jcl/WMdI1W8e7h2F4g8FgMLgKXMzwbm9v2zTqowyvgtYLrWQmXbhf873WMtXKIHNLEjxurBxTai3ktqGVyQC3Y4Up3T6VK1TstfhxiQ4pgYLW+1p9qQlxPp/Xly9fYgp73X6vQLoyYVryfO1EaFO3cr0m8eo657SW6hi5X8p2kQE6bwS/4xi3wCQMJlQwIaquMVnySeDcMUrOK3kfXDnJEa/A6XRanz9/fhq3juMYnvbH1l9dSQvvd64Lty0LtJXEon2w9GCtbdkB20WJPVXhcTJ8PneY1OLE2PUZmV5KUKnf0fFYjuDuTZfkVffP+6q+xwQ+JqtUhsfr9unTpyk8HwwGg8Gg4mKGdzqd2vYptEAIpqW791IsTxZE9Y/z1z5ZdC61XEgySnUOSZyW8Qln3XIMqW2HixkyDsJ4mUvh11hSDNRtk2J3rvSA2ziW4XA6nZ6sTLd2yGaYWs7i27W2LIUsg94D1yhV0Hkjy6nrRZ+xuJasym3D+Ijmx3NbGR7LBBjzcDHjVDzM2AdZQzcmztt5TFJMtxN9r0wvsb3T6bT+/PPPTWumGutkqxuuGSdhljxKqTypMq/vvvvuxflIUoZ1GxWYi+Fp/Hqf/6+V7zHKEur/WkSuMXCMmrfibzUORza2V7pTGSyf0wLvifqc432p68iyBNfstz7jh+ENBoPBYFBwMcNba+snr7/YFF7dY3puv0mUmJlCPHbdpsvOSm1oBJclmjKNkoSVK45P/nAn9ZSyQJ11Q6TY0xFRX57zlMlY36tW9F4cL7WbqX/T19/JhKV4a8oQrCxH8Rdm1Cm7zQkQyKKVVZwYdwWFnulR4LycBBf3S+mqGjMkw6OkGRseu4LwJF3mvBCJ4ZOd1jHy3HYW+ul0Wn/88ccmrlTZU2J2+t8JOTBW7GLbaz2vjx9++OHpPRVcu6zVuu/KgOgV0DZcS7XwvMtqdnNQLHGtbcyW83J5BxyTE4hI4+HY+BvgJB3JVJUJq3nwXnRzf/PmzaFY8FrD8AaDwWBwJXiVeLR+uV0jRlkRZFEpu7AD41YU7F1rK73EOJCzKlImJ1HfdzGHtba1TS6Gl7IYUyubemx+liSMnGQS/ftdNmXKyqTP3jG8SyTYyPDqtWQcJLVCqUiWL5mDy9JMTDjJq621bZBJIXWhxlKEFF/mNXTeAYFtaBxzJbNLzN6dOzL6TlJMSGLBqWVX3U+SMqt4fHxcHz9+3DCSWhdHSTFm3gquFjAJTYvd8nm31rOX6cOHDy++2zUPFpjnwHNQx8h7mfOkIHXXWorxWZdpqc9Yb6fYGhsg1+tGj1m6j11WP1to8T5za+fSWs61huENBoPB4EpwcQPY+/v7jWVUYyD6RU5s4kjNFj/rrMzUroLNNLv6G7K2VAPntr0EZJ0d00zWPy16ZzWljNWUibnWNhtz77Vu46xKh9vb2421V61Zrg1aoMzarOA1ZMavG39i0Yx9uPPEtcH4iGN4CWQunfA4a6kce+LYGGtPdYFr7avPCB2TIKMgk3Hzenh4aIXAP336tMnEFRtY62WmYT1Wx7SSQDaPo3NRj/Hjjz+utdb66aefXnxGj0gFrws9MGJRdV7ahs2DmYmta6zs0bU8M11ry1zr2mXcXNdJz3W1SGKsba3t8zR5MlwdHusa9eq8O1wnlzyLh+ENBoPB4CpwMcO7u7vbVPnXTKT6i7/W1t/qWv7sqYak2NdaWYczNSOs26dGsB0W0kAkAAAPPklEQVTj2huzs1LJqPbic25sqa7QZSmmLNeUebnWNhbF8+fq8Gg172V/1vivs+BSXIeWsdPS5Hlg/EDjrhm+mltq3unYE1vIkDm6WBRjNom5uvlxXi7OR+g8ypLXPOn1cGwk1V9292TKxE71rW4+j4+PuzEZXpfaxkfsiAyoO197uqu8f2p9pNaRaubErMii69yPxuPqGtVn33///Yt5UI+V3qn6XTJ8KrvU688Ye2o/pHPHprL1OBq7tu1qlJN3gPtca8tCpw5vMBgMBgNgfvAGg8FgcBV4lXg0A8K1APS3335ba20TJujecMXDdH8m6adKd0WpGRhnYLYLsnP/LDVwoOssJU3Uv48WR9b9cc7JHeqORxcjk0yqK4OuGLrD3DYuzT3NUQlPdMV0QtBE57ZIQsWpgHqt51RunWN2iJbrp2tHQhewWzt05/PaaR8u0YXnM3WRdjJ4mp9e6ZZ2Un1JENyta4EuJiekQLC9zZcvX+L1lTuc56muHb33/v37F2PR+841m9xnKeGlS3yha8+VUKV1wKJ4J72VBOfpsq3H4zx0neXK1KtLWtKYFKLSeWT5Tbce+Ox3oRQmpegzJoe50hmXDLWHYXiDwWAwuApcnLRSLS1XzEv5JFkrSdB4rW0iS7IMXZE1GZbGJovLSVjRIkjp6C4lNskPdYk3e8HxrjklWQcZhGPDHGNKQ69zYIlJSnhwIgOXiAp0zXUZzCccM08tnZJslxM9Zhq6zrkTnCbIiI6UsuyJVtfPeWwmwLh7hm2GmJzCJIZqcZP1pFY/jsmzjCMJEdfPuhKgeqy3b98+jVNeJCcXyHs2iYuvtb3+LMwWM+Z5q99RE1UJWuta6zlYE/o4ZxZV02tQwfY5qXSngk1VBT0btU/XuFXMTtuqLILizp1Yxl7pzlrb55nmwzZErsCdXpUjGIY3GAwGg6vAxQzvq6++evL9Ov+1rCL6mmUpdLJWTFGlJdzJD7n2GGvlpoQOTHt2ln3y5zOG59KRhSQE7OI+KWW+i48khpfSlNfKZQj6riyumppNhrdXAFpbS9X3BHoByNKcFZuKXZOo85F4leDYqGv/U4+bCrW7MfP4rhVKarHiCurJ5BnDYQzPeT/IJIk6f46NHhNXhO3aeiUPwd3d3fr222+fGJHYhZObYqyLXignVq7xkWWwRKOuDzYo/fXXX9daW2kux56cp8r9X5G8DPS2VXbI661ns8bsxKoFSteJ4anwXAzQSTamWDVLqdbaNoDlPDSHWoLC2N1FcpWHvzkYDAaDwd8YFzG829vb9e7du41FVC04MQJZQPpl7kRc2aRT2JP+Wmsbo6N/2mWi0QqnFeh8whzLXlyuIrFBFnm6tjApczRZo/W9ZKm6YnzGc9jwU8zOxTGEh4eHltkoBrzWNk7G+XdwVnq6Hqn4fq0tmyFDoceh/s0Y15FYlOCud93WrQMhiaS72FTKymTGanfNUrG8K46n5c1MzOodcHHzLkuzZviKNTmJwZRhzWzNun2XX1D3XSEGJMajuKLYkmvrxPt9Ty6wIo2R66CeYzI8nl9dJ5cdrPf0qvmK2fE56/bDzHzmdbix8H/Ob63nZ5BY5yXP4mF4g8FgMLgKvIrhMeOpWhX6W1YYW7Q7q7nuv/u/y4ATxCjZ9LBaaYzrdXElgp+l9i1u3Htiqp14NF+7FjZkrozpsFax/k2mx1ieq93T619//dXWGt7d3W38+V1cLtXi1GMw027PUqxIwuapxVV9by8O5+aTmD6P7zIu06uO161vWvpkA51nYU/Iu37Gc8M4YGUujGN1dXg6LmsQ67VO7YBSPXCdP897ykyt/4vxMBu83gtrvWQ9qZ1W10Itxf8Z5+48T5w7Mz2rbBglDZmlyRrImr9BVps8Jt3c+dxxjXv1LFKG7EiLDQaDwWAAvKoOj7/GNcuHlfnM2nRZhsk6poXorPjEmlJ7+fqeqy1LoBVIq7YTuE4KFLR8qxWTlFWOqLYw6zW1V6psjVmaZAMus9M16E1xEK0dMlTHTPl/aufk5pwyL6n2UPfH75I1VvBaMrPOWelJRDkxzDpGxh5TbaWrqWTM1mVlchxHLWVXA7dXk1jPFeNXnZV+e3u7vvnmm6fj6BlT72kxELIoxs1cFuOeYodj+mJFZGAdi9d5ZrseKv7Uc8vYI9WoOhbKWP0RVqhjs96OORkuBp/uJz7n3DOEGeTaVrFR91xh3PYIhuENBoPB4CowP3iDwWAwuAq8quO5IEpcKTqlxRgElzvCuUSSiyclfdTvkJ4nF2T9m64KHt/R6CSx1BWeJ5cc51NdPi6RpYLuA5dunQqQnaQUC8uTy8ylFNfvduLRzqVZ95fEdSlPV88JXTvJlelEy1Onbs6xE8jlGnWF6UzQSX3Q3DnhPuim6orHec14bYUjfR/TtXHb0J3Yuc7qvde56W9vbzdFyjXZQnOWeDTh3JIMs7gO8HXbejx25qbb2IUeeA25zRHsleG48iR+txP51nss8ud8ee7qfl0iVd13vTdSeQ2FputvjBOoOCrMPwxvMBgMBleBVyWt0HquFoICsGQvFEF2AWonPeNQt+3Y31q5ncpaOVmhQxLG7YofadmkInLHXDgfsg0Gs/n3WtsEFMcKHOur33GFrSwx2GvTcTqdNvNxrVC4f7K4I2UjaZu6djhe10KIx0sBea4/J+bN75LZOSZEZpoSUDrmzcJzobPw97qzu214bsjInDj6kSQZWfBiG06KT88dzolst44hyXVRqJnzXGvrqaKQcVd+pfPCFkIsk1jLC/TX9+mtctuyLEEszZWY7CWrdNcgPQM1L8eyKW9Gj4xre6RyhEvarQnD8AaDwWBwFXhVA1j+XZkCrTn935UAsJA9Fb26VHZaLykeV0GrkrEV13LFxebqtrTOXVp6KiLvLO1kyZEduPnynJPpuVT2vbT3yvBohXXM63w+r4eHh8jA6nt7sc4jwtmJdTiLNMXyGGur+yN7odSYK0vZG383L8Y0WHju4s0plZ2vLp7OsbMMw8X9KHjO41bG5EpOEts7n8/rfD4/sSrBeShYEK3m1Fq3TgorrV+en1pkLaajMdBz5Zqdpti6i8MTqdyHzw7XrofSZWJrLCav7zF2R7FotlKqx2N82d1HhMS2Kcqt+dQm4/pMx3n37t3hJrDD8AaDwWBwFbg4hlcFgPWrWn+5KTaszyhN5Zp4pnYSTohVoGVDK8LFClILehatdlmaKQOqY3i08FloWi1tWuGJhTiZJcbjUtGyy+xMoq0uzqn9V0t4j1nzmrqmoGQV3Gc953vF6q7gnMdjbIFM32X4EmQzDondMnPVWemJ0btidbK+PS+EK9xNMTvHQlOTZ57Xem9yXT08PMRzdzqd1sePH5+arHaC8NqHGIr278TPxV74/OF9L2akIug6F+YdcBz1fDGPQcdXZruYixNjSE2ruaZcfgO9bjou43X1bzG9xAZ17us1TbFJocuV4LrmM7LOS+dL6+H9+/eRARPD8AaDwWBwFbg4hndzc7PxQVeLRL/qtID0Xf06uzq1vde9ppT1u87HLMhaIrOT5eXElev8HRJ7q2OiddxlmKY4o9BlRiamSvbmhKDJDniNHZN0c3ao27p6Lp4njqWTgDoiNF73VY+XWjB1Ul+sQU0ZpfU9J6K81pZ5u7HTs9Ax/NQYk+e8y5RMXgm3bxeDrvNxsZvOa0OcTqcX8TOXmSwwfqjrI+aiWNFaz5mBYi8cP9v41CakfFZQAowsqh5PLYX0P8daz0nKwk3PjrptaoKb5MPqvNgAlmLSLnsytRRjqzbX1om1yPQOuMzl+vwZ8ejBYDAYDAouZnh3d3dPv+Rd1iQbv7KVkBNVTfEqWij1eHtZmZ1YNS0eMopap5OyNDnvjq1xPrTKnJWSBIfJPlx7mFQX5azGtL899Yu6v9Pp1H7/5uZmY0V3Kh8pa+0IKzhyjtP1IEs4YnGnLNr6Htcxx9atgy7OxzGmekZm2DmWxXYsnJer99rLPnX1uklg2uF8Pq/Pnz9vshkdw9MxeA+45qpV9H6tZ6bHjFvG+tz+6C1iRvRaz94tgTEujrnOkV6aFMNzuRH8X2PnenfvcZ3x+rvm35xXykqtfzP+y//rGPmsOsru1hqGNxgMBoMrwfzgDQaDweAq8KqO5ynddK1nyktqz4JZV8BMWs5EBLkWnDuFLh9K33RF5HTfpFTgI3BunU5YusK9n5JGOlHn5AZJAq11/6kcwYkM0H2352o8n88boV4nQsxyB4Huj7ofl5Zd9+n+pwhCkn7rXJosUu+24RrlcbhPt7/kyuzE2Pek7C5xTwpOJoxrhUkx7jlxBBItSOe+/s0kCCYRVdeYElj0PEv9KrskKUpvyS3qrhcTzZKb0sntMdSwF/6p8+D14Dqs9yDfYxmZzpkr81BxOOfTybula0q3skvG6UIACcPwBoPBYHAVuJjhvX37dpOu7wqBGah0zI7bpAQN/l+lcFhcSXkyJ8i7l9LrmNgR+ayjSJ2HLykEJ1vrElA4n67w879JdKnC4sT5fF6Pj48x7djNTWnTLLOoSMkVtC47lsH9cp05CbY6r/rK93lMd5wOZE1iKGRvnWhB6rju1vJeSYPbVmNKzLzzeghdaykxPMfsOD5eH94nrs2MPqslC2tlmcR6PN5bWjNOMDslmrBQ3zFugR4NPh86tiYk6a+1tqIVGr/aLrFdTz2fSXg+iabXbZIMHhPI6ntH7h9iGN5gMBgMrgIXS4vd3d1Fi3itzPBYluD8uLTSk2yUiyNRLulIuxYhWa/1OHvWxBHrWdiLVdbPUmwtiTy7/e7Jkh3Zr7OueZ32ztHj4+MmjlQt/b2UZMdmU9F4io9UcPyp4awrmOdnjCscEYJO43HnOAmOu2L/PRFkeha6GAitc1fms7eNA2PtnXCynjtdqUy6P8jwKpvhvSWItbDVmXvuqFUNxRxcGUQqZeiK+vk8Sy3NnLgF1xll1hyz5X2j+ehcsJVRLe1IXifFN8V+63lkSySuUf1fvXq8/vf394fZ3jC8wWAwGFwFbi7JcLm5ufn3Wutf/7vhDP4P8M/z+fwPvjlrZ3AAs3YGr4VdO8RFP3iDwWAwGPxdMS7NwWAwGFwF5gdvMBgMBleB+cEbDAaDwVVgfvAGg8FgcBWYH7zBYDAYXAXmB28wGAwGV4H5wRsMBoPBVWB+8AaDwWBwFZgfvMFgMBhcBf4DJvg22KvFZUAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE9CAYAAABwXNeiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYZOlV3nm+rKys6rWqN6m1i3Uwy2PACBC7WQ3CgMCAwJIAoRl5xmODbcB4EAZsYQ8W9rANZgAjDGLTYFsIMJKQhPDDAAZkEAIhNgmtvW9V3V1dVZl5548bb8bJX5zz3RvZVd2COO/z5BMZEfd+99vujbO+pw3DYIVCoVAo/FXH1qPdgUKhUCgUHgnUD16hUCgUNgL1g1coFAqFjUD94BUKhUJhI1A/eIVCoVDYCNQPXqFQKBQ2Apf9B6+19pWttSH5+/TLcL3ntda+8lK3O+O6rbX21sW4nvEIXfOlrbU/uwztPn8xjide6rYLR0dr7frW2re21j78Ubj28zv38acEx3/14rvfuAx9+c1OX/zfzZfoer/XWnv5JWrr5GINPy747uWttd+7FNe5FGitvV9r7edba2dba/e21n5qzpy21nZaa9/RWntta+2exVp8wSPR5ylsP4LX+mIzexc+e/NluM7zzGzXzH70MrTdwyea2fss/n+umf3iI3z9S4mfM7M/MLPbH+2OFA7hejP7FjP7CzN7tB6MX2hmt+Cz6D7+isXrx7bWPnAYhj+5hH34ajO7xr3/l2b2QTY+YzzuukTXe46Znb9EbZ20cQ3vN7Nfx3ffYGYnLtF1HhZaa9eZ2evN7DYz+zIb+/2vzeyXW2t/YxiGC53TrzSzv2dm/8PMXmlmz7q8vZ2PR/IH7/eGYbjk2sgjgdbaiWEYpjb8V5jZRRs3yee11k4Pw3DvZe/cZcAwDHeY2R2Pdj8K75X43WEY/qJ3QGvtfc3sE8zsv5rZ59goAL7wUnVgGIY/xPXuMrPzwzD85pzzZ97P/npvWrOLR8IlFgoeLv6hmd1kZh89DMMtZmattT8xszea2bPN7EeyE4dhuHfx/Btaax9l70U/eO8VPrzW2hWtte9urf1ha+2B1totrbVXtNb+p+DY92ut/URr7bbW2vmFGfHfLb77NTP7eDP7ZGfWeI0792MXavYDrbX7W2u/vFgQ3/5LW2t/0Vr7+Nbab7TWzpnZv5ro/5U2Spe/ZGb/zkZp6EuD436ttfb61tpnttZ+t7X2YGvtD1prn4fjPtD141xr7c9ba/93a+30xBze3Vp7cfDd81tr+621D3Dz8JrF8Q8u2v9eHH/IpNlae87CtPNAa+2+1trvt9ae35uXxXkf0Vr7ucW1zrXW3tJa+6fu+9Za+yettT9ZrOd7Wmvf21q72h2zvejPt7bWvr619o5FP36+tXZja+2xrbWfba2dWXz3dcH4h9baJyz21f2ttTsX1zmJY5+wmPs7W2sPtdbe2Fr78qS9p7XRzHNm0e/vaq2dwLFXt9ZevFjLC4v9+o2tteaO+fRFe89orf371tpdrbU7Wms/1lo7tTjm/c3sTxenvMTt72cvvv/sxX69bzG+t7TWvmlqfS4Tnmtmzcy+0czeYGbP8eN9JNFa+9rFPH3UYu3PmNmrFt994mJvvntxH/xRa+2bW2s7aOOQSbO19gWLNj+ttfYf2mi2u6219sN+3wZ9OW1m9yzevtit4dcuvj9k0mytfbjWeLG37ljstR9so9nwQ1trr1vcC3/cWvui4Jof01p75WJfPNha+5XW2tNmTN3nmdlr9WNnZjYMw++b2e+b2edPnTzMoPBa3Pv/bHHvP9TGZ8RvttY+a0b/joRH8gfv2OLBpb9j7rsrFn//wkaJ8O+b2VVm9huttcfooNba+5nZb5nZx9koMX724hwd87/YuCC/a2ZPX/z9g8W5H2Gj9nWtjdrYV9poIvpvrbUPRV+vN7OfNLOXLq7xMxNje6aNJpYfM7NfttHk89zk2A+08UfxO200D91mZv+ptfY+7pgnmNnbzexrzOyzzOzbF6+/kHVgGIZzNppxv5I3rJm9wMxeNwzDny4eoL9kZhcWffwcG01Cx7O22+ij+Y9m9jobb4QvtlHCuy47Z3He02002zxlMZZnmNl3LcYnfIeNc/FKM/vbi/+fZ2a/0Frj/vwqG03Hf2/Rnvr1czaaT77QzF5t48PkM4Mu/aSZ/dHiuO9ZtPN9rr/XmNmvmtlnmtk/s3Fd32xmP9Fae17Q3k+Y2R8v2vt/bJSKv8G1d3zRn68ys//Lxr30EjP7NjP7P4P2vtfGdfkyM3uRmX2JjXvFzOydtjTZvciW+/uVbRRkfs7GH8QvtfGB9F1mlj58HwZ697Etftiea6NF50023hNPtnGtHk38rI1m4GfaOH9mowvi1218bnyOmf2Amf0jG/fGHPygjWbTL7Fx3z7Xxns1w1kz+4zF/99ryzX86YnrfLuNps6/a6NZ8fk27tuX2fhseqaNZu6faq09WSe11j7JzP6bmR2zcQ9+qZntmdnrW2sfNHHND7bRrUH84eK7S4H/zcy+1cx+2Mz+lo3z9ws2Pn8vD4ZhuKx/Nv6wDMHfr3XOOWbjD96DZvYP3Oc/aWZnzOzmzrm/ZmavDz5/uZndbWbXus9Om9m9ZvYy99lLF/17xhpjfPWi7Z3F+xcv2viAoG8XzOx93WePWxz7DZ32t218YAxm9mHo65+59x9gZvtm9mXus49cnPd3Fu8/dvH+gzvXe/7imCcu3n+jmd1+hLX/dRt/uK9Ivr9pMR8/nOyZz3HjH2z8sTrmjvuexeff6D47bmZ3mtkPBeP5PlznW2z0977f4v3XLo77BBz3ehuFmC2098047pVm9mb3/qsWx31ccN3zZnbD4v2nL477DzjuB8zsAff+/RfHfSWOe9bi86su1X3b2RP8ez2O+6TF5/9o8f7GxRr/6GXs20/7+wDfaU2/ZaKNtthn//tibU66737PzF7u3n/Bos3vRhsvnbpPbHzmDGb2dcF3L7dRUND7D18c+59x3OsWn3+u++zJi8++xn32BjP7bdwzJ83sHb31sNEHd+i+ct99n5ndtcbafNSirS8IvnupjYL4ZdkX0d8jqeE908ye5v6+2n/ZWntWa+23Wmv32fgQut9Grc+bNT/TzF4xDMOtR7j+Jy3OPaMPhtHH9gtm9sk49ryN/odJtNaeYGafZmY/Mywduf9x8RppeW8ZhuGtrg+32PiA9pLZidbaCxdmqXM2+gZ/ZfH1ipnXtfWnZvYaGzU64QVmdquNGoDZqJGcMbMfaq393TYvEvO3zeymhYntGTKz9bDQlj7WzH58GLXPCE+38Qfqpfj8p2z84ea6vHoYhj33/i2L11fpg2EYLprZW83sScH1Xob3P22jcCUTzyeZ2duHYfg1HPdSM7vZVueegUlvMreONkqtf25mv+W1IhsFpB0z+5gZ7V3ZWrsxGIvH79p4z/xMa+2LWms3TRxvZgemYt+vOfg8O3wfvwDff8WiLz9pZjYMw5023ktf1Fq7aqI/1B4vpRn0vwTXu6GNrpS32XjPX7RR89oxs6fOaDNar5taa1c8zL4Sv4T3b7Hx/vhlfTAMwzvM7Jwt9v1iD3ykjfdSc2u8a6MV45MucR+Pgt82s09srX1na+1TGtwLlwOP5A/eHwzD8Dvu74/1RWvtmTYuzB/YaM75GBtvprttlEiE62010nMSixvnOluNLjMbfwyoQt82LESQGXiOjfP4c6210ws7/btsHMuzg5v27qCN83Z4nP/GzP65jeagZ5jZR9vSnDW1Kb7fRh/mBy1+dL7czH5k8UNgwzDcY2Z/00ZT6g+Y2Ttba29qnbDhYRhea6M55Kk2SqF3ttZeHZiCPa63UWrurZfm/dC6DGNAwT22ui734P2FzufRPN2WvJeJ9Xr2ZYFb3fceXEuu42PM7P1sfJD6P0Xn3TCjPbOJNV/cS3/LlsLDbW30531idk4bfYKH+jVT+HlT5z6WL/tXzey8ux/+i43m1S+caPvd6NOKH/xhIFrXl9l4f7zYRi37aTZaM8ym7zOzfL0udaRltL/PDauBN37fy83zb211/z3bVvfeAYZheNDGsUQui+stfoYdBd9nZl9no8LwOjO7q40+8cddovZX8EhGafbwLBs1nwM/yeLXnkEad9lh/88sDMMwtNbusVFKJ2621QVcp2aSwq8phQmfbKNJbB08y8YfqYNgmdYJWAF+3kZ/zwts1OauNLMf8gcMw/A/zOwLFxLf08zsm8zsZ1trHzoMw1sswDAMLzOzl7XRKf+pNvrefqm19uREOLjbxnnsrZfm/eZFX81szOOx8Wa7VDeW8Fh/ncV7s/FBq/58RHDeze77dXCXmf2ZjUJchLet2V6KhVDy2sV98/E2+mX/a2vtKcMwRP1+py01W4ECwbqQL/vTbPUhbTbeKz/eOf+z7LAv+c8fZn88Du3Rhdb8qTa6TL7ffZ4KCX/JoJSMf2WBdmujL6+HN5vZhwSff7BdonSyhbXmu83suxfr8Tk2/kD/qI174ZLjveUH70obVW2P59qqBvpqM/v81tpjhmHIcsTOW+ys/1Uz+9zW2lXDMDxgZrYwzT1j0e7aaK19tI35P99vZv8vvj5pZq+w8SZ//ZpNX2GjJObxVXNOHIZhr7X2g2b2j218kL9qSMLIh2HYtTEw6J/bOA9/zZZmwqz9+83sFQsN4d9a8sM0DMPZNiYdP6e19u3DMDwUNPcbNo7zWTauj/BlNq7963t9OQK+xEYnvvAsG2/831q8/1Uze2Zr7WOGYfjv7rgvt1HL8z+Wc6BAnPsW5uaHC0n0qclsMc+vXezt/2RjwFC0PufN7HcuQZ88vsLM7rNRk9vHd/+zmT2rtfakYRjeGZ08DMMbL3F/epB59eA+WwRJZcFmlwqTa3gpMAzDra21N9ro8z9KtO4rzOyfttZulguptfZhZvbXbTT7XlIsTN8/tgiQu2xRmu8tP3ivNLPva619p42a0tNsdB6fwXHfbKPp5jdaa//aRun5SWb2GcMwaKO+2cye31r7Yhsl6DPDmN/yL2x8wL6mjaH7Cps+YaM0fBR8hY039ncsbOiH0Fp7hY2+i7+/MBPMxavM7HmttTfbKOV+sY1mzbn4IRtNoh9qo/bm+/T5NkZBvtzGyK6rbXTsnzGz/24BWmvfbqMJ5FdsNA092cb1+Z1EexD+yeKcX29j6si7bTTxfdgwDF8zDMMdrbXvMrOvW/gqX2mjVPkvbfzxeVXS7lHxt1trD9jo5/xYGyN9X+J8qj9iY1Tvy1trLzSz99ho/vmbZvbVwzDwIT6FH7MxAOdXFnv7TTb6h97fRl/Y5wZmqR7eY2OQ1Ze11v7QxqCut9ooIDzdxvl7p43BQP+Hjebky0HusALny/7BYRheF3x/r42Cw7NtjDR8tPEOG4OgvrmNqQpnbYwavKZ71sPEMAznWmt/YaOF5f+z8b57R0eAfzj4h2b26sVz6MdtJJJ4jI3PkjPDMPSee99jo5Dyitbat9ky8fwPzWnprbW/bmNwzD8ehuF73OefbqOF7n0XHz19YVG6MAzDKxbH/KSN6/BbNsYxfIiZfZGZ/eeHOe4clzsqxpYRd+/fOeaYjar3e2y8iX/FRkniXbYawff+Nobi3mVmD9n4g/Cd7vvH23jjn11c9zXuu6fbaCt+wMagmNeY2Ueh/Zea2V/MGNfOog+v6hzz2Ys+PHvxPosgPTROGx9YL7Px4XaPjRvsY3xbrq9ZdNprbXz4HcPnf23R9tsW83e7jc73j3LHMErz82zUgm+xUUJ9p40/qmm0rGvrbyzav89Gp/ofmYtQs1Hw+Doz+xMbfRDvsVGCvNodoyjNb0Xb6udT8fmheXbHfbyNJt/7F2v3veai8RbHPmExr3ctxvpGM/vymdd9kZnt4jOl2/zxor27bBQsvsWWUZ+K0vyU5DpPdJ990WIOL2o/LMb1isU+Or9Yp58xsw+8hPdxOGb3/Tcuvn9ap4032Oi6uNTPmDlRmjcG333Q4j65fzFnL7bRbziY2Ye747IoTT47dK3TE/39DBvTpy4sjv/axedZlObfwfnfZWb3B+3ea6uRyB9h4w/InYu98Q4bNf9PnTGvH2DjvXu/jffvT5vZ43DMh/sxYM6iqN573TH/q4336p02Pov+zMZ0nTCq+1L8tcWFC3+F0Fq7wcaN/W+GYfi2R7s/jzbamCD/Q2b2PsMES0ihUPiri/cWk2bhEmARivxBNibPDmb27x/dHhUKhcJ7D94rqMUKlwyfb2NQxkea2XOGy+MXKBQKhb+UKJNmoVAoFDYCpeEVCoVCYSNQP3iFQqFQ2AjUD16hUCgUNgJrRWlub28Px48ft/39Mf9Wr94PSOrIra2t7qv/X+f676I2I07ZqWMu1zlzvp97nUt9bq9PU9Ca9tqn/3cYBrv99tvtzJkzKwdfddVVw/XXX79yjl9rXmvqdeq7CEeZ47ntrIs5/vNojuf2JzuXr71jss9173vos729vfB9b7ytNTt79qw99NBDKwO58sorh9OnTx+0d+HCSKF68eKSjGh3dzfs55x7a2oPrXNvXapjp8DxXapzsjVa5/Nsn0W/F9lvCX8Lonte321vb9u5c+fswoULk5Ox1g/e8ePH7alPfao98MADZmYHr37jHTt27KATZmZXXnmlmZlde+21h97r1czsiitGlp2TJ08eXMe/qs1o8PpOn2Xv9erbYRv6nO/9/zxG6C0Q54Rt8PNeXzg+natX/3+vTxm04fSQ0rk7OzsrfdQxetjs7u7a13/914ftnj592l7wghccPKzUntbe95vrr2N0jh+r+qO9w7nUa3SzZ2vaE84EtTPnwSr0bnz/uf8x4Y8Hr9PrG39otE76nK/+GL3qunqv9Tt/fkkQo//1evbsWTMzO3NmJEq69957zczsoYeW7HK6pr8HfvEXWXxgxKlTp+x5z3ue3X33SOrzzneOzGS3374MQta1zp07XJhDeyi6T06cOBEeo/e9fTC1DtHn/Iyvc9ZU4P25zo8Yn43RDxCfA3wf7VUKHXqvdderXyP9r98S7SH9plxzzUh8o3vfj/nqq0cGyRtuuMHe8IY3pOP3KJNmoVAoFDYCa2l4wzDY7u7uwa8vpUCPSErxn8+RtCPtjO/Z3uUyNWXqOSX9CJS4s897bWSqfmRi0v+ctzngdbLxrov9/X178MEHD8ZKKTO6BiXQyNzGecg0rp7EnaG3HtmazZG0s3N7Jp9s/aPr6n9pKrw/eZ/pPvbn6jXb55FWmO1NwZ8jTVHH7OzsdOd7f3//QEPQ80dt+D7wHqOVKLKESHugpif0zKHZPbaOWTwy0RF8zmXPkt51jqINZlpbZB3gfuKeYRtmS42Oe0Zr/OCDDx5q23+nzx566KFZ7gGz0vAKhUKhsCFYW8O7ePHiwS+s990JmcZD/4iXYub40LLPM/v3HKmG/rB1AiB6jn/2MdOS5jjUM025h0wbY1tRsBHHpXMirZFzO1dC9+34Pup8fScfC9HzddJX0/PlZvOzTnABNbBeMIdAPwiv7+dxyokfzWM2Ds0J++wl7infXaRh6DkwFaQQnePbp9bisb+/vxIEE/WbvkGOPfLhMXZgjmWE94fvp9nRfHj0IXpk48nG27seP4/2LNdM86vrRtY9Wm9oJdC5/r7WMyHax2ZLDc/78Djm8+fPh2OIUBpeoVAoFDYC9YNXKBQKhY3A2ibNvb29A3VWZonIxJQFD0QhvjRHZeH6UUrAlClzTt4f1ehIvc7MWnNyW6ZMC3PMH5n5tde/zMwWmUlpTspMtlEf1X7P/DoMg124cOHgmMgcHoVJR9f26y9Th8xSek8TZmRKn8r3zMZhtmrqmZNzlpn8eM/00mGydJTI1JylVXA/RGapLA1BYeT+HAYRcF9EIeyRW6SX66U/38eeCV3zon2hV29OU2oU9846wR1ZUE+0llPPwsikOdUX7qHes5HX6ZnQ+Z4m48ikqb2i7xiQwnvEbLkeMm2yr1EajCBz58WLFytopVAoFAoFj7Xr4e3t7R1IZZGTmdJjlmIQhQdLsmGCcZaAHn2WJQ97UNKaCkCJjs3aiiStTOLuBelkEnwWtBBpBUQWut8bX++9rqP12dvb62rCu7u73cAZ75j2YJi9JHKzVSldEmO276K9kwWvRPtB+5saCq0dPqCC4yAyogD/GY/hOKMgMH5HzUuIUgwkWWdBBX5uNHZpf9yj0fNiHQ2vtWZbW1vdFBlqL9pLDEzxhBdKXCbxxZzAoEhr9ejtnanAvkjDy5471CSjBG1aPbLArt44pGFRw4vWVMdSO2M/fDskL+gRHTD4and3tzS8QqFQKBQ8jpR4nvHW+f8zaSLSgDI/iyQCanyRdshzqRn1JK7Ithy998dm4eLR+NiXbG56UvoU7dVRtDV/jtrPJNfIH0jJt+fDa61Za+3gfNr3zXLfDOfLa3j00UztmV5aBec02t+kS+L6aFzRfqMvg9pbTwsl3RpfvWTP9vQdNTxJ5H5NpaVlxAMav/eFZWH91By8Nqe11metta6UfuzYsRVril9L0oFJa5MWd+rUKTNbUhyaLWmrNBadkyWkR/6x7B6LUifIAao2mPIRrT+fuQKfN56qj/eCxqHx6rVHS8hno/pKf53Z8p6Qb03vdU+ob76Puo6Ovf/++w/1Q330e7RHaDCF0vAKhUKhsBE4UpRmL3Iv00gobUZ+ikzzySSV6LM5Gl4mhWURd9Gx2Ryso61l0al+TiglZ3RUEdZJpKddnNJ/T/r2mtFUpGNPU+AxU0nXZrlvU+8zgmD/WZZAH2mcTLymRtyb6yxZuUcpRT82pfNoXNQK2S73ud9DU9G/kRZPXy6ToKPr8B7rJXu31uzYsWMr97p/Dqidq666ysyWmt31119/6NVreDqWGh79frQe+P8zTYjajdlS89GrziFlWi+SmFYHavgat++3xiP/pcZNwnXfHteDVGIag39GSjvTdyKEFpk459NDGqPa0Hv1x9+DTH5fB6XhFQqFQmEjsHaU5jAMB7/+pJIxW5VE6UuZS0Pl22cEnJd6Mp/THB9XRsEVUT9N0fHMoTLLIlgjXxE1CZYDoWTcoyebE5Wa+SLow4ls6XNp0FprK5RSXkqLKKgi+L5KgmatNH0u6ZlRjWarGp7Atvzccj0YvRYRG2f+UGp20T1BLTOjBfPXIO0Uz2W5Ft9XRlwyWi4an65DvwsjJSNSbLXvozCJ1pptb2+vRKh66wA1HmkxN954o5ktNTyvAVHTYbRmpk37/3lvaTzUcjTGaOyck+hZxT1CC0YUhcrx6VVzoGO9hsdISlq2GE3p71Vqh2qL1/HzyGcgozQF7//tRe1PoTS8QqFQKGwE1tbwPKIIMUkVLNrJY/05tBfz1z2LFDNb/vJLemF+SCTZTzFsRFroVL5NTzvp+Tx7bXtkvir22f+f5WFFvqKpkkL07flj15G0sjIuHtRadU1JyxEJNf1WU8w0ZtME5+prFFFM3wLHFeWXsQ8s36N7IoqEZZ/IVBNV/2ZfstymKHqSr9Q+etGH6qs0CfllvEamgq2MDo4wDIPt7++vEBhHe1XPgdOnT5vZUruI8tkYKcz9y7mONDyC53gfXlbSp5czTK2QVgHNKf2R0XdZoVsPrjv3ijRXFd+Vfy4aOy0IPauOfKs333zzoXPvvPPOlXPo3/Pa/xRKwysUCoXCRqB+8AqFQqGwETiSSZNqtU8kZAiv3tM8FVFh0clOkwUDYvxnNJmqT1LnI8odT4ll1q/mS9MOzRORyU+g2S0L8ohMqDRhZvW2ouRRJgTTLObnRNfumTvYR87bVFpCZILy7XGe9B3Dm6MADQYW6FXmjyi9guut+ehRzXEP0lwc0Whl6Q8ZKUM0PoZy6xiZC72ZlyZGjZOBKEJEacegKZpl/X5jCgsJpqM6aBqPb7dHSxfV4YwqtUepS74vURCJzHTZuqvfvn9Mr9IY/TqYHd7zNNvS9BeZdaM0J399umzmpH5o3jQXfq9q7HQjaJ/pHrzvvvvMzOzuu+8+OJcmcu6ZyO3DoCuZwW+66aawHx6ecrBMmoVCoVAoOKyl4bXWwpBSL30wYIJSRhSC7UOcPSgRqM2IWoqhsAyj9+G6TLJmYENEC0QNISNi7lFKcQ4y+iZ/7Yz+LEvSN1sNmRaoQUXzTuc+16tHYRYFw/hjt7a2VsKdexXCJVVmxAC+v1mSNcOnvVabJcFn2oEH54Xr4PcOpfAeSQHPpXakOZcWde+995pZrOFp7JKOdY4QaUNzq377cxjwRA0i2mcM2JnS8M6fP7+ikft1EU2YLDqCrh0FE2X3dESbZRZrwrRkqQ2mZnA8GrPvk7Qnfx0GTtFK1Fsvjo8pG7qO3xfaR9pX0uDuueeeQ5/r3lTwkUdmdYuCc7QutD7oHK2r1wp535aGVygUCoUCsLaGd+zYsRW7fq8ET4bIP0Yasjn0WtTSMnJi34akL0ocWUi2v2bmf6OEFdn7s5D5iK6M2iZ9g9T8Is0yS4aP1obS+ZxEeia/zqEWowbk51FjlE+FRMwZUYBvN5tboZeewHWIfGryDVM6lgSsc3tWiIi01/ct8gMzmZyJzZFvkiV+sgLLXltjnzgHbNP3l1q2jqWPzP+vuZkqLbW3t7dCdBHNMfup/rNkje83NXgmWUcWDPplpYkovD5K1eH+yp5VXmvSPDN5PPPxezA1S32WJql1kT/Oz8mtt95qZmbvfve7zWyp6elc9dHPJzW7LOHdJ//zHM59VBKMmr4nFp9CaXiFQqFQ2AisTR4tacss1hgySZtUTFHJ9oyEtlcgk1IlqXEYoaZx+FeWoMiSe/21Ob5MMvbtUxrLaHt8fxn5RE0yIuNmNCbt45G/i/6kqWR5s5xeLcPW1tYKQa6/DimvWEYl8iPSH0Y/r3y3JAj251Cj59r6cVLCZvSffBx+LTXv0gKyiFv1x+9VatzURiM/uqB2dI7GzjmK/HGkeOK97sfHyES1y6jKiJbO30/Z/lHsgNawRxpMLVl901z4vtIXyIhealFRWRuWheJcRFYikhbQxynNK2qP903mp/N9I12c9qq0NJ88rmvfdtvr43XLAAAgAElEQVRtZmZ2xx13HDoms7pEc6Bz1Cdpv/56+oxE1upr5Hsn4XxU0CBDaXiFQqFQ2AisnYe3t7e3Ujq+V7CS0mzkc6IkomOY0xdJ6SR6zaKWIjoySoOMCo2iAbPcQEZ+RqBU1CMclpREX1dWWqan9Qg9zZVaqOaYEXjRnPg17UlaPsqXvhWz5TpnmkGUG8iIU84PI8UirVbIomgjKZ1+MmodEZUdafcYeUftyl+Pe4f+Nz+WjDKL+a3R3lF7pMaiFhJFWTPiTojo5CKaq4yaThGczEn0Y5ZmorEoilDzpe+jKE0dS01YviaSS5utEkvzWdWLntQx6pOOkS/Na3j0CXIOuMa+j9wzWWHWKHdPe1VUX8yLi0iepbnplVHWUb4hfe2Mdo3ua5Zx2tnZmU0gXRpeoVAoFDYCRyoPlBVbNZv24wiRBKxX+V1uuOEGM1tKOZGWderUKTNbtbf3/EtZxCP9FL4NRhNlmhwjPs1y8mv6jvw8SoqhtiGphoS8PvKJvjoyytAvYLaUpCSd00cxh8mhJ2VtbW3ZiRMnDiQ4SuS+3/QF9PyjZIbQsT7v0vcxKmtDjbJXyoo5bpwvXddfn74y+uy01pFvSlI/tfOIDFng2jFajhYAvwaUrEkaLP9PpLlQ+u+VjaK/dCqXamtr68AHKg3Ja8LqLzVuMoVETEG6h6TF6DoqKRRZsphfR4anKKJY+5lWAvVRRMmeVUR9oR/suuuuO9QnvfpnG1mu1C6jZv1aMmdU12dMhN7r+Wu2Gsmpvfu2t73NzJZrEEVmC1nUacQ+JFx55ZWl4RUKhUKh4LG2hudzraL8MYFRWPzFjvx+koopWTHvxkskOkYRR7ou/UFeemakUY/JRchymLJSRlE5C46dGqWPPuL1mLekNjVnXuLk+vCYSDulVkuNgj4+f6znMexJ6f47jcNrm1lhUvpUI+sA9xAlcJbg8edQQ5X/ghK4B/3YzD2LonQ5xxpnz4eX+SZp0fB7VtqA5oI+FFpSPLz/yEPtq2+KRvXXoyWBLCQR96VnSJqyDkl7kubg94EsHD4CkNf0bfh+PelJTzKzpUVJbXAvRYVS9dxRu3p2RTluzGGUxkPu0ehepiWHEb+9Uk86hj68yDJDi4nGRQvJk5/85EOf+2M1fx/yIR9iZmaPe9zjzMzsjW98o5ktIz/9dag5cl9H1g/f14rSLBQKhULBoX7wCoVCobAROFJ5IJojImqirBROpHpKbZU5oOfEN4vJTmkOoLk1qghNcwBDjL3JhGNmcEqPCFrH0PQTBccQNLeS5ojh8f5YBitkxNd+PEzu7vUtIkHuJQ9vb2+vhGv7daEDm2kImgtvlpLZibRdOlcmIJIu+7Gq/woEULVsJv/7dkh0oPmnmdT3iX2keTyitGOKTkY8EJnBFOCgeb3lllsOjUemWj/PrCrO+0nz7fvIJGGeyxB+s+V96/dDb+/4c9WHHt0UiS5kAtTami3nR88dukN4j/n9qbmbovzzJnsSLuuVbgNvamaaA+dIfYxSjUjVp6ASvY/apFmd6y9z5bve9S4zO3w/aW/qGM2R7qunPvWpZnb4WZU9iwWtsebO99EHzMxFaXiFQqFQ2AisreHt7++vSHARrVEWJhoRsZKehzQ5DDWOQlQziqkoBD+jTyJlTTQu9YVBESxr4aVmOp6jRFw/bv8/NWQSd0eSXRR048/tBedQA2eiuJ97avhzQoNJzeXnPCMLIIGsJHOzZYAJg0ayhPOoNIk0Rkmieq+59xIp9yaTehn04/udaYfUCv3eYnoKUwt65A/UrKTdKOAkomrLCM5ZZslrIdyLGRmEX2sGQe3v76eBB8eOHbNrr732oH1J9v54aRoMlKH25Pe8js0K1jJYygcv6drqi9oniUQvQZ9Bc9rLCp6Jjs0CBaN0KO7NiGbRf+7PydKRdKyox/zzR9YU7Q3NlzRLvff7m/cpadAisnLeg73SUkRpeIVCoVDYCKyl4e3v79uFCxdWig/6UGb6FJhaECWPk75IEoIknp4mwcKvAv1/PTobIUta95/xGEmDLGfhpVn6+UhDxgRu/xl9hllhzogyixKe0NMKGKrM5OToOt432Svxsru7u5I07P1xvLZeKTlGRTUpkTLZW9eJ/D7sM313ETE3Q/C5Tt5XxH1L3yQ1Yz8+0uAR0b6QBCy/BzU+zWeU5sF7kSk0UUkhzS1JkbkPIw2O90AEFQ/WMeq/ErX9+fLVsQAriwibLTUPPs84P2rDryn3GX1pTL737fNV86f2o/Xnfcg+cx/6z+gz5n6M7omMok99JMG72aoWevvtt5vZMjUjoiNjuS1aTiKrBy1yPTJxojS8QqFQKGwE1i4P5JP8ovJAjCqLCH/NDvtFMqmZNEoRKTIl0OzXPrJTZwVsI/8Yx8FzKc3642lfpzYSRXYKmYZHn5SX7Oh/YZ+j8XEeM7LqaFz+/RQ9FMcTlXpiSR9J7UIUIcjE1YxyjP0xW6VeIuZYB7gf2Gd/Lv0yQi/qmRYGJsVHyfjc59SmIssCfSZZqSZvwZD0HdG3+XOi0jVzsLe3Z2fPnl15HnjQL0r/KCMWo7FRc6D/1I+Z9Ipsq0fuwH2uKFFZtLyPjZGU2dpGfnmSU5OIoGe1ybRyarT+PshKmkXatZDFKtC/6i1B9LnOTTo3Kw2vUCgUChuCI5FHM2Inktb4y02tI8oBo+aTkfhGBLDZ9SVtRnl4UaSg/9wj0/Ay6cJ/nmm5WRkfs9yfxTmixuT/57z1okIzAm2uW6RJCFORUr5QY0Q5R0maZVkiv0EmPdJ/oX3g5zojQe9pH8zzogQu/4/fU/Klkdoty3XszbHANY1KCglcFxYe9nNHGjLmRUVaaEYiTk0y0iTmEI/v7e3ZmTNnVu6TqMQYwc+9BkT/e3bfRJHQ2f1P0u1eBOSNN95oZmaPecxjDh3rLQ3UqLJCwFF0cLYPGHnZK8ybjZfPHw8+76hR+ucQn2u0Rqgtr/XSytGL8CVKwysUCoXCRmAtDU/RUplviMd6UJuZcw4l3ygHhWUr2KeIJYFSKyNJdayPDGKkJZlJqNH6PmYRVlk+nj+GoC8n8gdlhT4z0upe/zNfXoSelLW/v2/nz59fkdJ9HzLtNfOX8n+zVe3FX5+gRpeNsUdWTaldfpKe1Nwrm0Ow7EvmM/agH6kXAcl+ZCxKvbVlhK+0W/pEo+sIU330+b+R7ybTynhvRf5R5gsyFzHSZjJ2HGnGnlCdY1Q7yvtUXum73/3u7vj9K+McIg2PmpBA/1hUyoz7LNv3vbI9JJ7mnPl2qf1Rq44sglFe9hRKwysUCoXCRqB+8AqFQqGwEXhY9fAiB2dEHXboggHFk5BVHKfKGtVkI6ji+1BpmTTZF5onvepNs0BWhbsXKpulC0Rm0MyExHFF5kmaZNjHyFw6FXASnRtRU/Ug4gKzfm3DzPQamddo9sxSZkhP5j/LUj16KR+6Dquy65yIhqpn9tb8mMUm7oxYOwoiYUJuRs0XBSIxWCALQIkQVdD2iJLjveuhFwAWpYZ4yDzH0HuB4e7RdySxyJ5hHrzfSecWBWXpWAU4aX2itJgspYQm7ui5k1GY0Vzp54prl613tHe4pppHpVsw7SzqNxP2I0J1QWvOoMMeSsMrFAqFwkZg7aCVKMTeSzFZqDUd9RG5MqWGzGEaXU+gRBRpeAyTZuBLL3w267PQCyLJwp55nAelcV4/6l+mIfXOyc4lorn3a96T0i9cuLBSZibaB1FCu1lMI0epNUuniLTeLNVjTjAJyZRZJsgHRmVUcpmlJEoXoaTLeySqxi0wcIsJwREheKYdRNYPrgGDFHqaqw9SmAo+IN1ZlJ6izzJy5ej5xbnMSvFE9zQD3mhJ8KTHJJ7Xq6dII7L9PAcM8mOqFgm2PWjJEHqa/lSgi+YmqsrOtKFeaSYWBjh+/HilJRQKhUKh4HEkHx4luchOTQmglww75UOZ0jp8+5mtOwqfpSRMSTWStIWsb1GZDpZNyUJxI+2JvoiM+muO5EcfUi+keE57vf5H1/Z+moi4mO1yziPJO9srmR/Oa28ZbRvn3u+DTDtiSgvHbraqDVKbiqwD1Ezk5yHxr1+/iP4r6keUeM5w/qywqreY8B5TH1myKdIKPA1Vz1+0tbW1Uj7M91tjVpK/xt5LbM+05CyNyIPrkmkmfkws8BpZn7I+ZtYHpin5fcDSaEy053MpQuYjZOkk30d+FxFbZ+3rlX5nf0+Q4Hodrbc0vEKhUChsBNb24c2JBjTLJZFe0uiUxB39ktM+HSVgmsUFZ6nJUbOIJEhKJBmdkh8/i0JKwutpXFmSOr+P3tM3RG0qmseM3moOQevcCD4/BkmfvpBoRt+WlVcyW42+4zrxfbQPOF893w19CkyC1bE9HzW1zx6FFQtk6jrUdry1ItNus30RkUdT06OWFmnKWXK8NL4o6jkaM9Fas+3t7QMy5Ehj5P6ktsyEcLPV5xfnjT7+KFqXWiI14ih6lj6ozN/o/58qExY9i0msziK1Ef2ZIippHcj8gX4NaAWgBYE+5GjsQo/gPIpNmKvllYZXKBQKhY3A2j48sz7VU2ZrnhP5Rukxy1tax78U5W5RkoukVrPDUkVGAE1JJKLz0WeSqCQ9ZaVf/P+UZqbIsv3/U741fz31l5LqOmVcpkhcvZYn6TYqhcJ5oVbj9xvHyv5yP86hU+sR8tJ/wGi2KNcoo2fjPu/ReEU+E7PlnHh/jfK7MmTEwL4PBOc10rIzrZf+GD8OHzHYu6+3trZWNCMfCUtfJnMCo3yuHk2W/5770n+XWUKiXD5qy5ovXifKTWWxWD1DNNd679dSx8qvybJEcyJuGXXKOfLvM41O6xVpvRkdHctT+b2TRdHOQWl4hUKhUNgIrKXhiSmD/oQo4jKz+fY0gKlcs54vL8tXySRjjsufE0nkWTmMLKcuYoOhhEftI2IgyPyYlCjXIePuRZ1R25yTuyfMzYUxW5XgzJZjlWSqfUYWBt+HKWmP8xgRGFPTyojIfTsCfUUROXqWD5ntqUhq5j3nfZ9mh7UdScnUTOh3ifwwWTR15v8zW41czawR/r3WfW4E9t7e3oplxDOTyFIgHxTHo/nzhUSltbDgK0mkI3aojAmEuaJ+L919993hsSw066/DPmp8jPgW/F7KfNGMQo3WP4v+7FkHSPycFez1/SLpNovIRr8xgn9uVh5eoVAoFAoO9YNXKBQKhY3A2kEre3t7KwENXiXOEhT56kNTp0has7Bu/z/NNmo/CuvPTDtZqLH/Pwt3zz73/2eJv5G5gCZhJsvPMRUzKIP96JlBMzOEX+soQT/DMAxhTUIftJIl/tJs2QvQyVIxokT3o5ht2f+MxNvPEwMPMgqraHyanyx8X6atyKSp9q655ppD/eB1egQL69Qay8y9UYI16cemTOUXL17sBq0x1F5mQgbHRBRsWch/Rj2nPvljSLYd0Whldek0Hr33pl+NQ4FIMmnqcwYMRTX7BKV16NheTUWOj2ZXIaqlxyAztc/3vi9aH74Kfn/wHq/E80KhUCgUgLUTz3d2dlZCsyOnZ0STlIFhwQz1ZsJxlAAa9cW3EWl4mZQZEc1S68uCVyJpMKMdy1Ia/HWyAIOeVJMFSWT9ifpN7Seax6lkWGJ/f38lVSKiYKN0Rwm4R64sZGkdETJrRCT5SuOStJylsvhEcIaokzy4F7zE5GS+6lyfKKx+MzCEwRK9VJeM2DyzAJithqNT0vfaPMextbWVrpGoxTSe6B7gGJnCElmjmCKTaZnRPZ1pg7RgaZ/479gnUhz6PkqDl5YuDU9BS5oD3TM9q43mRH1ikrxHtldY1ivS1vSq9SahurdG8Bw+E6PUIM2Xf25W4nmhUCgUCg5HKg/Uk4SjooJZW1PIKJIiDY++E2pc3vZMvwuLNkaEvJTKphJ0e4Ss7HOkIVGCyrTDHvH03Pe+HWoOWZgy/9f7qXWlROr3STY2+oKigqXU6OaU/KG/l9dhOoSZrdBbMTw8Wo8pcnR+7jXczGLS8/tx7Nl+E6IUmsxvHt3zlNLphyFZsW/XS/KZNai1ZidPnlzxQfUsS7o/I/Jhgfc0yw/x8yhBP7PASLvxqRMZ7SF9d/46vHaWwhKlANAnTl+a+tgrdM01lS8vKh/E+0eas9ZN1/OavuZHx+h9T/sUetaGDKXhFQqFQmEjsHaUZmutS8lD+31mm40i7bLk7ezVg/6WHmkwI5AyDS9KNGWkXUZl5X0qWRQqJbDIB0ZbOqOyssT3HiK/FqVa9qknTc3xKyp5mJqC12YYzdcjAuA5jHgTMnJv/h+NR/3wfhgSF3N9IosC10jtZdpaREvHdqeIuj1o0WDkb+TXorSe3ddmuY+GlFLR3M8hHhd5NOmz/N5hxDDJHSJqseyZlBFR+3XRGDPqP4092t+kXqOmFUUuMyFbIH1XZOnhuJjk7c/JNEZqp/Q/+/5n+yGKwMzo53rPM/XFP4vLh1coFAqFgsORfHgk1400vMwPE53DfLSsBEUkBfYiuzwie3+mOUYaUEY3lOXn9fK9GHUaaTDZOdQCOBZ/TCax9mh6spIoPfLldXKpSK7sqcUkNWb0RZF1QNdmdFzW/0hyzPzAEcG1jlFeFPeBEEWiUaOiz4bau/+OPilqLr08TErYmU/R9415hhkxsD+WPhpK+hEJt9/PU1YK5md60NfD51CkzWbPF0Yk9yJ916FOpBZDa0EUo0ACaEVnss+yGvj7iWvGY7QuUUQ5rXhZmajIKsX9lhVN5v9m+XMvIo/2+a2l4RUKhUKh4LCWhre1tWUnTpxYIfHtsZhkkW9eEuqRi0aIfE8Cr0sbt/+O0h/zOyKSU2ohmaY3x9dFH05EOJxFZTFKag5ZcY+pIosY7WltUSTf1Nqxv96ezyg5StxqOyKcZn+z4p5R9CR9K7RKRHl/lP4pzUaahPYOi2v22E2iaEZ//Uh70jnUdufsB0rU1Ep4XbNlZJ00O2oQEbsS/TCeSYXY2tqyK6644kBDYd5aNDZiHXYhrj9L8fTA/efXmr5Naj4kTfff6ZwzZ84c+lxgtKPZagFYamfqYxQVzGj0LB83isbnM79n3ct8t7w3o4j5XuxDhtLwCoVCobARWDtKc3t7u8sbyWilLOIpQpYfRCm9lwtGDS8qkElePfaVErnZqpSX8SJG0gZt1+sUMMw0Oc5NxGnH9emV/pliJpmj6fXAKE1qLmarGl62LlG+IqU9amBRrmOWD8c96s/RfrrrrrsOHZtJtf58+f1YoJWSby+SkBqWXqM8PEYhZ7mVvQhJaq7krDRb+pekXeiVvpzoOn7+enl429vbqe/dtz21F3vlc2jFybhOzVZ9grS8ROcwR1daGZ9HUXwDtbSM6clfj5aEjJ8yij7NItZ780tNLvNvRm3QMtKL0Ga/1+F7LQ2vUCgUChuB+sErFAqFwkZg7bSE7e3t1NmvY8xWqX6mkjv9MWyrZybI1OTMBGS2NG9G9Dge0edS8Zno3FOrs+/mltXx6AWr8HpZqkQ0j1mQzDp97Zk7WhsJgDMzpdmqyYVjJW2UWV5SKDNX+nOZHkIHfBQSrX0kM55eOa6I7Fb7jqH9NJdH5NEMC9crE9/9GJkCQjo8zqv/PyMIiFwErF6fpSVEgVU90mN/7IkTJ1ZMtT6QgWQFRGTS5rEMXqObIiKTF7J73LtF9Oy4/vrrzczsvvvuO/QamQ3ZJ16Pzz9PacgUFh2TBb7w2h6c8x7hRZYGFZknM5Ly7Lo8P3rfQ2l4hUKhUNgIHIlajM79KUops3mh171rms0jAs7IXP31WDqE4blyukfSoKRYzkGWnuD7kmlY0Xg4J1kgCklsfZ+yc3pOeH4XkUazj3OTPltr3dI7LP9CJz41In9MRoHGdfFaJJO5uXa8rj+f4eJTJWb8d2fPnj3UVpRwzOvxOrz3vPah8HZqcHPo6LL0IQZNRBaTLNyewUj+f58cn2lJeuawNI3Xehg0wraiuc2eK1wPJjqbrd7/XA+NPdqr1MB5H3ktTZ+R/jALDvRzzHJaOoeUYn6umJpFZNYDf20GlXCfR5YlgfMa9WNOeasMpeEVCoVCYSOwtoZn1qfRyjSTHgXPlH8oS6T252bpCCz9wv76cxlS7iV7ST5RWLZvIwqdn0pKJ0VXr90prS06log0y6lE8ykfi/o6dy0j/5HA9A1qWl7qy7SjrMhmRuTdg98H/v+ovR7hAPcmpfOIromEv1nZlF5aAiXuLAHd94H+HaZdRIQBLCXDY/1cMZ2mRy02DIPt7u6uaGCRhpfdF5EPj5oCk8Xpr/fXo3aR+ZX8OaIFYyqNrqe2pKFHx3Kf0+8dzSH3bFYk1yOzetBiEq2pNEjNZ4+MIyMd6flruW/XIc4vDa9QKBQKG4EjaXj89Z0ToZhJs9H5/MWm1OmlgozyiOU5Iq2AkgejAr2Uq3Zou2bfo6i5LIJUiIrJUgPKyKLn2MWnoqb8Zz1tmu+nolzZhyny7yjx2r+Pohjpe2R5JmrPvq/0u2R+n0h70jmSxjMSXH8OJWnu3WjvEBoXSxhF80h/c0/SJri/GVnqLRwcBzXy6L7NqAd7/aHW5H1d9BPO2fP0R5H6jQn7fv2igqv+OoL34am/epXGd91115nZcg788yCLBidlYvQszojAr7322kPnzhkXI1Z7cQCMiWAU9Jz9N0czj76bQml4hUKhUNgIrJ2Hd+zYsRWJMfIBZFGSkWZECTcrKSREUXO0S1Mjinxq2Wvk78mkCPqQIl9YRsvDiLLIr0kJONMkIi1xSmvzfczKHE1pfOvA+2GiMRMZjZLX8OgnYJQZ57Gn1WYRxb3oQmqW8l/4vUMaup7FIhpv9F0vCjHTBrJ8qMg6wHMzP130XVZKxmtxkVVnylIgzUhatW/PkyZHiHLp6EPTK4ub9u5pau0s5+R9eNQgpeHRCuHXUsfQf02Lk/rj1yUrmcQxeDAnlOOj1cPvnSznVa96NvcsgtnejzRzH7U797lUGl6hUCgUNgJHysOb48PLoif5araq4VE7oyTsJTtJLTy2RzSblZeghhfZ3yVdUvqjVhjZnLP3EdF2VlKDmkskpdFfNSf/L9Ps5pDG9vK6CPbbryVzGjnm6DpkS6FGl5FJe7Aveh/5M+gz1B7JJGF/vvYItU1qjf7cjJSYuYqRn5FWAZ4b5VhmEcT0B0VWFhJM8/pe+4h8X709trW1teK7833gPHBOo/uSn2V+8UjD43OA46KmZ7b6jOB+7xHP8xwyr2hdenNI35quJy3SXy+L2uYe6u27zO8XtZc9Z6LnN6Not7e3S8MrFAqFQsGjfvAKhUKhsBFYO2hla2ur6/QWsjp4EdVXZOY0y536Ue03npuRCvv2GKjB4IKIkNer0f7cHkFqZlLMAnyicWUJwT1VfqpmVpTMmZkwonHx2J4zurVmOzs7K0n9vUAd7pVevTAmMmdVy6MADZreuKYRcS2TlbkveoEnNFOprV619MyNEKXQ8BjumegcgX3K0ge8OZFrSpPmnAThqdDy1tpKYrhPjZCJMSORjkLYeb/znmagiz+XKQsZoYLvB+dQAU7qu67v51btX3XVVYfaY+oJ59qjdw/76/qx6hySCHB/R7Ub1QZTJuYEY2XPn17wT5k0C4VCoVAA1g5amdLwMgk0SyqOjiXYRk+jzBzOHIPZquSWhSVHx2YJzz2tl8dQ65hT6ToLxokSTikN9pzHQha00ksAnSPBb21t2ZVXXrkSmuyl2YxgPKNvMlvV8EhHxv0WaaHcf+pTTyJlyLU0PO2hKE2EqTPUEqOkbmoK3DtRwBPTAbhHuGe9pkerSkbrFpUUYgI6g9EikmL14YorrkgTkre2tuzEiRMr5Mq+RBEJszmOKHk8o+1iIFqPPDpLyGe6lD9H2hoJyBU8EqVYqF31xZNu+/d+H2SkHAzgivqYlenRHETaIvdGpvX2tFDen+qPp1tjAn9peIVCoVAoAEeiFhPmaHiZDypKHu4RTPu2e8nDAqXbKLScdni+7yUcRz6h7HpZyP+cIpKZf5GIfGHZPM5JI8i0+B5l2pTmuLOzs+Kv8siSxal5+TnohedH7yN/BdviOKK9GknHZrEmwbljqDzD7P3eiUrr+PcZmbQ/V5hDPE7NKPPl9TQ8+n2Y+J7NQU/Du+KKK1a0N69xkXJNWlNm+fFj5JryHK6Th66jIq4scaUCwb7dU6dOHWqXhXO9hk+igcyCobH4dWGx4Eyz8+ewdNCUJcs/s/iMnGON6MUVmK2SAvg++DSVOXRlZqXhFQqFQmFDsHaU5vb29opUHSWUZr68iCw2oyGjdB7RA1GLiaLIfH+idvgalZyJaNQ0J1EfIyqcHpUYQf8OIxQzGqyojUwTi7RCIdPselGac+zoGXG32aoESr9llHSbSby0Ggg90vLM7xdFaZLSKfNb+GMFanrcf9G9IUxRzPn+ZnsjipTOjuE+YwRm9FlGR9a7b0+ePJnun9baIR8ftR2z1aT+OQQUmb89o9Pz1+N9kfmBPaj1+YRvs6V25deFVidG1upYjT+ifGO71Ox6FhMWkRV4H5gd9qn69ntxHFkEsXx2UWkm+vB6e4coDa9QKBQKG4FLouH5X3n6ADL7bUQkS0kg0/Ci6DlK9j2y40x7ob06kuyzyEq1EREeT+XqZPkx0VinygZF4yTWidKcQ6Ab+Q+idre3t9MctGhs3CtR+8wXYlmgHtheFr3bKz7JSDjBvycNFS0jWZSg70tWhqpHik2NSO0yss/PA32s1FgiajFG//HYSDNnLuzx48fTfSkfHufEf8Zr8f7oaXi8PzNCcn8ucw/pj4vyTNkunzNR7p7O117JNK3IH0eNim30iPUZmdrzhbKvmcUuGl9GAUffnf+N0br7MkvlwysUCoVCwWFtDe/kyZPpr7FZznzSixzMbMuMmqNU6L/LbNyRTyVjPOH3vi0WYhQyG3SkHYLMadkAACAASURBVGYsHFHhT0oslKzo74qYayjV9nxuWd4dfSA9UuypqM+TJ08eSOKR/4QRdoxEjNaF8829RH9ZBEbpUqvqRaZmTDvR/uY5HEOkwWb9zjTwqB1djzmQXFuzvAyN1oR5Zv4cajfMN4w0CfmxehresWPH7JprrlnJW7vmmmsOjmHeW+ZL8/dlRvidRUZHhVKzZ1PPWpOR1UcR2HxmUEvkGkYsVMzzzPIko/Z5H/F5GjHuZHEbHFM0F7quL/3j35uZXX311WZ2WAssDa9QKBQKBYe1NDxJ6b2MeeYNUaPrlQfKovIILwlSKiIfXS8HKIt46vn/KKVRwots3JmEwwivSOPK8lOy6L3oXPZtjj+ObfV8IEIv6k9MK5RI/TnU0rOcOj8XmZ8vY2DxoGYnbYPrEkmP9E9QG4jmaaqEDY+PrkeNNYqWYyQnx0Otp8drK21K97W0Ns8GQq2PeV9RCaWIxaSXh3fllVemZcPMluwlHFuWW+f/5/3B+zGK+M38/8zVY+Siby/zGfvnAI/lfmbuY4/5JCvMG0V2cg/Jb9bL+8t8dXzORrmwap/PO7LTmC33ju5Xn987hdLwCoVCobARqB+8QqFQKGwE1g5aOXHixIq664NWGI5L82eUeK5zpKrqvdTcLLzVY6q8iDdHkBxY6jnDxKPw2TnmLn6eJYn30hGigAKPXiAPTTJZqaQosCZDZDKgyWxvb68bZHHixIkDE8+cMjoZ8bOfR7UTBVP476Pwfe037TPt48zU6K/N+c/IC6LvpkyL/rpZOkwv/SZzJ7AfpMHy/9O0laUeRJ+xZI2CDKKAER8o1Es839nZOfScMTN74IEHDv5nkjufO+p/j0SAn/N9zwUQmczVd0HzQnMo+8xq5v4czlEvPYZmfj5TMopDs9V9kLlU5lAa9ujIMnMuXQTeVMwgnzJpFgqFQqEArB20srOzsxJa7qUbSWFRcUmzWGrOkkWz114iMEuw+L7z/4w2SYhCven4zRzdPYmbGuY6UnpG/Bs5qxnk0aP1ymiWhEhLZdrAhQsXJlMT2E5E18TSK7QoRPNETUSfa66pHbBf0Rh72jP3Ska6bBZTOPljeik7WQBSzwJAiZ1WF86zvx73OVMMqL35Y3j/9mjpGJI/RS12/PjxlQR+T8zMgBne/9RyfX+mymb1NO+IXtFfJ0q7IWkFCZt93xncw76yjd66TNGh+WOy5+ocYo+ptJQocIhkJkwR8vcvNbxKSygUCoVCAVi7PNCxY8e6xKKytVLimVOIkxJ9lijZC6POSmH0wpGzZNGIromSD7WBSBOiFESJu5eEnflwev6/LKUhS6Xo9b9Xwog0VLu7u10Nb39/fyUk2vsrsoKcGWGy2WqyKzUvholH/ir6Ohj6HRECcO9HpMoENaos7cIj08bok+xpadTKeI/4c3lMlnLgw+25ptyrPTJ2P8c9arGrrrrqYC11nHyDvt/qr0LW6fftWTW457kvfP+4J6PYBP+92SpFWUaqHGlc1FBJORYV2c2sQUxt6aVQRePIPudc8zlHgm+zVR+7xqe1jdKKsmT1OSgNr1AoFAobgbWjNLe2tlZ+Wf2vLyM3s6KakZZGiTvT9CI6GyaaU1qPJBH6dbIEbf9dduycKCFKVJmWGPVf6ElnU+PoaXiUcun/60VpUsqMMAxD6JvwkATPiDq+jyIEGd1FKT3SwKgVcF9wb0XtZ0TNEf1Zb82iNqJzqQVy3/v/SdVG/zYjL/3/XNPMn+6vN0VpF1FK9SwVwtbWYfJotaNCqv7a8usxAje7582m791IE85KINGXGxFzU+NiNGP03Ml8uD16v8yCxHt8TjSykFFGmuVkH9Sc/VqqPZZBUqI5ySH8OVOR+RFKwysUCoXCRmBtH55ZXjrCf6dXRktFtuAp+jG1wYgls1U/EiWQiDya18noyeZEMfYiy6aOyfoz55yMxNh/l9m6e9oatU1KaRHRsNeQMh/e/v6+nT9/fkVi833RZ1pnRuVGUmdGY+RzA81W/Va+/2yXY41Ij7PoScH3kdpg5nuIoiazvmXRlGarPju9Z05alLtIXx3nrVeOip+RUszPI6mker5fjZsE7p5uir47aXqMKYjuEyGjgBN6RW8zn3ekrWWUZhHReUazmEVJRlYifkdNPHomZ9poFp3uv6Mfk3MSRevyN0XrFtHSCT0NNUNpeIVCoVDYCKyt4Xkfnn6VI98N2T16kUhZKXhGSVGjMMvLAgm9Ei9z8u8ESkeZfbqHTGqKtATa36d8HT0WCF6np+GxjczfaBb7x3rS1t7e3op0G0X4SqojywO1Nw9qL4K0myg/NPM9UfP3+yPys5j1c86opWURtxGywq/cu/4epH+JknemxflzMwaP6P7NmDX4DPB+W2r4c3I4e5YKtc38LbKX9KwoU9GM0Ryzz9R8oujCLHq151/Mnm+McvTHZRHetH5E9zT3ZFbguBeLQUtJL69VfVJ0prT3KIaA99758+eLaaVQKBQKBY/6wSsUCoXCRmDttISIFDdStxm+TQdppKLyO5rM9Bo5PYke9RZV7CxopmemZLu9MOus0nFPDc/Mkrx+lBaRmT+z+mgeWSjznJD5XlqC2qCJOzJzKaCBprnIDCpkqS0MfPJ13JhWQ/MQj8uubTYvyTojDaB53IOugCy5NzJLTgWgRCZNmsbYpznpMAxAiILNSKQ9RTy+s7Mzi4ggI+pmaob/n/clzXrR/s4CM0hMED3nmETeq3zORPOMSD8y6ZOEPyMA9/NIlwDnnGZ5Eoz4Y7hHovFlZn66N/zccx739/fLpFkoFAqFgsfaQStey6NkpO/NVqU6amdR2H5GY0WJNApLz4IJIg2IkjaDcHpSOkOss9coyXaKCqdH4ppJQpE0lSX5Z4mn/v91aHoyuqEMW1tbKwnnvg8sBUJqLBLM+vM5P1lIfjQ+hbIzWCUq+TKlaUepDBxfRlYQ9ZFBUtQ2elWrM1owWkz8uUw7yOjC/LpR4tb6UdOLygNx7BFEeMFjo89INkxt3a8LNUX2IdOuo2PUF409Wv9sjzDQJkqD0TlcH66Lt2BkRPckdY5IOdg+x0kLigfTOrJnpFms/fv30XxGmmmRRxcKhUKh4HAk8mhKWJEfjVIdNbwoTSCzw5ICKtIK+DonAXQuBZf/P/O7ZFJiNK4piil/DF/npCWwDSKSyqYS6qMkT469h62tLTt58uSKhudJiFkAWO3KByFJNaKyy0pMac/0/IukJZNUqTY8ATXXP7MO+HFmYdnc970EYPpKetpH5vtmWk+Pbo3z1dOUMl9NlkQctdOT0IdhsL29va72TO2fz6TIb52lTPF99NzxffNtRVoar8e9k736Y9VulmoQpQ1FFrHovffbUTujhaTn4832t9CLN1A6Ai12OtbTkVFTja6VoTS8QqFQKGwE1o7S3N7eXon262lrlM6FnsaVJWSzDIlZTEJstpRAouT4jOqGvrYoqoySVubbiyiMsijDHr0SJbfMpxeB0tI6pKvZdaIoTaEnpSvSjpK3Xz+tL31qpBwjUQD75ftCP3AUpcnIMCEqTcJzs2P995lvmPsuSmZW30jIK0SJ4Bn5es93x3MjEmx//cj6QQ2Ffi2v4WX7OcMwDCvH+H3AwqGMkoxIBKaeHTpXmoS/b6ZI8RklGvUle971nqcswEpt1N9f1MoZfaq2/D7I7vepz32/2VfNOcsjRXORPUf9PRiVFCoNr1AoFAoFh7U1vJ2dnYNf7IhklRIntaWIhJhSP3/tKa17KS2TECnd+u/Zh4yEtJe7l+XfRf6YjJYs85N59DQsf/0oFzLzK/Y0vCntL9I+fP5SJmlp75BU3EtulABJGi5rQUSfxD2UUSH5zylNMqos8hnyuhl6UbP0v1BajnLFuEdJKRb54XgPMA+rV6yW/qwsOthsvnQeaUhZmRsPRYZHWrogLVLt0Y/Ivcox+PeclygHNYua7vlWI23Ffx7NbUZHRp8+tdKoTxlNXYSo6K1H5BPN/LFZZLv/f8q/6UHqwYsXL5aGVygUCoWCx8MqANsrKy+Jg5JWFG2YSTHUICNJixocNZ6IDJUSaRYR2SvTQQmvdy5JjzNfnn+faZ+UKCMpLTu25/ejxsr2I/aWzNcaQf7fjHTZLLcC6HP59vz6P/DAA+E5lAx7vi5Gcmb70Z/PPcmIuJ4PN4vKjPxmZEc5d+7cob5GBWCp2UWMKr4f0R7qRWUSWWQiI7X991OsPB6K0mRUqdeUaBXQe5aX8XMw5RefowEJZJ2KfFyc70wDmxNR3IsKF5iTmo0hes5xTugjpG/ZrJ+DarbKGuPb47ODLDRRXnOWa9lDaXiFQqFQ2AjUD16hUCgUNgJHSjwXIvMRaWx6zkeBjmY6N2mW9GYCqu104keE03Qa98wCxFQSZ9QmzQIZhZFHr8r31PUysydDmj0yE2qPhJvrNGVaGIYhDXOPPsvSRXwSqq4pU182nih4iZR1OlbVsqMAK5qdGDQQBQjIzMY1zei1vJmIZk4lAjMQxSfw63+90mQ7JxUgI0Pv0eNxr2aVw6Pzp0xze3t7K/2N6qqxv6Qai6i3aBqbIl/n/2Z5bcVojmkWZCBKFLQS7Q3/ebTveC+TlizqWxa4R9o/1qr01+bzIEvl8t9lZv/ouUPzcaUlFAqFQqEAHKk8UJbka7YaeEBpL3KUU9Lha5ao7a9Dailqh1FC5pT21CNVzRClD2TJwtF12E4WEJKRunpkWnUUOETJKpPwe6TBUxiGoRsanWm+WekVs2Ugi0Ci6d4aZ079XnkgBkxkwSsRHRnXKAuW8P3hvpaET03Pay76n2kIHHe0t9hHBiswxcb/n4WUk8TYH9srVcU+Z0FtZoc1XN+etLdI48pSLuYQEVOz15xnZMi+v7Q6RWTIQpYyw+DAOQEvQqZN8X/fZ5II9IJyhMxqFKUlTAXaRekdmuv9/f0ijy4UCoVCwWNtH14Ubj3n+J4PL5N8M79BpGVMaTNR8caMLDayh2ck0fTL9fw+U0nkUTJv9J0fb+SXm0p07q1bZkPvJRzPla7M8vkyW/UxCKTtipJdszJU1FB6mgT9v9H46H9TX+mniJLjo8KV0bgi7Yl9Y6qB92GSgo9WD+6HXjJ25oOPtNDMb6/rebLfXimuDD2qt8zf30tXyZLfs2dJz/fNZ0p0T2TpSexrpM1kdIhznll8nrKPkcaVWXboE41iFbKCzZFWmJFi8/o9X+jOzk758AqFQqFQ8GhrRijeYWZvv3zdKfwVwFOGYbiJH9beKcxA7Z3CURHuHWKtH7xCoVAoFP6yokyahUKhUNgI1A9eoVAoFDYC9YNXKBQKhY1A/eAVCoVCYSOwVh7eNddcM9xwww3dXCrhKMEwj9Q5jxbm5orMOWfOuC/H9SJWDp+7c8cdd9jZs2dXGrn22muHm266KS2N5K/N/CjmGEX7bYqpg9fg/9H7qfN7mFO25XJhqv2j7AueG81jxlQSlaVi3tre3p6dOXPGHnzwwZXOtdYG3y5zt8xWSxD1SmEJzEfMjs0KRPeOnYPs2Eu1D7Nj5uTjZsdkOb4PF1mptCg3N3oe7O7u2v7+/uSkrPWDd8MNN9gLX/hCO3v2rJkta5H5JFQ+eLLaUlEyLzdW9hCLiJIz9H6MpzbyUR6OPWLWqaTuXvvrbLTs3DkJ4lnVYiUNe+Lmq6++2szMTp8+bWYj7dA3fdM3he3eeOON9qIXvWilpl00diZVi7aJdFpmqyThpLnKqi/7sQo8tke9xH5ne9h/N/XDTSo1j+z+iaj6smTdjMqsR3jAY6LkbCZ1swYdq5Gbmd17771mZnbnnXea2UjY/ZKXvGRl3ML29radOnXKzMa9ZGYH783GZ5O/1hzaLt5DGeWf2ojuOe47okeynd2PEUF7Vn8vIyD352YE4FGC/RS1IIku5giavTp5TJzns/+OO+4ws+VvjZmt/P48+OCDB8dN9mXWUYVCoVAo/CXH2tRiZn3NKJMQs7ITZrlJIZOEe6VwiKjtjOorU6uj9jKso9n16MOOcp0MUxK/WU4/plcRtUZ9pFbV63OvNNKUBhTNG6XGTGuLaMJo/srmZ45ZbE6ZlkyK7WFKs4u0hDm0cFPITM+9NljKiLRb0vzMcg0lQmvNjh8/fnC+zvUk4vyOfYo0kkxLWed5kBGQC731yY6N3AZcD1KyRXsp08r5PqIym2OW5nHURrO90ys2wP1+7bXXmtlhWrqp53YPpeEVCoVCYSOwtoanYoxmfT9MJhFEJSKm/FMZcbP/LENUwoYStqSzKXLnqK9ztCcik6Ki4rpEJjX1NNjMN9XT0KkVRJJ4RE7cG/cwDF2iXO4rjrGn1UyRD7M8lf+M5/Z8vNle7FkaeiThEaJ1oTbKPRQRAE9db2qtIvS0EN5Pkt4j/xa1tO3t7a7mc/LkyYNj9epLQ9F/mD13vP+3Z20wy0mX/bHZ86f3XJoiy/eaa0YwnZFu+z7SV+fbzTAVuLMO4T3vjahUG9uh71AxA77cVmRtmovS8AqFQqGwEagfvEKhUChsBI4UtNIL0+1VyPafRyaYqVD/SK2eUynZrG+OyEwyvo80WU05k+fkuNB5vE6tQZoPoiCJdfKisir2vevwelNoraVVkM0Om5uiPkT5V1zDzCQbpVv0wqV9276PWX26LIcwGitzGntmItaA45r20gQeTtDK3PsqQhaiHwVHzKlp1lqzEydOHJgwlQ7jzVz6PwuCierU0cyZBWHNzfFk+2ax64amRt7//pysFijvCSGqFZmlGkV7lWvAQJTsmekx5Y7xAT4cH+9Xmah9OpRMmvrOpyxMoTS8QqFQKGwE1tLwFLCSaQP+/yw8XL/gXjKhlJIFgkRSZZYsSm0wqniehU/zuAhTSb299ARK5VGI9tzk4QiZhsfPe1Xgs4TjOZpLhK2tLTtx4kTal+wcs1UpsCdVUsPmXEdOds51L4lc8yOtgEnykXVA7XI/TWmjvt/Ubqn5+Xso02qz9ekx18wJ2eec8J7rBQxJWu8FPG1tbdnOzs6BhnfNNdeY2TJk3WwZwJIFOEX3Miu1aw0F3idRpfUs8buX1M+x6zWzqrAd32cGcPh1ydY9IwPx303dG1EfMwsG79tIy2agk64nLe6qq646OEekBZFlbAql4RUKhUJhI7C2huclpV4isJfc/Ct/uc1yHjxep5f4KdDWTHog/78kujlaE7XBDHM0Fs4RqZjMVrW+OcnqWV8yDcxLeJoTar9zwqvnJGibjeNmoqzvP6U7Yk5fuN+4t3q+4zlJ5JEvKDq359/OjomsH0yo5ri0h/w51OwyS0lk/eCYM97cdSj7It87fVC9BPTWmp08efJAs7vuuuvMbKnp+Xamkp19HzR3+kx9oLUjaptjirRzs8PPnez+l/9R7yPtOdOetD96zwFqcvSV+z4z7YHr0qOIpMbFZ1eUdkRtM/p9MDtMIycNTxRjU+lQh/o766hCoVAoFP6SY+0oTf8LH0kBkob0Cy3pJZNMzXJpWej5DAn6X2inj86nNNtLrmUf5/gZKWVmNnwfdTblu+ldd0rCjiRuXYeaXqYx+z7Mka4Uodkbx5SvLqMs6qFHjcV1yTTVyNehvmbRmlEfMq0g8zf6/7PXnv83892QcDuKeqaGz3H1SBl8Mnk0bg/vi8z20bFjx+z06dN20003mZnZ9ddfb2aHtYBM+1f7fA75/znmDNG5HBujGr02JYsS94MiEDUe70sUYXp2Hfrw/BxmWjnpvKLnnNbOJ/f7c6I5mYoO1vxqTP4zgc/gyEctbU+aXi/ClygNr1AoFAobgSPl4QlRRKakFEkGkl560XKZv6iXQzUF2uUjrYARdVnel0cmpc9BFjUZ+VKyY+ZEN2YlN3qaUZYvSW3LHzclEXu01mx7e7vrw+O12W9qn1EfMilzTo4T90HmF/L99+PLvp+KgO3ta7ZLbTPKFaN1gxqdiHj1GvWV9wb9i5FW0MuX9P2K+t2jFtve3rYbbrjhoASQojOj/MlM84po5LIIS2pR9Jf5MQqaW9KQ+f3pNRv/njlnXsM7d+7coXa4r7MIdz8e3iP0B8/xw7H9iN4riwLnfvRE0IyjEDhev24qD3XXXXeZ2ai9l4ZXKBQKhYLD2hqej7Q7aMRJAZJSGD1GTcFLqvqVp025J/H5/vhzBFbKjSLtKIVRM4rs05Ts2ec5WhQlIC/xEJmfjFJT5IfJNLsoGnJKQor6EWliPfLZ/f39br4itRdJt2fOnDGzZSFYvZotpeQsupR+OS8RywqhV+5d+X2iMXOOdV3t5SjHkVqAwDItPW1NYKRxtP76TnMkRor777//0KvXADJGDfrmvW+H8+dZMczi6EOiF2m3vb1tp0+fPtDs1H703CFhdZYb6M/P8mNpjYpyHTUm5YmxH1F0OHMDydLknweKRGSOYOYLj6wF1MDVR2prc9rXe625f0ZqfCzYrHFqXF5T5n5TX3SOngFRFO/tt99uZmMR4bnWv9LwCoVCobARqB+8QqFQKGwE1jJpttYOmTSj4A6GSTPxm2q8PyYLzMgcmh5ZG5GJSaq1vqN5KHI401RGc2FGguqPoVmlF5CgPmaJpzTL+nMzeiOtW1SX6ihJ/4Jf46njaHr0Jh+ZL7QO99xzj5ktw49lKtFxZkuTjz7Tq8x3JAyITJqnT582syUpMU2d+txs1RyUBYj4vcO9z7nmub2Qf4bQc++aLU1JMllq/u677z4zW84Zg1d8X2jWo7nSmy01f0wMV/i45i8KMsmIpj2UlqB2ZNr0+1drRXOh5kKvkVlScyoTttZUeygihmD4PKne9LlPNVL/GRDC+9KTIes7mgcZjCN48yTTn7LUiSjdgmkvQpYq5ME0BO2v6LnN57TGqfWM0m6UlqIgpve85z1l0iwUCoVCweOSpCX4X1f94tPJKkk0Ci2nlJyFbUch2EzephYVaXhZcjUd3VEYNcOOp4JK/DlZdeIo5J8lS9huFqzh26P0lyUtm60GaGQVlT3mlArx/d7f31/Rdr22Jie0NBAGq2gt/Tk6RudkgRk6N5K4pTFIQ9GrNJSIpDgjttb1PDJ6JmojEdGxpGOtA1MLtA80D34upCHfcccdh47RfEaJ/KxELk1O444sNAIDd2hB8XuJKR89y8D29rY99rGPPZDoFSDi9y+1GWm1Wckps+Ucaj9pLvVe86d74rGPfezBuVn1dd7TkUZJC4vGExFQMPGcz59e4rn6RC1X44uCpLK9yjWdU5aKGl1EOqJj9BkDX6Jnvsb1mMc8xsxGC0PvOeVRGl6hUCgUNgJHKg9EKd37AChpUCqPNDxqOAwl7mkOsq97P4u/bi9pOEu2FiIatYy8mQmvvTIdGRF1L6lb0pHmhlJbz5aeJat66ZOSFn0RUdoFfQFTqQ3DMBysizQxJY+amd12221mloc1U0L1/2daIefJJ/8yLSSyBnDM8oNp7PRp6VyfOkH/YZYMHSXZMjRefVQ/pFFq/P6zO++808xWyXYpPft9SD9WRnvWKy2j7+hL9NeRH8afk2l5x48ft8c+9rEHvkISC5st11DzorFTQ/brT98w/Ul33333ofe33HLLwbmkKmMyt179c4n3hzQ7jUt4whOecPA/nxG0PvHei9IEZDnReDUuzUWU0kLLgfqhz/Wc8KTO6gufxfSF+1I/uh7TOfQaWbC0ptK4r7vuui75uEdpeIVCoVDYCDws8mhJPlGpH33HZGH6zaK2o191s1jLopTOpFshotyhzZnJolEUI5M06b+KpCbatDP6I+9vYOI0JR9Kfn68lPrmRK7qWPWBPhbvVxCY5Lu7uzs7SlOSo/d5cQ2pEUeRnfQbSeNTW0w4jyTgLPIs2qtMkCVpgOYpmq+MLJpWgV4koTRjarRec9ExWWQfi21G/g/OKzU8r2Uz0ZxaDu8Ns+XzYG5S+qlTpw7WS9eLKLg0dvqp9F4aoNly75Hyixp45DvOSI/5bCH5sh8zE+j1HPXrQf8efV298mG0pum9xq294/e39pW0QB0rv7bmStpaVJZK5+ge4LPfr5v6q/tI2q7GTauf/0zXe+ITnxgmz0coDa9QKBQKG4G1NLz9/X27cOHCSlSj/5WnNEeJK4roo58oywHSr3ivbA/JVoVIis0iICN7MLXBrMRQFF1JbY0UQz1aIEpFkgrpQ/DXU/uaiywvLyINpq8uyzPy382J0tzf37fz58+vRMZ5ZCV39CrJ0ecpUXqkRsy95CVBRply7NRCzJZ7UdfTMZTW/TxlhN/UAqO8KF6H0af0jZst7z1dT34WSc2McvT94v2jOWF0qL9HdI60mWzveHCv9DS81podP378YL6kBUgLMVvOv/otDUT9pZ/OHyPthf5RzY/yCiMKNs4LtfeIvo/WL0UbMk/PbLXMGineaLWRn85suS7qK+85teHvJ2l4maWnZ+GgZUZRtXyO+3uD1Hi0zGmv+nnU/taanzp1qqI0C4VCoVDwWDtK8/z58wcSg35hvbTGPApJS8xL8VLzVDFFSTf6te/lOjGiL9LWyALDiKdIYyFTAyMUJelo/N6vydwZanbsjz+WkYmZFuzHKYlekhul24g9Rf3OSnoIUbFfv7ZZpKYiNOl78JKZ1pnMDNTsfASk2pN0zIg3zZekdN//jAic/h/mcpmt+uOoDfpINe55SqP0JXopN9PwJMlH7BW6juYiiso1i4uiKqJP0bPax+yj1xY0p8zZowYd7R2vEWd7Z2tr65A2rOtIM/OfUashE00vejpjPtI8em2GGjbvGx3r+6jnF6Pbta8Vdej3m9adebL0d0f5z4zOZSmeiNmH2jnnQmurSFJ/L2rP8Fmi51Hk36Y/k5o+i+P68+dGZnqUhlcoFAqFjcDaXJo7OzsHkgF5Bc1W88TIssBih2bLX3XmCemXnPZ4Dx1L6UksCZIQmBvSg6TPKGdLfWIZC0p4ET8dNQqyZ0RsMPTDscSGy8WLbQAAIABJREFU+ug1G/oxmDtGzcz/n/E69vxzUTFIYmtrK8yf8tKerqn+UgIma4ra9WN9ylOecugY5fZF/Iv0v9CXR2uF70N2D0QlhbhnMt8d19x/pvnX9dVn7kN/bV6HEYOUvD00X49//OPNbKn56b6KmF2YE6t103W9VScqL9PbP8eOHVvxX/n9RP84eVejHE4dy3XR3qH/zz9/9JnaYMFraoD+fD2rMt+3f+5kWjLzZqPYBe0r9YVRutIA/fNb685zySikOYr8jdL+yD506623mlnMuMNSRbyv/R7l/F177bXFpVkoFAqFgkf94BUKhUJhI7C2SfP48eMr5q4oEZxhzVJDo2rFpH1iQuTNN9986HreNJIlgtOU6s1gbIfH9iiXMpMmqYu885WJsnQa9wigGWLOcUeBDgyNZmJtVO4kI/BmUI5PMs5SGSK01g6ZJUgdFF2ThNC9AI0bb7zRzJYh3jKfaH5kJo3SRWiOlHlKpMtR4rnmm2QFLOvkz+F7BmlF5lCacfVK04+fG32mtWIlbaYV+XXRnKsPnqDXzOytb32rmcVpCVmgQ1QxPKJZmwpaIal3lHiuV6UskLwgKoWkudQzSuH0CsJgIr8HKcQY1BaZ8UnYoHMj893jHve4Q33UfOkZqc91HT8nWks+f5hO5p+hmgPNI8fBNAm/5toT2iskK9D1PQ3eTTfddKgvOldrrPs6IozQulx99dWVllAoFAqFgsfacZ1KTTBbpbUxW3WuSiLQL7akZx96S0csy2cw0TC6HsulkAQ5KvUjMF0gAjW8rDAqk5Y9qG1mCffROBherTmKqIt0bWrKdKx7yY6aJGmpIs0lksintDxSSXkJWP1mOgolYr9Okvo1d0xZkUQsiT/SEln4lekDUSFg7hUmcUdJ/aRJYgHYSBMipR2DZJioa7a6R7XekqylufT2nTQ7SdHqh+bbzwml/0zLiUrJkJQhwjAMtru7eyD9K8XEawqcHx0bFTsWGLRCywgpxvz9Qso93lM616clqC/UuLiHowANpujQ0qDr+hJGTO+R1qa50avfQ5wTWrCYRhBpzCwiLC1O8xsFL6k99Un7T2vtnxPakwq66VkHiNLwCoVCobARWDvx3BMER2V2osKA/n0kLUnCkBbIUhSk14qkNVL7qK1eyRWBxKxMCDdblawzAmC1EUlNAn06bNNs1VdI+zv9Wr6v9MMp1JhJnBElHPvE8kPej8FSMj0NWZaBiHqLfZDEK/s9w/Z9Hzg/kvq1LmpD8xUlkTMsX1J0pK2yaCdJEbTv5hTOJRl6pO1Qg9Baqo9ZyovZcsz0UUqjjc7R3EvylhRN33ykhagveq/rRKlBHPuFCxe6pAXnz59fmdPoOcASQiyf5J87GRGExq4SRtpb3prCNaRFKaPKMlvuQa2lXiOtUM81kjpT+9Q5fnzyRbJUlvYFrTn+WM415ygiUeAcaL40Pr2PrFLaM9LoNB7uf9/fHnVdhtLwCoVCobARWNuH50u8MJHRI/JHZMfyM2pTjN7zfiRK/7wui2+arfoeqdFFfhpKEzyXWo63OTMajtGBEY0Xr0cJi5pXRFbMc/W5bPkRhVVG/KvPI1o3L+1lPrxhGOzixYsr7UbUYpLyqIFI2vV9YGI8E7KpKfv+ZWWTGDXsz6GvSNKrtBe9j/YO9zl9uOyX/45WCK13lADM+1N7RH2W9BwVK6aW5f1kZrGFhlRPkuAltUfn8L7Z39+fLBEk0J/tx8r7vld6KSKy8JCGx1JTZqvPCCZmR2AcgNqn5uPbIEUjSRJIi+bPJcUck9UjGkRStGWWn4hsgnOsdqnh+wKwgo6lDzz6jeGzqkeKQZSGVygUCoWNwNoanpcgKEGa5WV5mM8V5ZyRRom/5FHRWEoC1OhIUuv/z4qoMmrOn0O/QUY8G/nUptryyIrgZsVJe9IqpVBpLuuUTIq0ARa73dnZ6Wp4u7u7K0UuvcQtSZD5SSzA6eeTlEqMhMzWx5/DkkWMhPV9ZJSatCX1NaL6Yp8Y0dnLY6TPk0U1ORaz1f3G+evdG7xfaVmIpOqMGD7yv/Acf29ne0d5eLTm+HHSmsEcO/Uh0rz5fIkKsfrjzFZ9WRy75jwivdZnyrGT35cxDP6a1CipCUV7Vecq4pFxBrQS+XZ0T/A1i8T0fcuI7aPnTfb7oPmL/OlRjnDPOuBRGl6hUCgUNgLr11dwiKR+StT8VaeG4j+jxhi1T2RRQ4wWjWzrlAapYUYljISsr4ye8mOlFspjIy2UmpzeU4OJ+kZQSvTHUQPKSjZFfowoqjVCa21lPaKSMZSWySLhfQ6UUllQMlsn339+R19UVOJFfkb5R/R5ZIUQ6B9dx4fH/NVoPELmf6F0Hvn/sqhDaoP+fmB0KX05Ub6u4LXcqVw8lmCK4gG4T/lciPZopK34zyOSfIF5voz09BoeGXDkw5PfV9fx1hr57uRLzSxZyrn1faRWS9JlFjM2WyXD5rOZjD/RXs3u4ygaXSD5d1TuSOA9P+X/9SgNr1AoFAobgfrBKxQKhcJGYG2TZmttxRQY1bSimYMO4jn1i7JjoqrFUfqBR0SJRVMmq3FHDuDMVMb3UaK72uf8RTXnaDrKTLWR+XIqTLdnUsjGl1Gp+WN7ayricQYXeDMSTaMM1CD5tu8PKeaYYM40ErNV4nG9pznKJ0wzWIWh9zItRXunZx7O+kgKK6bfaD59Mi8TjTkXPbMr71eaOKOafgxRz1IE/Lh6CfOEAp6UMK2596ZtEk9kgWH+HFLWseYk93x033At+TzyzwEdQzM4zYcap9nSpKnP2BetQ0QEzu90HboVIppHPpt0XdYdjUyafHb1KBSzYD+aUP05mgt9NtecaVYaXqFQKBQ2BGuXB2qtrZDq9qp7U0PIHPX+GDqj5wStMMiCfetJtQzx7vWRks2cwBqWkGHwQOSgpdTMvrCPkdY7p28Cj6GEN0UbZjaOMws88JYB335ElJyFt6ttX0VaErukV80hA5AiUAJlCDsTqv0x1AaZFuLHlWlYWUpNlNJAejB+7jU8BUGwcrf6wSCqaH9ka8FX/z9Jv3tBTGp3KvlbGIZhJV3EpzuQUo70U1HwmuaJmjfnJ9pDXEMhS/o3W+5VaUm6vkAaMbPls2mKWJ/aqdlqxXlqaQyA8+C89RLchSwwqGfdy54rDCjz80wr2sWLFytopVAoFAoFjyP58Kix+F9fhiLPoVPK6LnmlA4RsjDtSEKgJsk0hF74bOZ3EaJzqYXSlxdRF1HqzyjNIr8P+5ppetH1psYZJcUKx44d6xIA+/DhKNyYUn+WNOz7oLnUMZl0HvlhKJFmibIROTqTk+m3ipKUKfVnBXSjRGASM3N/RNoU55q+6p7VQ8h8yRGxOv2JvRQlnR/t/Wgcfn9Kc1FYv9mqD5/k6tH6c09zrFkxZH8MtSSe468nX7BSWnRdaXQi6vYansbh/XpmyzmnduaPy9KgWELJj4taNFNKeukpfEZlFIp+rbMYAa6n11y5d+67775Ze9msNLxCoVAobAjW9uFtb2+v+BP8rys1BdKGzYnUmUKU6J5JiFFBzoxwulduIrNhZ9JLL5IwK/wZkTmz3Eim0fVKZFD66dFDZZF2lN78MV4i7q1Da23lHC+hZsTS0t4iH0AvCZlj5LmcQ0b4RhYGanhZNLIfF/cG/RNcn2hduL6SziXRewlY16FWqP3Vo+rL9ir7E5EkUPvr3dfrkkf79Y3Iz6VVKkqWicycE/9/ljjP+yR6zmV+MJ3rfavSSOl/U5/vvPNOM1sW6DVbrq98eVmcA/2z/lxBz2tpkKIcUxkhf76iQ0lHl2li/rPsGRVFemfPU91f0T2iPkojPnPmTGl4hUKhUCh4HIk8mtFtERE0f3GZ48Y2PbLIuh6V2ZRUFpWXoM+mR+Lbi07y37Nf0TH0EdDPYLZqS2ckXEbq6//PpHNqGr49+ox64+Z8rVOmg5p/dD5zqiQt+yhNalyc98yHHH1GXwcpsvz19B0tF9H+j6wM/j19HX7dmLPJvSpNz/t9ND+9XD0/hghc96yvvp2sSHI059SMev7f/f19O3/+/EoRYmlGHixu3Iu4zHJ3qVVEhPdsl9A6aX3MlhqW1kf9v/XWW83M7D3veY+ZLTUX3z6jTtUGx+C1Xub/SqPTsdozvlyPtD3tGfWF/t9o7/QKaPu+RhHl2TnRs0r9fte73nXQp4rSLBQKhULBYS0NT7kwvZwsaiuMRIs0rsxfkDEdRD6OjPEksm0z0igjmI6kQSFjzehFdAnMbYmIWAV+R5/anMKT7HMknWbRjPRVRD4QoefDG4axACxt81EfsvywiEUn892RPLjH8BNFm/pj/TmSrPVKZoiotBT3dxYdGkWFcv5JnMvioR46lgTrPd9adi/OyenMIokj7YqFTHsa3t7enp05c2alkKnXhLjOUbSs2WGLgvpAHx41uyhPNvPdssir37Pyw+lVvrq3v/3tZmZ2xx13mNlhCwajFDWebO9Ezywyx8iXKA3T+381j2KzUfss09PLVaa1iOwtHryns98J7WWzpWYXFaOeQml4hUKhUNgI1A9eoVAoFDYCa5s09/b2Uge6/8yfY5abK/0xWfBDj3Q3C05h0EcUyk76pMwkE4Em02ws/tpZ6oD64ynOsjp4WcJxLxgoC1bpJZ5znL3vMsJuD+0dOr29mYjzxGOjgAkSFPPYHuk1zbRZZWa/xloj0hvR1OTnk4nZWaK7EJlDZeaS+YkmJk+zJXMa+5YFIvXMr5mZP0oezuotRve1xjyVVqLzHnjggZV7zd8vJBafGnN0bPasiszUmWtByeU6VuH9/hyt5S233HLoNQrCYcAM9yjvZW/601j1Web+8Pev9hFp0PSe+z/aOwRN2j1Sfq2xUio0Tr/WmhOZ8e+5557ZAXOl4RUKhUJhI7B24vnW1tYK4WskNdHx3yNbprNYyKh9eknkeqVk5CVgIdPoosRZSoNZ+YxIo2DycOb49+MnbVtGHsvwa7NVKT2TWCNkVFK9deslvQuih2Kwgu93RgDQC5iYE0zh24qk9CzFIyrXkqW0sJp0FCTFKuJZcE40n55GyWyUas1WJW7ffmahYMBBz5LR09IEBjJkARVRAn9Ps/N9uP/+++322283s8OJ0gKp6kgIHq1LRjvGeYkqnmdWAfVDWpUPQNHcKaxe49Ga+hQNjoNWAD5TmGjvPxMU5EMiB09inQW2yWrg0yz88f5Ynqv30T7LLAk8NiK4Vrvnzp0rDa9QKBQKBY8jJZ4LvV/uKelxTqIgpY2IxocanSQsajG+MCL7TxovSvFmqxKpJDdKqFFRQvWNvi7a3f24GApNQmVfyDJD5k+l1u0xRfYdSZ9zQstba4fOjdJTMkqqjBrNj2GOr9gf789hGyyn46V0hm1L4pXWQdoos1VfMcPFKb2eOnVqpf/qAy0V8uVF90Tm+6R1wO/LKR9e9HmWdtFLlYlSUKZSWrgefi70P+dU7cvf48/JLEv8vEcXyJgBEnX7faC+eUosfwxTTbJr+/Z5XJTmI+uD1oXPkkh7ygg8SDLgnzGZNsrnXrTfBD6/mRpitpxzWTcq8bxQKBQKBeBI5YGEnt00I8TtFZ2k1J/557y9np9lZXV8XxnBSamFvhY/bp1DH2FGxeTBYo2CJBUvDTJqieOjVur7ysR6+vKiBH5GtVHCi9aN7U358iIJ2YNS5FRyf9Yvfy1SgHmNMqOQkgbBfWG2lJYf//jHm9mSrkkan67bI3OmpE2/Jv0kZqtRmUxE9km4Gqv2VZasLPh1YQI35zVKIhdo3ej5/XrPgejYCxcurDwPIgsMX6OkcYH3aqbNRtYIJq1zbml58v/TgiTrQETbFVHweej7yPJD+jFZDhhh6p/V7D81Vn7fI6Jgm9H1Mise740oIle+9dLwCoVCoVAAjhSlOSfqL6P8EiKyY/roqIlFuW/U0kimGmlrmTbIvkYlXqhhRVRiZrGvixJclIuWXU/I8g6jAol8pSYWRaGyz4wojKT1ubRmFy5c6FKLZf4KXjs6h/OfkTlHvi76YbzPzuzwWsoHpHwr+YbZd+07fz7nSeuiOYkIdJkryKK4Ud4fIwSZ/5T5dv3/c0jKhSwHklpcT7J/6KGHulL6/v7+Cim23ydaO/qReK9F+YP0G7Ef0eeMAmXUpvxwfh9orFkBVr36/ae11D7Tez4btR98rIL6oIKzN91006G+6hy/LvqMsQOkqROiPDzuB2rdkTUqi36npue/i3IBp1AaXqFQKBQ2AmtreMePHz/4VY4kH/5S0zYbSVqMqKLElb36dlgmhr4tL2nxuhmzRhQ1Sekv8zNFeVGZfyxiKsly5bLoKQ8yXmQFOqMIK/Z5jm3cS9y9Ei/nzp1b2Tu9PKysNE2P9FqgBEzN3GwptTKyjyV//D7QOfKZca61z7ykTStDVnhU770/TteTv4IRfvrc5wrK30HfoNBjodFYsz5PaWHR+KI1ojXn/Pnzk7lUmV/Jg5aeOQTWmU8/y881W2r49J3ReuJzBuX/1dqpPa0X/YH+fxZG5TNT+82vtUiib775ZjNbanpqQ2PwFiaN3RNz+8+1H/lc92OmdYDWicj6ke0vXs//79dlrpZXGl6hUCgUNgJH0vAiH5CQaWP0i3nNJIvOnGIzMVuVrCmZRtFL+n9K+4xyP8gyk7FaRJFWjIDL/Gb+HEZ/ZoUYo/nsRTfyfRTtGfU1YssQIj5P387u7u6KRhcVSqV/pxf1l/k4+Upp3my11A+1A8FrEirpQqmf1gJFbZotJXvmgpEdI+qjtD1J3GJYIaOH1/AYQZj5EHtlb7iHuLZ+7bN8Nvpyej68XqTdMAzdc/1n7AvvG39OFivAfEn6vMxWNTruM7UhLcqfz3tMfVY/vAbEfFtGHdMv5tumn1nX0fvIz8j+a39lvvDeGrBv0fpmZc6yCH1/zbmRmR6l4RUKhUJhI1A/eIVCoVDYCKydeO7poyKTZkY+StW0Z6LoUUnxPc0OfI0q8+o7qfY0ofaIWOkEzyr/RqVQGLDBMXjQIT9ViToK1Z9K4PbIksh7YchzKKQ8dnd3V0yxvj2a0fgaBVlMERzoe5lmIqontsE0Dm/yk2nRmxD9MZoLmTHNluS8MjGRHkwmVdJT+evouj4BN7q+WT5fGTlCLwhIrzSLzTEn0eQdBbfNIf1VSgvN4VHARHQt/96vNa8t0x7Na5FJjnRgvA7TR3w72gcyVyqIhc9Ms5wUm24S9t0fy4A+kmhEhBA0Nap99idySXBemSISBarpOz4jI5Mm04d6ZPhEaXiFQqFQ2Ag8rMRzSpJmuWRFCSsKUc4ke0qDkcM8ex9JFZIWJE0weTiiGtKxktwZGs0+R0VxMwoufe/7mEnac8q1ZJoRtdGIADjTmCPSYEqBPalfgQdZ8r3vb1b01rfF/7O0EAaEeEkxk0Q5B1GCM4l/Odc+WEHaGYMImCrBZF+zpRTL0HWhR+qdUT1Rm4+k9IxAmUFi0TkZHVkUlJUFVPH8Bx544EDbjbSZnjbpr+cxVT4rS3Hw32X3o9bNWxQUJCKKLwU2aT9E+50BSJk1QtqbT4eZCiIi9ZzvL2nQ2Eb0zMrWsGcRzPZOFsBmFt/TRS1WKBQKhYLDkXx4lHx7v66Zbyii7SLmJHVn/ghKNxFpMCV6amL/f3vn0xu3lQTxJ8lKHB+cBMYGAXLY7/+x9poNggSIAzuWZvZUUuvHqiZHiz1kp+sy0syQfI985HT1n+pOckmMjynNzkojW+LYhboN45nJt56k2+o80qtjAKlotGOFyXdPnE6nTaG2ix8xpkors5MWSwyvk0TTuZR1nJrgrrVt5aT9kulVlqa1osafssaTLJqzZnk8roOajs6mp5x7Wg/12JSU0zp3rJcM/2hcbq2X17p7Djw8PDwxEl2nOufUzDnNuY6hK5+o86nxq9RSSGPUdysLVTxP+xPD4zV2cfLk5eD95LxffCbxOrlSHQrdJ/nFilQiJLhYf/I+dTkfSXT9CIbhDQaDweAqcHEMT8Xna3nfdmIPbA3RZXjuxfK6zD5awm4bWV2ybGgJkfnV/RCUXnLsMPm9WUTqWons+cU7IejUzNNdtz0rqdumY4zC+Xy2jLl7j6zNFZzuMbwu9iRQ8JfXtM6L7InnQHEmJwCsz9K9wWLmut9UzCvWUAuUKYbA++qIZyY1d3bxOI51L4ZYkST7HNj2qLInxvU4FpfJx/PALFmumZohm/IOdN0d+xAzlZiAYroU9XZeFP5Pr4e8B67BLRvn6lzo+ri1So9Feua7ezFlrrvnRNpf10hX56+y6InhDQaDwWBQcHEM782bNxsZm+oDTk0Vj7CL5PvvsjS5vyQ7U7chG6xzq/twUlnJWua+HRjno0VZGZ5rBlmP18VLEitINYr826Gzzmoc6eh+XNZnijXx8y6Gx/c7tkFBXlnHrqWUICudr1yHjg3wVWPuPCZ6T2NjbZjG7jIWU4y1i8MIvH+Tl6B+lmSiOjZQ7+kkAKzscN0TsvBrRiK9NYzDuhpUSquJgZOdaRvJutXvMA7G2FNlYhoLJeaUtSnGp88rWA/H553WW12zbGzMGk7t02UF89lEUX7+X8dGL0i6rnWMXKN8Jtaxp4zlIxiGNxgMBoOrwMUM73w+t+LRQvLnO8s+WY/0NQtuW/q0O3UWWpzM2jwSk0pwzIznybVGqf+vtW2RlPblYpT8bor3uZo6zpnfrUyCsYf7+/t2TdTx0np24yVbpFAzt3fHocXv5kzLlAyvzpmKEKmtkmIqa+U2RHsqQWttG70eafXUMaX66uJMriVSd/y6DTNGu9YvzEj8+uuv47hVw5niPGtts0u5f9cAmCymNqOtEKP8+eefN++xyS6zCusYNRY2a1W2ptr5VIbH2CQ9Cqlp8VpbMXKqpGjMlT2RuXIcacx1TIx98rp23hYdn7HQOkZdnyP1v5vjHP7mYDAYDAZ/Y8wP3mAwGAyuAhe7NKtroSstSJJBLokgyXLtFWq7benC0GtN29Z+KZ9Ditz1dyPlZ3DcyYQxaYCuhupuYXkF3bsp9dfhEpdCenUFznRz7bkz6zzcGkqdwLkeuo73e0KyTlxXrpeU7OFk8DhmJRw49x3Pk6431xlFzdfaJgfsuQ8ruEaZLOMSr1KhM4/bSZnxOy6V/hI3lMbDhLS6P7pneS87EYPUb5Gfy732+++/P332yy+/vHhlKMOVv2hs2p9cl/rfhWfk/uT6psCBu/dYIsNnotzuXUII5Rclrai51L6PFEUXutAQQxt8Jsp9WcdI12wd7x6G4Q0Gg8HgKnAxw7u9vW3TqI8yvApaL7SSmXThfs33WstUK4PMLUnwuLFyTKm1kNuGViYD3I4VpnT7VK5QsdfixyU6pAQKWu9r9aUmxPl8Xl++fIkp7HX7vQLpyoRpyfO1E6FN3cr1msSr65zTWqpj5H4p20UG6LwR/I5j3AKTMJhQwYSousZkySeBc8coOa/kfXDlJEe8AqfTaX3+/Plp3DqOY3jaH1t/dSUtvN+5Lty2LNBWEov2wdKDtbZlB2wXJfZUhcfJ8PncYVKLE2PXZ2R6KUGlfkfHYzmCuzddklfdP++r+h4T+JisUhker9unT5+m8HwwGAwGg4qLGd7pdGrbp9ACIZiW7t5LsTxZENU/zl/7ZNG51HIhySjVOSRxWsYnnHXLMaS2HS5myDgI42UuhV9jSTFQt02K3bnSA27jWIbD6XR6sjLd2iGbYWo5i2/X2rIUsgx6D1yjVEHnjSynrhd9xuJasiq3DeMjmh/PbWV4LBNgzMPFjFPxMGMfZA3dmDhv5zFJMd1O9L0yvcT2TqfT+vPPPzetmWqsk61uuGachFnyKKXypMq8vvvuuxfnI0kZ1m1UYC6Gp/Hrff6/Vr7HKEuo/2sRucbAMWreir/VOBzZ2F7pTmWwfE4LvCfqc473pa4jyxJcs9/6jB+GNxgMBoNBwcUMb62tn7z+YlN4dY/puf0mUWJmCvHYdZsuOyu1oRFclmjKNEoSVq44PvnDndRTygJ11g2RYk9HRH15zlMmY32vWtF7cbzUbqb+TV9/JxOW4q0pQ7CyHMVfmFGn7DYnQCCLVlZxYtwVFHqmR4HzchJc3C+lq2rMkAyPkmZseOwKwpN0mfNCJIZPdlrHyHPbWein02n98ccfm7hSZU+J2el/J+TAWLGLba/1vD5++OGHp/dUcO2yVuu+KwOiV0DbcC3VwvMuq9nNQbHEtbYxW87L5R1wTE4gIo2HY+NvgJN0JFNVJqzmwXvRzf3NmzeHYsFrDcMbDAaDwZXgVeLR+uV2jRhlRZBFpezCDoxbUbB3ra30EuNAzqpImZxEfd/FHNba1ja5GF7KYkytbOqx+VmSMHKSSfTvd9mUKSuTPnvH8C6RYCPDq9eScZDUCqUiWb5kDi5LMzHhJK+21rZBJoXUhRpLEVJ8mdfQeQcEtqFxzJXMLjF7d+7I6DtJMSGJBaeWXXU/Scqs4vHxcX38+HHDSGpdHCXFmHkruFrAJDQtdsvn3VrPXqYPHz68+G7XPFhgngPPQR0j72XOk4LUXWspxmddpqU+Y72dYmtsgFyvGz1m6T52Wf1socX7zK2dS2s51xqGNxgMBoMrwcUNYO/v7zeWUY2B6Bc5sYkjNVv8rLMyU7sKNtPs6m/I2lINnNv2EpB1dkwzWf+06J3VlDJWUybmWttszL3Xuo2zKh1ub2831l61Zrk2aIEya7OC15AZv278iUUz9uHOE9cG4yOO4SWQuXTC46ylcuyJY2OsPdUFrrWvPiN0TIKMgkzGzevh4aEVAv/06dMmE1dsYK2XmYb1WB3TSgLZPI7ORT3Gjz/+uNZa66effnrxGT0iFbwu9MCIRdV5aRs2D2Ymtq6xskfX8sx0rS1zrWuXcXNdJz3X1SKJsba1ts/T5MlwdXisa9Sr8+5wnVzyLB6GNxgMBoPTJc++AAAPZklEQVSrwMUM7+7ublPlXzOR6i/+Wlt/q2v5s6cakmJfa2UdztSMsG6fGsF2jGtvzM5KJaPai8+5saW6QpelmLJcU+blWttYFM+fq8Oj1byX/Vnjv86CS3EdWsZOS5PngfEDjbtm+GpuqXmnY09sIUPm6GJRjNkk5urmx3m5OB+h8yhLXvOk18OxkVR/2d2TKRM71be6+Tw+Pu7GZHhdahsfsSMyoO587emu8v6p9ZFaR6qZE7Mii65zPxqPq2tUn33//fcv5kE9Vnqn6nfJ8KnsUq8/Y+yp/ZDOHZvK1uNo7Nq2q1FO3gHuc60tC506vMFgMBgMgPnBGwwGg8FV4FXi0QwI1wLQ3377ba21TZige8MVD9P9maSfKt0VpWZgnIHZLsjO/bPUwIGus5Q0Uf8+WhxZ98c5J3eoOx5djEwyqa4MumLoDnPbuDT3NEclPNEV0wlBE53bIgkVpwLqtZ5TuXWO2SFarp+uHQldwG7t0J3Pa6d9uEQXns/URdrJ4Gl+eqVb2kn1JUFwt64FupickALB9jZfvnyJ11fucJ6nunb03vv371+MRe8712xyn6WEly7xha49V0KV1gGL4p30VhKcp8u2Ho/z0HWWK1OvLmlJY1KISueR5TfdeuCz34VSmJSiz5gc5kpnXDLUHobhDQaDweAqcHHSSrW0XDEv5ZNkrSRB47W2iSzJMnRF1mRYGpssLidhRYsgpaO7lNgkP9Ql3uwFx7vmlGQdZBCODXOMKQ29zoElJinhwYkMXCIq0DXXZTCfcMw8tXRKsl1O9Jhp6DrnTnCaICM6UsqyJ1pdP+exmQDj7hm2GWJyCpMYqsVN1pNa/TgmzzKOJERcP+tKgOqx3r59+zROeZGcXCDv2SQuvtb2+rMwW8yY561+R01UJWita63nYE3o45xZVE2vQQXb56TSnQo2VRX0bNQ+XeNWMTttq7IIijt3Yhl7pTtrbZ9nmg/bELkCd3pVjmAY3mAwGAyuAhczvK+++urJ9+v817KK6GuWpdDJWjFFlZZwJz/k2mOslZsSOjDt2Vn2yZ/PGJ5LRxaSELCL+6SU+S4+khheSlNeK5ch6LuyuGpqNhneXgFobS1V3xPoBSBLc1ZsKnZNos5H4lWCY6Ou/U89birU7sbM47tWKKnFiiuoJ5NnDIcxPOf9IJMk6vw5NnpMXBG2a+uVPAR3d3fr22+/fWJEYhdOboqxLnqhnFi5xkeWwRKNuj7YoPTXX39da22luRx7cp4q939F8jLQ21bZIa+3ns0asxOrFihdJ4anwnMxQCfZmGLVLKVaa9sAlvPQHGoJCmN3F8lVHv7mYDAYDAZ/Y1zE8G5vb9e7d+82FlG14MQIZAHpl7kTcWWTTmFP+mutbYyO/mmXiUYrnFag8wlzLHtxuYrEBlnk6drCpMzRZI3W95Kl6orxGc9hw08xOxfHEB4eHlpmoxjwWts4GeffwVnp6Xqk4vu1tmyGDIUeh/o3Y1xHYlGCu951W7cOhCSS7mJTKSuTGavdNUvF8q44npY3MzGrd8DFzbsszZrhK9bkJAZThjWzNev2XX5B3XeFGJAYj+KKYkuurRPv9z25wIo0Rq6Deo7J8Hh+dZ1cdrDe06vmK2bH56zbDzPzmdfhxsL/Ob+1np9BYp2XPIuH4Q0Gg8HgKvAqhseMp2pV6G9ZYWzR7qzmuv/u/y4DThCjZNPDaqUxrtfFlQh+ltq3uHHvial24tF87VrYkLkypsNaxfo3mR5jea52T69//fVXW2t4d3e38ed3cblUi1OPwUy7PUuxIgmbpxZX9b29OJybT2L6PL7LuEyvOl63vmnpkw10noU9Ie/6Gc8N44CVuTCO1dXh6bisQazXOrUDSvXAdf487ykztf4vxsNs8HovrPWS9aR2Wl0LtRT/Z5y78zxx7sz0rLJhlDRkliZrIGv+Bllt8ph0c+dzxzXu1bNIGbIjLTYYDAaDAfCqOjz+GtcsH1bmM2vTZRkm65gWorPiE2tK7eXre662LIFWIK3aTuA6KVDQ8q1WTFJWOaLawqzX1F6psjVmaZINuMxO16A3xUG0dshQHTPl/6mdk5tzyryk2kPdH79L1ljBa8nMOmelJxHlxDDrGBl7TLWVrqaSMVuXlclxHLWUXQ3cXk1iPVeMX3VW+u3t7frmm2+ejqNnTL2nxUDIohg3c1mMe4odjumLFZGBdSxe55nteqj4U88tY49Uo+pYKGP1R1ihjs16O+ZkuBh8up/4nHPPEGaQa1vFRt1zhXHbIxiGNxgMBoOrwPzgDQaDweAq8KqO54IocaXolBZjEFzuCOcSSS6elPRRv0N6nlyQ9W+6Knh8R6OTxFJXeJ5ccpxPdfm4RJYKug9cunUqQHaSUiwsTy4zl1Jcv9uJRzuXZt1fEtelPF09J3TtJFemEy1Pnbo5x04gl2vUFaYzQSf1QXPnhPugm6orHuc147UVjvR9TNfGbUN3Yuc6q/de56a/vb3dFCnXZAvNWeLRhHNLMsziOsDXbevx2JmbbmMXeuA15DZHsFeG48qT+N1O5Fvvscif8+W5q/t1iVR13/XeSOU1FJquvzFOoOKoMP8wvMFgMBhcBV6VtELruVoICsCSvVAE2QWonfSMQ922Y39r5XYqa+VkhQ5JGLcrfqRlk4rIHXPhfMg2GMzm32ttE1AcK3Csr37HFbayxGCvTcfpdNrMx7VC4f7J4o6UjaRt6trheF0LIR4vBeS5/pyYN79LZueYEJlpSkDpmDcLz4XOwt/rzu624bkhI3Pi6EeSZGTBi204KT49dzgnst06hiTXRaFmznOtraeKQsZd+ZXOC1sIsUxiLS/QX9+nt8pty7IEsTRXYrKXrNJdg/QM1Lwcy6a8GT0yru2RyhEuabcmDMMbDAaDwVXgVQ1g+XdlCrTm9H9XAsBC9lT06lLZab2keFwFrUrGVlzLFRebq9vSOndp6amIvLO0kyVHduDmy3NOpudS2ffS3ivDoxXWMa/z+bweHh4iA6vv7cU6jwhnJ9bhLNIUy2Osre6P7IVSY64sZW/83bwY02DhuYs3p1R2vrp4OsfOMgwX96PgOY9bGZMrOUls73w+r/P5/MSqBOehYEG0mlNr3ToprLR+eX5qkbWYjsZAz5Vrdppi6y4OT6RyHz47XLseSpeJrbGYvL7H2B3FotlKqR6P8WV3HxES26Yot+ZTm4zrMx3n3bt3h5vADsMbDAaDwVXg4hheFQDWr2r95abYsD6jNJVr4pnaSTghVoGWDa0IFytILehZtNplaaYMqI7h0cJnoWm1tGmFJxbiZJYYj0tFyy6zM4m2ujin9l8t4T1mzWvqmoKSVXCf9ZzvFau7gnMej7EFMn2X4UuQzTgkdsvMVWelJ0bvitXJ+va8EK5wN8XsHAtNTZ55Xuu9yXX18PAQz93pdFofP358arLaCcJrH2Io2r8TPxd74fOH972YkYqg61yYd8Bx1PPFPAYdX5ntYi5OjCE1reaacvkN9LrpuIzX1b/F9BIb1Lmv1zTFJoUuV4Lrms/IOi+dL62H9+/fRwZMDMMbDAaDwVXg4hjezc3NxgddLRL9qtMC0nf16+zq1PZe95pS1u86H7Mga4nMTpaXE1eu83dI7K2OidZxl2Ga4oxClxmZmCrZmxOCJjvgNXZM0s3ZoW7r6rl4njiWTgLqiNB43Vc9XmrB1El9sQY1ZZTW95yI8lpb5u3GTs9Cx/BTY0ye8y5TMnkl3L5dDLrOx8VuOq8NcTqdXsTPXGaywPihro+Yi2JFaz1nBoq9cPxs41ObkPJZQQkwsqh6PLUU0v8caz0nKQs3PTvqtqkJbpIPq/NiA1iKSbvsydRSjK3aXFsn1iLTO+Ayl+vzZ8SjB4PBYDAouJjh3d3dPf2Sd1mTbPzKVkJOVDXFq2ih1OPtZWV2YtW0eMgoap1OytLkvDu2xvnQKnNWShIcJvtw7WFSXZSzGtP+9tQv6v5Op1P7/Zubm40V3al8pKy1I6zgyDlO14Ms4YjFnbJo63tcxxxbtw66OB/HmOoZmWHnWBbbsXBert5rL/vU1esmgWmH8/m8Pn/+vMlmdAxPx+A94JqrVtH7tZ6ZHjNuGetz+6O3iBnRaz17twTGuDjmOkd6aVIMz+VG8H+Nnevdvcd1xuvvmn9zXikrtf7N+C//r2Pks+oou1trGN5gMBgMrgTzgzcYDAaDq8CrOp6ndNO1nikvqT0LZl0BM2k5ExHkWnDuFLp8KH3TFZHTfZNSgY/AuXU6YekK935KGulEnZMbJAm01v2ncgQnMkD33Z6r8Xw+b4R6nQgxyx0Euj/qflxadt2n+58iCEn6rXNpski924ZrlMfhPt3+kiuzE2Pfk7K7xD0pOJkwrhUmxbjnxBFItCCd+/o3kyCYRFRdY0pg0fMs9avskqQovSW3qLteTDRLbkont8dQw174p86D14PrsN6DfI9lZDpnrsxDxeGcTyfvlq4p3couGacLASQMwxsMBoPBVeBihvf27dtNur4rBGag0jE7bpMSNPh/lcJhcSXlyZwg715Kr2NiR+SzjiJ1Hr6kEJxsrUtA4Xy6ws//JtGlCosT5/N5PT4+xrRjNzelTbPMoiIlV9C67FgG98t15iTY6rzqK9/nMd1xOpA1iaGQvXWiBanjulvLeyUNbluNKTHzzushdK2lxPAcs+P4eH14n7g2M/qsliyslWUS6/F4b2nNOMHslGjCQn3HuAV6NPh86NiakKS/1tqKVmj8arvEdj31fCbh+SSaXrdJMnhMIKvvHbl/iGF4g8FgMLgKXCwtdnd3Fy3itTLDY1mC8+PSSk+yUS6ORLmkI+1ahGS91uPsWRNHrGdhL1ZZP0uxtSTy7Pa7J0t2ZL/OuuZ12jtHj4+PmzhStfT3UpIdm01F4yk+UsHxp4azrmCenzGucEQIOo3HneMkOO6K/fdEkOlZ6GIgtM5dmc/eNg6MtXfCyXrudKUy6f4gw6tshveWINbCVmfuuaNWNRRzcGUQqZShK+rn8yy1NHPiFlxnlFlzzJb3jeajc8FWRrW0I3mdFN8U+63nkS2RuEb1f/Xq8frf398fZnvD8AaDwWBwFbi5JMPl5ubm32utf/3vhjP4P8A/z+fzP/jmrJ3BAczaGbwWdu0QF/3gDQaDwWDwd8W4NAeDwWBwFZgfvMFgMBhcBeYHbzAYDAZXgfnBGwwGg8FVYH7wBoPBYHAVmB+8wWAwGFwF5gdvMBgMBleB+cEbDAaDwVVgfvAGg8FgcBX4D3sTmgRKRxOmAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ]